

Tackling Shortcut Learning in Deep Neural Networks: An Iterative Approach with Interpretable Models

BOSTON LAB

Meta

Shantanu Ghosh¹, Ke Yu², Forough Arabshahi³, Kayhan Batmanghelich¹

²Intelligent Systems Program (ISP), University of Pittsburgh, ³Meta AI

¹Dept. Of Electrical and Computer Engineering, Boston University

TLDR: We use concept based interpretable method to mitigate the problem of shortcut learning.

What is shortcut?

Spurious Feature (white patch)

(B) Testing Data w/o Shortcut

Data Generation

GAP: Existing shortcut elimination methods are not interpretable.

Assumption

Prediction

Carve out interpretable models from Black box

Route Interpret Repeat

Algorithm 1 Applying MoIE to eliminate shortcuts

- 1: **Input:** $\mathcal{D} = \{x_j, c_j, y_j\}_{j=1}^n$; biased BB $f^0 = h^0(\Phi(.))$; The total iterations K; Coverages τ_1, \ldots, τ_K . Freeze Φ .
- 2: Using (Yuksekgonul et al., 2022) learn the projection t to predict the concept value.
- 3: **Detection step.** Learn the experts in MoIE $\{g\}_{k=1}^{K}$ and extract the FOLs. The FOL contains shortcuts.
- 4: Elimination step. Consider the detected shortcut concept in the "Detection" step as metadata and finetune BB (f^0) with MDN (Lu et al., 2021) to remove the role of that shortcut.
- 5: Retrain t with Φ of finetuned BB to get the concepts.
- 6: Verification step. Learn MoIE $\{g\}_{k=1}^K$ again from retrained t and recompute the FOLs. The final FOLs do not contain spurious concepts as they have been eliminated in the "Elimination step".

Not compromising the accuracy

Comparison w/ other methods on Waterbirds dataset

Method	Avg Acc.	Worst Acc.
ERM (Wah et al., 2011)	97.0 ± 0.2%	63.7 ± 1.9%
ERM+aug (Wah et al., 2011)	$87.4 \pm 0.5\%$	$76.4 \pm 2.0\%$
UW (Xian et al., 2018)	$96.3.0 \pm 0.3\%$	$76.2 \pm 1.4\%$
IRM (Arjovsky et al., 2020)	$87.5 \pm 0.7\%$	$75.6 \pm 3.1\%$
IB-IRM (Ahuja et al., 2022)	$88.5 \pm 0.9\%$	$76.5 \pm 1.2\%$
V-REx (Krueger et al., 2021)	$88.0 \pm 1.4\%$	$73.6 \pm 0.2\%$
CORAL (Sun & Saenko, 2016)	$90.3 \pm 1.1\%$	$79.8 \pm 1.8\%$
Fish (Shi et al., 2021)	$85.6 \pm 0.4\%$	$64.0 \pm 0.3\%$
GroupDRO (Sagawa et al., 2019)	$91.8 \pm 0.3\%$	$90.6 \pm 1.1\%$
JTT (Liu et al., 2021)	$93.3 \pm 0.3\%$	86.7 ± 1.5%
DM-ADA (Xu et al., 2020)	$76.4 \pm 0.3\%$	53.0 ± 1.3%
LISA (Yao et al., 2022)	$91.8 \pm 0.3\%$	88.5 ± 0.8%
BB w MDN (ours)	95.01 ± 0.5%	94.4 ± 0.5%
MoIE from BB w MDN (ours) (COVERAGE)	$91.0 \pm 0.5\% (0.91)$	93.7 ± 0.4% (0.87)
MoIE+R from BB w MDN (ours)	$90.2 \pm 0.5\%$	$92.1 \pm 0.4\%$

Qualitative result on Waterbirds dataset

