Gedächtnisprotokoll Algorithmen

bei Prof. Kaufmann

4. März 2021

Klausur: Hauptklausur, WS, 2021

 $\begin{array}{ll} {\tt Pruefer:} & {\tt Prof. Kaufmann} \\ {\tt Datum:} & 03.03.2021 \end{array}$

Zeit: 90 min + 5 min fuer Zwischenfragen

Punkte: 30

Hilfsmittel: zwei Seiten handschriftliche Formelsammlung

Sprache: Deutsch Modul: INF2420

Eine Aufgabe muss gestrichen werden.

1 Rekursionsgleichungen - 6 Punkte

Gegeben ist die Rekursionsgleichung:

$$T(n) = \begin{cases} \sqrt{2} \cdot T(\frac{n}{2}) + \sqrt{n} & \text{falls } n > 1\\ 1 & \text{sonst} \end{cases}$$

Es kann angenommen werden, dass $n=2^k,\ k\in\mathbb{N}$ eine Zweierpotenz ist.

- (a) Wende das Mastertheorem auf T(n) an.
- (b) Finde für T(n) eine geschlossene Form und beweise die Korrektheit mit vollständiger Induktion.

2 Multiple-Choice-Fragen - 6 Punkte

Kreuze eine von 4 Antworten an.

- 1) Gegeben sei ein vollständiger Graph G=(V,E) ohne Selbstschleifen mit |V|=n Knoten. Was ist die Anzahl der Kanten |E|?

 - \square n^2
- 2) Gegeben sei ein ungerichteter, bipartiter Graph $G = (A \cup B, E)$. Was ist eine scharfe obere Schranke für die Anzahl der Kanten |E|?
 - $\Box |A| + |B|$
 - $\Box |A| \cdot |B|$
 - $\square \ \frac{n(n-1)}{2},$ wobe
in=|A|+|B|
 - $\square \frac{n(n-1)}{4}$, wobei n = |A| + |B|

3)	Sei S die Menge der Zusammenhangskomponenten eines ungerichteten Graphen $G=(V,E)$ mit $ V =n$ Knoten und $ E =m$ Kanten. Welche Aussage ist für einen allgemeinen Graphen G korrekt?
	\Box Richtet man alle Kanten beliebig , enstspricht S den starken Zusammenhangskomponenten.
	\square Es ist immer möglich, die Kanten so zu richten, sodass die starken Zusammenhangskomponenten S entsprechen.
	\square Es ist nicht immer möglich, die Kanten so zu richten, sodass die starken Zusammenhangskomponenten S entsprechen.
	\square Es ist nie möglich, die Kanten so zu richten, sodass die starken Zusammenhangskomponenten S entsprechen.
4)	Gegeben sei ein schleifenfreier, ungerichteter Graph $G=(V,E)$ mit $ V =n$ Knoten und $ E =m$ Kanten. Welche Antwort gibt eine scharfe Laufzeitschranke für die Berechnung aller Zusammenhangskomponenten an?
	$\Box \ \mathcal{O}(n)$ $\Box \ \mathcal{O}(m)$
	$\square \mathcal{O}(n+m)$
	$\square \ \mathcal{O}(\log n + m)$
5)	Aus welchem Grund ist die Adjazenlistendarstellung oft der Adjazenzmatrixdarstellung vorzuziehen?
	 □ Speicherplatz von Anzahl Kanten abhängig, deshalb für Graphen mit wenigen Kanten besser. □ Einfügen und Löschen ist asymptotisch schneller.
	□ Matrixdarstellung geht nur für gerichtete Graphen.
	\square Es kann schneller festgestellt werden, dass eine Kante nicht existiert.
6)	Gegeben sei ein ungerichteter Graph in Adjazenzlistendarstellung. Die Nachbarn eines Knotens werden nicht als Liste, sondern als AVL-Baum gespeichert. Was ist die Worst-Case-Laufzeit für das Einfügen einer Kante und das Aufzählen aller Nachbarn?
	$\square \ \mathcal{O}(\log n) \ \mathrm{und} \ \mathcal{O}(\log n)$
	$\square \ \mathcal{O}(n) \ \mathrm{und} \ \mathcal{O}(\log n)$
	$\square \ \mathcal{O}(\log n) \ \mathrm{und} \ \mathcal{O}(n)$
	$\square \ \mathcal{O}(\log n) \ \mathrm{und} \ \mathcal{O}(n \log n)$
	(bin nicht ganz sicher, ob alle Antwortmöglichkeiten korrekt wiedergegeben sind)

3 Dijkstra-Algorithmus - 6 Punkte

(gerichteter Graph und leere Tabelle gegeben)

- (a) Führe den Dijkstra-Algorithmus für den gegebenen Graphen durch und trage die Werte für jeden Zwischenschritt in die Tabelle ein.
- (b) Sei G ein (beliebiger) gerichteter Graph mit Kosten $c: E \to \mathbb{N}$ und p kürzester Pfad in G von s nach t. Zeige oder widerlege: Wird zu allen Kantenkosten 7 addiert, so ist p immer noch der kürzeste Pfad von s nach t.

4 Manhattan Minimal Spanning Tree (MMST) - 6 Punkte

(Definition, Erklärungen und Beispiel für MMST)

- (a) Zeichne MMST in gegebenen Graphen ein.
- (b) Sei (p,q) Kante von MMST(P). Beweise, dass sich in dem von p und q aufgespannten Rechteck kein Knoten $r \notin \{p,q\}$ befindet.

5 Merge Sort - 6 Punkte

(a) Beweise, dass Merge Sort ein Array der Länge n in Zeit $\mathcal{O}(n \log n)$ sortiert.

(Erklärung zur Parallelisierung, vgl. Probeklausur)

(b) Beweise, dass parallelisiertes Merge Sort ein Array der Länge n in Zeit $\mathcal{O}(n)$ sortiert.

6 Dynamische Programmierung - 6 Punkte

Rucksackproblem: Jedes Objekt o_j hat ein Gewicht w_j . Der Rucksack soll mit Objekten gefüllt werden, sodass er so schwer wie möglich ist, allerdings darf ein Maximalgewicht W nicht überschritten werden. (genauere Beschreibung des Problems)

- (a) Beispiel W = 12. Fülle Tabelle aus.
- (b) Gib einen Algorithmus in Pseudo-Code an, der das Problem allgemein löst. Verwende **dynamische Programmierung**.
- (c) Begründe die Korrektheit und Laufzeit.