# The Case for Distance-Bounded Spatial Approximations

Eleni Tzirita Zacharatou

**TU Berlin** 

Ibrahim Sabek

MIT

Harish Doraiswamy

NYU

**Andreas Kipf** 

MIT

Varun Pandey

TU Munich

Volker Markl

TU Berlin



## **Visual Exploration of Mobility Data**



- Need: interactivity
- Approximate visualizations
- "Level-of-detail" exploration
- Imprecise GPS positions
- Fuzzy region boundaries

Distribution of taxi pickup locations per neighborhood in Manhattan



## Paradigm shift: approximate spatial data processing

## **Traditional Spatial Query Evaluation**



Imprecise geometric approximations

Expensive geometric tests



# **Spatial Query Evaluation Revisited**



Increase the geometric approximation precision

Make the precision tunable



### **Distance Bound**

 Bound on the Hausdorff distance between the approximate (purple) and the original polygon:

$$H(P_a, P) \leq \varepsilon$$





Geometry-independent, tunable precision



## Vision: Raster Approximations at the Core

#### **Data Access**

Novel indexes



#### **Query Optimization**

- Novel data representation & GPU-friendly operators
- Enabling fine-grained optimization



Novel

evaluation

strategies

## A Learned Index for Rasterized Points



Map raster cells to an array and learn their position



## **Containment Query Performance**

**COUNT Taxi rides (1.2 B points) WITHIN NYC census region (39,200 polygons)** 

Single-threaded, Intel Xeon Gold 6230 CPU @ 3.9 GHz turbo, 256 GB RAM



Sweet spot in the trade-off between precision and query time

# **Spatial Data Representation & Query Operators**

- Filter & Refine based processing
  - Monolithic operators
  - Geometry-specific implementations
  - Limited optimization options
- Approximate rasterization based processing
  - Geometry-agnostic





Unified representation of geometric objects

## **Geometry - Independent Operators**



Affine transformations

Common graphics operations supported by GPUs Enable finer-grained optimization over a wider set of options

# **Spatial Aggregation Query Evaluation**

SELECT COUNT(\*)
FROM taxi ride *T*, neighborhoods *N*WHERE *T*.pickup INSIDE *N*.geometry
GROUP BY *N*.id



Orders of magnitude speedup over typical evaluation strategies

## The Case for Distance-Bounded Spatial Approximations

Eleni Tzirita Zacharatou, Andreas Kipf, Ibrahim Sabek, Varun Pandey, Harish Doraiswamy, Volker Markl

- Approximate spatial data processing techniques need a distance bound
- Trade precision for interactivity
- Express spatial operators as graphics primitives and use modern GPUs



We envision novel spatial systems that employ distance-bounded spatial approximations at their core