Contents

1	Introduction to Light Scattering from Microstructures F. González and F. Moreno	1
1	Electromagnetic Theory	2
2	Isolated Regular Particles	4
3	Isolated Irregular Particles	5
4	Microstructures on Surfaces	9
— Pa	art I. Theory	
2	Heaviside Operational Calculus	
an	d Electromagnetic Image Theory	23
1	The Image Principle	23
2	Heaviside Calculus	25
3	Transmission-Line Theory	26
4	Time-Harmonic Planar Problems	29
5	Slightly Rough Interface	32
6	Other Structures with Image Solutions	35
3	Mathematical Methods for Data Inversion	41
1	Overview	41
2	The Basic Physics	42
3	Experimental Methods and the Photon Correlation Function	44
4	Mean Particle Diameter, Polydispersity and Higher-Order Moments	46
5	Singular Value Decomposition and Exponential Sampling	48
6	Removal of the Background	50
7	The Primal Method of Mathematical Programming	52
8	The Dual Problem and its Solution	55
9	Results	57
10		59
11	Acknowledgements	60
4	Mueller Matrices	63
1	Introduction	63
2	Basic Transformation of Polarization	64
3	Polar Decomposition of Pure Matrices	67
4	Mueller Matrices for Incoherent Scattering	70
5	Parallel Decomposition of Mueller Matrices	72

6 7 8	Mueller Matrices and Stokes Matrices Transmittance Condition Purity Criterion and Purity Index	74 74 75			
Pa	Part II. Scattering by Particles on Substrates. Numerical Methods				
5 1 2	Light Scattering from a Sphere Near a Plane Interface G. Videen Scattering System	81 81 83			
3 4 5 6 7 8	Incident Field Fields at the Spherical Interface Translation Addition Theorem Plane Interface Scattered Field Conclusion	84 86 88 91 93			
6 on 1 2 3 4 5 6	Electromagnetic Scattering by Cylindrical Objects Generic Planar Substrates: Cylindrical-Wave Approach R. Borghi, F. Frezza, M. Santarsiero, G. Schettini Introduction Preliminaries Scattering from Perfectly Conducting Cylinders Generalization to Dielectric Cylinders General Incident Fields Applications	104 106			
7 on 1 2 3 4	T-Matrix Method for Light Scattering from a Particle or Near an Infinite Surface T. Wriedt and A. Doicu Introduction	113 114 115			
Pa	art III. Scattering of Polarized Light				
8 by 1 2	Properties of a Polarized Light-Beam Multiply Scattered a Rayleigh Medium. K.I. Hopcraft, P.C.Y. Chang, J.G. Walker and E. Jakeman Introduction. Description of Model.	135			
$\frac{2}{3}$	Simulation Results and Discussion	144			

5 A	Summary and Conclusions
9	Polarization and Depolarization of Light
	M.I. Mishchenko and L.D. Travis
1	Introduction
2	Single Scattering
3	Multiple Scattering
4	Particle Characterization and Remote Sensing
5	Acknowledgments
Pa	rt IV. Statistics of the Scattered Light
10	8
by	Small Particles
4	E. Jakeman
1	Introduction
2	Gaussian and Non-Gaussian Scattering
3	Polarisation in the Random Walk Model
4	Discussion of Theoretical Predictions
5	Conclusions
6	Acknowledgements
11	Intensity Statistics of the Light Scattered
by	Particles on Surfaces
	E.M. Ortiz, F. González and F. Moreno
1	Introduction
2	The Scattering Model
3	Intensity Fluctuations. Non-interacting Particles
4	Particle Interaction. A Simple Model
5	Intensity Fluctuations. Interacting Particles
6	Acknowledgments
Pa	rt V. Applications
12 Ele	Microstructures in Rough Metal Surfaces: ectromagnetic Mechanism in Surface-Enhanced
	man Spectroscopy
	J. A. Sánchez-Gil, J. V. García-Ramos, E. R. Méndez
1	Introduction
2	EM Scattering Theory
3	Fractal Surface Model
4	Near EM Field
5	Surface EM Field Enhancement

6 Far Field	232 233
13 Light Scattering by Particles and Defects on Surfaces: Semiconductor Wafer Inspection	237
1 Introduction	239 242 en-
tal Results	
14 From Scattering to Waveguiding: Photonic Crystal Fib. J. C. Knight, T. A. Birks, R. F. Cregan, J. Broeng	ores 253
 and P. St. J. Russell Introduction	254 256 260
Structure 6 Band Gap Waveguiding. 7 Conclusions 8 Acknowledgements.	263 265
15 The Angular Distribution of Light Emitted by Sonoluminescent Bubbles	269
1 Tutorial Background	277
16 Light Scattering by Regular Particles on Flat Substrat J.M. Saiz, J.L. de la Peña, P.J. Valle, F. González and F. More	
1 Introduction	285
2 Theory	
3 Application of the Model: a Particle Sizing Technique	
5 Acknowledgments	