머신러닝 - 군집화 (Clustering)

군집화는 데이터 내의 숨어 있는 별도의 그룹을 찾아서 의미를 부여하거나 동일한 분류 값에 속하더라도 그 안에서 더 세분 화된 군집화를 추구하거나 서로 다른 분류 값의 데이터들을 더 넓은 영역으로 군집화하는 등의 면에서 분류(Classification) 와 특성이 다름

K-평균 (K-means clustering)

Clustering에서 가장 일반적으로 사용되는 알고리즘으로, 군집 중심점(centroid)라는 특정한 임의의 지점을 선택해 해당 중심에 가장 가까운 점들을 선택하는 군집화 기법

- 알고리즘이 쉽고 간결하나 거리 기반 알고리즘으로 속성의 개수가 많을 경우 군집화 정확도가 떨어지므로 PCA로 차원 감소를 적용해야할 수 있음
- 반복 횟수가 많아질 경우 수행 시간이 매우 느려지고, 몇 개의 군집점을 선택해야 하는 지에 대한 가이드가 어려움
- 평균 거리 중심으로 이동하면서 군집화를 수행하므로 개별 군집 내의 데이터가 원형으로 흩어져 있는 경우에 매우 효과적 (데이터가 타원형으로 늘어선 경우에는 군집화를 잘 수행하지 못함)
- 군집화 개수 만큼의 임의의 중심점을 잡고 -> 각 중심점에 가까운 점들을 판단하고 -> 모아진 점들의 평균으로 각 중심점을 이동 시키고 -> 앞에서 한 과정들을 반복 -> 모아진 점들의 평균이 더이상 현재의 중심점과 다르지 않을 때 군집화 종료

평균 이동 (Mean Shift)

K-평균과 유사하게 군집의 중심으로 지속적으로 움직면서 군집화를 수행하지만, 평균 이동은 중심을 데이터가 모여 있는 밀도가 가장 높은 곳으로 이동시키면서 군집화 작업을 수행

- 데이터의 분포도를 이용해 군집 중심점을 찾음, 이를 위해 확률 밀도 함수 (Probability Density Function)을 이용
 - o 가장 데이터가 모여 있어 PDF 함수가 Peak인 지점을 군집 중심점으로 선정
 - o 일반적으로 주어진 모델의 확률 밀도 함수를 찾기 위해서 KDE(Kernel Density Estimation)를 이용
- 특정 데이터를 반경 내의 데이터 분포 확률 밀도가 가장 높은 곳으로 이동하기 위해 주변 데이터와의 거리 값을 KDE 함수 값으로 입력한 뒤, 그 반환 값을 현재 위치에서 업데이트 하면서 이동하는 방식 -> 이러한 방식을 전체 데이터에 반복적으로 적용하면서 데이터의 군집 중심점을 찾아냄

- 해당 지점에서 각 신호들의 발산 세기의 합이 가장 큰 지점(Peak)을 중심점으로 취하는 방식
- KDE(Kernel Density Estimation) 커널(Kernel) 함수를 통해 어떤 변수의 확률 밀도 함수를 추정하는 대표적인 방법, 관측된 데이터 각각에 커널 함수를 적용한 값을 모두 더한 뒤 데이터 건수로 나눠 확률 밀도 함수 추정 (대표적인 커널 함수로 가우시안 분포가 사용됨)

- PDF(Probability Density Function : 확률 밀도 함수) 확률 변수의 분포를 나타내는 함수로 특정 변수가 어떤 값을 갖게 될지에 대한 확률을 알게 되므로 이를 통해 변수의 특성 (평균, 분산 등), 확률 분포 등 변수의 많은 요소를 알 수 있음 (정규분 포, 감마 분포, t-분포 등이 있음)
- 평균 이동 군집화는 대역폭(h)이 클수록 평활화된 KDE로 인해 적은 수의 군집 중심점을 가지고, 대역폭이 적을수록(뾰족한 형태의 KDE) 많은 수의 군집 중심점을 가짐
- 평균 이동 군집화는 군집의 개수를 미리 지정하지 않으며, 오직 대역폭의 크기에 따라 군집화를 수행
- 평균 이동은 데이터 세트의 형태를 특정 형태로 가정하던가, 특정 분포도 기반의 모델로 가정하지 않기 때문에 좀 더 유연한 군집화가 가능 하고 이상치의 영향력도 크지 않고, 미리 군집의 개수를 정할 필요가 없음, 하지만 알고리즘의 수행 시간이 오래 걸리고 bandwidth에 따른 군집화 영향이 매우 큼

GMM (Gaussian Mixture Model)

군집화를 적용하고자 하는 데이터가 여러 개의 가우시안 분포 (Gaussian Distribution) 를 가진 데이터 집합들이 섞여서 생성된 것이라는 가정하에 군집화를 수행하는 것

GMM은 확률 기반 군집화 이고 K-평균은 거리 기반 군집화

- 데이터가 여러 개의 가우시안 분포가 섞인 것으로 간주하고, 섞인 데이터 분포에서 이를 구성하는 여러 개의 정규 분포 곡선을 추출하고, 개별 데이터가 이 중 어떤 분포에 속하는지를 결정하는 방식 이와 같은 방식을 모수 추정이라고 함
- 모수 추정은 대표적으로 다음 2가지를 추정하는 것
 - ㅇ 개별 정규 분포의 평균과 분산
 - ㅇ 각 데이터가 어떤 정규 분포에 해당되는지의 확률
- 모수 추정을 위해 GMM은 EM(Expectation and Maximization)을 사용

DBSCAN (Density Based Spatial Clustering of Applications with Noise)

특정 공간 내의 데이터 밀도 차이를 기반으로 알고리즘화 하여 복잡한 기하학적 분포도를 가진 데이터 세트에 대해서도 군집 화를 잘 수행할 수 있음

- DBSCAN 을 구성하는 주요 파라미터
 - o 입실론 주변 영역 (epsilon) 개별 데이터를 중심으로 입실론 반경을 가지는 원형의 영역
 - 최소 데이터 개수 (min points) 개별 데이터의 입실론 주변 영역에 포함되는 타 데이터의 개수
- 데이터 포인트 정의
 - o 핵심 포인트 (Core Point) 주변 영역 내에 최소 데이터 개수 이상의 타 데이터를 가지고 있는 데이터
 - 이웃 포인트 (Neighbor Point) 주변 영역 내에 위치한 타 데이터
 - o 경계 포인트 (Border Point) 주변 영역 내에 최소 데이터 개수 이상의 이웃 포인트를 가지고 있지 않지만 핵심 포인 트를 이웃 포인트로 가지고 있는 데이터
 - o 잡음 포인트 (Noise Point) 최소 데이터 개수 이상의 이웃 포인트를 가지고 있지 않으며, 핵심 포인트도 이웃 포인트 로 가지고 있지 않는 데이터

_

군집 평가 (Cluster Evaluation)

• 실루엣 분석 (Silhouette analysis)

각 군집 간의 거리가 얼마나 효율적으로 분리돼 있는지를 나타내는 지표

- o 개별 데이터가 가지는 군집화 지표인 실루엣 계수(sillhouette coefficient) 해당 데이터가 같은 군집 내의 데이터와 얼마나 가깝게 군집화돼 있고, 다른 군집에 있는 데이터와는 얼마나 멀리 분리돼 있는지를 나타내는 지표
 - 실루엣 계수는 -1에서 1사이의 값으로, 1로 가까워질수록 근처의 군집과 멀리 떨어져 있는 것을 뜻하고, 0으로 가까울수록 근처의 군집과 가깝다는 것을 뜻함 (음수는 아예 다른 군집에 데이터 포인트가 할당됨을 말함)
- ㅇ 좋은 군집화의 기준
 - 전체 실루엣 계수의 평군 값은 1에 가까울 수록 좋음
 - 개별 군집의 평균 값의 편차가 크지 않아야 함