# KOMPARASI ALGORITMA CLUSTERING DATA MEDIA ONLINE PADA PROSES BISNIS

Iqbal Dzulfiqar Iskandar<sup>1</sup>, Melisa Winda Pertiwi<sup>2</sup>, Mira Kusmira<sup>3</sup>, Imam Amirulloh<sup>4</sup>

<sup>1</sup>AMIK BSI Tasikmalaya, <sup>2,3,4</sup>STMIK Nusa Mandiri Jakarta Jl. Tanuwijaya No.4, Empangsari, Tawang, Tasikmalaya E-mail: iqbal.iql@bsi.ac.id<sup>1</sup>, melisa.mwp@bsi.ac.id<sup>2</sup>, mira.mik@bsi.ac.id<sup>3</sup>, imam.iau@bsi.ac.id<sup>4</sup>

#### **ABSTRAK**

Media *online* saat ini telah dipergunakan untuk berbagai macam bidang karena sangat mudah dalam mengjangkau informasi. Penelitian berfokus pada komparasi performa terhadap 5 algoritma clustering algoritma K-Means, K-Medoids, Self Organizing Maps, Fuzzy C-Means, dan Density-Based Spatial Clustering of Applications with Noise dengan metode komparasi Davies–Bouldin index Clustering pada dataset penggunaan media *online* pada proses bisnis, di ambil dari 94 perusahaan bisnis, baik itu bidang pendidikan, dinas pemerintahan, dan perusahaan swasta yang diambil di wilayah Tasikmalaya-Indonesia. Dengan menghasilkan data hasil pengolahan data Komparasi Davis-Bouldin Indeks SOM memiliki nilai rata-rata terkecil dari algoritma yang lainnya yaitu sebesar 1.073 yang artinya algoritma tersebut memiliki proses clustering dengan data kuantitatif yang lebih baik. Sedangkan DBSCAN dan K-Means memiliki nilai yang paling besar diantara keempat lagoritma cluster yang berarti memiliki proses clustering yang kurang baik. Sedangkan F-CM dan K-Medoids tidak memiliki nilai perbedaan yang signiifikan bahkan hampir sama.

Kata kunci: Clustering, Davies-Bouldin index, Media Online

#### **ABSTRACT**

The online media is currently used for various areas because very easy to reach the information. The research focuses on the comparison of performance against 5 the algorithm clustering algorithm K-Means, , K-Medoids, Self Organizing Maps, Fuzzy C-Means, and Density-Based Spatial Clustering of Applications with Noise With the method comparison Davies-Bouldin index Clustering on the dataset using the media online on business process , In take from 94 companies business, good education in the district of the government and private companies that were taken in the region Tasikmalaya-Indonesia. To produce data processing results comparable data Davis-Bouldin SOM Index has the smallest average value from the other algorithm amounting 1.073 which means that the algorithm has the process of clustering with a better quantitative data. While DBSCAN and K-Means has the greatest value among the four lagoritma cluster which means have the process of clustering that less good. While the F-CM and K-Medoids does not have the value of significant differences even almost the same

Keywords: Clustering, Davies-Bouldin index, Online Media

## 1. PENDAHULUAN

Media *Online* merupakan layanan yang telah banyak dipergunakan pada berbagai macam bidang karena kemudahannya dalam menjangkau informasi. Contoh penggunaan media *online* di bidang pendidikan adanya program e-learning yang membantu peserta didik mendapatkan materi secara mudah kapanpun dan dimanapun, selain pendidikan media *online* dapat dipergunakan pada sarana hiburan, dan termasuk dalam proses bisnis. Saat ini banyak sekali perusahaan yang memanfaatkan media *online* dalam proses bisnisnya, tetapi apakah

perusahaan-perusahaan tersebut benar-benar mengandalkan media *online* sebagai perangkat utama dalam menjalankan proses bisnis, atau hanya digunakan sebagai media sekunder saja.

Berkaitan dengan media *online* telah banyak dilakukan penelitian dengan menggunakan pendekatan data mining. (Dimitrov, 2016) telah melakukan penelitian terhadap media *online* berupa objek website berjudul "Visual Positions Of Links and Clicks on Wikipedia dan What Makes a Link Successful on Wikipedia". Penelitian tersebut melakukan identifikasi posisi link yang akan berpotensi lebih banyak di klik oleh pengunjung

web, (Ren, 2016) dengan judul "What Makes a Music Track Popular in Online Social Networks", melakukan mining terhadap data website yang berisikan isi konten untuk mengetahui apa yang menjadikan musik track seseorang menjadi populer. (Dholakia, F.2016). "What makes commercial Web pages popular? An empirical investigation of Web page" melakukan riset dengan pendekatan datamining untuk mengidentifikasi penyebab begitu populer. website komersial menjadi Penelitian yang telah dijadikan acuan masih terdapat kekurangan yaitu hanya berfokuskan pada media online konten website, serta tidak ada evaluasi terhadap algoritma datamining cluster. akan .Berkaitan dengan hal tersebut, akan dilakukan menggunakan metode penelitian algoritma clustering pada data Penggunaan media online pada proses bisnis, baik itu bidang pendidikan, dinas pemerintahan, dan perusahaan swasta yang diambil di wilayah Tasikmalaya-Indonesia, penelitian ini bertuiuan untuk mengetahui prilaku serta perusahaan mengelompokan yang memiliki karakteristik sama dalam penggunaan media online untuk proses bisnis berdasarkan data penggunaan Media Online yang diambil 94 perusahaan bisnis dan lembaga.

Selain melakukan clustering, terhadap data. Penelitian ini juga membahas komparasi performa terhadap 5 algoritma clustering dengan metode komparasi Davies-Bouldin index tentunya dengan sumber dataset yang sama. Saat ini telah banyak dilakukan penelitian yang berkaitan dengan komparasi algoritma clustering, tetapi hanya mencakup algoritma clustering yang sudah populer saja contohnya K-Means dan K-medoids, atau sekedar membahas tentang clustering tanpa komparasi algoritma terbaik. Lima Algoritma yang di komparasi pada penelitian ini adalah algoritma K-Means, K-Medoids, Self Organizing Maps, Fuzzy C-Means, dan Density-Based Spatial Clustering of Applications with Noise. Sehingga diharapkan informasi algoritma mana yang memberikan memiliki performa yang lebih baik diantara algoritma lainnya. Metode Clustering adalah proses untuk menemukan pengetahuan group pada data. Objek pada clustering tidak digunakan untuk prediksi sebuah target pada variable kelas. Tetapi hanya melakukan pengelompokan data secara alami (Vijay Kotu, Bala Deshpande, PhD., 2015). Struktur paper ini dimulai dari pengenalan ruang lingkup masalah setelah itu related work untuk menjabarkan keterkaitan penelitian yang di bahas dengan penelitian lain yang berhubungan, Theoretical Foundation menjabarkan landasan teori yang di gunakan, Proposed Method: Metode yang diusulkan, Hasil Experimental Results: eksperimen, Kesimpulan (Conclusion) Kesimpulan penelitian yang harus dilakukan setelahnya. Paper ini fokus membahas bagaimana mengkomparasikan algoritma clustering pada data set penggunaan media *online* pada proses bisnis.

### 2. METODOLOGI

Metode yang di usulkan pada penelitian ini bertujuan untuk melakukan prosedur penelitan komparasi algoritma *clustering* terhadap data media online pada proses bisnis , sehingga dapat dilakukan komparasi lima algoritma *clustering* dengan metode evaluasi algoritma *Eucledian Distance*, sedangkan metode komparasi menggunakan algoritma *Davies*-

Bouldin index (DBI). kerangka pemikiran yang ditujukan pada penelitian ini dapat dilihat pada gambar 4.



Gambar 1. Metodelogi emperis yang diusulkan

Tahapan pertama untuk melakukan komparasi algoritma adalah menentukan objek data yang akan di olah, tahap kedua dilakukan pemisahan data otomatis training dan testing melalui operator split data. Tahap ketiga dilakukan proses ekstraksi data mining terhadap data set yang telah di siapkan sebelumnya dengan lima algoritma clustering K-Means, K-Medoids, Self Organizing Maps, Fuzzy C-Means, dan Density-Based Spatial Clustering of Applications with Noise. Tahap ke empat melakukan komparasi hasil clutering menggunakan algoritma Davies Bouldin index. Nilai terkecil dari hasil perhitungan Davies-Bouldin index mengartikan nilai untuk algoritma clustering yang lebih baik. (Vijay Kotu, Bala Deshpande, PhD.,2015).

#### 3. LANDASAN TEORI

Penelitian tentang komparasi algoritma telah banyak dilakukan dan telah dipublikasikan. Sehingga dilakukan pengkajian terhadap penelitian

yang terkait sebelumnya agar dapat mengetahui metode yang digunakan, data seperti apa yang diproses, serta model yang dihasilkan. Penelitian yang dilakukan oleh (Mamta Gupta dan Anand Rajavat, 2014) dengan judul "Comparision Of Algorithms Document Clustering". For Menghasilkan kesimpulan bahwa algoritma BIRCH memproses data clustering dokumen dengan efisiensi yang lebih bagus dibandingkan dengan Kmeans. Penelitian berikutnya oleh (Szil'agyi L. Enesi D, K. Levente dan M. Szil'agyi,2014) dengan judul "Comparison of Various Improved-Partition Fuzzy c-Means Clustering, Algorithms in Fast Color Reduction". Mengkomparasikan algoritma clustering Fuzzy C-mans dengan algoritma Varoius improvedpartition, dengan objek penelitian pengolahan pada warna citra, menghasilkan kesimpulan pengolahan data pada masalah color reduction lebih efisiensi menggunakan algoritma FCM. Penelitian vang dilakukan (R.Delshi Howsalya Devi, P.Deepika, "Performance Comparison of Various Clustering Techniques for Diagnosis of Breast Cancer". Mengkomparasikan lima algoritma clustering terhadap objek penelitian data Breast Cancer. Menyimpulkan algoritma Farthest First memiliki akurasi yang tinggi dan tingkat efisiensi rendah terhadap data breast cancer dibandingkan ke empat algoritma yang lainnya yaitu DBSCAN, Canopy, LVO, Hierarchy. Penelitian yang dilakukan oleh (H.Haripriya, R DeviSree, Dinesh.Pooja, Prema Nedungadi, 2015) dengan judul "Comparative Performance Analysis of Self Organizing Maps on Weight Initializations using different Strategies". Melakukan komparasi algoritma SOM PCI, KPCI, RI, FCMI terhadap data asli UCI BreastCancer, Blood Transfusion, Wine, Iris, Computer, hasil penelitian menyimpulkan Strategi initialization berlaku bagi datasets setelah dimensionality reduksi dan sebelum dimensionality di lakukan pengurangan. . Maka dapat terllihat apakah PCA atau KPCA Outperformed untuk satu daset tertentu, sehingga dapat di identifikasi apakah dataset bersifat linier atau bukan linear. Penelitian yang dilakukan oleh (Dyah Herawatie, Eto W., Purbandini, 2014) yang berjudul "Perbandingan Algoritma Pengelompokan Non-Hierarki untuk Dataset Dokumen". Mengkomparasikan algoritma clustering K-Mean, Bi-secting,, K-Median, K-Medoid dengan objek pengolahan data set dokumen, penelitian tersebut menyimpulkan Algoritma memberikan pengelompokan yang hasil pengelompokan yang terbaik adalah K-Mean. itu Bi-secting Disamping K-Mean menghasilkan pengelompokan yang memuaskan. Sedangkan hasil pengelompokan Kmedoid memberikan hasil yang tidak memuaskan. Berdasakan penelitian yang telah di kaji dari beberapa penelitian yang terkait. Maka dilakukan penelitian komparasi performance lima algoritma clustering dengan objek data penggunaan media online pada proses bisnis. Algoritma yang di komparasikan K-Means, K-Medoids, Organizing Maps, Fuzzy C-Means, dan Density-Based Spatial Clustering of Applications with Noise(DBSCAN) Penelitian ini bertujuan mengelompokan data penggunaan Media Online pada proses bisnis serta mengidentifikasi algoritma vang memiliki performa terbaik pengolahan dataset dengan metode Davies-Bouldin index tabel diutamakan garis horizontal saja sedangkan garis vertikal dihilangkan.

Metode Clustering adalah proses menemukan pengetahuan group pada data. Objek pada clustering tidak digunakan untuk prediksi sebuah target pada variable kelas. Tetapi hanya melakukan pengelompokan data secara alami (Vijay Kotu, Bala Deshpande, 2015). Lima AlgoritmaClustering yang di gunakan pada penelitian ini adalah algoritma K-Means, K-Medoids, Self Organizing Maps, Fuzzy C-Means, Density-Based Spatial Clustering Applications with Noise.

#### a. K-Means

Clustering K-Means merupakan prototypebased metode clustering dimana kumpulan data set dibagi kedalam k Cluster. k-means adalah salah satu algoritma yang paling sederhana dan algoritma clustering yang paling umum digunakan. Pada teknik ini, pengguna menetapkan angka cluster (k ) kebutuhan tersebut di kelompokan pada kumpulan data. Objektivitas clustering k-means adalah untuk menemukan satu contoh asli poin data pada semua data poin cluster masing-masing kemudian akan dimasukan kedalam prototype vang terdekat, kemudian terbentuk sebuah cluster. prototype di sebut sebagai centroid, merupakan pusat pada cluster.



Gambar 1. *Voronoi partition. under Creative* Tahapan Algoritma K-means:

- a. Initiate Centroids
   Tahapan pertama inisialisasi nilai k secara random untuk centroid, nilai cluster di tetapkan oleh user.
- b. Assign Data Points
  Centroids telah memiiliki inisialisasi,
  tahap dua ini semua data point di tugaskan
  untuk nearest centroid untuk membentuk
  cluster. didalam konteks "nearest" adalah

kalkulasi dari pengukuran proximity. Pengukuran Euclidean distance secara umum mengukur proximity, kedua pengukuran tersbut seperti Manhattan measure dan Jaccard Coefficient yang dapat digunakan. Euclidean distance yang mana dua data points  $X(X_1, X_2,...X_n)$  dan  $C(C_1, C_2,...C_n)$  dengan atribut n di dapat dari rumus distance berikut :

$$d = \sqrt{(X_1 - C_1)^2 + (X_2 - C_2)^2 + \dots + (X_n - C_n)^2}$$
(1)

Gambar2. Initial Random Centroid

c. Step 3: Calculate New Centroids
 Mengkalkulasikan centroid baru, serta
 prototype pada cluster.
 Dengan formula:

SSE = 
$$\sum_{i=1}^{k} \sum_{x_j \in C_i} ||x_j - \mu_i|| 2$$
 (2)

Dimana Ci adalah ith cluster, j merupakan data points yang di beri dari cluster,  $\mu i$  adalah centroid untuk ith cluster, dan  $x_j$  adalah sebuah data objek yang spesifik. Centroid dengan minimal SSE untuk memberi cluster i adalah mean baru pada cluster. mean pada cluster dapat dikalkulasikan dengan formula

$$\mu_i = \frac{1}{j_i} \sum_{x \in c_i} X \tag{3}$$

dimana X adalah data objek vektor  $(x_1, x_2, \dots x_n)$ .

d. Repeat Assignment and Calculate New Centroids

Setelah centroid baru telah diidentifikasi, masukan data point ke nearest centroid ulangi hingga semua titik data yang dimasukan kembali ke pusat *centroid* baru. catat perubahan pada penugasan dari dua *point* data yang pantas masuk ke *cluster* yang berbeda pada langkah sebelumnya.

e. Termination

Langkah 3, kalkukasikan *centroid* baru dan langkah 4 penugasan data point untuk *centroid* baru, hingga tidak ada perubahan selanjutnya pada data point yang terjadi, atau dengan kata lain tidak ada perubahan berpengaruh nyata pada centroid. centroid akhir menerangkan prototype data objek atau vektor dan mereka dipergunakan untuk menerangkan keseluruhan model *cluster*. Masing-masing data pada dataset

sekarang menghubungkan sebuah clustering ID baru , dimana atribut yang mengidentifikasikan cluster

#### b. DBCSAN

Cluster dapat juga didefinisikan sebagai satu area konsentrasi tinggi (atau density) dari objek data yang terkumpul oleh area dari konsentrasi rendah (atau density) dari objek data. Satu algoritma cluster density mengidentifikasi cluster pada berlandaskan pengukuran dari distribusi kepadatan pada ruang n-dimensional. tidak sama dengan metode centroid, menetapkan angka dari parameter cluster (k), hal itu tidak cocok untuk algoritma density-based. Algoritma **DBSCAN** membuat cluster dari identifikasi highdensity dan low-density space pada data set. seperti algoritma clustering pada Kmeans, menerima atribut numerik karena perhitungan distance masih digunakan. (Vijay Kotu, Bala Deshpande, PhD.,2015 ).. Tahapan:

Step 1: Defining Epsilon and MinPoints

Step 2: Classification of Data Points Step 3: Clustering

k-distribution chart for Iris data set with k = 4.



Gambar 3. Density dengan 4 wilayah

Sumber: Kotu predictive Analiytic using Rapid Miner

## c. Self Organizing Map

Self Organizing map adalah algoritma Jaringan Syaraf Tiruan yang menggunakan topologi jaringan kohonen dengan cara memetakan korteks untuk mengelompokan record kedalam suatu himpunan dengan vector visual dua dimensi, berdasarkan karakteristik atau fitur data yang di inputkan. Algoritma SOM mirip seperti pada centroid-based clustering tetapi dengan fondasi neural network. sejak SOM algoritma neural networl model ini hanya menerima atribut numeric. SOM tidak memiliki target variable karena termasuk kedalam unsupervised learning Tahapan Algoritma SOM

- a. Inisialisasi bobot matriks  $w_{ij}$ . Set topologi tetangga. Set parameter learning rate.
- b. Lakukan langkah 2 s/d 8 untuk

kondisi batas berhenti belum tercapai

- c. Untuk setiap vektor input x lakukan langkah 3 sampai 5.
- d. Untuk setiap\_j, hitung:

$$D(j) = \sum_{i} w_{ij} - Xi)^2 \tag{4}$$

- e. Temukan index J yang membuat D(J) minimum
- f. Untuk setiap unit j pada tetangga J dan semua i hitung. Rumus yang digunakan:

$$W = W_{ij} \text{ (old } + \alpha [X - W_{ij} \text{ (old)}]$$

$$(5)$$

- g. Update learning rate nya
- Kurangi jarak/radius dari topologi tetangga
- i. test kondisi stop/Selesai.

### Keterangan:

d<sub>i</sub> = Jarak Euclidean

 $I_i = Input \ node$ 

 $\dot{X}$ : Vektor inputan pembelajaran  $(X_1, X_2, \ldots, X_n)$ 

a: learning rate

R: radius neighborhood

X<sub>i</sub>: neuron / node input

 $Y_j$ : neuron / node output

W<sub>ii</sub>: bias pada neuron *output* ke-j

M: Cluster

#### d. Fuzzy C-Man

Fuzzy C-Means adalah teknik klasterisasi yang di tentukan oleh derajat mengelompokan keanggotaannya.pertama kali menentukan pusat klaster, yang akan menandai lokasi rata-rata untuk tiap-tiap klaster. Pada kondisi awal, pusat klaster ini masih belum akurat. Sehingga dilakukan perbaikan pusat klaster dan derajat keanggotaan tiap-tiap titik data secara berulang. Maka terlihat pusat klaster akan bergerak menuju lokasi yang tepat. Perulangan ini didasarkan pada minimasi fungsi obyektif yang menggambarkan jarak dari titik data yang diberikan kepusat cluster yang terbobot oleh derajat keanggotaan titik data. Output dari Fuzzy C-Means adalah deretan pusat klaster dan beberapa derajat kelompok untuk tiap-tiap titik data.

#### e. K-Meoids

K-medoid merupakan salah satu teknik penggerombolan yang mirip dengan k-means. Algoritma ini memiliki kemiripan dengan Algoritma K-Means Clustering, tetapi terdapat beberapa perbedaan utama, dimana apabila pada Algoritma K-Means Clustering, nilai tengah dihitung dengan rata-rata (mean) dan perhitungan jarak dihitung dari data pada masing-masing mean, sedangkan pada algoritma ini, data akan digunakan sebagai nilai tengah / disebut dengan medoid, dan

perhitungan jarak dihitung dari jarak antar masing-masing data. Tahapan algoritma K-Medoid sebagai berikut:

- a) Inisialisasi: memilih objek k secara acak yang akan berfungsi sebagai medoids.
- Asosiasikan setiap titik data dengan medoid yang paling serupa dengan mengguna kan ukuran jarak dan menghitung biaya.
- c) Secara acak memilih objek k baru yang akan berfungsi sebagai medoid dan menyimpan salinan dari set asli.
- d) Gunakan set medoids baru untuk menghitung ulang biaya.
- e) Jika biaya yang baru lebih besar dari pada biaya lama kemudian hentikan algoritma tersebut.
- f) Ulangi langkah kedua hingga kelima sampai tidak ada perubahan dalam medoid.

#### f. Eucledian Distance

Eucledian Distance merupakan distance matrix dengan perhitungan menggunakan aturan pangkat dan akar kuadrat. Eucledian akan memberikan hasil jarak yang relatif kecil. Jarak antara Nilai Random/ Bobot dan data dihitung dengan menggunakan rumus Euclidean Distance.

$$d\ eucledian = \sqrt{\sum_{i} \frac{N}{i}} (Pi - qi)^2$$

(6)

Keterangan:

d eucledian: Jarak Eucledian Distance

pi : Titik Awal

qi : Titik Awal N : Jumlah Data

g. Davies-Bouldin index.

Davies-Bouldin index (DBI) merupakan salah satu metode validasi cluster untuk evaluasi kuantitatif dari hasil clustering. (Davies & Bouldin, 1979). Evaluasi clustering berbeda dengan regresi dan algoritma klasifikasi karena algoritma cluster tidak mengetahui label untuk komparasi. "Nilai terkecil dari hasil Davies-Bouldin perhitungan index mengartikan nilai untuk algoritma clustering yang lebih baik. (Vijay Kotu, Bala Deshpande, PhD.,2015 )". Kalkulasi algoritma Davies Bouldin index dapat

dilakukan dengan rumus berikut:  

$$var(x) = \frac{1}{N-1} \sum_{i=1}^{N} (xi - \bar{x})^{2}$$
(7)  

$$Ri = j = 1,, k, i \neq jR^{ij}.$$

$$Rij_{i\neq j} = \frac{var(C_{i}) + var(C_{j})}{\left| |C_{i} - C_{j}| \right|}$$

$$DB = \frac{1}{k} \sum_{i=1}^{k} R_i \tag{8}$$

Dimana

DB: validasi davies bouldin Var: variance dari data N: Banyaknya data X: data ke-i

X : rata-rata dari tiap *Cluster* R : jarak antar *Cluster* 

## 4. HASIL DAN PEMBAHASAN

Data set yang digunakan pada penelitian ini adalah data set penggunaan media onlie pada proses bisnis yang diambil dari 100 perusahaan di daerah Tasikmalaya-Indonesia. Eksperimen yang dilakukaan untuk pemrosesan data mining komputer dengan platform Intel Core i5 1.80 Ghz dengan Ram 4GB, Sistem operasi menggunakan windows 10 64 bit, software rapid Miner 7.4. Komparasi yang

|       |                            | ·                                                                 |
|-------|----------------------------|-------------------------------------------------------------------|
| Nomor | Penggunaan Media<br>Online | Jumlah data<br>pengguna<br>Media online<br>dari 100<br>perusuhaan |
| 1     | Transaksi Jual Beli        | 98                                                                |
| 2     | Pemasaran online           | 6                                                                 |
| 3     | Kirim E-mail               | 98                                                                |
| 4     | Payroll                    | 71                                                                |
| 5     | Monitoring <i>User</i>     | 63                                                                |
| 6     | Pendaftaran                | 87                                                                |
|       | Anggota online             |                                                                   |
| 7     | Prediksi Saham             | 9                                                                 |
| 8     | Jasa Ekspedisi             | 15                                                                |
| 9     | Absensi                    | 90                                                                |
| 10    | Penggunaan Server          | 88                                                                |
| 11    | Sosialisasi                | 14                                                                |
| 12    | Pengembangan               | 95                                                                |
|       | Website                    |                                                                   |
| 13    | Portal berita              | 98                                                                |
| 14    | Download Data              | 85                                                                |
| 15    | Upload Data                | 99                                                                |
| 16    | Jasa Keuangan              | 98                                                                |
| 17    | Pendidikan                 | 18                                                                |
| 18    | Pembayaran Jasa            | 57                                                                |
| 19    | Creditur                   | 41                                                                |
| 20    | Jejaring Sosial            | 72                                                                |
| 21    | Penilaian Kinerja          | 94                                                                |

dilakukan terhadap algoritma klastering adalah dengan menggunakan metode Davis-Bouldin Index, karena sangat berbeda dengan algoritma data mining Klasifikasi, Algoritma Cluster tidak dapat mengetahui label untuk di komparasi

Tabel1. Data Penggunaan media *online* pada proses bisnis



Gambar 4. komparasi algoritmma clustering

Tabel2. Hasil Proses Clustering

| Tabel 2. Hasii Proses Ciustering   | <i>C</i> 1 . |
|------------------------------------|--------------|
| Perushaan pengguna media online    | Cluster      |
| Netral net                         | Cluster_0    |
| Honda                              | Cluster_0    |
| Dhemi                              | Cluster_0    |
| Sky komputer                       | Cluster_0    |
| Dev design                         | Cluster_0    |
| 3g komputer                        | Cluster_0    |
| Three six komputer                 | Cluster_0    |
| Notaris dan ppat ida aryani sh     | Cluster_0    |
| Notaris dan ppat sh                | Cluster_0    |
| Notaris dan ppat                   | Cluster_0    |
| Kecamatan cibereum                 | Cluster_0    |
| Notaris dan ppat                   | Cluster_0    |
| Dishub kominfo                     | Cluster_0    |
| Kantor pelayanan perizinan terpadu | Cluster_0    |
| Bpn ri kota tasikmalaya            | Cluster_0    |
| Kpknl tasikmalaya                  | Cluster 0    |
| Kpknl tasikmalaya                  | Cluster 0    |
| Cafa comunika                      | Cluster_0    |
| Kppn tasikmalaya                   | Cluster_0    |
| Cv sinar mas tsm (toyota)          | Cluster_0    |
| Kbpn tasikmalaya                   | Cluster_0    |
| Kantor pelayanan perizinan terpadu | Cluster_0    |
| Queen computer                     | Cluster_0    |
| Dishub kominfo                     | Cluster 0    |
| Kementrian agama                   | Cluster 0    |
| Arba nova                          | Cluster 0    |
| Stimik dci                         | Cluster 0    |
| Ide komunika                       | Cluster_0    |
| Notaris dan ppat ida aryani sh     | Cluster_0    |
| Badan pertahanan nasional          | Cluster_0    |
| Bpjs kesehatan                     | Cluster 0    |
| Kandaga net                        | Cluster_0    |
| Setda kota tasikmalaya             | Cluster_0    |
| Kantor pelayanan perizinan terpadu | Cluster 0    |
| Culiner                            |              |
|                                    | Cluster_0    |
| Lion net                           | Cluster_0    |
| King net                           | Cluster_0    |
| Fawaz net                          | Cluster_0    |
| Smk angkasa tasikmalaya            | Cluster_0    |
| SMA Tasikmalaya                    | Cluster_0    |
| Rs. Tasik medika citratama         | Cluster_0    |
| Pt. Pln tasikmalaya                | Cluster_0    |
| Kedai x treme                      | Cluster_0    |
| Rc technology                      | Cluster_0    |
| Net 73                             | Cluster_0    |
| Rusdi net                          | Cluster_0    |

| Kantor pelayanan pajak | Cluster_0 |
|------------------------|-----------|
| Notaris dan ppat       | Cluster_0 |

Tabel 2 menunjukan Perusahaan yang memiliki karaktersitik sama berjumlah 50 perusahaan, sehingga di kelompokan kedalam klastering 0.

Tabel 3. Clustering 1

| Di                                                     | Clarata ii 1 |
|--------------------------------------------------------|--------------|
| Dirgantara pilot school                                | Cluster_1    |
| Bill komputer                                          | Cluster_1    |
| Kpp pratama tasikmalaya                                | Cluster_1    |
| Yayasan sumber barokah                                 | Cluster_1    |
| Mometo                                                 | Cluster_1    |
| Disduk capil                                           | Cluster_1    |
| Kantor kelurahan tasikmalaya                           | Cluster_1    |
| Pos indonesia                                          | Cluster_1    |
| Kpknl tasikmalaya                                      | Cluster_1    |
| Kppn tasikmalaya                                       | Cluster_1    |
| Kantor pajak tasikmalaya                               | Cluster_1    |
| Toko sa                                                | Cluster_1    |
| Kantor kelurahan cikalang                              | Cluster_1    |
| Bpjs kesehatan                                         | Cluster_1    |
| Kantor kecamatan cibereum                              | Cluster_1    |
| All komputer                                           | Cluster_1    |
| Dinas kependudukan dan pencatatan sipil                | Cluster_1    |
| Bpjs kesehatan                                         | Cluster_1    |
| Setda kota tasikmalaya                                 | Cluster_1    |
| Kementrian agama                                       | Cluster_1    |
| Kementrian agama                                       | Cluster_1    |
| Bpn ri kota tasikmalaya                                | Cluster_1    |
| Kpp pratama tasikmalaya                                | Cluster_1    |
| Jhon cell                                              | Cluster_1    |
| Technozone computer                                    | Cluster_1    |
| Cv kawilang                                            | Cluster_1    |
| Pt kai                                                 | Cluster_1    |
| Sukmara                                                | Cluster_1    |
| Jne                                                    | Cluster_1    |
| Bpjs kesehatan                                         | Cluster_1    |
| Tiki cibereum                                          | Cluster_1    |
| Jne siliwangi                                          | Cluster_1    |
| Lp3i tasikmalaya                                       | Cluster_1    |
| Mukena dessy collection                                | Cluster_1    |
| Tdc tasikmalaya                                        | Cluster_1    |
| Theater cinema 21                                      | Cluster_1    |
| Indosat                                                | Cluster_1    |
| Telkomsel                                              | Cluster_1    |
| Rp media                                               | Cluster_1    |
| Kantor pajak pratama i                                 | Cluster 1    |
| Kantor pajak pratama ii                                | Cluster_1    |
| Kantor panak pratama n<br>Kantor pembendaharaan negara | Cluster_1    |
| ixantoi penibendanaraan negara                         | Clusici_1    |

Tabel 3 menunjukan Jumlah perusahaan yang masuk kedalam Cluster 1 sebanyak 44 perusahaan yang memiliki karaktersitik sama.



Gambar 5. Diagram Bar

Diagram Bar pada gambar 6 mengartikan jumlah *cluster* 0 dan 1, Cluster 0 memiliki persentase lebih tinggi dari *cluster* 1.

Hasil komparasi lima algoritma data mining K-Means, K-Medoids, Self Organizing Maps, Fuzzy C-Means, dan Density-Based Spatial Clustering of Applications with Noise akan di

jabarkan pada tabel 4 dan 5.

Tabel 4 dan 5 adalah nilai rata-rata hasil evaluasi setiap cluster menggunakan metode *Centroid Distance* dari 5 algoritma clustering. *Algoritma clustering* DBSCAN memiliki nilai rata-rata 1.610 pada *cluster0* dan K-Means 1.697 pada cluster1, sehingga dapat dikatakan cluster yang terdapat pada algoritma K-means dan SOM memiliki performa yang baik.

Tabel4. Hasil Komparasi cluster dengan *centroid distance* 

| K-means |   |     | K-Medoids |     |  |
|---------|---|-----|-----------|-----|--|
| C       |   | C_  | C_        | C_  |  |
| 0       |   | 1   | 0         | 1   |  |
| 2.      | 8 | 1.6 | 3.5       | 1.8 |  |
| 12      |   | 97  | 48        | 96  |  |

Tabel5. Hasil komparasi

|     | SOM |     | DBSCAN |     | F-CM |
|-----|-----|-----|--------|-----|------|
|     | C_  | C   | C      | C   | C    |
| 0   | 1   | _0  | _1     | _0  | _1   |
| 90. | 82. | 1.  | 2.     | 2.  | 2.   |
| 770 | 513 | 610 | 111    | 028 | 222  |

Tabel4. Dan Tabel 5 adalah nilai rata-rata hasil evaluasi setiap cluster menggunakan metode Centroid Distance dari 5 algoritma clustering. Algoritma clustering DBSCAN memiliki nilai rata-rata 1.610 pada cluster0 dan *K-Means* 1.697 pada cluster1, sehingga dapat dikatakan *cluster* yang terdapat pada algoritma K-means dan SOM memiliki performa yang baik.

Tabel6. Nilai rata-rata gasil komparasi *Centroid Distance*.

| K-     | K-      | SO      | DBSC   | F          |
|--------|---------|---------|--------|------------|
| means  | Medoids | M       | AN     | -CM        |
| -1.969 | -2.667  | -86.917 | -2.034 | -<br>1.911 |

Tabel6 adalah nilai rata-rata hasil evaluasi dengan algoritma centroid distance dengan menghitung nilai *cluster* keseluruhan pada masingmasing algoritma. FCM memiliki performa yang baik, karena memiliki nilai terendah diantara algoritma algoritma lainnya.

Tabel7. Komparasi Davis-Bouldin

| K-means | <i>K</i> - | SOM    | DBSC   | F-CM   |
|---------|------------|--------|--------|--------|
|         | Medoids    |        | AN     |        |
| -2.382  | -1.483     | -1.073 | -2.202 | -1.128 |

Hasil pengolahan data Komparasi *Davis-Bouldin Indeks* SOM memiliki nilai rata-rata terkecil dari algoritma yang lainnya yaitu sebesar -1.073 yang artinya algoritma tersebut memiliki performa yang lebih baik. Sedangkan DBSCAN dan K-*Means* memiliki nilai yang paling besar diantara ke empat lagoritma cluster yang berarti DBSCAN dan K-means memiliki proses c*lustering* yang kurang baik. Sedangkan K-Medoids dan F-CM tidak memiliki nilai perbedaan yang signifikan.

## 5. KESIMPULAN

Komparasi lima Algoritma Clustering menggunakan metode Davis-Bouldin Index menggunakan dataset Pengguna data media online pada proses bisnis yang diambil dari 94 perusahaan yang ada di wilayah tasikmalaya dapat dilakukan. Dari 94 Perusahaan telah di ketahui 50 perusahaan yang memiliki karakteristik sama dan masuik kedalam Cluster 0, dan 44 perusahaan masuk kedalam cluster 1. Hasil evaluasi yang di dapatkan dari pengolahan data Komparasi Davis-Bouldin Indeks SOM memiliki nilai rata-rata terkecil dari algoritma yang lainnya yaitu sebesar 1.073 yang artinya algoritma tersebut memiliki proses clustering dengan data kuantitatif yang lebih baik. Sedangkan DBSCAN dan K-Means memiliki nilai yang paling besar diantara keempat lagoritma cluster yang berarti DBSCAN dan K-means memiliki proses clustering yang kurang baik. Sedangkan K-Medoids dan F-CM tidak memiliki nilai perbedaan yang signifikan bahkan hampir sama. Ini menyimpulkan bahwa dataset tidak mempengaruhi kualitas pada algoritma Saran untuk penelitian berikutnya clustering. algoritma diharapkan dapat mengkomparasi clustering menggunakan metode komparasi dengan pola untuk mengetahui akurasi terhadap proses pengolahan data clustering. Serta melakukan validasi dengan metode External Evaluation.

Saran untuk penelitian dimasa mendatang, dapat dilakukan komparasi terhadap alogritma *clustering* 

dengan dataset penggunaan media *online* yang lebih luas

### DAFTAR PUSTAKA

#### **Prosiding**

- Dholakia, F. (2016). What makes commercial Web pages popular? An empirical investigation of Web page.
- Dimitrov, D., Lemmerich, F., & Strohmaier, M. (2016). Visual Positions of Links and Clicks on Wikipedia, 3–4. https://doi.org/10.6084/m9.figshare.1305770.
- Delshi, R., D., P.Deepika,.(2015). Performance Comparison of Various Clustering Techniques for Diagnosis of Breast Cancer. International Conference on Computational Intelligence and Computing Research. 978-1-4799-7849-6.
- Haripriya H., DeviSree R., Pooja D., Nedungadi.(2015). Fifth International Conference on Advances in Computing and Communication.
- Herawatie D, Wuryanto E..(2015) Perbandingan Algoritma Pengelompokan Non-Hierarki untuk Dataset Dokumen. Seminar Nasional Aplikasi Teknologi Informasi (SNATI).
- Kotu V., Deshpande B.(2015). *Predictive analytic Using Rapid Miner*. Elsevier Inc. ISBN: 978-0-12-801460-8
- L'aszl, SA.,, Gell'ert D., Levente K., Andor S., M. Agyi.(2014). Comparison of Various Improved-Partition Fuzzy c-Means Clustering Algorithms in Fast Color Reduction. International Symposium on Intelligent Systems and Informatics. Serbia.
- Mamta, G., Anand R.(2014). Comparision Of Algorithms For Document Clustering. Sixth International Conference on Computational Intelligence and Communication Networks.
- Rahmawati L., Cahyani A.D., Putro S.2014. Pemanfaatan metode cluster som – idb sebagai analisa Pengelompokan penerima beasiswa.
- Ren, J. (2016). What Makes a Music Track Popular in Online Social Networks?, 95–96