

J.R. Esteban

ÁLGEBRA LINEAL Y GEOMETRÍA

Doble Grado en CC. Matemáticas e Ingeniería Informática $2019\hbox{-}2020$

Ejercicios 43 a 48

43. Sea E un \mathbb{K} -espacio vectorial n-dimensional con producto interior $\langle\cdot\,,\,\cdot\rangle$. Considérese una aplicación lineal

$$T:E\longrightarrow E$$

que satisface

(19) $\langle T(\mathbf{u}), \mathbf{v} \rangle + \langle \mathbf{u}, T(\mathbf{v}) \rangle = 0$ en todos los $\mathbf{u}, \mathbf{v} \in E$.

A. Demostrar:

- 1. La condición (19) es equivalente a $\langle T(\mathbf{u})\,,\mathbf{u}\rangle=0$ para todo $\mathbf{u}\in E\,.$
- 2. Traza T = 0.
- 3. $\det T = 0$ cuando n es impar.
- 4. rango T es par.
- B. Sea $S=T\circ T$. Demostrar que todos los autovalores de S son ≤ 0 y que $s={\rm rango}\,S$ es par, s=2m .
- ${\sf C}.\;$ Pongamos los autovalores de S en la forma

$$\lambda_j < 0, \quad j = 1, 2, \dots, s,$$
 $\lambda_j = 0, \quad j = s + 1, s + 2, \dots, n.$

Construir una base ortonormal de E respecto de la cual la matriz de T es de la forma

siendo

$$\mu_j = \sqrt{-\lambda_j}$$

44. Sea E un \mathbb{K} -espacio vectorial de dimensión 2 y

$$\Delta: E \times E \longrightarrow \mathbb{K}$$

28

una forma bilineal, $\Delta \not\equiv 0$.

- A. Demostrar que son equivalentes:
 - 1. Δ es alternada.
 - 2. $\Delta(\mathbf{u}, \mathbf{v}) = 0$ siempre que $\mathbf{u}, \mathbf{v} \in E$ son linealmente dependientes.
- B. Supongamos que Δ es alternada. Dada

$$T: E \longrightarrow E$$

aplicación lineal, encontrar la relación entre $\Delta(T(\mathbf{u}), T(\mathbf{v}))$ y $\Delta(\mathbf{u}, \mathbf{v})$.

C. Supongamos ahora que, además, E es espacio vectorial sobre $\mathbb R$ y está dotado de un producto escalar $\langle \cdot, \cdot \rangle$. Demostrar:

$$\langle T(\mathbf{u}), \mathbf{u} \rangle = 0$$

у

$$\langle T(\mathbf{u}), T(\mathbf{v}) \rangle = \det T \cdot \langle \mathbf{u}, \mathbf{v} \rangle$$

siempre que la aplicación adjunta de T es -T

45. Sea E un espacio vectorial 3-dimensional con producto escalar $\langle \cdot \, , \, \cdot \rangle$ y una función determinante 5 Δ en E que define una orientación en E.

Dados $\mathbf{a}, \mathbf{b} \in E$, se considera la aplicación lineal $\mathbf{f}: E \longrightarrow \mathbb{R}$ dada por

$$f(\mathbf{u}) = \Delta(\mathbf{a}, \mathbf{b}, \mathbf{u})$$
.

A. Demostrar que existe un único vector en E, que denotamos por $\mathbf{a} \times \mathbf{b}$, tal que

$$f(\mathbf{u}) = \langle \mathbf{u}, \mathbf{a} \times \mathbf{b} \rangle$$
, para todo $\mathbf{u} \in E$.

B. Comprobar que todos los $\mathbf{x}, \mathbf{y} \in E$ satisfacen :

1.

$$\mathbf{y} \times \mathbf{x} = -\mathbf{x} \times \mathbf{y}, \qquad \langle \mathbf{x} \times \mathbf{y}, \mathbf{x} \rangle = 0.$$

2. $\mathbf{x} \times \mathbf{y} \neq \mathbf{0}$ si y solamente si \mathbf{x} e \mathbf{y} son linealmente independientes. Y, en este caso, los vectores

$$x, y, x \times y$$

forman una base de E que tiene orientación positiva respecto de la orientación previamente fijada.

C. Demostrar la identidad

$$\langle \mathbf{a} \times \mathbf{b}, \mathbf{x} \times \mathbf{y} \rangle = \langle \mathbf{a}, \mathbf{x} \rangle \langle \mathbf{b}, \mathbf{y} \rangle - \langle \mathbf{a}, \mathbf{y} \rangle \langle \mathbf{b}, \mathbf{x} \rangle.$$

$$\Delta: \overbrace{E \times E \times \cdots \times E}^{n \text{ factores}} \longrightarrow \mathbb{K}$$

multilineal, alternada y $\Delta \not\equiv 0$.

 $^{^5\,\}mathrm{En}$ un espacio vectorial E de dimensión $n\,,$ una función determinante es

D. Demostrar que, cuando $\mathbf{x}\,,\mathbf{y}\neq\mathbf{0}\,,$ existe un único $\theta\in[0\,,\pi]$ tal que

$$\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\| \|\mathbf{y}\|}, \qquad \qquad \sin \theta = \frac{\|\mathbf{x} \times \mathbf{y}\|}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

E. Demostrar las identidades

$$\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = \langle \mathbf{x}, \mathbf{z} \rangle \mathbf{y} - \langle \mathbf{x}, \mathbf{y} \rangle \mathbf{z}$$

У

$$\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) + \mathbf{z} \times (\mathbf{x} \times \mathbf{y}) + \mathbf{y} \times (\mathbf{z} \times \mathbf{x}) = \mathbf{0}$$
.

46. Sea E un espacio vectorial finito dimensional sobre el cuerpo \mathbb{R} de los números reales y dotado de un producto escalar $\langle \cdot , \cdot \rangle$. Consideremos

$$T:E\longrightarrow E$$

aplicación lineal ortogonal y el subespacio vectorial

$$F = \ker(T - I) \oplus \ker(T + I)$$

de E.

- A. Demostrar que F y F^{\perp} son invariantes por T y que F^{\perp} no contiene ningún vector de E que sea vector propio de T. Demostrar que la dimensión de F^{\perp} es par.
- B. Sea

$$R: F^{\perp} \longrightarrow F^{\perp}$$

la aplicación lineal definida

$$R = T_{\mid_{F^{\perp}}}$$

Demostrar que

$$\widehat{R_0} = R + R^{-1}$$

está definida y es autoadjunta en F^{\perp} y también se verifica $R_0 = R + R^{\star}$.

- C. Demostrar que para todo $\mathbf{u} \in F^{\perp}$ vector propio de R_0 se verifica que \mathbf{u} y $R(\mathbf{u})$ son linealmente independientes.
- D. Considérese G, el subespacio generado por ${\bf u}$ y $R({\bf u})$, para comprobar que tanto G como G^\perp son invariantes por R y por T.
- E. Comprobar que la matriz de

$$S = R_{\mid_G}$$

respecto de la base $\mathfrak{B}=\{\,\mathbf{u}\,,R(\mathbf{u})\,\}$ de G en salida y en llegada es de la forma

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

47. Sea E un \mathbb{K} -espacio vectorial de dimensión 2 y

$$\Delta: E \times E \longrightarrow \mathbb{K}$$

una forma bilineal, $\Delta \not\equiv 0$.

A. Fijados $\mathbf{a}, \mathbf{b} \in E$ tales que $\Delta(\mathbf{a}, \mathbf{b}) \neq 0$, demostrar que cualquier otra

$$A: E \times E \longrightarrow \mathbb{K}$$
 bilineal y alternada

satisface

$$A(\mathbf{u}, \mathbf{v}) \Delta(\mathbf{a}, \mathbf{b}) = A(\mathbf{a}, \mathbf{b}) \Delta(\mathbf{u}, \mathbf{v})$$

en todos los $\mathbf{u}, \mathbf{v} \in E$. Obsérvese que siempre se puede suponer $\Delta(\mathbf{a}, \mathbf{b}) =$

B. Existe $k \in \mathbb{K}$ tal que todos los $\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_1, \mathbf{v}_2 \in E$ satisfacen

$$\det \begin{bmatrix} \langle \mathbf{u}_1 \,,\, \mathbf{v}_1 \rangle & \langle \mathbf{u}_1 \,,\, \mathbf{v}_2 \rangle \\ \langle \mathbf{u}_2 \,,\, \mathbf{v}_1 \rangle & \langle \mathbf{u}_2 \,,\, \mathbf{v}_2 \rangle \end{bmatrix} = k \, \Delta(\mathbf{u}_1 \,,\, \mathbf{u}_2) \, \Delta(\mathbf{v}_1 \,,\, \mathbf{v}_2) \,.$$

C. Demostrar la identidad

(20)
$$\left| \langle \mathbf{u}, \mathbf{v} \rangle \right|^2 + \Delta(\mathbf{u}, \mathbf{v})^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2.$$

48. Sea E un espacio vectorial sobre \mathbb{R} , bidimensional y con producto escalar $\langle \cdot \, , \, \cdot \rangle$ y sea \varDelta una función determinante en E que define una orientación en $E\,.$

Considérese la aplicación lineal $J: E \longrightarrow E$ definida por

$$\Delta(\mathbf{u}, \mathbf{v}) = \langle J(\mathbf{u}), \mathbf{v} \rangle, \qquad \mathbf{u}, \mathbf{v} \in E$$

Demostrar que J tiene las siguientes propiedades :

- 1. J es inyectiva.
- 2. $\langle J(\mathbf{u}), \mathbf{v} \rangle + \langle \mathbf{u}, J(\mathbf{v}) \rangle = 0$. 3. $\langle J(\mathbf{u}), J(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$. 4. $J \circ J = -I$.