# ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Лекция 3

#### Лекция 3

- Проверка гипотез
- Проверка нормальности распределения результатов наблюдений

#### Проверка гипотез. Этапы

- 1. Формулировка основной гипотезы  $H_0$  и конкурирующей гипотезы  $H_1$ .
- 2. Задание уровня значимости α, на котором в дальнейшем и будет сделан вывод о справедливости гипотезы.
- 3. Расчёт статистики ф критерия такой, что:
  - её величина зависит от исходной выборки
  - сама статистика ф должна подчиняться какому-то известному закону распределения
  - $^{\mbox{\tiny $^{\circ}$}}$  по её значению можно делать выводы об истинности гипотезы  $H_0$
- 4. Построение критической области.
- 5. Вывод об истинности гипотезы. Решение об отвержении (или принятии) выдвинутой гипотезы  $H_0$ .

#### Нулевая гипотеза Н<sub>0</sub>

Нулевая гипотеза — это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п.

Например,  $\mu_1 = \mu_2$ 

### Уровень значимости. Критическая область

Уровень значимости α — это такое (достаточно малое) значение вероятности события, при котором событие уже можно считать неслучайным.

 $\alpha$ =0.01, 0.02, 0.05

При попадании **статистики критерия** ф в критическую область, нулевая гипотеза отклоняется.

#### Виды критической области

Левосторонняя критическая область

$$(-\infty, \varphi_{\alpha})$$

где

$$P(\phi < \phi_{\alpha}) = \alpha$$



#### Виды критической области

Правосторонняя критическая область

$$(\phi_{1-\alpha}, \infty)$$

где

$$P(\phi < \phi_{1-\alpha}) = 1 - \alpha$$

#### Виды критической области

Двусторонняя критическая область

$$\left(-\infty, \varphi_{\alpha/2}\right) \cup \left(\varphi_{1-\alpha/2}, \infty\right)$$

где

$$P(\phi < \phi_{\alpha/2}) = \frac{\alpha}{2}, P(\phi < \phi_{1-\alpha/2}) = 1 - \frac{\alpha}{2}$$

 $\phi_{\alpha/2}$ 

 $\phi_{1-\alpha/2}$ 

### Уровень значимости. Мощность критерия

Уровень значимости α — это такое (достаточно малое) значение вероятности события, при котором событие уже можно считать неслучайным.

Уровень значимости  $\alpha$  — вероятность отклонить нулевую гипотезу  $H_0$ , когда на самом деле она верна.

Мощность критерия 1- $\beta$  — вероятность отклонить гипотезу  $H_0$ , если на самом деле верна альтернативная гипотеза  $H_1$ .

## Уровень значимости. Мощность критерия



## Проверка гипотез. Ошибки первого и второго рода

Ошибки при проверке гипотез

|                               | Решение                            |                                    |  |  |
|-------------------------------|------------------------------------|------------------------------------|--|--|
|                               | Принять Н <sub>0</sub>             | Принять $H_1$                      |  |  |
| Справедлива<br>Н <sub>0</sub> | Правильное<br>с вероятностью 1 – α | Ошибочное с вероятностью $\alpha$  |  |  |
| Справедлива<br>Н <sub>1</sub> | Ошибочное<br>с вероятностью β      | Правильное<br>с вероятностью 1 – β |  |  |

### Проверка гипотез. Ошибки первого и второго рода

Ошибки при проверке гипотез

| • • •          | Решение                |                         |  |  |  |
|----------------|------------------------|-------------------------|--|--|--|
|                | Принять Н <sub>0</sub> | $\Pi$ ринять $H_1$      |  |  |  |
| Справедлива    | Правильное             | Ошибочное               |  |  |  |
| Н <sub>0</sub> | с вероятностью 1 – α   | с вероятностью $\alpha$ |  |  |  |
| Справедлива    | Ошибочное              | Правильное              |  |  |  |
| Н <sub>1</sub> | с вероятностью β       | с роятностью 1 – β      |  |  |  |

Ошибка первого рода

### Проверка гипотез. Ошибки первого и второго рода

Ошибки при проверке гипотез

|                               | Решение                            |                                    |  |  |  |
|-------------------------------|------------------------------------|------------------------------------|--|--|--|
|                               | Принять Н <sub>0</sub>             | $\Pi$ ринять $H_1$                 |  |  |  |
| Справедлива<br>Н <sub>0</sub> | Правильное<br>с вероятностью 1 – α | Ошибочное с вероятностью $\alpha$  |  |  |  |
| Справедлива $H_1$             | Ошибочное<br>с вероятностью β      | Правильное<br>с вероятностью 1 – β |  |  |  |

Ошибка второго рода

#### Ошибки первого и второго рода



#### Ошибки первого рода



#### Ошибки второго рода



### Проверка нормальности распределения

$$\{x_1, x_2 ... x_n\}$$



### Проверка нормальности распределения

$$\{x_1, x_2 ... x_n\}$$

Н<sub>0</sub> - распределение результатов подчиняется нормальному закону



### Проверка нормальности распределения





$$\{N_1, N_2 ... N_k\}$$

$$\{v_1, v_2 ... v_k\}$$

Если верна гипотеза  $H_0$ , то статистика

$$\rho(X) = \sum_{i=1}^{k} \frac{(\nu_i - N_i)^2}{N_i}$$

имеет распределение  $\chi^2$  при  $n \rightarrow \infty$ 

• Делаем оценку математического ожидания и дисперсии на основании выборки

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

- Разбиваем всю область на *k* интервалов
- Строим случайную величину

$$z_i = \frac{x_{0i} - x}{S}$$

• Находим теоретическую частоту попаданий в каждый интервал v<sub>i</sub>

$$v_i = n \cdot \int_{z_{i-1}}^{z_i} f(z) dz$$

$$f(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right)$$



Вычисляем критерий согласия

$$\rho(X) = \sum_{i=1}^{k} \frac{(\nu_i - N_i)^2}{N_i}$$

Число степеней свободы *k*-3

$$\rho(X) > \rho(k, \alpha)$$
 –

 $H_0$  отвергаем!

$$\rho(X) < \rho(k, \alpha)$$
 —  $\mathbf{H_0}$  принимаем!



$$\{x_1, x_2 ... x_n\}$$

$$\bar{x} = 1.09$$

$$S = 2.35$$

10 интервалов



$$v_i = n \cdot \int_{z_{i-1}}^{z_i} f(z) dz$$

Если в интервал теоретически попадает меньше 5-ти значений, этот интервал объединяют с соседним





Число интервалов уменьшилось, k=8

То же самое делаем в экспериментальной гистограмме



$$\rho(X) = \sum_{i=1}^{8} \frac{(\nu_i - N_i)^2}{N_i} = 5.22$$

Число степеней свободы k-3=5, уровень значимости  $\alpha$ =0.05

| k | Уровень значимости $\alpha$ , % |        |        |        |        |
|---|---------------------------------|--------|--------|--------|--------|
|   | 20                              | 10     | 5      | 1      | 0.5    |
| 4 | 5.989                           | 7.779  | 9.488  | 13.277 | 14.860 |
| 5 | 7.289                           | 9.236  | 11.070 | 15.086 | 16.750 |
| 6 | 8.558                           | 10.645 | 12.592 | 16.812 | 18.548 |

$$\rho(X) < \rho(k, \alpha) - H_0$$
 принимаем!