Rezonans stochastyczny

Elżbieta Kukla

4 maja 2011

Artykuły

- The mechanism of stochastic resonance, R. Benzi, A. Sutera, A. Vulpiani, *Journal of Physics A: Mathematical and General*, 1981, Vol. 14
- Stochastic resonance in an autonomous system with a nonuniform limit cycle, W. Rappel, S. Strogatz, *Physical Review E*, October 1994, Vol. 50, No. 4
- Minireview of stochastic resonance, K. Wiesenfeld, F. Jaramillo, Chaos, September 1998, Vol. 8, No. 3

Artykuły

- What it stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology, M. D. McDonnell, D. Abbott, *Computational Biology*, May 2009, Vol. 5. Issue 5
- Stochastic resonance, T. Wellens, V. Shatokhin, A.
 Buchleitner, Reports on Progress in Physics, 2004, Vol. 67
- Theory of stochastic resonance, B. McNamara, K.
 Wiesenfeld, *Physical Review A*, 1 May 1989, Vol. 39, No. 9
- Stochastic resonance on a circle, K. Wiesenfeld, D.
 Pierson, E. Pantazelou, C. Dames, F. Moss, *Physical Review Letters*, 4 April 1994, Vol. 72, No. 14

Co to jest SR? Zastosowania SR Artykuł 1 Artykuł 2

Szum

Czy obecność szumu może być korzystna?

- szum to ogólne pojęcie, które zazwyczaj opisuje niepożądane zakłócenia lub fluktuacje
- jeśli układ działa idealnie, to szum jest wrogiem
- jeśli nie wszystko jest idealne, to okazuje się, że obecność szumu lub nieprzewidywalnych fluktuacji może prowadzić do pewnych korzyści

Wyobraźmy sobie układ, na który działają dwa bodźce: pierwszy jest duży i losowy, drugi słaby i okresowy. Co dostaniemy w odpowiedzi?

W układzie, w którym zachodzi rezonans stochastyczny możemy dostać sygnał, który jest dość regularny.

Co to jest SR? Zastosowania SR Artykuł 1 Artykuł 2

Czym jest rezonans stochastyczny?

Rezonans stochastyczny

Rezonans stochastyczny to zjawisko występujące w układach dynamicznych, których odpowiedź na zewnętrzny sygnał osiąga wartość optymalną w obecności szumu o pewnym konkretnym natężeniu. Istotna jest nieliniwość układu deterministycznego.

Rezonans stochastyczny jest efektem kooperacji słabego okresowego sygnału oraz szumu.

Historia odkrycia rezonansu stochastycznego

- 1980 r. pierwsze użycie terminu "rezonans stochastyczny".
 Włoski fizyk Roberto Benzi określił tym terminem mechanizm powodujący okresowe występowanie epok lodowcowych na Ziemi
- 1983 r. pierwsze laboratoryjne eksperymenty, w których zademonstrowano zjawisko rezonansu stochastycznego w układzie elektronicznym zwanym przerzutnikiem Schmitta
- od tamtej pory zainteresowanie rezonansem stochastycznym stale rośnie

Liczba opublikowanych artykułów

Liczba artykułów dotyczących rezonansu stochastycznego opublikowanych w latach 1981-2007.

Modele teoretyczne rezonansu stochastycznego

Najpopularniejsze modele rezonansu stochastycznego

- podwójna studnia (ang. double-well)
- model z dwoma stanami (ang. two-state model)
- opjedyncza studnia (ang. single-well, excitable dynamics)
- niedynamiczny model progowy (ang. nondynamical threshold model)

Podwójna studnia (ang. double well)

Model podwójnej studni. Słaby sygnał okresowo przekształca potencjał na zmianę unosząc jedną i drugą studnię.

Co to jest SR? Zastosowania SR Artykuł 1 Artykuł 2

Podwójna studnia

Zjawisko zachodzące w przypadku modelu podwójnej studni. Dynamika układu jest opisana przez równanie Langevina pierwszego rzędu.

Model podwójnej studni

Równanie Langevina

$$\dot{x} = -\frac{dU}{dx} + \varepsilon \sin(\omega t) + \xi(t)$$

gdzie

x – pozycja cząstki

U(x) – potencjał (zwykle wielomian czwartego stopnia)

 ξ – szum

 $\varepsilon \sin(\omega t)$ – funkcja okresowa

Co to jest SR? Zastosowania SR Artykuł 1 Artykuł 2

Model podwójnej studni

Przykładowy szereg czasowy dla modelu podwójnej studni. Jeśli szum jest słaby, wówczas przejścia między studniami są rzadkie (a), jeśli jest bardzo silny – cząstka przeskakuje bez względu na małe zmiany potencjału (c). Istnieje też optymalna ilość szumu (b), przy której skoki występują w miarę regularnie.

Model z dwoma stanami (ang. two-state model)

- model dyskretny, blisko powiązany z modelem podwójnej studni
- układ może znajdować się tylko w dwóch stanach
- przerzutnik Schmitta jest fizyczną realizacją tego modelu

Pojedyncza studnia (ang. single-well)

- układ z pojedynczym stanem spoczynku
- bistabilność nie jest koniecznym warunkiem powstawania rezonansu stochastycznego
- w modelu tym, gdy kombinacja sygnałów wejściowych wypycha układ poza poziom progowy, generuje on wyjściowy impuls, a potem powraca do stanu spoczynku
- zastosowania w biologii

Niedynamiczny model progowy (ang. nondynamical threshold model)

Ilustracja modelu. U góry mamy sumę losowego i okresowego składnika, pozioma linia zaznacza ustalony próg. Na środku widać okresową część sygnału wejściowego. Gdy całkowity wejściowy sygnał przekracza próg, generowany jest impuls.

Pomiar sygnału wyjściowego

Różne sposoby pomiaru sygnału wyjściowego:

- SNR (ang. signal-to-noise ratio)
- informacja wzajemna (ang. mutual information)
- korelacja pomiędzy sygnałym wejściowym i wyjściowym jako funkcja intensywności szumu
- informacja Fishera (ang. Fisher information)

Dla bardzo dużej i małej ilości szumu miara sygnału wyjściowego jest mała, ale dla pewnego niezerowego poziomu szumu sygnał wyjściowy jest optymalny.

Typowa krzywa

Typowa krzywa zależności wyjściowego sygnału od ilości szumu na wejściu, dla układów zdolnych do rezonansu stochastycznego.

Zastosowania rezonansu stochastycznego

Rezonans stochastyczny był obserwowany w m.in.:

- modelach klimatu
- obwodach elektronicznych
- laserach
- modelach neuronowych
- reakcjach chemicznych
- kanałach jonowych
- mechanice kwantowej
- zachowaniu zwierząt
- modelach ekologicznych
- biologii komórkowej
- modelach finansowych
- nanomechanice

Behawioralny rezonans stochastyczny

- rezonans stochastyczny obserwowany jest w zachowaniu zwierząt
- pierwszy eksperyment, w którym stwierdzono pojawianie się behawioralnego rezonansu stochastycznego był przeprowadzony ze świerszczem domowym Acheta domestica, który korzysta ze zjawiska rezonansu stochastycznego do określenia stanu zagrożenia i ucieczki przed drapieżnikiem

Eksperyment z rakiem

 1993 r. – eksperyment przeprowadzony na mechanoreceptorach komórek zmysłowych pewnego gatunku raka *Procambarus clarkii*

Eksperyment z wiosłonosem

- 1999 r. kolejny eksperyment dotyczący behawioralnego rezonansu stochastycznego: badanie zwyczajów żywieniowych ryby z rodziny wiosłonosowatych – wiosłonosa amerykańskiego (*Polyodon spathula*)
- wiosłonos żywi się zooplanktonem, głównie rozwielitkami (Daphnia)

Co to jest SR? Zastosowania SR Artykuł 1 Artykuł 2

Wiosłonos

Wiosłonos amerykański

Rozwielitka

Rozwielitka

Eksperyment z wiosłonosem

Schemat eksperymentu – wiosłonos pomiędzy elektrodami. Korzystając z rostrum ryba wykrywa elektryczne sygnały emitowane przez ofiarę – rozwielitki. W eksperymencie, prawdopodobieństwo zdobycia przez rybę ofiary umieszczonej w odległości d ponad rostrum było obserwowane dla różnej siły zewnętrznego szumu produkowanego przez elektrody.

Rezonans stochastyczny na poziomie komórki

- behawioralny rezonans stochastyczny jest wynikiem rezonansu stochastycznego zachodzącego w komórkach
- podstawowy poziom komórkowej transmisji sygnału stanowią kanały jonowe
- temat po raz pierwszy dyskutowany był w 1991 r.
- rezonans stochastyczny ma duże znaczenie w zastosowaniach medycznych

Zastosowania rezonansu stochastycznego w medycynie

- wzmocnienie sygnału docierającego do implantu ślimakowego (poprawa słuchu u osób korzystających z implantu)
- wykorzystanie rezonansu stochastycznego do poprawy kontroli równowagi u osób mających problemy z błędnikiem
- rezonans stochastyczny w kodowaniu i przetwarzaniu informacji w mózgu

"The mechanism of stochastic resonance"

- The mechanism of stochastic resonance, R. Benzi, A.
 Sutera, A. Vulpiani, Journal of Physics A: Mathematical and General, 1981, Vol. 14
- w artykule badana jest możliwość wystąpienia rezonansu w układach dynamicznych
- opisane zostało zjawisko rezonansu stochastycznego dla równania Langevina oraz dla układu Lorenza

Równanie Langevina

Równanie Langevina (1)

$$dx = [x(a - x^2)]dt + \varepsilon dW$$

W - proces Wienera

Spostrzeżenia dotyczące części deterministycznej równania:

- a < 0 jedno rozwiązanie stabilne x = 0
- a = 0 − punkt bifurkacji
- a>0 dwa rozwiązania stabilne $x_{1,2}=\pm\sqrt{a}$ i jedno niestabilne x=0

Własności równania (1)

Równanie Langevina (1)

$$dx = [x(a - x^2)]dt + \varepsilon dW$$

Ze względu na biały szum, rozwiązanie (1) przeskakuje w losowych chwilach między dwoma stabilnymi stanami.

Niech $\tau_1(y)$ i $\tau_2(y)$ będą czasami wyjścia z basenu przyciągania punktów $x_1=-\sqrt{a}$ oraz $x_2=\sqrt{a}$ odpowiednio, tzn.

$$\tau_1(y) = \inf\{t : x(t) = 0 \text{ i } x(0) = y \in (-\infty, 0)\}\$$

$$\tau_2(y) = \inf\{t : x(t) = 0 \text{ i } x(0) = y \in (+\infty, 0)\}.$$

Zdefiniujmy

$$M_n^i = <(\tau_i(y)^n)>, \quad i=1,2, M_0^i=1$$

Własności równania (1)

Wówczas $M_n^i(y)$ spełnia równanie różniczkowe, i = 1, 2:

$$\frac{1}{2} \varepsilon^2 \frac{d^2}{dy^2} M_n^i(y) - y(a - y^2) \frac{d}{dy} M_n^i(y) = -n M_{n-1}^i(y)$$

(Gihman i Skorohod 1972, "Stochastic Differential Equations") z warunkami brzegowymi $M_n^1(0) = 0$ oraz $M_n^2(0) = 0$. Korzystając z metody punktu siodłowego (ang. saddle point technique) oszacowano rozwiązania powyższego równania. Dla n=1 otrzymano:

$$M_1^1(y) \cong M_1^1(-\sqrt{a}) \cong (\pi/a\sqrt{2}) \exp(a^2/2\varepsilon^2)$$

 $M_1^2(y) \cong 2[M_1^1(-\sqrt{a})]^2 \cong (\pi^2/a^2) \exp(a^2/\varepsilon^2)$

Z powodu symetrii mamy

$$M_1^2(\sqrt{a}) = M_1^1(-\sqrt{a}).$$

Równanie Langevina z okresowym wymuszeniem

Równanie Langevina z okresowym wymuszeniem (2)

$$dx = [x(a - x^2) + A\cos\Omega t]dt + \varepsilon dW$$

W – proces Wienera

Pokażemy, że dla $\varepsilon\in(\varepsilon_1,\varepsilon_2)$, układ opisany tym równaniem charakteryzuje duży pik w spektrum mocy odpowiadający prawie okresowemu zachowaniu x(t) z okresem $\frac{2\pi}{\Omega}$ i amplitudą $2\sqrt{a}$.

Równanie Langevina z okresowym wymuszeniem (2)

$$dx = [x(a - x^2) + A\cos\Omega t]dt + \varepsilon dW$$

Interesuje nas przypadek, gdy A jest małe w porównaniu do $a^{3/2}$. Aby zrozumieć efekt wymuszenia okresowego spójrzmy na równanie (2) dla t=0 oraz $t=\pi/\Omega$. Otrzymano dwa niezależne od czasu równania stochastyczne:

$$dx = [x(a - x^{2}) + A]dt + \varepsilon dW$$

$$dx = [x(a - x^{2}) - A]dt + \varepsilon dW$$

Podobnie, jak równanie (1), równania te mają dwa punkty stabilne oraz jeden punkt niestabilny. Jednak nie ma już symetrii i dlatego czasy opuszczenia basenów przyciągania nie są równe.

Niech x_1' będzie punktem stałym równania

$$dx = [x(a - x^2) + A]dt + \varepsilon dW$$

a x_1'' punktem stałym równania

$$dx = [x(a - x^2) - A]dt + \varepsilon dW$$

Postępując podobnie jak poprzednio, otrzymano:

$$\mu(x_1') \cong \frac{\pi}{a\sqrt{2}} exp(\sqrt{a^2} 2\varepsilon^2 (1 + \frac{4A}{a^{3/2}}))$$
$$\nu(x_1'') \cong \frac{\pi}{a\sqrt{2}} exp(\sqrt{a^2} 2\varepsilon^2 (1 - \frac{4A}{a^{3/2}}))$$

gdzie $\mu(x_1')$ i $\nu(x_1'')$ to średnie czasy opuszczenia basenów przyciągania, do których należą x_1' i x_1'' .

Wraz z upływem czasu, prawdopodobieństwo opuszczenia basenu przyciągania wzrasta i osiąga maksiumum dla $t=\pi/\Omega$.

Niech au – średni czas opuszczenia basenu przyciągania, wówczas

$$\nu(x_1'') < \tau < \mu(x_1')$$

Teraz jeśli

$$\mu(x_1') \geqslant \pi/\Omega$$
 i $\nu(x_1'') << \pi/\Omega$,

wówczas $\tau \approx \pi/\Omega$, a wariancja czasu opuszczenia jest rzędu $\nu(x_1'')$. Z prawdopodbieństwem 1, rozwiązanie równania (2) z warunkiem początkowym $x=x_1'$ w chwili t=0 skoczy do punktu $x=x_2''$ w chwili $t=\pi/\Omega$.

Można sprawdzić, że rozwiązanie spędzi około π/Ω w nowym basenie przyciągania i w chwili $t=2\pi/\Omega$ skoczy do punktu x_1' . W tym przypadku x(t) będzie skakać pomiędzy dwoma stabilnymi stanami niemal okresowo zgodnie z okresowym wymuszeniem.

Gdy
$$\mu(x_1') \geqslant \pi/\Omega$$
 i $\nu(x_1'') << \pi/\Omega$,

widać, że, aby spełnione były nierówności, wariancja szumu musi być zawarta w przedziale $(\varepsilon_1, \varepsilon_2)$, gdzie ε_1 i ε_2 są dane przez

$$\varepsilon_1 = a(\frac{1-4A/a^{3/2}}{2ln(2\sqrt{2}a/\Omega)})^{1/2}$$

 $\varepsilon_2 = a(\frac{1+4A/a^{3/2}}{2ln(2\sqrt{2}a/\Omega)})^{1/2}$

gdzie dla

$$\varepsilon = \varepsilon_1, \quad \nu(x_1'') = \pi/\Omega$$

i dla

$$\varepsilon = \varepsilon_2$$
, $\mu(x_1') = \pi/\Omega$

Wykres

Numeryczna symulacja równania (2) z a = 1, A = 0, 12, $\Omega = 2\pi/T = 10^{-3}$ i $\varepsilon = 0, 25$. Otrzymano $\varepsilon_1 = 0, 18$ oraz $\varepsilon_2 = 0, 31$, $\varepsilon \in (\varepsilon_1, \varepsilon_2)$.

"Stochastic resonance in an autonomous system with a nonuniform limit cycle"

- Stochastic resonance in an autonomous system with a nonuniform limit cycle, W. Rappel, S. Strogatz, *Physical Review E*, October 1994, Vol. 50, No. 4
- badanie rezonansu stochastycznego w autonomicznym układzie z niejednorodnym cyklem granicznym

Rozważmy układ zapisany we współrzędnych biegunowych

$$\dot{r} = r(1 - r^2) + q_1(t)$$

 $\dot{\theta} = b - r^2 \cos(2\theta) + q_2(t)$

b – parametr kontrolny $q_1(t), q_2(t)$ – wyrazy odpowiedzialne za biały szum

Własności układu przy braku obecności szumu

$$\dot{r} = r(1 - r^2)$$
$$\dot{\theta} = b - r^2 cos(2\theta)$$

Portret fazowy zależy wówczas od *b* w następujący sposób:

- dla b>1 układ ma stabilny cykl graniczny przy r=1 z okresem $\int_0^{2\pi} d\theta/[b-\cos(2\theta)]$
- dla b < 1 cykl graniczny nie istnieje, w zamian za to mamy cztery punkty na okręgu o promieniu r=1 z $\theta=\pm\frac{1}{2} arccos(b)$.
 - Dwa z tych punktów są stabilne, a pozostałe dwa niestabilne. Stabilne i niestabilne punkty zmierzają do siebie, gdy *b* zmierza do 1.
- ullet dla b=1 punkty zderzają się i zanikają dla b>1

Co to jest SR? Zastosowania SR Artykuł 1 Artykuł 2

Portret fazowy układu

Portret fazowy układu z dwoma stabilnymi punktami (zamalowane) oraz dwoma niestabilnymi (niezamalowane) i przepływ na okręgu o promieniu r=1.

Własności układu dla b < 1

Dla b < 1:

- gdy nie ma szumu, układ dąży do jednego z dwóch punktów stabilnych
- efektem szumu jest wyprowadzenie układu ze stabilnego punktu
- gdy b jest bliskie 1, stabilne i niestabilne punkty są blisko siebie – jeśli szum jest wystarczająco silny, układ może czasami być wypchnięty daleko na stronę niestabilnego punktu, po czym popłynie gwałtownie wokół okręgu w kierunku drugiego punktu stabilnego
- ten sam scenariusz może mieć miejsce wokół drugiego punktu
- to prowadzi do ruchu wokół okręgu z określoną częstotliwością
- wzrost szumu powoduje wzrost częstotliwości

Własności układu dla b < 1

Układ z szumem:

$$\dot{r} = r(1 - r^2)$$

$$\dot{\theta} = b - r^2 cos(2\theta) + q_2(t)$$

- ullet badamy ruch układu na okręgu r=1
- ullet szum jest generowany przez wybranie losowej liczby z rozkładu jednostajnego pomiędzy -1 a 1, a następnie pomnożenie jej przez siłę szumu D
- numerycznie całkujemy układ, korzystając z metod opisanych w artykule Gang, Ditzinger, Ning, Haken, Phys. Rev. Lett 71, 807 (1993) i obliczamy pozycję ω_p piku w spektrum mocy
- dla małej siły szumu ω_p wzrasta w przybliżeniu liniowo wraz z D

Wykres

Zależność ω_p w spektrum mocy od siły szumu D dla b=0.99.

Własności układu dla b > 1

Dla b > 1:

- układ ma cykl graniczny
- bez szumu i dla b bliskiego 1 ruch wokół cyklu granicznego jest wysoce niejednorodny układ wolno przechodzi przez regiony wokół $\theta=0$ i $\theta=\pi$
- efektem szumu jest szybsze pokonywanie przez układ wolnych regionów
- o częstotliwość wzrasta w obecności szumu

Szereg czasowy układu

Szereg czasowy dla θ , w przypadku cyklu granicznego (b = 1.005). Grubsza linia – brak szumu, cienka – D = 0.01.

Dziękuję!