Anomaly detection using Gaussian Mixture Model

Bùi Quang Long

February 2020

Contents

1	Exp	pectation maximization	1
	1.1	Proof of equation (2)	1
	1.2	Formula for n-D data	2
		1.2.1 E step	2
		1.2.2 M step	3
2	And	omaly detection	3
	2.1	Optimal number of clusters (K)	3
	2.2	The likelihood of an abnormal sample	4
	2.3	Threshold	4
3	Imp	plementation and Explanation	4
	3.1	Visualization	4
	3.2	GMM Implementation	5
		3.2.1 Data preparation	5
		3.2.2 Model building	5
		3.2.3 Result and Comparison with sklearn	6
		3.2.4 Anomaly detection	6

1 Expectation maximization

1.1 Proof of equation (2)

$$b_k = \frac{f(x \mid \mu_k, \sigma_k^2) \phi_k}{\sum_{k=1}^K f(x \mid \mu_k, \sigma_k^2) \phi_k}$$

First, we define:

- p(x): the likelihood of an random observation equals to x.
- ϕ_k : the prior beliefs that an example was drawn from the k_{th} (or k^{th} Gaussian distribution).

• $p(z_k)$: the likelihood of an random observation belongs to the k^{th} cluster. (prior probability). Here,

$$p(z_k) = \phi_k$$

- $p(x \mid z_k) = f(x \mid \mu_k, \sigma_k^2)$: the likelihood of an observation x using the estimated parameters of the k^{th} cluster. (prior probability)
- $p(z_k \mid x)$ (or b_k in equation (2)): the likelihood of a given observation x belongs to the k_{th} cluster. (posterior probability). Thus,

$$p(x) = \sum_{j=1}^{K} p(z_j, x)$$

• $p(z_k, x) = p(x, z_k)$: the likelihood of a random observation satisfies both 2 conditions: equals to x and belongs to the k_{th} cluster. Applying Bayes' Rule,

$$p(z_k, x) = p(x \mid z_k)p(z_k)$$

Then, we obtain:

$$p(z_k \mid x) = \frac{p(z_k, x)}{p(x)}$$

$$p(z_k \mid x) = \frac{p(z_k, x)}{\sum_{j=1}^K p(z_j, x)}$$

$$p(z_k \mid x) = \frac{p(x \mid z_k)p(z_k)}{\sum_{j=1}^K p(x \mid z_j)p(z_j)}$$

$$p(z_k \mid x) = \frac{f(x \mid \mu_k, \sigma_k^2)\phi_k}{\sum_{j=1}^K f(x \mid \mu_j, \sigma_j^2)\phi_j}$$

$$b_k = \frac{f(x \mid \mu_k, \sigma_k^2)\phi_k}{\sum_{j=1}^K f(x \mid \mu_j, \sigma_j^2)\phi_j}$$

1.2 Formula for n-D data

1.2.1 E step

- $f(x \mid \mu, \Sigma)$: The likelihood of an observation x using the estimated parameters of the k^{th} cluster. Here,
 - $-\mu$ is a N-dimensional vector denoting the mean of the distribution.
 - $-\Sigma$ is the NxN symmetric covariance matrix and positive definite.

$$f(x \mid \mu, \Sigma) = \frac{exp(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu))}{\sqrt{(2\pi)^k |\Sigma|}}$$

• b_k : The likelihood of a given observation belongs to the k_{th} cluster.

$$b_k = \frac{f(x \mid \mu_k, \Sigma_k)\phi_k}{\sum_{j=1}^K f(x \mid \mu_j, \Sigma_j)\phi_j}$$

For further calculation, we define b_{nk} equals to the likelihood of the n_{th} observation belongs to the k_{th} cluster.

$$b_{nk} = \frac{f(x_n \mid \mu_k, \Sigma_k)\phi_k}{\sum_{j=1}^K f(x_n \mid \mu_j, \Sigma_j)\phi_j}$$

1.2.2 M step

Here we define N is number of observation in our data set. After E step, we recalculate the following parameters:

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^N b_{nk} x_n$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N b_{nk} (x_n - \mu_k^{new}) (x_n - \mu_k^{new})^T$$

$$\phi_k^{new} = \frac{N_k}{N}$$

$$N_k = \sum_{n=1}^N b_{nk}$$

where

2 Anomaly detection

2.1 Optimal number of clusters (K)

To define a good number of clusters, we can use the Bayesian information criterion (BIC) or the Akaike information criterion (AIC). Here is my quick comparison between these two criteria:

- AIC is more suitable for unstable data (small, large noise levels, ...).
- AIC tries to select the model that most adequately describes an unknown, high dimensional reality. On the contrary, BIC tries to find the TRUE model among the set of candidates.
- BIC penalizes models more for free parameters than does AIC.

Hence our training data has more than normal 1500 samples, I use the BIC and get the result: The model works best at K around 5 to 20. (I choose 7)

Figure 1: Using BIC to define number of clusters

2.2 The likelihood of an abnormal sample

The likelihood of an sample x:

$$p(x) = \sum_{k=1}^{K} f(x \mid \mu_k, \Sigma_k) \phi_k$$

2.3 Threshold

I come up with a simple threshold formula based on normal samples: find the min likelihood among normal samples.

$$threshold = min(p(x))$$

3 Implementation and Explanation

3.1 Visualization

The data has 21 dimensions for each sample so the first thing I come up with is dimensionality reduction, which led me to Principal component analysis (PCA). With 3 dimensions, I get:

Figure 2: 3D illustration

It looks like lots of spatial information can't be illustrated. Thus I haven't recognized the separation clearly. More detail will be illustrated in Result Section.

3.2 GMM Implementation

3.2.1 Data preparation

- After several attempts, I was stuck with overflow error. The covariance matrices became too small and overflow the float type. Thus I use PCA to reduce the numbers of features to 13 and still maintain 95% of original information.
- From the data set of 1831 samples, I also split the data into 2 parts: normal and suspect part. Now my samples for training has the shape of (1655, 13)

3.2.2 Model building

 I apply the Expectation-Maximization algorithm. The goal is to maximize the Log-Likelihood funtion:

$$\ln p(X \mid \mu, \Sigma, \phi) = \sum_{n=1}^{N} \ln \left(\sum_{k=1}^{k} \phi_k f(x_n \mid \mu_k, \Sigma_k) \right)$$

Figure 3: Data preparation

- I set the convergence criterion to 0.1, the loop will stop when the difference between the Log-Likelihood of this loop and previous loop less than 0.1:

curLogLikelihood - preLogLikelihood < 0.1

3.2.3 Result and Comparison with sklearn

After 71 iterations, my GMM converged and release the score approximately the score found by sklearn.

```
#todo part3: Compare with sklearn
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=nCluster, covariance_type='full', random_state=0)
gmm.fit(X_train)
print("Score found by my code: ", curlogLikelihood / nData)
print("Score found by sklearn: ", gmm.score(X_train))
```

Figure 4: GMM using sklearn

```
70
-10.555433316444343
71
-10.555399186107817
Score found by my code: -10.555399186107817
Score found by sklearn: -10.478886588135985
```

Figure 5: Compare

3.2.4 Anomaly detection

With my threshold formula, I detected 30 anomlies, which will be marked as black points in $3\mathrm{D}$ illustration.

Figure 6: Anomalies distribution

Figure 7: Anomalies and normal samples