22 Tempo di primo passaggio

Introduzione al MFPT	22.1, p. 59
MFTP in 1D \dots	22.2, p. 59
MFPT per fuga da buca di potenziale $$.	22.3, p. 61
MFPT in più dimensioni \dots	22.4, p. 61
Calcolo numerico del MFTP $\ .\ .\ .\ .$	22.5, p. 62

22.1 Introduzione al MFPT

Ipotizziamo di avere un fenomeno stocastico e di osservarne l'andamento temporale. Possiamo ipotizzare anche che questo fenomeno presenti dei picchi randomici in maniera irregolare.

Tempo di primo passaggio

Dato un fenomeno stocastico che presenta delle anomalie ricorrenti nel tempo si definisce tempo di primo passaggio **MFPT** l'intervallo temporale medio che intercorre tra le anomalie.

L'analisi di tale quantità ha molta importanza in vari campi di ricerca, ad esempio l'analisi sismica, l'analisi delle forti piogge e la dinamica neuronale.

Per calcolare il MFPT è necessario:

- Creare un modello del fenomeno in termini stocastici.
- Derivare una qualche quantità del modello che ci permetta di calcolare il tempo medio tra gli eventi.

Ad esempio possiamo avere una certa distribuzione iniziale di oggetti (o camminatori):

Figura 1.16: Distribuzione iniziale di camminatori.

Ciascuno di questi camminatori si muove secondo l'equazione differenziale stocastica del modello. Possiamo chiederci quanto tempo impiegheranno questi a raggiungere il punto a.

Possiamo notare subito che il tempo di passaggio dipenderà dalle condizioni al bordo su a: per condizioni assorbenti tale tempo sarà maggiore (i camminatori spariscono in a), per condizioni riflettenti il tempo sarà minore (i camminatori rimbalzano ed hanno altri step, altre possibilità di raggiungere a). Per procedere possiamo seguire i passaggi:

- Si calcola la probabilità che la distribuzione non esca dal dominio (nell'esempio il domino era [a, b]).
- Si scrive una equazione differenziale per la probabilità.
- Si risolve l'equazione differenziale.

22.2 MFTP in 1D

Prendiamo un ensemble di camminatori stocastici (sostanzialmente immaginiamo un processo di diffusione dei camminatori) nell'intervallo unidimensionale $a \leq x \leq b$ con condizioni al contorno assorbenti:

$$P(a, t|x, 0) = P(b, t|x, 0) = 0.$$

La probabilità di essere ancora all'intervallo al tempo t se al tempo t=0 i camminatori si trovavano in x è G(x,t):

$$G(x,t) = \int_a^b P(x',t|x,0)dx'.$$

Si tratta sostanzialmente della probabilità condizionata di stare in un punto tra a e b al tempo t.

Sia T il tempo di uscita del camminatore dal segmento, la probabilità che $T \geq t$ con t arbitrario vale:

$$\operatorname{Prob}(T \ge t) = \int_a^b P\left(x', t | x, 0\right) dx' = G(x, t).$$

Poiché se al tempo t il camminatore sta ancora dentro l'intervallo allora sicuramente il tempo di uscita è maggiore di t.

Cerchiamo l'equazione differenziale alla quale soddisfa l'oggetto del moto.

Il problema è che l'equazione di FP che abbiamo visto per ora ci dice come evolve il propagatore, quindi in questo caso coinvolge la variabile x'. Noi vorremmo invece lasciar libera la variabile di integrazione x' e far agire la FK su x.

Ci viene in aiuto allora la Backward Fokker Plank, si riesce ad ottenere una equazione per la quantità P(x,t|y,t'). Si riporta adesso l'equazione completa (sul Gardiner si trova il conto completo):

Backward FK

$$\begin{split} \partial_{t'} P\left(x,t|y,t'\right) &= \\ &= -\sum A_i(y,t') \partial_{y_i} P\left(x,t|y,t'\right) + \\ &- \frac{1}{2} \sum_{i,J} B_{iJ}(y,t') \partial_{y_i} \partial_{y_J} P\left(x,t|y,t'\right) + \\ &+ \int dz \omega \left(z|y,t'\right) \left[P\left(x,t|y,t'\right) - P\left(x,t|z,t'\right) \right]. \end{split}$$

Tornando al problema MFPT in una dimensione l'equazione che ci serve è:

$$\partial_{t'}P\left(x',t|x,t'\right) = -A(x)\partial_{x}P\left(x',t|x,t'\right) +$$
$$-\frac{1}{2}B(x)\partial_{x^{2}}^{2}P\left(x',t|x,t'\right).$$

Possiamo notare che per processi omogenei nel tempo deve valere la proprietà (traslazione temporale):

$$P(x', t|x, 0) = P(x', 0|x, -t)$$
.

Quindi il termine a sinistra dell'uguale nella BFK si scrive come:

$$\partial_{t'} P(x', t|x, t') = -\partial_t P(x', t - t'|x, 0) =$$

= $-\partial_{t''} P(x', t''|x, 0)$.

E l'equazione completa diventa $(t'' \to t)$:

$$\partial_t P\left(x', t | x, 0\right) = A(x) \partial_x P\left(x', t | x, 0\right) + \frac{1}{2} B(x) \partial_{x^2}^2 P\left(x', t | x, 0\right).$$

Notiamo che la dipendenza temporale è stata spostata tutta sul termine "finale" del propagatore (x',t). Inoltre le derivate temporali sono applicate sul primo argomento del propagatore, quelle spaziali invece sul secondo argomento.

Integrando quest'ultima equazione tra $a \in b$ si ottiene una equazione per G(x,t):

$$\partial_t G(x,t) = A(x)\partial_x G(x,t) + \frac{1}{2}B(x)\partial_{x^2}^2 G(x,t)$$
 (22.1)

Inserendo le solite condizioni iniziali:

$$P(x', 0|x, 0) = \delta(x-x') \implies G(x, 0) = \begin{cases} 1 & a \le x \le b \\ 0 & \text{Altrove} \end{cases}$$

Inoltre si deve avere anche che:

$$Prob(T \ge t) = 0$$
 se $x = a$ oppure $x = b$.

Quindi anche:

$$G(a,t) = G(b,t) = 0.$$

Visto che il nostro insieme di camminatori, al passare del tempo, avrà una probabilità sempre maggiore di uscire dal segmento sarà vero che:

$$G(x, t + dt) < G(x, t).$$

Il numero di camminatori usciti tra $t \in t + dt$ vale:

$$dG = G(x,t) - G(x,t+dt) = -\frac{\mathrm{d}}{\mathrm{d}t}(G(x,t))dt.$$

Questa quantità ci permette di calcolare tutti i valori medi di funzioni dipendenti dal tempo in questo intervallo:

$$\langle f(t) \rangle_x = \int_0^\infty f(t) \frac{\mathrm{d}}{\mathrm{d}t} \left[G(x,t) \right] dt.$$

In particolare il tempo medio di uscita, supponendo di essere in x a t=0:

$$T(x) \equiv \text{MFPT} = -\int_0^\infty t \partial_t G(x, t) dt.$$

Integrando per parti:

$$T(x) = \int_0^\infty G(x, t)dt \qquad (22.2)$$

In generale il "momento" n-esimo di primo passaggio vale:

$$T^n(x) = \langle T^n(x) \rangle = \int_0^\infty t^{n-1} G(x, t) dt.$$

Sfruttando la 22.2 e la 22.1 possiamo ricavare una equazione differenziale per il tempo di primo passaggio integrando e notando che:

$$\int_0^\infty \partial_t G(x,t) = G(x,\infty) - G(x,0) = -1.$$

In conclusione:

$$-1 = AT'(x) + \frac{1}{2}BT''(x).$$

Con le condizioni al contorno banali:

$$T(a) = T(b) = 0.$$

Possiamo risolvere l'equazione per T(x) utilizzando il fattore integrante:

$$\phi(x) = \exp\left(\int_{a}^{x} \frac{2A}{B} dx'\right).$$

che ci porta ad una equazione integrabile per T(x):

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[T'\phi(x) \right] = -\frac{2}{B}\phi(x).$$

In conclusione si ha:

Forma analitica di T(x)

$$T(x) = \frac{1}{N} \left[\Omega(x, b) - \Omega(a, x) \right].$$

con

$$N = \int_{a}^{b} \frac{dy}{\phi(y)}.$$

Che funge da normalizzazione, mentre al numeratore abbiamo:

$$\Omega(x_1, x_2) =$$

$$= \int_a^x \frac{dy}{\phi(y)} \int_{x_1}^{x_2} dy' \left[\frac{1}{\phi(y')} \int_a^{y'} dz \frac{\phi(z)}{B(Z)} \right].$$

Cambiando le condizioni al contorno cambia anche il risultato, anche se i passaggi concettuali restano i medesimi.

Esempio 22.2.1 (a riflette e b assorbe). Le condizioni ci dicono che:

$$\partial_x G(x,t)|_a = 0.$$

E si può arrivare a:

$$T(x) = 2 \int_{x}^{b} \frac{dy}{\phi(y)} \int_{a}^{y} \frac{\phi(z)}{B(z)} dz \qquad (22.3)$$

22.3 MFPT per fuga da buca di potenziale

Prendiamo una buca di potenziale del seguente tipo:

Figura 1.17: Potenziale al quale sono soggetti i camminatori.

Ipotizziamo di preparare il sistema nell'intervallo tra minimo e massimo del potenziale [a, b], l'equazione dell'evoluzione del propagatore sarà:

$$\partial_t P = \partial_x \left(U'(x)P \right) + D\partial_{x^2}^2 P$$

Ed abbiamo visto che questa equazione ha come soluzione stazionaria:

$$P_s \approx N \exp\left[-\frac{U(x)}{D}\right].$$

Figura 1.18: Distribuzione di probabilità stazionaria.

A questo punto dobbiamo scegliere le condizioni al contorno su a e b, prendiamo ad esempio le seguenti:

- $b \equiv x_0$ bordo assorbente: le particelle che arrivano qui fanno "Puf".
- $a \equiv \to -\infty$ come dire bordo riflettente poiché a $-\infty$ c'è un muro di potenziale che va a ∞ .

A questo punto possiamo prendere l'espressione 22.3 e specializzarla per il nostro problema. Si ottiene che il tempo di primo passaggio per andare da a a x_0 vale:

$$\begin{split} T(a \to x_0) &= \\ &= \lim_{a \to -\infty} \frac{1}{D} \int_a^{x_0} dy \exp\left(\frac{U(y)}{D}\right) \int_a^y \exp\left(-\frac{U(z)}{D}\right) dz. \end{split}$$

Mettiamoci nel limite in cui la barriera di potenziale è molto maggiore del coefficiente di diffusione:

$$\Delta U = U(b) - U(a); \qquad \frac{\Delta U}{D} \gg 1.$$

Concentrandoci in un intorno di b possiamo notare che:

$$\exp\left(\frac{U}{D}\right)$$
 ha max in b .

Inoltre in questa approssimazione:

Se
$$x = b \implies \exp\left(-\frac{U}{D}\right) \to 0$$
 Con $\frac{U(b)}{D} \gg 1$.

Visto che il secondo integrale contiene questo termine e che la variabile y corre tra $-\infty$ e $x_0 = b$ possiamo approssimare l'estremo di integrazione y come:

$$\int_{-\infty}^{y} \exp\left(-\frac{U(z)}{D}\right) dz \sim \int_{-\infty}^{b} \exp\left(-\frac{U(z)}{D}\right) dz.$$

Assumendo che i termini della somma provenienti da un intorno di b contino poco. In questo modo i due integrali si disaccoppiano:

$$T \approx \frac{1}{D} \int_{-\infty}^{b} \exp\left(-\frac{U(z)}{D}\right) dz \int_{-\infty}^{x_0} dy \exp\left(\frac{U(y)}{D}\right).$$

Un'altra approssimazione che si può fare è pensare U(x) parabolico intorno ad a e b:

$$U(x) \approx U(b) - \frac{1}{2} \frac{(x-b)^2}{\delta^2} \quad \text{vicino a } b$$

$$U(x) \approx U(a) + \frac{1}{2} \frac{(x-a)^2}{\alpha^2} \quad \text{vicino ad } a.$$

Risolvendo quindi gli integrali arriviamo ad una forma per il tempo di primo passaggio:

Legge di Arrhenius

$$T(a \to x_0) \approx 2\alpha \delta \pi \exp\left(\frac{U(b) - U(a)}{D}\right).$$

É una espressione simile alla legge di Arrhenius per le reazioni chimiche se poniamo $D=k_BT$.

22.4 MFPT in più dimensioni

Quando andiamo a studiare il caso multidimensionale si ha a che fare con questa equazione:

$$\sum_{i} A_{i}(x)\delta_{i}T(x) + \frac{1}{2}\sum_{i,J} B_{iJ}\partial_{i}\partial_{J}T(x) = -1 \quad (22.4)$$

Un modo elegante per risolvere è vederla come un problema agli autovalori.

Introduciamo il set di autofunzioni $Q_{\lambda}(x)$:

$$T(x) = \sum t_{\lambda} Q_{\lambda}(x).$$

Il problema si risolve reinserendo questa nella equazione 22.4 e mettendo le opportune condizioni al contorno sulle Q_{λ} .

Procedendo in questo modo ... si può dimostrare che il tempo di primo passaggio prende la forma:

$$T(x) = \sum_{\lambda} \frac{1}{\lambda} Q_{\lambda}(x) \int dx' P_{\lambda}(x').$$

Nei problemi tipici gli autovalori sono "separati esponenzialmente" l'uno dall'altro, quindi conta soltanto l'autovalore più basso (...).

Il tempo di primo passaggio diventa quindi:

$$T(x) pprox rac{1}{\lambda_1} Q_1 \int P_1 dx pprox rac{1}{\lambda_1}.$$

22.5 Calcolo numerico del MFTP

Prendiamo la SDE per un set di camminatori:

$$dx = f(x)dt + g(x)d\omega.$$

Quindi per piccoli tempi possiamo scrivere che:

$$x_{n+1} = x_n + f(x_n)\Delta t + g(x_n)\Delta\omega.$$

Quindi mettiamoci in un punto x_n e valutiamo la probabilità che x_{n+1} sia fuori dal dominio considerato (a,b). Ad esempio consideriamo la probabilità che x_{n+1} sia oltre b.

Prendiamo il potenziale a doppia buca della sezione precedente, ipotizziamo che il camminatore elementare abbia fatto abbastanza passaggi da arrivare oltre il massimo b e cadere nella seconda buca.

Possiamo chiederci quale sia la storia degli step effettuati da questo camminatore elementare, andando a vedere l'intensità del processo di Wiener in funzione della posizione si scopre che:

Per superare il massimo del potenziale il processo di Wiener che spinge il camminatore deve essere sistematicamente diverso da zero.

Ipotizziamo di avere l'andamento del processo stocastico per un camminatore $\omega(x)$, dimostriamo che tramite questo possiamo risalire al MFPT.

$$x_{n+1} = x_n + f_n \Delta t + \sqrt{D} \Delta \omega.$$

E si ha anche che:

$$x_n = x_0 + \sum f_i \Delta t + \sqrt{D} \sum \Delta \omega_i.$$

Dalla prima possiamo estrarre $\Delta\omega_n$:

$$\Delta\omega_n = \frac{1}{\sqrt{D}} \left[x_{n+1} - (x_n + f_n \Delta t) \right].$$

Sappiamo che la forma del processo di Wiener (la soluzione) è la seguente:

$$P(\Delta\omega_n)\sim \exp\left(-\frac{\left(\Delta\omega_n\right)^2}{D\Delta t}\right).$$

Per effettuare un salto da a ad oltre il massimo b abbiamo bisogno di una sequenza di salti giusti $\Delta\omega_i$, ovvero tali che:

$$x_0 = a;$$
 $x_n = b.$

Quindi la probabilità di andare da a a b sarà la probabilità che tutti i processi di Wiener adeguati si verifichino:

$$P(a \to b) \sim \prod_{i} \exp\left(-\frac{(\Delta\omega_i)^2}{D\Delta t}\right).$$

Ed inserendo la forma di $\Delta\omega_i$ ricavata in precedenza:

$$P(a \to b) \sim \prod_{i} \exp\left(-\frac{(x_{i+1} - (x_i + f_i \Delta t))^2}{D\Delta t}\right).$$

Passando al continuo nel tempo ed applicando dell'algebra se ne conclude che per trovare la probabilità massima di fare il passaggio basta risolvere:

$$\min \int_{a}^{b} (\dot{x} - f) dt.$$

Questo determina la probabilità che si verifichi una speciale fluttuazione del processo di Wiener che ci fa fare il salto, in definitiva determina anche il tempo medio di primo passaggio.