

Leonard Traeger M. Sc. Information Systems leonard.traeger@fh-dortmund.de

Disclaimer

Slides are mainly based on

- https://pandas.pydata.org/docs/index.html and
- https://www.w3schools.com/python/pandas/pandas intro.asp
- → Find everything you need to know there!

Official Pandas cheat sheet:

https://pandas.pydata.org/Pandas Cheat Sheet.pdf

More beginner-friendly Pandas cheat sheet by Dataquest:

https://drive.google.com/file/d/1UHK8wtWbADvHKXFC937IS6MTnISZC_zB/view

Learning Goals Python Pandas II

- Explain the synergy effects between NumPy and Pandas, and why Pandas always maintains the data context.
- Explain, demonstrate, compare, and apply suitable data preprocessing tasks onto examplarly data sets.
- Propose reasons for attributes and data being "dirty".
- Apply data masking and demonstrate how to insert new records and change values of existing subsets of rows or columns of a DataFrame.
- Discuss hindering reasons for initial data exploration.
- Hypothesize reasons for missing data and propose strategies to annotate, find, and filling these.
- **Describe** common data integration problems and **develop** suitable methods for removing duplicates, union, and join operations onto DataFrames.
- Justify the application of data masking, unary functions, and binary functions in the context of data transformation.
 Construct attributes with binary functions and the lambda function.
- **Explain** grouping and aggregation functions in the context of split, apply, combine. **Sketch** cleaning, grouping, aggregation, and sorting functions on DataFrames.
- **Describe** generalization and the four types of concept hierarchies.
- Give examples on considerations for preprocessing data and how preprocessing can benefit or harm the analysis.

NumPy (Recap)

- NumPy arrays can be multidimensional.
- NumPy adds efficient manipulation and operations on that data.
 - Basic arithmetic (addition, subtraction, multiplication, etc.)
 - Sophisticated operations (trigonometric functions, exponential and logarithmic functions, etc.)
 - Ufuncs benefit from Vectorization; functions that encapsulate loops!

Operator	Equivalent ufunc	Description
+	np.add	Addition (e.g., $1 + 1 = 2$)
-	np.subtract	Subtraction (e.g., $3 - 2 = 1$)
-	np.negative	Unary negation (e.g., -2)
*	np.multiply	Multiplication (e.g., $2 * 3 = 6$)
/	np.divide	Division (e.g., 3 / 2 = 1.5)
//	np.floor_divide	Floor division (e.g., $3 // 2 = 1$)
**	np.power	Exponentiation (e.g., 2 ** 3 = 8)
%	np.mod	Modulus/remainder (e.g., 9 % 4 = 1)

VanderPlas, J., "Python Data Science Handbook", O'Reilly, 2017

NumPy Ufuncs (Recap)

Which version is more efficient and looks more "pythonic"?

```
x = np.arange(1, 101)
x1 = x.reshape(10,10)
x2 = x1[5]
for idx, item in enumerate(x2):
    x2[idx] = item + 100
print(x)
x = np.arange(1, 101)
x1 = x.reshape(10,10)
```

```
18
             25
                           28
                  26
                               29
                                    30
                                        31
                                                               36
             43
                  44
                           46
                               47
                                    48
                                        49
                               65
                                                               72
                                        67
             79
                  80
                      81
                           82
                               83
                                    84
                                        85
                                             86
                                                  87
                                                      88
                                                          89
                                                               90
        96
                      99 100]
94
    95
             97
                  98
```

Could this array be a Pandas Series?

Pandas is designed to work with NumPy!

What does that mean?

Any NumPy ufunc will work on numeric Pandas Series and DataFrame objects!

Pandas > NumPy

 Pandas preserves alignment of indices and columns and thus operations on data will always maintain the data context.

← → C 🖒 🕯 raw.githubusercontent.com/leotraeg/FHDTM-P2DS-WS2324/main/Data%20Science%20Projekt%20Demo/Datensätze/FHDTM-P2DS-WS2324-Project-Demo-1.1-Data-Acquisition-Transfermarkt_BVB.csv

club_name,club_league,player_position,player_number,player_name,player_dob,player_country,player_value
Borussia Dortmund,Bundesliga,Torwart,1,Gregor Kobel,06.12.1997 (25),Schweiz,"35,00 Mio. €"
Borussia Dortmund,Bundesliga,Torwart,35,Marcel Lotka,25.05.2001 (22),Deutschland,"1,50 Mio. €"
Borussia Dortmund,Bundesliga,Torwart,33,Alexander Meyer,13.04.1991 (32),Deutschland,"1,00 Mio. €"
Borussia Dortmund,Bundesliga,Torwart,31,Silas Ostrzinski,19.11.2003 (19),Deutschland,150 Tsd. €
Borussia Dortmund,Bundesliga,Abwehr,4,Nico Schlotterbeck,01.12.1999 (23),Deutschland,"40,00 Mio. €"
Borussia Dortmund,Bundesliga,Abwehr,25,Niklas Süle,03.09.1995 (27),Deutschland,"35,00 Mio. €"

url = "https://raw.githubusercontent.com/leotraeg/FHDTM-P2DS-WS2324/main/Data%20
df_bvb_player = pd.read_csv(url)

Getting to know your data (Recap)

It is pretty **hard** to work, analyze and apply statistical methods on data...

...if you do not know anything about your data!

An **initial exploration** of your data can help you decide how to proceed.

Getting to know your data (Recap)

Take the time to open up your data file and have a look.

You might be surprised at what you find!

You may **notice obious issues** with the data, e.g.:

- Duplicate records
- Duplicate attributes
- Nonsensical values
- Useless attributes
- Incomplete data formatting during I/O ©

Too much data to inspect manually? Take a sample!

Viewing Meta Data (Recap)

df.info() returns meta data about the frame.

```
df_bvb_player.info()
                                 <class 'pandas.core.frame.DataFrame'>
                                 RangeIndex: 30 entries, 0 to 29
                                 Data columns (total 8 columns):
                                      Column
                                                      Non-Null Count
                                                                    Dtype
                                      club name
                                                      30 non-null
                                                                    object
                                                                    object
                                      club league
                                                      30 non-null
                                                                                             What did go unfavorable
                                      player position 30 non-null
                                                                    obiect
                                      player number
                                                      30 non-null
                                                                     int64
                                                                                              during the I/O process?
                                                                    object
                                      player name
                                                      30 non-null
                                      player_dob
                                                                    object
                                                      30 non-null
                                      player country
                                                      30 non-null
                                                                    object
                                      player value
                                                                    object
                                                      30 non-null
                                 dtypes: int64(1), object(7)
                                 memory usage: 2.0+ KB
        club_name club_league
                               player_position player_number player_name
                                                                                player_dob player_country player_value
Borussia Dortmund
                     Bundesliga
                                                                Gregor Kobel 06.12.1997 (25)
                                                                                                              35,00 Mio. €
                                         Torwart
                                                                                                    Schweiz
```

Marcel Lotka 25.05.2001 (22)

1,50 Mio. €

Deutschland

Torwart

Bundesliga

Borussia Dortmund

Example: Unary Function and uFunc

Definition: function (A) \rightarrow A, where A is a set

13

14

15

```
df_bvb_player.player_number
       1
      35
      33
      31
      25
      15
      44
      47
       5
      26
10
                                                11
      17
                                                12
12
      24
                                                13
```

df_bvb_player.player_number %2 == 0 df_bvb_player.player_number.apply(player_number_even) False False

False

False

True

False

False

True False

False

True

False

True

True

False

True

14

15

```
For binary operations
 (two operators, e.g.,
function(A,B) \rightarrow A*B),
Pandas automatically
    aligns indices!
  We just did some
```

Data Preprocessing -Data Transformation -Attribute construction

23

6

def player number even(player number):

if player_number %2 == 0:

return True

return False

else:

Major Tasks in Data Preprocessing

Data Reduction

 Obtains reduced representation in volume but produces the same or similar analytical results.

Data Cleaning

• Fill in missing values, **smooth noisy data**, identify or remove outliers, and resolve inconsistencies caused by data integration.

Data Integration

Integration of multiple tables, databases, data cubes, or files.

Data Transformation

Aggregation, generalization, normalization and attribute construction.

Most of these methods require cyclic application throughout the DS process!

Data Cleaning

No quality data, no quality analsis!

"Garbage in, garbage out"

Quality decisions must be based on quality data:

 e.g., duplicate or missing data may cause incorrect or even misleading statistics!

Data **extraction**, **cleaning**, and **transformation** comprises the majority of the work of building a **data warehouse**.

https://barc.com/de/infografik-barc-data-bi-analytics-trend-monitor-2022/

Development of rankings of Data, BI and Analytics trends

Arts Sciences TH Köln

Why is Data dirty?

Incomplete data

- "Not applicable" data value when collected.
- Different considerations between the time, e.g., when data was collected versus used for analysis.
- Human/hardware/software problems.

Noisy data (incorrect values)

- Faulty data collection instruments.
- Human or computer error at data entry.
- Errors in data transmission.

Inconsistent data

- Different data sources.
- Functional dependency violation, e.g., modify some linked data.
- Duplicate records/attributes during integration process.

Data Cleaning: smooth noisy data (I)

Definition: function (A) \rightarrow A, where A is a set

```
def get_player_value_numeric(player_value):
    if(type(player_value) == float):
        return player_value
    else:
        player_value_arr = player_value.split(" ")
        #"150 Tsd. €".split(" ") --> ['150,00', 'Tsd.', '€']
        value = player_value_arr[0].replace(",",".")
        unit = 1000 if "Tsd." in player_value_arr[1] else 1000000
        return float(float(value)*unit)
```



```
df_bvb_player.player_value
      35,00 Mio. €
      1,50 Mio. €
      1,00 Mio. €
       150 Tsd. €
     40,00 Mio. €
     35,00 Mio. €
     6,00 Mio. €
     1,00 Mio. €
      600 Tsd. €
     20,00 Mio. €
     13,00 Mio. €
     10,00 Mio. €
     5,00 Mio. €
     1,00 Mio. €
     14,00 Mio. €
```

13,00 Mio. €

```
(df_bvb_player.player_value.
apply(get player value numeric))
      35000000.0
       1500000.0
       1000000.0
        150000.0
      40000000.0
      35000000.0
       6000000.0
       1000000.0
        600000.0
      20000000.0
      13000000.0
      10000000.0
11
       5000000.0
12
13
      1000000.0
14
      14000000.0
```

13000000.0

15

15

Data Cleaning: smooth noisy data (II)

Definition: function (A) \rightarrow A, where A is a set

```
(df_bvb_player.player_dob.
                                                              df_bvb_player.player_dob
                                                                                                             apply(get_player_dob_date))
                                                                    06.12.1997 (25)
def get player dob date(player dob):
                                                                                                                   1997-12-06
                                                                    25.05.2001 (22)
   if(type(player_dob) == datetime.date):
                                                                                                                   2001-05-25
     return player_dob
                                                                    13.04.1991 (32)
                                                                                                                   1991-04-13
   else:
                                                                    19.11.2003 (19)
     player_dob_arr = player_dob.split(" ")
                                                                                                                   2003-11-19
                                                                    01.12.1999 (23)
     #"06.12.1997 (25)".split(" ") --> ['06.12.1997', '(25)']
                                                                                                                   1999-12-01
                                                                    03.09.1995 (27)
    dob_arr = player_dob_arr[0].split(".")
                                                                                                                   1995-09-03
                                                                    16.12.1988 (34)
     return date(int(dob_arr[2]), int(dob_arr[1]), int(dob_arr[0])
                                                                                                                   1988-12-16
                                                                    14.10.2003 (19)
                                                                                                                   2003-10-14
                         -0-0-0-0
                                                                    10.09.1999 (23)
                                                                                                                   1999-09-10
                                                                    16.04.1995 (28)
                          000
                                                                                                                   1995-04-16
                          ΝÒΝ
                                                                    17.11.1997 (25)
                                                                                                                   1997-11-17
                                                              11
                                                                    27.05.1995 (28)
                                                                                                                   1995-05-27
                                                                                                             11
                                                              12
                                                                    12.09.1991 (31)
                                                                                                                   1991-09-12
                                                              13
                                                                    02.03.2000 (23)
                                                                                                                   2000-03-02
                                                              14
                                                                    12.01.1994 (29)
                                                                                                                   1994-01-12
                                                              15
                                                                    11.01.1998 (25)
                                                                                                                   1998-01-11
```

Data Cleaning: smooth noisy data (III)

Definition: function (A) \rightarrow A, where A is a set


```
(df_bvb_player.player_dob.
apply(get_player_dob_date))
      1997-12-06
      2001-05-25
      1991-04-13
      2003-11-19
      1999-12-01
      1995-09-03
      1988-12-16
      2003-10-14
      1999-09-10
      1995-04-16
      1997-11-17
10
      1995-05-27
11
      1991-09-12
12
      2000-03-02
13
      1994-01-12
14
```

```
(df_bvb_player.player_dob.
apply(get_player_dob_date).
apply(get_age))
```

```
22
       32
       19
       23
       19
       24
       28
       25
10
       28
11
12
       32
13
       29
14
15
```

25

apply also workson DataFrames. Wewill see later how.

15

1998-01-11

Caution: time dependent data

Time series data is a **sequence** of **data points indexed** in **time order**.

Ordering is typically over **equally spaced time** intervals, such as minutes, hours, days, months, or years.

pmdarima 2.0.3
pip install podarina

Project description

Project description

Project description

Project links

Project description

pmdarima

https://pypi.org/project/pmdarima/

Analysis of such data is a (magical) domain for itself.

Analysis requires specific modeling strategies e.g., moving average or exponential smoothing, and <u>domain expertise</u>.

In the simple case of dates:

→ Always store the raw date format, it gives you more flexibility to 12 run analytics.

https://jakevdp.github.io/PythonDataScience Handbook/03.11-working-with-time-series. html.

(df_bvb_player.player_dob. apply(get_player_dob_date) apply(get_age)) df bvb player.player dob 06.12.1997 (25) 25 25.05.2001 (22) 22 32 13.04.1991 (32) 19.11.2003 (19) 19 01.12.1999 (23) 23 03.09.1995 (27) 28 16.12.1988 (34) 34 14.10.2003 (19) 19 10.09.1999 (23) 24 28 17.11.1997 (25) 25 27.05.1995 (28) 11 28 12.09.1991 (31) 12 32 02.03.2000 (23) 23 12.01.1994 (29) 14 29 11.01.1998 (25) 25

Technology

Arts Sciences TH Köln

Data Cleaning Summary

Depending on the dataset, preprocessing function, and your style, you can:

Overwrite attributes

```
df_bvb_player["player_value"] = df_bvb_player.player_value.apply(get_player_value_numeric)
df_bvb_player["player_dob"] = df_bvb_player.player_dob.apply(get_player_dob_date)
```

Create new attributes

```
df_bvb_player["player_number_even"] = df_bvb_player.player_number.apply(player_number_even)
df_bvb_player["age"] = df_bvb_player.player_dob.apply(get_age)
```

Reduce (delete) attributes and records.

You are becoming a Data Scientist!

Getting to know your data (Recap)

Simple visualization tools and summary statistics are very useful!

- Make some plots.
- Calculate summary statistics.

...and think:

- Is the distribution consistent with the background knowledge?
 (You may need to consult domain experts)
- Any obvious outliers?
- Are some attributes heavily correlated with each other?

Initial Data Exploration

Once attributes have the **desireable data type**, particularly **numeric** ones, analysis becomes more fun!

df_bvb_player.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 30 entries, 0 to 29 Data columns (total 10 columns): Non-Null Count Column club name 30 non-null object club league 30 non-null object 30 non-null player position object player number int64 30 non-null player name 30 non-null object player dob 30 non-null object player_country 30 non-null object player_value 30 non-null float64 player_number_even 30 non-null boo1 30 non-null int64 dtypes: bool(1), float64(1), int64(2), object(6) memory usage: 2.3+ KB

	player_number	player_value	age
count	30.000000	3.000000e+01	30.000000
mean	20.300000	1.540500e+07	24.866667
std	12.809345	1.368692e+07	4.953113
min	1.000000	1.500000e+05	17.000000
25%	9.250000	2.375000e+06	21.250000
50%	19.500000	1.300000e+07	24.500000
75%	29.250000	2.725000e+07	28.750000
max	47.000000	4.000000e+07	34.000000

df_bvb_player.describe()

Reaching Data Science Milestone

If you have reached a significant milestone in a Data Science Life Cycle Framework:

- Summarize development in a few sentences (documentation!).
- Verify literature, whether all foreseen processes of the milestone have been incorporated by your team.
- Export the DataFrame to a file to start with in the next incremental component, e.g., "2.0-Data-Preprocessing-Transfermarkt_BVB.csv" (Versioning)

KDD, Fayyad et al., 1996: https://www2.cs.uregina.ca/~dbd/cs831/notes/kdd/1_kdd.html

Training #1

Open a blank .ipynb file and import the .csv file

url = "https://raw.githubusercontent.com/leotraeg/FHDTM-P2DS-WS2324/main/Data%20Science%20Projekt%20Demo/Datens%C3%A4tze/FHDTM-P2DS-WS2324-Project-Demo-2.0-Data-Preprocessing-Transfermarkt_BVB.csv" as a pandas data frame pd.read csv(url).

- 1. "Hanna Muster" joined the BVB club this season. You can add a new record using a
 dictionary { } and pd.Series object by
 df.loc[len(df)] = pd.Series(data=dictionary).
 Assign the unknown attributes with numpy's np.NaN value.
- We will work with Hanna in the next slides!
- 2. Raise the player_value attribute of the DataFrame for all attackers ("Sturm") by 15%.
- 3. Add a new attribute player_talent to the DataFrame in which
 - Players with player value greater than 10 mil. = "Star"
 - Players aged under and including 21 with player_value greater than 1 mil. = "Rising Star".

What BVB players are star players?

df_bvb_player[df_bvb_player.player_talent.str.contains('Star')]

index	club_name	club_league	player_position	player_number	player_name	player_dob	player_country	player_value	player_number_even	age	player_talent
0	Borussia Dortmund	Bundesliga	Torwart	1.0	Gregor Kobel	1997-12-06	Schweiz	35000000.0	0.0	25	Star
4	Borussia Dortmund	Bundesliga	Abwehr	4.0	Nico Schlotterbeck	1999-12-01	Deutschland	40000000.0	1.0	23	Star
5	Borussia Dortmund	Bundesliga	Abwehr	25.0	Niklas Süle	1995-09-03	Deutschland	35000000.0	0.0	28	Star
9	Borussia Dortmund	Bundesliga	Abwehr	5.0	Ramy Bensebaini	1995-04-16	Algerien	20000000.0	0.0	28	Star
10	Borussia Dortmund	Bundesliga	Abwehr	26.0	Julian Ryerson	1997-11-17	Norwegen	13000000.0	1.0	25	Star
14	Borussia Dortmund	Bundesliga	Mittelfeld	23.0	Emre Can	1994-01-12	Deutschland	14000000.0	0.0	29	Star
15	Borussia Dortmund	Bundesliga	Mittelfeld	6.0	Salih Özcan	1998-01-11	Türkei	13000000.0	1.0	25	Star
17	Borussia Dortmund	Bundesliga	Mittelfeld	20.0	Marcel Sabitzer	1994-03-17	Österreich	20000000.0	1.0	29	Star
18	Borussia Dortmund	Bundesliga	Mittelfeld	8.0	Felix Nmecha	2000-10-10	Deutschland	15000000.0	1.0	22	Star
20	Borussia Dortmund	Bundesliga	Mittelfeld	19.0	Julian Brandt	1996-05-02	Deutschland	40000000.0	0.0	27	Star
21	Borussia Dortmund	Bundesliga	Mittelfeld	7.0	Giovanni Reyna	2002-11-13	Vereinigte Staaten	25000000.0	0.0	20	Rising Star
23	Borussia Dortmund	Bundesliga	Sturm	27.0	Karim Adeyemi	2002-01-18	Deutschland	46000000.0	0.0	21	Rising Star
24	Borussia Dortmund	Bundesliga	Sturm	43.0	Jamie Bynoe-Gittens	2004-08-08	England	16099999.99999998	0.0	19	Rising Star
26	Borussia Dortmund	Bundesliga	Sturm	21.0	Donyell Malen	1999-01-19	Niederlande	32199999.99999996	0.0	24	Star

...and how many more?

Break

Major Tasks in Data Preprocessing

Data Reduction

 Obtains reduced representation in volume but produces the same or similar analytical results.

Data Cleaning

• **Fill in missing values**, smooth noisy data, identify or remove outliers, and resolve inconsistencies caused by data integration.

Data Integration

Integration of multiple tables, databases, data cubes, or files.

Data Transformation

Aggregation, generalization, normalization and attribute construction.

Why is Data Missing?

The real-world data is rarely clean and homogeneous!

Incomplete data

- "Not applicable" data value when collected.
- Different considerations between the time when data was collected versus used for analysis.
- Human/hardware/software problems.

Inconsistent data

- Different data sources.
- Functional dependency violation (e.g., modify some linked data).
- Duplicate records/attributes during integration process.

Why is Data Missing? (cont.)

Noisy data (incorrect values)

- Faulty data collection instruments.
- Human or computer error at data entry.
- Errors in data transmission.

Data is not always available

- Considered unimportant (at point of entry) and not recorded or deleted.
- Not entered due to misunderstanding.
- Overwritten instead of historically registered changes.

How to annotate Missing Data?

Pv	thon	chose '	to use	two already	y-existing P	ython	null values:
----	------	---------	--------	-------------	--------------	-------	--------------

- Special floating-point numpy.NaN value
 - Acronym for Not a Number
 - Of dtype('float64')
 - Any arithmetic operation such as sum () will throw another numpy. NaN.
- Python None object
 - Only usable for Series of type 'object'.
 - Any arithmetic operation such as sum() will throw error.

NaN and None both have their place in Pandas!

Pandas treats them as essentially interchangeable for indicating missing or null values.

Function name	NaN-safe version	Description
np.sum	np.nansum	Compute sum of elements
np.prod	np.nanprod	Compute product of elements
np.mea	np.nanmean	Compute mean of elements
np std	np.nanstd	Compute standard deviation
np.var	np.nanvar	Compute variance
np.min	np.nanmin	Find minimum value
np.max	np.nanmax	Find maximum value
np.argmin	np.nanargmin	Find index of minimum value
np.argmax	np.nanargmax	Find index of maximum value
np.median	np.nanmedian	Compute median of elements
np.percentile	np.nanpercentile	Compute rank-based statistics of elements
np.any	N/A	Evaluate whether any elements are true
np.all	N/A	Evaluate whether all elements are true

VanderPlas, J., "Python Data Science Handbook", O'Reilly, 2017

How to **find** Missing Data?

There are several useful methods for detecting, removing, and replacing null values in Pandas data structures

- isnull(): Generate a boolean mask indicating missing values.
- notnull(): Opposite of isnull().
- dropna(): Return a filtered version of the data.
- fillna(): Return a copy of the data with missing values filled or imputed.

How to find Missing Data? (cont.)

1 to 31 of 31 entries Filter 🚨												
ndex	club_name	club_league	player_position	player_number	player_name	player_dob	player_country	player_value	player_number_even	age	player_talent	
0	false	false	false	false	false	false	false	false	false	false	false	
1	false	false	false	false	false	false	false	false	false	false	true	
2	false	false	false	false	false	false	false	false	false	false	true	
3	false	false	false	false	false	false	false	false	false	false	true	
4	false	false	false	false	false	false	false	false	false	false	false	
5	false	false	false	false	false	false	false	false	false	false	false	
6	false	false	false	false	false	false	false	false	false	false	true	
7	false	false	false	false	false	false	false	false	false	false	true	
8	false	false	false	false	false	false	false	false	false	false	true	
9	false	false	false	false	false	false	false	false	false	false	false	
10	false	false	false	false	false	false	false	false	false	false	false	
11	false	false	false	false	false	false	false	false	false	false	true	
12	false	false	false	false	false	false	false	false	false	false	true	
13	false	false	false	false	false	false	false	false	false	false	true	
14	false	false	false	false	false	false	false	false	false	false	false	
15	false	false	false	false	false	false	false	false	false	false	false	
16	false	false	false	false	false	false	false	false	false	false	true	
17	false	false	false	false	false	false	false	false	false	false	false	
18	false	false	false	false	false	false	false	false	false	false	false	
19	false	false	false	false	false	false	false	false	false	false	true	
20	false	false	false	false	false	false	false	false	false	false	false	
21	false	false	false	false	false	false	false	false	false	false	false	
22	false	false	false	false	false	false	false	false	false	false	true	
23	false	false	false	false	false	false	false	false	false	false	false	
24	false	false	false	false	false	false	false	false	false	false	false	
25	false	false	false	false	false	false	false	false	false	false	true	
26	false	false	false	false	false	false	false	false	false	false	false	
27	false	false	false	false	false	false	false	false	false	false	false	
28	false	false	false	false	false	false	false	false	false	false	false	
29	false	false	false	false	false	false	false	false	false	false	false	
30	false	false	true	true	false	false	false	true	true	false	true	

How to find Missing Data? (cont.)

For large data sets, prefer

- Graphical visualizations or
- Summary statistics

about NaN or None values.

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure()
sns.heatmap((df_bvb_player.isnull()), cbar=False)
```


Data Cleaning: fill in missing values ignore the records with null

df_bvb_player.dropna()

									1 to 17 of 17	entries	Filter ?
index	club_name	club_league	player_position	player_number	player_name	player_dob	player_country	player_value	player_number_even	age	player_talent
0	Borussia Dortmund	Bundesliga	Torwart	1.0	Gregor Kobel	1997-12-06	Schweiz	35000000.0	0.0	25	Star
4	Borussia Dortmund	Bundesliga	Abwehr	4.0	Nico Schlotterbeck	1999-12-01	Deutschland	40000000.0	1.0	23	Star
5	Borussia Dortmund	Bundesliga	Abwehr	25.0	Niklas Süle	1995-09-03	Deutschland	35000000.0	0.0	28	Star
9	Borussia Dortmund	Bundesliga	Abwehr	5.0	Ramy Bensebaini	1995-04-16	Algerien	20000000.0	0.0	28	Star
10	Borussia Dortmund	Bundesliga	Abwehr	26.0	Julian Ryerson	1997-11-17	Norwegen	13000000.0	1.0	25	Star
14	Borussia Dortmund	Bundesliga	Mittelfeld	23.0	Emre Can	1994-01-12	Deutschland	14000000.0	0.0	29	Star
15	Borussia Dortmund	Bundesliga	Mittelfeld	6.0	Salih Özcan	1998-01-11	Türkei	13000000.0	1.0	25	Star
17	Borussia Dortmund	Bundesliga	Mittelfeld	20.0	Marcel Sabitzer	1994-03-17	Österreich	20000000.0	1.0	29	Star
18	Borussia Dortmund	Bundesliga	Mittelfeld	8.0	Felix Nmecha	2000-10-10	Deutschland	15000000.0	1.0	22	Star
20	Borussia Dortmund	Bundesliga	Mittelfeld	19.0	Julian Brandt	1996-05-02	Deutschland	40000000.0	0.0	27	Star
21	Borussia Dortmund	Bundesliga	Mittelfeld	7.0	Giovanni Reyna	2002-11-13	Vereinigte Staaten	25000000.0	0.0	20	Rising Star
23	Borussia Dortmund	Bundesliga	Sturm	27.0	Karim Adeyemi	2002-01-18	Deutschland	46000000.0	0.0	21	Rising Star
24	Borussia Dortmund	Bundesliga	Sturm	43.0	Jamie Bynoe-Gittens	2004-08-08	England	16099999.99999998	0.0	19	Rising Star
26	Borussia Dortmund	Bundesliga	Sturm	21.0	Donyell Malen	1999-01-19	Niederlande	32200000.0	0.0	24	Star
27	Borussia Dortmund	Bundesliga	Sturm	16.0	Julien Duranville	2006-05-05	Belgien	9775000.0	1.0	17	Rising Star
28	Borussia Dortmund	Bundesliga	Sturm	9.0	Sébastien Haller	1994-06-22	Elfenbeinküste	34500000.0	0.0	29	Star
29	Borussia Dortmund	Bundesliga	Sturm	18.0	Youssoufa Moukoko	2004-11-20	Deutschland	34500000.0	1.0	18	Rising Star

Not effective when % of missing values per attribute varies considerably!

Data Cleaning: fill in missing values with some value

Works also on Series

df bvb player.player talent.fillna("No Category")

rdor.	alub nama	alub laasus	player posit!	player number	player new-	player deb	player court-	player value	1 to 31 of 31		
ndex	club_name	club_league	player_position	player_number	player_name	player_dob	player_country	player_value	player_number_even	age	player_talent
	Borussia Dortmund	Bundesliga	Torwart	1	Gregor Kobel	1997-12-06	Schweiz	35000000	0		Star
	Borussia Dortmund	Bundesliga	Torwart	35	Marcel Lotka	2001-05-25	Deutschland	1500000	0		No Category
	Borussia Dortmund	Bundesliga	Torwart	33	Alexander Meyer	1991-04-13	Deutschland	1000000	0		No Category
	Borussia Dortmund	Bundesliga	Torwart	31	Silas Ostrzinski	2003-11-19	Deutschland	150000	0		No Category
	Borussia Dortmund	Bundesliga	Abwehr	4	Nico Schlotterbeck	1999-12-01	Deutschland	4000000	1		Star
	Borussia Dortmund	Bundesliga	Abwehr	25	Niklas Süle	1995-09-03	Deutschland	35000000	0		Star
6	Borussia Dortmund	Bundesliga	Abwehr	15	Mats Hummels	1988-12-16	Deutschland	6000000	0		No Category
7	Borussia Dortmund	Bundesliga	Abwehr	44	Soumaïla Coulibaly	2003-10-14	Frankreich	1000000	1	19	No Category
8	Borussia Dortmund	Bundesliga	Abwehr	47	Antonios Papadopoulos	1999-09-10	Deutschland	600000	0	24	No Category
9	Borussia Dortmund	Bundesliga	Abwehr	5	Ramy Bensebaini	1995-04-16	Algerien	20000000	0	28	Star
10	Borussia Dortmund	Bundesliga	Abwehr	26	Julian Ryerson	1997-11-17	Norwegen	13000000	1	25	Star
11	Borussia Dortmund	Bundesliga	Abwehr	17	Marius Wolf	1995-05-27	Deutschland	10000000	0	28	No Category
12	Borussia Dortmund	Bundesliga	Abwehr	24	Thomas Meunier	1991-09-12	Belgien	5000000	1	32	No Category
13	Borussia Dortmund	Bundesliga	Abwehr	2	Mateu Morey Bauzà	2000-03-02	Spanien	1000000	1	23	No Category
14	Borussia Dortmund	Bundesliga	Mittelfeld	23	Emre Can	1994-01-12	Deutschland	14000000	0	29	Star
15	Borussia Dortmund	Bundesliga	Mittelfeld	6	Salih Özcan	1998-01-11	Türkei	13000000	1	25	Star
16	Borussia Dortmund	Bundesliga	Mittelfeld	32	Abdoulaye Kamara	2004-11-06	Frankreich	1000000	1	18	No Category
17	Borussia Dortmund	Bundesliga	Mittelfeld	20	Marcel Sabitzer	1994-03-17	Österreich	20000000	1	29	Star
18	Borussia Dortmund	Bundesliga	Mittelfeld	8	Felix Nmecha	2000-10-10	Deutschland	15000000	1	22	Star
19	Borussia Dortmund	Bundesliga	Mittelfeld	30	Ole Pohlmann	2001-04-05	Deutschland	400000	1	22	No Category
20	Borussia Dortmund	Bundesliga	Mittelfeld	19	Julian Brandt	1996-05-02	Deutschland	40000000	0	27	Star
21	Borussia Dortmund	Bundesliga	Mittelfeld	7	Giovanni Reyna	2002-11-13	Vereinigte Staaten	25000000	0	20	Rising Star
22	Borussia Dortmund	Bundesliga	Mittelfeld	11	Marco Reus	1989-05-31	Deutschland	7000000	0	34	No Category
23	Borussia Dortmund	Bundesliga	Sturm	27	Karim Adeyemi	2002-01-18	Deutschland	46000000	0	21	Rising Star
24	Borussia Dortmund	Bundesliga	Sturm	43	Jamie Bynoe-Gittens	2004-08-08	England	16099999.99999998	0		Rising Star
	Borussia Dortmund	Bundesliga	Sturm	10	Thorgan Hazard	1993-03-29	Belgien	8049999.999999999	1		No Category
		Bundesliga	Sturm	21	Donyell Malen	1999-01-19	Niederlande	32200000	0		Star
	Borussia Dortmund	Bundesliga	Sturm	16	Julien Duranville	2006-05-05	Belgien	9775000	1		Rising Star
	Borussia Dortmund	Bundesliga	Sturm	9	Sébastien Haller	1994-06-22	Elfenbeinküste	34500000	0		Star
		Bundesliga	Sturm	18	Youssoufa Moukoko	2004-11-20	Deutschland	34500000	1		Rising Star
	Borussia Dortmund	Bundesliga	No Category	No Category	Hanna Muster	2000-07-17	Deutschland	No Category	No Category		No Category

No Category No Category No Category Star Star No Category No Category No Category Star 10 Star No Category No Category No Category 14 Star 15 Star 16 No Category 17 Star 18 Star No Category 19 Rising Star No Category Rising Star Rising Star No Category Star Rising Star 28 Star Rising Star No Category

Name: player talent, dtype: object

df bvb player.fillna("No Category")

Data Cleaning: fill in missing values with forward-fill or back-fill method

How to handle Missing Data?

Strategy	Recommendation
Ignore (delete) records / attributes.	If majority of record / attribute's values are missing. Caution: deletion generally introduces bias!
Fill in the missing values manually.	Most effective but also tedious and sometimes infeasible approach.
Fill in the missing values automatically with	
Tools.	Search providers, LLMs, and API calls can help in large scales.
A global constant, e.g., "unknown".	Effective when NaN or None has some meaning.
The attribute mean.	Rarely effective but not a NO-NO.
The attribute mean of most similar group.	Better.
The most probable value (Bayesian, ML).	State of the art.

Major Tasks in Data Preprocessing

Data Reduction

 Obtains reduced representation in volume but produces the same or similar analytical results.

Data Cleaning

• Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies caused by data integration.

Data Integration

• Integration of multiple tables, databases, data cubes, or files.

Data Transformation

• Aggregation, generalization, normalization and attribute construction.

Combines data from multiple sources into a coherent store.

Integration problems (scientific domain called Entity Resolution):

- Data type conflicts, e.g., date of birth stored as date and string.
- Labeling conflicts, e.g., attribute customer id and client id.
- Structure conflicts: different normalization or cardinality, e.g., for grades.
- Naming conflicts, e.g., Mercedes Benz and Daimler.
- Domain conflicts, e.g., table product of car manufacturer and wheel supplier.

...and a few more.

Data Integration (cont.)

Key task is handling redundancy by identifying

object $A \equiv object B \equiv real \ world \ entity$

both on attribute and instance level.

- Remove duplicates
- Union (concat) DataFrames
- Join (merge) Data Frames

Careful integration of the data form multiple sources may help reduce / avoid redundancies and inconsistencies. It also improves quality of data analysis.

Data Integration/Cleaning: remove duplicates

d+_top	_100_clubs								
								1 to 10	0 of 2942 entries Filter 📙 🔞
index	club_name	club_number_player	club_avg_age	club_league	club_number_foreign_players	club_number_national_players	club_stadium	club_stadium_seats	club_current_transfer_balance
0	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
1	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
2	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
3	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
4	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
5	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
6	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
7	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
8	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
9	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
10	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
11	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
12	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
13	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
14	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
15	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
16	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
17	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
18	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
19	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
20	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
21	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
22	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
23	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
24	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
25	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
26	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
27	FC Arsenal	33	24,7	Premier League	24	22	Emirates Stadium	60.704 Plätze	-197,75 Mio. €
28	FC Arsenal	33	24,7	Premier League	24	22	Emirates Stadium	60.704 Plätze	-197,75 Mio. €
29	FC Arsenal	33	24,7	Premier League	24	22	Emirates Stadium	60.704 Plätze	-197,75 Mio. €
30	FC Arsenal	33	24,7	Premier League	24	22	Emirates Stadium	60.704 Plätze	-197,75 Mio. €

Data Integration/Cleaning: remove duplicates (cont.)

Return DataFrame with duplicate (identical) rows removed.

df_to	p_100_clubs.drop_dupli	icates()							
								1 to 25	of 100 entries Filter (2)
index	club_name	club_number_player	club_avg_age	club_league	club_number_foreign_players	club_number_national_players	club_stadium	club_stadium_seats	club_current_transfer_balance
0	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
27	FC Arsenal	33	24,7	Premier League	24	22	Emirates Stadium	60.704 Plätze	-197,75 Mio. €
60	FC Paris Saint-Germain	39	25,3	Ligue 1	27	22	Parc des Princes	49.691 Plätze	-128,00 Mio. €
99	Real Madrid	24	26,7	LaLiga	16	19	Santiago Bernabéu	81.044 Plätze	-124,50 Mio. €
123	FC Chelsea	30	23,8	Premier League	19	18	Stamford Bridge	40.853 Plätze	+46,90 Mio. €
153	FC Bayern München	27	25,3	Bundesliga	16	20	Allianz Arena	75.024 Plätze	+51,75 Mio. €
180	Manchester United	36	25,2	Premier League	23	22	Old Trafford	74.879 Plätze	-168,60 Mio. €
216	FC Barcelona	23	25,8	LaLiga	12	18	Spotify Camp Nou	99.354 Plätze	+44,50 Mio. €
239	Tottenham Hotspur	35	25,5	Premier League	24	21	Tottenham Hotspur Stadium	62.062 Plätze	-182,00 Mio. €
274	FC Liverpool	22	26,3	Premier League	17	14	Anfield	54.074 Plätze	-51,30 Mio. €
296	Newcastle United	30	27,6	Premier League	16	13	St James' Park	52.338 Plätze	-108,60 Mio. €
326	Aston Villa	28	26,3	Premier League	18	13	Villa Park	42.682 Plätze	-85,10 Mio. €
354	AC Mailand	32	25,8	Serie A	25	17	Giuseppe Meazza	75.923 Plätze	-46,50 Mio. €
386	SSC Neapel	30	25,5	Serie A	18	17	Stadio Diego Armando Maradona	54.726 Plätze	+7,50 Mio. €
416	Atlético Madrid	29	27,6	LaLiga	17	17	Civitas Metropolitano	67.829 Plätze	+43,30 Mio. €
445	Juventus Turin	35	25,7	Serie A	19	17	Allianz Stadium	41.507 Plätze	-41,60 Mio. €
480	Inter Mailand	26	26,7	Serie A	15	16	Giuseppe Meazza	75.923 Plätze	+74,00 Mio. €
506	Borussia Dortmund	30	24,8	Bundesliga	15	18	SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
536	Bayer 04 Leverkusen	26	24,2	Bundesliga	19	14	BayArena	30.210 Plätze	+16,20 Mio. €
562	Brighton & Hove Albion	30	25,0	Premier League	22	15	AMEX Stadium	31.800 Plätze	-2,75 Mio. €
592	FC Brentford	28	25,6	Premier League	21	16	Brentford Community Stadium	17.250 Plätze	-58,35 Mio. €
620	RasenBallsport Leipzig	26	24,7	Bundesliga	19	17	Red Bull Arena	47.069 Plätze	+114,70 Mio. €
646	Real Sociedad San Sebastián	27	24,7	LaLiga	5	7	Reale Arena	39.313 Plätze	+6,30 Mio. €

Data Integration/Cleaning: remove duplicates (cont.)

df top 100	clubs.drop	duplicates().reset index	(drop=True)

								1 to 25	of 100 entries Filter (2)
index	club_name	club_number_player	club_avg_age	club_league	club_number_foreign_players	club_number_national_players	club_stadium	club_stadium_seats	club_current_transfer_balance
0	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
1	FC Arsenal	33	24,7	Premier League	24	22	Emirates Stadium	60.704 Plätze	-197,75 Mio. €
2	FC Paris Saint-Germain	39	25,3	Ligue 1	27	22	Parc des Princes	49.691 Plätze	-128,00 Mio. €
3	Real Madrid	24	26,7	LaLiga	16	19	Santiago Bernabéu	81.044 Plätze	-124,50 Mio. €
4	FC Chelsea	30	23,8	Premier League	19	18	Stamford Bridge	40.853 Plätze	+46,90 Mio. €
5	FC Bayern München	27	25,3	Bundesliga	16	20	Allianz Arena	75.024 Plätze	+51,75 Mio. €
6	Manchester United	36	25,2	Premier League	23	22	Old Trafford	74.879 Plätze	-168,60 Mio. €
7	FC Barcelona	23	25,8	LaLiga	12	18	Spotify Camp Nou	99.354 Plätze	+44,50 Mio. €
8	Tottenham Hotspur	35	25,5	Premier League	24	21	Tottenham Hotspur Stadium	62.062 Plätze	-182,00 Mio. €
9	FC Liverpool	22	26,3	Premier League	17	14	Anfield	54.074 Plätze	-51,30 Mio. €
10	Newcastle United	30	27,6	Premier League	16	13	St James' Park	52.338 Plätze	-108,60 Mio. €
11	Aston Villa	28	26,3	Premier League	18	13	Villa Park	42.682 Plätze	-85,10 Mio. €
12	AC Mailand	32	25,8	Serie A	25	17	Giuseppe Meazza	75.923 Plätze	-46,50 Mio. €
13	SSC Neapel	30	25,5	Serie A	18	17	Stadio Diego Armando Maradona	54.726 Plätze	+7,50 Mio. €
14	Atlético Madrid	29	27,6	LaLiga	17	17	Civitas Metropolitano	67.829 Plätze	+43,30 Mio. €
15	Juventus Turin	35	25,7	Serie A	19	17	Allianz Stadium	41.507 Plätze	-41,60 Mio. €
16	Inter Mailand	26	26,7	Serie A	15	16	Giuseppe Meazza	75.923 Plätze	+74,00 Mio. €
17	Borussia Dortmund	30	24,8	Bundesliga	15	18	SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
18	Bayer 04 Leverkusen	26	24,2	Bundesliga	19	14	BayArena	30.210 Plätze	+16,20 Mio. €
19	Brighton & Hove Albion	30	25,0	Premier League	22	15	AMEX Stadium	31.800 Plätze	-2,75 Mio. €
20	FC Brentford	28	25,6	Premier League	21	16	Brentford Community Stadium	17.250 Plätze	-58,35 Mio. €
21	RasenBallsport Leipzig	26	24,7	Bundesliga	19	17	Red Bull Arena	47.069 Plätze	+114,70 Mio. €
22	Real Sociedad San	27	24,7	LaLiga	5	7	Reale Arena	39.313 Plätze	+6,30 Mio. €

Data Integration: concat U...but also many more

Concatenate pandas objects (DataFrames and Series) along a particular axis.

Returns a **new DataFrame** consisting of the **rows of all objects** in a **list**.

```
Why use pd.concat([df a, df b])?
```

- It is not recommended to build DataFrames by adding single rows in a for loop.
- Why? Computation is inefficient!
- Use parameter setting ignore index=True if indices are meaningless.
- Concat has various kinds of set logic for the indexes, integrity checks, hierarchy ladders, and relational algebra functionality...

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Data Integration: concat (cont.)

pd.concat([df_psg_player, df_bvb_player], ignore_index=True)

									1 to 25 of 31 e	ntries	Filter
ndex	club_name	club_league	player_position	player_number	player_name	player_dob	player_country	player_value	player_number_even	age	player_tale
0 B	Borussia Dortmund	Bundesliga	Torwart	1.0	Gregor Kobel	1997-12-06	Schweiz	35000000.0	0.0	25	Star
1 B	Borussia Dortmund	Bundesliga	Torwart	35.0	Marcel Lotka	2001-05-25	Deutschland	1500000.0	0.0	22	NaN
2 B	Borussia Dortmund	Bundesliga	Torwart	33.0	Alexander Meyer	1991-04-13	Deutschland	1000000.0	0.0	32	NaN
3 B	Borussia Dortmund	Bundesliga	Torwart	31.0	Silas Ostrzinski	2003-11-19	Deutschland	150000.0	0.0	19	NaN
4 B	Borussia Dortmund	Bundesliga	Abwehr	4.0	Nico Schlotterbeck	1999-12-01	Deutschland	40000000.0	1.0	23	Star
5 B	Borussia Dortmund	Bundesliga	Abwehr	25.0	Niklas Süle	1995-09-03	Deutschland	35000000.0	0.0	28	Star
6 B	Borussia Dortmund	Bundesliga	Abwehr	15.0	Mats Hummels	1988-12-16	Deutschland	6000000.0	0.0	34	NaN
7 B	Borussia Dortmund	Bundesliga	Abwehr	44.0	Soumaila Coulibaly	2003-10-14	Frankreich	1000000.0	1.0	19	NaN
8 B	Borussia Dortmund	Bundesliga	Abwehr	47.0	Antonios Papadopoulos	1999-09-10	Deutschland	600000.0	0.0	24	NaN
9 B	Borussia Dortmund	Bundesliga	Abwehr	5.0	Ramy Bensebaini	1995-04-16	Algerien	20000000.0	0.0	28	Star
10 B	Borussia Dortmund	Bundesliga	Abwehr	26.0	Julian Ryerson	1997-11-17	Norwegen	13000000.0	1.0	25	Star
11 B	Borussia Dortmund	Bundesliga	Abwehr	17.0	Marius Wolf	1995-05-27	Deutschland	10000000.0	0.0	28	NaN
12 B	Borussia Dortmund	Bundesliga	Abwehr	24.0	Thomas Meunier	1991-09-12	Belgien	5000000.0	1.0	32	NaN
13 B	Borussia Dortmund	Bundesliga	Abwehr	2.0	Mateu Morey Bauzà	2000-03-02	Spanien	1000000.0	1.0	23	NaN
14 B	Borussia Dortmund	Bundesliga	Mittelfeld	23.0	Emre Can	1994-01-12	Deutschland	14000000.0	0.0	29	Star
15 B	Borussia Dortmund	Bundesliga	Mittelfeld	6.0	Salih Özcan	1998-01-11	Türkei	13000000.0	1.0	25	Star
16 B	Borussia Dortmund	Bundesliga	Mittelfeld	32.0	Abdoulaye Kamara	2004-11-06	Frankreich	1000000.0	1.0	18	NaN
17 B	Borussia Dortmund	Bundesliga	Mittelfeld	20.0	Marcel Sabitzer	1994-03-17	Österreich	20000000.0	1.0	29	Star
18 B	Borussia Dortmund	Bundesliga	Mittelfeld	8.0	Felix Nmecha	2000-10-10	Deutschland	15000000.0	1.0	22	Star
19 B	Borussia Dortmund	Bundesliga	Mittelfeld	30.0	Ole Pohlmann	2001-04-05	Deutschland	400000.0	1.0	22	NaN
20 B	Borussia Dortmund	Bundesliga	Mittelfeld	19.0	Julian Brandt	1996-05-02	Deutschland	40000000.0	0.0	27	Star
21 B	Borussia Dortmund	Bundesliga	Mittelfeld	7.0	Giovanni Reyna	2002-11-13	Vereinigte Staaten	25000000.0	0.0	20	Rising Star
22 B	Borussia Dortmund	Bundesliga	Mittelfeld	11.0	Marco Reus	1989-05-31	Deutschland	7000000.0	0.0	34	NaN
23 B	Borussia Dortmund	Bundesliga	Sturm	27.0	Karim Adeyemi	2002-01-18	Deutschland	46000000.0	0.0	21	Rising Star
24 B	Borussia Dortmund	Bundesliga	Sturm	43.0	Jamie Bynoe-Gittens	2004-08-08	England	16099999.99999998	0.0	19	Rising Star

Data Integration: concat (cont.)

pd.concat([df_psg_player, df_bvb_player], ignore_index=True)

index	club_name	club_league	player_position	player_number	player_name	player_dob	player_country	player_value	player_number_even	age	player_talent
25	FC Paris Saint-Germain	Ligue 1	Mittelfeld	33	Warren Zaïre-Emery	08.03.2006 (17)	Frankreich	20,00 Mio. €	NaN	NaN	NaN
26	FC Paris Saint-Germain	Ligue 1	Mittelfeld	18	Renato Sanches	18.08.1997 (25)	Portugal	15,00 Mio. €	NaN	NaN	NaN
27	FC Paris Saint-Germain	Ligue 1	Mittelfeld	-	Georginio Wijnaldum	11.11.1990 (32)	Niederlande	8,00 Mio. €	NaN	NaN	NaN
28	FC Paris Saint-Germain	Ligue 1	Mittelfeld	38	Edouard Michut	04.03.2003 (20)	Frankreich	2,50 Mio. €	NaN	NaN	NaN
29	FC Paris Saint-Germain	Ligue 1	Mittelfeld	27	Cher Ndour	27.07.2004 (19)	Italien	1,50 Mio. €	NaN	NaN	NaN
30	FC Paris Saint-Germain	Ligue 1	Mittelfeld	19	Kang-in Lee	19.02.2001 (22)	Südkorea	22,00 Mio. €	NaN	NaN	NaN
31	FC Paris Saint-Germain	Ligue 1	Mittelfeld	35	Ismaël Gharbi	10.04.2004 (19)	Spanien	5,00 Mio. €	NaN	NaN	NaN
32	FC Paris Saint-Germain	Ligue 1	Sturm	10	Neymar	05.02.1992 (31)	Brasilien	60,00 Mio. €	NaN	NaN	NaN
33	FC Paris Saint-Germain	Ligue 1	Sturm	34	Julian Draxler	20.09.1993 (29)	Deutschland	6,00 Mio. €	NaN	NaN	NaN
34	FC Paris Saint-Germain	Ligue 1	Sturm	11	Marco Asensio	21.01.1996 (27)	Spanien	25,00 Mio. €	NaN	NaN	NaN
35	FC Paris Saint-Germain	Ligue 1	Sturm	7	Kylian Mbappé	20.12.1998 (24)	Frankreich	180,00 Mio. €	NaN	NaN	NaN
36	FC Paris Saint-Germain	Ligue 1	Sturm	9	Gonçalo Ramos	20.06.2001 (22)	Portugal	50,00 Mio. €	NaN	NaN	NaN
37	FC Paris Saint-Germain	Ligue 1	Sturm	44	Hugo Ekitiké	20.06.2002 (21)	Frankreich	20,00 Mio. €	NaN	NaN	NaN
38	FC Paris Saint-Germain	Ligue 1	Sturm	39	Ilyes Housni	14.05.2005 (18)	Frankreich	3,50 Mio. €	NaN	NaN	NaN
39	Borussia Dortmund	Bundesliga	Torwart	1	Gregor Kobel	1997-12-06	Schweiz	35000000	0.0	25.0	Star
40	Borussia Dortmund	Bundesliga	Torwart	35	Marcel Lotka	2001-05-25	Deutschland	1500000	0.0	22.0	NaN
41	Borussia Dortmund	Bundesliga	Torwart	33	Alexander Meyer	1991-04-13	Deutschland	1000000			
42	Borussia Dortmund	Bundesliga	Torwart	31	Silas Ostrzinski	2003-11-19	Deutschland	150000	Check Dat	·aF	rame

1999-12-01

1995-09-03

Nico Schlotterbeck

Niklas Süle

Check DataFrame before and afterwards for all (redundant) columns and other inconsistencies.

40000000

35000000

Deutschland

Deutschland

25

43 Borussia Dortmund

44 Borussia Dortmund

Bundesliga

Bundesliga

Abwehr

Abwehr

Data Integration: merge/join

Merge DataFrame or named Series objects with a database-style join.

- Joining columns on columns: DataFrame indexes will be ignored.
- Joining indexes on indexes: DataFrame indexes will be passed on.

Parameters:

how: {'left', 'right', 'outer', 'inner', 'cross'}, default 'inner'

on: column label or index, default intersecting columns in both DataFrames.

Data Integration: merge/join (cont.)

pd.merge(df_bvb_player, df_top_100_clubs, how="inner", on="club_name")

ndex	club name	club league	player_position	player number	player name	player dob	player country	player value	1 to 31 of 31 er	age	Filter player tale
0	Borussia Dortmund	Bundesliga	Torwart		Gregor Kobel	1997-12-06	Schweiz	35000000.0	0.0		Star
1	Borussia Dortmund	Bundesliga	Torwart	35.0	Marcel Lotka	2001-05-25	Deutschland	1500000.0	0.0	22	NaN
2	Borussia Dortmund	Bundesliga	Torwart	33.0	Alexander Meyer	1991-04-13	Deutschland	1000000.0	0.0	32	NaN
3	Borussia Dortmund	Bundesliga	Torwart	31.0	Silas Ostrzinski	2003-11-19	Deutschland	150000.0	0.0	19	NaN
4	Borussia Dortmund	Bundesliga	Abwehr	4.0	Nico Schlotterbeck	1999-12-01	Deutschland	40000000.0	1.0	23	Star
5	Borussia Dortmund	Bundesliga	Abwehr	25.0	Niklas Süle	1995-09-03	Deutschland	35000000.0	0.0	28	Star
6	Borussia Dortmund	Bundesliga	Abwehr	15.0	Mats Hummels	1988-12-16	Deutschland	6000000.0	0.0	34	NaN
7	Borussia Dortmund	Bundesliga	Abwehr	44.0	Soumaïla Coulibaly	2003-10-14	Frankreich	1000000.0	1.0	19	NaN
8	Borussia Dortmund	Bundesliga	Abwehr	47.0	Antonios Papadopoulos	1999-09-10	Deutschland	600000.0	0.0	24	NaN
9	Borussia Dortmund	Bundesliga	Abwehr	5.0	Ramy Bensebaini	1995-04-16	Algerien	20000000.0	0.0	28	Star
10	Borussia Dortmund	Bundesliga	Abwehr	26.0	Julian Ryerson	1997-11-17	Norwegen	13000000.0	1.0	25	Star
11	Borussia Dortmund	Bundesliga	Abwehr	17.0	Marius Wolf	1995-05-27	Deutschland	10000000.0	0.0	28	NaN
12	Borussia Dortmund	Bundesliga	Abwehr	24.0	Thomas Meunier	1991-09-12	Belgien	5000000.0	1.0	32	NaN
13	Borussia Dortmund	Bundesliga	Abwehr	2.0	Mateu Morey Bauzà	2000-03-02	Spanien	1000000.0	1.0	23	NaN
14	Borussia Dortmund	Bundesliga	Mittelfeld	23.0	Emre Can	1994-01-12	Deutschland	14000000.0	0.0	29	Star
15	Borussia Dortmund	Bundesliga	Mittelfeld	6.0	Salih Özcan	1998-01-11	Türkei	13000000.0	1.0	25	Star
16	Borussia Dortmund	Bundesliga	Mittelfeld	32.0	Abdoulaye Kamara	2004-11-06	Frankreich	1000000.0	1.0	18	NaN
17	Borussia Dortmund	Bundesliga	Mittelfeld	20.0	Marcel Sabitzer	1994-03-17	Österreich	20000000.0	1.0	29	Star
18	Borussia Dortmund	Bundesliga	Mittelfeld	8.0	Felix Nmecha	2000-10-10	Deutschland	15000000.0	1.0	22	Star
19	Borussia Dortmund	Bundesliga	Mittelfeld	30.0	Ole Pohlmann	2001-04-05	Deutschland	400000.0	1.0	22	NaN
20	Borussia Dortmund	Bundesliga	Mittelfeld	19.0	Julian Brandt	1996-05-02	Deutschland	40000000.0	0.0	27	Star
21	Borussia Dortmund	Bundesliga	Mittelfeld	7.0	Giovanni Reyna	2002-11-13	Vereinigte Staaten	25000000.0	0.0	20	Rising Star
22	Borussia Dortmund	Bundesliga	Mittelfeld	11.0	Marco Reus	1989-05-31	Deutschland	7000000.0	0.0	34	NaN
23	Borussia Dortmund	Bundesliga	Sturm	27.0	Karim Adeyemi	2002-01-18	Deutschland	46000000.0	0.0	21	Rising Star
24	Borussia Dortmund	Bundesliga	Sturm	43.0	Jamie Bynoe-Gittens	2004-08-08	England	16099999.99999998	0.0	19	Rising Star
25	Borussia Dortmund	Bundesliga	Sturm	10.0	Thorgan Hazard	1993-03-29	Belgien	8049999.999999999	1.0	30	NaN
26	Borussia Dortmund	Bundesliga	Sturm	21.0	Donyell Malen	1999-01-19	Niederlande	32200000.0	0.0	24	Star
27	Borussia Dortmund	Bundesliga	Sturm	16.0	Julien Duranville	2006-05-05	Belgien	9775000.0	1.0	17	Rising Star
28	Borussia Dortmund	Bundesliga	Sturm	9.0	Sébastien Haller	1994-06-22	Elfenbeinküste	34500000.0	0.0		Star
29	Borussia Dortmund	Bundesliga	Sturm	18.0	Youssoufa Moukoko	2004-11-20	Deutschland	34500000.0	1.0	18	Rising Star
30	Borussia Dortmund	Bundesliga	NaN	NaN	Hanna Muster	2000-07-17	Deutschland	NaN	NaN	23	NaN

dex	club_name	club_number_player	club_avg_age	club_league	club_number_foreign_players	club_number_national_players	club_stadium		of 100 entries Filter
0	Manchester City	27	26,3	Premier League	17	19	Etihad Stadium	55.017 Plätze	-79,10 Mio. €
1	FC Arsenal	33	24,7	Premier League	24	22	Emirates Stadium	60.704 Plätze	-197,75 Mio. €
2	FC Paris Saint-Germain	39	25,3	Ligue 1	27	22	Parc des Princes	49.691 Plätze	-128,00 Mio. €
3	Real Madrid	24	26,7	LaLiga	16	19	Santiago Bernabéu	81.044 Plätze	-124,50 Mio. €
4	FC Chelsea	30	23,8	Premier League	19	18	Stamford Bridge	40.853 Plätze	+46,90 Mio. €
5	FC Bayern München	27	25,3	Bundesliga	16	20	Allianz Arena	75.024 Plätze	+51,75 Mio. €
6	Manchester United	36	25,2	Premier League	23	22	Old Trafford	74.879 Plätze	-168,60 Mio. €
7	FC Barcelona	23	25,8	LaLiga	12	18	Spotify Camp Nou	99.354 Plätze	+44,50 Mio. €
8	Tottenham Hotspur	35	25,5	Premier League	24	21	Tottenham Hotspur Stadium	62.062 Plätze	-182,00 Mio. €
9	FC Liverpool	22	26,3	Premier League	17	14	Anfield	54.074 Plätze	-51,30 Mio. €
10	Newcastle United	30	27,6	Premier League	16	13	St James' Park	52.338 Plätze	-108,60 Mio. €
11	Aston Villa	28	26,3	Premier League	18	13	Villa Park	42.682 Plätze	-85,10 Mio. €
12	AC Mailand	32	25,8	Serie A	25	17	Giuseppe Meazza	75.923 Plätze	-46,50 Mio. €
13	SSC Neapel	30	25,5	Serie A	18	17	Stadio Diego Armando Maradona	54.726 Plätze	+7,50 Mio. €
14	Atlético Madrid	29	27,6	LaLiga	17	17	Civitas Metropolitano	67.829 Plätze	+43,30 Mio. €
15	Juventus Turin	35	25,7	Serie A	19	17	Allianz Stadium	41.507 Plätze	-41,60 Mio. €
	Inter Mailand	26	26,7	Serie A	15		Giuseppe Meazza	75.923 Plätze	+74,00 Mio. €
	Borussia Dortmund		24,8	Bundesliga	15	18	SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
18	Bayer 04 Leverkusen	26	24,2	Bundesliga	19	14	BayArena	30.210 Plätze	+16,20 Mio. €
19	Brighton & Hove Albion	30	25,0	Premier League	22	15	AMEX Stadium	31.800 Plätze	-2,75 Mio. €
20	FC Brentford	28	25,6	Premier League	21	16	Brentford Community Stadium	17.250 Platze	-58,35 Mio. €

Data Integration: merge/join (cont.)

pd.merge(df_bvb_player, df_top_100_clubs, how="inner", on="club_name")

1.0 32 NaN

1.0 23 NaN

0.0 29 Star

1.0 25 Star

pd.merge(df_bvb_player, df_top_100_clubs, how="inner", on="club_name")

1 to 25 of 31	entries	Filter	ιП	

											10 25 01 51 611110	3 Tiller E				
ex club_name	club_league_>	player_position	player_number	player_name	player_dob	player_country	player_value	player_number_even	age play	er_talent club_number_playe	er club_avg_age	club_league_y club_	_number_foreign_players club_n	umber_national_players club_stadium	club_stadium_seats	club_current_transfer
Borussia Dortmund	Bundesliga	Torwart	1.0	Gregor Kobel	1997-12-06	Schweiz	35000000.0	0.0	25 Sta	- 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Torwart	35.0	Marcel Lotka	2001-05-25	Deutschland	1500000.0	0.0	22 Nat	. 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Torwart	33.0	Alexander Meyer	1991-04-13	Deutschland	1000000.0	0.0	32 Nat	J 3	24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Torwart		Silas Ostrzinski		Deutschland	150000.0	0.0	19 Nah	J 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr	4.0	Nico Schlotterbeck	1999-12-01	Deutschland	40000000.0	1.0	23 Sta	- 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr		Niklas Süle		Deutschland	35000000.0	0.0	28 Sta	. 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr	15.0	Mats Hummels	1988-12-16	Deutschland	6000000.0	0.0	34 Nat	J 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr	44.0	Soumaïla Coulibaly	2003-10-14	Frankreich	1000000.0	1.0	19 Nat	1 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr	47.0	Antonios Papadopoulos	1999-09-10	Deutschland	600000.0	0.0	24 Nat	١ 3	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr	5.0	Ramy Bensebaini	1995-04-16	Algerien	20000000.0	0.0	28 Star	- з	30 24,8	Bundesliga	15	18 SIGNAL IDUNA PARK	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr	26.0	Julian Ryerson	1997-11-17	Norwegen	13000000.0	1.0	25 Star	- з	30 24,8	Bundesliga	15	18 SIGNAL	81.365 Plätze	+59,35 Mio. €
Borussia Dortmund	Bundesliga	Abwehr		Marius Wolf	1995-05-27	Deutschland	10000000.0	0.0	28 Nah	1 3	30 24,8	Bundesliga	15	Check [)ataFr	ame b

30 24.8

30 24,8

30 24,8

30 24.8

Bundesliga

Bundesliga

Bundesliga

Bundesliga

Check DataFrame before and afterwards for all (redundant) columns and other inconsistencies.

5000000.0

1000000.0

14000000.0

13000000.0

1991-09-12 Belgien

2000-03-02 Spanien

6.0 Salih Özcan 1998-01-11 Türkei

12 Borussia Dortmund

Major Tasks in Data Preprocessing

Data Reduction

 Obtains reduced representation in volume but produces the same or similar analytical results.

Data Cleaning

• Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies caused by data integration.

Data Integration

Integration of multiple tables, databases, data cubes, or files.

Data Transformation

• Aggregation, generalization, normalization and attribute construction.

Data Transformation

A function that **maps** the entire **set** of values of a given attribute **to** a **new set** of **replacement values**.

Attribute Construction:

- Unary function definition $f(A) \rightarrow A$, where A is a set or
- Binary function definition f (A, B) → A*B, whera A.index ≡ B.index, and * some operation

Aggregation: involves grouping and computations such as sum(), mean(), median(), min(), and max(), to generate insights into the nature of numeric values.

Generalization: concept hierarchy climbing.

Normalization: series transformation to a scale so values lie within a specified range (usually smaller and positive).

Some DS frameworks consider **Data Transformation**seperated from Data
Preprocessing.

Data Transformation: binary function

Training #1

Open a blank .ipynb file and import the .csv file

url = "https://raw.githubusercontent.com/leotraeg/FHDTM-P2DS-WS2324/main/Data%20Science%20Projekt%20Demo/Datens%C3%A4tze/FHDTM-P2DS-WS2324-Project-Demo-2.0-Data-Preprocessing-Transfermarkt_BVB.csv" as a pandas data frame pd.read csv(url).

"Hanna Muster" joined the BVB club this season. You can add a new record using a dictionary { } and pd. Series object by df.loc[len(df)] = pd. Series (data=dictionary).
 Assign the unknown attributes with numpy's np.NaN value.

- 2. Raise the player_value attribute of the DataFrame for all attackers ("Sturm") by 15%.
- 3. Add a new attribute player_talent to the DataFrame in which
 - Players with player_value greater than 10 mil. = "Star"
 - Players aged under and including 21 with player_value greater than 1 mil. = "Rising Star".

Slide 24

Programmierkurs 2 Data Science: Pandas I

Technology Arts Science TH Köln

...you may have used **masking** and **value** setting for this task ©

As long as it works, that is fine, but actually this task is a **great example** for applying a **binary function**

Advantage with functional programming: reproducibility, readability, and documentation.

Data Transformation: attribute construction via binary function

```
def player_talent(player_value, age):
    if (player_value > 1000000) and (age <= 21):
        return "Rising Star"
    elif player_value > 100000000:
        return "Star"
    else:
        return "No Category"
```

We can also use .apply on DataFrames and then define a lambda function calling internally the user-defined function with multiple input values.

```
df_bvb_player.apply(lambda x: player_talent(x.player_value, x.age), axis=1)
```

axis=1 forces row-wise computation

Lambda functions

Definition: lambda arguments : expression

- Small **anonymous** function.
- Take any number of arguments but can only have one expression.

```
x = lambda a : a + 1
print(x(5))  #Prints "6"

x = lambda a, b : a * b
print(x(5, 4))  #Prints "20"

x = lambda a, b, c : a + b + c
print(x(5, 4, 3))  #Prints "12"
```

Data Transformation: attribute construction via binary function (cont.)

30

23

Definition binary function: $f(A, B) \rightarrow A*B$

```
df_bvb_player.player_value
                                                                                        df_bvb_player.age
                                                          35000000.0
                                                                                               25
                                                          1500000.0
                                                                                               22
def player_talent(player_value, age):
                                                          1000000.0
                                                                                               32
 if (player_value > 1000000) and (age <= 21):</pre>
                                                           150000.0
                                                                                               19
   return "Rising Star"
                                                          40000000.0
                                                                                               23
 elif player value > 10000000:
                                                          35000000.0
   return "Star"
                                                                                               28
                                                           6000000.0
 else:
                                                                                               34
   return "No Category"
                                                          1000000.0
                                                                                               19
                                                            600000.0
                                                                                               24
                                                   9
                                                          20000000.0
                                                                                               28
                                                  10
                                                         13000000.0
                                                                                        10
                                                                                               25
                                                   11
                                                         10000000.0
                                                                                        11
                                                                                               28
                                                   12
                                                          5000000.0
                                                                                               32
                                                                                        12
                                                   13
                                                          1000000.0
                                                                                        13
                                                                                               23
                                                   14
                                                         14000000.0
                                                                                        14
                                                                                               29
                                                   15
                                                         13000000.0
                                                                                        15
                                                                                               25
                                                   29
                                                          34500000.0
                                                                                        29
                                                                                               18
```

```
df_bvb_player.apply(
    lambda x:
    player_talent(x.player_value, x.age);
    axis=1)
             Star
      No Category
      No Category
      No Category
             Star
             Star
      No Category
      No Category
      No Category
9
             Star
10
             Star
11
      No Category
      No Category
12
      No Category
13
14
             Star
15
             Star
      Rising Star
      No Category
```

NaN

30

Training #2

Open a blank .ipynb file and import the .csv file

```
url = "https://raw.githubusercontent.com/leotraeg/FHDTM-P2DS-WS2324/main/Data%20Science%20Projekt%20Demo/Datens%C3%A4tze/FHDTM-P2DS-WS2324-Project-Demo-2.0-Data-Preprocessing-Transfermarkt_Top_100_Clubs.csv" as a pandas data frame pd.read csv(url).
```

- 1. Write a function that takes the number_player and number_foreign_players of a club as the input parameter.
- 2. Compute the ratio of foreign players by the total number of players of a club.
- 3. If the ratio is above 85%, the club is "extremely international". If the ratio is above 20%, the club is "very international". Else, the club is "international".
- 4. Append a new column "club_internationality" using the df.apply and lambda function.

Training #2

What clubs are "extremely international"?

index	club_name	club_number_player	club_avg_age	club_league	$club_number_foreign_players$	$club_number_national_players$	club_stadium	$club_stadium_seats$	$club_current_transfer_balance$	club_internationality
25	Wolverhampton Wanderers	26	25,8	Premier League	23	14	Molineux Stadium	32.050 Plätze	+44,70 Mio. €	extremly international
36	AS Monaco	27	23,9	Ligue 1	27	10	Stade Louis-II	18.523 Plätze	+26,00 Mio. €	extremly international

...and how many more?

Major Tasks in Data Preprocessing

Data Reduction

 Obtains reduced representation in volume but produces the same or similar analytical results.

Data Cleaning

• Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies caused by data integration.

Data Integration

• Integration of multiple tables, databases, data cubes, or files.

Data Transformation

Aggregation, generalization, normalization and attribute construction.

Data Transformation: aggregation

- Aggregation operation reduce the entire "array" to a single summarizing value! (Recap NumPy)
- Essential piece of analysis of large data is efficient summarization.
- Aggregation is applicable on both DataFrame and Series objects.

df.describe()
applies a common
subset of all these

Aggregation	Description
count()	Total number of items
first(), last()	First and last item
mean(), median()	Mean and median
min(), max()	Minimum and maximum
std(), var()	Standard deviation and variance
mad()	Mean absolute deviation
prod()	Product of all items
sum()	Sum of all items

Data Transformation: aggregation (cont.)

```
df_bvb_player.count()
club name
                       31
club league
                       31
player_position
                       30
player_number
                       30
                       31
player name
                       31
player dob
player country
                       31
player_value
                       30
                       30
player number even
                       31
age
player talent
                       17
```

```
df bvb player.player value.sum()
df_bvb_player.age.sum()
                              485775000.0
769
                              df bvb player.player value.mean()
df bvb player.age.mean()
                              16192500.0
24.806451612903224
                              df bvb player.player value.median()
df_bvb_player.age.median()
                              13000000.0
24.0
                              df_bvb_player.player_value.std()
df bvb player.age.std()
                              14548117.47212534
4.881388838153268
```


Data Transformation: grouping and aggregation

- To go deeper into the data, however, simple aggregates are often not enough.
- groupby operation: quickly and efficiently compute aggregates on subsets of data.
- Aggregate conditionally on some label, e.g., player_position or student_stereotype.
- "group by" comes from SQL database language.

https://charlie.csu.edu.au/2016/02/26/five-types-of-students-youll-meet-at-uni/

Data Transformation: grouping and aggregation (cont.)

Hadley Wickham of Rstats fame: split, apply, combine.

- Split: grouping a DataFrame depending on the value of the specified key.
- 2. Apply: computing some function, usually an aggregate, transformation, or filtering, within the individual groups.
- **3. Combine:** merging the results of these operations into an output array.

df.groupby()
does this in a single
pass over the data.

Data Transformation: grouping and aggregation (cont.)

Training #3

Open a blank .ipynb file and import the .csv file

url = "https://raw.githubusercontent.com/leotraeg/FHDTM-P2DS-WS2324/main/Data%20Science%20Projekt%20Demo/Datens%C3%A4tze/FHDTM-P2DS-WS2324-Project-Demo-2.0-Data-Preprocessing-Transfermarkt Top 100 Clubs.csv"

as a pandas data frame pd.read csv(url).

- Transform club_stadium_seats to a numeric attribute.
- 2. Group the DataFrame by the club_league and compute the **summation** of seats.

- Transform club_current_transfer_balance to a numeric attribute.
 - Hint: only millions in this column
- 2. Group the DataFrame by the club_league and compute the **mean** transfer balance.

Training #3

You can use .sort_values(ascending=False) to rank the attribute descendingly.

club_league Premier League

Bundesliga

LaLiga

Serie A

Ligue 1

Saudi Pro League

Liga Portugal

Süper Lig

Campeonato Brasileiro Série A

Eredivisie

Premier Liga

Scottish Premiership

Championship

Liga Profesional de Fútbol

Jupiler Pro League

SuperSport HNL 35123 Name: club stadium seats, dtype: int64 club_league Saudi Pro League

Premier League

Ligue 1

SuperSport HNL

Süper Lig

Campeonato Brasileiro Série A

Premier Liga

Serie A

LaLiga

Jupiler Pro League

Scottish Premiership

Liga Portugal

Bundesliga

Eredivisie

Championship

Liga Profesional de Fútbol

3.367000e+07

Name: club_current_transfer_balance, dtype: float64

Major Tasks in Data Preprocessing

Data Reduction

 Obtains reduced representation in volume but produces the same or similar analytical results.

Data Cleaning

• Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies caused by data integration.

Data Integration

• Integration of multiple tables, databases, data cubes, or files.

Data Transformation

Aggregation, generalization, normalization and attribute construction.

Data Transformation: generalization

Process of transforming low-level attributes into high-level ones by using a hierarchy.

- Also known as data binning and data categorization.
- Strongly related to attribute construction.
- Declarative: manually deciding how large your data bin sizes are.

• Automated: ultimate goal of machine learning (clustering) and algorithms such as "k-anonymization".

is_even and
player_talent
is an example.
Closely related to
 attribute
 construction.

Data Transformation: generalization hierarchies

 Schema hierarchy: partial order to reflect relationships among the attributes in a database.

 $house_number \prec street \prec city \prec province \prec country.$

• Set-grouping hierarchy: defined on the set of instances of an attribute.

$$\{ \text{freshman, sophomore, junior, senior} \} \prec \text{undergraduate} \\ \{ \text{M.Sc, Ph.D} \} \prec \text{graduate} \\ \{ \text{undergraduate} \} \prec \text{allStatus}$$

Yijun Lu. Specification, generation and implementation concept hierarchy in data mining. December 1997

allStatus

Data Transformation: generalization hierarchies (cont.)

Operation-derived hierarchy: defined by a set of operations onto (usually numeric)
data.

$$\{20,000.00,\ldots,39,999.99\} \subset 20 \sim 40K,$$

• Rule-based hierarchy: nested conditional rules defining higher level correspondence.

Yijun Lu. Specification, generation and implementation concept hierarchy in data mining. December 1997

Major Tasks in Data Preprocessing

Data Reduction

 Obtains reduced representation in volume but produces the same or similar analytical results.

Data Cleaning

• Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies caused by data integration.

Data Integration

Integration of multiple tables, databases, data cubes, or files.

Data Transformation

• Aggregation, generalization, normalization and attribute construction.

Data Transformation: normalization

Adjusting numeric values measured on different scales to a notionally common scale.

Linear scaling, feature scaling, or min-max normalization (0..1):

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

Why do normalization?

- Improved visualization.
- Neccesarry for almost all Machine Learning techniques.
- Other methods: Clipping, Log Scaling, Z-score

Formula can be adapted to desired [new_minA, new_maxA] scale.

Works also for negative ranges!!!

Apply after outlier removal!!!

Data Transformation: normalization (cont.)

...ranges of numeric attributes differ with each other.

Data Transformation: normalization (cont.)

```
min = df top 100 clubs.club number player.min()
print(min)
max = df top 100 clubs.club number player.max()
print(max)
df top 100 clubs["club number player scaled"] = (df top 100 clubs.club number player - min) / (max - min)
22
43
min = df top 100 clubs.club stadium seats.min()
print(min)
max = df_top_100_clubs.club_stadium_seats.max()
print(max)
df_top_100_clubs["club_stadium_seats_scaled"] = (df_top_100_clubs.club_stadium_seats - min) / (max - min)
11329
99354
```

Data Transformation: normalization (cont.)

...but once normalized, can be visually analyzed on correlation.

Data Transformation: Scaling map

You can use the map () method of Pandas for **substituting each value** in a Series with **another value**, that may be derived from a *function*, a *dictionary* or *another Series*.

Transforming categorical values to numeric ones can give more statistical insights.

Scaling introduces ranking and ordering bias.

https://pandas.pydata.org/docs/reference/api/pandas.Series.map.html

Think about likely causes of noise and errors when correcting and transforming data, e.g.,

- Do two extremely similar attributes really represent the same?
- Does a missing value have more meaning in the data context than np.NaN?
- Is this "outlier" really an outlier, or is there a reasonable explanation for it?
- Does removing an outlier harm or help interpreting the whole data context?

Consider ethics when applying Data Integration and Transformations:

- Limit harmful uses
- Reflect diversity / inclusion
- Uphold human rights and values

...preprocessing changes the data and introduces new bias.

Takeaways

- NumPy's efficient vectorization approach works also for Pandas.
- Operations on data in Pandas will always maintain the data context.
- Pandas has a profound programmatic preprocessing suite for data reduction, cleaning, integration, and transformation.
- Always consider changes in the data as they introduce new bias.

Outlook

- In two weeks we will dive deep into Plotting DataFrames.
- Python Matplotlib is the core library you are going to use for visualising and interpreting your data.

In the weeks after we will jump into R.

See you again next week.

Questions?