Informal example

Informal example

Informal example

Informal example

no I transition

Informal example

no I transition

Informal example

no 0 transition

no I transition

Informal example

no 0 transition

sources of nondeterminism

Accepts a word iff there exists an accepting run

Definition

A nondeterministic automaton M is a tuple $M = (Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

∑ is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

∑ is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in \mathbb{Q}$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1, q_2, q_3\}$$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\sum = \{0, 1\}$$
 $F = \{q_3\}$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

In the example M

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$
 $F = \{q_3\}$

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$\delta(q_0,0)=\{q_0\}$$

$$\delta(q_0, 1) = \{q_0, q_1\}$$

$$\delta(q_0, \epsilon) = \emptyset$$

• • • • •

The extended transition function

The extended transition function

Given an NFA M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

 $E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, .., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for } i = 0, .., n-1\}$

The extended transition function

Given an N $M = (Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

NFA

 $E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for } i = 0, ..., n-1\}$

The extended transition function

Given an N $M = (Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

NFA

 $E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for } i = 0, ..., n-1\}$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

NFA

 $E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for } i = 0, ..., n-1\}$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

inductively, by:

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

In M_{2} , $\delta^*(q_0,0110) = \{q_0,q_2,q_3\}$

NFA

$$E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for i= 0, ..., n-1} \}$$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

inductively, by:

In
$$M_2$$
, $\delta^*(q_0,0110) = \{q_0,q_2,q_3\}$

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

Definition

The language recognised / accepted by a nondeterministic finite automaton $M = (Q, \sum, \delta, q_0, F)$ is

$$L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \cap F \neq \emptyset \}$$

NFA

$$E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for i= 0, ..., n-1} \}$$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

inductively, by:

In
$$M_{2}$$
, $\delta^*(q_0,0110) = \{q_0,q_2,q_3\}$

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

Definition

The language recognised / accepted by a automaton $M = (Q, \sum, \delta, q_0, F)$ is

$$L(M_2) = \{u \mid 0 \mid w \mid u, w \in \{0, 1\}^*\}$$

$$\cup$$

$$\{u \mid l \mid w \mid u, w \in \{0, 1\}^*\}$$

$$L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \cap F \neq \emptyset \}$$

Definition

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Theorem NFA ~ DFA

Every NFA has an equivalent DFA

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Theorem NFA ~ DFA

Every NFA has an equivalent DFA

Proof via the "powerset construction" / determinization

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Theorem NFA ~ DFA

Every NFA has an equivalent DFA

Proof via the "powerset construction" / determinization

Corollary

A language is regular iff it is recognised by a NFA

Theorem CI

The class of regular languages is closed under union

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Now we can prove these too

Theorem C4

The class of regular languages is closed under Kleene star

Regular expressions

Definition

finite representation of infinite languages

Regular expressions

Definition

finite representation of infinite languages

Regular expressions

Definition

Let Σ be an alphabet. The following are regular expressions

- I. a for $a \in \sum$
- 2. ε
- 3. Ø
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

finite representation of infinite languages

Regular expressions

inductive

Definition

Let Σ be an alphabet. The following are regular expressions

- I. a for $a \in \sum$
- 2. ε
- **3**. ∅
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

finite representation of infinite languages

Regular expressions

inductive

Definition

example: $(ab \cup a)^*$

Let \sum be an alphabet. The following are regular expressions

- I. a for $a \in \sum$
- 2. ε
- **3**. ∅
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

finite representation of infinite languages

Regular expressions

inductive

Definition

example: $(ab \cup a)^*$

Let \sum be an alphabet. The following are regular expressions

- 1. a for $a \in \sum$
- 2. ε3. Ø
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

corresponding languages

$$L(a) = \{a\}$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\emptyset) = \emptyset$$

$$L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$$

$$L(R_1 \cdot R_2) = L(R_1) \cdot L(R_2)$$

$$L(R_1^*) = L(R_1)^*$$

Equivalence of regular expressions and regular languages

Equivalence of regular expressions and regular languages

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Equivalence of regular expressions and regular languages

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Proof ← easy, as the constructions for the closure properties,

⇒ not so easy, we'll skip it for now...

Theorem (Pumping Lemma)

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \geq p$, there exist $x, y, z \in \sum^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \geq p$, there exist $x, y, z \in \sum^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \sum^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

Example "corollary"

L= $\{0^n1^n \mid n \in \mathbb{N}\}\$ is nonregular.

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \geq p$, there exist $x, y, z \in \sum^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

Example "corollary"

L= $\{0^n1^n \mid n \in \mathbb{N}\}$ is nonregular.

Note the logical structure!