

INSTITUTO FEDERAL DE SÃO PAULO CAMPUS SÃO JOÃO DA BOA VISTA CURSO BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

SDN (SOFTWARE DEFINED NETWORKING): CARACTERÍSTICAS, CONCEITOS E APLICAÇÕES

Fernanda Martins da Silva Gabriel Maia Miguel Samuel Oliveira Lopes

São João da Boa Vista 2025

SUMÁRIO

1	INTRODUÇÃO	3
1.1	Objetivos	3
2	PESQUISA	4
2.1	O que é a SND?	4
2.2	Como Funciona	4
2.3	Tipos	5
2.4	Vantagens e Desvantagens	6
2.4.1	Agilidade e Flexibilidade	6
2.4.2	Redução de Custos	6
2.4.3	Controle	6
2.4.4	Simplicidade	6
2.4.5	Modernização de Telecomuniçãoes	6
2.4.6	Risco de Centralização	6
3	CONCLUSÕES	8
	REFERÊNCIAS	9

RESUMO

Este trabalho tem como finalidade explicar o que é uma Software Defined Networking (SDN), seus conceitos e aplicações. O objetivo é destacar sua funcionalidade e vantagens de implementação em sistemas de telecomunicações, como tablets e smartphones.

Palavras-chave: SDN; Redes; Software; Aplicação.

1 INTRODUÇÃO

Software Defined Networking ou SDN (rede definida por software) é uma forma de modelar a infraestrutura de uma rede que usa controladores de software para acesso de recursos, melhorar sua eficiencia e o seu monitoramento; diferentemente de uma rede tradicional que é controlada por meio de hardware. Este trabalho tem como objetivos estudar seus conceitos, protocolos e arquiteturas. Também seus principais usos, benefícios e desafios, além da apresentação de exemplos de aplicações.

1.1 Objetivos

Os objetivos deste documento é a apresentação do paradigma SDN, estuda-lo e apresenta-lo de forma sucinta. Apresentar aplicações reais e seus benefícios e discutir seus desafios e limitações. Abaixo, segue a listagem dos objetivos específicos:

- Estudar os conceitos, arquiteturas e protocolos do SDN;
- Apresentar aplicações reais do SDN;
- Discutir os benefícios do SDN;
- Discutir os desafios e limitações do SDN.

2 PESQUISA

2.1 O que é a SND?

Nos últimos anos com o crescimento de tablets, smartphones e outros dispositivos de transmissão multimídia surgiu a necessidade de controle e operação de rede, essencial para suprir as demandas desses sistemas. Portanto, nada mais é que uma arquitetura de redes entre computadores, visando gerenciar serviços de rede utilizando de softwares em vez de dispositivos especializados para esse tipo de controle.

Sendo um sistema centralizado, é capaz de reservar ou preparar recursos para que a aplicação não tenha obstáculos técnicos de hardware, possuíndo monitoramento inteligente que é feito para ser adaptável automaticamente de acordo com o estado da rede, digitalizando a mesma.

A fim e lidar com melhores aplicações em nuvem, é capaz de automatizar, escalar e otimizar redes redes publicas e privadas de serviços, além de banco de dados. Escalável com mudanças contínuas pelas quais serviços de operadoras e provedores de internet não conseguem acompanhar (Stefanini, 2025). Alguns exemplos de SDN incluem a OpenDaylight¹, ONUS², Ryu³, VMware NSX⁴

2.2 Como Funciona

A SDN é formada por componentes que podem ou não estar estarem localizadas na mesma área física. A fim de eliminar funções de de roteamento e encaminhamento de pacotes, a SDN implementa controladores e os coloca acima de hardwares de rede na nuvem ou localmente, permitindo gerenciamento de rede diretamente (IBM, 2025).

Os componentes que compõem uma SDN consistem em:

• Aplicações: São as encarregadas por transmitir informações ou solicitações de disponibilidadealocação de rede. Sendo composta por dois tipos de interface de programação de aplicações (API), é notável citar Southbound e Northbound. Os controladores podem programar e configurar dispositivos de rede nessa API (Southbound), recuperando informações sobre estados e topologia, recebendo notificações sobre congestionamento de pacotes e falhas de link. Já a Northbound executa as

¹ Disponível em: https://www.opendaylight.org/

² Disponível em: https://opennetworking.org/onos/

³ Disponível em: https://ryu-sdn.org/

⁴ Disponível em: https://www.vmware.com/

mesmas funções que a API anterior, com diferença em viabilizar automatização de tarefas de gerenciamento de redes, facilitar a integração de sistemas em nuvem e outros tipos de aplicações.

- Controladores: Responsável por implementar funções de controle de redes e coordenar a comunicação com aplicações determinando o tráfego de pacotes de dados, os controladores oferecem uma perspectiva mais centralizada da rede, armazenando informações sobre o estado da mesma e toma decisões de como gerenciar dispositivos de rede conforme suas politicas.
- Dispositivos de Rede: São switches, roteadores e pontos de acesso que fazem o fluxo de pacotes e recebem as instruções dos controladores e podem oferecer suporte a funcionalidades, como encaminhamento baseado em fluxo, qualidade de serviço e engenharia de tráfego. Nas SDN esses dispositivos podem ser simplificados e padronizados.
- Sistema MANO⁵: MANO, ou gerenciamento de orquestração, interage com o controlador de SDN por meio da API *Northbound* automatizando a utilização de recursos para rede e garantindo o autodesempenho e disponibilidade de serviços.

(Red Hat, 2020)

2.3 Tipos

Existem quatro tipos de SDN que são considerados os principais. São eles:

- SDN aberta: Os protocolos públicos são usados como controle de dispositivos tanto físicos quanto virtuais, e são responsáveis pelo roteamento dos pacotes de dados.
- SDN de API: Nesses casos, geralmente a *Southbound* fica responsável pela organização e controle do fluxo para cada dispositivo.
- Modelo de sobreposição: Uma rede virtual acima do hardware físico oferecendo túneis que estabelecem canais de comunicação com centro de processamento de dados (CPD).
- Modelo híbrido: Combina as SDNs com redes tradicionais, atribuindo o protocolo certo para cada trafego. Frequentemente usada como complemento as SDNs originais.

(IBM, 2025)

⁵ Management and Orchestration

2.4 Vantagens e Desvantagens

As SDNs centralizam o controle e gerenciamento de rede, isso oferece vantagens que outras abordagens de rede não possuem. Podemos citar:

2.4.1 Agilidade e Flexibilidade

Permite o balanceamento de fluxo de tráfego de acordo com a necessidade e do uso, reduzindo latência, aumentando a eficiência da rede. As operadoras de rede também tem mais controle sobre a mesma, podendo alterar suas configurações, garantir recursos e expandir sua capacidade (IBM, 2025).

2.4.2 Redução de Custos

Como as SDNs mantém sempre um tráfego contínuo, mesmo sendo um alto investimento a se fazer, gera ao departamento de TI (Tecnologia da Informação) um alívio, reduzindo custos e melhorando a eficiência de serviços ao consumidor final (Stefanini, 2025).

2.4.3 Controle

Permite aos administradores que definam suas políticas a partir de um local central para controlar na rede os acessos e suas medidas de seguranças. Sendo aplicável em nuvem publica, híbrida, privada e multinuvem (IBM, 2025; Stefanini, 2025).

2.4.4 Simplicidade

Podendo se basear em um único protocolo de comunicação com uma ambla variedade de dispositivos de hardware, oferecendo flexibilidade na escolha de dispositivos de rede, gerando simplicidade (IBM, 2025).

2.4.5 Modernização de Telecomuniçaões

Combinado à maquinas virtuais e virtualização de redes, permite que as operadoras forneçam separação de rede e controle distinto aos clientes. Auxilia os operadores a melhorar sua escalabilidade e fornecer largura de banda sob demanda ao clientes(IBM, 2025).

Porém, ainda é sucetível a erros e problemas, sendo o mais comum a ser citado o:

2.4.6 Risco de Centralização

Por ser um sistema centralizado, há um único potencial ponto de falha vulnerável, pois, como as SDNs induzem a criação de novos pontos de rede, a mesma fica sucetível a

vulnerabilidades e ataques cibernéticos. Algumas SDNs também são de código aberto, o que facilita a implementação de código malicioso (IBM, 2025; UFRJ, 2018).

3 CONCLUSÕES

As SDNs surgiram como uma resposta a adptação de mudanças no mercado. Como visto em suas vantagens, uma SDN melhora consideravelmente os recursos de uma rede, centralizando e simplificando ela. Apesar do risco da centralização, é amplamente utilizada em empresas que fazem uso de softwares voltados a serviços, como gerenciamento em nuvem.

REFERÊNCIAS

IBM. O que é SDN (software defined network)? 2025. Acessado em: 3 set. 2025. Disponível em: https://www.ibm.com/br-pt/think/topics/sdn. Citado 4 vezes nas páginas 4, 5, 6 e 7.

Red Hat. O que é SDN? – Rede Definida por Software. 2020. Acessado em: 3 set. 2025. Disponível em: https://www.redhat.com/pt-br/topics/hyperconverged-infrastructure/what-is-software-defined-networking. Citado na página 5.

Stefanini. Performance e Propósito Devem Caminhar Juntos. 2025. Acessado em: 11 set. 2025. Disponível em: https://stefanini.com/pt-br/insights/artigos/performance-e-proposito-devem-caminhar-juntos. Citado 2 vezes nas páginas 4 e 6.

UFRJ, U. F. d. R. d. J. *SDN - Redes Definidas por Software*. 2018. https://www.gta.ufrj.br/ensino/eel879/trabalhos_v1_2018_2/sdn/. Disponível em: https://www.gta.ufrj.br/ensino/eel879/trabalhos_v1_2018_2/sdn/. Citado na página 7.