Partial Least Squares Regression (part II)

Predictive Modeling & Statistical Learning

Gaston Sanchez

CC BY-SA 4.0

PLS Regression

PLS Regression equation in terms of the original predictors:

$$y = d_1 \mathbf{z_1} + d_2 \mathbf{z_2} + \mathbf{e}$$

$$= d_1 \mathbf{X} \mathbf{w_1} + d_2 \mathbf{X_1} \mathbf{w_2} + \mathbf{e}$$

$$= \mathbf{X} (d_1 w_1^* + d_2 w_2^*) + \mathbf{e}$$

$$= b_1 \mathbf{x_1} + b_2 \mathbf{x_2} + \dots + b_p \mathbf{x_p} + \mathbf{e}$$

Properties of PLS Regression

Properties

$$\mathbf{z}_{\mathbf{h}}^{\mathsf{T}}\mathbf{z}_{\mathbf{l}} = 0, \quad l > h$$

$$\mathbf{w}_{\mathbf{h}}^{\mathsf{T}}\mathbf{p}_{\mathbf{h}} = 1$$

$$\mathbf{w}_{\mathbf{h}}^{\mathsf{T}}\mathbf{X}_{\mathbf{l}}^{\mathsf{T}} = 0, \quad l \ge h$$

$$\mathbf{w}_{\mathbf{h}}^{\mathsf{T}}\mathbf{p}_{\mathbf{l}} = 0, \quad l > h$$

$$\mathbf{w}_{\mathbf{h}}^{\mathsf{T}}\mathbf{w}_{\mathbf{l}} = 0, \quad l > h$$

$$\mathbf{z}_{\mathbf{h}}^{\mathsf{T}}\mathbf{X}_{\mathbf{l}}=0, \quad l\geq h$$

$$ightharpoonup \mathbf{X}_{\mathbf{h}} = \mathbf{X} \prod_{j=1}^{p} (\mathbf{I} - \mathbf{w}_{\mathbf{j}} \mathbf{p}_{\mathbf{j}}^{\mathsf{T}}), \quad h \geq 1$$

Modified Weights w_h*

We know that
$$z_h = X_{h-1}w_h$$

 $\mathbf{z_h}$ can also be expressed as $\mathbf{z_h} = \mathbf{X}\mathbf{w_h^*}$

$$\mathbf{w}_{\mathbf{h}}^* = \prod_{k=1}^{h-1} (\mathbf{I} - \mathbf{w}_{\mathbf{k}} \mathbf{p}_{\mathbf{k}}^\mathsf{T}) \mathbf{w}_{\mathbf{h}}$$

Modified Weights w_h*

In fact,

$$\mathbf{W}_{\mathbf{h}}^* = \mathbf{W}_{\mathbf{h}} (\mathbf{P}_{\mathbf{h}}^\mathsf{T} \mathbf{W}_{\mathbf{h}})^{-1}$$

$$\mathbf{Z_h} = \mathbf{XW_h} (\mathbf{P_h^T W_h})^{-1}$$

Decomposition

The matrices of PLS components ${\bf Z}$ and loadings ${\bf P}$ can be used to decompose ${\bf X}$ as:

$$X = ZP^T$$

It can be shown that:

$$\hat{\boldsymbol{\beta}}_{OLS} = \sum_{h=1}^{p} d_h \mathbf{w}_{\mathbf{h}}^*$$

$$\hat{\mathbf{y}}_{OLS} = d_1 \mathbf{z_1} + d_2 \mathbf{z_2} + \dots + d_p \mathbf{z_p}$$

What is PLSR doing?

Why PLS is worth it?

- ► The answer is stability of predictors.
- ▶ PLS keeps the number of variables as low as possible.
- ► In PLS, components are selected that give maximal reduction in the covariance X^Ty of the data.
- ► In that sense PLS will give the minimum number of variables that is necessary.
- ightharpoonup The PLS regression is based on the SVD of $\mathbf{X}^\mathsf{T}\mathbf{y}$

The first PLS component has the form $\mathbf{z} = \mathbf{X}\mathbf{w}$ Under the hood, the PLS regression involves **Tucker** criterion:

$$\arg\max_{\mathbf{w}}\left\{ cov^{2}(\mathbf{y},\mathbf{X}\mathbf{w})\right\}$$

What is this criterion doing?

Recall that the covariance can be expressed as:

$$cov(\mathbf{y}, \mathbf{z}) = cor(\mathbf{y}, \mathbf{z}) \sqrt{var(\mathbf{y})} \sqrt{var(\mathbf{z})}$$

thus:

$$cov^{2}(\mathbf{y}, \mathbf{z}) = cor^{2}(\mathbf{y}, \mathbf{z}) \ var(\mathbf{y}) \ var(\mathbf{z})$$

What does PLSR optimize?

$$\arg\max_{\mathbf{w}} \left\{ cov^2(\mathbf{y}, \mathbf{X}\mathbf{w}) \right\}$$

is equivalent to:

$$\arg\max_{\mathbf{w}} \left\{ cor^{2}(\mathbf{y}, \mathbf{z}) \ var(\mathbf{y}) \ var(\mathbf{z}) \right) \right\}$$

PLSR is a compromise between the multiple regression of $\mathbf y$ on $\mathbf X,$ and the PCA of $\mathbf X$

Tucker's criterion $cov^2(\mathbf{y}, \mathbf{X}\mathbf{w})$ is a compromise between:

- ightharpoonup maximizing correlation $cor(\mathbf{z}, \mathbf{y})$ (OLS regression)
- ightharpoonup maximizing variance of PLS components $var(\mathbf{X}\mathbf{w})$

Advantages

- ▶ PLSR is not based on any optimization criterion.
- Rather it is based on an interative algorithm (which converges).
- ▶ However, it turns out that the PLS-solution is equivalent to the SVD of $\mathbf{X}^\mathsf{T}\mathbf{y}$

Advantages of PLS Regression

Advantages

- ► Simplicity in its algorithm
- ► No need to invert any matrix
- ▶ No need to diagonalize any matrix
- You just need to compute simple regressions
- In other words, you just need inner products
- Missing data is allowed (but you need to modify the algorithm)
- Easily extendable to the multivariate case of various responses
- ▶ Handles cases where we have more predictors than observations (p >> n)

Example: Gasoline Data

Gasoline Octane Ratings

https://commons.wikimedia.org/wiki/File:Gas_Station_Pump_Five_Octane_Ratings.jpg

Predicting Octane Number

- Predicting octane number of a gasoline from the NIR (Near Infra Red) spectrum of gasolines.
- ► The octane number, or octane rating, is a standard measure of the performance of an engine or aviation fuel.
- ► The higher the octane number, the more compression the fuel can withstand before detonating (igniting).
- ► Fuels with a higher octane rating are used in high performance gasoline engines that require higher compression ratios.

Research Octane Number (RON)

The most common type of octane rating worldwide is the Research Octane Number (RON). RON is determined by running the fuel in a test engine with a variable compression ratio under controlled conditions, and comparing the results with those for mixtures of iso-octane and n-heptane.

Dataset gasoline.txt

- ▶ 60 gasolines, 402 variables
- ▶ Response *Y*: octane number
- ▶ Predictors X_1, \dots, X_{401} : NIR spectrum frequencies (900nm-1700nm)
- As you can tell: p >> n
- ▶ We'll use the first 50 gasolines as the training set
- ▶ The remaining gasolines (last 10) will be used as test set

Dataset gasoline.txt

Data file gasoline.txt in the data/ folder of the github repo

```
gasoline <- read.table("gasoline.txt", header = TRUE)</pre>
```

```
dim(gasoline)
## [1] 60 402
```

Dataset gasoline.txt

First few rows of data:

```
octane NIR.900.nm NIR.902.nm NIR.904.nm NIR.906.nm
                  -0.045903
  85.30
        -0.050193
                             -0.042187
                                        -0.037177
  85.25 -0.044227 -0.039602 -0.035673 -0.030911
 88.45 -0.046867 -0.041260 -0.036979
                                       -0.031458
                             -0.038561
 83.40 -0.046705 -0.042240
                                       -0.034513
5 87.90 -0.050859 -0.045145
                             -0.041025
                                       -0.036357
                                       -0.034017
  85.50 -0.048094 -0.042739
                             -0.038812
  88.90 -0.049906 -0.044558
                             -0.040543 -0.035716
```

- First column octane is the response.
- Rest of columns are predictors.

Variables factor map (PCA)

Example: gasoline.txt

```
# response
octane <- gasoline[,1]

# predictors
NIR <- gasoline[,2:ncol(gasoline)]

# training and test sets
train <- 1:50
test <- 51:60</pre>
```

NIR Spectrum


```
corrs <- cor(NIR, octane)</pre>
summary(corrs)
      V1
Min. :-0.90362
 1st Qu.:-0.38877
 Median :-0.19437
Mean :-0.18578
3rd Qu.:-0.05055
Max. : 0.56396
which.max(corrs)
[1] 126
corrs[which.max(corrs)]
[1] 0.5639595
```

Scatterplot of Octane with most correlated predictor

Out of curiosity let's try OLS with lm()

```
# OLS regression attempt
gas_train <- gasoline[1:50, ]</pre>
reg <- lm(octane ~ ., data = gas_train)
summary(reg)
Residuals:
ALL 50 residuals are 0: no residual degrees of freedom!
Coefficients: (352 not defined because of singularities)
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 136.74
                         NA
                                 NA
                                      NA
NIR.900.nm -2276.35
                                      NΑ
                         NA NA
NIR.902.nm 144.74 NA NA
                                        NΔ
. . .
Residual standard error: NaN on O degrees of freedom
Multiple R-squared: 1, Adjusted R-squared:
                                            NaN
F-statistic: NaN on 49 and 0 DF, p-value: NA
```

Partial Least Squares Regression

Summarized Output from plsr()

```
summary(pls1)
## Data: X dimension: 50 401
## Y dimension: 50 1
## Fit method: kernelpls
## Number of components considered: 10
##
## VALIDATION: BMSEP
## Cross-validated using 50 leave-one-out segments.
        (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps
##
             1.545
                   1.321 0.7857 0.2869 0.2254 0.2295 0.2145 0.2287
## CV
## adiCV
             1.545
                   1.322 0.7848 0.2866 0.2251 0.2287 0.2141 0.2279
##
        8 comps 9 comps 10 comps
## CV
     0.2586 0.2710 0.2695
## adiCV 0.2567 0.2692 0.2676
##
## TRAINING: % variance explained
         1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
##
## X
         64.31
                 85.24 95.79
                                97.22 97.59
                                                  98.19
                                                          98.61
                                                                  98.74
## octane
           31.59
                79.29 97.13 98.49 98.91
                                                  99.01
                                                          99.10
                                                                  99.37
##
         9 comps 10 comps
## X
         99.10 99.25
## octane 99.46 99.57
```

octane

Test MSEs

which minimum test MSE?

```
## [1] 4
```

octane

Final PLS Regression

```
pls_fit <- plsr(octane ~ ., ncomp = 4, data = gasoline,</pre>
               scale = TRUE)
summary(pls_fit)
## Data: X dimension: 60 401
## Y dimension: 60 1
## Fit method: kernelpls
## Number of components considered: 4
## TRAINING: % variance explained
          1 comps 2 comps 3 comps 4 comps
##
            64.97 83.51 93.72 96.33
## X
## octane 30.54 79.79 97.73 98.27
```

Observed and predicted values (4 PLS comps)

References

- ► Modern Multivariate Statistical Techniques by Julian Izenman (2008). Chapter 5, sec 6: Biased Regression Methods. Springer.
- ► Linear Models with R by Julian Faraway (2015). *Chapter 11:* Shrinkage Methods. CRC Press.
- ➤ Some theoretical aspects of partial least squares regression by Inge Helland (2001). Chemometrics and Intelligent Laboratory Systems, 58, 97-107.
- ▶ Partial Least Squares Regression and Statistical Models by Inge Helland (1990). Scandinavian Journal of Statistics. Vol. 17, No. 2. p. 97-114.

References (French Literature)

- ► La Regression PLS: Theorie et Pratique by Michel Tenenhaus (1998). Editions, Technip.
- ▶ **Probabilites, analyse des donnees et statistique** by Gilbert Saporta (2011). *Chapter 17: La regression multiple et le modele lineaire general.* Editions Technip, Paris.