This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

L7 ANSWER 1 OF 1 JAPIO (C) 2003 JPO on STN

AN 1999-233744 JAPIO

TI NON-VOLATILE SEMICONDUCTOR STORAGE DEVICE AND METHOD FOR DRIVING

THE SAME IN TAKAHASHI KEITA

PA MATSUSHITA ELECTRON CORP

PI JP 11233744 A 19990827 Heisei

AI JP 1998-340761 (JP10340761 Heisei) 19981130

PRAI JP 1997-342638 19971212

SO PATENT ABSTRACTS OF JAPAN (CD-ROM), Unexamined Applications, Vol. 1999

AN 1999-233744 JAPIO

AB PROBLEM TO BE SOLVED: To read data at a high speed under low voltage by connecting a plurality of memory cells included in a column with a first source line, connecting of a plurality of memory cells included in a neighboring column with a second source line, and by making the first source line electrically independent from the second source line.

SOLUTION: A source line SL1 corresponds to a column including M11 to M14, a source line SL2 corresponds to a column including M21 to M24, a source line SL3 corresponds to a column including M31 to M34, and a source line SL4 corresponds to a column including M41 to M44. That is, in a non-volatile semiconductor memory device 10, a memory cell of one column does not share a source line with a memory cell of the other column. Further, an element- separating region and a bit line contact are provided, and the element-separating region is positioned between the source line SL2 and the source line SL3, whereby neighboring source lines are electrically independent.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開書号

特開平11-233744

(43)公開日 半成11年(1999)8月27日

(51) Int CL*		经 到12号	F1	•	
HOIL	27/115		HOIL	27/10	434
Glic	17/12		GIIC		304B
	16/04				622A
H01L	21/8247		HOIL	29/78	371
	29/788				0.1

審査請求 未請求 請求項の数12 OL (全 14 頁) 最終頁に鋭く

(21)出職者号	特國 平10—340761	(71) 出氧人	000005843
(22)出版日	平成10年(1998)11月30日	·	松下電子工業株式会社 大阪府高視市率町1番1号
(31) 優先權主張書号 (32) 優先日 (33) 優先權主張恆	特配平9-342638 平 9 (1997)12月12日 日本 (JP)		高橋 柱太 大阪府高視市幸町1番1号 松下電子工業 株式会社内 弁理士 山本 秀策

(54) 【発明の名称】 不揮発性半導体記憶装置およびその取動方法

(57)【要約】

【課題】 低電圧においても十分なオン状態のメモリセル読み出し電流を確保することができ、低電圧トでの高速読み出しを可能とする不揮発性半導体記憶装置およびその駆動方法を提供する。

【解次手段】 本発明の不揮発性半導体記憶装置は、半導体基板の上に、マトリクス状に配置された複数のメモリセルと、行方向に延びる複数のワード線と、前記行方向に延びる複数のソース線と、例方向に延びる複数のビット線とを備えた不揮発性半導体記憶装置であって、ある行に属する複数のメモリセルが、前記複数のソース線のうちの第1のソース線と接続され、前記ある行と隣接する行に属する複数のメモリセルが、前記複数のソース線のうちの第2のソース線と接続され、前記第1のソース線は、前記第2のソース線と電気的に独立している。

【特許請求の範囲】

. . .

【請求項1】 半導体基板の上に、マトリクス状に配置された複数のメモリセルと、行方向に延びる複数のワード線と、該行方向に延びる複数のソース線と、列方向に延びる複数のビット線とを備えた不揮発性半導体記憶装置であって、

ある行に属する複数のメモリセルが、該複数のソース線 のうちの第1のソース線と接続され、

該ある行と隣接する行に属する複数のメモリセルが、該 複数のソース線のうちの第2のソース線と接続され、

該第1のソース線は、該第2のソース線と電気的に独立 している不揮発性半導体記憶設置。

【請求項2】 前記第1のソース線は、前記第2のソース線と素子分離領域により絶縁されている請求項1に記載の不揮発性半導体記憶表記。

【請求項3】 半導体基板の上に、マトリクス状に配置された複数のメモリセルと、行方向に延びる複数のワード線と、践行方向に延びる複数のソース線と、列方向に延びる複数のビット線とを備えた不揮発性半導体記憶装置であって、

ある列に属する複数のメモリセルのうちの第1の組が、 該複数のビット線のうちの第1のビット線と接続され、 該ある列に属する複数のメモリセルのうちの第2の組 が、該複数のビット線のうちの第2のビット線と接続され、

該第1のビット線は、該第2のビット線と電気的に独立 している不揮発性半導体記憶装置。

【請求項4】 前記第1の組が前記第2の組と前記列方向で隣接している請求項3に記載の不揮発性半導体記憶 装置。

【論求項5】 前記複数のメモリセルのそれぞれは、ゲート電極、ゲート絶縁膜、ドレイン領域およびソース領域を有するMOSトランジスタである請求項1~4のうちの1つに記載の不揮発性半導体配位装置。

【請求項6】 前記複数のメモリセルのそれぞれは、制御ゲート電極、洋遊ゲート電極、ドレイン領域およびソース領域を備えた浮遊ゲート電極型MOSトランジスタである請求項1~4のうちの1つに記載の不得発性半導体記憶装置。

【請求項7】 前記複数のメモリセルのうち、低い方の しさい値電圧を有するメモリセルが、デアレッション状 版である請求項1~6のうちの1つに記載の不揮発作半 導体記憶装置。

【請求項8】 前記不提発性半導体配管装置は、前記行 方向に延びる複数の第1 導電型のウェルを備え、

前記複数のメモリセルの1つは、該複数の第1導電型の ウェルの1つ上に、ゲート電極、ゲート絶縁膜、ドレイ ン領域およびソース領域を有するMOSトランジスタで あり

該複数の第1導電型のウェルのそれぞれが電気的に独立

している前求項1または2に記載の不揮発性半導体記憶 装置。

【請求項9】 前記不揮発性半導体記憶装置は、前記行 方向に延びる複数の第1 準電型のウェルを備え、

前記複数のメモリセルの1つは、該複数の第1導電型の ウェルの1つ上に、制御ゲート電極、浮遊ゲート電極、 ゲート絶縁膜、ドレイン領域およびソース領域を有する MOSトランジスタであり、

該複数の第1導電型のウェルのそれぞれが電気的に独立 している請求項1または2に記載の不揮発性半導体記憶 装置。

【請求項10】 前記複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不揮発性 半導体記憶装置の駆動方法であって、

該選択されたメモリセルに対応するビット線に、前記半 導体基板に対しで逆パイアスとなる極性の第1の電圧を 印加する工程と、

該選択されたメモリセルに対応するワード線に該第1の 電圧と同一個性の第2の電圧を印加する工程と、

該選択されたメモリセル以外のメモリセルに対応するソ ース線に該第1の電圧と同一極性の第3の電圧を印加す る工程と

該選択されたメモリセルに対応するソース酸に該半導体 基板の電位を印加する工程とを包含する請求項1~4の うちの1つに記載の不揮発作半導体記憶装置の駆動方 注

【請求項11】 前記第1の電圧と前記第3の電圧とが ほば同一電圧である請求項10に記載の不揮発作半導体 記憶装置の駆動方法。

【請求項12】 前記複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不揮発性 半導体記憶装置の駆動方法であって、

該選択されたメモリセルに対応するビット課に、前記半 導体基板に対して逆バイアスとなる様件の第1の電圧を 印加する工程と、

該選択されたメモリセルに対応するワード線に該第1の電圧と同一接性の第2の電圧を印加する工程と、

該選択されたメモリセルが属していない第1導電型のウェルに該第1の電圧と逆程性の第3の電圧を印加する工程と

該選択されたメモリセルが属している第1導電型のウェルに接地電位を印加する工程とを包含する請求項おまたは9に記載の不得発性半導体記憶装置の駆動方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、不揮発性半導体記 使装置、特にマスク型および浮遊ゲート電極型の不揮発 性半導体記憶装置およびその駆動方法に関するものであ る。

[0002]

【従来の技術】近年、低電圧で高速に動作する不揮発性 半導体記憶装置が利用されるようになっている。このような不揮発性半導体記憶装置を広く提供するために、低 電圧で高速動作が可能な不揮発性半導体記憶装置、なら びにこの不揮発性半導体記憶装置の駆動方法が求められ ている。

【0003】以下、従来の不揮発性半導体記憶装置500を、図15、図16および図17を用いて説明する。 【0004】不揮発性半導体記憶装置500は、複数のメモリセルがピット線に並列に接続される形式をとっているため、NOR型と呼ばれるメモリセルアレイ構造を有している。

【0005】図15は、従来の不揮先性半導体記憶装置 500のメモリセルアレイ構成を示す模式図である。

【0006】図15に示す不揮発性半導体記憶装置500は、MOSトランジスタからなるメモリセルM11~M44、ワード蔵WL1~WL4、ソース級SL1~SL3、およびピット級BL1~BL4を備えている。

【0007】不揮発性半導体記憶装置500は、図15に示すように、メモリセルM24のゲートがワード線W L2に接続され、メモリセルM24のドレインがソース線 SL2に接続され、メモリセルM24のドレインがビット線BL4に接続されている。不揮発性半導体記憶装置500では、メモリセルM21~M24が属する行のメモリセルは、メモリセルM31~M34が属する行のメモリセルとソース線SL2を共有している。なお、メモリセルM11~M14が属する行のメモリセルは、それに対向する行のメモリセル(図示されず)とソース線SL1を共有している。また、ソース線SL3についても、同様である。

【0008】図16は、図15に示す不揮発性半導体記 性装置500のパターンレイアウトを示す模式的平面図 である。

【0009】図16に示すように、不揮発性半導体記憶 装置500は、さらに、素子分離領域5とピット線コン タクト6を備えている。

【0010】以下、従来の不復発性半導体に侵襲置50 0に情報を書き込む方法および消去方法を図17を用い て説明する。

【0011】図17は、不揮発性半導体記憶装置500におけるメモリセルのしきい値電圧分布図(複数メモリセル)である。なお、図17において、横軸はメモリセルのしきい値電圧V_{TR}を示し、接軸はメモリセルの個数を示している。

【0012】ここでは、不理発性半導体記憶装置500 は、2種類の異なるしきい賃電圧を有するN型MOSト ランジスタからなるマスクHOMとする。

【0013】消去状態(図17中の "E" 状態)とは、 N型MOSトランジスタが、エンハンスメント状態であ る1V程度のしきい値電圧(低い方のしきい値電圧)に 設定されることを意味し、消去状態はメモリアレイ全体 のメモリセルのチャネル部に対するイオン注入法により 制御される。

【0014】また、書き込み状態(図17中の"W"状態)とは、選択されたN型MOSトランジスタのチャネル部に対してのみ、さらにイオン注入を追加することにより、電源電圧V_{DB}よりも高いエンハンスメント状態である4V程度のしきい値電圧(高い方のしきい値電圧)が設定される。

【0015】以下、従来の不揮死性半導体記憶装置50 0から情報を読み出す方法を、図15を用いて説明する。

【0016】図15中に破線で囲んだメモリセルM24が選択される場合は、半導体基板電位を接地電位(0V)として、ワード線WL2を3Vとし、ビット線BL4を1Vとする。また、他のワード線WL1、WL3、WL4、ソース線SL1、SL2、SL3、他のビット線BL1、BL2、BL3を0V、あるいはOPEN状態とする。なお、図15のメモリセルアレイが配置されている半導体基板は接地電位に固定されていて、他の部分への電圧を印加する際の基準電位となっている。

【0017】もし、メモリセルM24が消去状態であれば、しさい値電圧が0.5V程度であるので、メモリセルM24がオン状態となり、ビット線BL4にメモリセル設み出し電流が流れる。一方、メモリセルM24が書き込み状態であれば、しさい値電圧が4V程度であるので、メモリセルM24がオフ状態となり、ビット線BL4にメモリセル読み出し電流は流れない。この電流量をセンスアンプで検知することにより、読み出し動作が行われる。

【0018】なお、上述したように、選択されたメモリセルM24に流れるメモリセル読み出し電流量を用いて、メモリセルM24に格納された情報の読み出し動作が行われるため、選択されたメモリセルM24と同一のピット報BL4に接続される非選択のメモリセル(M14・M34・M44)から流れる電流を、ほぼゼロに抑える必要がある。そのためには、これらの非選択メモリセルのしきい情電圧を約0.5V以上に設定しなければならない。

[0019]

【発明が解決しようとする課題】しかしながら、従来の不揮発件半導体記憶装置500およびその書き換え方法では、消去状態のメモリセルのしきい値電圧、つまり低い方のしきい値電圧を約0.5V以上に設定していることから、不復発性半導体記憶装置500を低電圧(低い電波電圧)で動作させると、読み出し時に消去状態(オン状態)のメモリセル読み出し電流が少なくなり、高速に読み出すことが困難になるという問題があった。

【0020】本発明は、上記問題を鑑み、低電圧においても十分なオン状態のメモリセル読み出し電流を確保す

ることができ、低電圧下での高速読み出しを可能とする 不揮発性半導体記憶装置およびその駆動方法を提供する ことを目的とする。

[0021]

【課題を解決するための手段】本発明の不揮発性半導体記憶装置は、半導体基板の上に、マトリクス状に配置された複数のメモリセルと、行方向に延びる複数のソード線と、前記行方向に延びる複数のソース線と、列方向に延びる複数のピット線とを備えた不揮発性半導体記憶装置であって、ある行に属する複数のメモリセルが、前記複数のソース線のうちの第1のソース線と接続され、前記ある行と間接する行に属する複数のメモリセルが、前記複数のソース線のうちの第2のソース線と接続され、前記第1のソース線は、前記第2のソース線と電気的に独立し、そのことにより上記目的が達成される。

【0022】前記第1のソース線は、前記第2のソース線と素子分離領域により絶録されてもよい。

【0023】本発明の他の不揮発性半等体記憶装置は、 半導体基板の上に、マトリクス状に配置された複数のメ モリセルと、行方向に延びる複数のワード線と、前記行 方向に延びる複数のソース線と、列方向に延びる複数の ビット線とを備えた不揮発性半導体記憶装置であって、 ある列に属する複数のメモリセルのうちの第1の組が、 前記複数のビット線のうちの第1のビット線と接続され、前記ある列に属する複数のメモリセルのうちの第2のビット線の が、前記を列に属する複数のメモリセルのうちの第2の の組が、前記第2のビット線と 接続され、前記第1のビット線は、前記第2のピット線と と電気的に独立し、そのことにより上記目的が達成される。

【0024】前記第1の組が前記第2の組と前記列方向で階段していてもよい。

【0025】前記複数のメモリセルのそれぞれは、ゲート電極、ゲート絶縁膜、ドレイン領域およびソース領域を有するMOSトランジスタであってもよい。

【0026】前記複数のメモリセルのそれぞれは、制御ゲート電極、浮遊ゲート電極、ドレイン領域およびソース領域を備えた浮遊ゲート電極型MOSトランジスタであってもよい。

【0027】前記複数のメモリセルのうち、低い方のし きい何電圧を有するメモリセルが、デアレッション状態 であってもよい。

【0028】前記不揮発件半導体記憶装置は、前記行方向に延びる複数の第1器電型のウェルを備え、前記複数のメモリセルの1つは、前記複数の第1等電型のウェルの1つ上に、ゲート電極、ゲート絶縁膜、ドレイン領域およびソース領域を有するMOSトランジスタであり、前記複数の第1簿電型のウェルのそれぞれが電気的に独立していてもよい。

【0029】前記不揮発性半導体記憶装置は、前記行方向に延びる複数の第1等電型のウェルを備え、前記複数

のメモリセルの1つは、前記複数の第1淳電型のウェルの1つ上に、制御ゲート電極、浮遊ゲート電極、ゲート 絶縁膜、ドレイン領域およびソース領域を有するMOS トランジスタであり、前記複数の第1淳電型のウェルの それぞれが電気的に独立していてもよい。

【0030】前記複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不揮発性半導体記憶装置の駆動方法であって、前記選択されたメモリセルに対応するビット級に、前記半導体基板に対して逆パイアスとなる極性の第1の電圧を印加する工程と、前記選択されたメモリセルに対応するワード級に前記第1の電圧と同一極性の第2の電圧を印加する工程と、前記選択されたメモリセル以外のメモリセルに対応するソース組に前記第1の電圧と同一極性の第3の電圧を印加する工程と、前記選択されたメモリセルに対応するソース線に前記等1の電圧と同一極性の第3の電圧を印加する工程と、前記選択されたメモリセルに対応するソース線に前記半導体基板の電位を印加する工程とを包含してもよい。

【0031】前記第1の電圧と前記第3の電圧とがほぼ 同一電圧であってもよい。

【0032】前記複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出してもよい。

【0033】前記選択されたメモリセルに対応するビット親に、前記半導体基板に対して逆パイアスとなる種性の第1の電圧を印加する工程と、前記選択されたメモリセルに対応するワード親に前記第1の電圧と同一特性の第2の電圧を印加する工程と、前記選択されたメモリセルが属していない第1等電型のウェルに前記第1の電圧と逆特性の第3の電圧を印加する工程と、前記選択されたメモリセルが属している第1導電型のウェルに接地電位を印加する工程とを包含してもよい。

【0034】以下、作用を説明する。

【0035】本発明は、選択するメモリセルのしきい値電圧の下限としてデアレッション型を許容し、選択するメモリセルと同一ピット線上にある非選択のメモリセルのしきい値電圧の下限を、バックバイアス効果によりエンハンスメント型にするというものである。

【0036】本発明の小揮発性半導体記憶装置では、選択されたメモリセルのソース線の電位を非選択のメモリセルのソース線と異なる電位に設定できるアレイ構造、あるいは選択されたメモリセルのウェル線の電位を非選択のメモリセルのウェル線と異なる電位に設定できるアレイ構造を有する。

【0037】また、本発明の不揮発性半導体記憶装置における情報の書き込みおよび消去は、消去状態にあるメモリセルにおけるしきい値電圧の下限としてデアレション状態を許容する。

【0038】また、複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不恒発性半導体記憶装置の駆動方法では、選択されたメモリセルのソース線を接地電位に、非選択メモリセルのソース線を

正電圧に設定するか、あるいは、選択されたメモリセルのウェル線を接地電位に、非選択メモリセルのウェル線を負電圧に設定する。

【0039】本発明の不揮発性半導体記憶装置では、非 選択メモリセルのソース線に半導体基板に対して逆バイ アスとなる電圧を印加することによるバックバイアス効 果によって、非選択メモリセルのしきい値電圧を高くし ている。このため、本発明の不揮発性半導体記憶装置で は、メモリセルの低い方のしきい値電圧を、従来の不揮 発性半導体記憶装置より低く設定することができ、低電 圧においても十分なオン状態のメモリセルの読み出し電 流量を確保できる。その結果、本発明の不揮発性半導体 記憶装置は、低電圧下での高速読み出しを可能とする。

【0040】本発明の不揮発性半導体記憶装置では、メモリセルの低い方のしきい値電圧状態の少なくとも一部がデアレッション状態であるので、その状態における読み出し電流を多くすることができ、低電圧下での読み出し速度をさらに高めることができる。

【0041】本発明の、複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不揮発性半導体記憶装置の駆動方法は、非選択メモリセルのソース線に半導体基板に対して逆パイアスとなる選圧を印加することによるバックパイアス効果によって、非選択メモリセルのしきい値電圧を高くすることができる。したがって、本発明の駆動方法では、メモリセルの低い方のしきい値電圧を、従来の駆動方法より低く設定でき、低電圧においても十分なオン状態のメモリセルの読み出し電流量を確保できる。その結果、本発明の駆動方法は、低電圧下での高速読み出しを可能とする。

【0042】本発明の駆動方法では、バックバイアス効果が大きく、かつソース線から電流が流れないので、最も高速読み出し性能を高くできる。

【0043】本発明の他の不揮発性半等体記憶装置では、非選択メモリセルのウェル線に半等体は板に対して関バイアスとなる電圧を印加することによるバックバイアス効果によって、非選択メモリセルのしきい値電圧を高くしている。このため、本発明の他の不揮発性半導体記憶装置では、メモリセルの低い方のしきい値電圧を従来の不揮発性半導体記憶装置より低く設定でき、低電圧においても十分なオン状態のメモリセルの読み出し電流量を確保できる。その結果、本発明の他の不揮発性半導体記憶装置は、低電圧下での高速読み出しを可能とする。

【0044】本発明の他の不揮発性半導体記憶装置では、メモリセルの低い方のしきい頃電圧状態の少なくとも一部がデアレッション状態であるので、その状態における銃み出し電流を多くすることができ、低電圧下での銃み出し速度をさらに高めることができる。

【0045】本発明の、複数のメモリセル中から選択されたメモリセルに記憶されている情報を読み出す不揮発

性半導体記憶装置の他の駆動方法は、非選択メモリセルのウェル線に半導体基板に対して順バイアスとなる電圧を印加することによるバックバイアス効果によって、非選択メモリセルのしきい値電圧を高くすることができる。したがって、本発明の他の駆動方法は、メモリセルの低い方のしきい値電圧を従来の駆動方法より低く設定でき、低電圧においても十分なオン状態のメモリセルの読み出し電流量を確保できる。その結果、本発明の他の駆動方法は、低電圧下での高速読み出しを可能とする。【0046】

【発明の実施の形態】(第1の実施の形態)以下、本発明の第1の実施の形態について、図面を参照しながら設明する。

【0047】図1は、本発明の第1の実施の形態における不揮発性半導体記憶装置10のメモリセルアレイ構成の模式図である。

【0048】不揮発性半導体記憶装置10は、MOSトランジスタからなるメモリセルM11~M44、ワード はWL1~WL4、ソース線SL1~SL4、およびピット線BL1~BL4を備えている。

【0049】不揮発性半導体記憶装置10では、メモリセルM24のゲートがワード級WL2に接続され、メモリセルM24のソースがソース線SL2に接続され、メモリセルM24のドレインがピット線BL4に接続されている。

【0050】メモリセルM11~M14が属する行にソース線SL1が対応し、メモリセルM21~M24が属する行にソース線SL2が対応し、メモリセルM31~M34が属する行にソース線SL3が対応し、メモリセルM41~M44が属する行にソース線SL4が対応する。つまり、不揮発性半導体記憶装置10では、ある行のメモリセルは、他の行のメモリセルとソース線を共有していない。

【0051】図2は、不揮発性半導体記憶装置10のパターンレイアウトを示す模式的平面図である。すなわち、図2は、図1に示す不揮発性半導体記憶装置10のアレイ構造の一例を示している。また、図3は、図2に示す不揮発性半導体記憶装置10を競分AーAで切断した場合における断面を示す図であり、図4は、図2に示す不揮発性半導体記憶装置10を銀分BーBで切断した場合における断面を示す図である。

【0052】なお、不体発性半導体記憶装置10は、複数のメモリセルがビット線に並列に接続される形式をとっているため、NOR型と呼ばれるメモリセルアレイ構造を有している。

【0053】図2に示すように、不復発性半導体記憶装置10は、さらに、素子分離領域5、素子分離領域5 X、およびビット練コンタクト6a、6bを備えている。たとえば、素子分離領域5Xは、隣接した、ソース はSL2とソース雄SL3の間に位置する。このため、 隣接したソース線は、電気的に独立している。素子分離 領域5および素子分配領域5Xは、LOCOS(LOC al Oxidationof Silicon)や、 STI(Shallow Trench Isolat ion)などで形成されるが、他の方法でもよい。

【0054】以下、不揮発性半導体配便装置10に情報を書き込む方法および消去方法を、図5を用いて説明する。

【0055】図5は、不揮発性半導体記憶装置10におけるメモリセルのしきい値電圧分布図(複数メモリセル)である。なお、図5において、横軸はメモリセルのしきい値電圧V_{7m}を示し、縦軸はメモリセルの個数を示している。

【0056】ここでは、不揮発性半導体記憶装置10 は、2種類の異なるしきい値電圧を有するN型MOSト ランジスタからなるマスクROMとする。

【0057】消去状態(図5中の"E"状態)とは、N型MOSトランジスタが、デブレッション状態であるー1V程度のしきい値電圧(低い方のしきい値電圧)に設定されることを意味し、消去状態はメモリアレイ全体のメモリセルのチャネル部に対するイオン注入法により制御される。

【0058】また、書き込み状態(図5中の"W"状態)とは、選択されたN型MOSトランジスタのチャネル部に対してのみ、さらにイオン注入を選加することにより、電源電圧Vpsよりも高いエンハンスメント状態である4V程度のしきい値電圧(高い方のしきい値電圧)が設定される。

【0059】以下、不揮発性半導体配性装置10から情報を読み出す方法について、図6を用いて説明する。

【0060】図6は、不復発性半導体記憶装置10から 情報を読み出すためのフローチャートの一例を示す図で ある。

【0061】ステップS1では、選択されなかったソース線、つまり非選択のソース線に第1の電圧と同一極性の第3の電圧が印加される。なお、第1の電圧とは、後述するステップS3で、選択されたビット規に印加される電圧である。

【0062】ステップS2では、選択すべき作意のメモリセルに対応するソース線が選択される。具体的には、選択されたソース線には、半導体基板の電位とほぼ同一の電圧が印加される。

【0063】ステップS3では、前記任意のメモリセルに対応するビット線が選択される。具体的には、選択されたビット線には、半導体系板に対して逆バイアスとなる特性の第1の電圧が印加される。

【0064】ステップS4では、前記任意のメモリセルに対応するワード線が選択される。具体的には、選択されたワード線には、第1の電圧と同一極性の第2の電圧が印加される。

【0065】上述したステップにより、選択されたメモリセルから情報を読み出す際、非選択のメモリセルが低い方のしきい値電圧を持つ場合、低い方のしきい値電圧を持つ非選択のメモリセルがデブレッション型であっても、バックバイアス効果により、エンハンスメント型にすることができる。このため、選択されたメモリセルに技徳されたビット線に、非選択メモリセルから流れるリーク電流を抑えることができる。

【0066】また、選択されたメモリセルが消去状態である場合、つまり、選択されたメモリセルが低い方のしきい値電圧を持つ場合、選択されたメモリセルをデアレッション状態に設定することができる。このため、選択されたメモリセルのゲートに印加される電圧としきい値電圧との電位差が大きくなり、選択されたメモリセルからの読み出し電流量を増やすことができる。

【0067】なお、本実施の形態では、処理はステップ S1~ステップS4の順番に実行される必要はない。つまり、ステップS1~ステップS4が任意の順番で実行されても、本実施の形態は上述した効果を有する。

【0068】また、選択されたビット核に印加される第 1の電圧と、非選択のソース線に印加される第3の電圧 とがほぼ同一であってもよい。

【0069】以下、具体的な、不揮発性半導体記憶装置 10のメモリセルM24から情報を読み出す方法を説明 する。

【0070】図1および図2の中で、破線で囲んだメモリセルM24が選択される場合、半導体基板電位を接地電位(0V)として、ワード線WL2を3V(第2の電圧)とし、ビット線BL4を1V(第1の電圧)とする。また、他のワード線WL1、WL3、WL4および他のビット線BL1、BL2、BL3を0Vとし、ソース線SL2を0Vとする。さらに、他のソース線SL1、SL3、SL4を1V(第3の電圧)とする。な

お、図には示していないが、メモリセルの属するウェルの電位は0Vとする。もし、メモリセルM24が消去状態であれば、しきい値電圧は-1V程度であるので、メモリセルM24がオン状態となり、ビット採BL4にメモリセル読み出し電流が流れる。この場合のメモリセルM24の読み出し電流は、従来の不復発性半導体記憶装置が有するメモリセルのしきい値電圧が0.5Vである場合のものに比べて、多くなる。

【0071】一方、メモリセルM24が書き込み状態であれば、メモリセルM24のしきい値電圧は4V程度であるので、メモリセルM24がオフ状態となり、ビット設BL4にメモリセル銃み出し電流は流れない。上述した電流量がセンスアンプで検知されることにより、読み出し動作が行われる。

【0072】本発明の第1の実施の形態では、バックバイアス効果を利用することにより、選択されたメモリセルM24と同一のビット接Bし4に接続される非選択メ

モリセルM14、M34、M44のしきい値電圧を約0.5 V以上に設定することができる。すなわち、非選択メモリセルのソース線SL1、SL3、SL4に電圧1Vを印かすることにより、たとえ仮に、非選択メモリセルのしきい値電圧が-1Vであったとしても、バックパイアス効果により、非選択メモリセルのしきい値を約0.5 V以上とすることができる。このため、非選択メモリセルから流れる電流を、ほぼゼロに抑えることができる。

【0073】非選択のメモリセルM14, M34, M44が低い方のしきい値電圧を有する場合、読み出し動作時に、非選択のメモリセルM14, M34, M44の低い方のしきい値電圧をバックバイアス効果によりエンハンスメント型にでき、選択されたメモリセルM24が接続されたビット組BL4に接続されている他の非選択メモリセルM14, M34, M44から流れるリーク電流を抑えられる。

【0074】また、選択されたメモリセルが消去状態である場合、消去状態のメモリセルのしきい値返圧(低い方のしきい値運圧)をデアレッション状態に設定することができる。このため、選択されたメモリセルにおけるオン状態の読み出し電流量が増加する。その結果、低電圧においても十分なオン状態のメモリセル読み出し電流を確保することができ、第1の実施の形態における不揮発性半導体記憶装置は、低電圧下での高速読み出しを可能とする。

【0075】以上のように、この実施の形態によれば、非選択メモリセルに接続されるソース線に半導体基板に対して並バイアスとなる正電圧を印加することにより、消去状態にあるメモリセルのしきい値電圧、つまり低い方のしきい値電圧をデアレッション状態に設定できる。このため、選択されたメモリセルのゲートに印加される電圧が低電圧であっても、十分にオン状態のメモリセルの読み出し電流量を確保できる。その結果、選択されたメモリセルのゲートに印加される電圧が低電圧であったとしても、高速にメモリセルの情報の読み出しを可能とする。

【0076】なお、第1の実施の形態では、読み出し時に選択したビット接に印加する電圧と非選択のソース線に印加する電圧を同一電圧としたが、それらの電圧が異なる電圧であってもよい。ただし、非選択ソース線の電圧が選択したビット線に印加される電圧よりも低い場合には、バックバイアス効果が小さいため、また、逆の場合には、ソース線からの電流が流れるようになるため、本発明の効果が小さくなる。

【0077】(第2の実施の形態)以下、本発明の第2の実施の形態について、図面を参照しながら説明する。 【0078】図7は、本発明の第2の実施の形態における不揮発性半導体記憶装置20のメモリセルアレイ構成の模式図である。図8は、不揮発性半導体記憶装置20 のパターンレイアウトを示す模式的平面図である。すなわち、図8は、図7に示す不揮発性半導体記憶設置20のアレイ構造の一例を示している。また、図9は、図8に示す不揮発性半導体記憶設置20を線分C-Cで切断した場合における断面を示す図であり、図10は、図8に示す不揮発性半導体記憶設置20を線分D-Dで切断した場合における断面を示す図である。なお、図10では、断面をD方向から見た場合、ビット線BL7は実際には見えないが、ビット線BL7がビット線コンタクト6bと接続されることが理解しやすいように、図示している。

【0079】不揮発性半導体記憶装置20は、MOSトランジスタからなるメモリセルM11~M64、ソード 譲WL1~WL6、ソース線SL1~SL4、およびビット線BL1~BL8を備えている。

【0080】さらに、不揮死性半導体記憶装置20は、素子分離領域5、ビット線コンタクト6a、6bを備えている。素子分離領域5は、LOCOSやSTIなどで形成されるが他の方法でもよい。なお、不揮発性半導体記憶装置20は、複数のメモリセルがビット線に並列に接続される形式をとっているため、NOR型と呼ばれるメモリセルアレイ構造を有している。

【0081】不揮発性半導体記憶装置20では、メモリセルM14のゲートがワード級WL1に接続され、メモリセルM14のソースがソース線SL1に接続され、メモリセルM14のドレインがピット線BL8に接続され、メモリセルM24のゲートがワード線WL2に接続され、メモリセルM24のソースがソース線SL2に接続され、メモリセルM24のドレインがピット線BL8に接続され、メモリセルM24のドレインがピット線BL8に接続されている。

【0082】また、メモリセルM34のゲートがワード 譲WL3に接続され、メモリセルM34のソースがソー ス線SL2に接続され、メモリセルM34のドレインが ピット線BL7に接続され、メモリセルM44のゲート がワード線WL4に接続され、メモリセルM44のソー スがソース線SL3に接続され、メモリセルM44のド レインがピット線BL7に接続されている。

【0083】さらに、メモリセルM54のゲートがワード線Wしらに接続され、メモリセルM54のソースがソース線Sし3に接続され、メモリセルM54のドレインがピット線Bし8に接続され、メモリセルM64のゲートがワード線Wし6に接続され、メモリセルM64のソースがソース線Sし4に接続され、メモリセルM64のドレインがピット線Bし8に接続されている。

【0084】つまり、メモリセルM14~M64が属する列には、ビット設BL7、BL8が対応する。言い機えると、第1の組のメモリセルが第1のビット設に接続され、列方向つまり、第1のビット設が延びる方向で、第1の組のメモリセルに隣接する第2のビット設に接続される。本実施の形態では、あ

る祖に含まれるメモリセルは2つであり、そのある祖に含まれる2つのメモリセルは、1つのビット線コンタクトを共有している。

【0085】たとえば、メモリセルM14とメモリセルM24が第1の組となり、それらのメモリセルM14、M24はビットはコンタクト6aを共有し、第1の組のメモリセルM14、M24はビットはコンタクト6aを介して第1のビットはBL8に接続されている。また、メモリセルM34とメモリセルM44が第2の組となり、第2の組は列方向で第1の組と隣接している。それらのメモリセルM34、M44はビットはコンタクト6bを共有し、第2の組のメモリセルM34、M44はビットはコンタクト6bを介して第2のビットはBL7に接続されている。

【0086】不揮発性半導体記憶装置20に情報を書き込む方法および消去方法は、不揮発性半導体記憶装置10と同じである。

【0087】以下、不揮発性半導体記憶装置20から情報を読み出す方法について、図11を用いて説明する。 【0088】図11は、不揮発性半導体記憶装置20から情報を読み出すためのフローチャートの一例を示す図である。

【0089】ステップS11では、選択されなかったソース線、つまり非選択のソース線に第1の電圧と同一を作の第3の電圧が印加される。なお、第1の電圧とは、後述するステップS13で、選択されたピット線に印加される電圧である。

【0090】ステップS12では、選択すべき任意のメモリセルに対応するソース線が選択される。具体的には、選択されたソース線には、半導体基板の電位とはは同一の電圧が印加される。

【0091】ステップS13では、前記任意のメモリセルに対応するビット線が選択される。具体的には、選択されたビット線には、半導体以初に対して逆バイアスとなる極性の第1の電圧が印加される。

【0092】ステップS14では、前記任意のメモリセルに対応するワード統が選択される。具体的には、選択されたワード統には、第1の電圧と同一価性の第2の電圧が印加される。

【0093】上述したステップにより、選択されたメモリセルから情報を読み出す際、非選択のメモリセルが低い方のしさい値電圧を持つ場合、低い方のしさい値電圧を持つ非選択のメモリセルをエンハンスメント型にできる。このため、選択されたメモリセルに接続されたビット級に、非選択メモリセルから流れるリーク電流を抑えることができる。

【0094】また、選択されたメモリセルが消去状態である場合、つまり、選択されたメモリセルが低い方のしきい値電圧を持つ場合、選択されたメモリセルをデアレッション状態に設定することができる。このため、選択

されたメモリセルのゲートに印加される電圧としきい値 電圧との電位差が大きくなり、選択されたメモリセルからの読み出し電流量を増やすことができる。

【0095】なお、本実施の形態では、処理はステップ S11~ステップS14の順番に実行される必要はない。つまり、ステップS11~ステップS14が任意の 順番で実行されても、本実施の形態は上述した効果を有する。

【0096】また、選択されたビット線に印加される第 1の電圧と、非選択のソース線に印加される第3の電圧 とがほぼ同一であってもよい。

【0097】以下、具体的な、不揮発性半導体記憶装置 20のメモリセルM24から情報を試み出す方法を説明 する。

【0098】図7および図8の中で、映象で聞んだメモ リセル・M 2 4が選択される場合、半導体基板電位を接地 電位(0V)として、ワード線Wし2を3V(第2の電 圧) とし、ビット線BL8を1V (第1の電圧) とす る。また、他のワード森WL1、WL3~WL6および 他のピット線BL1~BL7をOVあるいはOPEN状 版とし、ソース線SL2をOVとする。 さらに、他のソ ース線SL1、SL3、SL4を1V (第3*の*収圧) と する。なお、図には示していないが、メモリセルの属す るウェルの電位は0Vとする。もし、メモリセルM24 が消去状態であれば、しきい価電圧は-1V程度である ので、メモリセルM24がオン状態となり、ビット歳B L8にメモリセル読み出し電流が流れる。この場合のメ モリセルM24の読み出し電流は、従来の不揮発作半導 体記憶装置が有するメモリセルのしきい値電圧が0.5 Vである場合のものに比べて、多くなる。

【0099】一方、メモリセルM24が書き込み状態であれば、メモリセルM24のしきい値電圧は4V程度であるので、メモリセルM24がオフ状態となり、ビット 歳BL8にメモリセル読み出し電流は流れない。上述した電流量がセンスアンプで検知されることにより、読み出し動作が行われる。

【0100】本発明の第2の実施の形態では、バックバイアス効果を利用することにより、選択されたメモリセルM24と同一のビット級BL8に授税される非選択メモリセルM14、M54、M64のしきい値電圧を約0、5V以上に設定することができる。

【0101】すなわち、非選択メモリセルのソース線S し1、Sし3、Sし4に電圧1Vを印加することにより、たとえ依に、非選択メモリセルのしきい値電圧が 1Vであったとしても、バックバイアス効果により、非 選択メモリセルのしきい値を約0、5V以上とすることができる。このため、非選択メモリセルから流れる電流を、ほぼゼロに抑えることができる。

【0102】また、選択されたメモリセルが消去状態である場合、消去状態のメモリセルのしきい質賞圧(低い

方のしさい値運圧)をデアレッション状態に設定することができる。このため、選択されたメモリセルにおけるオン状態の読み出し電流量が増加する。その結果、低電圧においても十分なオン状態のメモリセル読み出し電流を確保することができ、第2の実施の形態における不揮発性半導体記憶装置は、低運圧下での高速読み出しを可能とする。

【0103】なお、第2の実施の形態では、読み出し時に選択したビット線に印加する電圧と非選択のソース線に印加する電圧を同一電圧としたが、それらの電圧が異なる電圧であってもよい。

(第3の実施の形態)以下、本発明の第3の実施の形態 について、図面を参照しながら設明する。

【0104】図12は、本発明の第3の実施の形態における不揮発性半導体記憶装置30のメモリセルアレイ構成の模式図である。図13は、不揮発性半導体記憶装置30のパターンレイアウトを示す模式的平面図である。すなわち、図13は、図12に示す不揮発性半導体記憶装置30のアレイ構造の一例を示している。また、図14は、図13に示す不揮発性半導体記憶装置30を線分EIEで切断した場合における断面を示す図である。

【0105】不揮発性半導体記憶装置30は、MOSトランジスタからなるメモリセルM11~M44、ワード 被WL1~WL4、ソース線SL1~SL4、およびピット線BL1~BL4を備えている。

【0106】さらに、不揮発性半導体記憶装置30は、素子分離領域5A、5B、ビット観コンタクト6a、6b、およびウェル観WEL1~WEL4を備えている。素子分離領域5A、5Bは、LOCOSやSTIなどで形成されるが他の方法でもよい。

【0107】不揮発件半減体記憶装置30は、図12に示すように、メモリセルM11~M14が属する行のメモリセルにウェル線WEL1が接続され、メモリセルM21~M24が属する行のメモリセルにウェル键WEL2が接続され、メモリセルM31~M34が属する行のメモリセルにウェル線WEL3が接続され、メモリセルM41~M44が属する行のメモリセルにウェル線WEL4が接続される。つまり、ある行のメモリセルは、そのある行に対応するウェル線に接続される。ウェル線は、行毎に独立している。

【0108】また、不御発性半導体記憶装置30は、図12に示すように、メモリセルM11~M14が属する行のメモリセルのソースにソース線SL1が接続され、メモリセルM21~M24が属する行のメモリセルのソースにソース線SL2が接続され、メモリセルM31~M34が属する行のメモリセルのソースにソース線SL3が接続され、メモリセルM41~M44が属する行のメモリセルのソースにソース線SL4が接続される。つまり、不揮発性半導体記憶装置30では、ある行のメモリセルは、他の行のメモリセルとソース線を共有してい

ない。

【0109】なお、同一ワード線および同一ソース線に接続された複数のメモリセルは、1つのウェル線を共有する。

【0.110】以下、本売明の不揮発性半導体記憶装置3 0の競み出し方法について、図12を用いて説明する。 【0111】図13中に破線で囲んだメモリセルM14 を選択する場合は、半導体基板電位を接地電位(OV) として、ソード線WL1を3V(第2の電圧)とし、ピット線BL4を1V(第1の電圧)とする。ウェル線W EL1を0Vとし、他のソード線WL2、WL3、WL 4を0Vとし、ソース線SL1~SL4を0Vとし、ピット線BL1~BL3を0Vとし、他のウェル線WEL 2~WEL4を-3V(第3の電圧)とする。なお、少なくともウェル線WEL1~WEL4は、デコーダによって制御される。

【0112】上述した第1および第2の実施の形態では、ソース線を利用したバックバイアス効果によって、非選択メモリセルのしきい値延圧を上げることができた。仮に、非選択メモリセルが低い方のしきい値運圧たとえばー1Vを有していたとしても、バックバイアス効果により、その低い方のしきい値運圧を約0.5V以上とすることができる。一方、第3の実施の形態では、ウェル線を利用して同様な効果を得ることができる。

【0113】上述したように、第3の実施の形態によれば、非選択メモリセルのウェル線に負電圧、つまり半導体基板に対して順バイアスとなる電圧を印加することにより、非選択メモリセルのしさい値電圧を上げることができる。つまり、非選択メモリセルが消去状態である場合、そのメモリセルのしさい値電圧をデアレッション状態に設定することができる。

【0114】その結果、不揮発性半導体記憶装置30におけるメモリセルのゲートに印加される電圧が低電圧であっても、メモリセルから情報を読み出すための読み出し電流量を十分に確保することができる。

【0115】なお、第1~第3の実施の形態では、マスクROMを用いて説明したが、2種の異なるしきい値電圧を用いて記憶する不復発性半導体記憶装置である、浮遊ゲート電極型不復発性半導体記憶装置に適用することもできる。この場合、回路的には、図1、図7、および図12に示すメモリセルが浮遊ゲート電極型のメモリセルに置き換えられるだけである。

【0116】また、第1~第3の実施の形骸では、消去状態のしきい値電圧をデアレッション状態としたが、特に、デアレッション状態にする必要もない。従来の不復発性半導体記憶装置では、非選択メモリセルのリーク電流を抑えるために消去状態のしきい値電圧を()、5 V程度に設定する必要があった。しかしながら、本実施の形骸では、非選択のメモリセルのリーク電流を低減できるため、消去状態のしきい値電圧を()、5 Vよりも低く設

定することもできる。

【0117】用途によるが、たとえば、メモリセルの消去状態のしさい値電圧をデブレッション状態にまでしなくとも、例えば、0V程度に設定したい場合もあり得る。本発明は、このような場合にも適用される。

【0118】また、第1~第3の実施の形態では、消去 状態をしきい値電圧の低い方としたが、逆に書き込み状態をしきい値電圧の低い方に設定してもよい。

【0119】また、第1~第3の実施の形態では、書き込み状態のしきい値電圧を電源電圧以上としたが、消去状態との差があればよいので、書き込み状態のしきい値電圧が電源電圧以下でもよい。

【0120】また、第1~第3の実施の形態では、N型MOSトランジスタを用いて説明したが、P型MOSトランジスタを用いてもよい。

【0121】なお、第1の実施の形態と第2の実施の形態とを組み合わせて、本発明を実施してもよい。

【0122】本発明によれば、低しさい値電圧の状態をデアレッション状態にできるため、書き込み状態と消去状態のしさい値電圧の差を広げることが可能であり、浮遊ゲート電極型不揮発性半導体記憶装置に持有の、書き込み後もしくは消去後しさい値電圧のばらつきの問題や、多値しさい値電圧化への対応も容易となる。

【0123】また、本発明は、メモリセルに流れる電流の変化により記憶動作、すなわち読み出し動作を実施するメモリ全般に適用することができる。なお、マスクROMではピット親コンタクトの有無により情報を記憶する方式もあるが、その場合は、書き込み状態を無限に高いしきい値電圧と置き換えれば、本発明を適用することができる。

[0124]

【発明の効果】本発明によれば、同一ビット線上にあるメモリセルのソース線またはウェル線に加える電圧を独立して制御可能な構成を採用し、同一ビット線上にある非選択メモリセルのしさい値電圧をソース線またはウェル線に加える電圧を制御し、バックバイアス効果によりしさい値電圧を引き上げるようにしているので、低い方のしさい値電圧をデブレッション状態に設定でき、低電圧においてもメモリセル読み出し電流量が確保できるために、低電圧高速読み出し動作が可能な不恒発性半導体記憶装置を実現できる。

【0125】また、メモリセルの低い方のしきい信電圧 状態の少なくとも一部をデアレッション状態とすると、 その状態における読み出し電流を多くすることができ、 低電圧下での読み出し速度をさらに高めることができる。

【0126】また、ビット線に印加する第1の電圧と非 選択のソース線に印加する第3の電圧とをほぼ同一電圧 に設定すると、バックバイアス効果が大きく、かつソー ス線から電流が流れないので、最も高速読み出し性能を 高くできる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態における不揮発性半 導体記憶装置10のメモリセルアレイ構成の模式図であ

【図2】不揮発性半導体記憶装置10のパターンレイアウトを示す模式的平面図である。

【図3】図2に示す不揮発性半導体記憶装置10を総分 A-Aで切断した場合における断面を示す図である。

【図4】図2に示す不揮発性半導体記憶装置10を線分B-Bで切断した場合における断面を示す図である。

【図5】不揮発性半導体記憶装置10におけるメモリセルのしきい値型圧分布図(複数メモリセル)である。

【図6】不揮発性半導体記憶装置10から情報を読み出すためのフローチャートの一例を示す図である。

【図7】本発明の第2の実施の形態における不揮発性半 導体記憶装置20のメモリセルアレイ構成の模式図である。

【図8】不揮発性半導体記憶装置20のパターンレイアウトを示す模式的平面図である。

【図9】図8に示す不揮発性半導体記憶装置20を線分 C-Cで切断した場合における断面を示す図である。

【図10】図3に示す不揮発性半導体記憶装置20を複分D-Dで切断した場合における断面を示す図である。

【図11】不揮発性半導体記憶装置20から情報を読み出すためのフローチャートの一例を示す図である。

【図12】本発明の第3の実施の形態における不揮発性 半導体記憶装置30のメモリセルアレイ構成の模式図で ある。

【図13】不揮発性半導体記憶装置30のパターンレイ アウトを示す模式的平面図である。

【図14】図13に示す不揮発性半導体記憶装置30を 総分E-Eで切断した場合における断面を示す図である。

【図15】従来の不揮発作半導体記憶装置500のメモリセルアレイ構成を示す模式図である。

【図16】図15に示す不揮発性半導体記憶装置500 のパターンレイアウトを示す模式的平面図である。

【図17】不揮発性半導体記憶装置500におけるメモリセルのしきい値電圧分布図(複数メモリセル)である。

【符号の説明】

M14~M44 メモリセル

WL1~WL4 ワード級

SL1~SL4 ソース説

BL1~BL4・ピット被

5、5X 希子分離領域

6a、6b ビット線コンタクト

【図9】

[図11]

フロントページの統さ

(51) Int. Cl. 5

識別紀号

FI

HOIL 29/792