CSC421 Intro to Artificial Intelligence

Chapter 1
Overview & Introduction

Overview

Emphasis:

Agents as a way of thinking about AI and software in general

Workload:

Balanced over the term

IMPORTANT: prepare for lectures

Suggested work-plans

Exams (midterm & final)

Open book

Thoughts on cheating, copying, attendance

Grades

Grades	Description
A 1 / A /	Exceptional , outstanding or excellent performance. Normally achieved by a minority of students. These grades indicate a student who is <i>self-initiating</i> , <i>exceeds expectation</i> and has an <i>insightful</i> grasp of the subject matter.
B+, B, B-	Very good , good or solid performance. Normally achieved by the largest number of students. These grades indicate a <i>good</i> grasp of the subject matter or <i>excellent grasp in one area balanced with satisfactory grasp in the other areas</i> .
C+, C	Satisfactory , or minimally satisfactory . These grades indicate a <i>satisfactory performance and knowledge</i> of the subject matter.
1 17	Marginal Performance . A student receiving this grade demonstrated a <i>superficial grasp</i> of the subject matter.
F	Unsatisfactory performance . Wrote final examination and completed course requirements; no supplemental.

Grades (the reality)

Salamander

Sunfish

Cheating

- You are adults I am not going to treat like children
- Cheating is stupid and you only hurt yourself doing it
- We live in a transparent world where what matters is what you can do not what your grades are
- If your goal for next year is to get 60% or higher in all my courses with the least amount of effort then please drop this class

Rosie Ruiz

Attendance

- I am not responsible for the 8:30am class time
- There are excellent resources online for learning AI including courses based on the same textbook
- As long as you can do the assignments, midterm and final I don't care if you attend
- However I hope you find the lectures interesting and stimulating and we can all work together on exploring this very fascinating topic that for many is the coolest part of Computer Science

What is AI?

Do you know of any examples of applications of AI ?

Major challenges ahead?

Why study AI?

What do you expect to learn in this course?

Along with molecular biology, AI is regularly cited at the "field I would most like to be in" by scientists in other disciplines. Do you agree? Why?

My favorite definition

"Artificial Intelligence (AI) is the science of how to get machines to do the things they do in movies" - Dr. Astro Teller

http://en.wikipedia.org/wiki/Astro_Teller

Currently heading Google X

4 approaches

Systems that:

Think like humans

Think rationally

Act like humans

Act rationally

Acting Humanly: Turing Test

Operational test for intelligent behavior:

By 2000, a machine might have a 30% chance of fooling a human for 5 minutes

Knowledge, reasoning, language understanding, learning

Extended version: computer vision, robotics

Problems: Not reproducible, constructive, amendable to

mathematical analysis

Test that remains relevant 60 years later Turing also was crucial for winning World War II

Turing

Thinking humanly: Cognitive modeling

1960s "cognitive revolution": information processing psychology replaced prevailing orthodoxy of behaviorism

Theories of how the brain works

Predicting and testing user subjects (top-down)

Direct analysis of neurological data (bottom-up)

Cognitive science and cognitive neuroscience – today distinct from AI

Thinking rationally: Laws of thought

Greek schools developed various forms of logic Socrates is a man; all men are mortal; therefore Socrates is mortal

Notation and rules of derivation for thoughts

- Mechanization of computation/proof

Direct line through mathematics and philosophy to

AI

Problems:

Not all intelligent behavior is mediated by logic deliberation
What is the purpose of thinking?
What thoughts should I have?

Acting rationally: The rational agent approach

Rational behavior: doing the right thing
That which is expected to maximize goal
achievement given the available information
Not necessarily just thinking: blinking reflex –
thinking should be in the service of rational action

Advantages:

More general than laws of thought More amendable to scientific development

Rational agents

An agent is an entity that perceives and acts This course is about designing rational agents

Abstractly, an agent is a function from precept histories to actions: $f: P^* -> A$

For any given class of environments, we seek the agent (or class of agents) with the best performance

Caveat: computational resources

AI Prehistory

Philosophy: logic, methods of reasoning

mind as a physical system

foundations of learning, language, rationality

Mathematics: formal representation and proof

algorithms, computation, (un)decidability,

(in)tractability, probability

Psychology: adaptation

phenomena of perception and motor control

experimental techniques (psychophysics etc)

Economics: formal theory of rational decisions

Linguistis : knowledge representation and grammar

Neuroscience: Plastic physical substrate for mental activity

Control theory: homeostatic systems, stability, simple optimal

agent designs

Brief history of AI

1943: McCulloch & Pitts: Boolean circuit model of the brain

1950: Turing's "Computing Machinery and Intelligence"

1952-69: Look, Ma, no hands!

1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine

1956: Dartmouth meeting: "Artificial Intelligence" adopted

1965 : Robinson's complete algorithm for logical reasoning

1966-74: AI discovers computational complexity – Neural Network research almost disappears

1969-79: Early development of knowledge-based systems

1980-88: Expert systems industry booms

1988-93: Expert systems industry busts: "AI Winter"

Brief History of AI

1985-95: Neural networks return to popularity

1988- : Resurgance of probability; general increase in technical

depth, "Nouvelle AI": ALife, GAs, soft computing

1995- : Agents, agents, everywhere, ...

2003- : Human-level AI back on the agenda, games

CSC421 Intro to Artificial Intelligence

Chapter 2
Intelligent Agents

Examples of agents?

Agents & environments

Agents include humans, robots, softbots, thermostats etc

The agent function maps from precept history to actions:

$$f: P^* -> A$$

The agent program run on the physical architecture to produce f

The doughnut world

Precepts: location and contents e.g [A, Doughnut]

Actions: left, right, eat, NoOp

Doughnut Eating Agent (DEA)

Precept Sequence Action

[A, empty] Right

[A, doughnut] Eat

[B, empty] Left

[B, doughnut] Eat

[A, empty], [A, empty] Right

[A, empty], [B, doughnut] Eat

• • • •

What is the "right" function?
Can it be implemented by a small agent program?

function RELFEX_DEA([location, status]) returns an action

if status = Doughnut then return Eat

else if location = A then return Right

else if location = B then return Left

Rationality

Fixed performance measure evaluates the environment sequence

One point per square cleaned in time T?

One point per clean square per time step, minus one per move?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

Rational is not omniscient - percepts may not supply all relevant information

PEAS description

Performance measure Environment Actuators Sensors

PEAS for

Doughnut eating agent?
Automated taxi?
Internet shopping agent?
Non-player character in computer game?

Chess-playing program?

Environments

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

The environment type largely determines the agent design The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

Agent types

Four basic types in order of increasing complexity

Simple reflex agents

Reflex agents with state

Goal-based agents

Utility-based agents

All these can be turned into learning agents

Simple reflex agents

Reflex agents with state

Goal-based agents

Utility-based agents

Learning Agents

Summary I

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A rational agent tries to maximize performance PEAS descriptions define task environments

Summary II

Environments

Observable? deterministic? episodic? static? discrete? single agent?

Agent architectures

Reflex

Reflex with state

Goal-based

Utility-based