Quantum field theory in the solid state, Exercise sheet 2

Corrections: Monday 12th of May

The periodic Anderson and Kondo lattice models: symmetries and strong coupling limit.

The periodic Anderson model (PAM) describes the physics of a wide band that hybridizes with a narrow band of nearly localized electrons. To define the model we will consider a hyper-cubic lattice of linear length L in d dimensions with 2 orbitals per unit cell, one extended, the c-orbital, and one localized, the f-orbital. Since the f-orbital is localized the Coulomb repulsion will have to be taken into account. The periodic SU(N) generalization of Anderson model describes this situation and and reads:

$$\hat{H}_{\text{PAM}} = -t \sum_{\langle i,j \rangle} \sum_{\sigma=1}^{N} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{c}_{j,\sigma} + \text{H.c.} \right) + V \sum_{i} \sum_{\sigma=1}^{N} \left(\hat{c}_{i,\sigma}^{\dagger} \hat{f}_{i,\sigma} + \text{H.c.} \right) + \frac{U_f}{N} \sum_{i} \left(\hat{n}_i^f - \frac{N}{2} \right)^2. \tag{1}$$

Here
$$\hat{n}_i^f = \sum_{\sigma=1}^N \hat{f}_{i,\sigma}^{\dagger} \hat{f}_{i,\sigma}$$
.

1. Symmetries

- (a) Show that the PAM enjoys the same global symmetries, particle number, total spin, total momentum, as the Hubbard model that we discussed in class.
- (b) Let $\hat{c}_{\mathbf{k},\sigma}^{\dagger} = \frac{1}{\sqrt{L^d}} \sum_{\mathbf{i}} e^{i\mathbf{k}\cdot\mathbf{i}} \hat{c}_{\mathbf{i},\sigma}^{\dagger}$ and an equivalent form holds for the f-operator. For the SU(2) case, under which conditions does

$$\langle \hat{c}_{\mathbf{k}_{1},\sigma_{1}}^{\dagger} \hat{c}_{\mathbf{k}_{2},\sigma_{2}} \hat{c}_{\mathbf{k}_{3},\sigma_{3}}^{\dagger} \hat{f}_{\mathbf{k}_{4},\sigma_{4}} \rangle \tag{2}$$

not vanish?, Here, for an operator \hat{O} , $\langle \hat{O} \rangle = \frac{\text{Tr}\left(e^{-\beta \hat{H}_{PAM}}\hat{O}\right)}{\text{Tr}\left(e^{-\beta \hat{H}_{PAM}}\right)}$ and β is the inverse temperature.

2. Non-interacting limit

Consider the specific case of $U_f = 0$, and d=1. Can you diagonalize the Hamiltonian and plot the band structure.

3. Strong coupling limit

- (a) Consider a single site periodic Anderson model in the Hilbert with a total of two particles for the SU(2) case. Use symmetries to diagonalize the Hamiltonian.
- (b) Analyze the strong coupling limit, $U_f >> t$ and show that the low energy spectrum is

the same as that of the single site Kondo lattice model:

$$\hat{H}_{KLM} = -t \sum_{\langle i,j \rangle} \left(\hat{\boldsymbol{c}}_i^{\dagger} \hat{\boldsymbol{c}}_j + \text{H.c.} \right) + \frac{2J_K}{N} \sum_i \boldsymbol{c}_i^{\dagger} \frac{\boldsymbol{\sigma}}{2} \boldsymbol{c}_i \cdot \hat{\boldsymbol{S}}_i$$
 (3)

with $\hat{\boldsymbol{S}}_i = \frac{1}{2} \hat{\boldsymbol{f}}_i^\dagger \boldsymbol{\sigma} \hat{\boldsymbol{f}}_i$ and

$$\boldsymbol{\sigma} = \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right). \tag{4}$$

Here we have used a spinor notation $\hat{\boldsymbol{c}}_{i}^{\dagger} = \left(\hat{c}_{i,\uparrow}^{\dagger}, \hat{c}_{i,\downarrow}^{\dagger}\right)$ and $\hat{\boldsymbol{f}}_{i}^{\dagger} = \left(\hat{f}_{i,\uparrow}^{\dagger}, \hat{f}_{i,\downarrow}^{\dagger}\right)$. The Kondo lattice model is defined in the Hilbert space where $\hat{\boldsymbol{f}}_{i}^{\dagger}\hat{\boldsymbol{f}}_{i} = 1$.