

Sistemas Digitais

Pedro Salgueiro pds@uevora.pt

Sumário

- Elementos de memória
 - Conceitos
 - Tipos
 - Variedade
- Latches
 - Latch SR
 - Latch SRE
 - Latch D
- Edge-triggered
 - Edge-triggered D
 - Edge-triggered JK
 - Edge-triggered T

Conceitos

- Flip-flop (circuito bi-estável)
 - Circuito que permite estabelecer e memorizar um bit de informação
 - Pode ter em permanência um de dois estados possíveis

Estado

Valor lógico à saída do flip-flop

Tipo de comportamento

- Sensível ao nível → latch (trancar)
- Sensível à transição → edge-triggered

Tipos de flip-flops

- Latch
 - Funcionamento transparente das entradas para as saídas
 - Uma alteração das entradas pode provocar uma mudança de estado imediata das saídas

Edge-triggered

- A mudança de estado dá-se num momento bem determinado e sob controlo do utilizador
 - Independentemente do momento em que as entradas se alteram
- Tem uma entrada de sincronização: relógio
 - À entrada de relógio são aplicados impulso de relógio
- Existem flip-flops sensíveis à
 - transição ascendente
 - transição descendente

Flip-flop *latch*(exemplo)

- Entradas e saídas
 - Entradas
 - dados: D (data)
 - controlo: E (enable)
 - Saídas Q
- Comportamento
 - E = 1
 - Circuito transparente de D para Q
 - E = 0
 - Q mantém o valor que estava em D no instante anterior à transição
 - Q é insensível ao que ocorre em D

Circuito

Flip-flop edge-triggered (exemplo)

- Entradas e saídas
 - Entradas
 - dados: D (data)
 - controlo: CLK (relógio)
 - Saídas Q

Comportamento

 O circuito é receptivo ao valor de D no momento da transição ascendente de CLK

Circruito

Flip-flop sensível à transição descendente

Variedade e modularidade

- Latch
 - SR, SRE, D
- Edge-triggered
 - D, JK, T
- Diferenças
 - Nº de entradas
 - Comportamento relativamente às entradas
- Latch SR
 - É a célula de memória básica
 - Qualquer outro flip-flop pode ser sintetizado a partir deste

Latch SR

Latch SR

Entradas

- S (set): impõe o estado 1
- R (reset): repõe o estado 0

Saídas

- Q: define o estado do flip-flop
- Q: complementar de Q

Comportamento

- set
 - $S = 1, R = 0 \rightarrow Q = 1$
- reset
 - $S = 0, R = 1 \rightarrow Q = 0$
- manutenção
 - S = 0, $R = 0 \rightarrow Q = Q^*$ (mantém o estado anterior)

Nota: não há regra estabelecida para a activação simultânea de S e R

Latch SR

Características

Símbolo lógico

Diagrama temporal

Tabela de verdade

S	R	Q*	Q	
0	0	0	0	manutenção
0	0	1	1	manutenção
0	1	-	0	reset
1	0	-	1	set
1	1	-		

Mapa de karnaugh

Q*	R 00	01	11	10
0	0	0	-	1
1	1	0	-	1

Latch SR

Síntese

- Comportamentos distintos consoante a atribuição de valores às condições de indiferença
- Com indiferença = 1

$$- Q = S + Q^* \overline{R} = \overline{\overline{S} (\overline{Q^* \overline{R}})}$$

- S tem predomínio sobre R
 - S = 1, R = 1 → força ambas as saídas a 1

• Com indiferença = 0

$$- Q = S \overline{R} + Q^* \overline{R} = \overline{R (S + Q^*)}$$

- R tem predomínio sobre S
 - S=1, R=1 → força ambas as saídas a 0

Latch SRE

- Latch SR com entrada de controlo
- Entradas
 - S (set), R (reset)
 - E (enable): entrada de controlo
- Saídas
 - Q, Q
- Comportamento
 - $E = 1 \rightarrow latch SR$
 - E = 0 → insensível às entradas (modo manutenção)

Latche SRE

Características

Símbolo lógico

Diagrama temporal

Tabela de verdade

Е	S	R	Q*	Q	
0	-	-	0	0	manutenção
0	-	-	1	1	manutenção
1	0	0	0	0	manutenção
1	0	0	1	1	manutenção
1	0	1	-	0	reset
1	1	0	-	1	set
1	1	1	-		

Síntese

Latch D

- Latch com entrada de controlo que memoriza o nível presente à entrada
- Entradas
 - D (data)
 - E (enable): entrada de controlo
- Saídas
 - Q, Q
- Comportamento
 - E = 1 → Q = D (modo cópia)
 - E = 0 → insensível à entrada (modo manutenção)

Latch D

Características

Símbolo lógico

Diagrama temporal

Tabela de verdade

Е	D	Q*	Q	
0	-	0	0	manutenção
0	-	1	1	manutenção
1	0	-	0	cópia
1	1	-	1	cópia

Síntese

Edge-tiggered D

Entradas

- D (data)
- CLK (clock): entrada de relógio

Saídas

- Q, Q

Comportamento

 No instante da transição ascendeste do relógio (CLK) transfere a entrada D para a saída Q, mantendo-a memorizada até que ocorra outra transição ascendente do relógio

Edge-triggered D

Características

Símbolo lógico

Diagrama temporal

Tabela de verdade

CLK	D	Q*	Q	
1	0	-	0	cópia
↑	1	-	1	cópia
0	-	Q*	Q*	manutenção
1	-	Q*	Q*	manutenção
↓	-	Q*	Q*	manutenção

Síntese

Edge-tiggered D

Arquitectura master-slave

Arquitectura de latches a 2 níveis

1º nível: master

2º nível: slave

Tabela de excitação

Q*	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

- Se o estado se mantiver a 0, infere-se que D = 0
- Se a transição for de 0 para 1, infere-se que D = 1

- ...

Edge-tiggered JK

Entradas

- J
- K
- CLK (clock)

Saídas

- Q, Q

Comportamento

- Na transição ascendeste de relógio, considera os valores de J e K
 - J = 0, K = 0 → mantém o estado anterior
 - $J = 0, K = 1 \rightarrow Q = 0$
 - $J = 1, K = 0 \rightarrow Q = 1$
 - J = 1, K = 1 → inverte o estado anterior

Edge-triggered JK

Características

Símbolo lógico

Diagrama temporal

Tabela de verdade

CLK	J	K	Q*	Q	
↑	0	0	Q*	Q*	manutenção
1	0	1	-	0	reset
↑	1	0	-	1	set
↑	1	1	Q*	Q*	comutação
0	-	-	Q*	Q*	manutenção
1	-	-	Q*	Q*	manutenção
↓	-	-	Q*	Q*	manutenção

Edge-triggered JK

UNIVERSIDADE DE ÉVORA

Características

Síntese

Tabela de excitação

Q*	Q	J	K
0	0	0	-
0	1	1	-
1	0	-	1
1	1	-	0

Edge-tiggered T

Entradas

- T
- CLK (clock)

Saídas

- Q, Q

Comportamento

- A cada transição ascendente de relógio, considera o valor de T
 - $T = 0 \rightarrow$ mantém o estado anterior
 - $T = 1 \rightarrow$ inverte o estado anterior

Edge-triggered T

Características

Símbolo lógico

Diagrama temporal

Tabela de verdade

CLK	Т	Q*	Q	
↑	0	Q*	Q*	manutenção
↑	1	Q*	$\overline{Q^*}$	comutação
0	-	Q*	Q*	manutenção
1	-	Q*	Q*	manutenção
\downarrow	-	Q*	Q*	manutenção

Edge-triggered T

Características

Síntese

Tabela de excitação

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

Entradas assíncronas

Preset

Coloca o flip-flop no estado 1 independentemente das entradas (e condições do clock)

Clear

Coloca o flip-flop no estado 0 independentemente das entradas (e condições do clock)

Tarefas até à próxima aula prática

- Ficha 07 Elementos de memória
 - Todos os exercícios