Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	ИУК «Информатика и управление»
КАФЕДРА	ИУК4 «Программное обеспечение ЭВМ,
информационн	ые технологии»

Практическое занятие №7 «Критерии согласия»

ДИСЦИПЛИНА: «Методы обработки информации»

Выполнил: студент гр. ИУК4-72Б	ИУК4-72Б		Сафронов Н.С.		
	(подпись)		(Ф.И.О.)		
Проверил:		_ (_	Никитенко У.В.		
	(подпись)		(Ф.И.О.)		
Дата сдачи (защиты):					
_					
Результаты сдачи (защиты):					
- Балльная	- Балльная оценка:				
- Оценка:					

Постановка задачи

Пусть проверяется простая гипотеза относительно закона распределения для выборки из ПЗ№2 H_0 : $F(x) = F_{\text{теор}}(x)$, при различных уровнях значимости α и для различных объемов выборки.

- 1. объем $k_1 < 20$ (любые k_1 значений из заданной выборки);
- 2. объем $k_2 = N$ (полный объем исходной выборки) Используя критерии согласия Колмогорова, ω^2 (Крамера фон Мизеса), χ^2 Пирсона принять или опровергнуть основную гипотезу.

Результаты выполнения работы

Используемые критерии значимости: 0.05,0.01,0.001.

Используется полная выборка и 11 случайных значений из выборки.

Статистика критерия согласия Колмогорова рассчитывается по формуле:

$$D_n = \sup_{x} |F_n(x) - F(x)|$$

Статистика критерия согласия Крамера-фон-Мизеса рассчитывается по формуле:

$$S_{\omega} = n\omega^2 = \frac{1}{12n} + \sum_{i=1}^{n} \left(F(x_i, \theta) - \frac{2i-1}{2n} \right)^2$$

Статистика критерия согласия Пирсона рассчитывается по формуле:

$$\chi^{2} = n \sum_{i=1}^{k} \frac{\left(\frac{n_{i}}{n} - P_{i}(\theta)\right)^{2}}{P_{i}(\theta)}$$

Для расчета критических значений используется библиотека scipy.stats

Листинг программы:

import argparse
import csv
import random
import typing

import numpy as np
import prettytable as pt
import scipy.stats as st
from scipy.stats import norm

```
def ft(x):
   mean_value = np.mean(x)
    std_deviation = np.std(x, ddof=1)
    cdf value = norm.cdf(x, loc=mean value, scale=std deviation)
    return cdf_value
def chi squared test (points: np.array, expected frequencies=None,
        bins=None):
    if bins is None:
        bins = int(np.sqrt(len(points)))
    observed frequencies, bin edges = np.histogram(points, bins=bins)
    if expected frequencies is None:
        expected frequencies = (np.ones like(observed frequencies) *
                                len(points) / bins)
    chi2 = np.sum(
        (observed frequencies - expected frequencies) ** 2
        / expected frequencies
    dof = bins - 1
   return chi2, dof
def test hypothesis(sample: np.array, alpha: float) -> pt.PrettyTable:
    sample = np.sort(sample)
    F emp = np.arange(1, len(sample) + 1) / len(sample)
    F theor = ft(sample)
   D = np.max(np.abs(F_emp - F_theor))
   W2 = np.sum((F emp - F theor) ** 2) + 1 / (
                12 * len(sample))
    chi2, dof = chi squared test(sample)
    D_crit = st.kstwobign.ppf(1 - alpha) / np.sqrt(len(sample))
   W2 crit = st.chi2.ppf(1 - alpha, df=1)
    chi2 crit = st.chi2.ppf(1 - alpha, df=len(sample) - 1)
    result = pt.PrettyTable()
    result.field names = ["Критерий", "Статистика", "Критическое значение",
        "Вывод"]
    result.add row(
        ["Колмогоров", round(D, 4), round(D_crit, 4),
            "Принять" if D < D crit else "Отклонить"]
    result.add row(
        ["Крамер-фон Мизес", round(W2, 4), round(W2 crit, 4),
            "Принять" if W2 < W2 crit else "Отклонить"]
    result.add row(
        ["Пирсон", round(chi2, 4), round(chi2_crit, 4),
            "Принять" if chi2 < chi2 crit else "Отклонить"]
    return result
```

```
if __name__ == " main ":
    parser = argparse.ArgumentParser()
    parser.add argument("-file")
    args = parser.parse args()
    file = args.file or "./data/Test14.csv"
    points = []
    with open(file, newline='') as csvfile:
         reader = csv.reader(csvfile, delimiter=' ', quotechar='|')
         for row in reader:
             points.append(float("".join(row)))
    points = np.array(points)
    alpha = np.array([0.01, 0.05, 0.001])
    sample k = 11
    sample = random.sample(list(points), 11)
    sample result = []
    for a in alpha:
         sample_result.append(test_hypothesis(sample, a))
    all points k = len(points)
    all points = points
    all points result = []
    for a in alpha:
         all points result.append(test hypothesis(all points, a))
    for i in range(len(alpha)):
         print(f"Уровень значимости alpha = {alpha[i]}")
         print(f"Объем выборки k 1 = \{sample k\}")
         print(sample result[i])
         print(f"Объем выборки k 2 = {all points k}")
         print(all points result[i])
                  Уровень значимости alpha = 0.01
                  Объем выборки k_1 = 11
                  | Колмогоров | 0.1975 | 0.4907 | Принять |
| Крамер-фон Мизес | 0.0878 | 6.6349 | Принять |
| Пирсон | 0.1818 | 23.2093 | Принять |
                  Объем выборки k_2 = 135
                  | Колмогоров | 0.0696 | 0.1401 | Принять |
| Крамер-фон Мизес | 0.0844 | 6.6349 | Принять |
| Пирсон | 15.9852 | 174.9963 | Принять |
```

Рисунок 1 – Значения статистики для уровня значимости $\alpha = 0.01$

Уровень значимости alpha = 0.05 Объем выборки k_1 = 11								
+ Критерий +	+ Статистика	Критическое значение 	-+ Вывод -+					
Колмогоров	0.1975	0.4095	Принять					
Крамер-фон Мизес	0.0878	3.8415	Принять					
Пирсон	0.1818	18.307	Принять					
+			++					
Объем выборки k_2 = 135								
+			-+					
Критерий	Статистика	Критическое значение	Вывод					
+			-+					
Колмогоров	0.0696	0.1169	Принять					
Крамер-фон Мизес	0.0844	3.8415	Принять					
Пирсон	15.9852	162.0156	Принять					
+	+		+					

Рисунок 2 – Значения статистики для уровня значимости $\alpha = 0.05$

Уровень значимости alpha = 0.001 Объем выборки k_1 = 11								
+ Критерий +	+ Статистика	 Критическое значение	++ Вывод					
Колмогоров	0.1975	0.5878	Принять					
Крамер-фон Мизес	0.0878	10.8276	Принять					
Пирсон	0.1818	29.5883	Принять					
Критерий +	Статистика	Критическое значение	Вывод					
Колмогоров	0.0696	0.1678	Принять					
Крамер-фон Мизес	0.0844	10.8276	Принять					
Пирсон	15.9852	190.3313	Принять					
+	+	+	++					

Рисунок 3 – Значения статистики для уровня значимости $\alpha = 0.001$