Динамическая симуляция объемного огня

Стаховский А.В.

Научный руководитель: Кукин Д.П., к.т.н., доцент

Белорусский государственный университет информатики и радиоэлектроники

21 июня 2020 г.

Динамическая симуляция объемного огня 21 июня 2020 г. 1/17

Общая характеристика работы

Требования и ограничения

Требования и ограничения, предъявляемые к решению:

- средняя частота кадров сцены — 60 кадров /сек.;
- максимальная визуальная привлекательность;
- адаптивность под задачи художников.

Рисунок 1 – Кадр из игры Doom Eternal

Динамическая симуляция объемного огня

Классификация методов симуляции огня

 $\mathsf{Т}\mathsf{a}\mathsf{б}\mathsf{л}\mathsf{u}\mathsf{u}\mathsf{a}\ 1-\mathsf{C}\mathsf{p}\mathsf{a}\mathsf{s}\mathsf{h}\mathsf{e}\mathsf{t}\mathsf{u}\mathsf{e}$ производительности различных методов симуляции огня

	Real-time	Realistic	Spatio-temporal complexity	Editability	Interactivity
Texture mapping	High	Low	Low	Low	No
Particle system	Inversely with particles count	Medium	Proportional to particles count	Random large and difficult to control	Medium
Mathematical physics-based	Low	High(physical consistency)	High	Parameter control	High
Cellular automation	Inversely proportional to the complexity of combined requirements	Have certain realistic	Cell simple but the combined complex	Modium	Limited
Tomographic reconstruction	No	High(visual consistency)	Data acquisition and processing complex	No	No

Динамическая симуляция объемного огня 21 июня 2020 г. 3 / 17

Теория динамической симуляции огня

Структура симуляции

Компоненты симуляции:

- моделирование;
- анимация;
- визуализация.

Альтернативная схема была предложена Филиппом Боденом (рис. 2).

Рисунок 2 - Структура симуляции

Динамическая симуляция объемного огня

Компоненты решения

Структура симуляции

Рисунок 3 - Иерархия объектов, использованная в разработанном симуляторе

Динамическая симуляция объемного огня

21 июня 2020 г. 5 / 17

Теория динамической симуляции огня

Использованные инструменты

- Язык программирования: С++;
- Графический интерфейс: OpenGL v4.5;
- Язык написания шейдеров: GLSL.

Рисунок 4 - Логотип OpenGL

Динамическая симуляция объемного огня

Компоненты решения

Схема обновления частиц

Рисунок 5 – Схема обновления частиц в кадре

Динамическая симуляция объемного огня

21 июня 2020 г. 7 / 17

Теория динамической симуляции огня

Промежуточные результаты

Уравнения движения:

$$\vec{p}(t + \Delta t) = \vec{p}(t) + \vec{v}(t) \cdot \Delta t$$
 (1)

$$\vec{v}(t + \Delta t) = \vec{v}(t) + \vec{a} \tag{2}$$

$$\vec{a} = 0,02 \cdot \vec{v}_0 \tag{3}$$

Рисунок 6 - "Наивная" анимация

Динамическая симуляция объемного огня

Анимация частиц

Рисунок 7 - Алгоритм анимации частиц

Динамическая симуляция объемного огня

21 июня 2020 г. 9 / 17

Теория динамической симуляции огня

Компоненты решения

Реализация анимации

Сложность алгоритма:

$$O(n \log n) + O(m) \cdot O(\log_2 n)$$
 (4)

где n — количество точек низкого давления; т — количество частиц.

Рисунок 8 - Реализация анимации частиц

Динамическая симуляция объемного огня

Текстурные сплэты

Преимущества метода:

- оптимизация количества частиц;
- увеличение детализации за счет текстур;
- более плавная форма пламени.

Недостатки метода:

- необходимо ориентировать полигоны на зрителя;
- нереалистичные результаты при наблюдении сверху.

Рисунок 9 - Использование текстурных сплэтов для рендеринга частиц

Динамическая симуляция объемного огня

21 июня 2020 г. 11 / 17

Экспериментальные результаты

Сравнение с аналогами І

"Fire Simulation in 3D Computer Animation with Turbulence Dynamics including Fire Separation and Profile Modeling' (2018 год).

Рисунок 10 - Результаты работы системы

Динамическая симуляция объемного огня

Сравнение с аналогами ІІ

Тестовая среда:

• **ЦΠ**: Intel Core i3 350m 2.26ΓΓц;

• **ГП**: ATI Radeon 5145;

• **03У**: 4 ГБ.

Эксперимент:

- 1 сплайн;
- 15 сегментов в сплайне;
- по 100 частиц в каждом сегменте;
- 30+ кадров в секунду.

Динамическая симуляция объемного огня

21 июня 2020 г. 13 / 17

Теория динамической симуляции огня

Экспериментальные результаты

Производительность системы

Тестовая среда:

• **ЦΠ**: Intel Core i5–5200U 2.7ΓΓц;

• **ГП**: Intel HD Graphics 5500;

• **ОЗУ**: 8 ГБ:

• OC:Debian 10 Buster.

Таблица 2 – Зависимость частоты кадров от количества частиц в системе

Количество частиц	Средняя частота кадров		
5000	60,00		
10000	58,46		
15000	50,62		
25000	31,94		
50000	15,85		

Динамическая симуляция объемного огня

Заключение

- разработана система симуляции огня для приложений реального времени;
- использованная комбинация системы частиц и метода текстурного сплэттинга позволила улучшить качество визуализации и оптимизировать количество частиц;
- реализованный метод анимации позволил добиться эффектной анимации частиц при низких вычислительных затратах;
- разработанная система может быть использована в видеоиграх.

Динамическая симуляция объемного огня

21 июня 2020 г. 15 / 17

Библиографический список

Список публикаций соискателя І

- 1. Стаховский, А. В. — Анализ современных алгоритмов симуляции огня. /. — А. В. Стаховский // Молодой ученый. — 2019. — Нояб. — № 47. — С. 100—105.
- 2. Стаховский, А. В. Современные алгоритмы моделирования аморфных объектов. /. — А. В. Стаховский // Компьютерные системы и сети: 55-я юбилейная научная конференция аспирантов, магистрантов и студентов, Минск, 22-26 апреля 2019 г. — Минск : Белорусский государственный университет информатики и радиоэлектроники, 2019. — С. 63.

Динамическая симуляция объемного огня

Список публикаций соискателя II

- 3. Стаховский, А. В. Динамическая симуляция объемного огня. /. — А. В. Стаховский // Компьютерные системы и сети: 56-я научная конференция аспирантов, магистрантов и студентов, Минск, 21-22 апреля 2020 г. — Минск : Белорусский государственный университет информатики и радиоэлектроники, 2020. — C. 54.
- 4. Стаховский, А. В. Особенности динамической симуляции огня. /. — А. В. Стаховский // Компьютерные системы и сети: 56-я научная конференция аспирантов, магистрантов и студентов, Минск, 21-22 апреля 2020 г. — Минск : Белорусский государственный университет информатики и радиоэлектроники, 2020. — C. 48.

Динамическая симуляция объемного огня

21 июня 2020 г. 17 / 17