Machine Learning from Data

Lecture 9: Spring 2021

Today's Lecture

- Logistic Regression
- Gradient Descent

3 tyles

Probability

Previous Lecture

The linear signal:

feetne construction

$$s = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

Good Features are Important

Before looking at the data, we can reason that symmetry and intensity should be good features based on our knowledge of the problem.

Algorithms

Linear Classification.

Pocket algorithm can tolerate errors Simple and efficient

Linear Regression.

Single step learning:

$$\mathbf{w} = X^{\dagger} \mathbf{y} = (X^{T} X)^{-1} X^{T} \mathbf{y}$$

Very efficient $O(Nd^2)$ exact algorithm.

Predicting a Probability (Logistic Regulation)

Will someone have a heart attack over the next year?

age	62 years
gender	male
blood sugar	120 mg/dL40,000
HDL	50
LDL	120
Mass	190 lbs
Height	5' 10"

Classification: Yes/No

Logistic Regression: Likelihood of heart attack

logistic regression $\equiv y \in [0, 1]$

Logistic Regression-s= w12 -> 0 (w12) trobabiling
y E [0,1] (Mathematically pormint)

Properties of the Sigmoid

$$\frac{1}{1+e^{s}} = \frac{e^{s}}{1+e^{-s}} = \frac{1}{1+e^{-s}}$$

$$\frac{1}{0(s)} = \frac{1}{1+e^{-s}} = \frac{1}{1+e^{s}} = \frac{1}{1+e^{s}}$$

$$\frac{1}{1+e^{-s}} = \frac{1}{1+e^{s}} = \frac{1}{1+e^{s}}$$

How to get the Probability?

Patients: N, N2. Observe: (41/-1)
(1/21/No)
(1/21/No)
(1/21/No) Don't have the enact dates

Probability Values

Target function (Ground Truth)

• Probabilistic target function P[+|n] = f(n) $P\left[-1|\chi\right] = 1 - f(\eta)$ $h(n) = O(w^{r}n) \longrightarrow f(n)$

 $E_{in}(w)$ P[+1|n] ~ W(n) $P\left[-1\right]n\right] = 1-h(n)$ then h(n)~1(y
then h(n)~5) Observe un - yn = +1 $\frac{1}{2} \left(\frac{1}{2} \right)^{2}$ $\frac{1}{2} \left(\frac{1}{2} \right)^{2}$

 $F_{in}(h) = \frac{1}{N} \frac{2}{n^{-1}} \left(\frac{h_i(x_i) - \frac{1}{2}(1+y_n)}{n^{-1}} \right)^2$ We cannot use this because:

i) Inconvenient to minimize.

ii) Where is the probabity approx.?

What is a better were function?

CROSS ENTROPY ERROR

Fin (w) = 1 \frac{N}{2} ln (1+e^{-yn(w/w)})

Note to Interpret the state of the s Beter behaved + Probabilistic interpretation.

Data: (n, yi) (ny) -- (ny) -- (ny) -- yn Ez-1,+13 11D -> One of the pillars of theory Observing y, yz. -- yn -> 2, 2. ... 2n

P(yn|nn) O(yn(wnn)) Likelihood

(yn (wnn)) aval: Choose wis manimi Manimum Likelihood

How to minimize E_{in} ?

Classification: Pocket Algo.
Regression: Pseudo Inverse IEin(w) = 0 Analytically not possible.
It was ruly possible.

Ball Phenomena

Ball on a complicated hilly terrain

— rolls down to a *local valley*

this is called a local minimum

Questions:

How to get to the bottom of the deepest valey?

How to do this when we don't have gravity?

menor su ab mon? Iteration (t)

Pick a direction i.e. a unit rutor

sein w(t): Pick a direction i.e. a unit rutor

Vi Take a small step in that y

direction. N

direction. N

1 (1) 14+11) as small as Pick \hat{V} to make $E_{in}(\omega(t+1))$ as small as possible $\omega(t+1) = \omega(t) + \eta \hat{V}$ $E_{in}(\omega(t)) = \omega(t) + \eta \hat{V}$ $E_{in}(\omega(t)) - E_{in}(\omega(t)) - E_{in}(\omega(t)) = \sum_{k=1}^{\infty} (\omega(t)) (\eta \hat{V})$ $\Delta = E_{in}(\omega(t+1)) - E_{in}(\omega(t)) + \sum_{k=1}^{\infty} (\omega(t)) (\eta \hat{V})$ $\Delta = E_{in}(\omega(t+1)) - E_{in}(\omega(t)) + \sum_{k=1}^{\infty} (\omega(t)) (\eta \hat{V})$ $\Delta = E_{in}(\omega(t+1)) - E_{in}(\omega(t)) + \sum_{k=1}^{\infty} (\omega(t+1)) + \sum_{k=1}^{\infty} (\omega(t)) (\eta \hat{V})$

 $\dot{V} = -\frac{7 \text{ Ein}(w(t))}{11 \text{ Tin}(w(t))}$ -ve of the gradient Summarize

i) Initialize t=D, $\omega(0)$ ii) $pt: \omega(t)$ Compute $\forall Ein(\omega(t))$ $\omega(t+1) = \omega(t) - \eta \quad \forall Ein(\omega(t))$ $|\omega(t+1)| = \omega(t) - \eta \quad \forall Ein(\omega(t))$ Normalized gradient descent.

Step Size

W(t+1)= W(t)-Yt

Ball gradient

Ball gra

i) Ein (w) -> differentiable

(i) In efficient ZEin -> D(Nd)

(ii) In efficient Updating weights of (d+1) How to voll down efficiently? Stochastic gradient descent

Stochastic gradient descent

Einlw) = N iel

 $e(\omega_{x_n},y_n) = lon(1+e^{-y_n(\omega_{x_n})}) - y_n(\omega_{x_n})$ $\forall e(\omega_{x_n},y_n) = \frac{1}{1+e^{-y_n\omega_{x_n}}}$ - yn nn 1 + e ynwnn $\omega(th) = \omega(t) + \frac{y_n x_n v}{v_n t}$ 1 + pynwin

$$\eta = 6$$
10 steps
 $N = 10$

$$\eta = 2$$
30 steps

Thanks!