Bayesian multimodeling: multitask learning

MIPT

2024

What is multitask learning?

Multitask and dataset shift?

Linear regression case

$$\begin{split} \mathbf{Y} &= \mathbf{X}^\mathsf{T} \mathbf{w} + \varepsilon, \\ \varepsilon &\sim \mathcal{N}(\mathbf{0}, \mathbf{B}^{-1}), \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}^{-1}). \end{split}$$

Task Clustering and Gating for Bayesian Multitask Learning

Consider a 1-layer neural network:

$$\mathbf{y}^i = \mathbf{W}^i_{\mathsf{task}} \sigma(\mathbf{W}_{\mathsf{shared}} \mathbf{x})$$

Can we set an interconnection of tasks?

Task Clustering and Gating for Bayesian Multitask Learning

Interconnection of tasks:

- ullet No: $\mathbf{W}_{\mathsf{task}}^i \sim \mathcal{N}(oldsymbol{\mu}_i, oldsymbol{\Sigma});$
- Gaussian mixture: $\mathbf{W}_{\mathrm{task}}^{i} \sim \sum_{j} \alpha_{j} \mathcal{N}(\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma});$
- ullet Using gating function: $oldsymbol{W}_{\mathsf{task}}^i \sim \sum_j \mathsf{softmax}(\mathsf{alpha})_j \mathcal{N}(\mu_j, oldsymbol{\Sigma});$

Sparse Bayesian Multi-Task Learning, 2011

$$\mathbf{y}_n = \mathbf{W}\mathbf{x}_n + oldsymbol{\mu} + oldsymbol{arepsilon}_n;$$
 $oldsymbol{arepsilon}_n \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Sigma}).$

Multitask and domain adaptation?

Daume III, 2009

We exploit the intuition that for domain adaptation, we wish to share classifier structure, but for multitask learning, we wish to share covariance structure.

- 1. Choose a global mean and covariance $(\boldsymbol{\mu}^{(0)}, \boldsymbol{\Lambda}) \sim \mathcal{N}or\mathcal{I}\mathcal{W}(0, \sigma^2 \mathbf{I}, D+1)$.
- 2. Choose a tree structure $(\pi, \delta) \sim Coalescent$ over K leaves.
- 3. For each non-root node i in π (top-down):
 - (a) Choose $\boldsymbol{\mu}^{(i)} \sim \mathcal{N}or(\boldsymbol{\mu}^{(p_{\pi}(i))}, \delta_{i}\boldsymbol{\Lambda})$, where $p_{\pi}(i)$ is the parent of i in π .
- 4. For each domain $k \in [K]$:
 - (a) Denote by $\mathbf{w}^{(k)} = \boldsymbol{\mu}^{(i)}$ where i is the leaf in π corresponding to domain k.
 - (b) For each example $n \in [N_k]$:
 - i. Choose input $x_n^{(k)} \sim \mathcal{D}^{(k)}$.
 - ii. Choose output $y_n^{(k)}$ by:

Regression: $Nor(\boldsymbol{w}^{(k)\top}\boldsymbol{x}_n^{(k)}, \rho^2)$ Classification: $Bin(1/(1+e^{-\boldsymbol{w}^{(k)\top}\boldsymbol{x}_n^{(k)}}))$

- \rightarrow 1. Choose **R** by Eq (2) and deviation covariance $\Lambda \sim \mathcal{IW}(\sigma^2 \mathbf{I}, D+1)$.
 - 2. Choose a tree structure $(\pi, \delta) \sim Coalescent$ over K leaves.
 - 3. For each non-root node i in π (top-down):
 - \rightarrow (a) Choose $\mathbf{S}^{(i)} \sim \mathcal{N}or(\mathbf{S}^{(p_{\pi}(i))}, \delta_{i}\mathbf{\Lambda})$, where $p_{\pi}(i)$ is the parent of i in π .
 - 4. For each task $k \in [K]$:
 - \rightarrow (a) Choose $w^{(k)}$ by (*i* is the leaf associated with task *k*): $\mathcal{N}or(0, (\exp \mathbf{S}^{(i)})\mathbf{R}(\exp \mathbf{S}^{(i)}))$
 - (b) For each example $n \in [N_k]$:
 - \rightarrow i. Choose input $\boldsymbol{x}_n^{(k)} \sim \mathcal{D}$.
 - ii. Choose output $y_n^{(k)}$ by:

Regression: $Nor(\boldsymbol{w}^{(k)\top}\boldsymbol{x}_n^{(k)}, \rho^2)$ Classification: $Bin(1/(1 + e^{-\boldsymbol{w}^{(k)\top}\boldsymbol{x}_n^{(k)}}))$

Automated Curriculum Learning, 2017

Algorithm 1 Intrinsically Motivated Curriculum Learning

$$\begin{aligned} & \textbf{Initially:} \ \ w_i = 0 \ \text{for} \ i \in [N] \\ & \textbf{for} \ t = 1 \dots T \ \textbf{do} \\ & \pi(k) := (1 - \epsilon) \frac{e^{w_k}}{\sum_i e^{w_i}} + \frac{\epsilon}{N} \\ & \text{Draw task index} \ k \ \text{from} \ \pi \\ & \text{Draw training sample} \ \mathbf{x} \ \text{from} \ D_k \\ & \text{Train network} \ p_\theta \ \text{on} \ \mathbf{x} \\ & \text{Compute learning progress} \ \nu \ (\text{Sections} \ 3.1 \ \& \ 3.2) \\ & \text{Map} \ \hat{r} = \nu / \tau(\mathbf{x}) \ \text{to} \ r \in [-1,1] \ (\text{Section} \ 2.3) \\ & \text{Update} \ w_i \ \text{with reward} \ r \ \text{using} \ \text{Exp3.S} \ (1) \\ & \textbf{end for} \end{aligned}$$

Repeat-copy task, 2014

Automated Curriculum Learning, 2017

- Loss-driven Progress
 - ▶ Prediction Gain: $L(\mathbf{w}', \mathbf{x}) L(\mathbf{w}, \mathbf{x})$
 - ► Gradient prediction gain
 - ► Self-prediction gain: sampling x
 - ► Mean prediction gain: averaging across the tasks
- Complexity-driven Progress
 - ▶ Variational complexity gain: KL(q|p) KL(q|p)
 - ► Gradient Variational complexity gain
 - ► L2G: difference in *l*₂ regularization
 - ► GL2G: L2G gradient

Automated Curriculum Learning, 2017

Continual learning

Continual learning

Continual Learning is a concept to learn a model for a large number of tasks sequentially without forgetting knowledge obtained from the preceding tasks, where the data in the old tasks are not available any more during training new ones.

Three scenarios for continual learning

Figure 1: Schematic of split MNIST task protocol.

Table 2: Split MNIST according to each scenario.

Task-IL	With task given, is it the 1 st or 2 nd class? (e.g., 0 or 1)	
Domain-IL	With task unknown, is it a 1 st or 2 nd class? (e.g., in [0, 2, 4, 6, 8] or in [1, 3, 5, 7, 9])	
Class-IL	With task unknown, which digit is it? (i.e., choice from 0 to 9)	

Task Agnostic Continual Learning Using Online Variational Bayes

Continual Learning: task categorization

Scenario	Description	Task space discreet or continuous?	Example methods / task names used
GG	Task Given during train and Given during inference	Either	PNN 42, BatchE 51, PSP 4, "Task learning" 55, "Task-IL" 49
GNs	Task Given during train, Not inference; shared labels	Either	EWC 23, SI 54, "Domain learning" 55, "Domain-IL" 49
GNu	Task Given during train, Not inference; unshared labels	Discrete only	"Class learning" [55], "Class-IL" [49]
NNs	Task Not given during train Nor inference; shared labels	Either	BGD, "Continuous/discrete task agnostic learning" [55]

Supermasks in Superposition¹

Converge to

supermask 2

¹See talk of Maria Kovaleva, 2023

Multitask learning and inductive bias²

Wiki

Multitask Learning is an approach to inductive transfer that improves generalization by using the domain information contained in the training signals of related tasks as an inductive bias. It does this by learning tasks in parallel while using a shared representation; what is learned for each task can help other tasks be learned better.

²First paper about this topic: Multitask Learning: A Knowledge-Based Source of Inductive Bias

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(T): distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- Compute adapted parameters with gradient descent: θ'_i = θ − α∇_θL_T (f_θ)
- 7: end for
- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$
- 9: end while

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Learning Inductive Biases with Simple Neural Networks

Learning Inductive Biases with Simple Neural Networks

Learning Inductive Biases with Simple Neural Networks

The deep weight prior: Atanov et al., 2019

References

- Zeno C. et al. Task agnostic continual learning using online variational bayes //arXiv preprint arXiv:1803.10123. – 2018.
- Wortsman M. et al. Supermasks in superposition //Advances in Neural Information Processing Systems. 2020. – T. 33. – C. 15173-15184.
- Finn, Chelsea, Pieter Abbeel, and Sergey Levine. "Model-agnostic meta-learning for fast adaptation of deep networks."International conference on machine learning. PMLR, 2017.
- Caruana, R. "Multitask learning: A knowledge-based source of inductive bias."Proceedings of the Tenth International Conference on Machine Learning. 1993.
- Feinman, Reuben, and Brenden M. Lake. "Learning inductive biases with simple neural networks."arXiv preprint arXiv:1802.02745 (2018).
- Atanov, Andrei, et al. "The deep weight prior."arXiv preprint arXiv:1810.06943 (2018).

References

- Bakker B. J., Heskes T. M. Task clustering and gating for bayesian multitask learning. 2003.
- Guo S., Zoeter O., Archambeau C. Sparse Bayesian multi-task learning //Advances in Neural Information Processing Systems. – 2011. – T. 24.
- Daume III H. Bayesian multitask learning with latent hierarchies //Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. – 2009. – C. 135-142.
- Graves A. et al. Automated curriculum learning for neural networks //international conference on machine learning. – PMLR, 2017. – C. 1311-1320.
- Graves A., Wayne G., Danihelka I. Neural turing machines //arXiv preprint arXiv:1410.5401. 2014.
- Van de Ven G. M., Tolias A. S. Three scenarios for continual learning //arXiv preprint arXiv:1904.07734.
 2019.