Shane Sheehan 1

¹ADAPT Trinity College Dublin

January 17, 2017

Today's Overview

- 1 Logic Gates
- 2 Axioms/Postulates
- 3 Principle of Duality
- **Boolean Functions**
- 5 Boolean Algebra Theorems

Basic Binary Operators

- + called OR
 - E.g. Z = X + Y
 - See 74LS32 datasheet
- called AND
 - E.g. Z = X.Y
 - See 74I S08 datasheet.
- ' called NOT
 - E.g. Z = X'
 - Negates/finds the complement
 - See 74LS04 datasheet

Order of Operation Precedence

- Same as in decimal arithmetic
 - I.e. =, (), \prime , ... +
 - Parentheses forces operation order
 - Note: = used for assignment

An Expression E

- A combination of variables and binary operators
- E.g. Z = (X + Y).X

Number of Literals

- Total occurrences of all variables in expression
- E.g. f(X, Y, Z) = X + Y.X.Z + X'.Y'.Z has 7

NAND

Logic Gates

- (A.B)′
- See 74LS02 datasheet
- NOR
 - (*A* + *B*)′
 - See 74LS00 datasheet

XOR − ⊕

- "Exclusive OR" or Mod 2 addition
- $X \oplus Y = X'.Y + X.Y'$
- $X \oplus Y \oplus Z = (X \oplus Y) \oplus Z$

- Self-evident mathematical statements
 - We can state them *without* proof

Why we use them?

It allows us/Dr. Boole to develop Boolean Algebra

Logic Gates

Huntington's First Set of Postulates

Given a bag B with at least two elements:

- II If $X, Y \in B$, then $X + Y \in B$
 - If $X, Y \in B$, then $X, Y \in B$
- 2 $\forall_{x \in B} : X + 0 = X$
 - $\forall_{x \in R} : X + 1 = 1$
- X + Y = Y + X
 - XY = YX
- X + Y.Z = (X + Y).(X + Z)
 - X.(Y + Z) = X.Y + X.Z
- 5 $\forall_X : X + X' = 1, X.X' = 0$

Finding Duals

Logic Gates

The dual of an expression gained by:

- Changing 0 with 1
- Changing . with +

 E^D gives the dual of:

- $(X+0)^D = X.1$
- $(X + Y.Z)^D = X.(Y + Z)$

Axioms also works for duals!

Pure form:

Logic Gates

- X.Y.Z
 - Product of terms
- X + Y + Z
 - Sum of terms

Mixed form:

- (X+Y).(Z+Y+X)
 - Product of sums (POS)
- X.Y + Y.Z
 - Sum of products (SOP)

Truth Tables I

Logic Gates

X	Y	Z	F(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	0	0
1	1	0	1
_1	1	1	1

How to use?

- 1 Find all possible combos of "1s" and "0s"
- 2 Evaluate the output for each set of input values

Logic Gates

X	Y	Z	F(X,Y,Z)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	0	0
1	1	0	1
1	1	1	1

A nice easy example

$$F(X, Y, Z) = X.Y + Y.Z + Z'.Y$$

Logic Gates

- Axioms and theorems reduce number of literals
 - Less gates needed to implement expression
 - Easier to design and build hardware
- Sometimes handy to just rearrange an expression
 - Allows us to better use available gates

Example

$$(X + Y).(X + Y') = X$$

How to prove theorems?

- 1 Use Boolean Algebra [Brown, 2012]
 - Show equality using Axioms
- Use Truth Tables
 - Show equality using I/O values

Option 2 only works for a *small* number of variables

Theorems and proofs I

- Double Negation Theorem
 - *X*′′ = *X*
- Idempotency Theorem

$$X + X = X$$

$$X.X = X$$

Identity Element Theorem

$$X + 1 = 1$$

$$X.0 = 0$$

Absorption Theorem

$$X + X.Y = X$$

$$X.(X + Y) = X$$

Associative Theorem

$$X + (Y + Z) = (X + Y) + Z$$

Theorems and proofs II

- Adjacency Theorem
 - XY + XY' = X
 - (X + Y).(X + Y') = X
- Consensus Theorem
 - XY + X'Z + YZ = XY + X'Z
 - (X + Y).(X' + Z).(Y + Z) = (X + Y).(X' + Z)
- Simplification Theorem
 - $X + X' \cdot Y = X + Y$
 - X.(X' + Y) = X.Y
- DeMorgans Theorem (General form)
 - $(X_1 + X_2 + \ldots + X_n)' = (X_1)' \cdot (X_2)' \cdot (\ldots) \cdot (X_n)'$
 - $(X_1, X_2, \dots, X_n)' = (X_1)' + (X_2)' + (\dots) + (X_n)'$

Using DeMorgans's Law..

- NANDs and NORs can represent each other
- Transforming from one to another easy:
 - Invert/complement every input and output
 - Swap OR and ANDs

Real World Implication

We can build everything using only NOR or NAND gates

Cheap mass production

That's it (for now)

Logic Gates

Thanks.. Any Questions?

You can ask later at:

sheehas1@scss.tcd.ie

Useful links

- Notes/Slides: bitbucket.com/sheehas1/dld
- LinkedIn: www.linkedin.com/in/shane-sheehan-1ab534b9

References (Homework) I

Brown, F. M. (2012).

Boolean reasoning: the logic of Boolean equations. Springer Science & Business Media.

