MATH 112: Introduction to Analysis Fall 2024 Semester

Homework 5: Due Tuesday October 14, 10:00am PST

Assignment (2 Problems: 50 + 50 = 100 points total.)

- \square **Problem 1** [Ordered Fields and Averages] Let $(F, \preccurlyeq, \oplus, \mathbb{O}, \otimes, \mathbb{I})$ be an ordered field, i.e. a set F that is both a field $(F, \oplus, \mathbb{O}, \otimes, \mathbb{I})$ satisfying the 10 field axioms from L7 and an ordered set (F, \preccurlyeq) with a compatible total order \preccurlyeq on F satisfying the 4 ordered field axioms from L11. Prove each of the following propositions. Indicate which axioms you use in each step.
 - 1.1 [10 points] $\forall x \in F \ \forall y \in F \ \forall c \in F \ \left((x \prec y \ \land \ c \prec \mathbb{O}) \ \Rightarrow \ c \otimes x \succ c \otimes y \right)$ Note: recall from L9 that " $a \succ b$ " means the same thing as " $b \prec a$ ".
 - 1.2 [10 points] $\forall x \in F \ (x \neq \mathbb{O} \Rightarrow \mathbb{O} \prec x^2)$. Recall from L8: for all $x \in F$, $x^2 = x \otimes x$.
 - 1.3 [10 points] $-\mathbb{I} \prec \mathbb{O} \prec \mathbb{I}$. Recall from $\mathsf{L7}$: -x is the additive inverse of $x \in F$.
 - 1.4 [10 points] $\exists g \in F \ (\mathbb{I} \oplus \mathbb{I}) \otimes g = \mathbb{I}$.
 - 1.5 [10 points] $\forall x \in F \ \forall y \in F \ \left((x \prec y) \Rightarrow (x \prec g \otimes (x \oplus y) \prec y) \right)$ where the element $g \in F$ is the one you proved exists in the previous Problem 1.4.
 - $1.1 \ \forall x \in F \ \forall y \in F \ \forall c \in F \ \Big((x \prec y \ \land \ c \prec \mathbb{O}) \ \Rightarrow \ c \otimes x \succ c \otimes y \Big)$

Assume $x \prec y \land c \prec \mathbb{O}$. By the hypothetical strategy, if we can prove that $c \otimes x \succ c \otimes y$, under this assumption, then the original statement is true. Start from our assumption.

$$\Leftrightarrow \qquad \qquad x \prec y$$

$$\Leftrightarrow \qquad (-c) \otimes x \prec (-c) \otimes y$$

$$\Leftrightarrow \qquad (c \otimes x) \oplus ((-c) \otimes x) \prec (c \otimes x) \oplus ((-c) \otimes y)$$

$$\Leftrightarrow \qquad (c \oplus (-c)) \otimes x \prec (c \otimes x) \oplus ((-c) \otimes y)$$

$$\Leftrightarrow \qquad \qquad \mathbb{O} \otimes x \prec (c \otimes x) \oplus ((-c) \otimes y)$$

$$\Leftrightarrow \qquad \qquad \mathbb{O} \prec (c \otimes c) \oplus ((-c) \otimes y)$$

$$\Leftrightarrow \qquad \qquad \mathbb{O} \oplus (c \otimes y) \prec (c \otimes x) \oplus ((-c) \otimes y)) \oplus (c \otimes y)$$

$$\Leftrightarrow \qquad \qquad \mathbb{O} \oplus (c \otimes y) \prec (c \otimes x) \oplus (y \otimes ((-c) \oplus c))$$

$$\Leftrightarrow \qquad \qquad \mathbb{O} \oplus (c \otimes y) \prec (c \otimes x) \oplus (y \otimes \mathbb{O})$$

$$\Leftrightarrow \qquad \qquad \mathbb{O} \oplus (c \otimes y) \prec (c \otimes x) \oplus \mathbb{O}$$

$$\Leftrightarrow \qquad \qquad C \otimes y \prec c \otimes x$$

$$\Leftrightarrow \qquad \qquad c \otimes x \succ c \otimes y$$

Using Axiom 14 we know that we can \otimes any value to both sides, as long as it is greater than \mathbb{O} . Since we have assumed $c \prec \mathbb{O}$, by axiom 4, $(-c) \succ \mathbb{O}$ since $c \oplus (-c) = \mathbb{O}$. Next use axiom 14, which tells us we can \oplus any element to both sides without affecting \prec adding $(c \otimes x)$. Use Axiom 9, to distribute \otimes over \oplus , on the left side which gets us $c \oplus (-c) \otimes x$. Then use axiom 4 to get that $(c \oplus (-c)) = \mathbb{O}$. After this, use Hw 4, problem 1.2 to get $\mathbb{O} \otimes x = \mathbb{O}$. Use axiom 13 to $\oplus (c \otimes y)$ to both sides. Use axiom 1 to group $(c \otimes x) \oplus ((-c) \otimes y) \oplus (x \otimes y)$ together, then use axiom 9 to distribute \otimes over

 \oplus , to get: $y \otimes ((-c) \oplus c)$. Use axiom 4, to get $(-c) \oplus c) = \mathbb{O}$. Use Hw 4, problem 1.2 to get $y \otimes \mathbb{O} = \mathbb{O}$. Use axiom 3, that any value plus \mathbb{O} equals itself to get: $(c \otimes x)$. Lastly use what we learned in L8, that you can flip \prec to \succ if you switch the terms sides as well.

$$1.2 \ \forall x \in F \ (x \neq \mathbb{O} \Rightarrow \mathbb{O} \prec x^2).$$

EXPLANATION

Assume $x \neq \mathbb{O}$, means either $x < \mathbb{O}$ or $x > \mathbb{O}$.

Case 1: $x < \mathbb{O}$

EXPLANATION.

Case 2: $x > \mathbb{O}$

EXPLANATION

Since this statement _____, holds for both possible cases and these the only possible cases that statisgy $x \neq \mathbb{O}$, the original statement is True.

$1.3 - \mathbb{I} \prec \mathbb{O} \prec \mathbb{I}$.

EXPLANATION

by axiom 10, we have: $\mathbb{O} \neq \mathbb{I}$

We now know that $\mathbb{O} \prec \mathbb{I}$, use to show $-\mathbb{I} \prec \mathbb{O}$.

1.4 $\exists g \in F \ (\mathbb{I} \oplus \mathbb{I}) \otimes g = \mathbb{I}$.

Let $g = (\mathbb{I} \oplus \mathbb{I})^{-1}$. Substitute g into the equation.

$$(\mathbb{I} \oplus \mathbb{I}) \otimes g = (\mathbb{I} \otimes \mathbb{I}) \otimes (\mathbb{I} \oplus \mathbb{I})^{-1}$$
$$= \mathbb{I}$$

EXPLANATION

1.5 $\forall x \in F \ \forall y \in F \ \left((x \prec y) \Rightarrow (x \prec g \otimes (x \oplus y) \prec y) \right)$

Assume $x \prec y$, let $g = (\mathbb{I} \oplus \mathbb{I})^{-1}$.

First show: $x \prec y \Rightarrow x \prec g \otimes (x \oplus y)$

$$x \prec y$$

$$\Leftrightarrow \qquad x \oplus x \prec x \oplus y$$

$$\Leftrightarrow \qquad (x \otimes \mathbb{I}) \oplus (x \otimes \mathbb{I}) \prec x \oplus y$$

$$\Leftrightarrow \qquad x \otimes (\mathbb{I} \oplus \mathbb{I}I) \prec x \oplus y$$

$$\Leftrightarrow \qquad (\mathbb{I} \oplus \mathbb{I}) \otimes x \prec x \oplus y$$

$$\Leftrightarrow \qquad (\mathbb{I} \oplus \mathbb{I}) \otimes x \prec (\mathbb{I} \oplus \mathbb{I})^{-1}]x(x \oplus y)$$

$$\Leftrightarrow \qquad \mathbb{I} \otimes x \prec (\mathbb{I} \otimes \mathbb{I})^{-1} \otimes (x \otimes Y)$$

$$\Leftrightarrow \qquad x \prec (\mathbb{I} \otimes \mathbb{I})^{-1} \otimes (x \otimes y)$$

$$\Leftrightarrow \qquad x \prec g \otimes (x \otimes y)$$

EXPLANATION

Next show: $x \prec y \Rightarrow g \otimes (x \otimes y)$

	$x \prec y$
\Leftrightarrow	$x \oplus y \prec\!\! y \oplus y$
\Leftrightarrow	$x \oplus y \prec (y \otimes \mathbb{I}) \oplus (y \otimes \mathbb{I})$
\Leftrightarrow	$x \oplus y \prec\! y \otimes (\mathbb{I} \oplus \mathbb{I})$
\Leftrightarrow	$(x \oplus y) \otimes (\mathbb{I} \oplus \mathbb{I})^{-1} \prec y \otimes (\mathbb{I} \oplus \mathbb{I}) \otimes (\mathbb{I} \otimes \mathbb{I})^{-1}$
\Leftrightarrow	$(x \oplus y) \otimes (\mathbb{I} \oplus \mathbb{I})^{-1} \prec y \otimes ((\mathbb{I} \oplus \mathbb{I}) \otimes (\mathbb{I} \otimes \mathbb{I})^{-1})$
\Leftrightarrow	$(x \oplus y) \otimes (\mathbb{I} \oplus \mathbb{I})^{-1} \prec y \otimes \mathbb{I}$
\Leftrightarrow	$(x \oplus y) \otimes (\mathbb{I} \oplus \mathbb{I})^{-1} \prec y$

EXPLANATION

MORE EXPLANATION Since we have $a \prec b \land b \prec c$. by axiom 11, this implies we have $a \prec c$. furthermore we have $a \prec b \prec c$.

□ **Problem 2** [Optimal Bounds of Intervals in the Continuum] Recall from L9 that in any totally ordered set (S, \preceq) , if $A \subseteq S$ is a subset, we say that $u_{\star} = \sup S$ is an optimal upper bound of A in S if (i) u_{\star} is an upper bound for A in (S, \preceq) and (ii) any upper bound u of A satisfies $u_{\star} \preceq u$. In L9, we saw that special subsets of S are the closed and open intervals

$$[a,b]_S := \left\{ x \in S : a \leq x \leq b \right\}$$

$$(a,b)_S := \left\{ x \in S : a \prec x \prec b \right\}.$$

- 2.1 [25 points] Prove that $\sup[111, 112]_{\mathbb{R}} = 112$.
- 2.2 [25 points] Prove that $\sup(111, 112)_{\mathbb{R}} = 112$.
- 2.1 Prove that $\sup[111, 112]_{\mathbb{R}} = 112$.

We are given, in 19 and in the beginning of this problem, that:

$$[a,b]_S := \left\{ x \in S : a \leq x \leq b \right\}.$$

Thus:

$$[112, 112]_{\mathbb{R}} := \Big\{ x \in \mathbb{R} : \ 112 \le x \le 112 \Big\}.$$

To prove that $\sup[111, 112]_{\mathbb{R}} = 112$, we will first show that 112 is an upper bound for $[111, 112]_{\mathbb{R}}$. Recall that, from L9, the definition: an upper bound for A in S is an element $u \in S$ so $\forall \alpha \in A \ \alpha \leq u$. To prove that 112 is an upper bound, it is sufficent to show that $\forall x \in \mathbb{R} \ x \leq 112$.

2.2 Prove that $\sup(111, 112)_{\mathbb{R}} = 112$.

We are given, in 19 and in the beginning of this problem, that:

$$(a,b)_S := \left\{ x \in S : a \prec x \prec b \right\}.$$

Thus:

$$(112,112)_{\mathbb{R}} := \left\{ x \in \mathbb{R} : 111 \prec x \prec 112 \right\}.$$

To prove that $\sup[111,112]_{\mathbb{R}}=112$, we will first show that 112 is an upper bound for $[111,112]_{\mathbb{R}}$. Recall that, from L9, the definition: an upper bound for A in S is an element $u \in S$ so $\forall \alpha \in A \ \alpha \leq u$. To prove that 112 is an upper bound, it is sufficent to show that $\forall x \in \mathbb{R} \ x \leq 112$.

- \square **Bonus** [X points] Despite our proofs in L6 that the set of rational numbers \mathbb{Q} is countably infinite and the set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is uncountably infinite, prove that
 - (i) between any two rational numbers there is an irrational number
 - (ii) between any two irrational numbers there is a rational number.