Hugo Marquerie 13/02/2025

Esperanza de una función de una variable aleatoria

Proposición 1. Sea $g: \mathbb{R} \longrightarrow \mathbb{R}$ medible (Borel) $y X: \Omega \longrightarrow \mathbb{R}$ una variable aleatoria

$$\implies \mathbb{E}[g(X)] = \int_{\mathbb{R}} g(t) \, \mathrm{d}\mu_X(t).$$

Demostración: Dividiremos la demostración en pasos:

1. Consideramos primero $g = \mathbb{1}_A$, con $A \in \mathcal{B}(\mathbb{R})$, entonces $g(X) = \mathbb{1}_A(X)$

$$\implies \mathbb{E}[g(X)] = \int_{\Omega} \mathbb{1}_{A}(X(\omega)) \, d\mathbb{P}(\omega) = \int_{\Omega} \mathbb{1}_{\{X(\omega) \in A\}} \, d\mathbb{P}(\omega)$$
$$= \mathbb{P}(X \in A) = \mu_{X}(A) = \int_{\mathbb{R}} \mathbb{1}_{A}(t) \, d\mu_{X}(t) = \int_{\mathbb{R}} g(t) \, d\mu_{X}(t).$$

2. Por tanto, si $g = \sum_j \alpha_j \mathbbm{1}_{E_j}$ es simple, entonces por linealidad de la integral:

$$\mathbb{E}\left[g(X)\right] = \int_{\Omega} g(X(\omega)) \, d\mathbb{P}(\omega) = \int_{\Omega} \left(\sum_{j=1}^{n} \alpha_{j} \mathbb{1}_{E_{j}}(X(\omega))\right) d\mathbb{P}(\omega) = \sum_{j=1}^{n} \alpha_{j} \int_{\Omega} \mathbb{1}_{E_{j}}(X(\omega)) \, d\mathbb{P}(\omega)$$

$$= \sum_{j=1}^{n} \alpha_{j} \int_{\mathbb{R}} \mathbb{1}_{E_{j}}(t) \, d\mu_{X}(t) = \int_{\mathbb{R}} \left(\sum_{j=1}^{n} \alpha_{j} \mathbb{1}_{E_{j}}(t)\right) d\mu_{X}(t) = \int_{\mathbb{R}} g(t) \, d\mu_{X}(t).$$

3. Entonces, si g es medible no negativa, por un lema técnico, $\exists (s_n)_{n\in\mathbb{N}}$ una sucesión no decreciente de funciones simples tales que $\forall t \in \mathbb{R} : \lim s_n(t) = g(t)$, entonces por convergencia monótona:

$$\mathbb{E}\left[g(X)\right] = \int_{\Omega} g(X(\omega)) \, d\mathbb{P}(\omega) = \int \lim_{n \to \infty} s_n(X(\omega)) \, d\mathbb{P}(\omega)$$

$$\stackrel{\text{TCM}}{\stackrel{}{=}} \lim_{n \to \infty} \int s_n(X(\omega)) \, d\mathbb{P}(\omega) = \lim_{n \to \infty} \int s_n(t) \, d\mu_X(t) \stackrel{\text{TCM}}{\stackrel{}{=}} \int g(t) \, d\mu_X(t).$$

4. Finalmente, si g es medible arbitraria, entonces $g = g^+ - g^-$, con g^+, g^- medibles no negativas, y por linealidad de la integral:

$$\int_{\mathbb{R}} g(t) d\mu_X(t) = \int_{\mathbb{R}} g^+(t) d\mu_X(t) - \int_{\mathbb{R}} g^-(t) d\mu_X(t) = \mathbb{E} \left[g^+(X) \right] - \mathbb{E} \left[g^-(X) \right] = \mathbb{E} \left[g(X) \right].$$