Linear Regression

CSC 461: Machine Learning

Fall 2022

Prof. Marco Alvarez University of Rhode Island

Linear functions

- Assumes the output y is a linear function of the input x
 - ✓ can use the function to make predictions, very simple approach, e.g. linear regression

$$y = wx + b$$
 $w, x, b \in \mathbb{R}$

Continuous targets

 Certain applications require the prediction of continuous values

Draw the models

Linear functions

• What if we have d features?

Linear functions

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

hypothesis

weights

bias

The weights and bias are the model **parameters** which define the hypothesis and are used to make predictions

Alternative notation

$$h(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i=1}^d w_i x_i + b$$

хо	X1	X2	Υ
1	0.5	0.1	0.25
1	0.3	0.9	0.5
1	0.3	0.875	1.15
1	0.45	0.15	2.13

the bias can be absorbed into the summation if we augment w and x

$$h(\mathbf{x}) = \sum_{i=0}^{d} \tilde{w}_i \tilde{x}_i$$
$$= \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$

Augmented vectors

input: $(x_0, x_1, ..., x_d)$

model: $(w_0, w_1, ..., w_d)$

$$h(\mathbf{x}) = \sum_{i=0}^{d} w_i x_i = \mathbf{w}^T \mathbf{x}$$

What is the hypothesis space?

all linear functions in \mathbb{R}^{d+1}

$$\mathcal{H} = \{h_w : h_w(\mathbf{x}) = \mathbf{w}^T \mathbf{x}, \ \mathbf{w} \in \mathbb{R}^{d+1}\}$$

Goal of learning

• Find a function that best approximates target function (minimize expected loss)

For $h \in \mathcal{H}$ and $\forall (\mathbf{x}^{(i)}, y^{(i)}) \sim P$, we want $h(\mathbf{x}^{(i)}) \approx f(\mathbf{x}^{(i)})$

• What is the expected loss?

✓ cannot calculate, can **approximate** with empirical loss:

$$\mathbb{E}\left[l(h, \mathbf{x}^{(i)}, y^{(i)})\right]_{(\mathbf{x}^{(i)}, y^{(i)}) \sim P} \approx L(h, \mathcal{D})$$

Defining linear regression

Data $\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)}) \}$ $\mathbf{x}^{(i)} \in \mathbb{R}^{d+1}, y^{(i)} \in \mathbb{R}$ $h(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

→ Loss Function: Squared Loss (MSE)

$$l_{sq}(h, \mathbf{x}, y) = (h(\mathbf{x}) - y)^2$$

$$L_{sq}(h,\mathcal{D}) = \frac{1}{n} \sum_{i=1}^{n} l_{sq}(h, \mathbf{x}^{(i)}, y^{(i)})$$

Closed-form Solution

Normal Equation

min vs. argmin

$$\min f(x)?$$

$$\underset{x}{\arg\min} f(x)?$$

 $f(x) = 6x^2 + 4x + 5$

Solving linear regression (least squares)

find these parameters

$$\mathbf{w}^* = \underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \quad \frac{1}{n} \sum_{i=1}^n \left(h(\mathbf{x}^{(i)}) - y^{(i)} \right)^2$$
given this objective function

unconstrained optimization

Solving linear regression (least squares)

$$\mathbf{w}^* = \underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \quad \frac{1}{n} \sum_{i=1}^n \left(h(\mathbf{x}^{(i)}) - y^{(i)} \right)^2$$

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg \, min}} \quad \frac{1}{n} \sum_{i=1}^n \left(\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)} \right)^2$$

Understanding matrix form

$$y = Xw$$

$$\begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \approx \begin{bmatrix} \left(\mathbf{x}^{(1)} \right)^T \\ \vdots \\ \left(\mathbf{x}^{(n)} \right)^T \end{bmatrix} \cdot \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$$

input vector x⁽¹⁾

Norms

- A **norm** is a function that assigns a strictly positive length to each vector in a vector space
- ✓ except for the zero vector

$$\mathcal{E}_1$$
-norm: $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$ from origin

$$\mathcal{E}_{2}\text{-norm:} \quad \|\mathbf{x}\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$$
 euclidean norm, euclidean distance from origin

Using matrix notation

$$\underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \quad \frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{w}^{T} \mathbf{x}^{(i)} - y^{(i)} \right)^{2}$$

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_{2}^{2}$$

How to minimize it?

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{arg\,min}} \quad \frac{1}{n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

continuous, differentiable, convex

https://cnl.salk.edu/~schraudo/teach/NNcourse/linear1.html

(some) Critical points

Closed form solution

$$E_{ ext{in}}(\mathbf{w}) = rac{1}{N} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

$$abla E_{\mathsf{in}}(\mathbf{w}) = rac{2}{N} \mathrm{X}^{\scriptscriptstyle{\mathsf{T}}} (\mathrm{X} \mathbf{w} - \mathbf{y}) = \mathbf{0}$$

$$X^{\scriptscriptstyle \top} X \mathbf{w} = X^{\scriptscriptstyle \top} \mathbf{y}$$

$$\mathbf{w} = \mathrm{X}^\dagger \mathbf{y}$$
 where $\mathrm{X}^\dagger = (\mathrm{X}^{\scriptscriptstyle \intercal} \mathrm{X})^{-1} \mathrm{X}^{\scriptscriptstyle \intercal}$

 X^{\dagger} is the 'pseudo-inverse' of X

There are other methods for finding the optimal solution e.g. gradient descent, MLE

http://work.caltech.edu/slides/slides03.pdf

The algorithm

Construct the matrix X and the vector ${f y}$ from the data set $({f x}_1,y_1),\cdots,({f x}_N,y_N)$ as follows

$$\mathbf{X} = egin{bmatrix} -\mathbf{x}_1^{\intercal} & & & \\ -\mathbf{x}_2^{\intercal} & & & \\ & \vdots & & \\ -\mathbf{x}_N^{\intercal} & & & \end{bmatrix}, \qquad \mathbf{y} = egin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
 input data matrix

- $_{\text{2:}}$ Compute the pseudo-inverse $X^{\dagger} = (X^{\scriptscriptstyle\mathsf{T}} X)^{-1} X^{\scriptscriptstyle\mathsf{T}}$
- 3: Return $\mathbf{w} = X^\dagger \mathbf{y}$

http://work.caltech.edu/slides/slides03.pdf

Show me the code

w = np.linalg.pinv(Xtr).dot(Ytr)

pred = Xte.dot(w)

loss = np.mean((pred-Yte) ** 2)

vectorized computation

Computational complexity?

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

 $nd^2 + d^3 + nd + d^2$

$$O(nd^2 + d^3)$$

Training might be computationally expensive

Colab notebook

https://colab.research.google.com/drive/1GIovpb0ij4bSK1iPKjNTlmXHSwTWwou