(Quasi-)Newton methods

$\label{lem:alexandre} A lexandre \ Gram for t \\$ a lexandre.gram for t @ telecom-paristech.fr

Telecom ParisTech

Master 2 Data Science, Univ. Paris Saclay Optimisation for Data Science

Outline

So far you have seen first order method:

- gradient descent
- proximal gradient descent
- accelerated gradient descent
- (proximal) coordinate descent
- conjugate gradient

Now

- Newton methods
- Quasi-Newton methods
- Methods dedicated to non-linear least squares

Quasi-Newton and in particular L-BFGS are still heavilly used to tackle smooth potentially large scale optim problems in machine learning (e.g. ℓ_2 logistic regression, conditional random fields)

Newton method

It is used to find the zeros of a differentiable non-linear function g:

Find x such that
$$g(x) = 0$$
, where $g : \mathbb{R}^n \to \mathbb{R}^n$.

Given a starting point x_0 , Newton method consists in iterating:

$$x_{k+1} = x_k - g'(x_k)^{-1}g(x_k)$$

where g'(x) is the derivative of g at point x.

We have that:

- $g'(x_k)$ is matrix in $\mathbb{R}^{n \times n}$
- each iteration requires to solve a linear system.

Newton method in 1d

Newton method?

Applying this method to the optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x)$$

consists in setting $g(x) = \nabla f(x)$, i.e., looking for stationary points. The iterations read:

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$
.

Newton method is particularly interesting as its convergence is quadratic locally around x^* , i.e.:

$$||x_{k+1} - x^*|| \le \gamma ||x_k - x^*||^2, \gamma > 0$$
.

Convergence of Newton method

Theorem (Convergence of Newton method)

Let $g: \mathbb{R}^n \to \mathbb{R}^n$ assumed twice differentiable \mathcal{C}^2 , and $x^* \in \mathbb{R}^n$ an isolated zero of $g(g(x^*) = 0)$. Assuming that $g'(x^*)$ is invertible, there exists a closed ball \mathcal{B} centered on x^* , such that for every $x_0 \in \mathcal{B}$, the sequence x_k obtained with Newton algorithm stays in \mathcal{B} and converges towards x^* . Furthermore, there is a constant $\gamma > 0$, such that $\|x_{k+1} - x^*\| \le \gamma \|x_k - x^*\|^2$.

Remark: Convergence of Newton is local the method may diverge if the initial point is too far from x^* or if the sian is not positive definite. That's why Newton should be coupled with a line search strategy.

 \rightarrow See proof in lecture notes.

Newton on quadratic function

Exercise

Show that for a quadratic function

$$f(x) = \frac{1}{2}x^{\top}Ax - bx + c, x \in \mathbb{R}^n$$

with A symmetric positive definite, Newton method converges in one iteration independently of the choice of x_0 .

Remark: Newton is therefore not affected by the conditioning of the problem (not like Gradient descent).

Variable metric

The idea behind variable metric methods consists in using iterations of the form

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

where $g_k = \nabla f(x_k)$ and B_k is a positive definite matrix.

- \rightarrow If $B_k = I_n$, it corresponds to gradient descent.
- \rightarrow Setting $B_k = B$ is the fixed metric case.

Fixed metric case

When minimizing

$$\min_{x\in\mathbb{R}^n}f(x)$$

one can set x = Cy with C invertible (change of variable). Let us denote $\tilde{f}(y) = f(Cy)$. This leads to:

$$\nabla \tilde{f}(y) = C^{\top} \nabla f(Cy) .$$

Gradient descent applied to $\tilde{f}(y)$ reads:

$$y_{k+1} = y_k - \rho_k C^{\top} \nabla f(Cy_k)$$

which means using $B = CC^{\top}$ as it is equivalent:

$$x_{k+1} = x_k - \rho_k CC^{\top} \nabla f(x_k)$$
.

Question: How would you choose *C* for quadratic problem?

Quadratic case

Theorem (Preconditioned gradient descent)

Let f(x) a positive definite quadratic form and B a positive definite matrix. The preconditioned gradient algorithm:

has a linear convergence:

$$||x_{k+1} - x^*|| \le \gamma ||x_k - x^*||$$

where:

$$\gamma = \frac{\chi(BA) - 1}{\chi(BA) + 1} < 1 .$$

Quasi-Newton

A guasi-Newton method reads

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

or

$$\begin{cases} d_k = -H_k^{-1} g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

where B_k (resp. H_k) is a matrix which aims to approximate the inverse of the Hessian (resp. the Hessian) of f at x_k .

Question: How to achieve this?

Quasi-Newton

One can start with $B_0 = I_n$. how to update B_k at every iteration?

Idea: apply a Taylor expansion on the gradient, notice that at point x_k , the gradient and the Hessian are such that:

$$g_{k+1} = g_k + \nabla^2 f(x_k)(x_{k+1} - x_k) + \epsilon(x_{k+1} - x_k)$$
.

If one assumes that the approximation is good enough one has:

$$g_{k+1}-g_k\approx \nabla^2 f(x_k)(x_{k+1}-x_k) ,$$

which leads to the quasi-Newton relation.

Quasi-Newton relation

Definition (Quasi-Newton relation)

Two matrices B_{k+1} and H_{k+1} verify the quasi-Newton relation if:

$$H_{k+1}(x_{k+1}-x_k)=\nabla f(x_{k+1})-\nabla f(x_k)$$

or

$$x_{k+1}-x_k=B_{k+1}(\nabla f(x_{k+1})-\nabla f(x_k))$$

Problem: How to update B_k keeping it positive definite?

Update formula of Hessian

The update strategy at iteration

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k d_k , \end{cases}$$

is to correct B_k with a symmetric matrix Δ_k :

$$B_{k+1} = B_k + \Delta_k$$

such that quasi-Newton relation holds:

$$x_{k+1} - x_k = B_{k+1}(g_{k+1} - g_k)$$

with B_{k+1} positive definite, assuming B_k is positive definite.

Idea: Use rank 1 or 2 matrices for Δ_k

Broyden formula

Broyden formula is a rank 1 correction: $B_{k+1} = B_k + vv^{\top}$. The vector $v \in \mathbb{R}^n$ should verify the quasi-Newton relation:

$$B_{k+1}y_k=s_k\,,$$

where $y_k = g_{k+1} - g_k$ and $s_k = x_{k+1} - x_k$. It follows that:

$$B_k y_k + v v^{\top} y_k = s_k$$

$$\Rightarrow (y_k^{\top} v)^2 = (s_k - B_k y_k)^{\top} y_k$$

Using the equality $vv^{\top} = \frac{vv^{\top}y_k(vv^{\top}y_k)^{\top}}{(v^{\top}y_k)^2}$, one can write after replacing $vv^{\top}y_k$ by $s_k - B_k y_k$, and $(v^{\top}y_k)^2$ by $y_k^{\top}(s_k - B_k y_k)$, the correction formula

$$B_{k+1} = B_k + \frac{(s_k - B_k y_k)(s_k - B_k y_k)^\top}{(s_k - B_k y_k)^\top y_k} ,$$

also known as Broyden formula.

Broyden formula

Theorem

Let f a quadratic form positive definite. Let us consider the method that, starting for x_0 , iterates:

$$x_{k+1} = x_k + s_k ,$$

where the vectors s_k are linearly independent. Then the sequence of matrices starting by B_0 and defined as:

$$B_{k+1} = B_k + \frac{(s_k - B_k y_k)(s_k - B_k y_k)^{\top}}{(s_k - B_k y_k)^{\top} y_k}$$
,

where $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$, converges in less than n iterations towards A^{-1} , the inverse of the Hessian of f.

 \rightarrow Cf. proof in lecture notes

Remark: No guarantee that the matrices B_k are positive definite, even if the function f is quadratic and $B_0 = I_n$.

Davidon, Fletcher and Powell formula

The formula is a rank 2 correction. It reads:

$$B_{k+1} = B_k + \frac{s_k s_k^\top}{s_k^\top y_k} - \frac{B_k y_k y_k^\top B_k}{y_k^\top B_k y_k} . \tag{1}$$

$\mathsf{Theorem}$

Let us consider the update

$$\begin{cases} d_k = -B_k g_k , \\ x_{k+1} = x_k + \rho_k B_k g_k, & \rho_k \text{ optimal } \end{cases}$$

where $B_0 > 0$ is provided as well as x_0 . Then the matrices B_k defined as in (1) are positive definite for all k > 0.

 \rightarrow Cf. proof in lecture notes

Davidon-Fletcher-Powell algorithm

Require: $\varepsilon > 0$ (tolerance), K (maximum number of iterations) 1: $x_0 \in \mathbb{R}^n$, $B_0 > 0$ (for example I_n) 2: **for** k = 0 to K **do** 3: if $||g_k|| < \varepsilon$ then break 4: 5: end if 6: $d_k = -B_k \nabla f(x_k)$ 7: $x_{k+1} = x_k + \rho_k d_k$ (Compute optimal step size ρ_k) 8: $s_k = \rho_k d_k$

10:
$$B_{k+1} = B_k + \frac{s_k s_k^{\top}}{s_k^{\top} y_k} - \frac{B_k y_k y_k^{\top} B_k}{y_k^{\top} B_k y_k}$$

11: **end for**

10:

12: **return**
$$x_{k+1}$$

9: $y_k = g_{k+1} - g_k$

Davidon-Fletcher-Powell algorithm

This algorithm has a remarkable property when the function f is quadratic.

Theorem

When f is a quadratic form, the algorithm of Davidon-Fletcher-Powell generates a sequence of directions s_0, \ldots, s_k which verify:

$$s_i A^{\top} s_j = 0, \quad 0 \le j < j \le k+1, B_{k+1} A s_i = s_i, \quad 0 \le i \le k.$$
 (2)

Remark: This theorem says that in the quadratic case, the algorithm is like a conjugate gradient method, which therefore converges in at most n iterations.

Davidon-Fletcher-Powell algorithm

One can also notice that for k = n - 1

$$B_n A s_i = s_i, i = 0, \ldots, n-1,$$

and since all s_i are linearly independent it implies $B_n = A^{-1}$.

Remark: One can show that in the general case (non-quadratic), if the direction d_k is reinitialized to $-g_k$ periodically, this algorithm converges to a local minimum \hat{x} of f and that:

$$\lim_{k\to\infty} B_k = \nabla^2 f(\hat{x})^{-1} .$$

This implies that close to the optimum, if the line search is exact, the method behaves like a Newton method. This justifies the use of $\rho_k = 1$ when using approximate line search.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

- The BFGS formula is derived from the formula of DFP by swapping the roles of s_k and y_k .
- The formula obtained allows to maintain an approximation H_k of the Hessian which satisfies the same properties: $H_{k+1} > 0$ if $H_k > 0$ and satisfying the quasi-Newton relation:

$$y_k = H_k s_k$$
.

• The BFGS formula therefore reads:

$$H_{k+1} = H_k + \frac{y_k y_k^{\top}}{y_k^{\top} s_k} - \frac{H_k s_k s_k^{\top} H_k}{s_k^{\top} H_k s_k}$$
.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Require: $\varepsilon > 0$ (tolerance), K (maximum number of iterations)

```
1: x_0 \in \mathbb{R}^n, H_0 > 0 (for example I_n)
```

- 2: **for** k = 0 to K **do**
- 3: if $\|g_k\| < \varepsilon$ then
- 4: break
- 5: end if
- 6: $d_k = -H_k^{-1} \nabla f(x_k)$
- 7: $x_{k+1} = x_k + \rho_k d_k$ (opti step size ρ_k with line-search)
- 8: $s_k = \rho_k d_k$
- 9: $y_k = g_{k+1} g_k$
- 10: $H_{k+1} = H_k + \frac{y_k y_k^{\top}}{y_k^{\top} s_k} \frac{H_k s_k s_k^{\top} H_k}{s_k^{\top} H_k s_k}$
- 11: end for
- 12: **return** x_{k+1}

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

- Direction d_k is obtained by solving a linear system.
- In practice update of H_k is done on Cholesky factorization of $H_k = C_k C_k^{\top}$
- So the complexity of BFGS is the same as DFP.
- Cholesky factorization allows to check that H_k stays numerically positive definite

The BFGS algorithm has the same property as the DFP method:

- in the quadratic case it produces conjugate directions
- it converges in less than n iterations and $H_n = A$
- Usually combined with Wolfe and Powell's or Goldstein's rule.

but:

 much less sensitive that DFP to the use of approximate step size (to combine with Wolfe and Powell's or Goldstein's rule).

Remark: BFGS is in scipy see scipy.optimize.fmin_bfgs.

- L-BFGS is a variant of BFGS that limits memory usage.
- Does not store matrix of the size of the Hessian, $n \times n$ which can be prohibitive in applications such as computer vision or machine learning where n can be millions.
- L-BFGS stores only a few vectors that are used to approximate the matrix H_k^{-1}
- So the memory usage is linear in the dimension of the problem.

- L-BFGS is an algorithm of the quasi-Newton family with $d_k = -B_k \nabla f(x_k)$.
- Difference is in the computation of the product between B_k and $\nabla f(x_k)$.
- Idea is to keep in memory the last low rank corrections, more specifically the last m values of $s_k = x_{k+1} x_k$ and $y_k = g_{k+1} g_k$.

Let $\mu_k = \frac{1}{y_k^\top s_k}$, the algorithm to obtain d_k reads:

Require: m (memory size)

- 1: $q = g_k$
- 2: **for** i = k 1 to k m **do**
- 3: $\alpha_i = \mu_i s_i^{\top} q$
- 4: $q = q \alpha_i y_i$
- 5: end for
- 6: $z = B_k^0 q$
- 7: **for** i = k m to k 1 **do**
- 8: $\beta = \mu_i y_i^{\top} z$
- 9: $z = z + s_i(\alpha_i \beta)$
- 10: end for
- 11: $d_k = -z$

where B_k^0 is positive definite matrix, e.g., a diagonal matrix, so that initially setting z is fast.

- Like BFGS, L-BFGS does not need exact line search to converge.
- L-BFGS is for smooth unconstrained problem but can be extended to handle simple box constraints (a.k.a. bound constraints): $I_i \le x_i \le u_i$ where I_i and u_i are per-variable constant lower and upper bounds. This algorithm is called L-BFGS-B.
- L-BFGS-B in scipy as scipy.optimize.fmin_l_bfgs_b.

 \rightarrow Can you solve a Lasso with L-BFGS-B?

non-linear least-squares

The function to minimize reads:

$$f(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2$$
.

Newton method can be applied to the minimization of f. The gradient and the Hessian matrix read in this particular case:

$$\nabla f(x) = \sum_{i=1}^{m} f_i(x) \nabla f_i(x) ,$$

and

$$\nabla^{2} f(x) = \sum_{i=1}^{m} \nabla f_{i}(x) \nabla f_{i}(x)^{\top} + \sum_{i=1}^{m} f_{i}(x) \nabla^{2} f_{i}(x) .$$

Gauss-Newton method

Close to the optimum, the $f_i(x)$ are small so the second term can be ignored. The Hessian reads:

$$H(x) \approx \sum_{i=1}^{m} \nabla f_i(x) \nabla f_i(x)^{\top}$$
.

This matrix is always positive. Furthermore when m is much larger than n, this matrix is often positive definite.

The Gauss-Newton method uses this approximation of H(x) in a Newton-like solver:

$$\begin{cases} x_0 = \text{fixed,} \\ H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\ x_{k+1} = x_k - H_k^{-1} \nabla f(x_k) \end{cases}.$$

Gauss-Newton method

To guarantee the convergence of the Gauss-Newton method, it can be combined with a line search procedure:

$$\begin{cases} x_0 = \text{fixed,} \\ H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\ x_{k+1} = x_k - \rho_k H_k^{-1} \nabla f(x_k) \end{cases}.$$

Levenberg-Marquardt method

- Levenberg-Marquardt method is a variant of Gauss-Newton that enforces that the Hessian approximation H_k is positive definite.
- The idea is simply to replace H_k by $H_k + \lambda I_n$.

$$\begin{cases} x_0 = \text{fixed}, \\ H_k = \sum_{i=1}^m \nabla f_i(x_k) \nabla f_i(x_k)^\top, \\ d_k = -(H_k + \lambda I_n)^{-1} \nabla f(x_k) \\ x_{k+1} = x_k + \rho_k d_k \end{cases}.$$

- ullet If λ is large, method is equivalent to a gradient method.
- The Levenberg-Marquardt method in scipy as scipy.optimize.leastsq.