COMP30026 Models of Computation

Lecture 4: Resolution

Mak Nazecic-Andrlon and William Umboh

Semester 2, 2024

Propositional Logic is Decidable

Valid/contingent/unsatisfiable? Decide with truth table.

Finite, but huge!

 2^n rows where n is number of variables.

Either-Or Reasoning

If it is raining, I will bring an umbrella. If it is not raining, I will have ice cream.

:. I will either bring an umbrella or have ice cream.

Either-Or Reasoning, Symbolically

$$\frac{P \to F}{\neg P \to G}$$
$$\frac{\neg F \lor G}{F \lor G}$$

$$\frac{P \to \bot}{\frac{\neg P \to \bot}{\bot}}$$

Resolution

Rewrite "
$$\rightarrow$$
" in terms of " \neg " and " \vee ":

$$\frac{\neg P \lor F}{P \lor G}$$

$$\frac{F \lor G}{F \lor G}$$

$$\neg P$$

$$\frac{P}{\perp}$$

This is resolution.

Exercise: check this is sound!

Resolution Graph Example

Graphical representation of proof:

A refutation of $(B \vee \neg A) \wedge (B \vee A) \wedge \neg B!$

How to Use Refutations

To show that F is valid, refute $\neg F$.

Theorem

$$\models$$
 F iff \neg *F* $\models \bot$.

To prove $F \models G$, refute $F \land \neg G$.

Theorem

$$F \models G \text{ iff } F \land \neg G \models \bot.$$

Resolution Proof Exercise

Refute:

$$P \vee \neg Q$$

$$\neg P$$

$$Q \vee \neg F$$

$$P \lor \neg Q$$
 $\neg P$ $Q \lor \neg R$ $Q \lor R \lor S$ $\neg S$

$$\neg S$$

Resolution Proof Exercise

Derive *R* from the premises:

$$P \lor Q \qquad \neg P \lor R \qquad \neg Q \lor R$$

Do Not Do This, Please

Do not cancel multiple letters at once!

$$(P \lor Q) \land (\neg P \lor \neg Q)$$
 is satisfiable!!!

If you could cancel both, you would get \bot !!!

This would not be sound!!!

Formal Propositional Resolution

Definition

A resolution proof of C_m from wffs P_1, \ldots, P_n is a string of the form

$$P_1,\ldots,P_n\vdash C_1,\ldots,C_m$$

where each C_i is either a copy of some P_j , or otherwise follows by resolution from any two wffs earlier in the string.

Examples:

- "P ⊢ P"
- "P, $\neg P \vdash \bot$ "
- " $(P \lor Q), \neg P \vdash Q$ "

Resolution System is Sound

We write " $\Sigma \vdash_R F$ " to mean "there is a resolution proof of F from the set of premises Σ ".

Theorem (Soundness)

If $\Sigma \vdash_R F$, then $\Sigma \models F$.

Proof (sketch).

Let x be a proof of F from Σ .

Let v be a model of Σ .

Let C_1, \ldots, C_n be the wffs after the \vdash in x.

Prove by induction that v satisfies each C_i .

Conjunctive Normal Form (CNF)

Literal: a propositional letter or its negation.

(Disjunctive) clause: disjunction (\vee) of literals.

CNF: conjunction (\land) of disjunctive clauses.

AKA product-of-sums form.

Example

$$(A \lor \neg B) \land (B \lor C \lor D) \land A$$

Theorem

Every formula has at least one CNF.

From Negation Normal Form (NNF) to CNF

NNF: Only connectives are \neg , \wedge and \vee . \neg only in front of variables.

Example

$$(\neg A \lor (B \land \neg C)) \lor (C \land (B \lor D))$$

To get NNF:

- Eliminate \leftrightarrow (rewrite using \rightarrow and \land).
- 2 Eliminate \rightarrow (rewrite using \lor and \neg).
- Push ¬ inward (use de Morgan's laws).
- Eliminate ¬¬.

To get CNF from NNF, distribute \lor over \land .

Example Conversion to CNF

$$(\neg P \land (\neg Q \rightarrow R)) \leftrightarrow S$$

$$\equiv ((\neg P \land (\neg Q \rightarrow R)) \rightarrow S) \land (S \rightarrow (\neg P \land (\neg Q \rightarrow R))) \qquad (1)$$

$$\equiv (\neg (\neg P \land (\neg Q \rightarrow R)) \lor S) \land (\neg S \lor (\neg P \land (\neg Q \rightarrow R))) \qquad (2)$$

$$\equiv (\neg (\neg P \land (\neg \neg Q \lor R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (2)$$

$$\equiv ((\neg \neg P \lor (\neg \neg \neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (\neg \neg Q \lor R))) \qquad (3)$$

$$\equiv ((P \lor (\neg Q \land \neg R)) \lor S) \land (\neg S \lor (\neg P \land (Q \lor R))) \qquad (4)$$

$$\equiv (((P \lor \neg Q) \land (P \lor \neg R)) \lor S) \qquad ((\neg S \lor \neg P) \land (\neg S \lor (Q \lor R))) \qquad (5)$$

$$\equiv (P \lor \neg Q \lor S) \land (P \lor \neg R \lor S) \qquad (\neg S \lor (\neg P \land (\neg S \lor Q \lor R)) \qquad (5)$$

The result is in conjunctive normal form.

15/23

Resolution is Refutation-Complete

Theorem

Every unsatisfiable set of clauses has a resolution refutation.

In other words:

Theorem

Let Σ be a set of clauses.

If
$$\Sigma \models \bot$$
, then $\Sigma \vdash_R \bot$.

Satisfiability Algorithm

This gives us an algorithm:

- Convert formula into suitable form.
- Repeatedly apply resolution.
 - Derive ⊥? Report unsatisfiable.
 - Cannot derive anything new? Report satisfiable.

Simplifying CNF

Common redundancies:

- Duplicate letters (e.g. $P \lor P$)
- Tautologies (e.g. $P \vee \neg P \vee Q$)
- Subsumptions (e.g. $(P \lor \neg Q \lor R) \land (P \lor R)$)

Exercise: simplify this formula:

$$(P \lor P) \land (P \lor \neg P \lor Q) \land (P \lor \neg Q \lor R) \land (P \lor R)$$

Note that CNF is not unique!

Clausal Form

Represent CNF as set of sets of literals.

Example

CNF:

$$(P \vee \neg Q \vee S) \wedge (P \vee \neg R \vee S) \wedge (\neg S \vee \neg P) \wedge (\neg S \vee Q \vee R)$$

Clausal form:

$$\{\{P, S, \neg Q\}, \{P, S, \neg R\}, \{\neg P, \neg S\}, \{Q, R, \neg S\}\}$$

We shall often treat these interchangeably.

Why? Simplifies reasoning.

Empty Disjunction

Let A and B be propositional letters.

- $\{A, B\}$ represents the clause $A \vee B$.
- $\{A\}$ represents the clause A.

What disjunctive clause does ∅ represent?

Natural choice: ⊥.

Disjunction is true iff at least one disjunct is true.

Empty Conjunction

Let C_1 and C_2 be clauses.

- $\{C_1, C_2\}$ represents the CNF formula $C_1 \wedge C_2$.
- $\{C_1\}$ represents the CNF C_1 .

What CNF does \emptyset represent?

Natural choice: ⊤.

Conjunction is true iff every conjunct is true.

Empty Clauses and Formulas

- Empty conjunction (\land) is valid.
- Empty disjunction (∨) is unsatisfiable.

Thus:

- The set \emptyset of clauses is valid.
- Any set $\{\emptyset, \ldots\}$ of clauses is unsatisfiable.

Note that $\{\emptyset\} \neq \emptyset$!

Remember the difference!

Propositional Resolution for Clausal Form

Let P be a propositional letter.

Let C_1 , C_2 be clauses without P or $\neg P$.

$$\frac{C_1 \cup \{P\}}{C_2 \cup \{\neg P\}}$$
$$\frac{C_1 \cup C_2}{C_1 \cup C_2}$$