Logika dla informatyków

Egzamin połówkowy

9 grudnia 2006

Za każde z poniższych zadań można otrzymać od -10 do 10 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów. Mniej niż -2 punkty otrzymuje osoba, która umieszcza w swoim rozwiązaniu odpowiedzi kompromitująco fałszywe. Rozwiązania, w których nie ma odpowiedzi kompromitująco fałszywych, będą oceniane w skali od -2 do 10 punktów.

Zadanie 1 Klauzula rachunku zdań $\bigvee_{j=1}^m l_j$ jest klauzulą hornowską, jeżeli co najwyżej jeden spośród literałów l_1,\ldots,l_m jest zmienną zdaniową bez negacji. Formuła ma postać hornowską, jeżeli jest koniunkcją klauzul hornowskich. Dla wartościowań zmiennych zdaniowych $\sigma_1,\sigma_2: \mathsf{Var} \to \{\mathsf{T},\mathsf{F}\}$ definiujemy wartościowanie $\sigma_1 \circ \sigma_2$ wzorem

$$\sigma_1 \circ \sigma_2(p) = \begin{cases} \mathsf{T}, & \mathrm{gdy} \ \sigma_1(p) = \mathsf{T} \ \mathrm{i} \ \sigma_2(p) = \mathsf{T} \\ \mathsf{F}, & \mathrm{w} \ \mathrm{p.p.} \end{cases}$$

- (a) Udowodnij, że jeśli φ jest formułą w postaci hornowskiej oraz $\hat{\sigma}_1(\varphi) = \mathsf{T}$ i $\hat{\sigma}_2(\varphi) = \mathsf{T}$ to $\widehat{\sigma_1} \circ \widehat{\sigma_2}(\varphi) = \mathsf{T}$.
- (b) Wskaż formułę, która nie jest równoważna z żadną formułą w postaci hornowskiej.
- (c) Udowodnij, że wskazana przez Ciebie formuła nie jest równoważna z żadną formułą w postaci hornowskiej.

Zadanie 2 Rozważmy dowolną funkcję $f:A\to B$. Udowodnij, że f jest różnowartościowa wtedy i tylko wtedy, gdy dla wszystkich pozdbiorów X,Y zbioru A zachodzi równość

$$f(X) \setminus f(Y) = f(X \setminus Y).$$

Zadanie 3 Niech R i S będą relacjami równoważności na zbiorze A. Udowodnij, że $R \cup S$ jest relacją równoważności na A wtedy i tylko wtedy, gdy $R \cup S = RS$.

Zadanie 4 W zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji ze zbioru \mathbb{N} w zbiór \mathbb{N} wprowadzamy relację \sim wzorem

$$f \sim g \quad \stackrel{\mathrm{df}}{\Leftrightarrow} \quad \forall n \in \mathbb{N} \ \lfloor \frac{f(n)}{2} \rfloor = \lfloor \frac{g(n)}{2} \rfloor$$

- (a) Udowodnij, że ∼ jest relacją równoważności.
- (b) Opisz klasę abstrakcji takiej funkcji f, że f(n) = 0 dla wszystkich $n \in \mathbb{N}$.
- (c) Udowodnij, że każda klasa abstrakcji relacji \sim jest równoliczna ze zbiorem $\{0,1\}^{\mathbb{N}}$.
- (d) Udowodnij, że zbiór klas abstrakcji relacji \sim jest równoliczny ze zbiorem $\mathbb{N}^{\mathbb{N}}$.