

Московский государственный университет имени М. В. Ломоносова

Факультет Вычислительной Математики и Кибернетики Кафедра Математических Методов Прогнозирования

Отчет о выполнении задания №5 по практикуму на ЭВМ.

Выполнил студент 317 группы Гарипов Тимур Исмагилевич

Содержание

1	Опи	исание задания	2
2	Ней	росетевой разреженный автокодировщик	2
	2.1	Архитектура сети	2
	2.2	Функция потерь	3
	2.3	Вычисление градиентов	3
3	Рез	ультаты	6
	3.1	Обученные фильтры	6
	3.2	Обучение классификаторов на данных сокращённой размерности	6
4	Вы	воды	6

1 Описание задания

Цель задания состоит в том, чтобы реализовать обучение разреженного автокодировщика и показать, как он обнаруживает, что границы объектов и цветовые переходы одно из лучших представлений для естественных изображений.

2 Нейросетевой разреженный автокодировщик

Рассмотрим устройство исследуемого автокодировщика и выведем формулы для вычисления градиентов в методе обратного распространения ошибки. Так как для ускорения работы программ требуется использовать векторизацию и матричные вычисления, все приведенные ниже формулы будут записаны в матричном виде.

2.1 Архитектура сети

На приведенном ниже рисунке схематично изображен автокодировщик, имеющий n скрытых слоёв с номерами $0, 1, \ldots, n-1$ (предполагается, что n нечётно).

Рис. 1: Схема автокодировщика

На вход нейросети (IN) подается набор из N изображений размера $d \times d \times 3$ в виде матрицы размера $N \times D$, где $D = d \times d \times 3$. Каждая строка этой матрицы представляет собой очередное изображение из набора, "вытянутое" вектор длины D.

Выходом сети (OUT) также является набор из N изображений с такими же размерами. Ожидается, что выход обученного автокодировщика будет приблизительно равен входу.

Преобразование входной матрицы в выходную осуществляется последовательным применением линейных (LINEAR) и нелинейных (S) преобразований. То есть нейросеть можно рассматривать как последовательность слоёв, каждый из которых выполняет некоторое преобразование.

Пусть на вход линейному слою подается матрица $X \in \mathbb{R}^{N \times D_{in}}$, тогда его выходом является матрица $Y \in \mathbb{R}^{N \times D_{out}}$, которая может быть вычислена по формуле: Y = XW + b, где $W \in \mathbb{R}^{D_{in} \times D_{out}}$ и $b \in \mathbb{R}^{D_{out}}$ — параметры линейного слоя. Под сложением матрицы и вектора понимается поэлементное сложение после предварительного broadcating'а вектора b к размерности $N \times D_{out}$.

Нелинейный слой поэлементно применяет заданую функцию активации ко всем элементам входной матрицы. $Y_{ij}=f(X_{ij}).$ В качестве функции активаци рассматривается сигмоидальная функция $f(z)=\frac{1}{1+e^{-z}}.$

По выходу среднего нелинейного слоя в обученном автокодировщике может быть приблизительно восстановлен вход, это свойство позволяет использовать этот выход как признаковое описание входных изображений.

2.2 Функция потерь

Обучение автокодировщика осуществляется путем минимизации функции потерь L, состоящей из трёх слагаемых: $L = J + R_{\lambda} + R_{\rho,\beta}$.

Первое слагаемое J штрафует отклонение выходных изображений от входных и вычисляется следующим образом:

$$J = \frac{1}{2} \sum_{i=1}^{N} ||IN_i - OUT_i||^2 = \frac{1}{2} ||IN - OUT||^2,$$

в последней записи под нормой матрицы подразумевается норма фробениуса.

Второе слагаемое представляет собой L2 регуляризатор на веса (элемнты матриц $W^{(i)}$):

$$R_{\lambda} = \frac{\lambda}{2} \sum_{i=0}^{n-1} ||W^{(i)}||^2,$$

число λ — параметр регуляризации.

Третье слагаемое есть регуляризатор разреженности активаций среднего скрытого слоя.

$$R_{\rho,\beta} = \beta \sum_{i} \left[\rho \log \frac{\rho}{\hat{\rho}_{i}} + (1 - \rho) \log \frac{1 - \rho}{1 - \hat{\rho}_{i}} \right],$$

здесь числа ρ и β являются параметрами регуляризации, $\hat{\rho}_j$ вычисляется как среднее значении активации j-ого нейрона в среднем слое по всем объектам.

2.3 Вычисление градиентов

Рассмотрим произвольный слой нейросети, который вычилсяет выходную матрицу Y по входной матрице X. Для применения метода обратного распространения ошибки необходимо вычислить градиент функции потерь $\frac{\partial L}{\partial X}$, зная градиент $\frac{\partial L}{\partial Y}$. Кроме того требуется вычислить градиенты по параметрам слоя.

Линейное преобразование

Получим требуемые формулы для линейного слоя.

$$Y_{ij} = \sum_{k=1}^{D_{in}} X_{ik} W_{kj} + b_j$$

$$\frac{\partial L}{\partial X_{st}} = \sum_{i=1}^{N} \sum_{j=1}^{D_{out}} \frac{\partial L}{\partial Y_{ij}} \frac{\partial Y_{ij}}{\partial X_{st}} = \left\{ \frac{\partial Y_{ij}}{\partial X_{st}} = 0 \text{ при } i \neq s \right\} = \sum_{j=1}^{D_{out}} \frac{\partial L}{\partial Y_{sj}} \frac{\partial Y_{sj}}{\partial X_{st}} = \sum_{j=1}^{D_{out}} \frac{\partial L}{\partial Y_{sj}} W_{tj} = \left(\frac{\partial L}{\partial Y} W^T \right)_{st}.$$

Далее вычислим градиенты функции потерь по параметрам W и b:

$$\frac{\partial L}{\partial W_{st}} = \sum_{i=1}^{N} \sum_{j=1}^{D_{out}} \frac{\partial L}{\partial Y_{ij}} \frac{\partial Y_{ij}}{\partial W_{st}} = \left\{ \frac{\partial Y_{ij}}{\partial X_{st}} = 0 \text{ при j} \neq t \right\} = \sum_{i=1}^{N} \frac{\partial L}{\partial Y_{it}} \frac{\partial Y_{it}}{\partial W_{st}} = \sum_{i=1}^{N} \frac{\partial L}{\partial Y_{it}} X_{is} = \left(X^{T} \frac{\partial L}{\partial Y} \right)_{st},$$

$$\frac{\partial L}{\partial b_{s}} = \sum_{i=1}^{N} \sum_{j=1}^{D_{out}} \frac{\partial L}{\partial Y_{ij}} \frac{\partial Y_{ij}}{\partial b_{s}} = \left\{ \frac{\partial Y_{ij}}{\partial b_{s}} = 0 \text{ при j} \neq s \right\} = \sum_{i=1}^{N} \frac{\partial L}{\partial Y_{is}} \frac{\partial Y_{is}}{\partial b_{s}} = \sum_{i=1}^{N} \frac{\partial L}{\partial Y_{is}}.$$

Функция активации

Для нелинейного слоя матрицы X и Y связаны соотношением.

$$Y_{ij} = f(X_{ij})$$

А формулы для пересчета градиентов принимают следующий вид:

$$\frac{\partial L}{\partial X_{ij}} = \frac{\partial L}{\partial Y_{ij}} \frac{\partial Y_{ij}}{\partial X_{ij}} = \frac{\partial L}{\partial Y_{ij}} f'(X_{ij})$$

В случае сигмоидальной функции f имеем:

$$\begin{split} \frac{\partial L}{\partial X_{ij}} &= \frac{\partial L}{\partial Y_{ij}} \left(\frac{1}{1 + e^{-X_{ij}}} \right)' = \frac{\partial L}{\partial Y_{ij}} \frac{-1}{(1 + e^{-X_{ij}})^2} e^{-X_{ij}} (-1) = \\ &= \left\{ Y_{ij} = \frac{1}{1 + e^{-X_{ij}}}, \quad e^{-X_{ij}} = \frac{1}{Y_{ij}} - 1 \right\} = \frac{\partial L}{\partial Y_{ij}} Y_{ij}^2 (\frac{1}{Y_{ij}} - 1) = \frac{\partial L}{\partial Y_{ij}} Y_{ij} (1 - Y_{ij}) \end{split}$$

Обратное распространение ошибки

Мы получили формулы, которые позволяют для любого слоя вычилсить градиент функции потерь по входу этого слоя $\frac{\partial L}{\partial X}$ при известном градиенте по выходу слоя $\frac{\partial L}{\partial Y}$. При этом также можно вычислить градиент L по параметрам слоя (если они имеются). Осталось вычилсить градиент L по выходу последнего слоя, после чего можно вычилсять градиенты для предыдущих слоёв.

$$L = L(IN, OUT, W^{(0)}, W^{(1)}, \dots, W^{(n-1)}, S^{(\frac{n-1}{2})}) =$$

$$= J(IN, OUT) + R_{\lambda}(W^{(0)}, W^{(1)}, \dots, W^{(n-1)}) + R_{\rho,\beta}(S^{(\frac{n-1}{2})})$$

$$J(IN, OUT) = \frac{1}{2}||IN - OUT||^{2},$$

$$R_{\lambda}(W^{(0)}, W^{(1)}, \dots, W^{(n-1)}) = \frac{\lambda}{2} \sum_{i=0}^{n-1} ||W^{(i)}||^{2},$$

$$R_{\rho,\beta}(S^{(\frac{n-1}{2})}) = \beta \sum_{j} \left[\rho \log \frac{\rho}{\hat{\rho}_{j}} + (1-\rho) \log \frac{1-\rho}{1-\hat{\rho}_{j}}\right], \qquad \hat{\rho}_{j} = \frac{1}{N} \sum_{i=1}^{N} S_{ij}^{(\frac{n-1}{2})}$$

$$\frac{\partial L}{\partial OUT} = \frac{\partial J}{\partial OUT} = OUT - IN$$

После того как градиент по OUT вычислен, можно вычислять градиент для предыдущих слоёв по описанным выше формулам.

Но кроме того надо учесть градиенты, которые появляются из-за регуляризаторов. Рассмотрим, как матрица линейного преобразования $W^{(i)}$ влияет на L. Во-первых от этой матрицы зависит значения выхода сети $OUT = OUT(IN, W^{(i)}, \dots)$, во-вторых эта матрица вносит вклад в регуляризатор R_{λ} . Эти соображения приводят нас к следующей формуле:

$$\frac{\partial L}{\partial W^{(i)}} = \frac{\partial L}{\partial OUT} \frac{\partial OUT}{\partial W^{(i)}} + \frac{\partial R_{\lambda}}{\partial W^{(i)}},$$

здесь первое слагаемое может быть вычислено при обратном распространении ошибки (с использованием уже упоминавшихся формул), а второе слагаемое вычилсяется следующим образом:

$$\frac{\partial R_{\lambda}}{\partial W^{(i)}} = \lambda W^{(i)}$$

Перейдем ко второму регуляризатору, введем обозначение $k = \frac{n-1}{2}$. С помощью аналогичных рассуждений можно прийти к формуле:

$$\frac{\partial L}{\partial S^{(k)}} = \frac{\partial L}{\partial OUT} \frac{\partial OUT}{\partial S^{(k)}} + \frac{\partial R_{\rho,\beta}}{\partial S^{(k)}}.$$

Вычисление первого слагаемого опять может быть выполнено при обратном распространении ошибки, получим выражение для второго слагаемого:

$$\frac{\partial R_{\rho,\beta}}{\partial S_{st}^{(k)}} = \sum_{j} \frac{\partial R_{\rho,\beta}}{\partial \hat{\rho}_{j}} \frac{\partial \hat{\rho}_{j}}{S_{st}^{(k)}} = \left\{ \frac{\partial \hat{\rho}_{j}}{S_{st}^{(k)}} = 0, \text{ при } j \neq t \right\} = \frac{\partial R_{\rho,\beta}}{\partial \hat{\rho}_{t}} \frac{\partial \hat{\rho}_{t}}{S_{st}^{(k)}} = \frac{1}{N} \frac{\partial R_{\rho,\beta}}{\partial \hat{\rho}_{t}} = \frac{\beta}{N} \left(-\frac{\hat{\rho}_{t}}{\rho} + \frac{1 - \hat{\rho}_{t}}{1 - \rho} \right)$$

3 Результаты

3.1 Обученные фильтры

На рис. (2) изображены обученые фильтры. Изображение (2(a)) соответствует подобранным гиперпараметрам, полученные таким образом фильтры как и ожидалось детектируют границы объектов и цветовые переходы. Остальные изображения показывают, что при изменении гиперпараметров визульное качество фильтров ухудшается (особенно это заметно при изменении параметра λ).

3.2 Обучение классификаторов на данных сокращённой размерности

Для классификации изображений из датасета STL-10 использовались алгоритмы из библиотеки scikit-learn: RandomForestClassifier (\mathbf{RF}) и LogisticRegression (\mathbf{LR}). В таблице (1) показано качество этих кслассификаторов на валидационной выборке.

Метод генерации признаков	RF	$\mathbf{L}\mathbf{R}$
Интенсиности цветовых каналов	43.76	34.01
Однослойных автокодировщик (выбор патчей с шагом 8)	42.41	47.56
Однослойных автокодировщик (выбор патчей с шагом 4)	43.43	50.58
Трёхслойный автокодировщик (выбор патчей с шагом 8)	40.02	41.28

Таблица 1: Точность обученных классификаторов (%)

Полученные результаты позволяют заключить, что признаки, сгенерированные с помощью автокодировщика позволяют повысить качесвто классификации. Об этом свидетельствует прирост качества классификации с помощью логистической регрессии, при использовании автокодировщика. Случайные леса по каким-то причинам не прибавили в качестве. Автокодировщик с тремя скрытыми слоями работает хуже, чем однослойный, возможно требуется более точный подюор параметров сети.

4 Выводы

В ходе выполнения работы реализовано обучение разреженного автокодировщика и показано, как он обнаруживает, что границы объектов и цветовые переходы одно из лучших представлений для естественных изображений. Проведена классификация изображений из датасета STL-10 с использованием парадигмы предобучения без учителя.

Рис. 2: Обученные фильтры, полуенные при различных значениях гиперпараметров