```
In [5]: #python regression for TV v/s sales
    cols=["TV"]
    X=df[cols]
    y=df.sales
    est = sm.OLS(y, X).fit()
    est.summary()
```

Out[5]:

OLS Regression Results

Dep. Variable:	sales	R-squared (uncentered):	0.906
Model:	OLS	Adj. R-squared (uncentered):	0.905
Method:	Least Squares	F-statistic:	954.6
Date:	Mon, 22 Nov 2021	Prob (F-statistic):	1.22e-52
Time:	12:05:02	Log-Likelihood:	-296.69
No. Observations:	100	AIC:	595.4
Df Residuals:	99	BIC:	598.0
Df Model:	1		
Covariance Type:	nonrobust		

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 TV
 0.0863
 0.003
 30.897
 0.000
 0.081
 0.092

 Omnibus:
 13.711
 Durbin-Watson:
 1.810

 Prob(Omnibus):
 0.001
 Jarque-Bera (JB):
 14.950

 Skew:
 -0.918
 Prob(JB):
 0.000567

Kurtosis: 3.465 **Cond. No.** 1.00

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [6]: #python regression for newspaper v/s sales
    cols1=["newspaper"]
    X1=df[cols1]
    y1=df.sales
    est1 = sm.OLS(y1, X1).fit()
    est1.summary()
```

Out[6]:

OLS Regression Results

Dep. Variable:	sales	R-squared (uncentered):	0.665
Model:	OLS	Adj. R-squared (uncentered):	0.662
Method:	Least Squares	F-statistic:	196.7
Date:	Mon, 22 Nov 2021	Prob (F-statistic):	2.95e-25
Time:	12:05:14	Log-Likelihood:	-360.23
No. Observations:	100	AIC:	722.5
Df Residuals:	99	BIC:	725.1
Df Model:	1		
Covariance Type:	nonrobust		

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 newspaper
 0.3175
 0.023
 14.024
 0.000
 0.273
 0.362

Omnibus: 14.530 **Durbin-Watson:** 1.529

Prob(Omnibus): 0.001 Jarque-Bera (JB): 18.865

Skew: -0.731 **Prob(JB):** 8.01e-05

Kurtosis: 4.546 **Cond. No.** 1.00

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [7]: #python regression for radio v/s sales
    cols2=["radio"]
    X2=df[cols2]
    y2=df.sales
    est2 = sm.OLS(y2, X2).fit()
    est2.summary()
```

Out[7]:

OLS Regression Results

Dep. Variable:	sales	R-squared (uncentered):	0.837
Model:	OLS	Adj. R-squared (uncentered):	0.835
Method:	Least Squares	F-statistic:	508.0
Date:	Mon, 22 Nov 2021	Prob (F-statistic):	9.05e-41
Time:	12:05:25	Log-Likelihood:	-324.27
No. Observations:	100	AIC:	650.5
Df Residuals:	99	BIC:	653.1
Df Model:	1		
Covariance Type:	nonrobust		
coef std	l err t P> t	[0.025 0.975]	

radio 0.4890 0.022 22.539 0.000 0.446 0.532

 Omnibus:
 16.699
 Durbin-Watson:
 1.642

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 19.137

 Skew:
 -1.014
 Prob(JB):
 6.99e-05

Kurtosis: 3.694 **Cond. No.** 1.00

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [8]: #python multiple regression
    colsall=["TV", "radio", "newspaper"]
    X3=df[colsall]
    y3=df.sales
    est3 = sm.OLS(y3, X3).fit()
    est3.summary()
```

Out[8]:

OLS Regression Results

Dep. Variable:	sales	R-squared (uncentered):	0.984
Model:	OLS	Adj. R-squared (uncentered):	0.983
Method:	Least Squares	F-statistic:	1962.
Date:	Mon, 22 Nov 2021	Prob (F-statistic):	1.19e-86
Time:	12:05:34	Log-Likelihood:	-208.84
No. Observations:	100	AIC:	423.7
Df Residuals:	97	BIC:	431.5
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
TV	0.0548	0.002	29.210	0.000	0.051	0.059
radio	0.2225	0.015	14.729	0.000	0.193	0.252
newspaper	0.0131	0.010	1.337	0.184	-0.006	0.032

 Omnibus:
 0.455
 Durbin-Watson:
 2.349

 Prob(Omnibus):
 0.797
 Jarque-Bera (JB):
 0.130

 Skew:
 0.035
 Prob(JB):
 0.937

 Kurtosis:
 3.162
 Cond. No.
 14.7

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In	[1:	
In	[1:	
In	[1:	

In []:	
In []:	