Big Data Assignment 1

KFWJOR001 MRCGAB004 WHLJOS001 CRGMAT002

 $March\ 1,\ 2024$

uct.png			

Contents

1	Find or Create a Suitable Data Set				
		Explanation of data set			
2	Des	ign a MongoDB Database	Ę		

1 Find or Create a Suitable Data Set

1.1 Explanation of data set

Link to the dataset: https://github.com/zygmuntz/goodbooks-10k

The dataset initially contained multiple csv files representing information on books, and user data on book ratings. This dataset was chosen as its ideal for a MongoDB database due to its semi-structured nature and nested data, which is particularly useful for storing ratings and book tags.

Dataset Content:

- books.csv: Each entry represents a book with a unique book_id. There are multiple data fields for a book:
 - book_id, goodreads_book_id, best_book_id, work_id: Unique id's representing a book, each with a different purpose. We only used book_id and goodreads_book_id as they're used to link books to user ratings and user to_read lists.
 - ratings_1, ratings_2, ...: Number of user ratings by rating value. eg. ratings_1 represents the number of 1 star ratings given to that book.
 - The rest of the fields are self explanatory but include info relating to authors, title, release date, and isbn number.
- ratings.csv: Each entry is a user_id to book_id mapping with a rating.
 - book_tags.csv: Each entry is a book_id to tag_id mapping.
 - tags.csv: Each entry is a tagid to tag_name mapping.
 - to_read.csv: Each entry is a user_id to goodreads_book_id mapping which represents a user adding a book to their to_read list.

1.2 Data Pre-Processing:

The data was processed such that the data was represented in JSON format with evidence of nested objects so that we could demonstrate the capabilities of MongoDB

Here is a quick outline on how we processed the data to create JSON files: Libraries used: Pandas, PyArrow, Faker

Pandas was used to load the csv files into dataframes where we merged data and applied group by aggregate functions to obtain lists of data objects per a unique entry id. This was useful, for example, when we obtained a list of tags per book_id.

Faker was used to generate random usernames for each id that were then written to user_data.csv. The dataframes were then converted into JSON files.

All data pre-processing code is in the data-processing directory but the output JSON files are included in the final submission.

2 Design a MongoDB Database