SOME VC-DENSITY COMPUTATIONS IN SHELAH-SPENCER GRAPHS

ANTON BOBKOV

ABSTRACT. We investigate vc-density in Shelah-Spencer graphs. We provide an upper bound on formula-by-formula basis and show that there isn't a uniform lower bound forcing the vc-function to be infinite.

VC-density was studied in [1] by Aschenbrenner, Dolich, Haskell, MacPherson, and Starchenko as a natural notion of dimension for NIP theories. In a complete NIP theory T we can define the vc-function

$$vc^T = vc : \mathbb{N} \longrightarrow \mathbb{R} \cup \{\infty\}$$

where vc(n) measures the worst-case complexity of families of definable sets in an n-fold Cartesian power of the underlying set of a model of T (see 1.13 below for a precise definition of vc^T). The simplest possible behavior is vc(n) = n for all n. Theories with the property that vc(1) = 1 are known to be dp-minimal, i.e., having the smallest possible dp-rank. It is not known whether there can be a dp-minimal theory which doesn't satisfy vc(n) = n (see [1], diagram on pg. 41).

In this paper, we investigate vc-density of definable sets in Shelah-Spencer graphs. In our description of Shelah-Spencer graphs we follow closely the treatment in [2]. A Shelah-Spencer graph is a limit of random structures $G(n, n^{-\alpha})$ for an irrational $\alpha \in (0, 1)$. $G(n, n^{-\alpha})$ is a random graph on n vertices with edge probability $n^{-\alpha}$.

Our first result is that in Shelah-Spencer graphs

$$vc(n) = \infty$$

which implies that they are not dp-minimal. Our second result is providing an upper bound on a vc-density for a formula ϕ

$$\operatorname{vc}(\phi) \le K(\phi) \frac{Y(\phi)}{\epsilon(\phi)}$$

where $K(\phi), Y(\phi), \epsilon(\phi)$ are paramters easily computable from the quantifier free form of ϕ .

Chapter 1 introduces basic facts about VC-dimension and vc-density. More can be found in [1]. Chapter 2 summarizes notation and basic facts concerning Shelah-Spencer graphs. We direct the reader to [2] for a more in-depth treatment. In chapter 3 we introduce some measure of dimension for quantifier free formulas as well as proving some elementary facts about it. Chapter 4 computes a lower bound for vc-density to demonstrate that $vc(n) = \infty$. Chapter 5 computes an upper bound for vc-density on a formula-by-formula basis.

1. VC-dimension and vc-density

Throughout this section we work with a collection \mathcal{F} of subsets of an infinite set X. We call the pair (X, \mathcal{F}) a <u>set system</u>.

Definition 1.1.

- Given a subset A of X, we define the set system $(A, A \cap \mathcal{F})$ where $A \cap \mathcal{F} = \{A \cap F \mid F \in \mathcal{F}\}.$
- For $A \subseteq X$ we say that \mathcal{F} shatters A if $A \cap \mathcal{F} = \mathcal{P}(A)$ (the power set of A).

Definition 1.2. We say (X, \mathcal{F}) has <u>VC-dimension</u> n if the largest subset of X shattered by \mathcal{F} is of size n. If \mathcal{F} shatters arbitrarily large subsets of X, we say that (X, \mathcal{F}) has infinite VC-dimension. We denote the VC-dimension of (X, \mathcal{F}) by $VC(X, \mathcal{F})$.

Note 1.3. We may drop X from the notation $VC(X, \mathcal{F})$, as the VC-dimension doesn't depend on the base set and is determined by $(\bigcup \mathcal{F}, \mathcal{F})$.

Set systems of finite VC-dimension tend to have good combinatorial properties, and we consider set systems with infinite VC-dimension to be poorly behaved.

Another natural combinatorial notion is that of the dual system of a set system:

Definition 1.4. For $a \in X$ define $X_a = \{F \in \mathcal{F} \mid a \in F\}$. Let $\mathcal{F}^* = \{X_a \mid a \in X\}$. We call $(\mathcal{F}, \mathcal{F}^*)$ the <u>dual system</u> of (X, \mathcal{F}) . The VC-dimension of the dual system of (X, \mathcal{F}) is referred to as the <u>dual VC-dimension</u> of (X, \mathcal{F}) and denoted by VC* (\mathcal{F}) . (As before, this notion doesn't depend on X.)

Lemma 1.5 (see 2.13b in [3]). A set system (X, \mathcal{F}) has finite VC-dimension if and only if its dual system has finite VC-dimension. More precisely

$$VC^*(\mathcal{F}) \le 2^{1+VC(\mathcal{F})}$$
.

For a more refined notion of complexity of (X, \mathcal{F}) we look at the traces of our family on finite sets:

Definition 1.6. Define the <u>shatter function</u> $\pi_{\mathcal{F}} \colon \mathbb{N} \longrightarrow \mathbb{N}$ of \mathcal{F} and the <u>dual shatter function</u> $\pi_{\mathcal{F}}^* \colon \mathbb{N} \longrightarrow \mathbb{N}$ of \mathcal{F} by

$$\pi_{\mathcal{F}}(n) = \max\{|A \cap \mathcal{F}| \mid A \subseteq X \text{ and } |A| = n\}$$

$$\pi_{\mathcal{F}}^*(n) = \max\{\text{atoms}(B) \mid B \subseteq \mathcal{F}, |B| = n\}$$

where atoms(B) = number of atoms in the boolean algebra of sets generated by B. Note that the dual shatter function is precisely the shatter function of the dual system: $\pi_{\mathcal{F}}^* = \pi_{\mathcal{F}^*}$.

A simple upper bound is $\pi_{\mathcal{F}}(n) \leq 2^n$ (same for the dual). If the VC-dimension of \mathcal{F} is infinite then clearly $\pi_{\mathcal{F}}(n) = 2^n$ for all n. Conversely we have the following remarkable fact:

Theorem 1.7 (Sauer-Shelah '72, see [5], [6]). If the set system (X, \mathcal{F}) has finite VC-dimension d then $\pi_{\mathcal{F}}(n) \leq \binom{n}{\leq d}$ for all n, where $\binom{n}{\leq d} = \binom{n}{d} + \binom{n}{d-1} + \ldots + \binom{n}{1}$.

Thus the systems with a finite VC-dimension are precisely the systems where the shatter function grows polynomially. The vc-density of \mathcal{F} quantifies the growth of the shatter function of \mathcal{F} :

Definition 1.8. Define the vc-density and dual vc-density of \mathcal{F} as

$$\operatorname{vc}(\mathcal{F}) = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}}(n)}{\log n} \in \mathbb{R}^{\geq 0} \cup \{+\infty\},$$
$$\operatorname{vc}^*(\mathcal{F}) = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}}^*(n)}{\log n} \in \mathbb{R}^{\geq 0} \cup \{+\infty\}.$$

Generally speaking a shatter function that is bounded by a polynomial doesn't itself have to be a polynomial. Proposition 4.12 in [1] gives an example of a shatter function that grows like $n \log n$ (so it has vc-density 1).

So far the notions that we have defined are purely combinatorial. We now adapt VC-dimension and vc-density to the model theoretic context.

Definition 1.9. Work in a first-order structure M. Fix a finite collection of formulas $\Phi(x,y)$ in the language $\mathcal{L}(M)$ of M.

• For $\phi(x,y) \in \mathcal{L}(M)$ and $b \in M^{|y|}$ let

$$\phi(M^{|x|}, b) = \{ a \in M^{|x|} \mid \phi(a, b) \} \subseteq M^{|x|}.$$

- Let $\Phi(M^{|x|}, M^{|y|}) = \{\phi(M^{|x|}, b) \mid \phi_i \in \Phi, b \in M^{|y|}\} \subseteq \mathcal{P}(M^{|x|}).$
- Let $\mathcal{F}_{\Phi} = \Phi(M^{|x|}, M^{|y|})$, giving rise to a set system $(M^{|x|}, \mathcal{F}_{\Phi})$.
- Define the VC-dimension VC(Φ) of Φ to be the VC-dimension of $(M^{|x|}, \mathcal{F}_{\Phi})$, similarly for the dual.
- Define the <u>vc-density</u> $vc(\Phi)$ of Φ to be the vc-density of $(M^{|x|}, \mathcal{F}_{\Phi})$, similarly for the dual.

We will also refer to the vc-density and VC-dimension of a single formula ϕ viewing it as a one element collection $\Phi = {\phi}$.

Counting atoms of a boolean algebra in a model theoretic setting corresponds to counting types, so it is instructive to rewrite the shatter function in terms of types.

Definition 1.10.

$$\pi_{\Phi}^*(n) = \max \{ \text{number of } \Phi\text{-types over } B \mid B \subseteq M, |B| = n \}.$$

Here a Φ -type over B is a maximal consistent collection of formulas of the form $\phi(x,b)$ or $\neg \phi(x,b)$ where $\phi \in \Phi$ and $b \in B$.

The functions π_{Φ}^* and $\pi_{\mathcal{F}_{\Phi}}^*$ do not have to agree, as one fixes the number of generators of a boolean algebra of sets and the other fixes the size of the parameter set. However, as the following lemma demonstrates, they both give the same asymptotic definition of dual vc-density.

Lemma 1.11.

$$\operatorname{vc}^*(\Phi) = degree \ of \ polynomial \ growth \ of \ \pi_{\Phi}^*(n) = \limsup_{n \to \infty} \frac{\log \pi_{\Phi}^*(n)}{\log n}.$$

Proof. With a parameter set B of size n, we get at most $|\Phi|n$ sets $\phi(M^{|x|}, b)$ with $\phi \in \Phi, b \in B$. We check that asymptotically it doesn't matter whether we look at growth of boolean algebra of sets generated by n or by $|\Phi|n$ many sets. We have:

$$\pi_{\mathcal{F}_{\Phi}}^{*}(n) \leq \pi_{\Phi}^{*}(n) \leq \pi_{\mathcal{F}_{\Phi}}^{*}(|\Phi|n)$$
.

Hence:

$$\begin{aligned} &\operatorname{vc}^*(\Phi) \leq \limsup_{n \to \infty} \frac{\log \pi_{\Phi}^*(n)}{\log n} \leq \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(|\Phi|n\right)}{\log n} = \\ &= \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(|\Phi|n\right)}{\log |\Phi|n} \frac{\log |\Phi|n}{\log n} = \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(|\Phi|n\right)}{\log |\Phi|n} \leq \\ &\leq \limsup_{n \to \infty} \frac{\log \pi_{\mathcal{F}_{\Phi}}^*\left(n\right)}{\log n} = \operatorname{vc}^*(\Phi). \end{aligned}$$

One can check that the shatter function and hence VC-dimension and vc-density of a formula are elementary notions, so they only depend on the first-order theory of the structure M.

NIP theories are a natural context for studying vc-density. In fact we can take the following as the definition of NIP:

Definition 1.12. Define ϕ to be NIP if it has finite VC-dimension in a theory T. A theory T is NIP if all the formulas in T are NIP.

In a general combinatorial context (for arbitrary set systems), vc-density can be any real number in $0 \cup [1, \infty)$ (see [4]). Less is known if we restrict our attention to NIP theories. Proposition 4.6 in [1] gives examples of formulas that have non-integer rational vc-density in an NIP theory, however it is open whether one can get an irrational vc-density in this model-theoretic setting.

Instead of working with a theory formula by formula, we can look for a uniform bound for all formulas:

Definition 1.13. For a given NIP structure M, define the <u>vc-function</u>

$$\operatorname{vc}^{M}(n) = \sup \{ \operatorname{vc}^{*}(\phi(x, y)) \mid \phi \in \mathcal{L}(M), |x| = n \}$$
$$= \sup \{ \operatorname{vc}(\phi(x, y)) \mid \phi \in \mathcal{L}(M), |y| = n \} \in \mathbb{R}^{\geq 0} \cup \{ + \infty \} .$$

As before this definition is elementary, so it only depends on the theory of M. We omit the superscript M if it is understood from the context. One can easily check the following bounds:

Lemma 1.14 (Lemma 3.22 in [1]). We have
$$vc(1) \ge 1$$
 and $vc(n) \ge n vc(1)$.

However, it is not known whether the second inequality can be strict or even whether $vc(1) < \infty$ implies $vc(n) < \infty$.

2. Graph Combinatorics

We denote a graph by \mathcal{A} , the set of its vertices by $v(\mathcal{A})$, and the set of its edges by $e(\mathcal{A})$. Number of vertices of \mathcal{A} will be denoted as $|\mathcal{A}|$. For two subgraphs \mathcal{A}, \mathcal{B} of a larger graph, the union $\mathcal{A} \cup \mathcal{B}$ denotes the graph induced on $v(\mathcal{A}) \cup v(\mathcal{B})$.

Definition 2.1. Fix $\alpha \in (0,1)$, irrational.

- For a finite graph \mathcal{A} let dim $(\mathcal{A}) = |\mathcal{A}| \alpha |e(\mathcal{A})|$.
- For finite A, B with $A \subseteq B$ define $\dim(B/A) = \dim(B) \dim(A)$.
- We say that $A \leq B$ if $A \subseteq B$ and $\dim(A'/B) > 0$ for all $A \subseteq A' \subsetneq B$.
- We say that finite \mathcal{A} is positive if for all $\mathcal{A}' \subseteq \mathcal{A}$ we have $\dim(\mathcal{A}') \geq 0$.
- We work in theory S_{α} axiomatized by
 - Every finite substructure is positive.
 - For a model \mathcal{G} given $\mathcal{A} \leq \mathcal{B}$ every embedding $f: \mathcal{A} \longrightarrow \mathcal{G}$ extends to $g: \mathcal{B} \longrightarrow \mathcal{G}$.
- For \mathcal{A}, \mathcal{B} positive, $(\mathcal{A}, \mathcal{B})$ is called a minimal pair if $\mathcal{A} \subseteq \mathcal{B}$, $\dim(\mathcal{B}/\mathcal{A}) < 0$ but $\dim(\mathcal{A}'/\mathcal{A}) \geq 0$ for all proper $\mathcal{A} \subseteq \mathcal{A}' \subsetneq \mathcal{B}$.
- $\langle \mathcal{A}_i \rangle_{i \leq m}$ is called a <u>minimal chain</u> if $(\mathcal{A}_i, \mathcal{A}_i + 1)$ is a minimal pair (for all i < m).
- For a positive \mathcal{A} let $\dim_{\mathcal{A}}(\bar{x})$ be the atomic diagram of \mathcal{A} . For positive $\mathcal{A} \subseteq \mathcal{B}$ let

$$\Psi_{\mathcal{A},\mathcal{B}}(\bar{x}) = \dim_{\mathcal{A}}(\bar{x}) \wedge \exists \bar{y} \ \dim_{\mathcal{B}}(\bar{x},\bar{y}).$$

Such formula is called a <u>chain-minimal extension formula</u> if in addition we have that there is a minimal chain starting at \mathcal{A} and ending in \mathcal{B} . Denote such formulas as $\Psi_{\langle \mathcal{M}_i \rangle}$.

Theorem 2.2 (5.6 in [2]). S_{α} admits quantifier elimination down to boolean combination of chain-minimal extension formulas.

Fix \mathcal{G} , an ambient structure satisfying S_{α} .

Definition 2.3. A graph $S \subseteq \mathcal{G}$ is called <u>N</u>-strong if for any $S \subseteq T \subseteq \mathcal{G}$ with $|T| - |S| \leq N$ we have $S \leq T$.

3. Basic Definitions and Lemmas

Fix tuples $x = (x_1, \dots, x_n), y = (y_1, \dots, y_m)$. We refer to chain-minimal extension formulas as basic formulas. Let $\phi_{\langle \mathcal{M}_i \rangle}(x, y)$ be a basic formula.

Definition 3.1. Define \mathcal{X} to be the graph on vertices $\{x_i\}$ with edges as defined by $\phi_{\langle \mathcal{M}_i \rangle}$. Similarly define \mathcal{Y} . We define those abstractly, i.e. on a new set of vertices disjoint from \mathcal{G} .

Note that \mathcal{X} , \mathcal{Y} are positive as they are subgraphs of \mathcal{M}_0 . As usual X, Y will refer to vertices of those graphs.

We restrict our attention to formulas that define no edges between X and Y.

Note 3.2. We can handle edges between x and y as separate elements of the minimal chain extension.

Definition 3.3. For a basic formula $\phi = \phi_{\langle \mathcal{M}_i \rangle_{i \leq k}}(x, y)$ let

- $\epsilon_i(\phi) = -\dim(M_i/M_{i-1}).$
- $\epsilon_L(\phi) = \sum_{[1..k]} \epsilon_i(\phi)$.
- $\epsilon_U(\phi) = \min_{[1..k]} \epsilon_i(\phi)$.
- Let \mathcal{Y}' be a subgraph of \mathcal{Y} induced by vertices of \mathcal{Y} that are connected to $M_k (X \cup Y)$.
- Let $Y(\phi) = \dim(\mathcal{Y}')$. In particular if $\mathcal{Y} = \mathcal{Y}'$ and \mathcal{Y} is disconnected then $Y(\phi)$ is just the arity of the tuple y.

We will require the following lemmas from [2]:

Lemma 3.4. *[See 2.3 in* [2]*] Let* $A, B \subseteq D$ *. Then*

$$\dim A \cup B/A \le \dim \mathcal{B}/A \cap B$$
.

Moreover,

$$\dim A \cup B/A = \dim \mathcal{B}/A \cap B - \alpha E,$$

where E is the number of edges connecting vertices of $A \cup B - A$ to vertices of $A - A \cap B$.

Lemma 3.5. [See 4.1 in [2]] Suppose A is a positive graph, with at least $1/\alpha + 2$ vertices. Then for any $\epsilon > 0$ there exists a graph B such that (A, B) is a minimal

pair with dimension $\leq \epsilon$. Moreover every vertex in A is connected to a vertex in B-A.

Lemma 3.6. [See 4.4 in [2]] Suppose A is a positive graph, and G a model of S_{α} . Then for any integer S there exists an embedding $f: A \longrightarrow G$ such that f(A) is S-strong in G.

We conclude this section by stating a couple of technical lemmas that will be useful in our proofs later.

Lemma 3.7. ?? Work in \mathcal{G} . Suppose we have a set B and a minimal pair (A, M) with $A \subseteq B$ and $\dim(M/A) = -\epsilon$. Then either $M \subseteq B$ or $\dim((M \cup B)/B) < -\epsilon$.

Proof. By Lemma 3.4

$$\dim((M \cup B)/B) \le \dim(M/(M \cap B))$$

and as $A \subseteq M \cap B \subseteq M$

$$\dim(M/A) = \dim(M/(M \cap B)) + \dim((M \cap B)/A).$$

In addition we are given $\dim(M/A) = -\epsilon$. If $M \nsubseteq B$ then $A \subseteq M \cap B \subsetneq M$ and by minimality $\dim((M \cap B)/A) > 0$. Combining the inequalities above we obtain the desired result:

$$\dim((M \cup B)/B) \le \dim(M/(M \cap B)) = \dim(M/A) - \dim((M \cap B)/A) < -\epsilon.$$

Lemma 3.8. Suppose we have a set B and a minimal chain M_n with $M_0 \subseteq B$ and dimensions $-\epsilon_i$. Let ϵ be the minimal of ϵ_i . Then either $M_n \subseteq B$ or $\dim((M_n \cup B)/B) < -\epsilon$.

Proof. Let $\bar{M}_i = M_i \cup B$. Then:

$$\dim(\bar{M}_n/B) = \dim(\bar{M}_n/\bar{M}_{n-1}) + \ldots + \dim(\bar{M}_2/\bar{M}_1) + \dim(\bar{M}_1/B).$$

Either $M_n \subseteq B$ or at least one of the summands above is nonzero. Apply previous lemma.

Lemma 3.9. Suppose we have a minimal pair (A, M) with dimension $-\epsilon$. Suppose we have some $B \subseteq M$. Then $\dim B/(A \cap B) \ge -\epsilon$. Moreover if $B \cup A \ne M$ then $\dim B/(A \cap B) \ge 0$

Proof. We have $\dim(B \cup A/A) \leq \dim B/(A \cap B)$ by Lemma 3.4. As $A \subseteq B \cup A \subseteq M$ we have $\dim(B \cup A/A) \geq -\epsilon$ by minimality. Moreover, minimality implies that it is positive if $B \cup A \neq M$.

Lemma 3.10. Suppose we have a minimal chain M_n with dimensions $-\epsilon_i$. Let ϵ be the sum of all ϵ_i . Suppose we have some B with $B \subseteq M_n$. Then $\dim B/(M_0 \cap B) \ge -\epsilon$.

Proof. Let $B_i = B \cap M_i$. We have $\dim B_{i+1}/B_i \ge \dim M_{i+1}/M_i$ by the previous lemma. $\dim B/(M_0 \cap B) = \dim B_n/B_0 = \sum \dim B_{i+1}/B_i \ge -\epsilon$.

4. Lower bound

In this section restrict our attention to the following family of the basic formulas $\phi(x,y)$:

- All formulas have $\mathcal{Y}' = \mathcal{Y}$ (see Definition 3.3).
- \bullet All formulas define no edges between X and Y.
- Minimal chain of $\phi(x, y)$ consists of one step, that is we only have minimal extension as opposed to a chain of minimal extensions.
- Dimension of that minimal extension is smaller than α .

We obtain a lower bound for the formulas that are boolean combinations of basic formulas written in disjunctive-conjunctive form. First, extend our definition of ϵ .

Definition 4.1 (Negation). If ϕ is a basic formula, then define

$$\epsilon_L(\neg \phi) = \epsilon_L(\phi)$$

Definition 4.2 (Conjunction). Take a collection of formulas $\phi_i(x, y)$ where each ϕ_i is positive or negative basic formula. If both positive and negative formulas are present then $\epsilon_L(\phi) = \infty$. We don't have a lower bound for that case. If different formulas define \mathcal{X} or \mathcal{Y} differently then $\epsilon_L(\phi) = \infty$. In that case of the conflicting definitions would make the formula have no realizations. Otherwise

$$\epsilon_L(\bigwedge \phi_i) = \sum \epsilon_L(\phi_i)$$

Definition 4.3 (Disjunction). Take a collection of formulas ψ_i where each instance is a conjunction of positive and negative instances of basic formulas that agree on \mathcal{X} and \mathcal{Y} .

$$\epsilon_L(\bigvee \psi_i) = \min \epsilon_L(\psi_i).$$

Theorem 4.4. For a formula ϕ as above

$$\operatorname{vc} \phi \ge \left| \frac{Y(\phi)}{\epsilon_L(\phi)} \right|$$

where $Y(\phi)$ is $Y(\psi)$ for ψ one the basic components of ϕ (all basic components agree on \mathcal{Y}).

Proof. First, work with a formula that is a conjunction of positive basic formulas $\psi = \bigwedge_{i \in I} \phi_i$. Then as we defined above

$$\epsilon_L(\psi) = \sum \epsilon_L(\phi_i)$$

Let n_1 be the largest natural number such that

$$n_1 \epsilon_L(\psi) < Y$$
.

Let ϵ' be the smallest value among $\epsilon_L(\phi_i)$ corresponding to the formula ϕ' . Let n_2 be the largest natural number such that

$$n_1 \epsilon_L(\psi) + n_2 \epsilon' < Y.$$

Fix some N > n. Let a_j be a graph isomorphic to \mathcal{X} for each $1 \leq j \leq N$. Let $A = \bigsqcup_{1 \leq j \leq N} a_j$. Let S = ??.

By Lemma 3.6 A can be embedded into \mathcal{G} as a S-strong graph. Abusing notation, we identify A with this embedding. Thus we have $A \subseteq \mathcal{G}$, S-strong.

Let J_1 be the index set enumerating first n_1 natural numbers, J_2 enumerating the following n_2 numbers.Let b be a graph isomorphic to \mathcal{Y} . For each $i \in I, j \in J_1$ let W_{ij} be a witness of $\phi_i(a_j, b)$. For each $j \in J_1$ let W_j be a union of $\{W_{ij}\}_{i \in I}$ disjoint over a_j, b . For each $j \in J_2$ let W_j be a witness of $\phi'(a_j, b)$. Let W_1 be a union of

$$\{W_j\}_{j\in J_1\cup J_2}$$

disjoint over b. Let W be a union of W_1 and A disjoint over $\{a_j\}_{j\in J_1\cup J_2}$.

Claim 4.5. $A \leq W$.

Proof. Consider some $A \subsetneq B \subseteq W$. We need to show $\dim(B/A) > 0$ Let $\bar{A} = A \cup b$. We have

$$\dim(B/A) = \dim(B/B \cap \bar{A}) + \dim(B \cap \bar{A}/A).$$

Let $B_{ij} = B \cap W_{ij} \subseteq W_{ij}$. Let $B_j = B \cap W_j \subseteq W_j$. To unify indices, relabel all the graphs above as $\{B_k\}_{k \in K}$. By construction of W we have

$$\dim(B/B \cap \bar{A}) = \sum_{k \in K} \dim(B_k/B_k \cap \bar{A})$$

Fix k. We have $B_k \subset W_k$, where W_k is a minimal extension over $M_0^k = a \cup b$ for some $a \in A$. We have $\dim(B_k/B_k \cap \bar{A}) = \dim(B_k/a \cup (B \cap b))$. Let ϵ_k be the dimension of this minimal extension.

Case 1: $B \cap b = b$. Then $M_0^k \subseteq B_k \subseteq W_k$ and $\dim(B_k/a \cup (B \cap b)) = \dim(B_k/M_0^k)$. By minimality of (M_0^k, B_k) we have $\dim(B_k/M_0^k) \ge -\epsilon_k$. Thus

$$\dim(B/B \cap \bar{A}) \ge -\sum_{k \in K} \epsilon_k = -\left(n_1 \epsilon_L(\psi) + n_2 \epsilon'\right).$$

In addition

$$\dim(B \cap \bar{A}/A) = \dim(b) = Y(\psi).$$

Combining the two, we get

$$\dim(B/A) > Y(\psi) - (n_1 \epsilon_L(\psi) + n_2 \epsilon'),$$

which is positive by construction of n_1, n_2 as needed.

Case 2: $B \cap b \subsetneq b$.

Claim 4.6.

$$\dim(B_k/B_k \cap \bar{A}) > 0$$

Proof. Recall that $\dim(B_k/B_k \cap \bar{A}) = \dim(B_k/a \cup (B \cap b))$. First, suppose that $B_k \cup M_0^k \neq W_k$. Then by Lemma 3.9 we get the required inequality. Thus we may assume that $B_k \cup M_0^k = W_k$. By Lemma 3.4 we have

$$\dim B_k \cup M_0^k / M_0^k = \dim B_k / B_k \cap M_0^k - \alpha E,$$

where E is the number of edges connecting vertices of $B_k \cup M_0^k - M_0^k$ to vertices of $M_0^k - B_k \cap M_0^k$. Noting that $B_k \cup M_0^k = W_k$, dim $W_k/M_0^k = -\epsilon_k$, and $B_k \cap M_0^k = a \cup (B \cap b)$ we may rewrite the equality above as

$$\dim B_k/a \cup (B \cap b) = \alpha E - \epsilon,$$

and E is the number of edges connecting vertices of $W_k - M_0^k$ to vertices of $M_0^k - a \cup (B \cap b)$. as $\mathcal{Y} = \mathcal{Y}'$ and $B \cap b \subsetneq b$ we must have E > 0. But then as $\alpha > \epsilon$ we have $\dim B_k/a \cup (B \cap b) > 0$ as needed.

Now, recall that

$$\dim(B/A) = \dim(B \cap \bar{A}/A) + \sum_{k \in K} \dim(B_k/B_k \cap \bar{A})$$

By the claim above each of $\dim(B_k/B_k \cap \bar{A}) > 0$, thus

$$\dim(B/A) > \dim(B \cap \bar{A}/A)$$

In addition

$$\dim(B \cap \bar{A}/A) = \dim(b \cap B) \ge 0,$$

as b is postive. Thus $\dim(B/A) > 0$ as needed.

As $A \leq W$ and $A \subseteq \mathcal{G}$, we can embed W into \mathcal{G} over A. Abusing notation again, we identify W with its embedding $A \leq W \subseteq \mathcal{G}$. In particular, now we have $b \in \mathcal{G}$. Also note that

$$\dim(W/A) = Y(\psi) - (n_1 \epsilon_L(\psi) + n_2 \epsilon')$$

$$|W| - |A| \le |b| + (n_1 + n_2) \sum_{i \in I} S_i$$

Lemma 4.7.

$$\{a_j\}_{j\in J_1}\subseteq \psi(A,b)\subseteq \{a_j\}_{j\in J_1\cup J_2}$$

Proof. First inclusion $\{a_j\}_{j\in J_1}\subseteq \psi(A,b)$ is immediate from construction of W, as W_{ij} witnesses that $\phi_i(a_j,b)$ holds. For the second inclusion, suppose that there is $a\in A-\{a_j\}_{j\in J_1\cup J_2}$ such that $\psi(a,b)$ holds. Let $W'\subseteq \mathcal{G}$ be a witness of $\phi_1(a,b)$. First, note that the case $W'\subseteq W$ is impossible as there are no edges between a and W-a, but there are edges between a and W'-a. Thus assume $W'\not\subset W$. As $(a\cup b,W')$ is minimal, by Lemma ?? we have $\dim(W'\cup W/W)<-\epsilon_1$.

$$\dim(W' \cup W/A) = \dim(W' \cup W/W) + \dim(W/A) < Y(\psi) - (n_1 \epsilon_L(\psi) + n_2 \epsilon') - \epsilon_1,$$

which is negative by construction of n_1, n_2 . Thus $A \not\leq W \cup W'$, as then it would have a positive dimension. Additionally,

$$|W' \cup W| - |A| \le |W' - W| + |W| - |A| \le S_1 + |b| + (n_1 + n_2) \sum_{i \in I} S_i \le S,$$

but then this contradicts that A is S-strong, as then we would have $A \leq W \cup W'$. \square

In the construction of W we could have chosen indices J_1, J_2 arbitrarily, instead of at the beginning of A. In particular, say we let J_2 to be the last n_2 indices of J and J_1 an arbitrary n_1 -element subset of the first N elements of J. Each of those choices would then yield a different trace $\psi(A,b)$ by the lemma above. Thus $\psi(A,M^{|y|}) \geq \binom{N}{n_1}$ and therefore $\operatorname{vc}(\psi) \geq n_1$. By definition of n_1 we have $n_1 = \left| \frac{Y(\psi)}{\epsilon_L(\psi)} \right|$, so this proves the theorem for ψ .

Now consider a formula which is a conjunction consisting of negative basic formulas

$$\psi = \bigwedge_{i \in I} \neg \phi_i$$

Let

$$\bar{\psi} = \bigwedge_{i \in I} \phi_i$$

Do the construction above for $\bar{\psi}$ and suppose its trace is $X \subseteq A$ for some b. Then over b the same construction gives trace (A-X) for ψ . Thus we get as many traces as above, and the same bound.

Finally consider a formula which is a disjunction of formulas considered above.

$$\theta = \bigvee k \in K\psi_k$$

Choose the one with the smallest ϵ_L , say ψ_k , and repeat the construction above for ψ_k . Any trace we obtain is automatically a trace for θ , and thus we get as many traces as above, and the same bound.

Corollary 4.8. VC-function is infinite in Shelah-Spencer random graphs:

$$vc(n) = \infty$$
.

Proof. Let A be a graph consisting of $1/\alpha + 2 + n$ disconnected vertices. Fix $\epsilon > 0$. By Lemma 3.5, there exists B such that (A, B) is minimal with dimension $\leq \epsilon$. Consider a basic formula $\psi_{A,B}(x,y)$ where $|x| = 1/\alpha + 2$ and |y| = n. Then by the theorem above $\operatorname{vc}(\psi_{A,B}) \geq \frac{n}{\epsilon}$. As ϵ was arbitrary, this finishes the proof.

5. Upper bound

We bound the number of types of some finite collection of formulas $\Psi(\vec{x}, \vec{y}) = \{\phi_i(\vec{x}, \vec{y})\}_{i \in I}$ over a parameter set B of size N, where ϕ_i is a basic formula.

Fix a formula ϕ from our collection. Suppose it defines a minimal chain extension over $\{x,y\}$. Record the size of that extension as $K(\phi)$ and its total dimension $\epsilon(\phi) = \epsilon_U(\phi)$. Define dimension of that formula $D(\phi) = |\vec{y}| \frac{K(\phi)}{\epsilon(\phi)}$ Define dimension of the entire collection as $D(\Psi) = \max_{i \in I} D(\phi_i)$

In general we have parameter set $B \subseteq \mathcal{G}^{|y|}$, however without loss of generality we may work with a parameter set $B^{|y|}$, with $B \subseteq \mathcal{G}$.

Let
$$S = \lfloor D(\Psi) \rfloor$$
.

For our proof to work we also need B to be S-strong. We can achieve this by taking (the unique) S-strong closure of B. If size of B is N then the size of its closure is O(N). So without loss of generality we can assume that B is S-strong.

Definition 5.1. A <u>witness</u> of a is a union of realizations of the existential formulas $\phi_i(a,b)$ for all i,b so that the formula holds.

Definition 5.2. For sets C, B define the boundary of C over B

$$\partial(C,B) = \{b \in B \mid \text{there is an edge between } b \text{ and element of } C - B\}$$

Definition 5.3. For each a pick some \bar{M}_a to be its witness. Define two quantities

• ∂_a is the boundary $\partial(\bar{M}_a, B \cup a)$

- Suppose G_1, G_2 are some subgraphs of our model and $a_1 \subseteq G_1, a_2 \subseteq G_2$ finite tuples of vertices. Call $f: (G_1, a_1) \longrightarrow (G_2, a_2)$ a ∂ -isomorphism if it is a graph isomorphism, f and f^{-1} are constant on B, and $f(a_1) = a_2$.
- Define \mathscr{I}_a as the ∂ -isomorphism class of (\bar{M}_a, a) .

Lemma 5.4. If $\mathscr{I}_{a_1} = \mathscr{I}_{a_2}$ then a_1, a_2 have the same Ψ -type over B.

Proof. Fix a ∂ -isomorphism $f: (\bar{M}_{a_1}, a_1) \longrightarrow (\bar{M}_{a_1}, a_2)$. Suppose we have $\phi(a_1, b)$ for some $b \in B$. Pick witness of this existential formula $M_1 \subseteq \bar{M}_{a_1}$. Then $f(M_1)$ is a witness for $\phi(a_2, b)$.

Thus to bound the number of traces it is sufficient to bound the number of possibilities for \mathscr{I}_a .

Theorem 5.5.

$$|\partial_a| \leq D(\Psi)$$

$$|\bar{M}_b - \bar{A}| \le D(\Psi)$$

Corollary 5.6.

$$\operatorname{vc}(\phi) \le K(\phi) \frac{Y(\phi)}{\epsilon(\phi)}$$

Proof. We count possible ∂ -isomorphism classes \mathscr{I}_b . Let $W = K(\phi) \frac{Y(\phi)}{\epsilon(\phi)}$. If the parameter set A is of size N then there are $\binom{N}{W}$ choices for boundary ∂_b . On top of the boundary there are at most W extra vertices and $(2W)^2$ extra edges. Thus there are at most

$$W \cdot 2^{(2W)^2}$$

configurations up to a graph isomorphism. In total this gives us

$$\binom{N}{W} \cdot W \cdot 2^{(2W)^2} = O(N^W)$$

options for ∂ -isomorphism classes. By Lemma 5.4 there are at most $O(N^W)$ many traces, giving the required bound.

Proof. (of Theorem 5.5) Fix some b-trace A_b . Enumerate $A_b = \{a_1, \ldots, a_I\}$. Let $M_i/\{a_i, b\}$ be a witness of $\phi(a_i, b)$ for each $i \leq I$. Let $\bar{M}_i = \bigcup_{j < i} M_j$. Let $\bar{M} = \bigcup M_i$, a witness of A_b

Claim 5.7.

$$\left| \partial(M_i M, \bar{A}) - \partial(M, \bar{A}) \right| \le |M_i| = K(\phi)$$
$$\dim(M_i M \bar{A}/M \bar{A}) > -\epsilon(\phi)$$

Definition 5.8. (j-1,j) is called a jump if some of the following conditions happen

• New vertices are added outside of \bar{A} i.e.

$$\bar{M}_i - \bar{A} \neq \bar{M}_{i-1} - \bar{A}$$

• New vertices are added to the boundary, i.e.

$$\partial(\bar{M}_j, \bar{A}) \neq \partial(\bar{M}_{j-1}, \bar{A})$$

Definition 5.9. We now let m_i count all jumps below i

$$m_i = |\{j < i \mid (j - 1, j) \text{ is a jump}\}|$$

Lemma 5.10.

$$\dim(\bar{M}_i/\bar{A}) \le -m_i \cdot \epsilon(\phi)$$
$$|\partial(\bar{M}_i, \bar{A})| \le m_i \cdot K(\phi)$$
$$|\bar{M}_j - \bar{A}| \le m_i \cdot K(\phi)$$

Proof. (of Lemma 5.10) Proceed by induction. Second and third propositions are clear. For the first proposition base case is clear.

Induction step. Suppose $\bar{M}_j \cap (A \cup b) = \bar{M}_{j+1}$ and $\partial(\bar{M}_j, A) = \partial(\bar{M}_{j+1}, A)$. Then $m_i = m_{i+1}$ and the quantities don't change. Thus assume at least one of these equalities fails.

Apply Lemma 3.8 to $\bar{M}_j \cup (A \cup b)$ and $(M_{j+1}, a_{j+1}b)$. There are two options

- $\dim(\bar{M}_{j+1} \cup (A \cup b)/\bar{M}_i \cup (A \cup b)) \leq -\epsilon_U$. This implies the proposition.
- $M_{j+1} \subseteq \bar{M}_j \cup (A \cup b)$. Then by our assumption it has to be $\partial(\bar{M}_j, A) \neq \partial(\bar{M}_{j+1}, A)$. There are edges between $M_{j+1} \cap (\partial(\bar{M}_{j+1}, A) \partial(\bar{M}_j, A))$ so they contribute some negative dimension $\leq \epsilon_U$.

This ends the proof for Lemma 5.10.

(Proof of Theorem 5.5 continued) First part of lemma 5.10 implies that we have $\dim(\bar{M}/\bar{A}) \leq -m_I \cdot \epsilon(\phi)$. The requirement of A to be S-strong forces

$$m_I \cdot \epsilon(\phi) < Y(\phi)$$

$$m_I < \frac{Y(\phi)}{\epsilon(\phi)}$$

Applying the rest of 5.10 gives us

$$|\partial(\bar{M}, A)| \le m_I \cdot K(\phi) \le \frac{K(\phi)Y(\phi)}{\epsilon(\phi)}$$
$$|\bar{M} \cap A| \le m_I \cdot K(\phi) \le \frac{K(\phi)Y(\phi)}{\epsilon(\phi)}$$

as needed. This ends the proof for Theorem 5.5.

So far we have computed an upper bound for a single basic formula ϕ .

To bound an arbitrary formula, write it as a boolean combination of basic formulas ϕ_i (via quantifier elimination) It suffices to bound vc-density for collection of formulas $\{\phi_i\}$ to obtain a bound for the original formula.

In general work with a collection of basic formulas $\{\phi_i\}_{i\in I}$. The proof generalizes in a straightforward manner. Instead of $A^{|x|}$ we now work with $A^{|x|} \times I$ separating traces of different formulas. Formula with the largest quantity $Y(\phi)\frac{K(\phi)}{\epsilon(\phi)}$

contributes the most to the vc-density. Thus we have

$$\Phi = \{\phi_i\}_{i \in I}$$
$$vc(\Phi) \le \max_{i \in I} Y(\phi_i) \frac{K(\phi_i)}{\epsilon_{\phi_i}}$$

References

- M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson, S. Starchenko, Vapnik-Chervonenkis density in some theories without the independence property, I, Trans. Amer. Math. Soc. 368 (2016), 5889-5949
- [2] Michael C. Laskowski, A simpler axiomatization of the Shelah-Spencer almost sure theories, Israel J. Math. 161 (2007), 157186. MR MR2350161
- [3] P. Assouad, Densite et dimension, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 3, 233-282.
- [4] P. Assouad, Observations sur les classes de Vapnik-Cervonenkis et la dimension combinatoire de Blei, in: Seminaire d'Analyse Harmonique, 1983-1984, pp. 92-112, Publications Mathematiques d'Orsay, vol. 85-2, Universite de Paris-Sud, Departement de Mathematiques, Orsay, 1985.
- [5] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145-147.
- [6] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math. 41 (1972), 247-261.

E-mail address: bobkov@math.ucla.edu