Imiona:

Nazwisko:

Klucz: KLUCZ

Nr albumu:

Prace bez podanego numeru albumu lub bez podpisu nie będą oceniane. Odpowiedzi na poszczególne pytania należy koniecznie wpisać (jako cyfry) do poniższej tabeli. Zakreślanie odpowiedzi w tekstach pytań nie będzie uwzględniane. Punktacja podana jest na lewym marginesie. Podczas testu nie wolno korzystać z żadnych pomocy oprócz prostych kalkulatorów naukowych. Każde pytanie ma dokładnie jedną prawidłową odpowiedź. Czas trwania testu: 35 minut.

UWAGA! W niniejszym kluczu każde pytanie może mieć więcej niż jedną odpowiedź prawidłową i więcej niż trzy nieprawidłowe. Do docelowego testu wybierana jest spośród nich dokładnie jedna odpowiedź prawidłowa i dokładnie trzy nieprawidłowe. Odpowiedzi prawidłowe są w tekście klucza wyróżnione pogrubieniem.

Pyt.	Α	В	С	D	Е	F	G	Σ
Pkt.	1	2	1	1	2	1	1	9

Odp.

1p. A. Niepewność względna pomiaru

ułatwia obliczenie niepewności złożonej dla modelu pomiaru o charakterze iloczynu
 ułatwia obliczenie niepewności złożonej dla modelu pomiaru o charakterze iloczynu
 ułatwia orientacyjne porównanie dokładności pomiaru różnych wielkości fizycznych
 wyraża błąd względny danego pomiaru
 dla pomiaru złożonego zawsze stanowi iloczyn niepewności względnych pomiarów składowych
 zawsze jest niepewnością typu A

2p. B.

Przy bezpośrednim pomiarze napięć względny błąd metody pobrania, związany ze skończoną rezystancją woltomierza, jest co do modułu:

- 1. największy dla pomiaru U_3 2. taki sam dla pomiaru U_1 i U_2 3. taki sam dla pomiaru U_1 i U_2
- **4. taki sam dla pomiaru** U_2 i U_4 5. taki sam dla pomiaru każdego z napięć 6. największy dla pomiaru U_1
- 7. największy dla pomiaru U_2 8. największy dla pomiaru U_4

1p. C. Badany układ generuje okresowo powtarzany impuls o bardzo krótkim czasie trwania. Aby określić czas narastania impulsu najlepiej użyć oscyloskopu:

- z bezpośrednim próbkowaniem (digital sampling oscilloscope)
 z cyfrowym luminoforem (DPO)
 z cyfrową pamięcią (DSO)
 analogowego
 oscyloskopu z kanałami cyfrowymi (mixed signal oscilloscope)
- D. Amperomierz cyfrowy wskazał wartość 1,226 mA, a obliczona według wzorów podanych w jego specyfikacji niepewność graniczna wyniosła przed zaokrągleniem 0,1631... mA. Poprawnie zaokrąglony wynik końcowy pomiaru wynosi:
 - **1.** $(1, 23 \pm 0, 17)$ **mA** 2. $(1, 23 \pm 0, 16)$ mA 3. $(1, 226 \pm 0, 164)$ mA 4. $(1, 226 \pm 0, 163)$ mA 5. $(1, 2 \pm 0, 1)$ mA 6. $(1, 2 \pm 0, 2)$ mA
- 2p. E. Pomiar prądu I=2 mA będzie obarczony **największą** niepewnością graniczną, gdy zostanie wykonany amperomierzem
 - 1. analogowym klasy 0,5 na zakresie $I_z=5~\mathrm{mA}$ 2. cyfrowym o niepewności granicznej 1,2% wyniku plus wartość ostatniej (najmniej znaczącej) cyfry na zakresie 0,000 do 9,999 mA 3. cyfrowym o niepewności

granicznej 0,25% wyniku plus 0,4% prądu zakresowego na zakresie $I_z=5~\mathrm{mA}$ 4. analogowym klasy 0,2 na zakresie $I_z=7,5~\mathrm{mA}$ 5. analogowym klasy 0,1 na zakresie $I_z=10~\mathrm{mA}$ 6. cyfrowym o niepewności granicznej 0,7% wyniku plus pięć razy wartość ostatniej (najmniej znaczącej) cyfry na zakresie 0,000 do 9,999 mA 7. cyfrowym o niepewności granicznej 0,4% wyniku plus wartość ostatniej (najmniej znaczącej) cyfry na zakresie 0,00 do 9,99 mA 8. cyfrowym o niepewności granicznej 0,1% wyniku plus 0,2% prądu zakresowego na zakresie $I_z=10~\mathrm{mA}$ 9. cyfrowym o niepewności granicznej 0,3% wyniku plus 0,1% prądu zakresowego na zakresie $I_z=10~\mathrm{mA}$

1p. F. Który wykres przedstawia standardową niepewność względną przyrządu cyfrowego w funkcji modułu wartości zmierzonej? Przyjąć równomierny rozkład błędu i ustalony zakres pomiarowy przyrządu.

1p. G. Mierzona pośrednio moc dysponowana źródła Nortona opisana jest wzorem $P=\frac{J_N^2R_w}{4}$. Zmierzono wielkości składowe: $J_N=2$ mA, $R_w=1$ k Ω . Niepewność standardowa względna każdego z nieskorelowanych pomiarów składowych wynosi 1%. Przed ostatecznym zaokrągleniem obliczona niepewność

1. bezwzględna u(P) wynosi w przybliżeniu $0,023~\mathrm{mW}$ 2. względna $u_{rel}(P)$ wynosi w przybliżeniu 2,0% 4. względna $u_{rel}(P)$ wynosi w przybliżeniu 3,0% 5. bezwzględna u(P) wynosi w przybliżeniu $0,030~\mathrm{mW}$ 6. bezwzględna u(P) wynosi w przybliżeniu $0,030~\mathrm{mW}$

