Тема. Квадратична функція та її графік

<u>Мета.</u> Ознайомитися з квадратичною функцією, її видами та її графіком, навчитися будувати графік квадратичної функції шляхом найпростіших перетворень функції $y=ax^2$

Повторюємо

- Які функції ви знаєте?
- Як побудувати графік функції?
- Які правила перетворень для графіків функцій ви знаєте?
- Як побудувати графік функції f(x)+a, f(x)-a?
- Як побудувати графік функції f(x+a), f(x-a)?
- Як побудувати графік функції kf(x)+a?

Ознайомтеся з інформацією

Функцію, яку можна задати формулою виду
$$y = ax^2 + bx + c$$
, (1)

де x — незалежна змінна, a, b і c — деякі числа, причому $a \neq 0$, називають $\kappa в a d p a m u u + o i o$.

<u>Наприклад,</u> $y = 5x^2 - 4x + 1$, $y = 2x^2 + x$, $y = -3x^2 - 6$, $y = -5x^2$ — квадратичні функції.

Коефіцієнти b та c у формулі (1) квадратичної функції в окремих випадках можуть дорівнювати 0. Розглянемо ці випадки.

1. **При**
$$b = c = 0$$
 функція (1) набуває вигляду $y = ax^2$, $\partial e \, a \neq 0$.

Властивості функції
$$y = ax^2$$
, де $a \neq 0$

- 1) $D(y) = (-\infty; +\infty)$.
- 2) Якщо a > 0, то $E(y) = [0; +\infty)$; якщо a < 0, то $E(y) = (-\infty; 0]$.
- 3) Графік функції парабола.
- 4) Якщо x = 0, то y = 0. Графік проходить через точку (0; 0).

Цю точку називають вершиною параболи.

- 5) Якщо a > 0, то вітки параболи напрямлені вгору, якщо a < 0 вниз.
- 6) Якщо a > 0, то функція зростає на проміжку $[0; +\infty)$ і спадає на проміжку $(-\infty; 0]$. Якщо a < 0, функція зростає на проміжку $(-\infty; 0]$ і спадає на проміжку $[0; +\infty)$.
- 7) Графік функції симетричний відносно осі Оу.

2. **При** $b = 0, c \neq 0$ функція (1) набуває вигляду $y = ax^2 + c$, де $a \neq 0, c \neq 0$.

У цьому випадку графік функції можна отримати, здійснивши паралельне перенесення графіка функції $y = ax^2$ на c одиниць угору (якщо c > 0) або на |c| одиниць униз (якщо c < 0).

Властивості функції $y = ax^2 + c$, де $a \neq 0$, $c \neq 0$.

- 1) $D(y) = (-\infty; +\infty)$.
- 2) Якщо a > 0, то $E(y) = [c; +\infty)$, якщо a < 0, то $E(y) = (-\infty; c]$.
- 3) Графік функції парабола.
- 4) Якщо x = 0, то y = c. Точка (0; c) вершина параболи.
- 5) Якщо a > 0, то вітки параболи напрямлені вгору, якщо a < 0 вниз.
- 6) Якщо a > 0, функція зростає на проміжку $[0; +\infty)$ і спадає на проміжку $(-\infty; 0]$.

Якщо a < 0, функція зростає на проміжку $(-\infty; 0]$ і спадає на проміжку $[0; +\infty)$.

7) Графік функції симетричний відносно осі Оу.

3. $b \neq 0$, $c \neq 0$.

Позначимо

$$x_0 = -\frac{b}{2a}, \quad y_0 = \frac{4ac - b^2}{4a}.$$

Тоді формулу

$$y = ax^2 + bx + c$$

можна подати у вигляді

$$y = a (x - x_0)^2 + y_0.$$

Схема побудови шуканого графіка є такою:

управо угору або вліво або вниз на
$$|x_0|$$
 од. $y = ax^2$ $y = a(x - x_0)^2$ $y = a(x - x_0)^2 + y_0$

На рисунку 2 показано побудову для випадку, коли $a>0,\ x_0>0,\ y_0>0$. На рисунку 3 показано побудову для випадку, коли $a<0,\ x_0<0,y_0>0$.

Тепер можна зробити такий висновок:

графіком квадратичної функції $y = ax^2 + bx + c \in$ парабола, яка дорівнює параболі $y = ax^2$ з вершиною в точці $(x_0; y_0) = (x_B; y_B)$, де

$$x_{\rm B} = -\frac{b}{2a}, \ \ y_{\rm B} = \frac{4ac - b^2}{4a}.$$

Вітки параболи $y = ax^2 + bx + c$ напрямлені так само, як і вітки параболи $y = ax^2$:

- якщо a > 0, то вітки параболи напрямлені вгору,
- якщо a < 0, то вітки параболи напрямлені вниз.

Віссю симетрії параболи є пряма

$$x = x_{\rm B}$$
.

Розв'язування завдань

Побудувати графік функції $y = 2x^2 - 12x + 19$.

Розв'язання:

Виділимо повний квадрат з квадратного тричлена, який задає функцію:

$$2x^2 - 12x + 19 = 2x^2 - 12x + 18 + 1 = 2(x^2 - 6x + 9) + 1 = 2(x - 3)^2 + 1.$$

OTIME, $y = 2x^2 - 12x + 19 = 2(x - 3)^2 + 1.$

Побудуємо графік шляхом геометричних перетворень:

Крок 1. Розтяг синьої параболи $y = x^2$ вдвічі вздовж осі Оу

Крок 2. Паралельне перенесення графіка функції $y = 2x^2$ вздовж осі Ox вправо на 3 одиниці

Крок 3. Паралельне перенесення графікау = $2(x-3)^2$ вздовж осі Оу вгору на 1 одиницю

Пригадайте

- Яку функцію називають квадратичною?
- Як побудувати графік квадратичної функції?

Домашне завдання

- Опрацювати конспект
- Побудувати один з графіків:

1.
$$y = -x^2 - 5$$
;

2.
$$v = x^2 - 4x - 5$$
:

$$3. y = -x^2 + 2x + 3$$

Джерело

Всеукраїнська школа онлайн