Zadaća 4

iz predmeta Diskretna Matematika

Prezime i ime: Mašović Haris

Br. indexa: 17993

Demonstrator: Rijad Muminović

Grupa: RI - 4

Zadatak	Bodovi
1	
2	
3	
4	
5	
6	
7	

Zadatak 1 [0.5 poena]

a) Uradimo za svaki graf pojedinačno (matrica susjedstva pa lista):

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1		1	1	1	1			
x_2	1		1					1
x_3	1	1		1		1		
x_4	1		1		1		1	
x_5	1			1			1	1
x_6			1				1	
x_7				1	1	1		1
x_8		1			1		1	

$$G_1 = (\{x_2, x_3, x_4, x_5\}, \{x_1, x_3, x_8\}, \{x_1, x_2, x_4, x_6\}, \{x_1, x_3, x_5, x_7\}, \{x_1, x_4, x_7, x_8\}, \{x_3, x_7\}, \{x_4, x_5, x_6, x_8\}, \{x_2, x_5, x_7\})$$

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1					1		1	
x_2				1		1	1	1
x_3				1		1	1	
x_4		1	1		1			1
x_5	1			1		1		1
x_6		1	1		1			
x_7	1	1	1					1
x_8		1		1	1		1	

$$G_2 = (\{x_5, x_7\}, \{x_4, x_6, x_7, x_8\}, \{x_4, x_6, x_7\}, \{x_2, x_3, x_5, x_8\}, \{x_1, x_4, x_6, x_8\}, \{x_2, x_3, x_5\}, \{x_1, x_2, x_3, x_8\}, \{x_2, x_4, x_5, x_7\})$$

/	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
x_1			1	1		1	1	
x_2				1	1	1		
x_3	1			1			1	1
x_4	1	1	1					
x_5		1				1	1	1
x_6	1	1			1		1	
x_7	1		1		1	1		
x_8			1		1			

$$G_3 = (\{x_3, x_4, x_6, x_7\}, \{x_4, x_5, x_6\}, \{x_1, x_4, x_7, x_8\}, \{x_1, x_2, x_3\}, \{x_2, x_6, x_7, x_8\}, \{x_1, x_2, x_5, x_7\}, \{x_1, x_3, x_5, x_6\}, \{x_3, x_5\})$$

b) S obzirom da sva tri grafa imaju isti broj čvorova, isti broj grana i iste stepene čvorova brojimo konture. Grafovi 1 i 3 imaju 5 kontura, dok graf 2 ima samo 3 konture. Dakle samo grafovi 1 i 3 mogu biti međusobno izomorfni, a tu izomorfnost postižemo preimenovanjem slijedećih čvorova:

$$x_1 \rightarrow x_1 \quad x_2 \rightarrow x_4 \quad x_3 \rightarrow x_3 \quad x_4 \rightarrow x_7$$

$$x_5 \rightarrow x_6 \quad x_6 \rightarrow x_8 \quad x_7 \rightarrow x_5 \quad x_8 \rightarrow x_2$$

odnosno imamo sljedeća 2 grafa (G_1 pa G_2):

- c) Utvrdimo planarnost grafova:
- Grafovi G_1 odnosno G_3 su planarni (prijašnje slike).
- Za graf G_2 se međutim ne vidi očigledan način da se nacrta bez presijecanja grana. Na osnovu Eulerove teoreme, slijedi da planaran graf sa n čvorova može imati najviše $3 \cdot n 6$ grana. U ovom slučaju, uslov je zadovoljen jer je $3 \cdot 8 6 = 24 6 = 18$, a razmatrani graf ima 14 grana, što znači da je potreban uslov planaranosti ispunjen. Za provjeru da li graf zaista jeste planaran bit će korištena Wagnerova teorema, tačnije svođenje grafa na K_5 . Ako primjetimo možemo utapanjem čvorova x_1 u x_7 , x_6 u x_5 , x_3 u x_4 dobiti sljedeći graf, koji je očigledno K_5 samim tim naš graf G_2 nije planaran (grafik G_2 je ilustrovan u pod d) desni).

d) Hromatski broj planarnih grafova uvijek je manji ili jednak od 4. Ukoliko se bojenje vrši pohlepnim algoritmom, situacija je sljedeća za G_1 odnosno G_3 (isto bojanje) na lijevom grafu, odnoso G_2 na desnom:

Bojimo x_2 sa sivom, zatim x_4 sa plavom, onda x_1 opet sivom, dalje x_6 bojimo opet plavom. x_7 bojimo novom bojom, jer ne možemo sa plavom i sivom. Dalje x_8 možemo plavom opet. x_3 moramo crvenom jer je povezan sa čvorovima sive i plave boje. Na kraju x_5 bojimo sa novom bojom, tj. zelenom, jer već postojeće 3 boje ne možemo izabrati. Time dobijamo da je hromatski broj ovih grafova 4.

Bojenje G_2 smo uradili na isti način prolaskom redom kroz $x_6 - x_4 - x_3 - x_7 - x_1 - x_5 - x_6 - x_2$. Time dobijamo da je hromatski broj grafa G_2 3.

Zadatak 2 [0.6 poena]

a) Primjenom Kruskalovog algoritma sa bojenjem čvorova:

Grana	Težina	Uzeti	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	c_9	c_{10}	c_{11}	c_{12}
4-10	250	da				1						1		
5-10	270	da					1							
3-6	330	da			2			2						
3-7	400	da							2					
4-8	420	da								1				
3-5	480	da			1			1	1					
1-4	620	da	1											
3-4	690	ne												
2-6	730	da		1										
2-7	810	ne												
1-5	810	ne												
1-10	840	ne												
11-12	840	da											3	3
3-12	950	da											1	1
1-3	960	ne												
9-12	1040	da									1			

b) Primjenom optimalnog Kruskalovog algoritma:

Grana	Težina	Uzeti	$x_1/1$	$x_2/1$	$x_3/1$	$x_4/1$	$x_5/1$	$x_6/1$	$x_7/1$	$x_8/1$	$x_9/1$	$x_{10}/1$	$x_{11}/1$	$x_{12}/1$
4-10	250	da				$x_4/2$						$x_4/1$		
5-10	270	da				$x_4/3$	$x_{10}/1$							
3-6	330	da			$x_3/2$			$x_3/1$						
3-7	400	da			$x_3/3$				$x_3/1$					
4-8	420	da				$x_4/4$				$x_4/1$				
3-5	480	da			$x_5/3$	$x_4/7$								
1-4	620	da	$x_4/1$			$x_4/8$								
3-4	690	ne												
2-6	730	da		$x_6/1$		$x_4/9$								
2-7	810	ne												
1-5	810	ne												
1-10	840	ne												
11-12	840	da											$x_{11}/2$	$x_{11}/1$
3-12	950	da				$x_4/11$							$x_3/2$	
1-3	960	ne												
9-12	1040	da				$x_4/12$					$x_{12}/1$			

c) Primjenom optimiziranog (kvadratnog) Primovog algoritma:

x_r	1	2	3	4	5	6	7	8	9	10	11	12
	0	-	-	-	-	-	-	-	-	-	-	-
x_1			$960/x_1$	$620/x_1$	$810/x_1$				$1170/x_1$	$840/x_1$		
x_4			$690/x_4$		$810/x_1$			$420/x_4$	$1170/x_1$	$250/x_4$		
x_{10}			$690/x_4$		$270/x_{10}$			$420/x_4$	$1170/x_1$			
x_5			$480/x_5$			$1100/x_5$		$420/x_4$	$1090/x_5$			
x_8			$480/x_5$			$1100/x_5$			$1090/x_5$			
x_3						$330/x_3$	$400/x_3$		$1090/x_5$		$1370/x_3$	$950/x_3$
x_6		$730/x_6$					$400/x_3$		$1090/x_5$		$1370/x_3$	$950/x_3$
x_7		$730/x_6$							$1090/x_5$		$1370/x_3$	$950/x_3$
x_2									$1090/x_5$		$1370/x_3$	$950/x_3$
x_{12}									$1040/x_{12}$		$840/x_{12}$	
x_{11}									$1040/x_{12}$			

Zadatak 3 [0.7 poena]

Označavamo gradove slovima abecede, radi lakšeg rada sa imenima čvorova: A-Rekazga, B-Zixa, C-Evesa, D-Egna, E-Quwuti, F-Brot, G- Zote, H-Uhsuru.

A - Rekazga

Cvor (x_r)	A	В	С	D	E	F	G	Н
	0	_	_	-	-	-	-	_
A (0)		1430/A		1410/A	220/A		390/A	250/A
E (220)		$1370/{ m E}$	$1450/\mathrm{E}$	1410/A		$550/\mathrm{E}$	390/A	250/A
H (250)		1200/H	$1130/{ m E}$	740/H		$550/\mathrm{E}$	390/A	
G (390)		820/G	690/G	630/G		$550/\mathrm{E}$		
F (550)		820/G	690/G	630/G				
D (630)		820/G	690/G					
C (690)		820/G						

B - Zixa

Cvor (x_r)	A	В	С	D	Е	F	G	Н
	-	0	-	-	-	-	-	-
B (0)	1430/B		1090/B	1480/B	1150/B	540/B	430/B	950/B
G (430)	820/G		730/G	$670/\mathrm{G}$	790/G	540/B		690/G
F (540)	820/G		730/G	670/G	790/G			690/G
D (670)	820/G		730/G		790/G			690/G
H (690)	820/G		730/G		790/G			
C (730)	820/G				790/G			
E (790)	820/G							

C - Evesa

Cvor (x_r)	A	В	С	D	Е	F	G	Н
	-	-	0	-	-	-	-	-
C(0)		$1090/{ m C}$			$1230/{ m C}$	$220/\mathrm{C}$	$300/\mathrm{C}$	880/C
F (220)		$760/\mathrm{F}$		580/F	$550/\mathrm{F}$		$300/\mathrm{C}$	530/F
G (300)	690/G	730/G		540/G	$550/\mathrm{F}$			$530/\mathrm{F}$
F (530)	690/G	730/G		540/G	$550/\mathrm{F}$			
D (540)	690/G	730/G			$550/\mathrm{F}$			
E (550)	690/G	730/G						
A (690)		730/G						

D - Egna

Cvor (x_r)	A	В	С	D	Е	F	G	Н
	-	-	-	0	-	-	-	-
D (0)	1410/D	$1480/{ m D}$			1490/D	360/D	240/D	490/D
G (240)	630/G	670/G	540/G		600/G	360/D		490/D
F (360)	630/G	670/G	540/G		600/G			490/D
H (490)	630/G	670/G	540/G		600/G			
C (540)	630/G	670/G			600/G			
E (600)	630/G	670/G						
A (630)		670/G						

E - Quwuti

Cvor (x_r)	A	В	С	D	Е	F	G	Н
	-	-	-	-	0	-	-	-
E (0)	$220/\mathrm{E}$	$1150/\mathrm{E}$	$1230/\mathrm{E}$	$1490/{ m E}$		$330/\mathrm{E}$	$360/\mathrm{E}$	
A (220)		$1150/{\rm E}$	$1230/{\rm E}$	$1490/{ m E}$		$330/\mathrm{E}$	$360/\mathrm{E}$	470/A
F (330)		$870/{ m F}$	$550/\mathrm{F}$	$690/\mathrm{F}$			$360/\mathrm{E}$	470/A
G (360)		790/G	$550/\mathrm{F}$	$600/\mathrm{G}$				470/A
H (470)		790/G	$550/\mathrm{F}$	600/G				
C (550)		790/G		$600/\mathrm{G}$				
G (600)		790/G						

F - Brot

Cvor (x_r)	A	В	С	D	Е	F	G	Н
	-	_	-	_	_	0	-	-
F (0)		$540/{ m F}$	$220/\mathrm{F}$	$360/{ m F}$	$330/{ m F}$		$460/{ m F}$	310/F
C (220)		540/F		$360/{ m F}$	$330/{ m F}$		$460/{ m F}$	$310/{ m F}$
H (310)	560/H	$540/{ m F}$		$360/{ m F}$	$330/{ m F}$		$460/{ m F}$	
E (330)	$550/\mathrm{E}$	540/F		$360/{ m F}$			$460/{ m F}$	
D (360)	$550/\mathrm{E}$	540/F					$460/{ m F}$	
G (460)	$550/\mathrm{E}$	$540/\mathrm{F}$						
B (540)	$550/\mathrm{E}$							

G - Zote

Cvor (x_r)	A	В	С	D	Е	F	G	Н
	-	-	-	-	-	-	0	-
G(0)	390/G	430/G	300/G	240/G	360/G	460/G		260/G
D (240)	390/G	430/G	300/G		360/G	460/G		260/G
H (260)	390/G	430/G	300/G		360/G	460/G		
C (300)	390/G	430/G			360/G	460/G		
E (360)	390/G	430/G				460/G		
A (390)		430/G				460/G		
B (430)						460/G		

H - Uhsuru

Cvor (x_r)	A	В	С	D	Е	F	G	Н
	-	-	-	-	-	-	-	0
H (0)	250/H	950/H	880/H	490/H		310/H	260/H	
A (250)		950/H	880/H	490/H	470/A	310/H	260/H	
G (260)		690/G	560/G	490/H	470/A	310/H		
F (310)		690/G	$530/\mathrm{F}$	490/H	470/A			
E (470)		690/G	530/F	490/H				
D (490)		690/G	$530/\mathrm{F}$					
C (530)		690/G						

Ovim je postupak sprovođenja Dijkstrinog algoritma okončan. U sljedećoj tablici predstavljen je konačan rezultat, odnosno minimalne cijene putovanja između dvije destinacije uz informacije o presjedanju (ako je poželjno) u desnom dijelu do cijene.

Putovanje	A	В	С	D	Е	F	G	Н
A	0	820/G	690/G	630/G	220	$550/\mathrm{E}$	390	250
В	820/G	0	730/G	670/G	790/G	540	430	690/G
С	690/G	730/G	0	540/G	550/F	220	300	530/F
D	630/G	670/G	540/G	0	600/G	360	240	490
Е	220	790/G	550/F	600/G	0	330	360	470/A
F	550/E	540	220	360	330	0	460	310
G	390	430	300	240	360	460	0	260
Н	250	690/G	530/F	490	470/A	310	260	0

Zadatak 4 [0.5 poena]

Bellman-Fordov algoritam izvodi se kroz nekoliko iteracija. Kako postoji 10 čvorova, ukoliko nakon 10 iteracija algoritam ne terminira, to je siguran znak da u grafu postoji kontura sa negativnom sumom težina. Također, ukoliko u nekoj od iteracija početni čvor (za ovaj zadatak konkretno, čvor E) dobije negativan potencijal, to je znak da u grafu postoji kontura sa negativnom sumom težina (pri čemu ta suma iznosi upravo onoliko koliko je novodobijeni negativni potencijal početnog čvora). Bellman-Fordov algoritam bit će prikazan tabelarno.

Treba napomenuti da je tok iteracija sljedeći: E-G-D-B-F-I-C-H-J

Prva iteracija:

x_r	A	В	С	D	Е	F	G	Н	I	J	λ_i
	∞	∞	∞	∞	0	∞	∞	∞	∞	∞	
E							39				0,-21
В						21					$\infty,78$
С								-3		84	$\infty,36$
D		78				87					$\infty,51$
A											∞
F					45			51	3		$\infty, 87, 21$
G				51							$\infty,39$
Н				93							$\infty,51,-3$
I			36				48			42	$\infty,3$ $\infty,42$
J				78	-21						$\infty,42$

U ovom trenutku je sigurno da graf ima konturu sa negativnom sumom težina jer je početni čvor E dobio negativni potencijal koji iznosi -21. Da bi se pronašla jedna konura negativne težine u ovom grafu, idemo unatrag tako da ćemo na kraju imati konturu: E-G-D-B-F-I-J-E čija je vrijednost -21.

Zadatak 5 [0.7 poena]

a) Pokažite da u ovom grafu ima tačno jedan izvor (čvor ulaznog stepena 0) i tačno jedan ponor (čvor izlaznog stepena 0), te da se radi o acikličkom grafu.

Iz analitičkog izraza kojim je graf zadan lako je vidljivo da je čvor x_3 čvor izlaznog stepena nula, tako da je on ponor grafa. Na isti način vidi se da je ulazni stepen čvora x_{11} jednak nuli, pa je on izvor. Kako graf ima tačno jedan izvor i tačno jedan ponor i kako su sve težine nenegativne, riječ je o transportnoj mreži.

Ciklusom se naziva zatvorena staza (put koji nijednu granu ne sadrži više od jednom), te je graf koji ne sadrži nijedan acikličan. Ispitivanje da li je graf acikličan ili nije vrši se uzimajući i-ti čvor kao početni i razmatrajući grane s kojima je povezan. Nakon toga, to isto radimo sa jednim od susjeda dok se ne obiđu svi čvorovi. Za formiranje ciklusa, potrebno je vratiti se u i-ti čvor. Odnosno ako nema ciklusa, naš graf je acikličan.

Krenuvši od x_1 možemo ići ili prema x_2 ili prema x_4 , ako posmatramo sad x_2 možemo ići prema ili x_7 ili x_8 , zatim ako posmatramo ili x_7 ili x_8 završavamo u x_3 . Ako posmatramo x_4 možemo ići ili prema x_8 ili prema x_{10} pa ćemo na kraju završiti u x_3 . Na ovaj način smo dokazali da čvorovi $x_1, x_2, x_4, x_7, x_8, x_{10}, x_3$ ni na koji način ne tvore ciklus.

Ako posmatramo čvor x_{11} možemo ići prema x_9, x_6, x_5 . Iz x_9 možemo ići ka ili x_1 ili x_2 što smo već dokazali da ćemo završiti u x_3 . Ako posmatramo čvor x_5 možemo ići ili ka x_9 ili x_6 . x_6 može završiti ili u x_1 ili u x_4 samim tim ćemo na kraju završiti u x_3 , čime je dokazano da je ovaj graf acikličan, jer ne sadrži nijedan ciklus.

b) Izvršite topološko sortiranje čvorova ovog grafa obavljajući DFS pretragu počev od izvora grafa.

Prvo moramo inverzovati graf tj. obrnuti grane tj. smjer, samim tim preći na DFS pretragu, nakon toga da bismo dobili početni graf moramo opet inverzovati, prikažimo DFS pretrage:

1.
$$x_3 - x_{10} - x_4 - x_1 - x_9 - x_5 - x_{11} \to x_{11} = 1$$

2. $x_3 - x_{10} - x_4 - x_1 - x_9 - x_5 \to x_5 = 2$
3. $x_3 - x_{10} - x_4 - x_1 - x_9 \to x_9 = 3$
4. $x_3 - x_{10} - x_4 - x_1 \to x_1 = 4$
5. $x_3 - x_{10} - x_4 - x_6 \to x_6 = 5$
6. $x_3 - x_{10} - x_4 \to x_4 = 6$
7. $x_3 - x_{10} \to x_{10} = 7$
8. $x_3 - x_8 \to x_2 \to x_2 = 8$
9. $x_3 - x_8 \to x_8 \to x_8 = 9$

10.
$$x_3 - x_7 \to x_7 = 10$$

11. $x_3 \to x_3 = 11$

Ako sad naš graf inverziramo dobivamo topološki sortiran naš početni graf.

c) Primjenom Dijkstrinog algoritma, pronađite najkraći put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta.

x_r	1	2	3	4	5	6	7	8	9	10	11
	-	-	-	-	-	-	-	-	-	-	0
$x_{11}(0)$					$25/x_{11}$	$19/x_{11}$			$36/x_{11}$		
x_6 (19)	$58/x_{6}$			$53/x_6$	$25/x_{11}$				$36/x_{11}$		
$x_5 (25)$	$58/x_{6}$			$53/x_{6}$					$36/x_{11}$		
$x_9 (36)$	$58/x_{6}$	$76/x_9$		$53/x_6$							
$x_4 (53)$	$58/x_{6}$	$76/x_9$						$68/x_4$		$83/x_4$	
$x_1 (58)$		$76/x_9$						$68/x_4$		$83/x_4$	
$x_8 (68)$		$76/x_9$	$87/x_8$				$87/x_8$			$83/x_4$	
$x_2 (76)$			$87/x_8$				$87/x_8$			$83/x_4$	
x_{10} (83)			$87/x_8$				$87/x_8$				
$x_3 (87)$							$87/x_8$	-			
$x_7 (87)$											

Najkraći put je: $x_{11}-x_6-x_4-x_8-x_3$. Dužina puta: 87.

d) Primjenom Bellman-Fordovog algoritma, pronađite najkraći put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta.

Treba napomenuti da je tok iteracija sljedeći: $x_{11}-x_5-x_6-x_9-x_1-x_4-x_8-x_{10}-x_7-x_3$.

Prva iteracija:

x_r	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	λ_i
	∞	0										
x_1		92		66								$\infty,58$
x_2							100	83				$\infty,76$
x_3												$\infty,87$
x_4								68		83		$\infty,53$
x_5						39			56			$\infty,25$
x_6	58			53								$\infty,19$
x_7			120									$\infty,87$
x_8			87				87					$\infty,68$
x_9	66	76										$\infty,36$
x_{10}				93				98				$\infty,83$
x_{11}					25	19			36			0

Uočljivo je da nema više iteracija stoga nam je najkraći put je: $x_{11} - x_6 - x_4 - x_8 - x_3$. Dužina puta: 87.

e) Primjenom Bellman-Fordovog algoritma, pronađite najduži put od izvora do ponora grafa i navedite koliko iznosi dužina tog puta.

Treba napomenuti da je tok iteracija sljedeći: $x_{11}-x_5-x_6-x_9-x_1-x_4-x_{10}-x_8-x_7-x_3$.

Prva iteracija:

x_r	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	λ_i
	∞	0										
x_1		-120		-94								∞,-86
x_2							-144	-127				∞,-120
x_3												∞,-179
x_4								-109		-124		∞,-94
x_5						-39			-56			∞ ,-25
x_6	-78			-73								∞,-39
x_7			-179									∞ ,-146
x_8			-146				-146					$\infty, -127, -139$
x_9	-86	-96										∞,-56
x_{10}			-134					-139				∞,-124
x_{11}					-25	-19			-36			0

Druga iteracija:

x_r	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	λ_i
	-86	-120	-179	-94	-25	-39	-146	-139	-56	-124	0	
x_1		-120		-94								-86
x_2							-144	-127				-120
x_3												-179,-191
x_4								-109		-124		-94
x_5						-39			-56			-25
x_6	-78			-73								-39
x_7			-191									-146,-158
x_8			-158				-158					-139
x_9	-86	-96										-56
x_{10}			-134					-139				-124
x_{11}					-25	-19			-36			0

Dalje iteracije nisu moguće samim tim imamo najduži put: $x_{11} - x_9 - x_2 - x_7 - x_3$. Dužina puta je: 191.

Zadatak 6 [0.6 poena]

Podaci koji su zadani predstavljaju grane transportne mreže sa njihovim kapacitetima. Kako ova mreža ima tri izvora (S1, S2, S3), potrebno je uvesti fiktivni superizvor SI i dodati tri grane koje ga povezuju sa postojećim sa beskonačnim kapacitetima. Radi preglednosti matricu je najlakše predstaviti tabelarno i ona izgleda ovako:

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	90	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_2	0	0	0	0	110	150	0	0	0	0	0	0	0	$\leftarrow \text{SI}/1$
S_3	0	0	0	0	30	0	0	0	0	0	140	0	0	$\leftarrow \text{SI}/1$
R_1	0	0	0	0	0	0	0	0	150	0	0	80	0	$\leftarrow S_2/2$
R_2	0	0	0	0	0	0	0	0	0	130	0	0	0	$\leftarrow S_2/2$
R_3	0	0	0	0	0	0	0	0	40	0	0	130	0	$\leftarrow R_7/3$
R_4	0	0	0	0	0	0	0	0	0	0	0	0	150	$\leftarrow R_6/4$
R_5	0	0	0	0	0	0	0	0	0	0	0	0	120	$\leftarrow R_1/3$
R_6	0	0	0	0	0	0	0	40	0	0	0	150	0	$\leftarrow R_2/3$
R_7	0	0	0	0	100	0	120	0	0	0	0	0	0	$\leftarrow S_3/2$
R_8	0	0	0	0	0	0	0	0	0	0	0	0	90	$\leftarrow R_1/3$
K	0	0	0	0	0	0	0	0	0	0	0	0	0	$\leftarrow R_5/4$

D = 110;

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	90	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_2	110	0	0	0	0	150	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_3	0	0	0	0	30	0	0	0	0	0	140	0	0	$\leftarrow SI/1$
R_1	0	0	110	0	0	0	0	0	40	0	0	80	0	$\leftarrow S_3/2$
R_2	0	0	0	0	0	0	0	0	0	130	0	0	0	$\leftarrow S_2/2$
R_3	0	0	0	0	0	0	0	0	40	0	0	130	0	$\leftarrow R_7/3$
R_4	0	0	0	0	0	0	0	0	0	0	0	0	150	$\leftarrow R_6/4$
R_5	0	0	0	0	110	0	0	0	0	0	0	0	10	$\leftarrow R_1/3$
R_6	0	0	0	0	0	0	0	40	0	0	0	150	0	$\leftarrow R_2/3$
R_7	0	0	0	0	100	0	120	0	0	0	0	0	0	$\leftarrow S_3/2$
R_8	0	0	0	0	0	0	0	0	0	0	0	0	90	$\leftarrow R_1/3$
K	0	0	0	0	0	0	0	0	110	0	0	0	0	$] \leftarrow R_8/4$

D = 30;

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	90	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_2	110	0	0	0	0	150	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_3	30	0	0	0	0	0	0	0	0	0	140	0	0	$\leftarrow SI/1$
R_1	0	0	110	30	0	0	0	0	40	0	0	50	0	$\leftarrow R_7/3$
R_2	0	0	0	0	0	0	0	0	0	130	0	0	0	$\leftarrow S_2/2$
R_3	0	0	0	0	0	0	0	0	40	0	0	130	0	$\leftarrow R_7/3$
R_4	0	0	0	0	0	0	0	0	0	0	0	0	150	$\leftarrow R_6/4$
R_5	0	0	0	0	110	0	0	0	0	0	0	0	10	$\leftarrow R_3/4$
R_6	0	0	0	0	0	0	0	40	0	0	0	150	0	$\leftarrow R_2/3$
R_7	0	0	0	0	100	0	120	0	0	0	0	0	0	$\leftarrow S_3/2$
R_8	0	0	0	0	30	0	0	0	0	0	0	0	60	$\leftarrow R_6/4$
K	0	0	0	0	0	0	0	0	110	0	0	30	0	$\leftarrow R_4/5$

D = 40;

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	90	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_2	150	0	0	0	0	110	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_3	30	0	0	0	0	0	0	0	0	0	140	0	0	$\leftarrow SI/1$
R_1	0	0	110	30	0	0	0	0	40	0	0	50	0	$\leftarrow R_7/3$
R_2	0	0	40	0	0	0	0	0	0	90	0	0	0	$\leftarrow S_2/2$
R_3	0	0	0	0	0	0	0	0	40	0	0	130	0	$\leftarrow R_7/3$
R_4	0	0	0	0	0	0	0	0	0	40	0	0	110	
R_5	0	0	0	0	110	0	0	0	0	0	0	0	10	$\leftarrow R_5/4$
R_6	0	0	0	0	0	40	0	0	0	0	0	150	0	$\leftarrow R_2/3$
R_7	0	0	0	0	100	0	120	0	0	0	0	0	0	$\leftarrow S_3/2$
R_8	0	0	0	0	30	0	0	0	0	0	0	0	60	$\leftarrow R_6/4$
K	0	0	0	0	0	0	0	40	110	0	0	30	0	$\leftarrow R_8/5$

D = 60;

	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	← -/0
S_1	0	0	0	0	0	90	0	0	0	0	0	0	0	$\leftarrow \text{SI}/1$
S_2	210	0	0	0	0	50	0	0	0	0	0	0	0	$\leftarrow \text{SI}/1$
S_3	30	0	0	0	0	0	0	0	0	0	140	0	0	$\leftarrow SI/1$
R_1	0	0	110	30	0	0	0	0	40	0	0	50	0	$\leftarrow R_7/3$
R_2	0	0	100	0	0	0	0	0	0	30	0	0	0	$\leftarrow S_1/2$
R_3	0	0	0	0	0	0	0	0	40	0	0	130	0	$\leftarrow R_7/3$
R_4	0	0	0	0	0	0	0	0	0	40	0	0	110	
R_5	0	0	0	0	110	0	0	0	0	0	0	0	10	$\leftarrow R_3/4$
R_6	0	0	0	0	0	100	0	0	0	0	0	90	0	$\leftarrow R_2/3$
R_7	0	0	0	0	100	0	120	0	0	0	0	0	0	$\leftarrow S_3/2$
R_8	0	0	0	0	30	0	0	0	0	60	0	0	0	$\leftarrow R_3/4$
K	0	0	0	0	0	0	0	40	110	0	0	90	0	$\leftarrow R_5/5$

D = 10;

	~~	~	~	~	_			_		_	_	_		1
	SI	S_1	S_2	S_3	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8	K	
SI	0	∞	∞	∞	0	0	0	0	0	0	0	0	0	$\leftarrow -/0$
S_1	0	0	0	0	0	90	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_2	210	0	0	0	0	50	0	0	0	0	0	0	0	$\leftarrow SI/1$
S_3	40	0	0	0	0	0	0	0	0	0	130	0	0	$\leftarrow SI/1$
R_1	0	0	110	30	0	0	0	0	40	0	0	50	0	$\leftarrow R_7/3$
R_2	0	0	100	0	0	0	0	0	0	30	0	0	0	$\leftarrow S_1/2$
R_3	0	0	0	0	0	0	0	0	30	0	10	130	0	$\leftarrow R_7/3$
R_4	0	0	0	0	0	0	0	0	0	40	0	0	110	
R_5	0	0	0	0	110	0	10	0	0	0	0	0	0	$\leftarrow R_3/4$
R_6	0	0	0	0	0	100	0	0	0	0	0	90	0	$\leftarrow R_2/3$
R_7	0	0	0	10	100	0	120	0	0	0	0	0	0	$\leftarrow S_3/2$
R_8	0	0	0	0	30	0	0	0	0	60	0	0	0	$\leftarrow R_3/4$
K	0	0	0	0	0	0	0	40	120	0	0	90	0	

U ovom trenutku Ford-Fulkersonov algoritam terminira jer ne postoji više povećavajućih lanaca od izvora do ponora, tj. svi koji su postojali su iscrpljeni. Preostalo je iz tabele očitati optimalnu raspodjelu protoka. Najlakše je to uraditi oduzimanjem postignutih vrijednosti rezervi kroz pojedine grane koje su vidljive iz gornje reprezentacije od kapaciteta grana koje su zadane na početku. Time se dobija sljedeća raspodjela protoka:

$$(S1, R2, 90)$$
 $(S2, R1, 110)$ $(S2, R2, 100)$ $(S3, R1, 30)$ $(S3, R7, 10)$ $(R1, R5, 110)$ $(R1, R8, 30)$ $(R2, R6, 100)$ $(R3, R5, 10)$ $(R3, R8, 0)$ $(R4, K, 40)$ $(R5, K, 120)$ $(R6, R4, 40)$ $(R6, R8, 60)$ $(R7, R1, 0)$ $(R7, R3, 10)$ $(R8, K, 90)$

Ova raspodjela predstavlja tražene aktuelne brzine prenosa podataka kroz svaki od navedenih raspoloživih komunikacionih kanala. Ukupan protok, odnosno maksimalna brzina kojom klijent može izvršiti download posmatrane datoteke, je 250 Mbita/s.

7. Rješenje zadatka

Zadatak 7 [0.4 poena]

Svođenje dobijenog problema na Ford-Fulkersonov algoritam za nalaženje maksimalnog protoka može se uraditi formirajući transportnu mrežu tako da sve djevojke povežemo sa odgovarajućim momcima, te uvedemo dva nova čvora koji predstavljaju izvor i ponor te transportne mreže. Izvor će biti spojen sa svim djevojkama, a ponor sa svim momcima, na način da su grane usmjerene od izvora ka djevojkama te od momaka ka ponoru. Sve dobijene grane imaju kapacitet 1. Nakon sprovođenja Ford-Fulkersonovog algoritma za rješavanje problema maksimalnog protoka, vidjet ćemo da maksimalno uparivanje odgovara onim granama kojima na kraju postupka odgovara vrijednost protoka različita od nule. Pripadajući graf ove transportne mreže izgleda ovako:

	M_1	M_2	M_3	M_4	M_5		M_1	M_2	M_3	M_4	M_5		M_1	M_2	M_3	M_4	M_5
D_1	1		1			D_1	1		1			D_1	1		1		
D_2	1		1	1		D_2	1		1	1		D_2	1		1	1	
D_3		1	1		1	D_3		1	1		1	D_3		1	1		1
D_4	1	1	1	1		D_4	1	1	1	1		D_4	1	1	1	1	
D_5			1	1		D_5			1	1		D_5			1	1	
D_6	1		1	1		D_6	1		1	1		D_6	1		1	1	
	M_1	M_2	M_3	M_4	M_5		M_1	M_2	M_3	M_4	M_5						
D_1	M_1 1	M_2	M_3	M_4	M_5	D_1	M_1 1	M_2	M_3 1	M_4	M_5					l	
		M_2		M_4	M_5	D_1 D_2	-	M_2	M_3 1	M_4	M_5						
D_1	1	M_2			M_5		1	M ₂	M_3 1 1 1	1	M_5						
D_1 D_2	1	M_2 1 1	1 1			D_2	1	_	$egin{array}{c c} M_3 & 1 & & & & & & & & & & & & & & & & & $	M_4	M_5						
D_1 D_2 D_3	1 1	M_2 1 1	1 1	1		D_2 D_3	1 1	_	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	1						

Po završetku ovog postupka očito je da je pronađeno maksimalno uparivanje, pri kojem je bez partnera ostala djevojka D_6 . Moralo se desiti da jedna od djevojaka ostane bez partnera pošto nije dozvoljeno da isti momak bude u vezi da više djevojaka odjednom, a prisutna je jedna više djevojka u odnosu na broj prisutnih momaka. Također je bitno primijetiti da je u moguće bilo dobiti nekoliko više različitih uparivanja, što znači da je dobijeni raspored samo jedan od više mogućih (sprovođenjem ovog postupka više puta uz pravljenje drugačijeg izbora pri uparivanju dovelo bi do pronalaska svih mogućih rasporeda momaka i djevojaka). On glasi:

$$D_1 - M_1$$
 $D_2 - M_3$ $D_3 - M_5$ $D_4 - M_2$ $D_5 - M_4$