

Tuning Neural Networks - 2

One should look for what is and not what he thinks should be. (Albert Einstein)

/opt/conda/envs/python-r-course-test/bin/python:1: DeprecationWarning: `import kerastuner` is deprecated, please use `import keras_tuner`.

Tuning Neural Networks - 2

DATASOCIETY: © 2022

Module completion checklist

Objective	Complete
Tuning the model with Keras Tuner	
Accelerating NN training	

Define the tuner

- As discussed earlier, we add a hidden layer and set the number of neurons using Int
 type and set the minimum and maximum values respectively
- We add a couple of options to choose from using the Choice type of parameter for the activation function
- We then define the drop out layer in the similar way as the hidden layer

Define the tuner (cont'd)

- Similar to the activation function, we define the optimizer and the learning rate using the Choice parameter
- Upon defining all the layers, we add them to the model and then compile it

Define the tuner (cont'd)

- We will use the Random Search tuner which randomly samples the hyperparameter combinations based on our input and tests them to find the optimal combination
- Our objective is to achieve maximum validation accuracy using the optimal parameters
- max_trials represents the number of hyperparameter combinations that will be tested by the Random search tuner
- executions_per_trial represents the number of models that should be built and fit for each trial

```
MAX_TRIALS = 10
EXECUTIONS_PER_TRIAL = 5
tuner = RandomSearch(
   tune_model,
   objective = 'val_accuracy',
   max_trials = MAX_TRIALS,
   executions_per_trial = EXECUTIONS_PER_TRIAL,
   directory = 'final_tuned_model',
   project_name = 'final_tuned_model',
   seed = 1
)
```

View search space summary

 Once the tuner is setup, the search space can be checked using

```
search_space_summary()
```

```
tuner.search_space_summary()
```

Search space summary

|-Default search space size: 5

units (Int)

-default: None

|-max_value: 64

-min_value: 8

-sampling: None

-step: 8

activation (Choice)

-default: relu

-ordered: False

|-values: ['relu', 'tanh', 'sigmoid']

dropout_1 (Float)

-default: 0.25

|-max_value: 0.5

|-min_value: 0.

|-sampling: None

| |-step: 0.0

optimizer (Choice)

|-default: adam

|-ordered: False

-values: ['adam', 'sgd', 'rmsprop']

learning_rate (Choice)

-default: 0.01

|-ordered: True

|-values: [0.01, 0.001, 0.0001]

Fit the model

- We finally fit the model using the search function
- It takes the mandatory training data to fit the model and the validation data can be provided as an optional input
- The epochs parameter is used to define the number of training epochs for each hyperparameter combination

View the optimal parameters

 The get_best_trials function is used to get the dictionary of optimal hyperparameters

```
optimal_params = tuner.oracle.get_best_trials(num_trials=1)[0].hyperparameters.values optimal_params
```

```
{'units': 32,
  'activation': 'tanh',
  'dropout_1': 0.15,
  'optimizer': 'adam',
  'learning_rate': 0.01}
```

Define and compile optimized model

```
# Compile model.
model.compile(loss = 'binary_crossentropy', optimizer = optimizer, metrics = METRICS)
return model
```

Setup Neptune run for optimized model

Fit the optimized model

Evaluate optimized model on test data

```
tb_model.evaluate(X_test_scaled, y_test)
```

```
[0.44843247532844543, #<- loss
371.0, #<- tp
209.0, #<- fp
3282.0, #<- tn
638.0, #<- fn
0.8117777705192566, #<- accuracy
0.6396551728248596, #<- precision
0.367690771818161, #<- recall
0.7587265968322754] #<- auc
```

 We can see that validation accuracy of the optimized model seems to be higher than the baseline model

```
run.stop()

Shutting down background jobs, please wait a moment...
Done!
```

12

Module completion checklist

Objective	Complete
Tuning the model with Keras Tuner	
Accelerating NN training	

Processing speed

- Recent advances in deep learning have made the use of large, deep neural networks with tens of millions of parameters suitable for a number of applications that require real-time processing
- The sheer size of these networks can represent a challenging computational burden, even for modern central processing units (CPUs).
- Let's look at the types of processors that are available that can help us speed up computation: the TPU and the GPU

Graphics processing unit

- A graphics processing unit (GPU) is an electronic circuit specially designed to process graphics such as images and video
- Using a GPU can help speed up computation
- It breaks complex problems into thousands of smaller tasks and executes them simultaneously
- It's more suitable than a CPU for processing large blocks of data and thousands of tasks in parallel
- GPUs are used in video game consoles, mobile phones, embedded systems, etc.

CPU vs GPU? Which one to use when?

~~CPU (Central Processing Unit): ~~

- Ideal for general-purpose applications
- Composed of just a few cores
- Can handle a few software threads at a time
- Can run small models with small batch sizes

~~GPU (Graphics Processing Unit): ~~

- More suited for specialized applications
- Composed of hundreds of cores
- Can handle thousands of threads simultaneously
- Can run medium to large models with larger batch sizes

16

CPU vs GPU? Which one to use when? (cont'd)

Source: Nvidia blog

Tensor processing unit

- A tensor processing unit (TPU) is Google's custom-developed application-specific integrated circuit (ASIC)
- It's specifically designed for Google's TensorFlow framework
- Using a TPU can accelerate the training of complex neural networks as it's very fast at performing vector and matrix computations
- Models that train for weeks or months converge in hours on TPUs
- TPU is available in Google Colab when run on a remote host

Cloud TPU

- The Cloud TPU family of products make the benefits of TPUs available via cloud computing resources
- With Cloud TPUs you can:
 - accelerate machine learning applications
 - scale your applications quickly
 - cost-effectively manage your machine learning workloads
 - start with well-optimized, open source reference models
- Check the Google Cloud website, which is available at this link
- The site will explain how to set up a Google Cloud environment and configure a custom TPU machine. The link also provides steps to train a model on Cloud TPU

Comparing CPU, GPU, & TPU

- Several cloud infrastructures provide the flexibility to select the hardware of your choice before runtime
- If you have access to Google Colab, you can try out all three-a CPU, a GPU, and a TPU
 - Open your Google account by going to http://drive.google.com in your web browser
 - Click on the app menu icon (the dots in the upper-right corner next to the logo) and scroll down to the bottom and click on More from G Suite Marketplace
 - Search for Colaboratory and install

Comparing CPU, GPU, & TPU

Upload a Jupyter notebook (*.ipynb) to open with Colab

Comparing CPU, GPU, & TPU

- Open Jupyter notebook within Colab
- Go to Runtime and click on

Change runtime type

 Select the hardware accelerator you want to run your code in and compare the results

Distributed training in TensorFlow

- We can also speed up processing by distributing a large dataset or large model over multiple machines
- TensorFlow comes with a module named tf.distribute.Strategy that can distribute training across multiple GPUs, machines, or TPUs
- Using this API, you can distribute your existing models and training code with minimal code changes

Strategies

- tf.distribute.Strategy lets you choose from various types of strategies for different situations
- The hardware platform strategy, for example, enables you to scale training onto:
 - multiple GPUs on one machine
 - multiple machines in a network (a.k.a. cluster)
 - cloud TPUs

You can read more about distributed training with TensorFlow using this link

Knowledge check

Link: https://forms.gle/AXYwutd8vSGx7NRe8

Exercise

Module completion checklist

Objective	Complete
Tuning the model with Keras Tuner	
Accelerating NN training	

Tuning Neural Networks: Topic summary

In this part of the course, we have covered:

- Visualize model performance using Neptune
- Performance tuning and keras Tuner
- Accelerating NN training

Congratulations on completing this module!

