Subject:

Human activities Recognition using smartphone data

Course: Machine Learning

Student: George Papadopoulos

Human activities Recognition using smartphone data - Introduction

Activities: running, walking, cycling.

End-to-end machine learning system with all phases.

Models: SVM, kNN classifiers.

Emphasis to data preparation, data exploration, feature extraction.

Use of smartphone accelerometer to collect data.

X, Y, Z axes

Get/Prepare Phase

- 6 subjects-persons, 10 samples per activity, 180 samples totally.
 - Balanced dataset.
 - 4 subjects train-validation set, 2 subjects test set.
- Each sample 30+ secs. 0-10 preparation, 10-22 clear sample, 22-30+ stop.
- Use of the same smartphone to avoid differences of sensors.
- Sampling at 50 Hz. Measurement unit: m/s^2.
- Annotation after sampling.
- Upload to GitHub.
- Parser creation to read .txt samples files.

Prepare – Exploration phase

• Cutting of X, Y, Z signals and keep only 12 secs.

- Problem with orientation changes of smartphone.
- Computation of X-Y magnitude to solve it.

Preparation phase - Denoising

- Experimentation with Butterworth low pass filter and Median filter.
- Choose Median filter which smooths the signal.

Exploration phase – Discover patterns

- Velocity considered significant to find patterns.
- Unfortunately, depends on initial velocity.
- But dominant frequency can be used.

 Peaks of signals seems to have different values and widths between them.

Possible features:

- Statistics of Z-axis signal and X-Y magnitude: mean, standard deviation, kurtosis, skewness.
- Average peak values, average peak widths.
- Spectral Entropy.
- Dominant Frequency value and amplitude for Z-axis, X-Y magnitude and velocity using Fourier Transformation.
- Examine correlations using *correlation* matrix.
 - Highly correlated:mean_magn std_mean std_zkurt_magn skew_magn

Exploration phase – Feature examination

Feature selection

• Selection using distribution plots, backward Elimination, SelectKBest

	Feature_Name	Score
2	mean_magn	446.725187
3	std_magn	179.601351
7	std_z	112.165381
8	dom_fr_ampl	70.188456
9	dom_fr_val	24.900838
1	average_peak_width_magn	22.306325
10	VDFA	17.493667
16	skewn_z	10.604691
6	mean_z	2.647377
14	kurt_z	2.422728
15	kurt_magn	1.835124
11	VDFV	1.784572
4	average_peak_value_z	1.590847
17	skewn_magn	1.431152
0	average_peak_value_magn	0.917507
13	spec_entr_magn	0.806367

- Significant *mean_magn*, *std_magn* and *std_z*, but strong correlated. *mean_magn* more important, exclude other two.
- Also, kurt_magn and skew_magn correlated, exclude skew_magn.

Model phase – SVM train

- Validation curves for two dataset with selected features and all features, for different gamma parameters.
 - Examine where model begins overfitting and which dataset is best.
 - Use of *Cross Validation*, pipeline and *StandardScaler*.
- Use of GridSearchCV to determine the best values of parameters gamma and C for rbf kernel.
 - The same for *polynomial kernel* with extra parameter *degree*.
- Score: *mean accuracy* of subclasses.
- Use of cross_validation_score to compare two kernels.
- Rbf: 94%, Polynomial: *87%*.

Model phase – SVM test

- Use of test set for first time to test SVM performance.
- Creation of classification report and confusion matrix.

	precision	recall	f1-score	support
Running	0.650	0.650	0.650	20
Walking	0.900	0.900	0.900	20
Cycling	0.600	0.600	0.600	20
_				
accuracy			0.717	60
macro avg	0.717	0.717	0.717	60
weighted avg	0.717	0.717	0.717	60

- Scale test set separately.
- Unexpected results, walking class has the least misclassified samples and so the highest scores.
- Cycling has the lowest scores.
- Classifier is confused between running and cycling.
- Interesting, symmetrical precision-recall.
- Overall f1 71%. Great difference between train-validation and test scores. More samples for training might be needed.

Model phase – kNN train and test

- Slight discrepancies between two datasets for different values of parameter *K-nearest neighbors*.
- Determine best value with GridSearchCV as before.

- Same rank as SVM, but different scores.
- Cycling almost equal scores to random classification.
- Walking high recall due to only 1 FN, lower precision due to 5 FP.
- Running, walking overlapping cycling
- Overall f1 70%, almost equal to SVM.

cycling - ROC - AUC=0.92

Models' comparison – Communicate results

- ROC curves: Each class against the others.
- From ROC curves can be concluded SVM has greater performance for all classes.
- Highest SVM ROC-AUC score: 98% for running. Meaning from 100 samples predicted as running, 2 will not belong to running class.
- Highest kNN: 95% for running.
- Concluding: Using smartphone in trouser pocket, accurate enough to monitor activities especially running and cycling. Building of a simple app to use by athletes or someone who cares about daily activity performances and times.
- Future work: Improvement of walking class predictions using more training data, longer duration. Or/And time-window based model.

Multiclass ROC curve for kNN

