APPENDIX

The proof of Theorem 2 relies on Lemmas 1 and 2. The first lemma shows that the standard deviation of power flow related to customer i is at least as much as σ_i . Therefore, by specifying σ_i , the DSO attains the desired degree of randomization.

Lemma 1. If OPF mechanism (4) returns optimal solution, then σ_{ℓ} is the lower bound on $Std[\tilde{f}_{\ell}^p]$.

Proof. Consider a single flow perturbation with $\xi_{\ell} \sim \mathcal{N}(0, \sigma_{\ell}^2)$ and $\xi_j = 0, \ \forall j \in \mathcal{L} \setminus \ell$. The standards deviation of active power flow (3b) in optimum finds as

$$\operatorname{Std}\left[f_{\ell}^{p} - \left[\rho_{\ell}^{p} + \sum_{j \in \mathcal{D}_{\ell}} \rho_{j}^{p}\right] \xi\right] = \operatorname{Std}\left[\left[\rho_{\ell}^{p} + \sum_{j \in \mathcal{D}_{\ell}} \rho_{j}^{p}\right] \xi\right] = \operatorname{Std}\left[\sum_{j \in \mathcal{D}_{\ell}} \alpha_{j\ell} \xi_{\ell}\right] \stackrel{\text{(2b)}}{=} \operatorname{Std}\left[\xi_{\ell}\right] = \sigma_{\ell},\tag{9}$$

where the second to the last equality follows from balancing conditions (2b). As for any pair $(\ell,j) \in \mathcal{L}$ the covariance matrix returns $\Sigma_{\ell,j} = 0$, σ_{ℓ} is a lower bound on $\mathrm{Std}[\tilde{f}^p_{\ell}]$ in the optimum for any additional perturbation in the network.

Remark 1. The result of Lemma 1 holds independently from the choice of objective function and is solely driven by the feasibility conditions.

The second lemma shows that $\beta_i \geqslant \Delta_i^{\beta}$, i.e., if σ_i is parameterized by β_i , then σ_i is also parameterized by sensitivity Δ_i^{β} .

Lemma 2. Let D and D' be two adjacent datasets differing in at most one load d_i^p by at most $\beta_i > 0$. Then,

$$\Delta_i^{\beta} = \max_{\ell \in \mathcal{L}} \|\mathcal{M}(D)|_{f_{\ell}^p} - \mathcal{M}(D')|_{f_{\ell}^p}\|_2 \leqslant \beta_i$$

where the notation $\mathcal{M}(\cdot)|_{f_{\ell}^p}$ denotes the value of the optimal active power flow on line ℓ returned by the computation $\mathcal{M}(\cdot)$.

Proof. Let \hat{f}_{ℓ}^p be the optimal solution for the active power flow in line ℓ obtained on input dataset $D=(d_1^p,\ldots,d_n^p)$. From OPF equation (1c), it can be written as

$$f_{\ell}^{\star} = d_{\ell}^{p} - g_{\ell}^{\star} + \sum_{i \in \mathcal{D}_{\ell}} (d_{i}^{p} - g_{i}^{p}),$$

which expresses the flow as a function of the downstream loads and the optimal DER dispatch. A change in the active load d^p_ℓ translates into a change of power flow as

$$\frac{\partial f_{\ell}^{p}}{\partial d_{\ell}^{p}} = \underbrace{\frac{\partial d_{\ell}^{p}}{\partial d_{\ell}^{p}} - \frac{\partial g_{\ell}^{p}}{\partial d_{\ell}^{p}}}_{1} + \sum_{i \in \mathcal{D}_{\ell}} \left(\underbrace{\frac{\partial d_{i}^{p}}{\partial d_{\ell}^{p}} - \frac{\partial g_{i}^{p}}{\partial d_{\ell}^{p}}}_{0} \right) = 1 - \frac{\partial g_{\ell}^{p}}{\partial d_{\ell}^{p}} - \sum_{i \in \mathcal{D}_{\ell}} \underbrace{\frac{\partial g_{i}^{p}}{\partial d_{\ell}^{p}}}_{0}, \tag{10}$$

where the last two terms are always non-negative due to convexity of model (1). The value of (10) attains maximum when

$$g_k^{\dagger} = \overline{g}_k^p \mapsto \frac{\partial g_k^p}{\partial d_\ell^p} = 0, \quad \forall k \in \{\ell\} \cup \mathcal{D}_\ell.$$
(11)

Therefore, by combining (10) with (11) we obtain the maximal change of power flows as

$$\frac{\partial \hat{f}_{\ell}^{p}}{\partial d_{\ell}^{p}} = 1.$$

Since the dataset adjacency relation considers loads d_{ℓ}^p that differ by at most β_{ℓ} , it suffices to multiply the above by β_{ℓ} to attain the result. It finds similarly that for a β_i change of any load $i \in \mathbb{N}$, all network flows change by at most β_i .

Proof of Theorem 2. Consider a customer at non-root node i. Mechanism $\tilde{\mathcal{M}}$ induces a perturbation on the active power flow f_i^p by a random variable $\xi_i \sim \mathcal{N}(0, \sigma_i^2)$. The randomized active power flow f_i^p is then given as follows:

$$\tilde{f}_i^p = f_i^p - \left[\rho_i^p + \sum_{j \in \mathcal{D}_i} \rho_j^p \right] \xi$$

where \star denotes optimal solution for optimization variables. For privacy parameters (ε, δ) , the mechanism specifies

$$\sigma_i \geqslant \beta_i \sqrt{2\ln(1.25/\delta)}/\varepsilon, \ \forall i \in \mathcal{L}.$$

As per Lemma 1, we know that σ_i is the lower bound on the standard deviation of power flow f_ℓ^p . From Lemma 2 we also know that the sensitivity Δ_i^β of power flow in line i to load d_i^p is upper-bounded by β_i , so we have

$$\operatorname{Std}[\tilde{f}_i^p] \geqslant \sigma_i \geqslant \Delta_i^\beta \sqrt{2\ln(1.25/\delta)}/\varepsilon.$$

Since the randomized power flow follow is now given by a Normal distribution with the standard deviation $Std[\tilde{f}_i^p]$ as above, by Theorem 1, mechanism $\tilde{\mathcal{M}}$ satisfies (ε, δ) -differential privacy for each grid customer up to adjacency parameter β .