# Neural Networks in Structured Prediction

November 19, 2015

## Last Time

- We talked about using non-structured neural networks to solve structured problems
  - Intuition: neural nets are powerful learnersmaybe we don't need to model statistical dependencies among output variables?
  - Some support for this: POS tagging results...

## Goals for Today

- Neural networks in structured prediction:
  - Option 1: locally nonlinear factors in globally linear models
  - Option 2: operation sequence models
  - Option 3: global, nonlinear structured models [speculative]

## Locally Nonlinear Models

$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}(y_{i-1}, y_i, \boldsymbol{x})$$

$$= \mathbf{w}^{\top} \sum_{i=1}^{n} \mathbf{f}(y_{i-1}, y_i, \boldsymbol{x})$$

## Locally Nonlinear Models

$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{i=1}^{n} \mathbf{w}^{\top} \mathbf{f}(y_{i-1}, y_i, \boldsymbol{x})$$

$$= \mathbf{w}^{\top} \sum_{i=1}^{n} \mathbf{f}(y_{i-1}, y_i, \boldsymbol{x})$$

$$= \mathbf{w}^{\top} \sum_{i=1}^{n} \text{NN}(y_{i-1}, y_i, \boldsymbol{x})$$

## Local Nonlinear Model

- Neural net returns a vector (a feature vector!) for each local factor
- We still get fast, global decoding using standard linear models
- Feature induction operates locally
- Best of both worlds?

CRF



Input



Output

CNF

Peng, Bo, Xu (NIPS 2009)

#### Protein secondary structure prediction (Peng et al., 2009)

| Methods                            | Q3(%)                 |
|------------------------------------|-----------------------|
| Conditional Random Fields          | 72.9                  |
| SVM-struct (Linear Kernel)         | 73.1                  |
| Neural Networks (one hidden layer) | 72                    |
| Neural Networks (two hidden layer) | 74                    |
| Semimarkov HMM                     | 72.8                  |
| SVMpro                             | 73.5                  |
| SVMpsi                             | 76.6                  |
| PSIPRED                            | 76                    |
| YASSPP                             | 77.8                  |
| SPINE*                             | 76.8                  |
| Conditional Neural Fields          | <b>80.1</b> $\pm 0.3$ |
| Conditional Neural Fields*         | <b>80.5</b> $\pm 0.3$ |

#### Protein secondary structure prediction (Peng et al., 2009)

| Methods                            | Q3(%)                 |
|------------------------------------|-----------------------|
| Conditional Random Fields          | 72.9                  |
| SVM-struct (Linear Kernel)         | 73.1                  |
| Neural Networks (one hidden layer) | 72                    |
| Neural Networks (two hidden layer) | 74                    |
| Semimarkov HMM                     | 72.8                  |
| SVMpro                             | 73.5                  |
| SVMpsi                             | 76.6                  |
| PSIPRED                            | 76                    |
| YASSPP                             | 77.8                  |
| SPINE*                             | 76.8                  |
| Conditional Neural Fields          | <b>80.1</b> $\pm 0.3$ |
| Conditional Neural Fields*         | <b>80.5</b> $\pm 0.3$ |

#### Constituency parsing (Durrett & Klein, 2015)

|                                  | Arabic                | Basque                | French                | German                | Hebrew                | Hungarian             | Korean                | Polish                | Swedish               | Avg                   |
|----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Dev, all lengths                 |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Hall et al. (2014)<br>This work* | 78.89<br><b>80.68</b> | 83.74<br><b>84.37</b> | 79.40<br><b>80.65</b> | 83.28<br><b>85.25</b> | 88.06<br><b>89.37</b> | 87.44<br><b>89.46</b> | 81.85<br><b>82.35</b> | 91.10<br><b>92.10</b> | 75.95<br><b>77.93</b> | 83.30<br><b>84.68</b> |
| This work                        | 00.00                 | 04.57                 |                       |                       |                       | 02.40                 | 02.55                 | 72.10                 | 77.55                 | 04.00                 |
| Test, all lengths                |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Berkeley                         | 79.19                 | 70.50                 | 80.38                 | 78.30                 | 86.96                 | 81.62                 | 71.42                 | 79.23                 | 79.18                 | 78.53                 |
| Berkeley-Tags                    | 78.66                 | 74.74                 | 79.76                 | 78.28                 | 85.42                 | 85.22                 | 78.56                 | 86.75                 | 80.64                 | 80.89                 |
| Crabbé and Seddah (2014)         | 77.66                 | 85.35                 | 79.68                 | 77.15                 | 86.19                 | 87.51                 | 79.35                 | 91.60                 | 82.72                 | 83.02                 |
| Hall et al. (2014)               | 78.75                 | 83.39                 | 79.70                 | 78.43                 | 87.18                 | 88.25                 | 80.18                 | 90.66                 | 82.00                 | 83.17                 |
| This work*                       | 80.24                 | 85.41                 | 81.25                 | 80.95                 | 88.61                 | 90.66                 | 82.23                 | 92.97                 | 83.45                 | 85.08                 |

## Operation Sequence Models

while 
$$y_t \neq \text{STOP}$$

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$y_t \sim g(\mathbf{h}_t)$$

$$t \leftarrow t+1$$

$$\mathbf{0} \longrightarrow$$

#### What is the probability of a sequence y ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

while 
$$y_t \neq \text{STOP}$$

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$y_t \sim g(\mathbf{h}_t)$$

$$t \leftarrow t+1$$

#### What is the probability of a sequence $oldsymbol{y}$ ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

while 
$$y_t \neq \text{STOP}$$

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$y_t \sim g(\mathbf{h}_t)$$

$$t \leftarrow t+1$$
o

START

#### What is the probability of a sequence $oldsymbol{y}$ ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

while 
$$y_t \neq \text{STOP}$$

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$y_t \sim g(\mathbf{h}_t)$$

$$t \leftarrow t+1$$
o

START
I

#### What is the probability of a sequence y ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

while 
$$y_t \neq \text{STOP}$$

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$y_t \sim g(\mathbf{h}_t)$$

$$t \leftarrow t+1$$

#### What is the probability of a sequence y ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

while 
$$y_t \neq \text{STOP}$$

$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

$$y_t \sim g(\mathbf{h}_t)$$

$$t \leftarrow t+1$$
START I saw

#### What is the probability of a sequence $oldsymbol{y}$ ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

#### What is the probability of a sequence $oldsymbol{y}$ ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

#### What is the probability of a sequence y ?

$$p(\boldsymbol{y}) = \prod_{i} p(y_i \mid \boldsymbol{y}_{< i})$$

## RNNLMs for Structured Prediction

• Intuition 
$$p(\mathbf{y}) = \prod_i p(y_i \mid \mathbf{y}_{< i})$$

## RNNLMs for Structured Prediction

• Intuition 
$$p(\boldsymbol{y}) = \prod_i p(y_i \mid \boldsymbol{y}_{< i})$$
 
$$p(\boldsymbol{y} \mid \boldsymbol{x}) = \prod_i p(y_i \mid \boldsymbol{y}_{< i}, \boldsymbol{x})$$

## Transition-Based Models

- Break the structure you want to build down into a sequence of structure-building operations (or transitions)
- sequence tagging can be done with a single operation:
  - ReadAndLabel(X) remove the next input symbol and label it with an X
  - more complicated structures (trees, graphs) require auxiliary data structures that are manipulated (more later)

## Dependency parsing





I saw her duck

## Dependency parsing







### Transition-based parsing

- Build trees by pushing words ("shift") onto a stack and combing elements at the top of the stack into a syntactic constituent ("reduce")
- Given current stack and buffer of unprocessed words, what action should the algorithm take?
- Widely used
  - Good accuracy
  - O(n) runtime [much faster than other parsing algos]

### Transition-based parsing

- There are actually perhaps 5 or 6 different "transition sets" for transition-based parsing (the one we are presenting is called "arc standard")
- They use the stack and buffer in slightly different ways and may make predicting certain tree structures more or less difficult
- When designing your transition sets for your problem, keep in mind that there may be many possibilities

| Stack | Buffer                     | Action |
|-------|----------------------------|--------|
|       | I saw her duck <b>ROOT</b> |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |

| Stack | Buffer                     | Action |
|-------|----------------------------|--------|
|       | I saw her duck <b>ROOT</b> | SHIFT  |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |
|       |                            |        |































#### Making Predictions

- In transition based models, you need to look at the current "state" of the algorithm and make a decision about what to do next
- The current state in sequence models is pretty simple
  - The things you've labeled
  - The labels you've produced
  - The unlabeled part of the string
- What about in trees?













## Transition-based parsing **Solutions**

- Use a new variant of LSTMs—stack LSTMs—to embed buffer, stack, and history of actions
  - Embeddings are sensitive to full lookahead, full stack contents, and full history of actions
  - Incremental construction of parser state embedding means runtime remains linear

- Augment LSTM with a stack pointer
- Two constant-time operations
  - Push read input, add to top of stack
  - Pop move stack pointer back
- A summary of stack contents is obtained by accessing the output of the LSTM at location of the stack pointer



PUSH







PUSH

















#### Representing Tree(let)s



#### Representing Tree(let)s



 $c_2$  head  $c_1$  head  $c_2$  head  $c_1$  head  $c_2$  head  $c_1$  head  $c_2$  head  $c_2$  head  $c_1$  head  $c_2$  head  $c_2$  head  $c_2$  head  $c_1$  head  $c_2$  head

#### Inference

$$egin{aligned} oldsymbol{y}^* &= rg \max_{oldsymbol{y}} p(oldsymbol{y} \mid oldsymbol{x}) \ &= rg \max_{oldsymbol{y}} \prod_{i} p(y_i \mid oldsymbol{y}_{< i}, oldsymbol{x}) \end{aligned}$$

RNNs never forget anything! Decoding is difficult.

- Greedy left-to-right decoding
- Beam search
- Particle filtering

|              | Development |      | Test |      |
|--------------|-------------|------|------|------|
|              | UAS         | LAS  | UAS  | LAS  |
| S-LSTM       | 93.2        | 90.9 | 93.1 | 90.9 |
| -POS         | 93.1        | 90.4 | 92.7 | 90.3 |
| -pretraining | 92.7        | 90.4 | 92.4 | 90.0 |
| -composition | 92.7        | 89.9 | 92.2 | 89.6 |
| S-RNN        | 92.8        | 90.4 | 92.3 | 90.1 |
| C&M (2014)   | 92.2        | 89.7 | 91.8 | 89.6 |

#### Other examples

- Constituency parsing
  - both top-down and bottom-up "unrollings" exist
- bottom-up
  - shift behaves as it did before
  - reduce builds a unary or binary constituent, also takes a label type (VP, NP, ...)
- top-down
  - addition of a new operation: NT

p(S)





$$p(S)$$
 $p(NP VP | S)$ 
 $p(DT NN | S, NP)$ 



p(S) p(NP VP | S) p(DT NN | S, NP) p(the | S, NP, DT)



p(S) p(NP VP | S) p(DT NN | S, NP) p(the | S, NP, DT) p(cats | S, NP, NN)



p(S) p(NP VP | S) p(DT NN | S, NP) p(the | S, NP, DT) p(cats | S, NP, NN) p(VP RB | S, VP)



p(S) p(NP VP | S) p(DT NN | S, NP) p(the | S, NP, DT) p(cats | S, NP, NN) p(VP RB | S, VP) p(VB | S, VP, VP)



p(S) p(NP VP | S) p(DT NN | S, NP) p(the | S, NP, DT) p(cats | S, NP, NN) p(VP RB | S, VP) p(VB | S, VP, VP) p(meow | S, VP, VP, VB)



p(S)  $p(NP \ VP \mid S)$   $p(DT \ NN \mid S, NP)$   $p(the \mid S, NP, DT)$   $p(cats \mid S, NP, NN)$   $p(VP \ RB \mid S, VP)$   $p(VB \mid S, VP, VP)$   $p(meow \mid S, VP, VP, VB)$   $p(loudly \mid S, VP, RB)$ 



$$\pi(y) = \text{parent of node } y$$

$$\mathbf{h}_y = \tanh \left( \mathbf{W} \mathbf{h}_{\pi(y)} + \mathbf{b} \right)$$





 $\pi(y) = \text{parent of node } y$ 

$$\mathbf{h}_y = \tanh\left(\mathbf{W}\mathbf{h}_{\pi(y)} + \mathbf{b}\right)$$





$$\pi(y) = \text{parent of node } y$$

$$\mathbf{h}_y = \tanh \left( \mathbf{W} \mathbf{h}_{\pi(y)} + \mathbf{b} \right)$$





 $\pi(y) = \text{parent of node } y$   $\mathbf{h}_y = \tanh \left( \mathbf{W} \mathbf{h}_{\pi(y)} + \mathbf{b} \right)$ 





$$\pi(y) = \text{parent of node } y$$

$$\mathbf{h}_y = \tanh \left( \mathbf{W} \mathbf{h}_{\pi(y)} + \mathbf{b} \right)$$



- By changing the initial state, we can build an encoder-decoder architecture on trees
- Intuitively, the initial vector "encodes" everything you want to generate.
- But- is this enough??



p(S)  $p(NP \ VP \mid S)$   $p(DT \ NN \mid S, NP)$   $p(the \mid S, NP, DT)$   $p(cats \mid S, NP, NN)$   $p(VP \ RB \mid S, VP)$   $p(VB \mid S, VP, VP)$   $p(meow \mid S, VP, VP, VB)$   $p(loudly \mid S, VP, RB)$ 





Problem: model doesn't condition on the noun decision! Agreement??



Problem: model doesn't condition on the noun decision! Agreement??

S































# Stack Action nt(S)

| (S<br>(S (NP<br>(S (NP (DT<br>(S (NP (DT the)<br>(S (NP (DT the) (NNS<br>(S (NP (DT the) (NNS cats)<br>(S (NP (DT the) (NNS cats))<br>(S (NP (DT the) (NNS cats)) (VP | nt(NP) nt(DT) shift nt(NNS) shift reduce nt(VP) nt(VP) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| (S (NP (DT the) (NNS cats)) (VP (VP                                                                                                                                   | nt(VB)                                                 |
| (S (NP (DT the) (NNS cats)) (VP (VP (VB                                                                                                                               | shift                                                  |
| (S (NP (DT the) (NNS cats)) (VP (VP (VB meow)                                                                                                                         | reduce                                                 |
| (S (NP (DT the) (NNS cats)) (VP (VP (VB meow))                                                                                                                        | nt(RB)                                                 |
| (S (NP (DT the) (NNS cats)) (VP (VP (VB meow)) (RB                                                                                                                    | shift                                                  |
| (S (NP (DT the) (NNS cats)) (VP (VP (VB meow)) (RB loudly)                                                                                                            | reduce                                                 |
| (S (NP (DT the) (NNS cats)) (VP (VP (VB meow)) (RB loudly))                                                                                                           | reduce                                                 |
| (S (NP (DT the) (NNS cats)) (VP (VP (VB meow)) (RB loudly)))                                                                                                          |                                                        |

# Composition Functions



# Top-down transition-based parsing

Can be used for both generation and parsing

#### Other Neural Architectures

Hidden RNNs?

### Hidden RNNs

Replace the Markov model in an HMM with an RNN.

$$y_0 = \text{START}$$
 $y_i \mid \boldsymbol{y}_{< i} \sim \text{RNNLM}(\boldsymbol{y}_{< i})$ 
 $x_i \mid y_i \sim \text{Categorical}(\theta_{y_i})$ 

Is this a valid model? Yes!

Can you perform supervised training? Yes, easily!

Can you perform posterior inference on  $y \mid x$ ?

Well ... the naive algorithm works. What about Viterbi?

# Summary

- Neural Networks are expressive
  - ...but structured prediction is too!
- Hybrid architectures give us the best of both worlds.