Summary

Themes

- Feedback
- Stability
- Robustness
- Performance
 - Frequency response
 - Loop shaping

Summary of Feedback

Benefits

- disturbance rejection
- robustness
- linearity improvement
- bandwidth improvement

Closed-loop Stability Required

Good tracking and disturbance attenuation are retained as long as

- closed-loop system remains stable
- the gain remains high

Under these conditions high-gain feedback implies robustness with respect to loop uncertainty

Pitfalls of High Gain Feedback

Potential problems

- naively making the gain large can easily result in an unstable feedback system
- even if feedback system is stable, overly large plant inputs may arise that exceed the plant capacity
- measurement noise causes loss of performance

Design Issues (recap)

Targets

- Closed-loop stability
- Disturbance attenuation
- Good command response
- Robustness
 - stability
 - performance

Limitations

- Plant capacity
- Measurement noise

System functions: L and S

Loop gain $\,L\,$

$$L = PC$$

• Sensitivity function S

$$y = \frac{1}{1+L}d$$

$$S$$

Disturbance Attenuation and Bandwidth

Disturbance Attenuation

- The smaller |S(jω)| is the more disturbances are attenuated at frequency ω
- |S| is small if the magnitude of the loop gain L is large
- L needs to be made large for frequencies where disturbance attenuation is needed
- However, this is limited by plant capacity

Bandwidth

- L can only be made large over a limited frequency band
- The size of this band is called the bandwidth B

Bandwidth and Crossover Region (S)

- Typical shape of magnitude of the sensitivity function:
 - low at frequencies up to the bandwidth
 - near 1 at frequencies above the bandwidth
- The frequency range around B is the crossover region
 - "peaking" of S should be avoided
 - otherwise disturbances are amplified

System functions: *TF* and *T*

Closed-loop transfer function TF

$$y = \frac{L}{1 + L} F r$$

$$TF$$

Complementary sensitivity function T

$$TF = \frac{L}{1+L}F$$

$$T$$

Command Response (T,F)

- Recall that T = 1 S
- T determines the command response it is close to 1 up to B
- When F = 1, closed-loop transfer function TF is low pass with the same bandwidth as the band for disturbance attenuation
- If a different command response is required, F can compensate for this

Measurement noise (T)

$$y = \underbrace{\frac{1}{1 + PC}}_{S} d + \underbrace{\frac{PC}{1 + PC}}_{T} Fr - \underbrace{\frac{PC}{1 + PC}}_{T} n$$

- T determines measurement noise sensitivity
- high frequencies: T should decrease as quickly as possible
- low frequencies: T is close to 1 - this emphasises the need for good low-noise sensors

System functions: S_u

• Control sensitivity function S_u

$$u = \underbrace{\frac{C}{1 + CP}}_{S_u} (Fr - n - d)$$

Plant Capacity (S_u)

Note that $T = S_u P$ Thus, requirements on S_u can be translated into requirements on T

- To prevent overly large inputs $S_u(T)$ should not be too large
- At low frequencies the loop gain should be high for low sensitivity, and the magnitude of T is close to 1
- This can lead to plant capacity being exceeded
- At high frequencies S_u should decrease as fast as possible, otherwise measurement noise affects the input this is consistent with the robustness requirement that T decrease fast

Plant Capacity (S_u) - r.h.p. zeros

When L = CP >> 1 then $S_u \approx \frac{1}{P}$ If the plant P has zeros in the right half plane, 1/P is unstable

- Unstable open loop plant zeros limit the closed-loop bandwidth
- S_u may only be made equal to 1/P up to the frequency which equals the magnitude of the r.h.p. zero with the smallest magnitude

Stability Robustness

Robustness

- For loop gain perturbations T needs to be small
- For inverse loop gain perturbations S needs to be small

Performance

- At high frequencies T needs to be small
- At low frequencies S needs to be small

Perturbations

- High frequency uncertainty (parasitics) causes significant loop gain perturbations
- low frequency uncertainty (load changes etc.) causes significant inverse loop gain perturbations

Crossover

 Neither S nor T can be small, they must therefore be prevented from peaking.
 Good stability margins help to ensure this

low frequencies

high frequencies

Performance Robustness

- Performance is determined by S, T,
 S_u and TF
- Since S_u and TF depend on S and T, we need only consider the effect of perturbations on S and T
- For robust S we need T_o small
- For robust T we need S_o small
- Normally, S is small at low frequencies, making T robust at low frequencies - this is the region where T's values are significant
- Conversely, T is normally small at high frequencies, making S robust at high frequencies - the region where S is significant

Denote nominal quantities by S_o etc.

Relative changes in 1/S and 1/T

$$\frac{\frac{1}{S} - \frac{1}{S_o}}{\frac{1}{S_o}} = \frac{S_o - S}{S} = T_o \frac{L - L_o}{L_o} = T_o \frac{\frac{1}{L_o} - \frac{1}{L}}{\frac{1}{L}}$$

$$\frac{\frac{1}{T} - \frac{1}{T_o}}{\frac{1}{T_o}} = \frac{T - T_o}{T} = S_o \frac{L - L_o}{L} = S_o \frac{\frac{1}{L} - \frac{1}{L_o}}{\frac{1}{L_o}}$$

Vector margin related to peak S Complementary vector margin related to peak T

$$s_{m} = \frac{1}{\max_{\omega} \left| S_{o}(j\omega) \right|}$$

$$r_{m} = \frac{1}{\max_{\omega} |T_{o}(j\omega)|}$$

Review of Design Requirements

Sensitivity S small at low frequency to achieve

- disturbance attenuation
- good command response
- robustness at low frequencies

Complementary sensitivity T small at high frequencies to prevent

- exceeding plant capacity
- adverse effects of measurement noise
- loss of robustness at high frequencies

In the Crossover Region peaking of both S and T should be avoided to prevent

- overly large disturbance sensitivity
- excessive influence of measurement noise
- loss of robustness

Loop Gain L

- Feedback system design can be seen as a process of loop shaping
- Performance and robustness requirements result in specifications on |S| in the low frequency region and on |T| in the high frequency region
- This results in bounds on the loop gain L

$$S = \frac{1}{1+L}, \ T = \frac{L}{1+L}, \ L = CP$$

Low frequencies:

require
$$S \ll 1$$
, $T \approx 1 \iff |L(j\omega)| >> 1$

High frequencies:

require
$$T \ll 1$$
, $S \approx 1 \Leftrightarrow |L(j\omega)| \ll 1$

Loop shaping

Low frequencies: large loop gain

High frequencies: small loop gain

 In the crossover region the phase is constrained because of stability

Crossover Region

- The more closely the Nyquist plot of L approaches -1 the more S peaks
- If the plot of L approaches -1 so does the plot of 1/L. Hence the more closely the plot of L approaches -1 the more T peaks
- Thus to avoid peaking we need good stability margins
- But gain and phase are not independent

$$S = \frac{1}{1+L},$$

$$T = \frac{L}{1+L} = \frac{1}{1+\frac{1}{L}}$$