Locality-Sensitive Hashing

Focusing on Similar Minhash Signatures
Other Applications Will Follow

Locality-Sensitive Hashing

- General idea: Generate from the collection of all elements (signatures in our example) a small list of candidate pairs: pairs of elements whose similarity must be evaluated.
- For signature matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.

Candidate Generation From Minhash Signatures

- Pick a similarity threshold t, a fraction < 1.</p>
- We want a pair of columns c and d of the signature matrix M to be a candidate pair if and only if their signatures agree in at least fraction t of the rows.
 - I.e., M(i, c) = M(i, d) for at least fraction t values of i.

LSH for Minhash Signatures

- Big idea: hash columns of signature matrix M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- Candidate pairs are those that hash at least once to the same bucket.

Partition Into Bands

Partition into Bands — (2)

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make k as large as possible.
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
- Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Hash Function for One Bucket

Matrix M

Example – Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
- Want all 80%-similar pairs of documents.
- 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.

Suppose C₁, C₂ are 80% Similar

- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability C_1 , C_2 are *not* similar in any of the 20 bands: $(1-0.328)^{20} = .00035$.
 - i.e., about 1/3000th of the 80%-similar underlying sets are false negatives.

Suppose C₁, C₂ Only 40% Similar

- Probability C_1 , C_2 identical in any one particular band: $(0.4)^5 = 0.01$.
- Probability C_1 , C_2 identical in ≥ 1 of 20 bands: $\leq 20 * 0.01 = 0.2$.
- But false positives much lower for similarities
 40%.

Analysis of LSH – What We Want

What One Band of One Row Gives You

What b Bands of r Rows Gives You

Example: b = 20; r = 5

5	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.