Maximize the customer retention by predicting the customer churn in retail

Team Members: (Group 8)

- 1. Vandhana Priya V
- 2. Sreeshitha Sreedhar
- 3. Tamilarasan G
- 4. Vijay Paudel B
- 5. Swaruba P

Mentored by: Jayveer Nanda

Problem Statement

Domain - Retail Industry

Business problem statement – Customer Churn in Retail Industry

Churn quantifies the number of customers who have unsubscribed or cancelled their service contract.

Customers turning their back to your service or product are no fun for any business.

Why to Predict Customer Churn:

- > Acquiring a new customer can cost five times more than retaining an existing customer.
- Increasing customer retention by 5% can increase profits from 25-95%.

DATASET

- > The dataset is collected from an online tea retail store which sells tea of different flavors.
- Across 4 major cities Bangalore, Chennai, Delhi and Mumbai.
- > Dataset contains data about the store's customers, their orders, quantity ordered, order frequency, city, details of promotional mails sent to the customers etc.
- ➤ We have collected the data between 2008 and 2018.
- Rows: 30801, Columns: 15
- The reason we chose this dataset is that, it included the details about promotional mails.

DATA DICTIONARY

Numerical Columns: 8, Categorical columns: 7

Features	Description					
Custid	Computer generated ID to identify customers throughout the database					
Retained	1, if customer is assumed to be active, 0 = otherwise					
Created	Date when the contact was created in the database - when the customer joined					
Firstorder	Date when the customer placed first order					
Lastorder	Date when the customer placed last order					
Esent	Number of emails sent					
Eopenrate	Number of emails opened divided by number of emails sent					
Eclickrate	Number of emails clicked divided by number of emails sent					
Avgorder	Average order size for the customer					
Ordfreq	Number of orders divided by customer tenure					
Paperless	1 if customer subscribed for paperless communication (only online)					
Refill	1 if customer subscribed for automatic refill					
Doorstep	1 if customer subscribed for doorstep delivery					
Favday	Customer's favorite delivery day					
City	City where the customer resides in					

DATA CLEANING AND PREPROCESSING

- Null value imputation
- ➤ Handling Non-Standard values and duplicated values
- Alternate sources of data that can supplement the core dataset
 - Tenure
 - Recency
 - Eopen
- As per our domain, we are having extreme values and not outliers

EDA

Esent

Eopen

Eclickrate Vs Retained

Eopen vs Retained

> Studying the effect of promotion mails on customer retention

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Correlation matrix

Interpretations:

 Esent, eopenrate, eclickrate and tenure are collinear

Variation Inflation Factor (VIF) — to check the variance of the features eopenrate, eopen, esent has nearly equal to 4.5

	Features	VIF_values
2	eopenrate	4.653139
1	eopen	4.252824
0	esent	4.146555
7	recency	3.709717
4	avgorder	3.433494
3	eclickrate	1.876380
6	tenure	1.497418
5	ordfreq	1.113095

Statistical significance of variables

- Tests Conducted Shapiro Test, Mannwhitneyu Test, Proportion Ztest, Chi2 ContingencyTest
- None of the numerical features were following Normal Distribution
- Significance variables obtained from Mannwhitneyu test were esent, eopen, eopenrate, eclickrate, ordfreq, recency
- All the categorical features were significant variables.
- All numerical features are significant variables except avgorder and tenure

Class imbalance and treatment

- \triangleright Class '1' = 24,425 (79.46%)
- \triangleright Class '0' = 6,310 (20.5%)
- There is an imbalance in the dataset, but this imbalance is real-world scenario as the number of customers in class '0', tends to be very much less than the number of customers in class '1'.
- > This can be treated using SMOTE technique

Feature Engineering

Scaling and Transformation :

- Scaling -To standardize the numerical features in the data, We have used Standard scaler.
- One hot Encoding For the categorical features in the data

Feature Selection :

- Based on VIF and statistical tests
- 3 Features were dropped eopenrate, avgorder, tenure

Model evaluation metrics

- > F1 Score
- Precision
- > Recall

As per our business problem both false positive and false negative affects the revenue of the retail store,

So we have considered F1 score as our evaluation metric which gives the combined effect of precision and recall.

Base Model – Evaluation Metrics

	Model	Precision Score	Recall Score	Accuracy Score	f1-score	AUC Score
0	Extreme Gradient Boost Classifier	0.972841	0.984367	0.965572	0.978570	0.937715
1	Random Forest	0.966044	0.987823	0.962549	0.976812	0.925092
2	Gradient Boosting	0.967226	0.985848	0.962024	0.976449	0.926714
3	Bagging Classifier	0.972236	0.979595	0.961367	0.975902	0.934351
4	Ada Boost	0.961828	0.986836	0.958213	0.974172	0.915792
5	Decision Tree	0.968740	0.963798	0.946255	0.966262	0.920255
6	Logistic Regression	0.957201	0.967912	0.939816	0.962527	0.898176
7	Gaussian NB	0.953003	0.900938	0.885414	0.926239	0.862406

[➤] Based on the F1 score; Extreme Gradient Boost classifier, Random Forest, Gradient Boosting and Bagging classifier gives better results comparatively.

Using SMOTE Technique

Sl.no	Model	Precision Score	Recall Score	Accuracy Score	f1-score	AUC Score
0	Extreme Gradient Boost Classifier	0.970848	0.984841	0.964518	0.977794	0.935700
1	Random Forest	0.967438	0.979726	0.973096	0.973544	0.973026
2	Bagging Classifier	0.968514	0.969223	0.968530	0.968868	0.968523
3	Gradient Boosting	0.951139	0.979482	0.964211	0.965102	0.964049
4	Decision Tree	0.961217	0.956522	0.958534	0.958864	0.958555
5	Ada Boost	0.947029	0.969468	0.957176	0.958117	0.957046
6	Gaussian NB	0.918404	0.882511	0.901024	0.900100	0.901221
7	Logistic Regression	0.903411	0.886419	0.894730	0.894834	0.894818

- ➤ SMOTE model did not show much differences compared to the other models.
- There was a slight drop in the F1 scores compared to the base model.

VIF and Statistical Tests

SI.No	Model	Precision Score	Recall Score	Accuracy Score	f1-score	AUC Score
0	Extreme Gradient Boost Classifier	0.970595	0.984344	0.963927	0.977421	0.934975
1	Bagging Classifier	0.973340	0.979871	0.962744	0.976594	0.938458
2	Random Forest	0.966139	0.985586	0.961167	0.975766	0.926540
3	Gradient Boosting	0.967261	0.983847	0.960773	0.975484	0.928053
4	Ada Boost	0.961026	0.986581	0.957619	0.973636	0.916551
5	Decision Tree	0.969046	0.964712	0.947566	0.966874	0.923252
6	Logistic Regression	0.958033	0.958748	0.933964	0.958390	0.898821
7	Gaussian NB	0.955913	0.899851	0.887640	0.927035	0.870326

[➤]The F1 score obtained after feature selection was comparatively similar to that of the base models.

Hyper Parameter tuning

SL.No	Model	Precision Score	Recall Score	Accuracy Score	f1-score	AUC Score
0	Extreme Gradient Boost Classifier	0.968811	0.986506	0.963863	0.977578	0.930305
1	Gradient boost	0.9706	0.9838	0.9633	0.9772	0.9812
2	Random Forest	0.968310	0.985519	0.962681	0.976839	0.928833
3	Decision Tree	0.967846	0.985684	0.962418	0.976684	0.927936
4	Bagged Decision Tree	0.958778	0.991279	0.959001	0.974757	0.911164
5	Ada boost Decision Tree	0.938283	0.998190	0.946124	0.967310	0.868958
6	Logistic Regression	0.9563	0.9665	0.9381	0.9614	0.9658
7	Naïve Bayes Algorithm	0.9408	0.934	0.9408	0.9374	0.8506
8	Bagged Naïve Bayes Algorithm	0.9426	0.9319	0.9003	0.9372	0.8534

Best model: Extreme Gradient Boost

SI.No	Model	Precision Score	Recall Score	Accuracy Score	f1-score	AUC Score
0	Extreme Gradient Boost Classifier	0.968811	0.986506	0.963863	0.977578	0.930305
1	Gradient Boost	0.9706	0.9838	0.9633	0.9772	0.9812
2	Random Forest	0.968310	0.985519	0.962681	0.976839	0.928833

➤ Based on metrics such as the majority and minority class F1 score, Accuracy, Precision, Recall and ROC-AUC score, We can conclude that Extreme Gradient Boost algorithm is performing better than other algorithms.

Conclusion

Esent

- ➤ When no promotional mails were sent, none of the customers were retained.
- When more than 40 (in a range if 40 to 50) promotional mails were sent, customers were more likely to be retained.
- When more than 50 promotional mails were sent, all the customers were retained

THANK YOU