Quelques inégalités

${\rm Marc~SAGE}$

$4\ {\rm octobre}\ 2005$

Table des matières

1	Mise en jambe	2
2	Variante sur l'inégalité triangulaire	2
3	Inégalité géométrique	3
4	Variation sur les carrés	4
5	Entremez	5
6	Inégalité barbare sur un thème de Cauchy-Schwarz	5
7	Autre variante sur l'inégalité triangulaire	6
8	Inégalité du réordonnement	6
9	Un exercice à sthûss pour la route	8

Rappelons à l'occasion de cette feuille d'inégalités que Cauchy-Schwarz ne prend pas de "t" : c'est le même Schwarz que dans le théorème de Schwarz (pour inverser ∂_x et ∂_y) ou dans le lemme de Schwarz en analyse complexe. En revanche, on mettra un "t" à Laurent Schwartz, père des distributions.

1 Mise en jambe

Soit a et b deux complexes. Montrer que

$$|a+b|^2 \le (1+|a|^2)(1+|b|^2)$$

et étudier le cas d'égalité.

Solution proposée.

Première méthode :

On calcule la différence :

$$(1+|a|^{2})(1+|b|^{2}) - |a+b|^{2} = 1+|a|^{2}+|b|^{2}+|ab|^{2}-(a+b)(\overline{a}+\overline{b})$$

$$= 1+|a|^{2}+|b|^{2}+|ab|^{2}-|a|^{2}-|b|^{2}-a\overline{b}-\overline{a}b$$

$$= 1-a\overline{b}-\overline{a}b+a\overline{b}\overline{a}b=(1-a\overline{b})(1-\overline{a}b)$$

$$= |1-a\overline{b}|^{2} \ge 0$$

avec égalité ssi $a\bar{b} = 1$.

Seconde méthode :

On voit du carré, donc on Cauchy-Schwarzise :

$$(1+|a|^2)(1+|b|^2) = (1+|a|^2)(|b|^2+1)$$

$$\geq (|b|+|a|)^2 \text{ par Cauchy-Schwarz}$$

$$\geq |b+a|^2 \text{ par l'inégalité triangulaire.}$$

Pour obtenir le cas d'égalité, il faut que $a\bar{b}=1$ (pour l'inégalité triangulaire), et réciproquement cette condition implique

$$\left(1+|a|^2\right)\left(|b|^2+1\right)=\left(1+|a|^2\right)\left(\frac{1}{|a|^2}+1\right)=2+|a|^2+\frac{1}{|a|^2}=\left(|a|+\frac{1}{|a|}\right)^2=\left(|a|+|b|\right)^2\geq |b+a|^2\,.$$

2 Variante sur l'inégalité triangulaire

Soit $z \in \mathbb{C}$ et $n \in \mathbb{N}$. Montrer que

$$\left| \frac{1 - (n+1)z^n + nz^{n+1}}{(1-z)^2} \right| \le \frac{1 - (n+1)|z|^n + n|z|^{n+1}}{(1-|z|)^2}.$$

Solution proposée.

Cela s'écrit encore

οù

$$f(z) = \frac{1 - (n+1)z^{n} + nz^{n+1}}{(1-z)^{2}}.$$

L'idée est de faire sauter le dénomiateur de f pour appliquer l'inégalité triangulaire au polynôme en z restant.

Il faut donc factoriser du (1-z). Regroupons pour cela les termes du numérateur en mettant les deux 1 ensemble et les deux n ensemble :

$$f(z) = \frac{1 - (n+1)z^{n} + nz^{n+1}}{(1-z)^{2}} = \frac{(1-z^{n}) + (nz^{n+1} - nz^{n})}{(1-z)^{2}} = \frac{(1-z)\sum_{i=0}^{n-1}z^{i} - nz^{n}(1-z)}{(1-z)^{2}} = \frac{\sum_{i=0}^{n-1}z^{i} - nz^{n}}{1-z}$$

$$= \frac{\sum_{i=0}^{n-1}(z^{i} - z^{n})}{1-z} = \frac{\sum_{i=0}^{n-1}z^{i}(1-z^{n-i})}{1-z} = \frac{\sum_{i=0}^{n-1}z^{i}(1-z)\sum_{j=0}^{n-i}z^{j}}{1-z} = \sum_{i=0}^{n-1}z^{i}\sum_{j=0}^{n-i}z^{j} = P(z)$$

où P(z) est un polynôme en z. Il en résulte, en appliquant l'inégalité triangulaire,

$$|f(z)| = |P(z)| \le P(|z|) = f(|z|).$$

3 Inégalité géométrique

Soit $z \in \mathbb{C}^*$ et $\theta \in]-\pi,\pi]$ son argument principal. Montrer que

$$|z-1| < ||z|-1| + |z\theta|$$
.

Solution proposée.

Première méthode (dite "du bhûrin") :

Montrons tout d'abord que

$$|z\theta| \ge |z - |z||,$$

ce qui se réécrit

$$|\theta| \ge \left| \frac{z}{|z|} - 1 \right|.$$

En remarquant que

$$e^{i\theta} - 1 = \cos\theta + i\sin\theta - 1 = \left(1 - 2\sin^2\frac{\theta}{2}\right) + i\left(2\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right) - 1$$
$$= 2i\sin\frac{\theta}{2}\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right) = 2i\sin\frac{\theta}{2}e^{i\frac{\theta}{2}},$$

il suffit d'écrire

$$\left|\frac{z}{|z|}-1\right|=\left|e^{i\theta}-1\right|=\left|2i\sin\frac{\theta}{2}e^{i\frac{\theta}{2}}\right|=2\left|\sin\frac{\theta}{2}\right|\leq 2\left|\frac{\theta}{2}\right|=\left|\theta\right|.$$

Ceci étant fait, il reste à appliquer l'inégalité triangulaire

$$||z|-1|+|z\theta| \ge |1-|z||+||z|-z| \ge |1-z|$$
.

Deuxième méthode (dite "élégante") :

On donne une interprétation géométrique à tout ce que l'on a écrit auparavant.

Dans le plan complexe, placer M d'affixe z, tracer un cercle \mathcal{C} de centre 0 et de rayon |z| (qui passe donc par M), placer M_0 sur $\mathcal{C} \cap \mathbb{R}$ d'affixe |z|, et placer A d'affixe 1.

L'inégalité $|z-1| \le ||z|-1| + |z\theta|$ se traduit en

$$AM \leq AM_0 + \operatorname{arc} M_0 M$$

ce qui est clair car on a

$$\operatorname{arc} M_0 M > M_0 M$$

(c'était l'inégalité $|z\theta| \ge |z - |z||$) et

$$AM \leq AM_0 + M_0M$$

dans le triangle AM_0M .

4 Variation sur les carrés

Soient $z_1,...,z_n$ des complexes. Si Z est une racine carrée de $\sum_{k=1}^n z_k^2$, montrer que

$$|\operatorname{Re} Z| \le \sum_{k=1}^{n} |\operatorname{Re} z_k|.$$

Solution proposée.

Écrivons

$$\begin{cases} z_k = a_k + ib_k \\ Z = \alpha + i\beta \end{cases},$$

de sorte que

$$\sum_{k=1}^{n} z_k^2 = \sum_{k=1}^{n} (a_k + ib_k)^2 = \sum_{k=1}^{n} a_k^2 - b_k^2 + 2ia_k b_k$$

et

$$\left\{ \begin{array}{l} \alpha^2 - \beta^2 = \sum_{k=1}^n a_k^2 - b_k^2 \\ \alpha\beta = \sum_{k=1}^n a_k b_k \end{array} \right. ; \label{eq:alpha_beta}$$

on veut donc

$$|\alpha| \le \sum_{k=1}^{n} |a_k|.$$

Remarquer qu'il suffit de montrer que

$$\alpha^2 \le \sum_{k=1}^n a_k^2,$$

car alors

$$\alpha^2 \le \sum_{k=1}^n a_k^2 \le \left(\sum_{k=1}^n |a_k|\right)^2$$

(par Cauchy-Schwarz, ou en remarquant que le terme de gauche développé contient tous les a_k^2 plus d'autres termes positifs).

Raisonnons par l'absurde, en supposant

$$\alpha^2 > \sum_{k=1}^n a_k^2.$$

On a alors les implications

$$\sum_{k=1}^{n} a_k^2 - b_k^2 = \alpha^2 - \beta^2 > \left(\sum_{k=1}^{n} a_k^2\right) - \beta^2$$

$$\implies \beta^2 > \sum_{k=1}^{n} b_k^2$$

$$\implies \left(\sum_{k=1}^{n} a_k b_k\right)^2 = \alpha^2 \beta^2 > \sum_{k=1}^{n} a_k^2 \sum_{k=1}^{n} a_k^2,$$

et là Cauchy-Schwarz n'est pas content du tout (noter bien que α et β sont >0, ce qui permet d'assurer l'inégalité stricte) : contradiction!

5 Entremez

Soit $x_1,...,x_n$ des réels de [0,1]. Montrer que

$$\prod (1 - x_i) \ge 1 - \sum x_i.$$

Solution proposée.

Le produit étant laid à développer, on a envie de faire un changement de variable $x_i \mapsto 1 - x_i$ (par lequel le problème est inchangé), de sorte qu'il nous reste à montrer

$$\prod x_i \stackrel{?}{\ge} 1 - \sum (1 - x_i) = 1 - n + \sum x_i$$

(c'est quand même plus agréable). Maintenant, on peut par exemple dire que la fonction $\sum x_i - \prod x_i$ est croissante en chacune de ses variables puisque de dérivée partielle $\partial_{x_i} = 1 - \prod_{j \neq i} x_j \geq 0$ (on utilise encore l'hypothèse $x_i \in [0,1]$), donc maximum lorsque tous les x_i le sont, *i.e.* quand $x_i = 1$ pour tout i. La valeur ainsi obtenue est $\sum 1 - \prod 1 = n - 1$, CQFD.

6 Inégalité barbare sur un thème de Cauchy-Schwarz

On considère pour $n \ge 1$ les réels suivants :

$$\begin{cases} a_1, ..., a_n > 0 \\ \alpha = \min a_i \\ A = \max a_i \end{cases} \begin{cases} b_1, ..., b_n > 0 \\ \beta = \min a_i \\ B = \max a_i \end{cases}.$$

Il s'agit de montrer la double inégalité

$$1 \stackrel{(I)}{\leq} \frac{\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)}{\left(\sum_{i=1}^{n} a_i b_i\right)^2} \stackrel{(II)}{\leq} \frac{1}{4} \left(\sqrt{\frac{\alpha\beta}{AB}} + \sqrt{\frac{AB}{\alpha\beta}}\right)^2.$$

Solution proposée.

On rappelle que Cauchy-Schwarz peut se montrer de la manière suivante :

$$(I) \iff 1 \le \frac{\left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)}{\left(\sum_{i=1}^{n} a_i b_i\right)^2} \iff \left(\sum_{i=1}^{n} a_i b_i\right)^2 - \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right) \le 0.$$

Cette dernière expression est le discriminant (réduit) du trinôme

$$\left(\sum_{i=1}^{n} a_i^2\right) X^2 - 2\left(\sum_{i=1}^{n} a_i b_i\right) X + \left(\sum_{i=1}^{n} b_i^2\right)$$

qui se factorise en

$$\sum_{i=1}^{n} \left(a_i^2 X^2 - 2a_i b_i X + b_i^2 \right) = \sum_{i=1}^{n} \left(a_i X - b_i \right)^2$$

qui est toujours de même signe sur \mathbb{R} , donc le discrimianant considéré est ≤ 0 .

Regardons à présent la seconde inégalité. :

$$(II) \iff \frac{\left(\sum_{i=1}^{n} a_{i}^{2}\right) \left(\sum_{i=1}^{n} b_{i}^{2}\right)}{\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}} \leq \frac{1}{4} \left(\sqrt{\frac{\alpha \beta}{AB}} + \sqrt{\frac{AB}{\alpha \beta}}\right)^{2}$$

$$\iff 4 \frac{\left(\sum_{i=1}^{n} a_{i}^{2}\right) \left(\sum_{i=1}^{n} b_{i}^{2}\right)}{\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2}} \leq \alpha \beta AB \left(\frac{1}{\alpha \beta} + \frac{1}{AB}\right)^{2}$$

$$\iff \left(\frac{1}{\alpha \beta} + \frac{1}{AB}\right)^{2} \left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} - 4 \frac{1}{\alpha \beta AB} \left(\sum_{i=1}^{n} a_{i}^{2}\right) \left(\sum_{i=1}^{n} b_{i}^{2}\right) \geq 0.$$

Ceci est exactement l'expression du discriminant du trinôme

$$\frac{1}{\alpha A} \left(\sum_{i=1}^{n} a_i^2 \right) X^2 - \left(\frac{1}{\alpha \beta} + \frac{1}{AB} \right) \left(\sum_{i=1}^{n} a_i b_i \right) X + \frac{1}{\beta B} \left(\sum_{i=1}^{n} b_i^2 \right).$$

On a choisi de regrouper tous les termes "en" a ensemble et tous les termes en b ensemble afin de faire apparaître les variables "réduites"

$$\lambda_i = \frac{a_i}{A} \quad \mu_i = \frac{b_i}{B}$$
 $\Lambda_i = \frac{a_i}{\alpha} \quad M_i = \frac{b_i}{\beta}$

(un peu de sens physique ne fait pas de mal...), lesquelles vérifient clairement

$$0 < \lambda_i, \mu_i \le 1 \le \Lambda_i, M_i$$
.

Notre trinôme s'écrit alors de façon plus consise

$$T = \sum_{i=1}^{n} \left[\lambda_i \Lambda_i X^2 - (\Lambda_i M_i + \lambda_i \mu_i) X + \mu_i M_i \right].$$

On veut montrer que T a un discriminant ≥ 0 . Puisque son coefficient dominant est positif, il suffit d'exhiber un point particulier où le trinôme est négatif. Compte tenu de la décomposition ci-dessus, on essaie immédiatement X=1:

$$T(1) = \sum_{i=1}^{n} (\lambda_i \Lambda_i - \Lambda_i M_i - \lambda_i \mu_i + \mu_i M_i) = \sum_{i=1}^{n} \underbrace{(\Lambda_i - \mu_i)}_{>0} \underbrace{(\lambda_i - M_i)}_{<0} \le 0, CFQD.$$

7 Autre variante sur l'inégalité triangulaire

Soient $z_1,...,z_n$ des complexes. Montrer que

$$\frac{\left|\sum_{k=1}^{n} z_k\right|}{1 + \left|\sum_{k=1}^{n} z_k\right|} \le \sum_{k=1}^{n} \frac{|z_k|}{1 + |z_k|}.$$

Solution proposée.

Remarquons dans un premier temps que, en notant

$$\begin{cases} M = \left| \sum_{k=1}^{n} z_k \right| \\ S = \sum_{k=1}^{n} \left| z_k \right| \end{cases},$$

on dispose de l'inégalité

$$\frac{M}{1+M} \stackrel{?}{\leq} \frac{S}{1+S} \iff M+MS \stackrel{?}{\leq} S+SM \iff M \stackrel{?}{\leq} S$$
 trivial par l'inégalité triangulaire.

Appliquons:

$$\frac{\left|\sum_{k=1}^{n} z_{k}\right|}{1+\left|\sum_{k=1}^{n} z_{k}\right|} \leq \frac{\sum_{k=1}^{n} \left|z_{k}\right|}{1+\sum_{l=1}^{n} \left|z_{l}\right|} \leq \sum_{k=1}^{n} \frac{\left|z_{k}\right|}{1+\sum_{l=1}^{n} \left|z_{l}\right|} \leq \sum_{k=1}^{n} \frac{\left|z_{k}\right|}{1+\left|z_{k}\right|}.$$

8 Inégalité du réordonnement

Soit $a_1,...,a_{n\geq 1}$ des réels et $b_1,...,b_n$ d'autres réels. On considère la somme

$$S\left(\overrightarrow{a}, \overrightarrow{b}\right) = \sum_{i=1}^{n} a_i b_i.$$

Montrer que S est maximale quand les a_i et les b_i sont rangés dans le même ordre.

Solution proposée.

On impose dans un premier temps la croissance des a_i :

$$a_1 \leq \ldots \leq a_n$$
.

Si les a_i et les b_i ne sont pas rangés dans le même ordre, *i.e.* si les b_i ne sont pas croissants, on peut trouver des indices k et l dans $\{1, ..., n\}$ tels que

$$\left\{ \begin{array}{c} k < l \\ b_k > b_l \end{array} \right..$$

On peut même supposer

$$l = k + 1$$
,

sinon la suite (b_i) devrait croître de b_k à b_l , ce qui est évidemment impossible.

Définissons alors une nouvelles suite de réels à partir de \overrightarrow{b} en remettant les deux indices ci-dessus dans le bon ordre ; de façon explicite :

$$b'_{i} = \begin{cases} b_{i} \text{ si } i \notin \{k, k+1\} \\ b_{k+1} \text{ si } i = k \\ b_{k} \text{ si } i = k+1 \end{cases}.$$

On remarque alors que la nouvelle somme $S\left(\overrightarrow{a},\overrightarrow{b'}\right)$ se trouve augmentée :

$$S\left(\overrightarrow{a}, \overrightarrow{b'}\right) - S\left(\overrightarrow{a}, \overrightarrow{b}\right) = \sum_{i=1}^{n} a_i b'_i - \sum_{i=1}^{n} a_i b_i = a_k b'_k + a_{k+1} b'_{k+1} - a_k b_k - a_{k+1} b_{k+1}$$

$$= a_k b_{k+1} + a_{k+1} b_k - a_k b_k - a_{k+1} b_{k+1} = \underbrace{(a_k - a_{k+1})(b_{k+1} - b_k)}_{\leq 0} \geq 0.$$

Il s'agit maintenant de réitérer le procédé tant que l'on peut le faire, et de montrer que l'on s'arrête à un moment.

Introduisons pour cela l'ensemble

$$\mathcal{I}\left(\overrightarrow{b}\right) = \left\{ (i,j) \, ; \quad \left\{ \begin{array}{c} i < j \\ b_i > b_j \end{array} \right\} \right.$$

 $(\mathcal{I} \text{ comme "inversion"})$ et montrons son cardinal (le nombre de couples qui nous dérangent) décroît de 1 lorsqu'on applique le procédé ci-dessus.

En effet, il s'agit d'observer que

$$\mathcal{I}\left(\overrightarrow{b'}\right) \simeq \mathcal{I}\left(\overrightarrow{b}\right) \backslash \{(k,k+1)\}$$

à la permutation de k et k+1 près. De façon plus formelle, on peut injecter $\mathcal{I}\left(\overrightarrow{b'}\right)$ dans $\mathcal{I}\left(\overrightarrow{b}\right)$ via

$$\begin{cases} (i,j) & \text{où } i,j \neq k, k+1 & \longmapsto & (i,j) \\ (i,k) & \longmapsto & (i,k+1) \\ (i,k+1) & \text{où } i \neq k & \longmapsto & (i,k) \\ (k,j) & \text{où } j \neq k+1 & \longmapsto & (k+1,j) \\ (k+1,j) & \longmapsto & (k,j) \end{cases}$$

dont l'image ne contient pas (k, k+1), qui est pourtant dans $\mathcal{I}\left(\overrightarrow{b}\right)$, d'où la décroissance cherchée.

En conclusion, on répète le procédé ci-dessus tant que $\mathcal{I}\left(\overrightarrow{b}\right)$ est non vide, et on finit nécessairement car le cardinal de $\mathcal{I}\left(\overrightarrow{b}\right)$ décroît strictement à chaque étape.

Dans le cas général où les a_i ne croissent pas, on les ordonne et on applique le résultat.

Pour obtenir le résultat sur la somme minimale, il suffit de poser $\alpha_i = -a_i$ et d'utiliser le cas maximal.

Remarque. On formalise ainsi le problème du marchand qui, pour gagner le plus d'argent possible, doit vendre en plus grande quantité ses produits les plus chers et inversement.

Application.

 $Si(u_n)$ est une suite injective d'entiers naturels, montrer que $\sum_{n>1} \frac{u_n}{n^2} = \infty$.

Solution proposée.

L'idée est d'appliquer l'inégalité du réordonnement aux sommes partielles $\sum_{i=1}^{n} \frac{u_i}{i^2}$, l'hypothèse d'injectivité masquant une condition de croissance.

Notons $u: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ pour se fixer les idées sur les ensembles de définition.

À n fixé, réordonnons les n premiers termes de (u_n) , mettons

$$1 \le u_{\varphi(1)} < u_{\varphi(2)} < \dots < u_{\varphi(n)}$$
.

On peut alors écrire $u_{\varphi(i)} \geq i$ pour i=1,...,n. En appliquant l'inégalité du réordonnement aux suites $\left(u_{\varphi(1)},...,u_{\varphi(n)}\right)$ et $\left(\frac{1}{1^2},...,\frac{1}{n^2}\right)$, on obtient

$$\sum_{i=1}^n \frac{u_i}{i^2} \ge \frac{u_{\varphi(1)}}{1^2} + \frac{u_{\varphi(2)}}{2^2} + \ldots + \frac{u_{\varphi(n)}}{n^2} \ge \frac{1}{1^2} + \frac{2}{2^2} + \ldots + \frac{n}{n^2} = \sum_{i=1,\ldots,n} \frac{1}{i} \ge \ln n.$$

Ceci tenant pour tout n, on en déduit $\sum_{i=1}^{\infty} \frac{u_i}{i^2} = \infty$.

9 Un exercice à sthûss pour la route

Étant donnés des réels $x_1, ..., x_n$, montrer l'inégalité

$$\sum_{i=1}^{n} \frac{x_i}{1 + x_1^2 + \dots + x_i^2} < \sqrt{n}.$$

Solution proposée.

La présence de carré incite à Cauchy-Schwarziser, ce qui permet en outre de faire apparaître le \sqrt{n} :

$$\sum_{i=1}^{n} \frac{x_i}{1 + x_1^2 + \dots + x_i^2} \le \sqrt{n} \sqrt{\sum_{i=1}^{n} \left(\frac{x_i}{1 + x_1^2 + \dots + x_i^2}\right)^2}.$$

Quant au gros terme sous la racine, on le majore subtilement par télescopage :

$$\left(\frac{x_i}{1+x_1^2+\ldots+x_i^2}\right)^2 \leq \frac{x_i^2}{\left(1+x_1^2+\ldots+x_i^2\right)\left(1+x_1^2+\ldots+x_{i-1}^2\right)} = \frac{1}{1+x_1^2+\ldots+x_{i-1}^2} - \frac{1}{1+x_1^2+\ldots+x_i^2}.$$

On a donc

$$\sum_{i=1}^n \left(\frac{x_i}{1+x_1^2+\ldots+x_i^2}\right)^2 \leq \frac{1}{1} - \frac{1}{1+x_1^2+\ldots+x_n^2} < 1, \ CQFD.$$