Inéquations du second degré.

Signe d'ur trinôme.

Réaliser un tableau de signe

Résoudre une inéquation du second degré

Inéquations du second degré. Exercices

Inéquations du second degré.

Signe d'uı trinôme.

Réaliser un tableau de signe Résoudre une

Résoudre une inéquation du second degré

Exercice 1

Étudier le signe des fonctions définies par les expressions suivantes :

$$a(x) = 2x + 3.$$

$$b(x) = (x+2)(x-5)$$

$$c(x) = \frac{3x+2}{5x-1}$$

$$d(x) = x^2 - 1$$

- **a** a(x) = 2x + 3. Je reconnais , c'est à dire de la forme . Je déduis du les variations de f . Je peux alors déterminer de la fonction affine autour de sa racine
- **•** b(x) = (x + 2)(x 5) est un dont je sais étudier le signe comme pour a(x). J'utilise pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

Étude du signe de fonctions :

- **a** a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme . Je déduis du les variations de f. Je peux alors déterminer de la
- b(x) = (x + 2)(x 5) est un dont je sais étudier le signe comme pour a(x). J'utilise pour réaliser le tableau de signes.

- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

Étude du signe de fonctions :

- **a** a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du les variations de f. Je peux alors déterminer de la
- b(x) = (x + 2)(x 5) est un dont je sais étudier le signe comme pour a(x). J'utilise pour réaliser le tableau de signes.

- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

Étude du signe de fonctions :

- a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f. Je peux alors déterminer de la
- b(x) = (x + 2)(x 5) est un dont je sais étudier le signe comme pour a(x). J'utilise pour réaliser le tableau de signes.

- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

Étude du signe de fonctions :

- a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f. Je peux alors déterminer le signe de la
- b(x) = (x + 2)(x 5) est un dont je sais étudier le signe comme pour a(x). J'utilise pour réaliser le tableau de signes.

- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

Étude du signe de fonctions :

- a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f. Je peux alors déterminer le signe de la
- b(x) = (x + 2)(x 5) est un dont je sais étudier le signe comme pour a(x). J'utilise pour réaliser le tableau de signes.

fonction affine autour de sa racine $-\frac{b}{a}$.

- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

Étude du signe de fonctions :

a a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f. Je peux alors déterminer le signe de la

fonction affine autour de sa racine $-\frac{b}{a}$.

- b(x) = (x+2)(x-5) est un produit de fonctions affines dont je sais étudier le signe comme pour a(x). J'utilise pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

- a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les
 - variations de f. Je peux alors déterminer le signe de la fonction affine autour de sa racine $-\frac{b}{a}$.
- b(x) = (x+2)(x-5) est un produit de fonctions affines dont je sais étudier le signe comme pour a(x). J'utilise la règle des signes pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

- **a** a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les
 - variations de f. Je peux alors déterminer le signe de la fonction affine autour de sa racine $-\frac{b}{a}$.
- b(x) = (x + 2)(x 5) est un produit de fonctions affines dont je sais étudier le signe comme pour a(x). J'utilise la règle des signes pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un quotient de fonctions dont je sais étudier le signe. J'utilise à nouveau et je n'oublie pas de représenter par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

- a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f. Je peux alors déterminer le signe de la
- fonction affine autour de sa racine $-\frac{b}{a}$.

 b(x) = (x+2)(x-5) est un produit de fonctions affines dont je sais étudier le signe comme pour a(x). J'utilise la règle des signes pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un quotient de fonctions dont je sais étudier le signe. J'utilise à nouveau la règle des signes et je n'oublie pas de représenter par une double barre.
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

Étude du signe de fonctions :

■ a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f. Je peux alors déterminer le signe de la

fonction affine autour de sa racine $-\frac{b}{a}$.

- b(x) = (x+2)(x-5) est un produit de fonctions affines dont je sais étudier le signe comme pour a(x). J'utilise la règle des signes pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un quotient de fonctions dont je sais étudier le signe. J'utilise à nouveau la règle des signes et je n'oublie pas de représenter la valeur interdite par une double barre .
- $d(x) = x^2 1$. Je reconnais qui permet de . Je termine comme pour b(x).

- a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f . Je peux alors déterminer le signe de la fonction affine autour de sa racine $-\frac{b}{a}$.
- b(x) = (x+2)(x-5) est un produit de fonctions affines dont je sais étudier le signe comme pour a(x). J'utilise la règle des signes pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un quotient de fonctions dont je sais étudier le signe. J'utilise à nouveau la règle des signes et je n'oublie pas de représenter la valeur interdite par une double barre.
- $d(x) = x^2 1$. Je reconnais une identité remarquable qui permet de . Je termine comme pour b(x).

- a(x) = 2x + 3. Je reconnais une fonction affine, c'est à dire de la forme ax + b. Je déduis du signe de a les variations de f . Je peux alors déterminer le signe de la fonction affine autour de sa racine $-\frac{b}{a}$.
- b(x) = (x + 2)(x 5) est un produit de fonctions affines dont je sais étudier le signe comme pour a(x). J'utilise la règle des signes pour réaliser le tableau de signes.
- $c(x) = \frac{3x+2}{5x-1}$ est un quotient de fonctions dont je sais étudier le signe. J'utilise à nouveau la règle des signes et je n'oublie pas de représenter la valeur interdite par une double barre.
- $d(x) = x^2 1$. Je reconnais une identité remarquable qui permet de factoriser. Je termine comme pour b(x).

Exercice 3

Résoudre les inéquations suivantes :

$$x^2 + 2x + 2 > 0$$

$$x^2 - 4x + 3 < 0$$

Résoudre une inéquation du second degré

Méthode 4

■ $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son . Il est strictement négatif. J'en déduis et que le signe de j(x) est . Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble pour conclure. Méthode alternative : l'utilise

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

 $x^2 - 4x + 3 < 0$ J'introduis . Je calcule son discriminant. Il est strictement positif. Je calcule et je k(x) = (x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions. de signe Résoudre une

Resoudre une inéquation du second degré

Méthode 4

■ $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis et que le signe de j(x) est

. Celui de f(0)=2>0 par exemple. Je pense à exhiber l'ensemble pour conclure.

Méthode alternative : J'utilise :

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

 $x^2-4x+3<0$ J'introduis . Je calcule son discriminant. Il est strictement positif. Je calcule et je k(x)=(x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions.

Résoudre une inéquation du second degré

Méthode 4

■ $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis qu'il n'y a pas de racine et que le signe de j(x) est . Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble pour conclure.

Méthode alternative : J'utilise

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

 $x^2 - 4x + 3 < 0$ J'introduis . Je calcule son discriminant. Il est strictement positif. Je calcule et je k(x) = (x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions.

■ $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis qu'il n'y a pas de racine et que le signe de j(x) est constant. Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble pour conclure.

Méthode alternative : J'utilise

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

 $x^2 - 4x + 3 < 0$ J'introduis . Je calcule son discriminant. Il est strictement positif. Je calcule et je k(x) = (x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions. Résoudre une inéquation du second degré

Méthode 4

■ $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis qu'il n'y a pas de racine et que le signe de j(x) est constant. Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble S des solutions pour conclure.

Méthode alternative : J'utilise

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

conclus en donnant l'ensemble des solutions.

 $x^2 - 4x + 3 < 0$ J'introduis

. Je calcule son discriminant. Il est strictement positif. Je calcule

et je k(x) = (x - 1)(x - 3). Je réalise le tableau de signe et je

- $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis qu'il n'y a pas de racine et que le signe de j(x) est constant. Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble S des solutions pour conclure. Méthode alternative : J'utilise la forme canonique :
 - $j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$
- $x^2 4x + 3 < 0$ J'introduis . Je calcule son discriminant. Il est strictement positif. Je calcule et je k(x) = (x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions.

Résoudre une inéquation du second

Méthode 4

• $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis qu'il n'y a pas de racine et que le signe de i(x) est constant. Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble S des solutions pour conclure. Méthode alternative : J'utilise la forme canonique :

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

• $x^2 - 4x + 3 < 0$ J'introduis le trinôme $k(x) = x^2 - 4x + 3$. Je calcule son discriminant. Il est strictement positif. Je calcule k(x) = (x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions.

Résoudre une inéquation du second

Méthode 4

• $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis qu'il n'y a pas de racine et que le signe de i(x) est constant. Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble S des solutions pour conclure. Méthode alternative : J'utilise la forme canonique :

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

 $x^2 - 4x + 3 < 0$ J'introduis le trinôme $k(x) = x^2 - 4x + 3$. Je calcule son discriminant. Il est strictement positif. Je calcule les racines et je k(x) = (x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions.

• $x^2 + 2x + 2 > 0$. J'introduis le trinôme $j(x) = x^2 + 2x + 2$. Je calcule son discriminant. Il est strictement négatif. J'en déduis qu'il n'y a pas de racine et que le signe de i(x) est constant. Celui de f(0) = 2 > 0 par exemple. Je pense à exhiber l'ensemble S des solutions pour conclure. Méthode alternative : J'utilise la forme canonique :

 $j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$

$$j(x) = (x^2 + 2x + 1) + 1 = (x + 1)^2 + 1 > 0$$

 $x^2 - 4x + 3 < 0$ J'introduis le trinôme $k(x) = x^2 - 4x + 3$. Je calcule son discriminant. Il est strictement positif. Je calcule les racines et je factorise k(x) = (x-1)(x-3). Je réalise le tableau de signe et je conclus en donnant l'ensemble des solutions.

Résoudre une inéquation du second degré

Exercice 5

Résoudre sur $\mathbb R$ l'inéquation :

$$3x^2 - 18x + 31 < 4$$

Résoudre une inéquation du second degré

Méthode 6

■ $3x^2 - 18x + 31 < 4$, je ramène la résolution de l'inéquation à l'étude du signe du trinôme . Je factorise les coefficients pour faciliter mes calculs : l(x) = 3 . Je calcule . Il est nul. Le signe du trinôme est par exemple celui de f(0) = c = 27 > 0. Je pense à exclure des solutions comme l'inégalité était . Méthode alternative : Je reconnais une : $l(x) = 3(x - 3)^2$.

Résoudre une inéquation du second degré

Méthode 6

 $\blacksquare 3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme . Je factorise les coefficients pour faciliter mes calculs : I(x) = 3. Je calcule . Il est nul. Le signe du trinôme est par exemple celui de f(0) = c = 27 > 0. Je pense à exclure des solutions comme l'inégalité était Méthode alternative : le reconnais une $I(x) = 3(x-3)^2$.

de signe Résoudre une

Résoudre une inéquation du second degré

Méthode 6

■ $3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme $l(x) = 3x^2 - 18x + 27$. Je factorise les coefficients pour faciliter mes calculs : l(x) = 3 . Je calcule . Il est nul. Le signe du trinôme est par exemple celui de f(0) = c = 27 > 0. Je pense à exclure des solutions comme l'inégalité était . Méthode alternative : Je reconnais une : $l(x) = 3(x - 3)^2$.

Résoudre une inéquation du second degré

Méthode 6

■ $3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme $l(x) = 3x^2 - 18x + 27$. Je factorise les coefficients pour faciliter mes calculs : $l(x) = 3(x^2 - 6x + 9)$. Je calcule . Il est nul. Le signe du trinôme est par exemple celui de f(0) = c = 27 > 0. Je pense à exclure des solutions comme l'inégalité était . Méthode alternative : Je reconnais une

 $I(x) = 3(x-3)^2$.

Résoudre une inéquation du second degré

Méthode 6

■ $3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme $l(x) = 3x^2 - 18x + 27$. Je factorise les coefficients pour faciliter mes calculs : $l(x) = 3(x^2 - 6x + 9)$. Je calcule le discriminant. Il est nul. Le signe du trinôme est par exemple celui de f(0) = c = 27 > 0. Je pense à exclure des solutions comme l'inégalité était .

Méthode alternative : Je reconnais une

$$I(x) = 3(x-3)^2$$
.

de signe Résoudre une

Résoudre une inéquation du second degré

Méthode 6

■ $3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme $l(x) = 3x^2 - 18x + 27$. Je factorise les coefficients pour faciliter mes calculs : $l(x) = 3(x^2 - 6x + 9)$. Je calcule le discriminant. Il est nul. Le signe du trinôme est constant, par exemple celui de f(0) = c = 27 > 0. Je pense à exclure des solutions comme l'inégalité était .

Méthode alternative : Je reconnais une

$$: I(x) = 3(x-3)^2.$$

 $3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme $I(x) = 3x^2 - 18x + 27$. Je factorise les coefficients pour faciliter mes calculs : $I(x) = 3(x^2 - 6x + 9)$. Je calcule le discriminant. Il est nul. Le signe du trinôme est constant, par exemple celui de f(0) = c = 27 > 0. Je pense à exclure la racine double des solutions comme l'inégalité était

Méthode alternative : Je reconnais une $I(x) = 3(x-3)^2$.

■ $3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme $I(x) = 3x^2 - 18x + 27$. Je factorise les coefficients pour faciliter mes calculs : $I(x) = 3(x^2 - 6x + 9)$. Je calcule le discriminant. Il est nul. Le signe du trinôme est constant, par exemple celui de f(0) = c = 27 > 0. Je pense à exclure la racine double des solutions comme l'inégalité était stricte.

Méthode alternative : Je reconnais une : $I(x) = 3(x-3)^2$.

■ $3x^2 - 18x + 31 < 4$ En transposant, je ramène la résolution de l'inéquation à l'étude du signe du trinôme $I(x) = 3x^2 - 18x + 27$. Je factorise les coefficients pour faciliter mes calculs : $I(x) = 3(x^2 - 6x + 9)$. Je calcule le discriminant. Il est nul. Le signe du trinôme est constant, par exemple celui de f(0) = c = 27 > 0. Je pense à exclure la racine double des solutions comme l'inégalité était stricte.

Méthode alternative : Je reconnais une identité remarquable : $I(x) = 3(x - 3)^2$.

Résoudre une inéquation du second

Exercice 7

Résoudre sur $\mathbb R$ les inéquations suivantes :

$$-2x^2+6>2x-6$$

Résoudre une inéquation du second degré

- $-2x^2 + 5 > 2x 7$ Je me ramène à une étude de signe en transposant. $-2x^2 2x + 12 = -2(x^2 x 6)$. Je calcule . Il est . Je calcule
 - . Je actorise le trinôme. Je réalise le t je conclus.
- $\frac{3x^2+11x+2}{2x-2} > 4$. Je transpose et je $\frac{3(x^2+x-2)}{2x-2} > 0$. Je factorise le trinôme $x^2+x-2=(x-1)(x+2)$, je construis un tableau de signe et je conclus en pensant

- $-2x^2 + 5 > 2x 7$ Je me ramène à une étude de signe en transposant. $-2x^2 2x + 12 = -2(x^2 x 6)$. Je calcule le discriminant. Il est . Je calcule . Je actorise le trinôme. Je réalise le t je conclus.
- $\frac{3x^2+11x+2}{2x-2} > 4$. Je transpose et je $\frac{3(x^2+x-2)}{2x-2} > 0$. Je factorise le trinôme $x^2+x-2=(x-1)(x+2)$, je construis un tableau de signe et je conclus en pensant

Résoudre une inéquation du second

Méthode 8

$-2x^2 + 5 > 2x - 7$ Je me ramène à une étude de signe en transposant. $-2x^2 - 2x + 12 = -2(x^2 - x - 6)$. Je calcule le discriminant. Il est strictement positif. Je calcule . Je actorise le trinôme. Je réalise le t je conclus.

 $\frac{3x^2+11x+2}{2x+2} > 4$. Je transpose et je $\frac{3(x^2+x-2)}{2x-2} > 0$. Je factorise le trinôme $x^2 + x - 2 = (x - 1)(x + 2)$, je construis un tableau de signe et je conclus en pensant

- $-2x^2 + 5 > 2x 7$ Je me ramène à une étude de signe en transposant. $-2x^2 2x + 12 = -2(x^2 x 6)$. Je calcule le discriminant. Il est strictement positif. Je calcule les racines. Je actorise le trinôme. Je réalise le t je conclus.
- $\frac{3x^2+11x+2}{2x-2} > 4$. Je transpose et je $\frac{3(x^2+x-2)}{2x-2} > 0$. Je factorise le trinôme $x^2+x-2=(x-1)(x+2)$, je construis un tableau de signe et je conclus en pensant

- $-2x^2 + 5 > 2x 7$ Je me ramène à une étude de signe en transposant. $-2x^2 2x + 12 = -2(x^2 x 6)$. Je calcule le discriminant. Il est strictement positif. Je calcule les racines. Je factorise le trinôme. Je réalise le t je conclus.
- $\frac{3x^2+11x+2}{2x-2} > 4$. Je transpose et je réduis au même dénominateur. $\frac{3(x^2+x-2)}{2x-2} > 0$. Je factorise le trinôme $x^2+x-2=(x-1)(x+2)$, je construis un tableau de signe et je conclus en pensant .

- $-2x^2 + 5 > 2x 7$ Je me ramène à une étude de signe en transposant. $-2x^2 2x + 12 = -2(x^2 x 6)$. Je calcule le discriminant. Il est strictement positif. Je calcule les racines. Je factorise le trinôme. Je réalise le et je conclus.
- $\frac{3x^2+11x+2}{2x-2} > 4$. Je transpose et je réduis au même dénominateur. $\frac{3(x^2+x-2)}{2x-2} > 0$. Je factorise le trinôme $x^2+x-2=(x-1)(x+2)$, je construis un tableau de signe et je conclus en pensant aux valeurs interdites.