21页3,5-8; 73-74页9,11.

21-3

Find two different 2×2 matrices A such that $A^2 = 0$ but $A \neq 0$. Solution:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

21-5

Let

$$A=egin{pmatrix} 1 & -1 \ 2 & 2 \ 1 & 0 \end{pmatrix},\ B=egin{pmatrix} 3 & 1 \ -4 & 1 \end{pmatrix}.$$

Is there a matrix C such that CA=B? Solution: Yes, for example

$$C = \begin{pmatrix} 1 & 1 & 0 \\ -\frac{5}{2} & -\frac{3}{4} & 0 \end{pmatrix}.$$

21-6

Let A be an $m \times n$ matrix and B an $n \times k$ matrix. Show that the columns of C = AB are the linear combinations of the columns of A. If $\alpha_1, \cdots, \alpha_n$ are the columns of A and $\gamma_1, \cdots, \gamma_k$ are the columns of C, then

$$\gamma_j = \sum_{r=1}^n B_{r,j} lpha_r.$$

Proof: Since $C^T=B^TA^T$, and γ_j is the j-th row of C^T , α_r is the r-th row of A^T .

21-7

Let A,B be 2×2 matrices such that AB=I. Prove that BA=I. Proof: If AB=I then A is invertible so $B=A^{-1}$ and BA=I.

21-8

Let

$$C = egin{pmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{pmatrix}$$

be a 2×2 matrix. We inquire when it is possible to find 2×2 matrices A,B such that C=AB-BA. Prove that such matrices can be found iff $C_{11}+C_{22}=0$.

Proof: Suppose
$$A=egin{pmatrix} a&b\\c&d \end{pmatrix}$$
 and $B=egin{pmatrix} x&y\\z&w \end{pmatrix}$, then $\mathrm{tr}(AB)=ax+bz+cy+dw=\mathrm{tr}(BA)$ so $\mathrm{tr}(C)=0$.

Let [A,B]=AB-BA. We show that if ${\rm tr} C=0$ then C is a commutator. Note that the if $P^{-1}CP=[A,B]$ is a commutator, then $C=[PAP^{-1},PBP^{-1}]$ is a commutator. Since ${\rm tr}(C)=0$, C is similar to a matrix D whose diagonal contains only zeros. Let $A={\rm diag}(1,2,\cdots,n)$, we find B such that D=[A,B]. Note that

$$[A,B]_{i,j} = \sum_{k=1}^n A_{ik} B_{kj} - B_{ik} A_{kj} = B_{ij} (i-j),$$

hence we only need to define $B_{ij}=rac{D_{ij}}{i-j}$, then D=[A,B] .

(Prove that C is similar to a matrix D whose diagonal is all zero: $\operatorname{tr}(C)=0$ implies the sum of its eigenvectors are zero, hence $0\in\{x^*Cx:|x|=1\}$. Let $u_1^*Cu_1=0$ and extend it to u_1,\cdots,u_n a orthogonal base of $F^{n\times 1}$. Under this base, D is a matrix with $D_{11}=0$. Then use induction.)

73-9

Let V be the vector space of all $n \times n$ matrices over the field F, and let B be a fixed $n \times n$ matrix. If T(A) = AB - BA, verify that T is a linear transformation from V into V. Proof: Clearly AB and BA are both linear, so T is linear.

73-11

Let $V=F^{n\times 1},W=F^{m\times 1}$. Let A be a fixed $m\times n$ matrix over F and let T be the linear transformation from V into W defined by T(A)=AX. Prove that T is the zero transformation iff A is the zero matrix. Proof: If T=0, then $T(e_j)=0$ so every row of X is 0, hence X=0.