Sémantique de la logique du premier ordre

David Delahaye

Faculté des Sciences David.Delahaye@lirmm.fr

Licence L3 2023-2024

Logique du premier ordre (ou calcul des prédicats)

Définitions préliminaires

- $V \equiv$ ensemble de variables d'individu x, y, etc.;
- $S_F \equiv$ ensemble de symboles de fonctions f, g, etc.;
- $\mathcal{S}_{\mathcal{P}} \equiv$ ensemble de symboles de prédicats P, Q, etc.;
- $\mathcal{S}_{\mathcal{F}} \cap \mathcal{S}_{\mathcal{P}} = \emptyset$;
- Arité (nombre d'arguments) $m: \mathcal{S}_{\mathcal{F}} \cup \mathcal{S}_{\mathcal{P}} \to \mathbb{N}:$
 - Exemple : pour f(x, y) avec $f \in \mathcal{S}_{\mathcal{F}}$, m(f) = 2;
 - Exemple : pour P(x, y, z) avec $f \in \mathcal{S}_{\mathcal{P}}$, m(P) = 3.

Logique du premier ordre (ou calcul des prédicats)

Termes du premier ordre

- ullet Plus petit ensemble ${\mathcal T}$ t.q. :
 - ▶ Si $x \in \mathcal{V}$ alors $x \in \mathcal{T}$;
 - ▶ Si $f \in \mathcal{S}_{\mathcal{F}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $f(t_1, \ldots, t_n) \in \mathcal{T}$.
- Les constantes sont des fonctions d'arité 0;
- Important : dans un premier temps, nous ne considérerons que les fonctions d'arité 0 (constantes) dans nos exemples.

Formules du premier ordre

- ullet Plus petit ensemble ${\cal F}$ t.q. :
 - ▶ Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $P(t_1, \ldots, t_n) \in \mathcal{F}$;
 - \bot , $\top \in \mathcal{F}$;
 - ▶ Si $\Phi \in \mathcal{F}$ alors $\neg \Phi \in \mathcal{F}$;
 - ▶ Si $\Phi, \Phi' \in \mathcal{F}$ alors $\Phi \land \Phi', \Phi \lor \Phi', \Phi \Rightarrow \Phi', \Phi \Leftrightarrow \Phi' \in \mathcal{F}$;
 - ▶ Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors $\forall x.\Phi, \exists x.\Phi \in \mathcal{F}$.

Sémantiques

Logique classique

- Une formule est toujours vraie ou fausse;
- Que je puisse en démontrer la validité ou non;
- Logique bi-valuée (vrai, faux);
- Logique du « tiers exclu » : $A \lor \neg A$.

Logique intuitionniste ou constructive

- Une formule est vraie, fausse, ou « on ne sait pas »;
- Si on ne sait en démontrer la validité, alors « on ne sait pas »;
- Logique tri-valuée d'une certaine manière;
- Le « tiers exclu » n'est pas admis dans cette logique.

Interprétation

• Une interprétation I est un ensemble non vide D_I , appelé le domaine de l'interprétation, muni d'éléments I(c) de D_I pour chaque symbole de constante (fonction d'arité 0), et d'une application I(P) de D_I^n vers $\mathcal B$ pour chaque symbole de prédicat P d'arité n.

Affectation

- Une affectation ρ est une application de $\mathcal V$ vers D_I ;
- Pour toute affectation ρ , $\rho[v/x]$ est l'affectation envoyant chaque variable y autre que x vers $\rho(y)$, et x vers v.

Remarque

• Important : dans un premier temps, nous ne considérerons que les fonctions d'arité 0 (constantes) dans la sémantique.

Termes

- Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :
 - ▶ Si $x \in \mathcal{V}$ alors $[x]_{\rho}^{I} = \rho(x)$;
 - Si $c \in \mathcal{S}_{\mathcal{F}}$ d'arité 0 (constante) alors $\llbracket c
 rbracket^I_
 ho = I(c)$.

Prédicats

- Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :
 - Si $P \in \mathcal{S}_{\mathcal{P}}$ d'arité n et $t_1, \ldots, t_n \in \mathcal{T}$ alors $\llbracket P(t_1, \ldots, t_n) \rrbracket_{\rho}^I = I(P)(\llbracket t_1 \rrbracket_{\rho}^I, \ldots, \llbracket t_n \rrbracket_{\rho}^I)$;

Formules propositionnelles

• Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :

```
\begin{split} & \| \top \|_{\rho}^{I} = T, \ \| \bot \|_{\rho}^{I} = F; \\ & \text{Si } \Phi \in \mathcal{F} \text{ alors } \| \neg \Phi \|_{\rho}^{I} = \neg_{\mathcal{B}} \| \Phi \|_{\rho}^{I}; \\ & \text{Si } \Phi, \Phi' \in \mathcal{F} \text{ alors } : \\ & \| \Phi \wedge \Phi' \|_{\rho}^{I} = \| \Phi \|_{\rho}^{I} \wedge_{\mathcal{B}} \| \Phi' \|_{\rho}^{I}; \\ & \| \Phi \vee \Phi' \|_{\rho}^{I} = \| \Phi \|_{\rho}^{I} \vee_{\mathcal{B}} \| \Phi' \|_{\rho}^{I}; \\ & \| \Phi \Rightarrow \Phi' \|_{\rho}^{I} = \| \Phi \|_{\rho}^{I} \Rightarrow_{\mathcal{B}} \| \Phi' \|_{\rho}^{I}; \\ & \| \Phi \Leftrightarrow \Phi' \|_{\rho}^{I} = \| \Phi \|_{\rho}^{I} \Leftrightarrow_{\mathcal{B}} \| \Phi' \|_{\rho}^{I}. \end{split}
```

où $\neg_{\mathcal{B}}$, $\wedge_{\mathcal{B}}$, $\vee_{\mathcal{B}}$, $\Rightarrow_{\mathcal{B}}$, et $\Leftrightarrow_{\mathcal{B}}$ sont les fonctions d'interprétation de la logique propositionnelle.

Quantificateurs

- Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :
 - Si $x \in \mathcal{V}$ et $\Phi \in \mathcal{F}$ alors :
 - $\llbracket \forall x. \Phi \rrbracket_{\rho}^{I} = \bigwedge_{v \in D_{I}} \llbracket \Phi \rrbracket_{\rho \llbracket v/x \rrbracket}^{I};$
 - $* [\exists x. \Phi]_{\rho}^{I} = \bigvee_{v \in D_{I}} [\Phi]_{\rho[v/x]}^{I}.$
 - où ∧ est la conjonction distribuée et ∨ la disjonction distribuée :

 - $\bigwedge_{v \in D_I} f(v) = f(v_0) \wedge_{\mathcal{B}} f(v_1) \wedge_{\mathcal{B}} \dots, \text{ avec } v_0, v_1, \dots \in D_I;$ $\bigvee_{v \in D_I} f(v) = f(v_0) \vee_{\mathcal{B}} f(v_1) \vee_{\mathcal{B}} \dots, \text{ avec } v_0, v_1, \dots \in D_I.$

Définition

• Dans une interprétation I, et modulo l'affectation ρ , la sémantique des termes et des formules est définie par :

```
Si x \in \mathcal{V} alors [x]_{\rho}^{I} = \rho(x);
Si c \in \mathcal{S}_{\mathcal{F}} d'arité 0 (constante) alors [\![c]\!]_{a}^{I} = I(c);
▶ Si P \in S_{\mathcal{D}} d'arité n et t_1, \ldots, t_n \in \mathcal{T} alors
       [P(t_1,\ldots,t_n)]_0^I = I(P)([t_1]_0^I,\ldots,[t_1]_0^I);
\blacksquare \square \square = T, \square \square = F;
\triangleright Si \Phi \in \mathcal{F} alors \llbracket \neg \Phi \rrbracket_a^I = \neg_{\mathcal{B}} \llbracket \Phi \rrbracket_a^I;
▶ Si \Phi, \Phi' \in \mathcal{F} alors :
               \star \quad \llbracket \Phi \Rightarrow \Phi' \rrbracket_{\rho}^{I} = \llbracket \Phi \rrbracket_{\rho}^{I} \Rightarrow_{\mathcal{B}} \llbracket \Phi' \rrbracket_{\rho}^{I};
               \star \tilde{\boldsymbol{\mathbf{I}}} \boldsymbol{\Phi} \Leftrightarrow \boldsymbol{\Phi}' \tilde{\boldsymbol{\mathbf{I}}}_{0}^{I} = \tilde{\boldsymbol{\mathbf{I}}} \boldsymbol{\Phi} \tilde{\boldsymbol{\mathbf{I}}}_{0}^{I} \Leftrightarrow_{\mathcal{B}} \tilde{\boldsymbol{\mathbf{I}}} \boldsymbol{\Phi}' \tilde{\boldsymbol{\mathbf{I}}}_{0}^{I}.
▶ Si x \in \mathcal{V} et \Phi \in \mathcal{F} alors :
               \star \| \forall x. \Phi \|_{\rho}^{I} = \bigwedge_{v \in D_{I}} \| \Phi \|_{\rho[v/x]}^{I};
               \star \|\exists x. \Phi\|_{\rho}^{I} = \bigvee_{y \in D_{\bullet}} \|\Phi\|_{\rho[y/x]}^{I}.
```

Remarque

- La sémantique donnée est valable pour des formules closes ou non;
- Si une formule Φ est close, sa sémantique $\llbracket \Phi \rrbracket_{\rho}^I$ ne dépend pas de ρ ;
- Pour une formule close Φ , sa sémantique sera donc notée $\llbracket \Phi \rrbracket^I$;
- Par la suite, nous ne considérerons que des formules closes.

Sémantique

Vocabulaire

- Soit Φ une formule et I une interprétation;
- I est un modèle de Φ ou I satisfait Φ , noté $I \models \Phi$, ssi $\llbracket \Phi \rrbracket^I = T$;
- Un ensemble G de formules entraîne Φ, noté G ⊨ Φ, ssi toutes les interprétations satisfaisant toutes les formules de G en même temps (les modèles de G) sont aussi des modèles de Φ, c'est-à-dire quand I ⊨ Φ' pour tout Φ' ∈ G implique I ⊨ Φ;
- Φ est valide ssi Φ est vraie dans toute interprétation ($\llbracket \Phi \rrbracket^I = T$ pour tout I, noté $\models \Phi$), et est invalide sinon;
- Une formule valide est aussi appelée une tautologie;
- Φ est satisfiable ssi elle est vraie dans au moins une interprétation ($\llbracket \Phi \rrbracket^I = T$ pour un certain I, c'est-à-dire elle a un modèle), et est insatisfiable sinon.

Sémantique

Vocabulaire

- Toutes les formules valides sont satisfiables, et toutes les formules insatisfiables sont invalides;
- Ceci divise l'espace des formules en trois catégories :
 - Les valides (toujours vraies);
 - Les insatisfiables (toujours fausses);
 - Les formules contingentes (parfois vraies, parfois fausses).
- La validité et l'insatisfiabilité se correspondent via négation : Φ est valide ssi ¬Φ est insatisfiable, Φ est insatisfiable ssi ¬Φ est valide.

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

```
 \begin{split} & \llbracket P(a) \Rightarrow \forall x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \forall x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \forall x. P(x) \rrbracket^I_{\rho} = \\ & I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P) \rho[v/x](x) = \\ & T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) = T \Rightarrow_{\mathcal{B}} T = T. \end{split}
```

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

```
 [P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)]_{\rho[x/x]}^{I} = [P(x)
```

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)]_{\rho[x]}^{I} = [P($$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)$$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} [P(x)]_{\rho[v/x]}^{I} = I(P)((a_{0})) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)[x]_{\rho[v/x]}^{I} = I(P)((a_{0})) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) = T \Rightarrow_{\mathcal{B}} T = T.$$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)]_{\rho[x/x]}^{I} = [P(x)$$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} [P(x)]_{\rho[v/x]}^{I} = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)[x]_{\rho[v/x]}^{I} = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)\rho[v/x](x) = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} I(P)(v) = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) = [I(P)(a_{0}) = [I(P)($$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(x)]_{\rho[v/x]}^{I} = [P(x)]_{\rho[x/x]}^{I} = [P(x)$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} [I(P)[x]]_{\rho[v/x]}^{I} = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)[v/x](x) = [I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}\}} I(P)(v) = [I(P)(a_{0}) = I] \Rightarrow_{\mathcal{B}} I = I.$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^I = [P(a)]_{\rho}^I \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^I = I(P)([a]]_{\rho}^I) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^I = I(P)([a]]_{\rho}^I) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} [P(x)]_{\rho[v/x]}^I = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)[x]_{\rho[v/x]}^I = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)\rho[v/x](x) = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)(v) = I \Rightarrow_{\mathcal{B}} I(P)(a_0) = I \Rightarrow_{\mathcal{B}} I = I(P)(a_0) = I \Rightarrow_{\mathcal{B}} I(P)(a_0) = I \Rightarrow_{\mathcal{B}} I(P)(a_0) = I(P)(A_0) =$

- Soit l'interprétation I avec $D_I = \{a_0\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T)\}$;
- Démontrer que I est un modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :

$$[P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^I = [P(a)]_{\rho}^I \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^I = I(P)([a]]_{\rho}^I) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^I = I(P)([a]]_{\rho}^I) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} [P(x)]_{\rho[v/x]}^I = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)[x]_{\rho[v/x]}^I = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)\rho[v/x](x) = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0\}} I(P)(v) = I \Rightarrow_{\mathcal{B}} I(P)(a_0) = I \Rightarrow_{\mathcal{B}} I = I.$$

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)\rho[v/x](x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]^{I}_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v/x)(x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^I = [P(a) \Rightarrow \forall x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} [P(x)]^I_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)\rho[v/x](x) = I \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_0, a_1\}} I(P)(v) = I \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(a_1) = I \Rightarrow_{\mathcal{B}} I \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)\rho[v/x](x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v/x)(x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Soit l'interprétation I avec $D_I = \{a_0, a_1\}$, $I(a) = a_0$, et $I(P) = \{(a_0, T), (a_1, F)\}$;
- Démontrer que I est un contre-modèle de : $P(a) \Rightarrow \forall x. P(x)$;
- Démonstration :
 - $[P(a) \Rightarrow \forall x. P(x)]^{I} = [P(a) \Rightarrow \forall x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = [I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} [\forall x. P(x)]_{\rho}^{I} = I(P)([a]]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)\rho[v/x](x) = T \Rightarrow_{\mathcal{B}} \bigwedge_{v \in \{a_{0}, a_{1}\}} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(a_{1}) = T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F = F.$
- La formule $P(a) \Rightarrow \forall x. P(x)$ est donc contingente.

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^I = [P(a) \Rightarrow \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} [P(x)]^I_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$
The proof of the second of the second

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
 [P(a) \Rightarrow \exists x. P(x)]^I = [P(a) \Rightarrow \exists x. P(x)]_\rho^I = [P(a)]_\rho^I \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_\rho^I = I(P)([a]_\rho^I) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} [P(x)]_{\rho[v/x]}^I = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]_{\rho[v/x]}^I = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_0):
 [I(P)(a_0) = \mathcal{F} : \mathcal{F} = \mathcal{F} \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{T}; 
 [I(P)(a_0) = \mathcal{T} : \mathcal{F} = \mathcal{T} \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{T}; 
 [I(P)(a_0) = \mathcal{T} : \mathcal{F} = \mathcal{T} \Rightarrow_{\mathcal{B}} \mathcal{T} \vee_{\mathcal{B} \dots} = \mathcal{T} \Rightarrow_{\mathcal{B}} \mathcal{T} = \mathcal{T}.
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
 \begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0) : \\ & I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T; \\ & I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ & T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T. \end{split}
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
 \begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0) : \\ & & I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T; \\ & & I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ & & T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T. \end{split}
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

```
 \begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0) : \\ & I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T; \\ & I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ & T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T. \end{split}
```

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :
 - $[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]^{I}_{\rho[v/x]} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$ Deux cas selon $I(P)(a_{0}) :$ $I(P)(a_{0}) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T :$ $I(P)(a_{0}) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T :$ $I(P)(a_{0}) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T :$ $I(P)(a_{0}) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T :$ $I(P)(a_{0}) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \mathcal{F} = T :$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

Deux cas selon $I(P)(a_0)$

```
\begin{array}{l} I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T ; \\ I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T \end{array}
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^I = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^I = [P(a)]_{\rho}^I \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^I = I(P)([a]]_{\rho}^I) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} [P(x)]_{\rho[v/x]}^I = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[v/x](x) = I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$

Deux cas selon $I(P)(a_0)$

```
\begin{array}{l} I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T; \\ I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T \end{array}
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

▶ Deux cas selon $I(P)(a_0)$:

```
I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T;

I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =

T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

▶ Deux cas selon $I(P)(a_0)$:

```
* I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T ;

* I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T
```

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} =$$

$$[P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} =$$

$$I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F} ;$$

Deux cas selon $I(P)(a_0)$:

*
$$I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T ;$$

 $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$
 $T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$\begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F} ; \end{split}$$

Deux cas selon $I(P)(a_0)$:

*
$$I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T;$$

* $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$
* $T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]^{I}_{\rho[v/x]} =$$

$$I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) =$$

$$I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$

 $T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T.$

Validité

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) =$

 $T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \ldots = T \Rightarrow_{\mathcal{B}} T = T.$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T.$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$[P(a) \Rightarrow \exists x. P(x)]^{I} = [P(a) \Rightarrow \exists x. P(x)]_{\rho}^{I} = [P(a)]_{\rho}^{I} \Rightarrow_{\mathcal{B}} [\exists x. P(x)]_{\rho}^{I} = I(P)([a]_{\rho}^{I}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} [P(x)]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]_{\rho[v/x]}^{I} = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) = T;$
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T.$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

$$\begin{split} & \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I = \llbracket P(a) \Rightarrow \exists x. P(x) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \Rightarrow_{\mathcal{B}} \llbracket \exists x. P(x) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} \llbracket P(x) \rrbracket^I_{\rho[v/x]} = \\ & I(P)(I(a)) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket x \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/x](x) = \\ & I(P)(a_0) \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F} ; \end{split}$$

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) = T;$
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T$

- Démontrer que la formule $P(a) \Rightarrow \exists x. P(x)$ est valide;
- Comme on doit montrer que la formule est vraie dans toutes les interprétations, on se place dans une interprétation quelconque;
- La seule chose que l'on sait est que $a_0 \in D_I$ et $I(a) = a_0$, mais la valeur de I(P) en a_0 est quelconque;
- Démonstration :

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) = T$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \Rightarrow_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \Rightarrow_{\mathcal{B}} I(P)(a_0) \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T \vee_{\mathcal{B}} \dots = T \Rightarrow_{\mathcal{B}} T = T.$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};
```

- Deux cas selon $I(P)(a_0)$:
 - $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$
 - $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$
 - $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}T =$
 - $T \wedge_{\mathcal{B}} F = F$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 \begin{split} & [P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = \\ & [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = \\ & I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = \\ & I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = \\ & I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0): \\ & I(P)(a_0) = F: \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F; \\ & I(P)(a_0) = T: \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ & T \land_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} (T \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} T = \\ & T \land_{\mathcal{B}} F = F \end{split}
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_{0}) :
 I(P)(a_{0}) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(A_{0}) \lor_{\mathcal{B}} \dots
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 \begin{split} & \llbracket P(\mathbf{a}) \land \neg \exists \mathbf{x}. P(\mathbf{x}) \rrbracket^I = \llbracket P(\mathbf{a}) \land \neg \exists \mathbf{x}. P(\mathbf{x}) \rrbracket^I_{\rho} = \\ & \llbracket P(a) \rrbracket^I_{\rho} \land_{\mathcal{B}} \llbracket \neg \exists \mathbf{x}. P(\mathbf{x}) \rrbracket^I_{\rho} = I(P)(\llbracket a \rrbracket^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \llbracket \exists \mathbf{x}. P(\mathbf{x}) \rrbracket^I_{\rho} = \\ & I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \llbracket \mathbf{x} \rrbracket^I_{\rho[v/x]} = \\ & I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P) \rho[v/\mathbf{x}](\mathbf{x}) = \\ & I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F}; \\ & \text{Deux cas selon } I(P)(a_0) : \\ & I(P)(a_0) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F; \\ & I(P)(a_0) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \\ & T \land_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} (T \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} T = \\ & T \land_{\mathcal{B}} F = F \end{split}
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[v]_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_{0}) :
 I(P)(a_{0}) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} (I(P)(a_{0}) ) = T \land_{\mathcal{B}} (I(P)(a_{0}) ) = T \land_{\mathcal{B}} (I(P)(a
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[v]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_{0}):
 I(P)(a_{0}) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots
```

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

```
 [P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}; 
Deux cas selon I(P)(a_{0}) :
 I(P)(a_{0}) = F : \mathcal{F} = F \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = F; 
 I(P)(a_{0}) = T : \mathcal{F} = T \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots) = T \land_{\mathcal{B}} \neg_{\mathcal{B}} I(P)(a_{0}) \lor_{\mathcal{B}} \dots
```

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F}$$

Deux cas selon $I(P)(a_0)$

```
I(P)(a_0) = P : \mathcal{F} = P \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = P;
I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =
```

 $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}T =$

 $T \wedge_{\mathcal{B}} F = F$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

Deux cas selon $I(P)(a_0)$

```
I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T
I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \prod_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \prod_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \prod_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \prod_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}}
```

 $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}T =$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$ $[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - Deux cas selon $I(P)(a_0)$:
 - $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$ $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F.$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$ $[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) = F ;$ * $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F .$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$ $[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) = F ;$ $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F.$

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$ $[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - ▶ Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) = F ;$ $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_l} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F .$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

▶ Deux cas selon $I(P)(a_0)$:

$$I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$$

$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = 0$$

 $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}T = T \wedge_{\mathcal{B}}T = T \wedge_{\mathcal{B$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$

▶ Deux cas selon $I(P)(a_0)$:

$$I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$$

*
$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) =$$

 $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}T = T \wedge_{\mathcal{B}} F = F.$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$

Deux cas selon $I(P)(a_0)$:

$$I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$$

$$I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T = T \wedge_{\mathcal{B}} T \cap_{\mathcal{B}} T \cap_{\mathcal{B}} T = T \wedge_{\mathcal{B}} T \cap_{\mathcal{B}} T \cap_{\mathcal{B}} T = T \wedge_{\mathcal{B}} T \cap_{\mathcal{B}} T \cap$$

 $T \wedge_{\mathcal{B}} F = F$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F$;
 - * $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$

 $T \wedge_{\mathcal{B}} F = F$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} =$$

$$[P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$$

- Deux cas selon $I(P)(a_0)$:
 - * $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_i} I(P)(v) = F;$
 - * $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$

 $T \wedge_{\mathcal{B}} F = F$

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :

$$[P(a) \land \neg \exists x. P(x)]^I = [P(a) \land \neg \exists x. P(x)]^I_{\rho} = [P(a)]^I_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^I_{\rho} = I(P)([a]]^I_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^I_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)[x]^I_{\rho[v/x]} = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)\rho[v/x](x) = I(P)(a_0) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = \mathcal{F};$$

- Deux cas selon $I(P)(a_0)$:
 - $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_i} I(P)(v) = F;$
 - $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_t} I(P)(v) =$ $T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}}(T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T =$ $T \wedge_{\mathcal{B}} F = F$.

Insatisfiabilité

- Démontrer que la formule $P(a) \land \neg \exists x. P(x)$ est insatisfiable;
- De même que précédemment, on se place dans une interprétation I quelconque, avec $a_0 \in D_I$ et $I(a) = a_0$;
- Démonstration :
 - $[P(a) \land \neg \exists x. P(x)]^{I} = [P(a) \land \neg \exists x. P(x)]^{I}_{\rho} = [P(a)]^{I}_{\rho} \land_{\mathcal{B}} [\neg \exists x. P(x)]^{I}_{\rho} = I(P)([a]^{I}_{\rho}) \land_{\mathcal{B}} \neg_{\mathcal{B}} [\exists x. P(x)]^{I}_{\rho} = I(P)(I(a)) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)[x]^{I}_{\rho[v/x]} = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)\rho[v/x](x) = I(P)(a_{0}) \land_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_{I}} I(P)(v) = \mathcal{F};$
 - Deux cas selon $I(P)(a_0)$:
 - $I(P)(a_0) = F : \mathcal{F} = F \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = F;$
 - $I(P)(a_0) = T : \mathcal{F} = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} \bigvee_{v \in D_I} I(P)(v) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (I(P)(a_0) \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} (T \vee_{\mathcal{B}} \dots) = T \wedge_{\mathcal{B}} \neg_{\mathcal{B}} T = T$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{aligned} & [\exists x. P(x) \Rightarrow P(a) \land P(b)]^{I} = [\exists x. P(x) \Rightarrow P(a) \land P(b)]_{\rho}^{I} = \\ & \bigvee_{v \in D_{I}} [P(x) \Rightarrow P(a) \land P(b)]_{\rho[v/x]}^{I} = \\ & \bigvee_{v \in D_{I}} ([P(x)]_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} [P(a) \land P(b)]_{\rho[v/x]}^{I}) = \\ & \bigvee_{v \in D_{I}} (I(P)[x]_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} [P(a)]_{\rho[v/x]}^{I} \land_{\mathcal{B}} [P(b)]_{\rho[v/x]}^{I}) = \\ & \bigvee_{v \in D_{I}} (I(P)\rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P)([a]_{\rho[v/x]}^{I}) \land_{\mathcal{B}} I(P)([b]_{\rho[v/x]}^{I})) = \\ & \bigvee_{v \in D_{I}} (I(P)(v) \Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) = \\ & \bigvee_{v \in D_{I}} (I(P)(v) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(b_{0})) \lor_{\mathcal{B}} \\ & (I(P)(a_{0}) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(b_{0})) \lor_{\mathcal{B}} \\ & (I(P)(b_{0}) \Rightarrow_{\mathcal{B}} I(P)(a_{0}) \land_{\mathcal{B}} I(P)(b_{0})) \lor_{\mathcal{B}} \dots = \mathcal{F}. \end{aligned}$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\|\exists x. P(x) \Rightarrow P(a) \land P(b)\|^{I} = \|\exists x. P(x) \Rightarrow P(a) \land P(b)\|_{\rho}^{I} = V_{v \in D_{I}} \|P(x) \Rightarrow P(a) \land P(b)\|_{\rho[v/x]}^{I} = V_{v \in D_{I}} \|P(x)\|_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} \|P(a) \land P(b)\|_{\rho[v/x]}^{I}) = V_{v \in D_{I}} (I(P)\|x\|_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} \|P(a)\|_{\rho[v/x]}^{I} \land_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) = V_{v \in D_{I}} (I(P)\rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P)(\|a\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} I(P)(\|b\|_{\rho[v/x]}^{I})) = V_{v \in D_{I}} (I(P)(v) \Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) = V_{v \in D_{I}} (I(P)(v) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots = \mathcal{F}.$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{aligned} & \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right]^I = \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right] \right]_{\rho}^I = \right. \\ & \left. \bigvee_{v \in D_I} \left[\left[P(x) \Rightarrow P(a) \land P(b) \right] \right]_{\rho[v/x]}^I = \\ & \left. \bigvee_{v \in D_I} \left(\left[\left[P(x) \right] \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \land P(b) \right] \right]_{\rho[v/x]}^I \right) = \\ & \left. \bigvee_{v \in D_I} \left(I(P) \left[x \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \right]_{\rho[v/x]}^I \land_{\mathcal{B}} \left[P(b) \right] \right]_{\rho[v/x]}^I \right) = \\ & \left. \bigvee_{v \in D_I} \left(I(P) \rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P) \left(\left[a \right] \right]_{\rho[v/x]}^I \land_{\mathcal{B}} I(P) \left(\left[b \right] \right]_{\rho[v/x]}^I \right) = \\ & \left. \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(I(a) \right) \land_{\mathcal{B}} I(P) \left(I(b) \right) \right) = \\ & \left. \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \\ & \left. \left(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \dots = \mathcal{F}. \end{aligned}$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\|\exists x. P(x) \Rightarrow P(a) \land P(b)\|^{I} = \|\exists x. P(x) \Rightarrow P(a) \land P(b)\|_{\rho}^{I} = \bigvee_{v \in D_{I}} \|P(x) \Rightarrow P(a) \land P(b)\|_{\rho[v/x]}^{I} = \bigvee_{v \in D_{I}} (\|P(x)\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a) \land P(b)\|_{\rho[v/x]}^{I}) = \bigvee_{v \in D_{I}} (I(P)\|x\|_{\rho[v/x]}^{I}) \Rightarrow_{\mathcal{B}} \|P(a)\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} \|P(b)\|_{\rho[v/x]}^{I}) = \bigvee_{v \in D_{I}} (I(P)\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(P)(\|a\|_{\rho[v/x]}^{I}) \land_{\mathcal{B}} I(P)(\|b\|_{\rho[v/x]}^{I})) = \bigvee_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) = \bigvee_{v \in D_{I}} (I(P)(v)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(a_0)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} (I(P)(b_0)) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots = \mathcal{F}.$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{split} & \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right]^I = \left[\left[\exists x. P(x) \Rightarrow P(a) \land P(b) \right] \right]_{\rho}^I = \\ & \bigvee_{v \in D_I} \left[P(x) \Rightarrow P(a) \land P(b) \right]_{\rho[v/x]}^I = \\ & \bigvee_{v \in D_I} \left(\left[P(x) \right] \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \land P(b) \right]_{\rho[v/x]}^I \right) = \\ & \bigvee_{v \in D_I} \left(I(P) \left[x \right] \right]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \left[P(a) \right] \right]_{\rho[v/x]}^I \land_{\mathcal{B}} \left[P(b) \right] \right]_{\rho[v/x]}^I \right) = \\ & \bigvee_{v \in D_I} \left(I(P) \rho[v/x](x) \Rightarrow_{\mathcal{B}} I(P) \left(\left[a \right] \right]_{\rho[v/x]}^I \land_{\mathcal{B}} I(P) \left(\left[b \right] \right]_{\rho[v/x]}^I \right) \right) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(I(a) \right) \land_{\mathcal{B}} I(P) \left(I(b) \right) \right) = \\ & \bigvee_{v \in D_I} \left(I(P)(v) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \\ & \left(I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P) \left(a_0 \right) \land_{\mathcal{B}} I(P) \left(b_0 \right) \right) \lor_{\mathcal{B}} \dots = \mathcal{F}. \end{split}$$

- Démontrer que la formule $\exists x. P(x) \Rightarrow P(a) \land P(b)$ est valide;
- On se place dans une interprétation I quelconque, avec $a_0, b_0 \in D_I$, $I(a) = a_0$, et $I(b) = b_0$;
- Démonstration :

$$\begin{split} & [\![\exists x.P(x)\Rightarrow P(a)\land P(b)]\!]^I = [\![\exists x.P(x)\Rightarrow P(a)\land P(b)]\!]_\rho^I = \\ & \bigvee_{v\in D_I} [\![P(x)\Rightarrow P(a)\land P(b)]\!]_{\rho[v/x]}^I = \\ & \bigvee_{v\in D_I} (\![P(x)]\!]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} [\![P(a)\land P(b)]\!]_{\rho[v/x]}^I) = \\ & \bigvee_{v\in D_I} (I(P)[\![x]\!]_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} [\![P(a)]\!]_{\rho[v/x]}^I \land_{\mathcal{B}} [\![P(b)]\!]_{\rho[v/x]}^I) = \\ & \bigvee_{v\in D_I} (I(P)\rho[v/x](x)\Rightarrow_{\mathcal{B}} I(P)([\![a]\!]_{\rho[v/x]}^I) \land_{\mathcal{B}} I(P)([\![b]\!]_{\rho[v/x]}^I)) = \\ & \bigvee_{v\in D_I} (I(P)(v)\Rightarrow_{\mathcal{B}} I(P)(I(a)) \land_{\mathcal{B}} I(P)(I(b))) = \\ & \bigvee_{v\in D_I} (I(P)(v)\Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \\ & (I(P)(a_0)\Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots = \mathcal{F}. \end{split}$$

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \ldots; 
 \text{Quatre cas selon } I(P)(a_0) \text{ et } I(P)(b_0) : 
 I(P)(a_0) = F, I(P)(b_0) = F : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \ldots; 
 \text{Quatre cas selon } I(P)(a_0) \text{ et } I(P)(b_0) : 
 * I(P)(a_0) = F, I(P)(b_0) = F : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \ldots; 
 \text{Quatre cas selon } I(P)(a_0) \text{ et } I(P)(b_0) : 
 * I(P)(a_0) = F, I(P)(b_0) = F : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \ldots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \ldots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 * I(P)(a_0) = F, I(P)(b_0) = F : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T : 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T : 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 * I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 * I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 * I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 * I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
 \mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} 
 (I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots; 
Quatre cas selon I(P)(a_0) et I(P)(b_0):
 I(P)(a_0) = F, I(P)(b_0) = F: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = F, I(P)(b_0) = T: 
 \mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = F: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T; 
 I(P)(a_0) = T, I(P)(b_0) = T: 
 \mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

- Démonstration :
 - $\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}$ $(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;$ Quatre cas selon $I(P)(a_0)$ et $I(P)(b_0)$: $I(P)(a_0) = F, I(P)(b_0) = F:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = F, I(P)(b_0) = T:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = F:$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = T:$ $I(P)(a_0) = T, I(P)(b_0) = T:$
- La formule est valide mais il n'y a aucun terme t tel que $[t]^I = v$ et $[P(x) \Rightarrow P(a) \land P(b)]^I_{\rho[v/x]} = T!$

Exotisme de la logique classique

Démonstration :

```
\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}
(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;
Quatre cas selon I(P)(a_0) et I(P)(b_0):
I(P)(a_0) = F, I(P)(b_0) = F:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = F, I(P)(b_0) = T:
\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = F:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;
I(P)(a_0) = T, I(P)(b_0) = T:
\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.
```

- Démonstration :
 - $\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}$ $(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;$ Quatre cas selon $I(P)(a_0)$ et $I(P)(b_0)$: $I(P)(a_0) = F, I(P)(b_0) = F :$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = F, I(P)(b_0) = T :$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = F :$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = T :$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.$
- La formule est valide mais il n'y a aucun terme t tel que $[t]^I = v$ et $[P(x) \Rightarrow P(a) \land P(b)]_{\rho[v/x]}^I = T!$

- Démonstration :
 - $\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}$ $(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;$ Quatre cas selon $I(P)(a_0)$ et $I(P)(b_0)$: $I(P)(a_0) = F, \ I(P)(b_0) = F:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = F, \ I(P)(b_0) = T:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, \ I(P)(b_0) = F:$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, \ I(P)(b_0) = T:$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.$
- La formule est valide mais il n'y a aucun terme t tel que $[t]^I = v$ et $[P(x) \Rightarrow P(a) \land P(b)]^I_{\rho[v/x]} = T!$

- Démonstration :
 - $\mathcal{F} = (I(P)(a_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}}$ $(I(P)(b_0) \Rightarrow_{\mathcal{B}} I(P)(a_0) \land_{\mathcal{B}} I(P)(b_0)) \lor_{\mathcal{B}} \dots;$ Quatre cas selon $I(P)(a_0)$ et $I(P)(b_0)$: $I(P)(a_0) = F, I(P)(b_0) = F:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = F, I(P)(b_0) = T:$ $\mathcal{F} = (F \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} F \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = F:$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} (F \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} F) \lor_{\mathcal{B}} \dots = T;$ $I(P)(a_0) = T, I(P)(b_0) = T:$ $\mathcal{F} = (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} (T \Rightarrow_{\mathcal{B}} T \land_{\mathcal{B}} T) \lor_{\mathcal{B}} \dots = T.$
- La formule est valide mais il n'y a aucun terme t tel que $[t]^I = v$ et $[P(x) \Rightarrow P(a) \land P(b)]^I_{\rho[v/x]} = T!$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $s \equiv \mathsf{Socrate}$.
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1);$
 - $H(s)(\mathcal{H}_2)$
 - M(s) (\mathcal{H}_3)

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - ► Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $ightharpoonup s \equiv \mathsf{Socrate}.$
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1)$
 - $H(s)(\mathcal{H}_2)$
 - M(s) (\mathcal{H}_3)

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $ightharpoonup s \equiv \mathsf{Socrate}.$
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1);$
 - \vdash $H(s)(\mathcal{H}_2)$;
 - M(s) (\mathcal{H}_3) .

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$

Syllogisme et conséquence logique

- Valider le syllogisme d'Aristote suivant :
 - Tout homme est mortel;
 - Or Socrate est un homme;
 - Donc Socrate est mortel.
- Modélisation :
 - $H(x) \equiv x$ est un homme;
 - $M(x) \equiv x \text{ est mortel};$
 - $ightharpoonup s \equiv \mathsf{Socrate}.$
 - $\forall x. H(x) \Rightarrow M(x) (\mathcal{H}_1);$
 - $\vdash H(s)(\mathcal{H}_2);$
 - M(s) (\mathcal{H}_3) .

On doit démontrer : $\mathcal{H}_1, \mathcal{H}_2 \models \mathcal{H}_3$.

Syllogisme et conséquence logique

Démonstration :

- Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
- On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:
 - $[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T (3).$
- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = [\![\forall x.H(x) \Rightarrow M(x)]\!]^I_{\rho} =$
 - $\bigwedge_{v \in D_I} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_I} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket' = T$
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - ${rliah}$ On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s)
 rbracket^I = T$:

$$[M(s)]' = [M(s)]'_{\rho} = I(M)([s]'_{\rho}) = I(M)(s_0) = T (3).$$

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = [\![\forall x.H(x) \Rightarrow M(x)]\!]^I_{\rho} =$
 - $\bigwedge_{v \in D_I} [H(x) \Rightarrow M(x)]_{\rho[v/x]}^I = \bigwedge_{v \in D_I} ([H(x)]_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} [M(x)]_{\rho[v/x]}^I) =$
 - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^*) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^*)) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T(1)$
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$
 - $[H(s)]' = [H(s)]'_{\rho} = I(H)([s]'_{\rho}) = I(H)(s_0) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - ${rliah}$ On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s)
 rbracket^I = T$:

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]' = T$:

 - $\bigwedge_{v \in D_I} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_I} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$
 - $\bigwedge_{v \in D_I} (I(H)([x]'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)([x]'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$
 - $[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s)
 rbracket^I = T$:

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket' = \llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket'_{\rho} =$

$$\bigwedge_{v \in D_l} \|H(x) \Rightarrow M(x)\|_{\rho[v/x]}' = \bigwedge_{v \in D_l} (\|H(x)\|_{\rho[v/x]}') \Rightarrow_{\mathcal{B}} \|M(x)\|_{\rho[v/x]}' =$$

- $\bigwedge_{v \in D_I} (I(H)([x]'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)([x]'_{\rho[v/x]})) =$
- $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{l} = [H(s)]^{l}_{\rho} = I(H)([s]^{l}_{\rho}) = I(H)(s_{0}) = T (2).$$

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s)
 rbracket^I = T$:

$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T (3).$$

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x. H(x) \Rightarrow M(x)]\!]^I = T$:
 - $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket' = \llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket'_{\rho} =$
 - $\bigwedge_{v \in D_l} [H(x) \Rightarrow M(x)]_{\rho[v/x]}^l = \bigwedge_{v \in D_l} ([H(x)]_{\rho[v/x]}^l \Rightarrow_{\mathcal{B}} [M(x)]_{\rho[v/x]}^l) =$
 - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$$

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

$$M(s)$$
 $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$ $M(s)$

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:

 - $\bigwedge_{v \in D_{I}} [\![H(x) \Rightarrow M(x)]\!]_{\rho[v/x]}^{I} = \bigwedge_{v \in D_{I}} ([\![H(x)]\!]_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} [\![M(x)]\!]_{\rho[v/x]}^{I}) =$
 - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]_{\rho}^{I} = I(M)([s]_{\rho}^{I}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x. H(x) \Rightarrow M(x)]\!]^I = T$:

 - $\bigwedge_{v \in D_l} \|H(x) \Rightarrow M(x)\|_{\rho[v/x]}^l = \bigwedge_{v \in D_l} (\|H(x)\|_{\rho[v/x]}^l \Rightarrow_{\mathcal{B}} \|M(x)\|_{\rho[v/x]}^l) =$
 - $\bigwedge_{v \in D_{I}} (I(H)([x]'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)([x]'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

- $I \models \mathcal{H}_1$ signifie que $\llbracket orall x. H(x) \Rightarrow M(x)
 rbracket^I = T$:
 - $[\![\forall x.H(x)\Rightarrow M(x)]\!]'=[\![\![\forall x.H(x)\Rightarrow M(x)]\!]'_{\rho}=$
 - $\bigwedge_{v \in D_{I}} [\![H(x) \Rightarrow M(x)]\!]_{\rho[v/x]}^{I} = \bigwedge_{v \in D_{I}} (\![H(x)]\!]_{\rho[v/x]}^{I} \Rightarrow_{\mathcal{B}} [\![M(x)]\!]_{\rho[v/x]}^{I}) =$
 - $\bigwedge_{v \in D_I} (I(H)([x]]'_{\rho[v/x]}) \Rightarrow_{\mathcal{B}} I(M)([x]'_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]_{\rho}^{I} = I(H)([s]_{\rho}^{I}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]_{\rho}^{I} = I(M)([s]_{\rho}^{I}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:
 - * $[\forall x. H(x) \Rightarrow M(x)]^{I} = [\forall x. H(x) \Rightarrow M(x)]_{\rho}^{I} =$

- $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
- $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:
 - $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = \llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I_{\rho} =$

- $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
- $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
- $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

$$\bigwedge_{\mathbf{v}\in D_{I}} [\![H(\mathbf{x})\Rightarrow M(\mathbf{x})]\!]_{\rho[\mathbf{v}/\mathbf{x}]}^{I} = \bigwedge_{\mathbf{v}\in D_{I}} (\![H(\mathbf{x})]\!]_{\rho[\mathbf{v}/\mathbf{x}]}^{I} \Rightarrow_{\mathcal{B}} [\![M(\mathbf{x})]\!]_{\rho[\mathbf{v}/\mathbf{x}]}^{I}) =$$

- $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}') \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}')) =$
- $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]_{\rho}^{I} = I(H)([s]_{\rho}^{I}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\lVert x \rVert_{\rho[v/x]})) \Rightarrow_{\mathcal{B}} I(M)(\lVert x \rVert_{\rho[v/x]})) =$
 - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$

$$[H(s)]^{I} = [H(s)]_{\rho}^{I} = I(H)([s]_{\rho}^{I}) = I(H)(s_{0}) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]_{\rho}^I = I(M)([s]_{\rho}^I) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

 - $\bigwedge_{v \in D_l} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket \forall x. H(x) \Rightarrow M(x) \rrbracket^I = T$:

$$\bigwedge_{v \in D_I} (I(H)(\lfloor N \rfloor \rho \lfloor v/x \rfloor)) \to B I(M)(\lfloor N \rfloor \rho \lfloor v/x \rfloor)) = \\ \bigwedge_{v \in D_I} (I(H)(\rho \lfloor v/x \rfloor(x))) \Rightarrow_B I(M)(\rho \lfloor v/x \rfloor(x))) =$$

$$\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$$

- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1)
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]_{\rho}^I = I(M)([s]_{\rho}^I) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $\llbracket orall x. H(x) \Rightarrow M(x)
 rbracket^I = T$:

$$\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) = \\ \bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$$

$$\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \land \ldots = T;$$

- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T(1)$.
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T (2).$$

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:

$$\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) = \\ \bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$$

$$\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = \mathcal{T}_{\mathcal{B}}$$

- Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x)) = \prod_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = I(1)$.
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]' = [H(s)]'_{\rho} = I(H)([s]'_{\rho}) = I(H)(s_0) = T$$
 (2).

Syllogisme et conséquence logique

- Démonstration :
 - Soit *I* une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}) \to \mathcal{B} I(H)(\llbracket x \rrbracket_{\rho[v/x]})) = \\ \bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) = \\ (1)$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{l} = [H(s)]^{l}_{\rho} = I(H)([s]^{l}_{\rho}) = I(H)(s_{0}) = T (2).$$

Syllogisme et conséquence logique

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_l} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$ $\bigwedge_{v \in D_l} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x)) = (I(H)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \land \dots = T;$ $Ce and implicate ane : I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T (1)$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- ▶ $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:

$$[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$$
 (2).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - ▶ On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^{I} = [M(s)]^{I}_{\rho} = I(M)([s]^{I}_{\rho}) = I(M)(s_{0}) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $[\![\forall x.H(x)\Rightarrow M(x)]\!]^I = [\![\forall x.H(x)\Rightarrow M(x)]\!]_{\rho}^I =$ $\textstyle \bigwedge_{v \in D_i} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_i} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$ $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
 - $\bigwedge_{v \in D_i} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$ $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $[H(s)]^I = T$:
 - * $[H(s)]^I = [H(s)]^I = I(H)([s]^I) = I(H)(s_0) = T$ (2).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$ $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \land \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^{I} = [H(s)]^{I}_{\rho} = I(H)([s]^{I}_{\rho}) = I(H)(s_{0}) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - ▶ On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]_{\rho}^I = I(M)([s]_{\rho}^I) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $[\![\forall x.H(x)\Rightarrow M(x)]\!]^I = [\![\forall x.H(x)\Rightarrow M(x)]\!]_0^I =$ $\textstyle \bigwedge_{v \in D_i} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_i} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$ $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
 - $\bigwedge_{v \in D_i} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$ $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^I = [H(s)]^I = I(H)([s]^I) = I(H)(s_0) = T$ (2).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - ▶ On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]_{\rho}^I = I(M)([s]_{\rho}^I) = I(M)(s_0) = T$$
 (3).

- $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - $[\![\forall x.H(x)\Rightarrow M(x)]\!]^I = [\![\forall x.H(x)\Rightarrow M(x)]\!]_0^I =$ $\textstyle \bigwedge_{v \in D_i} \llbracket H(x) \Rightarrow M(x) \rrbracket_{\rho[v/x]}^I = \bigwedge_{v \in D_i} (\llbracket H(x) \rrbracket_{\rho[v/x]}^I \Rightarrow_{\mathcal{B}} \llbracket M(x) \rrbracket_{\rho[v/x]}^I) =$ $\bigwedge_{v \in D_I} (I(H)(\llbracket x \rrbracket_{\rho[v/x]}^I) \Rightarrow_{\mathcal{B}} I(M)(\llbracket x \rrbracket_{\rho[v/x]}^I)) =$
 - $\bigwedge_{v \in D_i} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^I = [H(s)]^I = I(H)([s]^I) = I(H)(s_0) = T$ (2).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x)) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$
 - $\bigwedge_{v \in D_I} (I(H)(v) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$ Coordinately the sum of th
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).

- Démonstration :
 - Soit I une interprétation avec $s_0 \in D_I$ et $I(s) = s_0$, et telle que $I \models \mathcal{H}_1$ et $I \models \mathcal{H}_2$;
 - On doit démontrer que $I \models \mathcal{H}_3$, à savoir que $\llbracket M(s) \rrbracket^I = T$:

*
$$[M(s)]^I = [M(s)]^I_{\rho} = I(M)([s]^I_{\rho}) = I(M)(s_0) = T$$
 (3).

- ▶ $I \models \mathcal{H}_1$ signifie que $[\![\forall x.H(x) \Rightarrow M(x)]\!]^I = T$:
 - - $\bigwedge_{v \in D_I} (I(H)(\rho[v/x](x))) \Rightarrow_{\mathcal{B}} I(M)(\rho[v/x](x))) =$ $\bigwedge_{v \in D_I} (I(H)(v)) \Rightarrow_{\mathcal{B}} I(M)(v)) = (I(H)(s_0)) \Rightarrow_{\mathcal{B}} I(M)(s_0)) \wedge \ldots = T;$
 - * Ce qui implique que : $I(H)(s_0) \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$ (1).
- $I \models \mathcal{H}_2$ signifie que $\llbracket H(s) \rrbracket^I = T$:
 - * $[H(s)]^I = [H(s)]^I_{\rho} = I(H)([s]^I_{\rho}) = I(H)(s_0) = T$ (2).
- En remplaçant (2) dans (1), on obtient : $T \Rightarrow_{\mathcal{B}} I(M)(s_0) = T$, ce qui implique que $I(M)(s_0) = T$ (3).