ANALYSE DES DONNEES (Partiel)

Master M1 MMD, 14 mars 2014

Calculatrice autorisée, documents autorisés : 2 feuilles recto-verso.

Barême approximatif: exercice 1 (10 pts); exercice 2 (10 pts).

Les exercices 1 et 2 de ce sujet peuvent être traités de façon indépendante.

Exercice 1

On considère un tableau X de données, comportant p lignes et n colonnes, et de terme général noté x_i^j avec $i \in I = \{1, ..., p\}$ et $j \in J = \{1, ..., n\}$. Pour tout $k \in \mathbb{N} \setminus \{0\}$, on note \mathbb{I}_k le vecteur de \mathbb{R}^k dont les coordonnées sont toutes égales à 1. On suppose que la condition suivante, notée (1), est vérifiée :

- (1) Il existe une constante c telle que pour tout $j \in J$, on a $x_1^j + \ldots + x_p^j = c$.
- 1 Soit \mathcal{M} le nuage des n points x^j (j ème vecteur colonne de X) avec $j \in J$, chaque point x^j étant muni du poids $\frac{1}{n}$. On note g_X le centre de gravité de \mathcal{M} . Pour quelle valeur de la constante γ a-t'on $g_X = \gamma X \mathbb{1}_n$?
- 2 Soit Y le tableau obtenu après avoir centré X. On rappelle l'égalité $Y = X g_X \mathbb{1}'_n$. En utilisant cette égalité, et en notant V_X la matrice variance relative au nuage \mathcal{M} , montrer que $V_X = \frac{1}{n} X X' g_X g_X'$.
- 3 Montrer que (1) est équivalent à l'existence d'une constante c telle que $X'\mathbb{1}_p = c\mathbb{1}_n$.
- 4 Montrer que le vecteur $\mathbb{1}_p$ dirige un axe factoriel de l'ACP sur matrice variance du tableau X. Préciser la valeur de l'inertie du nuage projeté sur cet axe.
- 5 On pose Z=Y'. Soit $\mathcal N$ le nuage des p points y_i (i ème vecteur colonne de Y') avec $i\in I$, chaque point y_i étant muni du poids $\frac1p$. On note g_Z le centre de gravité du nuage $\mathcal N$. Montrer que $g_Z=0$.
- 6 Considérons les deux ACP sur matrice variance précédentes, c.-à-d. celle du tableau *X* et celle du tableau *Z*. Expliquer pourquoi ces deux ACP admettent le même nombre d'axes factoriels non triviaux.
- 7 Soit u^{α} un vecteur axial factoriel (non trivial) de l'ACP sur matrice variance du tableau X. On note λ_{α} la valeur propre associée à u^{α} . Montrer que $Y'u^{\alpha}$ dirige un axe factoriel (non trivial) de l'ACP sur matrice variance du tableau Z. Préciser la valeur de l'inertie du nuage \mathcal{N} projeté sur cet axe factoriel.
- 8 Soit F_{α} (resp. G_{α}) la α ème composante principale de l'ACP sur matrice variance du tableau X (resp. Z). Exprimer G_{α} en fonction de n, λ_{α} , Y et F_{α} .

Exercice 2

On considère le tableau de données, noté X, et défini par :

X =		j_1	j ₂	jз	j_4	<i>j</i> 5	j ₆
	i_1	1	1	2	0	3	
	i_2	1 0 1	1	2	1	1	3
	i_3	1	2	4	1	4	4

où la i ème ligne désigne la variable x_i et la j ème colonne désigne l'individu x^j . Par la suite, on considère les résultats de l'ACP sur matrice variance du tableau X.

- 1 Calculer les coordonnées du centre de gravité g du nuage \mathcal{M} constitué des vecteurs colonnes de X (munis du même poids 1/6), et en déduire le tableau Y centré qui est associé à X. On présentera Y sous la forme $Y=\frac{1}{3}Y_1$ où Y_1 est une matrice à coefficients entiers.
- 2 Soit V la matrice variance du tableau X. Compléter les valeurs manquantes dans l'expression de la matrice V ci-dessous :

$$V = \frac{1}{18} \left(\begin{array}{ccc} 16 & 1 & 17 \\ 1 & 16 & ? \\ 17 & ? & ? \end{array} \right).$$

- 3 Expliquer pourquoi le nombre d'axes factoriels non triviaux est égal à 2.
- 4 Calculer l'inertie totale du nuage étudié.
- 5 Montrer que $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ est un vecteur directeur d'un axe factoriel non trivial.
- 6 Calculer le pourcentage d'inertie expliquée par l'axe factoriel déterminé à la question 5. Cet axe est-il le premier ou le second axe factoriel ?
- 7 Déterminer les coordonnées du premier vecteur axial factoriel, noté u^1 (on choisira sa première coordonnée de façon à ce qu'elle soit positive).
- 8 Calculer la première composante principale de l'individu j_2 , notée $\Psi_1^{j_2}$.
- 9 Calculer la contribution de l'individu j_2 à l'inertie du premier axe, notée $CTR_1(j_2)$.
- 10 Calculer la qualité de représentation de l'individu j_2 sur le premier axe, notée $COR_1(j_2)$.
- 11 Calculer la contribution de la variable i_1 à l'inertie du premier axe, notée $CTR_1(i_1)$.