University of Engineering and Technology - TurboDB (22-23) Notebook

Mục lục

1	Flow	and Matching 1
	1.1	Maximum Flow (Dinic)
	1.2	Dinic (Template by Tran Khoi Nguyen)
	1.3	Min Cut (Template by Tran Khoi Nguyen)
	1.4	Maximum Matching (HopCroft - Karp)
	1.5	Maximum Matching (Template by Tran Khoi Nguyen)
	1.6	Maximum Matching $(O(n^2))$
	1.7	Min Cost Flow
	1.8	Min Cost Flow (Template by Tran Khoi Nguyen)
2	Geo	metry 6
	2.1	Pick's Theorem
	2.2	Smallest Circle - Emo Welzl (Contain all points)
	2.3	Closest pair of points in set
	2.4	Manhattan MST
3	Nun	nerical algorithms 8
	3.1	SQRT For Loop
	3.2	Rabin Miller - Prime Checker
	3.3	Chinese Remain Theorem
	3.4	Pollard Rho - Factorialize
	3.5	FFT
	3.6	FFT (Mod 998244353)
	3.7	FFT Mod (Template by Tran Khoi Nguyen)
	3.8	Count Primes
	3.9	Interpolation (Mod a prime)
	3.10	Bignum
	3.11	Bignum with FFT multiplication
	3.12	Tonelli Shanks (Find square root modulo prime)
	3.13 3.14	Discrete Logarithm (Find x that $a^x \equiv b \pmod{m}$)
	3.14	Discrete Root (Find x that $x^k \equiv a \pmod{n}$, n is a prime)
	3.16	Super Sieve of Primes (Code by RR)
4	Graj	ph algorithms 16
	4.1	Twosat (2-SAT)
	4.2	Eulerian Path
	4.3	Biconnected Component Tree
	4.4	Heavy Light Decomposition (Template by Tran Khoi Nguyen)
	4.5	Check Odd Circle With DSU (Template by Tran Khoi Nguyen)
5	Stri	ng 18
	5.1	Palindrome Tree
	5.2	Suffix Array
	5.3	Suffix Array (Template by Tran Khoi Nguyen)
	5.4	Aho Corasick - Extended KMP
	5.5	Aho Corasick (Template by Tran Khoi Nguyen)
	5.6	Suffix Tree (Template by Tran Khoi Nguyen)
	5.7	Z Function
6		a structures 21
	6.1	Ordered Set
	6.2	Fenwick Tree (With Walk on tree)
	6.3	Convex Hull Trick (Min)
	6.4	Dynamic Convex Hull Trick (Min)
	6.5 6.6	SPlay Tree
	6.6	Hashing (Template by Tran Khoi Nguyen)
	3.1	Dil 2D (Templace by Tran Khoi Nguyen)

1 Flow and Matching

1.1 Maximum Flow (Dinic)

```
// In case we need to find Maximum flow of network with both minimum capacity and maximum capacity,
       let s* and t* be virtual source and virtual sink.
Then, each edge (u->v) with lower cap 1 and upper cap r will be changed in to 3 edge:
- u->v whit capacity r-1
- u->t* with capacity 1
- s \star -> v with capacity 1
// We need add one other edge t->s with capacity Inf
// Maximum Flow on original graph is the Maximum Flow on new graph: s*->t*
    int u, v;
    11 c;
    Edge() {}
    Edge(int u, int v, 11 c)
        this \rightarrow u = u;
         this->v = v;
         this->c = c;
};
struct Dinic
    const 11 Inf = 1e17;
    vector<vector<int>> adj;
    vector<vector<int>::iterator> cur;
    vector<Edge> s;
    vector<int> h;
    int sink, t;
    int n:
    Dinic(int n)
         this->n = n;
        adj.resize(n + 1);
        h.resize(n + 1);
         cur.resize(n + 1);
         s.reserve(n);
    void AddEdge(int u, int v, ll c)
         s.emplace_back(u, v, c);
         adj[u].push_back(s.size() - 1);
         s.emplace_back(v, u, 0);
         adj[v].push_back(s.size() - 1);
    bool BFS()
         fill(h.begin(), h.end(), n + 2);
         queue<int> pq;
        h[t] = 0;
pq.emplace(t);
         while (pq.size())
             int c = pq.front();
             for (auto i : adj[c])
   if (h[s[i ^ 1].u] == n + 2 && s[i ^ 1].c != 0)
                      h[s[i ^ 1].u] = h[c] + 1;
if (s[i ^ 1].u == sink)
                          return true;
                      pq.emplace(s[i ^ 1].u);
         return false;
    11 DFS(int v, 11 flowin)
            return flowin;
         11 flowout = 0;
for (; cur[v] != adj[v].end(); ++cur[v])
             int i = *cur[v];
if (h[s[i].v] + 1 != h[v] || s[i].c == 0)
                 continue;
             11 q = DFS(s[i].v, min(flowin, s[i].c));
flowout += q;
             if (flowin != Inf)
```

```
flowin -= q;
    s[i].c -= q;
    s[i ^ 1].c += q;
    if (flowin == 0)
        break;
}
return flowout;
}
void BlockFlow(l1 &flow)
{
    for (int i = 1; i <= n; ++i)
        cur[i] = adj[i].begin();
        flow += DFS(sink, Inf);
}
ll MaxFlow(int s, int t)
{
    this->sink = s;
    this->t = t;
    ll flow = 0;
    while (BFS())
        BlockFlow(flow);
    return flow;
};
```

1.2 Dinic (Template by Tran Khoi Nguyen)

```
struct Edge
    int u, v;
    11 cap, flow;
    Edge() {}
    Edge(int u, int v, 11 cap) : u(u), v(v), cap(cap), flow(0) {}
struct Dinic
    int N:
    vector<Edge> E:
   vector<vector<int>> g:
   vector<int> d, pt;
    map<11, map<11, 11>> mp;
    Dinic(int N) : N(N), E(0), g(N), d(N), pt(N) {}
    void AddEdge(int u, int v, 11 cap)
        if (u != v)
            E.emplace_back(u, v, cap);
            g[u].emplace_back(E.size() - 1);
            E.emplace_back(v, u, 0);
            g[v].emplace_back(E.size() - 1);
    bool BFS(int S, int T)
        queue<int> q({S});
        fill(d.begin(), d.end(), N + 1);
        while (!q.empty())
            int u = q.front();
            q.pop();
            if (u == T)
               break:
            for (int k : g[u])
                Edge &e = E[k];
               if (e.flow < e.cap && d[e.v] > d[e.u] + 1)
                    d[e.v] = d[e.u] + 1;
                    q.emplace(e.v);
        return d[T] != N + 1;
    11 DFS(int u, int T, 11 flow = -1)
        if (u == T || flow == 0)
           return flow:
        for (int &i = pt[u]; i < g[u].size(); ++i)</pre>
            Edge &e = E[g[u][i]];
            Edge &oe = E[g[u][i] ^ 1];
```

```
if (d[e.v] == d[e.u] + 1)
                11 amt = e.cap - e.flow;
                if (flow !=-1 && amt > flow)
                if (11 pushed = DFS(e.v, T, amt))
                    e.flow += pushed;
                    oe.flow -= pushed;
                    return pushed;
        return 0:
    11 MaxFlow(int S, int T)
        11 total = 0:
        while (BFS(S, T))
            fill(pt.begin(), pt.end(), 0);
            while (11 flow = DFS(S, T))
               total += flow:
        return total:
};
```

1.3 Min Cut (Template by Tran Khoi Nguyen)

```
typedef long long LL;
struct Edge
    int u, v;
    LL cap, flow;
    Edge() {}
    Edge(int u, int v, LL cap) : u(u), v(v), cap(cap), flow(0) {}
};
bool chk[maxn];
vector<pll> mincut;
struct Dinic
    vector<Edge> E;
    vector<vector<int>> g;
    vector<int> d, pt;
    \label{eq:definition} \mbox{Dinic(int N)} \; : \; N \, (N) \, , \; E \, (0) \, , \; g \, (N) \, , \; d \, (N) \, , \; pt \, (N) \; \; \{ \, \}
    void AddEdge(int u, int v, LL cap)
         // cout <<u<<" "<<v<" "<<cap<<endl;
        if (u != v)
             E.emplace_back(u, v, cap);
             g[u].emplace_back(E.size() - 1);
             E.emplace_back(v, u, 0);
             g[v].emplace_back(E.size() - 1);
    bool BFS(int S, int T)
         queue<int> q({S});
        fill(d.begin(), d.end(), N + 1);
        d[S] = 0:
        while (!q.empty())
             int u = q.front();
             q.pop();
                 break;
             for (int k : g[u])
                 Edge &e = E[k];
                 if (e.flow < e.cap && d[e.v] > d[e.u] + 1)
                      d[e.v] = d[e.u] + 1;
                      q.emplace(e.v);
        return d[T] != N + 1;
```

```
LL DFS(int u, int T, LL flow = -1)
    if (u == T || flow == 0)
        return flow;
    for (int &i = pt[u]; i < g[u].size(); ++i)</pre>
        Edge &e = E[g[u][i]];
Edge &oe = E[g[u][i] ^ 1];
        if (d[e.v] == d[e.u] + 1)
             LL amt = e.cap - e.flow;
if (flow != -1 && amt > flow)
                 amt = flow;
             if (LL pushed = DFS(e.v, T, amt))
                 e.flow += pushed;
                 oe.flow -= pushed;
                 return pushed;
    return 0:
void dfs1(ll u)
    // cout <<u<<endl:
    chk[u] = 1;
    for (int k : g[u])
        Edge e = E[k];
        if (e.cap - e.flow > 0)
             11 nxt = e.v;
             if (!chk[nxt])
                 dfs1(nxt);
void find_mincut(ll S)
    dfs1(S);
    for (int i = 0; i < E.size(); i += 2)</pre>
        auto p = E[i];
        if (chk[p.u] && !chk[p.v])
             mincut.pb(make_pair(p.u, p.v));
LL MaxFlow(int S, int T)
    LL total = 0:
    while (BFS(S, T))
        fill(pt.begin(), pt.end(), 0);
while (LL flow = DFS(S, T))
             total += flow;
    return total;
```

1.4 Maximum Matching (HopCroft - Karp)

```
S.reserve(nx);
        h.resize(ny + 5);
        adj.resize(nx + 5);
        match.resize(ny + 5, NoMatch);
        for (int i = 1; i <= nx; ++i)</pre>
            adj[i].clear();
        S.clear();
        fill(match.begin(), match.end(), NoMatch);
    void AddEdge(int x, int y)
        adj[x].emplace_back(y);
        fill(h.begin(), h.end(), 0);
        queue<int> q;
        for (auto x : S)
            for (auto i : adj[x])
                if (h[i] == 0)
                    q.emplace(i);
                    h[i] = 1;
        while (q.size())
            int x, ypop = q.front();
            q.pop();
            if ((x = match[ypop]) == NoMatch)
                return true;
            for (auto i : adj[x])
                if (h[i] == 0)
                    h[i] = h[ypop] + 1;
                    q.emplace(i);
        return false;
    void dfs(int v, int lv)
        for (auto i : adj[v])
            if (h[i] == 1v + 1)
                if (match[i] == NoMatch)
                    found = 1;
                else
                    dfs(match[i], lv + 1);
                if (found)
                    match[i] = v;
                    return:
    int MaxMatch()
        int ans(0);
        for (int i = 1; i <= nx; ++i)
             S.emplace_back(i);
        while (BFS())
            for (int i = S.size() - 1; \sim i; --i)
                found = 0;
                dfs(S[i], 0);
                if (found)
                    ++ans;
                    S[i] = S.back();
                    S.pop_back();
        return ans;
};
```

1.5 Maximum Matching (Template by Tran Khoi Nguyen)

```
struct bipartite_graph
{
   int nx, ny;
```

```
vector<int> match, x_not_matched;
    vector<int> level;
    bool found;
    void init(int _nx, int _ny)
         ny = _ny;
         gr.assign(nx, vector<int>());
         x not matched.resize(nx);
        for (int i = 0; i < nx; ++i)
    x_not_matched[i] = i;</pre>
         match.assign(ny, -1);
         level.resize(ny);
    void add_edge(int x, int y)
         gr[x].push_back(y);
    bool bfs()
         fill(level.begin(), level.end(), 0);
         queue<int> q;
         for (auto &x : x_not_matched)
             for (auto &y : gr[x])
   if (level[y] == 0)
                      q.push(y);
         while (!q.empty())
             int ypop = q.front();
             q.pop();
             int x = match[ypop];
if (x == -1)
                 return true;
             for (auto &y : gr[x])
    if (level[y] == 0)
                      level[y] = level[ypop] + 1;
                      q.push(y);
         return false;
    void dfs(int x, int lv)
        for (auto &y : gr[x])
   if (level[y] == lv + 1)
                 level[y] = 0;
if (match[y] == -1)
                      found = true;
                      dfs(match[y], lv + 1);
                  if (found)
                      match[y] = x;
                      return;
    int max_matching()
         int res = 0;
         while (bfs())
             for (int i = sz(x_not_matched) - 1; i >= 0; --i)
                  found = false;
                  dfs(x_not_matched[i], 0);
                  if (found)
                      x_not_matched[i] = x_not_matched.back();
                      x_not_matched.pop_back();
         return res;
} man;
```

vector<vector<int>> gr;

1.6 Maximum Matching $(O(n^2))$

```
// start from 1
struct Maximum_matching
    int nx, ny, t;
vector<int> Visited, match;
    vector<vector<int>> a;
    Maximum_matching(int nx = 0, int ny = 0)
        Assign(nx, ny);
    void Assign(int nx, int ny)
        this->nx = nx;
        this->ny = ny;
        t = 0;
        Visited.assign(nx + 5, 0);
        match.assign(ny + 5, 0);
        a.resize(nx + 5, {});
    void AddEdge(int x, int y)
        a[x].emplace_back(y);
    bool visit(int u)
        if (Visited[u] != t)
            Visited[u] = t;
            return false;
        for (int i = 0; i < a[u].size(); i++)</pre>
            int v = a[u][i];
            if (!match[v] || visit(match[v]))
                match[v] = u;
                return true;
        return false;
    int MaxMatch()
        int ans(0);
        for (int i = 1; i <= nx; i++)
            ans += visit(i);
        return ans;
};
```

1.7 Min Cost Flow

```
struct Edge
{
    int u, v;
    ill c, w;
    Edge(const int &u, const int &v, const ll &c, const ll &w) : u(u), v(v), c(c), w(w) {}
};
struct MaxFlowMinCost
{
    const ll Inf = le17;
    int n, source, sink;
    vector<ll> d;
    vector<int> par;
    vector<bod> inqueue;
    vector<bdd>;
    vector<bdd>;
    s;
    vector<bdd>;
    s;
    vector<bdd>;
    s;
    vector<bdd>;
    s;
    vector<bdd>;
    s,
    vector<bdd>;
    vector<bdd>;
    s,
    vector<bdd>;
    s,
    vector<bdd>;
    vector<bdd>;
    s,
    vector<bdd>;
    vecto
```

```
d.resize(n + 5);
    inqueue.resize(n + 5);
    par resize(n + 5);
    adj.resize(n + 5);
void AddEdge(int u, int v, 11 c, 11 w)
    s.emplace_back(u, v, c, w);
    adj[u].emplace_back(s.size() - 1);
    s.emplace_back(v, u, 0, -w);
    adj[v].emplace_back(s.size() - 1);
bool SPFA()
    fill(d.begin(), d.end(), Inf);
    fill(par.begin(), par.end(), s.size());
    fill(inqueue.begin(), inqueue.end(), 0);
    queue<int> q;
    q.emplace(sink);
    inqueue[sink] = 1;
    while (q.size())
        int c = q.front();
        inqueue[c] = 0;
        q.pop();
        for (auto i : adj[c])
    if (s[i ^ 1].c > 0 && d[s[i].v] > d[c] + s[i ^ 1].w)
                par[s[i].v] = i ^ 1;
                d[s[i].v] = d[c] + s[i ^ 1].w;
                if (!inqueue[s[i].v])
                     q.emplace(s[i].v);
                     inqueue[s[i].v] = 1;
    return (d[source] < Inf);</pre>
pair<11, 11> MaxFlow(int so, int t, 11 k)
    sink = t;
    11 Flow(0), cost(0);
    while (k && SPFA())
        11 q(Inf);
        while (v != sink)
            q = min(q, s[par[v]].c);
            v = s[par[v]].v;
        q = min(q, k);
        cost += d[source] * q;
        Flow += q;
        k -= q;
        while (v != sink)
            s[par[v]].c -= q;
s[par[v] ^ 1].c += q;
            v = s[par[v]].v;
    return {Flow, cost};
```

1.8 Min Cost Flow (Template by Tran Khoi Nguyen)

};

```
inline void amax(T &x, const T &y)
   if (x < y)
       x = y;
typedef vector<int> VI;
typedef ll Flow;
typedef 11 Cost;
const Flow FLOW_INF = 1LL << 60;</pre>
const Cost COST_INF = 1LL << 60;</pre>
const int SIZE = 65;
vector<pair<Cost, int>> B[SIZE];
Cost last:
int sz:
int bsr(Cost c)
   if (c == 0)
       return 0;
   return __lg(c) + 1;
void init()
   last = sz = 0;
   REP(i, SIZE)
   B[i].clear():
void push(Cost cst, int v)
   assert(cst >= last);
   B[bsr(cst ^ last)].emplace_back(cst, v);
pair<Cost, int> pop_min()
   assert(sz);
   if (B[0].empty())
        int k = 1;
        while (k < SIZE && B[k].empty())</pre>
          k++;
        assert(k < SIZE);
        last = B[k][0].first;
        EACH(e, B[k])
        amin(last, e->first);
        EACH(e, B[k])
        B[bsr(e->first ^ last)].push_back(*e);
       B[k].clear();
   assert(B[0].size());
   pair<Cost, int> ret = B[0].back();
   B[0].pop_back();
   sz--:
   return ret;
struct MinCostMaxFlow
   struct Edge
        Cost cst;
       Flow cap;
       int rev;
   typedef vector<vector<Edge>> Graph;
   Graph G;
   bool negative edge;
   MinCostMaxFlow(int N) : G(N)
        negative_edge = false;
    void add_edge(int u, int v, Cost x, Flow f)
        if (u == v)
            return;
        if (x < 0)
            negative edge = true;
        G[u].push_back((Edge){
            v, x, f, (int)G[v].size()});
        G[v].push_back((Edge){
            u, -x, 0, (int)G[u].size() - 1});
   void bellman_ford(int s, vector<Cost> &h)
        fill(h.begin(), h.end(), COST_INF);
```

```
vector<bool> in(G.size());
    h[s] = 0;
    in[s] = true;
    VI front, back;
    front push_back(s);
    while (1)
        if (front.empty())
            if (back.empty())
                return;
            swap(front, back);
            reverse(front.begin(), front.end());
        int v = front.back():
        front.pop_back();
        in[v] = false;
        EACH(e, G[v])
        if (e->cap)
            int w = e->dst;
            if (h[w] > h[v] + e \rightarrow cst)
                h[w] = h[v] + e \rightarrow cst;
                if (!in[w])
                    back.push back(w):
                    in[w] = true;
       }
Flow flow;
Cost cost;
Flow solve(int s, int t, Flow limit = FLOW_INF)
    flow = 0;
    cost = 0;
    vector<Cost> len(G.size()), h(G.size());
    if (negative edge)
       bellman_ford(s, h);
    vector<int> prev(G.size()), prev_num(G.size());
    while (limit > 0)
        fill(len.begin(), len.end(), COST_INF);
        fill(prev.begin(), prev.end(), -1);
        len[s] = 0;
        while (sz)
            pair<Cost, int> p = pop_min();
            Cost cst = p.first;
            int v = p.second;
            if (cst > len[v])
                continue;
            for (int i = 0; i < (int)G[v].size(); i++)</pre>
                const Edge &f = G[v][i];
                Cost tmp = len[v] + f.cst + h[v] - h[f.dst];
                if (f.cap > 0 && len[f.dst] > tmp)
                    len[f.dst] = tmp;
                    push(tmp, f.dst);
                    prev[f.dst] = v;
                    prev_num[f.dst] = i;
        if (prev[t] == -1)
           return flow;
        for (int i = 0; i < (int)G.size(); i++)</pre>
           h[i] += len[i];
        Flow f = limit;
        for (int v = t; v != s; v = prev[v])
            f = min(f, G[prev[v]][prev_num[v]].cap);
        for (int v = t; v != s; v = prev[v])
            Edge &e = G[prev[v]][prev_num[v]];
            e.cap -= f:
            G[e.dst][e.rev].cap += f;
        limit -= f;
        flow += f;
        cost += f * h[t];
    return flow;
```

```
}
};
};
using MinCostMaxFlow = MIN_COST_MAX_FLOW::MinCostMaxFlow;
```

2 Geometry

2.1 Pick's Theorem

#include <bits/stdc++.h>

```
Given a certain lattice polygon (all its vertices have integer coordinates in some 2D grid) with non-
zero area.

We denote its area by $S$, the number of points with integer coordinates lying strictly inside the
polygon by $I$ and the number of points lying on polygon sides by $B$.

Then, the Pick's formula states:

\begin{center}
$S=I+ \frac{18}{2} - 1$
\end{center}
```

2.2 Smallest Circle - Emo Welzl (Contain all points)

```
using namespace std;
using ld = double;
typedef pair<ld, ld> point;
typedef pair<point, ld> circle;
#define X first
#define Y second
// Remember to change size of set points
// All point must be save in array a[] below
namespace emowelzl
    const int N = 100005; // Size of set points
    int n;
    point operator+(point a, point b)
        return point(a.X + b.X, a.Y + b.Y);
    point operator-(point a, point b) { return point(a.X - b.X, a.Y - b.Y); }
point operator/(point a, ld x) { return point(a.X / x, a.Y / x); }
    ld abs(point a) { return sqrt(a.X * a.X + a.Y * a.Y); }
    point center_from(ld bx, ld by, ld cx, ld cy)
        ld B = bx * bx + by * by, C = cx * cx + cy * cy, D = bx * cy - by * cx;
        return point ((cy * B - by * C) / (2 * D), (bx * C - cx * B) / (2 * D));
    circle circle_from(point A, point B, point C)
        point I = center_from(B.X - A.X, B.Y - A.Y, C.X - A.X, C.Y - A.Y);
        return circle(I + A, abs(I));
    circle f(int n, vector<point> T)
        if (T.size() == 3 || n == 0)
             if (T.size() == 0)
                 return circle(point(0, 0), -1);
             if (T.size() == 1)
                 return circle(T[0], 0);
             if (T.size() == 2)
                 return circle((T[0] + T[1]) / 2, abs(T[0] - T[1]) / 2);
             return circle_from(T[0], T[1], T[2]);
        random_shuffle(a + 1, a + n + 1);
circle Result = f(0, T);
        for (int i = 1; i <= n; i++)
            if (abs(Result.X - a[i]) > Result.Y + 1e-9)
                 T.push_back(a[i]);
```

2.3 Closest pair of points in set

```
// Find pair of points that have closest distance
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <iomanip>
#include <cmath>
#include <vector>
using namespace std;
using 11 = long long;
using ld = long double;
const int N = 5e4 + 2;
const 11 Inf = 1e17;
#define sq(x) ((x) * (x))
struct Point
    int id:
    Point (const 11 &x = 0, const 11 &y = 0) : x(x), y(y) {}
    Point operator-(const Point &a) const
        return Point(x - a.x, y - a.y);
    11 len()
        return x * x + y * y;
};
namespace ClosestPoint
    int n, xa, ya;
    ll ans:
    Point a[N];
    11 Bruteforce(int 1, int r)
        for (; 1 < r; ++1)
            for (int i = 1 + 1; i <= r; ++i)
                if (ans > (a[1] - a[i]).len())
                     ans = (a[1] - a[i]).len();
                     xa = a[1].id:
                     ya = a[i].id;
        return ans:
    void Brute(vector<int> &s)
        sort(s.begin(), s.end(), [&](const int &x, const int &y)
              { return a[x].y < a[y].y; });
        for (int i = 0; i < s.size(); ++i)</pre>
            for (int j = i + 1; j < s.size() && sq(abs(a[s[i]].y - a[s[j]].y)) <= ans; ++j)
   if (ans > (a[s[i]] - a[s[j]]).len())
                     ans = (a[s[i]] - a[s[j]]).len();
xa = a[s[i]].id;
                     ya = a[s[j]].id;
```

```
void DAC(int 1, int r)
        if (r - 1 \le 3)
            Bruteforce(1, r);
        int mid = (1 + r) / 2;
        DAC(1, mid);
        DAC(mid + 1, r);
        vector<int> s;
        for (int i = 1; i <= r; ++i)
           if (sq(a[i].x - a[mid].x) <= ans)
                s.push_back(i);
        Brute(s);
    void calc()
        sort(a + 1, a + n + 1, [&] (const Point &a, const Point &b)
             { return a.x < b.x || (a.x == b.x && a.y < b.y); });
        ans = Inf:
        DAC(1, n);
        if (xa > ya)
           swap(xa, ya);
        cout << xa << " " << ya << "\n";
        cout << fixed << setprecision(6) << sqrt((ld)ans);</pre>
};
Point a[N];
int n;
void Read()
    cin >> n:
   for (int i = 1; i <= n; ++i)
       cin >> a[i].x >> a[i].y;
       a[i].id = i;
void Solve()
    ClosestPoint::n = n;
    for (int i = 1; i \le n; ++i)
       ClosestPoint::a[i] = a[i];
    ClosestPoint::calc():
int32_t main()
    ios_base::sync_with_stdio(0);
   cin.tie(0);
    cout.tie(0);
    Read();
    Solve();
```

2.4 Manhattan MST

```
// Idea is to reduce number of edges which are candidates to be in the MST
// Then apply Kruskal algorithm to find MST

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr int N = 2e5 + 2;
constexpr ll Inf = lel7;
namespace manhattanMST
{
    // disjoint set union
    struct dsu
    {
        int par[N];
        dsu()
        {
            memset(par, -1, sizeof par);
        }
}
```

```
int findpar(int v)
            return par[v] < 0 ? v : par[v] = findpar(par[v]);</pre>
       bool Merge(int u, int v)
            u = findpar(u);
            v = findpar(v);
            if (u == v)
               return false:
            if (par[u] < par[v])</pre>
                swap(u, v);
            par[v] += par[u];
            par[u] = v;
            return true;
   };
   // Fenwick Tree Min
   struct FenwickTreeMin
        pair<11, int> a[N];
       int n:
        FenwickTreeMin(int n = 0)
            Assign(n);
       void Assign(int n)
            fill(a, a + n + 1, make_pair(Inf, -1));
       void Update(int p, pair<ll, int> v)
            for (; p <= n; p += p & -p)
                a[p] = min(a[p], v);
       pair<11, int> Get(int p)
            pair<11, int> ans({Inf, -1});
            for (; p; p -= p & -p)
               ans = min(ans, a[p]);
            return ans:
   }:
   struct Edge
       int u, v;
       11 w;
        Edge (const int &u = 0, const int &v = 0, const 11 &w = 0) : u(u), v(v), w(w) {}
       bool operator<(const Edge &a) const
            return w < a.w;
   };
   int n:
   11 x[N], y[N];
   vector<Edge> edges;
   11 dist(int i, int j)
       return abs(x[i] - x[j]) + abs(y[i] - y[j]);
#define Find(x, v) (lower_bound(x.begin(), x.end(), v) - x.begin() + 1)
   void createEdge(int a1, int a2, int b1, int b2, int c1, int c2)
        vector<array<11, 4>> v;
       vector<11> s;
       for (int i = 1; i <= n; i++)
            v.push_back({a1 * x[i] + a2 * y[i],
                        b1 * x[i] + b2 * y[i],
                         c1 * x[i] + c2 * y[i],
            s.emplace_back(b1 * x[i] + b2 * y[i]);
```

```
sort(s.begin(), s.end());
         s.resize(unique(s.begin(), s.end()) - s.begin());
         sort(v.begin(), v.end());
         FenwickTreeMin f(n);
         for (auto [num1, num2, cost, idx] : v)
             num2 = Find(s, num2);
             int res = f.Get(num2).second;
             if (res != -1)
                  edges.emplace_back(res, idx, dist(res, idx));
             f.Update(num2, make_pair(cost, idx));
    void calc()
         edges.clear();
         createEdge(1, -1, -1, 0, 1, 1); // R1
         createEdge(-1, 1, 0, -1, 1, 1); // R2
createEdge(-1, -1, 0, 1, 1, -1); // R3
         createEdge(1, 1, -1, 0, 1, -1); // R4
         createEdge(-1, 1, 1, 0, -1, -1); // R5
         createEdge(1, -1, 0, 1, -1, -1); // R6
createEdge(1, 1, 0, -1, -1, 1); // R7
createEdge(-1, -1, 1, 0, -1, 1); // R8
         sort(edges.begin(), edges.end());
         vector<pair<int, int>> res;
         ll ans(0);
         for (auto i : edges)
             if (f.Merge(i.u, i.v))
                  ans += i.w;
                  res.emplace_back(i.u, i.v);
         cout << ans << "\n";
         for (auto i : res)
             cout << i.first << " " << i.second << "\n";
};
int32_t main()
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0):
    cin >> manhattanMST::n;
    for (int i = 1; i <= manhattanMST::n; ++i)</pre>
         cin >> manhattanMST::x[i] >> manhattanMST::y[i];
    manhattanMST::calc();
```

3 Numerical algorithms

3.1 SQRT For Loop

3.2 Rabin Miller - Prime Checker

```
// There is another version of Rabin Miller using random in the implementation of Pollard Rho
11 mul(11 a, 11 b, 11 mod)
    a %= mod;
    b %= mod;
    11 q = (ld)a * b / mod;
11 r = a * b - q * mod;
    return (r % mod + mod) % mod;
ll pow(ll a, ll n, ll m)
    11 result = 1:
    a %= m:
    while (n > 0)
        if (n & 1)
            result = mul(result, a, m);
        n >>= 1;
        a = mul(a, a, m);
    return result;
pair<11, 11> factor(11 n)
    11 s = 0;
    while ((n & 1) == 0)
        s++:
        n >>= 1;
    return {s, n};
bool test(ll s, ll d, ll n, ll witness)
    if (n == witness)
        return true;
    11 p = pow(witness, d, n);
    if (p == 1)
        return true;
    for (; s > 0; s--)
        if (p == n - 1)
             return true:
        p = mul(p, p, n);
    return false;
bool miller(ll n)
    if (n < 2)
        return false;
    if ((n & 1) == 0)
        return n == 2:
    11 s, d;
    tie(s, d) = factor(n - 1);
    return test(s, d, n, 2) && test(s, d, n, 3) && test(s, d, n, 5) && test(s, d, n, 7) && test(s, d, n, 11) && test(s, d, n, 13) &&
            test(s, d, n, 17) && test(s, d, n, 19) && test(s, d, n, 23);
```

3.3 Chinese Remain Theorem

```
11 Pow(11 a, 11 b, const 11 &mod)
        11 ans(1);
        for (; b; b >>= 1)
            if (b & 1)
                ans = Mul(ans, a, mod);
            a = Mul(a, a, mod);
        return ans;
    ll calPhi(ll n)
        for (11 i = 2; i * i <= n; ++i)
            if (n % i == 0)
                while (n \% i == 0)
                    n /= i:
                    ans *= i;
                ans = ans / i * (i - 1);
        if (n != 1)
            ans *= n - 1;
        return ans;
    pair<11, 11> solve(const vector<11> &a, const vector<11> &b, vector<11> phi = {})
        assert(a.size() == b.size()); // Assume a and b have the same size
        11 m = 1;
            m = 1;
            for (auto i : b)
               m *= i;
        if (phi.empty())
            for (auto i : b)
                phi.emplace_back(calPhi(i));
        11 r = 0
        for (int i = 0; i < (int)b.size(); ++i)</pre>
            r = (r + Mul(Mul(a[i], m / b[i], m), Pow(m / b[i], phi[i] - 1, m), m)) % m;
        return make pair(r. m);
};
```

3.4 Pollard Rho - Factorialize

```
// You can change code Rabin-Miller (preposition)
struct PollardRho
    11 n:
    map<11. int> ans:
    PollardRho(ll n) : n(n) {}
    ll random(ll u)
        return abs(rand()) % u;
    11 mul(11 a, 11 b, 11 mod)
        a %= mod;
        b %= mod;
        11 q = (1d) a * b / mod;
        11 r = a * b - q * mod;
        return (r % mod + mod) % mod;
    11 pow(11 a, 11 b, 11 m)
        11 \text{ ans} = 1;
        a %= m;
        for (; b; b >>= 1)
```

```
if (b & 1)
            ans = mul(ans, a, m);
        a = mul(a, a, m);
    return ans;
pair<11, 11> factor(11 n)
    11 s = 0;
    while ((n & 1) == 0)
        s++:
        n >>= 1;
    return {s, n};
// Rabin - Miller
bool miller(ll n)
    if (n < 2)
        return 0;
    if (n == 2)
        return 1;
    11 s = 0, m = n - 1;
    while (m % 2 == 0)
        s++;
        m >>= 1;
    // 1 - 0.9 ^ 40
    for (int it = 1; it <= 40; it++)
        11 u = random(n - 2) + 2;
        11 f = pow(u, m, n);
if (f == 1 | | f == n - 1)
            continue;
        for (int i = 1; i < s; i++)
             f = mul(f, f, n);
            if (f == 1)
               return 0;
            if (f == n - 1)
                break;
        if (f != n - 1)
            return 0;
    return 1;
11 f(11 x, 11 n)
    return (mul(x, x, n) + 1) % n;
// Find a factor
ll findfactor(ll n)
    11 x = random(n - 1) + 2;
    11 y = x;
11 p = 1;
    while (p == 1)
        y = f(f(y, n), n);
        p = \underline{gcd}(abs(x - y), n);
    return p;
// prime factorization
void pollard_rho(ll n)
    if (n <= 1000000)
        for (int i = 2; i * i <= n; i++)
            while (n \% i == 0)
                ans[i]++;
                n /= i;
        if (n > 1)
            ans[n]++:
        return;
    if (miller(n))
        ans[n]++;
        return;
```

```
}
11 p = 0;
while (p == 0 || p == n)
    p = findfactor(n);

pollard_rho(n / p);
pollard_rho(p);
}
};
```

3.5 FFT

```
using cd = complex<double>;
const double PI = acos(-1);
// invert == true means Interpolation
// invert == false means dft
void fft(vector<cd> &a, bool invert)
    int n = a.size();
    for (int i = 1, j = 0; i < n; i++)
         int bit = n >> 1;
         for (; j & bit; bit >>= 1)
    j ^= bit;
         i ^= bit;
         if (i < j)
             swap(a[i], a[j]);
    for (int len = 2; len <= n; len <<= 1)</pre>
         double ang = 2 * PI / len * (invert ? -1 : 1);
         cd wlen(cos(ang), sin(ang));
         for (int i = 0; i < n; i += len)
             cd w(1);
             for (int j = 0; j < len / 2; j++)
                 cd u = a[i + j],
    v = a[i + j + len / 2] * w;
a[i + j] = u + v;
a[i + j + len / 2] = u - v;
                  w *= wlen;
        }
    if (invert)
         for (cd &x : a)
             x /= n;
```

3.6 FFT (Mod 998244353)

```
constexpr int N = 1e5 + 5; // keep N double of n+m
// Call init() before call mul()
constexpr 11 mod = 998244353;
11 Pow(11 a, 11 b, 11 mod)
    ll ans(1);
    for (; b; b >>= 1)
       if (b & 1)
          ans = ans * a % mod;
       a = a * a % mod;
    return ans;
namespace ntt
    const int N = ::N;
    const long long mod = ::mod, rt = 3;
    11 G[55], iG[55], itwo[55];
    void add(int &a, int b)
       a += b;
```

```
if (a >= mod)
        a -= mod;
void init()
    int now = (mod - 1) / 2, len = 1, irt = Pow(rt, mod - 2, mod);
    while (now % 2 == 0)
        G[len] = Pow(rt, now, mod);
        iG[len] = Pow(irt, now, mod);
        itwo[len] = Pow(1 << len, mod - 2, mod);
        now >>= 1;
        len++:
void dft(11 *x, int n, int fg = 1) // fg=1 for dft, fg=-1 for inverse dft
    for (int i = (n >> 1), j = 1, k; j < n; ++j)
        if (i < j)
            swap(x[i], x[j]);
        for (k = (n >> 1); k & i; i ^= k, k >>= 1)
    for (int m = 2, now = 1; m <= n; m <<= 1, now++)
        11 r = fg > 0 ? G[now] : iG[now];
        for (int i = 0, j; i < n; i += m)</pre>
            11 tr = 1, u, v;
            for (j = i; j < i + (m >> 1); ++j)
                v = x[j + (m >> 1)] * tr % mod;
                x[j] = (u + v) % mod;
                x[j + (m >> 1)] = (u + mod - v) %
                                  mod;
                tr = tr * r % mod;
// Take two sequence a, b;
// return answer in sequence a
void mul(ll *a, ll *b, int n, int m)
    // a: 0,1,2,...,n-1; b: 0,1,2,...,m-1
    int nn = n + m - 1:
    if (n == 0 || m == 0)
        memset(a, 0, nn * sizeof(a[0]));
        return:
    for (L = 1, len = 0; L < nn; ++len, L <<= 1)
    if (n < L)
        memset(a + n, 0, (L - n) * sizeof(a[0]));
        memset(b + m, 0, (L - m) * sizeof(b[0]));
   dft(a, L, 1); // dft(a)
dft(b, L, 1); // dft(b)
    // Merge
    for (int i = 0; i < L; ++i)
       a[i] = a[i] * b[i] % mod;
    // Interpolation
   dft(a, L, -1);
for (int i = 0; i < L; ++i)
       a[i] = a[i] * itwo[len] % mod;
```

3.7 FFT Mod (Template by Tran Khoi Nguyen)

```
struct FFTmod
{
    typedef complex<double> C;
    const l1 M = mod;
    void fft(vector<C> &a)
    {
        int n = a.size(), L = 31 - __builtin_clz(n);
        static vector<Complex<long double>> R(2, 1);
        static vector<C> rt(2, 1); // (* 10% faster if double)
```

```
for (static int k = 2; k < n; k \neq 2)
               R.resize(n);
               rt.resize(n);
               auto x = polar(1.0L, acos(-1.0L) / k);
               for (int i = k; i < 2 * k; i++)
                    rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2];
          vector<int> rev(n);
          for (int i = 0; i < n; i++)
   rev[i] = (rev[i / 2] | (i & 1) << L) / 2;</pre>
          for (int i = 0; i < n; i++)</pre>
              if (i < rev[i])
          swap(a[i], a[rev[i]]);
for (int k = 1; k < n; k *= 2)
               for (int i = 0; i < n; i += 2 * k)
                    for (int j = 0; j < k; j++)
                         // C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-rolled) /// include-line
                         auto x = (double *)&rt[j + k], y = (double *)&a[i + j + k]; /// exclude-line
C z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] * y[0]); /// exclude-line
a[i + j + k] = a[i + j] - z;
                         a[i + j] += z;
     typedef vector<11> v1;
     vl convMod(const vl &a, const vl &b)
          vl res((int)a.size() + b.size() - 1);
          int B = 32 - __builtin_clz(res.size()), n = 1 << B, cut = int(sqrt(M));</pre>
          vector<C> L(n), R(n), outs(n), outl(n);
          for (int i = 0; i < (int)a.size(); i++)</pre>
              L[i] = C((int)a[i] / cut, (int)a[i] % cut);
         for (int i = 0; i < (int)b.size(); i++)
    R[i] = C((int)b[i] / cut, (int)b[i] % cut);</pre>
          fft(L), fft(R);
          for (int i = 0; i < n; i++)
               int j = -i & (n - 1);
              outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
          fft (outl), fft (outs);
          for (int i = 0; i < (int)res.size(); i++)</pre>
               11 av = (11) (real(outl[i]) + .5);
              11 cv = (11) (imag(outs[i]) + .5);
11 bv = (11) (imag(outl[i]) + .5) + (11) (real(outs[i]) + .5);
              res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
         return res;
};
```

3.8 Count Primes

```
// To initialize, call init_count_primes() first.
// Function count primes(n) will compute the number of
// prime numbers lower than or equal to n.
// Time complexity: Around O(n ^ 0.75)
constexpr int N = 1e5 + 5; // keep N larger than max(sqrt(n) + 2)
bool prime[N];
int prec[N];
vector<int> P;
ll rec(ll n, int k)
     if (n \le 1 | | k \le 0)
         return 0:
     \textbf{if} \hspace{0.1in} (n \mathrel{<=} P \hspace{0.1in} [\hspace{0.1in} k \hspace{0.1in}] \hspace{0.1in})
         return n - 1;
     if (n < N \&\& 11(P[k]) * P[k] > n)
         return n - 1 - prec[n] + prec[P[k]];
     const int LIM = 250;
```

```
static int memo[LIM * LIM][LIM];
    bool ok = n < LIM * LIM;
    if (ok && memo[n][k])
        return memo[n][k];
    11 ret = n / P[k] - rec(n / P[k], k - 1) + rec(n, k - 1);
        memo[n][k] = ret;
    return ret;
void init_count_primes()
    prime[2] = true;
    for (int i = 3; i < N; i += 2)
    prime[i] = true;</pre>
    for (int i = 3, j; i * i < N; i += 2)
        if (prime[i])
             for (j = i * i; j < N; j += i + i)
                prime[j] = false;
    for (int i = 1; i < N; ++i)
        if (prime[i])
             P.push_back(i);
    for (int i = 1; i < N; ++i)
    prec[i] = prec[i - 1] + prime[i];</pre>
11 count_primes(11 n)
    if (n < N)
        return prec[n];
    int k = prec[(int)sqrt(n) + 1];
    return n - 1 - rec(n, k) + prec[P[k]];
```

3.9 Interpolation (Mod a prime)

```
// You can change mod into other prime number
// update k to the degree of polynomial
// Just work when we know a[1] = P(1), a[2] = P(2),..., a[k] = P(k) [The degree of P(x) is k-1]
// update() then build() then cal()
 * Complexity: O(Nlog(mod), N)
constexpr 11 mod = 1e9 + 7; // Change mod here
constexpr 11 N = 1e5 + 5; // Change size here
struct Interpolation
    11 a[N], fac[N], ifac[N], prf[N], suf[N];
   int k;
    11 Pow(11 a, 11 b)
       11 ans(1);
       for (; b; b >>= 1)
            if (b & 1)
               ans = ans * a % mod;
            a = a * a % mod;
       return ans:
    void upd(int u, ll v)
        a[u] = v;
    void build()
        fac[0] = ifac[0] = 1;
       for (int i = 1; i < N; i++)
           fac[i] = (long long) fac[i - 1] * i % mod;
           ifac[i] = Pow(fac[i], mod - 2);
    // Calculate P(x)
    11 calc(int x)
```

3.10 Bignum

```
/// M is the number of digits in the answer /// In case that we don't use multiplication, let BASE be 1e17 or 1e18 \,
/// a = Bignum("5")
/// The operator / is only for integer, the result is integer too
using cd = complex<long double>;
const long double PI = acos(-1);
const int M = 2000;
const 11 BASE = 1e8;
const int gd = log10(BASE);
const int maxn = M / gd + 1;
struct Bignum
    int n:
    11 a[maxn]:
    Bignum(11 x = 0)
        memset(a, 0, sizeof a);
        n = 0;
             a[n++] = x % BASE;
             x /= BASE;
        } while (x);
    Bignum (const string &s)
        Convert(s):
    ll stoll(const string &s)
         ll ans(0);
        for (auto i : s)
            ans = ans * 10 + i - '0';
        return ans;
    void Convert(const string &s)
        memset(a, 0, sizeof a);
        for (int i = s.size() - 1; \sim i; --i)
            int j = max(0, i - gd + 1);
            a[n++] = stoll(s.substr(j, i - j + 1));
            i = i:
        fix();
    void fix()
        for (int i = 0; i < n - 1; ++i)
            a[i + 1] += a[i] / BASE;
             a[i] %= BASE:
            if (a[i] < 0)
                 a[i] += BASE;
                 --a[i + 1];
```

```
while (n > 1 \&\& a[n - 1] == 0)
Bignum &operator+=(const Bignum &x)
    n = max(n, x.n);
for (int i = 0; i < n; ++i)
       a[i] += x.a[i];
    fix();
    return *this;
Bignum &operator = (const Bignum &x)
    for (int i = 0; i < x.n; ++i)</pre>
   a[i] -= x.a[i];
fix();
    return *this;
Bignum &operator*=(const Bignum &x)
    vector<11> c(x.n + n, 0);
    for (int i = 0; i < n; ++i)
        for (int j = 0; j < x.n; ++j)
           c[i + j] += a[i] * x.a[j];
   n += x.n;
for (int i = 0; i < n; ++i)
       a[i] = c[i];
    fix();
    return *this;
Bignum & operator /= (const 11 &x)
    11 r = 011;
    for (int i = n - 1; i > -1; --i)
        r = r * BASE + a[i];
        a[i] = r / x;
        r %= x;
    fix();
    return *this;
Bignum operator+(const Bignum &s)
    Bignum c;
    copy(a, a + n, c.a);
   c.n = n
    c += s;
    return c;
Bignum operator-(const Bignum &s)
    Bignum c;
    copy(a, a + n, c.a);
    c.n = n:
    c -= s:
    return c:
Bignum operator* (const Bignum &s)
    Bignum c;
    copy(a, a + n, c.a);
    c.n = n;
    c *= s;
    return c;
Bignum operator/(const 11 &x)
    Bignum c;
    copy(a, a + n, c.a);
    c.n = n:
    c /= x;
    return c;
11 operator% (const 11 &x)
    for (int i = n - 1; \sim i; --i)
        ans = (ans * BASE + a[i]) % x;
    return ans;
int com(const Bignum &s) const
    if (n < s.n)
        return 1:
    if (n > s.n)
        return 2;
    for (int i = n - 1; i > -1; --i)
        if (a[i] > s.a[i])
            return 2;
        else if (a[i] < s.a[i])
            return 1;
```

```
return 3;
    bool operator<(const Bignum &s) const
        return com(s) == 1;
    bool operator>(const Bignum &s) const
        return com(s) == 2;
    bool operator == (const Bignum &s) const
        return com(s) == 3:
    bool operator <= (const Bignum &s) const
        return com(s) != 2;
    bool operator>=(const Bignum &s) const
        return com(s) != 1;
    void read()
        string s;
        cin >> s:
        Convert(s);
    void print()
        int i = n;
        while (i > 0 && a[i] == 0)
           --i;
        cout << a[i];
        for (--i; ~i; --i)
           cout << setw(gd) << setfill('0')</pre>
                << a[i];
};
```

3.11 Bignum with FFT multiplication

```
// Replace function *= in Bignum implementation with below code:
void fft(vector<cd> &a, bool invert)
    int n = a.size();
    for (int i = 1, j = 0; i < n; i++)
        int bit = n >> 1;
        for (; j & bit; bit >>= 1)
    j ^= bit;
         i ^= bit;
        if (i < j)
            swap(a[i], a[j]);
    for (int len = 2; len <= n; len <<= 1)
        double ang = 2 * PI / len * (invert ? -1 : 1);
        cd wlen(cos(ang), sin(ang));
        for (int i = 0; i < n; i += len)
             for (int j = 0; j < len / 2; j++)
                 cd u = a[i + j], v = a[i + j + len / 2] * w;
                 a[i + j] = u + v;

a[i + j + len / 2] = u - v;
                 w *= wlen:
    if (invert)
        for (cd &x : a)
Bignum &operator*=(const Bignum &x)
    int m = 1;
    while (m < n + x.n)
    m <<= 1;
vector<cd> fa(m), fb(m);
    for (int i = 0; i < m; ++i)
        fa[i] = a[i];
fb[i] = x.a[i];
```

```
}
fft(fa, false); /// dft
fft(fb, false); /// dft
for (int i = 0; i < m; i++)
    fa[i] *= fb[i];
fft(fa, true); /// Interpolation
n = m;
for (int i = 0; i < n; ++i)
    a[i] = round(fa[i].real());
fix();
return *this;</pre>
```

3.12 Tonelli Shanks (Find square root modulo prime)

```
Takes as input an odd prime p and n < p and returns r such that r * r = n \pmod{p}.
There's exist r if and only if n \land [(p-1) / 2] = 1 \pmod{p}
using 11 = int; // Change type of data here
11 Pow(11 a, 11 b, 11 mod)
   ll ans(1);
    for (; b; b >>= 1)
        if (b & 1)
            ans = ans * a % mod;
        a = a * a % mod;
    return ans;
ll tonelli_shanks(ll n, ll p)
    11 s = 0:
    11 q = p - 1;
    while ((q & 1) == 0)
        q /= 2;
    if (s == 1)
        11 r = Pow(n, (p + 1) / 4, p);
        if ((r * r) % p == n)
           return r:
        return 0:
    // Find the first quadratic non-residue z by brute-force search
    11 z = 1:
    while (Pow(++z, (p-1) / 2, p) != p-1)
    11 c = Pow(z, q, p);

11 r = Pow(n, (q + 1) / 2, p);
    11 t = Pow(n, q, p);
   while (t != 1)
       11 tt = t;
       11 i = 0;
        while (tt != 1)
            tt = (tt * tt) % p;
            ++i;
           if (i == m)
               return 0;
        11 b = Pow(c, Pow(2, m - i - 1, p - 1), p);
        11 b2 = (b * b) % p;
        r = (r * b) % p;
        t = (t * b2) % p;
        c = b2;
       m = i;
   if ((r * r) % p == n)
       return r:
    return -1; // Can't find
```

3.13 Discrete Logarithm (Find x that $a^x \equiv b \pmod{m}$)

```
// Returns minimum x for which a ^ x % m = b % m.
// Returns -1 if x isn't exist
11 DiscreteLogarithm(11 a, 11 b, 11 m)
    a %= m, b %= m;
    11 k = 1, add = 0, g;
    while ((g = \underline{gcd(a, m)}) > 1)
         if (b == k)
             return add:
         if (b % q)
             return -1;
         b /= g, m /= g, ++add;
k = (k * 111 * a / g) % m;
    11 n = sqrt((ld)m) + 1;
    11 an = 1;
for (11 i = 0; i < n; ++i)
    an = (an * 111 * a) % m;</pre>
    unordered_map<11, 11> vals;
    for (11 q = 0, cur = b; q <= n; ++q)
         vals[cur] = q;
cur = (cur * 111 * a) % m;
    for (11 p = 1, cur = k; p <= n; ++p)
         cur = (cur * 111 * an) % m;
         if (vals.count(cur))
              11 \text{ ans} = n * p - vals[cur] + add;
              return ans;
    return -1:
```

3.14 Primitive Root (Exist k that $g^k \equiv a \pmod{n}$ for all a)

```
g is a primitive root modulo n if and only if for any integer a such that gcd(a, n) = 1, there exists
     an integer k such that:
g^k = a \pmod{n}.
Primitive root modulo n exists if and only if:
   - n is 1, 2, 4
    - n is power of an odd prime number (n = p ^ k)
    - n is twice power of an odd prime number (n = 2 * p ^ k)
This theorem was proved by Gauss in 1801.
using 11 = int; // Change type of data here
11 Pow(11 a, 11 b, 11 mod)
   11 ans(1):
    for (; b; b >>= 1)
       if (b & 1)
           ans = ans * a % mod;
       a = a * a % mod;
    return ans;
ll GetPhi(ll n)
    11 ans(1);
    for (11 i = 2; i * i <= n; ++i)
       if (n % i == 0)
            while (n \% i == 0)
```

```
n /= i;
                ans *= i;
            ans = ans / i * (i - 1);
    if (n != 1)
        ans *= n - 1;
    return ans;
11 PrimitiveRoot(11 p)
    vector<11> fact;
    11 phi = GetPhi(p);
    11 n = phi;
    for (int i = 2; i * i <= n; ++i)
        if (n % i == 0)
            fact.push_back(i);
            while (n % i == 0)
                n /= i;
    if (n > 1)
        fact.push_back(n);
    for (11 res = 2; res <= p; ++res)</pre>
        bool ok = true;
        for (int i = 0; i < fact.size() && ok; ++i)
            ok &= Pow(res, phi / fact[i], p) != 1;
        if (ok)
            return res;
    return -1; // can't find
```

3.15 Discrete Root (Find x that $x^k \equiv a \pmod{n}$, n is a prime)

```
Given a prime n and two integers a and k, find all x for which:\
    - x \wedge k = a \pmod{n}
Notice:
    - In case k = 2, let's use Tonelli - Shanks
    - You must insert my implementation of Discrete Logarithm and Primitive Root to run algorithm
11 Pow(11 a, 11 b, 11 mod)
    11 ans(1);
    for (; b; b >>= 1)
        if (b & 1)
            ans = ans * a % mod;
        a = a * a % mod;
    return ans;
ll DiscreteRoot(ll a, ll k, ll n)
    11 g = PrimitiveRoot(n);
    11 v = Pow(g, k, n);
    11 ans = DiscreteLogarithm(v, a, n);
    if (ans == -1)
        return -1; // Can't find
    return Pow(g, ans, n);
```

3.16 Super Sieve of Primes (Code by RR)

```
// Sieve up to 10^9 by RR
namespace Sieve
    const int MAX = 1000000000LL;
    const int WHEEL = 3 * 5 * 7 * 11 * 13;
    const int N_SMALL_PRIMES = 6536;  // cnt primes less than 2^16
const int SIEVE_SPAN = WHEEL * 64; // one iteration of segmented sieve
    const int SIEVE_SIZE = SIEVE_SPAN / 128 + 1;
    uint64_t ONES[64];
                                        // ONES[i] = 1<<i
    int small_primes[N_SMALL_PRIMES]; // primes less than 2^16
    // each element of sieve is a 64-bit bitmask.
    // Each bit (0/1) stores whether the corresponding element is a prime number.
    // We only need to store odd numbers
    // -> 1st bitmask stores 3, 5, 7, 9, ...
    uint64_t si[SIEVE_SIZE];
    // for each 'wheel', we store the sieve pattern (i.e. what numbers cannot be primes)
    uint64_t pattern[WHEEL];
    inline void mark(uint64_t *s, int o) { s[o >> 6] |= ONES[o & 63]; }
    inline int test(uint64_t *s, int o) { return (s[o >> 6] & ONES[o & 63]) == 0; }
    // update sieve {{{
    void update_sieve(int offset)
         // copy each wheel pattern to sieve
        for (int i = 0, k; i < SIEVE_SIZE; i += k)
            k = std::min(WHEEL, SIEVE_SIZE - i);
            memcpy(si + i, pattern, sizeof(*pattern) * k);
        // Correctly mark 1, 3, 5, 7, 11, 13 as not prime / primes
        if (offset == 0)
            si[0] &= ~(ONES[1] | ONES[2] | ONES[3] | ONES[5] | ONES[6]);
        // sieve for primes >= 17 (stored in 'small_primes')
        for (int i = 0; i < N_SMALL_PRIMES; ++i)</pre>
            int j = small_primes[i] * small_primes[i];
            if (j > offset + SIEVE SPAN - 1)
                break;
            if (j > offset)
                 j = (j - offset) >> 1;
                  = small_primes[i] - offset % small_primes[i];
                 if ((j & 1) == 0)
                j += small_primes[i];
j >>= 1;
            while (j < SIEVE_SPAN / 2)
                mark(si, j);
                j += small_primes[i];
    void sieve()
        // init small primes {{{
        for (int i = 0; i < 64; ++i)
   ONES[i] = 1ULL << i;</pre>
        // sieve to find small primes
        for (int i = 3; i < 256; i += 2)
            if (test(si, i >> 1))
                 for (int j = i * i / 2; j < 32768; j += i)
                    mark(si, j);
        // store primes >= 17 in 'small_primes' (we will sieve differently
        // for primes 2, 3, 5, 7, 11, 13)
            int m = 0:
            for (int i = 8; i < 32768; ++i)
                if (test(si, i))
                    small_primes[m++] = i * 2 + 1;
        // For primes 3, 5, 7, 11, 13: we initialize wheel pattern..
```

```
for (int i = 1; i < WHEEL * 64; i += 3)</pre>
             mark(pattern, i);
        for (int i = 2; i < WHEEL * 64; i += 5)
             mark(pattern, i);
        for (int i = 3; i < WHEEL * 64; i += 7)
             mark(pattern, i);
         for (int i = 5; i < WHEEL * 64; i += 11)</pre>
             mark(pattern, i);
        for (int i = 6; i < WHEEL * 64; i += 13)
             mark(pattern, i);
        // Segmented sieve
        long long sum_primes = 2;
        for (int offset = 0; offset < MAX; offset += SIEVE_SPAN)</pre>
             update_sieve(offset);
             for (uint32_t j = 0; j < SIEVE_SIZE; j++)</pre>
                 uint64_t x = ~si[j];
                 while (x)
                      \label{eq:continuous} \mbox{uint32\_t p = offset + (j << 7) + (\_builtin\_ctzll(x) << 1) + 1;}
                     if (p > offset + SIEVE_SPAN - 1)
                          break:
                     if (p <= MAX)</pre>
                          // p is a prime
                     x ^= (-x \& x);
     }
};
```

4 Graph algorithms

4.1 Twosat (2-SAT)

```
// start from 0
// pos(V) is the vertex that represent V in graph
// neg(V) is the vertex that represent !V
// pos(V) ^ neg(V) = 1, use two functions below
// (U v V) <=> (!U -> V) <=> (!V -> U)
// You need do addEge(represent(U), represent(V))
// solve() == false mean no answer
// Want to get the answer ?
// color[pos(U)] = 1 means we choose U
// otherwise, we don't
constexpr int N = 1e5 + 5; // Keep N double of n
inline int pos(int u) { return u << 1; }</pre>
inline int neg(int u) { return u << 1 | 1; }</pre>
struct TwoSAT
    int n, numComp, cntTarjan;
    vector<int> adj[N], stTarjan;
    int low[N], num[N], root[N], color[N];
    TwoSAT (int n) : n(n * 2)
        memset(root, -1, sizeof root);
        memset (low, -1, sizeof low);
        memset (num, -1, sizeof num);
        memset (color, -1, sizeof color);
        cntTarjan = 0;
        stTarjan.clear();
    void addEdge(int u, int v)
         adj[u ^ 1].push_back(v);
        adj[v ^ 1].push_back(u);
     void tarjan(int u)
         stTarjan.push_back(u);
        num[u] = low[u] = cntTarjan++;
        for (int v : adj[u])
            if (root[v] != -1)
                continue;
             if (low[v] == -1)
                tarjan(v);
             low[u] = min(low[u], low[v]);
```

```
if (low[u] == num[u])
            while (1)
                int v = stTarjan.back();
                stTarjan.pop_back();
                root[v] = numComp;
                if (u == v)
                    break;
            numComp++;
    bool solve()
        for (int i = 0; i < n; i++)</pre>
            if (root[i] == -1)
                tarjan(i);
        for (int i = 0; i < n; i += 2)
            if (root[i] == root[i ^ 1])
                return 0;
            color[i] = (root[i] < root[i ^ 1]);
        return 1:
1:
```

4.2 Eulerian Path

```
// Path that goes all edges
// Start from 1
struct EulerianGraph
    vector<vector<pair<int, int>>> a;
    int num_edges;
    EulerianGraph (int n)
        a.resize(n + 1):
        num edges = 0:
    void add_edge(int u, int v, bool undirected = true)
        a[u].push_back(make_pair(v, num_edges));
            a[v].push_back(make_pair(u, num_edges));
        num_edges++;
    vector<int> get_eulerian_path()
        vector<int> path, s;
        vector<bool> was (num_edges);
        s.push back(1);
        // start of eulerian path
        // directed graph: deg_out - deg_in == 1
        // undirected graph: odd degree
        // for eulerian cycle: any vertex is OK
        while (!s.empty())
           int u = s.back();
bool found = false;
            while (!a[u].empty())
                int v = a[u].back().first;
                int e = a[u].back().second;
                a[u].pop_back();
                if (was[e])
                    continue;
                was[e] = true;
                s.push_back(v);
                found = true;
                break;
            if (!found)
                path.push_back(u);
                s.pop_back();
        reverse(path.begin(), path.end());
        return path;
```

4.3 Biconnected Component Tree

```
// Biconnected Component Tree
// 1 is the root of Tree
// n + i is the node that represent i-th bcc, its depth is even
const int N = 3e5 + 5; // Change size to n + number of bcc (For safety, set N >= 2 * n)
int n, nBicon, nTime;
int low[N], num[N];
vector<int> adj[N], nadj[N];
vector<int> s;
void dfs(int v, int p = -1)
    low[v] = num[v] = ++nTime;
    s.emplace_back(v);
    for (auto i : adj[v])
        if (i != p)
            if (!num[i])
                low[v] = min(low[v], low[i]);
                if (low[i] >= num[v])
                   nadj[v].emplace_back(n + nBicon);
                    int vertex;
                    do
                        vertex = s.back();
                        s.pop_back();
                        nadj[n + nBicon].emplace_back(vertex);
                   } while (vertex != i);
            else
                low[v] = min(low[v], num[i]);
```

4.4 Heavy Light Decomposition (Template by Tran Khoi Nguyen)

```
11 st[4 * maxn];
ll la[4 * maxn];
void dosth(ll id, ll left, ll right)
     if (left == right)
    stid* 2] = min(st[id * 2], la[id]);
st[id * 2 + 1] = min(st[id * 2 + 1], la[id]);
la[id * 2] = min(la[id * 2], la[id]);
la[id * 2 + 1] = min(la[id * 2 + 1], la[id]);
     la[id] = base:
void update(ll id, ll left, ll right, ll x, ll y, ll w)
     if (x > right || y < left)
          return;
     if (x <= left && y >= right)
          st[id] = min(st[id], w);
          la[id] = min(la[id], w);
          return;
     dosth(id, left, right);
     11 mid = (left + right) / 2;
     update(id * 2, left, mid, x, y, w);
update(id * 2 + 1, mid + 1, right, x, y, w);
ll get(ll id, ll left, ll right, ll x)
     if (x > right || x < left)
```

```
return base;
    if (left == right)
        return st[id];
    dosth(id, left, right);
    11 mid = (left + right) / 2;
    return min(get(id * 2, left, mid, x), get(id * 2 + 1, mid + 1, right, x));
11 \text{ nchain} = 1;
11 chainhead[maxn];
ll chainid[maxn];
11 id[maxn];
vector<pll> adj[maxn];
11 par1[maxn];
11 siz[maxn];
void hld(ll u, ll par)
    if (!chainhead[nchain])
       chainhead[nchain] = u;
    cntnw++;
    chainid[u] = nchain;
    id[u] = cntnw;
    11 \text{ nxt} = -1;
    for (auto p : adj[u])
        11 to = p.ff;
        if (to == par)
            continue:
        if (nxt == -1 \mid \mid siz[nxt] < siz[to])
            nxt = to;
    if (nxt != -1)
        hld(nxt, u);
    for (auto p : adj[u])
        11 to = p.ff;
if (to == par || to == nxt)
            continue;
        nchain++:
        hld(to, u);
void update1(ll u, ll a, ll w)
    11 p = chainid[u];
    11 chk = chainid[a];
    while (1)
        if (p == chk)
             update(1, 1, cntnw, id[a], id[u], w);
            break:
        update(1, 1, cntnw, id[chainhead[p]], id[u], w);
        u = par1[chainhead[p]];
        p = chainid[u];
```

4.5 Check Odd Circle With DSU (Template by Tran Khoi Nguyen)

```
namespace ufs
{
    struct node
    {
        int fa, val, size;
    } t[30];
    struct info
    {
        int x, y;
        node a, b;
    } st[30];
    inline void pre()
    {
        for (int i = 1; i <= n; i++)
            t[i] = (node) {i, 0, 1};
    }
    inline int find(int x)
    {
        while (t[x].fa != x)
            x = t[x].fa;
    }
}</pre>
```

```
return x;
    inline int dis(int x)
        int ans = 0;
        while (t[x].fa != x)
           ans ^= t[x].val, x = t[x].fa;
       return ans;
    inline void link(int x, int y)
       int val = dis(x) ^ dis(y) ^ 1;
       x = find(x);
        v = find(y);
       if (t[x].size > t[y].size)
           swap(x, y);
       t[x].fa = y;
       t[x].val = val;
       t[y].size += t[x].size;
using namespace ufs;
```

5 String

5.1 Palindrome Tree

```
// base on idea odd palindrome, even palindrome
// 0-odd is the root of tree
struct node
    int len;
    node *child[26], *sufflink;
    node()
        len = 0;
        for (int i = 0; i < 26; ++i)
           child[i] = NULL;
        sufflink = NULL:
1:
struct PalindromeTree
    node odd, even;
    PalindromeTree()
        odd.len = -1;
        odd.sufflink = &odd;
        even.len = 0;
        even sufflink = &odd;
    void Assign(string &s)
        node *last = &even;
        for (int i = 0; i < (int)s.size(); ++i)</pre>
            node *tmp = last;
            while (s[i - tmp->len - 1] != s[i])
               tmp = tmp->sufflink;
            if (tmp->child[s[i] - 'a'])
                last = tmp->child[s[i] - 'a'];
                continue;
            tmp->child[s[i] - 'a'] = new node;
            last = tmp->child[s[i] - 'a'];
            last->len = tmp->len + 2;
            if (last->len == 1)
                last->sufflink = &even;
               continue:
            tmp = tmp->sufflink;
            while (s[i - tmp->len - 1] != s[i])
               tmp = tmp->sufflink;
            last->sufflink = tmp->child[s[i] - 'a'];
};
```

5.2 Suffix Array

```
// string and array pos start from 0
// but array sa and lcp start from 1
constexpr int N = 3e5 + 5; // change size to size of string;
struct SuffixArray
    string s;
    int n, c[N], p[N], rp[N], lcp[N];
    //p[] : suffix array
    // lcp[]: lcp array
    void Assign(const string &x)
        s.push_back('$'); // Change character here due to range of charater in string
        n = s.size();
        Build();
        s.pop_back();
n = s.size();
    void Build()
        vector<int> pn(N), cn(N), cnt(N);
        for (int i = 0; i < n; ++i)
            ++cnt[s[i]];
        for (int i = 1; i \le 256; ++i)
            cnt[i] += cnt[i - 1];
        for (int i = 0; i < n; ++i)
           p[--cnt[s[i]]] = i;
        for (int i = 1; i < n; ++i)
            c[p[i]] = c[p[i-1]] + (s[p[i]] != s[p[i-1]]);
        int maxn = c[p[n - 1]];
        for (int i = 0; (1 << i) < n; ++i)
            for (int j = 0; j < n; ++j)

p[j] = ((p[j] - (1 << i)) % n + n) % n;

for (int j = 0; j <= maxn; ++j)
                cnt[j] = 0;
            for (int j = 0; j < n; ++j)
                ++cnt[c[p[j]]];
            for (int j = 1; j \le maxn; ++j)
                cnt[j] += cnt[j - 1];
            for (int j = n - 1; \sim j; --j)
               pn[--cnt[c[p[j]]]] = p[j];
            c[(pn[j-1] + (1 << i)) % n]);
            maxn = cn[pn[n - 1]];
            for (int j = 0; j < n; ++j)
                p[j] = pn[j];
                c[j] = cn[j];
    void BuildLCP()
        for (int i = 1; i \le n; ++i)
            rp[p[i]] = i;
        for (int i = 0; i < n; ++i)
            if (i)
            lcp[i] = max(lcp[i - 1] - 1, 0);
if (rp[i] == n)
                continue;
            while (lcp[i] < n - i \&\& lcp[i] < n - p[rp[i] + 1] \&\& s[i + lcp[i]] == s[p[rp[i] + 1] + 1]
                 lcp[i]])
                ++1cp[i];
} g;
```

```
struct suffix_array
    vector<int> sa_naive(const vector<int> &s)
        int n = (int)s.size();
        vector<int> sa(n);
        iota(sa.begin(), sa.end(), 0);
        sort(sa.begin(), sa.end(), [&](int 1, int r)
            if(1 == r) return false;
            for(; 1 < n && r < n; ++ 1, ++ r) if(s[1] != s[r]) return s[1] < s[r];</pre>
            return 1 == n; });
        return sa:
    vector<int> sa_doubling(const vector<int> &s)
        int n = (int)s.size();
        vector<int> sa(n), rank = s, tmp(n);
        iota(sa.begin(), sa.end(), 0);
        for (auto k = 1; k < n; k <<= 1)
            auto cmp = [&](int x, int y)
                if (rank[x] != rank[y])
                return rank[x] < rank[y];
int rx = x + k < n ? rank[x + k] : -1;
int ry = y + k < n ? rank[y + k] : -1;
                return rx < ry;
            sort(sa.begin(), sa.end(), cmp);
            tmp[sa[0]] = 0;
            for (auto i = 1; i < n; ++i)
    tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);</pre>
            swap(tmp, rank);
        return sa:
    template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
    vector<int> sa_is(const vector<int> &s, int sigma)
        int n = (int)s.size();
        if (n == 0)
            return ():
        if (n == 1)
            return {0};
            if (s[0] < s[1])
                return {0, 1};
            else
                return {1, 0};
        if (n < THRESHOLD NAIVE)
            return sa naive(s);
        if (n < THRESHOLD_DOUBLING)</pre>
            return sa_doubling(s);
        vector<int> sa(n);
        vector<bool> ls(n);
        for (auto i = n - 2; i >= 0; --i)
            ls[i] = (s[i] == s[i+1]) ? ls[i+1] : (s[i] < s[i+1]);
        vector<int> sum_l(sigma), sum_s(sigma);
        for (auto i = 0; i < n; ++i)
            if (!ls[i])
                ++sum_s[s[i]];
                ++sum_l[s[i] + 1];
        for (auto i = 0; i < sigma; ++i)
            sum_s[i] += sum_l[i];
            if (i + 1 < sigma)
                sum_1[i + 1] += sum_s[i];
        auto induce = [&] (const vector<int> &lms)
            fill(sa.begin(), sa.end(), -1);
            vector<int> buf(sigma);
             copy(sum_s.begin(), sum_s.end(), buf.begin());
            for (auto d : lms)
                if (d == n)
                    continue:
                sa[buf[s[d]]++] = d;
            copy(sum_l.begin(), sum_l.end(), buf.begin());
            sa[buf[s[n-1]]++] = n-1;
            for (auto i = 0; i < n; ++i)
```

```
int v = sa[i];
            if (v >= 1 && !ls[v - 1])
                sa[buf[s[v-1]]++] = v-1;
        copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (auto i = n - 1; i >= 0; --i)
            if (v >= 1 && ls[v - 1])
                 sa[--buf[s[v-1]+1]] = v-1;
    vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (auto i = 1; i < n; ++i)
        if (!ls[i - 1] && ls[i])
             lms_map[i] = m++;
    vector<int> lms;
    lms.reserve(m);
    for (auto i = 1; i < n; ++i)
        if (!ls[i - 1] && ls[i])
            lms.push_back(i);
    induce(lms);
    if (m)
        vector<int> sorted lms:
        sorted lms.reserve(m):
        for (auto v : sa)
            if (lms_map[v] != -1)
                sorted_lms.push_back(v);
        vector<int> rec_s(m);
        int rec_sigma = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (auto i = 1; i < m; ++i)
            int 1 = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[1] + 1 < m) ? lms[lms_map[1] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;</pre>
             bool same = true;
            if (end_1 - 1 != end_r - r)
                 same = false;
             else
                 for (; 1 < end 1; ++1, ++r)</pre>
                     if (s[1] != s[r])
                        break;
                 if (1 == n || s[1] != s[r])
                     same = false;
             if (!same)
                 ++rec_sigma;
             rec_s[lms_map[sorted_lms[i]]] = rec_sigma;
        auto rec sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_sigma + 1);
        for (auto i = 0; i < m; ++i)
             sorted_lms[i] = lms[rec_sa[i]];
        induce(sorted_lms);
    return sa;
// data: sorted sequence of suffices including the empty suffix
// rank[i]: position of the suffix i in the suffix array
// lcp[i]: longest common prefix of data[i] and data[i + 1]
// index start from 1
vector<int> data, rank, lcp;
// O(n + sigma)
suffix_array(const vector<int> &s, int sigma) : n((int)s.size()), rank(n + 1), lcp(n)
    assert (0 <= sigma):
    for (auto d : s)
       assert(0 <= d && d < sigma);
    data = sa_is(s, sigma);
    data.insert(data.begin(), n);
    for (auto i = 0; i \le n; ++i)
        rank[data[i]] = i;
    for (auto i = 0, h = 0; i \le n; ++i)
        if (h > 0)
            --h;
        if (rank[i] == 0)
            continue:
        int j = data[rank[i] - 1];
for (; j + h <= n && i + h <= n; ++h)</pre>
            if ((j + h == n) != (i + h == n) || j + h < n && s[j + h] != s[i + h])
                break;
        lcp[rank[i] - 1] = h;
// O(n log n) time, O(n) space
template <class T>
```

```
suffix_array(const vector<T> &s, bool prepare_lcp) : n((int)s.size()), rank(n + 1), lcp(n)
    vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int 1, int r)
         { return s[1] < s[r]; });
    vector<int> s2(n);
    for (auto i = 0; i < n; ++i)
         if (i && s[idx[i-1]] != s[idx[i]])
             ++now;
         s2[idx[i]] = now;
    data = sa_is(s2, now + 1);
data.insert(data.begin(), n);
    for (auto i = 0; i \le n; ++i)
         rank[data[i]] = i;
    for (auto i = 0, h = 0; i \le n; ++i)
         if (h > 0)
         if (rank[i] == 0)
             continue;
        continue,
int j = data[rank[i] - 1];
for (; j + h <= n && i + h <= n; ++h)
    if ((j + h == n) != (i + h == n) || j + h < n && s[j + h] != s[i + h])</pre>
                 break:
         lcp[rank[i] - 1] = h;
// RMQ must be built over lcp
template <class RMQ>
int longest_common_prefix(int i, int j, const RMQ &rmq) const
    assert (0 <= i && i <= n && 0 <= j && j <= n);
    return i == j ? n - i : rmq.query(min(rank[i], rank[j]), max(rank[i], rank[j]));
```

5.4 Aho Corasick - Extended KMP

};

```
constexpr int ALPHABET_SIZE = 26;
constexpr int firstCharacter = 'a';
    Node *to[ALPHABET_SIZE];
    Node *suflink;
    int ending_length; // 0 if is not ending
    Node()
        for (int i = 0; i < ALPHABET_SIZE; ++i)</pre>
        to[i] = NULL;
suflink = NULL;
        ending_length = false;
};
struct AhoCorasick
    Node *root;
    AhoCorasick()
        root = new Node();
    void add(const string &s)
        Node *cur_node = root;
        for (char c : s)
            int v = c - firstCharacter;
            if (!cur_node->to[v])
                cur_node->to[v] = new Node();
            cur_node = cur_node->to[v];
        cur_node->ending_length = s.size();
    // if a \rightarrow to[v] == NULL
```

```
// for convinient a \rightarrow to[v] = the node x \rightarrow to[v] that a match x and x \rightarrow to[v] != NULL
    // root -> suflink = root
    void build()
        queue<Node *> Q;
        root->suflink = root;
        Q.push (root);
        while (!Q.empty())
             Node *par = Q.front();
             Q.pop();
             for (int c = 0; c < ALPHABET_SIZE; ++c)</pre>
                 if (par->to[c])
                      par->to[c]->suflink = par == root ? root : par->suflink->to[c];
                      Q.push(par->to[c]);
                 else
                      par->to[c] = par == root ? root : par->suflink->to[c];
};
```

5.5 Aho Corasick (Template by Tran Khoi Nguyen)

```
struct aho_corasick
   struct tk
       ll link;
       11 nxt[27];
       ll par;
       char ch:
       11 go[27];
       11 val:
       ll leaf;
       tk(11 par = -1, char ch = 'a') : par(par), ch(ch)
           memset(nxt, -1, sizeof(nxt));
           memset(go, -1, sizeof(go));
           link = -1;
           leaf = 0;
   };
   vector<tk> vt;
   void init()
       vt.clear():
       vt.pb({-1, 'a'});
   ll add(string s, ll val)
       for (auto to : s)
           if (vt[nw].nxt[to - 'a' + 1] == -1)
               vt[nw].nxt[to - 'a' + 1] = vt.size();
               vt.pb({nw, to});
           nw = vt[nw].nxt[to - 'a' + 1];
       vt[nw].leaf = val;
       return nw:
   ll get_val(ll u)
       if (vt[u].val == -1)
           vt[u].val = vt[u].leaf + get_val(get_link(u));
       return vt[u].val;
   11 go(11 v, 11 t)
       if (vt[v].go[t] == -1)
           if (vt[v].nxt[t] != -1)
```

```
vt[v].go[t] = vt[v].nxt[t];
            else
                if (v == 0)
                    vt[v].go[t] = 0;
                else
                     vt[v].go[t] = go(get_link(v), t);
        return vt[v].go[t];
    ll get_link(ll v)
        if (vt[v].link == -1)
            if (vt[v].par == 0 || v == 0)
                vt[v].link = 0;
                vt[v].link = go(get_link(vt[v].par), vt[v].ch - 'a' + 1);
        return vt[v].link;
    11 get(string s)
        11 \text{ nw} = 0:
        11 \text{ ans} = 0:
        for (auto to : s)
            nw = go(nw, to - 'a' + 1);
            ans += get_val(nw);
        return ans;
};
```

5.6 Suffix Tree (Template by Tran Khoi Nguyen)

```
struct tk
   map<11, 11> nxt;
   ll par, f, len;
    ll link
    tk(11 par = -1, 11 f = 0, 11 len = 0) : par(par), f(f), len(len)
        nxt.clear();
        link = -1;
};
struct Suffix_Tree
    vector<tk> st:
    11 node;
    ll dis:
       11 n;
    vector<11> s;
    void init()
        st.clear();
        node = 0;
        dis = 0;
        st.emplace_back(-1, 0, base);
    void go_edge()
        while (dis > st[st[node].nxt[s[n - dis]]].len)
            node = st[node].nxt[s[n - dis]];
            dis -= st[node].len;
    void add_char(ll c)
        11 last = 0;
        s.pb(c);
        n = s.size();
        dis++;
        while (dis > 0)
            go_edge();
            11 \text{ edge} = s[n - dis];
```

```
11 &v = st[node].nxt[edge];
            11 t = s[st[v].f + dis - 1];
            if (v == 0)
                v = st.size();
                st.emplace_back(node, n - dis, base);
                st[last] link = node;
            else if (c == t)
                st[last].link = node;
                return;
            else
                11 u = st.size();
                st.emplace_back(node, st[v].f, dis - 1);
                st[u].nxt[c] = st.size();
                st.emplace_back(u, n - 1, base);
                st[u].nxt[t] = v;
                st[v].f += (dis - 1);
                st[v].len = (dis - 1);
                v = u;
                st[last].link = u;
                last = u;
            if (node == 0)
                dis--:
            else
                node = st[node].link;
};
```

5.7 Z Function

```
// string start from 1
// f[i] = longest prefix match with s[i...i + f[i] - 1]
constexpr int N = 2e5 + 5;
void Build(string &s, int n, int f[N]) // n = size of string, f = z array
    int 1(1), r(1);
    f[1] = n;
    for (int i = 2; i \le n; ++i)
       if (r < i)
            1 = r = i;
           while (r \le n \&\& s[r - i + 1] == s[r])
               ++r;
           f[i] = r - i;
           --r;
       else if (f[i-1+1] < r-i+1)
            f[i] = f[i - 1 + 1];
       else
           1 = i;
           while (r \le n \&\& s[r - i + 1] == s[r])
               ++r;
           f[i] = r - i;
            --r:
```

6 Data structures

6.1 Ordered Set

```
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
#define ordered_set tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update>
/*
```

```
\begin{array}{lll} & \text{order\_of\_key (k)} & : \text{Number of items strictly smaller than k.} \\ & \text{find\_by\_order(k)} & : \text{K-th element in a set (counting from zero).} \\ & & \times / \end{array}
```

6.2 Fenwick Tree (With Walk on tree)

```
// This is equivalent to calculating lower_bound on prefix sums array
// LOGN = log2(N)
struct FenwickTree
    int n, LOGN;
    11 a[N]; // BIT array
    FenwickTree()
        memset(a, 0, sizeof a);
    void Update(int p, 11 v)
        for (; p <= n; p += p & -p)
            a[p] += v;
    11 Get(int p)
        ll ans(0);
        for (; p; p -= p & -p)
            ans += a[p];
        return ans;
    int search(11 v)
        11 \text{ sum} = 0;
        int pos = 0;
        for (int i = LOGN; i >= 0; i--)
            if (pos + (1 << i) <= n && sum + a[pos + (1 << i)] < v)</pre>
                sum += a[pos + (1 << i)];
                pos += (1 << i);
        return pos + 1;
        //+1 because pos will be position of largest value less than v
};
```

6.3 Convex Hull Trick (Min)

```
// If you want to get maximum, sort coef (A) not decreasing and change B[line.back()] > B[i] into B[line.back()] > B[i]
      line.back()] < B[i]
struct ConvexHullTrick
    vector<ll> A, B;
    vector<int> line;
    vector<ld> point;
    ConvexHullTrick(int n = 0)
        A.resize(n + 2, 0);
        B.resize(n + 2, 0);
        point.emplace_back(-Inf);
    ld ff(int x, int y)
        return (1d)1.0 * (B[y] - B[x]) / (A[x] - A[y]);
    void Add(int i)
        while ((int)line.size() > 1 || ((int)line.size() == 1 && A[line.back()] == A[i]))
            if (A[line.back()] == A[i])
                if (B[line.back()] > B[i])
```

```
line.pop_back();
                if (!line.empty())
                    point.pop_back();
                break;
        else
            if (ff(i, line.back()) <= ff(i, line[line.size() - 2]))</pre>
                line.pop_back();
                if (!line.empty())
                    point.pop_back();
            else
                break;
   if (line.empty() || A[line.back()] != A[i])
        if (!line.empty())
            point.emplace_back(ff(line.back(), i));
        line.emplace_back(i);
11 Get (int x)
   int j = lower_bound(point.begin(), point.end(), x) - point.begin();
   return A[line[j - 1]] * x + B[line[j - 1]];
```

6.4 Dynamic Convex Hull Trick (Min)

};

```
struct Line
    mutable 11 k, m, p;
bool operator<(const Line& o) const</pre>
        if (k==0.k) return m>0.m;
    bool operator<(11 x) const
        return p < x;
struct LineContainer : multiset<Line, less<>>
    static const 11 inf = LLONG MAX:
    11 div(11 a, 11 b)
        return a / b - ((a ^ b) < 0 && a % b);
    bool isect(iterator x, iterator y)
        if (y == end())
            return x->p = inf, 0;
        if (x->k == y->k)
            x->p = x->m < y->m ? inf : -inf;
        else
            x->p = div(y->m - x->m, x->k - y->k);
        return x->p >= y->p;
    void add(ll k, ll m)
        auto z = insert(\{k, m, 0\}), y = z++, x = y;
        while (isect(y, z))
            z = erase(z);
        if (x != begin() && isect(--x, y))
            isect(x, y = erase(y));
        while ((y = x) != begin() && (--x)->p >= y->p)
            isect(x, erase(y));
    ll query(ll x)
        assert(!emptv());
        auto 1 = *lower bound(x);
        return 1.k * x + 1.m;
};
```

6.5 SPlay Tree

```
struct KNode
    int Value;
    int Size;
    KNode *P, *L, *R;
using QNode = KNode *;
KNode No_thing_here;
QNode nil = &No_thing_here, root;
void Link(QNode par, QNode child, bool Right)
    child->P = par;
    if (Right)
    par->R = child; else
         par->L = child;
void Update (QNode &a)
    a \rightarrow Size = a \rightarrow L \rightarrow Size + a \rightarrow R \rightarrow Size + 1;
void Init()
    nil->Size = 0;
    nil\rightarrow P = nil\rightarrow L = nil\rightarrow R = nil;
    root = nil;
    for (int i = 1; i \le n; ++i)
         QNode cur = new KNode;
         cur->P = cur->L = cur->R = nil;
         cur->Value = i;
         Link(cur, root, false);
         Update (root):
void Rotate(QNode x)
    QNode y = x->P;
    QNode z = y \rightarrow P;
    if (x == y->L)
         Link(y, x->R, false);
         Link(x, y, true);
         Link(y, x->L, true);
         Link(x, y, false);
    Update(y);
    Update(x);
    x->P = nil:
    if (z != nil)
         Link(z, x, z\rightarrow R == y);
void Up_to_Root(QNode x)
     while (1) {
         QNode y = x \rightarrow P;
QNode z = y \rightarrow P;
         if(y == nil)
             break:
         if(z != nil){
             if((x == y->L) == (y == z->L))
                  Rotate(y);
              else
                  Rotate(x);
         Rotate(x);
QNode The_kth(QNode x, int k)
    while (true)
         if (x->L->Size == k - 1)
             return x;
         if (x->L->Size >= k)
             x = x->L;
         else
             k \rightarrow x\rightarrow L\rightarrow size + 1;
```

```
x = x->R;
    return nil;
void Split(QNode x, int k, QNode &a, QNode &b)
    if (k == 0)
        a = nil;
        b = x;
        return;
    QNode cur = The_kth(x, k);
    Up_to_Root(cur);
    a = cur;
    b = a -> R;
    a->R = nil;
    b\rightarrow P = nil;
    Update(a);
QNode Join (QNode a, QNode b)
    if (a == nil)
        return b:
    while (a->R != nil)
        a = a \rightarrow R:
    Up_to_Root(a);
    Link(a, b, true);
    Update(a);
    return a;
void Print (QNode &a)
    if (a->T. != nil)
       Print(a->L);
    cout << (a->Value) << " ";
    if (a->R != nil)
        Print(a->R);
```

6.6 Hashing (Template by Tran Khoi Nguyen)

```
struct Hashing
    vector<vector<ll>>> f;
    vector<ll> mod;
    vector<vector<11>> mu;
    vector<11> chr;
   11 num;
    11 base:
    void init()
       num = 2;
        f.clear();
        mod.clear();
       mu.clear();
        chr.clear();
        vector<11> vt = {999244369, 999254351, 999154309, 989154311, 989254411, 997254397, 991294387,
              991814399, 994114351, 994914359, 994024333};
        random_shuffle(vt.begin(), vt.end());
        base = 317;
for (int i = 1; i <= 26; i++)
        chr.pb(abs((ll)(rnd())));
for (int i = 0; i < num; i++)
            f.emplace_back();
            mod.pb(vt[i]);
            vector<11> pt;
            pt.pb(1);
            for (int j = 1; j < maxn; j++)
                pt.pb((pt.back() * base) % mod[i]);
            mu.pb(pt);
    11 add(string s)
        11 n = s.length();
        11 id = f[0].size();
        for (int j = 0; j < num; j++)
            vector<ll> vt1;
```

6.7 BIT 2D (Template by Tran Khoi Nguyen)

```
void fake_update(ll x, ll y)
        for (int i = lower_bound(vt.begin(), vt.end(), x) - vt.begin() + 1; i <= vt.size(); i += i &</pre>
            node[i].pb(y);
    void fake_get(ll x, ll y)
        for (int i = lower_bound(vt.begin(), vt.end(), x) - vt.begin() + 1; i; i -= i & (-i))
    void update(ll x, ll y, ll val)
        for (int i = lower_bound(vt.begin(), vt.end(), x) - vt.begin() + 1; i <= vt.size(); i += i &
            for (int j = lower_bound(node[i].begin(), node[i].end(), y) - node[i].begin() + 1; j <=</pre>
                  node[i].size(); j += j & (-j))
                f[i][j] = f[i][j] + val;
    11 get(11 x, 11 y)
        11 \text{ ans} = 0;
        for (int i = lower_bound(vt.begin(), vt.end(), x) - vt.begin() + 1; i; i -= i & (-i))
            for (int j = lower_bound(node[i].begin(), node[i].end(), y) - node[i].begin() + 1; j; j -=
                ans += f[i][j];
        return ans;
};
```