An Introduction to Parameterized Complexity

Lecture 1: Fixed-Parameter Tractability

Clemens Grabmayer

Ph.D. Program, Advanced Period Gran Sasso Science Institute L'Aquila, Italy

Monday, June 10, 2024

Course overview

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT		Algorithmic Meta-Theorems 1st-order logic,		
kernelization,		monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (slicewise
	transferring FPT results betw. widths			polynomial), W- and A-Hierarchies, placing
	results betw. Widths			problems on these
				hierarchies

Course developers

Hugo Gilbert course 2019/20 (Hugo & Clemens)

CG & Alessandro Aloisio course 2020/21 (Alessandro & C)

Course overview

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT		Algorithmic Meta-Theorems 1st-order logic,		
kernelization,		monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (slicewise
	transferring FPT results betw. widths			polynomial), W- and A-Hierarchies, placing
	results betw. Widths			problems on these
				hierarchies

Motivation

Classical complexity theory

- analyses problems by resource (space or time)
 needed to solve them on a reasonable machine model
- ▶ as a function of the input size n = |x| (Hartmanis/Stearns, 1965)
- ⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, ...)
- ⇒ tractable problems = polynomial-time computable (in P)
- ⇒ theory of intractability (reductions, NP completeness)

Drawback

- measures problem size n = |x|
 only in terms of input instances x,
 and ignores structural information about instances
- sometimes problems are easier to solve for instances if additional structure information is available

Motivation

Classical complexity theory

- analyses problems by resource (space or time)
 needed to solve them on a reasonable machine model
- ▶ as a function of the input size n = |x| (Hartmanis/Stearns, 1965)
- ⇒ variety of complexity classes (P, LOGSPACE, NP, PSPACE, ...)
- ⇒ tractable problems = polynomial-time computable (in P)
- ⇒ theory of intractability (reductions, NP completeness)

Parameterized complexity

- measures complexity also in terms of a parameter $k = \kappa(x)$ that may depend on the input x in an arbitrary way
- \Rightarrow fixed-parameter tractable problems relaxes polynomial time solvability to algorithms whose non-polynomial behavior $f(k) \cdot p(n)$ is restricted by parameter k
- ⇒ complexity classes (FPT, XP, W[P], W- and A-hierarchies)
- ⇒ theory of fixed-parameter intractability

Parameterized (versus classical) problems

Definition

A classical (decision) problem is a pair $\langle \Sigma, Q \rangle$ where:

 $\triangleright Q \subseteq \Sigma^*$ the set of *problem yes-instances* over a finite alphabet Σ

A *parameterized (decision) problem* is a triple $\langle \Sigma, Q, \kappa \rangle$ where:

- $\triangleright Q \subseteq \Sigma^*$ the set of *problem yes-instances* over a finite alphabet Σ ,
- $\triangleright \ \kappa : \Sigma^* \to \mathbb{N}$ a function, *the parameterization*.

We regularly shorten $\langle \Sigma, Q, \kappa \rangle$ to a pair $\langle Q, \kappa \rangle$.

Assumption

The parameterization κ can be efficiently computed.

Definition

The size of an instance $\langle x, \kappa(x) \rangle$ of $\langle Q, \kappa \rangle$ is

$$|\langle x, \kappa(x) \rangle| = |x| + \kappa(x)$$
.

Parameterized problems (examples)

A Parameterized Clique Problem

p-CLIQUE:

Given: a graph G and an integer k,

Question: Does there exists a clique of size k in G?

Parameter: k.

A Parameterized Hitting Set Problem

p-HITTING SET

Given: a universe $U = \{x_1, \dots, x_n\}$, a collection of sets $S = (S_1, \dots, S_m)$ where $S_i \subseteq U$ and an integer k,

Question: Does there exists a set $S \subseteq U$ such that $|S| \le k$

and $S \cap S_i \neq \emptyset$, $\forall i \in \{1, \dots, m\}$.

Parameter: $\max |S_i|$.

- ▶ NP-hard even if $\max |S_i| = 2$,
- ▶ is fixed-parameter tractable.

The art of parameterization

What is a good parameter?

- We should have reasons to believe that the parameter is "small" for some applications.
- It is better if the parameter is intuitive.
- It is better if the parameter is efficiently computable.

There is a hierarchy on parameters.

The art of parameterization

There are many different types of parameters!

- The size of the solution we are looking for.
- The size of some parts of the instance.
 E.g., the number of voters in an election problem.
- Some more structural property of the instance.
 E.g., the diameter of a graph.
- It can be a combination of values, a difference, ...

The art of parameterization

- Graph problems: maximum degree, treewidth, diameter...
- Social choice problems: number of voters, candidates, correlation of preferences...
- ▶ Boolean formulas: number of variables, number of clauses...
- Problems on strings: maximum length of a string, size of the alphabet...

Fixed Parameter Tractability

Definition

A parameterized problem (Q, κ) is *fixed-parameter tractable* if:

```
\exists f: \mathbb{N} \to \mathbb{N} computable \exists p \in \mathbb{N}[X] polynomial \exists \mathbb{A} algorithm, takes inputs in \Sigma^* and \forall x \in \Sigma^* [\mathbb{A} decides if x \in Q in time \leq f(\kappa(x)) \cdot p(|x|)].
```

FPT := complexity class of all fixed-parameter tractable problems.

Assumption for a robust fpt-theory:

 κ is polynomially computable, or itself fpt-computable.

Goal in parameterized algorithmics:

- ⇒ design FPT algorithms,
- \Rightarrow try to make both factors $f(\kappa(x))$ and p(|x|) as small as possible.
- ⇒ or show (if possible) that finding such factors is impossible

A problem not in FPT (unless P = NP)

The ℓ -th slice of a parameterized problem (Q, κ) :

$$\langle Q, \kappa \rangle_{\ell} := \{ x \in Q \mid \kappa(x) = \ell \}$$
.

Proposition

If $(Q, \kappa) \in \mathsf{FPT}$, then $(Q, \kappa)_{\ell} \in \mathsf{P}$ for all $\ell \in \mathbb{N}$.

Application

p-COLORABILITY

Instance: a graph \mathcal{G} and $k \in \mathbb{N}$.

Parameter: k.

Problem: Decide whether \mathcal{G} is k-colorable.

Known: 3-Colorability ∈ NP-complete (Lovàsz, Stockmeyer, 1973).

Since 3-Colorability = p-Colorability₃,

it follows that p-Colorability \notin FPT (unless P = NP).

Slice-wise polynomial problems

Definition

A parameterized problem (Q, κ) is *slice-wise polynomial* if:

```
 \exists f,g: \mathbb{N} \to \mathbb{N} \text{ computable} \\ \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \text{ and } \forall x \in \Sigma^* \\ \left[ \mathbb{A} \text{ decides if } x \in Q \text{ in time } \leq f(\kappa(x)) \cdot |x|^{g(\kappa(x))} \right].
```

XP := complexity class of slice-wise polynomial problems.

Application

p-COLORABILITY

Instance: a graph \mathcal{G} and $k \in \mathbb{N}$.

Parameter: k.

Problem: Decide whether \mathcal{G} is k-colorable.

Known: 3-COLORABILITY \in NP-complete (Lovàsz, Stockmeyer, 1973). Since 3-COLORABILITY = p-COLORABILITY₃, it follows that p-COLORABILITY \notin XP (unless P = NP).

Course overview

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT		Algorithmic Meta-Theorems 1st-order logic,		
kernelization,		monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (slicewise
	transferring FPT results betw. widths			polynomial), W- and A-Hierarchies, placing
	results betw. Widths			problems on these
				hierarchies

Today

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization,		1st-order logic, monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 – 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (slicewise
	transferring FPT			polynomial), W- and
	results betw. widths			A-Hierarchies, placing
				problems on these
				hierarchies

From today's lecture

A **crown decomposition** of a graph G is a partitioning (C, H, R) of V(G), such that:

- C is nonempty.
- ② C is an independent set.
- \bullet H separates C and R.
- **4** *G* contains a matching of *H* into *C*.

Lemma (Crown lemma.)

Let G be a graph with no isolated vertices and with at least 3k + 1 vertices. There is a polynomial-time algorithm that:

- ▶ either finds a matching of size k + 1 in G;
- or finds a crown decomposition of G.

Tomorrow

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization,		1st-order logic, monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 – 16.30			14.30 – 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (slicewise
	transferring FPT			polynomial), W- and
	results betw. widths			A-Hierarchies, placing
				problems on these
				hierarchies

In tomorrow's lecture: a path decomposition of a graph

Wednesday

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT		Algorithmic Meta-Theorems 1st-order logic,		
kernelization, Crown Lemma, Sunflower Lemma		monadic 2nd-order logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 – 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths			motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies

From Wednesday's lecture: Monadic second-order logic

$$\psi_{3} := \exists C_{1} \exists C_{2} \exists C_{3} ((\forall x \bigvee_{i=1}^{3} C_{i}(x))$$

$$\land \forall x \forall y (E(x,y) \to \bigwedge_{i=1}^{3} \neg (C_{i}(x) \land C_{i}(y))))$$

$$\mathcal{A}(\mathcal{G}) \vDash \psi_{3} \iff \mathcal{G} \text{ has is 3-colorable}.$$

Friday

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization,		1st-order logic, monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (slicewise
	transferring FPT results betw. widths			polynomial), W- and
	results betw. widths			A-Hierarchies, placing problems on these
				hierarchies

From Friday's lecture: W-Hierarchy

'There is no definite single class that can be viewed as "the parameterized NP". Rather, there is a whole hierarchy of classes playing this role. (Flum, Grohe [FG06])

Course overview

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results motivation for FPT		Algorithmic Meta-Theorems 1st-order logic,		
kernelization,		monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique			motivation for
	width, FPT-results			FP-intractability results,
	by dynamic			FPT-reductions, class
	programming,			XP (slicewise
	transferring FPT results betw. widths			polynomial), W- and A-Hierarchies, placing
	results betw. Widths			problems on these
				hierarchies

Books

- Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh, *Parameterized Algorithms*, 1st ed., Springer, 2015.
- Jörg Flum and Martin Grohe, *Parameterized Complexity Theory*, Springer, 2006.

Kernelization

- Idea
- Definition
- Kernel examples for:
 - point line cover problem
 - vertex cover problem
- ▶ Kernelization ⇔ FPT
- Crown lemma and crown decomposition
 - smaller kernel for vertex cover problem
 - kernel for dual colorability problem
- Sunflower lemma
 - kernel for hitting set problem

Kernelization methods (informally)

Kernelization is:

- a systematic study of polynomial-time preprocessing algorithms,
- an important tool in the design of parameterized algorithms.

- → Application of rule 1
- → Application of rule 2

- Often a collection of efficient preprocessing rules.
- ► Transform an instance *x* into a smaller equivalent instance *x'*.

Kernelization (formally)

Definition

Let $\langle Q, \kappa \rangle$ be a parameterized problem over Σ .

A *kernelization* of (Q, κ) is a function $K: \Sigma^* \to \Sigma^*$ such that:

- ▶ K is polynomial-time computable
- ▶ there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \Sigma^*$:
 - $(x \in Q \iff K(x) \in Q)$,
 - $|K(x)| \le h(\kappa(x)) .$

We say that such a kernelization K is *polynomial* (resp. *linear*) (and that Q has a polynomial (resp. *linear*) kernel) if the function h is polynomial (resp. linear).

Lemma

If (Q, κ) admits a kernel and is decidable, then $(Q, \kappa) \in \mathsf{FPT}$.

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, the $\langle Q, \kappa \rangle$ admits a kernel.

The (parameterized) Point Line Cover Problem

p-Point-Line-Cover:

Given: n points in the plane and an integer k,

Parameter: The integer k.

Question: Do there exist *k* lines that cover all points?

Rule 1:

If we have a line that hits k + 1 or more points, then:

- i) include it in the solution;
- ii) remove the points hit by the line;
- iii) set k = k 1.

Observation: Let (x, κ) be a yes instance of the p-Point-Line-Cover such that Rule 1 cannot be applied. Then $n \le k^2$ holds.

Rule 2:

If we cannot apply Rule 1, and we have more than k^2 points, then say no, and return a trivial no instance.

Proposition

p-POINT-LINE-COVER \in FPT: it admits a kernel of size with k^2 points.

The (parameterized) Vertex Cover Problem

p-VERTEX-COVER:

Given: A graph G.

Parameter: The integer k.

Question: Does there exists a vertex cover of size at most k?

Definition

Let G be a graph and $S \subseteq V(G)$. The set S is called vertex cover if for every edge of G at least one of its endpoints is in S.

Exercise

Find an $O(k^2)$ kernel for p-VERTEX-COVER.

The (parameterized) Vertex Cover Problem (Samuel Buss)

- **Rule 1**: If G contains an isolated vertex v, delete v from G. The new instance if $(G \setminus v, k)$
- **Rule 2**: If there is a vertex v of degree at least k+1, then delete v (and its incident edges) from G and decrement the parameter k by 1. The new instance is $(G \setminus v; k-1)$

Observations

- ▶ If G has a vertex cover of $\leq k$ vertices after exhaustive application of Rules 1 & 2, then G has $\leq k^2$ edges (and $\leq k^2 + k$ vertices).
- **Rule 3**: Let (G,k) be an instance to Rule 1 & 2 are not applicable. If G has $> k^2 + k$ vertices, or $> k^2$ edges, then (G,k) is a no-instance that can be replaced by a trivial no-instance.

Theorem

p-VERTEX-COVER \in FPT, because it admits a kernel with at most $O(k^2)$ vertices and $O(k^2)$ edges.

Kernelization ⇒ FPT

Exercise

If $\langle Q, \kappa \rangle$ admits a kernel and is decidable, then $\langle Q, \kappa \rangle \in \mathsf{FPT}$.

Definitions

A *kernelization* of (Q, κ) is a function $K: \Sigma^* \to \Sigma^*$ such that:

- ▶ *K* is polynomial-time computable
- ▶ there is a computable function $h : \mathbb{N} \to \mathbb{N}$ such that for all $x \in \Sigma^*$:
 - $(x \in Q \iff K(x) \in Q) ,$
 - $|K(x)| \le h(\kappa(x))$.

A parameterized problem $\langle Q, \kappa \rangle$ is *fixed-parameter tractable* if:

```
\exists f: \mathbb{N} \to \mathbb{N} \text{ computable } \exists p \in \mathbb{N}[X] \text{ polynomial} \\ \exists \mathbb{A} \text{ algorithm, takes inputs in } \Sigma^* \text{ and } \forall x \in \Sigma^* \\ \left[ \mathbb{A} \text{ decides if } x \in Q \text{ in time } \leq f(\kappa(x)) \cdot p(|x|) \right].
```

FPT := complexity class of all fixed-parameter tractable problems.

Kernelization ⇒ FPT

Lemma

If (Q, κ) admits a kernel and is decidable, then $(Q, \kappa) \in \mathsf{FPT}$.

```
(Q,K) a parameterized problem, Q < 2*
 Definition K: Z* > Z* a kernelization for (Q, K) if:
    (K1) YXE>* (XEQ (XK)EQ)
      Ka) K is polytime computable
      M3) ∃n: N→N Yx∈ Z*( | K(x)| ≤ L( k(x))).
Proposition: If <0,187 is decidable, and has kernelization K, then (Q,18) EFPT
Proof. Since < Q K) is decidable, there is an algorithm A) that decides instances xet in time = f(1x1) steps for some Computable function f: N > N.
Then assuming a polynomial algorialum Ax for k (time bounded by F(x))
  We construct on PPT algorishm Al(K) for
                                         K(x) E = * | Ruming Lime A(K) =
                                     K(x)&Q
```

FPT ⇒ Kernelization

Lemma

If $\langle Q, \kappa \rangle \in \mathsf{FPT}$, the $\langle Q, \kappa \rangle$ admits a kernel.

Proof.

Let $\mathbb A$ be an algorithm that solves $\langle Q,\kappa \rangle$ in time $f(\kappa(x)) \cdot p(x)$, for all $x \in \Sigma^*$, where $f: \mathbb N \to \mathbb N$ computable, and p(n) a polynomial. We can assume $p(n) \ge \max{\{n,1\}}$ for all $n \in \mathbb N$.

If $Q = \emptyset$ or $Q = \Sigma^*$, then we can defined $K(x) := \epsilon$. Otherwise we have $\emptyset \subsetneq Q \subsetneq \Sigma^*$, and we choose some $x_0 \in Q$, and $x_1 \in \Sigma^* \setminus Q$.

We define the polynomial-time computable function $K: \Sigma^* \to \Sigma^*$ by:

$$K(x) \coloneqq \begin{cases} x_0 & \dots \text{ } \mathbb{A} \text{ accepts } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x_1 & \dots \text{ } \mathbb{A} \text{ rejects } x \text{ in } \leq p(|x|) \cdot p(|x|) \text{ steps,} \\ x & \dots \text{ } \mathbb{A} \text{ does not terminate in } \leq p(|x|) \cdot p(|x|) \text{ steps.} \end{cases}$$

In the last case (K(x) = x) we have $p(|x|) \cdot p(|x|) \le f(\kappa(x)) \cdot p(|x|)$, and hence $|K(x)| = |x| \le p(|x|) \le f(\kappa(x))$. Therefore K is a kernel.

Crown Decomposition and Crown Lemma

A **crown decomposition** of a graph G is a partitioning (C, H, R) of V(G), such that:

- C is nonempty.
- 2 C is an independent set.
- \odot H separates C and R.
- G contains a matching of H into C.

Lemma (Crown Lemma)

Let G be a graph with no isolated vertices and with at least 3k + 1 vertices. There is a polynomial-time algorithm that:

- either finds a matching of size k + 1 in G;
- or finds a crown decomposition of G.

Exercise

Apply the Crown Lemma to the Vertex Cover Problem.

The (par.) Vertex Cover Problem (smaller kernel)

p-VERTEX-COVER:

Given: A graph G.

Parameter: The integer k.

Question: Does there exists a vertex cover of size at most k?

Rule 1: If G contains an isolated vertex v, delete v from G. The new instance if (G - v, k)

Rule 2: If $|(V(G))| \ge 3k + 1$, apply the Crown Lemma.

- ▶ If it returns a matching of size k + 1, then conclude that (G,k) is a no-instance
- ▶ If it returns a crown decomposition $V(G) = C \cup H \cup R$:
 - Pick the vertices in H in the solution
 - ▶ Reduce (G,k) to (G-H,k-|H|)
 - Reduce (G − H, k − |H|) to (G − H − C, k − |H|) by using Rule 1 (note that vertices in C are isolated)

Theorem

p-VERTEX-COVER admits a kernel with at most 3k vertices.

The (parameterized) Dual-Coloring Problem

p-DUAL-COLORABILITY:

Given: A graph $G = \langle V, E \rangle$ on n vertices and an integer k.

Parameter: The integer k.

Question: Is G(n-k)-colorable?

Definition

Let $k \in \mathbb{N}$. A graph $G = \langle V, E \rangle$ is k-colorable if there is a function $C : V \to \{1, \dots, k\}$ such that $C(u) \neq C(v)$ for all edges $\{u, v\} \in E$.

Exercise

Obtain a kernel with O(k) vertices using crown decomposition.

The Dual-Coloring Problem

Rule 1: Let $I \subseteq V(G)$ be the isolated vertices. Remove I from G, and color them with one color. The new instance if (G - I, k)

Rule 2: Consider graph $\overline{G}(V, \overline{E})$ obtained from G by saying that $e \in \overline{E}$ iff $e \notin E$.

If |(V(G))| > 3k, apply the Crown Lemma to \overline{G} .

- If it returns a matching of size k + 1, then conclude that (G, k) is a yes-instance
- ▶ If it returns crown decomposition $V(G) = V(\overline{G}) = C \cup H \cup R$:
 - ▶ The vertices in *H* can be saved.
 - ▶ Reduce (G, k) to (G H C, k |H|) if |H| < k, and otherwise to a yes-instance
 - Note that the vertices in C belong to a clique in G(V, E), that is we need |C| colors, and that we need different colors for R.

Theorem

p-DUAL-COLORING admits a kernel with at most 3k vertices.

Sunflower Lemma

Definition

A sunflower with k petals and a core Y is a collection of sets S_1, \ldots, S_k such that $S_i \cap S_j = Y$ for all $i \neq j$. The sets $S_i \setminus Y$ are petals and they must be non-empty.

A sunflower with 6 petals and a core $Y = \{x_2, x_5\}$.

$$S_1 = \{x_2, x_3, x_5, x_{10}\}$$

$$S_2 = \{x_1, x_2, x_5\}$$

$$S_3 = \{x_2, x_5, x_6, x_{11}\}$$

Lemma (Sunflower lemma (Erdős, Rado))

Let A be a family of sets (without duplicates) over a universe U such that each set in A has cardinality = d.

If $|\mathcal{A}| > d!(k-1)^d$, then \mathcal{A} contains a sunflower with k petals which can be computed in time polynomial in $|\mathcal{A}|$, |U|, and k.

Application to d-Hitting Set

Lemma (Sunflower lemma (Erdős, Rado))

Let A be a family of sets (without duplicates) over a universe U such that each set in A has cardinality = d.

If $|\mathcal{A}| > d!(k-1)^d$, then \mathcal{A} contains a sunflower with k petals which can be computed in time polynomial in $|\mathcal{A}|$, |U|, and k.

Parameterized *d*-Hitting Set Problem

p-d-HITTING-SET:

Given: A family \mathcal{A} of sets over a universe U, where each set has cardinality $\leq d$ and a positive integer k,

Parameter: The integer k.

Question: Does there exists a subset $H \subseteq U$ of size at most

k such that H intersects each set in A?

Theorem

p-d-HITTING-SET has a kernel with $\leq d!k^dd$ sets $\& \leq d!k^dd^2$ elements.

Application to *d*-Hitting Set

Observation

If $\mathcal A$ contains a sunflower $\mathcal S=\{S_1,\dots,S_{k+1}\}$ of k+1 sets, then every hitting set H of $\mathcal A$ with $|H|\leq k$ must intersect the core Y of $\mathcal S$. Otherwise it is a no-instance, because H cannot intersect each of the k+1 petals $S_i \smallsetminus Y$.

```
Rule HS.1: Let (U, A, k) be an instance of d-HITTING SET.
Assume that \mathcal{A} contains a sunflower \mathcal{S} = \{S_1, \dots, S_{k+1}\} of cardinality k+1 with core Y.
Then return (U', \mathcal{A}', k), where \mathcal{A}' \coloneqq (\mathcal{A} \setminus \mathcal{S}) \cup Y, U' \coloneqq \bigcup \mathcal{A}' = \bigcup_{X \in \mathcal{A}'} X.
```

Proof (kernel of p-d-HITTING-SET with $\leq d! k^d d$ sets and $\leq d! k^d d^2$ elements).

If for some $d' \in \{1,...,d\}$, the number of sets in \mathcal{A} of size = d' is more than $d'!k^{d'}$, then the sunflower lemma yields a sunflower of size k+1. Rule **HS.1** applies. By applying this rule exhaustively, we obtain a new family of sets \mathcal{A}' with $\leq d'!k^{d'}$ sets of size = d' for every $d' \in \{1,...,d\}$. Hence $|\mathcal{A}'| \leq d!k^{d}d$ and $|U'| = d!k^{d}d^{2}$. If $\varnothing \in \mathcal{A}'$ (a sunflower had an empty core), then it is a no instance. \square

Tomorrow

Monday, June 10 09.00 – 11.00	Tuesday, June 11	Wednesday, June 12 09.00 – 11.00	Thursday, June 13	Friday, June 14
Introduction & basic FPT results		Algorithmic Meta-Theorems		
motivation for FPT kernelization,		1st-order logic, monadic 2nd-order		
Crown Lemma, Sunflower Lemma		logic, FPT-results by Courcelle's Theorems		
		for tree and clique-width		
Algorithmic	Techniques	Formal-Method & Algorithmic Techniques		
	14.30 - 16.30			14.30 - 16.30
	Notions of bounded			FPT-Intractability
	graph width			Classes & Hierarchies
	path-, tree-, clique width, FPT-results by dynamic programming, transferring FPT results betw. widths			motivation for FP-intractability results, FPT-reductions, class XP (slicewise polynomial), W- and A-Hierarchies, placing problems on these hierarchies