bfw_mlogit

This is the example vignette for function: bfw mlogit from the **PrjLabEquiBFW Package**.

Default

[mp_fl_labor_occprbty,mp_fl_labor_supplied] = bfw_mlogit();

CONTAINER NAME: mp_wages Scalars

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx					
	i	idx	value		
	-				
C011	1	1	2.1604		
C012	2	2	5.6589		
C013	3	3	5.8023		
C111	4	4	4.5245		
C112	5	5	5.4146		
C113	6	6	8.0437		

BFW_SUPPLY_LEVELS_BF18;it_supplier_group=1;SNW_MP_CONTROL=;C011;time=;G01;f1_wage=2.1604
Supply data;potwrker=0.85421;shrmarid=0.87768;shrufive=0.54077;applianc=0.95588;jobscrys=0.613
BFW_SUPPLY_LEVELS_BF18;it_supplier_group=1;SNW_MP_CONTROL=;C012;time=;G01;f1_wage=5.6589
Supply data;potwrker=0.85421;shrmarid=0.87768;shrufive=0.54077;applianc=0.95588;jobscrys=0.613
BFW_SUPPLY_LEVELS_BF18;it_supplier_group=1;SNW_MP_CONTROL=;C013;time=;G01;f1_wage=5.8023
Supply data;potwrker=0.85421;shrmarid=0.87768;shrufive=0.54077;applianc=0.95588;jobscrys=0.613
BFW_SUPPLY_LEVELS_BF18;it_supplier_group=2;SNW_MP_CONTROL=;C111;time=;G11;f1_wage=4.5245
Supply data;potwrker=1.8792;shrmarid=0.9391;shrufive=0.54027;applianc=0.93209;jobscrys=0.613
BFW_SUPPLY_LEVELS_BF18;it_supplier_group=2;SNW_MP_CONTROL=;C112;time=;G11;f1_wage=5.4146
Supply data;potwrker=1.8792;shrmarid=0.9391;shrufive=0.54027;applianc=0.93209;jobscrys=0.613
BFW_SUPPLY_LEVELS_BF18;it_supplier_group=2;SNW_MP_CONTROL=;C113;time=;G11;f1_wage=8.0437
Supply data;potwrker=1.8792;shrmarid=0.9391;shrufive=0.54027;applianc=0.93209;jobscrys=0.613

CONTAINER NAME: mp_fl_labor_occprbty Scalars

	Iux	value
-		
1	1	0.015821
2	2	0.12787
3	3	0.36854
4	4	0.097357
5	5	0.17795
6	6	0.65443
	2 3 4 5	1 1 2 2 3 3 4 4 5 5 5

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i	idx	value
	-		
C011	1	1	0.013514
C012	2	2	0.10923
C013	3	3	0.31481
C111	4	4	0.18296
C112	5	5	0.33441
C113	6	6	1.2298

CONTAINER NAME: mp_fl_labor_supplied_3v0f Scalars idx value C011 1 1 0.013514 C012 2 0.10923 2 C013 3 3 0.31481 C111 4 0.18296 4 C112 5 5 0.33441 C113 1.2298 CONTAINER NAME: mp_fc_labor_occprbty_3v0f Functions i idx functionString "1" "1" "@(w1,w2,w3)fc_ar_prob_wrk(fl_psi0_manual,psi1,w1,fc_prob_denom_wage(w1,w2,w3))" C011 "2" "2" C012 "@(w1,w2,w3)fc_ar_prob_wrk(fl_psi0_routine,psi1,w2,fc_prob_denom_wage(w1,w2,w3))" "3" "3" "@(w1,w2,w3)fc_ar_prob_wrk(fl_psi0_analytical,psi1,w3,fc_prob_denom_wage(w1,w2,w3))" C013 "4" "4" "@(w1,w2,w3)fc_ar_prob_wrk(fl_psi0_manual,psi1,w1,fc_prob_denom_wage(w1,w2,w3))" C111 "5" "5" "@(w1,w2,w3)fc_ar_prob_wrk(fl_psi0_routine,psi1,w2,fc_prob_denom_wage(w1,w2,w3))" C112 "6" "6" C113 "@(w1,w2,w3)fc ar prob wrk(fl psi0 analytical,psi1,w3,fc prob denom wage(w1,w2,w3))" CONTAINER NAME: mp_fc_labor_supplied_3v0f Functions i idx functionString "1" "1" C011 "@(w1,w2,w3)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_3v0f(w1,w2,w3))" "2" "2" "@(w1,w2,w3)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_3v0f(w1,w2,w3))" C012 "3" "3" C013 "@(w1,w2,w3)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_3v0f(w1,w2,w3))" "4" "4" "@(w1,w2,w3)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_3v0f(w1,w2,w3))" C111 "5" "5" "@(w1,w2,w3)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_3v0f(w1,w2,w3))" C112 "6" C113 "@(w1,w2,w3)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_3v0f(w1,w2,w3))" CONTAINER NAME: mp_fc_labor_occprbty_1v2f Functions xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx i idx functionString "1" "1" C011 "@(wage)fc_ar_prob_wrk(fl_psi0_manual,psi1,wage,fc_prob_denom_wage(wage,fl_w2,fl_w3))' "2" C012 "2" "@(wage)fc_ar_prob_wrk(fl_psi0_routine,psi1,wage,fc_prob_denom_wage(fl_w1,wage,fl_w3))" "3" "3" C013 "@(wage)fc_ar_prob_wrk(fl_psi0_analytical,psi1,wage,fc_prob_denom_wage(fl_w1,fl_w2,wage)) "4" "4" C111 "@(wage)fc_ar_prob_wrk(fl_psi0_manual,psi1,wage,fc_prob_denom_wage(wage,fl_w2,fl_w3))" "5" "5" "@(wage)fc_ar_prob_wrk(fl_psi0_routine,psi1,wage,fc_prob_denom_wage(fl_w1,wage,fl_w3))" C112 "6" "6" "@(wage)fc_ar_prob_wrk(fl_psi0_analytical,psi1,wage,fc_prob_denom_wage(fl_w1,fl_w2,wage)) C113 CONTAINER NAME: mp fc labor supplied 1v2f Functions i idx functionString

"@(wage)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_1v2f(wage))"

C011

```
C012
        "2"
               "2"
                      "@(wage)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_1v2f(wage))"
        "3"
               "3"
                      "@(wage)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_1v2f(wage))"
C013
                      "@(wage)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_1v2f(wage))"
        "4"
               "4"
C111
        "5"
                      "@(wage)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_1v2f(wage))"
               "5"
C112
        "6"
               "6"
                      "@(wage)fc_supply(fl_potwrklei_potwrker,fc_labor_occprbty_1v2f(wage))"
C113
```

Supply curves for edu-gender-occupation categories

Supply curves for edu-gender-occupation categories

Visualize Supply Curves Different Years

```
% 1. Print and Graph options
bl_verbose = false;
bl_graph = true;
ar_it_prob_or_quant = [1];
% 2. Get Parameters and data
bl log wage = true;
bl verbose nest = false;
% Get Parameters
mp_params = bfw_mp_param_esti(bl_log_wage);
mp param aux = bfw mp param aux(bl verbose nest);
mp_params = [mp_params; mp_param_aux];
% Get Data
mp_data = bfw_mp_data(bl_verbose_nest);
% Get Functions
mp func = bfw mp func supply(bl log wage, bl verbose nest);
% Get Controls
mp_controls = bfw_mp_control();
% 3. Data from which year, only integer year value allowed
% ar_it_data_year = [1989 1994 2000 2008 2014];
ar it data year = [1989 2000 2014];
for it_data_year=ar_it_data_year
    % 4. Which categories to obtain data from, there are 12 possible
    % For non-college equilibrium, six wages, three female, three males
    % gen_occ = gender occupation
    for bl skilled = [false true]
        if (bl_skilled)
            mt_st_gen_occ_categories = [...
                "C011", "C012", "C013"; ...
                "C111", "C112", "C113"];
        else
            mt_st_gen_occ_categories = [...
                "C001", "C002", "C003"; ...
                "C101", "C102", "C103"];
        end
        % 5. Array of wages, at most, since there are six nests, there are 12
        % prices possible. And there are 12 quantity supplies possible, coming
        % from four tyeps of workers, each supply 3 + home categories.
        mp_wages = containers.Map('KeyType', 'char', 'ValueType', 'any');
        % Obtain some equilibrium wage data as testing inputs
        mp path = bfw_mp_path();
        spt_codem_data = mp_path('spt_codem_data');
        tb_data_pq = mp_data('tb_data_pq');
        tb_data_pq = tb_data_pq(:, ["year", "category", "numberWorkers", "meanWage"]);
        ar_st_gen_occ_categories = mt_st_gen_occ_categories(:)';
        for st gen occ=ar st gen occ categories
            tb gen_occ over years = tb data pq(strcmp(tb data pq.category, st gen_occ),:);
            fl_wage_one_year = tb_gen_occ_over_years(tb_gen_occ_over_years.year == (it_data_years)
```

Supply curves for edu-gender-occupation categories

