9.3.4 Other Shit

9.3.4.1 Worm Gears *Using Mott

Some useful Shit:

```
N_G = Number of teeth on the gear
     N_W = Number of worm threads
  D_G = pitch diameter of the gear (in)
   D_W = Pitch diameter of the worm
          p = \text{circular pitch (in)}
    P_d = \text{diametral pitch (teeth/inch)}
                m = module
              L = \text{Lead angle}
         C = Center distance (in)
       \phi_n = Normal pressure angle
      \phi_t = \text{transverse pressure angle}
            a = addendum (in)
          h_t = \text{whole depth (in)}
         h_k = \text{working depth (in)}
            b = dedendum (in)
   D_{rW} = \text{Root diameter of worm (in)}
 D_{oW} = \text{Outside diameter of worm (in)}
    D_{rG} = \text{Root Diameter of gear (in)}
   F_G = Face width of wormgear (in)
     F_W = face length of worm (in)
       n_W = \text{speed of worm (rpm)}
        n_G = \text{speed of gear (rpm)}
\nu_{tW} = Pitch line speed for worm (ft/min)
\nu_{tG} = Pitch line speed for gear (ft/min)
            VR = Velocity ratio
```

Now for some of the formulae to solve for these values:

circular pitch:
$$p = \frac{\pi D_G}{N_G}$$
 diametral pitch: $P_d = \frac{N_G}{D_G}$ or $P_d = \frac{\pi}{p}$ module: $m = \frac{D}{N}$ axial pitch: $P_x = p$ lead: $L = N_W P_x$ lead angle: $\tan(\lambda) = \frac{L}{\pi D_W}$ center distance: $C = \frac{D_W + D_G}{2} = \frac{N_W + N_G}{2P_d}$ angle relationship: $\tan \phi_n = \tan(\phi_t) \cos(\lambda)$ addendum: $a = 0.318P_x = \frac{1}{P_d}$ whole depth: $h_t = 0.6866P_x = \frac{2.157}{P_d}$ working depth: $h_k = 2a$ dedendum: $b = h_t - a$ root diameter of worm: $D_{rW} = D_W - 2b$ outside diameter of gear: $D_r G = D_G - 2b$ throat diameter of gear: $P_G = \frac{1}{2} (D_G - 2b)$ face width of wormgear: $P_G = \sqrt{D_{oW}^2 - D_W^2} = 2p \approx \frac{6}{P_d}$ face length of worm: $P_W = 2\sqrt{(\frac{D_t}{2})^2 - (\frac{D_G}{2-a})^2}$

Speed:

• pitch line speed for worm: $\nu_{tW} = \frac{\pi D_W n_W}{12}$ lb-ft or $\nu_{tW} = \frac{\pi D_W n_W}{60000}$ m/s

• pitch line speed for gear: $\nu_{tG}=\frac{\pi D_G n_G}{12}$ lb-ft or $\nu_{tW}=\frac{\pi D_G n_G}{60000}$ m/s

• Velocity Ratio: $VR = \frac{n_W}{n_G} = \frac{N_G}{N_W}$

• Sliding speed: $\nu_s = \frac{\nu_{tG}}{\sin(\lambda)} = \frac{\nu_{tW}}{\cos(\lambda)}$

Forces:

• Force relationship: $W_{tG} = W_{xW}, W_{xG} = W_{tW}, W_{rG} = W_{rW}$

• output torque: $T_o = \frac{63000P_o}{n_G} = \frac{W_{tG}D_G}{2}$

• transmitted force: $W_{tG} = \frac{2T_o}{D_G}$

• axial force: $W_{xG} = W_{tG} \frac{\cos(\phi_n)\sin(\lambda) + \mu\cos(\lambda)}{\cos(\phi_n)\cos(\lambda) - \mu\sin(\lambda)}$

• radial force: $W_{rG} = \frac{W_{tG}\sin(\phi_n)}{\cos(\phi_n)\cos(\lambda) - \mu\sin(\lambda)}$

• friction force: $W_f = \frac{\mu W_{tG}}{\cos(\lambda)\cos(\phi_n) - \mu\sin(\lambda)}$

• power loss due to friction: $P_L = \frac{\nu_s W_f}{33000}$

• input power: $P_i = P_o + P_L$

• $\eta = \frac{P_o}{P_i} = \frac{\cos(\phi_n) - \mu \tan(\lambda)}{\cos(\phi_n) + \frac{\mu}{\tan(\lambda)}}$

Now design selection for worm gears:

1. Calculate the lead L and the lead angle λ

$$p = \frac{\pi}{P_d} = \frac{\pi D_G}{N_G}$$

$$P_x = p$$

$$L = N_W P_x$$

$$\lambda = \arctan(\frac{L}{\pi D_W})$$

2. Find Center Distance CD

$$CD = \frac{D_G + D_W}{2}$$

3. Calculate the pitch line speed of the gear

$$\nu_{tG} = \frac{\pi D_G n_G}{12}$$

4. Calculate the sliding speed

$$\nu_s = \frac{\nu_{tG}}{\sin(\lambda)} = \frac{\nu_{tW}}{\cos(\lambda)}$$

5. Calculate the coefficient of friction:

$$\mu = \begin{cases} 0.15 &, \nu = 0 \\ 0.124e^{-0.074\nu_s^{0.645}} &, 0 < \nu_s < 10 \\ 0.103e^{-0.11\nu_s^{0.45}} + 0.012 &, \nu_s > 10 \end{cases}$$

6. Find the forces on the gear:

$$T_o = \frac{63000P_o}{n_G} = \frac{W_{tG}D_G}{2}$$

$$W_{tG} = \frac{2T_o}{D_G}$$

$$W_{xG} = W_{tG}\frac{\cos(\phi_n)\sin(\lambda) + \mu\cos(\lambda)}{\cos(\phi_n)\cos(\lambda) - \mu\sin(\lambda)}$$

$$W_{rG} = \frac{W_{tG}\sin(\phi_n)}{\cos(\phi_n)\cos(\lambda) - \mu\sin(\lambda)}$$

7. Find the friction force:

$$W_f = \frac{\mu W_{tG}}{\cos(\lambda)\cos(\phi_n) - \mu\sin(\lambda)}$$

8. Find the power loss due to friction:

$$P_L = \frac{\nu_s W_f}{33000}$$

9. Compute the input power:

$$P_i = P_o + P_L$$

10. Calculate efficiency:

$$\eta = \frac{P_o}{P_i} = \frac{\cos(\phi_n) - \mu \tan(\lambda)}{\cos(\phi_n) + \frac{\mu}{\tan(\lambda)}}$$

11. Find the Lewis form factor y from the table below using your ϕ_n value:

TABLE 10-5	Approximate Lewis Form Factor for Wormgear Teeth
ϕ_B	у
14½°	0.100
20°	0.125
25°	0.150
30°	0.175

12. Find the normal circular pitch:

$$p_n = p\cos(\lambda) = \frac{\pi\cos(\lambda)}{P_d}$$

13. Find the dynamic factor K_v :

$$K_v = \frac{1200}{1200 + \nu_{tG}}$$

14. Find the dynamic load, W_d :

$$W_d = \frac{W_{tG}}{K_v}$$

15. Find the stress σ in the gear teeth:

$$\sigma = \frac{W_d}{yFp_n}$$

16. Find the materials factor C_s using this figure:

For sand-cast bronzes:

$$C_s = \begin{cases} 1189.636 - 476.545 \log_{10}(D_p) & D_G > 2.5\\ 1000 & D_G < 2.5 \end{cases}$$

For static-chill-cast or forged bronze:

$$C_s = \begin{cases} 1411.651 - 455.825 \log_{10}(D_p) \\ 1000 & D_G < 8 \end{cases}$$

For centrifugally cast bronze:

$$C_s = \begin{cases} 1251.291 - 179.75 \log_{10}(D_p) \\ 1000 & D_G < 25 \end{cases}$$

17. Find the ration correction factor C_m :

Remember that m_G is the gear ratio which is $m_G = \frac{N_G}{N_p}$

$$C_m = \begin{cases} 0.02\sqrt{-m_G^2 + 40m_G - 76} + 0.46 & 6 < m_g < 20\\ 0.0107\sqrt{m_G^2 + 56m_G + 5146} & 20 < m_G < 76\\ 1.1483 - 0.00658m_G & m_G > 76 \end{cases}$$

18. Find the Worm gear velocity factor C_v :

$$C_v = \begin{cases} 0.659e^{-0.0011\nu_s} & 0 < \nu_s < 700\\ 13.31\nu_s^{-0.571} & 700 < m_G < 3000\\ 65.52\nu_s^{-0.774} & \nu_s > 3000 \end{cases}$$

19. Find the effective face width F_e :

$$F_e = \begin{cases} F & , F < \frac{D_W}{3} \\ \frac{D_W}{3} & , F > \frac{D_W}{3} \end{cases}$$

20. Find the rated tangential load W_{tR} :

$$W_{tR} = C_s D_G^{0.8} F_e C_m C_v$$

21. Check if the design is satisfactory to resist pitting: If $W_{tR} > W_{tG}$ then the design is satisfactory