

Nanjing University

ACM-ICPC Codebook 2

Number Theory Linear Algebra Combinatorics

2 CONTENTS

Contents

1	Nun	nber Theory	4
	1.1	Modulo operations	4
		1.1.1 Modular exponentiation (fast power-mod)	4
			4
		1.1.3 Modular multiplication on long long	4
	1.2	Extended Euclidian algorithm	5
		1.2.1 Modular multiplicative inverse	5
	1.3	Primality test (Miller-Rabin)	6
	1.4	Sieve of Eratosthenes	6
	1.5	Number theoretic transform	7
2	Linear Algebra		
	2.1	Modular exponentiation of matrices	8
3	Con	nbinatorics	10
	3.1	Möbius inversion	10
	3.2	Möbius transformation	10
	3.3	Pólya enumeration theorem	10

CONTENTS

3

1 Number Theory

1.1 Modulo operations

1.1.1 Modular exponentiation (fast power-mod)

Calculate $b^e \mod m$.

Time complexity: $O(\log e)$

```
LL powmod(LL b, LL e, LL m){
1
2
       LL r = 1;
3
       while (e){
            if (e \& 1) r = r * b % m;
4
            b = b * b % m;
5
            e >>= 1;
6
7
8
       return r;
9
   }
```

1.1.2 Mathematical modulo operation

The result has the same sign as divisor.

```
inline LL mathmod(LL a, LL b){
   return (a % b + b) % b;
}
```

1.1.3 Modular multiplication on long long

Calculate $ab \mod m$, where a, b, m are long long integers.

 \triangle a, b, m must be non-negative.

Time complexity: $O(\log b)$

```
1  LL mulmod(LL a, LL b, LL m){
2   LL r = 0;
3   a %= m; b %= m;
4  while(b) {
5    if(b & 1) r += a, r %= m;
6   b >>= 1;
7   if(a < m - a)</pre>
```

1.2 Extended Euclidian algorithm

Solve $ax + by = g = \gcd(a, b)$ w.r.t. x, y.

If (x_0, y_0) is an integer solution of $ax + by = g = \gcd(x, y)$, then every integer solution of it can be written as $(x_0 + kb', y_0 - ka')$, where a' = a/g, b' = b/g, and k is arbitrary integer.

 \triangle x and y must be positive.

Usage:

```
exgcd(a, b, g, x, y) Find a special solution to ax+by=g=\gcd(a,b).
```

Time complexity: $O(\log \min\{a, b\})$

```
void exgcd(LL a, LL b, LL &g, LL &x, LL &y){
   if (!b) g = a, x = 1, y = 0;
   else exgcd(b, a % b, g, y, x), y -= x * (a / b);
}
```

1.2.1 Modular multiplicative inverse

An integer a has modular multiplicative inverse w.r.t. the modulus m, iff gcd(a, m) = 1. Assume the inverse is x, then

```
ax \equiv 1 \mod m.
```

Call exgcd(a, m, g, x, y), if g = 1, x + km is the modular multiplicative inverse of a w.r.t. the modulus m.

```
inline LL minv(LL a, LL m){
    LL g, x, y;
    exgcd(a, m, g, x, y);
    return (x % m + m) % m;
}
```

Or, by Fermat's little theorem $(a^{p-1} \equiv 1 \mod p)$, when m = p is a prime, the multiplicative inverse can also be written as $a^{-1} = (a^{p-2} \mod p)$.

1.3 Primality test (Miller-Rabin)

Test whether n is a prime.

 \triangle When n exceeds the range of int, the mul-mod and pow-mod operations should be rewritten.

Requirement:

1.1.1 Modular exponentiation (fast power-mod)

Time complexity: $O(\log n)$

```
bool test(LL n){
 1
        if (n < 3) return n==2;
 2
        //! The array a[] should be modified if the range of x changes.
 3
        const LL a[] = {2LL, 7LL, 61LL, LLONG_MAX};
 4
 5
        LL r = 0, d = n-1, x;
 6
        while (~d & 1) d >>= 1, r++;
        for (int i=0; a[i] < n; i++){</pre>
 7
             x = powmod(a[i], d, n);
 8
             if (x == 1 | | x == n-1) goto next;
 9
             rep (i, r) {
10
                 x = (x * x) % n;
11
12
                 if (x == n-1) goto next;
13
            return false;
14
15
    next:;
16
17
        return true;
18
    }
```

1.4 Sieve of Eratosthenes

Usage:

```
sieve() Generate the table.

p[i] True if i is not a prime; otherwise false.
```

Time complexity: Approximately linear.

```
const int MAXX = 1e7+5;
bool p[MAXX];

void sieve(){
    p[0] = p[1] = 1;
    for (int i = 2; i*i < MAXX; i++) if (!p[i])
        for (int j = i*i; j < MAXX; j+=i) p[j] = true;
}</pre>
```

1.5 Number theoretic transform

 \triangle The size of the sequence must be some power of 2.

 \triangle When performing convolution, the size of the sequence should be doubled. To compute k, one may call 32- builtin clz(a+b-1), where a and b are the lengths of two sequences.

Usage:

```
NTT(k) Initialize the structure with maximum sequence length 2^k.

ntt(a) Perform number theoretic transform on sequence a.

intt(a) Perform inverse number theoretic transform on sequence a.

conv(a, b) Convolve sequence a with b.
```

Time complexity: $O(n \log n)$.

```
const int NMAX = 1<<21;</pre>
 1
    // 998244353 = 7*17*2^23+1, G = 3
 2
    const int P = 1004535809, G = 3; // = 479*2^21+1
 3
 4
 5
    struct NTT{
        int rev[NMAX];
 6
 7
        LL omega[NMAX], oinv[NMAX];
 8
         int g, g inv; // q: q n = G^{((P-1)/n)}
        int K, N;
 9
10
         LL powmod(LL b, LL e){
11
12
             LL r = 1;
             while (e){
13
                 if (e\&1) r = r * b % P;
14
                 b = b * b % P;
15
16
                 e >>= 1;
17
18
             return r;
        }
19
20
21
        NTT(int k){
22
             K = k; N = 1 << k;
```

```
23
             g = powmod(G, (P-1)/N);
24
            g inv = powmod(g, N-1);
             omega[0] = oinv[0] = 1;
25
             rep (i, N){
26
                 rev[i] = (rev[i>1]>>1) | ((i&1)<<(K-1));
27
28
29
                     omega[i] = omega[i-1] * g % P;
                     oinv[i] = oinv[i-1] * g inv % P;
30
31
                 }
             }
32
        }
33
34
        void ntt(LL* a, LL* w){
35
             rep (i, N) if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
36
             for (int 1 = 2; 1 <= N; 1 *= 2){
37
                 int m = 1/2;
38
                 for (LL* p = a; p != a + N; p += 1)
39
40
                     rep (k, m){
                         LL t = w[N/1*k] * p[k+m] % P;
41
                         p[k+m] = (p[k] - t + P) \% P;
42
43
                         p[k] = (p[k] + t) \% P;
44
                     }
45
             }
        }
46
47
        void ntt(LL* a){_ntt(a, omega);}
48
        void intt(LL* a){
49
            LL inv = powmod(N, P-2);
50
             _ntt(a, oinv);
51
             rep (i, N) a[i] = a[i] * inv % P;
52
        }
53
54
        void conv(LL* a, LL* b){
55
             ntt(a); ntt(b);
56
57
             rep (i, N) a[i] = a[i] * b[i] % P;
58
             intt(a);
        }
59
60
    };
```

2 Linear Algebra

2.1 Modular exponentiation of matrices

Calculate $b^e \mod modular$, where b is a matrix. The modulus is element-wise.

Usage:

```
n Order of matrices. 
modular The divisor in modulo operations. 
m_powmod(b, e) Calculate b^e \mod modular. The result is stored in r.
```

Time complexity: $O(n^3 \log e)$

```
const int MAXN = 105;
 1
    const LL modular = 1000000007;
 2
    int n; // order of matrices
 3
 4
    struct matrix{
 5
        LL m[MAXN][MAXN];
 6
 7
 8
        void operator *=(matrix& a){
            static LL t[MAXN][MAXN];
 9
            Rep (i, n){
10
                 Rep (j, n){
11
12
                     t[i][j] = 0;
13
                     Rep (k, n){
14
                         t[i][j] += (m[i][k] * a.m[k][j]) % modular;
                         t[i][j] %= modular;
15
16
                     }
                }
17
18
            memcpy(m, t, sizeof(t));
19
20
        }
21
    };
22
    matrix r;
23
24
    void m powmod(matrix& b, LL e){
25
        memset(r.m, sizeof(r.m), 0);
26
        Rep(i, n)
27
            r.m[i][i] = 1;
28
        while (e){
            if (e & 1) r *= b;
29
            b *= b;
30
31
            e >>= 1;
32
        }
33
    }
```

3 Combinatorics

3.1 Möbius inversion

Möbius function:

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } p_i{}^{a_i} \mid n \text{ where } a_i > 0 \\ (-1)^r & \text{if } n \text{ is the product of } r \text{ distinct primes} \end{cases}$$

If
$$S_f(n) = \sum_{d|n} f(d)$$
, then $f(n) = \sum_{d|n} \mu(d) S_f(n/d)$.

3.2 Möbius transformation

3.3 Pólya enumeration theorem