VE215 Introduction to Circuits

Sung-Liang Chen Fall 2017

About me

- 1999 2003 B.S., Electrical Engineering National Taiwan University
- 2003 2005 M.S., Electro-optical Engineering, National Taiwan University
- 2007.09 2011.12 Ph.D., Electrical Engineering, University of Michigan
- 2012.01 2013.03 Research Fellow, Radiology Department, University of Michigan
- 2013.05 present Assistant Professor, UM-SJTU Joint Institute, Shanghai Jiao Tong University

What are circuits?

Circuit-Merriam Webster's definition

- **a**: the complete path of an electric current including usually the source of electric energy
- **b**: an assemblage of electronic elements
- **c**: a two-way communication path between points (as in a computer)
- **d**: a neuronal pathway of the brain along which electrical and chemical signals travel

Circuit-Wikipedia's definition (part list)

 Circuit theory, the theory of accomplishing work by routing electrons, gas, fluids, or other matter through loops

In electrical engineering

 Electrical circuit, an electrical network that has a closed loop giving a return path for the current

In fluid power and fluid mechanics

- Hydraulic circuit
- Pneumatic circuit

In physics

- Magnetic circuit, one or more closed loop paths containing a magnetic flux
- In mathematics and computer science...

Circuit – Electrical Engineering

■ In electrical engineering

- Circuit analysis
- Analog circuit or Digital circuit
- Integrated circuit
 - Mixed-signal integrated circuit
- Asynchronous circuit or Synchronous circuit
- Printed circuit board (PCB)
- Series and parallel circuits
- Telecommunication circuit
- Circuit diagram
- Balanced circuit
- LC circuit

Electrical circuit

- An electrical circuit is a path in which electrons from a voltage or current source flow.
- Electric current flows in a closed path called an electric circuit.
- A simple electrical circuit. This circuit has a power source, a complete path for electrons to flow, and a resistor as the load.

Electrical circuits and electronic circuits

Electrical circuits

- Usually use alternating current sources
- Load: refrigerators, televisions,
 or microwave ovens; the output of
 a hydroelectric power generating station.

- Usually use low voltage direct current sources
- Load: the flash in a digital camera; the microprocessors.

More on electronic circuit

Definition:

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow.

Function:

The combination of components and wires allows various simple and complex operations to be performed:

- signals can be amplified
- computations can be performed
- data can be moved from one place to another.

More on electronic circuit

Print circuit board (PCB):

Circuits can be constructed of discrete components connected by individual pieces of wire, but today it is much more common to create interconnections by photolithographic techniques on a laminated substrate (a printed circuit board or PCB) and solder the components to these interconnections to create a finished circuit.

Markings on PCB

A separable assembly

AR amplifier

AT attenuator; isolator

B blower, motor

BT battery

C capacitor

CB circuit breaker

CP connector adapter, coupling

CN capacitor network

D or CR diode

D or VR breakdown diode

DC directional coupler

DL delay line

DS display, lamp

E terminal

F fuse

FD* fiducial

FL filter

G generator, oscillator

GN general network

H hardware

HY circulator, directional coupler

J connector, jack, female

K contactor, relay

L coil, inductor, bead, ferrite bead

LS loudspeaker, buzzer

M meter

MG motor-generator

MH* mounting hole

MK microphone

MP mechanical part

P connector, plug, male

PS power supply

Q transistor

R resistor

RN resistor network

RT thermistor

S switch

T transformer

TB terminal board, terminal strip

TC thermocouple

TP test point, In-circuit test points

TZ transzorb

U inseparable assembly, IC pkg

V electron tube

VR voltage regulator

W wire, cable, cable assembly

X fuse holder, lamp holder, socket

Y crystal, magnetostriction oscillator

Z miscellaneous

More on electronic circuit

Integrated circuit (IC)

In an integrated circuit or IC, the components and interconnections are formed on the same substrate, typically a semiconductor such as silicon or (less commonly) gallium arsenide.

The die from an Intel 8742, an 8-bit microcontroller that includes a CPU, 128 bytes of RAM, 2048 bytes of EPROM, and I/O in the same chip.

Categories of electronic circuit

- Analog circuits
- Digital circuits
- Mixed-signal circuits (a combination of analog circuits and digital circuits).

Analog circuits

Analog electronic circuits are those in which current or voltage may vary continuously with time to correspond to the information being represented.

A circuit diagram representing an analog circuit, in this case a simple amplifier

Lumped and distributed

- A lumped system is one in which the dependent variables of interest are a function of time alone.
- A distributed system is one in which all dependent variables are functions of time and one or more spatial variables.

Analog circuits

- Analog circuit analysis employs Kirchhoff's circuit laws: all the currents at a node (a place where wires meet), and the voltage around a closed loop of wires is 0.
- Applicability/Validity

 L_c : circuit's characteristic length; λ : circuit's operating wavelength

- The lumped element model ($L_c \ll \lambda$):
 - Ignores the finite time it takes signals to propagate around a circuit.
 - The attributes of the circuit elements are **concentrated into idealized electrical components** (resistors, capacitors, and inductors, etc.) joined by a network of **perfectly conducting wires**.
- Distributed circuit model ($L_c \sim \lambda$):
 - When the circuit size is comparable to a wavelength of the relevant signal frequency
 - Such considerations typically become important for circuit boards at frequencies above a GHz.

Digital circuits

- In digital electronic circuits, electric signals take on discrete values, to represent logical and numeric values.
- In the vast majority of cases, binary encoding is used: one voltage (typically the more positive value) represents a binary '1' and another voltage (usually a value near the ground potential, 0 V) represents a binary '0'.
- Digital circuits make extensive use of transistors, interconnected to create logic gates that provide the functions of Boolean logic: AND, NAND, OR, NOR, XOR and all possible combinations thereof.

Digital circuits

Advantages over analog circuits:

- Each logic gate regenerates the binary signal, so the designer need not account for distortion, gain control, offset voltages, and other concerns faced in an analog design.
- Extremely complex digital circuits (billions of logic elements integrated on a single silicon chip) can be fabricated at low cost.

Digital circuitry

- General purpose computing chips, such as microprocessors
- Custom-designed logic circuits, known as application-specific integrated circuit (ASICs).
- Field-programmable gate arrays (FPGAs), chips with logic circuitry whose configuration can be modified after fabrication

Applications

Ubiquitous in modern electronic devices

Digital circuits-microprocessor

Intel 80486DX2 microprocessor

Digital circuits-FPGA

FPGA from Altera

FPGA from Xilinx

Digital circuits-an example

- Sequential digital logic
- Different results for P->Q and Q->P
- Car hits P line: P turned to 1; Car hits Q line: Q turned to 1
- Electrical line colors: A high (1) signal is shown in red and a low (0) signal is shown in green
- Whilst you are looking at the animation try to follow the signals propagating through the circuit using the rules for the gates (NOT and NAND here).
- Results:
 - P=1-> Q=1, output light becomes red.
 - Q=1-> P=1, output light keeps green.

Mixed-signal circuits

■ Definition: Mixed-signal or hybrid circuits contain elements of both analog and digital circuits.

Examples: Comparators, timers, phase-locked loops, analog-to-digital converters, and digital-to-analog converters (E.g., A laser marking machine).

- Most modern radio and communications circuitry uses mixed signal circuits. For example, a receiver.
 - Analog: amplification, frequency conversion
 - Digital: signal processing

Circuit symbols-passive components

Circuit symbols-active components

Example-operational amplifier

- Widely used in signal processing circuits, control circuits, and instrumentation
- What is an Op-Amp Really?

An operational amplifier is a high gain, differential, voltage amplifier.

- It is a voltage amplifier. The input is a voltage and the output is a voltage.
- The gain is high. Typically, the gain is over 100,000
- It is a differential amplifier. It actually amplifies the difference between two voltages.
- Symbol: each voltage here is measured with respect to ground.
 - V_{out} is the output voltage
 - V₊ is the non-inverting input voltage
 - V_{_} is the inverting input voltage

Example-operational amplifier

■ The 741, a typical operational amplifier

A typical operational amplifier on a circuit board

Most operational amplifiers today are integrated circuits.
Of course the actual size is smaller than the picture above!

Example-operational amplifier

A component-level diagram of the common 741 op-amp. Dotted lines outline: current mirrors (red); differential amplifier (blue); class A gain stage (magenta); voltage level shifter (green); output stage (cyan).

Example-a photodetector

■ New FocusTM 1801

Example-a photodetector

■ New FocusTM 1801-AC

Example-a photodetector

Fiber-optic hydrophone

Advantage: to amplify and extract **only** the small modulated signal (The useful signal)

Incoming ultrasound signal

Detected by fiber-optic hydrophone

Light intensity

Time

Circuit types

Circuit types

Electrical Circuits

Magnetic Circuits

Mechanical Circuits

Bio Circuits

Circuit hierarchy

Circuit related curriculum in JI

Freshmen

- Math
- Physics
- Programming

Sophomore

- VE215
 Introduction to
 Circuits
- VE216
 Signal and
 System
- VE230 Electromagnetics
- VE270
 Introduction to Logic Design

Junior

- VE311
 Analog circuits
- VE320 Semiconductor
- VE330 Electromagentics II
- VE312
 Digital Integrated
 Circuits
- VE334 Optics

Senior

- VE413 Analog IC
- VE411 RF Microwave Circuits
- VE427 VLSI I
- VE434 Photonics

My contact

Office location:
 Rm. 201, UM-SJTU JI Building

Office tel: 3420-6045 ext. 2011

■ Email:

sungliang.chen@sjtu.edu.cn

Course expectation and requirement

- Pre-requisites: VV156 or VV186, VG101
- Co-requisites: VP240 or VP260
- Basic college math and physics
 - Scalar & Vector
 - Differentiation & Integration
 - Electric Charge
 - Current & Voltage

Textbook

Main Textbook

Laboratory book

Computer Aided Design - CAD

- Pspice CAD tool to simulate most analog and digital circuits.
- Demo version available online for free.

http://www.cadence.com/products /orcad/pages/downloads.aspx# demo

Course schedule

- Lectures: Monday 10:00 11:40 am

 Wednesday 4:00 5:40 pm

 Friday 10:00 11:40 am (weeks 1–5)
- Recitation: TBD
- My office hours: Mo & We 9:00 10:00 am
- TA office hours:
 - GAO Yuan (高源), TBD
 - REN Liliang(任立椋), TBD
 - CAI Siwei(蔡思伟), TBD

Teaching assistants (TAs)

- GAO Yuan(高源), junior@JI plateau@sjtu.edu.cn
- REN Liliang(任立椋), senior@JI renll204@sjtu.edu.cn
- CAI Siwei (蔡思伟), senior@JI sjtucsw@sjtu.edu.cn

Grading policy

■ In-class Quizzes 5%

- Homework 15%
 - 10 problem sets
- Lab 15%
 - 5 labs
- Midterm 1 20%
- Midterm 2 20%
- Final 25%

The JI Honor Code

- Personal integrity as students and professionals.
- Respect other people and their work.
- Respect yourself and your own efforts.
- Mutual trust.
- Applicable to all your academic activities here, including homework, quizzes, lab reports, projects and exams.
- Violations will be reported to the Honor Council.
 - Copy other student's homework, quizzes, lab reports, exams.
 - Illegal copy of online resource and academic literatures.
 - Helping others on the abovementioned activities.
 - Fake ID for exams.

Class rules

- Please do not come in late and do not get up to leave until the class is dismissed.
- You are responsible for all material covered in class, whether or not it is in the book.

Homework rules

- Homework will be assigned online at Canvas as scheduled. They are usually due one week later or specified otherwise. One day automatic grace period. Second day late penalty -25%, later no credit.
- Students should complete the homework independently. Copy of others' homework is not allowed and is a violation to the Honor Code.
- Solutions will be posted on Sakai two days after the due date.

Exam rules

- There will be two midterm exams and one final exam. Each lasts 100 minutes.
- Students should complete the exam independently. No talk and collaboration are allowed.
- Closed book, cheat sheet may be allowed.
- No electronic devices except basic calculators will be allowed to use.

Week	Date	Lecture Topics	Homework	Labs
1	Sep 11	Introduction to Ve215, Basic concepts (Sections 1.3-1.7)		
	Sep 13	Basic laws (2.1-2.8)	HW1 issued	
	Sep 15	Methods of analysis (3.1-3.6)		
2	Sep 18	Methods of analysis (3.7,3.9), Circuit theorems (4.1-4.4)	HW2 issued	
	Sep 20	Circuit theorems (4.5-4.8, 4.10)		
	Sep 22	Operational amplifiers (5.1-5.3)	HW3 issued	
3	Sep 25	Operational amplifiers (5.4-5.7)		
	Sep 27	Operational amplifiers (5.8, 5.10)		
	Sep 29	Capacitors and inductors (6.1-6.6)	HW4 issued	
4	Oct 2	No lecture, National Holiday		
	Oct 4	No lecture, National Holiday		
	Oct 6	No lecture, National Holiday		
5	Oct 9	No lecture, Midterm Exam 1		Lab1
	Oct 11	First-order circuits (7.1-7.4)		
	Oct 13	First-order circuits (7.5-7.7, 7.9)	HW5 issued	
6	Oct 16	Second-order circuits (8.1-8.6)		Lab2
	Oct 18	Second-order circuits (8.7-8.8, 8.10-8.11)		
7	Oct 23	Sinusoids and phasors (9.1-9.4)	HW6 issued	Lab3
	Oct 25	Sinusoids and phasors (9.5-9.8)		
8	Oct 30	Sinusoidal steady-state analysis (10.1-10.6)		Lab4
	Nov 1	Sinusoidal steady-state analysis (10.7, 10.9)	HW7 issued	
9	Nov 6	No lecture, Midterm Exam 2		Lab5
	Nov 8	AC power analysis (11.1-11.6)		
10	Nov 13	AC power analysis (11.7-11.9)		
	Nov 15	Three-phase circuits (12.1-12.6)		
11	Nov 20	Three-phase circuits (12.7-12.8, 12.10)	HW8 issued	37.55
	Nov 22	Magnetically coupled circuits (13.1-13.5)		_ (200)
12	Nov 27	Magnetically coupled circuits (13.6-13.7, 13.9)	HW9 issued	4.4.0 2
	Nov 29	Frequency response (14.1-14.3)		
13	Dec 4	Frequency response (14.4-14.6)	HW10 issued	
	Dec 6	Frequency response (14.7-14.8)		EVA
14	Dec 11	No lecture, Final Exam		

Any questions?