NE BRR Training Session June 5th, 2023

Welcome to a NE BRR Training Session hosted by Theiagen Genomics & the Massachusetts Department of Public Health

We appreciate your punctuality! Please give others a few minutes to arrive (and adjust their audio equipment). We will get started at **2:33 PM Eastern Time**. Thanks!

Monday June 5th, 2023 Curtis Kapsak, MS & Frank Ambrosio, MS | Theiagen Genomics

Course Introduction

Training Workshop Overview

Training Information, Communication, and Support

- <u>Training Notion Page</u> created to host training resources and information
- Support Contacts:
 - support@terrapublichealth.zendesk.com

Main Course Objective

Learn about the concepts of Docker & containerization and their applications in public health bioinformatics

Training Workshop Overview

This workshop is an Intermediate/Advanced course

Great resources for more information regarding containers and

pathogen genomics

- StaPH-B Docker User Guide

For more technical content, get connected with various pathogen genomics communities such as PHA4GE, StaPH-B, & micro-binfie

- <u>Ten Recommendations for supporting open pathogen genomic</u> <u>analysis in public health</u>
 - Highlights containers and workflow management systems in context of public health
- A Primer on Infectious Disease Bacterial Genomics
 - Introduction to analyzing pathogen genomics data

Course Structure

4-Week Virtual Training Workshop

- All training sessions will begin at 2:30pm Eastern Time
 - Live Lectures (90m) on Mondays
 - Office Hours (60m) on Wednesdays
 - Exceptions:
 - No sessions the week of APHL Annual conf. (May 22-25)
 - Week 2 lecture will occur Tue May 30th 2:30-4pm EST due to Memorial Day
- Live lectures will include hands-on exercises
 - To participate, please ensure that you have registered for a GitHub account

Course Content

Week One - Intro to Docker and Containerization

- Lecture Content: Introduction to Docker containers
- Hands-on Exercises: Utilize a docker container to download a Klebsiella pneumoniae genome and to run Kleborate

Week Two - Container Repositories and Writing Dockerfiles

- Lecture Content: Intro to various repositories for Docker containers e.g. StaPH-B docker-builds & biocontainers
- Hands-On Exercise: Build docker images using pre-existing dockerfiles

Course Content

Week Three - Developing custom Docker Images

- Lecture Content: Intro to development and testing practices for writing dockerfiles
- Hands-on Exercise: Create a new dockerfile NCBI datasets; assign homework: contribute dockerfile to StaPH-B docker-builds

Week Four - StaPH-B docker-builds project

- Lecture Content: Review of the StaPH-B docker-builds project and code repository
- Hands-On Exercise: Develop a dockerfile and create a pull request

Container Repositories and Writing Dockerfiles

Goals by End of Week Three

- Learn best-practices for developing and testing dockerfiles
- Learn strategies for creating new dockerfiles for bioinformatics software
- Gain experience developing and testing a dockerfile

Outline

- Review Weeks 1 & 2
 - Dockerfiles & docker build
 - Best practices for writing Dockerfiles
- Strategies for creating and testing dockerfiles
- Homework update or create your own dockerfile

Week 1 Review

- Dockerfile is used to create the docker image
- Docker image is used to create the docker container
- Container is the runnable instance of an image

Dockerfile

```
# metadata

LABEL base.image="ubuntu:xenial"

LABEL version="1"

LABEL version="3.13.0"

LABEL software.version="3.13.0"

LABEL description="de novo DBG genome assembler"

LABEL website="http://cab.spbu.ru/files/release3.13.0/manual.html"

# Maintainer

MAINTAINER Curtis Kapsak <curtis.kapsak@state.co.us>

RUN apt-get update && apt-get install -y python \
wget

RUN wget http://cab.spbu.ru/files/release3.13.0/SPAdes-3.13.0-Linux.tar.gz && \
tar -xzf SPAdes-3.13.0-Linux.tar.gz && \
mkdir /data

ENV PATH="${PATH}:/SPAdes-3.13.0-Linux/bin"

WORKDIR /data
```


Week 2 Review

Dockerfile instructions

- FROM defines the base docker image
- ARG set environmental variables ONLY available during build time
- ENV set environmental variables that persist during and after build time
- RUN executes a command in a new layer
- WORKDIR sets the working directory for executing commands
- COPY (and ADD) copy files into the docker image
- LABEL adds metadata to your docker image
- *There are a few other instructions, but these are the main ones

Week 2 Review

docker build

- Builds an image from a dockerfile
- At a minimum, requires a Dockerfile. Some dockerfiles require other files for building (scripts, databases, etc.)
- Official docs: https://docs.docker.com/engine/reference/commandline/build/
- General command structure:

docker build --tag <name>:<tag> <directory-with-dockerfile>

example using SPAdes dockerfile:

docker build --tag spades:3.15.5 spades/3.15.5/

Week 3 Developing Custom Docker Images

- One docker container should be used for one purpose one bioinfo tool*
 - * There are some exceptions!

- One docker container should be used for one purpose one bioinfo tool*
 - * There are some exceptions!
- Only install what is necessary. Avoid installing extra programs to keep disk usage low

- One docker container should be used for one purpose one bioinfo tool*
 - * There are some exceptions!
- Only install what is necessary. Avoid installing extra programs to keep disk usage low
- Fewer layers = better. RUN, COPY, and ADD instructions add layers

- One docker container should be used for one purpose one bioinfo tool*
 - * There are some exceptions!
- Only install what is necessary. Avoid installing extra programs to keep disk usage low
- Fewer layers = better. RUN, COPY, and ADD instructions add layers
- Readability of dockerfile is helpful. Usually use one command per line

- One docker container should be used for one purpose one bioinfo tool*
 - * There are some exceptions!
- Only install what is necessary. Avoid installing extra programs to keep disk usage low
- Fewer layers = better. RUN, COPY, and ADD instructions add layers
- Readability of dockerfile is helpful. Usually use one command per line
- No "large" databases or files. Large means >1GB
 - There are exceptions, but usually it's better practice to bring large databases into the container at runtime instead of keeping in container
- Docker documentation:

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

General tips

• docker build often while writing dockerfile. Trial and error as much as necessary!

- docker build often while writing dockerfile. Trial and error as much as necessary!
- If looking for the location of files, launch interactive container to see where files are located: docker run -it <image>
 - o alternatively add ls, find, or other commands in your dockerfile

- docker build often while writing dockerfile. Trial and error as much as necessary!
- If looking for the location of files, launch interactive container to see where files are located: docker run -it <image>
 - o alternatively add ls, find, or other commands in your dockerfile
- Helpful to have the dockerfile open in front of you when building an image. VSCode makes it easy for us

- docker build often while writing dockerfile. Trial and error as much as necessary!
- If looking for the location of files, launch interactive container to see where files are located: docker run -it <image>
 - o alternatively add ls, find, or other commands in your dockerfile
- Helpful to have the dockerfile open in front of you when building an image. VSCode makes it easy for us
- Use a Dockerfile linter (such as the Docker VSCode extension) to catch errors before
 you docker build

- docker build often while writing dockerfile. Trial and error as much as necessary!
- If looking for the location of files, launch interactive container to see where files are located: docker run -it <image>
 - o alternatively add ls, find, or other commands in your dockerfile
- Helpful to have the dockerfile open in front of you when building an image. VSCode makes it easy for us
- Use a Dockerfile linter (such as the Docker VSCode extension) to catch errors before
 you docker build
- Use docker build --progress=plain so that all STDOUT/STDERR is printed to screen can see every command being executed

I want to create a dockerfile, where do I start?

- Easiest Use & modify an existing dockerfile
 - StaPH-B provides many dockerfiles
 - Tool developers (or tool users) may provide their own dockerfiles.
 - If the dockerfile code is open source (and licensed as such) it's fair to use with proper attribution!

I want to create a dockerfile, where do I start?

- Easiest Use & modify an existing dockerfile
 - StaPH-B provides many dockerfiles
 - Tool developers (or tool users) may provide their own dockerfiles.
 - If the dockerfile code is open source (and licensed as such) it's fair to use with proper attribution!
- A bit more challenging start from a template dockerfile
 - StaPH-B provides a template dockerfile here:

https://github.com/StaPH-B/docker-builds/blob/master/dockerfile-te mplate/Dockerfile

Easy

I want to create a dockerfile, where do I start?

Easy

- Easiest Use & modify an existing dockerfile
 - StaPH-B provides many dockerfiles
 - Tool developers (or tool users) may provide their own dockerfiles.
 - If the dockerfile code is open source (and licensed as such) it's fair to use with proper attribution!
- A bit more challenging start from a template dockerfile
 - StaPH-B provides a template dockerfile here:
 - https://github.com/StaPH-B/docker-builds/blob/master/dockerfile-te
 - mplate/Dockerfile
- Most challenging writing a dockerfile from scratch

3 minute break: resume 3:03pm Week 3 Exercise Navigate to: https://gitpod.io/workspaces

I'm starting from a template or pre-existing dockerfile, where do I start?

1. Read the tool's documentation. Familiarize yourself with the installation procedure. How does the tool author recommend to install the tool?

I'm starting from a template or pre-existing dockerfile, where do I start?

- 1. Read the tool's documentation. Familiarize yourself with the installation procedure. How does the tool author recommend to install the tool?
- 2. See what programming language the tool is written in that will dictate how things are installed. Python, Perl, Rust, R, C/C++, something else?
 - a. Does the installation require code compilation?
 - b. If so, does the tool author provide pre-compiled binaries (executables)?
 - i. pre-compiled binaries are usually easier to download and use than compiling code as part of Dockerfile

I'm starting from a template or pre-existing dockerfile, where do I start?

- 1. Remember that not every user will be running the container as the `root` linux user. Singularity and other container engines may run containers as non-root users
 - a. Make sure that required files (scripts, databases, etc. files) are readable and executable to all users. You may have to use chmod command to change permissions on files

I'm starting from a template or pre-existing dockerfile, where do I start?

- 1. Remember that not every user will be running the container as the `root` linux user. Singularity and other container engines may run containers as non-root users
 - a. Make sure that required files (scripts, databases, etc. files) are readable and executable to all users. You may have to use chmod command to change permissions on files
- 2. Place files in an expected location & document where important files are located.
 - a. example: Mummer docker image used for ANI for enteric pathogens
 - i. https://github.com/theiagen/docker-builds/tree/master/mummer/4.0.0-RGDv2
 - ii. "The FASTA files for RGDv2 can be found within the directory /RGDv2/inside the docker image."

Programming language specific tips

Python

- first install python and try installing python dependencies (e.g. numpy) via
 apt-get
- second install pip using apt-get,
 then use pip to install specific python packages
 - advantage: easy to pin versions
- <u>example: NanoPlot</u>

```
# install dependencies via apt; cleanup apt garbage; set locale to en US.UTF-8
16
       RUN apt-get update && apt-get install -y zlib1g-dev \
17
        bzip2 \
18
        libbz2-dev \
        liblzma-dev \
20
        libcurl4-gnutls-dev \
        libncurses5-dev \
22
23
        libssl-dev \
        python3 \
24
25
        python3-pip \
        python3-setuptools \
26
        locales && \
        locale-gen en US.UTF-8 && \
        apt-get autoclean && rm -rf /var/lib/apt/lists/*
31
       # for singularity compatibility
       ENV LC_ALL=C
32
33
       # install NanoPlot via pypi using pip3; make /data directory
34
35
       RUN pip3 install matplotlib psutil requests NanoPlot==${NANOPLOT VER} && \
        mkdir /data
36
```

Programming language specific tips

Perl

- first try installing perl dependencies
 (e.g. DateTime) via apt-get
- second install cpanm using apt-get,
 then use cpanm to install specific perl
 dependencies
- example: Prokka

```
# install dependencies
       RUN apt-get update && apt-get -y --no-install-recommends install
29
30
        bzip2 \
31
        gzip \
32
        wget \
        perl \
        less '
        libdatetime-perl \
35
        libxml-simple-perl
36
        libdigest-md5-perl
37
        default-jre \
38
        bioperl \
39
         hmmer \
        zlib1g-dev \
        python \
        liblzma-dev \
44
        libbz2-dev \
45
        xz-utils \
        curl \
        g++ \
        cpanminus \
```

```
73 RUN cpanm List::Util
```

Programming language specific tips

Compiled languages (C, C++, Rust)

- Pre-compiled binaries
 - Usually are operating system or
 CPU architecture specific
 - You usually want the 64-bit Linux
 binaries. AKA x86_64
- example: Mash

- When binaries are not available, you
 may have to compile the code yourself
 - May require gcc (C code) or g++
 (C++ code) for compiling the code
 - Other dependencies might also be required for compilation, usually tool authors will list those. Example: zlib1q-dev, make, etc.
- example: Samtools

If time allows: Demo: assembly-scan

Homework!

- Now that we've learned some of the tips and tricks for writing dockerfiles, let's put our knowledge to the test and write a new dockerfile.
- Let's share our dockerfiles & images with the community & contribute to the StaPH-B docker-builds project.
 - https://github.com/StaPH-B/docker-builds
- Please see the separate slide deck with instructions on how to contribute.

Homework!

- bioinfo tools & versions where dockerfiles are needed!
 - beginner/easy
 - update dragonflye v1.1.1 <u>current dockerfile</u> needs version update. No GitHub issue yet **Jessie**
 - update fastp v0.23.4 <u>current dockerfile</u> needs version update. No GitHub issue yet
 - update minimap2 v2.26 <u>current dockerfile</u> needs version update. No GitHub issue yet
 - update seqkit v2.4.0 <u>current dockerfile</u> needs version update. No GitHub issue yet **Luc**
 - update snp-sites v2.5.1 <u>current dockerfile</u> missing app and test layers. <u>GitHub issue</u> **Sean**
 - update kSNP3 v3.1 <u>current dockerfile</u> missing app and test layers. <u>GitHub issue</u> Kari
 - update colorid 0.1.4.3 <u>current dockerfile</u> missing app and test layers. <u>GitHub issue</u>
 - update hmmer v3.3 <u>current dockerfile</u> missing app and test layers. <u>GitHub issue</u> **Neranjan**
 - update clustalo v1.2.4 <u>current dockerfile</u> missing app and test layers. <u>GitHub issue</u>
 - intermediate
 - seqtk v1.4 <u>have dockerfile for v1.3</u>, needs updating
 - sra-tools (AKA sra-toolkit) v3.0.5 have dockerfile for 2.9.2, needs updating
 - krakenuniq 1.0.4 <u>have dockerfile in progress</u>
 - advanced
 - Krocus v1.0.3 start w/ <u>dockerfile template</u>
 - Meningotype v0.8.2-beta start w <u>dockerfile template</u>
 - MIDAS v1.3.2 start with <u>other example dockerfiles</u> (but tweak to StaPH-B requirements)
 - Samtools start with existing dockerfile, update with new build stage Kutluhan
 - o Have ideas for tools not listed here?

Homework!

- Once you have been assigned a tool, it is your homework to follow the instructions for creating & testing a dockerfile, and submitting a Pull Request via GitHub to contribute your code to the StaPH-B docker-builds project
- Feel free to work on this task at your own pace in the GitPod environment
 - NOTE: you will need to create a new GitPod workspace for this, see slide deck for instructions
- Please use time during office hours this week and next week to ask questions, seek
 help & advice as you develop.
- Curtis (and potentially other StaPH-B maintainers) will review your code, make suggestions for improvements, help troubleshoot, etc. to guide you through the process

Further reading & resources

- StaPH-B Github repo and docker hub account
 - https://github.com/StaPH-B/docker-builds
 - https://hub.docker.com/u/staphb
- Docker Documentation a wealth of info here. Note that we use Docker Community Edition, as you have to pay for the Enterprise Edition
 - https://docs.docker.com/
- An awesome tutorial/workshop on docker for bioinformatics
 - https://github.com/PawseySC/bio-workshop-18
- Template for your Dockerfile
 - https://github.com/StaPH-B/docker-builds/blob/master/dockerfile-template/Dockerfile
- Some best practices
 - https://staphb.org/docker-builds/make_containers/
- Search for docker images and (sometimes) Dockerfiles here:
 - http://hub.docker.com/
 - https://quay.io/
- "What is Docker?"(~11 min)
 - https://www.youtube.com/watch?time_continue=1&v=aLipr7tTuA4

Acknowledgements

- MA DPH
- Members of StaPH-B & the docker-builds contributors & maintainers
 - Erin Young, UT PHL
 - Kelsey Florek, WI PHL
 - Kevin Libuit, Theiagen Genomics
 - Frank Ambrosio, Theiagen Genomics
 - many more awesome people!
 - StaPH-B docker-builds contributors:

https://github.com/StaPH-B/docker-builds#authorsmaintainers

- APHL
- CDC

