Cours 7

Calcul propositionnel : déduction naturelle

Déduction naturelle (Gentzen)

Système de déduction :

$$\Gamma \vdash A$$

La formule A est prouvable à partir de l'ensemble de formules Γ

L'ensemble des *preuves* $\Gamma \vdash A$ est définie inductivement comme l'ensemble des couples (Γ, A)

- ▶ tels que $A \in \Gamma$ ax $\overline{\Gamma, A \vdash A}$
- obtenus à partir d'autres preuves par des règles de déduction de la forme
 hypotheses / conclusions
 (voir suite)

Notations:

$$\Gamma, A = \Gamma \cup \{A\}$$

$$\Gamma, \Delta = \Gamma \cup \Delta$$

Logique minimale (NM)

$$\operatorname{intro}_{\Rightarrow} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \operatorname{elim}_{\Rightarrow} \frac{\Gamma \vdash A \qquad \Delta \vdash A \Rightarrow B}{\Gamma, \Delta \vdash B}$$

$$\operatorname{intro}_{\wedge} \frac{\Gamma \vdash A \qquad \Delta \vdash B}{\Gamma, \Delta \vdash A \land B}$$

$$\operatorname{elim}_{\wedge}^{1} \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad \operatorname{elim}_{\wedge}^{2} \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

$$\operatorname{intro}_{\vee}^{1} \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \qquad \operatorname{intro}_{\vee}^{2} \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$$

$$\operatorname{elim}_{\vee} \frac{\Gamma \vdash A \lor B}{\Gamma \land A \lor \vdash C} \qquad \Delta', B \vdash C$$

$$\vdash (a \land b) \Rightarrow (b \land a)$$

$$\frac{a \wedge b \vdash b \wedge a}{\vdash (a \wedge b) \Rightarrow (b \wedge a)} i_{=}$$

$$\frac{\begin{array}{c|c}
\hline
 & a \land b \vdash b \\
\hline
 & a \land b \vdash b \land a \\
\hline
 & \vdash (a \land b) \Rightarrow (b \land a)
\end{array}} i_{\land}$$

$$\frac{a \wedge b \vdash a \wedge b}{a \wedge b \vdash b} e_{\wedge}^{2} \qquad \frac{a \wedge b \vdash a}{a \wedge b \vdash b \wedge a} = i_{\wedge}$$

$$\frac{a \wedge b \vdash b \wedge a}{\vdash (a \wedge b) \Rightarrow (b \wedge a)} i_{=}$$

$$\frac{\frac{\overline{a \wedge b \vdash a \wedge b} Ax}{a \wedge b \vdash b} e_{\wedge}^{2} \qquad \frac{\overline{a \wedge b \vdash a \wedge b} Ax}{a \wedge b \vdash a} e_{\wedge}^{1}}{a \wedge b \vdash b \wedge a} i_{\wedge}$$

$$\frac{\overline{a \wedge b \vdash b \wedge a}}{\vdash (a \wedge b) \Rightarrow (b \wedge a)} i_{\wedge}$$

Logique intuitionniste (NJ)

Deux nouvelles règles :

$$\operatorname{intro}_{\neg} \frac{\Gamma, A \vdash \neg B \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash \neg A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg A \quad \Delta \vdash A}{\Gamma, \Delta \vdash B}$$

De manière équivalente, on ajoute le symbole \bot (= absurde), et la règle

$$\operatorname{elim}_{\perp} \frac{\Gamma \vdash \bot}{\Gamma \vdash A}$$
 ex falso quodlibet sequitur

et $\neg A$ devient une abréviation de $A \Rightarrow \bot$.

Logique intuitionniste (NJ)

Exercice : Prouver $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$ en logique minimale.

Exercice: intro- est dérivable dans NM.

Remarque : elim $_{-}$ est équivalent à elim $_{\perp}$.

NJ est *plus forte* que NM:

 $\Gamma \vdash_{NM} A \text{ implique } \Gamma \vdash_{NJ} A$

Logique classique (NK)

On ajoute un nouveau moyen d'inférence : le tiers exclus.

3 règles possibles:

$$TE \frac{\Gamma \vdash A \lor \neg A}{\Gamma \vdash A} \quad abs \frac{\Gamma, \neg A \vdash \bot}{\Gamma \vdash A} \quad elim_{\neg \neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$

NK strictement plus forte que NJ : il existe des formules sans négation dérivables dans NK et pas dans NJ.

$$\vdash_{NK} ((p \Rightarrow q) \Rightarrow p) \Rightarrow p$$
 (loi de Peirce)

NK vs NJ

Tautologies prouvables dans NK:

$$\vdash_{NK} (A \lor B) \Longleftrightarrow \neg(\neg A \land \neg B)$$

$$\vdash_{NK} (A \Rightarrow B) \Longleftrightarrow (\neg A \lor B)$$

$$\vdash_{NK} (A \land B) \Longleftrightarrow \neg(\neg A \lor \neg B)$$

Dans NJ on ne peut en prouver qu'un sens.

Traduction de NK vers NJ

Définition

Soient \mathcal{L} et \mathcal{L}' deux logiques, \mathcal{L} plus forte que \mathcal{L}' , et ϕ associant à toute formule de \mathcal{L} une formule de \mathcal{L}' . ϕ est une *traduction* de \mathcal{L} vers \mathcal{L}' si pour toute formule A de \mathcal{L} on a :

- $\blacktriangleright \vdash_{\mathcal{L}} A \Longleftrightarrow \varphi(A)$
- \triangleright si $\vdash_{\mathcal{L}} A$ alors $\vdash_{\mathcal{L}'} \varphi(A)$

Traduction de NK vers NJ (Glivenko 1929) : $\varphi(A) = \neg \neg A$ (ça ne marche pas avec le calcul des prédicats).

Correction et complétude

Théorème (Correction)

 $Si \Gamma \vdash_{NM} A$, alors $\Gamma \models A$.

 $Si \Gamma \vdash_{NJ} A$, alors $\Gamma \models A$.

Si $\Gamma \vdash_{NK} A$, alors $\Gamma \models A$.

Théorème (Complétude)

 $Si \Gamma \models A$, alors $\Gamma \vdash_{NK} A$.

Preuve de complétude

Nous le considérons le système de connecteur complet $\{\neg, \Rightarrow\}$. Nous ne prouvons la complétude de \vdash_{NK} que pour les formules ne contenant que les connecteurs \neg et \Rightarrow . Attention, cela ne prouve pas la complétude pour les formules comportant d'autres connecteurs!

$$\mu(A) = \text{nombre}^1 \text{ d'occurrence de } \neg \text{ dans } A$$

+ 2× nombre d'occurrence de \Rightarrow dans A

$$\mu(\Gamma, A) = \mu(A) + \sum_{F \in \Gamma} \mu(F)$$

Nous montrons par récurrence sur $n \in \mathbb{N}$,

$$\mathfrak{P}(n) =$$
 "pour tout Γ , A tels que $\mu(\Gamma, A) = n$, $\Gamma \models A$ implique $\Gamma \vdash_{NK} A$ "

¹Nous supposons / Gamma fini.

Hypothèse de récurrence forte (HR) :

pour tout
$$k \in \mathbb{N}$$
, $k < n$ implique $\mathfrak{P}(k)$

Nous supposons : $\Gamma \models A$ et $\mu(\Gamma, A) = n$

Étude de cas sur la forme de *A* :

- $A = \neg \neg A'$
- $A = A_1 \Rightarrow A_2$
- $A = \neg (A_1 \Rightarrow A_2)$
- A = p ou $A = \neg p$

Nous nous appuyons sur plusieurs lemmes techniques sur \vdash et \models (listés en fin de preuve).

Si
$$A = \neg \neg A'$$

- ▶ $\Gamma \models \neg \neg A'$ implique $\Gamma \models A'$
- ► HR sur $\mu(\Gamma, A') = n 2$: $\Gamma \models A'$ implique $\Gamma \vdash A'$
- ▶ $\Gamma \vdash A'$ implique $\Gamma \vdash \neg \neg A'$

Si
$$A = A_1 \Rightarrow A_2$$

- ▶ $\Gamma \models A_1 \Rightarrow A_2$ implique $\Gamma, A_1 \models A_2$
- ► HR sur $\mu(\Gamma \cup \{A_1\}, A_2) = n 2$: $\Gamma, A_1 \models A_2$ implique $\Gamma, A_1 \vdash A_2$
- ▶ Γ , $A_1 \vdash A_2$ implique $\Gamma \vdash A_1 \Rightarrow A_2$

Si
$$A = \neg (A_1 \Rightarrow A_2)$$

- ▶ $\Gamma \models \neg (A_1 \Rightarrow A_2)$ implique $\Gamma \models A_1$ et $\Gamma \models \neg A_2$
- ► HR sur $\mu(\Gamma, A_1) = n \mu(A_2) 3$ et $\mu(\Gamma, \neg A_2) = n \mu(A_1) 2$: donc $\Gamma \models A_1$ implique $\Gamma \vdash A_1$ et $\Gamma \models \neg A_2$ implique $\Gamma \vdash \neg A_2$
- ▶ $\Gamma \vdash A_1$ et $\Gamma \vdash \neg A_2$ implique $\Gamma \vdash \neg (A_1 \Rightarrow A_2)$

Si A = p ou $A = \neg p$: on étudie la forme des formules dans Γ

- $\Gamma = \Gamma', \neg \neg B$
- $\Gamma = \Gamma', B_1 \Rightarrow B_2$
- $\Gamma = \Gamma', \neg(B_1 \Rightarrow B_2)$
- ▶ Γ ne contient que des formules de la forme r, $\neg r$

Si
$$\Gamma = \Gamma', \neg \neg B$$

- ▶ Γ' , $\neg \neg B \models A$ implique Γ' , $B \models A$
- ► HR sur $\mu(\Gamma' \cup \{B\}, A) = n 2 : \Gamma', B \models A$ implique $\Gamma', B \vdash A$
- ▶ Γ' , $B \vdash A$ implique Γ' , $\neg \neg B \vdash A$

Si
$$\Gamma = \Gamma', B_1 \Rightarrow B_2$$

- ▶ Γ' , $B_1 \Rightarrow B_2 \models A$ implique Γ' , $\neg B_1 \models A$ et Γ' , $B_2 \models A$
- ► HR sur $\mu(\Gamma' \cup \{\neg B_1\}, A) = n \mu(B_2) 1$ et $\mu(\Gamma' \cup \{B_2\}, A) = n \mu(B_1) 2$: $\Gamma', \neg B_1 \models A$ implique $\Gamma', \neg B_1 \vdash A$ et $\Gamma', B_2 \models A$ implique $\Gamma', B_2 \vdash A$
- ▶ Γ' , $\neg B_1 \vdash A$ et Γ' , $B_2 \vdash A$ implique Γ' , $B_1 \Rightarrow B_2 \vdash A$

Si
$$\Gamma = \Gamma', \neg(B_1 \Rightarrow B_2)$$

- ▶ Γ' , $\neg (B_1 \Rightarrow B_2) \models A$ implique Γ' , B_1 , $\neg B_2 \models A$
- ► HR sur $\mu(\Gamma' \cup \{B_1, \neg B_2\}, A) = n 2 : \Gamma', B_1, \neg B_2 \models A$ implique $\Gamma', B_1, \neg B_2 \vdash A$
- ▶ Γ' , B_1 , $\neg B_2 \vdash A$ implique Γ' , $\neg (B_1 \Rightarrow B_2) \vdash A$

Enfin, si Γ ne contient que des littéraux et A = p ou $A = \neg p$. Notons $\Gamma = \Gamma^+ \cup \Gamma^-$ (séparation littéraux positifs/négatifs)

- ▶ Si $\neg \Gamma^+ \cap \Gamma^- \neq \emptyset$, Γ est de la forme Γ' , r, $\neg r$ et donc Γ' , r, $\neg r \vdash A$.
- A = p et $p \in \Gamma^+$: OK
- $A = p \text{ et } p \notin \Gamma^+ : \Gamma \not\models A$
- $A = \neg p \text{ et } \neg p \in \Gamma^- : OK$
- $A = \neg p \text{ et } \neg p \notin \Gamma^+ : \Gamma \not\models A$

Lemmes techniques sur \models

Lemme

- $ightharpoonup \Gamma \models \neg \neg A \text{ implique } \Gamma \models A$
- ▶ $\Gamma \models A_1 \Rightarrow A_2$ implique $\Gamma, A_1 \models A_2$
- ▶ $\Gamma \models \neg (A_1 \Rightarrow A_2)$ implique $\Gamma \models A_1$ et $\Gamma \models \neg A_2$
- ▶ Γ , $\neg \neg B \models A$ implique Γ , $B \models A$
- ▶ Γ , $B_1 \Rightarrow B_2 \models A$ implique Γ , $\neg B_1 \models A$ et Γ , $B_2 \models A$
- ▶ Γ , \neg ($B_1 \Rightarrow B_2$) \models A implique Γ , B_1 , $\neg B_2 \models A$

Lemmes techniques sur ⊢

Lemme

Si $\Gamma \vdash A$ *alors* Γ , $B \vdash A$.

Lemme

- ▶ $\Gamma \vdash A$ implique $\Gamma \vdash \neg \neg A$
- ▶ Γ , $A_1 \vdash A_2$ implique $\Gamma \vdash A_1 \Rightarrow A_2$
- ▶ $\Gamma \vdash A_1$ et $\Gamma \vdash \neg A_2$ implique $\Gamma \vdash \neg (A_1 \Rightarrow A_2)$
- ▶ Γ , $B \vdash A$ implique Γ , $\neg \neg B \vdash A$
- ▶ Γ , $\neg B_1 \vdash A$ et Γ , $B_2 \vdash A$ implique Γ , $B_1 \Rightarrow B_2 \vdash A$
- ▶ Γ , B_1 , $\neg B_2 \vdash A$ implique Γ , $\neg (B_1 \Rightarrow B_2) \vdash A$
- $ightharpoonup \Gamma, B, \neg B \vdash A$

Complétude sur l'ensemble des formules

 \mathfrak{F} : ensemble des formules formées avec $\{\neg, \land, \lor, \Rightarrow, \Longleftrightarrow\}$ \mathfrak{F}' : ensemble des formules formées avec $\{\neg, \Rightarrow\}$

Proposition

La transformation $\Phi : \mathcal{F} \to \mathcal{F}'$ *définie par induction par*

$$\Phi(p) = p$$

$$\Phi(\neg F) = \neg \Phi(F)$$

$$\Phi((F_1 \Rightarrow F_2)) = (\Phi(F_1) \Rightarrow \Phi(F_2))$$

$$\Phi((F_1 \land F_2)) = \neg(\Phi(F_1) \Rightarrow \neg \Phi(F_2))$$

$$\Phi((F_1 \lor F_2)) = (\neg \Phi(F_1) \Rightarrow \Phi(F_2))$$

$$\Phi((F_1 \iff F_2)) = \dots$$

vérifie :

pour tout
$$F \in \mathcal{F}$$
, $\Phi(F) \vdash F$

Complétude

Lemme

Pour toute formule $F \in \mathcal{F}$, $si \models F$ *alors* $\vdash F$.

Proposition

Pour tout ensemble de formule $\Gamma \subseteq \mathcal{F}$ et toute formule $F \in \mathcal{F}$, si $\Gamma \models F$ alors $\Gamma \vdash F$.

Preuve:

- ▶ théorème de compacité : il existe un sous ensemble $\{G_1, \ldots, G_n\}$ fini de $\Gamma, \{G_1, \ldots, G_n\} \subseteq \Gamma$ tel que $G_1, \ldots, G_n \models F$.
- ▶ Par récurrence sur n il est facile de démontrer que pour toutes formules G_1, \ldots, G_n, F

$$G_1,\ldots,G_n\models F$$
 ssi $\models G_1\Rightarrow (G_2\Rightarrow\cdots(G_n\Rightarrow F))$

Donc $G_1 \Rightarrow (G_2 \Rightarrow \cdots (G_n \Rightarrow F))$ est une tautologie

Complétude (preuve)

- ▶ D'après le lemme précédent, cela implique que $\vdash G_1 \Rightarrow (G_2 \Rightarrow \cdots (G_n \Rightarrow F))$ qui, par une suite d'application de la règle e_{\Rightarrow} , permet d'établir $G_1, \ldots, G_n \vdash F$
- Nous concluons alors par le résultat suivant pour tout ensemble Γ_1 , Γ_2 et toute formule F, si $\Gamma_1 \subseteq \Gamma_2$ et $\Gamma_1 \vdash F$ alors $\Gamma_2 \vdash F$.

Ce résultat se prouve facilement par induction sur $\Gamma_1 \vdash F$.

Nous pouvons alors en conclure que $\Gamma \vdash F$, car $\{G_1, \ldots, G_n\} \subseteq \Gamma$, ce qui termine notre preuve.

Introduction à l'isomorphisme de Curry-Howard

Le λ-calcul simplement typé

Soit $\{x, y, ...\}$ un ensemble dénombrable de variables, et $\{\alpha, \beta, ...\}$ un ensemble dénombrable d'éléments appelés *types de base*.

Définition (Types simples)

L'ensemble des types simples est défini inductivement par

- tout type de base est un type simple,
- ▶ si A, B sont des types simples alors ($A \rightarrow B$) est un type simple.

Définition (Contexte)

Un *contexte* est un ensemble de couples de la forme (x, A) (noté x : A) avec x une variable et A un type, tel que chaque variable apparaît au plus une fois.

Notation $\Gamma[x:A]$ le contexte Γ auquel on ajoute (x,A) en supprimant l'ancienne occurrence (éventuelle) de x.

λ-termes bien typés

Définition

Soit Γ un contexte, t un terme et A un type. L'ensemble des triplets (Γ, t, A) *bien typés* est défini inductivement par

- ▶ si $(x, A) \in \Gamma$ alors (Γ, x, A) est bien typé,
- ▶ si $(\Gamma, u, A \rightarrow B)$ et (Γ, v, A) sont bien typés alors $(\Gamma, (u \ v), B)$ est bien typé,
- ▶ si $(\Gamma[x:A], t, B)$ est bien typé alors $(\Gamma, \lambda x. t, A \rightarrow B)$ est bien typé.

Notation Quand le triplet (Γ, t, A) est bien typé, on dit que t a le $type\ A\ dans\ \Gamma$, et on écrit $\Gamma \vdash t : A$.

Système d'inférence associé

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash B \quad \Delta \vdash v : A}$$
Cont
$$\frac{\Gamma \vdash u : A \to B \quad \Delta \vdash v : A}{\Gamma, \Delta \vdash (u \ v) : B}$$
App
$$\frac{\Gamma[x : A] \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B}$$
Gen

Quel(s) type(s) peut-on associer au lambda-terme $\lambda x.x$?

Quel(s) type(s) peut-on associer au lambda-terme $\lambda x.x$?

Le lambda-terme $\lambda x.x$ admet pour type $A \rightarrow A$, quel que soit le type A.

$$\frac{\overline{x:A \vdash x:A} \text{ Cont}}{\vdash \lambda x.x:A \to A} \text{ Gen}$$

Un terme non typable

Montrer que le terme (x x) n'est pas typable.

Un terme non typable

Montrer que le terme (x x) n'est pas typable.

Si (x x) était typable, on aurait d'après la règle App, x à la fois de type $A \to B$ et de type A. Or, pour tous types A et B, on peut montrer (par induction sur A) que $A \ne A \to B$.

Donner un type pour les termes suivants.

$$\frac{a:B\to (C\to A)\vdash a:B\to (C\to A)}{a:B\to (C\to A),b:B\vdash (a\,b):C\to A} \xrightarrow{\text{App}} \xrightarrow{\text{Cont}} \xrightarrow{a:B\to (C\to A),b:B\vdash (a\,b):C\to A} \xrightarrow{\text{App}} \xrightarrow{c:C\vdash c:C} \xrightarrow{\text{App}}$$

$$\frac{a:B\to (C\to A),b:B\vdash (a\,b):C\to A}{a:B\to (C\to A),b:B\vdash \lambda c.((a\,b)\,c):A} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to (C\to A)\vdash \lambda b.\lambda c.((a\,b)\,c):B\to (C\to A)} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to (C\to A)\vdash \lambda b.\lambda c.((a\,b)\,c):B\to (C\to A)} \xrightarrow{\text{Gen}} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to (C\to A)\vdash \lambda b.\lambda c.((a\,b)\,c):B\to (C\to A)} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to A,b.\lambda c.((a\,b)\,c):(B\to (C\to A))\to (B\to (C\to A))} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to A,b:C:\to B,c:C\vdash (a\,(b\,c)):A} \xrightarrow{\text{App}} \xrightarrow{a:B\to A,b:C:\to B\vdash \lambda c.(a\,(b\,c)):C\to A} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to A\vdash \lambda b.\lambda c.(a\,(b\,c)):(C\to B)\to (C\to A)} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to A\vdash \lambda b.\lambda c.(a\,(b\,c)):(C\to B)\to (C\to A)} \xrightarrow{\text{Gen}} \xrightarrow{\text{Gen}} \xrightarrow{a:B\to A\vdash \lambda b.\lambda c.(a\,(b\,c)):(C\to B)\to (C\to A)} \xrightarrow{\text{Gen}} \xrightarrow{\text{Gen}$$

Théorème de correspondance

On restreint ici la logique minimale NM aux formule formées avec \Rightarrow uniquement. Seuls les règles intro $_{\Rightarrow}$, elim $_{\Rightarrow}$ et Ax sont nécessaires.

Nous identifions les variables propositionnelles et les types de base par une bijection Φ et étendons cette bijection aux formules en posant

$$\Phi((p \Rightarrow q)) = \Phi(p) \to \Phi(q)$$

Théorème de correspondance

Théorème

Soient $A_1, ..., A_n$, A des formules propositionnelles (uniquement avec \Rightarrow), $A_1, ..., A_n \vdash A$ si et seulement si il existe un terme typé de type $\Phi(A)$ dans le contexte $x_1 : \Phi(A_1), ..., x_n : \Phi(A_n)$.

Donner une preuve des formules suivantes sous forme de lambda-terme.

- $(A \Rightarrow B \Rightarrow (C \Rightarrow D) \Rightarrow E) \Rightarrow ((A \Rightarrow D) \Rightarrow F) \Rightarrow (A \Rightarrow (B \Rightarrow E) \Rightarrow C) \Rightarrow (C \Rightarrow D) \Rightarrow F$

La solution en Caml...

```
# let f = fun a b -> a;;
val f : 'a -> 'b -> 'a = <fun>
```

La solution en Caml...

let f = fun a b -> a;;

```
val f : 'a -> 'b -> 'a = <fun>
# let f = fun x y z -> x z (y z);;
val f : ('a -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'c = <fun>
```

La solution en Caml...

```
# let f = fun a b -> a;;
val f : 'a -> 'b -> 'a = < fun >
# let f = fun x y z -> x z (y z);;
val f : ('a -> 'b -> 'c) -> ('a -> 'b) -> 'a -> 'c = < fun>
# let f =
  fun x y z t -> y (fun u -> (t (z u (fun v -> x u v t))));
val f:
  ('a \rightarrow 'b \rightarrow ('c \rightarrow 'd) \rightarrow 'e) \rightarrow
  (('a \rightarrow 'd) \rightarrow 'f) \rightarrow ('a \rightarrow ('b \rightarrow 'e) \rightarrow 'c) \rightarrow
  ('c -> 'd) -> 'f = < fun>
```

L'assistant de preuve Coq

En Coq, toutes les preuves sont représentées par des λ -termes.

- La logique sous-jacente est beaucoup plus riche que la logique propositionnelle (ou même du premier ordre).
- Le λ-calcul sous-jacent est muni d'un système de type beaucoup plus riche que celui du λ-calcul simplement typé.

En Coq,

programme = preuve!

Exemple: la preuve de \forall n : nat, $n \neq 0 \Rightarrow \exists p$, n = p + 1 correspond au programme qui calcule le prédécesseur d'un entier.

Toutes les règles de déduction

$$\operatorname{intro}_{\Rightarrow} \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \operatorname{elim}_{\Rightarrow} \frac{\Gamma \vdash A \quad \Delta \vdash A \Rightarrow B}{\Gamma, \Delta \vdash B}$$

$$\operatorname{intro}_{\wedge} \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma, \Delta \vdash A \land B} \qquad \operatorname{elim}_{\wedge}^{1} \frac{\Gamma \vdash A \land B}{\Gamma \vdash A} \qquad \operatorname{elim}_{\wedge}^{2} \frac{\Gamma \vdash A \land B}{\Gamma \vdash B}$$

$$\operatorname{intro}_{\vee}^{1} \frac{\Gamma \vdash A}{\Gamma \vdash A \lor B} \qquad \operatorname{intro}_{\vee}^{2} \frac{\Gamma \vdash B}{\Gamma \vdash A \lor B}$$

$$\operatorname{elim}_{\vee} \frac{\Gamma \vdash A \lor B \quad \Delta, A \vdash C \quad \Delta', B \vdash C}{\Gamma, \Delta, \Delta' \vdash C}$$

$$\operatorname{intro}_{\neg} \frac{\Gamma, A \vdash \neg B \quad \Delta, A \vdash B}{\Gamma, \Delta \vdash \neg A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg A \quad \Delta \vdash A}{\Gamma, \Delta \vdash B}$$

$$\operatorname{elim}_{\perp} \frac{\Gamma \vdash \bot}{\Gamma \vdash A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$

$$\operatorname{TE}_{\neg} \frac{\Gamma \vdash A \lor \neg A}{\Gamma, \Delta \vdash A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A} \qquad \operatorname{elim}_{\neg} \frac{\Gamma \vdash \neg \neg A}{\Gamma \vdash A}$$

Plan

- Logique minimale
- 2 Logique intuitionniste
- 3 Logique classique
- 4 Correction et complétude
- 5 Introduction à l'isomorphisme de Curry-Howard
- 6 Memento

