Linear Regression

Hyunjoong Kim

soy.lovit@gmail.com

github.com/lovit/python_ml_intro

Vector

- 데이터를 테이블 형식으로 표현하는 경우가 많습니다.
 - 하나의 데이터 (row, data, point, instance, record, ...) 는 이를 설명하는 변수 (column, feature, column, variables) 로 구성되어 있습니다.

	datetime	temperature	humidity	wind speed	demand
row 1	2016. 06. 25	33	45	3.5	254
row 2	2016. 05. 21	23	21	4.3	761
row 3	2016. 05. 23	27	57	2.1	340
row 4					

Vector

• 숫자로 이뤄진 테이블은 그대로 벡터로 표현할 수 있습니다.

	datetime	temperature	humidity	wind speed	demand
row 1	2016. 06. 25	33	45	3.5	254
row 2	2016. 05. 21	23	21	4.3	761
row 3	2016. 05. 23	27	57	2.1	340
row 4			•••		

Vector

• 명목형 변수가 포함된 경우, 이를 dummy 로 표현할 수도 있습니다.

	Туре	temperature	humidity	wind speed	demand
row 1	А	33	45	3.5	254
row 2	А	23	21	4.3	761
row 3	В	27	57	2.1	340
row 4					

• Regression 은 입력변수 (input variables) 를 이용하여 숫자형 출력변수 (numerical output variable) 의 값을 예측 (predict) 하는 문제입니다.

	(input variables)				(output variables)	
	datetime	temperature	humidity	wind speed	demand	
row 1	25	33	45	3.5	254	
row 2	-10	23	21	4.3	761	
row 3	-8	27	57	2.1	340	
row 4						

- 추세선의 종류 (직선, 곡선)에 따라 linear / non-linear regression 으로 분류합니다.
 - 선형은 x 의 범위가 변하여도 y 와의 관계식이 일정하다는 가정이 필요합니다.

- Regression 은 수요 예측의 모델링에 이용될 수 있습니다.
 - 수요 (output) 와 이를 설명하는 변수 (input) 와의 관계를 탐색합니다.

- 사진 (input) 에서 물체의 위치 (output) 를 탐색하는데도 이용됩니다.
 - 사진 속 물체의 상대적인 위치를 box 로 나타낼 수 있습니다.
 - 설명 변수와의 관계가 선형이 아니기 때문에 복잡한 형태의 모델을 이용합니다.

bounding box : (x_min, x_max, y_min, y_max)

Univariate Linear Regression

- 두 변수 (x, y) 간에는 y = ax + b 라는 관계가 있다고 가정합니다.
 - 다양한 직선 중에서 데이터 간의 관계를 가장 잘 설명하는 직선을 선택합니다.
 - 설명력의 평가 기준이 필요합니다.

Univariate Linear Regression

- 잔차 (residual, e_i) 는 회귀선의 예측이 틀린 정도로 정의합니다.
 - 잔차는 음수가 될 수 있기 때문에 제곱의 합이 최소가 되는 직선을 선택합니다.
 - Loss 는 주어진 식이 얼마나 틀렸는지를 나타내는 척도입니다.

$$loss := \sum_{i} (ax_i + b - y_i)^2$$

minimize loss

$$\rightarrow \underset{a,b}{\operatorname{arg \, min}} \sum_{i} (ax_i + b - y_i)^2$$

목적식 (objective)

y = ax + b

Univariate Linear Regression

- 잔차 제곱의 합으로 loss 를 정의하면 목적식은 a, b 의 2차 함수입니다.
 - 모델을 설명하는 변수 a, b 를 조절하여 loss 가 작은 직선을 탐색합니다.
 - 이 변수를 패러매터 (parameters) 라 합니다.

• $y = x^2 - 0.5$

•
$$\frac{dy}{dx} = 2x$$

$$\Delta y / \Delta x$$
 는 (x,y) 를 지나는 인접한 직선의 기울기입니다

$$\Delta x = 0.5, \Delta y = -0.75$$

$$\frac{\Delta y}{\Delta x} = -\frac{3}{2}$$

2 차 함수의 최저점에서의 인접한 직선의 기울기는 0 입니다.

Least Squares (LS)

• 미분을 이용하면 ... 최저점에서 기울기가 0 이므로

$$\arg\min_{a,b} f = \sum_{i} (ax_i + b - y_i)^2$$

$$\frac{df}{db} = \sum_{i} 2(ax_{i} + b - y_{i}) = 0$$

$$\Rightarrow nb = \sum_{i} y_{i} - \sum_{i} ax_{i}$$

$$\Rightarrow b = \frac{\sum_{i} y_{i}}{n} - \frac{\sum_{i} ax_{i}}{n}$$

$$\Rightarrow b = \bar{y} - a\bar{x}$$

$$\frac{df}{da} = \sum_{i} 2x_{i}(ax_{i} + b - y_{i}) = 0$$

$$= \sum_{i} 2x_{i}(ax_{i} - a\bar{x} + \bar{y} - y_{i}) = 0$$

$$\Rightarrow \sum_{i} ax_{i}(x_{i} - \bar{x}) = \sum_{i} x_{i}(y_{i} - \bar{y})$$

$$\Rightarrow a(\sum_{i} x_{i}(x_{i} - \bar{x}) - \bar{x}\sum_{i}(x_{i} - \bar{x})) = \sum_{i} x_{i}(y_{i} - \bar{y}) - \bar{x}\sum_{i}(y_{i} - \bar{y})$$

$$\Rightarrow a = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i} (x_{i} - \bar{x})^{2}}$$

Least Squares (LS)

• 입력변수가 2 개 이상이라면 ...

$$e_{i} = X_{i}\beta - y_{i},$$

$$\arg \min_{\beta} \sum_{i} e_{i}^{2} = (X\beta - y)^{T} (X\beta - y)$$

$$\rightarrow \frac{d}{d\beta} (X\beta - y)^{T} (X\beta - y) = -2X^{T} (X\beta - Y) = 0$$

$$\rightarrow (X^{T}X)\hat{\beta} = Xy$$

$$\rightarrow \hat{\beta} = (X^{T}X)^{-1}Xy$$

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ & & & & & \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix}$$

Least Squares (LS)

- 수식으로 결정되는 최적해를 탐색하는 방법은 loss 식이 2차 함수처럼 간단한 모양일 때는 잘 작동합니다.
 - 하지만 모델이 복잡하면 loss 의 식을 수식으로 풀 수 없기도 합니다.
 - 대신 경험적으로 (empirically) 최적해를 찾을 수도 있습니다.

• 경사하강법 (gradient descent) 는 현재의 직선식 (a_1,b_1) 보다 잔차제곱의 합이 더 작은 직선으로 조금씩 loss 를 줄여갑니다.

•
$$y = x^2 - 0.5$$

•
$$\frac{dy}{dx} = 2x$$

$$\Delta y / \Delta x$$
 는 (x,y) 를 지나는 인접한 직선의 기울기입니다

$$\Delta x = 0.5, \Delta y = -0.75$$

$$\frac{\Delta y}{\Delta x} = -\frac{3}{2}$$

$$\Delta x = 0.5, \Delta y = -0.25$$

$$\frac{\Delta y}{\Delta x} = -\frac{1}{2}$$

x 를 Δx 만큼 이동하면 y 값이 Δy 만큼 증가합니다 (감소).

•
$$y = x^2 - 0.5$$

•
$$\frac{dy}{dx} = 2x$$

$$\Delta x = 0.5, \Delta y = -0.75$$

$$\frac{\Delta y}{\Delta x} = -\frac{3}{2}$$

$$\Delta x = 0.5, \Delta y = -0.25$$

$$\frac{\Delta y}{\Delta x} = -\frac{1}{2}$$

최저점 근처에서는 작은 Δx 에 대한 Δy 도 매우 작습니다. 사실상 0 에 가깝습니다

• $y = x^2 - 0.5$

• $\frac{dy}{dx} = 2x$

최저점을 지나면
$$\frac{\Delta y}{\Delta x}$$
 의 값이 양수입니다.

x 를 증가하면 y 도 증가합니다. x 를 줄이는 방향으로 이동합니다.

$$\Delta x = 0.5, \Delta y = -0.75$$

$$\frac{\Delta y}{\Delta x} = -\frac{3}{2}$$

$$\Delta x = 0.5, \Delta y = -0.25$$

$$\frac{\Delta y}{\Delta x} = -\frac{1}{2}$$

도함수 (dy / dx) 는 기울기의 관계를 표현한 함수입니다. 최저점에서 기울기의 값이 0 입니다.

- 경사하강법 (gradient descent) 은 y 가 줄어드는 방향으로 x 를 이동하여 y 의 최저점을 탐색합니다.
- $x \vdash -dy / dx$ 에 작은 수 (learning rate) 를 곱한 값만큼만 이동합니다.

- $y = x^2 0.5$
- $\frac{dy}{dx} = 2x$

$$-\frac{dy}{dx}(x = -1) * 0.1 = -0.2$$

$$-\frac{dy}{dx}(x = -0.8) * 0.1 = -0.16$$

$$-\frac{dy}{dx}(x = -0.64) * 0.1 = -0.128$$

작은 수를 곱하기 때문에 최저점을 지나치지 않을 가능성이 높습니다.

- Learning rate 로 큰 숫자를 이용하면 최저점을 지나 더 먼 곳으로 튕겨질 수 있습니다. 이러한 현상을 "gradient explosion" 이라 합니다.
- Learning rate 로 작은 숫자를 이용하는 이유입니다.

•
$$y = x^2 - 0.5$$

•
$$\frac{dy}{dx} = 2x$$

- Explosion 을 방지하기 위하여 언제나 작은 learning 를 이용하면 최저점 탐색이 비효율적입니다
- 계속 같은 방향의 gradient 가 주어지는데도 불구하고 속도를 줄이면 최저점까지 이동하기 위한 steps 횟수가 많아집니다.

• Adaptive gradient (AdaGrad) 같은 방법은 이전 dy / dx 에 현재의 dy / dx 를 누적하여 방향이 동일하면 이동량을 가속합니다

23

- 경사하강법의 접근은 복잡한 함수에도 적용할 수 있습니다
- 그러나 (지역적으로) 최저인 점이 여러 개 존재합니다.

- y = x(x-1)(x-0.5)(x+1)

- 경사하강법 기반으로 패러매터 학습하기 위한 다양한 전략들이 있습니다.
 - 이들이 Adam, AdaGrad, RMSProp 등의 optimizers 입니다.
 - Local optima 를 방지하며, 효율적으로 최저점을 탐색하는 것이 공통된 목적입니다.

• 경사하강법 (gradient descent) 는 현재의 직선식 (a_1, b_1) 보다 잔차제곱의 합이 더 작은 직선으로 조금씩 loss 를 줄여갑니다.

- 정리하면,
 - 경사하강법은 모델의 품질을 측정하는 기준 (loss) 이 주어지면
 - 현재의 패러매터보다 품질이 더 좋은 패러매터로 조금씩 패러매터를 수정하는
 - 경험적인 패러매터 탐색법입니다.

• LS 처럼 수학적으로 해를 정의할 수 없을 때에도 이용가능합니다. 즉, 다양한 모델에 범용적으로 이용할 수 있다는 의미입니다.

Maximum Likelihood Estimation (MLE)

- 회귀직선의 품질을 다른 방식으로 정의할 수도 있습니다.
 - 주어진 식을 이용하여 예측한 $\hat{y} = ax_i + b$ 의 값이 y_i 에 가깝게 만들고 싶습니다.
 - 잔차 $\hat{y} y_i$ 의 크기가 작을수록 확률이 높도록 확률식을 정의합니다.
 - 잔차는 정규분포 $N(0,\sigma)$ 를 따른다고 가정합니다.

Likelihood :=
$$\Pi_i \ P(e_i) = \Pi_i \ \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{e_i}{\sigma}\right)^2\right)$$

$$= \Pi_i \ \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{ax_i+b-y_i}{\sigma}\right)^2\right)$$

$$\arg\max_{a,b} \Pi_i \ \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\left(\frac{ax_i+b-y_i}{\sigma}\right)^2\right)$$
목적식 (objective)

Maximum Likelihood Estimation (MLE)

- MLE 는 확률을 최대화 하는 패러매터 a,b 를 탐색합니다.
 - 잔차가 작으면 확률이 큽니다.
 - 이번에도 경사하강법을 이용하여 패러매터를 탐색합니다.

$$\arg\max_{a,b} \Pi_i \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2} \left(\frac{ax_i + b - y_i}{\sigma}\right)^2\right)$$

Negative Log Likelihood (NLL)

- log 함수는 단조증가 함수입니다.
 - 함수 f(x) 와 $\log(f(x))$ 의 최소값의 위치가 같습니다.

Log-likelihood:
$$\arg\max_{a,b} \sum_{i} \left(\log \left(\frac{1}{\sqrt{2\pi\sigma}} \right) + \log \exp \left(-\frac{1}{2} \left(\frac{ax_i + b - y_i}{\sigma} \right)^2 \right) \right)$$

$$\rightarrow \arg\max_{a,b} \sum_{i} - \left(\frac{ax_i + b - y_i}{\sigma}\right)^2$$

로그를 덧씌우면 경사하강법을 적용하기 편리합니다.

Negative LL :
$$\rightarrow \arg\min_{a,b} \sum_{i} \left(\frac{ax_i + b - y_i}{\sigma}\right)^2 = \arg\min_{a,b} \sum_{i} (ax_i + b - y_i)^2$$

부호를 바꾸면 최소값이 원함수의 최대값입니다.

Negative Log Likelihood (NLL)

• 잔차 확률과 최소자승법으로 정의한 회귀직선의 품질 기준이 동일합니다.

$$\arg\max_{a,b} \Pi_i \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2} \left(\frac{ax_i + b - y_i}{\sigma}\right)^2\right) = \arg\min_{a,b} \sum_i (ax_i + b - y_i)^2$$

- NLL 의 접근방법은 임의의 확률기반 loss 에 이용할 수 있습니다.
 - NLL loss 는 확률이 작을수록 loss 가 크다는 의미입니다.

Summary

- Vector space
 - features, variable, vector space
 - Categorical variable → dummy variables
- 용어들
 - 미분, gradient descent, local optima, global optima
 - Maximum Likelihood Estimation (MLE) / Negative Log Likelihood (NLL)

Summary

- 정리하면,
 - 모델의 품질 기준을 설정합니다 (least square, log-likelihood)
 - 경사하강법은 품질이 더 좋은 (loss 가 적은) 방향으로 패러매터를 이동합니다.
 - 앞의 수식을 완벽히 이해하지는 않으셔도 됩니다.
 - 패러매터를 이동할 때, explosion 이 일어나지 않도록 조금씩 움직입니다. 품질이 더좋아지지 않으면 학습 (패러매터 이동)을 종료합니다.
 - 수식을 통하여 최적해를 찾는 것이 아닌, 경험적으로 더 좋은 해로 개선합니다.

Variable selection

- 주어진 변수의 설명력이 부족하면 변수를 추가할 수 있습니다.
 - 2차 함수곡선을 설명하기 위하여 $x \to (x, x^2)$ 로 변수를 추가하면 예측이 잘됩니다.

Variable selection

• 변수의 개수가 지나치게 많으면 과적합 (overfitting) 이 발생합니다.

• 머신러닝 알고리즘은 어느 정도 "반복된" 데이터로부터 주요 패턴을

학습하는데 능숙합니다.

• LS 를 이용한 모델의 과적합 특징 중 하나는 패러매터의 값이 매우 큽니다.

Variable selection

• 같은 예측 성능이라면 변수의 개수가 적은 모델이 효율적/안정적입니다.

Entities are not to be multiplied without necessity

(Occam's razor)

Variable selection

- Exhaustive search 는 변수의 개수가 p 개일 때, 2^p -1 개의 모든 조합에 대하여 모델링을 수행하는 것으로, 비현실적인 방법입니다.
- Forward selection 은 유의미한 성능 향상이 있는 변수를 하나씩 추가하는 방법입니다.
- Backward elimination 은 성능 하락이 없다면 변수를 하나씩 제거하는 방법입니다.
- Stepwise selection 은 forward selection 과 backward elimination 을 동시에 진행합니다.

• 성능 변화의 유의성은 통계 (ANOVA) 를 기반으로 검증합니다. 그러나 이러한 방법은 통계학에서 이용하는 방법이며, 머신러닝에서는 다른 방식으로 접근합니다.

• p-norm은 벡터의 크기를 정의하는 방법입니다

•
$$|X|_p = \sqrt[p]{|X_1|^p + ... + |X_q|^p}$$
 로 정의되며, X_j 는 j번째 차원의 값

- p = 2 이면, L2 norm (Euclidean distance)
- $|(3,0,4)|_{p=2} = \sqrt[2]{|3|^2 + 0^2 + |4|^2} = 5$

• p-norm은 벡터의 크기를 정의하는 방법입니다

•
$$|X|_p = \sqrt[p]{|X_1|^p + ... + |X_q|^p}$$
 로 정의되며, X_j 는 j번째 차원의 값

- p = 1 이면, X의 각 차원의 값의 절대값의 합. (Manhattan distance)
- $|(3,0,-4)|_{p=1} = \sqrt[1]{|3|^1 + |0|^1 + |-4|^1} = 7$

• p-norm은 벡터의 크기를 정의하는 방법입니다

•
$$|X|_p = \sqrt[p]{|X_1|^p + ... + |X_q|^p}$$
 로 정의되며, X_j 는 j번째 차원의 값

- p = 0 이면, X 에서 0이 아닌 차원의 갯수
- $|(3,0,4)|_{p=0} = |3|^0 + |4|^0 = 2$

- Linear regression 의 패러매터도 "벡터"입니다.
 - L1, L2 regularization 은 p-norm 을 이용하여 패러매터의 모습을 유도합니다.

L2 regularization

- 목적식을 loss 와 regularization cost 의 합으로 정의합니다.
 - λ 는 loss 와 regularization 의 중요도를 조절하는 사용자 지정 변수입니다.
 - L2 regularization 은 b_j 중 유독 큰 값이 없도록 유도합니다. $(\frac{d}{db_j} = 2\lambda b_j$ 이므로)

objective :
$$\arg\min_{a,b} \sum_i (b_0 + b_1 x_{i1} + b_2 x_{i2} + \dots + b_p x_{ip} - y_i)^2 + \lambda \cdot (b_0^2 + b_1^2 + \dots + b_p^2)$$
loss regularization cost

training cost = loss + regularization cost

Ridge regression

$$\arg\min_{\beta} \sum_{i} (X_i \beta - y_i)^2 + \lambda \cdot |\beta|_2^2$$

Polynomial ridge regression, degree=3

• L2 regularization 을 이용하는 선형회귀를 ridge regression 라 합니다. 과적합 방지 능력이 있습니다.

Polynomial ridge regression, degree=2

Polynomial ridge regression, degree=1

polynomial ridge regression

L1 regularization

- L1 regularization 은 변수 선택의 효과를 얻을 수 있습니다.
 - $b_i = 0$ 이면 해당 변수를 이용하지 않는다는 의미입니다.

$$\frac{d|b_j|}{db_j} = \begin{cases} 1 & \text{if } b_j > 0 \\ 0 & \text{if } b_j = 0 \\ -1 & \text{if } b_j < 0 \end{cases}$$

objective :
$$\arg\min_{a,b} \sum_i (b_0 + b_1 x_{i1} + b_2 x_{i2} + ... + b_p x_{ip} - y_i)^2 + \lambda \cdot (|b_0| + |b_1| + ... + |b_p|)$$
loss regularization cost

L1 regularization

- 특히 변수가 데이터의 개수보다 많거나 $(fat data n \leq p)$, 중복된 변수가 존재하는 경우에는 과적합 방지를 위하여 L1 regularization 이 필요합니다.
 - L1 regularization 은 logistic regression 에서 더 자세히 살펴봅니다.

• The Elements of Statistical Learning ^1 에 L1 regularization 이 왜 sparse coefficient 를 학습하는지에 대한 수학적인 설명이 있습니다.

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Summary

- Regularization 은 모델의 overfitting 을 방지합니다.
 - L2 regularization 은 특정한 변수의 패러매터값이 크지 않도록, (모델이 완만한 회귀선을 학습하도록)
 - L1 regularization 은 예측 성능이 크게 저하되지 않는 선에서 최소한의 변수를 이용하도록 유도합니다.

Evaluation

- y 의 분산 대비 잔차의 비율이 작을수록 모델이 데이터를 잘 설명합니다.
 - $R^2 \le 1$ 로, 1에 가까울수록 잔차가 없음을 의미합니다.

$$R^{2} = \frac{\sum_{i} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}} = 1 - \frac{\sum_{i} (e_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

$$\sum_{i} (y_{i} - \bar{y})^{2}$$

$$= \sum_{i} (y_{i} - \hat{y}_{i} + \hat{y}_{i} - \bar{y})^{2}$$

$$= \sum_{i} (y_{i} - \hat{y}_{i})^{2} + \sum_{i} (\hat{y}_{i} - \bar{y})^{2}$$

$$= \sum_{i} e_{i}^{2} + \sum_{i} (\hat{y}_{i} - \bar{y})^{2}$$

$$\Rightarrow R^{2} = 1 - \frac{\sum_{i} (e_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

Adjusted R²

- 변수의 개수를 고려한 R² 입니다.
 - 변수 개수에 penalty 를 부여합니다.

$$R_{adj}^2 = 1 - \left(\frac{n-1}{n-k-1}\right)(1-R^2)$$

n: number of data

k: number of input variables

Average Error

• 잔차의 크기가 크더라도 평균은 0 일 수 있습니다.

$$avg.error = \frac{1}{n} \sum_{i} (\widehat{y}_i - y_i)$$

y_i	$\widehat{oldsymbol{y}_i}$	residual
5.329	5.212	-0.117
1.812	1.792	-0.02
4.781	4.771	-0.01
6.53	6.44	-0.09
6.265	6.242	-0.023
5.334	5.572	0.238
3.362	3.402	0.04
2.759	2.74	-0.019

Average error = -0.000125

Mean Absolute Error (MAE)

- y_i 의 크기에 관계없이 잔차의 영향력이 같습니다.
 - (1,2) 에서의 0.1 과 (10,20) 에서의 0.1 잔차는 다릅니다.

$$MAE = \frac{1}{n} \sum_{i} |\widehat{y}_i - y_i|$$

y_i	\widehat{y}_i	$ y_i - \widehat{y}_i $
5.329	5.212	-0.117
1.812	1.792	-0.02
4.781	4.771	-0.01
6.53	6.44	-0.09
6.265	6.242	-0.023
5.334	5.572	0.238
3.362	3.402	0.04
2.759	2.74	-0.019

MAE = -0.069

Mean Absolute Percentage Error (MAPE)

• y_i 의 크기를 고려한 잔차의 상대적 크기를 계산합니다.

$$MAPE = \frac{1}{n} \sum_{i} \frac{|\widehat{y_i} - y_i|}{|y_i|}$$

y_i	\widehat{y}_i	$\left \frac{y_i-\widehat{y}_i}{y_i}\right $
5.329	5.212	-0.117
1.812	1.792	-0.02
4.781	4.771	-0.01
6.53	6.44	-0.09
6.265	6.242	-0.023
5.334	5.572	0.238
3.362	3.402	0.04
2.759	2.74	-0.019

MAPE = 0.014

Root Mean Squared Error (RMSE)

- e_i 의 크기가 클 경우 더 큰 패널티를 부여합니다.
- RMSE 는 잔차와 y_i 의 스캐일을 동일하게 맞춥니다.

$$MSE = \frac{1}{n} \sum_{i} (\widehat{y}_i - y_i)^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i} (\hat{y}_{i} - y_{i})^{2}}$$

y_i	\widehat{y}_i	$(y_i - \widehat{y_i})^2$
5.329	5.212	-0.117
1.812	1.792	-0.02
4.781	4.771	-0.01
6.53	6.44	-0.09
6.265	6.242	-0.023
5.334	5.572	0.238
3.362	3.402	0.04
2.759	2.74	-0.019

RMSE = 0.101

Why we use RMSE loss instead MAP

- $|e_i|$ 의 미분값은 -1, 1 입니다.
 - 최저점 근방에 도착하여도 속도가 줄어들지 않습니다.

- Evaluation metric 은 사후 품질 평가 수단으로도 이용되지만, 경사하강법에서는 패러매터의 이동 방향을 결정하는 지표로도 이용됩니다.
- 손쉬운 미분이 가능한 평가 척도가 경사하강법의 loss 로 자주 이용됩니다.

Summary

- Evaluation 은 모델의 품질을 평가합니다.
 - 학습 과정에서 loss 를 정의하는 기준으로도,
 - 학습 완료 후 모델의 최종 품질을 평가하는데도 이용됩니다.
- RMSE, MAP, R² 등 다양한 방법이 있습니다.
 - Loss 로는 미분이 손쉬운 RMSE 가 주로 이용됩니다.

Seaborn

scatter plot 을 그리는 두 가지 방법

```
import seaborn as sns

g = sns.scatterplot(x="total_bill", y="tip", data=tips)

# to save
g = g.get_figure()
g = savefig("filepath")
```

return type: matplotlib.axes._subplots.AxesSubplot

```
import seaborn as sns

g = sns.relplot(x="total_bill", y="tip", data=tips, kind="scatter")

# to save
g = savefig("filepath")
```

return type: seaborn.axisgrid.FacetGrid

relplot() vs scatterplot()

```
seaborn.relplot(..., kind='scatter')
  execute matplotlib.pyplot.close()
      prepare new FacetGrid
      execute seaborn.scatterplot()
                                                    return type = AxesSubplot
      return the grid
                                                    scatterplot 의 옵션은 모두 이용가능합니다 (hue, size, ...)
seaborn.relplot(..., kind='line')
   → execute matplotlib.pyplot.close()
      prepare new figure
      execute seaborn.lineplot()
      return the grid
```

relplot() vs scatterplot()

```
seaborn.relplot(..., kind='scatter', col='variable', col_wrap=3)
   execute matplotlib.pyplot.close()
       prepare new FacetGrid
       for var in variable:
         execute seaborn.scatterplot(x_var, y_var)
                                                                   return type = AxesSubplot
       return the grid
                                                   FacetGrid
                                                   AxesSubplot
                                                                 AxesSubplot
                                                                               AxesSubplot
                                                   AxesSubplot
                                                                 AxesSubplot
```

relplot() vs scatterplot()

```
import seaborn as sns
g = sns.relplot(..., col="subject", col_wrap=5)
```



```
seaborn.relplot(..., kind='scatter')
   - 'scatter'
   - 'line'
seaborn.catplot(..., kind='box')
   - 'strip'
   - 'swarm'
   - 'box'
   - 'violin'
   - 'point'
   - 'bar'
   - 'count'
```

Pairwise plot

- 변수 간의 관계에 대하여 모두 relplot, catplot 을 그려줍니다.
 - 변수의 개수 p 의 p² 개의 그림을 그리기 때문에 필요한 변수들을 꼭 설정합니다.
 - Lower, upper, diagonal 에 모두 다른 플랏을 그릴 수 있습니다.

```
import seaborn as sns

g = sns.PairGrid(data, hue= ...)
g = sns.PairGrid(data, vars=["var1", "var2"], hue= ...)
g = g.map_upper(plt.scatter)
g = g.map_lower(sns.kdeplot)
g = g.map_diag(all_functions(x,y, ...))
```

