RSA VDFs

crash course

Modular exponentiation

 $\chi \rightarrow \chi^2 \% N$

N # unknown factorisation 2048-bit RSA modulus

Modular exponentiation

 $\chi \rightarrow \chi^2 \% N$

N # unknown factorisation 2048-bit RSA modulus

 χ -> χ^2 -> χ^4 -> ... -> χ^{2**T}

x # VDF input

T # time parameter

Modular exponentiation

SQUARING

$$x \rightarrow x^2 \% N$$

N # unknown factorisation 2048-bit RSA modulus

T SQUARINGS
$$-> x^2 -> x^4 -> \dots -> x^{2**T}$$

x # VDF input

T # time parameter

```
y = x^{2**T} \% N
```

y # VDF output

Sequentiality assumption

Time-lock puzzles and timed-release Crypto

Ronald L. Rivest*, Adi Shamir**, and David A. Wagner***

Revised March 10, 1996

$$y = x^{2**T} \%$$

y # VDF output

Timelock puzzle

- set by Ron Rivest in 1999
- designed to take 35 years

Timelock puzzle

- set by Ron Rivest in 1999
- designed to take 35 years

- solved in 3 months with FPGA
- new low-depth algorithm

Timelock puzzle

- set by Ron Rivest in 1999
- designed to take 35 years

- solved in 3 months with FPGA
- new low-depth algorithm

Safety assumption

speed advantage ≤ A_{max}

Safety assumption

CPU

FPGA

1 us

30 ns

1 ns

Safety assumption

CPU

1 us

FPGA

30 ns

1 ns

16 ps

<u>physics</u>

complexity theory

complexity theory

physics

< **4.8mm radius** per squaring

physics

< 4.8mm radius per squaring

complexity theory

Result: n-bit modular squaring requires log(n) depth in the average case.

<u>physics</u>

< 4.8mm radius per squaring

complexity theory

Result: n-bit modular squaring requires log(n) depth in the average case.

Caveats:

- single squaring
- binary representation
- fan-in 2 gates

Applications

randomness

Harmony

• 100 people, one by one, enter a dark room to reroll a set of dice.

randomness

100 people, one by one, enter a dark room to reroll a set of dice.

• Lights turn on after the last person, revealing a fair random number.

randomness

- Lights turn on after the last person, revealing a fair random number.
- The VDF ensures lights are not turned on early.

randomness

proof of space

proof of replication

randomness

₩ Harmony

proof of space

proof of replication

proof of history

anti-frontrunning

randomness

proof of space

proof of replication

proof of history

anti-frontrunning

long tail

- objective fork choice
- expiring zk-proofs
- guaranteed output delivery
- timelocks

Liveness assumption

Liveness assumption

≥1 online VDF rig

Liveness assumption

≥1 online VDF rig

Provers

Original papers

- "Verifiable Delay Functions"—Boneh, Bonneau, Bünz, Fisch
- "Efficient Verifiable Delay Functions"—Wesolowski
- "Simple Verifiable Delay Functions"—Pietrzak

Original papers

- "Verifiable Delay Functions"—Boneh, Bonneau, Bünz, Fisch
- "Efficient Verifiable Delay Functions"—Wesolowski
- "Simple Verifiable Delay Functions"—Pietrzak

published June 2018

"A Survey of Two Verifiable Delay Functions"—Boneh, Bünz, Fisch

Wesolowski prover

$$y = x^{2**T} \% N$$

Wesolowski prover

```
y = x^{2**T} \% N
```

```
p = x^{2**T//r} \% N
```

r # random 128-bit prime (Fiat-Shamir)

Wesolowski prover

$$y = x^{2**T} \% N$$

$$p = x^{2**T//r} \% N$$

r # random 128-bit prime (Fiat-Shamir)

```
y == p^r * x^{2**T%r} % N
```


$$y == x^{2**T}$$
 \Leftrightarrow $y == m^{2**(T // 2)}$ and $m == x^{2**(T // 2)}$

$$y == x^{2**T}$$
 \Leftrightarrow $y == m^{2**(T // 2)}$ and $m == x^{2**(T // 2)}$

 \Leftrightarrow r random and $ym^r == (mx^r)^{2**(T // 2)}$

RSA modulus

Unsatisfactory approaches

RSA challenge

1991

Unsatisfactory approaches

RSA challenge

RSA UFOs

RSA ceremony

RSA ceremony

RSA MPC

modulus size	s size 2048 bits (two 1024-bit factors)	
security	(n – 1)-maliciously secure	
participants	1024	

RSA MPC

modulus size	2048 bits (two 1024-bit factors)	
security	(n – 1)-maliciously secure	
participants	1024	

RSA MPC

modulus size	2048 bits (two 1024-bit factors)	
security	(n – 1)-maliciously secure	
participants	1024	

synchronicity	synchronous
communication	<100 MB
duration	<10 minutes
rounds	<10 rounds

RSA MPC key ideas

Passive adversary

- constructive sieving
- compute products (threshold AHE)
- Boneh-Franklin bi-primality test

RSA MPC key ideas

Passive adversary

- constructive sieving
- compute products (threshold AHE)
- Boneh-Franklin bi-primality test

Active adversary

- reveal failures
- zk-prove success

Generate candidates (additively homomorphic encryption)

- secret keys sk_i
- shared key PK
- encryption Enc_{PK}(m)
- decryption
 Σ Dec_{sk i}(c)
- shares p_i, q_i

Generate candidates (additively homomorphic encryption)

•	secret keys	sk _i
---	-------------	-----------------

shared key PK

encryption

 $Enc_{PK}(m)$ $\Sigma Dec_{sk_i}(c)$ decryption

shares p_i, q_i

encrypt	Enc _{PK} (p _i)	
sum	Enc _{PK} (p)	
encrypt	Enc _{PK} (p*q _i)	
sum	Enc _{PK} (p*q)	
decrypt	Dec _{sk_i} (Enc _{PK} (p*q))	
sum	p * q	

Rebirth of RSA cryptography

1ns per operation

RSA VDFs

2018

RSA accumulators

2002 2007 2018

RSA SNARKs

2019

Rebirth of RSA cryptography

1ns per operation

RSA VDFs

2018

RSA accumulators

2002 2007 2018

RSA SNARKs

2019

class groups (CPU)
10us per operation

RSA SNARK "Supersonic" prover time

d*log(d) exponentiations

~

128*d*log(d) multiplications

gates	prover time (128 cores)	proof size
2^10	10 us	10kB
2^20	20 ms	20kB
2^30	30 s	30kB

thank you:)

vdfresearch.org

vdfralliance.org