Event Summarization
Deep Q-Networks
Core Algorithm
Experiments
Resources

Deep Q-Networks for Event Summarization

Francisco Javier Arceo, Chris Kedzie

Columbia University in the City of New York

December 13, 2016

Motivation

Deep Q-Networks

Review

States

Actions

Reward

Policy

Core Algorithm

Experiments

Benchmarking

Results of Simulation

Resources

- ▶ Extractive streaming summarization takes as input a short text description of a topic or an event known as a query, a document stream, and a time ordered set of sentences relevant to the query.
- ▶ An extractive summarization algorithm sequentially examines sentences from a document stream and includes the candidate sentence into the summary when novel and important information is detected.

- ▶ Recent research in text retrieval has focused on extractive algorithms to identify important sentences from a large set of documents (e.g., [1], [4], [2], and [3]) for summarizing articles from different events in the news.
- ▶ [4] has shown that it is possible to select relevant sentences from a massive number of documents on the web to create summaries with meaningful content by adapting classifiers to maximize search policies.
- ▶ These systems how been shown to fall short of simple heuristic algorithms [2], which may be due to the limited ability of traditional n-gram models to capture the rich and often idiosyncratic structure of language.

This leads us to explore Deep Q-Networks (DQN) for 3 reasons:

- 1. We can define an architecture that propagates information end-to-end about the inputs, actions, and rewards
- 2. The representation and interaction between the stream, summary, and query can be learned jointly
- 3. RNN-LSTM embeddings can learn a more robust semantic representation than classic n-gram models

- ▶ Q-Learning is a Reinforcement Learning framework that finds an optimal policy by taking an input state, set of possible actions available, and returning the action with the highest reward.
- ▶ When the state-action space becomes intractable, deterministic algorithms are no longer feasible for an optimal policy and researchers instead train a model to learn the policy.
- ▶ Deep Q-Networks [5] are an increasingly popular framework for learning these policies from end-to-end.

States

A state $s(x_t, \tilde{y}_t, d)$ at time t is a function of the stream X_d , $\forall d \in D$, which represents the candidate sentence, x_t to include in the summary, the state of the current summary \tilde{y}_t , and the query d. For brevity we use s_t where the dependence on x_t, \tilde{y}_t , and d is assumed.

Actions

We define an action, a_t , at each time step from our set of actions as $\mathcal{A} := \{select, skip\}$ where select corresponds to adding the current sentence x_t to the predicted summary \tilde{y}_t and incrementing the current system time, or skip where only t is incremented without changing the current summary.

Reward

The reward r for a given action a at time t is measured by the change in ROUGE-NF1 score of the predicted summary \tilde{y}_t measured against a gold standard summary Y. That is,

$$r_t = \text{ROUGE-NF1}(\tilde{y}_t, Y) - \text{ROUGE-NF1}(\tilde{y}_{t-1}, Y).$$
 (1)

Policy

- ▶ A policy takes as input a state and a set of possible actions and returns the optimal state, this policy can be deterministic or probabilistic. We define our policy as a Q-Learner using both an LSTM and a bag-of-words model
- ▶ We define an architecture similar to that of [6] and map our three inputs (query, sentence, and current predicted summary) into LSTM embeddings according to **Figure 1**
- \triangleright Our extraction policy then takes as input the state s_t at time t and returns the expected optimal action

DQN-LSTM for Event Summarization Training Procedure

```
Input: \{D: \text{ Event queries, } X_d: \text{ Input sentences, } N: \text{ Number of epochs}\}
Output: \{\hat{Q}: \text{ extraction policy, } \tilde{Y}_d: \text{ event summary for query } d\}
 1: Initialize extraction policy \hat{Q} with random weights
 2: Initialize memory and summary: \Gamma, \tilde{Y} = \{\emptyset\}_{d=1}^{|\mathcal{D}|}, \{\emptyset\}_{d=1}^{|\mathcal{D}|}
 3: for epoch = 1, ..., N do
           for query d \in \mathcal{D} do
 4:
                 \vec{X}_d, \vec{Y}_d = \{\text{Extract } t = 1, ..., T_d \ (\text{sentences}_d, \text{summary}_d)\}
 5:
                for x_t, \tilde{y}_t \in X_d, \tilde{Y}_d do
 6:
                      Set s_t = s(x_t, \tilde{y}_t, d)
 7:
                      \forall a_t \in \mathcal{A}(s_t) \text{ compute } \hat{Q}(s_t, a_t) \text{ and select } a_t^* = \operatorname{argmax}_{a_t} \hat{Q}(s_t, a_t)
 8:
                      if random() < \epsilon then select a_t^* at random with Pr(a_t) = \frac{1}{|A|}
 9:
                      Update \tilde{y}_{t+1} according to equation (1)
10.
11:
                      Execute action a_t^* and observe reward r_t and new state s_{t+1}
12:
                      Update \Gamma_d = \Gamma_d \cup \{[s_t, a_t^*, r_t, s_{t+1}]\}
           for j = 1, ..., J transitions sampled from \Gamma do
13:
14:
                                Set y_j = \begin{cases} r_j & \text{if } s_{j+1} \text{ is terminal} \\ r_j + \gamma \max_{a'} \hat{Q}(s_{j+1}, a'; \theta) & \text{if } s_{j+1} \text{ is non-terminal} \end{cases}
                 Perform gradient step on \mathcal{L}(\theta) = (y_i - \hat{Q}(s_i, a_i; \theta))^2
15:
```

We benchmark our model against (1) an oracle that greedily chooses to include sentences if the increase in ROUGUE-NF1 is positive, (2) random selection of sentences, and (3) a bag-of-words multilayer perceptron.

Event Summarization
Deep Q-Networks
Core Algorithm
Experiments
Resources

Benchmarking Results of Simulation

Useful Links below

Thank you

▶ GitHub

In Proceedings of the 54th Annual Meeting of the Association for Computational. ACL—Association for Computational Linguistics.

Cristina Gârbacea and Evangelos Kanoulas.
The university of amsterdam (ilps. uva) at trec 2015 temporal summarization track.

Chris Kedzie and Kathleen McKeown.
Extractive and abstractive event summarization over streaming web text.

In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages 4002–4003, 2016.

Chris Kedzie, Kathleen McKeown, and Fernando Diaz. Predicting salient updates for disaster summarization. In Proceedings of the 53rd annual meeting of the ACL and the 7th International Conference on Natural Language Processing, pages 1608–1617, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A. Riedmiller.

Playing atari with deep reinforcement learning. CoRR, abs/1312.5602, 2013.

Karthik Narasimhan, Tejas D Kulkarni, and Regina Barzilay.

Language understanding for textbased games using deep reinforcement learning.

Event Summarization
Deep Q-Networks
Core Algorithm
Experiments
Resources

In Proceedings of the Conference on Empirical Methods in Natural Language Processing. Citeseer, 2015.