- 3. 为稀华上的微分形式(1)
- ◎ 为碌1本(寝智)

- (i) MII Hausdorff 空間.
- (ii) SIIM上の(CO版)形式アトラス。

ナニボレ(Cの版)アトラスとは次のようでよ チャートのでは可談(Ux, yx))xekのこと。 (a) 各分について

- (b) $\bigcup_{\lambda \in \Lambda} U_{\lambda} = M$.
- (c) 4+-ト間の座標度換以 C∞級.

官告 $\varphi_{\lambda} = (\chi_{\lambda}^{1}, ..., \chi_{\lambda}^{n})$ として $(U_{\lambda}, \varphi_{\lambda})$ を $(U_{\lambda}, \chi_{\lambda}^{1}, ..., \chi_{\lambda}^{n})$ とも書く。

义添写を上に書く習慣を採用する

◎ 接空間(後習)

各peMiz好lTpMn次市入为上上空間"無限的变位"内空間

おさえておくべきンと:

① pを含む4r-ト(U; x¹,...,xn)を といば $\left(\frac{\partial}{\partial x^i}\right)_p$ (i=1,...n) が T_pM の基因.

② あらゆる接かりトルは曲線の速度かりトルとして実現できる。

IDER Y: I \rightarrow M & to \in I (= $\frac{1}{2}$) \in (\in , Y(to)) \in \in ∞ 4+-+ (U; \times 1,..., \times 1) \in \times 1 \times 2"

Y(t) = $(Y^1(t), ..., Y^N(t))$ & $\xrightarrow{\text{def}}$ 2 \times 2 \times 3 \times 2 $Y(t_0) = \frac{dY}{dt}\Big|_{t=t_0} := \sum_{i=1}^{N} \frac{dY^i}{dt}(t_0)(\frac{\partial}{\partial x^i}\Big)_{\text{lto}}$

③ 持心かいに関数に当年用する。 $v \in TpM & f: U \rightarrow R (U : p g 隔近傍)$ 「こまし、 $\dot{y}(to) = v \in t23 晒線 y を を いま$ $v(f) := \frac{d(f \circ y)}{dt} (to).$

$$(\frac{\partial}{\partial x^{i}})_{p}(f) = \frac{\partial(f \circ \varphi^{-1})}{\partial x^{i}}(\varphi(p))$$

◎ ベットル場 X={Xp}peM, XpeTpM という 持パットルの該のこと。

② 余接空間、 (報)か1形式

を p ∈ M (ニおいて 持人ツトルをりて入
できる対象を考え、 そのようでよ

ものの "場"を (報)が1 形式とよぶ、

(支表 丁*M:=(TpM)*

= { x: TpM→ R 線型 } 余接空間 cotangent space

度義 M上の(協)1形式 とは
W={Wp}peM, Wpe TpM
という余格バットレの族のこと。

 $W: M \rightarrow T^*M (:= \bigcup_{p \in M} T_p^*M)$ $p \mapsto \omega_p$ という写象ととらえることも多い。

提製 $M \circ f \leftarrow f(U; x', x')$ と $p \in U(z \times f \cup v)$ $\left(\frac{\partial}{\partial x^1}\right)_{p}, \dots, \left(\frac{\partial}{\partial x^n}\right)_{p}$ Tp M o 基色

 $(dx^{1})_{p}$, ..., $(dx^{n})_{p}$ T*Ma基底 $\exists t = dx^{i} = \{(dx^{i})_{p}\}_{p \in M}$ と 書く。 り生意の微分)形式 ω は $る + \gamma - \gamma$ はない $\omega \mid_{U} = \sum_{i=1}^{n} f_{i} dx^{i}$ を表せる(ω の <u></u>
合きか座標表示)。

world det avisat++z'&fi, 1°C™RR (we 1°(M))

 $\frac{1}{\sqrt{1 + 1}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{1 + 1}}$

このことから次からわかる。

(2) 物物1形式 W 12711て

アジナで十分。

 $\omega|_{U} = \sum_{j=1}^{n} \frac{\partial x^{j}}{\partial \hat{x}^{i}}, \quad \tilde{\omega}|_{\tilde{U}} = \sum_{j=1}^{n} \frac{\partial x^{j}}{\partial \hat{x}^{i}} f_{j} \quad (U \wedge \tilde{U} \perp Z'').$ $i \in \mathbb{R}$ 命題 $3.1 \perp 11 \times v \omega \in C^{\infty}$ 級 $z' \in \mathbb{R}$ $z \in \mathbb{R}$ $v \in \mathbb{R}$ $z \in \mathbb$