d) Équations et inéquations

<u>Théorème</u>: Soit a un nombre réel. L'équation $x^2 = a$ admet :

- une unique solution réelle, 0 si a = 0;
- deux solutions réelles distinctes, \sqrt{a} et $-\sqrt{a}$ si a > 0;
- aucune solution réelle si a < 0.

Remarque : La conjecture du nombre de solutions de ce type d'équation peut être effectuée à l'aide de la parabole représentant la fonction carrée.

Démonstration :

- si a=0, l'équation devient $x^2=0$ qui admet une seule solution : x=0
- $-\sin a>0$, l'équation $x^2=a$ devient $x^2-a=0$ c'est-à-dire $x^2-(\sqrt{a})^2=0$ et ainsi $(x-\sqrt{a})\,(x+\sqrt{a})=0$ d'où $x-\sqrt{a}=0$ ou $x+\sqrt{a}=0$ ce qui donne $x=\sqrt{a}$ ou $x=-\sqrt{a}$ Donc les solutions de l'équation $x^2=a$ sont bien, dans ce cas, \sqrt{a} et $-\sqrt{a}$
- si a<0, comme $x^2\geqslant 0$ pour tout réel x, l'équation $x^2=a$ n'admet pas de solution.

Exemple : Résoudre dans \mathbb{R} l'équation $3x^2 - 2 = -1$.

$$\overline{3x^2 - 2} = -1 \iff 3x^2 = 1 \iff x^2 = \frac{1}{3}.$$

Comme
$$\frac{1}{3} > 0$$
, les solutions de l'équation sont $\sqrt{\frac{1}{3}}$ et $-\sqrt{\frac{1}{3}}$.

La résolution de toute inéquation de la forme $x^2 < a$ ou $x^2 > a$ (avec a réel peut s'effectuer à l'aide de la résolution de l'équation $x^2 = a$ et de la courbe représentant la fonction carrée.

Ainsi si a>0, l'ensemble des solutions réelles de $x^2< a$ est $]-\sqrt{a}$; $\sqrt{a}[$ et l'ensemble des solutions de $x^2>a$ est $]-\infty$; $-\sqrt{a}[$ \cup $]\sqrt{a}$; $-\infty[$.

Exemple : Résoudre les inéquations $x^2 < 5$ et $x^2 \ge 9$.

En s'aidant de la courbe représentative de la fonction carrée, on conclut que :

•
$$x^2 < 5 \text{ sur }] -\sqrt{5}; \sqrt{5}[;$$

•
$$x^2 \ge 9 \text{ sur }] - \infty ; -3[\cup]3; +\infty[.$$

