MATH-F211: Topologie

TP 4 - Topologie induite et topologie produit

Thomas Saillez, Andriy Haydys

Exercice 1 (2.1.3). Soient $A \subseteq B \subseteq (X, \mathcal{T})$ où (X, \mathcal{T}) est un espace topologique.

- (a) Démontrer que si B est ouvert alors $A \in \mathcal{T}_B$ implique $A \in \mathcal{T}$.
- (b) Est-ce vrai si $B \notin \mathcal{T}$?

Exercice 2 (2.2.1). Soient $f_i: (X_i, \mathcal{T}_i) \to (Y_i, \sigma_i)$ pour i = 1, 2 des applications entre espaces topologiques non-vides. On définit

$$f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2, (x_1, x_2) \mapsto (f_1(x_1), f_2(x_2)).$$

Démontrer que $f_1 \times f_2$ est continue ssi f_1 et f_2 sont continues.

Exercice 3 (2.2.2). Soient X et Y des espaces topologiques. Démontrer que $t: X \times Y \to Y \times X, (x,y) \mapsto (y,x)$ est un homéomorphisme.

Exercice 4 (2.4.3). Donner un exemple de deux ouverts $U, V \subseteq \mathbb{R}$ tels que les quatres ensembles suivants sont différents :

$$U \cap \bar{V}$$
, $\bar{U} \cap V$, $\bar{U} \cap \bar{V}$, $\bar{U} \cap \bar{V}$.

Exercice 5 (2.4.4). Soient (M,d) un espace métrique, $a \in M$ et r > 0. Démontrer que $\overline{B(a,r)} \subseteq \{x \in M \mid d(x,a) \le r\}$ et donner un exemple où l'inclusion est stricte.

Exercices frigo

Exercice 6 (2.4.5). Soit $f: X \to Y$ une application entre deux espaces topologiques. Démontrer que f est continue ssi pour tout ensemble $A \subseteq X$ on a $f(\bar{A}) \subseteq \overline{f(A)}$.

Exercice 7 (2.1.9). Soient X,Y et Z des espaces topologiques et $A\subseteq X$ muni de la topologie induite. De plus, on considère $\iota:A\to X,x\mapsto x$ l'injection canonique et $f:X\to Y$ et $g:Z\to A$ des applications.

- 1. Démontrer que ι est continue.
- 2. Démontrer que si f est continue alors $f \circ \iota : A \to Y$ est continue.
- 3. Démontrer que g est continue ssi $\iota \circ g: Z \to X$ est continue.