Analyse I (Partie B): Les équations différentielles ordinaires

Définition

- · Une EDO (d'ordre n) est une équation de type $f(t, \partial_t^n u, ..., \partial_t^1 u, u) = 0$
- · Une solution pour une EDO de ce type est une fonction $u:I\to\mathbb{R}$ où $I\subseteq\mathbb{R}$ qui satisfait l'EDO i.e u est n fois dérivable sur I et $\forall t \in I, f(t, \partial_t^n u, ..., \partial_t^1 u, u) = 0$

Les EDO linéaires homogènes

· Forme générale : Une EDO linéraire homogène est de la forme :

$$\sum_{i=0}^{n} a_i(t) \partial_t^i u(t) = 0$$

- $\sum_{i=0}^n a_i(t)\partial_t^i u(t)=0$ Exemple : $\sin(t)\partial_t^3 u(t)+t^2\partial_t u(t)-5u(t)=0$
- $-\frac{\partial^k (u_1(t) + u_2(t))}{\partial^k (\alpha u_1(t))} = \partial^k u_1(t) + \partial^k u_2(t)$ $-\frac{\partial^k (\alpha u_1(t))}{\partial^k (\alpha u_1(t))} = \alpha \partial^k u_1(t)$
- $-\partial^k$ est un opérateur linéaire.

Conséquences

Si

- · $u_1(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$ et
- · $u_2(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$,

- · $u_1(t) + u_2(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$
- · $\alpha u_1(t)$ est solution de $\sum_{i=0}^n a_i(t) \partial_t^i u(t) = 0$.

Principe de superposition

Si on connaît une solution particulière de l'équation notée $u_p(t)$ et si $u_0(t)$ est solution de l'EDO homogène, alors les solutions de l'EDO seront de la forme $u(t) = u_p(t) + u_0(t)$.

Résoudre une EDO

Par principe de superposition, on va devoir trouver une solution particulère et une solution de l'équation homogène.

Résoudre une équation homogène

- · Trouver le polynome caractéristique $\sum_{i=0}^{n} a_i(t)x^i$.
- · Trouver les racines du polynome caractéristique et leurs multiplicité. · Les solutions du polynôme de la forme $\sum_{i} P_{i}(t)e^{\lambda it}$ où λi est la racine du polynome caractéristique et $P_i(t)$ est le polynôme de degré $< m_i$ qui est la multiplicité de la racine λ_i .

Trouver une solution particulière de l'équation $\sum_{i=0}^{n} a_i(t) \partial_t^i u(t) = q(t)e^{ut}$ où $u \in$ \mathbb{R} , q(t) est un polynôme.

Il y a deux cas:

- \cdot Si u est racine du polynome caractéristique, alors il existe une solution de la forme $t^m r(t) e^{ut}$ où m
 est la multiplicité de u et r(t) est un polynome de degré
 \leq au degré de
- · Si u n'est pas une racine du polynome caractéristique, alors il existe une solution particulière de la forme $r(t).e^{ut}$ où r(t) est un polynome de degré \leq degré q(t)

Remarque

- · Pour trouver les solution réelles de l'EDO, il faut prendre la partie réelle des solution \mathbb{C} .
- $cos(t) = \frac{e^{it} + e^{-it}}{2}$ $sin(t) = \frac{e^{it} e^{-it}}{2i}$
- $\cdot cosh(t) =$
- $\cdot sinh(t) =$