An Observer's view of Magnetars

Chryssa Kouveliotou NASA's MSFC

Magnetars are magnetically powered NS

- ♣ ~29 sources to date: 23 confirmed, 5 candidates, 1 RPP; 11 in 2008-2014
- **4**All but two (LMC, SMC) are MW sources
- \clubsuit Discovered in X/ γ -rays/radio; radio, optical and IR observations Short, soft repeated bursts
- $+P = [2-11] s, P \sim [10^{-11}-10^{-13}] s/s$
- $\star \tau_{spindown}(P/2 P) = 2-220 \text{ kyrs}$
- **4** B~[1-10]×10¹⁴ G (mean surface dipole field: $3.2 \times 10^{19} \text{JPP}$) **BUT**: SGRs J185246.6+003317, B< 4.1×10^{13} G; 0418+5729, B=6.2 × 10^{12} G; 1822.3-1606, B~2.0 × 10^{13} G
- Luminosities range from L~10³²⁻³⁶ erg/s
- No evidence for binarity

The magnetar conjecture

The neutron star is powered by its super strong B-field = 10^{14-15} G. To create such fields requires the collapse of a fast rotating star (1-3 ms) with very high convection rates (magnetic Reynolds number ~ 10^{17}). Ideal efficiency can generate ~ 10^{16} G (Duncan and Thompson 1992, 1993).

However: The magnetic energy has to be less than the gravitational binding energy of the neutron star (Lai 2001) providing an upper limit of:

$$\frac{4\pi R^3}{3}\left(\frac{B^2}{8\pi}\right) \stackrel{<}{{}_\sim} \frac{GM^2}{R}.$$

$$B \lesssim 10^{18} \left(\frac{M}{1.4 \ M_{\odot}} \right) \left(\frac{R}{10 \ \text{km}} \right)^{-2} \ \text{G}.$$

NS populations comprising Magnetars

Soft Gamma Repeaters (SGRs)

Anomalous X-ray Pulsars (AXPs)

Dim Isolated Neutron Stars (DINs)

Compact Central X-ray Objects (CCOs)

Rotation Powered Pulsars (PSRs J1846-0258 & J1622-4950)

IDEALLY we should call them all MGC XXXX±YYYYY as in MaGnetar Candidate followed by coordinates in RA, Dec

Magnetar detection missions

IPN: WIND, 2001 Mars Odyssey, INTEGRAL, RHESSI, Swift, MESSENGER, Suzaku, AGILE, and Fermi

Fermi

Magnetar detection rates

Olausen & Kaspi, ApJ 2014

Magnetar Distribution in our Galaxy

- NEW: GBM
 Bursts detected
 since Fermi
 launch
 SYNERGY:
 Swift-Fermi RXTE-IPN
- Old source reactivation
- SGRs
- AXPs

CRADLE

Kouveliotou et al. 2011

Magnetar States

Quiescent

- Active
 - Several 100s of bursts (storms) 4 sources
 - Giant Flares (3 sources one each)
 - Few 10s of bursts (3 sources)
 - <10 bursts (10 sources)
 - No bursts (4 sources)

Quiescent Emission Properties

Magnetar Timing Properties

From the quiescent pulsed X-ray emission we can calculate:

The minimum surface dipole field in vacuum:

B = 3.2×10^{19} (PP)^{1/2} G (minimum magnetic field strength in vacuum);

The spindown luminosity:

$$E = 4\pi 2I P/P^3 (I = 10^{45} g cm^2);$$

The characteristic age:

$$T_c = P/2P$$

p-pdot Diagram

Olausen & Kaspi, ApJ 2014

Burst effects - or not ...

SGR 1806-20

SGR J1745-2900

Woods et al 2002

Kaspi et al. 2014

Outburst effect in the persistent flux

SGR 1900+14

Woods et al. 2002

Outburst effect in the pulse profile

Spectral Properties

Most spectra are best fit with an absorbed PL + BB

Active Emission Properties: BURSTS

GBM Magnetar Project: 16 papers + GBM 5-yr Magnetar Burst Catalog

Magnetar	Active Period	Triggers	Comments
SGR J0501+4516	Aug/Sep 2008	26	New source at Perseus arm
<i>SG</i> R J1550-5418	Oct 2008 Jan/Feb 2009 Mar/Apr 2009 June 2013	7 117/331+ 14 1	Known source - first burst active episodes
SGR J0418+5729	June 2009	2	New source at Perseus arm
<i>SG</i> R 1806-20	Mar 2010	1	Old source - reactivation
AXP 1841-045	Feb 2011 June/July 2011	3 4	Known source - first burst active episodes
<i>SG</i> R 1822-1606	July 2011	1	New source in galactic center region
AXP 4U0142+61	July 2011	1	Old source - reactivation
1E 2259+586	April 2012	1	Old source - reactivation
Unconfirmed Origin	2008-2013	21	Multiple error boxes include new source 3XMM J185246.6+003317

Unknown source locations

SGR J1550-5418 (AXP 1E1547.0-5408)

- ◆ P = 2.069s
- Φ P = 2.318 × 10⁻¹¹ s/s and B = 2.2 × 10¹⁴ G
- ◆ Near IR detection, Ks = 18.5±0.3
- ◆ GBM triggered on 132 events from the source in three episodes; 2008 October, 2009 January & March. Once more on 2013 June.
- ◆ Only three other sources have exhibited in the past such "burst storms": SGR 1806-20, SGR 1900+14, SGR 1627-41
- \bullet T₉₀ burst duration = 155 (10) ms for 353 (unsaturated) bursts

SGR J1550 - 5418: Temporal

SGR J1550 - 5418: Spectral

SGR J1550 - 5418: Spectral

All triggers: temporal properties

Unknown event avg T_{90} = 61 ms (known avg ~100 ms)

All triggers: comparative properties

BURST ENERGETICS

1550-5418

Fluence: $7 \times 10^{-9} - 1 \times 10^{-5} \, \text{erg/cm}^2$

 $E=(2\times10^{37}-3\times10^{40}) d_5 erg$

Flux: $8 \times 10^{-7} - 2 \times 10^{-4} \text{ erg/cm}^2 \text{ s}$

L: $5 \times 10^{38} - 1 \times 10^{41} \text{ erg/s}$

Total Energy Release: 6.6x10⁴¹d₅ erg (8-200 keV)

1806-20: 3.0×10³⁶-4.9×10³⁹erg

1900+14: 7×10³⁵-2×10³⁹erg

1627-41: 10³⁸-10⁴¹ erg

0501 + 4516: $2 \times 10^{37} - 1 \times 10^{40}$ erg

 $1E2259+586: 5\times10^{34}-7\times10^{36}erg$

Time resolved spectroscopy of the 50 brightest bursts from SGR J1550-5418

Younes et al. 2014

Selection Criteria for the initial sample of 63 bursts:

Fluence (8-200 keV) > 10^{-6} erg/cm² Average flux (8-200 keV) > 10^{-5} erg/cm² s

- · Two thermally emitting regions during bursts
 - Highly coupled with energy equipartition between the two
 - · kT_high: Could be thought of as the footprints of the plasma fireball.
 - kT_low: more complicated to interpret! —
 Representing the outer surface layer of the plasma?
 - \cdot $R^2 kT^4$ relation places the plasma close to the surface of the NS.

New trends - conclusions

OMPT:

- E_{peak} flux correlation: break at 10⁻⁵ erg cm⁻² s⁻¹
- index flux correlation break at same flux

2BB:

- high-kT: R² increases & kT decreases with flux
 - → adiabatic cooling of fireball
- low-kT:
 - < 10^{-5.5} erg cm⁻² s⁻¹; R² increases & kT constant with flux
 - > $10^{-5.5}$ erg cm⁻² s⁻¹: R² saturates & kT increases with flux
 - saturation R = 30 km \rightarrow maximum fireball R \rightarrow internal magnetic field > 4.5×10^{15} G
- flux dependence of R² kT correlation

OVERALL

- Since the Fermi launch, GBM has detected bursts from 8 sources: one third of the total population in five years!
- 2. The GBM magnetar burst spectra provide the first evidence for an unusual hardness E_{peak} flux relationship.
- 3. Evidence for higher energetic content in SGR bursts than in AXP bursts.
- 4. Power of high-time resolution spectral studies of magnetar bursts:
 - Track the evolution of the emitting regions
 - · Put to test the emission from a photon-pair plasma fireball
 - · Prediction of intrinsic parameters of the system

What Next?

The next five years of Magnetar observations:

- Population studies of magnetars
- Understand the links between PSRs Magnetars DINS
- Systematic searches for seismic vibrations in magnetar burstsindependent B-field measurement
- Giant flare detection becomes a strong possibility (for a rate of 1/ source/10yrs, we expect one in the next three years - last was in 2004)
- Confirm pulsed emission breaks >100 keV will constrain E_{max} of particles and localization of emission

Overarching theoretical issues:

- Localize the burst energy injection possibly on or near the NS surface to determine the injection mechanism
- Detection of gravitational waves from magnetar Giant Flares
- Determination of the magnetic Eddington limit

Synergy with new observatories:

NuSTAR, LIGO, LOFAR, AstroSAT, SVOM, GEMS

Serendipitous Discoveries:

Always welcome!

The GBM Magnetar Team

- C. Kouveliotou (NASA/MSFC, USA), G. Younes (USRA, USA), S. Guiriec (UoMD, USA), A. von Kienlin (MPE, Germany)
- > M. Baring (Rice University, USA)
- E. Gogus, Y. Kaneko (Sabanci University, Turkey)
- > A. Watts, A. van der Horst, D. Huppenkothen, M. van der Klis, R. Wijers, T. van Putten (U. of Amsterdam, The Netherlands)
- > J. Granot (The Open University, Israel)
- > J. McEnery, N. Gehrels, A. Harding (NASA/GSFC, USA)