PERIODICITY AND EXTREME VALUES

OBJECTIVES

- 1. Period of $f(x) = \sin(\frac{\pi x}{2}) + 2\cos(\frac{\pi x}{3}) \tan(\frac{\pi x}{4})$ is
 - a) 4
- b) 6 c) 12
- d) 24
- 2. Period of cot $(\frac{3-5x}{7})$ is
 - a) $-\frac{7\pi}{5}$ b) $\frac{5\pi}{7}$ c) $\frac{7\pi}{5}$ d) $\frac{14\pi}{5}$

- 3. Period of sec(x + 2x + 4x) is
 - a) 2π
- b) 14π c) $2\pi/7$ d) $\pi/7$
- **Period of tan** $(x + 8x + 27x + + n^3x)$ is
 - a) $\frac{8\pi}{n^2(n+1)^2}$ b) $\frac{4\pi}{n^2(n+1)^2}$
 - c) $\frac{2\pi}{n^2(n+1)^2}$ d) $\frac{4\pi}{n(n+1)}$
- 5. Period of $\sin(\frac{\pi}{3} x) \sin(\frac{\pi}{3} + x)$ is
 - a) $\pi/2$
- b) π c) $3\pi/2$ d) 2π
- Period of $\frac{\cot \frac{x}{4} + \tan \frac{x}{4}}{1 + \tan \frac{x}{2} \tan x}$ is
 - a) $\pi/2$
- b) π
- c) 4π
- d) 2π
- 7. Period of $3\sin^5 x + \cos^3 x$ is
 - a) π
- b) 2π c) $\pi/2$
- d) $3\pi/2$

The function whose period is 5π is 8.

a) Cosec (2x)

b) sec (5x)

c) tan(5x/2)

d) $\cot(x/5)$

The minimum and maximum values of $\cos \theta + 2\sqrt{2} \sin \theta$ is

a) -3, 3

b) 3, -3

c) [-3, 3]

d) [0, 3]

10. The maximum value of $3\cos\theta + 4\sin\theta$ is

a) 3

b) 4

c) 5

d) $\sqrt{5}$

11. The range of $f(x) = -3\cos\sqrt{3 + x + x^2}$ is

a) [-1, 1] b) [-2, 2] c) [-3, 3] d) [-4, 4]

12. The greatest (or) least value of $2\sin^2\theta + 4\csc^2\theta$ is

a) $2\sqrt{2}$

b) $4\sqrt{2}$

c) 2

13. Period of $\sin^4 x + \cos^4 x$ is

a) $\pi/2$

b) π

c) $3\pi/2$

d) 2π

14. Period of $\cos(x + 4x + 9x + \dots + n^2x)$ is

15. The minimum value of 5 cos x + $4\cos(\frac{\pi}{3} + x)$ + 8 is

a) 1

b) $\frac{1}{2}$

c) - 1

d) 15

16. The range of $\cos x + 4\sqrt{2} \sin(x - \frac{\pi}{4}) + 6$ is

a) [1, 11] b) [-1, 11] c) [2, 10] d) [10, 11]

17	Maximum	walna	օ ք 1		Qgin ²	. _2	2000	2	ia
17.	Maximum	vaiue	OI 1	+	8 SIN	\mathbf{X}	cos	X	ıs

- a) 3 b) -1 c) -8
- d) 9

18.
$$\frac{\sin^2 A + \sin A + 1}{\sin A} \ge \mathbf{K} \text{ then } \mathbf{K} =$$

- a) 2
- b) 1 c) 4
- d) 3

19. The period of $\frac{\sin nx}{\cos (x/n)}$ is 4π , where $n \in z^+$ then n =

- a) 1
- b) 2
- c) 3
- d) 4

20. Period of $\cos x \cos(120^{\circ} - x) \cos(120^{\circ} + x)$

- a) $^{2\pi}/_{3}$
- b) $^{\pi}/_{3}$
- c) π
- d) 2π

21. Period of $|\sin x|$. $|\cos x|$ is

- a) $\pi/2$
- b) π
- c) 4π
- d) 2π

22. Period of
$$|\cot x| + |\cos x| + |\tan x| + |\sin x|$$
 is

- a) π
- b) $\pi/2$ c) 2π
- d) $^{\pi}/_{4}$

23. Period of
$$\left(\frac{1}{3}\right)^{\sin x} + \left(\frac{1}{3}\right)^{\cos x}$$
 is

- a) π

- d) 2π

24. Period of 3x - [3x] is (where [.] denotes greatest integer function $\leq x$)

- a) ½
- b) 1
- c) 2 d) $^{1}/_{3}$

25. Period of sin(x - [x]) is

- a) π
- b) 2π
- c) 1 d) $\pi/2$

26. Period of sin(sin x) + sin(cos x) is

- a) π
- b) 2π c) $\pi/2$
- d) $\pi/4$

27.	Let $f(x) = \cos_{x}$	√p x. where p =	: [a] (integral pa	art). If the period	of $f(x)$ is π then $a \in$

- a) [4, 5]
- b) [4, 5) c) (4, 5] d) (4, 5)

28. The period of $\sin \frac{nx}{n!} - \cos \frac{nx}{(n+1)!}$ is

- a) Not defined
- b) 2(n!)

c) n!

d) 2((n+1)!)

29. The maximum value of $\frac{3}{5\sin x - 12\cos x + 19}$ is

- a) 1
- b) $\frac{1}{2}$
- c) 1/3

30. The range of
$$\log \log_{\sqrt{5}} \left[\sqrt{2} (\sin x - \cos x) + 3 \right]$$
 is

- a) [0, 2]
- b) [1, 2]
- c) [0, 3]
- d) [1, 3]

31. The minimum value of $2\cos x - 3\cos^2 x + 5$ is

- a) 1
- b) 0
- c) 1

32. The range of
$$\cos^2 x + \sin^4 x$$
 is

- a) $[^{1}/_{2}, 1]$ b) $[1, ^{3}/_{2}]$ c) $[^{3}/_{2}, 2]$ d) $[^{3}/_{4}, 1]$

33. The minimum value of
$$\sin x(\frac{1-\cos x}{\sin x} + \frac{\sin x}{1-\cos x})$$
 is

- b) 2
- c) 3
- d) 4

34. If $\sqrt{3} \sin x + \cos x$ is maximum, then x =

- a) $\pi/4$
- b) $\pi/_3$ c) $2\pi/_5$ d) $\pi/_2$

35. Range of
$$\sin^3 x + \cos^3 x$$
 is

- a) $\left[\frac{1}{\sqrt{2}}, 1\right]$ b) [1, 2] c) $\left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$ d) [-1, 1]

36. The period of $f(x) = \cos 3x + \sin \sqrt{3} x$ is

- a) Non defined
- b) $^{2\pi}/_{3}$

- c) $^{2\pi}/\sqrt{3}$
- d) $2\sqrt{3}\pi$

37. The period of $f(x) = |\sin x/2| + |\cos x|$ is

- a) 2π
- b) 3π
- c) 4π
- $d) \pi$

38. Period of $|\sin x| + |\cos x|$ is

- a) $\pi/2$
- b)
- **c**) $^{3\pi}/_{2}$
- d) 2π

39. The minimum and maximum values of $1 - 8 \sin^2 x \cos^2 x$ are

- a) $-\frac{1}{4}$, $\frac{1}{4}$ b) -4, 4 c) -1, 1 d) $-\frac{1}{8}$, $\frac{1}{8}$

40. The range of $\cos^2(\frac{2\pi}{3} - x) + \cos^2(\frac{2\pi}{3} + x)$ is

- b) $[1, \frac{3}{2}]$ c) $[\frac{3}{2}, 2]$ d) $[\frac{1}{2}, \frac{3}{2}]$

41. The range of $\sin^2 x + 4\sin x + 5$ lies in

- a) [2, 10]
- b) [-2, 10] c) [10, 5] d) [5, 10]

42. The value of $(\sin x + \cos x)^2 + \cos^2(\frac{\pi}{4} + x)$ lies is

- a) [0, 1]
- b) [0, 2] c) [1, 2]
- d) [0, 3]

43. The value of $\sec x + 2\cot 2x \sin x$ lies in

- a) [-1, 1] b) [-2, 2] c) [-3, 3] d) [-4, 4]

44. The extreme values of $\cos^6 x + \sin^6 x$ are

- a) ½, 1
- b) $\frac{7}{8}$, $\frac{9}{8}$ c) $\frac{3}{8}$, $-\frac{3}{8}$ d) $\frac{1}{4}$, $\frac{1}{4}$

45. Period of $\tan \theta + \tan \left(\theta + \frac{\pi}{3}\right) + \tan \left(\theta + \frac{2\pi}{3}\right)$ is

- a) $\pi/2$
- b) π
- c) 2π
- d) $\pi/3$

www.sakshieducation.com

- 46. The period of $\sin\left(\frac{2\pi x}{a}\right) + 3\cos\left(\frac{2\pi x}{b}\right)$ when a = 12, b = 9 is
 - a) 18
- b) 36
- c) 108
- d) 54
- **47.** The period of $f(x) = \sin \left| \left(\frac{3}{2} + \frac{5}{4} + \frac{7}{8} + \dots \right) \right| x$ is
 - a) $\pi/6$

- b) $\pi/3$ c) $\pi/5$ d) $2\pi/5$
- 48. The minimum value of $a^{\cos^2 x} + a^{\sin^2 x} \forall (a > 0)$ is
 - a) 2a
- b) $\sqrt{2}$ a c) $2\sqrt{a}$ d) \sqrt{a}
- 49. $2^{\sin x} + 2^{\cos x} \ge K$, then K =
 - a) 2
- b) $2^{\frac{1}{2}}$ c) $2^{1-\frac{1}{\sqrt{2}}}$ d) $2^{\frac{1}{\sqrt{2}}}$
- 50. In a triangle ABC $\cos A + \cos B + \cos C \le P$ then P =
- a) $\frac{1}{2}$ b) $\frac{1}{3}$ c) $\frac{3\sqrt{3}}{2}$ d) $\frac{3}{2}$
- 51. In a triangle ABC $\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge K$ then K =
 - a) 1
- b) 2
- d) 4
- 52. If the sides of a triangle inscribed in a given circle subtend angles α , β , γ at the centre then the minimum value of the A.M. of $\cos(\alpha + \pi/2)$, $\cos(\beta + \pi/2)$ and $\cos(\gamma + \pi/2)$ is

- a) $\frac{\sqrt{3}}{2}$ b) $-\frac{1}{2}$ c) $\frac{1}{2}$ d) $-\frac{\sqrt{3}}{2}$
- 53. The maximum value of $\cos \alpha_1$, $\cos \alpha_2$ $\cos \alpha_n$ under the restriction $\theta \le \alpha_1$, α_2 , α_3 , α_n $\leq \pi/2$ and cot α_1 , cot α_2 , cot $\alpha_n = 1$ is

- a) $\frac{1}{2^n}$ b) 1 c) $1/2^{n/2}$ d) $-\frac{1}{2^n}$

54. $\mathbf{A} \le \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta} \le \mathbf{B}$ then the values of $(\mathbf{A}, \mathbf{B}) =$

a)
$$(a + b, \sqrt{2(a^2 + b^2)})$$

b) (a,
$$\sqrt{a^2 + b^2}$$
)

c)
$$(\sqrt{a^2 + b^2}, b)$$

ANSWERS

- 1. c 2. c 3. c 4. b 5. b 6. c 7. b 8. d 9. a 10. c
- 11. c 12. b 13. a 14. a 15. a 16. a 17. a 18. d 19. b 20. a
- 21. a 22. b 23. d 24. d 25. c 26. b 27. b 28. d 29. b 30. a
- 31. b 32. d 33. b 34. b 35. d 36. a 37. a 38. a 39. c 40. a
- 41. a 42. c 43. b 44. a 45. d 46. b 47. d 48. c 49. c 50. d
- 51. a 52. d 53. c 54. a