

Storage Management

Unit objectives

After completing this unit, you should be able to:

- Review of modern internal hard disk type
- Device naming convention
- Perform Disk partitioning
- Understand what and why need File System
- Create and Mount File System
- Unmount File System

Overview of modern internal hard disk type - 1/2

- Most common device for persistent storage
- Three common types: SATA, SAS, and NVMe
- Integrated Drive Electronics (IDE) Legacy
 - Some cabling limitations
 - Device naming /dev/hda, hdb, ..., hdh
- Serial Advanced Technology Attachment (SATA)
 - Offers some advantages over ATA/EIDE:
 - · Hot swappable, faster transfer speed, smaller cabling
- Small Computer System Interface (SCSI) Legacy
 - Different subtypes: fast, wide, fast wide, ultra-wide, ...
 - Max 7 or 15 disks on one bus (depends on subtype)
 - Needs correct termination at both ends of bus
 - Generally more expensive
 - Device naming /dev/sda, ..., sdz, sda1, ..., sddx

Overview of modern internal hard disk type – 2/2

- Serial Attached SCSI (SAS)
 - offer better disk speed (10,000 / 15,000 rpm)
 - interface speed of upto 22.5 GB/s
 - Max upto 65,535 disks
- Non-Volatile Memory express (NVMe)
 - interface speed of upto 32 GB/s
 - offers high IOPS, low latency (<=20 microseconds)
 - Two varianets : M.2 and U.2

Devices naming convention

All character devices have a representation in /dev

```
# 1s -1 /dev/{sd,nvme}*
crw------. 1 root root 243, 0 Sep 27 07:32 /dev/nvme0
brw-rw----. 1 root disk 259, 0 Sep 27 07:32 /dev/nvme0n1
brw-rw----. 1 root disk 259, 1 Sep 27 07:32 /dev/nvme0n1p1
brw-rw----. 1 root disk 259, 2 Sep 27 13:35 /dev/nvme0n1p2
brw-rw----. 1 root disk 8, 0 Sep 27 13:35 /dev/sda
brw-rw----. 1 root disk 8, 16 Sep 27 13:35 /dev/sdb
brw-rw----. 1 root disk 8, 32 Sep 27 13:34 /dev/sdc
brw-rw----. 1 root disk 8, 48 Sep 27 07:32 /dev/sdd
brw-rw----. 1 root disk 8, 64 Sep 27 07:32 /dev/sdd
```

Disk partitioning principles: MBR / DOS

- Four primary partitions, one of which might be an "extended" partition
 - /dev/hda1 /dev/hda4
- Extended partition: Large number of logical partitions
 - -/dev/hda5 and up

- Limitation
 - to 2TB
 - 15 logical partitions

Disk partitioning principles → GPT

- GUID Partition Table
- UEFI firmware standard
- Address limitation in MBRbased scheme
- Encouraged to use!

- Cool stuff
 - max of 128 partitions
 - ZiB or 8 billion TB
 - GUID to identify each
 disk & partition
 - Redundancy of partition information

Partitioning tools

fdisk

- Virtually every PC OS comes with a tool fdisk to create partitions for that OS.
 - Linux, Windows, and so forth

parted

- GPLed Linux program, available at www.gnu.org
- Can create/resize/move/delete partitions

GParted, QTParted

- GUI utilities that use GNU Parted
- Can create/resize/move/delete partitions

Disk Druid and others

- Partitioning program integrated in Linux install program
- Cockpit web-based interface

The fdisk tool

View disk configuration

fdisk -I /dev/sda

Configure disk's partition

fdisk /dev/sda

Display current partition

Command (m for help): p

Create new partition

Command (m for help): n

Create delete partition

Command (m for help): d

The parted tool - interactively

View disk configuration

parted /dev/sda print

Configure disk's partition

parted /dev/sda

Decide on partition type

(parted) mklabel { gpt | msdos }

Display current partition

(parted) print

Create new partition

(parted) mkpart

Create delete partition

(parted) rm

Rescue lost partition near start and end

(parted) rescue

Resize partition

(parted) resizepart

The parted tool – non-interactively

- Convert disk into GPT
- # parted /dev/sda mklabel gpt
- View disk configuration
- # parted /dev/sda print
- Create first partition
- # parted /dev/sda mkpart 1 xfs 1 100m
- Create next partition
- # parted /dev/sda mkpart 2 ext4 101m 500m
- Create third partition
- # parted /dev/sda mkpart 3 xfs 501 1g

The parted tool – non-interactively

Delete partition number 2

parted /dev/sda rm 2

Resize parition 3 to 1GB

parted /dev/sda resizepart 3 1g

 Make sure kernel detect new partitions and create necessary devices in /dev directory

udevadm settle

The parted tool – manage MBR partitions

Convert disk into MBR

parted /dev/sda mklabel msdos destroy data

Warning: This will

Resize parition 3 to 1GB

parted /dev/sda resizepart 3 1g

Shortcuts to parititioning

Copy partitions

sfdisk -d /dev/sda | sfdisk /dev/sdb

Quickly delete all partitions in /dev/sda

dd if=/dev/zero of=/dev/sda bs=512 count=1

Verify all configured partitions

Using fdisk

```
# fdisk -I /dev/sda
```

Using parted

```
# parted /dev/sda print
```

Using Isblk

```
# Isblk
```

Using blkid

blkid

Why need file system?

- Place to store files and refer to them
- Hierarchical structure through use of directories
- A file system can be stored on any block device
 - Floppy disk
 - Hard disk
 - Partition
 - RAID, LVM volume
 - File (for use with a loop device)
 - RAM disk

The virtual file system

```
User processes
vi, ls, mv, rm, file, strings, cat, touch ...
                  System call interface
        open() read() write() close()...
             VFS abstraction layer
                                   XFS
                         NTFS
     ext3
                ext4
                     Buffer cache
                    Device drivers
                       I/O request
                       Hardware
```

© Copyright Trainocate (M) 2020

Format partition with File System

- Traditional: ext2
- Second generation: ext3, ReiserFS, IBM JFS, xfs
- Next generation: ext4, GFS2, Reiser4
- FAT-12, FAT-16, FAT-32, VFAT, NTFS (read-only)
- CD-ROM (ISO 9660)
- NFS (Network File System)
- SMBFS (Windows share), NCPFS (Novell NetWare share)
- /proc (for kernel and process information)
- SHMFS (shared memory file system)
- GPFS, Lustre (clustering file systems)
- XFS (high performing 64-bit journaling FS)

Creating file system

Creating a file system is done with a mkfs variant.

```
- mkfs.ext2, mkfs.ext3, mkfs.xfs
- mkfs.msdos, mkfs.fat
- mkfs -t
```

Typical options:

- b blocksize sets blocksize
- i bytes per i-node sets number of i-nodes
- -c checks disk for bad blocks

Example:

```
# mkfs.xfs /dev/sda1
...
Writing inode tables: done
Writing superblocks and filesystem accounting info:
done
...
```

Mounting file system

- Using the mount command:
 - Supply device name
 - Supply mount point (empty directory)

```
# mount -t xfs /dev/sda1 /mnt/extra
# mount -o ro,remount /dev/sda1 /mnt/extra
```

```
Optional: Supply file system type
Optional: Supply other options
Optional: Use different superblock
```

 To show mounted file systems, use mount without arguments.

Mounting file systems at system startup

• Add to /etc/fstab:

```
/dev/mapper/cl_base-root / xfs defaults 2 1
/dev/mapper/cl_base-swap swap swap defaults 1 1
/dev/cdrom /mnt/cdrom iso9660 noauto,ro,user 0 0
/dev/fd0 /mnt/floppy msdos noauto,user 0 0
/dev/sda6 /mnt/extra ext3 defaults 0 0
```

Preferrably, using UUID:

```
/dev/mapper/cl_base-root /xfsdefaults0 0UUID=2f209047-45fc-43c3-8ab1-8d270ed12b3c /boot ext4defaults1 2/dev/mapper/cl_base-swap swapswap defaults0 0
```

Verify all mounted partitions

Using commands

```
# mount
# df [ -k | -m | -h ]
# lsblk --fs
```

Using Files

```
# more /etc/mtab
# more /proc/mounts
```

Unmounting a file system

- Using the umount command:
 - disconnect device
 - changing mount options
 - when shutting, temporarily denied access to user

```
# umount /dev/sda1
# umount /mnt/extra
```

Unmount all non-os file systems

```
# umount -a
```

If user still connected

```
# fuser -cu
# fuser -ck
# umount -f /mnt
<- Inform user
<- Kick user out</pre>
```

The Sequence

- Raw disks : sd | hd | nvme | san luns
- Partitioning: fdisk | parted | gparted
- FS: mkfs | mkfs.xfs | mkfs.ext4
- Mounting: mount /dev/vg/lv /mnt
- Access: cd | touch | mkdir | more | vi | cat ...

- 1. Mount 2nd partition in /dev/sdf to /mnt/data using xfs fs type.
 - a) mount xfs /dev/sd2 /mnt/data
 - b) mount -t xfs /dev/sd2 /mnt/data
 - c) mount xfs /dev/sdf2 /mnt/data
 - d) mount -t xfs /dev/sdf2 /mnt/data

- 1. Mount 2nd partition in /dev/sdf to /mnt/data using xfs fs type.
 - a) mount xfs /dev/sd2 /mnt/data
 - b) mount -t xfs /dev/sd2 /mnt/data
 - c) mount xfs /dev/sdf2 /mnt/data
 - d) mount -t xfs /dev/sdf2 /mnt/data

- 2. You are currently in /mnt/data, and you need to un mount the file system.
 - a) umount -f /mnt/data
 - b) kill <pid>; umount /mnt/data
 - c) cd; unmount /mnt/data
 - d) logout then unmount by umount /mntdata cmd

- 2. You are currently in /mnt/data, and you need to un mount the file system.
 - a) umount -f /mnt/data
 - b) kill <pid>; umount /mnt/data
 - c) cd; unmount /mnt/data
 - d) logout then unmount by umount /mntdata cmd

- 3. Why do you need file system?
 - a) To provide interface to the hardware
 - b) To provide access to storage
 - c) To provide interface to the operating system
 - d) To provide access to mount point

- 3. Why do you need file system?
 - a) To provide interface to the hardware
 - b) To provide access to storage
 - c) To provide interface to the operating system
 - d) To provide access to mount point

Unit summary

Having completed this unit, you should be able to:

- Understand modern internal hard disk type
- Understand Device naming convention
- Perform Disk partitioning
- Understand what and why need File System
- Create and Mount File System
- Unmount File System