Avoiding irreversibility: resonant conversion of quantum resources

arXiv:1809.07778

arXiv:1810.02366

<u>Kamil Korzekwa</u>¹, Christopher Chubb¹, Marco Tomamichel²

¹ Centre for Engineered Quantum Systems, The University of Sydney ² Centre for Quantum Software and Information University of Technology Sydney

Background

Quantum resources

Motivation: Quantum resources, such as entanglement and coherence, are crucial components of emerging quantum technologies.

Goal: To understand the potential and limitations of manipulating and interconverting quantum resources.

Framework: Resource-theoretic ordering of quantum states.

Interconversion regimes

Asymptotic analysis not suitable for:

- Near-future quantum technologies (limited resources)
- Studying quantum effects beyond the thermodynamic limit

Optimal resource interconversion

Setting the scene

Technical goal: Find the optimal trade-off between the rate R_n and transformation error ϵ_n (infidelity between the final and target states).

Initial and final states represented by probability vectors \boldsymbol{p} and \boldsymbol{q}

Resource theory	Initial state	Final state
Entanglement (pure bipartite states)	$ \Psi\rangle = \sum_{j} \sqrt{p_j} \psi_j\rangle \otimes \psi_j'\rangle$	$ \Phi\rangle = \sum_{j} \sqrt{q_j} \phi_j\rangle \otimes \phi_j'\rangle$
Coherence (pure states)	$ \psi\rangle = \sum_{j} \sqrt{p_j} e^{i\alpha_j} j\rangle$	$ \phi\rangle = \sum_{j} \sqrt{q_j} e^{i\beta_j} j\rangle$
Thermodynamics (energy incoherent states)	$\rho = \sum_{j} p_{j} E_{j}\rangle\langle E_{j} $	$\sigma = \sum_{j} q_{j} E_{j}\rangle\langle E_{j} $

Relevant information-theoretic quantities

$$H(\mathbf{p}) = -\sum_{j} p_{j} \ln p_{j}$$

$$D(\mathbf{p}||\mathbf{q}) = \sum_{j} p_{j} \ln \frac{p_{j}}{q_{j}}$$

$$V(\mathbf{p}) = \sum_{j} p_{j} [\ln p_{j} + H(\mathbf{p})]^{2}$$

$$V(\mathbf{p}||\mathbf{q}) = \sum_{j} p_{j} \left[\ln \frac{p_{j}}{q_{j}} - D(\mathbf{p}||\mathbf{q}) \right]^{2}$$

$$Z = \sum_{j} e^{-\frac{E_{j}}{k_{B}T}}$$

Results

Vanishing error: $\epsilon_n = \exp(-nt_n^2)$, $t_n \sim n^{-\alpha}$ with $\alpha \in (0, 1/2)$

$$R_n^{\mathrm{ent}}(\epsilon_n) \simeq R_{\infty}^{\mathrm{ent}} - \sqrt{\frac{2V(\boldsymbol{p})}{H(\boldsymbol{q})^2}} |1 - 1/\sqrt{\nu^{\mathrm{ent}}}| t_n$$

 $R_n^{\mathrm{th}}(\epsilon_n) \simeq R_\infty^{\mathrm{th}} - \sqrt{\frac{2V(\boldsymbol{p}||\boldsymbol{\gamma})}{D(\boldsymbol{q}||\boldsymbol{\gamma})^2}} |1 - 1/\sqrt{\nu^{\mathrm{th}}}|t_n|$

 $R_{\infty}^{\mathrm{ent}} = \frac{H(\boldsymbol{p})}{H(\boldsymbol{q})}$

$$u^{\text{ent}} = \frac{V(\boldsymbol{p})/H(\boldsymbol{p})}{V(\boldsymbol{q})/H(\boldsymbol{q})}$$

$$R_{\infty}^{ ext{th}} = \frac{D(\boldsymbol{p}||\boldsymbol{\gamma})}{D(\boldsymbol{q}||\boldsymbol{\gamma})}$$

$$u^{ ext{th}} = rac{V(oldsymbol{p}||oldsymbol{\gamma})/D(oldsymbol{p}||oldsymbol{\gamma})}{V(oldsymbol{q}||oldsymbol{\gamma})/D(oldsymbol{q}||oldsymbol{\gamma})}$$

 R_{∞} - Asymptotic rate, ν - Irreversibility parameter

Resource resonance

Entanglement transformations

Tuning resources to resonance

 $|\Psi_1\rangle^{\otimes \lambda n}\otimes |\Psi_2\rangle^{\otimes (1-\lambda)n} \xrightarrow{\mathrm{LOCC}} |\Phi\rangle^{\otimes n}$

 $|\Psi_1\rangle$, $|\Psi_2\rangle$: same $H(\boldsymbol{p})$, different $V(\boldsymbol{p})$ Different colours: $n \in \{5, 10, \dots, 30\}$

Approaching reversibility

 $|\Psi_i\rangle^{\otimes n} \xrightarrow{\text{LOCC}} |\Phi\rangle^{\otimes R_n^{\text{ent}}n}$

Constraint: $\epsilon < 0.01$

Thermodynamic work extraction

Optimal fraction of Carnot efficiency Infidelity in work extraction with 95% Carnot efficiency with quality $\epsilon < 0.001$ 0.6 $T_{c'}$ 10^{-3} 0.75 $rac{k_B}{\Delta E}$ 0.4Predicted Predicted position of the position of the resonance resonance 10^{-1} ≤ 0.5 0.20.40.60.80.40.80.6 $\frac{k_B}{\Delta E} \cdot T_c$ $\frac{k_B}{\Delta E} \cdot T_c$

Working body: n=200 non-interacting qubits with energy gap ΔE Initial temperature T_c , final temperature $T_{c'}$

Heat bath: $T_h = 10\Delta E/k_B$