Hugo Marquerie 29/01/2025

Números complejos

Definición 1 (Números complejos). Sea $\mathbb{C} = \mathbb{R} \times \mathbb{R}$ dotado de las operaciones:

- Suma: $\forall (a,b), (c,d) \in \mathbb{R}^2 : (a,b) + (c,d) = (a+c,b+d)$
- Producto: $\forall (a, b), (c, d) \in \mathbb{R}^2 : (a, b) \cdot (c, d) = (ac bd, ad + bc)$

La tripleta $(\mathbb{C}, +, \cdot)$ es el cuerpo de los **números complejos**.

Proposición 1. $(\mathbb{C}, +, \cdot)$ es un cuerpo.

Demostración: Sean $a, b, c, d, e, f \in \mathbb{R}$.

- (i) $(\mathbb{C}, +, \cdot)$ es un anillo conmutativo con unidad:
 - (a) $(\mathbb{C}, +)$ es un grupo abeliano:
 - i. Asociatividad de la suma:

$$(a,b) + ((c,d) + (e,f)) = (a+c+e,b+d+f) = ((a,b) + (c,d)) + (e,f)$$

- ii. Elemento neutro de la suma: (0,0) + (a,b) = (a,b) = (a,b) + (0,0)
- iii. Elemento opuesto: (a,b)+(-a,-b)=(a-a,b-b)=(0,0)
- iv. Conmutatividad de la suma:

$$(a,b) + (c,d) = (a+c,b+d) = (c+a,d+b) = (c,d) + (a,b)$$

(b) Asociatividad del producto:

$$(a,b) \cdot ((c,d) \cdot (e,f)) = (a,b) \cdot (ce - df, cf + de)$$
$$= (ace - adf - bcf - bde, acf + ade + bce - bdf)$$
$$= ((ac - bd, ad + bc)) \cdot (e,f) = ((a,b) \cdot (c,d)) \cdot (e,f)$$

(c) Leyes distributivas:

$$(a,b) \cdot ((c,d) + (e,f)) = (a,b) \cdot (c+e,d+f)$$

$$= (a(c+e) - b(d+f), a(d+f) + b(c+e))$$

$$= (ac + ae - bd - bf, ad + af + bc + be)$$

$$= (ac - bd, ad + bc) + (ae - bf, af + be)$$

$$= (a,b) \cdot (c,d) + (a,b) \cdot (e,f)$$

$$((a,b) \cdot (c,d)) + (e,f) = (a+c,b+d) \cdot (e,f)$$

$$= ((a+c)e - (b+d)f, (a+c)f + (b+d)e)$$

$$= (ae + ce - bf - df, af + cf + be + de)$$

$$= (ae - bf, af + be) + (ce - df, cf + de)$$

$$= (a,b) \cdot (e,f) + (c,d) \cdot (e,f)$$

(d) Conmutatividad del producto:

$$(a,b) \cdot (c,d) = (ac - bd, ad + bc) = (ca - db, cb + da) = (c,d) \cdot (a,b)$$

- (e) Elemento neutro del producto: $(1,0) \cdot (a,b) = (a,b)$
- (ii) Elemento inverso: si $(a, b) \neq (0, 0)$, entonces

$$(a,b) \cdot \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = \left(\frac{a^2}{a^2 + b^2} - \frac{-b^2}{a^2 + b^2}, \frac{ab}{a^2 + b^2} + \frac{ba}{a^2 + b^2}\right)$$
$$= \left(\frac{a^2 + b^2}{a^2 + b^2}, 0\right) = (1,0)$$

Definición 2 (unidad imaginaria). $i = (0,1) \in \mathbb{C}$ es la unidad imaginaria.

Esta unidad imaginaria cumple que $i^2 = (0,1) \cdot (0,1) = (0-1,0+0) = (-1,0) = -1 \in \mathbb{R}$ y por tanto es solución de la ecuación $x^2 + 1 = 0$.

Definición 3 (Parte real e imaginaria). Dado $z = (a, b) \in \mathbb{C}$, definimos la parte real de z como $\Re(z) = a \in \mathbb{R}$ y la parte imaginaria de z como $\Im(z) = b \in \mathbb{R}$.

Entonces, $\forall z = (a, b) \in \mathbb{C}$: $z = (a, 0) + (0, b) = (a, 0) + (0, 1) \cdot (b, 0) = \Re(z) + i\Im(z)$. Por tanto, podemos escribir z en **forma binómica** como z = a + bi.

Proposición 2. \mathbb{C} es una extensión algebraica de \mathbb{R} .

Demostración: Consideramos la aplicación $\varphi \colon \mathbb{R} \longrightarrow \mathbb{C}$ dada por $\forall a \in \mathbb{R} : \varphi(a) = (a, 0)$.

- (i) Compatible con la suma: $\varphi(a+b) = (a+b,0) = (a,0) + (b,0) = \varphi(a) + \varphi(b)$
- (ii) Compatible con el producto: $\varphi(a \cdot b) = (a \cdot b, 0) = (a, 0) \cdot (b, 0) = \varphi(a) \cdot \varphi(b)$
- (iii) Compatible con el neutro multiplicativo: $\varphi(1) = (1,0) = 1$

Como ϕ cumple las condiciones de la definición, es un morfismo de anillos y, por tanto, \mathbb{C} es una extensión de cuerpos de \mathbb{R} .

Observación 4. Se tiene que \mathbb{C} es un \mathbb{R} -espacio vectorial con base canónica (1,i).

Referenciado en

- Num-complejo-conjugado
- Teo-fundamental-algebra
- Log-complejo
- Num-complejo-arg
- Plano-complejo-extendido
- Fn-holomorfa
- Esp-hermitico
- Circunferencia-generalizada
- Num-complejo-arg-principal
- Fn-hiperbolicas-complejas
- Rama-principal-log-complejo
- Fn-trigonometricas-complejas
- Num-complejo-modulo