Leçon: Notion de viscosité d'un fluide, écoulement visqueux

Gabriel Le Doudic

Préparation à l'agrégation de Rennes

6 mai 2023

Niveau : CPGE

Prérequis: Hydrostatique

: Cinématique des fluides

: Mécanique

- Notion de viscosité
 - Contrainte visqueuse
 - Ordres de grandeur ($T = 20^{\circ} \text{ C}$)

- Exemple de l'écoulement de Poiseuille
 - Champ de vitesse de l'écoulement de Poiseuille
 - Mesure de la viscosité
 - Dissipation de l'énergie
 - Différents régimes d'écoulement (laminaire / turbulents)

	Viscosité dynamique η (Pa·s)	Viscosité cinématique $v = \eta/\rho \ (m^2 \cdot s^{-1} \text{ et } P = 1 \text{ bar})$
Eau	10^{-3}	1.006×10^{-6}
Air	1.82×10^{-5}	1.51×10^{-5}
Glycérine	1.49	1.1180×10^{-2}
mercure	1.55×10^{-3}	1.16×10^{-7}
H2	8.83×10^{-6}	1.05×10^{-4}

TABLE - Cours de Marc Rabaud

http://www.fast.u-psud.fr/~rabaud/NotesCours_Agreg.pdf

Champ de vitesse de l'écoulement de Poiseuille

FIGURE - https://culturesciencesphysique.ens-lyon.fr/ressource/
physique-animee-poiseuille.xml

Différents régimes d'écoulement (laminaire / turbulents)

FIGURE – écoulement laminaire : $v = 14 \text{ m} \cdot \text{s}^{-1}$, $d = 337 \mu\text{m}$, Re = 314

FIGURE – écoulement turbulent : $v = 29 \text{ m} \cdot \text{s}^{-1}$, $d = 337 \mu\text{m}$, Re = 652