Modelling order picking problem

Iago Zagnoli Albergaria

March 19, 2025

1 Conjuntos

- \mathcal{O} : Conjunto de pedidos no backlog.
- \mathcal{I}_o : Subconjunto de itens solicitados pelo pedido $o \in \mathcal{O}$.
- \mathcal{I} : Conjunto de itens, onde $\mathcal{I} = \bigcup_{o \in \mathcal{O}} \mathcal{I}_o$.
- A_i : Subconjunto de corredores contendo pelo menos uma unidade do item i.
- \mathcal{A} : Conjunto de corredores, onde $\mathcal{A} = \bigcup_{i \in \mathcal{I}} \mathcal{A}_i$.

2 Constantes

- u_{oi} : Número de unidades do item $i \in \mathcal{I}$ solicitado pelo pedido $o \in \mathcal{O}$.
- u_{ai} : Número de unidades do item $i \in \mathcal{I}$ disponíveis no corredor $a \in \mathcal{A}$.
- LB / UB: Limite inferior / superior do tamanho da wave.

3 First model

3.1 Non-linear

$$\max \quad \frac{\sum_{o \in O} \sum_{i \in I} x_o u_{oi}}{\sum_{a \in A} y_a}$$

s.t.
$$\sum_{o \in O} \sum_{i \in I} x_o u_{oi} \ge LB$$
$$\sum_{o \in O} \sum_{i \in I} x_o u_{oi} \le UB$$
$$\sum_{o \in O} x_o u_{oi} \le \sum_{a \in A} y_a u_{ai}, \quad \forall i \in I$$

$$x_o = \begin{cases} 1, & \text{if } o \in O \text{ is in the solution }, \\ 0, & \text{otherwise} \end{cases}$$

$$y_a = \begin{cases} 1, & \text{if } a \in A \text{ is in the solution }, \\ 0, & \text{otherwise} \end{cases}$$

3.2 Linearization

If
$$w = \frac{1}{\sum_{a \in A} y_a}$$
, then:

$$\max \sum_{o \in O} \sum_{i \in I} x_o w u_{oi}$$

We know that $w \leq 1$. So, using the big M method, we can linearize the function $x_o w$ by introducing a variable z_o that will be equal to $x_o w$ with some new restrictions.

- $z_o \le w, \forall o \in O$.
- $z_o \le x_o, \forall o \in O$.
- $z_o \ge w + (x_o 1), \forall o \in O$.

Now, we have:

$$\max \sum_{o \in O} \sum_{i \in I} z_o u_{oi}$$

s.t.
$$\sum_{o \in O} \sum_{i \in I} x_o u_{oi} \ge LB$$

$$\sum_{o \in O} \sum_{i \in I} x_o u_{oi} \le UB$$

$$\sum_{o \in O} x_o u_{oi} \le \sum_{a \in A} y_a u_{ai}, \quad \forall i \in I$$

$$w = \frac{1}{\sum_{a \in A} y_a}$$

$$z_o \le w, \forall o \in O$$

$$z_o \le w, \forall o \in O$$

$$z_o \ge w + (x_o - 1), \forall o \in O$$

$$z_o \ge 0, \forall o \in O$$

$$x_o \in B, \forall o \in O$$

$$y_a \in B, \forall a \in A$$