wb km2

April 7, 2022

1 WB - milestone 2 - inżynieria cech i wstępne modelowanie

1.1 physioNet dataset

1.1.1 Autorzy:

Paulina Jaszczuk Jędrzej Sokołowski Filip Szympliński

```
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     import copy
     from sklearn import preprocessing
     from sklearn.model_selection import train_test_split
     import xgboost as xgb
     from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor, u
     \hookrightarrowBaggingClassifier
     from sklearn.tree import DecisionTreeClassifier
     from tqdm.notebook import tqdm
     from sklearn.metrics import mean_squared_error as MSE
     from sklearn.metrics import roc_auc_score, accuracy_score, f1_score, roc_curve, u

¬r2_score

     import warnings
     warnings.filterwarnings('ignore')
     # ustawia domyślną wielkość wykresów
     plt.rcParams['figure.figsize'] = (12,8)
     # to samo tylko dla tekstu
     plt.rcParams['font.size'] = 16
```

1.2 Import danych i poglądowe informacje

Zbiór danych medycznych physioNet opisujący pacjentów z oddziałów kariochirurgicznych.

```
[]: data = pd.read_csv("patients_data_ready.csv", sep=",", index_col=[0])
[]: data.rename(columns = {"MechVent_max" : "MechVent"}, inplace = True)
    data.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3855 entries, 0 to 3999
Data columns (total 82 columns):

Data	COLUMNIS (COCAL	OZ COTUMIS).	
#	Column	Non-Null Count	Dtype
0	Age	3855 non-null	float64
1	Gender	3855 non-null	float64
2	Height	3855 non-null	float64
3	ICUType	3855 non-null	float64
4	Weight	3855 non-null	float64
5	MAP_mean	3855 non-null	float64
6	MAP_max	3855 non-null	float64
7	MAP_min	3855 non-null	float64
8	HCT_mean	3855 non-null	float64
9	HCT_max	3855 non-null	float64
10	HCT_min	3855 non-null	float64
11	SysABP_mean	3855 non-null	float64
12	SysABP_max	3855 non-null	float64
13	SysABP_min	3855 non-null	float64
14	${\tt NIDiasABP_mean}$	3855 non-null	float64
15	NIDiasABP_max	3855 non-null	float64
16	NIDiasABP_min	3855 non-null	float64
17	Lactate_mean	3855 non-null	float64
18	Lactate_max	3855 non-null	float64
19	Lactate_min	3855 non-null	float64
20	HR_mean	3855 non-null	float64
21	HR_max	3855 non-null	float64
22	HR_min	3855 non-null	float64
23	FiO2_mean	3855 non-null	float64
24	FiO2_max	3855 non-null	float64
25	FiO2_min	3855 non-null	float64
26	Urine_mean	3855 non-null	float64
27	Urine_max	3855 non-null	float64
28	Urine_min	3855 non-null	float64
29	BUN_mean	3855 non-null	float64
30	BUN_max	3855 non-null	float64
31	BUN_min	3855 non-null	float64
32	Mg_mean	3855 non-null	float64
33	Mg_max	3855 non-null	float64

34	Mg_min		non-null	float64
35	Na_mean		non-null	float64
36	Na_max	3855	non-null	float64
37	Na_min	3855	non-null	float64
38	MechVent	3855	non-null	float64
39	K_mean	3855	non-null	float64
40	K_max	3855	non-null	float64
41	K_min	3855	non-null	float64
42	PaCO2_mean	3855	non-null	float64
43	PaCO2_max	3855	non-null	float64
44	PaCO2_min	3855	non-null	float64
45	pH_mean	3855	non-null	float64
46	pH_max	3855	non-null	float64
47	pH_min	3855	non-null	float64
48	GCS_mean	3855	non-null	float64
49	GCS_max	3855	non-null	float64
50	GCS_min	3855	non-null	float64
51	Platelets_mean	3855	non-null	float64
52	Platelets_max	3855	non-null	float64
53	Platelets_min	3855		float64
54	Temp_mean		non-null	float64
55	Temp_max	3855	non-null	float64
56	Temp_min	3855		float64
57	NISysABP_mean	3855		float64
58	NISysABP_max		non-null	float64
59	NISysABP_min	3855		float64
60	Pa02_mean	3855		float64
61	PaO2_max	3855		float64
62	PaO2_min		non-null	float64
63	Glucose_mean		non-null	float64
64	Glucose_max	3855		float64
65	Glucose_min	3855		float64
66	Creatinine_mean	3855	non-null	float64
67	_		non-null	float64
68	Creatinine_max Creatinine_min			float64
69	DiasABP_mean		non-null	float64
70	-		non-null	float64
	DiasABP_max		non-null	
71	DiasABP_min		non-null	float64
72	WBC_mean	3855		float64
73	WBC_max		non-null	float64
74	WBC_min		non-null	float64
75 76	HCO3_mean		non-null	float64
76	HCO3_max	3855		float64
77	HCO3_min		non-null	float64
78	NIMAP_mean		non-null	float64
79	NIMAP_max		non-null	float64
80	NIMAP_min	3855		float64
81	Survived	პԾ55	non-null	int64

```
dtypes: float64(81), int64(1) memory usage: 2.4 MB
```

Dane zawierają 5 cech statycznych (Age, Gender, Height, Weight, ICUType - rodzaj oddziału, na którym przebywał pacjent) oraz 75 cech dynamicznych, mierzonych co najmniej jednokrotnie. Wśród nich jest jedna zmienna binarna - MechVent - kolumna odpowiadająca informacji, czy pacjent został poddany wentylacji z użyciem respiratora. Zmienne dynamiczne, oprócz MechVent wyrażone są przez minimum, średnią i maximum z wszystkich pomiarów dla danego pacjenta. Zmienna celu - Survived - jest binarna (1, jeśli pacjent przeżył i 0, jeśli nie przeżył).

1.3 Inżynieria danych

Wszystkie braki danych zostały przez nas usunięte lub zaimputowane na poprzednim etapie pracy. Dane nie zawierają wartości kategorycznych, które należałoby zakodować.

1.3.1 Outliery

Na poprzednim etapie prac zauważyliśmy, że wśród danych występują liczne outliery, jednak z racji na medyczny charakter danych, mogą one stanowić ważną informację w procesie modelowania i samej predykcji.

```
[]: #boxplot liczby outlierów z podziałem na zmienną celu
sns.boxplot( x=data['Survived'], y=data['n_outliers'])
plt.show()
```


Jak widać, pacjenci, którzy nie przeżyli zdecydowanie częściej mieli skrajnie wysokie lub skrajnie niskie wartości odczytów medycznych - wśród ich danych jest wyraźnie więcej outlierów. Potwierdza to nasze przypuszczenie, że nie możemy pozbyć się tych informacji z naszego zbioru danych.

1.3.2 Przekształcenia danych

Na poprzednim etapie prac zidentyfikowaliśmy kilka zmiennych, których rozkłady mocno skupiają się w pobliżu zera.

Postanowiliśmy stworzyć drugą ramkę danych, w której dane kolumny zlogarytmujemy. Dalsze prace - modelowanie - będziemy wykonywać na obu ramkach danych i porównamy wyniki.

```
[]: #tworzymy drugą ramkę ze zlogarytmowanymi wyżej wymienionymi kolumnami data_log = copy.deepcopy(data) data_log[cols_to_log] = data_log[cols_to_log].apply(lambda x: np.log1p(x), → axis=1)
```

```
[]: data_log[cols_to_log].hist(bins = 20, figsize=(20, 14))
plt.show()
```


Rozkłady zmiennych zlogarytmowanych prezentują się znacznie bardziej informatywnie.

1.4 Wstępne modelowanie

Nasze dane są mocno niezbalansowane - pacjentów, którzy zmarli jest zdecydawanie mniej niż tych, którzy przeżyli (stosunek mniej więcej 1:6). Jednocześnie to właśnie właściwa predykcja przypadków śmierci interesuje nas najbardziej. Między innymi z tego właśnie powodu zdecydowaliśmy się zastosować kilka metryk, a część z nich wyliczaliśmy oddzielnie dla obu klas - metryka ważona, z racji niezbalansowania klas, mogłaby być mocno zawyżona.

Do ocenienia działań modelu zastosowaliśmy metryki F1 score - osobno dla każdej klasy a także ważony, a także precision i recall oddzielnie dla każdej klasy. W przypadku metryk liczonych osobno dla obu klas, pierwsza wartość dotyczy pacjentów, którzy zmarli, zaś druga tych, którzy przeżyli.

```
def show_model_metrics(model, X, y):
    y_pred = model.predict(X)
    print(f"F1 score: {f1_score(y, y_pred, average=None)}")
    print(f"F1 score micro: {f1_score(y, y_pred, average='micro')}")
    print(f"F1 score weighted: {f1_score(y, y_pred, average='weighted')}")
    print(f"Precision score: {precision_score(y, y_pred, average=None)}")
    print(f"Recall score: {recall_score(y, y_pred, average=None)}")
```

```
[]: from sklearn.model_selection import train_test_split
     from sklearn.metrics import roc_auc_score, accuracy_score, f1_score, roc_curve, u
     →confusion_matrix, precision_score, recall_score
     y = data["Survived"]
     X = data.drop("Survived", axis= 1)
     #podział na train/val/test zbioru oryginalnego
     X_train_val, X_test, y_train_val, y_test = train_test_split(X, y,_
     →random_state=420, test_size=0.2)
     X_train, X_val, y_train, y_val = train_test_split(X_train_val, y_train_val, u
     →random_state=420, test_size=0.125)
[]: y_log = data_log["Survived"]
     X_log = data_log.drop("Survived", axis= 1)
     #podział na train/val/test zbioru z kolumnami zlogarytmowanymi
     X_train_val_log, X_test_log, y_train_val_log, y_test_log =_
     →train_test_split(X_log, y_log, random_state=420, test_size=0.2)
     X_train_log, X_val_log, y_train_log, y_val_log =_
     →train_test_split(X_train_val_log, y_train_val_log, random_state=420,__
     →test_size=0.125)
    1.4.1 XGBoost - dane po tranformacjach logarytmicznych
[]: xgb_clf = xgb.XGBClassifier(random_state=1,
                         booster='gbtree',
                         use_label_encoder=False,
     xgb_clf.fit(X_train_log, y_train_log)
[]: XGBClassifier(random state=1, use label encoder=False)
[]: y_pred = xgb_clf.predict(X_val_log)
     print(accuracy_score(y_val_log, y_pred, normalize=True))
     show_model_metrics(xgb_clf, X_val_log, y_val_log)
    0.8626943005181347
    F1 score: [0.2739726 0.9241774]
    F1 score micro: 0.8626943005181347
    F1 score weighted: 0.8281626987886429
    Precision score: [0.625
                                 0.872972971
    Recall score: [0.1754386 0.98176292]
[]: xgb_clf = xgb.XGBClassifier(random_state=42,
                         booster='gbtree',
                         use_label_encoder=False,
```

```
learning_rate=0.01, n_estimators=20
     xgb_clf.fit(X_train_log, y_train_log)
[]: XGBClassifier(learning_rate=0.01, n_estimators=20, random_state=42,
                   use_label_encoder=False)
[]: y_pred = xgb_clf.predict(X_val_log)
     print(accuracy_score(y_val_log, y_pred, normalize=True))
     show_model_metrics(xgb_clf, X_val_log, y_val_log)
    0.8575129533678757
    F1 score: [0.20289855 0.92176387]
    F1 score micro: 0.8575129533678757
    F1 score weighted: 0.8156101822171706
    Precision score: [0.58333333 0.86631016]
    Recall score: [0.12280702 0.98480243]
[]: xgb_clf = xgb.XGBClassifier(random_state=42,
                         booster='gbtree',
                         use_label_encoder=False,
                         learning_rate=0.5, n_estimators=50
     xgb_clf.fit(X_train, y_train)
[]: XGBClassifier(learning_rate=0.5, n_estimators=50, random_state=42,
                   use label encoder=False)
[]: y_pred = xgb_clf.predict(X_val_log)
     print(accuracy_score(y_val_log, y_pred, normalize=True))
     show_model_metrics(xgb_clf, X_val_log, y_val_log)
    0.8575129533678757
    F1 score: [0.17910448 0.92198582]
    F1 score micro: 0.8575129533678757
    F1 score weighted: 0.8122857216508134
    Precision score: [0.6
                                0.8643617]
    Recall score: [0.10526316 0.98784195]
    1.4.2 XGBoost - dane bez tranformacjacji logarytmicznych
[]: xgb_clf = xgb.XGBClassifier(random_state=1,
                         booster='gbtree',
                         use_label_encoder=False,
     xgb_clf.fit(X_train, y_train)
```

```
[]: XGBClassifier(random_state=1, use_label_encoder=False)
[]: y_pred = xgb_clf.predict(X_val)
     print(accuracy_score(y_val, y_pred, normalize=True))
     show_model_metrics(xgb_clf, X_val, y_val)
    0.8626943005181347
    F1 score: [0.2739726 0.9241774]
    F1 score micro: 0.8626943005181347
    F1 score weighted: 0.8281626987886429
    Precision score: [0.625]
                                 0.87297297]
    Recall score: [0.1754386 0.98176292]
[]: xgb_clf = xgb.XGBClassifier(random_state=42,
                         booster='gbtree',
                         use_label_encoder=False,
                         learning_rate=0.01, n_estimators=20
     xgb_clf.fit(X_train, y_train)
[]: XGBClassifier(learning_rate=0.01, n_estimators=20, random_state=42,
                   use_label_encoder=False)
[]: y_pred = xgb_clf.predict(X_val)
     print(accuracy_score(y_val, y_pred, normalize=True))
     show_model_metrics(xgb_clf, X_val, y_val)
    0.8575129533678757
    F1 score: [0.20289855 0.92176387]
    F1 score micro: 0.8575129533678757
    F1 score weighted: 0.8156101822171706
    Precision score: [0.58333333 0.86631016]
    Recall score: [0.12280702 0.98480243]
[]: xgb_clf = xgb.XGBClassifier(random_state=42,
                         booster='gbtree',
                         use_label_encoder=False,
                         learning_rate=0.5, n_estimators=50
     xgb_clf.fit(X_train, y_train)
[]: XGBClassifier(learning_rate=0.5, n_estimators=50, random_state=42,
                  use_label_encoder=False)
[ ]: y_pred = xgb_clf.predict(X_val)
     print(accuracy_score(y_val, y_pred, normalize=True))
     show_model_metrics(xgb_clf, X_val, y_val)
```

0.8678756476683938

F1 score: [0.38554217 0.92597968] F1 score micro: 0.8678756476683938 F1 score weighted: 0.846174141356631 Precision score: [0.61538462 0.88611111] Recall score: [0.28070175 0.96960486]

1.4.3 Random Forest - dane po tranformacjach logarytmicznych

```
[]: rForest = RandomForestClassifier()
    rForest.fit(X_train_log, y_train_log)

y_pred = rForest.predict(X_val_log)
    print(accuracy_score(y_val_log, y_pred, normalize=True))
    show_model_metrics(rForest, X_val_log, y_val_log)
```

0.8575129533678757

F1 score: [0.12698413 0.92242595] F1 score micro: 0.8575129533678757 F1 score weighted: 0.8049643353910475 Precision score: [0.66666667 0.86052632] Recall score: [0.07017544 0.99392097]

```
[]: rForest = RandomForestClassifier(criterion='entropy')
    rForest.fit(X_train_log, y_train_log)

y_pred = rForest.predict(X_val_log)
    print(accuracy_score(y_val_log, y_pred, normalize=True))
    show_model_metrics(rForest, X_val_log, y_val_log)
```

0.8601036269430051

F1 score: [0.12903226 0.92394366] F1 score micro: 0.8601036269430051 F1 score weighted: 0.8065603717575384 Precision score: [0.8 0.86089239] Recall score: [0.07017544 0.99696049]

```
[]: rForest = RandomForestClassifier(n_estimators=300)
    rForest.fit(X_train_log, y_train_log)

    y_pred = rForest.predict(X_val_log)
    print(accuracy_score(y_val_log, y_pred, normalize=True))
    show_model_metrics(rForest, X_val_log, y_val_log)
```

0.8575129533678757

F1 score: [0.12698413 0.92242595] F1 score micro: 0.8575129533678757 F1 score weighted: 0.8049643353910475 Precision score: [0.66666667 0.86052632] Recall score: [0.07017544 0.99392097]

```
[]: rForest = RandomForestClassifier(n_estimators=30)
    rForest.fit(X_train_log, y_train_log)

y_pred = rForest.predict(X_val_log)
    print(accuracy_score(y_val_log, y_pred, normalize=True))
    show_model_metrics(rForest, X_val_log, y_val_log)
```

0.8626943005181347

F1 score: [0.23188406 0.92460882] F1 score micro: 0.8626943005181347 F1 score weighted: 0.8223152665001824 Precision score: [0.66666667 0.86898396] Recall score: [0.14035088 0.98784195]

1.4.4 Random Forest - dane bez tranformacji logarytmicznych

```
[]: rForest = RandomForestClassifier()
    rForest.fit(X_train, y_train)

y_pred = rForest.predict(X_val)
    print(accuracy_score(y_val, y_pred, normalize=True))
    show_model_metrics(rForest, X_val, y_val)
```

0.8575129533678757

F1 score: [0.17910448 0.92198582]
F1 score micro: 0.8575129533678757
F1 score weighted: 0.8122857216508134
Precision score: [0.6 0.8643617]
Recall score: [0.10526316 0.98784195]

```
[]: rForest = RandomForestClassifier(criterion='entropy')
rForest.fit(X_train, y_train)

y_pred = rForest.predict(X_val)
print(accuracy_score(y_val, y_pred, normalize=True))
show_model_metrics(rForest, X_val, y_val)
```

0.8549222797927462

F1 score: [0.09677419 0.92112676]
F1 score micro: 0.854922279792746
F1 score weighted: 0.7993959410818916
Precision score: [0.6 0.85826772]
Recall score: [0.05263158 0.99392097]

```
[]: rForest = RandomForestClassifier(n_estimators=300)
     rForest.fit(X_train, y_train)
     y_pred = rForest.predict(X_val)
     print(accuracy_score(y_val, y_pred, normalize=True))
     show_model_metrics(rForest, X_val, y_val)
    0.8626943005181347
    F1 score: [0.18461538 0.92503536]
    F1 score micro: 0.8626943005181347
    F1 score weighted: 0.8156987320892313
    Precision score: [0.75
                                 0.86507937]
    Recall score: [0.10526316 0.99392097]
[]: rForest = RandomForestClassifier(n_estimators=30)
     rForest.fit(X_train, y_train)
     y_pred = rForest.predict(X_val)
     print(accuracy_score(y_val, y_pred, normalize=True))
     show_model_metrics(rForest, X_val, y_val)
```

0.8626943005181347

F1 score: [0.23188406 0.92460882] F1 score micro: 0.8626943005181347 F1 score weighted: 0.8223152665001824 Precision score: [0.66666667 0.86898396] Recall score: [0.14035088 0.98784195]

Widzimy, że skuteczność modeli XGBoost i Random Forest dla różnych parametrów oscylowała niezmiennie wokół 85%, natomiast z racji niezbalansowania jest to wynik mocno zawyżony.

1.4.5 DecisionTreeClassifier

Wstępne parametry i wpływ parametrów na predykcyjność

Bez log

Train set scores F1 score: [0.47897623 0.94122499] F1 score micro: 0.8943661971830986 F1 score weighted: 0.8798887990025819 Precision score: [0.69312169 0.90952571] Recall score: [0.36592179 0.97521368] Validation set scores F1 score: [0.375 0.92774566] F1 score micro: 0.8704663212435233 F1 score weighted: 0.8461226002575699 Precision score: [0.65217391 0.88429752] Recall score: [0.26315789 0.97568389] []: cols = ["max_depth", "AUC", "dataset"] history = pd.DataFrame(columns=cols) $n_{depth} = np.arange(1,15,1)$ for depth in tqdm(n_depth): dt = DecisionTreeClassifier(criterion='gini', max_depth=depth).fit(X_train,_ →y_train) train_score = dt.score(X_train,y_train) val_score = dt.score(X_val,y_val) history = history.append(dict(zip(cols, [depth, train_score, "train"])), __ →ignore_index=True) history = history.append(dict(zip(cols, [depth, val_score, "val"])), __ →ignore_index=True)

sns.lineplot(data=history, x = "max_depth", y = "AUC", hue = "dataset")

0%| | 0/14 [00:00<?, ?it/s]

plt.show()

Wraz ze wzrostem głębokości drzewa, wzrasta AUC na zbiorze treningowym, ale spada na zbiorze walidacyjnym - model się przeucza.

```
cols = ["min_samples_split","AUC", "dataset"]
history = pd.DataFrame(columns=cols)

n_depth = np.arange(2,40,1)
for depth in tqdm(n_depth):
    dt = DecisionTreeClassifier(criterion='gini', min_samples_split=depth).
    fit(X_train, y_train)
        train_score = dt.score(X_train, y_train)
        val_score = dt.score(X_val, y_val)
        history = history.append(dict(zip(cols, [depth, train_score, "train"])),u
        ignore_index=True)
        history = history.append(dict(zip(cols, [depth, val_score, "val"])),u
        ignore_index=True)

sns.lineplot(data=history, x = "min_samples_split", y = "AUC", hue = "dataset")
plt.show()
```

0%| | 0/38 [00:00<?, ?it/s]

AUC zbioru walidacyjnego pozostaje na podobnym poziomie.

0%| | 0/38 [00:00<?, ?it/s]

AUC spada na zbiorze treningowym, ale rośne na walidacyjnym.

```
\mathbf{Z} \log
```

Train set scores

F1 score: [0.47897623 0.94122499]
F1 score micro: 0.8943661971830986
F1 score weighted: 0.8798887990025819
Precision score: [0.69312169 0.90952571]
Recall score: [0.36592179 0.97521368]

Validation set scores

F1 score: [0.36585366 0.92463768]
F1 score micro: 0.8652849740932642
F1 score weighted: 0.8421229420674474
Precision score: [0.6 0.88365651]
Recall score: [0.26315789 0.96960486]


```
[]: cols = ["min_samples_leaf", "AUC", "dataset"]
history = pd.DataFrame(columns=cols)
```

```
n_depth = np.arange(2,40,1)
for depth in tqdm(n_depth):
    dt = DecisionTreeClassifier(criterion='gini', min_samples_leaf=depth).

ifit(X_train_log, y_train_log)
    train_score = dt.score(X_train_log, y_train_log)
    val_score = dt.score(X_val_log, y_val_log)
    history = history.append(dict(zip(cols, [depth, train_score, "train"])),u
ignore_index=True)
    history = history.append(dict(zip(cols, [depth, val_score, "val"])),u
ignore_index=True)

sns.lineplot(data=history, x = "min_samples_leaf", y = "AUC", hue = "dataset")
plt.show()
```


Wnioski są analogiczne jak dla ramki bez zlogarytmowania.

Predyktory po wstępnym doborze parametrów Wybierzmy parametry, które dają nadzieję na najlepsza predykcyjność przy zachowanym jednocześnie nieprzetrenowanym modelu.

```
min_samples_leaf=30)
    dt_clf2.fit(X_train, y_train)
    print("----")
    print("Train set scores")
    show_model_metrics(dt_clf2, X_train, y_train)
    print("----")
    print("Validation set scores")
    show_model_metrics(dt_clf2, X_val, y_val)
   Train set scores
   F1 score: [0.44776119 0.93909465]
   F1 score micro: 0.8902891030392883
   F1 score weighted: 0.8738991804833832
   Precision score: [0.6741573 0.90555556]
   Recall score: [0.33519553 0.97521368]
   Validation set scores
   F1 score: [0.37974684 0.92929293]
   F1 score micro: 0.8730569948186528
   F1 score weighted: 0.8481423403047329
   Precision score: [0.68181818 0.88461538]
   Recall score: [0.26315789 0.9787234 ]
[]: dt_clf_log2 = DecisionTreeClassifier(criterion='gini',
                               max_depth=4,
                               min_samples_leaf=32)
    dt_clf_log2.fit(X_train_log, y_train_log)
    print("----")
    print("Train set scores")
    show_model_metrics(dt_clf_log2, X_train_log, y_train_log)
    print("-----")
    print("Validation set scores")
    show_model_metrics(dt_clf_log2, X_val_log, y_val_log)
   Train set scores
   F1 score: [0.44776119 0.93909465]
   F1 score micro: 0.8902891030392883
   F1 score weighted: 0.8738991804833832
```

Precision score: [0.6741573 0.90555556] Recall score: [0.33519553 0.97521368]

Validation set scores

F1 score: [0.37974684 0.92929293] F1 score micro: 0.8730569948186528 F1 score weighted: 0.8481423403047329 Precision score: [0.68181818 0.88461538] Recall score: [0.26315789 0.9787234]

Z powyższych wyników widać, że wszystkie wartości po doborze parametrów są lepsze, jednakże różnica nie jest znacząca.

1.4.6 Wnioski

Jak widać, mimo dość wysokich wyników metryk ważonych, nasz model dość przeciętnie radzi sobie z jego głównym zadaniem - wykrywaniem pacjentów, którzy zmarli. Będzie to naszym priorytetem na dalszym etapie prac. Jeśli chodzi o ramkę z danymi poddanymi transformacji logarytmicznej, nie zmienia to niemal w ogóle wyników modelu.