Homework: Trig exam problems

1a. The following diagram shows a circle with centre O and radius $5\ cm$

The points A, rmB and rmC lie on the circumference of the circle, and $\hat{AOC}=0.7$ radians.

Find the length of the arc ABC.

[2 marks]

1b. Find the perimeter of the shaded sector.

[2 marks]

1c. Find the area of the shaded sector.

[2 marks]

2a. The following diagram shows a triangle ABC.

The area of triangle ABC is $80~{
m cm^2}$, ${
m AB}=18~{
m cm}$, ${
m AC}=x~{
m cm}$ and ${
m BAC}=50^\circ$.

Find x. [3 marks]

2b. Find BC. [3 marks]

3a. In triangle ABC, $AB=6\,\mathrm{cm}$ and $AC=8\,\mathrm{cm}$. The area of the triangle is $16\,\mathrm{cm}^2$.

Find the two possible values for \hat{A} .

[4 marks]

3b. Given that \hat{A} is obtuse, find BC.

[3 marks]

 $_{f 4a.\
m Let}f(x)=p\cos(q(x+r))+10$, for $0\leqslant x\leqslant 20$. The following diagram shows the graph of f .

The graph has a maximum at (4,18) and a minimum at (16,2).

Write down the value of r.

[2 marks]

4b. Find *p*.

[2 marks]

4c. Find **q**.

[2 marks]

4d. Solve f(x) = 7.

[2 marks]

5a. Let $f(x)=\sin\left(x+rac{\pi}{4}
ight)+k$. The graph of f passes through the point $\left(rac{\pi}{4},\ 6
ight)$.

Find the value of k.

[3 marks]

5b. Find the minimum value of f(x).

[2 marks]

 $\mathbf{5c.}\ \mathrm{Let}\ g(x) = \sin x$. The graph of g is translated to the graph of f by the vector $\begin{pmatrix} p \\ q \end{pmatrix}$.

Write down the value of \emph{p} and of \emph{q} .

[2 marks]

6a. [3 marks]

Consider a circle with centre O and radius 7 cm. Triangle ABC is drawn such that its vertices are on the circumference of the circle.

$$AB=12.2$$
 cm, $BC=10.4\,\text{cm}$ and $\hat{ACB}=1.058\,\text{radians}.$

 $_{Find}\,B\hat{A}C_{.}$

6b. [5 marks]

Find AC.

6c. [6 marks]

Hence or otherwise, find the length of arc ABC.

Name:

7a. [2 marks]

A Ferris wheel with diameter 122 metres rotates clockwise at a constant speed. The wheel completes 2.4 rotations every hour. The bottom of the wheel is 13 metres above the ground.

A seat starts at the bottom of the wheel.

Find the maximum height above the ground of the seat.

7b. [2 marks]

After t minutes, the height h metres above the ground of the seat is given by

 $h = 74 + a\cos bt$.

- (i) Show that the period of h is $25\ \mathrm{minutes}.$
- (ii) Write down the **exact** value of b.

7c. [3 marks]

Find the value of a .

7d. [4 marks]

Sketch the graph of h , for $0 \leq t \leq 50$.

7e. [5 marks]

In one rotation of the wheel, find the probability that a randomly selected seat is at least $105\,\mathrm{metres}$ above the ground.

Name:

8a. [5 marks]

The following diagram shows two ships A and B. At noon, ship A was 15 km due north of ship B. Ship A was moving south at 15 km h^{-1} and ship B was moving east at 11 km h^{-1} .

Find the distance between the ships

- (i) at 13:00;
- (ii) at 14:00.

8b. [6 marks]

Let s(t) be the distance between the ships t hours after noon, for $0 \leq t \leq 4$.

Show that $s(t)=\sqrt{346t^2-450t+225}$.

8c. [3 marks]

Sketch the graph of s(t) .

8d. [3 marks]

Due to poor weather, the captain of ship A can only see another ship if they are less than 8 km apart. Explain why the captain cannot see ship B between noon and 16:00.