# General Units:

| Mass            | Kg               |
|-----------------|------------------|
| Energy          | J (joule)        |
| Length/Distance | M                |
| Velocity        | m/s              |
| Acceleration    | m/s <sup>2</sup> |
| Force           | N                |
| Time            | S                |
| Power           | W (watt)         |

# **Equations:**

- Efficiency = 
$$\frac{useful\ energy\ output}{total\ energy\ input} \times 100$$

# Law of Conservation of Energy:

Energy can neither be created or destroyed, it is either stored or transferred.

# Energy Types:

| <b>Energy Stores</b>    | Energy Transfers                            |
|-------------------------|---------------------------------------------|
| Chemical                | Mechanical (force moves through distance)   |
| Kinetic                 | Electrical (charge moves through potential) |
| Sound                   | Heating (temperature difference)            |
| Elastic Potential       | Radiation (light, microwaves, sound, etc)   |
| Gravitational Potential |                                             |
| Magnetic                |                                             |
| Electrostatic           |                                             |
| Nuclear                 |                                             |
| Thermal                 |                                             |

## Efficiency:

$$Efficiency = \frac{Useful Energy Output}{Energy Input} \times 100\%$$

## Sankey Diagrams:



## Heat Transfers:

- Moves from Hot to Cold (temp. difference from warmer area to cooler area)

#### Conduction

- Particles close together transfer heat (in SOLID and LIQUID)
- Energy transfer by vibration
- As metals are heated, particles vibrate, and particles can transfer the energy to neighbors
- Delocalized electrons also move faster (kinetic energy) which makes heat energy transfer more efficiently in Metals.
- (Insulators do not have free electrons, therefore are bad conductors)

## Convection (convection current)

- Occur in LIQUID and GAS (fluids)
- The cooler the denser (sinks)
- The hotter the less dense (rises)
- Hot fluids are more spread out, and therefore are less dense

## Radiation (thermal radiation)

- Travels by infrared waves (electromagnetic waves) ex. Sun heats Earth surface.
- Infrared waves can travel through a vacuum
- They can be reflected and absorbed (object will warm up if absorbed)
- Shiny material emits the least.

Matt Black → White → Silver (best emitter) (worst emitter) (worst absorber)

#### Thermal Insulators:

- Poor Conductors
- Ex. Plastics, Wood, Ceramics, Polystyrene, Air (when trapped and not moving).

## Vacuum Flasks:

- Lid prevents Convection currents from escaping (gas, liquid)
- Vacuum between outer and inner layer prevents heat movement by Conduction
- Silver inner surface prevent heat leaving or enter by Radiation

## Heat Loss from Houses:

- Thermogram shows distribution of heat over surface of an object.
- **Windows**: Double glazing has air trapped between two glass panes reducing heat loss by Conduction. Removing air and making a vacuum makes it more effective. However, it is expensive, and difficult to break in emergencies.
- **Walls:** A cavity (empty space btw/ two layers) traps air reducing and heat loss by Conduction. Plastic foam insulation pumped in the cavity prevents Convection.
- **Roof**: Warm air continues to rise, and therefore roof needs to be insulated to prevent heat loss by Convection. Loft insulation contains trapped air reducing heat loss through roof.
- Radiators: Radiator produces infrared radiation, which can be absorbed by walls which can escape. Placing a Shiny foil between the wall and radiator reflects the heat.
- **Doors:** A draught (movement of air due to Convection current) can occur by gaps under doors and around windows. Draught excluders can be used to close the gaps.
- **Curtains**: Curtains can prevent heat from leaving through small gaps by convection. They also prevent heat loss by radiation as curtains are opaque.

## Payback Time:

- Time it takes for cost to be equaled by savings made from reduced energy costs.

payback time (in years) = 
$$\frac{\text{cost of insulation}}{\text{saving each year}}$$

## Cost-effectiveness:

- Comparison of annual savings and cost of insulation.

## KE and GPE:

- GPE lost = KE gain (if friction and air resistance not applied)
- Total amount of Energy stays the same.

## **Gravitational Potential Energy:**

- Greatest at the highest point.

gravitational potential energy = mass 
$$\times$$
 gravitational field strength  $\times$  height 
$$GPE = m \times g \times h$$

## Kinetic Energy:

- Greatest at the lowest point.

Kinetic energy = 
$$\frac{1}{2} \times mass \times speed^{2}$$
  
 $KE = \frac{1}{2} \times m \times v^{2}$ 

#### Work:

- Transfer of Energy (j)
- Depends on the size of the force and distance.
- Work done = the energy transferred.

$$work done = force \times distance \ moved$$
  
 $W = F \times d$ 

## Power:

- The rate at which energy is transferred.
- The rate at which work is done.

$$power = \frac{work \ done}{time \ taken}$$