

FDIR

Spacecraft fault protection system

Project 1

Part 2

Euro Team

Alauzet Pierre, Ahvenniemi Mikko, Colin Julien, Starck Benoit

TABLE OF CONTENTS

- 1. Domains identification
- 2. Context diagram
- 3. Requirements
- 4. Problem frames

<u>Domain identification</u> Context diagram Requirements Problem frames 3 / 21

DOMAINS IDENTIFICATION

- FDIR storage system
- Crew
- Information display
- Ground control
- Systems
- Report

CONTEXT DIAGRAM

Domain identification Context diagram Requirements 5 / 21

REQUIREMENTS

- 1. Automatic recovery to failure
- 2. Manual control of FDIR
 - Crew is able to shutdown part of the system
 - Crew is able to restart part of the system
 - Crew is able to switch to a spare system
- 3. Displaying information continuously
- 4. Collect system data to data storage
- 5. Information retrieval
- 6. Providing failure localization
- 7. Response in case of unresolvable failure

Domain identification Context diagram Requirements <u>Problem frames</u> 6 / 21

AUTOMATIC RECOVERY TO FAILURE

- □ The FDIR can launch a restart of the system automatically, in the goal to recover in case of a failure.
- □ The systems, during these operations, return their status to the FDIR.

OMATIC RECOVERY TO FAILURE (CON

a: FDIR! {backup, restart, shutdown}
Systems!{return command status}

b: {Functional, non functional, broken}

Required behaviour problem frame

Domain identification Context diagram Requirements <u>Problem frames</u> 8 / 21

MANUAL CONTROL OF FDIR

- □ FDIR has to provide interface for issuing manual commands from the crew or ground control at anytime
- □ FDIR is able to send commands (shutdown,restart,switch to a different backup) to the spacecraft's several systems
- The systems has to remain available and responding while processing commands
- FDIR must be able to multitask commands

MANUAL CONTROL OF FDIR (CONT.)

c: C/GC! {Do shutdown,Do restart,Do switch to backup}
FDIR!{return command status}

b: C/GC! {Shutdown, Restart, Switch to backup}

d: FDIR! {Issue Shutdown,Issue Restart, Issue Switch}
Systems! {Return command status, No return}

a: System! {Functional, malfunctioning, broken}

Commanded behaviour problem frame

Domain identification Context diagram Requirements <u>Problem frames</u> 10 / 21

LAYING INFORMATION CONTINUOUSLY (C)

- FDIR should display continuous information about state of the systems
- □ FDIR has to interprate monitored values from each space craft system
- Return it into a standard message displayed on the FDIR console
- Considering received message, the FDIR or the crew should be able to understand what was the current state of the systems

LAYING INFORMATION CONTINUOUSLY (C)

c: Systems! {send value/no value}

b: Systems!{functionnal/not funct. proper./broken}

d: FDIR! {display in tol/out-of-tol/no resp}

a: Information display!{console}

Display problem frame

Domain identification Context diagram Requirements <u>Problem frames</u> 12 / 21

COLLECT SYSTEMS DATA TO DATA STORAG

- State values are collected from the systems at regular intervals
- □ The FDIR receives the data and stores it with a timestamp to the FDIR Storage System for further use
- When data storage is centralized it doesn't matter if some systems go down, because data analysis can still be done on the stored data.

ECT SYSTEMS DATA TO DATA STORAGE (CO

Display problem frame

INFORMATION RETRIEVAL

- FDIR executes query, and the FDIR Subsystems reply
- ☐ The crew or ground control can search data, and the FDIR displays its

INFORMATION RETRIEVAL (CONT.)

Commanded behaviour problem frame

Domain identification Context diagram Requirements <u>Problem frames</u> 16 / 21

PROVIDING FAILURE LOCALIZATION

- The FDIR Storage System contains the collected values or data from devices
- FDIR checks the inputs from the storage system, and analyses these inputs to determine failure location.
- Failure location is written into a report.

OVIDING FAILURE LOCALIZATION (COI

c: FDIR! {write failure location, write type of failure}

b: Report! {failure data}

d: FDIR Storage System! {send device, send value}

a: FDIR Storage System! {device, value, time}

Transformation problem frame

Domain identification Context diagram Requirements <u>Problem frames</u> 18 / 21

RESPONSE IN CASE OF UNRESOLVABLE CONDITION

- This case is achieved when automatical recovering failed
- The FDIR Storage System contains the collected values or data from devices
- FDIR checks the inputs from the storage system, and analyses these inputs to determine if unresolvable condition has been reached.
- Informations about unresolvable condition is written into a report sent as a notification to the crew members

ONSE IN CASE OF UNRESOLVABLE CONDITIONS (C

c: FDIR! {write notification, write unresolvable conditions}

b: Report! {notification}

d: FDIR Storage System! {send device, send value}

a: FDIR Storage System! {device, value, time}

Transformation problem frame

CONCLUSION

Problem frames provides us a new perspective around analysis

 Problem frames technique provides patterns that allows us to identify each decomposed problem as a singular problem belonging to a standardized type

CONCLUSION (CONT.)

New aspects of requirements were emphasized using problem frames.

Necessity of:

clearly defining which domains interact with the machine

considering both data storage, processing and display

considering errors and exceptions in interactions

Project 1 Part 2

Euro Team

Alauzet Pierre, Ahvenniemi Mikko, Colin Julien, Starck Benoit

FDIR

REFERENCES

- 1. [Eas98] **Steve Easterbrook, and et al**., *Experiences Using Lightweight Formal Methods for Requirements Modeling*" IEEE Transactions on Software Engineering, Vol. 24, No. 1, January 1998.
- 2. [Jac05] **Michael Jackson**, *Problem frames and software engineering*, Information and Software Technology, Special Issue: 1st Int Workshop on Advances and Applications of Problem Frames, K. Cox, et al. eds, Vol. 47 No. 14, pp. 903-912, Nov. 2005.