Практика 8.

Шахматов Андрей, Б02-304

24 марта 2024 г.

Содержание

1	1.1	1
2	1.2	2
3	1.3	2
4	2.1	2
5	2.2	2
6	2.3	2
7	2.4	3
8	3.1	3
9	3.2	3
10	3.3	3
11	3.4	4

1 1.1

Для равномерного разбиения сумма Римана имеет вид:

$$\int_{1}^{2} x \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(1 + \frac{k}{n} \right) \frac{1}{n} = \lim_{n \to \infty} \frac{1}{2n} \left(3n + 1 \right) = \frac{3}{2}$$

Геометрическая прогрессия потом.

$2 \quad 1.2$

Рассмотрим f(x) = 2D(x) - 1, где D(x) - функция Дирихле. Такая функция очевидно не интегрируема.

- а) Однако $|f(x)| \equiv 1$ интегрируема.
- б) $|f^{2}(x)| \equiv 1$ интегрируема.
- в) g(x) = 1 интегрируема, и $0 \le D(x) \le 1$.

3 1.3

Докажем через определение по Коши учитывая ограниченность функции f:

$$\left| \int_{a}^{x_0} f(t) dt - \int_{a}^{x} f(t) dt \right| \le \left| \int_{x_0}^{x} f(t) dt \right| \le |w_f([x_0, x])(x - x_0)| \le M|x - x_0|$$

Получили, что функция Липшицева, а значит непрерывна.

$4 \quad 2.1$

$$\lim_{n \to \infty} n \sum_{k=1}^{n} \frac{1}{n^2 + k^2} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{1 + \frac{k^2}{n^2}} \frac{1}{n} = \int_0^1 \frac{1}{1 + x^2} \, \mathrm{d}x = \arctan 1 = \frac{\pi}{4}$$

$5 \quad 2.2$

В одну сторону:

$$\int_0^{\frac{3}{4}} \frac{2^x}{\sqrt{1+x^2}} \, \mathrm{d}x > \int_0^{\frac{3}{4}} \frac{1+x\ln 2}{\sqrt{1+x^2}} \, \mathrm{d}x = \frac{5}{4}\ln 2 > \ln 2$$

В другую сторону:

$$\int_0^{\frac{3}{4}} \frac{2^x}{\sqrt{1+x^2}} \, \mathrm{d}x < \int_0^{\frac{3}{4}} 2^x \, \mathrm{d}x = \frac{1}{\ln 2} \left(\sqrt[4]{8} - 1 \right) < \frac{1}{\ln 2}$$

6 2.3

Из критерия интегрирования через взвешенные колебания рассмотрим произвольное $\varepsilon > 0$, выделим промежуток $\delta = \frac{\varepsilon}{4}$, тогда $w_f([0,\delta)) = 2 \cdot \frac{\varepsilon}{4} = \frac{\varepsilon}{2}$, Рассмотрим функцию на отрезке $[\delta,1]$, на нём функция непрерывна, а значит и интегрируема, тогда существует такое разбиение τ , что $\Omega(f_{[\delta,1]},\tau) < \frac{\varepsilon}{2}$, тогда полная взвешенная сумма колебаний, полченная объединением $\tau' = \tau \cup [0,\delta)$:

$$\Omega(f,\tau') < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Что означает интегрируемость исходной функции функции.

7 2.4

а) Так как функция g - непрерывно дифференцируема, то g' ограничена, а значит |g'| < M. Тогда для любого колебания по теореме Лагранжа:

$$w_{g \circ f}(\Delta) = |g'(\xi)| w_f(\Delta) \le M w_f(\Delta)$$

Из чего следует:

$$\Omega(g \circ f, \tau) \le M\Omega(f, \tau) \le M\varepsilon$$

б) По теореме 4.123 из "An explanations" если f - интегрируема, то |f| - тоже интегрируема. Остаётся доказать, если h(x) = |f(x)| - интегрируема и $g(x) = x^p$, то $g \circ h$ - интегрируема. Так как g(x) - непрерывно дифференцируема, то согласно пункту а) композиция интегрируема.

8 3.1

Докажем для функции Римана на отрезке [0,1], а так как функция Римана периодична, то и для произвольного отрезка она будет интегрируема. Для любого $\varepsilon>0$ тогда функция Римана принимает значение большее $\frac{\varepsilon}{2}$ конечное число раз, покроем все точки x для которых $R(x)>\frac{\varepsilon}{2}$ семейством окрестностей $U_{\frac{\varepsilon}{4}},U_{\frac{\varepsilon}{8}},\ldots$, тогда взвешенная сумма колебаний по таким окрестностям не превосходит:

$$\Omega(f_U, \tau_U) \le 1 \cdot \frac{\varepsilon}{4} + 1 \cdot \frac{\varepsilon}{8} + \dots < \frac{\varepsilon}{2}$$

В остальных точках значение функции Римана не превосходит $\frac{\varepsilon}{2}$, а значит взвешенная сумма колебаний не превосходит $1 \cdot \frac{\varepsilon}{2}$, тогда взвешенная сумма колебаний по всему разбиению не превосходит ε .

9 3.2

Мы уже доказывали, что такая функция интегрируема. Тогда остаётся доказать, что произовдная первообразной равна 0 в точке 0, т.е:

$$\int_0^x f(x) \, \mathrm{d}x = o(x)$$

А что дальше не понятно.

10 3.3

Предположим $\int_a^b f(x) \, \mathrm{d}x = 0$, тогда верхние суммы Дарбу должны стремиться к 0 с уменьшением мелкости разбиения. Выберем такое разбиение для которого $S(f,\tau_1) < 1$, должен существовать отрезок I_1 на котором супермум меньше 1, тогда выполнено, что $f(x \in I_1) < 1$. Далее найдём разбиение τ_2 такое, что $S(f,\tau_2) < \frac{|I_1|}{2}$, должен существовать отрезок $I_2 \subset I_1$, такой что $f(x \in I_2) < \frac{1}{2}$, иначе бы верхняя сумма Дарбу была бы больше $\frac{|I_1|}{2}$. Производя нахождение отрезков так далее получим, что $f(x \in I_n) < \frac{1}{n}$, и $I_n \subset I_{n-1} \subset \cdots \subset I_1$. Получили последовательность вложенных отрезков, известно, что они имеют ненулевое пересечение, тогда $\forall x \in \bigcap_{n=1}^\infty I_n \ f(x) = 0$, то есть функция не строго положительна.

11 3.4

Выберем промежуток $I \in [a, b]$ и добавим к нему точку t, разбивающую его на 2 промежутка I_1 и I_2 . Тогда рассмотрим одно из слагаемых суммы Дарбу:

$$|I| \sup_{I} f(x) = |I_1| \sup_{I} f(x) + |I_2| \sup_{I} f(x) \ge |I_1| \sup_{I_1} f(x) + |I_1| \sup_{I_2} f(x)$$

То есть при разбиении на более мелкие части сумма Дарбу может только уменьшиться. Дальше не знаю пока.