Relationships between Probability Distributions

Note: The gamma distribution mentioned in this notes uses parameters shape and rate: i.e. Gamma(α,β) where α is shape, β is rate. There is a different parametrisation using shape and scale

DISCRETE DISTRIBUTIONS										
	range X	parameters	pmf f_X	cdf F_X	$\mathrm{E}[X]$	$\operatorname{Var}[X]$	mgf M_X			
Bernoulli(heta)	{0,1}	$ heta \in (0,1)$	$\theta^x (1-\theta)^{1-x}$		θ	$\theta(1-\theta)$	$1 - \theta + \theta e^t$			
Binomial(n, heta)	$\{0,1,,n\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n}{x}\theta^x(1-\theta)^{n-x}$		$n\theta$	$n\theta(1- heta)$	$(1- heta+ heta e^t)^n$			
$Poisson(\lambda)$	$\{0,1,2,\}$	$\lambda \in \mathbb{R}^+$	$\frac{e^{-\lambda}\lambda^x}{x!}$		λ	λ	$\exp\left\{\lambda\left(e^{t}-1\right)\right\}$			
Geometric(heta)	$\{1, 2,\}$	$ heta \in (0,1)$	$(1-\theta)^{x-1}\theta$	$1-(1-\theta)^x$	$\frac{1}{\theta}$	$\frac{(1- heta)}{ heta^2}$	$\frac{\theta e^t}{1 - e^t (1 - \theta)}$			
NegBinomial(n, heta)	$\{n,n+1,\ldots\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{x-1}{n-1}\theta^n(1-\theta)^{x-n}$		$\frac{n}{\theta}$	$\frac{n(1- heta)}{ heta^2}$	$\left(\frac{\theta e^t}{1 - e^t(1 - \theta)}\right)^n$			
or	$\{0,1,2,\ldots\}$	$n \in \mathbb{Z}^+, \theta \in (0,1)$	$\binom{n+x-1}{x}\theta^n(1-\theta)^x$		$\frac{n(1- heta)}{ heta}$	$\frac{n(1-\theta)}{\theta^2}$	$\left \left(\frac{\theta}{1 - e^t (1 - \theta)} \right)^n \right $			

CONTINUOUS DISTRIBUTIONS										
		parameters	pdf	cdf	$\mathrm{E}[X]$	$\operatorname{Var}[X]$	mgf			
Uniform(lpha,eta) (stand. model $lpha=0,eta=1$)	(α, β)	$\alpha < \beta \in \mathbb{R}$	$\frac{1}{eta-lpha}$	$\frac{x-\alpha}{\beta-\alpha}$	$\frac{(\alpha+eta)}{2}$	$\frac{(\beta - \alpha)^2}{12}$	$\frac{e^{\beta t} - e^{\alpha t}}{t(\beta - \alpha)}$			
$Exponential(\lambda)$ (stand. model $\lambda = 1$)	\mathbb{R}^+	$\lambda \in \mathbb{R}^+$	$\lambda e^{-\lambda x}$	$1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\left(\frac{\lambda}{\lambda - t}\right)$			
$Gamma(\alpha, \beta)$ (stand. model $\beta = 1$)	\mathbb{R}^+	$\alpha,\beta\in\mathbb{R}^+$	$rac{eta^{lpha}}{\Gamma(lpha)}x^{lpha-1}e^{-eta x}$		$\frac{lpha}{eta}$	$\frac{lpha}{eta^2}$	$\left(\frac{\beta}{\beta-t}\right)^{\alpha}$			
Weibull(lpha,eta) (stand. model $eta=1$)	\mathbb{R}^+	$\alpha, \beta \in \mathbb{R}^+$	$\alpha \beta x^{\alpha-1} e^{-\beta x^{\alpha}}$	$1 - e^{-\beta x^{lpha}}$	$\frac{\Gamma\left(1+1/\alpha\right)}{\beta^{1/\alpha}}$	$\frac{\Gamma\left(1+\frac{2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^2}{\beta^{2/\alpha}}$				
$Normal(\mu,\sigma^2)$ (stand. model $\mu=0,\sigma=1$)	R	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}^+$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$		μ	σ^2	$e^{\{\mu t + \sigma^2 t^2/2\}}$			
Student(u)	R	$ u\in\mathbb{R}^+$	$\frac{(\pi\nu)^{-\frac{1}{2}}\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)\left\{1+\frac{x^2}{\nu}\right\}^{(\nu+1)/2}}$		0 (if $\nu > 1$)	$\frac{\nu}{\nu-2} (\text{if } \nu > 2)$				
Pareto(heta, lpha)	\mathbb{R}^+	$ heta, lpha \in \mathbb{R}^+$	$\frac{\alpha\theta^{\alpha}}{\left(\theta+x\right)^{\alpha+1}}$	$1 - \left(\frac{\theta}{\theta + x}\right)^{\alpha}$	$\frac{\theta}{\alpha - 1}$ (if $\alpha > 1$)	$\frac{\alpha\theta^2}{(\alpha-1)^2(\alpha-2)}$ (if $\alpha > 2$)				
Beta(lpha,eta)	(0,1)	$\alpha, \beta \in \mathbb{R}^+$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$		$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$				

Binomial distribution is sum of iid Bernoulli

$$X \sim \text{Binomial}(n, \theta) \Longrightarrow X = \sum_{i=1}^{n} X_i \text{ where } X_i \sim \text{Bernoulli}(\theta)$$

Poisson distribution can be cut into n iid small fragments

$$X \sim \operatorname{Poisson}(\lambda) \Longrightarrow X = \sum\limits_{i=1}^n X_i \text{ where } X_i \sim \operatorname{Poisson}(\lambda/n) \text{, so that } \mu = E(X_i) = \lambda/n$$
 and $\sigma^2 = Var(X_i) = \lambda/n$

Negative Binomial is sum of iid geometric distributions

$$X \sim \text{Negative Binomial}(n, \theta) \Longrightarrow X = \sum_{i=1}^{n} X_i \text{ where } X_i \sim \text{Geometric}(\theta), \text{ so that } \mu = E(X_i) = 1/\theta \text{ and } \sigma^2 = Var(X_i) = (1-\theta)/\theta^2, \text{ and hence}$$

Linearity of Normal distribution

if
$$X \sim N(\mu_1, \sigma_1^2)$$
, $Y \sim N(\mu_2, \sigma_2^2)$, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$
 $X - Y \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$

if
$$X \sim N(\mu, \sigma^2)$$
, then $kX \sim N(k\mu, k^2\sigma^2)$

Student t-distribution

If X_1 , X_2 , ..., $X_n \sim N(0, \sigma^2)$ where σ^2 is unknown, then $(\bar{x}_n - \mu) / (S/\sqrt{n}) \sim t_{n-1}$ where \bar{x}_n is mean of X_1 , X_2 , ..., X_n

Chi-squared ·

 $\chi^2_n = \sum Z_i^2$ where Z_i are iid N(0, 1) Therefore, for integer k, sum of k iid χ^2_n is χ^2_{kn}

Exp and gamma

$$\begin{split} & \text{Exp}(\lambda) = \text{Gamma}(1,\,\lambda) \\ & \text{sum of n iid Gamma}(1,\,\lambda) \, \sim \text{Gamma}(n,\,\lambda), \quad \text{sum of k iid Gamma}(\lambda,\,1) \, \sim \\ & \text{Gamma}(\lambda,\,k) \\ & \text{so sum of n iid Exp}(\lambda) \text{ is Gamma}(n,\,\lambda) \end{split}$$

$$\chi^2_n \sim \text{Gamma}(n/2, 1/2)$$

so Exp(1/2) = χ^2_2

Gamma(a, λ) = Gamma(a, 1) / λ

so 2λ Gamma(n, λ) = Gamma(n, 1/2) = χ^2_{2n}

Gamma and F-distribution

If U ~ Gamma(
$$\alpha_1$$
, β_1), V ~ Gamma(α_2 , β_2), then $\alpha_2 \beta_1$ U / $\alpha_1 \beta_2$ V ~ $F_{2\alpha_1, 2\alpha_2}$

Dirichlet Distribution:

A general result is that if for $i=1,2,\ldots k$, $U_i\sim \Gamma(lpha_i,eta)$ independent, then

$$\frac{1}{\sum_{i=1}^k U_i}(U_1, U_2, \dots U_k) \sim \text{Dirichlet}(\alpha_1, \alpha_2, \dots \alpha_k),$$