Chapter 37 Couple de variables aléatoires réelles

Exercice 1 (37.0)

Soit X et Y deux variables aléatoires telles que $Y = X^2$ et que la loi de X soit donnée par le tableau

- **1.** Donner la loi du couple (X, Y).
- 2. Déterminer la loi de Y.
- **3.** *X* et *Y* sont-elles indépendantes ?
- **4.** Calculer cov(X, Y). Conclusion ?

Solution 1 (37.0)

1. On a $P((X = i) \cap (Y = j)) = 0$ si $j \neq i^2$ et $P((X = i) \cap (Y = i^2)) = P(X = i)$.

$\overline{X \setminus Y}$	0	1	4
-2	0	0	$\frac{1}{6}$
-1	0	$\frac{1}{4}$	Ö
0	$\begin{bmatrix} \frac{1}{6} \\ 0 \end{bmatrix}$	Ö	0
1	ő	$\frac{1}{4}$	0
2	0	0	$\frac{1}{6}$

2. La loi de Y est la loi marginale de Y dans le couple (X,Y). On peut aussi obtenir directement cette loi car Y prend les valeurs i^2 pour $i \in X(\Omega)$.

Donc Y prend les valeurs 0, 1 et 4.

$$P(Y = 0) = P(X = 0) = \frac{1}{6},$$

$$P(Y = 1) = P(X = -1) + P(X = 1) = \frac{1}{2},$$

$$P(Y = 4) = P(X = -2) + P(X = 2) = \frac{1}{3}.$$

Dans les deux cas, on obtient le tableau

3. X et Y ne sont pas indépendante car

$$P((X = 0) \cap (Y = 1)) = 0 \neq P(X = 0)P(Y = 1).$$

4. Cov(X, Y) = E(XY) - E(X)E(Y). Ici

$$E(XY) = \sum_{i,j} x_i y_j P\left((X = x_i) \cap (Y = y_i)\right) = -\frac{1}{4} + \frac{1}{4} - \frac{8}{6} + \frac{8}{6} = 0;$$

et comme E(X) = 0, on a Cov(X, Y) = 0.

Conclusion

Deux variables dant la covariance est nulle ne sont pas nécéssairement indépendantes.

Exercice 2 (37.0)

Une urne contient 4 boules numérotées de 1 à 4. On y prélève deux boules sans remise. On définit les variables aléatoires X et Y égales respectivement au plus petit et au plus grand des deux numéro obtenus.

- **1.** Déterminer la loi du couple (X, Y).
- **2.** En déduire les lois marginales de X et de Y. Calculer E(X), E(Y), V(X), V(Y).
- **3.** Les variables aléatoires X et Y sont-elles indépendantes? Calculer Cov(X, Y).
- **4.** On pose Z = Y X. Calculer E(Z) et V(Z). Déterminer ensuite la loi de Z.

Solution 2 (37.0)

Exercice 3 (37.0)

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{R}$. On définit, pour $(i, j) \in [[1, n]]^2$, les réels $p_{i,j}$ par $p_{i,j} = a \cdot i \cdot j$.

- 1. Déterminer a pour que la loi du coupe (X,Y) soit donnée par la distribution de probabilité $\left(p_{i,j}\right)_{(i,j)\in [\![1,n]\!]^2}$.
- 2. Déterminer les lois marginales de X et de Y. Ces variables aléatoires sont-elles indépendantes?
- **3.** En déduire E(XY) et Cov(X, Y).
- **4.** On pose Z = X + Y. Calculer l'espérance et la variance de Z.

Solution 3 (37.0)

Exercice 4 (37.0)

On a n boites numérotées de 1 à n. La boite k contient k boules numérotées de 1 à k. On choisit au hasard une boite puis une boule dans cette boite. Soit X le numéro de la boule boule.

- **1.** Déterminer la loi du couple (X, Y).
- **2.** Calculer P(X = Y).
- **3.** Déterminer la loi de Y et E(Y).

Solution 4 (37.0)

1. Pour tout $(i, j) \in [1, n]^2$,

$$P((X = i) \cap (Y = j)) = P(X = i)P_{(X = i)}(Y = j) = \begin{cases} 0 & \text{si } i < j \\ \frac{1}{n} \times \frac{1}{i} & \text{si } i \ge j. \end{cases}$$

2. L'événement (X = Y) est réalisé si, et seulement si X et Y prennent les même valeurs donc

$$P(X = Y) = \sum_{i=1}^{n} P\left((X = i) \cap (Y = i)\right) = \sum_{i=1}^{n} \frac{1}{ni} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i}.$$

3. Y prend les valeurs 1, 2, ..., n. Pour tout $j \in [1, n]$,

$$P(Y = j) = \sum_{i=1}^{n} P((X = i) \cap (Y = j)) = \sum_{i=1}^{n} \frac{1}{ni} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i}.$$

Finalement,

$$E(Y) = \sum_{j=1}^{n} j P(Y = j) = \sum_{j=1}^{n} \frac{j}{n} \sum_{i=j}^{n} \frac{1}{i} = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{i} \frac{j}{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{i} j = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{i} \times \frac{i(i+1)}{2} = \frac{1}{2n} \sum_{i=1}^{n} (i+1)$$

$$= \frac{1}{2n} \left(\frac{(n+1)(n+2)}{2} - 1 \right) = \frac{n+3}{4}.$$

Exercice 5 (37.0)

On lance un dé cubique honnête, soit X le résultat obtenu. Si X est divisible par 3, on extrait en une fois 3 boules d'une urne U_1 contenant 3 boules blanches et 5 boules noires. Sinon, on extrait en une fois X boules d'une urne U_2 contenant 2 boules blanches et 3 boules noires.

Soit Y le nombre aléatoire de boules blanches obtenues. Déterminer la loi de Y, son espérance et sa variance.

Solution 5 (37.0)

Si le résultat X du lancer du dé est divisible par 3, alors le nombre Y de boules blanches obtenues ensuite appartient à [0,3], sinon on ne peut extraire plus de 2 boules blanches de l'urne 2. Donc

$$Y(\Omega) = \{ 0, 1, 2, 3 \}.$$

Le «hasard» intervenant à deux niveaux chronologiquement hiérarchisés (!), il est urgent de faire appel au conditionnement du second par le premier. Pour j = 3, 6, on a

$$\forall i \in [0,3], P(Y=i|X=j) = \frac{\binom{3}{i}\binom{5}{3-i}}{\binom{8}{3}}$$

et pour j = 1, 2, 4, 5,

$$\forall i \in [0,3], P(Y=i|X=j) = \frac{\binom{2}{i}\binom{3}{j-i}}{\binom{5}{i}}.$$

Remarque. On reconnait des lois hypergéométrique. Ce sont des lois usuelles, mais hors-programme.

Le dé étant honnête, X suit la loi uniforme sur [1,6]. Ainsi la formule des probabilités totales associée au système complet $(\{X=j\})_{j\in[1,6]}$ s'écrit

$$\forall i \in [[0,3]], P(Y=i) = \sum_{j=1}^{6} P(Y=i|X=j)P(X=j)$$

$$= \frac{1}{6} \sum_{j=1}^{6} P(Y=i|X=j)$$

$$= \frac{1}{6} \left(P(Y=i|X=3) + P(Y=i|X=6) + \sum_{j \in \{1,2,4,5\}} P(Y=i|X=j) \right)$$

ce qui donne, compte tenu des lois conditionnelles

$$P(Y = i) = \frac{1}{6} \left(2 \frac{\binom{3}{i} \binom{5}{3-i}}{\binom{8}{3}} + \sum_{j \in \{1,2,4,5\}} \frac{\binom{2}{i} \binom{3}{j-i}}{\binom{5}{j}} \right).$$

Il n'y a plus qu'à faire les calculs!

D'où

$$E(Y) = \frac{987}{840} = \frac{47}{40},$$
 $E(Y^2) = \frac{1648}{840}$ et $V(Y) = \frac{405951}{(840)^2}$

c'est-à-dire $E(Y) \approx 1,175 \text{ et } V(Y) = 0,58.$

Exercice 6 (37.0)

On admet la convention $\binom{n}{j} = 0$ si $j \notin [0, n]$.

1. Soit n et m deux entiers naturels, et f la fonction polynôme définie pour tout réel x par

$$f(x) = (1+x)^n (1+x)^m = (1+x)^{n+m}$$
.

- (a) Développer f(x) deux deux façons différentes, en utilisant la formule du binôme.
- (b) En déduire que, pour tous entiers naturels n et m, on a

$$\forall k \in [0, n+m], \sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}.$$

Cette formule est connue sous le nom de formule de Vandermonde.

2. Démontrer le théorème de stabilité de la somme de deux lois binomiales indépendantes, c'est-àdire que, si X et Y sont deux variables *indépendantes* suivant respectivement une loi binomiale $\mathcal{B}(m,p)$ et $\mathcal{B}(n,p)$, alors

$$X + Y \rightsquigarrow \mathcal{B}(n + m, p)$$
.

Solution 6 (37.0)

Exercice 7 (37.0)

On effectue une succession infinie de lancers d'une pièce équilibrée. À chaque lancer, à partir du deuxième, si le côté obtenu est différent du côté obtenu au lancer précédent, on gagne 1 euro. Pour tout $n \ge 2$, on définit la variable aléatoire X_n égale au gain total à l'issue des n premiers lancers.

- 1. Déterminer les lois de X_2 et de X_3 , puis calculer leurs espérances.
- **2.** Soit $n \ge 2$. Justifier que X_n prend ses valeurs dans $\{0, \dots, n-1\}$. Calculer $P(X_n = 0)$ et $P(X_n = n-1)$.
- **3.** Pour tout $n \ge 2$ et tout $k \in \{0, ..., n\}$, montrer

$$P\left(X_{n+1}=k\right)=\frac{1}{2}P\left(X_n=k\right)+\frac{1}{2}P\left(X_n=k-1\right).$$

4. On note, pour tout $n \ge 2$, $Q_n : \mathbb{R} \to \mathbb{R}$ l'application définie par

$$\forall s \in \mathbb{R}, Q_n(s) = \sum_{k=0}^{n-1} P(X_n = k) s^k.$$

- (a) Soit $n \ge 2$. Calculer $Q_n(1)$ et montrer que $Q'_n(1) = E(X_n)$. Exprimer $V(X_n)$ à l'aide de la fonction Q_n .
- (b) Montrer, pour tout $n \ge 2$ et tout $s \in \mathbb{R}$,

$$Q_{n+1}(s) = \frac{1+s}{2}Q_n(s).$$

- (c) En déduire une expression de $Q_n(s)$ en fonction de n et de s.
- **5.** Calculer alors, pour tout $n \ge 2$, l'espérance et la variance de X_n .

Solution 7 (37.0)

Exercice 8 (37.0) Nombre de sommets isolés dans un graphe aléatoire (X-ENS)

Pour chaque $n \in \mathbb{N}^*$, on se donne un réel $p_n \in]0, 1[$. On considère le graphe aléatoire non orienté Γ_n , de sommets $1, \ldots, n$, tel que, si pour tout (i, j) tel que $1 \le i < j \le n$, $X_{i,j}$ est la variable indicatrice de l'événement « $\{i, j\}$ est une arête de Γ_n », alors les $X_{i,j}$ sont indépendantes et suivent toutes la loi de Bernoulli de paramètre p_n .

On note alors Y_n la variable aléatoire qui donne le nombre de sommets isolés (reliés à aucun autre).

- **1.** Soit X une variable aléatoire finie à valeurs dans \mathbb{R}_+ . Montrer que $P(X > 0) \ge \frac{E(X)^2}{E(X^2)}$.
- **2.** On suppose que $\frac{\ln n}{n} = o(p_n)$. Montrer que $P(Y_n > 0) \xrightarrow[n \to +\infty]{} 0$.
- **3.** On suppose que $p_n = o\left(\frac{\ln n}{n}\right)$. Montrer que $P(Y_n > 0) \xrightarrow[n \to +\infty]{} 1$.

Solution 8 (37.0)