Bezier SPline Curve-

Degree of Polynomial depends on Control Prints. Coadrol Poials = 5 Then Polynomial order = 5-1=4 20

$$Q(u) = \sum_{i=0}^{n} P_i * B_{i,n}$$

rouse Pi = Position Vector n = Total Coatrol Pricks-1

Bin = Barnstein Bezier Function also called Bases fun.

Pristant

For x-axis: $\frac{n}{(i=0)} \times i \times B_{i,n}(u)$ Bez; $(u) = {n \choose i}$. u^{i} . $(1-u)^{n-i}$ Sez; $(u) = {n \choose i}$ where, $(i=0)^{n-i}$ Bionomial to-efficient

Now, we are defining control Paints=4 Now, Bo, 3 = 13. u. (1-4) = 8(4) = P. + Bo(4) + P. + B1,3(4). + P2 *B2,3(4)+P3 *B3,3(4)

Now, 814)=Po *(1-u)3+P, *3*u*(1-u)2 +P2 * 3 * 42 * (1-4) + P3 * 43

We can convert this egun; uto 2, y, z firm.

So, x(u)= (1-u)3 + 20 + 3 + u + (1-u)2 + 21 +3 * 42 * (1-4) * 72 + 43 * 73

y(4) = Z(u) =

= 1.1. (1-4) = (+4)3 B1,3(4)=3.4.(1-4)2 B2,3(4)=3.42. (1-4). B33(4)= 43 Bo, 3 (u) } Blendiag
B2, 3 (u) } Fuchins.

Ne Cau define (Ree each line using parametric equation: So, $Q_0 = (1-u)P_0 + u.P_1 - 0$ $Q_2 = (1-u).P_2 + u.P_3 - 3$ $Q_1 = (1-u).P_1 + u.P_2 - 0$

Now, in same neay;

Now, put de value of c, l (2 in equ' 6)

Now, put le value of 90,8, & B2 in qu')

$$= (1-u) \left[\{ (1-u) \} (1-u) P_0 + u P_1 \} + u \{ (1-u) P_1 + u P_2 \} \right]$$

$$+ \{ u \{ (1-u) \} ((1-u) P_1 + u P_2 \} + u \{ (1-u) P_2 + u P_3 \} \}$$