無機化学

第Ⅰ部

非金属元素

1 水素

無色無臭の気体 *1 最も軽く、水に溶けにくい

1.1 同位体

¹H 99% 以上 ²H (D)0.015% ³H (T) 微量

1.2 製法

- ナフサの電気分解 工業的製法
- 赤熱した<u>コークス</u>に<u>水蒸気</u>を吹き付ける <u>工業的製法</u> $C + H_2O \longrightarrow H_2 + CO$
- 水(水酸化ナトリウム水溶液) の電気分解 $2 \, \mathrm{H_2O} \longrightarrow 2 \, \mathrm{H_2} + \mathrm{O_2}$
- イオン化傾向がH₂ より大きい金属と希薄強酸
 - $\textcircled{\textit{fl}}$ Fe + 2 HCl \longrightarrow FeCl₂ + H₂ \uparrow
 - $\bigcirc \mathbb{N}$ Zn + 2 HCl \longrightarrow ZnCl₂ + H₂ \uparrow

1.3 反応

- 水素と酸素 (爆鳴気の燃焼)
 - $2 H_2 + O_2 \longrightarrow H_2O$
- 加熱した酸化銅(Ⅱ)と水素

 $CuO + H_2 \longrightarrow Cu + H_2O$

● 水酸化ナトリウムと水

 $NaH + H_2O \longrightarrow NaOH + H_2$

2 貴ガス

He, Ne, Ar, Kr, Xe, Rn

- 2.1 性質
 - 無色・無臭
 - 第 18 族元素であり、電子配置がオクテットを満た すため反応性が低い。
 - イオン化エネルギーが極めて大きい。
 - 電子親和力は極めて小さい(ほぼ0)。
 - 電気陰性度は定義されない。
- 2.2 生成

⁴⁰K の電子捕獲

 $^{40}\text{K} + \text{e}^- \longrightarrow ^{40}\text{Ar}$

2.3 ヘリウム He

浮揚ガス

2.4 ネオン Ne

ネオンサイン

2.5 アルゴン Ar

 N_2 , O_2 に次いで 3 番目に空気中での存在量が多い (約 1%)。

 $^{^{*1}}$ 融点 14K 沸点 20K

3 ハロゲン

3.1 性質

I_2	X	強(弱)	回	固体	黒紫色	昇華性	高温で平衡状態	加熱して触媒により一部反応	反応しない	Klag には可溶
Br_2	\downarrow	\	\downarrow	液体	赤褐色	揮発性	加熱して	触媒により反応	一部とけて反応	
Cl_2				気体	黄緑色	刺激臭	<mark>常温</mark> でも <mark>光</mark> で	爆発的に反応	一部とけて反応	
F ₂	Ý	弱(強)	低	気体	淡黄色	特異臭	冷暗所でも	爆発的に反応	水を酸化して酸素を発生	激しく反応
単体の化学式	分子量	分子間力 (反応性)	沸点・融点	常温での状態	色	特徴	H ₂ との反応		水との反応	

3.2 反応

- 塩素と水素 $\begin{array}{l} \textbf{H}_2 + \text{Cl}_2 \xrightarrow{\text{光を当てると爆発的に反応}} 2\,\text{HCl} \end{array}$
- 臭素と水素 $H_2 + Br_2 \xrightarrow{\overline{n} \underline{\mathbb{A}}^{c} \nabla \overline{\mathbb{D}}^{\overline{n}}} 2 HBr$
- ヨウ素と水素

$$\mathrm{H}_2 + \mathrm{I}_2 \stackrel{\overline{\mathrm{ala}}$$
で平衡 $2\,\mathrm{HI}$

- 塩素と水 $\begin{array}{c} \text{Cl}_2 + \text{H}_2\text{O} \xrightarrow{\text{光を当てると爆発的に反応}} 2\,\text{HCl} \end{array}$
- 臭素と水 $\mathrm{Br_2} + \mathrm{H_2O} \xrightarrow{\bar{\mathrm{ala}} \tau \bar{\mathrm{D}} \bar{\mathrm{C}} \bar{\mathrm{D}} \bar{\mathrm{C}}} 2\,\mathrm{HBr}$
- ヨウ素と水Br₂ + H₂O (高温で平衡) 2 HI
- 臭化マグネシウムと塩素 ${\rm MgBr_2} + 2\,{\rm HCl} \longrightarrow 2\,{\rm HBr} + {\rm MgCl}$
- ヨウ化カリウムと塩素 $2\,\mathrm{KI} + \mathrm{Cl}_2 \longrightarrow 2\,\mathrm{KCl} + \mathrm{I}_2$
- 塩化カリウムと臭素 $2 \, \text{KCl} + \text{Br}_2 \longrightarrow 2 \, \text{KBr} + \text{Cl}_2$

3.3 フッ素 F

- 保存が困難
- Kr や Xe と反応

3.3.1 製法

フッ化水素ナトリウム KHF_2 のフッ化水素 HF 溶液 の電気分解 $\boxed{\mathtt{T業的製法}}$

3.4 塩素 CI

<u>ClO</u> による<mark>殺菌・漂白</mark>作用

3.4.1 製法

- 水酸化ナトリウム の電気分解 工業的製法 $2 \operatorname{NaCl} + 2 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Cl}_2 + \operatorname{H}_2 + 2 \operatorname{NaOH}$
- 酸化マンガン (III) に濃硫酸 を加えて加熱 $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl\uparrow$
- 高度さらし粉と塩酸 ${\rm CaCl}({\rm ClO}) \cdot {\rm H_2O} + 2\,{\rm HCl} \, \longrightarrow \, {\rm CaCl_2} + {\rm Cl_2} \uparrow \, + \\ 2\,{\rm H_2O}$
- <u>さらし粉</u>と<u>塩酸</u> ${\rm CaCl}({\rm ClO}) \cdot {\rm H_2O} + 2\,{\rm HCl} \, \longrightarrow \, {\rm CaCl_2} + {\rm Cl_2} \uparrow \, + \\ 2\,{\rm H_2O}$

3.4.2 塩素のオキソ酸

$$egin{array}{c|cccc} + & VII & HClO_4 & _$$
 過塩素酸 $+ & V$ HClO_3 & 塩素酸 $+ & III$ HClO_2 & $-$ 亜塩素酸 $+ & II$ HClO 次亜塩素酸

3.5 臭素 Br

C=C や C≡C の検出

3.6 ヨウ素 1

ヨウ素デンプン反応で青紫色

第川部 金属元素