EXERCÍCIOS DE TOPOLOGIA

LUCA MACIEL ALEXANDER

Resumo

Alguns exercícios feitos para a disciplina de Topologia, professor Aurichi, 2022.

Exercício 1

Proposição 0.1. Seja (X, τ) regular e sem pontos isolados. Então X admite uma base \mathcal{B} tal que $\forall D \subseteq X$ denso e $\forall A, B \in \mathcal{B}$, $(A \cap D) \setminus B$ é vazio ou infinito.

Vamos mostrar que a base $\mathcal{B} = \{Int(\overline{V}) : V \in \tau\}$ satisfaz a propriedade desejada. Primeiramente enunciamos um fato que será útil:

Lema 0.2. Seja (X, τ) regular e sem pontos isolados. Seja $D \subseteq X$ denso. Se $V \in \tau$ não é vazio, então $V \cap D$ é infinito.

Demonstração. Seja $V \in \tau$ um aberto não vazio. Como D é denso, V contém ao menos um elemento d de D. Suponhamos por fim de contradição que $V \cap D$ é finito com cardinalidade N > 0.

Observamos que $(V \cap D) \setminus d$ é fechado, pois é uma união finita de conjuntos unitários, que são fechados pelo axioma T_1 . Logo, o axioma T_3 garante a existência de abertos disjuntos V_1 e V_2 , com $d \in V_1$ e $(V \cap D) \setminus d \in V_2$.

Definimos o aberto $V_3 = V \cap V_1$, e notamos que V_3 contém d e não é unitário, pois X não possui pontos isolados. Tomamos então um ponto $p \neq d, p \in V_3$, e usamos outra vez o axioma T_1 para encontrar um aberto V_4 que contém p, mas não contém d. Por fim notamos que o aberto $V_4 \cap V_3$ está em V e contém ao menos um elemento q do denso D, distinto de d, e dos demais elementos de $V \cap D$, um absurdo pois assumimos que $V \cap D$ tem N elementos. Logo $V \cap D$ é infinito.

Agora conferimos que \mathcal{B} é uma base.

Proposição 0.3. Seja (X, τ) regular. Então $\mathcal{B} = \{Int(\overline{V}) : V \in \tau\}$ é uma base para (X, τ) .

Demonstração. Seja $A \in \tau$ não vazio. Vamos mostrar que existe um subconjunto $\mathcal{B}' \subseteq \mathcal{B}$ tal que $\bigcup_{B \in \mathcal{B}'} B = A$.

Tomamos um ponto arbitrário $x \in A$. Como X é T_3 , existem V e W abertos, com $x \in V$ e $A^c \in W$. Definimos $B_x = Int(\overline{V})$ para que $B_x \in \mathcal{B}$.

Notamos que $x \in B_x$, pois $x \in V$ e V é um aberto contido em \overline{V} (vide definição de interior). Notamos também que $B_x \subseteq A$, pois $B_x = Int(\overline{V}) \subseteq \overline{V} \subseteq W^c \subseteq A$, em que $\overline{V} \subseteq W^c$ pois W^c é um fechado que contém V (vide definição de fecho).

Logo, podemos tomar $\mathcal{B}' = \{B_x : x \in A\}.$

Por fim, observamos que se $A \setminus B$ é vazio, então $(A \cap D) \setminus B$ é vazio. Logo é suficiente mostrar que quando $A \setminus B$ não é vazio, $A \setminus B$ contém um aberto $V \in \tau$ não vazio, portanto $V \cap D \subseteq (A \setminus B) \cap D = (A \cap D) \setminus B$ é infinito pelo lema 0.2. Isto é feito na proposição derradeira:

Proposição 0.4. Sejam $A, B \in \mathcal{B}$. Se $A \setminus B$ não é vazio, então existe um aberto não vazio U em $A \setminus B$.

Demonstração. Suponhamos que $A \setminus B \neq \emptyset$. Como $B \in \mathcal{B}, B = Int(\overline{V}), V \in \tau$.

Primeiramente mostramos por contradição que se $x \in A \setminus B$ então $x \notin Int(\overline{B})$. Suponhamos portanto que $x \in Int(\overline{B})$. Então existe um aberto W tal que $x \in W \subseteq \overline{B} \subseteq \overline{V}$ (em que $\overline{B} \subseteq \overline{V}$ pois \overline{V} é por definição um fechado que contém B) o que é o mesmo que dizer $x \in Int(\overline{V}) = B$, que contradiz $x \in A \setminus B$.

Como $x \notin Int(\overline{B})$, todo aberto que contém x contém um ponto fora de \overline{B} . Em particular A contém x, logo $A \setminus \overline{B}$ não é vazio. Além disso, $A \setminus \overline{B}$ é a diferença entre um aberto e um fechado, logo é aberto, e encontramos o procurado $U = A \setminus \overline{B}$.

Exercício 2

Proposição 0.5. Seja (X,d) um espaço métrico não limitado. Então dadas duas funções $f: X \to [0,1]$ e $g: X \to [0,1]$, existe uma função contínua $h: X \to [0,1]$, tal que $\{x \in X : h(x) = f(x)\}$ e $\{x \in X : h(x) = g(x)\}$ são ambos não limitados.

Vamos apontar dois conjuntos F e G, disjuntos e não limitados, com $F \cup G$ fechado, e depois definir a função contínua $\tilde{h}: F \cup G \to [0,1]$,

$$\tilde{h} = \begin{cases} f(x) & \text{se } x \in F \\ g(x) & \text{se } x \in G. \end{cases}$$

Como todo espaço métrico é normal, o Teorema de Tietze garante que existe uma extensão contínua de \tilde{h} para o domínio X, e podemos notar que essa extensão é a função h desejada. Definimos F e G indutivamente:

- (1) Fixamos um ponto arbitrário $x_1 \in X$ (a existência de x_1 segue de X ser não limitado, portanto não vazio).
- (2) Fixamos um ponto arbitrário $x_2 \in X$ com $2R_1 + 1 \le d(x_2, x_1)$, onde R_1 satisfaz $\{x_1\} \subseteq B_{R_1}(x_1)$ (a existência de x_2 segue de X não ser limitado, então uma bola de raio $2R_1 + 1$ centrada em x_1 não contém todo o conjunto X).
- (3) Fixamos um ponto arbitrário $x_3 \in X$ com $2R_2 + 1 \le d(x_3, x_2)$, onde $\{x_1, x_2\} \subseteq B_{R_2}(x_2)$ (a existência de x_3 segue de X não ser limitado, então uma bola de raio $2R_2 + 1$ centrada em x_3 não contém todo o conjunto X).

Enumeramos os elementos $x_n, n \in \mathbb{N}$ desta forma, e dizemos que $x_n \in F$ se n é impar e $x_n \in G$ se n é par. O seguinte lema fornece três corolários que encerram a demonstração.

Lema 0.6. O conjunto $F \cup G$ é discreto.

Demonstração. É suficiente mostrar que dado $x_n \in F \cup G$, $B_1(x_n) \cap \{x_k : k < n\} = \emptyset$. Tomamos $y \in B_1(x_n)$. Pela construção de $F \cup G$, $2R_{n-1} + 1 \le d(x_n, x_{n-1})$, e pela definição de bola, $d(x_n, y) < 1$. Temos então a desigualdade triangular:

$$d(x_n, x_{n-1}) - d(x_n, y) \le d(x_{n-1}, y) \implies 2R_{n-1} + 1 - 1 < d(x_{n-1}, y) \implies 2R_{n-1} < d(x_{n-1}, y)$$

$$\max \{x_k : k < n\} \subseteq B_{R_{n-1}}(x_{n-1}), \log_{x_n} y \notin \{x_k : k < n\}.$$

Corolário 0.7. O conjunto $F \cup G$ é fechado.

Demonstração. Basta lembrar que conjuntos fechados em espaços métricos são os conjuntos que contém seus pontos de acumulação, uma condição que conjuntos uniformemente discretos satisfazem por vacuidade.

Corolário 0.8. Os conjuntos F e G são disjuntos.

Demonstração. Segue diretamente de $F \cup G$ ser um conjunto discreto. \square

Corolário 0.9. Os conjuntos F e G não são limitados.

Demonstração. Um conjunto não vazio A é limitado se possui diâmetro, que definimos como $Diam(A) = \sup_{x,y \in A} d(x,y)$. De $\{x_1, \dots, x_n\} \subseteq B_{R_n}(x_n)$, temos $Diam\{x_1, \dots, x_n\} \le 2R_n$. De $2R_n + 1 \le d(x_n, x_{n+1})$, temos $2R_n + 1 \le Diam\{x_1, \dots, x_{n+1}\}$. Logo,

$$Diam\{x_1, \dots, x_n\} \le 2R_n \le 2R_n + 1 \le Diam\{x_1, \dots, x_{n+1}\}$$
$$\le 2R_{n+1} \le 2R_{n+1} + 1 \le Diam\{x_1, \dots, x_{n+2}\}, \forall n \in \mathbb{N}.$$

Ou seja, nem F nem G possuem diâmetro.

Observamos por fim que a função \hat{h} definida acima é contínua como queríamos, já que seu domínio é discreto.

Exercício 3

Proposição 0.10. Seja $X = \{f : \mathbb{Q} \to \mathbb{R} \mid f \text{ \'e funç\~ao}\}$. Considere X com a topologia produto (i.e. $X = \prod_{q \in \mathbb{Q}} \mathbb{R}$). Então $\forall f \in X \ \exists (\tilde{f}_n)_{n \in \mathbb{N}} \ tal \ que \ \tilde{f}_n \in X, \ \tilde{f}_n \longrightarrow f \ e \ \tilde{f}_n \ \acute{e}$ $cont{\'i}nua~e~ilimitada.$

Seja $f \in X$ uma função qualquer. Vamos exibir uma sequência de funções $(\hat{f}_n)_{n \in \mathbb{N}}$ com as propriedades desejadas.

Definimos os conjuntos Q_n e Q'_n como

- $Q_n = \{ \frac{l}{m} : m \le n, \ l \in \mathbb{Z}, \ m \in \mathbb{N} \}$ $Q_n^{'} = \{ q \in \mathbb{Q} : q = \frac{a+b}{2}, \ a, b \in Q_n \text{ t.q. } a < b \in \nexists c \in Q_n \text{ com } a < c < b \}.$

A partir desses conjuntos, definimos a sequência de funções $(f_n)_{n\in\mathbb{N}}, f_n: Q_n \cup Q_n' \to \mathbb{R},$

$$f_n(x) = \begin{cases} f(x) & \text{se } x \in Q_n \\ x & \text{se } x \in Q'_n. \end{cases}$$

Em seguida, por uma aplicação do Teorema de Tietze, estendemos o domínio de cada f_n para Q. Conferimos as hipóteses do teorema:

- (1) \mathbb{Q} satisfaz T_4 ;
- (2) $Q_n \cup Q_n'$ é fechado, pois seu complemento é uma união de intervalos abertos da forma $(a, b) \cap \mathbb{Q}, \ a, b \in Q_n \cup Q'_n;$
- (3) cada f_n possui domínio discreto, portanto é contínua.

Logo, para cada f_n existe uma extensão contínua $\tilde{f}_n:\mathbb{Q}\to\mathbb{R}$. Como $\tilde{f}_n\upharpoonright_{Q'_n}=\mathrm{Id}$ e Q'_n é ilimitado, \tilde{f}_n é ilimitada. Resta mostrar que a sequência $(\tilde{f}_n)_{n\in\mathbb{N}}$ converge para f.

Definimos $g: \mathbb{N} \cup \{\infty\} \to X$,

$$g(n) = \begin{cases} \tilde{f}_n & \text{se } n \in \mathbb{N} \\ f & \text{c.c.} \end{cases}$$

Seja $\pi_q: X \to \mathbb{R}$ a projeção de X na coordenada $q \in \mathbb{Q}$ e suponha que $\mathbb{N} \cup \{\infty\}$ admita a topologia da sequência convergente. Então mostrar que $\tilde{f}_n \longrightarrow f$ é mostrar que g é contínua, que é mostrar que para todo $q \in \mathbb{Q}$, $\pi_q \circ g$ é contínua, que é mostrar que para todo $q \in \mathbb{Q}$, $\pi_q \circ g(n) \longrightarrow f(q).$

De fato, se fixamos um $q \in \mathbb{Q}$, $q = \frac{l}{m}$, $l \in \mathbb{Z}$, $m \in \mathbb{N}$, notamos que $q \in Q_n$, para todo $n \geq m$. Logo $\pi_q \circ g(n) = f(q)$, para todo $n \geq m$, mostrando a convergência desejada $\pi_q \circ g(n) \longrightarrow f(q)$. \square

Exercício 4

Proposição 0.11. Seja K compacto T_2 e $X \subseteq K$, com $\overline{X} = K$ e $K \setminus X = \bigcup_{n \in \mathbb{N}} K_n$, em que cada K_n é compacto. Então $\forall x \in X \ \exists G \ compacto \ G_{\delta} \ em \ K \ tal \ que \ x \in G \subseteq X$.

Vamos indutivamente construir uma intersecção de abertos e fechados aninhados que contêm o ponto x.

Como K é compacto T_2 , é normal. Além disso, usaremos que compactos são fechados em K. Consideramos os fechados K_1 e $\{x\}$. Então existem abertos disjuntos V_1' e V_1 tal que $K_1 \subseteq V_1'$ e $\{x\} \subseteq V_1$. Como K é normal, existe um aberto U_1 tal que $x \in U_1 \subseteq \overline{U_1} \subseteq V_1$.

Agora consideramos os fechados K_2 e $\{x\}$. Como anteriormente, os separamos tal que $K_2 \subseteq V_2'$ e $\{x\} \subseteq V_2$. Como K é normal, existe um aberto U_2 tal que $x \in U_2 \subseteq \overline{U_2} \subseteq U_1 \cap V_2 \subseteq U_1 \subseteq \overline{U_1} \subseteq V_1$. Simplificamos a cadeia de inclusões para $x \in U_2 \subseteq \overline{U_2} \subseteq U_1 \subseteq \overline{U_1}$. Continuando indefinidamente, obtemos $x \in \ldots \subseteq U_n \subseteq \overline{U_n} \subseteq \ldots \subseteq U_1 \subseteq \overline{U_1}$. Definimos o conjunto $G = \cap_{n \in \mathbb{N}} U_n$, observando que $x \in G$ e que G é G_δ são imediatos.

Notamos que $G \subseteq X$, pois $x \in G \implies x \in \cap_{n \in \mathbb{N}} U_n \implies x \in \cap_{n \in \mathbb{N}} V_n \implies x \notin \cap_{n \in \mathbb{N}} V_n'$. Como $K \setminus X \subseteq \bigcup_{n \in \mathbb{N}} V_n'$, $x \notin K \setminus X$, logo $x \in X$.

Por fim, mostrar que G é fechado é mostrar que G é compacto. Notamos que $\bigcap_{n\in\mathbb{N}} \overline{U_n}$ é uma intersecção de fechados, portanto é fechado. Mostraremos que $G = \bigcap_{n\in\mathbb{N}} \overline{U_n}$:

- Supomos que $x \in G = \bigcap_{n \in \mathbb{N}} U_n$. Então $x \in U_n$, $\forall n \in \mathbb{N}$. Fixamos um $n \in \mathbb{N}$ qualquer. Se $x \in U_n$, então $x \in \overline{U_n}$. Logo, $x \in \bigcap_{n \in \mathbb{N}} \overline{U_n}$.
- Supomos que $x \in \bigcap_{n \in \mathbb{N}} \overline{U_n}$. Então $x \in \overline{U_n}$, $\forall n \in \mathbb{N}$. Fixamos um $n \in \mathbb{N}$, $n \geq 2$. Se $x \in \overline{U_n}$, então $x \in U_{n-1}$. Fixamos agora n = 1. Se $x \in \overline{U_1}$, como $x \in \bigcap_{n \in \mathbb{N}} \overline{U_n}$, $x \in \overline{U_2}$ também, temos $x \in U_1$. Logo, $x \in \bigcap_{n \in \mathbb{N}} U_n$, encerrando a demonstração. \square

Exercício 5

Consideramos $X=(\mathbb{R}\times\mathbb{Q})\cup E$, em que $E\subseteq\mathbb{R}^2$ é enumerável. X possui a topologia de subespaço induzida por \mathbb{R}^2 .

Proposição 0.12. X é desconexo.

Demonstração. Vamos mostrar que uma cisão não trivial de X é dada pelos conjuntos abertos $A_{\alpha} = \{(x,y) \in X : y > \alpha\}$ e $B_{\alpha} = \{(x,y) \in X : y < \alpha\}$, para algum α irracional.

Supomos por fim de contradição que $A_{\alpha} \cup B_{\alpha} \neq X$, $\forall \alpha \in \mathbb{R} \setminus \mathbb{Q}$. Como $A_{\alpha} \cup B_{\alpha} = \mathbb{R} \times \mathbb{Q}$, $\forall \alpha \in \mathbb{R} \setminus \mathbb{Q}$, então $\{(x, \alpha) \in \mathbb{R}^2\} \cup E \neq \emptyset$, $\forall \alpha \in \mathbb{R} \setminus \mathbb{Q}$.

Assim, definimos uma injeção dos irracionais ao conjunto E como $\alpha \mapsto e \in \{(x, \alpha) \in \mathbb{R}^2\} \cap E$, cuja existência contradiz a hipótese de que E é enumerável.

Proposição 0.13. Dada uma reta $r \subseteq \mathbb{R}^2$ tal que $r \nsubseteq X$ e $r \cap (X \setminus E) \neq \emptyset$, temos $X \cup r$ conexo.

Demonstração. Mostraremos que $(\mathbb{R} \times \mathbb{Q}) \cup r$ é conexo por caminhos, portanto conexo. Estabelecido isso, $X \cup r$ é conexo pois o fecho de $(\mathbb{R} \times \mathbb{Q}) \cup r$ é \mathbb{R}^2 , que contém $X \cup r$.

Para confirmar a segunda afirmação, basta notar que para todo $x \in \mathbb{R}^2$ e r > 0, temos $B_r(x) \cap \mathbb{R} \times \mathbb{Q} \neq \emptyset$.

Agora mostramos que $(\mathbb{R} \times \mathbb{Q}) \cup r$ é conexo por caminhos. Fixamos uma reta r que satisfaz as hipóteses da proposição. Sejam $a, b \in (\mathbb{R} \times \mathbb{Q}) \cup r$, com $a = (x_a, y_a)$ e $b = (x_b, y_b)$. Definimos o caminho $f : [0, 1] \to (\mathbb{R} \times \mathbb{Q}) \cup r$ de a até b por casos:

- (1) Se $a, b \in r \setminus (\mathbb{R} \times \mathbb{Q})$ ou se $y_a = y_b$, então f(t) = a + t(b a).
- (2) Se $a \in r \setminus (\mathbb{R} \times \mathbb{Q})$ e $b \in \mathbb{R} \times \mathbb{Q}$, então tomamos $c = r \cap \{(x, y_b) \in \mathbb{R}^2 : x \in \mathbb{R}\}$ e observamos que o caso 1 garante a existência de um caminho entre a e c, e outro entre c e b. Definimos f como uma concatenação destes.

(3) Se $a, b \in \mathbb{R} \times \mathbb{Q}$, $y_a \neq y_b$, tomamos $c = r \cap \{(x, y_a) \in \mathbb{R}^2 : x \in \mathbb{R}\}$ e $d = r \cap \{(x, y_b) \in \mathbb{R}^2 : x \in \mathbb{R}\}$. O caso 1 garante a existência de caminhos entre a e c, entre c e d e entre d e b. Definimos f como uma concatenação destes.

Exercício 6

Mostramos que a seguinte modificação do Teorema de Tietze não vale, por contraexemplo.

Proposição 0.14 (Tietze em S^1). Se (X,τ) é T_4 , $F \subseteq X$ é fechado e $f: F \to S^1$ é contínua, então existe $\tilde{f}: X \to S^1$ extensão contínua de f.

Fixamos $X=[0,1]\times[0,1]$ e $F=[0,1]\times\{0\}\cup[0,1]\times\{1\}.$ Definimos $f:F\to S^1$ como

$$f(x,t) = \begin{cases} (\cos(2\pi x), \sin(2\pi x)) & \text{se } t = 0\\ (1,0) & \text{se } t = 1 \end{cases}$$

Observamos que X é T_4 e que F é fechado.

A função f é contínua pois suas restrições para ambas as componentes conexas do domínio são contínuas. Isto é, tanto $(cos(2\pi x), sin(2\pi x))$ quanto a função constante são contínuas.

Apesar disso, se houvesse uma extensão contínua de f, seria uma homotopia entre os laços $\gamma_1(t) = (\cos(2\pi t), \sin(2\pi t))$ e $\gamma_2(t) = (1,0)$, a qual não existe, pois $\pi_1(S^1, (1,0))$ não é trivial, e de fato γ_1 e γ_2 pertencem a classes de equivalência homotópica diferentes.

Exercício 7

Exibiremos um exemplo que comprova o fato de que nem todo espaço de Hausdorff com denso completamente metrizável é normal. Tomamos o plano de Niemytskii Γ e $D = \mathbb{R} \times \mathbb{R}_+$.

- D é denso, pois qualquer vizinhança de $x \in \Gamma \setminus D$ intersecta D.
- D é completamente metrizável, pois D é um subconjunto aberto de \mathbb{R}^2 , que é completamente metrizável.
- Γ é conhecidamente de Hausdorff.
- Γ não é normal. Basta aplicar o lema de Jones no subconjunto $\mathbb{R} \times \{0\} \subseteq \Gamma$, que é fechado, discreto e possui a cardinaliade do contínuo.

Exercício 8

Proposição 0.15. Seja $(f_n)_{n\in\mathbb{N}}$ uma sequência de funções contínuas e localmente não constantes da forma $f_n: \mathbb{R}^2 \to \mathbb{R}$. Então $\forall x \in \mathbb{R}^2 \ \exists (x_k)_{k \in \mathbb{N}} \ tal \ que \ x_k \to x \ e \ \forall k \ \forall n, \ f_n(x_k) \neq 0$.

Demonstração. Fixamos f_n , $n \in \mathbb{N}$, e notamos que o conjunto $f_n^{-1}[\mathbb{R} \setminus \{0\}] \subseteq \mathbb{R}^2$ é aberto e denso.

- (1) É aberto. Seja $x \in f_n^{-1}[\mathbb{R} \setminus \{0\}]$. Como $\mathbb{R} \setminus \{0\}$ é aberto em \mathbb{R} , $\exists \epsilon > 0 : 0 \notin B_{\epsilon}(f_n(x))$. Pela continuidade de f_n , concluímos que $\exists \delta > 0 : f_n[B_{\delta}(x)] \subseteq B_{\epsilon}(f_n(x))$, logo x está no interior de $f_n^{-1}[\mathbb{R} \setminus \{0\}]$.
- (2) É denso. Seja $x \in \mathbb{R}^2$. Se $f_n(x) \neq 0$, não há o que mostrar. Se $f_n(x) = 0$, como f_n é localmente não constante, toda vizinhança de x contém ao menos um ponto de $f_n^{-1}[\mathbb{R} \setminus \{0\}]$.

 \mathbb{R}^2 é um espaço métrico completo, logo é de Baire. Isto garante que a intersecção de abertos densos $D=\cap_{n\in\mathbb{N}}f_n^{-1}[\mathbb{R}\setminus\{0\}]$ é densa. Como \mathbb{R}^2 possui bases locais enumeráveis, a densidade de D implica que para qualquer $x\in\mathbb{R}^2$, existe uma sequência $(x_k)_{k\in\mathbb{N}}\subseteq D$ que converge para x, o que é por definição da forma procurada.

Exercício 9

Proposição 0.16. $\overline{\mathbb{N}\setminus\{0\}}\subseteq\beta\mathbb{N}$ é homeomorfo a $\beta\mathbb{N}$.

Proposição 0.17. $\overline{\mathbb{R} \setminus \{0\}} \subseteq \beta \mathbb{R}$ não é homeomorfo a $\beta \mathbb{R}$.

Exercício 10

Exibiremos um exemplo que comprova o fato de que nem todo espaço de Hausdorff com aberto denso paracompacto é paracompacto. Tomamos o plano de Niemytskii Γ e $D=\mathbb{R}\times\mathbb{R}_+.$

- D é aberto, pois $\forall d \in D \ \exists r > 0 : B_r(d) \in D$.
- D é denso, pois qualquer vizinhança de $x \in \Gamma \setminus D$ intersecta D.
- D é paracompacto, pois D é metrizável, por ser um subconjunto de \mathbb{R}^2 , que é metrizável.
- $\bullet \;\; \Gamma$ é conhecidamente de Hausdorff.
- Γ é conhecidamente não normal (basta aplicar o lema de Jones no subconjunto $\mathbb{R} \times \{0\} \subseteq \Gamma$, que é fechado, discreto e possui a cardinaliade do contínuo), portanto como também é de Hausdorff, não pode ser paracompacto.