Lesson 30. Multiple Logistic Regression – Part 1

1 The multiple linear regression model

The multiple initial regression model
• Binary response variable <i>Y</i>
• Quantitative or categorical explanatory variables X_1, \ldots, X_k
• Logit form of the model:
Probability form of the model:
• The explanatory variables can include <u>transformations</u> or <u>interaction terms</u> , like we saw for multiple <u>linear</u> regression
Interpreting the model
• The fitted model is
• Plug values of $X_1,, X_k$ into the fitted model \Longrightarrow solve for odds $(\hat{\pi}) = \frac{\hat{\pi}}{1 - \hat{\pi}}$ or $\hat{\pi}$
• The estimated slope $\hat{\beta}_i$ for explanatory variable X_i is
• Therefore, $e^{\hat{\beta}_i}$ is

• In other words:

2

3 Formal inference for multiple logistic regression

Test for single β_i	z-test (Wald test)
CI for β_i	$\hat{\beta}_i \pm z_{\alpha/2} S E_{\hat{\beta}_i}$
Test for overall model Compare nested models	LRT test Nested LRT test

3.1 z-test (Wald test) for the slope of a single predictor

- Question: after we account for the effects of all the other predictors, does the predictor of interest X_i have a significant association with Y?
- Formal steps:
 - 1. State the hypotheses:

$$H_0: \beta_i = 0$$
 versus $H_A: \beta_i \neq 0$

2. Calculate the test statistic:

$$z = \frac{\hat{\beta_i}}{SE_{\hat{\beta_i}}}$$

- 3. Calculate the *p*-value:
 - If the conditions for logistic regression hold, then the sampling distribution of the test statistic under the null hypothesis is a standard Normal distribution:

$$p$$
-value = $2[1 - P(Normal(0,1) < |z|)]$

4. State your conclusion, based on the given significance level α

If we reject H_0 (p-value $\leq \alpha$):

We see evidence that X_i is significantly associated with Y.

If we fail to reject H_0 (p-value $> \alpha$):

We do not see evidence that X_i is significantly associated with Y.

3.2 Confidence intervals for the slope of a single predictor

• The $100(1-\alpha)$ % confidence interval for the slope β_i is

$$(\hat{\beta}_i - z_{\alpha/2}SE_{\hat{\beta}_i}, \hat{\beta}_i + z_{\alpha/2}SE_{\hat{\beta}_i})$$

• The $100(1-\alpha)\%$ confidence interval for the odds ratio e^{β_i} is

$$(e^{\hat{\beta}_i-z_{\alpha/2}SE_{\hat{\beta}_i}},e^{\hat{\beta}_i+z_{\alpha/2}SE_{\hat{\beta}_i}})$$

2

3.3 Likelihood ratio test (LRT) for model utility

- Question: Is the overall model effective?
- Formal steps:
 - 1. State the hypotheses:

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$
 versus $H_A:$ at least one $\beta_i \neq 0$

2. Calculate the test statistic:

$$G = -2\log(L_0) - (-2\log(L))$$
null deviance recidual deviance

- 3. Calculate the *p*-value:
 - If the conditions for logistic regression hold, then the sampling distribution of the test statistic under the null hypothesis is χ^2 with k degrees of freedom:

$$p$$
-value = $1 - P(\chi^2(df = k) < G)$

4. State your conclusion, based on the given significance level α

If we reject H_0 (p-value $\leq \alpha$):

We see significant evidence that the model is effective.

If we fail to reject H_0 (p-value $> \alpha$):

We do not see significant evidence that the model is effective.

3.4 Nested likelihood ratio test (LRT) to compare models

• Question: is the full or reduced model better?

Full model:
$$logit(\pi) = \beta_0 + \beta_1 X_1 + \dots + \beta_{k_1} X_{k_1} + \beta_{k_1 + 1} X_{k_1 + 1} + \dots + \beta_{k_1 + k_2} X_{k_1 + k_2}$$

Reduced model: $logit(\pi) = \beta_0 + \beta_1 X_1 + \dots + \beta_{k_1} X_{k_1}$

- Formal steps:
 - 1. State the hypotheses:

$$H_0: \ \beta_{k_1+1} = \beta_{k_1+2} = \dots = \beta_{k_1+k_2} = 0$$
 (reduced model is more effective)
 $H_A:$ at least one $\beta_i \neq 0$ ($i \in \{k_1+1,\dots,k_1+k_2\}$) (full model is more effective)

2. Calculate the test statistic:

$$G = (residual deviance for reduced model) - (residual deviance for full model)$$

- 3. Calculate the *p*-value:
 - If the conditions for logistic regression hold, then the sampling distribution of the test statistic under the null hypothesis is χ^2 with k_2 degrees of freedom:

$$p$$
-value = $1 - P(\chi^2(df = k_2) < G)$

4. State your conclusion, based on the given significance level α

If we reject H_0 (*p*-value $\leq \alpha$):

We see significant evidence that the full model is more effective.

If we fail to reject H_0 (p-value > α):

We do not see significant evidence that the full model is more effective.

A Plots for Part 2

A.1 Example 2

A.2 Example 3

