Elementare Geometrie

Mitschrieb, gehört bei Prof. Leuzinger im WS17/18

Jens Ochsenmeier

Inhaltsverzeichnis

1	l Grundbegriffe der allgemeinen Topologie					
	1.1	Toplogischer Räume	5			
	1.2	Hausdorffsches Trennungsaxiom	9			
	1.3	Stetigkeit	10			

Grundbegriffe der allgemeinen Topologie

1.1 Toplogischer Räume

1.1.1 Definition — Topologischer Raum.

Ein topologischer Raum ist ein Paar (X, \mathcal{O}) bestehend aus einer Menge X und einem System bzw. einer Familie

$$\mathcal{O} \subseteq \mathcal{P}(X)$$

von Teilmengen von X, so dass gilt

- 1. $X, \emptyset \in \mathcal{O}$
- 2. Durchschnitte von *endlich* vielen und Vereinigungen von *beliebig* vielen Mengen aus \mathcal{O} sind wieder in \mathcal{O} .

Ein solches System $\mathcal O$ heißt *Topologie* von X. Die Elemente von $\mathcal O$ heißen *offene Teilmengen* von X.

 $A \subset X$ heißt *abgeschlossen*, falls das Komplement $X \setminus A$ offen ist.

1.1.2 Beispiel — Extrembeispiele.

- 1. Menge X, $\mathcal{O}_{trivial} := \{X, \emptyset\}$ ist die *triviale Topologie*.
- 2. Menge X, $\mathcal{O}_{diskret} := \mathcal{P}(X)$ ist die *diskrete Topologie*.

1.1.3 Beispiel — Standard-Topologie auf \mathbb{R} .

 $X = \mathbb{R}$,

 \mathcal{O}_s (standard) := { $I \subset \mathbb{R} : I = \text{Vereinigung von offenen Intervallen}}$

ist Topologie auf \mathbb{R} .

Offenes Intervall:

 $(a,b) \coloneqq \{t \in \mathbb{R} : a < t < b\},\$ a und b beliebig

1.1.4 Beispiel — Zariski-Topologie auf \mathbb{R} .

 $X = \mathbb{R}$,

$$\mathcal{O}_{Z(ariski)} := \{ O \subset \mathbb{R} : O = \mathbb{R} \setminus, E \subset \mathbb{R} \text{ endlich} \} \cup \{\emptyset\}$$

ist die Zariski-Topologie auf \mathbb{R} .

(Mit anderen Worten: Die abgeschlossenen Mengen sind genau die endlichen Mengen, \varnothing und \mathbb{R} .)

Diese Topologie spielt eine wichtige Rolle in der algebraischen Geometrie beim Betrachten von Nullstellen von Polynomen:

$$(a_1 \dots, a_n) \leftrightarrow p(X) = (X - a_1) \cdots (X - a_n)$$

 $\mathbb{R} \leftrightarrow \text{Nullpolynom}$
 $\emptyset \leftrightarrow X^2 + 1$

1.1.5 Definition — Metrischer → topologischer Raum.

Metrische Räume (z.B. (X,d)) sind topologische Räume: $U \subset X$ ist d-offen $\Leftrightarrow \forall p \in U \exists \epsilon = \epsilon(p) > 0$, sodass der offene Ball $B_{\epsilon}(p) = \{x \in X : d(x,p) < \epsilon\}$ um p mit Radius ϵ ganz in U liegt: $B_{\epsilon}(p) \subset U$.

Die *d*-offenen Mengen bilden eine Topologie — die von der Metrik *d induzierte Topologie*¹.

¹ Übungsaufgabe: Zeigen, dass es sich wirklich um eine Topologie handelt

1.1.6 Definition — Basis.

Eine *Basis* für die Topologie \mathcal{O} ist eine Teilmenge $\mathcal{B} \subset \mathcal{O}$, sodass für jede offene Menge $\emptyset \neq V \in \mathcal{O}$ gilt:

$$V = \bigcup_{i \in I} V_i, \quad V_i \in \mathcal{B}.$$

Beispiel: $\mathcal{B} = \{\text{offene Intervalle}\}\$ für Standard-Topologie auf \mathbb{R} .

1.1.7 Beispiel — Komplexität einer Topologie.

 \mathbb{R} , \mathbb{C} haben eine abzählbare Basis bezüglich Standard-Metrik d(x,y)=|x-y| (beziehungsweise Standard-Topologie): Bälle mit rationalen Radien und rationalen Zentren.

1.1.8 Bemerkung — Gleichheit von Topologien.

Verschiedene Metriken können die gleiche Topologie induzieren: Sind d, d' Metriken auf X und enthält jeder Ball um $x \in X$ bezüglich d einen Ball um x bezüglich d' ($B_{\epsilon'}^d(x) \subset B_{\epsilon}^d(x)$), dann ist jede d-offene Menge auch d'-offen und somit $\mathcal{O}(d) \subset \mathcal{O}(d')$. Gilt auch die Umkehrung ($\mathcal{O}(d') \subset \mathcal{O}(d)$), so sind die Topologien gleich: $\mathcal{O}(d) = \mathcal{O}(d')$.

1.1.9 Beispiel — Bälle und Würfel sind gleich.

$$X = \mathbb{R}^2$$
, $x = (x_1, x_2)$, $y = (y_1, y_2)$

$$d(x,y) \coloneqq \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

$$d'(x,y) := \max\{|x_1 - y_1|, |x_2 - y_2|\}$$

Die induzierten Topologien sind gleich.

1.1.10 Beispiel — Metrische Information sagt nichts über Topologie.

(X, d) sei ein beliebiger metrischer Raum,

$$d'(x,y) \coloneqq \frac{d(x,y)}{1+d(x,y)}$$

ist Metrik mit $\mathcal{O}(d) = \mathcal{O}(d')$.

Für d' gilt: $d'(x, y) \le (\forall x, y)$, insbesondere ist der Durchmesser von X bezüglich d':

$$= \sup_{x,y \in X} d'(x,y) \le 1,$$

das heißt, der Durchmesser eines metrischen Raumes ("metrische Information") sagt nichts über die Topologie aus.

1.1.11 Definition — Umgebung.

 (X, \mathcal{O}) sei ein topologischer Raum. $U \subset X$ heißt *Umgebung* von $A \subset X$, falls

$$\exists O \in \mathcal{O} : A \subset O \subset U$$
.

1.1.12 Definition — Innerer Punkt.

Für $A \subset X$, $p \in X$ heißt p ein innerer Punkt von A (bzw. äußerer Punkt von A), falls A (bzw. $X \setminus A$) Umgebung von $\{p\}$ ist. Das *Innere* von A ist die Menge $\overset{\circ}{A}$ der inneren Punkte von A.

1.1.13 Definition — Abgeschlossene Hülle.

Die abgeschlossene Hülle von A ist die Menge $\overline{A} \subset X$, die nicht äußere Punkte sind.

Beispiel:
$$(a,b) = \{t \in \mathbb{R} : a < t < b\},\ \overline{(a,b)} = [a,b] = \{t \in \mathbb{R} : a \le t \le b\}.$$

1.1.14 Drei konstruierte topologische Räume.

Folgende drei einfache Konstruktionen von neuen topologischen Räumen aus gegebenen:

1. **Teilraum-Topologie**: (X, \mathcal{O}_X) topologischer Raum, $Y \subseteq X$ Teilmenge.

$$\mathcal{O}_Y \coloneqq \{U \subseteq Y : \exists \ V \in \mathcal{O}_X \land U = V \cap Y\}$$

definiert eine Topologie auf Y, die sogenannte *Teilraum-Topologie*. 2

Achtung! $U \in \mathcal{O}_Y$ ist i.a. <u>nicht</u> offen in X. Z.B. $X = \mathbb{R}$, Y = [0,1], V = (-1,2), also $U = V \cap Y = Y$.

2. **Produkträume**: (X, \mathcal{O}_X) und (Y, \mathcal{O}_Y) zwei topologische Räume. Eine Teilmenge $W \subseteq X \times Y$ ist *offen* in der *Produkt-Topologie* $\iff \forall (x,y) \in W \exists$ Umgebung U von x in X und Y von y in Y sodass das "Kästchen" $U \times V \subseteq W$. **Achtung!** Nicht jede offene Menge in $X \times Y$ ist ein Kästchen: die Vereinigung von zwei Kästchen ist beispielsweise auch offen.

Beispiel: $X = \mathbb{R}$ mit Standard-Topologie, dann ist

$$\underbrace{X \times \dots \times X}_{x \text{ mal}} = \mathbb{R}^n$$

induzierter topologischer Raum.

3. **Quotienten**: (X, \mathcal{O}) topologischer Raum, ~ Äquivalenzrelation³ auf X. Für $x \in X$ sei

$$\lceil x \rceil := \{ y \in X : y \sim x \}$$

die Äquivalenzklasse von x,

$$X/\sim$$

die Menge der Äquivalenzklassen und

$$\pi: X \to X/\sim$$
$$x \mapsto \lceil x \rceil$$

die kanonische Projektion (surjektiv!).

Die *Quotienten-Topologie* auf X/\sim nutzt:

$$U \subset X/\sim \text{ist } \underline{\text{offen}} \overset{\text{Def.}}{\Leftrightarrow} \pi^{-1}(U) \text{ ist offen in } X.$$

Beispiel: $X = \mathbb{R}$ mit Standard-Topologie (induziert durch Standard-Metrik $d_{\mathbb{R}}(s,t) = |s-t|$).

Seien $s, t \in \mathbb{R}$. Wir definieren

$$s \sim t \overset{\mathrm{Def.}}{\Longleftrightarrow} \ \exists \ m \in \mathbb{Z} : t = s + 2\pi m.$$

² Zu überprüfen!

³ Impliziert Partitionierung von *X* in disjunkte Teilmengen

Dann ist

$$\mathbb{R}/\sim = S' = \text{Einheitskreis}.$$

Anstatt dies heuristisch auszudrücken kann dies auch explizit getan werden:

$$\mathbb{R} \to S' = \{ z \in \mathbb{C} : |z| = 1 \} = \{ (x, y) \in \mathbb{R} : x^2 + y^2 = 1 \}$$

 $t \mapsto e^{it}.$

Bemerkung: Andere Interpretation via Gruppen-Aktionen.

 $G = (\mathbb{Z}, +)$ operiert auf $X = \mathbb{R}$.

 $Bahnen-Raum = \mathbb{R}/\sim mit$

$$\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$$

 $(m, t) \mapsto t + 2\pi m.$

Die Äquivalenzklasse [t] ist die Bahn von

$$t = \mathbb{Z} \cdot t = \{t + 2\pi m : m \in \mathbb{Z}\},\$$

mehr dazu später.

Hausdorffsches Trennungsaxiom

1.2.1 Hausdorffsches Trennungsaxiom T_2 .

Ein topologischer Raum (X, \mathcal{O}) heißt hausdorffsch, falls man zu je zwei verschiedenen Punkten $p,q \in X$ disjunkte Umgebungen finden kann, also Umgebungen $U \ni p$ und $V \ni q$ mit $U \cap V = \emptyset$. **Beispiel**:

1. Metrische Räume sind hausdorffsch.

Beweis: Sei $d(p,q) =: \epsilon$.

Behauptung: $B_{\epsilon/3}(p) \cap B_{\epsilon/3}(q) = \emptyset$.

Sei z in $B_{\epsilon/3}(p) \cap B_{\epsilon/3}(q)$. Dann gilt

$$d(p,q) \stackrel{\triangle\text{-Ugl.}}{\leq} d(p,z) + d(z,q) \leq \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{2\epsilon}{3} > \epsilon \quad \not z$$

- 2. $(\mathbb{R}, \mathcal{O}_{standard})$ ist hausdorffsch, da die Standard-Topologie von der Metrik induziert wird.
- 3. $(\mathbb{R}, \mathcal{O}_{Zariski})$ ist nicht hausdorffsch: offene Mengen sind Komplemente von endlich vielen Punkten, also für $p, q \in \mathbb{R}, p \neq q$:

$$U_p = \mathbb{R} \setminus \{p_1, \dots, p_n\}$$

 $U_q = \mathbb{R} \setminus \{q_1, \dots, q_k\},$

also $U_p \cap U_q \neq \emptyset$.

Wichtige Konsequenz von "hausdorffsch": In einem Hd-Raum hat jede Folge höchstens einen Limespunkt/Grenzwert.

1.2.2 Bemerkung.

- 1. Jeder Teilraum (mit TR-Topologie) eines Hd-Raumes ist Hd.
- 2. X, Y Hd-Räume $\Rightarrow X \times Y$ ist Hd-Raum bezüglich Produkt-Topologie.

1.3 Stetigkeit

1.3.1 Definition — Stetigkeit.

 (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) topologische Räume. Eine Abbildung $f: X \to Y$ heißt stetig, falls die Urbilder von offenen Mengen in Y offen sind in X.

1.3.2 Beispiel — Einfache Stetigkeiten.

- 1. Id: $X \to X$, $x \mapsto x$ ist stetig.
- 2. Die Komposition von stetigen Abbildungen ist stetig.
- 3. Für $(X, \mathcal{O}) = (\mathbb{R}, \mathcal{O}_{standard}) = (Y, \mathcal{O}_Y)$ gibt es unendlich viele Beispiele in Analysis I. Für metrische Räume ist diese Definition äquivalent zur ϵ - δ -

Definition und zur Folgenstetigkeit⁴.

⁴ Übungsaufgabe!

1.3.3 Definition — Homöomorphismus.

- Eine bijektive Abbildung $f: X \to Y$ zwischen topologischen Räumen heißt *Homöomorphismus*, falls f und f^{-1} stetig sind.
- X und Y heißen *homöomorph*, falls ein Homöomorphismus $f: X \to Y$ existiert (notiere $X \cong Y$).

1.3.4 Bemerkung — Homöomorphismengruppe.

- $Id_X : X \to X$, $x \mapsto x$ ist Homöomorphismus.
- Verkettungen von Homöomorphismen sind wieder Homöomorphismen.
- Inverses eines Homöomorphismus ist ein Homöomorphismus.
 Aus diesen drei Punkten folgt, dass die Homöomorphismen eine Gruppe bilden.

Erinnerung — Konvergenz.

 $(x_n)_{n\in\mathbb{N}}\subset X$ (top. Raum). $X\ni a$ heißt Limes um $(x_n)_{n\in\mathbb{N}}$ falls es zu jeder Umgebung U von a ein $n_0\in\mathbb{N}$ gibt, sodass $x_n\in U\ \forall\, n\geq n_0$.

1.3.5 Beispiel — Einfache Homöomorphismen.

- $[0,1] = \{t \in \mathbb{R} : 0 \le t \le 1\} \cong [a,b] \text{ mit } a < b \in \mathbb{R}$ (via f(t) = a + t(b - a)).
- $(0,1) = \{t \in \mathbb{R} : 0 < t < 1\} \cong (a,b) \text{ mit } a < b \text{ beliebig.}$
- $\mathbb{R} \cong (-1,1) \cong (0,1)$ (z.B. via $t \mapsto \tanh t = \frac{e^{2t} - 1}{e^{2t} + 1}$).
- Stetig und injektiv, aber kein Homöomorphismus! $f: [0,1) \to S^1, t \mapsto e^{2\pi i t} = \cos(2\pi t) + i\sin(2\pi t)$ ist stetig, injektiv, aber kein Homöomorphismus.
- Projektions-Abbildungen sind stetig, z.B. $p_1: X_1 \times X_2 \to X_1$, $(x_1, x_2) \mapsto x_1$: Für *U* offen in X_1 ist $p^{-1}(U) = U \times X_2$ offen bezüglich der Produkttopologie.
- Metrische Räume (X, d_X) , (Y, d_Y) und Isometrie $f: X \to Y$, also eine bijektive Abbildung, so dass

$$\forall x,y \in X: d_Y(f(x),f(y)) = d_X(x,y).$$

Behauptung: f ist Homöomorphismus (bzgl. der durch Metriken definierten Topologien).

Beweis (über ϵ - δ -Definition): $\delta := \epsilon$.

 $d_X(x,y) < \delta \Rightarrow d_Y(f(x),f(y)) = d_X(x,y) < \delta = \epsilon$, also ist f stetig. Analog für f^{-1} .

• $S^n = \{x \in \mathbb{R}^{n+1} : ||x||^2 = 1\}$ ist die *n*-dimensionale Einheitssphäre in \mathbb{R}^{n+1} .

 $e_{n+1} = (0, ..., 0, 1)$ sei der "Nordpol" von S_n .

Behauptung: $S^n \setminus \{e_{n+1}\} \cong \mathbb{R}^n$.

Beweis (via stereographische Projektion):

$$\mathbb{R}^{n} \cong \{x \in \mathbb{R}^{n+1} : x_{n+1} = 0\},$$

$$f(x) := \left(\frac{x_{1}}{1 - x_{n+1}}, \dots, \frac{x_{n}}{1 - x_{n+1}}\right) \text{ stetig,}$$

$$f^{-1} : \mathbb{R}^{n} \to S^{n}, \quad y \mapsto \left(\frac{2y_{1}}{\|y\|^{2} + 1}, \dots, \frac{2y_{n}}{\|y\|^{2} + 1}, \frac{\|y\|^{2} - 1}{\|y\|^{2} + 1}\right) \text{ auch stetig.}$$

Also ist *f* homöomorph.

Achtung: S^n ist nicht homöomorph zu \mathbb{R}^n (da S^n kompakt und \mathbb{R}^n nicht kompakt ist, mehr dazu später).

1.3.6 Bemerkung — Isometrien-Untergruppe.

Isometrien bilden eine Untergruppe der Homöomorphismen von X (versehen mit von der Metrik induzierten Topologie):

$$\operatorname{Isom}(X,d) \subseteq \operatorname{Hom\"o}(X,\mathcal{O}_d) \subseteq \operatorname{Bij}(X).$$

1.3.7 Exkurs 1 — Kurven.

Was ist eine Kurve?

Naive Definition: Eine Kurve ist ein stetiges Bild eines Intervalls.

Problem: ∃ stetige, surjektive (aber nicht injektive) Abbildungen $I = [0,1] \rightarrow I^2$ ("Peano-Kurven", "space-filling curves")⁵.

Ausweg 1: Jordan-Kuven (bzw. geschlossene J-Kurven).

:= top. Raum, homöomorph zu I = [0,1] (J-Kurve)

= top. Raum, homöomorph zu S^1 (geschlossene J-Kurve)

Ausweg 2: reguläre stetig differenzierbare Kurven (lokal injektiv).

Verwendung: z.B. *Knoten* — spezielle geschlossene Jordankurve als Unterraum von \mathbb{R}^3 :

$$\exists f: S^1 \to \mathbb{R}^3 \text{ mit } f(S^1) \cong S^1$$

mit Teilraumtopologie von R^3 .

Zwei Knoten K_1 , $K_2 \subset \mathbb{R}^3$ sind *äquivalent*, falls es einen Homöomorphismus h von \mathbb{R}^3 gibt mit $h(K_1) = K_2$.

⁵ Mehr dazu in Königsberger — Analysis I.

⁶ Knotentheorie studiert die Äquivalenz von Knoten, siehe z.B. Sossinsky -Mathematik der Knoten