We claim:

1	1. A machine-readable medium that provides instructions, which when executed
2	by a set of processors of one or more processors, cause said set of processors to
3	perform operations comprising:
4	combining a priority scheme with a generalized processor sharing scheme to
5	schedule transmission of a set of data; and

The machine-readable medium of claim 1 wherein the generalized processor
 sharing scheme is a weighted round robin scheme.

transmitting the set of data as scheduled.

- The machine-readable medium of claim 1 wherein the generalized processor
 sharing scheme is a start time fair queuing scheme.
- The machine-readable medium of claim 1 wherein the generalized processor
 sharing scheme is a self-clocked fair queuing scheme.
- 1 5. A machine-readable medium that provides instructions, which when executed
 2 by a set of processors of one or more processors, cause said set of processors to
 3 perform operations comprising:
- determining a subset of queues to be of highest priority from a set of queues

 eligible to transmit:
- 6 determining one of the subset of queues to be most eligible to transmit;
- 7 transmitting data from the one of the subset of queues;
- 8 updating a first value indicating when the one of the subset will be eligible to
 9 transmit: and

10	updating a second value indicating when the subset of queues will be eligible to		
11	transmit.		
1	6. The machine-readable medium of claim 5 wherein determining the one of the		
2	subset of queues to be most eligible to transmit comprises calculating the first value for		
3	the one of the subset of queues as being less than a transmit clock value and having a		
4	greatest difference from the transmit clock value.		
1	7. The machine-readable medium of claim 5 wherein the first and second value is		
2	updated with a cost of a set of data transmitted from the one of the subset of queues.		
1	8. The machine-readable medium of claim 5 wherein updating the first and second		
2	value comprises:		
3	increasing the first and second value with a size of a set of data transmitted from		
4	the one of the subset of queues; and		
5	modifying the increased first and second value respectively with a first and		
6	second weight respectively corresponding to the one of the subset of		
7	queues and the subset of queues.		
1	9. The machine-readable medium of claim 5 further comprising maintaining a		
2	third value indicating unused transmit time.		
1	10. The machine-readable medium of claim 5 further comprising		
2	determining the subset of queues to be ineligible to transmit;		
3	determining a second subset of queues to be of highest priority of a second set		
4	of queues eligible to transmit;		
5	determining one of the second subset of queues to be most eligible to transmit;		
6	transmitting data from the one of the second subset of queues		

	7	updating a third value in	idicating when the one of the second subset will be
	8	eligible to transı	nit; and
	9	updating a fourth value	indicating when the second subset of queues will be
	10	eligible to transr	nit.
	1	11. The machine-readable r	nedium of claim 5 further comprising
	2	determining the subset	of queues to be of highest priority from the set of queues
	3	eligible to transı	nit;
	4	determining a second or	ne of the subset of queues to be most eligible to transmit;
	5	transmitting data from t	he second one of the subset of queues;
	6	updating a third value in	dicating when the second one of the subset will be
	7	eligible to transi	nit; and
	8	updating the second val	ue indicating when the subset of queues will be eligible
	9	to transmit.	
	1	12. A machine-readable me	dium that provides instructions, which when executed
2 by a set of processors of		by a set of processors of one or	more processors, cause said set of processors to
	3	perform operations comprising	
	4	prioritizing a first and s	econd set of queues, the first set of queues being of
	5	higher priority;	
	6	determining one of the	rirst set of queues to be most eligible to transmit data;
	7	transmitting a set of dat	a from the one of the first set of queues;
	8	updating a first value w	th a cost of the set of data, the first value indicating
	9	when the one of	the first set of queues will be eligible to transmit; and
	10	updating a second value	indicating when the first set of queues will be eligible
	11	to transmit with	the cost of the set of data.

11

1	13. The machine-readable medium of claim 12 wherein determining the one of the	
2	first set of queues as most eligible from the set of queues comprises calculating the	
3	first value for the one of the first set of queues as being less than a transmit clock value	
4	and having a greatest difference from the transmit clock value.	
1	14. The machine-readable medium of claim 12 wherein updating the first and	
2	second value comprises:	
3	increasing the first and second value with a size of the set of data transmitted;	
4	and	
5	modifying the increased first and second value respectively with a first and	
6	second weight respectively corresponding to the one of the first set of	
7	queues and the first set of queues.	
1	15. The machine-readable medium of claim 12 further comprising maintaining a	
2	third value indicating unused transmit time.	
1	16. A machine-readable medium that provides instructions, which when executed	
2	by a set of processors of one or more processors, cause said set of processors to	
3	perform operations comprising:	
4	determining if at least one of a plurality of groups is eligible to transmit, each of	
5	the plurality of groups comprising a set of queues;	
6	selecting an eligible one of highest priority of the plurality of groups having	
7	data to transmit upon determining at least one of the plurality of groups	
8	is eligible to transmit;	
9	selecting an ineligible one of highest priority of the plurality of groups having	
10	data to transmit upon determining at least one of the plurality of groups	

is not eligible to transmit;

12	determining a queue having data as most eligible from the set of queues of the	
13	selected one of the plurality of groups;	
14	transmitting a set of data from the queue;	
15	updating a first value with the cost of the set of data, the first value indicating	
16	when the transmitting queue will be eligible to transmit; and	
17	updating a second value with the cost of the set of data, the second value	
18	indicating when the selected one of the plurality of groups will be	
19	eligible to transmit.	
1	17. The machine-readable medium of claim 16 wherein determining the queue as	
2	most eligible from the set of queues comprises calculating the first value for the que	
3	as being less than a transmit clock value and having a greatest difference from the	
4	transmit clock value.	
1	18. The machine-readable medium of claim 16 wherein updating the first and	
2	second value comprises:	
3	increasing the first and second value with a size of the set of data transmitted;	
4	and	
5	modifying the increased first and second value respectively with a first and	
6	second weight respectively corresponding to the transmitting queue and	
7	the selected one of the plurality of queues.	
1	19. The machine-readable medium of claim 16 further comprising maintaining a	
2	third value indicating unused transmit time.	

- An apparatus comprising:
- 2 a set of queues to store a set of data;

3		a first logic coupled to the set of queues , the first logic to determine priority
4		and eligibility of a plurality of subsets of the set of queues;
5		a second logic coupled to the first logic and the set of queues, the second logic
6		to determine eligibility of each queue of one of the plurality of subsets,
7		the one being indicated by the first logic; and
8		a transmitting unit coupled to the set of queues, the transmitting unit to transmit
9		the set of data.
1	21.	The apparatus of claim 20 wherein each of the set of queues is allocated for
2	separate entities.	
1	22.	The apparatus of claim 20 further comprising:
2		the first logic to update a first eligibility value for a transmitting subset of the
3		set of queues; and
4		the second logic to update a second eligibility value for a transmitting queue.
1	23.	A computer implemented method comprising:
2		combining a priority scheme with a generalized processor sharing scheme to
3		schedule transmission of a set of data; and
4		transmitting the set of data as scheduled.

- 24. The computer implemented method of claim 23 wherein the generalized
- 2 processor sharing scheme is a weighted round robin scheme.
- 1 25. The computer implemented method of claim 23 wherein the generalized
- 2 processor sharing scheme is a start time fair queuing scheme.

1	26.	The computer implemented method of claim 23 wherein the generalized
2	proce	ssor sharing scheme is a self-clocked fair queuing scheme.
1	27.	A computer implemented method comprising:
2		prioritizing a first and second set of queues, the first set of queues being of
3		higher priority;
4		determining one of the first set of queues to be most eligible to transmit data;
5		transmitting a set of data from the one of the first set of queues;
6		updating a first value with a cost of the set of data, the first value indicating
7		when the one of the first set of queues will be eligible to transmit; and
8		updating a second value indicating when the first set of queues will be eligible
9		to transmit with the cost of the set of data.
1	28.	The computer implemented method of claim 27 wherein determining the one of
2	the fi	rst set of queues as most eligible from the set of queues comprises calculating the
3	first v	value for the one of the first set of queues as being less than a transmit clock value
4	and h	aving a greatest difference from the transmit clock value.
1	29.	The computer implemented method of claim 27 wherein updating the first and
2	secon	d value comprises:
3		increasing the first and second value with a size of the set of data transmitted;
4		and
5		modifying the increased first and second value respectively with a first and
6		second weight respectively corresponding to the one of the first set of
7		queues and the first set of queues.

a third value indicating unused transmit time.

1 30.

The computer implemented method of claim 27 further comprising maintaining

3

2

1	31.	A computer implemented method comprising:
2		determining if at least one of a plurality of groups is eligible to transmit, each of
3		the plurality of groups comprising a set of queues;
4		selecting an eligible one of highest priority of the plurality of groups having
5		data to transmit upon determining at least one of the plurality of groups
6		is eligible to transmit;
7		selecting an ineligible one of highest priority of the plurality of groups having
8		data to transmit upon determining at least one of the plurality of groups
9		is not eligible to transmit;
10		determining a queue having data as most eligible from the set of queues of the
11		selected one of the plurality of groups;
12		transmitting a set of data from the queue;
13		updating a first value with the cost of the set of data, the first value indicating
14		when the transmitting queue will be eligible to transmit; and
15		updating a second value with the cost of the set of data, the second value
16		indicating when the selected one of the plurality of groups will be
17		eligible to transmit.
1	32.	The computer implemented method of claim 31 wherein determining the queue

- as most eligible from the set of queues comprises calculating the first value for the queue as being less than a transmit clock value and having a greatest difference from the transmit clock value.
- 33. The computer implemented method of claim 31 wherein updating the first and second value comprises:
- increasing the first and second value with a size of the set of data transmitted;
- and

- modifying the increased first and second value respectively with a first and
 second weight respectively corresponding to the transmitting queue and
 the selected one of the plurality of queues.
- 34. The computer implemented method of claim 31 further comprising maintaining
 a third value indicating unused transmit time.