

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience. The office of the state of the

TABLE OF CONTENTS

		Page
IIIA1 9	Fate and Behaviour in the Environment of the Plant Protection Production	, ct 5
	Intended application pattern Rate of degradation in soil	\$ 5
IIIA1 9.1	Rate of degradation in soil	ž 5
IIIA1 9.1.1	Aerobic degradation of the preparation in soil Anaerobic degradation of the preparation in soil Field studies	_@ ⁷ 6
IIIA1 9.1.2	Aerobic degradation of the preparation in soil Anaerobic degradation of the preparation in soil	8
IIIA1 9.2	Field studies Soil dissipation testing on a range of representative soils &	8
IIIA1 9.2.1	Soil dissipation testing on a range of representative soils Soil residue testing	8
IIIA1 9.2.2	Soil residue testing	9
IIIA1 9.2.3	Soil accumulation testing	9
IIIA1 9.2.4	Soil dissipation testing on a range of representative soils Soil residue testing Aquatic (sediment) field dissipation	9
IIIA1 9.2.5	Field studies Soil dissipation testing on a range of representative soils Soil residue testing Aquatic (sediment) field dissipation Forestry field dissipation Mobility of the plant protection product in soil Column leaching Lesimeter studies	9
IIIA1 9.3	Mobility of the plant protection regular in soil	9
IIIA1 9.3.1	Column leaching	10
IIIA1 9.3.2	Lysimeter studies 25 2 2 2	10
IIIA1 9.3.3	Field deaching studies	10
IIIA1 9.3.4	Volatility - laboratory studies	10
IIIA1 9.3.5	Column leaching Lysimeter studies Field teaching studies Volatility - laboratory studies Volatility - field studies Predicted environmental concentrations in soil, active substance	10
IIIA1 9.4	Predicted environmental concentrations in soil, active substance	10
	PECsoff modeling approach &	10
	PECoil for BYL 02960 P	10
IIIA1 9.4.	PEC _{soft} modeling approach PEC _{soft} modeling approach Initial PECs value	12
IIIA1 9.4.2	Short-term PECs values - 240 ours, 2 and 4 days after last application	13
IIIA 9.4.3	Long-term PECs values -5, 28, 50 and 100 days after last application	13
IIIA1 9.5	Predicted avirgamental concentrations in soil, for rel. metabolites	13
IIIA1 9.5,4	Initial PECs value	13
IIIA1 9.5.2	Short-term PECs values - 24hours, 2 and 4 days after last application	13
IIIA4/9.5.3	Long-term PECs values - 7, 28, 50 and 100 days after last application	14
IIIA1 94	Predicted environmental concentrations in ground water (PECgw)	14
Ű	PECgw modelling approach	14
IIIA1 9.6.1	Active substance PECgw value	15

	PEC _{gw} for BYI 02960	15
IIIA1 9.6.2	Relevant metabolites, degradation and reaction products PECgw values	31
	PEC _{gw} for BYI 02960 metabolites	[*] 31
IIIA1 9.6.3	Additional field testing	38
IIIA1 9.6.4	Information on impact on water treatment procedure	[*] 38
IIIA1 9.7	Predicted environmental concentrations in surface water (PECsw)	40
	Summary of fate and behaviour of BYI 02960 in water PECsw modelling approach	40
	PECsw modelling approach	4
	PECsw modeling approach PECsw for BYI 02960 Initial PECsw value for static water bodies	Ž 42
IIIA1 9.7.1		48
IIIA1 9.7.2	Initial PECsw value for slow moving water bodies	48
IIIA1 9.7.3	Short-term PECsw values for static water bodies	48
IIIA1 9.7.4	Short-term PECsw values for static water bodies Short-term PECsw values for stow proving water bodies Long-term PECsw values for static water bodies	48
IIIA1 9.7.5	Long-term PECsw values for static water bodies	48
IIIA1 9.7.6	Long-term De Csix values for say moving rater hodies	49
IIIA1 9.8	PECsw for relevant metabolites	49
	PECsw for relevant metabolites PECsw for BXI 02960 metabolites Initial PECsw value for static water bodies	49
IIIA1 9.8.1	Initial PECsw value for static water bodies	50
IIIA1 9.8.2	Initial PECsy value for stow moving water bodies	50
IIIA1 9.8.3	Short term PECov values for static water bodies	50
IIIA1 9. §.4	Short-term PECsw values for slow moying water bodies	50
IIIA1 % .8.5	Longsterm DECsw values for static water Godies	50
IIIA1 9.8.6	Long-term PECsw values for slow moving water bodies	50
IIIA1 9.8.7	Additional field studies Fate and Dehaviour in air Spray dropler size spectrum - laboratory studies Drift - field evaluation Other/special studies - laboratory studies	50
IIIA1 9.9	Fate and Dehaviour in air 5	51
IIIA1 9.97	Spray droplet size pectrum - laboratory studies	51
IIIA1 9.9.2	Drift - field evaluation	51
IIIAI 9.10	Other/special studies O	51
IIIA1 9.10.1	Other special studies - laboratory studies	51
IIIA1 9.102	Other/special/studies - field studies	51
	Other/special studies - laboratory studies Other/special studies - field studies	

IIIA19 Fate and Behaviour in the Environment of the Plant Protection Product

In this chapter, estimates of Predicted Environmental Concentrations (PECs) of the insecticide BYI 02960 (Flupyradifurone) and the major metabolites are given. All relevant data concerning the behaviour of the active ingredient in the environment have been summarized in Section 5, Point 7 of the respective Annex IIA dossier. The data are summarized also briefly for the various compartments of the environment in this document.

The PECs were determined for representative uses of the formulation on hops and lettuce in the EX

The formulants of a preparation would not be expected to influence the environmental behaviour of an active substance (except in special formulation types such as slow release formulations). The effects of the formulants are limited to short term processes such as the formation of stable spray dispersions, sprayability and permeation into target organisms while the impact on long-term processes such as degradation and distribution is negligible. As this formulation is not a slow release formulation the results of environmental fate studies performed with the active substance are thus valid also for the formulation.

Authors of study reports sometimes used different names or short codes for the active ingredient and its transformation products. In this summary, a single names are aways used for the active substance BYI 02960 and its metabolites and degradates DIA, 6-CNA, BYI 02960 succinamide and BYI 02960 azabicyclosuccinamide.

The chemical structures of the metabolites and report names are given in the List of Metabolites which is an attachment to Document N. A list containing the metabolites identified in environmental matrices only and addressed in exposure assessments is included at the end of this document.

Intended application pattern

The formulation is intended for use as an insecticide for hop and lettuce. The intended representative uses pattern for this formulation are summarised as follows:

Table 9-1 Intended use patterns

Crop	F Or G*	Toning of application	Maximum yrumber of	Application interval [days]	Maximum dose rate formulation [L/ha]	Maximum application rate, individual treatment [g BYI 02960/ha]
Hops	F	3 √√ - 75 ×	1	~07 -	0.75	150
Lettuce	F	12 - 49,	~ 1 W	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.625	125
Lettuce	G	12,49	y 28 6	10	0.625	125

^{*} F = Field use; G & Glasshouse use

IIIA1 9.0 Rate of degradation in soil

Specific studies on the preparation have not been performed. The results of laboratory studies performed with the active substance as provided in Annex IIA in the context of Section 5, Point 7 are also applicable for the preparation.

IIIA1 9.1.1 Aerobic degradation of the preparation in soil

Investigations into the fate and behaviour of BYI 02960 in the environment have been performed in₀a comprehensive series of laboratory studies and additionally in field studies. Laboratory studies were conducted with 14C-radiolabeled active substance with labelling in four positions to elucidate the complete metabolic pathway in soil.

Route of degradation in soil

The route of degradation of BYI 02960 in soil has been determined in European and American so with four different label positions under standard laboratory conditions at 20°C for 120 days. Under of aerobic conditions two major metabolites were served, DFA (maximum 33.9%) and C-CNA (maximum 17.1%) and two very minor metabolites. In all label positions there was significant mineralization to ¹⁴CO₂ (maximum ca. 59%) with relatively low formation of nonextractable residues (max. ca. 34%). The results indicate that BY 0296 is readily degraded in aerobic soil by microbial activity.

Under anaerobic soil conditions BYI 02950 was stable and it was concluded that photolysis on the soil surface would not be a significant route of degradation. The proposed given in Figure 9.1-1.

Rate of degradation in soil

Summaries of the European trigger endpoints in soil are given in the Table 9.1.1- 1 for BYI 02960 and in Table 9.1.1- 2 for the major metabolites. For BYI 02960, the DT₅₀ values ranged from 30 to 120 days in the European soils and from 56 days to 242 days in the American soils.

Table 9.1.1-1: Trigger "best-fit" DT₅₀ values for BYI 02960

Soil	Label	Model	DT ₅₀ [days]	Reference KIIA 7.2.1/01 M-414615 01-2 KIIA 72.1/02 M-41 0625-01-2 KWA 7.2.1/04
	PYM	DFOP	63.4 62.2	KIIA 7.2.1801 \(\sigma \)
(AX)			V D	M-41461 01-20 (
` /	FUR	DFOP	62.2 °°	M-41461-201-2 KIIA 70.1/02 M-419625-01-2 KIDA 7.2.1-04 M-414981-01-1
			62.0 52.40 53.2	M-414625-01-2
	ETH		62.0	KUA 7.2.1394 M-414981-01-1
	222	~~		M-414981-01-1
	PYM	DFOP & O	52.45	KIIA 79.1/01 9
(HF)	FLID	DEO\$	83.2 Q	M-40 615-01-2
	FUR	DFOR O	\$3.2 \	KHA /.2. 1402
	ETH	DFOD S	214	J 101-4110/2/J-01-2
	LIII	DFOP V	34.1	KIIA \$2.1/04 M-44981-67-1
	PYR	DFOR S	33.0	KOA 7.2 705
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		93.0	411693-01-4
	PYM Ø	OFOP OF	93.0 120.0 98.3	KIIA 9.2.1/01
Plot 611 (HN)			12000	M-414615@1-2
1100 011 (1111)	FUR S	DFOP &	98.3	KPA 7.2 1/02
	, Q Oʻ		1	√ 1 -41 62 5-01-2
	PYM A	DFOP DE P	3(8) ⁴ (/ ₄ .	KII 5 .2.1/01
				M [™] 4615-01-2
II (DD)	Ø R	DEGAL S	49.3 °	KMA 7.2.1/02
()		<i>V V</i>	359	2M-411625-01-2
O	ETH	DFOP		KIIA 7.2.1/04
NE NE	ASUR W	DFOP DFOP DFOP SFO	339 228 0	M-414981-01-1 KIIA 7.2.1/03
NE	- ((//))	I %	7 220	M-405497-03-1
	PYM	FOMC &	242	KIIA 7.2.1/06
	PYM A			M-413425-02-1
CA	PYN P	FOMC FOMC	292	KIIA 7.1.2/03
<u> </u>	P A Q'		\$6.3	M-405497-03-1
@ .	PYQ S	FOMO	\$6.3	KIIA 7.2.1/06
				M-413425-02-1
Overall mean "			73 days	
Overall mean	. 6 2			
4				
*				
()		ž Ž		
O V		v 01		
		~~~~~		
	PVN 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
	B.			

Tier 2, IIIA, Sec. 5, Point 9: BYI 02960 SL 200 G

Table 9.1.1-2: Trigger "best-fit" DT₅₀ values for BYI 02960 metabolites

Metabolite	Soil	Model	DT50	Reference
DFA	II	SFO	44.9	KIIA 7.2.3/05 M-422874-01-1
				M-422874-01-1
		SFO	73.6	KIIA 7.2.3/05
	'			M-22874-01-1
		SFO	67.4	KATA 7.2.3/05
	4a			M-422874-0167
6-CNA		SFO	<b>2</b> .9	KIIA 7.2.3/02 M-422848-01-1
				@' M-42284&01-10
		SFO	(2.2 o	KIIA 7.2.3/02 M-422843-01-1 KIIA 7.2.3/02 M-423843-01
		, Q	y"   *\frac{1}{2}	
		SFO	5.3	KUX 7.2.3492 M-422849-01-1.49
			(A)	
		SFO &	8° 3.15° ×	KIIA 22.3/03~ ~
	4a			M-422853-01-1
		SFO O	Ø6.6 Q	KIIA 7.2.004
				KJA 7.2.004 07-422853-01-1

HIIA1 9.1.2 Anaerobic degradation of the preparation in soil & So anaerobic conditions in soil Degradation would be expected to continue according to the proposed kinetics of degradation of BYI 62960 when perobic conditions were re-established. No anaerobic metabolites were detected.

### **IIIA1 9.2**

# IIIA1 9.2.1 Soil dissipation testing on a range of representative soils

The dissipation of BYI \$2960 inder field conditions has been studied at 6 sites in Europe. The study, performed with the representative formulation BY 02969 SL209, was described in the Annex IIA, of Section 5, Point 7.3Q. A brief overview of the results presented in the Annex III document.

Based on the results of the dissipation study it can be concluded that BYI 02960 shows biphasic degradation behaviou under field conditions. BY 02960 residues remained in the upper 0-20 cm soil layer, small amounts below the LOQ could be detected to a maximum depth of 30 cm. At study completion, i.e. 540 days post application, the remaining BYI 02960 residues in soil corresponded to between 2.9 to 29.8% of the applied amount. The calculated DT₅₀ of BYI 02960 ranged between 8.3 and 251 days.

In general the fold dissipation behaviour observed for BYI 02960 residues, i.e. for BYI 02960 and its main soil metabolite DFA, was comparable to that found within the standardized laboratory studies.

	BYI 02960		•
Location and Trial No.	Kinetic	DT50	Reference
	model	[d]	
Germany 09-2702-01	DFOP	41.0	KIIA 7.3.1/01
, United Kingdom 09-2702-02	DFOP	251	KIIA 7.3.001
Germany 09-2702-03	DFOP	428	M444245-01-1
, Italy 09-2702-05	DFOR,	8.3 0	M-414345-01-1
, Spain 09-2702-06	DFOP	2 <b>2</b> .6	1.00 01 1
, Germany 09-2702-07	DEADY Q	39.0	M-414245-051 0
IIIA1 9.2.2 Soil residue testing  Not required under regulation (EC) 110 2200	DEAP OF STATE OF STAT		MATA 73-1/01 - ° M-414245-04 -
Not required under regulation (EC) 110 1200			
IIIA1 9.2.3 Soil accumulation testing			

### IIIA1 9.2.2 Soil residue testin

### Soil accumulation testing IIIA1 9.2.3

No study has been performed as the potential accommulation can be determined from the existing studies and calculated accumulation plateaus are sommarized in the soil PEC calculations under point IIIA1 9.4.

# IIIA1 9.2.4 Aquatic (sediment) field dissipation Not required under Regulation (FO) 1107

## Forestry field dissipation

Not required under Regulation (EC) 1107/2009

# Mobility of the plant protection product in soil

Specific studies on the monlity of the formulation By 02960 SL200 G have not been performed; data generated For the active substance and major metabolites is also valid for the formulation. All studies are summarized in KDA Section 5 and only a brief outline of the results is presented below.

For BYI 02960 in standard batch equilibrium studies on 6 soils the adsorption K_{oc} ranged from 74.9 to  $132.2\ \text{mL/g}$ , desorption  $K_{doc}$  were higher indicating significant stronger sorption. In time dependent sorption studies the sorption of BW 02960 was shown to increase over time with an ageing factor of 2.4 to 4.4.

The Koof the major metaboote 6-CNA was determined in four soils (excluding one soil with very low organic content and the sediment) ranged from 70 to 129 indicating medium mobility.

The K_{oc} addor the metabolite DFA determined in five soils ranged from 1.7 to 9.5 indicating high mobility On soil.

### IIIA1 9.3.1 Column leaching

Not required under Regulation (EC) 1107/2009.

### IIIA1 9.3.2 Lysimeter studies

As the concentration in groundwater can be predicted by environmental modelling lysimeter have not been performed and are not required.

### **IIIA1 9.3.3** Field leaching studies

As the concentration in groundwater can be predicted by environmental modelling studies have not been performed and are not required.

Volatility - laboratory studies

Volatility studies for the formulation have not been performed and are not required under Regulation

### **IIIA1 9.3.5** Volatility - field studie

Not required under Regulation (EC) 1107/2009

### Predicted environmental concentrations in soil, active substance **IIIA19.4**

### PECsoil modelling approach

Calculations were based on a simple first tie approach (Exel sheet) assuming even distribution of the compound in upper 65 cm soil layer. A standard soil density of 1.5 g/m³ was assumed.

Crop interception data which correspond to the intended growth stages were taken from the FOCUS groundwater guidance paper (FOCUS/2010)

Crop interception will reduce the amount of a compound reacting the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the recommendations of the FOCO'S groundwater guidance paper (FOCUS 2010) provided in Table 9.6-1. As hop and lettuce have not been defined in the FQCUS proundwater guidance paper, vines and cabbage were chosen as surrogate crops. As there is currently no guidance on calculation of PECsoil for greenhouse crops of specific calculation was berformed and it is assumed that the glasshouse use is covered by the outdoor see on text

# PEC star for BYI 0296

Report: .; 2012

Title: PF PECsoil PC Predicted environmental concentrations in soil (PECsoil) of

Flupy adifurone and its metabolites – use in hops and lettuce in Europe

En&a-12-0417 Report no Document No M-428042-01-1

Guidelines: Soil Persistence Models and EU registration: Report of the FOCUS Soil Modelling

Work Group, 1996

EC Document Reference 7617VI/96

No (calculation)

**Methods and Materials:** The predicted environmental concentrations in soil (PEC_{soil}) of BYI 02960 were estimated using a simple first tier approach (Excel sheet). Detailed application data used for simulation of PEC_{soil} are compiled in Table 9.4-1.

**Substance Specific Parameters:** PEC_{soil} calculations were based on the DT₅₀ of 0.2 days for the fast and 462 days for the slowly degrading compartments (DFOP, worst case of field dissipation studies).

Table 9.4-1: Application pattern used for PEC_{soil} calculations of BYI 02960

				W7	<i></i>	
Individual Crop	FOCUS Crop Used for Interception	Rate per Season [g a.s. /ha]	Applio	cation Plant Interception	BBCH Stage	Amount Reaching the Soll per Scason application [g as./ha]
Hops, GAP – identical with simulation	Vines	1 x 150		\$\frac{1}{60}\$\frac{1}{60}\$	\$1-75 \$	1 x 60
Lettuce (F), GAP – identical with simulation ¹⁾	Cabbage	1 x 10/5		25 0	2 2 - 49 S	1 x 94

¹⁾ First or second cropping per year

To account for potential accumulation of BYI 02960 in soil (worst-case non-normalised DFOP  $DT_{90}$  > 365 days), long-term soil concentrations were calculated.

Findings: The PEC and the time weighted average values (TWA_{so}) of BXI 02960 are summarised in Table 9.4-2 for sops and in Table 9.4-3 for lettuce

Table 9.4- 2: PECA (actual) and PWA of BYI (2960 in Rops in the upper 5 cm, DFOP decay

		<u> </u>
	Time PEC	BYI 02960 Hops, 1 x 150 g/ha soil TWAsoil [mg/kg]
	Time &	₩ops, 1 x 150 g/ha
( )	Harys]	soil TWAsoil
*		kg] [△] [mg/kg]
Initial 🗳		<b>.</b>
O1	Time    PEC	0.069
Short term		8 0.066
	0 40 A 0 00.05	8 0.063
		8 0.061
	14 ~ 0.05	7 0.059
Longterm	♥	7 0.058
Longyeiii	280 0.05	6 0.058
	0.05	4 0.057
	0.05 0.05 0.05	0.054
	14 0.05 21 0.05 28 0.05 0.05 0.05	
	.1	
Longyciii		
_		

F = field use

Table 9.4-3: PEC_{soil} (actual) and TWA of BYI 02960 in lettuce in the upper 5 cm, DFOP decay (1st or 2nd cropping per year)

	Time	BYI 02960 Lettuce, 1 x 125 g/ha (field use)		
	[days]	PEC _{soil} [mg/kg]	[m	VA _{soil}
Initial	0	0.125	O'	- ~ ~
	1	0.091	<u></u> 0	.168
Short term	2	0.091	\$\tilde{\pi}' 9	?±02 >
	4	0.001	ř ô	.098
	7	ρ.090	J @ 0	.095
	14	Ø.089		.093 200
T and tames	21	0.088	b° & @	.091 .091
Long term	28		* \9	.091 🕲 🔎
	50	Ø.085 F		.089
	100	<u> </u>		085

### Accumulation in soil

The potential accumulation of BYI 02960 in soil was calculated considering the following approaches:

- Maximum soil residue in first year maximum soil residue calculated for one season
- Long-term plateau concentration C_{mis}; maximum of the lower saw tooth curve, which can be considered as background concentration after multiple year use.
- Long-term maximum concentration C_{max} maximum of the upper saw tooth curve after multiple year use.
- Background C_{min} + maximum of one year in 5 cm depth: To the long-term background concentration C_{min} in a certain depth (e.g., 10 of 20 cm), the maximum residue of one year (distributed in 5 cm) will be added, take into account a conservative shallow distribution just after an annual application.

Table 9.4-4. Long-term soil concentrations of BYI 02960 following multi-year use

	distributed / max, soil residue in	Oong-term plateau / background conc.	Long-term maximum	Background C _{min} + max. of
	oder V 1st veder V	Conju	conc. C _{max} [mg/kg]	1 year in 5 cm [mg/kg]
	5 0.080	0.080	0.160	[6/6]
Hops	10 0.040	√ 0.040	0.080	0.120
1 x 150 g/hg	20 0.020	> 0.020	0.040	0.100
I attue/a	<b>3 3 3 3 3 3 3 3 3 3</b>	0.125	0.250	
Lettuce 1 x 12/5 g/ha	140 🐠 🔊 0.063) 🖠	0.063	0.125	0.188
1 x 123 g/11a	20 0,031	0.031	0.063	0.156

In **bold:** Generally, for long term desessment the substance distribution in soil for annual crops with tillage should be assumed over a depth of 5 - 10 cm (e.g. hops).

IIIA19.4.1 Initial PEC's value

Please refer to point IIIA 3.4.

# IIIA1 9.4.2 Short-term PECs values - 24hours, 2 and 4 days after last application Please refer to point IIIA 9.4.

# IIIA1 9.4.3 Long-term PECs values - 7, 28, 50 and 100 days after last application. Please refer to point IIIA 9.4.

# IIIA1 9.5 Predicted environmental concentrations in soil, for rel. metabolites

Predicted environmental concentrations in soil were calculated for the major soil metabolites DFX and 6-CNA. These metabolites are not automatically relevant" with regard to their environmental biological, eco-toxicological or toxicological properties.

Report: KIIIA1 9.5/01,

Title: FPF PECsoil EU: Predicted environmental concentrations in set (PECsoil) of

Flupyradifurone and its metabolites wise in loops and lettuce in Europe

Report no. EnSa-12-0117 Document No: M-428042-01-1

Guidelines: Soil Persistence Models and EV registration. Report of the FOCUS Soil Modelling

Work Group, 1996

EC Document Reference 7617V 96

GLP: No (calculation)

Methods and Materials: PEC_{sqil} for the metal folites were calculated using the approach, scenarios and application rates described for the calculations for the parent compound in Point 9.4. Compound specific parameters are summerised in Table 9.5-1.

Table 9.5-1: Input parameters for PEC pit for metabolities of BY 02960

Compound		Max. DT 50		Max, occursen in Goil	ice	Molar mass  [g/mol]	Molar mass correction factor
Difluoroacetic acid		73,6,		*	, 4	96.03	0.333
6-Chloronicotinic ac	20	36,6	~~	₩ 17 ₁	, N	157.56	0.546

Findings: The maximum Prosoil values of metaborites of BYI 02960 are summarised in Table 9.5-2.

Table 9.5-72. Hops and Lettuce: PE Coil (max) of BXI 02960 metabolites

Crops, S.	DFA PECsoil, max [mg/kg]	6-CNA PEC _{soil, max} [mg/kg]
Hops 1 x 150 g/ha of parent	0.009	0.007
Lettuce 1 x 120g/ha of parents	0.014	0.012

### IIIA1 9.5.1 % Initial PEC's value

Please refer to point IIIA .5.5.

# IIIA1 9.5.2 Short-term PECs values - 24hours, 2 and 4 days after last application

Please refer to point IIIA 9.5.

# IIIA1 9.5.3 Long-term PECs values - 7, 28, 50 and 100 days after last application

Please refer to point IIIA 9.5.

# IIIA1 9.6 Predicted environmental concentrations in ground water (PECgw).

### PECgw modelling approach

The predicted environmental concentrations in groundwater (PEC_{gw}) for the active substance were calculated in a stepwise approach Tier 1 standard calculations, Tier 22 using DFOP and Tier 2a using time-dependent sorption (TDS), based on the simulation models PEARL and PoLMO following the recommendations of the FOCUS working group or groundwater scenarios (FQCUS 2009).

The leaching calculations were run over 26 years, as proposed for pesticides which may be applied every year. The simulation length increases to 46 and 66 years for pesticides which are applied only every second and third year, respectively. The first six years are a warm up period; only the last 20 years were considered for the assessment of the leaching potential. The 80th percentile of the average annual groundwater concentrations in the percentage at 1 m depth under a reated plantation were evaluated and were taken as the relevant PEC_{OW} values. In respect to the assessment of a potential groundwater contamination this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the groundwater layer.

According to FOCUS, the calculations were conducted based on mean soil half-lives, referenced to standard temperature and moisture conditions. Gop interception will reduce the amount of a compound reaching the soil and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the FOCUS recommendations (Table 9.6- 1 and Table 9.6- 2).

As hop and foruce have not been defined in the FOOUS groundwater guidance paper, vines and cabbage were chosen as surrogate crops.

Note: There are currently no European guidelines for the assessment of exposure of groundwater water from the use in classhouses, therefore the simulation was performed, as a worst-case, using the outdoor use scenarios.

<u>Tier 1:</u> standard calculations following the recommendations of FOCUS (2000) with the  $DT_{50}$  values derived from SFO at the laboratory soil moisture standardised to  $DT_{50}$  values at 100% field capacity (FC)/pF 2

Tier 2a (DFOP) according to FOCUS (2009), DFOP degradation kinetics was considered in leaching modelling based on the procedure described in FOCUS (2006).

Tier 2a CTDS) following the model of et al. (1989) implemented in PEARL and PELMO FOCUS (2009), ting-dependent sorption (TDS) was evaluated using the TDS parameters determined according to et al. (2010)¹.

(2010): Proposed guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessments. The Food and Environment research Agency, York, UK and Alterra, Wageningen, The Netherlands



**Table 9.6-1:** FOCUS groundwater crop interception values (Hops)

Crop					
Vines (surrogate for hop)	without leaves 40	first leaves 50	leaf development 60	flowering	ripering 85

Table 9.6- 2:	FOCUS groundwater crop	interception values (	(lettuce)
1 11010 /10 =1	1 0 ccs ground water crop	, micer copilon , maes ,	(ictue)

			CA	& <i>n</i>	, , / 4.9
		Crop s	stage Interception	V[%]	
Crop	Bare –	Leaf	Stem	Flowering	Senescence 0
	emergence	development@	elongation/	,0	Ripering "
BBCH #	00 - 09	10 - 19 🚔	20 - 39	<u>థ్ 40, 189 ్</u> డ	y 90 - 99 🎺
Cabbage	0	25		70 70	
(surrogate for lettuce)	-	//. 8			
		0, "6,			r. <u>A</u> .
		1	. Ø Q		
IIIA1 9.6.1 Acti	ve substance P	ECow value	y »'A	. 0 4,	
111111 7:0:1	ve substance 1	Ecgw value			
PEC _{gw} for BYI 0296	0 5				
1 ECgw 101 D11 0270					
<b>Use in Hops:</b>	Q,"				***
	<b>.</b>				<b>&amp;</b> ,
Tier-1:		Y & 4		m C	
1141 11	~ &		* * * * * * * * * * * * * * * * * * *		
Report:	KINA1 9,6.1/01		.;2012 Ö	ons in	
•		, Prediæd en�isonr	., 4014		
Title:	FTF PEUEW EUK	riedicted envisoni			IMO II
Ô	groundwater recha	irge based on mode	RUPUCUS PEAR	and EQCUS PE	LIVIO – Use in

### IIIA1 9.6.1 Active substance PECg

Hops in Europe

En\$\hat{\signa} -12-0\hat{\text{0}}\hat{\text{8}}9 Report no. **M**-427737-01-1 \( \) Document No

FOCU\$2000, \$ANC\$/321/2000, rex\$2 **Guidelines:** 

FOCUS 2010, SAINCO/10038/2005 Fev. 2
FOCUS 2010, Version 2.0
No (calculation)

Tier-2a (DFOI

GLP

Report: ; 2012

Tor 2a (DFOP) FOF PECSW EU: Predicted environmental concentrations in Title:

groundwater recharge kased on phodels Focus Pearl and Focus Pelmo - Use in hops in Europe Flup Tadifut ne (BXX 02960) - Difluoroacetic acid (DFA) - 6-Chloronicotinic

aci60(6-CNA) EnSa-1249090 M-42791-01-4 Report no. Document No

'FOGS 2000, SANGO/321/2000, rev. 2 Guidelines

FØCUS 2006, SANCO/10058/2005, rev. 2 FOCUS 2009, SANCO/13144/2010, version 1

CV \$ 2010, version 2.0

No (calculation)

### Tier-2a (TDS):

Materials and Methods: The predicted environmental conventrations in groundwater (PECW) for BYI 02960 and its metabolites were calculated using the simulation model FOCUS REARL (version 4.4.4) and FOCUS PELMO (4.4.3). Detailed application data used for simulation of PEC compiled in Table 9.6.1-1. Simulations were conducted for annual applications as well efformed every second year.

Individual Crop

FOCUS Crop

Used.**

FOCUS (%An		Арр	lication 💇 🎺 🕻		Amount Reaching
		Interval	y Plant 🂢		the Soil per Season
Interestion.	per Season	~ .	Interception	Stage &	√ application
inter exption	[g a.s. /ha]&	days	<u> </u>		[g a.s. /ha]
Ž - Ž	الله 150 × 150		~ 60° «	√ 31 <b>- ″</b> 75″	1 × 60.00
5) Ø '		S S		~	
	1 550 ^	, , , , ,	\$ 60 £	, 25 . 25	1 × 60.00
Mines &	[ ^ 130 \		Al 37	91 - 73	1 ^ 00.00
.0			de la company de		
O'Vines	1 × 150	[~] - S	′ 60 L	31 - 75	$1 \times 60.00$
		Ö' .0	_		
Vinge	<b>₩1 × 16</b> 8	~ ~ ·	-\$60	21 75	171 s / 129 f
			<b>2300</b>	31 - 73	1/1 / 129
₩ines 🍣	₫ [©] 150 [™]		<b>6</b> 0	31 - 75	171 s / 129 f
		× ×			
	Vines Vines Vines Vines Vines	Used for Interception   per Season   g a.s. /ha   -	Used for Interception   g a.s. /ha	Used for Interception   per Season   Interception   [9]   Interception   [9]   Vines   1 × 150   -	Used for   Interception

f used for fast compartment ©

Application dates for the simulation runs were defined following the crop event dates of the respective crop and scenario as given by FOCUS (2009).

s used for dow compartment

Table 9.6.1- 2: First application dates and related information for BYI 02960 as used for the simulation runs (offset is relevant only for relative application dates, two sets of data are provided for crops with two seasons)

Individual crop	Hops	Hops
Repeat Interval for App. Events	Every Year	Every 2 nd Year
Application Technique	Spray	Spray
Absolute / Relative to	Emergence	Emergerice
Scenario	(Jul	App. Date Official day) o crop event
Absolute / Relative to  Scenario	06 May (26) 35 05 Jun (156) 35 06 May (196) 35 08 May (125) 35 19 Apr (109) 35	Every 2 nd Year Spray  Emergence App. Date ian day) o crop event  06 Way (26) 35 05 Jun (156) 35 - 06 May (169) 35 05 May (125) 35 19 Apr (109) 35

Further input parameters for PEC_{gw} modelling of BYI 02960 are summarised in Table 9.6.1- 3 for BYI 02960 and in Fable 9.6.1- 4 for the metabolites. Parameters used for degradation pathway in PEARL and PELMO are depicted in Table 9.6.7- 5.

For <u>Tier 1</u>, a geometric mean of half-lives derived from SFO and from the slow compartment of the DFOP model was used to btain a conservative model input.

For <u>Tier 2a</u> OFOP according to FOCUS (2009), DFOP degradation kinetics was considered in leaching modelling based on the procedure described in FOCUS (2006).

To obtain common DFOP parameters over all soils the following procedure was applied: Firstly, all degradation curves following SFO kinetics on Tier-1 were converted to an equivalent DFOP model where the Tier-1 SFO-DT₅₀ was assigned equally (g=0.5) to the slow and fast degrading compartment.

For those soils where the slow compartment of DFOP was already used for modelling at Tier-1, the corresponding shorter DT₅₀ of the fast compartment and g (fraction of total amount applied to the compartment) of the DFOP fit were additionally considered. Finally, the DFOP parameters were calculated as mean over all soils.

For leaching modelling the application rate was doubled and assigned to both compartments according to g of 0.43. Then, two separate leaching simulations were performed: one for the fast compartment using DT_{50fast} of 33 days and one using DT_{50slow} of 95 days. Both PEC_{gw}, values were summed pp and divided by two to get the final result.

Tier 2a (TDS): Time-dependent sorption (TDS) data of BYI 02960 on four soils were derived 2012; KIIA 7.4 1704, M-422824-01-19. These parameters constitute curve fitting (see the prerequisite to adequately address TDS processes on regulators exposure modelling.2. Experimental soil data were re-calculated to fit the TDS model, resulting in a geomean DT50 of 58 days, a K_{OM} of 46.5 L/kg and a Freundlich exponent of 0.860.

Table 9.6.1-3: Substance specific and model related input parameters for PECgw calculation of BYD 02960

	e e	<del>)                                    </del>			BYI 02960	
Parameter	Unit 🖏		o" `\" Tier 1	*	Wier 290DFOR	Tier 2 (TDS)
Common	. W	, V	0			288 7
Molar Mass	[g/mol]	~~ .	. (~~/XX /		* . *	1 (// //00 /
Solubility	[mg/L]		3200	6	3200	3200
Vapour Pressure	Pa]		9.1 <b>0</b> E-07	L	9. <b>40</b> E-0/	1 × 9 10E-07
Freundlich Exponent		i Na	#866 _~ (	V (	0.866	0.86
Plant Uptake Factor			0.5		0.5	<b>∀</b> 0.5
Walker Exponent	e Ž		0.₺*	Ž	@ 0.9 *\	0.7
PEARL Parameters		W	~ ·	<b>Q</b>	0.9	_
Substance Code (1)	100	<u></u>	<b>B</b> UTn.		U RUYFI/RIMTes	BUTk
DT ₅₀	[d@ys] C	) <u>(</u>	94.8		3.4 ^f /94.8 ^s	58
Molar Activ. Energy	[ky/mol]	.1	65 Å 97.1	T'	65.4	65.4
K _{om}	<b>√</b> [mL/ <b>g</b> ) `		<b>5</b> 7.1	~ ~	97.1	46.5
Desorp. Rate Coeff.	// L · · (())_// - J		97.1	<u> </u>	r , O -	0.031
Equ. Factor		^	<del>** -**</del>	Q,	<u> </u>	0.58
PELMO Parameters			(O)	O" .		
Substance Code			»AS	7 A	AS	AS
Rate Constant	[1/gay] .		O.00730	The state of the s	$0.0207^{\rm f} / 0.0073^{\rm s}$	0.01195
$Q_{10}$			258	<u>~</u>	2.58	2.58
K _{oc}	₩L/g₩		<b>98.4</b>	. <u> </u>	98.4	80.2
$^{\text{T}}$ DT ₅₀ used for the fast	compartment	w				
$^{\circ}$ DT ₅₀ used for the slow	compartment		4 2			
4		Q,				
	(O)	Q)				
√ .1			<b>Q</b> "			
Q' ,\[\sqrt{\gamma}\]		W				
		~Q				
	× 29					
Rate Constant  Q ₁₀ K _{oc} f DT ₅₀ used for the fast  s DT ₅₀ used for the slow						
2			(201	(0): Pror	oosed guidance on how a	ged sorption studies for
pesticides should be conduc	eted, analysed and	used ir	regulatory	assessm	ents. The Food and Env	

^{. (2010):} Proposed guidance on how aged sorption studies for pesticides should be conducted, analysed and used in regulatory assessments. The Food and Environment research Agency, York, UK and Alterra, Wageningen, The Netherlands



Substance specific and model related input parameters for PECgw calculation of BYI 02960 metabolites

Parameter	Unit	Difluoroacetic acid	6-Chloronicotinic acid. °
Common			, Q
Molar Mass	[g/mol]	96	157.6 a)
Solubility	[mg/L]	500000	1430 💞 💍
Vapour Pressure	[Pa]	1.00E-10	1.00E-17
Freundlich Exponent		0.835	0.95
Plant Uptake Factor		0.5	
Walker Exponent		©0.7	<u></u>
PEARL Parameters			
Substance Code		₩ DFA √ V	CXXX SV &
DT ₅₀	[days]	44.7	4.7 °C (4.7 °C)
Molar Activ. Energy	[kJ/mol]	65.4	Q 65.4 0
Kom	[mL/g]	. 3.90	
Desorp. Rate Coeff.	[1/days]		
Equ. Factor			
PELMO Parameters			
Substance Code		Y Y AD J	$\mathcal{L}$ $\mathcal{L}$ $\mathcal{B}$ $\mathcal{L}$
Rate Constant	[1/day] (/	0.01551	√ 0 14748 O
$Q_{10}$		~ ~ ~ 2.58 ° ~ ~	2.58 884
Koc	mL/g]	6.8	2.58 884

a) The sum of formation fractions of both metabolities is . In order to run the modeling with PELMO, the molar mass of 6-CNA was set to 451 s/mol, resulting from Maxiliary (CNA) = M (6-CNA) 0.478 / (1-0.833) = 451 g/mol

Table 9.6.1-5: Degradation pathway related parameters for BYI 02960 and its metabolites

Tier 1, Degracation fraction from $\rightarrow$ to	0.83 BUD-> DFA
TICI 2a (DIOI), IICI 2a (TOCOTIENAL)	Ø.48 BUT -> ØNA
Tier 1, Degradation rate from to FOCUS PELMO)	0.0060780 Active Substance → A1
Tier 1, Degradation rate from to FOCUS PELMO)	©00121 SØ Active Substance → B1
slow comparement)	0.0155070 A1 → 
	0.1474780 B1 → 
Tier 2a (DFOP, Degradation rate from to	0.017287 Active Substance → A1
fast compartment) \( \sqrt{FOCL} \( \sqrt{PELMO} \) \( \sqrt{\sqrt{N}} \)	⊕003466 Active Substance → B1
	y 0.015507 A1 → 
	0.147478 B1 → 
Tier 2a (TDS) Degradation rate from to	0.0099550 Active Substance → A1
(FOCOS PELOJO)	0.0019960 Active Substance → B1
(FOCUS PELOTO)	0.0155070 A1 → 
	0.1474780 B1 → 

The 80th percentile ground cater concentrations of BYI 02960 in hops are given in Table 9.6.1-6 (Tier 1), Table 9.6.1-7 (Tier 2ax DFOP) and Table 9.6.1-8 (Tier 2a; TDS).

**Table 9.6.1- 6:** Tier 1 - PEC_{gw} of BYI 02960 – Use in Hops

		BYI 02960					
	Hops (ev	ery year),	Hops (ever	y 2 nd year),			
Scenario	1 x 150 g/ha, 60	1 x 150 g/ha, 60 % interception		% interception			
	PEARL	PELMO	PEARL 🔈	PELMOS "(			
	PECgw	$PEC_{gw}$	PEC _{gw}	PE Cgw O			
	[µg/L]	[µg/L]	[μg/L] 💞	[μg/L]			
	0.453	0.415	0.1921	0.168			
	0.579	0.634	0.283	0.249			
	0.430	0.481	<b>A</b> 72	© 200 96 V			
	0.359	0.442	00.154	Ø.211.			
	0.220	0.2,86	0.093	0.122			
	0.223	0,063	0.091	0,022			
	0.183	<b>Q</b> .155	20.073 × ×	0,059			

*In italics*: values pass the trigger of 0.1 μg/L

Considering the Tier 1 simulations predicted concentrations of BYI 02960 in groundwater are below (model PELMO) when applied every year and in the trigger of 0.1 µg/L in the scenario (both PRARIC and PELMOC and scenarios and second year.

2a using DFOP imulations and Higher tier calculations have additionally been TDS.

Table 9.6.1-7: Tier 2a (DFOP) PECo of BY 02960 Use Hope

		<u> </u>	D' \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
Scenario	i Hops (ey	BYI (ery year), O gha	02960	y 2 nd year),
Scenario	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 g4ba 🌱 🌣 LO PKLMO>	PEARL	o g/na
	PEARL	PILLMO	PEARL  PECgw	PELMO
, °Ø	₩PEC _{gw}	PECga	PEC _{gw}	$\mathbf{PEC_{gw}}$
, Q	[μg/ <b>Ι</b> ] 🔑	🍞 [µg/L] 📆	ு [μg/L]	[µg/L]
¥	<u>Σ, [μετρ] γ</u> Ο Q272 Θ	0.231	0.116	0.102
	20.346 ₄	\$\tag{380}	0.172	0.151
	0.25	0.28	0.103	0.118
	0.213	, V 0,263 D	0.093	0.127
	) 133, C	O" O"71 O"	0.056	0.073
~Q	00.137	₹ 6.03 <b>%</b>	0.056	0.015
	0.19	, 🔯 0.QP	0.045	0.037

In italia values pass the trigger of 0.1 µg/L

When considering the use of DEOP kinetics predicted concentrations of BYI 02960 in groundwater are below the togger of 0.1 fg/L in the socrario (model PELMO) when applied and every year and in scenarios and (both PEARL and PELMO) and

<b>Table 9.6.1-8:</b> T	Tier 2a (TDS) -	PECgw of	BYI 02960 -	Use in Hops
-------------------------	-----------------	----------	-------------	-------------

_		BYI 02960					
	Hops (ev	ery year),	Hops (every 2 nd year),   1 x 150 g/ha, 60 % interception PEARL PELMS				
Scenario	1 x 150 g/ha, 60	% interception					
	PEARL	PELMO	PEARL 🔈	PELMOS "			
	$\mathbf{PEC_{gw}}$	$PEC_{gw}$	PEC _{gw}	PE Cgw O			
	$[\mu g/L]$	[µg/L]	[μg/L] 💇	[μg/L]			
	0.116	0.100	0.044	0.035			
	0.175	0.175	0.000	2 0.065 Z			
	0.135	0.157	<b>J</b> 2049	© 20056 V			
	0.118	0.157	©0.041 &	.065\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	0.056	0.087	0.020	0.030			
	0.042	<b>950</b> 7	~ 0 914 Q	0,002			
	0.030	0.023	© ~9.010 m ?	<b>40</b> .006			

In italics: values pass the trigger of 0.1µg/L

When considering TDS behaviour the predicted concentrations of BYI 02960 in groundwater are below the trigger of 0.1  $\mu$ g/L in the scenarios (both PEAR) and PELMO), when applied every year and in all scenarios (both PEAR) and PELMO), when applied every second year.

Conclusion: A safe use has been demonstrated as the trigger of 1/21 µg/L is met at tier 1, considering application every year, for the scenario PELMO). For the higher per calculations applying DFOP the trigger was met in and see also that in several scenarios for annual uses and all scenarios for use every second year.

### Use in Lettuces

Title:

PPF PEC gw F. Predicted environmental concentrations in groundwater recharge based on models FQCUS PEARL and FOCUS PELMO – Use in Leftace in Europe

BrSa-12/0097,
M-42/736-01/1

FOCUS 2000, SANCO/324/2000, sev. 2
FOCUS 2009, SANCO/30058/2005, rev. 2
FOCUS 2009, SANCO/31144/2010, version 1

FOCUS 2010/version 2.0,
No (calculation)

### Tier-2a (DFOP):

KIIIA1 9.6.1/05, **Report:** 

Tier-2a (DFOP) - FPF PECgw EUR: Predicted environmental concentrations in Title:

groundwater recharge based on models FOCUS PEARL and FOCUS PELMO

Lettuce in Europe - Flupyradifurone (BYI 02960) - Difluoroacetic acid (DFA)

Chloronicotinic acid (6-CNA)

Report no. EnSa-12-0098 Document No M-427987-01-1

**Guidelines:** FOCUS 2000, SANCO/321/2000, rev FOCUS 2006, SANCO/10058/2005, rev. 2

FOCUS 2009, SANCO/13144/2019, version 1

FOCUS 2010, version 2.0

**GLP** No (calculation)

### Tier-2a (TDS):

Report:

Title:

KIIIA1 9.6.1/06,

Tier-2a (TDS) - FPF PECay EUR: Predicted environmental concentrations in groundwater rectainge based on models Focus DEARL and FOcus PELMO Use in Lettuce in Europe EnSa-12-0099

M-427981-61-1

FOCUS 2000, SANC 0/12000, rev. 2

FOCUS 2009, SANC 0/13 4/2010, version 1

FOCUS 2010, version 20

To (calculation)

Report no. Document No

**Guidelines:** 

**GLP** 

Materials and Methods. The predicted environmental concentrations in groundwater (PECgw) for BYI 02960 were calculated using the simulation prodel FOCUS PEARL (version 4.4.4) and FOCUS PELMO (4.4.3). Detailed application data used for simulation of PEC gw are compiled in Table 9.6.1-9.

Although there is no current pagged model for simulating groundwater concentrations following the use in greenhouses as a conservative approach the simulation was performed as an outdoor application considering two applications in accordance with the GAP

Comparison of simulated and actual use pattern (outdoor use)

Individual	F .	ØFOC#S		Applic	ation		Amount Reaching
Individual	ox	Crop ^	Rate f	<b>Interval</b>	Plant	<b>BBCH</b>	the Soil per Season
Crop	Ø,	Crop ^ Used for ©	per season	7	Interception	Stage	application
//	۸	Interception	[g a.s./ha)	[days]	[%]		[g a.s. /ha]
Lettuce 1 (GAP_@	,		1 × 123	=	25	12 - 49	1 × 93.75
			)	Tier 1,	Tier 2a (TDS)		
Lettuce 1 (every year), Simulation 1 Lettuce 1 (every 2nd year),	<b>\</b>		Ø				
(every year),		Cabbage	1 × 125	-	25	12 - 49	$1 \times 93.75$
Simulation 1	4						
Lettuce I							
(every 2 nd year),	"O"	Šabbage	1 × 125	-	25	12 - 49	$1 \times 93.75$
Simulation 2		·					
Ö				Tier	2a (DFOP)		
Lettuce 1							
(every year),		Cabbage	1 × 125	-	25	12 - 49	142.5 ^s / 107.5 ^f
Simulation 1							

			1	1	1	
Lettuce 1						
(every 2 nd year),	Cabbage	1 × 125	_	25	12 - 49	142.5s / 107.5f
	Cabbage	1 ^ 123	_	23	12 - 77	142.5 / 107.5
Simulation 2						_ 0

Table 9.6.1-10: Comparison of simulated and actual use pattern (glasshouse use)

Individual Crop	F or G	FOCUS Crop Used for	Rate per Season	Applic Interval	Plant Q Interception	BBCH Stage	Amount Reaching the Soil per Scason application
Lettuce 2 (every year), GAP		Interception -	[g a.s. /ha]	10 10	[%] \$\times 25 \times \text{SDS}	12 - 49	[g a.s. Ha] 2 2 33.75
Lettuce 2 (every year), Simulation 1		Cabbage	2 × 1,25		2 x 25 4	12-49	2 \$3.75
Lettuce 2 (every 2 nd year), Simulation 2	G	Cabbage	02 × 125	\$10 \$\times \text{Tier}	2% 25 20 (DFQP)	12 - 49	2 × <b>93</b> .75
Lettuce 2 (every year), Simulation 1 Lettuce 2 (every 2 nd year), Simulation 2	A	Cabbage Cabbage	2 × 195		2 25 25 25 25 25 25	12 - 49	2×142.5 ^s / 2× 107.5 ^f 2×142.5 ^s / 2× 107.5 ^f
			$y = \int x \nabla f / \gamma \sigma / n \sigma$	i) . ~	. W	@	
crop and scenarion vear of lettuce we	gomp v con s for as general	partment partment the simulation in the simulation in the control of the control	US (2009). Ir fately	efined follo	smenOthe firs	p event date and the	ates of the respective second cropping per
f used for the fast s used for the slow Application dates crop and scenario year of lettuce we	gomp v con s for as general	partment partment the simulation in the simulation in the control of the control	n rung were do US (2009). Ir	efined follo	smenOthe firs	p event da	ates of the respective second cropping per

used for the slow compartment

**Table 9.6.1-11:** First application dates and related information for BYI 02960 as used for the simulation runs (offset is relevant only for relative application dates, two sets of data are provided for crops with two seasons)

	o seasons)			w.
Individual crop	lettuce, 1st cropping	lettuce, 2 nd cropping	lettuce, 1st cropping	lettuce, 2 nd cropping
Repeat Interval for App. Events	Every Year	Every Year	Every 2 nd Your	Every 2nd Year
Application Technique	Spray	Spray	Spray	Spra
Absolute / Relative to	Emergence	Emergence	Entergence	Emergence @
Scenario	1st App. Date (Julian day) Offset to crop event	1 st App, Date (Julia day) Offset to crop event	Mapp. Date  **Julian day)  Offset to crop examt	1st App. Date (Rulian Ay) Offset to crop event
				\$5 Aug \$7 (217)

Further input parameters for PEC_{gw} modelling of BYI 02960 are summarised above in Table 9.6.1-3 for BYI 02960 and in Table 9.6.1-4 for the metabolites. Parameters used for degradation pathway in PEARL and PELMO are depicted in Table 9.6.7-5.

Findings: The 80 percentile concentrations of BYI 02960 for the field and glasshouse uses in lettuce are given in the collowing tables.

<u>Tier 1: Field Uses (single application)</u>

Table 9.6.1- 12: Tier 1 PEC_{gw} of BYI 02960 – Use in Lettuce, single application (field use), every year

<u> </u>					
		BYI	02960	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		(field use / every year)			
Scenario	Lettuce, 1st crop	pping, every year,	Lettuce, 2nd cro	pping, every year	
		25 g/ha	$\int \mathbf{x} 1 \mathbf{x} 1$	pping, every year 25 g/ha	
	PEARL	PELMO	PEART	. Pelmo .	
	$PEC_{gw}$	PEC _{gw} &	PEC _{gw}	PEC _{gw}	
	$[\mu g/ ilde{L}]$	[μg/L] 💖	[arg/L]		
	0.413	0.29&	O0.556	\$\int_{\infty} \int_{\infty} \	
	0.809	0.724	Q 1.084	0.983	
	0.325	<b>Q2</b> 69			
	0.595	0.517 •	Ø.698@	Ø.637	
	0.327	0.400	0.646	0.713	
	0.018	3 9005 W	0.925	0.000	
	0.313	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	* A0°	A.	

In italics: values pass the trigger of 0.1µg

Table 9.6.1-13: Tier 1 PECgw of BY 102960 Use in Lettuce, single application (field use) every

	Byl (field use) ev	2966 Spand year)  Letting, 2nd epoppi	
Scenario	Lettuce, 1s cropping, ever 2nd year,	Letturee, 2nd Coppi	ng, every 2 nd year,
		1 x 12	g/ha PELMO PEC
	PEARL PELMO	PEARL S	PELMO
	PCC _{gw} PCC _{gw}	PEC _{gw}	$PEC_{gw}$
	fug/Lj ( fag/L)	[	[µg/L]
	0.159 0.140 0	L 0.200	0.142
			0.401
	Ø.109 O* & \$\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tiiilie{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\t	3 a	-
	0.242 (0.216)	<b>≈</b> 0.291	0.255
	0.177	0.253	0.305
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.009	0.002
	0.109 0.069	-	-

In italics: values pass the trigger of 0.1 µg/1

For the field use, considering the tier 1 approach, the trigger value of 0. 1µg/L is met for the scenario for both seasons and models for annual and uses every second year.

<u>Tier 2a (DFOP)</u>: Single application (field use)

Table 9.6.1- 14: Tier 2a (DFOP) PECgw of BYI 02960 – Use in Lettuce, single application (field use), every

		BYI (	02960	
	T 11 4st	(field use / ever	y year / DFOP)	
Scenario		pping, every year,	Lettuce, 2nd c	cropping, exery year, x 125 g/ha
		125 g/ha	1 2	x 125 g/hal
	PEARL	PELMO 🖔	PEARL	PELMO
	$PEC_{gw}$	PELMO 💸 PEC _{gw} 🖫	PECgw	POC _{gw} &
	[µg/L]	$[\mu g/I_{\mathcal{A}}]$	μg/L]	μg/Ll [©] ω
	0.269	0.1,94	0.355	0.25
	0.630	00462	0,951	0,708
	0.213	0.175	6 . ~ ~ ~	, W- , W
	0.382	0.34	0.45	0.417
	0.216	0.255	0. <b>3</b>	0.4 <del>6</del>
	0.016	<i>№</i> ~0.005 ~ .	Q.025 Q	
	0.224	0.149	7 - 2	* * ·

In italics: values pass the trigger of 0.1µg/L

Table 9.6.1- 15: Tier 2a (DFOP) PEC gw of BYI 02960 – Use in Lettuce, single application (field use), every 2nd year

		% O			*
		(figl) copping, esery x 125 g/fia P.F.	BYI 0 Luse Ævery	2000 Q 2 d year DFOP Lettuce, 20 croppi 1 to 2	
Scenario	Lettuce, 1st ci	ropping, every	2nd year,	Letruce, 2 cropp	ng, every 2 nd year,
	PEARL		LMQ >	PEARL PECgw	S g/na PELMO
	PEC		ECgro @	PΈCgw ″ γ [μg/Ly	PEC _{gw} [μg/L]
	0.095	$\checkmark$ $\overset{\sim}{\otimes}$ $g$	<i>:</i> ₩08	(y 0.3 <u>1</u> 20	0.087
	Ø.230 [©]		.179 🔎 🐰	<b>2</b> 0.270	0.244
	0.06	A > 0	.05\$	-	-
	0,0,46	0	M28 ~	0.177	0.155
	Q ~ Q 2082 ,		Ž05.	0.153	0.182
	0.00		.00[% 4	0.006	0.002
	<u> 0.067</u>		.043	-	-

In italics: values pass the trigger of 0. Hgg/L

the outdoor use in lettuce, using the Tier 2 are for annual applications and the scenarios considering applications every second year. For the outdoor use in leduce, using the Tiers' approach (DFOP) the trigger is met for the scenario <u>Tier-2a (TDS)</u>: Single application (field use)

Table 9.6.1-16: Tier-2a (TDS) PECgw of BYI 02960 – Use in Lettuce, single application (field use), every vear (TDS)

			<del>_</del>	
		BYI ( field use / eve	02960 ry year / TDS) 🍣	
Scenario		pping, every year,	Lettuce, 2 nd cr	opping, exery year, 125 g/ha
	1 x 12	25 g/ha	√ 1 x	125 g/ha
	PEARL	PELMO 🥎	PEĄĸL	PELMO
	PECgw	PELMO 🖔 PEC _{gw} 🐨	PÉC _{gw}	PO Cgw W
	[µg/L]	$[\mu g/L]$	_Ωμg/L]	μg/Ll [©]
	0.085	0.083	0.111	0.070
	0.263	00 ₹ 9 4	~ V V V V V V V V V V V V V V V V V V V	√ 0272 Ø
	0.055	0.046	Ø' <u> </u>	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	0.181	0.15		0.198
	0.090	0.1433	0.076	
	0.001	√ ×0.001 × ×	20.001	<b>₫.</b> 001 💆
	0.047		* - `~ `	

In italics: values pass the trigger of 0.1 pg/L

Table 9.6.1- 17: Tier-2a (TDS) PEC of BYI 02960 – Use in Lettuce, single application (field use), every 2nd year (TDS)

		© (°
	BYI 02960  Geld use / every 2 nd year / TDS  Lettuce 1 st cropping, every 2 nd /year / Lettuce, 2 nd PEARL  PELMON  PEARL	
Scenario	Lettuce 1st cropping, every 2nd year Lettuce, 2nd	cropping, every 2 nd year,
	1 125 gha 6 2 4	1 25 g/ha
	PEARL PELMON PEARL	S PELMO
	PEARL PELMO PEARL PECO PECO PECO	PECgw
	\\ \\ \\ \\ \  \  \\ \\ \\ \\ \\ \\ \\	[µg/L]
	$0.025 \ \text{m} \ 10^{\circ} \ \text{m} \ 15 \ \text{m} \ 0.034$	0.020
	<b>0.075 0.099 0.075 0.075</b>	0.107
Q		-
•	0.0075	0.067
	0.061	0.086
	<0.001	<0.001
	0.001	-

late season for the application every second year. For the outdoor use indettuce using the Tier 2 approach (TDS) the trigger is met for the scenarios Considering annual applications and for all scenarios

### <u>Tier 1: Glasshouse Uses (multiple Applications)</u>

Table 9.6.1-18: Tier 1 PECgw of BYI 02960 – Use in Lettuce, multiple applications (glasshouse use), every

			02960 se / every year) 🍣	
Scenario	Lattuca 1st area	oping, every year,		opping, exery year,
Scenario		25 g/ha	Lettuce, 2nd cro	
	PEARL		PEARL	PELMO
	PECgw	PELMO (S) PECgw (\$\sqrt{g}\)	<b>₽</b> Cgw	PEC _{gw} & C
	[µg/L]	[µg/L]	_Õμg/L]	Jug/Ll
	1.131	0.820	1.543	1.122
	2.178	10937	2,843 Q	2,618
	0.982	<b>0.796</b>	0 . ~ ~ ~	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	1.502	1.37%	1.818	1.707
	0.873	1:004 C	1.691	1.836 L°
	0.078	\$ \square 0.019 \square	<b>1</b> 0.116	£025 W
	0.986	0.749		J & - B

In italics: values pass the trigger of 0.1 µQ/L

Table 9.6.1-19: Tier 1 PECgw of BYI 02960

Scenario  Lettuce 1st cropping every 2st year.  PEARL PEARL PEC w	Α		
Lettuce, 1st cropping, every 2st year   Lettuce, 2nd cropping   Lettuce, 2nd	?	BYI 02960 T	
PEARD PELMO PEARL PECW PECW PECW PECW PECW PECW PECW PECW	ng, every 2 nd year,	ttue 1st of anima Quant And you I status 2nd and	Sagnaria Lattura ist
PEARD PELMO PEARL PEC'sw PEC's			N S UNF
0.444	PELMO	CDEADAY AT THE MAN OF A DEADI	& LPEARÔ
0.444	PECgw	PECTW PECTW PECTW	S O PECT
1.042	[μg/L]		
0.083 0.755	0.422	© .586	0.444
0 9 0 755	1.170	1.042 0.773 0 1.231	1.049
For the greenhouse uses, considering the tier 1 approach the trigger value of 0. 1 scenario for both seasons and models even considering the conservative greenhouse uses.	-	0.283	© 9349
For the greenhouse uses, considering the tier 1 airproach the trigger value of 0. 1μscenario for both seasons and models even considering the conservative greenhouse uses.	0.696	\$636, \$\times 0.755	· \$2.636 ₄
In italics: values passate trigger of 0 μg/L  For the greenhouse uses, considering the tier 1 airproach the trigger value of 0. 1μ scenario for both seasons and models even considering the conservative greenhouse uses.	0.771	0.362 0.428 0.719	© 0.36Z
In italics: values pass the trigger of 0 μg/L  For the greenhouse uses, considering the tier 1 approach the trigger value of 0. 1μ scenario  greenhouse uses.	0.009	0.038	\$\ \delta \ 0.625
In italics: values pascine trieger of 0 μg/ly  For the greenhouse uses, considering the tier 1 approach the trigger value of 0. 1μ scenario for both seasons and models even considering the conservative greenhouse uses.	=	£ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £	
	g/L is met for the approach for the	considering the tier 1 approach the trigger value of 0. seasons and prodels even considering the conserva	For the greenhouse uses, considering scenario for both seasons greenhouse uses.

Tier 2a (DFOP): Multiple Applications (glasshouse use)

Table 9.6.1-20: Tier 2a (DFOP) PECgw of BYI 02960 – Use in Lettuce, multiple applications (glasshous use), every year

			02960	
		(glasshouse use / e	very year / DFQP)	, A " " " " A
Scenario		ping, every year,	Lettuce, 2nd cr	copping, exery year,
	2 x 12	25 g/ha	2 x	125 g/ha ^O
	PEARL	PELMO 🖔	PEĄĸL	PELMO S
	$PEC_{gw}$	PELMO 🖔 PEC _{gw} 🐨	PEC _{gw}	PEC Cgw
	[µg/L]	[μg/LД	"Öμ̈́g/L]	Jug/Llo
	0.682	0.494	Ø 0.927 €	0.678
	1.310	10t 39	1,906 Q	1,582
	0.597	Ø.488		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	0.898	© 0.82 © 0.82 ©	1.08	1.023
	0.520	0.592	1.0090	0
	0.050	<i>₹</i> • 0.013 √	Q.076 S	<b>6917 0</b>
	0.600	90.458	7 - 7	\$ 4, - \$

In italics: values pass the trigger of 0.1 µg/L

Table 9.6.1-21: Tier 2a (DFOP) PECgw of BYI 02960 – Use in Lettuce, multiple applications (glasshouse use), every 2nd year

2		10° 40°		
	Lettuce, 1 st cropping, eve 2 125 g/ha PEC 1 125 g/ha	BYI 0 Brouse use / eve	2960 ry 2 nd (yar / DFOP)	© and
Scenario	Lettuce, I" cropping, exe	ry 2"yyear,	Lettuce, 2 roppi	ng, every 2 nd year,
	2/x 125 g/ha	, O' I	<b>%</b>	5 g/ha
<u>J</u>	PARARIL ,	PELMO	O PEARL	PELMO
	I PECA (	PEC D	PEC _{gw}	$PEC_{gw}$
		PEC _g o [µgAD]	Lμg/Ly	[µg/L]
	0.251	0.480	0.338	0.241
	0.489	Ø.438 (	<b>2</b> 0.656	0.592
, Q	0.200	9 0.16 <b>9</b> °	-	-
	© 0354 ©	0.511	0.421	0.387
	0.198	. y · = · · · / 4\	0.387	0.426
	7 · · · · · · · · · · · · · · · · · · ·	, U.UUD) . ,	0.017	0.004
		0.138	-	=

In italics: values pass the trigger of 0. Dig/L

For the greenhouse use in lettuce, using the Tier 2 approach (DFOP) the trigger is met for the scenario for annual and bi-annual applications even considering the conservative use of the outdoor model.

<u>Tier-2a (TDS): Multiple Applications (glasshouse use)</u>

Table 9.6.1- 22: Tier-2a (TDS) PEC_{gw} of BYI 02960 – Use in Lettuce, multiple applications (glasshouse use) every year (TDS)

			02960							
		(glasshouse use / every year / TD								
Scenario		pping, every year,	Lettuce, 2nd ci	ropping, exery year,						
	2 x 1	25 g/ha	e use / every year / TDS ar, Lettuce, 2 nd cropping, every year 2 x 125 g/ha							
	PEARL	PELMO 🖔	PEĄĸL	PELMO						
	PECgw	PELMO (\$\infty \text{PEC}_{gw} \text{\$\text{\$\text{\$\geq}}'\$}	PEC _{gw}	PO Cgw						
	[µg/L]	$[\mu g/L]$	_Qμg/L]	w jug/Llo (						
	0.267	0.182	0.368	0.25						
	0.726	<b>0</b> 597	0, <b>9</b> 73 Q	0,845						
	0.208	0.171	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	, V - , V						
	0.509	\$\times 0.45\$\times \times \t	(*************************************	~0.562 [™]						
	0.276	0.387	0.094	0.69% <u>.</u> °						
	0.007	<i>₽</i>	Q.009 Ş	\$ \$602 W						
	0.199	0.145		4 \$						

In italics: values pass the trigger of 0.1µg/4

Table 9.6.1-23: Tier-2a (TDS) PEC_{gw} of BYI 02960 – Use in Lettrice, multiple opplications (glasshouse use), every 2nd year (PDS)

	BYI 02960  (glass house use / every 2 nd year / EDS)  Lettuce, 1 st cropping, every 2 nd year, Lettuce, 2 nd cropping year / EDS)  PEARL PELMO PEC ₂ PEC ₂ PEC ₂ PEC ₂ PEC ₃ PEC ₂ PEC ₃ PE	Q.
Scenario	Lettuce, 1st cropping, every 2nd year. Lettuce, 2nd cropping	ing, every 2 nd year,
	2x 125 g0na 8 0 2 2x 2	5 g/ha
	PEARL PLIMO PEARL	PELMO
	PEC	$PEC_{gw}$
		[µg/L]
	0.085 4 0.955 0.423	0.079
		0.339
	0.028  0.049	-
	0.222	0.198
	9.102 9.1152 9.1154 0.199	0.271
	0.002	0.001
	0.003	-

In italics: values pass the trigger of 0. bug/L

For the greenhouse use in lettuce, using the Ter 2 approach (TDS) the trigger is met for the scenario for annual applications and for the scenarios for the early season uses every second year, even considering the conservative use of the outdoor model.

### **Conclusion**

For all the uses considered safe use can be demonstrated in at least 1 scenario even considering tier 1 calculations. When higher her (Tier 2) simulations are considered the calculated PEC_{gw} is less than the trigger is several scenarios.

Tier 2, IIIA, Sec. 5, Point 9: BYI 02960 SL 200 G

# IIIA1 9.6.2 Relevant metabolites, degradation and reaction products PECgw values

PEC_{gw} for BYI 02960 metabolites

For BYI 02960, the metabolites difluoroacetic acid (DFA) and 6-chloronicotinic acid (6-CNA) were assessed.

### **Use in Hops:**

Tier-1:

Report: KIIIA1 9.6.2/01,

groundwater recharge based on models FOCUS PEARL and FOCUS Hops in Europe Title:

Report no. EnSa-12-0089 Document No M-427737-01-1

**Guidelines:** FOCUS 2000, SANCO/321/2000, rev. 2

> FOCUS 2006, SANCO 10058 2005, Tev. 2 FOCUS 2009, SANCO/13.144/2019, version 1

FOCUS 2010, version 2.0

GLP: No (calculation)

Tier-2a (DFOP):

Report:

Tier 2a (DEOP) FPF PECgar EU: Predicted environmental concentrations in groundwater Title:

recharge based on model Focus Bearl and Focus Pelmo - Use in Rops in Europe - Fupyra furope (BYI 92960) Pifluoroacetic acid (DFA) - 6 Chloronicotinic acid (6-

Report no. M-427991-01-1 K

FOCU\$2000, SANCO/321/2000, rex\$2 **Guidelines:** 

> FOCUS 2006, SANCO/10058/2005 rev. 2 FOCUS 2009, SAOCO/13144/2010, version 1

FOCUSÕÕ10, version

GLP:

Tier-2a (TDS

Document No

**Report:** .; 2012

Tor-2a (DDS) - FOF PEGW EUR. Predicted environmental concentrations in Title:

Froundwater recharge based on Phodels FOCUS PEARL and FOCUS PELMO – Use in

Hops in Europe

Report no. En Sox-12-0091 M-42798 -01-1 Document No

FOCUS 2000 SANCO/321/2000, rev. 2 **Guidelines:** 

> FOÇES 2006, SANCO/10058/2005, rev. 2 FØCUS 2009, SANCO/13144/2010, version 1

FOCUS 2010, version 2.0

No (calculation)

Materials and Methods: PEC_{gw} for the metabolites were calculated using the approach, scenarios and application described for the calculations for the parent compound in Point 9.6.1.

Compound specific input data for the metabolites are summarised together with the data of the parent compound in Table 9.6.1-4.



Findings: The 80th percentile concentrations for BYI 02960 metabolites for the different EU scenarios are presented in Table 9.6.2-1 for Tier 1.

<u>Tier 1:</u>

Table 9.6.2-1: Tier 1 PECgw of BYI 02960 metabolites (after application of 150, g BYI 029600 a) in Jops

	D	ifluoroacet	ic acid (DFA	A) 💯	6-Ch	oronicotin	ic acid (6-0	NA)
		$PEC_{gw}$	[µg/L]		Q	PECgw	[pog/L]	
Scenario	every	year	every 2	nd year	eyery	year 🎽	💚 evony 2	nd year 🐇
	PEARL	PELMO	PEARL	PELMO	PEARL	PELMQ	PEARL	<b>PELM</b> Ø
	1.074	0.939	0.553	©0.489	Q.010	y 0.00 <b>Q</b>	, <b>0</b> 004 ©	0.00
	1.423	1.395	0.678	0.669	Z0.011€	0.043	0.00¢	Q. <b>9</b> 06
	0.941	0.953	0.46	<b>.</b> #67 ≰	T 0.0 <b>69</b>	<b>3</b> .010	0.004	0.004
	0.753	0.709	0,393	0.360 ₇	Q <b>\$</b> 07	©0.009	<b>€</b> 303 €	~ 0.00 <b>\$</b>
	0.597	0.581	<b>20290</b> ≈	0.288	≈0.006 Å	0.00	0.003	0,093
	0.635	0.477	<b>0.334</b>	0,266	C0.005	Ø. <b>9</b> 02 4	~ 0.0 <b>9</b> Q	<b>£</b> 001
	0.596	0.602	0.369	<b>29</b> .271	0.604	J.004 V	0,002	0.002

In italics: values pass the trigger of 0. kg/L

PECgw values for the metabolite DFA are above 0.1 pc/L for all sconarios (both BEARK and PELMO), and for applications taking place every year or every 2nd year, respectively.

PECgw values for the metabolite 6-CNA are below 0.1 mg/L for all scenarios (both PEARL and PELMO) for applications taking place every year year, respectively. There are no concerns for groundwater for this metabolite.

Additionally, for diffeoroacetic acid (DFA), higher tier have been performed, the results are summarized below.

2a (DFOP): PECgrof difluoroacetic acid DFA) in hops (1 x 150 g/ha of parent)

Scenario A	G every	<b>D</b> ifluoroaceti	ic acid (DFA)	
Scenario A		PFC	[µg/L]	
Scenario 🔬 💛 🐒	PEARL	Zyear 💮 💮	every 2	^{2nd} year
	PEARL 💢	PELMO	PEARL	PELMO
	\$.008.°°	0.875	0.528	0.464
	1.3 <b>8€</b> ▽″	1.335	0.667	0.656
	0.993	0.931	0.458	0.473
	<b>Q</b> 667	0.655	0.360	0.329
	_@0.513	0.500	0.248	0.248
	<b>⋄</b> 0.565	0.407	0.302	0.241
	0.523	0.504	0.272	0.235

Tier 2a (TDS):

Table 9.6.2-3: Tier 2a (TDS): PEC_{gw} of difluoroacetic acid (DFA) in hops (1 x 150 g/ha of parent)

		Difluoroacetic acid (DFA)					
		$PEC_{gw}$	[μg/L]Ô				
Scenario	every		🍣 every 2	2 nd year 🎺 📗			
	PEARL	PELMO	« PEARL	<b>PELMO</b>			
	1.007	0.895	🗸 0.516 🐒	Q Q.4850 X			
	1.388	) 1.335	0.656	<b>0.647</b>			
	0.912	0.933	0.439	\$\tag{0.448}			
	0.701	0.671	0.364	Q 0.343 K			
	0.541	0.538	· 0.261	(C263 C			
	0,502	40.420 O	<b>®</b> 296√0 ⁸	©0.234€			
	0.514 0.514	<b>20</b> .525	, © 0.25%	0.230			

In italics: values pass the trigger of 0.1µg/L

In **bold**: values pass the trigger of  $0.75 \mu g/s$ 

### **Conclusion:**

The groundwater concentration of the metabolite of any seenario at Tier 1. The PEC in groundwater for the metabolite DFA play exceed the 0.1  $\mu$ g/L and also the 0.75  $\mu$ g/L

trigger, the concentration was 10 µg/L % all scenarios. The relevance of the metabolite has been assessed in accordance with Sanco 221/2000 - 10 (2003): "Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater. and the metabolite was no relevant in terms of efficacy (see KIIA 8.14.1, M. 386333-01-1), genotoxicity and toxicity (see KIIA 5.8/01 - 05) and has also been considered in the dietary risk assessment (see KIIA & 9).

Please note: DFA was considered in the dietary rish assessment line it is a constituent of the plant residue definition.

Report:

PPF PF@gw ELR: Predicted environmental concentrations in Title:

ground water recharge based on modes FOCUS PEARL and FOCUS PELMO – Use in

Lettuce in Europe

∘EnSa-12-0097 Report A Document No

FOCUS 2006, SANCO 10
FOCUS 2009, SANCO 23
FOCKS 2010, Version 2.0
No Galculation) **Guidelines:** FO@\$ 2000, SANOO/32@2000, rev. 2

FOCUS 2006, SANCO/10058/2005, rev. 2 FOCUS 2009, SANCOQ 3144/2010, version 1

### Tier-2a (DFOP):

**Report:** 

Title:

Report no. Document No

**Guidelines:** 

**GLP** 

### Tier-2a (TDS):

Report:

Title:

Report no. Document No

**Guidelines:** 

GLP

Materials and Methods. PEC, for the metabolites were calculated using the approach, scenarios and application described for the calculations for the parent compound in Point 9.6.1.

Compound specific input data for the metabolites are summarised together with the data of the parent compound in Point 9.6.1

Findings: The PECQ values for the metabolities for the different EU scenarios are presented for field and glasshouse uses in the following tables.

<u>Tier 1: Single Application (field use)</u>

Table 9.6.2-4: Tier 1 PEC_{gw} of BYI 02960 metabolites (field use in lettuce, 1st cropping)

				Field	d use			
			Lettuce, 1	st cropping,	1 x 125 g/h	a of parent		
	D	) Oifluoroaceti	ic acid (DF.	<b>A</b> )	6-ch	ıloronigotin	ic acid (6-C	NA) 🖓
Caanaria		$PEC_{gw}$	[µg/L]			PECgw	[μg/L] 🔊	
Scenario every year every 2 nd year					ever	y year	eyery 2	2 nd Øear 🏑
	PEARL	PELMO	PEARL	PELMO	PEARL	<b>Æ</b> ELMO	PEARL A	PELMO
	1.476	1.085	0.687	0.515	0.009 2	0.006	Ø.004 S	0.003
	2.382	1.815	1.110	0.401	0.0150	0.015	~ 0.00 <b>&amp;</b>	<b>\$</b> \$06 &
	2.373	2.013	1.106	<b>2</b> 0.954	0.0 <b>Q</b> \$	0.007	0,003	©0.003€
	1.461	1.261	0.712	©0.611	2012	v 0.011 €	<b>√</b> Ø005 Ø	0.005
	0.760	0.715	0.361	0.315	Ø.008 ₂ ?	0,000	D.004	0.005
	0.383	0.289	0.193	<b>0.134 </b> ≰	J < 0.00J	Ø.001	× <0.001	₄ <0.001
	1.056	0.875	0.519	<b>0.412</b>	0,697	00.005	0.003	~0.00 <b>2</b> ,°

In italics: values pass the trigger of 0.1 μg/L 🛴

Table 9.6.2-5: Tier 1 PECgw of BYI 02960 metabolites (field use in lettuce, Od cropping)

				<u>~'~~</u>		<u>Jana an</u>		Q
		Q,		Field cropping, A)  yad year  PELMO  0.607	l ose			
	ъ	.a Ø . ×	Lettuce, 2"	" crepping.	<b>4)</b> x 125(g/h	a of parent	\(\text{\mathbb{g}}\)	YBT A Y
	ע	THEO TO A CEL	ic acid (DF.	A)0° (Ç	o -cn	loronicotun Dec	ic actor (6-0	CNA)
Scenario	OT/OMY	W PECgw		Ind wood	A CALLON	Y PECgw	[μg/L]   இ. ovom: 2	2 nd year
	PEARK	PELMO	OPEARS	Z YEAT PRLMO®	DEARY.	PEY MO	PEARL	PELMO
	1.701	325 C	0.703	\$607 O	0.012	0.0080	0.005	0.003
	2632	© 2 325	@ ₁₂₅₄	PKLMO 0.607 1.120	0.012 0.020 ©	0.04	0.009	0.008
	₩ 1 583 ×	1.995	\$0.750	A) 3 /	© 0.014	@013	0.006	0.006
	1,135	\$\frac{105}{105}\cdots	0.589	€ 0.556	0.045	\$0.016	0.006	0.007
	<b>9</b> 577	0.416	Ø <b>2</b> 73 \$	0.18%	Ø.001	< 0.001	< 0.001	< 0.001
In italics: values pas	ss The trigge	r of 0,1 μg/1	L S					
	Z.		<del>}</del> 'ò'	.0				
ÆĞ'	, Ø				°. O ₁			
ν γ		Y L		Ý (L)	27			
Ä				0'	7			
Q.		Š Į		Ş Ş	,			
				/ _{&amp;}				
.A	8			. W				
	, Q							
	~ ~ · · · · ·	<b>A</b>		<b>\$</b> "				
				,				
<i>*</i>	\ \(\alpha\)		A 0.					
, S	4		$\mathbb{Q}'$					
		*	<b>W</b>					
N S	»		<b>Y</b>					
	.1 ~							
		ř						
Scenario  In italics: values par	"O"			\$0.607 \$1.130 \$0.556 \$0.185 \$0.185				

Tier 2, IIIA, Sec. 5, Point 9: BYI 02960 SL 200 G

Tier-2a (DFOP):

Single Application (field use):

Table 9.6.2- 6: Tier 2a (DFOP) PEC_{gw} of difluoroacetic acid (DFA) (field use in lettuce)

			D	ifluoroacet	ic acid (DF	A) 💍	,	
				$PEC_{gw}$	[µg/L]	O,	·	
		Field	d use				d use	ZG (
		Lettuce, 1st cropping,				Lettuce, 2 ⁿ	d cropping,	
Scenario	1 x	125 g/ha of	parent (DF	OP) © 2 nd year ©   PELMO	1 x	12/5 g/ha of	parent (DF	OP)
	ever	y year	every 2	2 nd year ^{⊮°}	ever	year	ø everx PEARI	2 nd year
	PEARL	PELMO	PEARL	PEEMO	PEAR	PELMO	PEAR	PEEMO
	1.377	1.025	0.633	<b>20.473</b>	1.70	<u>1.369</u> √	0,807	©0.616®
	2.305	1.769	1.075 🔏	0°0.828	<b>2</b> ,728 .	© 2.473√	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.1 <b>20</b>
	2.448	2.014	1.098	0.935	\$ - J		() - X	IJ'
	1.493	1.245	0.68	<b>©</b> 581 ×	1.65%	<b>1</b> .573	0.761	<b>0.724</b>
	0.620	0.590	0,296	0.276	1,298	01.212	0598	° 0.564√
	0.336	0.240	30/150	y 0.108	<b>№0.567</b>	0.3 <b>7</b> 3	ي 0.241 ^{ال}	0.464
	1.219	0.955	@70.53 <b>7</b> ~	0 <b>%</b> 14 .	F - 0		~ - <del>~</del>	- W

In italics: values pass the trigger of 0.1 µ

Table 9.6.2-7: Tier 2a (TDS): PECgw of BYI 02960 metabolites (Field 2)

		. //	اگم .			¥ ,	<b>V</b> ' <b>N</b>	,	
		<		$\bigcirc$ D	ifororoaceti	ic acid∕(DF			
			W 3	Ø .*	ii Ororoaceti S PKO gw	[μg/L] (			
			∕ ુ ÖField	l use ^t cropping,			@, Field	l use	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Lettuce, 18	i cropping,	~ ~ ~	? Š	Lettuce, 2 ⁿ	^d cropping,	
Scenario		∂\1 x	(125 g/ha of	f parænt (T		7 1 x eve@	125 g/ha of	f parent (T	DS)
,	Ö	Over	y year	every 4		o eve	year /	every 2	^{2nd} year
Ò		PEARL	PELMO	PEARI	PELMO	PEAR	PELMO	PEARL	PELMO
7		1.363	994	0.628	Q.469	1.603	1.236	0.723	0.561
		2,289	, O) .744, ~	1 0 67 %	0.865	² 2572	2.202	1.221	1.072
		≈ Q .278 🗸	1.930	~¶.049 ≪	0,\$26	1.542	1.417	0.721	0.676
		° 1.37 Z	1 \$208 ₹	0.675	0.574) -	-	-	-
	a,	0.698	ූ ී ම්.668	0,330	0.306	1.083	1.038	0.544	0.515
	0	0C351 (0.257/	% 171 %	√ N 110	0.517	0.353	0.246	0.164
25	•	0.957 🛇	0.808	\$0.44\sqrt{9}	0347	-	-	-	-

In italics: Walues pass the Opigger \$10.1 \(\mu \mathbb{U} \).

In bold: Values pass the trigger of 0.75 µg/L

Considering the use in the field PEG $_{gw}$ values for the metabolite DFA are above 0.1 $\mu g/L$ for all scenarios (both PEARL and FELMO), and for applications taking place every year or every 2nd year, at Tier 1 and Tier 2

PECgw Calues for the metabolite 6-CNA are below 0.1 µg/L for all scenarios (both PEARL and PELMO) at the 1, for applications taking place every year or every 2nd year, respectively. There are no concerns for groundwater for this metabolite.

Tier 1: Multiple Applications (glasshouse use):

Table 9.6.2- 8: Tier 1 PECgw of BYI 02960 metabolites (glasshouse use in lettuce, 1st cropping)

				Glassho	ouse use			0
			Lettuce, 1	st cropping,	2 x 125 g/h	a of parent		Q `
	D	ifluoroaceti	,	A)	, 2 x 125 g/ha of parent 6-chloronicotinic acid (6-CNA) PEC _{gw.} [μg/L]			
Scenario		PEC_{gw}	[µg/L]			PEC	[µg/L]	
Scenario	every year		every 2 nd year		ever	y year 🧳	every 2 vear 🔾	
	PEARL	PELMO	PEARL	PELMO	PEARL	PELMO	PEARL	"PELMO
	3.155	2.326	1.496	1.116	0.022	Q2Q16	0.00	20 07 [6
	5.048	3.857	2.375	1.923	0.038	J.037	0,079	~0.015€
	5.179	4.370	2.496	2.043	0.021	© 0.018	Q 008 ~C	» 0.00°
	3.144	2.673	1.560	1.313	0.028	0.027	G0.013	00°12 _{(c}
	1.609	1.481	0.753	₩ 673	0.020	0.022	0.009	₽.010 @
	0.832	0.637	0.438	6 0.302	0.002	\$0.00.D	< £ 2001	<0.001
	2.355	1.921	1.181	0.948	0.019 %	0.015	√ 0.008√∫	0.006

In italics: values pass the trigger of 0.1 µg/L

Table 9.6.2-9: Tier 1 PECgw of BYI 02960 metabolites (glasshouse use in lettuce, 2nd cropping)

						<u> </u>		· ·	$\overline{\mathbf{v}}$	
					Glassho	onse use				
		D.S.	Cettuce, 2 nd cropping, 2 x 125 g/ha of parent Diffuoroacetic acid (DCA) PEC _{gw} [μg/L] PEC _{gw} [μg/L] PEC _{gw} [μg/L]							
			Diffuor oacetic acid (DEX) PECgw [µg/L] PEwgw [µg/L]							
Scenario		A ONORY		[µg/L]/@ every 2	nd year	O PVON	year	every 2	nd vear	
Section		PEARL	PELM	PEARL	PELM	PEARL	RELM (PEARL	PELM	
	9		Q)	\$ 1	, O,		$\lozenge' \circ \lozenge$	¥	0	
	4	3.625	≥ 864 (1.726	1.032	& 0.030 ~	0,003	0.012	0.009	
		5 % 68 _	∜5.020 ₀ ,	2,653	×2.409	0.050	Q:049	0.023	0.023	
		&3.377 Ó	3.943	1.619	[©] 1.53€	0,034	@ ₀ 0.032	0.015	0.014	
		0"2.493"	2.353 🛦	√1.26 9 √	1,191	0 .035	0.039	0.016	0.017	
		1,297	% 0.91 1 , ©	0.637	20,428	₩0.003	0.001	0.001	< 0.001	

In italics: values pass the trigger of 0.1 μg/L

Tier 2 a (DFOP): Multiple Applications (glasshouse use)

Table 9.6.2-10: Ther 2a (DFOP) PEC_{gw}of difluoroacetic acid (DFA) (glasshouse use in lettuce)

	, O		O _x D	D uoroa c eti	ic acid (DF.	A)			
	0 ~0			₹ PECgw	[µg/L]				
4	O O	(Pássho	ause use	, W	Glasshouse use				
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	🗘 Lettuce, Ø cropping, 🎺					Lettuce, 2 nd cropping,			
Scenario	≥ 2 x	125 g/ha_of	parent (DF	(QP)	2 x	2 x 125 g/ha of parent (DFOP)			
4	ever	year O	[@everx]	2 nd year	every	y year	every 2	2 nd year	
	PEAR	PELMO	PEARD	PELMO	PEARL	PELMO	PEARL	PELMO	
- C	2.832	£2.087	1,320	0.973	3.592	2.865	1.676	1.319	
	4,7 97	§ 3.49 ½ "	2.218	1.632	5.602	5.007	2.615	2.312	
	% 4.977	4×180 4	© 2.270	1.921	-	-		ı	
Ű	₹ 2.96¥	3 .492	1.371	1.170	3.360	3.076	1.569	1.440	
	1,318	\$ 1.246	0.618	0.606	2.487	2.348	1.143	1.086	
	₽ 0.630 €	0.469	0.290	0.214	1.138	0.748	0.500	0.341	
	2.427	2.007	1.084	0.903	_	_		_	

In italics. Values pass the trigger of 0.1 µg/L

In bold: values pass the trigger of 0.75 μg/L

<u>Tier-2a (TDS): Multiple Applications (glasshouse use)</u>

Table 9.6.2-11: Tier 2a (TDS): PECgw of BYI 02960 metabolites (glasshouse use in ettuce)

						~~~		
			Di	fluoroaceti	ic acid (DI	(A)	~	
				$PEC_{gw}$	[µg/L]	<u>,</u>	Ö	
			ouse use	ĈA	Ĭ.		ouse ase -	
		Lettuce, 1s		, T	Lettuce, 2nd cropping, Q			
Scenario	2 x	125 g/ha of	f parent (T	(DS)	2 x 125 g/ha of parent (TDS)			
	ever	y year	every	rd year	<b>Severy</b>	year 🏻 🍵	every 2	2nd ear 🖔
	PEARL	<b>PELMO</b>	PEAR	<b>PELMO</b>	PEARL	°PELMO	PEARL	<b>PELMO</b>
	2.944	2.143	1.250	1.023	√ 3.45 <b>©</b>	2.7₹1 №	Oi.594©	1.26/1
	4.936	3.736	2.287 g	°1.846	5,524	<b>4</b> .828 <b>3</b>	2.612	2335
	4.968	4.194	©2.383@	1.980	<b>%</b> - ~	) - <del>\</del> \	- ·	4 -
	3.001	2.581	1.473	\$240 a	Q,3.288 [©]	3,030	₫.560 <u>,</u> @	1.476
•	1.479	1.3934	Q.687	0.639	2.369	<b>2</b> 241 _×	, 1.196	10715
	0.764	0.561	,` <b>~9</b> .392 @	0.279	<b>6</b> 140 ,	~~0.76 <b>6</b> ~~	0,571	<b>371</b>
	2.172	<b>4</b> 819 @	¥1.03 <b>4</b>	0.806	Z - D		_@ <del>`</del> - `	_

In italics: values pass the trigger of 0.1 ug/L

In **bold**: values pass the trigger of 0.7% μg/I

Considering the use in the glasshouses the PEC, values for the metabolite DFA are above  $0.1~\mu g/L$  for all scenarios (both PEARL and PELMO), and for applications taking place every year or every  $2^{nd}$  year, at Tier 1 and Tier, 2.

PEC_{gw} values for the metabolite 6-CN are below 0.1 μg/L for all scenarios (both PEARL and PELMO) at tier 15 and for applications taking place every tear or every few year, respectively. There are no concerns or groundwater for this metabolite.

### Conclusion:

The growndwater concentration of the metabolite ocn A did not exceed the trigger in any scenario.

The PEC in groundwater for the metabolite DEA may exceed the 0.1  $\mu$ g/L and also the 0.75  $\mu$ g/L trigger, the concentration was 10  $\mu$ g/L in all scenarios the relevance of the metabolite has been assessed in accordance with Sanco/221/2000 –rev 0 (2003): "Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater", and the metabolite was not relevant in terms of efficacy (see KIIA 8.14.1, M-386333-01-1); genote acity and toxicity (see KIIA 5.8/01 - 05) and has also been considered in the dietary risk assessment (see KIIA 6.9).

Please note: DFA was considered in the dietary risk assessment since it is a constituent of the plant residue definition.

### IIIA1 9.63 Additional field testing

No additional field testing was required.

### IIIA19.6.4 Information on impact on water treatment procedure



### IIIA1 9.7 Predicted environmental concentrations in surface water (PECsw)

No specific information is available for the preparation, however the information on the active substance submitted in the relevant Annex II, Section 7 documents is also applicable. A summary of this information is presented below.

### Summary of fate and behaviour of BYI 02960 in water

BYI 02960 was stable to hydrolysis at all pHs but was Cry rapidly degraded under the influence of photolysis (buffer and sterile natural water) to produce two major transformation products BYI 02960-succinamide. The half-life was calculated to be equivalent to 2.7 days calculated for Greece.

In aerobic water/sediment systems it was concluded that BXI 02960 dissipated spidly from the water phase and was slowly degraded, the half-life in the total system ranged from 190 to 250 days. DFA was formed at a maximum of ca. 6% in one water system, mineralisation to CO was also significant (maximum 8.5% after 120 days). Non-extractable residues remained at relatively low levels throughout the studies increasing to a maximum of 25% in one rediment system with the EYR label. An additional study showed that if present in water the metabolite DFA would be more slowly degraded systems with the formation of CO₂ (max 25%) and low levels of non-extractable residues (max.. 16%)..

max... 16%)...

A proposed degradation pathway is given in Figure 97-1 6

Figure 9.7-1: Proposed degradation pathway in aquatic systems



wote: The degradates to be observed as well as the given maximum values are highly dependent on radiolabel and kind of study considered; Physiphoto-transformation

### PECsw modelling approach

# Calculation of PEC values for the active substance and metabolites according to FOCUS FOCUS_{sw} is a four step tiered approach:

Step 1: In this, the most conservative step, all inputs are considered as a single loading to the water body and worst-case PEC_{sw} and PEC_{sed} is calculated.

Step 2: A refinement is made whereby individual loadings into the water body from different entry routes are considered. Scenarios are also considered for Northern and Southern Europe separately but no specific crops cenarios are defined.

<u>Step 3:</u> An exposure assessment using realistic worst-case scenarios is made. The scenarios are representative of agricultural conditions in Europe and consider weather, soil, crop and different water-bodies. Simulations us the models PRZM, MACRO and TOXSWA.

Step 4. PEC values are refried by considering mitigation measures or specific scenario descriptions on a case-by-case basis.

Note: There are currently no European guidelines for the assessment of exposure of surface water from the use in glasshouses, therefore it was assumed that the use in glasshouses on lettuce is covered by the outdoor field use even considering the different use pattern.

### PEC_{sw} for BYI 02960

Report:

Title:

Report no. Document No

**Guidelines:** 

GLP:

KIIIA1 9.7/01,

FPF PECsw FOCUS EU: Predicted environmental concentrations in surface water and sediment - Use in Hops and Lettuce in Europe
EnSa-12-0071
M-427646-01-1
FOCUS 2000, SANCO/321/2000 FV.2
FOCUS 2003, SANCO/4802/2001-rev.2
FOCUS 2006, SANCO/10058/2005 version 20
FOCUS 2007, SANCO 10422/2005 version 20
No (calculation)

lods: Predicted environmental concentrations in surface water and sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear has a long to the sediment of BYI 02960 bear h Materials and Methods: Predicted environmental concentrations in surface water and sediment (PEC_{sw} and PEC_{sed}) of BYI 02960 have been calculated for the use in hop and lettice in Europe employing the tiered FOCUS Surface Water approach. An relegant entry routes of a compound into surface water (principally a combination of spray drift and runofferosion or frain flow) were considered in these calculations

Details of the parameters used in the calculations are summarised in Table 9

As there is currently no established model for the assessment of exposure of speciace water following application in greenhouses the use is assumed to be covered by the field application even considering the higher use rate of greenhouses as the route of entoy into surface water would be expected to be much lower following the use in greenhouses.

Comparison of actual and calculated use pattern (for FOCUS step 1&2)

Individual Crair	Used for per Season Interception [ga.i. /ha] [days]	cation Plant Interception	Growth Stage	Amount Reaching the Soil per Season application [g a.i. /ha]
Hops, GAP	0 1×150 0 - 0	<b>%</b> -	31-75	-
Hops, simulation	hops 150 y - 5	50 (average crop cover)	31-75	1 x 75
Lettuce (6),	1 x 125	-	12-49	-
Lettuce (F), simulation 1)	vegetables 1 x 125 -	25 (minimal crop cover)	12-49	1 x 93.75

¹⁾ First or second cropping per sear

step 3 actual application dates were determined by the PAT (pesticide application timer) Min SWASH: Details on application timing are summarised in Table 9.7-2.

F = field use

Table 9.7-2 Application dates of BYI 02960 (FOCUS Step 3)

Parameter	Hops	Lettuce		
PAT start date				
rel./absolute	Absolute	Absolute		
Appl. method	ground spray	ground spray	Ţ,	
(appl. type)	(CAM 2)	(CAM 2)	Ø'	
No of appl.	lì ′	2		S b
PAT window				
range	98	Var Range		
Appl. interval	1	var. Range		
11	1	var. Range	<del></del>	
Application	PAT Start	PAT Start  1. Date Date		
Details	Date App	1. Date Date 💆 🧔	Appol. Date	
Details	(Julian Day)	(Julian Day)		
D1 (1et)	_ & _ (	PAI Start  1. Date Date (Julian Day)		W.
D1 (13t)				.4
D2 (1ct)				
Application Details  D1 (1st)  D2 (1st)  D3 (1st)  D3 (2nd)  D4 (1st)  D5 (1st)  D6 (1st)  C1 (1st)  C2 (2nd)  C3 (2nd)  C4 (2nd)  C5 (2nd)  C6 (2nd)  C7 (2nd)  C8 (2nd)  C9 (2		(Jurian Day)	Appl. Date  O4-May 14-May 15-Sep 18-May 29-May	ř Q'
D3 (1st)  D3 (2nd)  D4 (1st)  D5 (1st)  D6 (1st)  R1 (1st)  R2 (2nd)  R3 (1st)  R3 (1st)				
D3 (1st)		2 SO-Apo	04-May	Õ
		$\sim$ (12) $\sim$ $\sim$	14 May	Pa .
D3 (2nd)	()-	♥ 09 Xug 🍣	15 Sep S	
Q		(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	30-Sep 🤝 🤝	
D4 (1st)		7 018-May 0	7 18 <b>-Ma</b> y (₄	
		78-May (13%) - (13%) - (21-Aug (234)	18-May & 29-May O	
D5 (1st)		- 4		
\$ O				
D6 (1st)		ν Φ1-Δυσ «Δ	25-200	
2 1		s. 0 121 214 /	07 On	
D6 (2nd) Q Q		4 1 2 3 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.	
Do (2nd)	7 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
RI (Ist)	01-May 02-3	May \$ 25-Aggr	26-Apr	
	J(122) 6 1 1 1		09-May	
R1\(\text{2nd}\)\(\text{\pi}\)	J- , 🔻 🔊 -	Aug @	20-Aug	
	- A 87   '	© (217)	19-Sep	
<b>₹</b> 2 (1st)	Q' -~	~ 07- <b>M</b> er	22-Mar	
` . Ø . Š		√ (6.7°)	22-Apr	
R2 (2nd)		& Ø6-Aug	06-Aug	
		D (219)	09-Oct	
R3 (14) A		06-Mar	10-Mar	
R3 (130)		(66)	29 Mar	
T*************************************		(00)	26-IVIAI	
R39(2nd)		20-Jun	25-Jun	
		(1/2)	06-Jul	
TK4 (1st)		06-Mar	06-Mar	
	y\$_` _\$P`	(66)	03-Apr	
R4 (2nd) 🗸 🔊 📡	` - 🎤 🚀-	20-Jun	23-Jun	
D4 (1st)  D5 (1st)  D6 (1st)  R1 (1st)  R1 (2nd)  R2 (2nd)  R3 (1st)  R3 (2nd)  R4 (1st)  R4 (2nd)	O	(172)	12-Jul	
	(I) _\(\sigma\)		•	•

Compound specific input data are summarised in Table 9.7- 3.



**Table 9.7-3** Substance specific and model related input parameter for PEC_{sw} calculation of BYI 02960

Parameter	Unit	BYI 02960	
Molar Mass	g/mol	288.7	
Water Solubility	mg/L	3200	
Vapour pressure	Pa	9.1 x 10 ⁻⁷	
K _{oc}	mL/g	98.4	
Freundlich Exponent		0.866	
Degradation		,4	
Soil	days	94,8	
Total System	days	<b>@</b> 28	
Water	days	© 228 €	
Sediment	<b>@a</b> ys	228	
Max Occurrence			
Water / Sediment	%	900	9 49 4
Soil &	<i>‰</i> °	\(\sigma^{\sigma}\) \(\sigma^{\sigma}\) \(\sigma^{\sigma}\) \(\sigma^{\sigma}\) \(\sigma^{\sigma}\) \(\sigma^{\sigma}\)	* <u> </u>
Parameter  Molar Mass Water Solubility Vapour pressure  Koc Freundlich Exponent Degradation Soil Total System Water Sediment Max Occurrence Water / Sediment Soil  FOCUS Step  Procus Step  Aximum PECsw and PECsed values  FOCUS Step  N-EU  N-	s 1 and 2.	are given in Table 9 4 4	
			DEV.C
FQCUS Step	( ) ~	PECs@max	ECsed, max
	<del>}                                     </del>	53.86 × 3	<u>[μg/κg]</u> 7 /3 /0
2 (N-FII)		\$3.00 \( \tag{13.07} \)	12.49
2 (QEII)		1736	16.70
	<b>≈</b> r '%	1 1/1.3/0	10.70
ON-FIR	y v	6410 O **	6 249

### **Findings:**

Step 1 and 2: The maximum PEC values

Maximum PEC_{sw} and PEG_{sed} values for BYI 02990 at Step **Table 9.7-4** 

Crop Appl. rate		FOC		\$ 0°	PECs@max [µg/L]	y . Ø	PC _{sed, max} [μg/kg]	
Hops					\$3.86	~~ ×	<b>3</b> 43.49	
1 x 150 g/ha		× 2(1	y-EU)		\$13.07		12.49	
	$\approx$	\$ 2,6	₽EU)		× 17,36		16.70	
Lettuce	, W	201	N-ĔŬ∰ ઁ	\$ \\ \frac{3}{2}	6.410 G	) 4	6.249	
1 x 125 g/ha (F)		~ ~ 2 (S	S-EU)	. 0	&11.78L	<b>W</b>	11.51	

Step 3: The maximum PECOw and PEC values for relevant FOCUS Step 3 scenarios are given in Table 9.7- & Time dependent PF@ values or pore-weighted average concentrations are not included in this summary, because they were not used in the risk assessment. However, all values are given in the report.

ser of BYL02960 for relevant scenarios at Step 3 following **Table 9.7-5** 

Step 3	Entry Foute BY	2960: Hops, 1 x 150 g/h: PEC _{sw. max}	a
Scenario	EntryCoute		- ****,
		[µg/L]	[µg/kg]
R1, pord	Spray dr. S	0.394	0.795
R1, stream	nray drift	5.531	0.362
Tr, sucam			



**Table 9.7-6** Maximum PECsw and PECsed values of BYI 02960 for relevant scenarios at Step 3 following application to lettuce, field applications

Step 3	В	3YI 02960: Lettuce, 1 x	125 g/ha (F)
Scenario	Entry route *	PEC _{sw, max} [μg/L]	PEC _{sed, max}
D3 (ditch, 1st)	S	0.830	0.380
D3 (ditch, 2nd)	S	0.840	<b>∆</b> 0 <b>3</b> 60
D4 (pond, 1st)	D	1.035	<b>4</b> /545 <b>4</b>
D4 (stream, 1st)	S	0.794	E 1.772 0
D6 (ditch, 1st)	D	1.268	1.766
R1 (pond, 1st)	R	0.060	0.162
R1 (stream, 1st)	R 🚝	D.858 ⊘°	<b>9</b> .211
R1 (pond, 2nd)	R 🖏	0.097 . Q	0.2540
R1 (stream, 2nd)	R 🐇	6° 2.186 6	(F D 0334 V
R2 (stream, 1st)	R O [*]	© \$\infty 1.586 \tag{\chi}	0.521
R2 (stream, 2nd)	R ®	Ø 0.9 <b>4</b> 0	0.3420
R3 (stream, 1st)	 KR X	2,226	0.3420
R3 (stream, 2nd)	₽ R	Q	~ [*011 2°
R4 (stream, 1st)	Q & X	¥ 0.522 كى ك	7 5.054 5 £ 1.2559
R4 (stream, 2nd)		4.868	\$\tilde{\mathcal{E}}\tilde{\mathcal{E}}\tilde{\mathcal{E}}\tag{1.25}\tilde{\mathcal{E}}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}\tag{2.55}2.55

^{*} S = spray drift, R = run-ofQD = drainage

Sec Values for relevant FOCUS Step 4 scenarios with mitigation Step 4: The maximum PEC_{sw} and PEC options are given in the following tables

Maximum PECsw and PECsd values of BXT 02960 at Step 4 including drift reduction **Table 9.7-7:** (without buffer) Tops (1 x 150 g/ha)

Step 4				BYLO	2960: <b>P</b> o	ps, 1 📈 15	60 g/ha		
Buffer Width & Type	FOCUS Scanario	9 4	PEÇSW Drift Re	[μg/ <b>L</b> ] duction	. Ø 1		PECsed Drift Ro	[µg/kg] eduction	
& Type	Scenario	25%	50%	<b>₹75%</b> ,≈	90%	25%	50%	75%	90%
Om (drift)	R1 (pond, 1st)	9.296	<b>₽</b> 0.197‰	0.099	0.039 0.353	0.607	0.415	0.218	0.094
om (am)	R Stream, st)	4.149	9 2.766/1	1.383	0.353	0.273	0.184	0.093	0.072
	FOCUS Scenaries  R1 (pond, 1st) R   Ostream   st)								

F = Field use

Table 9.7-8: Maximum PEC_{sw} and PEC_{sed} values of BYI 02960 at Step 4 including buffer zones and drift reduction – Hops (1 x 150 g/ha)

Step 4		BYI 029	60: Hops,	1 x 150 g	g/ha				Q°
Buffer Width & Type	FOCUS Scenario	Drift Re	PECsw [μg/L]       PECsed [μg/kg]         Drift Reduction       Drift Reduction         0%   50%   75%   90%   0%   50%						\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5m	R1 (pond, 1st)	0.445	0.223	0.111	0.045		<b>9</b> .465	75% (%)	0:105
(drift)	R1 (stream, 1st)	4.515	2.258	1.129	0.043	$0.891$ $0.297$ $\triangle$	0.151	0.244	0. <b>a</b> y3
10m	R1 (pond, 1st)	0.253	0.126		0.025	0.522	0.273		0.061
(drift & run-off)	R1 (stream, 1st)	2.354	1.177	0.589	0.235	0.137	0.080	0.04	0.030
15m	R1 (pond, 1st)	0.141	0.071	0.035	0.014	<b>₽</b> \$02	0.158	0.083	0,036
(drift & run-off)	R1 (stream, 1st)	1.554	0.777	0.388		0.104	0.053	0.0\$2	<b>0</b> .03
20m	R1 (pond, 1st)	0.078	0.039	<b>0-</b> 02	0.008  %	0.1 <b>%</b>	0,091	<b>0</b> .048	0.021
(drift & run-off)	R1 (stream, 1st)	0.708	0.354 @	0.177	0.07	0.048	0.025	0.01 <i>7</i>	0.046

The mitigation from 10 m onwards includes spray drift and concurrent run off buffer. However, as can be seen from the linear decrease of PECsw values with increasing drift reduction, the PECsw is always drift dominated and the run-off buffer does not drive the PECsw.

and the run-off buffer does not drive the PECsw.

The step 4 PECsw for the pond scenario with 5 in buffer and 0% drift reduction is higher compared to the step 3 value. This is due to the default buffer width of 6 in already included in step 3 calculations resulting in a lower drift percentage of 2.63% compared to 2.95% in step 4.

Table 9.7- 9: Maximum PEC@and PECsed values of BYI 02060 at Step 4 including drift reduction (without buffer) – Lettuce (12, 125 g/ha, field use)

			<u> </u>	<u>~</u>	<u>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </u>		, Q		
Step 4	· **	0'	B	<b>1</b> 02960:	Lettuçe, 1	x 125 g/h	a (field u	se)	
Buffer			PECSW	[μ <b>g</b> /[L]	Ó 4		PE/Sed	[µg/kg]	
Width	FOCUS Scenario		Drift Re	eduction	, y Ô	, N	PMIT RO	duction	
& Type		25% 25%	250%	eduction	90%	25%	<b>~5</b> 0%	75%	90%
	D3 (diffeh, 1sto			0.235	Q.Ødī 7	§9.335	0.334	0.333	0.332
	D3 (ditch, 2nd) D4 (pond st)	%643 €	, 0.4467	0.249 1.033 0.721	0.130 1.033	0.419	0.399	0.398	0.397
	Da (pond st)	ຕ 1.03 <b>4</b> ⊙ຶ	1.0234	£033 €	1.033	4.538	4.531	4.524	4.520
	D4 (strewn, 1st)	0.721 14268 50.055 &		$\sqrt{0.721}$	0.721	4.538 1.771	1.771	1.771	1.771
9/	D6 (ditch, 1st)	<b>1</b> 5.268	0.721 2.268 0.050	0.721 1.268	1268	Ør.766	1.765	1.765	1.764
Ç	R1 (pond, 194)	<b>20</b> .055 &	0.05Q	0.3945	. 043 O	⁹ 0.148	0.134	0.119	0.111
0m	KI (SHEWIN, ISU)	₩ U.O.₩O ₁	0.838	L % L X X X .	0.858	0.210	0.208	0.207	0.206
	R1 (pond, 2nd)	വരാമ്	0,087	<b>∜</b> ∕∩ ∩ \\2′`≫	0.070	0.240	0.225	0.210	0.201
(umi)	R1 (stream, 2nd)	1986 51.586	Ų1.186€	1.186	<b>©</b> r86	0.333	0.332	0.330	0.330
	R2 (stream st)	Ĵ7.586∂	1.586	1586	\$ .586	0.520	0.520	0.519	0.518
	R (stream, 2nd)	0.940	0.940	<b>29.940</b>	0.940	0.342	0.341	0.341	0.340
	R3 (stream, 1st)	2,226	Q226	₽ 2.22 <b>6</b>	2.226	0.466	0.462	0.459	0.456
Ô	R3 (stream, 2nd)	<b>3</b> 3570	J3.570	3. <i>5</i> Ø	3.570	1.006	1.000	0.995	0.991
	R4 (stream 1st)	<b>3</b> 9.392	0.26	<b>B</b> 731	0.074	0.041	0.027	0.025	0.024
	R4 (stream, 2nd)	4.808	4808	<b>¾</b> .808	4.808	1.253	1.251	1.249	1.248
	R1 (stream, 2nd) R2 (stream, 2nd) R3 (stream, 1st) R3 (stream, 2nd) R4 (stream, 1st) R4 (stream, 2nd)			<b>Y</b>					

Tier 2, IIIA, Sec. 5, Point 9: BYI 02960 SL 200 G

**Table 9.7- 10:** Maximum PEC_{sw} and PEC_{sed} values of BYI 02960 at Step 4 including buffer zones and drift reduction - Lettuce (1 x 125 g/ha, field use, 5 and 10m buffer zones

Step 4 Buffer			B' PEC _{sw}		Lettuce, 1	x 125 g/h		se) [μg/kg]	
Width	FOCUS			eduction				μg/kg  eduction	
& Type	Scenario	0%	50%	75%	90%	0%	56%	75% (	
ш турс	D3 (ditch, 1st)	0.252	0.145	0.091	0.059	0.333	<b>©</b> .332	0.332	0.33
	D3 (ditch, 2nd)	0.265	0.158	0.105	0.073	0.398 🚁	0.397	0.352	20.39
	D4 (pond, 1st)	1.035	1.034	1.033	1.033	4.541	4.529	4523	4.52
	D4 (stream, 1st)	0.721	0.721	0.721	0.721	1.70	1.771	A.771	1.70
	D6 (ditch, 1st)	1.268	1.268	1.268	1.268	1,765	1.764, @		15/6
	R1 (pond, 1st)	0.057	0.049	0.045	0.042	Ø.154	0.136	0.⁴₽7	, OO.11
_	R1 (stream, 1st)	0.858	0.858	0.8 <del>3</del> 8	0.858	\$0.20 <b>8</b> 0°	0.297	<b>Q</b> 0.206	0.20
5m (drift)	R1 (pond, 2nd)	0.094	0.086	<b>10</b> 5082	0.079	0,247	0.221 \	O _{0.20} %	0.20
(dilit)	R1 (stream, 2nd)	1.186	1.186	1.186	1.186	<b>Q.3</b> 31	<b>9</b> 0.33 <b>0</b>	0.33	32
	R2 (stream, 1st)	1.586	1.586 €	1.586	<u>]</u> %\$86	\$0.51 <u>2</u> %	0.548	0.518	0.513
	R2 (stream, 2nd)	0.940	0.940	0,940	Ø.940 €	0.34P	0.341	© 0.34 @	
	R3 (stream, 1st)	2.226	2.226	`\$\.226 _\ ^	¥ 2.2 <b>2</b> 6,	0,460	<b>3</b> 7.458,	0.456	0.43
	R3 (stream, 2nd)	3.570	3,870,%	3.570g	3.500	997 3	y 0.993	0:291	<b>₽</b> 0.99
	R4 (stream, 1st)	0.191	Q0.095 [©]			(J0.025)	0.025	0.024	$\bigcirc_{0.024}$
	R4 (stream, 2nd)	4.808	4.808	<b>4.8</b> 08	₹¥.808	1.250	13248	\$1.24 <i>7</i> \$	1.24
	D3 (ditch, 1st)	0.15Q,"	0.094	0.066	0.049	0332	් ⁰ .332ලි		0.332
	D3 (ditch, 2nd)	0.365	<b>₹0</b> .108 @		0,663	<b>€</b> 9.397 €		<b>Q</b> .396	0.39
	D4 (pond, 1st)	©034	≫1.032 _y	1.033	⁴ √.033 ॄ@	√4.53 <b>4</b>	4.526	<b>€</b> .522	4.51
	D4 (stream, 1st)	0.721	0.721		_⋛ 0.721 ∜	1,7%	, \$0.771	1.771	1.77
	D6 (ditch, 1st)	1.200	£268	<b>1.26</b> %	1.268	1,764 ×	√1.76 <b>4</b> √	1.764	1.76
	R1 (pond, 1st)	0.029	0.022		95018 ₄	0.083	0.064	0.055	0.049
10m	R1 (stream, st)	Ø.389∡	0.389	0.989	°>Ø.389⊖	0.097	0.997	0.097	0.09
(drift and	R1 (pond and)	0.043		<b>3</b> 0.034		0.157	Ø.103	0.094	0.083
run-off)	R1 (stream, 2nd)		30540 ×	0.5460	0.540	- %' - ' @'	0.157	0.157	0.15
	R2 (stream, 1st)	0.716 ¢	0.716	0.718		0.228	0.228	0.228	0.22
	R2 (stream 2nd)	0.422	0.422	0.422	0.422	0.151	0.151	0.151	0.15
	R3 (stream), 1st)	1.009	1.009	1.009		Q.219	0.217	0.216	0.210
~ (	D4 (stream, 2nd)	19000	\$1703U \	1.630	1630	<b>39.452</b>	0.450	0.449	0.448
	R4 (stream, 19t)	3 104	2 1691	\$0 104	2.1847	0.012 0.585	0.012 0.584	0.012 0.584	0.01
	R2 (stream, 2nd) R3 (stream, 2nd) R4 (stream, 2nd) R4 (stream, 2nd)			0.634 32/184					

Tier 2, IIIA, Sec. 5, Point 9: BYI 02960 SL 200 G

Table 9.7-11: Maximum PEC_{sw} and PEC_{sed} values of BYI 02960 at Step 4 including buffer zones and drift reduction – Lettuce (1 x 125 g/ha, field use, 15 and 20m buffer zones

Step 4			BYI 02960: Lettuce, 1 x 125 g/ha (field use)  PEC _{sw} [µg/L]  Drift Reduction  Drift Reduction								
Buffer	FOCUS	PEC _{sw} [μg/L]			PEC _{sed} [μg/kg]						
Width			Drift Re			Drift Reduction					
& Type	Scenario	0%	50%	75%	90%	0%	50%	75% (	90%		
	D3 (ditch, 1st)	0.115	0.076	0.057	0.045	0.332	<b>©</b> .332	0.332	0.332		
	D3 (ditch, 2nd)	0.129	0.090	0.071	0.059	0.397 🛎	0.396	0.396	<b>396 4</b>		
	D4 (pond, 1st)	1.034	1.033	1.033	1.033	4.531	4.524	4521 %	<b>4.51%</b>		
	D4 (stream, 1st)	0.721	0.721	0.721	<b>3</b> .721	1.70	1.771	M.771	1.700		
	D6 (ditch, 1st)	1.268	1.268	1.268	1.268	1,764	1.764, @	1.76	15/64		
	R1 (pond, 1st)	0.018	0.013	0.01	0.009	Ø.055	0.03	0.16 2	© .027 ×		
15m	R1 (stream, 1st)	0.204	0.204	0. <b>2<del>0</del>4</b>	0.204	$\lozenge{0.05}$	0.052	<b>Q</b> .052	$^{\circ}$ 0.052		
(drift and	R1 (pond, 2nd)	0.025	0.021	<b>20</b> 018	0.017	0,0%	0.060 \	$\bigcirc_{0.05}$	Q. <b>Q4</b> 7		
run-off)	R1 (stream, 2nd)	0.283	0.283	0.283	0.289	<b>Q.0</b> 86 _	<i>9</i> 0.08 <i>5</i> 0	0.085	0.085		
	R2 (stream, 1st)	0.375	0.375 €	0.378	Q£3⁄75	√0.122 ®	0.122	0.122	0.122		
	R2 (stream, 2nd)	0.220	0.220	0220	@.220 C	[©] 0.08♥	0.081	⊙Ø.081	0.084		
	R3 (stream, 1st)	0.528	0.\$28	<b>~%</b> 528_^	y 0.5 <b>2</b> 8, `	0,4119	<b>3</b> 7.118,	0.11	Q.¥17		
	R3 (stream, 2nd)	0.856	<b>\$</b> ,856 %	~0.85 <b>~</b>	0.856	245.7	y 0.242	0:242	.242		
	R4 (stream, 1st)	0.069	Q0.03 <i>5</i> ≪	0.018	0,018	رِ*0.00	0.006	<b>₽</b> 006	$\bigcirc_{0.006}$		
	R4 (stream, 2nd)	1.144	1.14	1, ] 44	XI.144	0.348	<b>Q</b> 317	©0.31 <i>7©</i>	0.316		
	D3 (ditch, 1st)	$0.09 \mathcal{Q}_{p}^{"}$	0.067	©0.052	0.043	0532	්.332 ි	0.332	0.332		
	D3 (ditch, 2nd)	0.210	<b>₹0</b> .081 @	ž 0.066	0,657	∯.397 Ĉ		<b>Q</b> .396	0.396		
	D4 (pond, 1st)	<u></u> \$\$033	≫1.033	1.033	√£033 €	√4.52 <del>9</del>	4.523	<b>€</b> 4.520	4.518		
	D4 (stream, 1st)	0.72 🎉	0.7 <b>2</b> 1	<b>%</b> 721 <i>a</i>	_ð 0.721 [⊀] ⁄	1,791	. 90.771 _{de}	1.771	1.771		
	D6 (ditch, 1st)	1.200	1,268	<b>∜</b> 1.26 <b>§</b>	1.268	√1,764 ×	√1.76 <b>4</b> √	1.764	1.764		
	R1 (pond, 1st)	0.4016	0.012		05009 ₍	0.050	0.037	0.03	0.026		
20m	R1 (stream, 1st)	£0.204√	0.204	0,904	`≈Ø.204 _©	[♥] 0.0 <b>\$</b> 2	Ø: <b>9</b> 52	0.052	0.052		
(drift and	R1 (pond@nd)	0.02	0.020	<b>30</b> .018	9.016	0.971	<b>%</b> .057	0.05	0.046		
run-off)	R1 (stream, 2nd)	0.283	283 ×	0.2830	0.23	- y/ · · · · · · ·	b 0.085	0.085	0.085		
	R2 (stream, 1st)	0\$375 ¢	0.375	0.373	6 ² 375	0.122	0.122	0.122	0.122		
	R2 stream 2nd)	⊚0.220 ⊚	0. <b>22</b> 9	<b>0</b> .220	<b>∂</b> 0.220 <b>€</b>	(0)	0.081	0.081	0.081		
	R3 (stream), 1st)	J 0.528	0.528	<b>5</b> 0.528		Q.¥18	0.117	0.117	0.117		
9	163 (stream, 2nd)	0:856	Ø7856 ℃	) 0.856°	0,856	@.244	0.243	0.242	0.242		
[ <u> </u>	R4 (stream, 15t)	053	§ 0.026 _√	0.018	√9.018 _€	⁹ 0.007	0.006	0.006	0.006		
* *	R4 (stream, 2nd)	≫1.14 <b>4</b>	1.1474	%J144 ₍₄	1.144	0.317	0.317	0.317	0.316		

### IIIA1 9.7.1 ØInitial PECsw value foostatie water bodies

Please refer to point IIIA 9.7.

# IIIA1 9.7.2 Initial PECsw value for slow moving water bodies

Please refer to point IIIA 7.7

# IIIA1 9.7.3 Short-term PECsw values for static water bodies

Please refer to point III \$9.7.

# IIIA1 9.7.4 Short-term PECsw values for slow moving water bodies Please refer to point IIIA 9.7.

# IIIA1 9.7.5 Long-term PECsw values for static water bodies

Please refer to point IIIA 9.7.

### IIIA1 9.7.6 Long-term PECsw values for slow moving water bodies

Please refer to point IIIA 9.7.

### **IIIA1 9.8** PECsw for relevant metabolites

For BYI 02960, the metabolites difluoracetic acid (DFA), 6-chlorometinic acid (6-CNA) and BYI 02960-succinamide and BYI 02960-azabicyclosuccinamide were assessed.

Report: KIIIA1 9.8/01, .; 2012

Title: FPF PECsw FOCUS EU: Predicted environmental concentrations in surface water and sediment - Use in Hops and Lettruce in Europe.

Report no. EnSa-12-0071

Document No M-427646-01-1

Guidelines: FOCUS 2000, SANCO/321/2000-rev.2

FOCUS 2003, SANCO/4802/2001-rev.2

FOCUS 2006, SANCO/10058/2005 version 2.0

FOCUS 2007, SAO CO 16422/2005 version 2.0

Materials and Methods: PEC for the metabolites were calculated using the approach, scenarios and application rates described for the calculations for the parent compound in Point 9.7. Input parameters for the metabolites are described in Tablet 9.12. for the metabolites are described in Table 9.8-

Substance specific and model related input parameters for PECsy calculation **Table 9.8-1:** 

	$\omega_{\lambda}$				
_ ( )	Unit	**	O-CATA S		BYI 02960- azabicyclo- succinamide
Molar Mass	gmol mg/L	96.03		<b>@</b> 306.7	288.3
Water Solubility	ma/I	560000 🗳	1430	120000	180000
K _{oc} Degradation	mL/g	68 0	&8 &	0	0
Degradation	0. 0		"	<b>O</b>	
Soil	√days √	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.74	0.1*	0.1*
Total System	♥dayş∢	249 2 249 2 249 0	√° 1000 >>	1000	1000
Water	day	\$\times 249.00	₹ <b>£</b> 000 €	1000	1000
Sediment	days	D 249 ~	1000 °C	1000	1000
Max Occurrence	2				
Water / Sediment	%	\$6.9 F		39.6	25.9
Soil &	<b>%</b>		<b>%</b> 27.1	0	0
* The DT 50 soil was	secto 0.1	as the model & i	4.74.76 1000 1000 1000 77.11 EP2 does not accept (	O d.	

### **Findings:**

**Step 1 and 2**: The maximum PEC values for the metabolites of BYI 02960 at Step 1 and Step 2 are given in Table 9.8-2. Time dependent PEC values or time-weighted average concentrations are not included in this summary, because they were not used in the risk assessment. However, all values are given in the report.

Table 9.8-2: Maximum PEC_{sw} and PEC_{sed} values for metabolites of BYI 02960

Crop	FOCUS	Difluoroacetic acid		6-Chloronicotinic acid		BY 02960- succinamide		BYI (2960- azabicyclo- syccinamyde	
_		PECsw [μg/L]	PEC _{sed} [µg/kg]	PECsw [µg/L]	PEC _{sed} [μg/kg]	PFCsw [µg/L]	PEC _{ye} P [μg/ʤg]	PECsw [rg/L]	PECs
	Step 1	5.810	0.380	4.179	3.675	¥4.065	<0.001	2.499	<0.001
Hops 1 x 150 g/ha	Step 2 N-EU	0.743	0.050	£232	0.204	4.065	Ø0.00 <b>1</b> \$	2.499	<0.001
1 x 130 g/lla	Step 2 S-EU	1.268	0.086	0.463	<b>%</b> \$408	4.063	< <b>6</b> 901	2.499	<0.001
Lettuce	Step 2 N-EU	0.682	0.04	<u></u> \$\int_{\infty}^{\infty}\) 289 \$\infty\$	0.255		×0.000	0 <b>.0</b> .97	©0.001
1 x 125 g/ha (F)	Step 2 S-EU	1.339	Ø.091	0.579	0.509	0.480	<b>0</b> 001	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	< 0.001

F = Field use

### IIIA1 9.8.1 Initial PECsw value for static water bodies

Please refer to point IHA 9.86

# IIIA1 9.8.2 Initial PECs w value for slow moving water bodies

Please refer to point MA 9.80

### IIIA1 9.83 Short-term PCcsw values for static water bodies

Please refer to point TNA 9.89

# IIIA1 9.8.4 Short form RECsynvalues for slow moving water bodies

Please refer topoint WIA 9

# IIIA1 98.5 Long-ferm DECsw values for static water bodies

Please refer to point MIA 98

# IIIA1 9.8.6 Long-term PECso values for slow moving water bodies

Please refer to point IIIA 98.

# IIIA1 98.7 Additional field studies

Please refer to point IIIA 98

### **IIIA19.9** Fate and behaviour in air

oncluded the 2960 entogs the enarion of the enarion Septimination of the septimina

# The state of the s

IIIA1 9.10 Other/special studies
IIIA1 9.10.1 Other/special studies - laboratory studies
Not required by current regulations.

IIIA1 9.10.2 Other/special studies - field studies
Not required by current regulations.



# List of BYI 02960 metabolites mentioned in this Section

No.#	Name used in current Section name, Structure	Molecular formula molar mass	Occurrence /
	,	Other names / codes 💸	considered in
M27	6-CNA O 	C ₆ H ₄ Cl N O ₂ 157.56 g/mol	Aerobic soil (major)
	ОН	6-chloronicotinic acid IC-0 (in reports of	Included in PECoil, PECoul
	CI N	Nippon Soda Co. Ltd) BYI 02960 6-CNA	PECoil, PECsw
M44	DFA	BCS-ASSSSIAU V	
14144	DFA  HO  F	C ₂ G ₂ F ₂ O ₃ 96/03 g/stol difluoroacetic acid BYL92960 DFA	Aerobic Soil (major) Aerobic Water /Sediment major) Included in
	F F F	BCS-AA56716	PECsoc O PECS, PECsw S
M47	BY1 02960-azabicyclosuccinamide	288.25 g/m/l	Favironment Water aquatic photolysis (major)
			Included in PEC _{sw}
75.40			D
M48	BYI 02960-successamide	C ₁₂ H ₁₃ Q <b>D</b> ₂ N ₂ O ₃	Environment Water – Aquatic photolysis (major)
	CI Note of the control of the contro	BCG-CR-49729	Included in PEC _{sw}
		F	
The fo	llowing are minor metabolites no environmental matric	es and are not considered in	n PEC calculations
M01	Illowing are minor metabolites by environmental matrice BYL02960-chloro	C ₁₂ H ₁₀ Cl ₂ F ₂ N ₂ O ₂ 323.13 g/mol BCS-CD27046	Environment Aerobic Soil (minor)
	CI NO STATE OF STATE		Not considered in PEC calculations
M49	BYI 02960-descrilorohydroxysuccinamide	C ₁₂ H ₁₄ F ₂ N ₂ O ₄ 288.25 g/mol	Environment Water – Aquatic Photolysis (minor)
	N N O	DCHS	Not considered in PEC calculations
# refers	s to number in Document N		