DEFAULT CREDIT CARD CLIENTS PREDICTION

CAPSTONE PROJECT PRESENTATION

Machine Learning Foundations Training

Dasun Kehelwala (DSA_0392)

Contents

- ✓ Introduction (Problem Definition)
- ✓ Dataset
- ✓ Methodology (Solution Approach, Tools used)
- ✓ Results
- ✓ Conclusions
- ✓ Future Developments

- Problem Definition:- Predicting credit card clients who will default on their next month payment.
- Prediction need to be done based on demographic characteristics, past spending and repayment patterns.
- Helpful for banks which provide credit card facilities for Customers.
- Specifically useful to manage credit risks.
- Service need to be through API and also by submitting batch input as csv file.

Dataset

- Used "Default of credit card clients Data Set" in UCI Machine learning repository
- Contains the default payment details in Taiwanese banking industry in year 2005
- Multivariate dataset with 24 attributes and 30,000 instances.
- Attributes of dataset was already converted to Real Integer values

Dataset: Feature Details

Attribute	Description						
ID	Identifier for data entry						
X1 (LIMIT_BAL)	Amount of the given credit (NT dollar): Includes both the individual consumer credit and supplementary credit. →Numerical						
X2 (SEX)	Gender (1 = male; 2 = female). →Categorical variable mapped to integers						
X3 (EDUCATION)	Education Level (1 = graduate school; 2 = university; 3 = high school; 4 = others). →Categorical variable mapped to in						
X4 (MARRIAGE)	Marital status (1 = married; 2 = single; 3 = others). →Categorical variable mapped to integers						
X5 (AGE)	Age (year) →Numerical						
X6 - X11	History of past payment derived from past monthly payment records from April to September 2005.						
(PAY_0, PAY_2, PAY_3,	X6 = the repayment status in September; X7 = the repayment status in August;; X11 = the repayment status in April						
PAY_4, PAY_5, PAY_6)	(The measurement scale: -2: No consumption; -1 = pay duly; 0: The use of revolving credit; 1 = payment delay for one month;						
	2 = payment delay for two months;; 8 = payment delay for eight months; 9 = payment delay for nine months and above) → Categorical variables mapped to integers, but have ordinal nature as per definition						
X12-X17 (BILL_AMT1 to	Amount of bill statement (NT dollar) from April to September 2005.						
BILL_AMT6	X12 = amount of bill statement in September; X13 = amount of bill statement in August;; X17 = amount of bill statement in April . →Numerical						
X18-X23 (PAY_AMT1)	Amount of previous payment (NT dollar) from April to September 2005.						
	X18 = amount paid in September ; X19 = amount paid in August ;; X23 = amount paid in April . →Numerical						
Y (default payment next	Default payment (Yes = 1, No = 0) → class variable - Categorical variables mapped to integers						
month)							

Methodology

This machine learning challenge was approached as binary classification problem.

ID	Step	Tools Used
#1	Identifying and Loading Required Libraries	
#2	Loading Data and Viewing Basic Information About Dataset	Pandas
#4	Data Preprocessing	Pandas, Numpy
#4	Exploratory Data Analysis	Matplotlib, Seaborn
#5	Feature Engineering, Feature Selection and Preparing for Machine Learning Model training	
#6	Model Building and Evaluating	
#7	Hyperparameter Tuning and Selecting Best Model	
#8	Saving Best Model	
#9	Developing Inference Flow (Future Step)	
#10	Application Deployment (Future Step)	

Methodology: Handling Imbalance

Results

	Model	Resampeling method	Feature count	Accuracy score	Precision score	Recall score	F1 score	F1 score weighted	ROC AUC
Model ID									
xgb_rovs_02	XGBClassifier(colsample_bytree=0.5, gamma=9, m	Random Over Sampleing	23	0.760734	0.473742	0.647235	0.547063	0.772604	0.790571
xgb_rovs_03	XGBClassifier(colsample_bytree=0.5, gamma=1, n	Random Over Sampleing	23	0.763404	0.477794	0.643249	0.548312	0.774668	0.788177
xgb_rovs_04	XGBClassifier(colsample_bytree=0.5, gamma=0.5,	Random Over Sampleing	23	0.763181	0.477424	0.642750	0.547887	0.774456	0.789252
xgb_rovs_05	XGBClassifier(colsample_bytree=0.5, gamma=0.5,	Random Over Sampleing	23	0.765740	0.481257	0.633284	0.546902	0.776146	0.787701
rf_rovs_02	(DecisionTreeClassifier(max_features='auto', r	Random Over Sampleing	23	0.809121	0.602972	0.424514	0.498246	0.796439	0.771253
rf_rovs_03	$\label{eq:continuous} \begin{tabular}{ll} (DecisionTreeClassifier(max_features='auto', r \\ \hline \end{tabular}$	Random Over Sampleing	23	0.810011	0.603892	0.432985	0.504353	0.798066	0.774043
rf_rovs_04	(DecisionTreeClassifier(max_depth=10, max_feat	Random Over Sampleing	23	0.788877	0.524169	0.588939	0.554669	0.793111	0.785155
rf_rovs_05	(DecisionTreeClassifier(max_depth=10, max_feat	Random Over Sampleing	23	0.788877	0.524211	0.587942	0.554251	0.793049	0.785135

Conclusions

Subtitle

- Add text, images, art, and videos.
- Add transitions, animations, and motion.
- Save to OneDrive, to get to your presentations from your computer, tablet, or phone.

Subtitle

- Add text, images, art, and videos.
- Add transitions, animations, and motion.
- Save to OneDrive, to get to your presentations from your computer, tablet, or phone.

Future Developments

With PowerPoint, you can create presentations and share your work with others, wherever they are. Type the text you want here to get started. You can also add images, art, and videos on this template. Save to OneDrive and access your presentations from your computer, tablet, or phone.

THANK YOU