CFRP (Isotropic)

The material. Carbon fiber reinforced polymer (CFRP) composites offer greater stiffness and strength than any other type, but they are considerably more expensive than glass fiber reinforced polymer (GFRP). Continuous fibers in a polyester or epoxy matrix give the highest performance. The fibers carry the mechanical loads, while the matrix material transmits loads to the fibers and provides ductility and toughness as well as protecting the fibers from damage caused by handling or the environment. It is the matrix material that limits the service temperature and processing conditions.

Composition

Epoxy+ continuous HS carbon fiber reinforcement (0, + -45, 90), quasi-isotropic lay-up

General properties					
Density	1,500	_	1,600	kg/m ³	
Price	40.0	_	44.0	USD/kg	
Mechanical properties					
Young's modulus	69	_	150	GPa	
Yield strength (elastic limit)	550	_	1,050	MPa	
Tensile strength	550	_	1,050	MPa	
Elongation	0.32	_	0.35	%	
Hardness—Vickers	10.8	_	21.5	HV	
Fatigue strength at 10 ⁷ cycles	150	_	300	MPa	
Fracture toughness	6.12	_	20	$MPa \cdot m^{1/2}$	
Thermal properties					
Maximum service temperature	140	_	220	°C	
Thermal conductor or insulator?	Poor insulator				
Thermal conductivity	1.28	_	2.6	$W/m \cdot K$	
Specific heat capacity	902	_	1,037	J/kg · K	
Thermal expansion coefficient	1	_	4	μstrain/°C	
Electrical properties					
Electrical conductor or insulator? Electrical resistivity	Poor conduction 1.65×10^5		9.46×10^{5}	μohm · cm	

A CFRP bike frame, courtesy TREK

Eco properties: material

Global production, main component Embodied energy, primary production CO ₂ footprint, primary production Water usage	2.8×10^4 450 33 360	_ _ _	500 36 1,367	metric ton/yr MJ/kg kg/kg L/kg
Eco properties: processing				
Simple composite molding energy Simple composite molding CO ₂ Advanced composite molding energy Advanced composite molding CO ₂	9 0.77 21 1.7	- - -	12.9 0.89 23 1.8	MJ/kg kg/kg MJ/kg kg/kg
End of life				
Recycle fraction in current supply Heat of combustion Combustion CO ₂	0 31 3.1	_ _ _	33 3.3	% MJ/kg kg/kg

Typical uses. Lightweight structural members in aerospace, ground transportation, and sports equipment such as bikes, golf clubs, oars, boats, and racquets; springs; pressure vessels.