EQUITY RISK PREMIUM FORUM, NOVEMBER 8, 2001

Implications for Asset Allocation, Portfolio Management, and Future Research II

Campbell Harvey

Duke University, Durham, North Carolina National Bureau of Economic Research, Cambridge, Massachusetts

The reported survey of chief financial officers of U.S. corporations makes a unique contribution to the measurement of the expected equity risk premium and market volatility. Beginning with the second quarter of 2000, the research team has been conducting an ongoing, multiperiod survey of CFOs about their estimates of future equity risk premiums and equity market volatility. Results of the survey indicate the following: Return forecasts are positively influenced by past returns, which constitutes a type of "expectational momentum"; expected volatility is negatively related to past returns; the respondents seem to be very confident in their forecasts; and time horizon makes a big difference, in that a positive relationship was found between risk and expected return only for longhorizon forecasts.

fter everything that has been said today, it is a challenge to make a unique contribution. We have heard how difficult it is to get a measure of expectations in terms of the equity risk premium, and what I am going to present is an approach to measuring expectations that is different from those that have been discussed.

For the past five years, John Graham and I, in conjunction with Financial Executives International, have been conducting a survey of chief financial officers of U.S. corporations about their estimates of future

equity risk premiums and volatility. Beginning in the second quarter of 2000 and, so far, extending into the third quarter of 2001, we have analyzed the more than 1,200 responses from the CFOs. Only 6 observations will appear in the graphs, but each observation is based on approximately 200 observations.

We know from other surveys that have been done that CFOs do actually think about the risk premium problem. We know that 75 percent of corporate financial executives—treasurers and CFOs—admit to using a CAPM-like or multifactor model. Therefore, we believe that the CFOs we are surveying are a reasonable sample of the population to question about the equity risk premium. I believe it is a sample group superior to that of economists surveyed—for example, by the Federal Reserve Bank of Philadelphia. The Philadelphia Fed's survey contains unreliable data (which I know from directly examining these data). I also think our survey has advantages over the survey of financial economists reported by Ivo Welch (2000) because our respondents are making real investment decisions. Finally, it is well known that the forecasts by financial analysts are biased. So, the survey we are conducting should provide some benefit in our search for ex ante risk premiums.

Survey of CFOs

Our survey has a number of components; it does not simply ask what the respondent thinks the risk premium is today. First, our survey is a multiperiod survey that shows us how the expectations of the risk premium change through time. Second, we ask about forecasts of the risk premium over different horizons. We have not talked much today about the effect of the investment horizon on the expected risk premium, but in our survey, we are asking about risk premium expectations for a 1-year horizon and a 10-year horizon. A third piece of information that we get in the survey is a measure of expected market volatility. Finally, we can recover from the responses a measure of the asymmetry or skewness in the distribution of the risk premium estimates.

 $^{^{1}}$ For a complete description of the study reported here, see Graham and Harvey (2001a).

The first result I want to show you is striking. Panel A of Figure 1 indicates that the CFOs' one-year ex ante risk premiums (framed in the survey as the excess return of stocks over U.S. T-bills) vary considerably over time. The last survey, finished on September 10, 2001, indicates the CFOs were forecasting at that time a one-year-ahead risk premium of, effectively, zero. The 10-year-horizon ex ante risk premium, given in Panel B, is interesting because it is higher than the 1-year-horizon forecast and is stable from survey to survey at about 4 percent (400 bps). Note that the September 10, 2001, forecast is 3.6 percent.

Figure 1. Survey Respondents' One-Year and Ten-Year Risk Premium Expectations

A. One-Year Premium

Expected Premium (%)

B. Ten-Year Premium

Expected Premium (%)

One of the first aspects we investigate is whether the CFOs' expectations about future returns are influenced by past returns. That is, if the market has performed poorly in the immediate past, does this performance lead to lower expected returns? Figure 2 is a simple plot of the expected one-year equity risk premium against the previous quarter's return. (As we go through the analysis, please keep in mind that one can really be fooled by having so few observations. Indeed, this problem is exactly the reason we chose to present most of the results graphically. By eyeballing the data, you can see whether one observation is driving the relationship.) Figure 2 shows a fairly

Figure 2. One-Year Risk Premium and Recent Returns

One-Year Premium (%)

Notes: y = 0.1096x + 2.3068; $R^2 = 0.7141$.

reliable positive relationship between past return and future near-term expected risk premium. Also, we found that you can pull out any of these observations and the fit is still similar. Apparently, a one-year-horizon forecast carries what Graham and I call "expectational momentum." Therefore, negative returns influence respondents to lower their forecast of the short-term future premium.

Figure 3 plots the same variables for the 10-year horizon. There is a slight positive relationship between the past quarter's return and the *ex ante* 10-year-horizon risk premium, but it is not nearly as positive as the relationship observed for the 1-year horizon.

Figure 3. Ten-Year Risk Premium and Recent Returns

Ten-Year Premium (%)

5
4
3
2
1
-20 -15 -10 -5 0 5 10

Past-Quarter Return (%)

Notes: y = 0.0179x + 4.3469; $R^2 = 0.1529$.

We measured expected market volatility by deducing each respondent's probability distribution. We asked the respondents to provide a high and a low forecast by finishing two sentences: "During the next year, there is a 1-in-10 chance the S&P 500 return will be higher than ______ percent" and "During the next

year, there is a 1-in-10 chance the S&P 500 return will be lower than _____ percent." The expected market volatility is a combination of the average of the individual expected volatilities (which I will refer to in the figures as "average volatility") plus the dispersion of the risk premium forecasts (referred to as "disagreement").²

Figure 4 shows that (annualized) average expected volatility for the one-year horizon is weakly negatively related to the past quarter's return. In fact, if one observation were pulled out, we might find no relationship whatsoever. And Figure 5 shows the (annualized) disagreement component—basically, the standard deviation of the risk premium forecast—for the one-year horizon. The disagreement component for the one-year horizon is strongly related to the past quarter's return. A bad past return suggests a higher disagreement volatility. Even with so few data points, this relationship appears to be strong.

Figure 4. Average (One-Year-Horizon) Volatility and Recent Returns

Notes: y = -0.0452x + 6.4722; $R^2 = 0.1282$.

One thing to keep in mind is that these points on Figures 4 and 5 are annualized. When you examine the individual volatilities, you find that these respondents are extremely confident in their assessments. The result is a 6-7 percent annualized volatility in

where r is the market return, Z is the information that the CFOs are using to form their forecasts, [E(r|Z)] is the expected risk premium conditional on the CFO's information, E[var(r|Z)] is the average of each CFO's individual volatility estimate, and var[E(r|Z)] is disagreement volatility or the variance of the CFOs' forecasts of the premium. Individual volatilities were measured as

$$var = \left[\frac{x(0.90) - x(0.10)}{2.65} \right]^2,$$

where x(0.90) is the "one in ten chance that the return will be higher than" and x(0.10) is the "one in ten chance that the return will be lower than." The equation for individual volatilities is from Davidson and Cooper (1976).

Figure 5. Disagreement (One-Year Horizon) Volatility and Recent Returns

Disagreement Volatility (%)

8
7
6
5
4
3
2
-20 -15 -10 -5 0 5 10

Past-Quarter Return (%)

Notes: y = -0.153x + 4.3658; $R^2 = 0.7298$.

the one-year-horizon ex ante risk premium. This volatility is much smaller than typical market estimates, such as the Chicago Board Options Exchange VIX (Volatility Index) number on the S&P 100 option, which averages around 20 percent.

We also found that our measure of asymmetry is positively related to the past quarter's return. Given that we get the tails of the distribution, we can look at the mass above and below the mean and compare them, which gives us an *ex ante* measure of skewness. If past returns are negative, we find more negative *ex ante* skewness in the data.

Instead of looking at the relationship of the forecasted risk premium to past return, Figure 6 relates the forecasted (ex ante) risk premium to expected (ex ante) volatility. Many papers in academic finance have examined the relationship between expected risk and expected reward. Intuitively, one would expect the

Figure 6. Expected Average Volatility and Expected Risk Premium: One-Year Horizon

Notes: y = -0.5178x + 5.2945; $R^2 = 0.2538$.

² Market volatility was measured as var[r] = E[var(r|Z)] + var[E(r|Z)],

relationship to be positive, but the literature is actually split. Indeed, many papers have documented a negative relationship, which is basically what we see for the one-year-horizon predictions. In Figure 6, the ex ante premium and the ex ante average volatility appear to be weakly negatively related. Figure 7 plots the one-year-horizon expected risk premium against disagreement about the expected premium. The result is a strongly negative relationship: The higher the disagreement, the lower the expected premium over one year. Again, almost any observation could be pulled out without changing the degree of fit.

Figure 7. Disagreement Volatility and Expected Risk Premium: One-Year Horizon

Notes: y = -0.6977x + 5.3410; $R^2 = 0.9283$.

Using the same variables as in Figure 7 and keeping the scale the same, Figure 8 shows the data for the 10-year horizon. The fit is again strikingly good, but the relationship is positive. Notice that the disagreement is much smaller for the 10-year horizon than for the 1-year horizon. This positive relationship between the *ex ante* premium and *ex ante* volatility is suggested by basic asset-pricing theory.

The latest survey documented in Figures 2-8 is June 1, 2001, plus data returned to us by September 10, 2001. We just happened to fax our most recent quarterly survey to the survey participants at 8:00 a.m. on the morning of September 10. I did not include observations from the surveys returned on September 11 because the survey might have been completed on either September 10 or 11, and classification of the responses as pre- or post-September 11 was not possible. The response data we received on September 12 or later we maintained and analyzed separately. Table 1 provides a comparison of pre- and post-September 11 data for the 1- and 10-year horizons. Although the size of the sample is small (33 observations), one can see the impact of September

Figure 8. Disagreement Volatility and Expected Risk Premium: Ten-Year Horizon

Notes: y = 0.9949x + 1.4616; $R^2 = 0.6679$.

11. The 1-year-horizon mean forecasted premium decreases after September 11, but volatility—both disagreement and average—increases. For the 10-year horizon, the mean forecasted premium and disagreement volatility increase. I'll be the first to admit that these results are not statistically significant, but the data tell an interesting story. After September 11, perceived risk increases—which is no surprise. In the short term, participants believe that market returns will be lower. In the long term, however, premiums increase to compensate for this additional risk.

Table 1. Impact of September 11, 2001: Equity Risk Premium and Volatility

Measure	Before	After
Observations	127	33
1-year premium		
Mean premium	0.05 %	-0.70 %
Average volatility	6.79	9.76
Disagreement volatility	6.61	7.86
10-year premium		
Mean premium	3.63%	4.82 %
Disagreement volatility	2.36	3.03

Implications of Results

So, what have we learned from this exercise? First, expectations are affected, at least in the short term, by what has happened in the recent past—an expectational momentum effect. Second, these new expectational data appear to validate the so-called leverage effect—that negative returns increase expected volatility. Third, the individual volatilities (at 6–7 percent) seem very low, given what we would have expected. And fourth, there is apparently a

positive relationship between risk and expected return (or the risk premium) only at longer horizons. So, the horizon is critical.

How should we interpret these results, what are the outstanding issues, and where do we go from here? The CFOs in the survey are probably not using their one-year expected risk premiums for one-year project evaluations. What CFOs think is going to happen in the market is different from what they use as the hurdle rate for an investment. I do think that the 10-year-horizon risk premium estimates we are getting from them are close to what they are using. An interesting paper being circulating by Ravi Jagannathan and Iwan Meier (2001) makes some of these same arguments—that higher hurdle rates are probably being used for a number of reasons: the scarcity of management time, the desire to wait for the best projects, and financial flexibility. Corporate managers want to wait for the best project, and with limited management time, a hurdle rate that is higher than what would be implied by a simple asset-pricing model allows that time.

Another angle is that the premium should be high in times of recession. Indeed, a lot of research documents apparently countercyclical behavior in the premium. Such behavior implies that today's one-year-horizon investment should have a high hurdle rate.

Further Research

We hope our research sheds some light on the measure of expectations. I believe in asset-pricing models based on fundamentals, but it is also enlightening to observe a direct measure of expectations. Our data may not be the true expectations, but they supply additional information about the *ex ante* risk premium in terms of investment horizon, expected volatility, and asymmetry.

Our next step is to conduct interviews in the first week of December 2001 with a number of the CFOs participating in the multiperiod survey. We have already carried out a few preliminary interviews, and we find it extraordinary how much thought CFOs have given to these issues. The main question we want to ask in December is the reason (or reasons) for the difference between their risk premium forecasts for a one-year horizon and the actual internal hurdle rates they use to evaluate one-year-horizon projects. How do CFOs use the *ex ante* risk premium in terms of making real allocation decisions? I will keep you updated on the progress of our research project.