

Laboratório 2: Análise e síntese de funções combinacionais de múltiplas saídas.

Bernardo Hoffmann da Silva Marcos Vinicius Pereira Veloso

4.1

a.

Com a definição dos valores de saída a partir do seletor, pode-se montar a Tabela Verdade conforme Tabela (1).

Tabela 1: Tabela verdade de um DEMUX 1x4.

E	S1	S2	01	O2	O3	O4	
1	0	0	1	0	0	0	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	1	
0	X	X	0	0	0	0	

Com efeito, denota-se que as saídas, visto que são definidos a partir dos valores de S_0 e S_1 , tem-se que, aplicando Teorema de De Morgan:

$$O_1 = \bar{S}_1 \bar{S}_2 = \overline{S}_1 + S_2 \tag{1}$$

$$O_2 = \bar{S}_1 S_2 = \overline{S_1 + \bar{S}_2} \tag{2}$$

$$O_3 = S_1 \bar{S}_2 = \overline{\bar{S}_1 + S_2} \tag{3}$$

$$O_4 = S_1 S_2 = \overline{\bar{S}_1 + \bar{S}_2} \tag{4}$$

Desse modo, para a montagem do diagrama esquemático via simulação, basta fazer a inclusão de portas NOR sobre os literais especificados nas relações apresentadas de (1) a (4). Para a inserção do inversor, é indispensável denotar que $\bar{S} = \overline{S+S}$. Assim, o circuito pode ser montado conforme segue na figura 1.

b.

Figura 1: Circuito simulado para representar o demux 1x4 apenas com portas NOR

c.

Por fim, o diagrama de temporização, conforme obtido pela simulação do circuito da figura 1, é dado na figura 2.

Figura 2: Diagrama de temporização obtido a partir da simulação do circuito. Nota-se que as saídas têm o valor esperado, dado pelas equações.

4.2

a.

Da Tabela dada de conversão de Binário Puro para Código Gray, pode-se montar a tabela 2:

Tabela 2: Tabela verdade para a conversão de binário puro para código de Gray.

A	В	С	G3	G2	G1
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

b.

Considere uma entrada $A_3A_2A_1$ e saída $G_3G_2G_1$. A estratégia aqui consiste em usar Mapa de Karnaugh para simplificação. Para isso, deve-se implementar o Mapa para cada saída da função conversora (i. e., os 3 bits que representam o binário puro). De modo a evitar trabalho redundante, como da definição de construção do Código Gray, sabe-se que o dígito mais significativo é o mesmo para o código em Binário Puro; assim, o valor lógico da saída G_3 é, trivialmente, $G_3=A_3$. Posto isso, obtém-se as expressões de G_1 e G_2 :

$$G_2 = A_3' A_2 + A_3 A_2' = A_3 \oplus A_2 \tag{5}$$

$$G_1 = A_2' A_1 + A_2 A_1' = A_2 \oplus A_1 \tag{6}$$

Assim, com as expressões dadas da saída, pode-se elaborar o circuito apresentado na figura 3:

Figura 3: Circuito montado para simular o conversor

c.

Com o circuito dado, tem-se como consequência de sua simulação o diagrama de temporização apresentado na figura 4:

Figura 4: Diagrama de temporização para o conversor. Nota-se que as saídas têm o comportamento esperado

4.3

a.

A partir da definição, pode-se montar a tabela 3:

Tabela 3: Tabela verdade de um decodificador 3x8, com entrada em binário puro.

\mathbf{X}_2	X ₁	X_1	Е	S ₇	S ₆	S_5	S_4	S ₃	S_2	S_1	S_0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	1	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

Note-se que, para cada saída, há uma única combinação das 3 entradas que geram o valor 1 para tal saída. Com isso, um conjunto de expressões booleanas para as variáveis de saída pode ser dado por, considerando as entradas como x_2, x_1, x_0 e saídas $S_7, S_6, ..., S_0$:

$$S_7 = x_2 x_1 x_0$$
 $S_6 = x_2 x_1 x'_0$
 $S_5 = x_2 x'_1 x_0$ $S_4 = x_2 x'_1 x'_0$
 $S_3 = x'_2 x_1 x_0$ $S_2 = x'_2 x_1 x'_0$
 $S_1 = x'_2 x'_1 x_0$ $S_0 = x'_2 x'_1 x'_0$

b.

Com as expressões booleanas obtidas no item (a), pode-se montar o diagrama esquemático no simulador, tal como segue na figura 5:

Figura 5: Circuito montado para simular o decodificador especificado.

c.

Por fim, com o circuito digital elaborado no simulador, pode-se obter o diagrama de temporização via simulação funcional, como mostrado na figura 6.

Figura 6: Diagrama de temporização para o decodificador. Nota-se que as saídas são dadas como o esperado.

4.4

a.

Note-se que, como A é verdade quando uma das saídas é não nula, sua função booleana é obtida trivialmente por $A=x_3+x_2+x_1+x_0$, que já está na forma minimizada em produto de somas (um único fator). Feito isso, pode-se montar o mapa de Karnaugh apresentado na tabela 4:

Tabela 4: Mapa de Karnaugh com as saídas S1S0 representadas.

x3x2 x1x0	00	01	11	10
AIAU				
00	xx	10	xx	11
01	00	XX	XX	XX
11	XX	XX	XX	XX
10	01	XX	XX	XX

Note-se então que aplicando continuamente o Teorema de De Morgan, temos, em notação de produto de somas:

$$S_0 = x_3 x_2' x_1' x_0' + x_3' x_2' x_1 x_0' = ((x_3' + x_2 + x_1 + x_0)(x_3 + x_2 + x_1' + x_0))'$$
(7)

$$S_1 = x_3' x_2 x_1' x_0' + x_3 x_2' x_1' x_0' = ((x_3 + x_2' + x_1 + x_0)(x_3' + x_2 + x_1 + x_0))'$$
(8)

b.

Com as expressões obtidas para $A,\,S_0$ e $S_1,\,$ um possível diagrama esquemático é apresentado na figura 7.

Figura 7: Circuito simulado do codificador de prioridade

c.

Com efeito, o resultado da simulação via diagrama de temporização é dado pela figura 8.

Figura 8: Diagrama de temporização do codificador de prioridade. Nota-se que as saídas possuem resultados como o esperado pelas equações apresentadas.

4.5

a.

As expressões Booleanas para o bloco H são apresentadas de (9) a (12).

$$A = A^1 + A^2 \tag{9}$$

$$Y_2 = A^2 \tag{10}$$

$$Y_1 = Y_1^2 + (Y_1^1 \bar{A}^2) \tag{11}$$

$$Y_0 = Y_0^2 + (Y_0^1 \bar{A}^2) \tag{12}$$

O diagrama esquemático para o bloco H é apresentado na figura 9.

Figura 9: Circuito montado em simulador a fim de mostrar as conexões do bloco H

O diagrama de temporização é apresentado pela figura 10.

Figura 10: Diagrama de temporização do bloco H. Nota-se que as saídas são como as esperadas pelas equações.

Em seguida, as entradas foram substituídas por dois circuitos codificadores de prioridade 4x2, como o codificador 8x3 deve ser construído. Assim, simulando esse novo circuito, obteve-se o diagrama de temporização apresentado na figura 11 e figura 12. O diagrama foi dividido em duas figuras a fim de facilitar a visualização.

Figura 11: Diagrama de temporização do circuito codificador de prioridade. Nessa imagem, X7 tem valor zero. Notase que as saídas são de acordo com o esperado pelo objetivo do circuito

Figura 12: Diagrama de temporização do circuito codificador de prioridade. Nessa imagem, X7 tem valor 1. Nota-se que as saídas são de acordo com o esperado pelo objetivo do circuito