Michael Burgess

Robotic Manipulation @ MIT

mburgjr.github.io

mjburgessjr@gmail.com

LinkedIn

■ GitHub

Google Scholar

Education

2023 - 2025	Massachusetts Institute of Technology (MIT)	Cambridge, MA
	M.S. in Mechanical Engineering	GPA: 5.0 / 5.0
	Advisor: Edward Adelson Focus: Robotic Manipulation & Tactile Sensing	
2018 - 2023	Massachusetts Institute of Technology (MIT)	Cambridge, MA
	B.S. in Mechanical Engineering	GPA: 5.0 / 5.0
	Courses: Underactuated Robotics, Bio-inspired Robotics, Nonlinear Control	

Technical Skills

Software	Concepts:	Machine Learning, Computer Vision, Controls, RL, Algorithms, App Dev
	Languages:	Python, C++, Matlab, Drake, Isaac Gym, Javascript, Typescript, React
Hardware	CAD:	Solidworks, Autodesk, ANSYS, Fluids, Statics, FEA / CFD Simulation
	Machining:	CNC, Lathe, Waterjet, 3D Printing, Injection Molding, Laser Cutter
	Electrical:	Arduino, Raspberry Pi, Circuit Analysis, Simulink, Soldering

Professional Experience

May 2023 - Aug. 2023	 Commonwealth Fusion Systems / Mechanical Engineering Intern Modeled parts for magnet subsystems on a novel tokamak nuclear fusion reactor using NX and ANSYS software. Specifically designed supports for poloidal field (PF) coils. Key takeaways from the internship were skills in electromechanical analysis, communication of results, modeling techniques.
Jan. 2022 - May 2023	 MIT Biomimetic Robotics Lab / Undergraduate Researcher Performed research on locomotive trajectory planning over non-flat terrain for a quadruped (cheetah-like) robotic system. Developing a novel controller that decouples kinematic and dynamic constraints to empower online planning over rough terrain.
May 2022 - Aug. 2022	 Markforged / Software Engineering Intern Wrote simulated annealing based algorithm to improve printer bed packing, thereby increasing number of parts per print. All code was written in Typescript. Learned communication-based soft skills through the responsibility of running meetings and giving presentations.
Jan. 2021 - May 2021	NASA Langley Research Center / Engineering Intern - Optimized convolutional neural networks (CNN) that estimate where a fluid flow

becomes turbulent along the surface of an airfoil.

- Incorporated these models into flight simulation CFD solvers for practical use in minimizing viscous drag.

Sept. 2020 - Scientific Systems Company, Inc. (SSCI) / Robotics Intern

Jan. 2021

- Designed and tested a role-specific control system for UAV fleet with behavior responsive to user input.
- Researched and developed state-of-the-art attention-based, reinforcement learning (RL) models using OpenAI gyms, Tensorflow, and PyTorch.
- May 2020 General Motors (GM) / Controls Engineering Intern

Aug. 2020

- Automated standard hardware-in-the-loop test cases for engine controller software using tools in Python and dSpace.
- Built code libraries to locate and diagnose errors across cars' control communication infrastructure, written in C code.
- May 2019 **Brayton Energy** / Mechanical Engineering Intern

Aug. 2019

- Designed an intake block for the receiver of a high temperature concentrated solar power (CSP) system, using Solidworks and ANSYS.
- Static and thermal-fluid simulations were used to parametrically design parts.

Publications

- [1] **Michael Burgess**. "Learning Object Compliance via Young's Modulus from Single Grasps with Camera-Based Tactile Sensors". In: *arXiv*:2406.15304 (2024). URL: https://arxiv.org/abs/2406.15304.
- [2] **Michael Burgess**. "Decoupled Kinodynamic Planning for a Quadruped Robot over Complex Terrain". In: *MIT dSpace (2023)*. URL: https://dspace.mit.edu/handle/1721.1/151851.
- [3] Nicholas Ramirez, **Michael Burgess**. "Robotic Arm Manipulation to Perform Rock Skipping in Simulation". In: *arXiv*:2310.11599 (2023). URL: https://arxiv.org/pdf/2310.14492.pdf.
- [4] **Michael Burgess**. "Hybrid Trajectory Optimization of Simple Skateboarding Tricks through Contact". In: *arXiv:2310.11599 (2023)*. URL: https://arxiv.org/pdf/2310.11599.pdf.

Teaching

Sept. 2023 - Robotic Manipulation / Teaching Assistant (TA)

Dec. 2023

Massachusetts Institute of Technology (MIT)

- Helped teach a graduate course on robotic manipulation in the Fall 2023 alongside Prof. Russ Tedrake. Topics covered include motion planning, deep perception, and more.
- Assisted students in project development, created homeworks, and held office hours.

Activities

Jan. 2020 MIT Global Teaching Labs (GTL)

Rho, Italy

- Spent a month in Rho, Italy teaching robotics concepts to high school students.
- Created and taught my own curriculum of circuits and PID control systems, including lectures, exams, and experiments with Arduino / breadboarding.

Portfolio

Dec. 2022 Rock Skipping Robot

- Developed a control architecture and simulation environment to perform the task of rock skipping on a Kuka IIWA robot arm, using Drake.
- Project required knowledge in trajectory optimization, fluid physics, and robotic simulation techniques.

Dec. 2022 **Hula Hooping Robot**

- Designed, built, and controlled a 2 DoF robot system that was capable of hula hooping, in order to study how humans are able to hula hoop most effectively.
- Project required use of Matlab, embedded controls, and hardware design.

May 2022 Underactuated Skateboard Control System

- Created a trajectory planner using non-linear hybrid dynamic optimization to perform skateboard tricks in simulation on an abstracted skateboard-rider system.
- Project was written using Drake and required knowledge of non-linear controls.

For a full portfolio, please visit my website at mburgjr.github.io/portfolio/.