Algebraic Statistics

Benjamin C. W. Brown B.Brown@ed.ac.uk

 \sim

30th October 2020

Contents I

1. INDEPENDENCE MODELS

2. CLASSICAL ALGEBRAIC GEOMETRY

3. MIXTURE MODELS & SECANT VARIETIES

4. SUMMARY

Statistical Models

planetmath.org

A *statistical model* is usually parameterised by a function, called a *parametrisation*

$$\Theta \to \mathcal{P}, \quad \text{given by} \quad \theta \mapsto P_{\theta}, \quad \text{so that} \quad \mathcal{P} = \{P_{\theta}: \theta \in \Theta\},$$

where Θ is the *parameter space*. Θ is usually a subset of \mathbb{R}^n .

McCullagh, 2002

This should be defined using category theory.

2. Independence Models

Two-by-Two Contingency Tables

A contingency table contains counts obtained by cross-classifying observed cases according to two or more discrete criteria.

Example

TODO: Figure (Florida death sentences)

We ask whether the sentences were made independently of the defendant's race.

Two-by-Two Contingency Tables

- ► Classify using two criteria with *r* and *c* levels, yields two random variables *X* and *Y*.
- ► Code outcomes as $[r] := \{1, ..., r\}$, and $[c] := \{1, ..., c\}$.

All information about *X* and *Y* is contained in the *joint probabilities*

$$p_{ij} = P(X = i; Y = j), \quad i \in [r], j \in [c].$$

► These in turn determine the *marginal probabilities*:

$$p_{i+} := \sum_{j=1}^{c} p_{ij} = P(X = i), \quad i \in [r],$$

 $p_{+j} := \sum_{i=1}^{r} p_{ij} = P(Y = j), \quad j \in [c].$

Definition

Two random variables X and Y are *independent* if the joint probabilities factor as $p_{ij} = p_{i+} \cdot p_{+j}$, for all $i \in [r]$ and $j \in [c]$. Denote independence of X and Y by $X \perp \!\!\! \perp Y$.

Proposition

Two random variables X and Y are independent if and only if the $(r \times c)$ -matrix, $p = (p_{ij})$, has rank one.

For a (2×2) -table, we thus have:

Suppose now we select *n* cases, giving rise to *n* independent pairs of discrete random variables:

$$\begin{pmatrix} \chi^{(1)} \\ \gamma^{(1)} \end{pmatrix}, \begin{pmatrix} \chi^{(2)} \\ \gamma^{(2)} \end{pmatrix}, \dots, \begin{pmatrix} \chi^{(n)} \\ \gamma^{(n)} \end{pmatrix},$$

all drawn from the same distribution, i.e.:

$$P(X^{(k)} = i; Y^{(k)} = j) = p_{ij}, \text{ for all } i \in [r], j \in [c], k \in [n].$$

Joint probability matrix $p = (p_{ij})$ is an *unknown* element of the (rc - 1)-dimensional *probability simplex*,

$$\Delta_{\mathit{rc}-1} = \left\{ \left. q \in \mathbb{R}^{r \times c} \; \right| \; q_{\mathit{ij}} \geq 0, \; \text{for all } \mathit{i,j}, \; \text{and} \; \sum_{i=1}^{r} \sum_{j=1}^{c} q_{\mathit{ij}} = 1 \; \right\}.$$

Definitions

A *statistical model* \mathcal{M} is a subset of Δ_{rc-1} . It represents the set of all candidates for the unknown distribution p. The

independence model for X and Y is the set

$$\mathcal{M}_{X \perp \! \! \perp Y} := \{ p \in \Delta_{rc-1} \mid \operatorname{rank}(p) = 1 \}.$$

 $\mathcal{M}_{X \perp \! \! \perp Y}$ is the intersection of Δ_{rc-1} and the set of all matrices $p = (p_{ij})$ such that

$$p_{ij}p_{kl} - p_{il}p_{jk} = 0$$
, $(1 \le i < k \le r, \text{ and } 1 \le j < l \le c)$.

These are called Segre varieties in algebraic geometry.

Foray Into Algebraic Geometry

Projective Space

Playing field is *n*-dimensional projective space, \mathbb{P}^n :

$$\mathbb{P}^n := \{ (z_0, \dots, z_n) \in \mathbb{C}^n \} / (\mathbf{x} \sim \lambda \cdot \mathbf{y}), \quad \lambda \neq 0,$$

that is, its elements consists of *lines through the origin* in \mathbb{C}^n .

Varieties

Varieties are the objects studied in algebraic geometry, determined by the *vanishing set*¹ V(-), for a system of polynomials.

(b)
$$V(x^2 + y^2 - z^2 - 1)$$

(d)
$$V(x^2 + y^2 - z^2)$$

¹from 'Verschwindungsmenge'

Segre Varieties

Segre varieties come from $\sigma: \mathbb{P}^n \times \mathbb{P}^m \to \mathbb{P}^{(n+1)(m+1)-1}$, that sends ([X], [Y]) to the pairwise products of their components:

$$\sigma:([X_1,\ldots,X_{n+1}],[Y_1,\ldots,Y_{m+1}])\mapsto [\ldots,X_iY_j,\ldots].$$

Example (Segre quadric surface)

$$\sigma: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3, \ ([X_1, X_2], [Y_1, Y_2]) \mapsto [X_1 Y_1, X_1 Y_2, X_2 Y_1, X_2 Y_2].$$

Set $[X_1Y_1, X_1Y_2, X_2Y_1, X_2Y_2] =: [p_{11}, p_{12}, p_{21}, p_{22}]$, then:

$$\rightsquigarrow \det \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = 0 \iff \operatorname{rank} \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \le 1.$$

Rulings

The Segre quadric surface has two families of lines in it, called *rulings*. These are the images of $\sigma(\mathbb{P}^1 \times \{\text{pt}\})$ and $\sigma(\{\text{pt}\} \times \mathbb{P}^1)$.

Shukhov Tower, Nizhny Novgorod

Shukhov Tower, Moscow

Tractricious, Fermilab

Manifold of Independence

Let $\Delta_3 \subset \mathbb{R}^4$, with vertices $A_i = e_i$, and let $p = (p_{ij}) \in \Delta_3$ be

$$p_{ij} = (p_{11}, p_{12}, p_{21}, p_{22}) = \begin{array}{|c|c|c|}\hline p_{11} & p_{12} \\\hline p_{21} & p_{22} \end{array}$$

Has been shown that the two rulings are given by

st	s(1-t)	$(0 \le s, t \le 1).$
t(1-s)	(1-s)(1-t)	$(0 \leq 3, t \leq 1).$

Hidden Variables

- ▶ Suppose $\mathcal{P} \subset \Delta_{r-1}$ is a model for a random variable X with state space [r].
- ▶ Moreover, assume that there is a *hidden* or *latent* random variable Y with state space [s], and for each $j \in [s]$, the conditional distribution of X given Y = j is $p^{(j)} \in \mathcal{P}$.
- ▶ The hidden variable Y also has some probability distribution $\pi \in \Delta_{s-1}$.

So the joint distribution of *Y* and *X* is given by the formula

$$P(Y=j;X=i)=\pi_j\cdot p_i^{(j)}.$$

Mixture Models

▶ But as *Y* is hidden, we can only observe the marginal distribution of *X*, that is

$$P(X=i) = \sum_{i=1}^{s} \pi_j \cdot p_i^{(j)}.$$

In other words, the marginal distribution of X is the convex combination of the s distributions $p^{(1)}, \ldots, p^{(s)}$, with weights given by π .

Definition

Let $\mathcal{P} \subset \Delta_{r-1}$ be a statistical model. The *s-th mixture model* is

$$\operatorname{Mixt}^s(\mathcal{P}) := \left\{ \left. \sum_{i=1}^s \pi_j \cdot p^{(j)} \; \right| \; \pi \in \Delta_{s-1}, \; p^{(j)} \in \mathcal{P}, \; \text{for all } j \; \right\}.$$

Mixture Models

- Mixture models provide ways to build complex models out of simpler ones.
- Basic assumption is that the underlying population to be modelled can be split into s disjoint sub-populations.
- Restricted to each sub-population, the observable X follows a probability distribution from the simple model P.
- ► After marginalisation though, the structure becomes significantly more complex as it is now a convex combination of these simple distributions.

4. Mixture Models & Secant Varieties

Phylogenetic Trees

► Introduce *phylogenetic trees*; describe the descent of species from a common ancestor:

Example Cartoon

Molecular Phylogenetics

- Sequence of DNA molecules in a genome is represented as a sequence of letters from the four letter alphabet Σ = {A, C, G, T}.
- ► Fix for now an ancestral nucleotide $Y \in \Sigma$; we assume that the following evolution events occur independently:

$$Y \overset{\pi_{Y} \cdot \mathcal{P}_{A}^{(Y)}}{\longmapsto} A, \quad Y \overset{\pi_{Y} \cdot \mathcal{P}_{C}^{(Y)}}{\longmapsto} C, \quad Y \overset{\pi_{Y} \cdot \mathcal{P}_{G}^{(Y)}}{\longmapsto} G, \quad Y \overset{\pi_{Y} \cdot \mathcal{P}_{T}^{(Y)}}{\longmapsto} T,$$

So given Y, we have a joint distribution:

$$\pi_{\mathsf{Y}} \cdot [p_{\mathsf{A}}^{(\mathsf{Y})}, p_{\mathsf{C}}^{(\mathsf{Y})}, p_{\mathsf{G}}^{(\mathsf{Y})}, p_{\mathsf{T}}^{(\mathsf{Y})}] \in \Delta_3 = \Delta_{4-1}.$$

Example

- ➤ Y is a hidden variable though; could have been any one of A, C, G, or T.
- For exactly one given choice of Y, we had the distribution Δ_3 ; need to consider all choices of ancestral nucleotide Y.
- ► Hence we get the mixture model:

$$\operatorname{Mixt}^4(\Delta_3) = \left\{ \sum_{\mathsf{Y} \in \{\mathsf{A},\mathsf{C},\mathsf{G},\mathsf{T}\}} \pi_\mathsf{Y} \cdot p^{(\mathsf{Y})} \,\middle|\, \pi \in \Delta_3, \; p^{(\mathsf{Y})} \in \mathcal{P} \subseteq \Delta_3, \; \mathsf{for \; each \; Y} \,\right\}.$$

Question?

What is the analogue for mixture models in algebraic statistics?

4. Mixture Models & Secant Varieties

Secant Varieties

Answer!

Secant² varieties!

Definitions

► Consider two varieties $V, W \subseteq \mathbb{R}^k$. The *join* of V and W is the variety

$$\mathcal{J}(V, W) := \{\lambda v + (1 - \lambda)w : v \in V, w \in W, \lambda \in [0, 1]\}.$$

▶ If V = W, then this is the *secant variety* of V, denoted $Sec^2(V) = \mathcal{J}(V, V)$. The *s-th higher secant variety* is:

$$\operatorname{Sec}^{1}(V) := V, \qquad \operatorname{Sec}^{s}(V) := \mathcal{J}(\operatorname{Sec}^{s-1}(V), V).$$

²from secare, "to cut" in Latin; c.f. tangō, "to touch".

Secant Varieties

More Complicated Phylogenetic Trees

- ► Last example only had one extant species; $X \stackrel{?}{\longmapsto} A, C, G, T$.
- ▶ What if we had three extant species, coming from one ancestor?

- Now we have to consider: $Sec^4(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3)$; or equivalently $Mixt^4(\Delta_3 \times \Delta_3 \times \Delta_3)$.
- Finding the minimal set of polynomials defining $\operatorname{Sec}^4(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3)$ once gave rise to a very important application of algebraic statistics...

4. Mixture Models & Secant Varieties

The Salmon Problem

Statement

Determine the ideal defining $Sec^4(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3)$.

Prize

Personally caught, and smoked just for you, copper river salmon from Alaska.

Current Status

Solved.

- At an IMA workshop in 2007, Elizabeth Allman offered this prize to whomever solved the above problem.
- ▶ It was solved in 2010 by Shmuel Friedland.

³read this as "set of defining polynomials".

Revision

Why Sec⁴($\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3$) again?

- ► Three independent variables (nucleotides in extant species) ~> three factors in product;
- ► Each independently assumes one value from $\Sigma = \{A, C, G, T\} \rightsquigarrow \text{distribution is a point in } \mathbb{P}^3 = \mathbb{P}^{4-1};$
- The ancestral nucleotide is unknown, but could assume any of the four values in ∑ → mix four such independence models;
- ▶ The model for the three observed nucleotides is therefore

$$\operatorname{Sec}^4(\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3)$$
, *c.f.*, $\operatorname{Mixt}^4(\Delta_3 \times \Delta_3 \times \Delta_3)$.

5. Summary 25/29

An Opportunity for a Stupid Joke

Henri Poincaré

"[L]a mathématique est l'art de donner le même nom à des choses différentes."

H. Poincaré, 1887.

H. Poincaré, colourised.

The solution to the salmon conjecture is equivalent to:

- the mixture of four models for three independent variables;
- ▶ the fourth secant variety of the Segre variety $\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^3$;
- ▶ the set of $(4 \times 4 \times 4)$ -tables of tensor rank ≤ 4 ;
- the naive Bayes model with four classes and three features;
- ▶ the conditional independence model $[X_1 \perp \!\!\! \perp X_2 \perp \!\!\! \perp X_3 | Y]$;
- ▶ the general Markov model for the phylogenetic tree, $K_{1,3}$;
- superposition of four pure states in a quantum system.

$A\ `Statistics\ to\ Algebraic\ Geometry'\ Lexicon$

Statistics		Algebra/Geometry
independence	=	Segre variety
exponential family	=	toric variety
(log-linear models)		
curved exponential family	=	manifold
mixture model	=	secant variety
inference	=	tropicalisation
		·
	÷	

Applications

We finish by mentioning that algebraic statistics has at least a few important applications:

- It can win you salmon;
- ▶ It can win you 100 Swiss francs⁴ (CHF $100 \sim £85$);
- One gets to learn lots of polysyllabic words;
- It can provide an individual with a topic for an (excellent) colloquium talk;
- Algebraists & statisticians could talk to one other (not that they would want to).

⁴Not mentioned in this talk.

Questions?