Writing Performance-Portable Code for GPUs

Karl Rupp^{1,2}

rupp@iue.tuwien.ac.at

with contributions from
Philippe Tillet¹, Florian Rudolf¹,
Josef Weinbub¹, Ansgar Jüngel², Tibor Grasser¹
(based on stimuli from PETSc+ViennaCL users)

 $^{\rm I}$ Institute for Microelectronics, TU Wien, Austria $^{\rm 2}$ Institute for Analysis and Scientific Computing, TU Wien, Austria

Boulder, March 20th, 2015

Outline

Introduction

Positions

PhD student at TU Wien (2009-2011)

Postdoc at ANL (09/2012-09/2013)

Postdoc at TU Wien (01/2012-09/2012, 09/2013-current)

Research Interests

Semiconductor device simulation

Numerical solution of PDEs

Parallel computing

Software Development

PETSc

ViennaCI

ViennaSHE

...

Introduction

Iterative Solvers

Matrix-vector products and vector operations only

Expose more fine-grained parallelism

Preconditioners often desirable

Accelerators (CUDA, OpenCL)

Graphics processing units (GPUs)

Intel Xeon Phi

Introduction

Pseudocode

Choose x₀

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

-

SpMV, AXPY

For i = 0 until convergence

- 1. SpMV
- 2. DOT
- 3. -
- 4. AXPY
- 5. AXPY
- 6. DOT
- 7. -
- 8. AXPY

EndFor

Pseudocode

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

-

SpMV, AXPY

For i = 0 until convergence

- 1. SpMV
- 2. DOT ← Global sync!
- 3. -
- 4. AXPY
- 5. AXPY
- 6. DOT ← Global sync!
- 7. -
- 8. AXPY

EndFor

Pseudocode

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

BLAS-based Implementation

-

SpMV, AXPY

For i = 0 until convergence

- 1. SpMV \leftarrow No caching of Ap_i
- 2. DOT ← Global sync!
- 3. -
- 4. AXPY
- 5. AXPY \leftarrow No caching of r_{i+1}
- 6. DOT ← Global sync!
- 7. -
- 8. AXPY

EndFor

Implications

Kernel launches expensive

Delicate balance for preconditioners

Implications

Kernel launches expensive

Delicate balance for preconditioners

Implications

Kernel launches expensive

Delicate balance for preconditioners

Implications

Kernel launches expensive
Delicate balance for preconditioners

Implications

Kernel launches expensive Delicate balance for preconditioners

Conjugate Gradient Optimizations

Optimization 1

Get best performance out of SpMV Compare different sparse matrix types

Cf.: N. Bell: Implementing sparse matrix-vector multiplication on throughput-oriented processors. *Proc. SC '09*

Conjugate Gradient Optimizations

Optimization 2

Optimize kernel parameters for each operation

Outline

Scope for Portability Study

Vector and matrix-vector operations (BLAS levels 1 and 2) Limited by memory bandwidth

Scope for Portability Study

Vector and matrix-vector operations (BLAS levels 1 and 2) Limited by memory bandwidth

Key Question (Memory-Bandwidth-Limited Kernels)

Good performance of complicated kernels by optimizing the simplest kernel?

Vector Assignment (Copy) Kernel

$$x \leftarrow y$$
 for (large) vectors x, y

Vector Assignment (Copy) Kernel

 $x \Leftarrow y$ for (large) vectors x, y

Vector Assignment (Copy) Kernel

 $x \leftarrow y$ for (large) vectors x, y

Parameters (1900 variations)

Local work size, global work size Vector types (float1, float2, ..., float16)

Thread increment type

Vector Assignment (Copy) Kernel

```
x \Leftarrow y for (large) vectors x, y
```


Parameters (1900 variations)

Vector Assignment (Copy) Kernel

```
x \Leftarrow y for (large) vectors x, y
```


Parameters (1900 variations)

Vector Assignment (Copy) Kernel

```
x \Leftarrow y for (large) vectors x, y
```


Parameters (1900 variations)

```
for (size_t i = group_start + get_local_id(0);
    i < group_end; i+= get_local_size(0))
x[i] = y[i];</pre>
```

Operations

Vector copy, vector addition, inner product Matrix-vector product

Operations

Vector copy, vector addition, inner product

Matrix-vector product

Operations

Vector copy, vector addition, inner product Matrix-vector product

Devices

AMD: A10-5800 APU, HD 5850 GPU

INTEL: Dual Socket Xeon E5-2670, Xeon Phi

NVIDIA: GTX 285, Tesla K20m

Histograms

AMD Radeon HD 5850

NVIDIA Tesla K20m

Bandwidth Inner Product (% of theoretical peak)

Bandwidth Inner Product (% of theoretical peak)

AMD Radeon HD 5850

 $[Addition|Inner\ Product|Matrix-Vector]\ vs.\ Copy\ Kernel$

Same Device

NVIDIA GeForce GTX 285

NVIDIA GeForce GTX 285

NVIDIA GeForce GTX 285

NVIDIA Tesla K20m

AMD Radeon HD 5850

INTEL Dual Xeon E5-2670

INTEL Xeon Phi

Conclusio:

Focus on fastest configurations for copy-kernel sufficient

[Copy|Addition|Inner Product|Matrix-Vector] vs. Copy Kernel

Different Device, Same Vendor

NVIDIA Hardware (x: GTX 285, y: K20m)

AMD Hardware (x: A10-5800K GPU, y: HD 5850)

INTEL Hardware (x: Xeon Phi, E5-2670)

NVIDIA Hardware (x: GTX 285, y: K20m)

AMD Hardware (x: A10-5800K GPU, y: HD 5850)

Conclusio:

Certain Performance Portability per Vendor

 $\textbf{[Copy|Addition|Inner\ Product|Matrix-Vector]\ vs.\ Copy\ Kernel}$

Different Device, Different Vendor

x: AMD HD 5850, y: NVIDIA K20m

Conclusio:

Fast Configurations Across Vendors Exist

Outline

Conjugate Gradient Optimizations

Optimization 3: Rearrange the algorithm

Remove unnecessary reads

Remove unnecessary synchronizations

Use custom kernels instead of standard BLAS

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- 5. $r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For $i = 0$ until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- **4.** $x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6.** Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0 , β_0 , Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_i$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- $4. x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6.** Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0 , β_0 , Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_i$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

Standard CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 0 until convergence

- 1. Compute and store Ap_i
- 2. Compute $\langle p_i, Ap_i \rangle$
- 3. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- $4. x_{i+1} = x_i + \alpha_i p_i$
- $5. r_{i+1} = r_i \alpha_i A p_i$
- **6**. Compute $\langle r_{i+1}, r_{i+1} \rangle$
- 7. $\beta_i = \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
- 8. $p_{i+1} = r_{i+1} + \beta_i p_i$

EndFor

Pipelined CG

Choose x_0

$$p_0 = r_0 = b - Ax_0$$

For i = 1 until convergence

- 1. i = 1: Compute α_0 , β_0 , Ap_0
- 2. $x_i = x_{i-1} + \alpha_{i-1}p_{i-1}$
- 3. $r_i = r_{i-1} \alpha_{i-1}Ap_i$
- 4. $p_i = r_i + \beta_{i-1}p_{i-1}$
- 5. Compute and store Ap_i
- 6. Compute $\langle Ap_i, Ap_i \rangle$, $\langle p_i, Ap_i \rangle$, $\langle r_i, r_i \rangle$
- 7. $\alpha_i = \langle r_i, r_i \rangle / \langle p_i, Ap_i \rangle$
- 8. $\beta_i = (\alpha_i^2 \langle Ap_i, Ap_i \rangle \langle r_i, r_i \rangle) / \langle r_i, r_i \rangle$

Outline

BiCGStab and GMRES

BiCGStab

Similar to CG

Two SpMV per iteration

Pipelining: 4 kernel launches instead of 12

GMRES

Store Krylov basis

Orthonormalization in each step

Pipelining: 3 kernel launches

Benchmark Setup

Poisson equation in 2D

GPUs from NVIDIA and AMD

Outline

BiCGStab and GMRES

BiCGStab

Similar to CG

Two SpMV per iteration

Pipelining: 4 kernel launches instead of 12

GMRES

Store Krylov basis

Orthonormalization in each step

Pipelining: 3 kernel launches

Benchmark Setup

Poisson equation in 2D

GPUs from NVIDIA and AMD

Conclusion

Performance-Portable Code for GPUs

Start with 128 work items

Refrain from using vector datatypes

Let each workgroup work on a contiguous piece of memory

Pipelined Iterative Solvers

Reduced number of kernel launches

On-chip data reuse

Faster than BLAS-based implementations

Best Practices for GPU Computing

FLOPs are (almost always) for free

Work on large enough data

Avoid unnecessary PCI-Express communication