A simple time-dependent model of kidney

Chanoknun Sintavanuruk

March 28, 2023

1 Model equations

2 Non-dimensionalization

3 Numerical method

Consider a multidomain type model on a (rescaled) spatial domain $\Omega = (0,1)$, on which we have a non-dimensionalized system:

$$\frac{\partial \alpha_k}{\partial t} + \operatorname{Pe} \frac{\partial}{\partial x} \left(\alpha_k u_k \right) = -w_k, \tag{1}$$

$$\frac{\partial \alpha_0}{\partial t} + \operatorname{Pe} \frac{\partial}{\partial x} (\alpha_0 u_0) = \sum_k w_k, \tag{2}$$

$$\frac{\partial}{\partial t} \left(\alpha_k c_i^k \right) = -\frac{\partial}{\partial x} f_i^k - g_i^k, \tag{3}$$

$$\frac{\partial}{\partial t} \left(\alpha_0 c_i^0 \right) = -\frac{\partial}{\partial x} f_i^0 + \sum_k g_i^k, \tag{4}$$

$$\nu_k \left(p_k - p_0 \right) = \frac{\alpha_k}{\bar{\alpha}_k} - 1,\tag{5}$$

$$\alpha_0 + \sum_k \alpha_k = \alpha_*,\tag{6}$$

where k represents ascending (A), descending (D) and collecting (C) tubules of a homogeneous population of nephrons, and

$$\frac{\rho.}{\alpha}u. = -\frac{\partial p.}{\partial x},\tag{7}$$

$$f_i^{\cdot} = -D_i \frac{\partial c_i^{\cdot}}{\partial x} + \operatorname{Pe}\left(\alpha.u.c_i^{\cdot}\right),$$
 (8)

$$w_k = \zeta_k (\psi_k - \psi_0), \quad \psi_{\cdot} := p_{\cdot} - \pi_{\cdot}, \quad \pi_{\cdot} := \frac{a_{\cdot}}{\alpha_{\cdot}} + \sum_i c_i^{\cdot},$$
 (9)

$$g_i^k = j_i^k + h_i^k, \quad j_i^k := \gamma_i^k (\mu_i^k - \mu_i^0).$$
 (10)

The subscript i here represents solute species, namely, salt and urea, and \cdot is to be replaced by A, D, C, 0.

We can see that the physical parameters of the dimensionless model are Pe, ρ , D_i , ν_k , $\bar{\alpha}_k$, α_* , a. In this simulation, we will use $\alpha_* = 1$, a = 0, and $\bar{\alpha}_k = 1/4$. For the transport parameters, we have ζ_k , γ_i^k . For illustrating purpose, we assume that

$$h_{\text{salt}}^{A} = h_{*}(c_{\text{salt}}^{A})^{+}, \quad \text{on} \quad (0, 1/2),$$
 (11)

where $h_* > 0$ is the pump strength, and $h_{\rm salt}^A = 0$ elsewhere. Also, we assume no active transport other than the pump in the ascending tubule.

Let $N \in \mathbb{N}$ be the number of uniformly spaced grids in (0,1), and $\delta x = 1/N$ be the spatial grid size. Similarly, we denote δt as the size of time steps. We will use the notation $\alpha_{kl}^n, c_{il}^{kn}, p_{kl}^n$ for the discretization of α_k, c_i^k and p_k at the l-th spatial grid and time $t = n\delta t$.

We define difference quotient operators:

$$\Delta_x^+ y_l^n := \frac{y_{l+1}^n - y_l^n}{\delta x}, \quad \Delta_x^+ y_l^n := \frac{y_l^n - y_{l-1}^n}{\delta x}, \quad \Delta_t y_l^n = \frac{y_l^n - y_l^{n-1}}{\delta t}.$$
 (12)

and an average operator:

$$Ay_l^n := \frac{y_{l+1}^n + y_l^n}{2}. (13)$$

We start with known values of $\alpha_{kl}^{n-1}, c_{il}^{k,n-1}, p_{kl}^{n-1}, l = 1, \dots, N$. The first step is to update the unknowns for the next time step n. We have

$$\Delta_{t} \alpha_{kl}^{n} + \text{Pe}(\alpha_{kl}^{n} u_{kl}^{n}) = -w_{kl}^{n}, \quad w_{kl}^{n} := \zeta_{k} (\psi_{kl}^{n} - \psi_{0l}^{n})$$

$$\psi_{\cdot l}^{n} := p_{\cdot l}^{n} - \pi_{\cdot l}^{n}, \quad \pi_{\cdot l}^{n} := \sum_{i} c_{il}^{\cdot n}.$$
(14)

2