CPU 스케줄링

CPU 스케줄링이란?

- 메모리에 있는 준비(Ready) 상태의 프로세스 중 하나를 선택해 CPU자원을 할당하는 것
- 최고의 성능을 내기 위해 자원을 프로세스에 얼마나 할당하는지 정책을 만드는 것
- 선점(Preemptive)스케줄링과 비선정(Non-Preemptive)스케줄링으로 분류된다.

선점 스케줄링이란?

- CPU가 어떤 프로세스에 의해 점유 중일 때, 우선 순위가 높은 프로세스가 CPU를 차지할 수 있다.
- 우선 순위가 높은 프로세스를 빠르게 처리해야할 경우 유용하다.
- 선점이 일어날 경우, 오버헤드가 발생하며 처리시간을 예측하기 힘들다.
- 선점스케줄링은 I/O요청, I/O응답, Interrup발생, 작업완료 등의 상황에서 스케줄링이 일어날 수 있다.

비선점 스케줄링이란?

- CPU가 한 개의 프로세스에 할당되면 프로세스가 종료 또는 대기상태로 전환해 CPU를 해제할 때까지 CPU를 점유하는 방법이다.
- 모든 프로세스에 대해서 공정한 처리가 가능하지만 긴급 응답을 요하는 작업에는 안 좋다.
- Convoy Effect : 짧은 작업이 긴 작업의 작업이 끝날 때까지 기다려야하는 문제점

스케줄링 종류

- 1. FCFS 스케줄링(선입선처리)
 - o 가장 단순한 스케줄링
 - o CPU 요청 순서대로 할당

- o 먼저 사용신청을 한 프로세스부터 차례로 CPU를 할당함
- *비선점 스케줄링*
 - P1, P2, P3 순으로 요청

	프로세스	버스트 시간	대기 시간	턴어라운드 시간
	P1	24	0	24
	P2	3	24	27
,	Р3	3	27	30
	평균	-	17	27

P1		P2	Р3
	24	27	30

- 평균 대기시간 = (0 + 24 + 27) / 3 = 17
- 평균 실행시간 = (24 + 3 + 3) / 3 = 10
- ㅇ 평균 반환시간 = (24 + 0 + 3 + 24 + 3 + 27) / 3 = 27

2. SJF 스케줄링(최단 작업 우선)

0

- 버스트 시간이 짧은 프로세스부터 CPU할당 및 우선 처리
- o 버스트 시간이 같으면 FCFS 스케줄링
- *비선점, 선점 모두 가능*

프로세스	버스트 시간	턴어라운드 시간	대기 시간
P1	6	9	3
P2	8	24	16
P3	7	16	9
P4	3	3	0
평균	-	13	7

- 평균 대기시간 = (3 + 16 + 9 + 0) / 4 = 7
- 평균 실행시간 = (6 + 8 + 7 + 3) / 4 = 6
- ㅇ 평균 반환시간 = (3 + 6 + 16 + 8 + 9 + 7 + 0 + 3) / 4 = 13

3. SRT 스케줄링(최단 잔여시간)

- 진행 중인 프로세스가 있어도 sleep 시키고 최단 잔여시간 프로세스에게 우선권을 부여 하는 방식
- 선점형SJF 방식

0

프로세스	도착시각	버스트 시간	종료시각	턴어라운드 시간	대기 시간
P1	00:00	8	00:17	17	9
P2	00:01	4	00:05	4	0
Р3	00:02	9	00:26	24	15
P4	00:03	5	00:10	7	2
평균	-	-	-	13	6.5

P1	P2	P4	P1	P3
1	5	10	17	26

- 평균 대기시간 = (9 + 0 + 15 + 2) / 4 = 6.5
- 평균 실행시간 = (8 + 4 + 9 + 5) / 4 = 6.5
- ㅇ 평균 반환시간 = (0 + 1 + 9 + 7 + 1 + 4 + 17 + 9 + 5 + 5) / 4 아닌가???

4. 우선순위 스케줄링(Priority Scheduling)

- 우선순위가 높은 프로세스에 CPU를 우선 할당하는 방식
- 우선순위가 같으면 FCFS 스케줄링 방식으로 함
- ㅇ 우선순위는 내부적/외부적 조건에 따라 정의도리 수 있음
 - 시간 제한, 메모리 요구량, 열린 파일의 수, 프로세스의 중요성, 자원사용 비용
- o 선점형, 비선점형 모두 가능

프로세스	버스트 시간	우선순위 ¹	턴어라운드 시간	대기 시간
P1	10	3	16	6
P2	1	1	1	0
Р3	2	4	18	16
P4	1	5	19	18
P5	5	2	6	1
평균	-	-	12	8.2

- ㅇ 평균 대기시간 = (6 + 0 + 16 + 18 + 1) / 5 = 8.2
- ㅇ 평균 실행시간 = (10 + 1 + 2 + 1 + 5) / 5 = 3.8
- o 평균 반환시간 = (6 + 10 + 0 + 1 + 16 + 2 + 18 + 1 + 1 + 5) / 5 = 12

5. 라운드로빈(Round-Robin) 스케줄링

- ㅇ 시분할 시스템을 위해 설계됨
- 시간 할당량 단위로 CPU를 할당
- ㅇ 알고리즘의 성능은 시간 할당량의 크기에 좌우됨
- o 시간할당량 = 4ms

프로세스	버스트 시간	턴어라운드 시간	대기 시간
P1	24	30	6
P2	3	7	4
P3	3	10	7
평균	-	15.67	5.67

P	1	P2	Р3	P1	P1	P1	P1	P1
	4	7	10	14	18	22	26	30

- 평균 대기시간 = (6 + 4 + 7) / 3 = 5.67
- 평균 실행시간 = (24 + 3 + 3) / 3 = 10
- 평균 반환시간 = (6 + 24 + 4 + 3 + 7 + 3) / 3 = 15.67

??

• SJF 반환시간 계산이 이해가 안됨