CS235102 Data Structures

Chapter 5 Trees

Chapter 5 Trees: Outline

- Introduction
 - Representation Of Trees
- Binary Trees
- Binary Tree Traversals
- Additional Binary Tree Operations
- Threaded Binary Trees
- Heaps
- Binary Search Trees
- Selection Trees
- Forests

Introduction (1/8)

 A tree structure means that the data are organized so that items of information are related by branches

Introduction (2/8)

- Definition (recursively): A tree is a finite set of one or more nodes such that
 - There is a specially designated node called root.
 - The remaining nodes are partitioned into $n \ge 0$ disjoint set T_1, \dots, T_n , where each of these sets is a tree. T_1, \dots, T_n are called the *subtrees* of the root.
- Every node in the tree is the root of some subtree

Trees

CHAPTER 5

5

Introduction (3/8)

Some Terminology

- node: the item of information plus the branches to each node.
- degree: the number of subtrees of a node
- degree of a tree: the maximum of the degree of the nodes in the tree.
- terminal nodes (or leaf): nodes that have degree zero
- nonterminal nodes: nodes that don't belong to terminal nodes.
- children: the roots of the subtrees of a node X are the children of X
- parent: X is the parent of its children.

Introduction (4/8)

- Some **Terminology** (cont'd)
 - siblings: children of the same parent are said to be siblings.
 - Ancestors of a node: all the nodes along the path from the root to that node.
 - The level of a node: defined by letting the root be at level one. If a node is at level i, then it children are at level i+1.
 - Height (or depth): the maximum level of any node in the tree

Introduction (5/8)

Example

```
A is the root node
                             Property: (# edges) = (#nodes) - 1
B is the parent of D and E
is the sibling of B
and E are the children of B
D, E, F, G, I are external nodes, or leaves
A, B, C, H are internal nodes
                                                                    Level
The level of E is 3
The height (depth) of the tree is 4
The degree of node B is 2
The degree of the tree is 3
The ancestors of node I is A, C, H
The descendants of node C is F, G, H, I
```

Introduction (6/8)

- Representation Of Trees
 - List Representation
 - we can write of Figure 5.2 as a list in which each of the subtrees is also a list
 - (A (B <u>(E (K, L), F), C (G)</u>, D <u>(H (M), I, J))</u>
 - The root comes first, followed by a list of sub-trees

data link 1 link 2 · · · link n

Introduction (7/8)

- Representation Of Trees (cont'd)
 - Left Child-Right Sibling Representation

Introduction (8/8)

- Representation Of Trees (cont'd)
 - A Degree Two Tree

Binary Trees (1/9)

 Binary trees are characterized by the fact that any node can have at most two branches

- Definition (recursive):
 - A binary tree is a finite set of nodes that is either empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree

Binary Trees (1/9)

Thus the left subtree and the right subtree are

distinguished

Any tree can be transformed into binary tree
 by left child-right sibling representation

Binary Trees (2/9)

The abstract data type of binary tree

```
structure Binary_Tree (abbreviated BinTree) is
  objects: a finite set of nodes either empty or consisting of a root node, left
  Binary_Tree, and right Binary_Tree.
  functions:
    for all bt,bt1,bt2 \in BinTree, item \in element
    BinTree Create()
                                              creates an empty binary tree
    Boolean IsEmpty(bt)
                                              if (bt == empty binary tree)
                                        ::=
                                               return TRUE else return FALSE
    BinTree MakeBT(bt1, item, bt2)
                                              return a binary tree whose left
                                        ::=
                                               subtree is bt1, whose right
                                               subtree is bt2, and whose root
                                              node contains the data item.
    BinTree Lchild(bt)
                                              if (IsEmpty(bt)) return error else
                                        ::=
                                              return the left subtree of bt.
    element Data(bt)
                                              if (IsEmpty(bt)) return error else
                                        ::=
                                              return the data in the root node of bt.
    BinTree Rchild(bt)
                                              if (IsEmpty(bt)) return error else
                                        ::=
                                              return the right subtree of bt.
```

Structure 5.1: Abstract data type *Binary_Tree*

Binary Trees (3/9)

- Two special kinds of binary trees:
 (a) skewed tree,
- (b) complete binary tree
 - The all leaf nodes of these trees are on two adjacent levels

Binary Trees (4/9)

Lemma 5.1 [Maximum number of nodes]:

- 1. The maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$.
- 2. The maximum number of nodes in a binary tree of depth k is 2^{k-1} , where $k \ge 1$.

Prove by induction. $\sum_{i=1}^{k} 2^{i-1} = 2^k - 1$

Binary Trees (4/9)

Lemma 5.2 [Relation between number of leaf nodes and degree-2 nodes]:

For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 is the number of nodes of degree 2, then $n_0 = n_2 + 1$.

These lemmas allow us to define full and complete binary trees

Relations between Number of Leaf Nodes and Nodes of Degree 2

For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 is the number of nodes of degree 2, then $n_0=n_2+1$ proof:

CHAPTER 5 18

For any nonempty binary tree, T, if \mathbf{n}_0 is the number of leaf nodes and \mathbf{n}_2 is the number of nodes of degree 2, then $\mathbf{n}_0=\mathbf{n}_2+\mathbf{1}$

proof:

Let *n* and *B* denote the total number of nodes & branches in *T*.

Let n_0 , n_1 , n_2 represent the nodes with no children, single child, and two children respectively.

$$B+1=n$$
, $B=n_1+2n_2==>n_1+2n_2+1=n$, $n=n_0+n_1+n_2$, $n_1+2n_2+1=n_0+n_1+n_2==>n_0=n_2+1$

Binary Trees (5/9)

Definition:

- A full binary tree of depth k is a binary tree of death k having 2^k-1 nodes, k ≥ 0.
- A binary tree with n nodes and depth k is complete iff
 its nodes correspond to the nodes numbered from 1 to
 n in the full binary tree of depth k.
- From Lemma 5.1, the height of a complete binary tree with n nodes is [log₂(n+1)]

Binary Trees (6/9)

Binary tree representations (using array)

Lemma 5.3: If a complete binary tree with n nodes is represented sequentially, then for any node with index i, $1 \le i \le n$, we have

- 1. parent(i) is at [i | 2] if $i \neq 1$. If i = 1, i is at the root and has no parent.
- 2. LeftChild(i) is at 2i if $2i \le n$. If 2i > n, then i has no left child.
- 3. RightChild(i) is at 2i+1 if $2i+1 \le n$. If 2i+1 > n, then i has no left child

Binary Trees (7/9)

Binary tree representations (using array)

• Waste spaces: in the worst case, a skewed tree of depth k requires 2^k -1 spaces. Of these, only k spaces

will be occupied

Insertion or deletion
 of nodes from the
 middle of a tree
 requires the
 movement of
 potentially many nodes
 to reflect the change in
 the level of these nodes

[1]	A	
[2]	В	
[3]		
[4]	С	
[5]		
[6]		
[7]		
[8]	D	
[9]		
[16]	E	

[1]	A
[2]	В
[3]	С
[4]	D
[5]	E
[6]	F
[7]	G
[8]	Н
[9]	I

Binary Trees (8/9)

Binary tree representations (using link)

```
typedef struct node *tree_pointer;
typedef struct node {
   int data;
   tree_pointer left_child, right_child;
};
```

left_child data right_child

left_child right_child

Binary Trees (9/9)

Binary tree representations (using link)

Binary Tree Traversals (1/9)

- How to traverse a tree or visit each node in the tree exactly once?
 - There are six possible combinations of traversal LVR, LRV, VLR, VRL, RVL, RLV
 - Adopt convention that we traverse left before right, only 3 traversals remain

LVR (inorder), LRV (postorder), VLR (preorder)

Binary Tree Traversals (2/9)

- Arithmetic Expression using binary tree
 - inorder traversal (infix expression)

$$A/B*C*D+E$$

preorder traversal (prefix expression)

postorder traversal (postfix expression)

level order traversal

Binary Tree Traversals (3/9)

Inorder traversal (LVR) (recursive version)

```
void inorder(tree_pointer ptr)

output A / B* C* D + E

:
```

```
/* inorder tree traversal */
{
   if (ptr) {
     inorder(ptr->left_child);
     printf("%d",ptr->data);
     inorder(ptr->right_child);
}
```


Binary Tree Traversals (4/9)

Preorder traversal (VLR) (recursive version)
output + * * / A F

```
output + * * / A B C D E
void preorder(tree_pointer ptr)
/* preorder tree traversal */
  if (ptr) {
    printf("%d",ptr->data); ←
    preorder(ptr->left_child);
    preorder(ptr->right_child);
```

Binary Tree Traversals (5/9)

Postorder traversal (*LRV*) (recursive version)output A B / C*D*E+

```
void postorder(tree_pointer ptr)
/* postorder tree traversal */
  if (ptr) {
    postorder(ptr->left_child);
    postorder(ptr->right_child);
    printf("%d",ptr->data);
```

Binary Tree Traversals (6/9)

- Iterative inorder traversal
 - we use a stack to simulate recursion

```
void iter_inorder(tree_pointer node)
    int top = -1; /* initialize stack */
    tree_pointer stack[MAX_STACK_SIZE];
    for (;;) {
      for(; node; node = node->left_child)
         add(&top, node); /* add to stack *
      node = delete(&top); /* delete from stack */
      if (!node) break; /* empty stack */
      printf("%d", node->data);
      node = node->right_child:
output A/B*C*D+E
                                                                            node
```

Binary Tree Traversals (6/9)

Iterative inorder traversal

output A/B*C*D+E

Binary Tree Traversals (7/9)

- Analysis of inorder2 (Non-recursive Inorder traversal)
 - Let n be the number of nodes in the tree
 - Time complexity: O(n)
 - Every node of the tree is placed on and removed from the stack exactly once
 - Space complexity: O(n)
 - equal to the depth of the tree which (skewed tree is the worst case)

Binary Tree Traversals (8/9)

- Level-order traversal
 - method:
 - We visit the root first, then the root's left child, followed by the root's right child.
 - We continue in this manner, visiting the nodes at each new level from the leftmost node to the rightmost nodes
 - This traversal requires a queue to implement

Binary Tree Traversals (9/9)

Level-order traversal (using queue)

```
void level_order(tree_pointer ptr)
                                               output +*E*D/CAB
 /* level order tree traversal */
   int front = rear = 0;
                                                     3 | 14 |
   tree_pointer queue[MAX_QUEUE_SIZE];
   if (!ptr) return; /* empty tree */
   addg(front, &rear, ptr)
   for (;;) {
      ptr = deleteq(&front, rear);
        printf("%d",ptr->data);
        if(ptr->left_child
FIFO
           addg(front,&rear,ptr->left_child).
        if (ptr->right_child)
          addq(front,&rear,ptr->right_child);
      else break:
```