WTW 285 (Discrete Structures)
Lecture 2 (Wednesday 17 July 2019)
Lecture Unit 1.1: Recursively defined
sequences (Epp: §5.6) and
Lecture Unit 1.2: Solving recurrence
relations by iteration (Epp: §5.7)

Stirling numbers of the second kind (Epp. p. 578)

Definition Let $S_{n,r}$ (called a Stirling number of the second kind) denote the number of ways to partition a set $\{x_1, x_2, \ldots, x_n\}$ with n elements, into r (non-empty) subsets.

Example Compute the Stirling numbers $S_{3,1}$, $S_{3,2}$ and $S_{3,3}$.

Solution $S_{3,1} = 1$, $S_{3,2} = 3$ and $S_{3,3} = 1$.

Example Compute $S_{5,3}$.

Solution One must count the number of different ways to partition $X = \{x_1, x_2, x_3, x_4, x_5\}$ into three subsets.

• Case 1: The partition has the form $\{\Box, \Box, \Box\}\{\Box\}\{\Box\}$. There are $\binom{5}{3} = 10$ ways to construct the subset with three elements and $\binom{2}{1} \times \binom{1}{1} \div 2! = 1$ ways to construct the other two subsets. Hence there are $10 \times 1 = 10$ such partitions. They are:

• Case 2: The partition has the form $\{\Box\}\{\Box,\Box\}\{\Box,\Box\}$. There are $\binom{5}{1} = 5$ ways to construct the subset with one element and $\binom{4}{2} \times \binom{2}{2} \div 2! = 3$ ways to construct the other two subsets with two elements each.

Hence there are $5 \times 3 = 15$ such partitions. They are:

$$\{x_1\}\{x_2, x_3\}\{x_4, x_5\} \qquad \{x_4\}\{x_1, x_2\}\{x_3, x_5\}$$

$$\{x_1\}\{x_2, x_4\}\{x_3, x_5\} \qquad \{x_4\}\{x_1, x_3\}\{x_2, x_5\}$$

$$\{x_1\}\{x_2, x_5\}\{x_3, x_4\} \qquad \{x_4\}\{x_1, x_5\}\{x_2, x_3\}$$

$$\{x_2\}\{x_1, x_3\}\{x_4, x_5\} \qquad \{x_5\}\{x_1, x_2\}\{x_3, x_4\}$$

$$\{x_2\}\{x_1, x_4\}\{x_3, x_5\} \qquad \{x_5\}\{x_1, x_3\}\{x_2, x_4\}$$

$$\{x_2\}\{x_1, x_5\}\{x_3, x_4\} \qquad \{x_5\}\{x_1, x_4\}\{x_2, x_3\}$$

$$\{x_3\}\{x_1, x_2\}\{x_4, x_5\}$$

$$\{x_3\}\{x_1, x_5\}\{x_2, x_4\}$$

In total, there are 10+15=25 partitions of X into three subsets. Hence $S_{5,3}=25$.

Proposition Stirling numbers of the second kind are given by the recurrence relation

$$S_{n,r} = S_{n-1,r-1} + rS_{n-1,r}$$

for all integers n and r with 1 < r < n and with initial conditions $S_{n,1} = 1$ and $S_{n,n} = 1$ for all integers $n \ge 1$.

Proof $S_{n,1} = 1$ because the only partition of the set $\{x_1, x_2, \dots, x_n\}$ into one subset is

$$\{x_1,x_2,\ldots,x_n\},\,$$

and $S_{n,n} = 1$ because the only partition of $\{x_1, x_2, \dots, x_n\}$ into n subsets is

$$\{x_1\}\{x_2\}\cdots\{x_n\}.$$

To show that $S_{n,r} = S_{n-1,r-1} + rS_{n-1,r}$ when 1 < r < n, count the number of partitions of $\{x_1, x_2, \ldots, x_n\}$ into r subsets:

- Case 1: One of the r subsets is $\{x_n\}$. The other r-1 subsets are obtained by partitioning $\{x_1, x_2, \ldots, x_{n-1}\}$ into r-1 subsets and this can be done in $S_{n-1,r-1}$ ways.
- Case 2: None of the r subsets are $\{x_n\}$. Start by partitioning $\{x_1, x_2, \ldots, x_{n-1}\}$ into r subsets; this can be done in $S_{n-1,r}$ ways. Then add x_n as an element to one of these r subsets; this can be done in r ways. Hence there are $S_{n-1,r} \times r$ such partitions.

In total there are therefore $S_{n-1,r-1}+rS_{n-1,r}$ partitions of the set $\{x_1,x_2,\ldots,x_n\}$ into r subsets so $S_{n,r}=S_{n-1,r-1}+rS_{n-1,r}$.

Comment Stirling numbers of the first kind $s_{n,r}$ (with $0 \le r \le n$) count the number of ways of seating n people around r circular tables so that there is at least one person at each table.

Example By using the recurrence relation for Stirling numbers of the second kind, draw up a table that contains all the values $S_{n,r}$ for $1 \le n \le 7$.

Solution To be done in class.