Informatique I - TD 2

B. DI PIERRO

Année 2019-2020

- Le travail se déroule seul. Chaque élève sera noté independament tout au long des séances de TP sur sa participation.
- La clarté, la lisibilité ainsi que les commentaires du code source auront une part importante dans la notation. Argumentez vos choix lors de l'écriture des codes sources.

Rappel:

- Pensez a commentez (intelligemment) vos codes.
- Commencez par écrire l'algorithme AVANT d'écrire le code.
- L'ordinateur est bête et méchant : il ne fera que ce que vous lui demanderez de faire, ni plus, ni moins.

Objectif:

L'objectif de ce TP est d'élaborer quelques programmes simples en utilisant des fonctions.

1 Les premiers calculs ... et utilisation de fonction

En utilisant la loi de Hooke pour la déformation linéaire de corps simples

$$\sigma = E\varepsilon$$

avec σ la contrainte, E le module d'Young et ε le taux de déformation :

- 1. Écrire une fonction qui calcule la contrainte pour un materiaux (module d'Young) et un taux de déformation donné.
- 2. Écrire une fonction qui calcule la déformation, connaissant la contrainte et le module d'Young.

2 Les racines d'un polynôme, imbrication de fonctions

- 1. Ecrire un programme qui calcule les racines d'un polynome du second degré $ax^2+bx+c=0$. Le programme distinguera 4 cas :
 - a = 0: polynome du 1er degré
 - discriment positif: calcul des 2 racines
 - discriment nul: calcul de la racine double
 - discriment négatif: message d'erreur et arret du programme (ou pour les fortiches, calculs et affichage des parties réelles et imaginaires indépendament...)
- 2. Le calcul et l'affichage du discriminant et des racines se feront dans 2 fonctions disctinctes. La deuxième fonction devra faire appel à la première.

3 Recherche des zeros d'une fonction

On considère la fonction suivante:

$$f(x) = x - \cos(x)$$

définie sur $x \in [0, 1]$, dont on cherche le zéro sur cet intervalle.

1. Ecrire une fonction qui cherche le zero de f(x) par la methode du point fixe.

Rappel: Méthode du point fixe

On écrit l'équation résoudre sous la forme: x = g(x) et on itère suivant le shéma $x_{n+1} = g(x_n)$ (n étant l'indice d'itération) jusqu' convergence, i.e. jusqu'à ce que l'erreur soit inferieure une précision souhaitée ($\varepsilon = 10^{-12}$).

2. Dans une deuxième fonction, chercher le zero f(x) par la méthode de newton.

Rappel: methode de newton

On se donne une valeur de départ x_0 (supposée proche du zero) et on itère selon le shéma:

$$x_{n+1} = x_n - f(x_n)/f'(x_n)$$

jusqu convergence, i.e. jusqu'à ce que l'erreur soit inferieure une précision souhaitée ($\varepsilon = 10^{-12}$).

3. Finalement, écrire une troisième fonction qui calcule le zero de f(x) par une methode de dichotomie. Rappel: Methode de dichotomie

On se donne un intervalle $[x_1, x_2]$ $(x_2 > x_1)$ dans lequel la fonction est supposée passer par 0 une seule fois.

On se donne un point intermediaire x_3 comme etant le milieu de $[x_1, x_2]$.

Si on detecte un passage par zero (changement de signe) dans $[x_1, x_3]$,

alors x_2 prend la valeur de x_3 .

Sinon, si le changement de signe se trouve dans l'intervalle $[x_3, x_2]$,

alors x_1 prend la valeur de x_3 .

On itère ainsi jusqu' ce que la longeur de l'intervalle $[x_1, x_2]$ soit inferieure une précision souhaitée $(\varepsilon = 10^{-12})$, le shéma aura alors convergé.