

Intelligent Analysis of Contact Databases' Importation for Spam Prevention

What is E-goi?

- E-goi is an omni channel marketing platform
- 350.000 users all over the world
- Millions of messages sent daily
- Used by various renowned brands

Push

WebPush InStore Behaviour Tracking

Web Behaviour Tracking

Smart SMS

IVR

Renowned Partners

Problem

Campaigns

- Users can create campaigns to send to their subscribers
- One way to do this is to import contact databases
- This functionality is sometimes used by spammers in order to make their work easier

Problem

ISP's Attitude

- ISP's are normally also responsible for providing e-mail services
- To put it lightly... They don't like spammers
- To put it in another way. You better run if there is even a reason to suspect you
- This leads to domains being blocked by ISP's or at least being treated cautiously

My friend told me to shoot first and ask questions later.

I was going to ask him why, but I had to shoot him first.

How can we solve it?

- The only reliable way to solve this problem is to block spammers before campaigns can be started
- However this means less information to be evaluated
- Time and experience are required to detect spam based on solely this amount of information
- In order to maintain such a solution automatization is necessary

Information

- Information is important
- However too many information can be problematic
- Although features analysed in this problem are not those normally associated with spam classification, their number is still significant
- Which ones are more relevant?

Classifiers

- There are many types of classifier to be used
- We will focus on Random-forest, SVC and AdaBoost

Unbalanced Data

- Ideally a classifier should always receive a balanced set of data
- This is not realistic
- Example-set: 24000 successful importations to 600 blocked
- Solutions include:
 - Under-sampling the majority class
 - Over-sampling the minority-class
 - Altering the relative weights of each class

Tuning

- Classifiers are affected by hyper-parameters
- For-each one there is a combination that offers the best classification results
- How to find it?

Prototype Comparison

Metrics

- Accuracy is not an adequate metric
- Precision and recall are more adequate
- Taking into account the context which metric should be more relevant?

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$\mathsf{Recall} = \frac{\mathit{TP}}{\mathit{TP} + \mathit{FN}}$$

$$Precision = \frac{TP}{TP + FP}$$

	Precision	Recall	Support (Total Instances)	
Positive Class	0.733	0.726	609	— SVC
Negative Class	0.993	0.993	24144	346
Avg / Total	0.987	0.987	24753	

	Precision	Recall	Support (Total Instances)	
Positive Class	0.893	0.819	609	D E
Negative Class	0.995	0.998	24144	— RF
Avg / Total	0.993	0.993	24753	

	Precision	Recall	Support (Total Instances)	
Positive Class	0.867	0.844	609	
Negative Class	0.996	0.997	24144	АВ
Avg / Total	0.993	0.993	24753	

ROC Curves

- Show a graphical representation of the connection/trade-off between sensitivity and specificity
- Sensitivity (true positive rate or recall)
- Specificity (also called the true negative rate)

Training Time

Conclusion

- Spam Prevention
- Easier Editability
- Less Work-load for the Employees in charge of Deliverability
- Easily available through documented API

QUESTIONS

