

METHOD AND SYSTEM FOR GLOBAL ROAMING BETWEEN INTERNATIONAL MOBILE TELECOMMUNICATIONS-2000(IMT-2000) SYSTEMS HAVING MUTUALLY DIFFERENT STANDARDS

Publication number: KR20010017852
Publication date: 2001-03-05
Inventor: KIM YEONG JIN (KR); LEE NAM HUI (KR)
Applicant: KOREA ELECTRONICS TELECOMM (KR)
Classification:
- International: H04Q7/20; H04Q7/20; (IPC1-7): H04Q7/20
- European:
Application number: KR19990033587 19990816
Priority number(s): KR19990033587 19990816

[Report a data error here](#)

Abstract of KR20010017852

PURPOSE: A method and system for global roaming between international mobile telecommunications-2000(IMT-2000) systems having mutually different standards is provided to add interworking functions like an interworking mobile switching center(IMSC) and an interworking authentication center(IAC), and to absorb/convert a difference between standards of the IMT-2000 systems, so as to easily support the global roaming. CONSTITUTION: If a mobile subscriber of an European Telecommunications Standards Institute(ETSI) system(22) performs roaming to a Telecommunications Industry Association/Electronics Industry Association(TIA/EIA) system(21), a mobile station(MS) performs an authentication algorithm for the subscriber, and an authentication result value is transmitted to a base station(BS). The BS transmits the authentication result value and information related to location registration to a mobile switching center(MSC). The MSC transmits the authentication result value to a visitor location register(VLR) in order to decide whether the subscriber is appropriate. The VLR transmits the authentication result value to a TIA-interworking location register(ILR). The TIA-ILR transmits the authentication result value to an ETSI-interworking authentication center(IAC) of the ETSI system(22). The ETSI-IAC performs an authentication algorithm, an authentication key, and an authentication procedure of the TIA/EIA system(21). The ETSI-IAC of the ETSI system(22) compares the a result value of the authentication algorithm with the authentication result value from the TIA-ILR, to decide whether the subscriber is appropriate. A decided result is transmitted to the TIA-ILR. The TIA-ILR transmits the authentication decision result to the VLR. The VLR transmits the authentication decision to the MSC.

Data supplied from the **esp@cenet** database - Worldwide

(19) 대한민국특허청(KR)
(12) 공개특허공보(A)

(51) Int. Cl. 6
H04Q 7/20

(11) 공개번호 특2001-0017852
(43) 공개일자 2001년03월05일

(21) 출원번호 10-1999-0033587
(22) 출원일자 1999년08월16일

(71) 출원인 한국전자통신연구원 정선종
대전 유성구 가정동 161번지
(72) 발명자 김영진
대전광역시서구월평동누리아파트107-1401
이남희
대전광역시유성구신성동한울아파트110-706
(74) 대리인 신영무
최승민

심사청구 : 있음

(54) 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 시스템 및 방법

요약

본 발명은 제 3 세대 이동통신 시스템인 차세대 이동통신(IMT-2000) 시스템의 패밀리 그룹간의 글로벌 로밍을 위한 시스템 및 방법에 관한 것이다.

본 발명은 단말기, 기지국, 교환기, 홈 위치등록기, 방문자 위치등록기 및 인증센터로 구성되는 북미방식의 시스템(TIA/EIA 시스템)과 유럽방식의 시스템(ETSI 시스템)간의 글로벌 로밍을 위한 시스템에 있어서, 홈 위치등록기 혹은 방문위치등록기의 역할과 메시지 변환 기능을 수행하는 인터워킹 위치등록기와, 게이트웨이 교환기 역할을 수행하는 인터워킹 교환기와, 상기 두 시스템 간에 이동하는 이동가입자에 대한 인증을 하기 위해서 상대 시스템의 인증체계 및 인증 알고리즘을 수용하는 인터워킹 인증센터를 포함하여 구성된 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 시스템 및 인증방법을 제공한다.

대표도

도2

색인어

IMT-2000

명세서

도면의 간단한 설명

도 1은 상이한 표준규격의 차세대 이동통신(IMT-2000) 시스템간의 로밍을 위한 시스템 구조도.

도 2는 상이한 인증체계를 갖는 TIA/EIA 시스템과 ETSI 시스템간의 인증방법을 설명하기 위해 도시한 절차도.

발명의 상세한 설명

발명의 목적

발명이 속하는 기술 및 그 분야 종래기술

본 발명은 제 3 세대 이동통신 시스템인 차세대 이동통신(이하 IMT-2000 이라 함) 시스템의 패밀리 그룹(family group) 간은 서로 상이한 표준 규격을 채택하고 있음)간의 글로벌 로밍(이동가입자가 전세계적으로 이동하면서 서비스를 받을 수 있는 기능)을

현재 IMT-2000은 전세계적으로 설계 및 연구가 진행되고 있는 관계로 아직 구현된 사례가 없으며, 현재 연구하는 분야도 독립형(stand-alone) IMT-2000 시스템에 관한 연구이고, 서로 다른 표준 규격의 패밀리(family) 간의 연동에 관하여는 연구가 미진한 상황이다. 또한 제 1 세대 및 제 2 세대의 이동통신 시스템간의 연동은 구현된 사례가 있지만 이들 간의 연동은 본 발명에서 언급하듯이 완전히 상이한 표준 규격간의 연동이 아니라 거의 유사한 표준 규격간의 연동이었다.(즉, 동일한 표준 규격의 버전(version) 간의 차이의 연동) 특히, IMT-2000 시스템의 유럽 및 북미의 패밀리간의 대표적인 차이점은 인증체계로써 이들간의 인증방안 연구는 매우 미진한 단계이다.

발명이 이루고자 하는 기술적 과제

따라서, 본 발명은 서로 다른 표준 규격의 IMT-2000 시스템의 패밀리간의 연동을 위한 시스템 구조를 제안하고 새로운 구조에서 정의한 시스템 엔터티의 기능을 정의하고, IMT-2000 시스템의 패밀리간의 연동을 위한 처리방법을 제공하는 데 그 목적이 있다.

또한 이러한 상이한 표준 규격간의 연동을 위해서는 최대한 각 패밀리의 표준 규격을 존중하여야 한다. 즉, 각 패밀리에서 정의한 시스템의 기본 구조와 표준 규격의 변동이 없이 인터워킹 위치등록기, 인터워킹 교환기 및 인터워킹 인증센터만을 추가하여 이들을 통해 양 표준 규격간의 차이점을 흡수하여 변환시켜 줌으로써 상이한 패밀리의 각 IMT-2000 시스템은 각자의 표준 규격에 따라 구현 개발할 수 있어야 한다.

상술한 목적을 달성하기 위한 본 발명에 따른 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 시스템은 단말기, 기지국, 교환기, 홈 위치등록기, 방문자 위치등록기 및 인증센터로 구성되는 북미방식의 시스템(TIA/EIA 시스템)과 유럽방식의 시스템(ETSI 시스템)간의 글로벌 로밍을 위한 시스템에 있어서, 홈 위치등록기 혹은 방문위치 등록기의 역할과 메시지 변환 기능을 수행하는 인터워킹 위치등록기와, 게이트웨이 교환기 역할을 수행하는 인터워킹 교환기와, 상기 방문 시스템과 홈 시스템간에 이동하는 이동가입자에 대한 인증을 하기 위해서 상대 시스템의 인증체계 및 인증 알고리즘을 수용하는 인터워킹 인증센터를 포함하여 구성된 것을 특징으로 한다.

또한, 상술한 목적을 달성하기 위한 본 발명에 따른 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 인증방법은 홈 시스템의 이동가입자가 방문 시스템으로 로밍을 하면 상기 가입자에 대하여 단말기는 인증알고리즘을 수행하고 인증을 하기 위하여 위치등록 메시지에 인증 결과치를 실어 기지국으로 전송하는 제 1 단계; 상기 단말기로부터 위치등록 메시지를 받은 기지국은 상기 메시지에 실려온 인증 결과치와 위치등록 관련정보를 위치등록 메시지에 실어 교환기로 전송하는 제 2 단계; 상기 기지국으로부터 위치등록 메시지를 받은 교환기는 위치등록을 수행하기 전에 그 가입자가 적법한지를 판단하기 위한 인증 절차를 수행하기 위하여 인증결과치를 인증요구 메시지에 실어 방문위치 등록기로 전송하는 제 3 단계; 상기 교환기로부터 인증 요구 메시지를 받은 방문 위치등록기는 상기 메시지에 실려온 인증 결과치를 인증 요구 메시지에 실어 방문 시스템의 인터워킹 위치등록기로 전송하는 제 4 단계; 상기 방문 시스템의 인터워킹 위치등록기는 방문 위치등록기로부터 받은 인증 결과치를 인증 요구 메시지에 실어 홈 시스템의 인터워킹 인증센터로 전송하는 제 5 단계; 상기 홈 시스템의 인터워킹 인증센터는 방문 시스템의 인증 알고리즘과 인증키 및 인증 절차를 수행하는 제 6 단계; 상기 홈 시스템의 인터워킹 인증센터는 방문 시스템의 인증 알고리즘을 수행하여 여기에서 나온 결과치와 방문 시스템의 인터워킹 위치등록기로부터 받은 인증 결과치와 비교하여 그 가입자의 적법성을 판단하는 제 7 단계; 상기 제 7 단계의 판단 결과를 인증요청응답 메시지에 실어서 방문 시스템의 인터워킹 위치등록기로 전송하는 제 8 단계; 상기 방문 시스템의 인터워킹 위치등록기는 홈 시스템의 인터워킹 인증센터로부터 받은 인증 판단결과를 인증요청응답 메시지에 실어서 방문자 위치등록기로 전송하는 제 9 단계; 및 상기 방문자 위치등록기는 방문 시스템의 인터워킹 위치등록기로부터 받은 인증 판단결과를 인증요청응답 메시지에 실어서 교환기로 전송하는 제 10 단계를 포함하여 이루어진 것을 특징으로 한다.

발명의 구성 및 작용

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.

도 1은 상이한 표준규격의 IMT-2000 시스템간의 로밍을 위한 시스템 구조도이다.

도 1의 그림자(shadow)가 표시되지 않은 부분(11 및 14)은 본래의 각 패밀리들의 IMT-2000 시스템이다. 즉, 북미방식의 시스템(TIA/EIA 시스템)(1)과 유럽방식의 시스템(ETSI 시스템)(2)을 나타낸 것이다. 이들 시스템들은 그 각각의 시스템을 가지고 자신의 영역의 이동가입자에게 서비스를 제공할 수 있다. 그리고 이들 시스템들은 그 자신과 동일한 표준규격을 가지는 IMT-2000 시스템과 연동을 할 때도 별도의 기능 엔터티를 필요로 하지 않는다. 즉, 동일한 표준규격을 사용하는 IMT-2000 시스템들이 서로 통신을 하고자 할 때는 서로 관련된 기능 엔터티끼리 연결하여 통신을 하면 가능하다. 가령 동일한 표준규격을 사용하는 A 시스템과 B 시스템이 서로 연동을 하고자 할 때는 마치 하나의 시스템처럼 통신을 하면 된다. 즉 A 시스템의 VLR이 B 시스템의 HLR과 통신을 하고자 할 때 직접 A 시스템의 VLR은 B 시스템의 HLR에게 통신을 할 수 있다.

그러나, 서로 상이한 표준규격을 사용하는 북미방식의 시스템인 TIA/EIA 시스템(1)과 유럽방식의 ETSI 시스템(2)간에 연동을 하자 할 때는 앞에서 말한 직접 통신이 불가능하다. 그리하여 본 발명에서는 이러한 상이한 표준규격을 사용하는 시스템간 특히,

하는 경우에 대한 방안을 제시하고자 한다.

이를 위하여 도 1의 그림자(shadow)가 표시된 부분(12 및 13)의 인터워킹 기능(인터워킹 위치등록기, 인터워킹 인증센터, 인터워킹 교환기)을 필요로 한다. 도 1의 그림자(shadow)가 표시된 부분(12 및 13)이 본 발명에서 제안한 상이한 표준규격을 사용하는 시스템간 특히, 북미방식의 시스템인 TIA/EIA 시스템(1)과 유럽방식의 ETSI 시스템(2)간의 글로벌 로밍을 위하여 추가된 시스템 기능 엔터티이며, 도 1은 이러한 글로벌 로밍을 위한 시스템 구조도이다.

도 1의 인터워킹 기능을 설명하면 다음과 같다.

인터워킹 위치등록기(ILR)는 방문시스템의 방문 위치등록기(VLR)의 입장에서 볼 때 방문자의 홈 위치등록기(HLR)로 인식된다. 예를 들어, TIA/EIA 시스템(1)의 이동가입자가 ETSI 시스템(2)으로 로밍을 하였을 때 ETSI 시스템(2)의 방문 위치등록기(VLR)는 방문한 이동가입자의 홈 위치등록기(HLR)에서 해당 가입자의 서비스 프로파일 정보를 가지고 오게 되는데 이때 방문 위치등록기(VLR)는 인터워킹 위치등록기(ETSI-ILR)를 방문자의 홈 위치등록기(HLR)기로 인식하고, 그에게 이동가입자의 서비스 프로파일을 요구한다. 이때까지는 ETSI 시스템(2)은 자신의 표준 규격에 따라 통신을 하게 된다. 그러나, ETSI 시스템(2)과 TIA/EIA 시스템(1)에서 사용하는 규격이 서로 상이하기 때문에 인터워킹 위치등록기(ETSI-ILR)에서 TIA/EIA 시스템(1)이 인식할 수 있는 메시지로 변환하여 TIA/EIA 시스템(1)의 인터워킹 위치등록기(TIA-ILR)에게 해당 가입자의 서비스 프로파일을 요구하게 된다. 즉, 인터워킹 위치등록기(ILR)는 홈 위치등록기(HLR)의 역할과 메시지 변환 기능을 수행한다.

한편, 인터워킹 위치등록기(ILR)는 홈 시스템의 홈 위치등록기(HLR)의 입장에서 볼 때 방문자의 방문 위치등록기(VLR)로 인식된다. 예를 들어, TIA/EIA 시스템(1)의 인터워킹 위치등록기(TIA-ILR)가 앞에서 설명하였듯이 ETSI 시스템(2)의 인터워킹 위치등록기(ETSI-ILR)로부터 ETSI 시스템(2)으로 이동한 가입자의 서비스 프로파일의 요구를 받게 되면, 그는 해당가입자의 홈 시스템인 TIA/EIA 시스템(1)의 홈 위치등록기(HLR)에게 서비스 프로파일을 요구하게 된다. 이때도 인터워킹 위치등록기와 홈 위치등록기는 TIA/EIA 시스템(1)의 표준 규격에 따라 통신을 하게 된다. 즉, 인터워킹 위치등록기(ILR)는 방문 위치등록기(VLR)의 역할을 수행한다.

인터워킹 교환기(IMSC)는 게이트웨이 교환기 역할을 수행한다. 그런데, TIA/EIA 시스템(1)과 ETSI 시스템(2)은 서로 다른 루팅 번호를 사용한다. 그러므로 인터워킹 교환기(IMSC)는 단순히 시스템간의 연동을 위한 스위치역 할 뿐만 아니라 서로 상이한 2가지의 루팅번호(TIA/EIA 시스템은 TLDN 사용, ETSI 시스템은 MSRN 사용)간의 변환 작업도 수행하여야 한다. 예를 들어 ETSI 시스템(2)에 존재하는 가입자가 TIA/EIA 시스템(1)으로 이동한 ETSI 시스템 소속의 가입자에게 호를 연결하고자 할 때, ETSI 시스템(2)의 발신가입자가 속한 교환기는 홈 위치등록기(HLR)로부터 착신가입자가 TIA/EIA 시스템(1)으로 이동하였다는 사실을 알게 되는데, TIA/EIA 시스템(1)과 ETSI 시스템(2)은 서로 다른 루팅번호를 사용하기 때문에 직접 TIA/EIA 시스템(1)의 착신 교환기로 호를 루팅해 가는 것은 불가능하다. 즉, 발신 교환기는 인터워킹 교환기(ETSI-IMSC)로 호를 루팅하게 되며, 이 인터워킹 교환기(ETSI-IMSC)가 TIA/EIA 시스템(1)의 인터워킹 교환기(TIA-IMSC)에게 루팅을 하여, 이 인터워킹 교환기(TIA-IMSC)를 통하여 TIA/EIA 시스템(1) 내의 루팅번호에 따라 착신 교환기까지 루팅하여 호를 연결하게 된다. 이때도 역시 ETSI 시스템(2)과 TIA/EIA 시스템(1)의 각 기능 엔터티들은 자신의 표준 규격에 따라 통신을 하게 된다.

홈 시스템의 인터워킹 인증센터(IAC)는 방문 시스템의 인터워킹 위치등록기의 입장에서 볼 때 방문자의 인증 센터(AC)로 인식된다. 미국과 유럽방식의 시스템은 서로 완전히 상이한 인증체계를 가지고 있는데 이를 사이에 이동하는 이동가입자에 대한 인증을 하기 위해서는 상대 시스템의 인증체계 및 인증 알고리즘을 인터워킹 인증센터에 수용함으로써 해결할 수 있다. 또한, 단말기는 두가지의 시스템이 완전히 상이한 인증체계를 가지기 때문에 두가지 방식의 인증 알고리즘 및 인증절차를 모두 수용하는 듀얼모드 단말기든지 혹은 듀얼모드 스마트카드를 사용할 수 있는 단말기로 만들어야 한다.

도 2는 이러한 상이한 인증체계를 갖는 TIA/EIA 시스템과 ETSI 시스템간의 인증방법을 설명하기 위해 도시한 절차도로서. 단계별로 설명하면 다음과 같다.

제 1 단계, ETSI 시스템(22)의 이동가입자가 TIA/EIA 시스템(21)으로 로밍을 하면 이 가입자에 대하여 TIA/EIA 시스템(21)에 위치등록을 하게 되는데 이때 필요한 사항이 인증 절차이다.(발신호 시도 및 착신호 시도 때도 여기에서 설명한 인증 절차가 필요) 그런데 앞에서 설명하였듯이 단말기가 듀얼모드의 인증절차를 수용하기 때문에 단말기(MS)는 TIA/EIA 시스템(21)의 인증 알고리즘을 수행하게 되며, 그 결과치(AUTHR)를 위치등록 메시지(registration request)에 실어 기지국(BS)으로 전송한다.

제 2 단계, 기지국(BS)은 단말기(MS)로부터 위치등록 메시지를 받으면 그 메시지에 실려온 인증 결과치(AUTHR)와 위치등록 관련정보를 위치등록 메시지(location update request)에 실어 교환기(MSC)로 전송하게 된다.

제 3 단계, 교환기(MSC)는 기지국(BS)으로부터 위치등록 메시지를 받으면 위치등록을 수행하기 전에 그 가입자가 적법한지를 판단하기 위한 인증 절차를 수행하여 적법한 경우에만 위치등록을 요구한다. 그러므로 교환기(MSC)는 기지국(BS)으로부터 받은 인증 결과치(AUTHR)를 인증 요구 메시지(authentication request)에 실어 방문자 위치등록기(VLR)로 전송한다.

제 4 단계, 방문자 위치등록기(VLR)는 교환기(MSC)로부터 인증 요구 메시지를 받으면 그 메시지에 실려온 인증 결과치(AUTHR)를 인증 요구 메시지(authentication request)에 실어 TIA/EIA 시스템(21)의 인터워킹 위치등록기(TIA-ILR)로 전송한다.

제 5 단계, 그런데 이동 가입자가 적법한지 여부는 그 가입자가 소속된 홈 시스템에서 판단을 하여야 하기 때문에 그 가입자에 대한 인증은 홈 시스템에서 수행되어야 한다. 그러므로 TIA/EIA 시스템의 인터워킹 위치등록기(TIA-ILR)는 방문 위치등록기로부터 받은 인증 결과치(AUTHR)를 인증 요구 메시지(authentication request)에 실어 ETSI 시스템의 인터워킹 인증센터(ETSI-IAC)로 전송한다.

제 6 단계, 이때 ETSI 시스템(22)의 인터워킹 인증센터(ETSI-IAC)는 TIA/EIA 시스템의 인증 알고리즘과 인증키 및 인증 절차를 수용하여야 한다. 그리하여 인터워킹 인증센터는 TIA/EIA 시스템(21)의 인증 알고리즘을 수행하여 여기에서 나온 결과치(AUTHR)와 TIA/EIA 시스템(21)의 인터워킹 위치등록기(TIA-ILR)로부터 받은 인증 결과치(AUTHR)와 비교하여 그 가입자의 적법성을 판단한다. 그리고 그 판단결과를 인증요청응답 메시지(authentication request Ack.)에 실어서 TIA/EIA 시스템의 인터워킹 위치등록기(TIA-ILR)로 전송한다.

제 7 단계, TIA/EIA 시스템(21)의 인터워킹 위치등록기(TIA-ILR)는 ETSI 시스템(22)의 인터워킹 인증센터(ETSI-IAC)로부터 받은 인증 판단결과를 인증요청응답 메시지(authentication request Ack.)에 실어서 방문자 위치등록기로 전송한다.

제 8 단계, 방문자 위치등록기는 TIA/EIA 시스템(21)의 인터워킹 위치등록기(TIA-ILR)로부터 받은 인증 판단결과를 인증요청응답 메시지(authentication request Ack.)에 실어서 교환기에게 전송한다. 여기서 인증 절차는 끝나게 되며 교환기는 위치등록 절차를 수행하게 된다.

앞에서도 언급하였듯이 단말기는 두 가지의 시스템이 상이한 표준규격을 사용하기 때문에 두 가지 표준규격을 모두 수용하는 듀얼모드 단말기든지 혹은 듀얼모드 스마트카드를 사용할 수 있는 단말기로 만들어야 한다.

이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함으로 전술한 실시 예 및 첨부된 도면에 한정되는 것이 아니다.

발명의 효과

본 발명에서는 이동 가입자가 전세계적으로 서로 다른 표준 규격을 사용하는 IMT-2000 시스템간을 자유롭게 이동하면서 자신이 원하는 서비스를 시간과 장소에 구애받지 않고 받을 수 있으며, 또한 상이한 표준 규격을 사용하는 시스템끼리 연동을 하면서도 각 시스템들은 자신의 표준규격을 바꾸지 않고 본 발명에서 제안한 인터워킹 기능만을 추가 함으로써 쉽게 글로벌 로밍을 지원 할 수 있다. 그리고, 이동 시스템에서 매우 중요한 인증처리도 상이한 인증체계를 갖는 시스템간에 가능하다.

(57) 청구의 범위

청구항1

단말기, 기지국, 교환기, 홈 위치등록기, 방문자 위치등록기 및 인증센터로 구성되는 북미방식의 시스템(TIA/EIA 시스템)과 유럽 방식의 시스템(ETSI 시스템)간의 글로벌 로밍을 위한 시스템에 있어서,

홈 위치등록기 및 방문자 위치등록기의 역할과 메시지 변환 기능을 수행하는 인터워킹 위치등록기와,

게이트웨이 교환기 역할을 수행하는 인터워킹 교환기와,

상기 두 시스템간에 이동하는 이동가입자에 대한 인증을 하기 위해서 상대 시스템의 인증체계 및 인증 알고리즘을 수용하는 인터워킹 인증센터를 포함하여 구성된 것을 특징으로 하는 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 시스템.

청구항2

제 1 항에 있어서,

상기 인터워킹 위치등록기는 방문 시스템의 방문 위치등록기의 입장에서 볼 때 방문 이동가입자의 홈 위치등록기의 역할 및 메시지 변환 기능을 수행하는 것을 특징으로 하는 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 시스템.

청구항3

제 1 항에 있어서,

상기 인터워킹 위치등록기는 홈 시스템의 홈 위치등록기의 입장에서 볼 때 방문 이동가입자의 방문 위치등록기의 역할 및 메시지 변환 기능을 수행하는 것을 특징으로 하는 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 시스템.

청구항4

제 1 항에 있어서,

상기 인터워킹 교환기는 게이트웨이 교환기 역할 및 메시지 변환 기능을 수행하는 것을 특징으로 하는 상이한 규격의 차세대 이

첨구함5

제 1 항에 있어서,

상기 인터워킹 인증센터는 방문 시스템의 인터워킹 위치등록기의 입장에서 볼 때 방문 이동가입자의 인증 센터의 역할을 수행하는 것을 특징으로 하는 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 시스템.

첨구함6

홈 시스템의 이동가입자가 방문 시스템으로 로밍을 하면 상기 가입자에 대하여 단말기는 인증알고리즘을 수행하고 인증을 하기 위하여 위치등록 메시지에 인증 결과치를 실어 기지국으로 전송하는 단계;

상기 단말기로부터 위치등록 메시지를 받은 기지국은 상기 메시지에 실려온 인증 결과치와 위치등록 관련정보를 위치등록 메시지에 실어 교환기로 전송하는 단계;

상기 기지국으로부터 위치등록 메시지를 받은 교환기는 위치등록을 수행하기 전에 그 가입자가 적법한지를 판단하기 위한 인증 절차를 수행하기 위하여 인증결과치를 인증요구 메시지에 실어 방문위치 등록기로 전송하는 단계;

상기 교환기로부터 인증 요구 메시지를 받은 방문 위치등록기는 상기 메시지에 실려온 인증 결과치를 인증 요구 메시지에 실어 방문 시스템의 인터워킹 위치등록기로 전송하는 단계;

상기 방문 시스템의 인터워킹 위치등록기는 방문 위치등록기로부터 받은 인증 결과치를 인증 요구 메시지에 실어 홈 시스템의 인터워킹 인증센터로 전송하는 단계;

상기 홈 시스템의 인터워킹 인증센터는 방문 시스템의 인증 알고리즘과 인증키 및 인증 절차를 수행하는 단계;

상기 홈 시스템의 인터워킹 인증센터는 방문 시스템의 인증 알고리즘을 수행하여 여기에서 나온 결과치와 방문 시스템의 인터워킹 위치등록기로부터 받은 인증 결과치와 비교하여 그 가입자의 적법성을 판단하는 단계;

상기 판단 결과를 인증요청응답 메시지에 실어서 방문 시스템의 인터워킹 위치등록기로 전송하는 단계;

상기 방문 시스템의 인터워킹 위치등록기는 홈 시스템의 인터워킹 인증센터로부터 받은 인증 판단결과를 인증요청응답 메시지에 실어서 방문자 위치등록기로 전송하는 단계; 및

상기 방문자 위치등록기는 방문 시스템의 인터워킹 위치등록기로부터 받은 인증 판단결과를 인증요청응답 메시지에 실어서 교환기로 전송하는 단계를 포함하여 이루어진 것을 특징으로 하는 상이한 규격의 차세대 이동통신 시스템간의 글로벌 로밍을 위한 인증방법.

도면

도면1

도면2

21

22

TIA/EIA 시스템

ETSI 시스템

