

Applications to AES, Ascon, CLEFIA, SKINNY, PRESENT, KNOT, TWINE, WARP,

LBlock, Simeck, and SERPENT

Hosein Hadipour Patrick Derbez Maria Eichlseder Lorentz Center, 22 April, 2024 - Leiden, Netherlands

Research Gap and Our Contributions

- Research Gap
 - **②** How to formulate the correlation for more than one S-box layer?
 - ❷ How to (efficiently) find good DL distinguishers?
- Contributions
 - ☑ Generalizing the DLCT framework [Bar+19] to handle multiple rounds
 - igspace Introducing an efficient method to search for DL distinguishers applicable to
 - Strongly aligned SPN primitives: AES, SKINNY
 - Weakly aligned SPN primitives: Ascon, SERPENT, KNOT, PRESENT
 - Feistel structures: CLEFIA, TWINE, LBlock, LBlock-s, WARP
 - AndRX designs: Simeck

Research Gap and Our Contributions

- ᅤ Research Gap
 - **②** How to formulate the correlation for more than one S-box layer?
 - **②** How to (efficiently) find good DL distinguishers?
- Contributions
 - igotimes Generalizing the DLCT framework [Bar+19] to handle multiple rounds.
 - **♥** Introducing an efficient method to search for DL distinguishers applicable to:
 - Strongly aligned SPN primitives: AES, SKINNY
 - Weakly aligned SPN primitives: Ascon, SERPENT, KNOT, PRESENT
 - Feistel structures: CLEFIA, TWINE, LBlock, LBlock-s, WARP
 - AndRX designs: Simeck

Outline

- 1 Boomerang Analysis
- 2 Differential-Linear Cryptanalysis
- 3 Generalized DLCT Framework
- 4 Differential-Linear Switches and Deterministic Trails
- 5 Automatic Tools to Search for DL Distinguishers
- 6 Contributions and Future Works

Boomerang Analysis

$$\Delta \longrightarrow \left[E : \mathbb{F}_2^n \to \mathbb{F}_2^n \right] \longrightarrow \nabla$$

$$0 < \mathbb{P}(\Delta \xrightarrow{E} \nabla) \ll 2^{-n}$$

$$\Delta \longrightarrow \boxed{E_u \qquad E_\ell} \longrightarrow \nabla$$

$$D = \mathbb{P}(\Delta_1 \xrightarrow{E_u} \Delta_2) \longrightarrow \Delta_2$$

$$D = \mathbb{P}(\nabla_2 \xrightarrow{E_u} \nabla_3) \longrightarrow \nabla_3$$

$$\nabla_2 \longrightarrow \boxed{E_\ell} \longrightarrow \nabla_3$$

Sandwiching the Differentials! [DKS10; DKS14]

Sandwiching the Differentials! [DKS10; DKS14]

$$\mathbb{P}(P_3 \oplus P_4 = \Delta_1) \approx p^2 \times r \times q^2$$
$$r = \mathbb{P}(\Delta_2 \rightleftharpoons \nabla_3)$$

Boomerang Connectivity Table (BCT) [Cid+18]

$$\mathrm{BCT}(\underline{\Delta_1}, \nabla_2) \coloneqq \#\{X \in \mathbb{F}_2^n \, | \, S^{-1}\left(S(X) \oplus \nabla_2\right) \oplus S^{-1}\left(S(X \oplus \underline{\Delta_1}) \oplus \nabla_2\right) = \underline{\Delta_1}\}$$

$$\mathbb{P}(\Delta_1 \rightleftarrows \nabla_2) = 2^{-n} \cdot \mathrm{BCT}(\Delta_1, \nabla_2)$$

$$\Delta_1 \longrightarrow \Delta_2$$

[DDV20; SQH19]

[Bou+20; DDV20]

- $\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \{x : S^{-1}(S(x) \oplus \nabla_2) \oplus S^{-1}(S(x \oplus \Delta_1) \oplus \nabla_2) = \Delta_1\}, \ \mathrm{BCT}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1,$

[WP19]

LBCT $(\Delta_1, \nabla_1, \nabla_2) = \#\{x : x \in \mathcal{X}_{BCT}(\Delta_1, \nabla_2) \cap \mathcal{X}_{DDT}(\nabla_1, \nabla_2)\}$

[DDV20; SQH19]

[Bou+20; DDV20]

- $\mathcal{X}_{\mathtt{DDT}}(\Delta_1, \Delta_2) = \{x : S(x) \oplus S(x \oplus \Delta_1) = \Delta_2\}, \quad \mathtt{DDT}(\Delta_1, \Delta_2) = \#\mathcal{X}_{\mathtt{DDT}}(\Delta_1, \Delta_2)$
- $\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \{x : S^{-1}(S(x) \oplus \nabla_2) \oplus S^{-1}(S(x \oplus \Delta_1) \oplus \nabla_2) = \Delta_1\}, \ \mathrm{BCT}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1,$

[DDV20; SQH19]

- $\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \{x : S^{-1}(S(x) \oplus \nabla_2) \oplus S^{-1}(S(x \oplus \Delta_1) \oplus \nabla_2) = \Delta_1\}, \ \mathrm{BCT}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1, \nabla_2) = \#\mathcal{X}_{\mathrm{BCT}}(\Delta_1,$
- - $\geq \mathtt{EBCT}(\Delta_1, \Delta_2, \nabla_1, \nabla_2) = \#\{x : x \in \mathcal{X}_{\mathtt{BCT}}(\Delta_1, \nabla_2) \cap \mathcal{X}_{\mathtt{DDT}}(\Delta_1, \Delta_2) \cap \mathcal{X}_{\mathtt{DDT}}(\nabla_1, \nabla_2) \}$ [Bou+20; DDV20]

Double Boomerang Connectivity Table (DBCT) [HB21]

- igotagraphi DBCT $^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} \mathtt{UBCT}(\Delta_1, \Delta_2, \nabla_2) \cdot \mathtt{LBCT}(\Delta_2, \nabla_2, \nabla_3)$
- igotimes DBCT $(\Delta_1,
 abla_3) = \sum_{\Delta_2}$ DBCT $^+(\Delta_1, \Delta_2,
 abla_3) = \sum_{
 abla_2}$ DBCT $^+(\Delta_1,
 abla_2,
 abla_3) = \sum_{
 abla_2}$ DBCT $^+(\Delta_1, \Delta_2,
 abla_3) = \sum_{
 abla_3}$ DBCT $^+(\Delta_1, \Delta_2,
 abla_$

Double Boomerang Connectivity Table (DBCT) [HB21]

- $oldsymbol{oldsymbol{eta}}$ DBCT $^{\vdash}(\Delta_1,\Delta_2,
 abla_3) = \sum_{
 abla_2}$ UBCT $(\Delta_1,\Delta_2,
 abla_2) \cdot$ LBCT $(\Delta_2,
 abla_2,
 abla_3)$
- \bigcirc DBCT $(\Delta_1, \nabla_3) = \sum_{\Delta_2} DBCT^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} DBCT^{\dashv}(\Delta_1, \nabla_2, \nabla_3).$

Double Boomerang Connectivity Table (DBCT) [HB21]

- igotagraphi DBCT $^{\vdash}(\Delta_1, \Delta_2, \nabla_3) = \sum_{\nabla_2} \text{UBCT}(\Delta_1, \Delta_2, \nabla_2) \cdot \text{LBCT}(\Delta_2, \nabla_2, \nabla_3)$

Application of GBCT [HB21]

Application of GBCT [HB21]

$$\begin{split} \text{DBCT}_{\text{total}} &= \text{DBCT}^{\vdash}(A_5, B_9, c_5) \cdot \text{DBCT}^{\vdash}(B_9, C_{12}, d_1) \cdot \text{DBCT}^{\dashv}(E_1', f_{12}', g_9') \cdot \text{DBCT}^{\dashv}(F_5', g_9', h_5) \\ \text{Pr}_{\text{total}} &= \text{Pr}(d_1 \xleftarrow{2 \text{ DDT}} f_{12}') \cdot \text{Pr}(c_5 \xleftarrow{3 \text{ DDT}} f_{12}') \cdot \text{Pr}(C_{12} \xrightarrow{2 \text{ DDT}} E_1') \cdot \text{Pr}(C_{12} \xrightarrow{3 \text{ DDT}} F_5') \\ r &= 2^{-8 \cdot n} \cdot \sum_{B_9} \sum_{C_{12}} \sum_{g_9'} \sum_{f_{12}'} \sum_{c_5} \sum_{d_1} \sum_{E_1'} \sum_{F_5'} \text{DBCT}_{\text{total}} \cdot \text{Pr}_{\text{total}}. \end{split}$$

Differential-Linear Cryptanalysis

Differential-Linear (DL) Attack [LH94]

- $\blacksquare \quad \mathbb{P}(\Delta_{\mathrm{i}} \xrightarrow{E_u} \Delta_m) = p$
- $\qquad \mathbb{C}(\lambda_m \xrightarrow{E_\ell} \lambda_{\mathrm{o}}) = q$
- Assumptions ($\Delta X = X_1 \oplus X_2$):
 - 1. E_u , and E_ℓ are statistically independent
 - 2. $\mathbb{P}(\lambda_m \cdot \Delta X = 0) = 1/2$ when $\Delta X \neq \Delta_m$
- $\mathbb{C} \left(\lambda_0 \cdot C_1 \oplus \lambda_0 \cdot C_2 \right) = (-1)^{\lambda_m \cdot \Delta_m} \cdot pq^2 = \pm pq^2$

Differential-Linear Attack Revisited [BLN14; BLN17]

- Assumptions:
 - 1. E_u , and E_ℓ are statistically independent
- $\mathbb{C}(\lambda_{o}\cdot C_{1}\oplus\lambda_{o}\cdot C_{2})=\sum_{\Delta X,\Lambda X}\mathbb{C}(\Lambda X\cdot\Delta X)\cdot\mathbb{C}^{2}(\Lambda X,\lambda_{o})$

Sandwich Framework for DL Attack [DKS14; Bar+19]

- $\blacksquare \quad \mathbb{R}(\Delta X, \Lambda Y) = \mathbb{C}\left(\Lambda Y \cdot E_m(X) \oplus \Lambda Y \cdot E_m(X \oplus \Delta X)\right)$
- $\mathbb{C}(\lambda_{o} \cdot \Delta C) = \sum_{\Delta X, \Lambda Y} \mathbb{P}(\Delta_{i}, \Delta X) \cdot \mathbb{R}(\Delta X, \Lambda Y) \cdot \mathbb{C}^{2}(\Lambda Y, \lambda_{o})$

$$\blacksquare \quad \mathbb{R}(\Delta_m, \lambda_m) = r$$

$$\mathbb{C}(\lambda_{\circ} \cdot \Delta C) \approx prq^2$$

Sandwich Framework for DL Attack [DKS14; Bar+19]

- $\blacksquare \quad \mathbb{R}(\Delta X, \Lambda Y) = \mathbb{C}(\Lambda Y \cdot E_m(X) \oplus \Lambda Y \cdot E_m(X \oplus \Delta X))$
- $\qquad \mathbb{C}(\lambda_{o} \cdot \Delta C) = \sum_{\Delta X, \Lambda Y} \mathbb{P}(\Delta_{i}, \Delta X) \cdot \mathbb{R}(\Delta X, \Lambda Y) \cdot \mathbb{C}^{2}(\Lambda Y, \lambda_{o})$
- $\blacksquare \quad \mathbb{P}(\Delta_{\mathrm{i}} \xrightarrow{E_u} \Delta_m) = p$
- $\mathbb{R}(\Delta_m, \lambda_m) = r$
- $\blacksquare \quad \mathbb{C}(\lambda_m \xrightarrow{E_\ell} \lambda_{\mathrm{o}}) = q$
- $\mathbb{C}(\lambda_{o}\cdot\Delta C)pprox prq^{2}$

Differential-Linear Connectivity Table (DLCT)

Differential-Linear Connectivity Table (DLCT) [Bar+19]

For a vectorial Boolean function $S: \mathbb{F}_2^n \to \mathbb{F}_2^m$, the DLCT of S is a $2^n \times 2^m$ table whose rows correspond to the input difference Δ_i to S and whose columns correspond to the output mask λ_o of S. The entry at index (Δ_i, λ_o) is

$$\mathtt{DLCT}(\Delta_{\mathrm{i}}, \lambda_{\mathrm{o}}) = |\mathtt{DLCT}_0(\Delta_{\mathrm{i}}, \lambda_{\mathrm{o}})| - |\mathtt{DLCT}_1(\Delta_{\mathrm{i}}, \lambda_{\mathrm{o}})|,$$

$$\text{where } \mathtt{DLCT}_b(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) = \{x \in \mathbb{F}_2^n: \ \lambda_{\mathrm{o}} \cdot S(x) \oplus \lambda_{\mathrm{o}} \cdot S(x \oplus \Delta_{\mathrm{i}}) = b\}.$$

$$\mathbb{C}_{\mathtt{DLCT}}\left(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}\right)=2^{-n}\cdot\mathtt{DLCT}\left(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}\right)$$

Generalized DLCT Framework

Upper Differential-Linear Connectivity Table (UDLCT)

Upper Differential-Linear Connectivity Table (UDLCT)

For a vectorial Boolean function $S: \mathbb{F}_2^n \to \mathbb{F}_2^m$, the UDLCT of S is a $2^n \times 2^n \times 2^m$ table. The entry at index $(\Delta_i, \Delta_o, \lambda_o)$ is

$$\mathtt{UDLCT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}) = |\mathtt{UDLCT}_{0}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}})| - |\mathtt{UDLCT}_{1}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}})|,$$

where
$$\mathrm{UDLCT}_b(\Delta_\mathrm{i}, \Delta_\mathrm{o}, \lambda_\mathrm{o}) = \{x \in \mathbb{F}_2^n : S(x) \oplus S(x \oplus \Delta_\mathrm{i}) = \Delta_\mathrm{o} \text{ and } \lambda_\mathrm{o} \cdot \Delta_\mathrm{o} = b\}.$$

$$\mathbb{C}_{\mathtt{UDLCT}}\left(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}\right) = 2^{-n} \cdot \mathtt{UDLCT}\left(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}\right)$$

Lower Differential-Linear Connectivity Table (LDLCT)

Lower Differential-Linear Connectivity Table (LDLCT)

For a vectorial Boolean function $S: \mathbb{F}_2^n \to \mathbb{F}_2^m$, the LDLCT of S is a $2^n \times 2^m \times 2^m$ table. The entry at index $(\Delta_i, \lambda_i, \lambda_o)$ is

$$\texttt{LDLCT}(\Delta_i, \lambda_i, \lambda_o) = |\texttt{LDLCT}_0(\Delta_i, \lambda_i, \lambda_o)| - |\texttt{LDLCT}_1(\Delta_i, \lambda_i, \lambda_o)|,$$

where

$$\mathtt{LDLCT}_b(\Delta_{\mathbf{i}}, \lambda_{\mathbf{i}}, \lambda_{\mathbf{o}}) = \{x \in \mathbb{F}_2^n: \ \lambda_{\mathbf{i}} \cdot \Delta_{\mathbf{i}} \oplus \lambda_{\mathbf{o}} \cdot S(x) \oplus \lambda_{\mathbf{o}} \cdot S(x \oplus \Delta_{\mathbf{i}}) = b\}.$$

$$\mathbb{C}_{\texttt{LDLCT}}\left(\Delta_{i}, \lambda_{i}, \lambda_{o}\right) = 2^{-n} \cdot \texttt{LDLCT}\left(\Delta_{i}, \lambda_{i}, \lambda_{o}\right)$$

Extended Differential-Linear Connectivity Table (EDLCT)

Extended Differential-Linear Connectivity Table (EDLCT)

For a vectorial Boolean function $S: \mathbb{F}_2^n \to \mathbb{F}_2^m$, the EDLCT of S is a $2^n \times 2^n \times 2^m \times 2^m$ table. The entry at index $(\Delta_i, \Delta_o, \lambda_i, \lambda_o)$ is

$$\mathtt{EDLCT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{i}}, \lambda_{\mathrm{o}}) \!=\! |\mathtt{EDLCT}_{0}(\Delta_{\mathrm{i}}, \! \Delta_{\mathrm{o}}, \! \lambda_{\mathrm{i}}, \! \lambda_{\mathrm{o}})| - |\mathtt{EDLCT}_{1}(\Delta_{\mathrm{i}}, \! \Delta_{\mathrm{o}}, \! \lambda_{\mathrm{i}}, \! \lambda_{\mathrm{o}})|,$$

where
$$\mathrm{EDLCT}_b(\Delta_\mathrm{i}, \Delta_\mathrm{o}, \lambda_\mathrm{i}, \lambda_\mathrm{o}) = \{x \in \mathbb{F}_2^n : S(x) \oplus S(x \oplus \Delta_\mathrm{i}) = \Delta_\mathrm{o} \text{ and } \lambda_\mathrm{i} \cdot \Delta_\mathrm{i} \oplus \lambda_\mathrm{o} \cdot \Delta_\mathrm{o} = b\}.$$

$$\mathbb{C}_{\mathtt{EDLCT}}\left(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{i}}, \lambda_{\mathrm{o}}\right) = 2^{-n} \cdot \mathtt{EDLCT}\left(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{i}}, \lambda_{\mathrm{o}}\right)$$

Double Differential-Linear Connectivity Table (DDLCT)

Generalized DLCT Framework (GBCT)

How to formulate the correlation for more than 1 round?

Application of the Generalized DLCT Tables - AES (- differential - linear)

Application of the Generalized DLCT Tables - TWINE (- differential - linear)

$$\begin{split} \mathbb{C}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) &= \sum_{\Delta_{m}} \mathbb{P}_{\mathtt{DDT}}(\Delta_{\mathrm{i}},\Delta_{m}) \cdot \mathbb{C}_{\mathtt{DDLCT}}\left(\Delta_{m},\lambda_{\mathrm{o}}\right) \\ &= \sum_{\lambda_{m}} \mathbb{C}_{\mathtt{DDLCT}}\left(\Delta_{\mathrm{i}},\lambda_{m}\right) \cdot \mathbb{C}_{\mathtt{LAT}}^{2}\left(\lambda_{m},\lambda_{\mathrm{o}}\right). \\ \mathbb{C}_{tot}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}) &= \mathbb{C}^{2}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}). \end{split}$$

$Input/Output\ Differences/Linear-mask$	Formula	Exp. Correlation
$(\Delta_{ m i},\lambda_{ m o})=$ (0xb4,0x67)	$-2^{-7.66}$	$-2^{-7.64}$
$(\Delta_{ m i},\lambda_{ m o})=($ 0x02,0x02 $)$	$-2^{-7.92}$	$-2^{-7.93}$
$(\Delta_{ m i},\lambda_{ m o})=$ (0x55,0x55)	$-2^{-7.99}$	$-2^{-7.98}$
$(\Delta_{ m i},\lambda_{ m o})=({ t Oxbf},{ t Oxef})$	$-2^{-8.05}$	$-2^{-8.06}$
$(\Delta_{ m i},\lambda_{ m o})=({ t Oxfe},{ t 0x06})$	$-2^{-8.26}$	$-2^{-8.25}$
$(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=(\mathtt{0x4b},\mathtt{0x1a})$	$-2^{-8.43}$	$-2^{-8.44}$

Differential-Linear Switches and Deterministic Trails

Cell-Wise and Bit-Wise Switches

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

$\Delta \setminus \lambda$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	0	0	-16	0	0	0	0	0	0	0	0	0	0	0
2	16	-8	-8	0	0	0	8	-8	0	-8	0	8	0	0	0	0
3	16	0	-8	-8	0	-8	8	0	0	0	0	0	0	-8	0	8
4	16	0	-8	0	0	0	-8	0	-16	0	8	0	0	0	8	0
5	16	0	-8	0	0	0	-8	0	0	0	8	0	-16	0	8	0
6	16	-8	8	-8	0	0	-8	0	0	-8	0	0	0	0	0	8
7	16	0	8	0	0	-8	-8	-8	0	0	0	8	0	-8	0	0
8	16	0	0	0	-16	0	0	0	-16	0	0	0	16	0	0	0
9	16	-8	0	-8	16	-8	0	-8	0	8	0	-8	0	8	0	-8
a	16	0	0	8	0	8	0	0	0	0	-8	0	0	-8	-8	-8
b	16	8	0	0	0	0	0	8	0	-8	-8	-8	0	0	-8	0
С	16	0	0	-8	0	0	0	-8	16	0	0	-8	0	0	0	-8
d	16	-8	0	0	0	-8	0	0	0	8	0	0	-16	8	0	0
е	16	0	0	0	0	8	0	8	0	0	-8	-8	0	-8	-8	0
f	16	8	0	8	0	0	0	0	0	-8	-8	0	0	0	-8	-8

- Cell-wise switches: $DICT(A, 0) = DICT(0, \lambda) = 2^n \text{ for}$
 - $ext{DLCT}(\Delta_{\mathrm{i}},0)= ext{DLCT}(0,\lambda_{\mathrm{o}})=2^n$ for a $\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}$
- Bit-wise switches:

$$\mathrm{DLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=\pm 2^{n} \; \mathrm{for} \; \Delta_{\mathrm{i}},\lambda_{\mathrm{o}}
eq 0$$

• Example: $\mathbb{C}(9,4) = \frac{16}{16}$

Cell-Wise and Bit-Wise Switches

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	a	7	b	е	1	d	9	f	6	8	5	2	С	3

$\Delta \setminus \lambda$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	0	0	-16	0	0	0	0	0	0	0	0	0	0	0
2	16	-8	-8	0	0	0	8	-8	0	-8	0	8	0	0	0	0
3	16	0	-8	-8	0	-8	8	0	0	0	0	0	0	-8	0	8
4	16	0	-8	0	0	0	-8	0	-16	0	8	0	0	0	8	0
5	16	0	-8	0	0	0	-8	0	0	0	8	0	-16	0	8	0
6	16	-8	8	-8	0	0	-8	0	0	-8	0	0	0	0	0	8
7	16	0	8	0	0	-8	-8	-8	0	0	0	8	0	-8	0	0
8	16	0	0	0	-16	0	0	0	-16	0	0	0	16	0	0	0
9	16	-8	0	-8	16	-8	0	-8	0	8	0	-8	0	8	0	-8
a	16	0	0	8	0	8	0	0	0	0	-8	0	0	-8	-8	-8
ъ	16	8	0	0	0	0	0	8	0	-8	-8	-8	0	0	-8	0
С	16	0	0	-8	0	0	0	-8	16	0	0	-8	0	0	0	-8
d	16	-8	0	0	0	-8	0	0	0	8	0	0	-16	8	0	0
е	16	0	0	0	0	8	0	8	0	0	-8	-8	0	-8	-8	0
f	16	8	0	8	0	0	0	0	0	-8	-8	0	0	0	-8	-8

- Cell-wise switches: $\mathtt{DLCT}(\Delta_{\mathrm{i}},0) = \mathtt{DLCT}(0,\lambda_{\mathrm{o}}) = 2^n$ for all $\Delta_{\mathrm{i}},\lambda_{\mathrm{o}}$
 - Bit-wise switches:

$$\mathrm{DLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=\pm 2^{n} \; \mathrm{for} \; \Delta_{\mathrm{i}},\lambda_{\mathrm{o}}
eq 0$$

• Example: $\mathbb{C}(9,4) = \frac{16}{16}$

Cell-Wise and Bit-Wise Switches

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	a	7	b	е	1	d	9	f	6	8	5	2	С	3

$\Delta \setminus \lambda$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	0	0	-16	0	0	0	0	0	0	0	0	0	0	0
2	16	-8	-8	0	0	0	8	-8	0	-8	0	8	0	0	0	0
3	16	0	-8	-8	0	-8	8	0	0	0	0	0	0	-8	0	8
4	16	0	-8	0	0	0	-8	0	-16	0	8	0	0	0	8	0
5	16	0	-8	0	0	0	-8	0	0	0	8	0	-16	0	8	0
6	16	-8	8	-8	0	0	-8	0	0	-8	0	0	0	0	0	8
7	16	0	8	0	0	-8	-8	-8	0	0	0	8	0	-8	0	0
8	16	0	0	0	-16	0	0	0	-16	0	0	0	16	0	0	0
9	16	-8	0	-8	16	-8	0	-8	0	8	0	-8	0	8	0	-8
a	16	0	0	8	0	8	0	0	0	0	-8	0	0	-8	-8	-8
b	16	8	0	0	0	0	0	8	0	-8	-8	-8	0	0	-8	0
С	16	0	0	-8	0	0	0	-8	16	0	0	-8	0	0	0	-8
d	16	-8	0	0	0	-8	0	0	0	8	0	0	-16	8	0	0
е	16	0	0	0	0	8	0	8	0	0	-8	-8	0	-8	-8	0
f	16	8	0	8	0	0	0	0	0	-8	-8	0	0	0	-8	-8

- Cell-wise switches: $DLCT(\Delta_i, 0) = DLCT(0, \lambda_o) = 2^n$ for all Δ_i, λ_o
 - Bit-wise switches: $ext{DLCT}(\Delta_{\mathrm{i}},\lambda_{\mathrm{o}})=\pm 2^{n} ext{ for } \Delta_{\mathrm{i}},\lambda_{\mathrm{o}}
 eq 0$
 - Example: $\mathbb{C}(9,4) = \frac{16}{16}$

Deterministic Bit-Wise Differential Trails (Forward)

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	e	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

$\Delta_i \setminus \Delta_o$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
2	0	2	0	2	0	0	0	4	0	2	2	0	0	0	2	2
3	0	2	0	2	0	0	4	0	0	2	2	0	0	0	2	2
4	0	0	0	0	0	0	0	0	0	0	4	4	2	2	2	2
5	0	0	0	0	2	2	2	2	0	0	4	4	0	0	0	0
6	0	2	0	2	0	4	0	0	0	2	2	0	2	2	0	0
7	0	2	0	2	4	0	0	0	0	2	2	0	2	2	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
9	0	4	4	0	0	0	0	0	0	4	0	4	0	0	0	0
a	0	0	2	2	2	0	0	2	4	0	0	0	0	2	0	2
b	0	0	2	2	0	2	2	0	4	0	0	0	2	0	2	0
С	0	4	4	0	2	2	2	2	0	0	0	0	0	0	0	0
d	0	0	0	0	2	2	2	2	0	4	0	4	0	0	0	0
е	0	0	2	2	0	2	2	0	4	0	0	0	0	2	0	2
f	0	0	2	2	2	0	0	2	4	0	0	0	2	0	2	0

$$\Delta_{i} = (0,0,0,0) \xrightarrow{S} \Delta_{o} = (0,0,0,0)$$

$$\Delta_{i} = (0,0,0,1) \xrightarrow{S} \Delta_{o} = (?,1,?,?)$$

$$\Delta_{i} = (0,1,0,0) \xrightarrow{S} \Delta_{o} = (1,?,?,?)$$

$$\Delta_{i} = (1,0,0,0) \xrightarrow{S} \Delta_{o} = (1,1,?,?)$$

$$\Delta_{i} = (1,0,0,1) \xrightarrow{S} \Delta_{o} = (?,0,?,?)$$

$$\Delta_{i} = (1,1,0,0) \xrightarrow{S} \Delta_{o} = (0,?,?,?)$$

Deterministic Bit-Wise Linear Trails (Backward)

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

$\lambda_i \setminus \lambda_o$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	4	-4	0	-8	-4	-4	0	0	4	-4	-8	0	4	4
2	0	0	0	0	0	0	0	0	0	8	8	0	0	8	-8	0
3	0	-8	4	4	0	0	-4	4	0	0	-4	4	-8	0	-4	-4
4	0	4	0	4	0	4	8	-4	0	4	0	4	-8	-4	0	4
5	0	4	-4	-8	0	-4	-4	0	0	4	-4	8	0	-4	-4	0
6	0	-4	8	4	0	-4	0	-4	0	4	0	4	8	-4	0	4
7	0	4	4	0	0	-4	4	-8	0	-4	-4	0	0	4	-4	-8
8	0	0	0	0	0	0	0	0	0	0	8	8	0	0	8	-8
9	0	0	-4	4	8	0	-4	-4	0	0	4	-4	0	-8	-4	-4
a	0	8	0	8	0	-8	0	8	0	0	0	0	0	0	0	0
b	0	0	-4	4	-8	0	-4	-4	0	8	-4	-4	0	0	4	-4
С	0	4	0	4	0	4	-8	-4	8	-4	0	4	0	4	0	4
d	0	4	4	0	-8	4	-4	0	-8	-4	4	0	0	-4	-4	0
е	0	4	8	-4	0	4	0	4	8	4	0	-4	0	-4	0	-4
f	0	-4	-4	0	-8	-4	4	0	8	-4	4	0	0	-4	-4	0

$$\lambda_{i} = (1, ?, ?, 1) \stackrel{S}{\leftarrow} \lambda_{o} = (0, 1, 0, 0)$$

$$\lambda_{i} = (1, 1, ?, ?) \stackrel{S}{\leftarrow} \lambda_{o} = (1, 0, 0, 0)$$

$$\lambda_{i} = (0, ?, ?, ?) \stackrel{S}{\leftarrow} \lambda_{o} = (1, 1, 0, 0)$$

Bit-Wise Switches and Deterministic Trails

X	0	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
S(x)	4	0	а	7	b	е	1	d	9	f	6	8	5	2	С	3

$\Delta \setminus \lambda$	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
1	16	0	0	0	-16	0	0	0	0	0	0	0	0	0	0	0
2	16	-8	-8	0	0	0	8	-8	0	-8	0	8	0	0	0	0
3	16	0	-8	-8	0	-8	8	0	0	0	0	0	0	-8	0	8
4	16	0	-8	0	0	0	-8	0	-16	0	8	0	0	0	8	0
5	16	0	-8	0	0	0	-8	0	0	0	8	0	-16	0	8	0
6	16	-8	8	-8	0	0	-8	0	0	-8	0	0	0	0	0	8
7	16	0	8	0	0	-8	-8	-8	0	0	0	8	0	-8	0	0
8	16	0	0	0	-16	0	0	0	-16	0	0	0	16	0	0	0
9	16	-8	0	-8	16	-8	0	-8	0	8	0	-8	0	8	0	-8
a	16	0	0	8	0	8	0	0	0	0	-8	0	0	-8	-8	-8
b	16	8	0	0	0	0	0	8	0	-8	-8	-8	0	0	-8	0
С	16	0	0	-8	0	0	0	-8	16	0	0	-8	0	0	0	-8
d	16	-8	0	0	0	-8	0	0	0	8	0	0	-16	8	0	0
е	16	0	0	0	0	8	0	8	0	0	-8	-8	0	-8	-8	0
f	16	8	0	8	0	0	0	0	0	-8	-8	0	0	0	-8	-8

$$\Delta_{\mathrm{i}} = (0,0,0,1) \xrightarrow{S} \Delta_{\mathrm{o}} = (?,1,?,?)$$

$$\Delta_{\rm i} = (0,1,0,0) \xrightarrow{\mathcal{S}} \Delta_{\rm o} = (1,?,?,?)$$

$$\Delta_{\mathrm{i}} = (1,0,0,0) \xrightarrow{S} \Delta_{\mathrm{o}} = (1,1,?,?)$$

$$\Delta_{\mathrm{i}} = (1,0,0,1) \xrightarrow{S} \Delta_{\mathrm{o}} = (?,0,?,?)$$

$$\Delta_i = (1, 1, 0, 0) \xrightarrow{S} \Delta_0 = (0, ?, ?, ?)$$

$$\lambda_{i} \equiv (1, ?, ?, 1) \stackrel{S}{\leftarrow} \lambda_{0} \equiv (0, 1, 0, 0)$$

$$\lambda_{i} = (1, 1, 1, 1) \leftarrow \lambda_{0} = (0, 1, 0, 0)$$

$$\lambda_i = (1,1,?,?) \xleftarrow{\mathcal{S}} \lambda_o = (1,0,0,0)$$

$$\lambda_{\rm i} = (0, ?, ?, ?) \stackrel{S}{\leftarrow} \lambda_{\rm o} = (1, 1, 0, 0)$$

Automatic Tools to Search for DL Distinguishers

E

Usage of Our Tool

python3 attack.py -RU 6 -RM 10 -RL 6

r _u	r _m +	r _ℓ
E _u	E _m	$m{\mathcal{E}_\ell}$

Example: A 5-round DL Distinguisher for AES

$$r_0 = 1, r_m = 3, r_1 = 1, p = 2^{-24.00}, r = 2^{-7.66}, q^2 = 2^{-24.00}, prq^2 = 2^{-55.66}$$

Example: Distinguishers for up to 17 Rounds of TWINE

Comparing the data complexity of best boomerang and DL distinguishers

# Rounds	Boomerang [HNE22]	Differential-Linear	Gain
5	1	1	1
7	2 ^{3.20}	1	$2^{3.20}$
13	2 ^{34.32}	$2^{27.16}$	$2^{7.16}$
14	2 ^{42.25}	$2^{31.28}$	$2^{10.97}$
15	2 ^{51.03}	2 ^{38.98}	$2^{12.05}$
16	2 ^{58.04}	2 ^{47.28}	$2^{10.76}$
17	-	2 ^{59.24}	-

Example: Distinguishers for up to 17 Rounds of LBlock

Comparing the data complexity of best boomerang and DL distinguishers

# Rounds	Boomerang [HNE22]	Differential-Linear	Gain
5	1	1	1
7	$2^{2.97}$	1	$2^{2.97}$
13	2 ^{30.28}	2 ^{23.78}	$2^{6.50}$
14	2 ^{38.86}	2 ^{30.34}	$2^{8.52}$
15	2 ^{46.90}	2 ^{38.26}	2 ^{8.64}
16	$2^{57.16}$	2 ^{46.26}	$2^{10.90}$
17	-	2 ^{58.30}	_

Example: Distinguishers for up to 8 Rounds of CLEFIA

Comparing the data complexity of best boomerang and DL distinguishers

# Rounds	Boomerang [HNE22]	Differential-Linear	Gain
3	1	1	1
4	$2^{6.32}$	1	$2^{6.32}$
5	$2^{12.26}$	$2^{5.36}$	$2^{6.90}$
6	2 ^{22.45}	$2^{14.14}$	$2^{8.31}$
7	2 ^{32.67}	$2^{23.50}$	$2^{9.17}$
8	2 ^{76.03}	2 ^{66.86}	$2^{9.17}$

Application to Ascon-p(active difference unknown difference active mask unknown mask)

Application to SERPENT

■ □: Experimentally verified

Cipher	#R	\mathbb{C}		Ref.
	3	$2^{-0.68}$	√	This work
	4	$2^{-12.75}$		[DIK08]
	4	$2^{-5.54}$	\checkmark	This work
SERPENT	5	$2^{-16.75}$		[DIK08]
SERPENI	5	$2^{-11.10}$	\checkmark	This work
	8	$2^{-39.18}$		This work
	9	$2^{-56.50}$		[DIK08]
	9	$2^{-50.95}$		This work

Application to Simeck

■ □: Experimentally verified

Cipher	#R	\mathbb{C}		Ref.
	7	1	✓	This work
Simeck-32	14	$2^{-16.63}$		[ZWH24]
	14	$2^{-13.92}$	\checkmark	This work

Cipher	#R	\mathbb{C}		Ref.
	8	1	√	This work
	17	$2^{-22.37}$		[ZWH24]
	17	$2^{-13.89}$	\checkmark	This work
Simeck-48	18	$2^{-24.75}$		[ZWH24]
	18	$2^{-15.89}$		This work
	19	$2^{-17.89}$		This work
	20	$2^{-21.89}$		This work

Cipher	#R	\mathbb{C}		Ref.
	10	1	√	This work
	24	$2^{-38.13}$		[ZWH24]
C:I- 64	24	$2^{-25.14}$		This work
Simeck-64	25	$2^{-41.04}$		[ZWH24]
	25	$2^{-27.14}$		This work
	26	$2^{-30.35}$		This work

Contributions and Future Works

Contributions and Future Works

- Contributions
 - We generalized the DLCT framework from one S-box layer to multiple rounds
 - We proposed an automatic tool for finding optimum DL distinguishers
 - We applied our tool to almost any design paradigm
- Future works
 - A Extedning the application of our tool to other primitives, e.g., ARX
 - A Extending our tool to a unified model for finding complete attack (key recovery)
 - : https://ia.cr/2024/255

Bibliography I

- [Bar+19] Achiya Bar-On et al. **DLCT: A New Tool for Differential-Linear**Cryptanalysis. EUROCRYPT 2019. Vol. 11476. LNCS. Springer, 2019, pp. 313–342. DOI: 10.1007/978-3-030-17653-2_11.
- [BLN14] Céline Blondeau, Gregor Leander, and Kaisa Nyberg. **Differential-Linear Cryptanalysis Revisited**. FSE 2014. Ed. by Carlos Cid and Christian Rechberger.
 Vol. 8540. LNCS. Springer, 2014, pp. 411–430. DOI:
 10.1007/978-3-662-46706-0_21.
- [BLN17] Céline Blondeau, Gregor Leander, and Kaisa Nyberg. Differential-Linear Cryptanalysis Revisited. J. Cryptol. 30.3 (2017), pp. 859–888. DOI: 10.1007/s00145-016-9237-5.

Bibliography II

- [Bou+20] Hamid Boukerrou et al. On the Feistel Counterpart of the Boomerang Connectivity Table Introduction and Analysis of the FBCT. IACR Trans. Symmetric Cryptol. 2020.1 (2020), pp. 331–362. DOI: 10.13154/T0SC.V2020.I1.331–362.
- [Cid+18] Carlos Cid et al. Boomerang Connectivity Table: A New Cryptanalysis Tool. EUROCRYPT 2018. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821. LNCS. Springer, 2018, pp. 683–714. DOI: 10.1007/978-3-319-78375-8_22.
- [DDV20] Stéphanie Delaune, Patrick Derbez, and Mathieu Vavrille. Catching the Fastest Boomerangs Application to SKINNY. *IACR Trans. Symmetric Cryptol.* 2020.4 (2020), pp. 104–129. DOI: 10.46586/TOSC.V2020.I4.104–129.

Bibliography III

- [DIK08] Orr Dunkelman, Sebastiaan Indesteege, and Nathan Keller. A Differential-Linear Attack on 12-Round Serpent. INDOCRYPT 2008. Ed. by Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das. Vol. 5365. LNCS. Springer, 2008, pp. 308–321. DOI: 10.1007/978-3-540-89754-5_24.
- [DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. CRYPTO. Vol. 6223. LNCS. Springer, 2010, pp. 393–410. DOI: 10.1007/978-3-642-14623-7_21.
- [DKS14] Orr Dunkelman, Nathan Keller, and Adi Shamir. A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony. J. Cryptol. 27.4 (2014), pp. 824–849. DOI: 10.1007/s00145-013-9154-9.

Bibliography IV

- [HB21] Hosein Hadipour and Nasour Bagheri. Improved Rectangle Attacks on SKINNY and CRAFT. IACR Trans. Symmetric Cryptol. 2021.2 (2021), pp. 140–198. DOI: 10.46586/TOSC.V2021.I2.140–198.
- [HNE22] Hosein Hadipour, Marcel Nageler, and Maria Eichlseder. Throwing Boomerangs into Feistel Structures Application to CLEFIA, WARP, LBlock, LBlock-s and TWINE. *IACR Trans. Symmetric Cryptol.* 2022.3 (2022), pp. 271–302. DOI: 10.46586/TOSC.V2022.I3.271–302.
- [LH94] Susan K. Langford and Martin E. Hellman. Differential-Linear Cryptanalysis. CRYPTO '94. Vol. 839. Springer, 1994, pp. 17–25. DOI: 10.1007/3-540-48658-5_3.

Bibliography V

- [SQH19] Ling Song, Xianrui Qin, and Lei Hu. Boomerang Connectivity Table Revisited.

 Application to SKINNY and AES. IACR Trans. Symmetric Cryptol. 2019.1
 (2019), pp. 118–141. DOI: 10.13154/TOSC.V2019.I1.118–141. URL:
 https://doi.org/10.13154/tosc.v2019.i1.118–141.
- [Wag99] David A. Wagner. **The Boomerang Attack**. FSE. Vol. 1636. LNCS. Springer, 1999, pp. 156–170. DOI: 10.1007/3-540-48519-8_12.
- [WP19] Haoyang Wang and Thomas Peyrin. Boomerang Switch in Multiple Rounds. Application to AES Variants and Deoxys. IACR Trans. Symmetric Cryptol. 2019.1 (2019), pp. 142–169. DOI: 10.13154/TOSC.V2019.I1.142–169.

Bibliography VI

[ZWH24] Yanyan Zhou, Senpeng Wang, and Bin Hu. MILP/MIQCP-Based Fully Automatic Method of Searching for Differential-Linear Distinguishers for SIMON-Like Ciphers. *IET Information Security* 2024 (2024). DOI: 10.1049/2024/8315115.

Properties of Generalized DLCT Tables - I

- DLCT $(\Delta_{i}, \lambda_{o}) = \sum_{\Delta_{o}} \text{UDLCT}(\Delta_{i}, \Delta_{o}, \lambda_{o})$
- $\quad \quad \text{UDLCT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{o}}) = (-1)^{\Delta_{\mathrm{o}} \cdot \lambda_{\mathrm{o}}} \text{DDT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}})$
- $\qquad \texttt{LDLCT}(\Delta_{\mathrm{i}}, \lambda_{\mathrm{i}}, \lambda_{\mathrm{o}}) = (-1)^{\Delta_{\mathrm{i}} \cdot \lambda_{\mathrm{i}}} \texttt{DLCT}(\Delta_{\mathrm{i}}, \lambda_{\mathrm{o}})$
- $\qquad \mathtt{EDLCT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}}, \lambda_{\mathrm{i}}, \lambda_{\mathrm{o}}) = (-1)^{\lambda_{\mathrm{i}} \cdot \Delta_{\mathrm{i}} \oplus \lambda_{\mathrm{o}} \cdot \Delta_{\mathrm{o}}} \mathtt{DDT}(\Delta_{\mathrm{i}}, \Delta_{\mathrm{o}})$
- LDLCT $(\Delta_i, \lambda_i, \lambda_o) = \sum_{\Delta_o} \text{EDLCT}(\Delta_i, \Delta_o, \lambda_i, \lambda_o)$
- $\sum_{\Lambda_i} \text{LDLCT}(\Delta_i, \lambda_i, \lambda_o) = \text{LAT}^2(\lambda_i, \lambda_o)$

Properties of Generalized DLCT Tables - II

 $\qquad \mathtt{DDLCT}(\Delta_{\mathrm{i}}, \lambda_{\mathrm{o}}) = \textstyle \sum_{\Delta_{m}} \sum_{\lambda_{m}} \mathtt{UDLCT}\left(\Delta_{\mathrm{i}}, \Delta_{m}, \lambda_{m}\right) \cdot \mathtt{LDLCT}\left(\Delta_{m}, \lambda_{m}, \lambda_{\mathrm{o}}\right)$

$$\begin{split} \text{DDLCT}(\Delta_{\mathrm{i}}, \lambda_{\mathrm{o}}) &= \sum_{\Delta_{m}} \text{DDT}(\Delta_{\mathrm{i}}, \Delta_{m}) \cdot \text{DLCT}(\Delta_{m}, \lambda_{\mathrm{o}}) \\ &= 2^{-n} \sum_{\lambda_{-}} \text{DLCT}(\Delta_{\mathrm{i}}, \lambda_{m}) \cdot \text{LAT}^{2}(\lambda_{m}, \lambda_{\mathrm{o}}). \end{split}$$