

Investigating population dynamics with Cellular Automata

Cesar Hernando | Arturo Gallardo | Tim Neumann 9-6-2025

Outline

- 1. Introduction
- 2. Lotka-Volterra (LV) model: Analytical solution of exponential + logistic model
- 3. Cellular Automata (CA) simulation: Energy-based model
- 4. Mapping from exponential LV model to probabilistic CA
- 5. Conclusion

1. Introduction

Ecological systems are complex, but insight into their dynamics is crucial

- Weather forecasting and climate change
- Protection of natural diversity
- Economic considerations

Source: NOAA Fisheries, 202

Available at: https://www.fisheries.noaa.gov/feature-story/new-indicators-could-help-manage-global-overfishing

Goal: Understand dynamics of simple system via two different perspectives

- Analytical models using differential equations
- Numerical models simulating species interaction

Source: Predator-prey models to model users, Medium, 2020.

Available at: https://medium.com/hello-cdo/predator-prev-models-to-model-users-9ed717fa548f

Outline

- 1. Introduction
- 2. Lotka-Volterra (LV) model: Analytical solution of exponential + logistic model
- 3. Cellular Automata (CA) simulation: Energy-based model
- 4. Mapping from exponential LV model to probabilistic CA
- 5. Conclusion

2.0 Lotka-Volterra (LV) model

Pair of first-order (nonlinear) differential equations to describe population dynamics in predatorprey systems

$$\begin{cases} \frac{\partial x(t)}{\partial t} = \underbrace{\alpha x y}_{\text{Predator growth Predator death}} & = f(x, y) \\ \frac{\partial y(t)}{\partial t} = \underbrace{\gamma y}_{\text{Prey growth Prey death}} & = g(x, y) \end{cases}$$

Multiple variations exists, e.g., featuring exponential or logistic prey growth

^[1] Alfred J Lotka. Elements of Physical Biology. Williams and Wilkins Company, 1925.

^{2]} Vito Volterra. "Fluctuations in the Abundance of a Species considered Mathematically". In: Nature 118 (1926), pp. 558–560.

2.1 Exponential LV model

$$\frac{\partial x(t)}{\partial t} = \underbrace{\alpha x y}_{\text{Predator growth}} - \underbrace{\beta x}_{\text{Predator death}} \coloneqq f(x, y)$$

$$\frac{\partial y(t)}{\partial t} = \underbrace{\gamma y}_{\text{Prey growth}} - \underbrace{\delta x y}_{\text{Prey death}} \coloneqq g(x, y)$$

Simple model with exponential prey growth, exhibits non-trivial stable point at $(x^*, y^*) = \left(\frac{\gamma}{\delta}, \frac{\beta}{\alpha}\right)$

For
$$\alpha = \delta = 0.003$$
, $\beta = 0.3$, $\gamma = 0.1$, $dt = 0.01$:

2.2 Logistic LV model

$$\begin{cases} \frac{\partial x(t)}{\partial t} = \alpha xy - \beta x & \coloneqq f(x,y) \\ \frac{\partial y(t)}{\partial t} = \gamma y(1 - \frac{y}{N}) - \delta xy & \coloneqq g(x,y) \end{cases}$$

Logistic prey growth (capacity N) with non-trivial stable point $(x^*, y^*) = \left(\frac{\gamma}{\delta}(1 - \frac{\beta}{\alpha N}), \frac{\beta}{\alpha}\right)$ and bifurcation at capacity $N = \frac{\alpha\beta + \sqrt{\alpha^2\beta^2 + \alpha^2\gamma\beta}}{2\alpha^2}$.

For $\alpha = \delta = 1$, $\beta = 50$, $\gamma = 48$, dt = 0.01:

Outline

- 1. Introduction
- 2. Lotka-Volterra (LV) model: Analytical solution of exponential + logistic model
- 3. Cellular Automata (CA) simulation: Energy-based model
- 4. Mapping from exponential LV model to probabilistic CA
- 5. Conclusion

2.3 Population dynamics: Beyond the LV model

Numerical simulation replicates analytical model, but is restricted in expressivity

We want a more realistic simulation: Cellular Automata (CA)

CAs are computational models to simulate the behaviour of complex systems:

- Grid of cells with finite number of states
- Discrete update rules (can be deterministic or probabilistic) to define system evolution
- Locality due to neighbor interactions

Useful for our goal to simulate realistic predator-prey systems

3.1. Energy-based CA: Set-up and initialization

70% empty cells, 10% predators, 20% preys

Set-up

- We use an OOP approach
- Habitat is represented by a NxN lattice
- Each cell can be empty, contain a predator or a prey
- It also has an associated energy health

Initialization

- Random allocation of predators and preys
- Energies sampled from $\mathcal{N}(\mu_E = 5, \sigma_E = 3)$

3.2. Energy-based CA: Evolution rules

- At each evolution step, the order in which cells act is randomized
- Animals act based on the current state of the lattice, which is updated immediately after each individual acts.
- Periodic boundary conditions are used to determine each cell's neighbors.
- Implement a set of action rules to simulate real ecosystem interactions
- Separate action rules for predators and prey

3.2. Energy-based CA: Evolution rules

Predators:

- Search for preys in its neighbouring cells
- If available, a random prey target is selected
 - If the predator has higher energy, it kills prey If energy (4.7) is sufficient, it reproduces; otherwise, its energy is restored to $\mu_E = 5$ as a consequence of eating
 - Else: Predator loses energy due to failed hunt

Else: Predator searches for empty spaces

- If there are, predator makes random move and loses energy (2.5)
- If not, predator remains stationary
- \circ Predator dies if energy ≤ 0

3.2. Energy-based CA: Evolution rules

Preys:

- Check overpopulation in Moore neighbourhood: if more than three preys, it loses energy (1.7)
- Look for neigbouring empty cells
- If available:
 - If energy is sufficient (3.9), prey reproduces and loses energy (1.2)

Else: prey moves randomly and gains energy (0.8) due to foraging

Else: prey remains stationary, maintaining its energy

 \circ Prey dies if energy ≤ 0

3.3 Balanced evolution (No seasons, no prey defence)

3.3 Balanced evolution (No seasons, no prey defence)

Fig. 6. Cyclic behaviour of prey-predator populations.

[4] Q. Chen and A.E. Mynett. "Effects of cell size and configuration in cellular automata based prey–predator modelling". In: Simulation Modelling Practice and Theory 11.7 (2003), pp. 609–625. issn: 1569-190X. doi: https://doi.org/10.1016/j.simpat.2003.08.006.

3.4 Stability analysis

3.4 Stability analysis

3.4 Stability analysis

70% of the cases are ending in extinction

3.5 Fishing extinction?

- Energy-based CA model can potentially simulate species extinction by human fishing
- But our model is not well fitted for fishing:
 - Humans can hunt or fish more than one prey
 - Humans are not dependent on a single energy source
 - Displacement beyond neighbouring cells

[6] Milner B. Schaefer. "Some aspects of the dynamics of populations important to the management of the commercial marine fisheries". In: Bulletin of Mathematical Biology 53.1 (1991), pp. 253–279. issn: 0092-8240. doi: https://doi.org/10.1016/S0092-8240(05)80049-7. url: https://www.sciencedirect.com/science/article/pii/S0092824005800497.

3.6 Seasonal oscillations (No defence)

Seasons are modelled with a cosine: energy gain and losses vary in time

3.6 Seasonal oscillations (No defence)

Formation of two stable points

3.7 Prey defence (with seasons)

If predator has at least six prey in its surrounding, it cannot hunt

3.7 Prey defence (with seasons)

3.8 Performance: varying lattice sites

3.8 Performance: varying time steps

Outline

- 1. Introduction
- 2. Lotka-Volterra (LV) model: Analytical solution of exponential + logistic model
- 3. Cellular Automata (CA) simulation: Energy-based model
- 4. Mapping from exponential LV model to probabilistic CA
- 5. Conclusion

4.0 A probabilistic CA for predator-prey model

To reconcile the LV model with our CA approach, we investigate a probabilistic CA.

Parameters of CA:

- Predator death rate
- Prey reproduction rate
- Prey hunting success probability
- Prey migration rate

Natural question: Can we map the LV parameters to the CA parameters?

4.1 Parameter mapping LV > CA

$$\begin{cases} \frac{\partial x(t)}{\partial t} = \underbrace{\alpha x y}_{\text{Predator growth Predator death}} & \coloneqq f(x,y) \\ \frac{\partial y(t)}{\partial t} = \underbrace{\gamma y}_{\text{Prey growth Prey death}} & \succeq g(x,y) \end{cases}$$

Predator death rate (β '):

In LV model, $x' = -\beta x \mapsto x(t) = x_0 \exp(-\beta t) \approx x_0 (1 - \frac{\beta t}{n})^n$, which becomes better for large n.

 \mapsto set t = n ('make simulation time large'), and $\beta' = \beta$

Prey birth rate (γ') :

Likewise, $y' = \gamma x \mapsto y(t) = y_0 \exp(\gamma t)$ in CA model \mapsto set $\gamma' = \gamma$.

Predation (α', δ') :

Treat cross-terms qualitatively: $x' = \alpha xy$ means 'predator growth $\propto x, y$ '

CA model is local/short-sighted \mapsto set $\delta' = \alpha' = \frac{S_l}{S_n} \alpha$, for S_l lattice size, S_n neighbourhood size

4.1 Parameter mapping LV > CA

$$\begin{cases} \frac{\partial x(t)}{\partial t} = \underbrace{\alpha x y}_{\text{Predator growth Predator death}} - \underbrace{\beta x}_{\text{Predator growth Predator death}} \coloneqq f(x, y) \\ \frac{\partial y(t)}{\partial t} = \underbrace{\gamma y}_{\text{Prey growth Prey death}} - \underbrace{\delta x y}_{\text{Prey death}} \coloneqq g(x, y) \end{cases}$$

Recall from earlier: $\alpha = \delta = 0.003$, $\beta = 0.3$, $\gamma = 0.1$.

Define dimension = (30,30), $S_l = 900$, $S_n = 9$, t = 400.

$$\mapsto \alpha' = \delta' = \frac{S_l}{S_n} \alpha = 0.3$$
 , $\beta' = \beta = 0.3$, $\gamma' = \gamma = 0.1$

Initialize 10% predators, 30% predators and 60% empty cells

4.2 Comparison exp. LV and prob. CA model

Parameter mapping is possible!

Outline

- 1. Introduction
- 2. Lotka-Volterra (LV) model: Analytical solution of exponential + logistic model
- 3. Cellular Automata (CA) simulation: Energy-based model
- 4. Mapping from exponential LV model to probabilistic CA
- 5. Conclusion

5. Conclusion & Outlook

- Both analytical and numerical methods give insight into population dynamics
- Analytical methods give explainable insight into stability and bifurcations
- Cellular Automata can reasonably approximate LV model, but also explore behaviours that are difficult to formulate analytically
- CA simulations give insight into dynamics of predator-prey systems, and allow for evidencebased policies (environmental protection, economic viability, etc.)

What's next?

- Adding more species to the simulation
- Defining more complex food chain hierarchies
- Adapting more realistic reproduction behaviour

References

- [1] Alfred J Lotka. *Elements of Physical Biology*. Williams and Wilkins Company, 1925.
- [2] Vito Volterra. "Fluctuations in the Abundance of a Species considered Mathematically". In: Nature 118 (1926), pp. 558–560.
- [3] Virginia W. Noonburg. Ordinary Differential Equations: From Calculus to Dynamical Systems. MAA Press, American Mathematical Society, 2014.
- [4] Q. Chen and A.E. Mynett. "Effects of cell size and configuration in cellular automata based prey-predator modelling". In: Simulation Modelling Practice and Theory 11.7 (2003), pp. 609–625. ISSN: 1569-190X. DOI: https://doi.org/10.1016/j.simpat.2003.08.006.
- [5] Q. Chen and et al. "Stability Analysis of Harvesting Strategies in a Cellular Automata Based Predator-Prey Model". In: Cellular Automata. Springer Berlin, Heidelberg, 2006. ISBN: 978-3-540-40929-8.
- [6] M. B. Schaefer. "Some aspects of the dynamics of populations important to the management of the commercial marine fisheries". In: *Bulletin of Mathematical Biology* 53.1 (1991), pp. 253–279. ISSN: 0092-8240. DOI: https://doi.org/10.1016/S0092-8240(05)80049-7. URL: https://www.sciencedirect.com/science/article/pii/S0092824005800497.

Thank you!

Supplementary Slides

Exponential LV model

$$\begin{cases} \frac{\partial x(t)}{\partial t} = \underbrace{\alpha x y}_{\text{Predator growth Predator death}} - \underbrace{\beta x}_{\text{Predator death}} \coloneqq f(x, y) \\ \frac{\partial y(t)}{\partial t} = \underbrace{\gamma y}_{\text{Prey growth Prey death}} - \underbrace{\delta x y}_{\text{Prey death}} \coloneqq g(x, y) \end{cases}$$

Simple model; stable points can be determined analytically:

$$\begin{cases} 0 = f(x, y) = x(\alpha y - \beta) \implies y^* = \frac{\beta}{\alpha} \\ 0 = g(x, y) = x(\alpha y - \beta) \implies x^* = \frac{\gamma}{\delta} \end{cases}$$

For
$$\alpha = \delta = 0.003$$
, $\beta = 0.3$, $\gamma = 0.1$, $dt = 0.01$:

Logistic LV model

$$\begin{cases} \frac{\partial x(t)}{\partial t} = \alpha xy - \beta x & \coloneqq f(x,y) \\ \frac{\partial y(t)}{\partial t} = \gamma y(1 - \frac{y}{N}) - \delta xy & \coloneqq g(x,y) \end{cases}$$

Stable points are
$$(x^*, y^*) \in \left\{ \left(0, 0\right), \left(0, L\right), \left(\frac{\gamma}{\delta} (1 - \frac{\beta}{\alpha N}), \frac{\beta}{\alpha}\right) \right\}$$

Bifurcation Analysis on non-trivial stable point:

$$J = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{bmatrix} = \begin{bmatrix} \alpha y - \beta & \alpha x \\ -\delta y & \gamma (1 - \frac{2y}{N}) - \delta x \end{bmatrix} \longrightarrow J(x^*, y^*) = \begin{bmatrix} 0 & \frac{\alpha \gamma}{\delta} (1 - \frac{\beta}{\alpha N}) \\ -\frac{\delta \beta}{\alpha} & -\frac{\gamma \beta}{N \alpha} \end{bmatrix}$$

Considering eigenvalues of Jacobian

$$\det(J) = 0 \implies N = \frac{\beta}{\alpha} \text{ and}$$

$$\det(J) = \frac{\operatorname{tr}^2(J)}{4} \implies N = \frac{\alpha\beta + \sqrt{\alpha^2\beta^2 + \alpha^2\gamma\beta}}{2\alpha^2}$$

Logistic LV model

Stable points are
$$(x^*, y^*) \in \left\{ \left(0, 0\right), \left(0, L\right), \left(\frac{\gamma}{\delta} (1 - \frac{\beta}{\alpha N}), \frac{\beta}{\alpha}\right) \right\}$$

$$\begin{cases} \frac{\partial x(t)}{\partial t} = \alpha xy - \beta x & \coloneqq f(x,y) \\ \frac{\partial y(t)}{\partial t} = \gamma y(1 - \frac{y}{N}) - \delta xy & \coloneqq g(x,y) \end{cases}$$

$$\det(J) = 0 \implies N = \frac{\beta}{\alpha} \text{ and}$$

$$\det(J) = \frac{\operatorname{tr}^2(J)}{4} \implies N = \frac{\alpha\beta + \sqrt{\alpha^2\beta^2 + \alpha^2\gamma\beta}}{2\alpha^2}$$

For $\alpha = \delta = 1$, $\beta = 50$, $\gamma = 48$, dt = 0.01:

Bifurcation at N = 60 (towards spiral sink coexistence)

Probabilistic CA: migration analysis

Migration as another phenomenon that resembles reality (respecting spatio-temporal relation) which is difficult to capture analytically

Migration must be nonzero in order to observe predicted behaviour; hypothesis: we need reasonable mobility to ensure mixing and not getting stuck in local extinction, which can propagate to the entire system

Parameters for balanced evolution

- Overpopulation: 3; Loss prey in overpopulation: 1.7
- Predator's loss for moving: 2.5; Prey's gain for moving: 0.8
- Loss when hunting fails: 3.2
- Prey's loss when reproducing: 1.2
- Minimum energy for prey's reproduction: 3.9
- Minimum energy for predator's reproduction: 4.7

