Sensor Networks Routing

Vahid Mavaji

Computer Engineering Department
Sharif University of Technology
Summer 2005

Wireless Routing

- Many ad hoc wireless protocols use flooding for route discovery
 - AODV
 - ❖ DSR
- Sensor networks will be fairly dense so flooding and broadcast storm problems will have a significant negative impact
- Methods to reduce broadcast storm
 - Gossip
 - Virtual Backbone

Algorithm for Virtual Backbone

Overview

- Build a minimum connected dominating set (MCDS)
 - ➤ Definition: dominating set subset of nodes, V` such that all other nodes, V V` are adjacent to some node in V`.
 - Definition: connected there is a path between any pair of nodes in the graph

Two Phases

- Construct a maximal independent set (MIS)
 - Definition: set of nodes such that no nodes are adjacent
 - Through the following construction each node contained in the MIS is exactly two hops from all others
- Construct a dominating tree
 - Definition: dominating set that also forms a tree

MIS

- Assume a rooted spanning tree T is given
- ☐ Each node has the following state
 - X1 Number of neighbors whose levels have not been set
 - X2 Number of children who have not reported completion
 - levelList records levels of all neighbors
 - Y number of lower-ranked neighbors

MIS Messages

- LEVEL broadcasted down tree
 - Append sender's ID and level to levelList
 - Decrement X1
 - If sender is parent
 - Set your level to be sender's level + 1
 - ❖ If X1 == 0
 - > Set y, number of lower-ranked neighbors, from levelList
 - ❖ If X2 == 0 and level has been determined
 - Send LEVEL-COMPLETE message to parent
- □ LEVEL COMPLETE directed up tree
 - Decrement X2
 - If X2 becomes 0
 - Reset X2 to number of children
 - Send LEVEL-COMPLETE message to parent

Example

ID	Level	X1	X2	levelList	Υ
0	0	2	2	1,2;1,3	0
1	2	3	0	1,2;1,3	0
2	1	3	1	0,0;1,3;2,1	1
3	1	2	0	0,0;1,2;2,1	2

MIS coloring

- Coloring to finish building MIS
 - Initially all nodes are marked white and root is marked black
 - At the end all nodes will be gray or black
- Root broadcasts a BLACK message
 - BLACK message received
 - Add sender's ID to blackList
 - If white
 - Set gray and broadcast GRAY message (contains level and ID)
 - GRAY message received
 - If sender rank is lower
 - Decrement Y
 - If Y == 0
 - Set black and broadcast BLACK message

MIS coloring cont.

- When a leaf is set gray or black
 - Send MARK-COMPLETE to parent
- When MARK-COMPLETE received
 - Decrement X2
 - ❖ If X2 == 0
 - Send MARK-COMPLETE to parent
- When X2 of root is 0 the coloring is complete

Dominating Tree T*

- Node state
 - ❖ Z boolean
 - Initialized to 0
 - Set to 1 after node joins T*
 - Parent variable for ID
 - Initially empty
 - Set to the parent in T*
 - childrenList list of Ids
 - Initially empty

Dominating Tree cont.

- Root of T* is (gray) neighbor of root of T that has largest number of black neighbors
- To find this node root of T resets X1 and broadcasts QUERY message and maintains
 - Root variable
 - Degree variable
- When QUERY is received
 - REPORT is sent to sender that contains
 - Number of black neighbors
- When REPORT is received
 - Decrement X1
 - If number of black neighbors in REPORT > Degree
 - Set Degree
 - Set Root
- When X1 == 0 at root of T
 - Send a ROOT message to the newly found root of T*

Dominating Tree cont

- When ROOT received
 - Set Z to 1
 - Broadcast INVITE2
- The rest of T* is built in the following manner
 - INVITE2 received
 - \rightarrow Black node with z == 0
 - Set z to 1
 - Parent to sender's ID
 - Send JOIN to Parent
 - Broadcast INVITE1
 - INVITE1 received
 - \rightarrow Gray node with z == 0
 - Set z to 1
 - Parent to the sender's ID
 - Send JOIN to Parent
 - Broadcast INVITE2
 - JOIN receive
 - Add sender's ID to childList

Dominating Tree cont.

■ The connect dominating set is the internal vertices of T*

Example 2

Example 2 cont.

Performance

- Since all messages were at most broadcasted locally and no messages need repeating
 - Messaging complexity O(n)
 - ❖ Time complexity O(n)
- However to build the initial rooted spanning tree using leader election requires
 - Messaging O(n log n)
 - ❖ Time O(n)
- Overall performance is dominated by initial tree construction

Advantages

- Use virtual backbone to reduce messaging
 - On-demand routing over the backbone will remove the need for broadcast flooding

References

- Next Century Challenges: Mobile Networking for "Smart Dust" by J.M. Kahn, R. H. Katz, K. S. J. Pister
- □ Distributed Construction of Connected DominatingSet in Wireless Ad Hoc Networks by Peng-Jun Wan, Khaled M. Alzoubi, Ophir Frieder
- □ http://wwwbsac.eecs.berkeley.edu/~warneke/SmartDust