IP数据报

2019年4月14日

概述

- □ 每个数据链路层协议只涉及一个直连网,而网络层协议涉及整个网络。
- □ 网络层协议负责确定把收到的包从哪条路经转发(forwarding)出去,即路由选择(routing)功能。具有传送由数据链路层和物理层负责。

一般网络的服务模型

一个网络可以提供什么样的服务?

		确保?				
网络结构	勾 服务模型	带宽	不丢包	有序	及时	拥塞反馈
AT	M 恒定位速率	固定速率	是	是	是	无拥塞
AT	V可变位速率	确保速率	是	是	是	无拥塞
AT	M 可用位速率	最小保证	否	是	否	是
AT	A 未指定位速率	无	否	是	否	否
因特別	図 尽力服务	无	否	否	否	否

Connectionless Service: IP

Connection-oriented Service: X.25, ATM(Asynchronous Transfer Mode)

交换技术-电路交换

- □ **电路交换(***C*ircuit Switching)技术通过在网络中连接多条物理电路形成一条通路后传送数据。
- □ 每条物理电路可以是一条链路(link)或者一条链路通过 FDM或TDM形成的通道(Channel)。

电路交换(英语:Circuit Switching)是相对于报文交换(或称分组交换)的一个概念。电路交换要求必须首先在通信双方之间建立连接通道。在连接建立成功之后,双方的通信活动才能开始。通信双方需要传递的信息都是通过已经建立好的连接来进行传递的,而且这个连接也将一直被维持到双方的通信结束。在某次通信活动的整个过程中,这个连接将始终占用着连接建立开始时,通信系统分配给它的资源(通道、带宽、时隙、码字等等),这也体现了电路交换区别于报文交换的本质特征。

交换技术-包交换(1)

- □ 包交换(Packet Switching)技术是采用统计多路复用的方法 通过网络传送数据包,有虚电路(Virtual Circuit)和数据报 (Datagram)两种方式。
- □ 采用虚电路方式需要先建立连接然后才可以传送数据。
- 采用数据报方式不需要建立连接便可以传送数据包。交换机 根据数据包的目的地址转发包。
- □ 因特网采用数据报交换技术。

交换技术-包交换(2)

- □ 虚电路有交换式虚电路(Switched Virtual Circuit)和永久虚电路 (Permanent Virtual Circuit)两种。
- □ 交换式虚电路每次传送数据前都要建立连接,传送完数据后要释放 连接,而永久虚电路由管理员建好后一直保持着,故随时可以传送 数据。

输出 VCI 输出 端口号 VCT 端口 号 2 1 2 SI 2 3 2 S2 3 3 S3 2 1 3

VC表

VCI(virtual circuit identifier): 虚电路标识符

IP协议的服务模型

- □ IP (Internet Protocol)协议是因特网的网络层协议
- □ IP协议是可路由的(routable) -- 全局地址,按层分配
- □ IP协议提供尽力服务(best effort),即无连接无确认的数据报服务。
- □ IP协议可以运行在任何网络上。

MAC地址是全球唯一的,且是不分层的(如果换了个位置地址没改变,则就是不分层的)

	Ī	<u> </u>	据报	格式					
邛									
bit	V	01 0 31	单位为4个字节	(一行) 最多可以表示4*15=60个与	15	其中	前5行确定	,则选项最大为40字节	0
		版本(4b)	头部 长度(4b)	服务类型(8)				总长度(16b) 位,最大为655	度,字节为单 35字节
				【(16b) 标识是否是同一个报分印	设的	D F	M F	片段偏移量(13b) _{这样之}	节为单位 扩能将总长度全部分段
头 -		经过一个路由器 生存其	减1,减到0就扔 ¹ 钥(8b)	交给上层哪个协议 协议(8b)			使用校验和	头部校验(16b)	和头部校验会变
部一		源 IP 地址(32b)							
		目的IP地址 (32b)							
			选项(变长) 长度<=40				填充位 (变长)	
				数	据				

注意: 片段偏移量是8个字节一个单位

IP数据报的字段说明

字段	位数	说明
版本	4	共两个版本: 4 for IPv4, 6 for IPv6
头部长度	4	头部的长度,以字(32-bit)为单位。
服务类型 (Type of Service,TOS)	8	本IP数据报希望得到的服务
总长度	16	整个数据报的长度,以字节为单位
标识、标志 (DF,MF) 、 偏移量	32	用于划分片段
生存期	8	记载经过的路由器数(跳数)。
协议(Protocol)	8	定义数据部分的协议,例如: TCP为6,UDP为17,ICMP 为1,IGMP为2,等等。
头部校验	16	头部校验和。路由器会丢弃出错的数据报。
源IP地址	32	发出本数据报的地址
目的IP地址	32	接收本数据报的地址
选项和填充位	可变	最多40个字节,填充位用于32位对齐。

IP数据报的服务类型

- □ 服务类型(Type of Quality, ToS)起初用于提出数据报的四种独立的服务要求(低延迟、高吞吐量、高可靠性和花钱最少)和优先权(111为最高优先权),实际上只用了优先权。
- □ 为了更好地使用它,<mark>现在又把它重新定义,</mark>从整体上说明数据报所需的服务,即区分服务(Differeniated Services)。 http://tools.ietf.org/html/rfc2474

3b	1b	1b	1b	1b	1b
IP Precedence	low latency	high throughput	high reliability	Minimise monetary cost	reserved (0)

Original definition of TOS

Binary Value	IP Precedence	Decimal Value
000	Routine	Precedence 0
001	Priority	Precedence 1
010	Immediate	Precedence 2
011	Flash	Precedence 3
100	Flash Override	Precedence 4
101	Critic/Critical	Precedence 5
110	Internetwork Control	Precedence 6
111	Network Control	Precedence 7

sysu.edu.cn ymzhang

IP数据报的生存期

- □ IP数据报的生存期(Time-To-Live, TTL)用于限制其在因特网上的停留时间(RFC 791),实际限制为经过的路由器数,即跳数(hop count)。
- □ TTL的初值需要设置为网络直径的两倍,例如,Windows 8和 Linux默认为64,UNIX默认为255。
- □ 当收到IP数据报时,路由器或主机会把它的TTL减1。如果减到零时还未到达目的地,则该数据报将被丢弃,路由器会发送一个ICMP包告知源主机。

IP数据报的分段和重组

- □ 一个物理网络的最大传输单元(maximum transmission unit, MTU)是该网络可以运载的最大有效载荷,即数据帧的数据部分的最大长度。例如:以太网(DIXv2)的 MTU为 1500, FDDI和令牌环的MTU分别为4353和 4482。
- □ 如果一个数据报的大小大于要承载它的网络的MTU,路由器需要先对该数据报进行分段(fragment)。
- □ 源主机每次发送IP数据报时都会把标识(Identification)字段加1。分段时用标识的值保持不变,并且用偏移量字段(offset)指出该片段的数据部分相对原来数据报的偏移量(以8字节为单位)。 相同id重组

最后一段丢失是无法发现的,所以增加一个MF标志表示最后一段数据

如果片段需要再划分,ID不变,offset从片段的偏移量开始划分,所有更小划分MF都为t,除非是最后一个片段的最后一个再划分片段。但总是划分会浪费时间,可以在开始的时候确定最小的MTU并按照这个划分

哪些字段改变了? 头部检验,总长度,偏移量, MF

数据帧中的有效载荷部分用来装数据报。如果数据报大小超过MTU,就要分段,每个分段前面都要包含头部相同ID标号的会被重组,遇到MF=0就知道重组到了最后一部分。

头部固定是20个字节!还有选项的话另外加

- □ 当目的主机收到该数据报的所有片段时,它会**重组(reassemble)** 为原来的数据报。
- □ 第一个片段到达目的主机时目的主机会启动一个重组定时器(默认 超时值为15秒)。如果该定时器到期时没有收集到所有片段,目的 主机会放弃本次重组并丢弃该数据报的所有片段。
- □ DF(Don't Fragment)为1表示不允许分段,MF(More Fragment) 为1表示后面还有片段。

IP数据报的选项

	1B	1B	nB	
一般格式:	代码	总长度	数据	

代码	名称	描述
0	选项列表结束	一个字节: 0x00。用于最后选项4字节对齐。
1	无操作	一个字节: 0x01。用于中间选项4字节对齐。
131	松散源路由	指明一系列必须经过的路由器。四个字节
7	记录路由	记录下每个转发路由器的IP地址。
137	严格源路由	指明一系列必须且只能经过的路由器。
20	IP警报器	告知路由器需要特殊处理的选项。
50	记录时间戳	每个转发的路由器都记录下自己的IP地址和当时的时间。
		1

4个字节

记录路由选项:

6B

- 指针字段指向下一个IP地址的位置: 4(空), 8, ..., 40(满)。 该数据报经过的每个路由器记录转出接口的IP地址,直到记满9个地址。

sysu.edu.cn ymzhang

17