## Yr 12 Physics Practical Test

Name: Solutions

## The Magnetic Field Associated With a Long Straight Wire: Time = 1 hour

The following experiment was set up to investigate the factors that affect the magnetic field around a long straight wire.





| 1 | Why is the long straight wire set up in a north-south direction? To be parallel to Earth's mag. field so that |      |        |    |            |        |     |    |      |          | $\Lambda$ $t$                                 |
|---|---------------------------------------------------------------------------------------------------------------|------|--------|----|------------|--------|-----|----|------|----------|-----------------------------------------------|
|   | To be                                                                                                         | mad  | 10/ to | Ea | rth's      | mag. L | eld | So | that | mag.     | tield                                         |
|   | From                                                                                                          | wire | will   | be | $\alpha +$ | 90°    | 10  | Ea | th's | field    | <u>,                                     </u> |
|   | 11011                                                                                                         | 0000 | -      |    | •          |        |     |    |      | (1 mark) |                                               |

In the instructions to the experiment it suggested that non ferro-magnetic material be used for the stands and block. Explain why this recommendation was made.

Ferro-magnetic materials will distort the direction of a magnetic field as the flux lines would rather travel through the material than through air.

(1 mark)

The following results were obtained when the compass was held at a constant distance from the wire of 15.0 cm and the current varied.

| Current (A) | Deflection Right | Deflection Left | Av. Deflection | Tan of Average |
|-------------|------------------|-----------------|----------------|----------------|
| 5           | 16°              | 16°             | 16°            | 0.287          |
| 4           | 12 <sup>0</sup>  | 14 <sup>0</sup> | 13°            | 0.231          |
| 3           | 10°              | 10°             | 10°            | 0.176          |
| 2           | 80               | 70              | 7.5°           | 0.132          |
| 1           | 40               | 4º              | 4º             | 0.0699         |

| Why | is the comp | ass deflection | on both s | sides of | the wire r | neasured instead of | just on on | e side |
|-----|-------------|----------------|-----------|----------|------------|---------------------|------------|--------|
| 10  | averag      | re any         | erro      | rs 1     | n med      | rsurement           | due        | 40     |
| DE  | assible     | diction        | 1.50      | of       | 460        | fields              |            |        |
| 1   | JULIU CE    | 0-13/04/       | 1000      |          | 1000       | 1,000               | /1         | mark)  |

In this experiment, which is the manipulated or independent variable? <u>Current</u>

(1 mark)

Should the manipulated variable be graphed on the x or y axis? (1 mark) 5 Graph the results as appropriate (note that  $tan \Theta$  does not have units). (3 marks) 6 Calculate the gradient of the line you have obtained. 0.0540(1 mark) 7

If extended, should the line go through the origin? Yes (1 mark) 8

Explain why. When I = 0, tan 0 = 0. @ Normally we wouldn't assume 9 that it goes through the origin, but here we have (1 mark)
reason to.

$$B_{i} = \underline{\mu_{0}}\underline{I}$$
 and 
$$\tan \theta = \underline{B}_{i}$$
 
$$B_{EH}$$

B<sub>i</sub> = magnetic field strength around the wire (T)

I = the current through the wire (A)

 $B_{EH}$  = horizontal component of the Earth's magnetic field (T) d = distance from the wire (m)  $\mu_0 =$ permeability of air =  $4\pi \times 10^{-7}$  NA<sup>-2</sup>  $\tan \theta = \tan of the average deflection$ 

By combining the two equations obtain an expression for  $B_{EH}$  that does not include  $B_{i}$ . (2 marks) 10

Subst. (1) Into (2)
$$tan \theta = \frac{(u_0 I)}{2\pi d} \Rightarrow tan \theta = \frac{u_0 I}{2\pi d \cdot B_{EH}}$$

$$\Rightarrow B_{EH} = \frac{u_0 I}{2\pi d \cdot tan \theta}$$

Using values of  $\mu_0$  and d given, and the gradient of the line calculated in question 7, obtain a value for  $B_{EH}$ 11 using the equation derived above.

using the equation derived above.

$$gradient = \frac{\tan \theta}{I}$$

$$d = 15cm = 0.15m$$

$$M_0 = 471 \times 10^7 NA^{-2}$$

$$B_{EH} = \frac{411 \times 10^7}{211 \times 10^7} \times \frac{1}{gradient}$$

$$= \frac{2 \times 10^7}{0.15} \times 0.054$$

In the location that the experiment was carried out the angle of dip to the horizontal was measured at 12 68.0°. Calculate the strength of the earth's magnetic field at this location.

$$B_{EH} = B_{H} \cos 68^{\circ}$$

$$B_{H} = \frac{B_{EH}}{Cos 68^{\circ}} = \frac{2.47 \times 10^{-5}}{Cos 68^{\circ}}$$

$$= 6.59 \times 10^{-5} \text{ T}$$

In another experiment the current was kept constant at 4.0A and the distance between the wire and the compass was varied. The following results were obtained.

| Distance (m) | Av. Deflection  | Tan Av. Deflection | <u> </u> |
|--------------|-----------------|--------------------|----------|
| 0,335        | 8 <sup>0</sup>  | 0.141              | 2.985    |
| 0.285        | 10°             | 0.176              | 3.509    |
| 0.246        | 11.50           | 0.203              | 4-065    |
| 0,182        | 14 <sup>0</sup> | 0.249              | 5.495    |
| 0,125        | 19 <sup>0</sup> | 0.344              | 8.00     |
| 0.062        | 30°             | 0.577              | 16.129   |

Explain what you would do to the data to obtain a straight line graph. Use the equation in Q 9 to justify 13

why this strategy should give you a straight line 
$$\{unQ x \frac{i}{d}\}$$

$$B_{i} = \frac{U_{0}I}{2iTd} \text{ and } \{unQ = \frac{B_{i}}{B_{EH}} \rightarrow B_{i} = B_{EH} \}$$

(3 marks)

- Carry out your strategy and place the appropriate data in the spare column in the table. (1 mark) 14
- graph (2 mails) What is the gradient of the straight line? 0 - 0323(1 mark) 15
- Show how the gradient of the straight line can be used with the equation from question  $m{R}$  to obtain 16 (3 marks) another value for B/c.(Use the values of  $\mu_0$  and I that are given)

$$B_{EH} = M_{0} I$$

$$2\pi \left( \frac{1}{2} \right)$$

$$E_{EH} = M_{0} I$$

$$2\pi \left( \frac{1}{2} \right)$$

$$2\pi B_{EH}$$

$$E_{EH} = M_{0} I$$

$$2\pi \left( \frac{1}{2} \right)$$

$$2\pi B_{EH}$$

$$E_{EH} = M_{0} I$$

$$2\pi \left( \frac{1}{2} \right)$$

$$2\pi B_{EH}$$

$$E_{EH} = M_{0} I$$

$$2\pi \left( \frac{1}{2} \right)$$

$$2\pi B_{EH}$$

$$E_{EH} = M_{0} I$$

$$E$$

Total: 25 marks

| correct graph |     | rise = 0.3 -0.05 |         | gradient = rise | ±0.0540     |            |
|---------------|-----|------------------|---------|-----------------|-------------|------------|
| >             |     |                  |         |                 |             | <b>\</b>   |
| +             |     |                  |         |                 | 59.4        | *          |
| Is Curre      |     | *                |         |                 | 5.25-0.62 = | 3 training |
| Retion        |     |                  |         |                 | run = 5:    | (7)        |
| Tan (Av. det  |     |                  | ×       |                 |             | 7          |
|               |     |                  |         | *               |             |            |
| San B         | 6.3 | 7.0              | · · · 0 |                 | \           | 0          |