Short Syllabus

BCSE425L Robotic Perception (3-0-0-3)

Fundamentals - Robot Sensing & Vision - segmentation- Thresholding- edge detection-binary morphology - grey morphology and Application of Machine Vision System, Robotic Assembly Sensors and Intelligent Sensors, visual servo-control - Vision Algorithms - Estimation in Robotics - Object Recognition - Image Feature Extraction & Multiple Images - Robotic Learning.

Course Code	Course Title	L	Т	Р	С
BCSE425L	Robotic Perception	3	0	0	3
Pre-requisite	NIL	Syllabus Version			
		1.0			

Course Objectives:

- 1. To learn basic robotic sensing and vision
- 2. To learn computer vision for robot motion control
- 3. To recognize objects and the basics of visual learning and neural networks for the purpose of classification
- 4. To learn the applications of vision system in modern manufacturing environment

Course Outcomes:

After the completion of the course, student will be able to:

- 1. Understand the basic robotic sensing and vision
- 2. Design controllers for tracking control of a robot
- 3. Apply computer vision control of robotic systems
- 4. Learn the applications of vision system in modern manufacturing environment

Module:1	Basics / Fundamentals	2 hours		
Perception and Decision-Making in Robotics Overview, Specifications of Robots.				
Module:2	Robot Sensing & Vision:	7 Hours		
Use of Sensors and Sensor Based System in Robotics, Machine Vision System				
Description,		gmentation-		
Thresholding- edge detection- binary morphology - grey morphology and Application of				
Machine Vis	ion System, Robotic Assembly Sensors and Intelligent Sensors, v	isual servo-		
control.				
Module:3	Vision Algorithms	7 Hours		
Fundamental Data Structures: Images, Regions, Sub-pixel Precise Contours – Image				
Enhancement : Gray value transformations, image smoothing, Fourier Transform –				
Geometric Transformation – Image segmentation – Segmentation of contours, lines, circles				
and ellipses – Camera calibration – Stereo Reconstruction.				
Module:4	Estimation in Robotics	5 Hours		
Optimal Estimation in Robotics: Applications, Overview of general principle, Derivation of				
Linear Kalman Filter, Optimal Integration of Sensor Measurements in Humans.				
Module:5	Object Recognition	8 hours		
Object recognition, Approaches to Object Recognition, Recognition by combination of views				
- objects with sharp edges, using two views only, using a single view, use of depth values.				
Histogram of oriented gradients (HOG), R-CNNs (Region based CNNs), YOLO's				
	based on CNNs			
Module:6	Image Feature Extraction & Multiple Images	8 hours		
Region Features, Line Features, Point Features. Using Multiple Images: Geometry of				
Multiple View	s, Stereo Vision, Bundle Adjustment, Point Clouds.			
Module:7	Robotic Learning	6 hours		
Vision-Based Control, Position-Based Visual Servoing, Image-Based Visual Servoing, Using				
Other Image Features				
Module:8	Contemporary issues	2 hours		
	-	451		
	Total Lecture hours:	45 hours		

Text Book(s) Richard Szeliski, Computer Vision: Algorithms and Applications, Springer-Verlag London Limited 2011. Peter Corke, Robotics, Vision and Control: Fundamental Algorithms, Springer Tracts in Advanced Robotics, Volume 118, Second Edition, 2016 Kevin M. Lynch and Frank C. Park, Modern Robotics Mechanics, Planning, And Control, May 3, 2017 **Reference Books** David Forsyth and Jean Ponce, Computer Vision: A modern Approach, Prentice Hall India 2004 Klafter, Chmielewski and Negin, Robotic Engineering - An Integrated approach, PHI, 1st edition, 2009. Robert J. Schilling, "Fundamentals of Robotics Analysis and Control", PHI Learning, 2009. Deb S R and Deb S, "Robotics Technology and Flexible Automation", Tata McGraw Hill Education Pvt. Ltd, 2010. Mode of Evaluation: Continuous Assessment Test -I (CAT-I), Continuous Assessment Test -II (CAT-II), Digital Assignments/ Quiz / Completion of MOOC, Final Assessment Test (FAT).

13-05-2022

Date

16-06-2022

No. 66

Recommended by Board of Studies

Approved by Academic Council