

Наследството от миналия семестър

• Покрай наръчника за BG-Mamma и откриването на локации в него направихме и прототип на класификатор.

- "Наивен Бейсов Класификатор", който реализирахме сами
 - Обучаващи данни (120 коментара)
 - Тестови данни (44 коментара).

Продължението

- Обогатихме обучаващото множество
 - Взехме данни от английски и ги преведохме
 - Превеждахме чрез Bing translator api.
 - На английски език има много подходящи множества
 - Използвахме данни то Trip advisor.
- Нов класификатор за английски език

Защо?

• Прекарахме 1/3 от времето за предишния проект в ръчно търсене и класифициране на коментари.

• Не беше много приятно.

• Нека си направим наши класификатори.

Програмна реализация

- Данните от БГ-Мама вече бяха парснати.
- Данните на английски се нуждаеха от нов парсер.
 - Категоризиране

• Преобразувахме оценките 1,2,3,4,5 до позитивен и негативен клас.

Класификаторите

- Обучаващ се на английски
 - Ползва обучаващия сет на английски
 - 6000 2:1 положителни към отрицателни
 - 4000 равномерно разпределени
 - Премахнахме стоп думите
- Обучаващ се на български
 - Преведохме българските некласифицирани коментари от БГ мама
 - 4000 коментара
 - Класифицирахме преведените коментари с английския класификатор
 - Пуснахме ги за обучаващо множество заедно с оригиналните 120 български коментара

Класификаторите

• Миксиран

• Взимаме сумата от предсказаните положителни и отрицателни вероятности на двата класификатора.

$$max (positive_1 + positive_2, negative_1 + negative_2)$$

Класификаторите

• Използван алгоритъм за построяване на "Наивен Бейсов класификатор":

LEARN_NAÏVE_BAYES_TEXT(Примери, V)

Примери е множество от текстови документи заедно с техните класификации. V - е множеството от възможни класификации (стойности на целевия атрибут). Процедурата научава вероятностите $P(w_k|v_j)$, описващи вероятност, че случайно избрана дума от документа с клас v_j ще бъде дума w_k . Тя също така научава и априорните вероятности на класове $P(v_j)$.

1. Събери всички думи и знаци за пунктуация, намиращи се в Примери

 Речник ← множеството от всички различни думи и знаци за пунктуация, срещани в текстови документи на Примери

2. Изчисли необходимите $P(v_i)$ и $P(w_k|v_i)$

- За всяка стойност на целевия атрибут v_i направи:
 - docs_j ← подмножество на документи от Примери, за които стойността на целевия атрибут е v_j.

$$P(v_j) \leftarrow \frac{|\operatorname{docs}_j|}{|\operatorname{Примери}|}$$

- Text_j ← един общ документ, получен чрез обединение на всички членове на docs_j
- n ← общия брой на различни позиции на думи в Text_j
- за всяка дума w_k от Речник направи:
 - n_k ← броя на срещане на думата w_k в Text_j

$$P(w_u \mid v_j) = \frac{n_k + 1}{n + |Peчник|}$$

CLASSIFY_NAÏVE_BAYES_TEXT(Документ)

Предсказва значение на целевия атрибут на некласифициран Документ. a_t означава думата, намерена в i-та позиция на Документа.

- позиции ← всички позиции на думи от Документа, които се срещат в Речник.
- Върни v_{NB}, където

$$v_{NB} = \underset{v_j \in V}{\arg \max} P(v_j) \prod_{i \in nosimuu} P(a_i \mid v_j)$$

Резултати

Тестване с коментари върху класификатора, трениран с обучаващо множество на български език от версия 1 (170 коментара):

Статистика за	Статистика за негативните	Статистика за всички
положителните коментари	коментари	коментари

Precision negative: 0,56140 Precision overall: 0,65517 Precision positive: 0,83333 Recall overall: 0,65517 Recall positive: 0,50000 Recall negative: 0,86486

F1 positive: 0,62500 F1 negative: 0,68085 F1 overall: 0,65517

Резултати

• Обучаващо множество на българския класификатор, предварително класифицирано от английския:

 разпределение положителни – негативни коментари приблизително 2:1 (~6000).

Статистика за	положителните
коментари	

Precision positive: 0,79630

Recall positive: 0,86000

F1 positive: 0,82692

Статистика за негативните

коментари

Precision negative: 0,78788

Recall negative: 0,70270

F1 negative: 0,74286

Статистика за всички

коментари

Precision overall: 0,79310

Recall overall: 0,79310

F1 overall: 0,79310

Резултати

• Миксиран

• Трениращо множество с относително равномерно разпределение положителни – негативни коментари (~4000).

Статистика за положителните коментари

Precision positive: 0,80000

Recall positive: 0,88000

F1 positive: 0,83810

Статистика за негативните

коментари

Precision negative: 0,81250

Recall negative: 0,70270

F1 negative: 0,75362

Статистика за всички

коментари

Precision overall: 0,80460

Recall overall: 0,80460

F1 overall: 0,80460

Бъдещо развитие

- Могат да бъдат включени различни категории
 - могат да се включат и неутрални коментари.
- Коментарите могат да се разделят по степен на негативност/ позитивност.

Благодарим ви за вниманието!

