Recall our running example from previous classes:1

- \bullet We're interested in the mean price of AirBNBs in our city (μ)
- We can't observe them all, so we take the mean price of a sample of 200 $(\hat{\mu}(X) = \frac{1}{200} \sum_{n=1}^{200} x_n)$

 $^{^1\}mathrm{Taken}$ from Chapter 10 of "Data Science: A First Introduction" by Timbers, Campbell, and Lee <code>https://ubc-dsci.github.io/introduction-to-datascience/</code>

Recall our running example from previous classes:1

- ullet We're interested in the mean price of AirBNBs in our city (μ)
- We can't observe them all, so we take the mean price of a sample of 200 $(\hat{\mu}(X) = \frac{1}{200} \sum_{n=1}^{200} x_n)$

 $^{^1\}mathrm{Taken}$ from Chapter 10 of "Data Science: A First Introduction" by Timbers, Campbell, and Lee <code>https://ubc-dsci.github.io/introduction-to-datascience/</code>

Recall our running example from previous classes:1

- \bullet We're interested in the mean price of AirBNBs in our city (μ)
- We can't observe them all, so we take the mean price of a sample of 200 $(\hat{\mu}(X) = \frac{1}{200} \sum_{n=1}^{200} x_n)$

 $^{^1\}mathrm{Taken}$ from Chapter 10 of "Data Science: A First Introduction" by Timbers, Campbell, and Lee <code>https://ubc-dsci.github.io/introduction-to-datascience/</code>

Recall our running example from previous classes:1

- ullet We're interested in the mean price of AirBNBs in our city (μ)
- We can't observe them all, so we take the mean price of a sample of 200 $(\hat{\mu}(X) = \frac{1}{200} \sum_{n=1}^{200} x_n)$

Key idea:

Instead of a "point estimate" $\hat{\mu}(X)$, estimate an interval $(\hat{\mu}_{lower}(X), \hat{\mu}_{upper}(X))$.

 $^{^1\}mathrm{Taken}$ from Chapter 10 of "Data Science: A First Introduction" by Timbers, Campbell, and Lee <code>https://ubc-dsci.github.io/introduction-to-datascience/</code>

Key idea:

Instead of a "point estimate" $\hat{\mu}(X)$, estimate an interval $(\hat{\mu}_{lower}(X), \hat{\mu}_{upper}(X))$.

>

Key idea:

Instead of a "point estimate" $\hat{\mu}(X)$, estimate an interval $(\hat{\mu}_{lower}(X), \hat{\mu}_{upper}(X))$.

We would like to choose our interval such that:

$$P(\mu \in (\hat{\mu}_{lower}(X), \hat{\mu}_{upper}(X))) \ge 0.9$$

Such an interval is a valid confidence interval with a level of 0.9.

2