ISFCR Experiential Learning Program - 2024

LITERATURE SURVEY Cryptojacking detection System

No.	Initials	Paper	Publication	References	Objective	Attack	Method of Attack	Victim System	Solution Approach	Research Gaps & Future Works
1.	AU	Behavior-Based Detection of Cryptojacking Malware	2020	Tanana, Dmitry. "Behavior-based detection of cryptojacking malware." 2020 Ural symposium on biomedical engineering, radioelectronics and information technology (USBEREIT). IEEE, 2020. https://seeexplore.ieee.org/abstract/document/9117732	detecting both browser-based and executable-type cryptojackers based on CPU usage heuristics.	In-browser & File based	40 browser-based and 10 executable-type from VirusShare as well as some other legitimate applications (50 Samples)	performed on virtual machine which was allocated 1 processor core with 3GHz frequency and 4 gigabytes of operative memory running Windows 7	Indicators: CPU util. CPU util. AND QUadratic deviation Crucial focus on not having false positives.	expand proposed algorithm to delect cryptojacking malware with dynamic CPU load. (Afready done)
2.	AU	Advanced Behavior-Based Technique for Cryptojacking Malware Detection	2020	Tanana, Dmitry, and Galina Tanana. *Advanced behavior-based advance technique for cryptige-king material technique for cryptige-king motival conference on Signal Processing and Communication Systems (ICSPCS). IEEE, 2020. https://deexplore.ieee.org/abstrack/document/9.310048	modified prev. algorithm to deal with multicore processors and introduce a few additional introduce a few additional on the internet connection usage and cryptographic libraries calls monitoring	In-browser & File based	100 cryptojacking malware samples, 70 browser-based and 30 file-based from VirusShare.	virtual machine with Windows 7, 3GHz single-core CPU and 4GB RAM	Additional indicators: • Multi-core CPU usage • Network access • Cryptographic lib. calls	to study the difference in behavior between legitimate and malicious mining applications Course on defection of GPU-based malicious miners
3.	MR	Cryptojacking Detection in Cloud Infrastructure using Network Traffic	2023, IEEE	Kwedza, Philip, and Stanes Daitso Chindipha. "Cryptojacking Detection Chindipha." Cryptojacking Detection Network Tarific." 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE. 2023.	Purpose of the model is to detect cryptojacking automatically in a cloud environment, utilizing network traffic	Host-based cryptojacking	Lee of XMRig Network Traffic Generation Wireclark are used to collect packets from the VPS instances	cloud infrastructure-Virtual Private Servers (VPS)		To validate model it can be tested in a real cloud environment cloud environment in the tan detect cryptigacking in real time To improve the model deep learning techniques could also be done

									their performance evaluated using F1 score and Area Under the ROC Curve (AUC)	
4.	AU	Forensic Analysis of Cryptojacking in Host-based Docker Containers Using Honeypots	2023, IEEE	Franco, Javier, et al. "Forensic Analysis of Cryptojacking in Host-Based Docker Containers Using Honeypots." ICC 2023-IEEE International Conference on Communications. IEEE, 2023. https://eeexplore.ieee.org/abstract/d gou	L conduct a forensic analysis of host-based cryptojacking mahicular and the second sec	Host-based cryptojacking	containers was used to understand	set up a high-interaction honeypot system isolated in a DMZ with ten Docker containers: 4 of these used Redis container images, 4 used Nginx container images, and 2 used Ubuntu container images	bbb—	planning to develop a cryptiquacking defection framework for host-based Docker containers using honeypots and machine learning.
5.	AU	Detecting Covert Cryptomining Using HPC	2020, Springer	Bangwall Ankli, et al. 'Detecting covers' opportuning using pipe.' Cryptology and Network Security. 1981 International Conference, CANS 2020, Vienna, Austria, December 14–16, 2020, Proceedings 19, Springer Uniternational Publishing, 2020. https://doi.org/10.1007/978-3-030-65411-5_17	approach to detect covert cryptomining on users' machines, generic solution that detect covert cryptomining, which is not tailcared to a specific cryptocurrency or a form of cryptomining	A generic model which detects all attacks in user machines	Created their own dataset of tasks in which half meining cryptocurrencies and other half not mining. (1100 samples)	User systems	Initially data preprocessing is done along with Feature engineering. A supervised model consisting of Random Forest and SVM classification.	Investigation and monitoring of GPU dedicated events that care assist in creating unique signatures for GPUs experiments with a larger set of systems (CPUs) to observe the generalization of our approach desktop application for run-time identification of covert cryptomining
6.	MR	Cyptojacking Defection with CPU Usage Metrics	2020, IEEE	Cornes, Fábio, and Miguel Corneia "Cryptigicking detection with op- ursage metrics." 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). IEEE 2020. https://doi.org/10.1006/10	Cryptojacking detection mechanism based on monitoring the CPU usage of the visited web pages in real-time	In-browser	Cryptojacking Scripts in Web Pages		Used Weka Weed signature-based intrusion detection system • Webpage Crawler • CPU Monitoringmetal command line tool to monitor the CPU -used Amazon EC2 instances • Machine Learning Classifier -Two-Level Classification (TLC) -Multiple-Instance Support Vector Machine [MISVM] Subspace Method -Random Subspace Method -Training Dataset Composition • Training Dataset Composition • 1 CPU core for 15 seconds • 1 CPU core for 50 seconds • Average of the cores for 60 seconds • Average of the cores for 60 se	To work on their approach with non-browser based cryptojacking malware

7.	AU	Cryptomining Detection in Container Clouds Using System Calls and Explainable Machine Learning	2021, IEEE	Karn, Rupesh Raj, et al. "Cryptomining detection in container clouds using system calls and explainable machine learning." IEEE transactions on parallel and distributed systems 32.3 (2020): 674-691. https://ieeexplore.ieee.org/abstract/d.acument/9215018	use of explainable ML of syscalls to classify anomalous containers methodology for anomaly detection through system calls in the Kubernetes pods is proposed, designed & implemented	Host based cryptojacking	Eight different types of cryptomining containers are used. To enable an env. that supports CPU- intensive, healthy application pods, containers are created that are dedicated to it.	Kubernetes cluster	Developed various ML models and compared ther accuracy, precision, FI Score and other metrics. Models like Decision trees, Feed forward ANN, XGBoost EML, etc. are used and compared. Provides explainability for why the kubernetes pod was flagged to the administrator so an informed decision can be made on removal of pod.	-
8.	MR	Cryptojacking Malware Detection in Doctor images Detection in Doctor images Learning Archive Machine	2022	Saide, Saide Manuel, Ednilson Luis Alfredo Sarmento, and Feleminio Delection in Docker Images Using Supervised Machine Learning." International Conference on Intelligent and Innovative Computing Applications. 2002. https://mauricon.org/conferencessindex.php/iconic/article/view@	To develop and evaluate a machine learning-based model to a machine learning-based model to a machine learning-based model to booker images	Attackers insert cryptigacking scripts or cryptigacking scripts or images into Docker images.	Images	Docker Engine Host Systems (Court East) Court East (Court East) Caas	installed a Vilware Workstation 16 Pro Virtual Machine (VM), with Ubunut 18 04 LT Soperating Machine (VM), with Ubunut 18 04 LT Soperating Valocker pull: Command 2. collected 800 Docker images from Docker hutdled inspess and instructions for cryptipacking. The remaining 400 images were free of malicious 3. docker bislory command for each Docker image to extract all the image instructions into a plain text file. 4. Data Preprocessing • Lowercasing • Lowercasing • Lowercasing • Lowercasing • Tokenization 5. Data Transformation 5. Data Transformation 7. Tokinization 5. Data Transformation 4. Trained and evaluated 10 classification algorithms, using K-Fold Cross Validation sampling-found that Sichassic Gradent Descent for scores (97%), and K-Nearest Neighborn (KNN) algorithm had the lowest accuracy scores (89%).	Can use different Machine Learning algorithms to build a predictive model for donging crystojacking malware in Docker images.
9.	AU	DeCrypto Pro: Deep Learning Based Cryptomining Malware Detection Using Performance Counters	2020, IEEE	Mani, Ganapathy, et al. "Decrypto pro: Deep learning based cryptomining malware detection using performance counters." 2020 IEEE International conference on autonomic computing and	a detection system with a novel model selection framework containing a utility function that can select a classification model for behavior profiling from both the light-weight machine learning	Host based cryptojacking	status signature of PoW algorithm such as CryptoNight's signature, we mainly focus on bitwise, cryptographic, and processor- specific encryption	3 Windows machines with various configurations on processing frequency (2.40, 2.90, 2.30 GHz), memory size (16, 8, 8 GB), and number of processor cores (2, 4, 5).	DeCrypto Pro uses both environmental detection triggers such as high CPU usages or period detection (random / fixed intervals depending on user preference) of cryptomining malware. Once the sampling of data is completed, it is normalized through MinMax feature scaling and	DeCrypto Pro can also be extended to include specific types of APTs for profiling their algorithms. As a future study, in addition to training DeCrypto Pro with more APT classes, we

				self-organizing systems (ACSOS). IEEE, 2020. https://ieeexplore.ieee.org/abstract/d ocument/9196224	models (Random Forest and k-Nearest Neighbors) and a deep learning model (LSTM), depending on available computing resources.		compression software (7Zip, SecureZip, PeaZip, WinRAR, WinZip, and Freemake) as our benign examples and cryptomining applications (XMRig, XMR-Stak, Coinhive, Computta, and Gulminer) as malicious example.	Each machine provided a unique signature of operating context since all of them had different applications and services installed, including various versions of drivers.	important features will be selected A model selection utility function considers the computational resources and previous 10-fold cross validation training accuracy and F1 Scores to determine the best model for profiling.	plan to expand on model selection framework to investigate more system setting use cases and integrate explainable AI framework with LSTM model to provide explainability with feature selection, training, and inference.
10.	MR	Detecting Cryptomining Malware: a Deep Learning Approach for Static and Dynamic Analysis	2020	Darabian, Hamiki, et al. 'Detecting cryptomining makeare: a deep learning approach for static and dynamic analysis.' Journal of Grid Computing 18 (2020): 293-303. https://inks.springer.com/article/10.10 273-10723-020-085	A deep learning approach to detect cyptomining malware through both static and dynamic analysis to Enhance Malware Detection Accuracy, Reduce False Positives,	Resource Hijacking Steath Operations Frequent Use of Cryptographic Libraries	Cryptographic Library Usage System Calls Calasaer Doxyto sys calls Dbenign sys calls Opcode Dataset Drybo popodes Dbenign opcodes	An Ubuntu 16.04 host system running Cuckoo Sandbox to manage and analyze malwave behavior. A Windows 10 guest system running on VirtualBox for malware execution.	Dynamic Analysis using System Calls 1. Derypto_sys_calls 2. Obentiny_sys_calls is created using system calls from 220 portable applications using system calls from 220 portable applications using 3. Deep Learning Models • ILSTM (Long Short-Term Memory) • Attention-based LSTM (ATL-STM) • CNN (Convolutional Neural Network) • Levaluated using metrics accuracy, F-measure, McC (Matthew Correlation Coefficient), and False Possilive Rate (FFR). Static Analysis using Opcodes 1. Denyplo_opcodes 2. Denign_opcodes 2. Denign_opcodes 3. the same deep learning models (LSTM, ATT-LSTM, and CNN) are used for static analysis as for dynamic analysis. 4. Evaluated metrics 1. See The Company of the CNN	these datasets might not cover the full spectrum of cryptomining malware behaviors Model Generalization Dynamic Behavior Variability use of obfuscation, packing, or encyption techniques that make static analysis less effective or more challenging - Expand the dataset to include more samples of cryptomining malware - Enhanced Feature Extraction - Can use Advanced Machine Learning Techniques like ensemble methods, reinforcement learning, and multi-view learning, to their migrove the detection accuracy and reduce false positives - evasion techniques used by advanced cryptomining malware to improve the sandbox environment to make it less detectable by malware.
11.	MR	Website Cryptojacking Detection Using Machine Learning	2020, IEEE	Nukala, Venkala Sai Krishna Avinash. "Website cryptojacking detection using machine learning: IEEE CNS 20 poster." 2020 IEEE Corderence on Communications and novel of the Corderence on Communications and 2020.	-for detecting website cryptigicking using machine learning techniques -nonitized the cache activity to detect whether cryptigacking exists or not -lo detect, the CPU percentage throttle set by the attacker making it a multiclass classification problem	In-browser Website cryptojacking	website cryptojacking malicious JavaScript code into websites CPU Percentage Throttle Code Obtuscation False Positive Cases	the computers or devices of unsuspecting users who visit websites that have been compromised with malicious JavaScript code for the purpose of cryptojacking.	1. Cache Activity Monitoring a cache hiss cache misses cache misses closdected at intervals of 100 milliseconds for a dualition of 60 seconds of the cache misses and case the cache misses resulting in a 104 of 60,000 data points for analysis. 2. Machine Learning Classification-Models include k-nearest neighbors (KNN) Models include k-nearest neighbors (KNN) Machine (SWN), and Nahle Bay opport Vector Machine (SWN), and Nahle Bay opport Vector Machine (SWN), and Nahle Bay opport Vector Machine (SWN).	to expire cases where cryptojacking occurs alongside other high-performance activities, such as gaming, which may lead to false positives.

									The best-performing model, SVM, achieved an accuracy of 96.25%, with high precision, recall, and F1-score values.	
12.	MR	Detecting Illicit Cryptocurrency Mining Activity in Cloud Computing Platform	2022	Ariffin, Muhammad Azizi Mohd, et al. 'Detecting Illicit Cryptocurrency Mining Activity of Cloud Computing Platform: Journal of Positive School Psychology 6 20 (2022): 6611-6622. https://journalppw.com/index.php/jps.prarticle/view/5126	aim to address the increasing risk of unauthorized mining operations, which can lead to financial loss for organizations consumption and resource utilization. By developing a detection algorithm and testing it on a by developing a detection algorithm and testing it on a cloud testbed, the paper seeks cloud testbed, the paper seeks the impact of illicit mining activities on cloud infrastructure	Illicit Cryptocurrency Mining Spread of Mining Malware Security Breaches	Exploiting Cloud Infrastructure Installing Mining Software Malware Infections Compromising Cloud Platform	the virtual machines (VMs) within the cloud environment	1. Algorithm Selection • the Alternating Directions Dual Decomposition (AD3) algorithm for anomaly detection. This makes it suitable attended to the control of the contr	-Lack of Effective Detection Methods -Limited Focus on Cloud Infrastructure -insufficient Anterino to Anomaly Detection -Future Works - Enhancing Detection Techniques - Experimentation in Hybrid and - Containerized Clouds - Real-time Monitoring and Response - Mitigating False Possives - investigating Novel Attack Vectors
13.	AU	Snart Analysis and Detection System for New Host-Based Oppose-eting Melware Dislaset (DATASET):	2023, JEAS	Amurshi, Hadeel. "Smart Analysis and Delection System for New And Delection System for New Host-Based Cryptiglacking Malware Dataset." IN THE NAME OF ALTH. THE MOST GRACIOUS. THE MOST MERCHUL 10.1 (2023). https://m.mu.edu.sa/siles/default/files/2023-365,IEAS>%2015/2010%2010%201588.	ap-to-date dataset consisting of 14,985 samples, with 57,946 cases are seen to the constraint of 57,037 as cryptojacking detection system, with 5 different convolutional neural network models trained and evaluated against a subset of the dataset	Host based cryptojacking	Monitoring Windows executables, which involves moning Windows executables in an isolated executables in an isolated exercition of the provides a thorough understanding of cryptojacking malvare behavior and enables detection of the malvare	-	5 neural networks models were trained on the sub-set of the dataset to prove the effectiveness of the dataset. The models were evaluated using the basic evaluation metrics: Accuracy, Precision, Recall, etc.	The dataset has been obtained from a single source, and the cyptispiding samples included in the dataset were restricted to those identified by antivi-rus software in Virus Total. Our models were trained on a portion of the dataset, rather than the complete dataset. Tather than the complete dataset. *Restricting model training to only 5 models - The malware was not statically analyzed The following are potential areas for future investigation: Increase the number of ML and DL models trained on the complete dataset - Collect host-based cryptiojacking malware datasets from multiple sources Conduct research to comprehensively analyze the impact of cryptiopacking malware or the complete of the complete of the malware of the complete of the malware datasets from multiple sources

										Explore and analyze the different targets of cryptojacking malware. Examine and analyze the existing
										techniques used by organizations to detect and prevent cryptojacking malware • Examine and analyze the existing techniques used by organizations to hinder the impact of the cryptojacking malware
14.	AU	MINU: The Circrete Web Browser Adds on Application to Block that Hidden Cryptocurrency Mining Activities	2020, IEEE	Attage, Safe, Citan Varol, and Anassimia Shatholar. Yalko: The Chrome Web Browser 4dd-on Application to Block the Hidden Cryptocurrency Mining Activities: " 2020 8th international Symposium on Digital Forensics and Security (ISDFS). IEEE, 2020.	NNA a web brower add-on application to detect these malicious mining activities running without the user's permission or knowledge. This add-on provides security and efficiency for the computer resources of the internet users. Mind double-layer protection.	browser -based cryptojacking		Chrome browsers of victim users.	The first control is on detection. It collects the malicious cryptomizer scripts and RILs from an external file calls filters at the inside the assets folder when it is installed into the Chrome browser. These filters in the file have been acquired from various resources including previous works and online resources. Once the Miko has collected the filters, it can access the resources and provided by the Chrome API. In this case, Miko has enough time to check the content before a web request is made by Chromer. Thereupon, Miko scans the resources of the web page to check if there is any malicious sorijor to VIRL.	adding a whalkist feature to create and improve a whitest of truded web pages which can be controlled by the user to prevent any possible false-positive results without disabling MiNo. The second one is using a longer control time for CPU usage detection function to prevent false-positives in clean websites due to instant high CPU usage.
15.	MR	Detecting Cryptojacking Web Threats: An Approach with Autoencoders and Deep Dense Neural Networks	2022	Hemandex-Suarez, Aldo, et al. "Detecting cryptojacking web threats: An approach with authencoders and deep drane aurain networks." Applied Sciences 12.7 (2022) 3234. https://www.mdpi.com/2076-3417/12///3234	to propose and validate a machine learning-based solution for detecting cryptojacking Combining both network and host-based features to effectively characterize and detect cryptojacking activities	malicious actors inject cryptojacking sorpites into websites or use other network-based methods to deliver the payload Once the script or malware reaches the host (the victims computer or device), it executes and CPU and GPU resources to perform cryptocurrency mining operations.	Network-Based Attacks: Malicious actors can explict vinerabilities in websites or web applications to inject cyptoplaceting series. These scripts, other written in Jawa-Script, background when a user visits an infected website. Host-Based Attacks: Once the cyptoplaciting script is executed on using the device's resources for mining operations. This can lead to increased CPULGPU usage, higher power consumption, and potentially proved to the cyptoplacking payload to the victim's device can vary. It could involve exploiting variety and provided the control of the country o		Holistic View of Cryptojacking: The paper takes a comprehensive approach to cryptojacking, focusing on two main attack surfaces: the network (entry point of the treat) and the host (where the malware payload is executed and disseminated). Feature Extraction and Selection: A novel tachnique called Stacked Autoencoder (SAE) is employed for feature extraction and selection. As compresses and normalizes the distaser's outputs, reclaiming the best listent data for variant liquids. Detection Algorithms Evaluated Fuzzy C-Means Clustering Support Vector Machines (WIN) Middle-Jupy Fraceping (MLP) Multiple-Instance Support Vector Machines (MISVM) (MISVM) Random Subepace (RS) + Decision Tree (DT) Sequential Minimal Opimizzation (SMO) + SVM Sequential Minimal Opimizzation (SMO) + SVM Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (CSTM)	compling the model to enable baseline detection with a sensing agent, capable of recognizing and classifying samples to trager mitigation or remediation policies in minmal or restricted environments. enhancing the accuracy of cryptojacking detection by refining the detection algorithms and incorporating additional features or data sources. Understanding New Strains of Cryptojacking

