Jenet:
$$d^{2}y(t)$$
 + 2 $dy(t)$ - 3 $y(t)$ = 0

 $y(0) = 9$ $y'(0) = 1$
 $y(0) = 9$ $y'(0) = 1$

Denklemin Laplace donuşûmû yapılırsa;

 $\begin{bmatrix} 5^{2}y(s) - 5y(0) - y'(0) \end{bmatrix} + 2 \begin{bmatrix} 5y(s) - y(0) \end{bmatrix} - 3y(s) = 0$
 $\begin{bmatrix} 5^{2} + 2s - 3 \end{bmatrix} y(s) = 9 + 19$
 $y(s) = \frac{9s + 19}{5^{2} + 2s - 3}$
 $y(s) = \frac{8}{5 + 3}$
 $y(s) = \frac{2}{5 + 3} + \frac{7}{5 - 1}$
 $y(s) = \frac{2}{5 + 3} + \frac{7}{5 - 1}$
 $y(s) = \frac{2}{5 + 3} + \frac{7}{5 - 1}$

Ornek: y''(t) - 6y'(t) + 13y(t) = 0 $y(0) = 3 \qquad y'(0) = 5$ y(t) = ? Laplace denissima alininsa; $s^{2}Y(s) - sy(0) - y'(0) - 6[sY(s) - y(0)] + 13Y(s) = 0$ $(5^{2} - 6s + 13) Y(s) = 3s - 13$ $Y(s) = \frac{3s - 13}{s^{2} - 6s + 13}$ $(5-3)^{2} + 2^{2} \qquad \text{seklinde}$ $Tabloya benzetebilme adına; <math>\rightarrow ifa de edi!ebilin.$ $Y(s) = 3 \cdot \frac{s-3}{(s-3)^{2} + 2^{2}} - 2 \cdot \frac{2}{(s-3)^{2} + 2^{2}}$

f⁻¹ { 4/51 } = y(t) = 3 cos 2t. et u(t) − 2 Sin 2te u(t)