Finding the number e in history and everyday life.

Brian Lins

Hampden-Sydney College

October 23, 2025

How to explain *e*?

Only one of the following is accessible without calculus.

$e = \lim_{n \to \infty}$	$\left(1+\frac{1}{n}\right)^n$	$e = \sum_{n=0}^{\infty} \frac{1}{n!}$				
$\frac{d}{dx}e^{x}$	$= e^x$	$\int_{1}^{e} \frac{1}{x} dx = 1$				
	e pprox 2.718281828459					

In the 1980's, Golden Grahams cereal had a promotion where 1 out of every 15 boxes of cereal had a digital watch.

I really wanted a digital watch, so I tried to talk my mom into buying 15 boxes of cereal!

Suppose we did buy 15 boxes of cereal.

- First box's probability of **not** winning = $\frac{14}{15}$.
- ► Second box's probability of **not** winning = $\frac{14}{15}$.
- **•** ...
- Fifteenth box's probability of **not** winning = $\frac{14}{15}$.

Suppose we did buy 15 boxes of cereal.

- First box's probability of **not** winning = $\frac{14}{15}$.
- Second box's probability of **not** winning = $\frac{14}{15}$.
- **•** ...
- Fifteenth box's probability of **not** winning = $\frac{14}{15}$.

So the combined probability of **not winning any watches** is:

$$\left(\frac{14}{15}\right)^{15} = 35.526\%$$

Suppose we did buy 15 boxes of cereal.

- First box's probability of **not** winning $=\frac{14}{15}$.
- Second box's probability of **not** winning = $\frac{14}{15}$.
- **•** ...
- Fifteenth box's probability of **not** winning = $\frac{14}{15}$.

So the combined probability of **not winning any watches** is:

$$\left(\frac{14}{15}\right)^{15} = 35.526\%$$

This is approximately $\frac{1}{e}$ (= 36.788%)!

If only 1 out of n boxes has a prize, and you buy n boxes, then the probability you'll win nothing is:

$$Pr(zero prizes) = \left(1 - \frac{1}{n}\right)^n$$
.

This is one of the formulas for e:

$$e^r = \lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n$$
.

How e is usually introduced

The formula

$$e^r = \lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n$$

is usually explained with compound interest.

Suppose you invest in a bank that pays r = 6% APR.

- ► Compounded once 1.06.
- Compounded quarterly $(1 + \frac{0.06}{4})^4 = 1.06136$.
- Compounded monthly $(1 + \frac{0.06}{12})^{12} = 1.061678$.
- Compounded daily $(1 + \frac{0.06}{365})^{365} = 1.061831$.
- Infinite compounding $e^{0.06} = 1.061837$.

The discovery of e

▶ Jacob Bernoulli (1683) discovered that the limit

$$\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n$$

converges to a number between 2.5 and 3.

► Leonhard Euler started using the letter e for this constant in the late 1720s.

History question

Why have different APR and APY numbers? The right way to split a 6% annual rate into 12 equal payments would be to calculate:

$$(1.06)^{(1/12)} = 1.00487.$$

The correct monthly rate should be 0.487%, not 0.5%.

Why do we have the system we have?

- ▶ Is it to confuse borrowers?
- Is it because bankers were confused?
- ▶ Are there laws that make it hard to change?

History digression: why compound interest?

Simple Interest Only pay interest on the money you borrow, not the interest you still owe.

$$A = P(1 + nr)$$

Compound Interest Pay interest on both the money borrowed and any interest accrued.

$$A = P(1+r)^n$$

Annuities

Mortgage Payments If you pay back a fixed amount every month for 30 years, how much total interest should you pay?

Fixed Income Retirement Accounts How much should you pay now to get a fixed income of \$3000 per month for the next 20 years?

Why compound interest?

Suppose you deposit money (called the present value PV) in an annuity and make fixed withdrawals (payments P) each year.

Simple Interest Annuity is a harmonic sum

$$PV = \frac{P}{1+r} + \frac{P}{1+2r} + \dots + \frac{P}{1+nr}$$

Compound Interest Annuity is a geometric sum

$$PV = \frac{P}{(1+r)} + \frac{P}{(1+r)^2} + \ldots + \frac{P}{(1+r)^n}$$

John Collins

John Collins (1625-1683) was an English mathematician who is known for the letters he wrote to other famous mathematicians including Newton & Leibniz.

He wrote a book about calculating interest and annuities.

John Collins

In his book The Doctrine of Decimal Arithmetick, Collins writes:

If you are to Equate an Annuity at Simple Interest, I presume a Compendium may be found in [Pietro Mengoli's] Arithmetical Quadratures (a Book I never saw)...

Pietro Mengoli

Pietro Mengoli (1626 - 1686) did prove that the alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

converges to ln 2, but he didn't have a practical formula for general harmonic sums.

Sums of harmonic series

Unfortunately, there doesn't seem to be a nice formula for sums of harmonic series. In 1734, Euler observed that for large *n*:

$$1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\approx\ln(n)+\gamma$$

where $\gamma \approx 0.577216$ is the Euler-Mascheroni constant.

 γ is even more mysterious than $\emph{e}.$ We still don't even know if γ is rational, for example!

Sums of geometric series

Unlike simple interest annuities, there is a "nice" formula for the sum of a compound interest annuity.

$$\frac{P}{(1+r)} + \frac{P}{(1+r)^2} + \ldots + \frac{P}{(1+r)^n} = \frac{P[(1+r)^n - 1]}{r(1+r)^n}$$

Sums of geometric series

Unlike simple interest annuities, there is a "nice" formula for the sum of a compound interest annuity.

$$\frac{P}{(1+r)} + \frac{P}{(1+r)^2} + \ldots + \frac{P}{(1+r)^n} = \frac{P[(1+r)^n - 1]}{r(1+r)^n}$$

It just requires calculating powers, multiplication, and division.

A brief history of compound interest

► Early compound interest tables were published in Italy starting in the 14th Century.

▶ John Napier 1614 *Mirifici Logarithmorum Canonis Descriptio* - showed how to use logarithms to calculate products and roots.

Henry Briggs 1624 Arithmetica Logarithmica - included examples of compound interest and annuity calculations using logarithms.

John Napier

John Napier (1550 – 1617) was a Scottish landowner and mathematician.

He wrote A Plaine Discovery of the Whole Revelation of St. John (1593) where he predicted that the world would end in either 1688 or 1700.

He also wrote Mirifici Logarithmorum Canonis Descriptio (1614).

The wonderful method of logarithms

The phrase *mirifici logarithmorum canonis* means "the wonderful method of logarithms".

The wonderful method of logarithms

The phrase *mirifici logarithmorum canonis* means "the wonderful method of logarithms".

Here's how Napier starts the preface.

Since nothing is more tedious, fellow mathematicians, in the practice of the mathematical arts, than the great delays suffered in the tedium of lengthy multiplications and divisions, the finding of ratios, and in the extraction of square and cube roots — and in which not only is there the time delay to be considered, but also the annoyance of the many slippery errors that can arise: I had therefore been turning over in my mind, by what sure and expeditious art, I might be able to improve upon these said difficulties.

Why logarithms are great

Logarithms turn multiplication into addition...

$$\log(ab) = \log(a) + \log(b)$$

...and division into subtraction:

$$\log\left(\frac{a}{b}\right) = \log(a) - \log(b).$$

Logarithms also make powers easier:

$$\log(a^n) = n\log(a).$$

What are logarithms?

The base-*b* logarithm $\log_b(x)$ is both:

- ▶ The power you need to raise *b* to in order to get *x*.
- ightharpoonup The number of steps x is away from 1 on a logarithmic scale.

Base-10 logarithmic scale

Napier's logarithm

Napier's logarithm is essentially the negative of the modern natural logarithm function.

It's also the base-(1/e) logarithm.

Logarithm table

2 I min			+ - Differentia l		Sinus		2 I min	Sinu: 1	Logarithmi		log arithmi [Sinus	1
0 I 2	3583679 3586395 3589110	10261946 10254372 10246804	9574664 9565973 9557287	687282 688399 689517	9335804 9334761 9333717	59	31	3665012 3667718 3670424	10037530	9316313 9307784 9299261	721217 722364 723512	9304176 9303109 9302042	29
3 4	3591825 3594540 3597254	10239243 1 10231688	9548607 9539932 9531263	695636 691756 692877	5332673 9331628 9330582	56	33	3673130 3675835 3678541	10008041	9290744 9282232 9273726	724660 725809 726959	9300974 9299905 9298836	27 26 25
7 8	3599968 3602682 3605395	10216598	9522599 9513941 9505288	693999 695122 696246	9329535 9328488 9327440	54	36	3681246 3683951 3686655	9993335 9985991 9978653	9265215 9256729 9248238	728110 729262 730415	9297766 9296695 9295623	24 23 22
9 10	3608108 3610821 3613533	10194012	9496642 9488001 9479366	697370 698495 699621	9326391	150	10	3689359 3591062 3694765	9971322 9963997 9956678	6829753 9231273 9222798	731569 732724 733886	9294550 9293476 9292401	2 I 20 19
13	3616245 3618957 3621669	10171484	9470736 9462111 9453491	700748 701877 703007	9323238	47 4	42 43 44	3697468 3700170 3702872	9949366 9942060 9934760	9214326 9205865 9197406	735037 736195 737354	9291326 9290250 9289173	18 17 16
15 16 17	3624380 3627091 2619802	10149015	9444877 9436268 9427664	704138 } 705270 706403	9319024	44	45 46	3705574 3708276 3710977	9927466 9920178 9912896	9188952 9180503 9172059	738514 739675 740837	9288096 9287018 9285939	15 14 13
18	3632512 3635222 3637932	10126603 10119145 10111694	9419066 9410473 9401886	707537 708672 70868	9316913	3 42 5 41	181	3713678 3716379 3719080	9905620 9898350 9891086	9163620 9155186 9146757	742000 743164 744329	9284859 9283778 9282697	11 10
2.I 3.2 2.3	3640642 3643351 3646060	10096811	9393305 9384730 9376160	710944 712981 713219	9313730	39	51	3721780 3724480 3727179	983828 9876577 9869332	9138333 9129915 9121502	745495 746662 747830	9281615 9280532 9279448	8 7
24	3643768 3651476	10081953	9367595	714358 715498 716639	931055	9 36	4	3729878 3732577 3735275	9862093 9854860 9847633	9113094 9104691 9093293	748999 750169 751340	9278363 9277278 9276192	5 4
27	3656892	10059713	9341931	717782	930737	7 32 5	8	3737973 3740671 3743369	9833192 9825988	9087900 9079512 9071129	752512 753685 754859	9275105 9274017 9272928	3 2 1
3					930417	-	0	3740066	2818785	9062752	750033		min gra.

Each step on a log-scale represents multiplication by a fixed factor.

Here is a log-scale where each step is a factor of 2.

Each step on a log-scale represents multiplication by a fixed factor.

Here is the same log-scale with the other integers included.

Multiply by moving to the right.

Divide by moving to the left.

Multiply by moving to the right.

Divide by moving to the left.

Multiply by moving to the right.

Divide by moving to the left.

History of logarithmic scales

Edmund Gunter created a wooden ruler marked with a log-scale in 1620.

▶ By 1622, William Oughtred invented the first slide rule by putting two wooden log-scales side-by-side.

The fulcrum of a logarithmic scale

If you position equal weights at the integers $1, \ldots, n$ on a logarithmic scale, then it will balance on a point $\approx \frac{n}{e}$.

Why?

The **factorial** of *n* is $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdots n$.

Why?

The **factorial** of *n* is $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdots n$.

Stirling's formula says

$$n! \approx \left(\frac{n}{e}\right)^n$$
.

Why?

The **factorial** of *n* is $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdot \cdot n$.

Stirling's formula says

$$n! \approx \left(\frac{n}{e}\right)^n$$
.

Take n-th root and then the logarithm of both sides:

$$\ln(\sqrt[n]{n!}) \approx \ln\left(\frac{n}{e}\right).$$

Why?

The **factorial** of *n* is $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdot \cdot n$.

Stirling's formula says

$$n! \approx \left(\frac{n}{e}\right)^n$$
.

Take n-th root and then the logarithm of both sides:

$$\ln(\sqrt[n]{n!}) \approx \ln\left(\frac{n}{n}\right)$$
.

By the properties of logarithms:

$$\frac{\ln(1) + \ln(2) + \ldots + \ln(n)}{n} \approx \ln\left(\frac{n}{e}\right).$$

Why?

The center of mass is the average position of the weights.

So by Stirling's formula the center of mass is

$$\frac{\ln(1) + \ln(2) + \ldots + \ln(n)}{n} \approx \ln\left(\frac{n}{e}\right).$$

More applications of logarithmic scales

- Displaying data
- ▶ Benford's law
- Apportioning seats in Congress

Displaying data

Here are the mass and radii of the planets in the solar sytem.

Displaying data

Here are the mass and radii of the planets in the solar sytem.

Benford's law

Benford's law asserts that in real world data, numbers beginning with a 1 (like 125, or 17, or 1903.72) are more common than numbers beginning with a 2 (like 28, or 207.4), which in turn are more common than numbers beginning with a 3, and so on.

Numbers starting with 1 make up about 30% of a logarithmic scale. Numbers starting with 9 are less than 4.6% of the scale.

Benford's law

Leading digits of the populations of countries (2017 UN data).

The apportionment problem

According to the Constitution: Representatives and direct Taxes shall be apportioned among the several States which may be included within this Union, according to their respective Numbers...

Since 1941, the United States has used the Huntington-Hill method to apportion the 435 seats of the House of Representatives.

Apportionment methods

- ▶ **Jefferson's method**: scale populations proportionally until you give out the correct number of seats when you round each number down.
- Adams's method: scale populations proportionally until you give out the correct number of seats when you round each number up.
- ▶ Huntington-Hill method: scale populations proportionally until you give out the correct number of seats by rounding to the nearest whole number (on a logarithmic scale).

Population (in millions)

Need to find a divisor D that assigns exactly 435 seats to congress.

Quota (seats in congress)

If D = 1.5 million people per seat, then we only get 223 seats.

Quota (seats in congress)

If D = 1 million people per seat, then we only get 334 seats.

Quota (seats in congress)

If D = 760,000 people per seat, then we get exactly 435 seats.

First presidential veto

On April 5, 1792, George Washington issued the first presidential veto.

He objected to the apportionment method used to divide the seats after the 1790 census.

Gentlemen of the House of Representatives:

I have maturely considered the act passed by the two Houses entitled "An act for an apportionment of Representatives among the several States according to the first enumeration," and I return it to your House, wherein it originated, with the following objections:

First. The Constitution has prescribed that Representatives shall be apportioned among the several States according to their respective numbers, and there is no one proportion or divisor which, applied to the respective numbers of the States, will yield the number and allotment of Representatives proposed by the bill.

Second. The Constitution has also provided that the number of Representatives shall not exceed I for every 30,000, which restriction is by the context and by fair and obvious construction to be applied to the separate and respective numbers of the States; and the bill has allotted to eight of the States more than I for every 30,000.

-George Washington

If you multiply all the prime numbers less than or equal to n together, you get the **primorial** of n, denoted n#:

$$n\#=2\cdot 3\cdot 5\cdot 7\cdots p.$$

Primorials are like a prime version of factorials.

The primorial function n# grows **faster** than a^n for all positive a < e, and it grows **slower** than a^n for all a > e.

The primorial function n# grows **faster** than a^n for all positive a < e, and it grows **slower** than a^n for all a > e.

Another way to express this fact is:

$$\lim_{n\to\infty} \sqrt[n]{n\#} = e.$$

Knowing that $\sqrt[n]{n\#} \approx e$ tells us that prime numbers must be fairly common.

Knowing that $\sqrt[n]{n\#} \approx e$ tells us that prime numbers must be fairly common.

Take the natural log of both sides:

$$\frac{\ln 2 + \ln 3 + \ln 5 + \ldots + \ln p}{n} \approx \ln e = 1.$$

Prime numbers and logarithmic scales

We've already seen that the integers on a logarithmic scale balance at a point $\approx \frac{n}{e}$.

Stirling's Formula

Prime numbers and logarithmic scales

If you move all of the weights for the composite numbers to one, then the fulcrum will be positioned at approximately e.

 $\sqrt[n]{n\#} \approx e$

The Prime Number Theorem

This is closely related to the **Prime Number Theorem** which says that the fraction of integers between 1 and n that are prime is approximately $\frac{1}{\ln n}$.

Versions of the Prime Number Theorem were first conjectured around 1800.

► The first proofs of the Prime Number Theorem used complex analysis and were published independently by Jacques Hadamard and Charles Jean de la Vallée Poussin in 1896.

My daughter matches socks

When my daughter was little, she loved to match socks. Unfortunately, she didn't care if the socks actually matched. She just randomly put two socks together. So given a stack of *n* freshly washed pairs of socks (all with different colors) what is the probability that she managed to **not match** any socks correctly?

This is called a **derangement** of the socks.

Permutations

A derangement is a permutation with no fixed points,

This is a derangement:

Permutations

A derangement is a permutation with no fixed points.

Not a derangement:

Probability of a derangement

The probability that a permutation of n pairs of socks is a derangment is

$$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \ldots + \frac{(-1)^n}{n!}$$
.

Probability of a derangement

The probability that a permutation of n pairs of socks is a derangment is

$$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \ldots + \frac{(-1)^n}{n!}.$$

This might look familiar if you've seen Taylor series.

Taylor series for e^x

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Taylor series for e^x

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

If you substitute x = -1, then

$$\frac{1}{e} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots$$

The probability of getting a derangment approaches this limit quickly as n increases.

How good are these approximations?

Estimate from 100 boxes of cereal:

$$e \approx 2.7320$$

Estimate from the fulcrum of the log-scale up to 100:

$$e \approx 2.6321$$

Estimate from n^{th} root of 100#:

$$e \approx 2.3101$$

Estimate from matching 100 pairs of socks:

$$e \approx 2.7182818284590455$$

The last one is accurate to 15 decimal places.

Thank you!

Thanks for your attention!