advanced measurement (logs, quadratics, etc)

Adam Okulicz-Kozaryn adam.okulicz.kozaryn@gmail.com

this version: Tuesday 14th February, 2017 18:15

outline

on gujarati, again

- great book
- but way too detailed
- ♦ yes, you should read it
- but don't have to understand everything
- especially skip more complicated math and appendices
- $\diamond\,$ rather focus on background intuition, mechanics, examples
- next year i will only use gujarati as bonus reading
- and will make green book applied regression as major book

departure from pre2017

dropped reciprocals

interpretation: transforming variables

- \diamond Lin: One unit change in X leads to a β_2 unit change in Y.
- ♦ Log-Lin: One unit change in X leads to a $100 * \beta_2$ % change in Y. (guj ed4:p180 fig6.4; ed5:p163 ex6.4)
- \diamond Lin-Log: One percent change in X leads to a $\beta_2/100$ unit change in Y. (guj: ed4:p182 fig6.5; ed5:p165-6 ex6.5)
- ♦ Log-Log (aka log-linear or "linear in logs"): One percent change in X leads to a β_2 % change in Y (elasticity).

links for logs practice

- http://www.ats.ucla.edu/stat/mult_pkg/faq/general/log_ transformed_regression.htm
- (*) [*]http://www-stat.wharton.upenn.edu/~stine/stat621/handouts/LogsInRegression.pdf

[*]http://www.ats.ucla.edu/stat/sas/faq/sas_interpret_log.htm

what is log

- we will use so called natural logarithm
- · for simplicity just log or ln ♦ log() or ln(), to reverse it exp()
- what is it? ♦ it tells us how many times 2.72 was multiplied, eg:
- log(7.4) = 2, because $2.72^2 = 7.4$
- log(22166) = 10, because $2.72^{10} = 22166$
- you can see it compresses distribution · it makes very big numbers relatively small
- · it is often used to remove outliers
- · say wage, prices, any \$ amounts are very skewed · and log will make them more normally distributed

7/22

log makes cool interpretations in regressions

- again it makes very big numbers small
- actually, the bigger the number, the much more it is compressed
- $\log(10) \approx 2; \log(100) \approx 4; \log(1000) \approx 7; \log(10,000) \approx 9$
- what you think will happen if you log transform your x?
- as the values of x increase, the effect on Y would be weaker
- \cdot originally huge differences at high levels of X are now tiny
- what if we log transform Y variable? the other way round!
- · so the effect of X would be increasing

it makes a difference

logarithms and relative change

(the bigger the x, the smaller the changes in ln x)

n(income)

For small changes, the change in ln(x) is the percentage change in x. E.g. a 0.05 increase in ln(x) is a 5 percent increase in x. Example:

lin-lin [dofile: measurement]

- eg people with more education earn higher wages...
- $\diamond Y_i = \beta_1 + \beta_2 X_i + u_i$
- \diamond This model specifies that the change is constant regardless of the level of X (because β is constant)
- \diamond wage_i = $\beta_1 + \beta_2$ educ_i + u_i
- $\cdot \widehat{wage}_i = -0.75 + 0.75 educ_i$
- $\widehat{wage}_{10} = \$6.75 \quad \widehat{wage}_{11} = \$7.50 \quad \Delta \widehat{wage} = \0.75 the change is the same for any 1 year change in educ

relative change: log-lin

- ⋄ take log of Y first, then regress InY on X
- regression treats InY the same as any other var
- · percent change in Y per unit change in X is
- \cdot 100* β_2 times the unit change in X (for small changes)
- still a linear regression, but with a new DV: InY.
- not linear in terms of Y

eg log-lin [dofile: measurement]

- $\Rightarrow ln(wage_i) = \beta_1 + \beta_2 educ_i + u_i$
- $\Rightarrow \widehat{ln(wage)_i} = 1.06 + 0.08educ_i$
- $\diamond \ \textit{In}(\textit{wage})_{10} = 1.06 + 0.08(10) = 1.86$
- this is the predicted In(wage)
- but what about the predicted wage?
- $\Rightarrow \widehat{wage}_{10} = e^{1.86} = \6.42 exp()
- $\Rightarrow \widehat{wage}_{11} = e^{1.94} = \6.96
- 0.08 = 100 0.08 = 100 0.08 = 100

the change varies in dollar terms

- but let's examine the change in wage for an additional year of graduate school, eg master's degree years.
- $\Rightarrow \widehat{ln(wage)}_i = 1.06 + 0.08educ_i$
- $\Rightarrow \widehat{ln(wage)}_{17} = 1.06 + 0.08(17) = 2.42 \quad \widehat{wage}_{17} = \11.25 $\Rightarrow \widehat{ln(wage)}_{17} = 1.06 + 0.08(18) = 2.50 \quad \widehat{wage}_{18} = \12.18
- $\diamond \ \% \Delta \widehat{wage}_{17 \rightarrow 18} = 0.08 = 8\%$
- the change in relative (percentage) terms is constant at
 0.08 (8 percent), but the dollar change is larger.

lin-log [dofile: measurement]

$$\diamond Y_i = \beta_1 + \beta_2 In X_i + u_i$$

 we generate the natural log of education and regress dollar wage on the log of education

eg: lin-log

 wage as a function of relative change in education \diamond wage_i = $\beta_1 + \beta_2 ln(educ_i) + u_i$

$$\Rightarrow \widehat{wage}_i = -10.15 + 7.54 \ln(educ_i)$$

 $\Rightarrow \widehat{wage}_{10} = -10.15 + 7.54 \ln(10) = 7.21$

$$\Rightarrow \widehat{wage}_{11} = -10.15 + 7.54 \ln(11) = 7.93$$

 $\Rightarrow \% \Delta \widehat{wage}_{10 \to 11} = \0.72

 $\phi \ \widehat{wage}_{17} = -10.15 + 7.54 \ln(17) = 11.21$

this case 0.0754

 $\diamond \widehat{wage}_{18} = -10.15 + 7.54 \ln(18) = 11.64$ \diamond for a 1% (0.01) change in X, the change in Y is $\beta_2/100$, in

relative change in education

educ	%change		educ	%change	
	1			11	10%
	2	100%		12	9%
	3	50%		13	8%
	4	33%		14	8%
	5	25%		15	7%
	6	20%		16	7%
	7	17%		17	6%
	8	14%		18	6%
	9	13%		19	6%
	10	11%		20	5%

The relative

change in education per year is declining because the base is getting larger. So the lin-log model will predict a smaller impact on wage each year (see graph few slides back)

and now quadratic regression

- not bivariate regression anymore, but trivariate
- the third var is just a sq of 2nd var
- ⋄ and it does what logs do—fits a curve as opposed to a line
- $\diamond\,$ and i think it is more intuitive than logs or reciprocals !
- the idea is that quadratic coef is smaller than linear, and opposite sign
- but as X gets bigger, its square get huge, and so quadratic coef with opposite sign overpowers first term and curve flips to positive or negative

quadratic model

If a *non-linear relationship* between *X* and *Y* is suspected, a *polynomial function of X* can be used to model it.

when it flips:

$$X_i^* = -\frac{\beta_2}{2\beta_3}$$

This curve reaches a maximum wage at the point were the marginal effect of experience is zero.

quadratic model

quadratic: interpretation

- ♦ the slope changes with X, it is not constant
- the best way to show the quadratic relationship is to graph it
- there is always a tipping point, but it may be outside the range of the data; in fact, the estimated line may be approximately linear for the observed data range even if the quadratic term is significant!
- $\diamond\,$ the t test on squared term has a null hypothesis of linearity
- · if it is not significant, only linear term is left
- more practice
 [*|http://www.ats.ucla.edu/stat/mult_pkg/faq/general/curves.htm

bonus

- http:
 //www.ats.ucla.edu/stat/stata/webbooks/reg/default.htm
- dofile:bonus