Synthesis of Logical Operators for Quantum Computers using Stabilizer Codes

Narayanan Rengaswamy[†], Robert Calderbank[†], Swanand Kadhe^{*}, and Henry D. Pfister[†]

†Information Initiative at Duke (iiD), Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA *Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA

Introduction

- Quantum computers solve some problems more efficiently than classical computers, e.g., Shor's algorithm for prime factorization is *exponentially* faster than classical ones [NC10].
- But the components of a quantum circuit, e.g., gates, measurements, wires, are faulty.
- An insightful idea is to *encode* the qubits using a **quantum error-correcting code** (QECC) and try to address faults via error-correction procedures [NC10].
- **Fault-tolerance**: If a quantum operation is performed on an encoded block of qubits, and a single component of the circuit fails, then the number of errors in the output state should be within the error-correcting capacity of the code.
- Goals of fault-tolerant quantum computation:
- Find codes that efficiently encode information (logical qubits) into the code states (physical qubits).
- The codes must also have sufficiently high error-correcting capacity.
- For a chosen code, determine the circuits that realize non-trivial operations on the logical qubits. These physical circuits are called the logical operators for the code.
- Determine fault-tolerant implementations for a *universal* set of logical operators for the code. This guarantees reliable and *arbitrary* quantum computation.

We do this for logical Clifford operations on stabilizer QECCs

Figure 1: Problem: Quantum Operations on Encoded (Protected) Qubits

The Heisenberg-Weyl Group $HW_N(N=2^m)$

- Qubit: Mathematically, a 2-dimensional Hilbert space over \mathbb{C} .
- Pure state: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$, with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$.
- Example (2 qubits): $|0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = |01\rangle$, a basis vector for \mathbb{C}^4 .
- The single qubit Pauli operators are given by

$$I_2 \triangleq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, X \triangleq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Z \triangleq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, Y \triangleq \imath \cdot XZ = \begin{bmatrix} 0 & -\imath \\ \imath & 0 \end{bmatrix}; \imath \triangleq \sqrt{-1}.$$

• Bit-flip $(X|v\rangle = |v \oplus 1\rangle)$ and phase-flip $(Z|v\rangle = (-1)^v|v\rangle)$ anti-commute: XZ = -ZX.

m-qubit Heisenberg-Weyl Group $HW_N(N=2^m)$: Operators $\iota^{\kappa}D(a,b)$, where $D(a,b) \triangleq X^{a_1}Z^{b_1} \otimes X^{a_2}Z^{b_2} \otimes \cdots \otimes X^{a_m}Z^{b_m} \in \mathbb{U}_{2^m},$ $a=(a_1,\ldots,a_m), b=(b_1,\ldots,b_m) \in \mathbb{F}_2^m$, $\kappa \in \{0,1,2,3\}$ and \mathbb{U}_N is the unitary group.

- Example: $D(a,b)|v\rangle = (-1)^{vb^T}|v+a\rangle \Rightarrow D(11010,10110)|10101\rangle = |01111\rangle.$ $(XZ \otimes X \otimes Z \otimes XZ \otimes I_2)|10101\rangle = XZ|1\rangle \otimes X|0\rangle \otimes Z|1\rangle \otimes XZ|0\rangle \otimes I_2|1\rangle = |01111\rangle.$
- Symplectic Inner Product: For vectors $[a,b],[a',b']\in\mathbb{F}_2^{2m}$, define

$$\langle [a,b], [a',b'] \rangle_s \triangleq a'b^T + b'a^T = [a,b] \Omega [a',b']^T \pmod{2},$$

where $\Omega = \begin{bmatrix} 0 & I_m \\ I_m & 0 \end{bmatrix}$ is the symplectic form in \mathbb{F}_2^{2m} .

• $D(a,b)D(a',b') = (-1)^{\langle [a,b],[a',b']\rangle_s}D(a',b')D(a,b) \Rightarrow \text{commute iff } \langle [a,b],[a',b']\rangle_s = 0.$

Isomorphism $\gamma \colon HW_N/\langle \iota^\kappa I_N \rangle \to \mathbb{F}_2^{2m}$ defined as $\gamma(D(a,b)) \triangleq [a,b]$.

Clifford Group and Symplectic Matrices

 $\mathsf{Cliff}_N \triangleq \mathcal{N}_{\mathbb{U}_N}(HW_N) \text{: all } g \in \mathbb{U}_N \text{ s.t. } gHW_N g^\dagger = HW_N \text{ (normalizer of } HW_N \text{ in } \mathbb{U}_N \text{)}.$ $\mathsf{Cliff}_N = \langle HW_N, H, P, \mathsf{CNOT or CZ} \rangle \text{ .}$

Gate	Unitary Matrix	Action on Paulis
Hadamard	$H \triangleq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	$HXH^{\dagger} = Z$ $HZH^{\dagger} = X$
Phase	$P \triangleq \begin{bmatrix} 1 & 0 \\ 0 & \iota \end{bmatrix}$	$PXP^{\dagger} = Y$ $PZP^{\dagger} = Z$
Controlled-NOT	$CNOT_{1 \to 2} \triangleq \begin{bmatrix} I_2 & 0 \\ 0 & X \end{bmatrix}$	$CNOT_{1 o 2}(X \otimes I_2) CNOT_{1 o 2}^\dagger = X \otimes X = X_1 X_2$
${\sf Controlled-} Z$	$CZ_{12} \triangleq \begin{bmatrix} I_2 & 0 \\ 0 & Z \end{bmatrix}$	$CZ_{12}(X\otimes I_2)CZ_{12}^\dagger = X\otimes Z = X_1Z_2$

Symplectic Representation: Define $E(a,b) \triangleq \iota^{ab^T} D(a,b)$. If $g \in \mathsf{Cliff}_N$ then

$$gE(a,b)g^{\dagger}=\pm E\left([a,b]F_g\right), \text{ where } F_g=\begin{bmatrix}A_g & B_g\\ C_g & D_g\end{bmatrix} \text{ is symplectic,}$$

i.e., $F_g \Omega F_g^T = \Omega$, and hence preserves inner products: $\langle [a,b], [a',b'] \rangle_s = \langle [a,b] F_g, [a',b'] F_g \rangle_s$.

$$g = \mathsf{CZ}_{12}, F_g = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ & & 1 & 0 \\ & & 0 & 1 \end{bmatrix} : g(X \otimes I_2)g^\dagger = gE(10, 00)g^\dagger = E\left([10, 00]F_g \right) = E(10, 01) = X_1Z_2.$$

Homomorphism $\phi \colon \mathsf{Cliff}_N \to \mathsf{Sp}(2m, \mathbb{F}_2)$ defined as $\phi(g) \triangleq F_g$, where $\mathsf{Sp}(2m, \mathbb{F}_2)$ is the binary symplectic group. Note that for $g \in HW_N$ we have $F_g = I_{2m}$.

Stabilizer Codes and Logical Pauli Operators

- k-dimensional Stabilizer: commutative subgroup $S \subset HW_N$ generated by linearly independent Hermitian operators $E(a_j,b_j) \triangleq \iota^{ab}D(a_j,b_j), \ j=1,\ldots,k.$
- $\llbracket m, m-k, d \rrbracket$ Stabilizer Code: The 2^{m-k} dimensional subspace V(S) jointly fixed by all elements of the stabilizer S, i.e., $V(S) \triangleq \Big\{ |\psi\rangle \in \mathbb{C}^N \mid g \mid \psi\rangle = |\psi\rangle \ \ \forall \ g \in S \Big\}.$
- The $[\![6,4,2]\!]$ Code: $S \triangleq \langle \boldsymbol{g}^X \triangleq X^{\otimes 6} = \boldsymbol{E(r,0)}, \ \boldsymbol{g}^Z \triangleq Z^{\otimes 6} = \boldsymbol{E(0,r)} \rangle$, r = [111111]. $\boldsymbol{g}^X = X_1 X_2 X_3 X_4 X_5 X_6 = X^{\otimes 6}, \ \boldsymbol{g}^Z = Z_1 Z_2 Z_3 Z_4 Z_5 Z_6 = Z^{\otimes 6}$.
- CSS Construction: Let $\mathcal C$ be the [6,5,2] single-parity check code with m=6,k=1. The dual $\mathcal C^\perp\subset\mathcal C$ is the [6,1,6] repetition code. Two possible generator matrices for $\mathcal C/\mathcal C^\perp$:

$$G_{\mathcal{C}/\mathcal{C}^{\perp}}^{X} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} =: \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \end{bmatrix} \quad \text{or} \quad G_{\mathcal{C}/\mathcal{C}^{\perp}}^{Z} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} =: \begin{bmatrix} h'_1 \\ h'_2 \\ h'_3 \\ h'_4 \end{bmatrix}.$$

- So if we have an (m-2k)-qubit state $|x\rangle_L$ then the CSS code will encode this into

$$|\psi_x\rangle \equiv \left|v + \mathcal{C}^{\perp}\right\rangle \triangleq \frac{1}{\sqrt{|\mathcal{C}^{\perp}|}} \sum_{c \in \mathcal{C}^{\perp}} \left|c + x \cdot G_{\mathcal{C}/\mathcal{C}^{\perp}}^{X}\right\rangle = \frac{1}{\sqrt{|\mathcal{C}^{\perp}|}} \sum_{c \in \mathcal{C}^{\perp}} \left|c + \sum_{j=1}^{m-2k} x_j h_j\right\rangle.$$

Synthesizing Logical Paulis: Find physical realizations \bar{X}_j, \bar{Z}_j for X_j^L, Z_j^L resp. s.t.

- $\bar{X}_j, \bar{Z}_j \in \mathbb{U}_N$ act on $|\psi_x\rangle$ and realize action of X_j^L, Z_j^L (resp.) on $|x\rangle_L$.
- \bar{X}_j, \bar{Z}_j satisfy the commutation relations: $\bar{X}_i \bar{Z}_j = \begin{cases} -\bar{Z}_j \bar{X}_i & \text{if } i=j, \\ \bar{Z}_i \bar{X}_i & \text{if } i \neq j \end{cases}$.
- \bar{X}_j, \bar{Z}_j normalize the stabilizer S (preserve the code subspace) so that, for $g \in S \ \exists \ g' \in S$ s.t.

$$\bar{X}_j |\psi_x\rangle = \bar{X}_j g |\psi_x\rangle = (\bar{X}_j g \bar{X}_j^\dagger) \bar{X}_j |\psi_x\rangle = g' \bar{X}_j |\psi_x\rangle$$
 (similarly for \bar{Z}_j).

• For the $\llbracket 6,4,2 \rrbracket$ CSS code the logical Pauli operators are given by

$$ar{X}_1 \triangleq D(h_1,0) = X_1 X_2 \quad ar{Z}_1 \triangleq D(0,h_1') = Z_2 Z_6$$
 $ar{X}_2 \triangleq D(h_2,0) = X_1 X_3 \quad ar{Z}_2 \triangleq D(0,h_2') = Z_3 Z_6$
 $ar{X}_3 \triangleq D(h_3,0) = X_1 X_4 \quad ar{Z}_3 \triangleq D(0,h_3') = Z_4 Z_6$
 $ar{X}_4 \triangleq D(h_4,0) = X_1 X_5 \quad ar{Z}_4 \triangleq D(0,h_4') = Z_5 Z_6$

Synthesis of Logical Clifford Operators

- Conditions similar to that for logical Paulis, but commutation constraints $\bar{X}_i \bar{Z}_j$ replaced by conjugation constraints with logical Paulis, i.e., \bar{g} must satisfy $\bar{g} \bar{X}_j \bar{g}^\dagger = \bar{h}$ if $g^L X_i^L (g^L)^\dagger = h^L \in HW_{2m-k}$ and $\bar{g} \bar{Z}_j \bar{g}^\dagger = \bar{h}'$ if $g^L Z_i^L (g^L)^\dagger = (h')^L \in HW_{2m-k}$.
- Synthesizing $g^L = \mathsf{CZ}_{12}^L$ for the $[\![6,4,2]\!]$ code: Find physical operator $\bar{g} = \overline{\mathsf{CZ}}_{12}$ such that

$$\overline{\operatorname{CZ}}_{12} \bar{X}_j \overline{\operatorname{CZ}}_{12}^\dagger \triangleq \begin{cases} \bar{X}_1 \bar{Z}_2 & \text{if } j = 1, \\ \bar{Z}_1 \bar{X}_2 & \text{if } j = 2, \\ \bar{X}_j & \text{if } j \neq 1, 2 \end{cases}$$

$$\overline{\operatorname{CZ}}_{12} \bar{Z}_j \overline{\operatorname{CZ}}_{12}^\dagger \triangleq \bar{Z}_j \ \forall \ j = 1, 2, 3, 4.$$

• Using the symplectic representation translate these into constraints on the desired symplectic matrix for $\overline{\text{CZ}}_{12}$ as follows:

$$\bar{X}_1 = X_1 X_2 \stackrel{\mathsf{CZ}_{12}}{\longmapsto} X_1 X_2 Z_3 Z_6 \stackrel{\boldsymbol{\gamma}, \boldsymbol{\phi}}{\Longrightarrow} [110000, 000000] F_{\overline{\mathsf{CZ}}_{12}} = [110000, 001001]$$

$$\bar{X}_2 = X_1 X_3 \stackrel{\overline{\mathsf{CZ}}_{12}}{\longmapsto} X_1 X_3 Z_2 Z_6 \stackrel{\boldsymbol{\gamma}, \boldsymbol{\phi}}{\Longrightarrow} [101000, 000000] F_{\overline{\mathsf{CZ}}_{12}} = [101000, 010001]$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\boldsymbol{g}^X = X^{\otimes 6} \stackrel{\overline{\mathsf{CZ}}_{12}}{\longmapsto} X^{\otimes 6} = X_1 X_2 \cdots X_6 \stackrel{\boldsymbol{\gamma}, \boldsymbol{\phi}}{\Longrightarrow} [111111, 000000] F_{\overline{\mathsf{CZ}}_{12}} = [111111, 000000]$$

$$\boldsymbol{g}^Z = Z^{\otimes 6} \stackrel{\overline{\mathsf{CZ}}_{12}}{\longmapsto} Z^{\otimes 6} = Z_1 Z_2 \cdots Z_6 \stackrel{\boldsymbol{\gamma}, \boldsymbol{\phi}}{\Longrightarrow} [000000, 111111] F_{\overline{\mathsf{CZ}}_{12}} = [000000, 111111].$$

- We solve such symplectic systems of linear equations using symplectic transvections.
- Definition: Given a row vector $h \in \mathbb{F}_2^{2m}$, the transvection $Z_h: \mathbb{F}_2^{2m} \to \mathbb{F}_2^{2m}$ is

$$Z_h(x) \triangleq x + \langle x, h \rangle_s h \iff F_h \triangleq I_{2m} + \Omega h^T h \in \operatorname{Sp}(2m, \mathbb{F}_2).$$

Summary of Our Results

- Given a sequence of binary vectors $x_i, y_i, i = 1, ..., t \le 2m$ s.t. $\langle x_i, x_j \rangle_s = \langle y_i, y_j \rangle_s$, there exists a symplectic matrix F, expressible as a product of at most 2t transvections, s.t. $x_iF = y_i$. We also given an explicit algorithm to compute such a matrix.
- Let $\{(u_a,v_a),\ a\in\{1,\ldots,m\}\}$ be a collection of pairs of binary vectors that form a symplectic basis for \mathbb{F}_2^{2m} , where $u_a,v_a\in\mathbb{F}_2^{2m}$. Consider a system of linear equations $u_iF=u_i',v_jF=v_j'$, where $i\in\mathcal{I}\subseteq\{1,\ldots,m\},j\in\mathcal{J}\subseteq\{1,\ldots,m\}$ and $F\in\mathsf{Sp}(2m,\mathbb{F}_2)$. Let $\alpha\triangleq|\bar{\mathcal{I}}|+|\bar{\mathcal{J}}|$. Then there are $2^{\alpha(\alpha+1)/2}$ solutions F to the system. We also give an algorithm to efficiently enumerate them.
- For an [m, m-k] stabilizer code, the number of symplectic solutions for each logical Clifford operator is $2^{k(k+1)/2}$. We give a complete algorithm to determine all solutions and their circuits.
- For an [m, m-k] stabilizer code with stabilizer S, each physical realization of a given logical Clifford operator that normalizes S can be converted into a circuit that centralizes S, i.e., commutes with every element of S, while realizing the same logical operation.

References

- 1 N. Rengaswamy, R. Calderbank, S. Kadhe, and H. D. Pfister, "Synthesis of Logical Clifford Operators via Symplectic Geometry," *arXiv preprint arXiv:1803.06987*, 2018, [Online]. Available: http://arxiv.org/abs/1803.06987.
- 2010. M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information*. Cambridge university press, 2010.
- 3 A. R. Calderbank and P. W. Shor, "Good quantum error-correcting codes exist," *Phys. Rev. A*, vol. 54, pp. 1098–1105, 2 Aug. 1996.
- 4 A. Calderbank, E. Rains, P. Shor, and N. Sloane, "Quantum error correction via codes over GF(4)," *IEEE Trans. Inform. Theory*, vol. 44, no. 4, pp. 1369–1387, Jul. 1998.
- **5** D. Gottesman, "A Theory of Fault-Tolerant Quantum Computation," arXiv preprint arXiv:quant-ph/9702029, 1997, [Online]. Available: http://arxiv.org/pdf/quant-ph/9702029.pdf.
- 6 R. Chao and B. W. Reichardt, "Fault-tolerant quantum computation with few qubits," arXiv preprint arXiv:1705.05365, 2017, [Online]. Available: http://arxiv.org/pdf/1705.05365.pdf.