```
In [1]: import pandas as pd

# Reading the CSV file
df = pd.read_csv("iris_csv.csv")

# Printing top 5 rows
df.head()
```

Out[1]:

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

```
In [2]: df.shape
```

Out[2]: (150, 5)

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype		
0	sepallength	150 non-null	float64		
1	sepalwidth	150 non-null	float64		
2	petallength	150 non-null	float64		
3	petalwidth	150 non-null	float64		
4	class	150 non-null	object		
J+					

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [4]: df.describe()

Out[4]:

	sepallength	sepalwidth	petallength	petalwidth
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [38]: df.tail()
```

Out[38]:

	sepallength	sepalwidth	petallength	petalwidth	class
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

```
In [5]: # Checking Missing Values
    df.isnull().sum()
```

Out[5]: sepallength 0 sepalwidth 0 petallength 0 petalwidth 0 class 0 dtype: int64

```
In [6]: # Checking Duplicates
data = df.drop_duplicates(subset ="class",)
data
```

Out[6]:

	sepallength	sepalwidth	petallength	petalwidth	class
	5.1	3.5	1.4	0.2	Iris-setosa
5	7.0	3.2	4.7	1.4	Iris-versicolor
100	6.3	3.3	6.0	2.5	Iris-virginica

```
In [7]: df.value_counts("class")
```

Out[7]: class

Iris-setosa 50 Iris-versicolor 50 Iris-virginica 50

dtype: int64

```
In [8]: # Data Visualization
# importing packages
import seaborn as sns
import matplotlib.pyplot as plt

# countplot for class
sns.countplot(x='class', data=df, )
plt.show()
```


In [51]: # multivariate analysis using a pairplot # importing packages import seaborn as sns import matplotlib.pyplot as plt sns.pairplot(df, hue='class', height=2)

Out[51]: <seaborn.axisgrid.PairGrid at 0x242cab26f40>


```
In [12]: # Histogram is used for uni as well as bi-variate analysis
# importing packages
import seaborn as sns
import matplotlib.pyplot as plt

fig, axes = plt.subplots(2, 2, figsize=(10,10))

axes[0,0].set_title("Sepal Length")
axes[0,0].hist(df['sepallength'], bins=7)

axes[0,1].set_title("Sepal Width")
axes[0,1].hist(df['sepalwidth'], bins=5);

axes[1,0].set_title("Petal Length")
axes[1,0].hist(df['petallength'], bins=6);

axes[1,1].set_title("Petal Width")
axes[1,1].hist(df['petalwidth'], bins=6);
```



```
In [13]: # Histograms with Distplot Plot
# importing packages

plot = sns.FacetGrid(df, hue="class")
plot.map(sns.distplot, "sepallength").add_legend()

plot = sns.FacetGrid(df, hue="class")
plot.map(sns.distplot, "sepalwidth").add_legend()

plot = sns.FacetGrid(df, hue="class")
plot.map(sns.distplot, "petallength").add_legend()

plot = sns.FacetGrid(df, hue="class")
plot.map(sns.distplot, "petalwidth").add_legend()

plt.show()
```

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be remov ed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-lev el function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be remov ed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-lev el function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be remov ed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-lev el function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be remov ed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-lev el function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be remov ed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-lev el function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py:

2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

C:\Users\Chiranjeevi\anaconda3\lib\site-packages\seaborn\distributions.py: 2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

6

petallength

In [14]: # Handling Correlation
 data.corr(method='pearson')

Out[14]:

	sepallength	sepalwidth	petallength	petalwidth
sepallength	1.000000	-0.999226	0.795795	0.643817
sepalwidth	-0.999226	1.000000	-0.818999	-0.673417
petallength	0.795795	-0.818999	1.000000	0.975713
petalwidth	0.643817	-0.673417	0.975713	1.000000

```
In [26]: # Heatmaps
# plot the above-found correlation using the heatmaps.
# importing packages
# import seaborn as sns
import matplotlib.pyplot as plt

# Calculate correlation matrix
feature_names = data.corr(method='pearson')

# Create a heatmap using Seaborn
sns.set(style="whitegrid")
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap="YlGnBu", xticklabels=featuplt.title('Correlation Heatmap of Iris Dataset Features')
plt.show()
```



```
In [27]:
         # Box plots
         # importing packages
         import seaborn as sns
         import matplotlib.pyplot as plt
         def graph(y):
             sns.boxplot(x="class", y=y, data=df)
         plt.figure(figsize=(10,10))
         # Adding the subplot at the specified
         # grid position
         plt.subplot(221)
         graph('sepallength')
         plt.subplot(222)
         graph('sepalwidth')
         plt.subplot(223)
         graph('petallength')
         plt.subplot(224)
         graph('petalwidth')
         plt.show()
```



```
In [30]: # Handling Outliers
sns.boxplot(x='sepalwidth', data=df)
```

Out[30]: <AxesSubplot:xlabel='sepalwidth'>


```
In [34]: # Removing Outliers
         import numpy as np
         Q1 = np.percentile(df['sepalwidth'], 25,
                         interpolation = 'midpoint')
         Q3 = np.percentile(df['sepalwidth'], 75,
                         interpolation = 'midpoint')
         IQR = Q3 - Q1
         print("Old Shape: ", df.shape)
         # Upper bound
         upper = np.where(df['sepalwidth'] >= (Q3+1.5*IQR))
         # Lower bound
         lower = np.where(df['sepalwidth'] <= (Q1-1.5*IQR))</pre>
         # Removing the Outliers
         df.drop(upper[0], inplace = True)
         df.drop(lower[0], inplace = True)
         print("New Shape: ", df.shape)
         sns.boxplot(x='sepalwidth', data=df)
         Old Shape: (146, 5)
         New Shape: (146, 5)
         <ipython-input-34-dfcb10346225>:3: DeprecationWarning: the `interpolation=
          ` argument to percentile was renamed to `method=`, which has additional op
         Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encoura
         ged to review the method they. (Deprecated NumPy 1.22)
           Q1 = np.percentile(df['sepalwidth'], 25,
         <ipython-input-34-dfcb10346225>:6: DeprecationWarning: the `interpolation=
```

argument to percentile was renamed to `method=`, which has additional op

Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encoura

Out[34]: <AxesSubplot:xlabel='sepalwidth'>

tions.

ged to review the method they. (Deprecated NumPy 1.22)

Q3 = np.percentile(df['sepalwidth'], 75,

```
In [42]: | X = df.iloc[:, :-1]
         y = df.iloc[:, -1]
Out[42]: 0
                    Iris-setosa
         1
                    Iris-setosa
         2
                    Iris-setosa
         3
                    Iris-setosa
         4
                    Iris-setosa
                      . . .
         145
                Iris-virginica
                Iris-virginica
         146
                Iris-virginica
         147
         148
                Iris-virginica
         149
                Iris-virginica
         Name: class, Length: 146, dtype: object
In [46]: | from sklearn.model_selection import train_test_split
         x1,x2,y1,y2 = train_test_split(X,y, test_size=0.2, random_state=42)
In [47]: x1.shape, x2.shape, y1.shape, y2.shape
Out[47]: ((116, 4), (30, 4), (116,), (30,))
In [48]: from sklearn.svm import SVC
         svc = SVC()
         svc.fit(x1,y1)
Out[48]:
          ▼ SVC
          SV¢()
In [50]: svc.score(x2,y2)*100
```

Out[50]: 96.6666666666667