МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕЛЕРАНИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Обнинский институт атомной энергетики –

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(ИАТЭ НИЯУ МИФИ)

Отделение Институт интеллектуальных кибернетических систем

Курсовая работа

На тему:

«Использование системы многокритериального анализа решений Decerns MCDA при рассмотрении задачи "Выбор видеокарты"»

Выполнил:		И.А. Семёнов	
студент гр. ИС-М20 Руководитель Профессор ОИКС, д.т.н.	(подпись)		
		Б.И. Яцало	
	(подпись)		

Обнинск, 2020 г.

СОДЕРЖАНИЕ

T 7			U	
Условия	MUNTOR	nutenu	9 ПК ПОИ	29 паци
JUDHA	MINOLOIN	pnicpn	andnun	задачи

1. MAVT.	6
2. TOPSIS	10
3. PROMETHEE	13
4. AHP	17
5. MAUT	19
6. ProMMA	.22

Вывод

Условия многокритериальной задачи

Условия многокритериальной задачи.

1. Цель.

Выбор наиболее подходящей видеокарты по заданным критериям.

2. Задача.

Задача данной работы заключалась в выборе видеокарты для последующей покупки с целью обработки видеоконтента в качестве FullHD среди 7 заданных альтернатив по 5 заданным критериям.

3. Условия.

При выборе видеокарты учитывались следующие требования, которым устройство должно полностью соответствовать.

4. Выбор критериев.

Данный выбор обусловлен тем, чтобы видеокарта хорошо справлялась с обработкой исходных материалов в качестве 4К для последующего монтажа в качестве FullHD.

5. Составляющая критериев.

1. CI - VRAM / Oбъём видеопамяти.

Чем больше видеопамяти (буфер) – тем выше скорость обработки материала за счёт буферизации.

- 2. *C2 MemoryBusWidth / Ширина(разрядность) шины памяти*. Чем выше разрядность шины памяти тем эффективнее работает подсистема памяти.
- 3. *C3 VRAM_TYPE / Стандарт памяти.* Чем выше стандарт видеопамяти, тем большую частоту поддерживает память.
- 4. $C4 GPU_Frequency / Yacmoma \Gamma\Pi$.

Чем выше частота процессора, тем больше эффектов мы сможем использовать без потери кадров.

5. C5 - Cost / Стоимость.

Чем ниже цена, тем более выгодная покупка.

Задача: выбрать видеокарту

Первым этапом работы является составление дерева критериев, которое представлено на рисунке 1.

Рисунок 1 – Дерево критериев «Видеокарты»

Второй этап работы включал заполнение таблицы значений (рисунок 2).

Рисунок 2 – Таблица значений

Все альтернативы принадлежат множеству Парето.

Рис. 3 - Доминирование альтернатив

Решение поставленной задачи осуществлялось 6 методами: MAVT, TOPSIS, AHP, PROMETHEE, MAUT, ProMMA.

Методы решения задачи 1. MAVT

Рисунок 4 – Задание весовых коэффициентов методом взвешивания SWING

Рисунок 5 – Задание частной функции ценности для критерия «Цена»

Рисунок 6 – Задание частной функции ценности для критерия «Видеокарта»

Рисунок 7 – Задание частной функции ценности для критерия «Батарея» Для остальных критериев функция ценности линейная.

Анализ чувствительности к весам на примере критерия «Цена».

Рисунок 8 – Анализ влияние изменения вес.коэфф. «Цена» на ранги альтернатив

Отчет по данному методу представлен на рисунке 9.

Рисунок 9 – Отчет (MAVT)

Вывод 1: решив поставленную задачу методом MAVT, получаем альтернативу «A3 – Radeon_RX5500XT» в качестве лучшей.

2. Meтод Topsis

В данном методе используем прямой метод задания весов. Выбираем те же веса, только нормализованные, что и в методе MAVT.

Рисунок 10 – Веса прямым методом

Рисунок 11 – Анализ влияние изменения вес.коэфф «Цена» на ранги альтернатив

Рисунок 12- Анализ влияние изменения вес.коэфф ««Объем памяти» на ранги альтернатив

Рисунок 13 – Результат метода TOPSIS

Вывод 2: решив поставленную задачу методом TOPSIS, получаем альтернативу «A1 -Radeon_RX580» в качестве лучшей.

3. Метод Promethee

Весовые коэффициенты возьмем аналогично методам MAVT и TOPSIS.

Рис. 14 – задание весовых коэффициентов прямым методом

Рисунок 15 – Функция предпочтения «Цена»

Рисунок 16 – Функция предпочтения «Объём видеопамяти»

Рисунок 17- Анализ влияние изменения вес.коэфф «Цена» на ранги альтернатив

Рисунок 18 – Результат метода PROMETHEE 1

Рисунок 19 – Результат метода PROMETHEE 2

4. Метод АНР

Рисунок 20 – Попарное сравнение критериев

Рисунок 21 – Результаты вычислений.

Вывод 4: решив поставленную задачу методом АНР, получаем альтернативу «A1 – Radeon_RX580» в качестве лучшей.

5. Метод МАИТ

Рисунок 22 – Задание весовых коэффициентов

Рисунок 23 – Задание функции распределения, где это необходимо

Рисунок 24 – Анализ влияние изменения вес.коэфф «Цена» на ранги альтернатив

Рисунок 25 – Результаты МАИТ

Вывод 5: решив поставленную задачу методом MAUT, получаем альтернативу «A3 – Radeon_RX5500XT» в качестве лучшей.

6. Метод РгоММА

Рисунок 26 – Задание весовых коэффициентов

Рисунок 27 – Результаты РгоМАА

Вывод 6: решив поставленную задачу методом MAUT, получаем альтернативу «A4 – Nvidia_Quadro_P620» в качестве лучшей.

Вывод

	MAVT	TOPSIS	PROMETHEE	AHP	MAUT	ProMAA
A1	2	1	6	1	2	5
A2	3	2	2	2	3	6
A3	1	6	3	3	1	7
A4	7	7	7	6	7	1
A5	6	5	5	5	6	2
A6	5	4	1	7	5	3
A7	4	3	4	4	4	4

Наилучшая альтернатива: "Radeon_RX580". Данная видеокарта и была купена для обработки видео.