Лабораторная работа № 2

Решение систем линейных алгебраических уравнений

Тема: Решение системы линейных алгебраических уравнений прямым и итерационным методами.

Задание:

- 1. Найти решение системы Ax = b (вычисляя в MathCAD обратную матрицу A^{-1}) по формуле $x^* = A^{-1} \cdot b$ <u>или</u> применяя встроенную функцию **lsolve**, реализующую метод Гаусса.
- 2. Найти приближенное решение системы заданным итерационным методом с точностью 10^{-10} .
- 3. Получить матрицу перехода итерационного метода S. Проверить достаточное условие сходимости $\parallel S \parallel < 1$ (используя встроенные функции вычисления нормы матрицы)
- 4. Исследовать зависимость погрешности приближенного решения \mathcal{E}_k .от номера итерации k, при фиксированном начальном приближении (построить график).

Итерационные методы (каноническая форма):

1. метод Якоби

$$D \cdot \frac{x^{(k+1)} - x^{(k)}}{1} + A \cdot x^{(k)} = b, \quad k = 0,1,...,\tau = 1,$$
 где $D = (a_{ij} \delta_i^j)$ - диагональная матрица.

2. метод Зейделя

$$(D+A^-)\cdotrac{x^{(k+1)}-x^{(k)}}{1}+A\cdot x^{(k)}=b$$
 , где $A^-=(a_{ij}^-)$, $a_{ij}^-=egin{cases} a_{ij},i>j \ 0,i\leq j \end{cases}$ - нижняя

треугольная матрица,

3. метод релаксации

$$(D + \omega \cdot A^{-}) \cdot \frac{x^{(k+1)} - x^{(k)}}{\omega} + A \cdot x^{(k)} = b$$
, 0<\omega < 2 - параметр релаксации

4. метод простых итераций

$$\frac{x^{(k+1)}-x^{(k)}}{\tau}+Ax^{(k)}=b$$
, $0<\tau<\frac{2}{\|A\|}$ - итерационный параметр

5. метод минимальных невязок

$$\dfrac{x^{(k+1)}-x^{(k)}}{ au_{k+1}}+A\cdot x^{(k)}=b$$
 параметр $au_{k+1}=\dfrac{(r^k,A\,r^k)}{(A\,r^k,A\,r^k)}$, где
$$r^k=A\cdot x^k-b$$
 - невязка

Матрица системы определяется формулой

$$A = D + k \cdot C$$

$$D = \begin{pmatrix} 1.342 & 0.432 & -0599 & 0.202 \\ 0.202 & 1.342 & 0.432 & -0.599 \\ -0.599 & 0.202 & 1.342 & 0.432 \\ 0.432 & -0.599 & 0.202 & 1.342 \end{pmatrix} \qquad C = \begin{pmatrix} 0.02 & 0 & 0 & 0 \\ 0 & 0.02 & 0 & 0 \\ 0 & 0 & 0.02 & 0 \\ 0 & 0 & 0 & 0.02 \end{pmatrix}$$

k - номер варианта задания.

$$b = \begin{pmatrix} 1.941 \\ -0.230 \\ -1.941 \\ 0.230 \end{pmatrix}$$

В приложении 2 в качестве примера приведена копия MathCAD-документа, в котором для решения системы Ax = b использована функция **Isolve** и реализован алгоритм метода простых итераций.

Построен график погрешности.

Для проверки выполнения условий сходимости, используя встроенные функции, вычислены нормы матрицы перехода и ее собственные числа.