

Open-source from/in the enterprise: the RDKit

Gregory Landrum

NIBR Informatics

Novartis Institutes for BioMedical Research, Basel, Switzerland

Outline

- RDKit integration with other open-source projects
 - Knime
 - PostgreSQL
 - IPython
 - Pandas
 - Lucene
- RDKit in NIBR, some case studies

What is this all about?

Exact same algorithms/implementations accessible from many different endpoints

EMBL-EBI

Knime integration

Open-source RDKit-based nodes for Knime providing cheminformatics functionality

 Trusted nodes distributed from knime community site

 Work in progress: more nodes being added (new wizard makes it easy)

KNIME + RDKit

What's there?

- ▶ ⑥ EMBL-EBI
- ▼ 🔤 RDKit
 - ▶ @ Converters
 - ▶ @ Modifiers
 - ▶ @ Calculators
 - ▶ @ Geometry
 - ▶ market
 Fingerprints
 - 🕨 🔤 Fragments
 - ▶ 600 Searching
 - ▶ @ Reactions
 - ▶ ® Viewing
 - Experimental
 - ▶ @ Testing

▼ 🙉 RDKit

- - RDKit From Molecule
 - RDKit To Molecule
 - RDKit From InChl
 - RDKit To InChl
 - RDKit From IUPAC
 - 儒RDKit Canon SMILES
- ▼ @ Modifiers
 - RDKit Add Hs
 - RDKit Remove Hs
 - RDKit Aromatizer
 - RDKit Kekulizer
 - 🙀 RDKit Salt Stripper
- - RDKit Descriptor Calculation
 - RDKit Calculate Charges
- ▼ @ Geometry
 - RDKit Generate Coords
 - RDKit Optimize Geometry
 - RDKit Add Conformers
 - RDKit Open 3D Alignment
 - RDKit RMSD Filter

- Geometry
- ▼ em Fingerprints
 - RDKit Fingerprint
 - m RDKit Fingerprint Reader
 - RDKit Fingerprint Writer
 - 🔎 RDKit Diversity Picker
- ▼ Fragments
 - RDKit Molecule Fragmenter
 - RDKit Find Murcko Scaffolds
- ▼ @ Searching
 - RDKit Substructure Filter
 - 🔎 RDKit Molecule Substructure Filter
 - RDKit Dictionary Substructure Filter
 - RDKit Functional Group Filter
 - RDKit Substructure Counter
- ▼ @ Reactions
 - RDKit One Component Reaction
 - RDKit Two Component Reaction
- ▼ Priewing
 - RDKit Interactive Table
 - RDKit SMILES Headers
 - RDKit Highlighting Atoms
- ▼ Experimental
 - RDKit R Group Decomposition

CITANVOR

RDKit Interactive Table

KNIME interactive table with molecules as column headers

Functionality for working with 3D molecules

Example: flexible molecule-molecule alignment

- PostgreSQL (http://www.postgresql.org): a robust, flexible, and extensible relational open-source database. Rich collection of extensions available
- RDKit "cartridge":
 - Fast substructure and similarity search
 - Fingerprints (count-based and bit-vector):
 Morgan (ECFP-like), FeatMorgan (FCFP-like), RDKit (Daylight like), atom pair, topological torsion, MACCS
 - Standard molecule properties and descriptors
- Basis for myChEMBL (http://chembl.blogspot.co.uk/2013/10/chembl-virtual-machine-aka-mychembl.html) Ochoa, R., Davies, M., Papadatos, G., Atkinson, F., & Overington, J. P. (2014). myChEMBL: a virtual machine implementation of open data and cheminformatics tools. *Bioinformatics*, 30(2), 298–300.

Substructure search

Time: 112.325 ms


```
chembl 17=# select molregno,m from rdk.mols where
m@>'c1ccc2c(c1)C(=NN(C2=O)Cc3nc4cc(ccc4s3)C)CC(=O)O';
molregno
     7502
           O=C(O)Cc1nn(Cc2nc3cc(C(F)(F)F)ccc3s2)c(=O)c2ccccc12
           O=C(O)Cc1nn(Cc2nc3cc(C(F)(F)F)cc(C(F)(F)F)c3s2)c(=O)c2cccc12
    23364
           O=C(O)Cc1nn(Cc2nc3cc(C(F)(F)F)cc(C1)c3s2)c(=O)c2ccccc12
    23439
    23462
           O=C(O)Cc1nn(Cc2nc3cc(C(F)(F)F)cc(F)c3s2)c(=O)c2ccccc12
           Cc1cc2nc(Cn3nc(CC(=0)0)c4ccccc4c3=0)sc2c(C)c1
    24192
           COc1cc2sc(Cn3nc(CC(=0)0)c4ccccc4c3=0)nc2cc1C(F)(F)F
    24190
           Cc1ccc2sc(Cn3nc(CC(=0)0)c4ccccc4c3=0)nc2c1
    24194
           O=C(O)Cc1nn(Cc2nc3cc(C(F)(F)F)c(O)cc3s2)c(=O)c2ccccc12
    24237
    24331
           CC(c1nc2cc(C(F)(F)F)ccc2s1)n1nc(CC(=0)0)c2cccc2c1=0
(9 rows)
```


Similarity search


```
chembl 17=# select * from get mfp2 neighbors('O=C(O)Cc1nn(Cc2nc3cc(C(F)
(F)F)ccc3s2)c(=0)c2ccccc12') limit 5;
                                                                      similarity
molregno
                                     m
     7502
           O=C(O)Cc1nn(Cc2nc3cc(C(F)(F)F)ccc3s2)c(=O)c2ccccc12
                                                                                    1
           O=C(O)Cc1nn(Cc2nc3ccc(C(F)(F)F)cc3s2)c(=O)c2ccccc12
    24184
                                                                    0.859649122807018
           O=C(O)Cc1nn(CCc2nc3cc(C(F)(F)F)ccc3s2)c(=O)c2ccccc12
                                                                   0.830508474576271
    24153
    24152
           O=C(O)Cc1nn(Cc2nc3ccccc3s2)c(=O)c2cc(C(F)(F)F)ccc12
                                                                    0.813559322033898
            O=C(O)Cc1nn(Cc2nc3ccccc3s2)c(=O)c2ccc(C(F)(F)F)cc12
    24150
                                                                    0.813559322033898
(5 rows)
```

Time: 1222.426 ms

Notice that results come back in sorted order

+

Other functionality

Other functionality

IPython notebok integration

- IPython: a very powerful interactive shell for python http://www.ipython.org
- IPython notebook: IPython in the browser, with graphics
 - combines code and output in one place
 - great tool for reproducible research
 - Example notebook with graphics.
- RDKit integration:
 - Display molecules, substructure matches, reactions, graphics from PyMOL

```
In [3]: Chem.SetHybridization(m)
    m
Out[3]:
```

```
In [4]: tmp=m.GetSubstructMatch(Chem.MolFromSmarts('clccccl'))
m
Out[4]:
```


IPython notebook integration:

Molecule tables

In [8]: ids,smis= zip(*cmpds)
 mols = [Chem.MolFromSmiles(x) for x in smis]
 Draw.MolsToGridImage(mols,molsPerRow=5,legends=ids)

Out[8]:

http://rdkit.blogspot.ch/2014/02/more-on-datasets-ii.html

IPython notebook integration:

Similarity Maps

In [56]: SimilarityMaps.GetSimilarityMapForFingerprint(ms[0],ms[16],SimilarityMaps.GetTTFingerprint)

Out[56]: (<matplotlib.figure.Figure at 0x109786850>, 0.31663113006396593)

IPython notebook integration: PyMol

RMS: 0.0407469103071

Out[12]:

http://rdkit.blogspot.ch/2013/12/using-allchemconstrainedembed.html

Pandas integration

Pandas: library for working with data tables in Python. Integrates well with matplotlib and ipython

http://pandas.pydata.org/

- RDKit integration:
 - Load smiles tables or SD files into Pandas data tables
 - Adds molecule columns to existing tables with smiles/SD columns
 - Enables substructure filters on tables
 - Integration with IPython notebook to render molecules

Pandas integration

Molecules in tables

In [6]: PandasTools.AddMoleculeColumnToFrame(data,smilesCol='smiles',molCol='molecule',includeFingerprints=False)
data.head(2)

Out[6]:

:		smiles	mutagenic	molecule
	cas			
	2475- 33-4	O=C1c2cccc2C(=O)c3c1ccc4c3[nH]c5c6C(=O)c7ccccc7C(=O)c6c8[nH]c9c%10C(=O)c%11ccccc%11C(=O)c%10ccc9c8c45	0	œ & &
	820-75- 7	NNC(=0)CNC(=0)\C=N\#N	1	None

Substructure filters

In [11]: data.groupby(data['molecule'] >= nitroso).describe().unstack()

Out[11]:

	mutagenic								
	count	mean	std	min	25%	50%	75%	max	
molecule									
False	5217	0.461760	0.498583	0	0	0	1	1	
True	1233	0.838605	0.368044	0	1	1	1	1	

Lucene integration

- Still in the experimental stage
- Adds substructure search functionality with fingerprint screenout to Lucene
- Includes demo app for testing

- Extensive use by CADD, informaticians, and IT
- Lots of convenience code/wrappers for accessing internal data sources and tools
- Combined with the Avalon toolkit (another NIBR-supported opensource project), provides the underpinning for many of our global chemistry-based applications

The Avalon toolkit

- C/Java cheminformatics toolkit
- Primary author: Bernd Rohde (NIBR Informatics Basel)
- http://sourceforge.net/projects/avalontoolkit/
- Functionality:
 - Canonical SMILES
 - Avalon fingerprint (highly optimized substructure fingerprint)
 - Molecular standardization (STRUCHK)
 - 2D Coordinate generation
 - Tomcat webapp for 2D rendering
- The RDKit has (optional) Python bindings for much of the functionality

Case study 1: Clx Framework

- "Service bus" for cheminformatics/CADD services
- Handles format conversions for input/output automatically
 i.e. callers can provide SMILES input to a service/model wants CTABs with 3D
 coordinates
- Supports versioning of models/services
- Tight integration with scientific tools (e.g. Tibco Spotfire, Knime, Instant JChem, etc.)
- Enables trivial addition of "chemical intelligence" to web apps
- Makes it easy to globally deploy models: once a new model/service (or new version of a model/service) is registered with the Framework, it is instantly globally accessible

Clx Framework architecture

Case study 2: Small-Molecule Registration

- Internally developed web application for compound registration
- C#-based web services writing to Oracle
- RDKit + Avalon toolkit for structure standardization
- RDKit + InChI used for structure-key calculation
- Calls out to Clx Framework for standard computed properties
- Independent (but validated) Python implementation of standardization and structure-key calculation for standalone use

Case study 3: QSAR Toolkit

- Descriptor calculator providing access to all available internal descriptors
- Tools for pulling assay data from our data warehouse
- Standardized model-building
- Standardized reporting for evaluation and peer review
- Packaging for deployment via Clx Framework
- Model Watchdog:

Pulls most recent data, generates predictions, creates report showing evolution of model accuracy over time

NOVARTIS INSTITUTES FOR BIOMEDICAL RESEARCH + RDKit

Case study 4: Similarity Server

- Central PostgreSQL database with easily available compounds
 - in-house available
 - available from reliable vendors
- Kept up-to-date
- Substructure search
- Similarity search with various fingerprints:
 - Avalon
 - Morgan2, Morgan3, FeatMorgan2
 - Atom Pairs, Topological Torsions
- Web services interface
- Available to chemists via one of their standard desktop tools
- Currently deploying a new version based on chemfp

Case study 5: Compound Series and Favorites

- Central system to store definitions of the chemical series that project teams are working on
- Captures annotations and relationships
- Searchable, including Markush search (using ChemAxon cartridge)
- Accessible via web services
- RDKit used for scaffold validation

Case study 5: Compound Series and Favorites

NOVARTIS INSTITUTES FOR BIOMEDICAL RESEARCH + RDKit

Case study 5: Compound Series and Favorites

PD 172938 💉

NIBR Open Source

Something new

http://www.rdkit.org

Acknowledgements

- General:
 - Remy Evard (NIBR/Informatics)
 - Richard Lewis (NIBR/GDC)
 - Tom Digby (NIBR/Legal)
 - Peter Gedeck (NIBR/GDC)
 - Nik Stiefl (NIBR/GDC)
- RDKit Community
 - Roger Sayle (NextMove): PDB Parser
 - Andrew Dalke (Dalke Scientific): FMCS
 - Paolo Tosco (University of Turin, now Cresset): MMFF94, Open3DAlign
 - Jameed Hussain (GSK, now CCG): Fraggle, mmpa
- Pandas, scikit-learn:
 - Sereina Riniker (NIBR/Informatics, now ETH)
 - Nikolas Fechner (NIBR/Informatics)
- Knime:
 - Manuel Schwarze (NIBR/Informatics)
 - Thorsten Meinl (knime.com)
 - Bernd Wiswedel (knime.com)

SMR

- Thomas Mueller (NIBR/Informatics)
- Thomas Veith (NIBR/Informatics)
- Dave Cotter (NIBR/Informatics)
- QSAR Toolkit:
 - Peter Gedeck (NIBR/GDC)
 - Nikolas Fechner (NIBR/Informatics)
- Clx Framework
 - Sandra Mueller (NIBR/Informatics)
 - Joerg Muehlbacher (NIBR/CPC)
 - Riccardo Vianello (NIBR/Informatics)
- Compound Series & Favorites
 - Anna Pelliccioli (NIBR/Informatics)
 - Manuel Schwarze (NIBR/Informatics)
 - Recca Chatterjee (NIBR/Informatics)
 - Mikhail Rybalkin (NIBR/Informatics)
 - Roman Bolshev (NIBR/Informatics)
- NIBR Open Source
 - Ken Robbins (NIBR/Informatics)
 - Dennis Jen (NIBR/Informatics)
 - Mark Schreiber (NIBR/Informatics)

