1.

a) Tem-se que:
$$z_2 imes \overline{z_2} = |z_2|^2 = \left(3\sqrt{2}\right)^2 = 9 imes 2 = 18$$

Portanto,
$$\frac{z_2 \times \overline{z_2}}{9} = \frac{18}{9} = 2$$

Por outro lado, tem-se que $~z_{\scriptscriptstyle 1}=\rho~cis~\frac{\pi}{4}$

Portanto,
$$\frac{z_1}{|z_1|} = \frac{\rho \ cis \ \frac{\pi}{4}}{\rho} = cis \ \frac{\pi}{4}$$

Donde,
$$\left(\frac{z_1}{\left|z_1\right|}\right)^8 = \left(cis\,\frac{\pi}{4}\right)^8 \,=\, cis\,(2\pi) = 1$$

Portanto,
$$\frac{z_2 \times \overline{z_2}}{9} + \left(\frac{z_1}{|z_1|}\right)^8 = 2 + 1 = 3$$

b) A área do rectângulo
$$[OPQR]$$
 é igual a $\overline{OP} \times \overline{OR} = |z_1| \times |z_2|$

Portanto, $\left|z_{_{1}}\right| \times \left|z_{_{2}}\right| = 6$, donde $\left|z_{_{1}}\right| \times 3\sqrt{2} = 6$, pelo que

$$|z_1| = \frac{6}{3\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$

Portanto,
$$z_{_1} = \sqrt{2} \ cis \ \frac{\pi}{4} \ = \sqrt{2} \ \left(\frac{\sqrt{2}}{2} \ + \ \frac{\sqrt{2}}{2} \ i \ \right) \ = 1 + i$$

Como o ângulo POR é recto, tem-se

$$z_{_{2}}\,=3\,\sqrt{2}\,\,cis\,\left(-\,\,\frac{\pi}{4}\,\right)=3\,\sqrt{2}\,\,\left(\frac{\sqrt{2}}{2}\,\,-\,\,\frac{\sqrt{2}}{2}\,\,i\,\,\right)\,\,=\,3\,-3\,i$$

2.

$$\begin{array}{ll} \textbf{a)} & \text{Tem-se que:} & P(B|A) = P(B|\overline{A}) \quad \Leftrightarrow \quad \frac{P(A\cap B)}{P(A)} = \frac{P(\overline{A}\cap B)}{P(\overline{A})} \quad \Leftrightarrow \\ & \Leftrightarrow P(A\cap B) \,.\, P(\overline{A}) = P(\,\overline{A}\cap B) \,.\, P(A) \, \Leftrightarrow \\ & \Leftrightarrow P(A\cap B) \,.\, [1-P(A)] = P(\,\overline{A}\cap B) \,.\, P(A) \, \Leftrightarrow \\ & \Leftrightarrow P(A\cap B) \,-\, P(A) \,.\, P(A\cap B) = P(\,\overline{A}\cap B) \,.\, P(A) \, \Leftrightarrow \\ & \Leftrightarrow P(A\cap B) = P(A) \,.\, P(A\cap B) \,+\, P(\,\overline{A}\cap B) \,.\, P(A) \, \Leftrightarrow \\ & \Leftrightarrow P(A\cap B) = P(A) \,.\, \big[\, P(A\cap B) \,+\, P(\,\overline{A}\cap B) \,\big] \, \Leftrightarrow \\ & \Leftrightarrow P(A\cap B) = P(A) \,.\, \big[\, P(A\cap B) \,+\, P(\,\overline{A}\cap B) \,\big] \, \Leftrightarrow \\ \end{aligned}$$

$$\Leftrightarrow P(A \cap B) = P(A) \cdot P(B) \Leftrightarrow A \in B \text{ independentes}$$

b1) No que se segue, A designa o acontecimento «a primeira bola retirada é preta» e B designa o acontecimento «a segunda bola retirada é branca».

Tem-se que $P(B|A)=\frac{5}{7}$ pois: se a primeira bola retirada é preta, ficam, na caixa, cinco bolas brancas e duas bolas pretas, num total de sete bolas; a probabilidade de a segunda bola retirada ser branca é, portanto, $\frac{5}{7}$

Tem-se que $P(B|\overline{A})=\frac{4}{7}$ pois: se a primeira bola retirada é branca, ficam, na caixa, quatro bolas brancas e três bolas pretas, num total de sete bolas; a probabilidade de a segunda bola retirada ser branca é, portanto, $\frac{4}{7}$

Como $P(B|\overline{A}) \neq P(B|A)$, tem-se, tendo em conta a propriedade da alínea anterior, que os acontecimentos A e B não são independentes.

b2) A caixa contém, inicialmente, cinco bolas brancas e três bolas pretas. Depois de se retirarem duas bolas, podem ficar, na caixa, três, quatro ou cinco bolas brancas.

A variável $\,X\,$ pode, portanto, assumir os valores $\,3,\,4\,$ e $\,5.$ Tem-se que:

P(X=3) é a probabilidade de as duas bolas extraídas serem brancas, ou seja,

$$\frac{{}^{5}C_{2} \times {}^{3}C_{0}}{{}^{8}C_{2}} = \frac{5}{14}$$

P(X=4) é a probabilidade de uma das bolas extraídas ser branca e a outra ser preta, ou seja, $\frac{^5C_1\times \ ^3C_1}{^8C_2}=\frac{15}{28}$

P(X=5) é a probabilidade de as duas bolas extraídas serem pretas, ou seja,

$$\frac{{}^{5}C_{0} \times {}^{3}C_{2}}{{}^{8}C_{2}} = \frac{3}{28}$$

Tem-se, portanto, a seguinte tabela de distribuição de probabilidades da variável $\,X\,$

x_i	0	1	2
$P\left(X=x_{i}\right)$	$\frac{5}{14}$	$\frac{15}{28}$	$\frac{3}{28}$

- 3.
- a) A função f é contínua em \mathbb{R}^+ pois é o quociente de duas funçõs afins, portanto contínuas.

A função f é contínua em \mathbb{R}^- pois é o quociente de duas funçõs contínuas (uma que é a diferença entre uma função exponencial e uma função constante, e outra que é uma função afim).

Falta estudar a função quanto à continuidade no ponto 0. Tem-se que:

$$\lim_{x\to 0^-} f(x)=1\,,\qquad \lim_{x\to 0^+} f(x)=1\qquad \text{ e }\qquad f(0)=1$$

Portanto, f é contínua no ponto 0.

A função f é, assim, contínua em \mathbb{R} .

b) Tem-se que
$$\left(\frac{3x+2}{2x+2}\right)' = \frac{3(2x+2)-2(3x+2)}{(2x+2)^2} = \frac{2}{(2x+2)^2}$$

Dado que $\ \frac{2}{\left(2\,x+2\right)^2}>0 \ , \ \forall\,x\in\mathbb{R}^+$, podemos concluir que f é crescente em \mathbb{R}^+ .

C) Tem-se que $\lim_{x \to -\infty} d(x) = +\infty$ e $\lim_{x \to +\infty} d(x) = +\infty$, pelo que o gráfico da função d não tem assimptota horizontal. A opção A não é, portanto, a opção correcta. A opção C também não é a opção correcta, dado que a função d não é sempre crescente, ao contrário do que este gráfico sugere.

Como a função $\,d\,$ nunca se anula, a opção D não é, igualmente, a opção correcta. Portanto, a opção correcta é a B.

4.

a) Tem-se que
$$\cos(7.5 t) = -\frac{\tan 38^{\circ}}{\tan 66.5^{\circ}}$$

Portanto, $\cos{(\,7.5\,t\,)} \approx -\,0.3397$ pelo que $7.5\,t\, \approx 109.8594$

Vem, então, $t \approx 14,6479$

Portanto. $t \approx 14 h \ 39 m$

A latitude de locais situados entre o Círculo Polar Árctico e o Pólo Norte é superior à latitude do Círculo Polar Árctico.

Portanto, para locais situados entre o Círculo Polar Árctico e o Pólo Norte, tem-se que $\lambda > \phi$.

Pelo facto da função tangente ser crescente em $[0^{\circ}, 90^{\circ}]$, tem-se $tg \lambda > tg \phi$.

Por isso,
$$\frac{\operatorname{tg}\lambda}{\operatorname{tg}\phi}>1$$
, donde $-\frac{\operatorname{tg}\lambda}{\operatorname{tg}\phi}<-1$, pelo que é impossível a equação $\cos{(7,5\ t\,)}=-\frac{\operatorname{tg}\lambda}{\operatorname{tg}\phi}$

5. Tem-se que $f'(x) = a \cos(ax)$

Portanto,

o declive da recta $\,r\,$ é $\,f^{\,\prime}\left(0
ight)=a\,$ e o declive da recta $\,s\,$ é $\,f^{\,\prime}\left(2\pi\right)=a\cos\left(2\,\pi\,a\right)$

As rectas $\,r\,$ e $\,s\,$ são, portanto, perpendiculares se, e só se, $\,a\cos{(2\,\pi\,a)}=\,-\,\,\frac{1}{a}$

Utilizemos as capacidades gráficas da calculadora para determinar um valor aproximado da solução desta equação, no intervalo $\left[\frac{3}{2}, 2\right]$.

Na figura estão representados:

- parte do gráfico da funções definida por $y = x \cos{(2\pi x)}$
- parte do gráfico da funções definida por $y=-\frac{1}{x}$ o ponto P de abcissa pertencente a $\left[\frac{3}{2} \ , \, 2\right]$ e que é ponto de intersecção dos dois gráficos.

A abcissa do ponto P é, aproximdamente, 1,7.

Portanto, $a \approx 1.7$.