1. Throughout the question we name E as our set of interest.

Term	Definition							
Open ball	$B_r(\vec{x})(r>0) = \{\vec{y} : \vec{y} - \vec{x} < r\}.$							
Open set	A set E is open iff $\forall \vec{x} \in E \; \exists \; r > 0 \text{ with } B_r(\vec{x}) \subseteq E$.							
Closed set	Any set is closed iff its complement is open.							
Connected set	That is, there's no disconnecting pairs U and V satisfying the following conditions:							
	ullet U and V are open.							
	$\bullet U \cap E \neq \phi \text{ and } V \cap E \neq \phi.$							
	$\bullet \ U \cap V \cap E \neq \phi.$							
	\bullet $E \subseteq U \cup V$.							
Compact set	For any open cover of E there exists a finite subcover whose union contains E .							

2. Again denote E as set of interest.

Term	Definition
Interior	$E^{\circ} = \{\vec{x} : \exists r > 0 : B_r(\vec{x}) \subseteq E\}.$
Boundary	$\partial E = \{ \vec{x} : \forall r > 0 : B_r(\vec{x}) \not\subseteq E, B_r(\vec{x}) \not\subseteq E^c \}.$
Closure	$\overline{E} = E^{\circ} \cup \partial E$.
Limit point	\vec{x}_0 is a limit point of E iff \exists a sequence $\{x_k\} \subseteq E$ s.t. $\vec{x}_k \to \vec{x}_0$.
Cluster point	\vec{x}_0 is a cluster point of E iff for all $r > 0$, $B_r(\vec{x}_0) \cap E$ has inifinitely many elements.

3. Heine-Borel Theorem states that a set is compact iff it's both closed and bounded.

	E	Opn	Clsd	Cmpct	E°	∂E	\overline{E} / Limit	Cluster	Disc_
4.	$\overline{\phi}$	1	1	1	φ	ϕ	ϕ	φ	DNE
	\mathbb{R}^n	1	1	0	\mathbb{R}^n	ϕ	\mathbb{R}^n	\mathbb{R}^n	DNE
	$B_r(\vec{a})$	1	0	0	$B_r(\vec{a})$	$\{\vec{x}: \vec{x} - \vec{a} = r\}$	$\overline{B_r(\vec{a})}$	$\overline{B_r(\vec{a})}$	DNE
	$\{\vec{a}\}$	0	1	1	ϕ	$\{\vec{a}\}$	$\{\vec{a}\}$	ϕ	DNE
	$\{\frac{1}{n}:n\in\mathbb{N}\}$	0	0	0	ϕ	$E \cup \{0\}$	$E \cup \{0\}$	{0}	$(-\infty, 0.23)$ $(0.23, \infty)$
	$\bigcup_{n\in\mathbb{Z}}(n-1,n)$	1	0	0	$\cup (n-1,n)$	\mathbb{Z}	\mathbb{R}	\mathbb{R}	$(-\infty,0)$ $(0,\infty)$
	$\bigcup_{n=1}^{\infty} (-n, n)$	1	1	0	\mathbb{R}^n	ϕ	\mathbb{R}^n	\mathbb{R}^n	DNE
	$\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n}\right)$	1	0	0	$\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n+1}, \frac{1}{n}\right)$	$\{\frac{1}{n}\} \cup \{0\}$	[0, 1]	[0,1]	$\frac{(-\infty,\frac{1}{2})}{(\frac{1}{2},\infty)}$
	$[2,\infty)\cup\{-1\}$	0	1	0	$(2,\infty)$	$\{2, -1\}$	$[2,\infty)\cup\{-1\}$	$[2,\infty)$	$\frac{(-\infty,\frac{1}{2})}{(\frac{1}{2},\infty)}$
	$\mathbb{Z}\cap(-10,10)$	0	1	1	ϕ	E	E	ϕ	$\frac{(-\infty,\frac{1}{2})}{(\frac{1}{2},\infty)}$
	Q	0	0	0	φ	\mathbb{R}	\mathbb{R}	\mathbb{R}	$\frac{(-\infty,\sqrt{2})}{(\frac{1}{2},\sqrt{2})}$
	$\{(x,y): \\ x-y \neq 2\}$	2	0	0	E	$\{(x,y): x - y = 2\}$	\mathbb{R}^2	\mathbb{R}^2	x - y < 2 $x - y > 2$

- 5. Covered above.
- 6. Any union of open sets is open.

Proof: Let \vec{x} be in the union U of open sets, meaning that $\vec{x} \in U_i$ for some open set U_i (where U_i is an

open set that is 'part of' U). Then there exists an open ball $B_{\epsilon}(\vec{x}) \subseteq U_i \subseteq U$; the former follows from the definition of openness and the latter follows from the definition of union.

Corollary: Any intersection of closed sets is closed.

Any *finite* intersection of open sets is open.

Proof: Consider the sets U_1, \dots, U_n and let \vec{x} be in their intersection. This means for each $i \in [1, n]$ there exists $\epsilon_i > 0$ such that $B_{\epsilon_i}(\vec{x}) \subseteq U_i$. Letting $m = \min\{\epsilon_i : i \in [1, n]\} > 0$ and we have $B_m(\vec{x}) \subseteq U_i$ for all i, thus $B_m \subseteq \cap U_i$.

Corollary. Any finite union of closed sets is closed.

7.

8.

9.

10.

- 11. (a) The interval (-2,3] is neither open nor closed.
 - (b) Yes, only \mathbb{R}^n and ϕ are both open and closed.
 - (c) Not true. For example, the set $(B_{\frac{1}{n}}(\vec{O}))^c$ is closed but their union (when $n=1,2,\cdots$) is $\{\vec{O}\}^c$ which is not closed.
 - (d) Yes, every open set is the union of open balls, as proven in assignment 1 before.
 - (e) Nope, $B_r(\vec{x})$ doesn't have its boundary points.
 - (f) Yes, E° is the biggest open set contained in E.
 - (g) Yes, \overline{E} is the smallest closed set containing E.
 - (h) Not really, 2 is a limit point of (2,3].
 - (i) Not true, $\overline{A^{\circ}}$ is always closed but not necessarily so for A.
 - (j) Not true, Consider [1, 5] and [2, 4] for example.
 - (k) Nope, nope, nope. Take $A = \mathbb{Q}$ and $B = \mathbb{R} \setminus \mathbb{Q}$. Then $(A \cup B)^{\circ} = \mathbb{R}$ because $A \cup B = \mathbb{R}$, but $A^{\circ} \cup B^{\circ} = \phi \cup \phi = \phi$.
 - (1) Yes, let's prove that $A^{\circ} \cap B^{\circ} \subseteq (A \cap B)^{\circ}$; the other direction is simpler. Suppose that $\vec{x} \in A^{\circ} \cap B^{\circ}$, we have $B_a \vec{x} \subseteq A$ and $B_b \vec{x} \subseteq B$ for some a, b > 0. Then if $c = \min\{a, b\}$ we have $B_c \vec{x} \subseteq A \cap B$, so $\vec{x} \in (A \cap B)^c$.
 - (m) Yes: A is open iff ∂A is contained in A^c , or disjoint from A at all.
 - (n) No: what if $B = \mathbb{R}^n$?
 - (o) Yes: B is closed and bounded $\rightarrow A$ is also bounded. Since A is already closed, A is compact.