

Today's Class

- o Null vs. alternative hypothesis
- Hypothesis Testing
- Type of Errors
- P-Values

Bottled Water

- UCLA bottled water has the water volume of 20 Fl Oz on the label. We assumed it is true.
- o But is it?
- Assumption
 - Quantity of Water = 20 Oz

Null vs. Alternative Hypotheses

- We always test two contradictory hypotheses:
 - Null hypothesis (H₀) is the belief that is initially assumed to be true (prior belief)
 - Alternative hypothesis (H_a) is the assertion that is contradictory to H₀

Hypothesis Testing

- o The claim is the alternative hypothesis, H_a
- The counterclaim is stated as the null hypothesis, H₀
 - Supposed to be true unless proven otherwise
- The hypotheses test assesses how probable the observable differences are assuming H₀

Null vs. Alternative Hypotheses Example

- \bullet H₀ μ = 20 Oz
- o H_a $\mu \neq 20$ Oz
- If the data indicates the bottles are being filled properly, then we fail to reject the null; fail to reject our assumption
- If the data indicates the bottles are not being filled properly, then we reject the null; reject our assumption

Errors in Hypothesis Testing

• H_0 : μ = 20 Oz

• H_a : $\mu \neq 20$ Oz

	Actual Condition	
	μ = 20 Oz	μ ≠ 20 Oz
Do not reject H ₀	Correct	Type II error
Reject H ₀	Type I error	Correct

• • •

Type I and II Errors Example

oln diagnostic testing for corona virus,

- H₀: the tested person is corona virus-free
- H_a: the person is infected
- Type I error is that the test gives a false positive result
- Type II error is that the test gives a false negative result

Type I and II Errors Example

- o In the prosecution of an accused person,
 - H₀: the person is innocent
 - H_a: the person is guilty
- Which of the following is Type I error?
 - A: the error of convicting an innocent person
 - B: the error of not convicting a guilty person

Hypothesis Testing Procedure

- 1. Establish hypotheses: null & alternative
- 2. Determine appropriate statistical test and sampling distribution
- 3. Choose the Type I error rate (significance level, α)
- 4. State the decision rule
- 5. Gather sample data
- Calculate test statistics
- 7. State statistical conclusion: Decide whether H₀ should be rejected

Example Hypothesis Testing

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz assuming that the population STD to be 2 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz
- Is this difference statistically significant at a significance level of .01?

Hypothesis Testing: Normal with Known STD

•
$$H_0$$
: $\mu = \mu_0$

• Test statistic:
$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

Alternative Hypothesis	Rejection region for level α
H_a : $\mu > \mu_0$	$z > z_{\alpha}$
H_a : μ < μ ₀	$z < -z_{\alpha}$
H _a : μ ≠ μ ₀	$z > z_{\alpha/2}$ or $z < -z_{\alpha/2}$

Example

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz and the sample STD to be 2 Oz
- Is this difference statistically significant at a significance level of .01?

Hypothesis Testing: Normal with Unknown STD

•
$$H_0$$
: $\mu = \mu_0$

• Our test statistic is:
$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Alternative Hypothesis	Rejection region for level α test
H_a : μ > μ ₀	$t \ge t_{\alpha, n-1}$
H_a : μ < μ ₀	t ≤ - t _{α, n-1}
H _a : μ ≠ μ ₀	$t \ge t_{\alpha/2, n-1}$ or $t \le -t_{\alpha/2, n-1}$

P-values

• The p-value is the smallest level of significance at which the H₀ would be rejected

p(data|H₀) = p-value

- If p-value $\leq \alpha$, then reject H₀ at level α If p-value > α , then do not reject H₀ at level α
- o The lower the p-value, the stronger your evidence in support of alternative hypothesis

Example: p-Value

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz assuming that the population STD to be 2 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz
- What is the p-value?

• • •

P-values

•
$$H_0$$
: $\mu = \mu_0$

• Our test statistic is:
$$z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Alternative Hypothesis	Rejection region for level α test
H_a : $\mu > \mu_0$	$P = p(Z>z) = 1-\Phi(z)$
H_a : $\mu < \mu_0$	$P = p(Z < z) = \Phi(z)$
H_a : $\mu \neq \mu_0$	$P = 2 (1-\Phi(z))$

Example: p-Value

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz and the sample STD to be 2 Oz
- What is the p-value?

P-value

•
$$H_0$$
: $\mu = \mu_0$

• Our test statistic is:
$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Alternative Hypothesis	Rejection region for level α test
H _a : μ > μ ₀	P = p(X>t)
H _a : μ < μ ₀	P = p(X < t)
H _a : μ ≠ μ ₀	P = 2p(X> t)

Relationship between CI and Hypothesis Test

- The mean water volume is expected to be 20 Oz. Determine the mean water volume differs from 20 Oz
- A sample of size 36 finds the sample mean water volume to be 19 Oz and the sample STD to be 2 Oz
 - What is 99% two-sided CI?
 - Compare the result with the p-Value