A. Notations

A.1 Notation of data and variables

The notation of data and variables is now quite well normalised. We present in tables A.1 and A.2 the set of notations used throughout the book for the data and the variables respectively.

A.2 Usual notation of single criterion scheduling problems

Two notations exist to refer to scheduling problems. The older has been proposed by [Conway et al., 1967]. But as it is not the more used in the literature we present the one introduced by [Graham et al., 1979] and later detailed by [Blazewicz et al., 1996]. The notation is decomposed into three fields: $\alpha|\beta|\gamma$.

The field α directly refers to the typology presented in figure 1.1 and presents the structure of the scheduling problem (table A.3).

The field β contains the set of constraints of the problem (table A.4).

At last, in the field γ we put the criteria to optimise (table A.5). Concerning a more detailed presentation of the different classical criteria in scheduling, the reader is referred to [Rinnooy Kan, 1976].

Table A.1. Notation of data

Data of problems		
Notation	Meaning	
\overline{n}	number of jobs.	
$\mid m \mid$	number of machines.	
J_i	job number $i, i = 1,, n$.	
n_i	number of operations of job J_i , we often have $n_i = m, \forall i$,	
(l) (M(l))	i=1,,n.	
$m^{(\ell)} \text{ (or } M^{(\ell)})$	number of machines at stage ℓ .	
M_j	machine number $j, j = 1,, m$.	
$O_{i,j}$	operation j of job J_i .	
$r_i(r_{i,j})$	release time of job J_i (respectively of operation $O_{i,j}$).	
$s_i(s_{i,j})$	desired start time of job J_i (respectively of operation	
i ,	$O_{i,j}$).	
$p_{i,j} ext{ (or } p_i^j)$	processing time of operation $O_{i,j}$. When there is only one	
	operation per job we use the notation p_i .	
$ig _{ar{oldsymbol{p}}_{i,j}}\left(\overline{oldsymbol{p}}_{i,j} ight)$	minimum processing time (respectively maximum) of op-	
	eration $O_{i,j}$. When there is only one operation per job	
	we use \underline{p}_i (respectively \overline{p}_i). This data is generaly used in	
	problems in which the processing times are variables to	
- 4- >	determine.	
$\left egin{array}{c} d_i \; (d_{i,j}) \ \widetilde{d}_i \; (\widetilde{d}_{i,j}) \end{array} ight.$	due date of job J_i (respectively of operation $O_{i,j}$)	
$\mid \vec{d}_i \; (\vec{d}_{i,j}) \mid$	deadline of job J_i (respectively of operation $O_{i,j}$). The	
	job J_i (resp. the operation $O_{i,j}$) cannot complete after	
	this date.	
$w_i (w_{i,j})$	weight associated to job J_i (respectively to operation	
	$O_{i,j}$).	
k_j	production rate associated to machine M_j . This data is	
	generaly used in uniform parallel machines scheduling	
	problems.	
$k_{i,j}$	production rate associated to the processing of job J_i	
	on machine M_j . This data is generally used in unrelated	
	parallel machines scheduling problems.	
$S_{i,j}$	non sequence dependent setup time required before the	
	processing of operation $O_{i,j}$.	
$R_{i,j}$	non sequence dependent removal time required after the	
	processing of operation $O_{i,j}$.	

Table A.2. Notation of variables

Variables of problems		
Notation	Meaning	
$t_{i,j}$	start time of operation $O_{i,j}$. When there is only one operation	
	per job, we use the notation t_i .	
$C_{i,j}$	completion time of operation $O_{i,j}$.	
$\left egin{array}{c} C_{i,j} \ C_{i} \end{array} ight $	completion time of job J_i . $C_i = \max_{j=1,\dots,n_i} (C_{i,j})$.	
$\left egin{array}{c} T_i \ E_i \end{array} \right $	tardiness of job J_i . We have $T_i = \max(0; C_i - d_i)$.	
$\mid E_i \mid$	earliness of job J_i . We have $E_i = \max(0; d_i - C_i)$.	
L_i	lateness of job J_i . We have $L_i = C_i - d_i$.	
U_i	is equal to 1 if $C_i > d_i$ and 0 otherwise.	

Table A.3. The field α

Field $\alpha = \alpha_1 \alpha_2$			
$ ext{sub-field } lpha_1$		$\overline{\text{sub-field } lpha_2}$	
Value	Meaning	Value	Meaning
Ø	single machine.	Ø	the number of machines or pools is not fixed.
P,Q,R	identical, proportionnal or	1, 2, 3,	the number of machines or
	unrelated parallel machines.	etc.	stages is fixed and equal to 1, 2, 3, etc.
F, J, O, X	flowshop, jobshop, open- shop, mixed shop.	m	the number of machines or stages is unknown but fixed.
\mid_{HF}	hybrid flowshop.		
GO	general openshop.		
GJ	general jobshop.		
P,Q,RMPM	parallel machines (of type P		
	or Q or R) with a general assignment problem.		
GMPM	shop problem with a general		
	assignment problem.		
OMPM	openshop problem with a general assignment problem.		

Table A.4. The field β - (1)

Field eta			
Value	Meaning	Value	Meaning
prec	there is general precedence constraints between opera- tions.	tree	there is precedence constraints, which forms a tree, between op- erations.
chains	there is precedence con- straints, which form a set of chains, between operations.	in-tree	there is precedence constraints, which forms an in-tree, be- tween operations.
out-tree	there is precedence con- straints, which forms an out- tree, between operations.	sp-graph	There is precedence con- straints, which forms a serie-parallel graph, between operations.
r_i	jobs have distinct realease times.	s_i	jobs have desired start time.
$p_{i,j}=p$	jobs have a common processing time.	$egin{array}{ccc} p_i & \in \ [\underline{p}_i;\overline{p}_i] \end{array}$	the processing times of jobs are variables to determine and belong to the interval $[p_i; \overline{p}_i]$.
$egin{array}{l} d_i \ d_i \ unknown \end{array}$	jobs have a due date. jobs have a due date which is to be determined.	$egin{array}{ccc} d_i = d \ d_i & = \ d \ unknown \end{array}$	jobs have a common due date. jobs have a common due date which is to be determined.
\widetilde{d}_i	jobs have a deadline.	a_{j_1,j_2}	there is a minimum time lag to satisfy between the last operation of job J_{j_1} and the first operation of job J_{j_2} .
split	the splitting of an operation into parts is allowed and sev- eral parts can be processed simultaneously.	over	the overlapping of two consecutive operations of a job is allowed.
pmtn	the operations can be inter- rupted and resumed later on any machine.	no-wait	for each job, when an operation completes the next one must start.
to follow			

Table A.5. The field β - (2)

Field β (second part)			

Value	Meaning	Value	Meaning
block	the shop has storage areas,	recrc	a job can be processed several
}	with a limited capacity, be-	}	times by the same machine.
ļ	tween the machines, which	ŀ	
	may leads an operation to be		
	stored on a machine.		
batch	the operations can be gath-	s-batch	the operations can be gathered
	ered into batches during		into batches and are processed
	their processing.		in series in each batch.
p-batch	the operations can be gath-	permu or	we consider the set of permu-
	ered into batches and are	prmu	tation schedules (only available
	processed in parallel in each		for flowshop scheduling prob-
	batch.		lems).
$\mid blcg$	the machines must complete	$ unavail_{j} $	machine M_j can have unavail-
	their processing at the same		ability periods, known in ad-
	time.		vance.
R_{sd}	there is a removal time after	$S_{sd} (S_{nsd})$	there is a setup time before
(R_{nsd})	the processing of an opera-		the processing of an opera-
	tion. This one depends (re-		tion. This time depends (re-
	spectively does not depend)		spectively does not depend) on
	on the sequence of opera-		the sequence of operations on
	tions on each machine.		each machine.
nmit	when a machine has started	no-idle	on each machine the processing
	its processing, no idle time		of the operations is performed
]	between operations is al-		without idle time.
	lowed.		

Table A.5. The field γ

	Field γ			
Criterion	Expression	Meaning		
C_{max}	$\max_{i=1,\ldots,n}(C_i)$	Makespan, or maximum completion time.		
T_{max}	$\max_{i=1}^{n} \left(\max(C_i - d_i; 0) \right)$	Maximum tardiness of jobs.		
L_{max}	$\max_{i=1}^{n} (C_i - d_i)$	Maximum lateness of jobs.		
E_{max}	$\max_{i=1,\dots,n} (\max(d_i - C_i; 0))$	Maximum earliness of jobs.		
F_{max}	$\max_{i=1}^{n} (C_i - r_i)$	Maximum flow time of jobs.		
P_{max}	$\max_{i=1,\ldots,n} \left(\max(s_i - t_i; 0) \right)$	Maximum promptness of jobs.		
f_{max}	$\max_{i=1,\dots,n}(f_i)$	Generic maximum cost function. Generaly, it is assumed to be an increasing function of the completion times of jobs.		
\overline{C} (\overline{C}^w)	$\sum_{i=1}^n C_i \ (\sum_{i=1}^n w_i C_i)$	(Weighted) Average completion time of jobs, or (weighted) average work-in-process.		
\overline{T} (\overline{T}^w)	$\sum_{i=1}^{n} T_i \left(\sum_{i=1}^{n} w_i T_i \right)$	(Weighted) Average tardiness of jobs.		
$\overline{U}~(\overline{U}^w)$	$\sum_{i=1}^n U_i \left(\sum_{i=1}^n w_i U_i \right)$	(Weighted) Number of late jobs.		
$\overline{E} \ (\overline{E}^w)$	$\sum_{i=1}^n E_i \left(\sum_{i=1}^n w_i E_i \right)$	(Weighted) Average earliness of jobs.		
_	<u></u>	No criterion, it is a feasibility problem.		