

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.	
10/046,797	01/14/2002	Huitao Luo	10014091-1	6419	
7590 12/03/2003			EXAMI	EXAMINER	
HEWLETT-PACKARD COMPANY Intellectual Property Administration			RICHER, AARON M		
			ART UNIT	PAPER NUMBER	
P.O. Box 272400 Fort Collins, CO 80527-2400			2676	TAL ER HOMBER	
ron Comms, C	.0 80327-2400		DATE MAILED: 12/03/2003	6	

Please find below and/or attached an Office communication concerning this application or proceeding.

	A well-self-self-self-self-self-self-self-s	Analisanda			
	Application No.	Applicant(s)			
	10/046,797	LUO, HUITAO			
Office Action Summary	Examiner	Art Unit			
	Aaron M Richer	2676			
The MAILING DATE of this communication appears on the cover sheet with the correspondence address Period for Reply					
A SHORTENED STATUTORY PERIOD FOI THE MAILING DATE OF THIS COMMUNIC. - Extensions of time may be available under the provisions of after SIX (6) MONTHS from the mailing date of this commun. - If the period for reply specified above is less than thirty (30) of the period for reply is specified above, the maximum statur. - Failure to reply within the set or extended period for reply with any reply received by the Office later than three months after earned patent term adjustment. See 37 CFR 1.704(b). Status	ATION. 37 CFR 1.136(a). In no event, however, may a relication. days, a reply within the statutory minimum of thirt tory period will apply and will expire SIX (6) MON II, by statute, cause the application to become AB	eply be timely filed y (30) days will be considered timely. THS from the mailing date of this communication. ANDONED (35 U.S.C. § 133).			
1) Responsive to communication(s) filed	on				
2a) ☐ This action is FINAL . 2b))⊠ This action is non-final.				
3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under <i>Ex parte Quayle</i> , 1935 C.D. 11, 453 O.G. 213.					
Disposition of Claims					
 4) ☐ Claim(s) 1-24 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-24 is/are rejected. 7) ☐ Claim(s) 1 is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or election requirement. 					
Application Papers	·				
9)☐ The specification is objected to by the 10)☒ The drawing(s) filed on 14 January 200 Applicant may not request that any objection Replacement drawing sheet(s) including the 11)☐ The oath or declaration is objected to be	02 is/are: a)⊠ accepted or b)□ of ion to the drawing(s) be held in abeyan the correction is required if the drawing(nce. See 37 CFR 1.85(a). (s) is objected to. See 37 CFR 1.121(d).			
Priority under 35 U.S.C. §§ 119 and 120					
12) Acknowledgment is made of a claim for a) All b) Some * c) None of: 1. Certified copies of the priority do 2. Certified copies of the priority do 3. Copies of the certified copies of application from the Internations * See the attached detailed Office action 13) Acknowledgment is made of a claim for since a specific reference was included 37 CFR 1.78. a) The translation of the foreign lang 14) Acknowledgment is made of a claim for reference was included in the first sente	ocuments have been received. ocuments have been received in A f the priority documents have been al Bureau (PCT Rule 17.2(a)). for a list of the certified copies not domestic priority under 35 U.S.C. in the first sentence of the specific tuage provisional application has be domestic priority under 35 U.S.C.	received. § 119(e) (to a provisional application) ation or in an Application Data Sheet. een received. §§ 120 and/or 121 since a specific			
Address					
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-3) Information Disclosure Statement(s) (PTO-1449) Pap	O-948) 5) Notice of Ir	Summary (PTO-413) Paper No(s) Informal Patent Application (PTO-152)			

 $\bullet = \{ \dots, \infty \}$

Art Unit: 2676

DETAILED ACTION

Claim Objections

1. Claim 1 is objected to because of the following informalities: The phrase "wherein respective contours between adjacent vertices of said plurality of vertices detected by said code for detecting approximate respective edges of said boundary information within a distortion criterion" is difficult to interpret.

Appropriate correction is required. It is recommended that this phrase be rewritten "wherein respective contours, which are between adjacent vertices of said plurality of vertices detected by said code for detecting, approximate respective edges of said boundary information within a distortion criterion".

Claim Rejections - 35 USC § 112

- The following is a quotation of the second paragraph of 35 U.S.C. 112:
 The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.
- 3. Claims 3, 4, 5, and 6 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
- 4. Claim 3 recites the limitation "said predetermined function" in line 1.

 There is insufficient antecedent basis for this limitation in the claim. Claims 4, 5, and 6 are dependent on Claim 3 and therefore incorporate this limitation as well.

Claim Rejections - 35 USC § 102

The following is a quotation of the appropriate paragraphs of 35U.S.C. 102 that form the basis for the rejections under this section made in thisOffice action:

Art Unit: 2676

A person shall be entitled to a patent unless -

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

- 6. Claims 1, 2, 10, 12, 16, and 18 are rejected under 35 U.S.C. 102(b) as being anticipated by Kim (U.S. Patent 5,774,595).
- 7. Claim 1 recites "A system for processing boundary information of a graphical object, comprising: code for receiving a graphical image that comprises said graphical object wherein said graphical object is defined by at least said boundary information". Kim discloses "The contour image data representing the contour of an object is fed to a polygonal approximation block 100, a first and a second error detection blocks 120 and 150 and a curvature calculation block 160" (col. 3, lines 1-9). Figure 1 of Kim shows that contour, or boundary, image data of a graphical object is the input to the system.

Claim 1 further recites "code for detecting a contour between a pair of points of said graphical image". Kim discloses the step of "fitting the contour image with a plurality of line segments to provide a polygonal approximation of the contour image, each of the line segments joining two neighboring vertices" (col. 2, lines 7-10). This part of Kim's invention is also shown as element 100 of Figure 1.

Claim 1 further recites "code for determining a plurality of vertices from said boundary information, wherein respective contours between adjacent vertices of said plurality of vertices detected by said code for detecting approximate respective edges of said boundary information within a distortion criterion". Kim discloses "determining a number of vertices on the contour

Art Unit: 2676

image" (col. 2, lines 6-7). Kim further discloses "calculating a second error which is the number of mismatched pixels between the reconstructed contour segment and its corresponding contour segment [and] comparing the second error with a predetermined threshold value" (col. 2, lines 27-31). Kim also discloses "if the second error is equal to or larger than the threshold value... repeating the steps...for all the line segments formed by the vertices determined" (col. 2, lines 31-42). This threshold value reads on the "distortion criterion" of Claim 1, and the method described by Kim assures that the contours detected will be within this error threshold.

- 8. Claim 2 recites "The system of claim 1 further comprising: code for creating an approximated boundary utilizing at least graphical image, said plurality of vertices, and said code for detecting". Kim discloses "fitting the contour image with a plurality of line segments to provide a polygonal approximation of the contour image" (col. 2, lines 7-10).
- 9. Claim 10 recites "The system of claim 1 wherein said code for determining a plurality of vertices only analyzes vertices from a searchable set of vertices". Kim discloses "determining a number of vertices on the contour image" (col. 2, lines 6-7). This disclosure reads on a "searchable set of vertices" because any vertex could be a part of a "searchable set of vertices". This argument also reads on claim 18, which claims the method implemented by the system in claim 10.
- 10. Claim 12 recites "A method for processing boundary information of a graphical object, comprising: receiving a graphical image that comprises said graphical object, wherein said graphical object is defined by at least said

Art Unit: 2676

boundary information". Kim discloses "The contour image data representing the contour of an object is fed to a polygonal approximation block 100, a first and a second error detection blocks 120 and 150 and a curvature calculation block 160" (col. 3, lines 1-9). Figure 1 of Kim shows that contour, or boundary, image data of a graphical object is the input to the system.

Claim 12 further recites "determining a plurality of vertices from said boundary information, wherein adjacent vertices of said plurality of vertices are associated with respective contours that approximate respective edges of said boundary information within a distortion criterion, wherein said respective contours are detected by analysis of said graphical image by a predetermined function". Kim discloses "determining a number of vertices on the contour image" (col. 2, lines 6-7). Kim further discloses "calculating a second error which is the number of mismatched pixels between the reconstructed contour segment and its corresponding contour segment [and] comparing the second error with a predetermined threshold value" (col. 2, lines 27-31). Kim also discloses "if the second error is equal to or larger than the threshold value... repeating the steps...for all the line segments formed by the vertices determined" (col. 2, lines 31-42). The threshold value disclosed by Kim reads on the "distortion criterion" of Claim 1, and the method disclosed by Kim assures that the contours detected will be within this error threshold. Kim further discloses "fitting the contour image with a plurality of line segments to provide a polygonal approximation of the contour image, each of the line segments joining two neighboring vertices" (col.

Art Unit: 2676

2, lines 6-10). This disclosure reads on a predetermined function to detect contours.

Claim 12 further recites "encoding at least said plurality of vertices in a data structure to represent said boundary information". Kim discloses "providing the position of the two vertices of a line segment as segment data" (col. 2, lines 10-11) and "coding the set of quantized transform coefficients and the segment data of the contour segment" (col. 2, lines 25-33).

11. Claim 16 recites "The method of claim 12 wherein said determining comprises identifying a point of said boundary information that is associated with a greatest amount of curvature". Kim discloses "The extra vertex selection block 170 compares the curvatures for the target pixels from the curvature calculation block 160 to select therefrom a target pixel, e.g., F shown in FIG. 4A, having the largest curvature" (col. 5, lines 17-22).

Claim Rejections - 35 USC § 103

- 12. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 13. Claims 3-5, 7-9, 13-14, and 17, as best understood, are rejected under 35 U.S.C. 103(a) as being unpatentable over Kim in view of Catros (U.S. Patent 4,843,630).

Art Unit: 2676

14. Claim 3 recites "The system of claim 1 wherein said predetermined function is operable to calculate gradients associated with said graphical image". Kim discloses the system of claim 1. Kim does not disclose a predetermined function operable to calculate gradients. Catros, however, discloses a method that "uses as starting data that data representing the grey levels of the image of the amplitudes and/or orientations of the gradients which are already calculated for elaborating the image of the contours" (col. 2. lines 42-50). Catros further discloses that an advantage to using gradients is that "This data better represents the contours than the initial luminance data" (col. 2. lines 42-50). Catros is using calculated gradient values, which implies that the calculation of gradient values is inherent to the proper function of this method. It would have been obvious to one skilled in the art to modify Kim to use gradient values for contour detection in order to better represent contours as taught by Catros.

15. Claim 4 recites "The system of claim 3 wherein said code for detecting is operable to determine a shortest path between said pair of points, wherein said shortest path is weighted by said calculated gradients". It was established in the rejection of Claim 3 above that Catros' method uses amplitudes of gradients to find contours. In addition, Catros discloses "The present invention also uses a search algorithm known under the name of Moore-Dijkstra algorithm which seems better adapted for providing a solution to one of the specific problems raised by the invention, this method consisting of searching for the existence of a contour passing through two points A and B, bringing this problem down to that already solved by this algorithm and for finding the shortest path in a graph

Art Unit: 2676

between two tops" (col. 2, lines 50-59). In this method, Catros is using the amplitudes of gradients as weights, and reducing the contour detection problem to a "shortest path" problem. This argument also reads on claim 13, which claims the method implemented by the system in claim 4.

- 16. Claim 5 recites "The system of claim 4 wherein said code for detecting limits its determination of the shortest path to a rectangular area defined in part by a width parameter". Catros discloses "The search space in the image memory is defined in the way shown in FIG. 1, where there is inserted between two points A and B, marking the ends of a discontinuity in a contour C of the image, a square of side D equal to the distance separating the two points A and B and oriented in the plane so that points A and B are disposed on two opposite sides of the square in the middle thereof" (col. 2, lines 63-68; col. 3, lines 1-2). Also see Figure 1 of Catros for further disclosure of this square. The "width parameter" in this disclosure is set to the length of side D. This argument also reads on claim 14, which claims the method implemented by the system in claim 5.
- 17. Claim 7 recites "The system of claim 1 wherein said code for detecting implements a Rubberband function in executable instructions". A "Rubberband function" is defined in page 6, lines 14-22 of the specification as " [a] function [that] utilizes two vertices, the supplied parameters and the underlying graphical image to detect a contour, B'=(b'.sub.0, b'.sub.1, b'.sub.2, b'.sub.3, . . . b'.sub.n), where b'.sub.i is the i.sup.th pixel of the detected contour and b'.sub.0=v.sub.1 and b'.sub.n=v.sub.2. The contour (B') is detected by computing the shortest

Art Unit: 2676

path between vertices (v.sub.1 and v.sub.2) based upon weights generated by the gradient of the underlying graphical image.

"Moreover, the Rubberband function models the image as a graph in which each pixel is a vertex and each vertex has only 8 edges linking to its 8 neighboring pixels (as is depicted by vertex 501 in FIG. 5)..."

Catros discloses "The method consists of the steps of defining a search window between each of the facing ends of the disjointed contour elements, considering in the window the different image points as nodes on a graph, determining the elementary cost associated with each path connecting each node to its adjacent nodes from amplitude and orientation information of the luminance function used for detecting the contours, and determining the optimum path by following, from the costs obtained, a line for which the luminance gradient of the detected points appears to be a maximum" (col. 1, lines 40-54).

Catros further discloses "each node P.sub.i inside the search window F is connected to each of its eight neighbors P.sub.j by an arc (i,j) to which is assigned a cost M.sub.i = C.sub.ij corresponding to the cost associated with the passage from a point P.sub.i to an adjacent point P.sub.j. Thus, by defining the characteristic costs for each arc subtended between two adjacent nodes, an overall cost may be calculated for determining the shortest path for going from point A to point B" (col. 3, lines 2-15).

The "amplitudes" of gradients in the method disclosed by Catros are used in the same way that the "weighted gradients" are used in the "Rubberband

Art Unit: 2676

function" of claim 7 and so the method of Catros reads on the "Rubberband function of claim 7.

- 18. Claim 8 recites "The system of claim 1 wherein said code for determining only analyzes points of said boundary information that are associated with respective edges that are less than a heuristic value". Catros discloses "if the coding cost of the shortest path is less than a given threshold, this path is considered as the corresponding to the desired bridging, if not, there is no bridging possible between the two points" (col, 2, lines 59-63). The method disclosed by Catros would eliminate edges larger than a threshold, which reads on the heuristic value of claim 8. This argument also reads on claim 17, which claims the method implemented by the system in claim 8.
- 19. Claim 9 recites "The system of claim 1 wherein said code for determining only analyzes vertex pairs associated with edges of an edge set that is a weighted acyclic graph". Catros discloses "The method consists of the steps of defining a search window between each of the facing ends of the disjointed contour elements, considering in the window the different image points as nodes on a graph, determining the elementary cost associated with each path connecting each node to its adjacent nodes from amplitude and orientation information of the luminance function used for detecting the contours, and determining the optimum path by following, from the costs obtained, a line for which the luminance gradient of the detected points appears to be a maximum" (col. 1, lines 40-54). This meets the definition of a "weighted acyclic graph"

Art Unit: 2676

because it uses weighted paths, in this case weighted by gradient amplitude, to determine the shortest path between two nodes.

- 20. Claims 6 and 15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kim in view of Catros and further in view of Makram-Ebeid (U.S. Patent 6,332,034).
- 21. Claim 6 recites "The system of claim 3 wherein said calculated gradients are calculated over respective spatial areas of said graphical image limited by a scale parameter". Kim in view of Catros obviates the system of claim 3. Catros discloses a method of calculating gradients, as described in the rejection to claim
- 3. Neither Kim nor Catros discloses gradients limited by a scale parameter.

Makram-Ebeid, however, discloses "The merging of two adjacent regions is possible only in the case in which the Energy function is minimized. This Energy function comprises two terms: a first term which takes into account the intensity variance in each region of the image and a second term which takes into account the total length of the boundaries in the image, weighted by a so-called scale parameter .lambda.. The execution of the algorithm consists first of all in assigning the value 1 to the scale factor .lambda. and in merging two adjacent regions, if any, which minimize the Energy function. The resultant regions are then re-organized by elimination of the interface of the two merged regions, the terms of the Energy function are calculated again and a new attempt for a merger is made, utilizing the scale factor .lambda.=1. This operation is repeated until there is no longer any region having an adjacent region for a merger when the scale factor .lambda.=1. After each merger the resultant

Art Unit: 2676

regions are re-organized by elimination of the interfaces. Subsequently, the same operations are performed with the scale parameter .lambda.=2, etc., until the Energy function cannot be further minimized" (col. 1, lines 45-66).

Here, Makram-Ebeid is disclosing a method of merging regions, in which each region and contour is created at a certain scale parameter. The scale parameter limits the size of the area that can be merged into one region or made into one contour. The motivation for using this method is that it "eliminates the largest possible number of interfaces to merge adjacent regions whose intensities are practically identical" (col. 1, lines 37-45). It would have been obvious to one skilled in the art to modify Catros to include a scale parameter to merge similar adjacent regions to aid in correctly identifying contours. This argument also reads on claim 15, which claims the method implemented by the system in claim 6.

- 22. Claims 11 and 19 are rejected under 35 U.S.C. 103(a) as being unpatentable over Kim (U.S. Patent 5,774,595) in view of Kim (U.S. Patent 6,055,337). In the following rejection, Kim (U.S. Patent 5,774,995) shall be referred to as Kim ('595) and Kim (U.S. Patent 6,055,337) shall be referred to as Kim ('337).
- 23. Claim 11 recites "The system of claim 10 wherein said searchable set of vertices only includes: (a) vertices associated with curvature greater than a first heuristic value and (b) vertices recursively grown by maximizing distances between adjacent vertices subject to the following constraints: (i) said maximizing distances are less than a second heuristic value and (ii) each contours between

Art Unit: 2676

adjacent vertices detected by said code for detecting approximate respective edges of said boundary information within a distortion criterion".

Kim ('595) discloses "If the distance D.sub.max between the line segment AB and the farthest point, e.g., C, is greater than a predetermined threshold value, the point C becomes a vertex. This procedure is repeated, as shown in FIG. 2C, until D.sub.max for each segment becomes smaller than the predetermined threshold value TH1." (col. 3, lines 13-24). This method holds maximizing distances to below a threshold, which reads on the "heuristic value" of claim 11.

Kim ('595) further discloses "calculating a second error which is the number of mismatched pixels between the reconstructed contour segment and its corresponding contour segment [and] comparing the second error with a predetermined threshold value" (col. 2, lines 27-31). Kim ('595) also discloses "if the second error is equal to or larger than the threshold value... repeating the steps...for all the line segments formed by the vertices determined" (col. 2, lines 31-42). This threshold value reads on the "distortion criterion" of Claim 11, and the method described by Kim ('595) assures that the contours detected will be within this error threshold.

Kim ('595) does not disclose selecting vertices with curvature greater than a heuristic value. Kim ('337), however, discloses "Once the curvatures at the contour pixels are determined for the contour segment, the secondary vertex detection block 120 selects all contour pixels on the contour segment having curvatures larger than a predetermined threshold value C.sub.M" (col. 4, lines

Art Unit: 2676

40-56). The threshold disclosed by Kim ('337) reads on the "heuristic value" of claim 11.

Kim ('337) discloses that "it is inevitable to compress or reduce the volume of data through the use of various data compression techniques". This discloses a motivation for reducing the number of vertices to be encoded. It would have been obvious to one skilled in the art to modify Kim ('595) to use a curvature threshold to select vertices in order to reduce the number of vertices to encode as taught by Kim ('337). This argument also reads on claim 19, which claims the method implemented by the system in claim 11.

- 24. Claims 20-23 are rejected under 35 U.S.C. 103(a) as being unpatentable over Catros in view of Makram-Ebeid (U.S. Patent 6,332,034).
- 25. Claim 20 recites "A method for processing boundary information associated with an object in a graphical image, said method comprising: identifying two vertices in said graphical image". Catros discloses "a method of bridging between disjointed contour elements in an image by searching for an optimum bridging path between the facing ends of the disjointed contour elements" (col. 1, lines 40-54). These points on disjointed contour elements read on vertices, because they are points on contours to be joined by "bridging".

Claim 20 further recites "detecting a plurality of contours between said two vertices by determining a respective shortest path between said two vertices, said respective shortest path being weighted by gradient calculations of said graphical image over regions defined at least by a scale parameter, and each contour of said plurality of contours being associated with a respective scale

Art Unit: 2676

parameter of a plurality of scale parameters". Catros discloses a method of determining a shortest path between vertices by gradient weighting, as described in the rejections to claims 3 and 4. Catros does not disclose regions defined by a scale parameter, nor does Catros disclose contours being associated with a scale parameter.

Makram-Ebeid, however, discloses "The merging of two adjacent regions is possible only in the case in which the Energy function is minimized. This Energy function comprises two terms: a first term which takes into account the intensity variance in each region of the image and a second term which takes into account the total length of the boundaries in the image, weighted by a socalled scale parameter .lambda.. The execution of the algorithm consists first of all in assigning the value 1 to the scale factor .lambda. and in merging two adjacent regions, if any, which minimize the Energy function. The resultant regions are then re-organized by elimination of the interface of the two merged regions, the terms of the Energy function are calculated again and a new attempt for a merger is made, utilizing the scale factor .lambda.=1. This operation is repeated until there is no longer any region having an adjacent region for a merger when the scale factor .lambda.=1. After each merger the resultant regions are re-organized by elimination of the interfaces. Subsequently, the same operations are performed with the scale parameter .lambda.=2, etc., until the Energy function cannot be further minimized" (col. 1, lines 45-66).

Here, Makram-Ebeid is disclosing a method of merging regions, in which each region and contour is created at, and therefore associated with a certain

Art Unit: 2676

scale parameter. The motivation for using this method is that it "eliminates the largest possible number of interfaces to merge adjacent regions whose intensities are practically identical" (col. 1, lines 37-45). It would have been obvious to one skilled in the art to modify Catros to include a scale parameter to merge similar adjacent regions to aid in correctly identifying contours.

Claim 20 further recites "selecting an optimal scale parameter from said plurality of scale parameters by determining a scale parameter from said plurality of scale parameters that minimizes variance between regions defined by its respective contours". The disclosure by Makram-Ebeid above describes incrementing of a scale parameter until an optimum level is reached. It also describes an Energy function that includes a variance term, which is minimized based on the scale parameter.

26. Claim 21 recites "The method of claim 20 wherein said method further comprising: encoding a boundary object utilizing said two vertices and said optimal scale parameter". Catros discloses bridging "between each of the facing ends of the disjointed contour elements" (col. 1, lines 40-54). This bridging forms a new contour between two points, which reads on "encoding a boundary object utilizing two vertices", as recited by claim 21. Catros does not disclose an optimal scale parameter. Makram-Ebeid discloses an optimal scale parameter, as described in the rejection of claim 20. It would have been obvious to modify Catros to utilize an optimal scale parameter to encode a boundary object in order to merge similar adjacent regions to aid in correctly identifying contours.

Art Unit: 2676

27. Claim 22 recites "The method of claim 20 wherein said detecting further comprising: incrementally detecting a contour of said plurality of contours by utilizing a threshold value, wherein said shortest path is determined by a graph searching process that limits searching of paths to distances less than said threshold value". Catros discloses "if the coding cost of the shortest path is less than a given threshold, this path is considered as the corresponding to the desired bridging, if not, there is no bridging possible between the two points" (col, 2, lines 59-63). The bridging disclosed by Catros reads on the contour detection recited in claim 22.

28. Claim 23 recites "The method of claim 20 wherein said detecting a plurality of contours is operable to only select contours within a rectangular area defined by a width parameters and said two vertices". Catros discloses "The search space in the image memory is defined in the way shown in FIG. 1, where there is inserted between two points A and B, marking the ends of a discontinuity in a contour C of the image, a square of side D equal to the distance separating the two points A and B and oriented in the plane so that points A and B are disposed on two opposite sides of the square in the middle thereof" (col. 2, lines 63-68; col. 3, lines 1-2). Also see Figure 1 of Catros for further disclosure of this square. Since a square is a type of rectangle, this square reads on the rectangle in claim 23. The "width parameter" in this disclosure is set to the length of side D.

Art Unit: 2676

29. Claim 24 is rejected under 35 U.S.C. 103(a) as being unpatentable over Catros in view of Makram-Ebeid as applied to claims 20-23 above, and further in view of Luo.

Claim 24 recites "The method of claim 23 wherein said width parameters and said two vertices are selected by a user interface". Catros in view of Makram-Ebeid obviates the method of claim 23 above. Neither Catros nor Makram-Ebeid disclose a user interface for selecting width parameters and two vertices. Luo discloses "In practice, both the width and height of the global search stripe can be determined by the user in an interactive way, according to the motion of video object" (page 8, lines 1-8). See Figure 4 of Luo for an example of how the width and height can be limited. Luo further discloses "In our system, the user defines a video object by specifying its contour on multiple anchor frames" (page 2, lines 3-19).

The height of the local search stripe disclosed by Luo reads on the width parameter of claim 24. The contour specified by the user in Luo reads on the two vertices of claim 24, because a number of vertices define a contour. Luo discloses that "fully automatic segmentation is difficult" (page 1, lines 27-29), giving the motivation for including a user interface. It would have been obvious to one skilled in the art to modify Catros and Makram-Ebeid to include a user interface in order to simplify the task of segmentation as taught by Luo.

Conclusion

Art Unit: 2676

30. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. The following patents are cited to further show the state of the art with respect to processing boundary information in general:

- U.S. Patent 5,559,901 to Lobregt
- U.S. Patent 6,621,929 to Lai
- U.S. Patent 6,041,138 to Nishida
- U.S. Patent 6,031,935 to Kimmel

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Aaron M Richer whose telephone number is (703) 305-5825. The examiner can normally be reached on weekdays from 8:30AM-5:00PM.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Joseph Mancuso can be reached on (703)-305-3885.

The fax phone number for the organization where this application or proceeding is assigned is (703) 872-9306.

Any inquiry of a general nature or relating to the status of this application or proceeding should be directed to the receptionist whose telephone number is (703) 305-3900.

AMR 11/26/03

JØSEPH MANCUSO PRIMARY EXAMINER