絡み合いとプラトー弾性率

佐々木 裕1

東亞合成株式会社

April 13, 2023

¹hiroshi_sasaki@mail.toagosei.co.jp

Z1 code

Comparison of Z1 vs. PPA

- 右図のような比較 から、二倍程度は 妥当かと。
- 次ページにある ネットワークでの 比較でも明らかに PPA 由来の経路長 は長い
- これと、プラトー 弾性率との関係は よくわかりません。

Z1code:

- 1. Using G1 cord algorithm, strand is shrunked as a straight line preserving kinks.
- 2. Calc. z bycounting kinks on each strand
- 3. Calc. Me by deviding Number of segments by z. PPA:
- 1. Shrink every bond preserving kinks and knots.
- 2. Calc. contour length by summing each bond length.
- 3. Calc. I from contour length

Example for NW

NPT 絡み合い小

NVT 自然な絡み合い

Classical Theory of Rubber Elasticity

Free Energy Density of Rubbers against Strain invariant

$$\frac{F}{V} = W = C_0 + \underbrace{C_1(I_1 - 3) + C_2(I_2 - 3)}_{Mooney = Riylin Model} + \underbrace{\sum_{i,j=1}^{\infty} C_{ij}(I_1 - 3)^i (I_2 - 3)^j}_{i,j=1}$$

Neo-Hookean Model

$$W = C_1(I_1 - 3)$$

against Uniaxial elongation

$$\sigma_{nom} = 2C_1 \left(\lambda - \frac{1}{\lambda^2} \right) = G \left(\lambda - \frac{1}{\lambda^2} \right)$$

Mooney-Rivlin Model

 $W = C_1(I_1 - 3) + C_2(I_2 - 3)$

against Uniaxial elongation

$$\sigma_{nom} = 2\left(C_1 + C_2 \frac{1}{\lambda}\right) \left(\lambda - \frac{1}{\lambda^2}\right)$$

With or without Junction Poinits fluctuation

Affine Network Model ^a

$$G_{affine} = \nu k_B T$$

 ν : Number density of strands in the system

^aP.J. Flory, Principles of Polymer Chemistry, (1953)

Phantom Network Model ^a

$$G_{phantom} = \nu k_B T \left(1 - \frac{2}{f} \right)$$

f: Functionality of Junction Points

 $^{^{}a}$ H.M. James, E.J. Guth, Chem. Phys., 21, 6, 1039 (1953)

Constraint Factors for Junction Points and Strands

Vicinity of Junction Point

- Junction points are surrounded by many of adjacent strands(x in fig.).
- Fluctuation of junctions are suppressed.

Storage modulus G is combination of G_c and G_e

- Constrained Junction Model
 - Constraints are reduced and G
 approaches to G_C.^a
- Topological relationships
 - Contribution of entanglement.^b

$$G_e = T_e G_N^0$$

Figure 4. Three topological relationships between two closed loops (a) not entwined, (b) once entwined, (c) twice entwined.

a P.J.Flory, J.Chem.Phys., 66, 12, 5720 (1977)

^bD.S.Pearson and W.Graessley, Macromol., 11, 3, 528 (1978)

Recent approach for Constraints (Entanglements)

- Diffused-Constraint Model
 - Confining potential affect all points along the chain. 1
- Nonaffine Tube Model
 - Improved model of "Edwards' Tube Model".²
- Slip-tube Model
 - A pairwise interaction of chains is introduced.³

$$f^*(\lambda^{-1}) = G_c + \frac{G_e}{0.74\lambda + 0.61\lambda^{-1/2} - 0.35}$$
$$G_c = \nu k_B T \left(1 - \frac{2}{\phi} \right), \quad G_e = \frac{4}{7} \nu k_B T L$$

L is the number of slip-links per network chain

Figure 5. Fit of the data by Pak and Flory²⁰ on cross-linked poly(dimethylsilosame) (open circles) by the diffused-onstrained model idsabed line). Morcey-Riftin expression idoted line), neardfine tube model (dash—dotted line), and the sliptube model (solid line).

¹A. Kloczkowski, J.E. Mark, B. Erman, Macromol., 28, 5089 (1995)

²M. Rubinstein, S. Panyukov, Macromol., 30, 25, 8036 (1997)

³M. Rubinstein, S. Panyukov, Macromol., 35, 6670 (2002)

ランダムネットワークの絡み合い解析: Z1-code

Z1-code での絡み合い

ホモポリマーとの比較

- Z は一本鎖あたりの絡み合い
- 今回のネットワークは、 ホモポリマーと同等

	Homo	4 Chain NW
Segments	50	48
Chains	200	768
Entanglements	204	800
Entangled Chains	134	557
$< Z >_{Z1}$	1.02	1.04

Z1-code とは

絡み合いを可視化するアルゴリズム²

^aM. Kröger, Comput. Phys. Commun. 168, 209 (2005)

絡み合いの効果について

Entanglement in Slip-tube Model

Rubinstein らの先行研究 a

$$G_c = \nu k_B T \left(1 - \frac{2}{\phi} \right), \quad G_e = \frac{4}{7} \nu k_B T L$$

and L is the number of slip-links per network chain

^aM. Rubinstein, S. Panyukov, Macromolecules, 35, 6670 (2002)

	NPT	NVT	
Chains, ν	768, 0.018		
$G_c = \nu \times (1 - 2/4)$	0.009		
Entanglements	278	800	
Entangled Chains	249	557	
L	278/768=0.36	800/768=1.04	
$G_e = 4/7 \times \nu \times L$	0.004	0.011	
$G_{calcd.} = G_c + G_e$	0.013	0.020	
$G_{measd.}$	0.013	0.022	