JS 911	Study Group Intractability Fail 2022
Name	: Wisc id:
Bas	sics
1. Highl	ly intelligent aliens land on Earth and tell us the following two things and then leave immediately.
	The 3-Coloring problem (which is NP-complete) is solvable in worst-case $O(n^9)$ time, where n denotes the number of vertices in the graph.
2.	There is no algorithm for 3-Coloring that runs faster than $\Omega(n^7)$ time in the worst case.
the in runni	ming these two facts, for each of the following assertions, indicate whether it can be inferred from a formation the aliens have given us. (In all cases, time complexities are understood to be worst-case ing time.) Provide a short justification in each case.
(a) A	All NP-complete problems are solvable in polynomial time.
	Solution:
	yes
(b) A	All problems in NP, even those that are <i>not</i> NP-complete, are solvable in polynomial time.
	Solution:
(c) A	All NP-hard problems are solvable in polynomial time.
	Solution: 10, NP-Hand make that complete
(d) A	All NP-complete problems are solvable in $O(n^9)$ time.
	Solution: $N_{\mathcal{O}}$
(e) I	No NP-complete problem can be solved faster than $\Omega(n^7)$ time.
	Solution: N O

Proving NPC

To prove B is NP-Complete:

- Prove $B \in NP$
- Prove $B \in NP$ -hard
 - Select a known NPC problem ${\cal A}$
 - Construct a reduction f transforming every instance of A to an instance of B
 - Prove that B outputs 1 if and only if A outputs 1 That is, for all α , $Sol\text{-}A(\alpha)=1 \iff Sol\text{-}B(\beta)=1$
 - Prove that f is a polynomial time transformation

A clique in G = (V, E) is a subset of V

- \bullet Each pair of vertices in a clique is connected by an edge in E
- Size of a clique = Number of vertices it contains

CLIQUE: Is there a clique of size \underline{k} in G?

A vertex cover of G = (V, E) is a subset $V' \subseteq V$ such that if $(w, v) \in E$, then $w \in V'$ or $v \in V'$ or both.

VERTEX-COVER: Is there a vertex-cover of size k in G?

2. Prove that VERTEX-COVER is NP-Complete.

Solution:

(1) show NP

given a japh of and a subset of the set of verticity v' to check if vertice come w) a size x. for each vortex in v' check if me union of all restricts on V. its polynomial do a liner search for court VEV' and compare all to V 0[n.n)

(2) show Afromplete clique & July con

graph G=(V, E) is a chique w) size k & graph Gc=(V, É) is another con size (V)-k

(=>) Graph G has a k size chigh who subset v1.

- if (a, b) e V' (a, b) e F

-if (a18)&E, a&V-V' + b&V-V'

- |V|-|V|| = K, |V|- K = |V'| : V-Y' is another come for the size (VI-K

(=) Graph 6° has a size IVI-K VC w/ VI WAXES in UC

-if (aib) e V', (a,b)eEC

- if (v'p) & Ec' (v'p) & 1,

- if (a, 8) eF, (a, 8) & V-V'

- | N - | V | + K = K , V - V | is a Page 3 of 5 grow Go clique

A Hamiltonian cycle of G = (V, E) is a cycle that visits every vertex exactly once.

HAM-CYCLE: Given a graph G, is there a Hamiltonian cycle in G?

Travelling Salesperson (TSP): Given a set of cities and their pairwise distances, find a tour of cost (travelled distance) at most k that visits each city exactly once. always complete graph

3. Prove that TSP is NP-Complete.

Solution:

- (1) show No
- (2) show up complete

TSPENP

- a path £4

· goes through all nodes prem o(1/21)? compre graph

· cost < K

O(1/21)? compre graph

2 Comm or from Ham, comment & for TSP s.t.

Go has a hum eyel (=> Go has a TSP for SF , K=0

4. You are given a directed graph G=(V,E) with weights w(e) on its edges $e\in E$. The weights can be

Solution:			