

BÀI TẬP THỰC HÀNH

Bài 4:

LẬP TRÌNH PYTHON CƠ BẢN

(Sử dụng thư viện NumPy làm việc với ma trận - 01)

Yêu cầu 1: Học viên tạo một ma trận vuông cấp n (n hàng x n cột), bao gồm các phần tử là những số nguyên ngẫu nhiên trong khoảng (0-100) như minh họa, với n = 12

```
[[61 21 68 72 84 90 81 80 79 80 49 53]
 [92 10  1 43 49 93 76  6  2  6 69  2]
 [12 79 88 10 37 55 37 6 59 75 77 64]
 [97 22 75 32 39 39 93 19 28 64 55 87]
 [88 25 88 58 11 96 58 14 88 16 22 64]
 [ 3 5 60 14 65 50 80 42 8 27 44 52]
 [84 38 54 27 86 13 67 77 77 12 66 40]
 [96 9 94 24 61 19 2 80 95 92 72 32]
 [49 21 78 92 35 92 84 86 85 62 64 29]
 [ 5 53 95  2 43 30 72 66 97 17  8 23]
 [40 50 83 25 37 16 49 73 42 86 11 18]]
Kiểu dữ liệu của phần tử trong ma trận: int32
Kích thước của mảng ma trận: (12, 12)
Số phần tử của mảng ma trận: 144
Số chiều của mảng ma trận: 2
```


Yêu cầu 2: Sử dụng ma trận tạo được trong yêu cầu 1, Học viên tạo 2 vector như sau:

- v_chinh: bao gồm các phần tử nằm trên đường chéo chính của ma trận.
- V_phu: bao gồm các phần tử nằm trên đường chéo phụ của ma trận

```
[[61, 21, 68, 72, 84, 90, 81, 80, 79, 80, 49, 53]
[92, 10, 1, 43, 49, 93, 76, 6, 2, 6, 69, 2]
[12, 79, 88, 10, 37, 55, 37, 6, 59, 75, 77, 64]
[97, 22, 75, 32, 39, 39, 93, 19, 28, 64, 55, 87]
[88, 25, 88, 58, 11, 96, 58, 14, 88, 16, 22, 64]
[3, 5, 60, 14, 65, 50, 80, 42, 8, 27, 44, 52]
[84, 38, 54, 27, 86, 13, 67, 77, 77, 12, 66, 40]
[96, 9, 94, 24, 61, 19, 2, 80, 95, 92, 72, 32]
[49, 21, 78, 92, 35, 92, 84, 86, 85, 62, 64, 29]
[5, 53, 95, 2, 43, 30, 72, 66, 97, 17, 8, 23]
[16, 27, 1, 71, 19, 22, 90, 81, 12, 93, 14, 53]
[40, 50, 83, 25, 37, 16, 49, 73, 42, 86, 11, 18]]
```

```
Vector các phần tử nằm trên đường chéo chính:
[61. 10. 88. 32. 11. 50. 67. 80. 85. 17. 14. 18.]

-----
Vector các phần tử nằm trên đường chéo phụ:
[40. 27. 95. 92. 61. 13. 80. 14. 28. 75. 69. 53.]
```


Yêu cầu 3: Nhập vào số nguyên x bất kỳ trong khoảng (0-100), đếm xem có bao nhiều phần tử trong ma trận sinh ra ở yêu cầu 1 có giá trị bằng, lớn hơn và nhỏ hơn giá trị x:

```
[[61 21 68 72 84 90 81 80 79 80 49 53]
[92 10 1 43 49 93 76 6 2 6 69 2]
[12 79 88 10 37 55 37 6 59 75 77 64]
[97 22 75 32 39 39 93 19 28 64 55 87]
[88 25 88 58 11 96 58 14 88 16 22 64]
[3 5 60 14 65 50 80 42 8 27 44 52]
[84 38 54 27 86 13 67 77 77 12 66 40]
[96 9 94 24 61 19 2 80 95 92 72 32]
[49 21 78 92 35 92 84 86 85 62 64 29]
[5 53 95 2 43 30 72 66 97 17 8 23]
[16 27 1 71 19 22 90 81 12 93 14 53]
[40 50 83 25 37 16 49 73 42 86 11 18]
```

```
Nhập vào giá trị x (0-100):88

1. Số phần tử có giá trị bằng x trong ma trận: 4
2. Số phần tử nhỏ hơn giá trị x trong ma trận: 124
3. Số phần tử lớn hơn giá trị x trong ma trận: 16
```


Yêu cầu 1: Sử dụng dữ liệu bảng điểm của lớp 2A. Cho biết:

- 1. ĐTB của từng học sinh trong lớp.
- 2. Học sinh có điểm TB cao nhất.
- 3. Học sinh có điểm trung bình thấp nhất

```
Điểm TB của từng học sinh trong lớp:

[4.8 6. 4.7 8.6 6.2 6.8 5.6 5.4 5.9 5.1 7.2 5.4 5.9 5.9 6. 7.9 4.2 6.1 6.3 4.4 4.7 5.9 5.6 4.7 6.4 6.2 6.5 4.6 5.8 4.3]

Diểm TB cao nhất: 8.6

Của học sinh thứ: 3

Bảng điểm đầy đủ của học sinh: [7 10 9 8 7 10 10 8 9 8]

Diểm TB thấp nhất: 4.2

Của học sinh thứ: 16

Bảng điểm đầy đủ của học sinh: [3 2 2 1 2 6 2 7 9 8]
```


Yêu cầu 2: Sử dụng dữ liệu bảng điểm của lớp 2A. Cho biết:

- 1. ĐTB của từng môn học.
- 2. Môn học có điểm TB cao nhất.
- 3. Môn học có điểm trung bình thấp nhất

Yêu cầu 3: Sử dụng dữ liệu bảng điểm của lớp 2A. Cho biết:

- 1. Sinh viên có điểm đồng đều nhất tất cả các môn. Sinh viên có điểm các môn lệch nhất trong lớp.
- 2. Môn học có điểm đồng đều nhất. Môn học có điểm chênh lệch nhất.

Yêu cầu: Xác định hệ số tương quan giữa diện tích (1) | Khoảng cách từ trung tâm thành phố (2) và giá bán nhà theo bảng số liệu

Square Feet, x	Price, y	Square Feet, x	Price, y
1460	\$288,700	1977	\$305,400
2108	309,300	1610	297,000
1743	301,400	1530	292,400
1499	291,100	1759	298,200
1864	302,400	1821	304,300
2391	314,900	2216	311,700

Plot of data for Exercise 12.42

Mô tả file dữ liệu: Temp.txt

Mô tả file dữ liệu: Temp.txt

- File dữ liệu lưu trữ nhiệt độ (°C) của 6 thành phố lớn dọc theo nước Việt Nam là: Hà Nội, Vinh, Đà Nẵng, Nha trang, Hồ Chính Minh và Cà Mau
- Thời gian từ 0h ngày 15/09/2019 tới 23h ngày 22/09/2019

Mô tả file dữ liệu: Temp.txt

Yêu cầu 1) Đọc dữ liệu lưu trữ trong file Temp.txt vào biến data_numpy, cho biết kích thước, số chiều, kiểu dữ liệu và số phần tử của biến data_numpy.

```
print(data numpy)
   print('-----
  print('Kích thước biến:',data numpy.shape)
   print('Số chiều của biến:',data numpy.ndim)
   print('Kiểu dữ liệu của các phần tử:',data numpy.dtype)
   print('Số phần tử:',data numpy.size)
[[25.65 24.79 24.01 25.06 25.48 24.97]
[25.31 24.21 24.02 24.93 25.16 24.83]
 [25.05 23.73 23.89 24.79 24.8 24.55]
 [24.81 24.47 23.4 25.86 25.05 25.29]
 [23.97 24.22 22.95 25.74 24.92 24.87]
 [22.84 23.99 22.59 25.5 24.77 24.57]]
Kích thước biến: (192, 6)
Số chiều của biến: 2
Kiểu dữ liêu của các phần tử: float64
Số phần tử: 1152
```


Yêu cầu 2) Tìm nhiệt độ cao nhất (Max) – Thấp nhất (Min) – Nhiệt độ trung bình của cả 6 thành phố.

Yêu cầu 3) Tìm nhiệt độ cao nhất (Max) – Thấp nhất (Min) – Nhiệt độ trung bình của từng thành phố và hiển thị kết quả.

```
---THÔNG KÊ CHO CẢ 6 THÀNH PHỐ---
Nhiệt độ cao nhất: 33.45
Nhiệt độ thấp nhất: 20.93
Nhiệt độ trung bình: 26.5022222222222
                                             4) Nha Trang
1) Hà Nội
                                             Nhiệt độ cao nhất: 28.68
Nhiệt độ cao nhất: 33.45
                                             Nhiệt độ thấp nhất: 24.5
Nhiệt độ thấp nhất: 21.68
                                              Nhiệt độ trung bình: 26.166875000000005
Nhiệt độ trung bình: 27.71229166666667
                                              5) TP Hồ Chí Minh
2) Vinh (Nghê An)
                                             Nhiêt đô cao nhất: 31.06
Nhiệt độ cao nhất: 32.57
                                              Nhiệt độ thấp nhất: 23.22
Nhiệt độ thấp nhất: 22.6
                                              Nhiệt độ trung bình: 26.159218749999997
Nhiệt độ trung bình: 26.719895833333336
                                              6) Cà Mau
3) Đà Nẵng
                                             Nhiệt độ cao nhất: 31.37
Nhiệt độ cao nhất: 29.88
                                             Nhiệt độ thấp nhất: 23.99
Nhiệt độ thấp nhất: 20.93
                                              Nhiệt độ trung bình: 26.73255208333333
Nhiệt độ trung bình: 25.52249999999997
```


Yêu cầu 4) Tạo một ma trận **data_thongke** gồm 3 hàng x 7 cột; các hàng lần lượt lưu trữ dữ liệu như sau:

- hàng 0: Nhiệt độ lớn nhất (Max)
- hàng 2: Nhiệt độ trung bình (Mean), làm tròn đến 2 số sau dấu phẩy
- hàng 2: Nhiệt độ nhỏ nhất (Min)

Các cột lần lượt theo thứ tự của 6 thành phố và cột cuối cùng là cột thống kê chung cho cả 6 thành phố. Lưu ra file thongke.txt

```
print(data_thongke)
print(type(data_thongke))
print('Kich thước:',data_thongke.shape)

[[33.45 32.57 29.88 28.68 31.06 31.37 33.45]
[27.71 26.72 25.52 26.17 26.16 26.73 26.5 ]
[21.68 22.6 20.93 24.5 23.22 23.99 20.93]]
<class 'numpy.ndarray'>
Kích thước: (3, 7)
```


File dữ liệu: Diamonds.txt

Mô tả file dữ liệu:

File dữ liệu lưu trữ thông số 50 viên kim cương bao gồm:
 Trọng lượng (carat) và Giá bán (\$) tương ứng

Học viên thực hiện các yêu cầu sau:

Yêu cầu 1) Đọc dữ liệu lưu trữ trong file Diamonds.txt vào biến kiểu mảng data_diamond, cho biết kích thước, số chiều, kiểu dữ liệu và số phần tử của biến data_diamond

```
[3.4000e-01 7.6500e+02]
[4.1000e-01 8.2700e+02]
[7.5000e-01 3.1200e+03]
[1.0700e+00 5.2200e+03]
[1.3400e+00 7.4270e+03]
[1.7500e+00 9.8900e+03]]

Kích thước biến data_diamond: (50, 2)
Số chiều của biến data diamond: 2
```

Kiểu dữ liệu của các phần tử: float64

Số phần tử: 100

Yêu cầu 2) Tách mảng data_diamond thành 2 vector: diamond_size và diamond_price lưu trữ trọng lượng và giá bán.

```
Vector diamond size:
 [0.23 0.31 0.2 1.02 1.63 1.14 2.01 1.28 1.7 1.01 0.64 0.97 1.78 3.4
 3.01 1.51 1.37 1.5 0.54 0.72 1.13 2.24 3.01 4.5 0.92 1.05 0.55 0.74
 0.91 1.23 1.52 0.91 0.43 1.24 1.77 1.79 2.05 2.03 2.01 1. 0.9 1.01
 1.14 1.53 0.34 0.41 0.75 1.07 1.34 1.75
Vector diamond price:
                 345. 4459. 14022. 4212. 11925.
                                                 9548. 11605.
  3541. 4504. 13691. 15964. 10453. 11560. 7979.
                                                9533. 1723.
                                                              3344.
  6133. 13827. 16538. 18531. 3625. 7879. 1319. 2761. 3620. 6165.
 10640. 4138. 1094. 11130. 14561. 10108. 12654. 16280. 13498. 4586.
  3105. 7745. 5047. 10830.
                                    827. 3120. 5220. 7427. 9890.]
                             765.
```


Yêu cầu 3) Vẽ đồ thị thể hiện mối quan hệ giữa kích thước và giá bán kim cương. Xác định hệ số tương quan tương ứng giữa 2 thông số này.

BIỂU ĐỔ THỂ HIỆN MỚI TƯƠNG QUAN GIỮA TRỌNG LƯỢNG (CARAT) VÀ GIÁ BÁN KIM CƯƠNG (\$)

Hệ số tương quan giữa trọng lượng và giá bán kim cương: 0.8814849023922127

Yêu cầu 4) Cho biết kích thước và giá trung bình của 50 viên kim cương. Hiển thị giá bán của viên kim cương có trọng lượng 3.01 carat.

```
Trọng lượng trung bình: 1.3448
```

Giá trung bình: 7550.78

Viên kim cương trọng lượng 3.01 carat có giá bán:

Giá bán 1 : 10453.0

Giá bán 2 : 16538.0

Thank you!