词法分析---有限状态自动机

编译原理

华保健

bjhua@ustc.edu.cn

回顾: 自动生成

词法分析器

词法分析器的实现方法

- 至少两种方法:
 - 手工实现算法
 - ■自动生成法
- 我们继续讨论第二种方法
 - 首先要用到的第二个数学工具是有限状态自 动机(FA)

有限状态自动机 (FA)

$$M = (\Sigma, S, q0, F, \delta)$$

■ 什么样的串可被接受?

■ 转移函数:

• {
$$(q0,a)\rightarrow q1$$
, $(q0,b)\rightarrow q0$,
 $(q1,a)\rightarrow q2$, $(q1,b)\rightarrow q1$,
 $(q2,a)\rightarrow q2$, $(q2,b)\rightarrow q2$ }

自动机第二个例子

■ 转移函数:

■
$$\{(q0,a)\rightarrow \{q0,q1\},\ (q0,b)\rightarrow \{q1\},\ (q1,b)\rightarrow \{q0,q1\}\}$$

有限状态自动机小结

- 确定状态有限自动机DFA
 - 对任意的字符,最多有一个状态可以转移
 - $\delta: S \times \Sigma \to S$
- ■非确定的有限状态自动机NFA
 - 对任意的字符,有多于一个状态可以转移
 - $\delta: S \times (\Sigma \cup \varepsilon) \to \mathscr{D}(S)$

DFA的实现

状态\字符	а	b
0	1	0
1	2	1
2	2	2