- 5. Martens, H. R. and D. R. Allen: Introduction to Systems Theory, Publishing Co., Columbus, Oh., 1969.
- 6. Zadah, L. A. and C. A. Desoer: Linear System Theory, The State McGraw-Hill, New York, 1963.
- 7. De Russo, P. M., R. J. Roy, and C. M. Close: State Variables for English New York, 1965.

ILLUSTRATIVE PROBLEMS

Linear, Continuous-Time, Constant Coefficients

- Four input-output transfer functions y(s)/u(s) are given. Describe the syster 3.1 state variable form:
 - (a) $1/(s + \alpha)$ (b) $(s + \beta)/(s + \alpha)$ (c) $(s + \beta)/(s^2 + 2\zeta \omega s + \omega^2)$

(d) $(s^2 + 2\zeta_1 \omega_1 s + \omega_1^2)/(s^2 +$ The solutions are obtained by writing the input-output differential equ simulation diagram, and selecting the integrator outputs as state variables.

- (a) The differential equation is $\dot{y} + \alpha y = u$. This is simulated in Figure $\dot{x} = -\alpha x + u$ and y = x.
- (b) The differential equation is $\dot{y} + \alpha y = \beta u + \dot{u}$. This is simulated in Figure $\dot{x} = -\alpha x + (\beta - \alpha)u$ and y = x + u.

Figure 3.29 (a) and (b)

(c) The differential equation is $\ddot{y} + 2\zeta\omega\dot{y} + \omega^2 y = \beta u + \dot{u}$, and is simulated state equations are $\dot{x}_1 = -2\zeta\omega x_1 + x_2 + u$, $\dot{x}_2 = -\omega^2 x_1 + \beta u$, and y = [1]

