ИССЛЕДОВАНИЕ ПОГЛОЩЕНИЯ ГАММА-КВАНТОВ БОЛЬШОЙ ЭНЕРГИИ

До последнего времени экспериментальная проверка законов поглощения уличей была ограничена областью сравнительно небольших энергий.

Наибольшая энергия ү-лучей, которые получались при различных радиоактивных превращениях, составляет 17 MeV (реакция Li⁷ (р, ү) Be⁸). Появление ускорителей электронов (бетатрон и синхротрон), дающих, при резком торможении ускоренных электронов, направленный пучок ү-квантов, расширяет доступный диапазон энергии до сотен MeV.

Исследование с помощью ускорителей, однако, сильно затрудняется тем, что спектр излучения в этом случае является непрерывным.

В работе Адамса¹ исследуется область поглощения \(\gamma_\cdot\) квантов, полученных от 22 MeV бетатрона в интервале энергий между 1 и 20 MeV.

Реакция	Полупериод (в минутах)	•	Спектраль- ный интер- вал (в МеV)
$_{29}$ Cu $^{63}(\gamma,n)_{29}$ Cu 62	10,5	$10,9 \pm 0,1$	0,5
$_{26}{ m Fe^{54}}(\gamma,n)_{26}{ m Fe^{53}}$	8,9	$13,9 \pm 0,3$	1,6
$_{6}^{\text{C}^{12}}(\gamma,n)$ $_{6}^{\text{C}^{11}}$	20,5	$18,7 \pm 0,1$	1,7

Таблица І

Метод измерения основан на использовании реакции $(\gamma, n)^*$), в результате которой образуется радиоактивный изотоп элемента детектора. Перед исследуемым поглотителем ставится контрольная пластинка из того же материала и тех же размеров, что и детектор. Отношение активностей, наведённых в детекторе и контрольной пластинке после облучения, служит показателем поглощения γ -лучей в коглотителе. Коэффициент поглощения (τ) определяется из формулы $\frac{I}{I_0} = e^{-\tau x}$, где x — толщина поглотителя, I_0 и I — интенсивности пучка до и после поглощения, пропорцио-

^{*)} См. УфН, XXXVII, 256 (1949).

=
B
Ħ
Z
5
Ó
G
Ę-,

Детектор С <u>Е</u> = 19,10 МеV	Теория — эксп. (см ⁻¹)	-0,000 -0,005 -0,008 +0,096
	Эксперимент (см)	$\begin{array}{c c} 0,0604\pm0,0016 & -0,0009 \\ 0,262\pm0,002 & -0,005 \\ 0,307\pm0,006 & -0,008 \\ 0,695\pm0,004 & +0,096 \end{array}$
	Тесрия Теория эксп. (см ⁻¹)	0,0595 0,257 0,299 0,791
Детектор Fe <u>E</u> = 13,73 MeV	Теория эксп. (см-1)	-0,0002 0,0595 -0,001 0,257 -0,008 0,299 +0,057 0,791
	Эксперимент (см ⁻¹)	$ \begin{array}{c cccc} 0.0596 \pm 0.0006 & -0.0002 & 0.0595 \\ 0.240 \pm 0.003 & -0.001 & 0.257 \\ 0.285 \pm 0.003 & -0.008 & 0.299 \\ 0.625 \pm 0.007 & +0.057 & 0.791 \\ \end{array} $
	Тесрия (см ¹)	0,0594 0 239 0,277 0,682
Детектор Си <u>E</u> = 11,04 MeV	Тесрия Тесрия — эксп. (см-1)	-0,0008 0,0594 +0,002 0 239 -0,010 0,277 +0,043 0,682
	Эксперимент (см ¹)	0.0605±0.0013 0.231±0.003 0,276±0.003 0.569±0.007
	Теория (см ⁻¹)	0,0613 0,233 0,266 0,612
Погло-	титель	A1 Fe Cu Pb

нальные наведённой активности в детекторе и в контрольной пластинке. Ширина интервала энергии, для которого определялось поглощение, ограничена снизу порогом ядерного фотоэффекта материала детектора. Верхним пределом является максимальная энергия спектра, т. е. энергия, до которой ускоряются электроны в ускорителе.

В таблице I приведены реакции, их пороговая энергия и ширина использованного спектраль-

ного интервала.

Интенсивность пучка на расстоянии 1 м от мишени, измеренная толстостенной ионизационной камерой, составляла около 100 рентген в минуту.

В качестве поглотителей применялись алюминий, железо, медь и свинец. Были проведены измерения при различных (до двенадцати) толщинах поглотителя, подтвердившие экспоненциальный закон поглощения.

В таблице II приведены измеренные коэффициенты поглощения, теоретические значения их и разность теоретических и экспериментальных значений.

Как видно из таблицы для поглощения в алюминии и железе получены экспериментальные результаты, прекрасно согласующиеся с теоретическими.

Для случая меди и свинца получается значительное расхождение теоретических и экспериментальных данных, в несколько раз превышающее величину ощибки. Увеличенный, по сравнению с теоретическим, коэффициент поглощения для меди автор объясняет влиянием реакции (γ, n) . Уменьшение коэффициента поглощения в случае свинца можно приписать неприменимости борновского приближения к чёту образования пар в свинце 'Ze $\left(\frac{1}{vh} = 0.6\right)$.

Обстоятельная работа Лоусона 2 посвящена исследованию поглощения ү-лучей с энергией около 90 MeV, проведённому на 100 MeV бетатроне*). В качестве детектора использовался спектрометр, регистрирующий совпадения от пар, созда-

Рис. 1. Схема установки: 1 — ионизационная камера; 2 — свинцовый экран; 3 — поглотитель; 4 — коллиматор; 5 — мишень; 6 — счётчики.

ваемых ү-лучами. Число пар, регистрируемое в данном узком интервале энергии, пропорционально общему учислу ү-квант в этом интервале. Одна-

Рис. 2. Общий вид установки.

ко уменьшение интенсивности в средней части 7-спектра, вызванное внесением поглотителя, непосредственно не характеризует коэффициента

^{*)} Описание этого бетатрона см. УФН, ХХХ, 11 (1946).

поглощения в данном интервале, так как в счётчик попадают, рассеиваясь в поглотителе, также ү-кванты большей энергии. Однако если выбрать интервал, расположенный достаточно близко от верхнего края спектра, то, очевидно, указанным искажением можно пречебречь.

Таблица III

Поглотитель	Экспериментальное значение (в 16 ⁻²⁴ см²/атом)	Вероятная ста- тистич. ошибка в %	Теоретическое значение (в 10 ⁻²⁴ см ² /атом)
Be	0,161	1,2	0,1482
Al	1,128	1,5	1,103
Cu	4,971	1,5	4,840
Sn	13,11	0,95	13,55
Pb	31,27	1,6	34,90
U	38,46	1,1	43,53

В работе найдены коэффициенты поглощения отдельно для процесса образования пар и для комптон-эффекта.

Для этого использовалось соотношение

$$\frac{\sigma'}{\sigma''} = \frac{\sigma'_p(1+\alpha')}{\sigma''_p(1+\alpha'')},\tag{2}$$

где \mathfrak{o}' и \mathfrak{o}'' — полные эффективные сечения поглощения в I и II материалах, \mathfrak{o}_p' и \mathfrak{o}_p'' — соответственно эффективные сечения образования пар, \mathfrak{a}' и \mathfrak{a}'' — отношения сечения комптон-рассеяния к сечению образования пар.

Если материал II взят с высоким атомным номером Z, то при $E \sim 90$ MeV величиной α'' можно пренебречь, и из (2) получается с хо-

рошей точностью значение а'.

Среднее значение энергии, для которой определялись сечения, составляло 58 ± 1 MeV. Схема установки представлена на рис. 1. Пучок от мишени бетатрона проходит сквозь щель в свинцовом экране и затем через поглотитель, коллиматор и анализатор спектра. Перед свинцовым экраном находится ионизационная камера, контролирующая интенсивность бетатрона. В коллиматоре постоянное магнитное поле отсеивает из пучка γ-лучей заряженные частицы.

Таблица IV Значение а при E = 88 MeV

Элемент	Комби- нация	æ	Ошибка
Be Al Cu Be	Be-Au Al-Au Cu-Au Be-Cu	0,38 0,082 0,116 0,29	0,05 0,05 0,05 0,05

Основной частью анализатора спектра является постоянный магнит диаметром 60 см. На краю его помещается мишень, в которой образуются пары.

По обеим сторонам от мишени помещаются счётчики Гейгера-Мюл-

лера, включённые на совпадения.

Общий вид установки изображён на рис. 2. Особое внимание в работе было обращено на коллимацию пучка. Измерения сильно усложнялись присутствием рассеянного излучения с энергией около 10 MeV, вызываемого, повидимому, электрэнами, про-

шедшими мишень бетатрона насквозь.

В результате измерений были получены полные поперечные сечения поглощения γ -лучей с элергией 88 MeV для шести элементов — Be, Al, Cu, Sn, Pb и U. В таблице III даны средние значения полученных полных

поперечных сечений и расчётные теоретические сечения.

Отклонение экспериментальных результатов от теоретических во всех случаях, за исключением Ве, пропорционально примерно квадрату атомного номера Z^2 (в интервале значений Z, приведённых в таблице), что автор объясняет недостаточностью борновского приближения. Расхождение для Ве можно объяснить применением при расчёте модели Ферми-Томася.

Далее в работе приводятся результаты измерений отношения попе-

речных сечений образования пар в различных материалах.

В таблице IV приведены найденные значения величины с (см²)...

Эти значения согласуются в пределах 15% с формулой Клейна-Нишины при энергии 88 MeV.

P. K.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. G. D. Adams, Physical Review 74, 1707 (1948). 2. J. L. Lauson, Physical Review 75, 433 (1949).