Лабораторная работа №3

Математическое моделирование

Николаев Дмитрий Иванович

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы 4.1 Постановка задачи	8 9 13 14
5	Выводы	17
Сп	писок литературы	18

Список иллюстраций

4.1	Первый случай на Julia										14
4.2	Второй случай на Julia										15
4.3	Первый случай на OpenModelica										15
4.4	Второй случай на OpenModelica.										16

Список таблиц

1 Цель работы

Рассмотреть простейшую модель боевых действий — модель Ланчестера. Научиться строить графики для данной модели в двух случаях: сражение регулярных армий и партизанской с регулярной. Освоить возможности OpenModelica и Julia для решения данной задачи.

2 Задание

Вариант 29

Между страной X и страной У идет война. Численность состава войск исчисляется от начала войны, и являются временными функциями x(t) и y(t). В начальный момент времени страна X имеет армию численностью 202000 человек, а в распоряжении страны У армия численностью в 92000 человек. Для упрощения модели считаем, что коэффициенты a, b, c, h постоянны. Также считаем P(t) и Q(t) непрерывные функции (см. [1]). Постройте графики изменения численности войск армии X и армии У для следующих случаев:

1. Модель боевых действий между регулярными войсками

$$\frac{dx}{dt} = -0.13x(t) - 0.51y(t) + 0.5\sin(t+13)$$

$$\frac{dy}{dt} = -0.41x(t) - 0.15y(t) + 0.5\cos(t+2)$$

2. Модель ведение боевых действий с участием регулярных войск и партизанских отрядов:

$$\frac{dx}{dt} = -0.08x(t) - 0.76y(t) + \sin(2t) + 1$$

$$\frac{dy}{dt} = -0.64x(t)y(t) - 0.07y(t) + \cos(3t) + 1$$

3 Теоретическое введение

Модель Ланчестера. В противоборстве могут принимать участие как регулярные войска, так и партизанские отряды. В общем случае главной характеристикой соперников являются численности сторон. Если в какой-то момент времени одна из численностей обращается в нуль, то данная сторона считается проигравшей (при условии, что численность другой стороны в данный момент положительна). Уравнения Ланчестера — это дифференциальные уравнения, описывающие зависимость между силами сражающихся сторон А и D как функцию от времени, причем функция зависит только от А и D ([2]).

4 Выполнение лабораторной работы

4.1 Постановка задачи

Рассмотри два случая ведения боевых действий:

- 1. Боевые действия между регулярными войсками
- 2. Боевые действия с участием регулярных войск и партизанских отрядов

В первом случае численность регулярных войск определяется тремя факторами:

- Скорость уменьшения численности войск из-за причин, не связанных с боевыми действиями (болезни, травмы, дезертирство);
- Скорость потерь, обусловленных боевыми действиями противоборствующих сторон (что связанно с качеством стратегии, уровнем вооружения, профессионализмом солдат и т.п.);
- Скорость поступления подкрепления (задаётся некоторой функцией от времени).

В этом случае модель боевых действий между регулярными войсками описывается следующим образом

$$dx/dt = -a(t)x(t) - b(t)y(t) + P(t), \label{eq:dx}$$

$$dy/dt = -c(t)x(t) - h(t)y(t) + Q(t).$$

Потери, не связанные с боевыми действиями, описывают члены -a(t)x(t) и -h(t)y(t), члены -b(t)y(t) и -c(t)x(t) отражают потери на поле боя. Коэффициенты b(t) и c(t) указывают на эффективность боевых действий со стороны Y и X соответственно, a(t), h(t) - величины, характеризующие степень влияния различных факторов на потери. Функции P(t), Q(t) учитывают возможность подхода подкрепления к войскам X и V в течение одного дня.

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что тем потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид (в этой системе все величины имею тот же смысл):

$$dx/dt = -a(t)x(t) - b(t)y(t) + P(t),$$

$$dy/dt = -c(t)x(t)y(t) - h(t)y(t) + Q(t). \label{eq:dy_dt}$$

Далее необходимо реализовать решение задачи и построить графики для обоих случаев на языке Julia и OpenModelica.

4.2 Реализация на Julia

- Боевые действия между регулярными армиями (Рис. [4.1]).
- Боевые действия с участием регулярных войск и партизанских отрядов (Рис. [4.2]).

Код на Julia:

```
using Plots
using DifferentialEquations
function lorenz1!(du,u,p,t)
    du[1] = -0.13*u[1] - 0.51*u[2] + sin(t + 13)/2
    du[2] = -0.41*u[1] - 0.15*u[2] + cos(t + 2)/2
end
function lorenz2!(du,u,p,t)
    du[1] = -0.08u[1] - 0.76u[2] + sin(2t) + 1
    du[2] = -0.64u[1]*u[2] - 0.07u[2] + cos(3t) + 1
end
const u0 = [202000, 92000]
const T1 = (0.0, 2.0)
const T2 = (0.0, 0.0001)
prob1 = ODEProblem(lorenz1!, u0, T1)
prob2 = ODEProblem(lorenz2!, u0, T2)
sol1 = solve(
    prob1,
    abstol=1e-8,
    reltol=1e-8)
sol2 = solve(
    prob2,
    abstol=1e-8,
    reltol=1e-8)
```

```
plt1 = plot(
    dpi=300,
    legend=true)
plot!(
    plt1,
    sol1,
    idxs=(0,1),
    label="Армия X",
    xlabel="Время",
    ylabel="Численность войск",
    ylims = (0, 205000),
    yscale =:identity,
    yticks = 0:20500:205000,
    xticks = 0:0.2:2,
    formatter=:plain,
    legend_position=:topright,
    titlefontsize=:10,
    color=:red,
    title="Боевые действия между регулярными армиями")
plot!(
    plt1,
    sol1,
    idxs=(0,2),
    label="Армия Y",
    color=:blue)
plt2 = plot(
    dpi=300,
```

```
legend=true)
plot!(
    plt2,
    sol2,
    idxs=(0,1),
    label="Регулярная армия X",
    xlabel="Время",
    ylabel="Численность войск",
    ylims = (0, 205000),
    yscale =:identity,
    yticks = 0:20500:205000,
    xticks = 0:0.00001:0.0001,
    formatter=:plain,
    legend_position=:topright,
    titlefontsize=:10,
    color=:red,
    title="Боевые действия между регулярной армией и партизанами")
plot!(
    plt2,
    sol2,
    idxs=(0,2),
    label="Партизанская армия Y",
    color=:blue)
savefig(plt1, "image/lab03_1.png")
savefig(plt2, "image/lab03_2.png")
```

4.3 Реализация на OpenModelica

- Боевые действия между регулярными армиями (Рис. [4.3]).
- Боевые действия с участием регулярных войск и партизанских отрядов (Рис. [4.4]).

Код на OpenModelica:

Первая модель боевый действия между регулярными армиями:

```
model model1
Real x;
Real y;
initial equation
 x = 202000;
  y = 92000;
equation
  der(x) = -0.13*x - 0.51*y + sin(time + 13)/2;
  der(y) = -0.41*x - 0.15*y + cos(time + 2)/2;
end model1;
 Вторая модель боевых действий между регулярными и партизанскими арми-
ями:
model model2
Real x;
Real y;
initial equation
 x = 202000;
 y = 92000;
equation
  der(x) = -0.08*x - 0.76*y + sin(2*time) + 1;
  der(y) = -0.64*x*y - 0.07*y + cos(3*time) + 1;
end model2;
```

4.4 Полученные графики

Рис. 4.1: Первый случай на Julia

Рис. 4.2: Второй случай на Julia

Рис. 4.3: Первый случай на OpenModelica

Рис. 4.4: Второй случай на OpenModelica

5 Выводы

В ходе выполнения лабораторной работы я освоил возможности Julia и OpenModelica для простейшей модели боевых действий — модели Ланчестера, построил графики для данной модели.

Список литературы

- 1. Кулябов Д.С. Лабораторная работа №3. Москва, Россия: Российский Университет Дружбы Народов.
- 2. Модель Ланчестера [Электронный ресурс]. URL: https://ru.wikipedia.org/w iki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D1%8B_%D0%9E%D1%8 1%D0%B8%D0%BF%D0%BE%D0%B2%D0%B0_%E2%80%94_%D0%9B%D0%B0%D0%BD%D1%87%D0%B5%D1%81%D1%82%D0%B5%D1%80%D0%B0.