Математика разделенного секрета: Пороговые (n,k)-схемы доступа, схема Шамира и схема Блэкли

Носов Андрей БПИ-232

18 ноября 2024 г.

Определение

- Схема разделения секрета (СРС) это криптографический протокол, позволяющий разделить секрет S на n долей S_1, S_2, \ldots, S_n , так что:
 - Любая подгруппа участников размером k или более может восстановить секрет.
 - Любая подгруппа из менее чем k участников ничего не знает о секрете.

Участники и дилер

- **Дилер** доверенное лицо, которое:
 - \bullet Генерирует секрет S.
 - Вычисляет n долей S_1, S_2, \dots, S_n .
 - Передаёт доли участникам.
- **Участники** лица, получающие доли секрета. Они объединяются для восстановления секрета.

Функции разделения и восстановления секрета

• **Функция разделения**:

$$\mathsf{Share}(S) \to \{S_1, S_2, \dots, S_n\}$$

Разбивает секрет S на n долей.

• **Функция восстановления**:

$$\mathsf{Reconstruct}(\{S_1, S_2, \dots, S_k\}) \to S$$

Объединяет k долей для получения оригинального секрета.

Определение идеальной СРС

- Идеальная схема разделения секрета:
 - ullet Доля каждого участника имеет тот же размер, что и секрет S.
 - Участники не обладают избыточной информацией.

Определение

• Совершенная СРС:

$$P(S|$$
меньше чем k долей $)=P(S)$

- Свойство «всё или ничего»:
 - Меньше k долей нет информации о секрете.
 - k или больше долей секрет полностью восстанавливается.

Определение

- (n, k)-пороговая схема:
 - Секрет делится между п участниками.
 - Для восстановления секрета требуется k участников ($k \le n$).

Пример

- ullet Секрет делится на n долей, каждая из которых равна S.
- Доказательство:
 - п участников объединяются и полностью восстанавливают секрет.
 - Менее n участников ничего не знают о секрете.

Восстановление по k точкам

• Полином степени k-1:

$$f(x) = \sum_{i=1}^{k} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

• Используется для восстановления секрета f(0) по k точкам.

Описание

• Генерация случайного полинома степени k-1:

$$f(x) = a_0 + a_1 x + \dots + a_{k-1} x^{k-1}$$

где *a*₀ — секрет.

- Доли: точки $(x_i, f(x_i)), x_i \neq 0.$
- Доказательства:
 - Совершенность: k-1 долей не дают информацию о a_0 .
 - Идеальность: размер долей равен размеру секрета.

Описание

• Использует систему линейных уравнений:

$$A \cdot X = B$$

где A — матрица коэффициентов, X — вектор секретов, B — вектор долей.

• Пример для 3D:

3d-example.png

Заключение

- СРС важный инструмент для безопасного хранения данных.
- Различные схемы применяются в зависимости от задач.
- Перспективы: улучшение устойчивости и эффективность вычислений.

Спасибо за внимание!