Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Feuille 4 — Produit scalaire

Exercice 1. On considère la fonction définie sur $(M_n(\mathbf{R})^2 \text{ par } \varphi(A, B) = \text{tr}(AB)$. Montrer que c'est une forme bilinéaire symétrique qui n'est ni définie ni positive.

Exercice 2. On considère la fonction définie sur $(\mathbf{R}_n[X])^2$ par $\varphi(P,Q) = P(0)Q(0) + P(1)Q(1)$. Montrer que c'est toujours une forme bilinéaire symétrique positive, et que c'est un produit scalaire si et seulement si n = 1.

Exercice 3. En appliquant la méthode de Gauss, dire si les formes bilinéaires symétriques suivantes sont définies, positives, des produits scalaires.

1.
$$\varphi_1(x,y) = x_1y_1 + x_2y_2 + \frac{1}{2}x_1y_3 + \frac{1}{2}x_3y_1$$
;

2.
$$\varphi_2(x,y) = x_1y_2 + x_2y_1 + 3x_1y_3 + 3x_3y_1$$
.

Exercice 4. Appliquer la méthode de Gauss aux formes quadradiques suivantes, et en déduire si elles sont définies, positives.

1.
$$q_1(x) = x_1^2 + x_2^2 + x_3^2 - 3x_2x_3 - x_3x_1 - x_1x_2$$
;

2.
$$q_2(x) = x_1x_2 + x_2x_3 + x_3x_1$$
;

3.
$$q_3(x) = (2x_1 + x_2 - x_3)^2 - (3x_1 - x_2 + 2x_3)^2 + (5x_2 - 7x_3)^2$$
.

Exercice 5. On considère la forme quadratique

$$q(x) = x_1^2 - 3x_2^2 - 4x_3^2 + \lambda x_4^2 + 2\mu x_1 x_2 \ .$$

En appliquant la méthode de Gauss, dire pour quelles valeurs de (λ, μ) cette forme est définie, positive.