Unit-4: TRANSISTOR - Introduction

(b)

(d)

Introduction

- Beside diodes, the most popular semiconductor devices is transistors.
 Eg: Bipolar Junction Transistor (BJT)
- If cells are the building blocks of life, transistors are the building blocks of the digital revolution.

Without transistors, technological wonders you use every day -- <u>cell phones</u>, <u>computers</u> -- would be vastly different, if they existed at all.

- Transistors are more complex and can be used in many ways Most important feature: can amplify signals and switch
- Amplification can make weak signal strong (make sounds louder and signal levels greater), in general, provide function called Gain

Transistor Structure

- BJT is bipolar because both holes (+) and electrons (-) will take part in the current flow through the device
 - N-type regions contains free electrons (negative carriers)
 - P-type regions contains free holes (positive carriers)
- Types of BJT
 - NPN transistor
 - PNP transistor
- The transistor regions are:
 - Emitter (E) send the carriers into the base region and then on to the collector
 - Base (B) acts as control region. It can allow none, some or many carriers to flow
 - Collector (C) collects the carriers

PNP and NPN transistor

Arrow shows the current flows

NPN Schematic Symbol

PNP Schematic Symbol

Memory aid: NPN means Pointing iN Properly.

Transistor Construction

- A transistor has three doped regions.
- For both types, the base is a narrow region sandwiched between the larger collector and emitter regions.

- •The <u>emitter</u> region is heavily doped and its job is to emit carriers into the base.
- **■**The <u>base</u> region is very thin and lightly doped.
- •Most of the current carriers injected into the base pass on to the collector.
- The <u>collector</u> region is moderately doped and is the largest of all three regions.

Transistor configuration

Transistor configuration —is a connection of transistor to get variety operation.

3 types of configuration:

- Common Base
- Common Emitter
- Common Collector

Common-Base Configuration

- Base terminal is a common point for input and output.
- Input EB
- Output CB
- Not applicable as an amplifier because the relation between input current gain (I_F) and output current gain (I_C) is approximately 1

Common-Emitter Configuration

- Emitter terminal is common for input and output circuit
- Input BE
- Output CE
- Mostly applied in practical amplifier circuits, since it provides good voltage, current and power gain

Common-Collector Configuration

- The input signal is applied to the base terminal and the output is taken from the emitter terminal.
- Collector terminal is common to the input and output of the circuit
- Input BC
- Output EC

Current Relationships

• Relations between I_C and I_E :

$$\alpha = \underline{I}_{C}$$

$$\underline{I}_{E}$$

- Value of α usually 0.9998 to 0.9999, $\alpha \approx 1$
- Relations between I_C and I_B:

$$I_{C} = \beta I_{B}$$

- Value of β usually in range of 50 to 400
- The equation, $I_E = I_C + I_B$ can also written in β

$$I_{C} = \beta I_{B}$$

$$I_{E} = \beta I_{B} + I_{B} = \sum I_{E} = (\beta + 1)I_{B}$$

• The current gain factor, α and β is:

$$\alpha = \underline{\beta}$$
 @ $\beta = \underline{\alpha}$.
 $\beta + 1$ $\alpha - 1$

Transistor operation

A transistor has

- 1.one pn junction
- 2.two pn junctions
- 3.three pn junctions
- 4.four pn junctions

The number of depletion layers in a transistor is

- (a) Four
- (b) Three
- (c) One
- (d) two

The element that has the biggest size in a transistor is

- (a) Collector
- (b) Base
- (c) Emitter
- (d) collector-base-junction

In a npn transistor, are the minority carriers

- (a) free electrons
- (b) Holes
- (c) donor ions
- (d) acceptor ions

The emitter of a transistor is doped

- (a) Lightly
- (b) Heavily
- (c) Moderately
- (d) none of the above

In a transistor

(a)
$$I_C = I_E + I_B$$

(b)
$$I_B = I_C + I_E$$

(c)
$$I_E = I_C - I_B$$

(d)
$$I_E = I_C + I_B$$