Podstawowe układy prostownikowe

Prostowniki jednofazowe.

W najprostszym prostowniku diodowym z obciążeniem rezystancyjnym prąd jest proporcjonalny do napięcia wejściowego, jak pokazano na rys. 1.

Rys. 1. Prostownik jednopołówkowy z obciążeniem rezystancyjnym.

Zadanie: Oblicz wartość średnią i skuteczną przebiegu prądu.

Przy obciążeniu indukcyjno-rezystancyjnym prąd płynie jeszcze, gdy napięcie zasilające jest ujemne jak pokazano na rys. 2.

Rys. 2. Prostownik jednopołówkowy z obciążeniem indukcyjno-rezystancyjnym.

Wynika to z właściwości magazynowania energii w indukcyjności. Zależność prądu od napięcia opisana jest zależnością:

$$di = \frac{1}{L}v_L \cdot dt$$

Tak więc prąd opisany jest zależnością:

$$i(t) = \frac{1}{L} \int_{t_L}^{t} v_L dt$$

W stanie ustalonym, po czasie okresu *T* przebiegu, prąd powinien być taki sam, a przy nieciągłym przepływie prądu powinien zaczynać się od zera. Prąd osiąga maksimum, gdy napięcie na indukcyjności zmienia znak. Wartość prądu jest całką napięcia na indukcyjności. Dlatego powierzchnia *obszaru A* odpowiadająca narostowi prądu jest równa powierzchni *obszaru B* odpowiadającemu opadaniu prądu.

Sterowanie tyrystorowe silników komutatorowych prądu stałęgo(DC) - prostowniki jednofazowe Zadanie: Określ zależność na i(t) rozwiązując równanie różniczkowe

$$V_S \cdot \sin \omega t = R \cdot i + L \frac{di}{dt}$$
 $i = 0$ przy $t = 0$

Odpowiedź:
$$i(t) = \frac{V_s}{Z} \left[sin(\omega t - \varphi) + sin \varphi \cdot e^{-\frac{R}{L}t} \right]$$

gdzie
$$Z = \sqrt{R^2 + (\omega L)^2}$$
 i $\varphi = arc tg \frac{\omega L}{R}$

Często spotykanym obciążeniem jest połączenie indukcyjności L i źródła napięcia stałego V_d , co pokazane jest na rysunku 3 i odpowiada w uproszczeniu silnikowi DC.

Rys. 3. Prostownik jednopołówkowy z obciążony indukcyjnością i źródłem napięciowym.

Przy małej wartości V_d względem V_S prąd maleje do zera dopiero w ujemnym półokresie napięcia zasilającego.

Zadanie: Określ zależność i(t) przy zadanych wartościach v_S , V_d i L.

Prostowniki jednofazowe - mostkowe

Typowym rozwiązaniem zasilania urządzeń napięciem stałym jest prostownik mostkowy, obciążony kondensatorem, jak pokazano na rys. 4.

Rys. 4. a) Prostownik mostkowy obciążony kondensatorem, b) układ równoważny.

Sterowanie tyrystorowe silników komutatorowych prądu stałęgo(DC) - prostowniki jednofazowe Impedancję sieci zasilającej i dławika filtrującego reprezentuje indukcyjność zastępcza L_S . Schemat zastępczy takiego układu zamieszczono na rys. 4.b. Słuszny on jest tylko dla nieciągłego prądu w obwodzie.

Dla analizy układu przyjmiemy założenia:

- 1. Wartość pojemności C_d jest na tyle duża, że napięcie na nim jest bez tętnień i można go zastąpić źródłem napięcia $v_d(t)=V_d$.
- 2. Prąd w obwodzie maleje do zera przed następnym półokresem prądu.
- 3. Analizujemy stan ustalony, czyli wartość średnia prądu w kondensatorze C_d jest równa zeru, a wartość średnia prądu obciążenia i_o jest równa wartości średniej prądu i_d .

Obliczenia układu są utrudnione, gdyż napięcie wyjściowe V_d jest funkcją prądu obciążenia i_0 , źródła napięcia V_s i indukcyjności L_s . Proces obliczeniowy jest iteracyjny, a wynik zamieszczony w podręcznikach jest często w postaci wykresów, nomogramów.

Sposób obliczeń przedstwiono na podstawie przebiegów pokazanych na rys. 5.

Rys. 5. Jednofazowy prostownik: a) przebiegi napięć i prądów, b) charakterystyka.

1. Zakładamy wartość napięcia wyjściowego V_d mniejszą od wartości szczytowej napięcia V_s . Chwila początkowa Θ_b przepływu prądu i_d może być wyznaczona z zależności:

$$V_d = \sqrt{2}V_S \cdot \sin \Theta_b$$

2. Napięcie v_L na indukcyjności L_S jest :

$$v_L = \sqrt{2}V_S \cdot \sin \omega t - V_d$$

w czasie przepływu prądu i_d , który wyliczamy z zależności:

$$L_{S} \cdot i_{d}(\omega t) = \frac{1}{\omega} \int_{\Theta_{b}}^{\omega t} v_{L} d(\omega t) \qquad \Theta_{b} < \omega t < \Theta_{f}$$

Obliczamy wartości i_d , aż osiągnie zero w chwili Θ_f . Całka napięcia dodatniego na indukcyjności (Pole A) musi być równe całce napięcia ujemnego (Pole B).

Gdyby otrzymana wartość $\mathbf{\Theta}_f$ była większa od π , należy przyjąć większą wartość V_d i zacząć od punktu 1.

3. Znając Θ_f iloczyn $L_S I_d$ może być wyliczony jako wartość średnia $L_S i_d(\omega t)$ w półokresie pomiędzy $\omega t = 0$ i π :

$$L_{S} \cdot I_{d} = \frac{1}{\pi} \int_{\Theta_{b}}^{\Theta_{f}} L_{S} \cdot i_{d} \cdot (\omega t) d(\omega t)$$

Postępując powyższą metodą otrzymujemy zależność napięcia wyjściowego V_d jako funkcję iloczynu L_S I_d . Dla większych wartości L_S I_d gdzie $\Theta_f > \pi$ funkcja została zaznaczona linią przerywaną (patrz zadanie). W praktyce zmiany napięcia wyjściowego V_d

Sterowanie tyrystorowe silników komutatorowych prądu stałęgo(DC) - prostowniki jednofazowe w funkcji prądu obciążenia I_0 (= I_{d1}) odczytujemy z wykresów otrzymanych na drodze symulacji komputerowej. Wartość tętnień napięcia wyjściowego V_d może być wyliczona ze znajomości i_d , I_d i C.

Zadanie: Opisz metodę wyznaczania wartości tętnień napięcia wyjściowego V_d .

Zadanie: Oblicz wartość $L_S I_d$, dla zadanego V_S , przy którym $\Theta_f = \pi$ (prąd przestaje płynąć przed następnym okresem). Oblicz wartość V_{d^*}

Zadanie: Oblicz wartość $L_S I_d$, dla zadanego V_S , przy którym $\Theta_f = \Theta_b + \pi$ (granica nieciągłego przepływu prądu przez indukcyjność). Oblicz wartość V_d .

Zadanie: Co się dzieje w układzie przy wzrastającym obciążeniu mostka prostowniczego lub dodaniu dużej indukcyjności filtrującej pomiędzy mostkiem a pojemnością. Odpowiada to wzrostowi $\mathbf{L}_{S} \mathbf{I}_{d}$ ponad wartość graniczną obliczoną w poprzednim zadaniu. Narysuj przebieg prądu w układzie.