Name: Gavali Deshabhakt Nagnath Subject: Selected Topics in Graph Theory

Roll No.: 202CD005 Course Instructor: Dr. Shyam Kamath

Assignment Number: 4

Havel Hakimi Theorem:

It states that,

'The non-increasing sequence $(d_1,d_2,...,d_n)$ is graphic if and only if the sequence $(d_{2-1},d_{3-1},...,d_{d_{1+1}}-1,d_{d_1}+2,d_{d_1}+3,...,d_n)$ is also graphic.

The Havel-Hakimi algorithm goes as follows:

- Arrange vertices with non-increasing order of degrees.
- Pick 1^{st} vertex from the sequence and subtract 1 from degree of 2^{nd} till $(deg(1^{st})+1)^{th}$ vertex.
- Now 1st vertex has been exhaust so remove it from sequence.
- Repeat steps 1 to 3 till you exhaust all the vertices.
- If all the vertices get exhausted, then the sequence has reduced to all zeroes and hence the sequence is graphic.
- If you end up with non-zero degree vertices that can't be exhausted further, then the sequence isn't graphic.

Examples:

1) $D = \{5,3,2,2,2,2,1\}$

Ans:

Using Havel-Hakimi algorithm,

Iteration 1:

Here the degree sequence is already sorted in non-increasing order, so we don't have to sort it again.

Taking 1st vertex degree from sequence. Here it is 5 so subtract 1 from next 5 vertex degrees in the sequence.

$$\pi' = \{2,1,1,1,1,1\}$$

Again obtained degree sequence is in sorted order so this becomes π_1

$$\pi_1 = \{2,1,1,1,1,1\}$$

Iteration 2:

Again repeating above procedure we get,

$$\pi_1$$
' = {0,0,1,1,1}

sorting π_1 ' in non-increasing order we get,

$$\pi_2 = \{1,1,1,0,0\}$$

Iteration 3:

Again repeating above procedure we get,

$$\pi_1$$
' = {0,0,1,1,1}

sorting π_1 ' in non-increasing order we get,

$$\pi_2 = \{1,1,1,0,0\}$$

Iteration 4:

Again repeating above procedure we get,

$$\pi_2$$
' = {0,1,0,0}

sorting π_1 ' in non-increasing order we get,

$$\pi_3 = \{1,0,0,0\}$$

Iteration 5:

Again repeating above procedure we get,

$$\pi_2$$
' = {-1,0,0}

Here we got -1 in degree sequence.

This means that the vertices with given degree sequence are **not Graphic.**

2) $D = \{8,8,7,7,6,6,4,3,2,1,1,1\}$

Ans:

Using Havel-Hakimi algorithm we get following,

$$D = \{8,8,7,7,6,6,4,3,2,1,1,1\}$$

Iteration 1:

$$\pi' = \{7,6,6,5,5,3,2,1,1,1,1\}$$

Here degree sequnce is sorted in non-increasing order. Thus,

$$\pi_1 = \{7,6,6,5,5,3,2,1,1,1,1\}$$

Iteration 2:

$$\pi_1' = \{5,5,4,4,2,1,0,1,1,1\}$$

Sorting degree sequence in non-increasing order we get,

$$\pi_2 = \{6,5,5,4,4,2,1,1,1,1,0\}$$

Iteration 3:

$$\pi_2$$
' = {4,4,3,3,1,0,1,1,1,0}

Sorting degree sequence in non-increasing order we get,

$$\pi_3 = \{4,4,3,3,1,1,1,1,0,0\}$$

Iteration 4:

$$\pi_3$$
' = {3,2,2,0,1,1,1,0,0}

Sorting degree sequence in non-increasing order we get,

$$\pi_4 = \{3,2,2,1,1,1,0,0,0\}$$

Iteration 5:

$$\pi_4' = \{1,1,0,1,1,0,0,0\}$$

Sorting degree sequence in non-increasing order we get,

$$\pi_5 = \{1,1,1,1,0,0,0\}$$

Iteration 6:

$$\pi_5' = \{0,1,1,0,0,0\}$$

Sorting degree sequence in non-increasing order we get,

$$\pi_6 = \{1,1,0,0,0,0\}$$

Iteration 7:

$$\pi_6' = \{0,0,0,0,0\}$$

As the degree sequence reduced to zeros, thus the it is possible to draw a graph with given vertex degree sequence (i.e. given degree sequence is **graphic**).

3) $D = \{3, 3, 2, 2, 1, 1\}$

Ans:

Using Havel-Hakimi Algorithm,

$$D = \{3, 3, 2, 2, 1, 1\}$$

Iteration 1:

$$\pi' = \{ 2, 1, 1, 1, 1 \}$$

Here degree sequnce is sorted in non-increasing order. Thus,

$$\pi_1 = \{ 2, 1, 1, 1, 1 \}$$

Iteration 2:

$$\pi_1' = \{ 0, 0, 1, 1 \}$$

Sorting degree sequence in non-increasing order we get,

$$\pi_2 = \{1,1,0,0\}$$

Iteration 3:

$$\pi_2' = \{0,0,0\}$$

As the degree sequence reduced to zeros, thus the it is possible to draw a graph with given vertex degree sequence (i.e. given degree sequence is **graphic**).

4)
$$\mathbf{D} = \{4, 3, 3, 3, 1\}$$

Ans:

Using Havel-Hakimi Algorithm,

$$D = \{4, 3, 3, 3, 1\}$$

Iteration 1:

$$\pi' = \{2, 2, 2, 0\}$$

Here degree sequnce is sorted in non-increasing order. Thus,

$$\pi_1 = \{2, 2, 2, 0\}$$

Iteration 2:

$$\pi_1' = \{1, 1, 0\}$$

Here degree sequnce is sorted in non-increasing order. Thus,

$$\pi_2 = \{1,1,0\}$$

Iteration 3:

$$\pi_2$$
' = $\{0,0\}$

As the degree sequence reduced to zeros, thus the it is possible to draw a graph with given vertex degree sequence (i.e. given degree sequence is **graphic**).

5) **D** = {4,4,4,4,1,1,1,1,1,1,1,1,1,1}

Ans:

Using Havel-Hakimi algorithm we get following,

$$D = \{4,4,4,4,1,1,1,1,1,1,1,1,1,1\}$$

Iteration 1:

$$\pi' = \{3,3,3,0,1,1,1,1,1,1,1,1,1,1\}$$

Sorting degree sequence in non-increasing order we get,

$$\pi_1 = \{3,3,3,1,1,1,1,1,1,1,1,1,0\}$$

Iteration 2:

$$\pi_1$$
' = {2,2,0,1,1,1,1,1,1,1,1,0}

Sorting degree sequence in non-increasing order we get,

$$\pi_2 = \{2,2,1,1,1,1,1,1,1,1,0,0\}$$

Iteration 3:

$$\pi_2$$
' = {1,0,1,1,1,1,1,1,0,0}

Sorting degree sequence in non-increasing order we get,

$$\pi_3 = \{1,1,1,1,1,1,1,1,0,0,0\}$$

Iteration 4:

$$\pi_3$$
' = {0,1,1,1,1,1,1,0,0,0}

Sorting degree sequence in non-increasing order we get,

$$\pi_4 = \{1,1,1,1,1,1,0,0,0,0,0\}$$

Iteration 5:

$$\pi_4$$
' = {0,1,1,1,1,0,0,0,0}

Sorting degree sequence in non-increasing order we get,

$$\pi_5 = \{1,1,1,1,0,0,0,0,0,0\}$$

Iteration 6:

$$\pi_5$$
' = {0,1,1,0,0,0,0,0}

Sorting degree sequence in non-increasing order we get,

$$\pi_6 = \{1,1,0,0,0,0,0,0,0\}$$

Iteration 7:

$$\pi_6$$
' = {0,0,0,0,0,0,0}

As the degree sequence reduced to zeros, thus the it is possible to draw a graph with given vertex degree sequence (i.e. given degree sequence is **graphic**).

Drawbacks of Havel-Hakimi Algorithm:

- 1. Time complexity of this algorithm is $O(n^2)$. Hence it's fairly slow.
- 2. Only tells if graph is possible or not, does not tell anything about graph representation.
- 3. Does not tell anything about connectivity of graph.
- 4. Does not tell anything about presence or absense of cycle in graph.