作業系統 Operating System

HW2 - CPU Scheduling

題目

- 給定一檔案內有各個Process之ID、CPU Burst、 Arrival Time以及Priority,請根據這些資訊撰寫 一程式模擬各種指定的CPU排程法
- 輸出結果必須繪出排程法的Gantt Chart,並計算每個Process的Turnaround Time及Waiting
 Time

Method	TimeSlice		
ProcessID	CPUBurst	ArrivalTime	Priority

必須完成的事項(1)

80%

- 程式須實現以下排程方法(Method)
- 1. FCFS (First Come First Serve)
- 2. RR (Round Robin)
- 3. SJF (Shortest Job First)
- 4. SRTF (Shortest Remaining Time First)
- 5. HRRN (Highest Response Ratio Next)
- 6. PPRR (Preemptive Priority + RR)
- 7. ALL

必須完成的事項(2)

20%

- 書面報告須說明以下內容 (5頁內)
 - ■開發環境
 - ■實作方法和流程
 - ■不同排程法的比較
 - ◆平均等待時間 (Avg. Waiting Time)
 - ◆工作往返時間(Turnaround Time)
 - ■結果與討論

處理原則一FCFS

- 依Arrival Time先後次序進行排程;
- 若Arrival Time相同時,則依Process ID由小至大 依序處理。

處理原則一RR

- 依Arrival Time先後次序進行排序,時候未到的 Process不能執行;
- 若Arrival Time相同時,則依Process ID由小至大 依序處理;
- 當Timeout發生時,被換下的Process要從佇列尾端開始排序,若恰巧有新來的Process,則讓新來的Process排在前面;
- 若Process的Time Slice未用完就結束時,就必須讓下一個Process執行,且擁有完整的time slice。

處理原則一SJF

- 由CPU Burst最小的Process先處理;
- · 若CPU Burst相同的Process不只一個,則依 Arrival Time小的先處理;
- 若CPU Burst相同且Arrival Time相同,則依 Process ID由小至大依序處理。

處理原則一SRTF

- 由剩餘CPU Burst最小的Process先排序;
- · 若剩餘CPU Burst相同的Process不只一個,則依 Arrival Time小的先處理;
- 若剩餘CPU Burst相同且Arrival Time相同,則依 Process ID由小至大依序處理。

處理原則一HRRN

- Highest Response Ratio Next
- 反應時間比率(Response Ratio)愈高的Process優先 處理;
- 若Ratio相同的Process不只一個,則依Arrival Time小的先處理;
- 若Ratio相同且Arrival Time相同,則依Process ID 由小至大依序處理。

處理原則一PPRR

- Preemptive Priority + Round Robin
- 依Priority大小依序處理, Priority Number小的 Process代表優先處理;
- 若Priority相同的Process不只一個,採用RR原則 進行排程:
 - 若有Priority相同的process正在執行中,須等待其時間片段用罄;
 - 當Time out或被Preemptive時,從佇列尾端開始依 Priority大小排序,若恰巧有新來的Process,則讓新 來的Process排在前面

PPRR Example

Time slice = 10

<u>Process</u>	<u>Priority</u>	<u>Burst</u>	<u>Arrival</u>
P_1	1	20	0
$P_2^{'}$	3	25	25
$\overline{P_3}$	3	25	30
P_4	2	15	60
P_5	5	10	100
P_6	4	10	105

CPU排程法一練習

)	Process	Arrival Time	CPU Burst	Priority
	P1	0	6	3
	P2	2	3	1
	P3	5	6	3
	P4	8	5	2

- Time Slice = 2
- 請利用FCFS、RR、SJF、SRTF、HRRN、PPRR 排程法,繪製各種方法的甘特圖,並計算各種方 法的平均等待時間為何?