a) Design a 2x1 MUX.b) Using 2 2x1 MUX, design a 4x1 MUX.c) Design and implementation of 1 bit Logic unit.

<u>LU</u>

51	50	Output	Operation
0	0	$F_i = A_i + B_i$	OR
0	1	$F_i = A_i \oplus B_i$	XOR
1	0	$F_i = A_i B_i$	AND
1	1	$F_i = A_i^i$	NOT

<u>AU</u>

1	Input	Outputs			
A	B	$C_{\rm in}$	S	C_{out}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

FA

$$S = (A \oplus B) \oplus C_{in}$$

$$C = A.B + (A \oplus B)$$

Note: 4 bit parallel adder IC: 7483

Figure 9-6 Operations obtained by controlling one set of inputs to a parallel adder

Function select					Function
s ₁	<i>s</i> ₀	$C_{\rm in}$	•		
0	0	0	0	F = A	Transfer A
0	0	1	0	F = A + 1	Increment A
0	1	0	B	F = A + B	Add B to A
0	1	1	В	F = A + B + 1	Add B to A plus 1
1	0	0	\overline{B}	$F = A + \overline{B}$	Add I's complement of B to A
1	0	1	\vec{B}	$F = A + \widehat{B} + 1$	Add 2's complement of B to A
1	1	0	All 1's	F = A - 1	Decrement A
1	1	1	All I's	F = A	Transfer A

Figure 9-8 Logic diagram of arithmetic circuit

Combine

More Efficient Design

Required

s ₂	51	<i>s</i> ₀	Xi	Y,	C _i	$F_i = X_i \oplus Y_i$	Operation	Required
1	0	0	A,	0	0	$F_i = A_i$	Transfer A	OR
1	0	1	A,	B	0	$F_i = A_i \oplus B_i$	XOR	XOR
1	1	0	A,	B;	0	$F_i = A_i \odot B_i$	Equivalence	AND
1	1	1	A	1	0	$F_i = A_i'$	NOT	NOT

<u>OR</u>

For OR, We push A+B in X when Input is 100

Else, X = A

Therefore, X = Ai + s2.s1'.s0'.Bi

<u>AND</u>

For AND, We, put X = Ai + Ki When input is 110

So, Fi = (Ai+Ki).Bi + (Ai+Ki)'Bi' = AiBi + KiBi + Ai'Ki'Bi'

If we put, Ki = Bi' We get Fi = AiBi

So, X = Ai + s2.s1'.s0'.Bi + s2.s1.s0'.Bi'

Finally

$$X_{i} = A_{i} + s_{2}s'_{1}s'_{0}B_{i} + s_{2}s_{1}s'_{0}B'_{i}$$

$$Y_{i} = s_{0}B_{i} + s_{1}B'_{i}$$

$$Z_{i} = s'_{2}C_{i}$$

		Selection				
Function	Output	Cin	<i>s</i> ₀	<i>s</i> ₁	s ₂	
Transfer A	F = A	0	0	0	0	
Increment A	F = A + 1	1	0	0	0	
Addition	F = A + B	0	1	0	0	
Add with carry	F = A + B + 1	1	1	ō	0	
Subtract with borrow	F = A - B - 1	0	0	ī	0	
Subtraction	F = A - B	1	0	1	Õ	
Decrement A	F = A - 1	0	1	1	0	
Transfer A	F = A	1	1	1	0	
OR	$F = A \vee B$	X	0	0	1	
XOR	$F = A \oplus B$	X	1	0	1	
AND	$F = A \wedge B$	X	0	1	1	
Complement A	$F = \overline{A}$	X	1	1	i	