

BITS Pilani
Pilani Campus

Machine Learning AIML CZG565 M5: Decision Tree Classifier

Course Faculty of M.Tech Cluster BITS – CSIS - WILP

Machine Learning

Disclaimer and Acknowledgement

- •These content of modules & context under topics are planned by the course owner Dr. Sugata, with grateful acknowledgement to many others who made their course materials freely available online
- •We here by acknowledge all the contributors for their material and inputs.
- We have provided source information wherever necessary
- •Students are requested to refer to the textbook w.r.t detailed content of the presentation deck shared over canvas
- •We have reduced the slides from canvas and modified the content flow to suit the requirements of the course and for ease of class presentation

Slide Source / Preparation / Review:

<u>From BITS Pilani WILP</u>: Prof.Sugata, Prof.Chetana, Prof.Rajavadhana, Prof.Monali, Prof.Anita, Prof.Sangeetha, Prof.Swarna, Prof.Srinath

External: CS109 and CS229 Stanford lecture notes, Dr.Andrew NG and many others who made their course materials freely available online

Course Plan

M1	Introduction
M2	Machine learning Workflow
M3	Linear Models for Regression
M4	Linear Models for Classification
M5	Decision Tree
M6	Instance Based Learning
M7	Support Vector Machine
M8	Bayesian Learning
M9	Ensemble Learning
M10	Unsupervised Learning
M11	Machine Learning Model Evaluation/Comparison

Agenda

- Information Theory
- Entropy Based Decision Tree Construction
- Avoiding Overfitting
- Minimum Description Length
- Handling Continuous valued attributes

Decision Trees – Dealing with Continuous Values

Summary

innovate achieve lead

Sample splits of Different Attribute Type

innovate achieve lead

Decision Trees – Dealing with Continuous Values – Problem Type 5

■Given a continuous-valued attribute A, dynamically create a new attribute A_c

$$A_c$$
 = True *if A* < c , False *otherwise*

■How to determine threshold value *c*?

Way 1: Multi-way Split

- ■Example. *Temperature* in the *PlayTennis* example
 - ■Sort the examples according to *Temperature*

■Determine candidate thresholds by averaging consecutive values where there is a change in classification: (48+60)/2=54 and (80+90)/2=85

Decision Trees – Dealing with Continuous Values

•Given a continuous-valued attribute A, dynamically create a new attribute A_c

 A_c = True if A < c, False otherwise

■How to determine threshold value c?

Way 2: Binary Splits

■Example. *Annual Income*

Sort the examples
according to Annual
Income
Linearly scan all possible
threshold, to determine
best split point where the
impurity is the least

ID	Home Owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125000	No
2	No	Married	100000	No
3	No	Single	70000	No
4	Yes	Married	120000	No
5	No	Divorced	95000	Yes
6	No	Single	60000	No
7	Yes	Divorced	220000	No
8	No	Single	85000	Yes
9	No	Married	75000	No
10	No	Single	90000	Yes

innovate achieve lead

Decision Trees – Dealing with Continuous Values – Problem Type 6

■Given a continuous-valued attribute A, dynamically create a new attribute A_c

 A_c = True *if A* < c, False *otherwise*

■How to determine threshold value *c*?

Way 2: Binary Splits

■Example. *Annual Income*

Sorted Values Split Positions

Class		No		No		N	0	Ye	s	Υe	s	Υe	es	N	0	N	lo	N	lo		No	
									Ar	nua	Inc	ome	(in '(000s)							
→		60		70		7	5	85	5	9(0	9	5	10	00	12	20	12	25		220	
→	5	5	6	55	72	2.5	8	0	87	7.5	92	2.5	97	.5	11	10	12	2.5	17	2.5	23	0
	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>	<=	>
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
Gini	0.4	20	0.4	400	0.3	375	0.3	43	0.4	117	0.4	100	<u>0.3</u>	<u>300</u>	0.3	343	0.3	75	0.4	100	0.4	120

Computing Information-Gain for Continuous-Valued Attributes - Summary

- Let attribute A be a continuous-valued attribute
- Must determine the best split point for A
 - Sort the value A in increasing order
 - Typically, the midpoint between each pair of adjacent values is considered as a possible *split point*
 - (a_i+a_{i+1})/2 is the midpoint between the values of a_i and a_{i+1}
 - The point with the minimum expected information requirement for A is selected as the split-point for A
- Split:
 - D1 is the set of tuples in D satisfying A ≤ split-point, and D2 is the set of tuples in D satisfying A > split-point

Overfitting in decision trees

⟨Outlook=Sunny, Temp=Hot, Humidity=Normal, Wind=Strong, PlayTennis=No⟩

New noisy example causes splitting of second leaf node.

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, may reflect anomalies due to noise or outliers in the training data
 - Poor accuracy for unseen samples

Approaches to tackle:

- Pruning
- Constraint on the depth of tree
- Constraint on the minimum nodes allowed at leaf

Avoid overfitting in Decision Trees

Two strategies:

- 1. Stop growing the tree earlier the tree, before perfect classification
- 2. Allow the tree to *overfit* the data, and then *post-prune* the tree
- Training and validation set
 - split the training in two parts (training and validation) and use validation to assess the utility of post-pruning
 - Reduced error pruning
 - Rule post pruning

Reduced-error pruning

- Each node is a candidate for pruning
- Pruning consists in removing a sub tree rooted in a node: the node becomes a leaf and is assigned the most common classification
- Nodes are removed only if the resulting tree performs no worse on the validation set.
- Nodes are pruned iteratively: at each iteration the node whose removal most increases accuracy on the validation set is pruned.
- Pruning stops when no pruning increases accuracy

Rule post-pruning – Additional Read

- 1. Create the decision tree from the training set
- 2. Convert the tree into an equivalent set of rules
 - Each path corresponds to a rule
 - Each node along a path corresponds to a pre-condition
 - Each leaf classification to the post-condition
- 3. Prune (generalize) each rule by removing those preconditions whose removal improves accuracy ...
 - ... over validation set
- Sort the rules in estimated order of accuracy, and consider them in sequence when classifying new instances

Converting to rules

 $(Outlook=Sunny) \land (Humidity=High) \Rightarrow (PlayTennis=No)$

Rule Post-Pruning – Additional Read

- Convert tree to rules (one for each path from root to a leaf)
- For each antecedent in a rule, remove it if error rate on validation set does not decrease
- Sort final rule set by accuracy

Outlook=sunny ^ humidity=high -> No
Outlook=sunny ^ humidity=normal -> Yes
Outlook=overcast -> Yes
Outlook=rain ^ wind=strong -> No
Outlook=rain ^ wind=weak -> Yes

Compare first rule to:
Outlook=sunny->No
Humidity=high->No
Calculate accuracy of 3 rules
based on validation set and
pick best version.

innovate achieve lead

Why converting to rules?-Additional Read

- Each distinct path produces a different rule: a condition removal may be based on a local (contextual) criterion. Node pruning is global and affects all the rules
- Provides flexibility of not removing entire node
- In rule form, tests are not ordered and there is no book-keeping involved when conditions (nodes) are removed
- Converting to rules improves readability for humans

Shape

Allow

Colour

Size

Action

Over fitting

Reject

Reject

$\left(\begin{array}{c} 1 \end{array} \right)$	
(Colour))
Green	Brown
G	
Size	Size
/Small	
	Reject
Reject	reject

Allow

Validation/Test Set→

Shape	Colour	Size	Action
Oval	Black	Small	Reject
Round	Brown	Big	Allow
Square	Brown	Big	Allow
Oval	Green	Small	Allow

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - General stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions (for pre-pruning):
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Address Overfitting...

- Post-pruning
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error(i.e. expected error of the model on previously unseen records) improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Gain = 0.8113

				Ľ
_	< Ov	al		5
	Colour	Size	Action	
	Green	Big	Reject	
	Brown	Small	Allow	
	Green	Small	Reject	

Gain = 0.9182

Shape	Colour	Size	Action
Round	Green	Small	Reject
Square	Black	Big	Allow
Square	Brown	Big	Allow
Round	Brown	Small	Reject
Square	Green	Big	Allow
Square	Brown	Small	Reject
Oval	Green	Big	Reject
Oval	Brown	Small	Allow
Oval	Green	Small	Reject

Idea: While construction Prune the nodes whose gain is greater than the predefined threshold

Shape	Colour	Size	Action
Oval	Black	Small	Reject
Round	Brown	Big	Allow
Square	Brown	Big	Allow
Oval	Green	Small	Allow

Oval

Colour

Allow

• *Threshold: Gain* <=0.85

	Shape	Colour	Size	Action
	Round	Green	Small	Reject
	Square	Black	Big	Allow
	Square	Brown	Big	Allow
	Round	Brown	Small	Reject
	Square	Green	Big	Allow
	Square	Brown	Small	Reject
	Oval	Green	Big	Reject
	Oval	Brown	Small	Allow
	Oval	Green	Small	Reject
Bro	own			

Note:

 DT can estimate the probability of instance's membership to a class

Shape	Colour	Size	Action
Oval	Black	Small	Reject
Round	Brown	Big	Allow
Square	Brown	Big	Allow
Oval	Green	Small	Allow

Colour

Green

Black

Brown

Brown

Green

Brown

Green

Brown

Green

Shape

Round

Square

Square

Round

Square

Square

Oval

Oval

Oval

Size

Small

Big

Big

Big

Big

Small

Small

Small

Small

Action

Reject

Allow

Allow

Reject

Allow

Reject

Reject

Allow

Reject

Pre-Pruning – Problem Type 7

Apply majority voting for converting the pruned subset of data into a class

Shape	Colour	Size	Action
Oval	Black	Small	Reject
Round	Brown	Big	Allow
Square	Brown	Big	Allow
Oval	Green	Small	Allow

Assumed model from the output of one intermediate iteration of the decision tree building

Shape	Colour	Size	Action
Round	Green	Small	Reject
Square	Black	Big	Allow
Square	Brown	Big	Allow
Round	Brown	Small	Reject
Square	Green	Big	Allow
Square	Brown	Small	Reject
Oval	Green	Big	Reject
Oval	Brown	Small	Allow
Oval	Green	Small	Reject
	-	-	

Idea:

- 1. Post construction, scan the tree bottom-up
- 2. At every decision node

Retain the attribute node & evaluate it against the prune set (validation set)

Remove the attribute node & reevaluate it with the same prune set

If there is a reduction in error, prune the node else retain the node

3. Repeat this in other branches of the tree

Prune Set

Trunc Sct					
Shape	Colour	Size	Action		
Oval	Black	Small	Reject		
Round	Brown	Big	Allow		
Square	Brown	Big	Allow		
Oval	Green	Small	Allow		

Assumed model from the output of one intermediate iteration of the decision tree building

			-
Shape	Colour	Size	Action
Round	Green	Small	Reject
Square	Black	Big	Allow
Square	Brown	Big	Allow
Round	Brown	Small	Reject
Square	Green	Big	Allow
Square	Brown	Small	Reject
Oval	Green	Big	Reject
Oval	Brown	Small	Allow
Oval	Green	Small	Reject

- Error rate is the percentage of tuples misclassified
- Prune set is used to estimate the cost

Prune Set→

k	Shape	Colour	Size	Action
	Oval	Black	Small	Reject
	Round	Brown	Big	Allow
	Square	Brown	Big	Allow
	Oval	Green	Small	Allow

Prune Size &Predict	Prune Colour & Predict	Above Tree's Prediction	Shape	Colour	Size	Action
Allow	Reject	Allow	Oval	Black	Small	Reject
Reject	Reject	Reject	Round	Brown	Big	Allow
Allow	Allow	Allow	Square	Brown	Big	Allow
Reject	Reject	Reject	Oval	Green	Small	Allow

Example Data Set

Two class problem:

- +: 5200 instances
 - 5000 instances generated from a Gaussian centered at (10,10)
 - 200 noisy instances added
- o: 5200 instances
 - Generated from a uniform distribution

10 % of the data used for training and 90% of the data used for testing

Increasing number of nodes in Decision Trees

lead

Decision Tree with 4 nodes

Decision Tree with 50 nodes

Which tree is better?

Problem Type 9 – Model Comparison

Model Overfitting

Underfitting: when model is too simple, both training and test errors are large Overfitting: when model is too complex, training error is small but test error is large

Issues in Decision Tree Learning - Example

Overfitting due to the presence of noise

Training set

113						
Name	Body	Gives	Four-	Hibernates	Class	
	Temperature	Birth	legged		Label	
porcupine	warm-blooded	yes	yes	yes	yes	
cat	warm-blooded	yes	yes	no	yes	
bat	warm-blooded	yes	no	yes	no*	
whale	warm-blooded	yes	no	no	no*	
salamander	cold-blooded	no	yes	yes	no	
komodo dragon	cold-blooded	no	yes	no	no	
python	cold-blooded	no	no	yes	no	
salmon	cold-blooded	no	no	no	no	
eagle	warm-blooded	no	no	no	no	
guppy	cold-blooded	yes	no	no	no	

Test set

Г	Name	Body	Gives	Four-	Hibernates	Class
		Temperature	Birth	legged		Label
\Longrightarrow	human	warm-blooded	yes	no	no	yes
	pigeon	warm-blooded	no	no	no	no
	elephant	warm-blooded	yes	yes	no	yes
	leopard shark	cold-blooded	yes	no	no	no
	turtle	cold-blooded	no	yes	no	no
	penguin	cold-blooded	no	no	no	no
	eel	cold-blooded	no	no	no	no
\Longrightarrow	dolphin	warm-blooded	yes	no	no	yes
$\Rightarrow \Rightarrow$	spiny anteater	warm-blooded	no	yes	yes	yes
	gila monster	cold-blooded	no	yes	yes	no

Non-

mammals

Mammals

What are the error rates of the decision trees on the test set?

Issues in Decision Tree Learning - Example

Overfitting due to the lack of representative samples

					- 4
	IIO	III			^ +
ra				-	е.
•			\sim		~ •

Name	Body	Gives	Four-	Hibernates	Class
	Temperature	Birth	legged		Label
salamander	cold-blooded	no	yes	yes	no
guppy	cold-blooded	yes	no	no	no
eagle	warm-blooded	no	no	no	no
poorwill	warm-blooded	no	no	yes	no
platypus	warm-blooded	no	yes	yes	yes

Test set							
Name	Body	Gives	Four-	Hibernates	Class		
	Temperature	Birth	legged		Label		
human	warm-blooded	yes	no	no	yes		
pigeon	warm-blooded	no	no	no	no		
elephant	warm-blooded	yes	yes	no	yes		
leopard shark	cold-blooded	yes	no	no	no		
turtle	cold-blooded	no	yes	no	no		
penguin	cold-blooded	no	no	no	no		
eel	cold-blooded	no	no	no	no		
dolphin	warm-blooded	yes	no	no	yes		
spiny anteater	warm-blooded	no	yes	yes	yes		
gila monster	cold-blooded	no	yes	yes	no		

What is the error rate of the decision tree on the test set?

Alternative to Entropy:

innovate achieve

lead

Gini Index: Binary Splits

ID	Home Owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125000	No
2	No	Married	100000	No
3	No	Single	70000	No
4	Yes	Married	120000	No
5	No	Divorced	95000	Yes
6	No	Single	60000	No
7	Yes	Divorced	220000	No
8	No	Single	85000	Yes
9	No	Married	75000	No
10	No	Single	90000	Yes

Alternative to Entropy:

Gini Index : Binary Splits

innovate achieve lead

Gini Index:Parent

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

ID	Home Owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125000	No
2	No	Married	100000	No
3	No	Single	70000	No
4	Yes	Married	120000	No
5	No	Divorced	95000	Yes
6	No	Single	60000	No
7	Yes	Divorced	220000	No
8	No	Single	85000	Yes
9	No	Married	75000	No
10	No	Single	90000	Yes

$$1 - \left(\frac{3}{10}\right)^2 - \left(\frac{7}{10}\right)^2 = 0.420.$$

	Parent	
No	7	
Yes	3	
Gini = 0.420		

Alternative to Entropy:

Gini Index : Binary Splits

innovate achieve lead

Splitting Attribute: HomeOwner

Gini Index =
$$1 - \sum_{i=0}^{c-1} p_i(t)^2$$

Gini index for the child nodes

$$N1 = 1 - (0/3)^2 - (3/3)^2 = 0$$

 $N2 = 1 - (3/7)^2 - (4/7)^2 = 0.490$

Weighted Gini Index for children

$$I(\text{children}) = \sum_{j=1}^{k} \frac{N(v_j)}{N} I(v_j),$$
$$(3/10) \times 0 + (7/10) \times 0.490 = 0.343,$$

ID	Home Owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125000	No
2	No	Married	100000	No
3	No	Single	70000	No
4	Yes	Married	120000	No
5	No	Divorced	95000	Yes
6	No	Single	60000	No
7	Yes	Divorced	220000	No
8	No	Single	85000	Yes
9	No	Married	75000	No
10	No	Single	90000	Yes

The gain using Home Owner as splitting attribute is 0.420 - 0.343 = 0.077

Alternative to Entropy:

Gini Index: Binary Splits

innovate achieve lead

Splitting Attribute: MaritalStatus

ID	Home Owner	Marital Status	Annual Income	Defaulted?
1	Yes	Single	125000	No
2	No	Married	100000	No
3	No	Single	70000	No
4	Yes	Married	120000	No
5	No	Divorced	95000	Yes
6	No	Single	60000	No
7	Yes	Divorced	220000	No
8	No	Single	85000	Yes
9	No	Married	75000	No
10	No	Single	90000	Yes

	N1	N2		
No	3	4		
Yes	2	1		
Gini= 0.400				

	N1	N2		
No	6	1		
Yes	2	1		
Gini= 0.400				

	N1	N2		
No	4	3		
Yes	3	0		
Gini= 0.343				

Based on these results, Home Owner and the last binary split using Marital Status are clearly the best candidates, since they both produce the lowest weighted average Gini index

Problems with information gain

- Natural bias of information gain: it favors attributes with many possible values.
- Consider the attribute Date in the PlayTennis example.
 - Date would have the highest information gain since it perfectly separates the training data.
 - It would be selected at the root resulting in a very broad tree
 - Very good on the training, this tree would perform poorly in predicting unknown instances. Overfitting.
- The problem is that the partition is too specific, too many small classes are generated.
- We need to look at alternative measures.

An alternative measure: gain ratio

$$SplitInformation(S, A) = -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \frac{|S_i|}{|S|}$$

- S_i are the sets obtained by partitioning on value i of A
- SplitInformation measures the entropy of S with respect to the values of A. The more uniformly dispersed the data the higher it is.

$$Gain(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

- GainRatio penalizes attributes that split examples in many small classes such as Date. Let |S |=n, Date splits examples in n classes
 - SplitInformation(S, Date) = $-[(1/n \log_2 1/n)+...+ (1/n \log_2 1/n)] = -\log_2 1/n$ = $\log_2 n$
- Compare with A, which splits data in two even classes:
 - SplitInformation(S, A)= $[(1/2 \log_2 1/2) + (1/2 \log_2 1/2)] = [-1/2 -1/2] = 1$

lead

Limitation of Information Gain:

Ways to tackle

SplitInformation measures the entropy of S with respect to the values of A. The more uniformly dispersed the data the higher it is.

SplitInformation(S, A)
$$\equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

 $SplitInformation(S, customerID) = -[(1/n log_2 1/n) + ... + (1/n log_2 1/n)] = -log_2 1/n = log_2 n$

GainRatio penalizes attributes that split examples in many small classes such as ID by incorporating split information.

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Select the best attribute test condition among the following three attributes: **Gender, Car Type, and Customer ID**

Limitation of Information Gain:

Ways to tackle

Problem Type 10

Entropy(parent) =
$$-\frac{10}{20}\log_2\frac{10}{20} - \frac{10}{20}\log_2\frac{10}{20} = 1$$
.

If Gender is used as attribute test condition:

Entropy(children) =
$$\frac{10}{20} \left[-\frac{6}{10} \log_2 \frac{6}{10} - \frac{4}{10} \log_2 \frac{4}{10} \right] \times 2 = 0.971$$

Gain Ratio = $\frac{1 - 0.971}{-\frac{10}{20} \log_2 \frac{10}{20} - \frac{10}{20} \log_2 \left| \frac{10}{20} \right|} = \frac{0.029}{1} = 0.029$

If Car Type is used as attribute test condition:

Entropy(children) =
$$\frac{4}{20} \left[-\frac{1}{4} \log_2 \frac{1}{4} - \frac{3}{4} \log_2 \frac{3}{4} \right] + \frac{8}{20} \times 0$$

 $+ \frac{8}{20} \left[-\frac{1}{8} \log_2 \frac{1}{8} - \frac{7}{8} \log_2 \frac{7}{8} \right] = 0.380$
Gain Ratio = $\frac{1 - 0.380}{-\frac{4}{20} \log_2 \frac{4}{20} - \frac{8}{20} \log_2 \frac{8}{20} - \frac{8}{20} \log_2 \frac{8}{20}} = \frac{0.620}{1.52} = 0.41$

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

innovate achieve lead

Limitation of Information Gain:

Ways to tackle

Problem Type 10

Finally, if Customer ID is used as attribute test condition:

Entropy(children) =
$$\frac{1}{20} \left[-\frac{1}{1} \log_2 \frac{1}{1} - \frac{0}{1} \log_2 \frac{0}{1} \right] \times 20 = 0$$

Gain Ratio = $\frac{1-0}{-\frac{1}{20} \log_2 \frac{1}{20} \times 20} = \frac{1}{4.32} = 0.23$

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Inference: Thus, even though Customer ID has the highest information gain, its gain ratio is lower than Car Type since it produces a larger number of splits

$$h_{MAP} = \arg \max_{h \in H} P(D|h)P(h)$$

$$= \arg \max_{h \in H} \log_2 P(D|h) + \log_2 P(h)$$

$$= \arg \min_{h \in H} - \log_2 P(D|h) - \log_2 P(h) \quad (1)$$

Interesting fact from information theory:

The optimal (shortest expected coding length) code for an event with probability p is $-\log_2 p$ bits.

So interpret (1):

- $L_{C1}(h) = length(h) = -log_2P(h)$
- $L_{C2}(D|h) = length(misclassifications) = -log_2P(D|h)$
- → prefer the hypothesis that minimizes

- MDL principle provides a way of trading off hypothesis complexity for the number of errors committed by the hypothesis.
- May select a shorter hypothesis that makes a few errors over a longer hypothesis that perfectly classifies the training data.
- Provides one method for dealing with the issue of overfitting the data.

Occam's razor: prefer the shortest hypothesis

MDL: prefer the hypothesis *h* that minimizes

$$h_{MDL} = \operatorname*{argmin}_{h \in H} L_{C_1}(h) + L_{C_2}(D|h)$$
 where $L_{C}(x)$ is the description length of x under encoding C

Example: H = decision trees hypothesis, D = training data labels

- $L_{C1}(h)$ is # bits to describe tree h
- $L_{C2}(D|h)$ is # bits to describe D given h
 - Note $L_{C2}(D|h) = 0$ if examples classified perfectly by h. Need only describe exceptions
- Hence h_{MDI} trades off tree size for training errors

Problem Type 11

Consider the decision trees shown in Figure $\,^{\circ}$. Assume they are generated from a data set that contains 16 binary attributes and 3 classes, C_1 , C_2 , and C_3 . Compute the total description length of each decision tree according to the minimum description length principle.

Which decision tree is better, according to the MDL principle?

(a) Decision tree with 7 errors

(b) Decision tree with 4 errors

Problem Type 11

Answer:

Because there are 16 attributes, the cost for each internal node in the decision tree is:

$$\log_2(m) = \log_2(16) = 4$$

Furthermore, because there are 3 classes, the cost for each leaf node is:

$$\lceil \log_2(k) \rceil = \lceil \log_2(3) \rceil = 2$$

The cost for each misclassification error is $log_2(n)$.

The overall cost for the decision tree (a) is $2\times4+3\times2+7\times\log_2 n = 14+7\log_2 n$ and the overall cost for the decision tree (b) is $4\times4+5\times2+4\times5 = 26+4\log_2 n$. According to the MDL principle, tree (a) is better than (b) if n < 16 and is worse than (b) if n > 16.

Handling missing values training data

- How to cope with the problem that the value of some attribute may be missing?
- The strategy: use other examples to guess attribute
 - Assign the value that is most common among the training examples at the node
 - 2. Assign a probability to each value, based on frequencies, and assign values to missing attribute, according to this probability distribution

Handling missing values training data

Problem Type 12

Consider the dataset given below where A and B are attributes which can take the values 0 and 1, and Y is the classification. The values marked "*" represent data values that are corrupted. It is known that during the construction of a decision tree to represent the clean dataset (i.e one without any "*"), the attribute B was chosen at the root instead of attribute A using information gain. Is this information enough to guess the value of the bit that must replace "*"? Give a

detailed justification for your answer.

	Y=Yes	Y=No
A=0	2	1
A=1	1	2

If *=0	Y=Yes	Y=No
B=0	1	1
B=1	3	1

If *=1	Y=Yes	Y=No
B=0	0	1
B=1	3	2

$$Inf Gain(A) = Entropy(S) - \frac{|S_{A=0}|}{|S|} Entropy(S_{A=0}) - \frac{|S_{A=1}|}{|S|} Entropy(S_{A=1}) = -(\frac{3}{6}) - (\frac{3}{6}) - (\frac{3}{6})$$

Handling missing values training data

Problem Type 12

Consider the dataset given below where A and B are attributes which can take the values 0 and 1, and Y is the classification. The values marked "*" represent data values that are corrupted. It is known that during the construction of a decision tree to represent the clean dataset (i.e one without any "*"), the attribute B was chosen at the root instead of attribute A using information gain. Is this information enough to guess the value of the bit that must replace "*"? Give a

detailed justification for your answer.

	Y=Yes	Y=No
A=0	2	1
A=1	1	2

If *=0	Y=Yes	Y=No
B=0	1	1
B=1	3	1

If *=1	Y=Yes	Y=No
B=0	0	1
B=1	3	2

Α	В	Y
1	0	no
1	1	no
0	*	no
0	1	yes
0	1	yes
1	1	yes

If we assume *=1, then we
$$InfGain(B, *=1) = Entropy(S) - \frac{|S_{B=0}|}{|S|} Entropy(S_{B=0}) - \frac{|S_{B=1}|}{|S|}$$

$$Entropy(S_{B=1}) = -(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}) - \frac{1}{6}(-1\log_2 1 - 0\log_2 0) - \frac{5}{6}(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5})$$

$$= 1 - 0.809 = 0.191$$
If we assume *=0, then we have $InfGain(B, *=0) = Entropy(S) - \frac{|S_{B=0}|}{|S|} Entropy(S_{B=0}) - \frac{|S_{B=1}|}{|S|}$

$$Entropy(S_{B=1}) = -(\frac{3}{6})$$

$$\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}) - \frac{2}{6}(-1\log_2 1 - 0\log_2 0) - \frac{4}{6}(-\frac{1}{6}\log_2\frac{1}{6} - \frac{3}{6}\log_2\frac{3}{6}) = 1 - 0.54 = 0.46$$

Practice Exercises (for Students)

- Which of the below discretization best suits to transform the attribute "Annual Income" for decision tree construction? Use entropy as decision criteria.
 - Annual Income (<=85k, >85k & <=200k, >200k)
 - Annual Income (<=90k, >90k)
- If binary split is recommended for attribute "Marital Status" which of the combination of splits best fits? Justify your comment using entropy.
- Use the results of part 1) & part 2) and Build a decision tree classifier using ID3 algorithm ie., Information gain and entropy measures. Grow the complete decision tree.
- Use the test data to post prune the built tree. Try to prune atleast two internal nodes and choose the best of the trials

dinary categorica continuous class

Tid	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Test Data / Prune Set/ Validation Set				
Owner	Marital Income Default			
No	Single	85k	No	
Yes	Single	100k	Yes	
Yes	Divorced	70k	No	
No	Married	90k	Yes	

Practice Exercises (for Students)

- Compute the information gain for every possible split, for the given continuous valued attribute?
- Sort the values and find the the midpoint between each

pair of adjacent values (split_point).

Class	+	-	+	-	+	-	-
Sorted A2	1	3	4	5	6	7	8
Split_Poi nt		2	3.5	4.5	5.5	6.5	7.5

- Calculate Info(D)
- Calculate the entropy for each split_point for "<=" and ">"
- Find Gain for each split_point

A1	A2	Class
Т	1	+
Т	6	+
Т	5	-
F	4	+
F	7	-
F	3	-
F	8	-
Т	7	+
F	5	-

Additional References

Decision Tree

 https://www.youtube.com/watch?v=eKD5gxPPeY0&list=PLBv09BD7ez_4temB w7vLA19p3tdQH6FYO&index=1

Overfitting

- https://www.youtube.com/watch?time_continue=1&v=t56Nid85Thg
- https://www.youtube.com/watch?v=y6SpA2Wuyt8

Random Forest

https://www.stat.berkeley.edu/~breiman/RandomForests/

Thank you!

Required Reading for completed session:

T1 - Chapter # 6 (Tom M. Mitchell, Machine Learning)

R1 – Chapter # 3,#4 (Christopher M. Bhisop, Pattern Recognition & Machine Learning)

Prerequisite for next module:

Refresh on the distance measure (L1 norm, L2 norm etc.,) from the Math course