

Universidad Nacional de Colombia Facultad de Ciencias

Análisis Funcional

Ejercicio 1 Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Defina

$$K = \{x \in E : ||x|| = 1\}.$$

Demuestre que E es de Banach si y solamente si K es completo.

Ejercicio 2 Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Considere $T: E \to F$ una transformación lineal. Muestre que las siguientes afirmaciones son equivalentes:

- (i) T es continua.
- (ii) T es continua en cero.
- (iii) T es acotada. Es decir, existe M > 0 tal que para todo $x \in E$,

$$||Tx||_{E} < M||x||_{E}$$
.

(iv) Si $\overline{B(0,1)} = \{x \in E : ||x||_E \le 1\}$, entonces la imagen directa T(B(0,1)) es un conjunto acotado de F.

Ejercicio 3 Demuestre que si $T \in \mathcal{L}(E, F)$, entonces:

- (i) $\|Tx\|_{F} \le \|T\| \|x\|_{E}$, para todo $x \in E$.
- (ii) $\|T\| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E}$.
- (iii) $\|T\| = \sup_{\|x\|_{E}=1} \|Tx\|_{F}$.
- (iv) $\|T\| = \inf\{M > 0 : \|Tx\|_F \le M\|x\|_E, \, \forall x \in E\}.$

Ejercicio 4

Ejercicio 5 Sean E y F espacios vectoriales normados. Suponga que E es de dimensión finita (no se asume que F sea de dimensión finita).

- (i) Muestre que todas las normas asignadas a E son equivalentes.
- (ii) Muestre que toda transformación lineal $T : E \rightarrow F$ es continua.
- (iii) Dé un ejemplo donde se verifique que (ii) puede ser falsa si E es de dimensión infinita.

Ejercicio 6

Considere $E = c_0$, donde

$$c_0=\left\{u=\{u_n\}_{n\geq 1}: \text{tales que } u_n\in\mathbb{R}, \ \lim_{n\to\infty}u_n=0\right\}.$$

Es decir, c_0 es el conjunto de las secuencias reales que tienden a cero. Dotamos a este espacio con la norma $\|u\|_{\ell^\infty}=\sup_{n\in\mathbb{Z}^+}|u_n|$. Considere el funcional $f:E\to\mathbb{R}$ dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

- (i) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.
- (ii) ¿Es posible encontrar $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?

Sean $(E, \|\cdot\|_E)$ y $(F, \|\cdot\|_F)$ espacios vectoriales normados. Suponga que F es un espacio de Banach.

- Muestre que $\mathcal{L}(E,F)$ es un espacio de Banach con la norma usual de $\mathcal{L}(E,F)$.
- En particular, concluya que $E^* = \mathcal{L}(E, \mathbb{R})$ y $E^{**} = \mathcal{L}(E^*, \mathbb{R})$ son espacios de Banach.