Lecture 6

Things Markov

- Markov Chains
 - Gibbs Sampling
- Hidden Markov Models
 - State Estimation,
 - Prediction,
 - Smoothing,
 - Most Probable Path

Background

In dynamic systems:

State Estimation – Estimating the current state of the system given current knowledge.

Prediction – Estimating future state(s) of the system given current knowledge.

Smoothing – Estimating prior states of the system given current knowledge.

Background

Independence

$$P(A,B)=P(A)P(B)$$

Conditional Independence

$$P(A,B|C) = P(A|C)P(B|C)$$

= $P(A|B,C)=P(A|C)$

Markov Blanket

The variables given which a variable is conditionally independent of all others in the model.

Markov Chains

- Initial state
- Transition probabilities
 - Markov Condition: State at time t+1 depends only on state at time t. (Leads to higher order MCs)
 - le Current state conditionally independent of all prior states except preceeding.

	Bull	Stagnant	Bear
Bull	.9	.025	.075
Stagnant	.25	.5	.25
Bear	.15	.05	.8

Markov Chains

- Using nodes to represent variables & conditional distributions
- Conditioned upon variables indicated by edges.

1st Order Markov Chain

2nd Order Markov Chain

Markov Chain

Transition probabilities for transition matrix T. Simple state prediction (1st Order):

$$\boldsymbol{X}_{t+n} = \boldsymbol{X}_t^T \boldsymbol{T}^n$$

The eigenvector to the eigen value 1 gives the steady equilibrium distribution. (Ie 'long run' distribution of the MC).

Markov Chain Monte Carlo

- Generate a (1st order) MC that (in its equilibrium state) represents the target distribution.
- Proceed to generate samples from it by evolving the MC.
 - Note: Samples not independent.
- As the number of samples approaches infinity, the sampled distribution approaches the actual equilibrium distribution.
 - Burn period
 - *n*th sample

- State of system is hidden from us.
- Some observation related to the state is available to us.
 - Require sensor/emission probabilities, E.
 - Assume observations depend only on current state.
 (Conditionally indepent of all other states and observations.)

Prediction: Just as in Markov Chains...

$$P(S_{t+n}|S_t) = P(S_t)\mathbf{T}^n$$

Note * notation:

$$P^*(S_t|S_{t-1}) = \sum_{i=1}^m P(S_t|S_{t-1} = m) P(S_{t-1} = m)$$

We will make use of Bayes Rule:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

When Y is observed, this becomes:

$$P(X|Y = y) = \frac{P(Y = y|X)P(X)}{P(Y = y)}$$

State Estimation, t>0:

$$P(S_t|O_{1:t},S_0) = P(S_t|S_{t-1},O_t)P(S_{t-1}|O_{1:t-1},S_0)$$

Note the recursion:

$$P(S_t|O_{1:t},S_0) = P(S_t|S_{t-1},O_t)P(S_{t-1}|O_{1:t-1},S_0)$$

So we can proceed iteratively through, basising our estimation of S_t only on our estimation of S_{t-1} and observation O_t .

State Estimation

$$P(S_t|S_{t-1}, O_t) = \frac{P(O_t|S_t)P^*(S_t|S_{t-1})}{P(O_t)}$$
$$\propto P(O_t|S_t)P^*(S_t|S_{t-1})$$

Remember: The previous state estimation has <u>all</u> relevant information from the past!

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.3	.7
F	.1	.9

$$P(S_t|S_{t-1},O_t) \propto P(O_t|S_t)P^*(S_t|S_{t-1})$$

- Let our belief regarding S_0 be that it is 80% likely S_0 =T.
- Let us observe O₁=F.

$$P(S_1|S_0) = < (.8)(.9) + (.2)(.3), (.8)(.1) + (.2)(.7) > = < .78, .22 >$$
 $P(O_1 = F|S_1) = < .7, .9 >$
 $P(S_1|S_0, O_1 = F) \propto < (.78)(.7), (.22)(.9) > = < .546, .198 >$
 $P(S_1|S_0, O_1 = F) = < \frac{.546}{.546 + .198}, \frac{.198}{.546 + .198} > \approx < .734, .266 >$

S _{t-1}	S _t =T	S _t =F
Т	.6	.4
F	.5	.5

S _t	O_{t}^1
Т	$\mathcal{N}(3.5,10)$
F	$\mathcal{N}(5,5)$

S _t	0_{t}^2
Т	$\mathcal{N}(45,100)$
F	$\mathcal{N}(55,225)$

S _t	0_{t}^3
Т	$\mathcal{N}(0,.1)$
F	$\mathcal{N}(0,.5)$

$$P(S_t|S_{t-1},O_t)$$

$$\propto \rho(O_t^1|S_t)\rho(O_t^2|S_t)\rho(O_t^3|S_t)P^*(S_t|S_{t-1})$$

- Let our belief regarding S_0 be that it is 50% likely S_0 =T.
- Let us observe $O_1^1 = 6.103$, $O_1^2 = 54.7$ and $O_1^3 = .154$

$$P(S_1|S_0) = < (.5)(.6) + (.5)(.5), (.5)(.4) + (.5)(.5) > = < .55, .45 >$$

$$P(O_1^1 = 6.103 | S_1) \approx < .089, .158 >$$

$$P(O_1^2 = 54.7 | S_1) \approx < .025, .027 >$$

$$P(O_1^3 = .154 | S_1) \approx < 1.120, .551 >$$

$$P(S_1|S_0, O_1^1 = 6.103, O_1^2 = 54.7, O_1^3 = .154)$$

$$\propto < (.55)(.089)(.025)(1.120), (.45)(.158)(.027)(.551) > \approx < .00137, .00106 >$$

$$P(S_1|S_0,O_1^1=6.103,O_1^2=54.7,O_1^3=.154)\approx <\frac{.00137}{.00137+.00106},\frac{.00106}{.00137+.00106}>\approx <.564,.436>$$

Hidden Markov Models: Lab B

State Estimation

- Given an initial state, transition and sensor probabilities, we can iteratively calculate the distribution at each subsequent state.
- We can do this online.

Note that for Lab B

- Vector of 3 observations (as in last example)
- Sparse transition matrix (many impossible transitions).
- Presumably uniform initial state
- NOT real time.

Smoothing: The Forward-Backward Algorithm

$$P(S_{s \le t} | O_{0:t}, S_0) = P(S_{s \le t} | O_{0:s}, S_0) P(S_{s \le t} | O_{s+1:t})$$

The Forward Algorithm:

• We have seen how, given an initial state, transition and sensor probabilities, we can iteratively calculate $P(S_s|O_{0:s},S_0)$ for $1 \le s \le t$.

The Backward Algorithm:

Starting at t, we can iteratively calculate:

$$P(S_s|O_{s+1:t}) \propto P(O_{s+1:t}|S_s)P(S_s)$$

Since the forward algorithm gives us $P(S_s)$, we are interest in:

$$P(O_{s+1:t}|S_s) = P(O_{s+2:t}|S_{s+1})P(O_{s+1}|S_{s+1})P(S_{s+1}|S_s)$$

Notice the recursion, and we have a base case since:

$$P(O_{t+1:t}|S_t) = P(\emptyset|S_t) = 1$$

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.3	.7
F	.1	.9

$$P(S_t|S_{t-1}, O_t, O_{t+1}) \propto P(S_t|S_{t-1}, O_t)P(O_{t+1}|S_t)$$

- Let our belief regarding S_0 be that it is 80% likely $S_1=T$.
- Let us observe O₁=F, O₂=F.
- From a previous example, we have $P(S_1|S_0, O_1 = F) \approx <.734, .266 >$

$$P(O_2 = F|S_1) = P(O_2 = F|S_2)P(S_2|S_1)$$

$$P(S_2|S_1) \approx < (.734)(.9) + (.266)(.3), (.734)(.1) + (.266)(.7) > = < .74, .26 >$$

$$P(O_2 = F|S_2) = <.7,.9>$$

$$P(S_1|S_0, O_1 = F, O_2 = F) \propto <(.74)(.7),(.26)(.9)>=<.518,.234>$$

$$P(S_1|S_0,O_1=F,O_2=F) \approx <\frac{.518}{.518+.234},\frac{.234}{.518+.234}> \approx <.689,.311>$$

So O_2 gives additional reason to think S_1 is false.

Most Probable Path: Viterbi Algorithm

- Similar to Dynamic Programming for Path Finding. Differences:
 - Multiplicative instead of additive accumulation function.
 - Normalize over observations at each step.

Let $\varphi(n, v) = P(S_{0:n} = S_{0:n}^{v} | O_{1:n} = O_{1:n})$

Let $s_{0:n}^{v}$ be the most probable sequence of states for $0 \le t \le n$ where $S_n = v$.

We have:

$$S_{0:n+1}^{w} = \underset{\text{argmax}_{v,w}}{\operatorname{argmax}_{v,w}} \varphi(n,v) P(S_{n+1} = w | S_n = v) P(O_{n+1} = o_{n+1} | S_{n+1} = w) \\ \varphi(n+1,w) \propto \varphi(n,v) P(S_{n+1} = w | S_n = v) P(O_{n+1} = o_{n+1} | S_{n+1} = w)$$

And our base cases are:

- $s_{0:n}^{v} = \langle v \rangle$
- $\varphi(0,v) = P(S_{0:0} = S_{0:0}^{v} | \emptyset) = P(S_0 = v).$

We proceed iteratively:

Given our base cases, for each time, n > 0, for each state value, v, find and store $s_{0:n}^v$ and $\varphi(n, v)$.

Our most probable sequece of states is given by $s_{0:t}^{\nu}$, where:

- v maximises $\varphi(t, v)$
- t is the last time slice.

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

\mathcal{S}_0	S_1	S_2	\mathcal{S}_3	S_4
Т	T	Т	Т	Т
F	F	F	F	F
	F	F	Т	Т

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

\mathcal{S}_0	\mathcal{S}_1	\mathcal{S}_2	\mathcal{S}_3	\mathcal{S}_4
$\varphi(0,T) = P(S_0=T)=.6$	Т	Т	Т	Т
F	F	F	F	F
	F	F	Т	Т

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

S ₀ =T	S ₀ =F
.6	.4

S _{t-1}	S _t =T	S _t =F
Т	.9	.1
F	.3	.7

S _t	O _t =T	O _t =F
Т	.8	.2
F	.1	.9

