Math 493 Lecture 3

Thomas Cohn

9/11/2019

Ex: Consider det: $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$ (\mathbb{R}^{\times} is the nonzero real numbers under multiplication). det(AB) = det(A) det(B), so det is a group homomorphism. $\ker(\det) = \{A \in \mathrm{GL}_n(\mathbb{R}) | \det(A) = 1\} = \mathrm{SL}_n(\mathbb{R}), \text{ so } \mathrm{SL}_n(\mathbb{R}) \text{ is a normal subgroup of } \mathrm{GL}_n(\mathbb{R}).$

Ex: Given $\sigma \in S_n$, define a linear map $A_\sigma : \mathbb{R}^n \to \mathbb{R}^n$.

$$e_i \mapsto e_{\sigma}$$

 $A_{\sigma} \in \mathrm{GL}_n(\mathbb{R})$ – we can check that $A_{\sigma}A_{\tau} = A_{\sigma\tau}$.

So we have a group homomorphism $A: S_n \to \mathrm{GL}_n(\mathbb{R})$

$$\sigma \mapsto A_{c}$$

This is clearly injective, so A is an isomorphism between S_n and its image $A(S_n) \subseteq GL_n(\mathbb{R})$.

Defn: Matrices of the form A_{σ} for some $\sigma \in S_n$ are called **permutation matrices**.

Defn: sgn : $S_n \to \{\pm 1\}$

$$\sigma \mapsto \det(A_{\sigma})$$

Ex:
$$S_2 = \{1, (1 \ 2)\}.$$

Ex:
$$S_2 = \{1, (1 \ 2)\}.$$

 $A_1 = \begin{bmatrix} 1 \ 0 \end{bmatrix} \det A_1 = 1 \quad \text{sgn}(1) = 1.$
 $A_{(1 \ 2)} = \begin{bmatrix} 0 \ 1 \end{bmatrix} \det A_{(1 \ 2)} = -1 \quad \text{sgn}((1 \ 2)) = -1.$

$$\begin{aligned} \mathbf{Ex:} \ S_3 &= \left\{1, \begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \right\}. \\ A_1 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \det A_1 = 1 \quad \mathrm{sgn}(1) = 1. \\ A_{(1 & 2)} &= \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \det A_{(1 & 2)} = -1 \quad \mathrm{sgn}(\begin{pmatrix} 1 & 2 \end{pmatrix}) = -1. \\ A_{(1 & 3)} &= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \det A_{(1 & 3)} = -1 \quad \mathrm{sgn}(\begin{pmatrix} 1 & 3 \end{pmatrix}) = -1. \\ A_{(2 & 3)} &= \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \det A_{(2 & 3)} = 1 \quad \mathrm{sgn}(\begin{pmatrix} 2 & 3 \end{pmatrix}) = -1. \\ A_{(1 & 2 & 3)} &= \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \quad \det A_{(1 & 2 & 3)} = 1 \quad \mathrm{sgn}(\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}) = 1. \\ A_{(1 & 3 & 2)} &= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad \det A_{(1 & 3 & 2)} = 1 \quad \mathrm{sgn}(\begin{pmatrix} 1 & 3 & 2 \end{pmatrix}) = 1. \end{aligned}$$

Fact: Transpositions generate S_n .

Fact: For any n and any transposition $\sigma \in S_n$, $\operatorname{sgn}(\sigma) = 1$.

So if $\sigma \in S_n$, write $\sigma = \tau_1 \cdots \tau_m$, where each τ_i is a transposition.

Then $sgn(\sigma) = sgn(\tau_1) \cdots sgn(\tau_m)$.

Defn: $A_n = \ker(\operatorname{sgn}: S_n \to \{\pm 1\})$. A_n is called the **alternating group**, and is a normal subgroup of S_n .

Ex:
$$A_2 = \{1\}.$$

 $A_3 = \{1, \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}\}.$
 $\#A_n = \frac{1}{2}n!$ for $n \ge 2$.

Defn: Let S be a set. An equivalence relation on S is a binary relation \sim s.t.

1. Reflexivity: $\forall x \in S, x \sim x$.

- 2. Symmetry: $\forall x, y \in S, x \sim y \Leftrightarrow y \sim x$.
- 3. Transitivity: $\forall x, y, z \in S, x \sim y \land y \sim z \Rightarrow x \sim z$.

Ex:

- 1. Define $x \sim y$ iff x = y.
- 2. Define $x \sim y, \forall x, y$.
- 3. Let $f: S \to T$ is a function. Define $x \sim y$ iff f(x) = f(y).
- 4. Define an equivalence relation on \mathbb{Z} by $n \sim m$ iff $z \mid n m$, i.e., $n \equiv m \pmod 2$. Note: if we define $f: \mathbb{Z} \to \{\text{even}, \text{odd}\}$, where f(n) = even if n is even and f(n) = odd if n is odd, then f induces the above equivalence relation.

Defn: Let S be a set with an equivalence relation \sim . Let $x \in S$.

The equivalence class of x is $C_x = \{y \in S | x \sim y\}$.

Ex: $S = \mathbb{Z}, n \sim m \text{ iff } n \equiv m \pmod{2}.$

$$C_1 = \{\ldots, -3, -1, 1, 3, \ldots\}$$

$$C_2 = \{\ldots, -2, 0, 2, \ldots\}$$

$$C_3 = \{\ldots, -3, -1, 1, 3, \ldots\}$$

$$C_4 = \{\ldots, -2, 0, 2, \ldots\}$$

Prop: If two equivalence classes have any common element, they're equal.

Proof: Suppose $z \in C_x \cap C_y$. Let $w \in C_x$. Then $w \sim x \sim z \sim y$. So $w \sim y$, so $w \in C_y$. Thus, $C_x \subseteq C_y$. A similar argument gives us $C_y \subseteq C_x$, so $C_x = C_y$. \square

Defn: Let S be a set. A **partition** of S is a collection \mathcal{P} of non-empty subsets of S s.t. every element of S belongs to a unique member of \mathcal{P} .

From the previous proposition, we know that a collection of equivalence classes form a partition.

We can reverse this: suppose \mathcal{P} is a partition. Define an equivalence relation on S by $x \sim y$ if x and y are in the same element of \mathcal{P} .

Defn: Let S be a set with an equivalence relation. Define \overline{S} to be the set of equivalence classes. For $x \in S$, we'll write $\overline{x} = C_x \in \overline{S}$.

 $\overline{x}=\overline{y}\Leftrightarrow x\sim y.$

So we can define a function $\pi: S \to \overline{S}$. $x \sim y$ iff $\pi(x) = \pi(y)$, so \sim is induced by π .

Ex: $S = \mathbb{Z}$, with $n \sim m$ iff $n \equiv m \pmod{2}$. Then $\overline{S} = \{\overline{0}, \overline{1}\}$.

Ex: Let G be a group, $H \subset G$ a subgroup. Define an equivalence relation on G by $g \equiv g' \pmod{H}$ if g = g'h for some $h \in H$ (so $(g')^{-1}g \in H$). Check:

- 1. Reflexivity: $q = q \cdot 1$, and $1 \in H$, So $q \equiv q \pmod{H}$.
- 2. Symmetry: if $g \equiv g' \pmod H$, then g = g'h for some $h \in H$. So $g' = gh^{-1}$. Since $h^{-1} \in H$, $g' \equiv g \pmod H$.
- 3. Transitivity: if $g \equiv g' \pmod{H}$ and $g' \equiv g'' \pmod{H}$, then g = gh' and g' = g''h', for some $h, h' \in H$. So g = (g''h')h = g''(h'h). $h'h \in H$, so $g \equiv g'' \pmod{H}$.

Ex: $G = \mathbb{Z}, H = d\mathbb{Z} \ (d > 0).$ $n, m \in \mathbb{Z}, n \equiv m \pmod{H}$, according to this definition, iff $n - m \in H \Leftrightarrow n \equiv m \pmod{d}$.

What is $\overline{g} = C_g$? Well,

$$\overline{g} = \{g' \in G | g' \equiv g \pmod{H}\}$$

$$= \{g' | \exists h \in H \text{ st } g' = gh\}$$

$$= \{gh | h \in H\}$$

$$= gH$$

Defn: gH is the **left coset** of H defined by g.

By our previous considerations the left cosets of H form a partition of G.

Defn: The **index** of H in G is the number of left cosets, denoted [G:H].

Prop: [G:H] is the number of right cosets. Proof: $\{\text{left cosets}\} \rightarrow \{\text{right cosets}\}$.

 $gH \mapsto Hg^{-1}$

Observe: For any element $g \in G$, #(gH) = #H.

Thm: $\#G = \#H \cdot [G:H].$

Cor: (Lagrange's Theorem) If #G is finite, then #H|#G.

Cor: If G is finite $g \in G$, then $\operatorname{ord}(g) | \#G$.

Suppose G is a group, N is a normal subgroup. Then for any $g \in G$, we have gN = Ng, because for $n \in N$, $gn = \underbrace{(gng^{-1})}_{GN} g \in Ng$, so $gN \subseteq Ng$. (The other direction follows similarly.)

Defn: The quotient group G/N is the set of cosets of N, where (gN)(g'N) = (gg')N.