Experiment 7: Bipolar Junction Transistor and Heterojunction Bipolar Transistor

Department of Electrical Engineering Indian Institute of Technology, Bombay

EE236: Experiment 7

Background Information

The Bipolar Junction Transistor (BJT) is a three-terminal, two-junction device widely used in high-frequency applications such as RF circuits. The terminals are:

- Base (B)
- Collector (C)
- Emitter (E)

A BJT allows a small current injected at the base to control a much larger current flowing between the emitter and collector terminals, making it suitable for amplification and switching.

DC Parameters of BJT

Key Definitions

1. Base Transport Factor (α_T) :

$$\alpha_T = \frac{I_C}{I_E}$$

2. Emitter Efficiency (γ) :

$$\gamma = \frac{I_{E,n}}{I_E}$$

3. Common Emitter Current Gain (β):

$$\beta = \frac{I_C}{I_B}$$

Components Necessary

• BC547 BJT

• MT3S1 HBT

• Resistors: $1k\Omega$, 470Ω , $15k\Omega$, $18k\Omega$, $10k\Omega$, $1.2k\Omega$, 250Ω

• Potentiometer: $1k\Omega$

• Capacitor: $4.7\mu F$

• Breadboard, Multimeters, and Connecting Wires

Part I: BJT Parameters in Common Base Configuration

1. Setup and Measurements

In this part, we analyze the output characteristics of a BC547 BJT in the Common Base (CB) configuration by varying the emitter current (I_E) and measuring the collector current (I_C) for different collector-base voltages (V_{CB}).

Circuit Configuration

- 1. Connect the BC547 BJT in the Common Base configuration.
- 2. Emitter connected to ground through a variable resistor to control I_E .
- 3. Collector connected to a DC power supply with a variable V_{CB} .
- 4. Ensure the collector-base junction is reverse-biased.

Data Collection

Assuming the following data was collected during measurements:

$I_E \text{ (mA)}$	V_{CB} (V)	$I_C \text{ (mA)}$
3	4	2.4
6	4	5.8
9	4	8.2

Table 1: Measured Data for BJT in Common Base Configuration

2. Calculating α and β

Step 1: Calculate α

Using the formula:

$$\alpha = \frac{I_C}{I_E}$$

Calculating for different I_E :

• For $I_E = 3 \,\mathrm{mA}$:

$$\alpha = \frac{2.4 \,\mathrm{mA}}{3 \,\mathrm{mA}} = 0.8$$

• For $I_E = 6 \,\mathrm{mA}$:

$$\alpha = \frac{5.8\,\mathrm{mA}}{6\,\mathrm{mA}} \approx 0.9667$$

• For $I_E = 9 \,\mathrm{mA}$:

$$\alpha = \frac{8.2\,\mathrm{mA}}{9\,\mathrm{mA}} \approx 0.9111$$

Step 2: Calculate β

Assuming $\gamma \approx 1$, we can approximate the base current (I_B) :

$$I_B = I_E - I_C$$

Calculating β :

• For $I_E = 3 \,\mathrm{mA}$:

$$I_B = 3 \,\text{mA} - 2.4 \,\text{mA} = 0.6 \,\text{mA}$$

$$\beta = \frac{2.4 \,\text{mA}}{0.6 \,\text{mA}} = 4$$

• For $I_E = 6 \,\mathrm{mA}$:

$$I_B = 6 \text{ mA} - 5.8 \text{ mA} = 0.2 \text{ mA}$$

$$\beta = \frac{5.8 \text{ mA}}{0.2 \text{ mA}} = 29$$

• For $I_E = 9 \,\mathrm{mA}$:

$$I_B = 9 \text{ mA} - 8.2 \text{ mA} = 0.8 \text{ mA}$$

$$\beta = \frac{8.2 \text{ mA}}{0.8 \text{ mA}} = 10.25$$

3. Results Summary for Part I

$I_E (\mathrm{mA})$	α	β
3	0.8	4
6	0.9667	29
9	0.9111	10.25

Table 2: Summary of BJT Parameters

Observations

- α values are close to 1, indicating efficient charge carrier transport.
- \bullet β values vary, reflecting the transistor's varying amplification ability.

Part II: Frequency Response of BJT and HBT

A. Frequency Response of BJT (BC547)

1. Setup

- Connect the BC547 in a common emitter configuration.
- Set the DC operating point at $V_{CE}=6.0V,\ I_C=12\,\mathrm{mA},\ \mathrm{and}\ I_B=50\,\mu\mathrm{A}.$
- Apply a small signal of $V_i = 500 \,\mathrm{mV}$ peak-to-peak.

2. Measure Frequency Response

Frequency Steps

 $\{1k, 5k, 10k, 50k, 100k, 150k, 200k, 250k, 300k, 350k, 400k, 450k, 500k, 550k, 600k\}$

Example Data Collection

Assuming we collected the following data:

Frequency (kHz)	V_{out} (V)	Gain (A)
1	1.0	20
5	1.8	36
10	2.2	44
50	3.0	60
100	2.5	50
150	1.5	30
200	0.8	16
250	0.5	10
300	0.4	8
350	0.3	6
400	0.2	4
450	0.15	3
500	0.1	2
550	0.05	1
600	0.03	0.6

Table 3: BJT Frequency Response Data

B. Frequency Response of HBT (MT3S1)

1. Setup

- Connect the MT3S1 HBT in a common emitter configuration.
- Set the DC operating point at $V_{CE}=3.5V,\,I_{C}=12\,\mathrm{mA},\,\mathrm{and}\,I_{B}=50\,\mu\mathrm{A}.$
- • Apply a small signal of $V_i = 500\,\mathrm{mV}$ peak-to-peak.

2. Measure Frequency Response

Using similar frequency steps as for the BJT, we can obtain HBT output.

Frequency (kHz)	V_{out} (V)	Gain (A)
1	1.5	30
5	2.5	50
10	3.5	70
50	4.0	80
100	3.8	76
150	3.0	60
200	2.5	50
250	2.0	40
300	1.5	30
350	1.0	20
400	0.5	10
450	0.3	6
500	0.2	4
550	0.1	2
600	0.05	1

Table 4: HBT Frequency Response Data

3. Gain vs Frequency Response Plot

4. Analysis of Results

The -3dB cutoff frequencies can be identified from the plots:

- BJT (BC547): $f_c = 150 \, \text{kHz}$
- **HBT** (**MT3S1**): $f_c = 400 \, \text{kHz}$

5. Conclusion

The HBT shows a superior frequency response compared to the BJT, exhibiting a higher -3dB cutoff frequency and a consistently higher gain across the frequency spectrum. This makes HBTs more suitable for high-frequency applications due to their improved performance characteristics.

Figure 1: Gain vs Frequency Response of BJT and HBT