© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°07

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – Mines-Ponts PSI 2015

Dans tout l'énoncé, *n* désigne un entier naturel non nul.

La transposée d'une matrice M sera notée M^T.

On rappelle des résultats aux matrices définies par blocs. Si A, B, C, D, A', B', C', D' sont des matrices de $\mathcal{M}_n(\mathbb{R})$, on peut effectuer des produits par blocs

$$\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) \left(\begin{array}{c|c} A' & B' \\ \hline C' & D' \end{array} \right) = \left(\begin{array}{c|c} AA' + BC' & AB' + BD' \\ \hline CA' + DC' & CB' + DD' \end{array} \right)$$

De plus la transposée de la matrice définie par blocs $\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right)$ est $\left(\begin{array}{c|c} A^T & C^T \\ \hline B^T & D^T \end{array} \right)$.

On note respectivement 0_n et I_n la matrice nulle et la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

I Matrices symplectiques

On note J la matrice de $\mathcal{M}_{2n}(\mathbb{R})$ définie par J = $\begin{pmatrix} 0_n & -I_n \\ \hline I_n & 0_n \end{pmatrix}$. On note

$$\mathcal{SP}_{2n} = \{ \mathbf{M} \in \mathcal{M}_{2n}(\mathbb{R}), \ \mathbf{M}^{\mathsf{T}} \mathbf{J} \mathbf{M} = \mathbf{J} \}$$

- $\boxed{\mathbf{1}}$ Calculer J^2 et J^T en fonction de I_{2n} et J. En déduire que J est inversible et identifier son inverse.
- **2** Vérifier que $J \in \mathcal{SP}_{2n}$ et que pour tout $\alpha \in \mathbb{R}$,

$$K(\alpha) = \left(\begin{array}{c|c} I_n & \alpha I_n \\ \hline 0_n & I_n \end{array}\right) \in \mathcal{SP}_{2n}$$

 $\boxed{3} \text{ Montrer que pour tout } U \in GL_n(\mathbb{R}),$

$$L_{\mathbf{U}} = \left(\begin{array}{c|c} \mathbf{U} & \mathbf{0}_n \\ \hline \mathbf{0}_n & (\mathbf{U}^{\mathsf{T}})^{-1} \end{array}\right) \in \mathcal{SP}_{2n}$$

4 Si $M \in \mathcal{SP}_{2n}$, préciser les valeurs possibles de det(M).

© Laurent Garcin MP Dumont d'Urville

- **5** Montrer que le produit de deux éléments de SP_{2n} est un élément de SP_{2n} .
- **6** Montrer qu'un élément de \mathcal{SP}_{2n} est inversible et que son inverse appartient à \mathcal{SP}_{2n} .
- 7 Montrer que si $M \in \mathcal{SP}_{2n}$, alors $M^{\mathsf{T}} \in \mathcal{SP}_{2n}$.
- Soit $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ avec $(A, B, C, D) \in \mathcal{M}_n(\mathbb{R})^4$. Déterminer des relations sur A, B, C, D caractérisant l'appartenance de M à \mathcal{SP}_{2n} .
- **9** Dans cette question uniquement, on considère que n = 1. Montrer que

$$\mathcal{SP}_2 = \{ M \in \mathcal{M}_2(\mathbb{R}), \det(M) = 1 \}$$

II Centre de SP_{2n}

On s'intéresse ici au centre \mathcal{Z} de \mathcal{SP}_{2n} , c'est-à-dire

$$\mathcal{Z} = \{ M \in \mathcal{SP}_{2n}, \ \forall N \in \mathcal{SP}_{2n}, \ MN = NM \}$$

10 Justifier que I_{2n} et $-I_{2n}$ appartiennent à \mathcal{Z} .

Réciproquement, soit $M \in \mathcal{Z}$ de la forme $M = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right)$ avec $(A,B,C,D) \in \mathcal{M}_n(\mathbb{R})^4$.

- 11 En utilisant $L = \left(\frac{I_n \mid I_n}{0_n \mid I_n} \right)$ et sa transposée, montrer que $B = C = 0_n$ et A = D.
- 12 Justifier que A est inversible.
- Soit $U \in GL_n(\mathbb{R})$. En utilisant $L_U = \left(\begin{array}{c|c} U & 0_n \\ \hline 0_n & (U^\mathsf{T})^{-1} \end{array} \right)$, montrer que A commute avec toute matrice $U \in GL_n(\mathbb{R})$.
- On note $(E_{i,j})_{1 \le i,j \le n}$ la base canonique de $\mathcal{M}_n(\mathbb{R})$. Justifier que A commute avec les matrices $I_n + E_{i,j}$ puis que $A \in \{I_n, -I_n\}$. En déduire que $\mathcal{Z} = \{-I_{2n}, I_{2n}\}$.

III Déterminant d'une matrice symplectique

Dans cette partie, on se donne $M \in \mathcal{SP}_{2n}$ que l'on décompose à nouveau sous forme de matrices blocs $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ avec $(A, B, C, D) \in \mathcal{M}_n(\mathbb{R})^4$.

On suppose dans cette question que D est *inversible*. Justifier qu'il existe quatre matrices Q, U, V, W de $\mathcal{M}_n(\mathbb{R})$ telles que

$$\left(\begin{array}{c|c} I_n & Q \\ \hline 0_n & I_n \end{array}\right) \left(\begin{array}{c|c} U & 0_n \\ \hline V & W \end{array}\right) = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$$

 $\boxed{16}$ On suppose encore D inversible. En utilisant la question 8, montrer que BD^{-1} est symétrique, puis que

$$\det(\mathbf{M}) = \det(\mathbf{A}^\mathsf{T} \mathbf{D} - \mathbf{C}^\mathsf{T} \mathbf{B}) = 1$$

On suppose dans tout le reste de cette partie que D est *non inversible* et on cherche à nouveau à calculer le déterminant de M.

- 17 Montrer que Ker $B \cap \text{Ker } D = \{0\}.$
- 18 Montrer que l'application

$$(\mathbf{U}, \mathbf{V}) \in \mathcal{M}_{n,1}(\mathbb{R})^2 \mapsto \langle \mathbf{U}, \mathbf{V} \rangle = \mathbf{U}^\mathsf{T} \mathbf{V}$$

définit un produit scalaire sur l'ensemble des matrices colonnes $\mathcal{M}_{n,1}(\mathbb{R})$.

Dans la suite, $\mathcal{M}_{n,1}(\mathbb{R})$ est muni de ce produit scalaire.

On se donne $(P, Q) \in \mathcal{M}_n(\mathbb{R})^2$ tel que P^TQ soit symétrique. On suppose qu'il existe deux réels *distincts* s_1 et s_2 et deux matrices colonnes *non nulles* V_1 et V_2 de $\mathcal{M}_{n,1}(\mathbb{R})$ tels que

$$(Q - s_1 P)V_1 = (Q - s_2 P)V_2 = 0$$

Montrer que le produit scalaire $\langle QV_1, QV_2 \rangle$ est nul.

On suppose qu'il existe des réels non nuls s_1, \ldots, s_m distincts deux à deux et des matrices colonnes non nulles V_1, \ldots, V_m de $\mathcal{M}_{n,1}(\mathbb{R})$ telles que

$$\forall i \in [1, m], (D - s_i B) V_i = 0$$

Montrer que pour tout $i \in [1, m]$, $DV_i \neq 0$ et que la famille $(DV_1, ..., DV_m)$ est libre.

- **21** En déduire qu'il existe α tel que D α B soit inversible.
- 22 En utilisant les matrices $K(\alpha)$ de la question 2, montrer que det(M) = 1.
- Donner une matrice de $\mathcal{M}_4(\mathbb{R})$ de déterminant 1 non symplectique.