Notes on Inference Devices

Santa Fe Institute

Edward G. Huang

Summer 2018

1 Notation and Definitions

Standard notation is taken from set theory and vector algebra. We clarify some notation specific to computation and inference devices.

Computation and Turing Machines

- \mathbb{B}^* The space of all finite bit strings.
- Λ Symbol alphabet of a Turing Machine.
- σ A symbol on a Turing Machine tape.
- Q Set of finite states of a Turing Machine.
- Δ Transition function of a Turing Machine.
- k Number of tapes of a Machine.
- η Non-halting state of a Turing Machine.

Inference Devices

- U Set of possible histories of the universe.
- u A history of the universe in U.
- X Setup function of an ID that maps $U \to X(U)$. A binary question concerning $\Gamma(u)$.
- x A binary question and a member of image X(U).
- Y Conclusion function of an ID that maps $U \to \{-1,1\}$. A binary answer of an ID for X(u) = x.
- y A single-valued answer, and member of image $Y(U) = \{0, 1\}$.
- Γ A function of the actual values of a physical variable over U, equivalent to $\Gamma(u) = S(t_i)(u)$.
- γ Possible value of a physical variable, a member of the image $\Gamma(U)$.
- δ Probe of any variable V parameterized by $v \in V$ such that:

$$\delta_v(v') = \begin{cases} 1 & \text{if } v = v' \\ -1 & \text{otherwise} \end{cases}$$

 \wp Set of probes over $\Gamma(U)$.

 $\mathcal{D} = (X, Y)$ An inference device, consisting of functions X and Y.

 \bar{F} Inverse. Given a function F over $U, F^{-1} = \bar{F} \equiv \{\{u : F(u) = f\} : f \in F(U)\}.$

> Weak inference: a device \mathcal{D} weakly infers Γ iff $\forall \gamma \in \Gamma(U), \exists x \in X(U)$ s.t. $\forall u \in U, X(u) = x \implies Y(u) = \delta_{\gamma}(\Gamma(u)).$

>> Strong inference: a device (X_1, Y_1) strongly infers a device (X_2, Y_2) iff $\forall \delta \in \wp(Y_2)$ and all x_2 , $\exists x_1$ such that $X_1 = x_1 \implies X_2 = x_2, Y_1 = \delta(Y_2)$.

2 Turing Machines

Arora and Barak denote a Turing Machine (TM) as $T = (\Lambda, Q, \Delta)$ containing:

- 1. An alphabet Λ of a finite set of symbols that T's tapes can contain. We assume that Λ contains a special blank symbol B, start symbol S, and the numbers 0 and 1.
- 2. A finite set Q of possible states that T's register can be in. We assume that Q contains a special start state q_s and a special halt state q_h .
- 3. A transition function $\Delta: Q \times \Lambda^k \to Q \times \Lambda^{k-1} \times \{L, S, R\}^k$, where $k \geq 2$, describing the rules T use in performing each step. The set $\{L, S, R\}$ denote the actions Left, Stay, and Right, respectively.

Suppose T is in state $q \in Q$ and $(\sigma_1, \sigma_2, \ldots, \sigma_k)$ are the symbols on the k tapes. Then $\Delta(q, (\sigma_1, \ldots, \sigma_k)) = (q', (\sigma'_2, \ldots, \sigma'_k), z)$ where $z \in \{L, S, R\}^k$ and at the next step the σ symbols in the last k-1 tapes will be replaced by the σ' symbols, the machine will be in state q, and the k heads will move Left, Right or Stay. This is illustrated in Figure 1.

Figure 1. The transition function Δ for a k-tape Turing Machine

$(q,(\sigma_1,\ldots,\sigma_k))$				$(q',(\sigma_2',\ldots,\sigma_k'),z)$				
Input	Work/output symbol read	•••	Current	New work/output tape symbol	•••	Move work/output tape	•••	New state
:	:	٠	:	:	٠	:	٠	i
σ_1	σ_i	٠	q	σ_i'	٠	z_i	٠	$q^{'}$
:	:	٠	:	:	٠٠.	:	٠	÷

Remark: A can be reduced to $\mathbb{B} = \{0,1\}$ and k can be reduced to 1 without loss of computational power. Then, any Turing Machine can be expressed as a partial recursive function mapping $\mathbb{B}^* \to \mathbb{B}^* \cup \eta$, where η is the undefined non-halting output. Since $|\mathbb{B}^* \times \mathbb{B}^* \cup \eta| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$, the set of all Turing Machines is countably infinite.

3 Inference of Turing Machines

Example Figure 2. Strong Inference

In this example, $T(U) = \mathbb{B}^1 \cup \eta$ so we are concerned with three probes δ_0, δ_1 , and δ_{η} .

u	X(u)	Y(u)	S(u)	T(u)
1	$(00, \eta)$	1	00	$(00, \eta)$
2	(01, 0)	1	01	(01,0)
3	(10, 1)	1	10	(10,1)
4	(11,0)	-1	11	$(11, \eta)$

Then:

Case 1:
$$X(u) = 0$$

$$X^{-1}(0) = \{2,4\} \implies S(u) = \{01,11\}.$$
 Then if $u = 2$, $S(2) = 01 \implies Y(2) = 1 = \delta_0(T(2) = 0)$. If $u = 4$, $S(4) = 11 \implies Y(4) = -1 = \delta_0(T(4) = \eta)$

Case 2:
$$X(u) = 1$$

$$X^{-1}(1) = 3$$
. Then $S(3) = 10 \implies Y(3) = 1 = \delta_1(T(3) = 1)$

Case 3:
$$X(u) = \eta$$

$$X^{-1}(\eta) = 1$$
 Then $S(1) = 00 \implies Y(1) = 1 = \delta_{\eta}(T(1) = \eta)$

Theorem Every Turing Machine can be strongly inferred by an inference device.

Proof Let $U := \mathbb{N}$. Define $S : U \to \mathbb{B}^*$ to be the lexicographic mapping of integers to binary bit strings and $T : U \to \mathbb{B}^* \times \mathbb{B}^* \cup \eta$ as a function that maps u to the Cartesian product of the space of bits strings with all possible outputs from any Turing machine. Let $X : U \to \mathbb{B}^*$ be the lexicographic mapping of integers to binary bits strings such that 1 comes alphabetically before 0. Then X(u) = x iff S(u) = s.

Hence:

$$\forall \delta \in \wp(T) \text{ and all } s, \exists x \text{ such that } X = x \implies S = s, Y = \delta(T)$$

Since the choices of S and T were arbitrary, any Turing machine can be strongly inferred by an inference device.

Theorem Every Turing Machine can be weakly inferred by an inference device.

Proof This follows from Proposition 4 and the preceding result.

4 Inference Complexity

Definition Let \mathcal{D} be an inference device and Γ be a function over U where X(U) and $\Gamma(U)$ are countable and $\mathcal{D} > \Gamma$. The **inference complexity** of Γ with respect to \mathcal{D} and measure μ is defined as:

$$\mathcal{C}_{\mu}(\Gamma; \mathcal{D}) \triangleq \sum_{\delta \in \wp(\Gamma)} \min_{x: X = x \implies Y = \delta(\Gamma)} [\mathcal{M}_{\mu, X}(x)]$$

Remark: This is only a working definition and may be revised depending on its behavior.