Machine Learning

Pearly Tantra 455722

Project Presentation

Models

Regression RoadMap

Explanatory Data

- NA Values
- Converting Values
- Outliers

0 0 • 0 0

Feature Selection

Correlation Matrix

0 • 0 0 0

Sample Split

Proportion: 90 - 10

0 0 • 0 0

Feature Scalling

Numerical Variables

0 0 • 0 0

Modelling

- Linear Reg
- Ridge/Lasso
- Elastic Net

0 0 • 0 0

Regression Prior to Modelling

01 Explanatory

01. NA Values: categorical (omit) & numerical (mean/median)

02. Convert: character -> factors: ordered / unordered

03. Outliers: Numerical Vars w/ Z-score

02 Feature Selection

Correlation Analysis:

mother_delivery_weight X mother_body_mass_index

03 Sample Split

90/10 == 1,7 mio/198k

04 Feature Scalling

Numerical Vars

Regression

Modelling

Classification RoadMap

Classification Prior to Modelling

01 Explanatory

02 Features Selection

03 Down-Sampling

04 Sample-Split

- NA Values: categorical (omit) & numerical (mean/median)
- Convert: character -> factors: ordered / unordered

Correlation Analysis

- NumVar: omitting 'remaining_credit_limit' & 'customer_available_credit_limit'
- CatVar: omitting 'customer_sex'

To balance the data between 'open' and 'closed'

80/20:290 ~ 290

Classification Modelling

Simple Logit

- Train General Model
- GETS method :omit customer_educatio n

XGBOOST

- Convert X test and train data into model matrix
- Train the model

SVM

 Train the model w/ additional parameters. Type = c-classification, Kernel = linear

KNN

- Set a train control
- Train the optimum K-Value (k= 9)
- Train the model

Classification

Performance - balanced accuracy

Conclusion