

Tecnológico Nacional de México Instituto Tecnológico de Tijuana

MÉTODOS NUMÉRICOS

IV SEMESTRE

Formulario (U2)

C. Abraham Jhared Flores Azcona 19211640

Profesor: Ing. Tonallí Cuauhtemoc Galícia Lopez

1. Soluciones a sistemas de ecuaciones lineales

En todos se muestra la fórmula matemática o algorítmo y su vaga representación en Excel.

1.1. Teoría

Es algebra lineal (la parte de resolver sistemas de ecuaciones lineales).

A grandes rasgos, primero ocupamos saber si los valores de la diagonal de coeficientes del sistema son los valores mayores de sus filas correspondientes y que las iteraciones converjan a un valor determinado. Por el afán de la simplicidad, se desarrolla una solución para un sistema de ecuaciones de tres variables.

$$ax_{1} + bx_{2} + cx_{3} = d x_{1} = \frac{d}{a} - \frac{b}{a}x_{2} - \frac{c}{a}x_{3}$$

$$ex_{1} + fx_{2} + gx_{3} = h \rightarrow x_{2} = \frac{h}{f} - \frac{e}{f}x_{1} - \frac{g}{f}x_{3}$$

$$ix_{1} + jx_{2} + kx_{3} = l x_{3} = \frac{l}{k} - \frac{i}{k}x_{1} - \frac{j}{k}x_{2}$$

Donde los coeficientes $a,b,c,e,f,g,h,i,j,k,l \in \mathbb{R}.$

1.2. Jacobi

Para fines de brevedad y simplicidad α = anterior y σ = siguiente. Checar videos para no confundir con Gauss-Seidel.

• Fórmula para x_1 :

$$x_{1\sigma} = \frac{d}{a} - \frac{b}{a}x_{2\alpha} - \frac{c}{a}x_{3\alpha}$$

• Fórmula para x_2 :

$$x_{2\sigma} = \frac{h}{f} - \frac{e}{f}x_{1\alpha} - \frac{g}{f}x_{3\alpha}$$

• Fórmula para x_3 :

$$x_{3\sigma} = \frac{l}{k} - \frac{i}{k} x_{1\alpha} - \frac{j}{k} x_{3\alpha}$$

• En Excel:

-Para x_1: =(<d>/<a>) -(/<a>) *<celda_x2_anterior>-(<c>/<a>) *<celda_x3_anterior>

1.3. Gauss-Seidel

Para fines de brevedad y simplicidad ρ = reciente y σ = siguiente. Checar videos para no confundir con Jacobi.

• Fórmula para x_1 :

$$x_{1\sigma} = \frac{d}{a} - \frac{b}{a}x_{2\rho} - \frac{c}{a}x_{3\rho}$$

• Fórmula para x_2 :

$$x_{2\sigma} = \frac{h}{f} - \frac{e}{f}x_{1\rho} - \frac{g}{f}x_{3\rho}$$

• Fórmula para x_3 :

$$x_{3\sigma} = \frac{l}{k} - \frac{i}{k} x_{1\rho} - \frac{j}{k} x_{3\rho}$$

• En Excel:

2. Derivada numérica

En todos se muestra la fórmula matemática o algorítmo y su vaga representación en Excel.

2.1. Teoría

La tres formulas vistas de este tema son tomadas de la derivada por definición:

$$f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$$

Como la interpretación del límite incluye valores intangibles (infinitesimales) se necesita computar a la misma sin el límite. Generalmente, el valor de h es muy cercano a cero.

2.2. Hacia al frente

Si se puede describir vulgarmente, es la formula de la derivada sin el límite, tal cual. x_i es un valor cualquiera para x.

• Fórmula para $f'(x_i)$:

$$f'(x_i) \approx \frac{f(x_i + h) - f(x_i)}{h}$$

• Fórmula para Excel:

=
$$(\langle celda_f(xi+\langle h \rangle) \rangle - \langle celda_f(x_i) \rangle)/\langle h \rangle$$

2.3. Central

Se calcula con el supuesto de que x_i está "en medio" de la derivada. x_i es un valor cualquiera para x.

• Fórmula para $f'(x_i)$:

$$f'(x_i) \approx \frac{f(x_i + h) - f(x_i - h)}{2h}$$

• Fórmula para Excel:

=
$$(\langle celda_f(xi+\langle h \rangle) \rangle - \langle celda_f(x_i-\langle h \rangle) \rangle)/(2*\langle h \rangle)$$

2.4. Hacia atrás

Se calcula con el supuesto de que el valor de x_i es después de h. x_i es un valor cualquiera para x.

• Fórmula para $f'(x_i)$:

$$f'(x_i) \approx \frac{f(x_i) - f(x_i - h)}{h}$$

• Fórmula para Excel:

=
$$(\langle celda_f(xi) \rangle - \langle celda_f(xi - \langle h \rangle) \rangle)/\langle h \rangle$$