Lecture 01

Basic Concepts of Sequential Circuits

Section 5.1-5.3

Definitions of Sequential Circuit

(Section 5-1)

What is a sequential circuit

- Sequential Circuit:
 - a digital circuit with storage element to memorize current state
 - Figure 5-1:

- the counter part -- Combinational Circuit
 - a digital circuit without storage element

Example 1: combinational circuit

- turn-on the RED LED when both of the two buttons pressed
- turn-on the Green LED when only one the two buttons pressed
- turn-off the two LEDs when no buttons pressed

Example 1: combinational circuit

- turn-on the RED light when one of the two buttons pressed
- turn-on the Green light when both the two buttons pressed
- none of the LED ON when you release the buttons
- there is no memory in this circuit

- turn ON/OFF the LED by press button A
 - 1st hit: ON
 - 2nd hit: OFF
 - 3rd hit: ON
 - 4th hit: OFF
 - **...**

the LED may keep ON after you release the button

the LED may keep ON after you release the button

- hit the button A to control which LED on
 - 1st hit: turn on R
 - 2nd hit: turn off R
 - 3rd hit: turn on R again
 - **...**

How to distinguish combinational and sequential circuit?

Storage elements

(1) SR latches and D-latches

edge-triggered D flip-flops

Storage elements

 a circuit contains one of these symbols is a sequential circuit

otherwise it is a combinational circuit

Example 1: combinational circuit

- turn-on the RED light when one of the two buttons pressed
- turn-on the Green light when both the two buttons pressed
- none of the LED ON when you release the buttons
- there is no memory in this circuit

the LED may keep ON after you release the button

Storage Element

the D flip-flop

Recall: What is a sequential circuit

- Sequential Circuit:
 - a digital circuit with storage element to memorize current state
 - Figure 5-1:

- Q1: When the storage element will memorize the input?
- Q2: How long the storage element will keep its memory?

The D Flip-Flop

- Imagine that a D flip-flop is a box of 1-bit memory
- When the D flip-flop memorize the input?
 - at (positive) edge trigger of the clock (clk) signal
 - like a snapshot of a camera!

The D Flip-Flop

- Imagine that a D flip-flop is a box of 1-bit memory
- When the D flip-flop memorize the input?
 - at (positive) edge trigger of the clock (clk) signal
 - like a snapshot of a camera!
 - unstable input signal between two clock triggers will be ignored!

The D Flip-Flop

 the inverse of the memory content can also be retrieved

Summary

Answer these questions briefly

- Q1: What is a sequential circuit?
- Q2: What's the clock signal for?
- Q3: When a D flip flop will memorize it's input?
- Q4: How long a D flip flop will keep it's memory?

Skipped Part

- latches
- J-K flip flop
- T flip-flop

Remark: only D flip-flop is available in modern IC design!

Next Lecture

- sequential circuit analysis
 - to draw the timing waveform from a circuit diagram

Please study Section 5.4 before the class!