

Elyas Khorasani (77264206)

TABLE OF CONTENTS

O1IntroductionAim and Objectives

02
Methodology
Macro and Micro

03
Findings
Discussion

04
Conclusion
Future Work

Introduction

Increase in video streaming:

- CPU usage
- network usage
- Storage usage

AIM

The aim is to investigate the energy consumption and environmental impacts of AV1, VP9, H.264 and HEVC codecs video streaming and determine the most sustainable and green video coding for online streaming.

RQ1: Is there a difference between the power consumption of different video codecs?

RO1: To conduct Descriptive analysis on the power usage of different video codecs

RO2: To conduct Inferential analysis on the power usage of different video codecs

RQ2: Does a better compression rate means less energy consumption while streaming?

RO3: To compare the file sizes with the energy consumption values

RQ3: What is the greenest video codec for streaming?

RO4: To examine the greenhouse gas emission of different video codecs

Methodology

Macro

ICT Services

USE stage

Micro

- Data Collection
- Data mining
- Assessing the Environmental Impact

Findings

File Size change after converting experiment sample video

Codecs	/H264	/HEVC	/ VP 9	/AM
H264/	0%	7%	119 %	113%
HEW/	-7%	0%	10 4 %	98%
VP9/	-119%	- 10 4 %	0%	-2%
AVI	-113%	-98%	2%	0 %

Descriptive Analysis for the application power usage

count 1532 mean 5.09 std 2.28 count 1470 mean 0.15 std 0.10 count 1513 mean 0.12 std 0.17 count 1503 mean 0.11 std 0.17

Entire video Average

AV1 4297.15 W

VP9 128.74 W H264 118.57 W **HEVC** 110.85 W

Comparing Application Power Usage for Different Codecs

incremental number assigned to each data point

Inferential Statistics

ANOVAtest for all the codecs

F Value (x) = 6958.14

P Value (x) = 0

The null hypothesis can be rejected

ANOVAtest for VP9, H264 and HEVC

F Value (x) = 22.881

P Value (x) = 1.29805e - 10

The null hypothesis can be rejected

Emission Comparison

Codecs	€ (kg)	CO_2	СЩ	NO
AM	1	0.99	119%	113 %
VP9	0.03	0.029	10 4 %	98%
H264	0.027	0.027	0%	-2%
HEVC	0.025	0.025	2%	0 %

CONCLUSION

VP9

Greenest for Streaming

Greenest for Storing

