VSB TECHNICAL |||| UNIVERSITY OF OSTRAVA

www.vsb.cz

Modeling and Dimensioning of Networks Network Topologies in Data Center **Networks**

Ing. Jan Rozhon, Ph.D.

Key Concepts to know

- switching:
 - circuit vs packet
 - space vs time
- evolution of switching systems
 - telephony networks (generations 0 -> 5)
 - computer networks (DARPA, ethernet, TCP/IP stack)

Key Concepts to know

- basic network topologies:
 - o point-to-point
 - bus
 - star
 - mesh
 - ring
 - tree

Historical Context

• space switching in 2nd gen. = **crossbar** switch (<u>image source</u>)

Crossbar switch

N outputs

Crossbar switch

- number of inputs/outputs does not have to be the same
- number of crosspoints defines the complexity of the switch

$$C(N) = N^2$$
 [-]

- PRO: non-blocking architecture
- CON: very difficult to scale (until high density microcontrollers/processors)

Improving scaling capabilities

- splitting monolithic switch into a network of simpler switches
- 2-stage?

Improving scaling capabilities

Adding multiple connections?

Improving scaling capabilities

• Complexity now:

$$C(n) = 2 \cdot mn^2$$
 $m = n^2$ $C(N) = 2N^2$ $[-]$

- n inputs/input switches
- m outputs

Clos Networks

- a network with 3 stages (or odd number of stages)
- exactly one link between switches in neighboring stages

Clos Networks

Strictly non-blocking

$$C(n) = 3 \cdot mn^2$$

$$m \ge 2n - 1$$

$$C(n) = 3 \cdot (2n-1)n^2$$

$$C(N) = 6N^{rac{3}{2}} - 3N pprox 6N^{rac{3}{2}} \ [-]$$

Rearrangably non-blocking

$$C(n) = 3 \cdot mn^2$$

$$m \geq n$$

$$C(n) = 3 \cdot n^3$$

$$C(N)=3N^{rac{3}{2}}$$
 $[-]$

Benes Networks

- special case of rearrangably non-blocking Clos network
- m=n=2

Q: How do we construct networks with more inputs?

Transition to modern topologies

- extreme increase of elements in datacenter netwoks
- need for failover routes
- cabling complexity grows
- required scaling as the needs grow
- required low latency connections
- emergence of cloud computing and big data

Fat Tree Topology

- a special case of the Clos/Benes network
- efficient and fault-tolerant connectivity
- hierarchical design with multiple paths between nodes
- key features:
 - uniform bandwidth
 - redundancy
 - load balancing

Fat Tree Topology

Spine-Leaf Topology

- a two-tier architecture:
 - o spine = backbone switches
 - leafs = access switches
- every leaf switch is connected to every spine switch
- key features:
 - o scalability a bit easier than for fat tree
 - reduced latency
 - fault tolerance

Spine-Leaf Topology

And many more

- butterfly networks
- omega networks
- hypercube
- torus
- etc.

In the Lab

- modeling of simple network elements using ns-3
- topological aspects of the simulation
 - standard topologies
 - clos network/spine-leaf network
- protocol stack
- application layer simulation

VSB TECHNICAL |||| UNIVERSITY OF OSTRAVA

www.vsb.cz

Ing. Jan Rozhon, Ph.D.

jan.rozhon@vsb.cz