Matemática atuarial

AULA 19- Prêmios periódicos (Seguros)

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>leonardo.costa@unifal-mg.edu.br</u>

Prêmios

- O prêmio poderá ser pago de 3 formas:
 - Um único pagamento.
 - Valor esperado da função valor presente.
 - Valor atuarial.
 - Prêmios periódicos de valor constante no tempo (prêmios nivelados).
 - Prêmios periódicos de quantidade variável.

- \triangleright O contrato estipula que o <u>segurado</u> deverá pagar um prêmio constante P (nivelado) no início de cada ano enquanto o segurado sobreviver.
 - ➤ O primeiro pagamento será uma fração do prêmio pois este será capitalizado pela seguradora e o último pagamento corresponderá ao próprio prêmio.

- \triangleright O contrato estipula que o <u>segurado</u> deverá pagar um prêmio constante P (nivelado) no início de cada ano enquanto o segurado sobreviver.
 - \triangleright O compromisso do <u>SEGURADO (Y)</u>, em valor presente é igual a :

$$Y = Pv^{k} + \dots + Pv^{3} + Pv^{2} + Pv + P = P(v^{k} + v^{k-1} + \dots + v^{2} + v + 1)$$

$$\ddot{a}_{\overline{k}|} = \sum_{t=0}^{k-1} v^{t} = 1 + v + \dots + v^{k-1} = \frac{1 - v^{k}}{1 - v}$$

Referente ao primeiro dos **k+1** pagamentos

$$Y = P\left(\frac{1 - v^{k+1}}{1 - v}\right)$$

Referente ao último pagamento

$$Y = P\ddot{a}_{\overline{k+1}|}$$

➤ Considere um <u>seguro de vida inteiro</u> que pagará b ao fim do ano de morte do segurado. Então, o compromisso em valor presente do <u>SEGURADOR</u> é:

$$Z_n = bv^{n+1} = b\left(\frac{1}{1+i}\right)^{n+1}$$

 \triangleright Em que n é o número de anos inteiros de vida adicional do segurado (supondo o tempo de vida adicional fixo).

- Princípio da equivalência: O valor total dos compromissos do segurado num certo momento deve ser igual ao valor total dos compromissos do segurador no mesmo momento, ou seja:
- \triangleright O valor final dos depósitos tem que ser igual ao valor do principal dos benefícios, ou seja, é possível escolher um valor de P tal que:

Compromisso do segurado = Compromisso do segurador
$$Y = Z$$

Seguindo a linha de procura de um equilíbrio entre as obrigações do segurado e do segurador, tem-se:

$$L = Z - Y$$

ightharpoonup Ao considerar Z e Y como variáveis aleatórias tem que L também é uma variável aleatória, e representa a perda do segurador. O princípio de equivalência estabelece então que :

$$E(L) = 0$$
$$E(Z - Y) = 0$$

$$E(Z - Y) = 0$$

$$E(Z) - E(Y) = 0$$

$$E(bv^{N+1}) - E(P\ddot{a}_{K+1}|)$$

$$bA_{x} = P\ddot{a}_{x}$$

$$P = \frac{bA_{x}}{\ddot{a}_{x}}$$

$$a_{x} = \sum_{t=0}^{\infty} v^{t} \cdot t p_{x} = \sum_{t=0}^{\infty} \frac{1 - v^{t+1}}{1 - v} \cdot p_{x} q_{x+t}$$

$$P = \frac{b(1 - v)A_{x}}{1 - A_{x}}$$

O valor do prêmio que satisfaz este princípio é o prêmio Puro.

Exemplo 1

Uma pessoa de 25 anos deseja fazer um seguro de vida inteiro que paga $1 \, u.m.$ ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 3% ao ano. Qual será o valor do prêmio a ser pago anualmente pelo segurado?

$$P = \frac{A_{25}}{\ddot{a}_{25}} = \frac{(1-v)A_{25}}{1-A_{25}}$$

Exemplo 1

Uma pessoa de 25 anos deseja fazer um seguro de vida inteiro que paga $1\,u.m.$ ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 3% ao ano. Qual será o valor do prêmio a ser pago anualmente pelo segurado?

$$P = \frac{A_{25}}{\ddot{a}_{25}} = \frac{(1-v)A_{25}}{1-A_{25}}$$

$$A_{25} = \frac{M_{25}}{D_{25}} = \mathbf{0}, \mathbf{2492899} \quad \ddot{a}_{25} = \frac{N_{25}}{D_{25}} = \mathbf{25}, \mathbf{774389} \quad v = 0,9708738$$

$$P = \frac{A_{25}}{\ddot{a}_{25}} = 0,00967$$
 $P = \frac{(1-\nu)A_{25}}{1-A_{25}} = 0,00967$

> Exemplo 1

Caso o segurado queira que o beneficiário receba R\$1000,00 neste seguro de vida inteira, então:

$$P = 1000(0,00967)$$

$$P = R$ 9,67$$

 \blacktriangleright No caso dos pagamentos estarem limitados a um período $k<\omega-x$, tem-se:

Exemplo 2:

Uma pessoa de 25 anos deseja fazer um seguro de vida inteiro que paga $1\,u.m.$ ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 3% ao ano. Qual será o valor do prêmio a ser pago em 4 parcelas anuais?

Exemplo 2:

Uma pessoa de 25 anos deseja fazer um seguro de vida inteiro que paga $1 \, u.m.$ ao fim do ano de morte. O tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 3% ao ano. Qual será o valor do prêmio a ser pago em 4 parcelas anuais?

$$P = \frac{bA_{x}}{\ddot{a}_{x:\overline{k}|}} = \frac{A_{25}}{\ddot{a}_{25:\overline{4}|}}$$

> Se existe apenas um único pagamento então em t = 0.

L = (VP dos Benefícios a serem concedidos) - P

Prêmio Puro

$$E(L) = E(VP B. a serem concedidos) - P = 0$$

$$P = E(VP Ben. a serem concedidos)$$

Princípio utilizado para cálculo de prêmio utilizado até o momento.

A opção ao calculo dos prêmios periódicos para o seguro temporário por n anos é:

L = b(V.P. do seguro temporário por 10 anos) - P(V.P. da renda temporária por 10 anos)

$$L = bZ^* - PY^*$$

$$E(L) = E(bZ^* - PY^*)$$

$$E(L) = bE(Z^*) - PE(Y^*)$$

- $Z^* \rightarrow Valor presente temporário por n anos.$
- $Y^* \rightarrow \text{Valor presente da renda temporária por } k \text{ anos.}$

$$E(L) = bE(Z^*) - PE(Y^*)$$

$$E(L) = b\mathbf{A}_{\mathbf{x}^1:\overline{\mathbf{n}}|} - P\ddot{a}_{\mathbf{x}:\overline{k}|}$$

$$bA_{x^1:\overline{n}|} - P\ddot{a}_{x:\overline{k}|} = 0$$

$$P = \frac{bA_{x^1:\overline{n}|}}{\ddot{a}_{x:\overline{k}|}}$$

Exemplo 3:

Seja uma pessoa de 40 anos que queira comprar um seguro de vida temporário por 5 anos. Para isso, o segurado deseja pagar durante a vigência do contrato um prêmio fixo. Qual o valor do Prêmio a ser pago pelo segurado considerando-se a tabela AT-49 e uma taxa de juros i=0,03?

Exemplo 3:

$$P = \frac{A_{40^1:\overline{5}|}}{\ddot{a}_{40:\overline{5}|}}$$

x	qx	px	VX	lx
36	0,00149	0,99851	0,12274	969912
37	0,00161	0,99839	0,11579	968467
38	0,00173	0,99827	0,10924	966908
39	0,00187	0,99813	0,10306	965235
40	0,00203	0,99797	0,09722	963430
41	0,00222	0,99778	0,09172	961474
42	0,00248	0,99752	0,08653	959340
43	0,00280	0,99720	0,08163	956961
44	0,00319	0,99681	0,07701	954281
45	0,00363	0,99637	0,07265	951237
46	0,00412	0,99588	0,06854	947784
47	0,00466	0,99534	0,06466	943879
48	0,00525	0,99475	0,06100	939481
49	0,00588	0,99412	0,05755	934548
50	0,00656	0,99344	0,05429	929053
51	0,00728	0,99272	0,05122	922959
52	0,00804	0,99196	0,04832	916240
53	0,00884	0,99116	0,04558	908873
54	0,00968	0,99032	0,04300	900839
55	0,01057	0,98943	0,04057	892118

Exemplo 3:

Seja uma pessoa de 40 anos que queira comprar um seguro de vida temporário por 5 anos. Para isso, o segurado deseja pagar durante a vigência do contrato um prêmio fixo. Qual o valor do Prêmio a ser pago pelo segurado considerando-se a tabela AT-49 e uma taxa de juros i=0,03?

$$P = \frac{\frac{M_{40} - M_{45}}{D_{40}}}{\frac{N_{40} - N_{45}}{D_{40}}} = \frac{M_{40} - M_{45}}{N_{40} - N_{45}} = 0,002452$$

Caso, no exemplo anterior o benefício do seguro seja de R\$ 5000,00, então:

$$P = 5000(0,002452) = 12,26$$

Prêmio Puro periódico Anual fracionado

Esses prêmios podem ser pagos de forma fracionadas ao longo do ano.

$$P = \frac{bf(x)}{m \, \ddot{a}_{x:\bar{n}|}^{(m)}}$$

Lembrando que:

$$\ddot{a}_{x:\bar{n}|}^{(m)} \approx \ddot{a}_{x:\bar{n}|} - (1 -_n p_x v^n) \left(\frac{m-1}{2m}\right)$$

Exemplo 4:

Seja uma pessoa de 40 anos que queira comprar um seguro de vida temporário por 5 anos. Para isso, o segurado deseja pagar durante a vigência do contrato um prêmio fixo mensal. Qual o valor do Prêmio a ser pago pelo segurado considerando-se a tabela AT-49 e uma taxa de juros i=0,03?

SOLUÇÃO

$$A_{40^{1}:\overline{5}|} = \frac{M_{40} - M_{45}}{D_{40}}$$

$$\ddot{a}_{40:\overline{5}|}^{(12)} \approx \frac{N_{40} - N_{45}}{D_{40}} - (1 - p_{40}v^5) \left(\frac{12 - 1}{2(12)}\right)$$

$$P = \frac{A_{40^{1}:\overline{5}|}}{12\ddot{a}_{40:\overline{5}|}^{(12)}} =$$

Prêmios

- \blacktriangleright Todos os exemplo apresentados até aqui seguem uma estrutura bem definida, tal que E(L) = 0.
 - Princípio da Equivalência (em média).

O exemplo a seguir apresentará uma estrutura mais complexa de benefício, porém o princípio de cálculo será o mesmo.

Um segurado adquire um seguro dotal misto que funciona da seguinte forma:

- ightharpoonup Caso o segurado sobreviva ao período de $m{n}$ anos, então a seguradora irá pagar 1 u.m..
- Caso o segurado faleça neste período, a seguradora irá pagar 85% da quantidade de prêmios pelo pagos segurado (considerando P por cada prêmio pago, sem capitalização) ao final do ano de morte.

Os prêmios serão pagos antecipadamente durante os $m{n}$ anos de vigência do seguro.

Qual deverá ser o prêmio pago pelo segurado considerando que ele tem hoje 50 anos e deseja um seguro de 15 anos de vigência, podemos modelar seu tempo de vida adicional por uma AT-49 e a seguradora se compromete a pagar uma taxa de juros anual de 5%?

É necessário achar um prêmio tal que E(L)=0

 \triangleright Segurado (Y)

$$Y = \begin{cases} P\ddot{a}_{\overline{T}|} & se \ 0 < T < 15 \\ P \ddot{a}_{\overline{15}|} & se \ T \ge 15 \end{cases}$$

$$E(Y) = P\ddot{a}_{50:\overline{15|}} = P\sum_{t=0}^{15-1} v^t p_{50}$$

É necessário achar um prêmio tal que E(L) = 0

\triangleright Segurador (Z)

Caso t=0 então a seguradora deve ter hoje 0.85(Pv)

Caso t=1 então a seguradora deve ter hoje $0.85(2P)v^2$

Caso t=2 então a seguradora deve ter hoje $0.85(3P)v^3$

...

Caso t = n então a seguradora deve ter hoje $0.85(n+1)Pv^{n+1}$

$$Z = \begin{cases} 0.85(t+1)Pv^{(t+1)} & se \ t = 0,1,2,...,14 \\ v^{15} & se \ t \ge 15 \end{cases}$$
 $P(T = t)$

$$E(Z) = 0.85P \sum_{t=0}^{14} (t+1)v^{t+1} {}_{t}p_{50}q_{50+t} + v^{15} {}_{15}p_{50}$$

É necessário achar um prêmio tal que E(L)=0

$$E(Y) = E(Z)$$

$$P\sum_{t=0}^{14} v^{t} _{t} p_{50} = 0.85P\sum_{t=0}^{14} (t+1)v^{t+1} _{t} p_{50} q_{50+t} + v^{15} _{15} p_{50}$$

$$P = \frac{v^{15}_{15}p_{50}}{\sum_{t=0}^{14} v^{t}_{t}p_{50} - 0.85\sum_{t=0}^{14} (t+1)v^{t+1}_{t}p_{50}q_{50+t}}$$

$$P = \frac{v^{15}_{15}p_{50}}{\sum_{t=0}^{14} v^{t}_{t}p_{50} - 0.85\sum_{t=0}^{14} (t+1)v^{t+1}_{t}p_{50}q_{50+t}}$$

$$P = \frac{0,395383}{10,26667 - (0,85)0,9709197}$$

$$P = \frac{0,395383}{9,441388} = 0,041877$$

➤ Pode-se calcular o prêmio de uma forma alternativa, tal que:

$$P_r(L>0)=\alpha$$

 \triangleright Como L=Z-Y par o caso em que trata-se do prêmio relacionado seguros de vida, tem-se:

$$L = bv^{T+1} - P\left(\frac{1 - v^{T+1}}{1 - v}\right)$$

Em que b é o beneficio pago pelo seguro ao fim do ano de morte e P é o prêmio pago pelo segurado. Assim:

$$P_r(L>0)=\alpha$$

$$P_r\left(bv^{T+1} > P\left(\frac{1 - v^{T+1}}{1 - v}\right)\right) = \alpha$$

$$P_r\left(bv^{T+1} > P\left(\frac{1 - v^{T+1}}{1 - v}\right)\right) = \alpha$$

$$P_r(bv^{T+1}(1-v) + Pv^{T+1} > P) = \alpha$$

$$P_r\left(v^{T+1} > \frac{P}{b(1-v)+P}\right) = \alpha$$

$$P_r\left(e^{(T+1)\ln(v)} > \frac{P}{b(1-v)+P}\right) = \alpha$$

....

$$P_r\left(e^{(T+1)\ln(v)} > \frac{P}{b(1-v)+P}\right) = \alpha$$

$$P_r\left(T > \frac{ln\left(\frac{P}{b(1-v)+P}\right)}{ln(v)} - 1\right) = \alpha$$

$$P_r(T > g(P)) = \alpha$$

Necessário a distribuição de T o benefício b e a taxa de juros i.

Matemática atuarial

AULA 20- Prêmios periódicos (Anuidades)

Danilo Machado Pires

<u>danilo.pires@unifal-mg.edu.br</u>

Leonardo Henrique Costa

<u>leonardo.costa@unifal-mg.edu.br</u>

Prêmios Anuidades

Com exceção do seguro diferido, os prêmios de seguro serão pagos durante o período de cobertura do mesmo.

➤ No caso das anuidades (previdência) em geral os prêmios são pagos antes do período de vigência do mesmo.

Prêmios Anuidades

➤ Imagine um segurado de 40 anos que quer aposentar-se aos 60 anos. Essa pessoa deseja receber o valor de 36 mil (por ano) durante o período de 20 anos.

Essa pessoa irá pagar um prêmio *P* em uma conta que rende 3% ao ano.

➤ Quando esse segurado deverá depositar por ano?

LEMBRANDO QUE:

 $F_k \rightarrow$ corresponde ao montante ao final de k depósitos.

R → corresponde aos depósitos nivelados (constante).

 $F_{pr} \rightarrow$ corresponde ao principal que deve ser aplicado a uma taxa i para que se possa retirar o valor R em cada um dos n pagamentos.

Fluxo Antecipado	Fluxo Postecipado
Montante ao final de k depósitos.	
$F_k = \frac{R(1+i)[(1+i)^k - 1]}{i}$	$F_k = \frac{R[(1+i)^k - 1]}{i}$

Valor a ser aplicada para que se possa retirar o valor R em cada um dos n períodos.

$$F_{pr} = \frac{R[(1+i)^n - 1]}{i(1+i)^{n-1}} \qquad F_{pr} = \frac{R[(1+i)^n - 1]}{i(1+i)^n}$$

- ▶ Para calcular P, deve-se calcular o valor total dos depósitos e o valor total dos benefícios.
 - ➤ Não usaremos os valores nominais pois depósitos e benefícios são feitos em momentos diferentes do tempo.

O cada ano é pago uma parcela do prêmio P, ou seja , $P(1+i)^k$. Assim ao final de k (20) depósitos tem-se o montante F_k

O principal F_{pr} , necessário que deve ser aplicado a uma taxa i para que se possa retirar o valor b em cada um dos n (20) períodos.

➤ Inicialmente, desconsidera-se a possibilidade do indivíduo morrer, ou seja, ele irá fazer todos os depósitos e receberá todos os benefícios.

Valor total dos depósitos (com pagamentos antecipados).

$$F_k = \frac{P(1+i)[(1+i)^k - 1]}{i}$$

ightharpoonup Lembrando que $v = \frac{1}{1+i} \Rightarrow i = \frac{1-v}{v}$, logo:

$$F_k = \frac{Pv^{-1}(v^{-k} - 1)v}{1 - v} = \frac{P(v^{-k} - 1)}{1 - v} = \ddot{S}_{\bar{k}|}$$

 \blacktriangleright Assim o valor final ou acumulado de k depósitos é dado por:

$$\ddot{S}_{\bar{k}|} = \frac{P(v^{-k} - 1)}{1 - v} = \frac{Pv^{-k}(1 - v^k)}{1 - v} = P(1 + i)^k \ddot{a}_{\bar{k}|}$$

VALOR TOTAL DOS BENEFÍCIOS (considerando fluxo antecipados)

$$F_0 = \frac{b[(1+i)^n - 1]}{i(1+i)^{n-1}}$$

ightharpoonup Lembrando que $v = \frac{1}{1+i} \Rightarrow i = \frac{1-v}{v}$, logo:

$$F_0 = \frac{b[v^{-n} - 1]}{\left(\frac{1 - v}{v}\right)v^{-n+1}} = \frac{bv^{-n+1} - bv}{(1 - v)v^{-n+1}} = \frac{bv^{-n+1}(1 - v^n)}{(1 - v)v^{-n+1}} = \frac{b(1 - v^n)}{(1 - v)}$$

$$F_0 = \frac{b(1 - v^n)}{(1 - v)} = b\ddot{a}_{\bar{n}|}$$

Valor total dos depósitos (com pagamentos antecipados).

$$F_k = \frac{P(1+i)[(1+i)^k - 1]}{i} = P(1+i)^k \ddot{a}_{\bar{k}|} = \ddot{S}_{\bar{k}|}$$

Soma de valores futuros

> VALOR TOTAL DOS BENEFÍCIOS (considerando fluxo antecipados)

$$F_0 = \frac{b[(1+i)^k - 1]}{i(1+i)^{k-1}} = \frac{b(1-v^k)}{(1-v)} = b\ddot{a}_{\bar{n}|}$$

Soma de valores presentes.

ightharpoonup Em t=20 é necessário ter acumulado com depósitos o valor de:

$$\ddot{a}_{\overline{20}|} = 15,3238$$

$$\ddot{S}_{\overline{20}|} = \frac{P(1,03)[(1,03)^{20} - 1]}{0,03} = P(1,03)^{20} \ddot{a}_{\overline{20}|}$$

➢ O problema então é encontrar P tal que o total de depósitos deve ser igual o valor presente total necessário a todos os benefícios.

$$36000 \left(\frac{1 - v^{20}}{1 - v} \right) = P(1,03) \frac{(1,03)^{20} - 1}{0,03}$$

$$551656,8 = P27,67649$$

$$P = 19932,33$$

➤ Ou seja, deve-se pagar R\$19932,33 por ano (Desconsiderando-se a possibilidade do segurado falecer) para pagar a anuidade que paga 36 mil ao longo de 20 anos.

Princípio da equivalência: O valor total dos compromissos do segurado num certo momento deve ser igual ao valor total dos compromissos do segurador no mesmo momento, ou seja o valor final dos depósitos tem que ser igual ao valor do principal dos benefícios:

(Depósitos)
$$\ddot{S}_{\bar{k}|} = b\ddot{a}_{\bar{n}|}$$
(benefícios)

$$P(1+i)^k \ddot{a}_{\bar{k}|} = b \ddot{a}_{\bar{n}|}$$

$$P = \frac{b\ddot{a}_{\bar{n}|}}{(1+i)^k \ddot{a}_{\bar{k}|}} = \frac{bv^k \ddot{a}_{\bar{n}|}}{\ddot{a}_{\bar{k}|}}$$

Princípio da equivalência: O valor total dos compromissos do segurado num certo momento deve ser igual ao valor total dos compromissos do segurador no mesmo momento, ou seja o valor final dos depósitos tem que ser igual ao valor do principal dos benefícios:

(Depósitos)
$$\ddot{S}_{\bar{k}|} = b\ddot{a}_{\bar{n}|}$$
(benefícios)

$$P(1+i)^k \ddot{a}_{\bar{k}|} = b \ddot{a}_{\bar{n}|}$$

$$P = \frac{b\ddot{a}_{\bar{n}|}}{(1+i)^k \ddot{a}_{\bar{k}|}} = \frac{bv^k \ddot{a}_{\bar{n}|}}{\ddot{a}_{\bar{k}|}}$$

Uma pessoa de 20 anos decide contratar uma aposentadoria vitalícia que pagará R\$1,00 ao ano até que este segurado faleça. Ele se aposentará caso chegue vivo à idade de 60 anos. Esse segurado decide pagar um prêmio nivelado enquanto estiver ativo.

Considerando a tábua de mortalidade AT-49 e a taxa de juros de 3% ao ano, qual será o valor do prêmio a ser pago pelo segurado?

SOLUÇÃO:

Não se faz sentido adquiri rendas vitalícias imediatas a prêmios periódicos, todavia, é justificável adquirir rendas vitalícias diferidas. Assim:

Uma pessoa de 20 anos decide contratar uma aposentadoria vitalícia que pagará R\$1,00 ao ano até que este segurado faleça. Ele se aposentará caso chegue vivo à idade de 60 anos. Esse segurado decide pagar um prêmio nivelado enquanto estiver ativo.

Considerando a tábua de mortalidade AT-49 e a taxa de juros de 3% ao ano, qual será o valor do prêmio a ser pago pelo segurado?

$$Y = \begin{cases} P\ddot{a}_{\overline{T|}} & se \ 0 < T < 40 \\ P\ddot{a}_{\overline{40|}} & se \ T \ge 40. \end{cases} \qquad Z = \begin{cases} \ddot{a}_{\overline{T|}} & se \ T > 40 \\ 0 & c. c. \end{cases}$$

$$P = \frac{40|a_{20}|}{\ddot{a}_{20}|\overline{40}|}$$

$$Y = \begin{cases} P\ddot{a}_{\overline{T}|} & se \ 0 < T < 40 \\ P\ddot{a}_{\overline{40}|} & se \ T \ge 40. \end{cases} \qquad Z = \begin{cases} \ddot{a}_{\overline{T}|} & se \ T > 40 \\ 0 & c. c. \end{cases}$$

$$P = \frac{{}_{40|}\ddot{a}_{20}}{\ddot{a}_{20:\overline{40}|}} = \frac{v^{40} {}_{40}p_{20}\ddot{a}_{60}}{\ddot{a}_{20:\overline{40}|}} = \frac{\frac{{}_{N_{60}}}{{}_{D_{20}}}}{\frac{(N_{20}-N_{60})}{D_{20}}} = \frac{N_{60}}{(N_{20}-N_{60})}$$

$$P = 0, 157468$$

Caso o segurado tenha interesse de receber *R\$ 25000,00* ao ano, então:

$$P = 25000(\mathbf{0}, \mathbf{157468}) = 3936,711$$

Assim o valor do prêmio nivelado anual correspondente a k anos para anuidades temporárias é:

$$P = b \frac{k|\ddot{a}_{x:\overline{n}|}}{\ddot{a}_{x:\overline{k}|}}$$

Para o caso de anuidades vitalícias tem-se

$$P = b \frac{k|a_{\chi}}{\ddot{a}_{\chi:\overline{k}|}}$$

Suponhamos que o salário do segurado no exemplo anterior seja insuficiente para pagar os prêmios durante o período em que ele está em idade ativa. O segurado pergunta ao atuário se é possível pagar um prêmio anual nivelado durante toda a sua vida (inclusive enquanto aposentado). Qual deveria ser o prêmio pago pelo segurado neste caso?

SOLUÇÃO:

Neste caso, o que o segurado está fazendo será diminuir o benefício que irá receber. De fato, o segurado irá receber um benefício como no exemplo anterior, porém parte deste benefício estará comprometido para pagamento do prêmio.

Lembrando do principio da equivalência, queremos um prêmio tal que E(L)=0, então:

$$L = Z - Y$$

Compromisso do segurado = Compromisso do segurador Y = Z

Em que:

$$Y = \begin{cases} P\ddot{a}_{\overline{T}|} \operatorname{se} T \ge 0 \\ 0 \ c. c \end{cases} \qquad Z = \begin{cases} \ddot{a}_{\overline{T}|} \operatorname{se} T > 40 \\ 0 \ c. c \end{cases}$$

$$E(L) = 0$$

$$E(\ddot{a}_{\overline{T|}} - P\ddot{a}_{\overline{T|}}) = 0$$

$$P = \frac{{}_{40}|\ddot{a}_{20}}{\ddot{a}_{20}} = \frac{v^{40} {}_{40}p_{20}\ddot{a}_{60}}{\ddot{a}_{20}} = \frac{\frac{N_{60}}{D_{20}}}{\frac{N_{20}}{D_{20}}} = \frac{N_{60}}{N_{20}}$$

$$P = 0,1360456$$