Instrumentos Derivados (FEEFI003)

Nº2: Estructura de tasas de interés

Francisco Rantul

2025

Referencias

- Hull (2021) c4 (*)
- Benigna (2021) c22 (*)
- Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of business, 473-489.

Tasas de Interés

- La tasa de interés de un momento en particular define la cantidad de dinero que un deudor le promete pagar a un acreedor.
- El riesgo de crédito es uno de los factores más importantes:

$$yield = r_f + credit spread$$

el credit spread se define en puntos base (0,01%).

Tipos de tasas

- Tasas del Tesoro: En EE.UU son emitidos por la FED: Treasury bills y Treasury bonds. En Chile por el Banco Central (depósitos a plazo, bonos).
- Tasas Overnight: Se dan por la oferta y demanda de reservas de los bancos (por regulación), son a muy corto plazo (un día). En EE.UU. es la federal funds rate; en Chile es la TPM.
- Tasas Repo (acuerdo de recompra): Una empresa acuerda vender titulos y comprarlos después a un precio ligeramente superior. Tienen riesgo de credito muy bajo.
- LIBOR (London Interbank Offered Rate): remplazada por tasas overnight, Secured Overnight Financing Rate (SOFR).
- Tasa libre de riesgo (r_f) : Creada desde las tasas overnight entre instituciones libres de riesgo (bancos), es la que se utiliza para valorizar derivados.

Medición de Tasas de Interés

• Un monto A se invierte durante n años a una tasa anual R, el VF será:

$$VF = A(1+R)^n$$

Si la tasa se compone m veces al año, el VF será

$$VF = A\left(1 + \frac{R}{m}\right)^{nm} \tag{1}$$

• Ejemplo 1: Estimar el VF de invertir \$100 a una tasa R = 10% anual con $m \in (1, 2, 4, 12, 52, 365)$:

Medición de Tasas de Interés

Respuesta:

Frecuencia de composición	Valor de \$100 al término del año (\$)
Anualmente $(m = 1)$	110.00
Semestralmente ($m = 2$)	110.25
Trimestralmente ($m = 4$)	110.38
Mensualmente ($m = 12$)	110.47
Semanalmente ($m = 52$)	110.51
Diariamente ($m = 365$)	110.52

A mayor m mayor es el interés acumulado de la inversión.

Composición Continua

 Cuando la frecuencia de composición m tiende al infinito, se conoce como composición continua. En este caso (1) sería:

$$VF = Ae^{Rn} (2)$$

- La composición continua \approx composición diaria.
- La composición continua es muy utilizada en valoración de derivados, principalmente en opciones.

Composición Continua

De (1) y (2) tenemos

$$Ae^{R_c n} = A\left(1 + \frac{R_m}{m}\right)^{mn}$$

$$e^{R_c} = \left(1 + \frac{R_m}{m}\right)^m$$

$$R_c = m \ln\left(1 + \frac{R_m}{m}\right)$$

$$R_m = m\left(e^{\frac{R_c}{m}} - 1\right)$$
(4)

Estas ecuaciones convierte una tasa con composición m a composición continua.

• Ejemplo 2: Calcular la tasa de interés con composición continua equivalente a una tasa del 8% anual con composición mensual.

Composición Continua

• Respuesta:

$$e^R = \left(1 + \frac{0.08}{12}\right)^{12}$$

usando (3)

$$R = 12 \ln \left(1 + \frac{0,08}{12} \right)$$
$$R = 0,0797$$

la tasa de interés es de un 7,97% anual.

Valoración de Bonos

- El valor teórico de un bono es el valor presente de sus flujos de caja.
- Con composición continua el valor presente es

Valor Bono =
$$c_1 e^{-r_1} + c_2 e^{-r_2} + ... + (c_T + p)e^{-r_T}$$
 (5)

donde c es el cupón de cada periodo¹ y p el principal (que se paga al final).

- La tasa cero es el interés ganado cuando el bono no paga cupones y el principal se recibe al final del período (al vencimiento del bono), es decir, c=0.
- La tasa cero no tiene riesgo de reinvensión.
- (problema) Generalmente, los bonos de gobierno pagan cupones. (solucion) Bootstrapping.

¹Se asume cupones anuales. Los periodos se indican en terminos anuales: un semestre = 0,5 ; un trimestre = 0,25 ; un año y medio = 1,5 $\stackrel{?}{=}$ \stackrel

Valoración de Bonos

• Ejemplo 3: Calculo de precio de bono libre de riesgo: Calcular valor de bono del Banco Central a 2 años con principal \$100 que paga cupones semestrales a tasa del 6% anual. Las tasas cero (tasas de descuento) son:

Maturity (years)	Zero rate (% continuously compounded)
0.5	5.0
1.0	5.8
1.5	6.4
2.0	6.8

Valoración de Bonos

• Respuesta:

t	Cupon	Principal	Flujo	r	exp(-r*t)	Flujo*exp(-r*t)
0,5	3		3	0,05	0,9753	2,93
1	3		3	0,058	0,9436	2,83
1,5	3		3	0,064	0,9085	2,73
2	3	100	103	0,068	0,8728	89,90
			Precio			98,39

Rendimiento del Bono (Yield o TIR)

 Es la tasa de descuento (la misma para todos los flujos) que iguala el precio del bono a su valor de mercado.

$$3e^{-y\times0.5} + 3e^{-y\times1} + 3e^{-y\times1.5} + 103e^{-y\times2} = 98,39$$

La yield (y) se calcula de forma iterativa (solver):

- Para determinar las tasas cero se utiliza el método bootstrap.
- Si tenemos los siguientes bonos:

Bond principal (\$)	Time to maturity (years)	Annual coupon* (\$)	Bond price (\$)	Bond yield** (%)
100	0.25	0	99.6	1.6064 (Q)
100	0.50	0	99.0	2.0202 (SA)
100	1.00	0	97.8	2.2495 (A)
100	1.50	4	102.5	2.2949 (SA)
100	2.00	5	105.0	2.4238 (SA)

^{*}Half the stated coupon is assumed to be paid every 6 months. **Compounding frequency corresponds to payment frequency: Q= quarterly, SA= semiannual, A= annual.

• Para los bonos sin cupones (3m, 6m, 1a): $100e^{-r\times0,25}=99, 6\to r=1,603\%$ $100e^{-r\times0,5}=99\to r=2,010\%$ $100e^{-r\times1}=97, 8\to r=2,225\%$

donde r se obtiene aplicando logaritmo natural y despejando r.

• El cuarto bono paga cupones semestrales, su flujo es $\{2;2;102\}$. Descontamos los cupones con las tasas cero de 6 meses y un año:

$$2e^{-0.02010\times0.5} + 2e^{-0.02225\times1} + 102e^{-r\times1.5} = 102.5 \rightarrow r = 2,284\%$$

• Lo mismo para el bono a 2 años con flujos semestrales $\{2.5; 2.5; 102.5\}$:

$$2,5e^{-0.02010\times0.5} + 2,5e^{-0.02225\times1} + 2,5e^{-0.02284\times1.5} + 102.5e^{-r\times2} = 105 \rightarrow r = 2.416\%$$

Maturity (years)	Zero rate (% continuously compounded)
0.25	1.603
0.50	2.010
1.00	2.225
1.50	2.284
2.00	2.416

Alternativamente podemos usar MCO (mínimos cuadrados ordinarios):

$$egin{aligned} m{P}_t &= m{F} \cdot m{B}_t \ m{B}_t &= m{F}^{-1} \cdot m{P}_t \end{aligned} \tag{6}$$

donde P_t es el vector de precios, F es la matriz de flujos de los bonos y B_t es el precio cero cupón.

- Para que la matriz F sea invertible, debe ser una matriz cuadrada $(n \times n)$. A cada nivel de madurez debe haber un solo bono.
- Cuando existe más de un instrumento con la misma duración, la matriz F no es invertible y debemos modificar (7) de forma tal que

$$\boldsymbol{B}_t = (\boldsymbol{F}'\boldsymbol{F})^{-1} \cdot \boldsymbol{F}'\boldsymbol{P}_t \tag{7}$$

• Del precio $B=e^{-rT}$ aplicamos logaritmo natural $(\ln(B)=-rT)$ para derivar la tasa de la curva cero: $r=\ln(B)/T$

- Se asume que la curva cero es lineal entre los puntos estimados por el método bootstrap. Ej: tasa en año 1.25: (0.02225 + 0.02284)/2 = 0.02255.
- Se asume que la curva cero es horizontal antes del primer punto y después del ultimo punto.

En la practica, no tenemos bonos con madurez exacta de 1.5
años, 2 años, 2,5 años, etc. Se interpola los precios (función
polinomial o exponencial) antes de calcular la curva cero.

Modelo Nelson & Siegel

 Nelson & Siegel (1987) estiman un modelo que permite interpolar la tasas de interés para periodos y cupones que no están en la base de datos.

$$r(t) = \alpha_1 + \alpha_2 \left(\beta \left(\frac{1 - e^{-t/\beta}}{t} \right) \right) + \alpha_3 \left(\beta \left(\frac{1 - e^{-t/\beta}}{t} \right) - e^{-t/\beta} \right)$$

este modelo se puede reescribir como

$$r(t) = \alpha_1 + (\alpha_2 + \alpha_3)\beta \left(\frac{1 - e^{-t/\beta}}{t}\right) - \alpha_3 e^{-t/\beta}$$
 (8)

Modelo Nelson & Siegel

• Ejemplo 4: Estimar en Excel usando MCO y el modelo Nelson & Siegel para los siguientes bonos:

			_
Nº Bono	Precio	Madurez (años)	Tasa cupon anual
1	91,8967	1	2,0%
2	83,2564	2	2,5%
3	76,0000	3	3,0%
4	76,2347	3	3,2%
5	71,2110	4	3,5%
6	67,9672	5	4,0%
7	66,0000	6	4,5%
8	66,1625	6	4,2%
9	65,4881	7	5,0%
10	65,7003	8	5,5%
11	64,0000	9	5,8%
12	66,6158	9	6,0%
13	68,0989	10	6,5%
14	70,0480	11	7,0%
15	72,3857	12	7.5%

Modelo Nelson & Siegel

Respuesta:

Propiedades NS

- Propiedad 1: Tasa de interés de corto plazo r(0) Con t=0 tenemos $r(0)=\alpha_1+\alpha_2$. Refleja la tasa de interés de muy corto plazo (consistente con la TPM), se espera que $\alpha_1+\alpha_2>0$.
- Propiedad 2: Tasa de interés de largo plazo $r(\infty)$ Con $t=\infty$ tenemos $r(\infty)=\alpha_1$. Representa el interés a largo plazo asintótico, por lo tanto, debe ser positivo.
- Propiedad 3: β controla la ubicación de la curvatura El modelo NS solo está definido si $\beta > 0$, este parámetro define la ubicación de la curvatura a vencimientos medios.
- Propiedad 4: α_3 afecta la concavidad/convexidad El factor α_3 solamente afecta a los valores intermedios de la curva. $\alpha_3 > 0$ genera una curva concava, $\alpha_3 < 0$ una curva convexa y $\alpha_3 = 0$ una curva plana.

Propiedades NS

Propiedades NS

Estructura de tasas Nelson-Siegel para diferentes alpha_3 (con beta=1,5)

Extensión del modelo NS

• Svensson (1994)² sugirió agregar dos parametros extras para mejorar el ajuste de la curva a los datos observados.

$$r(t) = \alpha_1 + (\alpha_2 + \alpha_3) \left(\beta_1 \frac{1 - e^{-t/\beta}}{t} \right) - \alpha_3 e^{-t/\beta} + \alpha_4 \left(\beta_2 \frac{1 - e^{-t/\beta}}{t} - e^{-t/\beta_2} \right)$$
(9)

donde $\alpha_1, \beta_1, \beta_2 \geq 0$.

- Este se conoce como el Modelo Nelson-Siegel-Svensson.
- Ver ejemplo de Excel en pestaña "NSS".

²Svensson, L. E. (1994). Estimating and interpreting forward interest rates:

Tasas Forward

• Son las tasas de interés para periodos futuros que surgen de las tasas cero actuales (tasas futuras esperadas).

 $e^{r_t \times t} e^{f_{t+1} \times 1} = e^{r_{t+1} \times (t+1)}$

La tasa forward instantánea se obtiene con

$$f_{t+1} = \ln \left[\frac{e^{r_{t+1} \times (t+1)}}{e^{r_t \times t}} \right] \tag{10}$$

Year (n)	Zero rate for an n-year investment (% per annum)	Forward rate for nth year (% per annum)
1	3.0	
2	4.0	5.0
3	4.6	5.8
4	5.0	6.2
5	5.3	6.5

• 5% es la tasa forward entre fines de t=1 a fines de t=2.

Tasas Forward

• Podemos obtener el mismo resultado anterior usando

$$f_{t+1} = \frac{r_{t+1} \times (t+1) - r_t \times t}{(t+1) - t}$$

reescribiendo:

$$f_{t+1} = r_{t+1} + (r_{t+1} - r_t) \frac{t}{(t+1) - t}$$

- Si $r_{t+1} > r_t$ (pendiente positiva), entonces $f_{t+1} > r_{t+1}$
- Si $r_{t+1} < r_t$ (pendiente negativa), entonces $f_{t+1} < r_{t+1}$

Curva cero y Forward

• Notar que a mayor $\frac{t}{(t+1)-t}$ se amplifica el efecto de $(r_{t+1}-r_t)$.

Curva cero y Forward

 \bullet Notar que a mayor $\frac{t}{(t+1)-t}$ se amplifica el efecto de $(r_{t+1}-r_t).$

Figure 4: Zero-Coupon Yield Curve and Forward Rates on May 9, 2006

