:		
:		
;		
;		
;	A.5	
:	FPGA-LCD Interfacing	
:		
	: : : : : : : : : : : : : : : : : : : :	

BLOCK DIAGRAM

FUNCTION TABLE

rst	clk_12MHz / 65536 lcd_data		lcd_rs	lcd_en
1	Х	38h	0	Х
0	1	06h	0	1
0	1	0Ch	0	1
0	1	01h	0	1
0	1	50h (P)	1	1
0	↑	49h (I)	1	1
0	1	43h (C)	1	1
0	1	54h (T)	1	1
0	↑	20h ()	1	1

MAIN VHDL MODEL (MVM)

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity LCD_FSM is
Port ( rst: in std_logic;
                                      -- reset
      clk 12Mhz : in std logic;
                                      -- high freq. clock
      lcd rs : out std logic;
                                      -- LCD RS control
      lcd en : out std logic;
                                      -- LCD Enable
      lcd_data : out std_logic_vector(7 downto 0));
                                                      -- LCD Data port
end LCD_FSM;
architecture Behavioral of LCD FSM is
signal div: std logic vector(15 downto 0); --- delay timer 1
signal clk_fsm,lcd_rs_s: std_logic;
-- LCD controller FSM states
type state is (reset,func,mode,cur,clear,d0,d1,d2,d3,d4,hold);
signal ps1,nx : state;
signal dataout_s : std_logic_vector(7 downto 0); --- internal data command multiplexer
begin
---- clk divider -----
process(rst,clk_12Mhz)
begin
if(rst = '1')then
       div <= (others=>'0');
elsif( clk_12Mhz'event and clk_12Mhz ='1')then
       div <= div + 1;
       end if;
end process;
clk_fsm \le div(15);
---- Presetn state Register -----
process(rst,clk_fsm)
begin
if(rst = '1')then
       ps1
               <= reset;
elsif (rising_edge(clk_fsm)) then
       ps1
               <= nx;
end if;
end process;
```

```
---- state and output decoding process
process(ps1)
begin
case(ps1) is
      when reset =>
                   nx <= func;
                   lcd_rs_s <= '0';
                   dataout_s <= "00111000";
                                                   -- 38h
      when func
                   =>
                   nx
                        <= mode;
                   lcd rs s <= '0';
                   dataout_s <= "00111000";
                                                   -- 38h
      when mode
                   =>
                   nx <= cur;
                   lcd_rs_s <= '0';
                              <= "00000110";
                                                   -- 06h
                   dataout_s
      when cur
                   =>
                   nx
                        <= clear;
                   lcd_rs_s <= '0';
                   dataout s <= "00001100";
                                                   -- OCh curser at starting point of
line1
      when clear=>
                   nx <= d0;
                   lcd_rs_s <= '0';
                   dataout_s <= "00000001";
                                                   -- 01h
      when d0
                   =>
                              <= '1';
                   lcd_rs_s
                   dataout_s
                                <= "01010000";
                                                   -- P ( Decimal = 80 , HEX = 50 )
                   nx <= d1;
      when d1
                   =>
                   lcd_rs_s
                              <= '1';
                   dataout_s
                                <= "01001001";
                                                   -- I ( Decimal = 73 , HEX = 49 )
                   nx <= d2;
      when d2
                   =>
                   lcd_rs_s
                                <= '1';
                   dataout_s
                                <= "01000011";
                                                   -- C ( Decimal = 67 , HEX = 43 )
                   nx <= d3;
      when d3
                   =>
                   lcd rs s
                                <= '1';
                   dataout_s
                                <= "01010100"; -- T ( Decimal = 84 , HEX = 54 )
                   nx <= d4;
```

```
when d4
                       =>
                       lcd_rs_s
                                       <= '1';
                       dataout_s
                                       <= "00100000";
                                                              -- space ( Decimal = 32 , HEX = 20 )
                               <= hold;
        when hold
                       =>
                       lcd_rs_s
                                       <= '0';
                                       <= "00000000";
                       dataout_s
                                                              -- hold (Decimal = 32, HEX = 00),
NULL
                               <= hold;
                       nx
when others=>
                       nx
                               <= reset;
                                       <= '0';
                       lcd_rs_s
                       dataout_s
                                       <= "0000001";
                                                               -- CLEAR ( Decimal = 1 , HEX = 01 )
end case;
end process;
lcd_en <= clk_fsm;</pre>
lcd_rs <= lcd_rs_s;</pre>
lcd_data <= dataout_s;</pre>
end Behavioral;
```

RTL SCHEMATIC:

TECHNOLOGY SCHEMATIC The state of the s

SYNTHESIS REPORT

a) Device Utilization Summary:

* Final Report *

Final Results

RTL Top Level Output File Name : LCD_FSM.ngr Top Level Output File Name : LCD_FSM

Output Format : NGC
Optimization Goal : Speed
Keep Hierarchy : No

Design Statistics

IOs : 12

Cell Usage:

BELS : 58 GND : 1 INV : 1 LUT1 : 15 # LUT2 : 1 # LUT3 : 3 LUT4 : 4 : 15 MUXCY # MUXF5 : 1 # VCC : 1 XORCY : 16 # FlipFlops/Latches : 26 FDC : 25 FDP : 1 # Clock Buffers : 1 BUFGP : 1

Device utilization summary:

IO Buffers

OBUF

IBUF

Selected Device: 3s250epq208-5

Number of Slices: 15 out of 2448 0%

Number of Slice Flip Flops: 26 out of 4896 0%

Number of 4 input LUTs: 24 out of 4896 0%

: 11

: 10

: 1

Number of IOs: 12

Number of bonded IOBs: 12 out of 158 7% Number of GCLKs: 1 out of 24 4%

b) TIMING REPORT:

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT GENERATED AFTER PLACE-and-ROUTE.

Clock Information: 				
Clock Signal	Clock k	buffer(FF nar	ne) Load	l I
clk_12Mhz div_15	BUFG NONE(p	P s1_FSM_FFd	16 11) 10	1
INFO:Xst:2169 - HD	L ADVISOR - S sources. Plea	Some clock si se use the bu	gnals were uffer_type	e not automatically buffered by XST constraint in order to insert these ms.
Asynchronous Cont		formation:		
Control Signal	Buffe	r(FF name)	Load	I
rst 				
Timing Summary:	·			
Speed Grade: -5				
Minimum period: Minimum input ar Maximum output Maximum combir	rrival time bet required time	fore clock: No e after clock:	o path four 5.537ns	
Timing Detail:				
 All values displayed	in nanosecor	nds (ns)		

TESTBENCH VHDL MODEL (TVM)

```
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
ENTITY LCD_Test IS
END LCD_Test;
ARCHITECTURE behavior OF LCD_Test IS
  -- Component Declaration for the Unit Under Test (UUT)
  COMPONENT LCD_FSM
  PORT(
    rst: IN std logic;
    clk_12Mhz: IN std_logic;
    lcd_rs : OUT std_logic;
    lcd_en : OUT std_logic;
    lcd_data : OUT std_logic_vector(7 downto 0)
    );
  END COMPONENT;
 --Inputs
 signal rst : std_logic := '0';
 signal clk_12Mhz : std_logic := '0';
       --Outputs
 signal lcd_rs : std_logic;
 signal lcd_en : std_logic;
 signal lcd_data : std_logic_vector(7 downto 0);
 -- Clock period definitions
 constant clk_12Mhz_period : time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
 uut: LCD_FSM PORT MAP (
     rst => rst,
     clk_12Mhz => clk_12Mhz,
     lcd rs => lcd rs,
     lcd_en => lcd_en,
     lcd_data => lcd_data
    );
 -- Clock process definitions
 clk_12Mhz_process :process
 begin
```


PIN-LOCKING REPORT

PlanAhead Generated physical constraints

```
NET "clk_12Mhz" LOC = P80;

NET "rst" LOC = P204;

NET "lcd_rs" LOC = P48;

NET "lcd_en" LOC = P49;

NET "lcd_data[0]" LOC = P47;

NET "lcd_data[1]" LOC = P41;

NET "lcd_data[2]" LOC = P39;

NET "lcd_data[3]" LOC = P35;

NET "lcd_data[4]" LOC = P33;

NET "lcd_data[5]" LOC = P31;

NET "lcd_data[6]" LOC = P29;

NET "lcd_data[7]" LOC = P24;
```

CONCLUSION

Thus, we have:

- 1) Modeled a FPGA-LCD Interfacing using Behavioral Modeling Style.
- 2) Observed following Schematics: RTL & Technology Schematics generated Post-Synthesis.
- 3) Interpreted <u>Device Utilization Summary</u> in terms of <u>LUTs</u>, <u>SLICES</u>, <u>IOBs</u>, <u>Multiplexers</u> &D FFs used out of the available device resources.
- 4) Interpreted the <u>TIMING Report</u> in terms of Maximum combinational delay as indicative of the Maximum Operating Frequency.
- 5) Written a <u>TESTBENCH</u> to verify the functionality of FPGA-LCD Interfacing & verified the functionality asper the FUNCTION-TABLE, by observing <u>ISIM Waveforms</u>.
- 6) Used PlanAhead Editor for pin-locking.
- 7) <u>Prototyped</u> the FPGA <u>XC3S250EPQ208-5</u> to realize FPGA-LCD Interfacing & verified its operation by givingsuitable input combinations.