Variational expression when $\alpha > 1$

The next lemmas may be well known; proofs are given for completeness. [I am not sure whether or not Lemma 0.1 is true even for $p \in (0,1)$, where $\|\cdot\|_p$ is a quasi-norm and the L^p - L^q -duality is not available.]

Lemma 0.1. For any $p \in [1, \infty)$, $h_{\varphi}^{1/2p} \mathcal{M}^+ h_{\varphi}^{1/2p}$ is dense in $L_p(\mathcal{M})^+$ in the norm $\|\cdot\|_p$.

Proof. We may assume that φ is faithful. Suppose that there is an $a \in L_p(\mathcal{M})^+$ which is not in the closure of $h_{\varphi}^{1/2p}\mathcal{M}^+h_{\varphi}^{1/2p}$. Then by the L^p -duality (see [5]) and the Hahn–Banach separation theorem, one can choose a selfadjoinf element $b \in L_q(\mathcal{M})$ such that

$$\operatorname{tr}(ab) < 0 \le \operatorname{tr}\left((h_{\varphi}^{1/2p}xh_{\varphi}^{1/2p})b\right) = \operatorname{tr}\left(x(h_{\varphi}^{1/2p}bh_{\varphi}^{1/2p})\right), \qquad x \in \mathcal{M}^+.$$

This gives that $h_{\varphi}^{1/2p}bh_{\varphi}^{1/2p} \geq 0$ and hence $b \geq 0$. Therefore, one has $\operatorname{tr}(ab) \geq 0$, a contradiction.

Lemma 0.2. Let $\psi, \varphi \in \mathcal{M}_*^+$ with $\psi \leq \varphi$. Then for any $a \in \mathcal{M}$ and $p \in [1, \infty)$,

$$\operatorname{tr}\left((a^*h_{\psi}^{1/p}a)^p\right) \le \operatorname{tr}\left((a^*h_{\varphi}^{1/p}a)^p\right).$$

Proof. Since $1/p \in (0,1]$, it follows (see [2, Lemma B.7] and [3, Lemma 3.2]) that $h_{\psi}^{1/p} \leq h_{\varphi}^{1/p}$ as τ -measurable positive operators affiliated with $\mathcal{M} \rtimes_{\sigma^{\varphi_0}} \mathbb{R}$ (in which $L_p(\mathcal{M})$ lives). Hence $a^*h_{\psi}^{1/p}a \leq a^*h_{\varphi}^{1/p}a$ in the same sense. Therefore, by [1, Lemma 2.5 (iii)] and [1, Lemma 4.8] we have $\|a^*h_{\psi}^{1/p}a\|_p \leq \|a^*h_{\varphi}^{1/p}a\|_p$.

Theorem 0.3. Let $\psi, \varphi \in \mathcal{M}_*^+$, $\psi \neq 0$. Let $\alpha > 1$ and $z \geq \max\{\alpha/2, \alpha - 1\}$. Then

$$Q_{\alpha,z}(\psi||\varphi) = \sup_{a \in \mathcal{M}_+} \left\{ \alpha \operatorname{Tr}\left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr}\left(\left(a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha - 1}} \right) \right\}.$$

Proof. The inequality \geq holds for all α and z and was proved in [4, Theorem 2 (vi)]. We now prove the opposite inequality.

Assume first that $Q_{\alpha,z}(\psi||\varphi) < \infty$, so that there is some $x \in s(\varphi)L_z(\mathcal{M})^+s(\varphi)$ such that $h_{\psi}^{\frac{\alpha}{z}} = h_{\varphi}^{\frac{\alpha-1}{2z}}xh_{\varphi}^{\frac{\alpha-1}{2z}}$. Plugging this into the right hand side, we obtain

$$\begin{split} \sup_{a \in \mathcal{M}_{+}} \left\{ & \alpha \mathrm{Tr} \left((a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{a \in \mathcal{M}_{+}} \left\{ & \alpha \mathrm{Tr} \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{z}} x h_{\varphi}^{\frac{\alpha - 1}{2z}} a^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \left((a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{z}} a^{\frac{1}{2}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{a \in \mathcal{M}_{+}} \left\{ & \alpha \mathrm{Tr} \left((x^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{2z}} a h_{\varphi}^{\frac{\alpha - 1}{2z}} x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \left((h_{\varphi}^{\frac{\alpha - 1}{2z}} a h_{\varphi}^{\frac{\alpha - 1}{2z}})^{\frac{z}{\alpha - 1}} \right) \right\} \\ &= \sup_{w \in L_{\frac{z}{2z}}} (\mathcal{M})^{+} \left\{ & \alpha \mathrm{Tr} \left((x^{\frac{1}{2}} w x^{\frac{1}{2}})^{\frac{z}{\alpha}} \right) - (\alpha - 1) \mathrm{Tr} \left(w^{\frac{z}{\alpha - 1}} \right) \right\}, \end{split}$$

where we used the fact that $\operatorname{Tr}((a^*a)^p) = \operatorname{Tr}((aa^*)^p)$ for p > 0 and $a \in L_{\frac{p}{2}}(\mathcal{M})$ and Lemma 0.1 since $\frac{z}{\alpha-1} \geq 1$ by the assumption. Putting $w = x^{\alpha-1}$ we get

$$\sup_{w \in L_{\frac{z}{\alpha-1}}(\mathcal{M})^+} \left\{ \alpha \operatorname{Tr}\left(\left(x^{\frac{1}{2}} w x^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr}\left(w^{\frac{z}{\alpha-1}} \right) \right\} \ge \operatorname{Tr}(x^z) = \|x\|_z^z = Q_{\alpha,z}(\psi \| \varphi).$$

This finishes the proof in the case that $Q_{\alpha,z}(\psi||\varphi) < \infty$. Note that this holds if $\psi \leq \lambda \varphi$ for some $\lambda > 0$. Indeed, since $\frac{\alpha}{2z} \in (0,1]$ by the assumption, we then have

$$h_{\psi}^{\frac{\alpha}{2z}} \le \lambda^{\frac{\alpha}{2z}} h_{\varphi}^{\frac{\alpha}{2z}},$$

hence by [2, Lemma A.58] there is some $b \in \mathcal{M}$ such that

$$h_{\psi}^{\frac{\alpha}{2z}} = bh_{\varphi}^{\frac{\alpha}{2z}} = yh_{\varphi}^{\frac{\alpha-1}{2z}},$$

where $y = bh_{\varphi}^{\frac{1}{2z}} \in L_{2z}(\mathcal{M})$. By Lemma 1 we get $Q_{\alpha,z}(\psi \| \varphi) = \|y\|_{2z}^{2z} < \infty$.

In the general case, for every $\epsilon > 0$, the variational expression holds for $Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi)$, so that we have

$$Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi) = \sup_{a \in \mathcal{M}_{+}} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} (h_{\varphi} + \epsilon \psi)^{\frac{\alpha - 1}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha - 1}} \right) \right\}$$

$$\leq \sup_{a \in \mathcal{M}_{+}} \left\{ \alpha \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\psi}^{\frac{\alpha}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha}} \right) - (\alpha - 1) \operatorname{Tr} \left(\left(a^{\frac{1}{2}} h_{\varphi}^{\frac{\alpha - 1}{z}} a^{\frac{1}{2}} \right)^{\frac{z}{\alpha - 1}} \right) \right\},$$

where the inequality above follows since Lemma 0.2 gives that

$$\operatorname{Tr}\left(\left(a^{\frac{1}{2}}(h_{\varphi}+\epsilon\psi)^{\frac{\alpha-1}{z}}a^{\frac{1}{2}}\right)^{\frac{z}{\alpha-1}}\right) \geq \operatorname{Tr}\left(\left(a^{\frac{1}{2}}h_{\varphi}^{\frac{\alpha-1}{z}}a^{\frac{1}{2}}\right)^{\frac{z}{\alpha-1}}\right)$$

for every $a \in \mathcal{M}^+$. Therefore, since lower semicontinuity [4, Theorem 2 (iv)] gives

$$Q_{\alpha,z}(\psi \| \varphi) \leq \liminf_{\epsilon \searrow 0} Q_{\alpha,z}(\psi \| \varphi + \epsilon \psi)$$

the desired inequality follows.

References

- [1] T. Fack and H. Kosaki. Generalized s-numbers of τ -measurable operators. *Pacific Journal of Mathematics*, 123(2):269 300, 1986.
- [2] F. Hiai. Quantum f-Divergences in von Neumann Algebras: Reversibility of Quantum Operations. Mathematical Physics Studies. Springer, Singapore, 2021.
- [3] F. Hiai and H. Kosaki, Connections of unbounded operators and some related topics: von Neumann algebra case. *International Journal of Mathematics*, 32(5): 2150024 (88 pages), 2021.
- [4] S. Kato. On α -z-Rényi divergence in the von Neumann algebra setting. arXiv preprint arXiv:2311.01748, 2023.
- [5] M. Terp. L^p -spaces associated with von Neumann algebras. Notes, Copenhagen University, 1981.