COMP 375: Lecture 37

News & Notes:

- Project #5 due Friday @ 10PM
- Quiz #9 in class Friday
- Reading (Fri, May 4)
 - Sections 8.{1-3} (Crypto and Authentication)

Project 5 Clarifications

- Protocol must be robust
 - Gracefully handle info request for nonexistent song ID
 - Gracefully handle request to play a nonexisting song ID
- FileSender must be memory efficient
 - Do **not** read whole file into array then try to send that array.
- Make sure you test with multiple clients

Section 6.3

MEDIA ACCESS

Carrier Sensing Multiple Access (CSMA) has nodes listen before transmitting.

- If channel sensed idle: transmit
- If channel sensed busy: defer transmission.

Discuss: Can we always tell if someone else is currently transmitting?

Collisions can still occur in CSMA because of **propagation delay**.

- Node may not hear that another has started transmitting already.
- Distance partly determines collision probability.

CSMA can add **collision detection** to cut down on wasted transmission time.

- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs: received signal strength overwhelmed by local transmission strength

CSMA/CD (Collision Detection)

CSMA/CD in Ethernet

- NIC receives datagram from network layer, creates frame
- If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff

Exponential Back Off adapts retransmissions to number of collisions.

 After mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}.

 NIC waits K-512 bit times, then returns to checking if the channel is idle

Longer back off interval with more collisions

How many of our desired properties does CSMA/CD give us?

- 1. If only one node wants to transmit, it can send at rate R.
- 2. When M nodes want to transmit, each can send at average rate R/M (fairness)
- 3. Fully decentralized:
 - no synchronization of clocks, slots
 - no special node to coordinate transmissions
- 4. Simple

Α.	0
В.	1
C.	2
D.	3
E.	4

Taking-turns: Polling

Taking-turns: Token Passing

How many of our desired properties does token passing give us?

- 1. If only one node wants to transmit, it can send at rate R.
- 2. When M nodes want to transmit, each can send at average rate R/M (fairness)
- 3. Fully decentralized:
 - no synchronization of clocks, slots
 - no special node to coordinate transmissions
- 4. Simple

A.	0
B.	1
C.	2
D	3
E.	4

In practice, techniques are often combined.

Book Example: DOCSIS

• Class Example: 802.11 Wireless

WiFi (802.11) senders do carrier sensing, like Ethernet.

Senders collide at receiver, but they can't hear each other!

This is known as the "Hidden Terminal" problem.

If sending a small frame, just send it.

If sending large frame, node asks for permission first.

If granted, it will be heard by everyone.

RTS/CTS is considered **collision avoidance** and similar to "Taking Turns."

MAC protocols: Summary

- Channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- Random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- Taking-turns
 - Polling used by Bluetooth
 - Token Passing used by FDDI and token ring