Mengmeng Xu | Curriculum Vitae

G3741, KAUST, Thuwal, Kingdom of Saudi Arabia

□ 966-570-999-413 • ☑ xu.frost@gmail.com • ♠ frostinassiky

"Interdisciplinary Engineer with Entrepreneurial Mindset"

RESEARCH INTERESTS

I am focusing on problems that arise in image and video understanding. Particularly, I am interested in the representation of long untrimmed videos via self-supervised learning with novel model architectures. I am also interested in video localization tasks such as temporal action localization and language video grounding.

SKILLS

• Python/Matlab/C/C++

• PyTorch/TensorFlow

WORK EXPERIENCE

Samsung Electronics (UK) Ltd

Research Intern in Samsung AI Center (SAIC)

Cambridge, UK

2020 Sep.- 2021 Mar.

EDUCATION

King Abdullah University of Science and Technology

MS-PhD in Electrical and Computer Engineering, GPA: 3.88/4.00

Thuwal, KSA 2017 - Present

Zhejiang University

B.S. in Opto-Electronics Information Science and Engineering, GPA 3.92/4.00

2013 - 2017

China

SELECTED PROJECTS

Low-Fidelity End-to-End Video Encoder Pre-training for TAL

2021 Feb - Now

End-to-end video encoder pre-training for temporal action localization is not operable subject to the GPU memory constraints, due to the prohibitive computational cost in processing long untrimmed videos.

- We reduce the mini-batch composition so that end-to-end optimization for the video encoder becomes operable.
- LoFi-TAL favourably solves the task discrepancy problem and providing more effective feature representations.
- LoFi-TAL with lightweight ResNet18 in a RGB stream surpasses RGB+optical-flow two-stream ResNet50 models.

Boundary-sensitive Pre-training for Temporal Localization in Videos 2020 Sep - 2021 Mar Most existing models for temporal localization tasks are pre-trained on video classification tasks. The domain gap between action recognition and localization can be addressed by a temporal boundary datasets.

- For the first time, we investigate pre-training for localization by introducing a novel boundary-sensitive pretext task.
- We propose to synthesize temporal boundaries in existing video classification datasets to help localize action.
- Extensive experiments show that the proposed BSP is superior and complementary to the existing action classification based pre-training counterpart, and achieves new state-of-the-art performance on **several** temporal localization tasks.

Video-Language Graph Matching Network for Video Grounding

2020 Jun - Nov

The solution to grounding language queries in videos demands the understanding of videos' and queries' semantic content and the fine-grained reasoning about their multi-modal interactions.

- We adopted a graph matching layer for cross-modal context modeling and multi-modal fusion via graph convolutions.
- The method achieves SOTA performance on three large-scale video benchmarks for video grounding.

Precise Temporal Action Detection via Semantic Segmentation

2020 Feb - Jun

Temporal action detection (TAD) is an important yet challenging task in video analysis. Most existing works draw inspiration from image object detection. Besides, owing to the 1-dimensional property of TAD, we are able convert the coarse-grained detection annotations to fine-grained semantic segmentation annotations for free.

- We use fully-supervised semantic segmentation to regularize the detection network without extra annotation efforts.
- We design a multi-scale hybrid network architecture to model snippet-snippet and proposal-proposal correlations.
- We achieve competitive performance on the large-scale datasets for temporal action localization problem.

Sub-Graph Localization for Temporal Action Detection

2019 Jan - Nov

Recent studies show that context can be used as a clue to help understanding action before or after the snippet. Thus, we formulated action localization task to a sub-graph detection problem, solved by graph convolutional network.

- A multi-graph convolutional layer is designed to progressively represent the video snippet by its adaptive semantics.
- The method achieves SOTA performance on two large-scale video benchmarks for human activity localization.

Object Detection Using Multiple Level Annotations

2018 Mar - 2019 Mar

Master Thesis, KAUST

This thesis work studied hybrid learning methods on the object detection problems. We trained an object detector from a dataset where both instance-level and image-level labels are employed. Furthermore, we built a dataset with annotation budget constraints.

- The hybrid learning gives a trade-off between fewer annotations and a more accurate object detector.
- We can achieve the performance of a strongly supervised detector while saving 12.8% of its original annotation budget.

SELECTED PUBLICATIONS/PREPRINTS

Low-Fidelity E2E Video Encoder Pre-training for Temporal Action Loca	dization 2021
Mengmeng Xu, · · · , Xiatian Zhu, Bernard Ghanem, Brais Martinez	$arXiv\ Preprint$
Boundary-sensitive Pre-training for Temporal Localization in Videos	2020
Mengmeng Xu, · · · , Xiatian Zhu, Li Zhang, Bernard Ghanem, Tao Xiang	$arXiv\ Preprint$
VLG-Net: Video-Language Graph Matching Network for Video Ground	ing 2020
Sisi Qu*, Mattia Soldan*, Mengmeng Xu*, Jesper Tegner, Bernard Ghanem	$arXiv\ Preprint$
G-TAD: Sub-Graph Localization for Temporal Action Detection	2020
Mengmeng Xu, Chen Zhao, David S. Rojas, Ali Thabet, Bernard Ghanem	CVPR
BAOD: Budget-Aware Object Detection	2021
Alejandro Pardo*, Mengmeng $Xu^*, \cdots, Bernard Ghanem$	CVPR Workshops, Oral
Semantic Part RCNN for Real-World Pedestrian Detection	2019
Mengmeng Xu, Yancheng Bai, Sisi Qu, B Ghanem	$CVPR\ Workshops$
Missing Labels in Object Detection	2019
Mengmeng Xu, Yancheng Bai, B Ghanem	$CVPR\ Workshops$
Object Detection Using Multiple Level Annotations	2019

ACADEMIC/PROFESSIONAL ACTIVITIES

ACADEMIC/PROFESSIONAL ACTIVITIES	
Academic Reviewer ICCV19, AAAI20, CVPR20, ECCV20, NeurIPS20, AAAI21, CVPR21	2019-present
Program Chair ActivityNet Challenge workshop in CVPR19, CVPR20, CVPR21	2019-present
Teaching Assistant	2019-2020
CS390DD: Special Topics in Machine Learning, and AMCS211: Numerical Optimizat	tion KAUST
Certificates and Nano-degrees NLP Nanodegree, Deep Learning Specialization, Machine Learning.	2016-2020 Coursera and Udacity

AWARDS/HONORS

Mengmeng Xu

• Outstanding Reviewer, CVPR 21	2021
• Runner-up, HACS Temporal Action Localization Challenge, CVPR Workshop	2020
• First Silver Medal, The 3rd YouTube-8M Video Understanding Challenge, Kaggle Competition	n = 2019
• Outstanding Graduates of Zhejiang University	2017
• Chu Kochen Honors Program for Advanced Engineering Education, ZJU.	2014-2017
• Gold Medal, International Genetically Engineered Machine Competition (iGEM), Boston, USA	2016
• Honorable Mention of American Mathematical Contest in Modeling, USA	2016
• National Scholarship, Zhejiang University	2014
• First prizes of Olympic Competition of Physics and Mathematics, Henan, China	2012