$\S 2.5$ Монотонные последовательности

Определение 2.11. Точная верхняя (нижняя) грань множества значений элементов последовательности $\{x_n\}$ называется точной верхней (нижней) гранью данной последовательности.

Обозначают

$$\sup\{x_n\}$$
или $\sup_{n\in\mathbb{N}}x_n$ (соответственно $\inf\{x_n\}$ или $\inf_{n\in\mathbb{N}}x_n).$

Определение 2.12. Последовательность $\{x_n\}$ называется возрастающей (убывающей) последовательностью, если

$$x_{n+1} > x_n \ \forall n \in \mathbb{N} \ (x_{n+1} < x_n \ \forall n \in \mathbb{N}).$$

Определение 2.13. Последовательность $\{x_n\}$ называется неубывающей (невозрастающей) последовательностью, если

$$x_{n+1} \ge x_n \ \forall n \in \mathbb{N} \ (x_{n+1} \le x_n \ \forall n \in \mathbb{N}).$$

Возрастающие, убывающие, неубывающие и невозрастающие по- $\frac{1}{2}$ следовательности называются монотонными.

Теорема 2.10 (Вейерштрасс). *Если последовательность является* монотонной и ограниченной, то она имеет предел.

Доказательство. Ограничимся доказательством теоремы для случая ограниченной сверху и неубывающей последовательности. Если последовательность $\{x_n\}$ ограничена сверху, то есть множество чисел $x_1, x_2, ..., x_n, ...$ ограничено сверху, то существует точная верхняя грань этой последовательности (см. § 1.8). Обозначим $a = \sup x_n$. По определению точной верхней грани это означает, что

1) все члены последовательности $\{x_n\}$ не превосходят a, то есть

$$x_n \le a \quad \forall \, n \in \mathbb{N},\tag{2.10}$$

2) для каждого $\varepsilon > 0$ найдется член последовательности, больший $a - \varepsilon$, то есть

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N} : \ x_m > a - \varepsilon. \tag{2.11}$$

Так как $\{x_n\}$ – неубывающая последовательность, то

$$x_m \le x_n \quad \forall \, n > m. \tag{2.12}$$

Из (2.10)-(2.12) следует, что

$$\forall \varepsilon > 0 \ \exists m \in \mathbb{N}: \ \forall n > m - \left(a - \varepsilon < x_m \le x_n \right) a < a + \varepsilon,$$

то есть $|x_n - a| < \varepsilon$. Это означает, согласно определению предела, что

$$\lim_{n \to \infty} x_n = a = \sup_{n \in \mathbb{N}} x_n.$$

Следствие 2.1. Монотонная последовательность сходится тогда и только тогда, когда она ограничена.

Число е. Рассмотрим последовательность $\{x_n\}$, где

и покажем, что эта последовательность возрастающая и ограниченная сверху. Используя формулу бинома Ньютона, получаем

$$x_n = C_n^0 + C_n^1 \frac{1}{n} + C_n^2 \frac{1}{n^2} + \dots + C_n^k \frac{1}{n^k} + \dots + C_n^n \frac{1}{n^n} =$$

$$= 1 + n \frac{1}{n} + \frac{n(n-1)}{2!} \frac{1}{n^2} + \dots + \frac{n(n-1)\dots(n-k+1)}{k!} \frac{1}{n^k} + \dots + \frac{1}{n^n},$$

$$C_n^k = \frac{n!}{k!(n-k)!}, \qquad k = \overline{0, n}, \qquad 0! = 1.$$

Запишем
$$x_n$$
 в следующем виде:
$$x_n = 1 + \sum_{k=1}^n \frac{1}{k!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{k-1}{n}\right)$$
(2.13)

$$x_{n+1} = 1 + \sum_{k=1}^{n+1} \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{k-1}{n+1} \right). \tag{2.14}$$

Все слагаемые в суммах (2.13) и (2.14) положительны, причем каждое слагаемое суммы (2.13) меньше соответствующего слагаемого суммы (2.14), так как $1-\frac{m}{n}<1-\frac{m}{n+1},\ m=\overline{1,n-1},$ а число слагаемых в

M = 1, 2, ..., N - 1

сумме (2.14) на одно больше, чем в сумме (2.13). Поэтому $x_n < x_{n+1}$ для всех $n \in \mathbb{N}$, то есть $\{x_n\}$ — возрастающая последовательность. Кроме того, учитывая, что $0 < 1 - \frac{m}{n} < 1 \pmod{1, n-1}$, из равенства (2.13) получаем $x_n < 1 + \sum_{k=1}^n \frac{1}{k!}$. Так как $\frac{1}{k!} \le \frac{1}{2^{k-1}}$ при $k \in \mathbb{N}$, то,

используя формулу для суммы геометрической прогрессии, получаем $x_n < 1 + \sum_{k=1}^n \frac{1}{2^{k-1}} = 1 + \frac{1 - \frac{1}{2^n}}{1 - \frac{1}{2}} = 3 - \frac{1}{2^{n-1}}$. Следовательно,

$$x_n = \left(1 + \frac{1}{n}\right)^n < 3,$$

то есть $\{x_n\}$ – ограниченная последовательность. По теореме 2.10 существует $\lim_{n\to\infty}x_n$. Этот предел обозначается буквой e. Таким образом,

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Число е является иррациональным, оно служит основанием натуральных логарифмов и играет важную роль в математике. Справедиво приближенное равенство

Глава 3

Предел функции. Непрерывность

 $f: \bigvee \rightarrow \mathbb{R}$

§ 3.1 Определение предела функции

Определение 3.1. Точка $x_0 \in \mathbb{R}$ называется предельной точкой множества $X \subset \mathbb{R}$, если в любой ее окрестности существует отличная от нее точка, принадлежащая множеству X.

Георема 3.1. Если x_0 – предельная точка множества X, то сущетвует последовательность $\{x_n\}$ такая, что

$$x_n \in X, \ x_n \neq x_0 \ \forall n \in \mathbb{N},$$

$$x_n \to x_0 \text{ npu } n \to \infty.$$

Доказательство. Пусть $\varepsilon_1=1$. Тогда $\exists \, x_1 \in X: \, |x_1-x_0| < 1, \, x_1 \neq x_0$. Пусть $\varepsilon_2=1/2$. Тогда $\exists \, x_2 \in X: \, |x_2-x_0| < 1/2, \, x_2 \neq x_0$ и т.д. Пусть $\varepsilon_n=1/n$. Тогда $\exists \, x_n \in X: \, |x_n-x_0| < 1/n, \, x_n \neq x_0$. Продолжаем эту процедуру произвольное число раз. Получим последовательность $\{x_n\}: \, x_n \in X \, \forall n \in \mathbb{N}$. Из неравенства $|x_n-x_0| < 1/n$ следует, что $x_n \to x_0$ при $n \to \infty$.

Определение 3.2 (Коши). Действительное число A называется пределом функции $f: X \to \mathbb{R}$ в предельной точке x_0 , если

 $\forall \varepsilon > 0 \; \exists \, \delta = \delta(\varepsilon) > 0 : \; \forall x \in X, \; 0 < |x - x_0| < \delta \to |f(x) - A| < \varepsilon.$

Записывают $\lim_{x \to x_0} f(x) = A$.

18(x)-A1<E=>

-E< f(x)-A<E -(11111-47)

(HIVO (LLVI)

 $\lim_{x \to 1} \frac{x^{2}-3x+2}{x-1} = x$

X1 X2 X3 X={X1, X1, X2

Определение 3.3 (Гейне). Действительное число A называется пределом функции $f: X \to \mathbb{R}$ в предельной точке x_0 , если для любой последовательности $\{x_n\}$ такой, что $x_n \in X$, $x_n \neq x_0 \ \forall n \in \mathbb{N}$, $\lim_{n\to\infty} x_n = x_0$, соответствующая последовательность $\{f(x_n)\}$ сходится к A.

Теорема 3.2. Определения 3.2 и 3.3 эквивалентны.

Доказательство. а) Докажем сначала, что если функция f имеет в точке x_0 предел в смысле определения 3.2, то она имеет тот же самый предел в этой точке и в смысле определения 3.3.

Пусть $f:X\to\mathbb{R},\ x_0$ – предельная точка множества X и $\lim_{x\to x_0}f(x)=A$ в смысле определения 3.2. Это означает, что

Пусть $\{x_n\}$ — произвольная последовательность элементов из X, сходящаяся к точке x_0 и $x_n \neq x_0 \ \forall n \in \mathbb{N}$. Согласно определению предела последовательности для найденного $\delta = \delta(\varepsilon) > 0$ можно указать номер m такой, что $\forall n > m \to |x_n - x_0| < \delta$. Тогда $|f(x_n) - A| < \varepsilon$. Таким образом, $\lim_{n \to \infty} f(x_n) = A$, и, следовательно, число A является пределом функции f в точке x_0 в смысле определения 3.3.

б) Докажем, что если число A есть предел функции f в точке x_0 в смысле определения 3.3, то это же число является пределом функции f в смысле определения 3.2. Допустим, что это неверно. Тогда

$$\exists \varepsilon > 0 : \forall \delta > 0 \exists x(\delta) \in X, \ 0 < |x(\delta) - x_0| < \delta : |f(x(\delta)) - A| \ge \varepsilon.$$
 (3.1)

Возьмем $\delta = 1/n$, где $n \in \mathbb{N}$, и обозначим $x_n = x(1/n)$. Тогда в силу (3.1) для любого $n \in \mathbb{N}$ $x_n \in X$ и выполняются неравенства

Из (3.2) следует, что $\lim_{n\to\infty} x_n = x_0$, $x_n \neq x_0$ при всех $n \in \mathbb{N}$, а из (3.3) заключаем, что число A не может быть пределом последовательности $\{f(x_n)\}$. Следовательно, число A не является пределом функции f в точке x_0 в смысле определения 3.3. Полученное противоречие доказывает сделанное утверждение.

§ 3.2 Свойства пределов функций

Определение 3.4. Проколотой окрестностью точки x_0 называется множество, получающееся удалением точки x_0 из ее окрестности.

Обозначают $\mathring{U}(x_0)$.

В частности, проколотая δ -окрестность точки x_0 обозначается $\mathring{U}(x_0,\delta).$

Теорема 3.3. Если функция $f: X \to \mathbb{R}$ имеет предел в точке x_0 , то она ограничена на пересечении некоторой проколотой окрестности точки x_0 с множеством X.

Доказательство. Пусть $\lim_{x \to x_0} f(x) = A$. Тогда, согласно определению 3.2, для любого $\varepsilon > 0$, в частности для $\varepsilon = 1$, найдется $\delta > 0$ такое, что $\forall x \in X, \ 0 < |x - x_0| < \delta \to |f(x) - A| < 1$. Иначе говоря, для всех $x \in X \cap U(x_0, \delta)$ справедливы неравенства A - 1 < f(x) < A + 1, а это означает ограниченность функции f на пересечении $X \cap U(x_0, \delta)$.

Теорема 3.4. Если функция f имеет предел в точке x_0 , то он единственный.

Теорема 3.5. Пусть $f: X \to \mathbb{R}, \ g: X \to \mathbb{R}$ и существуют конечные пределы $\lim_{x \to x_0} f(x) = A, \ \lim_{x \to x_0} g(x) = B.$ Тогда существуют и конечные пределы $\lim_{x \to x_0} [f(x) + g(x)], \ \lim_{x \to x_0} f(x)g(x), \ a \ \text{если} \ g(x) \neq 0, \ B \neq 0,$ то и предел $\lim_{x \to x_0} \frac{f(x)}{g(x)}, \ \text{причем}$

$$\lim_{x \to x_0} [f(x) + g(x)] = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) = A + B,$$

$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x) = AB,$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}.$$
(3.4)

Замечание 3.1. Справедливость теорем 3.4 и 3.5 следует из справедливости соответствующих утверждений для числовых последовательностей, переход к которым осуществляется на основе определения Гейне.

Следствие 3.1. Если существует конечный предел $\lim_{x \to x_0} f(x) = A$, то $\forall c \in \mathbb{R}$ существует и предел $\lim_{x \to x} \mathbf{cf}(x)$, причем

$$\lim_{x \to x_0} cf(x) = c \lim_{x \to x_0} f(x) = cA.$$

Отметим, что $\lim_{x\to x_0}c=c$. Действительно, возьмем произвольное $\varepsilon>0$. В качестве δ можно взять любое положительное число. Тогда $\forall x\in X,\ 0<|x-x_0|<\delta\to|c-c|=0<\varepsilon$.

Далее, из (3.4) получаем

$$\lim_{x \to x_0} cf(x) = \lim_{x \to x_0} c \cdot \lim_{x \to x_0} f(x) = cA.$$

Таким образом, постоянный множитель можно выносить за знак предела.

§ 3.3 Односторонние пределы

Определение 3.5. Действительное число A называется пределом функции $f: X \to \mathbb{R}$ слева при $x \to x_0$, если $\forall \, \varepsilon > 0 \, \exists \, \delta = \delta(\varepsilon) > 0$: $\forall x \in X, \, x_0 - \delta < x < x_0 \to |f(x) - A| < \varepsilon$.

Записывают $\lim_{x \to x_0 - 0} f(x) = A$ или $f(x_0 - 0) = A$.

Определение 3.6. Действительное число A называется пределом функции $f: X \to \mathbb{R}$ справа при $x \to x_0$, если $\forall \, \varepsilon > 0 \, \exists \, \delta = \delta(\varepsilon) > 0 : \forall x \in X, \, x_0 < x < x_0 + \delta \to |f(x) - A| < \varepsilon.$

Записывают $\lim_{x \to x_0 + 0} f(x) = A$ или $f(x_0 + 0) = A$.

Теорема 3.6. Для существования конечного предела $\lim_{x\to x_0} f(x)$ необходимо и достаточно, чтобы существовали и совпадали односторонние пределы $f(x_0+0)$ и $f(x_0-0)$.

Доказательство. Пусть $\lim_{x\to x_0} f(x) = A$, то есть

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in X, \ 0 < |x - x_0| < \delta \to |f(x) - A| < \varepsilon.$$

В частности, это будет справедливо $\forall x \in X, \ x \in (x_0 - \delta, x_0)$ и $\forall x \in X, \ x \in (x_0, x_0 + \delta)$. Таким образом, существуют оба односторонних предела и $f(x_0 - 0) = f(x_0 + 0) = A$.