Paper 104-2019

Using Factor Analysis and Multivariate Analysis of Variance to Explore Academic Achievement in the 2016 Monitoring the Future Study

Stefanie N. Kairs, National University, San Diego, CA

ABSTRACT

The 2016 Monitoring the Future survey is part of an annual, long-term study of American adolescents and adult high school graduates conducted by the University of Michigan's Institute for Social Research. This secondary data analysis uses the FACTOR procedure in the SAS™ Studio software to perform factor analysis to extract latent structures describing academic achievement, environment, and student delinquency. 17,719 observations were used to perform multivariate analysis of variance via the GLM procedure to explore the relationships between the extracted factors and demographic variables for ethnicity, gender, and population density. The SAS Code and results are presented, along with a discussion of the necessary data cleaning steps, data quality assessment and post-hoc analyses. A statistically significant overall effect was found for each independent variable: gender (Wilks' Lambda = 0.96, F= 273.23, df= (3, 17711), p < 0.0001); race (Wilks' Lambda = 0.86, F= 479.83, df= (6, 35422), p < 0.0001); population density (Wilks' Lambda = 0.98, F= 65.31, df= (6, 35422), p < 0.0001). Population density explains 2% (Pillai's trace = 0.022, p < 0.0001) of the variance in academic achievement, academic environment, and at-risk behaviors. Gender explains 4% (Pillai's trace = 0.044, p < 0.0001), and race explains 14% (Pillai's trace = 0.145, p < 0.0001) of the variance. The academic environment for 8th and 10th grade students was described by an extracted factor with high loadings for the variables for parental education, college preparatory program, and remedial schooling (negative loading), and was shown to vary significantly by race.

INTRODUCTION

Previous research has shown that urbanicity is an important indicator for understanding adolescent academic achievement (Miller & Vortruba-Drzal, 2015) and that gender differences in achievement favoring female students persist across subject domains (Voyer, Voyer, & Hinshaw, 2014). Additionally, gender differences remain significant after controlling for socio-economic background (Carvalho, 2016). This study uses SAS^{TM1} Studio software and a publicly available dataset to explore the relationships between demographic variables for race, gender, and population density and extracted factors describing academic achievement, academic environment and at-risk behaviors. The FACTOR procedure will be used to perform factor analysis and extraction. The GLM procedure will be used to perform multivariate analysis of variance (MANOVA).

The 2016 Monitoring the Future (MTF) 8th- and 10th-Grade surveys are part of an annual, long-term study of American adolescents and adult high school graduates conducted by the University of Michigan's Institute for Social Research. Study data have been collected since 1975, when the Institute of Social Research opened. The 2016 MTF survey involved 45,500 participants in grades 8, 10 and 12, and sampled from 372 secondary schools across the country (Johnston, O'Malley, Miech, Bachman, & Schulenberg, 2017). With an estimated 500 variables per year, the survey covers a broad range of topics including drug use, attitudes and beliefs regarding drug use, and lifestyle choices and values (Johnston, Bachman, O'Malley, Schulenberg, & Miech, Codebook., 2016). The data and codebook are publicly available via the Inter-University Consortium for Political and Social Research (ICPSR) website (Johnston, Bachman, O'Malley, Schulenberg, & Miech, 2017). Factor analysis can be used to mathematically define underlying data structures which reflect characteristics that cannot or were not directly queried. This secondary data analysis will use those techniques to extract the factors for student achievement, their academic attitudes and environment, and at-risk behaviors or delinquency. The extracted factors will then be used as the dependent variables in multivariate analysis of variance (MANOVA). The MANOVA analysis will evaluate the relationship between the demographic independent

1 Copyright © 2012-2017, SAS Institute Inc., Cary, NC, USA. SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA

variables for gender, ethnicity, and population density and the dependent factors for academic success, academic environment, and at-risk behaviors. Race, gender, and urbanicity are hypothesized to have significant relationships with academic achievement and delinquency, and gender is not expected to be statistically significantly related to academic environment.

DATA QUALITY

The 2016 MTF dataset for 8th- and 10th-Grade survey responses has 32,873 responses for 571 variables. Four survey forms were used for data collection at the 8th and 10th grade levels and not all questions were asked on all forms (Johnston, Bachman, O'Malley, Schulenberg, & Miech, Codebook., 2016). Prior exploratory analysis of the 2016 MTF dataset indicated that underlying factors could be identified and extracted to represent student academic achievement, attitudes toward education, and delinquent or at-risk behaviors. A subset of 14 variables from the exploratory analysis were chosen for factor analysis and were hypothesized to represent these three major groupings. To increase the number of complete cases for factor analysis, the selected variables were chosen from those that appeared on all four survey forms, where possible. Demographic variables for grade level, gender, ethnicity, and metropolitan statistical area (MSA) were retained to facilitate the MANOVA analysis and investigations into missing data. Analysis was performed in SASTM Studio, release 3.7 (Enterprise Edition, Build Jun 11, 2018). The supporting code is available in Appendix A.

DATA QUALITY EVALUATION

The MEANS procedure was used to investigate missing data and extreme values in the 14 variables selected for factor analysis. The results are presented in Table 1. Less than 7.5% of the data were missing for each variable. Variables except respondent's high school program type (V7222) were either dichotomous (0-1, or 1-2), rated on a Likert scale (1-4, or 1-5), ordinal, or discretized continuous variables represented on an ascending scale. The variable for high school program type consisted of four nominal levels for high school program with no implicit ranking beyond "college prep" vs "all others." No variables had scores out of range or extremely low variance. The variables for high school program type (V7222), father's education level (V7215) and mother's education level (V7216) will be re-coded in the following sections to ease interpretation of the factor analysis.

The MEANS Procedure											
Variable	Label	N	N Miss	Std Dev	Minimum	Mean	Median	Maximum			
V7102	2016 A01c #CIGS SMKD/30DAY F1234	31571	1302	0.3934263	1.0000000	1.0635393	1.0000000	7.0000000			
V7107	2016 A01c #X DRNK/LAST30DA F1234	30483	2390	0.6768124	1.0000000	1.2207132	1.0000000	7.000000			
V7215	2016 R02 FATHR EDUC LEVEL F1234	31524	1349	1.7436345	1.0000000	4.4667555	5.0000000	7.000000			
V7216	2016 R02 MOTHR EDUC LEVEL F1234	31532	1341	1.5847555	1.0000000	4.5088482	5.0000000	7.000000			
V7221	2016 B01 R HS GRADE/D=1 F1234	31087	1786	2.1505697	1.0000000	6.4878888	7.0000000	9.000000			
V7222	2016 B01 R'S HS PROGRAM F1234	31108	1765	1.3165855	1.0000000	2.3597145	2.0000000	4.000000			
V7223	2016 B01 R WL GRADUATE HS F1234	31533	1340	0.4194683	1.0000000	3.8640472	4.0000000	4.000000			
V7228	2016 B09 R WL DO 4YR CLG F1234	31285	1588	0.7270579	1.0000000	3.5212402	4.0000000	4.000000			
V7231	2016 B06 #DA/4W SKP CLASS F1234	31332	1541	0.6900724	1.0000000	1.2132006	1.0000000	6.000000			
V7232	2016 B01 EVER HELD BACK F1234	31349	1524	0.3086551	0	0.1050751	0	1.000000			
V7233	2016 B01 NEED SUMMER SCHL F1234	31369	1504	0.3731632	0	0.1672033	0	1.000000			
V7253	2016 B04 FRNDS DROP OUT F1234	31318	1555	0.5087764	1.0000000	1.2309534	1.0000000	4.000000			
V7331	2016 B01 LSTYR/DO BEST WK F1234	32479	394	0.8630901	1.0000000	4.2943132	5.0000000	5.000000			
V7334	2016 B01 LSTYR/WK NT DONE F1234	32420	453	1.0788554	1.0000000	2.3510179	2.0000000	5.000000			

Table 1. Descriptive Statistics for Numeric Variables before Recoding or Parceling

Variables V508 and V509 are component variables that together specify a standardized 3-category measure of population density, indicating whether the associated region is a large or medium Metropolitan Statistical Area (MSA) or fails to qualify for the MSA designation and has been scored "non-MSA." These variables were additively combined to produce a measure for population density, "pop_density," as described in the 2016 MTF Codebook (Johnston, Bachman, O'Malley, Schulenberg, & Miech, Codebook., 2016). The SUM function in SAS was not used, as assigning a zero value to missing data for either variable would yield a misleading population density designation.

The '+' operator was used so that a missing value for either V508 or V509 would result in a missing value for pop_density. The FREQ procedure was used to investigate missing data and proportions of the categorical demographic variables retained for MANOVA analysis and the student grade level (V501). The proportions of male and female respondents were relatively similar. 22% of observations were missing data for ethnicity. Over half (57.2%) of the respondents who reported their race were White (V1070=2). Almost half (47.1%) of respondents were from moderately-populated areas (pop_density=1).

		2016 GR	ADE	
V501	Frequency	Percent	Cumulative Frequency	Cumulative Percent
8	17643	53.67	17643	53.67
10	15230	46.33	32873	100.00
	201	6 R01 R'S	SEX F1234	
V7202	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	15555	49.70	15555	49.70
2	15745	50.30	31300	100.00
	Free	quency Miss	sing = 1573	
	201	6 RACEB/	W/H F1234	
V1070			Cumulative	Cumulative Percent
V1070	201 Frequency 4032	6 RACEB/ Percent 15.67		Cumulative Percent
- all the same	Frequency	Percent	Cumulative Frequency	Percent
1	Frequency 4032	Percent 15.67	Cumulative Frequency 4032	Percent 15.67
1 2	Frequency 4032 14727 6968	Percent 15.67 57.24 27.08	Cumulative Frequency 4032 18759	Percent 15.67 72.92
1 2	Frequency 4032 14727 6968	Percent 15.67 57.24 27.08	Cumulative Frequency 4032 18759 25727	Percent 15.67 72.92
1 2	Frequency 4032 14727 6968 Freq	Percent 15.67 57.24 27.08	Cumulative Frequency 4032 18759 25727 sing = 7146	Percent 15.67 72.92
1 2	Frequency 4032 14727 6968 Fred	Percent 15.67 57.24 27.08 quency Miss	Cumulative Frequency 4032 18759 25727 sing = 7146 density Cumulati	Percent 15.67 72.92 100.00
1 2 3	Frequency 4032 14727 6968 Fred	Percent 15.67 57.24 27.08 quency Miss	Cumulative Frequency 4032 18759 25727 sing = 7146 density Cumulati Frequen	Percent 15.67 72.92 100.00
1 2 3	Frequency 4032 14727 6968 Fred	Percent 15.87 57.24 27.08 guency Miss Population 15.97 Percent 174 20.07 Percent 174 20.07 Percent 174 20.07 Percent 175 Perce	Cumulative Frequency 4032 18759 25727 sing = 7146 Cumulati Frequen 31 67	Percent 15.67 72.92 100.00 ve Cumulative Percent 20.6

Figure 1. Frequencies and Proportions for Categorical Demographic Variables

The UNIVARIATE procedure was used to examine the distributions of the numeric variables. A highly right-skewed distribution was observed for V7102 (CS = 9.08), such that the 95th percentile of all observations was 1, the lowest value in a 7-point scale for the number of cigarettes smoked in the past 30 days. A response of 1 corresponds with no cigarette use at all. This right-skewed distribution is consistent with findings of declining smoking initiation and cigarette use in adolescents by the MTF principal investigators (Johnston, O'Malley, Miech, Bachman, & Schulenberg, 2017).

DATA CLEANING AND PARCEL CREATION

Variables for high school program type (V7222), father's education level (V7215), mother's education level (V7216), repeating a grade (V7232), and summer school (V7233) were recoded and/or parceled prior to factor analysis. Variable V7222 consisted of four nominal levels for high school program and was recoded as a dichotomous variable for whether the student was in a college preparatory program (0=no, 1=yes). For parental education levels, V7215 and V7216, the "don't know" category was originally coded as level 7 of an ordered scale of ascending levels of education (1= grade school, 6= grad school). These values for "don't know" were recoded as missing, and V7215 and V2716 were additively combined to a parcel for parent education (parent_ed). A parcel for remedial schooling (rem_school) additively combines the dichotomous variables for whether a respondent has ever needed summer school (V7233) or had ever been held back a grade (V7232). V7232 and V7233 showed low variance in the initial data quality

assessment (Table 1). These recoding and parceling steps are consistent with the prior analysis that identified the underlying factors of interest.

MISSING DATA

To assess the impact of missing data on the number of complete cases for analysis, a dummy variable "anymiss" was created which was coded 1 when the respondent had one or greater missing values across all variables and 0 when the case was complete across the newly created parcels, the numeric variables for factor analysis, and the population density demographic variable. 17,719 (53.9%) observations were complete for these 15 variables. A second dummy variable, "missdata," was created to reflect the count of the number of missing values for each record. 95% of records were missing values for 4 or fewer variables. The PROC FREQ output for these variables is presented in Appendix B, Figure 7. Cross-tabulation tables of anymiss and grade level, gender, ethnicity were populated, and Pearson's chisquare test for association was performed for each comparison. These tables and the output of the statistical tests are presented in Appendix B, Figure 8 - Figure 10. Statistically significant associations were found between anymiss and all demographic variables investigated, while the proportion of complete cases was within ± <5% of the observed proportion of complete cases in the entire sample, for all comparisons except ethnicity. A t-test was performed to evaluate the differences in the number of missing values (missdata) by grade level (V501). Though the t-test (unequal variances) demonstrates a statistically significant difference in means for grade 8 and grade 10 (t = 13.30, df = 32,862, p <0.0001), the observed difference in means is less than one missing item (0.2842) and is not practically significant.

Figure 2 shows the histograms for missdata by grade level. Both distributions are highly right-skewed and span a similar range of responses. See Appendix B, Figure 11 for the TTEST procedure's statistical output.

Figure 2. Distributions of Count of Missing Values by Grade

FACTOR ANALYSIS

Factor analysis was performed in SASTM Studio using the FACTOR procedure. The REORDER option was used to sort variables by their factor loadings and the SCREE option was used to produce a scree plot. Computation of the parallel analysis criterion for factor retention was performed using a script previously published by Brian O'Connor (2000). The parallel analysis criterion offers an alternative to the

Kaiser criterion, which may retain too many factors, and visual inspection of the scree plot, which may be considered too subjective. The eigenvalue of a factor should exceed the 95th percentile eigenvalue of the similarly-numbered factor as generated by the parallel analysis criterion script. The output from this script is presented in Figure 12, Appendix B. Principal components analysis with a communality estimate of one was used for extracting factors. The Kaiser criterion, parallel analysis criterion, and scree plot shown in Figure 3 each suggest three factors, as expected. For 22,079 observations, the 95th percentile of eigenvalues for the fourth factor from randomly generated data was 1.020. The eigenvalue for factor 4 in this analysis was 0.977. The table of Eigenvalues is given in Figure 13, Appendix B.

Figure 3. Scree Plot from Factor Analysis

Figure 4 shows the resulting rotated factor pattern, after varimax rotation. The first factor, representing academic achievement and attitudes, had high loadings (>0.4) for "I often do my best work," high school grades, and the student's projections for whether he or she would graduate and whether he or she would attend a 4-year college. This factor loaded negatively on "I often fail to complete or turn in my assignments." The second factor, representing academic environment, had high loadings for parental education and college preparatory program, and negative loading for remedial schooling interventions. The last factor, representing delinquent or at-risk behaviors, had high loadings for drinking, alcohol use, friends who had dropped out, and skipping class.

Or	thogonal T	ransformat	ion Matrix			
	1	2	3			
1	0.75478	0.52788	-0.38941			
2	0.26225	0.30131	0.91675			
3	0.60127	-0.79407	0.08899			
			Rota	Pattern		
				Facto	or1 Factor2	Factor
۷7	331	2016 B01	LSTYR/DO	1234 0.770	90 -0.15485	-0.1444
۷7	221	2016 B01	R HS GRAD	0.694	34 0.35468	-0.1242
V7	226	2016 B09	R WL DO 4	34 0.532	0.38945	-0.0678
V7	223	2016 B01	R WL GRAD	1234 0.444	88 0.34229	-0.0605
V7	334	2016 B01	LSTYR/WK	1234 -0.743	02 -0.11839	0.1214
pa	rent_ed	Parental e	ducation	0.074	11 0.68284	-0.0472
۷7	222	2016 B01	R'S HS PRO	34 0.316	0.45219	0.0757
rer	n_school	Remedial	schooling	-0.086	95 -0.61594	0.1269
V7	107	2016 A01	#X DRNK/I	1234 -0.095	0.12558	0.7264
V7	102	2016 A016	#CIGS SM	1234 -0.048	07 -0.04178	0.6704
V7	231	2016 B06	#DA/4W SK	1234 -0.132	63 -0.11259	0.5386
٧7	253	2016 B04	FRNDS DR	34 -0.054	17 -0.38135	0.5034

Figure 4. Rotated Factor Pattern (Varimax)

1.6041477

Factor3

MANOVA

Factor1

2.2550626

Factor2

1.6583737

Multivariate Analysis of Variance (MANOVA) was performed to explore the relationship between each of the independent variables, gender, race, and population density, and the dependent variables, our extracted factors for academic success (Factor 1), academic environment (Factor 2), and delinquency or at-risk behaviors (Factor 3). The null hypotheses are: There is no relationship between gender and Factors 1-3; There is no relationship between ethnicity and Factors 1-3; and there is no relationship between population density and Factors 1-3.

MANOVA was performed in SAS™ Studio using the GLM procedure (generalized linear model). The PLOTS = ALL option was used to request all applicable plots, but the output was restricted to plots with less than 5,000 points by the Output Delivery System (ODS) settings. The independent variables were the categorical variables for gender (V7202), race (V1070) and population density (pop_density). Gender has two levels, male (1) and female (2). Race has three levels, Black (1), White (2), and Hispanic (3). Population density has three levels, low-density (0), moderate-density (1), and high-density (2). For population density, we are primarily interested in the differences between high-density population centers and all other environments, so a contrast statement will be used to code this comparison. All hypotheses will be evaluated in the initial analysis. If necessary, post-hoc analysis will be performed by Tukey's Studentized Range Test using a Bonferroni correction for multiple testing.

RESULTS

Observations for 17,719 (53.9%) respondents were used to perform multivariate analysis of variance in SASTM Studio using PROC GLM. The dependent variables were factors for academic achievement, academic environment, and delinquency/at-risk behavior. A statistically significant overall effect was

found for each independent variable: gender (Wilks' Lambda = 0.96, F= 273.23, df= (3, 17711), p < 0.0001); race (Wilks' Lambda = 0.86, F= 479.83, df= (6, 35422), p < 0.0001); population density (Wilks' Lambda = 0.98, F= 65.31, df= (6, 35422), p < 0.0001). The test statistics table for gender is shown in Figure 5. The tables for race and population density are given in Figure 14 and Figure 15, Appendix B. The null hypothesis of no overall effect for each independent variable was rejected. For population density, the contrast of high-density vs. all others was also statistically significant (Wilks' Lambda = 0.98, F= 93.86, df= (3, 17711), p < 0.0001), though the percent of variance explained was even lower (Pillai's trace = 0.016, p < 0.0001) than in the analysis including all levels (Pillai's trace = 0.022, p < 0.0001). Population density explains approximately 2% of the variance in academic achievement, academic environment, and at-risk behaviors. Gender explains 4% (Pillai's trace = 0.044, p < 0.0001) of the variance, and race explains 14% (Pillai's trace = 0.145, p < 0.0001) of the variance.

MANOVA Test Criteria and	H = Type III SSCF E = Error S	CONTRACTOR OF THE PARTY OF THE		010,000	
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.95576846	273.23	3	17711	<.0001
Pillai's Trace	0.04423354	273.23	3	17711	<.0001
Hotelling-Lawley Trace	0.04628070	273.23	3	17711	<.0001
Roy's Greatest Root	0.04628070	273.23	3	17711	<.0001

Figure 5. MANOVA Output for the Null Hypothesis for Gender

The Type III Sum of Squares tables for each factor (Figure 16 - Figure 18, Appendix B) indicate that gender (p < 0.0001) and ethnicity (p < 0.0001) were statistically significantly related to academic achievement, though population density (p = 0.1506) was not. Ethnicity (p < 0.0001) and population density (p < 0.0001) were statistically significantly related to academic environment, which gender was not (p = 0.1150). Only population density (p < 0.0001) was shown to be statistically significantly related to Factor 3 (delinquency/at-risk behavior). Gender (p = 0.6338) and race (p = 0.5734) were not statistically significantly related to at-risk behaviors.

Post-hoc analysis by Tukey's Studentized Range Test was performed using a Bonferroni correction for multiple testing. Bonferroni correction was performed by dividing the desired level of statistical significance (α = 0.05) by the number of tests to be performed (21). The corrected alpha of 0.0024 was specified in a MEANS statement along with the TUKEY and CLDIFF (confidence levels of the estimated means) options. While the MEANS statement allows us to specify a different alpha level than the MANOVA analysis, it does not adjust for other terms in the model. The LSMEANS statement should be used to explore the adjusted means. The post-hoc analysis is summarized in Table 2.

Dep. Variable	Indep. Variable	Comparison	Difference Between Means	99.76% CI	Sig. *
Factor 1	Gender	Female – Male	0.420	0.375, 0.464	***
Factor 2	Gender	Female – Male	0.022	-0.020, 0.065	
Factor 3	Gender	Female – Male	0.006	-0.039, 0.052	
Factor 1	Race	White – Black	0.048	-0.027, 0.125	
		White – Hispanic	0.132	0.072, 0.192	***
		Black – Hispanic	0.084	-0.003, 0.170	
Factor 2	Race	White – Black	0.457	0.384, 0.530	***
		White – Hispanic	0.853	0.796, 0.910	***

Dep. Variable	Indep. Variable	Comparison	Difference Between Means	99.76% CI	Sig. *
		Black – Hispanic	0.396	0.313, 0.479	***
Factor 3	Race	Black – Hispanic	0.017	-0.017, 0.106	
		White – Black	-0.016	-0.093, 0.062	
		White – Hispanic	0.002	-0.059, 0.063	
Factor 1	Pop_density	High – Moderate	-0.014	-0.071, 0.043	
		High – Low	0.005	-0.063, 0.073	
		Moderate – Low	0.019	-0.044, 0.082	
Factor 2	Pop_density	High – Moderate	0.064	0.009, 0.118	***
		High – Low	0.158	0.091, 0.221	***
		Moderate – Low	0.092	0.032, 0.152	***
Factor 3	Pop_density	High – Moderate	0.026	-0.032, 0.084	
		High – Low	-0.064	-0.134, 0.006	
		Moderate – Low	-0.090	-0.154, -0.026	***

^{*} Comparisons significant at the $\alpha = 0.0024$ level are indicated by ***.

Table 2. Post-hoc Analysis Summary.

While statistically significant, the effect of population density was very small across Factors 2 and 3. While LSMEANS plots for population density and the academic environment factor shows a small, positive linear trend of increasing factor score with increasing population density, the LSMEANS plot for at-risk behaviors shows a U-shaped trend (Figure 6) that may be interesting to explore in future analyses. Please note that the difference between means for high-density and moderate-density was not shown to be statistically significant.

Figure 6. LSMeans Plot for At-Risk Behaviors (Factor 3) vs Population Density

CONCLUSION

This multivariate analysis of variance explored the relationships between three demographic independent variables and factors representing academic success, academic environment, and at-risk behaviors. This analysis has shown that the academic environment for 8th and 10th grade students, as described by Factor 2—which had high loadings for the variables for parental education, college preparatory program, and remedial schooling (negative loading)—varies significantly by race. The mean factor score for white students is highest, while Hispanic students have the lowest mean score for this factor. Population density explained a very low amount of the variance (2%) and should not be included in future exploratory or general analyses, as post-hoc analysis is strongly penalized for unnecessary groupings during multiple testing correction of the significance level.

REFERENCES

Carvalho, R. (2016). Gender differences in academic achievement: The mediating role of personality. *Personality and Individual Differences*, 94, 54-58. doi:10.1016/j.paid.2016.01.011

Johnston, L. D., Bachman, J. G., O'Malley, P. M., Schulenberg, J. E., & Miech, R. A. (2016). Codebook. *Monitoring the Future: A Continuing Study of American Youth (8th- and 10th-Grade Surveys), 2016.* Ann Arbor, MI: Inter-University Consortium for Political and Social Research.

Johnston, L. D., Bachman, J. G., O'Malley, P. M., Schulenberg, J. E., & Miech, R. A. (2017, October 26). *Monitoring the Future: A Continuing Study of American Youth (8th- and 10th-Grade Surveys), 2016*. Ann Arbor, MI: Inter-University Consortium for Political and Social Research [distributor]. doi:https://doi.org/10.3886/ICPSR36799.v1

Johnston, L. D., O'Malley, P. M., Miech, R. A., Bachman, J. G., & Schulenberg, J. E. (2017, January). *Monitoring the Future national survey results on drug use, 1975-2016: Overview, key findings on adolescent drug use.* Ann Arbor, MI: Institute for Social Research, The University of Michigan.

Miller, P., & Vortruba-Drzal, E. (2015). Urbanicity moderates associations between family income and adolescent addenic ahievement. *Rural Sociology*, 80(3), 362-386. doi:10.1111/ruso.12067

O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. *Behavior Research Methods, Instruments & Computers, 32*(3), pp. 396-402.

Voyer, D., Voyer, S., & Hinshaw, S. (2014). Gender Differences in Scholastic Achievement: A Meta-Analysis. *Psychological Bulletin*, *140*(4), 1174–1204. doi:10.1037/a0036620

ACKNOWLEDGMENTS

Appreciation is expressed to Dr. AnnMaria De Mars for comments on an earlier draft of this manuscript.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Stefanie N. Kairs 10919 Parkdale Ave. San Diego, CA 92126 stefanie.ness@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

APPENDIX A: SAS STUDIO CODE

The SAS Studio code used to generate the analyses and figures for this paper is:

libname mydata "/courses/d82c65e5ba27fe300/c 7153/" access=readonly;

```
proc contents data=mydata.da36799p1;
run;
data fa data;
  set mydata.da36799p1;
  keep V7102 V7107 V7215 V7216 V7221 V7222 V7223 V7226 V7231 V7232 V7233
       V7253 V7331 V7334 v501 v508 v509 v7202 v1070;
run:
/* recoding and parceling */
data fa data parcels;
  set fa data;
  * recode for college prep = 1, no = 0;
  if v7222 > 1 then
     v7222=0;
  *recode to move "don't know" to missing (.);
  if v7215 > 6 then
     v7215=.;
  if v7216 > 6 then
    v7216=.;
  *parent education 7215 + 7216;
  parent ed=v7215 + v7216;
  *remedial school;
  rem school=v7232 + v7233;
  *population density <- for later MANOVA
   per codebook, additive combination of v508 and v509 yield
    0 = lowest density, 1 = moderate density, 2 = highest density;
  * using '+' to drop NA values, assuming NA = 0 is misleading;
  pop density=v508 + v509;
  label parent ed="Parental education" rem school="Remedial schooling"
    pop density="Population density";
  drop v508 v509 v7215 v7216 v7232 v7233;
run;
title " Descriptive statistics for numeric variables & pop density";
proc means data=fa data parcels n nmiss std min mean median max;
 var V7102 V7107 V7221 V7222 V7223 V7226 V7231 V7253 V7331 V7334 parent ed
    rem school pop density;
    *demographics removed except pop density;
run;
title;
proc univariate data=fa data parcels;
  var V7102 V7107 V7221 V7222 V7223 V7226 V7231 V7253 V7331 V7334 parent ed
    rem school;
 histogram / normal kernel;
run;
proc freq data=fa data parcels;
 tables v501 v7202 v1070 pop density;
run;
/* Missing data check */
Data check;
 set fa data parcels;
  array chckmiss{*} V7102 V7107 V7221 V7222 V7223 V7226 V7231 V7253 V7331
```

```
V7334 parent ed rem school v7202 v1070 pop density;
  missdata=0;
  do i=1 to dim(chckmiss);
    if chckmiss{i}=. then missdata=missdata + 1;
  end;
  if missdata > 0 then
     anymiss=1;
  else
     anymiss=0;
run;
/*Check for missing data differences by grade*/
proc freq data=check;
  tables anymiss missdata;
run;
proc freq data=check;
  tables anymiss* (v501 v7202 v1070) / chisq;
proc ttest data=check;
 class v501;
 var missdata;
run;
/* Using settings from best FA from exploratory analysis */
Title " Factor Analysis: PCA varimax, parcels";
proc factor data=fa data parcels rotate=varimax reorder scree
    nfactors=3 out=fa scored;
  var V7102 V7107 V7221 V7222 V7223 V7226 V7231 V7253 V7331 V7334 parent ed
    rem school;
run;
Data manova data;
  set fa scored;
  if factor1 ne .;
  label factor1="achievement" factor2="environment" factor3="at-risk
   behavior";
run;
/*Are the DVs correlated? */
proc corr data=manova data;
  var factor1 - factor3;
run;
/* MANOVA factors1-3 by gender, race and pop density*/
proc glm data=manova data plots=all;
  class v7202 v1070 pop density;
  model factor1 - factor3=v7202 v1070 pop density;
  CONTRAST 'High-density vs rest' pop_density 1 1 -2;
 Manova h= all / printe printh;
  1smeans v7202 v1070 pop density;
  means v7202 v1070 pop density/ alpha=0.0024 cldiff tukey;
run;
```

APPENDIX B: SUPPLEMENTAL FIGURES

	The	FREQ Pro	cedure	
anymiss	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	17719	53.90	17719	53.90
1	15154	46.10	32873	100.00

missdata	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	17719	53.90	17719	53.90
1	9726	29.59	27445	83.49
2	2872	8.74	30317	92.22
3	798	2.43	31115	94.65
4	350	1.06	31465	95.72
5	152	0.48	31617	96.18
6	98	0.30	31715	96.48
7	238	0.72	31953	97.20
8	159	0.48	32112	97.69
9	148	0.44	32258	98.13
10	212	0.64	32470	98.77
11	119	0.38	32589	99.14
12	162	0.49	32751	99.63
13	21	0.08	32772	99.69
14	101	0.31	32873	100.00

Figure 7. Missing Data Evaluation

Frequency	Table	of anyn	niss by V5	01
Percent Row Pct		V50	1(2016 GR	ADE)
Col Pct	anymiss	8	10	Total
	0	8828 26.85 49.82 50.04	8891 27.05 50.18 58.38	17719 53.90
	1	8815 26.82 58.17 49.96	6339 19.28 41.83 41.62	15154 46.10
	Total	17643 53.67	15230 46.33	32873 100.00
	atio Chi-Square	1	229.3126	1000000
Chi-Square		1	228.8858	-
	dj. Chi-Square	1	228.5502	1000000
Mantel-Haens	szel Chi-Square	1	228.8788	<.0001
Phi Coefficie	nt		-0.0834	
	Coefficient		0.0832	
Contingency			-0.0834	
Contingency Cramer's V				
	Fisher's Ex	act Tes	it	
Cramer's V	Fisher's Ex		8828	
Cramer's V		cy (F)	7.777.00	
Cramer's V	ell (1,1) Frequen	cy (F)	8828	
Cramer's V Cramer's Ri	ell (1,1) Frequen	cy (F)	8828 <.0001	

Figure 8. Missing Values by Grade Level

requency	Ta	ble of	anym	niss by V72	02
ercent low Pct		V720	2(201	6 R01 R'S	SEX F1234
ol Pct	anymiss		1	2	Tota
	0		667	9052	17719
			7.69	28.92 51.09	56.61
			5.72	57.49	
	1		888	6693	13581
		100	2.01	21.38 49.28	43.39
			1.28	42.51	
	Total		555	15745	31300
		49	9.70	50.30	100.00
	Fr	equer	ncy Mi	issing = 15	73
Statistic	<u></u>		DF	Value	Prob
Statistic			DF	Value	Prob
Chi-Squar			1	10.0122	0.0016
Chi-Squar Likelihood	Ratio Chi-Sq		1	10.0122 10.0128	0.0016
Chi-Squar Likelihood Continuity	l Ratio Chi-Squ / Adj. Chi-Squ	are	1 1	10.0122 10.0126 9.9402	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha	l Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Sq	are	1	10.0122 10.0128 9.9402 10.0119	0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi	l Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Sq cient	are uare	1 1	10.0122 10.0128 9.9402 10.0119 -0.0179	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi Continger	d Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Squ cient ncy Coefficient	are uare	1 1	10.0122 10.0128 9.9402 10.0119 -0.0179	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi	d Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Squ cient ncy Coefficient	are uare	1 1	10.0122 10.0128 9.9402 10.0119 -0.0179	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi Continger	I Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Sq cient ncy Coefficient	are uare	1 1 1 1	10.0122 10.0126 9.9402 10.0119 -0.0179 0.0179	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi Continger	I Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Sq cient cy Coefficient V	are uare	1 1 1 1 1 ct Tes	10.0122 10.0126 9.9402 10.0119 -0.0179 0.0179	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi Continger	I Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Squ cient ncy Coefficient V Fisher'	are uare 's Exa	1 1 1 1 1 ct Tes	10.0122 10.0126 9.9402 10.0119 -0.0179 0.0179 -0.0179	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi Continger	d Ratio Chi-Squarenszel Chi-Squarenszel Chi-Squarent nov Coefficient V Fisher' Cell (1,1) Frequent Ceff-sided Pr	are uare 's Exa	1 1 1 1 1 ct Tes	10.0122 10.0126 9.9402 10.0119 -0.0179 0.0179 -0.0179 8867 0.0008	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi Continger	I Ratio Chi-Squ Adj. Chi-Squ enszel Chi-Squ cient ncy Coefficient V Fisher'	are uare 's Exa	1 1 1 1 1 ct Tes	10.0122 10.0126 9.9402 10.0119 -0.0179 0.0179 -0.0179	0.0016 0.0016 0.0016
Chi-Squar Likelihood Continuity Mantel-Ha Phi Coeffi Continger	d Ratio Chi-Squarenszel Chi-Squarenszel Chi-Squarent nov Coefficient V Fisher' Cell (1,1) Frequent Ceff-sided Pr	's Exa quenc <= F	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.0122 10.0126 9.9402 10.0119 -0.0179 0.0179 -0.0179 8867 0.0008	0.0016 0.0016 0.0016

Figure 9. Missing Values by Gender

	10	able of a	nyr	niss b	y v107	U	
Percent Row Pct		V1070(201	6 RAC	EB/W	//H F1234	
Col Pct	anymiss	1		2	3	Tota	
	0	2182	11	1512	4025	17719	
		8.48	4	4.75	15.65	68.87	
		12.31	6	64.97	22.72	00/2002	
		54.12	7	8.17	57.76		
	1	1850	3	3215	2943	8008	
		7.19	1	2.50	11.44	31.13	
		23.10		0.15	38.75		
		45.88	2	1.83	42.24		
	Total	4032	14727		6968		
		15.67	5	7.24	27.08	100.00	
			-				
Sta	itistics for Tab	ole of an	ymi	iss by	V1070		
Statistic Statistic	itistics for Tab		ymi)F	-	V1070 Value	Prob	
17.57						Prob <.0001	
Statistic Chi-Square		С)F	1404	Value		
Statistic Chi-Square Likelihood		Jare)F 2	1404	Value .3109	<.0001	
Statistic Chi-Square Likelihood	Ratio Chi-Squ	Jare)F 2 2	1404 1397	.3109 .8854	<.0001	
Statistic Chi-Square Likelihood Mantel-Hae Phi Coeffic	Ratio Chi-Squ	Jare Jare)F 2 2	1404 1397 14	.3109 .8854 .0317	<.0001	
Statistic Chi-Square Likelihood Mantel-Hae Phi Coeffic	Ratio Chi-Squ nszel Chi-Squ ient cy Coefficient	Jare Jare)F 2 2	1404 1397 14 0	Value .3109 .8854 .0317 .2336	<.0001	

Figure 10. Missing Values by Race

Figure 11. T-test for Number of Missing Values by Grade Level

Figure 12. Parallel Analysis Criterion Script Output

Figure 13. Factor Analysis: Eigenvalues of Correlation Matrix

		Matrix for V SCP Matrix N=8854.5	1070		
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.85531573	479.83	6	35422	<.0001
Pillai's Trace	0.14470158	460.47	6	35424	<.0001
Hotelling-Lawley Trace	0.16913866	499.26	6	23813	<.0001
Roy's Greatest Root	0.16901888	997.89	3	17712	<.0001
NOTE: F Sta	tistic for Roy's Gr	eatest Root i	s an upper b	ound.	

Figure 14. MANOVA Output for the Null Hypothesis for Race

	H = Type III SSCP Ma E = Error S S=2 M=0 I	SCP Matrix	density		
Statistic	Value	F Value	Num DF	Den DF	Pr > F
Wilks' Lambda	0.97823507	65.31	6	35422	<.0001
Pillai's Trace	0.02177929	65.00	6	35424	<.0001
Hotelling-Lawley Trace	0.02223450	65.63	6	23613	<.0001
Roy's Greatest Root	0.02155329	127.25	3	17712	<.0001
NOTE: F S	tatistic for Roy's Gre	atest Root is	an upper bou	ınd.	

MANOVA Test Criteria and Exact F Statistics for the Hypothesis of No Overall High-density vs rest Effect H = Contrast SSCP Matrix for High-density vs rest E = Error SSCP Matrix S=1 M=0.5 N=8854.5							
Statistic	Value	F Value	Num DF	Den DF	Pr > F		
Wilks' Lambda	0.98435030	93.86	3	17711	<.0001		
Pillai's Trace	0.01584970	93.86	3	17711	<.0001		
Hotelling-Lawley Trace	0.01589851	93.86	3	17711	<.0001		
Roy's Greatest Root	0.01589851	93.86	3	17711	<.0001		

Figure 15. MANOVA Output for the Null Hypotheses for Population Density

MANOVA: Factors 1-3 vs gender, race, population density The GLM Procedure Dependent Variable: Factor2 environment Pr > F DF F Value Source Sum of Squares Mean Square Model 2591.42236 518.28447 596.09 <.0001 Error 17713 15401 05782 0.86948 17992.48018 Corrected Total 17718 Factor2 Mean Coeff Var R-Square Root MSE 0.144028 -6892.765 0.932458 -0.013528 Pr > F Source DF Type I SS Mean Square F Value V7202 2.159892 2.159892 2.48 0.1150 1 V1070 2 2273.813526 1136.906763 1307.57 <.0001 2 315.448943 157.724472 181.40 <.0001 pop_density Source DF Type III SS Mean Square F Value Pr > F V7202 0.3513 1 0.755258 0.755258 0.87 V1070 2 2533.923998 1266.961999 1457.15 <.0001 pop_density 2 315.448943 157.724472 181.40 <.0001 Contrast Contrast SS Mean Square F Value Pr > F High-density vs rest 241.0078040 241.0078040 277.19 <.0001 Figure 16. MANOVA Output Factor 1 (Achievement) MANOVA: Factors 1-3 vs gender, race, population density The GLM Procedure Dependent Variable: Factor2 environment Source DF Sum of Squares Mean Square F Value Pr > F Model 2591.42238 518.28447 596.09 <.0001 5 Error 17713 15401.05782 0.86948 17992 48018 Corrected Total 17718 R-Square Coeff Var Root MSE Factor2 Mean 0.144028 -6892 765 0.932458 -0.013528 Source Type I SS Mean Square F Value Pr > F V7202 2.159892 2.48 0.1150 1 2.159892 V1070 2 2273.813526 1136.906763 1307.57 <.0001 157.724472 2 315.448943 181 40 < 0001 pop_density Source DF Type III SS Mean Square F Value Pr > F V7202 0.755258 0.755258 0.3513 1 0.87 V1070 2 2533.923998 1266.961999 1457.15 <.0001 pop_density 315.448943 157,724472 181.40 <.0001 Contrast Contrast SS Mean Square F Value Pr > F 241.0078040 241.0078040 High-density vs rest 277.19 <.0001

Figure 17. MANOVA Output Factor 2 (Environment)

				at-risk b						No.
Source		D	F Sum of		Squares Mean		Square		F Value	Pr > I
Model			5	2	3.2452	5	4.64905		4.67	0.0003
		1771	3	1763	2.0019	3	0.99543			
		1771	7718 1768		5.2472	1				
R-Square	Coe	ff Var	Ro	oot MSE	Facto	or3 Mean				
0.001317	-327	88.26	C	.997711	-0.003045					
Source	D	DF Ty		pe ISS Mean Sq		Square	F Valu	ie	Pr > F	
V7202		1 (0.18633118		0.18633118		0.19		0.6653	
V1070		2 0).509	988559	0.25494280		0.26		0.7741	
pop_densi	ty	2 22	22.549032		11.27451641		11.33		<.0001	
Source	D	F	Type III SS		Mean Square		F Value		Pr > F	
V7202		1 0	0.22596247		0.22596247		0.23		0.6338	
V1070		2 1	1.10742661		0.55371331		0.56		0.5734	
pop_densi	ty	2 22	22.54903283		11.27451641		11.33		<.0001	

Figure 18. MANOVA Output Factor 3 (At-Risk Behavior)