

_

Prediction

Read New Data (Test Data)

test=data[-picked,] test <- test[-c(1,2,9,15,16)]

Prepare the test data the same as the training data ## Convert the numerical categorical variables to predictors in the test data

test\$season = as.factor(test\$season)
test\$yr = as.factor(test\$yr)
test\$mnth = as.factor(test\$mnth)
test\$hr = as.factor(test\$hr)
test\$holiday = as.factor(test\$holiday)
test\$weekday = as.factor(test\$weekday)

test\$weathersit = as.factor(test\$weathersit)

Build a prediction for model1 with the test data
Specify w hether a confidence or prediction interval
pred = predict(model 1, test, interval = 'prediction')

Apply similar R code for the other two models.

Georgia Tech

3

Prediction (cont'd)

Read New Data (Test Data)

test=data[-picked,] test <- test[-c(1,2,9,15,16)]

Prepare the test data the same as the training data ## Convert the numerical categorical variables to predictors in the test data

test\$season=as.factor(test\$season)

test\$yr = as.factor(test\$yr)

test\$mnth = as.factor(test\$mnth)

test\$hr = as.factor(test\$hr)

test\$holiday=as.factor(test\$holiday)

test\$weekday=as.factor(test\$weekday)

test\$weathersit = as.factor(test\$weathersit)

Build a prediction for model1 with the test data # Specify whether a confidence or prediction interval pred = predict(model1, test, interval = 'prediction')

Apply similar R code for the other two models.

	Prediction Output					
	Fit	lwr	upr			
6	-104.3303581	-3.038988e+02	95.238132			
9	239.0013629	3.941481e+01	438.587917			
30	-82.5358710	-2.822639e+02	117.192193			
35	58.5579012	-1.410152e+02	258.130976			
38	22.5421861	-1.770914e+02	222.175777			
44	102.8402463	-9.671724e+01	302.397729			
47	-40.1522581	-2.396963e+02	159.391774			
48	-69.0241889	-2.685984e+02	130.549996			
63	334.4570824	1.349013e+02	534.012852			
65	176.2306906	-2.336174e+01	375.823119			
68	-31.2412576	-2.308027e+02	168.320195			
69	-45.1215422	-2.446761e+02	154.433034			
78	69.0246421	-1.305309e+02	268.580201			
82	99.6552263	-9.989334e+01	299.203794			
85	176.4458539	-2.309072e+01	375.982429			
87	289.1456026	8.960119e+01	488.690014			

Georgia Tech

Prediction Accuracy

Prediction Error Measures

- Compare observed response Y_i to the predicted Y_i*
- Mean squared prediction error (MSPE) = $\frac{1}{n}\sum_{i=1}^{n}(Y_i Y_i *)^2$
- Mean absolute prediction errors (MAE) = $\frac{1}{n}\sum_{i=1}^{n}|Y_i-Y_i*|$
- Mean absolute percentage error (MAPE) = $\frac{1}{n} \sum_{i=1}^{n} \frac{|Y_i Y_i|}{Y_i}$
- Precision error (PM) = $\frac{\sum_{i=1}^{n} (Y_i Y_i *)^2}{\sum_{i=1}^{n} (Y_i \bar{Y}_i)^2}$
- Confidence Interval error (CIM) $=\frac{1}{n}\sum_{i=1}^{n}I(Y_i*\notin CI)$

Georgia Tech

5

Prediction Error Measure Insights

Mean squared prediction error (MSPE)

 Appropriate for linear regression model prediction but depends on scale and it is sensitive to outliers

Mean absolute prediction errors (MAE)

 Not appropriate for linear regression model prediction and depends on scale but robust to outliers

Mean absolute percentage error (MAPE)

 Not appropriate for linear regression model prediction but it does not depend on scale and robust to outliers

Precision error (PM)

 Appropriate for linear regression model and does not depend on scale

Confidence Interval error (CIM)

Georgia Tech

Prediction Error Measure Insights

Mean squared prediction error (MSPE)

Appropriate for linear regression model prediction but depends on scale and it is sensitive to outliers

Mean absolute prediction errors (MAE)

Not appropriate for linear regression model prediction and depends on scale but robust to outliers

Mean absolute percentage error (MAPE)

Not appropriate for linear regression model prediction but it does not depend on scale and robust to outliers

Precision error (PM)

Appropriate for linear regression model and does not depend on scale

Confidence Interval error (CIM)

While MAE and MAPE are commonly used to evaluate prediction error, I recommend using the precision measure.

-- Regression models are estimated using by minimizing sum of least squares hence the accuracy error shall be best of squared differences not absolute differences

Georgia

7

Prediction Accuracy: Model 1

Say e Predictions to compare with observed data

pred1 <- predict(model1, test, interval = 'prediction') test.pred1<-pred1[,1] test.lwr1 <- pred1[,2] test.upr1 <- pred1[,3]

Mean Squared Prediction Error (MSPE)

mean((test.pred1-test\$cnt)^2) [1] 10304.95

Mean Absolute Prediction Error (MAE)

mean(abs(test.pred1-test\$cnt)) [1] 74.52024

Mean Absolute Percentage Error (MAPE) mean(abs(test.pred1-test\$cnt)/test\$cnt)

[1] 2.724609

Precision Measure (PM)

sum((test.pred1-test\$cnt)^2)/sum((test\$cnt-mean(test\$cnt))^2) [1] 0.3101164

CI Measure (CIM)

sum(test\$cnt<test.lwr1)+sum(test\$cnt>test.upr1)/nrow(test) [1] 0.06904488

Accuracy Measures

$$\begin{split} \text{MSPE} &= \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \overset{\circ}{Y_{i}} \right)^{2} \\ \text{MAE} &= \frac{1}{n} \sum_{i=1}^{n} \left| Y_{i} - \overset{\circ}{Y_{i}} \right| \\ \text{MAPE} &= \frac{1}{n} \sum_{i=1}^{n} \frac{\left| Y_{i} - \overset{\circ}{Y_{i}} \right|}{Y_{i}} \\ \text{PM} &= \frac{\sum_{i=1}^{n} \left(Y_{i} - \overset{\circ}{Y_{i}} \right)^{2}}{\sum_{i=1}^{n} (Y_{i} - \overset{\circ}{Y_{i}})^{2}} \end{split}$$

Prediction Accuracy

MSPE = 10304MAE = 74.52MAPE = 2.72PM = 0.31CIM = 0.069

Georgia

8

Prediction Accuracy: Model 3

Save Predictions to compare with observed data

pred3 <- predict(model3, test_red, interval = 'prediction')
test.pred3 <- pred3[,1]
test.lwr3 <- pred3[,2]
test.upr3 <- pred3[,3]</pre>

Mean Squared Prediction Error (MSPE)

mean((test.pred3-test\$cnt)^2) [1] 11271.78

Mean Absolute Prediction Error (MAE)

mean(abs(test.pred3-test\$cnt))

[1] 78.67701

Mean Absolute Percentage Error (MAPE)

mean(abs(test.pred3-test\$cnt)/test\$cnt)

[1] 0.5172032

Precision Measure (PM)

sum((test.pred3-test\$cnt)^2)/sum((test\$cnt-mean(test\$cnt))^2)

[1] 0 316168

CI Measure (CIM)

sum(test\$cnt<test.lwr3)+sum(test\$cnt>test.upr3)/nrow(test)

[1] 0.060984

Prediction Accuracy

MSPE = 11271 MAE = 78.67 MAPE = 0.517 PM = 0.361 CIM = 0.061

> Georgia Tech

9

Model Comparison

Model	MSPE	Precision.Measure	Adjusted.R.Squared	R squared
Full MLR	10304.95	0.310	0.684	0.685
MLR	8955.41	0.271	0.784	0.785
(sqrt transformation)				
MLR	11271.78	0.362	0.656	0.658
(sqrt transformation-no low demand data)				

- The model with the square-root transformation outperforms the other models in terms of predictive power as reflected in the Precision Measure and R squared.
- The non-constant variance assumption is violated across all models.

Georgia Tech

