Xây dựng bảng phân tích cú pháp SLR

Hoàng Văn Tuân

Email: tuanhoang.97dx@gmail.com

Các bước xây dựng bảng phân tích cú pháp SLR

- Bước 1: Xây dựng văn phạm tăng cường
- Bước 2: Xây dựng họ các tập mục
- Bước 3: Xây dựng bảng phân tích cú pháp SLR

Xây dựng

văn phạm

Và biết tính tạp rollow

Hoàng Văn Tuân

Bài toán

• Hãy xây dựng bảng phân tích cú pháp SLR cho văn phạm sau:

- $(1) E \rightarrow E + T \mid T$
- $(2) T \rightarrow T * F \mid F$
- $(3) F \rightarrow (E) | id$

1. Văn phạm tăng cường

- Giả sử G là 1 văn phạm với ký hiệu bắt đầu là S
- G' là được gọi là văn phạm tăng cường của G bằng cách thêm 1 ký hiệu bắt đầu mới S' và luật sinh S' → S
- Ví dụ:
 - ➤ Văn phạm G:
 - (1) $E \rightarrow E + T \mid T$
 - $(2) T \rightarrow T * F \mid F$
 - (3) $F \rightarrow (E) \mid id$

> Văn phạm tăng cường G':

- (1) $E' \rightarrow E$
- $(2) E \rightarrow E + T \mid T$
- (3) $T \rightarrow T * F \mid F$
- (4) $F \rightarrow (E) \mid id$

Xây dựng

văn phạm

tăng cường

2. Phép toán bao đóng - closure

- Giả sử I là 1 tập các mục của văn phạm G thì bao đóng closure(I) là tập các mục được xây dựng từ I theo 2 quy tắc sau:
- (1) Tất cả các mục trong I được them vào closure(I)
- (2) Nếu $\begin{cases} A \to \alpha. B\beta \in closure(I) \\ B \to \gamma \ là \, một \, luật \, sinh \end{cases}$ thì thêm $B \to .\gamma$ vào closure(I), nếu chưa có trong closure(I)

Lặp lại bước này cho đến khi không thể thêm vào closure(I) được nữa.

2. Phép toán bao đóng - closure

- Xét văn phạm tăng cường G':
- $(1) E' \rightarrow E$
- (2) $E \rightarrow E + T \mid T$
- (3) $T \rightarrow T * F \mid F$
- $(4) F \rightarrow (E) | id$
- Có $I = \{E' \rightarrow .E\}$. Tính closure(I)???
 - Đưa $E' \rightarrow .E$ vào closure(I)
 - Xét E' → .E có $\begin{cases} E \to E + T \\ E \to T \end{cases}$ thêm $\begin{cases} E \to E + T \\ E \to T \end{cases}$ vào closure(I)
 - Xét E \rightarrow .E + T có $\begin{cases} E \rightarrow E + T \\ E \rightarrow T \end{cases}$

- Xét E → .T có $\begin{cases} T \to T * F \\ T \to F \end{cases}$ thêm $\begin{cases} T \to T * F \\ T \to F \end{cases}$ vào closure(I) $T \to F$
- Xét T → .F có $\begin{cases} F \to (E) \\ F \to id \end{cases}$ thêm $\begin{cases} F \to (E) \\ F \to id \end{cases}$ vào closure(I) $\begin{cases} F \to id \end{cases}$

Closure(I) = $\{E' \rightarrow .E; E \rightarrow .E + T; E \rightarrow .T; T \rightarrow .T*F; T \rightarrow .F; F \rightarrow .(E); F \rightarrow .id\}$

3. Phép chuyển - goto

- Phép toán goto: Nếu I là một tập các mục và X là một ký hiệu văn phạm thì goto(I, X) là bao đóng của tập hợp các mục $A \to \alpha X.\beta$ sao cho $A \to \alpha.X\beta \in I$
- Cách tính goto(I, X)
- 1) Tạo một tập $I' = \emptyset$
- 2) Nếu $A \to \alpha.X\beta \in I$ thì đưa $A \to \alpha X.\beta$ vào I', tiếp tục quá trình này cho đến khi xét hết tập I
- 3) Goto(I, X) = closure(I')

3. Phép chuyển - goto

- Ví dụ: Tính goto(I, +), với $I = \{E' \rightarrow E.; E \rightarrow E. + T\}$
- Giải:
 - I' = Ø
 - I' = $\{E \to E+. T\}$
 - Goto(I, +) = closure(I') = J

 - Xét E \rightarrow E+. T có $\begin{cases} T \rightarrow T * F \\ T \rightarrow F \end{cases}$. Vậy, thêm T \rightarrow .T*F và T \rightarrow .F vào J
 - Xét T → .F có $\begin{cases} F \to (E) \\ F \to id \end{cases}$. Vậy, thêm F \to .(E) và F \to .id vào J

Như vậy,
$$goto(I, +) = closure(I') = J = \{E \rightarrow E+. T; T \rightarrow .T*F; T \rightarrow .F; F \rightarrow .(E); F \rightarrow .id \}$$

4. Xây dựng họ các tập mục

```
• Giải thuật xây dựng họ các tập mục LR(0) của văn phạm G':
Void Item(G)
      C:=closure(\{[S'\rightarrow.S]\});
      repeat
             For với mỗi tập các mục I \in C và mỗi ký hiệu văn phạm X
             sao cho goto(I, X) \neq \emptyset và goto(I, X) \notin C
             thì thêm goto(I, X) vào C
      until không còn tập hợp các mục nào có thể them vào C
```

4. Xây dựng họ các tập mục

Ví dụ: Xây dựng họ các tập mục cho văn phạm đã được tăng cường sau:

$$(1) E' \rightarrow E$$

(2)
$$E \rightarrow E + T \mid T$$

$$(3) T \rightarrow T * F \mid F$$

$$(4) F \rightarrow (E) | id$$

closure($\{E' \rightarrow {}^{\bullet}E\}$)	E' → • E E → • E + T		goto (I ₀ , id)	F o id •	l ₅
	$E \rightarrow \cdot T$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$	I ₀	goto (I ₁ , +)	$E \rightarrow E + \cdot T$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$	I ₆
goto (I ₀ , E)	$E' \rightarrow E \cdot E \rightarrow E \cdot T$	l ₁	goto (I ₂ , *)	T → T* • F	
goto (I ₀ , T)	$E \rightarrow T \cdot T \rightarrow T \cdot F$	l ₂		$F \rightarrow \bullet (E)$ $F \rightarrow \bullet id$	l ₇
goto (I ₀ ,F)	$T \rightarrow F \bullet$	l ₃	goto (I ₄ , E)	$F \rightarrow (E \cdot)$ $E \rightarrow E \cdot + T$	I ₈
goto (I ₀ , ()	$F \rightarrow (\bullet E)$ $E \rightarrow \bullet E + T$		goto (I ₄ , F)		≡ I ₃
	$E \rightarrow \cdot T$ $T \rightarrow \cdot T * F$	l ₄	goto (I ₄ , T)		≡ I ₂
	$T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$		goto (I ₄ , ()		≡ I ₄
	$F \rightarrow \bullet \text{ id}$		goto (I ₄ , id)		≣ I ₅

		_
goto (I ₆ ,T)	E →E + T •	-l ₉
	$T \rightarrow T \bullet * F$	
goto (I ₆ , F)		≡ I ₃
goto (I ₆ , ()		≡ I ₄
goto (I ₆ , id)		≡ I ₅
goto (I ₇ , F)	$T \rightarrow T * F \bullet$	I ₁₀
goto (I ₇ , ()		≡ I ₄
goto (I ₇ , id)		$\equiv I_5$
goto $(I_8,)$)	$F \rightarrow (E) \bullet$	≣ I ₁₁
goto $(I_8,+)$		≡ I ₆
goto (I ₉ ,*)		≡ I ₇

5. Giải thuật xây dựng bảng SLR

- 1) Xây dựng họ các tập mục của G': $C = \{I_0, I_1, ..., I_n\}$
- 2) Trạng thái i được xây dựng từ I_i . Các action tương ứng trạng thái i xác định như sau:
- a) Nếu $A \rightarrow \alpha.a\beta \in I_i$ và $goto(I_i, a) = I_j$ thì action[i, a] = "shift j", với a là ký hiệu kết thúc.
- b) Nếu A $\rightarrow \alpha$. \in I_i thì action[i, a] = "redure A $\rightarrow \alpha$ ", với a \in Follow(A), và A \neq S'
- c) Nếu S' \rightarrow S. \in I_i thì action[i, \$] = "accept"
- Nếu 1 action đụng độ được sinh ra bởi các luật trên, ta nói văn phạm không phải là SLR(1). Giải thuật thất bại.
- 3) Nếu goto(i, A) = I_i thì goto[i, A] = j, với A là ký hiệu chưa kết thúc.
- 4) Các ô không được xác định bởi 2 và 3 đều là error.
- 5) Trạng thái khởi đầu của bộ phân tích cú pháp được xây dựng từ tập mục chứa S' → .S

6. Ví dụ

- Hãy xây dựng bảng phân tích cú pháp SLR cho văn phạm sau:
- $(1) E \rightarrow E + T \mid T$
- (2) $T \rightarrow T * F \mid F$
- $(3) F \rightarrow (E) | id$

Xây dựng

văn phạm

Và biết tính tạp rollow

Hoàng Văn Tuân

Tính tập First và Follow

Văn phạm tăng cường:

$$E' \rightarrow E$$

- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow id$

Tính First:

$$First(+) = { + }$$

$$First(F) = \{id, (\}$$

$$First(T) = \{id, (\}$$

$$First(E) = \{id, (\}$$

Tính Follow:

$$Follow(E) = \{\$, +, \}$$

$$Follow(T) = \{\$, +, *, \}$$

$$Follow(F) = \{\$, +, *, \}$$

Xây dựng họ các tập mục

closure({E' → •E})	E' → • E E → • E + T E → • T T → • T * F	I _o	goto (I ₂ , *)	$T \rightarrow T^* \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$	I ₇
	$T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$	Ť	goto (I ₄ , E)	$F \to (E \bullet)$ $E \to E \bullet + T$	l ₈
	$F \rightarrow \bullet id$		goto (I ₄ , F)		≡ I ₃
goto (I ₀ , E)	$E' \rightarrow E \cdot E \rightarrow E \cdot + T$	I ₁	goto (I ₄ , T)		≣ l ₂
goto (I ₀ , T)	E → T •		goto (I ₄ , ()		$\equiv I_4$
goto (1 ₀ , 1)	$T \rightarrow T \cdot *F$	l ₂	goto (I ₄ , id)		≡ I ₅
goto (I ₀ ,F)	$T \rightarrow F \bullet$	l ₃	goto (I ₆ ,T)	E →E + T •	l ₉
goto (I ₀ , ()	$F \rightarrow (\bullet E)$			$T \to T \bullet {}^\star F$	
	E → • E + T E → • T		goto (I ₆ , F)		≡ I ₃
	T → • T * F T → • F	l ₄	goto (I ₆ , ()		≡ I ₄
	$F \rightarrow \bullet (E)$		goto (I ₆ , id)		≡ I ₅
	$F \to \bullet id$		goto (I ₇ , F)	$T \rightarrow T * F \bullet$	I ₁₀
goto (I ₀ , id)	$F \to id \bullet$	l ₅	goto (I ₇ , ()		≣ I ₄
goto (I ₁ , +)	$E \rightarrow E + \bullet T$		goto (I ₇ , id)		≡ I ₅
	T → • T * F T → • F F → • (E)		goto (I ₈ ,))	F → (E) •	≣ I ₁₁
		I ₆	goto $(I_8,+)$		≡ I ₆
	F → • id		goto (I ₉ ,*)		≡ I ₇

State			Act	tion		Goto		
	id	+	*	()	\$ Е	Т	F
0								
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								

QT 2.a: Nếu A $\rightarrow \alpha \cdot a\beta \in I_i$ và goto $(I_i, a) = I_j$ thì action[i, a] = "shift j", a là ký hiệu kết thúc

- Xét I₀ có:

(1)
$$F \rightarrow \bullet (E)$$

 $Goto(I_0, () = I_4)$
 $\rightarrow action(0, () = S_4)$

- (2) $F \rightarrow \bullet id$ $Goto(I_0, id) = I_5$ $\rightarrow action(0, id) = S_5$
- Xét I₁ có:

(1)
$$E \rightarrow E \cdot + T$$

 $Goto(I_1, +) = I_6$
 $\rightarrow action(1, +) = S_6$

- Xét I₂ có:

(1)
$$T \rightarrow T \cdot * F$$

 $Goto(I_2, *) = I_7$
 $\rightarrow action(2, *) = S_7$

Xét I₃ không có mục nào thỏa mãn.

.

closure({E' → •E})	$E' \rightarrow \bullet E$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet id$	l _o
goto (I ₀ , E)	$E' \to E \bullet \\ E \to E \bullet + T$	l ₁
goto (I ₀ , T)	$E \rightarrow T \cdot T \rightarrow T \cdot F$	l ₂
goto (I ₀ ,F)	$T \rightarrow F \cdot$	l ₃
goto (I ₀ , ()	$F \rightarrow (\bullet E)$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet id$	l ₄
goto (I ₀ , id)	F o id •	l ₅

QT 2.b: Nếu A $\rightarrow \alpha^{\bullet} \in I_i$ thì action[i, a] = "reduce (A $\rightarrow \alpha$)", với mọi a \in FOLLOW(A), A \neq S'

- Xét I₀ không có mục nào thỏa mãn.
 Xét I₁ không có mục nào thỏa mãn.
 Xét I₂ có:
 - E \rightarrow T •

 Follow(E) ={ \$, +, }} \rightarrow action (2, \$) = R₂

 action (2, +) = R₂

 action (2,)) = R₂
- Xét I₃ có:

T → F •

Follow(T) = { \$, +, *, }}

→ action (3, \$) =
$$R_4$$
action (3, +) = R_4
action (3, *) = R_4
action (3,) = R_4
với R_4 : T → F

closure({E' → •E})	$E' \rightarrow \bullet E$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet id$	I ₀
goto (I ₀ , E)	$E' \rightarrow E \cdot E \rightarrow E \cdot F + F$	I ₁
goto (I ₀ , T)	$E \rightarrow T \cdot T \rightarrow T \cdot F$	l ₂
goto (I ₀ ,F)	$T \rightarrow F \bullet$	l ₃
goto (I ₀ , ()	$F \rightarrow (\bullet E)$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet id$	I ₄
goto (I ₀ , id)	$F \rightarrow id \bullet$	l ₅

QT 2.c: Nếu S' \rightarrow S • \in I_i thì action[i, \$] = "accept".

Có
$$\{E' \rightarrow E \bullet\} \in I_1 \rightarrow action[1, \$] = "acc"$$

QT 3: Nếu goto $(I_i,A)=I_j$ thì goto [i,A]=j, A là kí hiệu chưa kết thúc

$$Goto(I_0, E) = I_1$$
 \rightarrow $goto[0,E] = 1$

$$Goto(I_0, T) = I_2 \rightarrow goto[0,T] = 2$$

$$Goto(I_0, F) = I_3$$
 \rightarrow $goto[0,F] = 3$

$$Goto(I_4, E) = I_8$$
 \rightarrow $goto[4,E] = 8$

closure({E' → •E})	$E' \rightarrow \cdot E$ $E \rightarrow \cdot E + T$ $E \rightarrow \cdot T$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$	I ₀
goto (I ₀ , E)	$E' \rightarrow E \cdot E \rightarrow E \cdot F + F$	l ₁
goto (I ₀ , T)	$\begin{array}{c} E \to T \bullet \\ T \to T \bullet * F \end{array}$	l ₂
goto (I ₀ ,F)	$T \rightarrow F \bullet$	l ₃
goto (I ₀ , ()	$F \rightarrow (\bullet E)$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet id$	I ₄
goto (I ₀ , id)	$F \rightarrow id \bullet$	l ₅

- (1) $E \rightarrow E + T$
- (2) $E \rightarrow T$
- (3) $T \rightarrow T * F$
- (4) $T \rightarrow F$
- (5) $F \rightarrow (E)$
- (6) $F \rightarrow id$

State	Action				Goto				
	id	+	*	()	\$	E	Т	F
0	S ₅			S ₄			1	2	3
1		S ₆				асс			
2		r ₂	s ₇		r ₂	r ₂			
3		r ₄	r ₄		r ₄	r ₄			
4	S ₅			S ₄			8	2	3
5		r ₆	r ₆		r ₆	r ₆			
6	S ₅			S ₄				9	3
7	S ₅			S ₄					10
8		S ₆			S ₁₁				
9		r ₁	s ₇		r ₁	r ₁			
10		r ₃	r ₃		r ₃	r ₃			
11		r ₅	r ₅		r ₅	r ₅			

Thank you for watching Hoàng Văn Tuân