Relaciones Binarias

Matemática IV, Facultad de Informática, UNLP. 2019

Conjuntos

Se llama conjunto a toda colección o reunión de objetos (cosas, animales, personas o números) bien definidos que cumplen una propiedad determinada.

A los objetos del conjunto se denominan **elementos**.

La determinación de un conjunto corresponde a la manera como éste puede expresarse.

Para determinar un conjunto se utilizan dos formas: determinación por extensión (listando todos sus elementos) y la determinación por comprensión (por la propiedad que cumplen o caraterizan sus elementos).

Conjuntos

- Llamaremos $Conjunto\ Vacío$ al conjunto especial, \emptyset , que no tiene ningún elemento.
- Diremos que un conjunto B contiene a otro conjunto A (También se dice que A está contenido en B o que A es subconjunto de B), cuando todos los elementos de A son también elementos de B. Se denotará $A \subset B$.
- \bullet Diremos que dos conjuntos A y B son iguales si $A\subset B$ y $B\subset A$

Álgebra de Conjuntos

Existen unas operaciones básicas que permiten manipular los conjuntos y sus elementos, similares a las operaciones aritméticas, constituyendo el álgebra de conjuntos:

- La unión de dos conjuntos A y B es el conjunto $A \cup B$ que contiene cada elemento que está por lo menos en uno de ellos.
- La intersección de dos conjuntos A y B es el conjunto $A \cap B$ que contiene todos los elementos comunes de A y B.
- La diferencia entre dos conjuntos A y B es el conjunto A-B que contiene todos los elementos de A que no pertenecen a B.
- El complemento de un conjunto A es el conjunto A^c que contiene todos los elementos (respecto de algún conjunto referencial) que no pertenecen a A.

Producto Cartesiano

El **producto cartesiano** de dos conjuntos es una operación, que resulta en otro conjunto, cuyos elementos son todos los *pares ordenados* que pueden formarse de forma que el primer elemento del par ordenado pertenezca al primer conjunto y el segundo elemento pertenezca al segundo conjunto.

$$A \times B = \{(x, y)/x \in A; y \in B\}$$

Relaciones

Dados dos conjuntos no vacíos A y B, una relación binaria definida entre los mismos es un subconjunto del producto cartesiano $A \times B$, caracterizado por alguna propiedad común a sus elementos

$$R = \{(x,y)/(x,y) \in A \times B\} \subset A \times B$$

Muchas veces cuando $(x,y) \in R$ escribiremos xRy

Las relaciones estarán dadas por extensi'on, dando todos los pares que la componen, o por comprensi'on dando la propiedad que la caracteriza.

Relaciones- Ejemplos

en $A \times B$ viene definida por: xRy si y sólo si x es letra de y. Entonces, la relación definida por extensión quedaría: $R = \{(i, brisa); (a, brisa); (a, mar); (o, sol); (u, nube); (e, nube)\}$

• si $A = \{x/x \text{ es vocal}\}\ y \ B = \{brisa, sol, mar, nube\}\ y \ la relación$

 $ext{2}$ si $A = \{enteros\ pares\ entre\ -4\ y\ 10\},\ B = Z\ y\ la\ relación\ viene$ definida en la forma: xRy si y sólo si y es el cuadrado de xEntonces, la relación definida por extensión quedaría: $R = \{(-4,16); (-2,4); (0,0); (2,4); (4,16); (6,36); (8,64); (10,100)\}$

Dominio e Imagen de una relación binaria

Sea R una relación de A en B.

Se llama **dominio** de R al conjunto de elementos x de A tales que $(x,y) \in R$

$$Dom_R = \{x \in A : (x, y) \in R\}$$

Se llama **imagen** de R al conjunto de elementos y de B tales que $(x,y) \in R$

$$Im_R = \{ y \in B : (x, y) \in R \}$$

Relación inversa

Sea R una relación de A en B. Se llama **relación inversa** de R al subconjunto de $B \times A$ definido por

$$R^{-1} = \{(y, x) : (x, y) \in R\}$$

Ejemplo

Sean $A = \{-2, -1, 0, 1, 2, 3\}$ y $B = \{-8, -1, 0, 1, 8, 27\}$, y sea R de A en B definida por : xRy si y sólo si x es el cubo de y $R = \{(-8, -2); (-1, -1); (0, 0); (1, 1); (8, 2); (27, 3)\}$

Entonces, $R^{-1} = \{(-2, -8); (-1, -1); (0, 0); (1, 1); (2, 8); (3, 27)\}$, es decir, $aR^{-1}b$ si y sólo si a es la raíz cúbica de b

Composición de Relaciones

Dadas las relaciones R en $A \times B$ y S en $B \times C$ se puede construir la relación composición

$$SoR = \{(x,z) : (x,y) \in R, (y,z) \in S\} \subset A \times C$$

Ejemplo

Sean $A = \{x/x \ es \ vocal\}$, $B = \{brisa, sol, mar, nube\}$ y $C = \{1, 2, 3, 4, 5\}$ y las relaciones R definidas en $A \times B$ por: xRy si y sólo si x es letra de y, y y S en $B \times C$ por: xRy si y sólo si y es cantidad de letras que tiene x

Entonces, las relaciones definidas por extensión quedarían:

$$R = \{(i, brisa); (a, brisa); (a, mar); (o, sol); (u, nube); (e, nube)\}$$
y $S = \{(sol, 3); (mar, 3); (nube, 4); (brisa, 5)\}$
Luego, $SoR = \{(i, 5); (a, 5); (a, 3); (o, 3); (u, 4); (e, 4)\}$

Relaciones definidas en un conjunto

Si una relación R es tal que $R \subset A \times A$, se dice que está definida en el conjunto A. En este tipo de relaciones se pueden definir las siguientes propiedades:

- Reflexividad: R será reflexiva si para todo $x \in A$ vale que xRx
- Simetría: R será simétrica si para todo $x, y \in A$ vale que xRy implica yRx
- Antisimetría: R será antisimétrica si xRy e yRx implican que x=y para todo $x,y\in A$
- Transitividad: R será transitiva si para todo $x,y,z\in A$ vale que xRy e yRz implican que xRz

Relaciones definidas en un conjunto - Ejemplos

- **9** Sea $A = \{a, b, c\}$
 - $R = \{(a,b); (a,a); (b,b)\}$ es transitiva pero no simétrica ni reflexiva. También es antisimétrica.
 - $R = \{(a, a); (b, b); (c, c)\}$ es reflexiva, simétrica, antisimétrica y transitiva
 - $R = \{(a,b); (b,c); (a,c); (c,b); (a,a); (b,b); (c,c)\}$ es reflexiva, transitiva pero no es simétrica ni antisimétrica.
- ② La relación x divide a y en el conjunto de los números naturales es reflexiva, transitiva y antisimétrica. Obviamente no es simétrica . La misma relación divide en el conjunto de los números enteros no es antisimétrica.
- ${\color{red} \bullet}$ En el conjunto de las rectas del plano, la relación L es paralela a M es reflexiva, simétrica y transitiva

Relaciones definidas en un conjunto

Si una relación R definida sobre un conjunto A es reflexiva, antisimétrica y transitiva diremos que es una **relación de orden** (ó que es un $orden\ sobre\ A$)

Si una relación R definida sobre un conjunto A es reflexiva, simétrica y transitiva diremos que es una **relación de equivalencia** (ó que es un equivalencia en A)

Relaciones de equivalencia

Dada una relación de equivalencia R sobre A y un elemento $a \in A$ se denominará **clase de equivalencia de a** y se denotará \bar{a} al conjunto de todos los elementos de A que están relacionados con a por R. Es decir, $\bar{a} = \{x \in A : xRa\}$

Cualquier elemento de \bar{a} se llama representante de la clase, y en particular, como la relación es reflexiva se da que $a \in \bar{a}$, luego para todo $a \in A$, a es representante de la clase \bar{a}

Clases de equivalencia - Propiedades

Sea R una relación de equivalencia en un conjunto A, se cumple:

- **1** Para todo $a \in A$, $\bar{a} \neq \emptyset$
- ② Si $a, b \in A$ tales que $\bar{a} = \bar{b}$ entonces aRb
- **3** Si $a, b \in A$ tales que $\bar{a} \neq \bar{b}$ si y sólo si $\bar{a} \cap \bar{b} = \emptyset$

Esto es, las clases de equivalencia son conjuntos no vacios y disjuntos.

Conjunto cociente - Particiones

Al conjunto formado por todas las clases de equivalencia de elementos del conjunto A respecto de la relación R se lo llamará **conjunto cociente de A respecto de la relación R** y se lo denotará:

$$A/R = \{\bar{a} : a \in A\}$$

Recordemos que dado un conjunto no vacio A y $P = \{A_i\}$ con $i \in I$, se dice que P constituye una **partición** de A si y sólo si $A = \cup A_i$ y $A_i \cap A_j = \emptyset$ para $i \neq j$

Teorema (Teorema Fundamental de las relaciones de equivalencia)

Si R es una relación de equivalencia en un conjunto A, el conjunto cociente A/R es una partición de A.