Reinforcement Learning Lecture 3

Planning

Closed Form Solution of Value Function

Iterative Policy Evaluation

Robert Peharz

Institute of Theoretical Computer Science Graz University of Technology Winter Term 2023/24

Recap

A Markov Decision Process (MDP) is a 3-tuple where (S, A, p)S' is a state space (set of states of environment) A is an action space (set of actions of agent) p is called the dynamics of the MDP. Formally, it is a conditional probability distribution $p(s', r \mid s, a)$ s' & S' is the value of the next state St+1, TER is the value of the reward Rt+1, ses is the value of the current state St, a & of is the value of the selected action At.

Recap

			. /							
7	ah	S	it	io	h	P	ias	ra	m	

			1
1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Grid World

(conditional distribution over actions given current state)

Subsumes deterministic policies

$$\iint_{Sto} (\alpha | S) := \begin{cases} 1 & \text{if } \iint_{det} (S) = \alpha \\ 0 & \text{otherwise} \end{cases}$$

Recap

The discounted return at time t is defined as
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$0 \le \gamma \le 1$$

The value function
$$V_{\pi}: S \to \mathbb{R}$$
 is defined as

$$V_{\pi}(s) := \mathbb{E}_{\pi} [G_{\epsilon} | S_{\epsilon} = s] = \mathbb{E}_{\pi} \left[\sum_{\kappa=0}^{\infty} g^{\kappa} R_{\epsilon,\kappa,n} | S_{\epsilon} = s \right]$$

The expected discounted return when following policy \mathcal{N} , and starting from $s \in S$ (t is any arbitrary time step).

Bellman Expectation Equation

$$V_{R}(s) = |E_{At,R_{t+1},S_{t+1}}[R_{t+1} + \gamma V_{R}(S_{t+1})|S_{t} = s]$$

Image: wikipedia.org

Recap

$$V_{\pi}(s) = \sum_{\alpha} \pi(\alpha | s) \left[\sum_{s', \Gamma} p(s', \Gamma | s, \alpha) \left(r + \gamma V_{\pi}(s') \right) \right]$$

$$= \gamma(s) + \gamma \sum_{s'} p(s'|s) V_{\pi}(s')$$

where

$$\frac{1}{2} = \sum_{\alpha} \prod_{\alpha} (\alpha | s) \sum_{\alpha} p(s', \tau | s, \alpha) \tau = \sum_{\alpha} \prod_{\alpha} (\alpha | s) \tau(s, \alpha)$$

$$p(s'|s) = \sum_{\alpha} \sum_{\beta} n(\alpha|s) p(s', \Gamma|s, \alpha),$$
 $p(s'|s) = \sum_{\alpha} \sum_{\beta} n(\alpha|s) p(s', \Gamma|s, \alpha),$
 $p(s'|s) = \sum_{\alpha} \sum_{\beta} n(\alpha|s) p(s', \Gamma|s, \alpha),$

Planning, Model-based RL, Model-free RL Is MDP known? Planning — historic > Reinforcement Learning Are we trying to (explicitly) learn (parts of) the MDP? **Model-based RL** Model-free RL

Fundamental Problems in Planning & RL

Policy Evaluation, Prediction - How good is my policy?

Given a policy Tr, compute the value function va

Control - What is the best policy?

How to improve a given policy IT, or even find an optimal policy?

The two problems are related, and the algorithms to solve them are similar

Planning: Policy Evaluation, Prediction

Solving the Bellman Equation(s)

· note that we actually have one Bellman equation per state:

$$V_{\pi}(S_1) = \Gamma(S_1) + g \sum_{s'} \rho(s'|S_1) V_{\pi}(s')$$

$$V_{\pi}(S_2) = \Gamma(S_2) + \eta \sum_{s'} \rho(s'|S_2) V_{\pi}(s')$$

$$V_{\pi}(S_N) = \Gamma(S_N) + \chi \sum_{s'} \rho(s'|S_N) V_{\pi}(s')$$
 (assuming

(assuming N states)

· assume a very simple grid world

- 1 2 3 = states $S = \{1,2,3\}$, state 1 is terminal actions $A = \{\leftarrow, \rightarrow\}$, move agent (deterministic) reward -1 non-terminal states, 0 for terminal

· assume a random walk policy Ti(als) = 0.5 for all s, a

Solving the Bellman Equation(s) cont'd

combined state transition as matrix

$$P = \begin{pmatrix} \rho(1|1) & \rho(2|1) & \rho(3|1) \\ \rho(1|2) & \rho(2|2) & \rho(3|2) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 0 & 0.5 \\ \rho(1|3) & \rho(2|3) & \rho(3|3) \end{pmatrix} \begin{pmatrix} 0 & 0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix}$$

e.g.
$$p(1|2) = \pi(+|2) p(1|2,+) + \pi(+|2) p(1|2,+)$$

= 0.5 * 1 + 0.5 * 0 = 0.5

expected immediate remard as vector

$$T = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix} \qquad |S| - dim \ vector$$

Solving the Bellman Equation(s) cont'd

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0.5 \end{pmatrix} \qquad r = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$$

Bellman equation for state 1

$$V_{\eta}(1) = \Gamma(1) + \gamma \left[\rho(1|1) V_{\eta}(1) + \rho(2|1) V_{\eta}(2) + \rho(3|1) V_{\eta}(3) \right]$$

$$= O + \gamma \left[1 v_{n}(1) + O v_{n}(2) + O v_{n}(3) \right]$$

$$(1-1) V_n(1) = 0$$

Bellman equation is not the definition of VII V

Even for
$$\gamma=1$$
 we can argue that $V_{\pi}(1)=0$, since $V_{\pi}(1)=|E_{\pi}[G_{t}|S=1]=0$ as 1 is a terminal state

Solving the Bellman Equation(s) cont'd

Bellman equations for states 2 and 3

$$V_{4}(2) = \Gamma(2) + \gamma \left[\rho(112) V_{4}(1) + \rho(212) V_{4}(2) + \rho(312) V_{4}(3) \right]$$
 $V_{4}(3) = \Gamma(3) + \gamma \left[\rho(113) V_{4}(1) + \rho(213) V_{4}(2) + \rho(313) V_{4}(3) \right]$
 $V_{4}(2) = -1 + \gamma 0.5 V_{4}(3)$
 $V_{4}(3) = -1 + \gamma 0.5 V_{4}(2) + \gamma 0.5 V_{4}(3)$

Assume $\gamma = 1$
 $V_{4}(2)$
 $V_{4}(3) = -1 + 0.5 \left(-1 + 0.5 V_{4}(3) \right) + 0.5 V_{4}(3)$
 $V_{4}(3) = -1.5 + 0.75 V_{4}(3)$
 $V_{4}(3) = -1.5 + 0.75 V_{4}(3) = -4$

Analytic Solution of Bellman Equation

p(s'|s) = \(p(s', r|s, a) \) (a|s)

$$V_{\Pi}(s) = \Upsilon(s) + \gamma \sum_{s'} \rho(s'|s) V_{\Pi}(s')$$

Assume an arbitrary enumeration of states & = {s1, Sz, ... SN}

$$V_{R}(s_{1}) \setminus V_{R}(s_{2}) \setminus V_{R$$

We can write the Bellman equations as Y = I + yPY

Thus,
$$V - \gamma P V = \Gamma$$

$$(T - \gamma P) V = \Gamma$$

$$V_{\pi} = (T - \gamma P)^{-1} \Gamma$$

Example: 4 State Grid World

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.25 & 0.5 & 0 & 0.25 \\ 0.25 & 0 & 0.5 & 0.25 \\ 0 & 0.25 & 0.25 & 0.5 \end{pmatrix} \qquad = \begin{pmatrix} 0 \\ -1 \\ -1 \\ -1 \end{pmatrix} \qquad \begin{cases} \chi = 0.9999 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
 $\Re(a|s) = 0.25$
 $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $\chi = 0.9999$

1	2
3	4

```
>>> import numpy as np
>>> P = np.array([[1., 0., 0., 0.], [0.25, 0.5, 0., 0.25], [0.25, 0., 0.5, 0.25], [0., 0.25, 0.25, 0.5]])
>>> P
array([[1. , 0. , 0. , 0.],
      [0.25, 0.5, 0., 0.25],
      [0.25, 0. , 0.5 , 0.25],
      [0. , 0.25, 0.25, 0.5]])
>>> r = np.array([0., -1., -1., -1.])
array([ 0., -1., -1., -1.])
>>> gamma = 0.9999
>>> np.linalg.inv(np.eye(4) - gamma*P) @ r
array([-2.25605909e-16, -5.99660198e+00, -5.99660198e+00, -7.99520280e+00])
```

$$V = (I - \gamma P)^{-1} = \approx \begin{pmatrix} 0 \\ -5.99 \\ -7.99 \end{pmatrix}$$

double check

v must satisfy Bellman equation Y= T+ YPY

Uniqueness of Solution

Bellman Equation (three different notations)

$$V_{\Pi}(s) = |E_{A+,P_{\ell+1},S_{\ell+1}}[R_{\ell+1} + \gamma V_{\Pi}(S_{\ell+1})| S_{\ell} = s]$$

$$V_{\Pi}(s) = \Upsilon(s) + \sum_{s'} p(s'|s) \gamma V_{\Pi}(s')$$

$$V = \Gamma + \gamma P \gamma$$

Is there always a (unique) solution?

- · For y=1, (I-yP) is singular and the solution is not unique
- · For y < 1, (I-yP) is always invertible solution unique
- · Thus, discounting makes the problem well-posed

Planning: Iterative Policy Evaluation

Iterative Policy Evaluation

- · solving the Bellman equation via matrix inversion odoes not scale to large MDPs (cubic complexity)

 also not applicable to later problems, e.g. control
- · iterative method?
- · reconsider the Bellman equation:

$$V_{\Pi}(S) = \Upsilon(S) + \chi \sum_{S'} p(S'|S) V_{\Pi}(S')$$

· this looks like an update rule!

- Iterative Policy Evolvation
 initialize V(s) arbitrarily (e.g. all 0)
- repeat
 - for $s \in S$ do $V_{new}(s) \leftarrow r(s) + \chi \sum_{s'} p(s'|s) V(s')$
 - if \forall s: Vnew(s) \times \(V(s) \rightarrow \frac{6}{7}\teak
 - V Vnen

Iterative Policy Evaluation

			7	
1	10	rat	ia	n
	<u></u>	100	10	

1)	20
3	9	40

^	_
/	0

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.25 & 0.5 & 0 & 0.25 \\ 0.25 & 0 & 0.5 & 0.25 \\ 0 & 0.25 & 0.25 & 0.5 \end{pmatrix}$$

		10	
		/ - \	
-	=	-1	
		-1	
		\-1/	
		\ ' '	

1	2
3	4

Recall:

$$V = (I - \gamma P)^{-1} = \approx \begin{pmatrix} 0 \\ -5.99 \\ -5.99 \\ -7.99 \end{pmatrix}$$

Poes iterative policy evaluation always converge to va?

Iterative Policy Evaluation, Larger Gridworld

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

- · actions + move agent deterministically · reward 1 whenever on non-terminal (white) cell
- · discount factor x = 0.999
- · policy: M(als) = 0.25 (random walk)

After K iterations:

0	0	0	0
0	0	0	O
0	0	0	O
0	0	0	O

0	-1	-1	_1
-1	-1	1	-1
-1	-1	7	-1
-1	7	-1	0

0	-1.7	-2	-2
-1.4	-Z	-2	-2
-2	-2	-2	-1.7
-2	-2	-1.7	0

0	-61	-8.3	-8.9
-6.1	7. 7	-84	-8.3
-8.3	-8.4	-7.7	-6:1
-8.9	-8.3	-6.1	0

0	-13.8	-19.6	-21.6
-13.8	-17.7	-19.6	-19.6
-19.6	-19.6	-14.4	-13.8
-21.6	-19.6	-13.8	0

0	-13.8	-19.6	-21.6
-13.8	-17.7	-19.6	-19.6
-19.6	-19.6	-14.4	-13.8
-21.6	-19.6	-13.8	0

~ Vp

Some Mathematical Tools

Lipschitz function

Let V be any vector space and $T: V \rightarrow V$ be a function from V to V. If there is a constant L such that $||T(v) - T(v')|| \le L ||v - v'|| \qquad \forall v, v' \in V$

then T is called L-Lipschitz, where 11. 11 is any norm.

Contraction (Contraction mapping)

Let V be any vector space. An L-Lipschitz function T: V -> V with L<1 is called a contraction (L-contraction).

Contraction

Banach's Fixed Point Theorem

Fixed point

Let V be some vector space and let $T: V \rightarrow V$ be a function. A vector $v \in V$ is called a **fixed point** of T if V = T(v), i.e. if T maps V onto itself.

Let V be some vector space and let $T: V \rightarrow V$ be a contraction. Then T has a unique fixed point $v^* \in V$. Moreover, for any $V \in V$, the sequence defined via

 $V_n = T(V_{n-1})$

converges to v^* , i.e. $v_n \rightarrow v^*$ as $n \rightarrow \infty$.

Details

Norm: We tacitly assumed some norm []. [] of vector space V.

A common choice is the max norm (uniform norm,

||v||_o = max |v:|

||v||_o = max |v:|

Complete space: The fixed-point theorem requires V to be

complete, i.e. that every Cauchy sequence converges
to some element in V.

For example, the real numbers IR are complete.

The rational numbers Q are not complete; eg., there

are sequences in Q which converge to a irrational

number (e.g. 17).

A complete vector space with a norm is a Banach space.
This, the Banach fixed-point theorem says that iterating a contraction T in a Banach space always converges to a unique fixed-point.

Iterative Policy Evaluation

For y < 1, Iterative Policy Evaluation always converges to up, i.e. for any MOP, any To and any initialisation of var.

- for $\chi < 1$, the Bellman Equation is a contraction. (see HW1 in KU)
- thus, iterating it will converge to a unique fixed-point
 vm is a fixed-point, thus Iterative Policy Evaluation
 converges to un

Contraction arguments like this are frequently used in RL theory!

Summary Planning: Policy Evaluation, Prediction

- · We have learned about two methods for evaluating a policy of
 - closed form

$$\underline{v}_{\hat{n}} = (I - \gamma P)^{-1} \underline{r}$$

- iterative policy evaluation

init
$$\underline{V}_0$$

iterate $\underline{V}_n = \underline{\Gamma} + \gamma P \underline{V}_{n-1}$

- · Policy evaluation just tells us how good it is, for each s.
- · But how to actually learn in?
- · Or, given some It, how to improve it? (next lecture)