第十一章 集成学习——随机森林

卿来云

集成学习

- 我们已经开发了很多机器学习算法/代码
- 单个模型的性能已经调到最优,很难再有改进
- 集成学习:用很少量的工作,组合多个基模型,使得系统总的性能提高
 - 基模型最好变化多样,这样不同的基模型集成后形成互补。

•三个臭皮匠,顶个诸葛亮

集成学习

将多个弱学习器进行融合,通过对样本加权、学习器加权, 获得比单一学习器显著优越的泛化性能的强学习器

Outline

- ■模型性能评价
 - No Free Lunch Theorems
 - Occam剃刀原理
 - 偏差-方差折中
- Bagging
 - ■随机森林
- Boosting
 - AdaBoost
 - Gradient Boosting Decision Tree (GBDT)
 - XGBoost
 - LightGBM
- Stacking

Bagging

- 对给定有N个样本的数据集D进行Bootstrap采样,得到 D^1 ,在 D^1 上训练模型 f_1
- 上述过程重复*M*次,得到*M*个模型,则*M*个模型的平均(回归)/ 投票(分类)为:

• 可以证明: Bagging可以降低模型的方差。

$$f_{avg}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} f_m(\mathbf{x})$$
 aggregating

Bootstrap

- 通过从原始的N个样本数据 $\mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$ 进行N次有放回采样N个数据D',称为一个bootstrap样本。
 - •对原始数据进行有放回的随机采样,抽取的样本数目同原始样本 数目一样。
- 如:若原始样本为D = {A,B,C,D,E}
- 则bootstrap样本可能为
 - $\bullet \mathcal{D}^1 = \{A, B, B, D, E\}$
 - $\bullet \mathcal{D}^2 = \{A, C, D, D, E\}$

一个样本不在采样集中出现的概率: $\left(1-\frac{1}{N}\right)^N$ 。 ($\lim_{N\to\infty}\left(1-\frac{1}{N}\right)^N=0.368$)

原始训练集中约有: 1 - 0.368 = 63.2%的样本出现在采样集中。

>>> Bagging可降低模型方差

- 令随机变量X的均值为 μ ,方差为 σ^2 ,
- 则N个独立同分布的样本的样本均值 \bar{X} 为: $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$
- 样本均值 \bar{X} 的期望为: $\mathbb{E}(\bar{X}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}(X_i) = \mu$
 - 样本均值 \bar{X} 的期望和X的期望相等(无偏估计)
- 样本均值 \bar{X} 的方差为: $Var(\bar{X}) = \frac{1}{N^2} \sum_{i=1}^{N} Var(X_i) = \frac{\sigma^2}{N}$
 - Var表示方差运算
 - 样本均值 \bar{X} 的方差比X的方差小(N越大,样本数越多,方差越小)

- 1.《为什么说bagging是减少variance,而boosting是减少bias?》
- 2.使用sklearn进行集成学习——理论https://www.cnblogs.com/jasonfreak/p/5657196.html

>>> Bagging可降低模型方差

- 在Bagging中,M次预测结果的均值 $f_{avg}(\mathbf{x})$ 的方差比用原始训练样本 单次训练的模型的预测结果的方差小,均值不变
 - Bagging可以降低模型方差
 - Bagging不改变模型偏差
- · 注意:Bagging中每个模型不完全独立(训练样本有一部分相同), 方差的减少没那么多,但也会减少

1.《为什么说bagging是减少variance,而boosting是减少bias?》

2.使用sklearn进行集成学习——理论https://www.cnblogs.com/jasonfreak/p/5657196.html

>> Bagging

- Bagging适合对偏差低、方差高的模型进行融合
 - 如决策树、神经网络
- 决策树很容易过拟合 → 偏差低、方差高
 - 如果每个训练样本为一个叶子结点,训练误差为0

>> Scikit-Learn中的Bagging

- Scikit-Learn中支持对任意基学习器的Bagging
 - 分类: BaggingClassifier
 - 回归: BaggingRegressor

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0)

class sklearn.ensemble.BaggingRegressor(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_j obs=None, random_state=None, verbose=0)

BaggingClassifier的参数

class sklearn.ensemble.BaggingClassifier(base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n _jobs=None, random_state=None, verbose=0)

参数	说明
base_estimator	基学习器, scikit-learn的分类器或回归器。如果没有给出,默认使用决策树(不推荐,不如RandomForest)。
n_estimators	基学习器的数目。通常基学习器越多,模型的方差越小。
max_samples	每个数据子集(用于训练基学习器)的样本数量。可以是浮点数(0.0至1.0,表示取样本占所有样本的比例),也可以是整数(表示样本的实际数量)。注意:如果输入了1而不是1.0,那么每个数据子集仅包含1个样本,会导致严重失误。
max_features	训练基学习器的特征数量。
bootstrap	在随机选取样本时是否是有放回
bootstrap_features	在随机选取特征时是否是有放回
oob_score	是否计算out-of-bag分数。每个基学习器只在原始数据集的一部分上训练,所以可以用剩下 样本上的误差(out-of-bag error),来估计它的泛化误差/测试误差。
warm_start	如果是True,在下一次使用fit方法时,向原有的模型再增加n_estimators个新的基学习器。

Out-of-bag error (OOBE)

• 在Bagging中,每个基学习器只在原始数据集的一部分上训练, 所以可以不用交叉验证,直接用包外样本上的误差(out-of-bag error)来估计它的泛化误差/测试误差。

单次测试数据

正确率估计: 11/15*100% = 73.33%

基学习器数目

- 在Bagging中,通常基学习器的数目越多,效果越好,但测试时间与训练时间也会随之增加。
 - 当树的数量超过一个临界值之后,算法的效果并不会很显著地变好。所以参数基学习器数目n_estimators不是模型复杂度参数,无需通过交叉验证来确定。

- 参数值建议:
 - 对分类问题,可设置基学习器数目为 \sqrt{D} ,其中D为特征数目;
 - 对回归问题,可设置基学习器数目为D/3。

⋙ 随机森林(Random Forest)

- 由于只是训练数据有一些不同,对决策树算法进行Bagging得到的多棵树高度相关,因此带来的方差减少有限。
- 随机森林通过
 - •随机选择一部分特征
 - •随机选择一部分样本
- 降低树的相关性
- 随机森林在很多应用案例上被证明有效,但牺牲了可解释性
 - •森林:多棵树
 - •随机:对样本和特征进行随机抽取

>> Scikit-Learn中的随机森林

- Scikit-Learn中实现了两种包含随机树的森林
 - 随机森林 (Random Forests)
 - 极度随机森林(Extremely Randomized Trees)
- 极度随机森林组合比随机森林更随机
 - 在分裂时, 随机森林寻找特征最有判别力的阈值。
 - 极度随机森林中,随机选取每个候选特征的阈值,然后从这些随机 选取的阈值中寻找最佳阈值。
 - 极度随机森林对方差的减少会更多一些,但偏差可能增大一点点。

>> 随机森林超参数调优

- 随机森林模型参数众多,且涉及随机操作,有时在分类任务中很多 时候不同类别的样本数目不均衡,在超参数调优时需慎重。
- 一般来说,先调含随机性的参数
 - 先初调"子采样率"(subsample)和"分裂时考虑的最大特征数"(max features)
 - 再调叶节点最小样本数" (min_samples_leaf)和 "分裂所需最小样本数 " (min_samples_split)
- 再调无随机性的参数:
 - "最大深度" (max_depth)或 "最大叶节点数" (max_leaf_nodes)

推荐阅读: 使用sklearn进行集成学习——实践

- ▶ 决策树▶ 随机森林

The End