Department of Mathematics II Semester 2015-2016

Graph Theory MAL 656/ MAL 468/ MTL 768

Major Examination

	Major Examination Time: 8 A.M 10 A	M	
	Date: 7. 6.2016 Weightage: 40%+5% bonus Time: 8 A.M 10 A	ove that	
	Date: 7. 6.2016 Weightage: 40%+ 5% bolius Time: 5 Let G be a graph of order at least 2. If G has exactly two non-cut vertices, then pro-	[4]	
Q1.	G is the path on n vertices. Prove that $\gamma(G) \leq \Delta(G)$.		
	G is the path on n vertices. Let G be a connected graph with a cut vertex, say v. Prove that $\chi(G) \leq \Delta(G)$.	[3]	
92.	92. Let G be a commerce garage		
93.	Let N=(V,A.c,s,t) be a network and let f be a maximum flow in N. Construct a minimum co	ut in in. [5]	
Q4.	Justify your answer A Let G be a bipartite graph with bipartition (X,Y) with $ X \ge 2$ and $ Y \ge 2$. Prove that the following	owing [6]	
	statements are equivalent.		
	(a) Each edge of G is contained in a perfect matching of G.		
	 (a) Each edge of Section (a) X = Y and S < N(S) for every proper non-empty subset S of X. (c) G-{x,y} has a perfect matching for every x ∈ X and every y ∈ Y. 		
	(c) G-{x,y} has a perfect matching for every x e x and every y		
9 5.	Let G be a connected graph such that x and y be the only vertices of G of odd deg Prove that there is an Euler trail from x to y (an open x-y walk that contains each exactly once).	gree. n edge [2]	
-Q6. Q9.	Let G be a non-bipartite graph and v be a vertex of G such that every odd cycle contains the vertex v. What is the chromatic number of G? Justify your answer. Let G be a graph with n vertices, m edges and has chromatic number k. Prove the ≤2m.	[2]	
Q8.	Let $N=(V,A.c,s,t)$ be a network and let f be a maximum flow in N. Prove that the		
	value of $f(P, \overline{P}) - f(\overline{P}, P)$, (P, \overline{P}) is an s-t cut of G .	[4]	
Q9.	The Cartesian product $G_1 \times G_2$ of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the $G = (V, E)$, where $V = V_1 \times V_2$ and $E = \{(a,b)(c,d) \text{ either a=c and bd } \in E_2 \text{ or ac } \in E \}$. Prove that the Cartesian product of two Hamiltonian Graphs G_1 and G_2 is Hamiltonian Graphs G_2 is Hamiltonian Graphs G_1 and G_2 is Hamiltonian Graphs G_1 and G_2 is Hamiltonian Graphs G_2 is Hamiltonian Graphs G_1 and G_2 is Hamiltonian Graphs G_1 and G_2 is Hamiltonian Graphs G_2 is Hamiltonian Graphs G_1 and G_2 is Hamiltonian Graphs G_2 is Hamiltonian G_2 is G_2 is G_2 and G_3 is G_2 and G_3 is G_3 and G_4 is G_4 and G_4 is G_4 and G_4 and G_4 is G_4 and G_4 and G_4 is G_4 and $G_$	and b=d	
9/6.	Let u and v be two non-adjacent vertices of a connected graph G. A subset S of of G is called a u-v separator if u and v lies in different components of G-S. S is minimal u-v separator if S is a u-v separator but no proper subset of S is a u-v separator for adjacent vertices u and v induces a complete sub graph. Prove that G must be	s called a separator.	

Bonus Section

Prove that if $o(G-S) \le |S|$ for every proper subset S of V(G), where o(G-S) is the number Q11. of odd components of G, then G has a perfect matching. [5]

The End

[6]