SCC.211 Operating Systems
Live Session 4

Dr Andrew Scott

a.scott@lancaster.ac.uk

ve		

- Topic 3: Memory Allocation (recap)
- Topic 4: Input and Output (introduction)
 - Device drivers
 - How can we create a device driver interface?
 - Disk storage

3. Memory Allocation

Recap

Videos	
Fixed and Variable length allocation	
Internal vs. External fragmentation	
Buddy allocation Allows allocation of contiguous memory blocks	
Can be important for use by devices, sometimes in dedicated memory zone Must track buddies; allocations cannot span buddies	
Slab allocation	
Pre-allocate common sized memory areas, also avoids allocatefreeallocate cycle Commonly used in kernel for frequently used structures	
commonly used in center for negativity used structures	
	1
	-
4. Input and Output (I/O)	
Introduction	
Includes diagrams from Silberschatz 10 th ed.	
Videos	
Outries of 1/Outrahasians	
Overview of I/O mechanisms How we attach devices and communicate with them	
Interrupt systems	
How we work around unknown, and often long, duration of I/O operations	-
Device drivers	
Framework for device manufacturers to provide control software for devices	

Device Drivers in Different OS Types • Devices controlled by device drivers • In monolithic OSs • Tightly bound into OS • In modular OSs • Clean 'plug and play' interface • In microkernel OSs • Appear as unprivileged 'user' processes • **.accure and easily restarted on failure

An aside... How can we create a device driver interface... ...or how to 'hook' arbitrary functions in C

Storage: Disk systems

- Overview
 - Structure
 - Two approaches for improving
 - Performance
 - Resilience

Hard Disk Structure • Significant access latency • Seek time to move head in/ out • Rotational latency • Sector (native block) size • Traditionally 512 bytes • Now typically 4K Figure 11.1 HDD moving-head disk mechanism.

Hard Disk Structure II Track f spindle sector a spindle

Hard	Disk	Structure	П
Halu	DISK	Julucture	ш

- ullet Group tracks into zones of n tracks
 - As move from spindle out, each zone will have more sectors per track
- A run of sectors is known as a cluster

Disk Addressing

- \bullet Traditionally used simple { Cylinder, Head, Sector } or CHS tuple
- Now disk controllers typically offer Logical Block Address (LBA)
 - Hides what can now be a complex internal zone structure/ geometry
 - Also allows controller to hide bad sectors
 - $\bullet\,$ Controller may maintain and remap spare sectors in case any become unusable

Redundant Array of Independent Disks (RAID)

- Aims
 - Improve throughput with parallelism
 - Block or bit striping data across multiple disks
 - Improve Mean Time Between Failure (MTBF), recover from failed disk(s)
 - Mirroring ('backup' / 'shadow' drives)
 - Error correcting codes

Common RAID Levels

...there are many

- RAID 0: Block based striping across n disks to improve throughput
- RAID 1: Mirror each drive onto a shadow drive to improve resilience
- RAID 4: Block based striping across n disks + dedicated parity disk
- RAID 5: As 4, but cycles parity through drives so one (parity) disk not a bottleneck
- RAID 6: As 5, but adds another error correcting code to protect against multiple failures
- RAID 0+1 and 1+0: combination of levels 0 and 1
 Stripe then mirror, or mirror then stripe

RAID 2 like 0 but bit based, RAID 3 like 4 but bit based (typically require complex drive synchronisation)

• C: Mirror copy • P: Parity Recover from single failure

• Q: Second error code Used in addition to parity enabling

RAID Levels

recovery from double failure

Figure 11.15 RAID levels.

Problems with RAID

- Mean Time To Repair can be long with some RAID levels • Significant time to rebuild lost drive
- Controller faults can cause whole array to fail
- Power failure can cause multiple (un-correctable) block writes to fail A fast Solid-State Drive (SSD) based transaction cache can help

