Задачи к семинарам 03.03.2025

- 1 Случайные величины X и Y независимы и имеют равномерное распределение, $X,Y \sim \mathrm{U}(0,1)$. Вычислите условные математические ожидания:
 - a) E(X|YX);
 - б) E(X|Y/X);
 - в) $E(X^2|Y+X)$.
- **2** Пусть X и Y независимые случайные величины, X имеет равномерное распределение на отрезке [0,1], а Y экспоненциальное с параметром 1. Найдите $\mathsf{E}(YX^2|X/Y)$.
- **3** Пусть X_1,\dots,X_n выборка из равномерного распределения на отрезке [0,1]. Обозначим $X_{(1)}=\min_{i=1,\dots,n}X_i$ и $X_{(n)}=\max_{i=1,\dots,n}X_i$. Найдите
 - a) $E(X_1|X_{(1)})$,
 - 6) $E(X_1|X_{(n)}),$
 - B) $\mathsf{E}(\sqrt{X_1X_2}|X_{(n)}).$
- 4 Найдите

$$E(3X^2 + 5X - 5XY - Y^2 - 10Y|Y - X)$$

при условии, что X и Y независимы, X имеет стандартное распределение Лапласа (с параметром $\sigma = 1$), $Y \sim U(-1,2)$.