Assignment1

Praneeth Kacham

1 Question-2

2 Question-3

Let V be the set of vertices and S_1 and S_2 be the parition of V. Pick an arbitrary vertex and put it into S_1 . Now iterate over the remaining vertices and one after another put them into S_1 or S_2 depending on which of the configurations gives greater cut size based on the vertices added to S_1 and S_2 till that point. This is a 1/2-approximation. Notation: v_i be the vertex picked in ith iteration, $S_1(i)$, $S_2(i)$ be the sets S_1 and S_2 at the end of the ith iteration, $V(i) = S_1(i) \cup S_2(i)$ and G(i) be the graph induced by the vertices V(i). Claim: Partition $(S_1(i), S_2(i))$ is a 1/2-approximation for G(i).

Proof. Proof by induction on *i*.

True for i = 1 as the optimal partition has weight 0.

Assume that the claim is true for all $k \le i$.

Without loss of generality, assume that $v_i \in S_1$. Let (A, V(i) - A) be the optimal partition for G(i) and $v(i) \in A$. We have $OPT(G(i)) = wt((A, V(i) - A)) = wt((A - v(i), V(i) - A)) + \text{contribution of } v_i$. But $wt((A - v(i), V(i) - A)) \leq OPT(G(i-1))$ and contribution of $v_i \leq w$ weight of edges incident on v_i in G(i). So,

$$OPT(G(i)) \le OPT(G(i-1)) + \text{weight of edges incident on } v_i$$
 (1)

By the induction hypothesis we have $wt(S_1(i)-v_i, S_2(i)) = wt(S_1(i-1), S_2(i-1)) \ge OPT(G(i-1))/2 \ge wt((A-v(i), V(i)-A))/2$. We also have $wt(v_i, S_2(i)) \ge$ (weight of edges incident on v_i)/2 as v_i is added to S_1 by the greedy algorithm. So, $wt(S_1(i), S_2(i)) = wt(S_1(i) - v_i, S_2(i)) + \text{contr. of } v_i \ge OPT(G(i-1))/2 + (\text{wt. of edges incident on } v_i)/2 \ge OPT(G(i))/2$.

Thus the partition $(S_1(n), S_2(n))$ is a 1/2-approximation for the graph G(n) = G.

The generalized algorithm for k partitions is as follows. Start with $S_1, S_2, ..., S_k = \phi$. Iterate over the vertices v_i . Put the vertex v_i into the set S_i such that

$$j = \operatorname{argmax}_{j} wt(S_{1}, \dots, S_{j-1}, S_{j} \cup v_{i}, S_{j+1}, \dots, S_{k})$$
 (2)

So,

contibution of
$$v_i$$
 at the end of ith iteration = $\max_i wt(S_1, S_2, \dots, S_{j-1}, v_i, S_{j+1}, \dots, S_k)$ (3)

$$\geq \frac{1}{k} \sum_{i} wt(S_1, S_2, \dots, S_{j-1}, v_i, S_{j+1}, \dots, S_k)$$
 (4)

$$\geq \frac{1}{k}(k-1)$$
wt. of edges incident on v_i (5)

So, given that $wt(S_1(i-1), S_2(i-1), ..., S_k(i-1))$ is $\geq (1-1/k)OPT(G(i-1))$ we have $wt(S_1(i), ..., S_j(i), ..., S_k(i)) = wt(S_1(i-1), S_2(i-1), ..., S_j(i-1) \cup v_i, ..., S_k(i-1)) = wt(S_1, S_2, ..., S_j, ..., S_k) + \text{contr. of } v_i \geq (1-1/k)OPT(G(i-1)) + (1-1/k)\text{wt. of edges incident on } v_i \geq (1-1/k)OPT(G(i))$. Hence $(S_1(n), S_2(n), ..., S_k(n))$ is (1-1/k) approximate partition of G(n) = G.

3 Question-4

Let $S = \{1, 2, 3, ..., k\}$. And each of them have a coverage requirement of $\alpha_i \in \mathbb{Z}^+$. Let $\sum_i \alpha_i = n$. The greedy algorithm is as follows:

- 1. $\beta_i = \alpha_i$ forall $i \in S$ and $r_i = 0 \ \forall S_i$.
- 2. if $\exists i \ \beta_i > 0$, continue else exit
- 3. find j such that $\frac{w(S_j)}{|S_i \cap \{i|\beta_i > 0\}|}$ is minimum.
- 4. $r_i := r_i + 1$ and $\beta_i := \beta_i 1 \ \forall i \in S_i$
- 5. Go to step 2

The above algorithm is a $\ln n$ -approximate algorithm. Let $n_i = \sum_j \beta_j$ before ith iteration. So, $n_1 = n$ and $n_i - n_{i+1}$ is the number of elements covered in ith iteration. Let S_k be the set chosen in ith iteration. Optimum solution can cover n_i elements with cost OPT. So, there should be a set in OPT which can cover some elements with average cost less than OPT/n_i . But average cost of S_k should be even less. Hence,

$$w(S_k) \le OPT * (n_i - n_{i+1})/n_i \tag{6}$$

Summing the above inequality over all the iterations, we have

$$\sum_{j} r_{j} wt(S_{j}) \le OPT * H_{n} \tag{7}$$

So, this algorithm is a $\ln n$ -approximation.

4 Question-5

Consider three sets of vertices $\{r\}$, $\{v_1, v_2, ..., v_m\}$ one for each of the sets S_i and $\{u_1, u_2, ..., u_n\}$ one for each of the elements of set S. Construct a graph G with vertices as the union of $\{r\}$, $\{v_1, v_2, ..., v_m\}$ and $\{u_1, u_2, ..., u_n\}$ with the edges as follows, $r \to v_i$ for all i = 1..n with cost of edge $r \to v_i = wt(S_i)$ and the edges $v_i \to u_j \ \forall i,j \ such \ that \ j \in S_i$ of cost G. Set the vertices $\{v_1, v_2, ..., v_m\}$ as required and G as the special vertex and the vertices $\{v_1, v_2, ..., v_m\}$ as steiner vertices. Any tree with root G and containing the vertex G should have an edge to G such that there is an edge.

Let T = (V', E') is a steiner tree. Using this we shall construct a set-cover. Consider the set-cover $S = \{S_j | r \rightarrow v_j \in E'\}$.

Claim: S is a vertex cover and cost(S) = wt(T).

Proof. Consider an element $e_i \in S$. There is a corresponding vertex u_i in the vertex set of G and u_i is a required vertex. So, there exists a vertex v_k such that $r \to v_k$ and $v_k \to u_i$ which implies $S_k \in S$ and $e_i \in S_k$. So, $e_i \in \bigcup_{S_j \in S} S_j$. As e_i is an arbitrary element of S, we have S is a set cover. $cost(S) = \sum_{S_j \in S} wt(S_j) = \sum_{v_j: r \to v_j \in E'} wt(r \to E') = wt(T)$. So, cost of the set-cover S is wt(T).

Let S be a vertex cover. We shall construct a steiner tree T. Consider the graph T = (V, E) with V as union of $\{r\}, \{v_j | S_j \in S\}$ and $\{u_1, u_2, \dots, u_n\}$ and edges as union of $\{r \to v_j | v_j \in V\}$ and $\{v_j \to u_k | e_k \in S_j\}$. Remove edges if there are morethan one edges incoming to a vertex of form u_k . Given that S is a setcover, we can see that the tree T is a steiner tree and cost of tree T is equal to weight of set cover S.

From above,

$$OPT(SteinerTree) = OPT(SetCover)$$
 (8)

Hence, given a $O(\log(n))$ approximation algorithm for steiner-tree, we can solve the steiner tree problem corresponding to the setcover problem and give $O(\log(n))$ approximation to set-cover problem.