

SETS, FUNCTIONS, SEQUENCES & SUMS

Basic Structures

Department of Mathematics

 \mathcal{V} õ \mathcal{V} ăn \mathcal{N} am, Ph.D.

Competency Goals

- Identify and apply basic terminologies in set theory, including finding the power set and Cartesian product, and representing subsets using binary notation.
- Perform set operations and verify the equality of two sets.
- Oetermine whether a given rule defines a function, execute operations on functions, and manipulate functions involving floor and ceiling operations.
- Analyze whether a function is injective, surjective, or bijective, and explain how these properties are used to compare sets.
- Derive a formula for a sequence and evaluate finite sums, incorporating special summation techniques where applicable.

Table of Contents

- SETS & SET OPERATIONS
- 2 Introduction to Functions
- 3 Inverse & Composition Functions
- 4 SEQUENCES
- 5 SUMMATIONS

What's next?

- SETS & SET OPERATIONS
- 2 Introduction to Functions
- 3 Inverse & Composition Functions
- 4 SEQUENCES
- 5 SUMMATIONS

Introduction to Sets

- A set is an unordered collection of objects.
- An object of a set is called an **element** or a **member**, of that set.
- The **cardinality** of the set A is the number of distinct elements of A, denoted by |A|.
- The **empty set**, denoted by \emptyset , is the set whose cardinality is 0.

Example.

- 1. The set {a, cat, catches, a, mouse} has 4 elements.
- 2. The set $\{a, b, c, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}, \emptyset\}$ has 8 elements.

Subsets

- If x is an element of A, we write $x \in A$. Otherwise, we write $x \notin A$.
- If all elements of A are also elements of B, we write $A \subseteq B$, and A is called a subset of B
- If A is a **proper subset** of B, meaning $A \subseteq B$ and $A \neq B$, we write $A \subset B$.
- The empty set \emptyset is a subset of any set; and the set A is a subset of itself, $A \subseteq A$.

Example. Which of the following statements are true?

- 1. $x \in \{x\}$
 - 2. $x \subseteq \{x\}$
 - 3. $\{a, b\} \subseteq \{a, b, \{a, b\}, c\}$
 - 4. $\{a,b\} \in \{a,b,\{a,b\},c\}$

- True 5. $\emptyset \in \{\emptyset\}$
- False 6. $\emptyset \subset \{\emptyset\}$
- True 7. $\{a, b, c\} \subseteq \{a, b, c\}$
- True 8. $\{a, b, c\} \in \{a, b, c\}$

True

True

т...

True

Cartesian Product

The **Cartesian product** of two sets A and B, denoted $A \times B$, is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) \mid a \in A, b \in B\}.$$

In general, the Cartesian product of n sets A_1, A_2, \ldots, A_n is defined as

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_i \in A_i, i = \overline{1, n}\}.$$

Example. Let $A = \{a, b\}$ and $B = \{1, 2, 3\}$. Then,

$$A \times B = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}.$$

Question. Given $A_1 = \{a, b\}, A_2 = \{1, 2, 3\}$ and $A_3 = \{x, y\}$.

Determine all elements of the set $A_1 \times A_2 \times A_3$.

Power Sets

The **power set** of the set A, denoted by P(A), is the set of all subsets of A.

Example. Let $S = \{a, b, c\}$. Then

$$P(S) = \{a, b, c, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}, \emptyset\}.$$

Theorem

- If |A| = m and |B| = n, then $|A \times B| = m \times n$.
- **3** If |A| = n, then $|P(A)| = 2^n$.

8 / 52

Vo Van Nam (FPT Quynhon) Basic Structures Discr

Set Operations

Dunion of A and B is

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}.$$

a Intersection of A and B is

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}.$$

Difference of A and B is

$$A - B = \{x \mid (x \in A) \land (x \notin B)\}.$$

Symmetric difference of A and B is

$$A \oplus B = \{x \mid (x \in A) \oplus (x \in B)\}$$

$$A \oplus B = \{x \mid (x \in A \cup B) \land (x \notin A \cap B)\}.$$

Somplement of A with respect to the universal set U is

Set Operations: Venn Diagram

 $A \cap B$

 $A \cup B$

 $A \oplus B$

Discrete Mathematics

10 / 52

Set Identities

Complementation law

$$\overline{\overline{A}} = A$$

Identity laws

$$A \cup \emptyset = A, A \cap U = A$$

Domination laws

$$A \cup U = U$$
, $A \cap \emptyset = \emptyset$

Complement laws

$$A \cup \overline{A} = U$$
, $A \cap \overline{A} = \emptyset$

Set Identities (cont')

Idempotent laws

$$A \cup A = A$$
, $A \cap A = A$

Commutative laws

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Associative laws

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Set Identities (cont')

Distributive laws

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

Absorption laws

$$A \cup (A \cap B) = A$$

$$A \cap (A \cup B) = A$$

De Morgan's laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
,

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Computer Representation of Sets

Let U be a universal set. Fix an ordering of elements of U as $a_1, a_2, ..., a_n$. If A is a subset of U, represent A with a bit string of length n, where the ith bit is 1 if $a_i \in A$ and 0 if $a_i \notin A$.

Example. Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

- The subset $A = \{1, 3, 5, 7, 9\}$ is represented as the bit string 1010101010.
- The subset $B = \{1, 8, 9\}$ is represented as the bit string 1000000110.
- We have

$$A \cup B = 1010101010 \lor 1000000110 = 1010101110$$
 which implies $A \cup B = \{1, 3, 5, 7, 8, 9\}$.

We have

$$A \cap B = 101010101010 \land 1000000110 = 1000000010$$

which implies $A \cap B = \{1, 9\}$.

What's next?

- 1 Sets & Set Operations
- 2 Introduction to Functions
- 3 Inverse & Composition Functions
- 4 SEQUENCES
- 5 SUMMATIONS

Functions

- A function f is a rule that assigns to each element x in a set A exactly one element, called f(x), in a set B.
- The set *A* is called **domain** and *B* is called **codomain** of *f*.
- If f(a) = b, we say b is the **image** of a and a is a **preimage** of b.

Let S be a subset of A. The set $f(S) = \{b \in B \mid \exists a \in A, \ f(a) = b\}$ is called the **image of** S, and the set $f^{-1}(S) = \{a \in A \mid f(a) \in S\}$ is called the **preimage of** S. The set f(A) is called the **range** of f.

Some Important Functions

In mathematics, computer science, and engineering, particularly when discretizing real numbers, implementing algorithms, or working with integer-valued indices, there are two functions which are widely used:

- Floor Function
- Ceil Function

Floor Function

Given a real number x. **Floor function** is the function that gives as output the greatest integer less than or equal to x, denoted $\lfloor x \rfloor$ or **floor**(x).

$$\lfloor x \rfloor = \max\{m \in \mathbb{Z} \mid m \le x\}.$$

In other words, it rounds x down to the nearest integer.

Examples.

- |3.7| = 3
- [-2.3] = -3
- $\lfloor 5 \rfloor = 5$ (since 5 is already an integer)

Ceil Function

Given a real number x. **Ceil function** is the function that maps to the least integer greater than or equal to x, denoted $\lceil x \rceil$ or **ceil**(x).

$$\lceil x \rceil = \min\{n \in \mathbb{Z} \mid n \ge x\}.$$

In other words, it rounds x up to the nearest integer.

Examples.

- $\lceil 3.2 \rceil = 4$: Since 4 is the smallest integer ≥ 3.2 .
- $\lceil -1.7 \rceil = -1$: Since -1 is the smallest integer ≥ -1.7 .
- $\lceil 5 \rceil = 5$: If x is already an integer, the ceiling function returns x itself.

19 / 52

Properties of Floor and Ceil Functions

• For any real number x,

$$\lceil x \rceil = -\lfloor -x \rfloor$$

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$
.

- **1** The floor and ceiling function are non-decreasing function; that is, if $x \leq y$, then
 - $\lfloor x \rfloor \leq \lfloor y \rfloor$.
 - $\lceil x \rceil \leq \lceil y \rceil$.

Graphs of Floor and Ceil Functions

Question

Which statements are true for all real numbers x, y and all integers n?

One-to-one

The function $f: A \to B$ is **one-to-one** if $f(a_1) \neq f(a_2)$ for all $a_1 \neq a_2$ in A.

- A function $f: A \to B$ is said to be one-to-one if $f(x_1) = f(x_2) \Longrightarrow x_1 = x_2$ for all $x_1, x_2 \in A$.
- A one-to-one function is also called an injection.
- We call a function injective if it is one-to-one.

Note. A function that is NOT one-to-one is referred to as **many-to-one**.

Problem Solving: One-to-one or Not?

Prove a Function is One-to-one

To conclude that the function $f: A \rightarrow B$ is one-to-one, we proceed as follows:

- Assume $f(x_1) = f(x_2)$.
- ② Show that it must be true that $x_1 = x_2$.

Prove a Function is not One-to-one

To conclude that the function $f: A \to B$ is not one-to-one, we take a counterexample where $x_1 \neq x_2$ and $f(x_1) = f(x_2)$.

24 / 52

Question

Example. The function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x - 1 is one-to-one. Indeed, assume that $f(x_1) = f(x_2)$ which means

$$2x_1 - 1 = 2x_2 - 1$$
.

Therefore, $x_1 = x_2$. Hence, the function f is one-to-one.

Question. Which functions are one-to-one?

$$f: \mathbb{R}^+ \to \mathbb{R}, \quad f(x) = x^2.$$

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{n+1}{2} & \text{if } n \text{ is odd}_{\mathbf{PPT UNIVERSITY}} \end{cases}$$

Onto

The function $f: A \to B$ is **onto** if for each b in B, there is a in A such that f(a) = b. In other words, the function $f: A \to B$ is onto if f(A) = B.

Note. An onto function is also called **surjection**, and we say it is **surjective**.

Problem Solving: Onto or Not?

Prove a Function is Onto

To conclude that the function $f: A \rightarrow B$ is onto, we proceed as follows:

- Let y be any element in the codomain B.
- Figure out an element in the domain A that is a preimage of y.
- **3** Choose *x* equal to the value you found.
- Demonstrate that x is indeed an element of the domain A.
- **5** Show that f(x) = y.

Example

Example. Let $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 5x + 1. Show that f is onto. Solution. Let y be any element of \mathbb{R} . Choose $x = \frac{y-1}{5}$. It is easy to see that the real numbers are closed under subtraction and non-zero division, i.e., $x \in \mathbb{R}$. Also, $f(x) = f(\frac{y-1}{5}) = 5 \cdot \frac{y-1}{5} + 1 = y$.

Therefore, we found an $x \in \mathbb{R}$ such that f(x) = y. In other words, given an arbitrary element of the codomain, we have shown a preimage in the domain. We conclude that f is onto.

Questions

1. Check whether the function $f: \mathbb{Z} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} 2n & \text{if } n \ge 0 \\ -n & \text{if } n < 0 \end{cases}$$

is one-to-one or onto?

2. Which of the following functions are onto?

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = x^3.$$

$$f: \mathbb{R} \to \mathbb{Z}, \quad f(x) = |2x|.$$

Bijection

The function $f: A \rightarrow B$ is a **bijection** (or one-to-one correspondence) if it is both one-to-one and onto.

Note. If a function is a bijection, we say that it is **bijective**.

Problem Solving: Bijection or Not?

Prove a Function is Bijective

To conclude that the function $f: A \rightarrow B$ is bijective, we proceed as follows:

- f is injective.
- f is surjective.

Example. Show that the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x - 5 is bijective. *Solution.* We proceed as follows:

- Show that f is injective.
 - Assume that $f(x_1) = f(x_2)$. Then $3x_1 5 = 3x_2 5$ which implies $x_1 = x_2$.
- Show that f is surjective. Let $y \in \mathbb{R}$ be an arbitrary. Choose $x = \frac{y+5}{3} \in \mathbb{R}$. Then

$$f(x) = f(\frac{y+5}{3}) = 3 \cdot \frac{y+5}{3} - 5 = y.$$

31 / 52

Questions

1. Which of the following functions are bijection?

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}, \quad f(m,n) = (m,m+n).$$

2. Does there exist.

- a bijection/ one-to-one/ onto function from a set of 7 elements to a set of 5 elements? from a set of 5 elements to a set of 7 elements?
- a bijection from the set of even integers to the set of odd integers?
- a bijection from the set of odd inetegers to the set of all integers?
- a bijection from the set of all real numbers to the set of positive real numbers?

What's next?

- SETS & SET OPERATIONS
- 2 Introduction to Functions
- 3 Inverse & Composition Functions
- 4 SEQUENCES
- 5 SUMMATIONS

Inverse function

Let $f: A \to B$ be a bijective function. Then, its **inverse function** is the function

$$f^{-1}: B \to A$$
$$b \mapsto f^{-1}(b) = a.$$

Note. In the above definition,

$$f^{-1}(b) = a$$
 equivalent $b = f(a)$.

Find f^{-1}

We can find the inverse function f^{-1} by following these steps:

- Check if the function f is a bijective function.
 - If f is not a bijective function, stop, f^{-1} does not exist.
 - If f is a bijective function, we continue.
- ② Since $f^{-1}(y) = x \Leftrightarrow y = f(x)$, then we solve for x and express x in terms of y.
- **3** The resulting expression is $f^{-1}(y)$.

Example. Find the inverse function of the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 3x - 5.

Solution. Since f is a bijective function, there exists f^{-1} . Put y=3x-5 which implies $x=\frac{y+5}{3}$. Therefore, $f^{-1}:\mathbb{R}\to\mathbb{R}, \quad y\mapsto f^{-1}(y)=\frac{y+5}{3}$.

Question

Find the inverse functions of the following functions:

1
$$f: [-3, +\infty) \to [0, +\infty), \quad f(x) = \sqrt{x+3}.$$

$$\bullet \ h: \ \mathbb{R} \to \mathbb{R}, \quad h(x) = \begin{cases} 3x & \text{if } x \le 1 \\ 2x + 1 & \text{if } x > 1. \end{cases}$$

4
$$k: [-1,1] \rightarrow [-2,2], \quad k(x) = x^3 - 3x$$

Composite function

Let $f: A \to B_1$ and $g: B \to C$ where $B_1 \subseteq B$. Then, the **composite function**, denoted as $g \circ f$, is defined by

$$g \circ f : A \to C$$

 $x \mapsto (g \circ f)(x) = g(f(x)).$

Example

Example. Let $f,g:\mathbb{R}\to\mathbb{R}$ be defined as $f(x)=x^{2023}$ and g(x)=2023x+1. Find $g \circ f$ and $f \circ g$. Solution. We have

$$g \circ f : \mathbb{R} \to \mathbb{R}, (g \circ f)(x) = g(f(x)) = 2023f(x) + 1 = 2023x^{2023} + 1,$$

 $f \circ g : \mathbb{R} \to \mathbb{R}, (f \circ g)(x) = f(g(x)) = [g(x)]^{2023} = (2023x + 1)^{2023}.$

Question. Let $f, g : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = \begin{cases} 2x + 1, & \text{if } x \ge 0 \\ 1 - 2x, & \text{otherwise;} \end{cases} \quad \text{and } g(x) = x - 3.$$

Basic Structures

38 / 52

What's next?

- SETS & SET OPERATIONS
- 2 Introduction to Functions
- 3 Inverse & Composition Functions
- 4 SEQUENCES
- 5 SUMMATIONS

Sequences

A **sequence** is a function from a subset of the set of integers (usually either the set $\{0, 1, 2, ...\}$ or the set $\{1, 2, 3, ...\}$) to a set S. We use the notation a_n to denote the image of the integer n. We call a_n a **term** of the sequence.

Example. Consider the sequence $\{a_n\}$, where $a_n = \frac{1}{n}$. The list of the terms of this sequence, beginning with a_1 , namely,

$$a_1, a_2, a_3, a_4, \ldots,$$

starts with

$$\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

Geometric & Arithmetic Progressions

A **geometric progression** is a sequence of the form

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the initial term a and the common ratio r are real numbers.

An arithmetic progression is a sequence of the form

$$a, a + d, a + 2d, \ldots, a + nd, \ldots$$

where the initial term a and the common difference d are real numbers.

Example.

- Geometric progression. 1, 2, 4, 8, ...
- *Arithmetic progression.* 1, 3, 5, 7, ...

41 / 52

Questions

In the given AP series find the number of terms?

$$5, 8, 11, 14, 17, 20, \dots, 50.$$

In the given AP series the term at position 11 would be?

$$5, 8, 11, 14, 17, 20, \dots, 50.$$

For the given Arithmetic progression find the position of first negative term?

$$50, 47, 44, 41, \dots$$

Questions (cont')

• In the given Geometric progression find the number of terms.

$$32, 256, 2048, 16384, \dots, 2^{50}$$
.

2 In the given Geometric progression the term at position 11 would be

$$32, 256, 2048, 16384, \dots, 2^{50}$$
.

For the given Geometric progression find the position of first fractional term?

$$2^{50}, 2^{47}, 2^{44}, \dots$$

Recurrence relation

A **recurrence relation** for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, $a_0, a_1, ..., a_{n-1}$, for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.

A sequence is called a **solution of a recurrence relation** if its terms satisfy the recurrence relation.

Example. The **Fibonacci sequence**, f_0 , f_1 , f_2 , ..., is defined by the initial conditions $f_0 = 0$, $f_1 = 1$, and the recurrence relation

$$f_n = f_{n-1} + f_{n-2}$$
 for $n = 2, 3, 4, ...$

Practical Questions

• Find the first six terms of the sequence defined by each of these recurrence relations and initial conditions.

$$\bullet$$
 $a_n = -2a_{n-1}, a_0 = -1$

$$\bullet$$
 $a_n = a_{n-1} - a_{n-2}, a_0 = 2, a_1 = -1$

$$a_n = 3a_{n-1}^2 - 1$$
, $a_0 = 1$

•
$$a_n = na_{n-1} + a_{n-2}^2$$
, $a_0 = -1$, $a_1 = 0$

•
$$a_n = a_{n-1} - a_{n-2} + a_{n-3}, \ a_0 = 1, \ a_1 = 1, \ a_2 = 2$$

2 Let a_n be the *n*th term of the sequence

$$1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, \dots$$

constructed by including the integer k exactly k times. Show that $a_n = \left\lfloor \sqrt{2n} + \frac{1}{2} \right\rfloor$.

3 Find a general formula for a_n of each sequence:

What's next?

- SETS & SET OPERATIONS
- 2 Introduction to Functions
- 3 Inverse & Composition Functions
- 4 Sequences
- 5 SUMMATIONS

Summations

To express the sum of the terms $a_m, a_{m+1}, \ldots, a_n$ from the sequence $\{a_n\}$. We use the notation

$$\sum_{j=m}^{n} a_j, \text{ or } \sum_{m \leq j \leq n} a_j.$$

Note. Here, the variable j is called the **index of summation**, and the choice of the letter *i* as the variable is arbitrary.

$$\sum_{j=m}^{n} a_j = \sum_{i=m}^{n} a_i = \sum_{k=m}^{n} a_k$$

Summations in real-life

Suppose you have a savings account that earns a fixed annual interest rate r%, and you deposit a fixed amount D every year. Calculate the total amount of interest earned after several years n.

Details:

- You deposit \$1,000 at the end of each year.
- The annual interest rate is 5%.
- You want to find the total interest earned after 10 years.

Solution Using Summation:

$$I = D \sum_{i=1}^{n} [(1+r)^{n-i} - 1]$$

Illustration of infinite sum

Figure: $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$

Some Useful Summation Formulae

$$\bullet \sum_{i=1}^{10} ia_i = a_1 + 2a_2 + \cdots + 10a_{10}$$

$$\bullet \sum_{i=1}^{10} a_{2n}^2 = a_2^2 + a_4^2 + \dots + a_{10}^2$$

•
$$\sum_{i=1}^{10} 1 = \underbrace{1 + 1 + \dots + 1}_{10 \text{ terms}}$$

$$\bullet \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\bullet \sum_{i=0}^{\infty} x^i = \frac{1}{1-x}, |x| < 1$$

$$\bullet \sum_{i=1}^{\infty} i x^{i-1} = \frac{1}{(x-1)^2}, |x| < 1$$

Properties of Summations

1. Linearity:

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i, \quad \sum_{i=1}^{n} c \cdot a_i = c \cdot \sum_{i=1}^{n} a_i$$

2. Index Shift:

$$\sum_{i=m}^{n} a_i = \sum_{i=m+k}^{n+k} a_{i-k}$$

3. Splitting a Summation:

$$\sum_{i=m}^{n} a_{i} = \sum_{i=m}^{k} a_{i} + \sum_{i=k+1}^{n} a_{i}$$

4. Telescoping Series:

$$\sum_{i=1}^{n}(b_{i}-b_{i+1})=b_{1}-b_{n+1}$$

Questions

What are the values of these sums?

•
$$\sum_{i=1}^{5} (2i + i^2)$$

• $\sum_{i=1}^{5} \frac{3^i}{4^{i+1}}$

•
$$\sum_{i=1}^{5} \frac{1}{i(i+1)}$$

• $\sum_{i=1}^{5} (2i-1)$

Compute each of these double sums.

•
$$\sum_{i=1}^{5} \sum_{j=1}^{5} (2i + j)$$

• $\sum_{j=1}^{5} \sum_{j=1}^{5} ij$

$$\bullet \sum_{i=1}^{5} \sum_{j=1}^{5} (i-j)$$

$$\sum_{i=1}^{5} \sum_{j=1}^{5} i^2 j^3$$

3 Find a formula for $\sum_{i=1}^{n} \lfloor \sqrt{k} \rfloor$.

