2 0 2 1 (Voc)

Full Marks: 70

Time: 3 hours

The figures in the right-hand margin indicate marks

Answer from all the Groups as directed

Group—A

(Objective Type Questions)

- 1. Choose the correct alternative in each of the following: 5×1
 - (a) If $A = \{1, 2, 3, 4\}$, the relation $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (2, 3), (3, 4), (2, 4)\}$ defined on set A, then R is
 - (i) reflexive, symmetric and transitive
 - (ii) reflexive, transitive but not symmetric
 - (iii) symmetric, transitive but not reflexive
 - (iv) symmetric but neither reflexive nor transitive

K2(**J**)—600 (Turn Over)

- (b) The total numbers of generators of cyclic group $(96\mathbb{Z}, +)$ are
 - (i)

(iii) 95

(iv) 96

(c) If

$$\sin u = \frac{x^3 + y^2}{x - y}$$

then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$$

equal to

- (i) 0
- (ii) 2 cot *u*
- (júi) 2 tan u (iv) nu

$$\text{Lt}_{x\to 0} \frac{e^x + e^{-x} - 2}{x^2} \text{ is equal to}$$

(i) 0

- (ii) 1
- (iii) 2
- (iv) -3
- (e) When 5^{11} is divided by 7, then remainder is
 - (i) -3
- (ii) 3

(iii) 4

(iv) 7

- 2. Fill in the blanks in each of the 5×1 following:
 - (a) If sets A and B have n elements in common, how many elements do $A \times B$ and $B \times A$ have in common 2
 - (b) If each element, except the identity, of a group be of order 2, then group is ——.
 - (c) The diagonal elements of a real or complex skew-symmetric matrix are all ___1
 - (d) The g.c.d. (-272, -1479) is -6
 - (e) The nth differential coefficient of $\sin 2x \cdot \cos 3x$ is —

Group—B

(Short Answer Type Questions)

Answer any four questions:

4×5

- 3. If A, B, C be three sets, the prove that $(A-B)\times C = (A\times C)-(B\times C).$
- 4. Show that a cyclic group is necessarily Abelian. Show by an example that the converse may not be true.

K2(**J**)—600

(Turn Over)

5. Evaluate :

$$\lim_{x\to 0} \left[\frac{1}{x^2} - \frac{1}{\sin^2 x} \right]$$

- 6. Expand $e^x \sin^2 x$ by Maclaurian's 5 theorem up to x^4 .
- 7. If A be symmetric matrix of order m and P be an $m \times n$ matrix, then prove that $P^{T}AP$ is a symmetric matrix.
- 8. Find g.c.d. of 256 and 1166 and express g.c.d. as linear combination of 256 and 1166.

Group—C

(Long Answer Type Questions)

Answer any four questions:

4×10

- **9.** (a) Define equivalence relation. Prove that the intersection of two equivalence relation on a set is an equivalence relation.
 - (b) Define partition of a set. Write down all the partitions of the set $A = \{1, 2, 3\}$.

- 10. (a) Show that the set {5, 15, 25, 35} forms a group under multiplication modulo 40.
 - (b) Let R be a commutative ring. Then R is an integral domain if and only if $ab = ac \Rightarrow b = c$, where $a, b, c \in R$ and $a \neq 0$.
- 11. (a) If $y = x^n \log x$, then prove that—

$$y_n = n! \left[\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right]$$

(b) If
$$y = e^{a \sin^{-1} x}$$
, then prove that—

$$(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+a^2)y_n=0$$

12. (a) If

$$u = \sin^{-1}\left(\frac{x}{u}\right) + \tan^{-1}\left(\frac{y}{x}\right)$$

then show that-

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

(b) Find the equation of the tangent at (a, b) to the curve

$$\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$$

13. Test the consistency of the following set of simultaneous equations and solve them by matrix method:

$$x + 2y + 3z = 14$$
,
 $3x + y + 2z = 11$,
 $-2x + 3y + z = 11$

14. Define linear diophantine equation and find the general solution of 311x-112y=73.

98 -55 43 -59 59