CAD/VLSI Circuit Design 期末報告

構想說明

7109064300 范文軒 電機丁組(數位)

(一)、動機

搜尋演算法是近些年科技中很重要的基石,而字串比對演算法(string matching algorithm)也是其中之一。像這樣的比對方式會被使用至 DNA 序列的比對、資料庫的查詢(query)等。而如今資料庫系統中的資料量越來越大。為了某個特徵比對,可能會使用到多次的比對查詢。因此加速這個過程,就顯得重要的。若使用暴力破解的方式,必須一個字元依次比較,而因為沒有辦法加速,時間複雜度會為 O(m*n) (in worst case)。如今不同新的演算法也不斷推出,像是近年最多人使用的演算法之一:KMP 演算法[1],優化了最原始的方式,使得無意義的比較可以跳過,帶來更多速度上的優勢,而時間複雜度減至O(m+n) (in worst case)。而本次構想希望參考可平行化運算 KMP 演算法[2],並且利用硬體亦可平行化的優勢,實做出有平行化的 KMP 演算法的 SME(string matching engine)。

(二)、主要概念與設計[2]

(1). KMP Algorithm_[1]

KMP 演算法相較於暴力破解,多增加了前處理(preprocessing)的部分,在 此演算法即所謂的 Failure Function。增加了一個關於 Pattern 的表格去紀 錄若判別失敗該跳去哪一個位置。

(2). 可平行化 KMP Algorithm_[2]

而在參考[2]中,使用了平行化技巧,將比對時分切成 4 個特殊大小的字串同時比對,進而減少時間的損耗。

參考演算法概念後,在構想設計中設計以下狀態:<u>Idle</u>、<u>String、Pattern 輸入</u>、<u>Failure Function 建立</u>、<u>比對環節以及輸出結果</u>。並打算在比對環節中設計 4 的 PE(Process Engine)同時運作於比對環節中進而實驗平行化,並將以上的概念組合成有限狀態機實現 SME。

(三)、主要架構

預計完成 ASCII 編碼的 SME。並且設定輸入字串上限 32Bytes.且 Pattern 最大為字串長度上限為 8Byte。

圖一、SME 系統架構圖

(四)、輸入

單次輸入可達到 1Byte (內容為 ASCII Code),而 String 可輸入最大長度為 32Byte,而 Pattern 可輸入最大長度為 8Byte。

(四)、規格

Hardware	
Synthesis Process	TSMC 90 nm
CLK Cycle	100Mhz
Throughput (predict)	500 Check/Sec

(五)、參考

[1] D. E. Knuth, J. H. Morris and V. R. Pratt, "Fast Pattern Matching in Strings," *SIAM J. COMPUT*, Vol.6, No.2, June *1977*.

[2] U. S. Alzoabi, N. M. Alosaimi, A. S. Bedaiwi and A. M. Alabdullatif, "Parallelization of KMP String Matching Algorithm," *2013 World Congress on Computer and Information Technology (WCCIT)*, pp. 1-3, 2013.