Handout for Lecture 9

DISTRIBUTION, EXPECTATION, VARIANCE

ECON 340: Economic Research Methods Instructor: Div Bhagia

X is a random variable.

- Expectation of X, $\mu_X = E(X) = \sum_x x f(x)$
- Variance of X, $\sigma_X^2 = Var(X) = E[(X \mu_X)^2] = \sum_x (x \mu_X)^2 f(x)$
- Standard deviation of X, $\sigma_X = \sqrt{\sigma_X^2}$

If X is a random variable and Y = a + bX, then Y is also a random variable with

- E(Y) = a + bE(X)
- $Var(Y) = b^2 Var(X)$

You are at a fair and considering playing the following game — flip a coin, if you get heads, you gain \$10, else you lose \$10. Denote X as your winnings/loss from the game.

1. Find the expected value, variance, and standard deviation of X.

\overline{x}	f(x)	xf(x)	$(x - \mu_X)^2$	$f(x)(x-\mu_X)^2$
10 -10	$0.5 \\ 0.5$	5 -5	$10^2 (-10)^2$	50 50
-		0		100

Answer:

$$\mu_X = 0, \quad \sigma_X^2 = 100, \quad \sigma_X = 10$$

2. You look up and realize that you have to pay \$5 in order to play the game. So your actual winnings/loss from the game will be Y = X - 5. Find the expected value, variance, and standard deviation of Y.

y	f(y)	yf(y)	$(y-\mu_Y)^2$	$f(y)(y-\mu_Y)^2$
5	0.5	2.5	$(5-(-5))^2$	50
-15	0.5	-7.5	$(-15-(-5))^2$	50
		-5		100

Answer:

$$\mu_Y = -5, \quad \sigma_Y^2 = 100, \quad \sigma_Y = 10$$

Note that, E(Y) = E(X) - 5 and Var(Y) = Var(X).

3. You see another stall offering a lower stakes game — flip a coin, if you get heads, you gain \$5, else you lose \$5. Your winnings/loss from this game will be Z=0.5X. Find the expected value, variance, and standard deviation of Z.

\overline{z}	f(z)	zf(z)	$(z-\mu_Z)^2$	$f(z)(z-\mu_Z)^2$
5 -5	$0.5 \\ 0.5$	$2.5 \\ -2.5$	$5^2 (-5)^2$	12.5 12.5
		0	(- /	25

Answer:

$$\mu_Z = 0, \quad \sigma_Z^2 = 25, \quad \sigma_Z = 5$$

Note that, E(Z) = E(X), $Var(Z) = (0.5)^2 Var(X)$, and $\sigma_Z = 0.5\sigma_X$.