In []:

!gdown "https://d2beiqkhq929f0.cloudfront.net/public assets/assets/000/001/428/origi

In [163]:

```
#importing libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
```

In [6]:

```
dd=pd.read_csv('bike_sharing.csv')
```

In [23]:

dd.head()

Out[23]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3
1	2011-01- 01 01:00:00	1	0	0	1	9.02	13.635	80	0.0	8
2	2011-01- 01 02:00:00	1	0	0	1	9.02	13.635	80	0.0	5
3	2011-01- 01 03:00:00	1	0	0	1	9.84	14.395	75	0.0	3
4	2011-01- 01 04:00:00	1	0	0	1	9.84	14.395	75	0.0	0

In [8]:

dd.shape
#we have 10886 row and 12 columns

Out[8]:

(10886, 12)

In [9]:

dd.describe()

Out[9]:

	season	holiday	workingday	weather	temp	atemp	
count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	1088
mean	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	ť
std	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	
min	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	
25%	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	2
50%	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	ť
75%	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	- 1
max	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	1(

In [11]:

```
dd.isnull().sum()
# we do not have null values
```

Out[11]:

datetime	0
season	0
holiday	0
workingday	0
weather	0
temp	0
atemp	0
humidity	0
windspeed	0
casual	0
registered	0
count	0
dtype: int64	

In [25]:

```
#checking datatype
dd.dtypes
```

Out[25]:

datetime object season int64 holiday int64 workingday int64 weather int64 float64 temp atemp float64 int64 humidity windspeed float64 int64 casual registered int64 count int64 dtype: object

In [27]:

```
dd.head(1)
```

Out[27]:

	datetime	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual
0	2011-01- 01 00:00:00	1	0	0	1	9.84	14.395	81	0.0	3

In [63]:

```
(dd.value_counts(['season'])/len(dd))*100
#checking season
```

Out[63]:

season

4 25.114826 2 25.105640 3 25.105640 1 24.673893 dtype: float64

In [64]:

```
(dd.value_counts(['holiday'])/len(dd))*100
#checking percentage of holidays
```

Out[64]:

holiday

0 97.14312 1 2.85688 dtype: float64

In [78]:

```
(dd.value_counts(['workingday'])/len(dd))*100
#checking percentage of workingday
```

Out[78]:

```
workingday
```

1 68.087452 0 31.912548

dtype: float64

In [115]:

```
(dd.value_counts(['weather'])/len(dd))*100
#checking percentage of weather
```

Out[115]:

weather

1 66.066507 2 26.033437 3 7.890869 4 0.009186

dtype: float64

In [171]:

Out[171]:

	season	count
0	1	312498
1	2	588282
2	3	640662
3	4	544034

In [328]:

```
sns.boxplot(dd['temp'])
# temperature boxplot for outlier
```

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decora tors.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[328]:

<AxesSubplot:xlabel='temp'>

In [218]:

```
sns.boxplot(dd['atemp'])
# atemperature boxplot for outlier
```

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decora tors.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will res ult in an error or misinterpretation.

warnings.warn(

Out[218]:

<AxesSubplot:xlabel='atemp'>

In [329]:

```
sns.boxplot(dd['windspeed'])
# windspeed boxplot for outlier
#we have outlier in windspeed
```

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decora tors.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[329]:

<AxesSubplot:xlabel='windspeed'>

In [220]:

```
sns.boxplot(dd['humidity'])
# humidity boxplot for outlier
```

/Users/apple/opt/anaconda3/lib/python3.9/site-packages/seaborn/_decora tors.py:36: FutureWarning: Pass the following variable as a keyword ar g: x. From version 0.12, the only valid positional argument will be `d ata`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[220]:

<AxesSubplot:xlabel='humidity'>

In [222]:

```
sns.kdeplot(dd['temp'],shade=True)
```

Out[222]:

<AxesSubplot:xlabel='temp', ylabel='Density'>

In [223]:

sns.kdeplot(dd['atemp'],shade=True)

Out[223]:

<AxesSubplot:xlabel='atemp', ylabel='Density'>

In [224]:

sns.kdeplot(dd['humidity'],shade=True)

Out[224]:

<AxesSubplot:xlabel='humidity', ylabel='Density'>

In [225]:

sns.kdeplot(dd['windspeed'],shade=True)
#exponential distribution

Out[225]:

<AxesSubplot:xlabel='windspeed', ylabel='Density'>

In [230]:

sns.kdeplot(dd['count'],shade=True)

Out[230]:

<AxesSubplot:xlabel='count', ylabel='Density'>

In [210]:

```
import statsmodels.api as sm
sm.qqplot(dd['temp'])
plt.show()
```


In [212]:

```
sm.qqplot(dd['atemp'])
plt.show()
```


In [231]:

```
sm.qqplot(dd['count'])
plt.show()
```


In [242]:

In [245]:

In [250]:

In []:

```
In [172]:
```

Out[172]:

	weather	count
0	1	1476063
1	2	507160
2	3	102089
3	4	164

In [173]:

Out[173]:

	holiday	count
0	0	2027668
1	1	57808

In [177]:

Out[177]:

	workingday	count	
0	0	654872	
4	1	1430604	

In [252]:

```
pd.crosstab([dd['season']], [dd['weather']], dd['holiday'], aggfunc='sum')
```

Out[252]:

weather	1	2	3	4
season				
1	42.0	23.0	6.0	0.0
2	41.0	7.0	0.0	NaN
3	52.0	40.0	4.0	NaN
4	69.0	22.0	5.0	NaN

In [253]:

```
pd.crosstab([dd['season']], [dd['weather']], dd['workingday'], aggfunc='sum')
```

Out[253]:

weather	1	2	3	4
season				
1	1213.0	474.0	140.0	1.0
2	1244.0	468.0	181.0	NaN
3	1306.0	404.0	135.0	NaN
4	1076.0	591.0	179.0	NaN

In [193]:

pd.crosstab([dd['season'],dd['weather']], [dd['holiday']], dd['count'], aggfunc='sun

Out[193]:

	holiday	0	1
season	weather		
	1	219219.0	3790.0
1	2	75112.0	1294.0
ı	3	12754.0	165.0
	4	164.0	NaN
	1	418409.0	7941.0
2	2	132622.0	1555.0
	3	27755.0	NaN
	1	456366.0	13750.0
3	2	130734.0	8652.0
	3	30731.0	429.0
	1	344652.0	11936.0
4	2	150131.0	7060.0
	3	29019.0	1236.0

In [194]:

pd.crosstab([dd['season'],dd['weather']], [dd['workingday']], dd['count'], aggfunc=

Out[194]:

	workingday	0	1
season	weather		
	1	66706.0	156303.0
1	2	21144.0	55262.0
ı	3	2864.0	10055.0
	4	NaN	164.0
	1	135007.0	291343.0
2	2	46489.0	87688.0
	3	5566.0	22189.0
	1	153036.0	317080.0
3	2	41402.0	97984.0
	3	12040.0	19120.0
	1	123724.0	232864.0
4	2	40342.0	116849.0
	3	6552.0	23703.0

In [196]:

pd.crosstab([dd['season'],dd['weather']], [dd['workingday'], dd['holiday']], dd['cou

Out[196]:

	workingday		0	1
	holiday	0	1	0
season	weather			
	1	62916.0	3790.0	156303.0
1	2	19850.0	1294.0	55262.0
'	3	2699.0	165.0	10055.0
	4	NaN	NaN	164.0
	1	127066.0	7941.0	291343.0
2	2	44934.0	1555.0	87688.0
	3	5566.0	NaN	22189.0
	1	139286.0	13750.0	317080.0
3	2	32750.0	8652.0	97984.0
	3	11611.0	429.0	19120.0
	1	111788.0	11936.0	232864.0
4	2	33282.0	7060.0	116849.0
	3	5316.0	1236.0	23703.0

In [200]:

pd.crosstab([dd['season'],dd['weather']], [dd['workingday'], dd['holiday']], dd['cas

Out[200]:

	workingday		0	1
	holiday	0	1	0
season	weather			
	1	17163.0	410.0	13473.0
1	2	4791.0	158.0	4860.0
'	3	304.0	10.0	430.0
	4	NaN	NaN	6.0
	1	47220.0	1606.0	46858.0
2	2	16165.0	234.0	12977.0
	3	1864.0	NaN	2748.0
	1	48810.0	5138.0	52149.0
3	2	11213.0	3546.0	15310.0
	3	4186.0	144.0	2222.0
	1	31600.0	2269.0	23204.0
4	2	6639.0	1483.0	9870.0
	3	911.0	173.0	1991.0

```
In [201]:
```

Out[201]:

		Casaai	Count	registered
season	weather			
	1	31046	223009	191963
1	2	9809	76406	66597
I	3	744	12919	12175
	4	6	164	158
	1	95684	426350	330666
2	2	29376	134177	104801
	3	4612	27755	23143
	1	106097	470116	364019
3	2	30069	139386	109317
	3	6552	31160	24608
	1	57073	356588	299515
4	2	17992	157191	139199
	3	3075	30255	27180

casual

count registered

In [161]:

```
pd.crosstab(dd['season'], dd['weather'],values=dd['count'], aggfunc='sum')
```

Out[161]:

weather	1	2	3	4
season				
1	223009.0	76406.0	12919.0	164.0
2	426350.0	134177.0	27755.0	NaN
3	470116.0	139386.0	31160.0	NaN
1	356588.0	157191 0	30255.0	NaN

2 - Hypothesis Testing

-----Two Sample T-test------

2- Sample T-Test to check if Working Day has an effect on the number of electric cycles rented

We have total 654872 bike rented on non working day and 1430604 bike rented on working day. For t-test we

will randomly select sample(<30) from respective populations.

```
In [301]:
```

```
# here we are creating two empty lists and list of working day bike
# rented count and non working day bike rented count.

Working_count=[]
Non_working_count=[]

for i in range(len(dd)):
    if dd['workingday'][i]==0:
        Non_working_count.append(dd['count'][i])
    else:
        Working_count.append(dd['count'][i])
```

In [302]:

```
# randomly selecting sample of size 25 of rented bike count on working day and non v
import random
random.seed(10)
Working_count_sample=random.sample(Working_count, 25)
Non_Working_count_sample=random.sample(Non_working_count, 25)
```

In [303]:

```
X1_bar=np.mean(Working_count_sample)
X2_bar=np.mean(Non_Working_count_sample)
std1=np.std(Working_count_sample)
std2=np.std(Non_Working_count_sample)
#We have sample size n1=25, n2=25
#we have sample means as X1_bar and X2_bar and standard deviation as std1 and std2
```

In [304]:

```
# Suppose mu1 and mu2 be the respective means of count
# Null hypothesis, H0: mu1-mu2=0 mens are equal
# Alternative hypothesis, H1: mu1-mu2>0
# level of significance: alpha=0.05
# test statistics: t
# Decision rule: if t(calculated)> t(critical(1.677)), then reject H0
```

```
In [305]:
```

```
Sp=24*((std1)**2)+24*((std2)**2)/48
```

```
In [306]:
```

Sp

Out[306]:

954124.0144

```
In [308]:
t=(X1_bar-X2_bar)/np.sqrt(Sp*((1/25)+(1/25)))
t

Out[308]:
0.28623270429975184
In [310]:
#since t value(.2862) less than 1.677 we can not reject the null hypothesis
```

ANNOVA

ANNOVA to check if No. of cycles rented is similar or different in different 1. weather 2. season

```
In [313]:
```

```
#Let first calculate F-statistics for weather
weather1=[]
weather2=[]
weather4=[]
for i in range(len(dd)):
    if dd['weather'][i]==1:
        weather1.append(dd['count'][i])
    if dd['weather'][i]==2:
        weather2.append(dd['count'][i])
    if dd['weather'][i]==3:
        weather3.append(dd['count'][i])
    if dd['weather'][i]==1:
        weather4.append(dd['count'][i])
```

```
In [ ]:
```

```
#mu1, mu2, mu3, mu4 are the means of count in waether1, waether2, waether3, waether4
# Null Hypothesis mu1=mu2=mu3=mu4
# alternative hypothesis: Not all the means are equal
# level of significance 0.05
# test statistics F-test
```

```
In [315]:
```

```
from scipy.stats import f_oneway

# Conduct the one-way ANOVA
f_oneway(weather1, weather2, weather3, weather4)
Out[315]:
```

```
F_onewayResult(statistic=71.16449949906588, pvalue=9.512123371458035e-46)
```

```
In [319]:
```

```
# we have P value close to zero so we reject the null hypothesis
# we can say that there is some impact of weather on count in our data
```

In [320]:

```
# #calculate F-statistics for season
```

```
In [323]:
```

```
season1=[]
season3=[]
season4=[]
for i in range(len(dd)):
    if dd['season'][i]==1:
        season1.append(dd['count'][i])
    if dd['season'][i]==2:
        season2.append(dd['count'][i])
    if dd['season'][i]==3:
        season3.append(dd['count'][i])
    if dd['season'][i]==1:
        season4.append(dd['count'][i])
```

```
In [324]:
```

```
#mu1, mu2, mu3, mu4 are the means of count in season1, season2, season3, season4 res
# Null Hypothesis mu1=mu2=mu3=mu4
# alternative hypothesis: Not all the means are equal
# level of significance 0.05
# test statistics F-test
```

```
In [325]:
```

```
# Conduct the one-way ANOVA
f_oneway(season1, season2, season3, season4)
```

```
Out[325]:
```

```
F_onewayResult(statistic=401.7230336505781, pvalue=1.9042750553991286e -247)
```

```
In [326]:
```

```
# we have P value close to zero so we reject the null hypothesis # we can say that there is some impact of season on count in our data
```

Chi-square

INFO: to check weather dependency on season, we can not apply chi square test