

FIG. 1

FIG. 2

163

Fig. 4

TG2000-ETHYL OXIDE

FIG. 8

I

III

IV

VI

VIII

IX

XI

XII

XIII

XV

XVI

XVII

XVIII

XIX

XX

FIG. 9

XLVII

XLVIII

$R = \text{SO}_3\text{Na}$

FIG. II

LV

LVI

LVII

LVIII

LIX

LX

LXI

LXII

LXIII

FIG. 12

LXIV

LXV

LXVI

LXVII

LXVIII

LXIX

LXX

LXXI

LXXII

LXXIII

LXXIV

FIG. 13

LXXV

LXXVI

LXXVII

FIG. 14

FIGURE 15

RANTES (80ng/ml) binding inhibition with heparin in Elisa

FIGURE 16

ELISA

RANTES (80ng/ml) binding
inhibition

FIGURE 17

ELISA

FIGURE 18

ELISA
Eotaxin (80ng/ml) binding
inhibition

FIGURE 19

ELISA

IL-8 (80ng/ml) binding
inhibition

FIGURE 20

ELISA

RANTES (80ng/ml) binding inhibition
with compound

FIGURE 21

ELISA

IL-8 (80ng/ml) binding inhibition
with compound

FIGURE 22

ELISA

Binding inhibition

FIGURE 23

ELISA

EOTAXIN (80ng/ml) binding
inhibition

■ 4
Heparin coated wells
(40ng/well)

FIGURE 24

ELISA

EOTAXIN (80ng/ml) binding
inhibition

FIGURE 25

ELISA
EOTAXIN (80ng/ml) binding
inhibition

FIGURE 26

ELISA

RANTES (80ng/ml) binding inhibition
with compounds

FIGURE 27

ELISA

IL-8 (80ng/ml) binding inhibition
with compounds

FIGURE 28