

Basic Course Information

Lectures Reference

Amman - Jordan

Textbook 2019

Course Objectives

- Learn how to think mathematically.
- Grasp the basic logical and reasoning mechanisms of mathematical thought.
- Acquire logic and proof as the basics for abstract thinking.
- Improve problem-solving skills.
- Grasp the basic elements of induction, recursion, combination and discrete structures.

DM is a Gateway Course

Topics in discrete mathematics will be important in many courses that you will take in the future:

- Computer Science: Computer Architecture, Data Structures, Algorithms, Programming Languages, Compilers, Computer Security, Databases, Artificial Intelligence, Networking, Graphics, Game Design, Theory of Computation,
- Mathematics: Logic, Set Theory, Probability, Number Theory, Abstract Algebra, Combinatorics, Graph Theory, Game Theory, Network Optimization, ...
- Other Disciplines: You may find concepts learned here useful in courses in philosophy, economics, linguistics, and other departments.

Course Syllabus

- The Foundations: Logic and Proofs.
- Basic Structures: Sets, Functions, Sequences, and Sums.
- Algorithms.
- Induction and Recursion.
- Graphs.
- Trees.

Chapter 1: Logic and Proofs

Amman - Jordan

- Introduction to Propositional Logic.
- Compound Propositions.
- Applications of Propositional Logic.
- Propositional Equivalences.
- Predicates and Quantifiers.
- Arguments.
- Proofs Techniques.

What is Logic?

- Logic is the discipline that deals with the methods of reasoning.
- On an elementary level, logic provides rules and techniques for determining whether a given argument is valid.
- Logical reasoning is used in mathematics to prove theorems.

Introduction to Propositional Logic (2/4)

- The basic building blocks of logic is **Proposition**
- A proposition (or statement) is a declarative sentence that is either true or false, but not both.
- The area of logic that deals with propositions is called **propositional logics**.

Examples:

Introduction to Proposition al Logic (3/4)

Propositions	Truth value
2 + 3 = 5	True
5 - 2 = 1	False
Today is Friday	False
x + 3 = 7, for $x = 4$	True
Cairo is the capital of Egypt	True

Sentences	Is a Proposition
What time is it?	Not propositions
Read this carefully.	Not propositions
x + 3 = 7	Not propositions

Introduction to Propositional Logic (4/4)

- We use letters to denote propositional variables p, q, r, s, ...
- The truth value of a proposition is true, denoted by **T**, if it is a true proposition and false, denoted by **F**, if it is a false proposition.

Compound Propositions (1/23)

Compound Proposition

• Compound Propositions are formed from existing propositions using logical operators.

Compound Propositions (2/23)

Negation

DEFINITION 1

Let p be a proposition. The *negation of* p, denoted by $\neg p$ (also denoted by \overline{p}), is the statement "It is not the case that p."

The proposition $\neg p$ is read "not p." The truth value of the negation of p, $\neg p$, is the opposite of the truth value of p.

Other notations you might see are $\sim p$, -p, p', Np, and !p.

Compound Propositions (3/23)

Example

Find the negation of the proposition

p: "Cairo is the capital of Egypt"

Example: Solution

Find the negation of the proposition

p: "Cairo is the capital of Egypt"

The negation is

 $\neg p$: "It is not the case that Cairo is the capital of Egypt"

This negation can be more simply expressed as

 $\neg p$: "Cairo is **not** the capital of Egypt"

Truth Table

• Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition

Truth Table

• Truth Table: is a table that gives the truth values of a compound statement.

The Truth Table for the Negation of a Proposition

Amman - Jordan

Negation

TABLE 1 The **Truth Table for** the Negation of a Proposition.

p	$\neg p$
Т	F
F	T

DEFINITION 2

Let p and q be propositions. The *conjunction* of p and q, denoted by $p \land q$, is the proposition "p and q." The conjunction $p \land q$ is true when both p and q are true and is false otherwise.

Example

p: Today is Friday.

q: It is raining today.

 $p \wedge q$: Today is Friday and

it is raining today.

TABLE 2 The Truth Table for
the Conjunction of Two
Propositions.

p	\boldsymbol{q}	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

DEFINITION 3

Let p and q be propositions. The *disjunction* of p and q, denoted by $p \lor q$, is the proposition "p or q." The disjunction $p \lor q$ is false when both p and q are false and is true otherwise.

Example

p: Today is Friday.

q: It is raining today.

 $p \lor q$: Today is Friday or

it is raining today.

TABLE 3 The Truth Table for the Disjunction of Two Propositions.						
$p \qquad q \qquad p \lor q$						
Т	T	T				
T	F	T				
F	T	T				

F

DEFINITION 4

Let p and q be propositions. The *exclusive* or of p and q, denoted by $p \oplus q$ (or $p \times XOR q$), is the proposition that is true when exactly one of p and q is true and is false otherwise.

Example

p: They are parents.

q: They are children.

 $p \oplus q$: They are parents or

children but not both.

TABLE 4 The Truth Table for the Exclusive Or of Two Propositions.					
$p \qquad q \qquad p \oplus q$					
Т	T	F			
T	F	T -	_		
F	T	T -	_		
F	F	F			

الوسط Compound Propositions (10/23) MIDDLE EAST UNIVERSITY

Amman - Jordan

Logical Connectives

DEFINITION 5

Let p and q be propositions. The *conditional statement* $p \to q$ is the proposition "if p, then q." The conditional statement $p \to q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \to q$, p is called the *hypothesis* (or *antecedent* or *premise*) and q is called the *conclusion* (or *consequence*).

"if p, then q"

"if p, q"

"p is sufficient for q"

"q if p"

"q when p"

"a necessary condition for p is q"

"q unless ¬p"

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.						
$p \hspace{1cm} q \hspace{1cm} p ightarrow q$						
T	T	T				
T	F	F				
F	T	Т				
F	F	Т				

"p implies q"

"p only if q"

"a sufficient condition for q is p"

"q whenever p"

"q is necessary for p"

"q follows from p"

الوسط Compound Propositions (10/23) MIDDLE EAST UNIVERSITY

Amman - Jordan

Logical Connectives

DEFINITION 5

Let p and q be propositions. The *conditional statement* $p \to q$ is the proposition "if p, then q." The conditional statement $p \to q$ is false when p is true and q is false, and true otherwise. In the conditional statement $p \to q$, p is called the hypothesis (or antecedent or premise) and q is called the *conclusion* (or *consequence*).

"if p, then q" "if p, q" "p is sufficient for q" "q if p" "q when p" "a necessary condition for p is q" "q unless $\neg p$ "

TABLE 5 The Truth Table for the Conditional Statement $p \rightarrow q$.						
$p \hspace{1cm} q \hspace{1cm} p ightarrow q$						
Т	T	T				
T	F	F				
F	T	T				
F	F	T				

"p implies q" "p only if q" "a sufficient condition for q is p" "q whenever p" "q is necessary for p" "q follows from p"

EXAMPLE 1

"If you get 100% on the final, then you will get an A."

If you manage to get a 100% on the final, then you would expect to receive an A. If you do not get 100% you may or may not receive an A depending on other factors. However, if you do get 100%, but the professor does not give you an A, you will feel cheated.

EXAMPLE 2

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

EXAMPLE 2

Let p be the statement "Maria learns discrete mathematics" and q the statement "Maria will find a good job." Express the statement $p \rightarrow q$ as a statement in English.

"If Maria learns discrete mathematics, then she will find a good job."

"Maria will find a good job when she learns discrete mathematics."

EXAMPLE 3

"If today is Friday, then 2 + 3 = 6."

EXAMPLE 3

"If today is Friday, then 2 + 3 = 6."

is true every day except Friday, even though 2 + 3 = 6 is false.

الثوسط Compound Propositions (14/23) MIDDLE EAST UNIVERSITY

Amman - Jordan

Logical Connectives

DEFINITION 6

Let p and q be propositions. The biconditional statement $p \leftrightarrow q$ is the proposition "p if and only if q." The biconditional statement $p \leftrightarrow q$ is true when p and q have the same truth values, and is false otherwise. Biconditional statements are also called *bi-implications*.

"p is necessary and sufficient for q" "if p then q, and conversely" "p iff q." "p exactly when q."

TABLE 6 The Truth Table for the Biconditional $p \leftrightarrow q$.				
p	\boldsymbol{q}	$p \leftrightarrow q$		
T	T	T		
T	F	F		
F	T	F		
F	F	T ←		

[&]quot;You can take the flight if and only if you buy a ticket."

EXAMPLE

$$(p \lor \neg q) \to (p \land q).$$

EXAMPLE

$$(p \lor \neg q) \to (p \land q).$$

TABI	TABLE 7 The Truth Table of $(p \lor \neg q) \to (p \land q)$.				
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
T	T				
Т	F				
F	T				
F	F				

EXAMPLE

$$(p \lor \neg q) \to (p \land q).$$

TABI	TABLE 7 The Truth Table of $(p \lor \neg q) \to (p \land q)$.				
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$
T	T	· F			
T	F	T			
F	T	F			
F	F	T			

EXAMPLE

$$(p \lor \neg q) \to (p \land q).$$

TABI	TABLE 7 The Truth Table of $(p \lor \neg q) \to (p \land q)$.							
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$			
T	T	F	Т					
Т	F	T	Т					
F	T	F	F					
F	F	T	Т					

EXAMPLE

$$(p \lor \neg q) \to (p \land q).$$

TAB	TABLE 7 The Truth Table of $(p \lor \neg q) \to (p \land q)$.							
p	q	$\neg q$	$p \vee \neg q$	$p \wedge q$	$(p \vee \neg q) \to (p \wedge q)$			
T	T	· F	Т	Т				
Т	F	T	T	F				
F	T	F	F	F				
F	F	T	Т	F				

EXAMPLE 1

Construct the truth table of the compound proposition $(p \lor \neg q) \to (p \land q)$.

TABLE 7 The Truth Table of
$$(p \vee \neg q) \rightarrow (p \wedge q)$$
. p q $\neg q$ $p \vee \neg q$ $p \wedge q$ $(p \vee \neg q) \rightarrow (p \wedge q)$ TTTTTTFTTFFTFFTFFTTF

Compound Propositions (17/23)

Precedence of Logical Operators

TABLE 8 Precedence of Logical Operators.					
Operator	Precedence				
Г	1				
^ V	2 3				
\rightarrow \leftrightarrow	4 5				

EXAMPLE 2

EXAMPLE 2

p	$oldsymbol{q}$	r	$\neg q$	$p \wedge \neg q$	$p \wedge \neg q \rightarrow r$

EXAMPLE 2

p	q	r	$\neg q$	$p \wedge \neg q$	$p \wedge eg q o r$
T	Т	Т			
T	T	F			
T	F	T			
T	F	F			
F	T	T			
F	T	F			
F	F	T			
F	F	F			

EXAMPLE 2

p	q	r	$\neg q$	$p \wedge \neg q$	$p \wedge eg q o r$
T	Т	Т	F		
T	T	F	F		
T	F	T	T		
T	F	F	T		
F	T	T	F		
F	T	F	F		
F	F	T	T		
F	F	F	T		

EXAMPLE 2

p	q	r	$\neg q$	$p \wedge \neg q$	$p \wedge eg q o r$
T	Т	Т	F	F	
T	T	F	F	F	
T	F	T	T	T	
T	F	F	T	T	
F	T	T	F	F	
F	T	F	F	F	
F	F	T	T	F	
F	F	F	T	F	

EXAMPLE 2

p	q	r	$\neg q$	$p \wedge \neg q$	$p \wedge eg q o r$
T	Т	Т	F	F	T
T	T	F	F	F	T
T	F	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	T
F	T	F	F	F	T
F	F	T	T	F	T
F	F	F	T	F	Т

Compound Propositions (20/23)

Logic and Bit Operations

• Computers represent information using **bits**. A bit is a symbol with two possible values, namely, 0 (zero) and 1 (one).

Truth Value	Bit
T	1
F	0

Compound Propositions (21/23)

Computer Bit Operations

• We will also use the notation OR, AND, and XOR for the operators V, Λ , and \bigoplus , as is done in various programming languages.

TABLE 9 Table for the Bit Operators <i>OR</i> , <i>AND</i> , and <i>XOR</i> .						
\boldsymbol{x}	у	$x \lor y$	$x \wedge y$	$x \oplus y$		
0	0	0	0	0		
0	1	1	0	1		
1	0	1	0	1		
1	1	1	1	0		

Faculty of Information Technology Lwsh

Discrete

Bit Strings

• Information is often represented using bit strings, which are lists of zeros and ones. When this is done, operations on the bit strings can be used to manipulate this information.

A *bit string* is a sequence of zero or more bits. The *length* of this string is the number of bits in the string.

101010011 is a bit string of length nine.

Example

• Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 1011 0110 and 11 0001 1101

01 1011 0110	
11 0001 1101	
11 1011 1111	bitwise OR
01 0001 0100	bitwise AND
10 1010 1011	bitwise XOR