#### Introduction to Monte Carlo in Finance

5 - Variance Reduction Methods

Giovanni Della Lunga

WORKSHOP IN QUANTITATIVE FINANCE

Bologna - May 2-3, 2019

# Outline



- Antithetic Variables
- Moment Matching

#### Variance Reduction Methods

- In this section we briefly discuss techniques for improving on the speed and efficiency of a simulation, usually called *variance reduction* techniques;
- If we do nothing about efficiency, the number of MC replications we need to achieve acceptable pricing acccuracy may be surprisingly large;
- As a result in many cases variance reduction techiques are a practical requirement;
- From a general point of view these methods are based on two principal strategies for reducing variance:
  - Taking advantage of tractable features of a model to adjust or correct simulation output
  - Reducing the variability in simulation input

#### Variance Reduction Methods

From the first section we remember that the variance of the estimator is

$$var\left(\widetilde{I}_n\right) = \frac{var(f(U_i))}{n}$$

So, the standard error of the sample mean is the standard deviation or

$$SE\left(\tilde{I}_{n}\right)=rac{\sigma_{f}}{\sqrt{n}}$$

where 
$$\sigma_f^2 = var(f(U_i))$$



#### Variance Reduction Methods

- The most commonly used strategies for variance reduction are the following:
  - Antithetic variates
  - Moment Matching
  - Control variates
  - Stratified Sampling
  - Importance Sampling
  - Low-discrepancy sequences

#### Subsection 1

**Antithetic Variables** 

### Variance Reduction Methods - Antithetic Variates

- In this case we construc the estimator by using two brownian trajectories that are mirror images of each other;
- This causes cancellation of dispersion;
- This method tends to reduce the variance modestly but it is extremely easy to implement and as a result very commonly used;
- For the antithetic method to work we need  $V^+$  and  $V^-$  to be negatively correlated;
- this will happen if the payoff function is a monotonic function of Z;

## Variance Reduction Methods - Antithetic Variates

ullet To apply the antithetic variate technique, we generate standard normal random numbers Z and define two set of samples of the undelying price

$$S_T^+ = S_0 e^{(r-\sigma^2/2)T + \sigma\sqrt{T}Z}$$
  $S_T^- = S_0 e^{(r-\sigma^2/2)T + \sigma\sqrt{T}(-Z)}$ 

Similarly we define two sets of discounted payoff samples ...

$$V_T^+ = \max[S^+(T) - K, 0]$$
  $V_T^- = \max[S^-(T) - K, 0]$ 

 ... and at last we construct our mean estimator by averaging these samples

$$\bar{V}_0 = \frac{1}{n} \sum_{j=1}^{n} \frac{1}{2} \left( V_j^+ + V_j^- \right)$$



#### Subsection 2

Moment Matching

# Variance Reduction Methods - Moment Matching

- Let  $z_i$ , i = 1, ..., n, denote an independent standard normal random vector used to drive a simulation.
- The sample moments will not exactly match those of the standard normal. The idea of moment matching is to transform the  $z_i$  to match a finite number of the moments of the underlying population.
- For example, the first and second moment of the normal random number can be matched by defining

$$\tilde{z}_i = (z_i - \tilde{z}) \frac{\sigma_z}{s_z} + \mu_z, i = 1, ....n$$
 (1)

where  $\tilde{z}$  is the sample mean of the  $z_i$  and  $\sigma_z$  is the population standard deviation,  $s_z$  is the sample standard deviation of  $z_i$ , and  $\mu_z$  s the population mean.

# Notebook





- GitHub: polyhedron-gdl;
- Notebook : n03\_mcs;