Review	
S={0,1,2,,N}	
Dest the we introduced two o	groups on the set of intgers
	-71 at
ZN	Zx
Ideality: O	L
Operation: +	*
order: N	$\phi(N)$
elements: (0, 1,, N).	nuclible clements of (e, N) = 1
2) It's important to note that groups are arting on many of	even though these the same elements
they are not related to each	other on a group love.
I.E. 72x / 72N	
	1. Finish goding 2. Mak pyll 3. Finish Mades 4. Vilos

Thm. Let N= This per where spit are distinct primes Honeverk!

and ei 21. Then $\phi(N) = Ti \cdot p_i^{e_{i-1}}(p_{i-1})$

$$\Phi(P^{2}) = |\{|P_{1}, P_{2}, ..., (P-1)P\}^{c}| = P^{2} - \Phi(P-1) = P^{2} + P^$$

Last time wo stated the following Than - This allows us to complet the order of In with
the multiplicative operation

T

Here is a rewording of the previous conflories.

The Note and a $\in \{1, ..., p-1\}$ then $q^{p-1} = 1 \mod p$.

[2) If N is prime and a $\in \{1, ..., p-1\}$ then $q^{p-1} = 1 \mod p$.

Note If Tp, were pis prine, then 172p = p-2.

(3) Fix N>1. If $(e, \phi(N))=1$ then for is a permutation θ . If $d = [e' mod \phi(N)]$ then for is the invex of for θ .

. Whe world like to understand the group Structure of 74n

and The. To do fus we need to introduce the CRT.

· Let's define the crossprednet of groups and review isomerphisms

Def. Let (G,*), (H, 0) be groups. A function

f: G -> H is an isomorphic if

(1) f it a biguetien (injustion)

 $\bigcirc f(g_1 \times g_2) = f(g_1) \circ f(g_2)$

The graps are

if they pre is a norphic

If we preve sundhing

about the other.

Cross product of Gitt. Gxtl is 9 groups where

(g,n)
$$\bar{o}(g',h') = (g*g',hoh')$$

Thm. Chinese Remainder Thm.

$$Z_N \simeq Z_p \times Z_q$$
 and $Z_v^* \simeq Z_p^* \times Z_q^*$ by the factor of N.

The modular group is is onerprice to the cross product of the modular sloups dutinied by the factors of No.

Continued

Note.

$$71_{N}^{*}$$
 need not be cyclic $-72_{0}^{*} = 71_{2}^{*} \times 72_{3}^{*}$
 71_{N} is always cyclic

 $71_{N}^{*} \simeq Cq(N)$ if $71_{N}^{*} \simeq 6qNic$

Let f map x & {0,..., N-1} to (xp, xa) with Sward pirt. xp = {0, ..., p1} and va = {0, ..., 9-1} ... Defined by Externely useful for fix) = (|xmdp], [xmdq])

Then f is an isomorphic from 72n to 72p ×72g from Zi to Zp x Zq.

Nota.

- 1) Zn is not necessarily cyclic: Z8 ~ Z2 * Z2.
- 2) It is known when 72 is could not newed (yet.)
- 3) In is always a cyclic group. Generator g are of the following from (g,n)=1.1 is
- (4) 7p is cource if p is prime.

Proof.

If X & 7/2 then X > (xmwp,xmog).

 $f(x) = (x_p, x_q).$

(1) f 75 1-1.

$$f(x) = f(x') \rightarrow \frac{g}{X = x mod p} = \frac{g}{X = x mod p}$$

$$X' = X m d P$$
 $X' = X m d$

$$X - x' = 0 \text{ mode} \quad | X - x' = 0 \text{ mode}$$

X-x' are divisible to pin X-X' is divisible by pg

but gid (Pin)=1 X-x'= 0mWN

X = x' ~ 00 N $\Rightarrow \qquad x = x' \in \mathbb{Z}_N$

Since fis an injustion and each claud negro
horizonly, this implies
$$\forall (x_{R}, x_{1}) \in \mathcal{I}_{P} \times \mathcal{I}_{1}$$
, $\exists g \in \mathcal{I}_{N}$
5. t.

(3)
$$f(a+b) = f(a_{1}a_{1}a_{2}) + f(b_{1}a_{2}b_{2})$$

$$= ([a+b mod r], [a+b mod a])$$

$$= ([a mod r], [a mod a]) + ([b mod p], [b mod q])$$

$$= f(a) + f(b)$$

 Z_{N}^{*} $X \in Z_{N}^{*}$ the $(x_{p_{1}} \times x_{1}) \in Z_{V}^{*} \times Z_{q}^{*}$. S_{nppose} n.t. $X_{p} \notin Z_{p}^{*}$ then $g \in J \left(\left[x_{mod} e_{7}, p \right] \neq 1 \right)$.

Then $(x_{1}p) \neq 1 = J \left(x_{1}N \right) \neq 1$. $(x_{1}p) \neq 1 = J \left(x_{2}N \right) \neq 1$. $(x_{1}p) \neq 1 = J \left(x_{2}N \right) \neq 1$.

fen) + f(b) = (and P], [and q]) + (sound p], [bmdq])
= ([andp]+[bred p]), [[dend4] + [bmdq])
= ([andp+brdp], [a+bmdq])

[[andp]+(bnode]]= [a+bnode]

[a'+b']

4:mp+r'

b=m'p+r'

[(a-op)] + (bmJp)] = [a+bmJp] [ayop + byop] = [a+byop] = [ayop + byop] Lits use the CRT, to simplify elements

Exemple . Let's counte 114 mod 15 Wrong 11 & Zis

75 73

114 = (imod5, 2mod3) = (imod5, 24mod3) = (imod5, 1mod3)

*Homographia

f(11-11-11-11) = f(11)f(11)f(11)f(11)

(orrespeding representation medulo pig.

$$X \in \mathbb{Z}_{N}^{*} \longrightarrow (X \operatorname{mod}_{p}, X \operatorname{mod}_{q}) \in \mathbb{Z}_{p}^{*}, \mathbb{Z}_{q}^{*}$$

2. We can go in the reverse direction if we know the factorization of N.

(1) Any climent (xp, xa) & Tp x 29 can be rowetten as

$$(x_{\rho_1}x_{\eta}) = \chi_{\rho}(1,0) + \chi_{\eta}(0,1)$$

(2) If we find $1p_11q \in \{0,...,N-1\}$ s.t. $1p \rightarrow (1,0)$ and $1q \mapsto (0,1)$ then

$$(x_{p_1}x_{q_1}) = x_{p_1}(1,0) + x_{q_1}(0,1) \longrightarrow [x_{p_1}1_{p_1} + x_{q_1}1_{q_1} - 1]$$

Since pig ate distinct primes.

3) Clan Ip = [YagmadN] and Iq = [XapmadN]; f

X(1)+Y(1)=1. (Cxists and is true sine pea on prines)

\$\left[\text{Eqm.dN]m.dp}] = \left[\text{Yqm.dp}] = \left[(1-\text{Xp})m.dp}] = 1

$$\left[\left(Y_{q} \mod N\right) \mod p\right] = \left[\left(I - x_{p}\right) \mod p\right] = 1 \mod p$$

$$1p = \left[Y_{q \, mcd} N\right] \longrightarrow (10)$$

by Simmitry

$$1q = \{x_{pn-J}N\} \longrightarrow (0.1)$$

Summy
$$(x_0, x_0)$$
 \longrightarrow x_0

(Compile $X, Y \to X_0 + Y_0 = 1$ (By Endian elgerthin)

(2) Set $1_0 = [Y_0 \mod N]$ and $1_0 = [X_0 \mod N]$ Use calculation

(3) Compile $x = [X_0 1_0 + X_0 1_0] \mod N$

(2) Compile $x = [X_0 1_0 + X_0 1_0] \mod N$

(3) Compile $x = [X_0 1_0 + X_0 1_0] \mod N$

(4) $X_0 = [X_0 1_0 + X_0 1_0] \mod N$

(5) $X_0 = [X_0 1_0 + X_0 1_0] \mod N$

(6) Extends

(7) Use calculation

(8) Extends

(9) Extends

(9) Extends

(1) Section

(1) Sec

$$X:5+ Y_7 = 1$$
 $X=3, Y=-2$
 $[Y_{modN}] = -Y_1 + 3.5 = 0.035 = 0.0035$
 $1q = 15$

Compute 18 25 may 35.