

PARKER CALZONI Radial Piston Motor Type MRD, MRDE, MRV, MRVE

DENISON CALZONI

TABLE OF CONTENTS - MOTOR TYPE MRD - MRDE - MRV - MRVE

CONTENTS	PAG.
TABLE OF CONTENTS	2
GENERAL CHARACTERISTICS	3
FUNCTIONAL DESCRIPTION	4-6
TECHNICALDATA	7
FLUID SELECTION	8
FLUSHING PROCEDURE	9
PILOTING PROCEDURE	10
OPERATING DIAGRAM MOTOR TYPE MRD 300	11
OPERATING DIAGRAM MOTOR TYPE MRDE 330	12
OPERATING DIAGRAM MOTOR TYPE MRD 450	13
OPERATING DIAGRAM MOTOR TYPE MRV 450	14
OPERATING DIAGRAM MOTOR TYPE MRDE 500	15
OPERATING DIAGRAM MOTOR TYPE MRD 700 MRV 700	16
OPERATING DIAGRAM MOTOR TYPE MRDE 800 MRVE 800	17
OPERATING DIAGRAM MOTOR TYPE MRD 1100 MRV 1100	18
OPERATING DIAGRAM MOTOR TYPE 1400 MRVE 1400	19
OPERATING DIAGRAM MOTOR TYPE MRD 1800 MRV 1800	20
OPERATING DIAGRAM MOTOR TYPE MRDE 2100 MRVE 2100	21
OPERATING DIAGRAM MOTOR TYPE MRD 2800 MRV 2800	22
OPERATING DIAGRAM MOTOR TYPE MRDE 3100 MRVE 3100	23
OPERATING DIAGRAM MOTOR TYPE MRD 4500 MRV 4500	24
OPERATING DIAGRAM MOTOR TYPE MRDE 5400 MRVE 5400	25
OPERATING DIAGRAM MOTOR TYPE MRD 7000 MRV 7000	26
OPERATING DIAGRAM MOTOR TYPE MRDE 8200 MRVE 8200	27
BEARINGLIFE	28
MOTOR DIMENSIONS MRV 450	29
MOTOR DIMENSIONS MRD, MRDE, MRV, MRVE	30-31
SHAFTEND DIMENSIONS	32-33
COMPONENTS FOR SPEED CONTROL	34-35
ELECTRONIC DISPLACEMENT REGULATOR "RCE"	36-38
ELECTRONIC DISPLACEMENT TRANSDUCER	39
ELECTRONIC PRESSURE CONTROL "RPC"	40-41
PIPE CONNECTION FLANGES	42
COUPLINGS-KEYADAPTERS	43
HOLDING BRAKE-UNIT DIMENSIONS-TECHNICAL DATA	44-45
INSTALLATION NOTES	46
ORDERING CODE	47
SALES AND SERVICE LOCATIONS WORLDWIDE	48

GENERAL CHARACTERISTICS

CONSTRUCTION Radial piston motor with dual displacement "MRD - MRDE" and variable

displacement "MRV - MRVE"

TYPE MRD; MRDE; MRV; MRVE

MOUNTING Front flange mounting

CONNECTION Connection flange (See page 42)

MOUNTING POSITION Any (please note the installation notes on page 46)

BEARING LIFE See page 28

DIRECTION OF ROTATIONClockwise, anti-clockwise - reversible

FLUID HLP mineral oils to DIN 51 524 part 2; Fluid type HFB, HFC and Bio-fluids on enquiry.

FPM seals are required with phosphorous acid-Ester (HFD)

FLUID TEMPERATURE RANGE From -30° to $+80^{\circ}$ °C

VISCOSITY RANGE ¹⁾ From 18 to 1000 mm²/s: Recommended operating range 30 to 50 (see fluid selection on page

8)

FLUID CLEANLINESS Maximum permissible degree of contamination of fluid NAS 1638 Class 9. We therefore

recommend a filter with a minimum retention rate of $\beta_{10} \ge 75$. To ensure a long life we recommend class 8 to NAS 1638.

This can be achieved with a filter, with a minimum retention rate of $\beta_5 \ge 100$.

1) For different valves of viscosity please contact PARKER Calzoni

MRD-MRDE FUNCTIONAL DESCRIPTION

The outstanding performance of the motor is the result of an original and patented design. The principle is to transmit force to the driving shaft (2 and 6) by means of a pressurized column of oil (a) without any connecting rods, pistons, pads and pins.

This oil column is contained by a telescopic cylinder (1) with a mechanical connection at the lips at each end, which seal against the spherical surfaces (3) of the cylinder-head (4) and the spherical surface of the rotating shaft (2). These lips retain their circular cross section when stressed by the pressure so there is no alteration in the sealing geometry. The careful selection of materials and optimized design has minimized both friction and leakage. Another advantage of this design stems from the elimination of any connecting rods, the cylinder can only expand and retract linearly so there are no transverse components of the thrust. This means no oval wear on the moving parts and no side forces on the cylinder joints.

Dual displacement is accomplished by having the eccentric shaft cam free to move radially changing its eccentricity. In this way the displacement can be choosen amongst many different values.

The radial motion is controlled by means of hydraulic cylinders (5) located in the drive shaft (6). The feeding of the displacement cylinders is accomplished by means of the rotating intake (7). The displacement can be changed even while rotating under full load.

Timing is accomplished by means of a rotary valve (8) driven by the rotary valve driving shaft (9) that it is connected to the rotating eccentric shaft. The rotary valve rotates between the rotating intake (7) and the reaction ring (10) which are fixed to the rotary valve housing. This timing system is also of a patented design being pressure balanced and self-compensating for thermal expansion.

The advantages of this type of timing system, combined with a revolutionary propulsion system, produces a motor with extremely high values of mechanical and volumetric efficiency. The torque output is smooth even at very low speed under high pressure, and the motor offers high performance starting under load.

TIMING SYSTEM

EFFICIENCY

MRV-MRVE FUNCTIONAL DESCRIPTION

The outstanding performance of the motor is the result of an original and patented design. The principle is to transmit force to the driving shaft (2 and 6) by means of a pressurized column of oil (a) without any connecting rods, pistons, pads and pins.

This oil column is contained by a telescopic cylinder (1) with a mechanical connection at the lips at each end, which seal against the spherical surfaces (3) of the cylinder-head (4) and the spherical surface of the rotating shaft (2). These lips retain their circular cross section when stressed by the pressure so there is no alteration in the sealing geometry. The careful selection of materials and optimized design has minimized both friction and leakage. Another advantage of this design stems from the elimination of any connecting rods, the cylinder can only expand and retract linearly so there are no transverse components of the thrust. This means no oval wear on the moving parts and no side forces on the cylinder joints.

Dual displacement is accomplished by having the eccentric shaft cam free to move radially changing its eccentricity. In this way the displacement can be choosen amongst many different values.

The radial motion is controlled by means of hydraulic cylinders (5) and valve (11) located in the drive shaft (6), this valve allows the step by step movement of the cylinder inside the main shaft, so it is possible to change the displacement . The feeding of the displacement cylinders is accomplished by means of the rotating intake (7). The displacement can be changed even while rotating under full load.

Timing is accomplished by means of a rotary valve (8) driven by the rotary valve driving shaft (9) that it is connected to the rotating eccentric shaft. The rotary valve rotates between the rotating intake (7) and the reaction ring (10) which are fixed to the rotary valve housing. This timing system is also of a patented design being pressure balanced and self-compensating for thermal expansion.

The advantages of this type of timing system, combined with a revolutionary propulsion system, produces a motor with extremely high values of mechanical and volumetric efficiency. The torque output is smooth even at very low speed under high pressure, and the motor offers high performance starting under load.

TIMING SYSTEM

EFFICIENCY

MRV 450 FUNCTIONAL DESCRIPTION

The estreme versatility of this motor is because of two simple but ingenious designs combined in one machine. The rotation of the shaft is by the same original and patended mechanism as the MR motor but, in addition, the MRV has an arrangement of internal cylinders to actually change the motor displacement, even while turning under full load. The principle of the rotation mechanism is to transmit the effort from the stator to the eccentric part of the shaft by means of a pressurized column of oil.

This oil column is contained by a telescopic cylinder with a mechanical connection only at the lips at each end which seal against the spherical surfaces of the stator and the rotor. These lips retain their circular cross section when stressed by the pressure so there is no alteration in the sealing geometry. The particular selection of materials and optimization of design has minimized both the friction and the leakage. Another advantage of this design stems from the elimination of any connecting rods, the cylinder can only expand and retract linearly so there are no transverse components of the thrust.

This means no oval wear on the moving parts and no side forces on the cylinder joints. A consequence of this novel design is a significant reduction in weight and overall size compared with other motors of the same basic capacity.

In the MRV motor the eccentric part of the shaft is free to move radially. The radial motion is controlled by two lateral hydraulic cylinders which are an integral part of the shaft. As the eccentricity changes so does the stroke of the telescopic cylinders and hence the displacement.

The variation is stepless between full eccentricity (maximum displacement) and full concentricy. It is possible to insert spacers in the lateral cylinders to limit the maximum and minimum displacements and so tailor the motor to the exact requirements of any application. The facility of variable displacement can be used with hydraulic regulation valves to create a variety of control systems ex. constant pressure operation, constant power operation, two speed operation. When used with electronic regulators even more control system are possible ex. high efficiency speed control, high efficiency ring main systems, high efficiency torque control etc.

In common with the MR range, this motor has a patented distributor valve being pressure balanced and self compensating for thermal expansion. The advantages of this type of valve coupled with a revolutionary cylinder arrangement produce a motor with extremely high values of mechanical and volumetric efficiency. The torque output is smooth even at very low speeds and the motor gives a high performance starting under load.

TECHNICAL DATA - MOTOR TYPE MRD - MRDE - MRV - MRVE

M	Size lotor rsion		place- nent	Moment inertia of rotating	Theore- tical specific	Min. start. torque		Maxin	num Pr	essur	e	Speed	range	Maxii out pov	put	Weight									
				parts	torquea	Theore-		input				flus	hing	flust	ning										
						tical torque	cont.	int.	peak	A+B *	Drain	without	with	without	with										
			V	J		%	р	р	р	р	р	n	n	Р	Р	m									
		C	cm ³	kg cm²	Nm/bar		bar	bar	bar	bar	bar	giri/min	giri/min	kW	kW	kg									
	300	Min.	152,1	58,50	2,42	-						1-1000	1-1000	20	35	- 56									
M R	300	Max.	304,1	65,50	4,80	90						1-750	1-750	35	53	30									
D	450	Min.	225,8	208,40	3,60	-						1-850	1-850	29	45	83									
	750	Max.	451,6	229,80	7,20	90						1-600	1-600	46	75	03									
M R	450	Min.	133,5	185,50	2,11	-						1-1000	1-1000	22	35	440									
V	450	Max.	451,6	229,80	7,20	90						1-600	1-600	46	75	110									
	700	Min.	237,6	309,67	3.80	-						1-750	1-750	26	45	400									
	700	Max.	706,9	358,40	11,30	90					5	1-500	1-500	65	97	103									
	4400	Min.	381,3	392,67	6,10	-					(15 bar	0,5-600	0,5-600	34	54										
	1100	Max.	1125,8	451,50	17,90	90	250	300	420	400	"F1"	0,5-330	0,5-330	77	119	147									
M		Min.	603,2	752,89	9,6	-					seal)	0,5-450	0,5-450	46	69										
R D	1800	Max.	1809,6	854,10	28,80	90						0,5-250	0,5-250	103	157	209									
M		Min.	930,7	2622,99	14,8	-						0,5-120	0,5-320	52	80										
R V	2800	Max.	2792,0	2975,70	44,50	90						0,5-120	0,5-215	127	194	337									
		Min.	1497,8	4420,44	23,9	-						0,5-100	0,5-280	55	85										
	4500	Max.	4502,7	5015,10	71,70	91						0,5-80	0,5-170	140	210	520									
		Min.	2322,4	10149,53	36,98	-						0,5-100	0,5-210	82	125										
	7000	Max.	6967,2	11376,60	110,94	91						0,5-80	0,5-130	170	250	812									
		Min.	166,2	58,50	2,65	-						1-1000	1-1000	21	32										
M R	330	Max.	332,4	65,50	5,30	90	_					1-750	1-750	32	49	- 56									
D E		Min.	248,9	208,40	3,96	-							1-800	1-800	26	38									
-	500	Max.	497,9	229,80	7,93	90						1-600	1-600	46	70	83									
		Min.	270,2	309,67	4,27	-						1-750	1-750	26	40										
	800	Max.	804,2	358,40	12,81	90						1-450	1-450	65	93	103									
		Min.	463,9	392,67	9,85	-														5	0,5-550	0,5-550	38	55	
	1400	Max.	1369,5	451,50	21,80	92	210	210				(15 bar	0,5-280	0,5-280	77	102	147								
M R		Min.	697,0	752,89	16,65	-			210	250	350	400	with "F1" shaft	0,5-420	0,5-420	46	72	226							
D E	2100	Max.	2091,2	854,10	33,30	91					seal)	0,5-250	0,5-250	100	148	226									
М	_	Min.	1034,6	2622,99	24,71	-						0,5-120	0,5-300	55	85										
R V	3100	Max.	3103,7	2975,70	49,40	91						0,5-120	0,5-215	125	190	341									
E		Min.	1800,4	4420,44	43,00	-						0,5-100	0,5-250	65	100										
	5400	Max.	5401,2	5015,10	86,01	92						0,5-80	0,5-160	140	210	524									
	0000	Min.	2742,1	10149,53	43,63	-						0,5-100	0,5-200	80	134										
	8200	Max.	8226,4	11376,60	130,90	91						0,5-90	0,5-120	170	250	822									

^(*) Please consult PARKER Calzoni

EXAMPLE: At a certain ambient temperature, the operating temperature in the circuit is 50°C. In the optimum operating viscosity range ($\nu_{\rm rec}$; shaded section), this corresponds to viscosity grades VG 46 or VG 68; VG 68 should be selected.

IMPORTANT: The drain oil temperature is influenced by pressure and speed and is usually higher than the circuit temperature or the tank temperature. At no point in the system, however, may the temperature be higher than 80°C.

If the optimum conditions cannot be met due to the extreme operating parameters or high ambient temperature, we always recommend flushing the motor case in order to operate within the viscosity limits.

Should it be absolutely necessary to use a viscosity beyond the recommended range, you should first contact PARKER Calzoni for confirmation.

GENERAL NOTES

OPERATING VISCOSITY RANGE

LIMITS OF VISCOSITY RANGE

CHOOSING THE TYPE OF FLUID ACCORDING TO THE OPERATING TEMPERATURE

FILTRATION

CASE DRAIN PRESSURE

"FPM"SEALS

More detailed information regarding the choice of the fluid can be requested to PARKER Calzoni. When operating with HF pressure fluids or bio-degradable pressure fluids possible limitations of the technical data must be taken into consideration, please see information sheet TCS 85, or consult PARKER Calzoni.

The viscosity, quality and cleanliness of operating fluids are decisive factors in determining the reliability, performance and life-time of an hydraulic component. The maximum life-time and performance are achieved within the recommended viscosity range. For applications that go beyond this range, we recommend to contact .

 $v_{\text{rec.}}$ = recommended operating viscosity 30...50 mm²/s

This viscosity refers to the temperature of the fluid entering the motor, and at the same time to the temperature inside the motor housing (case temperature). We recommend to select the viscosity of the fluid based on the maximum operating temperature, to remain within the recommended viscosity range. To reach the value of maximum continuous power the operating viscosity should be within the recommended viscosity range of 30 - 50 cSt.

For limit conditions the following is valid:

 $v_{\text{min.abs.}} = 10 \text{ mm}^2/\text{s}$ in emergency, short term

 $v_{\rm min}$ = 18 mm²/s for continuous operation at reduced performances

 $v_{\text{max.}} = 1000 \text{ mm}^2/\text{s short term upon cold start}$

The operating temperature of the motor is defined as the greater temperature between that of the incoming fluid and that of the fluid inside the motor housing (case temperature). We recommend that you choose the viscosity of the fluid based on the maximum operating temperature, to remain within the recommended viscosity range (see diagram). We recommend that the higher viscosity grade must be selected in each case.

The motor life also depends on the fluid filtration. At least it must correspond to one of the following cleanliness. class 9 according to NAS 1638

class 6 according to SAE, ASTM, AIA class 18/15 according to ISO/DIS 4406

In order to assure a longer life a cleanliness class 8 to NAS 1638 is recommended, achieved with a filter of β_5 =100. In case the above mentioned classes can not be achieved, please consult us.

The lower the speed and the case drain pressure, the longer the life of the shaft seal. The maximum permissible housing pressure is

$$p_{\text{max}} = 5 \text{ bar}$$

If the case drain pressure is higher than 5 bar it is possible to use a special 15 bar shaft seal (see page 47, Seals, Code"F1").

In case of operating conditions with high oil temperature or high ambient temperature, we recommend to use "FPM" seals (see page 47, Seals, Code "V1"). These "FPM" seals should be used with HFD fluids or when expressly required.

FLUSHING CIRCUIT (MONO-DIRECTIONAL ROTATION)

FLUSHING CIRCUIT (BI-DIRECTIONAL ROTATION)

FLUSHING

are inside the "Continuous operating area with flushing" (see Operating Diagram from page 11 to page 27), in order to assure the minimum oil viscosity inside the motor case of 30 mm²/s (see page 8 - Fluid Selection). The flushing can be necessary also when the operating performances are outside the "Continuous operating area with flushing", but the system is not able to assure the minimum viscosity conditions requested by the motor as specified at page 8.

The motor case must be flushed when the continuous operating performances of the motor

NOTE1:

The oil temperature inside the motor case is obtainable by adding 3°C to the motor surface temperature (t_{λ} , see figures).

NOTE2:

With the standard shaft seal the maximum drain case pressure is 5 bar. For the selection of the restrictor, please consult us.

FLOW

TYPE	MOTOR VERSION	FLUSHING FLOW
MRD - MRDE	300, 330	Q = 6 l/min
MRD - MRDE MRV	450, 500	Q = 8 l/min
MRD - MRDE MRV - MRVE	700, 800, 1100, 1400	Q = 10 l/min
MRD - MRDE MRV - MRVE	1800, 2100	Q = 15 l/min
MRD - MRDE MRV - MRVE	2800, 3100, 4500, 5400, 7000,8200	Q = 20 l/min

INTERNAL PILOTING

In order to change the motor displacement, see operating diagram for requested minimun pressure.

Internal piloting Two displacement valve feeded by motor pressure

Internal piloting Solenoid operated displacement control valve feeded by motor pressure

EXTERNAL PILOTING

External piloting pressure requested is 160 bars.

External piloting Two displacement valve feeded by motor pressure

External piloting Solenoid operated displacement control valve feeded by motor pressure

(average values) measured at $V=36~\mathrm{mm^2/s};~t=45^\circ~\mathrm{C};~p_{\mathrm{outlet}}=0~\mathrm{bar}$ 2 Intermittent operating area 1 Output power 3 Continuous operating area with flushing 4 Continuous operating area 5 Inlet pressure ηt Total efficiency ην Volumeter efficiency **MRD 450** 2200 1 set to 300 bar 2000 2 452 cm³ 1800 1600 1400 Torque [Nm] 1200 1000 150 bar 800 100 bar 600 400 200 150 l/min 90 l/min 210 l/min 10 l/min 30 l/min 60 l/min 120 l/min 180 l/min 240 l/min 100 200 300 400 500 600 Speed [rpm] 1100 73 KW **MRD 450** 1 1000 set to 900 2 226 cm³ 800 700 3 200 ba Torque [Nm] 600 500 150 bar 400 100 bar 300 200 -829 100 80 L/min 20 L/min 50 L/min 110 L/min 130 L/min 160 L/min 180 L/min 100 200 300 400 500 600 700 800 850 Speed [rpm] Min.pilot pressure for displacement changing in autopiloting (pilot pressure derived from pressure line) Min. required pressure difference Δp with idling speed (shaft unloaded) 25 30 20 Idling pressure [bar] 28 15 26 10 24 Min. pilot pressure [bar] 22 100 200 300 400 500 600 700 800 Speed [rpm] 20 Min. required boost Pressure with pump operation 30 18 25 16 Boost Pressure [bar 20 15 14 10 12 100 200 300 400 500 600 700 800 Speed [rpm] 100 150 200 250 300 350 400 450 Speed [rpm] Valid for back pressure up to 50 bar, drain pressure up to 5 bar. For other working conditions please consult PARKER Calzonii

OPERATING DIAGRAM

OPERATING DIAGRAM (average values) measured at $V=36~\mathrm{mm^2/s};~t=45^\circ~\mathrm{C};~\rho_\mathrm{outlet}=0~\mathrm{bar}$ 2 Intermittent operating area 1 Output power 3 Continuous operating area with flushing 4 Continuous operating area 5 Inlet pressure ηt Total efficiency ην Volumeter efficiency MRDE 1400 MRVE 1400 5500 1 5000 set to 2 4500 1370 cm³ 4000 3 3500 Torque [Nm] 3000 -98% 150 bar 2500 2000 740 100 bar 1500 -ή v=99% 1000 50 bar 500 15 l/min 50 l/min 150 l/min 100 l/min 200 l/min 250 l/min 300 l/min 350 l/min 120 160 200 240 280 40 80 Speed [rpm] **MRDE 1400 MRVE 1400** 1600 set to 2 464 cm³ 1400 1200 Torque [Nm] 1000 150 bar 800 • 100 bar 600 5 400 200 100 l/min 70 I 170 l/r 40 I 130 l/ı 240 l 100 200 300 400 500 550 Speed [rpm] Min.pilot pressure for displacement changing in autopiloting (pilot pressure derived from pressure line) Min. required pressure difference Δp with idling speed (shaft unloaded) 60 30 25 [bar] 20 Idling pressure 50 15 10 40

Valid for back pressure up to 50 bar, drain pressure up to 5 bar. For other working conditions please consult PARKER Calzoni

500 550

100

200

300

Speed [rpm]

400

(average values) measured at $V=36~\mathrm{mm^2/s};~t=45^\circ~\mathrm{C};~\rho_\mathrm{outlet}=0~\mathrm{bar}$

1 Output power 2 Intermittent operating area 3 Continuous operating area with flushing 5 Inlet pressure 4 Continuous operating area ηt Total efficiency ην Volumeter efficiency **MRDE 3100 MRVE 3100** set to 3104 cm³ Torque [Nm] n v= 99, 5% 240 l/min 320 l/min Speed [rpm] **MRDE 3100 MRVE 3100** set to 1035 cm³ Torque [Nm] min 80 l/min 0 Speed [rpm] Min.pilot pressure for displacement changing in autopiloting (pilot pressure derived from pressure line) Min. required pressure difference Δp with idling speed (shaft unloaded) Idling pressure [bar] (cm³|rev.) Min. pilot pressure [bar] Speed [rpm] Min. required boost Pressure with pump operation Boost Pressure [bar 240 260 Speed [rpm] Speed [rpm] Valid for back pressure up to 50 bar, drain pressure up to 5 bar. For other working conditions please consult PARKER Calzoni

OPERATING DIAGRAM

(average values) measured at $V=36~\mathrm{mm^2/s};~t=45^\circ~\mathrm{C};~\rho_\mathrm{outlet}=0~\mathrm{bar}$

3 Continuous operating area with flushing 1 Output power 2 Intermittent operating area 4 Continuous operating area 5 Inlet pressure ηt Total efficiency ην Volumeter efficiency MRD 4500 **MRV 4500** 300 bar set to 4502 cm³ 250 bar Torque [Nm] Speed [rpm] **MRD 4500 MRV 4500** set to 1498 cm³ Torque [Nm] 100 bar 150 l/ Speed [rpm] Min.pilot pressure for displacement changing in autopiloting (pilot pressure derived from pressure line) Min. required pressure difference Δp with idling speed (shaft unloaded) Idling pressure [bar] 37,8 (cm Min. pilot pressure [bar] Speed [rpm] Min. required boost Pressure with pump operation Boost Pressure [bar 1497,8 (cm³ lrev Speed [rpm] Speed [rpm] Valid for back pressure up to 50 bar, drain pressure up to 5 bar. For other working conditions please consult PARKER Calzoni

OPERATING DIAGRAM

(average values) measured at $V=36~\mathrm{mm^2/s};~t=45^\circ~\mathrm{C};~\rho_\mathrm{outlet}=0~\mathrm{bar}$

1 Output power 2 Intermittent operating area 3 Continuous operating area with flushing 4 Continuous operating area 5 Inlet pressure ηt Total efficiency ην Volumeter efficiency MRD 7000 1 33000 **MRV 7000** 300 bar 30000 set to 2 27000 6967 cm³ 250 ba 24000 3 21000 18000 15000 98% 12000 5 100 ba 6000 50 bar 600 l/min 700 l/m 35 I/min 100 I/min 200 l/min 300 l/min 400 l/min 500 l/min 30 60 80 90 40 70 130 100 110 120 Speed [rpm] **MRD 7000** 49 150 **MRV 7000** 10000 set to 2 2322 cm³ 8000 3 Torque [Nm] 6000 4000 5 2000 70 I/min 130 l/min 190 l/min 0 0 50 100 200 210 Speed [rpm] Min.pilot pressure for displacement changing in autopiloting (pilot pressure derived from pressure line) Min. required pressure difference Δp with idling speed (shaft unloaded) 36 25 Perdite di carico in bar 20 33 15 22.4 (cm 10 30 Min. pilot pressure [bar] 27 80 120 160 Speed [rpm] 24 Min. required boost Pressure with pump operation 30 21 Pressione di alim. in bar 25 20 18 15 10 15 200 80 120 160 15 30 60 75 90 45 Speed [rpm] Speed [rpm] Valid for back pressure up to 50 bar, drain pressure up to 5 bar. For other working conditions please consult PARKER Calzoni

OPERATING DIAGRAM

OPERATING DIAGRAM

(average values) measured at $V=36~\mathrm{mm^2/s};~t=45^\circ~\mathrm{C};~\rho_\mathrm{outlet}=0~\mathrm{bar}$

- 1 Output power
- 2 Intermittent operating area
- 3 Continuous operating area with flushing

4 Continuous operating area

MRVE 8200

set to

2742 cm³

- 5 Inlet pressure
- ηt Total efficiency

ην Volumeter efficiency

25 20

Valid for back pressure up to 50 bar, drain pressure up to 5 bar. For other working conditions please consult PARKER Calzoni

BEARING LIFE

C p = Load coefficent

K = Sevice life coefficent for standard bearing

p = operating pressure in bar

 $L_{_{10h}}$ is the theoretically service life value normally reached or exceeded by the 90% of the bearings. 50 % of the bearings reach the value $L_{_{50h}}$ = 5 times $L_{_{10h.}}$

MOTOR TYPE	К	MOTOR TYPE	К	MOTOR TYPE	К
MRD 300	1120	MRDE 1400	840	MRV 4500	880
MRDE 330	1000	MRVE 1400	840	MRDE 5400	730
MRD 450	1340	MRD 1800	920	MRVE 5400	730
MRV 450	1340	MRV 1800	920	MRD 7000	880
MRDE 500	1215	MRDE 2100	800	MRV 7000	880
MRD 700	1080	MRVE 2100	800	MRDE 8200	680
MRV 700	1080	MRD 2800	1020	MRVE 8200	680
MRDE 800	950	MRV 2800	1020		
MRVE 800	950	MRDE 3100	920		
MRD 1100	1020	MRVE 3100	920		
MRV 1100	1020	MRD 4500	880		

MOTOR DIMENSIONS MRV 450 - MOTOR TYPE MRD - MRDE - MRV - MRVE

L20	117
L19	43
L18	76
111	36,5
L16	39,5
L14 L15 L16	152 14 39,5
L14	152
L13	11
L12	130 84
L11 L12	130
L10	70,4 40 174,5
67	40
87	70,4
17	16,5
87 L7 97	14,5
L5	110
L4 L5	109 187 110 14,5
រ	109
7	255
2	408
MOTOR TYPE	MRV 450

>-	18°
∞.	36°
ಕ	.06
Ø	G 1/4
ø 5	194 25
Ø D10	194
8	13,5
60 80	M10 18 G 3/8
Ε	18
04	M10
8 9	156
6	
Ø D4 * *	150
8 8	215
8	190
ø 5	368
8	119
B 3	120
B 2	60
20	142
MOTOR	MRV 450 142

On request the port flange can be rotated by 36° က

Case drain port BSP threads to ISO 228/1

8

4

MOTOR DIMENSIONS - MOTOR TYPE MRD - MRDE - MRV - MRVE

										L9 - SAE	SAE										
MOTOR	7	2	ឌ	2	2	Pe Pe	7.7	8	2	*LOW	*HIGH PRESSURE	L10	7	L12	L13	L14	L15	L16	α	β	٨
MRD 300 MRDE 330	363	282	244	173	81	15	16	54	34	1		153,5	119	72	7,5	20	65	65	.06	36°	°0
MRD 450 MRDE 500	426	329	285	202	26	15	18	70,4	40			174,5	130	84	9,5	62	7.0	78	.06	36°	°0
MRD 700 MRDE 800 MRV 700 MRVE 800	450	349	305	222	101	15	20	70,4	40	1		192	143	84	80	62	02	78	°06	36°	.0
MRD 1100 MRDE 1400 MRV 1100 MRVE 1400	518	401	353	235	117	20	22	82	50	1	1	223	165	105	o	88	75	88	104°	36°	14°
MRD 1800 MRDE 2100 MRV 1800 MRVE 2100	566	434	386	268	132	21	24	82	50	1	1	264	197	105	7	88	75	88	°06	36°	14°
MRD 2800 MRDE 3100 MRV 2800 MRVE 3100	629	526	452	317	153	24	26	135	62	69,85	79,4	303	221	123	15	108	84	108	.06	36°	18°
MRD 4500 MRDE 5400 MRV 4500 MRVE 5400	759,5	549,5	478,5	340,5	210	34	28	135	89	77,77	96,82	359,5	255	123	19	108	84	108	108°	36°	18°
MRD 7000 MRDE 8200 MRV 7000 MRVE 8200	856	929	555	417	230	37	30	135	89	77,77	96,82	407,3	310	123	21	108	84	108	108°	36°	18°
* FOR PRESSURE VALUES PLEASE REFER TO PAG.42 "SAE CONNECTION FLANGES" "SAE PSI" VALUES.	E VALUES	S PLEASE	REFER TO) PAG.42	SAE CON	NECTION	FLANGES	" "SAE PS	31" VALUE		ALSO AVILABLE UNC THREAD, PLEASE CONSULT PARKER Calzoni	UNC THE	READ, PLE	ASE CON	ISULT PAF	RKER Calz	ioni				

MOTOR	2	6	B2 - SAE	SAE	6	B3 - SAE					Ø	Ø			i	D7-T1 - SAE	- SAE	2	8	Ø	Ø	Ø D11 - SAE	Ø
TYPE	5	2	*LOW *HIGH PRESSURE PRESSURE	* HIGH PRESSURE	3	* LOW * HIGH PRESSURE		<u> </u>		 D2	D3 D	ŧ	D2 I	90	ב ב	* LOW RESSURE	* LOW * HIGH PRESSURE PRESSURE	ž	3	D10	110	*LOW * HIGH PRESSURE	
MRD 300 MRDE 330	120	50	1		100		,-	100	328	232	256	175	90	129 N	M8-15	1		G 3/8	17	162	20	;	G 1/4
MRD 450 MRDE 500	142	09	1		120	1	,-	119	368	266	296	190	96	156 M	M10-18	1		G 3/8	13	194	25	:	G 1/4
MRD 700 MRDE 800 MRV 700 MRVE 800	142	09	1		120	I	`	133 4	405	290	320	. 520	102 1	156 M	M10-18	!		G 3/8	13	207	25	I	G 1/4
MRD 1100 MRDE 1400 MRV 1100 MRVE 1400	162	73	1	1	136	1	-	148 4	470 3	330 3	367	250	120 1	172 M	M12-21	1	1	G 1/2	15	228	31	1	G 1/4
MRD 1800 MRDE 2100 MRV 1800 MRVE 2100	162	73	1	ŀ	136	1	-	168	558	380 4	423	. 590	148 1	172 M	M12-21	1	1	G 1/2	17	266	31	1	G 1/4
MRD 2800 MRDE 3100 MRV 2800 MRVE 3100	233	86	86	101	180	35,7 36	36,5	190 6	642 4	440 4	494	335	140 2	215 M	14-28	M12-30	M14-28 M12-30 M16-35	G 1/2	19	314	37	37 37	G 1/4
MRD 4500 MRDE 5400 MRV 4500 MRVE 5400	233	116	116	116	200	42,88 44	44,45	240 7	3 992	540 6	265	400 D4 ***	- 2	215 M	M16-28 N	M12-30	M20-34	G 1/2	23	380	38	50 50	G 1/4
MRD 7000 MRDE 8200 MRV 7000 MRVE 8200	233	116	116	116	200	42,88 44	44,45	264 8	864 (9 009	658,6	450 D4 ***	190 2	215 M	M16-28 N	M12-30 M20-34	M20-34	G 1/2	25	450	38	50 50	G 1/4
* FOR PRESSURE VALUES PLEASE REFER TO PAG.42 "SAE CONNECTION F	R VALL	JES PLE	EASE REFE	TO PAG.	42 "SA	E CONNECTIO	N FLAN	3ES" "8	SAE PSI	LANGES" "SAE PSI" VALUES.		LSO AV	ILABLE	UNC T	IREAD, F	PLEASE C	Ñ ALSO AVILABLE UNC THREAD, PLEASE CONSULT PARKER Calzoni	PARKER	Calzon	_			

Version				Σ						20						2		
TYPE	LS	L21	L22	012	110	ØD13	LS	121	122	012	T10	ØD13	L5	121	L22	D12	T10	ØD13
MRD 300 MRDE 330	81	09	46	M 12	25	B8x42x48	81	09	45	M 2 2	25	12/24-21	8	09	46	M12	25	W48x2x22-8e
MRD 450 MRDE 500	26	74	56,5	M12	25	B8x46x54	97	74	61	M 2	25	8/16-17	26	74	09	M12	25	W55x3x17-8e
MRV 450 (see page 29)	110	74	56,5	M14	22	B8x52x60	1	1	1	1	1	-	110	74	56,5	M14	22	W55x3x17-8e
MRD 700 MRDE 800 MRV 700 MRVE 800	101	78	62	M12	25	B8x52x60	101	78	62	M12	25	8/16-17	101	78	62	M12	25	W60x3x18-8e
MRD 1100 MRDE 1400 MRV 1100 MRVE 1400	117	88	69	M12	25	B8x62x72	117	88	29	M12	25	6/12-14	117	88	72	M12	25	W70x3x22-8e
MRD 1800 MRDE 2100 MRV 1800 MRVE 2100	132	100	62	M12	25	B10x72x82	132	100	92	M12	25	6/12-20	132	100	80	M12	25	W80x3x25-8e
MRD 2800 MRDE 3100 MRV 2800 MRVE 3100	153	120	66	M12	25	B10x82x92	153	120	92	M12	25	6/12-20	153	120	100	M12	25	W90x4x21-8e
MRD 4500 MRDE 5400 MRV 4500 MRVE 5400	210	173	144	M12	25	B10x102x112	210	173	142,5	M12	25	6/12-20	210	173	144	M12	25	W110x4x26-8e
MRD 7000 MRDE 8200 MRV 7000 MRVE 8200	230	188	150	M12	25	B10x112x125	230	188	153	M12	25	6/12-26	230	188	153	M12	25	W120x4x28-8e
NOTE: the three	aded ho	oles (D) t from t	12/T10) the one:	for the s listed	shaft v here ak	NOTE: the threaded holes (D12/T10) for the shaft versions "N1", "B1" and "D1" must be considered as service holes. In case the holes dimensions required by the application are different from the ones listed here above, plese contact PARKER Calzoni.	1" and act PAF	"D1" mi KER C	ust be c >alzoni.	conside	red as	service holes. Ir	r case t	he hole	s dimer	nsions r	equirec	l by the

LS L21 LS L21 LS LS 27 5 28 5 33 5 38 8 5 5 47 8 50 14 68 5 7 8 60 14 68 62 14 68							Σ		
27 5 28 5 33 5 33 5 38 8 47 8 50 14 68 57	5013 L5	121	L26	D12	T10	ØD14	Key L × B	Transmitted torque (Nm)	
28 5 38 28 38 28 38 44 47 8 57 8 62 44 68 62 44 68 62 62 62 63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	N40x2x18-9H 81	09	53,5	M12	25	50 k6	56 × 14	268	
33 5 38 28 5 44 38 8 50 47 8 57 50 14 68	N47x2x22-9H 97	74	29	Σ 21 22	25	55 k6	70 × 16	1413	
28 5 44 38 8 50 47 8 57 50 14 68	N47x2x22-9H 110	74	29	Σ 4	25	55 k6	70 × 16	1413	
38 8 50 47 8 57 48 8 62 50 14 68	N55x3x17-9H 101	1 78	49	Σ 7	25	60 k6	70 × 18	2030	
47 8 57 48 8 62 50 14 68	к3х20-9H 117	88 2	76,5	Σ 72	25	70 k6	80 × 20	2690	NOTE For higher values of the torque to be transmitted please consult
48 8 62 50 14 68	«3х24-9H 132	2 100	85	Σ 2	25	80 k6	90 x 22	4020	PARKER Calzoni
50 14 68	(3x27-9H 153	3 120	96	M12	25	90 k6	110 × 25	6207	
MRVE 5400	х3х32-9Н 210	0 173	116	M12	25	110 k6	160 × 28	10757	
MRD 7000 MRDE 8200 50 14 76 N110x3x3 MRV 7000 MRVE 8200 AMEDIA AMEDIA	N110x3x35-9H 230	0 188	138	Δ	25	124 b8	N°2 180 × 32	28270	

MECHANICAL TACHOMETER DRIVE

TACHOGENERATOR DRIVE

ENCODER DRIVE

INCREMENTAL ENCODER DIMENSIONS

INCREMENTAL ENCODER CONNECTION DIAGRAMS

	ı	Color wires and function
1	Brown	Power Supply (8 to 24 Vdc)
2	White	Output B phase (MAX 10 mA - 24 Vcc)
3	Blue	Power Supply (0 Vdc)
4	Black	Output A phase (MAX 10 mA - 24 Vcc)

INCREMENTAL ENCODER TECHNICAL DATA

ELCIS mod. 478 **Encoder type:** Supply voltage: 8 to 24 Vcc **Current consumption:** 120 mA max **Current output:** 10 mA max

A phase- MONODIRECTIONAL Output signal:

A and B phase BIDIRECTIONAL

Response frequency: 100 KHz max

Number of pulses: 500 (others on request - max 2540)

Always compatible with maximum Slew speed:

motor speed

 $Operating \, temperature \, range: \,$ from 0 to 70 °C Storage temperature range: from -30 to +85 °C Ball bearing life: 1.5x109 rpm

100 gr Weigth:

> IP 67 (with protection and connector assembled)

Connectors:

Protection degree:

MONODIRECTIONAL

RSF3/0.5 M (Lumberg) male RKT3-06/5m (Lumberg) female

BIDIRECTIONAL

RSF4/0.5 M (Lumberg) male RKT4-07/5m (Lumberg) female

Note: Female connectors cable length equal to 5 m.

RCE

USING GENERALITIES

The electronic regulator type RCE is designed to be mounted on board of the motors type "MRV/MRVE", to control their displacement in relation to a reference value of:

- displacement
- pressure
- speed

The RCE regulator is of the bi-directional ON-OFF type, with successive integratory pulses. It is mounted directly on a 4 way, 3 position solenoid valve (CETOP size 6) which pilots the displacement variation of the motor.

The power supply is 24 V DC or 24 V AC rectified.

TECHNICAL DATA

Supply Voltage: 24 Vcc ± 10% rectified (Vmax. peak 35 V) 35 W (60 W if you use the solenoid output: Max power needed:

SOLENOID C)

0 - 10 Vcc (range 2 - 10 Vcc) Referenced voltage:

Displacement output signal: 2 - 10 Vcc 0 - 10 Vcc Pressure - speed output signal:

Regolation and speed aptitute

pulse command: 12-24 Vcc (opto-insulated input)

Galvanic insulation between power and control circuits

Reversal of input polarity protection Output power with self proofed MOSFET

IP 64 protection

Complying with standard CEE

DIMENSION and Data

1 Elettronic unit RCE/I-20 2 Middle plate

3 PARKER DENISON valve 4 Double metering valve VDD

5 House case fixing screw

RCE

DESCRIPTION

The circuits of the regulator are powered through a DC/DC converter having 15~V DC output, so to obtain a total galvanic separation from the 24~V DC power lines. The input reference signal to the regulator has been set in the range 2,10~V DC, as for the output of the regulated values (displacement, pressure, speed). Three internal led show the command condition (+ or -). The pilot oil is dosed at each pulse by a specific dual metering valve type "VDD", fitted beneath the solenoid valve. In relation to the parameter that it is wished to keep under control by acting on the motor displacement, the RCE/I regulator can allow 3 different regulation modes.

CONSTANT DISPLACEMENT MODE

The hydraulic motor is equipped with an inductive (TEC) displacement transducer powered by the regulator, which statically reads and saves the current displacement position at each motor revolution.

Through special built-in valves, the motor keeps the set displacement position constant. Due to an intrinsic feature of radial-piston motors, the tendency under load is to move toward maximum displacement.

Thus the function of the regulator is to restore the original setting with an external voltage reference (range 2,10~V DC from min. displ. to max displacement).

The precision of the actual displacement value is approximately + 2,3% over the rated value set.

For remote reading of the displacement a 2,10 V DC output signal is provided, almost linear in the range of the motor displacement variation.

To quickly change from one value to another of the set displacement, a special optoinsulated input circuit may be activated in transitory mode with a 24 V DC signal.

To enable the regulator only when the motor is running, it is necessary to activate a special opto-insulated input circuit with a 24 V DC signal simultaneously with the start command; an internal trimmer allows a short enabling delay to be inserted if desired.

The regulator is normally set to perform stable adjustments up to a minimum speed of 60 r.p.m.

For lower speeds, to approximately 6 r.p.m., it is necessary to use an internal multiple-turn trimmer to modify the pause length between the control pulses.

The pause length must be greater than the time required by the motor to complete one turn, this is to permit the displacement position read by the transducer at each shaft revolution to be updated in the memory.

CONSTANT WORKING PRESSURE MODE

When the motor is used in systems equipped with hydraulic accumulators and the torque required by the motor may vary in relation to the process characteristics, the displacement is controlled in relation to the working pressure set for the motor, so that the working pressure remains constant as the required torque varies.

The constant pressure regulation can be achieved for torque variations within the displacement variation ratio allowed by the motor.

The hydraulic circuit that feed the motor must include a pressure transducer that may be powered by the regulator itself with a voltage of 15 V DC and a signal output of 0.10 V DC or 4,20 mA. The hydraulic motor is equipped with built-in valves, to maintain the displacement, as well as with the displacement transducer if it is wished to read the actual displacement during torque changes (by processing the displacement signal together with the pressure and speed signals, it is possible to determine the torque and absorbed power). The pressure setting is achieved by means of an external signal in the range 0.10 V DC (2.10 V DC); the 10 V value must correspond to the full scale value (10 V or 20 mA) of the pressure transducer. The min. acceptable reference value is 2 V DC. During the startup transitory, the regulator remains disabled for an adjustable period of time (internal trimmer).

Also in this case the regulator is enable with a 24 V DC input signal.

Even with frequent start-stop cycles, the regulator can change the motor displacement to adapt it to the average pressure value saved during the running cycle.

The saved pressure signal can be read remotely, again in the range 0,10 V DC. A third 24 V DC power output is available on the regulator to simultaneously energize a 2-way solenoid valve of the type with a conical diaphragm, which intercepts the pilot oilupstream the 4-way solenoid valve

CONSTANT SPEED MODE

If multi-stage fixed displacement pumps are used to drive the motor, in certain conditions it is necessary to drain off the excess delivery in relation to the set motor speed.

In order to avoid this dissipation, it is possible to use a variable-displacement motor which would absorb the excess delivery by adjusting its displacement. The regulator in this case accents the speed signal and compares it to the reference value; when the motor speed exceeds the set value, the regulator increases the displacement until the excess delivery provided by the pump is absorbed; at the same time, the working pressure is proportionally reduced, to the advantage of the life of the components of the system (pump, motor, etc.).

This provides a simple speed regulating system without energy dissipation, since the circuit includes neither flow regulator valves nor drainage valves. The speed signal saved is also available as output signal for remote reading, again in the field of 0,10 V DC; this signal may be useful for detecting the maximum speed reached when the motor running cycle is very short (< 2sec). Here again, the regulation is enable by activating the special 24 V DC input circuit; the command may be delayed by the time the motor needs to accelerate in order to reach the rated speed. If it is wished to switch quickly the speed from one value to another, a special input may be activated with a 24 V DC signal in transitory mode. The precision attainable through this system varies: it is approximately \pm 2% on the fullscale value with the motor at maximum displacement; at minimum displacement the precision is slightly lower.

ELECTRONIC DISPLACEMENT TRANSDUCER

DIMENSIONS

MOTOR TYPE	A	В	α
MRV 450	108	135,6	12° 30'
MRV 700 MRVE 800	115,3	147,8	12°
MRV 1100 MRVE 1400	124,6 179		5°
MRV 1800 MRVE 2100	132,3	210	5°
MRV 2800 MRVE 3100	141,2	237,5	5°
MRV 4500 MRVE 5400	155,8	266	7°
MRV 7000 MRVE 8200	200	262	6° 30'

ELECTRONIC DISPLACEMENT TRANSDUCER TECHNICAL DATA

Max cont. pressure: 2,5 bar

Supply voltage: 18 - 24 Vdc - stab. ± 0,5%

Current consuption:10 mAOutput current:1-6 mAWorking temperature range:da 0 a 60°CLoad impedance: $1 \text{ K}\Omega$ Reading displacement range:1:3protection degree:IP 68Precision F.S. \pm 1%

RPC FUNCTIONAL DESCRIPTION

The RPC hydraulic regulator keeps the motor working at a constant pressure while supplying a variable torque. The pressure value can be set in the range from 50 to 250 bar

BASIC CIRCUITS

RPC

USING GENERALITIES

A variable torque and speed, constant power system can be obtained by using the MRD-MRDE motor provided with the RPC constant pressure regulator along with a fixed displacement pump.

REGULATION SCHEME

HYDRAULIC CIRCUIT

RPC = motor constant pressure regulator P = Q x p max = constant $M_1 x n_1 = M_2 x n_2 = constant$

RPC

USING GENERALITIES

By replacing the fixed displacement pump with a variable one provided with a constant regulator, it is possible to obtain an enlargement of the torque and speed regulation range to constant power.

REGULATION SCHEME

HYDRAULIC CIRCUIT

RPCp = pump constant power regulator RPCm = motor constant pressure regulator $P = M_1 \times n_1 = M_2 \times n_2 = constant$

STANDARD CONNECTION FLANGE Code "C1"

Flange is supplied complete with screws and seals.

lange is supplied complete with screws and seals.									
MRD - MRDE MRV - MRVE	D (BSP)	н	ORDERING CODE NBR	ORDERING CODE FPM					
300 - 330	3/4"	38	262 098	229 394					
450 - 500 700 - 800	1 1/4"	39	262 089	229 395					
1100 - 1400 1800 - 2100	1 1/2"	45	262 093	229 396					
2800 - 3100	1 1/2"	59	264 572	229 397					
4500 - 5400 7000 - 8200	2"	58	272 724	229 398					

BSP threads to ISO 228/1

Permitted up to 6000 PSI

SAE CONNECTION FLANGE

Code "S1"

Code "T1"

Code "G1"

Code "L1"

Flange is supplied complete with screws and seals. FPM seals enquiry.

<u> </u>												
			•					ME	ETRIC		UNC	:
MRD - MRDE MRV - MRVE	SAE PSI	••	mm	Н	н	×	Y	Z/T	ORDERING CODE NBR	z	т	ORDERING CODE NBR
300 - 330	5000	3/4"	19	38	55	22,2	47,6	M10/25	277 295	3/8"- 16	25	223 335
450 - 500 700 - 800	5000	1"	25	39	60	26,2	52,4	M10/25	277 297	3/8"- 16	25	223 336
1100 - 1400	4000	1 1/4"	31	45	75	30,2	58,7	M10/25	277 299	7/16"- 14	30	223 337
1800 - 2100	6000	1"	25	45	71	27,8	57,15	M12/22	230 166	7/16"- 14	30	342 092
0000 0400	3000	1 1/2"	37	59	86	35,7	69,8	M12/30	277 301	1/2"- 13	30	223 338
2800 - 3100	6000	1 1/2"	37	59	100	36,5	79,4	M16/30	230 168	5/8"- 11	35	349068
4500 - 5400	3000	2"	50	58	112	42,9	77,8	M12/30	277 303	1/2"- 13	30	223 339
7000 - 8200	6000	2"	50	58	116	44,45	96,82	M20/35	230 170	3/4"- 10	38	342 547

COUPLINGS

MRD - MRDE MRV - MRVE	ORDERING CODE	A	В	CH11	D	E	F	G
300 - 330	465 202	135	71	49	60	64	15	45
450 - 500	465 201	155	80	55	68	68	18,5	55,5
700 - 800	465 200	171	90	61	75	80	19	59
1100 - 1400	464 785	186	106	73	88,5	85,5	20	65,5
1800 - 2100	465199	224	118	83	98	107	22	78
2800 - 3100	465 198	265	132	93	112	127	23	97
4500 - 5400	474 692	355	150	113	126	165	30	140
7000 - 8200	422 544	390	195	126	140	185	38	147

ADAPTERS WITH KEY

- 1 For standard male splined shaft version "N1" (see page 26).
- 2 Key to DIN 6885

MRD - MRDE MRV - MRVE	ORDERING CODE	R	d	I	D _{k6}	L	b	t	KEY DIN 6885
300 - 330	271 118	A8x42x48	48,3	15	70	60	14	73,5	14x9x56
450 - 500	50 - 500 271 119		54,3	18,5	80	75	16	84	16x10x70
700 - 800	271 120	A8x52x60	60,3	19	90	80	18	94	18x11x70
1100 - 1400	271 121	A8x62x72	72,3	20	105	98	20	109,5	20x12x90
1800 - 2100	271 122	A10x72x82	82,3	22	118	118	22	123	22x14x110
2800 - 3100	271 123	A10x82x92	92,3	29	130	148	25	135	25x14x140
4500 - 5400	272 719	A10x102x112	112,3	30	160	188	28	166	28x16x180
7000 - 8200	223 476	A10x112x125	125,6	38	185	188	45	195	45x25x180

HOLDING BRAKE UNIT DIMENSIONS - MOTOR TYPE MRD - MRDE - MRV - MRVE

BRAKE TYPE	В 300	В 450	В 700	В 1100	В 1800	В 2800
MOTOR TYPE MRD - MRDE MRV - MRVE	300 - 330	450 - 500	700 - 800	1100 - 1400	1800 - 2100	2800 - 3100

BRAKE TYPE	L1	L2	L3	L4	L5	L6	L7	L10	L11	L21	L22	D1	D2	D3	D4 _{h8}	D5	D6	D7	D9	D12	D13	T10	α 1	α 2
B 300	136	-	25	15	81	42	39,5	21	86	60	46		256	232	175	-	G1/4"	G3/8'	10,5	M12		28	22°30'	22°30'
B 450	147	-	27	15	97	49,5	36	24	100	74	56,5		296	266	190	-	G1/4"	G3/8'	13,5	M12		28	22°30'	22°30'
B 700	172	-	28	15	101	55	46	25	105	78	62	see page 32	320	290	220	-	G1/4"	G3/8'	13,5	M12	see page 32 - 33	28	22°30'	22°30'
B 1100	188	20	26	24	117	71	53,5	48	120	88	72	compatible code N1 D1	360	330	250	120	G1/4"	G1/2'	15	M12	code N1 - D1 - F1	28	0°	0°
B 1800	216	-	28	21	132	63,5	58,5	34	135	100	79		423	380	290	-	G1/4"	G1/2'	17,5	M12		28	22°30'	22°30'
B 2800	263	-	30	24	153	87	67	42,5	165	120	99		494	440	335	-	G1/4"	G1/2'	19	M12		28	22°30'	22°30'

TECHNICAL DATA

(For operation outside these parameters, please consult PARKER Calzoni)

CHARACTERISTICS	CHARACTERISTICS						
CHARACTERISTICS		B 300	B 450	B 700	B 1100	B 1800	B 2800
STATIC BRAKING TORQUE	Nm	1800	2650	4000	6200	11400	17100
DYNAMIC BRAKING TORQUE	Nm	1200	1450	2200	4200	6250	12000
RELEASE PRESSURE	bar	28	27	27	27	30	30
MAX. OPERATING PRESSURE	bar	420	420	420	420	420	420
MOMENT OF INERTIA OF ROTATING PARTS	Kgm²	0,0062	0,029	0,043	0,061	0,20	0,27
WEIGHT	Kg	39	54	74	100	158	262
MOTOR TYPE MRD - MRDE -MRV - MRV	300 330	450 500	700 800	1100 1400	1800 2100	2800 3100	

CODE

1. BRAKE - **B 450** N1 N1 V1 **

BRAKE TYPE

2. BRAKE - B 450 **N1** N1 V1 **

OUTPUT SHAFT

3. BRAKE - B 450 N1 **N1** V1 ** **INPUT SHAFT**

4. BRAKE - B 450 N1 N1 V1 **

SEALS

5. BRAKE - B 450 N1 N1 V1 ** **SPECIAL** Example: BRAKE - B 450 N1 N1 V1 **

В 300	Brake for motor size "D"
B 450	Brake for motor size "E"
B 700	Brake for motor size "F"
B 1100	Brake for motor size "G"
B 1800	Brake for motor size "H"
B 2800	Brake for motor size "I"

N1	Spline ex DIN 5463 (see page30)					
D1 *	Spline DIN 5480 (see page 30)					
F1 *	Female spline DIN 5480 (see page 31)					
* please contact PARKER Calzoni						

N1	Hollow shaft for motor type N1 (see page 30)
D1	Hollow shaft for motor type D1 (see page 30)

N1	NBR: mineral oil						
V1 *	FPM seals						
U1	No shaft seal (for brake)						
* please contact PARKER Calzoni							

**	Space reserved to PARKER Calzoni
	i de la companya de

Mounting

Any mounting position

Note the position of the case drain port (see below)

Install the motor properly

Mounting surface must be flat and resistant to bending

Min. tensile strength of mounting screws to DIN 267 Part 3 class 10.9

- Note the prescribed fastening torque

Pipes, pipe connections

Use suitable screws!

Depending on type of motor use either threaded or flange connection

Choose pipes and hoses suitable for the installation

- Please note manufacturing data!

Before operation fill with hydraulic fluid

Use the prescribed filter!

NOTE: Two of the mounting screws must be precisely located/fitted if operation is started and stopped frequently or if high reversible frequencies exist.

Coupling

DRAIN AND FLUSHING LINK INSTALLATION EXAMPLES

Note: Position the case drain pipe, so that the motor cannot run empty.

of the series "MRD - MRDE - MRV - MRVE" Low pressure case drain returns to tank. (release to bleed) Bleed point Tank located in higher position Bleed point N° 2 locking screw for bleed point (on enquiry) Cooling circuit for high power Bleed screw continuous operation (on enquiry)

Installation instructions for motors

*) Special designs for applications, where the equipment needs to be filled with oil.(e.g. in a salty atmosphere)

Flushing p max= 5 bar

Seal

Motor housing feeding line

Bleed

ORDERING CODE - MOTOR TYPE MRD - MRDE - MRV - MRVE

CODE Example: MRD 700 F 240 N1 M1 F1 N1 N ** 1. MRD 700 F 240 N1 M1 F1 N1 N ** MRD standard 250 bar max. continuous **MRDE** expanded 210 bar max. continuous **SERIES** MRV standard 250 bar max. continuous **MRVE** expanded 210 bar max. continuous **MRDE**330 D 165 332,4 166,2 2. MRD 700 F 240 N1 M1 F1 N1 N ** MRD 300 D 150 code D 304,1 152,1 Cm³ MRDE 500 E 250 MRD MRV 450 E 225 450 E 133 E 451.6 225.8 497,9 248,9 451,6 133.5 Cm³ MRD MRDE MRV MRVE 700 F 240 800 F 270 700 F 240 800 F 270 F 706,9 237,6 804,2 270,2 706,9 237,6 804,2 270,2 Cm³ MRD MRDE MRV MRVE code 1400 G 470 1100 G380 1100 G 380 1400 G 470 G 1369,5 463,9 Cm³ 1125,8 381,3 1369,5 463,9 1125,8 381,3 **SIZE & DISPLACEMENT** | MRD | MRDE | MRV | MRVE | 1800 H 600 | 2100 H 700 | 1809,6 | 603,2 | 2091,2 | 697,0 | 1809,6 | 603,2 | 2091,2 | 697,0 | code Cm³ MRD 2800 I 930 MRDE MRV MRVE code 3100 I 1030 2800 I 930 3100 I 1030 2792,0 930,7 3103,7 1034,6 2792,0 930,7 3103,7 1034,6 Cm³ MRD 4500 L 1500 MRDE 5400 L 1800 MRV 4500 L 1500 MRVE 5400 L 1800 L 4502,7 | 1497,8 | 5401,2 | 1800,4 | 4502,7 | 1497,8 | 5401,2 | 1800,4 Cm³ MRD MRDE MRV MRVE 7000 M 2320 8200 M 2750 7000 M 2320 8200 M 2750 М 6967,2 2322,4 8226,4 2742,1 6967,2 2322,4 8226,4 2742,1 Cm³ 3. MRD 700 F 240 N1 M1 F1 N1 N ** **N1** spline ex DIN 5463 (see page 32) D1 spline DIN 5480 ((see page 32) female spline DIN 5480 (see page 33) F1 **SHAFT P1** shaft with key (see page 33) В1 spline B.S. 3550 (see page 32) 4. MRD 700 F 240 N1 M1 F1 N1 N ** N1 none Q1 encoder drive (see page 34) C1 mechanical tachometer drive (see page 34) **SPEED SENSOR OPTION T1** tachogenerator drive (see page 34) М1 Uni-directional incremental Elcis encoder (500 pulse/rev) (see page 34) **B1** Bi-directional 5. MRD 700 F 240 N1 M1 F1 N1 N ** N1 NBR mineral oil F1 NBR, 15 bar shaft seal **SEALS** V1 FPM seals U1 no shaft seal (for brake) 6. MRD 700 F 240 N1 M1 F1 N1 N ** **N**1 C1 standard PARKER Calzoni (see page 42) **\$1** standard SAE metric (see page 42) **T**1 standard SAE UNC (see page 42) **CONNECTION FLANGE** G1 SAE 6000 psi metric (see page 42) L1 SAE 6000 psi UNC (see page 42) **S**3 standard SAE metric motor integrated (see page 31) G3 SAE 6000 psi metric motor integrated (see page 31) 7. MRD 700 F 240 N1 M1 F1 N1 N ** N standard rotation (CW: inlet in A, CCW: inlet in B)

S

**

reversed rotation (CW: inlet in B. CCW: inlet in A)

space reserved to PARKER Calzoni

ROTATION

8. MRD 700 F 240 N1 M1 F1 N1 N **

SPECIAL

FOR INFORMATION ABOUT SALES AND SERVICE LOCATIONS PLEASE CONTACT:

Parker Calzoni S.r.l.

Via caduti di sabbiuno 15/17 40011 Anzola dell'Emilia Bologna – Italy Tel. +39.051.6501611 Fax. +39.051.736221

e-mail: infocalzoni@parker.com

or visit the websites:

www.parker.com

www.denisonhydraulics.com

YOUR LOCAL PARKER CALZONI REPRESENTATIVE

