Customer Segmentation using Machine Learning

Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify the several segments of customers allowing them to target the potential user base. In this machine learning project, we will make use of *K-means clustering* which is the essential algorithm for clustering unlabeled dataset.

Customer Segmentation is the process of division of customer base into several groups of individuals that share a similarity in different ways that are relevant to marketing such as gender, age, interests, and miscellaneous spending habits.

Datasets: Load dataset Mall Customer dataset.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df-pd.read_csv("Mall_Customers.csv")
df.head()
                Genre Age Annual Income (k$) Spending Score (1-100)
   CustomerID
                 Male
                        19
                                          15
                                                                39
            2
                 Male
                        21
                                           15
                                                                81
               Female
                        20
                                           16
3
               Female
                        23
                                           16
                                                                77
            5 Female
                        31
                                           17
                                                                40
```

Shape of the dataset is 200 rows and 5 column.

Missing Values: No missing value.

Statistics of Data:

df.describe()

CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
200.000000	200.000000	200.000000	200.000000
100.500000	38.850000	60.560000	50.200000
57.879185	13.969007	26.264721	25.823522
1.000000	18.000000	15.000000	1.000000
50.750000	28.750000	41.500000	34.750000
100.500000	36.000000	61.500000	50.000000
150.250000	49.000000	78.000000	73.000000
	200.000000 100.500000 57.879185 1.000000 50.750000 100.500000	200.000000 200.000000 100.500000 38.850000 57.879185 13.969007 1.000000 18.000000 50.750000 28.750000 100.500000 36.000000	200.000000 200.000000 100.500000 38.850000 60.560000 57.879185 13.969007 26.264721 1.000000 18.000000 15.000000 50.750000 28.750000 41.500000 100.500000 36.000000 61.500000

Exploratory Data Analysis: Create an distribution plot graph of Age, Annual Income and Spending Score.

Create Countplot graph between Male and Female

Create Violin plot between Age, Aunnal Income , Spending score based on Gender.

Create an barplot between various Age groups and Number of Customers.

Create an barplot between Aunnal Income and Numbers of Customers.

Create the cluster data between Aunnal Income and Spending Score.

```
X2=df.loc[:, ["Annual Income (k$)", "Spending Score (1-100)"]].values
from sklearn.cluster import KMeans
wcss = []
for k in range(1,11):
    kmeans = KMeans(n_clusters=k, init="k-means++")
    kmeans.fit(X2)
    wcss.append(kmeans.inertia_)
plt.figure(figsize=(12,6))
plt.grid()
    plt.plot(range(1,11),wcss, linewidth=2, color="red", marker ="8")
plt.xlabel("K Value")
plt.ylabel("WCSS")
plt.show()
```



```
kmeans = KMeans(n_clusters=5)
label = kmeans.fit_predict(X2)
print(label)
2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2]
print(kmeans.cluster_centers_)
[[26.30434783 20.91304348]
[55.2962963 49.51851852]
[86.53846154 82.12820513]
[88.2
     17.11428571]
[25.72727273 79.36363636]]
```


Cluster 1(Blue) – This cluster represents the customer_data having a high annual income as well as a high annual spend.

Cluster 2(Red) –This cluster denotes a high annual income and low yearly spend.

Cluster 3(Violet) –This cluster denotes the customer_data with low annual income as well as low yearly spend of income.

Cluster4(Green) –These clusters represent the customer_data with the medium income salary as well as the medium annual spend of salary.

Cluster 5(Orange) –This cluster represents a low annual income but its high yearly expenditure.

CONCLUSION:

We developed this using a class of machine learning known as unsupervised learning. Specifically, we made use of a clustering algorithm called K-means clustering. We analyzed and visualized the data and then proceeded to implement our algorithm.