Assessing and Improving the Reliability of Models of Molecular Evolution

November 3, 2021

Overview

- ► Ch. 1 Introduction to Molecular Evolution and Models
- ► Ch. 2 Modified Likelihood to Restore LR Test Regularity
- ► Ch. 3 Smoothed Bootstrap Aggregation
- ► Ch. 4 Difficulties with Branch-Site Models

Models of Molecular Evolution

Model Substitutions between Codons to Detect Positive Selection

- ► Continuous-time Markov process
- ► Likelihood framework
- ► Bayesian classification

The Central Dogma of Molecular Biology

replication			
DNA	 RNA	translation	Protein
C-G	G	\	
A-T	U	\rangle	V
G-C	C	/	
G-C	C	\	
T-A	Α	\rangle	Q
T-A	Α	/	
A-T	U	\	
G-C	C	\rangle	S
G-C	C	/	

Genetic Code

		Second Codon Position									
			U	C	C		Α		G		
		UUU	F	UCU	S	UAU	Υ	UGU	С		
		UUC	F	UCC	S	UAC	Υ	UGC	C		
	U	UUA	L	UCA	S	UAA	STOP	UGA	STOP		
		UUG	L	UCG	S	UAG	STOP	UGG	W		
_		CUU	L	CCU	Р	CAU	Н	CGU	R		
ţ.	_	CUC	L	CCC	Р	CAC	Н	CGC	R		
osi	C	CUA	L	CCA	Р	CAA	Q	CGA	R		
First Codon Position		CUG	L	CCG	Р	CAG	Q	CGG	R		
Sode		AUU	1	ACU	Т	AAU	N	AGU	S		
) St		AUC	1	ACC	Т	AAC	N	AGC	S		
ίΞ	Α	AUA	1	ACA	Т	AAA	K	AGA	R		
		AUG	M/START	ACG	Т	AAG	K	AGG	R		
		GUU	V	GCU	Α	GAU	D	GGU	G		
	_	GUC	V	GCC	Α	GAC	D	GGC	G		
	G	GUA	V	GCA	Α	GAA	E	GGA	G		
		GUG	V	GCG	Α	GAG	E	GGG	G		

 $4^3=64$ codons 20 amino acids Nonsynonymous and Synonymous Substitutions

Mutations and Substitutions

Wild-type Allele A											
ATG	GTG	CAC	CTG	ACT	CCT	GAG	GAG	AAG			
Start	Val	His	Leu	Thr	Pro	Glu	Glu	Lys			
Mutant allele a											
ATG	GTG	CAC	CTG	ACT	CCT	GTG	GAG	AAG			
Start	Val	His	Leu	Thr	Pro	Val	Glu	Lys			

Signature of Positive Selection and Neutral Theory

• $(p_N/p_S)/(p_N^0/p_S^0) = \omega$: ratio of ratios of long-run proportions of nonsynonymous and synonymous substitutions under alternative and null models

Netural Theory predicts $\omega \leq 1$

$$2\Delta \ell = 2[\log(L_a) - \log(L_0)]$$

Data

Taxor	on Codon Site														
		2													
1	ATG	ATT	TTT	AGT	TGG	TTC	ATT	TAT	ATA	ATA	ATA	ATA	ATA	ATT	TTT
2	ATG	CTA	TTT	AGT	TGA	TTT	AGA	TAT	ATA	ATG	GTG	TTA	TTG	ATT	TTT
															TTT
4	ATC	TTA	TTT	AGT	TGA	TTT	ATT	AGT	ATA	GTA	GTA	ATA	GTA	ATT	TTT

Codon Substitution as a Markov Process

Assumptions:

- ► Independence across sites
- ► Independence across branches

$$CTA$$
 TTA

$$\ell = \log(L) = \sum_{h=1}^{n} \log\{f(\mathbf{x}_h|\theta)\}\$$

Codon Substitution as a Markov Process

Markov Process with 61 Sense Codons as States

$$q_{ij} = \left\{ \begin{array}{ll} 0, & i \text{ and } j \text{ differ at two or three codon positions} \\ \pi_j, & i \text{ and } j \text{ differ by a synonymous transversion} \\ \kappa \pi_j, & i \text{ and } j \text{ differ by a synonymous transition} \\ \omega \pi_j, & i \text{ and } j \text{ differ by a nonsynonymous transversion} \\ \omega \kappa \pi_j, & i \text{ and } j \text{ differ by a nonsynonymous transition} \end{array} \right.$$

$$P(t) = e^{Qt}$$

Mixture Models

- lacktriangledown averaged over sites ineffective
- ▶ Introduce discretized ω distribution
- \triangleright p_i : proportion of sites in class i

Chapter 2

Nielsen, R. and Yang, Z. (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 148(3):929-936.

Anisimova, M., Bielawski, J. P., and Yang, Z. (2001). Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Molecular biology and evolution, 18(8):1585-1592.

Wong, W. S., Yang, Z., Goldman, N., and Nielsen, R. (2004). Accuracy and power of statistical methods for detecting adaptive evolution in protein coding sequences and for identifying positively selected sites. Genetics, 168(2):1041-1051.

Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc, 82(398):605–610.

Chen, H., Chen, J., and Kalbfleisch, J. D. (2001). A modified likelihood ratio test for homogeneity in finite mixture models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(1):19-29.

Mingrone J., Susko E., Bielawski J.P. 2018. ModL: exploring and restoring regularity when testing for positive selection. Bioinformatics 35:2545-2554.

LR Distribution under Null Hypothesis

- ightharpoonup ζ: parameters common to each ω
- \triangleright λ : mixture parameters under purifying selection
- ightharpoonup $\omega_+ \geq 1$
- Let $\psi = (\zeta^T, \lambda^T, p_0)^T$ be parameters common to H_0 and H_a

$$LR = 2\Delta \ell = 2\{I(\hat{p}_+, \hat{\omega}_+, \hat{\psi}) - I_H(\hat{\psi}_H)\}$$

- Standard likelihood theory: $\sim \chi^2_{\Delta_0}$
- Estimates on boundary of parameter space
- Unidentifiability: $p_+=0$ any ω_+ or $\omega_+=1$ any p_+ gives null model

LR Distribution under Null Hypothesis

$$LR = 2\{I(\hat{p}_{+}, \hat{\omega}_{+}, \hat{\psi}) - I_{H}(\hat{\psi}_{H})\}$$
 (1)

$$LR_{\omega_{+}>1} = 2\{I(\hat{p}_{+}(\omega_{+}), \omega_{+}, \hat{\psi}(\omega_{+})) - I_{H}(\hat{\psi}_{H})\}$$
 (2)

- ▶ Identifiability with $\omega_+ > 1$ fixed
- ► Case 5 of Self and Liang (1987): (2) $\sim \chi_0^2/2 + \chi_1^2/2$
- ▶ (1) obtained by maximizing (2) over $\omega_+ \geq 1$
 - ► (1) anti-conservative

Modified Likelihood - Chen et al. (2001) Similar difficulty when testing heterogeneity of mixture model

- ▶ Data x is $\gamma p(x; \theta_1) + (1 \gamma)p(x; \theta_2)$
- lacktriangle Unidentifiability: $\gamma=0$ any $heta_1$ or $heta_1= heta_2$ any γ
- ► Chen et al. (2001)
 - ► Restore simple limiting distributions while maintaining a test statistic similar to the LR statistic
 - ► Replace log likelihoods with modified log likelihoods: $C \log[\gamma(1-\gamma)]$ (C > 0 is tuning parameter)

Modified Likelihood - Codon Models

Mingrone, Susko, Bielawski (2019)

- ▶ Modified ℓ under H_a : $\tilde{I}(p_+, \omega_+, \psi) = I(p_+, \omega_+, \psi) + C \log(p_+)$
- ► ModL statistic: $2\{\tilde{I}(\hat{p}_+,\hat{\omega}_+,\hat{\psi}) I_H(\hat{\psi}_H)\} \sim \chi_0^2/2 + \chi_1^2/2$

Modified LR Distribution Approximations Accurate for Most Settings

Modified LR Distribution Approximations Data Poor Setting

Modified LR Distribution Minimal Impact on Power

Investigation of Problematic Mixing Distributions

Neither LR nor ModLR is well approximated by $\chi_0^2/2+\chi_1^2/2 \text{ when true}$ mixing distribution is $(\rho_0,\omega_0)=(0.25,0.5) \text{ and}$ data poor setting

Chapter 3: Smoothed Bootstrap Aggregation (SBA)

Posterior Probability:

$$f(\omega_i|\mathbf{x_h};\hat{\boldsymbol{\theta}}) = \frac{f(\mathbf{x_h}|\omega_i;\hat{\boldsymbol{\theta}})p_i}{\sum\limits_{j=0}^{k-1} f(\mathbf{x_h}|\omega_j;\hat{\boldsymbol{\theta}})p_j}$$
(3)

NEB: Pass MLEs directly to (3)

BEB: Assign priors to some MLEs to adjust for uncertainty

SBA: Bootstrap site patterns to obtain many posteriors

SBA

