ALGO QCM

- 1. Dans le hachage, la place d'un élément est déterminé par ?
 - (a) sa valeur propre
 - (b) la valeur de sa clé
 - (c) une fonction appliqué à sa valeur
 - (d) une fonction appliquée à sa clé
- 2. Soient x et y deux éléments disctincts tels que v=h(x)=h(y), on dit que l'on a?
 - (a) Collision principale de x et y sur v
 - (b) Collision primaire de x et y sur v
 - (c) Collision secondaire de x et y sur v
 - (d) Collision simple de x et y sur v
- 3. Une fonction de hachage ne peut pas être?
 - (a) Déterministe
 - (b) Universelle
 - (c) Facile à calculer
 - (d) Rapide à calculer
- 4. La séparation est une méthode de base de hachage?
 - (a) Oui
 - (b) Non
 - (c) Certaines fois
- 5. Parmi les méthodes suivantes, lesquelles sont des méthodes de hachage de base?
 - (a) séparation
 - (b) exception
 - (c) diagonalisation
 - (d) circonvolution
 - (e) aucune
- 6. La méthode de base de hachage qui utilise des opérateurs logiques sur des sous-mots est?
 - (a) la complétion
 - (b) la compression
 - (c) l'extraction
 - (d) la division

1

- 7. Une fonction de hachage doit être?
 - (a) Déterministe
 - (b) Universelle
 - (c) Facile à calculer
 - (d) Rapide à calculer
- 8. Quelle méthode de base du hachage emploi un réel compris en 0 et 1?
 - (a) la complétion
 - (b) la division
 - (c) la multiplication
 - (d) la séparation
- 9. L'extraction, méthode de base de hachage qui ne prend que certains bits de la représentation?
 - (a) donne d'excellents résultats
 - (b) donne des résultats corrects
 - (c) ne donne pas de bons résultats
- 10. l'inconvénient majeur de la compression est de hacher?
 - (a) systématiquement les mots de taille impaire
 - (b) identiquement les permutations d'un même mot
 - (c) systématiquement les mots de taille paire
 - (d) identiquement les mots de taille impaire

QCM N°5

lundi 23 novembre 2015

Question 11

Soient E un \mathbb{R} -ev, F et G deux sev de E. $E=F\oplus G$ signifie

a.
$$E = F + G$$
 et $F \cap G = \emptyset$

b.
$$E = F \cap G$$
 et $F \cup G = \{0\}$

c.
$$E = F \cup G$$
 et $F \cap G = \emptyset$

• d.
$$E = F + G$$
 et $F \cap G = \{0\}$

e. rien de ce qui précède

Question 12

Soient E, F deux \mathbb{R} -ev et $f \in \mathcal{L}(E, F)$ bijective. Alors

a.
$$Ker(f) = \{0\}$$

b.
$$Im(f) = F$$

c.
$$Ker(f) = \emptyset$$

d.
$$E \cap F = \emptyset$$

e. rien de ce qui précède

Question 13

Soient E un \mathbb{R} -ev et $f \in \mathcal{L}(E)$ quelconque. Alors

a.
$$E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$$

b.
$$E = Ker(f) + Im(f)$$

d.
$$\operatorname{Im}(f) \subset \operatorname{Im}(f \circ f)$$

Question 14

Soient E un \mathbb{R} -ev, F, G et H trois sev de E tels que $E=F\oplus G$ et $E=F\oplus H$.

Alors G = H.

a. vrai

Question 15

Soient E un \mathbb{R} -ev et $X \subset E$. Alors

- $oxed{a.}$ Vect(X) est le plus petit sev de E contenant X
- b. $\operatorname{Vect}(X)$ est le plus petit sev de E contenu dans X
- c. $\operatorname{Vect}(X)$ est le plus grand sev de E contenant X
- d. $\operatorname{Vect}(X)$ est le plus grand sev de E contenu dans X
- e. rien de ce qui précède

Question 16

 $P \Rightarrow Q$ signifie

a.
$$P \wedge (\text{non } Q)$$

b.
$$P \vee (\text{non } Q)$$

$$(\text{non } P) \vee Q$$

- d. $(\text{non } P) \vee (\text{non } Q)$
- e. rien de ce qui précède

Question 17

La négation de $A\Rightarrow B$ est

a.
$$A \vee (\text{non } B)$$

b.
$$(\text{non }A) \wedge B$$

c.
$$(\text{non } A) \Rightarrow (\text{non } B)$$

d.
$$(\text{non } B) \Rightarrow (\text{non } A)$$

Question 18

La contraposée de $A\Rightarrow B$ est

- a. $(\text{non } A) \Rightarrow (\text{non } B)$
- b. $A \wedge (\text{non } B)$
- c. $B \Rightarrow A$
- d. (non A) $\wedge B$

Question 19

Soit l'équation différentielle (E) suivante : y''(x) - y(x) = 0. Alors y''(x) + 0 y'(x) - y(x) = 0

- b. les solutions de (E) sur \mathbb{R} sont les fonctions $y(x) = e^x (k_1 \cos(x) + k_2 \sin(x))$ où $(k_1, k_2) \in \mathbb{R}^2$
- c. les solutions de (E) sur \mathbb{R} sont les fonctions $y(x) = (k_1 \cos(x) + k_2 \sin(x))$ où $(k_1, k_2) \in \mathbb{R}^2$
- d. les solutions de (E) sur $\mathbb R$ sont les fonctions $y(x)=(k_1x+k_2)e^x$ où $(k_1,k_2)\in\mathbb R^2$
- e. rien de ce qui précède

 $\Delta = 0^2 - 4 \times (-1) = 470$

 $x_1 = -\frac{2}{2} = -1$ $x_2 = \frac{2}{2} = 1$

Question 20

Soit l'équation différentielle (E) suivante : y''(x) + y(x) = 0. Alors

- a. les solutions de (E) sur $\mathbb R$ sont les fonctions $y(x)=k_1e^x+k_2e^{-x}$ où $(k_1,k_2)\in\mathbb R^2$
- b. les solutions de (E) sur $\mathbb R$ sont les fonctions $y(x)=e^x\big(k_1\cos(x)+k_2\sin(x)\big)$ où $(k_1,k_2)\in\mathbb R^2$
- c. les solutions de (E) sur \mathbb{R} sont les fonctions $y(x)=(k_1x+k_2)e^x$ où $(k_1,k_2)\in\mathbb{R}^2$

d. rien de ce qui précède

$$y''(x) + 0y'(x) + y(x) = 0$$

$$\Delta = 0^{2} - 4 \times 1 = -4 = (2i)^{2}$$

$$y_{1} = -\frac{2i}{9} = -i \quad 2i = \frac{2i}{9} = i$$

- 21. I've met too many people in the last few days. I can't remember all their names.
 - a. I've met too many people in the last few days that I can't remember all their names.
 - b. I've met such many people in the last few days that I can't remember all their names.
 - c. I've met so much people in the last few days that I can't remember all their names.
 - I've met so many people in the last few days that I can't remember all their names.
- 22. It took us only ten minutes to get there. There was not much traffic.
 - a. There was so few traffic that it took us only ten minutes to get there.
 - b. There was such few traffic that it took us only ten minutes to get there.
 - There was so little traffic that it took us only ten minutes to get there.
 - d. There was such little traffic that it took us only ten minutes to get there.
- 23. I cashed a check yesterday. I wanted to make sure I had enough money for the market.
 - a. I cashed a check yesterday so that I will have enough money for the market.
 - b. I cashed a check yesterday so that I will have had enough money for the market.
 - c. I cashed a check yesterday so that I would have enough money for the market.
 - d. I cashed a check yesterday so that I am having enough money for the market.
- 24. ... so that I could tell him the news in person.
 - a. I'm going over to his house...
 - b. I will go over to his house...
 - c. I went over to his house...
 - d. I've gone over to his house...
- 25. John has eaten two pizzas, ___ he is still hungry.
 - a. nevertheless
 - b. even though
 - c. but
 - d. in addition
- 26. Diana didn't know how to swim, ___ she jumped into the swimming pool.
 - a. although
 - b. so
 - c. however
 - d. yet
- 27. Thomas wanted to see a movie I proposed to lend him Seven Days in May he loved it.
 - a. Thomas wanted to see a movie. I proposed to lend him Seven Days in May, he loved it.
 - b. Thomas wanted to see a movie, I proposed to lend him Seven Days in May, he loved it.
 - Thomas wanted to see a movie. I proposed to lend him Seven Days in May. He loved it.
 - d. Thomas wanted to see a movie. I proposed to lend him Seven Days in May which he loved it.
- 28. Pierre finished his homework although he could barely keep his eyes open.
 - a. No change
 - b. Pierre finished his homework; although he could barely keep his eyes open.
 - c. Pierre finished his homework although, he could barely keep his eyes open.
 - d. Pierre finished his homework, although he could barely keep his eyes open.
- 29. Jun's grades were low. He was admitted into ing 1.
 - a. His grades were low. Yet he was still admitted into ing 1.
 - b. His grades were low. Although he was admitted into ing 1.
 - c. His grades were low. Despite, he was admitted into ing 1.
 - d. Although his grades were low. Yet he was still admitted into ing 1.
- 30. Which solution is NOT correct due to punctuation or grammar? It was raining. We went for a walk.
 - a. It was raining, but we went for a walk anyway.
 - b. We didn't go for a walk because, it was raining.
 - c. We went for a walk in spite of the rain.
 - d. It was raining but we went for a walk because we like walking in the rain.

Q.C.M n°5 de Physique

31- choisir la bonne expression:

a)
$$\vec{\nabla}(fg) = \vec{\nabla}(g) + \vec{\nabla}(f)$$

b)
$$\vec{\nabla}(fg) = f \cdot \vec{\nabla}(g)$$

$$\overrightarrow{\nabla}(fg) = f.\overrightarrow{\nabla}(g) + g.\overrightarrow{\nabla}(f)$$

32- On retrouve l'équation de Maxwell $div(\vec{B}) = 0$ à l'aide de

- a) la propriété fondamentale de \vec{B} donnée par : $\oint \vec{B} \cdot d\vec{S} = 0$
- b) la loi de Faraday donnée par : $e = -\frac{d\Phi}{dt}$
- c) théorème de Gauss : $\oiint_{Sg} \vec{E} . d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon}$

33- On retrouve l'équation de Maxwell $div(\vec{E}) = \frac{\rho}{\varepsilon}$, à partir de

- a) la loi de Faraday donnée par : $e = -\frac{d\Phi}{dt}$
- b) théorème de Gauss : $\iint_{\mathcal{E}} \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon}$
- c) la propriété fondamentale de \vec{B} donnée par : $\oiint \vec{B} \cdot d\vec{S} = 0$

34- Les équations de Maxwell ont permis de prouver :

- a) l'existence des ondes sonores
- b) l'existence des ondes mécaniques
- c) la propagation des ondes électromagnétiques
- d) la propagation des ondes sonores dans le vide

35- L'équation de Maxwell : $ro\vec{t}(\vec{B}) = \mu \vec{J} + \mu \varepsilon \frac{\partial \vec{E}}{\partial t}$, s'écrit dans le milieu vide sous la forme :

a)
$$ro\vec{t}(\vec{B}) = \mu_0 \vec{J}$$

b)
$$ro\vec{t}(\vec{B}) = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

c)
$$ro\vec{t}(\vec{B}) = \vec{0}$$

36- L'équation $\Delta \vec{B} - \mu_0 . \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2} = \vec{0}$ représente :

- a) une équation de Maxwell
- b) la loi de Faraday
- c) l'équation de propagation du champ magnétique dans un milieu matériel
- d) l'équation de propagation du champ magnétique dans le milieu vide.

37- Le coefficient $\mu_0.\varepsilon_0$ dans l'équation de propagation $\Delta \vec{E} - \mu_0.\varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2} = \vec{0}$ est homogène

- a) au carré d'une vitesse
- b) à une vitesse
- c) à l'inverse du carré d'une vitesse

38- La célérité des ondes électromagnétiques dans le milieu vide es donnée par:

a)
$$\mu_0.\varepsilon_0 = c$$

b)
$$\mu_0 \cdot \varepsilon_0 = \frac{1}{c}$$

$$(c) \mu_0.\varepsilon_0 = \frac{1}{c^2}$$

39- L'équation de Maxwell $div(\vec{E}) = \frac{\rho}{\varepsilon}$, permet d'affirmer que pour une sphère de rayon R, chargée avec une densité volumique ρ positive :

a)
$$div(\vec{E}) = 0$$
 pour $(r > R)$

b)
$$div(\vec{E}) = 0$$
 pour $(r < R)$

c)
$$div(\vec{E})$$
 est strictement négatif pour $(r < R)$

40- L'équation $div(\vec{B}) = 0$ vérifie :

- a) elle exprime le phénomène auto-induction
- b) elle est valable pour tout milieu
- c) elle n'est valable que dans le milieu air

- 41. The capital city of India is:
 - Kolkata Α.
 - Mumbai
 - C. New Delhi
 - Bangalore D.
 - Chennai
- 42. What events in 1998 increased the military threat between India and
 - Α. Terrorist activities along the border between the two countries
 - В. Development of chemical weapons by India
 - C. Development of chemical weapons by Pakistan
 - D. Successful testing of nuclear missiles by both countries
 - All of the above
- 43. According to the article you read by Shashi Tharoor on Indian identity, which of the following is a basis for Indian national identity:
- Α. language
 - В. religion
 - C. geography
 - ethnicity
 - none of the above
- 44. Post-Independence India was set up as what kind of political entity?
 - Α. a Hindu monarchy
 - В. a Hindu theocracy (government based on religion)
 - C. a Muslim theocracy
 - D. a Communist state
 - E. a secular democracy
- 45. The two official languages of the central government in India are:
 - English and Bengali
 - В. С. English and Hindi
 - Tamil and Hindi
 - D. Tamil and English
 - Hindi and Gujarati
- 46. What does Tharoor mean by "We are all minorities in India"?
 - There is no 'archetypal' (or 'typical') Indian individual
 - В. There is no religious majority in India
 - C. India is a colonized nation
 - D. Nobody in India is tall
 - Everyone in India has dark skin
- Rabindranath Tagore was the first non-European to win a Nobel Prize in:
 - Mathematics Α.
 - В. Economics
 - C, Literature
 - D. Medicine
 - Ε. Peace

- The name of an official language in India is: 48.
 - Hindu
 - В. Hinduism
 - C. Indu
 - D, E. Hindi
 - Indou
- Which city was a former French colony? 49.
 - Α. Kolkata
 - В. С. Pondicherry
 - Goa
 - D. Mumbai
 - E. Bangalore
- What are the two largest religions represented on the Subcontinent? 50.
 - Hinduism and Buddhism
 - B. C. Islam and Hinduism
 - Hinduism and Christianity
 - Buddhism and Islam D.
 - Judaism and Hinduism E.