Chapter 4

Linear model

• Origin: Guass, Galton.

Why Normal?

- The normal distribution, is the most important distribution in statistics.
- Many mechanism creates an end product that follows a Normal distribution. Like sums of random variables, products of random variables.
- The distribution is the easiest to handle computationally.

Model

$$n_F \sim Binomial(n, p)$$

 $p \sim U[0, 1]$

$$h_i \sim N(\mu, \sigma)$$

 $\mu \sim N(178, 20)$
 $\sigma \sim U[0, 50]$

$$h_i \sim N(\mu, \sigma)$$

 $\mu \sim N(178, 20)$
 $\sigma \sim U[0, 50]$

$$h_i \sim N(\mu, \sigma)$$

 $\mu \sim N(178, 20)$
 $\sigma \sim U[0, 50]$

$$h_i \sim N(\mu, \sigma)$$

 $\mu \sim N(178, 20)$
 $\sigma \sim U[0, 50]$

Model to distribution

Model

density

$$h_i \sim N(\mu, \sigma)$$
 $p(h_i|\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(h_i - \mu_i)^2}$ $\mu \sim N(178, 20)$ $p(\beta) = \frac{1}{\sqrt{2\pi}20} e^{-\frac{1}{20^2}(\beta - 178)^2}$ $\sigma \sim U(0, 50)$ $p(\sigma) = \frac{1}{50} \mathbb{I}_{[0,50]}(\sigma)$

Unless stated variables are independent.

Figure : $p(\mu|h_1,\ldots,h_n)$

Figure : $p(\mu|h_1,\ldots,h_n)$

Figure : $p(\mu|h_1,\ldots,h_n)$

Figure : $p(\mu|h_1,\ldots,h_n)$

Figure : $p(\mu|h_1,\ldots,h_n)$

Figure: $p(h^*|h_1,\ldots,h_n)$

Figure: $p(h^*|h_1,\ldots,h_n)$

Figure: $p(h^*|h_1,\ldots,h_n)$

Figure: $p(h^*|h_1,\ldots,h_n)$

Figure: $p(h^*|h_1,\ldots,h_n)$

$$h_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + w_i \beta$
 $\alpha \sim N(178, 100)$
 $\beta \sim N(0, 20)$
 $\sigma \sim U[0, 50]$

$$h_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + w_i \beta$
 $\alpha \sim N(178, 100)$
 $\beta \sim N(0, 20)$
 $\sigma \sim U[0, 50]$

$$h_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + w_i \beta$
 $\alpha \sim N(178, 100)$
 $\beta \sim N(0, 20)$
 $\sigma \sim U[0, 50]$

$$h_i \sim N(\mu_i, \sigma)$$

 $\mu_i = \alpha + w_i \beta$
 $\alpha \sim N(178, 100)$
 $\beta \sim N(0, 20)$
 $\sigma \sim U[0, 50]$

Model to distribution

Model

density

$$h_i \sim N(\mu_i, \sigma)$$

$$p(h_i|\mu_i,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(h_i-\mu_i)^2}$$

$$\mu_i = \mathbf{w}_i \cdot \boldsymbol{\beta}$$

$$\beta \sim N(0,20)$$

$$p(\beta) = \frac{1}{\sqrt{2\pi}20} e^{-\frac{1}{20^2}(\beta)^2}$$

$$\sigma \sim U(0,1)$$

$$p(\sigma) = \frac{1}{50} \mathbb{I}_{[0,50]}(\sigma)$$

Unless stated variables are independent.

Predictive function $\mu(x)$

- In the book, weight is from 31 to 63.
- We have a prior on the function:

$$\mu(x) = \alpha + x\beta$$

Figure : Prior draws of $\mu(x)$.

Figure : $\mu(x) = \alpha + x\beta | h_1, \dots, h_n$

Figure : $\mu(x) = \alpha + x\beta | h_1, \dots, h_n$

Figure : $\mu(x) = \alpha + x\beta | h_1, \dots, h_n$

Figure : $\mu(x) = \alpha + x\beta | h_1, \dots, h_n$

Figure : $\mu(x) = \alpha + x\beta | h_1, \dots, h_n$

Figure : $\mu(x) = \alpha + x\beta | h_1, \dots, h_n$

Figure : $\mu(x) = \alpha + x\beta | h_1, \dots, h_n$

Simple Height model

```
h_i \sim N(\mu, \sigma)

\mu \sim N(178, 20)

\sigma \sim U[0, 50]
```

predictive Height model

```
h_i \sim N(\mu_i, \sigma)

\mu_i = \alpha + x_i \beta

\alpha \sim N(178, 100)

\beta \sim N(0, 20)

\sigma \sim U[0, 50]
```

```
library (rethinking)
data (Howell1)
dataHeight <- Howell1 [Howell1$age >= 18,]
# building the model
model2 <- map(
flist = alist(
       height
                 dnorm(mu, sigma),
              <- alpha + weight * beta ,
       mu
       alpha
                 dnorm(156, 100),
       beta
                 dnorm(0 , 10),
                 dunif(0,50)
       sigma
data
      = dataHeight)
```

Posterior Samples from the models

Output from the first model:

```
mu sigma
1 154.6512 7.950005
2 154.2872 7.950664
3 154.1929 7.704647
```

```
post \leftarrow extract.samples(model, n = 100)
head(post, n = 3)
```

Output from the second model:

	alpha	beta	sıgma
1	115.8987	0.8559246	5.170375
2	114.2855	0.8911623	5.181440
3	111.4015	0.9479790	5.143857

Comparing the models

The posterior distribution for h^* given $x^* = 30, 50$:

Figure: $p(y^*|x^* = \cdot, h_1, \dots, h_n)$, blue predictive model and red simple model.