Modeling Long-Range Context for Concurrent Dialogue Acts Recognition

Yue Yu* 1 Siyao Peng* 2 Grace Hui Yang 1

¹Department of Computer Science ²Department of Linguistics Georgetown University

CIKM 2019

The Need for a Sequence Model

Table 1: Predictions on a sample dialogue with long-range dependencies.[6]

#	Utterance	toks	Reference	Prev. SOTA [6]	Our model	
1	$\it U1$ How can I download Skype for Windows 8.1	32	OriginalQuestion	OriginalQuestion	OriginalQuestion	
2	$\begin{array}{c} A1 \text{ Hiif you are using a phone running Windows 8.1} \\ \text{and lowerno longer supportedbut if you are using} \\ \text{a Windows computer, you can still download} \end{array}$		Greetings PotentialAnswer	Greetings PotentialAnswer	Greetings PotentialAnswer	
Utterances 3 (27 toks) & 4 (70 toks)						
5	UI Hi, I am using Surface tablet 8.1 windows and have tried many times to install the app. But it comes up - This app can't run on this pc please use the store app. But Skype does not appear on here.	46	Greetings FurtherDetails FollowupQuestion	Greetings OriginalQuestion	Greetings FurtherDetails PotentialAnswer RepeatQuestion	
Utterance 6 (16 toks)						

Our model sees long-range context and performs better on Utterance 5:

- the 5-th utterance should not be an OriginalQuestion;
- Surface tablet 8.1 windows provides FurtherDetails;
- FollowupQuestion partially matches RepeatedQuestion.

Highlights

Task

Concurrent Dialogue Acts (CDA) recognition: the task to handle long utterances and concurrent dialogue acts.

Model

Convolutional Recurrent Neural Network (CRNN): Our sequence model that imposes fewer restrictions on the structure of DAs and captures textual features from a wider context.

Dataset

MSDialog-Intent: A tech forum dataset from Microsoft Dialogue Intent Corpus [6] consisting of 10,020 utterances with 72 tokens and 1.83 DAs per utterance.

Convolutional Recurrent Neural Network (CRNN)

Figure 1: Our proposed CRNN model architecture.

CRNN has been applied to multi-label sequence classifications, including multiple sound event detection [1] and multi-label music tagging [3].

CRNN - Convolutional Layer

Figure 2: Our proposed CRNN model architecture.

The basic CNN [4] module slides through the embedding matrix of an utterance and and generates a feature map \mathbf{k} , capturing semantic features in differently ordered n-grams.

$$\mathbf{k} = [k_1, k_2, ..., k_{n-d+1}] \tag{1}$$

CRNN – Dynamic k-Max Pooling

Figure 3: Our proposed CRNN model architecture.

We use Dynamic k-Max Pooling [5] to pool the most powerful features from p sub-sequences of an utterance with m words which accommodates variable utterance length.

$$p(\mathbf{k}) = \left[\max \left\{ \mathbf{k}_{1: \lfloor \frac{m}{p} \rfloor} \right\}, \dots, \max \left\{ \mathbf{k}_{\lfloor m - \frac{m}{p} + 1 \rfloor : m} \right\} \right]$$
 (2)

CRNN - Recurrent Layer

Figure 4: Our proposed CRNN model architecture.

Bidirectional RNNs, both LSTM [8] and GRU [2], are applied to gather features from a wider context in the Feature Sequence for recognizing the DAs in the target utterance, u_t .

CRNN - Highway Connection

Figure 5: Our proposed CRNN model architecture.

We add Highway Connections [7] between the Convolutional Layer and the Fully Connected Layer so that the information about the target utterance, u_t , can flow across the Recurrent Layer without attenuation.

Experiments

Two Baselines:

- CNN-Kim[4].
- CNN-CR[6]: The SOTA CNN with fixed context window.

Our three CRNN experiments with incremental improvements:

- **CRNN** (v_1): Our base model with Binary Cross Entropy (BCE) loss and sigmoid activation function.
- **CRNN** (v_2) : CRNN (v_1) + highway connections.
- **CRNN** (v_3): CRNN (v_1) + highway connections + dynamic k-max pooling.

Results – Overall Performance

Our CRNN models (v_3 especially) outperform both baselines in terms of:

• Highest accuracy, recall and F_1 with LSTM; and precision with GRU (Table 2).

Models	Accuracy	Precision	Recall	F ₁ score
CNN-Kim[4]	0.5785	0.6371	0.6745	0.6553
CNN-CR[6]	0.6354	0.7108	0.6952	0.7029
CRNN (v ₁) w/ LSTM	0.6668*	0.7238	0.7297	0.7267
CRNN (v ₁) w/ GRU	0.6543*	0.7056	0.7065	0.7061
CRNN (v2) w/ LSTM	0.6731****	0.7315	0.7315	0.7315
CRNN (v2) w/ GRU	0.6734**	0.7280	0.7334	0.7307
CRNN (v ₃) w/ LSTM	0.6822****	0.7254	0.7422	0.7337
CRNN (v ₃) w/ GRU	0.6733***	0.7358	0.7215	0.7286

Table 2: Performance of CNN-Kim, CNN-CR, & CRNN.

^{*} for p \leq 0.05, ** for p \leq 0.01, *** for p \leq 0.001 and **** for p \leq 0.0001.

Results - Better on Multi-DAs

- We Higher accuracy for all reference DA sizes (Table 3).
- The average number of predicted DAs is closer to the reference (Table 4).

# of	% in test	Mean accuracy		
ref DAs	/o III test	CRNN (v ₃)	CNN-CR	
1	36.9	0.7704**	0.7126	
2	42.8	0.6641***	0.6232	
3	16.7	0.5596*	0.5177	
≥4	3.6	0.5618	0.5339	

Table 3: Mean accuracy per number of reference DAs.

# of	% in test	Avg. num. of pred DAs		
ref DAs	/6 III test	CRNN (v ₃)	CNN-CR	
1	36.9	1.44	1.44	
2	42.8	2.02**	1.89	
3	16.7	2.56***	2.37	
≥4	3.6	2.68	2.74	

Table 4: Average number of predicated DAs per number of reference DAs.

^{*} for p \leq 0.05, ** for p \leq 0.01, *** for p \leq 0.001 and **** for p \leq 0.0001.

Results – Better on Longer Dialogues

• Higher mean accuracy for longer dialogues (Figure 3).

Figure 6: CRNN (v_3) vs. CNN-CR over dialogues of different lengths.

Conclusions¹

- Our CRNN models achieve the new SOTA for CDA recognition on a tech forum dataset, where the dialogues are packed with complex DA structures and information-rich utterances.
- Our best model significantly outperforms CNN-CR[6] on accuracy by 4.68%; 1.46% on Precision, 4.70% on Recall, and 3.08% on F_1 .
- All of our proposed adaptations, i.e. highway connections and dynamic k-max pooling, contribute to the model.

References

- [1] E. Cakir, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen. 2017. Convolutional Recurrent Neural Networks for Polyphonic Sound Event Detection. *IEEE/ACM Transactions on Audio, Speech, and Language Processing* 25 (2017).
- [2] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).
- [3] K. Choi, G. Fazekas, M. Sandler, and K. Cho. 2017. Convolutional recurrent neural networks for music classification. In ICASSP '17. 2392–2396.
- [4] Y. Kim. 2014. Convolutional Neural Networks for Sentence Classification. In EMNLP'14. 1746–1751.
- [5] J. Liu, W.-C. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-label Text Classification. In SIGIR '17. New York, NY, USA, 115–124.
- [6] C. Qu, L. Yang, B. Croft, Y. Zhang, J. R. Trippas, and M. Qiu. 2019. User Intent Prediction in Information-seeking Conversations. CHIIR '19 (2019).
- [7] P. Sanders and D. Schultes. 2005. Highway hierarchies hasten exact shortest path queries. In European Symposium on Algorithms. Springer, 568–579.
- [8] W. Zaremba and I. Sutskever. 2014. Learning to execute. (2014).

Thank you. Questions?

Paper

TODO-URL

