

DESIGN AND SIMULATION OF PIEZORESISTIVE PRESSURE SENSOR FOR MEDICAL APPLICATION

<u>BY:</u>

CHANDEL SHIVANGI (23MTS0002)

D. LALITHA PRASANNA (23MTS0013)

OBJECTIVE

- To design and simulate the piezoresistive based pressure sensor using COMSOL software.
- To design the piezoresistive pressure sensor for pulse monitoring application.

EXPECTED OUTCOMES

- Potential to advance wearable health technologies by providing a reliable, convenient solution for non-invasive pulse monitoring.
- It is a wearable device where we can attach to the wrist that can help to monitor pulse of the patient continuously with out any issues.
- Accurate measurement of the pulse with applying less pressure than required.

PRINCIPLE OF OPERATION OF THE SENSOR

- The piezoresistive pressure sensor operates on the principle of piezoresistivity, where the sensor's electrical resistance changes in response to applied pressure.
- Pulse monitoring uses a piezoresistive sensor integrated into wearable devices or medical equipment. It
 detects blood pressure variations, converting electrical resistance into a pulse-related signal. This realtime monitoring aids medical diagnostics and fitness tracking, providing vital information.

METHODOLOGY

- A piezoresistive pressure sensor for medical applications will be simulated using the selected program, such as COMSOL.
- Boundary conditions like pressure load will be imposed, and the sensor's geometry and materials (such as piezoresistors and silicon diaphragm) will be specified.
- To assess sensor performance, simulation will be used to examine stress distribution, strain gauge resistance variations, and other important factors.
- Through the use of simulation, several design possibilities can be explored and optimized prior to actual manufacture.

ANALYSIS

Stress analysis when 100pa pressure applied on the electrodes

Electric potential of the sensor

RESULT

• The graph shows a relationship between displacement magnitude and terminal current in a sensor, with a limit of $83\mu m$ when the pressure applied on the sensor for 100pa we are getting the stress of $722.44 \ N/m^2$.

Current Vs Displacement plot

CONCLUSION

- The design and simulation of piezoresistive pressure sensors for pulse monitoring in COMSOL can lead to the development of accurate biomedical devices.
- Engineers can optimize sensor performance, sensitivity, and durability, enabling precise monitoring of pulse waveforms for medical applications.
- This approach holds potential in advancing healthcare technologies, enabling non-invasive, continuous monitoring of vital signs with improved precision and efficiency.

REFERENCES

- Xu, T., Wang, H., Xia, Y., Zhao, Z., Huang, M., Wang, J., Zhao, L., Zhao, Y., & Jiang, Z. (Year).
 Piezoresistive pressure sensor with high sensitivity for medical application using peninsula-island structure. DOI: 10.1007/s11465-017-0447-9
- C. Pramanik & H. Saha (2006) Low Pressure Piezoresistive Sensors for Medical Electronics Applications, Materials and Manufacturing Processes, 21:3, 233-238, DOI: 10.1080/10426910500464446
- Gao, L., Zhu, C., Li, L., Zhang, C., Liu, J., Yu, H.-D., & Huang, W. (2019). All Paper-Based Flexible and Wearable Piezoresistive Pressure Sensor. *ACS Applied Materials & Interfaces, 11*(28), 25034-25042.
 DOI: 10.1021/acsami.9b07465
- Jiang, H., Zhang, Y., Zhou, R., Meng, L., Chen, T., Mai, W., & Pan, C. (2020). Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. *Journal of Materials Science & Technology*, *42*, 207–220. https://doi.org/10.1016/j.jmat.2020.01.009

THANK YOU