Airline Passenger Satisfaction

Big Data Computing, a.y. 2021/22, Michele Spina

A/D

What are the starting points and objectives of this project?

More than 100.000 rows and 23 columns

What do we know?

Customer information

Age and gender of the passenger and reason of the travel

Flight data

Flight distance, class and delay

Satisfaction levels by category

Satisfaction level (0 to 5) of flight services, like food or cleanliness

Arrival point

The goal of the project is to predict if a passenger it's satisfied or not

Preprocessing

Analyze the distribution and correlation of the data, and apply feature engineering

Pre-processing

Analyze dataset

Analyze data distribution and correlation

Convert categorical values to numerical values

B

Drop columns

Drop useless or redundant columns

Normalize

Normalize the data distribution

Analyze dataset Data distribution

Data are not normally distributed

Correlation matrix

High correlation arrival-departure delay

Data encoding pipeline

StringIndexer

it encodes string column of labels to a column of label indices

VectorAssembler

It combines a list of columns into a single vector column;

OneHotEncoder

it maps a categorical feature to a binary vector indicating the presence of a specific feature value

StandardScaler

it normalizes each feature to have unit standard deviation and/or zero mean;

Classification models

Logistic Regression, Random Forest and Decision Tree

Classification models

LR results

Precision metric: 0.869

Recall Metric: 0.866

Accuracy Metric: 0.870

F1-score Metric: 0.868

AUROC: 0.925

RF results

Precision metric: 0.917

Recall Metric: 0.916

Accuracy Metric: 0.918

F1-score Metric: 0.917

AUROC: 0.972

DT results

Precision metric: 0.906

Recall Metric: 0.901

Accuracy Metric: 0.905

F1-score Metric: 0.904

AUROC: 0.752

Models evaluation

	AUROC	Precision
Logistic Regression	0.925	0.869
Random Forest	0.972	0.917
Decision Tree	0.752	0.906

Tuning & K-fold

Tuning hyperparameter and apply k-fold validation

Tuning hyper-Parameter (AUROC)

Logistic Regression

lambda= 0 alfa=0 maxiter= 1000 0.927

Random Forest

maxDepth = 8 numTrees = 100 0.986

Decision Tree

maxDepth= 8 impurity= entropy

0.945

Precision evaluation

Logistic Regression

lambda= 0 alfa=0 maxiter= 1000 0.868

Random Forest

maxDepth = 8 numTrees = 100 0.940

Decision Tree

maxDepth= 8 impurity= entropy

0.938

Conclusion

Conclusion and future works

Conclusions

- I trained 3 differents model and Random Forest result the best ono, and decision tree is the most improved by tuning
- The best results occurs for high number of iterations
 It's probably I initially occurs in underfitting
- Overcoming the limits of Google Colab it would be possible to perform the tuning with more interaction or trees or use more dense intervals to tune the parameters

Thanks

Does anyone have any questions?

spina.1711821@studenti.uniroma1.it

