

Міністерство освіти і науки України

Харківський національний університет імені В.Н. Каразіна

Лабораторна робота #2

Інтерполяція функцій сплайнами: кубічні інтерполяційні сплайни

Виконав:

Захаров Дмитро Олегович

Група МП-31

Зміст

1	Постановка задачі						
2	Опис методу						
	2.1	Кубічний інтерполяційний сплайн	3				
	2.2	Теорема про знаходження кубічного інтерполяційного сплайну	3				
	2.3	Метод прогонки	3				
3	Текст програми						
	3.1	Генерація вузлів	5				
		3.1.1 Лінійно розбитий проміжок	6				
		3.1.2 Проміжок розбитий по гармонічному закону	6				
		3.1.3 Перевірка генерації	7				
	3.2	Метод прогонки	8				
	3.3	Кубічний сплайн	9				
	3.4	Програма для оцінки	11				
4	Рез	Результати					
	4.1	Лінійно розбитий проміжок	15				
	4.2	Проміжок розбитий по гармонічному закону	16				
5	Вис	сновки	17				

1 Постановка задачі

Побудувати інтерполяційні кубічні сплайни $S_n(x)$ для функції $f:[\alpha,\beta]\to\mathbb{R},$ заданої в узлах:

1.
$$x_k = \alpha + k \cdot h, \ h = \frac{\beta - \alpha}{n}, \ k \in \{0, \dots, n\}$$

2.
$$\hat{x}_k = \frac{1}{2} \left(\beta + \alpha - (\beta - \alpha) \cos \frac{2k+1}{2(n+1)} \pi \right), \ k \in \{0, \dots, n\}$$

значеннями $\{f_i\}_{i=0}^n$.

На друк вивести результати у вигляді таблиць:

$$x_i^*$$
 $f(x_i^*)$ $S_n(x_i^*)$ $|f(x_i^*) - S_n(x_i^*)|$

де
$$x_i^* = x_i + \alpha h, i \in \{0, \dots, n-1\}, \alpha \in (0, 1).$$

Варіант 5. $\alpha = 0, \beta = 1,$

$$f(x) = x^3 + \cos x + e^{\frac{x}{10}} \sin x$$

2 Опис методу

2.1 Кубічний інтерполяційний сплайн

Kyбічним інтерполяційним сплайном <math>S(x) для функції $f \in \mathcal{C}[\alpha, \beta]$ для вузлів $\{x_i\}_{i=0}^n \subset [\alpha, \beta]$ називається функція, що має наступні властивості:

1. S(x) є кубічним многочленом на відрізку між суміжними вузлами. Формально:

$$S(x) = a_0^{[i]} x^3 + a_1^{[i]} x^2 + a_2^{[i]} x + a_3^{[i]}, \ x \in [x_{i-1}, x], \ i \in \{1, \dots, n\}$$

- 2. $S \in \mathcal{C}^2[\alpha, \beta]$
- 3. $S(x_i) = f(x_i) \, \forall i \in \{0, \dots, n\}$
- 4. $S''(\alpha) = S''(\beta) = 0$ (кубічний сплайн дефекту 1)

2.2 Теорема про знаходження кубічного інтерполяційного сплайну

Теорема. Умови, що зазначені вище, однозначно визначають кубічний інтерполяційний сплайн S(x), дефекту 1, що має вигляд:

$$S(x) = \frac{m_{i-1}(x_i - x)^3}{6h_i} + \frac{m_i(x - x_{i-1})^3}{6h_i} + \left(f(x_{i-1}) - \frac{h_i^2 m_{i-1}}{6}\right) \frac{x_i - x}{h_i} + \left(f(x_i) - \frac{h_i^2 m_i}{6}\right) \frac{x - x_{i-1}}{h_i}$$

для $x \in [x_{i-1}, x], i \in \{1, \dots, n\}$ де числа m_i є розв'язком системи рівнянь:

$$\begin{cases}
 m_0 = 0 \\
 \frac{h_i m_{i-1}}{6} + \frac{h_i + h_{i+1}}{3} m_i + \frac{h_{i+1} m_{i+1}}{6} = -\frac{f(x_i) - f(x_{i-1})}{h_i} + \frac{f(x_{i+1}) - f(x_i)}{h_{i+1}}, \ i \in \{1, \dots, n-1\} \\
 m_n = 0
\end{cases}$$

де ми позначили $h_i := x_i - x_{i-1}, i \in \{1, \dots, n\}.$

2.3 Метод прогонки

Нехай маємо лінійне рівняння виду $\mathbf{A}\mathbf{x}=\mathbf{b}$ де матриця $\mathbf{A}\in\mathbb{R}^{n\times n}$ має вигляд:

$$\mathbf{A} = \begin{bmatrix} d_1 & u_1 & 0 & 0 & \dots & 0 \\ \ell_2 & d_2 & u_2 & 0 & \dots & 0 \\ 0 & \ell_3 & d_3 & u_3 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \dots & \vdots \\ 0 & 0 & 0 & \dots & \ell_n & d_n \end{bmatrix}$$

Існує швидкий спосіб знаходження розв'язку $\mathbf{x} = [x_1, \dots, x_n]^\top$, який називають методом прогонки. Для цього спочатку знаходять наступні значення (прямий хід):

$$\alpha_i = -\frac{u_i}{\ell_i \alpha_{i-1} + d_i}, \ \beta_i = \frac{b_i - \ell_i \beta_{i-1}}{\ell_i \alpha_{i-1} + d_i}, \ i \in \{1, \dots, n\}$$

де для зручності ми поклали $\ell_1 = u_n = 0$. Далі застосовуємо зворотний хід:

$$x_n = \beta_n,$$

$$x_{i-1} = \alpha_{i-1}x_i + \beta_{i-1}, \ i \in \{n, n-1, \dots, 2\}$$

для знаходження x_i .

Знаходження кубічного сплайну

Поєднуючи ідеї розділів 2.2 та 2.3, можемо знайти коефіцієнти m_i , що потрібні для побудови S(x). З розділу 2.2 перепишемо рівняння для знаходження m_i наступним чином:

$$\begin{bmatrix} \frac{h_1 + h_2}{3} & \frac{h_2}{6} & 0 & 0 & \dots & 0 & 0 \\ \frac{h_2}{6} & \frac{h_2 + h_3}{3} & \frac{h_3}{6} & 0 & \dots & 0 & 0 \\ 0 & \frac{h_3}{6} & \frac{h_3 + h_4}{3} & \frac{h_4}{6} & \dots & 0 & 0 \\ 0 & 0 & \frac{h_4}{6} & \frac{h_4 + h_5}{3} & \dots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \frac{h_{n-1}}{6} & \frac{h_{n-1} + h_n}{3} \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ \vdots \\ m_{n-2} \\ m_{n-1} \end{bmatrix} = \begin{bmatrix} -\frac{f(x_1) - f(x_0)}{h_1} + \frac{f(x_2) - f(x_1)}{h_2} \\ -\frac{f(x_2) - f(x_1)}{h_2} + \frac{f(x_3) - f(x_2)}{h_3} \\ \vdots \\ m_{n-2} \\ -\frac{f(x_{n-2}) - f(x_{n-3})}{h_{n-2}} + \frac{f(x_{n-1}) - f(x_{n-2})}{h_{n-1}} \\ -\frac{f(x_{n-1}) - f(x_{n-2})}{h_{n-1}} + \frac{f(x_n) - f(x_{n-1})}{h_n} \end{bmatrix}$$

Тобто в нашому випадку $\ell_i=\frac{h_i}{6}, u_i=\frac{h_{i+1}}{6}, d_i=\frac{h_i+h_{i+1}}{3}, b_i=-\frac{f(x_i)-f(x_{i-1})}{h_i}+\frac{f(x_{i+1})-f(x_i)}{h_{i+1}}.$ Далі, застосовуючи метод прогонки з розділу 2.3, легко знаходимо m_i .

3 Текст програми

Повний текст програми можна знайти за цим посиланням (\leftarrow напис клікабельний) на Github сторінку.

3.1 Генерація вузлів

Для початку, створимо файл generators.py, завантажимо залежності та створимо свій тип для інтервалу:

```
from math import cos, pi
from typing import Tuple, TypeAlias, List
from abc import ABC, abstractmethod

Interval: TypeAlias = Tuple[float, float]
```

Лістинг 1: Завантаження залежностей

Зробимо генерацію вузлів через абстрактний клас, котрий буде вміти створюватись та генерувати набір x координат вузлів через функцію generate_nodes. Також, тут же задамо функцію generate_test_points, котра буде видавати набір x координат точок, на котрих ми будемо оцінювати інтерполяцію (як сказано в умові, використовуючи формулу $x_i^* = x_i + \alpha h$ де x_i це координата вузла).

```
class IDataPointsGenerator(ABC):
      """Interface for generating data points"""
2
      def __init__(self, interval: Interval, number: int) -> None:
          Function initializing the generator
6
          ### Args:
8
          - interval ('Interval'): Interval on which the data points
     will be generated
          - number ('int'): Number of data points to generate
10
11
          assert number > 0, "Number of data points must be greater than
13
      0"
          assert interval[0] < interval[1], "Lower bound must be less
14
     than upper bound"
          self._lower, self._upper = interval
16
          self._number = number
17
18
      @abstractmethod
19
      def generate_nodes(self) -> List[float]:
20
21
          Function generating data points
22
```

```
23
          ### Returns:
24
               'List[float]': List of generated x coordinates
25
26
          pass
27
28
      @abstractmethod
2.9
      def generate_test_points(self, alpha: float = 0.1) -> List[float]:
30
31
          Function generating test points for evaluating the polynomial
          ### Args:
33
           - alpha ('float'): We will evaluate the polynomial at points
34
     x_i + alpha*h
35
          Returns:
36
           - List[float]: List of x coordinates
37
38
39
          nodes = self.generate_nodes()
40
          h = (self._upper - self._lower) / self._number
41
          return [node + alpha*h for node in nodes]
```

Лістинг 2: Задання абстрактного класу

Далі, наводимо конкретні реалізації цього інтерфейсу.

3.1.1 Лінійно розбитий проміжок

```
1 class LinearDataPointsGenerator(IDataPointsGenerator):
      """Class for generating linearly spaced data points"""
2
3
      def __init__(self, interval: Interval, number: int) -> None:
          super().__init__(interval, number)
5
6
      def generate_nodes(self) -> List[float]:
          fn = lambda i: self._lower + i * (self._upper - self._lower) /
      (self._number)
          return [fn(i) for i in range(self._number + 1)]
9
      def generate_test_points(self, alpha: float = 0.1) -> List[float]:
11
          return super().generate_test_points(alpha)
```

Лістинг 3: Генерація лінійно розкинутих точок

3.1.2 Проміжок розбитий по гармонічному закону

```
class CosineDataPointsGenerator(IDataPointsGenerator):
    """Class for generating cosine spaced data points"""

def __init__(self, interval: Interval, number: int) -> None:
```

```
super().__init__(interval, number)

def generate_nodes(self) -> List[float]:
    fn = lambda i: 0.5*(self._lower+self._upper-(self._upper-self.
    _lower)*cos((2*i+1)*pi/(2*(self._number+1))))
    return [fn(i) for i in range(self._number + 1)]

def generate_test_points(self, alpha: float = 0.1) -> List[float]:
    return super().generate_test_points(alpha)
```

Лістинг 4: Генерація точок по закону з косинусом

3.1.3 Перевірка генерації

Перевіримо роботу програми, поклавши n := 4 для нашого конкретного інтервалу [-2, 2]. В коді, це виглядає так:

```
linear_generator = LinearDataPointsGenerator((-2.0, 2.0), 4)
cosine_generator = CosineDataPointsGenerator((-2.0, 2.0), 4)

print(f"Linear generator nodes: {linear_generator.generate_nodes()}")
print(f"Cosine generator nodes: {cosine_generator.generate_nodes()}")
```

Лістинг 5: Використання генераторів

Якщо запустити, отримаємо наступний результат:

```
Linear generator nodes: [-2.0, -1.0, 0.0, 1.0, 2.0]

Cosine generator nodes: [-1.902113032590307, -1.1755705045849463, -1.2246467991473532e-16, 1.175570504584946, 1.902113032590307]
```

Лістинг 6: Результат запуску генераторів

Перевіримо аналітично. У випадку лінійного розбиття, маємо:

$$x_k = -2 + k \cdot \frac{2+2}{4} = -2 + k$$

Дійсно, якщо підставляти $k \in \{0, \dots, 4\}$, отримаємо точки $\{-2, -1, 0, 1, 2\}$.

У випадку розбиття по косинусу:

$$\hat{x}_k = \frac{1}{2} \left(2 - 2 - (2+2) \cos \frac{2k+1}{10} \pi \right) = -2 \cos \frac{(2k+1)\pi}{10}$$

Тому, наприклад, $\hat{x}_0 = -2\cos\frac{\pi}{10} \approx -1.902$. Аналогічно можна перевірити схожість для інших k. Отже, ми дійсно отримали схожі результати.

3.2 Метод прогонки

Створимо файл solver.py та реалізуємо алгоритм 2.3 у функції tridiagonal_matrix_algorithm котра приймає набір нижньодіагональних елементів $\{\ell_i\}_{i=1}^n$, діагональні елементи $\{d_i\}_{i=1}^n$ та праву частину системи $\{b_i\}_{i=1}^n$ і повертає розв'язок рівняння:

```
1 import numpy as np
2
3 def tridiagonal_matrix_algorithm(
      1: np.ndarray,
      u: np.ndarray,
5
      d: np.ndarray,
      b: np.ndarray
   -> np.ndarray:
9
      Solve a system of linear equations with the tridiagonal matrix
10
     algorithm.
11
      ### Args:
          1 (List[float]): Lower diagonal
12
          u (List[float]): Upper diagonal
13
          d (List[float]): Main diagonal
14
          b (List[float]): Right hand side
      ### Returns:
16
17
          List[float]: Solution to the system of linear equations
18
      assert len(1) == len(u) == len(d) - 1 == len(b) - 1, "Invalid"
19
     input shapes"
20
      1 = np.insert(1, 0, 0.0, axis=0) # Add zero to the beginning of
21
     the list
      u = np.append(u, 0.0) # Add zero to the end of the list
22
      n = len(d) # Number of equations
23
24
      # Forward substitution
25
      alpha, beta = np.zeros(n), np.zeros(n)
26
      for i in range(n):
2.7
          alpha[i] = -u[i] / (l[i] * alpha[i-1] + d[i])
28
          beta[i] = (b[i] - l[i] * beta[i-1]) / (l[i] * alpha[i-1] + d[i
29
     ])
30
31
      # Backward substitution
      x = np.zeros(n) # Defining a solution
32
      x[n-1] = beta[n-1]
33
      for i in range(n-2, -1, -1):
34
          x[i] = alpha[i] * x[i+1] + beta[i]
35
      return x
```

Лістинг 7: Реалізація методу прогонки

3.3 Кубічний сплайн

Створимо файл spline.py та завантажимо залежності:

```
from math import prod
import numpy as np
import solver

from abc import ABC, abstractmethod
from typing import List, Tuple, TypeAlias

Point: TypeAlias = Tuple[float, float]
```

Лістинг 8: Завантаження залежностей

Зокрема, ми завантажили solver.py з попереднього розділу.

Задамо абстракцію для інтерполяційної функції (буде корисно, якщо у майбутньому це доведеться робити знову):

```
class IInterpolate(ABC):
      """Interface any interpolating function should implement"""
2
3
      def __init__(self, points: List[Point]) -> None:
5
          Initializes the interpolating function
          ### Args:
          - points ('List[Point]'): List of points to interpolate on
9
          assert len(points) > 1, "At least two points are required"
          self._points = points
11
      @abstractmethod
13
      def evaluate(self, x: float) -> float:
14
15
          Evaluates the interpolating function at x
16
          ### Args:
17
          - x ('float'): Point to evaluate the polynomial at
18
          ### Returns:
19
               'float': Value of the polynomial at x
20
          0.00
21
          pass
22
```

Лістинг 9: Інтерфейс для інтерполяційної функції

Далі, наводимо реалізацію кубічного сплайну

```
class CubicSpline(IInterpolate):
    """Cubic spline interpolating function"""

def __init__(self, points: List[Point]) -> None:
    super().__init__(points)
```

```
6
          # Defining the number of points
          self._n = len(points)
          # Finding h_{i} = x_{i} - x_{i-1}
          self._differences = self._find_differences()
          # Finding m_{i} coefficients
11
          self._m = self._find_m_coefficients()
12
13
      def _find_differences(self) -> np.ndarray:
14
          """ Generates a list of pairwise differences between x
15
     coordinates of points
16
          Returns:
17
              np.ndarray: numpy array of length n-1 where n is the
18
     number of points
          0.00
19
          return np.array([self._points[i][0] - self._points[i-1][0] for
20
      i in range(1, self._n)])
21
      def _find_m_coefficients(self) -> np.ndarray:
22
          """ Generates a list of m coefficients needed for the
23
     evaluation
24
25
          Returns:
              np.ndarray: numpy array of length n where n is the number
26
     of points
          0.00
27
          l = np.array([self._differences[i] / 6.0 for i in range(1,
28
     self._n-2)]) # Initializing the lower diagonal
          u = np.array([self._differences[i+1] / 6.0 for i in range(self
     ._n-3)]) # Initializing the upper diagonal
          d = np.array([(self._differences[i] + self._differences[i+1])
     / 3.0 for i in range(self._n-2)]) # Initializing the main diagonal
          b = np.array([-(self._points[i][1] - self._points[i-1][1]) /
31
     self._differences[i-1]
32
               + (self._points[i+1][1] - self._points[i][1]) / self.
     _differences[i] for i in range(1, self._n-1)]) # Initializing the
     right hand side
33
34
          m = solver.tridiagonal_matrix_algorithm(1, u, d, b)
          m = np.insert(m, 0, 0.0, axis=0) # Add zero to the beginning
35
          m = np.append(m, 0.0) # Add zero to the end of the list
36
          return m
37
      def evaluate(self, x: float) -> float:
39
          # Defining a list of terms to sum
40
          for i in range(1, self._n):
41
              if self._points[i-1][0] <= x <= self._points[i][0]:</pre>
42
                   return self._m[i-1] * (self._points[i][0] - x)**3 /
43
```

Лістинг 10: Реалізація кубічного сплайну

Пару коментарів по реалізації:

- 1. Ми знаходимо елементи $\{m_i\}_{i=0}^n$ за допомогою функції _find_m_coefficients під час ініціалізації.
- 2. У функції evaluate ми проходимось по всім парам точок і коли знаходимо потрібній сегмент, підставляємо все у формулу з розділу 2.2.

3.4 Програма для оцінки

Тепер напишемо програму, котра оцінює сплайн і видає потрібні нам таблиці. Створюємо файл сli.py і знову завантажуємо залежності:

```
# Math imports
from math import exp, sin, cos
import numpy as np

# Internal imports
from generators import Interval, IDataPointsGenerator,
    LinearDataPointsGenerator, CosineDataPointsGenerator
from spline import CubicSpline

# Rich logging
from rich.console import Console
from rich.table import Table

import matplotlib.pyplot as plt
from typing import Callable
```

Лістинг 11: Завантаження залежностей

Далі створюємо функцію, що створює 2 генератора, наш сплайн і будує 2 таблиці, як і просили у умові:

```
def evaluate_accuracy(
    fn: Callable[[float], float],
```

```
3
      interval: Interval,
      segments_number: int = 20,
      alpha: float = 0.2,
5
6)
   -> None:
      """Evaluates the accuracy of the spline
7
      ### Args:
9
      - fn (Callable[[float], float]): Function to interpolate
      - interval ('Interval'): Interval on which to plot the polynomial
11
      - segments_number (int, optional): _description_. Defaults to 20.
12
      - alpha (float, optional): Alpha parameter for the test points.
13
     Defaults to 0.2.
14
      # Defining the generator and defining a set of points
16
      generators: dict[str, IDataPointsGenerator] = {
17
          "linear generation": LinearDataPointsGenerator(interval,
18
     segments_number),
19
          "cosine generation": CosineDataPointsGenerator(interval,
     segments_number)
      }
20
      # For rich logging
22
      console = Console()
23
24
      for generator_name, generator in generators.items():
25
          # Defining the points on which to interpolate the polynomial
26
          node_x = generator.generate_nodes()
27
          node_points = [(x, fn(x)) for x in node_x]
28
          # Defining the spline
30
          spline = CubicSpline(node_points)
31
32
          # Defining the test points
33
          test_x = generator.generate_test_points(alpha=alpha)
34
35
          test_points = [(x, fn(x)) for x in test_x]
36
          table = Table(title=f"Spline evaluation using {generator_name}
37
     ")
          table.add_column("x", justify="center", style="cyan", no_wrap=
38
     True)
          table.add_column("f(x)", justify="center", style="magenta")
39
          table.add_column("S(x)", justify="center", style="green")
40
          table.add\_column("|f(x)-S(x)|", justify="center", style="blue")
41
     )
42
          for test_point in test_points[:-1]:
43
              x_{label} = "{:.18f}".format(test_point[0])
44
               f_x_label = "{:.18f}".format(test_point[1])
45
              p_x_label = "{:.18f}".format(spline.evaluate(test_point
46
```

```
[0]))

difference_label = "{:.18f}".format(abs(test_point[1] - spline.evaluate(test_point[0])))

table.add_row(x_label, f_x_label, p_x_label, difference_label)

console.print(table)
```

Лістинг 12: Реалізація побудови таблиць з результатами

Також додатково побудуємо 2 графіки для порівняння: один буде зображати функцію f(x) на проміжку $[\alpha, \beta]$, а другий сплайн S(x):

```
def plot_polynomial(
      fn: Callable[[float], float],
      interval: Interval,
3
      segments_number: int = 2,
4
5 ) -> None:
      0.00
6
      Plots the polynomial and the spline on the same plot
8
      ### Args:
      - fn ('Callable[[float], float]'): Function to plot
      - interval ('Interval'): Interval on which to plot the polynomial
      - segments_number ('int'): Number of segments to use for the
     spline
13
      ### Returns:
14
      Displayed polynomial and spline
15
16
      # Defining the spline
18
      generator = LinearDataPointsGenerator(interval, segments_number)
19
      node_x = generator.generate_nodes()
20
      node_points = [(x, fn(x)) for x in node_x]
21
      spline = CubicSpline(node_points)
22
23
      x = np.arange(*interval, 0.02)
24
      plt.figure()
25
      plt.subplot(211)
26
      plt.plot(x, [fn(x) for x in x], 'b', x, [spline.evaluate(x) for x
27
     in x], 'r--')
      plt.show()
```

Лістинг 13: Побудова графіків

Нарешті, викликаємо ці дві функції послідовно, ініціалізувавши нашу функцію і проміжок:

```
if __name__ == "__main__":
```

```
# Defining the task parameters
2
      interval = (0.0, 1.0)
3
      segments_number = 20
4
5
      alpha = 0.2
      fn = lambda x: x**3 + cos(x) + exp(x / 10.0) * sin(x)
6
      # Evaluating the accuracy
      evaluate_accuracy(fn, interval, segments_number=segments_number,
     alpha=alpha)
10
      # Plotting the polynomial
11
      plot_polynomial(fn, interval, segments_number=3)
12
```

Лістинг 14: Вхід на програму

Для побудови графіків ми скористалися 3 сегментами, оскільки для більшої кількості функції повністю накладаються.

4 Результати

Для експериментів ми взяли n=20 та $\alpha=0.2$. Якщо ви хочете спробувати вибрати інші параметри, то можете запустити програму, що прикріплена у додатку :)

4.1 Лінійно розбитий проміжок

Spline evaluation using linear generation

х	f(x)	S(x)	f(x)-S(x)
0.01000000000000000000	1.009960838585749920	1.009881970621430591	0.000078867964319329
0.0600000000000000005	1.058741411967588197	1.058762538821313326	0.000021126853725129
0.1100000000000000014	1.106279626109884617	1.106273959073755364	0.000005667036129253
0.1600000000000000003	1.153211083223817379	1.153212595241071670	0.000001512017254290
0.21000000000000000020	1.200175761329135726	1.200175349388090229	0.000000411941045497
0.26000000000000000009	1.247818275597583737	1.247818378858803090	0.000000103261219353
0.30999999999999998	1.296788131212514239	1.296788096106098465	0.000000035106415774
0.35999999999999987	1.347739967170664244	1.347739968879828165	0.000000001709163922
0.4100000000000000031	1.401333790467244711	1.401333781896601627	0.000000008570643084
0.4600000000000000020	1.458235200121894115	1.458235194540623336	0.000000005581270779
0.5100000000000000009	1.519115600520601461	1.519115592021368366	0.000000008499233095
0.5600000000000000053	1.584652403567399670	1.584652402587378273	0.000000000980021397
0.60999999999999987	1.655529219159457499	1.655529189937182011	0.000000029222275488
0.6600000000000000031	1.732436033520094565	1.732436108746882031	0.000000075226787466
0.7099999999999964	1.816069374946203574	1.816069059703459221	0.000000315242744353
0.7600000000000000009	1.907132466549541494	1.907133607907962158	0.000001141358420664
0.810000000000000053	2.006335365595303788	2.006331070280590545	0.000004295314713243
0.85999999999999987	2.114395089066302358	2.114411083196936492	0.000015994130634134
0.910000000000000031	2.232035725106862323	2.231975997577113180	0.000059727529749143
0.95999999999999964	2.359988530027222975	2.360211399237170493	0.000222869209947518

Рис. 1: Результат для сплайну для лінійного розбиття

Графік, на якому ми зобразили порівняння сплайну та функції:

Рис. 2: Порівняння сплайну та функції.
 синім ми намалювали графік, а червоним пунктиром — сплайн

4.2 Проміжок розбитий по гармонічному закону

Spline evaluation using cosine generation

х	f(x)	S(x)	f(x)-S(x)
0.011398101409409937	1.011347376556598565	1.011346235556860318	0.000001140999738247
0.022536043909088192	1.022342496239935228	1.022346034185621422	0.000003537945686194
0.044563125677897879	1.043843067082767417	1.043841449715516845	0.000001617367250573
0.076987298107780655	1.074999922211988812	1.075000488684341615	0.000000566472352803
0.119084258765985107	1.114832801520816208	1.114832614257762033	0.000000187263054174
0.169913631114540276	1.162499856435996737	1.162499902173773858	0.000000045737777121
0.228339970968189032	1.217538035579843081	1.217538007669720423	0.000000027910122657
0.293058130441220921	1.280006139006429677	1.280006128629188389	0.000000010377241288
0.362622412794547988	1.350479441599602204	1.350479423222373798	0.000000018377228406
0.435478866911912676	1.429874085974469189	1.429874068268522702	0.000000017705946487
0.50999999999999898	1.519115600520601239	1.519115581353224886	0.000000019167376353
0.584521133088087175	1.618702061772642420	1.618702047698848956	0.000000014073793464
0.657377587205452141	1.728241359692897161	1.728241333574533467	0.000000026118363694
0.726941869558779041	1.846057372413028919	1.846057400995657627	0.000000028582628708
0.791660029031810986	1.968957355210169569	1.968957198381493967	0.000000156828675602
0.850086368885459631	2.092231399667561664	2.092231921316094478	0.000000521648532814
0.900915741234014855	2.209917089413021341	2.209915236162054875	0.000001853250966466
0.943012701892219196	2.315314787043107447	2.315321029724313640	0.000006242681206192
0.975436874322102243	2.401690330398300155	2.401671471244574363	0.000018859153725792
0.997463956090911763	2.463062223474222545	2.463077201666552085	0.000014978192329540

Рис. 3: Результат для сплайну для розбиття по косинусу

5 Висновки

В цій лабораторній роботі ми:

- навчилися будувати кубічний сплайн теоретично;
- навчилися писати комп'ютерну програму (на прикладі мови Python), що будує кубічний сплайн;
- оцінювати написану програму та діставати дані з експериментів.

Також, як бачимо, модуль різниці $|f(x^*) - S(x^*)|$ — дуже мала величина, що говорить про точність інтерполяції на заданому проміжку (оскільки ми брали набір точок x_i^* , що відносно близький до вузлів x_i).