



## Codeforces Round #169 (Div. 2)

## A. Lunch Rush

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

Having written another programming contest, three Rabbits decided to grab some lunch. The coach gave the team exactly k time units for the lunch break.

The Rabbits have a list of n restaurants to lunch in: the i-th restaurant is characterized by two integers  $f_i$  and  $t_i$ . Value  $t_i$  shows the time the Rabbits need to lunch in the i-th restaurant. If time  $t_i$  exceeds the time k that the coach has given for the lunch break, then the Rabbits' joy from lunching in this restaurant will equal  $f_i$  - ( $t_i$  - k). Otherwise, the Rabbits get exactly  $f_i$  units of joy.

Your task is to find the value of the maximum joy the Rabbits can get from the lunch, depending on the restaurant. The Rabbits must choose **exactly** one restaurant to lunch in. Note that the joy value isn't necessarily a positive value.

## Input

The first line contains two space-separated integers -n ( $1 \le n \le 10^4$ ) and k ( $1 \le k \le 10^9$ ) - the number of restaurants in the Rabbits' list and the time the coach has given them to lunch, correspondingly. Each of the next n lines contains two space-separated integers  $-f_i$  ( $1 \le f_i \le 10^9$ ) and  $t_i$  ( $1 \le t_i \le 10^9$ ) — the characteristics of the i-th restaurant.

#### Output

**Examples** 

In a single line print a single integer — the maximum joy value that the Rabbits will get from the lunch.

| input             |  |
|-------------------|--|
| 2 5<br>3 3<br>4 5 |  |
| 3 3               |  |
| 4 5               |  |
| output            |  |

|       | _                               |
|-------|---------------------------------|
|       |                                 |
| put   | input                           |
|       | 4 6<br>5 8<br>3 6<br>2 3<br>2 2 |
|       | 5 8                             |
|       | 3 6                             |
|       | 2 3                             |
|       | 2 2                             |
| ıtput | output                          |
|       | 3                               |

| put  |  |
|------|--|
|      |  |
| tput |  |
|      |  |

# B. Little Girl and Game

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

The Little Girl loves problems on games very much. Here's one of them.

Two players have got a string *S*, consisting of lowercase English letters. They play a game that is described by the following rules:

- The players move in turns; In one move the player can remove an arbitrary letter from string S.
- If the player before his turn can reorder the letters in string *S* so as to get a palindrome, this player wins. A palindrome is a string that reads the same both ways (from left to right, and vice versa). For example, string "abba" is a palindrome and string "abc" isn't.

Determine which player will win, provided that both sides play optimally well — the one who moves first or the one who moves second.

#### Input

The input contains a single line, containing string  $S(1 \le |S| \le 10^3)$ . String S consists of lowercase English letters.

#### **Output**

**Examples** 

In a single line print word "First" if the first player wins (provided that both players play optimally well). Otherwise, print word "Second". Print the words without the quotes.

| aput<br>a     |
|---------------|
| a             |
| utput<br>rst  |
| rst           |
|               |
| rput<br>ca    |
| ca            |
| utput<br>cond |
| econd         |

## C. Little Girl and Maximum Sum

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

The little girl loves the problems on array queries very much.

One day she came across a rather well-known problem: you've got an array of n elements (the elements of the array are indexed starting from 1); also, there are q queries, each one is defined by a pair of integers  $l_i$ ,  $r_i$  ( $1 \le l_i \le r_i \le n$ ). You need to find for each query the sum of elements of the array with indexes from  $l_i$  to  $r_i$ , inclusive.

The little girl found the problem rather boring. She decided to reorder the array elements before replying to the queries in a way that makes the sum of query replies maximum possible. Your task is to find the value of this maximum sum.

#### Input

The first line contains two space-separated integers n ( $1 \le n \le 2 \cdot 10^5$ ) and q ( $1 \le q \le 2 \cdot 10^5$ ) — the number of elements in the array and the number of queries, correspondingly.

The next line contains n space-separated integers  $a_i$  ( $1 \le a_i \le 2 \cdot 10^5$ ) — the array elements.

Each of the following q lines contains two space-separated integers  $l_i$  and  $r_i$  ( $1 \le l_i \le r_i \le n$ ) — the i-th query.

#### **Output**

In a single line print a single integer — the maximum sum of query replies after the array elements are reordered.

Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.

#### **Examples**

| input                             |  |  |
|-----------------------------------|--|--|
| 3 3<br>5 3 2<br>1 2<br>2 3<br>1 3 |  |  |
| 5 3 2                             |  |  |
| 1 2                               |  |  |
| 2 3                               |  |  |
| 1 3                               |  |  |
| output                            |  |  |
| 25                                |  |  |
|                                   |  |  |

| 5 3 5 2 4 1 3 1 5 2 3 2 3 |  |  |
|---------------------------|--|--|
| 5 3                       |  |  |
| 5 2 4 1 3                 |  |  |
| 2.3                       |  |  |
| 2 3                       |  |  |
| output                    |  |  |
| 33                        |  |  |

## D. Little Girl and Maximum XOR

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

A little girl loves problems on bitwise operations very much. Here's one of them.

You are given two integers I and I. Let's consider the values of I for all pairs of integers I and I and I are given two integers I and I are gin two integers I and I are given two integers I and I are

Expression  $x \oplus y$  means applying bitwise excluding or operation to integers X and Y. The given operation exists in all modern programming languages, for example, in languages C++ and Java it is represented as "^", in Pascal — as x = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y = x + y =

## Input

The single line contains space-separated integers l and r ( $1 \le l \le r \le 10^{18}$ ).

Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.

# Output

In a single line print a single integer — the maximum value of  $a \oplus b$  for all pairs of integers a, b ( $l \le a \le b \le r$ ).

## **Examples**

| input  |  |
|--------|--|
| 1 2    |  |
| output |  |
| 3      |  |
|        |  |
| input  |  |
| 8 16   |  |
| output |  |
| 31     |  |
|        |  |
| input  |  |
| 1 1    |  |
| output |  |
|        |  |

# E. Little Girl and Problem on Trees

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

A little girl loves problems on trees very much. Here's one of them.

A tree is an undirected connected graph, not containing cycles. The degree of node *X* in the tree is the number of nodes *y* of the tree, such that each of them is connected with node *X* by some edge of the tree.

Let's consider a tree that consists of n nodes. We'll consider the tree's nodes indexed from 1 to n. The cosidered tree has the following property: each node except for node number 1 has the degree of at most 2.

Initially, each node of the tree contains number 0. Your task is to quickly process the requests of two types:

- Request of form:  $0 \ V \ X \ d$ . In reply to the request you should add X to all numbers that are written in the nodes that are located at the distance of at most d from node V. The distance between two nodes is the number of edges on the shortest path between them
- Request of form: 1 V. In reply to the request you should print the current number that is written in node V.

## Input

The first line contains integers n ( $2 \le n \le 10^5$ ) and q ( $1 \le q \le 10^5$ ) — the number of tree nodes and the number of requests, correspondingly.

Each of the next n-1 lines contains two integers  $u_i$  and  $v_i$  ( $1 \le u_i$ ,  $v_i \le n$ ,  $u_i \ne v_i$ ), that show that there is an edge between nodes  $u_i$  and  $v_i$ . Each edge's description occurs in the input exactly once. It is guaranteed that the given graph is a tree that has the property that is described in the statement.

Next q lines describe the requests.

- The request to add has the following format:  $0 \ v \ x \ d \ (1 \le v \le n, \ 1 \le x \le 10^4, \ 1 \le d < n)$ .
- The request to print the node value has the following format:  $1 \ V \ (1 \le V \le n)$ .

The numbers in the lines are separated by single spaces.

#### Output

For each request to print the node value print an integer — the reply to the request.

#### **Examples**

| input                            |  |
|----------------------------------|--|
| 3 6                              |  |
| 1 2                              |  |
| 13                               |  |
| 1 2<br>1 3<br>0 3 1 2<br>0 2 3 1 |  |
| 0 2 3 1                          |  |
| 0 1 5 2                          |  |
| 1 1                              |  |
| 1 2                              |  |
| 1 3                              |  |
| output                           |  |
| 9                                |  |
| 9                                |  |
| 6                                |  |
|                                  |  |

```
input

6 11

12

2 5

5 4

1 6

1 3

0 3 1 3

0 3 4 5

0 2 1 4

0 1 5 5

0 4 6 2

1 1

1 2

1 3

1 4

1 5

1 6
```

| output   |  |  |  |
|----------|--|--|--|
| 11       |  |  |  |
| 17       |  |  |  |
| 11       |  |  |  |
| 16<br>17 |  |  |  |
| 17       |  |  |  |
| 11       |  |  |  |

Codeforces (c) Copyright 2010-2016 Mike Mirzayanov The only programming contests Web 2.0 platform