Lesson Objectives

- 1. Solve Quadratic Inequalities Graphically when formula is or is not given.
- 2. Solve Quadratic Inequalities Symbolically

A. Solve Quadratic Inequalities Graphically

$$f(x) = 0$$
 means y-coordinate is _____

$$f(x) > 0$$
 means y-coordinate is _____

$$f(x) < 0$$
 means y-coordinate is _____

$$f(x) = 0$$
 is ____ the x-axis

$$f(x) > 0$$
 is _____ x-axis

$$f(x) < 0$$
 is _____ x-axis

10

1. Solve Graphically When formula is **NOT** given

• **EXAMPLE:** Given the graph of f(x), solve:

(a)
$$f(x) > 0$$

(b)
$$f(x) < 0$$
.

notation)

Before we can solve the inequality, we must first solve the **equation**

The solutions are the *x*-intercepts.

The x-intercepts are: $(__,0)$ and $(__,0)$. So, the solution to f(x)=0 based on the given graph is:

_____ and ____

These are called _____ (CP) for the inequality. These two critical points now divide the domain (x) into three (3) distinct parts:

NOTE: Make sure you can write these intervals in either inequality or interval notation! (continued on next page)

(continued from previous page)

(a) Solve f(x) > 0.

This means look ______ the *x*-axis.

There are _____ of the graph that are

ABOVE the *x*-axis – the "_____" of the graph.

- To the LEFT of x = 3, which is _____
- To the RIGHT of x = 5, which is _____

The correct solution for f(x) > 0 is

or interval notation .

This means look _____ the *x*-axis.

There is ______ of the graph that is

BELOW the *x*-axis – the "_____" of the graph.

• In BETWEEN x = 3 and x = 5, which is the interval

or interval notation _____.

- **EXAMPLE:** The graph of $f(x) = ax^2 + bx + c$ is shown. Solve each inequality. [3.4.27]
 - (a) f(x) > 0
 - **(b)** f(x) < 0

This time there are **NO** *x*-intercepts. This problem takes a slightly different approach, so **be careful!**

(b) f(x) < 0 means ______ the x-axis. The graph of f(x) is ______ below the x-axis! The solution to the inequality is _____, or in interval notation, it is

2. Solve Graphically When formula IS given

- 1. Make sure you have _____ on the right.
- 2. Find the _____ treat it as if it's an equation.
- 3. The solutions are the ______ (or boundary points).
- 4. Graph critical points on a ______ (*x*-axis).
- 5. _____ leading coefficient (____) to see if parabola opens UP or DOWN.
- 6. parabola passing through number line.
- 7. _____inequality symbol as either ABOVE or BELOW *x*-axis.
- 8. _____ solution in either inequality or interval notation.
- **EXAMPLE:** Solve the inequality. $x^2 + 4x 12 \ge 0$ [3.4.39] (Type your answer in interval notation. Simplify your answer. Use integers or fractions for any numbers in the expression.)
 - 1. Zero? YES

$$x^2 + 4x - 12 = 0$$

2. Solutions Factor Zero Product Property Solve each equation

$$x = \underline{\hspace{1cm}} x = \underline{\hspace{1cm}}$$

$$x = -6$$
 and $x = 2$

3. Critical Points
$$x = -6$$
 and $x = 2$ (also called ______ points)

- -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 4. Number Line
- 5. **Inspect your "a"** $a = \underline{\hspace{1cm}}$, so parabola opens
- 6. **Sketch.** Sketch parabola opening UP, passing thru the x-intercepts (-6,0) and (2,0).

7. Interpret. Inequality is _____

Use bracket or parentheses? Is it ABOVE or BELOW x-axis?

One or two pieces? piece(s), the " (use "or" inequality)

8. Write solution Inequality: $x \le -6 \text{ or } x \ge 2$

$$x \le -6 \text{ or } x \ge 2$$

• **EXAMPLE:** Solve the inequality. Write the solution in interval notation. [3.4.7]

$$x^2 - x - 56 < 0$$

An alternate way to solve by graphing is to use the graphing calculator.

This is how you'll get the x-intercepts, or the **critical points** (or *boundary points*).

- **1.** Get _____ on the right, if needed.
- **2.** Press _____button on calculator.
- **3.** Put **LEFT** side into _____, and put **ZERO** into _____.

and put ZENO into				
Plot1	Plot2	Plot3		
■\Y1≣X²-X-56 ■\Y2≣0				

4. Graph it (press _____)

- You do NOT need the vertex to solve an inequality.
- Make sure you can see the *x*-intercepts on the screen.
- You may need to Zoom Out. Press ZOOM, 3, ENTER – if needed.
- **5.** To find the *x*-intercepts:
- a. Press _____: intersect, ___ : down arrow) to switch to graph Y2.

6. Move cursor to the LEFT *x*-intercept and press ______ three (3) times.

Repeat process to get the RIGHT *x*-intercept.

The *x*-intercepts are the **critical points**, which are x =___ and x =___

- **7.** Inspect your "a". The value of $a = _$, which means opens $_$.
- 8. Sketch.

- 9. Interpret. Inequality is ______
 Bracket or parentheses? ______ x-axis
 Above or Below x-axis? ______ x-axis
 One or Two pieces? _____ piece(s), the
 "______" (use "in-between" inequality)
 - 10. Write solution
 Inequality:
 Interval Notation:

B. Solve Quadratic Inequalities **Symbolically** (by hand) using

(The first 4 steps are identical to the graphical method at the top of page 3.)

- 1. Make sure you have zero on the right.
- 2. Find the solutions treat it as if it's an equation.
- 3. The solutions are the **CRITICAL POINTS** (or boundary points).
- 4. Graph critical points on a **number line** (x-axis).
- 5. Identify the _____the critical points (or *boundary points*) create.
- 6. Use a _____ (TP) from within each interval to test into the inequality.
- 7. The interval(s) that are _____ are the **solutions**.
- **EXAMPLE:** Solve the inequality.

$$x^2 - 8x + 15 > 0$$

[3.4-10]

$$x^2 - 8x + 15 = 0$$

2. Solutions Factor:

Zero Product Property: $\underline{} = 0$ or $\underline{} = 0$

or
$$_{---} = 0$$

Solve each equation: x = or x =

$$x = \underline{\hspace{1cm}}$$

$$x = \underline{\hspace{1cm}}$$

3. Critical Points

(CP)
$$x = 3 \text{ or } x = 5$$

(CP) x = 3 or x = 5 (also called *boundary points*)

4. Number Line

5. Intervals

(Inequality)

(Interval Notation)

NOTE: Your **SOLUTION** will be one or more of these intervals.

(continued on next page)

(continued from previous page)

6. Test Points (TP)

Using
$$x^2 - 8x + 15 > 0$$

Faster/easier if you use FACTORED form: $(\underline{})(\underline{}) > 0$

Test $x=2$	Test $x = 4$	Test $x = 6$
()() > 0	()() > 0	()() > 0
> 0	>0	>0
>0	>0	>0
All points are TRUE on the	All points are FALSE on the	All points are TRUE on the
interval $x < 3$	interval $3 < x < 5$	interval $x > 5$

7. TRUE interval(s)	Solution to the inequality
----------------------------	-----------------------------------

 $x^2 - 8x + 15 > 0$

is:

(Inequality)

(Interval Notation)

Sources Used:

- 1. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.
- 2. Number Line Inequalities (modified) from Desmos, https://www.desmos.com/calculator/evxn1e1njv, © 2019, Desmos, Inc.
- 3. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit