Department of Mathematics Indian Institute of Technology Guwahati

MA 101: Mathematics I Tutorial Sheet-1

July-December 2019

1. Find the supremum and the infimum of the following sets:

(a)
$$\left\{1 - \frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$$

Solution. The elements of the given set A are $2, 1/2, 4/3, 3/4, 6/5, 5/6, \dots$ Clearly, $\inf(A) = \min(A) = 1/2$ and $\sup(A) = \max(A) = 2$.

(b)
$$\left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\}$$

Solution. Let A be the given set. Clearly, $0 \le x$ for all $x \in A$ and $0 \in A$. Hence, $\inf(A) = \min(A) = 0$. We next observe that x < 1 for all $x \in A$. Hence, 1 is an upper bound of A. Suppose that u < 1 and u is an upper bound of A. Then 1 - u > 0 and by Archimedean property, there exists $n_0 \in \mathbb{N}$ such that $n_0(1-u) > 1$. This gives $u < 1 - \frac{1}{n_0}$. This is a contradiction to the fact that u is an upper bound of A. Thus, any number smaller than 1 is not an upper bound. This proves that 1 is the least upper bound of A.

(c)
$$\left\{ \frac{1}{n} - \frac{1}{m} : n, m \in \mathbb{N} \right\}$$

Solution. Taking n = 1 and $m \in \mathbb{N}$, we see that the numbers $0, 1/2, 2/3, 3/4, \ldots$ are in the set A. Similarly, taking m = 1 and $n \in \mathbb{N}$, we see that $0, -1/2, -2/3, -3/4, \ldots \in A$. Thus, -1 < x < 1 for every $x \in A$. Suppose that u < 1 and u is an upper bound of A. Then 1 - u > 0 and by Archimedean property, there exists $m_0 \in \mathbb{N}$ such that $m_0(1 - u) > 1$. This gives $u < 1 - \frac{1}{m_0}$. Since $1 - \frac{1}{m_0} \in A$, we get a contradiction to the fact that u is an upper bound of A. Thus, $\sup(A) = 1$.

Similarly, suppose that v > -1 and v is a lower bound of A. By Archimedean property we have $n_0(1+v) > 1$ for some $n_0 \in \mathbb{N}$. This gives $v > \frac{1}{n_0} - 1$. Since $\frac{1}{n_0} - 1 \in A$, we get a contradiction to the fact that v is a lower bound of A. Thus, $\inf(A) = -1$.

(d)
$$\left\{ \frac{m}{m+n} : m, n \in \mathbb{N} \right\}$$

Solution. First note that $0 < \frac{m}{m+n} < 1$. Thus, 0 is a lower bound. We guess that $\inf(A) = 0$ because $\frac{1}{1+n}$ is in the set and it approaches 0 when n is very large. Suppose that v > 0 and v is a lower bound. Using the Archimedean property we can find an n such that $\frac{1}{n+1} < v$, which gives a contradiction. This proves that 0 is the greatest lower bound. Similarly, we can show that $\sup(A) = 1$.

2. Let A and B be two bounded subsets of \mathbb{R} . The sum of A and B is defined by

$$A + B = \{a + b : a \in A, b \in B\}.$$

Show that

(a)
$$\inf(A+B) = \inf(A) + \inf(B)$$

Solution. Since A and B are bounded, so they are bounded below. Let $\alpha = \inf(A)$ and $\beta = \inf(B)$. Then $\alpha \leq x$ for all $x \in A$ and $\beta \leq y$ for all $y \in B$. Let $z \in A + B$. Then z = a + b for some $a \in A$ and $b \in B$. Thus, $\alpha + \beta \leq z$ for all $z \in A + B$. This proves that $\alpha + \beta$ is a lower bound of A + B. Let $\gamma = \inf(A + B)$. Our claim is that $\gamma = \alpha + \beta$. Since $\gamma \geq \alpha + \beta$, we only need to prove that $\gamma \leq \alpha + \beta$. Let $\varepsilon > 0$ be an arbitrary real number. Since $\alpha = \inf(A)$, so $\alpha + \varepsilon/2$ is not a lower bound of A and hence $a < \alpha + \varepsilon/2$ for some $a \in A$. Similarly, $b < \beta + \varepsilon/2$ for some $b \in B$. Thus, $\gamma \leq a + b < \alpha + \beta + \varepsilon$ for every $\varepsilon > 0$. This proves that $\gamma \leq \alpha + \beta$. Hence, $\inf(A + B) = \gamma = \alpha + \beta = \inf(A) + \inf(B)$. \square

(b)
$$\sup(A+B) = \sup(A) + \sup(B)$$

Solution. Since A and B are bounded, so they are bounded above. Let $\alpha = \sup(A)$ and $\beta = \sup(B)$. Then $\alpha \geq x$ for all $x \in A$ and $\beta \geq y$ for all $y \in B$. Let $z \in A + B$. Then z = a + b for some $a \in A$ and $b \in B$. Thus, $\alpha + \beta \geq z$ for all $z \in A + B$. This proves that $\alpha + \beta$ is an upper bound of A + B. Let $\gamma = \sup(A + B)$. Our claim is that $\gamma = \alpha + \beta$. Since $\gamma \leq \alpha + \beta$, we only need to prove that $\gamma \geq \alpha + \beta$. Let $\varepsilon > 0$ be an arbitrary real number. Since $\alpha = \sup(A)$, so $\alpha - \varepsilon/2$ is not an upper bound of A and hence $a > \alpha - \varepsilon/2$ for some $a \in A$. Similarly, $b > \beta - \varepsilon/2$ for some $b \in B$. Thus, $\gamma \geq a + b > \alpha + \beta - \varepsilon$, that is, $\gamma + \varepsilon > \alpha + \beta$ for every $\varepsilon > 0$. This proves that $\gamma \geq \alpha + \beta$. Hence, $\sup(A + B) = \gamma = \alpha + \beta = \sup(A) + \sup(B)$.

- 3. Let A be a nonempty bounded subset of \mathbb{R} . For a real number x, we define $xA = \{xa : a \in A\}$. Prove that:
 - (a) If x > 0, then $\inf(xA) = x \cdot \inf(A)$ and $\sup(xA) = x \cdot \sup(A)$.

Solution. Let $\inf(A) = \alpha$. Since x > 0, so $x\alpha \le xa$ for all $a \in A$. Hence, $x\alpha$ is a lower bound of xA. Let B = xA and $\gamma = \inf(xA) = \inf(B)$. Then we have $x\alpha \le \gamma$. That is, for any bounded set A we have $x \cdot \inf(A) \le \inf(xA)$ for all x > 0. This implies that $\frac{1}{x} \cdot \inf(B) \le \inf(\frac{1}{x}B)$ for all x > 0. But $\frac{1}{x}B = A$, and hence $\inf(xA) \le x \cdot \inf(A)$ for all x > 0. This proves that $\inf(xA) = x \cdot \inf(A)$ if x > 0. The supremum case follows similarly.

(b) If x < 0, then $\inf(xA) = x \cdot \sup(A)$ and $\sup(xA) = x \cdot \inf(A)$.

Solution. Let $\sup(A) = \alpha$. Since x < 0, so $x\alpha \le xa$ for all $a \in A$. Hence, $x\alpha$ is a lower bound of xA. Let $\gamma = \inf(xA)$. Then we have $x\alpha \le \gamma$. Again, $\gamma \le xa$ for all $a \in A$. Since x < 0, so $\frac{1}{x}\gamma \ge a$ for all $a \in A$. Thus, $\frac{1}{x}\gamma$ is an upper bound of A, and hence $\frac{1}{x}\gamma \ge \alpha$. This gives $\gamma \le x\alpha$ and completes the proof of $\gamma = x\alpha$. The other case follows similarly.

4. Let q_1 and q_2 be two distinct real numbers. Then show that there exists an irrational number between them.

Solution. Let $q_1 < q_2$. Consider the real numbers $q_1\sqrt{2}$ and $q_2\sqrt{2}$. Then, we know that there is a rational number r such that $q_1\sqrt{2} < r < q_2\sqrt{2}$. This gives $q_1 < r/\sqrt{2} < q_2$. Thus, $r/\sqrt{2}$ is an irrational number lying between q_1 and q_2 .

5. Use the Archimedean property to show that

$$\bigcap_{n\in\mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}.$$

Solution. Let $I = \bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n} \right)$. Clearly, $0 \in I$. Suppose that x < 0. Using the

Archimedean property we can find an n_0 such that $n_0(-x) > 1$. This gives $x < -\frac{1}{n_0}$ and hence $x \notin (-\frac{1}{n_0}, \frac{1}{n_0})$. This proves that $x \notin I$ if x < 0. Similarly, if x > 0 then using the Archimedean property we can find an m_0 such that $m_0x > 1$. This gives $x > \frac{1}{m_0}$ and hence $x \notin (-\frac{1}{m_0}, \frac{1}{m_0})$. This proves that $x \notin I$ if x > 0. Therefore, 0 is the only element in I.