Assignment - 1

A robotic soccer agent that plays on a team composed of 3 robots. The opposing team also has 3 robots and the field is defined as a 3 ft wide and 6 ft long. Assume standard soccer rules apply and the 3 robots may play any position you define.

Characterize the environment according to the properties (e.g., Fully Observable vs. Partially Observable; Deterministic vs. Stochastic; Episodic vs. Sequential; Static vs. Dynamic; Discrete vs. Continuous; Single Agent vs. Multi Agent).

Fully Observable vs. Partially Observable

The environment is Partially Observable.

- ♦ not allow it to see its complete set of state (each robot may not have complete information about the entire field at all times.).
- ♦ sensors provide limited information based on their field of view and position.

Deterministic vs. Stochastic

The environment is Stochastic.

- ♦ not allow its next state and actions.
- ♦ the robot can be programmed to perform certain actions, there are elements of uncertainty such as mechanical errors, or unexpected interactions with the ball and other robot.

Episodic vs. Sequential

The environment is Sequential.

- ♦ needs to think ahead.
- ♦ the outcome of the game unfolds over time
- ♦ the game progresses over time.

Static vs. Dynamic

The environment is Dynamic.

- ♦ does not change while the performance measure changes.
- ♦ changes over time.
- ♦ the robot and the ball are moving and the robot must adapt their strategies as the game progress.

Discrete vs. Continuous

The environment is Continuous.

- ♦ the robot and the ball can move in a fluid range of motions and positions across the field.
- ♦ continuously changing state

Single Agent vs. Multi Agent

The environment is Multi Agent.

♦ There are multiple robots interacting with each other, both cooperatively on the same team and competitively against the opposing team. A robotic soccer agent that plays on a team composed of 3 robots. The opposing team also has 3 robots and the field is defined as a 3 ft wide and 6 ft long. Assume standard soccer rules apply and the 3 robots may play any position you define.

Select a suitable agent design based upon the agent definitions (e.g., Simple Reflex Agent; Model Based Reflex Agent; Goal Based Agent; Utility Based Agent; Learning Agent). Be certain to justify your choice by indicating how that specific definition fits the problem above.

According to me a suitable agent design for the robotic soccer problem is a model-based reflex agent.

- → Handles partial observability through using percept history.
- ♦ Each agent has a set of sensors, such as cameras, infrared range finders, and microphones, that allow it to perceive its environment and the state of the game.
- ★ Each agent has a set of actuators, such as wheels, motors, and speakers, that allow
 it to move and manipulate the ball, and communicate with other agents.
- ♦ Each agent has an internal model of the environment, the game rules, and the strategies of its own team and the opponent's team.
- ♦ The problem has a simple and clear goal, which is to score more goals than the opponent. A model-based agent does not need to plan ahead or consider multiple alternatives, as long as it can achieve its goal based on its model and rules.