Module « Optimisation et contrôle »

Algorithmes I

(P. Carpentier)

Plan du cours

1 Généralités sur les algorithmes

2 Méthodes à direction de descente

Recherche linéaire

Minimisation sans contrainte et algorithme

Problème d'optimisation sans contrainte.

$$\min_{u\in\mathbb{U}}J(u).$$

Si J est différentiable, on a la condition d'optimalité (KKT) :

$$\nabla J(u^{\sharp})=0.$$

Notion d'algorithme.

Un algorithme est une application \mathcal{A} de l'espace \mathbb{U} dans lui-même.

Le déroulement de l'algorithme à partir d'un point initial $u^{(0)} \in \mathbb{U}$ consiste donc à utiliser de manière itérative cette application :

$$u^{(k+1)} = \mathcal{A}(u^{(k)}), \quad k = 0, 1, \dots$$

L'algorithme converge si la suite $\{u^{(k)}\}_{k\in\mathbb{N}}$ converge dans \mathbb{U} .

Vitesse de convergence

Un algorithme d'optimisation engendre une suite $\{u^{(k)}\}_{k\in\mathbb{N}}$ qui, dans les bons cas, converge vers une solution u^{\sharp} du problème.

Convergence en quotient

• Convergence q-linéaire :

$$\exists r \in [0,1[, \exists K_r, \forall k \geq K_r, \|u^{(k+1)} - u^{\sharp}\| \leq r \|u^{(k)} - u^{\sharp}\|.$$

• Convergence *q*-superlinéaire :

$$\forall r > 0, \ \exists K_r, \ \forall k \geq K_r, \ \|u^{(k+1)} - u^{\sharp}\| \leq r \|u^{(k)} - u^{\sharp}\|.$$

Convergence q-quadratique :

$$\exists C > 0, \ \forall k \geq 1, \ \|u^{(k+1)} - u^{\sharp}\| \leq C\|u^{(k)} - u^{\sharp}\|^2.$$

"Le nombre de chiffres significatifs corrects double à chaque itération."

Schéma de principe d'un programme d'optimisation

FIGURE: Oracle en communication directe

Méthodes pour l'optimisation globale.

- Optimisation polynomiale, programmation semi-définie.
- Algorithme génétique, recuit simulé, essaim de particules. . .

Méthodes n'utilisant pas les dérivées.

- Méthodes de dichotomie :
 - $J : \mathbb{R} \longrightarrow \mathbb{R}$.
 - on suppose J unimodale $(J\downarrow \text{ si } u\leq u^{\sharp} \text{ et } J\uparrow \text{ si } u\geq u^{\sharp})$,
 - on divise l'intervalle de recherche par 2 à chaque itération, au prix de 2 évaluations de J par itération (voir aussi la recherche par la section d'or).
- Algorithme de Nelder-Mead :
 - $J: \mathbb{R}^n \longrightarrow \mathbb{R}$,
 - on se donne n+1 points (u_1, \ldots, u_{n+1}) que l'on ordonne :

$$J(u_1) \leq \ldots \leq J(u_{n+1}),$$

• on remplace à chaque itération le pire point u_{n+1} en déformant le simplexe des points restants par étirement ou contraction.

Algorithme de Nelder-Mead et fonction de Himmelblau

Quelques classes de méthodes d'optimisation

Méthodes à régions de confiance.

• On se donne un modèle de la variation de J autour de $u^{(k)}$:

$$\phi^{(k)}(v) = g^{(k)^{\top}}v + \frac{1}{2}v^{\top}H^{(k)}v,$$

• et un voisinage dans lequel ce modèle est réputé « bon » :

$$B(0, \Delta^{(k)}) = \{ v \in \mathbb{U}, \|v\| \le \Delta^{(k)} \}.$$

On résout le sous-problème quadratique :

$$\min_{v \in B(0,\Delta^{(k)})} \phi^{(k)}(v) \quad \leadsto \quad v^{(k)}.$$

On calcule la concordance du modèle :

$$\rho^{(k)} = \frac{J(u^{(k)} + v^{(k)}) - J(u^{(k)})}{\phi^{(k)}(v^{(k)})}.$$

- Si la concordance est « mauvaise », on diminue $\Delta^{(k)}$.
- Sinon, on met à jour le point courant :

$$u^{(k+1)} = u^{(k)} + v^{(k)}$$

on met à jour le rayon de confiance $\Delta^{(k)}$ et on itère.

Régions de confiance et fonction de Himmelblau

Quelques classes de méthodes d'optimisation

Méthodes à directions de descente.

Ce sont les plus classiques, que l'on va maintenant développer.

Principe des méthodes à directions de descente

Problème d'optimisation différentiable sans contrainte :

$$\min_{u\in\mathbb{U}}J(u).$$

Direction de descente $d^{(k)}$ en $u^{(k)}$: $\langle \nabla J(u^{(k)}), d^{(k)} \rangle < 0$.

$$\rightsquigarrow \exists \alpha^{(k)} > 0, \ J(u^{(k)} + \alpha^{(k)}d^{(k)}) < J(u^{(k)}).$$

FIGURE: Algorithme à direction de descente : $u^{(k+1)} = u^{(k)} + \alpha^{(k)} d^{(k)}$

Description d'une itération de la méthode

Itération k d'un algorithme de type direction de descente

On dispose d'un point $u^{(k)} \in \mathbb{U}$ au début de l'itération.

- **1** Test d'arrêt : si $\|\nabla J(u^{(k)})\| < \epsilon$, convergence de l'algorithme.
- 2 Direction de descente : calculer une direction de descente $d^{(k)}$ au point $u^{(k)}$.
- **3** Recherche linéaire : déterminer un pas $\alpha^{(k)} > 0$ tel que J "diminue suffisamment" .
- **Rebouclage**: calculer $u^{(k+1)} = u^{(k)} + \alpha^{(k)} d^{(k)}$ et passer à l'itération k+1.

Éviter si possible un test d'arrêt sur les variations de u ou de J...

Problématique de la direction de descente

Méthodes à directions de descente.

$$u^{(k+1)} = u^{(k)} + \alpha^{(k)} d^{(k)}$$
.

Déterminer la direction $d^{(k)}$.

Directions de descente les plus classiques

Algorithme du gradient :

$$d^{(k)} = -\nabla J(u^{(k)}).$$

Le plus simple, le plus lent (au voisinage de u[‡]). Pourtant. . .

Algorithmes de gradient conjugué :

$$d^{(k)} = \begin{cases} -\nabla J(u^{(0)}) & \text{si } k = 0 \\ -\nabla J(u^{(k)}) + \beta^{(k)} d^{(k-1)} & \text{si } k \ge 1 \end{cases}.$$

Différents algorithmes suivant l'expression de $\beta^{(k)} \in \mathbb{R}$.

• Algorithme de Newton :

$$d^{(k)}$$
 solution de : $\nabla^2 J(u^{(k)})d + \nabla J(u^{(k)}) = 0$.

Il faut que la matrice hessienne $\nabla^2 J(u^{(k)})$ soit inversible.

• Algorithmes de quasi-Newton :

$$d^{(k)} = -W^{(k)}\nabla J(u^{(k)}).$$

 $W^{(k)}$: approximation de l'inverse du hessien $\nabla^2 J(u^{(k)})$.

Problématique de la recherche linéaire

Méthodes à directions de descente.

$$u^{(k+1)} = u^{(k)} + \alpha^{(k)} d^{(k)}$$
.

Déterminer le pas $\alpha^{(k)}$ dont on se déplace dans la direction $d^{(k)}$.

Recherche linéaire : considérations générales

À l'itération k, on détermine un pas $\alpha^{(k)}$ indiquant de combien on veut se déplacer dans la direction $d^{(k)}$ à partir d'un point $u^{(k)}$. On s'intéresse donc à la fonction $\varphi_k : \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$\varphi_k(\alpha) = J(u^{(k)} + \alpha d^{(k)}) \quad \leadsto \quad \nabla \varphi_k(0) = \left\langle \nabla J(u^{(k)}), d^{(k)} \right\rangle.$$

Recherche linéaire exacte :

$$\min_{\alpha>0}\varphi_k(\alpha).$$

Le pas optimal α_k^{\sharp} est appelé **pas de Cauchy**. Il peut être coûteux à calculer, et n'est pas toujours intéressant...

Recherche linéaire approchée : on poursuit 2 objectifs :

- faire décroître J « significativement »,
- 2 empêcher le pas $\alpha^{(k)}$ d'être « trop petit ».

(Car avec
$$\alpha^{(k)} = \frac{\epsilon}{2^k \|d^{(k)}\|}$$
, on converge dans la boule $B(u^{(0)}, \epsilon)$!)

Recherche linéaire approchée.

Premier objectif : J doit décroître autant qu'une fraction $\omega_1 \in]0,1[$ de ce que ferait le modèle linéaire de J en $u^{(k)}$:

$$J(u^{(k)} + \alpha^{(k)}d^{(k)}) \leq J(u^{(k)}) + \omega_1\alpha^{(k)} \left\langle \nabla J(u^{(k)}), d^{(k)} \right\rangle,$$

inégalité qui s'écrit sous la forme équivalente :

$$\varphi_k(\alpha^{(k)}) \le \varphi_k(0) + \omega_1 \alpha^{(k)} \nabla \varphi_k(0).$$

Cette condition s'appelle la règle d'Armijo.

Elle est toujours vérifiée si le pas $\alpha^{(k)}$ est pris suffisamment petit. (On a $\nabla \varphi_k(0) < 0$ puisque $d^{(k)}$ est une direction de descente).

En pratique, la constante ω_1 est choisie « petite » : $\omega_1 = 10^{-3}$.

Première condition de Wolfe : $\varphi_k(\alpha^{(k)}) \leq \varphi_k(0) + \omega_1 \alpha^{(k)} \nabla \varphi_k(0)$.

FIGURE: Plage des pas admissibles pour la règle d'Armijo

La satisfaction de cette condition se fait par "backtracking" : on part d'un pas $\alpha^{(k,0)}$ suffisamment grand, on se donne $\tau \in]0,1[$ et on calcule le plus petit indice ℓ tel que le pas $\alpha^{(k,\ell)} = \tau \alpha^{(k,\ell-1)}$ vérifie la condition.

Recherche linéaire approchée.

Second objectif : pour empêcher le pas $\alpha^{(k)}$ d'être trop petit, on se donne une deuxième constante ω_2 telle que $0<\omega_1<\omega_2<1$ et on impose la condition :

$$\left\langle \nabla J(u^{(k)} + \alpha^{(k)}d^{(k)}), d^{(k)} \right\rangle \ge \omega_2 \left\langle \nabla J(u^{(k)}), d^{(k)} \right\rangle,$$

inégalité qui s'écrit sous la forme équivalente :

$$\nabla \varphi_k(\alpha^{(k)}) \ge \omega_2 \nabla \varphi_k(0).$$

Cette condition n'est pas vérifiée pour des pas $\alpha^{(k)}$ trop petits (on rappelle que $\nabla \varphi_k(0) < 0$).

En pratique, la constante ω_2 est choisie proche de 1 : $\omega_2 = 0.99$.

Règle de Wolfe :

$$J(u^{(k)} + \alpha^{(k)}d^{(k)}) - J(u^{(k)}) \leq \omega_1 \alpha^{(k)} \left\langle \nabla J(u^{(k)}), d^{(k)} \right\rangle,$$
$$\left\langle \nabla J(u^{(k)} + \alpha^{(k)}d^{(k)}), d^{(k)} \right\rangle \geq \omega_2 \left\langle \nabla J(u^{(k)}), d^{(k)} \right\rangle.$$

FIGURE: Plages des pas admissibles pour la règle de Wolfe

Recherche linéaire : algorithme de Fletcher-Lemaréchal

Initialisation

On pose $\underline{\alpha} = 0$ et $\overline{\alpha} = +\infty$ et on se donne $\alpha^{(k,0)} \in]\underline{\alpha}, \overline{\alpha}[$.

Iteration ℓ

- Si $\alpha^{(k,\ell)}$ ne vérifie pas la 1-ère condition de Wolfe :
 - on diminue la borne supérieure : $\overline{\alpha} = \alpha^{(k,\ell)}$,
 - on choisit un nouveau pas : $\alpha^{(k,\ell+1)} = \frac{1}{2}(\underline{\alpha} + \overline{\alpha})$
 - on effectue une nouvelle itération.
- Sinon:
 - si $\alpha^{(k,\ell)}$ ne vérifie pas la 2-ème condition de Wolfe :
 - on augmente la borne inférieure : $\alpha = \alpha^{(k,\ell)}$,
 - on choisit un nouveau pas :

$$lpha^{(k,\ell+1)} = 2\underline{lpha}$$
 si $\overline{lpha} = +\infty$, $lpha^{(k,\ell+1)} = \frac{1}{2}(lpha + \overline{lpha})$ sinon,

- on effectue une nouvelle itération,
- sinon, le pas $\alpha^{(k,\ell)}$ vérifie la règle de Wolfe.

À préciser : choix du pas initial $\alpha^{(k,0)}$ et test d'arrêt pour cet algorithme.

Recherche linéaire : convergence et mise en œuvre

Convergence de l'algorithme de Fletcher-Lemaréchal

Soit $d^{(k)}$ une direction de descente. On fait l'hypothèse que φ_k est dérivable et bornée inférieurement, et que $0<\omega_1<\omega_2<1$. Alors, l'algorithme de Fletcher-Lemaréchal trouve un pas $\alpha^{(k)}$ vérifiant la règle de Wolfe en un nombre fini d'itérations.

Mise en œuvre de l'algorithme de Fletcher-Lemaréchal

- Choix du pas initial.
 - Algorithme de type Newton : pas unité :

$$\alpha^{(k,0)} = 1.$$

• Algorithme de type gradient : pas de Fletcher :

$$\alpha^{(k,0)} = -2 \frac{\Delta_k}{\left\langle \nabla J(u^{(k)}), d^{(k)} \right\rangle},$$

où Δ_k est la décroissance attendue du critère.

• Critère de convergence. Plutôt que de considérer l'écart $\left|\alpha^{(k,\ell+1)} - \alpha^{(k,\ell)}\right|$, on se basera sur $\left\|u^{(k,\ell+1)} - u^{(k,\ell)}\right\|$ pour arrêter l'algorithme.