Minimum Cost Spanning Trees

CSC263 Tutorial 10

- What is a minimum cost spanning tree?
 - Tree
 - No cycles; equivalently, for each pair of nodes u and v, there is only one path from u to v
 - Spanning
 - Contains every node in the graph
 - Minimum cost
 - Smallest possible total weight of any spanning tree

Let's think about simple MCSTs on this graph:

- Black edges and nodes are in T
- Is T a minimum cost spanning tree?

Not spanning; d is not in T.

- Black edges and nodes are in T
- Is T a minimum cost spanning tree?

Not a tree; has a cycle.

- Black edges and nodes are in T
- Is T a minimum cost spanning tree?

Not minimum cost; can swap edges 4 and 2.

Which edges form a MCST?

Quick Quiz

- If we build a MCST from a graph G = (V, E), how may edges does the MCST have?
- When can we find a MCST for a graph?

An application of MCSTs

- Electronic circuit designs (from Cormen et al.)
 - Circuits often need to wire together the pins of several components to make them electrically equivalent.
 - To connect n pins, we can use n 1 wires, each connecting two pins.
 - Want to use the minimum amount of wire.
 - Model problem with a graph where each pin is a node, and every possible wire between a pair of pins is an edge.

A few other applications of MCSTs

- Planning how to lay network cable to connect several locations to the internet
- Planning how to efficiently bounce data from router to router to reach its internet destination
- Creating a 2D maze (to print on cereal boxes, etc.)

Building a MCST

- Prim's algorithm takes a graph G = (V, E) and builds an MCST T
- PrimMCST(V, E)
 - Pick an arbitrary node r from V
 - Add **r** to T
 - While T contains < |V| nodes</p>
 - Find a minimum weight edge (u, v)
 where u ∈ T and v ∉ T
 - Add node v to T

In the book's terminology, we find a light edge crossing the cut (T, V-T)

The book proves that adding |V|-1 such edges will create a MCST

Start at an arbitrary node, say, h.

• Blue: not visited yet • **Red:** edges from 14 nodes $\in T$ to 9 e nodes ∉ *T* 10 • Black: in T 11 1 b 12 h 2

Start at an arbitrary node, say, h.

• Blue: not visited yet • **Red:** edges from 14 nodes $\in T$ to e nodes ∉ *T* 10 • Black: in T 11 1 b 2

• Start at an arbitrary node, say, h.

• Blue: not visited yet • **Red:** edges from 14 nodes $\in T$ to e nodes ∉ *T* 10 • Black: in T 11 1 b 2

Start at an arbitrary node, say, h.

• Blue: not visited yet • **Red:** edges from nodes $\in T$ to e nodes ∉ *T* 10 • Black: in T 11 1 b 2

Start at an arbitrary node, say, h.

• Blue: not visited yet • **Red:** edges from nodes $\in T$ to e nodes ∉ *T* 10 • **Black:** in *T* 11 1 b 2

Start at an arbitrary node, say, h.

 Blue: not visited yet Red: edges from 14 nodes $\in T$ to nodes ∉ *T* 10 • Black: in T 11 b a 12 2 Minimum **Cost: 47**

Implementing Prim's Algorithm

Recall the high-level algorithm:

- PrimMCST(V, E)
 - Pick an arbitrary node r from V
 - Add **r** to T
 - While T contains < |V| nodes</p>
 - Find a minimum weight edge (u, v) How can we do this where $\mathbf{u} \in T$ and $\mathbf{v} \notin T$ efficiently?
 - Add node v to T

Finding lots of minimums?
Use a priority queue!

Adding a priority queue

- What should we store in the priority queue?
 - Edges
 - From nodes in Tto nodes not in T
- What should we use as the key of an edge?
 - Weight of the edge

PrimMCST(V, E)

- Pick an arbitrary node r from V
- Add **r** to T
- While T contains < |V| nodes</p>
 - Find a minimum weight edge (u, v) where $u \in T$ and $v \notin T$
 - Add node v to T

Prim's Algorithm with a priority queue

- PrimMCST(V, E, r) where r is any arbitrary starting node
 - Q := new priority queue
 - For each u in V: inTree[u] = false, parent[u] = nil
 - inTree[r] = true, parent[r] = r
 - Add every edge that touches r to Q
 - While Q is not empty
 - Do Q.Extract-Min to get edge e = (u, v)
 - If not inTree[v] then
 - inTree[v] = true, parent[v] = u
 - Add every edge that touches v to Q

Small optimization

- PrimMCST(V, E, r)
 - Q := new priority queue
 - For each u in V: inTree[u] = false, parent[u] = nil
 - --inTree[r] = true, parent[r] = r
 - Add every edge that touches r to Q
 - While Q is not empty
 - Do Q.Extract-Min to get edge e = (u, v)
 - If not inTree[v] parent[v] = nil then
 - inTree[v] = true, parent[v] = u
 - Add every edge that touches v to Q

Analysis of running time

- $O(|E| \log |E|) = O(|E| \log (|V|^2))$
- = $O(|E| 2 \log |V|)$
- = $O(|E| \log |V|)$

Java Implementation - 1

```
55
          static int[] prim(int n, ArrayList<ArrayList<Edge>> adj, int start) {
56
              TreeSet<Edge> g = new TreeSet<>();
57
              int[] parent = new int[n];
58
              for (int i=0;i<parent.length;++i) parent[i] = -1;</pre>
59
60
              parent[start] = start;
61
              for (int i=0;i<adj.get(start).size();++i) {</pre>
62
                  q.add(adj.get(start).get(i));
63
64
65
              while (!q.isEmpty()) {
66
                  Edge e = q.pollFirst();
67
                  if (parent[e.b] == -1) {
68
                       parent[e.b] = e.a;
69
                       for (int i=0;i<adj.get(e.b).size();++i) {</pre>
70
                           q.add(adj.get(e.b).get(i));
71
                   }
73
74
              return parent;
```

Java Implementation - 2

```
49 [-]
         static class Edge implements Comparable<Edge> {
50
              int a, b, w;
51 🗐
             Edge (final int a, final int b, final int w) {
52
                 this.a = a: this.b = b: this.w = w:
53
(I)
             public int compareTo(Edge o) {
55
                  if (w < o.w) return -1;
56
                  if (w > o.w) return 1;
57
                  if (a < o.a) return -1:
58
                  if (a > o.a) return 1;
59
                  if (b < o.b) return -1;
60
                  if (b > o.b) return 1:
61
                  return 0:
62
             public String toString() {
(0)
64
                  return "(" + a + ", " + b + ", " + w + ")";
65
66
```

An example input

Java Implementation - 3

```
13 -
         public static void main(String[] args) {
14
             int n = 10:
15
             String edges =
16
17
18
19
20
21
                                                "5 4 1 " + "5 6 12 "
22
23
                                          9 " + "6 5 12 " + "6 7
24
25
                             2 " + "8 5 5 " + "8 9 3 "
26
                      + "9 5 4 " + "9 8 3":
27
             ArrayList<ArrayList<Edge>> adj = new ArrayList<>();
28
             for (int i=0;i<n;++i) adj.add(new ArrayList<Edge>());
29
             Scanner in = new Scanner(edges);
30
             while (in.hasNext()) {
31
                  int a = in.nextInt();
32
                  int b = in.nextInt();
33
                  int w = in.nextInt();
34
                  adj.get(a).add(new Edge(a, b, w));
35
36
              int[] tree = prim(n, adj, 6);
```

Java Implementation - 4

Outputting the answer:

• The answer:

```
run:
(0, 2), (1, 4), (2, 3), (3, 7), (4, 5), (5, 2), (6, 6), (7, 6), (8, 4), (9, 8)
BUILD SUCCESSFUL (total time: 0 seconds)
```

What does this look like?

Recall: the root is its own parent.

Drawing the answer

(0, 2), (1, 4), (2, 3), (3, 7), (4, 5), (5, 2), (6, 6), (7, 6), (8, 4), (9, 8)

Fun example: generating 2D mazes

- Prim's algorithm maze building video
- How can we use Prim's algorithm to do this?

Fun example: generating 2D mazes

• After Prim's, we end up with something like:

