UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS Universidad del Perú, DECANA DE AMÉRICA

FACULTAD DE CIENCIAS FÍSICAS

PLAN DE ESTUDIOS 2018

Escuela Profesional de Física

1. FUNDAMENTACIÓN DE LA CARRERA

CONTEXTO

Fundamentos legales

Ley Universitaria N° 30220

Marco Institucional

• Estatuto de la Universidad Nacional Mayor de San Marcos

LA UNIVERSIDAD

Misión

Somos la universidad mayor del Perú, autónoma y democrática; generadora y difusora del conocimiento científico, tecnológico y humanístico; comprometido con el desarrollo sostenible del país y la protección del medio ambiente; formadora de profesionales líderes e investigadores competentes, responsables, con valores y respetuosos de la diversidad cultural; promotora de la identidad nacional, cultura de calidad, excelencia y responsabilidad social.

Visión

Universidad del Perú, referente nacional e internacional en educación de calidad; basada en investigación humanística, científica y tecnológica, con excelencia académica; comprometida con el desarrollo humano y sostenible; líder en la promoción de la creación cultural y artística.

LA FACULTAD

La Facultad es la unidad académica básica de organización y gestión, constituida por docentes, estudiantes y graduados, responsable de la formación profesional de pregrado en un campo del conocimiento, así como del posgrado, de las actividades de investigación, desarrollo e innovación, y de la responsabilidad social universitaria en función de la misión y visión de la universidad y las demandas del país.

Misión

Somos miembros de la Institución Académica más importante del país, y la más antigua de América, comprometidos con el desarrollo de las Ciencias Físicas e innovaciones tecnológicas, que investiga, innova y se dedica a formar académicos y profesionales en Ciencias Físicas e Ingeniería Mecánica de Fluidos, altamente competitivos para el desarrollo y transformación de la sociedad, propendiendo la independencia científico tecnológica mediante el desarrollo de la ciencia y la ingeniería, haciendo uso de las tecnologías de la información y comunicación en la enseñanza e investigación con responsabilidad social.

Visión

Ser un referente nacional e internacional en la formación de académicos y profesionales en Ciencias Físicas e Ingeniería Mecánica de Fluidos, de alto nivel académico y científico; en la construcción de nuevos conocimientos científicos, la innovación tecnológica en el Perú y comprometida con el desarrollo y transformación de la sociedad.

LA ESCUELA

La Escuela Profesional de Física es la unidad académica encargada de la formación académica y profesional conducentes a la obtención del grado académico de bachiller en Física, título de Licenciado en Física, y de otorgar la certificación progresiva por los módulos de competencia que

implemente. La Escuela Profesional de Física gestiona los estudios específicos y de especialidad de pregrado.

Misión

Formar académicos y profesionales en ciencias físicas, con una sólida base académica y epistemológica, que conozcan, principios, leyes y teorías físicas, con sólidos conocimientos en matemáticas y habilidades científicas teóricas, computacionales y experimentales para construir nuevos conocimientos científicos, innovar tecnológicamente y resolver problemas para el desarrollo científico y tecnológico de la sociedad peruana. Intervenir en estudios y proyectos científicos multidisciplinarios, asesorar a las instituciones públicas y privadas, promotoras del desarrollo científico-tecnológico del país.

Visión

La Escuela Profesional de Física se propone ser un referente nacional e internacional en la formación académica a nivel de pregrado y profesional de físicos, preparados para atender las necesidades de ciencia y tecnología del país.

BASE LEGAL Y NORMATIVA

El funcionamiento y desarrollo de la Escuela Profesional de Física se sustenta en las bases legales siguientes:

- 1. Constitución Política del Estado Peruano.
- 2. Ley General de Educación No. 28044; TÍTULO I: Fundamentos y Disposiciones Generales; Art. 1 24; TÍTULO III: Art. 51. Instituciones de Educación Superior: "Las instituciones universitarias, así como, los institutos, escuelas y otros centros que imparten educación superior, pueden ser públicos o privados y se rigen por ley específica.
- 3. Ley Universitaria No. 30220. Publicada en el Diario El Peruano el 9 de julio de 2014.
- 4. Ley № 28303. Ley Marco de Ciencia, Tecnología e Innovación Tecnológica. Publicado en el Diario El Peruano el 27 de julio de 2004.
- 5. Ley № 28740, Ley del Sistema Nacional de Evaluación, Acreditación y Certificación de la Calidad Educativa. Publicado en el Diario el Peruano el 23 de mayo de 2006.
- 6. Ley № 27444. Ley del Procedimiento Administrativo General
- 7. Ley Nº 30057. Ley del Servicio Civil.
- 8. Declaración Universal de los Derechos Humanos
- 9. Ley № 28740. Ley del Sistema Nacional de Evaluación, Acreditación y Certificación de la Calidad Educativa
- 10. Ley № 29692 y su modificatoria Ley № 29722. Creación del Colegio de Físicos del Perú.
- 11. Decreto Legislativo № 739 (8 noviembre 1991): Normas mínimas de exigencia académica a fin de facilitar a estudiantes universitarios la obtención de sus grados académicos.
- 12. Decreto Legislativo № 998 que impulsa la mejora de la calidad de la formación docente (30 marzo 2008).
- 13. Decreto Supremo № 018-2007-ED. Reglamento de la Ley № 28740. Ley del Sistema Nacional de Evaluación, Acreditación y Certificación de la Calidad Educativa. Diario El Peruano (18 set. 2007).
- 14. R.M. № 0173-2008-ED. Establece el plazo para la publicación de estándares y criterios de evaluación y acreditación (MINISTERIO DE EDUCACION).
- 15. Real Cédula del 12 de mayo de 1551 que crea la Universidad Nacional Mayor de San Marcos.
- 16. Resolución Rectoral № 78337 (24/09/1984) que aprueba el Estatuto de la Universidad Nacional Mayor de San Marcos y crea la Facultad de Ciencias Físicas de la Universidad Nacional Mayor de San Marcos.

SUSTENTO ACADÉMICO Y PEDAGÓGICO

El sustento académico y pedagógico del plan curricular propuesto está basado en los documentos que a continuación se mencionan:

- 1. Ley Universitaria 30220
- 2. Acuerdo Nacional2002. Políticas de Estado: 12) Acceso Universal a la Educación Pública Gratuita y de Calidad; 20) Desarrollo de la Ciencia y Tecnología.
- 3. Plan Bicentenario: El Perú hacia el 2021. Marzo de 2011.
- 4. Conferencia mundial sobre educación superior. UNESCO 1998. La Educación Superior en el Siglo XXI. Visión y Acción (9 octubre 1998).
- 5. Declaración de la Conferencia Regional de la Educación Superior en América Latina y El Caribe. "CRES" 2008.
- 6. Declaración de Bolognia (19 junio 1999).
- Dirección General de Investigación y Acreditación Universitaria (2005). Modelo de autoevaluación con fines de mejora de las carreras universitarias. Lima: Asamblea Nacional de Rectores.
- 8. Instituto de Investigación y Fomento de la Modernización y Acreditación Universitaria (2000). Hacia un Lexicón Universitario. Lima: Asamblea Nacional de Rectores.
- 9. Consejo Nacional de Educación. (2006). Proyecto Educativo Nacional al 2021.
- 10. Modelo Educativo San Marcos, formulado por el Vicerrectorado Académico de la Universidad Nacional Mayor de San Marcos.

HISTORIA DE LA CARRERA PROFESIONAL DE FÍSICA

Los estudios de Ciencias Físicas se iniciaron en la antigua Facultad de Ciencias, como parte de la Escuela del Instituto de Física y Matemática. Posteriormente se constituyeron el Instituto de Física y el Instituto de Matemática. En 1966 se iniciaron los estudios formales de la carrera profesional de Física con su propio Plan de Estudios introducido y aplicado por el profesor americano Donald Rehfus, dentro del programa de Ciencias Básicas, financiado por el Banco Interamericano de Desarrollo (BID), con lo que se implementó los laboratorios de enseñanza e investigación. Este Plan de Estudios conducía al Grado de Bachiller en Física.

En 1969 fue creada la Dirección de Programas Académico de Física y Matemática, que ofrecía las carreras en Física, Matemática, Estadística, Investigación Operativa y Computación. La formación profesional del físico estuvo a cargo de los docentes del Departamento Académico de Física. Se otorgaba el Grado Académico de Bachiller y el Título Profesional de Licenciado en Física.

En 1973 se creó el Programa de Postgrado de Maestría en Ciencias Físicas con mención en Física del Estado Sólido, iniciándose los estudios en forma escolarizada a partir de 1982, en 1991 se creó la mención en Física Nuclear y en 1993 la mención en Geofísica.

En 1973 se llevó a cabo una reestructuración curricular, de régimen semestral y flexible, orientado fundamentalmente al campo de la Física del Estado Sólido. En el año 1992 se llevó a cabo una reestructuración curricular, adoptando un curriculum mixto, anual y semestral, con predominancia anual. En el año 1996 el régimen de estudios es anual y con orientación en Física de Materiales, Energía (Aplicaciones Nucleares) y Física Espacial y del Medio Ambiente.

En 1984, por mandato de la Ley Universitaria N°23733 y el Estatuto de la Universidad, fue creada la Facultad de Ciencias Físicas integrada por la Unidad de Post Grado, la Escuela Académico Profesional y el Departamento Académico de Física. Posteriormente fueron creados los Departamentos Académicos de Física del Estado Sólido (1985), Física Nuclear Atómica y Molecular (1991), y Física Interdisciplinaria (1993). La organización y funcionamiento de esta Facultad se inició en febrero de 1985, con sede en el Pabellón de Laboratorios de la Antigua Facultad de Ciencias.

En 1992 por acuerdo de la Asamblea Universitaria se incorporó a esta Facultad la Escuela Académico Profesional de Ingeniería Mecánica de Fluidos y el Departamento Académico correspondiente.

En 2004 el régimen de estudios es exclusivamente semestral y con orientación en Física de Materiales, Energía (Aplicaciones Nucleares) y Física Espacial y del Medio Ambiente.

Mediante Resolución de Decanato Nº 335-D-03 de fecha 26/11/2003 se creó el Programa de Doctorado en Física. En el 2014, la Unidad de Posgrado de Física ganó un concurso del Fondecyt, a nivel nacional, para el financiamiento del programa de doctorado, que comprendió 20 becas de estudio. Los estudios formales se iniciaron en el año 2015.

Actualmente la Facultad cuenta con un Instituto de Investigación, laboratorios de física de pregrado, laboratorios de investigación. Además, se ha concluido la construcción de la Primera Etapa del Pabellón de Laboratorios y Posgrado.

ÁMBITO SOCIAL DE LA CARRERA PROFESIONAL DE FÍSICA

Las Ciencias Básicas, sin estar disociadas del contexto sociocultural de la humanidad, cumplen la función de establecer leyes y teorías científicas que coadyuven a explicar el comportamiento de la naturaleza (conocimiento científico) y su aprovechamiento para el desarrollo y bienestar de la sociedad.

En el marco del actual esquema globalizado no es posible considerar un país que no viabilice el desarrollo de la ciencia y tecnología para resolver problemas concretos de la sociedad y utilizar esa experiencia como una vía para lograr ser referente científico y tecnológico dentro del orden regional y mundial, contribuyendo de esta manera al bienestar general.

Dentro del marco estratégico a seguir, entonces, se hace innegable como necesidad prioritaria a nivel país la existencia sostenida en el tiempo de la carrera académica y profesional de Física. Esta necesidad no solo se basa en la declaración política que acabamos de hacer, sino que además se sustenta en el hecho que para avanzar como sociedad dentro de los actuales parámetros globales científico-tecnológicos es necesaria la existencia de la carrera profesional de Física.

El propósito de buscar soluciones y planteamientos que afiancen el desarrollo nacional debe tener como base la investigación científica en Física con una profunda interrelación con las otras áreas del conocimiento, haciendo de este enfoque multidisciplinario una práctica que se proyecte finalmente en los procesos de enseñanza y aprendizaje para lograr una mejor conectividad con el mundo académico, empresarial y productivo del país, ampliando de esta manera el espectro del mercado de oportunidades laborales. El diseño de la carrera profesional de Física debe avanzar con respecto al enfoque tradicional del Físico para poder hacer frente a las demandas y necesidades no solo de la sociedad en su conjunto, sino además de los retos planteados por el orden empresarial y productivo del país.

Partiendo de este marco referencial, la carrera profesional de Física debe atender varios requerimientos en función de ciertos ejes formulados a partir de una propuesta general diseñada, desde una estructura más amplia como es la universidad en su conjunto, a través de un documento integrador denominado Modelo Educativo San Marcos.

La Escuela Profesional de Física otorga el grado académico de bachiller, que es la base para que el egresado pueda obtener el título para el ejercicio profesional y completar y continuar su formación académica a través de los estudios de maestría y doctorado. Por tanto, la formación que recibe un estudiante comprende dos aspectos: el nivel de la formación académica y las competencias profesionales. La formación de los estudiantes de pregrado está a cargo de profesores con grados académicos de magíster y doctor.

ÁMBITO DE DESEMPEÑO PROFESIONAL Y MERCADO LABORAL

El Profesional en Física está preparado para el estudio y análisis de fenómenos físicos y sus leyes, así como para la investigación teórica y experimental y para la docencia. La formación del físico con base sólida en matemáticas, física y con conocimiento de nuevas tecnologías y sus aplicaciones le permite participar en diversos campos como: Investigación de Patrimonio cultural. Generación de energía. Física de Materiales. Nanotecnología. Información cuántica. Medio Ambiente. Física nuclear, atómica y molecular. Física de las Radiaciones. Física Médica. Imágenes. Metrología. Informática y Telecomunicaciones. Óptica. Meteorología. Oceanografía. Acústica. Sismología. Diseño y construcción de instrumentos científicos. Astrofísica y Exploración Espacial. Biofísica.

Campo donde labora:

Los profesionales físicos tienen un campo laboral muy diverso y pueden desempeñarse en el país en instituciones públicas y privadas como:

- Universidades e institutos de educación superior: Docencia Universitaria e Investigación
- Instituciones no universitarias: Docencia no Universitaria.
- Centros arqueológicos y museos de patrimonio cultural.
- Instituciones científicas tales como, Instituto Nacional de Innovación Agraria (INIA), Comisión Nacional de Investigación y Desarrollo Aeroespacial (CONIDA), Instituto Antártico Peruano (IAP), Instituto Geográfico Nacional (IGN), Instituto de Investigaciones de la Amazonía Peruana (IIAP), Instituto del Mar del Perú (IMARPE), Instituto Geofísico del Perú (IGP), Dirección de Hidrografía y Navegación (DHN), Instituto Geológico, Minero y Metalúrgico (INGEMMET), Instituto Nacional de Recursos Naturales (INRENA), Instituto Peruano de Energía Nuclear (IPEN), Instituto Tecnológico Pesquero (ITP), Servicio Nacional de Meteorología e Hidrología del Perú (SENHAMI), Autoridad Nacional del Agua (ANA), entre otros.
- Centros de alta tecnología.
- Tratamiento de fenómenos complejos.
- Centros de salud y en la industria (Instituto Nacional de Enfermedades Neoplásicas INEN, Aplicaciones de Radiaciones Ionizantes).
- Poder Judicial y Fiscalía de la Nación, como Perito Físico.
- Asesorías y Consultorías.

El profesional físico también se desempeña en diversas instituciones internacionales, como investigador o consultor.

OBJETIVOS DE LA CARRERA PROFESIONAL DE FÍSICA

OBJETIVOS

El bachillerato y la carrera profesional en Física tienen como finalidad que el estudiante obtenga una formación general en Física, orientada para el ejercicio de actividades de carácter profesional, con capacidad para aplicar las destrezas adquiridas, tanto en la docencia como en la investigación de la Física, así como sus aplicaciones en la industria, empresa y administración. Los estudios conducentes al grado de Bachiller en Física preparan formaciones más especializadas a nivel de maestría en Física y afines.

Los profesionales están preparados para el análisis y la modelización de situaciones complejas y están capacitados para resolver problemas diversos con el empleo de técnicas matemáticas avanzadas y su implementación utilizando tecnologías de información.

OBJETIVOS GENERALES

Que el estudiante:

 Desarrolle la capacidad de identificar los elementos esenciales de un proceso físico, lo cual le permitirá construir un modelo simplificado que describa con la aproximación necesaria el objeto de estudio y con ello pueda realizar predicciones del comportamiento del proceso físico. Asimismo, debe ser capaz de comprobar la validez del modelo y de introducir las modificaciones necesarias en caso de discrepancias entre las predicciones del modelo y las observaciones experimentales.

- Se familiarice con el trabajo en el laboratorio, la instrumentación y los métodos experimentales. Realice experimentos de forma independiente y describa, analice y evalúe los datos obtenidos, en forma crítica y honesta.
- Sea capaz de evaluar y distinguir entre los órdenes de magnitud, así como, desarrollar la capacidad de percibir situaciones que son diferentes pero que muestran analogías, lo que le permitirá aplicar modelos conocidos a nuevos problemas.
- Iniciar una especialización en los campos de la Física de Materiales, Física Nuclear, Atómica y Aplicaciones, Física Médica, Geofísica, Física Espacial y Física del Medio Ambiente.

2. PERFILES DE LA CARRERA

PERFIL DEL INGRESANTE

El ingresante a la carrera profesional de Física deberá contar con ciertas habilidades, conocimientos y actitudes, es decir, preferentemente debe tener las siguientes competencias:

- 1. Tener vocación por la Física.
- 2. Tener capacidad de análisis y síntesis para comprender las propiedades de la naturaleza y sus fenómenos.
- 3. Reconocer que la Física es una ciencia básica y por lo tanto durante la carrera pondrá mayor énfasis en la profundización del conocimiento más que en su aplicación.
- 4. Tener habilidad para las matemáticas y facilidad para el razonamiento intuitivo.
- 5. Tener capacidad para la observación y experimentación.
- 6. Tener habilidades para la búsqueda de información y literatura científica.
- 7. Tener capacidad para la abstracción y análisis.
- 8. Tener capacidad de trabajo en equipo.

PERFIL DEL GRADUADO

El graduado de la carrera profesional de Física deberá contar con ciertas habilidades, conocimientos y actitudes, es decir con las siguientes competencias:

- 1. Interpreta, conceptualiza y aplica las teorías de la física para explicar el comportamiento de la naturaleza.
- 2. Analiza y resuelve problemas de la sociedad ante eventos naturales, utilizando teorías y modelos físicos.
- 3. Diseña y construye instrumentos de medición.
- 4. Participa en proyectos de investigación de Física básica y aplicada.
- 5. Cumple con responsabilidad y ética sus funciones profesionales.
- 6. Tiene actitud crítica y reflexiva dentro del horizonte del pensamiento epistemológico, proponiendo alternativas de solución.
- 7. Posee una sólida cultura científica y humanística, brindando una visión integral de la naturaleza y la sociedad.
- 8. Posee experiencia en técnicas de programación y software aplicadas a la Física.
- 9. Tiene la experiencia en la adquisición, procesamiento, análisis de datos y técnicas experimentales.
- 10. Genera conocimiento científico.

PERFIL DEL PROFESIONAL

La formación académica y profesional del físico se sustenta en una estructura central de la carrera constituida por cuatro cursos fundamentales: mecánica clásica, electromagnetismo, mecánica cuántica y física estadística.

El físico es un profesional y académico competente, aplica teorías y modelos físicos-matemáticos tendientes a explicar el comportamiento de la naturaleza, resuelve problemas generados que afectan la seguridad e integridad de la sociedad. Es competente para participar en proyectos de investigación en física básica y aplicada. Aplica modelos computacionales e informáticos que coadyuven a interpretar una realidad o conjetura del universo. Es competente para interrelacionarse con la sociedad en busca de dar solución mediante las teorías de la Física a los problemas científicos, tecnológicos y productivos del país.

COMPETENCIAS

COMPETENCIAS BÁSICAS

- 1. Poseer y comprender los conocimientos en el área de la Física a partir de la base de la educación secundaria.
- 2. Saber aplicar los conocimientos físicos a su trabajo o vocación de una forma profesional y poseer las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro del área de la Física.
- 3. Tener la capacidad de reunir e interpretar datos relevantes, dentro del área de la Física, para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- 4. Poder transmitir información, ideas, problemas y soluciones del ámbito del área de la Física a un público tanto especializado como no especializado.

COMPETENCIAS GENERALES

- 1. Desarrollar las capacidades de análisis y de síntesis con el objeto de poder abstraer las propiedades estructurales de la realidad física, distinguiéndolas de aquellas puramente ocasionales y poder inferirlas, comprobarlas o refutarlas con experimentos u observaciones físicas.
- 2. Incrementar la capacidad de organización y planificación con el objeto de resolver con éxito el problema analizado.
- 3. Desarrollar la capacidad de razonamiento crítico para poder identificar analogías entre fenómenos físicos diferentes y ser capaz de construir modelos físicos, así como poder detectar errores en razonamientos, aproximaciones o cálculos incorrectos.
- 4. Ser capaz de plantear y resolver problemas físicos obteniendo una descripción no sólo cualitativa sino también cuantitativa y con el grado de precisión que sea requerido del fenómeno físico en cuestión.
- 5. Aprender de manera autónoma, nuevos conocimientos y técnicas.

COMPETENCIAS ESPECÍFICAS

- 1. Demostrar una comprensión profunda de los conceptos y principios fundamentales, tanto de la física clásica y física moderna.
- 2. Saber formular las relaciones funcionales y cuantitativas de la Física en lenguaje matemático y aplicar dichos conocimientos a la resolución explícita de problemas de particular interés.
- 3. Plantear, analizar y resolver problemas físicos, tanto teóricos y experimentales mediante el uso de métodos analíticos, matemáticos y numéricos.
- 4. Utilizar o elaborar programas o sistemas de computación para el procesamiento de información, cálculo numérico, simulación de procesos físicos o control de experimentos.
- 5. Describir y explicar fenómenos naturales y procesos tecnológicos en términos de conceptos, principios y teorías físicas.
- 6. Construir modelos simplificados que describan una situación compleja, identificando sus elementos esenciales y efectuando las aproximaciones necesarias. Ser capaz de evaluar claramente los órdenes de magnitud, de desarrollar una clara percepción de las situaciones que son físicamente diferentes, pero que muestran analogías, permitiendo por lo tanto, el uso de soluciones conocidas a nuevos problemas.

7. Haberse familiarizado con las áreas más importantes de la Física, no sólo a través de su importancia intrínseca, sino por la relevancia esperada en un futuro para la Física y sus aplicaciones, familiaridad con los enfoques que abarcan muchas áreas en Física.

3. PLAN DE ESTUDIOS

DEFINICIÓN DE CRÉDITO

El crédito académico es una medida del tiempo formativo exigido a los estudiantes para lograr aprendizajes teóricos y prácticos. Para los estudios presenciales se define un crédito académico como equivalente a un mínimo de dieciséis (16) horas lectivas de teoría o el doble de horas de práctica (Artículo 101 del Estatuto de la UNMSM, 2016).

SUSTENTACIÓN DE LAS ASIGNATURAS

Las asignaturas se plantean de acuerdo a las áreas de interés de los estudiantes. Se tienen las siguientes áreas de interés: Física de los Materiales, Energía (Aplicaciones Nucleares) y Física Espacial y del Medio Ambiente.

PORCENTAJE DE CRÉDITOS POR ÁREA

ÁREA CURRICULAR	PESO DEL ÁREA (%)	RASGOS DEL PERFIL	JUSTIFICACIÓN
ESTUDIOS GENERALES	23,08 %	Perfil del graduado: ítems 6, 7, 8.	Los indicados en el Perfil del graduado
ESTUDIOS ESPECÍFICOS	50,96 %	Perfil del graduado: ítems 1, 2, 9.	Los indicados en el Perfil del graduado
ESTUDIOS DE ESPECIALIDAD	25,96 %	Perfil del graduado: ítems 3, 4, 5.	Los indicados en el Perfil del graduado

HORAS DE TEORÍA, PRÁCTICA Y/O LABORATORIO Y TIPOS DE ASIGNATURAS

	ESTUDIOS GENERALES					
	PRIMER AÑO)				
	PRIMER SEMES	TRE				
CÓDIGO	CURSO	CRÉDITOS	Т	L	Р	TIPO
CBO101	LENGUAJE	4	2	-	4	EG
CBO102	MÉTODOS DE ESTUDIO UNIVERSITARIO	3	2	-	2	EG
CBO103	.03 GESTIÓN PERSONAL 3 2 - 2					EG
CBO104	CÁLCULO I	4	3	-	2	EG
CBO105	MATEMÁTICA BÁSICA	4	3	-	2	EG
CBO106	BIOLOGÍA	4	2	-	4	EG
CBO013	INTRODUCCIÓN A LA FÍSICA	2	1	1	2	EG
	TOTAL 24 16 16					
	SEGUNDO SEMESTRE					
CÓDIGO	CURSO	CRÉDITOS	T	L	Р	TIPO

		1		1		1
CBO201	FUNDAMENTOS DE INVESTIGACIÓN CIENTÍFICA	3	2	-	2	EG
CBO202	MEDIO AMBIENTE Y DESARROLLO SOSTENIBLE	4	2	-	4	EG
CBO203	REALIDAD NACIONAL Y MUNDIAL	3	3	-	-	EG
CBO204	CÁLCULO II	4	3	-	2	EG
CBO205	QUÍMICA INORGÁNICA Y ORGÁNICA	4	3	ı	2	EG
CBO014	MECÁNICA GENERAL	6	4	2	2	EG
	TOTAL	24	17	2	12	
	ESTUDIOS ESPEC	ÍFICOS				
	SEGUNDO AÑ	0				
	TERCER SEMEST	ΓRE				
CÓDIGO	CURSO	CRÉDITOS	Т	L	Р	TIPO
CFO301	FÍSICA MOLECULAR	6	4	2	2	EE
CFO302	FÍSICA MATEMÁTICA I	4	3	-	2	EE
CFO303	ÁLGEBRA LINEAL	4	3	-	2	EE
CFO304	CÁLCULO III	4	3	-	2	EE
CFO305	FÍSICA COMPUTACIONAL I	4	3	-	2	EE
	TOTAL	22	16	2	10	
	CUARTO SEMES	TRE				
CÓDIGO	CURSO	CRÉDITOS	т	L	Р	TIPO
CFO401	ELECTRICIDAD Y MAGNETISMO	6	4	2	2	EE
CFO402	FÍSICA EXPERIMENTAL I	4	2	4	-	EE
CFO403	FÍSICA MATEMÁTICA II	4	3		2	EE
CFO404	ESTADÍSTICA Y PROBABILIDAD	4	3	_	2	EE
CFO405	MECÁNICA CLÁSICA I	4	3		2	EE
C1 0403	TOTAL	22	15	6	8	
	TERCER AÑO		13		J	
			_	_	_	_
262122	QUINTO SEMES		_		_	l
CÓDIGO	CURSO	CRÉDITOS	T	L	Р	TIPO
CFO501	ÓPTICA	6	4	2	2	EE
CFO502	FÍSICA COMPUTACIONAL II	4	2	4	-	EE
CFO503	MECÁNICA CLÁSICA II	4	3	-	2	EE
CFO504	FÍSICA MATEMÁTICA III	4	3	-	2	EE
CFO505	FÍSICA MODERNA I	4	3	-	2	EE
	TOTAL	22	15	6	8	
	SEXTO SEMEST	RE				
CÓDIGO	CURSO	CRÉDITOS	T	L	Р	TIPO
CFO601	ELECTROMAGNETISMO I	5	4	-	2	EE
CFO602	FÍSICA ELECTRÓNICA I	4	2	4	-	EE
CFO603	MECÁNICA CUÁNTICA I	5	4	-	2	EE
CFO604	TERMODINÁMICA	4	3	-	2	EE
CFO605	FÍSICA MODERNA II	4	2	-	4	EE
	TOTAL	22	15	4	10	
	CUARTO AÑO					
	SÉPTIMO SEMES	TRE				
CÓDIGO	CURSO	CRÉDITOS	Т	L	P	TIPO
CFO701	ELECTROMAGNETISMO II	5	4	-	2	EE
		-				

	TOTAL	21	15	4	8	
CFO705	REDACCIÓN Y METODOLOGÍA CIENTÍFICA	3	2	-	2	EP
CFO704	FÍSICA ESTADÍSTICA I	4	3	-	2	EE
CFO703	MECÁNICA CUÁNTICA II	5	4	-	2	EE
CFO702	FÍSICA ELECTRÓNICA II	4	2	4	ı	EE

	ESTUDIOS DE ESPECIALIDAD						
	OCTAVO SEMESTRE						
CÓDIGO CURSO CRÉDITOS T L P TII						TIPO	
CFO801	METODOLOGÍA DE LA ENSEÑANZA EN FÍSICA	3	2	-	2	EP	
CFO802	FÍSICA DEL ESTADO SÓLIDO I	5	4	-	2	EP	
CFO803	FÍSICA NUCLEAR I	5	4	-	2	EP	
CFO804	GEOFÍSICA GENERAL	4	3	-	2	EP	
CFO805	CFO805 ASTRONOMÍA Y ASTROFÍSICA 4 3 - 2 EP						
	TOTAL	21	16		10		

	QUINTO AÑO					
	NOVENO SEMES	STRE				
CÓDIGO	CURSO	CRÉDITOS	Т	L	Р	TIPO
CFO901	ELABORACIÓN Y EVALUACIÓN DE PROYECTOS	3	2	-	2	EP
CFO902	TRABAJO DE GRADO I	5	3	-	4	EP
CFO903	FILOSOFIA E HISTORIA DE LA CIENCIA	3	3	-	-	EE
CFE	ELECTIVO	4	3	-	2	EP
CFE	ELECTIVO	4	3	-	2	EP
	TOTAL	19	14		10	
	DÉCIMO SEMES	TRE				
CÓDIGO	CURSO	CRÉDITOS	Т	L	Р	TIPO
CFO1002	TRABAJO DE GRADO II	5	3	-	4	EP
CFE	ELECTIVO	4	3	_	2	EP
CFE	ELECTIVO	4	3	-	2	EP
	TOTAL	13	9		8	

LEYENDA

T TEODÍA	LIADODATODIO	D DDÁCTICA	EG=ESTUDIOS	EE=ESTUDIOS	EP=ESTUDIOS DE
T=TEORÍA	L=LABORATORIO	P=PRÁCTICA	GENERALES	ESPECÍFICOS	ESPECIALIDAD

Estudios Generales : 48 Créditos Obligatorios : 143 Créditos Electivos : 16

Total de Créditos para Graduarse : 210

PRE-REQUISITOS

PRIMER AÑO					
ASIGNATURA PF	ASIGNATURA PRE-REQUISITO				
PRIMER	R SEMESTRE				
INTRODUCCIÓN A LA FÍSICA					
MÉTODOS DE ESTUDIO UNIVERSITARIO					
BIOLOGÍA					
LENGUAJE					
MATEMÁTICA BÁSICA					
CÁLCULO I					
GESTIÓN PERSONAL					
SEGUND	O SEMESTRE				
MECÁNICA GENERAL	INTRODUCCIÓN A LA FÍSICA CÁLCULO I				
FUNDAMENTOS DE INVESTIGACIÓN CIENTÍFICA					
MEDIO AMBIENTE Y DESARROLLO SOSTENIBLE	BIOLOGÍA				
QUÍMICA INORGÁNICA Y ORGÁNICA					
REALIDAD NACIONAL Y MUNDIAL					
CÁLCULO II	CÁLCULO I				
SEGUI	NDO AÑO				
TERCER	SEMESTRE				
ÁLGEBRA LINEAL	MATEMÁTICA BÁSICA				
FÍSICA MATEMÁTICA I	CÁLCULO II				
FÍSICA MOLECULAR	MECÁNICA GENERAL				
CÁLCULO III	CÁLCULO II				
FÍSICA COMPUTACIONAL I	CÁLCULO II				
CUARTO) SEMESTRE				
ELECTRICIDAD Y MAGNETISMO	FÍSICA MOLECULAR CÁLCULO III				
FÍSICA EXPERIMENTAL I	FÍSICA MOLECULAR				
FÍSICA MATEMÁTICA II	FÍSICA MATEMÁTICA I				
MECÁNICA CLÁSICA I	FÍSICA MOLECULAR				
WEGAINICA CEASION I	CÁLCULO III				
ESTADÍSTICA Y PROBABILIDAD	MATEMÁTICA BÁSICA CÁLCULO II				
TERC	CER AÑO				
QUINTO	SEMESTRE				
ÓPTICA	ELECTRICIDAD Y MAGNETISMO				
FÍSICA COMPUTACIONAL II	FÍSICA COMPUTACIONAL I				
MECÁNICA CLÁSICA II	MECÁNICA CLÁSICA I				
FÍSICA MATEMÁTICA III	FÍSICA MATEMÁTICA II				
FISICA MODERNA I	FÍSICA MODERNA I ELECTRICIDAD Y MAGNETISMO				
SEXTO	SEXTO SEMESTRE				
ELECTROMAGNETISMO I	FÍSICA MATEMÁTICA II ELECTRICIDAD Y MAGNETISMO				

ELECTRICIPAD VAAA CHIETICAAC					
ELECTRICIDAD Y MAGNETISMO					
FÍSICA MODERNA I					
ÁLGEBRA LINEAL					
FÍSICA MOLECULAR					
CÁLCULO III					
FÍSICA MODERNA I					
O AÑO					
SEMESTRE					
ELECTROMAGNETISMO I					
FÍSICA ELECTRÓNICA I					
MECÁNICA CUÁNTICA I					
TERMODINÁMICA					
ESTADÍSTICA Y PROBABILIDAD					
HABER APROBADO 100 CRÉDITOS					
OCTAVO SEMESTRE					
HABER APROBADO 120 CRÉDITOS					
MECÁNICA CUÁNTICA I FÍSICA ESTADÍSTICA I					
MECÁNICA CUÁNTICA I					
MECÁNICA CLÁSICA I					
ELECTROMAGNETISMO I					
MECÁNICA CLÁSICA II					
ELECTROMAGNETISMO II					
QUINTO AÑO					
NOVENO SEMESTRE					
REDACCIÓN Y METODOLOGÍA CIENTÍFICA					
HABER APROBADO 160 CRÉDITOS					
HABER APROBADO 160 CRÉDITOS					
FILOSOFÍA E HISTORIA DE LA CIENCIA HABER APROBADO 160 CRÉDITOS DÉCIMO SEMESTRE					
TRABAJO DE GRADO I					

	ELECTIVOS ESTUDIOS GENERALES				
CÓDIGO	ASIGNATURA	N° CRÉDITOS	REQUISITOS		
CBE001	PROCESO CULTURAL ANDINO	2			
CBE002	FUNDAMENTOS DE RIESGOS DE DESASTRES Y CAMBIO CLIMÁTICO	2			
CBE003	ECONOMÍA GENERAL	2			
CBE004	GÉNERO Y SOCIEDAD	2			
CBE005	ÉTICA PÚBLICA E INTEGRIDAD INSTITUCIONAL	2			
CBE006	COMUNICACIÓN Y RESOLUCIÓN DE CONFLICTOS	2			
CBE007	DERECHOS FUNDAMENTALES, CIUDADANÍA Y DERECHOS HUMANOS	2			
CBE008	TALLER DE MÚSICA	2			
CBE009	TALLER DE DANZA	2			
CBE010	APRECIACIÓN DEL CINE	2			
CBE011	INFORMACIÓN Y SOCIEDAD	2			
CBE012	QUECHUA	2			

	Otros a determinarse	2	
	ELECTIVOS		
	A: FÍSICA DE MATERIA		
CÓDIGO	ASIGNATURA	N° CRÉDITOS	REQUISITOS
CFE902A	FÍSICA EXPERIMENTAL II	4	FÍSICA EXPERIMENTAL I
CFE903A	TEORÍA GENERAL DE LA RELATIVIDAD	4	FÍSICA MATEMÁTICA III
CFE904A	ENERGÍA Y MEDIO AMBIENTE	4	ELECTROMAGNETISMO II TERMODINÁMICA
CFE905A	ÓPTICA FÍSICA	4	ELECTROMAGNETISMO II ÓPTICA
CFE906A	METROLOGÍA	4	FÍSICA ELECTRÓNICA II
CFE907A	ESPECTROSCOPÍA DE RAYOS X	4	FÍSICA MODERNA I FISICA EXPERIMENTAL II
CFE908A	ESPECTROSCOPÍA MOSSBAUER	4	FÍSICA MODERNA I FISICA EXPERIMENTAL II
CFE909A	FÍSICA DEL ESTADO SÓLIDO II	4	FÍSICA DEL ESTADO SÓLIDO I
CFE910A	FÍSICA NUCLEAR II	4	FÍSICA NUCLEAR I
CFE911A	TÓPICOS AVANZADOS DE MATERIA CONDENSADA I	4	FÍSICA DEL ESTADO SÓLIDO I
CFE103A	TÓPICOS AVANZADOS DE MATERIA CONDENSADA II	4	FÍSICA DEL ESTADO SÓLIDO I
CFE104A	FÍSICA DE SUELOS	4	ÓPTICA
CFE105A	TEORÍA DE GRUPOS	4	MECÁNICA CUÁNTICA I
CFE107A	ESTRUCTURA ELECTRÓNICA DE SÓLIDOS	4	MECÁNICA CUÁNTICA II FÍSICA DEL ESTADO SÓLIDO I
CFE108A	TRANSFORMACIÓN DE FASES	4	FÍSICA ESTADÍSTICA I
CFE109A	FÍSICA ESTADÍSTICA II	4	FÍSICA ESTADÍSTICA I
CFE110A	CRISTALOGRAFÍA	4	FÍSICA MODERNA I
	ELECTIVOS B: ENERGÍA – APLICACIONES	NUCLEARES	
CÓDIGO	ASIGNATURA	N° CRÉDITOS	REQUISITOS
CFE902B	FÍSICA EXPERIMENTAL II	4	FÍSICA EXPERIMENTAL I
CFE903B	TEORÍA GENERAL DE LA RELATIVIDAD	4	FÍSICA MATEMÁTICA III ELECTROMAGNETISMO II
CFE904B	ENERGÍA Y MEDIO AMBIENTE	4	TERMODINÁMICA
CFE905B	ÓPTICA FÍSICA	4	ELECTROMAGNETISMO II ÓPTICA
CFE906B	METROLOGÍA	4	FÍSICA ELECTRÓNICA II
CFE907B	ESPECTROSCOPÍA DE RAYOS X	4	FÍSICA MODERNA I FÍSICA EXPERIMENTAL I
CFE908B	ESPECTROSCOPÍA MOSSBAUER	4	FÍSICA MODERNA I
CFE909B	FÍSICA NUCLEAR II	4	FÍSICA NUCLEAR I
CFE910B	FÍSICA MÉDICA		FÍSICA NUCLEAR I FÍSICA EXPERIMENTAL I
CFE911B	TÓPICOS AVANZADOS DE FÍSICA NUCLEAR I	4	FÍSICA NUCLEAR I
CFE103B	TÓPICOS AVANZADOS DE FÍSICA NUCLEAR II	4	FÍSICA NUCLEAR I
CFE104B	FÍSICA DE ALTAS ENERGÍAS	4	MECÁNICA CUÁNTICA II ELECTROMAGNETISMO II FÍSICA NUCLEAR I
CFE105B	PROTECCIÓN RADIOLÓGICA	4	FÍSICA NUCLEAR I ELECTROMAGNETISMO II
CFE106B	APLICACIONES DE LA FÍSICA NUCLEAR	4	FÍSICA NUCLEAR I FÍSICA EXPERIMENTAL I
CFE107B	DOSIMETRÍA DE LAS RADIACIONES	4	FÍSICA NUCLEAR I FÍSICA COMPUTACIONAL II
CFE108B	FÍSICA DE REACTORES NUCLEARES	4	FÍSICA NUCLEAR I FÍSICA COMPUTACIONAL II

CFE109B	FÍSICA ESTADÍSTICA II	4	FÍSICA ESTADÍSTICA I
CFE110B	CRISTALOGRAFÍA	4	FÍSICA MODERNA I
CFE111B	PROCESAMIENTO DE DATOS Y SEÑALES DIGITALES	4	FÍSICA COMPUTACIONAL II
CFE112B	TÓPICOS AVANZADOS DE FÍSICA TEÓRICA I	4	MECÁNICA CUÁNTICA II ELECTROMAGNETISMO II
CFE113B	TÓPICOS AVANZADOS DE FÍSICA TEÓRICA II	4	MECÁNICA CUÁNTICA II ELECTROMAGNETISMO II
	ELECTIVOS	<u>.</u>	
	C: FÍSICA ESPACIAL Y DEL ME	DIO AMBIENTE	
CÓDIGO	ASIGNATURA	N° CRÉDITOS	REQUISITOS
CFE903C	TEORÍA GENERAL DE LA RELATIVIDAD	4	FÍSICA MATEMATICA III ELECTROMAGNETISMO II
CFE904C	ENERGÍA Y MEDIO AMBIENTE	4	TERMODINÁMICA
CFE905C	ÓPTICA FÍSICA	4	ELECTROMAGNETISMO II ÓPTICA
CFE906C	METROLOGÍA	4	FÍSICA ELECTRÓNICA II
CFE908C	TÓPICOS AVANZADOS DE ASTRONOMÍA Y ASTROFÍSICA I	4	ASTRONOMÍA Y ASTROFÍSICA
CFE909C	OCEANOGRAFÍA FÍSICA	4	MECÁNICA CLÁSICA I FÍSICA COMPUTACIONAL I
CFE910C	METEOROLOGÍA SINÓPTICA	4	MECÁNICA CLÁSICA I ELECTROMAGNETISMO I
CFE911C	INTRODUCCIÓN A LA SISMOLOGÍA	4	MECÁNICA CLÁSICA I FÍSICA COMPUTACIONAL I
CFE912C	FÍSICA Y TÉCNICAS DE TELEDETECCIÓN	4	ELECTROMAGNETISMO II FÍSICA COMPUTACIONAL I
CFE913C	TÓPICOS AVANZADOS DE GEOFÍSICA I	4	GEOFÍSICA GENERAL
CFE914C	FÍSICA DE PLASMAS ASTROFÍSICOS	4	FÍSICA ESTADÍSTICA I
CFE103C	TÓPICOS AVANZADOS DE GEOFÍSICA II	4	GEOFÍSICA GENERAL
CFE104C	DINÁMICA DE FLUIDOS GEOFÍSICOS	4	OCEANOGRAFÍA FÍSICA FÍSICA COMPUTACIONAL II
CFE105C	CLIMATOLOGÍA	4	ELECTROMAGNETISMO II FÍSICA COMPUTACIONAL II
CFE106C	TÓPICOS AVANZADOS DE ASTRONOMÍA Y ASTROFÍSICA II	4	ASTRONOMÍA Y ASTROFÍSICA
CFE107C	FÍSICA DE LA ATMÓSFERA	4	ELECTROMAGNETISMO I TERMODINÁMICA FÍSICA COMPUTACIONAL I
CFE109C	INTRODUCCIÓN A LA COSMOLOGÍA	4	TEORÍA GENERAL DE LA RELATIVIDAD
CFE110C	PROPAGACIÓN DE ONDAS	4	MECÁNICA CLÁSICA I ELECTROMAGNETISMO I
CFE111C	PROCESAMIENTO DE DATOS Y SEÑALES DIGITALES	4	FÍSICA COMPUTACIONAL II
CFE112C	GEOFÍSICA APLICADA	4	GEOFÍSICA GENERAL
CFE113C	GEOFÍSICA AMBIENTAL	4	GEOFÍSICA GENERAL PROPAGACIÓN DE ONDAS

TABLA DE EQUIVALENCIAS Y CONVALIDADCIONES

De acuerdo al Plan de Estudios en la que el estudiante llevó la asignatura a convalidar se presenta las siguientes tablas de equivalencia:

TABLA **DE EQUIVALENCIAS 1er, 2do, 3er, 4to y 5to año**

	CURRÍCULO 1992	CURRÍCULO 1996			
CÓDIGO	ASIGNATURA	CÓDIGO ASIGNATURA			
131101	ANÁLISIS MATEMÁTICO I	131110	ANÁLISIS MATEMÁTICO I		
131201	ANÁLISIS MATEMÁTICO II	131200	ANÁLISIS MATEMÁTICO II		
131202	ÁLGEBRA LINEAL Y ECUACIONES	131210	ÁLGEBRA LINEAL Y ECUACIONES		
	DIFERENCIALES		DIFERENCIALES		
131105	LENGUAJE DE PROGRAMACIÓN	131212	PROGRAMACIÓN E INFORMÁTICA		
131405	MÉTODOS NUMÉRICOS	131419	ANÁLISIS NUMÉRICO		
131106	METODOLOGÍA DEL TRABAJO EN FÍSICA	131211	METODOLOGÍA DEL TRABAJO EN FÍSICA		
131305	FILOSOFÍA E HISTORIA DE LA CIENCIA	131418	FILOSOFÍA E HISTORIA DE LA CIENCIA		
131104	QUÍMICA GENERAL	131111	QUÍMICA		
		131112	LABORATORIO DE QUÍMICA		
131102	FÍSICA I	131120	FÍSICA I		
131103	LABORATORIO DE FÍSICA I	131130	LABORATORIO DE FÍSICA I		
131203	FÍSICA II	131220	FÍSICA II		
131205	MECÁNICA CLÁSICA	131300	MECÁNICA CLÁSICA		
131301	FÍSICA MATEMÁTICA	131310	FÍSICA MATEMÁTICA		
131302	ELECTROMAGNETISMO	131312	ELECTROMAGNETISMO I		
		131413	ELECTROMAGNETISMO II		
131303	MECÁNICA CUÁNTICA	131314	MECÁNICA CUÁNTICA I		
		131411	MECÁNICA CUÁNTICA II		
131304	ELECTRÓNICA	131313	ELECTRÓNICA DIGITAL		
131401	TERMODINÁMICA Y MECÁNICA ESTADÍSTICA	131311	TERMODINÁMICA		
		131417	FÍSICA ESTADÍSTICA		
131402	FÍSICA DEL ESTADO SÓLIDO	131412	FÍSICA DEL ESTADO SÓLIDO I		
		131513	FÍSICA DEL ESTADO SÓLIDO II		
131403	FÍSICA NUCLEAR	131414	FÍSICA NUCLEAR I		
		131541	FÍSICA NUCLEAR II		
131404	FÍSICA EXPERIMENTAL	131415	FÍSICA EXPERIMENTAL		
131521	TEORIA CUÁNTICA DE MUCHOS CUERPOS	131518	TOPICOS AVANZADOS II		
131532	ESPECTROSCOPÍA MOSSBAUER	131514	ESPECTROSCOPÍA MOSSBAUER		
131522	ESPECTROSCOPÍA DE RAYOS X	131509	ESPECTROSCOPÍA DE RAYOS X		
131531	ESTRUCTURA ELECTRÓNICA DE SÓLIDOS	131516	ESTRUCTURA ELECTRÓNICA DE SÓLIDOS		
131551	FÍSICA DE REACTORES NUCLEARES	131544	FÍSICA DE REACTORES NUCLEARES		
131552	INSTRUMENTACIÓN NUCLEAR I	131515	TÓPICOS AVANZADOS I		
131562	INSTRUMENTACIÓN NUCLEAR II	131550	TÓPICOS AVANZADOS II		
131534	TÓPICOS AVANZADOS DE ESTADO SÓLIDO II	131568	TÓPICOS AVANZADOS II		
131572	TÓPICOS AVANZADOS DE FÍSICA NUCLEAR I	131545	TÓPICOS AVANZADOS I		
131581	TÓPICOS AVANZADOS DE FÍSICA NUCLEAR II	131567	TÓPICOS AVANZADOS I		

TABLA DE EQUIVALENCIAS 1er, 2do y 3er Año

	CURRÍCULO 1996		CURRÍCULO 2004		
CÓDIGO	ASIGNATURA	CÓDIGO	ASIGNATURA		
131100	MATEMÁTICAS BÁSICAS	131170	MATEMÁTICAS BÁSICAS I		
		131171	MATEMÁTICAS BÁSICAS II		
131110	ANÁLISIS MATEMÁTICO I	131180	ANÁLISIS MATEMÁTICO I		
		131181	ANÁLISIS MATEMÁTICO II		
131120	FÍSICA I	131190	FÍSICA I		
		131191	FÍSICA II		
131130	LABORATORIO DE FÍSICA I	131140	LABORATORIO DE FÍSICA I		
		131141	LABORATORIO DE FÍSICA II		
131111	QUÍMICA	131111	QUÍMICA		
131112	LABORATORIO DE QUÍMICA	131112	LABORATORIO DE QUÍMICA		
131200	ANÁLISIS MATEMÁTICO II	131270	ANÁLISIS MATEMÁTICO III		
		131271	ANÁLISIS MATEMÁTICO IV		
131210	ÁLGEBRA LINEAL Y ECUACIONES	131280	ÁLGEBRA LINEAL		
	DIFERENCIALES	131281	ECUACIONES DIFERENCIALES		
131220	FÍSICA II	131290	FÍSICA III		
		131291	FÍSICA IV		
131230	LABORATORIO DE FÍSICA II	131250	LABORATORIO DE FÍSICA III		
		131251	LABORATORIO DE FÍSICA IV		
131211	METODOLOGÍA DEL TRABAJO EN FÍSICA	131211	METODOLOGÍA DEL TRABAJO EN FÍSICA		
131212	PROGRAMACIÓN E INFORMÁTICA	131212	PROGRAMACIÓN E INFORMÁTICA		
131300	MECÁNICA CLÁSICA	131370	MECÁNICA CLÁSICA I		
		131371	MECÁNICA CLÁSICA II		
131310	FÍSICA MATEMÁTICA	131380	FÍSICA MATEMÁTICA I		
		131381	FÍSICA MATEMÁTICA II		
131320	FÍSICA CONTEMPORÁNEA	131390	FÍSICA CONTEMPORÁNEA I		
		131391	FÍSICA CONTEMPORÁNEA II		
131311	TERMODINÁMICA	131313	TERMODINÁMICA		
131313	ELECTRÓNICA DIGITAL	131313	ELECTRÓNICA ANÁLOGO – DIGITAL		
131312	ELECTROMAGNETISMO I	131312	ELECTROMAGNETISMO I		
131314	MECÁNICA CUÁNTICA I	131314	MECÁNICA CUÁNTICA I		

TABLA DE EQUIVALENCIAS 4to y 5to año

	CURRÍCULO 1996	CURRÍCULO 2004			
CÓDIGO	ASIGNATURA	CÓDIGO ASIGNATURA			
131411	MECÁNICA CUÁNTICA II	131411	MECÁNICA CUÁNTICA II		
131413	ELECTROMAGNETISMO II	131413	ELECTROMAGNETISMO II		
131415	FÍSICA EXPERIMENTAL	131415	FÍSICA EXPERIMENTAL		
131417	FÍSICA ESTADÍSTICA	131417 FÍSICA ESTADÍSTICA			
131419	ANÁLISIS NUMÉRICO	131419	ANÁLISIS NUMÉRICO		
131421	INTRODUCCIÓN A LA FÍSICA DEL MEDIO	131421	INTRODUCCIÓN A LA FÍSICA DEL MEDIO		
	AMBIENTE		AMBIENTE		
131412	FÍSICA DEL ESTADO SÓLIDO I	131412	FÍSICA DEL ESTADO SÓLIDO I		
131414	FÍSICA NUCLEAR I	131414	FÍSICA NUCLEAR I		
131416	INSTRUMENTACIÓN FÍSICA	131416	INSTRUMENTACIÓN FÍSICA		
131418	FILOSOFÍA E HISTORIA DE LA CIENCIA	131418	FILOSOFÍA E HISTORIA DE LA CIENCIA		
131410	PROCESAMIENTO DE DATOS DIGITALES	131410	PROCESAMIENTO DE DATOS DIGITALES		

131420	INTRODUCCIÓN A LA ASTRONOMÍA Y ASTROFÍSICA	131420	INTRODUCCIÓN A LA ASTRONOMÍA Y ASTROFÍSICA		
131422	INTRODUCCIÓN A LA GEOFÍSICA	131422	INTRODUCCIÓNA LA GEOFÍSICA		
131507	METODOLOGÍA DE LA ENSEÑANZA	131507	METODOLOGÍA DE LA ENSEÑANZA		
131503	ELABORACIÓN Y EVALUACIÓN DE	131503	ELABORACIÓN Y EVALUACIÓN DE		
	PROYECTOS		PROYECTOS		
131505A	SEMINARIO I	131505A	SEMINARIO I		
131509	ESPECTROSCOPÍA DE RAYOS X	131509	ESPECTROSCOPÍA DE RAYOS X		
131513	FÍSICA DEL ESTADO SÓLIDO II	131513	FÍSICA DEL ESTADO SÓLIDO II		
131511	ÓPTICA FÍSICA	131511	ÓPTICA FÍSICA		
131515	TÓPICOS AVANZADOS I	131515	TÓPICOS AVANZADOS I		
131504A	SEMINARIO II	131504A	SEMINARIO II		
131506	PRÁCTICA PRE-PROFESIONAL	131506	PRÁCTICA PRE-PROFESIONAL		
131508	TEORÍA DE GRUPOS	131508	TEORÍA DE GRUPOS		
131510	TRANSFORMACIÓN DE FASES	131510	TRANSFORMACIÓN DE FASES		
131514	ESPECTROSCOPÍA MOSSBAUER	131514	ESPECTROSCOPÍA MOSSBAUER		
131516	ESTRUCTURA ELECTRÓNICA DE SÓLIDOS	131516	ESTRUCTURA ELECTRÓNICA DE SÓLIDOS		
131518	TÓPICOS AVANZADOS II	131518	TÓPICOS AVANZADOS II		
131507	METODOLOGÍA DE LA ENSEÑANZA	131507	METODOLOGÍA DE LA ENSEÑANZA		
131503	ELABORACIÓN Y EVALUACIÓN DE	131503	ELABORACIÓN Y EVALUACIÓN DE		
101000	PROYECTOS		PROYECTOS		
131505B	SEMINARIO I	131505B	SEMINARIO I		
131541	FÍSICA NUCLEAR II	131541	FÍSICA NUCLEAR II		
131543	FÍSICA MÉDICA	131543	FÍSICA MÉDICA		
131511	ÓPTICA FÍSICA	131511	ÓPTICA FÍSICA		
131545	TÓPICOS AVANZADOS I	131545	TÓPICOS AVANZADOS I		
131504B	SEMINARIO II	131504B	SEMINARIO II		
131506	PRÁCTICAS PRE-PROFESIONALES	131506	PRÁCTICAS PRE-PROFESIONALES		
131540	APLICACIONES DE LA FÍSICA NUCLEAR	131540	APLICACIONES DE LA FÍSICA NUCLEAR		
131542	DOSIMETRÍA DE LAS RADIACIONES	131542	DOSIMETRÍA DE LAS RADIACIONES		
131544	FÍSICA DE REACTORES NUCLEARES	131544	FÍSICA DE REACTORES NUCLEARES		
131546	FÍSICA DE ALTAS ENERGÍAS	131546	FÍSICA DE ALTAS ENERGÍAS		
131548	TELEDETECCIÓN Y PROCESAMIENTO DE	131548	TELEDETECCIÓN Y PROCESAMIENTO DE		
1010.0	IMÁGENES		IMÁGENES		
131550	TÓPICOS AVANZADOS II	131550	TÓPICOS AVANZADOS II		
131507	METODOLOGÍA DE LA ENSEÑANZA	131507	METODOLOGÍA DE LA ENSEÑANZA		
131503	ELABORACIÓN Y EVALUACIÓN DE	131503	ELABORACIÓN Y EVALUACIÓN DE		
101000	PROYECTOS		PROYECTOS		
131505C	SEMINARIO I	131505C	SEMINARIO I		
131561	FÍSICA DE PLASMA	131561	FÍSICA DE PLASMA		
131563	DINÁMICA DE FLUIDOS GEOFÍSICOS	131563	DINÁMICA DE FLUIDOS GEOFÍSICOS		
131565	GEOFÍSICA	131565	GEOFÍSICA		
131567	TÓPICOS AVANZADOS I	131567	TÓPICOS AVANZADOS I		
131504C	SEMINARIO II	131507	SEMINARIO II		
131506	PRÁCTICAS PRE-PROFESIONALES	131506	PRÁCTICAS PRE-PROFESIONALES		
131560	FÍSICA SOLAR TERRESTRE	131560	FÍSICA SOLAR TERRESTRE		
131562	FÍSICA DEL MEDIO AMBIENTE	131562	FÍSICA DEL MEDIO AMBIENTE		
131564	PROPAGACIÓN DE ONDAS	131564	PROPAGACIÓN DE ONDAS		
131566	FENÓMENOS COMPLEJOS	131566	FENÓMENOS COMPLEJOS		
131568	TÓPICOS AVANZADOS II	131568	TÓPICOS AVANZADOS II		
131548	TELEDETECCIÓN Y PROCESAMIENTO DE	131548	TELEDETECCIÓN Y PROCESAMIENTO DE		
131340	IMÁGENES	131340	IMÁGENES		

TABLA DE EQUIVALENCIAS 1er, 2do y 3er Año

	CURRÍCULO 2004	CURRÍCULO 2018			
CÓDIGO ASIGNATURA		CÓDIGO ASIGNATURA			
131418	FILOSOFÍA E HISTORIA DE LA CIENCIA	CFO903	FILOSOFÍA E HISTORIA DE LA CIENCIA		
131190	FÍSICA I		MECÁNICA GENERAL		
131140	LABORATORIO DE FISICA I	CBO014			
131191	FÍSICA II	CFO301	FÍSICA MOLECULAR		
131141	LABORATORIO DE FISICA II				
131180	ANÁLISIS MATEMÁTICO I	CBO104	CÁLCULO I		
131181	ANÁLISIS MATEMÁTICO II	CBO204	CÁLCULO II		
131170	MATEMATICA BÁSICA I	CBO105	MATEMÁTICAS BÁSICAS		
131111	QUÍMICA	CBO205	QUÍMICA INORGÁNICA Y ORGÁNICA		
		CBO106	BIOLOGÍA		
131211	METODOLOGÍA DEL TRABAJO EN FÍSICA	CBO201	FUNDAMENTOS DE INVESTIGACIÓN CIENTÍFICA		
		CBO202	MEDIO AMBIENTE Y DESARROLLO SOSTENIBLE		
131211	METODOLOGÍA DEL TRABAJO EN FÍSICA	CBO102	MÉTODOS DE ESTUDIO UNIVERSITARIO		
		CBO103	GESTIÓN PERSONAL		
		CBO203	REALIDAD NACIONAL Y MUNDIAL		
131270	ANÁLISIS MATEMÁTICO III	CFO304	CÁLCULO III		
131271	ANÁLISIS MATEMÁTICO IV	CFO404	ESTADÍSTICA Y PROBABILIDAD		
131280	ÁLGEBRA LINEAL	CFO303	ÁLGEBRA LINEAL		
131281	ECUACIONES DIFERENCIALES	CFO302	FISICA MATEMATICA I		
131290	FÍSICA III	CFO401	ELECTRICIDAD Y MAGNETISMO		
131250	LABORATORIO DE FÍSICA III				
131291	FÍSICA IV	CFO501	ÓPTICA		
131251	LABORATORIO DE FÍSICA IV				
131212	PROGRAMACIÓN E INFORMATICA	CFO305	FÍSICA COMPUTACIONAL I		
131370	MECÁNICA CLÁSICA I	CFO405	MECÁNICA CLÁSICA I		
131371	MECÁNICA CLÁSICA II	CFO503	MECÁNICA CLÁSICA II		
131380	FÍSICA MATEMÁTICA I	CFO403	FÍSICA MATEMÁTICA II		
131381	FÍSICA MATEMÁTICA II	CFO504	FÍSICA MATEMÁTICA III		
131390	FÍSICA CONTEMPORÁNEA I	CFO505	FÍSICA MODERNA I		
131391	FÍSICA CONTEMPORÁNEA II	CFE605	FÍSICA MODERNA II		
131313	TERMODINÁMICA	CFO604	TERMODINÁMICA		
131313	ELECTRÓNICA ANÁLOGO – DIGITAL	CFO602	FÍSICA ELECTRÓNICA I		
131312	ELECTROMAGNETISMO I	CFO601	ELECTROMAGNETISMO I		
131314	MECÁNICA CUÁNTICA I	CFO603	MECÁNICA CUÁNTICA I		
131411	MECÁNICA CUÁNTICA II	CFO703	MECÁNICA CUÁNTICA II		
		CFO402	FÍSICA EXPERIMENTAL I		
131415	FÍSICA EXPERIMENTAL	CFE902A	FÍSICA EXPERIMENTAL II		
		CFE902B	FÍSICA EXPERIMENTAL II		
131417	FÍSICA ESTADÍSTICA	CFO704	FÍSICA ESTADÍSTICA I		
131419	ANÁLISIS NUMÉRICO	CFO605	FÍSICA COMPUTACIONAL II		

TABLA DE EQUIVALENCIAS 4to y 5to año

CURRÍCULO 2004		CURRÍCULO 2018		
CÓDIGO	ASIGNATURA	CÓDIGO	ASIGNATURA	
131413	ELECTROMAGNETISMO II	CFO701	ELECTROMAGNETISMO II	
131421	INTRODUCCIÓN A LA FÍSICA DEL MEDIO AMBIENTE	CFE904A	ENERGÍA Y MEDIO AMBIENTE	
		CFE904B	ENERGÍA Y MEDIO AMBIENTE	
		CFE904C	ENERGÍA Y MEDIO AMBIENTE	
131412	FÍSICA DEL ESTADO SÓLIDO I	CFO802	FÍSICA DEL ESTADO SÓLIDO I	

131414	FÍSICA NUCLEAR I	CFO803	FÍSICA NUCLEAR I		
131416	INSTRUMENTACIÓN FÍSICA	CFO702	FÍSICA ELECTRÓNICA II		
131410	PROCESAMIENTO DE DATOS DIGITALES	CFE111B	PROCESAMIENTO DE DATOS Y SEÑALES		
131 110	THOUSESTAINIEITTO DE BATTOS BIGINALES	CFE111C	DIGITALES		
131420	INTRODCCIÓN A LA ASTRONOMÍA Y ASTROFÍSICA	CFO805	ASTRONOMÍA Y ASTROFÍSICA		
131422	INTRODUCCIÓN A LA GEOFÍSICA	CFO804	GEOFÍSICA GENERAL		
131507	METODOLOGÍA DE LA ENSEÑANZA	CFO801	METODOLOGÍA DE LA ENSEÑANZA EN FÍSICA		
131505A	SEMINARIO I	CFO902	TRABAJO DE GRADO I		
131509	ESPECTROSCOPÍA DE RAYOS X	CFE907A	ESPECTROSCOPÍA DE RAYOS X		
131509	ESPECTROSCOPIA DE RAYOS X	CFE907B	ESPECTROSCOPÍA DE RAYOS X		
131513	FÍSICA DEL ESTADO SÓLIDO II	CFE909A	FÍSICA DEL ESTADO SÓLIDO II		
131511	ÓPTICA FÍSICA	CFE905A	ÓPTICA FÍSICA		
		CFE905B	ÓPTICA FÍSICA		
		CFE905C	ÓPTICA FÍSICA		
131515	TÓPICOS AVANZADOS I	CFE910A	TÓPICOS AVANZADOS DE MATERIA CONDENSADA I		
131504A	SEMINARIO II	CFO1002	TRABAJO DE GRADO II		
131506	PRÁCTICA PRE-PROFESIONAL	CFO970			
131508	TEORÍA DE GRUPOS	CFE105A	TEORÍA DE GRUPOS		
131510	TRANSFORMACIÓN DE FASES	CFE108A	TRANSFORMACIÓN DE FASES		
131514	ESPECTROSCOPÍA MOSSBAUER	CFE908A	ESPECTROSCOPÍA MOSSBAUER		
		CFE908B	ESPECTROSCOPÍA MOSSBAUER		
131516	ESTRUCTURA ELECTRÓNICA DE SÓLIDOS	CFE107A	ESTRUCTURA ELECTRÓNICA DE SÓLIDOS		
131518	TÓPICOS AVANZADOS II	CFE103A	TÓPICOS AVANZADOS DE MATERIA CONDENSADA II		
131507	METODOLOGÍA DE LA ENSEÑANZA	CFO903	METODOLOGÍA DE LA ENSEÑANZA EN FÍSICA		
			REDACCIÓN Y METODOLOGÍA CIENTÍFICA		
131505B	SEMINARIO I	CFO902	TRABAJO DE GRADO I		
131541	FÍSICA NUCLEAR II	CFE909B	FÍSICA NUCLEAR II		
131543	FÍSICA MÉDICA	CFE910B	FÍSICA MÉDICA		
131545	TÓPICOS AVANZADOS I	CFE911B	TÓPICOS AVANZADOS DE FÍSICA NUCLEAR I		
131504B	SEMINARIO II	CFO951	TRABAJO DE GRADO II		
131540	APLICACIONES DE LA FÍSICA NUCLEAR	CFE106B	APLICACIONES DE LA FÍSICA NUCLEAR		
131542	DOSIMETRÍA DE LAS RADIACIONES	CFE107B	DOSIMETRÍA DE LAS RADIACIONES		
131544	FÍSICA DE REACTORES NUCLEARES	CFE108B	FÍSICA DE REACTORES NUCLEARES		
131546	FÍSICA DE ALTAS ENERGÍAS	CFE104B	FÍSICA DE ALTAS ENERGÍAS		
131550	TÓPICOS AVANZADOS II	CFE103B	TÓPICOS AVANZADOS DE FÍSICA NUCLEAR II		
131507	METODOLOGÍA DE LA ENSEÑANZA	CFO801	METODOLOGÍA DE LA ENSEÑANZA EN FÍSICA		
131503	ELABORACIÓN Y EVALUACIÓN DE	CFO901	ELABORACIÓN Y EVALUACIÓN DE		
	PROYECTOS		PROYECTOS		
131505C	SEMINARIO I	CFO902	TRABAJO DE GRADO I		
131561M	FÍSICA DE PLASMA	CFE914C	FÍSICA DE PLASMAS ASTROFÍSICOS		
131560	FÍSICA SOLAR TERRESTRE				
		CFE903	TEORÍA GENERAL DE LA RELATIVIDAD		
404777		CFE909C	OCEANOGRAFÍA FÍSICA		
131563M	DINÁMICA DE FLUIDOS GEOFÍSICOS	CFE104C	DINÁMICA DE FLUIDOS GEOFÍSICOS		
131564	PROPAGACIÓN DE ONDAS	CFE911C	INTRODUCCIÓN A LA SISMOLOGÍA		
131565	GEOFÍSICA	CFE112C	GEOFÍSICA APLICADA		
131567	TÓPICOS AVANZADOS I	CFE913C	TÓPICOS AVANZADOS DE GEOFÍSICA I		
131567	TÓPICOS AVANZADOS I	CFE908C	TÓPICOS AVANZADOS DE ASTRONOMÍA Y ASTROFÍSICA I		
131504C	SEMINARIO II	CFO951	TRABAJO DE GRADO II		
131562M	FÍSICA DEL MEDIO AMBIENTE	CFE113C	GEOFÍSICA AMBIENTAL		
131566	FENÓMENOS COMPLEJOS	CFE105C	CLIMATOLOGÍA		
131568	TÓPICOS AVANZADOS II	CFE103C	TÓPICOS AVANZADOS DE GEOFÍSICA II		

131568	TÓPICOS AVANZADOS II	CFE106C	TÓPICOS AVANZADOS DE ASTRONOMÍA Y ASTROFÍSICA II
131548	TELEDETECCIÓN Y PROCESAMIENTO DE IMÁGENES	CFE912C	FÍSICA Y TÉCNICAS DE TELEDETECCIÓN

MALLA CURRICULAR

Se presenta la malla curricular para el plan de estudios 2018

MALLA CURRICULAR

PRIMER AÑO ESTUDIOS GENERALES		SEGUNDO AÑO		TERCER AÑO		CUARTO	
1er SEM.	2do SEM.	3er SEM.	4to SEM.	5to SEM.	6to SEM.	7mo SEM.	
INTRODUCCIÓ N A LA FÍSICA (2)	MECÁNICA GENERAL (6)	FÍSICA MOLECULAR (6)	ELECTRICIDAD Y MAGNETISMO (6)	ÓPTICA (6)	ELECTRO-MAG NETISMO I (5)	ELECTRO-MAGN ETISMO II (5)	
MÉTODOS DE ESTUDIO UNIVERSITARIO (3)	FUNDAMENTOS DE INVESTIGACIÓN CIENTÍFICA (3)	FÍSICA MATEMÁTICA I (4)	FÍSICA EXPERIMENTAL I (4)	FÍSICA COMPUTACIONAL II (4)	FÍSICA ELECTRÓNICA I (4)	FÍSICA ELECTRÓNICA II (4)	
BIOLOGÍA (4)	MEDIO AMBIENTE Y DESARROLLO SOSTENIBLE (4)	ALGEBRA LINEAL (4)	FÍSICA MATEMÁTICA II (4)	MECÁNICA CLÁSICA II (4)	MECÁNICA CUÁNTICA I (5)	MECÁNICA CUÁNTICA II (5)	
LENGUAJE (4)	QUÍMICA INORGÁNICA Y ORGÁNICA (4)	CÁLCULO III (4)	ESTADÍSTICA Y PROBABILIDAD (4)	FÍSICA MATEMÁTICA III (4)	TERMODINÁMICA (4)	FÍSICA ESTADÍSTICA I (4)	
MATEMÁTICA BÁSICA (4)	REALIDAD NACIONAL Y MUNDIAL (3)	FÍSICA COMPUTACIONAL I (4)	MECÁNICA CLÁSICA I (4)	FÍSICA MODERNA I (4)	FÍSICA MODERNA II (4)	REDACCIÓN Y METODOLOGÍA CIENTÍFICA (3)	
CÁLCULO I (4) GESTIÓN PERSONAL (3)	CÁLCULO II (4)				-		
24	24	22	22	22	22	21	

4. SUMILLAS DE LAS ASIGNATURAS

PRIMER AÑO

PRIMER Y SEGUNDO SEMESTRES

Establecidos en el ANEXO de la RR N° 05629-R-17 "PLAN DE ESTUDIOS GENERALES DE LA ESCUELA DE ESTUDIOS GENERALES"

INTRODUCCIÓN A LA FÍSICA

La asignatura incluye conocimientos conceptuales básicos de la Física para entender su entorno desde el punto de vista de la mecánica de Newton, estática y dinámica de fluidos, fenómenos acústicos, ondas electromagnética y óptica; identificando los principios físicos relevantes y usando estimaciones de órdenes de magnitud. Así mismo, desarrollando una visión panorámica de lo que abarca la física actual.

MECÁNICA GENERAL

La asignatura incluye los fundamentos, principios y leyes de la mecánica clásica que gobiernan a una partícula, al equilibrio estático de un cuerpo rígido y al movimiento del cuerpo rígido, así como, la gravitación. Se utiliza como herramienta matemática el cálculo diferencial e integral.

SEGUNDO AÑO

TERCER SEMESTRE

FÍSICA MOLECULAR

Se dan los fundamentos, principios y leyes de la mecánica clásica que gobierna a los medios continuos; así mismo, se introducen los conceptos de la termodinámica y sus aplicaciones al estudio de ciertas propiedades térmicas de la materia.

FÍSICA MATEMÁTICA I

Ecuaciones diferenciales ordinarias de primer y segundo orden. Aplicaciones. Sistemas de ecuaciones diferenciales ordinarias. Transformada de Laplace. Resolución en series de potencias.

ÁLGEBRA LINEAL

Espacios lineales. Transformaciones lineales y matrices, determinantes, autovalores y autovectores, autovalores de operadores en espacios euclideos.

CÁLCULO III

Trata de los conceptos del cálculo con funciones de varias variables con una introducción al álgebra vectorial. Contiene: álgebra vectorial. Aplicaciones del álgebra vectorial a la geometría analítica, cálculo con funciones vectoriales, cálculo diferencial en campos escalares y vectoriales, aplicaciones del cálculo diferencial. La integral de línea, integral de superficie e integral múltiple.

FÍSICA COMPUTACIONAL I

Es una introducción a la programación computacional enfocando a la resolución de problemas mediante técnicas de programación estructurada y la implementación real de sus algoritmos en un lenguaje de programación. Lenguaje de Programación Fortran, Matlab, C, C++. Elementos de Programación. Tipos de Datos. Identificadores. Operadores. Sentencias condicionales. Bucles. Funciones y subrutinas. Estructura de Programas.

CUARTO SEMESTRE

ELECTRICIDAD Y MAGNETISMO

Trata de la interpretación de las leyes de la electricidad y del magnetismo, para la cual utiliza el cálculo infinitesimal y elementos del cálculo vectorial.

FÍSICA EXPERIMENTAL I

La asignatura Física Experimental I está orientada a obtener las destrezas necesarias para la utilización de instrumentación científica, para el análisis de datos experimentales y la presentación de los resultados obtenidos. Es una asignatura de nivel básico donde se pretende que el estudiante tenga un contacto con las prácticas de laboratorio y conozca la naturaleza del trabajo experimental y se familiarice con la redacción de informes científicos. La física experimental sirve para desarrollar en el estudiante las habilidades del científico, como son la curiosidad por los fenómenos naturales, el rigor en el análisis y la destreza en la experimentación. Asimismo, el estudiante adquiere la convicción que es necesario contrastar la teoría con el experimento. Las prácticas de laboratorio son obligatorias.

FÍSICA MATEMÁTICA II

Estudia las aplicaciones a la física álgebra vectorial, álgebra lineal. Series de Fourier. Transformada de Fourier. Variable compleja. Ecuaciones diferenciales parciales, método de separación de variables. Ecuaciones hiperbólicas, parabólicas y elípticas.

ESTADÍSTICA Y PROBABILIDAD

Estadística descriptiva. Tablas estadísticas. Representación gráfica. Medidas de posición, dispersión, forma y concentración. Correlación y regresión simple. Introducción al cálculo de probabilidades. Variables aleatorias y distribuciones de probabilidad. Módulos discretos y continuos de probabilidad.

MECÁNICA CLÁSICA I

Contiene el estudio riguroso de los principios fundamentales de la mecánica newtoniana: Dinámica de sistemas puntuales. Dinámica del sólido rígido y gravitación.

TERCER AÑO

QUINTO SEMESTRE

ÓPTICA

Estudia el comportamiento de la luz y la interpretación práctica de los fenómenos relacionados con su propagación en los medios materiales.

FÍSICA COMPUTACIONAL II

La asignatura proporciona una introducción a los métodos numéricos, herramientas y técnicas más usadas de la física computacional. Incluye la solución numérica de sistemas de ecuaciones algebraicas, operaciones matriciales y problema de autovalores, solución numérica de las ecuaciones diferenciales ordinarias en la mecánica clásica y cuántica así como ecuaciones diferenciales en derivadas parciales, integración numérica incluyendo métodos de Monte Carlo. Estas técnicas computacionales serán introducidas mediante aplicaciones a problemas físicos específicos con la finalidad de desarrollar en el estudiante las competencias y habilidades computacionales requerida para resolver dichos problemas. Se imparte como un curso de laboratorio o experimento numérico en el cual los estudiantes realizan las simulaciones computacionales de un determinado problema físico y luego investigan su comportamiento. Como lenguaje de programación se usa Fortran o C.

MECÁNICA CLÁSICA II

Estudia las formulaciones alternativas de la Mecánica Clásica: Formalismo Lagrangiano y Hamiltoniano y aplicaciones como la teoría de las oscilaciones pequeñas.

FÍSICA MATEMÁTICA III

Estudia las aplicaciones a la física de las funciones de Green, Cálculo variacional. Métodos perturbativos y cálculo tensorial.

FÍSICA MODERNA I

Probabilidad. Teoría especial de la relatividad. Dinámica y mecánica relativística. Radiación térmica y el origen de la teoría cuántica. Electrones y cuantos. Propiedades cuánticas de la luz. Ondas de materia. Mecánica ondulatoria. Átomo de hidrógeno de Schrödinger.

SEXTO SEMESTRE

ELECTROMAGNETISMO I

Análisis vectorial. Electrostática. Solución de problemas electrostáticos. El campo electrostático en medios dieléctricos. Teoría microscópica de dieléctricos. Energía electrostática. Corriente eléctrica. Campo magnético de corrientes estacionarias. Propiedades magnéticas de la materia. Teoría microscópica del magnetismo.

FÍSICA ELECTRÓNICA I

Dirigido a estudiar el análisis de circuitos eléctricos pasivos y sus análogos en otros sistemas físicos. Contenido: Usos y aplicaciones de las leyes de Kirchhoff. Teorema de Thevenin y Norton. Análisis de transitorios de circuitos y sistemas de primer y segundo orden, análisis en régimen sinusoidal permanentes (fasores), función de transferencia y análisis de estabilidad en el dominio de Fourier.

MECÁNICA CUÁNTICA I

Bases físicas de la Mecánica Cuántica. Postulados de la Mecánica Cuántica. La función de onda. Problemas unidimensionales. Momento angular. Sistemas de dos partículas. Transformaciones de simetría. Teoría de colisiones. Método de Wentzel-Kramers-Brillouin (WBK).

TERMODINÁMICA

Sistemas termodinámicos simples. Postulados de la Termodinámica de los sistemas en equilibrio. Energía y conservación. El gas ideal. Teoría cinética. Máquinas térmicas. Potenciales termodinámicos. Transiciones de fase. Aplicaciones. Equilibrio químico. Sistemas microscópicos. Descripción estadística de un sistema de partículas. Termodinámica estadística. Parámetros microscópicos y su medida. Aplicaciones de la Termodinámica microscópica.

FÍSICA MODERNA II

Estructura atómica, física estadística, estructura molecular, estado sólido, estructura nuclear, aplicaciones nucleares, partículas elementales, cosmología.

CUARTO AÑO

SÉPTIMO SEMESTRE

ELECTROMAGNETISMO II

Inducción electromagnética. Energía magnética. Corrientes de variación lenta. Propiedades electromagnéticas de los superconductores. Ecuaciones de Maxwell. Propagación de Ondas electromagnéticas. Ondas de regiones limitadas. Dispersión de óptica en materiales. Emisión de radiación. Electrodinámica. Teoría Especial de la Relatividad.

FÍSICA ELECTRÓNICA II

Dirigido a estudiar el análisis de circuitos que contengan dispositivos activos o semiconductores y sus aplicaciones: Contenido: semiconductores intrínsecos y extrínsecos, usos y aplicaciones del diodo semiconductor, transistores de juntura y de efecto de campo, amplificadores operacionales, aplicaciones de los amplificadores operacionales. Conversión análogo-digital y digital-análogo. Adquisición de datos con sensores.

MECÁNICA CUÁNTICA II

Perturbaciones estacionarias. Método variacional. Perturbaciones que dependen del tiempo. Partícula en un campo electromagnético. Sistemas de partículas idénticas. Los átomos. Teoría cuántica de la radiación.

FÍSICA ESTADÍSTICA I

Métodos básicos y resultados de la Física Estadística. Aplicaciones sencillas de la Física Estadística. Equilibrio entre fases. Estadísticas cuánticas de los gases ideales. Sistema de partículas interactivas. Magnetismo y bajas temperaturas.

REDACCIÓN Y METODOLOGÍA CIENTÍFICA

Es una asignatura de formación profesional general, de naturaleza teórica y práctica. Su propósito es dotar al estudiante de conocimiento y habilidades necesarias para que desarrolle competencias relacionadas con metodologías y herramientas de apoyo a la redacción científica. Búsqueda bibliográfica en línea. Utilización de procesador de texto científico como Latex. Estructuración de un artículo científico. Normas de citación y referencias.

OCTAVO SEMESTRE

METODOLOGÍA DE LA ENSEÑANZA EN FÍSICA

Su naturaleza es esencialmente teórico práctico, de sólida formación académica. Su propósito es que el estudiante adquiere los elementos cognitivos y actitudinales suficientes para explicar y aplicar eficazmente los principales conceptos y postulados relacionados con la enseñanza y el aprendizaje, así como las destrezas que le permitan el manejo eficiente de los métodos y técnicas de enseñanza a nivel universitario. Se desarrollarán temas como: El proceso enseñanza – aprendizaje, métodos: la clase magistral activa o dialogante, estudio de casos, aprendizaje basado en problemas, aprendizaje orientado a proyectos, aprendizaje cooperativo, contrato de aprendizaje, y las técnicas actuales en la Pedagogía.

FÍSICA DEL ESTADO SÓLIDO I

Teoría de metales de Drude y Sommerfeld. Redes cristalinas. Red recíproca y Difracción de Rayos X. Teorema de Bloch. Electrones cuasi libres. Dinámica semiclásica de electrones. Cristal armónico clásico y cuántico. Fonones en metales. Semiconductores homogéneos y heterogéneos. Superconductores.

FÍSICA NUCLEAR I

Introducción a los núcleos atómicos. Estadística nuclear. Modelos nucleares. Radiaciones nucleares alfa, beta, gama. Isomerismo nuclear. Fluorescencia nuclear. Fuerzas nucleares.

GEOFÍSICA GENERAL

La asignatura de Geofísica de la Escuela Profesional de Física (EPF) de la Facultad de Ciencias Físicas (FCF) es un curso de formación básica de carácter teórico-práctico que familiariza al estudiante con los conceptos y principios generales de las principales disciplinas de la Geofísica, los avances recientes y tópicos de actualidad. Introduce al estudiante en las aplicaciones de los principios, técnicas y prácticas de la física y matemáticas al estudio de las propiedades y procesos físicos del interior del globo terrestre. Además, incentiva al estudiante en la preparación y presentación oral de proyectos o investigación científica sobre temas importantes de actualidad.

ASTRONOMÍA Y ASTROFÍSICA

Esta asignatura les brinda a los estudiantes los conocimientos generales de la astronomía de posición, movimiento planetario y los principios fundamentales de la astrofísica. Se brinda una visión general de la fotometría y espectroscopía astronómicas, necesarias para comprender las propiedades físicas y características generales de las estrellas (temperatura, color, masa, radio, etc.), sus estructuras internas y procesos de evolución estelar. Las estrellas variables también son abordadas de manera

general, teniendo en cuenta la relevancia cosmológica e impacto científico que tuvieron al develar las escalas cósmicas, la expansión y la aceleración del Universo. Esto, sumado al estudio de las galaxias, ofrece al estudiante una base científica perfecta para comprender al final de la asignatura el modelo cosmológico estándar que describe al Universo como un todo.

QUINTO AÑO

NOVENO SEMESTRE

ELABORACIÓN Y EVALUACIÓN DE PROYECTOS

Conceptos. Objetivos. Análisis de Teoría de evaluación; beneficio-costo. Viabilidad y factibilidad de un proyecto. Modelos de planeación. Formulación de un proyecto factible.

TRABAJO DE GRADO I

El estudiante se familiariza con los estándares y protocolos de la elaboración de documentos científicos. Recopilación de la información bibliográfica o fichaje. Plantea una propuesta de perfil de tesis de Bachiller que deberá ser inscrita en la Escuela Profesional de Física. Desarrolla los aspectos teóricos y/o experimentales y presenta un informe del trabajo de tesis propuesto.

FILOSOFÍA E HISTORIA DE LA CIENCIA

Fundamentos de la teoría de la ciencia o epistemología en el contexto de las ciencias naturales. Teoría del conocimiento, clasificación y desarrollo histórico. La explicación científica. La hipótesis científica. El experimento. Las leyes y teorías científicas. La investigación científica. Las revoluciones científicas. Desarrollo histórico de la Ciencia.

DÉCIMO SEMESTRE

TRABAJO DE GRADO II

El estudiante desarrolla los aspectos teóricos y/o experimentales de su trabajo de tesis de Licenciatura. Se realiza una sustentación pública del trabajo final, ante un jurado establecido por la Escuela Profesional de Física.

ELECTIVOS

A: FÍSICA DE MATERIALES

FÍSICA EXPERIMENTAL II

Métodos experimentales de la física moderna. Métodos computacionales. Experimentos sobre Óptica. Física Atómica. Física Nuclear. Diseño y montaje de experimentos.

TEORÍA GENERAL DE LA RELATIVIDAD

Asignatura de carácter electivo que estudia los fundamentos y aplicaciones representativas de la Teoría General de la Relatividad. Se inicia con una revisión de la Teoría Especial de la Relatividad y cálculo tensorial. Continúa con el estudio del espacio-tiempo curvo y obtención de las ecuaciones de Einstein. Finaliza con la geometría de Schwarzschild y la solución de Reisnner-Nordstrom.

ENERGÍA Y MEDIO AMBIENTE

La presente asignatura se orienta a analizar la problemática sobre los impactos que ocasionan las actividades relacionadas con la generación, transporte y uso de la energía, y desarrollar estrategias para el estudio del ambiente, que permitan por un lado manejar los principios básicos de la problemática, así como alcanzar mayor conciencia ambiental, respecto de la necesidad de recuperar y conservar espacios del ambiente. En este sentido, se trata de un curso con orientación integral, para lo cual los estudiantes deben utilizar toda la información que han podido acumular durante su formación profesional.

ÓPTICA FÍSICA

Teoría de ondas. Teoría electromagnética. Interferencia. Dispersión. Coherencia. Difracción. Holografía. Anisotropía. Modulación óptica.

METROLOGÍA

La asignatura considera que el alumno al finalizar la asignatura debe: identificar instrumentos que deben ser calibrados, distinguir entre calibración, verificación; distinguir entre error e incertidumbre; analizar el contenido de los certificados de calibración; determinar si el periodo de re calibración es el adecuado; elaborar un plan de calibración; conocer las exigencias metrológicas establecidas en ISO 9000 e ISO 17025; interpretar los requisitos técnicos de la norma ISO 17025; conocer el contenido de un procedimiento de calibración; realizar planes para asegurar la calidad de los resultados de medición y/o calibración y finaliza con la elaboración de un plan de auditorías internas.

ESPECTROSCOPÍA DE RAYOS X

La asignatura es de naturaleza teórica-práctica-experimental, con nivel de pregrado. Aborda conceptos básicos y fundamentales de la espectroscopia que utiliza rayos X convencional o sincrotrón, particularmente la difracción. Los temas centrales de su contenido son los siguientes: Generalidades de cristalografía: estructura cristalina, redes de Bravais, celda unitaria, planos cristalográficos, índices de Miller, clases cristalinas, red recíproca. Rayos-X. Producción y detección de los rayos-X. Radiación Sincrotrón. Interacción de los rayos-X con la materia. Difracción de Rayos-X por un cristal. Ley de Bragg. Métodos de difracción. Identificación de materiales cristalinos. Refinamiento de estructuras cristalinas: método de Rietveld.

ESPECTROSCOPÍA MÖSSBAUER

Fluorescencia nuclear. Vibraciones de la red cristalina. El Efecto Mössbauer. Estructura nuclear. Niveles de energía nuclear. Interacción de la radiación con la materia. Estructura atómica. Interacciones hiperfinas: electrostática y magnética. Instrumentación. Ajuste de espectros. Programas de ajuste de espectros. Aplicaciones al magnetismo en sólidos, nanomagnetismo y ciencia de materiales.

FÍSICA DEL ESTADO SÓLIDO II

Medición de la superficie de Fermi. Estructura de Banda de los Metales. Efectos de superficie. Energía de cohesión. Medición de fonones. Efectos anarmónicos. Propiedades dieléctricas. Diamagnetismo y paramagnetismo. Interacciones electrónicas y Estructura magnéticas. Orden magnético.

FÍSICA NUCLEAR II

Reacciones nucleares. Fisión y fusión nuclear. Física del neutrón. Partículas elementales. Leyes aditivas de conservación. Partículas y antipartículas. Quarks. Interacciones fundamentales.

TÓPICOS AVANZADOS DE MATERIA CONDENSADA I

Introducción a temas teóricos o experimentales de actualidad en el área de materia condensada, para orientar a los alumnos en la elaboración de tesis.

TÓPICOS AVANZADOS DE MATERIA CONDENSADA II

Introducción a temas teóricos o experimentales de actualidad en el área de materia condensada, para orientar a los alumnos en la elaboración de tesis.

FÍSICA DE SUELOS

La asignatura de Física de Suelos es a nivel de pregrado, está dirigida a alumnos que cursan el séptimo u octavo semestre académico de la carrera de Física. En la asignatura se impartirán conceptos básicos y fundamentales de Edafología General. Así mismo, la asignatura se relaciona de manera horizontal con asignaturas sobre Hidráulica, Salinidad de Suelos, Drenaje Agrícola y Conservación de Suelos. Es una materia teórico-práctica y básica del plan de estudios.

TEORÍA DE GRUPOS

Curso electivo. Teórico-práctico orientado a la aplicación de la teoría de grupos en el área de Física del Estado Sólido. La teoría de grupos relacionados con la simetría de materiales en los diferentes sistemas y sus representaciones, aplicada en la ciencia de los materiales y sistemas físicos de interés tecnológico.

ESTRUCTURA ELECTRÓNICA DE SÓLIDOS

Ecuación de Schrodinger de un sólido. Teoría de Hartree-Fock. Teoría de funcional densidad. El Método Linear Muffin-TinOrbitals (LMTO). Teorema de Bloch. Bandas de Energía. Densidad de estados. Energía total. Pseudopotenciales.

TRANSFORMACIÓN DE FASES

Cristalización de los metales. Métodos estructurales y físicos de investigación y control de los metales y aleaciones. Dislocaciones. Defectos puntuales. Propiedades mecánicas. Endurecimiento por deformación en frío. Recuperación y recristalización. Estructura y diagramas de estado de las aleaciones. El hierro y sus aleaciones. Transformaciones de fase en las aleaciones ferrosas. Usos especiales de los aceros. Aceros inoxidables. Aceros termoresistentes. Aceros con propiedades físicas especiales. Hierro colado. Aleaciones de metales no ferrosas.

FÍSICA ESTADÍSTICA II

Teoría cinética elemental y el fenómeno de transporte. Teoría de transporte. Aproximación utilizando el tiempo de relajación. Formulación cuasi exacta de la teoría de transporte. Procesos irreversibles y fluctuaciones.

CRISTALOGRAFÍA

La asignatura es de naturaleza teórico-práctica, con nivel de pregrado. Es contextualizado en el marco de la cristalografía como ciencia que estudia la materia cristalina, las leyes que rigen su formación, sus propiedades geométricas, químicas y físicas. En tal sentido, la asignatura aborda conceptos básicos y fundamentales sobre la materia cristalina y su estructura, así como la formación y crecimiento de cristales. Los temas centrales de su contenido son los siguientes: Cristalografía. Estructura cristalina. Redes de Bravais. Celda unitaria. Planos cristalográficos. Índices de Miller. Simetría cristalina y operaciones de simetría. Clases cristalinas y grupos espaciales. Cuasicristales. Cristalización y crecimiento de cristales. Red Recíproca. Técnicas de caracterización de materiales cristalinos.

B: ENERGÍA - APLICACIONES NUCLEARES

FÍSICA EXPERIMENTAL II

Métodos experimentales de la física moderna. Métodos computacionales. Experimentos sobre Óptica. Física Atómica. Física Nuclear. Diseño y montaje de experimentos.

TEORÍA GENERAL DE LA RELATIVIDAD

Asignatura de carácter electivo que estudia los fundamentos y aplicaciones representativas de la Teoría General de la Relatividad. Se inicia con una revisión de la Teoría Especial de la Relatividad y cálculo tensorial. Continúa con el estudio del espacio-tiempo curvo y obtención de las ecuaciones de Einstein. Finaliza con la geometría de Schwarzschild y la solución de Reisnner-Nordstrom.

ENERGÍA Y MEDIO AMBIENTE

La presente asignatura se orienta a analizar la problemática sobre los impactos que ocasionan las actividades relacionadas con la generación, transporte y uso de la energía, y desarrollar estrategias para el estudio del ambiente, que permitan por un lado manejar los principios básicos de la problemática, así como alcanzar mayor conciencia ambiental, respecto de la necesidad de recuperar y conservar espacios del ambiente. En este sentido, se trata de un curso con orientación integral, para lo cual los estudiantes deben utilizar toda la información que han podido acumular durante su formación profesional.

ÓPTICA FÍSICA

Teoría de ondas. Teoría electromagnética. Interferencia. Dispersión. Coherencia. Difracción. Holografía. Anisotropía. Modulación óptica.

METROLOGÍA

La asignatura considera que el alumno al finalizar la asignatura debe: identificar instrumentos que deben ser calibrados, distinguir entre calibración, verificación; distinguir entre error e incertidumbre; analizar el contenido de los certificados de calibración; determinar si el periodo de re calibración es el adecuado; elaborar un plan de calibración; conocer las exigencias metrológicas establecidas en ISO 9000 e ISO 17025; interpretar los requisitos técnicos de la norma ISO 17025; conocer el contenido de un procedimiento de calibración; realizar planes para asegurar la calidad de los resultados de medición y/o calibración y finaliza con la elaboración de un plan de auditorías internas.

ESPECTROSCOPÍA DE RAYOS X

La asignatura es de naturaleza teórica-práctica-experimental, con nivel de pregrado. Aborda conceptos básicos y fundamentales de la espectroscopía que utiliza rayos X convencional o sincrotrón, particularmente la difracción. Los temas centrales de su contenido son los siguientes: Generalidades de cristalografía: estructura cristalina, redes de Bravais, celda unitaria, planos cristalográficos, índices de Miller, clases cristalinas, red recíproca. Rayos-X. Producción y detección de los rayos-X. Radiación Sincrotrón. Interacción de los rayos-X con la materia. Difracción de Rayos-X por un cristal. Ley de Bragg. Métodos de difracción. Identificación de materiales cristalinos. Refinamiento de estructuras cristalinas: método de Rietveld.

ESPECTROSCOPÍA MÖSSBAUER

Fluorescencia nuclear. Vibraciones de la red cristalina. El Efecto Mössbauer. Estructura nuclear. Niveles de energía nuclear. Interacción de la radiación con la materia. Estructura atómica. Interacciones hiperfinas: electrostática y magnética. Instrumentación. Ajuste de espectros. Programas de ajuste de espectros. Aplicaciones al magnetismo en sólidos, nanomagnetismo y ciencia de materiales.

FÍSICA NUCLEAR II

Reacciones nucleares. Fisión y fusión nuclear. Física del neutrón. Partículas elementales. Leyes aditivas de conservación. Partículas y antipartículas. Quarks. Interacciones fundamentales.

FÍSICA MÉDICA

Este curso comprende la aplicación de las leyes físicas, y de los modelos físicos correspondientes, en cada uno de los campos de la medicina humana. Es decir, en el análisis de los principales sistemas que funcionan en el cuerpo humano (óseo, muscular, circulatorio, etc.), en los principios físicos involucrados con el diagnóstico y tratamiento de enfermedades (radiodiagnóstico y radioterapia), en la dosimetría teórica y experimental (física y clínica), así como en la instrumentación utilizada en el diagnóstico y tratamiento (control de calidad).

TÓPICOS AVANZADOS DE FÍSICA NUCLEAR I

Introducción a temas teóricos o experimentales de actualidad en el área de Física Nuclear y de Partículas, para orientar a los alumnos en la elaboración de la tesis.

TÓPICOS AVANZADOS DE FÍSICA NUCLEAR II

Introducción a temas teóricos o experimentales de actualidad en el área de física nuclear y de partículas, para orientar a los alumnos en la elaboración de tesis.

FÍSICA DE ALTAS ENERGÍAS

Fundamentos empíricos de la física de altas energías. Aceleradores y detectores de partículas. Invariancias y principios de conservación. Interacciones Hadrón-Hadrón. Modelo de los quark de los hadrones. Interacción electromagnética. Interacción débil. Cromodinámica cuántica. Interacciones fundamentales y su unificación.

PROTECCIÓN RADIOLÓGICA

Objetivos de la protección radiológica. Criterios modernos. Exposiciones potenciales. Protección radiológica para intervenciones. Protección radiológica ocupacional. Protección radiológica del público. Contaminación ambiental. Modelos de estimación de dosis individuales y colectivas. Sistemas de protección para la radiación externa. Cálculo de blindajes. Recintos de irradiación. Sistemas de protección para la contaminación. Ventilación. Descontaminantes de materiales y equipos. Gestión de residuos radiactivos. Transporte de material radiactivo. Aspectos de protección radiológica en medicina. Aspectos de protección radiológica en la industria en la industria. Aspectos de protección radiológica en la investigación. Evaluación de instalaciones radiactivas y de rayos X.

APLICACIONES DE LA FÍSICA NUCLEAR

Radiaciones nucleares. Interacción de las radiaciones nucleares con la materia. Análisis por activación neutrónica. Neutrografía. Huellas de fisión. Producción de fuentes radiactivas. Dopado de semiconductores. Dosimetría y cálculo de Blindajes.

DOSIMETRÍA DE LAS RADIACIONES

Física de las radiaciones: fundamentos de la estructura atómica y nuclear, procesos de decaimiento radiactivo, procesos de interacción de la radiación ionizante con la materia, análisis de la atenuación exponencial para haces angostos y anchos; fundamentos de los equilibrios radiactivos, Teoría de la cavidad, métodos de medidas de la radiación, magnitudes dosimétricas generales, magnitudes específicas empleadas en el campo médico (prácticas terapéuticas y diagnósticas), en la industria y en el medio ambiente.

FÍSICA DE REACTORES NUCLEARES

Reactor nuclear. El neutrón y la sección eficaz. Flujo y corriente de neutrones. Difusión y transporte de neutrones. Moderación y termalización de neutrones. Reactor térmico homogéneo. Teoría de la edad de Fermi. Reactores de varias regiones y heterogéneos. Cinética del reactor. Cambio de reactividad del reactor debido a cambios de temperatura. Control del reactor. Envenenamiento del reactor.

FÍSICA ESTADÍSTICA II

Teoría cinética elemental y el fenómeno de transporte. Teoría de transporte. Aproximación utilizando el tiempo de relajación. Formulación cuasi exacta de la teoría de transporte. Procesos irreversibles y fluctuaciones.

CRISTALOGRAFÍA

La asignatura es de naturaleza teórico-práctica, con nivel de pregrado. Es contextualizado en el marco de la cristalografía como ciencia que estudia la materia cristalina, las leyes que rigen su formación, sus propiedades geométricas, químicas y físicas. En tal sentido, la asignatura aborda conceptos básicos y fundamentales sobre la materia cristalina y su estructura, así como la formación y crecimiento de cristales. Los temas centrales de su contenido son los siguientes: Cristalografía. Estructura cristalina. Redes de Bravais. Celda unitaria. Planos cristalográficos. Índices de Miller. Simetría cristalina y operaciones de simetría. Clases cristalinas y grupos espaciales. Cuasicristales. Cristalización y crecimiento de cristales. Red Recíproca. Técnicas de caracterización de materiales cristalinos.

PROCESAMIENTO DE DATOS Y SEÑALES DIGITALES

Señales y sistemas. Sistemas lineales invariantes en el tiempo. La suma y la integral de Convolución. Sistemas de adquisición de datos. Teorema del muestreo. Transformada de Laplace. Transformada continua y discreta de Fourier (FFT). Análisis de espectros de frecuencia. Filtros analógicos y digitales. Aplicaciones: audio, geofísica. Procesamiento de imágenes con Matlab. La transformada wavelet.

TÓPICOS AVANZADOS DE FÍSICA TEÓRICA I

Introducción a temas teóricos o experimentales de actualidad en el área de la Física Teórica y de campos, para orientar a los alumnos en la elaboración de tesis.

TÓPICOS AVANZADOS DE FÍSICA TEÓRICA II

Introducción a temas teóricos o experimentales de actualidad en el área de la Física Teórica y de campos, para orientar a los alumnos en la elaboración de tesis.

C: FÍSICA ESPACIAL Y DEL MEDIO AMBIENTE

TEORÍA GENERAL DE LA RELATIVIDAD

Asignatura de carácter electivo que estudia los fundamentos y aplicaciones representativas de la Teoría General de la Relatividad. Se inicia con una revisión de la Teoría Especial de la Relatividad y cálculo tensorial. Continúa con el estudio del espacio-tiempo curvo y obtención de las ecuaciones de Einstein. Finaliza con la geometría de Schwarzschild y la solución de Reisnner-Nordstrom.

ENERGÍA Y MEDIO AMBIENTE

La presente asignatura se orienta a analizar la problemática sobre los impactos que ocasionan las actividades relacionadas con la generación, transporte y uso de la energía, y desarrollar estrategias para el estudio del ambiente, que permitan por un lado manejar los principios básicos de la problemática, así como alcanzar mayor conciencia ambiental, respecto de la necesidad de recuperar y conservar espacios del ambiente. En este sentido, se trata de un curso con orientación integral, para lo cual los estudiantes deben utilizar toda la información que han podido acumular durante su formación profesional.

ÓPTICA FÍSICA

Teoría de ondas. Teoría electromagnética. Interferencia. Dispersión. Coherencia. Difracción. Holografía. Anisotropía. Modulación óptica.

METROLOGÍA

La asignatura considera que el alumno al finalizar la asignatura debe: identificar instrumentos que deben ser calibrados, distinguir entre calibración, verificación; distinguir entre error e incertidumbre; analizar el contenido de los certificados de calibración; determinar si el periodo de re calibración es el adecuado; elaborar un plan de calibración; conocer las exigencias metrológicas establecidas en ISO 9000 e ISO 17025; interpretar los requisitos técnicos de la norma ISO 17025; conocer el contenido de un procedimiento de calibración; realizar planes para asegurar la calidad de los resultados de medición y/o calibración y finaliza con la elaboración de un plan de auditorías internas.

TÓPICOS AVANZADOS DE ASTRONOMÍA Y ASTROFÍSICA I

Introducción a temas teóricos o experimentales de actualidad en la Astronomía y Astrofísica, para orientar a los alumnos en la elaboración de tesis.

OCEANOGRAFÍA FÍSICA

La asignatura tiene por objetivo presentar los problemas que se estudian en oceanografía física, así como los conceptos fundamentales y métodos observacionales que se utilizan en esta disciplina. Se conocerá los procesos físicos involucrados en la distribución de las propiedades del agua de mar (temperatura, salinidad, densidad); los conceptos básicos utilizados en el estudio de la dinámica y termodinámica de los mares y su aplicación para explicar la circulación general de los océanos. También se discutirán conceptos de otros fenómenos físicos como mareas, olas y otras ondas que se presentan en el mar, circulación estuarina y el fenómeno de "El Niño". Se desarrollan las siguientes unidades: Propiedades físicas del agua de mar; ecuaciones dinámicas y termodinámicas; movimientos y corrientes oceánicas; instrumentación en oceanografía física, mediciones de corrientes marinas. Leyes de conservación y su importancia para el estudio de la física del mar, fuerzas que actúan sobre el agua del mar, las ecuaciones de movimiento para el océano y su aplicación en las corrientes costeras y de submesoscala; la respuesta del océano a los vientos y a las mareas, distribuciones de temperatura, salinidad y densidad en los océanos.

METEOROLOGÍA SINÓPTICA

Es una asignatura teórica y práctica, cuyo propósito final es comprender y predecir lo mejor posible los fenómenos atmosféricos, de meso escala, escala sinóptica y escala global, así como diagnosticar los sistemas meteorológicos tropicales. Dota al estudiante de conocimientos suficientemente amplios y profundos, a fin de contribuir a lograr esos objetivos finales. Así mismo, da la oportunidad al estudiante de asumir la responsabilidad de comunicarse de manera eficaz mediante exposiciones orales y escritas.

INTRODUCCIÓN A LA SISMOLOGÍA

Teoría de elasticidad, esfuerzo y deformación. Propagación de ondas sísmicas en un medio elástico. Reflexión y refracción de ondas sísmicas. Ondas superficiales y modos normales. Métodos de localización del epicentro y cálculo de parámetros hipocentrales (latitud, longitud, profundidad y tiempo origen). Escalas de magnitud y determinación de la magnitud. Teoría de la fuente sísmica. Mecanismo focal. Tensor de momento sísmico. Instrumentación sísmica.

FÍSICA Y TÉCNICAS DE TELEDETECCIÓN

Asignatura de nivel profesional electivo, para estudiantes del noveno año de la carrera de Física de la Facultad de Ciencias Físicas de la UNMSM. Su naturaleza es esencialmente teórico-práctica, de sólida formación científica. Su propósito es desarrollar los fundamentos físicos de la teledetección, manejar técnicas, métodos y procedimientos que corrientemente usan los físicos para explicar de manera formal la interacción de la radiación con los cuerpos en la Tierra. Desarrolla actitudes críticas, solidarias, creativas, democráticas y búsqueda de la verdad. Orientado a crear y difundir conocimientos, cultivar ciencia y tecnología.

TÓPICOS AVANZADOS DE GEOFÍSICA I

Introducción a temas teóricos o experimentales de actualidad en la Física Espacial y/o del Medio Ambiente, para orientar a los alumnos en la elaboración de tesis.

FÍSICA DE PLASMAS ASTROFÍSICOS

Desarrolla la ecuación de transporte radiativo, su solución formal, las aproximaciones y casos particulares más utilizados en Astrofísica (atmósfera plano-paralela, aproximación de difusión, atmósfera gris, aproximación de Eddington-Barbier, equilibrio estadístico, etc.) y los procedimientos para resolver el cálculo de líneas espectrales, tanto en equilibrio termodinámico local como fuera de tal aproximación. Cálculo del coeficiente de absorción y emisión y al perfil de las líneas espectrales.

TÓPICOS AVANZADOS DE GEOFÍSICA II

Introducción a temas teóricos o experimentales de actualidad en la Física Espacial y/o del Medio Ambiente, para orientar a los alumnos en la elaboración de tesis.

DINÁMICA DE FLUIDOS GEOFÍSICOS

Propiedades del agua de mar y del aire. Leyes físicas y dinámicas en la oceanografía y atmósfera. Ecuaciones que describen la circulación de un fluido a gran escala, ecuación de Navier-Stokes. Coordenadas de presión en la atmósfera. Teoría de flujos equilibrados. Inestabilidad baroclínica y barotrópica. Ondas en los océanos y en la atmósfera. Corrientes sin fricción, flujo geostrófico, corrientes forzadas por el viento, corrientes con fricción, efectos termohalinos. Modelos numéricos.

CLIMATOLOGÍA

Este curso tiene por propósito estudiar, comprender y analizar el sistema climático de la Tierra como un sistema físico, formado por subsistemas que interaccionan entre sí, intercambiando masa, energía y cantidad de movimiento. Se consideran las componentes más importantes del sistema climático global: la atmósfera, la capa gaseosa que cubre el planeta; la hidrósfera, formada por todo el agua en forma líquida, es decir, océanos, ríos, aguas subterráneas, mares interiores y lagos; la criósfera que corresponde al agua en forma sólida (nieve y hielo) que se encuentra sobre la superficie terrestre; la litosfera, que incluye los continentes, y la biosfera, formada por la fauna y la flora de continentes y océanos. Se estudian las leyes físicas que gobiernan su comportamiento y los procesos de interacción entre cada uno de los componentes del sistema climático. Asimismo, se investiga los procesos físicos

que influyen en el Medioambiente, con énfasis en el sistema Sol-Tierra, clima, contaminación ambiental y procesos geofísicos potencialmente peligrosos.

TÓPICOS AVANZADOS DE ASTRONOMÍA Y ASTROFÍSICA II

Introducción a temas teóricos o experimentales de actualidad en la Astronomía y Astrofísica, para orientar a los alumnos en la elaboración de tesis.

FÍSICA DE LA ATMÓSFERA

En esta disciplina se desarrollan los principales conceptos de física atmosférica, así como la aplicación de programación científica al procesamiento y visualización de datos atmosféricos y de geociencias. La interacción de la radiación solar y terrestre con las moléculas, aerosoles y partículas de las nubes en la atmósfera, así como con la superficie terrestre, se estudian a través de la teoría de trasferencia radiativa y observaciones radiométricas realizadas desde el suelo, el aire y el espacio, y se da solución a través de la Ecuación de la Transferencia Radiativa (ETR), que describe los procesos absorción, emisión y dispersión.

INTRODUCCIÓN A LA COSMOLOGÍA

La asignatura estudia los fundamentos y aplicaciones representativas de la cosmología moderna. Se inicia con la cosmología relativista y continúa con la solución de las ecuaciones de Einstein para los modelos cosmológicos y la solución de las ecuaciones de Friedmann-Lemaitre para una y varias componentes de la materia, medida de los parámetros cosmológicos y la materia y energía oscuras. Finaliza con la radiación cósmica de fondo, nucleosíntesis y la inflación.

PROPAGACIÓN DE ONDAS

Este curso se dicta en el X ciclo y es de naturaleza teórico práctico. El desarrollo de los contenidos temáticos contribuye a la formación del perfil profesional en física en el área de Oceanografía Física. Está relacionado con las leyes, principios y fundamentos del movimiento en el mar en el contexto de las ondas que se presentan en el desplazamiento de las masas de agua, que muestran patrones de variabilidad espacio-temporal en dominios de submeso-escala y meso-escala. Estos patrones se combinan para tener la respuesta al movimiento oscilatorio del océano costero y del océano abierto. La variabilidad de la energía en las ondas proviene de las inestabilidades de la circulación a escala planetaria, que aparecen en muchas diferentes formas, tales como olas, chorros (jets), mareas y turbulencia. La asignatura comprende los siguientes tópicos: I) Fundamentos físicos de ondas en el Mar; II) Ondas de Gravedad; III) Ondas Barotrópicas; IV) Ondas de Poincaré; V) Fronteras físicas y biogeoquímicas del océano VI) Ondas Oceánicas Ecuatoriales VII) Ondas Ecuatoriales VIII) Dinámica Física del Niño Oscilación Sur.

PROCESAMIENTO DE DATOS Y SEÑALES DIGITALES

Señales y sistemas. Sistemas lineales invariantes en el tiempo. La suma y la integral de Convolución. Sistemas de adquisición de datos. Teorema del Muestreo. Transformada de Laplace. Transformada continua y discreta de Fourier (FFT). Análisis de espectros de frecuencia. Filtros analógicos y digitales. Aplicaciones: audio, geofísica. Procesamiento de imágenes con Matlab. La transformada wavelet.

GEOFÍSICA APLICADA

La asignatura de geofísica aplicada es de carácter teórico práctico que trata de la física y aplicación de los métodos de investigación geofísica que se utilizan para estudiar la estructura y propiedades físicas de las partes más superficiales de la Tierra. La geofísica aplicada se basa en los principios de la física, las matemáticas y la informática para adquirir, procesar e interpretar datos de campo a fin de extraer información sobre las propiedades físicas y estructura geológica del subsuelo, con fines prácticos.

GEOFÍSICA AMBIENTAL

Es una disciplina de la geofísica moderna que estudia los fenómenos y problemas ambientales enfocados a la salud humana, la sociedad e historia, guarda una estrecha relación con la Geofísica de Ingeniería. La Geofísica Ambiental utiliza los métodos de la Geofísica Aplicada para estudiar las propiedades físicas, procesos y fenómenos de las capas límite de la atmósfera y la del sólido terrestre,

contribuye a establecer las líneas de base ambientales pre-desarrollo de infraestructura, degradación por contaminación del suelo-subsuelo y agua subterránea. Por su carácter no-destructiva, es ideal para su uso en áreas pobladas, sitios arqueológicos, entre notros medios.

GLOSARIO DE ACRÓNIMOS

IPEN Instituto Peruano de Energía Nuclear

INEN Instituto Nacional de Enfermedades Neoplásicas

IGP Instituto Geofísico del Perú

IMARPEInstituto del Mar del Perú

DHN Dirección de Hidrografía y Navegación CONIDAComisión Nacional de Desarrollo Aeroespacial

SENAMHI Servicio Nacional de Meteorología e Hidrología del Perú

CENEPRED Centro Nacional de Prevención, Reducción del Riesgo de Desastres

INDECI Instituto Nacional de Defensa Civil

INGEMMET Instituto Geológico, Minero y Metalúrgico INRENA Instituto Nacional de Recursos Naturales

ITP Instituto Tecnológico Pesquero IAP Instituto Antártico Peruano

IIAP Instituto de Investigaciones de la Amazonía Peruana

IGN Instituto Geográfico Nacional ANA Autoridad Nacional del Agua

REFERENCIAS

1. Plan de Estudios 2018 de la Escuela Profesional de Física (versión 1).

2. Reflexiones y perspectivas de la Educación Superior en América Latina. Informe Final - Proyecto Tuning – América Latina 2004-2007.

http://www.sg.inter.edu/uploads/UIPRSG/documentos/asuntos_academicos/RevisionPEG/Proyecto% 20Tuning%20America%20Latina_Informe%20Final_Espanol_2007.pdf (Acceso: Febrero de 2019)

3. Escuela de Física de la Universidad de Salamanca:

https://www.usal.es/grado-en-fisica

(Acceso: Febrero de 2019)