ЛЕКЦИЯ 3

Основные операции и характеристики нечетких отношений

- Доминирование н. о.: $R \subseteq Q : \mu_Q(\langle x_1, ... \rangle) \ge \mu_R(\langle x_1, ... \rangle)$.
- Пересечение двух отношений: $C = R \cap Q : \mu_C(\langle x_1, ... \rangle) = \min\{\mu_Q(\langle x_1, ... \rangle), \mu_R(\langle x_1, ... \rangle)\}.$
- Объединение двух отношений: $C = R \cup Q : \mu_C(\langle x_1, ... \rangle) = \max\{\mu_Q(\langle x_1, ... \rangle), \mu_R(\langle x_1, ... \rangle)\}.$
- Разность н. о.: $C = Q \setminus R : \mu_C(\langle x_1, ... \rangle) = \max\{\mu_Q \mu_R, 0\}.$
- Симметрическая разность: $C = Q \triangle R : \mu_C = |\mu_Q(< x_1, ... >) \mu_R(< x_1, ... >)|.$
- Композиция бинарных н. о.: Пусть $Q: X_1 \times X_2; R: X_2 \times X_3$, у Q и R один общий универсум. Нечеткое отношение между Q и R, обозначаемое $S=Q\otimes R$ называется композицией (тах-тіп-композицией или сверткой) и определяется выражением

$$\mu_S(\langle x_i, x_j \rangle) = \max_{x_k} \{ \min\{ \mu_Q(\langle x_i, x_k \rangle), \mu_R(\langle x_k, x_j \rangle) \} \}.$$

Пример.

$$S: X_1 \times X_3.$$

$$\begin{pmatrix} 0 & 0 & 0.3 \\ 0.2 & 0.7 & 0 \\ 0.1 & 0.1 & 0 \end{pmatrix}$$

• (Max-prod)-композиция - альтернативная функция принадлежности бинарного отношения S. В данном случае операция нахождения минимума заменяется алгебраическим умножением.

$$\mu_S(\langle x_i, x_j \rangle) = \max_{x_k} \{ \mu_Q(\langle x_i, x_k \rangle) * \mu_R(\langle x_k, x_j \rangle) \}.$$

НЕЧЕТКИЕ ВЫВОДЫ

Механизм нечетких выводов используется в различного рода экспертных и управляющих системах. В его основе лежит база знаний, формируемая в виде совокупности нечетких предикатных правил вида:

 R_1 : if x is A_1 , then y is B_1 ,

 R_2 : if x is A_2 , then y is B_2 ,

. . .

 R_n : if x is A_n , then y is B_n ,

где x - входная переменная (имя для известных значений данных), y - переменная вывода (имя для значения данных, которое будет вычислено); A и B - функции принадлежности, определенные соответственно на x и y.

Основные понятия и определения

• Нечеткая переменная представлена следующим набором: $\langle \alpha, X, A \rangle$, где α - имя нечеткой переменной, X - универсум, A - соответствующее нечеткое множество нечеткой переменной.

Пример. "Ошибка скорости".

 μ_1 - большая отрицательная ошибка, μ_2 - малая ошибка, μ_3 - большая положительная ошибка.

- Лингвистическая переменная это набор из пяти элементов $\langle \beta, T, X, G, M \rangle$, где:
 - β имя лингвистической переменной,
 - T множество термов (названия нечетких переменных, входящих в состав лингвистической),
 - Х универсум, на котором определены термы,
 - G набор процедур, который из существующих термов позволяет создать новые,
 - M набор процедур для задания основных термов.
 - *Пример:* \langle "Ошибка скорости"; "большая отрицательная ошибка", "малая ошибка", "большая положительная ошибка"; R; $\{\cup, \cap, \setminus, \ldots\}$; $\{\mu_1, \mu_2, \mu_3\}$.
- Нечеткая величина это есть нечеткое множество, у которого $X \equiv R$.
- Hечеткий интервал это есть нечеткая величина, у которой μ выпуклая.
- Нечеткое число μ выпуклая унимодальная.
- Hечеткий Hуль это есть нечеткое число с модой λ в Hуле $(\lambda=0)$.
- Положительные и отрицательные нечеткие числа нечеткие числа, которые имеют носитель определенного знака.
 - $\mu(x) > 0$ носитель строго положительный;
 - $\mu(x) < 0$ носитель строго отрицательный.
- *Треугольное нечеткое число* задается как $\langle a, \alpha, \beta \rangle$, где a значение моды, α и β коэффициенты нечеткости.
 - $[a-\alpha,a+\beta]$ носитель треугольного нечеткого числа.

- ullet Трапециевидный нечеткий интервал $\langle a,b,lpha,eta
 angle$, где:
 - a нижняя мода;
 - b верхняя мода;
 - α левый коэффициент нечеткости;
 - β правый коэффициент нечеткости.

 $[a-\alpha,b+\beta]$ - носитель нечеткого интервала.

Операции над треугольными нечеткими числами

• $A = \langle a_1, \alpha_1, \beta_1 \rangle, B = \langle a_2, \alpha_2, \beta_2 \rangle.$ $A + B = \langle a_1 + a_2, \alpha_1 + \alpha_2, \beta_1 + \beta_2 \rangle.$

•
$$A - B = \langle a_1 - a_2, \alpha_1 + \beta_2, \alpha_2 + \beta_1 \rangle$$
.

$$A \cdot B = \left\{ \begin{array}{l} \langle a_1 a_2, a_1 \alpha_2 + a_2 \alpha_1, a_2 \beta_1 + a_1 \beta_2 \rangle, \ a_1, a_2 > 0; \\ \langle a_1 a_2, a_2 \alpha_1 - a_1 \beta_2, a_2 \beta_1 - a_1 \alpha_2 \rangle, \ a_1 < 0, a_2 > 0; \\ \langle a_1 a_2, -a_2 \beta_1 - a_1 \beta_2, -a_2 \alpha_1 - a_1 \alpha_2 \rangle, \ a_1 < 0, a_2 < 0. \end{array} \right.$$

- $A/B = \langle \frac{a_1}{a_2}, \frac{a_1\beta_2 + a_2\alpha_1}{a_2^2}, \frac{a_1\alpha_2 + a_2\beta_1}{a_2^2} \rangle; a_1 > 0, a_2 > 0.$
- $A^{-1} = \langle \frac{1}{a_1}, \frac{\beta_1}{a_1^2}, \frac{\alpha_1}{a_1^2} \rangle, a_1 > 0.$