Дискретная математика.

А. В. Тискин

Содержание

1	Булевые функции	1
2	Комбинаторика	4
3	Теория графов	5

1 Булевые функции

Определение 1. $\mathbb{B}:=\{0;1\}$. Булевая функция — $f:\mathbb{B}^n\to\mathbb{B}$. Множество булевых функций — P_2 . Множество булевых функция — $P_2^{(n)}$. Количество всех булевых функция — $\left|P_2^{(n)}\right|=2^{2^n}$.

Определение 2. Базовые функции:

- 0, 1 функции-константы.
- $\neg x := 1 x$
- \wedge и \vee стандартные AND и OR.

Определение 3. Булевая функция $f(x_1, \ldots, x_i, \ldots, x_n)$ существенно зависит от x_i , если существуют $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$, что $f(a_1, \ldots, a_{i-1}, 0, a_{i+1}, \ldots, a_n) \neq f(a_1, \ldots, a_{i-1}, 1, a_{i+1}, \ldots, a_n)$.

Определение 4. Пусть F — множество булевых функций. Тогда curnamypoй F или mhoжee-cmbom f f f называется множество итеративно заданных формул по принципу:

- формальный символ x;
- $f(A_1,\ldots,A_n)$, где $f\in F$, а A_1,\ldots,A_n уже определённые функции.

Формула реализует некоторую функцию (не обязательно из F). Формулы реализующие одну и ту же функцию называются эквивалентными.

Определение 5. Функция f выразима через F, если существует формула над F, реализующая f.

Определение 6. Замыкание F — множество [F] функций, выразимых через F.

Утверждение 1.

• $F \subseteq [F]$

- $F_1 \subseteq F_2 \Rightarrow [F_1] \subseteq [F_2]$
- [[F]] = [F]

Определение 7. Множество F булевых функций называется замкнутым, если F = [F].

Определение 8. Пусть R замкнуто, а $Q \subseteq R$.

- Q полно для R, если [Q] = R.
- R конечно порожсдаемо, если сущесвтует конечное полное для R множество Q, подмножество R. Минимальное по включение Q базис R.

Определение 9. Функция f называется монотонной, если

$$\forall x_1 \leqslant x'_1, \dots, x_n \leqslant x'_n : f(x_1, \dots, x_n) \leqslant f(x'_1, \dots, x'_n).$$

Утверждение 2. Множество монотонных функций замкнуто.

Определение 10.

Литерал — это x или $\neg x$, где x — формальный символ (переменная).

Элементарная конъюнкция — $Y_1 \wedge \cdots \wedge Y_k$, где Y_1, \ldots, Y_k — литералы (с попарно различными элементами).

Элементарная дизоюнкция — $Y_1 \lor \cdots \lor Y_k$, где Y_1, \ldots, Y_k — литералы (с попарно различными элементами).

Дизтинивная нормальная форма $(\mathcal{A}H\Phi)-Z_1\vee\cdots\vee Z_m$, где Z_1,\ldots,Z_m — (различные) элементарные конъюнкции.

Контонктивная нормальная форма $(KH\Phi)-Z_1\wedge\cdots\wedge Z_m$, где Z_1,\ldots,Z_m — (различные) элементарные дизъюнкции.

Совершенная ДНФ (СДНФ) функции f от n переменных —

$$f(x_1, \dots, x_n) = \bigvee_{f(\sigma_1, \dots, \sigma_n) = 1} x_1^{\sigma_1} \wedge \dots \wedge x_n^{\sigma_n},$$

где $x^0 = \neg x$, а $x^1 = x$.

Совершенная $KH\Phi$ (СКН Φ) функции f от n переменных —

$$f(x_1,\ldots,x_n) = \bigwedge_{f(\sigma_1,\ldots,\sigma_n)=0} x_1^{1-\sigma_1} \vee \cdots \vee x_n^{1-\sigma_n},$$

где $x^0 = \neg x$, а $x^1 = x$.

Утверждение 3. *Cucmeма* $\{\neg, \land, \lor\}$ *полна (в P*₂).

Следствие 3.1. Cucmemu $\{\neg.\wedge\}$, $\{\neg,\vee\}$, $\{1,\wedge,\oplus\}$, $\{\uparrow\}$ u $\{\downarrow\}$ nonhu.

Определение 11. Аналогично определяется (совершенная) конъюктивная нормальная форма $(KH\Phi)$.

Определение 12. Двойственная функция к $f - f^* := \neg f(\neg x_1, \dots, \neg x_n)$.

Свойства:

•
$$f^{**} = f$$

Утверждение 4 (принцип двойственности). Если f реализуема формулой Φ , то f^* реализуема формулой Φ^* , где все функции заменяются на двойственные.

Определение 13 (полином Жегалкина (над \mathbb{F}_2)). Выражение функции в базисе $\{1, \wedge, \oplus\}$.

$$f(x_1, \dots, x_n) = \sum_{\{i_1, \dots, i_s\} \subseteq \{1, \dots, n\}} a_{i_1, \dots, i_n} x_{i_1} \dots x_{i_s}$$

Теорема 5 (Жегалкин). Любая функция реализуется полиномом Жегалкина единственным образом (с точностью до пропуска членов тождественно равных 0 и перестановок слагаемых и сомножителей).

Доказательство. Всего коэффициентов $a_{i_1,...,i_s}-2^n$. Тогда многочленов Жегалкина ровно 2^{2^n} ; сколько и булевых функций. Покажем, что для каждой функций найдётся полином Жегалкина, и тогда докажем теорему.

Построение полинома аналогично рассуждению в формуле включений-исключений. Сначала рассмотрим значение f в точке $(0,\ldots,0)$: оно определяет свободный член полинома. Далее рассмотрим значение f и имеющегося полинома (пока что состоящего только из, может быть, свободного члена) в точках вида $(0,\ldots,0,1,0,\ldots,0)$: по ним определяются коэффициенты при мономах первой степени (по аналогии с формулой включений-исключений). Так далее определяются все коэффициенты.

Определение 14. Функция f самодвойствена, если $f = f^*$.

 $\Pi p u м e p 1.$

- e_i и $\neg e_i$ для любого n и i самодвойственны;
- \vee , \wedge , \oplus , \rightarrow , \leftarrow , \uparrow и \downarrow не самодвойствены.

Утверждение 6. *Класс* S самодвойственных функций замкнут.

Определение 15. f линейна, если $f(x_1, \ldots, x_n) = a_0 \oplus (a_1 \wedge x_1) \oplus \cdots \oplus (a_n \wedge x_n)$ для некоторых a_1, \ldots, a_n .

Они же представляются как полиномы Жегалкина степени не выше первой.

Утверждение 7. *Класс* L линейных функций замкнут.

Теорема 8 (теорема Поста). Система функций полна (в P_2) тогда и только тогда, когда она не содержится целиком ни в одном из T_0 , T_1 , S, L и M.

Доказательство. Пусть даны $f_0 \notin T_0, f_1 \notin T_1, f_S \notin S, f_L \notin L, f_M \notin M$.

Заметим, что $f_0(x,\ldots,x)\in\{1.\neg\}$, а $f_1(x,\ldots,x)\in\{0,\neg\}$. Тогда либо $0,1\in[\{f_0,f_1\}]$, либо $\neg\in[\{f_0,f_1\}]$.

Заметим, что для некоторых $\sigma_1, \ldots, \sigma_n$ имеем $f_S(\sigma_1, \ldots, \sigma_n) = f_S(\neg \sigma_1, \ldots, \neg \sigma_n)$. Поэтому $f_S(x_1^{\sigma}, \ldots, x_n^{\sigma})$ — константная функция, а тогда она и $\neg f_S(x_1^{\sigma}, \ldots, x_n^{\sigma})$ вместе дают 0 и 1, поэтому $0, 1 \in [\{\neg, f_S\}]$.

Заметим, что $\neg \in [\{0, 1, f_M\}]$.

Заметим, что $\land \in [\{f_L\}]$ или $\uparrow \in [\{f_L\}]$. Для заметим, что в полиноме Жегалкина f_L есть член хотя бы второй степени.

2 Комбинаторика

Утверждение 9 (правило произведения). Если объект A можно выбрать m способами, a B - n, то пару (A; B) можно выбрать m способами.

Утверждение 10 (правило суммы). Если объект A иожно выбрать m способами, a B - n способами, то объект "A или B" — m + n способами.

Утверждение 11 (принцип Дирихле). Пусть имеется n+1 шаров, разложенных по n урнам, то найдётся урна c хотя бы 2 шарами.

Утверждение 12 (обобщённый принцип Дирихле). Пусть имеется n шаров, разложенных по k урнам, то найдётся урна c хотя бы $\lceil \frac{n}{k} \rceil$ шарами.

Определение 16. Упорядоченная расстановка n элементов в ряд есть упорядоченная последовательность этих n элементов без повторений. Количество упорядоченных расстановок на n элементах равно $n! := \prod_{k=1}^{n} k$.

Упорядоченная расстановка k элементов из n в ряд есть упорядоченная последовательность каких-то k элементов из n без повторений. Количество упорядоченных расстановок k элементов из n равно $P(n,k) = A_n^k = \frac{n!}{(n-k)!}$.

k-элементная выборка среди n элементов есть подмножество множества данных n элементов. Таких выборок $\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$.

Утверждение 13. Свойства:

1.
$$\binom{n}{k} = \binom{n}{n-k}$$
.

2. (тождество Паскаля) $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

3. (биномиальная теорема)

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

4.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

5.

$$\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{k} = 2^{n-1}$$

6. (тождество Вандермонда)

$$\binom{m+n}{k} = \sum_{r=0}^{k} \binom{m}{r} \binom{n}{k-r}$$

Определение 17. Треугольником Паскаля называется диаграмма следующего вида.

Здесь каждое число равно сумме своих верхних соседей, а порождающими являются единичные левая и правая "стороны" диграммы.

3 Теория графов

To be read...