FE CIVIL PRACTICE EXAM

- 6. Which of the following is a unit vector perpendicular to the plane determined by the vectors $\mathbf{A} = 2\mathbf{i} + 4\mathbf{j}$ and $\mathbf{B} = \mathbf{i} + \mathbf{j} \mathbf{k}$?
 - \circ A. -2i + j k
 - $\circ B. \qquad \frac{1}{\sqrt{5}}(\mathbf{i}+2\mathbf{j})$
 - $\circ C. \qquad \frac{1}{\sqrt{6}}(-2\mathbf{i}+\mathbf{j}-\mathbf{k})$
 - $\circ D. \qquad \frac{1}{\sqrt{6}}(-2\mathbf{i}-\mathbf{j}-\mathbf{k})$

7. The following data have been collected:

Test	Average Score
1	85
2	87
3	95
4	90
5	85
6	88
7	90
8	90
9	91

Which of the following statements is true?

- O A. The median and the mode are equal.
- O B. The mean and the median are equal.
- O C. The mean and the mode are equal.
- O D. The mean is larger than both the mode and the median.

FE CIVIL PRACTICE EXAM

- 8. You have a fair coin that you toss ten times. The probability of getting exactly four heads in ten tosses is most nearly:
 - O A. 0.1
 - O B. 0.2
 - O C. 0.4
 - O D. 0.5

- 9. You throw two 6-sided fair dice. The probability that the sum will be less than 12 is most nearly:
 - O A. 0.028
 - O B. 0.083
 - O C. 0.333
 - O D. 0.972

FE CIVIL PRACTICE EXAM

- 10. The only point of inflection on the curve representing the equation $y = x^3 + x^2 3$ is at:
 - O A. $x = -\frac{2}{3}$ O B. $x = -\frac{1}{3}$

 - \circ C. x = 0
 - \circ D. $x = \frac{1}{3}$

11. A spreadsheet display shows the following values in Column A:

	A	В
1	-2	
2	-1	
3	0	
4	1	
5	2	

Cell B1 contains the formula \$A1^3 + A\$1^2 - 3. The formula in Cell B1 is copied down in Column B with automatic cell referencing. The formula in Cell B5 will be:

- $A1^3 + A5^2 3$ O A.
- $A5^3 + B$1^2 3$ OB.
- $$A5^3 + A$1^2 3$ O C.
- OD. $A5^3 + A5^2 - 3$