MA557 Homework 10

Carlos Salinas

November 28, 2015

Let $\varphi \colon R \to S$ be a homomorphism of rings, ${}^a\varphi \colon \operatorname{Spec} S \to \operatorname{Spec} R$ the induced map of the spectra, and $\mathfrak{p} \in \operatorname{Spec} R$. Show that the fiber $({}^a\varphi)^{-1}(\mathfrak{p})$ is homeomorphic to $\operatorname{Spec}(S \otimes_R k(\mathfrak{p}))$.

Proof. This is demonstrated (to some extent) by Matsumura, following Theorem 7.2 on p. 47, we shall attempt to supply the missing details here. Recall, from the definition of the pre-image, that

$$({}^{a}\varphi)^{-1}(\mathfrak{p}) = \{ \mathfrak{q} \in \operatorname{Spec} S \mid \mathfrak{q} \cap R = \mathfrak{p} \}.$$

Define a ring homomorphism $\psi \colon S \to S \otimes k(\mathfrak{p})$ via $\psi(s) \coloneqq s \otimes 1$. We claim that the induced map on the spectra, i.e., the map ${}^a\psi \colon \operatorname{Spec}(S \otimes k(\mathfrak{p})) \to \operatorname{Spec} S$, is a homeomorphism onto its image and that im ${}^a\psi = ({}^a\varphi)^{-1}$. First we will show the latter, that is,

$$\operatorname{im}^a \psi = \{ \mathfrak{q} \in \operatorname{Spec} S \mid \mathfrak{q} = \mathfrak{r} \cap S \text{ for } \mathfrak{r} \in \operatorname{Spec}(S \otimes k(\mathfrak{p})) \}$$

Let $R \subset S$ be an integral extension of rings with S a Noetherian ring, and let $\mathfrak{p} \in \operatorname{Spec} R$. Show that there are only finitely many primes in S lying over \mathfrak{p} .

Proof. This is the same as Exercise 9.3 from Matsumura, where he suggests the following approach: Taking a prime ideal $\mathfrak{p} \in \operatorname{Spec} R$ and localizing at \mathfrak{p} we may assume that \mathfrak{p} is maximal.

Let $\varphi \colon R \to S$ be a homeomorphism of rings with S a Noetherian ring. Show that the following are equivalent:

- (i) φ satisfies going up.
- (ii) ${}^a\varphi \colon \operatorname{Spec} S \to \operatorname{Spec} R$ is a closed map.
- (iii) for every $\mathfrak{q} \in \operatorname{Spec} S$, the induced map $\operatorname{Spec}(S/\mathfrak{q}) \to \operatorname{Spec}(R/\mathfrak{q} \cap S)$ is surjective.

Proof.

Let $R \subset S$ be an integral extension of domains with R normal, $K = \operatorname{Quot} R$, $\alpha \in S$, $X^n + a_1 X^{n-1} + \cdots + a_n$ the minimal polynomial of α over K (recall $a_i \in R$). Show that for any R-ideal I, $\alpha \in \sqrt{IS}$ if and only if $a_i \in \sqrt{I}$ for $1 \le i \le n$.

Proof.

Let k be a field and $R = k[X_1,...,X_n]$ a k-algebra. Show that the following are equivalent:

- (i) R is a domain with dim R = n 1
- (ii) $R \cong k[X_1,...,X_n]/(f)$, where $k[X_1,...,X_n]$ is a polynomial ring and f is an irreducible polynomial.

Proof.