1. NР-полнота

Определение 1. $VERTEX-COVER=\{(G,R): \text{в графе } G\exists \text{ вершинное покрытие размером } k\}\in NPC$

$$3 - SAT \leq_{p} VERTEX - COVER$$

Определение 2. 3-COL = $\{G : \text{граф } G \text{ можно раскрасить в 3 цвета } \}$

Определение 3. $SUBSET - SUM = \{(n_1, n_2, \dots, n_k, N) : \exists m \exists i_1, \dots, i_m; n_i + \dots + n_{i_m} = N\}$

 $3SAT \leq_p SUBSET - SUM$

Определение 4. $HAMPATH = \{(G, s, t) :$ в ор. графе $G \exists$ гамильтонов путь из s в $t \}$

 $UHAMPATH = \{(G, s, t) :$ в неор.графе $G\exists$ путь из s в $t\}$

Определение 5. $CoNP = \{L : \overline{L} \in NP\}$

 $P \subset NP \cap coNP$

$$\overline{L} \in NP \exists p \exists q \exists M(x \in \overline{L} \Leftrightarrow \exists s|s| = p(|x|), M(x,s) = 1)$$
$$\exists p \exists q \exists M(x \in L \Leftrightarrow \forall s(|s| = p(|x|) \to M(x,s) = 0))$$

Определение 6. $TAUT = \{\varphi : \varphi - \text{тавтология }\} \in CoNP$

Определение 7. $EXP = \bigcup DTIME(2^n)$

Определение 8. $NEXP = \bigcup NTIME(2^n)$

Теорема 1. $EXP \neq NEXP \Rightarrow P \ NP$

Доказательство. Пусть $L \in NEXP, L \in NTIME(2^{n^L})$

$$L_{pad} = \{x01^{2^{|x|^c}} : x \in L\}$$

 $L \in NEXP \Rightarrow L_{nad} \in NP$

- 1. Проверить, что вход имеет вид $x01^{2^{|x|^c}}$
- 2. ПРоверить, что $x \in L$. На недет. маш. $O(2^{n^c})$ шагов \Rightarrow лин. время от длины входа. $P = NP, L_{pad} \in NP \Rightarrow L \subset EXP$ (приписать) $01^{2^{|x|^c}}$ и применить алгоритм для L_{pad})

Утверждение 1. Если P=NP, то $\forall P\in NP$ полиномиальный алгоритм, находящий сертификат для $x\in L$

Доказательство.

1. Док-во для SAT Пусть $\varphi \in SAT, x_1, \dots, x_k$ - пер-ые. $\varphi_0 = \varphi_0(x_2 \dots x_k) = \varphi(0, x_2 \dots x_k) \varphi_1 = \varphi(1, x_2, \dots x_k)$