Amenable Discrete Groups

Conditions and Applications

Avinash Iyer

19 September, 2024

Contents

1	Prelude	2
	Paradoxical Decompositions 2.1 Prelude: Essential Group Actions	3 3
3	Tarski's Theorem	5

Chapter 1

Prelude

Chapter 2

Paradoxical Decompositions

The primary goal of this section will be to introduce the idea of a paradoxical decomposition (and its effects on the analytic properties of \mathbb{R}^3) through the Banach–Tarski Paradox. The ultimate goal is to prove the following statement.

Proposition 2.0.1 (General Banach–Tarski Paradox): If A and B are bounded subsets of \mathbb{R}^3 with nonempty interior, there is a partition of A into finitely many disjoint subsets such a sequence of isometries applied to these subsets yields B.

The existence of the Banach–Tarski paradox throws a wrench into a major idea that we may have about subsets of \mathbb{R}^3 — namely, that they always have some "volume" to them that is invariant under isometry, similar to how "area" in \mathbb{R}^2 is invariant under isometry.

2.1 Prelude: Essential Group Actions

We begin by discussing some of the basic properties of group actions.

Definition (Group Action). Let G be a group, and A be a set. A left group action of G onto A is a map $\alpha : G \times A \to A$ that satisfies

- $\alpha(g_1, (g_2, a)) = \alpha(g_1g_2, a)$ for all $g_1, g_2 \in G$ and $a \in A$;
- $\alpha(e_G, \alpha) = \alpha$ for all $\alpha \in A$.

For the sake of brevity, we write $(g, a) = g \cdot a$.

Every group action can be represented by a permutation on A.

Definition (Permutation Representation). For each g, the map $\sigma_g: A \to A$ defined by $\sigma_g(a) = g \cdot a$ is a permutation of A. There is a homomorphism associated to these actions, $\varphi: G \to Sym(A)$, where Sym(A) is the symmetric group on the elements of A.

The permutation representation can run in the opposite direction in the following sense: given a nonempty set A and a homomorphism $\psi: G \to Sym(A)$, we can take $g \cdot \alpha = \psi(g)(\alpha)$, where $\psi(g) = \sigma_g \in Sym(A)$ is a permutation.

Just as we can pass group actions into permutation representations, and discuss ideas like the kernel of homomorphisms, we can also discuss the kernel of ajn action.

Definition (Kernel). The kernel of the action of G on A is the set of elements in g that act trivially on A:

$$\{g \in G \mid \forall \alpha \in A, g \cdot \alpha = \alpha\}.$$

The kernel of the group action is the kernel of the permutation representation $\varphi : G \to Sym(A)$.

Definition (Stabilizer). For each $a \in A$, we define the stabilizer of a under G to be the set of elements in G that fix a:

$$G_{\alpha} = \{g \in G \mid g \cdot \alpha = \alpha\}.$$

Remark: The kernel of the group action is the intersection of the stabilizers of every element of A.

For each $\alpha \in A$, G_{α} is a subgroup of G.

Definition (Faithful Action). An action is faithful if the kernel of the action is the identity, e_G . Equivalently, the permutation representation $\varphi : G \to Sym(A)$ is injective.

The following definition will be useful in the future as we dig deeper into the idea of paradoxical groups.

Definition (Free Action). For a set X with G acting on X, the action of G on X is free if, for every $x \in X$, $g \cdot x = x$ if and only if $g = e_G$.

The most important theorem relating to group actions is the orbit-stabilizer theorem. As we prove the following theorem, we will reveal the definition of an orbit as a type of equivalence class.

Theorem 2.1.1 (Orbit-Stabilizer Theorem): Let G be a group that acts on a nonempty set A. We define a relation $a \sim b$ if and only if $a = g \cdot b$ for some $g \in G$. This is an equivalence relation, with the number of elements in $[a]_{\sim}$ found by taking the index of the stabilizer of a in G, $G : G_{\alpha}$.

Proof. We start by seeing that $a \sim a$, as $e_G \cdot a = a$. Similarly, if $a \sim b$, then there exists $g \in G$ such that $a = g \cdot b$. Thus,

$$g^{-1} \cdot a = g^{-1} \cdot (g \cdot b)$$
$$= g^{-1}g \cdot b$$
$$= e \cdot b$$
$$= b,$$

meaning that $b \sim a$. Finally, if we have $a \sim b$ and $b \sim c$, we have $a = g \cdot b$ and $b = h \cdot c$ for some $g, h \in G$. Therefore,

$$a = g \cdot (h \cdot c)$$
$$= (gh) \cdot c,$$

meaning $a \sim c$. Thus, the relation \sim is reflexive, symmetric, and transitive, so it is an equivalence relation.

We claim there is a bijection between the left cosets of $G_{\mathfrak{q}}$ and the elements of $[\mathfrak{q}]_{\sim}$.

Define $C_{\alpha} = \{g \cdot \alpha \mid g \in G\}$, which is the set of elements in the equivalence class of α . Define the map $g \cdot \alpha \mapsto gG_{\alpha}$. Since $g \cdot \alpha$ is always an element of C_{α} , this map is surjective. Additionally, since $g \cdot \alpha = h \cdot \alpha$ if and only if $(h^{-1}g) \cdot \alpha = \alpha$, we have $h^{-1}g \in G_{\alpha}$, which is only true if $gG_{\alpha} = hG_{\alpha}$. Thus, the map is injective.

Since there is a one to one map between the equivalence classes of α under the action of G, and the number of left cosets of G_{α} , we know that the number of equivalence classes of α under the action of G is $|G:G_{\alpha}|$.

Definition (Orbit). Let G act on A, and let $a \in A$. The orbit of a under G is the set

$$G \cdot \alpha = \{ g \cdot \alpha \in A \mid g \in G \}$$

Chapter 3

Tarski's Theorem