The Wranglers COVID-19 & Air Quality

 $\bullet \bullet \bullet$

2021/4/28

Teigen Judd, Jon Barton, Yi-Jin Chen, Adriana Reyes-Miranda

COVID-19 & Air Quality

Problem

The original study used machine learning methods to reveal the prolonged exposure to air pollution associated with SARS-CoV-2 in Italy. [1]

Original Description of the Data - Air Quality

EPA https://aqs.epa.gov/aqsweb/documents/data mart welcome.html

In the beginning:

https://www.epa.gov/outdoor-air-quality-data/download-daily-data

Final (provided by Professor Naomi Riches):

https://ags.epa.gov/agsweb/airdata/download_files.html

Original Description of the Data - COVID-19

- Provided by John's Hopkins
 - https://github.com/CSSEGISandData
- In an aggregated format, with reporting down to county level.
- Data reporting began whenever individual counties began reporting their COVID data

COVID Original Data

date	county	state	fips	cases	deaths
5/1/2020	Snohomish	Washington	53061	2466	108
5/2/2020	Snohomish	Washington	53061	2492	108
5/3/2020	Snohomish	Washington	53061	2737	108
5/4/2020	Snohomish	Washington	53061	2784	110
5/5/2020	Snohomish	Washington	53061	2807	110
5/6/2020	Snohomish	Washington	53061	2830	112
5/7/2020	Snohomish	Washington	53061	2889	114
5/8/2020	Snohomish	Washington	53061	2917	114
5/9/2020	Snohomish	Washington	53061	2917	114
5/10/2020	Snohomish	Washington	53061	2932	116
5/11/2020	Snohomish	Washington	53061	2970	118
5/12/2020	Snohomish	Washington	53061	2998	119
5/13/2020	Snohomish	Washington	53061	3009	119

Data Quality Report - Air Quality (Original Data)

Lack of CO Data

Unreasonable and Context-Inconsistent Data

End-date Mismatch

 Less than 50% of counties per state with CO data

- Negative Sensor Values
- Not States: (DC, Puerto Rico)

NO2 and PM2.5 both recorded to Oct 31

Data Quality Report - COVID-19 (Original Data)

- > Data had to be switched from aggregated totals to daily numbers
- Some values were negative (possible mis-reporting), these were set to zero
- Some values were extremely high, we clipped these values down
- Data reporting didn't start on the same date for every county
- Some dates had null values, we used the interpolate function to replace null values with nearest date value from same county

Air Quality Data - Wrangling Steps (PM2.5 as example)

Subset variables

```
#subset
pm25 = pm25[["Arithmetic Mean", "State Name", "County Name", "AQI", "County Code"]]
```

Subset based on desired dates

```
datemask = pm25.loc['2020-05-01':'2020-12-31']
print(datemask['Arithmetic Mean'].describe())
        157486.000000
count
             7.616998
mean
std
            8.080942
min
      -4.913043
25%
           4.425000
50%
      6.400000
75%
             9.000000
           576.600000
max
Name: Arithmetic Mean, dtype: float64
```

Air Quality Data - Wrangling Steps (PM2.5 as example)

Drop Not-states

```
datemask = datemask[~(datemask["State Name"] == 'District Of Columbia')]
datemask = datemask[~(datemask["State Name"] == 'Virgin Islands')]
```

• Impute negative values with 0

```
#Impute negative values in Arithmetic Mean with 0
pm25['Arithmetic Mean'] = pm25['Arithmetic Mean'].apply(lambda x : x if x > 0 else 0)
```

COVID-19 Data - Wrangling Steps

- Because this was the larger, more complete dataset, we adapted this dataset to merge well with the AQ data
- Unique merge id of county/state/date was created
- Had to ensure all county names matched between datasets
 - New York boroughs, Alaska boroughs, abbreviations, and capitalization of different counties/states made this more difficult
 - E.g. St. Clair and Saint Clair would cause the mergeID to fail, so we had to adjust to the AQ data format

Pre-Merge COVID Data

5/4/2020 S	nohomish	Washington	53061	2784	110	Snohomish, Washington	47	2
5/5/2020 S	nohomish	Washington	53061	2807	110	Snohomish, Washington	23	0
5/6/2020 S	nohomish	Washington	53061	2830	112	Snohomish, Washington	23	2
5/7/2020 S	nohomish	Washington	53061	2889	114	Snohomish, Washington	59	2
5/8/2020 S	nohomish	Washington	53061	2917	114	Snohomish, Washington	28	0
5/9/2020 S	nohomish	Washington	53061	2917	114	Snohomish, Washington	0	0
5/10/2020 S	nohomish	Washington	53061	2932	116	Snohomish, Washington	15	2
5/11/2020 S	nohomish	Washington	53061	2970	118	Snohomish, Washington	38	2
5/12/2020 S	nohomish	Washington	53061	2998	119	Snohomish, Washington	28	1
5/13/2020 S	nohomish	Washington	53061	3009	119	Snohomish, Washington	11	0
5/14/2020 S	nohomish	Washington	53061	3048	121	Snohomish, Washington	39	2
5/15/2020 S	nohomish	Washington	53061	3065	125	Snohomish, Washington	17	4
5/16/2020 S	nohomish	Washington	53061	3071	125	Snohomish, Washington	6	0

Report of the quality of merged data

The merge went well, only a little over 700 rows were left with null values

- These could all be accounted for
- Most often: AQ data was present, but COVID data had not started reporting yet
- There were some counties that did not begin reporting COVID data until August.

The merge also highlighted the known shortcomings in the AQ data

Multiple metrics had not been reported at the time of data gathering

Merged Data

Date	State	County	Arithmeti	AQI_Ozon	Arithmeti	AQI_No2	Arithmeti	AQI	Daily_Case	Daily_Deaths
5/1/2020	Alabama	Baldwin	35	50					1	1
5/1/2020	Alabama	DeKalb	47	58					0	0
5/1/2020	Alabama	Elmore	28	44					2	0
5/1/2020	Alabama	Etowah	34	51					0	1
5/1/2020	Alabama	Jefferson	30.33333	47.66667	15.31155	32	11.0125	46	43	2
5/1/2020	Alabama	Madison	35.5	55.5					0	0
5/1/2020	Alabama	Mobile	40	58					42	6
5/1/2020	Alabama	Montgom	27	47					18	0
5/1/2020	Alabama	Morgan	39	61					3	0
5/1/2020	Alabama	Russell	31	49			6.1125	25	3	0
5/1/2020	Alabama	Shelby	31	47					0	1
5/1/2020	Alabama	Sumter	24	47					4	1
5/1/2020	Alabama	Tuscaloos	25	46					2	1
5/1/2020	Alaska	Denali	44	44						
5/1/2020	Alaska	Fairbanks	29	34			4.733333	19.66667	1	0
5/1/2020	Arizona	Cochise	48	50					0	0
5/1/2020	Arizona	Coconino	48	50					12	2
5/1/2020	Arizona	Gila	53	67					0	0
5/1/2020	Arizona	La Paz	46	51			3.8375	16	1	0
5/1/2020	Arizona	Maricopa	42	56.69565	13.14417	24	6.546759	27	184	2
5/1/2020	Arizona	Navajo	51	58					29	0
5/1/2020	Arizona	Pima	40.25	48.75	5.00625	9.5	4.582065	19	26	1
5/1/2020	Arizona	Pinal	46	58.2			9.225	37.5	20	2
5/1/2020	Arizona	Yavapai	48	49					3	0

Data by AQ Metric (Ozone)

Date	State	County	Arithmeti	AQI_Ozon	Arithmeti	AQI_No2	Arithmeti	AQI	Daily_Case	Daily_Deaths
5/1/2020	Alabama	Baldwin	35	50					1	1
5/1/2020	Alabama	DeKalb	47	58					0	0
5/1/2020	Alabama	Elmore	28	44					2	0
5/1/2020	Alabama	Etowah	34	51					0	1
5/1/2020	Alabama	Jefferson	30.33333	47.66667	15.31155	32	11.0125	46	43	2
5/1/2020	Alabama	Madison	35.5	55.5					0	0
5/1/2020	Alabama	Mobile	40	58					42	6
5/1/2020	Alabama	Montgom	27	47					18	0
5/1/2020	Alabama	Morgan	39	61					3	0
5/1/2020	Alabama	Russell	31	49			6.1125	25	3	0
5/1/2020	Alabama	Shelby	31	47					0	1
5/1/2020	Alabama	Sumter	24	47					4	1
5/1/2020	Alabama	Tuscaloos	25	46					2	1
5/1/2020	Alaska	Denali	44	44						
5/1/2020	Alaska	Fairbanks	29	34			4.733333	19.66667	1	0
5/1/2020	Arizona	Cochise	48	50					0	0
5/1/2020	Arizona	Coconino	48	50					12	2
5/1/2020	Arizona	Gila	53	67					0	0

Linear Regression

Sample Linear Regression

```
1 # trying to predict AQI by Looking at covid cases and deaths
                AQILR = sm.ols(formula="AQI ~ Daily_Cases + Daily_Deaths", data=filteredMergedData).fit()
                AQILR.summary()
Out[45]:
           OLS Regression Results
                                                                     0.008
                Dep. Variable:
                                                    R-squared:
                      Model:
                                               Adj. R-squared:
                                                                     0.008
                     Method:
                                                    F-statistic:
                                                                     172.1
                                Least Squares
                             Mon, 26 Apr 2021 Prob (F-statistic):
                                                                  3.73e-75
                       Time:
                                               Log-Likelihood:
                                                               -1.7105e+05
             No. Observations:
                                                                 3.421e+05
                Df Residuals:
                   Df Model:
                                           2
             Covariance Type:
                                                t P>Itl [0.025 0.975]
                                   0.090 318.889 0.000 28.467
                                           -7.469 0.000 -0.094 -0.055
                                        Durhin-Watson:
            Prob(Omnibus):
                                0.000 Jarque-Bera (JB): 683859.655
                     Skew:
                                2.715
                                             Prob(JB):
                                                              0.00
                  Kurtosis:
                               22,447
                                             Cond. No.
                                                              169.
```

....

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified

This R-squared is extremely low, showing little-to-no predictability.

Predicting AQI with COVID cases/deaths

Very low R-squared (low correlation)

Linear Regression

```
1 # trying to predict daily deaths by Looking at all AQI indicators
    AQILR = sm.ols(formula="Daily Deaths ~ AQI + AQI No2 + AQI Ozone", data=filteredMergedData).fit()
  3 AQILR.summary()
OLS Regression Results
    Dep. Variable:
                      Daily Deaths
                                         R-squared:
                                                         0.033
           Model:
                                                         0.033
                                     Adj. R-squared:
          Method:
                     Least Squares
                                          F-statistic:
                                                         200.1
                                   Prob (F-statistic):
                                                     1.28e-127
            Time:
                          21:16:23
                                     Log-Likelihood:
                                                       -71384
 No. Observations:
                                               AIC: 1.427e+05
     Of Residuals:
                            17723
                                               BIC: 1.428e+05
        Df Model:
 Covariance Type:
                         nonrobust
                                 t P>|t| [0.025 0.975]
                            -6.764 0.000 -0.053
                      0.014 23.599 0.000 0.295
                             0.149 0.882 -0.012 0.015
 AQI Ozone 0.0010
      Omnibus: 42353.575
                             Durbin-Watson:
                                                     1.913
                     0.000 Jarque-Bera (JB): 589191296.897
 Prob(Omnibus):
                    24.432
                                  Prob(JB):
                                                      0.00
                                                      165.
       Kurtosis:
                   894.795
                                  Cond. No.
Notes
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
This R-squared is extremely low, showing little-to-no predictability.
```

Predicting COVID deaths with AQ metrics

Again, very low R-squared (low correlation)

Sources

Cazzolla Gatti, R., Velichevskaya, A., Tateo, A., Amoroso, N., & Monaco, A. (2020).
 Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in Italy. Environmental pollution (Barking, Essex: 1987), 267, 115471. https://doi.org/10.1016/j.envpol.2020.115471