Electric Machines Semester 6

Ahmad Abu Zainab

Contents

Chapter 1	Transformers	Page 2
1.1	Introduction	2
1.2	2 Ideal Transformer	2
1.5	Real Transformer	3
	Γ Equivalent Circuit — 3 • κ Equivalent Circuit — 4	
1.4	4 Transformer Tests	4
	Open Circuit Test — 4 • Short Circuit Test — 5	
1.5	5 Variation of the Voltage of Conduction	5
1.6	3. Vector Diagram of the Transformer	6

Chapter 1

Transformers

1.1 Introduction

- A transformer is a static device that transfers electrical energy from one circuit to another through inductively coupled conductors.
- It is used to increase or decrease the voltage level of an AC signal.
- The transformer is based on the principle of electromagnetic induction.
- The transformer is a passive device, meaning it does not require any external power source to operate.
- The transformer is used in power distribution systems to step up or step down the voltage level.
- The transformer is used in electronic circuits to isolate the input and output signals.

1.2 Ideal Transformer

• The primary and secondary windings have zero resistance.

$$R_1 = R_2 = 0.$$

• The core has infinite permeability.

$$\mu = \infty$$
.

- The transformer has no leakage flux.
- The transformer has no hysteresis loss.
- $\bullet\,$ The transformer has no eddy current loss.

$$\mathcal{R}_{P_{\text{core}}} = 0$$
$$\Delta P = 0$$
$$\Delta P_{j} = 0$$

Figure 1.1: Ideal Transformer

Turns Ratio:
$$m = \frac{N_1}{N_2} = \frac{V_1}{V_2} = \frac{I_2}{I_1}$$

1.3 Real Transformer

We define the voltage equations of the transformer as follows:

$$\dot{V}_1 + \dot{E}_1 = \dot{I}_1 Z_1 \tag{1.1}$$

$$\dot{E}_2 - \dot{V}_2 = \dot{I}_2 Z_2 \tag{1.2}$$

$$E_1 = 4.44 f N_1 \Phi_m$$

 $E_2 = 4.44 f N_2 \Phi_m$

If we consider $\dot{I}_1Z_1\ll\dot{V}_1$ and $\dot{I}_2Z_2\ll\dot{V}_2$, we can simplify the equations as follows:

$$\dot{V}_1 = -\dot{E}_1$$

$$\dot{V}_2 = \dot{E}_2$$

We define the magnetization current as the current required to produce the magnetic flux in the core.

$$I_m = \dot{I}_{10} = I_1 + \underbrace{mI_2}_{I'_2}.$$

We define the equivalent circuit of the transformer as follows:

Figure 1.2: Transformer Equivalent Circuit

1.3.1 Γ Equivalent Circuit

Figure 1.3: Γ Equivalent Circuit with the Primary Side as the Reference

$$R_{p} = R_{1} + R'_{2} = R_{1} + \frac{R_{2}}{m^{2}}$$

$$X_{p} = X_{1} + X'_{2} = X_{1} + \frac{X_{2}}{m^{2}}$$

$$Z_{p} = R_{p} + jX_{p}$$

Figure 1.4: Γ Equivalent Circuit with the Secondary Side as the Reference

$$R_s = m^2 R_1 + R_2 = m^2 R_1 + R_2$$

$$X_s = m^2 X_1 + X_2 = m^2 X_1 + X_2$$

$$Z_s = R_s + jX_s$$

1.3.2 κ Equivalent Circuit

Figure 1.5: κ Equivalent Circuit with the Primary Side as the Reference

1.4 Transformer Tests

1.4.1 Open Circuit Test

Figure 1.6: Open Circuit Test

We measure V_{10}, I_{10}, P_{10} and V_{20} .

We can calculate the following:

$$\begin{aligned} Q_{10} &= V_{10}I_{10}\sin\varphi_o \\ P_{10} &= V_{10}I_{10}\cos\varphi_o \\ \cos\varphi_o &= \frac{P_{10}}{V_{10}I_{10}} \\ S_{10} &= V_{10}I_{10} \\ R_f &= \frac{{V_{10}}^2}{P_{10}} \\ X_m &= \frac{{V_{10}}^2}{Q_{10}} \end{aligned}$$

1.4.2 Short Circuit Test

Figure 1.7: Short Circuit Test

Typically we run the short circuit test at 5-15% of the nominal current.

$$I_{2c} \leq I_{2n}$$

 $V_{1c} = (5 - 15)\%V_{1n}$
 $I_{2c} \ll I_{2n}$
 $I_{1c} \ll I_{1n}$

We measure V_{1c}, I_{1c}, P_{1c} and I_{2c} .

We can calculate the following:

$$R_p = \frac{P_{1c}}{I_{1c}^2}$$
$$X_p = \frac{Q_{1c}}{I_{1c}^2}$$

1.5 Variation of the Voltage of Conduction

1. Exact Calculation:

$$V_2 < V_{20}$$

$$m_c = \frac{V_2}{V_1} < m$$

$$V_{1} = V'_{2} + \Delta V_{p} = V'_{2} + I'_{2} (R_{p} + jX_{p}).$$
5

2. Approximate Calculation (Variation of the Secondary Voltage):

$$\Delta V_s = V_2 0 - V - 2.$$

$$\Delta V_p = \frac{\Delta V_s}{m}.$$

$$\Delta V_s \% = \frac{V_{20} - V_2}{V_{20}} \times 100$$
$$= \frac{mV_1 - V_2}{mV_1} \times 100$$
$$= \frac{V'_1 - V_2}{V'_1} \times 100$$

The KAPP formula states

$$\Delta V_s = I_2 \left(R_s \cos \varphi_2 \pm X_s \sin \varphi_2 \right).$$

The \pm sign depends on the nature of the load (inductive or capacitive). From the KAPP formula, we define the voltage regulation as

$$\Sigma = \frac{\Delta V_s}{V_2} \times 100.$$

$$\Delta V_p = I_1 \left(R_p \cos \varphi_2 \pm X_p \sin \varphi_2 \right).$$

1.6 Vector Diagram of the Transformer

Figure 1.8: Vector Diagram of a Transformer

$$\eta = \frac{P_2}{P_1} = \frac{P_2}{P_2 + \Delta P_{Jt} + \Delta P_f}.$$

Where

$$\Delta P_{Jt} = \Delta P_{J1} + \Delta P_{J2} = I_{11}^2 R_p = I_{21}^2 R_s$$

$$\Delta P_f = P_{10} = P_{20}$$

Example 1.6.1

Given a single phase transformer 200/400V - 50 Hz. By tests, we measure the following:

- Open Circuit Test: $V_{10}=200\,\mathrm{V},\,I_{10}=0.7\,\mathrm{A},\,P_{10}=70\,\mathrm{W}.$
- Short Circuit Test: $V_{2c}=15\,\mathrm{V},\,I_{1c}=10\,\mathrm{A},\,P_{1c}=85\,\mathrm{W}.$
- 1. Calculate the equivalent circuit parameters.
- 2. Calculate V_2 if the charge is 5 kW, $\cos \varphi = 0.8$, and $V_1 = 200$ V. Deduce the voltage regulation (Σ).
- 3. Deduce the efficiency of the transformer.

Solution: m = 2

1.

$$R_f = \frac{{V_{10}}^2}{P_{10}} = \frac{200^2}{70} = 571.43 \,\Omega$$

$$S_{10} = V_{10}I_{10} = 200 \times 0.7 = 140 \,\text{V A}$$

$$Q_{10} = \sqrt{{S_{10}}^2 - {P_{10}}^2} = \sqrt{140^2 - 70^2} = 121.6 \,\text{VAR}$$

$$X_m = \frac{{V_{10}}^2}{O_{10}} = \frac{200^2}{121.6} = 328.95 \,\Omega$$

To find R_p and X_p , we need to find R_s and X_s first.

$$R_{s} = \frac{P_{2c}}{I_{1c}^{2}} = \frac{85}{100} = 0.85 \,\Omega$$

$$S_{2c} = V_{2c}I_{1c} = 15 \times 10 = 150 \,\text{V A}$$

$$Q_{2c} = \sqrt{S_{2c}^{2} - P_{1c}^{2}} = \sqrt{150^{2} - 85^{2}} = 12.3 \,\text{VAR}$$

$$X_{s} = \frac{Q_{2c}}{I_{1c}^{2}} = \frac{12.3}{100} = 1.23 \,\Omega$$

$$R_{p} = \frac{R_{s}}{m^{2}} = \frac{0.85}{4} = 0.2125 \,\Omega$$

$$X_{p} = \frac{X_{s}}{m^{2}} = \frac{1.23}{4} = 0.3075 \,\Omega$$

2.

$$I_2 = \frac{P_2}{V_2 \cos \varphi} = \frac{5000}{400 \times 0.8} = 15.625 \,\text{A}$$

$$\Delta V_s = I_2 \left(R_s \cos \varphi \pm X_s \sin \varphi \right) = 15.625 \left(0.85 \times 0.8 + 1.23 \times 0.6 \right) = 22.2 \,\text{V}$$

$$\Sigma = \frac{\Delta V_s}{V_2} \times 100 = \frac{22.2}{400} \times 100 = 5.55\%$$
 If $V_{20} = 400$ V.

To obtain $V_2 = 400\,\mathrm{V},$ we need to increase the primary voltage to

$$\begin{split} \Delta V_p &= \frac{\Delta V_s}{m} = \frac{22.2}{2} = 11.1 \, \mathrm{V} \\ V_1 &= V_2' + \Delta V_p = \frac{400}{2} + 11.1 = 211.1 \, \mathrm{V} \end{split}$$

3.

$$\Delta P_{Jt} = I_{11}^2 R_p = 15.6^2 \times 0.85 = 206 \,\text{W}$$

$$\Delta P_f = P_{10} = P_{20} = 70 \,\text{W}$$

$$\eta = \frac{5000}{5000 + 206 + 70} = 0.947$$