Join GitHub today GitHub is home to over 40 million developers working together to host and review code, manage projects, and build software together. Sign up Find file Copy path

deep-learning-specialization-coursera / 02-Improving-Deep-Neural-Networks / week3 / hyperparameter-tuning-and-programming-frameworks.ipynb

Table of Contents

- 1 Hyperparameter tuning, Batch Normalization and Programming Frameworks
- 1.1 Hyperparameter Tuning
- 1.1.1 Tuning Process
- 1.1.2 Using an appropriate scale to pick hyperparameters
- 1.1.3 Hyperparameters tuning in practice: Pandas vs. Caviar
- 1.2 Batch Normalization
- 1.2.1 Normalizing activations in a network
- 1.2.2 Fitting Batch Norm into a neural network
- 1.2.3 Why does Batch Norm work?
- 1.2.4 Batch Norm at test time
- 1.3 Multi-class classificiation
- 1.3.1 Softmax Regression
- 1.3.2 Training a softmax classifier
- 1.4 Introduction to programming frameworks
- 1.4.1 Deep Learning Frameworks
- 1.4.2 TensorFlow

Hyperparameter tuning, Batch Normalization and Programming Frameworks

Hyperparameter Tuning

Tuning Process

Hyperparameters

Try random values: Don't use a grid

Andrew Ng

Coarse to fine

Andrew Ng

Using an appropriate scale to pick hyperparameters

Appropriate scale for hyperparameters

$$a=by_0 \circ o^{00} | \Gamma = -4 \times np. \text{ random. rand} | \leftarrow \Gamma \in [-4, 0]$$

$$= -4 \quad d = 10^{\Gamma} \qquad \leftarrow 10^{\alpha} \quad ... \quad 10^{\alpha}$$

$$= 10^{\alpha} \cdot ... \quad 10^{\alpha} \quad d = 10^{\Gamma}$$

$$= 10^{\alpha} \cdot ... \quad 10^{\alpha}$$
And rew Ng

Hyperparameters for exponentially weighted averages

$$\beta = 0.9 \dots 0.999$$

$$|-\beta| = 6.1 \dots 0.001$$

$$|-\beta| = 6.1 \dots 0.001$$

$$|-\beta| = 6.1 \dots 0.001$$

$$|-\beta| = 6.2 \dots 0.001$$

$$|-\beta| = 6.3 \dots 0.001$$

$$C \cdot Q = 0.999$$
 $C \cdot Q = 0.999$
 $C \cdot$

Hyperparameters tuning in practice: Pandas vs. Caviar

Babysitting one model

Training many models in parallel

Batch Normalization

Normalizing activations in a network

Normalizing inputs to speed up learning

Andrew Ng

Andrew Ng

Fitting Batch Norm into a neural network

Adding Batch Norm to a network

Parametes:
$$U^{(1)}$$
, $L^{(2)}$,

Working with mini-batches

Implementing gradient descent

Why does Batch Norm work?

Learning on shifting input distribution

Andrew Ng

Why this is a problem with neural networks?

Andrew Ng

Batch Norm as regularization

• Each mini-batch is scaled by the mean/variance computed on just that mini-batch.

• This adds some noise to the values $z^{[l]}$ within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.

• This has a slight regularization effect.

Mini-horle: 64 -> 512

Batch Norm at test time

Batch Norm at test time

Multi-class classificiation

Softmax Regression

Recognizing cats, dogs, and baby chicks,

Training a softmax classifier

Understanding softmax

$$z^{[L]} = \begin{bmatrix} 5 \\ 2 \\ -1 \\ 3 \end{bmatrix} \qquad t = \begin{bmatrix} e^5 \\ e^2 \\ e^{-1} \\ e^3 \end{bmatrix}$$

$$z^{[L]} = \begin{bmatrix} e^5/(e^5 + e^2 + e^{-1} + e^3) \\ e^2/(e^5 + e^2 + e^{-1} + e^3) \\ e^{-1}/(e^5 + e^2 + e^{-1} + e^3) \\ e^3/(e^5 + e^2 + e^{-1} + e^3) \end{bmatrix} = \begin{bmatrix} 0.842 \\ 0.0042 \\ 0.002 \\ 0.114 \end{bmatrix}$$

$$z^{[L]} = \begin{bmatrix} e^5/(e^5 + e^2 + e^{-1} + e^3) \\ e^{-1}/(e^5 + e^2 + e^{-1} + e^3) \\ e^3/(e^5 + e^2 + e^{-1} + e^3) \end{bmatrix} = \begin{bmatrix} 0.842 \\ 0.002 \\ 0.114 \end{bmatrix}$$

Softmax regression generalizes logistic regression to C classes.

Introduction to programming frameworks

Deep Learning Frameworks

Deep learning frameworks

- Caffe/Caffe2
- CNTK
- DL4J

- Choosing deep learning frameworks
- Ease of programming (development and deployment)

- Keras
- Lasagne
- mxnet
- PaddlePaddle
- TensorFlow
- Theano
- Torch

- Running speed
- Truly open (open source with good governance)

Andrew

TensorFlow

```
In [1]:
         import tensorflow as tf
         import numpy as np
 In [2]: w = tf.Variable(0, dtype=tf.float32)
         cost = tf.add(tf.add(w**2, tf.multiply(-10., w)), 25)
 In [3]: train = tf.train.GradientDescentOptimizer(0.01).minimize(cos
         t)
 In [4]: init = tf.global variables initializer()
 In [5]: session = tf.Session()
 In [6]: %time session.run(init)
         CPU times: user 6.07 ms, sys: 2.41 ms, total: 8.48 ms
         Wall time: 5.82 ms
 In [7]: print(session.run(w))
         0.0
 In [8]: %time session.run(train)
         CPU times: user 16.1 ms, sys: 2.34 ms, total: 18.4 ms
         Wall time: 15.9 ms
 In [9]: %time print(session.run(w))
         0.099999994
         CPU times: user 815 \mus, sys: 243 \mus, total: 1.06 ms
         Wall time: 807 \mus
In [10]: %load ext version information
         %version information tensorflow, numpy
Out[10]:
          Software
                   Version
                   3.6.6 64bit [GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-
          Python
```

. yanon	602.0.53)]
IPython	7.0.1
os	Darwin 17.7.0 x86_64 i386 64bit
tensorflow	1.10.0
numpy	1.15.1
Sun Oct 14	21:48:53 2018 MDT

1/26/2019	9 deep-learning-specialization-coursera/hyperparameter-tuning-and-programming-frameworks.ipynb at master · andersy005/deep-learning-specializ	zation

11/26/201	deep-learning-specialization-coursera/hyperparameter-tuning-and-programming-frameworks.ipynb at master	· andersy005/deep-learning-specialization.
		,