FMI, Info, Anul I

Logică matematică și computațională

Seminar 4

(S4.1) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

- (i) $((x_0 \to x_1) \to x_0) \to x_0 = 1$;
- (ii) $(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$.

(S4.2) Arătați că pentru orice $\varphi, \psi, \chi \in Form$, avem:

- (i) $\psi \vDash \varphi \rightarrow \psi$;
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iii) $\varphi \vee (\varphi \wedge \psi) \sim \varphi$;
- (iv) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

(S4.3) Să se găsească câte un model pentru fiecare din formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

(S4.4) Să se demonstreze că, pentru orice formulă φ , φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.

(S4.5) Să se demonstreze că, pentru orice formule φ, ψ ,

- (i) $\psi \vDash \varphi$ dacă și numai dacă $\vDash \psi \to \varphi.$
- (ii) $\psi \sim \varphi$ dacă și numai dacă $\vDash \psi \leftrightarrow \varphi$.
- (S4.6) Să se arate că

$$\{v_0, \neg v_0 \lor v_1 \lor v_2\} \vDash (v_3 \to v_2) \lor (\neg v_1 \to v_2)$$

(S4.7) Confirmați sau infirmați:

- (i) pentru orice $\varphi,\psi\in Form,\vDash\varphi\wedge\psi$ dacă și numai dacă $\vDash\varphi$ și $\vDash\psi;$
- (ii) pentru orice $\varphi, \psi \in Form, \vDash \varphi \lor \psi$ dacă și numai dacă $\vDash \varphi$ sau $\vDash \psi$.