Problem 4 – Logs Aggregator

You are given a sequence of access logs in format <IP> <user> <duration>. For example:

- 192.168.0.11 peter 33
- 10.10.17.33 alex 12
- 10.10.17.35 peter 30
- 10.10.17.34 peter 120
- 10.10.17.34 peter 120
- 212.50.118.81 alex 46
- 212.50.118.81 alex 4

Write a program to aggregate the logs data and print for each user the total duration of his sessions and a list of unique IP addresses in format "<user>: <duration> [<IP₁>, <IP₂>, ...]". Order the users alphabetically. Order the IPs alphabetically. In our example, the output should be the following:

- alex: 62 [10.10.17.33, 212.50.118.81]
- peter: 303 [10.10.17.34, 10.10.17.35, 192.168.0.11]

Input

The input comes from the console. At the first line a number **n** stays which says how many log lines will follow. Each of the next n lines holds a log information in format <IP> <user> <duration>. The input data will always be valid and in the format described. There is no need to check it explicitly.

Output

Print one line for each user (order users alphabetically). For each user print its sum of durations and all of his sessions' IPs, ordered alphabetically in format <user>: <duration> [<IP₁>, <IP₂>, ...]. Remove any duplicated values in the IP addresses and order them alphabetically (like we order strings).

Constraints

- The **count** of the order lines **n** is in the range [1...1000].
- The <IP> is a standard IP address in format a.b.c.d where a, b, c and d are integers in the range [0...255].
- The **<user>** consists of only of **Latin characters**, with length of [1...20].
- The **<duration>** is an integer number in the range [1...1000].
- Time limit: 0.3 sec. Memory limit: 16 MB.

Examples

Input	Output
7 192.168.0.11 peter 33 10.10.17.33 alex 12 10.10.17.35 peter 30 10.10.17.34 peter 120 10.10.17.34 peter 120 212.50.118.81 alex 46 212.50.118.81 alex 4	alex: 62 [10.10.17.33, 212.50.118.81] peter: 303 [10.10.17.34, 10.10.17.35, 192.168.0.11]
2 84.238.140.178 nakov 25 84.238.140.178 nakov 35	nakov: 60 [84.238.140.178]

