Введение в дискретную математику. Лекция 6 (элементы теории графов 1: основные понятия). План-конспект

Н. Л. Поляков

1 Основные определения

Теория графов это один из самых «классических» разделов дискретной математики. Терминология различных монографий может существенно отличаться. Мы будем использовать следующие определения.

Ориентированным мультиграфом называется тройка (V, G, φ) , где V – множество (вершин), G – множество (ребер или дуг), φ – функция из множества G в множество $V \times V$ (которая каждому ребру γ ставит в соответствие пару вершин, являющихся началом и концом ребра γ).

Если функция φ инъективна (т.е. если каждое ребро однозначно определяется своим началом и концом) ориентированный мультиграф $\Gamma = (V, G, \varphi)$ называется просто **ориентированным графом**. Ребра ориентированного графа можно отождествить с (ynopndouehhhhmu) парами вершин, а сам граф просто с парой (V,G), где $G\subseteq V\times V$. Таким образом, ориентированный граф есть, по существу, бинарное отношение на множестве вершин V.

Неориентированный граф это пара (V,G), где G есть некоторое подмножество множества $\{X\subseteq V:1\leqslant |X|\leqslant 2\}$. Иными словами ребра неориентированного графа это *неупорядоченные пары* вершин. Если угодно, неориентированный граф можно отождествить с ориентированным графом (V,G), множество ребер которого вместе с каждым элементом (v_1,v_2) содержит и элемент (v_2,v_1) . Таким образом, неориентированный граф можно рассматривать как *симметричное бинарное отношение* на множестве вершин V. 2

Графы и мультиграфы традиционно изображают в виде картинок, состоящих из точек и линий. Точки соответствуют вершинам графа, а линии – ребрам. Для ориентированных графов и мультиграфов линии снабжены стрелочками, для неориентированных – нет.

Ориентированный мультиграф Ориентированный граф Неориентированный граф

¹Здесь к неупорядоченным парам мы относим и пары одинаковых элементов.

 $^{^2}$ Аналогично можно рассматривать более широкое понятие — *неориентированный мультиграф*. Кроме того, изучаются еще и *гиперграфы*: это «графы», в которых «ребра» это подмножества множества вершин фиксированной мощности k или вообще произвольной мошности.

Между ребрами и вершинами графов устанавливается соответствие un-uudenmhocmu.

- Если речь идет об ориентированном мультиграфе (V, G, φ) , то ребро $\gamma \in G$ инцидентно вершине $v \in V$, а вершина $v \in V$ инцидентна ребру $\gamma \in G$, если $\varphi(\gamma) = (v_1, v_2) \Rightarrow v \in \{v_1, v_2\}$.
- Если речь идет об ориентированном графе (V, G), то ребро $\gamma \in G$ инцидентно вершине $v \in V$, а вершина $v \in V$ инцидентна ребру $\gamma \in G$, если $\gamma = (v_1, v_2) \Rightarrow v \in \{v_1, v_2\}$.
- Если речь идет о неориентированном графе (V, G), то ребро $\gamma \in G$ инцидентно вершине $v \in V$, а вершина $v \in V$ инцидентна ребру $\gamma \in G$, если $v \in \gamma$.

2 Способы задания графов

Помимо прямого теоретико-множественного описания и рисунка (который тоже с натяжкой может быть признан способом задания графа), граф может быть задан с помощью матрицы смежсности и матрицы инцидентности.

Матрицы смежности. Пусть $\Gamma = (V, G)$ есть конечный ориентированный граф, причем его вершины занумерованы натуральными числами: $V = \{v_1, v_2, \ldots, v_n\}$. Тогда его матрица смежности есть матрица (a_{ij}) размера $n \times n$ из нулей и единиц, которая определяется следующим образом:

$$a_{ij} = \begin{cases} 1, & \text{если } (v_i, v_j) \in G \\ 0, & \text{иначе} \end{cases}$$

Аналогично, если $\Gamma=(V,G)$ есть конечный неориентированный граф, вершины которого занумерованы натуральными числами: $V=\{v_1,v_2,\ldots,v_n\}$, то его матрица смежности есть матрица (a_{ij}) размера $n\times n$ из нулей и единиц, которая определяется так:

$$a_{ij} = egin{cases} 1, & ext{если } \{v_i, v_j\} \in G \ 0, & ext{иначе} \end{cases}$$

Замечания.

- Легко заметить, что матрица смежности ориентированного графа $\Gamma = (V,G)$ это просто характеристическая матрица отношения G, а матрица смежности неориентированного графа $\Gamma = (V,G)$ есть характеристическая матрица соответствующего симметричного отношения.
- Для ориентированных мультиграфов Γ можно ввести аналогичное понятие: элемент (a_{ij}) матрицы смежности мультиграфа Γ (с занумерованными вершинами v_1, v_2, \ldots, v_n) есть количество ребер с началом v_i и концом v_j .

Матрицы инцидентности. Пусть $\Gamma=(V,G)$ есть конечный ориентированный граф без петель (т.е. без ребер, начало и конец которых совпадают), причем его вершины занумерованы натуральными числами: $V=\{v_1,v_2,\ldots,v_n\}$, и ребра тоже занумерованы натуральными числами: $G=\{\gamma_1,\gamma_2,\ldots,\gamma_m\}$. Тогда его матрица инцидентности есть матрица (b_{ij}) размера $n\times m$ из нулей, единиц и минус единиц, которая определяется следующим образом:

$$b_{ij} = \begin{cases} 1, & \text{если } v_i \text{ есть начало ребра } \gamma_j, \text{ т.е. } \gamma_j = (v_i, v) \text{ для некоторого } v \in V \\ -1, & \text{если } v_i \text{ есть конец ребра } \gamma_j, \text{ т.е. } \gamma_j = (v, v_i) \text{ для некоторого } v \in V \\ 0, & \text{иначе} \end{cases}$$

Если граф Γ содержит петли, то состав символов в матрице инцидентности расширяют (например, символом 2) и помещают этот символ на пересечении i-ой строки и j-го столбца, если γ_i есть петля с началом и концом v_i .

Замечание. Матрица инцидентности может быть определена и для мультиграфов совершенно аналогичным образом.

Если $\Gamma=(V,G)$ есть конечный неориентированный граф, вершины и ребра которого занумерованы натуральными числами: $V=\{v_1,v_2,\ldots,v_n\}$ и $G=\{\gamma_1,\gamma_2,\ldots,\gamma_m\}$, то его матрица инцидентности есть матрица (a_{ij}) размера $n\times m$ из нулей и единиц, которая определяется так:

$$a_{ij} = egin{cases} 1, & ext{если вершина } v_i ext{ инцидентна ребру } \gamma_j \ 0, & ext{иначе} \end{cases}$$

3 Дополнительные определения

В литературе можно найти огромное количество понятий и характеристик, связанных с графами. Постараемся ограничиться минимумом. О мультиграфах мы более говорить не будем. Некоторые понятия можно определить для ориентированных и для неориентированных графов в одних и тех же терминах: мы так и будем делать. Напомним, что терминология может варьировать от монографии к монографии; в книгах можно найти определения, которые несколько отличаются от тех, что даны ниже.

- Петлей графа Γ называется его ребро, которое инцидентно только одной вершине графа Γ. Во многих случаях рассматривают только графы без петель.
- *Изолированной вершиной* графа Γ называется вершина, не инцидентная ни одному ребру графа Γ .
- Висячей вершиной графа Γ называется вершина, инцидентная только одному ребру графа Γ .

³Вообще, символы, используемые в матрицах инцидентности, как правило, не важны (чего не скажешь о матрицах смежности).

- Степенью вершины неориентированного графа Г называют количество ребер, которые ей инцидентны. Обозначение: deg(v). Таким образом, изолированные вершины неориентированного графа это вершины степени ноль, а висячие вершины неориентированного графа это вершины степени один. Определение степени вершины иногда немного корректируют для графов с петлями: каждую петлю считают два раза.
- Для вершин неориентированного графа Γ вводят понятие (nony)ствении saxoda (indegree) и (nony)ствении ucxoda (outdegree): степень захода вершины v графа Γ есть количество ребер графа Γ с концом v, а степень исхода вершины v графа Γ есть количество ребер графа Γ с началом v. Обозначения: indeg (v) и outdeg (v).

4 Формула суммы степенней и лемма о рукопожатиях

Пусть $\Gamma = (V,G)$ есть конечный неориентированный граф без петель. Тогда:

$$\sum_{v \in V} \deg(v) = 2 \cdot |G|.$$

Если при вычислении степеней вершин каждую петлю считать два раза, то формула верна и для графов с петлями.

Следствие (лемма о рукопожатиях): в любом неориентированном конечном графе без петель число вершин с нечетной степенью четно.

5 Пути на графе

5.1 Основные определения

Многие задачи теории графов связаны с путями на графах. Пусть $\Gamma = (V,G)$ – граф.

• Πymb на графе (из вершины a_1 в вершину a_{n+1}) это последовательность

$$v_1\gamma_1v_2\gamma_2\ldots v_n\gamma_nv_{n+1},$$

где
$$1\leqslant n<\infty,\,v_1,v_2,\ldots,v_n,v_{n+1}\in V,\,\gamma_1,\gamma_2,\ldots,\gamma_n\in G,$$
 причем,

- если граф Γ неориентированнный, то $\gamma_i = \{v_i, v_{i+1}\}$ для всех $i, 1 \le i \le n$,
- если граф Γ ориентированнный, то $\gamma_i=(v_i,v_{i+1})$ для всех $i,\ 1\leqslant i\leqslant n.^4$

 $^{^4}$ Как всегда, в литературе можно встретить иные определения пути, которые отличаются некоторыми деталями.

- Длина пути есть количество входящих в него ребер.
- *Циклический* путь это такой путь $v_1\gamma_1v_2\gamma_2\dots v_{n-1}\gamma_{n-1}v_n,$, что $a_1=a_{n+1}.$
- Путь называется *цепью*, а циклический путь *циклом*, если все входящие в него ребра (не вершины!) различны.
- *Простая цепь* это цепь, в которой вершины не повторяются. *Простой цикл* это цикл, в котором не повторяются никакие вершины, кроме первой и последней.
- Неориентированный граф называется *связным*, если для любых двух его вершин v_1 и v_2 существует путь из вершины v_1 в вершину v_2 .
- В неориентированном графе $\Gamma=(V,G)$ бинарное отношение на множестве вершин

$$v_1 \sim v_2 \Leftrightarrow v_1 = v_2$$
 или существует путь из v_1 в v_2

есть отношение эквивалентности. Классы эквивалентности относительно этого отношения (или порождаемые ими подграфы) называются κ омпонентами связности графа Γ .

- Ориентированный граф $\Gamma = (V, G)$ называется *слабо связным*, если соответствующий неориентированный граф⁵ является связным.
- Ориентированный граф $\Gamma = (V, G)$ называется *сильно связным*, если для любых двух его вершин v_1 и v_2 существует путь из вершины v_1 в вершину v_2 (а, значит, и обратно тоже).
- В неориентированном графе $\Gamma=(V,G)$ бинарное отношение на множестве вершин

$$v_1 \sim v_2 \Leftrightarrow v_1 = v_2$$
 или существуют пути из v_1 в v_2 и из v_2 в v_1

есть отношение эквивалентности. Классы эквивалентности относительно этого отношения (или порождаемые ими подграфы) называются компонентами сильной связности графа Γ .

⁵Т.е. граф $\Gamma^* = (V, G^*)$, где $G^* = \{\{x, y\} : (x, y) \in G\}$.

Замечание. Все вышеперечисленные понятия можно естественным образом определить и для мультиграфов (как ориентированнных, так и неориентированнных).

5.2 Теорема об *n*-ой степени матрицы смежности графа

Теорема. Пусть Γ есть (ориентированный или неориентированный) граф с занумерованными вершинами v_1, v_2, \ldots, v_k, A есть его матрица смежности и $B = A^n$. Тогда b_{ij} равно количеству путей длины n из вершины v_i в вершину v_i .

Замечание. Это утверждение верно и для мультиграфов (напомним: элемент b_{ij} матрицы смежности ориентированного мультиграфа с занумерованными вершинами v_1, v_2, \ldots, v_k есть количество ребер с началом v_i и концом v_j).

Упражнение 1. Докажите эту теорему (воспользуйтесь методом математической индукции).

5.3 Эйлеровы пути и графы

Пусть $\Gamma = (V, G)$ есть граф

- Эйлеров путь на графе Γ это путь, содержащий все ребра графа, причем каждое ровно по одному разу⁶.
- Эйлеров цикл на графе Γ это циклический путь, содержащий все ребра графа, причем каждое ровно по одному разу⁷.

 $^{^6}$ Значит, Эйлеров путь это цепь.

⁷Значит, Эйлеров цикл это действительно цикл.

• Граф Γ называется полуэйлеровым, если на графе Γ есть эйлеров путь и эйлеровым, если на нем есть эйлеров цикл.

Оказывается, существует простой критерий эйлеровости и полуэйлеровости для ориентированных и неориентированных графов. А именно:

- Неориентированный граф без петель и изолированных вершин⁸ эйлеров тогда и только тогда, когда он связный и не содержит вершин нечетной степени (теорема Эйлера).
- Неориентированный граф без петель и изолированных вершин полуэйлеров тогда и только тогда, когда он связный и содержит не более двух вершин нечетной степени (а, значит, одну или ни одной).
- Ориентированный граф без петель и изолированных вершин эйлеров тогда и только тогда, когда он сильно связный и для каждой его вершины v выполнено:

$$indeg v = outdeg v$$

• Ориентированный граф без петель и изолированных вершин полуэйлеров тогда и только тогда, когда он либо эйлеров, либо слабо связный и для вершин выполнено следующее свойств: существуют такие вершины u и w, что

indeg
$$u = \text{outdeg } u + 1 \text{ } u \text{ indeg } w = \text{outdeg } w - 1,$$

а для остальных вершин v имеет место равенство

indeg
$$v = \text{outdeg } v$$
.

Понятие эйлеровости можно легко распространить на мультиграфы, причем все утверждения выше остаются в силе.

6 Планарные графы

Неориентированный граф без петель называется *планарным*, если его можно изобразить на плоскости так, чтобы его ребра не пересекались⁹. Надо понимать, что планарность есть достаточно нетривиальное понятие: если граф нарисован на плоскости с пересекающимися вершинами, это еще не

 $^{^8}$ Добавление и исключение петель и изолированных вершин, очевидно, не влияет на эйлеровость и полуэйлеровость.

 $^{^9 {}m Mы}$ не будем пытаться строго определить это понятие.

значит, что его нельзя перерисовать без пересечений.

В планарных графах помимо ребер и вершин появляется новый объект: zpahu (или области). Грань это часть плоскости, ограниченная последовательностью ребер 10 . Следует понимать, что

- Каждая грань ограничена не менее, чем тремя ребрами.
- «Внешняя часть» планарного графа это тоже грань. Таким образом, грани планарного графа образуют разбиение плоскости.
- Иногда для подсчета числа ребер, ограничивающих грань, некоторые ребра приходится считать дважды:

Формула Эйлера. Пусть (V,G) есть планарный граф. Тогда

$$B - P + \Gamma = 2$$
.

где В есть число вершин, Р есть число ребер, а Г есть число граней графа.

Следствие. Любой планарный граф удовлетворяет неравенству

$$P \leq 3B - 6$$
.

Упражнение 2. Докажите.

¹⁰ Cнова не будем пытаться дать формальное определение.

Полный неориентированный граф с n вершинами обозначается символом K_n (полным неориентированным графом называется граф, в котором любые две различные вершины соединены ребром).

Следствие. Граф K_5 не планарный.

Упражнение 3. Докажите.

Неориентированный граф (V,G) называется $\partial g y \partial o n b n b m$, если множество его вершин V можно представить в виде объединения $V_1 \cup V_2$ непересекающихся множеств («доль») V_1 и V_2 , таких, что граф не содержит ребер, которые инцидентны вершинам, принадлежащим одному и тому же из множеств V_1 и V_2 , т.е. $G \subseteq \{\{x,y\}: x \in V_1, y \in V_2\}$. Символом $K_{n,m}$ обозначается двудольный граф с долями V_1 и V_2 , содержащими n и m элементов, и имеющий максимально возможное число ребер, т.е. граф $(V_1 \cup V_2, G)$, удовлетворяющий условиям $V_1 \cap V_2 = \varnothing$, $|V_1| = n$, $|V_2| = m$ и $G = \{\{x,y\}: x \in V_1, y \in V_2\}$.

Упражнение 4. Докажите, что граф $K_{3,3}$ удовлетворяет доказанному неравенству, однако, не планарный (задача о трех домах и трех колодцах). Указание: как связана двудольность с числом ребер, ограничивающих каждую грань?

Теорема Понтрягина-Куратовского (теорема Вагнера). Граф Γ планарный тогда и только тогда, когда он не содержит подграфов, которые можно стянуть 11 к графу K_5 или $K_{3,3}$.

7 Раскраски

Классические задачи теории графов – задачи о раскрасках. Далее везде под словом «граф» будем подразумевать неориентированный граф без петель.

- Вершинной раскраской графа $\Gamma = (V, G)$ называется произвольная функция φ из множества вершин V в множество C (цветов).
- Правильной вершинной раскраской графа $\Gamma = (V,G)$ называется раскраска φ , для которой «соседние» вершины окрашены в разные цвета, т.е. удовлетворяющие условию

$$\{v_1, v_2\} \in G \Rightarrow \varphi(v_1) \neq \varphi(v_2).$$

 $^{^{11}{\}rm O}$ стягивании графов см. литературу.

- Хроматическим числом графа $\Gamma = (V, G)$ называется минимальное число n, для которого существует правильная вершинная раскраска $\varphi : V \to C$ графа Γ с множеством (пветов) C мощности n.
- Реберной раскраской графа $\Gamma = (V, G)$ называется произвольная функция φ из множества ребер G в множество C (цветов).
- Правильной реберной раскраской графа $\Gamma = (V,G)$ называется раскраска φ , для которой «соседние» ребра окрашены в разные цвета, т.е. удовлетворяющие условию

$$\{v_1, v_2\}, \{v_2, v_3\} \in G \Rightarrow \varphi(\{v_1, v_2\}) \neq \varphi(\{v_2, v_3\}).$$

• Хроматическим индексом графа $\Gamma = (V, G)$ называется минимальное число n, для которого существует правильная реберная раскраска $\varphi : V \to C$ графа Γ с множеством (цветов) C мощности n.

Некоторые классические результаты.

- 1. Хроматическое число любого планарного графа не более четырех (см. в литературе «**Проблема четырех красок**»).
- 2. **Теорема Визинга**. Хроматический индекс любого конечного графа есть либо $\Delta(\Gamma)$, либо $\Delta(\Gamma)+1$, где $\Delta(\Gamma)$ есть максимальная степень вершин графа Γ .
- 3. Теорема Рамсея 12. При любой конечной реберной раскраске бесконечного полного графа получится бесконечный полный одноцветный подграф. Существует и конечная версия этой теоремы: при любой раскраске «достаточно большого» полного конечного графа получится достаточно большой полный одноцветный подграф (подробнее см. литературу).

8 Задачи

- 1. Упражнения 1 4 из лекции (те, которые не разобраны на семинаре).
- 2. На рисунке изображен ориентированный граф:

(а) Занумеруйте каким либо образом его вершины и запишите матрицу его смежности.

 $^{^{12}}$ Правильное произношение фамилии автора этой теоремы: Рэмси. Однако, в отечественной литературе закрепился термин «теорема Рамсея»

- (b) Занумеруйте каким либо образом его вершины и ребра и запишите матрицу его инцидентности.
- 3. Ориентированный граф Γ с вершинами 1,2,3,4,5 (занумерованными в естественном порядке) задан своей матрицей смежности:

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{pmatrix}$$

- (а) Изобразите этот граф в виде рисунка.
- (b) Занумеруйте каким либо образом его ребра и, используя исходную нумерацию вершин, запишите матрицу его инцидентности.
- 4. Ориентированный граф Γ с вершинами 1,2,3,4,5 и ребрами a,b,c,d,e,f (занумерованными в естественном порядке) задан своей матрицей инцидентности:

$$\begin{pmatrix}
1 & 0 & 1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & -1 & -1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
-1 & -1 & 0 & 0 & 0 & 1
\end{pmatrix}$$

- (а) Изобразите этот граф в виде рисунка.
- (b) Используя исходную нумерацию вершин, запишите матрицу его инцидентности.
- 5. Каким образом меняется матрица смежности графа с занумерованными вершинами при выборе новой нумерации вершин?
- 6. В группе 30 человек. Может ли так быть, что 9 из них имеют по 3 друга (в этой группе), 11 по 4 друга (в этой группе) и 10 по 5 друзей (в этой группе).
- 7. Приведите пример неориентированного графа без петель (или докажите, что его не существует), степени вершин которого равны
 - (a) (1, 1, 1, 2, 3, 3, 4);
 - (b) (1, 1, 1, 2, 3, 3, 3);
 - (c) (1, 1, 3, 3, 3, 3, 3, 6);
 - (d) (4, 4, 4, 4, 4, 5, 5);
 - (e) (1, 1, 2, 2, 2, 6, 6);
 - (f) (1, 2, 2, 2, 5, 5, 5);
 - (g) $(1, 1, 2, 2, \ldots, n, n)$.
- 8. Какое максимальное число ребер может содержать:

- Неориентированный граф с n вершинами.
- Неориентированный граф без петель с n вершинами.
- Ориентированный граф с *п* вершинами.
- Ориентированный граф без петель с n вершинами.
- 9. Решите задачу 7, используя следующую теорему Эрдёша-Галаи: невозрастающая последовательность (d_1, d_2, \ldots, d_n) натуральных чисел является последовательностью степеней вершин некоторого неориентированного графа без петель тогда и только тогда, когда
 - (a) $\sum_{i=1}^{n} d_i$ четная,
 - (b) $d_1 \leqslant n 1$,
 - (c) $\sum_{i=1}^k d_i \leqslant k(k-1) + \sum_{i=k+1}^n \min\{d_i, k\}$ для всех $k, 1 \leqslant k \leqslant n-1$.
- 10. Докажите, что в неориентированном графе существуют, по крайней мере, 2 вершины, степени которых равны.

Верно ли аналогичное утверждение для ориентированного графа? Степени вершин равны, если равны обе полустепени.

- 11. Неориентированный граф без петель называется *регулярным* степени k, если степени всех его вершин равны k.
 - (a) Сколько ребер в регулярном графе степени k на n вершинах?
 - (b) Докажите, что такой граф существует, если и только если $k \leq n-1$ и nk четно.
- 12. (*) Докажите, что неориентированный граф без петель регулярный тогда и только тогда, когда вектор $(1,1,\ldots,1)$ есть один из собственных векторов его матрицы смежности. При этом степень k такого графа есть собственное число его матрицы смежности, соответствующее вектору $(1,1,\ldots,1)$.
- 13. В графе все вершины имеют степень 3. Докажите, что в нем есть цикл.
- 14. Ориентированный граф с вершинами 1, 2, 3, 4, 5, занумерованными в естественном порядке, задан матрицей смежности

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Сколько существует путей длины 6 из вершины 1 в вершину 5?

- 15. Сколько путей длины k существует из одной вершины в другую в графе K_n , если (а) эти вершины различны, (б) если эти вершины одинаковы?
- 16. Неориентированный граф B_n называется булевым n-мерным кубом, если его вершины это последовательности из нулей и единиц, а ребра соединяют в точности те последовательности, которые отличаются ровно в одной позиции. Для каких n в графе B_n существует эйлеров цикл?
- 17. Вершины графа Γ двоичные слова длины $n \geqslant 2$. Вершины соединены ребром, если они отличаются ровно в двух разрядах. При каких n граф G будет связным?
- 18. Неориентированный граф с вершинами 1, 2, 3, 4, 5, занумерованными в естественном порядке, задан матрицей смежности

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix}$$

Найдите все его компоненты связности.

19. Ориентированный граф с вершинами 1,2,3,4,5, занумерованными в естественном порядке, задан матрицей смежности

$$\begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Найдите все его компоненты сильной связности.

- 20. Для каких чисел n булев куб B_n планарный?
- 21. Докажите, что каждый регулярный граф степени больше или равной шести не планарный. Существует ли планарный регулярный граф степени 5?