Secture 14 (10/14/21) Fraces We want to make of restriction of a doboler function to a lovor dimensional set. Theorem (traces) Set I be Sipschitz. There exist a bounded linear oferator T: W/(2) -> LP(22) for 1 < p < 00 meh that 1. Tu=u|22 if u=Wp(-2)nC°(-12) 2. IITull [P(22) < C || ull w; (52) for all ut W; (J2) with C defending on p and 52. Vroof We we an affers mation argument following Evans [Evans p. 258]. Assume DREC! 1. Let X0 + DS and DS is flat around X0 B=B(x, =) Let MECI(IS) Bt = Bn 2= {xeB: xd>0} P=22nB B=B(x0, 1) Let 7 E Co (B) 1.t. >>0, 7=1 m B. Compute [|u|Pdx' < 5 > |u|Pdx' = - 5 d (3|u|P) dx =- I (Inlboat + bin somn our) opr < C \[(|u|^p + p |u|^p + |\nu|) dx

This means that {Tun} is Cauchy in Lt(22),3 and so it converges in LP(22). We call the limit
Note that (1). for un uniflies
11 Tull 19(22) EC 11 MIN WP(2) TUENP(12).
Exercise Thow that Tu is independent of requestery
4. If ut C'(I) NW'(I), then {unbu=1 converger
4. If $U \in C^{\circ}(\overline{x}) \cap W_{\Gamma}^{1}(x)$, then $\{U \cap V_{N=1}^{\infty} : converger \}$ mitpormly, whence $Tu = u \text{on } x > x$
Def The completion of Co (2) in the norm W/ (52) is a substace of W/ (52) denoted
W; (2) (Wip (2) in Evans)
If $p=2$, then $\hat{\mathcal{N}}_{2}'(x) = H_{0}'(x) \left(\mathcal{L}_{1}'(x) \right)$
Theorem (function w/ vanishing trace) Let 52 be Dripschitz and ut Wp(52). Then
Tu=0 on 2-2
Exercise (scaling) Show
Exercine (scalning) Show

Friedrich Inequality If ut Wp(2), then 11411 [P(2) <e(2) 117411 [P(2). Troof Set un E Co(2) affroxmiate u in Wp (-2). Compute 2 | un|P=p|un|Psgnun 2 dun | un (x!,xd) | = | Dd | un | dxd = p \ | un | p-1 sqn un | \(\frac{1}{2} \) un | \(\frac{1}{2} \) un | \(\frac{1}{2} \) | \(\frac{1}{2} \) un | \(\frac{1}{2} \) | \(\frac{1} Integrate in Xd and x' to get Junip < pl 5 tunip 1 Puni < El junip + Clt | Vult ab< = aP+ = b7 Choose E= to conclude S runte clts [Dunte. Vars to the limit in n > 00. Kemark Note that C(s) = Cl and the dimunsonally correct mequality reads 11 ull [P(2) < Cl 11 Vull [P(52).

Worm Egnivalence 1. W= Wp (2) 11 /2 11 /2 = 11 × 11 /2 = 11 × 11 /2 + 11 /2 11 /2 (2) < C(-0) || Dall Lb(-0) < (1+c(2)) [[70]]. = | ~ | P | (2) 11 v 11 W / (2) = 1 x 1 W / (2). 2. W=Wp (2) Exoraine: | | W| (2) = | | Toll [(2) + 11 Toll [(22) (Hut: ruview the trace miquality) 3. Deni-Dions Consider W p (2), k>0, 15p600. with of Lipschitz. Let Ifizi he linear continuous functionals in Wp (2) such that for every phynomial 96 Pn of deque ≤ k fi (q)=0 \ 1 \ i \ \ N = dmi \ Ph \ = 9 = 0. ||v||Wh(v) = |v|Wh(v) + = |fi(v)| Arther(v) 'Thun (Hint: argue by contradiction and use Rellich Theorem)
Example Fake h=0 and f, (4) = 121 & 9(x) dx

DL => 11~11 W/ (2) = 110~11 LP (2) + in 1501

Princare Gregulity Set NF (52) ratiofy S N(x)dx = 0. Thun 1 N N N N N N N N N N
1 N(x)dx =0. Thun
$W_{p}(x) = W_{p}(x)$
Exercise (scaling) Dorive the dimensionally correct
mequality
mequality
Green's Formula The integration by parts formula
(2; WN = -) WD; N+ (WN);
is valid for N, WEC'(I). By durity it is also valid for N, WEH'(I). Eurefore
70 to 2 1
Je die M n = - I m Dr + I n m. J. Arim + H, Fo)