movq Operand Combinations

Cannot do memory-memory transfer with a single instruction!

Type	Form	Operand value		Name		Instru	ction	Effect		Description	1
Immediate	\$Imm	Imm		Immediate		leaq	S, D	$D \leftarrow$	& S	Load effect	ive address
Immediate	ψ1πιπ.	1111111		miniculate		INC	D	$D \leftarrow$	D+1	Increment	
Register	\mathbf{r}_a	$R[r_a]$	r_a		Register		D	$D \leftarrow$	D-1	Decrement	
	u					NEG	D	$D \leftarrow$		Negate	
Memory	Imm	M[Imm]		Absolute		NOT	D	$D \leftarrow$	$\sim D$	Compleme	nt
Memory	(r_a)	$M[R[r_a]]$		Indirect		ADD	S, D	$D \leftarrow$		Add	
Memory	$Imm(\mathbf{r}_h)$	$M[Imm + R[r_b]]$		Base + displacement		SUB	S, D	$D \leftarrow$		Subtract	
Memory	$(\mathbf{r}_h,\mathbf{r}_i)$	$M[R[r_b] + R[r_i]]$		Indexed		IMUL	S, D	$D \leftarrow$		Multiply	
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Indexed		XOR	S, D S, D	$D \leftarrow D \leftarrow$		Exclusive-c	or .
Memory	$Imm(\mathbf{r}_b,\mathbf{r}_i)$	$M[Imm + R[r_b] + F$	$[\Gamma_i]$			OR AND	S, D	$D \leftarrow D \leftarrow$	* * * * * * * * * * * * * * * * * * *	And	
Memory	$(\mathbf{r}_i,\mathbf{s})$	$M[R[r_i] \cdot s]$		Scaled indexe	ed	AND					
Memory	$Imm(,r_i,s)$	$M[Imm + R[r_i] \cdot s]$		Scaled indexe	ed	SAL	k, D	$D \leftarrow$		Left shift	
Memory	$(\mathbf{r}_h, \mathbf{r}_i, s)$	$M[R[r_h] + R[r_i] \cdot s]$		Scaled indexed		SHL	k, D	$D \leftarrow$		The state of the s	same as sal)
Memory	$Imm(\mathbf{r}_h,\mathbf{r}_i,s)$	$M[Imm + R[r_b] + F$		Scaled indexe		SAR	k, D		$D >>_{\mathbf{A}} k$	Arithmetic	
Wichiory	$mm(1_b,1_i,s)$	$W[Imm + K[1_b] + 1$	$[[r_i], s]$	Scarca mack		SHR	k, D	υ ←	$D >>_{\mathbf{L}} k$	Logical righ	it smit
63		24	4-		T man						
63		31	15	7 0	63				31	15	7 0
%rax		%eax	%ax	%al	%r8				%r8d	%r8w	%r8b
%rbx		%ebx	%bx	%bl	%r9				%r9d	%r9w	%r9b
%rcx		%есх	%cx	%cl	%r10				%r10d	%r10w	%r10b
%rdx		%edx	%dx	%d1	%r11				%r11d	%r11w	#r11b
%rsi		%esi	%si	%sil	%r12				%r12d	%r12w	*r12b
%rdi		%edi_	%di	%dil	%r13				%r13d	%r13w	*r13b
%rbp		%ebp	%bp	%bpl	%r14				%r14d	%r14w	%r14b
%rsp		%esp	%sp	%spl	%r15				%r15d	%r15w	%r15b

$$B = byte = 1 bytes$$
 $W = word = 2 bytes$
 $L = long = 4 bytes$
 $Q = quadword = 8 bytes$

■ Single bit registers

CF ZF SF OF

•CF Carry Flag (for *unsigned*) **SF** Sign Flag (for *signed*)

ZF Zero Flag

OF Overflow Flag (for *signed*)

■ Implicitly set (as side effect) by arithmetic operations

Example: $addq Src, Dest \leftrightarrow t = a+b$

CF set if carry out from most significant bit (unsigned overflow)

ZF set if t == 0

SF set if t < 0 (as signed)

OF set if two's-complement (signed) overflow

(a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

■ Note: **leaq** is not considered as arithmetic instruction

■ Explicit Setting by Compare Instruction

- **■cmpq** Src1, Src2
- **■**cmpq **b**, **a** like computing **a**-**b** without setting destination
- **CF** set if carry out from most significant bit (used for unsigned comparisons)
- "ZF set if a == b
- **SF set** if (a-b) < 0 (as signed)
- OF set if two's-complement (signed) overflow (a>0 && b<0 && (a−b)<0)</p>

|| (a<0 && b>0 && (a-b)>0)

■ Explicit Setting by Test instruction

- testq Src1, Src2
 - •testq b, a like computing a&b without setting destination
- Sets condition codes based on value of Src1 & Src2
- Useful to have one of the operands be a mask
- *ZF set when a&b == 0
- ■SF set when a&b < 0

SetX	Condition	Description	
sete	ZF	Equal / Zero	
setne	~ZF	Not Equal / Not Zero	
sets	SF	Negative	
setns	~SF	Nonnegative	
setg	~(SF^OF) &~ZF	Greater (Signed)	
setge	~(SF^OF)	Greater or Equal (Signed)	
setl	(SF^OF)	Less (Signed)	
setle	(SF^OF) ZF	Less or Equal (Signed)	type "
seta	~CF&~ZF	Above (unsigned)	Unsigned
setb	CF	Below (unsigned)	

SetX Instructions:

Set single byte based on combination of condition codes

SF

OF

- One of addressable byte registers
 - Does not alter remaining bytes
 - Typically use movzbl to finish job
 - 32-bit instructions also set upper 32 bits to 0

jX	Condition	Description
jmp	1	Unconditional
je	ZF	Equal / Zero
jne	~ZF	Not Equal / Not Zero
js	SF	Negative
jns	~SF	Nonnegative
jg	~(SF^OF) &~ZF	Greater (Signed)
jge	~(SF^OF)	Greater or Equal (Signed)
jl	(SF^OF)	Less (Signed)
jle	(SF^OF) ZF	Less or Equal (Signed)
ja	~CF&~ZF	Above unsigned)
jb	CF	Below (unsigned)

Conditional Move Example

```
long absdiff
       (long x, long y)
                                    Register
                                                Use(s)
         long result;
                                    %rdi
                                                Argument x
         if (x > y)
             result = x-y;
                                    %rsi
                                                Argument y
                                    %rax
                                                Return value
             result = y-x;
         return result;
                  absdiff:
                             %rdi, %rax # x
                     movq
                             %rsi, %rax # result = x-y
                     subq
                     pvom
                             %rsi, %rdx
                             %rdi, %rdx # eval = y-x
                     subq
                             %rsi, %rdi # x:y
                     cmpq
                             %rdx, %rax # if <=, result = eval</pre>
                     cmovle
leaq 7(%rdi), %rax
                             ==> t = x + 7, t in %rax
                             ==> x & x, set conditional codes
testq %rdi, %rdi
                             ==> if (x&x >= 0), t = x
cmovns %rdi, %rax
sarq $3, %rax
                                    t = t >> 3
```

一种得到准确的负数除法结果的方法

(直接算术右移, 所得商(整数) 比正确的永远小 1, 通过加 7 使其进入上一组"轮回"可以使其商增加 1, 同时可以辨别正数)

```
long fun(long a, long b) {
                                     GOTO Version (jump-to-middle) GOTO Version (do-while)
                                                                                                                       Func:
    long result = b;
                                                                                                                            movq
                                                                                                                                      %rsi, %rax
                                                                                                                                                    # result = b
    while (b>0) {
                                                                                      long result = b;
                                            long result = b;
                                                                                                                            cmpq
                                                                                                                                      $0, %rsi
                                                                                                                                                     # compare b and 0
         result = result * a;
                                                                                      if (!(b>0)) goto DONE;
                                            goto TEST;
LOOP:
                                                                                                                            jng
                                                                                                                                      DONE
                                                                                                                                                     # if (!(b>0)) goto DONE
        b = b - a;
                                                                                                                       LOOP:
                                                result = result * a;
                                                                                      result = result * a;
    return result;
                                                                                                                            imulq
                                                                                                                                      %rdi, %rax
                                                                                                                                                     # result = result * a
                                                                                     b = b - a;
}
                                                                                                                                      %rdi, %rsi
                                                                                                                                                     # b = b - a
                                                                                                                            subq
                                            TEST:
                                                                                 TEST:
                                                if (b>0) goto LOOP;
    GOTO Version (do-while)
                                                                                     if (b>0) goto LOOP;
                                                                                                                            cmpq
                                                                                                                                      $0, %rsi
                                                                                                                                                     # compare b and 0
                                            DONE:
                                                                                 DONE:
                                                                                                                                      LOOP
                                                                                                                                                     # goto LOOP
                                                return result;
                                                                                                                            ig
         long result = b;
                                                                                      return result;
                                                                                                                       DONE:
         if (!(b>0)) goto DONE;
         LOOP:
                                                                                                                            ret
              result = result * a;
              b = b - a;
                                                                                                                                                     а
                                                                                                                                                                %rdi
         TEST:
                                                                                                                                                     b
                                                                                                                                                                %rsi
              if (b>0) goto LOOP;
                                                                                                                                                               %rax
         DONE
              return result:
```

```
fun:
                                                             long fun(long a, long b) {
                                      # result = b
                                                                  long result = b;
         movq
                   %rsi, %rax
                                                                  while (b>0) {
L2:
                                                                       result = result * a;
                                                                       b = b - a;
                   $0, %rsi
                                      # compare b and 0
         cmpq
                                                                  }
                                      # if (b>0) goto L3
         jg
                   L3
                                                                  return result;
                                                             }
                                      # return result
         ret
L3:
                   %rdi, %rax
                                      # result = result * a
         imulq
                                                                              %rdi
                   %rdi, %rsi
                                      #b=b-a
         subq
                                                                    b
                                                                              %rsi
                   L2
         imp
                                      # goto L2
                                                                  result
                                                                              %rax
```

An example of while loop

"For" Loop → While Loop

```
For Version
for (Init; Test; Update )
```


Body

```
Init;
while (Test) {
    Body
    Update;
}
```

Instruction	Description			
CMOVA <i>r16, r/m16</i>	Move if above (CF=0 and ZF=0)			
CMOVA <i>r32, r/m32</i>	Move if above (CF=0 and ZF=0)			
CMOVAE r16, r/m16	Move if above or equal (CF=0)	CMOVNB <i>r16, r/m16</i>	Move if not below (CF=0)	
CMOVAE <i>r32, r/m32</i>	Move if above or equal (CF=0)	CMOV/NP =22 =/m 22	Move if not below (CF=0)	
CMOVB <i>r16, r/m16</i>	Move if below (CF=1)	CMOVNB <i>r32, r/m32</i>	Move if flot below (Cr=0)	
CMOVB <i>r32, r/m32</i>	Move if below (CF=1)	CMOVNBE r16, r/m16	Move if not below or equal (CF=0 and ZF=0	
CMOVBE r16, r/m16	Move if below or equal (CF=1 or ZF=1)	CMOVNBE r32, r/m32	Move if not below or equal (CF=0 and ZF=0	
CMOVBE <i>r32, r/m32</i>	Move if below or equal (CF=1 or ZF=1)	CMOV/NC r16 r/m16	Mayo if not corry (CE-0)	
CMOVC r16, r/m16	Move if carry (CF=1)	CMOVNC r16, r/m16	Move if not carry (CF=0)	
CMOVC <i>r32, r/m32</i>	Move if carry (CF=1)	CMOVNC <i>r32, r/m32</i>	Move if not carry (CF=0)	
CMOVE <i>r16, r/m16</i>	Move if equal (ZF=1)	CMOVNE <i>r16, r/m16</i>	Move if not equal (ZF=0)	
CMOVE <i>r32, r/m32</i>	Move if equal (ZF=1)			
CMOVG <i>r16, r/m16</i>	Move if greater (ZF=0 and SF=OF)	CMOVNE <i>r32, r/m32</i>	Move if not equal (ZF=0)	
CMOVG <i>r32, r/m32</i>	Move if greater (ZF=0 and SF=OF)	CMOVNG r16, r/m16	Move if not greater (ZF=1 or SF<>OF)	
CMOVGE r16, r/m16	Move if greater or equal (SF=OF)	CMOVNG <i>r32, r/m32</i>	Move if not greater (ZF=1 or SF<>OF)	
CMOVGE <i>r32, r/m32</i>	Move if greater or equal (SF=OF)		,	
CMOVL <i>r16, r/m16</i>	Move if less (SF<>OF)	CMOVNGE r16, r/m16	Move if not greater or equal (SF<>OF)	
CMOVL <i>r32, r/m32</i>	Move if less (SF<>OF)	CMOVNGE <i>r32, r/m32</i>	Move if not greater or equal (SF<>OF)	
CMOVLE r16, r/m16	Move if less or equal (ZF=1 or SF<>OF)	CMOVNL r16, r/m16	Move if not less (SF=OF)	
CMOVLE <i>r32, r/m32</i>	Move if less or equal (ZF=1 or SF<>OF)	CHOVIL 110, 1/11110		
CMOVNA r16, r/m16	Move if not above (CF=1 or ZF=1)	CMOVNL <i>r32, r/m32</i>	Move if not less (SF=OF)	
CMOVNA r32, r/m32	Move if not above (CF=1 or ZF=1)	CMOVNLE r16, r/m16	Move if not less or equal (ZF=0 and SF=OF)	
CMOVNAE r16, r/m16	NAE r16, r/m16 Move if not above or equal (CF=1)		Move if not less or equal (ZF=0 and SF=OF	
CMOVNAE r32, r/m32	Move if not above or equal (CF=1)	CMOVNLE <i>r32, r/m32</i>	Prove if flot less of equal (21 -0 alla SF=OF	

CMOVNO <i>r16, r/m16</i>	Move if not overflow (OF=0)
CMOVNO <i>r32, r/m32</i>	Move if not overflow (OF=0)
CMOVNP r16, r/m16	Move if not parity (PF=0)
CMOVNP <i>r32, r/m32</i>	Move if not parity (PF=0)
CMOVNS r16, r/m16	Move if not sign (SF=0)
CMOVNS <i>r32, r/m32</i>	Move if not sign (SF=0)
CMOVNZ <i>r16, r/m16</i>	Move if not zero (ZF=0)
CMOVNZ <i>r32, r/m32</i>	Move if not zero (ZF=0)
CMOVO r16, r/m16	Move if overflow (OF=0)
CMOVO <i>r32, r/m32</i>	Move if overflow (OF=0)
CMOVP r16, r/m16	Move if parity (PF=1)
CMOVP r32, r/m32	Move if parity (PF=1)
CMOVPE <i>r16, r/m16</i>	Move if parity even (PF=1)
CMOVPE <i>r32, r/m32</i>	Move if parity even (PF=1)
CMOVPO r16, r/m16	Move if parity odd (PF=0)
CMOVPO <i>r32, r/m32</i>	Move if parity odd (PF=0)
CMOVS r16, r/m16	Move if sign (SF=1)
CMOVS r32, r/m32	Move if sign (SF=1)
CMOVZ r16, r/m16	Move if zero (ZF=1)
CMOVZ r32, r/m32	Move if zero (ZF=1)

A. Inserting **a single register** to produce a two-stage pipeline. Where should the register be inserted to maximize throughput? What would be the throughput and latency?

B. Where should **two registers** be inserted to maximize the throughput of a three-stage pipeline? What would be the throughput and latency?

? stages	Where?	Throughput and latency
2	A B, 80 220 B C, 110 190 C D, 170 130 D E, 220 80 E F, 290 10	Th = 1 / ((170 + 20) * 10^{-12}) = 5.26 * 10^9 IPS Latency = (170 + 20) * 2 = 380 ps
3	10 possibilities AB CD EF, 110 110 80	Th = 1 / ((110 + 20) * 10^{-12}) = 7.69 * 10^9 IPS Latency = (110 + 20) * 3 = 390 ps