

Applications of the high-energy lepton and photon propagator PROPOSAL

Jean-Marco Alameddine¹, Jan Soedingrekso¹, Alexander Sandrock²
Astroparticle Physics WG Rhode - TU Dortmund University¹
University of Wuppertal²

Motivation behind PROPOSAL

(and many other Monte Carlo Simulation tools...)

Theory:

Event signatures:

Credit: IceCube Collaboration

jean-marco.alameddine@tu-dortmund.de Introduction 2/15

jean-marco.alameddine@tu-dortmund.de Introduction 3/15

- 3D Monte Carlo simulation of individual particles, considering ...
 - ... energy losses
 - ... scattering effects
 - ... particle decays
 - → Customizable: Selection of different parametrizations available for each process
- Input: Initial particle state
- Output: Information on particle track, including ...
 - ... Final particle state
 - ... Energy losses
 - ... Intermediate particle states
- C++14/Python library

Interpolation tables:

- Cross sections and results of propagation integrals are stored as interpolation tables
 - → Crucial for the performance of PROPOSAL

Energy loss cuts:

- PROPOSAL differentiates between continuous and stochastic energy losses
- \blacksquare Energy losses can be defined by their relative size $v_{\rm loss}$ and their absolute size $e_{\rm loss}$
- The energy cut settings (v_{cut}, e_{cut}) define which interactions are treated stochastically/continuously

→ Adjust energy cut settings to find ideal trade-off between precision and performance!

jean-marco.alameddine@tu-dortmund.de Introduction 5/15

jean-marco.alameddine@tu-dortmund.de Introduction 6/15

Recent updates in PROPOSAL

Improvements for electromagnetic interactions:

- Inclusion of $\gamma \to \mu^+ \mu^-$
- Inclusion of $\gamma \to \text{Hadrons}$ (Photohadronic interaction)
 - → Relevant for very-high energies
- Sampling of deflection angles for bremsstrahlung photons

Stochastic deflections

- PROPOSAL considers multiple scattering (continuous losses)
- Deflections may also occur in (very) stochastic interactions
 - → Possible influence on directional reconstructions?
- Stochastic deflections for muon interactions have been added to PROPOSAL

"NN-based parametrization of muon deflections simulated by PROPOSAL" ⇒ Talk T46.6 by Pascal Gutjahr

IceCube Neutrino Observatory

- PROPOSAL is used in the IceCube simulation chain
 - → Simulation of muons and taus in ice.
 - → PROPOSAL provides the energy losses along the particle track
 - ightarrow Energy losses are further processed by other tools to simulate Cherenkov photons

Credit: IceCube Collaboration

CORSIKA 8

- CORSIKA 8: Newest version of the air shower simulation framework CORSIKA (currently under development)
 - → see: gitlab.iap.kit.edu/AirShowerPhysics/corsika
- PROPOSAL is used in CORSIKA 8 as an electromagnetic shower model
 - → CORSIKA uses propagation steps provided by PROPOSAL modules
- ⇒ Talks dedicated to CORSIKA 8: T47.8, T72.5, T72.7, AKPIK1.7

1 TeV e^- shower simulated with CORSIKA 8

Longitudinal profile for 200 electromagnetic showers, initiated by 1 TeV $e^{-}\,$

- First comparisons of CORSIKA 8 results with other simulation frameworks are promising
 - ⇒ See PoS(ICRC2021)428

Muography:

- Non-invasive imaging technique using Cosmic Ray muons
 - → Trace muon number to observe density anomalies
- PROPOSAL is a well-suited tool to provide the necessary muon simulations
 - → Currently analyzing the possibilities to use muography in mining with PROPOSAL simulations

Summary and outlook

Summary

- C++/Python framework to propagate high-energy leptons and photons
 - → Easy python installation: Try: pip install proposal
- PROPOSAL is adaptable for different use cases
 - → EnergyCuts: Adjustable trade-off between precision and performance
 - → All interaction processes are modular and customizable
- Recent updates in PROPOSAL ...
 - ... for high-energy photon propagation
 - ... in the description of muon scattering
- Actively maintained and developed as an open-source project
 - → Visit us on GitHub: github.com/tudo-astroparticlephysics/PROPOSAL

Outlook

- Version 7.3.0 of PROPOSAL has been released today!
- Planned improvements for the next versions include:
 - → Description of the LPM effect in inhomogeneous media
 - \rightarrow Inclusion of photoelectric interactions of γ

