实验平台说明

特征	说明		
操作系统版本和系统类型	Windows 7 64 bit enterprise edition		
EDA 软件名称和版本	Quartus II 13.1 64 bit		
DE2-115 开发板编号	1904615S		

自查清单

特征	Part 7/Lab8	Part6/Lab8	Part/Lab	Part ?/Lab?
原理图	1	7	×	
Verilog 代码			×	
Flow Summary			×	
RTL 图	1	1	×	
状态机图	×	×	×	
工艺图	√	4	×	
仿真图	×	×	×	
SignalTapII 图	×	×	×	
硬件运行图	√	√	×	

第一部分 Part 7/Lab7

一、实验目的

- 1. 熟悉有限状态机的使用方法。
- 2. 联合数码管驱动电路进行状态设计。
- 3. 多个状态机串行使用。

二、实验内容

- 1.使用 LAB1 中数码管驱动程序。
- 2.使用 part1 中设计思路。
- 3.以自己的方式设计驱动器。

三、实验原理

- 1. 以 SW0 开关为复位,以 KEY1 为 2 倍速按键, KEY2 为 2 倍 慢速按键。
- 2. 输出映射到 8 个数码管上, 进行流水灯 HELO 设计。

四、实验步骤

- 1) 建立工程,并添加文件。
- 1.建立工程,选择常用文件夹,取名为 lab3。
- 2.添加 Block Diagram/Schematic 文件, 取名为 lab3;
- 3.添加 Verilog HDL 文件,取名为 PART4.5
- 4.添加 VMF 文件, 取名为 lab3.vmf

2) 首先理清思路:

根据本实验所指导的方法来看,需要使用有限状态机来做 PART567,在 PART5 中首先是使用输入的 clk 进行 HELO 的流水 设计,涉及八个状态,所以使用一个三位的状态机指定不同的状态。在八个状态中,对八个状态进行内容设计:定义 HEX 状态,使除 hex0 外的每个 HEX 的数据往后流通。

3) 参考 PART56

在 PART7 中使用,三种状态可以使用两位的状态机进行状态调节,且由于状态比较少,所以也可绕过状态机,直接对状态进行调节。本实验使用第一种方案即传统 FSM。

4) 以 Verilog 代码表示 。

5) 综合

Flow Status	Successful - Tue Dec 03 13:07:07 2019
Quartus II 64-Bit Version	13.1.0 Build 162 10/23/2013 SJ Full Version
Revision Name	LAB7
Top-level Entity Name	part7
Family	Cyclone IV E
Device	EP4CE115F29C7
Timing Models	Final
Total logic elements	140 / 114,480 (< 1 %)
Total combinational functions	134 / 114,480 (< 1 %)
Dedicated logic registers	80 / 114,480 (< 1 %)
Total registers	80
Total pins	60 / 529 (11 %)
Total virtual pins	0
Total memory bits	0 / 3,981,312 (0 %)
Embedded Multiplier 9-bit elements	0 / 532 (0 %)
Total PLLs	0/4(0%)

6) 编译并将引脚对应。

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved (
" HEX0[6]	Output	PIN_H22	6	B6_N0	PIN_H22	2.5 V (default)	(F
5 HEX0[5]	Output	PIN_J22	6	B6_N0	PIN_J22	2.5 V (default)	Č
5 HEX0[4]	Output	PIN_L25	6	B6_N1	PIN_L25	2.5 V (default)	
5 HEX0[3]	Output	PIN_L26	6	B6_N1	PIN_L26	2.5 V (default)	LLS
HEX0[2]	Output	PIN_E17	7	B7_N2	PIN_E17	2.5 V (default)	
HEX0[1]	Output	PIN_F22	7	B7_N0	PIN_F22	2.5 V (default)	
5 HEX0[0]	Output	PIN_G18	7	B7_N2	PIN_G18	2.5 V (default)	
5 HEX1[6]	Output	PIN_U24	5	B5_N0	PIN_U24	2.5 V (default)	
5 HEX1[5]	Output	PIN_U23	5	B5_N1	PIN_U23	2.5 V (default)	
5 HEX1[4]	Output	PIN_W25	5	B5_N1	PIN_W25	2.5 V (default)	
5 HEX1[3]	Output	PIN_W22	5	B5_N0	PIN_W22	2.5 V (default)	
5 HEX1[2]	Output	PIN_W21	5	B5_N1	PIN_W21	2.5 V (default)	
5 HEX1[1]	Output	PIN_Y22	5	B5_N0	PIN_Y22	2.5 V (default)	
5 HEX1[0]	Output	PIN_M24	6	B6_N2	PIN_M24	2.5 V (default)	
5 HEX2[6]	Output	PIN_W28	5	B5_N1	PIN_W28	2.5 V (default)	
5 HEX2[5]	Output	PIN_W27	5	B5_N1	PIN_W27	2.5 V (default)	
5 HEX2[4]	Output	PIN_Y26	5	B5_N1	PIN_Y26	2.5 V (default)	
5 HEX2[3]	Output	PIN_W26	5	B5_N1	PIN_W26	2.5 V (default)	
5 HEX2[2]	Output	PIN_Y25	5	B5_N1	PIN_Y25	2.5 V (default)	
5 HEX2[1]	Output	PIN_AA26	5	B5_N1	PIN_AA26	2.5 V (default)	
5 HEX2[0]	Output	PIN_AA25	5	B5_N1	PIN_AA25	2.5 V (default)	
5 HEX3[6]	Output	PIN_Y19	4	B4_N0	PIN_Y19	2.5 V (default)	
5 HEX3[5]	Output	PIN_AF23	4	B4_N0	PIN_AF23	2.5 V (default)	
5 HEX3[4]	Output	PIN_AD24	4	B4_N0	PIN_AD24	2.5 V (default)	
5 HEX3[3]	Output	PIN_AA21	4	B4_N0	PIN_AA21	2.5 V (default)	
5 HEX3[2]	Output	PIN_AB20	4	B4_N0	PIN_AB20	2.5 V (default)	
HEX3[1]	Output	PIN U21	5	B5 N0	PIN U21	2.5 V (default)	

五、实验代码

module part7(hex7,hex6,hex5,hex4,hex3,

hex2,hex1,hex0,clk,reset,KEY1,KEY2);

output reg [6:0] hex7,hex6,hex5,hex4,hex3,hex2,hex1,hex0; input clk,reset,KEY1,KEY2;

```
reg [2:0] state;
    on off;
reg
reg [2:0]state count;
reg temp;
integer count;
integer count dif;
always @(posedge clk)
begin//KEY1:clk=12500000 KEY2:clk=200000000
if(KEY1==0&&temp==0)begin
state count=state count+3'b001;temp=1;end
                                   if(KEY2==0&&temp==0)begin
else
state_count=state_count-3'b001 ;temp=1;end
if(KEY1!=0&&KEY2!=0) begin temp=0; end
begin
case(state count)
      3'b000:count dif=12500000;
      3'b001:count dif=25000000;
      3'b010:count_dif=50000000;
      3'b011:count_dif=100000000;
      3'b100:count dif=200000000;
```

```
default: count_dif=50000000;
endcase
end
if(count<count_dif)
  count=count+1;
else
begin
   begin
      if(reset==0)
          begin hex7<=7'b1111111;
                 hex6<=7'b1111111;
                 hex5<=7'b1111111;
                 hex4<=7'b1111111;
                hex3<=7'b1111111;
                hex2<=7'b1111111;
                hex1<=7'b1111111;
                hex0<=7'b1111111;
                state<=3'b000;
                on_off=1'b0;
          end
      else
```

```
begin
         //solve the first problem
             if(on off==0)//at the beginning, set the register
                 begin
                 case(state)
                 3'd0:begin
hex0<=7'b0001001;hex1<=hex0;hex2<=hex1;hex3<=hex2;
   hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;state=state+1;
end //H
                 3'd1:begin
hex0<=7'b0000110;hex1<=hex0;hex2<=hex1;hex3<=hex2;
   hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;state=state+1;
end //E
                 3'd2:begin
hex0<=7'b1000111;hex1<=hex0;hex2<=hex1;hex3<=hex2;
   hex4 \le hex3; hex5 \le hex4; hex6 \le hex5; hex7 \le hex6; state = state + 1;
end //L
                 3'd3:begin
```

hex0<=7'b1000111;hex1<=hex0;hex2<=hex1;hex3<=hex2;

```
hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;state=state+1;
end //L
```

3'd4:begin

hex0<=7'b1000000;hex1<=hex0;hex2<=hex1;hex3<=hex2;

hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;state=state+1; end //O

3'd5:begin

hex0<=7'b1111111;hex1<=hex0;hex2<=hex1;hex3<=hex2;

hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;state=state+1;

3'd6:begin

hex0<=7'b1111111;hex1<=hex0;hex2<=hex1;hex3<=hex2;

hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;state=state+1;

3'd7:begin

hex0<=7'b1111111;hex1<=hex0;hex2<=hex1;hex3<=hex2;

hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;state=state+1;

on_off=1'b1;end

endcase

end

else

begin

hex0<=hex7;hex1<=hex0;hex2<=hex1;hex3<=hex2;

hex4<=hex3;hex5<=hex4;hex6<=hex5;hex7<=hex6;

end

end

end

count=0;

end

end

endmodule

六 实验体会

状态机十分好用,期末大作业可以用上的。

