

Coresets for Multiple ℓ_p Regression

David P. Woodruff and Taisuke Yasuda

Carnegie Mellon University Computer Science Department

Coresets for Single ℓ_p Regression

• ℓ_p linear regression: given $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{b} \in \mathbb{R}^n$, solve

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p = \sum_{i=1}^n |\langle \mathbf{a}_i, \mathbf{x} \rangle - \mathbf{b}_i|^p$$

- -p = 2: least squares linear regression
- -p = 1: least absolute deviations regression
- ▶ Minimize average fitting error, gives robust solutions
- $-p = \infty$: Chebyshev regression
 - ► Minimize worst-case fitting error
- · Coresets: small weighted subset of a dataset
- Want a subset that is representative of the dataset
- For ℓ_p linear regression: weighted subset **S** s.t.

$$\|\mathbf{S}(\mathbf{A}\mathbf{x} - \mathbf{b})\|_p^p = (1 \pm \varepsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p$$
 for every $\mathbf{x} \in \mathbb{R}^d$

S: sparse diagonal matrix of weights

- Goal: choose subset with small size s = nnz(S)
- Prior work on coresets for single response ℓ_p regression
- We already know how to compute nearly optimal coresets!
- Technique: ℓ_p Lewis weight sampling [CP15, WY23]

Theorem [CP15, WY23]. Lewis weight sampling gives a coreset S s.t.

 $\|\mathbf{S}(\mathbf{A}\mathbf{x} - \mathbf{b})\|_p^p = (1 \pm \varepsilon)\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p$ for every $\mathbf{x} \in \mathbb{R}^d$

with size s = nnz(S) at most

$$s = \begin{cases} \tilde{O}(\varepsilon^{-2}d^{p/2}) & p > 2\\ \tilde{O}(\varepsilon^{-2}d) & p \le 2 \end{cases}$$

Furthermore, the bound on s is nearly optimal.

• This settles the picture for single response regression. What about multiple responses?

Question. What if we have m responses rather than just a single response \mathbf{b} ?

Coresets for Multiple ℓ_p Regression

- Multiple \mathcal{C}_p regression: given $\mathbf{A} \in \mathbb{R}^{n \times d}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$, solve $\min_{\mathbf{X} \in \mathbb{R}^{d \times m}} \|\mathbf{A}\mathbf{X} \mathbf{B}\|_{p,p}^p = \sum_{i=1}^n \|\mathbf{a}_i^\mathsf{T}\mathbf{X} \mathbf{b}_i\|_p^p = \sum_{i=1}^n \sum_{i=1}^m (\mathbf{A}\mathbf{X} \mathbf{B})_{i,j}$
- Prior work:
 - For p=2, Pythagorean theorems allows us to generalize single response result seamlessly: $s=\tilde{O}(\varepsilon^{-2}d)$ [CW13]
- For $p \neq 2$, straightforward to obtain $s = \text{poly}(\varepsilon^{-1}, d) \cdot m$, that is, linear dependence on m
- **Challenge**: can we remove the dependence on m?
- Our first main result:

Theorem (Strong coreset). Lewis weight sampling gives a coreset S s.t.

 $\|\mathbf{S}(\mathbf{AX} - \mathbf{B})\|_{p,p}^p = (1 \pm \varepsilon)\|\mathbf{AX} - \mathbf{B}\|_{p,p}^p$ for every $\mathbf{X} \in \mathbb{R}^{d \times m}$

with size s = nnz(S) at most

$$s = \begin{cases} \tilde{O}(\varepsilon^{-p} d^{p/2}) & p > 2\\ \tilde{O}(\varepsilon^{-2} d) & p \le 2 \end{cases}$$

Furthermore, the bound on s is nearly optimal.

- Techniques:
- Generalization of techniques for active ℓ_p regression [MMWY22] to achieve polylogarithmic dependence on m
- Averaging argument to completely remove m dependence
- What if we only care about the minimizer?
 - Currently, coreset is required to preserve the entire objective function

Theorem (Weak coreset). Lewis weight sampling gives a coreset \mathbf{S} s.t. $\tilde{\mathbf{X}} = \arg\min_{\mathbf{X}} ||\mathbf{S}(\mathbf{A}\mathbf{X} - \mathbf{B})||_{p,p}^p$ is a

 $(1 + \varepsilon)$ -minimizer with size s = nnz(S) at most

$$s = \begin{cases} \tilde{O}(\varepsilon^{1-p}d^{p/2}) & p > 2\\ \tilde{O}(\varepsilon^{-1}d) & 1$$

Furthermore, the bound on s is nearly optimal.

Applications

- We give two applications of our techniques
- Sublinear Euclidean power means
- Euclidean power means: generalization of mean

Theorem. The power mean of s uniform samples is a $(1+\varepsilon)$ -approximate minimizer of the power mean cost for

$$s = \begin{cases} \tilde{O}(\varepsilon^{1-p} & p > 2\\ \tilde{O}(\varepsilon^{-1}) & 1$$

Furthermore, the bound on s is nearly optimal.

- Resolves an open question of [CSS21]
- Think of **B** as the input vectors (set $m \leftarrow d$) and **A** as the all ones vector (set $d \leftarrow 1$)
- Dvoretzky's theorem to embed ℓ_2 into ℓ_p
- Spanning coresets for ℓ_p subspace approximation
 - ℓ_p subspace approximation: generalization of PCA

Theorem. For $p \in (1,2)$, there is always a subset of s points that spans a $(1 + \varepsilon)$ approximation solution, for $s = \tilde{O}(\varepsilon^{-1}k)$. Furthermore, the bound on s is nearly optimal.

- Improves a $s = \tilde{O}(\varepsilon^{-1}k^2)$ bound of [SV07]

References

[CP15] Cohen, Peng, STOC 2015
[CSS21] Cohen-Addad, Saulpic, Schwiegelshohn, NeurlPS 2021
[CW13] Clarkson, Woodruff, STOC 2013
[MMWY22] Musco, Musco, Woodruff, Yasuda, FOCS 2022
[SV07] Shyamalkumar, Varadarajan, SODA 2007
[WY23] Woodruff, Yasuda, SODA 2023