

# Метод главных компонент (РСА)

Занятие 4

Глазунова Е.В.

|        | Mouse<br>1 | Mouse<br>2 | Mouse<br>3 | Mouse<br>4 | Mouse<br>5 | Mouse<br>6 |
|--------|------------|------------|------------|------------|------------|------------|
| Gene 1 | 10         | 11         | 8          | 3          | 1          | 2          |
| Gene 2 | 6          | 4          | 5          | 3          | 2.8        | 1          |

|        | Mouse | Mouse | Mouse | Mouse | Mouse | Mouse |
|--------|-------|-------|-------|-------|-------|-------|
|        | 1     | 2     | 3     | 4     | 5     | 6     |
| Gene 1 | 10    | 11    | 8     | 3     | 1     | 2     |

If we only measure 1 gene, we can plot the data on a number line...



|        | Mouse<br>1 | Mouse<br>2 | Mouse<br>3 | Mouse<br>4 | Mouse<br>5 | Mouse<br>6 |
|--------|------------|------------|------------|------------|------------|------------|
| Gene 1 | 10         | 11         | 8          | 3          | 1          | 2          |
| Gene 2 | 6          | 4          | 5          | 3          | 2.8        | 1          |

...then we can plot the data on a 2-Dimensional x/y graph.



Gene 1

|        | Mouse<br>1 | Mouse<br>2 | Mouse<br>3 | Mouse<br>4 | Mouse<br>5 | Mouse<br>6 |
|--------|------------|------------|------------|------------|------------|------------|
| Gene 1 | 10         | 11         | 8          | 3          | 2          | 1          |
| Gene 2 | 6          | 4          | 5          | 3          | 2.8        | 1          |
| Gene 3 | 12         | 9          | 10         | 2.5        | 1.3        | 2          |

If we measured 3 genes, we would add another axis to the graph and make it look "3-D" (i.e. 3-dimensional) Gene 3

Gene 1

Gene 2

|        | Mouse<br>1 | Mouse<br>2 | Mouse<br>3 | Mouse<br>4 | Mouse<br>5 | Mouse<br>6 |
|--------|------------|------------|------------|------------|------------|------------|
| Gene 1 | 10         | 11         | 8          | 3          | 2          | 1          |
| Gene 2 | 6          | 4          | 5          | 3          | 2.8        | 1          |
| Gene 3 | 12         | 9          | 10         | 2.5        | 1.3        | 2          |
| Gene 4 | 5          | 7          | 6          | 2          | 4          | 7          |

If we measured 4 genes, however, we can no longer plot the data - 4 genes require 4 dimensions.

|        | Mouse<br>1 | Mouse<br>2 | Mouse<br>3 | Mouse<br>4 | Mouse<br>5 | Mouse<br>6 |
|--------|------------|------------|------------|------------|------------|------------|
| Gene 1 | 10         | 11         | 8          | 3          | 2          | 1          |
| Gene 2 | 6          | 4          | 5          | 3          | 2.8        | 1          |
| Gene 3 | 12         | 9          | 10         | 2.5        | 1.3        | 2          |
| Gene 4 | 5          | 7          | 6          | 2          | 4          | 7          |

So we're going to talk about how PCA can take 4 or more gene measurements (and thus, 4 or more dimensions of data), and make a 2-D PCA plot...

3





|        | Mouse<br>1 | Mouse<br>2 | Mouse<br>3 | Mouse<br>4 | Mouse<br>5 | Mouse<br>6 |
|--------|------------|------------|------------|------------|------------|------------|
| Gene 1 | 10         | 11         | 8          | 3          | 2          | 1          |
| Gene 2 | 6          | 4          | 5          | 3          | 2.8        | 1          |

Gene 2



We'll start by plotting the data...











 $d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2} + d_{6}^{2} = \text{sum of squared distances} = SS(distances)$ 





One way to think about PC1 is in terms of a cocktail recipe...

#### To make PC1

Mix 4 parts Gene 1 with 1 part Gene 2

The ratio of Gene 1 to Gene 2 tells you that Gene 1 is more important when it comes to describing how the data are spread out..



#### Gene 2

$$a^2 = b^2 + c^2$$

$$a^2 = 4^2 + 1^2$$

$$a = \sqrt{4^2 + 1^2} = 4.12$$



Gene 1

The new values change our recipe...

#### To make PC1

Mix **0.97** parts Gene 1 with **0.242** parts Gene 2

...but the ratio is the same: we still use 4 times as much Gene 1 as Gene 2.

$$\frac{\frac{4.12}{4.12}}{\frac{1}{4.12}} = 0.242$$

$$\frac{\frac{4}{4.12}}{\frac{4}{4.12}} = 0.97$$
Gene 1



 $d_{1}^{2} + d_{2}^{2} + d_{3}^{2} + d_{4}^{2} + d_{5}^{2} + d_{6}^{2} = \text{sum of squared distances} = SS(distances)$ 

 $\frac{SS(\text{distances for PC1})}{n-1} = \text{Eigenvalue for PC1}$ 

Also, while I'm at it, PCA calls the average of the SS(distances) for the best fit line the **Eigenvalue for PC1**...







For the sake of the example, imagine that the Variation for **PC1 = 15**, and the variation for **PC2 = 3**.

That means that the total variation around both PCs is 15 + 3 = 18...



 $\frac{SS(\text{distances for PC2})}{n-1} = \text{Variation for PC2}$ 

