Objective

The goal is to design a robot that is capable of autonomously playing a one-on-one game of capture the flag. The robot must navigate to the opponent's zone, find the appropriately coloured flag, then return to the starting corner.

Green Team

- Receive game parameters
- 2. Localize to (11, 1)
- 3. Navigate to point A and relocalize
- 4. Mount, cross, and dismount zipline
- Relocalize to point B
- 6. Navigate to red search zone and find flag
- 7. Return to corner 1 via the bridge

- 2. Localize to (1, 11)

Hardware Design

Colour Sensor

- line detecton: 2 groundfacing sensors
- flag colour detection: 1 rotating sensor

Zipline Stability

The robot is balanced such that it hangs vertically when traversing the zipline.

EV3 Brick

- houses the processor, memory, and storage
- hub to connect sensors and motors

Large Motor

- driving the robot: 2 wheels on the ground
- zipline crossing: one pulley wheel

Sensor Motor

 rotates the ultrasonic sensor and one colour sensor to face flags

Ultrasonic Sensor

 detects flags and obstacles

Requirements of Play

- localization clock: 30 seconds
- game clock: 5 minutes
- no contact with ground during zipline crossing
- beep three times upon finding the opponent's flag

cross the zipline and bridge in the required order

after capture, return to the starting corner

Red Team

- Receive game parameters
- 3. Navigate to green search zone via bridge, find flag
- 4. Navigate to point A and relocalize
- 5. Mount, cross, and dismount zipline
- 6. Relocalize to point B
- 7. Return to corner 3

Testing

Sensor Range of Motion

The forward-facing sensors have

a 60° range of motion, used to

detect obstacles and flags.

Week 1 - 2

- sensor/motor characterization and selection
- ensure hardware stability on the ground
- determine centre of gravity on the zip line

Week 3 - 4

- evaluate performance during long periods of operation
- ensure that battery depletion is not a limiting factor
- separately confirm performance and reliability of individual software components

find and adjust for robot navigation and localization accuracy

Week 5 - 6

- full-game testing:
 - identify the weakest components of the run
 - develop methods to improve or circumvent weaknesses
- time limit testing
- extreme case testing:
- encountering opponents, unexpected starting conditions

Software Design

Localization runs in between each of the other components of the state machine. It is the most important process that the robot performs.

Team Management

Project Manager Josh Inscoe Alex Hale **Documentation Manager** Frederic Cyr **Hardware Team Leader** Xu Hai **Testing Team Leader** Xianyi Zhan **Testing Engineer** Justin Tremblay **Software Team Leader**

Expenditure per Area

Tools

