RASTAck

d'assemblage du transcriptome.

lérôme Audoux

July 17, 2014

mRNA

RNA-Seq

Never send a human to do a machine's job.

Approches

RASTAck

Read Assembly With A STAck.

Postulat:

Les reads disent la vérité.

Objectif:

Reconstruire les meta-reads.

Un *meta-read* est un assemblage de reads, ou de facteurs de reads, qui partagent la même histoire.

Une *histoire* est une séquence du génome, continue ou non, qui est partagée dans son intégralité par les mêmes transcrits de la première à la dernière base.

A. Exon skipping

B. Alternative 3' acceptor sites

C. Complexe case

Un index de reads est une collection de reads indexés dans un structure de données qui va permettre d'extraire l'information sur les reads et la réponse à des requêtes sur la base d'un *k* — *mer* présent dans la collection.

- Q_a Combien de reads sont indexés dans la collection?
- ▶ Q_b Quelle est la longueur de la séquence du read i dans la collection?
- ▶ Q_c Quelle est la séquence du facteur de longueur / à la position p du read i?

- ▶ *Q*₁: Combien de reads partagent le facteur à la position *p* du read *i*?
- ▶ Q₂: Quels sont les reads qui partagent le facteur à la position p du read i et quel est la position de ce facteur dans ces reads?

GkArrays

Philippe, Nicolas, Mikaël Salson, Thierry Lecroq, Martine Léonard, Thérèse Commes, and Eric Rivals. "Querying Large Read Collections in Main Memory: A Versatile Data Structure." BMC Bioinformatics 12, no. 1 (June 17, 2011): 242. doi:10.1186/1471-2105-12-242.

Méthode

Indexation des reads dans une collection de reads

Reconstruction des meta-reads

Indexation des reads

Reconstruction des meta-reads

Indexation des reads

Reconstruction des meta-reads

Indexation des reads

Reconstruction des meta-reads

avec une approche par pile

Algorithme

- 1. Choisir **un "bon" read** dans la collection
- 2. Choisir **un "bon"** *k-mer* pour créer l'empilement
- 3. Créer un empilement de reads
- 4. Définir les bornes de confiance de la pile
- **5.** Choisir **les** *k-mers* **suivants** pour la procédure d'extension
- 6. Marquer les reads utilisés
- 7. **Terminer** la reconstruction du *meta-read* ou **continuer** à étendre

Les ≠ histoires

Les ≠ histoires

La collection de reads

Les ≠ histoires

La collection de reads

- 1. Choisir un "bon" read dans la collection
- 2. Choisir **un "bon"** *k-mer* pour créer l'empilement
- 3. Créer un empilement de reads
- 4. Définir les bornes de confiance de la pile
- **5.** Choisir **les** *k-mers* **suivants** pour la procédure d'extension
- 6. Marquer les reads utilisés
- 7. **Terminer** la reconstruction du *meta-read* ou **continuer** à étendre

Profil de support

SNP/Erreur de séquence

Séquence répétée

Support stable

Support stable

- 1. Choisir un "bon" read dans la collection
- 2. Choisir **un "bon"** *k-mer* pour créer l'empilement
- 3. Créer un **empilement** de reads
- 4. Définir les bornes de confiance de la pile
- **5.** Choisir **les** *k-mers* **suivants** pour la procédure d'extension
- 6. Marquer les reads utilisés
- 7. **Terminer** la reconstruction du *meta-read* ou **continuer** à étendre

longueur de la pile

- 1. Choisir un "bon" read dans la collection
- 2. Choisir **un "bon"** *k-mer* pour créer l'empilement
- 3. Créer un empilement de reads
- 4. Définir les bornes de confiance de la pile
- **5.** Choisir **les** *k-mers* **suivants** pour la procédure d'extension
- 6. Marquer les reads utilisés
- 7. **Terminer** la reconstruction du *meta-read* ou **continuer** à étendre

- 1. Choisir un "bon" read dans la collection
- 2. Choisir **un "bon"** *k-mer* pour créer l'empilement
- 3. Créer un empilement de reads
- 4. Définir les bornes de confiance de la pile
- 5. Choisir **les** *k-mers* **suivants** pour la procédure d'extension
- 6. Marquer les reads utilisés
- 7. **Terminer** la reconstruction du *meta-read* ou **continuer** à étendre

Recherche des k-mers d'extension

Recherche des k-mers d'extension

- 1. Choisir un "bon" read dans la collection
- 2. Choisir **un "bon"** *k-mer* pour créer l'empilement
- 3. Créer un empilement de reads
- 4. Définir les bornes de confiance de la pile
- **5.** Choisir **les** *k-mers* **suivants** pour la procédure d'extension
- 6. Marquer les reads utilisés
- 7. **Terminer** la reconstruction du *meta-read* ou **continuer** à étendre

- 1. Choisir un "bon" read dans la collection
- 2. Choisir **un "bon"** *k-mer* pour créer l'empilement
- 3. Créer un **empilement** de reads
- 4. Définir les bornes de confiance de la pile
- **5.** Choisir **les** *k-mers* **suivants** pour la procédure d'extension
- 6. Marquer les reads utilisés
- 7. **Terminer** la reconstruction du *meta-read* ou **continuer** à étendre

Résultats

- Une nouvelle méthode de reconstruction
- ► Échelle du read, approche intégrée permise
- Méthode tournée vers l'avenir
- Outils de développement :
- ► **GkDump** : sérialisation des GkArrays
 - ► **GkServer** : Interface ligne de commande pour questionner les reads indexés
- ► Implémentation C++
 - ► **Architecture** évolutive (*OOP*)
 - ▶ **Portabilité** (packaging *Autotools*)

- Résultats préliminaires encourageants
- ▶ Performances prometteuses : < 2 minutes pour assembler 12M de reads (75pb) avec 1 thread
- Perspectives à court terme : Amélioration de la méthode
 - Assemblage des meta-reads en transcrits
 - ► Améliorations algorithmiques de la méthode
 - Mesures de sensibilité/précision
 - Structure de données optimisée en mémoire
- Perspectives à long terme : Une publication scientifique

The end!