PLANO DE AULA DE MATEMÁTICA	Aula: 4, 5, 6 – 1BIM2022
Título: REVISÃO: POTÊNCIA COM EXPOENTES INTEIROS NEGATIVOS	Prof. Edilson Fonseca

REVISÃO: POTÊNCIA COM EXPOENTES INTEIROS NEGATIVOS

1 – Organização da sala: verificar o posicionamento das carteiras, proximidades, alunos no corredor, utilização de máscara, disponibilidade de álcool para as mãos.

2 – Desenvolvimento:

Potência de expoente natural

Dados um número real **a** e um número natural **n**, com $n \ge 2$, chama-se **potência de base a** e expoente n o número an que é o produto de n fatores iguais a a.

$$a^n = \underbrace{a \cdot a \cdot a \cdot \dots \cdot a}_{\text{n fatores}}$$

Dessa definição decorre que:

$$a^2 = a \cdot a$$
, $a^3 = a \cdot a \cdot a$, $a^4 = a \cdot a \cdot a \cdot a$ etc.

Há dois casos especiais:

- Para n = 1, definimos $a^1 = a$, pois com um único fator não se define o produto.
- Para n = 0 e supondo a $\neq 0$, definimos $a^0 = 1$.

Vejamos alguns exemplos de potências:

•
$$4^3 = 4 \cdot 4 \cdot 4 = 64$$

•
$$(3,2)^2 = 3,2 \cdot 3,2 = 10,24$$

$$\cdot \left(\frac{2}{5}\right)^2 = \frac{2}{5} \cdot \frac{2}{5} = \frac{4}{25}$$

•
$$0^5 = 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 = 0$$

•
$$(-6)^4 = (-6) \cdot (-6) \cdot (-6) \cdot (-6) = 1296$$

$$(-8)^1 = -8$$

•
$$3^1 = 3$$

•
$$7^0 = 1$$

$$\cdot \left(\frac{3}{10} \right)^0 = 1$$

•
$$(1,5)^3 = 1,5 \cdot 1,5 \cdot 1,5 = 3,375$$

Propriedades

Sendo **a** e **b** números reais e **m** e **n** naturais, valem as seguintes propriedades:

I)
$$a^m \cdot a^n = a^{m+n}$$

III)
$$(a \cdot b)^n = a^n \cdot b^n$$

$$V$$
) $(a^m)^n = a^{m \cdot n}$

II)
$$\frac{a^m}{a^n} = a^{m-n} \ (a \neq 0 \text{ e m} \ge n)$$
 IV) $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \ (b \neq 0)$

IV)
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} (b \neq 0)$$

OBSERVAÇÃO Q

Na definição de potência com expoente natural, foi estabelecido que $\forall a \in \mathbb{R}^*$, $a^0 = 1$. Isso garante a validade das propriedades apresentadas. Veja:

• Façamos m = 0, de acordo com a primeira propriedade:

$$\underbrace{a^0 \cdot a^n} = a^{0+n} = a^n$$

Para que ocorra igualdade, devemos ter $a^0 = 1$.

• Façamos m = n, de acordo com a segunda propriedade:

Por um lado, $\frac{a^n}{a^n} = 1$, que é o quociente de dois números iguais.

Por outro lado, aplicando a propriedade, temos:

$$\frac{a^n}{a^n} = a^{n-n} = a^0$$

Convenciona-se, então, $a^0 = 1$.

Potência de expoente inteiro negativo

Dados um número real a, não nulo, e um número n natural, chama-se potência de base a e expoente –n o número a-n, que é o inverso de an.

$$a^{-n} = \frac{1}{a^n}$$

As cinco propriedades enunciadas para potência de expoente natural são válidas para potência de expoente inteiro negativo, quaisquer que sejam os valores dos expoentes *m* e *n* inteiros.

EXERCÍCIOS

- 1 Calcule:
 - a) 5³
- g) $\left(\frac{3}{2}\right)^{1}$
- **b)** (-5)³
- **h)** $\left(-\frac{1}{2}\right)^0$
- c) 5⁻³
- d) $\left(-\frac{2}{3}\right)^3$
- **e)** $\left(\frac{1}{50}\right)^{-2}$
- **f)** $\left(-\frac{11}{7}\right)^0$
- 1) $-\left(-\frac{1}{2}\right)^{-2}$

- 2 Calcule:
 - a) 0.2²
- g) 1,2³
- b) 0,1⁻¹
- **h)** $(-3,2)^2$
- c) 3,4¹
- 0,6³
- **d)** $(-4,17)^0$
- j) 0,08⁻¹
- e) 0,05⁻²
- **k)** $(-0.3)^{-1}$
- f) 1,25⁻¹
- 1) $(-0.01)^{-2}$

3 Calcule o valor de cada uma das expressões:

a)
$$A = \left(\frac{3}{4}\right)^2 \cdot (-2)^3 + \left(-\frac{1}{2}\right)^1$$

b) B =
$$\left(\frac{1}{2}\right)^{-2} + \left(\frac{1}{3}\right)^{-1}$$

c)
$$C = -2 \cdot \left(\frac{3}{2}\right)^3 + 1^{15} - (-2)^1$$

- **d)** D = $\left[\left(-\frac{5}{3} \right)^{-1} + \left(\frac{5}{2} \right)^{-1} \right]^{-1}$ **e)** E = $[3^{-1} (-3)^{-1}]^{-1}$
- **f)** $F = 6 \cdot \left(\frac{2}{3}\right)^2 + 4 \cdot \left(-\frac{3}{3}\right)^{-2}$

- 4 Escreva em uma única potência:
- d) $\frac{10 \cdot 10^{-5} \cdot (10^2)^{-3}}{(10^{-4})^3}$
- **b)** $\frac{(2^4)^3 \cdot 2^7 \cdot 2^3}{(2^{11})^2}$
- e) $\frac{2^{3^2} \cdot 3^4}{3 \cdot (2^{3})^2}$
- c) $\frac{10^{-2} \cdot \left(\frac{1}{10}\right)^{-3}}{(0.01)^{-1}}$
- 6 Escreva em uma única potência:
 - a) a metade de 2¹⁰⁰;
 - b) o triplo de 320;
 - c) a oitava parte de 4³²;
 - d) o quadrado do quíntuplo de 25¹⁰.

5 Coloque em ordem crescente:

A =
$$(-2)^{-2} - 3 \cdot (0,5)^3$$
, B = $\frac{1}{2} + \left(\frac{1}{2}\right)^2 \cdot \left(-\frac{1}{2}\right)^{-3}$ e

$$C = \frac{-\frac{5}{4} - \left(-\frac{1}{2}\right)^2}{\left(\frac{2}{3}\right)^{-1}}.$$

7 Sendo a = $\frac{2^{48} + 4^{22} - 2^{46}}{4^3 \cdot 8^6}$, obtenha o valor de

$$\frac{1}{26} \cdot a$$