Análisis de Lenguajes de Programación Trabajo Práctico 3

Nicolás Felipe Del Piano

Observaciones:

Tabla de precedencia

Operador Precedencia

Abs	1
Let	1
Suc	2
Fst	2
Snd	2
Rec	2
App	3
As	4

Los operadores que faltan, o bien llevan paréntesis obligatoriamente o no los necesitan.

Los ejercicios no citados en este informe se encuentran resueltos en el código impreso al final.

Ejercicio 1.

Dar una derivación de tipo para el término S definido en Prelude.lam.

$$\frac{\Gamma' \vdash x \colon B \to B \to B}{\Gamma' \vdash (x z) \colon B \to B} \frac{T - VAR}{\Gamma' \vdash z \colon B} \frac{T - VAR}{T - APP} \frac{\Gamma' \vdash y \colon B \to B}{\Gamma' \vdash (y z) \colon B} \frac{T - VAR}{\Gamma' \vdash z \colon B} \frac{T - VAR}{T - APP}$$

$$\frac{\Gamma' \vdash (x z) \colon B \to B}{\Gamma, x \colon B \to B \to B, y \colon B \to B, z \colon B \vdash (x z) (y z) \colon B} \frac{T - APP}{T - APP}$$

$$\frac{\Gamma, x \colon B \to B \to B, y \colon B \to B \vdash \lambda z \colon B, (x z) (y z) \colon B \to B}{\Gamma, x \colon B \to B \to B \vdash \lambda y \colon B \to B, \lambda z \colon B, (x z) (y z) \colon (B \to B) \to B \to B} \frac{T - ABS}{T - ABS}$$

$$\frac{\Gamma \vdash \lambda x \colon B \to B \to B, \lambda y \colon B \to B, \lambda z \colon B, (x z) (y z) \colon (B \to B \to B) \to B \to B}{\Gamma \vdash \lambda x \colon B \to B, \lambda y \colon B \to B, \lambda z \colon B, (x z) (y z) \colon (B \to B \to B) \to B \to B} \frac{T - ABS}{T - ABS}$$

Donde $\Gamma' = \Gamma$, x:B \rightarrow B \rightarrow B, y:B \rightarrow B, z:B

Ejercicio 2.

La función infer retorna un valor de tipo Either String Type, porque su trabajo es inferir los tipos de los términos y devolver algo de tipo Type, pero si existese un término atascado o una forma normal que no sea un valor, debería dar retornar un error. Ese es el lugar que ocupa String, en el tipo Either String Type.

(>>=) funciona de la siguiente manera. Primero recibe un argumento de tipo Either String Type. Luego una función que tiene tipo Type \rightarrow Either String Type. Si el primer argumento es "Left s", aplica Left a s (s:String). En cambio, si es del tipo "Right t", devuelve la función que recibió como segundo argumento aplicada a t (t:Type). Esto nos permite hacer una secuencia de operaciones (>>=), donde se van aplicando sucesivamente los resultados obtenidos.

Ejercicio 5.

De una derivación de tipo para el término (let $z = ((\lambda x : B. x) \text{ as } B \to B)$ in z) as $B \to B$. Verificar que este término tipa correctamente en el intérprete.

$$\frac{\frac{\overline{\Gamma, x \vdash x:B}}{\Gamma \vdash \lambda x:B . x : B \to B} \frac{T - ABS}{T - ASCRIBE}}{\frac{\Gamma \vdash ((\lambda x:B . x) \text{ as } B \to B): B \to B}{\Gamma \vdash ((\lambda x:B . x) \text{ as } B \to B) \text{ in } z : B \to B}} \frac{T - VAR}{\Gamma \vdash \text{Let } z = ((\lambda x:B . x) \text{ as } B \to B) \text{ in } z : B \to B}} \frac{T - VAR}{T - LET}}{T - ASCRIBE}$$

Verificación:

ST> :t (let
$$z = ((\x:B.x) \text{ as } B \rightarrow B) \text{ in } z) \text{ as } B \rightarrow B$$

B \rightarrow B

Ejercicio 7.

Extender la relación de evaluación para contemplar los pares. A la hora de reducir (t_1,t_2) , reducir primero por completo t_1 y luego reducir t_2 .

$$\frac{t_1 \to t'_1}{(t_1, t_2) \to (t'_1, t_2)} \to -PAIR1$$

$$\frac{v \to t_2'}{(v, t_2) \to (v, t_2')} \to -PAIR2$$

$$\frac{t \to t'}{fst \ t \to fst \ t'} \to -FST1$$

$$fst(v_1, v_2) \rightarrow v_1 \quad E - FST2$$

$$\frac{t \to t'}{snd \ t \to snd \ t'} \to SND1$$

$$snd(v_1, v_2) \rightarrow v_2 \quad E - SND2$$

Ejercicio 9.

De una derivación de tipo para el término fst (unit as Unit, λ x : (B,B). snd x). Verificar que este término tipa correctamente en el intérprete.

$$\frac{\frac{\Gamma \vdash \text{unit:Unit}}{\Gamma \vdash \text{unit as Unit:Unit}} \frac{T - \text{UNIT}}{T - \text{ASCRIBE}} \frac{\frac{\Gamma, \text{x:}(B,B) \vdash \text{x:}(B,B)}{\Gamma, \text{x:}(B,B) \vdash \text{snd x:B}} \frac{T - \text{VAR}}{T - \text{SND}}}{\Gamma \vdash \text{unit as Unit:Unit}} \frac{T - \text{ASCRIBE}}{\Gamma \vdash \lambda \text{x} : (B,B). \text{ snd x} : (B,B) \rightarrow B} \frac{T - \text{ABS}}{T - \text{PAIR}}}{T - \text{PAIR}}$$

$$\frac{\Gamma \vdash \text{(unit as Unit, } \lambda \text{x} : (B,B). \text{ snd x}) : (\text{Unit, } (B,B) \rightarrow B))}{\Gamma \vdash \text{fst (unit as Unit, } \lambda \text{x} : (B,B). \text{ snd x}) : \text{Unit)}} \frac{T - \text{VAR}}{T - \text{SND}}$$

Verificación:

ST> :t (fst (unit as Unit,
$$\x:(B,B).snd x$$
))
Unit

Ejercicio 11.

Definir la función Ack dentro del cálculo.

 $def A = (\n1:\n2:\n2:\n2:\nx) (\n:\nx:\nx) (\x:\nx)$

 $y:Nat.\z:Nat. R (x (suc 0)) (\w:Nat.\y:Nat.(x w)) z) n1 n2)$

Verificación:

ST> A