Optimization for Machine Learning

Lecture 10: Non-Convex Optimization

Sebastian Stich

CISPA - https://cms.cispa.saarland/optml24/ June 25, 2024

Intro Week 10

Recall the convergence proof of GD on smooth functions:

- $| | | | \nabla f(\mathbf{x}) \nabla f(\mathbf{y}) | | \le L | | | \mathbf{x} \mathbf{y} | |, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$
- ▶ We proved sufficient decrease/one-step progress for $\mathbf{x}_{t+1} = \mathbf{x}_t \gamma \nabla f(\mathbf{x}_t)$:

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2$$

Without further knowledge on the function class, we get a rate by telescoping:

$$\sum_{t=0}^{T-1} \|\nabla f(\mathbf{x}_t)\|^2 \le 2L \sum_{t=0}^{T-1} (f(\mathbf{x}_t) - f(\mathbf{x}_{t+1})) \le 2L(f(\mathbf{x}_0) - f^*)$$

Q: Which of these steps can possibly be relaxed?

Lecture Outline

Classes of non-convex functions

Trajectory Analysis

Polyak-Łojasiewicz (PŁ) inequality

A function satisfies the PŁ inequality if the following holds for a $\mu > 0$:

$$\frac{1}{2} \left\| \nabla f(\mathbf{x}) \right\|^2 \ge \mu(f(\mathbf{x}) - f^*) \qquad \forall \mathbf{x} \in \mathbb{R}^d$$

with $f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$.

Note: μ -strongly convex functions are μ -PŁ.

Illustration

$$\frac{1}{2}x^{2} = f(x) - f^{*} \leq \frac{1}{2} ||\nabla f(x)||^{2} = \frac{1}{2}x^{2}$$

Linear Convergence with the PŁ condition

Theorem (L-10).1

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable, L-smooth and μ -PŁ for $\mu > 0$. Let $f^* := \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$ and assume $f^* > -\infty$. Choosing $\gamma = \frac{1}{L}$, gradient descent satisfies the following two properties:

(i) The function suboptimality is geometrically decreasing:

$$f(\mathbf{x}_{t+1}) - f^* \le \left(1 - \frac{\mu}{L}\right) (f(\mathbf{x}_t) - f^*) \quad t \ge 0.$$

(ii) The absolute error after T iterations is exponentially small in T:

$$f(\mathbf{x}_T) - f^* \le \left(1 - \frac{\mu}{L}\right)^T (f(\mathbf{x}_0) - f^*)$$
.

Proof

Proof.

Smoothness implies sufficient decrease:

$$f(\mathbf{x}_{t+1}) - f^{\star} \le f(\mathbf{x}_t) - f^{\star} - \frac{1}{2L} \left\| \nabla f(\mathbf{x}_t) \right\|^2$$

Apply PŁ:

$$f(\mathbf{x}_{t+1}) - f^* \le f(\mathbf{x}_t) - f^* - \frac{\mu}{L} \left(f(\mathbf{x}_t) - f^* \right)$$

and the first (and second) claim follows.

UdS/CISPA Optimization for Machine Learning

Star Convexity

A differentiable function is quasi convex (or star convex) with respect to \mathbf{x}^* if the following holds for a $\mu > 0$:

$$f(\mathbf{x}) - f(\mathbf{x}^*) + \frac{\mu}{2} \|\mathbf{x} - \mathbf{x}^*\|^2 \le \nabla f(\mathbf{x})^\top (\mathbf{x} - \mathbf{x}^*) \qquad \forall \mathbf{x} \in \mathbb{R}^d$$

Note I: $\mathbf{x}^* = \operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$.

Note II: μ -strongly convex functions are μ -quasi convex wrt. to the minimizer \mathbf{x}^* .

Note III: μ -quasi convex functions are μ -PŁ.

Illustration

Linear Convergence for quasi-convex functions

Theorem (L-10).2

Let $f: \mathbb{R}^d \to \mathbb{R}$ be differentiable, L-smooth and μ -quasi convex with respect to a point \mathbf{x}^* for $\mu > 0$. Choosing $\gamma = \frac{1}{L}$, gradient descent satisfies the following two properties:

(i) The square distance to the minimizer is geometrically decreasing:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\| \le \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_t - \mathbf{x}^*\|^2 \quad t \ge 0.$$

(ii) The absolute error after T iterations is exponentially small in T:

$$\|\mathbf{x}_T - \mathbf{x}^{\star}\| \le \left(1 - \frac{\mu}{L}\right)^T \|\mathbf{x}_0 - \mathbf{x}^{\star}\|^2$$
.

Proof.

Expand:

$$\|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} = \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \frac{2\gamma\nabla f(\mathbf{x}_{t})^{\top}(\mathbf{x}_{t} - \mathbf{x}^{\star}) + \gamma^{2}\|\nabla f(\mathbf{x}_{t})\|^{2}}{\beta \text{ here we used convex} \{r\}, \text{ now: } \mathbf{x} - s \text{ for convex} \}$$

Apply the μ -quasi convex inequality for the middle term (and smoothness to bound $\|\nabla f(\mathbf{x})\| \leq 2L(f(\mathbf{x}_t) - f(\mathbf{x}^*))$:

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{x}^{\star}\|^{2} &\leq \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - \frac{\mu\gamma \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} - 2\gamma(f(\mathbf{x}_{t}) - f^{\star}) + 2\gamma^{2}L(f(\mathbf{x}_{t}) - f^{\star})}{2} \\ &= (1 - \mu\gamma) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} + 2(\gamma^{2}L - \gamma)(f(\mathbf{x}_{t}) - f^{\star}) \\ &= \left(1 - \frac{\mu}{L}\right) \|\mathbf{x}_{t} - \mathbf{x}^{\star}\|^{2} \end{aligned}$$

UdS/CISPA Optimization for Machine Learning

Graded non-convex functions

(pand bonded .)

Assume $f: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. For an integer $\tau \geq 1$:

$$f$$
 is non-convex of grade $\tau \leftrightarrow \nabla_{\tau}^2 f(\mathbf{x}) \succeq 0$

where

To warst eigenenvalues are
$$\geqslant 0$$

$$\nabla_{\tau}^{2} f(\mathbf{x}) = \sum_{i=1}^{\tau} \lambda_{i}(\mathbf{x}) \cdot \mathbf{u}_{i}(\mathbf{x}) \mathbf{u}_{i}(\mathbf{x})^{\top}$$
tor pairs $(\lambda_{i}, \mathbf{u}_{i}), \lambda_{1} > \cdots > \lambda_{r}$

for eigenvalues/eigenvector pairs $(\lambda_i, \mathbf{u}_i)$, $\lambda_1 \geq \cdots \geq \lambda_n$.

Observation:

$$\mathcal{F}_0$$
 \supset \mathcal{F}_1 $\supset\cdots\supset$ \mathcal{F}_{n-1} \supset \mathcal{F}_n convex functions

all agenualues positive

Illustration

Properties

▶ A function $f \in \mathcal{F}_{\tau}$ for $\tau \geq 1$ cannot have a local maximum. For any compact C:

$$\max_{\mathbf{x} \in C} f(\mathbf{x}) = \max_{\mathbf{x} \in \partial C} f(\mathbf{x})$$

▶ Suppose that for every $\mathbf x$ there exists a subspace $V_{\mathbf x} \subset \mathbb R^n$ with $\dim(V_{\mathbf x}) \geq \tau$, such that

$$f(\mathbf{x} + \mathbf{h}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} \mathbf{h} \qquad \forall \mathbf{h} \in V_{\mathbf{x}}.$$

Then $f \in \mathcal{F}_{\tau}$.

Examples

▶ Low rank vector fields, $f(\mathbf{x}) = \psi(\mathbf{u}^{\top}\mathbf{x})$, for $\mathbf{u} \in \mathbb{R}^n$. Then $f \in \mathcal{F}_{n-1}$.

Convex direction

- $\sin(x+y) + q(x,y)$
- ▶ Convex Loss Functions. Consider $f(\mathbf{x}, \mathbf{y})$, $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$. Suppose that for any fixed \mathbf{y} , $f(\cdot, \mathbf{y})$ is convex. Then $f \in \mathcal{F}_n$.
- ▶ Matrix Factorization. Consider $f(\mathbf{X}_1, \cdots, \mathbf{X}_d) = \frac{1}{2} \|\mathbf{X}_1 \cdots \mathbf{X}_d \mathbf{C}\|_F^2$ with $\mathbf{X}_i \in \mathbb{R}^{n_i \times m_i}$, is non-convex with grade $\tau \geq \max_i (n_i \cdot m_i)$.

Lecture Outline

Classes of non-convex functions

Trajectory Analysis

Trajectory Analysis

Even if the "landscape" (graph) of a nonconvex function has local minima, saddle points, and flat parts, gradient descent may avoid them and still converge to a global minimum.

For this, one needs a good starting point and some theoretical understanding of what happens when we start there—this is trajectory analysis.

2018: trajectory analysis for training deep linear linear neural networks, under suitable conditions [ACGH18].

Here: vastly simplified setting that allows us to show the main ideas (and limitations).

Disclaimer: We will not be able to cover all details in this lecture; we will only go over the high-level concepts. Please refer to Chapter 5 in the lecture notes if you are interested in this topic.

Linear models with several outputs

Recall: Learning linear models

- lacksquare n inputs $\mathbf{x}_1,\ldots,\mathbf{x}_n$, where each input $\mathbf{x}_i\in\mathbb{R}^d$
- ightharpoonup n outputs $y_1, \ldots, y_n \in \mathbb{R}$
- ► Hypothesis (after centering):

$$y_i \approx \mathbf{w}^{\top} \mathbf{x}_i,$$

for a weight vector $\mathbf{w} = (w_1, \dots, w_d) \in \mathbb{R}^d$ to be learned.

Now more than one output value:

- ightharpoonup n outputs $\mathbf{y}_1, \dots, \mathbf{y}_n$, where each output $\mathbf{y}_i \in \mathbb{R}^m$
- Hypothesis:

$$\mathbf{y}_i \approx W \mathbf{x}_i,$$

for a weight matrix $W \in \mathbb{R}^{m \times d}$ to be learned.

Minimizing the least squares error

Compute

$$W^{\star} = \underset{W \in \mathbb{R}^{m \times d}}{\operatorname{argmin}} \sum_{i=1}^{n} \|W\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2}.$$

- $lacksquare X \in \mathbb{R}^{d imes n}$: matrix whose columns are the \mathbf{x}_i
- $Y \in \mathbb{R}^{m \times n}$: matrix whose columns are the \mathbf{y}_i

Then

$$W^* = \underset{W \in \mathbb{R}^{m \times d}}{\operatorname{argmin}} \|WX - Y\|_F^2,$$

where $\|A\|_F = \sqrt{\sum_{i,j} a_{ij}^2}$ is the Frobenius norm of a matrix A.

Frobenius norm of $A = \mathsf{Euclidean}$ norm of $\mathsf{vec}(A)$ ("flattening" of A)

Minimizing the least squares error II

$$W^* = \underset{W \in \mathbb{R}^{m \times d}}{\operatorname{argmin}} \|WX - Y\|_F^2$$

is the global minimum of a convex quadratic function f(W).

To find W^* , solve $\nabla f(W) = \mathbf{0}$ (system of linear equations).

⇔ training a linear neural network with one layer under least squares error.

$$\mathbf{x} \mapsto \mathbf{y} = W\mathbf{x}$$

W

Deep linear neural networks

Not more expressive:

$$\mathbf{x} \mapsto \mathbf{y} = W_3 W_2 W_1 \mathbf{x} \quad \Leftrightarrow \quad \mathbf{x} \mapsto \mathbf{y} = W \mathbf{x}, \ W := W_3 W_2 W_1.$$

Training deep linear neural networks

With ℓ layers:

$$W^{\star} = \underset{W_1, W_2, \dots, W_{\ell}}{\operatorname{argmin}} \|W_{\ell} W_{\ell-1} \cdots W_1 X - Y\|_F^2,$$

Nonconvex function for $\ell > 1$.

Simple playground in which we can try to understand why training deep neural networks with gradient descent works.

Here: all matrices are 1×1 , $W_i = x_i, X = 1, Y = 1, \ell = d \Rightarrow f : \mathbb{R}^d \to \mathbb{R}$,

$$f(\mathbf{x}) := \frac{1}{2} \left(\prod_{k=1}^{d} x_k - 1 \right)^2.$$
 $\mathbf{x} \in \mathbb{R}^d$

Toy example in our simple playground.

But analysis of gradient descent on f has similar ingredients as the one on general deep linear neural networks [ACGH18].

A simple nonconvex function

As
$$d$$
 is fixed, abbreviate $\prod_{k=1}^d x_k$ by $\prod_k x_k$: $f(\mathbf{x}) = \frac{1}{2} \left(\prod_k x_k - 1\right)^2$

The gradient

$$\frac{d}{dx_1} \times_1 \times_2 \times_3 \times_{ij} = \times_2 \times_3 \times_{ij}$$

$$\nabla f(\mathbf{x}) = \left(\prod_{k} x_k - 1\right) \left(\prod_{k \neq 1} x_k, \dots, \prod_{k \neq d} x_k\right).$$

Critical points ($\nabla f(\mathbf{x}) = \mathbf{0}$):

- $\prod_k x_k = 1$ (global minima)
 - d = 2: the hyperbola $\{(x_1, x_2) : x_1x_2 = 1\}$
- at least two of the x_k are zero (saddle points)
 - d = 2: the origin $(x_1, x_2) = (0, 0)$

Negative gradient directions (followed by gradient descent)

Difficult to avoid convergence to a global minimum, but it is possible (Exercise 35).

Convergence analysis: Overview

Want to show that for any d>1, and from anywhere in $X=\{\mathbf{x}:\mathbf{x}>\mathbf{0},\prod_k\mathbf{x}_k\leq 1\}$, gradient descent will converge to a global minimum.

f is not smooth over X. We show that f is smooth along the trajectory of gradient descent for suitable L, so that we get sufficient decrease

$$f(\mathbf{x}_{t+1}) \le f(\mathbf{x}_t) - \frac{1}{2L} \|\nabla f(\mathbf{x}_t)\|^2, \quad t \ge 0.$$

Then, we cannot converge to a saddle point: all these have (at least two) zero entries and therefore function value 1/2. But for starting point $\mathbf{x}_0 \in X$, we have $f(\mathbf{x}_0) < 1/2$, so we can never reach a saddle while decreasing f.

Doesn't this imply converge to a global mimimum? No!

- ▶ Sublevel sets are unbounded, so we could in principle run off to infinity.
- ▶ Other bad things might happen (we haven't characterized what can go wrong).

Convergence analysis: Overview II

For x > 0, $\prod_k x_k \ge 1$, we also get convergence (Exercise 34).

 \Rightarrow convergence from anywhere in the interior of the positive orthant $\{x : x > 0\}$.

But there are also starting points from which gradient descent will not converge to a global minimum (Exercise 35).

Main tool: Balanced iterates

Definition (L-10).3

Let $\mathbf{x} > \mathbf{0}$ (componentwise), and let c > 1 be a real number. \mathbf{x} is called <u>c-balanced</u> if $x_i \leq cx_j$ for all $1 \leq i, j \leq d$.

Any initial iterate $x_0 > 0$ is c-balanced for some (possibly large) c. Lemma (L-10).4

Let x > 0 be c-balanced with $\prod_k x_k \le 1$. Then for any stepsize $\gamma > 0$, $\mathbf{x}' := \mathbf{x} - \gamma \nabla f(\mathbf{x})$ satisfies $\mathbf{x}' \geq \mathbf{x}$ (componentwise) and is also c-balanced.

Proof.

$$\Delta := -\gamma(\prod_k x_k - 1)(\prod_k x_k) \ge 0.$$

 $\Delta := -\gamma(\prod_k x_k - 1)(\prod_k x_k) \ge 0. \qquad \nabla f(\mathbf{x}) = (\prod_k x_k - 1) \left(\prod_{k \ne 1} x_k, \dots, \prod_{k \ne d} x_k\right).$

Gradient descent step:

For i, j, we have $x_i \le cx_j$ and $x_i \le cx_j$ $(\Leftrightarrow 1/x_i \leq c/x_i)$. We therefore get

$$x'_{k} = x_{k} + \frac{\Delta}{x_{k}} \ge x_{k}, \quad k = 1, \dots, d.$$

$$x_i' = x_i + \frac{\Delta}{x_i} \le cx_j + \frac{\Delta c}{x_j} = cx_j'.$$

How to use the main tool

c-balanced iterates allow to prove:

• the Hessian $\nabla^2 f(\mathbf{x})$ is bounded along the trajectory of gradient descent

$$\left\|\nabla^2 f(\mathbf{x}_t)\right\| \le 3dc^2$$

▶ the function f is smooth with parameter $L=3dc^2$ along the trajectory of gradient descent with stepsize $\gamma=1/L$.

Convergence

Theorem (L-10).5

Let $c \ge 1$ and $\delta > 0$ such that $\mathbf{x}_0 > \mathbf{0}$ is c-balanced with $\delta \le \prod_k (\mathbf{x}_0)_k < 1$. Choosing stepsize

$$\gamma = \frac{1}{3dc^2}, = \frac{1}{L}$$

gradient descent satisfies

$$f(\mathbf{x}_T) \leq \left(1 - rac{\delta^2}{3c^4}
ight)^T f(\mathbf{x}_0), \quad T \geq 0.$$

Linear conveyance! (?)

- ► Error converges to 0 exponentially fast.
- Exercise 37: iterates themselves converge (to an optimal solution).

Convergence: Proof

Proof.

- ▶ For $t \ge 0$, f is smooth between \mathbf{x}_t and \mathbf{x}_{t+1} with parameter $L = 3dc^2$.
- Sufficient decrease:

$$f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{6dc^2} \|\nabla f(\mathbf{x}_t)\|^2.$$

For every c-balanced \mathbf{x} with $\delta \leq \prod_k x_k \leq 1$, $\|\nabla f(\mathbf{x})\|^2$ equals

$$2f(\mathbf{x})\sum_{i=1}^{d} \left(\prod_{k \neq i} x_k\right)^2 \ge 2f(\mathbf{x})\frac{d}{c^2} \left(\prod_k x_k\right)^{2-2/d} \ge 2f(\mathbf{x})\frac{d}{c^2} \left(\prod_k x_k\right)^2 \ge 2f(\mathbf{x})\frac{d}{c^2}\delta^2.$$

► Hence, $f(\mathbf{x}_{t+1}) \leq f(\mathbf{x}_t) - \frac{1}{6dc^2} 2f(\mathbf{x}_t) \frac{d}{c^2} \delta^2 = f(\mathbf{x}_t) \left(1 - \frac{\delta^2}{3c^4}\right)$.

П

Discussion

Fast convergence as for strongly convex functions!

But there is a catch...

Consider starting point $\mathbf{x}_0 = (1/2, \dots, 1/2)$.

$$\delta \leq \prod_k (\mathbf{x}_0)_k = 2^{-d}$$
.

Decrease in function value by a factor of

$$\left(1 - \frac{1}{3 \cdot 4^d}\right),\,$$

per step.

Need $T \approx 4^d$ to reduce the initial error by a constant factor not depending on d.

Problem: gradients are exponentially small in the beginning, extremely slow progress.

For polynomial runtime, must start at distance $O(1/\sqrt{d})$ from optimality.

Bibliography

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient descent for deep linear neural networks. *CoRR*, abs/1810.02281, 2018.