Sistemas de Controle

Modelagem Matemática de Sistemas com Fluidos

Sistemas com Fluidos

Sistemas com Fluidos

Conservação de Massa:

$$\frac{dm}{dt} = \dot{m}_{ent}(t) - \dot{m}_{sai}(t)$$

sendo:

 \dot{m} - Fluxo de massa

onde:

 $m=\rho V$, sendo ρ a densidade e V o volume.

Assim, para ρ constante:

$$\frac{dV}{dt} = q_{ent}(t) - q_{sai}(t)$$
, sendo q a vazão do fluido.

Problema

Determine a equação diferencial do tanque abaixo, assumindo q constante.

Resolução

Fluxo de saída:

$$q_{sai}(t) = C_V \rho g h(t)$$

Assim:

$$\frac{dV}{dt} = q - q_{sai}(t) = q - C_V \rho g h(t)$$

Sabendo que V(t) = Ah(t):

$$A\frac{dh}{dt} = q - C_V \rho g h(t)$$

Resolução

Dividindo $A\frac{dh}{dt} = q - C_V \rho g h(t)$ por $C_V \rho g$:

$$\frac{A}{C_V \rho g} \frac{dh}{dt} = \frac{q}{C_V \rho g} - h(t)$$

OU:

$$\tau \frac{dh}{dt} = kq - h(t)$$

sendo:

au - Tempo de resposta do sistema

k - Constante do sistema

Solução

Equação diferencial para o tanque abaixo com h(t), assumindo q constante.

Exercício

Determine as equações diferenciais do sistema abaixo, assumindo $\it Q$ constante.

Dúvidas?

Grupo Whatsapp