E1 222 Stochastic Models and Applications Problem Sheet 3.1

(You need not submit the solutions)

- 1. Consider the random experiment of rolling two fair dice. Let X denote the maximum of the two numbers and let Y denote the minimum of the two numbers. Calculate the joint probability mass function of X, Y and calculate the marginal mass function of X and Y from the joint mass function. Find the conditional mass function of Y given X.
- 2. Let (X,Y) have joint density

$$f_{XY}(x,y) = \frac{1}{4}[1 + xy(x^2 - y^2)], |x| \le 1, |y| \le 1.$$

Find the marginal and conditional densities. Find $P[X > 0 \mid Y = 0]$.

- 3. Let $f(x,y) = e^{-x-y}$, x > 0, y > 0. Show that this a density function. Find the marginals and the conditional densities.
- 4. Let F_{XY} be a joint distribution function with F_X and F_Y being the corresponding marginal distribution functions. Show that

$$1 - (1 - F_X(x) + 1 - F_Y(y)) \le F_{XY}(x, y) \le \min(F_X(x), F_Y(y)), \ \forall x, y$$

5. Let

$$F(x,y) = 0$$
, if $x < 0$, or $y < 0$, or $x + y < 1$
= 1, otherwise

Show that F satisfies the following: $F(-\infty, y) = F(x, -\infty) = 0$; $F(\infty, \infty) = 1$; F is non-decreasing in each variable. Is F(x, y) a distribution function? (Hint: If it were the joint distribution of two random variables, X, Y, what would be $P[1/3 < X \le 1, 1/3 < Y \le 1]$).

6. Let F_1 and F_2 be two one dimensional continuous distribution functions with f_1 and f_2 being the corresponding densities. Define a function $f: \Re^2 \to \Re$ by

$$f(x,y) = f_1(x)f_2(y) \left[1 + \alpha(2F_1(x) - 1)(2F_2(y) - 1) \right]$$

where α is a real number. Show that f(x,y) is a two dimensional density function for all $\alpha \in (-1,1)$. Show that the two marginals of f(x,y) are f_1 and f_2 . What does this imply about determining the joint density from the marginals? (Note that $\int_{-\infty}^{\infty} F_1(x) f_1(x) dx = \frac{1}{2}$).