Package 'phylosamp'

May 24, 2023

```
Type Package
Title Sample Size Calculations for Molecular and Phylogenetic Studies
Version 1.0.1
Date 2023-04-25
Maintainer Justin Lessler < jlessler@unc.edu>
Description
     Implements novel tools for estimating sample sizes needed for phylogenetic studies, including
     studies focused on estimating the probability of true pathogen transmission be-
     tween two cases given phylogenetic linkage and studies focused on tracking pathogen vari-
     ants at a population level. Methods de-
     scribed in Wohl, Giles, and Lessler (2021) and in Wohl, Lee, DiPrete, and Lessler (2023).
License GPL-2
URL https://github.com/HopkinsIDD/phylosamp
BugReports https://github.com/HopkinsIDD/phylosamp/issues
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Depends R (>= 2.10), stats
Imports cli, lifecycle, rlang
Suggests cowplot, ggplot2, knitr, purrr, RColorBrewer, reshape2,
     rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation no
Author Shirlee Wohl [aut, ctb],
     Elizabeth C Lee [aut, ctb],
     Lucy D'Agostino McGowan [aut, ctb]
      (<https://orcid.org/0000-0002-6983-2759>),
     John R Giles [aut, ctb],
     Justin Lessler [aut, cre]
```

Repository CRAN

Date/Publication 2023-05-23 23:12:10 UTC

R topics documented:

exp_links
falsediscoveryrate
genDistSim
gendist_distribution
gendist_roc_format
gendist_sensspec_cutoff
gen_dists
get_optim_roc
obs_pairs_mtml
obs_pairs_mtsl
obs_pairs_stsl
optim_roc_threshold
prob_trans_mtml
prob_trans_mtsl
prob_trans_stsl
relR_power
relR_power_simulated
relR_samplesize
relR_samplesize_basic
relR_samplesize_ci
relR_samplesize_linkerr
relR_samplesize_opterr
relR_samplesize_simsolve
relR_samplesize_solve
samplesize
sens_spec_calc
sens_spec_roc
translink_expected_links_obs
translink_expected_links_obs_mtml
translink_expected_links_obs_mtsl
translink_expected_links_obs_stsl
translink_expected_links_true
translink_expected_links_true_mtml
translink_expected_links_true_mtsl
translink_expected_links_true_stsl
translink_fdr
translink_prob_transmit
translink_prob_transmit_mtml
translink_prob_transmit_mtsl
translink_prob_transmit_stsl
translink_samplesize
translink_tdr

exp_links 3

Index		75
	vartrack_samplesize_prev_xsect	73
	vartrack_samplesize_prev	
	vartrack_samplesize_detect_xsect	
	vartrack_samplesize_detect_cont	
	vartrack_samplesize_detect	
	vartrack_prob_prev_xsect	67
	vartrack_prob_prev	66
	vartrack_prob_detect_xsect	65
	vartrack_prob_detect_cont	64
	vartrack_prob_detect	63
	vartrack_cod_ratio	61
	varfreq_obs_freq	61
	varfreq_freq_logistic	60
	varfreq_expected_mbias	59
	varfreq_cdf_logistic	58
	true_pairs_stsl	57
	true_pairs_mtsl	56
	true_pairs_mtml	55
	true_pairs	54
	truediscoveryrate	53

exp_links

Calculate expected number of links in a sample

Description

[Deprecated] This function calculates the expected number of observed pairs in the sample that are linked by the linkage criteria. The function requires the sensitivity η and specificity χ of the linkage criteria, and sample size M. Assumptions about transmission and linkage (single or multiple) can be specified.

Usage

```
exp_links(eta, chi, rho, M, R = NULL, assumption = "mtml")
```

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
chi	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen (default=NULL)
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:

4 falsediscoveryrate

- 1. 'stsl' for the single-transmission single-linkage assumption (prob_trans_stsl()).
- 2. 'mtsl' for the multiple-transmission single-linkage assumption (prob_trans_mtsl()).
- 3. 'mtml' for the multiple-transmission multiple-linkage assumption (prob_trans_mtml()).

Value

scalar or vector giving the expected number of observed links in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other obs_pairs: obs_pairs_mtml(), obs_pairs_mtsl(), obs_pairs_stsl()
```

Examples

```
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
exp_links(eta=1, chi=0.9, rho=0.5, M=100, assumption='stsl')

# Multiple-transmission and imperfect sensitivity
exp_links(eta=0.99, chi=0.9, rho=1, M=50, R=1, assumption='mtsl')

# Small outbreak, larger sampling proportion
exp_links(eta=0.99, chi=0.95, rho=1, M=50, R=1, assumption='mtml')

# Large outbreak, small sampling proportion
exp_links(eta=0.99, chi=0.95, rho=0.05, M=1000, R=1, assumption='mtml')
```

falsediscoveryrate

Calculate false discovery rate of a sample

Description

[**Deprecated**] This function calculates the false discovery rate (proportion of linked pairs that are false positives) in a sample given the sensitivity η and specificity χ of the linkage criteria, and sample size M. Assumptions about transmission and linkage (single or multiple) can be specified.

Usage

```
falsediscoveryrate(eta, chi, rho, M, R = NULL, assumption = "mtml")
```

falsediscoveryrate 5

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
chi	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen (default=NULL)
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:
	1. 'stsl' for the single-transmission single-linkage assumption (prob_trans_stsl()).
	2. 'mtsl' for the multiple-transmission single-linkage assumption (prob_trans_mtsl()).
	$3. \ \ 'mtml' for the multiple-transmission multiple-linkage assumption (\verb prob_trans_mtml()).$

Value

scalar or vector giving the true discovery rate

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

Other discovery_rate: truediscoveryrate()

```
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
falsediscoveryrate(eta=1, chi=0.9, rho=0.5, M=100, assumption='stsl')

# Multiple-transmission and imperfect sensitivity
falsediscoveryrate(eta=0.99, chi=0.9, rho=1, M=50, R=1, assumption='mtsl')

# Small outbreak, larger sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=1, M=50, R=1, assumption='mtml')

# Large outbreak, small sampling proportion
falsediscoveryrate(eta=0.99, chi=0.95, rho=0.5, M=1000, R=1, assumption='mtml')
```

6 gendist_distribution

genDistSim

Simulations of the genetic distance distribution

Description

This data object contains the genetic distance distributions for 168 values of R between 1.3 and 18. The distributions represent the the average of 1000 simulations for each value, which can be used as a reasonable proxy for the generation distribution for large outbreaks.

Usage

```
genDistSim
```

Format

dataframe

Author(s)

Shirlee Wohl, John Giles, and Justin Lessler

Examples

```
data(genDistSim)
```

gendist_distribution Calculate genetic distance distribution

Description

Function calculates the distribution of genetic distances in a population of viruses with the given parameters

Usage

```
gendist_distribution(
 mut_rate,
 mean_gens_pdf,
 max_link_gens = 1,
 max\_gens = NULL,
  max_dist = NULL
)
```

gendist_roc_format 7

Arguments

mut_rate	mean number of mutations per generation, assumed to be Poisson distributed
mean_gens_pdf	the density distribution of the mean number of generations between cases; the index of this vector is assumed to be the discrete distance between cases
max_link_gens	the maximum generations of separation for linked pairs
max_gens	the maximum number of generations to consider, if NULL (default) value is set to the highest number of generations in mean_gens_pdf with a non-zero probability
max_dist	the maximum distance to calculate, if NULL (default) value is set to max_gens * 99.9th percentile of mut_rate Poisson distribution

Value

a data frame with distances and probabilities

Author(s)

Shirlee Wohl and Justin Lessler

See Also

Other genetic distance functions: gendist_roc_format(), gendist_sensspec_cutoff()

Examples

gendist_roc_format

Make ROC curve from sensitivity and specificity

Description

This is a wrapper function that takes output from the gendist_sensspec_cutoff() function and constructs values for the Receiver Operating Characteristic (ROC) curve

8 gendist_roc_format

Usage

```
gendist_roc_format(
  cutoff,
  mut_rate,
  mean_gens_pdf,
  max_link_gens = 1,
  max_gens = NULL,
  max_dist = NULL
)
```

Arguments

cutoff the maximum genetic distance at which to consider cases linked

mut_rate mean number of mutations per generation, assumed to be Poisson distributed mean_gens_pdf the density distribution of the mean number of generations between cases; the

index of this vector is assumed to be the discrete distance between cases

max_link_gens the maximum generations of separation for linked pairs

max_gens the maximum number of generations to consider, if NULL (default) value set to

the highest number of generations in mean_gens_pdf with a non-zero probability

max_dist the maximum distance to calculate, if NULL (default) value set to max_gens *

99.9th percentile of mut_rate Poisson distribution

Value

data frame with cutoff, sensitivity, and 1-specificity

Author(s)

Shirlee Wohl and Justin Lessler

See Also

```
Other genetic distance functions: gendist_distribution(), gendist_sensspec_cutoff()
Other ROC functions: optim_roc_threshold()
```

gendist_sensspec_cutoff

gendist_sensspec_cutoff

Calculate sensitivity and specificity of a genetic distance cutoff

Description

Function to calculate the sensitivity and specificity of a genetic distance cutoff given an underlying mutation rate and mean number of generations between cases

Usage

```
gendist_sensspec_cutoff(
  cutoff,
  mut_rate,
  mean_gens_pdf,
  max_link_gens = 1,
  max_gens = NULL,
  max_dist = NULL
)
```

Arguments

cutoff	the maximum genetic distance at which to consider cases linked
mut_rate	mean number of mutations per generation, assumed to be Poisson distributed
mean_gens_pdf	the density distribution of the mean number of generations between cases; the index of this vector is assumed to be the discrete distance between cases
max_link_gens	the maximum generations of separation for linked pairs
max_gens	the maximum number of generations to consider, if NULL (default) value set to the highest number of generations in mean_gens_pdf with a non-zero probability
max_dist	the maximum distance to calculate, if NULL (default) value set to max_gens * 99.9th percentile of mut_rate Poisson distribution

Value

a data frame with the sensitivity and specificity for a particular genetic distance cutoff

10 gen_dists

Author(s)

Shirlee Wohl and Justin Lessler

See Also

Other genetic distance functions: gendist_distribution(), gendist_roc_format()

Examples

gen_dists

Calculate genetic distance distribution

Description

[Deprecated] Function calculates the distribution of genetic distances in a population of viruses with the given parameters

Usage

```
gen_dists(
  mut_rate,
  mean_gens_pdf,
  max_link_gens = 1,
  max_gens = NULL,
  max_dist = NULL
)
```

Arguments

mut_rate mean number of mutations per generation, assumed to be Poisson distributed

mean_gens_pdf the density distribution of the mean number of generations between cases; the
index of this vector is assumed to be the discrete distance between cases

max_link_gens the maximum generations of separation for linked pairs

get_optim_roc 11

max_gens the maximum number of generations to consider, if NULL (default) value is set to the highest number of generations in mean_gens_pdf with a non-zero probability max_dist the maximum distance to calculate, if NULL (default) value is set to max_gens * 99.9th percentile of mut_rate Poisson distribution

Value

a data frame with distances and probabilities

Author(s)

Shirlee Wohl and Justin Lessler

See Also

```
Other mutrate_functions: get_optim_roc(), sens_spec_calc(), sens_spec_roc()
```

Examples

get_optim_roc

Find optimal ROC threshold

Description

[Deprecated] This function takes the dataframe output of the sens_spec_roc() function and finds the optimal threshold of sensitivity and specificity by minimizing the distance to the top left corner of the Receiver Operating Characteristic (ROC) curve

Usage

```
get_optim_roc(roc)
```

Arguments

roc

a dataframe produced by the sens_spec_roc() function containing the Receiver Operating Characteristic (ROC) curve

obs_pairs_mtml

Value

vector containing optimal thresholds of sensitivity and specificity

Author(s)

Shirlee Wohl, John Giles, and Justin Lessler

See Also

```
Other mutrate_functions: gen_dists(), sens_spec_calc(), sens_spec_roc()
```

Examples

```
# ebola-like pathogen
R <- 1.5
mut_rate <- 1</pre>
# use simulated generation distributions
data(genDistSim)
mean_gens_pdf <- as.numeric(genDistSim[genDistSim$R == R, -(1:2)])</pre>
# get theoretical genetic distance dist based on mutation rate and generation parameters
dists <- as.data.frame(gen_dists(mut_rate = mut_rate,</pre>
                                   mean_gens_pdf = mean_gens_pdf,
                                   max_link_gens = 1)
# reshape dataframe for plotting
dists <- reshape2::melt(dists,</pre>
                         id.vars = 'dist',
                         variable.name = 'status',
                         value.name = 'prob')
# get sensitivity and specificity using the same paramters
roc_calc <- sens_spec_roc(cutoff = 1:(max(dists$dist)-1),</pre>
                           mut_rate = mut_rate,
                           mean_gens_pdf = mean_gens_pdf)
# get the optimal value for the ROC plot
optim_point <- get_optim_roc(roc_calc)</pre>
```

obs_pairs_mtml

Expected number of observed pairs assuming multiple-transmission and multiple-linkage

obs_pairs_mtml

Description

[**Deprecated**] This function calculates the expected number of pairs observed in a sample of size M. The multiple-transmission and multiple-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to multiple cases j in the sampled population (M).
- 3. Linkage events are independent of one another (i.e, linkage of case i to case j has no bearing on linkage of case i to any other sample).

Usage

```
obs_pairs_mtml(chi, eta, rho, M, R)
```

Arguments

chi	scalar or vector giving the specificity of the linkage criteria
eta	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the expected number of linked pairs observed in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

See Also

```
Other obs_pairs: exp_links(), obs_pairs_mtsl(), obs_pairs_stsl()
```

```
# Perfect sensitivity and specificity
obs_pairs_mtml(eta=1, chi=1, rho=0.5, M=100, R=1)
obs_pairs_mtml(eta=0.99, chi=0.9, rho=1, M=50, R=1)
obs_pairs_mtml(eta=0.99, chi=0.9, rho=0.5, M=100, R=1)
```

obs_pairs_mtsl

obs_pairs_mtsl	Expected number of observed pairs assuming multiple-transmission and single-linkage

Description

[**Deprecated**] This function calculates the expected number of pairs observed in a sample of size M. The multiple-transmission and single-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
obs_pairs_mtsl(chi, eta, rho, M, R)
```

Arguments

chi	scalar or vector giving the specificity of the linkage criteria
eta	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the expected number of linked pairs observed in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

See Also

```
Other obs_pairs: exp_links(), obs_pairs_mtml(), obs_pairs_stsl()
```

```
# Perfect sensitivity and specificity
obs_pairs_mtsl(eta=1, chi=1, rho=0.5, M=100, R=1)
obs_pairs_mtsl(eta=0.99, chi=0.9, rho=1, M=50, R=1)
obs_pairs_mtsl(eta=0.99, chi=0.9, rho=0.5, M=100, R=1)
```

obs_pairs_stsl

obs_pairs_stsl	Expected number of observed pairs assuming single-transmission and single-linkage
	single tribulge

Description

[**Deprecated**] This function calculates the expected number of link pairs observed in a sample of size M. The single-transmission and single-linkage method assumes the following:

- 1. Each case i is linked by transmission to only one other case j in the population (N).
- 2. Each case i is linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
obs_pairs_stsl(eta, chi, rho, M)
```

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
chi	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled

Value

scalar or vector giving the expected number of linked pairs observed in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other obs_pairs: exp_links(), obs_pairs_mtml(), obs_pairs_mtsl()
```

```
# perfect sensitivity and specificity
obs_pairs_stsl(eta=1, chi=1, rho=0.5, M=100)
obs_pairs_stsl(eta=0.99, chi=0.9, rho=1, M=50)
obs_pairs_stsl(eta=0.99, chi=0.9, rho=0.5, M=100)
```

optim_roc_threshold

optim_roc_threshold

Find optimal ROC threshold

Description

This function takes the dataframe output of the gendist_roc_format() function and finds the optimal threshold of sensitivity and specificity by minimizing the distance to the top left corner of the Receiver Operating Characteristic (ROC) curve

Usage

```
optim_roc_threshold(roc)
```

Arguments

roc

a dataframe produced by the <code>gendist_roc_format()</code> function containing the Receiver Operating Characteristic (ROC) curve

Value

vector containing optimal thresholds of sensitivity and specificity

Author(s)

Shirlee Wohl, John Giles, and Justin Lessler

See Also

```
Other ROC functions: gendist_roc_format()
```

prob_trans_mtml 17

prob_trans_mtml

Probability of transmission assuming multiple-transmission and multiple-linkage

Description

[**Deprecated**] This function calculates the probability that two cases are linked by direct transmission given that they have been linked by phylogenetic criteria. The multiple-transmission and multiple-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to multiple cases j in the sampled population (M).
- 3. Linkage events are independent of one another (i.e, linkage of case i to case j has no bearing on linkage of case i to any other sample).

Usage

```
prob_trans_mtml(eta, chi, rho, M, R)
```

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
chi	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the probability of transmission between two cases given linkage by phylogenetic criteria

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

18 prob_trans_mtsl

See Also

```
Other prob_trans: prob_trans_mtsl(), prob_trans_stsl()
```

Examples

```
# Perfect sensitivity and specificity
prob_trans_mtml(eta=1, chi=1, rho=0.5, M=100, R=1)
prob_trans_mtml(eta=0.99, chi=0.9, rho=1, M=50, R=1)
prob_trans_mtml(eta=0.99, chi=0.9, rho=0.5, M=100, R=1)
```

prob_trans_mtsl

Probability of transmission assuming multiple-transmission and single-linkage

Description

[**Deprecated**] This function calculates the probability that two cases are linked by direct transmission given that they have been linked by phylogenetic criteria. The multiple-transmission and single-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
prob_trans_mtsl(chi, eta, rho, M, R)
```

Arguments

chi	scalar or vector giving the specificity of the linkage criteria
eta	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the probability of transmission between two cases given linkage by phylogenetic criteria

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

prob_trans_stsl 19

See Also

```
Other prob_trans: prob_trans_mtml(), prob_trans_stsl()
```

Examples

```
# Perfect sensitivity and specificity
prob_trans_mtsl(eta=1, chi=1, rho=0.5, M=100, R=1)
prob_trans_mtsl(eta=0.99, chi=0.9, rho=1, M=50, R=1)
prob_trans_mtsl(eta=0.99, chi=0.9, rho=0.5, M=100, R=1)
```

prob_trans_stsl

Probability of transmission assuming single-transmission and single-linkage

Description

[**Deprecated**] This function calculates the probability that two cases are linked by direct transmission given that they have been linked by phylogenetic criteria. The single-transmission and single-linkage method assumes the following:

- 1. Each case i is linked by transmission to only one other case j in the population (N).
- 2. Each case i is linked by the linkage criteria to only one other case j in the sampled population (M).

For perfect sensitivity, set eta = 1.

Usage

```
prob_trans_stsl(eta, chi, rho, M)
```

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
chi	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled

Value

scalar or vector giving the probability of transmission between two cases given linkage by phylogenetic criteria

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

20 relR_power

See Also

```
Other prob_trans: prob_trans_mtml(), prob_trans_mtsl()
```

Examples

```
# perfect sensitivity and specificity
prob_trans_stsl(eta=1, chi=1, rho=0.2, M=100)

# perfect sensitivity only
prob_trans_stsl(eta=1, chi=0.95, rho=0.2, M=100)

prob_trans_stsl(eta=0.99, chi=0.95, rho=0.9, M=50)

prob_trans_stsl(eta=0.99, chi=0.95, rho=0.05, M=100)
```

relR_power

Calculate power for detecting differential transmission given a sample size

Description

Function to calculate the power given a sample size. This is the top level function to be called to calculate power given a sample size m and a proportion sampled.

Usage

```
relR_power(
    m,
    R_a,
    R_b,
    p_a,
    N = NULL,
    rho = NULL,
    alpha = 0.05,
    alternative = c("two_sided", "less", "greater"),
    sensitivity = 1,
    specificity = 1,
    overdispersion = NULL
)
```

Arguments

n the sample size.

R_a Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0.

relR_power_simulated 21

R_b	Numeric (Positive). The assumed R among the group in the numerator of the ratio. Input value must be greater than 0.
p_a	Numeric. The proportion of the population in group a. Must be between 0 and 1.
N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.
rho	Numeric. The proportion of the infected pool sampled. Only one of rho or N should be specified. Values should be between 0 and 1.
alpha	Numeric. The desired alpha level. Default: 0.05
alternative	Character. Specifies the alternative hypothesis. Must be: two_sided (Default), less, or greater
sensitivity	Numeric. The sensitivity of the linkage criteria. Must be between 0 and 1. Default: 1.
specificity	Numeric. The specificity of the linkage criteria. Must be between 0 and 1. Default: 1.
overdispersion	Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.

Value

The power given m

 ${\tt relR_power_simulated} \quad \textit{Simulate power for detecting differential transmission}$

Description

Simulate power for detecting differential transmission

Usage

```
relR_power_simulated(
    m,
    R_a,
    R_b,
    p_a,
    N,
    alpha = 0.05,
    alternative = c("two_sided", "less", "greater"),
    sensitivity = 1,
    specificity = 1,
    overdispersion = NULL,
    nsims = 1e+05
)
```

22 relR_samplesize

Arguments

m the sample size.	
	e). The assumed R among the group in the denominator of the must be greater than 0.
	e). The assumed R among the group in the numerator of the must be greater than 0.
p_a Numeric. The pro	oportion of the population in group a. Must be between 0 and
N Numeric (Positive be specified.	e). The size of the infected pool. Only one of rho or N should
alpha Numeric. The des	sired alpha level. Default: 0.05
alternative Character. Specification less, or greater	hes the alternative hypothesis. Must be: two_sided (Default),
sensitivity Numeric. The so Default: 1.	ensitivity of the linkage criteria. Must be between 0 and 1.
specificity Numeric. The specificity Default: 1.	pecificity of the linkage criteria. Must be between 0 and 1.
of the number of is Poisson (equiva	e). An overdispersion parameter, set if the assumed distribution edges is negative binomial. If NULL the assumed distribution alent to an overdispersion parameter of infinity) Default: NULL equivalent to setting the overdispersion parameter to Inf.
nsims Numeric. The numeric.	mber of simulations. Default: 100000

Value

Simulated power

relR_samplesize	Calculate sample size needed to detect differential transmission

Description

Function for calculating sample size given a set of assumptions. This is the high level wrapper function that users should call directly.

Usage

```
relR_samplesize(
  R_a,
  R_b,
  p_a,
  N,
  alpha = 0.05,
```

relR_samplesize 23

```
alternative = c("two_sided", "less", "greater"),
power = 0.8,
sensitivity = 1,
specificity = 1,
overdispersion = NULL,
correct_for_imbalance = FALSE
)
```

Arguments

R_a	Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0 .
R_b	Numeric (Positive). The assumed R among the group in the numerator of the ratio. Input value must be greater than 0 .
p_a	Numeric. The proportion of the population in group a. Must be between $\boldsymbol{0}$ and $\boldsymbol{1}$.
N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.
alpha	Numeric. The desired alpha level. Default: 0.05
alternative	Character. Specifies the alternative hypothesis. Must be: two_sided (Default), less, or greater
power	Numeric. The desired power. Must be a value between 0 and 1. Default: 0.8.
sensitivity	Numeric. The sensitivity of the linkage criteria. Must be between 0 and 1 . Default: 1 .
specificity	Numeric. The specificity of the linkage criteria. Must be between 0 and 1 . Default: 1 .
overdispersion	Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.
correct_for_imb	palance

throw a warning if impossible.

Value

Sample size needed achieve desired type I and II error rates under assumptions. Will return NA and

to large differences in group sizes? Default: FALSE.

Logical. Should we use simulation to correct for being over/under powered due

```
## Calculate sample size needed to detect a difference between groups where
## group A has a reproductive value of 2, group B has a reproductive
## value of 2.5, the groups are balanced, and the total outbreak size is
## 1,000
```

```
relR_samplesize(R_a = 2,
                R_b = 2.5
                p_a = 0.5
                N = 1000)
## Update the above calculation to account for imperfect sensitivity = 0.7
relR_samplesize(R_a = 2,
                R_b = 2.5,
                p_a = 0.5
               N = 1000,
                sensitivity = 0.7)
## Update the above calculation to allow for overdispersion
relR_samplesize(R_a = 2,
                R_b = 2.5
               p_a = 0.5
               N = 1000,
                sensitivity = 0.7,
                overdispersion = 2000)
```

relR_samplesize_basic Calculate simple derived sample size for detecting differential transmission

Description

Function that does the simple derived sample size calculation with no corrections. I.e., directly applies the math as if sensitivity and specificity are perfect.

Usage

```
relR_samplesize_basic(
    R_a,
    R_b,
    p_a,
    N,
    alpha = 0.05,
    alternative = c("two_sided", "less", "greater"),
    power = 0.8,
    overdispersion = NULL,
    allow_impossible_m = FALSE
)
```

Arguments

R_a Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0.

relR_samplesize_ci 25

Numeric (Positive). The assumed R among the group in the numerator of the

		ratio. Input value must be greater than 0.
	p_a	Numeric. The proportion of the population in group a. Must be between 0 and 1.
	N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.
	alpha	Numeric. The desired alpha level. Default: 0.05
	alternative	Character. Specifies the alternative hypothesis. Must be: two_sided (Default), less, or greater
	power	Numeric. The desired power. Must be a value between 0 and 1. Default: 0.8.
	overdispersion	Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.
allow_impossible_m		
		Logical. Indicates whether a value for m can be returned that is greater than the

Value

R_b

The required sample size. NA if larger than N.

input N. Default: FALSE.

Description

This function assumes you want to correct for imbalance, if not there is a closed form solution for the estimated sample size that does not include uncertainty bounds. (see relR_samplesize).

Usage

```
relR_samplesize_ci(
    R_a,
    R_b,
    p_a,
    N,
    alpha = 0.05,
    alternative = c("two_sided", "less", "greater"),
    power = 0.8,
    sensitivity = 1,
    specificity = 1,
    overdispersion = NULL,
    nsims = 1000,
```

26 relR_samplesize_ci

```
uncertainty_percent = 0.95,
B = 1000
)
```

Arguments

R_a	Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0.
R_b	Numeric (Positive). The assumed R among the group in the numerator of the ratio. Input value must be greater than 0.
p_a	Numeric. The proportion of the population in group a. Must be between $\boldsymbol{0}$ and $\boldsymbol{1}$.
N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.
alpha	Numeric. The desired alpha level. Default: 0.05
alternative	Character. Specifies the alternative hypothesis. Must be: two_sided (Default), less, or greater
power	Numeric. The desired power. Must be a value between 0 and 1. Default: 0.8.
sensitivity	Numeric. The sensitivity of the linkage criteria. Must be between 0 and 1 . Default: 1 .
specificity	Numeric. The specificity of the linkage criteria. Must be between 0 and 1. Default: $1.$
overdispersion	Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.
nsims	The number of inner simulations run per estimate. Default: 10000
uncertainty_pe	
	The percent of the uncertainty interval. Default: .95
В	The number of outer simulations run to estimate the uncertainty. Default: 1000

Value

A vector with three quantities:

- sample size: Sample size needed achieve desired type I and II error rates under assumptions. Will return NA and throw a warning if impossible.
- lower bound: The lower bound of an uncertainty interval
- upper bound: The upper bound of an uncertainty interval

```
relR_samplesize_linkerr
```

Calculate sample size for detecting differential transmission correcting for sensitivity and specificity

Description

Function to run the sample size calculation correcting for imperfect sensitivity and specificity, but not doing any simulation based corrections.

Usage

```
relR_samplesize_linkerr(
    R_a,
    R_b,
    p_a,
    N,
    alpha = 0.05,
    alternative = c("two_sided", "less", "greater"),
    power = 0.8,
    sensitivity = 1,
    specificity = 1,
    overdispersion = NULL,
    allow_impossible_m = FALSE
)
```

Arguments

R_a	Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0.
R_b	Numeric (Positive). The assumed R among the group in the numerator of the ratio. Input value must be greater than 0.
p_a	Numeric. The proportion of the population in group a. Must be between 0 and 1.
N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.
alpha	Numeric. The desired alpha level. Default: 0.05
alternative	Character. Specifies the alternative hypothesis. Must be: two_sided (Default), less, or greater
power	Numeric. The desired power. Must be a value between 0 and 1. Default: 0.8.
sensitivity	Numeric. The sensitivity of the linkage criteria. Must be between 0 and 1. Default: 1.
specificity	Numeric. The specificity of the linkage criteria. Must be between 0 and 1. Default: 1.

overdispersion Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.

```
allow_impossible_m
```

Logical. Indicates whether a value for m can be returned that is greater than the input N. Default: FALSE.

Value

Sample size needed achieve desired type I and II error rates under assumptions. Will return NA and throw a warning if impossible.

```
relR_samplesize_opterr
```

Function to calculate the error in estimated sample size for use in optimize function

Description

Function to calculate the error in estimated sample size for use in optimize function

Usage

```
relR_samplesize_opterr(
 R_a,
 R_b,
  p_a,
 Ν,
  alpha,
  alternative,
 power,
  sensitivity,
  specificity,
  overdispersion
)
```

Arguments

m	the sample size.
R_a	Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0.
R_b	Numeric (Positive). The assumed R among the group in the numerator of the ratio. Input value must be greater than 0 .
p_a	Numeric. The proportion of the population in group a. Must be between $\boldsymbol{0}$ and $\boldsymbol{1}$.

N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.
alpha	Numeric. The desired alpha level. Default: 0.05
alternative	$Character.\ Specifies\ the\ alternative\ hypothesis.\ Must\ be:\ two_sided\ (Default),\\ less,\ or\ greater$
power	Numeric. The desired power. Must be a value between 0 and 1. Default: 0.8.
sensitivity	Numeric. The sensitivity of the linkage criteria. Must be between 0 and 1. Default: 1.
specificity	Numeric. The specificity of the linkage criteria. Must be between 0 and 1. Default: 1.
overdispersion	Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.

Value

Squared error between the input sample size and estimated sample size

```
relR_samplesize_simsolve
```

Calculate optimized sample size for detecting differential transmission

Description

Function to calculate optimized sample size by solving the transcendental equation that occurs when you replace the R values with ones that account for sensitivity and specificity.

Usage

```
relR_samplesize_simsolve(
    R_a,
    R_b,
    p_a,
    N,
    alpha = 0.05,
    alternative = c("two_sided", "less", "greater"),
    power = 0.8,
    sensitivity = 1,
    specificity = 1,
    overdispersion = NULL,
    epsilon = 0.01,
    nsims = 1e+05,
    tolerance = 10
)
```

R_a	Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0 .
R_b	Numeric (Positive). The assumed R among the group in the numerator of the ratio. Input value must be greater than 0 .
p_a	Numeric. The proportion of the population in group a. Must be between $\boldsymbol{0}$ and $\boldsymbol{1}$.
N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.
alpha	Numeric. The desired alpha level. Default: 0.05
alternative	Character. Specifies the alternative hypothesis. Must be: two_sided (Default), less, or greater
power	Numeric. The desired power. Must be a value between 0 and 1. Default: 0.8.
sensitivity	Numeric. The sensitivity of the linkage criteria. Must be between 0 and 1. Default: 1.
specificity	Numeric. The specificity of the linkage criteria. Must be between 0 and 1 . Default: 1 .
overdispersion	Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.
epsilon	Numeric. Dictates the minimum value for $R_b = R_a + epsilon$ attempted in the simulation. Default: 0.01.
nsims	Dictates the number of simulations for each power simulation. Default: 100000
tolerance	Dictates the tolerance for the binary search. Default: 10.

Value

Simulated sample size needed achieve desired type I and II error rates under assumptions. Will return NA and throw a warning if impossible.

relR_samplesize_solve Calculate optimal sample size for detecting differential transmission with imperfect specificity

Description

Function to solve for optimal sample size when the specificity isn't 1

Usage

```
relR_samplesize_solve(
    R_a,
    R_b,
    p_a,
    N,
    alpha = 0.05,
    alternative = c("two_sided", "less", "greater"),
    power = 0.8,
    sensitivity = 1,
    specificity = 1,
    overdispersion = NULL,
    allow_impossible_m = FALSE
)
```

input N. Default: FALSE.

Arguments

R_a	Numeric (Positive). The assumed R among the group in the denominator of the ratio. Input value must be greater than 0.	
R_b	Numeric (Positive). The assumed R among the group in the numerator of the ratio. Input value must be greater than 0.	
p_a	Numeric. The proportion of the population in group a. Must be between 0 and 1.	
N	Numeric (Positive). The size of the infected pool. Only one of rho or N should be specified.	
alpha	Numeric. The desired alpha level. Default: 0.05	
alternative	Character. Specifies the alternative hypothesis. Must be: two_sided (Default), less, or greater	
power	Numeric. The desired power. Must be a value between 0 and 1. Default: 0.8.	
sensitivity	Numeric. The sensitivity of the linkage criteria. Must be between 0 and 1. Default: 1.	
specificity	Numeric. The specificity of the linkage criteria. Must be between 0 and 1. Default: 1.	
overdispersion	Numeric (Positive). An overdispersion parameter, set if the assumed distribution of the number of edges is negative binomial. If NULL the assumed distribution is Poisson (equivalent to an overdispersion parameter of infinity) Default: NULL Note that this is equivalent to setting the overdispersion parameter to Inf.	
allow_impossib	allow_impossible_m	

Logical. Indicates whether a value for m can be returned that is greater than the

Value

The sample size

32 samplesize

samplesize	Calculate sample size	

Description

[Deprecated] This function calculates the sample size needed to obtain at least a defined false discovery rate given a final outbreak size N.

Usage

```
samplesize(eta, chi, N, R = NULL, phi, min_pairs = 1, assumption = "mtml")
```

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
chi	scalar or vector giving the specificity of the linkage criteria
N	scalar or vector giving the final outbreak size
R	scalar or vector giving the effective reproductive number of the pathogen
phi	scalar or vector giving the desired true discovery rate (1-false discovery rate)
min_pairs	minimum number of linked pairs observed in the sample, defaults to 1 pair (2 samples); this is to ensure reasonable results are obtained
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:
	1. 'stsl' for the single-transmission single-linkage assumption (prob_trans_stsl()).
	2. 'mtsl' for the multiple-transmission single-linkage assumption (prob_trans_mtsl()).
	3. 'mtml' for the multiple-transmission multiple-linkage assumption (prob_trans_mtml()).

Value

scalar or vector giving the sample size needed to meet the given conditions

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

```
samplesize(eta=0.99, chi=0.995, N=100, R=1, phi=0.75)
```

sens_spec_calc 33

sens_spec_calc	Calculate sensitivity and specificity

Description

[Deprecated] Function to calculate the sensitivity and specificity of a genetic distance cutoff given an underlying mutation rate and mean number of generations between cases

Usage

```
sens_spec_calc(
  cutoff,
  mut_rate,
  mean_gens_pdf,
  max_link_gens = 1,
  max_gens = NULL,
  max_dist = NULL
)
```

Arguments

cutoff	the maximum genetic distance at which to consider cases linked
mut_rate	mean number of mutations per generation, assumed to be Poisson distributed
mean_gens_pdf	the density distribution of the mean number of generations between cases; the index of this vector is assumed to be the discrete distance between cases
max_link_gens	the maximum generations of separation for linked pairs
max_gens	the maximum number of generations to consider, if NULL (default) value set to the highest number of generations in mean_gens_pdf with a non-zero probability
max_dist	the maximum distance to calculate, if NULL (default) value set to max_gens * 99.9th percentile of mut_rate Poisson distribution

Value

a data frame with the sensitivity and specificity for a particular genetic distance cutoff

Author(s)

Shirlee Wohl and Justin Lessler

See Also

```
Other mutrate_functions: gen_dists(), get_optim_roc(), sens_spec_roc()
```

34 sens_spec_roc

Examples

sens_spec_roc

Make ROC from sensitivity and specificity

Description

[Deprecated] This is a wrapper function that takes output from the sens_spec_calc() function and constructs values for the Receiver Operating Characteristic (ROC) curve

Usage

```
sens_spec_roc(
  cutoff,
  mut_rate,
  mean_gens_pdf,
  max_link_gens = 1,
  max_gens = NULL,
  max_dist = NULL
)
```

Arguments

cutoff	the maximum genetic distance at which to consider cases linked
mut_rate	mean number of mutations per generation, assumed to be Poisson distributed
mean_gens_pdf	the density distribution of the mean number of generations between cases; the index of this vector is assumed to be the discrete distance between cases
max_link_gens	the maximum generations of separation for linked pairs
max_gens	the maximum number of generations to consider, if NULL (default) value set to the highest number of generations in mean_gens_pdf with a non-zero probability
max_dist	the maximum distance to calculate, if NULL (default) value set to max_gens * 99.9th percentile of mut_rate Poisson distribution

Value

data frame with cutoff, sensitivity, and 1-specificity

Author(s)

Shirlee Wohl and Justin Lessler

See Also

```
Other mutrate_functions: gen_dists(), get_optim_roc(), sens_spec_calc()
```

Examples

```
# ebola-like pathogen
R <- 1.5
mut_rate <- 1</pre>
# use simulated generation distributions
data('genDistSim')
mean_gens_pdf <- as.numeric(genDistSim[genDistSim$R == R, -(1:2)])</pre>
# get theoretical genetic distance dist based on mutation rate and generation parameters
dists <- as.data.frame(gen_dists(mut_rate = mut_rate,</pre>
                                   mean_gens_pdf = mean_gens_pdf,
                                   max_link_gens = 1))
dists <- reshape2::melt(dists,</pre>
                         id.vars = 'dist',
                         variable.name = 'status',
                         value.name = 'prob')
# get sensitivity and specificity using the same paramters
roc_calc <- sens_spec_roc(cutoff = 1:(max(dists$dist)-1),</pre>
                           mut_rate = mut_rate,
                           mean_gens_pdf = mean_gens_pdf)
```

translink_expected_links_obs

Calculate expected number of transmission links in a sample

Description

This function calculates the expected number of observed pairs in the sample that are linked by the linkage criteria. The function requires the sensitivity and specificity of the linkage criteria, and sample size M. Assumptions about transmission and linkage (single or multiple) can be specified.

Usage

```
translink_expected_links_obs(
  sensitivity,
  specificity,
  rho,
  M,
  R = NULL,
  assumption = "mtml"
)
```

Arguments

scalar or vector giving the sensitivity of the linkage criteria sensitivity specificity scalar or vector giving the specificity of the linkage criteria scalar or vector giving the proportion of the final outbreak size that is sampled rho М scalar or vector giving the number of cases sampled R scalar or vector giving the effective reproductive number of the pathogen (default=NULL) assumption a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are: 1. 'stsl' for the single-transmission single-linkage assumption. 2. 'mtsl' for the multiple-transmission single-linkage assumption. 3. 'mtml' for the multiple-transmission multiple-linkage assumption.

Value

scalar or vector giving the expected number of observed links in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_true_mtml(), translink_expected_links_t translink_expected_links_true_stsl(), translink_expected_links_true(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

```
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
translink_expected_links_obs(sensitivity=1, specificity=0.9, rho=0.5, M=100, assumption='stsl')
# Multiple-transmission and imperfect sensitivity
translink_expected_links_obs(sensitivity=0.99, specificity=0.9, rho=1, M=50, R=1, assumption='mtsl')
```

```
# Small outbreak, larger sampling proportion
translink_expected_links_obs(sensitivity=0.99, specificity=0.95, rho=1, M=50,
R=1, assumption='mtml')

# Large outbreak, small sampling proportion
translink_expected_links_obs(sensitivity=0.99, specificity=0.95,
rho=0.05, M=1000, R=1, assumption='mtml')
```

translink_expected_links_obs_mtml

Calculate expected number of observed pairs assuming multipletransmission and multiple-linkage

Description

This function calculates the expected number of pairs observed in a sample of size M. The multiple-transmission and multiple-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to multiple cases j in the sampled population (M).
- 3. Linkage events are independent of one another (i.e, linkage of case i to case j has no bearing on linkage of case i to any other sample).

Usage

```
translink_expected_links_obs_mtml(specificity, sensitivity, rho, M, R)
```

Arguments

specificity	scalar or vector giving the specificity of the linkage criteria
sensitivity	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the expected number of linked pairs observed in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtsl(), translink_expected_links_obs_stsl translink_expected_links_obs(), translink_expected_links_true_mtml(), translink_expected_links_true_m translink_expected_links_true_stsl(), translink_expected_links_true(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

Examples

```
# Perfect sensitivity and specificity
translink_expected_links_obs_mtml(sensitivity=1, specificity=1, rho=0.5, M=100, R=1)
translink_expected_links_obs_mtml(sensitivity=0.99, specificity=0.9, rho=1, M=50, R=1)
translink_expected_links_obs_mtml(sensitivity=0.99, specificity=0.9, rho=0.5, M=100, R=1)
```

translink_expected_links_obs_mtsl

Calculate expected number of observed pairs assuming multipletransmission and single-linkage

Description

This function calculates the expected number of pairs observed in a sample of size M. The multiple-transmission and single-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
translink_expected_links_obs_mtsl(specificity, sensitivity, rho, M, R)
```

Arguments

specificity	scalar or vector giving the specificity of the linkage criteria
sensitivity	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the expected number of linked pairs observed in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_stsl translink_expected_links_obs(), translink_expected_links_true_mtml(), translink_expected_links_true_m translink_expected_links_true_stsl(), translink_expected_links_true(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

Examples

```
# Perfect sensitivity and specificity
translink_expected_links_obs_mtsl(sensitivity=1, specificity=1, rho=0.5, M=100, R=1)
translink_expected_links_obs_mtsl(sensitivity=0.99, specificity=0.9, rho=1, M=50, R=1)
translink_expected_links_obs_mtsl(sensitivity=0.99, specificity=0.9, rho=0.5, M=100, R=1)
```

```
translink\_expected\_links\_obs\_stsl
```

Calculate expected number of observed pairs assuming singletransmission and single-linkage

Description

This function calculates the expected number of link pairs observed in a sample of size M. The single-transmission and single-linkage method assumes the following:

- 1. Each case i is linked by transmission to only one other case j in the population (N).
- 2. Each case i is linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
translink_expected_links_obs_stsl(sensitivity, specificity, rho, M)
```

```
sensitivity scalar or vector giving the sensitivity of the linkage criteria
specificity scalar or vector giving the specificity of the linkage criteria
rho scalar or vector giving the proportion of the final outbreak size that is sampled
scalar or vector giving the number of cases sampled
```

Value

scalar or vector giving the expected number of linked pairs observed in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs(), translink_expected_links_true_mtml(), translink_expected_links_true_m translink_expected_links_true_stsl(), translink_expected_links_true(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

Examples

```
# perfect sensitivity and specificity
translink_expected_links_obs_stsl(sensitivity=1, specificity=1, rho=0.5, M=100)
translink_expected_links_obs_stsl(sensitivity=0.99, specificity=0.9, rho=1, M=50)
translink_expected_links_obs_stsl(sensitivity=0.99, specificity=0.9, rho=0.5, M=100)
```

```
translink_expected_links_true
```

Calculate expected number of true transmission pairs

Description

This function calculates the expected number true transmission pairs in a sample of size M. Assumptions about transmission and linkage (single or multiple) can be specified.

```
translink_expected_links_true(
  sensitivity,
  rho,
  M,
  R = NULL,
  assumption = "mtml"
)
```

Arguments

sensitivity	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
M	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen (default=NULL)
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:
	1. 'stsl' for the single-transmission single-linkage assumption.
	2. 'mtsl' for the multiple-transmission single-linkage assumption.
	3. 'mtml' for the multiple-transmission multiple-linkage assumption.

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_mtsl(), translink_expected_links_true_stsl(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

Examples

```
translink_expected_links_true(sensitivity=0.99, rho=0.75, M=100, R=1)
```

```
translink_expected_links_true_mtml
```

Calculate expected number of true transmission pairs assuming multiple-transmission and multiple-linkage

Description

This function calculates the expected number of true transmission pairs in a sample of size M. The multiple-transmission and multiple-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to multiple cases j in the sampled population (M).
- 3. Linkage events are independent of one another (i.e, linkage of case i to case j has no bearing on linkage of case i to any other sample).

Usage

```
translink_expected_links_true_mtml(sensitivity, rho, M, R)
```

Arguments

sensitivity	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mt translink_expected_links_true_stsl(), translink_expected_links_true(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

Examples

```
translink_expected_links_true_mtml(sensitivity=0.95, rho=0.2, M=1000, R=1)
```

```
translink_expected_links_true_mtsl
```

Calculate expected number of true transmission pairs assuming multiple-transmission and single-linkage

Description

This function calculates the expected number true transmission pairs in a sample of size M. The multiple-transmission and single-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
translink_expected_links_true_mtsl(sensitivity, rho, M, R)
```

Arguments

sensitivity	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtmuslink_expected_links_true_stsl(), translink_expected_links_true(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

Examples

```
translink_expected_links_true_mtsl(sensitivity=0.95, rho=0.2, M=200, R=1)
```

```
translink_expected_links_true_stsl
```

Calculate expected number of true transmission pairs assuming single-transmission and single-linkage

Description

This function calculates the expected number of true transmission pairs in a sample of size M. The single-transmission and single-linkage method assumes the following:

- 1. Each case i is linked by transmission to only one other case j in the population (N).
- 2. Each case i is linked by the linkage criteria to only one other case j in the sampled population (M).

44 translink_fdr

Usage

```
translink_expected_links_true_stsl(sensitivity, rho, M)
```

Arguments

sensitivity scalar or vector giving the sensitivity of the linkage criteria
rho scalar or vector giving the proportion of the final outbreak size that is sampled

M scalar or vector giving the number of cases sampled

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_mtsl(), translink_expected_links_true(), translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

Examples

```
translink_expected_links_true_stsl(sensitivity=0.95, rho=0.2, M=200)
```

translink_fdr	Calculate false discovery rate of identifying transmission pairs in a sample

Description

This function calculates the false discovery rate (proportion of linked pairs that are false positives) in a sample given the sensitivity and specificity of the linkage criteria, and sample size M. Assumptions about transmission and linkage (single or multiple) can be specified.

```
translink_fdr(sensitivity, specificity, rho, M, R = NULL, assumption = "mtml")
```

translink_fdr 45

Arguments

scalar or vector giving the sensitivity of the linkage criteria sensitivity scalar or vector giving the specificity of the linkage criteria specificity rho scalar or vector giving the proportion of the final outbreak size that is sampled М scalar or vector giving the number of cases sampled scalar or vector giving the effective reproductive number of the pathogen (default=NULL) assumption a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are: 1. 'stsl' for the single-transmission single-linkage assumption. 2. 'mtsl' for the multiple-transmission single-linkage assumption. 3. 'mtml' for the multiple-transmission multiple-linkage assumption.

Value

scalar or vector giving the true discovery rate

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtt translink_expected_links_true_mtsl(), translink_expected_links_true_stsl(), translink_expected_links_translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit(), translink_samplesize(), translink_tdr()
```

```
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
translink_fdr(sensitivity=1, specificity=0.9, rho=0.5, M=100, assumption='stsl')

# Multiple-transmission and imperfect sensitivity
translink_fdr(sensitivity=0.99, specificity=0.9, rho=1, M=50, R=1, assumption='mtsl')

# Small outbreak, larger sampling proportion
translink_fdr(sensitivity=0.99, specificity=0.95, rho=1, M=50, R=1, assumption='mtml')

# Large outbreak, small sampling proportion
translink_fdr(sensitivity=0.99, specificity=0.95, rho=0.5, M=1000, R=1, assumption='mtml')
```

```
translink_prob_transmit
```

Calculate probability of transmission

Description

This function calculates the probability that two cases are linked by direct transmission given that they have been linked by phylogenetic criteria. Assumptions about transmission and linkage (single or multiple) can be specified.

Usage

```
translink_prob_transmit(
  sensitivity,
  specificity,
  rho,
  M,
  R,
  assumption = "mtml"
)
```

Arguments

sensitivity scalar or vector giving the sensitivity of the linkage criteria
specificity scalar or vector giving the specificity of the linkage criteria
rho scalar or vector giving the proportion of the final outbreak size that is sampled
scalar or vector giving the number of cases sampled
scalar or vector giving the effective reproductive number of the pathogen
assumption a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:

1. 'stsl' for the single-transmission single-linkage assumption.
2. 'mtsl' for the multiple-transmission multiple-linkage assumption.
3. 'mtml' for the multiple-transmission multiple-linkage assumption.

Value

scalar or vector giving the probability of transmission between two cases given linkage by phylogenetic criteria

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_mtsl(), translink_expected_links_true_stsl(), translink_expected_links_translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_tran

Examples

```
translink_prob_transmit(sensitivity=0.99, specificity=0.9, rho=0.5, M=100, R=1)
```

```
translink_prob_transmit_mtml
```

Calculate probability of transmission assuming multiple-transmission and multiple-linkage

Description

This function calculates the probability that two cases are linked by direct transmission given that they have been linked by phylogenetic criteria. The multiple-transmission and multiple-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to multiple cases j in the sampled population (M).
- 3. Linkage events are independent of one another (i.e, linkage of case i to case j has no bearing on linkage of case i to any other sample).

Usage

```
translink_prob_transmit_mtml(sensitivity, specificity, rho, M, R)
```

Arguments

sensitivity	scalar or vector giving the sensitivity of the linkage criteria
specificity	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the probability of transmission between two cases given linkage by phylogenetic criteria

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_mtsl(), translink_expected_links_true_stsl(), translink_expected_links_translink_fdr(), translink_prob_transmit_mtsl(), translink_prob_transmit_stsl(), translink_prob_transmit_translink_samplesize(), translink_tdr()

Examples

```
# Perfect sensitivity and specificity
translink_prob_transmit_mtml(sensitivity=1, specificity=1, rho=0.5, M=100, R=1)
translink_prob_transmit_mtml(sensitivity=0.99, specificity=0.9, rho=1, M=50, R=1)
translink_prob_transmit_mtml(sensitivity=0.99, specificity=0.9, rho=0.5, M=100, R=1)
```

```
translink_prob_transmit_mtsl
```

Calculate probability of transmission assuming multiple-transmission and single-linkage

Description

This function calculates the probability that two cases are linked by direct transmission given that they have been linked by phylogenetic criteria. The multiple-transmission and single-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
translink_prob_transmit_mtsl(specificity, sensitivity, rho, M, R)
```

specificity	scalar or vector giving the specificity of the linkage criteria
sensitivity	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the probability of transmission between two cases given linkage by phylogenetic criteria

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_stsl(), translink_expected_links_true_stsl(), translink_expected_links_translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_stsl(), translink_prob_transmit_translink_samplesize(), translink_tdr()

Examples

```
# Perfect sensitivity and specificity
translink_prob_transmit_mtsl(sensitivity=1, specificity=1, rho=0.5, M=100, R=1)
translink_prob_transmit_mtsl(sensitivity=0.99, specificity=0.9, rho=1, M=50, R=1)
translink_prob_transmit_mtsl(sensitivity=0.99, specificity=0.9, rho=0.5, M=100, R=1)
```

```
translink_prob_transmit_stsl
```

Calculate probability of transmission assuming single-transmission and single-linkage

Description

This function calculates the probability that two cases are linked by direct transmission given that they have been linked by phylogenetic criteria. The single-transmission and single-linkage method assumes the following:

- 1. Each case i is linked by transmission to only one other case j in the population (N).
- 2. Each case i is linked by the linkage criteria to only one other case j in the sampled population (M).

```
translink_prob_transmit_stsl(sensitivity, specificity, rho, M)
```

Arguments

sensitivity scalar or vector giving the sensitivity of the linkage criteria
specificity scalar or vector giving the specificity of the linkage criteria
rho scalar or vector giving the proportion of the final outbreak size that is sampled
scalar or vector giving the number of cases sampled

Details

For perfect sensitivity, set sensitivity = 1.

Value

scalar or vector giving the probability of transmission between two cases given linkage by phylogenetic criteria

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_mtsl(), translink_expected_links_true_stsl(), translink_expected_links_translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit_translink_samplesize(), translink_tdr()

```
# perfect sensitivity and specificity
translink_prob_transmit_stsl(sensitivity=1, specificity=1, rho=0.2, M=100)

# perfect sensitivity only
translink_prob_transmit_stsl(sensitivity=1, specificity=0.95, rho=0.2, M=100)

translink_prob_transmit_stsl(sensitivity=0.99, specificity=0.95, rho=0.9, M=50)

translink_prob_transmit_stsl(sensitivity=0.99, specificity=0.95, rho=0.05, M=100)
```

translink_samplesize 51

translink_samplesize Calculate sample size needed to identify true transmission links

Description

This function calculates the sample size needed to identify transmission links at a predefined false discovery rate, given a final outbreak size N.

Usage

```
translink_samplesize(
  sensitivity,
  specificity,
  N,
  R = NULL,
  tdr,
  min_pairs = 1,
  assumption = "mtml"
)
```

Arguments

sensitivity	scalar or vector giving the sensitivity of the linkage criteria
specificity	scalar or vector giving the specificity of the linkage criteria
N	scalar or vector giving the final outbreak size
R	scalar or vector giving the effective reproductive number of the pathogen
tdr	scalar or vector giving the desired true discovery rate (1-false discovery rate)
min_pairs	minimum number of linked pairs observed in the sample, defaults to 1 pair (2 samples); this is to ensure reasonable results are obtained
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:
	1. 'stsl' for the single-transmission single-linkage assumption.
	2. 'mts1' for the multiple-transmission single-linkage assumption.
	3. 'mtm1' for the multiple-transmission multiple-linkage assumption.

Value

scalar or vector giving the sample size needed to meet the given conditions

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

52 translink_tdr

See Also

Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_mtsl(), translink_expected_links_true_stsl(), translink_expected_links_translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit(), translink_tdr()

Examples

translink_samplesize(sensitivity=0.99, specificity=0.995, N=100, R=1, tdr=0.75)

translink_tdr

Calculate true discovery rate of identifying transmission pairs

Description

This function calculates the true discovery rate (proportion of true transmission pairs) in a sample given the sensitivity and specificity of the linkage criteria, and sample size M. Assumptions about transmission and linkage (single or multiple) can be specified.

Usage

```
translink_tdr(sensitivity, specificity, rho, M, R = NULL, assumption = "mtml")
```

Arguments

sensitivity	scalar or vector giving the sensitivity of the linkage criteria
specificity	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen (default=NULL)
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = $'mtml'$. Accepted arguments are:
	1. 'stsl' for the single-transmission single-linkage assumption.
	2. 'mtsl' for the multiple-transmission single-linkage assumption.

3. 'mtml' for the multiple-transmission multiple-linkage assumption.

Value

scalar or vector giving the true discovery rate

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

truediscoveryrate 53

See Also

Other transmission linkage functions: translink_expected_links_obs_mtml(), translink_expected_links_obs_mtsl translink_expected_links_obs_stsl(), translink_expected_links_obs(), translink_expected_links_true_mtsl translink_expected_links_true_stsl(), translink_expected_links_true_stsl(), translink_expected_links_translink_fdr(), translink_prob_transmit_mtml(), translink_prob_transmit_mtsl(), translink_prob_transmit(), translink_samplesize()

Examples

```
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
translink_tdr(sensitivity=1, specificity=0.9, rho=0.5, M=100, assumption='stsl')

# Multiple-transmission and imperfect sensitivity
translink_tdr(sensitivity=0.99, specificity=0.9, rho=1, M=50, R=1, assumption='mtsl')

# Small outbreak, larger sampling proportion
translink_tdr(sensitivity=0.99, specificity=0.95, rho=1, M=50, R=1, assumption='mtml')

# Large outbreak, small sampling proportion
translink_tdr(sensitivity=0.99, specificity=0.95, rho=0.5, M=1000, R=1, assumption='mtml')
```

truediscoveryrate

Calculate true discovery rate of a sample

Description

[**Deprecated**] This function calculates the true discovery rate (proportion of true transmission pairs) in a sample given the sensitivity η and specificity χ of the linkage criteria, and sample size M. Assumptions about transmission and linkage (single or multiple) can be specified.

Usage

```
truediscoveryrate(eta, chi, rho, M, R = NULL, assumption = "mtml")
```

eta	scalar or vector giving the sensitivity of the linkage criteria
chi	scalar or vector giving the specificity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen (default=NULL)
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:

- 1. 'stsl' for the single-transmission single-linkage assumption (prob_trans_stsl()).
- 2. 'mtsl' for the multiple-transmission single-linkage assumption (prob_trans_mtsl()).
- 3. 'mtml' for the multiple-transmission multiple-linkage assumption (prob_trans_mtml()).

54 true_pairs

Value

scalar or vector giving the true discovery rate

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other discovery_rate: falsediscoveryrate()
```

Examples

```
# The simplest case: single-transmission, single-linkage, and perfect sensitivity
truediscoveryrate(eta=1, chi=0.9, rho=0.5, M=100, assumption='stsl')

# Multiple-transmission and imperfect sensitivity
truediscoveryrate(eta=0.99, chi=0.9, rho=1, M=50, R=1, assumption='mtsl')

# Small outbreak, larger sampling proportion
truediscoveryrate(eta=0.99, chi=0.95, rho=1, M=50, R=1, assumption='mtml')

# Large outbreak, small sampling proportion
truediscoveryrate(eta=0.99, chi=0.95, rho=0.5, M=1000, R=1, assumption='mtml')
```

true_pairs

Calculate expected number of true transmission pairs

Description

[Deprecated] This function calculates the expected number true transmission pairs in a sample of size M. Assumptions about transmission and linkage (single or multiple) can be specified.

Usage

```
true_pairs(eta, rho, M, R = NULL, assumption = "mtml")
```

eta	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen (default=NULL) $$
assumption	a character vector indicating which assumptions about transmission and linkage criteria. Default = 'mtml'. Accepted arguments are:

true_pairs_mtml 55

- 1. 'stsl' for the single-transmission single-linkage assumption (prob_trans_stsl()).
- 2. 'mtsl' for the multiple-transmission single-linkage assumption (prob_trans_mtsl()).
- 3. 'mtml' for the multiple-transmission multiple-linkage assumption (prob_trans_mtml()).

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other true_pairs: true_pairs_mtml(), true_pairs_mtsl(), true_pairs_stsl()
```

Examples

```
true_pairs(eta=0.99, rho=0.75, M=100, R=1)
```

true_pairs_mtml	Expected number of true transmission pairs assuming multiple-
	transmission and multiple-linkage

Description

[**Deprecated**] This function calculates the expected number of true transmission pairs in a sample of size M. The multiple-transmission and multiple-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to multiple cases j in the sampled population (M).
- 3. Linkage events are independent of one another (i.e, linkage of case i to case j has no bearing on linkage of case i to any other sample).

Usage

```
true_pairs_mtml(eta, rho, M, R)
```

eta	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

56 true_pairs_mtsl

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

See Also

```
Other true_pairs: true_pairs_mtsl(), true_pairs_stsl(), true_pairs()
```

Examples

```
true_pairs_mtml(eta=0.95, rho=0.2, M=1000, R=1)
```

true_pairs_mtsl

Expected number of true transmission pairs assuming multiple-transmission and single-linkage

Description

[**Deprecated**] This function calculates the expected number true transmission pairs in a sample of size M. The multiple-transmission and single-linkage method assumes the following:

- 1. Each case i is, on average, the infector of R cases in the population (N)
- 2. Each case i is allowed to be linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
true_pairs_mtsl(eta, rho, M, R)
```

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled
R	scalar or vector giving the effective reproductive number of the pathogen

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl and Justin Lessler

true_pairs_stsl 57

See Also

```
Other true_pairs: true_pairs_mtml(), true_pairs_stsl(), true_pairs()
```

Examples

```
true_pairs_mtsl(eta=0.95, rho=0.2, M=200, R=1)
```

true_pairs_stsl

Expected number of true transmission pairs assuming single-transmission and single-linkage

Description

[Deprecated] This function calculates the expected number of true transmission pairs in a sample of size M. The single-transmission and single-linkage method assumes the following:

- 1. Each case i is linked by transmission to only one other case j in the population (N).
- 2. Each case i is linked by the linkage criteria to only one other case j in the sampled population (M).

Usage

```
true_pairs_stsl(eta, rho, M)
```

Arguments

eta	scalar or vector giving the sensitivity of the linkage criteria
rho	scalar or vector giving the proportion of the final outbreak size that is sampled
М	scalar or vector giving the number of cases sampled

Value

scalar or vector giving the expected number of true transmission pairs in the sample

Author(s)

John Giles, Shirlee Wohl, and Justin Lessler

See Also

```
Other true_pairs: true_pairs_mtml(), true_pairs_mtsl(), true_pairs()
```

```
true_pairs_stsl(eta=0.95, rho=0.2, M=200)
```

58 varfreq_cdf_logistic

 $\begin{array}{ll} \textit{varfreq_cdf_logistic} & \textit{Calculate cumulative observed variant prevalence at time t given logistic growth} \\ \end{array}$

Description

This function calculates the cumulative observed variant prevalence after t time steps (e.g., days) given a logistic growth rate and initial variant prevalence.

Usage

```
varfreq_cdf_logistic(t, p0_v1, r_v1, c_ratio = 1)
```

Arguments

t	time step number (e.g., days) at which to calculate prevalence
p0_v1	initial variant prevalence (# introductions / infected population size)
r_v1	logistic growth rate
c_ratio	coefficient of detection ratio, calculated as the ratio of the coefficients of variant 1 to variant 2. Default = 1 (no bias)

Value

scalar giving the cdf of variant prevalence at time t

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other logistic growth functions: varfreq_freq_logistic()
```

Other variant frequency functions: varfreq_expected_mbias(), varfreq_freq_logistic(), varfreq_obs_freq()

```
varfreq_cdf_logistic(t = 30, p0_v1 = 1/10000, r_v1 = 0.1, c_ratio = 1)
```

varfreq_expected_mbias

Calculate multiplicative bias (observed / actual) in variant prevalence

Description

This function calculates the multiplicative bias of the observed variant proportion relative to the actual variant proportion. This function assumes that variant 1 is the variant of concern. This function is specific to the two-variant system.

Usage

```
varfreq_expected_mbias(p_v1, c_ratio)
```

Arguments

p_v1 actual variant prevalence (proportion)

c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant

1 to variant 2

Value

scalar giving the multiplicative bias of variant 1

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

Other variant frequency functions: varfreq_cdf_logistic(), varfreq_freq_logistic(), varfreq_obs_freq()

```
varfreq_expected_mbias(p_v1 = 0.1, c_ratio = 1.1)
```

60 varfreq_freq_logistic

varfreq_freq_logistic Calculate observed variant prevalence at time t given logistic growth

Description

This function calculates the observed variant prevalence after t time steps (e.g., days) given a logistic growth rate and initial variant prevalence.

Usage

```
varfreq_freq_logistic(t, p0_v1, r_v1, c_ratio = 1)
```

Arguments

t	time step number (e.g., days) at which to calculate prevalence
p0_v1	initial variant prevalence (# introductions / infected population size)
r_v1	logistic growth rate
c_ratio	coefficient of detection ratio, calculated as the ratio of the coefficients of variant 1 to variant 2; default = 1 (no bias)

Value

scalar giving the variant prevalence at time t

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other logistic growth functions: varfreq_cdf_logistic()
Other variant frequency functions: varfreq_cdf_logistic(), varfreq_expected_mbias(), varfreq_obs_freq()
```

```
varfreq_freq_logistic(t = 30, p0_v1 = 1/10000, r_v1 = 0.1, c_ratio = 1)
```

varfreq_obs_freq 61

varfreq_obs_freq	Calculate observed variant prevalence
------------------	---------------------------------------

Description

This function calculates the observed variant prevalence from the coefficient of detection ratio and the actual variant prevalence. This function assumes that variant 1 is the variant of concern. This function is specific to the two-variant system.

Usage

```
varfreq_obs_freq(p_v1, c_ratio)
```

Arguments

p_v1 actual variant prevalence (proportion)

c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant

1 to variant 2

Value

scalar of observed prevalence of variant 1

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

Other variant frequency functions: varfreq_cdf_logistic(), varfreq_expected_mbias(), varfreq_freq_logistic()

Examples

```
varfreq_obs_freq(p_v1 = 0.1, c_ratio = 1.1)
```

vartrack_cod_ratio

Calculate the coefficient of detection ratio for two variants

Description

This function calculates the coefficient of detection ratio C_{V_1}/C_{V_2} for two variants. This function assumes that variant 1 is the variant of concern. This function is specific to the two-variant system. Parameters not provided are assumed to be equivalent between the two variants.

62 vartrack_cod_ratio

Usage

```
vartrack_cod_ratio(
  phi_v1 = 1,
  phi_v2 = 1,
  gamma_v1 = 1,
  gamma_v2 = 1,
  psi_v1 = 1,
  psi_v2 = 1,
  tau_a = 1,
  tau_s = 1
)
```

Arguments

phi_v1	probability that a tested infection caused by variant 1 results in a positive test (sensitivity)
phi_v2	probability that a tested infection caused by variant 2 results in a positive test (sensitivity)
gamma_v1	probability that a detected infection caused by variant 1 meets some quality threshold
gamma_v2	probability that a detected infection caused by variant 2 meets some quality threshold
psi_v1	probability that an infection caused by variant 1 is asymptomatic
psi_v2	probability that an infection caused by variant 2 is asymptomatic
tau_a	probability of testing an asymptomatic infection (any variant); note that this parameter is not required if psi_v1==psi_v2
tau_s	probability of testing a symptomatic infection (any variant); note that this parameter is not required if psi_v1==psi_v2

Value

scalar giving the multiplicative bias of variant 1

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant tracking functions: vartrack_prob_detect_cont(), vartrack_prob_detect_xsect(), vartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_contrack_samplesize_detect_xsect(), vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()
```

```
vartrack_cod_ratio(phi_v1=0.975, phi_v2=0.95, gamma_v1=0.8, gamma_v2=0.6)
```

vartrack_prob_detect 63

Description

This function calculates the probability of detecting the presence of a variant given a sample size and sampling strategy.

Usage

```
vartrack_prob_detect(
    n,
    t = NA,
    p_v1 = NA,
    omega,
    p0_v1 = NA,
    r_v1 = NA,
    c_ratio = 1,
    sampling_freq
)
```

Arguments

n	sample size (either of cross-section or per timestep)
t	time step number (e.g., days) at which variant should be detected by. Default = NA (either 't' or ' p_v1 ' should be provided, not both)
p_v1	the desired prevalence to detect a variant by. Default = NA (either 't' or ' p_v1' should be provided, not both)
omega	probability of sequencing (or other characterization) success
p0_v1	initial variant prevalence (# introductions / infected population size)
r_v1	logistic growth rate
c_ratio	coefficient of detection ratio, calculated as the ratio of the coefficients of variant 1 to variant 2. Default = 1 (no bias)
sampling_freq	the sampling frequency (must be either 'xsect' or 'cont')

Value

scalar of detection probability

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant detection functions: vartrack_prob_detect_cont(), vartrack_prob_detect_xsect(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect()

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xsevartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()
```

Examples

```
# Cross-sectional sampling
vartrack_prob_detect(p_v1 = 0.02, n = 100, omega = 0.8, c_ratio = 1, sampling_freq = 'xsect')
# Periodic sampling
vartrack_prob_detect(n = 158, t = 30, omega = 0.8, p0_v1 = 1/10000,
r_v1 = 0.1, c_ratio = 1, sampling_freq = 'cont')
```

vartrack_prob_detect_cont

Calculate probability of detecting a variant given a per-timestep sample size assuming periodic sampling

Description

This function calculates the probability of detecting the presence of a variant given a sample size and either a desired maximum time until detection or a desired prevalence by which to detect the variant by. It assumes a periodic sampling strategy, where samples are collected at regular intervals (time steps).

Usage

```
vartrack_prob_detect_cont(
    n,
    t = NA,
    p_v1 = NA,
    omega,
    p0_v1,
    r_v1,
    c_ratio = 1
)
```

```
n per-timestep (e.g., per day) sample size

t time step number (e.g., days) at which variant should be detected by. Default =

NA (either 't' or 'p_v1' should be provided, not both)
```

p_v1	the desired prevalence to detect a variant by. Default = NA (either 't' or ' p_v1 ' should be provided, not both)
omega	probability of sequencing (or other characterization) success
p0_v1	initial variant prevalence (# introductions / infected population size)
r_v1	logistic growth rate
c_ratio	coefficient of detection ratio, calculated as the ratio of the coefficients of variant 1 to variant 2. Default = 1 (no bias)

Value

scalar of detection probability

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant detection functions: vartrack_prob_detect_xsect(), vartrack_prob_detect(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect()

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_xsect(), vartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()
```

Examples

```
vartrack_prob_detect_cont(n = 158, t = 30, omega = 0.8, p0_v1 = 1/10000, r_v1 = 0.1, c_ratio = 1)
```

vartrack_prob_detect_xsect

Calculate probability of detecting a variant assuming cross-sectional sampling

Description

This function calculates the probability of detecting the presence of a variant given a sample size and assuming a single, cross-sectional sample of detected infections.

```
vartrack_prob_detect_xsect(p_v1, n, omega, c_ratio = 1)
```

66 vartrack_prob_prev

Arguments

p_v1 variant prevalence (proportion)

n sample size

omega probability of sequencing (or other characterization) success

c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant

1 to variant 2. Default = 1 (no bias)

Value

scalar of expected sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant detection functions: vartrack_prob_detect_cont(), vartrack_prob_detect(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect()

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()
```

Examples

```
vartrack_prob_detect_xsect(p_v1 = 0.02, n = 100, omega = 0.8, c_ratio = 1)
```

vartrack_prob_prev

Calculate confidence in a variant estimate given a sample size

Description

This function calculates the probability of accurately estimating variant prevalence given a sample size and desired precision in the variant prevalence estimate. Currently, only cross-sectional sampling is supported.

```
vartrack_prob_prev(p_v1, n, omega, precision, c_ratio = 1, sampling_freq)
```

Arguments

p_v1 variant prevalence (proportion)

n sample size

omega probability of sequencing (or other characterization) success

precision desired precision in variant prevalence estimate

c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant

1 to variant 2. Default = 1 (no bias)

sampling_freq the sampling frequency (must be either 'xsect' in current implementation)

Value

scalar of expected sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant prevalence estimation functions: vartrack_prob_prev_xsect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()
```

```
Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xsevartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()
```

Examples

```
vartrack_prob_prev(p_v1 = 0.1, n = 200, omega = 0.8, precision = 0.1,
c_ratio = 1, sampling_freq = 'xsect')
```

```
vartrack_prob_prev_xsect
```

Calculate confidence in a variant estimate assuming cross-sectional sampling

Description

This function calculates the probability of accurately estimating variant prevalence given a given a sample size and desired precision in the variant prevalence estimate, and assuming a single, cross-sectional sample of detected infections.

```
vartrack_prob_prev_xsect(p_v1, n, omega, precision, c_ratio = 1)
```

Arguments

p_v1 variant prevalence (proportion)

n sample size

omega probability of sequencing (or other characterization) success

precision desired precision in variant prevalence estimate

c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant

1 to variant 2. Default = 1 (no bias)

Value

scalar of expected sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

Other variant prevalence estimation functions: vartrack_prob_prev(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xse vartrack_prob_detect(), vartrack_prob_prev(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()

Examples

```
vartrack_prob_prev_xsect(p_v1 = 0.1, n = 200, precision = 0.1, omega = 0.8, c_ratio = 1)
```

 $vartrack_samplesize_detect$

Calculate sample size needed for variant detection given a desired probability of detection

Description

This function calculates the sample size needed for detecting the presence of a variant given a desired probability of detection and sampling strategy.

Usage

```
vartrack_samplesize_detect(
  prob,
  t = NA,
  p_v1 = NA,
  omega,
  p0_v1 = NA,
  r_v1 = NA,
  c_ratio = 1,
  sampling_freq
)
```

Arguments

prob	desired probability of detection
t	time step number (e.g., days) at which variant should be detected by. Default = NA (either 't' or ' p_v1 ' should be provided, not both)
p_v1	the desired prevalence to detect a variant by. Default = NA (either 't' or 'p_v1' should be provided, not both)
omega	probability of sequencing (or other characterization) success
p0_v1	initial variant prevalence (# introductions / infected population size)
r_v1	logistic growth rate
c_ratio	coefficient of detection ratio, calculated as the ratio of the coefficients of variant 1 to variant 2. Default = 1 (no bias)
sampling_freq	the sampling frequency (must be either 'xsect' or 'cont')

Value

scalar of expected sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant detection functions: vartrack_prob_detect_cont(), vartrack_prob_detect_xsect(), vartrack_prob_detect(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect_xsect()
```

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xsevartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_covartrack_samplesize_detect_xsect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()

Examples

vartrack_samplesize_detect_cont

Calculate sample size needed for variant detection assuming periodic sampling

Description

This function calculates the sample size needed for detecting the presence of a variant given a desired probability of detection and either a desired maximum time until detection or a desired prevalence by which to detect the variant by. It assumes a periodic sampling strategy, where samples are collected at regular intervals (time steps).

Usage

```
vartrack_samplesize_detect_cont(
  prob,
  t = NA,
  p_v1 = NA,
  omega,
  p0_v1,
  r_v1,
  c_ratio = 1
)
```

prob	desired probability of detection
t	time step number (e.g., days) at which variant should be detected by. Default = NA (either 't' or 'p_v1' should be provided, not both)
p_v1	the desired prevalence to detect a variant by. Default = NA (either 't' or ' p_v1' should be provided, not both)
omega	probability of sequencing (or other characterization) success
p0_v1	initial variant prevalence (# introductions / infected population size)
r_v1	logistic growth rate
c_ratio	coefficient of detection ratio, calculated as the ratio of the coefficients of variant 1 to variant 2. Default = 1 (no bias)

Value

scalar of expected sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant detection functions: vartrack_prob_detect_cont(), vartrack_prob_detect_xsect(), vartrack_prob_detect(), vartrack_samplesize_detect_xsect(), vartrack_samplesize_detect()
```

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xse vartrack_prob_detect(), vartrack_prob_prev(), vartrack_samplesize_detect_xsevartrack_samplesize_detect(), vartrack_samplesize_prev()

Examples

```
vartrack_samplesize_detect_cont(prob = 0.95, t = 30, omega = 0.8, p0_v1 = 1/10000, r_v1 = 0.1, c_ratio = 1)
```

```
vartrack_samplesize_detect_xsect
```

Calculate sample size needed for variant detection assuming cross-sectional sampling

Description

This function calculates the sample size needed for detecting the presence of a variant given a desired probability of detection and assuming a single, cross-sectional sample of detected infections.

Usage

```
vartrack_samplesize_detect_xsect(p_v1, prob, omega, c_ratio = 1)
```

Arguments

p_v1	variant prevalence (proportion)
prob	desired probability of detection

omega probability of sequencing (or other characterization) success

c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant

1 to variant 2. Default = 1 (no bias)

Value

scalar of expected sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

a desired confidence

See Also

```
Other variant detection functions: vartrack_prob_detect_cont(), vartrack_prob_detect_xsect(), vartrack_prob_detect(), vartrack_samplesize_detect_cont(), vartrack_samplesize_detect()

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xsevartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_cont()
```

vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect(), vartrack_samplesize_prev()

Examples

```
vartrack_samplesize_detect_xsect(p_v1 = 0.1, prob = 0.95, omega = 0.8, c_ratio = 1)

vartrack_samplesize_prev

Calculate sample size needed for estimating variant prevalence given
```

Description

This function calculates the sample size needed for estimating variant prevalence given a desired confidence and desired precision in the variant prevalence estimate. Currently, only cross-sectional sampling is supported.

Usage

```
vartrack_samplesize_prev(
   p_v1,
   prob,
   precision,
   omega,
   c_ratio = 1,
   sampling_freq
)
```

Value

scalar of sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant prevalence estimation functions: vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_prev_xsect()
```

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xsevartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_covartrack_samplesize_detect_xsect(), vartrack_samplesize_detect(), vartrack_samplesize_prev_xsect()

Examples

```
vartrack_samplesize_prev(p_v1 = 0.1, prob = 0.95, precision = 0.25,
omega = 0.8, c_ratio = 1, sampling_freq = 'xsect')
```

vartrack_samplesize_prev_xsect

Calculate sample size needed for variant prevalence estimation under cross-sectional sampling

Description

This function calculates the sample size needed for estimating variant prevalence given a desired confidence and desired precision in the variant prevalence estimate and assuming a single, cross-sectional sample of detected infections.

Usage

```
vartrack_samplesize_prev_xsect(p_v1, prob, precision, omega, c_ratio = 1)
```

Arguments

p_v1 variant prevalence (proportion)

prob desired confidence in variant prevalence estimate precision desired precision in variant prevalence estimate

omega probability of sequencing (or other characterization) success

c_ratio coefficient of detection ratio, calculated as the ratio of the coefficients of variant

1 to variant 2. Default = 1 (no bias)

Value

scalar of sample size

Author(s)

Shirlee Wohl, Elizabeth C. Lee, Bethany L. DiPrete, and Justin Lessler

See Also

```
Other variant prevalence estimation functions: vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_prev()
```

Other variant tracking functions: vartrack_cod_ratio(), vartrack_prob_detect_cont(), vartrack_prob_detect_xse vartrack_prob_detect(), vartrack_prob_prev_xsect(), vartrack_prob_prev(), vartrack_samplesize_detect_covartrack_samplesize_detect_xsect(), vartrack_samplesize_detect(), vartrack_samplesize_prev()

```
vartrack_samplesize_prev_xsect(p_v1 = 0.1, prob = 0.95, precision = 0.25, omega = 0.8, c_ratio = 1)
```

Index

* ROC functions	$translink_expected_links_true, 40$
<pre>gendist_roc_format, 7</pre>	translink_expected_links_true_mtml
optim_roc_threshold, 16	41
* datasets	<pre>translink_expected_links_true_mtsl</pre>
genDistSim, 6	42
* discovery_rate	translink_expected_links_true_stsl
falsediscoveryrate, 4	43
truediscoveryrate, 53	translink_fdr,44
* genetic distance functions	translink_prob_transmit,46
$gendist_distribution, 6$	translink_prob_transmit_mtml,47
<pre>gendist_roc_format, 7</pre>	$translink_prob_transmit_mtsl, 48$
${\tt gendist_sensspec_cutoff}, 9$	<pre>translink_prob_transmit_sts1, 49</pre>
* inverse_functions	translink_samplesize, 51
samplesize, 32	translink_tdr,52
* logistic growth functions	* true_pairs
varfreq_cdf_logistic,58	true_pairs, 54
varfreq_freq_logistic, 60	true_pairs_mtml, 55
* mutrate_functions	true_pairs_mtsl, 56
gen_dists, 10	true_pairs_stsl,57
<pre>get_optim_roc, 11</pre>	* variant detection functions
sens_spec_calc, 33	<pre>vartrack_prob_detect, 63</pre>
sens_spec_roc, 34	<pre>vartrack_prob_detect_cont, 64</pre>
* obs_pairs	<pre>vartrack_prob_detect_xsect, 65</pre>
exp_links, 3	<pre>vartrack_samplesize_detect, 68</pre>
obs_pairs_mtml, 12	<pre>vartrack_samplesize_detect_cont,</pre>
obs_pairs_mtsl, 14	70
obs_pairs_stsl, 15	<pre>vartrack_samplesize_detect_xsect,</pre>
* prob_trans	71
<pre>prob_trans_mtml, 17</pre>	* variant frequency functions
<pre>prob_trans_mtsl, 18</pre>	<pre>varfreq_cdf_logistic, 58</pre>
<pre>prob_trans_stsl, 19</pre>	varfreq_expected_mbias, 59
* transmission linkage functions	varfreq_freq_logistic, 60
<pre>translink_expected_links_obs, 35</pre>	varfreq_obs_freq,61
<pre>translink_expected_links_obs_mtml,</pre>	* variant prevalence estimation functions
37	vartrack_prob_prev, 66
<pre>translink_expected_links_obs_mtsl,</pre>	<pre>vartrack_prob_prev_xsect, 67</pre>
38	vartrack_samplesize_prev,72
<pre>translink_expected_links_obs_stsl,</pre>	<pre>vartrack_samplesize_prev_xsect, 73</pre>
39	* variant tracking functions

76 INDEX

<pre>vartrack_cod_ratio, 61</pre>	translink_expected_links_obs, 35, 38-45
<pre>vartrack_prob_detect, 63</pre>	47–50, 52, 53
<pre>vartrack_prob_detect_cont, 64</pre>	<pre>translink_expected_links_obs_mtml, 36,</pre>
<pre>vartrack_prob_detect_xsect, 65</pre>	37, 39–45, 47–50, 52, 53
vartrack_prob_prev, 66	<pre>translink_expected_links_obs_mtsl, 36,</pre>
<pre>vartrack_prob_prev_xsect, 67</pre>	<i>38</i> , <i>38</i> , <i>40–45</i> , <i>47–50</i> , <i>52</i> , <i>53</i>
<pre>vartrack_samplesize_detect, 68</pre>	<pre>translink_expected_links_obs_stsl, 36,</pre>
<pre>vartrack_samplesize_detect_cont,</pre>	38, 39, 39, 41–45, 47–50, 52, 53
70	<pre>translink_expected_links_true, 36,</pre>
<pre>vartrack_samplesize_detect_xsect,</pre>	38–40, 40, 42–45, 47–50, 52, 53
71	<pre>translink_expected_links_true_mtml, 36</pre>
<pre>vartrack_samplesize_prev, 72</pre>	38–41, 41, 43–45, 47–50, 52, 53
<pre>vartrack_samplesize_prev_xsect, 73</pre>	<pre>translink_expected_links_true_mtsl, 36</pre>
	38–42, 42, 44, 45, 47–50, 52, 53
exp_links, 3, <i>13–15</i>	translink_expected_links_true_stsl, 36
	38–43, 43, 45, 47–50, 52, 53
falsediscoveryrate, 4, 54	translink_fdr, 36, 38-44, 44, 47-50, 52, 53
1. 10 10 22 25	translink_prob_transmit, 36, 38-45, 46,
gen_dists, 10, 12, 33, 35	48–50, 52, 53
gendist_distribution, 6, 8, 10	translink_prob_transmit_mtml, 36, 38-45
gendist_roc_format, 7, 7, 10, 16	47, 47, 49, 50, 52, 53
gendist_sensspec_cutoff, 7, 8, 9	translink_prob_transmit_mtsl, 36, 38-45
genDistSim, 6	47, 48, 48, 50, 52, 53
get_optim_roc, 11, 11, 33, 35	translink_prob_transmit_stsl, 36, 38-45
aha maina mtml 4 10 14 15	47–49, 49, 52, 53
obs_pairs_mtml, 4, 12, 14, 15	translink_samplesize, 36, 38-45, 47-50,
obs_pairs_mtsl, 4, 13, 14, 15	51, 53
obs_pairs_stsl, 4, 13, 14, 15	translink_tdr, 36, 38–45, 47–50, 52, 52
optim_roc_threshold, 8, 16	true_pairs, 54, 56, 57
prob_trans_mtml, 17, 19, 20	true_pairs_mtml, 55, 55, 57
prob_trans_mtml(), 4, 5, 32, 53, 55	true_pairs_mts1, 55, 56, 56, 57
prob_trans_mtsl, 18, 18, 20	true_pairs_sts1, 55-57, 57
prob_trans_mtsl(), 4, 5, 32, 53, 55	truediscoveryrate, 5, 53
prob_trans_sts1, 18, 19, 19	3 ,.,
prob_trans_sts1(), 4, 5, 32, 53, 55	<pre>varfreq_cdf_logistic, 58, 59-61</pre>
pi ob_ti ali3_3t31(), 4, 3, 32, 33, 33	varfreq_expected_mbias, 58, 59, 60, 61
relR_power, 20	varfreq_freq_logistic, 58, 59, 60, 61
relR_power_simulated, 21	varfreq_obs_freq, 58-60, 61
relR_samplesize, 22, 25	vartrack_cod_ratio, 61, 64-69, 71-74
relR_samplesize_basic, 24	vartrack_prob_detect, 62, 63, 65-69,
relR_samplesize_ci, 25	71–74
relR_samplesize_linkerr, 27	vartrack_prob_detect_cont, 62, 64, 64,
relR_samplesize_opterr, 28	66–69, 71–74
relR_samplesize_simsolve, 29	vartrack_prob_detect_xsect, 62, 64, 65,
relR_samplesize_solve, 30	65, 67–69, 71–74
1 C11_3amp1E312E_301VE, 30	vartrack_prob_prev, 62, 64–66, 66, 68, 69,
samplesize, 32	71–74
sens_spec_calc, 11, 12, 33, 35	vartrack_prob_prev_xsect, 62, 64–67, 67,
sens_spec_roc, 11, 12, 33, 34	69, 71–74
555_5p66_1 66, 11, 12, 55, 51	07,71 77

INDEX 77

```
\begin{array}{c} \text{vartrack\_samplesize\_detect, } 62, 64\text{--}68, \\ 68, 71\text{--}74 \\ \text{vartrack\_samplesize\_detect\_cont, } 62, \\ 64\text{--}69, 70, 72\text{--}74 \\ \text{vartrack\_samplesize\_detect\_xsect, } 62, \\ 64\text{--}69, 71, 71, 73, 74 \\ \text{vartrack\_samplesize\_prev, } 62, 64\text{--}69, 71, \\ 72, 72, 74 \\ \text{vartrack\_samplesize\_prev\_xsect, } 62, \\ 64\text{--}69, 71\text{--}73, 73 \\ \end{array}
```