Name: Richard

R. Hammack

Score:____

Directions No calculators. Please put all phones, smart watches, etc., away.

- 1. (16 points) This problem concerns the following statement.
 - P: There is a subset X of \mathbb{N} for which $X \cap \mathbb{N} = \emptyset$.
 - (a) Is the statement P true or false? Explain.

True! There does exist such a subset of M, namely X =
$$\phi \leq IN$$
, For X = ϕ is a subset of M and $\times \cap IN = \phi$.

(b) Write the statement P in symbolic form.

(c) Form the negation $\neg P$ of your answer from (b), and simplify.

(d) Write the negation $\neg P$ as an English sentence. (The sentence may use mathematical symbols.)

2. (6 points) Complete the first and last lines of each of the following proof outlines.

Proposition: If P, then Q.
Proof: (Direct)
Suppose P

:
Therefore .

Proposition: If P, then Q.
Proof: (Contrapositive)
Suppose

Therefore 7 P

Proposition: If P, then Q.
Proof: (Contradiction)
Suppose PAT Q

:
Therefore

Proof Suppose ne Z.

Case 1 Suppose n is even. Then n=2a for some $a \in IN$. Thus $n^2=(2a)^2=4a^2$ 50 $n^2=4d$ for $d=a^2\in IN$. By definition of divides, it follows that $4/n^2$.

Case 2 Suppose n is odd, so n = 2a+1 for some integer a. Then $n^2+3 = (2a+1)^2+3 \mp 4a^2+4a+1+3 = 4a^2+4a+4 = 4(a^2+a+1)$.

Then words $n^2+3=4d$, where $d=a^2+a+1$.

Consequently $41(n^2+3)$.

By the above cases, either 4(n2 or 4(n2+3).

4. (16 points) Suppose $n \in \mathbb{Z}$. Prove: If n^2 is even, then n is even.

[Use contrapositive.]

Proof Suppose n is not even.

Then n in odd, so n = 2a+1 for $a \in \mathbb{Z}$.

Therefore $n^2 = (2a+1)^2 = 4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1$.

So $n^2 = 2d+1$, where $d = 2a^2 + 2a \in \mathbb{Z}$.

Consequently n^2 is odd, so n^2 is not even.

5. (16 points) Suppose $a, b, c \in \mathbb{Z}$. Prove: If a|b and b|c, then a|c. [Use any appropriate method.]

Proof (Direct) Suppose alb and blc.

By definition of divides, this means b = ak and c = bl for some $k, l \in \mathbb{Z}$.

Thus c = bl = (ak)l = a(kl), so c = am for $m = kl \in \mathbb{Z}$.

Therefore a|c.

6. (15 points) Prove or disprove: If $a, b \in \mathbb{N}$, then a + b < ab.

FALSE

For a counterexample, take a=1 and b=2. Then a+b < ab is not true

7. (15 points) Prove or disprove: Given $a, b, c \in \mathbb{Z}$, if a|bc, then a|b or a|c.

For a counterexample, take a=4, b=2 and c=6Then albe but albe and atc.