Convergence of a sequence §2.1

DEFINITION: A sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number L provided for every real number $\varepsilon > 0$, there is a real number N such that $|a_n - L| < \varepsilon$ for all natural numbers n such that n > N.

(1) The ε vs N game:

- (a) Player 0 starts by graphing a sequence $\{a_n\}_{n=1}^{\infty}$, and specifies y-value L for which they believe $\{a_n\}_{n=1}^{\infty}$ converge to L. [You can't graph all the values, but make a large graph with a generous number of values.]
- (b) Player 1 choses an ε . This is how close we would like our sequence to be to L. Thus, ε goes up and down from L (corresponding to $|a_n L| < \varepsilon$). Draw horizontal dotted lines with y-values $L \varepsilon$ and $L + \varepsilon$. [The ε should be large enough for people to see and have room to work in the picture.]
- (c) Player 2 must find an N such that all of the values of the sequence to the right of N are in $(L \varepsilon, L + \varepsilon)$. Draw a vertical line for x = N. [Everyone in the team can assist player 2!]
- (d) Repeat with the same graph, players 1& 2 switching roles (and a new ε).
- (e) Now do a couple of rounds with a sequence $\{a_n\}_{n=1}^{\infty}$ and an L for which you believe $\{a_n\}_{n=1}^{\infty}$ does not converge to L.
- (2) Prove that the sequence $\left\{\frac{1}{\sqrt{n}}\right\}_{n=1}^{\infty}$ converges to 0.
- (3) Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. Suppose we know that $\{a_n\}_{n=1}^{\infty}$ converges to 1. Prove¹ that there is a natural number $n \in \mathbb{N}$ such that $a_n > 0$.
- natural number $n \in \mathbb{N}$ such that $a_n > 0$. (4) Prove or disprove: The sequence $\left\{\frac{n+1}{2n}\right\}_{n=1}^{\infty}$ converges to 0.

¹Hint: If you know that a "for all" statement is true, you can choose any specific value for that variable and get a more specific true statement.