Inferring the source of official texts: can SVM beat ULMFiT?

Pedro Henrique Luz de Araujo¹ Teófilo Emidio de Campos¹ Marcelo Magalhães Silva de Sousa²

¹Department of Computer Science, University of Brasília, Brasília - DF, Brazil

 2 Tribunal de Contas do Distrito Federal, Zona Cívico-Administrativa, Brasília – DF, Brazil teodecampos@unb.br

Sponsored by FAPDF and CNPq

PROPOR 2020

Paper and code available at

https://cic.unb.br/~teodecampos/KnEDLe/propor2020/

Overview

- Introduction
- 2 The dataset
- The methods
- 4 Experiments
- Results
- 6 Conclusion

Introduction

Motivation

- Government Gazettes are a great source of information of public interest:
 - Nominations, contracts, public notices
 - ▶ Public expenditures may be subject to frauds and irregularities
- Difficulties:
 - Unstructured data
 - Domain-specific language (official texts)

Examples

Excerpt 1

O GOVERNADOR DO DISTRITO FEDERAL, no uso das atribuições que lhe confere o artigo 100, incisos XXVI e XXVII, da Lei Orgânica do Distrito Federal, resolve [...]

Excerpt 2

Presidente da COVED, acolhendo os pareceres inseridos nos processos abaixo, declara habilitados para a venda à PRAZO os itens a seguir: [...]

Excerpt 2

[...] TORNAR PÚBLICO o resultado das investigações constantes nos processos dos servidores listados abaixo e que se configuraram em acidente de serviço, sem dano, nos termos do artigo 23, § 1°, inciso IV, do Decreto n° 34.023, de 10 de dezembro de 2012, observando-se a seguinte ordem: número do processo, nome e matrícula. [...]

Objectives

- Identify the institution of origin of documents fom the Official Gazette of the Federal District (DO-DF)
 - Information indexing
 - Public auditing
 - ▶ The use of rules and regular expressions is not robust
- Deal with limited labelled training set using transfer learning

Contributions

- A corpus of labelled and unlabelled Official Gazette documents
- Baseline evaluations with
 - Deep learning (ULMFiT) and
 - Shallow learning (BoW with Naïve Bayes and SVM)
- Ablation analysis of ULMFiT steps

The dataset

The dataset

- 2,652 texts extracted from the Official Gazette of the Federal District¹
- Handcrafted regex rules to extract
 - publication date
 - section number and title
 - public body that issued the document
 - etc.
- 797 texts manually examined: 724 free of labelling mistakes.

The dataset

- Documents originated from 25 different government entities
- Filter out entities with less than 3 samples, result:
 - ▶ 717 labelled examples (texts)
 - ▶ 19 classes (government entities that author the texts)
- Divide the data into two separate parts:
 - ▶ 717 labelled examples classification
 - ▶ 1,928 unverified or incorrectly labelled samples for unsupervised training of a language model

Classification data

- Hold-out method with
 - ▶ 384 (8/15) of the texts for the training set,
 - ▶ 96 (2/15) for the validation set and
 - ▶ 237 (5/15) for the test set
- Imbalanced data:
 - ▶ most frequent class (Segurança Pública) with 140 samples
 - ▶ least frequent classes with less than 5 documents

Data Distribution

Language model data

Standard language modelling task:

Label of each token is the following token in the sentence

LM dataset:

- Drop 2 empty texts, totalising 1,926 documents with 984,580 tokens
- Splits:
 - ▶ 784,260 tokens for training (80%)
 - 200,320 for validation (20%)
 - ▶ No test set: no need for unbiased evaluation of the language model

The methods

Preprocessing

- Lowercase text and use SentencePiece [Kudo and Richardson, 2018] to tokenize.
 - ▶ The same used for the pretrained language model
- Add special tokens for padding, first letter capitalization, all letters capitalization, character and word repetition etc.²
- Final vocabulary of 8,552 tokens, including words, subwords, special tokens and punctuation.

²List of special tokens used available at https://docs.fast.ai/text.transform.html

Baseline

- Two kinds of BOW:
 - tf-idf values;
 - token counts.
- Two classifiers:
 - Naïve Bayes (NB);
 - ► Support Vector Machines (SVM) with linear kernel (a.k.a. w/o kernels).

Universal Language Model Fine-Tuning (ULMFiT) [Howard and Ruder, 2018]

Stages:

- Language model pre-training: we use a bidirectional Portuguese language model³ trained on 166,580 Wikipedia articles (100M tokens).
 - Architecture:
 - ★ 400-dimensional embedding layer
 - ★ 4 Quasi-Recurrent Neural Network layers (QRNN [Bradbury et al., 2016])
 - ★ linear classifier.

³Available at

- Language model fine-tuning: we fine-tune the forward and backward pre-trained language models on our unlabelled dataset.
 - We use discriminative fine-tuning (different learning rates for different layers) and cyclical learning rates [Smith and Topin, 2017] with cosine annealing to speed up training.

- Classifier fine-tuning: we add two linear blocks to the language models (batch normalization [loffe and Szegedy, 2015] + dropout [Srivastava et al., 2014] + FC layer).
 - ▶ Final prediction is the average of the forward and backward models.
 - Let \mathbf{h}_t be the hidden state of the last time step, and $\mathbf{H} = \{\mathbf{h}_{t-T}, \cdots, \mathbf{h}_t\}$, be the hidden states of as many time steps as can be fit in GPU memory. Then, the input to the linear blocks \mathbf{h}_c is:

$$\mathbf{h}_c = \mathsf{concat}(\mathbf{h}_t, \mathsf{maxpool}(\mathbf{H}), \mathsf{averagepool}(\mathbf{H}))$$
. (1)

Experiments

Baseline

- Random search + evaluation on validation set to find best hyperparameter values.
- Four scenarios:
 - ▶ tf-idf + NB;
 - ▶ tf-idf + SVM;
 - ▶ counts + NB:
 - counts + SVM.
- For each scenario we train 100 models with different randomly assigned hyperparameter values.
- tf-idf gave better results.

- We use the learning rate range test [Smith, 2015] to tune the learning rate.
- Adam is used as the optimizer.
- Language model fine-tuning:
 - We fine-tune the top layer of the forward and backward language models for one cycle of two epochs and then train all layers for one cycle of ten epochs.
- Classifier fine-tuning:
 - We employ gradual unfreezing to prevent catastrophic forgetting:
 - We unfreeze one layer at a time, starting from the last, each time fine-tuning for one cycle of 10 epochs.

Results

Results I

Table: Classes F_1 scores (in %) on the test set.

Class	NB	SVM	F-ULMFiT	B-ULMFiT	F+B-ULMFiT	Count
Casa Civil	72.22	74.29	82.35	83.33	85.71	18
Controladoria	80.00	80.00	80.00	0.00	66.67	2
Defensoria Pública	100.00	100.00	100.00	100.00	100.00	8
Poder Executivo	80.00	81.82	78.26	90.91	86.96	10
Poder Legislativo	40.00	100.00	100.00	100.00	100.00	1
Agricultura	28.57	75.00	85.71	75.00	85.71	4
Cultura	91.67	91.67	88.00	91.67	91.67	13
Desenv. Econômico	66.67	66.67	28.57	33.33	33.33	4
Desenv. Urbano	75.00	85.71	75.00	66.67	85.71	4
Economia	100.00	100.00	100.00	100.00	100.00	1
Educação	70.00	75.00	72.00	66.67	75.00	13
Fazenda	85.71	88.37	86.36	90.48	90.48	21
Justiça	80.00	75.00	66.67	75.00	66.67	5
Obras	84.85	85.71	87.50	87.50	90.91	18
Saúde	91.43	93.94	95.38	91.43	94.12	32
Segurança Pública	97.03	95.24	95.24	96.15	94.34	50
Transporte	91.89	95.00	87.18	95.24	95.24	20
Meio Ambiente	80.00	100.00	66.67	66.67	66.67	2
Tribunal de Contas	100.00	100.00	95.65	100.00	100.00	11
Average F	79.74	87.55	82.66	79.48	84.69	237
Weighted F1	86.86	89.17	87.46	88.14	89.74	237
Accuracy	86.92	89.45	87.76	89.03	90.30	237

Results II

- All models performed better than a majority class classifier, which wields F_1 scores of 7.35 and 1.83 and an accuracy of 21.10.
- The SVM and ULMFiT models outperformed the Naive Bayes classifier across almost all categories.
- F₁ scores and accuracies approaching 90.00% indicate good results, though we do not have a human performance benchmark for comparison.

Results III

- SVM and ULMFiT scores are comparable: the former has greater average F₁ score while the latter wins at weighted F₁ score and accuracy.
- SVM has some advantages:
 - ► Time: SVM takes less than two seconds to train on CPU, while ULMFiT takes more than half an hour on GPU.
 - Simplicity: SVM training is straightforward, while ULMFiT requires three different steps with many parts that need tweaking (gradual unfreezing, learning rate schedule, discriminative fine-tuning).
- Consequence: ULMFiT has more hyperparameters to tune and each search iteration is expensive – the time it takes to train one ULMFiT model is enough to train more than 1,000 SVM models with different configurations of hyper-parameters.

Conclusion

Conclusion

- A new language corpus was presented in the domain of Official Gazettes, for classification of institution of origin.
- We have found that SVM is competitive with ULMFiT, a SOTA technique.
 - ▶ In this domain, word order may not be so important and some terms strongly indicate particular classes.

Referências I

Bradbury, J., Merity, S., Xiong, C., and Socher, R. (2016). Quasi-recurrent neural networks. *CoRR*, abs/1611.01576.

Howard, J. and Ruder, S. (2018).
Fine-tuned language models for text classification.

CoRR, abs/1801.06146.

loffe, S. and Szegedy, C. (2015).

Batch normalization: Accelerating deep network training by reducing internal covariate shift.

In Proceedings of the 32nd International Conference on Machine Learning - Volume 37, pages 448–456. JMLR.org.

Referências II

Kudo, T. and Richardson, J. (2018).

SentencePiece: A simple and language independent subword tokenizer and detokenizer for neural text processing.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations (EMNLP), pages 66–71, Brussels, Belgium. Association for Computational Linguistics (ACL).

Smith, L. N. (2015).

No more pesky learning rate guessing games.

CoRR, abs/1506.01186.

Smith, L. N. and Topin, N. (2017).

Super-convergence: Very fast training of residual networks using large learning rates.

CoRR, abs/1708.07120.

Referências III

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. *J. Mach. Learn. Res.*, 15(1):1929–1958.

Inferring the source of official texts: can SVM beat ULMFiT?

Pedro Henrique Luz de Araujo¹ Teófilo Emidio de Campos¹ Marcelo Magalhães Silva de Sousa²

¹Department of Computer Science, University of Brasília, Brasília – DF, Brazil

²Tribunal de Contas do Distrito Federal, Zona Cívico-Administrativa, Brasília – DF, Brazil teodecampos@unb.br

Sponsored by FAPDF and CNPq

PROPOR 2020

Paper and code available at

https://cic.unb.br/~teodecampos/KnEDLe/propor2020/