§ 6_3_3

夜囱是数与梯度

/* Directional Derivatives and Gradient Vectors */

- 一、方向导数
- 二、梯度
- *三、物理意义

一、方向导数

在许多问题中,不仅要知道函数在坐标轴方向上的变化率(即偏导数),而且还要设法求得函数在其他特定方向上的变化率.

引例.一只蚂蚁在圆台上底面边缘的A处,如果圆台正上方突然起火,它使圆台受热,设圆台任意点的温度与该点到火源的距离成反比,问这只

蚂蚁应沿什么方向爬行才能最快到达较凉快的地点?

引例本质:

函数 f(x, y, z) 在点 P(x, y, z) 处沿方向 l 的变化率

问题(如图).
$$\lim_{\rho \to 0} \frac{f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)}{\rho}$$

$$\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}$$

下几

定义. 若函数f(x, y, z) 在点 P(x, y, z) 处

沿方向 l (方向角为 α , β , γ) 存在下列极限

$$\lim_{\rho \to 0} \frac{\Delta f}{\rho}$$

$$P(x, y, z)$$

$$= \lim_{\rho \to 0} \frac{f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)}{\rho} \stackrel{\text{iff}}{=} \frac{\partial f}{\partial l}$$

$$\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2},$$

$$\Delta x = \rho \cos \alpha, \ \Delta y = \rho \cos \beta, \ \Delta z = \rho \cos \gamma$$

则称 $\frac{\partial f}{\partial l}$ 为函数在点 P 处沿方向 l 的方向导数.

推导 为讨论问题方便,将模为r的 向量 \overrightarrow{PP} 移为向径,如右图:

推导 为讨论问题方便,将模为r的

向量PP'移为向径,如右图:

作辅助线(红线),则有

$$\cos \alpha = \frac{\Delta x}{\rho} \Rightarrow \Delta x = \rho \cos \alpha$$

再作辅助线(蓝线),则有

$$\cos \beta = \frac{\Delta y}{\rho} \Rightarrow \Delta y = \rho \cos \beta$$

再作辅助线(绿线),则有

$$\cos \gamma = \frac{\Delta z}{\rho} \implies \Delta z = \rho \cos \gamma$$

z = f(x,y)

方向导数几何意义[以二元函数为例]

 $= \lim_{\rho \to 0} \frac{f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)}{\rho}$

方向导数 $\frac{\partial z}{\partial l}$ 是曲面在

点P处沿方向l的变化率,

即半切线 MN 的斜率

定理. 若函数 f(x,y,z) 在点 P(x,y,z) 处可微,则 函数在该点沿任意方向l的方向导数都存在,且有

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

其中 α, β, γ 为l的方向角.

证明: 由函数 f(x, y, z) 在点 P 可微, 得 P(x, y, z)

$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z + o(\rho)$$

$$= \rho \left(\frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma \right) + o(\rho)$$

证明:
$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z + o(\rho)$$

$$= \rho \left(\frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma \right) + o(\rho)$$

$$\rho P'$$

$$\Delta f = \lim_{\rho \to 0} \frac{\Delta f}{\rho}$$

$$P(x, y, z)$$

$$= \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

对于二元函数 f(x,y),在点 P(x,y)处沿方向 l (方向角

$$\frac{\partial f}{\partial l} = \lim_{\rho \to 0} \frac{f(x + \Delta x, y + \Delta y) - f(x, y)}{\rho}$$

$$= f_x(x, y) \cos \alpha + f_y(x, y) \cos \beta$$

$$(\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}, \Delta x = \rho \cos \alpha, \Delta y = \rho \cos \beta)$$

= $\rho \sin \alpha$

特别:

• 当
$$l$$
 与 x 轴同向($\alpha = 0$, $\beta = \frac{\pi}{2}$) 时,有 $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}$

• 当
$$l$$
 与 x 轴反向 $(\alpha = \pi, \beta = \frac{\pi}{2})$ 时,有 $\frac{\partial f}{\partial l} = -\frac{\partial f}{\partial x}$

第六章

特别:

• 当
$$l$$
 与 x 轴同向($\alpha = 0$, $\beta = \frac{\pi}{2}$) 时,有 $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}$

• 当
$$l$$
 与 x 轴反向 $(\alpha = \pi, \beta = \frac{\pi}{2})$ 时,有 $\frac{\partial f}{\partial l} = -\frac{\partial f}{\partial x}$

说明I关系分析

• 可微 _____ 方向导数存在 _____ 偏导数存在

说明 II

方向导数公式
$$\frac{\partial f}{\partial \vec{l}} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

令向量
$$\vec{G} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

 $\vec{l} = (\cos \alpha, \cos \beta, \cos \gamma)$
 $\frac{\partial f}{\partial \vec{l}} = \vec{G} \cdot \vec{l} = |\vec{G}| \cos(\vec{G}, \vec{l})$ $(|\vec{l}| = 1)$

当 \vec{l} 与 \vec{G} 方向一致时,方向导数取最大值,函数增长最快; 当 \vec{l} 与 \vec{G} 方向相反时,方向导数取最小值,函数减小最快.

例1. 求函数 $u = x \sin yz$ 在点 P(1, 3, 0) 沿向量

 $\vec{l} = (1, 2, -1)$ 的方向导数.

解: 向量l的方向余弦为

$$\cos \alpha = \frac{1}{\sqrt{6}}, \quad \cos \beta = \frac{2}{\sqrt{6}}, \quad \cos \gamma = -\frac{1}{\sqrt{6}}$$

$$\left. \frac{\partial u}{\partial \vec{l}} \right|_{P} = \left(\sin yz \cdot \frac{1}{\sqrt{6}} + xz \cos yz \cdot \frac{2}{\sqrt{6}} - xy \cos yz \cdot \frac{1}{\sqrt{6}} \right) \right|_{(1,3,0)}$$

$$=-rac{3}{\sqrt{6}}$$

例2. 求函数 $z = 3x^2y - y^2$ 在点P(2,3)沿曲线 $y = x^2 - 1$ 朝 x 增大方向的方向导数.

解: 将已知曲线用参数方程表示为

$$\begin{cases} x = x \\ y = x^2 - 1 \end{cases}$$

它在点 P 的切向量 l为 $(1, 2x)|_{x=2} = (1, 4)$

$$\therefore \cos \alpha = \frac{1}{\sqrt{17}}, \qquad \cos \beta = \frac{4}{\sqrt{17}}$$

$$\left. \frac{\partial z}{\partial \boldsymbol{l}} \right|_{P} = \left[6xy \cdot \frac{1}{\sqrt{17}} + (3x^2 - 2y) \cdot \frac{4}{\sqrt{17}} \right]_{(2,3)} = \frac{60}{\sqrt{17}}$$

例3. 设 n 是曲面 $2x^2 + 3y^2 + z^2 = 6$ 在点 P(1, 1, 1)处 指向外侧的法向量, 求函数 $u = \frac{\sqrt{6x^2 + 8y^2}}{z}$ 在点P 处沿方向 n 的方向导数.

#:
$$\vec{n} = (4x, 6y, 2z)|_{P} = 2(2, 3, 1)$$

方向余弦为
$$\cos \alpha = \frac{2}{\sqrt{14}}$$
, $\cos \beta = \frac{3}{\sqrt{14}}$, $\cos \gamma = \frac{1}{\sqrt{14}}$

$$\left. \frac{\partial u}{\partial x} \right|_{P} = \frac{6x}{z\sqrt{6x^2 + 8y^2}} \bigg|_{P} = \frac{6}{\sqrt{14}}$$

#:
$$\vec{n} = (4x, 6y, 2z)|_{P} = 2(2, 3, 1)$$

方向余弦为
$$\cos \alpha = \frac{2}{\sqrt{14}}$$
, $\cos \beta = \frac{3}{\sqrt{14}}$, $\cos \gamma = \frac{1}{\sqrt{14}}$

而
$$\frac{\partial u}{\partial x}\Big|_P = \frac{6}{\sqrt{14}}$$
 同理得 $\frac{\partial u}{\partial y}\Big|_P = \frac{8}{\sqrt{14}}, \frac{\partial u}{\partial z}\Big|_P = -\sqrt{14}$

$$\therefore \frac{\partial u}{\partial l}\bigg|_{P} = \frac{\partial u}{\partial \vec{n}}\bigg|_{P} = \frac{1}{14}(6 \times 2 + 8 \times 3 - 14 \times 1) = \frac{11}{7}$$

二、梯度

方向导数公式
$$\frac{\partial f}{\partial \vec{l}} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

令向量
$$\overrightarrow{G} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right), \overrightarrow{e}_{l} = (\cos \alpha, \cos \beta, \cos \gamma)$$

$$\frac{\partial f}{\partial \vec{l}} = \vec{G} \cdot \vec{\mathbf{e}}_l = |\vec{G}| \cos(\vec{G}, \vec{l}) = \mathbf{Prj}_{\vec{l}} \vec{G} \quad (|\vec{\mathbf{e}}_l| = 1)$$

当 \vec{l} 与 \vec{G} 方向一致时,方向导数取最大值,函数增长最快; 当 \vec{l} 与 \vec{G} 方向相反时,方向导数取最小值,函数减小最快.

即 \overrightarrow{G} : $\begin{cases} \overrightarrow{f}$ 向: f 变化(增长)率最大的方向 模: f 的最大变化率之值

1. 定义

向量 \overline{G} 称为函数f(P) 在点P 处的梯度(Gradient),记作 $\operatorname{grad} f$,或 ∇f ,即

grad
$$f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)$$

$$= \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k} \qquad \vec{G} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

其中
$$\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$
 称为向量微分算子或 Nabla算子.

同样可定义二元函数 f(x,y) 在点P(x,y) 处的梯度

$$\operatorname{grad} f = \nabla f = \left(\begin{array}{c} \frac{\partial f}{\partial x}, & \frac{\partial f}{\partial y} \end{array} \right) = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j}$$

说明: 函数的方向导数为梯度在该方向上的投影:

$$\frac{\partial f}{\partial \vec{l}} = \operatorname{grad} f \cdot \vec{e_l} \qquad (\vec{e_l} \, \mathbf{b} \, \mathbf{f} \, \mathbf{n} \, \mathbf{l} \, \mathbf{l} \, \mathbf{b} \, \mathbf{h} \, \mathbf{d} \, \mathbf{n} \, \mathbf{l})$$

2. 梯度的几何意义

对函数 z = f(x,y), 曲线 $\begin{cases} z = f(x,y) \\ z = c \end{cases}$ 在 xOy 面上的投影

 $L^*: f(x,y) = c$ 称为函数f 的等值线或等高线.

设 f_x , f_y 不同时为零,则 L^* 上点P处的法向量为

$$(f_x, f_y)|_P = \operatorname{grad} f|_P = \nabla f|_P$$

函数在一点的梯度 垂直于该点等值线, 指向函数增大的方向.

等高线图举例

$$z = (x^2 + 2y^2)e^{1-x^2-y^2}$$

这是利用数学软件Mathematica 绘制的曲面及其等高线图,带阴影 的等高线图中,亮度越大对应曲面 上点的位置越高

等高线图

带阴影的等高线图

2. 梯度的几何意义

函数
$$u = f(x, y, z)$$
, 超曲面
$$\begin{cases} u = f(x, y, z) \\ u = c \end{cases}$$
 在 $oxyz$ 空间的投影

 Σ^* : f(x,y,z) = c 称为函数f的等值面或等量面.

当其各偏导数不同时为零时, 其上点 P 处的法向量为

$$\operatorname{grad} f|_{P} = \nabla f|_{P}$$

$$= \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)_{P}$$

例4. 设
$$f(x,y) = \frac{1}{2}(x^2 + y^2), P_0(1,1), 求$$
:

- (1) f(x,y)在 P_0 处增加最快的方向以及 f(x,y)沿这个方向的方向导数;
- (2) f(x,y)在 P_0 处减少最快的方向以及 f(x,y)沿这个方向的方向导数.

解: (1) f(x,y)在 P_0 处沿 $\nabla f(1,1)$ 方向增加最快,而

$$\nabla f(1,1) = (x\vec{i} + y\vec{j})|_{(1,1)} = \vec{i} + \vec{j}$$

所求的方向
$$\vec{n} = \frac{\nabla f(1,1)}{|\nabla f(1,1)|} = \frac{1}{\sqrt{2}}\vec{i} + \frac{1}{\sqrt{2}}\vec{j}$$

方向导数
$$\left. \frac{\partial z}{\partial \vec{n}} \right|_{(1,1)} = \left| \nabla f(1,1) \right| = \sqrt{2}$$

(2) f(x,y)在 P_0 处沿 $-\nabla f(1,1)$ 方向减少最快

所求的方向
$$\vec{n}_1 = -\vec{n} = -\frac{1}{\sqrt{2}}\vec{i} - \frac{1}{\sqrt{2}}\vec{j}$$

方向导数
$$\left. \frac{\partial z}{\partial \vec{n}_1} \right|_{(1,1)} = -|\nabla f(1,1)| = -\sqrt{2}$$

思考: f(x,y)在 P_0 处变化率为零的方向是什么?

回答: 梯度的垂直方向.

例5. 设函数 $f(x, y, z) = x^2 + y^z$

- (1) 求等值面 f(x,y,z) = 2 在点 P(1,1,1) 处的切平面方程.
- (2) 求函数 f 在点 P(1,1,1) 沿增加最快方向的方向导数.

解: (1) 点P处切平面的法向量为

$$\overrightarrow{n} = \nabla f(P) = (2x, zy^{z-1}, y^z \ln y)|_{P} = (2, 1, 0)$$

故所求切平面方程为 $2(x-1)+(y-1)+0\cdot(z-1)=0$

即

$$2x + y - 3 = 0$$

例5. 设函数 $f(x,y,z) = x^2 + y^z$

- (1) 求等值面 f(x,y,z) = 2 在点 P(1,1,1) 处的切平面方程.
- (2) 求函数 f 在点 P(1,1,1) 沿增加最快方向的方向导数.
 - 解(2) 函数f在点P处增加最快的方向为

$$\overrightarrow{n} = \nabla f(P) = (2, 1, 0)$$

沿此方向的方向导数为 $\left. \frac{\partial f}{\partial \vec{n}} \right|_P = \left| \nabla f(P) \right| = \sqrt{5}$

思考: f 在点P处沿什么方向变化率为0?

注意: 对三元函数, 与 $\nabla f(P)$ 垂直的方向有无穷多

第六章

例6. 设 f(r) 可导, 其中 $r = \sqrt{x^2 + y^2 + z^2}$ 为点 P(x, y, z) 处矢径 \overrightarrow{r} 的模, 试证 grad $f(r) = f'(r) \overrightarrow{e}_r$.

$$\frac{\partial f(r)}{\partial x} = f'(r) \frac{\partial r}{\partial x} = f'(r) \frac{x}{\sqrt{x^2 + y^2 + z^2}} = f'(r) \frac{x}{r}$$

$$\frac{\partial f(r)}{\partial y} = f'(r) \frac{y}{r}, \quad \frac{\partial f(r)}{\partial z} = f'(r) \frac{z}{r}$$

$$\therefore \operatorname{grad} f(r) = \frac{\partial f(r)}{\partial x} \overrightarrow{i} + \frac{\partial f(r)}{\partial y} \overrightarrow{j} + \frac{\partial f(r)}{\partial z} \overrightarrow{k}$$

$$= f'(r) \frac{1}{r} (x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k})$$

$$= f'(r) \frac{1}{r} \overrightarrow{r} = f'(r) \overrightarrow{e}_r$$

3. 梯度的基本运算公式

- (1) $\operatorname{grad} c = \overrightarrow{0}$ 或 $\nabla c = \overrightarrow{0}$ (c为常数)
- (2) $\operatorname{grad}(cu) = c \operatorname{grad} u \quad \overrightarrow{\boxtimes} \nabla(cu) = c \nabla u$
- (3) $\operatorname{grad}(u \pm v) = \operatorname{grad} u \pm \operatorname{grad} v \not \exists \nabla (u \pm v) = \nabla u \pm \nabla v$
- (4) $\operatorname{grad}(uv) = u \operatorname{grad} v + v \operatorname{grad} u$

或
$$\nabla(uv) = u\nabla v + v\nabla u$$

(5)
$$\operatorname{grad}(\frac{u}{v}) = \frac{v\operatorname{grad}u - u\operatorname{grad}v}{v^2}$$
 $\overrightarrow{y}\nabla(\frac{u}{v}) = \frac{v\nabla u - u\nabla v}{v^2}$

(6) $\operatorname{grad} f(u) = f'(u)\operatorname{grad} u$ $\operatorname{grad} V f(u) = f'(u)\nabla u$

*三、数量场与向量场简介

函数 —— 场 (物理量的分布)

数量场(数性函数)

如: 温度场, 电势场等

向量场(矢性函数)

如: 力场, 速度场等

可微函数 f(P) — 梯度场 $\operatorname{grad} f(P)$ () () () (向量场)

注意: 任意一个向量场不一定是梯度场.

第六章

例7.已知位于坐标原点的点电荷 q 在任意点 P(x, y, z)

处所产生的电势为
$$u = \frac{q}{4\pi \varepsilon r}$$
 $(r = \sqrt{x^2 + y^2 + z^2})$, 试证

$$\mathbf{grad} u = -\vec{E} \qquad (场强 \vec{E} = \frac{q}{4\pi \varepsilon r^2} \vec{e}_r)$$

证: 利用例6的结果 $\operatorname{grad} f(r) = f'(r) \overrightarrow{e}_r$

$$\mathbf{grad} u = \left(\frac{q}{4\pi \varepsilon r}\right)' \overrightarrow{e}_r = -\frac{q}{4\pi \varepsilon r^2} \overrightarrow{e}_r = -\overrightarrow{E}$$

这说明场强:垂直于等势面,

且指向电势减少的方向.

内容小结

1. 方向导数

• 三元函数 f(x,y,z) 在点 P(x,y,z) 沿方向 l (方向角 为 α , β , γ) 的方向导数为

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$$

• 二元函数 f(x,y) 在点 P(x,y) 沿方向 l (方向角为 α,β)的方向导数为

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \sin \alpha$$

2. 梯度

• 三元函数 f(x, y, z) 在点 P(x, y, z) 处的梯度为

$$\mathbf{grad} f = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)$$

• 二元函数 f(x,y)在点 P(x,y)处的梯度为 $\operatorname{grad} f = \nabla f = (f_x(x,y), f_y(x,y))$

• 梯度的特点 $\begin{cases} \dot{\mathbf{p}} = f \otimes \mathbf{k} \cdot \mathbf{j} \otimes \mathbf{k} \cdot \mathbf{j} \otimes \mathbf{k} \\ \dot{\mathbf{k}} = f \otimes \mathbf{k} \otimes \mathbf{k} \otimes \mathbf{k} \otimes \mathbf{k} \otimes \mathbf{k} & \mathbf{k$

3. 关系

• 可微 _____方向导数存在 _____偏导数存在

•
$$\frac{\partial f}{\partial l} = \operatorname{grad} f \cdot \overrightarrow{e_l}$$
 — 梯度在方向 l 上的投影

