Must know

17 іюня 2014 г.

Часть I

Распределения случайных величин

1 Дискретные распределения

1.1 Биномиальное распределение

1.1.1 Определение

$$\xi \sim Bin(n,p), n \in \mathbb{N}, p \in [0;1]$$

$$\mathbb{P}\left(\xi = k\right) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

1.1.2 Математическое ожидание

Математическое ожидание посчитаем с помощью познаний в комбинаторике

$$M \xi = \sum_{k=0}^{n} k \cdot \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k} =$$

$$= \sum_{k=0}^{n} k \cdot \frac{n!}{k! \cdot (n-k)!} \cdot p^{k} \cdot (1-p)^{n-k} =$$

$$= \sum_{k=1}^{n} \frac{n \cdot (n-1)!}{(k-1)! \cdot (n-k)!} \cdot p^{k} \cdot (1-p)^{n-k} =$$

$$= \sum_{k=1}^{n} n \cdot \frac{(n-1)!}{(k-1)! \cdot [(n-1) - (k-1)]!} \cdot p^{k} \cdot (1-p)^{n-k} =$$

$$= \sum_{k=1}^{n} n \cdot \binom{n-1}{k-1} \cdot p^{k} \cdot (1-p)^{n-k} =$$

$$= n \cdot p \cdot \sum_{k=0}^{n-1} \binom{n-1}{k} \cdot p^{k-1} \cdot (1-p)^{(n-1)-(k-1)} =$$

$$= n \cdot p \cdot [p + (1-p)]^{n-1} = n \cdot p \cdot 1^{n-1} = n \cdot p$$

1.1.3 Дисперсия

Дисперсию же выведем из знания того, что такое биномиальное распределение, а также с помощью свойств дисперсии. Биномиальное распределение — серия независимых испытаний Бернулли (подкидывание асимметричной монетки).

Если случайная величина ξ имеет биномиальное распределение с параметрами n и k ($\xi \sim Bin\,(n,p)$), то $\mathbb{P}\,(\xi=k)$ — вероятность того, что в серии

из n экспериментов удачными окажутся ровно k, а сама случайная величина — сумма случайных величин $\xi_i \sim Bin(1,p)$, $i=\overline{1,n}$.

Таким образом, получаем

$$\xi = \sum_{i=1}^{n} \xi_i$$

Помним, что дисперсия суммы независимых случайных величин — сумма их дисперсий. Найдём дисперсию ξ_i :

$$D \xi_i = M \xi_i^2 - (M \xi_i)^2 = 1^2 \cdot p + 0^2 \cdot (1 - p) - [1 \cdot p + 0 \cdot (1 - p)]^2 = p - p^2 = p \cdot (1 - p)$$

Значит, теперь достаточно просто найти и дисперсию ξ

$$D \xi = D \sum_{i=1}^{n} \xi_i = \sum_{i=1}^{n} D \xi_i = n \cdot p \cdot (1-p)$$

Обозначив вероятность "неудачи" через q=1-p, получим симпатичную формулу

$$D \xi = n \cdot p \cdot q$$

1.1.4 Характеристическая функция

Характеристическую функцию считать не так сложно, как математическое ожидание и дисперсию

$$\varphi_{\xi}(t) = M e^{i \cdot t \cdot \xi} = \sum_{k=0}^{n} e^{i \cdot t \cdot k} \cdot \binom{n}{k} \cdot p^{k} \cdot (1-p)^{n-k} =$$

$$= \sum_{k=0}^{n} \binom{n}{k} \cdot (p \cdot e^{i \cdot t})^{k} \cdot (1-p)^{n-k} = (p \cdot e^{i \cdot t} + 1 - p)^{n}$$

 ${\bf C}$ заменой q=1-p характеристическая функция принимает вид

$$\varphi_{\xi}(t) = \left(p \cdot e^{i \cdot t} + q\right)^n$$

1.1.5 Итоги

$$\xi \sim Bin(n, p), n \in \mathbb{N}, p \in [0; 1]$$

$$\mathbb{P}(\xi = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

$$M \xi = n \cdot p$$

$$D \xi = n \cdot p \cdot q$$

$$\varphi_{\xi}(t) = (p \cdot e^{i \cdot t} + q)^n$$

1.2 Геометрическое распределение

1.2.1 Определение

$$\xi \sim Geom(p), p \in [0, 1]$$
$$\mathbb{P}(\xi = k) = (1 - p)^{k-1} \cdot p$$

1.2.2 Математическое ожидание

Начнём с определения

$$M \xi = \sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p$$

Дальше возьмём производную

$$\sum_{k=1}^{\infty} k \cdot (1-p)^{k-1} \cdot p = -p \cdot \frac{d}{dp} \sum_{k=1}^{\infty} (1-p)^k$$

И вспомним, чему равна сумма бесконечного степенного ряда

$$-p \cdot \frac{d}{dp} \sum_{k=1}^{\infty} (1-p)^k = -p \cdot \frac{d}{dp} \left(\frac{1-p}{1-(1-p)} \right)$$

Дальше сокращаем и берём производную

$$-p \cdot \frac{d}{dp} \left(\frac{1-p}{1-(1-p)} \right) = -p \cdot \frac{d}{dp} \left(\frac{1-p}{p} \right) =$$
$$= -p \cdot \frac{-p - (1-p)}{p^2} = -p \cdot \frac{-1}{p^2} = \frac{1}{p}$$

1.2.3 Дисперсия

Возьмём две производные от суммы

$$\frac{d^2}{dp^2} \sum_{k=1}^{\infty} (1-p)^k = \sum_{k=1}^{\infty} k \cdot (k-1) (1-p)^{k-2}$$

Разложим на две суммы

$$\sum_{k=1}^{\infty} k \cdot (k-1) (1-p)^{k-2} = \sum_{k=1}^{\infty} k^2 (1-p)^{k-2} - \sum_{k=1}^{\infty} (1-p)^{k-2}$$

Теперь можем составить уравнение

$$\sum_{k=1}^{\infty} k^2 (1-p)^{k-2} = \frac{d^2}{dp^2} \sum_{k=1}^{\infty} (1-p)^k + \sum_{k=1}^{\infty} (1-p)^{k-2}$$

Берём производную от первой суммы справа (которую считали выше), а также умножаем и делим на $\left(1-p\right)^2$ вторую

$$\sum_{k=1}^{\infty} k^2 (1-p)^{k-2} = \frac{d}{dp} \left(\frac{-1}{p^2} \right) + \frac{1}{(1-p)^2} \cdot \sum_{k=1}^{\infty} (1-p)^k$$

Берём вторую производную, а также снова вспоминаем сумму бесконечной геометрической прогрессии

$$\sum_{k=1}^{\infty} k^2 (1-p)^{k-2} = \frac{2}{p^3} + \frac{1}{(1-p)^2} \cdot \frac{1-p}{p}$$

Умножим обе части на (1-p), чтобы слева получалось $\frac{{\rm M}\,\xi^2}{p}$

$$\sum_{k=1}^{\infty} k^2 (1-p)^{k-1} = \frac{2-2 \cdot p}{p^3} + \frac{1}{p}$$

Складываем дроби с правой стороны

$$\sum_{k=1}^{\infty} k^2 (1-p)^{k-1} = \frac{2-2 \cdot p + p^2}{p^3}$$

Видим квадрат разности в сумме с единицей

$$\sum_{k=1}^{\infty} k^2 (1-p)^{k-1} = \frac{(1-p)^2 + 1}{p^3}$$

Теперь считаем дисперсию по определению

$$D \xi = M \xi^{2} - (M \xi)^{2} = p \cdot \frac{(1-p)^{2} + 1}{p^{3}} - \frac{1}{p^{2}} = \frac{(1-p)^{2} + 1 - 1}{p^{2}}$$

Заменив (1-p) на q, получаем такой ответ

$$D \xi = \frac{q}{p^2}$$

1.2.4 Характеристическая функция

Начнём с определения

$$\varphi_{\xi}(t) = M e^{i \cdot t \cdot \xi} = \sum_{k=1}^{n} e^{i \cdot t \cdot k} \cdot (1 - p)^{k-1} \cdot p$$

Умножим и поделим на (1-p), внесём экспоненты в скобки

$$\sum_{k=1}^{n} e^{i \cdot t \cdot k} \cdot (1-p)^{k-1} \cdot p = \frac{p}{1-p} \cdot \sum_{k=1}^{n} \left[e^{i \cdot t} \cdot (1-p) \right]^{k}$$

$$\frac{p}{1-p} \cdot \sum_{k=1}^{n} \left[e^{i \cdot t} (1-p) \right]^{k} = \frac{p}{1-p} \cdot \frac{e^{i \cdot t} \cdot (1-p)}{1 - e^{i \cdot t} \cdot (1-p)}$$

$$\frac{p}{1-p} \cdot \frac{e^{i \cdot t} \cdot (1-p)}{1-e^{i \cdot t} \cdot (1-p)} = \frac{e^{i \cdot t} \cdot p}{1-e^{i \cdot t} \cdot (1-p)}$$

Снова заменим q=1-p и получаем результат

$$\varphi_{\xi}(t) = \frac{e^{i \cdot t} \cdot p}{1 - e^{i \cdot t} \cdot q}$$

1.2.5 Итоги

$$\begin{split} \xi \sim Geom\left(p\right), p \in \left[0,1\right], q = 1 - p \\ \mathbb{P}\left(\xi = k\right) &= \left(1 - p\right)^{k-1} \cdot p = p \cdot q^{k-1} \\ \mathcal{M}\left(\xi = \frac{1}{p}\right) \\ \mathcal{D}\left(\xi = \frac{q}{p^2}\right) \\ \varphi_{\xi}\left(t\right) &= \frac{e^{i \cdot t} \cdot p}{1 - e^{i \cdot t} \cdot q} \end{split}$$

1.3 Пуассоновское распределение

1.3.1 Определение

$$\xi \sim Pois(\lambda), \lambda > 0$$

$$\mathbb{P}(\xi = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

1.3.2 Математическое ожидание

Тут всё элементарно: разложение экспоненты в ряд Тейлора. Также суммировать начинаем не с нуля, а с единицы, так как при k=0 всё слагаемое обращается в нуль

$$\mathbf{M}\,\xi = \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} = e^{-\lambda} \cdot \lambda \cdot \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!}$$

Далее выполняем замену r=k-1, суммирование начинается с нуля. Получаем разложение экспоненты в ряд Тейлора (Маклорена)

$$e^{-\lambda} \cdot \lambda \cdot \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = e^{-\lambda} \cdot \lambda \cdot \sum_{r=0}^{\infty} \frac{\lambda^r}{r!} = e^{-\lambda} \cdot \lambda \cdot e^{\lambda} = \lambda$$

1.3.3 Дисперсия

Начнём с расчёта второго момента

$$\mathbf{M}\,\xi^2 = \sum_{k=1}^{\infty} k^2 \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} = \sum_{k=1}^{\infty} k \cdot k \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

Разложим на две суммы, чтобы красиво сократить факториалы и проделать тот же трюк, что и выше

$$\sum_{k=1}^{\infty} k \cdot k \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} = \sum_{k=2}^{\infty} k \cdot (k-1) \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} + \sum_{k=1}^{\infty} k \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

Последняя сумма является математическим ожиданием, равным λ , а другую продолжим преобразовывать дальше

$$\sum_{k=1}^{\infty} k \cdot (k-1) \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} + \sum_{k=2}^{\infty} k \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!} = \lambda^2 \cdot e^{-\lambda} \cdot \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda$$

Пользуясь теми же принципами (сделав сумму по r=k-2 от 0 до ∞), снова получаем e^{λ} , которая сокращается. Теперь у нас есть второй момент

$$\lambda^2 \cdot e^{-\lambda} \cdot \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda = \lambda^2 + \lambda = \lambda \cdot (\lambda + 1)$$

Теперь можно посчитать дисперсию

$$D \xi = M \xi^2 - (M \xi)^2 = \lambda^2 + \lambda - \lambda^2 = \lambda$$

1.3.4 Характеристическая функция

Тут всё тоже предельно просто

$$\varphi_{\xi}(t) = M e^{i \cdot t \cdot \xi} = \sum_{k=0}^{\infty} e^{i \cdot t \cdot k} \cdot e^{-\lambda} \cdot \frac{\lambda^{k}}{k!} = e^{-\lambda} \cdot \sum_{k=0}^{\infty} \frac{\left(\lambda \cdot e^{i \cdot t}\right)^{k}}{k!}$$

Опять ряд Маклорена для экспоненты и всё выглядит почти красиво (за исключением экспоненты в экспоненте)

$$e^{-\lambda} \cdot \sum_{k=0}^{\infty} \frac{\left(\lambda \cdot e^{i \cdot t}\right)^k}{k!} = e^{-\lambda} \cdot \exp\left(\lambda \cdot e^{i \cdot t}\right) = \exp\left\{\lambda \cdot \left(e^{i \cdot t} - 1\right)\right\}$$

1.3.5 Итоги

$$\xi \sim Pois(\lambda), \lambda > 0$$

$$\mathbb{P}(\xi = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

$$M \xi = D \xi = \lambda$$

$$\varphi_{\xi}(t) = \exp\{\lambda \cdot (e^{i \cdot t} - 1)\}$$

2 Непрерывные распределения

2.1 Равномерное распределение

2.1.1 Определение

$$\xi \sim Un\left(\left[a,b\right]\right), a < b \in \mathbb{R}$$
$$p\left(x\right) = \frac{\mathbb{1}\left(x \in \left[a,b\right]\right)}{b-a} = \frac{1}{b-a} \cdot \mathbb{1}\left(x \in \left[a,b\right]\right)$$

2.1.2 Математическое ожидание

$$\begin{split} \mathbf{M} \, \xi &= \int\limits_{-\infty}^{+\infty} x \cdot \frac{1}{b-a} \cdot \mathbbm{1}(x \in [a,b]) \, \, dx = \frac{1}{b-a} \cdot \int\limits_{a}^{b} x \, dx = \\ &= \frac{1}{b-a} \cdot \frac{x^2}{2} \Big|_{a}^{b} = \frac{1}{b-a} \cdot \frac{b^2 - a^2}{2} = \\ &= \frac{1}{b-a} \cdot \frac{(b-a) \cdot (b+a)}{2} = \frac{a+b}{2} \end{split}$$

2.1.3 Дисперсия

Снова начнём с поиска второго момента

$$M \xi^{2} = \int_{a}^{b} \frac{x^{2}}{b-a} dx = \frac{b^{3} - a^{3}}{3 \cdot (b-a)} = \frac{(b-a) \cdot (a^{2} + a \cdot b + b^{2})}{3 \cdot (b-a)} = \frac{a^{2} + a \cdot b + b^{2}}{3} = \frac{(a+b)^{2} - a \cdot b}{3}$$

А теперь считаем дисперсию

$$\begin{split} \operatorname{D}\xi &= \operatorname{M}\xi^2 - \left(\operatorname{M}\xi\right)^2 = \frac{\left(a+b\right)^2 - a \cdot b}{3} - \frac{\left(a+b\right)^2}{4} = \\ &= \frac{4 \cdot \left(a+b\right)^2 - 4 \cdot a \cdot b}{12} - \frac{3 \cdot \left(a+b\right)^2}{12} = \frac{\left(a+b\right)^2 - 4 \cdot a \cdot b}{12} = \\ &= \frac{a^2 + 2 \cdot a \cdot b + b^2 - 4 \cdot a \cdot b}{12} = \frac{a^2 - 2 \cdot a \cdot b + b^2}{12} = \frac{\left(a-b\right)^2}{12} \end{split}$$

2.1.4 Характеристическая функция

Берём интеграл от экспоненты

$$\varphi_{\xi}(t) = \mathbf{M} e^{i \cdot t \cdot \xi} = \int_{-\infty}^{+\infty} e^{i \cdot t \cdot x} \cdot \frac{1}{b-a} \cdot \mathbb{1}(x \in [a, b]) \ dx =$$

$$= \frac{1}{b-a} \cdot \int_{a}^{b} e^{i \cdot t \cdot x} \ dx = \frac{1}{b-a} \cdot \frac{1}{i \cdot t} \cdot \int_{a}^{b} e^{i \cdot t \cdot x} \ d(x \cdot i \cdot t) =$$

$$= \frac{1}{i \cdot t \cdot (b-a)} \cdot e^{i \cdot t \cdot x} \Big|_{x=a}^{x=b} = \frac{e^{i \cdot t \cdot b} - e^{i \cdot t \cdot a}}{i \cdot t \cdot (b-a)}$$

2.1.5 Итоги

$$\xi \sim Un\left([a,b]\right), a < b \in \mathbb{R}$$

$$p\left(x\right) = \frac{1}{b-a} \cdot \mathbb{1}(x \in [a,b])$$

$$M \xi = \frac{a+b}{2}$$

$$D \xi = \frac{(a-b)^2}{12}$$

$$\varphi_{\xi}\left(t\right) = \frac{e^{i \cdot t \cdot b} - e^{i \cdot t \cdot a}}{i \cdot t \cdot (b-a)}$$

2.2 Экспоненциальное распределение

2.2.1 Определение

$$\xi \sim Exp(\lambda), \lambda > 0$$
$$p(x) = \lambda \cdot e^{-\lambda \cdot x} \cdot \mathbb{1}(x \ge 0)$$

2.2.2 Математическое ожидание

Начнём с определения, избавимся от индикатора

$$M \xi = \int_{-\infty}^{+\infty} x \cdot \lambda \cdot e^{-\lambda \cdot x} \cdot \mathbb{1}(x \ge 0) \ dx = \int_{0}^{+\infty} x \cdot \lambda \cdot e^{-\lambda \cdot x} \ dx$$

Очевидно, что нужно взять интеграл по частям

$$\int_{0}^{+\infty} x \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \begin{vmatrix} u = x, & dv = \lambda \cdot e^{-\lambda \cdot x} dx \\ du = dx, & \Rightarrow dv = e^{-\lambda \cdot x} d(\lambda \cdot x) \end{vmatrix} =$$

$$= -e^{-\lambda \cdot x} \cdot x \Big|_{0}^{+\infty} - \int_{0}^{+\infty} (-e^{-\lambda \cdot x}) dx = \int_{0}^{+\infty} e^{-\lambda \cdot x} dx$$

Дальше есть как минимум два выхода

- 1. Под знаком интеграла видим плотность экспоненциального распределения, делённую на λ . Поскольку интеграл от плотности равен единице, то этот интеграл будет равен $\frac{1}{\lambda}$
- 2. Можно проинтегрировать, применив свои знания и навыки

$$\int_{0}^{+\infty} e^{-\lambda \cdot x} dx = -\frac{1}{\lambda} \int_{0}^{+\infty} e^{-\lambda \cdot x} d(-\lambda \cdot x) = -\frac{1}{\lambda} \cdot e^{-\lambda \cdot x} \Big|_{0}^{+\infty} =$$
$$= -\frac{1}{\lambda} \cdot \left(e^{-\infty} - e^{0} \right) = -\frac{1}{\lambda} \cdot \left(-e^{0} \right) = \frac{1}{\lambda} = \lambda^{-1}$$

2.2.3 Дисперсия

Ищем второй момент, снова интегрируя по частям

$$\int_{0}^{+\infty} x^{2} \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \begin{vmatrix} u = x^{2}, & dv = \lambda \cdot e^{-\lambda \cdot x} dx \\ du = 2 \cdot x \cdot dx, & \Rightarrow dv = e^{-\lambda \cdot x} d(\lambda \cdot x) \end{vmatrix} =$$

$$= -e^{-\lambda \cdot x} \cdot x^{2} \Big|_{0}^{+\infty} - \int_{0}^{+\infty} 2 \cdot x \cdot (-e^{-\lambda \cdot x}) dx = 2 \cdot \int_{0}^{+\infty} x \cdot e^{-\lambda \cdot x} dx =$$

$$= \frac{2}{\lambda} \cdot M \xi = \frac{2}{\lambda^{2}}$$

И считаем дисперсию

$$D \xi = M \xi^2 - (M \xi)^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2} = \lambda^{-2}$$

2.2.4 Характеристическая функция

$$\varphi_{\xi} = M e^{i \cdot t \cdot \xi} = \int_{0}^{+\infty} e^{i \cdot t \cdot x} \cdot \lambda \cdot e^{-\lambda \cdot x} dx = \lambda \cdot \int_{0}^{+\infty} e^{x \cdot (i \cdot t - \lambda)} dx =$$
$$= \frac{\lambda}{\lambda - i \cdot t} \cdot \int_{0}^{+\infty} (\lambda - i \cdot t) \cdot e^{-x \cdot (\lambda - i \cdot t)} dx$$

Видим, что получился интеграл от плотности экспоненциального распределения $Exp(\lambda - i \cdot t)$, а это значит, что он равен единице

$$\frac{\lambda}{\lambda - i \cdot t} \cdot \int_{0}^{+\infty} (\lambda - i \cdot t) \cdot e^{-x \cdot (\lambda - i \cdot t)} \, dx = \frac{\lambda}{\lambda - i \cdot t}$$

2.2.5 Итоги

$$\xi \sim Exp(\lambda), \lambda > 0$$

$$p(x) = \lambda \cdot e^{-\lambda \cdot x} \cdot \mathbb{1}(x \ge 0)$$
$$M \xi = \lambda^{-1}$$
$$D \xi = \lambda^{-2}$$
$$\varphi_{\xi}(t) = \frac{\lambda}{\lambda - i \cdot t}$$

2.3 Нормальное распределение

2.3.1 Определение

$$\xi \sim N\left(a, \sigma^{2}\right), a \in \mathbb{R}, \sigma > 0$$
$$p\left(x\right) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{\left(x - a\right)^{2}}{2 \cdot \sigma^{2}}\right\}$$

2.3.2 Математическое ожидание

$$M \xi = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot x \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} dx$$

Разобьём экспоненту на три части

$$\exp\left\{-\frac{(x-a)^2}{2\cdot\sigma^2}\right\} = \exp\left\{-\frac{x^2}{2\cdot\sigma^2}\right\} \cdot \exp\left\{\frac{x\cdot a}{\sigma^2}\right\} \cdot \exp\left\{-\frac{a^2}{2\cdot\sigma^2}\right\}$$

Последняя экспонента не зависит от x, поэтому её можно вынести за знак интеграла

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot x \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} dx =$$

$$= \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{a^2}{2 \cdot \sigma^2}\right\} \cdot \int_{-\infty}^{+\infty} x \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} \cdot \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} dx$$

Возьмём интеграл по частям. Чтобы не засорять пространство и не создавать путаницу, проведём промежуточные вычисления отдельно.

В качестве u возьмём последнюю экспоненту, а в качестве dv, очевидно, всё остальное

$$u = \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} \Rightarrow du = \frac{a}{\sigma^2} \cdot \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} dx$$
$$dv = x \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} dx = \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} d\frac{x^2}{2} =$$
$$= -\sigma^2 \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} d\left(-\frac{x^2}{2 \cdot \sigma^2}\right) =$$
$$= -\sigma^2 d\left(\exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\}\right) \Rightarrow v = -\sigma^2 \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\}$$

Теперь можно вернуться к интегралу

$$\int_{-\infty}^{+\infty} x \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} \cdot \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} dx =$$

$$= \exp\left\{-\frac{x \cdot a}{\sigma^2}\right\} \cdot \sigma^2 \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\}\Big|_{-\infty}^{+\infty} +$$

$$+ \int_{-\infty}^{+\infty} \sigma^2 \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} \cdot \frac{a}{\sigma^2} \cdot \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} dx$$

Первое слагаемое обращается в нуль, а под знаком интеграла сокращаются σ^2 . Перепишем первоначальный интеграл с константами

$$\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{a^2}{2 \cdot \sigma^2}\right\} \cdot \int_{-\infty}^{+\infty} x \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} \cdot \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} dx =$$

$$= \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{a^2}{2 \cdot \sigma^2}\right\} \cdot \int_{-\infty}^{+\infty} a \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} \cdot \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} dx$$

Видим, что изменилось лишь одно — вместо x появилась константа a, что очень облегчает жизнь. Свернём обратно экспоненты и увидим, что получилось очень красивое выражение

$$\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{a^2}{2 \cdot \sigma^2}\right\} \cdot \int_{-\infty}^{+\infty} a \cdot \exp\left\{-\frac{x^2}{2 \cdot \sigma^2}\right\} \cdot \exp\left\{\frac{x \cdot a}{\sigma^2}\right\} dx =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot a \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} dx =$$

$$= a \cdot \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} dx$$

Видим интеграл от плотности нормального распределения, который равен единице, а это значит, что математическое ожидание посчитано правильно и оно действительно равно первому параметру a

$$a \cdot \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} dx = a$$

2.3.3 Дисперсия

В этот раз лучше считать дисперсию по определению

$$D \xi = M (\xi - M \xi)^2$$

Помним, что математическое ожидание было посчитано выше и равняется оно a. В таком случае получаем формулу

$$M(\xi - M\xi)^{2} = \int_{-\infty}^{+\infty} (x - a)^{2} \cdot \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma^{2}} \cdot \exp\left\{\frac{(x - a)^{2}}{2 \cdot \sigma^{2}}\right\} dx$$

Выполним замену $t=\frac{x-a}{\sqrt{2}\cdot\sigma}$, тогда $dt=\frac{dx}{\sqrt{2}\cdot\sigma}$, а значит, что $dx=dt\cdot\sqrt{2}\cdot\sigma$, и видим

$$\int_{-\infty}^{+\infty} (x-a)^2 \cdot \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma^2} \cdot \exp\left\{\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} dx = \int_{-\infty}^{+\infty} \frac{2 \cdot \sigma^2}{\sqrt{\pi}} \cdot t^2 \cdot e^{t^2} dt$$

Дальше проинтегрируем по частям

$$\int_{-\infty}^{+\infty} 2 \cdot t^2 \cdot e^{-t^2} dt = \begin{vmatrix} u = t, & dv = 2 \cdot t \cdot e^{-t^2} dt \\ \Rightarrow dv = e^{-t^2} dt^2 \end{vmatrix} =$$

$$= -e^{-t^2} \cdot t^2 \Big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} e^{-t^2} dt = \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

Получили ожидаемый ответ

$$\int_{-\infty}^{+\infty} \frac{2 \cdot \sigma}{\sqrt{\pi}} \cdot t^2 \cdot e^{t^2} dt = \frac{\sigma^2}{\sqrt{\pi}} \cdot \sqrt{\pi} = \sigma^2$$

2.3.4 Характеристическая функция

$$\varphi_{\xi}\left(t\right) = \operatorname{M} e^{i \cdot t \cdot \xi} = \int\limits_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{i \cdot t \cdot x} \cdot \exp \left\{-\frac{\left(x - a\right)^{2}}{2 \cdot \sigma^{2}}\right\} dx$$

Далее этап промежуточных вычислений можно разбить на несколько шагов, которые будут нумероваться во избежание большой путаницы

1. Поработаем с экспонентами. У нас есть произведение экспонент, которое превращается в экспоненту суммы

$$e^{i \cdot t \cdot x} \cdot \exp \left\{ -\frac{(x-a)^2}{2 \cdot \sigma^2} \right\} = \exp \left\{ i \cdot t \cdot x - \frac{(x-a)^2}{2 \cdot \sigma^2} \right\}$$

2. Пока что экспонента нас не интересует (да и много места занимает), поэтому окунёмся в то выражение, которое экспонируется. Раскроем скобки и внесём слагаемое $i \cdot t \cdot x$ в дробь

$$i \cdot t \cdot x - \frac{\left(x - a\right)^2}{2 \cdot \sigma^2} = \frac{i \cdot t \cdot x \cdot 2 \cdot \sigma^2 - \left(x^2 - 2 \cdot x \cdot a + a^2\right)}{2 \cdot \sigma^2}$$

3. Рассмотрим числитель

(a) Раскроем скобки и сгруппируем множители возле $2 \cdot x$

$$i \cdot t \cdot x \cdot 2 \cdot \sigma^2 - \left(x^2 - 2 \cdot x \cdot a + a^2\right) = -x^2 + 2 \cdot x \cdot \left(a + i \cdot t \cdot \sigma^2\right) - a^2$$

(b) Далее выделим полный квадрат разности. Для этого нужно чтобы последнее слагаемое было квадратом множителя, что стоит при $2\cdot x$

$$(a+i\cdot t\cdot \sigma^2)^2 = a^2 + 2\cdot a\cdot i\cdot t\cdot \sigma^2 - t^2\cdot \sigma^4$$

Поскольку a^2 уже есть, нужно лишь отнять всё остальное

$$-x^2 + 2 \cdot x \cdot (a + i \cdot t \cdot \sigma^2) - a^2 =$$

$$= -\left[x - (a + i \cdot t \cdot \sigma^2)\right]^2 + 2 \cdot a \cdot i \cdot t \cdot \sigma^2 - t^2 \cdot \sigma^4$$

- 4. Соединим всё снова воедино.
 - (а) Вернём числителю дробь и сократим её

$$\begin{split} i \cdot t \cdot x - \frac{\left(x - a\right)^2}{2 \cdot \sigma^2} &= \\ &= \frac{-\left[x - \left(a + i \cdot t \cdot \sigma^2\right)\right]^2 + 2 \cdot a \cdot i \cdot t \cdot \sigma^2 - t^2 \cdot \sigma^4}{2 \cdot \sigma^2} &= \\ &= \frac{-\left[x - \left(a + i \cdot t \cdot \sigma^2\right)\right]^2}{2 \cdot \sigma^2} + a \cdot i \cdot t - \frac{t^2 \cdot \sigma^2}{2} \end{split}$$

(b) Вернёмся к экспоненте

$$\begin{split} e^{i \cdot t \cdot x} \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} &= \exp\left\{i \cdot t \cdot x - \frac{(x-a)^2}{2 \cdot \sigma^2}\right\} = \\ &= \exp\left\{\frac{-\left[x - \left(a + i \cdot t \cdot \sigma^2\right)\right]^2}{2 \cdot \sigma^2} + a \cdot i \cdot t - \frac{t^2 \cdot \sigma^2}{2}\right\} = \\ &= \exp\left\{\frac{-\left[x - \left(a + i \cdot t \cdot \sigma^2\right)\right]^2}{2 \cdot \sigma^2}\right\} \cdot \exp\left\{a \cdot i \cdot t - \frac{t^2 \cdot \sigma^2}{2}\right\} \end{split}$$

(c) Выражение стало очень громоздким, поэтому введём две замены. Одну для выражения в квадрате

$$\mu\left(t\right) = a + i \cdot t \cdot \sigma^{2}$$

Вторую для второй экспоненты

$$\phi\left(t\right) = \exp\left\{a \cdot i \cdot t - \frac{t^2 \cdot \sigma^2}{2}\right\}$$

И мы добились своей цели: имеем более изящные выражения

$$\exp\left\{\frac{-\left[x-\left(a+i\cdot t\cdot\sigma^{2}\right)\right]^{2}}{2\cdot\sigma^{2}}\right\}\cdot\exp\left\{a\cdot i\cdot t-\frac{t^{2}\cdot\sigma^{2}}{2}\right\}=$$

$$=\exp\left\{-\frac{\left(x-\mu\left(t\right)\right)^{2}}{2\cdot\sigma^{2}}\right\}\cdot\phi\left(t\right)$$

Обозначения именно такие, потому что $\mu(t)$ окажется средним для распределение, которое возникло в результате преобразований; также выяснится, что $\phi(t)$ и есть искомая характеристическая функция

Теперь можно смело продолжать работать с интегралом

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot e^{i \cdot t \cdot x} \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\} dx =$$

$$= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{(x-\mu(t))^2}{2 \cdot \sigma^2}\right\} \cdot \phi(t) dx$$

Убираем из-под знака интеграла функцию $\phi(t)$, потому что она не зависит от x. Под интегралом остаётся плотность нормального распределения с параметрами $\mu(t)$ и σ^2 . Поскольку интегрирование проходит по всему пространству \mathbb{R} , то интеграл равен единице и не будем тратить на него времени (будем считать, что нас не беспокоит комплексная составляющая в первом параметре)

$$\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{-\left(x - \mu\left(t\right)\right)^{2}}{2 \cdot \sigma^{2}}\right\} \cdot \phi\left(t\right) dx =$$

$$= \phi\left(t\right) \cdot \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{\left(x - \mu\left(t\right)\right)^{2}}{2 \cdot \sigma^{2}}\right\} dx =$$

$$= \phi\left(t\right) = \exp\left\{a \cdot i \cdot t - \frac{t^{2} \cdot \sigma^{2}}{2}\right\}$$

2.3.5 Итоги

$$\xi \sim N\left(a, \sigma^{2}\right), a \in \mathbb{R}, \sigma > 0$$

$$p\left(x\right) = \frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{(x-a)^{2}}{2 \cdot \sigma^{2}}\right\}$$

$$M \xi = a$$

$$D \xi = \sigma^{2}$$

$$\varphi_{\xi}\left(t\right) = \exp\left\{a \cdot i \cdot t - \frac{t^{2} \cdot \sigma^{2}}{2}\right\}$$

3 Всё вместе

	n, p	
$\xi \sim Bin(n,p)$,	$\mathbb{P}\left(\xi=k\right)$	$= \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$
	$M \xi$	$=$ $n \cdot p$
	$D \xi$	$ = n \cdot p \cdot q $ $ = (p \cdot e^{i \cdot t} + q)^n $
	$\varphi_{\xi}\left(t\right)$	$= (p \cdot e^{i \cdot t} + q)^{i \cdot t}$
$\xi \sim Geom\left(p\right)$	p,q	: $p \in [0,1], q = 1 - p$ = $(1-p)^{k-1} \cdot p = p \cdot q^{k-1}$
		1
	$M \xi$	$= \frac{-}{p_{\alpha}}$
	$D \xi$	$= \frac{p_q}{p^2}$
	(2 (4)	$e^{i \cdot t}$. n
	$\varphi_{\xi}(\iota)$	$= \frac{e^{-ip}}{1 - e^{i \cdot t} \cdot q}$ $\vdots \lambda > 0$
$\xi \sim Pois(\lambda)$		*
	$\mathbb{P}\left(\xi=k\right)$	$= e^{-\lambda} \cdot \frac{\lambda^k}{k!}$
	$\mathrm{M}\xi$	$= \lambda = \lambda = \lambda$
	$D\xi$	$=\lambda$
	$\varphi_{\xi}(t)$	$= \lambda$ $= \exp\left\{\lambda \cdot \left(e^{i \cdot t} - 1\right)\right\}$
$\xi \sim Un\left([a,b]\right)$	a,b :	$a < b \in \mathbb{R}$
	p(x) =	$\frac{1}{b-a} \cdot \mathbb{1}(x \in [a,b])$ $\frac{a+b}{a+b}$
	$M \xi =$	$\frac{a+b}{2}$
	$D \xi =$	$(a-b)^2$
	$D\xi =$	$e^{i \cdot t \cdot b} - e^{i \cdot t \cdot a}$
	$\varphi_{\xi}(t) =$	$\frac{e^{i\cdot t\cdot }-e^{i\cdot t\cdot }}{i\cdot t\cdot (b-a)}$
	λ :	$\lambda > 0$
		$\lambda \cdot e^{-\lambda \cdot x} \cdot \mathbb{1}(x \ge 0)$
$\xi \sim Exp(\lambda)$	$M \xi =$	
	$D \xi =$	λ^{-2} λ
	$\varphi_{\xi}(t) =$	$\frac{\lambda}{\lambda - i \cdot t}$
(0)	a, σ :	$a \in \mathbb{R}, \sigma > 0$
	p(x) =	$\frac{1}{\sqrt{2 \cdot \pi} \cdot \sigma} \cdot \exp\left\{-\frac{(x-a)^2}{2 \cdot \sigma^2}\right\}$
$\xi \sim N\left(a, \sigma^2\right)$	$M \xi =$	a
	$D\xi =$	σ^2 $(t^2 \cdot \sigma^2)$
	$\varphi_{\xi}(t) =$	$exp\left\{a\cdot i\cdot t - \frac{t^2\cdot\sigma^2}{2}\right\}$
L		

Часть II

Свойства условного математического ожидания

I Формула полной вероятности

$$MM[\eta \mid \mathfrak{F}_1] = M\eta$$

II Условное математическое ожидание неотрицательной случайной величины неотрицательно почти наверное

$$\eta \ge 0 \Rightarrow M [\eta \mid \mathfrak{F}_1] \ge 0$$

III Неравенство Йенсена. Если функция φ выпуклая вниз, то

$$\varphi\left(M\left[\eta\mid\mathfrak{F}_{1}\right]\right)\leq M\left[\varphi\left(\eta\right)\mid\mathfrak{F}_{1}\right]$$

IV Теорема о трёх перпендикулярах

$$\mathfrak{F}_2 \subset \mathfrak{F}_1 \Rightarrow M[M(\eta \mid \mathfrak{F}_1 \mid \mathfrak{F}_2)] = M[\eta \mid \mathfrak{F}_2]$$

V Если случайная величина η измерима относительно σ -алгебры \mathfrak{F}_1 , то её условное математическое ожидание равно ей самой

$$M [\eta \mid \mathfrak{F}_1] = \eta$$

VI Если случайная величина η измерима относительно \mathfrak{F}_1 , то для любой случайной величины ξ

$$M [\eta \cdot \xi \mid \mathfrak{F}_1] = \eta \cdot M [\xi \mid \mathfrak{F}_1]$$

VII Если η не зависит от \mathfrak{F}_1 , то её условное математическое ожидание равно простому математическому ожиданию

$$\forall \Delta \in \mathfrak{B}, A \in \mathfrak{F}_1 : \mathbb{P}\left(\left\{\eta \in \Delta\right\} \mid A\right) = \left\{\eta \in \Delta\right\} \Rightarrow \operatorname{M}\left[\eta \mid \mathfrak{F}_1\right] = \operatorname{M}\eta$$

VIII Условное математическое ожидание линейно

$$\forall a, b \in \mathbb{R} : M[a \cdot \xi + b \cdot \eta \mid \mathfrak{F}_1] = M[a \cdot \xi \mid \mathfrak{F}_1] + M[b \cdot \eta \mid \mathfrak{F}_1]$$

IX Сохраняется теорема Лебега о возможности предельного перехода под знаком условного математического ожидания

$$|\xi_n| \leq \eta, \ \mathbf{M} \ \eta < \infty, \ \xi_n \xrightarrow[n \to \infty]{a.s.} \xi \Rightarrow \mathbf{M} \left[\xi_n \mid \mathfrak{F}_1\right] \xrightarrow[n \to \infty]{a.s.} \mathbf{M} \left[\xi \mid \mathfrak{F}_1\right]$$

Пара полезных частных случаев неравенства Йенсена

$$\varphi(x) = |x|: \quad |M [\eta \mid \mathfrak{F}_1]| \leq M [|\eta| \mid \mathfrak{F}_1]$$

$$\varphi(x) = x^2: \quad (M [\eta \mid \mathfrak{F}_1])^2 \leq M [\eta^2 \mid \mathfrak{F}_1]$$

Содержание

	Цискретные распределения				
1.1		миальное распределение			
	1.1.1	Определение			
	1.1.2	Математическое ожидание			
	1.1.3	Дисперсия			
	1.1.4	Характеристическая функция			
	1.1.5	Итоги			
1.2		трическое распределение			
	1.2.1	Определение			
	1.2.2	Математическое ожидание			
	1.2.3	Дисперсия			
	1.2.4	Характеристическая функция			
	1.2.5	Итоги			
1.3		соновское распределение			
	1.3.1	Определение			
	1.3.2	Математическое ожидание			
	1.3.3	Дисперсия			
	1.3.4	Характеристическая функция			
	1.3.5	Итоги			
Н	епреры	прерывные распределения			
2.1	. Равно	омерное распределение			
	2.1.1	Определение			
	2.1.2	Математическое ожидание			
	2.1.3	Дисперсия			
	2.1.4	Характеристическая функция			
	2.1.5	Итоги			
2.2	2 Экспо	оненциальное распределение			
	2.2.1	Определение			
	2.2.2	Математическое ожидание			
	2.2.3	Дисперсия			
	2.2.4	Характеристическая функция			
	2.2.5	Итоги			
2.3	В Норм	альное распределение			
	$\frac{2.3.1}{2.3.1}$	Определение			
		Математическое ожидание			
	2.3.3	Дисперсия			
	2.3.4	Характеристическая функция			
	2.3.4 $2.3.5$	Итоги			
	2.0.0				
D.	е вмест	Pρ			

II Свойства условного математического ожидания 15

Содержание 17