

Universidade Federal de Uberlândia - UFU Faculdade de Computação - FACOM Lista de exercícios de estrutura de dados em linguagem C

Exercícios: Grafos

- 1. Defina o que é um subgrafo.
- 2. Defina o que é um grafo bipartido.
- 3. Defina o que é um grafo conexo. E um desconexo?
- 4. O que são grafos isomorfos? Desenhe um exemplo.
- 5. Defina o que é um grafo Hamiltoniano.
- 6. Defina o que é um grafo Euleriano.
- 7. Desenhe as versões não orientadas e orientadas do grafo G(V, E), onde $V = \{1, 2, 3, 4, 5, 6\}$ e $E = \{(2, 5), (6, 1), (5, 3), (2, 3)\}.$
- 8. Defina os grafos ilustrados abaixo

- 9. Defina e desenhe os grafos não orientados completos com 4, 5 e 6 vértices.
- 10. Dê um exemplo de um grafo em que cada vértice é adjacente a dois outros vértices e cada aresta é adjacente a duas outras arestas
- 11. Quantas arestas tem um grafo com 3 vértices de grau 3 e um vértice de grau 5?
- 12. Em um grafo com n vértices e m arestas, qual a soma dos graus de todos os vértices? Observe que, em um grafo não orientado, cada aresta soma 1 ao grau de cada vértice em que incide e cada aresta incide somente sobre dois vértices. Em um grafo orientado, por outro lado, cada aresta soma 1 ao grau de cada vértice em que incide, porém, cada aresta incide somente sobre um vértice.
- 13. Sabendo que cada vértice tem pelo menos grau 3, qual o maior número possível de vértices em um grafo com 35 arestas? Lembre-se que a soma dos graus dos vértices é igual a duas vezes o número de arestas. Se cada aresta liga dois vértices teríamos 70 vértices de grau 1.
- 14. Quantas arestas possui um grafo completo com n vértices? E um grafo orientado completo com n vértices?

- 15. Faça uma função para obter todos os nós adjacentes (vizinhos) a um nó do grafo, dado que o grafo é representado por uma **matriz de adjacências**.
- 16. Faça uma função para obter todos os nós adjacentes (vizinhos) a um nó do grafo, dado que o grafo é representado por uma **lista de adjacências**.
- 17. Quantas componentes conexas tem o seguinte grafo?

- 18. Descreva com suas palavras o funcionamento de um algoritmo de busca em profundidade. Dê dois exemplos de aplicação real desse algoritmo.
- 19. Descreva com suas palavras o funcionamento de um algoritmo de busca em largura. Dê dois exemplos de aplicação real desse algoritmo.
- 20. Descreva com suas palavras o funcionamento de um algoritmo de busca pelo menor caminho. Dê dois exemplos de aplicação real desse algoritmo.
- 21. Dado o dígrafo G = (V, E) sendo V = M, N, O, P, Q, R, S e

$$E = \{(M, S), (N, O), (P, R), (N, S), (O, M), (N, Q), (O, M), (P, P), (S, M), (O, N), (S, M), (N, R), (P, M), (M, S)\}$$

- (a) Especifique, caso exista, um caminho simples desde o vértice M até o vértice S.
- (b) Especifique, caso exista, um ciclo simples, envolvendo pelo menos 4 nós.
- (c) O dígrafo é conexo ou não conexo?
- (d) Qual o grau dos vértices N e R.
- (e) Represente o dígrafo utilizando representação por lista de adjacência.
- (f) Represente o dígrafo utilizando representação por matriz de adjacência.
- 22. Implemente um algoritmo para verificar se um grafo é acíclico utilizando o algoritmo de busca em profundidade.
- 23. Escreva uma versão não recursiva do algoritmo de busca em profundidade.
- 24. Exemplifique com algumas situações de uso dos grafos e justifique.
- 25. Os Turistas Jensen, Leuzingner, Dufour e Medeiros se encontram em um bar de Paris e começam a conversar. As línguas disponíveis são o inglês, o francês, o português e o alemão. Jensen fala todas. Leuzingner não fala apenas o português. Dufour fala francês e alemão. Medeiros fala inglês e português. Represente por meio de um digrafo todas as possibilidades de um deles dirigir a palavra a outro, sendo compreendido.

- 26. Você usaria uma lista de adjacência ou uma matriz de adjacência em cada um dos casos abaixo? Justifique sua escolha.
 - (a) O grafo tem 10.000 vértices e 20.000 arestas, e é importante usar tão pouco espaço quanto possível.
 - (b) O grafo tem 10.000 vértices e 20.000.000 arestas, e é importante usar tão pouco espaço quanto possível.
 - (c) Você deve ter a aresta adjacente tão rápido quanto possível, sem se importar quanto espaço você usa.
- 27. Dado os grafos abaixo, mostre o resultado da busca em largura e em profundidade.

28. Seja um grafo G cujos vértices são os inteiros de 1 a 8 e os vértices adjacentes a cada vértice são dados pela tabela abaixo:

Vértice	Vértices Adjacentes
1	2 3 4
2	1 3 4
3	1 2 4
4	1236
5	678
6	457
7	568
8	57

- (a) Desenhe o grafo G.
- (b) Represente o grafo por meio de uma matriz de adjacência.
- (c) Represente o grafo por meio de uma lista de adjacência.
- 29. Dada a matriz de adjacências de uma grafo de N vértices, faça um algoritmo que determine se esse grafo é orientado ou não-orientado.
- 30. Por que, em uma matriz de adjacências, verificar a existência de uma aresta é O(1).
- 31. Qual método usa mais espaço, listas de adjacência ou matriz de adjacência e porquê?
- 32. Escreva um algoritmo que verifique se dois grafos G1 e G2 não são isomorfos com base no número de vértices e arestas e, também, comparando a lista ordenada dos graus de seus vértices.
- 33. Escreva um algoritmo que recebe um caminho e verifica se ele é um ciclo

- 34. Escreva um algoritmo que recebe um caminho e verifica se ele é um ciclo simples
- 35. Considere a seguinte representação de um grafo com 8 vértices e 9 arestas usando listas de adjacências
 - A: E F B
 - B: A
 - C: G D F
 - D: H G C
 - E: A
 - F: A G C
 - G: D F C
 - H: D

Mostre o resultado da busca em em largura e em profundidade a partir do vértice A. Mostre também a distância de cada vértice ao vértice A.

- 36. Considere a seguinte representação de um grafo usando listas de adjacências:
 - A: F B
 - B: A F
 - C: D I
 - D: E C I
 - E: D J I
 - F: A B
 - G: H
 - H: G
 - I: J E C D
 - J: I E

Obtenha os componentes conectados de um grafo usando o algoritmo de busca em profundidade.

- 37. Implemente a TAD Grafo utilizando uma matriz de adjacências para armazenar os vértices e arestas
- 38. Implemente a TAD Grafo utilizando uma lista de adjacências para armazenar os vértices e arestas.