Application 1

 Elaborer le code de Shannon-Fano des messages s_k de probabilité p(s_k) en numérotant les différentes étapes nécessaires pour aboutir au code.

Message	Probabilités	Code
s _k	p(s _k)	Code
S1	0.35	
S2	0.22	
S3	0.18	
S4	0.15	
S5	0.10	

- Vérifier que le code obtenu est optimal.
- Calculer la longueur moyenne de ce code.

Application 2

 Elaborer le code Huffman des messages s_k de probabilité p(s_k) en donnant les différentes étapes nécessaires pour aboutir au code.

Message s _k	Probabilités p(s _k)	Calcul de probabilités des nœuds parentes
S1	0.35	
S2	0.22	
S 3	0.18	
S4	0.15	
S5	0.10	

- Vérifier que le code obtenu est optimal.
- Calculer la longueur moyenne de ce code.

Activité d'intégration

Pour enregistrer efficacement les patients d'un hôpital, on envisage deux solutions pour sauvegarder leurs groupes sanguins. Pour cela, l'hôpital dispose des statistiques illustrées dans le tableau suivant :

Groupe sanguin entier		Groupe sanguin				
		0	Α	В	AB	
Rhésus	+ (plus)	O+:37%	A+:38.1%	B+:6.2%	AB+:2.8%	
	-(moins)	O ⁻ :7%	A⁻:7.2%	B-:1.2%	AB-:0.5%	

- 1^{ère} solution: coder le groupe sanguin entier (O+, A+, B+, AB+, O-, A-, B-, AB-)
 - 1. Coder de façon optimale (algorithme de Huffman) le groupe sanguin entier.
 - 2. Vérifier que le code est optimal.
 - 3. Donner la longueur moyenne du code obtenu.
- 2ème solution : coder séparément le groupe sanguin (O, A, B, AB) et le rhésus (+, -)
 - 4. Coder de façon optimale le groupe sanguin et le rhésus séparément.
 - 5. Vérifier que le code est optimal.
 - 6. Donner la longueur moyenne des codes obtenus et déduire la solution à retenir.