Levels of Intelligence in Artificial and Biological Systems

Howard Schneider
Sheppard Clinic North, Richmond Hill, Canada

BICA*AI 2021 at IS4SI

2021 Annual International Conference on Biologically-Inspired Cognitive Architectures for Artificial Intelligence September 13, 2021 Vienna, Austria (online)

AI/AGI IS FILLED WITH MUCH EXAGGERATION COMPARED TO ACTUAL ACHIEVEMENTS

What Ever Happened to IBM's Watson?

IBM's artificial intelligence was supposed to transform industries and generate riches for the company. Neither has panned out. Now, IBM has settled on a humbler vision for Watson.

WHAT IS HEAVIER - A PENCIL OR AN OVEN?

How do these intelligences compare?

- Neural Network phenomenal image processing and reinforcement learning
- · Child phenomenal causal learning with few examples (eg, Gopnik)

-> NEED TO MEASURE SOME QUANTITY WHICH REFLECTS WHAT WOULD BE A REASONABLE ASSESSMENT OF A SYSTEM'S "INTELLIGENCE"

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$

expected performance Υ of agent π

"universal intelligence"

LEGG & HUTTER (2007):

expected performance Υ of agent π

LEGG & HUTTER (2007):

expected performance Υ of agent π

Neural Network

LEGG & HUTTER (2007):

expected performance Υ of agent π

Child

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$

algorithmic probability distribution of the space of environments $2^{-K(\mu)}$ times the value function V of agent π operating in environment μ

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$

-μ is one environment in the set of E all environments that could exist

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$

-V value function is equal to expected total reward for an agent

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$

Problem - K is Kolmogorov complexity function — not computable for real world

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$

-Schmidhuber (2011) workaround to compute equation

$$\Upsilon(\pi) := \sum_{\mu \in E} 2^{-K(\mu)} V^{\pi}_{\mu}$$

-Goertzel (2010) – in real world cognitive animal may not function well in *all* possible // envr'ts but function very well in

Mapping the Landscape of Human-Level Artificial General Intelligence

- •Sam Adams IBM
- •Itmar Arel University of Tennessee
- •Joscha Bach Humboldt University of Berlin
- •Robert Coop University of Tennessee
- •Rod Furlan Quaternix Research, Inc.
- Ben Goertzel
- •J. Storrs Hall Independent Researcher and Author
- Alexei Samsonovich George Mason University
- •Matthias Scheutz Tufts University
- •Matthew Schlesinger Southern Illinois University, Carbondale
- •Stuart C. Shapiro University of Buffalo, State University of New York
- •John Sowa VivoMind Research, LLC

Mapping the Landscape of Human-Level Artificial General Intelligence

- C1. The environment is complex, with diverse, interacting and richly structured objects.
- C2. The environment is dynamic and open.
- C3. Task-relevant regularities exist at multiple time scales.
- C4. Other agents impact performance.
- C5. Tasks can be complex, diverse and novel.
- C6. Interactions between agent, environment and tasks are complex and limited.
- C7. Computational resources of the agent are limited.
- C8. Agent existence is long-term and continual.

Mapping the Landscape of Human-Level Artificial General Intelligence

- R1. Realize a symbol system
- Represent and effectively use:
- R2. Modality-specific knowledge
- R3. Large bodies of diverse knowledge
- R4. Knowledge with different levels of generality
- R5. Diverse levels of knowledge
- R6. Beliefs independent of current perception
- R7. Rich, hierarchical control knowledge
- R8. Meta-cognitive knowledge
- R9. Support a spectrum of bounded and unbounded deliberation
- R10. Support diverse, comprehensive learning
- R11 Support incremental, online learning Cognitive Architecture Requirements for AGI

Wozniak Test

- -Robot can walk into unfamiliar house
- -Robot can then make a cup of coffee

Steve Wozniak

Chollet (2019) ARC "On the measure of intelligence"

[&]quot;abstraction and reasoning corpus"

Schneider (2021) – Two-Dimensional Rating Scale for Levels of Intelligence

-based on Causal Cognitive Architecture (Schneider 2018-2021)

CCA1 adds a Navigation Module Lots and lots of small maps Simple operations on these maps

- -based on Causal Cognitive
 Architecture (Schneider 2018-2021)
 -use of **navigation maps** for system of intelligence which can allow:
- Association Behavior
- Pre-Causal Behavior
- Fully Causal Behavior

Deep Learning Neural Network	3 Year Old Human Child
Pattern Recognition →Recognize the World	Model Building +also Pattern Recognition →Explain the World
Need 1000's examples for learning	A few examples enough

The solution: Ability to Generate Causal Behavior

'Reptilian' and 'Mammalian' Brain

– Associative Functioning

'Human' Brain, AGI – Causal Functioning

Directed Acyclic Graph ('Causal Graph') Counterfactual Theory

- -- Useful for Analyzing Causality, eg, epidemiologists
- -- Less Useful for Generating Causality, eg, AGI

We want a mechanism for generating causal behavior in the real world

-Agent (AGI, cognitive architecture, etc) has never seen the machine below (or even a similar machine).

-If Gear C is turned, what happens to Gear B?

-Child has never put green and pink block together before, and he has never put them at an angle.

-With no previous examples can he do this now?

-Rescue robot goes out into rain forest, and wants to cross this river. Noisy and fast flow. Never saw river like

this before.

-Should it cross?

No.

Kaieteur Falls, Guyana

Causal Cognitive Architecture 1 (CCA1)

Generates Causal Behavior

- Mesoscopic brain inspired cognitive architecture – good balance of low/mid level and high level components and features
- A pragmatic solution to the neural-symbolic problem

CCA1 adds a Navigation Module Lots and lots of small maps Simple operations on these maps

- -based on Causal Cognitive
 Architecture (Schneider 2018-2021)
 -use of **navigation maps** for system of intelligence which can allow:
- Association Behavior
- Pre-Causal Behavior
- Fully Causal Behavior

Choose pre-causal functioning of CCA1

```
Command Prompt - cca1_2020
Please choose type of "hippocampus"/"brain" which, of course,
only loosely approximates the biological equivalent:

    Lamprey hippocampal/brain analogue

Fish hippocampal/telencephalon analogue
3. Reptile hippocampal/pallium analogue 🛑
4. Mammalian hippocampus - note: meaningfulness, precausal
5. Human hippocampus - note: meaningfulness plus full causal features
6. Augmented Human level 1 - simultaneous multiple navigational threads

    Augmented Human level 2 - algorithm center in each navigational module

Please make a selection:_
```

-Agent (AGI, cognitive architecture, etc) has never seen the machine below (or even a similar machine).

-If Gear C is turned, what happens to Gear B?

-Cannot fully repair a machine with 100's of parts by associations only (unless very common reasons for the breakdowns)

even if only move a few parts there are millions and millions of combinations that need to be tried and learned by association
->simply not possible/practical

Causality allows repairing a machine the CCA1 has never seen before.

Deep Learning Neural Network great for many recognition and prediction tasks....

....but if something different than its training data.... it cannot predict how to fix machine never saw before

Schneider (2021) – Two-Dimensional Rating Scale for Levels of Intelligence

Axis I: "Level of Intelligence"
Axis II: "Benchmark Value"
(=log₁₀(raw data processing))

II: "Benchmark Value" (=log10 (raw data processing))

Natural Example: Spores blowing in wind

Level 0 – no or few organized associations **Benchmark 1** — 10¹ processing power

II: "Benchmark Value" (=log10 (raw data processing))

Artificial Example: Digital clock

Level 0 – no or few organized associations **Benchmark 2** — 10² processing power

II: "Benchmark Value" (=log10 (raw data processing))

Natural Example: Bacterial chemotaxis

Level 1 – reflexive associations

Benchmark 4 -- 10⁴ processing power

II: "Benchmark Value" (=log10 (raw data processing))

Artificial Example: Data lookup table with one billion entries

Level 1 – reflexive associations **Benchmark 5** — 10⁵ processing power

II: "Benchmark Value" (=log10 (raw data processing))

Natural Example: Fish simple behaviors

Level 2 – complex associations

Benchmark 5 -- 10⁵ processing power

II: "Benchmark Value" (=log10 (raw data processing))

Artificial Example: Convolutional Neural Network can recognize 1 million faces

Level 2 – complex associations **Benchmark 5** — 10⁵ processing power

II: "Benchmark Value" (=log10(raw data processing))

Natural Example: Fish complex behaviors

Level 3 – complex associations with specialized processing centers

Benchmark 6 – 106 processing power

II: "Benchmark Value" (=log10 (raw data processing))

Artificial Example: Generative Pre-Trained Transformer Neural Network with 175 billion parameters

Level 3 – complex associations with specialized processing centers

Benchmark 7 -- 10⁷ processing power

II: "Benchmark Value" (=log10 (raw data processing))

Natural Example: Reptile

Level 4 – complex associations plus some pre-causal associations

Benchmark 6 — 106 processing power

II: "Benchmark Value" (=log10 (raw data processing))

Artificial Example: Experimental eg, Causal Cognitive Architecture (Schneider, 2021)

Level 4 – complex associations plus some pre-causal associations

Benchmark 1 -- 101 processing power

II: "Benchmark Value" (=log10 (raw data processing))

Natural Example: Mammal

Level 5 – fully pre-causal associations **Benchmark 7** — 10⁷ processing power

II: "Benchmark Value" (=log10 (raw data processing))

Artificial Example: Experimental, eg, Causal Cognitive Architecture (Schneider, 2021)

Level 5 – fully pre-causal associations

Benchmark 1 — 10¹ processing power

II: "Benchmark Value" (=log10 (raw data processing))

Natural Example: Human

Level 6 – pre-causal plus some cause-andeffect logic

Benchmark 5 -- 10⁵ processing power (Human := 5)

I: "Level of Intelligence" (0 → 7)
II: "Benchmark Value" (=log₁₀(raw data processing))

Artificial Example: not available

Level 6 – pre-causal plus some cause-andeffect logic Benchmark n/a -- 10^{n/a} processing power (Human := 5)

II: "Benchmark Value" (=log10 (raw data processing))

Natural Example: **not available**Artificial Example: **not available**

Level 7 – fully cause-and-effect mechanisms

Benchmark n/a -- 10^{n/a} processing power

Level of Intelligence	Natural Example	Artf'l Benchmark Art		k Art
		Example	Ex	
Level 0 – No or Few	Spores blowing in	Digital clock		2
Organized Associations	the wind			
Level 1 – Reflexive	Bacterial	Data lookup table 1B		5
Associations	chemotaxis	entries		
Level 2 – Complex	Fish simple	CNN 1M faces		5
Associations	behaviors			
Level 3 – Complex +	Fish complex	GPT-3 175B parameters		7
Spec Proc Centers	behaviors			
Level 4 – Complex +some	Reptile	Experimental [e.g.,		1
Pre-Causal Associations		CCA]		
Level 5 – Fully Pre-Causal	Mammal	Experimental	[e.g.,	1
Associations		CCA]		
Level 6 – Pre-Causal	Human	not available		huma
+some Cause-and-Effect		n :=		n := 5
Level 7 – Fully Cause-	not available	not available		n/a
and-Effect				

hschneidermd@alum.mit.edu