4.3. independência e dependência linear

página 1/3

departamento de matemática

universidade de aveiro

- 1. Quais dos seguintes vectores são linearmente independentes, nos espaços vectoriais reais indicados?
 - (a) u = (3, 1) e v = (4, -2), em \mathbb{R}^2 ;
 - (b) $u = (1, 1, 0), v = (0, 2, 3), w = (1, 2, 3) e r = (1, -1, 1), em \mathbb{R}^3$;
 - (c) u = (6, 0, -1) e v = (1, 1, 4), em \mathbb{R}^3 ;
 - (d) $u = (1, 2, 3), v = (1, 1, 1) e w = (1, 0, 1), em \mathbb{R}^3$;
 - (e) u = (4, 4, 0, 0), v = (0, 0, 6, 6) e w = (-5, 0, 5, 5), em \mathbb{R}^4 ;
 - (f) $u = (3, 0, 4, 1), v = (6, 2, -1, 2), w = (-1, 3, 5, 1) e r = (-3, 7, 8, 3), em \mathbb{R}^4$;
 - (g) $u = (-1, 2, 0, 2), v = (5, 0, 1, 1) e w = (8, -6, 1, -5), em \mathbb{R}^4$;
 - (h) $p(x) = 1 + 2x x^2$, $q(x) = 2 x + 3x^2$ e $r(x) = 3 4x + 7x^2$, em $P_2[x]$;
 - (i) $p(x) = 1 + 3x + 3x^2$, $q(x) = x + 4x^2$, $r(x) = 5 + 6x + 3x^2$ e $t(x) = 7 + 2x x^2$, em $P_2[x]$;
 - (j) $p(x) = 2 x + 4x^2$, $q(x) = 3 + 6x + 2x^2$ e $r(x) = 2 + 10x 4x^2$, em $P_2[x]$;
 - (k) $p(x) = 3 + x + x^3$, $q(x) = 2 x + 5x^2$ e $r(x) = 4 3x^3$, em $P_3[x]$;
 - (l) $A = \begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & -3 \\ 3 & 0 \end{bmatrix}$ e $C = \begin{bmatrix} 3 & 4 \\ 3 & 1 \end{bmatrix}$, em $M_{2\times 2}(\mathbb{R})$;
 - (m) f(x) = 2, $g(x) = 2\cos^2 x$ e $h(x) = \sin^2 x$, em $\mathcal{F}(\mathbb{R})$;
 - (n) $f(x) = x e g(x) = \cos x$, em $\mathcal{F}(\mathbb{R})$.
- 2. Nos espaços vectoriais reais indicados, discuta, em função dos parâmetros, a independência linear dos seguintes vectores:
 - (a) u = (1, -2) e v = (a, -1), em \mathbb{R}^2 ;
 - (b) $u = (a, -\frac{1}{2}, -\frac{1}{2}), v = (-\frac{1}{2}, a, -\frac{1}{2}) \in w = (-\frac{1}{2}, -\frac{1}{2}, a), \text{ em } \mathbb{R}^3;$
 - (c) $u = (a, 1, 1), v = (1, a, 1) e w = (1, 1, a), em \mathbb{R}^3$;
 - (d) $u = (0, a, -b), v = (-a, 0, c) \in w = (b, -c, 0), \text{ em } \mathbb{R}^3;$
 - (e) $p(x) = 6 ax^2$ e $q(x) = b + x + x^2$, em $P_2[x]$.
- 3. No espaço vectorial real \mathbb{R}^3 , considere o subespaço vectorial

$$S = \{(x, y, z) \in \mathbb{R}^3 : x = y\}.$$

Determine dois vectores $u, v \in S$ linearmente independentes e mostre que qualquer vector $w \in S$ é uma combinação linear desses vectores u e v.

4.3. independência e dependência linear

página 2/3

4. Considere-se, no espaço vectorial real $P_2[x]$, os vectores

$$p_1(x) = x^2 + x + 1$$
, $p_2(x) = 2x^2 + 3$, $p_3(x) = x^2$, $p_4(x) = 2x - 1$ e $p_5(x) = x^2 + 2x + a$ com α um parâmetro real. Mostre que:

- (a) os vectores $p_1(x)$, $p_2(x)$ e $p_3(x)$ são linearmente independentes;
- (b) o vector $p_3(x)$ não é uma combinação linear dos vectores $p_1(x)$, $p_2(x)$ e $p_4(x)$ mas, no entanto, os vectores $p_1(x)$, $p_2(x)$, $p_3(x)$ e $p_4(x)$ são linearmente dependentes;
- (c) existe $a \in \mathbb{R}$ tal que os vectores $p_1(x)$, $p_2(x)$ e $p_5(x)$ são linearmente independentes;
- (d) para qualquer $a \in \mathbb{R}$, os cinco vectores considerados são linearmente dependentes.
- 5. Seja E um espaço vectorial sobre um corpo \mathbb{K} e sejam $u, v \in E$. Prove que se u e v são dois vectores linearmente independentes então u + v e u v também o são.
- 6. Seja $\{v_1, v_2, v_3\}$ um conjunto de vectores linearmente independentes num espaço vectorial E sobre um corpo \mathbb{K} . O conjunto $\{v_1 + v_2, v_1 + v_3, v_2 + v_3\}$ é um conjunto de vectores linearmente independentes? Justifique.
- 7. Seja E um espaço vectorial real e sejam $v_1, v_2, v_3 \in E$. Mostre mostre que se os vectores v_1, v_2 e v_3 são linearmente independentes, então os seguintes vectores também são linearmente independentes:
 - (a) $u_1 = 2v_1$, $u_2 = v_1 + v_2$ e $u_3 = -v_1 + v_3$;
 - (b) $w_1 = v_1 + v_2$, $w_2 = v_1 + v_3$ e $w_3 = v_2 + v_3$.

4.3. independência e dependência linear

página 3/3

- 1. São linearmente independentes os vectores das alíneas: (a) , (c) , (d) , (e) , (f) , (j) , (k) , (l) e(n) .
- 2. (a) $a \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$; (b) $a \in \mathbb{R} \setminus \left\{-\frac{1}{2}, 1\right\}$; (c) $a \in \mathbb{R} \setminus \left\{-2, 1\right\}$;

 - (d) os vectores são linearmente dependentes para todo $a, b, c \in \mathbb{R}$;
 - (e) $a, b \in \mathbb{R}$.
- 4. (c) $a \neq \frac{1}{2}$.
- 6. sim.