INTRODUCCIÓN

Este informe tiene como objetivo documentar los hallazgos de la investigación realizada sobre dos tecnologías clave en el ámbito de la comunicación de datos:

- **LoRa** (Long Range)
- **MQTT** (Message Queuing Telemetry Transport).

La investigación se centró en evaluar la efectividad, aplicaciones y limitaciones de cada tecnología para proporcionar recomendaciones basadas en sus características y resultados observados.

Metodología

La investigación se llevó a cabo mediante una combinación de revisión bibliográfica, estudios de caso y pruebas prácticas. Se analizaron artículos académicos, informes de la industria y documentación técnica para comprender las características y aplicaciones de LoRa y MQTT. Además, se estudiaron experimentos realizados para evaluar el rendimiento de ambas tecnologías en diferentes escenarios de comunicación, incluyendo alcance, eficiencia y fiabilidad.

Resultados

LoRa

LoRa, una tecnología de red de área amplia de baja potencia, mostró ser altamente efectiva para aplicaciones que requieren comunicación a larga distancia con bajo consumo de energía. Sus principales hallazgos incluyen:

- ❖ Alcance Extendido: LoRa puede cubrir distancias de hasta 15 kilómetros en áreas rurales y 2-5 kilómetros en entornos urbanos, gracias a su capacidad para transmitir señales a baja frecuencia.
- ❖ Bajo Consumo de Energía: Ideal para dispositivos IoT con baterías que requieren una larga duración, debido a su eficiencia energética.
- ❖ Limitaciones en la Tasa de Datos: La velocidad de transmisión de datos es relativamente baja, lo que puede ser una limitación para aplicaciones que necesitan altas tasas de transferencia de datos.

MQTT

MQTT, un protocolo de mensajería ligero basado en el modelo de publicación-suscripción, demostró ser eficiente en la transmisión de mensajes en redes de comunicación. Los hallazgos clave son:

- **Eficiencia en la Transmisión de Datos:** MQTT proporciona una baja latencia y una alta eficiencia en la transmisión de mensajes, incluso en redes con alta variabilidad.
- ❖ Modelo de Publicación-Suscripción: Permite una comunicación asíncrona eficiente y la reducción de la carga en los dispositivos, lo que es beneficioso para aplicaciones en tiempo real.
- ❖ Dependencia de la Conectividad: Requiere una conexión constante a una red para mantener la comunicación, lo que puede ser una limitación en entornos con conectividad inestable.

Conclusiones

La investigación revela que tanto LoRa como MQTT tienen sus fortalezas y limitaciones dependiendo del contexto de aplicación. LoRa es más adecuado para escenarios que requieren comunicación a larga distancia con bajo consumo de energía, mientras que MQTT sobresale en aplicaciones que necesitan una comunicación eficiente y en tiempo real con una conectividad estable.

Recomendaciones

Para Aplicaciones de IoT en Áreas Rurales o Remotas: Utilizar LoRa debido a su capacidad de transmisión a larga distancia y bajo consumo de energía, ideal para dispositivos que necesitan operar durante largos períodos con baterías limitadas.

Para Aplicaciones en Tiempo Real y Ambientes Urbanos: Emplear MQTT para aprovechar su eficiencia en la transmisión de mensajes y su modelo de publicación-suscripción, siempre que la conectividad de red sea confiable.

Evaluar la Combinación de Tecnologías: Considerar la integración de LoRa para la comunicación de largo alcance y MQTT para la transmisión de datos en tiempo real, según las necesidades específicas del proyecto.