Econ.AI The role for Deep Neural Networks in Economics

Matt Taddy – UChicago and Microsoft

What is Al?

Domain Structure + Data Generation + General Purpose ML

Econ Theory / Biz Frame Reinforcement Learning Structural Econometrics Sensor Networks, IOT Relaxations and Heuristics

Simulation/GANs

Deep Neural Nets SGD + OOS + GPUs Video/Audio/Text

Self-training structures of ML predictors that automate and accelerate human tasks

Hybrid Reward Architecture

_	30425×	10=	304250
-	801×	50=	40050
æ	17×	= 005	3400
10.000	6 ×	400=	8488
10000	3 ×	800=	2400
hàbàà	ļκ	1600=	1600
3 ≥	42×	100=	4200
8	40×	= 005	8000
•	33×	500=	16500
22	43×	700=	30100
₩.	48×	1000=	48000
46	47×	= 0000	94000
	89×	5000=1	445000

999900

Level: 201

Tell me about your problem and I'll help you find the solution you need.

how do I upgrade windows>

Here's what I think you are asking about: *How to install or upgrade to Windows 10.* Is that correct?

Yes

Okay, you're looking for some info on Windows 10. What would you like to do?

Upgrading to Windows 10

How to get Windows 10

- 1. Windows 10 is available by buying a new device or a full version of the software.
- 2. The Windows 10 free upgrade through the Get Windows 10 (GWX) app ended on July 29, 2016. Click here to find more information about upgrading to Windows 10

 \triangleright

THE WALL STREET JOURNAL

TECH

Microsoft Aims to Make Business AI Cheaper, Faster, Simpler

New line of software will take on IBM, others, in growing artificial-intelligence market

By Ted Greenwald

Sept. 25, 2017 9:00 a.m. ET

Microsoft Corp. plans Monday to unveil its first product in a new line of software aimed at taking on International Business Machines Corp. and others in the growing market to apply artificial intelligence to everyday business needs.

The new product, a customer-service virtual assistant, is designed to let people

The Economics of Al

DNNs are GPT and 'method for invention'

- Broad impact, up and down the value chain
- Gets better, faster, and cheaper in time
- Can suffer from underinvestment
- Productivity gains lag invention

Automation, inequality, skill acquisition

Data ownership, markets, and privacy

High-info contracts and outcome pricing

Al research in computer science journals vs. other application sectors.

What about the impact of AI on the practice of Econom[etr]ics?

Susan Athey:

Predictions for Economics

- Adoption of off-the-shelf ML methods for their intended tasks (prediction, classification, and clustering, e.g. for textual analysis)
- Extensions and modifications of prediction methods to account for considerations such as fairness, manipulability, and interpretability
- Development of new econometric methods based on machine learning designed to solve traditional social science estimation tasks, e.g. causal inference
- Increased emphasis on model robustness and other supplementary analysis to assess credibility of studies
- Adoption of new methods by empiricists at large scale
- Revival and new lines of research in Alt TextuAtolose up ofeasnewspaper

- New methods for the design and analysis of large administrative data, including merging these sources
- Increase in interdisciplinary research
 - Changes in organization, dissemination, and funding of economic research
 - "Economist as engineer" engages with firms, government to design and implement policies in digital environment
 - Design and implementation of digital experimentation, both one-time and as an ongoing process, in collaboration with firms and government
 - Increased use of data analysis in all levels of economics teaching; increase in interdisciplinary data science programs
- Research on the impact of AI and ML on economy

Econometrics breaks systemic questions into sets of prediction tasks

- Prediction after controlling for confounders
- Two-stage prediction with IVs
- Heterogeneous treatment effect prediction
- Structural equation systems

Machine Learning can automate and accelerate tasks in applied econometric workflows

Example: short-term price elasticity

If I drop price 1%, by what % will quantity sold increase? Problem: both prices and sales respond to underlying demand Need a causal effect of price on sales, not their co-movement

Beer Data

A single shared elasticity gives tiny -0.23 Separate elasticity for each: noisy zeros

We need to group the products together using brand, pack, etc.

Beer Elasticity

Say $w_{bk} = 1$ if word k is in description for beer b

@transaction
$$t$$
: $y_{tb} = \gamma_b p_{tb} + f_t(\mathbf{w}_b) + \varepsilon_{tb}$, $\gamma_b = \mathbf{w}_b' \boldsymbol{\beta}$ $p_{tb} = h_t(\mathbf{w}_b) + \nu_{tb}$

Creates a large number of parameters Just throw it all in a lasso?

Yields unbelievably small elasticities

The naïve ML conflates two problems:

selecting controls and predicting response after controlling for confounders.

Instead, use Orthogonal ML (Chernozhukov et al, 2016 and earlier)

- Estimate nuisance functions $\mathbb{E}[y_{tb}|\mathbf{w}_b]$ and $\mathbb{E}[p_{tb}|\mathbf{w}_b]$
- Orthogonalize the score against these nuisance functions (data split)
- Then estimation for γ is robust to slow-learned nuisances

Estimation breaks into a series of ML tasks:

- 1. Predict sales from the demand variables: $y_{tb} \approx g(t, w_b)$
- 2. Predict prices from the demand variables: $p_{tb} \approx h(t, w_b)$
- 3. Get OOS residuals: $\tilde{\boldsymbol{y}}_t = \boldsymbol{y}_t \hat{g}_{\bar{t}}(t, \boldsymbol{w}_b)$, $\tilde{\boldsymbol{p}}_t = \boldsymbol{p}_t \hat{h}_{\bar{t}}(t, \boldsymbol{w}_b)$
- 4. And fit the final regression: $\mathbb{E}[\widetilde{\boldsymbol{y}}_t] = \Gamma \widetilde{\boldsymbol{p}}_t = \operatorname{diag}(\boldsymbol{\gamma}) \widetilde{\boldsymbol{p}}_t$

Orthogonal ML for Beer

There's no ground truth, but these are economically realistic

The text encodes a natural hierarchy

Many beers are IPA or Cider

But individual brands also load

Most Price Sensitive

```
[3] "PYRAMID OUTBURST IMP IPA 6PK
[4] "ELYSIAN IMPORTAL IPA 6PK
[5] "PYRAMID OUTBURST IMP IPA 12PK

Least Price Sensitive > names(sort(-el)[1:5])
[1] "2 TOWNS CRISP APPLE CIDER
[2] "2 TOWNS BAD APPLE CIDER
[3] "ATLAS BLKBRY APPLE CIDER
[4] "D'S WICKED BAKED APPLE CIDER
[5] "D'S WICKED GREEN APPLE CIDER
```

> names(sort(el)[1:5])

"GUINNESSS DRAUGHT 6PK BTL

"GUINNESS DRAUGHT 4PK CAN

Econ + ML

This is what econometricians do: break systems into measurable pieces Another common example: Instrumental Variables

Endogenous errors:

$$y = g(p, x) + e$$
 and $\mathbb{E}[pe] \neq 0$

If you estimate this using naïve ML, you'll get

$$E[y|p,x] = E_{e|p}[g(p,x) + e] = g(p,x) + E[e|p,x]$$

But, with instruments...

Instrumental Variables

The exclusion structure implies

$$\mathbb{E}[y|x,z] = \int g(p,x)dF(p|x,z)$$

You can observe and estimate $\widehat{\mathbb{E}}[y|x,z]$ and $\widehat{F}(p|x,z)$

 \Rightarrow to solve for structural g(p, x) we have an inverse problem.

$$\min_{g \in G} \sum \left(y_i - \int g(p, x_i) dF(p | x_i, z_i) \right)^2$$

2SLS: $p = \beta z + \nu$ and $g(p) = \tau p$ so that $\int g(p)dF(p|z) = \tau \mathbb{E}[p|z]$ So you first regress p on z then regress y on \hat{p} to recover $\hat{\tau}$.

Sieve: $g(p, x_i) \approx \sum_k \gamma_k \varphi_k(p, x_i)$, $\mathbb{E}_F[\varphi_k(p, x_i)] \approx \sum_j \alpha_{kj} \beta_j(x_i, z_i)$

Also Blundell, Chen, Kristensen, , Chen + Pouzo, Darolles et al, Hall+Horowitz

$$\min_{g \in G} \sum \left(y_i - \int g(p, x_i) dF(p|x_i, z_i) \right)^2$$

Deep IV uses DNNs to target the integral loss function directly

- First, fit \hat{F} using a network with multinomial response
- Second (preferably on another sample) fit \hat{g} following

$$\nabla \hat{L}(x_i, y_i, z_i, \theta) = -2(y_i - g_{\theta}(\dot{p}, x_i)) g_{\theta}'(\ddot{p}, x_i), \quad \dot{p}, \ddot{p} \sim \hat{F}(p|x_i, z_i)$$

Stochastic Gradient Descent

You have loss $L(\mathbf{D}, \theta)$ where $\mathbf{D} = [\mathbf{d}_1 \dots \mathbf{d}_N]$ In the usual GD, you iteratively descend

$$\theta_t = \theta_{t-1} - C_t \nabla L(D, \theta_{t-1})$$

In SGD, you instead follow *noisy* but *unbiased* sample gradients

$$\theta_t = \theta_{t-1} - C_t \nabla L(\{d_{t_b}\}_{b=1}^B, \theta_{t-1})$$

A pricing simulation

$$y = 100 + s\psi_t + (\psi_t - 2)p + e,$$

$$p = 25 + (z+3)\psi_t + v$$

$$z, \ v \sim N(0,1) \ \text{and} \ e \sim N(\rho v, 1 - \rho^2),$$

Biased?

 $\nabla \hat{L}(x_i, y_i, z_i, \theta) = -2(y_i - g_{\theta}(\dot{p}, x_i)) g'_{\theta}(\dot{p}, x_i)$ is biased for our loss but unbiased for an upper bound on that loss (via Jensen's)

It works pretty well on OOS Loss:

Loss Function	# Samples	Mean	Stdev
Upper bound	1	0.32	0.085
Unbiased	2	0.48	0.107
Unbiased	4	0.50	0.158
Unbiased	8	0.44	0.100
Unbiased	16	0.39	0.098

Validation and model tuning

We can do OOS causal validation

Leave-out deviance on first stage

$$\sum_{i \in LO} -\log \hat{f}(p|x_i, z_i)$$

Leave-out loss on second

$$\sum_{i \in LO} (y_i - \int g_{\theta}(p, x_i) d\hat{F}(p|x_i, z_i))^2$$

You want to minimize both of these (in order).

DEED NETWORKS

Train faster, generalize better: Stability of stochastic gradient descent

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization*

Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Deep nets are not nonparametric sieves

Why? Heterogeneity!

Example: ads application from Goldman and Rao (2014)
74 mil click-rates over 4 hour increments for 10k search terms

Treatment: ad position 1-2

Instrument: background AB testing (bench of ~ 100 tests)

Covariates: advertiser id and ad properties, search text, time period

The reduction in clicks due to a drop in position is search and ad dependent

Example product (click rate response)

- Treatment effect is small for on-navigation queries (`searches' for microsoft.com)
- Effect rises for less popular websites (brands)
- Off brand effect is flat with website popularity

Inference? Good question

Data Splitting

Variational Dropout

Quantile Regression

with Jason Hartford UBC

Data Split

- Fit DNNs that map from inputs to output layer $\psi_k(x)$, k=1...K
- Use out-of-sample x_i to obtain 'features' $\psi_{ik} = \psi_k(x_i)$
- Possibly do PCA on ψ_i to get a nonsingular design
- Fit OLS $y_i \approx \psi_i' \beta$ to get $\hat{\beta}$ with variance

$$\operatorname{var}(\widehat{\boldsymbol{\beta}}) = (\Psi'\Psi)^{-1}\Psi'\operatorname{diag}(\boldsymbol{y} - \Psi\widehat{\boldsymbol{\beta}})\Psi(\Psi'\Psi)^{-1}$$

This can be used to get $var(\mathbb{E}[y \mid x])$

Variational Bayes and Dropout

- VB fits q to minimize $\mathbb{E}_{q}[\log q(W) \log p(\mathbf{D}|W) \log p(W)]$
- We train with dropout SGD:

At each update of weights ω , use gradients for $w = \xi \omega$, $\xi \sim \text{Bern}(c)$

This corresponds to VB under

$$q(W) = \prod_{k} c \mathbb{1}_{[W_k = \Omega_k]} + (1 - c) \mathbb{1}_{[W_k = 0]}$$

This can be used to get $var(\mathbb{E}[y \mid x])$

Quantile Regression

Instead of targeting MSE or logit loss, minimize quantile loss

$$L_q = \left(y - \eta_q(x)\right) \left(q - 1_{y < \eta_q(x)}\right)$$

Where q is your desired probability and $\eta_q(x)$ is the quantile function Better yet, architect a net to fit multiple quantiles at once...

This can be used to get prediction intervals for $y \mid x$

Million Song Dataset

- A dataset of a million songs
- Inputs are timbre features
- Output is the release year
- Test and train are split to have no overlap on artists

PI coverage around random songs

If you want Prediction Intervals, you should use quantile regression

For Confidence Intervals, sample splitting can't be beat

Economic Al

The ML doesn't create new economic insights or replace economists. It automates and accelerates subjective labor-intense measurement

- Instruments are everywhere inside firms
- With reinforcement learning there will be even more
- Reduced forms are low fruit; structural econometrics is next
 - Need to link long term rewards to short term signals

Business Al

Deep learning revolution: good low-dev-cost off-the-shelf ML As the tools become plug-n-play, teams get interdisciplinary The next big gains in Al are coming from domain context

- Use domain structure to break questions into ML problems
- Don't re-learn things you already know with baby Al