Teorema 1. Idempotencia. Sean A, B, conjuntos, entonces:

$$(A \cap A) = A$$
.

Proof. Demostrando la doble contención:

1. $A \cap A \subseteq A$

Sea
$$x \in (A \cap A) \Leftrightarrow x \in A \ y \ x \in A$$

 $\Rightarrow x \in A$.

Dado que los conectores son del tipo "sí solo sí", se demuestra la primera y segunda contención. Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

2. $A \subseteq (A \cap A)$

Sea
$$x \in A \Rightarrow x \in A \ y \ x \in A$$

 $\Leftrightarrow x \in (A \cap A).$

Teorema 2. Idempotencia. Sean A, B conjuntos, entonces:

$$(A \cup A) = A$$
.

Proof. Demostrando la doble contención:

1. $(A \cup A) \subseteq A$

Sea
$$x \in (A \cup A) \Leftrightarrow (x \in A)$$
 o $(x \in A)$
 $\Rightarrow x \in A$.

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

2. $A \subseteq (A \cup A)$

Sea
$$x \in A \Rightarrow (x \in A \ o \ x \in A)$$

 $\Leftrightarrow (x \in (A \cup A).$

Teorema 3. Conmutatividad. Sean A, B conjuntos, entonces:

$$(A \cap B) = (B \cap A).$$

Proof. Demostrando la doble contención:

1. $(A \cap B) \subseteq (B \cap A)$

Sea
$$x \in (A \cap B) \Leftrightarrow (x \in A) \ y \ (x \in B)$$

 $\Rightarrow (x \in B) \ y \ (x \in A)$
 $\Leftrightarrow x \in (B \cap A).$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

2. (B \cap *A*) \subseteq (*A* \cap *B*)

Sea
$$x \in (B \cap A) \Leftrightarrow x \in B \ y \ x \in A$$

 $\Rightarrow x \in A \ y \ x \in B$
 $\Leftrightarrow x \in (A \cap B).$

Teorema 4. Conmutatividad. Sean A, B conjuntos, entonces:

$$(A \cup B) = (B \cup A).$$

Proof. Demostrando la doble contención:

1. $(A \cup B) \subseteq (B \cup A)$

Sea
$$x \in (A \cup B) \Leftrightarrow (x \in A) \ o \ (x \in B)$$

 $\Rightarrow x \in B \ o \ x \in A$
 $\Leftrightarrow x \in (B \cup A)$

Con lo que se demuestra la primera y segunda contención, dado que los conectores son del tipo "sí solo sí". Sin embargo, por cuestiones didácticas, a continuación se demostrará la segunda contención de manera explícita.

2. (B
$$\cup$$
 A) \subseteq (A \cup B)

Sea
$$x \in Aox \in B \Rightarrow (x \in A \ o \ x \in A)$$

 $\Leftrightarrow (x \in (A \cup A).$