

CAN-FD

Проширења CAN Flexible Datarates

# ЦИЉЕВИ

- Након завршетка овог предавања имаћете:
  - Боље разумевање *CAN-FD* магистрала:
    - Мотивација
    - Принципи који су омогућили побољшања
  - Миграција са CAN на CAN-FD



УВОД

# МОТИВАЦИЈА

- •Повећан број сигнала: од стотине до 5-цифрених
- •Повећање потреба за пропусном моћи:
  - Додавање више одвојених магистрала
    - Коришћење мрежних пролаза (енг. gateway)
  - Висока цена преласка на FlexRay / Ethernet
    - Цена хардвера и промене у софтверу
- •Мањак флексибилности за временски окидан саобраћај:
  - Потреба за детерминизмом

# ИДЕЈА ОКОСНИЦА

### •Брзина ограничена начином арбитраже:

- Време слања бита потребно да буде довољно дугачко
- Промена напона дуже од трајања повратног пута
- Нпр. 40 m максимално ~1 Mbs

### •После арбитраже:

- Само један пошиљалац
- Не постоје ограничења за брзину

### •Фундаментална идеја:

- Правити прелазе брзине између 2 стања
- Мање брзине за арбитражу и потврду
- Веће брзине за слање података

### •Последица:

• веће ефективне брзине, повећан корисни садржај оквира

# ПОБОЉШАЊА

### •Непромењено:

- Арбитража
- Потврда оквира

### •Новитети:

- Прелазак на више битске брзине за:
  - Поље за дужину (енг. Data Length Code) и поље за податке (енг. Data Field)
  - Циклична редундантна провера (енг. Frame CRC)
- Могућност већих дужина података
  - 12, 16, 20, 24, 32, 48, 64 октета
  - Подешавања: користити неискоришћене DLC кодове "1001" до "1111"
- Побољшан СРС полином за веће пакете
  - 17 бита: до 16 октета података, 21 бит: преко 16 а до 64 октета

# ПОБОЉШАЊЕ ПРОТОКА

**Example** 

Identifier Data Field Arbitration Phase Data Phase

32 byte 1 Mbit/s 4 Mbit/s

11 bit

→ average bit rate 3.1 Mbit/s

### Approaches to increase Data Rate



# ПРЕДНОСТИ И ПОСЛЕДИЦЕ

#### •Предности:

- Смањено трајање слања или исто трајање са више података
- Могућност слања више података без повећања загушења мреже
- Избацивање додатних магистрала и мрежних пролаза
- Смањена сегментација и премашај

#### Нови ECU су повратно компатибилни:

- могућност постепене замене
- задржан изворни CAN протокол до последњег замењеног
- •Бенефити тек кад се скроз пређе на CAN-FD?
  - Могуће и пре кроз партиционисање и успављивање мреже
  - Посебно битно за ажурирање које може да траје сатима
- •Предност CAN FD: побољшања уз задржану технологију, знање и обуку
- •Промене ограничене на ХВ, СВ задржан за поља од 8 октета
- •Слична цена

### ПРОСЕЧНЕ БРЗИНЕ



# **ПРИМЕНА** МАЛЕ БРЗИНЕ

- •Повећана дужина (9-20 м за приколице)
  - Мала брзина арбитраже: 125 kbs
  - Пренос података:500 kbs
  - Максимална дужина података: 64 октета



- Повећан нето пропусна моћ
- Могућност руковања великих пакета без сегментације
- Задржани изворни примопредајници





### ПРИМЕНА

Source: Daimler

### Use Case 4: Baud Rate limited by network dimension



SAE J1939-15 brings CAN technology to its limits

### **Accelerated Communication on long CAN FD Bus Lines**

The data bit rate can be increased independent of cable length Example: 250 kBit/s + 4 Mbit/s → average bit rate 810 kBit/s

# ПЕРФОРМАНСЕ





ПРОТОКОЛ Детаљи

### ВРСТЕ ОКВИРА

- •Стандардни: 11 бита идентификатора
- •Проширени: 29 бита идентификатора
- •Гаранција компатибилности за додатне протоколе:
  - CANopen и SAE J1939
- •Изостављене дефиниције посебних удаљених оквира
  - Не представља ограничење јер не носе податке
  - Mory се захтевати преко класичних CAN Remote Frames
  - Непотребан бит RTR замењен са увек доминантним Remote Request Substitution

## ДЕТАЉИ НОВИХ ОКВИРА

- •Задржано: SOF, ID, IDE као и ACK, DEL, EOF и ITM
- •Промене настају између: IDE и ACK



### УСКЛАЂЕНОСТ <u>CAN и CAN FD</u>

- •CAN FD контролер може да шаље и прима:
  - Класичне и нове CAN FD оквире
- •Са друге стране, класични CAN контролер:
  - Не разуме нити толерише CAN FD оквире
  - Увек реагује са оквиром грешке на пријем CAN FD оквира:
    - Новопримењени увек доминанти бит на месту Р бита се сматра грешком
- •До потпуног преласка на CAN FD могући бенефити

# ПРОМЕНА УМЕТАЊА БИТА

### •Оригинално:

- Између SOF до краја CRC
- На 5 идентичних бита 1 комплементарни
- Уметнути бити не улазе у CRC

#### •Промена:

#### •Почетак:

- Између SOF до краја података
- Уметнути бити се рачунају у CRC (зашто?)
- Додат бројач уметнутих бита (3 бита модуо 7) и паритет

### •CRC: правила

- Умећу се комплементарни бити са већом учестаношћу
- Почиње се са уметнутим битом комплементарним на претходни
- На четири бита се убацује додатни комплементарни бит без обзира на низ
- После се више не додаје бита као у изворном облику (зашто?)

# ПРИМЕР УМЕТАЊА БИТА



# ПОБОЉШАН CRC

- •Повећана вероватноћа битске грешке
  - Краћа времена бита (зашто?)
  - Много већи број укупних бита
- •Побољшан CRC полином за веће пакете
  - 17 бита: до 16 октета података 0x3685В
  - 21 бит: преко 16 а до 64 октета 0х302899
  - Задржано исто хамингово растојање за повећане оквире
  - Фиксни број убачених бита
- •Додатна заштита: за било коју 1 битску грешку
  - Бројач убачених бита (енг. stuff-bit counter (SBC)): 3.
  - Паритет на SBC
  - Комплементарни бит на почетку CRC

### ПРИМЕР CRC ПОЉА





ЗАКЉУЧЦИ ЗА ПОНЕТИ

Шта смо радили

# ЗАКЉУЧЦИ

- •Побољшање брзине:
  - два режима + више података + исто оптерећење
- •Могућност лаког преласка: повратна усклађеност
  - Промене на ХВ нивоу, СВ потребно минимално прилагодити
  - Сличне цене
  - Задржано знање, искуство и обука инжењера
- •Промена структуре оквира
- •Побољшано препознавања грешака