

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016

QUÍMICA

TEMA 9: ORGÁNICA

- Junio, Ejercicio 4, Opción B
- Reserva 1, Ejercicio 4, Opción A
- Reserva 3, Ejercicio 4, Opción A
- Septiembre, Ejercicio 4, Opción A

Dado el compuesto $CH_2 = CH - CH_2 - CH_3$, justifique, si las siguientes afirmaciones son verdaderas o falsas:

- a) El compuesto reacciona con H₂O/H₂SO₄ para dar dos compuestos isómeros geométricos.
- b) El compuesto reacciona con HCl para dar un compuesto que no presenta isomería óptica.
- c) El compuesto reacciona con H, para dar un alquino.
- QUÍMICA. 2016. JUNIO. EJERCICIO 4. OPCIÓN B

RESOLUCIÓN

a) Falsa. El compuesto que se obtiene no presenta isomería geométrica ya que no hay un doble enlace.

$$CH_2 = CH - CH_2 - CH_3 + H_2O/H_2SO_4 \longrightarrow CH_3 - CHOH - CH_2 - CH_3$$

b) Falsa. El compuesto que se obtiene si presenta isomería óptica, ya que tiene un carbono asimétrico.

$$CH_2 = CH - CH_2 - CH_3 + HCl \longrightarrow CH_3 - C^*HCl - CH_2 - CH_3$$

c) Falsa. El compuesto resultante es un alcano.

$$CH_2 = CH - CH_2 - CH_3 + H_2 \longrightarrow CH_3 - CH_2 - CH_2 - CH_3$$

Dado el compuesto CH₃CH₂CH = CH₂:

- a) Justifique si puede formar enlaces de hidrógeno.
- b) Escriba la reacción de adición de HCl.
- c) Escriba el compuesto resultante de la reacción de hidrogenación en presencia de un catalizador.

QUÍMICA. 2016. RESERVA 1. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

a) El enlace de hidrógeno se produce cuando un átomo de hidrógeno se une, covalentemente, a un átomo pequeño y muy electronegativo, como son el F, O o N. Las moléculas formadas forman dipolos con la carga parcial positiva sobre el átomo de hidrógeno y la parcial negativa sobre el otro átomo. La atracción electrostática entre dos de estas moléculas dipolares es lo que constituye el enlace o puente de hidrógeno.

Luego, en este caso no se forman enlaces de hidrógeno.

b)
$$CH_3 - CH_2 - CH = CH_2 + HC1 \rightarrow CH_3 - CH_2 - CHC1 - CH_3$$

Hemos aplicado la Regla de Markonikow: "cuando un haluro de hidrógeno se adiciona a un alqueno asimétrico, el hidrógeno entra en el carbono con mayor número de hidrógenos de los dos carbonos que portan el doble enlace, y el halógeno entra en el otro".

c)
$$CH_3 - CH_2 - CH = CH_2 + H_2 \xrightarrow{\text{catalizador}} CH_3 - CH_2 - CH_2 - CH_3$$

Para el compuesto A de fórmula CH 3CH 2CH 2CH 2CH 3 escriba:

- a) La reacción de combustión de A ajustada.
- b) Una reacción que por hidrogenación catalítica de lugar a A.
- c) La reacción fotoquímica de 1 mol de A en presencia de 1 mol de cloro (Cl 2).

QUÍMICA. 2016. RESERVA 3. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

a)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 + 8O_2 \rightarrow 5CO_2 + 6H_2O$$

b)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 + H_2 \xrightarrow{\text{catalizador}} CH_3 - CH_2 - CH_2 - CH_2 - CH_3$$

c)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_3 + Cl_2 \xrightarrow{hv} HCl + CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 + Cl_2 - CH_3 - C$$

De los siguientes compuestos CH₃CHClCH₂OH, ClCH₂CH₂CH₂OH, ClCH₂CH₂COCH₃

- a) Justifique qué compuesto puede presentar isomería óptica.
- b) Indique qué compuestos son isómeros de posición.
- c) Indique qué compuesto es isómero funcional del CICH, CH, CH, CHO.

QUIMICA. 2016. SEPTIEMBRE. EJERCICIO 4. OPCIÓN A

RESOLUCIÓN

- a) El CH₃C*HClCH₂OH, ya que tiene un carbono asimétrico
- b) Isómeros de posición son aquellos que, teniendo el mismo esqueleto carbonado, se distinguen en la posición que ocupa el grupo funcional. En nuestro caso el CH₃CHClCH₂OH y el ClCH₂CH₂CH₂OH
- c) Isómeros de función son los compuestos que, a pesar de tener la misma fórmula molecular, poseen grupos funcionales diferentes. En nuestro caso es el ClCH₂CH₂COCH₃