通用架构参数说明手册

作者: CCM-SW

v1.1

引言

通用架构参数说明是对 EOL 后端测试程序通用架构的一个说明文档,目的在于指导相关人员更好的了解应用此架构,对程序参数设定具有指导意义。本文将对八类参数进行说明,分别是:架构界面介绍、全局设置说明、模组参数设置说明、测试项管理说明、测试项设置说明、机器参数说明、IIC 调试说明、光源系数校正说明。

v1.0	范敦贵	初始发行
v1. 1	孔祥圆	测试项更新

目录

引	音	0
1	. 架构界面介绍	4
	1.1 界面功能	4
	1.2 参数设置	4
2.	全局设置	5
	2.1 界面功能	
	2.2 参数设置	5
3.	模组参数设置	7
	3.1 界面功能	7
	3.2 CammeraSetting 参数说明	8
	3.3 CurrentTestSetting 参数说明	9
	3.4 CurrentTestSetting 参数说明	. 10
	3.5 ErrorCodePage 参数说明	. 11
4.	测试项管理	
	4.1 界面功能	. 12
5.	测试项参数	. 13
	5.1 界面功能	. 13
	5.2 参数设置	. 13
6.	IIC 调试	. 14
	6.1 界面功能	. 14
	6.2 参数设置	. 14
7.	机器参数	. 15
	7.1 界面功能	. 15
	7.2 参数设置	. 15
	7.3 机台设置实例	. 15
8.	GetDNPIndex	. 17
	8.1 界面功能	. 17
	8.2 参数设置	
9.	ApplyWB	
	9.1 界面功能	

9.2 参数设置	19
10. WBCheck	20
10.1 界面功能	20
10.2 参数设置	20
11. LscApplication 参数	21
11.1 界面功能	21
11.2 参数设置	22
12. AF_MoveToPos 参数	23
12.1 界面功能	23
12.2 参数设置	23
13. POG 参数	25
13.1 界面功能	25
13.2 参数设置	25
14. POD 参数	26
14.1 界面功能	
14.2 参数设置	
15. InitiaSensor 参数	27
15.1 界面功能	27
15.2 参数设置	27
16. MesCheck/MesUpdate 参数	28
16.1 界面功能	28
16.2 参数设置	28
17. OPCurrentTest 参数	29
17.1 界面功能	29
17.2 参数设置	29
18. Pre_Process 参数	30
18.1 界面功能	30
18.2 参数设置	30
19. Shading49 参数	31
19.1 界面功能	31
19.2 参数设置	32
20. Shading5 参数	33

20.1 界面功能	33
20.2 参数设置	34
21. Doshading_Raw 参数	35
21.1 界面功能	35
21.2 参数设置	
22. AE 参数	37
22.1 界面功能	37
22.2 参数设置	37
23. SetLEDChannel 参数	39
23.1 界面功能 //光源切换功能已经集成到 AE.dll 里面,	不再使用39
23.2 参数设置	39
24. Qual commGainmap_L4 参数	40
24.1 界面功能	40
24.2 参数设置	40
25. DParticle 参数	41
25.1 界面功能	
25.2 参数设置	
26. FPN 参数	42
26.1 界面功能	
	٠٠٠٠٠٠ 4۷
26.2 参数设置	

1.架构界面介绍

1.1 界面功能

1.2 参数设置

总结面分为:机种版本显示区域、菜单栏、影像显示区域、Log 显示区域、测试项区域、站位信息区域。

2. 全局设置

2.1 界面功能

基本设置	X.	J
站别名称	OHP0158_OTP_A0 ▼	
Cam0Sensor	OV13853_4224X3136_mirror_on_flip_off.ini ▼	
Cam 1Sensor	IMX258_MIPI_4LANE.ini ▼	
设备选择(CTS ▼ □ 记录模组编号 ☑ 保存log □ ShowLog	
模组类型	Normal ▼ 図进入调试模式 □ 启用鼠标响应	
模组数里:	1 ▼	
站别 :	1 ▼ 机器名称 Machine_SPV3_NET.dll ▼	
自定义站别	□ 4个独立窗口	
显示间隔	1	
□ 离线测		
CamOImgPath		
Cam 1ImgPath 保存	h B B B B B B B B B B B B B B B B B B B	
1末1十	田以1于13 即脉末1于13 4以月	

2.2 参数设置

全局参数设置顾名思义这里的参数适用于所有 Cammer (当有多个 Camera 时)。

站别名称: 用于区分程序包版本,站位等信息,将会显示在主界面机种信息显示区域。

CamOSensor:选择 Cammer 0 的点亮设定,点亮设定需放在 SensorTab 文件夹下。

Cam1Sensor:选择 Cammer 1 的点亮设定, 点亮设定需放在 SensorTab 文件夹下。

选择设备: 选择测试工装,目前支持 UV910 (HV910), UH920, MUD952, R3, R5, CTS 型号的测试工装。

模组类型:如果是单摄请选择 Normal,测试双摄模组请选择 Dual。

模组数量: 选择1表示1个程序只测试1颗模组,选择2表示1个程序能测试2颗模组。

站别:如果"4个独立窗口"没有勾选:0表示整个主机只有一个程序,显示在整个电脑屏

幕。整个主机支持两个程序,1程序在左边屏幕,2表示程序在右边屏幕。3,4无效。

如果"4个独立窗口"有勾选: 0表示整个主机只有一个程序,显示在整个电脑屏幕。

整个主机支持 4 个程序,1 程序在 1/4 屏幕(从左自右),2 表示程序在 2/4 屏幕,3 表示程序在 3/4 屏幕,4 表示程序在 4/4 屏幕。

自定义站别:每台主机最多支持 4 个测试程序,站别只有 0,1,2,3,4。在多台主机,例如一拖 16,站别名应该是 0,1,2…15,16。如果这个编辑框被编辑了,主界面的站位显示信息将显示这个编辑框的内容,也支持 A,B,C…等编号。

显示间隔:隔帧显示,比如2,将显示第0,2,4..帧。此处一般默认为1。

离线测试模式: 勾选表示支持离线测试模式, 不勾选表示正常测试模式。

CamOImgPath: 离线测试模式 CamO 图片的保存位置。只支持 raw 格式。

Caml ImgPath: 离线测试模式 Caml 图片的保存位置。只支持 raw 格式。

记录模组编号:如果勾选,每次点击开始测试时会有编号窗口弹出,手动输入编号。数据保存会保存编号。

进入调试模式:如果被勾选,能够进入全局设置以及模组参数设置,IIC调试等界面。但是 无法进入到测试管理以及测试项参数设置界面(这些规格设置的界面需要加密狗解锁)。

bMachine: 勾选表示进入机器模式,多用在 HDC, MMI 等站位。

机器名称: 机器参数, 目前只支持 Machine_SPV3_NET. dl1。

4个独立窗口: 勾选表一台主机支持一拖四。

光源控制: 勾选表示需要测试多色温,需要光源切换,在编辑框中输入需要切换的 Com 口。 保存 log: log 会保存在 LogFile 中。

ShowLog: 暂时没有开放。

启用鼠标响应: 勾选表示界面会响应鼠标, 比如双击左键打开影像。

响应 ID: 当按下左键响应的测试 ID, 将测试对应的测试项, 前提是启用鼠标响应被开启。

保存按钮:保存当前参数设置。无需加密狗解锁。

备份存档:将复制当前 ini 参数设置。

删除存档: 删除所有SensorTab下的参数设置ini文档。

3. 模组参数设置

3.1 界面功能

模组参数设置包括四个 Page 页: CameraSetting、CurrentTestSetting、GeneralSettingPage、ErrorCodePage。

3.2 CammeraSetting 参数说明

SensorTab: 点亮设定的一些参数修改,包括 Width、Height、Type 等信息,需与点亮设定一致。

VCM DRIVER: VCM 驱动选择,需与 PD 图一致。

OtpSensor: OTP/EPPROM 型号选择以及 SlaveID 设置。

RolongoSetting:软龙格参数设置(只有当测试平台选择软龙格型号有效)。

负向测试: 0/S 负向测试, 度信工装勾选此项即可。

正箱测试: 0/S 正向测试, 软龙格工装及 CTS 工装勾选此项即可 (等同于度信负向测试)。

两两测试: Normal 测试暂时不开放此项, 无需勾选。

备注说明:修改此页内容需要加密狗。

3.3 CurrentTestSetting 参数说明

工作电流:已屏蔽此功能,需在测试项测试工作电流。测试五路电流,规格设置。

待机电流:在点亮 Sensor 之前测试,测试五路电流,规格设置。

备注说明:修改此页内容需要加密狗。

3.4 CurrentTestSetting 参数说明

使用本地曝光:在 sensor 点亮时调用 IIC 调试界面保存的曝光值与 Gain 值。

强制显示: 把错误帧也显示出来, 一般在初次点亮时或者测试满帧功耗时勾选。

测试模式:目前支持手动模式,自动模式,AA 模式,机器模式。根据不同站位需求选择不同测试模式。

设定度信: 选择测试平台型号及锁定。

默认数据路径: 当前执行档 Report 文件夹下。

连接服务器:设置 IP 以及 Port 口,充当客户端,一般使用 OTP 站位,PDAF 站位等。

3.5 ErrorCodePage 参数说明

开启不良分类: 勾选表示开启不良分类功能。将会按照填写协议进行,例如:指令 T010002,测试项 ID 1,3,5,8,表示当测试项 1,3,5,8 测试 NG 时,将发送 T010002 指令给 handler,handler 可以根据指令进行不良分类。

备注说明: 1. 只适用于自动测试模式 2. 点不亮 不良会发送 T0100110 3. 其它不良发送 T01001 4. 良品发送 T01000。5. 点亮开始测试需接收 H01000。

4. 测试项管理

4.1 界面功能

5. 测试项参数

5.1 界面功能

测试项选择								
保存并退出 取消								
0AE 0LscApplication 0Q-LscApplication 0Shading49 0Doshading_Ra	aw 0Shading5]						
Auto Exposure	四焦段							
□ 取大于平均值的pixel □ 取大于128的pixel	Error Code:	0						
曝光Channel G_Target ▼	帧间隔:	2						
曝光范围: 160 ~ 180	曝光地址							
Center ROI 10 ex: 5 stand for 1/5	高位	0x3501						
BLC: 16 SlaveID: 0x6C	低位	0x3502						
曝光次数: 5 初始曝光: 15596	mode	3						
□ 与光源校准联用 ☑ 记忆曝光								
多色温 12 /*0表示单色温,3表示第二色温,6表示第三色温,9表示第四色温*/								

5.2 参数设置

根据测试项管理选择的测试项会在测试项参数界面显示出来,自左向右依次是测试项顺序。点击保存并退出按钮保存当前设置的参数。在切换 page 时也会保存当前设置。

6. IIC 调试

6.1 界面功能

6.2 参数设置

如上图所示,区域 1 为 IIC 读写操作,对指定的器件,地址进行读写操作,需要选择读写操作的模式,例如 3: Reg_16 value_8 表示地址由 16 个 bit 组成,读出/写入 8bit 数据。区域 2 是曝光及 Gain 值调节,调节完成如有需要可以通过区域 3 "保存曝光"按钮进行保存。区域 4 是对 VCM 进行作动测试,输入 Code 值,马达运动到指定的 Code 位置。

7. 机器参数

7.1 界面功能

7.2 参数设置

- 1、首先选择要使用的设备:通常选择"Machine_SPV3",我们的测试程式作为 Server 端使用(参考图中 1)
- 2、选择 Mode: 1)选择 Mode1,接收一个消息处理一个消息
 - 2) 选择 Mode2,接收两个处理两个或者同时收到到两个消息
- 3、设置 IP 和 Port 口:设置本机的 IP 地址和需要监听的 Port 口供 Client 端连接
- 4、设置通讯指令以及 TestItem: Receive,接收到该命令则执行该站位; Pass、Fail,测试 OK 和 NG 分别返回的命令语句; TestItem,该 TestStation 执行的测试项目

7.3 机台设置实例

机台 Hander:

- 1、如上图示例,分别配置 Hander 端和测试端的协议即可实现自动化测试
- 2、需要注意的是,首先按照机台的测试逻辑设置各工位的测试 Iteam,对应关系参考上图
- 3、如果该站位需要执行多个测试 Item 时,例如上图中 "CHECK2"←----→"Station2" 需配置 需要测试哪些 "TestItem"如上图 "TestItem" 输入 3,4,5,7

8. GetDNPIndex

8.1 界面功能

多色温 0 /*0表示单位	色温,3表示第二色温,6表示第三色温,9表示第四色温	*/
机种防呆 OHP0158	C G_Aver	FuseID_1 FFD8530A1900170107080003141B21 FuseID_2 FFD8530A19001502040300081E0921
SlaveID 0xA0 Center ROI 10	Bytes	FuseID_3 FFD8530A19001502040300081E0921 FuseID_4
BLC: 16 系数 1024	2 ▼ 公式: A* 256 ▼ +B* 1 ▼ 卡控范围	FuseID_5
Channel 批址	min max min max R 30 220 R_index 9000 11000	FuseID_7 0000000000
Page 1	Gr 30 220 Gr_index 9000 11000	FuseID_8 0000000000 FuseID_9 0000000000
□ 単通道 R 0x0000 Gr 0x0000	Gb 30 220 Gb_index 9000 11000 B 30 220 B_index 9000 11000	FuseID_11
Gb 0x0000	RG 220 1000 RG_index 9000 11000	FuseID_12 0000000000 FuseID_13 0000000000
B 0x0000 ✓ Gain	BG 220 1000 BG_index 9000 11000	FuseID_15 0000000000 FuseID_15 0000000000
RG 0x0000	GG 220 1000 GG_index 9000 11000 Index_Error 100	FuseID_16 0000000000 FuseID_17 0000000000
BG 0x0000	distance卡控 ✓ GG_Gain参与计算	FuseID_18 0000000000 FuseID_19 0000000000
□ 高通工具产生WB值	Distance 100 /*当前RG BG与烧 录RG BG对比*/	FuseID_20 FFD8530A1900170005090012282221

8.2 参数设置

多色温: 0表示单色温,3表示第二色温,6表示第三色温,9表示第四色温。

机种防呆: 光源校正后将机种名写入注册表, 用于机种防呆。

SlaveID: 将从这个 SlaveID 的器件中读出点检模组的 WB 值。

CenterROI: 计算光源矫正系数时中心抓框的大小, 10表示 1/10。

BLC: 计算 WB 值时减去固定 BLC 值, 因 sensor 而异,并与使用 Raw8/raw10 计算有关

系数: OTP 烧录的 Gain 值在转化成整形存储时乘以的系数。

Channel 地址: 从该地址中读出点检模组的 WB 值,勾选"单通道"或"Gain"之后只需设置对应的地址。

高通工具产生的 WB 值: 当项目需要使用高通工具计算的 WB 值时,勾选此选项,程式将使用

高通工具计算 WB 值。

Bytes:从 OTP 中读取的 WB 值是分多少个 Byte 存储的。

公式:如何将读出的一个或多个 Byte 的数据转换成实际的 WB 值。

G_Aver/Gr_Aver/Gb_Aver: 计算 RG, BG 值时是除以 G_Aver/Gr_Aver/Gb_Aver。

Raw8: 勾选将以8bit 计算WB值,不勾选将以10bit 计算。

四舍五入: 勾选计算结果将加上 0.5, 即四舍五入。

卡控范围: 卡控当前画面计算的 WB 值得范围以及光源系数的范围。

Index Error: 三颗模组得到的系数差异不能超过此规格。

Distance 卡控: GGain 是否参与到 Distance 的计算,不勾选的话只计算 RG, BG 的 Distance。

FuseID: 点检模组的 FuseID。

9. ApplyWB

9.1 界面功能

9.2 参数设置

多色温: 0表示单色温,3表示第二色温,6表示第三色温,9表示第四色温。

ROI: 计算光源矫正系数时中心抓框的大小, 10表示 1/10。

SaveImage: 勾选将保存 ApplyWB 之前与 ApplyWB 之后的图片。

Raw8/Raw10: 勾选 Raw8 将以 8bit 计算 WB 值, 勾选 Raw10 将以 10bit 计算。

单通道/比值: 勾选单通道将计算并生成单通道的值, 勾选比值将计算 R/G, B/G, G/G。

BLC: 计算 WB 值时减去固定 BLC 值,因 sensor 而异,并与使用 Raw8/raw10 计算有关。

系数: 计算的 Gain 值在转化成整形数据存储时乘以的系数。

四舍五入: 勾选计算结果将加上 0.5, 即四舍五入。

G Aver/Gr Aver/Gb Aver: 计算 RG, BG 值时是除以 G Aver/Gr Aver/Gb Aver。

高通工具产生的 WB 值: 当项目需要使用高通工具计算的 WB 值时,勾选此选项,程式将使用高通工具计算 WB 值。

GoldenValue: 输入需要设置的 Typicak 值。

Index: 将根据光源矫正结果自动获取 Index 值。

GG Gain参与计算: GGain 是否参与到Distance 的计算,不勾选的话只计算RG, BG的Distance。

BeforeDistance: ApplyWB 前的 Distance 卡控规格。

Distance: ApplyWB 后的 Distance 卡控规格。

10. WBCheck

10.1 界面功能

多色温	0		温,3表	表示第二	色温, 6表 别	示第三色温,9表为	示第四色温*/
SlaveID	0xA	.0					
Center RO	OI 10	✓ R	aw8	○ G_Av	er 🤄 Gr_	Aver C Gb_Ave	
BLC:	16		2	•	公式: A*	256 ▼ +B* 1	▼
系数 □ 四舍3		4	-OTP数	据卡控	范围———		
	Channe	地址	R	30	220	Typical_R	200
	Page	1	Gr	30	220	Typical_Gr	200
□ 单通道	R	0x0000	Gb	30	220	Typical_Gb	200
	Gr	0x0000	В	30	220	Typical_B	200
	Gb	0x0000	RG	220	1000	Typical_RG	200
	В	0x0000	BG	220	1000	Typical_BG	200
✓ Gain			GG	220	1000	Typical_GG	200
	RG	0x0000		JEES	12000	_	·
	BG	0x0000	Befo	reDistan	te 50	✓ GG_Gain	多与计算
	GG	0x0000	Dista	ance	1		
□ 高通工具	产生WB(

10.2 参数设置

多色温: 0表示单色温,3表示第二色温,6表示第三色温,9表示第四色温。

SlaveID: 将从这个 SlaveID 的器件中读出点检模组的 WB 值。

CenterROI: 计算光源矫正系数时中心抓框的大小, 10表示 1/10。

BLC: 计算 WB 值时减去固定 BLC 值, 因 sensor 而异,并与使用 Raw8/raw10 计算有关。

系数: OTP 烧录的 Gain 值在转化成整形存储时乘以的系数。

Channel 地址: 从该地址中读出点检模组的 WB 值,勾选"单通道"或"Gain"之后只需设置对应的地址。

高通工具产生的 WB 值: 当项目需要使用高通工具计算的 WB 值时,勾选此选项,程式将使用

高通工具计算 WB 值。

Bytes:从 OTP 中读取的 WB 值是分多少个 Byte 存储的。

公式: 如何将读出的一个或多个 Byte 的数据转换成实际的 WB 值。

G_Aver/Gr_Aver/Gb_Aver: 计算 RG, BG 值时是除以 G_Aver/Gr_Aver/Gb_Aver。

Raw8: 勾选将以8bit 计算WB值,不勾选将以10bit 计算。

四舍五入: 勾选计算结果将加上 0.5, 即四舍五入。

OTP 数据卡控范围:卡控当前画面计算的 WB 值得范围以及光源系数的范围。

GG_Gain参与计算:GGain是否参与到Distance的计算,不勾选的话只计算RG,BG的Distance。

BeforeDistance: ApplyWB 前的 Distance 卡控规格。

Distance: ApplyWB 后的 Distance 卡控规格。

11. LscApplication 参数

11.1 界面功能

11.2 参数设置

- 1: LSC 平台 目前有 4 种, 勾选对应的 LSC 平台。
- 2: LSC error 卡控 LSC 生成数据中多个 0x0,以及多个 0xff,超过设置规格则 ng。

高通 LSC

- 3: 高通 LSC 生产数据方式 设置为 0 时 读取 ONLY_LSC_CALIBRATION_DATA_BYTE_FORMAT. txt 数据保存在 QualcommLSC_n. bin (n 为当前设置的 cam 的名称,数据排列为 R, Gr, Gb, B 低位在前,高位在后),设置为 1 时 读取 AWB_LSC_CALIBRATION_DATA. txt 数据保存在 QualcommLSC. bin (数据排列为 R, Gr, Gb, B 低位在前,高位在后)。
- 4: block 数量 勾选时为 9*7 个 block, 不勾选为 17*13block。
- 5: 设置 BLC 函数参数需设置为 16。
- 6: 卡控生成单通道 R, Gr, Gb, B 范围 需大于 Min, 小于 Max。
- 7: LSC Distance 生成 LSC 数据与标准 Standard. ini 对比,差异超过设置值则 ng。
- 8: 卡控所有 block 与中心 block 的偏差 , colorshanding RG, BG 范围。
- 说明: (1)生成的数据在当前程式\tpdataManager\Camn\otpInputByte\QualcommLSC_n.bin中(n为当前设置的cam的名称)。
- (2) 需要将 Standard. ini 文件放到当前程式\LSC\Qualcomm 目录中

MTK LSC

- 9:设置 LSC 数据大小 检查生成数据量是否正确
- 说明: (1) 勾选 MTK LSC(color) 时需要在当前程式\LSC\Ref 目录下中设置lsv_param_capture.txt, slim_param_capture.txt 文件中的关键参数。生成数据在当前程式\tpdataManager\Camn\otpInputByte\LSC n. bin 中(n 为当前设置的 cam 的名称)。
- (2) 勾选 MTK LSC(mono) 时需要在当前程式\LSC\MONORef 目录下中设置 lsv_param_capture.txt, slim_param_capture.txt 文件中的关键参数。生成数据在当前程式\tpdataManager\ Camn\ otpInputByte\ LSCMono
- n. bin 中 (n 为当前设置的 cam 的名称)。

SensorLSC

- 10: 设置 LSCTarget 值 按照客户要求设置
- 11: 设置 LSCGroup 根据 sensor 1sc tool 设置

- 12: 设置 OB 根据 sensor 1sc tool 设置
- 13: 设置 LenCReg 参数 根据 sensor 1sc tool 设置

说明:测试 pass, LSC 数据直接烧录 otp 中。

12. AF_MoveToPos 参数

12.1 界面功能

Infinity Info: Infinity Distance: 示例编辑 单位(m) InfinityRegHigh: 示例编辑 InfinityRegLow: 示例编辑 Macro Info: Macro Distance: 示例编辑 单位(m) MacroRegHigh: 示例编辑 MacroRegLow: 示例编辑	─ Move To Pos:	
OtherPos Info: OtherCode: 示例编辑		

12.2 参数设置

- 1:勾选 MovePos 时,需要填写勾选项右边需要移动到的距离,并配置以下参数:
 - 1)、Module EFL,单位毫米
 - 2)、Infinity Distance, 水平 AF 校准远焦距离,单位 米
 - 3)、InfinityRegHigh, 水平远焦烧录 Code 高位寄存器
 - 4)、InfinityRegLow, 水平远焦烧录 Code 低位寄存器
 - 5)、Macro Distance, 水平 AF 校准近焦距离,单位 米

- 6)、MacroRegHigh, 水平近焦烧录 Code 高位寄存器
- 7)、MacroRegLow,水平近焦烧录Code低位寄存器
- 2:勾选 InfinityPos, 马达推动到远焦位置, 需要配置以下参数:
 - 1)、InfinityRegHigh, 水平远焦烧录 Code 高位寄存器
 - 2)、InfinityRegLow, 水平远焦烧录 Code 低位寄存器
- 3:勾选 MacroPos,马达推动到近焦位置,需要配置以下参数:
 - 1)、MacroRegHigh,水平近焦烧录 Code 高位寄存器
 - 2)、MacroRegLow, 水平近焦烧录 Code 低位寄存器
- 4:勾选 MiddlePos, 马达会推动到中焦位置(远近焦 Code 平均值), 需要配置以下参数:
 - 1)、InfinityRegHigh, 水平远焦烧录 Code 高位寄存器
 - 2)、InfinityRegLow, 水平远焦烧录 Code 低位寄存器
 - 3)、MacroRegHigh, 水平近焦烧录 Code 高位寄存器
 - 4)、MacroRegLow, 水平近焦烧录 Code 低位寄存器
- 5:勾选 OtherPos, 马达会推动到其它位置, 需要填写以下参数:
 - 1)、OtherCode, 想要推动到的Code。
- 6:勾选 SaveAF Code,保存远近焦烧录的 Code,需要配置以下参数:
 - 1)、InfinityRegHigh, 水平远焦烧录 Code 高位寄存器
 - 2)、InfinityRegLow, 水平远焦烧录 Code 低位寄存器
 - 3)、MacroRegHigh, 水平近焦烧录 Code 高位寄存器
 - 4)、MacroRegLow, 水平近焦烧录 Code 低位寄存器

13. POG 参数

13.1 界面功能

Camera 0 POG	Parameter			Camera 1 PO	Parameter			
Save Image		Sav	Save Log		Save Image		Save Log	
MedianA:	示例编辑机	Threshold:	示例编辑机	MedianA:	示例编辑机	Threshold:	示例编辑机	
MedianB:	示例编辑机	Pixel Limit :	示例编辑制	MedianB:	示例编辑制	Pixel Limit:	示例编辑机	
AXStart :	示例编辑机	AXEnd:	示例编辑制	AXStart:	示例编辑机	AXEnd :	示例编辑机	
AYStart:	示例编辑机	AYEnd:	示例编辑机	AYStart:	示例编辑机	AYEnd:	示例编辑机	
Offset:	示例编辑机	intensity:	示例编辑制	Offset:	示例编辑机	intensity:	示例编辑机	
CornerDiff:	示例编辑机	RangeSpc:	示例编辑机	CornerDiff:	示例编辑制	RangeSpc:	示例编辑机	
EdgeLimit:	示例编辑机	EdgePixelLimit :	示例编辑制	EdgeLimit :	示例编辑机	EdgePixelLimit:	示例编辑机	
Still BMP	Image Enable							

13.2 参数设置

1. MedianA:中值滤波 A 半径,去高频信号(一般为25)。

2. MedianB:中值滤波 B 半径,去低频信号(一般为 5)。

3. Threshold:二值化阀值。

4. PixelLimil:允许连续的 pixel 个数。

5. AXStart: POG 计算区域 X 方向起始坐标。

6. AXEnd: POG 计算区域 X 方向截止坐标。

7. AYStart: POG 计算区域 Y 方向起始坐标。

8. AYEnd: POG 计算区域 Y 方向截止坐标。

9. Offset:暗角补偿半径,可设置为中值滤波 A 半径/2+1,假设中值滤波半径为 25,则 Offset 可设置为 13。

10. Intensity: 当边缘有 POG 是允许连续的 pixel 个数。

11. CornerDiff、RangeSpc;四角 POG 卡控规格。

12. EdgeLimit:边缘检测差异值。

13. EdgePixelLimit;边缘检测连续点个数。

14. POD 参数

14.1 界面功能

Camera 0 POD Parame	ter			Camera 1 POD Parame	ter	
Left Shield Lines :	示例编辑机	Right Shield Lines :	示例编辑机	Left Shield Lines:	示例编辑机	Right Shield Lines: 示例编辑机
Top Shield Lines:	示例编辑机	Bottom Shield Lines :	示例编辑机	Top Shield Lines:	示例编辑机	Bottom Shield Lines: 示例编辑机
WLeft Shield Lines :	示例编辑机	WRight Shield Lines:	示例编辑机	WLeft Shield Lines:	示例编辑机	WRight Shield Lines: 示例编辑制
WTop Shield Lines:	示例编辑机	WBottom Shield Lines :	示例编辑机	WTop Shield Lines :	示例编辑机	WBottom Shield Lines: 示例编辑机
Area Define :	示例编辑机	X 示例编辑相 Still BMP	Image Enable	Area Define :	示例编辑机	X 示例编辑 Still BMP Image Enable
Small Area Define :	示例编辑机	X 示例编辑相	_	Small Area Define :	示例编辑机	X 示例编辑相
Dead Enable	Dead Use	e Unit Wound Enable Wo	Dead Enable	Dead Use	Unit Wound Enable Wound Use Unit	
Use Log				Use Log		
Dead Type:	示例编辑机	Wound Spc Edge:	示例编辑制	Dead Type:	示例编辑机	Wound Spc Edge: 示例编辑机
Dead Spc :	示例编辑机	Wound Spec Center	示例编辑机	Dead Spc :	示例编辑机	Wound Spec Center 示例编辑机

14.2 参数设置

- 1. Dead Enable: 勾选时测试 dead, 否则不测试 dead。
- 2. Dead Use Unit: 勾选时 dead 规格使用百分比,否则使用亮度差。
- 3. Wound Enable:勾选时测试 wound, 否则不测试 wound。
- 4. Wound Use Unit:勾选时 wound 规格使用百分比,否则使用亮度差。
- 5. Left Shield Lines: Dead 测试时,忽略左侧的 pixel 数。
- 6. Right Shield Lines: Dead 测试时,忽略右侧的 pixel 数。
- 7. Top Shield Lines: Dead 测试时, 忽略上侧的 pixel 数。
- 8. Bottom Shield Lines: Dead 测试时, 忽略下侧的 pixel 数。
- 9. WLeft Shield Lines: Wound 测试时, 忽略左侧的 pixel 数。
- 10. WRight Shield Lines: Wound 测试时, 忽略右侧的 pixel 数。
- 11. WTop Shiled Lines: Wound 测试时,忽略上侧的 pixel 数。
- 12. WBottom Shield Lines: Wound 测试时, 忽略下侧的 pixel 数。
- 13. Area Define:求平均亮度时选取的 Block 的长宽。
- 14. Small Area Define: wound 测试时,图片压缩的长宽比率。
- 15. Dead Type: Dead 测试允许连续 pixel。

16. Dead Spc: Dead 测试允许亮度差。

17. Wound Spc Edge: Wound 测试允许边界亮度差。

18. Wound Spc Center: Wound 测试允许中心亮度差。

19. Still BMP Image Enable: 使用 RGB24 Buffer 测试 POD

20. Use log:测试过程记录 log。

15. InitiaSensor 参数

15.1 界面功能

	□变更Im	iage Size	
Cam0	点亮设定	~	/*如果不需要切换点亮设定 就不需要选择*/
Cam1	点亮设定	~	/*如果不需要切换点亮设定 就不需要选择*/

15.2 参数设置

点亮设定: 需要切换 sensor 设定的名称。点亮设定应放在 SensorTab 文件夹下。

备注: InitiaSensor 一般用于需要做 OTPCheck 时之前需要把 WB, LSC 效果清除。还有一种情况是需要切换点亮设定要重新初始化。

- 1)、通过下拉框选取需要切换的点亮设定
- 2)、如果变更前后的 ImageSize 有变化,需要勾选变更 Image Size 勾选项,否则程式会因为内存问题卡死。

16. MesCheck/MesUpdate 参数

16.1 界面功能

☐ MesCheck ☐ MesBinding	■MES解绑		
□cam0 MesID 示例编辑	Ħ		
□ cam1 MesID 示例编辑	Ħ		
Barcode			
use Barcode			
Length: 示例编辑相			
Key String: 示例編辑相			

16.2 参数设置

MesCheck: 勾选这个表示开启 Mes 功能,并且是非绑定站位。

MesBinding: 勾选这个表示当前站位为绑定站位,需要进行绑定操作。

MES 解绑: 勾选这个表示需要做解绑操作,需要勾选 MesCheck 才有效。

Cam0:配合后面 MesID 来使用,MesID 通常为 0,如果为 1,则表示 cam0 的数据需要通过 cam1 来进行上传系统。

Cam1: 同理 cam0。

备注:以上选择一般用在双摄,双摄只有一个 Camera 会有二维码,如果二维码打印在 cam1 上,那么 cam0 的数据就只能通过 cam1 来上传了,cam0 的 MesID 就应该是 1。

use Barcode: 一般模组在绑定的时候会使用二维码 (某些只需要 sensorID),所以此处一般为 勾选状态,如果是绑定站位的话。

Length: 卡控二维码的长度-防呆。

Key String: 卡控二维码的关键字—防呆。

MesUpdate: 用于 Mes 数据上传动作,与 MesCheck 联用。

17. OPCurrentTest 参数

17.1 界面功能

IavMax	50	IavMin	0
IdoMax	50	IdoMin	0
IdvMax	50	IdvMin	0
IafMax	50	IafMin	0

17.2 参数设置

lavMax: AVDD 电流规格上限,单位 mA。 lavMin: AVDD 电流规格下限 ,单位 mA。

IdoMax: DOVDD 电流规格上限,单位 mA。 IdoMin: DOVDD 电流规格下限 ,单位 mA。

IdvMax: DVDD 电流规格上限,单位 mA。 IdvMin: DVDD 电流规格下限 ,单位 mA。

lafMax: AFVDD 电流规格上限,单位 mA。 lafMin: AFVDD 电流规格下限 ,单位 mA。

18. Pre_Process 参数

18.1 界面功能

18.2 参数设置

防呆分为 3 个部分: OTP 光源校准时间卡控, 机种防呆, Sensor 版本防呆。

CalDiff_h: OTP 光源校验时间卡控,一般为 12 小时。

TestStation: 机种防呆,这里的设置需与 GetDNPIndex 测试项的机种名设置一致,否则会被卡出。

19. Shading49 参数

19.1 界面功能

▶ 检测测区域(红色框):

该区域主要是根据实际需要设置 7x7 个 Block 的坐标。以 sensor 的左上点作为起始点 (0,0,),右下点作为终止点 (100,100);

➤ ROI 尺寸 (黄色框):

设置 ROI 尺寸确定 Block 框的大小,要求每个 Block 之间不能有重叠。 计算公式:

Y 坐标:
$$Y_{START} = (INT) \left(y_{设置} - (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{h_{HEIGHT}}{100}$$

$$Y_{END} = (INT) \left(y_{设置} + (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{h_{HEIGHT}}{100}$$
X 坐标: $X_{START} = (INT) \left(x_{设置} - (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{w_{WIDTH}}{100}$

$$X_{END} = (INT) \left(x_{设置} + (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{w_{WIDTH}}{100}$$

注: "START"表示 ROI 左上角的起始点, "END"表示 ROI 有下角的终止点, "INT"表示是整型, "设置"表示是界面设置坐标值, "HEIGHT"表示 sensor 的 height, "WIDTH"

表示 sensor 的 width。

如客户没有规定,以上参数可以不作调整。

▶ 标准设定:

用于设定卡控规格。

▶ 测试环境:

设定当前测试项的测试环境。

▶ 持续测试:

当勾选该项时,将对该测试项循环操作

19.2 参数设置

➤ △Y:

卡控每个 Block 亮度值,要求每个 Block 亮度值需大于设定值。设定的值是最小值。

➤ Ydif:

卡控四角(0,6,42,48)的偏差,要求值越小,表示四角的亮度均匀性越好;设定的值是最大值。

➤ R/G_diff:

卡控每个 Block 的|R-G|的最大值,要求最大值越小越好;设定的值是最大值。

B/G_diff

卡控每个 Block 的|B-G|的最大值,要求最大值越小越好;设定的值是最大值。

➤ PP_diff:

卡控 49 个 Block 中 R-G 与 B-G 中的最大值与最小值的差值;设定的值是最大值。

MaxR/G_OK1 , MaxR/G_OK2:

卡控 33x33 个 Block 中的 R-G 中的最大值,可设定两个判定规格;设定的值是最大值。

 \triangleright MaxB/G:

卡控 33x33 个 Block 中的 B-G 中的最大值;设定的值是最大值。

bCheckRGmax:

卡控 MaxR/G_OK1 , MaxR/G_OK2 的使能键, 当勾选时表示测试。

bCheckBGmax:

卡控 MaxB/G 使能键, 当勾选时表示测试。

▶ 曝光亮度:

允许曝光的使能键,当勾选时表示会 check 当前的曝光亮度是否在范围内,如果没在范围内会进行曝光。

▶ 平均次数:

允许曝光的 step。

▶ 亮度公差:

表示允许的曝光值的上下限范围,比如曝光值设置 128,亮度公差设置成 10,则

允许的曝光范围是: 118~138。

注:目前曝光这一块功能没有启用。

20. Shading5 参数

20.1 界面功能

Shading5 可用于测试 Raw 图像四角亮度 Y 的差值,四角的亮度值,中心的亮度值。四角的 R/G, B/G 的值。

▶ 检测区域(红色框):

该区域主要设置 5 个 Block 坐标。以 sensor 的左上点作为起始点(0,0),右下点作为终止点(100,100);

➤ ROI 尺寸 (黄色框):

设置 ROI 尺寸确定 Block 框的大小,要求每个 Block 之间不能有重叠。 计算公式:

Y 坐标:
$$Y_{START} = (INT) \left(y_{设置} - (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{h_{HEIGHT}}{100}$$

$$Y_{END} = (INT) \left(y_{设置} + (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{h_{HEIGHT}}{100}$$
X 坐标: $X_{START} = (INT) \left(x_{设置} - (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{w_{WIDTH}}{100}$

$$X_{END} = (INT) \left(x_{\text{WE}} + (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{w_{WIDTH}}{100}$$

注: "START"表示 ROI 左上角的起始点, "END"表示 ROI 有下角的终止点, "INT"表示是整型, "设置"表示是界面设置坐标值, "HEIGHT"表示 sensor 的 height, "WIDTH"表示 sensor 的 width。

如客户没有规定, 以上参数可以不作调整。

中心: Block[0], 左上角: Block[1], 右上角: Block[2], 左下角: Block[3], 右下角: Block[4]

▶ 标准设定:

用于设定卡控规格。

➤ BLC:

采用的 RAW8 图像计算, BLC 需设置为 Raw8 BLC。

▶ 持续测试:

当勾选该项时,将对该测试项循环操作。

20.2 参数设置

➤ YDiff:

卡控四角(1,2,3,4)亮度值Y的最大偏差,要求值越小,表示四角的亮度均匀性越好;设定的值是最大值。

> Ymin, Ymax:

卡控 Block (1,2,3,4) 亮度值 Y 的范围,要求四个 Block 的亮度值在范围内;设定的值是 Rang 值。

➤ R/G Min, R/G Max:

卡控 Block (1,2,3,4) R/G 值的范围,要求四个 Block 的 R/G 值在范围内;设定的值是 Rang 值。

► B/G Min, B/G Max:

卡控 Block (1,2,3,4) B/G 值的范围,要求四个 Block 的 B/G 值在范围内;设定的 值是 Rang 值。

21. Doshading_Raw 参数

21.1 界面功能

Doshading_Raw 只适用 MTK 进行 LSC 补偿后测试保存的 Raw 图,该 RAW 是 MTK 工具裁剪后的图像($\frac{height}{2} \times \frac{width}{2}$)。卡控图像的四角亮度最大差值,四角的亮度值,中心的亮度值。 12 个 Block 的 R/G,B/G 的值。

▶ 检测区域:

该区域主要是设置 13 个 Block 坐标。以 sensor 的左上点作为起始点 (0,0), 右下点作为终止点 (100,100);

➤ ROI 尺寸:

设置 ROI 尺寸确定 Block 框的大小,要求每个 Block 之间不能有重叠。 计算公式:

Y 坐标:
$$Y_{START} = (INT) \left(y_{设置} - (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{h_{HEIGHT}}{100}$$

$$Y_{END} = (INT) \left(y_{设置} + (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{h_{HEIGHT}}{100}$$
X 坐标: $X_{START} = (INT) \left(x_{设置} - (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{w_{WIDTH}}{100}$

$$X_{END} = (INT) \left(x_{\text{WE}} + (INT) \frac{d_{ROI}}{2} \right) * (INT) \frac{w_{WIDTH}}{100}$$

注: "START"表示 ROI 左上角的起始点, "END"表示 ROI 有下角的终止点, "INT"表示是整型, "设置"表示是界面设置坐标值, "HEIGHT"表示 sensor 的 height, "WIDTH"表示 sensor 的 width。

如客户没有规定, 以上参数可以不作调整。

其中,中心: Block[0],左上角: Block[1],右上角: Block[2],左下角: Block[3],右下角: Block[4]

- ▶ 标准设定:
 用于设定卡控规格。
- 持续测试:当勾选该项时,将对该测试项循环操作。

21.2 参数设置

➤ YDiff:

卡控四角(1,2,3,4) 亮度值 Y 的最大偏差,要求值越小,表示四角的亮度均匀性越好;设定的值是最大值。

> YMin, YMax:

卡控 Block (1,2,3,4) 亮度值 Y 的范围,要求四个 Block 的亮度值在范围内;设定的值是 Rang 值。

➤ R/G Min, R/G Max:

卡控每个 Block (除中心外) R/G 值的范围,要求 12 个 Block 的 R/G 值在范围内;设定的值是 Rang 值。

➤ B/G Min, B/G Max:

卡控每个 Block (除中心外) B/G 值的范围,要求 12 个 Block 的 B/G 值在范围内;设定的值是 Rang 值。

22. AE 参数

22.1 界面功能

Auto Exposure	四焦段	LED Channel
□ 10Bit计算 □ 4Cell Sensor □ 2PD Sensor	Error Code: 示例编:	○ A_Light Channel: 示例
□取大于平均值的pixel □取大于128的pixel 및光Channel □ 取大于128的pixel	帧间隔: 示例编辑相	○ TL84_Light Channel: 示例 ○ D65_Light Channel: 示例
	曝光地址	LEDType: V
曝光范围: 示例编辑 ~ 示例编辑 StartX 示例编辑	高位示例编辑	副摄等待时间(ms): 示例编辑
ex: 17x13 stand for 1/17W x 1/13H StartY 示例编辑	低位 示例编辑	□□□□▼₩₩₩₩₩
Center ROI 示例编辑 × 示例编辑	mode_Exp 示例编辑	□是否切换光源
BLC: 示例编辑 SlaveID: 示例编辑	Gain Reg1: 示例编辑	
曝光次数: 示例编辑 初始曝光: 示例编辑	Gain Val1: 示例编辑	
□ 与光源校准联用 □ 记忆 曝光	Gain Reg2: 示例编辑	
多色温 示例编辑 /*0表示单色温,3表示第二色温,	Gain Val2: 示例编辑	
6表示第三色温,9表示第四色温*/	mode_Gain 示例编辑	

22.2 参数设置

10Bit 计算: 使用 Raw10 buffer 计算当前曝光。

4Cell sensor: 当前 sensor 为 4cell sensor, 勾选做相应处理。

2PD sensor: 当前 sensor 为 2PD sensor(以点亮设定判断),勾选做相应处理。

取大于平均值的 pixel: 中心区域大于平均值的 pixel 平均值在曝光范围内认为是可以的。

取大于 128 的 pixel: 中心区域大于 128 的 pixel 平均值在曝光范围内认为是可以的。

曝光 Channel: 有六个可选,除四个单通道之外,G_Target 表示 Gr,Gb 的平均值,Y_Target 表示 R G B 三通道的亮度值,这个一般默认为 G_Target。

曝光范围:中心区域的曝光范围。

Center ROI: 5表示取中心 1/5 区域。

设置 ROI 位置: 通过设置 StartX 和 StartY, 设置曝光 ROI 的位置

BLC: Sensor BLC(8bit)。

SlaveID: Sensor SlaveID.

曝光次数:曝光的次数。

初始曝光:在曝光前给 Sesnor 的初始曝光,会记录上一颗模组的最佳曝光时间。前提是要勾选记忆曝光功能。

记忆曝光: 与初始曝光联用。

与光源校准联用:一般在光源校准之前需要 AE,如果是单色温,多色温填写 0 就可以,在启动光源校准的时候会进行曝光,结束时正常测试则不会进行曝光。3 表示两色温,6 表示三色温,9 表示四色温,12 表示无效。根据当前机种烧录实际情况而定。

帧间隔:曝光寄存器下完值,影像不会立马生效,需要丢掉几帧抓新图像,一般设置 3-5 帧。 跟工装以及电脑配置有关系。

Error Code: 用于四焦段 ErrorCode 区分。

曝光地址:

高位:曝光时间高位地址。

低位:曝光时间低位地址。

Mode_Exp: 读写 Mode,一般为 3,表示寄存器 2 字节,值 1 字节。

Gain Reg1: 模拟 Gain 寄存器 1

Gain Val1: 模拟 Gain 寄存器写入值 1

Gain Reg2: 模拟 Gain 寄存器 2

Gain Val3: 模拟 Gain 寄存器写入值 2

mode_Gain: 读写 Mode,一般为 3,表示寄存器 2 字节,值 1 字节。

LED Channel:

选择对应光源,设置对应光源通道

LED Type: G3C 或者 G4C

副摄等待时间: 等待副摄切光时间

是否切换光源:光源切换使能接口,勾上切光

23. SetLEDChannel 参数

23.1 界面功能 //光源切换功能已经集成到 AE.dll 里面,不再使用

.ED Channel				A_RGHigh:	0	
A_Light		Channel:	1	A_RGLow:	0	
TL84_Li	ght	Channel:	2	A_BGHigh:	0	
D65_Lig	ht	Channel:	3	A_RGLow:	0	
				TL84_RGHigh:	0	
LEDType:	1.G3C	-		TL84_RGLow:	0	
SleepTime:	1			TL84_BGHigh:	0	
BLC:	16			TL84_BGLow:	0	
5201				D65_RGHigh:	0	
限制				D65_RGLow:	0	
□是記	雪限制	J		D65_BGHigh:	0	
限制参	·微:	3		D65_BGLow:	0	

23.2 参数设置

A_Light/TL84_Light/D65_Light: 只能勾选一个光源,例如 A_Light 被勾选表示这个测试项即将切换到 A 光源。下面填写的规格只要填写 A 光源的即可。

Channel: 表示被勾选光源在第几个 Channel。

LEDType: 目前支持 G3C 和 G4C 两种光源。

SleepTime: 切换光源时的停留时间。

是否限制:一般用于多色温光源校准时需要被勾选。限制参数如果是3,说明是两色温的。

A_RGHigh: 如果 A 光源被勾选,切换之后影像 RG 的上限。用于判断是否切换成功。

A_RGLow: 如果 A 光源被勾选,切换之后影像 RG 的下限。用于判断是否切换成功。

A_BGHigh: 如果 A 光源被勾选,切换之后影像 BG 的上限。用于判断是否切换成功。

A_BGLow: 如果 A 光源被勾选,切换之后影像 BG 的下限。用于判断是否切换成功。

TL84_Light, D65_Light 同理。

24. QualcommGainmap_L4 参数

24.1 界面功能

CFA:	示例編辑 BLC: 示例编辑 Bit_Depth:	示例编辑 🗌 is 2PD Senso
Measure_Channel:	示例编 Block_Width: 示例编 Block_Height	: [示例编辑]
PD_pairs:	示例编 Start_X: 示例编 Start_Y:	示例編:
PD_Block_Left_X:	示例编辑框	GainmapMAX: 示例编辑相
PD_Block_Left_Y:	示例编辑框	GainmapMIN:
PD_Block_Right_X:	示例编辑框	示例编辑机
PD_Block_Right_Y:	示例编辑框	o savedata
Save Bin:	示例编辑 0 :save High-Low 1:save Low-	Savedata -High

24.2 参数设置

CFA \ BLC \ Bit_Depth \Measure_Channel \ Block_Width \Block_Height \ PD_pairs \ Start_X \ Start_Y \ PD_Block_Left_X \ PD_Block_Left_Y \ PD_Block_Right_X \ PD_Block_Right_Y \ 以上为高通L版本PDAF参数,sensor供应商提供,不同sensor不一样

Is2PD Sensor:2PD sensor勾选

GainmapMAX: Gainmap上限卡控规格 GainmapMIN: Gainmap下限卡控规格

Save Bin: 0->PDAF数据按照大端模式保存, 1->PDAF数据按照小端模式保存

Savedata勾选框: 勾选按照sensorID保存PDAF数据

25. DParticle 参数

25.1 界面功能

25.2 参数设置

LeftSL: 忽略左侧的pixel数 RightSL: 忽略右侧的pixel数 TopSL: 忽略上侧的pixel数 BottomSL: 忽略下侧的pixel数

AreaWidth / AreaHeight: Partical计算区域 DeadUnit: 1->使用百分比 0->使用绝对差

DeadSpec: Partical差值规格

DeadType:连续几个Pixel为Partical

Exposure:曝光时间,10进制,真实写入寄存区的值

Gain:Gain值,10进制,真实写入寄存器的值

26. FPN 参数

26.1 界面功能

26.2 参数设置

SinglePixelMax:阈值,超过设定值的统计

PixelCountPercent:单行或单列超出阈值pixel数量的百分比规格

Mean_RowSpec:行平均值规格 Mean ColSpec:列平均值规格

Diff_RowSpec: 相邻行平均值差值规格 Diff_ColSpec: 相邻列平均值差值规格

Exposure:曝光时间,10进制,真实写入寄存区的值

Gain:Gain值,10进制,真实写入寄存器的值