Design of a high-performance tensor-matrix multiplication with BLAS

Cem Savaş Başsoy^{a,*}

^a Hamburg University of Technology, Schwarzenbergstrasse 95, 21071, Hamburg, Germany

Abstract

The tensor-matrix multiplication is a basic tensor operation required by various tensor methods such as the HOSVD. This paper presents flexible high-performance algorithms that compute the tensor-matrix product according to the Loops-over-GEMM (LoG) approach. Our algorithms are able to process dense tensors with any linear tensor layout, arbitrary tensor order and dimensions all of which can be runtime variable. We discuss two slicing methods with orthogonal parallelization strategies and propose four algorithms that call BLAS with subtensors or tensor slices. We provide a simple heuristic which selects one of the four proposed algorithms at runtime. All algorithms have been evaluated on a large set of tensors with various tensor shapes and linear tensor layouts. In case of large tensor slices, our best-performing algorithm achieves a median performance of 2.47 TFLOPS on an Intel Xeon Gold 5318Y and 2.93 TFLOPS an AMD EPYC 9354. Furthermore, it outperforms batched GEMM implementation of Intel MKL by a factor of 2.57 with large tensor slices. Our runtime tests show that TLIB'S function <combined> is, in median, between 15.38% and 257.58% faster than most state-of-the-art approaches, including actively developed libraries like Libtorch and Eigen. It is on par with TBLIS for many tensor shapes which uses optimized kernels for the TTM computation. This work is an extended version of the article "Fast and Layout-Oblivious Tensor-Matrix Multiplication with BLAS" (Bassoy, 2024)[1].

1 1. Introduction

Tensor computations are found in many scientific fields such as computational neuroscience, pattern recognition, signal processing and data mining [2, 3, 4, 5, 6]. These computations use basic tensor operations as building blocks for decomposing and analyzing multidimensional data which are represented by tensors [7, 8]. Tensor contractions are an important subset of basic operations that need to be fast for efficiently solving tensor methods.

There are three main approaches for implementing ten-11 sor contractions. The Transpose Transpose GEMM Trans-12 pose (TGGT) approach reorganizes tensors in order to 13 perform a tensor contraction using optimized implemen-14 tations of the general matrix multiplication (GEMM) [9, 15 10. GEMM-like Tensor-Tensor multiplication (GETT) 16 method implement macro-kernels that are similar to the 17 ones used in fast GEMM implementations [11, 12]. The 18 third method is the Loops-over-GEMM (LoG) or the BLAS-19 based approach in which Basic Linear Algebra Subpro-20 grams (BLAS) are utilized with multiple tensor slices or 21 subtensors if possible [13, 14, 15, 16]. The BLAS are 22 considered the de facto standard for writing efficient and 23 portable linear algebra software, which is why nearly all ²⁴ processor vendors provide highly optimized BLAS imple-25 mentations. Implementations of the LoG and TTGT ap-26 proaches are in general easier to maintain and faster to 27 port than GETT implementations which might need to

²⁸ adapt vector instructions or blocking parameters accord-²⁹ ing to a processor's microarchitecture.

In this work, we present high-performance algorithms 31 for the tensor-matrix multiplication (TTM) which is used 32 in important numerical methods such as the higher-order 33 singular value decomposition and higher-order orthogonal 34 iteration [17, 8, 7]. TTM is a compute-bound tensor op-35 eration and has the same arithmetic intensity as a matrix-36 matrix multiplication which can almost reach the practical 37 peak performance of a computing machine. To our best 38 knowledge, we are the first to combine the LoG-approach 39 described in [16, 18] for tensor-vector multiplications with 40 the findings on tensor slicing for the tensor-matrix mul-41 tiplication in [14]. Our algorithms support dense tensors 42 with any order, dimensions and any linear tensor layout 43 including the first- and the last-order storage formats for 44 any contraction mode all of which can be runtime variable. 45 Supporting arbitrary tensor layouts enables other frame-46 works non-column-major storage formats to easily inte-47 grate our library without tensor reformatting and unneces-48 sary copy operations¹. Our implementation compute the 49 tensor-matrix product in parallel using efficient GEMM 50 without transposing or flattening tensors. In addition to 51 their high performance, all algorithms are layout-oblivious 52 and provide a sustained performance independent of the 53 tensor layout and without tuning. We provide a single al-54 gorithm that selects one of the proposed algorithms based 55 on a simple heuristic.

^{*}Corresponding author

Email address: cem.bassoy@gmail.com (Cem Savaş Başsoy)

¹For example, Tensorly [19] requires tensors to be stored in the last-order storage format (row-major).

₅₇ less than 150 lines of C++ code where the algorithmic ₁₁₀ plication. Algorithm design and methods for slicing and 58 complexity is reduced by the BLAS implementation and 111 parallel execution are discussed in Section 4. Section 5 59 the corresponding selection of subtensors or tensor slices. 112 describes the test setup. Benchmark results are presented 60 We have provided an open-source C++ implementation of 113 in Section 6. Conclusions are drawn in Section 8. 61 all algorithms and a python interface for convenience.

The analysis in this work quantifies the impact of the 63 tensor layout, the tensor slicing method and parallel exe-64 cution of slice-matrix multiplications with varying contrac-65 tion modes. The runtime measurements of our implemen-66 tations are compared with state-of-the-art approaches dis-67 cussed in [11, 12, 20] including Libtorch and Eigen. While 68 our implementation have been benchmarked with the In-69 tel MKL and AMD AOCL libraries, the user choose other 70 BLAS libraries. In summary, the main findings of our work 71 are:

Given a row-major or column-major input matrix, the tensor-matrix multiplication with tensors of any linear tensor layout can be implemented by an inplace algorithm with 1 GEMV and 7 GEMM instances, supporting all combinations of contraction mode, tensor order and tensor dimensions.

72

73

74

75

76

77

78

79

80

81

82

83

84

85

87

88

89

90

- The proposed algorithms show a similar performance characteristic across different tensor layouts, provided that the contraction conditions remain the same.
- A simple heuristic is sufficient to select one of the proposed algorithms at runtime, providing a nearoptimal performance for a wide range of tensor shapes. 136
- Our best-performing algorithm is a factor of 2.57 faster than Intel's batched GEMM implementation for large tensor slices.
- Our best-performing algorithm has a median performance speedup between 15.38% and 257.58% compared to other state-of-the art library implementations, including LibTorch and Eigen.

This work is an extended version of the article "Fast 92 and Layout-Oblivious Tensor-Matrix Multiplication with 93 BLAS" [1]. Compared to our previous publication, we have 94 made several significant additions. We conducted runtime 95 tests on a more recent Intel Xeon Gold 5318Y CPU and 96 expanded our study to include AMD's AOCL, running ad-97 ditional benchmarks on an AMD EPYC 9354 CPU. We in-98 corporated a newer version of TBLIS while also testing the 99 TuckerMPI TTM implementation. Furthermore, we ex-100 tended our implementations to support the column-major 101 matrix storage format and benchmarked our algorithms for 102 both row-major and column-major layouts, analyzing the 103 runtime results in detail. Lastly, we introduced a heuristic 104 that enables the use of a single TTM algorithm, ensuring 105 efficiency across different storage formats and a wide range 106 of tensor shapes.

The remainder of the paper is organized as follows. 108 Section 2 presents related work. Section 3 introduces some

Every proposed algorithm can be implemented with 109 notation on tensors and defines the tensor-matrix multi-

114 2. Related Work

Springer et al. [11] present a tensor-contraction gen-116 erator TCCG and the GETT approach for dense tensor 117 contractions that is inspired from the design of a high-118 performance GEMM. Their unified code generator selects 119 implementations from generated GETT, LoG and TTGT 120 candidates. Their findings show that among 48 different 121 contractions 15% of LoG-based implementations are the 122 fastest.

Matthews [12] presents a runtime flexible tensor con-124 traction library that uses GETT approach as well. He de-125 scribes block-scatter-matrix algorithm which uses a special 126 layout for the tensor contraction. The proposed algorithm 127 yields results that feature a similar runtime behavior to 128 those presented in [11].

Li et al. [14] introduce InTensLi, a framework that 130 generates in-place tensor-matrix multiplication according 131 to the LoG approach. The authors discusses optimization 132 and tuning techniques for slicing and parallelizing the op-133 eration. With optimized tuning parameters, they report 134 a speedup of up to 4x over the TTGT-based MATLAB 135 tensor toolbox library discussed in [9].

Bassoy [16] presents LoG-based algorithms that com-137 pute the tensor-vector product. They support dense ten-138 sors with linear tensor layouts, arbitrary dimensions and 139 tensor order. The presented approach contains eight cases 140 calling GEMV and DOT. He reports average speedups of 141 6.1x and 4.0x compared to implementations that use the 142 TTGT and GETT approach, respectively.

Pawlowski et al. [18] propose morton-ordered blocked 144 layout for a mode-oblivious performance of the tensor-145 vector multiplication. Their algorithm iterate over blocked 146 tensors and perform tensor-vector multiplications on blocked 147 tensors. They are able to achieve high performance and 148 mode-oblivious computations.

In [21] the authors present a C++ software package 150 (TuckerMPI) for large-scale data compression using ten-151 sor tucker decomposition. The library provides a parallel 152 C++ function of the latter containing distributed func-153 tions with MPI for the Gram computation and tensor-154 matrix multiplication. Th latter invokes a local version 155 that contains a multi-threaded gemm computing the tensor-156 matrix product with submatrices according to the LoG 157 approach. The presented local TTM corresponds to our 158 <par-gemm, subtensor> version.

159 3. Background

160 3.1. Tensor Notation

An order-p tensor is a p-dimensional array where ten-162 sor elements are contiguously stored in memory[22, 7]. 163 We write a, \mathbf{a} , \mathbf{A} and $\underline{\mathbf{A}}$ in order to denote scalars, vec-165 we assume $\underline{\mathbf{A}}$ to have order p>2. The p-tuple $\mathbf{n}=$ (n_1, n_2, \ldots, n_p) will be referred to as the shape or dimen-167 sion tuple of a tensor where $n_r > 1$. We will use round brackets $\underline{\mathbf{A}}(i_1, i_2, \dots, i_p)$ or $\underline{\mathbf{A}}(\mathbf{i})$ to denote a tensor element where $\mathbf{i}=(i_1,i_2,\ldots,i_p)$ is a multi-index. For con-170 venience, we will also use square brackets to concatenate 171 index tuples such that $[\mathbf{i}, \mathbf{j}] = (i_1, i_2, \dots, i_r, j_1, j_2, \dots, j_q)$ where **i** and **j** are multi-indices of length r and q, respec-173 tively.

174 3.2. Tensor-Matrix Multiplication (TTM)

176 ([$\mathbf{n}_1, n_q, \mathbf{n}_2$]) and $\mathbf{n}_c = ([\mathbf{n}_1, m, \mathbf{n}_2])$ where $\mathbf{n}_1 = (n_1, n_2, n_2)$ 177 ..., n_{q-1}) and $\mathbf{n}_2 = (n_{q+1}, n_{q+2}, \dots, n_p)$. Let **B** be a ma-178 trix of shape $\mathbf{n}_b=(m,n_q)$. A q-mode tensor-matrix prod-228 fined as $\hat{q}=\pi^{-1}(q)$. Given a layout tuple π with p

$$\underline{\mathbf{C}}([\mathbf{i}_1, j, \mathbf{i}_2]) = \sum_{i_n=1}^{n_q} \underline{\mathbf{A}}([\mathbf{i}_1, i_q, \mathbf{i}_2]) \cdot \mathbf{B}(j, i_q)$$
(1)

with $\mathbf{i}_1 = (i_1, \dots, i_{q-1})$, $\mathbf{i}_2 = (i_{q+1}, \dots, i_p)$ where $1 \leq i_r \leq n_r$ and $1 \leq j \leq m$ [14, 8]. The mode q is called the 183 contraction mode with $1 \leq q \leq p$. TTM generalizes the $_{184}$ computational aspect of the two-dimensional case $\mathbf{C} =$ 185 $\mathbf{B} \cdot \mathbf{A}$ if p = 2 and q = 1. Its arithmetic intensity is $_{186}$ equal to that of a matrix-matrix multiplication which is 187 compute-bound for large dense matrices.

In the following, we assume that the tensors A and C 189 have the same tensor layout π . Elements of matrix **B** can 190 be stored either in the column-major or row-major format. 191 With i_q iterating over the second mode of **B**, TTM is also $_{192}$ referred to as the q-mode product which is a building block 193 for tensor methods such as the higher-order orthogonal 194 iteration or the higher-order singular value decomposition 195 [8]. Please note that the following method can be applied, 196 if indices j and i_q of matrix **B** are swapped.

197 3.3. Subtensors

A subtensor references elements of a tensor \mathbf{A} and is 199 denoted by \mathbf{A}' . It is specified by a selection grid that con- $_{200}$ sists of p index ranges. In this work, an index range of a $_{201}$ given mode r shall either contain all indices of the mode 202 r or a single index i_r of that mode where $1 \leq r \leq p$. Sub- $_{\rm 203}$ tensor dimensions n_r' are either n_r if the full index range $_{\rm 204}$ or 1 if a a single index for mode r is used. Subtensors are 205 annotated by their non-unit modes such as $\underline{\mathbf{A}}'_{u,v,w}$ where $n_u > 1, n_v > 1 \text{ and } n_w > 1 \text{ for } 1 \le u \ne v \ne w \le p.$ The 207 remaining single indices of a selection grid can be inferred

208 by the loop induction variables of an algorithm. The num-209 ber of non-unit modes determine the order p' of subtensor where $1 \leq p' < p$. In the above example, the subten- $\underline{\mathbf{A}}'_{u,v,w}$ has three non-unit modes and is thus of order 212 3. For convenience, we might also use an dimension tuple 213 **m** of length p' with $\mathbf{m} = (m_1, m_2, \dots, m_{p'})$ to specify a 164 tors, matrices and tensors. If not otherwise mentioned, 214 mode-p' subtensor $\underline{\mathbf{A}}'_{\mathbf{m}}$. An order-2 subtensor of $\underline{\mathbf{A}}'$ is a 215 tensor slice $\mathbf{A}'_{u,v}$ and an order-1 subtensor of $\underline{\mathbf{A}}'$ is a fiber

217 3.4. Linear Tensor Layouts

We use a layout tuple $\pi \in \mathbb{N}^p$ to encode all linear 219 tensor layouts including the first-order or last-order lay-220 out. They contain permuted tensor modes whose priority $_{221}$ is given by their index. For instance, the general k-order $_{222}$ tensor layout for an order-p tensor is given by the layout 223 tuple $\boldsymbol{\pi}$ with $\pi_r = k - r + 1$ for $1 < r \le k$ and r for $224 k < r \le p$. The first- and last-order storage formats are Let $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ be order-p tensors with shapes $\mathbf{n}_a = 225$ given by $\boldsymbol{\pi}_F = (1, 2, \dots, p)$ and $\boldsymbol{\pi}_L = (p, p-1, \dots, 1)$. 226 An inverse layout tuple π^{-1} is defined by $\pi^{-1}(\pi(k)) = k$. 227 Given the contraction mode q with $1 \leq q \leq p$, \hat{q} is deuct is denoted by $\underline{\mathbf{C}} = \underline{\mathbf{A}} \times_q \mathbf{B}$. An element of $\underline{\mathbf{C}}$ is defined 229 modes, the π_r -th element of a stride tuple \mathbf{w} is given by 180 by 230 $w_{\pi_r} = \prod_{k=1}^{r-1} n_{\pi_k}$ for $1 < r \le p$ and $w_{\pi_1} = 1$. Tensor elements of the π_1 -th mode are contiguously stored in mem-232 ory. Their location is given by the layout function $\lambda_{\mathbf{w}}$ ²³³ which maps a multi-index **i** to a scalar index such that ²³⁴ $\lambda_{\mathbf{w}}(\mathbf{i}) = \sum_{r=1}^{p} w_r(i_r - 1)$ [23].

235 3.5. Reshaping

The reshape operation defines a non-modifying refor-237 matting transformation of dense tensors with contiguously 238 stored elements and linear tensor layouts. It transforms 239 an order-p tensor $\underline{\mathbf{A}}$ with a shape \mathbf{n} and layout $\boldsymbol{\pi}$ tu-₂₄₀ ple to an order-p' view $\underline{\mathbf{B}}$ with a shape \mathbf{m} and layout ₂₄₁ $\boldsymbol{\tau}$ tuple of length p' with p' = p - v + u and $1 \leq u < v$ $v \leq p$. Given a layout tuple π of $\underline{\mathbf{A}}$ and contiguous 243 modes $\hat{\boldsymbol{\pi}} = (\pi_u, \pi_{u+1}, \dots, \pi_v)$ of $\boldsymbol{\pi}$, reshape function $\varphi_{u,v}$ 244 is defined as follows. With $j_k=0$ if $k\leq u$ and $j_k=0$ $_{245}v - u$ if k > u where $1 \le k \le p'$, the resulting lay-²⁴⁶ out tuple $oldsymbol{ au}=(au_1,\ldots, au_{p'})$ of $oldsymbol{\mathbf{B}}$ is then given by $au_u=$ $au_{u,v}$ and $au_k = \pi_{k+j_k} - s_k$ for $k \neq u$ with $s_k = \pi_{u,v}$ $_{248} |\{\pi_i \mid \pi_{k+j_k} > \pi_i \wedge \pi_i \neq \min(\hat{\boldsymbol{\pi}}) \wedge u \leq i \leq p\}|.$ Elements of 249 the shape tuple **m** are defined by $m_{\tau_u} = \prod_{k=u}^v n_{\pi_k}$ and ₂₅₀ $m_{\tau_k} = n_{\pi_{k+j}}$ for $k \neq u$. Note that reshaping is not related 251 to tensor unfolding or the flattening operations which re-²⁵² arrange tensors by copying tensor elements [8, p.459].

253 4. Algorithm Design

254 4.1. Baseline Algorithm with Contiguous Memory Access The tensor-matrix multiplication (TTM) in equation 256 1 can be implemented with a single algorithm that uses 257 nested recursion. Similar the algorithm design presented 258 in [23], it consists of if statements with recursive calls and 259 an else branch which is the base case of the algorithm.

```
\mathtt{ttm}(\underline{\mathbf{A}},\mathbf{B},\underline{\mathbf{C}},\mathbf{n},\boldsymbol{\pi},\mathbf{i},m,q,\hat{q},r)
 1
 2
                  if r = \hat{a} then
                           \mathsf{ttm}(\underline{\mathbf{A}}, \mathbf{B}, \underline{\mathbf{C}}, \mathbf{n}, \boldsymbol{\pi}, \mathbf{i}, m, q, \hat{q}, r-1)
 3
                  else if r > 1 then
 4
                             for i_{\pi_r} \leftarrow 1 to n_{\pi_r} do
 5
                                       ttm(\underline{\mathbf{A}}, \mathbf{B}, \underline{\mathbf{C}}, \mathbf{n}, \boldsymbol{\pi}, \mathbf{i}, m, q, \hat{q}, r-1)
  6
                             for j \leftarrow 1 to m do
 8
                                        for i_q \leftarrow 1 to n_q do
 9
10
                                                   for i_{\pi_1} \leftarrow 1 to n_{\pi_1} do
                                                       \underline{\mathbf{C}}([\mathbf{i}_1, j, \mathbf{i}_2]) + \underline{\mathbf{A}}([\mathbf{i}_1, i_q, \mathbf{i}_2]) \cdot \mathbf{B}(j, i_q)
```

Algorithm 1: Modified baseline algorithm for TTM with contiguous memory access. The tensor order p must be greater than 1 and the contraction mode q must satisfy $1 \le q \le p$ and $\pi_1 \ne q$. The initial call must happen with r = p where **n** is the shape tuple of $\underline{\mathbf{A}}$ and m is the q-th dimension of $\underline{\mathbf{C}}$. Iteration along mode q with $\hat{q} = \pi_q^{-1}$ is moved into the inner-most recursion

260 A naive implementation recursively selects fibers of the 261 input and output tensor for the base case that computes 262 a fiber-matrix product. The outer loop iterates over the 263 dimension m and selects an element of $\underline{\mathbf{C}}$'s fiber and a row $_{264}$ of **B**. The inner loop then iterates over dimension n_q and 265 computes the inner product of a fiber of $\underline{\mathbf{A}}$ and the row $_{266}$ B. In this case, elements of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are accessed non-267 contiguously whenever $\pi_1 \neq q$ and matrix **B** is accessed $_{268}$ only with unit strides if it elements are stored contiguously 269 along its rows.

A better approach is illustrated in algorithm 1 where $_{271}$ the loop order is adjusted to the tensor layout π and mem-₂₇₂ ory is accessed contiguously for $\pi_1 \neq q$ and p > 1. The ₃₂₇ major order, parameter CBLAS_ORDER of function gemm is 273 algorithm takes the input order-p tensor A, input matrix 328 set to CblasRowMajor (rm) and CblasColMajor (cm) other- \mathbf{B} , order-p output tensor \mathbf{C} , the shape tuple \mathbf{n} of \mathbf{A} , the $_{275}$ layout tuple π of both tensors, an index tuple π of length $_{276}$ p, the first dimension m of **B**, the contraction mode q 277 with $1 \le q \le p$ and $\hat{q} = \pi^{-1}(q)$. The algorithm is initially 278 called with $\mathbf{i} = \mathbf{0}$ and r = p. With increasing recursion $_{279}$ level and decreasing r, the algorithm increments indices with smaller strides as $w_{\pi_r} \leq w_{\pi_{r+1}}$. This is accomplished 335 by a matrix-matrix multiplication where the input tensor 281 in line 5 which uses the layout tuple π to select a multi-282 index element i_{π_r} and to increment it with the correspond-283 ing stride w_{π_r} . The two if statements in line number 2 284 and 4 allow the loops over modes q and π_1 to be placed 285 into the base case in which a slice-matrix multiplication 286 is performed. The inner-most loop of the base case in-₂₈₇ crements i_{π_1} with a unit stride and contiguously accesses 288 tensor elements of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$. The second loop increments 289 i_q with which elements of **B** are contiguously accessed if $_{290}$ B is stored in the row-major format. The third loop in-291 crements j and could be placed as the second loop if **B** is 292 stored in the column-major format.

While spatial data locality is improved by adjusting ²⁹⁴ the loop ordering, slices $\underline{\mathbf{A}}'_{\pi_1,q}$, fibers $\underline{\mathbf{C}}'_{\pi_1}$ and elements $\underline{\mathbf{B}}(j,i_q)$ are accessed $m,\ n_q$ and n_{π_1} times, respectively. ²⁹⁶ The specified fiber of $\underline{\mathbf{C}}$ might fit into first or second level

297 cache, slice elements of $\underline{\mathbf{A}}$ are unlikely to fit in the local 298 caches if the slice size $n_{\pi_1} \times n_q$ is large, leading to higher 299 cache misses and suboptimal performance. Instead of at-300 tempting to improve the temporal data locality, we make 301 use of existing high-performance BLAS implementations 302 for the base case. The following subsection explains this 303 approach.

304 4.2. BLAS-based Algorithms with Tensor Slices

The following approach utilizes the CBLAS gemm func-306 tion in the base case of Algorithm 1 in order to perform 307 fast slice-matrix multiplications². Function gemm denotes 308 a general matrix-matrix multiplication which is defined as 309 C:=a*op(A)*op(B)+b*C where a and b are scalars, A, B and 310 C are matrices, op(A) is an M-by-K matrix, op(B) is a K-by-N 311 matrix and C is an N-by-N matrix. Function op(x) either 312 transposes the corresponding matrix x such that op(x)=x, 313 or not op(x)=x. The CBLAS interface also allows users to 314 specify matrix's leading dimension by providing the LDA, 315 LDB and LDC parameters. A leading dimension specifies 316 the number of elements that is required for iterating over 317 the non-contiguous matrix dimension. The leading dimen-318 sion can be used to perform a matrix multiplication with 319 submatrices or even fibers within submatrices. The lead-320 ing dimension parameter is necessary for the BLAS-based 321 TTM.

The eighth TTM case in Table 1 contains all argu-323 ments that are necessary to perform a CBLAS gemm in 324 the base case of Algorithm 1. The arguments of gemm are set according to the tensor order p, tensor layout π and $_{326}$ contraction mode q. If the input matrix **B** has the row-329 wise. The eighth case will be denoted as the general case 330 in which function gemm is called multiple times with dif-331 ferent tensor slices. Next to the eighth TTM case, there 332 are seven corner cases where a single gemv or gemm call suf-333 fices to compute the tensor-matrix product. For instance 334 if $\pi_1 = q$, the tensor-matrix product can be computed 336 A can be reshaped and interpreted as a matrix without 337 any copy operation. Note that Table 1 supports all linear $_{338}$ tensor layouts of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with no limitations on tensor 339 order and contraction mode. The following subsection de- $_{340}$ scribes all eight TTM cases when the input matrix ${f B}$ has 341 the row-major ordering.

342 4.2.1. Row-Major Matrix Multiplication

The following paragraphs introduce all TTM cases that 344 are listed in Table 1.

Case 1: If p = 1, The tensor-vector product $\mathbf{A} \times_1 \mathbf{B}$ can $_{346}$ be computed with a gemv operation where **A** is an order-1 347 tensor **a** of length n_1 such that $\mathbf{a}^T \cdot \mathbf{B}$.

²CBLAS denotes the C interface to the BLAS.

Case	Order p	Layout $\pi_{\underline{\mathbf{A}},\underline{\mathbf{C}}}$	Layout $\pi_{\mathbf{B}}$	$\mathrm{Mode}\; q$	Routine	Т	М	N	K	A	LDA	В	LDB	LDC
1	1	-	rm/cm	1	gemv	-	m	n_1	-	В	n_1	<u>A</u>	-	-
2	2	cm	rm	1	gemm	В	n_2	m	n_1	<u>A</u>	n_1	В	n_1	\overline{m}
	2	cm	cm	1	gemm	-	m	n_2	n_1	\mathbf{B}	m	$\underline{\mathbf{A}}$	n_1	m
3	2	cm	rm	2	gemm	-	m	n_1	n_2	\mathbf{B}	n_2	$\underline{\mathbf{A}}$	n_1	n_1
	2	cm	cm	2	gemm	\mathbf{B}	n_1	m	n_2	$\underline{\mathbf{A}}$	n_1	\mathbf{B}	m	n_1
4	2	rm	rm	1	gemm	-	m	n_2	n_1	\mathbf{B}	n_1	$\underline{\mathbf{A}}$	n_2	n_2
	2	rm	cm	1	gemm	\mathbf{B}	n_2	m	n_1	$\underline{\mathbf{A}}$	n_2	$\overline{\mathbf{B}}$	m	n_2
5	2	rm	rm	2	gemm	\mathbf{B}	n_1	m	n_2	$\overline{\mathbf{A}}$	n_2	\mathbf{B}	n_2	m
	2	rm	cm	2	gemm	-	m	n_1	n_2	$\overline{\mathbf{B}}$	m	$\underline{\mathbf{A}}$	n_2	m
6	> 2	any	rm	π_1	gemm	В	\bar{n}_q	m	n_q	<u>A</u>	n_q	В	n_q	\overline{m}
	> 2	any	cm	π_1	gemm	-	m	\bar{n}_q	n_q	\mathbf{B}	m	$\underline{\mathbf{A}}$	n_q	m
7	> 2	any	rm	π_p	gemm	-	m	\bar{n}_q	n_q	\mathbf{B}	n_q	$\underline{\mathbf{A}}$	\bar{n}_q	\bar{n}_q
	> 2	any	cm	π_p	gemm	\mathbf{B}	\bar{n}_q	m	n_q	$\underline{\mathbf{A}}$	\bar{n}_q	$\overline{\mathbf{B}}$	m	\bar{n}_q
8	> 2	any	rm	$\pi_2,, \pi_{p-1}$	gemm*	-	m	n_{π_1}	n_q	В	n_q	<u>A</u>	w_q	w_q
	> 2	any	cm	$\pi_2,, \pi_{p-1}$	gemm*	\mathbf{B}	n_{π_1}	m	n_q	<u>A</u>	w_q	\mathbf{B}	m	w_q

Table 1: Eight TTM cases implementing the mode-q TTM with the gemm and gemv CBLAS functions. Arguments of gemv and gemm (T, M, N, dots) are chosen with respect to the tensor order p, layout π of $\underline{\mathbf{A}}$, $\underline{\mathbf{B}}$, $\underline{\mathbf{C}}$ and contraction mode q where T specifies if $\underline{\mathbf{B}}$ is transposed. Function gemm* with a star denotes multiple gemm calls with different tensor slices. Argument \bar{n}_q for case 6 and 7 is defined as $\bar{n}_q = (\prod_r^p n_r)/n_q$. Input matrix **B** is either stored in the column-major or row-major format. The storage format flag set for gemm and gemv is determined by the element ordering of B.

Case 2-5: If p=2, $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are order-2 tensors with 382 4.2.2. Column-Major Matrix Multiplication $_{349}$ dimensions n_1 and n_2 . In this case the tensor-matrix prod- $_{383}$ $_{350}$ uct can be computed with a single gemm. If ${\bf A}$ and ${\bf C}$ have $_{384}$ column-major version of gemm when the input matrix ${\bf B}$ is $_{351}$ the column-major format with $\pi=(1,2),$ gemm either ex- $_{385}$ stored in column-major order. Although the number of 352 ecutes $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}^T$ for q = 1 or $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ for q = 2. 386 gemm cases remains the same, the gemm arguments must be $_{353}$ Both matrices can be interpreted C and A as matrices in $_{387}$ rearranged. The argument arrangement for the column-354 row-major format although both are stored column-wise. 388 major version can be derived from the row-major version 355 If A and C have the row-major format with $\pi = (2,1)$, 389 that is provided in table 1. 356 gemm either executes $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ for q = 1 or $\mathbf{C} = \mathbf{A} \cdot \mathbf{B}^T$ for 390 $_{357}$ q=2. The transposition of ${f B}$ is necessary for the TTM $_{391}$ swapped and the transposition flag for matrix ${f B}$ is toggled. 358 cases 2 and 5 which is independent of the chosen layout. 360 gemm with the corresponding arguments executes $\mathbf{C} = \mathbf{A} \cdot \,\,_{394}$ dimension of B. ₃₆₁ \mathbf{B}^T and computes a tensor-matrix product $\mathbf{C} = \mathbf{A} \times_{\pi_1} \mathbf{B}$. ₃₉₅ ₃₆₂ Tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are reshaped with $\varphi_{2,p}$ to row-major ₃₉₆ in Table 1 where tensor $\underline{\mathbf{A}}$ and matrix \mathbf{B} are passed to matrices **A** and **C**. Matrix **A** has $\bar{n}_{\pi_1} = \bar{n}/n_{\pi_1}$ rows and $\bar{n}_{\pi_1} = \bar{n}/n_{\pi_1}$ $_{364}$ n_{π_1} columns while matrix ${f C}$ has the same number of rows $_{398}$ tained when tensor ${f A}$ and matrix ${f B}$ are passed to ${f A}$ and and m columns. If $\pi_p = q$ (case 7), $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ are reshaped 399 B where the transpose flag for \mathbf{B} is set and the remaining 366 with $\varphi_{1,p-1}$ to column-major matrices **A** and **C**. Matrix

371 copy operations, see subsection 3.5. Case 8 (p > 2): If the tensor order is greater than 2 373 with $\pi_1 \neq q$ and $\pi_p \neq q$, the modified baseline algorithm $_{\mbox{\scriptsize 374}}$ 1 is used to successively call $\bar{n}/(n_q\cdot n_{\pi_1})$ times gemm with $_{375}$ different tensor slices of $\underline{\mathbf{C}}$ and $\underline{\mathbf{A}}.$ Each gemm computes one slice $\underline{\mathbf{C}}'_{\pi_1,q}$ of the tensor-matrix product $\underline{\mathbf{C}}$ using the $_{379}$ preting both tensor slices as row-major matrices ${\bf A}$ and ${\bf C}$ 380 which have the dimensions (n_q, n_{π_1}) and (m, n_{π_1}) , respec-381 tively.

367 **A** has n_{π_p} rows and $\bar{n}_{\pi_p} = \bar{n}/n_{\pi_p}$ columns while **C** has $_{368}\;m$ rows and the same number of columns. In this case, a

369 single gemm executes $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ and computes $\mathbf{C} = \mathbf{A} \times_{\pi_n} \mathbf{B}$.

370 Noticeably, the desired contraction are performed without

The tensor-matrix multiplication is performed with the

The CBLAS arguments of M and N, as well as A and B is 392 Also, the leading dimension argument of A is adjusted to Case 6-7: If p > 2 and if $q = \pi_1(\text{case } 6)$, a single 393 LDB or LDA. The only new argument is the new leading

> Given case 4 with the row-major matrix multiplication 400 dimensions are adjusted accordingly.

401 4.2.3. Matrix Multiplication Variations

The column-major and row-major versions of gemm can 403 be used interchangeably by adapting the storage format. 404 This means that a gemm operation for column-major ma-405 trices can compute the same matrix product as one for 406 row-major matrices, provided that the arguments are re-407 arranged accordingly. While the argument rearrangement $_{408}$ is similar, the arguments associated with the matrices A 409 and B must be interchanged. Specifically, LDA and LDB as orresponding tensor slices $\underline{\mathbf{A}}'_{\pi_1,q}$ and the matrix \mathbf{B} . The understand the matrix \mathbf{B} and \mathbf{M} are swapped along with the corresponding matrix-matrix product $\mathbf{C} = \mathbf{B} \cdot \mathbf{A}$ is performed by inter-understanding must 412 be set for A or B in the new format if B or A is transposed 413 in the original version.

> For instance, the column-major matrix multiplication 415 in case 4 of table 1 requires the arguments of A and B to

416 be tensor $\underline{\mathbf{A}}$ and matrix \mathbf{B} with \mathbf{B} being transposed. The 417 arguments of an equivalent row-major multiplication for \mathbf{A} , 418 B, M, N, LDA, LDB and T are then initialized with \mathbf{B} , $\underline{\mathbf{A}}$, m, 419 n_2 , m, n_2 and \mathbf{B} .

Another possible matrix multiplication variant with $_{421}$ the same product is computed when, instead of $\bf B$, ten- $_{422}$ sors $\bf \underline{A}$ and $\bf \underline{C}$ with adjusted arguments are transposed. We assume that such reformulations of the matrix multi- $_{424}$ plication do not outperform the variants shown in Table $_{425}$ 1, as we expect BLAS libraries to have optimal blocking $_{426}$ and multiplication strategies.

427 4.3. Matrix Multiplication with Subtensors

Algorithm 1 can be slightly modified in order to call gemm with reshaped order- \hat{q} subtensors that correspond to larger tensor slices. Given the contraction mode q with 1 < q < p, the maximum number of additionally fusible modes is $\hat{q} - 1$ with $\hat{q} = \pi^{-1}(q)$ where π^{-1} is the inverse layout tuple. The corresponding fusible modes are there-

The non-base case of the modified algorithm only iteradase ates over dimensions that have indices larger than \hat{q} and thus omitting the first \hat{q} modes. The conditions in line 2 and 4 are changed to $1 < r \leq \hat{q}$ and $\hat{q} < r$, respectage tively. Thus, loop indices belonging to the outer π_r -th doop with $\hat{q}+1 \leq r \leq p$ define the order- \hat{q} subtensors $\underline{\mathbf{A}}'_{\pi'}$ and $\underline{\mathbf{C}}'_{\pi'}$ of $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with $\pi' = (\pi_1, \dots, \pi_{\hat{q}-1}, q)$. Reshaping the subtensors $\underline{\mathbf{A}}'_{\pi'}$ and $\underline{\mathbf{C}}'_{\pi'}$ with $\varphi_{1,\hat{q}-1}$ for the modes dimension π_q or with the fused dimension slices with dimension n_q or with m with the fused dimension $\bar{n}_q = \prod_{r=1}^{\hat{q}-1} n_{\pi_r}$ and $\bar{n}_q = w_q$. Both tensor slices can be interpreted either as row-major or column-major matrices with shapes (n_q,\bar{n}_q) or (w_q,\bar{n}_q) and in case of $\underline{\mathbf{A}}$ and (m,\bar{n}_q) or (\bar{n}_q,m) in case of $\underline{\mathbf{C}}$, respectable tively.

The gemm function in the base case is called with al- most identical arguments except for the parameter M or N which is set to \bar{n}_q for a column-major or row-major multiplication, respectively. Note that neither the selection of the subtensor nor the reshaping operation copy tensor elements. This description supports all linear tensor layouts and generalizes lemma 4.2 in [14] without copying tensor elements, see section 3.5. The division in large subtensors has also been described in [21] for tensors with a first-order layout.

459 4.4. Parallel BLAS-based Algorithms

Most BLAS libraries provide an option to change the number of threads. Hence, functions such as gemm and gemv can be run either using a single or multiple threads. The TTM cases one to seven contain a single BLAS call which why we set the number of threads to the number of available cores. The following subsections discuss parallel versions for the eighth case in which the outer loops of algorithm 1 and the gemm function inside the base case can be run in parallel. Note that the parallelization strategies can be combined with the aforementioned slicing methods.

Algorithm 2: Function ttm<par-loop><slice> is an optimized version of Algorithm 1. The reshape function transforms the order-p tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ with layout tuple π and their respective dimension tuples \mathbf{n} and \mathbf{m} into order-4 tensors $\underline{\mathbf{A}}'$ and $\underline{\mathbf{C}}'$ with layout tuple π' and their respective dimension tuples \mathbf{n}' and \mathbf{m}' where $\mathbf{n}' = (n_{\pi_1}, \hat{n}_{\pi_2}, n_q, \hat{n}_{\pi_4})$ and $m_3' = m$ and $n_k' = m_k'$ for $k \neq 3$. Each thread calls multiple single-threaded gemm functions each of which executes a slice-matrix multiplication with the order-2 tensor slices $\underline{\mathbf{A}}'_{ij}$ and $\underline{\mathbf{C}}'_{ij}$. Matrix $\underline{\mathbf{B}}$ has the row-major storage format.

470 4.4.1. Sequential Loops and Parallel Matrix Multiplication Algorithm 1 is run for the eighth case and does not 472 need to be modified except for enabling gemm to run multi-473 threaded in the base case. This type of parallelization 474 strategy might be beneficial with order- \hat{q} subtensors where 475 the contraction mode satisfies $q = \pi_{p-1}$, the inner dimen-476 sions $n_{\pi_1},\ldots,n_{\hat{q}}$ are large and the outer-most dimension 477 n_{π_p} is smaller than the available processor cores. For 478 instance, given a first-order storage format and the con-479 traction mode q with q=p-1 and $n_p=2$, the di-480 mensions of reshaped order-q subtensors are $\prod_{r=1}^{p-2} n_r$ and 481 n_{p-1} . This allows gemm to perform with large dimensions 482 using multiple threads increasing the likelihood to reach 483 a high throughput. However, if the above conditions are 484 not met, a multi-threaded gemm operates on small tensor 485 slices which might lead to an suboptimal utilization of the 486 available cores. This algorithm version will be referred to 487 as <par-gemm>. Depending on the subtensor shape, we will 488 either add <slice> for order-2 subtensors or <subtensor> 489 for order- \hat{q} subtensors with $\hat{q} = \pi_q^{-1}$.

⁴⁹⁰ 4.4.2. Parallel Loops and Sequential Matrix Multiplication
⁴⁹¹ Instead of sequentially calling multi-threaded gemm, it is
⁴⁹² also possible to call single-threaded gemms in parallel. Sim⁴⁹³ ilar to the previous approach, the matrix multiplication
⁴⁹⁴ can be performed with tensor slices or order- \hat{q} subtensors.

495 Matrix Multiplication with Tensor Slices. Algorithm 2 with 496 function ttm<par-loop><slice> executes a single-threaded 497 gemm with tensor slices in parallel using all modes except 498 π_1 and $\pi_{\hat{q}}$. The first statement of the algorithm calls 499 the reshape function which transforms tensors $\underline{\mathbf{A}}$ and $\underline{\mathbf{C}}$ 500 without copying elements by calling the reshaping oper-501 ation $\varphi_{\pi_{\hat{q}+1},\pi_p}$ and $\varphi_{\pi_2,\pi_{\hat{q}-1}}$. The resulting tensors $\underline{\mathbf{A}}'$ 502 and $\underline{\mathbf{C}}'$ are of order 4. Tensor $\underline{\mathbf{A}}'$ has the shape $\mathbf{n}' = 503 (n_{\pi_1}, \hat{n}_{\pi_2}, n_q, \hat{n}_{\pi_4})$ with the dimensions $\hat{n}_{\pi_2} = \prod_{r=2}^{\hat{q}-1} n_{\pi_r}$ 504 and $\hat{n}_{\pi_4} = \prod_{r=\hat{q}+1}^p n_{\pi_r}$. Tensor $\underline{\mathbf{C}}'$ has the same shape as 505 $\underline{\mathbf{A}}'$ with dimensions $m'_r = n'_r$ except for the third dimensons sion which is given by $m_3 = m$.

The following two parallel for loops iterate over all free modes. The outer loop iterates over $n_4' = \hat{n}_{\pi_4}$ while

511 B has the row-major format which is why both tensor 566 of cpar-loop and cpar-gemm> functions. 512 slices are also treated as row-major matrices. Notice that 513 gemm in Algorithm 2 will be called with exact same argu- $_{514}$ ments as displayed in the eighth case in Table 1 where 515 $n'_1 = n_{\pi_1}$, $n'_3 = n_q$ and $w_q = w'_3$. For the sake of simplic-516 ity, we omitted the first three arguments of gemm which are 517 set to CblasRowMajor and CblasNoTrans for A and B. With 518 the help of the reshaping operation, the tree-recursion has 519 been transformed into two loops which iterate over all free 520 indices.

521 Matrix Multiplication with Subtensors. An alternative al-₅₂₂ gorithm is given by combining Algorithm 2 with order- \hat{q} $_{523}$ subtensors that have been discussed in 4.3. With order- \hat{q} 524 subtensors, only the outer modes $\pi_{\hat{q}+1},\dots,\pi_p$ are free for 525 parallel execution while the inner modes $\pi_1, \ldots, \pi_{\hat{q}-1}, q$ are $_{526}$ used for the slice-matrix multiplication. Therefore, both 527 tensors are reshaped twice using $\varphi_{\pi_1,\pi_{\hat{q}-1}}$ and $\varphi_{\pi_{\hat{q}+1},\pi_p}$. 528 Note that in contrast to tensor slices, the first reshaping ₅₂₉ also contains the dimension n_{π_1} . The reshaped tensors are 530 of order 3 where $\underline{\mathbf{A}}'$ has the shape $\mathbf{n}' = (\hat{n}_{\pi_1}, n_q, \hat{n}_{\pi_3})$ with $\hat{n}_{\pi_1}=\prod_{r=1}^{\hat{q}-1}n_{\pi_r}$ and $\hat{n}_{\pi_3}=\prod_{r=\hat{q}+1}^pn_{\pi_r}$. Tensor $\underline{\mathbf{C}}'$ has 532 the same dimensions as $\underline{\mathbf{A}}'$ except for $m_2=m$.

Algorithm 2 needs a minor modification for support- $_{534}$ ing order- \hat{q} subtensors. Instead of two loops, the modified 535 algorithm consists of a single loop which iterates over di- $_{\rm 536}$ mension $\hat{n}_{\pi_{\rm 3}}$ calling a single-threaded gemm with subtensors $_{537}$ \mathbf{A}' and \mathbf{C}' . The shape and strides of both subtensors as 538 well as the function arguments of gemm have already been $_{539}$ provided by the previous subsection 4.3. This ttm version 540 will referred to as <par-loop><subtensor>.

Note that functions <par-gemm> and <par-loop> imple-542 ment opposing versions of the ttm where either gemm or the 543 fused loop is performed in parallel. Version <par-loop-gemm 544 executes available loops in parallel where each loop thread $_{545}$ executes a multi-threaded gemm with either subtensors or 546 tensor slices.

547 4.4.3. Combined Matrix Multiplication

The combined matrix multiplication calls one of the 549 previously discussed functions depending on the number 550 of available cores. The heuristic assumes that function 552 cores if subtensors or tensor slices are too small. The 553 corresponding algorithm switches between <par-loop> and 554 <par-gemm> with subtensors by first calculating the par-555 allel and combined loop count $\hat{n} = \prod_{r=1}^{\hat{q}-1} n_{\pi_r}$ and $\hat{n}' =$ $\prod_{r=1}^{p} n_{\pi_r}/n_q$, respectively. Given the number of physical 557 processor cores as ncores, the algorithm executes <par-loop> 610 been used for the three BLAS functions gemv, gemm and 558 with <subtensor> if ncores is greater than or equal to \hat{n} 559 and call <par-loop> with <slice> if ncores is greater than $_{560}$ or equal to \hat{n}' . Otherwise, the algorithm will default to 561 <par-gemm> with <subtensor>. Function par-gemm with ten-562 sor slices is not used here. The presented strategy is differ-563 ent to the one presented in [14] that maximizes the number

509 the inner one loops over $n_2'=\hat{n}_{\pi_2}$ calling gemm with ten- 564 of modes involved in the matrix multiply. We will refer to 510 sor slices $\underline{\mathbf{A}}'_{2,4}$ and $\underline{\mathbf{C}}'_{2,4}$. Here, we assume that matrix 565 this version as **<combined>** to denote a selected combination

567 4.4.4. Multithreaded Batched Matrix Multiplication

The multithreaded batched matrix multiplication ver-569 sion calls in the eighth case a single gemm batch function 570 that is provided by Intel MKL's BLAS-like extension. With 571 an interface that is similar to the one of cblas_gemm, func-572 tion gemm batch performs a series of matrix-matrix op-573 erations with general matrices. All parameters except 574 CBLAS_LAYOUT requires an array as an argument which is 575 why different subtensors of the same corresponding ten-576 sors are passed to gemm_batch. The subtensor dimensions 577 and remaining gemm arguments are replicated within the 578 corresponding arrays. Note that the MKL is responsible 579 of how subtensor-matrix multiplications are executed and 580 whether subtensors are further divided into smaller sub-581 tensors or tensor slices. This algorithm will be referred to 582 as <batched-gemm>.

583 5. Experimental Setup

584 5.1. Computing System

The experiments have been carried out on a dual socket 586 Intel Xeon Gold 5318Y CPU with an Ice Lake architec-587 ture and a dual socket AMD EPYC 9354 CPU with a 588 Zen4 architecture. With two NUMA domains, the Intel 589 CPU consists of 2×24 cores which run at a base fre-590 quency of 2.1 GHz. Assuming a peak AVX-512 Turbo 591 frequency of 2.5 GHz, the CPU is able to process 3.84 592 TFLOPS in double precision. We measured a peak double-593 precision floating-point performance of 3.8043 TFLOPS 594 (79.25 GFLOPS/core) and a peak memory throughput 595 of 288.68 GB/s using the Likwid performance tool. The 596 AMD EPYC 9354 CPU consists of 2 × 32 cores running at 597 a base frequency of 3.25 GHz. Assuming an all-core boost 598 frequency of 3.75 GHz, the CPU is theoretically capable 599 of performing 3.84 TFLOPS in double precision. We mea-600 sured a peak double-precision floating-point performance 601 of 3.87 TFLOPS (60.5 GFLOPS/core) and a peak memory 602 throughput of 788.71 GB/s.

We have used the GNU compiler v11.2.0 with the high-604 est optimization level -03 together with the -fopenmp and 605 -std=c++17 flags. Loops within the eighth case have been 606 parallelized using GCC's OpenMP v4.5 implementation. 607 In case of the Intel CPU, the 2022 Intel Math Kernel Li-608 brary (MKL) and its threading library mkl_intel_thread 609 together with the threading runtime library libiomp5 has 611 gemm_batch. For the AMD CPU, we have compiled AMD 612 AOCL v4.2.0 together with set the zen4 architecture con-613 figuration option and enabled OpenMP threading.

$$\mathbf{N}_1 = \begin{bmatrix} (16384, 1024) & \cdots & (131072, 1024) \\ (8192, 1024, 2) & \cdots & (65536, 1024, 2) \\ \vdots & \ddots & \vdots \\ (64, 1024, 2, \dots, 2) & \cdots & (512, 1024, 2, \dots, 2) \end{bmatrix}$$

$$\mathbf{M} = \begin{bmatrix} (4096, 4096) & \cdots & (8192, 8192) \\ (256, 256, 256) & \cdots & (512, 512, 512) \\ (64, 64, 64, 64) & \cdots & (128, 128, 128, 128) \\ (32, 32, 32, 32, 32) & \cdots & (64, 64, 64, 64, 64) \\ (16, 16, 16, 16, 16, 16) & \cdots & (32, 32, 32, 32, 32, 32) \\ (8, 8, 8, 8, 8, 8, 8, 8) & \cdots & (16, 16, 16, 16, 16, 16, 16, 16, 16) \end{bmatrix}$$

$$\mathbf{N}_{10} = \begin{bmatrix} (1024, 16384) & \cdots & (1024, 131072) \\ (1024, 2, 8192) & \cdots & (1024, 2, 65536) \\ \vdots & \ddots & \vdots \\ (1024, 2, 2, 2, 64) & \cdots & (1024, 2, 2, 2, 512) \end{bmatrix}$$

$$\mathbf{Q} = \begin{bmatrix} (26, 1800, 3600) \\ (100, 500, 500, 13) \\ (512, 512, 512, 6) \\ (98, 1200, 1200, 13) \\ (69, 69, 115, 288) \\ (256, 384, 384, 7) \\ (500, 500, 500, 11) \\ (986, 32, 185, 388) \end{bmatrix}$$

Figure 1: Four shape tuple matrices N₁, and N₁₀ that have been used for the runtime measurements. Each shape creates asymmetricallyshaped tensor or subtensor.

614 5.2. OpenMP Parallelization

The loops in the par-loop algorithms have been par-616 allelized using the OpenMP directive omp parallel for together with the schedule(static), num_threads(ncores) and 656 to set ncores smaller than the number of processor cores. 618 proc_bind(spread) clauses. In case of tensor-slices, the 619 collapse(2) clause has been added for transforming both 620 loops into one loop which has an iteration space of the 621 first loop times the second one. We also had to enable 622 nested parallelism using omp_set_nested to toggle between 623 single- and multi-threaded gemm calls for different TTM cases when using AMD AOCL.

The num_threads(ncores) clause specifies the number threads within a team where ncores is equal to the 627 number of processor cores. Hence, each OpenMP thread $_{628}$ is responsible for computing $ar{n}'/\text{ncores}$ independent slice-630 $\bar{n}' = n'_4$ for mode- \hat{q} subtensors.

632 to divide the iteration space into equally sized chunks, ex-633 cept for the last chunk. Each thread sequentially com-₆₃₄ putes \bar{n}'/ncores slice-matrix products. We have decided 635 to use this scheduling kind as all slice-matrix multiplica-636 tions exhibit the same number of floating-point operations with a regular workload where one can assume negligible 638 load imbalance. Moreover, we wanted to prevent schedul-639 ing overheads for small slice-matrix products were data 640 locality can be an important factor for achieving higher throughput.

The OMP_PLACES environment variable has not been ex-643 plicitly set and thus defaults to the OpenMP cores setting 644 which defines an OpenMP place as a single processor core. 645 Together with the clause num_threads(ncores), the num-646 ber of OpenMP threads is equal to the number of OpenMP 647 places, i.e. to the number of processor cores. We did 648 not measure any performance improvements for a higher

651 OpenMP thread to one OpenMP place which lowers inter-652 node or inter-socket communication and improves local

653 memory access. Moreover, with the spread thread affin-654 ity policy, consecutive OpenMP threads are spread across 655 OpenMP places which can be beneficial if the user decides

657 5.3. Tensor Shapes

We have evaluated the performance of our algorithms 659 with asymmetrically and symmetrically shaped tensors to 660 account for a wide range of use cases. Their corresponding $_{661}$ tensor shapes are divided into three tensor sets N, M and $_{662}$ Q. Examples of the corresponding tensor shape arrays N_1 $_{663}$ and N_{10} , M and Q are shown in Fig. 1.

Tensors of the first set N are created with $720 = 9 \times$ $_{665}$ 8 \times 10 different tensor shapes which are organized within 666 ten two-dimensional shape arrays N_k of size 9×8 with matrix products where $\bar{n}' = n_2' \cdot n_4'$ for tensor slices and $667 k = 1, \dots, 10$. A dimension tuple $\mathbf{n}_{r,c}^k$ is of length r+1668 with r = 1, ..., 9 and c = 1, ..., 8. With i = 1, ..., r + 1The schedule(static) instructs the OpenMP runtime 669 The ith element of the tuple is either 1024 for i=1 \wedge $_{670} k \neq 1 \text{ or } i = 2 \wedge k = 1, \text{ or } c \cdot 2^{15-r} \text{ for } i = \min(r + 1)^{15}$ ₆₇₁ (1, k) or 2 otherwise. For each tensor shape matrix N_k , 672 our benchmark suite generates input tensors with their ₆₇₃ respective shapes and an input matrix with dimensions n_1 ₆₇₄ or n_2 and n_q , and performs a mode-k TTM. A special 675 feature of this test set is that the contraction dimension 676 and the leading dimension are disproportionately large.

The second tensor set M consists of symmetrically shaped 678 tensors which are generated with 48 tensor shapes which $_{679}$ are arranged within a two-dimensional shape array ${f M}$ of 680 size 6×8 . Similar to the previous setup, the row number r is equal to the tensor order r+1 with $r=1,\ldots,6$ A row 682 of the tensor shape array consists 8 dimension tuples of $_{683}$ the same length r+1 where elements of one dimension tu-684 ple are equal. With eight shapes and the step size of each for row $s_r = (m_{r,8} - m_{r,1})/8$, the respective intermediate di-686 mensions $m_{r,c}$ are given by $m_{r,c} = m_{r,1} + (c-1)s_r$ with $_{687}$ $c=1,\ldots,8$. Our benchmark suite generates input tensors The proc_bind(spread) clause additionally binds each 688 with their respective shapes and an input matrix with di-689 mensions n_1 or n_0 and n_q , and performs a mode-q TTM 690 for all possible contraction modes q with $q = 1, \ldots, 7$. A 691 similar setup has been used in [16, 23].

We have also benchmarked TTM implementations with 747 with increasing tensor order, see plots (1.c) and (1.d) in 693 eight tensors that are part of the scientific data reduction 748 Fig. 2. 694 benchmark (SDRBench) [24]. The scientific datasets in 749 ₆₉₅ SDRBench mainly consist of order-3 tensors with different ₇₅₀ core (1.74 TFLOPS) and achieves up to 57.91 GFLOPS/-696 tensor shapes and number of data fields, originating from 751 core (2.77 TFLOPS) with asymmetrically shaped tensors. 697 various types real-world applications and simulations such 752 Using subtensors, function par-gemm, subtensor> exhibits 698 as CESM-ATM or Miranda. We perform runtime tests 753 almost identical performance characteristics and is on av-699 with order-4 tensors which belong to the tensor set Q. 754 erage 3.42% slower than its counterpart with tensor slices. 700 Their first three dimensions correspond to the respective 755 For symmetrically shaped tensors, cpar-gemm> with sub-₇₀₁ ones mentioned in the original data sets and the last di- ₇₅₆ tensors and tensor slices achieve a mean throughput 15.98 ₇₀₂ mension to the number of data fields. The respective ten- ₇₅₇ GFLOPS/core (767.31 GFLOPS) and 15.43 GFLOPS/-₇₀₃ sor shapes are arranged within a one-dimensional array ₇₅₈ core (740.67 GFLOPS), respectively. However, function 706 CESM-ATM, Hurricane-ISABEL, NYX, SCALE-LETKF, 761 formance values around 5 GFLOPS/core or less whenever 707 QMCPACK, Miranda, S3D and EXAFEL.

708 6. Results and Discussion

6.1. Slicing Methods

This section analyzes the performance of the two pro-711 posed slicing methods <slice> and <subtensor> that have 712 been discussed in section 4.4. Fig. 2 contains eight per-713 formance contour plots of four ttm functions <par-loop> 714 and <par-gemm>. Both functions either compute the slice-715 matrix product with subtensors <subtensors or tensor slices 771 6.2. Parallelization Methods <slice> on the Intel Xeon Gold 5318Y CPU. Each contour 717 level within the plots represents a mean GFLOPS/core value that is averaged across tensor sizes.

Every contour plot contains all applicable TTM cases 720 listed in Table 1. The first column of performance values 721 is generated by gemm belonging to the TTM case 3, except 722 the first element which corresponds to TTM case 2. The 723 first row, excluding the first element, is generated by TTM 724 case 6 function. TTM case 7 is covered by the diagonal 725 line of performance values when q = p. Although Fig. 726 2 suggests that q > p is possible, our profiling program 727 ensures that q = p. TTM case 8 with multiple gemm calls 728 is represented by the triangular region which is defined by

Function <par-loop, slice > runs on average with 34.96 $_{731}$ GFLOPS/core (1.67 TFLOPS) with asymmetrically shaped $_{787}$ 732 tensors. With a maximum performance of 57.805 GFLOP-733 S/core (2.77 TFLOPS), it performs on average 89.64% 734 faster than <par-loop, subtensor>. The slowdown with 735 subtensors at q = p-1 or q = p-2 can be explained by the 736 small loop count of the function that are 2 and 4, respec-737 tively. While function <par-loop,slice> is affected by the 738 tensor shapes for dimensions p=3 and p=4 as well, its 739 performance improves with increasing order due to the in-741 on average 17.34 GFLOPS/core (832.42 GFLOPS) if sym-742 metrically shaped tensors are used. If subtensors are used, 743 function <par-loop, subtensor> achieves a mean through-744 put of 17.62 GFLOPS/core (846.16 GFLOPS) and is on 745 average 9.89% faster than rar-loop,slice>. The per-746 formances of both functions are monotonically decreasing

 $_{762} q < p$ and the dimensions are smaller than 256. The 763 speedup of the <subtensor> version can be explained by the 764 smaller loop count and slice-matrix multiplications with 765 larger tensor slices.

Our findings indicate that, regardless of the paralleliza-767 tion method employed, subtensors are most effective with 768 symmetrically shaped tensors, whereas tensor slices are 769 preferable with asymmetrically shaped tensors when both $_{770}$ the contraction mode and leading dimension are large.

This subsection compares the performance results of 773 the two parallelization methods, <par-gemm> and <par-loop>, 774 as introduced in Section 4.4 and illustrated in Fig. 2.

With asymmetrically shaped tensors, both par-gemm> 776 functions with subtensors and tensor slices compute the 777 tensor-matrix product on average with ca. 36 GFLOP-778 S/core and outperform function <par-loop, subtensor> on 779 average by a factor of 2.31. The speedup can be explained 780 by the performance drop of function <par-loop, subtensor> ₇₈₁ to 3.49 GFLOPS/core at q = p - 1 while both versions of 782 <par-gemm> operate around 39 GFLOPS/core. Function 783 <par-loop, slice > performs better for reasons explained in 784 the previous subsection. However, it is on average 30.57% 785 slower than function <par-gemm, slice > due to the afore-786 mentioned performance drops.

In case of symmetrically shaped tensors, <par-loop> 788 with subtensors and tensor slices outperform their corre-789 sponding par-gemm> counterparts by 23.3% and 32.9%, 790 respectively. The speedup mostly occurs when 1 < q < p791 where the performance gain is a factor of 2.23. This per-792 formance behavior can be expected as the tensor slice sizes 793 decreases for the eighth case with increasing tensor order 794 causing the parallel slice-matrix multiplication to perform 795 on smaller matrices. In contrast, <par-loop> can execute 796 small single-threaded slice-matrix multiplications in par-797 allel.

In summary, function <par-loop, subtensor> with sym-799 metrically shaped tensors performs best. If the leading and 800 contraction dimensions are large, both versions of function 801 <par-gemm> outperform <par-loop> with any type of slicing.

varying tensor orders p and contraction modes q. The top row of maps (1x) depict measurements of the par-loop versions while the bottom row of maps with number (2x) contain measurements of the <par-gemm> versions. Tensors are asymmetrically shaped on the left four maps (a,b) and symmetrically shaped on the right four maps (c,d). Tensor A and C have the first-order while matrix B has the row-major ordering. All functions have been measured on an Intel Xeon Gold 5318Y.

6.3. Loops Over Gemm

The contour plots in Fig. 2 contain performance data 831 806 methods only affect the eighth case, while all other TTM 834 metrically and symmetrically shaped tensors. Reaching 807 cases apply a single multi-threaded gemm with the same 835 up to 46.96 and 45.68 GFLOPS/core, it is on par with 808 configuration. The following analysis will consider perfor- 836 <par-gemm, subtensor> and <par-loop, slice> and outper-809 mance values of the eighth case in order to have a more 837 forms them for some tensor instances. Note that both 810 fine grained visualization and discussion of the loops over 811 gemm implementations. Fig. 3 contains cumulative perfor-812 mance distributions of all the proposed algorithms includ-813 ing the functions <batched-gemm> and <combined> for the 814 eighth TTM case only. Moreover, the experiments have been additionally executed on the AMD EPYC processor 816 and with the column-major ordering of the input matrix as well. 817

function for a given algorithm corresponds to the number 820 of test instances for which that algorithm that achieves 821 a throughput of either y or less. For instance, function 849 to a factor 4 for $2 \le q \le 5$ with $q+2 \le p \le q+5$. In 822 <batched-gemm> computes the tensor-matrix product with 850 contrast, subtensor> and <batched-gemm> show 823 asymmetrically shaped tensors in 25% of the tensor in- 851 a similar performance behavior in the plot (1c) and (1d) 824 stances with equal to or less than 10 GFLOPS/core. Please 852 for symmetrically shaped tensors, running on average 3.55 825 note that the four plots on the right, plots (c) and (d), have 853 and 8.38 times faster than cpar-gemm> with subtensors and 826 a logarithmic y-axis for a better visualization.

827 6.3.1. Combined Algorithm and Batched GEMM

829 <batched-gemm> and <combined> against those of <par-loop>

830 and <par-gemm> for the eighth TTM case.

Given a row-major matrix ordering, the combined functhat are generated by all applicable TTM cases of each \$332 tion <combined> achieves on the Intel processor a median ttm function. Yet, the presented slicing or parallelization 833 throughput of 36.15 and 4.28 GFLOPS/core with asym-838 functions run significantly slower either with asymmetri-839 cally or symmetrically shaped tensors. The observable su-840 perior performance distribution of <combined> can be at-841 tributed to the heuristic which switches between <par-loop> 842 and <par-gemm> depending on the inner and outer loop 843 count as explained in section 4.4.

Function <batched-gemm> of the BLAS-like extension li-845 brary has a performance distribution that is akin to the The probability x of a point (x,y) of a distribution 846 <par-loop, subtensor>. In case of asymmetrically shaped 847 tensors, all functions except <par-loop, subtensor> outper-848 form <batched-gemm> on average by a factor of 2.57 and up 854 tensor slices, respectively.

In summary, <combined> performs as fast as, or faster 856 than, <par-gemm, subtensor> and <par-loop, slice>, depend-This subsection discusses the performance of function 857 ing on the tensor shape. Conversely, <batched-gemm> un-

Figure 3: Cumulative performance distributions in double-precision GFLOPS/core of the proposed algorithms for the eighth case. Each and <par-loop, subtensor> (). The top row of maps (1x) depict measurements performed on an Intel Xeon Gold 5318Y with the MKL while the bottom row of maps with number (2x) contain measurements performed on an AMD EPYC 9354 with the AOCL. Tensors are asymmetrically shaped in (a) and (b) and symmetrically shaped in (c) and (d). Input matrix has the row-major ordering (rm) in (a) and (c) and column-major ordering (cm) in (b) and (d).

858 derperforms for asymmetrically shaped tensors with large 883 with the AOCL. For symmetrically shaped tensors, MKL-859 contraction modes and leading dimensions.

6.3.2. Matrix Formats

This subsection discusses if the input matrix storage 862 formats have any affect on the runtime performance of 863 the proposed functions. The cumulative performance dis-864 tributions in Fig. 3 suggest that the storage format of 865 the input matrix has only a minor impact on the perfor-866 mance. The Euclidean distance between normalized row-867 major and column-major performance values is around 5 868 or less with a maximum dissimilarity of 11.61 or 16.97, in-869 dicating a moderate similarity between the corresponding 870 row-major and column-major data sets. Moreover, their 871 respective median values with their first and third quar-872 tiles differ by less than 5% with three exceptions where the 873 difference of the median values is between 10% and 15%.

6.3.3. BLAS Libraries

This subsection compares the performance of functions 876 that use Intel's Math Kernel Library (MKL) on the Intel 877 Xeon Gold 5318Y processor with those that use the AMD 878 Optimizing CPU Libraries (AOCL) on the AMD EPYC 879 9354 processor. Comparing the performance per core and $_{880}$ limiting the runtime evaluation to the eighth case, MKL-881 based functions with asymmetrically shaped tensors run

884 based functions are between 1.93 and 5.21 times faster 885 than those with the AOCL. In general, MKL-based func-886 tions on the respective CPU achieve a speedup of at least 887 1.76 and 1.71 compared to their AOCL-based counterpart 888 when asymmetrically and symmetrically shaped tensors 889 are used.

890 6.4. Layout-Oblivious Algorithms

Fig. 4 contains four box plots summarizing the perfor-892 mance distribution of the <combined> function using the 893 AOCL and MKL. Every k-th box plot has been computed 894 from benchmark data with symmetrically shaped order-7 895 tensors that has a k-order tensor layout. The 1-order and 896 7-order layout, for instance, are the first-order and last-897 order storage formats of an order-7 tensor.

The reduced performance of around 1 and 2 GFLOPS 899 can be attributed to the fact that contraction and lead-900 ing dimensions of symmetrically shaped subtensors are at 901 most 48 and 8, respectively. When <combined> is used 902 with MKL, the relative standard deviations (RSD) of its 903 median performances are 2.51% and 0.74%, with respect 904 to the row-major and column-major formats. The RSD 905 of its respective interquartile ranges (IQR) are 4.29% and 906 6.9%, indicating a similar performance distributions. Us-907 ing <combined> with AOCL, the RSD of its median per-882 on average between 1.48 and 2.43 times faster than those 908 formances for the row-major and column-major formats

Figure 4: Box plots visualizing performance statics in double-precision GFLOPS/core of the function with row-major (left) or column-major matrices (right). Box plot number k denotes the k-order tensor layout of symmetrically shaped tensors with order 7.

909 are 25.62% and 20.66%, respectively. The RSD of its re910 spective IQRs are 10.83% and 4.31%, indicating a similar performance distributions. A similar performance behav911 performance distributions. A similar performance behav912 ior can be observed also for other ttm variants such as 913 (1.83 TFLOPS) and reaches a maximum performance of 913 (2.47 TFLOPS) with asymmetrically 914 the function performances stay within an acceptable range 915 independent for different k-order tensor layouts and show 916 that our proposed algorithms are not designed for a spe917 cific tensor layout. 917 implementation with the previously mentioned libraries. 918 Using MKL on the Intel CPU, our implementation (TLIB) 919 achieves a median performance of 38.21 GFLOPS/core (2.47 TFLOPS) with asymmetrically 914 the function performances stay within an acceptable range 915 independent for different k-order tensor layouts and show 916 that our proposed algorithms are not designed for a spe917 cific tensor layout. 918 Using MKL on the Intel CPU, our implementation (TLIB) 919 achieves a median performance of 38.21 GFLOPS/core (2.47 TFLOPS) with asymmetrically 914 the function performances stay within an acceptable range 915 independent for different k-order tensor layouts and show 916 that our proposed algorithms are not designed for a spe917 cific tensor layout. 918 CFLOPS are included in the previously mentioned libraries. 918 Using MKL on the Intel CPU, our implementation (TLIB) 919 achieves a median performance of 38.21 GFLOPS/core (2.47 TFLOPS) with asymmetrically 914 the function performances stay within an acceptable range 915 for almost every tensor instance within the test set. The 917 cific tensor layout. 918 CFLOPS are included in the previously mention of 1812 CFLOPS and 1812 CFLOPS are included in the previously mention of 1812 CFLOPS and 1812 CFLOPS are included in the previously mention of 1812 CFLOPS and 1812 CFLOPS are included in the previously mention of 1812 CFLOPS and 1812 CFLOPS are included in the pr

o18 6.5. Other Approaches

This subsection compares our best performing algo-920 rithm with libraries that do not use the LoG approach. \mathbf{TCL} implements the TTGT approach with a high-perform tensor-transpose library **HPTT** which is discussed in [11]. **TBLIS** (v1.2.0) implements the GETT approach that is 924 akin to BLIS' algorithm design for the matrix multiplication [12]. The tensor extension of **Eigen** (v3.4.9) is used by the Tensorflow framework. Library LibTorch (v2.4.0) is the C++ distribution of PyTorch [20]. The TuckerMPI library is a parallel C++ software package for large-scale data compression which provides a local and distributed TTM function [21]. The local version imple-931 ments the LoG approach and computes the TTM product 933 notes our library which only calls the previously presented 934 algorithm <combined>. All of the following provided perfor-935 mance and comparison values are the median values.

Fig. 3 compares the performance distribution of our

mplementation with the previously mentioned libraries. Wising MKL on the Intel CPU, our implementation (TLIB) achieves a median performance of 38.21 GFLOPS/core (1.83 TFLOPS) and reaches a maximum performance of 51.65 GFLOPS/core (2.47 TFLOPS) with asymmetrically shaped tensors. It outperforms the competing libraries for almost every tensor instance within the test set. The median library performances are up to 29.85 GFLOPS/core and are thus at least 18.09% slower than TLIB except for TuckerMPI. The latter reaches a median performance of 35.98 GFLOPS/core (1.72 TFLOPS) reaching about 92.03% of TLIB's performance. In case of symmetrically shaped tensors, TLIB's median performance is 8.99 GFLOPS/core. Except for TBLIS and TuckerMPI, TLIB outperforms other libraries by at least 87.52%. TBLIS and 7.91 GFLOP-953 S/core which is only 1.38% and 6.23% slower than TLIB, respectively.

On the AMD CPU, our implementation with AOCL computes TTM with 24.28 GFLOPS/core (1.55 TFLOPS), reaching a maximum performance of 50.18 GFLOPS/core (3.21 TFLOPS) with asymmetrically shaped tensors. TB-55 LIS reaches 26.81 GFLOPS/core (1.71 TFLOPS) and is slightly faster than TLIB. However, TLIB's upper performance quartile with 30.82 GFLOPS/core is slightly larger. TLIB outperforms the remaining libraries by at least 58.80%. In case of symmetrically shaped tensors, TLIB has a me-564 dian performance of 7.52 GFLOPS/core (481.39 GFLOPS).

Figure 5: Cumulative performance distributions of TTM implementations in double-precision GFLOPS/core. Each distribution corresponds to a library: TLIB[ours] (---), TCL (--), TBLIS (----), LibTorch (--), Eigen (•), TuckerMPI (tested with asymmetrically-shaped (left plot) and symmetrically-shaped tensors (right plot).

₉₆₆ have observed that TCL and LibTorch have a median per-₉₈₅ ning about 7.86% faster. In case of symmetrically shaped TTM case which is less than 6% and 10% of TLIB's me-969 dian performance with asymmetrically and symmetrically shaped tensors, respectively.

In most instances, TLIB is able to outperform the com-972 peting libraries across all TTM cases. However, there 973 are few exceptions. On the AMD CPU, TBLIS is about 974 12.63% faster than TLIB for the 8th TTM case with asym-975 metrically shaped tensors. LibTorch performs in the 7th 976 TTM case 1.44% faster than TLIB with asymmetrically 977 shaped tensors. One unexpected finding is that LibTorch 978 achieves 96% of TLIB's performance with asymmetrically 979 shaped tensors and only 28% in case of symmetrically 980 shaped tensors. On the Intel CPU, LibTorch is on av- $_{981}$ erage 12.64% faster than TLIB in the 7th TTM case. The 982 TCL library runs on average as fast as TLIB in the 6th $_{983}$ and 7th TTM cases . The performances of TLIB and TB-984 LIS are in the 8th TTM case almost on par, TLIB run-

formance of less than 2 GFLOPS/core in the 3rd and 8th 986 tensors, all libraries except Eigen outperform TLIB by 987 about 4.34% (TCL), 38.5% (TBLIS), 67.39% (LibTorch) 988 and 4.29% (TuckerMPI) in the 7th TTM case. TBLIS 989 and TuckerMPI reach 91.78% and 96.87% of TLIB'S per-990 formance in the 8th TTM case, while other libraries only 991 reach at most 39.29% of TLIB's median performance.

992 6.6. Summary

We have evaluated the impact of performing the gemm 994 function with subtensors and tensor slices. Our findings 995 indicate that, subtensors are most effective with symmet-996 rically shaped tensors independent of the parallelization 997 method. Tensor slices are preferable with asymmetrically 998 shaped tensors when both the contraction mode and lead-999 ing dimension are large. Our runtime results show that 1000 parallel executed single-threaded gemm performs best with 1001 symmetrically shaped tensors. If the leading and contrac-1002 tion dimensions are large, functions with a multi-threaded

Library	Perform	Speedup [%]		
	Min	Median	Max	Median
TLIB	9.39	38.42	57.87	_
TCL	7.14	30.46	56.81	6.36
TBLIS	8.33	29.85	47.28	23.96
LibTorch	1.05	28.68	46.56	28.21
Eigen	5.85	14.89	15.67	170.77
TuckerMPI	12.79	35.98	53.21	6.97
TLIB	0.14	8.99	58.14	_
TCL	0.36	5.64	57.35	3.08
TBLIS	1.11	9.73	45.03	1.38
LibTorch	0.02	9.31	50.44	12.98
Eigen	0.21	3.80	16.06	216.69
TuckerMPI	0.12	7.91	52.57	6.23

Library	Perfor	mance [GFI	Speedup [%]		
	Min	Median	Max	Median	
TLIB	2.71	24.28	50.18	-	
TCL	1.67	24.11	49.85	0.57	
TBLIS	9.06	26.81	47.83	0.43	
LibTorch	0.63	16.04	50.84	29.68	
Eigen	4.06	11.49	35.08	117.48	
TLIB	0.02	7.75	54.16	_	
TCL	0.01	5.14	56.75	6.10	
TBLIS	0.06	6.14	41.11	13.64	
LibTorch	0.06	6.04	41.65	12.37	
Eigen	0.07	5.58	36.76	114.22	

Table 2: The table presents the minimum, median, and maximum runtime performances in GFLOPS/core alongside the median speedup of TLIB compared to other libraries. The tests were conducted on an Intel Xeon Gold 5318Y CPU (left) and an AMD EPYC 9354 CPU (right). The performance values on the upper and lower rows of one table were evaluated using asymmetrically and symmetrically shaped tensors,

1003 gemm outperforms those with a single-threaded gemm for any 1039 ants for the general (eighth) TTM case which either calls 1004 type of slicing. We have also shown that our <combined> 1040 a single- or multi-threaded cblas_gemm with small or large 1005 performs in most cases as fast as <par-gemm, subtensor > and 1041 tensor slices in parallel or sequentially. We have applied a 1006 <par-loop, slice>, depending on the tensor shape. Func- 1042 simple heuristic that selects one of the variants based on 1007 tion <batched-gemm> is less efficient in case of asymmet- 1043 the performance evaluation in the original work [1]. With 1008 rically shaped tensors with large contraction and leading 104 a large set of tensor instances of different shapes, we have 1009 dimensions. While matrix storage formats have only a mi- 1045 evaluated the proposed variants on an Intel Xeon Gold 1010 nor impact on TTM performance, runtime measurements 1046 5318Y and an AMD EPYC 9354 CPUs. 1011 show that a TTM using MKL on the Intel Xeon Gold 1012 5318Y CPU achieves higher per-core performance than a 1013 TTM with AOCL on the AMD EPYC 9354 processor. We 1014 have also demonstrated that our algorithms perform con-1015 sistently well across different k-order tensor layouts, indi-1016 cating that they are layout-oblivious and do not depend 1017 on a specific tensor format. Our runtime tests show that 1018 TLIB'S function <combined> is, in median, between 15.38% and 257.58% faster than other competing libraries, except 1020 for TBLIS. TLIB is either on par with or slightly outper-1021 forms TBLIS for many tensor shapes which uses optimized kernels for the TTM computation. Table 2 contains the 1023 minimum, median, and maximum runtime performances 1024 including TLIB's speedups for the whole tensor test sets.

1025 7. Summary

1026 1027 for the compute-bound tensor-matrix multiplication that 1063 benefit from implementing the proposed algorithms. Our 1028 is essential for many tensor methods. Our approach is 1064 header-only library provides C++ interfaces and a python 1029 based on the LOG-method and computes the tensor-matrix 1065 module which allows frameworks to easily integrate our 1030 product in-place without transposing tensors. It applies 1066 library. 1031 the flexible approach described in [16] and generalizes the 1067 1032 findings on tensor slicing in [14] for linear tensor layouts. 1068 plementations in TensorLy, a widely-used framework for 1034 sors with arbitrary tensor order, dimensions and with any 1070 in [14] could help to further increase the performance. Ad-1035 linear tensor layout all of which can be runtime variable. 1071 ditionally, we want to explore to what extend our approach The base algorithm has been divided into eight dif- 1072 can be applied for the general tensor contractions. 1037 ferent TTM cases where seven of them perform a single 1038 cblas_gemm. We have presented multiple algorithm vari-

1047 8. Conclusion and Future Work

Our performance tests show that our algorithms are 1048 1049 layout-oblivious and do not need layout-specific optimiza-1050 tions, even for different storage ordering of the input ma-1051 trix. Despite the flexible design, our best-performing al-1052 gorithm is able to outperform Intel's BLAS-like extension 1053 function cblas_gemm_batch by a factor of 2.57 in case of 1054 asymmetrically shaped tensors. Moreover, the presented 1055 performance results show that TLIB is able to compute 1056 the tensor-matrix product in median 15.38% faster than 1057 most state-of-the-art implementations.

Our findings show that the LoG-based approach is a 1059 viable solution for the general tensor-matrix multiplication 1060 which can be as fast as or even outperform efficient GETT-1061 based implementations. Hence, other actively developed We have presented efficient layout-oblivious algorithms 1062 libraries such as LibTorch, TuckerMPI and Eigen might

In the near future, we intend to incorporate our im-The resulting algorithms are able to process dense ten- 1069 tensor computations [25, 19]. Using the insights provided

Figure 6: Bar plots contain median runtime in seconds of TLIB (I I), TCL (I I), TBLIS (I I), LibTorch (I I), Eigen (I I) and TuckerMPI (I I). The tests were conducted on an Intel Xeon Gold 5318Y CPU (top) and an AMD EPYC 9354 CPU (bottom) using order-3 and order-4 tensors with shapes that are referenced in the SDRBench [24].

1110

1073 8.0.1. Source Code Availability

Project description and source code can be found at \mathtt{ht} $\mathtt{^{1111}}$ 1075 tps://github.com/bassoy/ttm. The sequential tensor-matrix 1076 multiplication of TLIB is part of Boost's uBLAS library.

1077 References

1081

1082

1083

1084

1086

1087

1089

1090 1091

1094

1099

1100

1101

1102

1103

- 1078 [1] C. S. Başsoy, Fast and layout-oblivious tensor-matrix multiplication with blas, in: International Conference on Compu- 1120 1079 tational Science, Springer, 2024, pp. 256-271. 1080
 - E. Karahan, P. A. Rojas-López, M. L. Bringas-Vega, P. A. 1122 [14] Valdés-Hernández, P. A. Valdes-Sosa, Tensor analysis and fu- 1123 sion of multimodal brain images, Proceedings of the IEEE 1124 103 (9) (2015) 1531-1559.
- E. E. Papalexakis, C. Faloutsos, N. D. Sidiropoulos, Tensors for 1126 [15] [3] 1085 data mining and data fusion: Models, applications, and scal- 1127 able algorithms, ACM Transactions on Intelligent Systems and 1128 Technology (TIST) 8 (2) (2017) 16. 1088
 - Q. Song, H. Ge, J. Caverlee, X. Hu, Tensor completion algo- 1130 [16] [4] rithms in big data analytics, ACM Transactions on Knowledge 1131 Discovery from Data (TKDD) 13 (1) (Jan. 2019).
- H.-M. Rieser, F. Köster, A. P. Raulf, Tensor networks for quan- 1133 [17] 1092 tum machine learning, Proceedings of the Royal Society A 1134 1093 479 (2275) (2023) 20230218.
- M. Wang, D. Hong, Z. Han, J. Li, J. Yao, L. Gao, B. Zhang, 1136 [18] 1095 J. Chanussot, Tensor decompositions for hyperspectral data 1137 1096 processing in remote sensing: A comprehensive review, IEEE 1138 1097 Geoscience and Remote Sensing Magazine 11 (1) (2023) 26–72. 1139 [19] 1098
 - [7] N. Lee, A. Cichocki, Fundamental tensor operations for large- 1140 scale data analysis using tensor network formats, Multidimen- 1141 sional Systems and Signal Processing 29 (3) (2018) 921–960.
 - [8] T. G. Kolda, B. W. Bader, Tensor decompositions and applica- 1143 tions, SIAM review 51 (3) (2009) 455-500.
- B. W. Bader, T. G. Kolda, Algorithm 862: Matlab tensor classes 1145 1104 1105 for fast algorithm prototyping, ACM Trans. Math. Softw. 32 1146 (2006) 635-653. 1106
- E. Solomonik, D. Matthews, J. Hammond, J. Demmel, Cyclops 1148 1107 [10] tensor framework: Reducing communication and eliminating 1149 1108 load imbalance in massively parallel contractions, in: Parallel & 1150 1109

- Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, IEEE, 2013, pp. 813-824.
- 1112 [11] P. Springer, P. Bientinesi, Design of a high-performance gemmlike tensor-tensor multiplication. ACM Transactions on Mathematical Software (TOMS) 44 (3) (2018) 28.
- D. A. Matthews, High-performance tensor contraction without 1115 [12] transposition, SIAM Journal on Scientific Computing 40 (1) 1116 (2018) C1-C24. 1117
- 1118 [13] E. D. Napoli, D. Fabregat-Traver, G. Quintana-Ortí, P. Bientinesi, Towards an efficient use of the blas library for multilinear tensor contractions, Applied Mathematics and Computation 235 (2014) 454 - 468.
 - J. Li, C. Battaglino, I. Perros, J. Sun, R. Vuduc, An inputadaptive and in-place approach to dense tensor-times-matrix multiply, in: High Performance Computing, Networking, Storage and Analysis, 2015, IEEE, 2015, pp. 1-12.
 - Y. Shi, U. N. Niranjan, A. Anandkumar, C. Cecka, Tensor contractions with extended blas kernels on cpu and gpu, in: 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), 2016, pp. 193-202.
 - C. Bassoy, Design of a high-performance tensor-vector multiplication with blas, in: International Conference on Computational Science, Springer, 2019, pp. 32-45.
 - L. De Lathauwer, B. De Moor, J. Vandewalle, A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications 21 (4) (2000) 1253–1278.
 - F. Pawlowski, B. Uçar, A.-J. Yzelman, A multi-dimensional morton-ordered block storage for mode-oblivious tensor computations, Journal of Computational Science 33 (2019) 34-44.
 - J. Kossaifi, Y. Panagakis, A. Anandkumar, M. Pantic, Tensorly: Tensor learning in python, Journal of Machine Learning Research 20 (26) (2019) 1-6.
- A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, 1142 [20] G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., Pytorch: An imperative style, high-performance deep learning library, Advances in neural information processing systems 32 (2019)
- 1147 [21] G. Ballard, A. Klinvex, T. G. Kolda, Tuckermpi: A parallel c++/mpi software package for large-scale data compression via the tucker tensor decomposition, ACM Transactions on Mathematical Software 46 (2) (6 2020).

- 1151 [22] L.-H. Lim, Tensors and hypermatrices, in: L. Hogben (Ed.),
 1152 Handbook of Linear Algebra, 2nd Edition, Chapman and Hall,
 1153 2017.
- 1154 [23] C. Bassoy, V. Schatz, Fast higher-order functions for tensor cal 1155 culus with tensors and subtensors, in: International Conference
 1156 on Computational Science, Springer, 2018, pp. 639–652.
- 1157 [24] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen,
 1158 F. Cappello, Sdrbench: Scientific data reduction benchmark for
 1159 lossy compressors, in: 2020 IEEE International Conference on
 1160 Big Data (Big Data), 2020, pp. 2716–2724.
- 1161 [25] J. Cohen, C. Bassoy, L. Mitchell, Ttv in tensorly, Tensor Computations: Applications and Optimization (2022) 11.