Package 'metagenomeSeq'

	March 11, 2013
Title S	atistical analysis for sparse high-throughput sequencing
Version	0.99.0
Date 20	012-07-23
Author	Joseph Nathaniel Paulson, Hector Corrada-Bravo
Mainta	iner Joseph Paulson <jpaulson@umiacs.umd.edu></jpaulson@umiacs.umd.edu>
no tv fe	tion metaR is designed to determine features (be it Operational Taxa- omic Unit (OTU), species, etc.) that are differentially abundant be- ween two or more groups of multiple samples. metaR is designed to address the ef- cts of both normalization and under-sampling of microbial communities on disease associa- on detection and the testing of feature correlations.
License	Artistic-2.0
Depend	s R(>= 2.10.0), Biobase, limma, matrixStats,methods, RColorBrewer, gplots
Suggest	s annotate
biocVie	ws Bioinformatics, DifferentialExpression,Metagenomics, Visualization
Collate	igControl.R' 'cumNorm.R' 'plotOTU.R''fitZig.R' 'doCountMStep.R' 'doZeroMStep.R' 'doEStep.R' 'getZ.R' 'getP
URL h	ttp://cbcb.umd.edu/software/metaR
R top	pics documented:
	aggregateM 2 cumNorm 3 cumNormMat 3 cumNormStat 4

 doCountMStep
 5

 doEStep
 6

 doZeroMStep
 6

 exportMat
 7

 exportStats
 8

 expSummary
 8

 fitZig
 9

 getCountDensity
 10

2 aggregateM

	egateM Aggregates counts by a particular classification.	
Index		30
	zigControl	28
	posterior.probs	
	plotOTU	
	plotMRheatmap	
	plotGenus	
	plotCorr	
	normFactors	
	newMRexperiment	
	MRtable	
	MRfulltable	
	MRfisher	
	MRexperiment	
	MRcounts	
	MRcoefs	
	mouseData	
	lungData	
	load_phenoData	
	load_metaQ	
	load_meta	
	libSize	14
	isItStillActive	13
	get Z	13
	getPi	12
	getNegativeLogLikelihoods	11
	getEpsilon	11

Description

This function takes a MR experiment object of data at a particular level with feature information allowing for aggregation of counts to a particular level. This method assumes taxa begin at the highest level and continue to the current level, reverse assumes taxa begin at the lowest level.

Usage

```
aggregateM(obj,taxa,lvl,split=";")
```

Arguments

obj	A MRexperiment object.
lvl	The level to go up (numeric, 1,2,3).
taxa	A vector of taxa annotations with splits
split	The way character strings in taxa in the obj are split.

Value

Updated object with counts aggregated to the various taxanomic levels.

cumNorm 3

cumNorm

Cumulative sum scaling factors.

Description

Calculates each column's quantile and calculates the sum up to and including that quantile.

Usage

```
cumNorm(obj, p = cumNormStat(obj))
```

Arguments

obj An MRexperiment object.

p The pth quantile.

Value

Vector of the sum up to and including a sample's pth quantile

See Also

```
fitZig cumNormStat
```

Examples

```
data(mouseData)
cumNorm(mouseData)
head(normFactors(mouseData))
```

cumNormMat

Cumulative sum scaling factors.

Description

Calculates each column's quantile and calculates the sum up to and including that quantile.

Usage

```
cumNormMat(obj, p = cumNormStat(obj))
```

Arguments

obj A MRexperiment object.

p The pth quantile.

Value

Returns a matrix normalized by scaling counts up to and including the pth quantile.

4 cumNormStat

See Also

```
fitZig cumNorm
```

Examples

```
data(mouseData)
head(cumNormMat(mouseData))
```

cumNormStat

Cumulative sum scaling percentile selection

Description

Calculates the percentile for which to sum counts up to and scale by.

Usage

```
cumNormStat(obj,pFlag = FALSE,rel=.1,qFlag = TRUE, ...)
```

Arguments

obj	A list with count data
pFlag	Plot the median difference quantiles
rel	Cutoff for the relative difference from one median difference from the reference to the next
qFlag	Flag to either calculate the proper percentile using a step-wise or triangular approximation of the sample count distribution.
	Applicable if pFlag == TRUE. Extra plotting parameters.

Value

Percentile for which to scale data

See Also

```
fitZig cumNorm
```

```
data(mouseData)
p = round(cumNormStat(mouseData,pFlag=FALSE),digits=2)
s95=cumNorm(mouseData)
```

doCountMStep 5

doCountMStep	Compute the Maximization step calculation for features still active.

Description

Maximization step is solved by weighted least squares. The function also computes counts residuals.

Usage

```
doCountMStep(z, y, mmCount, stillActive, fit2 = NULL)
```

Arguments

Z	Matrix $(m \times n)$ of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).
у	Matrix (m x n) of count observations.
mmCount	Model matrix for the count distribution.
stillActive	Boolean vector of size M, indicating whether a feature converged or not.
fit2	Previous fit of the count model.

Details

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_{ij} = 1$ if y_{ij} is generated from the zero point mass as latent indicator variables. The density is defined as $f_{ij} = pi_{j}(S_{ij}) + (1-pi_{j}(S_{ij})) + (1-pi_{j}(S_{ij})) + (1-pi_{j}(S_{ij})) + (1-pi_{ij}(S_{ij})) + (1-pi_{ij}(S_{ij})) + (1-pi_{ij}(S_{ij})) + (1-pi_{ij}(S_{ij})) + (1-pi_{ij}(S_{ij}))$. The responsibilities are defined as $f_{ij} = pr(delta_{ij}) + (1-pi_{ij}(S_{ij})) + (1-pi_{ij}(S_{ij}))$. The responsibilities are defined as $f_{ij} = pr(delta_{ij}) + (1-pi_{ij}(S_{ij})) + (1-pi_{ij}(S_{ij})$

Value

Update matrix $(m \times n)$ of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).

See Also

fitZig

6 doZeroMStep

doEStep

Compute the Expectation step.

Description

Estimates the responsibilities \$z_ij = fracpi_j cdot I_0(y_ijpi_j cdot I_0(y_ij + (1-pi_j) cdot f_count(y_ij

Usage

doEStep(countResiduals, zeroResiduals, zeroIndices)

Arguments

countResiduals Residuals from the count model. zeroResiduals Residuals from the zero model.

zeroIndices Index (matrix m x n) of counts that are zero/non-zero.

Details

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_{ij} = 1$ if $\int_{ij} ig generated$ from the zero point mass as latent indicator variables. The density is defined as $\int_{ij} ig generated$ from the zero point mass as latent indicator variables. The density is defined as $\int_{ij} ig generated$ from the zero point mass as latent indicator variables. The density is defined as $\int_{ij} ig generated$ from the zero point mass as latent indicator variables. The density is defined as $\int_{ij} ig generated$ from the zero point mass as latent indicator variables. The density is generated from the zero point mass as latent indicator variables.

Value

Updated matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).

See Also

fitZig

doZeroMStep

Compute the zero Maximization step.

Description

Performs Maximization step calculation for the mixture components. Uses least squares to fit the parameters of the mean of the logistic distribution. \$ pi_j = sum_i^M frac1Mz_ij \$ Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_i$ if y_i is generated from the zero point mass as latent indicator variables. The density is defined as f_i gig(y_ij = pi_j(S_j) cdot f_i (O(y_ij) + (1-pi_j(S_j))cdot f_i count(y_ij;mu_i,sigma_i^2) f_i . The log-likelihood in this extended model is f_i delta_ij log f_i count(y;mu_i,sigma_i^2) +delta_ij log pi_j(s_j)+(1-delta_ij)log (1-pi_j(sj)) f_i . The responsibilities are defined as f_i pr(delta_ij=1 | data) f_i .

exportMat 7

Usage

```
doZeroMStep(z, zeroIndices, mmZero)
```

Arguments

z Matrix (m x n) of estimate responsibilities (probabilities that a count comes from

a spike distribution at 0).

zeroIndices Index (matrix m x n) of counts that are zero/non-zero.

mmZero The zero model, the model matrix to account for the change in the number of

OTUs observed as a linear effect of the depth of coverage.

Value

List of the zero fit (zero mean model) coefficients, variance - scale parameter (scalar), and normalized residuals of length sum(zeroIndices).

See Also

fitZig

exportMat

export the normalized eSet dataset as a matrix.

Description

This function allows the user to take a dataset of counts and output the dataset to the user's workspace as a tab-delimited file, etc.

Usage

```
exportMat(mat, output = "~/Desktop/matrix.tsv")
```

Arguments

mat A matrix of values (normalized, or otherwise)

output Output file name

Value

NA

See Also

cumNorm

Examples

see vignette

8 expSummary

exportStats

Various statistics of the count data.

Description

A matrix of values for each sample. The matrix consists of sample ids, the sample scaling factor, quantile value, and the number of number of features.

Usage

```
exportStats(obj, p = cumNormStat(obj),
  output = "~/Desktop/res.stats.tsv")
```

Arguments

obj A MRexperiment object with count data.

p Quantile value to calculate the scaling factor and quantiles for the various sam-

ples.

output Output file name.

Value

None.

See Also

cumNorm quantile

Examples

```
# see vignette
```

expSummary

Access MRexperiment object experiment data

Description

The expSummary vectors represent the column (sample specific) sums of features, i.e. the total number of reads for a sample, libSize and also the normalization factors, normFactor.

Usage

```
## S4 method for signature 'MRexperiment'
expSummary(obj)
```

Arguments

obj a MRexperiment object.

fitZig 9

Author(s)

Joseph N. Paulson, jpaulson@umiacs.umd.edu

Examples

```
data(mouseData)
expSummary(mouseData)
```

fitZig

Computes the weighted fold-change estimates and t-statistics.

Description

Wrapper to actually run the Expectation-maximization algorithm and estimate f_count fits. Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $f_cin = 1$ if $f_cin = 1$ is generated from the zero point mass as latent indicator variables. The density is defined as $f_cin = pi_j(s_j) + (1-pi_j(s_j)) + (1-pi_j(s_j$

Usage

```
fitZig(obj, mod, zeroMod = NULL,
  useS95offset = TRUE, control = zigControl())
```

Arguments

obj A MRexperiment object with count data.

mod The model for the count distribution.

zeroMod The zero model, the model to account for the change in the number of OTUs

observed as a linear effect of the depth of coverage.

useS95offset Boolean, whether to include the default scaling parameters in the model or not.

control The settings for fitZig.

Value

The fits, posterior probabilities, posterior probabilities used at time of convergence for each feature, ebayes (limma object) fit, among other data.

See Also

```
cumNorm zigControl
```

10 getCountDensity

Examples

```
data(lungData)
k = grep("Extraction.Control",pData(lungData)$SampleType)
lungTrim = lungData[,-k]
cumNorm(lungTrim)
k = which(rowSums(MRcounts(lungTrim)>0)<10)
lungTrim = lungTrim[-k,]
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~smokingStatus)
settings = zigControl(maxit=1,verbose=FALSE)
fit = fitZig(obj = lungTrim,mod=mod,control=settings)</pre>
```

getCountDensity

Compute the value of the count density function from the count model residuals.

Description

Calculate density values from a normal: $f(x) = 1/(sqrt (2 pi) sigma) e^{-((x - mu)^2/(2 sigma^2))}$. Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $deta_{ij} = 1$ if y_{ij} is generated from the zero point mass as latent indicator variables. The density is defined as $f_{ij} = pi_{ij} (s_{ij}) cdot f_{ij} + (1-pi_{ij} (s_{ij})) cdot f_{ij} = pi_{ij} (s_{ij}) cdot f_{ij}$

Usage

```
getCountDensity(residuals, log = FALSE)
```

Arguments

residuals Residuals from the count model.

log Whether or not we are calculating from a log-normal distribution.

Value

Density values from the count model residuals.

See Also

fitZig

getEpsilon 11

getEpsilon Calculate the relative difference between iterations of the negative log-likelihoods.
--

Description

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_{ij} = 1$ if y_{ij} is generated from the zero point mass as latent indicator variables. The log-likelihood in this extended model is $(1-delta_{ij}) \log f_{count}(y;mu_{i,sigma_{i'}}^2)+delta_{ij} \log p_{ij}(s_{ij})+(1-delta_{ij})\log (1-p_{ij}(s_{ij}))$. The responsibilities are defined as $z_{ij} = p(delta_{ij} = 1 \mid data)$.

Usage

```
getEpsilon(nll, nll0ld)
```

Arguments

nll Vector of size M with the current negative log-likelihoods.

nllold Vector of size M with the previous iterations negative log-likelihoods.

Value

Vector of size M of the relative differences between the previous and current iteration nll.

See Also

fitZig

getNegativeLogLikelihoods

Calculate the negative log-likelihoods for the various features given the residuals.

Description

Maximum-likelihood estimates are approximated using the EM algorithm where we treat mixture membership $delta_{ij} = 1$ if $\int u_{ij} u$

Usage

```
getNegativeLogLikelihoods(z, countResiduals,
  zeroResiduals)
```

12 getPi

Arguments

z Matrix (m x n) of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).

countResiduals Residuals from the count model.

zeroResiduals Residuals from the zero model.

Value

Vector of size M of the negative log-likelihoods for the various features.

See Also

fitZig

getPi

Calculate the mixture proportions from the zero model / spike mass model residuals.

Description

 $F(x) = 1 / (1 + \exp(-(x-m)/s))$ (the CDF of the logistic distribution). Provides the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to x. The output are the mixture proportions for the samples given the residuals from the zero model.

Usage

```
getPi(residuals)
```

Arguments

residuals

Residuals from the zero model.

Value

Mixture proportions for each sample.

See Also

fitZig

getZ 13

getZ	Calculate the current Z estimate responsibilities (posterior probabilities)

Description

Calculate the current Z estimate responsibilities (posterior probabilities)

Usage

```
getZ(z, zUsed, stillActive, nll, nllUSED)
```

Arguments

Z	Matrix $(m \times n)$ of estimate responsibilities (probabilities that a count comes from a spike distribution at 0).
zUsed	Matrix $(m \times n)$ of estimate responsibilities (probabilities that a count comes from a spike distribution at 0) that are actually used (following convergence).
stillActive	A vector of size M booleans saying if a feature is still active or not.
nll	Vector of size M with the current negative log-likelihoods.
nllUSED	Vector of size M with the converged negative log-likelihoods.

Value

A list of updated zUsed and nllUSED.

See Also

fitZig

Description

In the Expectation Maximization routine features posterior probabilities routinely converge based on a tolerance threshold. This function checks whether or not the feature's negative log-likelihood (measure of the fit) has changed or not.

Usage

```
isItStillActive(eps, tol, stillActive, stillActiveNLL,
   nll)
```

14 libSize

Arguments

eps Vector of size M (features) representing the relative difference between the new

nll and old nll.

tol The threshold tolerance for the difference

stillActive A vector of size M booleans saying if a feature is still active or not.

stillActiveNLL A vector of size M recording the negative log-likelihoods of the various features,

updated for those still active.

nll Vector of size M with the current negative log-likelihoods.

Value

None.

See Also

fitZig

libSize

Access sample depth of coverage from MRexperiment object

Description

The libSize vector represents the column (sample specific) sums of features, i.e. the total number of reads for a sample. It is used by fitZig.

Usage

```
## S4 method for signature 'MRexperiment'
libSize(obj)
```

Arguments

obj a MRexperiment object.

Author(s)

Joseph N. Paulson, jpaulson@umiacs.umd.edu

```
data(lungData)
head(libSize(lungData))
```

load_meta 15

load_meta

Load a count dataset associated with a study.

Description

Load a matrix of OTUs in a tab delimited format

Usage

```
load_meta(file,sep="\t")
```

Arguments

file Path and filename of the actual data file.

sep File delimiter.

Value

An object of count data.

See Also

load_phenoData

Examples

```
dataDirectory <- system.file("extdata", package="metagenomeSeq")
lung = load_meta(file.path(dataDirectory,"CHK_NAME.otus.count.csv"))</pre>
```

load_metaQ

Load a count dataset associated with a study set up in a Qiime format.

Description

Load a matrix of OTUs in Qiime's format

Usage

```
load_metaQ(file)
```

Arguments

file

Path and filename of the actual data file.

Value

An object of count data.

See Also

```
load_meta load_phenoData
```

16 lungData

Examples

see vignette

load_phenoData

Load a clinical/phenotypic dataset associated with a study.

Description

Load a matrix of metadata associated with a study.

Usage

```
load_phenoData(file, tran = FALSE, sep = "\t")
```

Arguments

file Path and filename of the actual clinical file.

tran Boolean. If the covariates are along the columns and samples along the rows,

then tran should equal TRUE.

sep The separator for the file.

Value

The metadata as a dataframe.

See Also

load_meta

Examples

see vignette

lungData

OTU abundance matrix of samples from a smoker/non-smoker study

Description

This is a list with a matrix of OTU counts, otu names, taxa annotations for each OTU, and phenotypic data. Samples along the columns and OTUs along the rows.

Usage

lungData

Format

A list of OTU matrix, taxa, otus, and phenotypes

References

http://www.ncbi.nlm.nih.gov/pubmed/21680950

mouseData 17

mouseData	OTU abundance matrix of mice samples from a diet longitudinal study

Description

This is a list with a matrix of OTU counts, taxa annotations for each OTU, otu names, and vector of phenotypic data. Samples along the columns and OTUs along the rows.

Usage

mouseData

Format

A list of OTU matrix, taxa, otus, and phenotypes

References

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2894525/

MRcoefs	Table of top-ranked microbial marker gene from linear model fit

Description

Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma's topTable.

Usage

 $\label{lem:max} \mbox{MRcoefs(obj,by=2,coef=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa,adjust.method="fdr",group=0,eff=0,output=NULL,number=10,taxa=obj$taxa=0,ta$

Arguments

obj	A list containing the linear model fit produced by lmFit through fitZig.
by	Column number or column name specifying which coefficient or contrast of the linear model is of interest.
coef	Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.
number	The number of bacterial features to pick out.
taxa	Taxa list.
adjust.method	Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See p. adjust for more details.
group	One of three choices, 0,1,2. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order.
eff	Restrict samples to have at least eff quantile effective samples.
output	Name of output file, including location, to save the table.

MRcounts MRcounts

Value

Table of the top-ranked features determined by the linear fit's coefficient.

See Also

```
fitZig MRtable
```

Examples

```
data(lungData)
k = grep("Extraction.Control",pData(lungData)$SampleType)
lungTrim = lungData[,-k]
k = which(rowSums(MRcounts(lungTrim)>0)<10)
lungTrim = lungTrim[-k,]
cumNorm(lungTrim)
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~smokingStatus)
settings = zigControl(maxit=1,verbose=FALSE)
fit = fitZig(obj = lungTrim,mod=mod,control=settings)
head(MRcoefs(fit))</pre>
```

MRcounts

Accessor for the counts slot of a MRexperiment object

Description

The counts slot holds the raw count data representing (along the rows) the number of reads annotated for a particular feature and (along the columns) the sample.

Usage

```
## S4 method for signature 'MRexperiment'
MRcounts(cnts, norm=FALSE)
```

Arguments

cnts a MRexperiment object.

norm logical indicating whether or not to return normalized counts.

Author(s)

Joseph N. Paulson, jpaulson@umiacs.umd.edu

```
data(lungData)
head(MRcounts(lungData))
```

MRexperiment 19

MRexperiment	Class "MRexperiment" – a modified eSet object for the data from high-
	throughput sequencing experiments

Description

This is the main class for metaR.

Objects from the Class

Objects should be created with calls to newMRexperiment.

Extends

Class eSet (package 'Biobase'), directly. Class VersionedBiobase (package 'Biobase'), by class "eSet", distance 2. Class Versioned (package 'Biobase'), by class "eSet", distance 3.

Methods

Class-specific methods.

[<sample>,<variable>: Subset operation, taking two arguments and indexing the sample and variable. Returns an MRexperiment object, including relevant metadata. Setting drop=TRUE generates an error. Subsetting the data, the experiment summary slot is repopulated and pData is repopulated after calling factor (removing levels not present).

Note

Note: This is a summary for reference. For an explanation of the actual usage, see the vignette.

MRexperiments are the main class in use by metaR. The class extends eSet and provides additional slots which are populated during the analysis pipeline.

MRexperiment dataset are created with calls to newMRexperiment. MRexperiment datasets contain raw count matrices (integers) accessible through counts. Similarly, normalized count matrices can be accessed (following normalization) through counts by calling norm=TRUE. Following an analysis, a matrix of posterior probabilities for counts is accessible through posterior.probs.

The normalization factors used in analysis can be recovered by normFactors, as can the library sizes of samples (depths of coverage), libSize.

Similarly to other RNASeq bioconductor packages available, the rows of the matrix correspond to a feature (be it OTU, species, gene, etc.) and each column an experimental sample. Pertinent clinical information and potential confounding factors are stored in the phenoData slot (accessed via pData).

To populate the various slots in an MR experiment several functions are run. 1) cumNormStat calculates the proper percentile to calculate normalization factors. The cumNormStat slot is populated. 2) cumNorm calculates the actual normalization factors using p = cumNormStat.

Other functions will place subsequent matrices (normalized counts (cumNormMat), posterior probabilities (posterior.probs))

As mentioned above, MRexperiment is derived from the virtual class, eSet and thereby has a phenoData slot which allows for sample annotation. In the phenoData data frame factors are stored. The normalization factors and library size information is stored in a slot called expSummary that is an annotated data frame and is repopulated for subsetted data.

20 MRfisher

Examples

```
# See vignette
```

MRfisher

Wrapper to run fisher's test on presence/absence of a feature.

Description

This function returns a data frame of p-values, odds ratios, lower and upper confidence limits for every row of a matrix.

Usage

```
MRfisher(obj,cl,mat=FALSE)
```

Arguments

obj A MRexperiment object with a count matrix, or a simple count matrix.

cl Group comparison

mat logical indicating whether obj is a MR experiment object or matrix. Default is a

MRexperiment object.

Value

NA

See Also

```
cumNorm fitZig
```

```
data(lungData)
k = grep("Extraction.Control",pData(lungData)$SampleType)
lungTrim = lungData[,-k]
lungTrim = lungTrim[-which(rowSums(MRcounts(lungTrim)>0)<20),]
res = MRfisher(lungTrim,pData(lungTrim)$SmokingStatus);
head(res)</pre>
```

MRfulltable 21

MRfulltable	Table of top microbial marker gene from linear model fit including sequence information
-------------	---

Description

Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma's topTable. This function differs from link{MRcoefs} in that it provides other information about the presence or absence of features to help ensure significant features called are moderately present.

Usage

MRfulltable(obj,by=2,coef=NULL,number=10,taxa=obj\$taxa,adjust.method="fdr",group=0,eff=0,outpu

Arguments

obj	A list containing the linear model fit produced by lmFit through fitZig.
by	Column number or column name specifying which coefficient or contrast of the linear model is of interest.
coef	Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.
number	The number of bacterial features to pick out.
taxa	Taxa list.
adjust.method	Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See p. adjust for more details.
group	One of three choices, 0,1,2. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order.
eff	Restrict samples to have at least eff quantile effective samples.
output	Name of output file, including location, to save the table.

Value

Table of the top-ranked features determined by the linear fit's coefficient.

See Also

fitZig MRcoefs MRtable MRfisher

```
data(lungData)
k = grep("Extraction.Control",pData(lungData)$SampleType)
lungTrim = lungData[,-k]
k = which(rowSums(MRcounts(lungTrim)>0)<10)
lungTrim = lungTrim[-k,]
cumNorm(lungTrim)
smokingStatus = pData(lungTrim)$SmokingStatus</pre>
```

22 MRtable

```
mod = model.matrix(~smokingStatus)
settings = zigControl(maxit=1,verbose=FALSE)
fit = fitZig(obj = lungTrim,mod=mod,control=settings)
head(MRfulltable(fit))
```

MRtable Table of top microbial marker gene from linear model fit including sequence information

Description

Extract a table of the top-ranked features from a linear model fit. This function will be updated soon to provide better flexibility similar to limma's topTable. This function differs from link{MRcoefs} in that it provides other information about the presence or absence of features to help ensure significant features called are moderately present.

Usage

 $\label{lem:matching} \mbox{MRtable(obj,by=2,coef=NULL,number=10,taxa=obj\$taxa,adjust.method="fdr",group=0,output=NULL)} \\$

Arguments

obj	A list containing the linear model fit produced by lmFit through fitZig.
by	Column number or column name specifying which coefficient or contrast of the linear model is of interest.
coef	Column number(s) or column name(s) specifying which coefficient or contrast of the linear model to display.
number	The number of bacterial features to pick out.
taxa	Taxa list.
adjust.method	Method to adjust p-values by. Default is "FDR". Options include "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none". See p. adjust for more details.
group	One of three choices, 0,1,2. 0: the sort is ordered by a decreasing absolute value coefficient fit. 1: the sort is ordered by the raw coefficient fit in decreasing order. 2: the sort is ordered by the raw coefficient fit in increasing order.
output	Name of output file, including location, to save the table.

Value

Table of the top-ranked features determined by the linear fit's coefficient.

See Also

```
fitZig MRcoefs
```

newMRexperiment 23

Examples

```
data(lungData)
k = grep("Extraction.Control",pData(lungData)$SampleType)
lungTrim = lungData[,-k]
k = which(rowSums(MRcounts(lungTrim)>0)<10)
lungTrim = lungTrim[-k,]
cumNorm(lungTrim)
smokingStatus = pData(lungTrim)$SmokingStatus
mod = model.matrix(~smokingStatus)
settings = zigControl(maxit=1,verbose=FALSE)
fit = fitZig(obj = lungTrim,mod=mod,control=settings)
head(MRtable(fit))</pre>
```

newMRexperiment

Create a MRexperiment object

Description

This function creates a MR experiment object from a matrix or data frame of count data.

Usage

```
newMRexperiment(counts, phenoData=NULL, featureData=NULL, libSize=NULL, normFactors=NULL)
```

Arguments

counts A matrix or data frame of count data. The count data is representative of the

number of reads annotated for a feature (be it gene, OTU, species, etc). Rows

should correspond to features and columns to samples.

phenoData An AnnotatedDataFrame with pertinent sample information. featureData An AnnotatedDataFrame with pertinent feature information.

libSize, library size, is the total number of reads for a particular sample.

normFactors normFactors, the normalization factors used in either the model or as scaling

factors of sample counts for each particular sample.

Details

See MRexperiment-class and eSet (from the Biobase package) for the meaning of the various slots.

Value

an object of class MRexperiment

Author(s)

Joseph N Paulson, jpaulson@umiacs.umd.edu

```
cnts = matrix(abs(rnorm(1000)),nc=10)
obj <- newMRexperiment(cnts)</pre>
```

24 plotCorr

normFactors	Access the normalization factors in a MRexperiment object

Description

Function to access the scaling factors, aka the normalization factors, of samples in a MR experiment object.

Usage

```
## S4 method for signature 'MRexperiment'
normFactors(obj)
```

Arguments

obj a MRexperiment object.

Author(s)

Joseph N. Paulson, jpaulson@umiacs.umd.edu

Examples

```
data(lungData)
cumNorm(lungData)
head(normFactors(lungData))
```

Basic correlation plot function for normalized or unnormalized counts.

Description

plotCorr

This function plots a heatmap of the "n" features with greatest variance across rows.

Usage

```
plotCorr(obj,n,log=TRUE,norm=TRUE,fun=cor,...)
```

Arguments

obj	A MRexperiment object with count data.
n	The number of features to plot
log	Whether or not to log transform the counts.
norm	Whether or not to normalize the counts.
fun	Function to calculate pair-wise relationships. Default is pearson correlation
	Additional plot arguments.

plotGenus 25

Value

NA

See Also

cumNormMat

Examples

```
data(mouseData)
trials = pData(mouseData)$diet
plotCorr(obj=mouseData,n=200,cexRow = 0.4,cexCol = 0.4,trace="none",dendrogram="none")
```

plotGenus

Basic plot function of the raw or normalized data.

Description

This function plots the abundance of a particular OTU by class. The function uses the estimated posterior probabilities to make technical zeros transparent.

Usage

```
plotGenus(obj, otuIndex, classIndex, norm = TRUE, no=1:length(otuIndex), jitter = TRUE, factor
pch = 21, ret = FALSE, ...)
```

Arguments

obj An MRexperiment object with count data.

otuIndex A list of the otus with the same annotation.

classIndex A list of the samples in their respective groups.

norm Whether or not to normalize the counts.

no Which of the otuIndex to plot.

factor Factor value for jitter

pch Standard pch value for the plot command.
jitter Boolean to jitter the count data or not.

ret Boolean to return the observed data that would have been plotted.

... Additional plot arguments.

Value

NA

See Also

cumNorm

26 plotMRheatmap

Examples

```
data(mouseData)
classIndex=list(controls=which(pData(mouseData)$diet=="BK"))
classIndex$cases=which(pData(mouseData)$diet=="Western")
otuIndex = grep("Strep",fData(mouseData)$fdata)
otuIndex=otuIndex[order(rowSums(MRcounts(mouseData)[otuIndex,]),decreasing=TRUE)]
plotGenus(mouseData,otuIndex,classIndex,xlab="OTU log-normalized counts",no=1:2,xaxt="n",norm=FALSE,ylab=":lablist<-rep(c("Controls","Cases"),times=2)
axis(1, at=seq(1,4,by=1), labels = lablist)</pre>
```

plotMRheatmap

Basic heatmap plot function for normalized counts.

Description

This function plots a heatmap of the "n" features with greatest variance across rows.

Usage

```
plotMRheatmap(obj,n,trials,log=TRUE,norm=TRUE,...)
```

Arguments

obj A MRexperiment object with count data.

n The number of features to plot

trials A vector of clinical information for.

log Whether or not to log transform the counts.

Whether or not to normalize the counts.

... Additional plot arguments.

Value

NA

norm

See Also

cumNormMat

```
data(mouseData)
trials = pData(mouseData)$diet
plotMRheatmap(obj=mouseData,n=200,trials=trials,cexRow = 0.4,cexCol = 0.4,trace="none")
```

plotOTU 27

plotOTU	Basic plot function of the raw or normalized data.

Description

This function plots the abundance of a particular OTU by class. The function uses the estimated posterior probabilities to make technical zeros transparent.

Usage

```
plotOTU(obj, otu, classIndex, norm = TRUE,
  factor = 1, pch = 21, jitter = TRUE, ret = FALSE, ...)
```

Arguments

obj A MRexperiment object with count data.

otu The row number/OTU to plot.

classIndex A list of the samples in their respective groups.

norm Whether or not to normalize the counts.

factor Factor value for jitter.

pch Standard pch value for the plot command.

jitter Boolean to jitter the count data or not.

ret Boolean to return the observed data that would have been plotted.

... Additional plot arguments.

Value

NA

See Also

cumNorm

```
data(mouseData)
classIndex=list(controls=which(pData(mouseData)$diet=="BK"))
classIndex$cases=which(pData(mouseData)$diet=="Western")
# you can specify whether or not to normalize, and to what level
plotOTU(mouseData,otu=9083,classIndex,xlab="OTU log-normalized counts",norm=FALSE,xaxt="n",main="9083 feature lablist<- c("Controls","Cases")
axis(1, at=seq(1,2,by=1), labels = lablist)</pre>
```

28 zigControl

posterior.probs

Access the posterior probabilities that results from analysis

Description

Accessing the posterior probabilities following a run through fitZig

Usage

```
## S4 method for signature 'MRexperiment'
posterior.probs(obj)
```

Arguments

obj

a MRexperiment object.

Author(s)

Joseph N. Paulson, jpaulson@umiacs.umd.edu

Examples

```
# see vignette
```

zigControl

Settings for the fitZig function

Description

Settings for the fitZig function

Usage

```
zigControl(tol = 1e-04, maxit = 10, verbose = TRUE)
```

Arguments

tol The tolerance for the difference in negative log likelihood estimates for a feature

to still be active.

maxit The maximum number of iterations for the expectation-maximization algorithm.

verbose Whether to display iterative step summary statistics or not.

Value

The value for the tolerance, maximum no. of iterations, and the verbose warning.

Note

```
fitZig makes use of zigControl.
```

zigControl 29

See Also

fitZig cumNorm plotOTU

```
control = zigControl(tol=1e-10,maxit=10,verbose=FALSE)
```

Index

```
[,MRexperiment-method (MRexperiment), 19
                                                  MRexperiment, 19
                                                  MRexperiment-class (MRexperiment), 19
aggregateM, 2
                                                  MRfisher, 20, 21
                                                  MRfulltable, 21
counts, 19
                                                  MRtable, 18, 21, 22
cumNorm, 3, 4, 7-9, 19, 20, 25, 27, 29
cumNormMat, 3, 19, 25, 26
                                                  newMRexperiment, 19, 23
cumNormStat, 3, 4, 19
                                                  normFactors, 19, 24
                                                  normFactors, MRexperiment-method
doCountMStep, 5
                                                           (normFactors), 24
doEStep, 6
doZeroMStep, 6
                                                  p.adjust, 17, 21, 22
                                                  phenoData (load_phenoData), 16
exportMat, 7
                                                  plotCorr, 24
exportMatrix (exportMat), 7
                                                  plotGenus, 25
exportStats, 8
                                                  plotMRheatmap, 26
expSummary, 8
                                                  plot0TU, 27, 29
expSummary,MRexperiment-method
                                                  posterior.probs, 19, 28
        (expSummary), 8
                                                  posterior.probs,MRexperiment-method
                                                           (posterior.probs), 28
fitZig, 3-7, 9, 10-14, 18, 20-22, 28, 29
                                                  qiimeLoader (load_metaQ), 15
genusPlot (plotGenus), 25
                                                  quantile, 8
getCountDensity, 10
getEpsilon, 11
                                                  settings (zigControl), 28
getNegativeLogLikelihoods, 11
                                                  zigControl, 9, 28
getPi, 12
getZ, 13
isItStillActive, 13
libSize, 14, 19
libSize,MRexperiment-method(libSize),
load_meta, 15, 15, 16
load_metaQ, 15
load_phenoData, 15, 16
lungData, 16
metagenomicLoader (load_meta), 15
mouseData, 17
MRcoefs, 17, 21, 22
MRcounts, 18
MRcounts, MRexperiment-method
        (MRcounts), 18
```