FINANCIAL ECONOMETRICS

Problem Set-3

Q1.

a.

. dfuller cpi, lags(2) trend regress Augmented Dickey-Fuller test for unit root Variable: cpi Number of obs = 234 Number of lags = 2 H0: Random walk with or without drift Dickey-Fuller — critical value statistic 1% 5% 10% -2.132 -3.995 -3.132 Z(t) MacKinnon approximate p-value for Z(t) = 0.5282. Regression table Coefficient Std. err. t P>|t| [95% conf. interval] D.cpi cpi -.0272293 .012772 L1. -2.13 0.034 -.052395 -.0020636 0.000 .3790375 LD. .5050387 .0639478 7.90 .63104 -2.95 0.003 L2D. -.1913743 .0648277 -.3191093 -.0636393 .0003231 .0190819 .0097025 .0047602 2.04 0.043 _trend 4.829998 2.121071 _cons 2.28 0.024 .6506869 9.009309

. dfuller usdeuro, lags(2) regress

Augmented Dickey-Fuller test for unit root

Variable: usdeuro Number of obs = 234
Number of lags = 2

H0: Random walk without drift, d = 0

	Test	Dickey-Fuller				
	statistic	1%	5%	10%		
Z(t)	-1.719	-3.465	-2.881	-2.571		

MacKinnon approximate p-value for Z(t) = 0.4216.

Regression table

	D.usdeuro	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
	usdeuro						
ı	L1.	0182886	.0106417	-1.72	0.087	0392563	.0026791
ı	LD.	.3186636	.0653924	4.87	0.000	.189819	.4475083
ı	L2D.	056484	.0655479	-0.86	0.390	1856351	.0726672
	_cons	.0223861	.0129809	1.72	0.086	0031905	.0479627

The tests do not reject a unit root at the 10% significant level for either variable.

b.

. estimates stats m1 m2 m3 m4

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	віс
m1	233		-194.9392	3	395.8784	406.2315
m2	233		-189.4545	4	386.9091	400.7132
m3	233	-	-189.435	5	388.8701	406.1253
m4	233		-190.5328	4	389.0657	402.8698

AIC selects Model 2 (386.9091). BIC selects Model 2 (400.7132).

c.

. estimates stats m1 m2 m3 m4

Akaike's information criterion and Bayesian information criterion

Model	N	ll(null)	ll(model)	df	AIC	BIC
m1 m2 m3 m4	233 233 233 233	· · ·	507.2147 507.8574 508.0733 507.9372	4	-1008.429 -1007.715 -1006.147 -1007.874	-993.9107 -988.8914

AIC selects Model 1 (-1008.429). BIC selects Model 1 (-998.0763).

d.

. varsoc y1 y2, maxlag(6)

Lag-order selection criteria

Sample: 8 thru 237

Number of obs = 230

Lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	284.237				.000295	-2.45423	-2.44217	-2.42434
1	321.93	75.386	4	0.000	.00022	-2.74722	-2.71104*	-2.65753*
2	328.338	12.816*	4	0.012	.000215*	-2.76815*	-2.70786	-2.61867
3	329.794	2.9129	4	0.572	.00022	-2.74604	-2.66162	-2.53676
4	330.841	2.094	4	0.718	.000226	-2.72036	-2.61182	-2.45129
5	333.997	6.3115	4	0.177	.000227	-2.71302	-2.58036	-2.38416
6	335.467	2.9398	4	0.568	.000233	-2.69102	-2.53424	-2.30236

* optimal lag

Endogenous: y1 y2
Exogenous: _cons

AIC selects a VAR(2)

e.

. vargranger

f.

Granger causality Wald tests

Equation Excluded	chi2	df Prob > chi2		
y1 y2	8.9601	2	0.011	
y1 ALL	8.9601	2	0.011	
y2 y1	.88437	2	0.643	
y2 ALL	.88437	2	0.643	

Graphs by irfname, impulse variable, and response variable

Graphs by irfname, impulse variable, and response variable

a.

Sample: 1 thru 663 Distribution: Gaussian Log likelihood = -5615.428 Number of obs = 663 Wald chi2(.) = . Prob > chi2 = .

		Coefficient	Std. err.	z	P> z	[95% conf.	interval]
Drugs							
Di ugs	_cons	1.231964	.1725749	7.14	0.000	.8937234	1.570205
ARCH Drugs							
	arch						
	L1.	.0799133	.0172312	4.64	0.000	.0461409	.1136858
	garch L1.	.8780659	.0263463	33.33	0.000	.826428	.9297037
		1070000	10202 103	22122	0.000	1020.20	13237037
	_cons	1.054416	.4396656	2.40	0.016	.1926873	1.916145
Util							
-	_cons	.945712	.1344151	7.04	0.000	.6822633	1.209161
ARCH_Util							
ANCII_ULII	arch						
	L1.	.1047558	.0256416	4.09	0.000	.0544991	.1550125
	garch L1.	9170653	0202424	20.02	0.000	7404503	9020902
	LI.	.8170652	.0392431	20.82	0.000	.7401502	.8939802
	_cons	1.163961	.3771213	3.09	0.002	.4248172	1.903106
Banks							
Danks	cons	1.008646	.1952552	5.17	0.000	.6259533	1.39134
	_						
ARCH_Banks							
	arch L1.	.106573	.0194248	5.49	0.000	.0685011	.1446449
	L1.	.100373	.0154240	3.43	0.000	.0005011	.1440443
	garch						
	L1.	.8363687	.0287276	29.11	0.000	.7800636	.8926738
	_cons	1.895741	.6609275	2.87	0.004	.6003469	3.191135
corr(Drug	rc #;1\	.4154742	.0800977	5.19	0.000	. 2584855	.5724629
corr(Drugs		.5765296	.0646339	8.92	0.000	.4498495	.7032097
corr(Uti]	-	.4340148	.0818921	5.30	0.000	.2735093	.5945204
/^							
/Adjustment	t Lambda1	.0358398	.0078648	4.56	0.000	.0204249	.0512546
	Lambda1	.9390758	.0134624	69.76	0.000	.91269	.9654615

d.

It appears that GARCH(1,1) volatility model is more volatile than the dynamic conditional correlation model. The DCC model is a multivariate model that possesses the characteristics of GARCH models while also having a parametric model for correlations. On the other hand, GARCH is a univariate model and does not account for correlations between holdings in the portfolio. The difference in structure between the models should explain this spread.

f. . summarize hit1 Variable Std. dev. Obs Min Mean Max hit1 663 .0558069 .2297218 ø 1 . egen aHat1=mean(hit1) . egen tOne1=sum(portfolioReturns-VaR < 0) . gen $logNum1 = (t0ne1*log(0.05))+((_N-t0ne1)*log(0.95))$. gen logDenom1 = (tOne1*log(aHat1))+((_N-tOne1)*log(1-aHat1)) . gen UC1=-2*(logNum1-logDenom1) . gen pval1=1-chi2(1,UC1) . disp UC1[_N] .4543457 . disp pval1[_N] .50027841 . summarize hit2 Variable Obs Mean Std. dev. Min Max hit2 663 .0603318 .2382804 0 1 . egen aHat2=mean(hit2) . egen tOne2=sum(portfolioReturns-VaR2 < 0)</pre> . gen $logNum2 = (tOne2*log(0.05))+((_N-tOne2)*log(0.95))$. gen logDenom2 = (tOne2*log(aHat2))+((_N-tOne2)*log(1-aHat2)) . gen UC2=-2*(logNum2-logDenom2) . gen pval2=1-chi2(1,UC2)

There is no significant difference between both tests.

. disp UC2[_N] 1.4017334

. disp pval2[_N]

.23643357

STATA CODE

```
Q1.
    a. gen time= n
       tsset time
        dfuller cpi, lags(2) trend regress
        dfuller usdeuro, lags(2) regress
    b. arima cpi if time >=5, arima(1,1,0)
         estimates store m1
        arima cpi if time >=5, arima(2,1,0)
         estimates store m2
        arima cpi if time >=5, arima(3,1,0)
         estimates store m3
        arima cpi if time \geq 5, arima(1,1,1)
         estimates store m4
        estimates stats m1 m2 m3 m4
    c. arima usdeuro if time >=5, arima(1,1,0)
         estimates store m1
        arima usdeuro if time >=5, arima(2,1,0)
         estimates store m2
        arima usdeuro if time >=5, arima(3,1,0)
         estimates store m3
        arima usdeuro if time >=5, arima(1,1,1)
         estimates store m4
        estimates stats m1 m2 m3 m4
    d. gen y1=D.cpi
        gen y2=D.usdeuro
        label variable y1 "D.CPI"
        label variable y2 "D.usdeuro"
       varsoc y1 y2, maxlag(6)
    e. quietly var y1 y2 if time<=201, lags(1/2)
         predict y1for, equation(#1)
         label variable y1for "Predicted Change in CPI"
         predict res, equation(#1) residuals
         egen sdf=sd(res)
         gen Icl = y1for - 1.96*sdf
         gen hcl = y1for + 1.96*sdf
        twoway (rarea lcl hcl time, fintensity(inten20)) ///
```

(line y1 y1for time, lpattern(solid dash)) in -36/1, ///

```
legend(order(2 3 1) label(1 "95% CI"))
```

- f. quietly var y1 y2 if time<=201, lags(1/2) vargranger
- g. irf create order1, set(myExamp) step(10) replace irf graph oirf

erase myExamp.irf

quietly var y1 y2 if time<=201, lags(1/2)

irf create order2, set(myExamp) step(10) replace
irf graph oirf

erase myExamp.irf

```
a. clear all
    ssc install tsmktim
    import excel "\\apporto. com\dfs \CLT\Users \rkamath1_clt\Documents \industry.×lsx",
    sheet("49 Industry Portfolios") firstrow
    gen time= n
    tsset time
    arch Drugs, garch(1) arch(1)
    predict conVar1, variance
    gen conVolDrugs = sqrt(conVar1)
    arch Util, garch (1) arch (1)
    predict conVar2, variance
    gen conVolUtils = sqrt (conVar2)
    arch Banks, garch(1) arch(1)
    predict conVar3, variance
    gen conVolBanks = sqrt (conVar3)
    tsline conVolDrugs conVolUtils conVolBanks, lpattern (solid) xtitle("Time") ytitle("Conditional
    Volatilities") title("Conditional Volatility of all 3 Industry Portfolios")
b. mgarch dcc (Drug Util Banks), arch(1) garch(1)
c. predict rho*, correlation
    tsline rho_Banks_Util rho_Banks_Drugs rho_Util_Drugs, Ipattern (solid) xtitle("Correlation")
    title("Conditional Correlations")
d. predict m*, xb
    predict s*, variance
    gen m Hat = (m Drugs+m Banks+m Util)/3
    gen v_Hat = (s Drugs _Drugs+s _Util_Util+s _Banks _Banks +
    2*(s_Util_Drugs+s_Banks_Drugs+s_Banks_Uti))/9
    gen VaR = (m_Hat - (1.645 * sqrt(v_Hat)))
    tsline VaR, xtitle ("Time") ytitle("VaR") title("Portfolio VaR") name (VAR1)
e. gen portfolioReturns = (Drugs + Util + Banks)/3
    arch portfolioReturns, garch(1) arch(1)
    predict me, xb
    predict conVar, variance
    gen VaR2 = (me - (1.645 * sqrt(conVar)))
    tsline VaR2, pattern(solid) xtitle("Time") ytitle("Conditional Volatility") title("VaR from GARCH")
    name (VAR2)
    graph combine VAR1 VAR2, row(2) col(1)
```

```
gen VaR_spread = VaR - VaR2
    tsline VaR_spread, Ipattern(solid) xtitle ("Time") ytitle("VaR") title("VaR Spread") name
    (VARspread)
    graph combine VAR1 VARspread, row(2) col(1)
f. generate hit1 = (portfolioReturns-VaR < 0)
   summarize hit1
    egen aHat1=mean (hit1)
    egen tOne1=sum(portfolioReturns-VaR < 0)
    gen LogNum1 = (tOne1*log (0.05))+((_N-tOne1)*log(0.95))
    gen logDenom1 = (tOne1*log(aHat1))+((_N-tOne1)*log(1-aHat1))
    gen UC1=-2* (logNum1-logDenom1)
    gen pval1=1-chi2(1, UC1)
    disp UC1[_N]
    disp pval1[_N]
    generate hit2 = (portfolioReturns-VaR2 < 0)
    summarize hit2
    egen aHat2-mean (hit2)
    egen tOne2=sum(portfolioReturns-VaR2 < 0)
    gen logNum2 = (tOne2*log(0.05))+((_N-tOne2)*log(0.95))
    gen logDenom2 = (tOne2*log(aHat2))+((_N-tOne2)*log(1-aHat2))
    gen UC2=-2* (logNum2-logDenom2)
    gen pval2=1-chi2(1,UC2)
    disp UC2[_N]
    disp pval2[_N]
```