나노 TiO_{2-x} 공심구빚촉매의 제조

김진혁, 김경일

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《정보기술, 나노기술, 생물공학을 비롯한 핵심기초기술과 새 재료기술, 새 에네르기기술, 우주기술, 핵기술과 같은 중심적이고 견인력이 강한 과학기술분야를 주라격방향으로 정하고 힘을 집중하여야 합니다.》

현재 빛촉매로 광범히 리용되고있는 이산화티탄은 자외선복사조건에서만 빛촉매작용을 나타내고 보임빛조건에서는 촉매활성을 나타내지 못하므로 그 응용에서 크게 제한을 받고있다.[1] TiO_2 빛촉매와는 달리 TiO_{2-x} 빛촉매는 1 200nm까지의 빛을 흡수할수 있으며 태양빛조건에서 메틸렌청에 대한 빛촉매분해활성이 흰색의 나노 TiO_2 빛촉매에 비해 더 우수하다는것이 이미 밝혀졌다.[2] 공심구조를 가진 빛촉매는 공심내부에 입사된 빛이 내부벽면에서 여러번 반사되는 과정에 빛흡수률이 현저하게 개선되고 공심내부에서도 빛촉매반응이 일어나 촉매활성이 높아진다.[3, 4]

우리는 수열법, 졸-겔법 등을 결합하여 나노TiO_{2-x}공심구빛촉매를 제조하고 메틸렌청의 분해를 통하여 그것의 빛촉매성능을 일반나노TiO_{2-x}빛촉매와 대비적으로 고찰하였다.

실 험 방 법

기구로는 항온건조로(《DHG101-00》), 마플로(《SX-G02165》), 원심분리기(《TG16-WS》), 항온자력교반기(《R-90-2》), 초음파분산기(100W), 분말X선회절분석기(《Rigaku Miniflex》), 주사전자현미경(《JSM-6610A/EDX》), 빛쪼임장치(자체제작, 광원은 40W백열등), 자외가시선분광광도계(《UV-2201》)를, 시약으로는 마이크로탄소구(립경 150~200nm), TBOT(테트라부톡시티탄), NaBH4, 에타놀, 메틸렌청(MB)을 리용하였다.

1) 나노TiO₂공심구빛촉매의 제조

5mL의 테트라부톡시티탄을 50mL의 에타놀에 풀고 여기에 0.1g의 마이크로탄소구를 넣은 다음 초음파분산기로 15min동안 분산시킨다. 이 용액을 세게 교반하면서 여기에 80%에타놀을 흰색의 침전물이 더는 생기지 않을 때까지 천천히 적하한다.

혼합용액을 1h동안 숙성시키고 원심분리하여 물로 여러번 세척한 다음 60℃건조로에서 5h동안 건조시킨다. 다음 C@TiO2에서 껍질구조는 견고하게 보강하고 탄소핵을 제거하기 위해 750℃에서 4h동안 소성하여 나노TiO2공심구빛촉매를 제조한다.

2) 나노TiO2-x공심구빛촉매와 일반나노TiO2-x빛촉매의 제조

우에서 얻어낸 나노TiO₂공심구빛촉매 2g을 NaBH₄ 4g과 충분히 혼합한 다음 여기에 5mL 의 증류수를 넣어 흰색의 졸을 만들었다. 얻어진 흰색의 졸을 80℃에서 1h동안 건조시키 고 알루미나도가니에 넣어 질소분위기에서 5℃/min의 가열속도로 350℃까지 가열하여 1h 동안 유지하였다. 다음 방온도까지 자연랭각시키고 얻어진 분말을 에타놀과 증류수로 여 러번 세척한 다음 60℃에서 5h동안 건조시켜 목적하는 나노TiO_{2-x}공심구빛촉매를 제 조하였다. 일반나노 TiO_{2-x} 빛촉매의 제조는 일반나노 TiO_2 과 $NaBH_4$ 으로부터 우의 조작을 반복하는 방법으로 제조하였다.

3) 빛촉매분해실험

빛촉매분해실험은 자체로 제작한 빛쪼임장치에서 진행하였다.

150mL 비커들에 각각 25mg의 일반나노 TiO_{2-x} 빛촉매, 나노 TiO_{2-x} 공심구빛촉매와 $1.5\cdot10^{-5}$ mol/L MB용액 100mL를 넣고 5min동안 초음파분산하였다. 이 비커들을 빛이 없는 조건에서 2h동안 방치하여 촉매에 메틸렌청을 충분히 흡착시키고 동시에 빛을 쪼여주었다. 1h 이 지날 때마다 비커의 용액 3mL를 분취하여 원심분리하고 상등액의 흡광도를 분광광도계를 리용하여 664nm에서 측정하는 방법으로 시간에 따르는 메틸렌청의 흡광도변화를 고찰하였다.

실험결과 및 고찰

1) 제조한 생성물들이 구조적특성

우에서 제조한 일반나노 TiO_{2-x} 빛촉매, 나노 TiO_2 공심구빛촉매, 나노 TiO_{2-x} 공심구빛촉매의 주사전자현미경(SEM)사진을 그림 1에 주었다.

그림 1. 제조한 생성물들의 주사전자현미경(SEM)사진 기) 일반나노TiO_{2-x}빛촉매, L) 나노TiO₂-공심구빛촉매, C) 나노TiO_{2-x}공심구빛촉매

그림 1에서 보는것처럼 제조한 일반나노 TiO_{2-x} 빛촉매의 립도는 60nm정도이며 나노 TiO_2 공심구와 나노 TiO_{2-x} 공심구빛촉매의 립도는 $200\sim400nm$ 정도이고 여기서 TiO_2 과 TiO_{2-x} 가 차지하는 두께는 50nm정도이다.

그림 2는 나노TiO_{2-x}공심구빛촉매와 나노TiO₂공심구빛촉매의 XRD도형이다.

그림 2. 나노TiO_{2-x}공심구빛촉매와 나노TiO₂공심구빛촉매의 XRD도형 1-나노TiO_{2-x}공심구빛촉매, 2-나노TiO₂공심구빛촉매

그림 2로부터 나노 TiO_{2-x} 공심구빛촉매와 나노 TiO_2 공심구빛촉매사이에는 기본적인 결정구조에서 큰 차이가 나타나지 않았으며 TiO_{2-x} 에 존재하는 결정결함의 증가에 의한 잡음신호들이 나타났다는것을 알수 있다.

2) 메틸렌청의 빛촉매분해특성

실험과정에 메틸렌청의 색갈은 진한청색으로부터 연한청색으로 되였다가 마지막에는 무색으로 되였다.

메틸렌청의 농도가 최대흡수파장인 664nm에서의 흡광도값에 비례되므로 일정한 시간 간격으로 측정한 흡광도값들로부터 다음의 식을 리용하여 C/C_0 을 계산하였다.

$$C/C_0=A/A_0$$

여기서 C_0 은 로출전 흡착평형상태에서 MB의 농도, C는 각이한 로출후 MB의 농도, A_0 은 로출전 흡착평형상태에서 MB의 664nm에서의 흡광도, A는 각이한 로출후 MB의 664nm에서의 흡광도이다.

시간에 따르는 메틸렌청의 빛촉매분해결과를 그림 3에 보여주었다.

그림 3. 시간에 따르는 메틸렌청의 빛촉매분해결과 1, 4-일반나노TiO_{2-x}빛촉매, 2, 3-나노TiO_{2-x}광심구빛촉매

실험결과는 나노TiO_{2-x}공심구빛촉매가 일반나노TiO_{2-x}빛촉매에 비하여 매우 우월한 빛촉매특성을 가진다는것을 보여준다.

그림 3에서 보는바와 같이 나노 TiO_{2-x} 공심구빛촉매는 빛을 쪼여주기 시작하여 10h후 메틸렌청의 분해률이 94%에 달하였으며 일반나노 TiO_{2-x} 빛촉매는 같은 시간에 메틸렌청을 21%정도밖에 분해하지 못하였다. 또한 메틸렌청분해반응을 1차반응으로 가정하고 1차반응속도상수를 구한 결과를 보아도 나노 TiO_{2-x} 공심구빛촉매가 일반나노 TiO_{2-x} 빛촉매에 비하여 매우 높은 빛촉매활성을 나타낸다는것을 알수 있다.

맺 는 말

일반나노 TiO_{2-x} 빚촉매와 나노 TiO_{2-x} 공심구빚촉매를 제조하고 그 성능을 대비적으로 검토하였으며 이 빚촉매들을 리용하여 메틸렌청에 대한 빚촉매분해실험을 진행함으로써 나노 TiO_{2-x} 공심구빚촉매가 일반나노 TiO_{2-x} 빛촉매에 비해 우수한 빚촉매활성을 나타낸다는것을 증명하였다.

참 고 문 헌

- [1] 김정민 등; 화학과 화학공학, 2, 33, 주체107(2018).
- [2] X. Chen et al.; Science, 331, 746, 2011.
- [3] D. Klauson et al.; Catal. Commun., 11, 715, 2010.
- [4] 李志会 等; 材料导报, 21, S1, 189, 2007.

주체109(2020)년 7월 5일 원고접수

Preparation of Nano TiO_{2-x} Hollow Spheres Photocatalyst

Kim Jin Hyok, Kim Kyong Il

We prepared nano TiO_{2-x} hollow spheres photocatalyst with hydrothermal method and sol-gel method, and considered the photocatalytic characteristics through degradation of methylene blue.

The visible-light responsibility of nano TiO_{2-x} hollow spheres photocatalyst is higher than that of nano TiO_{2-x} photocatalyst.

Keywords: TiO_{2-x} , hollow spheres, visible-light responsibility, photocatalyst