

Varianta 034

Subjectul I

a)
$$a = 3, b = -1.$$
 b) $\left(\frac{8}{3}, 3\right)$. c) $m_{AC} \cdot m_{BD} = -1.$ d) $20.$ e) $\left\{\frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}\right\}$. f $)5\sqrt{2}$.

Subjectul II

1. a) -1; 1.. b)
$$C_{50}^2 2^{48} x^{\frac{146}{3}}$$
. c) $q = X^2 + 3X + 9$; $r = 27X$. d) Da. e) 2

2. a)
$$2e^{2x}$$
. b) $f'(x) > 0$. c) $f''(x) > 0$. d) $y = 0$. e) $y = 2x + 1$.

Subjectul III

- a) Verificarea este imediată.
- b) Dacă r>0, punctul $P\left(\frac{a}{r}, \frac{b}{r}\right)$ este situat pe cercul unitate. Asadar exista numarul unic $t \in [0, 2\pi)$ astfel

încât
$$\frac{a}{r} = \cos t$$
, $\frac{b}{r} = \sin t$.

Dacă P=0, atunci a=b=r=0 si $t \in [0,2\pi)$ e oarecare.

- c) Se utilizează metoda inductiei matematice si se tine cont de formulele $cos(x-y)=cos\ x\ cos\ y+sin\ x\ sin\ y$ si $sin(x+y)=sin\ x\ cos\ y+sin\ y\ cos\ x$.
- d) Din egalitatea $A^{n+1} = A^n \cdot A$, $(\forall) n \in \mathbb{N}^*$ obtine, $\det(A^{n+1}) = \det(A^n) \det(A)$, $(\forall) n \in \mathbb{N}^*$, $\det(A^n) = \det(A^n) \det(A)$, $(\forall) n \in \mathbb{N}^*$, $\det(A^n) = \det(A^n) \det(A)$, $(\forall) n \in \mathbb{N}^*$. Inductives expectations and $a_{n+1}^2 + b_{n+1}^2 = (a^2 + b^2)^n$.
- e)Daca $a^2 + b^2 < 1$, atunci $\lim_{n \to \infty} (a^2 + b^2)^n = 0$, deci $\lim_{n \to \infty} (a_n^2 + b_n^2) = 0$. Avem inegalitatile:
- $0 \le a_n^2 \le a_n^2 + b_n^2, (\forall) n \in \mathbf{N}^*$ si $0 \le b_n^2 \le a_n^2 + b_n^2, (\forall) n \in \mathbf{N}^*$. Din criteriul "clestelui" obtinem $\lim_{n \to \infty} a_n^2 = \lim_{n \to \infty} b_n^2 = 0$, deci $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$.

f) Fie
$$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathbf{M}_2(\mathbf{R})$$
. Din $\begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} X = X \cdot \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}$ rezultă $z=-x$ si $x=t$. Asadar exista

$$a,b \in \mathbf{R}$$
 astfel incat $X = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathbf{M}$

g) Fie A=
$$\frac{1}{2}\begin{pmatrix} \sqrt{3} & -1\\ 1 & \sqrt{3} \end{pmatrix} = \begin{pmatrix} \cos\frac{\pi}{6} & -\sin\frac{\pi}{6}\\ \sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{pmatrix}$$
 Avem $XA = XX^{2007} = X^{2007}X = AX$.

Din f) rezultă că
$$X = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
, $a, b \in \mathbf{R}$. Din $X^{2007} = A$ rezulta $(\det X)^{2007} = 1$ rezulta

det $X=1 \iff a^2+b^2=1$. Asadar exista $x \in \mathbf{R}$ astfel ca $a=\cos x, b=\sin x$.

Avem
$$X = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$$
. Ecuatia devine

$$\begin{pmatrix} \cos 2007x & -\sin 2007x \\ \sin 2007x & \cos 2007x \end{pmatrix} = \begin{pmatrix} \cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\ \sin \frac{\pi}{6} & \cos \frac{\pi}{6} \end{pmatrix}, \text{ obtinem } x_k = \frac{\frac{\pi}{6} + 2k\pi}{2007}, k \in \mathbf{Z}.$$

Ecuatia are 2007 solutii si anume $X_k = \begin{pmatrix} \cos x_k & -\sin x_k \\ \sin x_k & \cos x_k \end{pmatrix}, k \in \{0,1,...2006\}$.

Subjectul IV

a) Prin inductie rezulta :
$$a_n > 0, (\forall) n \ge 0, \ a_{n+1} - a_n = \frac{1}{a_n} > 0, (\forall) n \in \mathbb{N} \Rightarrow$$

 $(a_n)_{n\geq 0}$ strict crescător.

b)
$$a_{n+1}^2 = a_n^2 + \frac{1}{a_n^2} + 2 > a_n^2 + 2, (\forall) n \in \mathbb{N}.$$

c) Din a) rezultă că există $\lim_{n\to\infty} a_n = l, \ l\in (0,\infty)$ sau $l=\infty$. Presupunand că $l\in (0,\infty)$, trecem la limita in relația de recurență și obținem $l=l+\frac{1}{l}$. Deducem că $\frac{1}{l}=0$ fals. Așadar $\lim_{n\to\infty} a_n=\infty$.

d) Fie P(n):
$$a_n > \sqrt{2n+1}$$
, $(\forall) n \in \mathbb{N}^*$ si $Q(n): a_n \le \sqrt{(2n+1)+1+\frac{1}{3}+...\frac{1}{2n-1}}$, $(\forall) n \ge 1$.

Cum $a_1 = 2 > \sqrt{3}$ arătăm ca $P(n) \Rightarrow P(n+1)$. Avem de notat $a_{n+1} > \sqrt{2n+3}$. Din P(n) rezultă ca $a_n > \sqrt{2n+1}$ de unde $a_n^2 > 2n+1$. Avem

$$a_{n+1}^2 > a_n^2 + 2 > 2n + 3 \Leftrightarrow a_{n+1} > \sqrt{2n+3}$$
. Cum $a_1 = 2 \le 2$ aratam ca $Q(n) \Rightarrow Q(n+1)$. Avem de arătat $a_{n+1} \le \sqrt{(2n+3)+1+\frac{1}{3}+...+\frac{1}{2n+1}} \Leftrightarrow a_{n+1}^2 \le (2n+3)+1+\frac{1}{3}+...+\frac{1}{2n+1}$

e) Fie $f:(0, \infty) \to \mathbf{R}$, $f(t) = \ln t$. Aplicăm teorema lui Lagrange funcției pe intervalul [x,x+1] si avem $f(x+1) - f(x) = (x+1-x)f'(c) = \frac{1}{c}$, unde $c \in (x,x+1)$. Deducem că $\frac{1}{x+1} < c < \frac{1}{x}$, $(\forall)x > 0$ si deci $\frac{1}{x+1} < \ln(x+1) - \ln x < \frac{1}{x}$, $(\forall)x > 0$.

$$\text{f) } \sqrt{2n+1} < a_n \leq \sqrt{(2n+1)+1+\frac{1}{3}+\dots\frac{1}{2n-1}} < \sqrt{(2n+1)+1+\frac{1}{2}+\frac{1}{3}+\dots\frac{1}{2n-1}}, (\forall) n \geq 1.$$

Din e)
$$\Rightarrow \ln 2 - \ln 1 > \frac{1}{2}, \ln 2 - \ln 2 > \frac{1}{3}, ..., \ln(2n - 1) - \ln(2n - 2) > \frac{1}{2n - 1} (\forall) n \in \mathbb{N}^*$$

Deducem că $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n-1} < \ln(2n+1), \forall n \in \mathbb{N}^*$

$$\Rightarrow \sqrt{2n+1} < a_n < \sqrt{(2n+1)+1+\ln(2n+1)}, (\forall) n \in \mathbf{N}^*.$$

Rezultă că: $\frac{\sqrt{2n+1}}{\sqrt{n}} < \frac{a_n}{\sqrt{n}} < \sqrt{\frac{(2n+2)}{n} + \frac{\ln(2n+1)}{n}}, (\forall) n \in \mathbb{N}^*$. Obtinem: $\lim_{n \to \infty} \frac{a_n}{\sqrt{n}} = \sqrt{2}$

g) Avem
$$\frac{1}{a_n} = a_{n+1} - a_n$$
, $(\forall) n \ge 0 \Rightarrow \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = a_{n+1} - a_0 = a_{n+1} - 1$, $(\forall) n \ge 0$.

Cum
$$\lim_{n\to\infty} a_{n+1} = \infty$$
 obtinem $\lim_{n\to\infty} \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) = \infty$.