Logika R

Weronika Jakimowicz

Zima 2025/26

Weronika Jakimowicz

Spis treści

1	Formalizacja matematyki		1
	02.10.2025	Uproszczony model rzeczywistości matematycznej: struktura I rzędu .	1
	1.	Model języka i język struktury modelu	1

Weronika Jakimowicz Logika R

1. Formalizacja matematyki

02.10.2025 Uproszczony model rzeczywistości matematycznej: struktura I rzędu

1. Model języka i język struktury modelu

Definicja 1.1: model

Model to struktura matematyczna składająca się z

- niepustego zbioru będącego uniwersum $A \neq \emptyset$,
- funkcji $f_1, ..., f_k$ o arności n_i (tzn. $f_i: A^{n_i} \rightarrow A$),
- relacji (predykatów) w A, P_1 , ..., P_n , gdzie $P_i \subseteq A^{n_i}$,
- stałych z $A c_1, ..., c_l \in A$.

Zapisujemy

$$\mathfrak{M} = (A; f_1, ..., f_k; P_1, ..., P_n; c_1, ..., c_l)$$

gdzie k, n, l to liczby kardynalne, zazwyczaj skończone (tzn. k, n, $l \in \mathbb{N}$).

Przykłady

1. Jeśli n=0, czyli nie mamy relacji, to $\mathfrak M$ jest strukturą algebraiczną. Weźmy na przykład grupę. Grupa jest zdefiniowana jako zbiór G z wyróżnionym elementem neutralnym e, operacją mnożenia · oraz brania elementu odwrotnego $^{-1}$. Operacje to funkcje, a element neutralny to stała. Sam zbiór G to z kolei uniwersum, czyli mamy model:

$$(\textit{G};\cdot,^{-1}\,;\;;e)$$

2. Rodzina zbiorów *V* z relacją należenia ∈ jest modelem z jedną relacją, ale bez funkcji i bez stałych:

$$(V; ; \in;)$$

Symbole oznaczające funkcje, relacje, stałe będziemy od ich znaczenia odróżniać przez podkreślenie:

• $\underline{f_i}$, P_j , $\underline{c_t}$ to symbole,

• natomiast f_i , P_J , c_t to funkcja, relacja, stała.

Definicja 1.2: język

Język

$$L = \{\underline{f_1},...,\underline{f_k};\underline{P_1},...,\underline{P_n};\underline{c_1},...,\underline{c_l}\}$$

składa się z symboli: funkcyjnych, relacyjnych, stałych wraz z przypisanymi tym symbolom arnościami, tzn. f_i to symbol funkcjsi n_i -argumentowej etc.

Język jak wyżej jest nazywany językiem struktury \mathfrak{M} , typem podobieństwa \mathfrak{M} , sygnaturą \mathfrak{M} . Z kolei \mathfrak{M} jest modelem dla L.

Szerzej będziemy dla ${\mathfrak M}$ - modelu dla L - pisać

$$(\mathfrak{M};\underline{f_1}^{\mathfrak{M}},...,\underline{f_k}^{\mathfrak{M}};\underline{P_1}^{\mathfrak{M}},...,\underline{P_n}^{\mathfrak{M}};\underline{c_1}^{\mathfrak{M}},...,\underline{c_l}^{\mathfrak{M}})$$

gdzie $\underline{f_i}^{\mathfrak{M}}$ oznacza interpretację symbolu $\underline{f_1}^{\mathfrak{M}}$ w kontekście modelu \mathfrak{M} .

Uwaga 1.3

Dla dowolnego języka L istnieje wiele struktur \mathfrak{M} .

Mając dany język L mówimy/piszemy w nim przy pomocy

- · symbolów języka,
- symboli logicznych \land , \lor , \neg , \rightarrow , \leftrightarrow , \forall , \exists , =,
- zmiennych, np. x_i dla $i \in \mathbb{N}$, y, z,
- oraz symboli pomocniczych takich jak nawiasy, przecinki etc.

Uwaga 1.4

Spójniki można ograniczyć do \land , \neg i kwantyfikatora \exists . Całą resztę spójników można zdefiniować jako macra przy pomocy tych trzech, np.

$$p \lor q := \neg(\neg p \land \neq q)$$