Overview of terms in SFE

Robert Cimrman & genDocs.py

Department of Mechanics & New Technologies Research Centre University of West Bohemia Plzeň, Czech Republic

Contents

1	Introduction
3	Terms in termsMass 2.1 dw_mass 2.2 dw_mass_scalar 2.3 dw_mass_scalar_fine_coarse 2.4 dw_mass_vector Terms in termsBasic 3.1 d_surface_dot
	3.2 d_surface_integrate 3.3 d_volume 3.4 d_volume_dot 3.5 d_volume_integrate 3.6 dw_volume_integrate
4	Terms in termsLaplace 4.1 dw_laplace
5	Terms in termsNavierStokes 5.1 d_div 5.2 dq_grad 5.3 dq_lin_convect 5.4 dw_convect 5.5 dw_div 5.6 dw_div_grad 5.7 dw_div_r 5.8 dw_grad 5.9 dw_gradDt 5.10 dw_lin_convect 5.11 dw_st_grad_div 5.12 dw_st_pspg_c 5.13 dw_st_pspg_p 5.14 dw_st_supg_p 5.15 dw_st_supg_p
6	Terms in termsPoint 6.1 dw_point_lspring
7	Terms in termsVolume 7.1 dw_volume_lvf
8	Terms in termsSurface 8.1 dw_surface_ltr
9	Terms in termsLinElasticity 9.1 de_sdcc_strain

1 Introduction

Notation:

 Ω volume (sub)domain

 Γ surface (sub)domain

t time

y any function

y any vector function

 \overline{n} unit outward normal

q, s scalar test function

p, r scalar unknown or parameter function

 \bar{p} scalar parameter function

 \underline{v} vector test function

 \underline{w} , \underline{u} vector unknown or parameter function

 \underline{b} vector parameter function

 $\underline{e}(\underline{u})$ Cauchy strain tensor $(\frac{1}{2}((\nabla u) + (\nabla u)^T))$

f vector volume forces

 ρ density

 ν kinematic viscosity

c any constant

 δ_{ij} , \underline{I} Kronecker delta, identity matrix

The suffix 0 denotes a quatity related to a previous time step. General syntax of a term call:

```
<term_name>.<region>( <arg1>, <arg2>, ... )
```

In the following, <virtual> corresponds to a test function, <state> to a unknown function and <parameter> to a known function arguments.

2 Terms in termsMass

2.1 dw_mass

 ${\bf Class:}\ {\rm MassTerm}$

Description: Inertial forces term (constant density).

Definition:

$$\int_{\Omega} \rho \underline{v} \cdot \frac{\underline{u} - \underline{u}_0}{\Delta t}$$

Arguments:

material.rho ... ρ

ts.dt ... Δt

parameter $\dots \underline{u}_0$

 $Syntax: \ \ dw_mass. < region > (\ \ < ts >, \ \ < material >, \ \ < virtual >, \ \ < state >, \ \ < parameter >)$

2.2 dw mass scalar

Class: MassScalarTerm

Description: Scalar field mass matrix/rezidual.

Definition:

$$\int_{\Omega} qp$$

Syntax: dw_mass_scalar.<region>(<virtual>, <state>)

2.3 dw_mass_scalar_fine_coarse

 ${\bf Class:}\ {\bf MassScalarFineCoarseTerm}$

Description: Scalar field mass matrix/rezidual for coarse to fine grid interpolation. Field p_H

belong to the coarse grid, test field q_h to the fine grid.

Definition:

 $\int_{\Omega} q_h p_H$

Syntax: dw_mass_scalar_fine_coarse.<region>(<virtual>, <state>, <iemaps>, <pbase>)

2.4 dw_mass_vector

 ${\bf Class:}\ {\bf MassVectorTerm}$

Description: Vector field mass matrix/rezidual.

Definition:

 $\int_{\Omega} \rho \ \underline{v} \cdot \underline{u}$

Syntax: dw_mass_vector.<region>(<material>, <virtual>, <state>)

3 Terms in termsBasic

3.1 d_surface_dot

 ${\bf Class:}\ {\bf DotProductSurfaceTerm}$

Description: Surface $L^2(\Gamma)$ dot product for both scalar and vector fields.

Definition:

 $\int_{\Gamma} pr, \int_{\Gamma} \underline{u} \cdot \underline{w}$

Syntax: d_surface_dot.<region>(<parameter_1>, <parameter_2>)

3.2 d_surface_integrate

 ${f Class}$: IntegrateSurfaceTerm

Definition:

 $\int_{\Gamma} y$, for vectors: $\int_{\Gamma} \underline{y} \cdot \underline{n}$

Syntax: d_surface_integrate.<region>(<parameter>)

3.3 d_volume

Class: VolumeTerm

Description: Volume of a domain. Uses approximation of the parameter variable.

Definition:

 $\int_{\Omega} 1$

Syntax: d_volume.<region>(<parameter>)

3.4 d_volume_dot

 ${\bf Class:}\ {\bf DotProductVolumeTerm}$

Description: Volume $L^2(\Omega)$ dot product for both scalar and vector fields.

Definition:

$$\int_{\Omega} pr, \int_{\Omega} \underline{u} \cdot \underline{w}$$

Syntax: d_volume_dot.<region>(<parameter_1>, <parameter_2>)

3.5 d_volume_integrate

 ${\bf Class:}\ {\bf IntegrateVolumeTerm}$

Definition:

$$\int_{\Omega} y$$

Syntax: d_volume_integrate.<region>(<parameter>)

3.6 dw_volume_integrate

Class: IntegrateVolumeOperatorTerm

Definition:

$$\int_{\Omega} q$$

Syntax: dw_volume_integrate.<region>(<virtual>)

4 Terms in termsLaplace

4.1 dw_laplace

Class: LaplaceTerm

Description: Laplace term (constant parameter).

Definition:

$$c\int_{\Omega}\nabla s:\nabla r$$

 $Syntax: \ \, \texttt{dw_laplace.<region>(<material>, <virtual>, <state>)}$

5 Terms in termsNavierStokes

$5.1 d_{div}$

 ${\bf Class:}\ {\bf DivIntegratedTerm}$

Description: Integrated divergence term (weak form).

Definition:

$$\int_{\Omega} \bar{p} \ \nabla \cdot \underline{w}$$

Syntax: d_div.<region>(<parameter_1>, <parameter_2>)

5.2 dq_grad

Class: GradQTerm

Description: Gradient term (weak form) in quadrature points.

Definition:

 $(\nabla p)|_{qp}$

Syntax: dq_grad.<region>(<state>)

5.3 dq_lin_convect

Class: LinearConvectQTerm

Description: Linearized convective term evaluated in quadrature points.

Definition:

 $((\underline{b}\cdot\nabla)\underline{u})|_{qp}$

5.4 dw_convect

 ${\bf Class:}\ {\bf ConvectTerm}$

Description: Nonlinear convective term.

Definition:

 $\int_{\Omega}((\underline{u}\cdot\nabla)\underline{u})\cdot\underline{v}$

Syntax: dw_convect.<region>(<virtual>, <state>)

5.5 dw_div

 ${\bf Class:}\ {\rm DivTerm}$

Description: Divergence term (weak form).

Definition:

 $\int_{\Omega} q \nabla \cdot \underline{u}$

Syntax: dw_div.<region>(<virtual>, <state>)

5.6 dw_div_grad

 ${\bf Class:}\ {\rm DivGradTerm}$

Description: Diffusion term.

Definition:

 $\int_{\Omega} \nu \ \nabla \underline{v} : \nabla \underline{u}$

Syntax: dw_div_grad.<region>(<material>, <virtual>, <state>)

5.7 dw div r

Class: DivRTerm

Description: Divergence term (weak form) with a known field (to use on a right-hand side).

Definition:

 $\int_{\Omega} q \nabla \cdot \underline{w}$

Syntax: dw_div_r.<region>(<virtual>, <parameter>)

5.8 dw_grad

Class: GradTerm

Description: Gradient term (weak form).

Definition:

$$\int_{\Omega} p \, \nabla \cdot \underline{v}$$

Syntax: dw_grad.<region>(<virtual>, <state>)

5.9 dw_gradDt

 ${\bf Class:} \ {\bf GradDtTerm}$

Description: Gradient term (weak form) with time-discretized \dot{p} .

Definition:

$$\int_{\Omega} \frac{p - p_0}{\Delta t} \nabla \cdot \underline{v}$$

Arguments:

ts.dt ... Δt

parameter $\dots p_0$

 $Syntax: \ \ dw_gradDt. < region>(<ts>, <virtual>, <state>, <parameter>)$

5.10 dw_lin_convect

 ${\bf Class:}\ {\bf Linear Convect Term}$

Description: Linearized convective term.

Definition:

 $\int_{\Omega} ((\underline{b} \cdot \nabla)\underline{u}) \cdot \underline{v}$

Syntax: dw_lin_convect.<region>(<virtual>, <parameter>, <state>)

5.11 dw_st_grad_div

 ${\bf Class:} \ {\bf Grad Div Stabilization Term}$

Description: Grad-div stabilization term (γ is a global stabilization parameter).

Definition:

 $\gamma \int_{\Omega} (\nabla \cdot \underline{u}) \cdot (\nabla \cdot \underline{v})$

Syntax: dw_st_grad_div.<region>(<material>, <virtual>, <state>)

5.12 dw_st_pspg_c

Class: PSPGCStabilizationTerm

Description: PSPG stabilization term, convective part (τ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot \nabla q$$

 $Syntax: \ \ \mathsf{dw_st_pspg_c.} < \mathsf{region} > (\ \ \mathsf{material} >, \ \ \mathsf{virtual} >, \ \ \mathsf{cparameter} >, \ \ \mathsf{state} >)$

5.13 dw_st_pspg_p

Class: PSPGPStabilizationTerm

Description: PSPG stabilization term, pressure part (τ is a local stabilization parameter), cf.

Laplace term. **Definition**:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \tau_K \ \nabla p \cdot \nabla q$$

Syntax: dw_st_pspg_p.<region>(<material>, <virtual>, <state>)

5.14 dw_st_supg_c

Class: SUPGCStabilizationTerm

Description: SUPG stabilization term, convective part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_b} \int_{T_K} \delta_K \ ((\underline{b} \cdot \nabla)\underline{u}) \cdot ((\underline{b} \cdot \nabla)\underline{v})$$

Syntax: dw_st_supg_c.<region>(<material>, <virtual>, <parameter>, <state>)

5.15 dw_st_supg_p

Class: SUPGPStabilizationTerm

Description: SUPG stabilization term, pressure part (δ is a local stabilization parameter).

Definition:

$$\sum_{K \in \mathcal{T}_h} \int_{T_K} \delta_K \ \nabla p \cdot ((\underline{b} \cdot \nabla)\underline{v})$$

Syntax: dw_st_supg_p.<region>(<material>, <virtual>, <parameter>, <state>)

6 Terms in termsPoint

6.1 dw_point_lspring

Class: LinearPointSpringTerm

Description: Linear springs constraining movement of FE nodes in a reagion; use as a relaxed

Dirichlet boundary conditions.

Definition:

$$f^i = -k\underline{u}^i \quad \forall \text{ FE node } i \text{ in region}$$

 $\mathbf{Syntax:} \ \ \mathsf{dw_point_lspring.} < \mathsf{region} > (\ \ \mathsf{<material} >,\ \ \mathsf{<virtual} >,\ \ \mathsf{<state} >\)$

7 Terms in termsVolume

7.1 dw_volume_lvf

 ${\bf Class:}\ {\bf Linear Volume Force Term}$

Description: Linear volume forces (weak form).

Definition:

$$\int_{\Omega} \underline{v} \cdot f$$

Syntax: dw_volume_lvf.<region>(<material>, <virtual>)

8 Terms in termsSurface

8.1 dw_surface_ltr

Class: LinearTractionTerm

Description: Linear traction forces (weak form).

Definition:

 $\int_{\Gamma} \underline{v} \cdot \underline{\underline{\sigma}} \cdot \underline{n}, \text{ where, depending on dimension of 'material' argument,}$ $\underline{\underline{\sigma}} \cdot \underline{n} \text{ is } \bar{p}\underline{\underline{I}} \cdot \underline{n} \text{ for given scalar pressure, } \underline{f} \text{ for traction vector, and itself for a stress tensor}$

 $\mathbf{Syntax:} \ \ \mathsf{dw_surface_ltr.} < \mathsf{region} > (\ \ \mathsf{<material>},\ \ \mathsf{<virtual>}\)$

9 Terms in termsLinElasticity

9.1 de_sdcc_strain

Class: SDCCStrainTerm

Description: Cauchy strain tensor averaged in elements.

Definition:

vector of $\forall K \in \mathcal{T}_h : \int_{T_K} \underline{\underline{e}}(\underline{w})$

Syntax: de_sdcc_strain.<region>(<parameter>)

9.2 dw_sdcc

Class: SDCCTerm

Description: Homogeneous isotropic linear elasticity term.

Definition:

 $\int_{\Omega} D_{ijkl} \ e_{ij}(\underline{v}) e_{kl}(\underline{u}) \text{ with } D_{ijkl} = \mu(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) + \lambda \ \delta_{ij}\delta_{kl}$

 $\mathbf{Syntax} : \ \, \mathtt{dw_sdcc.} \\ \mathsf{region} \\ \mathsf{(} \\ \mathsf{(} \\ \mathsf{material} \\ \mathsf{)}, \\ \mathsf{(} \\ \mathsf{virtual} \\ \mathsf{)}, \\ \mathsf{(} \\ \mathsf{state} \\ \mathsf{)} \\$