Experiment No. 1

Name of the Experiment: Complexity of Algorithms

Duration: 1 cycle

Background Study: Chapter 1-2 (Theory and Problems of Data Structures Written by Seymour Lipschutz)

Definition of Big-O Notation: f(n) is O(g(n)) if and only if there exist two constants c

and n_0 such that |f(n)| < c|g(n)| for all $n > n_0$.

f(n) will normally represent the computing time of some algorithm. When we say that the computing time of an algorithm is O(g(n)) we mean that its execution takes no more than a constant times g(n). n is a parameter which characterizes the inputs and/or outputs. For example n might be the number of inputs or the number of outputs or their sum or the magnitude of one of them.

Example Let f(n) = 3n+2Question: Find the Big-O notation of f(n). We have, f(n)=3n+2We can write, $f(n) \le 3n + n$ if $n \ge 2$ $f(n) \leq 4n$. From definition, $n_c = 2$ and c = 4, g(n) = n $f(n) \leq cg(n)$ f(n) is O(g(n)) or f(n) is O(n)

Problem I: Find the Complexity of a Loop.

Algorithm1.1:

1. Repeat for K = 1 to n by 1

2. Write: K

[End of Step 1 loop]

3. Exit

Complexity: the computing time of the loop, f(n) = n, So the complexity of the above algorithm is O(n). Here $f(n) \le cg(n)$, c = 2, $n_a = 0$, g(n) = n.

Complexity Table:

lexity Table		cg(n) [Theoretical]
n	f(n) [from Program, Count Statement]	eg(n) [Theoretical]
10		
20		

Graph: Draw a Graph.

Problem II: Find the Complexity of the following Program.

Algorithm1.2:

- 1. Repeat for K = 1 to n by 1
- 2. Repeat for L = 1 to n by 1

3. Write: L

[End of Step 2 loop]

4. Write: K

[End of Step 1 loop]

Complexity: the computing time of the loop, $f(n) = n^2$, So the complexity of the above algorithm is $O(n^2)$. (Let c=2)

Complexity Table:

olexit	y Tabl	le:	
	n	f(n) [from Program, Count Statement]	cg(n) [Theoretical]
	10		
	20		

Graph: Draw a Graph.

Problem III: Find the Complexity of the elementary Sort algorithm.

Algorithm1.3: (Given a nonempty array A with n numerical values. This algorithm sorts the values)

- 1. Repeat for i = 2 to n by 1
- 2. Repeat for k = i to 1 by -1
- 3. If A[k] < A[k-1] then:

Swap (A[k], A[k-1])

[End of If Structure]

[End of Step 2 loop]

[End of Step 1 loop]

4. Exit

Complexity: The complexity of the above algorithm is $O(n^2)$. (Let c=2)

Complexity Table:

lexity Table:			Program Count Statement] cg(n) [Theoretical]		
	n	f(n) [from Program, Count Statement]	8		
	10				
	20		The second secon		

Graph: Draw a Graph.

Algorithm1.4: (Given a nonempty array A with n numerical values. This algorithm finds the location LOC and the value MAX of the largest element of A)

- Set K:=1, LOC:=1 and MAX:=A[1]
- Repeat steps 3 and 4 while K≤n
- IF MAX < A[K] then:

Set LOC:=K and MAX:=A[K].

[End of If structure]

- K := K + 1.
 - [End of step 2 loop]
- Write: LOC, MAX.
- 6. Exit

Complexity: Not Required

Algorithm1.5: (Given a nonempty array A with n numerical values and a specific x of information is given. This algorithm finds the location LOC of x in the array A or Sets LOC=-1)

- Set K:=1, LOC:=-1
- Repeat steps 3 and 4 while LOC = -1 and K≤n
- IF x = A[K] then:

Set LOC:=K.

[End of If structure]

- K:=K+1. 4.
 - [End of step 2 loop]
- 5. If LOC = -1 then: Write: x is not in the array A.

Else: Write: LOC is the location of x

[End of If structure]

6. Exit

Complexity: The worst case complexity is C(n) =n and the average case complexity is C(n) = (n+1)/2.

MORE PROBLEMS

1. Programming Problems of Chapter 1 and 2 of "Data Structures" by Seymour Lipschutz.

LAB REPORT: You have to submit all assigned problems in next lab.