$$f'(x)$$
 ، مطلوبست محاسبه ی ضابطه ی $f(x)=\int_{x^{
m T}}^{x^{
m T}} rac{e^t}{t}\,dt$. الف) اگر الف) . ا $\lim_{x o 1}rac{1}{\ln x}\int_{x^{
m T}}^{x^{
m T}} rac{e^t}{t}\,dt$ ب مطلوبست محاسبه ی

حل. الف) (۱۵ نمره)

قرار می دهیم f نیابر این f بر بازه g مجموعه g مجموعه g مجموعه g است. بنابر این g بر بازه g مشتق پذیر است. بنابر قضایای مربوط به انتگرال معین، قانون زنجیری مشتق و قضیه اساسی حساب دیفرانسیل و انتگرال، داریم

$$f(x) = \int_{1}^{x^{\mathsf{T}}} \frac{e^{t}}{t} dt - \int_{1}^{x^{\mathsf{T}}} \frac{e^{t}}{t} dt$$

 $f'(x) = \operatorname{Tx}^{\operatorname{T}} \frac{e^{x^{\operatorname{T}}}}{x^{\operatorname{T}}} - \operatorname{Tx} \frac{e^{x^{\operatorname{T}}}}{x^{\operatorname{T}}} = \frac{\operatorname{T} e^{x^{\operatorname{T}}} - \operatorname{T} e^{x^{\operatorname{T}}}}{x}$

ب) (۱۵ نمره)

و

h و f آنگاه $h(x)=\ln x$ و $f(x)=\int_{x^{\mathsf{T}}}^{x^{\mathsf{T}}} \frac{e^t}{t} \, dt$ شرایط استفاده از قضیه هوپیتال برقرار است. زیرا اگر قرار دهیم $h(x)=\frac{1}{x}$ و $h(x)=\ln x$ و $h(x)=\frac{1}{x}$ آنگاه $h(x)=\frac{1}{x}$ در یک همسایگی ۱ مشتق پذیر هستند و $h(x)=\frac{1}{x}$ در یک همسایگی ۱

$$\lim_{x \to 1} \frac{1}{\ln x} \int_{x^{\tau}}^{x^{\tau}} \frac{e^{t}}{t} dt = \lim_{x \to 1} \frac{f(x)}{h(x)}$$

$$= \lim_{x \to 1} \frac{f'(x)}{h'(x)}$$

$$= \lim_{x \to 1} \frac{\underline{r}e^{x^{\tau}} - \underline{r}e^{x^{\tau}}}{\frac{1}{x}} = e$$

۲. نامساوی زیر را برای هر x > 0 نشان دهید.

$$\frac{x}{\sqrt{1+x^{7}}} < \sinh^{-1}(x) < x$$

حل.

راه حل اول:

تابع (\circ,x) مشتق پذیر است. در نتیجه بنا به $x>\circ$ بر بازه (x,x) مشتق پذیر است. در نتیجه بنا به

قضیه مقدار میانگین نقطه $c\in(\circ,x)$ وجود دارد به طوری که $f'(c)=\frac{f(x)-f(\circ)}{x-\circ}\Longrightarrow \frac{1}{\sqrt{1+c^{\mathsf{T}}}}=\frac{\sinh^{-1}x}{x}.$

از طرفی c < c < x نتیجه میدهد

$$\frac{1}{\sqrt{1+x^{\mathsf{T}}}} < \frac{1}{\sqrt{1+c^{\mathsf{T}}}} < 1.$$

در نتیجه

$$\frac{x}{\sqrt{1+x^{7}}} < \sinh^{-1} x < x.$$

راه حل دوم: دو تابع $x>\circ$ در نظر میگیریم. $g(x)=\sinh^{-1}x-\frac{x}{\sqrt{1+x^{7}}}$ و $f(x)=\sinh^{-1}x-x$ در نظر میگیریم:

$$f'(x) = \frac{1}{\sqrt{1+x^{7}}} - 1 < 0$$

$$g'(x) = \frac{1}{\sqrt{1+x^{7}}} (1 - \frac{1}{1+x^{7}}) > 0$$

در نتیجه تابع g(x) نزولی و تایع g(x) صعودی است. پس برای هر f(x) داریم $f(x) < f(\circ), \qquad g(x) > g(\circ).$

در نتيجه

$$\sinh^{-1} x - x < \circ, \quad \sinh^{-1} x - \frac{x}{\sqrt{1 + x^{\gamma}}} > \circ$$

که نتیجه میدهد

$$\frac{x}{\sqrt{1+x^{7}}} < \sinh^{-1} x < x.$$

۳. هر یک از انتگرالهای زیر را به دست آورید.
$$\int \frac{x \ln x}{(\mathbf{1}+x^{\mathbf{7}})^{\mathbf{7}}} dx$$
 (الف $\int_{-\mathbf{1}}^{\mathbf{1}} x^{\mathbf{7}} \sqrt{(\mathbf{1}-x^{\mathbf{7}})} dx$

حل. الف) (١٥ نمره)

با فرض
$$u=\ln x$$
 و $u=-\frac{1}{7}\frac{1}{1+x^7}$ خواهیم داشت $u=\ln x$ خواهیم داشت $u=\ln x$ با فرض $u=\ln x$ با فرض $u=\ln x$ خواهیم داشت $u=\ln x$ خواهیم داشت $u=\ln x$ با فرض $u=\ln x$ با

$$(1+x^{7})^{\gamma}$$
 $(1+x^{7})^{\gamma}$ $(1+x^{7})^{\gamma}$

با استفاده از رابطه فوق،
$$A=1$$
، $A=1$ و $C=0$ در نتیجه $B=-1$ ، $A=1$ با استفاده از رابطه فوق، $A=1$ ، $A=1$ با استفاده از رابطه فوق، $A=1$ با استفاده از ر

و از آنجا

$$\int \frac{x \ln x}{(\mathbf{1} + x^{\mathbf{Y}})^{\mathbf{Y}}} \, dx = -\frac{\mathbf{Y}}{\mathbf{Y}} \left(\frac{\ln x}{\mathbf{1} + x^{\mathbf{Y}}} \right) + \frac{\mathbf{Y}}{\mathbf{Y}} \ln \left(\frac{x}{\sqrt{\mathbf{1} + x^{\mathbf{Y}}}} \right) + C$$

ب) (۱۵ نمره)

با استفاده از تغییر متغیر $x=\sin t$ خواهیم داشت

$$\int \frac{x^{7}}{\sqrt{1-x^{7}}} dx = \int \frac{\sin^{7} t}{\cos t} \cos t \, dt = \int \sin^{7} t \, dt$$

$$= \int \frac{1-\cos 7t}{7} \, dt = \frac{1}{7} (t - \frac{1}{7} \sin 7t) + C$$

$$= \frac{1}{7} (\sin^{-1} x - x\sqrt{1-x^{7}}) + C$$

در نتیجه

$$\int_{-\frac{1}{\tau}}^{\frac{1}{\tau}} \frac{x^{\tau}}{\sqrt{1-x^{\tau}}} dt = \frac{1}{\tau} (\sin^{-1} x - x\sqrt{1-x^{\tau}}) \Big|_{-\frac{1}{\tau}}^{\frac{1}{\tau}} = \frac{\pi}{\varepsilon} - \frac{\sqrt{\tau}}{\varepsilon}$$

. همگرایی انتگرال ناسره
$$\int_{\circ}^{\infty} \frac{e^{-x^{\mathsf{T}}}}{\sqrt{x^{\mathsf{T}}+x}} dx$$
 را بررسی کنید.

حل. انتگرال ناسره dx اول و دوم به شکل زیر بیان $\int_{0}^{\infty} \frac{e^{-x^{\gamma}}}{\sqrt{x^{\gamma}+x}} dx$ را به صورت مجموع انتگرالهای ناسره نوع اول و دوم به شکل زیر بیان میکنیم. (۴ نمره)

$$\int_{\circ}^{\infty} \frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x^{\mathsf{Y}} + x}} dx = \int_{\circ}^{\mathsf{Y}} \frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x^{\mathsf{Y}} + x}} dx + \int_{\mathsf{Y}}^{\infty} \frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x^{\mathsf{Y}} + x}} dx$$

توجه داریم چون $\infty = \frac{e^{-x^{\mathsf{T}}}}{\sqrt{x^{\mathsf{T}}+x}} = \infty$ توجه داریم چون

توابع $\frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x^{\mathsf{Y}}+x}}$ و $\frac{1}{\sqrt{x}}$ در بازه $(\,\circ\,,\,\mathsf{Y}\,)$ مثبت هستند و

$$\lim_{x \to \circ} \frac{\frac{e^{-x^{\gamma}}}{\sqrt[]{x^{\gamma}+x}}}{\frac{1}{\sqrt[]{x}}} = \lim_{x \to \circ} \frac{e^{-x^{\gamma}}}{\sqrt{x+\gamma}} = \gamma$$

پس بنابر آزمون مقایسه حدی، از اینکه $\int_{\circ}^{1} \frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x}} dx$ همگرا است نتیجه می شود $\int_{\circ}^{1} \frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x}} dx$ همگرا است. (۱۳) نمره)

توابع $\frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x^{\mathsf{Y}}+x}}$ و $\frac{1}{x^{\mathsf{Y}}}$ در بازه $\frac{e^{-x^{\mathsf{Y}}}}{\sqrt{x^{\mathsf{Y}}+x}}$

$$\lim_{x \to \infty} \frac{\frac{e^{-x^{1}}}{\sqrt[4]{x^{7}+x}}}{\frac{1}{x^{7}}} = \lim_{x \to \infty} \frac{x^{7}}{e^{x^{7}}} \frac{1}{\sqrt{x^{7}+x}} = 0$$

بنابر آزمون مقایسه حدی، از همگرایی انتگرال ناسره $\int_{1}^{\infty} \frac{e^{-x^{\Upsilon}}}{\sqrt{x^{\Upsilon}+x}} dx$ همگرایی $\int_{1}^{\infty} \frac{e^{-x^{\Upsilon}}}{x^{\Upsilon}} dx$ انتیجه می شود. (۱۳ نمره)