Перейти к заданию

ЗАВЕРШИТЬ

ЗАКРЫТЬ

Задание №1

Если
$$(x_0; y_0; z_0)$$
 – решение системы
$$\begin{cases} x + 2y - 3z = 3\\ 2x + 3y + 2z = 5, \text{ то}\\ 3x + 4y + z = 7 \end{cases}$$
 значение выражения $y_0 - 2z_0$ равно:

4

Задание №2

Если
$$A = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -4 \\ 1 & 3 \end{pmatrix}$, то $A \cdot B$ равно

$$\begin{pmatrix} 3 & -1 \\ 1 & 7 \end{pmatrix} \qquad \begin{pmatrix} 2 & 8 \\ 5 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 7 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 8 \\ 5 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 7 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 1 \\ 4 & 12 \end{pmatrix}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №3

Найти элемент матрицы, обратной к $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 0 & 3 \\ -2 & -1 & 1 \end{pmatrix}$, pacположенный на пересечении второго столбца и первой строки.

$$-\frac{5}{11}$$

$$-\frac{5}{11}$$
 $\frac{10}{29}$ $-\frac{10}{11}$ $\frac{1}{5}$

$$\frac{1}{5}$$

Задание №4

Если $\vec{a}=\{2;-3\},\, \vec{b}=\{5;1\},\, \vec{c}=\{-1;-7\},\,$ то разложение вектора \vec{c} по базису \vec{a} , \vec{b} ($\vec{c} = \alpha \vec{a} + \beta \vec{b}$) имеет вид:

$$\vec{c} = 2\vec{a} - \vec{b} \qquad \vec{c} = 3\vec{a} - \vec{b} \qquad \vec{c} = \vec{b} - 2\vec{a} \qquad \vec{c} = \vec{a} - 2\vec{b}$$

$$\vec{c} = 3\vec{a} - \vec{b}$$

$$\vec{c} = \vec{b} - 2\vec{a}$$

$$\vec{c} = \vec{a} - 2\vec{b}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №5

Пусть $\vec{a}=\{1;-2;3\},\, \vec{b}=\{-1;2;-3\},\, \vec{c}=\{5;2;-2\}.$ Тогда длина вектора $\vec{d} = \vec{a} + \vec{b} - \vec{c}$ равна:

$$5,9 \sqrt{33} 2\sqrt{6}$$

7

Задание №6

Косинус угла между векторами $\vec{a} = 2\vec{i} + 2\vec{j} + \vec{k}$ и $\vec{b} = 3\vec{i} + 4\vec{k}$, равен:

$$\frac{9}{\sqrt{14}}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №7

Площадь треугольника ABC: A(2;-1;2), B(1;2;-1), C(2;-2;1), составляет:

8

√38

$$\frac{\sqrt{329}}{2}$$

Задание №8

Если $\vec{a}=\{1;-2;2\},\, \vec{b}=\{0;2;-3\},$ то значение выражения $|(3\vec{a}-\vec{b})\times\vec{b}|$ равно:

10

√33

9

√153

12,5

Вариант № 24

Осталось сделать

Перейти к заданию

2 3

4 5 6

7 8 9

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Осталось

мин.

Задание №9

Произведение собственных значений матрицы $\begin{pmatrix} 7 & 3 \\ 2 & 6 \end{pmatrix}$ равно:

7

8

36

12

13

Результаты

Набранные баллы (тах=100)

Неверно выполнены задания

Не выполнены задания