Discrete and Continuous Optimal Control for **Energy Minimization in Real-Time Systems**

Bruno Gaujal, Alain Girault, **Stéphan Plassart**

25 September 2020

EBCCSP2020

Introduction

- Minimizing the energy consumption J of an embedded system under real-time (RT) constraints.
- A single-core processor executes a finite set of jobs.
- HRTS: Hard Real Time System.
- HRT constraints: Each job must finish before its deadline.
- The processor can change its speed s, with DVFS technology.

$$s \nearrow \Rightarrow \text{ job execution time } \searrow s \nearrow \Rightarrow J \nearrow$$

Constrained Optimal Control Problem

Online Optimal Control Problem:

At time t, the decision maker (processor) chooses the speed s(t) based on the current state (jobs released before t) and statistical information about the future job arrivals.

Constrained Optimal Control Problem

Online Optimal Control Problem:

At time t, the decision maker (processor) chooses the speed s(t) based on the current state (jobs released before t) and statistical information about the future job arrivals.

Goal of the decision maker:

Minimize the expected total energy cost while satisfying all the deadline constraints on the jobs.

Constrained Optimal Control Problem

Online Optimal Control Problem:

At time \mathbf{t} , the decision maker (processor) chooses the speed $s(\mathbf{t})$ based on the current state (jobs released before \mathbf{t}) and statistical information about the future job arrivals.

Goal of the decision maker:

Minimize the expected total energy cost while satisfying all the deadline constraints on the jobs.

- Continuous Time Control (CTC): at any time $t \in \mathbb{R}$ the controller chooses the current speed.
 - \Rightarrow general algorithm.
- Discrete Time Control (DTC): decisions can only be made at the release times of the jobs.
 - $\Rightarrow \exists$ optimal solutions for this problem: Dynamic Programming (DP)

Our Solution to Solve the Continuous Time Control

- Proving that the continuous time control (CTC) solution is not better than the discrete time control (DTC) solution.
- As a consequence any optimal DTC solution is also an optimal CTC solution.

Our Solution to Solve the Continuous Time Control

- Proving that the continuous time control (CTC) solution is not better than the discrete time control (DTC) solution.
- As a consequence any optimal DTC solution is also an optimal CTC solution.

Outline of the talk:

- Model description.
- 2 Discrete Time Control (DTC) solution.
- Ontinuous Time Control (CTC) solution.

Model Presentation

HRTS Model Presentation

- A single uni-core processor, equiped with DVFS, running at speed s(t), with $s(t) \in \mathcal{S} = \{0, \cdots, s_{\text{max}}\}$.
- Finite set of **jobs** over a finite horizon *T*.

Jobs (r, c, d) characterized by :

- $r \in \mathbb{N}$: release time.
- $c \in \mathbb{N}$: execution time (size).
- $d \in \mathbb{N} \mid d \leq \Delta$: relative deadline.

HRTS Model Presentation

- A single uni-core processor, equiped with DVFS, running at speed s(t), with $s(t) \in \mathcal{S} = \{0, \cdots, s_{\text{max}}\}$.
- Finite set of **jobs** over a finite horizon *T*.

Jobs (r, c, d) characterized by :

- $r \in \mathbb{N}$: release time.
- $c \in \mathbb{N}$: execution time (size).
- $d \in \mathbb{N} \mid d \leq \Delta$: relative deadline.
- Power consumption at speed s: Q(s(t))

Q is a convex and increasing function in s.

HRTS Model Presentation

- A single uni-core processor, equiped with DVFS, running at speed s(t), with $s(t) \in \mathcal{S} = \{0, \cdots, s_{\text{max}}\}$.
- Finite set of **jobs** over a finite horizon *T*.

Jobs (r, c, d) characterized by :

- $r \in \mathbb{N}$: release time.
- $c \in \mathbb{N}$: execution time (size).
- $d \in \mathbb{N} \mid d \leq \Delta$: relative deadline.
- Power consumption at speed s: Q(s(t))

Q is a convex and increasing function in s.

• Energy:
$$J = \int_0^T Q(s(t))dt$$

Problem Statement

- What is the scheduling policy (j_{π}) of jobs to ensure that no job misses its deadline ?
 - \Rightarrow Choosing the job to execute at each instant t.

Problem Statement

- What is the scheduling policy (j_{π}) of jobs to ensure that no job misses its deadline?
 - \Rightarrow Choosing the job to execute at each instant t.
- ② What is the speed policy (s_{π}) to choose at each instant so that the energy consumption is optimal ?
 - \Rightarrow Choosing the processor speed s(t) at each instant t

Problem Statement

- What is the scheduling policy (j_{π}) of jobs to ensure that no job misses its deadline?
 - \Rightarrow Choosing the job to execute at each instant t.
- ② What is the speed policy (s_{π}) to choose at each instant so that the energy consumption is optimal ?
 - \Rightarrow Choosing the processor speed s(t) at each instant t

Optimization under constraint:

- Each job finishes before its deadline.
- The expected energy consumption is minimized.

Scheduling Policy Choice

- What is the scheduling policy (j_{π}) to choose to be certain that each job is executed before its deadline ?
 - $\{s_{\pi}, j_{\pi}\}$ executes all jobs before their deadlines.
 - EDF policy is optimal for scheduling jobs.

 $\Rightarrow \{s_{\pi}, j_{EDF}\}$ also executes all jobs before their deadlines.

⇒ Choice of Earliest Deadline First (EDF)

Scheduling Policy Choice

- What is the scheduling policy (j_{π}) to choose to be certain that each job is executed before its deadline ?
 - $\{s_{\pi}, j_{\pi}\}$ executes all jobs before their deadlines.
 - EDF policy is optimal for scheduling jobs.

 $\Rightarrow \{s_{\pi}, j_{EDF}\}$ also executes all jobs before their deadlines.

⇒ Choice of Earliest Deadline First (EDF)

New Optimisation Problem

What is the optimal speed policy such that the expected energy consumption is minimized and no job misses its deadline?

Discrete Time Control (DTC)

Work Quantity for Discrete Time Control

A single Job (r, c, d):

- A(t) = work quantity arrived until time t.
- D(t) = work quantity that must be executed before t.

Work Quantity for Discrete Time Control

A single Job (r, c, d):

- A(t) = work quantity arrived until time t.
- D(t) = work quantity that must be executed before t.
- e(t) = work executed by the processor until time t with speeds s(u).

Two constraints on e(t):

- $e(t) \ge D(t)$: The job must be finished before its deadline.
- $e(t) \leq A(t)$: The job can not be executed before it arrives.

Work quantity

Work quantity

DTC: Optimal Control under HRT Constraints

- $a_t = \text{Work quantity arrived at } t$.
- $w_t = \text{System state at } t$.
- $s_t =$ Speed used by the processor at t.

State evolution under speed policy π :

With the HRT constraint: $s_t \geq w_t(1)$

DTC: Finite Horizon Markov Decision Process (MDP)

• The minimal total expected processor energy consumption in discrete time $(J^{*,\mathbb{N}})$ from 0 to T:

$$J^{*,\mathbb{N}}(w_0) = \min_{\pi} \left\{ \mathbb{E}\left(\sum_{t=0}^{T} Q(\pi_t(w_t))\right) \right\} \tag{1}$$

DTC: Finite Horizon Markov Decision Process (MDP)

• The minimal total expected processor energy consumption in discrete time $(J^{*,\mathbb{N}})$ from 0 to T:

$$J^{*,\mathbb{N}}(w_0) = \min_{\pi} \left\{ \mathbb{E}\left(\sum_{t=0}^{T} Q(\pi_t(w_t))\right) \right\}$$
 (1)

• Backward induction to compute $J^{*,\mathbb{N}}$:

 $P_n(a)$ = occurrence probability of the work quantity arrival a.

$$J_{n-1}^{*,\mathbb{N}}(w) = \min_{s \in \mathcal{A}(w)} \left\{ Q(s) + \sum_{a} P_n(a) J_n^{*,\mathbb{N}} \left(Succ(w, s, a) \right) \right\}$$
(2)

• Admissible speed set A(w) to guarantee that each job is executed before its deadline:

$$\mathcal{A}(w) = \{ s \in \mathcal{S} \mid s \ge w(1) \}$$

Continuous Time Control (CTC)

Discrete Time Control (DTC)

- The processor may change its speed at integer time $n \in \{0, 1, \dots, T\}$.
- Integer time evolution of the state:

$$\forall u \in \mathbb{N}, \quad w_{n+1}(u) = Succ(w_n(u), \pi(w_n), a_n(u))$$

Continuous Time Control (CTC)

- The processor may change its speed at any time $t \in [0, T]$.
- Continuous time evolution of the state:

(1)
$$n = 0$$
: $\forall u \geq 0$,

$$w_0^{\pi}(u)=0.$$

(2)
$$n > 0$$
: $\forall t \in]n, n+1]$,

$$w_t^\pi(u) = \left(w_n^\pi(u) - \int_0^t \pi(w_v^\pi) dv\right)^+ + a_t(u).$$

Theorem

If the set \mathcal{S} is made of consecutive speeds (i.e. $\mathcal{S} = \{0, 1, 2, \dots, s_{\text{max}}\}$) and the power function Q is increasing and convex, then there is no energy gain for the processor to change its speed at non-integer times.

Theorem

If the set S is made of consecutive speeds (i.e. $S = \{0, 1, 2, \dots, s_{\text{max}}\}$) and the power function Q is increasing and convex, then there is no energy gain for the processor to change its speed at non-integer times.

Proof.

• Consider that the processor can change its speed at times $t \in \mathbb{N}$ as well as at times t + 1/2.

Theorem

If the set S is made of consecutive speeds (i.e. $S = \{0, 1, 2, \dots, s_{\text{max}}\}$) and the power function Q is increasing and convex, then there is no energy gain for the processor to change its speed at non-integer times.

Proof.

- Consider that the processor can change its speed at times $t \in \mathbb{N}$ as well as at times t + 1/2.
 - (i) Proving that changing speed at t + 1/2 does not improve the energy consumption with $s \in [0, s_{\text{max}}]$.

Theorem

If the set S is made of consecutive speeds (i.e. $S = \{0, 1, 2, \dots, s_{\text{max}}\}$) and the power function Q is increasing and convex, then there is no energy gain for the processor to change its speed at non-integer times.

Proof.

- Consider that the processor can change its speed at times $t \in \mathbb{N}$ as well as at times t + 1/2.
 - (i) Proving that changing speed at t + 1/2 does not improve the energy consumption with $s \in [0, s_{\text{max}}]$.
 - (ii) Proving that choosing a non-integer speed at t does not improve the energy consumption, so $s(t) \in \{0, 1, \dots, s_{\text{max}}\} = \mathcal{S}$.

CTC: Consecutive Speeds Set

Theorem

If the set S is made of consecutive speeds (i.e. $S = \{0, 1, 2, \dots, s_{\text{max}}\}$) and the power function Q is increasing and convex, then there is no energy gain for the processor to change its speed at non-integer times.

Proof.

- Consider that the processor can change its speed at times $t \in \mathbb{N}$ as well as at times t + 1/2.
 - (i) Proving that changing speed at t + 1/2 does not improve the energy consumption with $s \in [0, s_{\text{max}}]$.
 - (ii) Proving that choosing a non-integer speed at t does not improve the energy consumption, so $s(t) \in \{0, 1, \dots, s_{\text{max}}\} = S$.
- Generalization $\forall t \in \mathbb{N}/2^i$ with $\forall i \in \mathbb{N}$.

CTC: Consecutive Speeds Set

Theorem

If the set S is made of consecutive speeds (i.e. $S = \{0, 1, 2, \dots, s_{\text{max}}\}$) and the power function Q is increasing and convex, then there is no energy gain for the processor to change its speed at non-integer times.

Proof.

- Consider that the processor can change its speed at times $t \in \mathbb{N}$ as well as at times t + 1/2.
 - (i) Proving that changing speed at t + 1/2 does not improve the energy consumption with $s \in [0, s_{\text{max}}]$.
 - (ii) Proving that choosing a non-integer speed at t does not improve the energy consumption, so $s(t) \in \{0, 1, \dots, s_{\text{max}}\} = S$.
- Generalization $\forall t \in \mathbb{N}/2^i$ with $\forall i \in \mathbb{N}$.
- By continuity of the total energy:

Changing its speed at integer times is always optimal with a consecutive set of speeds.

Goal: proving that changing speed at t+1/2, with $t \in \mathbb{N}$ does not improve the energy consumption.

• Recall of the dynamic programming equation:

$$J_t^*(w) = \min_{\mathbf{s} \in \mathcal{A}(w)} \left\{ Q(\mathbf{s}) + \sum_{a} P_t(a) J_{t+1}^* \left(Succ(w, \mathbf{s}, a) \right) \right\}$$
(3)

Goal: proving that changing speed at t+1/2, with $t \in \mathbb{N}$ does not improve the energy consumption.

• Recall of the dynamic programming equation:

$$J_t^*(w) = \min_{\mathbf{s} \in \mathcal{A}(w)} \left\{ Q(\mathbf{s}) + \sum_{a} P_t(a) J_{t+1}^* \left(Succ(w, \mathbf{s}, a) \right) \right\}$$
(3)

• Combining the two dynamic programming equations at t and t + 1/2:

$$J_{t}^{*}(w) = \min_{\substack{u_{[0,1/2]} \in \mathcal{A}_{1}(w), u_{[1/2,1]} \in \mathcal{A}_{2}(w)}} \left(Q\left(\frac{u_{[0,1/2]} + u_{[1/2,1]}}{2}\right) + \sum_{a} P_{t}(a) J_{t+1}^{*}\left(Succ\left(w, \frac{u_{[0,1/2]} + u_{[1/2,1]}}{2}, a\right)\right) \right)$$
where $\mathcal{A}_{2}(w) = \{s \in \mathcal{S} : s \geq 2w(1)\}, \ \mathcal{A}_{1}(w) = \mathcal{S}.$

17 / 21

Goal: proving that changing speed at t+1/2, with $t \in \mathbb{N}$ does not improve the energy consumption.

• Combining the two dynamic programming equations at t and t + 1/2:

$$J_{t}^{*}(w) = \min_{u_{[0,1/2]} \in \mathcal{A}_{1}(w), u_{[1/2,1]} \in \mathcal{A}_{2}(w)} \left(Q\left(\frac{u_{[0,1/2]} + u_{[1/2,1]}}{2}\right) + \sum_{a} P_{t}(a) J_{t+1}^{*}\left(Succ\left(w, \frac{u_{[0,1/2]} + u_{[1/2,1]}}{2}, a\right)\right) \right)$$
(3)

where
$$A_2(w) = \{s \in \mathcal{S} : s \geq 2w(1)\}, A_1(w) = \mathcal{S}.$$

• Changing speed at half times is equivalent to choosing half speeds at integer times.

• Combining the two dynamic programming equations at t and t + 1/2:

$$J_{t}^{*}(w) = \min_{u_{[0,1/2]} \in \mathcal{A}_{1}(w), u_{[1/2,1]} \in \mathcal{A}_{2}(w)} \left(Q\left(\frac{u_{[0,1/2]} + u_{[1/2,1]}}{2}\right) + \sum_{a} P_{t}(a) J_{t+1}^{*}\left(Succ\left(w, \frac{u_{[0,1/2]} + u_{[1/2,1]}}{2}, a\right)\right) \right)$$
(4)

where
$$A_2(w) = \{s \in \mathcal{S} : s \geq 2w(1)\}, A_1(w) = \mathcal{S}.$$

- The set of optimal speeds in Eq. (4) can be reduced to two cases:

 - $u_{[1/2,1]} = u_{[0,1/2]} + 1$

• The set of optimal speeds in Eq. (4) can be reduced to two cases:

• The set of optimal speeds in Eq. (4) can be reduced to two cases:

```
① u_{[1/2,1]} = u_{[0,1/2]} \Longrightarrow Integer Speed at t, QED ② u_{[1/2,1]} = u_{[0,1/2]} + 1 \Longrightarrow Not optimal!
```

• The set of optimal speeds in Eq. (4) can be reduced to two cases:

• By induction on t, we can show with $u = u_{[0,1/2]}$:

```
J\bigg( \text{ Deterministic speed policy, using at } t, \, \frac{u+u+1}{2} \bigg) \\ = J\bigg( \text{Randomized speed policy, using at } t, \, u \text{ w.p. } \frac{1}{2} \text{ and } u+1 \text{ w.p. } \frac{1}{2} \bigg)
```

• The set of optimal speeds in Eq. (4) can be reduced to two cases:

• By induction on t, we can show with $u = u_{[0,1/2]}$:

$$J\left(\begin{array}{c} \text{Deterministic speed policy, using at } t, \ \frac{u+u+1}{2} \right)$$

$$= J\left(\begin{array}{c} \text{Randomized speed policy, using at } t, \ u \text{ w.p.} \ \frac{1}{2} \text{ and } u+1 \text{ w.p.} \ \frac{1}{2} \end{array}\right)$$

• There exists an optimal deterministic speed policy by MDP theory. \Rightarrow Here, it uses on [t, t+1] either speed u or speed u+1.

• The set of optimal speeds in Eq. (4) can be reduced to two cases:

• By induction on t, we can show with $u = u_{[0,1/2]}$:

$$J\left(\begin{array}{c} \text{Deterministic speed policy, using at } t, \ \frac{u+u+1}{2} \right)$$

$$= J\left(\begin{array}{c} \text{Randomized speed policy, using at } t, \ u \text{ w.p.} \ \frac{1}{2} \text{ and } u+1 \text{ w.p.} \ \frac{1}{2} \end{array}\right)$$

- There exists an optimal deterministic speed policy by MDP theory. \Rightarrow Here, it uses on [t, t+1] either speed u or speed u+1.
- $u_{[1/2,1]} = u_{[0,1/2]} + 1$ is not strictly better than $u_{[1/2,1]} = u_{[0,1/2]}$.

• Changing speeds at half times does not improve the energy !

- Changing speeds at half times does not improve the energy !
- Changing speeds at $t \in \mathbb{N}/2^i$ does not improve the energy $\forall i \in \mathbb{N}$.

- Changing speeds at half times does not improve the energy !
- Changing speeds at $t \in \mathbb{N}/2^i$ does not improve the energy $\forall i \in \mathbb{N}$.
- By continuity of the total energy:

- Changing speeds at half times does not improve the energy!
- Changing speeds at $t \in \mathbb{N}/2^i$ does not improve the energy $\forall i \in \mathbb{N}$.
- By continuity of the total energy:

Changing speeds at integer times is always optimal with a consecutive set of speeds.

Extensions

1 Non consecutive speed set S:

Emulating non available integer speeds with V_{dd} -hopping by using two neighboring $s \in \mathcal{S}$.

② Non convex power function $Q(\cdot)$:

Replacing the power function $Q(\cdot)$ by its convex hull $\widehat{Q}(\cdot)$.

Conclusion

- + Minimizing in continuous time the energy consumption of a processor with a discrete set of speeds executing jobs with discrete features (arrival times, sizes and deadlines).
- + The continuous time optimization problem can be solved in discrete time.
- + In practice, the discrete optimal speed policy can be computed effectively using a finite Markov Decision Process.
 - The size of the state space of the MDP grows exponentially fast with Δ (the maximal deadline).
- + Can be implemented in an embedded system.