Dynamic Programming and Reinforcement Learning Assignment4 Report

Chih-Chieh Lin (2700266) Jiacheng Lu (2686004)

January 3, 2021

Introduction

This Report describes our solutions and methods for solving a shortest route problem in a 50x50 crossings system. Regarding the several questions mentioned in this assignment, the relevant solutions will be placed in the following sections.

1 Realization of Congestion

To realize the transition probability, we create an three-dimensional array composed of the probability to four direction in each state. To be more specific, the size of this array is 50x50x4. Take [1,1,0] for example, it represents the probability of successfully reaching the state on top of [1,1]. We define that 0,1,2,3 represent the probability of going up, down, left, right. Every road segment transition probability is generated randomly from 0.1, ..., 1.

2 Simple Heuristic

As for simple heuristic method, we create another array composed of 1 dividing by the probability. We consider the 1/probability as the cost when the agent decide to pass through the road. Afterwards, we implement the simple heuristic method by this array. This method only takes the roads with the direction pointing to target coordinate, and always picks the road with minimum cost.

3 System of Equations

In this section, we managed to use Bellman-Ford algorithm to find the shortest path to target coordinate (0,9). The value in the array composed of 1 dividing by probability is considered as the weights, so that we can use these weights to find the shortest path to the target.

$$weight = \frac{1}{transition_probability}$$

The equations for Bellman-Ford is:

$$cost[v] = min(cost[u] + cost(v, u))$$

Therefore, this method would provide us with the minimum cost from given state to the target state; and it's much smaller than the one obtained by heuristic method. Part of the final minimum cost matrix is shown in appendix 1

4 Dynamic Programming

For dynamic programming, here we apply value iteration. We compute the optimal state value function by iteratively improving the estimate of V(s). To simplify the calculation, we set the reward(time cost) at -1 for each action. The function terminates when reaching target(0,9). Firstly, for each state s, we initialize V(s) = 0. Secondly, for each state, we update:

$$V(s) = R(s) + \max_{a \in A} \gamma * \sum_{s'} P_{sa}(s')V(s')$$

We repeat step two until convergence. Here we set $\epsilon = 0.0001$, it takes 160 iterations to converge. Then we can have the fastest route and lowest cost of reaching target. The expected cost matrix is shown in Figure 2.

5 Q-learning with ε -greedy

When it comes to Q-learning, we consider the following equation:

$$Q^{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \cdot [r + \gamma \cdot maxQ(s_{t+1}, a) - Q(s_t, a_t)]$$

We create an 50*50*4 Q-table, 4 represents four potential actions.

- 1. Initialize the Q-value to 0
- 2. Choose an action to execute according to the Q-values
- 3. Update Q-table

We repeat step 23 until reaching target and get an reward of 1. For ϵ -greedy, we set $learning_rate = 0.1$, $\epsilon = 0.99$, $\epsilon_decay = 0.005$. We set start point at (49, 49) and run 2500 episodes to test the performance, the result shows very clearly that the cost reduced from 15566 in the first episode to 162 in the last episode. The converging procedure was shown in Figure 5 For random start point, we test 100000 episodes. Part of the Q-table is shown in Figure 3

6 Modification of Reward Function

In this section, we modify the reward function to ease learning with Q-learning while introducing a limited bias. We decided to add reward while ta king actions that intended to move towards destination. For example, when the current state is at the left side of (0, 9), and the action is to move right, there is a direction reward parameter in the reward function. We take directionReward = 0.05 Then the equation for actions moving towards target is transformed to:

$$Q^{new}(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \cdot [r + directionReward + \gamma \cdot maxQ(s_{t+1}, a) - Q(s_t, a_t)]$$

The rest steps is similar to the above section. We set 10000 episodes from random start points. In order to avoid the situation of stuck in one episode, we set the maximum step for each episode at 5000. We find out that the running time of each episode is much longer than Q-learning without bias, and much frequent of quitting episode because of max step restriction. The Q-table is shown in 4. We find out that although Q-values have variants, the best action (action with the biggest Q-value) is close to last section.

7 Comparison of Different Approaches

The result of value iteration and system of equation is very close. For example, starting from (49, 49) the minimum expect cost is 115.99 for dynamic programming and 115.73 for system of equations. The result of a simple heuristic algorithm is 156.17. The heuristic runs pretty fast in our test, while dynamic programming and system of equation take more time. At our parameter set for Q-learning, the minimum cost for starting from (49, 49) is 162. Furthermore, we show the movement procedure in Figure 6.

We also tried different parameter set while implementing Q-learning, and find out that an appropriate parameter setting impacts running time greatly. Due to the restriction of episodes, some of the Q-table is not updated and remained 0. However, for those updated points, the best action is close in bias and non-bias Q-table.

Appendix A Results

	0	1	2	3	4	5	6	7	8	9	10	11
0	14.56349	13.13492	10.63492	8.96825	7.53968					0.00000	5.00000	6.42857
1	14.56349	13.13492	10.63492	7.53968	6.42857	5.00000	3.88889				2.50000	6.42857
2	15.37302	12.03968	9.53968	8.53968		6.42857	5.31746		2.36111		4.16667	6.66667
3	16.53968	13.20635	11.20635	9.96825	11.07937	7.98413	6.98413		3.47222		5.41667	7.41667
4	15.88492	14.45635	12.50794	11.07937		9.66270	8.23413	7.00000	5.97222	8.47222	6.52778	9.86111
5	17.13492	15.04762	13.93651	14.42460	12.99603		9.48413	8.75000	7.63889	9.30556		13.19444
6	19.13492	17.54762	18.93651	20.15079	14.66270		11.49603	10.06746	9.06746	10.55556	9.44444	14.19444
7	20.13492	19.48413	18.48413	16.81746	15.81746	13.81746	13.49603	11.06746	10.49603	11.94444	10.69444	15.30556
8	21.56349	20.42857	19.17857		16.49603	15.24603	13.56746		13.56746	13.61111	11.69444	16.69444
9			20.03968	19.03968	18.17857	15.67857	14.56746	13.98413	15.98413	17.65079	14.19444	16.19444
10	24.15079		21.46825	20.71825	18.21825	17.10714	17.41270	15.98413	16.98413	19.31746	15.44444	16.44444
11	24.91270	23.24603	22.13492	20.46825	19.21825	18.10714	19.41270	17.09524	18.09524	19.34524	18.77778	18.44444
12	26.99603	24.49603	25.46825	25.88492		21.44048	20.84127	18.34524	20.34524	20.59524	20.20635	22.44444
13	26.92460	25.92460	26.89683		23.66270	22.69048	22.50794	19.59524		21.84524	21.20635	22.48413
14	30.25794	28.42460	28.18651		25.09127		27.86905		24.52381		23.20635	24.28968
15	30.78571	29.67460	29.42460	28.42460	29.67460		27.51190		25.84524		24.45635	24.87302
16			30.53571	30.42460		33.42460	26.85714	25.60714	28.10714		28.80159	28.20635
17		33.00794	34.25794	33.60714	31.94048	30.27381	28.27381	27.27381	28.70238	29.95238	30.46825	29.63492
18	38.00794	34.67460	35.05159	34.05159	33.05159	31.05159	29.38492	29.77381	32.03571	31.06349	36.06349	31.06349
19	39.17460	36.67460				35.81349	30.81349	30.88492	31.99603	32.06349	34.06349	32.49206

Figure 1: Part of the expected cost Matrix calculated by system of equation

Figure 2: Part of the expected cost Matrix calculated by dynamical programming

	0	1	2	3
0	0.00000	0.00000	0.00000	0.00039
1	0.00000	0.00909	0.00000	0.00000
2	0.00000	0.00000	0.00117	0.00000
3	0.00000	0.00000	0.00009	0.00000
4	0.00000	0.00000	0.00000	0.00000
5	0.00000	0.08046	0.00000	0.00060
6	0.00000	0.01216	0.00699	0.37620
7	0.00000	0.08316	0.26429	0.97529
8	0.00000	0.29730	0.30107	0.99866
9	0.00000	0.00000	0.00000	0.00000
10	0.00000	0.97823	0.99499	0.93936
11	0.00000	0.91271	0.16014	0.11928
12	0.00000	0.93549	0.07229	0.02976
13	0.00000	0.00317	0.90420	0.03357
14	0.00000	0.00918	0.79512	0.00064
15	0.00000	0.00002	0.56917	0.00876
16	0.00000	0.00512	0.29692	0.00001
17	0.00000	0.00855	0.10498	0.00081
18	0.00000	0.00003	0.01680	0.00002
19	0.00000	0.00000	0.00032	0.12974

Figure 3: Part of the Q-table (first line) Q-learning with $\varepsilon\text{-greedy}$

	0	1	2	3
0	0.00000	0.00001	0.00000	0.00250
1	0.00000	0.00000	0.00003	0.01150
2	0.00000	0.00164	0.00020	0.04332
3	0.00000	0.00286	0.00107	0.14541
4	0.00000	0.05114	0.00666	0.38766
5	0.00000	0.10491	0.09363	0.74757
6	0.00000	0.87864	0.89518	0.95774
7	0.00000	0.91684	0.94595	0.97980
8	0.00000	0.87838	0.78400	0.99882
9	0.00000	0.00000	0.00000	0.00000
10	0.00000	0.61702	0.99604	0.46470
11	0.00000	0.00000	0.22192	0.00895
12	0.00000	0.91744	0.00001	0.01489
13	0.00000	0.00541	0.86486	0.02529
14	0.00000	0.00629	0.77561	0.00477
15	0.00000	0.00030	0.64871	0.00000
16	0.00000	0.00019	0.05906	0.00001
17	0.00000	0.00000	0.00380	0.00000
18	0.00000	0.00000	0.00017	0.00000
19	0.00000	0.00000	0.00001	0.00000

Figure 4: Part of the Q-table (first line) Q-learning with limited bias $\,$

Figure 5: The Converging procedure of Q learning

Figure 6: Move Procedure of 3 different methods