K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Cascode Amplifier

 12^{th} July, 2020 Numericals

Numerical 1: A two stage circuit is shown in figure 1. Its BJT parameters are $\beta_1 = \beta_2 = 200$ and $V_{BE1} = V_{BE2} = 0.7$

- a. Calculate DC parameters i.e. $V_{B1},\,V_{B2},\,V_{E1},\,V_{E2}$, $V_{C1},\,V_{C2}$
- b. Calculate Input impedance of the circuit.
- c. Calculate output impedance of the circuit.
- d. Calculate voltage gain of the circuit.

Figure 1: Circuit 1

Solution:

DC ANALYSIS:

f=0, thus $X_C=\infty$, So we replace each capacitor with short circuit,

Figure 2: DC Equivalent Circuit

Assuming, I_{B1} , I_{B2} are very small

so,
$$I_{C1} = I_{C2} = I_{E1} = I_{E2}$$

Now,
$$V_{B1} = \frac{R_3}{R_1 + R_2 + R_3} \times V_{CC} = \frac{12k}{82k + 24k + 12k} \times 24 = \mathbf{2.44V}$$

And,
$$V_{B2} = \frac{R_2 + R_3}{R_2 + R_3 + R_1} \times V_{CC} = \frac{24k + 12k}{24k + 12k + 82k} \times 24 = 7.322V$$

$$V_{BE1} = V_{B1} - V_{E1}$$

$$V_{E1} = V_{B1} - V_{BE1} = 2.44 - 0.7 = \mathbf{1.74V}$$

$$V_{E1} = I_{E1}R_E$$

$$I_{E1} = \frac{1.74}{1.2 \times 10^3} = 1.45 \text{mA}$$

$$I_{C1} = I_{C2} = I_{E1} = I_{E2} = 1.45$$
mA

$$V_{C2} = V_{CC} - I_C R_C = 24 - (1.45 \times 10^{-3})(4.7 \times 10^3) = 17.185 \text{V}$$

$$V_{E2} = V_{B2} - V_{BE2} = 7.322 - 0.7 = 6.622V$$

$$V_{E2} = V_{C1} = \mathbf{6.622V}$$

$$V_{CE1} = V_{C1} - V_{E1} = 6.622 - 1.74 = 4.882V$$

$$V_{CE2} = V_{C2} - V_{E2} = 17.185 - 6.622 = 10.563V$$

Small Signal Parameters:

Since
$$I_{CQ1} = I_{CQ2}$$

$$r_{\pi} = r_{\pi 1} = r_{\pi 2}$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}} = \frac{200 \times 26 \times 10^{-3}}{1.45 \times 10^{-3}} = 3.586 \text{k}\Omega$$

$$g_m = g_{m1} = g_{m2}$$

$$g_m = \frac{I_{CQ}}{V_T} = \frac{1.45 \times 10^{-3}}{26 \times 10^{-3}} = 55.76 \text{mA/V}$$

Mid frequency AC equivalent circuit:

All the capacitors are replaced by short circuits and DC sources are replaces by open circuit.

Figure 3: AC mid frequency Equivalent Circuit

Input impedance:

$$Z_i = R_1 \parallel R_3 \parallel r_{\pi 1} = 24k \parallel 12k \parallel 3.589k = \mathbf{2.4760k\Omega}$$

Output impedance:

$$Z_o = R_C \mid\mid R_L = 4.7k \mid\mid 1k = 824.56\Omega$$

Finding out A_{VT} :

$$A_{VT} = A_{V1} \times A_{V2}$$

Where, A_{V1} is the gain of CE stage and A_{V2} is the gain of CB stage

Now,
$$A_{V1} = \frac{-g_m r_{\pi}}{1+\beta} = \frac{-55.76 \times 10^{-3} \times 3.586 \times 10^3}{1+200} = -0.994$$

Also,
$$A_{V2} = g_m(R_C \parallel R_L) = 55.76 \times 10^{-3} (1k \parallel 4.7k) = 45.977$$

$$A_{VT} = A_{V1} \times A_{V2} = -0.994 \times 45.977 = -45.7$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

Figure 4: Circuit Schematic

Figure 5: Input output waveform for stage $1\,$

Figure 6: Input output waveform for stage 2

Comparison between Theoretical and Simulated values:-

Parameter	Theoretical	Simulated
I_{C1}	1.45mA	1.3mA
I_{C2}	1.45mA	1.3mA
I_{E1}	$1.45 \mathrm{mA}$	$1.3 \mathrm{mA}$
I_{E2}	1.45mA	$1.3 \mathrm{mA}$
V_{C1}	6.622V	6.33V
V_{C2}	17.185V	18.03V
V_{E1}	6.622V	6.33V
V_{E2}	3.736V	3.943V
V_{B1}	2.44V	2.319V
V_{B2}	7.322V	7.11V
V_{CE1}	4.882V	4.79V
V_{CE2}	10.563V	11.7V
voltage gain of first stage	-0.994	-0.9884
voltage gain of second stage	45.977	40.82
overall voltage gain	-45.7	-40.4
input impedance	$2.476k\Omega$	_
output impedance	824.56Ω	_

Table 1: Numerical 1

Numerical 2 : A two stage circuit is shown in figure 7. Its EMOS parameters are $k_{n1} = k_{n2} = 1mA/V^2$ and $V_{TN1} = V_{TN2} = 1V$

- a. Calculate DC parameters i.e. $V_{G1},\ V_{G2},\ V_{GS1},\ V_{GS2}$, $V_{D1},\ V_{D2},\ V_{S1},\ V_{DS1},\ V_{DS2},\ I_{D1},\ I_{D2}$
- b. Calculate input impedance of the circuit.
- c. Calculate output impedance of the circuit.
- d. Calculate voltage gain of the circuit.

Figure 7: Circuit 2

Solution:

DC ANALYSIS:

f=0, thus $X_C=\infty$, So we replace each capacitor with short circuit,

Figure 8: DC Equivalent Circuit

$$V_{G1} = \frac{R_3}{R_1 + R_2 + R_3} \times V_{DD} = \frac{12k}{100k + 24k + 12k} \times 18 = 1.588V$$

$$V_{G2} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} \times V_{DD} = \frac{12k + 24k}{100k + 24k + 12k} \times 18 = \mathbf{4.764V}$$

$$V_{GS1} = V_{G1} - V_{S1} = 1.588 - I_{D1}R_S = 1.588 - 1000I_{D1}$$
1

$$I_{D1} = k_{n1}(V_{GS1} - V_{TN1})^2 = 1 \times 10^{-3}(V_{GS1} - 1)^2$$
2

$$V_{GS1} = 1.588 - (V_{GS1} - 1)^2$$

$$V_{GS1} = 1.588 - (V_{GS1}^2 - 2V_{GS1} + 1)$$

$$V_{GS1}^2 - V_{GS1} - 0.588 = 0$$

$$V_{GS1} = -0.415V$$
 or $1.415V$

But
$$V_{GS1} > V_D$$

$$V_{GS1} = 1.415V$$

$$I_{D1} = 1 \times 10^{-3} (1.415 - 1)^2 = (0.415)^2 \times 10^{-3} = 0.172 \text{mA}$$

$$I_{D1} = I_{D2} = \mathbf{0.172mA}$$

$$V_{D2} = V_{DD} - I_{D2}R_D = 18 - (0.172 \times 10^{-3})(3.3 \times 10^3) = 17.432V$$

$$V_{S1} = I_{D1}R_S = \mathbf{0.172V}$$

$$V_{GS1} = V_{GS2} = 1.415 V$$

Now,
$$V_{GS2} = V_{G2} - V_{S2}$$

$$V_{S2} = V_{G2} - V_{GS2} = 4.764 - 1.415 = 3.349V$$

$$V_{DS2} = V_{D2} - V_{S2} = 14.083 V$$

$$V_{D1} = V_{S2} = 3.349 V$$

$$V_{DS1} = V_{D1} - V_{S1} = 3.349 - 0.172 = 3.177 V$$

Small Signal Parameters:

$$g_{m1} = g_{m2} = 2k_n(V_{GS} - V_{TN}) = 2 \times 1 \times 10^{-3}(1.415 - 1) = \mathbf{0.83mA/V}$$

Mid frequency AC equivalent circuit:

Figure 9: AC mid frequency Equivalent Circuit

Here,
$$g_{m2}V_{gs2} = g_{m1}V_{gs1}$$

$$R_G = R_2 \mid\mid R_3$$

Input impedance:

$$Z_i = R_G = R_2 \mid\mid R_3 = 24k \mid\mid 12k = 8k\Omega$$

Output impedance:

$$Z_o = R_D \mid \mid R_L = 3.3k \mid \mid 10k = 2.481 \text{k}\Omega$$

Finding out A_{VT} :

$$A_{VT} = A_{V1} \times A_{V2}$$

Now,
$$A_{V1} = \frac{V_1}{V_S} = \frac{-V_{gs2}}{V_{gs1}} = -1$$

Also,
$$A_{V2} = \frac{V_o}{V_1} = \frac{-g_m V_{gs2} R_D \mid\mid R_L}{-V_{gs2}} = g_m(R_D \mid\mid R_L) = 0.83 \times 10^{-3} (33k||10k) = \mathbf{2.059}$$

$$A_{VT} = A_{V1} \times A_{V2} = -1 \times 2.059 = -2.059$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and the result is as follows:

Figure 10: Circuit Schematic

Figure 11: Input output waveform for stage 1

Figure 12: Input output waveform for stage 2

Comparison between Theoretical and Simulated values:-

Parameter	Theoretical	Simulated
V_{G1}	1.588V	1.588V
V_{D1}	3.349V	3.2V
V_{S1}	0.172V	0.0244V
I_{D1}	0.172 mA	$0.172 \mathrm{mA}$
V_{GS1}	1.415V	1.415V
V_{G2}	4.764V	4.764V
V_{D2}	17.4324V	17.43V
V_{S2}	3.349V	3.2V
I_{D2}	$0.172 \mathrm{mA}$	$0.172 \mathrm{mA}$
V_{GS2}	1.415V	1.415V
voltage gain of first stage	-1	-1
voltage gain of second stage	2.059	2.058
overall voltage gain	-2.059	-2.058
input impedance	$8k\Omega$	_
output impedance	2.481Ω	_

Table 2: Numerical 2
