PAT-NO:

JP360239948A

DOCUMENT-IDENTIFIER:

JP 60239948 A

TITLE:

OPTICAL INFORMATION RECORDING MEDIUM

PUBN-DATE:

November 28, 1985

INVENTOR - INFORMATION:

NAME

UEDA, YUTAKA UMEHARA, MASAAKI ABE, MICHIHARU SATO, TSUTOMU OBA, HIDEAKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

RICOH CO LTD

N/A

APPL-NO:

JP59095603

APPL-DATE:

May 15, 1984

INT-CL (IPC): G11B007/24, B41M005/26

US-CL-CURRENT: 427/151, 427/240 , 428/411.1

ABSTRACT:

PURPOSE: To improve storage stability without decreasing recording sensitivity and signal quality by incorporating ≥1 kinds of cyanine dye and

merocyanine dye into a reflective layer in the stage of forming an optical

recording layer laminated with the reflective layer and absorptive layer on a substrate.

CONSTITUTION: The reflective layer 2 of an optical recording medium which is

formed by laminating the reflective layer 2 and the absorptive layer

disk substrate 1, is formed with recording pits 4 by irradiation of

laser light

and permits reading with the laser light of smaller energy is formed by

incorporating ≥1 kind of the cyanine dye and merocyanine dye into said

layer. The optical recording medium with which recording is executed by using

semiconductor laser light and which obviates a decrease in reflectivity over a

long period of time even at and under a high temp. and high humidity and has an

excellent recording characteristic and shelf life is thus obtd. The adhesion

and the barrier properties for water, gas, etc. may be improved by providing an

undercoating layer 5 consisting of nitrocellulose, etc. between the substrate 1 and the layer 2.

COPYRIGHT: (C) 1985, JPO&Japio

⑩特許出願公開

⑩ 公 開 特 許 公 報 (A) 昭60-239948

Mint_Cl.4

識別記号

厅内整理番号

母公開 昭和60年(1985)11月28日

G 11 B 7/24 B 41 M 5/26 B-8421-5D 7447-2H

審査請求 未請求 発明の数 1 (全7頁)

公発明の名称 光情報記録媒体

②特 願 昭59-95603

❷出 願 昭59(1984)5月15日

東京都大田区中馬込1丁目3番6号 株式会社リコー内 B 裕 上 砂発 明 者 榳 原 正一彬 東京都大田区中馬込1丁目3番6号 株式会社リコー内 明 者 伊発 東京都大田区中馬込1丁目3番6号 株式会社リコー内 安 倍 通治 **伊発** 明 東京都大田区中馬込1丁目3番6号 株式会社リコー内 勉 佐 庭 伊発 明 渚 쑬 東京都大田区中馬込1丁目3番6号 株式会社リコー内 0発 明 者 大 庭 東京都大田区中馬込1丁目3番6号 வை 頭 人 株式会社リコー

明 細 書

1. 晃明の名称 先情報配母 條件

2.停許請求の範囲

基根上に反射機かよび吸収機を任意の順序で 機器してなる配母層を有し且つ前配反射層がシ アニン色素かよびメロシアニン色素のうちの少 なくとも1種を含有することを特徴とする光情 報記母媒体。

3.発明の詳細な説明

[技術分野]

本発明は配母層に光照射によりピットを形成 して信号配母を行なうのに適した光情報配母様 体に関する。さらに詳しくは、本発明は反射層 かよび表収層の2階構成からなる配録層を有す る光情報配母媒体に関する。

〔従来技術〕

従来、回転しているデイスク状の情報記録媒

体にレーザ光を照射して媒体の一部を融解、除 去しピットと称される小穴を形成し書き込みを 行ない、このピットにより情報を配録し、この ピットを彼み出し先で検出して沈み出しを行な うととが知られている。そしてとのような記録 佐体の例としては苗板上に有機色素を含む記録 層を設けて色素を融解してピットを形成するも のが知られているが、かかる色素は記録材料と して消足のいくものではなかつた。そこで、本 発明者は截々検討を行なつた結果、シアニン色 景またはメロシアニン色素を記録層の成分とし て用いると高感度、高信号品質などを有する配 母妹体が待られるととを見出し先にその旨を提 楽している。しかしながら、シアニン色業存具 からなる記録層は雰囲気の影響を受けやすいと いう問題があるためさらにその上に保護層を設 け保存安定性の向上を図ることを授業したがこ

れにより反対にシアニン色素配母用の特徴である配母感度と信号品質が低下するという問題が 生じた。

(目 約)

本発明はこのような現状に鑑みてなされたものであつて、その主な目的は配録感度かよび信号品質を低下させることなく配録層の保存安定性を向上させることにある。

〔病 成〕

本発明者は上記目的について個々検討を行なった結果、先情報配録媒体における記録層を反射層と吸収層との2層構成としさらにこの反射層にシアニン色素およびメロシアニン色素のうちの少なくとも1種を含有させることにより反射層を雰囲気の影響から保護することが可能であることを知見し本発明をなすに至つた。

すなわち不発明は、茜根上に反射層かよび吸

アルキル基、農機もしくは未置換のアラルキル
あまたはアルケニル番を示し、21 かよび22 は置 換または未置換の複単像を形成するのに必要の 原子即を示し、25 は置換もしくは未置換の5 負 環または6 負環を形成するのに必要な優子を 環または6 負環を形成するのに必要な優子を では6 負環を形成するのに必要な優子を では6 負環を形成するのに必要な優子を でいてもよく、R5 は水栗原子をになっ にがン原子を示し、R4 かよびR5 は水栗のハ ロゲン原子、ヒドロキシ基、カルボキシルール アルキル番、電換のフリール またはアシルオキシ基を示し、X^Q は食または1 である。

ただし、(A)、(B) かよび立は以下の表に示す

収滑を任意の順序で機関してなる記録階を有し 且つ前記反射層がシアニン色素およびメロシアニン色素のうちの少なくとも1種を含有することを特徴とする先情報記録媒体を提供することである。

本発明において反射層に含有させるシアニン 色素は下記式(I)または(I)によって、またメロシアニン色素は下記式(I)によって扱わすことができるがこれらに限定されない。

$$\begin{array}{c} R_{1} & & \\ R_{1} & & \\ R_{2} & & \\ R_{3} & & \\ R_{4} & & \\ R_{4} & & \\ R_{5} & & \\ \end{array}$$

ただし、Ri かよびRzは世換もしくは未産換の

60088

		•
<u> </u>	<u>n</u>	OC B)
H ₅ C	1	oc-1 C2H2
C ₂ H ₅	1	=C-KC2H5 oc-KC2H5
H ₂ 8 H ₂ C ₂ H ₅	1	OC -N C2H5
C2H5	· 1 ·	=C-N C2H5 OC-N C2H5
CH _S CH _S	1 .	-c-c Pb
C ₂ H ₅	1	oc-o

C2H5-N	1	oc-o	8 C ₂ H ₅	2	OC-NCH3
C ₂ H ₅	1	oc-o ^{Pb}		2	=c-ห< ^R c=s
C ₂ H ₅	1	oc-o'N	C ₂ H ₅	1,	-co occs c ₂ H ₅
R V C ₂ H ₅	1	C-CNN	CHS CHS	1	C₂H5 □C
H ₂ C _N	1	oc-o'Ph	ĊH ₄		
8 \	2 .	CO-NH CO-B	C ₂ H _S -N		= C C CH ₃ oc - N oc - N ph
C.H.	2	-C-NCH ₃ C-8 C-RC ₂ H ₅	~ •••	1 .	oc−w -c−w oc−w oc−w
Ć₂H5	- 7 -		C _{2H5}	- 8 -	oc-n <ph< td=""></ph<>
		•			
CH ₅ CH ₅ C ₂ H ₅	1	$-c - N < \frac{Ph}{C - 8}$	C _{2H5}	1	=C-N\C2H5 OC-N\C=8 CH3
CH ₅ CH ₅ C ₂ H ₅ C ₂ H ₅	1	$-c - N < \frac{Ph}{c - N}$ oc - N \ \ \ \ Ph}	8 C ₂ H ₅ 8 H ₈ C N C ₂ H ₅	1 .	•
CH ₅ CH ₅ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C ₃ H ₅ CH ₃	1 1	$ \begin{array}{c} $	H ₈ C N C ₂ H ₅	1 .	oc 2 c=8
	1 1		H ₅ C N	1 . 1	•
	1 1 1		H ₅ C N C ₂ H ₅	1 1	C
	1 1 1		H ₅ C N C ₂ H ₅ H ₅ C C ₂ H ₅	1	C

-10-

. () 8 / () 2 H 5	1	CO−NH, C−8	C _{2H5}		≺° Co
Hac S	1	-co oc c=8	C _{2H5}	2	≺ ^s ∑
CaHs	0	-{s	C _{2H} ₅	5	₹
8 - C2H5	0	=c∕coocH3	CH ₃	1	-C-0 0C _N -C-8 C₂H ₅
C ₂ H ₉	1	≃ с∕соосн² си	CH ₅	1	C-NC2H5
G 2H5	2	-COOCH3	CH ₃	1	=c-n⟨Ph oc-n⟨c-s oc-n⟨Ph
C2H5	 5	= C/COOCH ²	C _{2H5}	1	0 C 2 E 8
	-11-	•		-12-	
C2H5-N	1	C-CCH3 OC-N BOSE	Ph T 8	1	oc-o ^{Ph}
C2H5-N	1	-c-c CH ₃	Ph R Ph R C ₂ H ₅	1	oc-o ^{Ph}
H00C·H4C2-H	1 1		H ₃ C \int_{N}^{θ} C ₂ H ₆		oc-o_N =c-c_bp
HOOC-H_C2-H	1 1	C-8 C-N C-N C-N	H ₃ C \(\bigcup_{N} \) \(\bigcup_{2\text{H}_5} \) \(\bi		= C - C Ph oC - O N = C - C Ph oC - O N
HOOC-H_C2-H	1	C-8 C-N C-N C-N	H ₃ C \(\bigcup_{N} \) \(\bigcup_{2\text{H}_5} \) \(\bi	1	oc-o ^{Ph} oc-o ^N =c-c ^{Ph} oc-o ^N
HOOC-H_C2-H	1 1	C-8 C-N C-N C-N	H ₃ C \(\bigcup_{N} \) \(\bigcup_{2\text{H}_5} \) \(\bi	1 1	CCCN CCCN
HOOC-H ₂ C ₂ -H C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ C _{H₅} C _{H₅}	1 1	-c-c CH ₃	H ₃ C \int_{N}^{θ} C ₂ H ₆	1 1	CCON CCCON CCCON CCCON CCCON

生光化対し透光性を存するものならどれでもよ く各種プラステックまたはガラスなどを用いる ととができる。反射層2 および吸収層 5 は色素 ⇒よび/または他の成分を溶媒に溶解させ強布 する方式や、蒸着する方式、樹脂溶放と温合し て塗布する方式、他の色素との共蒸増方式など によつて形成される。歯布に用いる帯域として は例えばメタノール、エタノールなどのアルコ ール系、ジクロルエタン、エチレンジタロライ ドなどのヘロゲン化アルキル系、ケトン系、エ ーテル系などがある。反射層の厚さは 100~2000 。 A.好ましくは200~800Åの範囲がよく、また 吸収層の厚さは 100~2000Å 好ましくは 2·00~ 800人の範囲がよい。第1因に示すように、と の反射層をよび吸収層は記録光照射により物理 的形状変化を生じてピット4を形成し、とのよ うに形成されたピットは記録媒体の回転下読み

ンスレン化合物、通移金属競体 (例えば、ピス (3,4,5,6 - テトラクロロー 1,2 - ジチオフエニ ル) ニッケルなどのニッケル競体) などをおげ ることができる。

また、本発明で色素とともに使用できる高分子材料としてはポリオレフィンかよびその重合体、 塩化ビニル樹脂かよびその共産合体、 塩化ビニリデン樹脂かよびその共産合体、 ポリスナレンかよびその共産合体、 クマロン樹脂、 ポリケレタン樹脂、 ポリケレタン樹脂、 ポリケレタン樹脂、 ポリエーテル、 セルロース 誘導体、 ポリカーボネート、 根状ゴムなどを おげることができる。

本発明の光情報配録媒体は例えば第1図に示すような構造とすることができる。この配録媒体は毎級1の上に前述の色素を含有させた反射層2を殴けさらにこの上に吸収層3を設けることによつて形成できる。番板1としては記録符

-16-

出し光の反射光ないし渡邉光特に反射光を検出することにより読み出される。また、図示していないが基板 1 の上に数収層 3 を設けさらにこの上に反射層 2 を設けることも可能である。

また、本発明の先情報配母媒体は第2図に示すように基板1と反射層2との間に中間層5を設けることができる。この中間層5は接着性の向上、水またはガスなどのパリヤー、配母層の保存安定性の向上かよび反射率の向上などを目的として使用され、その材料はこれらの目的に応じて任意に選択できる。さらに、中間層以外に必要により他の層も使用できる。

さらに、本発明の光情報記録媒体の別の構成 としては第1図かよび第2図に示した同一構成 の2枚の記録媒体(場合によりその1枚を基材 のみとして)を用い反射層かよび吸収層を内側 に対向配置して告封したいわゆるエアーサンド インチ構造にすることもできる。

(実施例)

以下に実施例を掲げて本発明をさらに成明するが本発明はとれた限定されるものではない。 事情例 1

厚さ 1.2 型のアクリル基板上にシアニン色象 (日本感光色素製 NK 2014)のエテレンジクロライド商級をスピンコート法により強布し膜厚 300 人の反射層を設けた。次いでこの反射層をインダンスレン化合物の水溶液中にディッピングして膜厚 500 人の級 収層を殴けた。このようにして作殺した記録 媒体を用いていわゆるエアーサンドイッチ型の對止構造とした。

突然例 2

厚さ L 2 m のアクリル 基板上に下配構造式の ツアニン色素

-19-

1000Åのニトロセルロース層を下引層として 設けた。その上に突旋例1と同様な構成で反射 層かよび吸収層を設け配母媒体を作製した。 突旋例 5

実施例4 K⇒いて反射層として実施例3 で作 製したものを用いた以外は実施例4 と同様にして記録媒体を作製した。

以上のようにして作扱した配録媒体について放展790nmの半導体レーザを用いてQ.5 MHs 方形技信号配録を行なつた場合の再生信号 C/N比、60℃,90% RH 環境下2000時間放置後の同 C/N比、放置後の反射率低下(初期値を100とした場合の低下の割合をがで表わす)を以下の表にまとめて示す。なか、比較例としてNK2014を単独で配録層として用いたものを一緒に示す。

のエタノール前板をスピンコートして腹厚 150 人の反射層を設け、次いでピス (3.4,5,6 ~ テトラクロロー 1,2 ~ ジチオフエニル) - ユッケルのエチレンジクロタイド前板をスピンコートして瞑厚 500人の吸収層を設けた。とのようにして作製した配母媒体を用いていわゆるエアーサンドイッチ級の対止構造とした。

实放例 3

実施例 1 にかける反射層をポリステレン問題と NK 2014 との重量比を 1:3 にして作製した以外は実施例 1 と同様にして記録媒体を作製した。

突焰例 4

アクリル芸板上にニトロセルロース部放(ダ イセル化学工業競製)をスピンコートして段厚

-20-

		C/N (4B)	放置袋 C/N (4B)	放爾袋反射率 低下(多)
突施例	1	58	5 6	4.5
	Ź	. 57	57	5. 0
	3	57	5 5	. 3.5
•	4	. 58	57 .	4.0
•	5	5.7	5 ø	3.5
比較	91	5 8	5 3	25

なか、比較例かよび実施例とも配母光ペワーは 2.25 mW であり、配母感度に有意送は認められなかつた。

〔効 呆〕

上述のよう、Kして構成された本発明の先情報 記録媒体によれば記録感度かよび信号品質を低 下させることなく反射層を雰囲気の影響から保 値することが可能となり記録特性と保存安定性 の向上がもたらされる。

4.図面の簡単な説明

* 第1図かよび第2図は本発明の元情報配録群体の構成例を示す断節図である。

1 … 若根、 2 … 反射層、 5 … 吸収層、 4 … ピット、 5 … 中間層。

特許出願人 株式会社リコー

代 理 人 弁理士 山 下

in.

第1図

第2図

