On Valency Problems of Saxl Graphs

Hong Yi Huang

Southern University of Science and Technology

Kunming, 2 January 2021

Joint work with Jiyong Chen

Outline

Backgrounds

Our Results

3 Problems

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

With the natural actions,

- $b(S_n) = n 1$;
- $b(A_n) = n 2$;
- $b(GL_n(q)) = n$, and a base size set is exactly a basis of \mathbb{F}_q^n over \mathbb{F}_q .

Bases

Let $G \leq \operatorname{Sym}(\Omega)$ with $|\Omega| < \infty$.

- Base: $\Delta \subset \Omega$ such that the point-wise stabiliser $G_{(\Delta)} = 1$.
- Base size: minimal cardinality of bases, denoted by b(G).
- Base size set: a base Δ such that $|\Delta| = b(G)$.

With the natural actions,

- $b(S_n) = n 1$;
- $b(A_n) = n 2$;
- $b(GL_n(q)) = n$, and a base size set is exactly a basis of \mathbb{F}_q^n over \mathbb{F}_q .

Suppose G is transitive.

- G is regular $\iff b(G) = 1$.
- If G is Frobenius then b(G) = 2.
- If G is sharply k-transitive then b(G) = k.

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Theorem (O'Nan-Scott).

Let G be a primitive group. Then G is of one of the following types: HA, AS, HS, HC, PA, TW, SD, CD.

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Theorem (O'Nan-Scott).

Let G be a primitive group. Then G is of one of the following types: HA, AS, HS, HC, PA, TW, SD, CD.

A group G is called almost simple if

$$\mathsf{soc}(\mathit{G}) = \mathit{T} \cong \mathsf{Inn}(\mathit{T}) \lesssim \mathit{G} \lesssim \mathsf{Aut}(\mathit{T})$$

for some non-abelian simple group T.

Recall that $G \leq \operatorname{Sym}(\Omega)$ is called primitive if

- G is transitive, and
- G_{α} is maximal in G.

Theorem (O'Nan-Scott).

Let G be a primitive group. Then G is of one of the following types: HA, AS, HS, HC, PA, TW, SD, CD.

A group G is called almost simple if

$$soc(G) = T \cong Inn(T) \lesssim G \lesssim Aut(T)$$

for some non-abelian simple group T.

• Li-Zhang 2011 [8]: completely classified almost simple primitive groups with soluble stabilisers.

Base sizes

Definition.

Let $G \leq \operatorname{Sym}(\Omega)$ be an almost simple primitive group with socle G_0 and stabiliser H. Then we say G is standard if one of the following holds:

- **①** $G_0 = A_n$ and Ω is an orbit of subsets or partitions of $\{1, \ldots, n\}$; or
- ② G_0 is a classical group with natural module V and either Ω is an orbit of subspaces (or pairs of subspaces) of V; or
- **3** $G_0 = \operatorname{Sp}_n(2^f)$ and $H \cap G_0 = O_n^{\pm}(2^f)$.

Base sizes

Definition.

Let $G \leq \operatorname{Sym}(\Omega)$ be an almost simple primitive group with socle G_0 and stabiliser H. Then we say G is standard if one of the following holds:

- **①** $G_0 = A_n$ and Ω is an orbit of subsets or partitions of $\{1, \ldots, n\}$; or
- ② G_0 is a classical group with natural module V and either Ω is an orbit of subspaces (or pairs of subspaces) of V; or
- **3** $G_0 = \operatorname{Sp}_n(2^f)$ and $H \cap G_0 = O_n^{\pm}(2^f)$.

Let *G* be almost simple and primitive.

- Cameron-Kantor 1993 [6]: conjectured $b(G) \le c$ if G is non-standard.
- Liebeck-Shalev 1999 [9]: c exists.
- Burness-Liebeck-Shalev 2009 [4]: c = 7 is optimal (M₂₄).
- Burness 2018 [1]: determined non-standard groups with b(G) = 6.

Soluble groups

Let *G* be primitive.

- Seress 1996 [10]: $b(G) \le 4$ if G is soluble.
- Burness 2020+ [2]: $b(G) \le 5$ if G_{α} is soluble.
- Burness-Shalev 2020+ [5]: if G is not of types HA or TW, and every $G_{\alpha\beta}$ is soluble, then $b(G) \leq 6$.

Saxl graphs

Saxl first proposed determining all primitive groups G with b(G) = 2.

Definition (Saxl graphs [3]).

Let G be a permutation group acting on Ω . Then the Saxl graph $\Sigma(G)$ is the graph such that

- the vertex set is Ω ;
- $\alpha \sim \beta$ if $\{\alpha, \beta\}$ is a base.

Saxl graphs

Saxl first proposed determining all primitive groups G with b(G) = 2.

Definition (Saxl graphs [3]).

Let G be a permutation group acting on Ω . Then the Saxl graph $\Sigma(G)$ is the graph such that

- the vertex set is Ω ;
- $\alpha \sim \beta$ if $\{\alpha, \beta\}$ is a base.

We have

- $b(G) \ge 3 \implies \Sigma(G)$ empty;
- b(G) = 1 and G transitive $\implies \Sigma(G)$ complete.

Example.

Suppose $G = A_5$ and $G_{\alpha} = S_3$. Then $\overline{\Sigma(G)}$ is Petersen.

First observations

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- \circ $\Sigma(G)$ is complete if and only if G is Frobenius.
- **\circ** $\Sigma(G)$ is G-arc-semiregular.

First observations

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G.

- **1** $\Sigma(G)$ is G-vertex-transitive.
- \circ $\Sigma(G)$ is complete if and only if G is Frobenius.
- **3** $\Sigma(G)$ is G-arc-semiregular.

Indeed, $\Sigma(G)$ is the union of all regular orbital graphs of G.

Burness-Giudici Conjecture

Conjecture (Burness-Giudici 2020 [3]).

Let G be primitive and b(G) = 2. Then any two vertices in $\Sigma(G)$ has a common neighbour.

Note that if $\operatorname{val}(\Sigma(G)) > \frac{1}{2}|\Omega|$ then the conjecture is verified. This gives a motivation to study the valency problems.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G.

$val(\Sigma(G)) = r|H|$

Proposition.

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has valency r|H|, where H is the point stabiliser and r is the number of regular suborbits of G.

By val(G, H) we mean the valency of the Saxl graph of G with stabiliser H. In particular, |H| divides val(G, H).

Outline

Backgrounds

2 Our Results

Problems

Frobenius groups

Recall that a group H is called Frobenius if there exists a non-trivial proper subgroup L < H such that $L \cap L^h = 1$ for any $h \in H \setminus L$.

- Frobenius complement: L.
- Frobenius kernel: the subgroup K comprising the identity element and those elements that are not in any conjugate of L.

Frobenius groups

Recall that a group H is called Frobenius if there exists a non-trivial proper subgroup L < H such that $L \cap L^h = 1$ for any $h \in H \setminus L$.

- Frobenius complement: L.
- Frobenius kernel: the subgroup K comprising the identity element and those elements that are not in any conjugate of L.
- H = K:L.
- If *K* is cyclic, then so does *L*.

Frobenius groups with cyclic kernel

Theorem (Chen-H. 2020+).

Suppose G is a finite primitive permutation group with stabiliser H, where H=K:L is Frobenius with cyclic kernel K. Write $L=\langle y\rangle$. Then

$$\mathsf{val}(\mathit{G},\mathit{H}) = |\mathit{G}:\mathit{H}| + |\mathit{K}| - 1 + \frac{|\mathit{K}|}{|\mathit{L}|} \sum_{1 \neq d \mid |\mathit{L}|} \mu(d) |\mathit{N}_{\mathit{G}}(\langle y^{\frac{|\mathit{L}|}{d}} \rangle)|,$$

where μ is the Möbius function.

Alternating and symmetric groups

This can be applied to various problems. For example

Corollary.

Let $G=S_p$ and $H=\mathsf{AGL}_1(p)\cong \mathbb{Z}_p{:}\mathbb{Z}_{p-1}$ with $p\geq 5$ a prime. Then

$$val(G, H) = (p-2)! + p - 1 + p \sum_{1 \neq d \mid (p-1)} \mu(d)\phi(d)d^{\frac{p-1}{d}-1} \left(\frac{p-1}{d} - 1\right)!.$$

Corollary.

Let $G=A_p$ and $H=\mathsf{AGL}_1(p)\cap A_p\cong \mathbb{Z}_p{:}\mathbb{Z}_{(p-1)/2}$ with $p\geq 5$ a prime and $p\neq 7,11,17,23$. Then

$$\mathsf{val}(G,H) = (p-2)! + p - 1 + p \sum_{1 \neq d \mid \frac{p-1}{2}} \mu(d)\phi(d)d^{\frac{p-1}{d}-1} \left(\frac{p-1}{d} - 1\right)!.$$

Alternating and symmetric groups

Theorem (Chen-H. 2020+).

Let G be an almost simple primitive group with socle A_n and soluble stabiliser H. If b(G) = 2, then (G, H, val(G, H)) is listed in the following.

G	Н	val(G, H)
A_5	<i>S</i> ₃	6
M_{10}	$AGL_1(5)$	20
M_{10}	8:2	32
$PGL_2(9)$	D_{16}	16
A_9	$ASL_2(3)$	432
A_p	$\mathbb{Z}_p:\mathbb{Z}_{(p-1)/2}$	see above
S_p	$AGL_1(p)^{''}$	see above

Prime valency

Proposition (Burness-Giudici 2020 [3]).

Suppose G is transitive with b(G) = 2 and $\Sigma(G)$ is the Saxl graph of G. Then $\Sigma(G)$ has prime valency p if and only if G is one of the following:

- ② $G = S_3$, p = 2 and $\Sigma(G) \cong K_3$.
- **3** $G = \mathsf{AGL}_1(2^f)$, where $p = 2^f 1$ is a Mersenne prime and $\Sigma(G) \cong \mathcal{K}_{p+1}$.

Prime-power valency

Proposition.

Let G be an almost simple primitive group with stabiliser H. If |H| is a prime power, then H is a 2-group and (G, H) is listed in the following.

G	Н	Conditions
$L_2(p)$	D_{p-1}	$ ho \geq 17$ is a Fermat prime
	D_{p+1}	$p \geq 31$ is a Mersenne prime
$PGL_2(p)$	$D_{2(p-1)}$	$ ho \geq 17$ is a Fermat prime
	$D_{2(p+1)}$	$p \geq 7$ is a Mersenne prime
$PGL_2(9)$	D_{16}	
M_{10}	8:2	
$P\Gamma L_2(9)$	8.2^{2}	
$Aut(L_3(2))$	D_{16}	

Table: Almost simple groups G with a maximal subgroup H of prime-power order

Prime-power valency

Theorem (Chen-H. 2020+).

Suppose G is almost simple primitive with b(G) = 2 stabiliser H. Then the Saxl graph $\Sigma(G)$ has prime-power valency if and only if (G, H) is one of the following:

- **4** $(G, H) = (M_{10}, 8:2)$ and val(G, H) = 32.
- ② $(G, H) = (PGL_2(q), D_{2(q-1)})$, where $q \ge 17$ is a Fermat prime or q = 9, $\Sigma(G)$ is isomorphic to the Johnson graph J(q+1,2) and val(G, H) = 2(q-1).

Prime-power valency

Theorem (Chen-H. 2020+).

Suppose G is almost simple primitive with b(G) = 2 stabiliser H. Then the Saxl graph $\Sigma(G)$ has prime-power valency if and only if (G, H) is one of the following:

- $(G, H) = (M_{10}, 8:2)$ and val(G, H) = 32.
- $(G, H) = (PGL_2(q), D_{2(q-1)}),$ where $q \ge 17$ is a Fermat prime or $q=9, \Sigma(G)$ is isomorphic to the Johnson graph J(q+1,2) and val(G, H) = 2(q - 1).

General primitive groups with prime-power valency?

Example.

- $val(PSU_3(2), Q_8) = 8.$
- $val(M_{10} \wr C_2, (8:2) \wr C_2) = 2^9$, while $val(M_{10} \wr C_4, (8:2) \wr C_4) = 2^{18} \cdot 3$.

Odd valency

Proposition (Burness-Giudici 2020 [3]).

Let G be an almost simple primitive group with stabiliser H and b(G) = 2. If val(G, H) is odd then one of the following holds:

- $(G, H) = (M_{23}, 23:11).$
- ② $(G, H) = (A_p, \mathbb{Z}_p : \mathbb{Z}_{(p-1)/2})$, where $p \equiv 3 \pmod{4}$ is a prime and (p-1)/2 is composite.
- **3** $\mathsf{L}_r^\epsilon(q) \leq G \leq \mathsf{PFL}_r^\epsilon(q)$ with r an odd prime and $G \neq \mathsf{L}_r^\epsilon(q)$. The stabiliser H is the \mathscr{C}_3 -subgroup of G.

Odd valency

Case (2) can be easily shown impossible by above. Moreover, we analysis the case when $G = \mathsf{PGL}^{\epsilon}_r(q)$. These lead the following.

Theorem (Chen-H. 2020+).

Let G be an almost simple primitive group with stabiliser H and b(G) = 2. Then val(G, H) is odd only if one of the following holds:

- **1** $G = M_{23}$ and H = 23:11.
- ② $\mathsf{L}_r^\epsilon(q) \leq G \leq \mathsf{PFL}_r^\epsilon(q)$ with r an odd prime and $G \not\leq \mathsf{PGL}_r^\epsilon(q)$. The stabiliser H is the \mathscr{C}_3 -subgroup of G.

Outline

Backgrounds

Our Results

Problems

A conjecture on arc stabilisers

To calculate the valency we need to determine all possible arc stabilisers $G_{(\alpha,\alpha^g)}$ for $g\in G$. This leads the following conjecture, which may be of independent interest.

Conjecture.

Let G be a finite primitive permutation group with stabiliser G_{α} . Then for any $g \notin G_{\alpha}$, either $G_{(\alpha,\alpha^g)} = 1$ or $G_{(\alpha,\alpha^g)}$ is not normal in G_{α} .

The conjecture is verified when:

- $G_{(\alpha,\alpha^g)} < G_{\{\alpha,\alpha^g\}}$;
- $|\Omega| \le 4095$;
- $G_{(\alpha,\alpha^g)}$ has odd order.

Burness-Giudici Conjecture

Conjecture (Burness-Giudici 2020 [3]).

Let G be primitive and b(G) = 2. Then any two vertices in $\Sigma(G)$ has a common neighbour.

The conjecture is verified when:

- $soc(G) = A_n$ and $H \cap soc(G)$ acts primitively on $\{1, \ldots, n\}$.
- soc(G) is in a collection of sporadic simple groups.
- Chen-Du 2020+ [7]: $soc(G) = PSL_2(q)$.

Connectivity

 How to characterise the connectivity of Saxl graphs of transitive permutation groups? We know that

G primitive
$$\implies \Sigma(G)$$
 connected.

The converse? Simple quasi-primitive groups?

Connectivity

 How to characterise the connectivity of Saxl graphs of transitive permutation groups? We know that

G primitive
$$\implies \Sigma(G)$$
 connected.

The converse? Simple quasi-primitive groups?

• When does val(G, H) = |H|? That is, there is exactly one regular suborbit, especially when G is primitive.

Example.

When $(G, H) = (PGL_2(q), D_{2(q-1)})$ for $q \ge 5$ we have val(G, H) = |H|.

Automorphisms

• We have $G \leq \operatorname{Aut}(\Sigma(G))$. When does $G = \operatorname{Aut}(\Sigma(G))$?

- When $(G, H) = (\operatorname{Sp}_{2m}(2), S_{2m+2})$ with $m \ge 6$ even, $G = \operatorname{Aut}(\Sigma(G))$.
- When $(G, H) = (PGL_2(q), D_{2(q-1)})$ with $q \ge 7$, we have $\Sigma(G) \cong J(q+1, 2)$ and so $G < \operatorname{Aut}(\Sigma(G)) \cong S_{q+1}$.

Automorphisms

• We have $G \leq \operatorname{Aut}(\Sigma(G))$. When does $G = \operatorname{Aut}(\Sigma(G))$?

- When $(G, H) = (\operatorname{Sp}_{2m}(2), S_{2m+2})$ with $m \ge 6$ even, $G = \operatorname{Aut}(\Sigma(G))$.
- When $(G, H) = (PGL_2(q), D_{2(q-1)})$ with $q \ge 7$, we have $\Sigma(G) \cong J(q+1, 2)$ and so $G < \text{Aut}(\Sigma(G)) \cong S_{q+1}$.
- To what extent does $\Sigma(G)$ determine G up to permutation isomorphism?

Automorphisms

• We have $G \leq \operatorname{Aut}(\Sigma(G))$. When does $G = \operatorname{Aut}(\Sigma(G))$?

Example.

- When $(G, H) = (\operatorname{Sp}_{2m}(2), S_{2m+2})$ with $m \ge 6$ even, $G = \operatorname{Aut}(\Sigma(G))$.
- When $(G, H) = (PGL_2(q), D_{2(q-1)})$ with $q \ge 7$, we have $\Sigma(G) \cong J(q+1, 2)$ and so $G < \operatorname{Aut}(\Sigma(G)) \cong S_{q+1}$.
- To what extent does $\Sigma(G)$ determine G up to permutation isomorphism?
- When is $\Sigma(G)$ Cayley? That is, when $\operatorname{Aut}(\Sigma(G))$ has a regular subgroup?

- ▶ When $(G, H) = (M_{10}, 8:2)$, $\Sigma(G)$ is not Cayley.
- ▶ When $(G, H) = (S_7, AGL_1(7))$, $\Sigma(G)$ is Cayley.

Cycles

• Euler cycle? The only known genuine example of almost simple primitive group with odd valency is M_{23} with stabiliser 23:11.

Conjecture.

Let G be an almost simple primitive group with stabiliser H. Then val(G, H) is odd if and only if $G = M_{23}$ and H = 23:11.

Cycles

• Euler cycle? The only known genuine example of almost simple primitive group with odd valency is M_{23} with stabiliser 23:11.

Conjecture.

Let G be an almost simple primitive group with stabiliser H. Then val(G, H) is odd if and only if $G = M_{23}$ and H = 23:11.

• Hamiltonian cycle? Note that $\Sigma(G)$ is G-vertex-transitive.

Lemma.

All the known examples of vertex-transitive non-Hamiltonian graphs of order at least 3 are cubic, and hence not Saxl graphs of transitive groups.

Other problems

• When is a vertex-transitive graph the Saxl graph of a transitive group?

- Most vertex-transitive graphs with prime valency are not.
- The Johnson graph J(q+1,2) for any prime-power $q \ge 5$ is isomorphic to the Saxl graph of $PGL_2(q)$ with stabiliser $D_{2(q-1)}$.

Other problems

• When is a vertex-transitive graph the Saxl graph of a transitive group?

- Most vertex-transitive graphs with prime valency are not.
- The Johnson graph J(q+1,2) for any prime-power $q \ge 5$ is isomorphic to the Saxl graph of $PGL_2(q)$ with stabiliser $D_{2(q-1)}$.
- Properties of Saxl hypergraphs (vertex set Ω and edges are bases)?

Other problems

• When is a vertex-transitive graph the Saxl graph of a transitive group?

- Most vertex-transitive graphs with prime valency are not.
 - The Johnson graph J(q+1,2) for any prime-power $q \ge 5$ is isomorphic to the Saxl graph of $\mathsf{PGL}_2(q)$ with stabiliser $D_{2(q-1)}$.
- Properties of Saxl hypergraphs (vertex set Ω and edges are bases)?
- Other invariants of graphs:
 - chromatic number;
 - total domination number;
 - ▶ independence number;
 - spectrum.

References I

- T. C. Burness.
 On base sizes for almost simple primitive groups.
 Journal of Algebra, 516:38–74, 2018.
- [2] T. C. Burness. Base sizes for primitive groups with soluble stabilisers. arXiv preprint arXiv:2006.10510, 2020.
- [3] T. C. Burness and M. Giudici. On the Saxl graph of a permutation group. Math. Proc. Cambridge Philos. Soc., 168(2):219–248, 2020.
- [4] T. C. Burness, M. W. Liebeck, and A. Shalev. Base sizes for simple groups and a conjecture of Cameron. *Proc. Lond. Math. Soc.* (3), 98(1):116–162, 2009.

References II

- [5] T. C. Burness and A. Shalev. Permutation groups with restricted stabilizers. arXiv preprint arXiv:2012.12818, 2020.
- [6] P. J. Cameron and W. M. Kantor. Random permutations: some group-theoretic aspects. Combin. Probab. Comput., 2(3):257–262, 1993.
- [7] H. Chen and S. Du. On the burness-giudici conjecture. arXiv preprint arXiv:2008.04233, 2020.
- [8] C. H. Li and H. Zhang. The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs. Proc. Lond. Math. Soc. (3), 103(3):441–472, 2011.

References III

- [9] M. W. Liebeck and A. Shalev. Simple groups, permutation groups, and probability. J. Amer. Math. Soc., 12(2):497–520, 1999.
- [10] Á. Seress. The minimal base size of primitive solvable permutation groups. Journal of the London Mathematical Society, 53(2):243–255, 1996.

Thank you for your attention!