

Teória obvodov 2014/2015

21. decembra 2014

Matej Marušák, xmarus06@stud.fit.vutbr.cz Fakulta Informačních Technologií Vysoké Učení Technické v Brně

Príklad 1, Varianta F

Rezistory R_{5} a R_{6} sú zapojené paralelne a teda platí vzťah:

$$R_{56} = \frac{R_5 * R_6}{R_5 + R_6}$$

Ďalej môžme nahradiť zapojenie do trojuholníka ABC zapojením do hviezdy. (Uzly A,B,C sú v prekreslenom obrázku len pre orientáciu, nakoľko sa nejedná už o uzly.)

$$R_A = \frac{R_2*R_3}{R_2 + R_3 + R_4} \ ; \ R_B = \frac{R_2*R_4}{R_2 + R_3 + R_4} \ ; \ R_C = \frac{R_3*R_4}{R_2 + R_3 + R_4}$$

Obr.2

Následne pre sériovo zapojené rezistory platia vzťahy:

$$R_{C7} = R_C + R_7$$
; $R_{B56} = R_B + R_{56}$; $R_{1A} = R_1 + R_A$

Rezistor R_{B56} a rezistor R_{C7} vieme prepísať na jeden, a to vzorcom:

$$R_{BC567} = \frac{R_{B56} * R_{C7}}{R_{B56} + R_{C7}}$$

Následne vieme spojiť rezistory R_{1A} , R_{BC567} , R_8 do jedného a to ich sčítaním. $R_{EKV}=R_{1A}+R_{BC567}+R_8$

 $\rm Obr.5$

Teraz môžme dosadiť hodnoty do všetkých vyššie napísaných vzorcov, až sa dopracujeme k $R_{EKV}.$ Pre zadanie F sú to hodnoty:

U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$	$R_7[\Omega]$	$R_8[\Omega]$	
125	510	500	550	250	300	800	330	250	

$$R_{56} = \frac{300*800}{300+800} = \frac{2400}{11} \doteq 218.181818\Omega$$

$$R_A = \frac{500 * 550}{500 + 550 + 250} = \frac{2750}{13} \doteq 211.538461\Omega$$

$$R_B = \frac{500 * 250}{500 + 550 + 250} = \frac{1250}{13} \doteq 96.153846\Omega$$

$$R_C = \frac{550 * 250}{500 + 550 + 250} = \frac{1375}{13} \doteq 105.769230\Omega$$

$$R_{C7} = \frac{1375}{13} + 330 = \frac{5665}{13} \doteq 435.769230\Omega$$

$$R_{B56} = \frac{1250}{13} + \frac{2400}{11} = \frac{44950}{143} \doteq 314.335664\Omega$$

$$R_{1A} = 510 + \frac{2750}{13} = \frac{9380}{13} \doteq 721.538461\Omega$$

$$R_{BC567} = \frac{\frac{44950}{143} * \frac{5665}{13}}{\frac{44950}{143} + \frac{5665}{13}} \doteq 182.61540\Omega$$

$$R_{EKV} = 721.538461 + 182.61540 + 250 \doteq 1154.153861\Omega$$

Následne vieme vypočítať I v obrázku Obr.
1
$$I = \frac{U}{R_{EKV}} = \frac{125}{1154.153861} = 0.108304A$$

Potom vyrátame U na prvku $U_{R_{BC567}}$

$$U_{R_{BC567}} = I * R_{BC567} = 0.108304 * 182.61540 = 19.778060V$$

$$\begin{split} &U_{R_{BC567}} \text{ je rovnako aj napätie na odpore } R_{C7}. \text{ Vyrátme si teda prúd} \\ &\text{pretekajúci touto súčiastkou. } I_{R_{C7}} = \frac{U_{R_{BC567}}}{R_{C7}} = \frac{19.778060}{435.769230} = \textbf{0.045387A}. \end{split}$$

A platí
$$I_C 7 = I_C = I_7$$
.

Následne dorátame U_7 . $U_7 = R_7 * I_7 = 330 * 0.045387 = \mathbf{14.97771V}$

Príklad 2, Varianta B

Vytvoríme náhradné zapojenie: Pričom platí vzťah:

Obr.7

$$I_{R_3} = \frac{U_i}{R_i + R_3}$$

 $I_{R_3} = \frac{U_i}{R_i + R_3} \label{eq:IR3}$ Vytvoríme si náhradné zapojenie a skratujeme zdroj.

Obvod prekreslíme, aby sme ho vedeli vypočítať.

Upravíme trojuholník na hviezdu (rovnako ako v príklade 1.)

Obr.10

$$R_A = \frac{R_1 * R_4}{R_1 + R_4 + R_6} \; ; \; R_C = \frac{R_1 * R_6}{R_1 + R_4 + R_6} \; ; \; R_D = \frac{R_4 * R_6}{R_1 + R_4 + R_6}$$

Následne vieme urobiť sériovú kombináciu rezistorov R_C a R_2 a rovnako aj pre rezistory R_D a R_5 .

$$R_{C2} = R_C + R_2 \; ; \; R_{D5} = R_D + R_5$$

Následne môžme spojiť rezistory R_C2 a R_D5 do jedného a to vzorcom: $R_{CD25}=\frac{R_{C2}*R_{D5}}{R_{C2}+R_{D5}}$

$$R_{CD25} = \frac{R_{C2} * R_{D5}}{R_{C2} + R_{D5}}$$

Pre dokončenie už len sčítame hodnoty rezistorov R_A a $R_{CD25}.$

$$R_i = R_{ACD25} = R_A + R_{CD25}$$

Dosadíme do vyššie napísaných vzorcov hodnoty pre zadanie B.

U[V]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$			
100	310	610	220	570	200	170			
	$R_A = \frac{1178}{7}\Omega$ 1054Ω								
	$R_C = \frac{1054}{21}\Omega$ $R_D = \frac{646}{7}\Omega$								
			•						
	$R_{C2} = \frac{13864}{21}\Omega$								
	$R_{D5} = \frac{2046}{7}\Omega$								
	$R_{CD25} = 202.592198\Omega$								
	$\mathbf{R_{i}}$	$=\mathbf{R_{ACI}}$	$_{ m D25}=37$	70.87791	${f 12}\Omega$				

Teraz potrebujeme vypočítať U_i . Vytvoríme si nasledujúce zapojenie a stanovíme si pomocné prúdy I_X a I_Y .

Podľa druhého Kirchhoffoveho zákona zostavíme 3 rovnice o 3och neznámych.

$$R_1*I_X + U_i + R_5*I_Y + R_6*(I_X + I_Y) - U = 0$$

$$R_1*I_X + U_i - R_2*I_Y = 0$$

$$R_4*I_X - U_i - R_5*I_Y = 0$$

Dosadením hodnôt a upravením rovníc získavame:

$$480*I_X + U_i + 370*I_Y = 100 \\ 310*I_X + U_i - 610*I_Y = 0 \\ 570*I_X - U_i - 200*I_Y = 0$$

Na výpočet využijeme Cramerovo pravidlo.

$$\mathbf{U_i} = \frac{\begin{vmatrix} 480 & 100 & 370 \\ 310 & 0 & -610 \\ 570 & 0 & -200 \end{vmatrix}}{\begin{vmatrix} 480 & 1 & 370 \\ 310 & 1 & -610 \\ 570 & -1 & -200 \end{vmatrix}} = \frac{285700}{10001} \doteq \mathbf{28.567143}V$$

Následne už len dosadíme do pôvodneho vzorca a dopočítame U_{R_3} a $I_{R_3}.$

$$\begin{split} \mathbf{I_{R_3}} &= \frac{\frac{285700}{10001}}{370.877912 + 220} = 0.048347A \\ \mathbf{U_{R_3}} &= 0.048347 * 220 = 10.636328V \end{split}$$

Príklad 3, Varianta A

Obr.12

Prvý Kirchhoffov zákon Älgebraický súčet prúdov v uzle je rovný nule". Na základe tohto zostavíme pre každý uzol rovnicu s výnimkou jedného, ktorý je uzemnený.

$$\begin{split} \mathbf{A} : I_{R_1} - I_{R_2} - I_{R_3} - I &= 0 \\ \mathbf{B} : I_{R_3} - I_{R_5} + I_{R_6} + I &= 0 \\ \mathbf{C} : I_{R_5} - I_{R_6} + I_{R_4} &= 0 \end{split}$$

Zadané hodnoty pre skupinu A:

	$U_1[V]$	$U_2[V]$	I[A]	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$R_4[\Omega]$	$R_5[\Omega]$	$R_6[\Omega]$
ĺ	120	90	0.7	530	490	650	390	320	120

Vytvoríme si náhradné zapojenia a pomocou druhého Kirchhoffovho zákona napíšeme rovnice:

$$I_{R_1} = \frac{U_1 - U_A}{R_1} = \frac{120 - U_A}{530} \qquad I_{R_4} = \frac{-U_C}{R_4} = \frac{-U_C}{390}$$

$$I_{R_2} = \frac{U_A}{R_2} = \frac{U_A}{490} \qquad I_{R_5} = \frac{U_B - U_C}{R_5} = \frac{U_B - U_C}{320}$$

$$I_{R_3} = \frac{U_A - U_B}{R_3} = \frac{U_A - U_B}{650} \qquad I_{R_6} = \frac{U_C - U_B + U_2}{R_6} = \frac{U_C - U_B + 90}{120}$$

Dosadením a upravovaním rovníc postupne získavame:

$$\frac{120-U_A}{530} - \frac{U_A}{490} - \frac{U_A-U_B}{650} - 0.7 = 0$$

$$\frac{U_A-U_B}{650} + 0.7 - \frac{U_B-U_C}{320} + \frac{U_C-U_B+90}{120} = 0$$

$$\frac{U_B - U_C}{320} - \frac{U_C - U_B + 90}{120} + \frac{-U_C}{390} = 0$$

$$\begin{split} U_A &= 0.281457 U_B - 86.6408 \\ \frac{0.281457 U_B - 86.6408 - U_B}{650} + 0.7 - \frac{U_B - U_C}{320} + \frac{U_C - U_B + 90}{120} = 0 \\ U_B &= 0.912013 U_C + 104.802 \\ \frac{0.912013 U_C + 104.802 - U_C}{320} - \frac{U_C - (0.912013 U_C + 104.802) + 90}{120} + \frac{-U_C}{390} = 0 \\ \mathbf{U_C} &= \mathbf{126.2085V} \\ \mathbf{U_B} &= \mathbf{219.9057V} \end{split}$$

Vypočítame I_{R_5} .

$$I_{R_5} = \frac{219.9057 - 126.2085}{320} = \mathbf{0.2928A}$$

 $U_{\mathbf{A}} = -24.7467V$

A následne U_{R_5} .

$$U_{R_5} = 320 * 0.2928A = \mathbf{93.6972V}$$

Príklad 4, Varianta F

Prerobíme rezistor R_3 a kondenzátor C_2 na impedanciu $Z_3=C_2+R_3$. Ďalej len pre jednoduchosť nahradíme cievku L_2 impedanciu Z_2 . Následne vytvoríme impedanciu $Z_1=R_2+C_1$.

Teraz můžme nahradiť paralelne zapojené impedancie Z_1 a Z_2 a Z_4 impednaciou Z podľa vzorca:

$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$$

Obr.14

Teraz už možme vytvoriť Z_{EKV} a to vzorcom:

$$Z_{EKV} = Z + R_1 + j * \omega * L_1$$

Teraz možme vypočítať I. $I=\frac{u}{Z_{EKV}}$ Zopakujeme podobný postup ako v príklade 1. Vypočítame $U_Z=U_{Z_1}=U_{Z_2}=U_{Z_3}=U_{L_2}=I*Z$

95

Nakoniec už len dorátame $\varphi_{L_2} = \arctan \frac{Im}{Re}$

Dosadíme do vyššie napísaných vzorcov hodnoty pre zadanie F:

75	165	150	380	430	320	310	235
			$\omega = 2$	$*\pi*f=1$	$90\pi rad/s$		
	Z_3	$=-\frac{1}{190}$	$\frac{j}{0*\pi*0.0}$	$\frac{1}{000235} + 38$	80 = (380 -	- 7.1290 <i>j</i>)	Ω
		Z	$Z_2 = j * \pi$	*0.32 = 1	91.0088333	Ω	
	Z_1	= 150 -	$-\frac{1}{190*\pi}$	<i>j</i> ·* 0.00031	=(150-5)	.404243j)	Ω
	Z =			1			_ =
	2			$+\frac{1}{191.008}$ $5422 + 44.6$		$\frac{1}{(0-7.1290)}$	\overline{j}
	Z_{EKV}	= 83.875		4.662846j + 5422 + 301.		-	0.43 =
	Zo za	dania u	=U*sin	$n(2*\pi*f$	*t) = 75 *	$sin(\frac{\pi}{2}) =$	75V
	$I = \frac{1}{2}$	48.87542	$\frac{75}{22 + 301.}$	${330966j} =$	(0.122206	- 0.14796	3j)A
	$\mathbf{U_{L_2}} =$	16.	.858528 -	17963j) * (8 - 6.952391 <i>j</i>	i = 18.235	8V	6j) =
		$\varphi_{\mathbf{L_2}}$:	= arctan	$\frac{-6.952391}{16.858528}$	= -0.391	1rad	

Príklad 5, Varianta B

 $\mathrm{Obr.}15$

Platia axiómy:

$$Z_C = -\frac{j}{160 * \pi * C}$$

$$Z_L = j * 160 * \pi * C$$

Pre každú smyčku zostavíme rovnicu:

$$\begin{split} &U_1 - \frac{j}{160 * \pi * C_2} * (I_A - I_C) + (I_A - I_B) * (R_2 - \frac{j}{160 * \pi * C_1}) + R_1 * I_A = 0 \\ &(I_B - I_A) * (R_2 - \frac{j}{160 * \pi * C_1}) + (j * \pi * 160 * L_2) * (I_B - I_C) + (j * \pi * 160 * L_1) * I_B = 0 \\ &- U_2 + (j * 160 * \pi * L_2) * (I_C - I_B) + (I_C - I_A) * (-\frac{j}{160 * \pi * C_2}) + R_3 * I_C = 0 \end{split}$$

Dosadíme hodnoty pre zadanie B:

$U_1[V]$	$U_2[V]$	$R_1[\Omega]$	$R_2[\Omega]$	$R_3[\Omega]$	$L_1[mH]$	$L_2[mH]$	$C_1[\mu F]$	$C_2[\mu F]$	$\int [Hz]$	
25	40	115	150	130	100	85	220	95	80	ı
$-25 - \frac{1}{1}$	$\frac{j}{60*\pi*0}$	0.000095	$*(I_A - I_A)$	$I_C) + (I_A)$ $115 * I_A$	$\begin{aligned} &A - I_B = 0 \end{aligned} $	$150 - {160} *$	$\frac{j}{\pi * 0.000}$	$\frac{1}{22}$) +		
$(I_B - I_A) * (150 - \frac{j}{160 * \pi * 0.00022}) + (j * \pi * 160 * 0.085) * (I_B - I_C) + (j * \pi * 160 * 0.1) * I_B = 0$										

$$-40 + (j*160*\pi*0.085)*(I_C - I_B) + (I_C - I_A)*(-\frac{j}{160*\pi*0.000095}) + 130*I_C = 0$$

A upravíme rovnice:

$$(265 - 29.984432j) * I_A + (-150 + 9.042899j) * I_B + 20.941532j * I_Z = 25$$

$$(-150 + 9.042894j) * I_A + (150 + 83.948248j) * I_B + (-42.725660j) * I_C = 0$$

$$(20.941439j) * I_A + (-42.725660j) * I_B + (130 + 21.784220j) * I_C = 40$$

Napíšeme determinant menovateľa pre výpočet Cramerovym pravidlom.

$$\begin{vmatrix} 265 - 29.984432j & -150 + 9.042899j & 20.941532j \\ -150 + 9.042894j & 150 + 83.948248j & -42.725660j \\ 20.941439j & -42.725660j & 130 + 21.784220j \\ & = 2415733.1801 + 3090649.6063j \end{vmatrix}$$

A následne napíšeme detrminanty pre I_A, I_B, I_C .

$$D_{I_A} = \begin{vmatrix} 25 & -150 + 9.042899j & 20.941532j \\ 0 & 150 + 83.948248j & -42.725660j \\ 40 & -42.725660j & 130 + 21.784220j \\ & = 573192.8057 + 485227.9532j \end{vmatrix}$$

$$D_{I_B} = \begin{vmatrix} 265 - 29.984432j & 25 & 20.941532j \\ -150 + 9.042894j & 0 & -42.725660j \\ 20.941439j & 40 & 130 + 21.784220j \\ = 558462.4011 + 379544.7763j \end{vmatrix}$$

$$D_{I_C} = \begin{vmatrix} 265 - 29.984432j & -150 + 9.042899j & 25\\ -150 + 9.042894j & 150 + 83.948248j & 0\\ 20.941439j & -42.725660j & 40\\ = 847565.2718 + 900150.9828j \end{vmatrix}$$

Podielom vyrátame I_A , I_B a I_C .

$$\begin{split} I_A &= 0.187443 - 0.038949jA \\ I_B &= 0.163904 - 0.052582jA \\ I_C &= 0.313854 - 0.028919jA \end{split}$$

Následne dopočítame i_{C_1} .

$$i_{C_1} = I_A - I_B = (0.187443 - 0.038949j) - (0.163904 - 0.052582j)$$

= $0.0235 + 0.0136jA$.

Teraz už môžme dopočítať U_{C_1} .

$$U_{C_1} = i_{C_1} * -\frac{j}{160 * \pi * 0.00022} = 0.1233 - 0.2129jV$$

Vypočítame $|U_{C_1}|$.

$$|\mathbf{U_{C_1}}| = \mathbf{0.2460V}.$$
 $\varphi_{\mathbf{C_1}} = \arctan \frac{-0.2129}{0.1233} = -\mathbf{1.0459rad}$

Príklad 6, Varianta A

Obr.16

Platí druhý Kirchhoffov zákon a teda aj vzťah:

$$U = U_R + U_L$$

Využítím Ohmovho zákona upravíme rovnicu na tvar:

$$U = R * I + L * I_L'$$

Rovnako platí aj vzťah:

$$I = I_L = I_R$$

Zadané hodnoty pre skupinu A:

	U[V]	L[H]	$R[\Omega]$	$i_L(0)[A]$
ĺ	20	40	10	9

Dosadením hodnôt a upravením získavame rovnicu v tvare:

$$4I_{r}' + I_{T} = 2$$

Dosadením nodnot a upravením zastvením $4I'_L+I_L=2$ Zostrojíme charakteristickú rovnicu a vyjadríme z nej: $4\lambda+1=0 \quad \lambda=-\frac{1}{4}$

$$4\lambda + 1 = 0 \quad \lambda = -\frac{1}{4}$$

Napíšeme očakávnaný tvar riešenia a dosadíme λ :

$$i_L(t) = C(t) * e^{\lambda t}$$

$$i_L(t) = C(t) * e^{-\frac{1}{4}t}$$

Zderivujeme a dosadíme do zadania:

$$i'L = C'(t) * e^{-\frac{1}{4}t} + C(t) * e^{\frac{1}{4}t} * -\frac{1}{4}$$
$$4 * C'(t) * e^{-\frac{1}{4}t} - C(t) * e^{\frac{1}{4}t} + C(t) * e^{-\frac{1}{4}t} = 2$$
$$C'(t) = \frac{1}{2} * e^{\frac{1}{4}t}$$

Zintegrujeme a dosadíme do očakávaného riešenia:

$$C(t) + k_1 = \frac{1}{2} * e^{\frac{1}{4}t} * 4 + k_2$$

$$i_L(t) = (2 * e^{\frac{1}{4}t} + k) * e^{-\frac{1}{4}t}$$

Roznásobením a upravením získame obecné riešenie:

$$i_L = 2 + k * e^{-\frac{1}{4}t}$$

Dosadením počiatočnej podmienky dostaneme:

$$k = 7$$

Dosadením získavame hľadané analytické riešenie: $i_L(t) = 7*e^{-\frac{1}{4}t} + 2$

$$\mathbf{i_L(t)} = \mathbf{7} * \mathbf{e^{-\frac{1}{4}t}} + 2$$

Následne vykonáme skúšku riešenia:

Zderivujeme analytické riešenie a dosadíme do zadania:

$$i'_L(t)=7*e^{-\frac{1}{4}t}*-\frac{1}{4}$$

$$4*(7*e^{-\frac{1}{4}t}*-\frac{1}{4})+7*e^{-\frac{1}{4}t}+2=2$$
 Po upravení rovnice získame rovnicu:
$$\mathbf{0}=\mathbf{0}$$

$$0 = 0$$

A teda sme potvrdili že sme správne vypočítali príklad.

Súhrn výsledkov

Príklad č.	Varianta zadania	Výsledok	
1	F	$U_{R_7} = 14.9777 V$	$I_{R_7} = 0.0454$ A
2	В	$U_{R_3} = 10.6363 \text{V}$	$I_{R_3} = 0.0483$ A
3	A	$U_{R_5} = 93.6972 \text{V}$	$I_{R_5} = 0.2928$ A
4	F	$ U_{C_1} = 18.2358V$	$\varphi_{C_1} = -0.3911 rad$
5	В	$ U_{C_1} = 0.2460 \text{V}$	$\varphi_{C_1} = -1.0458rad$
6	A	$I_L(t) = 7 * e^{-\frac{1}{4}t} + 2$	