MULTI-TASK LEARNING USING UNCERTAINTY TO WEIGH LOSSES FOR SCENE GEOMETRY AND SEMANTICS

Alex Kendall, Yarin Gal, Roberto Cipolla

CVPR(Spotlight), 2018

Background: Multi-task Learning

- 하나의 신경망으로 여러가지 작업 동시 진행
 - Ex) Object Detection + Classification
- 개별 학습에 비해 효율적임
- 개별 학습에 비해 더 좋은 성능
 - 작업간의 collaboration?

Background: Uncertainty

• 고양이와 개 Classifier

Training Data

고양이 기르세요? 묘조병... 고양이 - 나무위키

똑똑한 집사가 되자! 백합이 고양이에게 급성... samsunggreencity.com

새끼 고양이를 입양했다면? 8가지 팁 - 비... 노트펫 - 고양이 스트레스 증상 원인부...

Input

고양이 키우려면 방 빼" 집주인... huffingtonpost.kr

마음을 훔친 제주 고양이 ... 책의 향기]폐하가 된 인... tonclass chosun com

애니꿀팁] 새끼 고양이

Background: Uncertainty

Background: Uncertainty

- Epistemic Uncertainty (Epistemic : 지식의)
 - 모델 자체의 불확실성
 - 학습 데이터 부족으로 발생
 - 학습 데이터의 증가로 해결
 - 고양이와 개 Classifier

Aleatoric Uncertainty

(Aleatoric: 우연의, 도박의)

- 데이터가 설명 불가능한 정보로 발생
- 이러한 정보를 설명할 수 있는 변수를 관측하여 해결 가능
- Data-dependent와 Task-dependent로 나뉨

Objective

- 다양한 Classification과 Regression을 동시에 학습하는 새로운 Multi-task loss 제안
- Semantic/instance segmentation, depth regression
- 장면(Scene)을 이해하기 위해서는 의미(semantics)와 공간 (geometry)의 이해가 필수
- 세 작업을 동시에 진행하여 장면의 의미와 공간 이해 동반

Loss with Uncertainty: Naïve Approach

• Multi-task Learning에서의 기존 방법

$$L_{total} = \sum_{i} w_i L_i$$

- 가중치 w_i에 극도로 예민
- 탐색 비효율적
- 좀 더 편한 방법이 필요

Tack	Weights	Instance	Depth	
Instance	Depth	Err. [px]	Err. [px]	
1.0	0.0	4.61		
0.75	0.25	4.52	0.692	
0.5	0.5	4.30	0.655	
0.4	0.6	4.14	0.641	
0.3	0.7	4.04	0.615	
0.2	0.8	3.83	0.607	
0.1	0.9	3.91	0.600	
0.05	0.95	4.27	0.607	
0.025	0.975	4.31	0.624	
0.0	1.0		0.640	
Learne	d weights			
	uncertainty Section 3.2)	3.54	0.539	
	1 41	<u> </u>		

(b) Comparing loss weightings when learning instance regression and depth regression

oron un	a acpen reg.	non una depun regression								
Tas	k Weights	Class	Depth							
Class	Depth	IoU [%]	Err. $[px]$							
1.0	0.0	59.4	-							
0.975	0.025	59.5	0.664							
0.95	0.05	59.9	0.603							
0.9	0.1	60.1	0.586							
0.85	0.15	60.4	0.582							
0.8	0.2	59.6	0.577							
0.7	0.3	59.0	0.573							
0.5	0.5	56.3	0.602							
0.2	0.8	47.2	0.625							
0.1	0.9	42.7	0.628							
0.0	1.0	-	0.640							
Lear	ned weights									
with tas	k uncertainty	62.7	0.533							

(a) Comparing loss weightings when learning semantic classification and depth regression

Loss with Uncertainty: Aleatoric

- Data-dependent
 - 입력 데이터에 의존적

- Task-dependent
 - 입력 데이터에 비의존적
 - 모든 입력 데이터에 공통적으로 존재, 비슷한 값을 가짐
 - Homoscedastic (등분산성)
 - Task 별로 다름

Multi-task Likelihood

- x: 입력 데이터, f^W(x): NN의 출력, y: 타겟
- Regression tasks Likelihood :

$$p(\mathbf{y}|\mathbf{f}^{\mathbf{W}}(\mathbf{x})) = \mathcal{N}(\mathbf{f}^{\mathbf{W}}(\mathbf{x}), \sigma^2)$$
 (2)

Classification tasks Likelihood :

$$p(\mathbf{y}|\mathbf{f}^{\mathbf{W}}(\mathbf{x})) = \text{Softmax}(\mathbf{f}^{\mathbf{W}}(\mathbf{x})).$$
 (3)

• In sufficient statistics, Multi-task Likelihood:

$$p(\mathbf{y}_1, ..., \mathbf{y}_K | \mathbf{f}^{\mathbf{W}}(\mathbf{x})) = p(\mathbf{y}_1 | \mathbf{f}^{\mathbf{W}}(\mathbf{x})) ... p(\mathbf{y}_K | \mathbf{f}^{\mathbf{W}}(\mathbf{x}))$$

 Sufficient Statistics (충분통계량)

모수 자체는 아니지만 모수를 추정할 수 있는 충분한 정보를 가진 값

Multi-task Likelihood

1. Regression + Regression

$$\log p(\mathbf{y}|\mathbf{f}^{\mathbf{W}}(\mathbf{x})) \propto -\frac{1}{2\sigma^{2}}||\mathbf{y} - \mathbf{f}^{\mathbf{W}}(\mathbf{x})||^{2} - \log \sigma \quad (5)$$

$$p(\mathbf{y}_{1}, \mathbf{y}_{2}|\mathbf{f}^{\mathbf{W}}(\mathbf{x})) = p(\mathbf{y}_{1}|\mathbf{f}^{\mathbf{W}}(\mathbf{x})) \cdot p(\mathbf{y}_{2}|\mathbf{f}^{\mathbf{W}}(\mathbf{x}))$$

$$= \mathcal{N}(\mathbf{y}_{1}; \mathbf{f}^{\mathbf{W}}(\mathbf{x}), \sigma_{1}^{2}) \cdot \mathcal{N}(\mathbf{y}_{2}; \mathbf{f}^{\mathbf{W}}(\mathbf{x}), \sigma_{2}^{2}). \quad (6)$$

$$\mathcal{L}(\mathbf{W}, \sigma_{1}, \sigma_{2}) = -\log p(\mathbf{y}_{1}, \mathbf{y}_{2}|\mathbf{f}^{\mathbf{W}}(\mathbf{x}))$$

$$\propto \frac{1}{2\sigma_{1}^{2}}||\mathbf{y}_{1} - \mathbf{f}^{\mathbf{W}}(\mathbf{x})||^{2} + \frac{1}{2\sigma_{2}^{2}}||\mathbf{y}_{2} - \mathbf{f}^{\mathbf{W}}(\mathbf{x})||^{2} + \log \sigma_{1}\sigma_{2}$$

$$= \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{2\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1}\sigma_{2}$$

$$\square \exists \forall \mathbf{f} \forall \mathbf$$

Multi-task Likelihood

2. Regression + Classification

$$p(\mathbf{y}|\mathbf{f}^{\mathbf{W}}(\mathbf{x}), \sigma) = \operatorname{Softmax}(\frac{1}{\sigma^{2}}\mathbf{f}^{\mathbf{W}}(\mathbf{x})) \qquad (8)$$

$$\mathcal{L}(\mathbf{W}, \sigma_{1}, \sigma_{2}) = -\log p(\mathbf{y}_{1}, \mathbf{y}_{2} = c|\mathbf{f}^{\mathbf{W}}(\mathbf{x}))$$

$$= -\log \mathcal{N}(\mathbf{y}_{1}; \mathbf{f}^{\mathbf{W}}(\mathbf{x}), \sigma_{1}^{2}) \cdot \operatorname{Softmax}(\mathbf{y}_{2} = c; \mathbf{f}^{\mathbf{W}}(\mathbf{x}), \sigma_{2})$$

$$= \frac{1}{2\sigma_{1}^{2}}||\mathbf{y}_{1} - \mathbf{f}^{\mathbf{W}}(\mathbf{x})||^{2} + \log \sigma_{1} - \log p(\mathbf{y}_{2} = c|\mathbf{f}^{\mathbf{W}}(\mathbf{x}), \sigma_{2})$$

$$= \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1}$$

$$= \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1}$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{1} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{2} + \log \sigma_{2},$$

$$\approx \frac{1}{2\sigma_{1}^{2}}\mathcal{L}_{1}(\mathbf{W}) + \frac{1}{\sigma_{2}^{2}}\mathcal{L}_{2}(\mathbf{W}) + \log \sigma_{2} + \log \sigma_{2} + \log \sigma_{2}$$

미분가능

Scene Understanding Model

- Deep Convolutional Encoder Decoder 사용
- Task 별 Decoder 분리
- 네트워크의 마지막 층에서 Task 별 Task Uncertainty 분산 예측
- Multi-task loss로부터 학습

Scene Understanding Model

- Semantic Segmentation
 - cross-entropy loss 사용하여 pixel단위 class 확률을 학습
- Depth Regression
 - L1 loss 사용하여 pixel단위 inverse depth를 학습
 - 하늘과 같이 깊이가 무한대인 점을 표현하기 위해 inverse depth 사용

Scene Understanding Model

- Instance Segmentation
 - L1 loss 사용하여 각 pixel로부터 Instance의 중심을 가리키는 벡터 학습
 - 이를 OPTICS 알고리즘으로 clustering
 - Instance가 가려져 있어도 구분 가능(우측 하단)
 - semantics와 geometry 정보의 영향

Experiments

	Task Weights		Segmentation	Instance	Inverse Depth	
Loss	Seg.	Inst.	Depth	IoU [%]	Mean Error $[px]$	Mean Error $[px]$
Segmentation only	1	0	0	59.4%	-	-
Instance only	0	1	0	-	4.61	-
Depth only	0	0	1	-	-	0.640
Unweighted sum of losses	0.333	0.333	0.333	50.1%	3.79	0.592
Approx. optimal weights	0.89	0.01	0.1	62.8%	3.61	0.549
2 task uncertainty weighting	✓	✓		61.0%	3.42	-
2 task uncertainty weighting	✓		\checkmark	62.7%	-	0.533
2 task uncertainty weighting		✓	✓	-	3.54	0.539
3 task uncertainty weighting	✓	✓	✓	63.4%	3.50	0.522

Experiments

	Semantic Segmentation			Instance Segmentation			Monocular Disparity Estimation			
Method	IoU class	iIoU class	IoU cat	iIoU cat	AP	AP 50%	AP 100m	AP 50m	Mean Error [px]	RMS Error [px]
	Semantic segmentation, instance segmentation and depth regression methods (this work)									
Multi-Task Learning	78.5	57.4	89.9	77.7	19.0	35.9	30.9	33.0	2.92	5.88
	Semantic segmentation and instance segmentation methods									
Uhrig et al. [41]	64.3	41.6	85.9	73.9	8.9	21.1	15.3	16.7	-	-
Instance segmentation only methods										
Mask R-CNN [19]	-	-	-	-	26.2	49.9	37.6	40.1	-	-
Deep Watershed [4]	-	-	-	-	19.4	35.3	31.4	36.8	-	-
R-CNN + MCG [13]	-	-	-	-	4.6	12.9	7.7	10.3	-	-
Semantic segmentation only methods										
DeepLab V3 [10]	81.3	60.9	91.6	81.7	-	-	-	-	-	-
PSPNet [44]	81.2	59.6	91.2	79.2	-	-	-	-	-	-
Adelaide [31]	71.6	51.7	87.3	74.1	-	-	-	-	-	-

Experiments

