Instruction Set

RISC 16-bit, 16-instruction 16-Register Design

The Processor features five instruction classes:

1. Arithmetic (Two's Complement) ALU operation (2)

Operation	Opcode	Destination	Source	Target	Description
ADD	0000	Rd	Rs	Rt	ADD: Rd = Rs + Rt
					Operands A and B stored in register
					locations Rs and Rt are added and
					written to the destination register
					specified by Rd.
SUB	0001	Rd	Rs	Rt	SUB: Rd = Rs - Rt
					Operand B (Rt) is subtracted from
					Operand A (Rs) and written to Rd.

2. Logical ALU operation (6)

Operation	Opcode	Destination	Source	Target	Description
AND	0011	Rd	Rs	Rt	AND: Rd = Rs & Rt
					Operand A (Rs) is bitwise anded with
					Operand B (Rt) and written into Rd.
OR	0011	Rd	Rs	Rt	OR: Rd = Rs Rt
					Operand A (Rs) is bitwise ored with
					Operand B (Rt) and written into Rd.
XOR	0100	Rd	Rs	Rt	XOR: Rd = Rs ^ Rt
					Operand A (Rs) is bitwise Xored with
					Operand B (Rt) and written into Rd.
NOT	0101	Rd	Rs		NOT: Rd = ~Rs
					Operand A (Rs) is bitwise inverted and
					written into Rd.
SLA	0110	Rd	Rs		SLA : Rd = Rs << 1
					Operand A (Rs) is arithmetically shifted
					to the left by one bit and written into
					Rd.
SRA	0111	Rd	Rs		SRA : Rd = Rs >> 1
					Operand A (Rs) is arithmetically shifted
					to the right by one bit and written into
					Rd. The MSB (sign bit) will be
					preserved for this operation.

3. Memory operations (3)

Operation	Opcode	Destination	Source	Target	Description
LI	1000	Rd	lmm		LI: Rd = 8-bit Sign extended Immediate
					The 8-bit immediate in the Instruction
					word is sign-extended to 16-bits and
					written into the register specified by Rd.
LW	1001	Rd	Dir		LW: Rd = Mem[Dir]
					The memory word specified by the
					address Dir is loaded into register Rd.
SW	1010	Rt	Dir		SW: Mem[Dir] = Rt
					The data in register Rt is stored into the
					memory location Dir.

4. Conditional Branch operations (2)

Operation	Opcode	Destination	Source	Target	Description
BIZ	1011	Rs	Offset		BIZ: PC = PC + 1 + Offset if Rs = 0
rate la					If all the bits in register Rs are zero then
					the current Program Count (PC + 1) is
					offset to PC + 1 + Offset. The count is
					offset from PC + 1 because it is
					incremented and stored during the
					Fetch cycle.
BNZ	1100	Rs	Offset		BNZ: PC = PC + 1 + Offset if Rs! = 0
					If all the bits in register Rs are not zero
					than the current Program Count (PC + 1)
					is offset to PC + 1 + Offset.

5. Program Count Jump operations (3)

Operation	Opcode	Destination	Source	Target	Description
JAL	1101	Rd	Offset		JAL: Rd = PC + 1 and PC = PC + 1 + Offset Jump and Link instruction would write current Program Count in register Rd and offset the program count to PC + 1 + Offset
JMP	1110		Offset		JMP: PC = PC + 1 + Offset Unconditional jump instruction will offset the program count to PC + 1 + Offset.
JR	1111		Rs		JR: PC = Rs Jump Return instruction will set the Program Count to the one previously stored in JAL.