# 10. Komunikace a rozdělení datových sítí

- Základní pojmy a značky používané při návrhu datových sítí
  - PAN, LAN, MAN, WAN
  - ISP, IoT, QoS
  - IP adresa vs. MAC adresa
- Způsoby komunikace v datových sítích
  - Unicast, multicast, anycast, broadcast
- Topologie datových sítí
  - Sběrnice, kruh, hvězda, strom
- Popis protokolů
  - CSMA/CD, CSMA/CA, Token Ring
- Kaheláž
  - 10Base5, 10Base2, 10BaseT
  - Přímý vs. křížený kabel
- ISO/OSI model
  - Základní rozdělení a charakteristika každé z vrstev
  - Popis průchodu dat datovou sítí od odesílatele k příjemci v rámci jednotlivých vrstev -(de)encapsulation
  - Srovnání s TCP/IP modelem

### Základní pojmy a značky používané při návrhu datových sítí

#### BAN

- Body network Area
- V rámci těla jedné osoby
- Chytré hodinky, sluchátka, chytré prsteny, ...

#### PAN

- Personal Area Network
- Osobní síť, například v rámci domácnosti v okolí jedné osoby
- PC, mobil, laptop, ...

#### LAN

- Local Area Network
- V rámci "malého" prostoru
- Domácnost, školní síť, firemní síť
- Ethernet

#### MAN

- Metropolitan Area Network
- Síť spojující počítače v rámci města, například ISP
- Ethernet(optika)

#### WAN

- Wide Area Network
- Síť spojující jednotlivá města, státy, kontinenty
- Internet

#### ISP

- Internet service provider
- Poskytovatel internetového připojení koncovým uživatelům

#### loT

- Internet of Things
- Síť fyzických zařízení, která jsou schopna se výájemně propojit a vyměňovat si data
- Počítače, auta, chytrá domácnost, chytré příslušenství, ...

#### QoS

- Quality of Service
- Kvalita komunikace v síti, nastavení priorit v síti, hodnocení aplikací/služeb
- Opakem je Best Effort

#### Další zkratky

- NIC-Network Interface Controller
- DHCP Dynamic Host Configuration Protokol
- http Hyper Text Transfer Protocol (Secure)
- FTP File Transfer Protokol
- DNS Domain Name System

#### IP adresa

- Internet Protokol
- Jednoznačný identifikátor síťového zařízení v rámci dané sítě
- IPv4, IPv6, 3. vrstva OSI

#### MAC adresa

- Media Acces Control
- Také fyzická adresa
- Jednoznačný identifikátor síťového zařízení využívajícího různé protokoly, 2. vrstva OSI

## Způsoby komunikae v datových sítích

#### Unicast

- Komunikace pouze dvou zařízení
- Př: zkoušení studenta



#### Multicast

- Jedno zařízení vysílá na vybraná zařízení v dnaé skupině
- Internetová TV nebo rádio
- Př: Studenti, kteří jsou duchem přítomní při výkladu



### Anycast

- Před samotnou komunikací proběhne výběr z potencionální skupiny zařízení a následně se z ním zahájí komunikace
- Když se připojuji na Netflix servery
- Př: Studenti, kteří jsou duchem přítomní dostanou dotaz a jeden odpoví



#### Broadcast

- Jedno zařízení vysílá na všechny zařízení v dané skupině
- ARP nebo DHCP dotaz
- Př: přednáška
- Také všesměrové vysílání, oběžník



### Topologie datových sítí

Topologie sítě určuje uspořádání zařízení a způsob přenosu dat mezi nimi. Existuje několik základních typů:

#### **Sběrnice**

- Bus
- Všechna zařízení jsou připojena na společný komunikační kanál(sběrnici)
- Vlastnosti
  - Data jsou posílány jedním kabelem
  - Terminátory na koncích sběrnice zabraňují odrazům signálů
  - Používala se u starších sítí(Ethernet 10Base2, 10Base5)
  - Vysílání dvou zařízení-kolizní doména
- Výhody
  - Jednoduchá instalace
  - Nízké náklady
  - Nepotřebují centrální prvek(switch)
- Nevýhody
  - Pokud se přeruší/poškodí jeden kabel, spadne celá síť
  - Náročnější detekce chyb a kolizí
  - Čím více zařízení, tím pomalejší přenos



### Kruhová topologie

- Kruh, Ring
- Každé zařízení spojeno se dvěma sousedícími, tvoří uzavřený kruh
- Vlastnosti
  - Jednosměrný nebo dvousměrný
  - Žádné kolize-přenos řízen speciálním tokenem
  - Komunikuje tokenem, který koluje mezi stanicemi
  - Vlastník tokenu může vysílat, ostatní naslouchají
- Výhody
  - Žádné kolize díky řízenému přenosu dat
  - Efektivní využití šířky pásma
- Nevýhody
  - Problém při přerušení kruhu
  - Náročnější správa a opravy

### Hvězdicová topologie

- Všechna zařízení jsou připojena k centrálnímu prvku(switch)
- Vlastnosti
  - Nejčastější topologie v moderních sítích(Ethernet)
  - Citlivé na výpadek uzlu, odolné na výpadek stanice
- Výhody
  - Vysoká spolehlivost
  - Snadná správa a rozšíření
  - Snadnější řešení závad
  - Lepší výkon(každé zařízení má vlastní spojení)
- Nevýhody
  - Vyžší náklady na kabeláž



#### **Strom**

- Tree topology
- Rozšíření hvězdy propojením aktivních prvků
- Větší počítačové sítě
- Hvězdy = oddělení/patra
- Při selhání jednoho uzlu síť funguje dál



### Popis protokolů

#### CSMA/CD

- Carrier Sense Multiple Acces/Colision Detection
- Používá se v drátových sítích Ethernet(Hlavně starší verze)
- Už se téměř nepoužívá
- Jak funguje?
  - CS(Carrier sense) Zařízení naslouchá v síti, zda je médium volné.
  - MA(Multiple Acces) více zařízení sdílí stejné médium
  - CD(colision detect)
  - Při detekci chyby čeká náhodnou dobu, po které zase zkusí poslat data
- Výhody
  - Jednochá implementace
  - Funguje dobře při nízkém provozu
- Nevýhody
  - Kolize zpomalují přenos(obzvlášť při velké zátěži)

#### CSMA/CA

- Carrier Sense Multiple Acces/Colision Avoidance
- Používá se v bezdrátových sítích(Wi-Fi IEEE 802.11), ale může i na eth
- Obdoba CSMA/CD, akorát se snažíme kolizi předejít
- Jak funguje?
  - Carrier Sense zařízení naslouchá, zda je kanál volný
  - Multiple Acces Více zařízení sdílí sdílí stejný kanál
  - CA(Colision Avoidance)
    - před přenosem se odešle žádost o odeslání RTS-Request To Send
    - ◆ Příjemce odpoví CTS Clear To Send, a potvrdí, že médium je volné.
    - Následuje přenos dat.

#### **Token Ring**

- Využití speciálního paketu pro informování uzlu o možnosti komunikace
- Token je vytvořen po inicializaci sítě
  - Server nebo vyčleněná stanice(AM-aktivní monitor)
  - Stav je jím monitorován a v případě ztráty/poškození je vygenerován nový token
  - Pohotovostní monitor hlídá AM a v případě nutnosti jej zastoupí->nový AM
- Vysílát může jen ten, kdo má pravě prázdný token
- Označený token s daty se předává sousedovi, dokud nedorazí do cíle
- Po přijetí odvede odesílatel token do původního stavu a může být vyslán na další uzel

### Kabeláž

#### 10Base5

- Thick Ethernet = Tlustý ethernet, žlutý ethernet, Thicknet
- Průměr koaxiálního kabelu 10mm s impedancí 50ohm
- název
  - 10=10Mbit
  - Base = přenos v základním pásmu(signál není nijak modulován na jiný signál s lepší průchodností)
  - 5 = maximální souvislá délka kabelu ve stovkách metrů(500 metrů)
- Možnost vytváření odboček do kabelu a použitím transceivru
- Konce kabelu jsou zakončeny tzv. Terminátorem(stejná impedance jako u kabelu)
  - Neodráží signál zpátky
- Velmi široký, neforemný, drahý





#### 10Base2

- Thin ethernet = tenký ethernet, Thinnet
- Průměr kablu cca 5 mm se stejnou impedancí(50ohm)
- Max délka 200m(reálně 125) pro zachování přenosové rvchlosti
- Integrace transceiveru do síťové karty, minimální odbočky k zařízení(konektor tvaru T)





#### 10BaseT

- Pro přenos využívá TP(UTP/STP)=>T
- Možnost využití hvězdicové/stromové topologie sítě
- Vzorem byla síť starLAN(AT&T)
  - Jejím vzorem pak byly telefonní rozvody
    - Využívaly TP a hvězdicového zapojení
- Předchůdce 1Base5
  - Špatná/nemožná komunikace s 10Base5/2
- Snaha docílit stejné přenosové rychlosti vedla k velkému zkrácení dosahu(100m)





- Bez změny přístupu ke sdílenému médiu
  - CSMA/CD
  - Jednoduchý přechod mezi kabeláži(10Base5/2/T)
  - Změna nastala až s příchodem switchovaného ethernetu
- Hlaf duplex
  - Využíváno 2 TP(vysílání a příjem)
  - Full duplex až s příchodem switchovaného ethernetu

#### Přímý vs. Křížený kabel

- Prohozené dvojlinky RX a TX
- Přímý slouží pro propojení
  - PC/ROUTER SWITCHEM/HUBEM
- Křížený
  - PC-PC, ROUTER-ROUTER, ROUTER-PC, SWITCH-SWITCH

### ISO/OSI model

- ISO = International Organization for Standardization
- OSI = Open System Interconnection
- Referenční model nejduležítější model architektury sítí
- Reakce na nemožnost komunikace zařízení různých výrobců mezi sebou
- Rozdělen na 7 logických vrstev, které vymezují a specifikují úkoly, které by měly řešit

#### Základní rozdělení a charakteristika každé z vrstev

- Každá vrstva má svůj kontrolní součet
- Aplikační vrstva L7
  - Application Layer
  - Poskytuje uživatelské rozhraní
  - Zde uživatel komunikuje s PC
  - Aplikační programy nespadají do této vrstvy, využívají však jejích protokolů
  - Vstupuje do hry, když je potřeba přístup k síti např.:otevření vzdáleného dokumentu
  - Je zodpovědná za:
    - Identifikaci požadovaného komunikačního partnera
    - Ověření jeho dostupnosti
    - Ověření, zda ,má ke komunikaci dostatečné prostředky
  - Funkce:
    - Souborové
    - Tiskové
    - Databázové
    - Aplikační služby
    - Zasílání zpráv
  - Protokoly
    - DNS(Domain Name Server), DHCP(Dynamic Host Configuration Protokol)
    - FTP(File transfer prototcol), SFTP(Secure File transfer Protocol)
    - http(hypertext transfer protocol), https
    - SSH(Navazuje na telnet, secured shell), telnet

#### Prezentační vrstva - L6

- Presentation Layer
- Prezentuje data aplikační vrstvě
- Rozdíl s aplikační vrstvou bývá často potlačen

- Tato vrstva se stará o převod dat do formátu, kterému rozumí aplikace, zajišťuje šifrování a kompresi
- Funkce
  - Překlad mezi různými formáty(ASCII, UNICODE)
  - ♦ Komprese dat pro efektivnější přenos
  - ♦ Šifrování a dešifrování dat(SSL, TLS)
- Příklady
  - SSL/TLS(šifrování https komunikace)
  - ◆ JPEG, PNG(komprese obrázků)
  - MPEG, MP3(komprese multiédií)

#### Relační vrstva - L5

- Session layer
- Umožňuje vytváření, udržování a ukončování spojení(session) mezi aplikacemi
- Funkce
  - Synchronizace a správa relací mezi aplikacemi
  - ♦ Řízení spojení mezi klientem a serverem
  - Možnost obnovení přerušeného přenosu
  - Odpovědná za ustavení, správu a ukončení relací mezi entitami prezentační vrstvy

#### Transportní vrstva - L4

- Transport layer
- Tato vrstva zajišťuje spolehlivý nebo nespolehlivý přenos dat mezi aplikacemi běžícími na různých zařízeních
- Funkce:
  - Segmentuje data z aplikací vyžších vrstev do datového proudu a poté je zpětně sestavuje
  - Zajišťuje přenos dat mezi koncovými systémy
  - Řízení toku dat, snaha o zajišťění datové integrity
  - **♦** TCP
    - Transmission Control Protocol
    - Spolehlivý přenos dat(zajišťuje doručení a správné pořadí paketů)
    - Použití v aplikacích jako HTTP, FTP, email
    - Pomalé a zpolehlivé(neustále ověřuje, jestli data došly, webovky)
  - **♦** UDP
    - User Datagram Protocol
    - Rychlé a nespolehlivé
    - Neověřuje doručení dat, využívá se k přenosu v reálném čase-live stream

#### Síťová vrstva - L3

- Network Layer
- Má na starosti
  - Adresování zařízení
  - Umístění zařízení v síti
  - Stanovuje nejvhodnější způsob dopravy dat
- Posílá pakety
- IP adresa, router, multi-layer switch, ICMP(Internet Controll Message Protocol) = ping
- ARP(Address Resolution Protocol-překládá ip adresy na MAC adresy)
- OSPF(Open shortest Path First), RIP, BGP směrovací protokoly

#### Linková vrstva - L2

- Data Link Layer
- Ethernet posílá rámce(měrná jednotka dat u Ethernetu)
- Zajišťuje fyzický přenos dat
- Pomocí HW adresy se stará o doručení framu, do kterého data v této vrstvě zapouzdříme

#### ■ Funkce:

- Rozdělení dat do rámců (frames) a jejich odesílání/příjem.
- Řízení přístupu k médiu (MAC Media Access Control).
- ◆ Detekce a oprava chyb při přenosu (např. pomocí CRC Cyclic Redundancy Check).
- Fyzické adresování zařízení pomocí MAC adresy.

#### Příklady

- ◆ Ethernet, Wi-Fi
- PPP(poin to point protocol)
- ◆ VLAN virtual local area network
- ◆ MAC, switch

#### Dvě podvrsty

- MAC (Media Access Control) definuje, jak zařízení získává přístup k přenosovému médiu (např. CSMA/CD u Ethernetu).
- LLC (Logical Link Control) řídí multiplexování protokolů, kontrolu chyb a řízení toku dat.

#### Fyzická vrstva - L1

- Posíláme buď pomocí napětí, nebo světla, zvuku, rádiových vln
- Specifikuje fyzickou komunikaci
- Aktivuje, adržuje a deaktivuje fyzické spoje
- Definuje veškeré elektrické, fyzické a mechanické vlatsnosti zařízení
  - Rozložení pinů, napěťové úrovně, vlastnosti přenosových médií
- Hub, přenosové médium
- Ethernet, Wifi, optická vlákna Bluetooth, RS-232



Popis průchodu dat datovou sítí - od odesílatele k příjemci v rámci jednotlivých vrtev - (de)encapsulation



### Shrnutí OSI modelu a jeho význam

Každá vrstva OSI modelu plní specifické úkoly a komunikuje pouze se sousedními vrstvami, což zajišťuje modularitu a kompatibilitu síťových technologií.

V praxi se často používá TCP/IP model, který je zjednodušený na čtyři vrstvy (Síťové rozhraní, Internetová, Transportní, Aplikační).

### Srovnání s TCP/IP modelem

- ISO/OSI je více inženýrský, podrobnější
- TCP/IP je praktičtější pro pragramátory, obecnější
- V praxi se používá TCP/IP model
- Modely OSI (Open Systems Interconnection) a TCP/IP (Transmission Control Protocol/Internet Protocol) jsou referenční modely pro síťovou komunikaci.
- Zatímco OSI model je teoretický a slouží jako konceptuální rámec, TCP/IP model je praktičtější a používá se v reálných sítích, včetně internetu

| Kritérium           | OSI model (7 vrstev)                                                        | TCP/IP model (4 vrstvy)                                          |
|---------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------|
| Vznik               | Vyvinut organizací ISO (International<br>Organization for Standardization). | Vyvinut americkou armádou (DARPA) pro internetovou komunikaci.   |
| Použití             | Teoretický model, který pomáhá pochopit síťovou komunikaci.                 | Praktický model, na kterém je založen internet.                  |
| Vrstev              | 7 vrstev (detailní rozdělení funkcí).                                       | 4 vrstvy (zjednodušená struktura).                               |
| Přístup k<br>vývoji | Nejprve model, poté technologie.                                            | Nejprve technologie, poté model.                                 |
| Flexibilita         | Přísně definované vrstvy, méně flexibilní.                                  | Méně vrstev, umožňuje snadnější implementaci.                    |
| Spolehlivost        | OSI podporuje jak spolehlivé (TCP), tak nespolehlivé (UDP) protokoly.       | TCP/IP je navržen pro robustní a spolehlivou síťovou komunikaci. |
| Oddělení<br>služeb  | Každá vrstva OSI modelu má jasně definovanou funkci.                        | Některé funkce OSI modelu jsou sloučeny<br>do jedné vrstvy.      |

| OSI model (7 vrstev)             | TCP/IP model (4 vrstvy)                | Funkce                                                           |
|----------------------------------|----------------------------------------|------------------------------------------------------------------|
| 7. Aplikační (Application)       | 4. Aplikační (Application)             | Poskytuje síťové služby aplikacím (HTTP, FTP, SMTP).             |
| 6. Prezentační<br>(Presentation) | (Součást aplikační vrstvy)             | Převádí data do vhodného formátu (šifrování, komprese).          |
| 5. Relační (Session)             | (Součást aplikační vrstvy)             | Spravuje relace mezi aplikacemi (např. připojení klient-server). |
| 4. Transportní<br>(Transport)    | 3. Transportní (Transport)             | Řízení spolehlivého (TCP) nebo nespolehlivého (UDP) přenosu.     |
| 3. Síťová (Network)              | 2. Internetová (Internet)              | Směrování a logické adresování (IP, ICMP, ARP).                  |
| 2. Linková (Data Link)           | 1. Síťové rozhraní (Network<br>Access) | Přenos dat v rámci místní sítě (Ethernet, Wi-Fi).                |
| 1. Fyzická (Physical)            | (Součást síťového rozhraní)            | Převod binárních dat na signály (kabely, rádiové vlny).          |