CONTROLE DIGITAL - SEL0620

Tarefa 12 - Observador de Estados

Hugo Hiroyuki Nakamura NUSP: 12732037 Isaac Santos Soares NUSP: 12751713

1. A partir da representação de estados discreta do sistema (obtida no Lab 6), encontre qual deve ser o ganho de um observador de estados de forma que o observador tenha comportamento dead-beat (pólos em zero no plano-z). Obs: No Matlab, pode ser necessário definir os pólos em valores muito pequenos e diferentes de zero para que se possa usar o comando place ou acker.

A representação de estados discreta do sistema, obtida no Lab 6, é:

$$\begin{cases} x[k+1] = Fx[k] + Hu[k] \\ y[k] = Cd \cdot x[k] + Dd \cdot u[k] \end{cases}$$

$$F = \begin{bmatrix} 0.001 & -0.382 \\ 0.350 & 0.739 \end{bmatrix}; \quad H = \begin{bmatrix} 0.350 \\ 0.239 \end{bmatrix}; \quad Cd = \begin{bmatrix} 0 & 1.092 \end{bmatrix}; \quad Dd = 0$$

Para que o observador tenha um comportamento Dead-Beat, escolhemos os polos $p = [0\ 0]$. Não podemos aplicar o comando acker diretamente sobre as matrizes F e H, devido a sua ordem trocada. Por isso, trocamos F por F^T e H por c^T para obtermos a matriz de ganho L do observador de estados.

$$L = acker(F',Cd',[0, 0])$$

Assim, obtem-se a matriz de ganhos do observador de estados:

$$L = [-0.350 \ 0.678]$$

2. Implemente o observador de estados no Simulink e simule o sistema e o observador, mostrando a curva dos estados do sistema sobreposta com a estimativa dos estados dada pelo observador. Nessa simulação, considere que o sistema, em malha aberta, está sujeito à mesma entrada degrau e ao distúrbio utilizado nas demais práticas. Considere também que o observador utiliza apenas o sinal da entrada antes de ser somada ao distúrbio e que o estado inicial do sistema e do observador deve ser configurado conforme indicado na Tabela 1.

Tabela 1: Critérios do controlador.

Dígito final do número do Grupo	Critérios
0 e 1	Estado inicial do sistema $X_0 = [0.12 0.12]$
	Estado inicial do observador $X_0 = [0 \ 0]$
2 e 3	Estado inicial do sistema $X_0 = [-0.11 - 0.11]$
	Estado inicial do observador $X_0 = [0 \ 0]$
4 e 5	Estado inicial do sistema $X_0 = [0.13 0.13]$
	Estado inicial do observador $X_0 = [0 \ 0]$
6 e 7	Estado inicial do sistema $X_0 = [-0.15 0.15]$
	Estado inicial do observador $X_0 = [0 \ 0]$
8 e 9	Estado inicial do sistema $X_0 = [0.14 \ 0.14]$
	Estado inicial do observador $X_0 = [0 \ 0]$

O sistema e o observador de estados estão apresentados na Figura 1. Nas Figura 2a e Figura 2b estão as curvas sobrepostas dos estados do sistema e do observador.

Figura 1: sistema com observador de estados implementado no Simulink.

Figura 2: Gráfico dos estados do sistema com observador de estados.