El Proceso KDD y la Planificación de Proyectos de Minería de Datos

Curso de Minería de Datos

Maestría en Minería de Datos

Universidad Tecnológica Nacional - Rosario

Profesor Rodrigo Kataishi, Ph.D.

CONICET / UNTDF

rkataishi@untdf.edu.ar

Qué vamos a hacer?

Aproximación detallada al proceso de **Descubrimiento de Conocimiento en Bases de Datos (KDD)** como marco
operativo fundamental para proyectos de minería de datos.

Detallaremos:

- Cada fase del proceso KDD.
- Sus **objetivos** específicos.
- **Técnicas** asociadas a cada etapa.
- Decisiones clave a tomar.
- Productos esperados en cada fase.

El Proceso KDD: Estructura General y Planificación

- 1. ¿Qué es el proceso KDD?
 - Definición:
 KDD (Knowledge Discovery in Databases) es el proceso completo e iterativo de transformación de datos crudos en conocimiento útil y accionable mediante la aplicación integrada de técnicas:
 - Computacionales
 - Estadísticas
 - Analíticas

Fases y Objetivos Principales del KDD (Fayad et al., 1996)

El KDD estructura el proceso técnico a partir del acceso a los datos:

Fase	Objetivo principal
Selección	Extraer el subconjunto de datos relevante del universo disponible.
Preprocesamiento	Limpiar, corregir inconsistencias y homogenizar los datos seleccionados.
Transformación	Convertir los datos preprocesados a formatos adecuados para la minería.
Minería de datos (DM)	Aplicar algoritmos para descubrir patrones significativos.
Evaluación e Interpretación	Validar la relevancia y utilidad de los patrones y generar conocimiento accionable.

Características Clave y Planificación del KDD

- Características del Proceso KDD:
 - No lineal e Iterativo: Frecuentes ciclos de retroalimentación entre fases.
 - Integración Multidisciplinar: Requiere conocimientos de dominio, estadística y computación.
 - Alcance Amplio: Cubre desde la obtención de datos hasta la interpretación del conocimiento.
 - Dependiente del Contexto: Se adapta a los objetivos específicos y a la naturaleza de los datos.

El KDD estructura el proceso técnico a partir del acceso a los datos:

Fase	Objetivo principal
Selección (Y ANTES??)	Extraer el subconjunto de datos relevante del universo disponible.
Preprocesamiento	Limpiar, corregir inconsistencias y homogenizar los datos seleccionados.
Transformación	Convertir los datos preprocesados a formatos adecuados para la minería.
Minería de datos (DM)	Aplicar algoritmos para descubrir patrones significativos.
Evaluación e Interpretación	Validar la relevancia y utilidad de los patrones y generar conocimiento accionable.

Características Clave y Planificación del KDD

- Planificación y Formulación del Problema:
 - Una buena y clara formulación del problema es una condición crucial, pero no es una fase explícita del KDD original.
- El Dilema: Si el proceso *inicia* formalmente con la selección de datos... ¿Qué pasa si no hay una pregunta clara definida previamente?
- Riesgo de "Naufragio en los Datos"

No Todo es KDD, pero KDD es un Todo

- El KDD como proceso técnico pionero en la extracción de patrones datos.
 Se proyecta enfocado en las fases operativas una vez los datos están disponibles.
- Lecciones de la Práctica: La complejidad va más allá de los algoritmos.
 Fases externas al núcleo técnico son vitales:
 - o Formulación del Problema: Definir qué se busca y por qué.
 - Comprensión del Contexto: Entender el dominio y las necesidades del negocio.
 - Comunicación e Implementación: Traducir hallazgos en acciones.

No Todo es KDD, pero KDD es un Todo

- Luego de la implementación generalizada y el uso de KDD, se avanzó en la identificación de algunos límites: surgieron otros modelos que abordan dimensiones clave ausentes en KDD:
 - SEMMA (SAS, 1998): Enfoque técnico exploratorio (Sample, Explore, Modify, Model, Assess).
 - CRISP-DM (2000): Foco explícito en objetivos de negocio, iteración y despliegue.
 - Data Science Pipeline (ca. 2012–): Visión modular, flexible y pragmática.
- KDD Reubicado: Estos modelos sitúan al KDD como el **núcleo técnico** dentro de un proceso más amplio, enfatizando la estrategia y la aplicación.

Macro-etapa	Fase / componente	Descripción técnica	KDD (1996)	SEMMA (1998)	CRISP-DM (2000)	Data Science (2012 –)
I. Formulación	Definición del problema	Identificar qué pregunta se intenta responder, para qué y con qué criterios de éxito			×	×
	Comprensión del contexto / dominio	Relevar actores, restricciones, objetivos y entorno de uso del análisis			×	×
II. Exploración inicial	Comprensión exploratoria de los datos	Evaluar calidad, tipo, estructura, fuentes y limitaciones del dataset		× (Explore)	×	×
	Acceso y selección de datos	Obtener el subconjunto más relevante para el problema	×	× (Sample)	×	×
III. Preparación	Preprocesamiento / limpieza	Corregir errores, tratar valores faltantes, unificar formatos	×	× (Modify)	×	×
	Transformación de variables	Estandarizar, codificar, crear variables derivadas	×	× (Modify)	×	×
	Reducción / selección de variables	Filtrar, comprimir o priorizar información relevante	×	× (Modify)	×	×
IV. Modelado	Aplicación de algoritmos	Ejecutar técnicas de clasificación, regresión, segmentación, asociación, etc.	×	× (Model)	×	×
	Evaluación técnica del modelo	Validar desempeño según métricas estadísticas (accuracy, AUC, etc.)	×	× (Assess)	×	×
V. Interpretación	Análisis de patrones y comprensión del modelo	Interpretar significados, reglas, límites y riesgos del conocimiento extraído	×		×	×
	Evaluación contextual y utilidad	Evaluar si el resultado es relevante, accionable y comprensible para el usuario	×		×	×
VI. Despliegue	Implementación / comunicación	Incorporar modelos al flujo de trabajo, generar reportes, facilitar decisiones			×	×
	Iteración y mejora	Realimentar el proceso con nuevos datos o ajustes según desempeño observado	× (implícita)	×	×	×

Volvamos a KDD: El Inicio en la Selección

Revisando las fases centrales del KDD:

Fase	Objetivo principal
Selección	Extraer el subconjunto de datos relevante
Preprocesamiento	Limpiar, corregir y homogenizar
Transformación	Convertir los datos a formatos adecuados
Minería de datos	Aplicar algoritmos para descubrir patrones
Evaluación e interpretación	Validar los resultados y generar conocimiento útil

El Dilema: Si el proceso *inicia* formalmente con la selección de datos... ¿Qué pasa si no hay una pregunta clara definida previamente?

Riesgo de "Naufragio en los Datos"

Exploración Agnóstica (sin supuestos): ¿Cuándo se Justifica?

Explorar los datos sin hipótesis previas fuertes (enfoque agnóstico) tiene sentido cuando:

- Alta Incertidumbre / Dominio Nuevo: Se carece de conocimiento previo sólido sobre el fenómeno o el conjunto de datos.
- Búsqueda de Descubrimiento Estructural: El objetivo principal es entender la estructura latente (e.g., ¿existen grupos naturales?) más que validar una idea preexistente.
- **Detección de lo Inesperado:** Se desea encontrar patrones, relaciones o anomalías no anticipadas (útil en clustering, reglas de asociación, detección de outliers).
- Generación de Hipótesis: La exploración inicial sirve como base para formular hipótesis que luego serán probadas rigurosamente.

Es habitual en:

- Fenómenos poco conocidos o complejos.
- Análisis preliminares para construir modelos teóricos.
- Monitorización de sistemas dinámicos (finanzas, redes sociales, bioinformática).

Entonces: Definición Previa del Problema?

Ante la posibilidad de "naufragio en los datos":

- Práctica Común: Se adopta una fase explícita de definición del problema antes de iniciar el ciclo KDD técnico.
 - **Incluye:** Entrevistas con expertos, identificación de metas, mapeo de acciones posibles, delimitación de restricciones.
- KDD como Núcleo Operativo: El proceso KDD (selección, preproc., etc.) se mantiene como el motor técnico, pero precedido y guiado por esta fase estratégica (inspirada en CRISP-DM, etc.).
- Tensión Metodológica: Esto introduce una dinámica clave:
 - Descubrimiento Guiado por Objetivos: Enfocado en responder preguntas específicas.
 - Exploración Agnóstica Orientada por Datos: Abierta a patrones emergentes no previstos.

Tensión Epistemológica: Guiado vs. Agnóstico

¿Es contradictorio tener objetivos definidos y buscar descubrimiento? No necesariamente, pero es una **tensión real** entre dos lógicas:

Enfoque	Lógica dominante	Supuesto epistémico	Riesgo principal
Exploración agnóstica	Data-driven (inducción)	El patrón emerge desde los datos	Hallazgos espurios, triviales; fallos en identificar info clave (errores Tipo I/II)
Exploración guiada	Problem-driven (abducción)	El patrón debe responder una pregunta	Ceguera ante lo no anticipado; omisión de fenómenos clave por sesgo confirmatorio

- Ambos enfoques pueden convivir, pero es crucial declarar cuál domina en cada fase.
- Validación Crucial: La exploración agnóstica requiere validación rigurosa posterior para evitar patrones espurios (regularidades aparentes o circunstanciales).

Cuidado: Tipologías Comunes de Patrones Espurios

Son regularidades aparentes que no reflejan estructuras reales ni tienen valor predictivo o interpretativo.

Tipo de error	Descripción	Ejemplo concreto
Correlaciones Espúreas	Fuerte asociación estadística entre variables sin relación causal o funcional real.	Consumo de margarina correlacionado con divorcios (Vigen, 2015).
Artefactos del Muestreo	Patrones inducidos por cómo se seleccionaron, organizaron o segmentaron los datos.	Comparar grupos con orígenes distintos sin controlar composición (sesgo de selección).
Coincidencias Temporales / Agregación	Alineamientos cronológicos o agregaciones que no implican relación estructural (o la ocultan/invierten - Paradoja de Simpson).	Aumento de búsquedas "helado" y "ruido urbano" en verano (causa común: calor).
Sobreajuste (Overfitting)	Modelo que captura ruido o particularidades del set de entrenamiento, sin generalizar.	Árbol de decisión complejo que clasifica 100% en entreno por artefacto de codificación.
Regularidades Inducidas Artificialmente	Patrones que surgen por decisiones técnicas (imputación, codificación, discretización).	Valor "-99" (imputado para NAs) se vuelve predictor clave sin significado real.

Profundizando: Artefactos del Muestreo

Patrones que no reflejan el fenómeno, sino **consecuencias del diseño o sesgos del dataset**:

Tipo de artefacto	Descripción técnica	Ejemplo específico
Muestreo no representativo	La muestra no refleja la población objetivo, generando patrones no generalizables.	Modelo de abandono escolar entrenado solo en escuelas privadas urbanas falla en rurales/públicas.
Comparación de grupos con composición distinta (Sesgo de Selección)	Se comparan subconjuntos sin controlar diferencias estructurales preexistentes.	Programa A parece mejor que B, pero A selecciona estudiantes con notas más altas al ingreso.
Corte temporal / espacial artificial	Segmentación (año, región) crea patrones ligados a estacionalidad, admin., o factores no controlados.	"Productividad" baja en enero sin considerar cierres por vacaciones/mantenimiento.
Errores por censura o truncamiento	Dataset solo incluye casos observados bajo ciertas condiciones, omitiendo otros sistemáticamente.	Análisis de actividad en plataforma online solo con usuarios registrados, excluyendo abandonos iniciales.
Agrupamiento oculto (Variable Latente /	Diferencias observadas se deben a una variable de agrupamiento no incluida en el análisis.	Variación regional de consumo explicada realmente por política fiscal local (variable

Validación Rigurosa del Descubrimiento Agnóstico

Un patrón descubierto solo se consolida como **conocimiento** si supera múltiples filtros:

Dimensión de validación	Estrategia operativa	Herramientas técnicas / Enfoques
Estadística	Evaluar significancia, robustez y generalización del patrón.	Hold-out, K-fold CV, Bootstrapping, Tests de hipótesis (p-values), Métricas (AUC, F1), Baselines.
Empírica / Predictiva	Comprobar desempeño en datos nuevos o contexto real.	Test externo (out-of-sample), Backtesting (series temporales), Pruebas A/B, Simulación.
Contextual / Semántica	Evaluar plausibilidad, coherencia con el dominio y interpretabilidad.	Validación por expertos, Revisión de literatura, Consistencia teórica, Interpretabilidad (SHAP, LIME).
Instrumental / Práctica	Medir utilidad para la toma de decisiones o acción, y valor agregado.	Impacto en KPIs, Análisis Costo-Beneficio, Comparación con alternativas, Feedback de usuarios.

Entonces, ¿trabajar con Objetivos limita el Descubrimiento?

No, al contrario: lo **enmarcan para que tenga sentido y valor.**

- Acotan, No Anulan: La formulación del problema no impone *qué* encontrar, pero sí orienta la búsqueda hacia dominios relevantes y evita la dispersión en ruido.
- **Dirigen la Exploración:** Permiten enfocar recursos y técnicas, sin impedir que **emerjan hallazgos inesperados** *dentro* de ese marco relevante.
- Establecen Criterios de Valor: Definen qué se considera un "buen" resultado.
 ¿Cómo saber si un patrón es interesante si no sabemos qué problema intentamos resolver?
- Conectan Hallazgo y Acción: Permiten evaluar si lo descubierto es accionable y útil en el contexto del problema.

La exploración sin marco puede ser fértil, pero CUIDADO, porque ante el desconocimiento total del fenómeno a analizar a menudo puede ser **ineficiente**.

No hay descubrimiento valioso si no hay un marco que permita reconocerlo, validarlo y actuar sobre él.

Perspectiva de Modelos Modernos (CRISP-DM, DS Pipeline)

Estos enfoques integran la exploración, pero de forma estratégica:

- Fase Específica: La exploración agnóstica (EDA) es una etapa fundamental pero delimitada (e.g., "Data Understanding" en CRISP-DM), realizada *tras* entender el problema.
- Subordinación al Contexto: Los hallazgos exploratorios se interpretan en función de los objetivos y el problema definido.
- Integración con Validación: Se combinan con técnicas robustas para mitigar el riesgo de sobreajuste interpretativo y patrones espurios.

Resultado: El descubrimiento se vuelve más estratégico, menos aleatorio. Se reconoce que los datos pueden "hablar", pero no lo harán útilmente si no sabemos qué preguntar, qué escuchar y cómo interpretar.

Punto Clave: Del Problema al Proyecto

Aquí la teoría del descubrimiento se encuentra con la planificación práctica:

- Buscamos lograr una articulación clara entre la definición del problema (marco lógico) y su traducción operativa (marco técnico).
- Formulación como Habilitante: Ver la definición del problema no como una limitación, sino como una condición necesaria para el descubrimiento estratégico y valioso.

Funciones Clave de la Formulación del Problema:

- 1. Acota el espacio de búsqueda relevante.
- 2. **Define** los criterios de evaluación del éxito.
- 3. Establece restricciones operativas (tiempo, recursos, ética).
- 4. Vincula la técnica con la decisión y la acción.

Decisiones Clave en la Fase de Formulación del Proyecto

Antes de iniciar las fases técnicas, decisiones estratégicas guiarán el proyecto, definiendo una solución técnica viable y apropiada:

Decisión clave	Ejemplo de implicancia técnica / Preguntas a responder
Nivel de Automatización vs. Intervención Humana	¿Se requiere un modelo 100% autónomo o con validación humana? ¿Quién interpreta/usa los resultados?
Requisitos de Interpretabilidad	¿Es aceptable un modelo "caja negra" si es preciso? ¿O se necesitan reglas/factores comprensibles para justificar decisiones (regulación, confianza)?
Restricciones (Tiempo, Cómputo, Datos)	¿Plazo? ¿Capacidad computacional? ¿Datos estáticos o streaming? ¿Limitaciones legales de acceso o uso?
Criterios de Éxito del Proyecto	¿Maximizar precisión? ¿Descubrir algo novedoso? ¿Facilidad de implementación? ¿Robustez? ¿Impacto medible en KPIs (Key Performance Indicators)?

Producto Esperado: Plan de Trabajo Inicial

Culminada la toma de decisiones relacionadas con la formulación estructural, se construye un **Plan de Trabajo Inicial** que actúa como **puente entre el problema y la ejecución técnica**.

Contenido Esencial:

- Objetivo Analítico Claro: Qué se busca y por qué es relevante. Justificado.
- Tipo de Tarea de Minería: Identificación preliminar (Clasificación, Regresión, Clustering, Asociación, etc.).
- Entradas Esperadas: Descripción de datos disponibles (fuentes, volumen, estructura, calidad inicial percibida).
- Métodos Candidatos: Listado inicial de algoritmos/enfoques considerados apropiados.
- Criterios de Validación: Cómo se evaluará el desempeño (métricas estadísticas) y la utilidad (criterios contextuales/negocio).

Importante: Este plan no es rígido. Es una hoja de ruta inicial que se revisa y actualiza iterativamente. Su función clave: transformar la pregunta en un proyecto estructurado.

Resumen: Planificación Estratégica, exploración y objetivos

Para ganar eficiencia, y evitar potenciales "naufragios en los datos", antes de las fases operativas del KDD es recomenda avanzar en:

- Fase Previa Indispensable: Formulación del Problema
 - Definir: ¿Por qué quiero explorar datos? ¿Qué pregunta se intenta responder? |
 Identificar: ¿Cuál es el uso potencial del conocimiento extraído? | Determinar: ¿Qué tipo de tarea analítica está implicada?
- Decisiones Clave al Inicio:
 - Nivel de automatización vs. intervención humana. | Requisitos de interpretabilidad. |
 Restricciones temporales, computacionales, éticas. | Criterios de éxito (precisión, utilidad, novedad, robustez).
- Producto Esperado de la Planificación:
 - Un Plan de Trabajo inicial especificando: Objetivos, Fases, Datos y Entradas (volumen, contenido, calidad), Métodos candidatos, Criterios de validación.

Asegura que el esfuerzo técnico KDD esté alineado con un sentido, y por ende con objetivos relevantes.

Fase de Selección y Preprocesamiento

1. Fase de Selección

- Objetivo: Elegir los datos relevantes del universo disponible.
- Tareas:
 - Acceso a fuentes diversas (BBDD, APIs, archivos planos...).
 - Filtrado, submuestreo (simple, estratificado).
 - Extracción de variables (features) pertinentes al problema.
- **Técnicas:** SQL, Pandas (filtrado, subsetting), exploración de metadatos.
- **Resultado:** Subconjunto coherente, legible y relevante de datos para análisis.

Fase de Selección y Preprocesamiento

2. Fase de Preprocesamiento

- Objetivo: Limpiar y preparar los datos seleccionados.
- Tareas:
 - Tratamiento de valores faltantes (NAs).
 - Corrección de errores (outliers, codificación incorrecta).
 - Homogeneización de tipos y formatos.
 - Detección/eliminación de duplicados.
 - Validación de consistencia.
- **Técnicas:** Imputación (media, KNN, etc.), conversión de tipos (astype, to_datetime), drop_duplicates, fillna, validaciones lógicas.
- **Resultado:** Dataset limpio, estructurado y sin errores sistemáticos graves.

Fase de Transformación y Reducción

1. Fase de Transformación

- **Objetivo:** Convertir datos preprocesados a formatos óptimos para algoritmos de minería.
- Operaciones Típicas:
 - trabajo con variables
 - Normalización/Estandarización (numéricas).
 - Codificación (categóricas: One-Hot, Label Encoding).
 - Ingeniería de Variables (creación de nuevas features: binning, interacciones, logs).
 - Manejo de formatos complejos (JSON anidado, XML).
- Resultado: Datos consistentes, variables adecuadas e informativas, variantes de variables informativas, categorización de datos, Matriz de datos (generalmente numérica) compatible con algoritmos, con variables informativas.

Fase de Exploración de Datos (EDA)

- **Objetivo:** Comprender la estructura, calidad y relaciones entre variables antes de transformar o modelar.
- Tareas Principales:
 - Estadísticas descriptivas.
 - Visualización univariada y bivariada.
 - Detección de outliers y valores faltantes.
 - Análisis de correlaciones.
- Herramientas frecuentes: Pandas, Seaborn, Matplotlib, Plotly, pandas-profiling.
- **Resultado:** Hipótesis preliminares, decisiones de limpieza, y guía para transformación posterior.

Fase de Transformación de Datos

- **Objetivo**: Adaptar los datos preprocesados a formatos compatibles con técnicas de minería.
- Tareas Comunes:
 - Normalización / estandarización de variables numéricas.
 - Codificación de variables categóricas.
 - Creación de nuevas variables (feature engineering).
 - Conversión de formatos (fechas, texto, listas, JSON).
- **Técnicas frecuentes:** MinMaxScaler, StandardScaler, One-Hot Encoding, Log-transform, Binning.
- Resultado: Matriz estructurada, numérica y lista para aplicar algoritmos.

```
equests.get(url)
        road Trom
esponse.status_code
status_code != 200:
 Status: {response.s
 Status: {response.s
tifulSoup to parse
ifulSoup(response.co
st images in the sou
p.find_all("img", at
g images
```

Técnicas...

MinMaxScaler

Escala los valores numéricos al rango 0, 1.

Útil cuando se requiere mantener la proporcionalidad y los algoritmos son sensibles a la escala (e.g., KNN, redes neuronales).

StandardScaler

Estandariza los valores para que tengan media 0 y desviación estándar 1.

Recomendado para modelos que asumen datos centrados (e.g., regresión lineal, SVM, PCA).

One-Hot Encoding

Convierte variables categóricas en variables binarias (dummies), una por cada categoría.

Evita que los algoritmos interpreten una relación ordinal inexistente.

Log-transform

Aplica una transformación logarítmica a variables numéricas.

Útil para reducir asimetrías (skewness) y comprimir rangos muy amplios (e.g., ingresos, población).

Binning

Agrupa valores numéricos continuos en intervalos discretos (bins).

Puede usarse para simplificar modelos o capturar no linealidades (e.g., edad en rangos).

```
equests.get(url)
        Trom
esponse.status_code
status_code != 200:
 Status: {response.s
 Status: {response.s
 tifulSoup to parse
ifulSoup(response.co
st images in the sou
p.find_all("img", a
g images
```

Técnica Clave: Feature Engineering

• **Objetivo:** Crear variables que capturen mejor la estructura del fenómeno analizado.

Técnicas comunes:

- o Derivación: ingreso_per_cápita = ingreso / miembros_hogar
- Interacciones: producto, razón, diferencia entre columnas.
- Transformaciones: log(x+1), raíz, cuadrado.
- Binning contextual: edad en rangos (18–29, 30–45, etc.).
- Variables temporales: día, mes, año, diferencia temporal.
- Indicadores booleanos: presencia/ausencia, condición cumplida.
- Agrupamientos categóricos: etiquetas raras como "otros".

• Importancia:

Una buena ingeniería de variables mejora más que cambiar de algoritmo.

```
.assmethod
 debuq
 return cls(job_dir(se
  request_seen(self.
   self.fingerprints.
      self.file:
        self.file.write
   request_fingerprin
    return requestafin
```

Fase de Reducción de Dimensionalidad

- **Objetivo:** Simplificar la estructura del dataset preservando información clave.
- Técnicas Comunes:
 - PCA (Análisis de Componentes Principales).
 - Selección por varianza o correlación.
 - Selección por importancia de variables.
 - Autoencoders (avanzado).
- Criterios: Interpretabilidad, estabilidad, evitar colinealidad.
- Resultado: Dataset compacto, más eficiente para minería.

Fase de Minería de Datos (DM)

- Objetivo: Aplicar algoritmos para descubrir patrones o modelos útiles.
- Tareas Analíticas posibles:
 - o Clasificación: Predecir clases (e.g., cliente leal o no).
 - **Regresión:** Estimar tendencias, relaciones o causalidad sobre valores (e.g., ingresos).
 - Clustering: Agrupar observaciones sin etiquetas.
 - Asociación: Encontrar reglas frecuentes (e.g., Si A, entonces B).
 - o Anomalías: Detectar casos inusuales.
- **Tipo de enfoque:** Supervisado (clasificación, regresión) vs. No supervisado (clustering, asociación, anomalías).

Fase de Minería de Datos (DM)

- Técnicas Comunes por tipo de tarea:
 - Clasificación/Regresión: Árboles de decisión, KNN, Regresión Lineal/Logística,
 SVM.
 - o Clustering: K-Means, DBSCAN, Aglomerativo jerárquico.
 - Asociación: Apriori, FP-Growth.
 - **Anomalías:** Z-score, Isolation Forest, Local Outlier Factor.
- Resultado esperado: Modelos, patrones o segmentos candidatos a evaluación.

Importancia del Loop EDA y Preprocesamiento/Transformación

• La exploración de datos (EDA) no es una fase que finaliza luego de su implementación:

actúa como una retroalimentación continua durante:

- Limpieza y validación de datos.
- Selección y creación de variables.
- Detección de errores sistemáticos.
- Evaluación del impacto de las transformaciones.
- Recomendación:

Alternar entre **vista de datos** y **acciones técnicas** para evitar sobreajuste, redundancia o pérdida de información útil.

USAR FUNCIONES!

Fase de Evaluación e Interpretación

- **Objetivo:** Validar rigurosamente los resultados de la minería, interpretar su significado en el contexto del problema y decidir sobre su utilidad práctica. ¡Fase crítica!
- Dimensiones de Evaluación:
 - Validez Estadística/Predictiva: ¿Qué tan bien funciona el modelo en datos no vistos? (Precisión, Recall, F1, AUC, MSE, R², etc.).
 - Estabilidad/Robustez: ¿Es sensible a pequeños cambios en los datos?
 - Interpretabilidad: ¿Se entiende cómo/por qué el modelo toma decisiones? (Crucial para confianza y regulación).
 - Novedad: ¿El patrón descubierto es trivial o ya conocido?
 - Utilidad/Valor Práctico: ¿Es accionable? ¿Aporta valor real al negocio/objetivo?

Fase de Evaluación e Interpretación

- Técnicas de Validación:
 - Separación Train/Validation/Test (Hold-out).
 - Validación Cruzada (K-Fold, LOOCV).
 - Matrices de Confusión, Curvas ROC/PR.
 - Comparación con modelos Baseline o existentes.
 - Análisis de residuos (regresión).
 - Validación por expertos del dominio.
- Resultado: Juicio crítico sobre los modelos/patrones generados. Decisión informada sobre despliegue, refinamiento o descarte.

Seguimos en la próxima!

Bibliografía de Referencia

- Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. *Communications of the ACM*, 39(11), 27–34.
- Han, J., Kamber, M., & Pei, J. (2011). *Data Mining: Concepts and Techniques* (3rd ed.). Morgan Kaufmann.
- Provost, F., & Fawcett, T. (2013). Data Science for Business.
 O'Reilly Media.
- Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). *Data Mining: Practical Machine Learning Tools and Techniques* (4th ed.). Morgan Kaufmann.
- Tan, P. N., Steinbach, M., Karpatne, A. & Kumar, V. (2019). Introduction to Data Mining (2nd ed.). Pearson.