Database Management System (DBMS) Lecture-34

Dharmendra Kumar

November 8, 2020

Relational Database Design

Boyce-codd normal form (BCNF)

A relation schema R is in BCNF with respect to a set F of functional dependencies if, for all functional dependencies in F^+ of the form $\alpha \to \beta$, where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \to \beta$ is a trivial functional dependency.
- α is a super key for R.

Relational Database Design

Example: The relation schema Student_Performance (name, courseNo, rollNo, grade) has the following FDs: name,courseNo \rightarrow grade rollNo,courseNo \rightarrow grade name \rightarrow rollNo rollNo \rightarrow name ls this relation in BCNF?

Solution:

Consider FD, name,courseNo \to grade. Clearly, {name, courseNo} is a super key, therefore this satisfy 2nd criteria of BCNF.

Consider FD, rollNo,courseNo \rightarrow grade. Clearly, {rollNo, courseNo} is a super key, therefore this satisfy 2nd criteria of BCNF.

Consider FD, name \rightarrow rollNo. Clearly, this functional dependency not satisfy any condition of BCNF. Therefore, this is not in BCNF.

Relational Database Design

Example: Consider the following relation schemas and their respective functional dependencies:

Customer = (customer-name, customer-street, customer-city) customer-name \rightarrow customer-street, customer-city

Branch = (branch-name, assets, branch-city)

 $branch\text{-name} \rightarrow assets, \ branch\text{-city}$

Loan = (branch-name, customer-name, loan-number, amount)

loan-number o amount, branch-name

Clearly, Customer and Branch schema are in BCNF, because left side of functional dependency **customer-name** \rightarrow **customer-street, customer-city** and **branch-name** \rightarrow **assets, branch-city** is super key.

But Loan schema is not in BCNF, because left side of functional dependency **loan-number** \rightarrow **amount, branch-name** is not super key and this functional dependency is also not trivial.

Decomposition into 2NF

Example:

Let $R = \{ A, B, C, D \}$ and $F = \{ AB \rightarrow C, B \rightarrow D \}$.

Is this relation schema in 2NF? If not then decompose it into 2NF.

Solution:

Here, Primary key = $\{A,B\}$.

Clearly, this is not in 2NF because partial dependency holds.

Now, we decompose R into R_1 and R_2 as the following:-

$$R_1 = (A, B, C), F_1 = \{AB \rightarrow C\}$$

$$R_2 = (B, D), F_2 = \{B \to D\}$$

Now, R_1 and R_2 are in 2NF.

Example:

Student-course-info(Name, Course, Grade, Phone-no, Major, Course-dept)

 $\mathsf{F} = \{ \ \mathsf{Name} \to \mathsf{Phone}\text{-no Major, Course} \to \mathsf{Course}\text{-dept, Name} \\ \mathsf{Course} \to \mathsf{Grade} \ \}$

Is this relation schema in 2NF? If not then decompose it into 2NF.

Solution:

Here, Primary key = $\{Name, Course\}$.

Clearly, this is not in 2NF because partial dependency holds.

Now, we decompose R into R_1 , R_2 and R_3 as the following:-

 $R_1 = (\mathsf{Name}, \, \mathsf{Phone}\text{-no}, \, \mathsf{Major}), \, F_1 = \{\mathsf{Name} o \mathsf{Phone}\text{-no} \, \mathsf{Major}\}$

 $R_2 = (Course, Course-dept), F_2 = \{Course \rightarrow Course-dept\}$

 $R_3 = (\mathsf{Name}, \, \mathsf{Course}, \, \mathsf{Grade}), \, F_3 = \{\mathsf{Name} \, \mathsf{Course} \to \mathsf{Grade}\}$

Now, R_1 , R_2 and R_3 are in 3NF.

Decomposition into 3NF

Example:

Let $R = \{ A, B, C, D \}$ and $F = \{ A \rightarrow B, A \rightarrow C, B \rightarrow D \}$.

Is this relation schema in 3NF? If not then decompose it into 3NF.

Solution:

Here, Primary key = $\{A\}$.

Clearly, this is not in 3NF because transitivity dependency holds.

Now, we decompose R into R_1 and R_2 as the following:-

$$R_1 = (A, B, C), F_1 = \{A \rightarrow B, A \rightarrow C\}$$

$$R_2 = (B, D), F_2 = \{B \to D\}$$

Now, R_1 and R_2 are in 3NF.

Example:

Let Banker-info = { branch-name, customer-name, banker-name, office-number} and F = { banker-name \rightarrow branch-name office-number, customer-name branch-name \rightarrow banker-name}.

Is this relation schema in 3NF? If not then decompose it into 3NF.

Solution:

Here, Primary key = $\{customer-name, branch-name\}$.

Clearly, this is not in 3NF because transitivity dependency holds.

Now, we decompose relation Banker-info into R_1 and R_2 as the following:-

 $R_1 =$ (banker-name, branch-name, office-number), $F_1 =$ {banker-name \rightarrow branch-name office-number}

 $R_2=$ (customer-name, branch-name, banker-name), $F_2=$ {customer-name branch-name ightarrow banker-name}

Now, R_1 and R_2 are in 3NF.

Decomposition into BCNF

end

If R is not in BCNF, then we can decompose R into a collection of BCNF schemas $R_1, R_2, ..., R_n$ by the algorithm. The decomposition that the algorithm generates is not only in BCNF, but is also a lossless-join decomposition.

```
Input: R and F
Output: result
result \leftarrow R
done ← false
compute F^+
while (done = false) do
     if (there is a schema R_i in result that is not in BCNF) then
          let \alpha \to \beta be a nontrivial functional dependency that holds on R_i
            such that \alpha \to R_i is not in F^+, and \alpha \cap \beta = \phi
          result \leftarrow (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta)
     end
     else
          done = true
     end
```

Example:

Consider the following schema:-

Lending-schema = (branch-name, branch-city, assets, customername, loan-number, amount)

 $\mathsf{F} = \{ \text{ branch-name} \to \text{assets branch-city, loan-number} \to \text{amount branch-name} \}$

Is this relation schema in BCNF? If not then decompose it into $\mathsf{BCNF}.$

Solution:

```
Here, Primary key = {customer-name, loan-number}.
```

Clearly, this is not in BCNF.

Now, we decompose relation Lending-schema into R_1 and R_2 as the following:-

```
R_1 = ( customer-name, loan-number, amount, branch-name)
F_1 = \{ \text{ loan-number} \rightarrow \text{amount branch-name} \}
R_2 = (branch-name, assets, branch-city)
F_2 = \{ \text{ branch-name} \rightarrow \text{ assets branch-city} \}
Clearly, R_1 is not in BCNF. Therefore, we again decompose R_1.
Now, we decompose relation R_1 into R_3 and R_4 as the following:-
R_3 = ( customer-name, loan-number)
F_3 = \phi
R_4 = (loan-number, amount, branch-name)
F_4 = \{ \text{ loan-number} \rightarrow \text{amount branch-name} \}
Now, the final relation schema are R_2, R_3 and R_4. All these are in BCNF.
```