```
fprintf('del(x) = pi/64, del(t) = 0.001\n');
fprintf('Velocities = 0.4 \& -0.4 \n');
dx = pi/64;
dt = 0.001;
x = 0-dx:dx:2*pi+dx;
t = 0:dt:1;
v = [0.4; -0.4];
for j = 1 : length(v)
    u0 = \sin(x);
    u = u0;
    unp1 = u0;
    t = 0;
    N = 2*pi/dx;
    nsteps = 1/dt;
    for n = 1: nsteps
        u(1) = u(3);
        u(N+3) = u(N+1);
        for i = 2 : N+2
            unp1(i) = u(i) - v(j)*dt/dx*(u(i) - u(i-1));
        end
        t = t + dt;
        u = unp1;
        if round(t,4)==0.1000
            exact = sin(x - v(j)*t);
            figure(j);
            plot(x, exact, 'r-');
            xlabel('x');
            ylabel('u(x,t)');
            grid on
            hold on
            plot(x, u, 'b-.');
            hold off
            title(sprintf('time = %1.3f, velocity = %1.3f',t, v(j)))
            legend('Exact', 'Calculated')
        end
    end
end
del(x) = pi/64, del(t) = 0.001
Velocities = 0.4 \& -0.4
```


Published with MATLAB® R2022a