B F192029 Pages:2

Reg l	No.:	Name:	-
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	
	5	SIXTH SEMESTER B.TECH DEGREE EXAMINATION(S), DECEMBER 2019	
		Course Code: CS304	
		Course Name: COMPILER DESIGN	
Max	. M	arks: 100 Duration: 3	Hours
		PART A Answer all questions, each carries3 marks.	Marks
1		Scanning of source code in compilers can be speeded up using input buffering.	(3)
		Explain.	, ,
2		Draw the DFA for the regular expression $(a \mid b)^*$ $(abb \mid a+b)$.	(3)
3		Differentiate leftmost derivation and rightmost derivation. Show an example for	(3)
		each.	, ,
4		Find out context free language for the grammar given below:	(3)
		S -> abB	
		A -> $aaBb \mid \epsilon$	
		B -> bbAa	
		PART B	
		Answer any two full questions, each carries9 marks.	
5	a)	Explain compiler writing tools.	(5)
	b)	Given a grammar:	(4)
		$S \rightarrow (L) a$	
		$L \rightarrow L, S \mid S$	
		(i) Is the grammar ambiguous? Justify	
		(ii) Give the parse tree for the string $(a,((a,a),(a,a)))$	
6	a)	Construct the predictive parsing table for the following grammar:	(5)
		S -> (L) a	
		$L \rightarrow L, S \mid S$	
	b)	Explain how the regular expressions and finite state automata are used for the	(4)
		specification and recognition of tokens?	
7	a)	Explain the working of different phases of a compiler. Illustrate with a source	(5)

language statement.

B F192029 Pages:2

PART C

Answer all questions, each carries3 marks.

		1 , 1	
8		Compute FIRST and FOLLOW for the grammar:	(3)
		$S \rightarrow SS + SS^* a$	
9		Write the algorithm to construct LR(1) collection for a grammar.	(3)
10		What is an SDD? Show an example.	(3)
11		Distinguish between synthesized and inherited attributes.	(3)
		PART D	
12	a)	Answer any two full questions, each carries 9 marks. Write algorithm for SLR paring table construction.	(5)
	b)	Construct syntax directed translation scheme for infix to postfix translation.	(4)
13	a)	Construct the SLR table for the grammar:	(5)
		$S \rightarrow aSbS \mid a$	
	b)	Give the annotated parse tree for the expression: $1*2*3*(4+5)$ n	(4)
14	a)	Differentiate CLR and LALR parsers.	(4)
	b)	Explain the specification of a simple type checker.	(5)
		PART E	
15	a)	Answer any four full questions, each carries 10 marks. Explain how DAGs help in intermediate code generation?	(4)
	b)	Explain the code generation algorithm. Illustrate with an example.	(6)
16	a)	Define the following and show an example for each.	(6)
		i). Three-address codeii). Triplesii). Quadruplesiv). Indirect triples	
	b)	State the issues in design of a code generator.	(4)
17	a)	Explain different stack allocation strategies with suitable examples.	(10)
18	a)	Explain different code optimization techniques available in local and global	(10)
		optimizations?	
19	a)	How is storage organization and management done during runtime?	(4)
	b)	How the optimization of basic blocks is done by a compiler?	(6)
20	a)	Write the algorithm for partitioning a sequence of three-address instructions into	(4)
		basic blocks.	
	b)	Construct the DAG and three address code for the expression a+a*(b-c)+(b-c)*d	(6)