第五章 触发器 作业

题图 5.9 所示为利用 CMOS 边沿触发器和异或门组成的脉冲分频器。试分析它在一系 列 CLK 脉冲作用下的 Q_1 、 Q_2 和 Y 的波形(初始状态 $Q_1 = Q_2 = 0$)。

解:波形如图:

$$\begin{aligned} Q_1^{n+1} &= D_1 = \overline{Q_2^n} \\ Q_2^{n+1} &= D_2 = Q_1^n \\ Y &= \overline{Q_1^n \oplus \mathit{CLK}} \end{aligned}$$

设题图 5.10 中各个触发器的初始状态皆为Q=0,试画出每个触发器Q端波形。

解:波形如图:

5.14 电路如题图 5.14 所示,初态 $Q_1 = Q_2 = 0$,试根据CLK、 J_1 的波形画出 Q_1 、 Q_2 的波形。

解

$$Q_1^{n+1} = J_1 \overline{Q_1^n} + \overline{K_1} Q_1^n$$
,上升沿触发 $Q_2^{n+1} = D_2 = Q_1^n$,下降沿触发 当 $Q_2 = 1$, $\overline{R_d} = 0$, $Q_1 = 0$

波形如图:

5.17 电路图如题图 5.17 所示,试根据 CLK、 \overline{R}_D 、A端的波形画出 Q端的波形。

题图 5.17

解:

$$T=\overline{A\oplus \overline{Q_n}}=A\oplus Q_n$$
, $Q_{n+1}=T\oplus Q_n=A\oplus Q_n\oplus Q_n=A$,下降沿

波形如图:

5.18 电路图如题图 5.18 所示,触发器的初态 $Q_1 = Q_2 = 0$,试画出 CLK 信号下 Q_1 , Q_2 , V_0 的对应波形。

题图 5.18

解:

$$V_{O}=\overline{Q_{1}+Q_{2}}$$
 $Q_{1}^{n+1}=D_{1}=\overline{Q_{1}+Q_{2}},$ 上升沿 $Q_{2}^{n+1}=D_{2}=\overline{Q_{1}+Q_{2}},$ 下降沿

波形如图:

	A	В	Q^{n+1}	
	0	0	$\overline{Q^n}$	
	0	1	1	
	1	0	Q^n	
	1	1	0	

5.21			发器转换成 计过程。	以 AB 触	发器的:	逻辑图。	AB 触	发器的特性表如题表 5.21 所示。
		题表	5.21					
	A	В	Q^{n+1}					nics
	0	0	$\overline{Q^n}$					
	0	1	1					
	1	0	Q^n					
解:								
	列出 AB:	触发器	肾真值表					
				\overline{A}	В	Q_n	Q_{n+1}	•
				0	0	0	1	•
				0	0	1	0	
				0	1	0	1	
				0	1	1	1	
				1	0	0	0	
				1	0	1	1	
				1	1	0	0	
				1	1	1	0	
>+	18 4: =34.	<u>। जदा</u>						•

方法一: 随意圈

将 AB 触发器的特性表转换成卡诺图,如图(a)。由卡诺图求出 AB 触发器的状态方程。 考察并化简卡诺图,得 AB 触发器的特性方程为

$$\begin{split} Q^{n+1} &= \bar{A}B + \bar{A}\; \overline{Q^n} + A\bar{B}Q^n = \bar{A}B(Q^n + \overline{Q^n}) + \bar{A}\; \overline{Q^n} + A\bar{B}Q^n \\ &= \bar{A}\; \overline{Q^n} + (\bar{A}B + A\bar{B})Q^n \end{split}$$

将 AB 触发器的特性方程同 JK 触发器的特性方程相比较,得 JK 触发器的驱动方程为

$$J = \overline{A}$$
, $K = A \odot B$

所以转换电路如图(b)所示

(a) (b)

方法二: 按卡诺图圈

 $Q^{n+1} = \bar{A} \, \overline{Q^n} + \bar{A} B Q^n + A \bar{B} Q^n = \bar{A} \, \overline{Q^n} + (\bar{A} B + A \bar{B}) Q^n$

将 AB 触发器的特性方程同 JK 触发器的特性方程相比较,得 JK 触发器的驱动方程为 $J=\overline{A}$, $K=A\bigcirc B$

AB $0 = 00 - 01 - 11 + 10 - 00 = 00 = 00 = 00 = 00 = 00 = 00 =$	