Software Information

- Please check, whether your inputs, the equations applied and the charactersitics are displayed correctly.
- You are welcome to send your feedback via https://github.com/oemof/tespy/issues.
- \bullet LATEX packages required are:
 - graphicx
 - float
 - hyperref
 - booktabs
 - amsmath
 - units
 - cleveref
- To supress these messages, call the model documentation with the keyword draft=False.

TESPy Version: 0.4.3 - devCommit: 788 ddfdc@dev

CoolProp version: 6.4.0

Python version: 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)]

1 Connections in offdesign mode

1.1 Specified connection parameters

label	p in bar (1)	T in °C (2)	v in ^{m3} / _s (3)
consumer back flow:out1_district heating pump:in1	10.000	50.000	-
$condenser:out2_consumer:in1$	-	90.000	-
ambient air:out1_pump:in1	1.000	8.000	5.577
$splitter:out1_superheater:in1$	-	-	3.520
evaporator:out1_sink ambient 1:in1	1.000	-	_

Table 1: Specified connection parameters

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

$$0 = \dot{m} \cdot v(p, h) - \dot{V}_{\text{spec}} \tag{3}$$

1.3 Specified fluids

label	NH3 (4)	air (5)	water (6)
coolant cycle closer:out1_condenser:in1 consumer back flow:out1_district heating pump:in1 ambient air:out1_pump:in1	1.000	0.000	0.000
	0.000	0.000	1.000
	0.000	0.000	1.000

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\text{NH3}} - x_{\text{NH3,spec}} \tag{4}$$

$$0 = x_{\text{air}} - x_{\text{air,spec}} \tag{5}$$

$$0 = x_{\text{water}} - x_{\text{water,spec}} \tag{6}$$

1.5 Referenced values for mass flow

label	reference	factor in -	delta in kg/s
evaporator reciculation pump:out1_evaporator:in2	$valve: out 1_drum: in 1$	1.250	0

Table 3: Referenced values for mass flow

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (7)

1.7 Referenced values for pressure

label	reference	factor in -	delta in bar
consumer:out1_consumer feed flow:in1	consumer back flow:out1_district heating pump:in1	1	0

Table 4: Referenced values for pressure

1.8 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (8)

1.9 Referenced values for enthalpy

label	reference	factor in -	delta in kJ/kg
consumer:out1_consumer feed flow:in1	consumer back flow:out1_district heating pump:in1	1	0

Table 5: Referenced values for enthalpy

1.10 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (9)

2 User defined equations in offdesign mode

3 Components in offdesign mode

3.1 Components of type CycleCloser

3.1.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{11}$$

3.2 Components of type Condenser

3.2.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{12}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(13)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(14)

3.2.2 Inputs specified

label	pr1 (15)	zeta2 (16)	kA_char (17)	subcooling (18)
condenser	0.990	61.371	True	True

Table 6: Parameters of components of type Condenser

3.2.3 Equations applied

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{15}$$

$$0 = \begin{cases} p_{\text{in},2} - p_{\text{out},2} & |\dot{m}_{\text{in},2}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},2} - p_{\text{out},2}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},2} \cdot |\dot{m}_{\text{in},2}| \cdot \frac{v_{\text{in},2} + v_{\text{out},2}}{2}}{2} & |\dot{m}_{\text{in},2}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(16)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + kA_{\text{design}} \cdot f_{\text{kA}} \cdot \frac{T_{\text{out},1} - T_{\text{in},2} - T_{\text{sat}}(p_{\text{in},1}) + T_{\text{out},2}}{\ln \frac{T_{\text{out},1} - T_{\text{in},2}}{T_{\text{sat}}(p_{\text{in},1}) - T_{\text{out},2}}}$$

$$f_{\text{kA}} = \frac{2}{\frac{1}{f(X_2)} + \frac{1}{f(X_2)}}$$
(17)

$$0 = h_{\text{out},1} - h\left(p_{\text{out},1}, x = 0\right) \tag{18}$$

Figure 1: Characteristics of condenser (eq. 17)

Figure 2: Characteristics of condenser (eq. 17)

3.3 Components of type Pump

3.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{19}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(20)

3.3.2 Inputs specified

label	eta_s_char (21)
district heating pump	True
evaporator reciculation pump	True
pump	True

Table 7: Parameters of components of type Pump

3.3.3 Equations applied

Figure 3: Characteristics of district heating pump Figure 4: Characteristics of evaporator reciculation (eq. 21)

Figure 5: Characteristics of pump (eq. 21)

3.4 Components of type HeatExchangerSimple

3.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (23)

3.4.2 Inputs specified

Table 8: Parameters of components of type HeatExchangerSimple

3.4.3 Equations applied

$$0 = \begin{cases} p_{\text{in},1} - p_{\text{out},1} & |\dot{m}_{\text{in},1}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},1} - p_{\text{out},1}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},1} \cdot |\dot{m}_{\text{in},1}| \cdot \frac{v_{\text{in},1} + v_{\text{out},1}}{2}}{2} & |\dot{m}_{\text{in},1}| \ge 0.0001 \,\text{kg/s} \end{cases}$$

$$(24)$$

3.5 Components of type Valve

3.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(26)

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

3.6 Components of type Drum

3.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (28)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (29)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets } \forall j \in \text{outlets}$$
 (30)

$$0 = p_{\text{in},1} - p_{\text{in},i} \,\forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \,\forall j \in \text{outlets}$$
(31)

$$0 = h_{\text{out},1} - h(p_{\text{out},1}, x = 0)$$

$$0 = h_{\text{out},2} - h(p_{\text{out},2}, x = 1)$$
(32)

3.7 Components of type HeatExchanger

3.7.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$(33)$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1,2]$$
(34)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(35)

3.7.2 Inputs specified

label	kA (36)	pr2 (37)	zeta1 (38)	zeta2 (39)	kA_char (40)
evaporator	_	0.990	0.203		True
superheater	303554.478	-	0.207	2.988	-
intercooler	-	-	50.415	0.607	True

Table 9: Parameters of components of type HeatExchanger

3.7.3 Equations applied

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + kA \cdot \frac{T_{\text{out},1} - T_{\text{in},2} - T_{\text{in},1} + T_{\text{out},2}}{\ln \frac{T_{\text{out},1} - T_{\text{in},2}}{T_{\text{in},1} - T_{\text{out},2}}}$$
(36)

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{37}$$

$$0 = \begin{cases} p_{\text{in},1} - p_{\text{out},1} & |\dot{m}_{\text{in},1}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},1} - p_{\text{out},1}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},1} \cdot |\dot{m}_{\text{in},1}| \cdot \frac{v_{\text{in},1} + v_{\text{out},1}}{2}}{2} & |\dot{m}_{\text{in},1}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(38)

$$0 = \begin{cases} p_{\text{in},2} - p_{\text{out},2} & |\dot{m}_{\text{in},2}| < 0.0001 \,\text{kg/s} \\ \frac{\zeta}{D^4} - \frac{(p_{\text{in},2} - p_{\text{out},2}) \cdot \pi^2}{8 \cdot \dot{m}_{\text{in},2} \cdot |\dot{m}_{\text{in},2}| \cdot \frac{v_{\text{in},2} + v_{\text{out},2}}{2}}{2} & |\dot{m}_{\text{in},2}| \ge 0.0001 \,\text{kg/s} \end{cases}$$
(39)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + kA_{\text{design}} \cdot f_{\text{kA}} \cdot \frac{T_{\text{out},1} - T_{\text{in},2} - T_{\text{in},1} + T_{\text{out},2}}{\ln \frac{T_{\text{out},1} - T_{\text{in},2}}{T_{\text{in},1} - T_{\text{out},2}}}$$

$$f_{\text{kA}} = \frac{2}{\frac{1}{f(X_1)} + \frac{1}{f(X_2)}}$$

$$(40)$$

Figure 6: Characteristics of evaporator (eq. 40) Figure 7: Characteristics of evaporator (eq. 40)

Figure 8: Characteristics of intercooler (eq. 40) Figure 9: Characteristics of intercooler (eq. 40)

3.8 Components of type Splitter

3.8.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$

$$(41)$$

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (42)

$$0 = h_{in} - h_{\text{out},j} \ \forall j \in \text{outlets}$$
 (43)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(44)

3.9 Components of type Compressor

3.9.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$\tag{45}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(46)

3.9.2 Inputs specified

label	eta_s_char (47)	pr (48)
compressor 1	True	-
compressor 2	True	3.000

Table 10: Parameters of components of type Compressor

3.9.3 Equations applied

$$0 = (h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s,design}} \cdot f(X) - (h_{out,s} - h_{in})$$

$$\tag{47}$$

$$0 = p_{\text{in},1} \cdot pr - p_{\text{out},1} \tag{48}$$

Figure 10: Characteristics of compressor 1 (eq. 47) Figure 11: Characteristics of compressor 2 (eq. 47)

4 Busses in offdesign mode

4.1 Bus "total compressor power"

This bus is used for postprocessing only.

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
compressor 1	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	f(X) (12)
compressor 2	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{ m comp} \cdot \eta$	f(X) (13)
pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{ m comp} \cdot \eta$	f(X) (14)
district heating pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{ m comp} \cdot \eta$	f(X) (15)
evaporator reciculation pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	f(X) (16)

Table 11: total compressor power

Figure 12: Bus efficiency characteristic

Figure 13: Bus efficiency characteristic

Figure 14: Bus efficiency characteristic

Figure 15: Bus efficiency characteristic

Figure 16: Bus efficiency characteristic

4.2 Bus "total delivered heat"

Specified total value of energy flow: $\dot{E}_{\rm bus} = -75000000.000\,\rm W$

$$0 = \dot{E}_{\text{bus}} - \sum_{i} \dot{E}_{\text{bus},i} \tag{49}$$

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m bus}$	η
condenser	$\dot{m}_{\mathrm{in},1} \cdot (h_{\mathrm{out},1} - h_{\mathrm{in},1})$	$\dot{E}_{ m comp} \cdot \eta$	1.000

Table 12: total delivered heat