Sayısal Sistemler-H6CD2

Kombinasyonel Devreler-4

Dr. Meriç Çetin versiyon251020

Bu derste öğreneceklerimiz

4 Combinational Logic

4.1	Introduction	125
4.2	Combinational Circuits	125
4.3	Analysis Procedure	126
4.4	Design Procedure	129
4.5	Binary Adder–Subtractor	133
4.6	Decimal Adder	144
4.7	Binary Multiplier	146
4.8	Magnitude Comparator	148
4.9	Decoders	150
4.10	Encoders	155
4.11	Multiplexers	158
4.12	HDL Models of Combinational Circuits	164

Tekilleyici-Veri Seçici (Multiplexer)

- Multiplexer, birçok giriş hattının birinden ikili bilgiyi seçen ve tek bir çıkış hattına yönlendiren kombinasyonel bir devredir.
- Belirli bir giriş hattının seçimi, bir dizi seçim satırı tarafından kontrol edilir.
- Normalde, hangi girişin seçildiğini bit kombinasyonları belirleyen 2ⁿ giriş satırı ve n seçim satırı vardır.

2x1 Multiplexer

FIGURE 4.24

Two-to-one-line multiplexer

4x1 Multiplexer

FIGURE 4.25

Örnek

$$F(x, y, z) = \Sigma(1, 2, 6, 7)$$

• 4x1 Mux ile F fonksiyonunu tasarlayınız

х	y	z	F	
0	0	0 1	0 1	F = z
0	1 1	0 1	1	F = z'
1 1	0	0 1	0	F = 0
1	1 1	0 1	1 1	F = 1

(b) Multiplexer implementation

FIGURE 4.27

Başka bir örnek

 $F(A, B, C, D) = \Sigma(1, 3, 4, 11, 12, 13, 14, 15)$

• 8x1 Mux ile F fonksiyonunu tasarlayınız

FIGURE 4.28
Implementing a four-input function with a multiplexer

Çoğullayıcı-Veri Dağıtıcı (Demultiplexer)

- Bir çoğullayıcı, bir tekilleyicinin ters işlemini gerçekleştirir, yani bir girişi alır ve bunu birkaç çıkışa dağıtır.
- Sadece bir giriş, n çıkış, m seçim girişi vardır.
- Bir seferde, seçilen hatlar tarafından yalnızca bir çıkış hattı seçilir ve giriş, seçilen çıkış hattına iletilir.

1x2 Demultiplexer

TRUTH TABLE

Enable	Select	Output			
E	S	YO	Y1		
0	x	0	0		
1	0	0	Din		
1	1	Din	0		

x = Don't care

1x4 Demultiplexer

Input	Select Lines	Output Lines
I	S ₁ S ₀	$\mathbf{D}_0\mathbf{D}_1\mathbf{D}_2\mathbf{D}_3$
I	0 0	1 0 0 0
I	0 1	0 1 0 0
I	1 0	0 0 1 0
I	1 1	0 0 0 1

1 to 4 Demux Truth Table

1x8 Demultiplexer

Data Input D	Select Inputs			Outputs							
	S ₂	Sı	So	Y ₇	Y ₆	Y ₅	Y ₄	Y ₃	Y ₂	Y ₁	Yo
D	0	0	0	0	0	0	0	0	0	0	D
D	0	0	1	0	0	0	0	0	0	D	0
D	0	1	0	0	0	0	0	0	D	0	0
D	0	1	1	0	0	0	0	D	0	0	0
D	1	0	0	0	0	0	D	0	0	0	0
D	1	0	1	0	0	D	0	0	0	0	0
D	1	1	0	0	D	0	0	0	0	0	0
D	1	1	1	D	0	0	0	0	0	0	0

1 to 8 Demux Truth Table

1x8 Demultiplexer

Data Input D	Select Inputs			Outputs							
	S ₂	Sı	So	Y ₇	Y ₆	Y ₅	Y4	Y ₃	Y ₂	Y ₁	Yo
D	0	0	0	0	0	0	0	0	0	0	D
D	0	0	1	0	0	0	0	0	0	D	0
D	0	1	0	0	0	0	0	0	D	0	0
D	0	1	1	0	0	0	0	D	0	0	0
D	1	0	0	0	0	0	D	0	0	0	0
D	1	0	1	0	0	D	0	0	0	0	0
D	1	1	0	0	D	0	0	0	0	0	0
D	1	1	1	D	0	0	0	0	0	0	0

1 to 8 Demux Truth Table

1 to 8 Demux Circuit Diagram

https://www.elprocus.com/different-types-of-demultiplexers/

1x4 Demux kullanarak 1x8 Demux tasarımı

1 to 8 Demux using Two 1 to 4 DEMUXs

Demultiplexer kullanımına bir örnek

- Tek bir kaynağı birden çok hedefe bağlamak için bir çoğullayıcı kullanılır.
- Çoğullama devreleri esas olarak iletişim sistemi alanında kullanılır.

WEB SEARCH TOPICS

Boolean equation

Combinational logic

Truth table

Exclusive-OR

Comparator

Multiplexer

Decoder

Priority encoder

Three-state inverter

Three-state buffer