

化学变化中的质量守恒-1

日期:	时间:	姓名:	
Date:	Time:	Name:	_

初露锋芒

学习目标

&

重难点

1、记住常见元素及原子团的化合价,并能利用化合价推求化学式。

2、会正确书写常见物质的化学式;掌握化学式的意义;能根据物质的化学式做相关的计算。

能利用化合价推求化学式,能根据物质的化学式做相关的计算。

根深蒂固

知识点一、化学式

 化学式的定义: 	用	_和	_的组合表示物质组成的式子,	叫做化学式。
-----------------------------	---	----	----------------	--------

2. 化学式的意义:

分类	意义	实例 (以 H ₂ 0 为例)
宏观	①表示一种物质	水
<i>运烧</i>	②表示该物质的元素组成	水是由、两种元素组成的
	③表示物质的一个分子	一个
 微观	④表示物质的分子构成	一个水分子是由和一个构成的
1/1/2/9°C	⑤表示组成物质的各种元素	水分子中 H、0 原子的个数比为 2:1
	的原子个数比	

3. 单质化学式的写法:

- (1)金属、稀有气体及固态非金属单质,通常用元素符号表示它们的化学式。例如:铁(Fe)、汞(Hg)、 氦气(He)、碳(C)、硫(S)、磷(P)等。
- (2) 常见气体非金属单质的分子由两个原子构成,在元素符号右下角加数字 "2" 表示它们的化学式,例如:氧气 (0_2) 、氢气 (H_2) 、氮气 (N_2) 、氯气 $(C1_2)$ 等。
- 4. 化合物化学式的书写:

类型	写法	读法	举例
两原子化合型	① 氧化物:氧元素在右	① 从后往前读作"某	MgO 氧化镁
	边,其他元素在左边	化某"	P ₂ O ₅ 五氧化二磷
	② 金属元素与非金属元	② 读出每种元素的	NaCl 氯化钠
	素组成的化合物:金	原子个数,个数为	MgCl₂氯化镁
	属在左,非金属在右	1,一般不读	
多原子化合型	原子团一般在右边,其他	① 以原子团命名	NaOH 氢氧化钠
	元素在左边	② 以中心原子命名	H ₂ SO ₄ 硫酸
			Na ₂ CO ₃ 碳酸钠

注意:

1. 纯净物的组成是固定不变的,只有纯净物才有化学式(混合物没有固定的组成,因此没有化学式),且一个化学式只表示一种____。

2. 化学式右下角的数字为整数,原子个数为"1"时一般不写出。化学式中数字的含义(以水为例):

知识点二、化合价

元素的化合价是元素的原子之间形成化合物时表现出来的一种性质,用来表示原子之间相互化合的数目。

- 1. 化合价的表示方法: 通常在元素符号或原子团(作为整体参加反应的原子集团)的正上方用+n或-n表示。
- 2. 化合价的一般规律:
- (1)在化合物中氢元素通常显+1 价;氧元素通常显-2 价;在氧化物中氧元素显-2 价,其他元素显正价;金属元素与非金属元素化合时,金属元素显正价,非金属元素显负价。
 - (2) 某些元素在不同的物质中可显不同的化合价。例如: $^{+2}_{FeO}$ 与 $^{+3}_{FeO}$ 5.
- -3 +5 (3)在同一物质里,同一元素也可显不同的化合价。例如: NH₄ NO_{3•} (硝酸铵)
- (4) 在单质分子里,元素的化合价为零。
- (5)化合物中各元素的化合价______为零。
- 3. 常见元素及原子团的化合价:

+1 价	K. Na. Ag.	H、NH ₄	-1 t	介		F, C1,	I、OH、NO ₃
+2 价	Ca, Mg, Ba	. Zn, Cu	-2 t	介		0, S	, SO ₄ , CO ₃
原子团的	—1	—1	-2	_	2	—3	+1
化合价	ОН	NO_3	CO ₃	S	O ₄	PO ₄	NH4

4. 化合价与离子符号比较:

	化合价	离子
表示方法	$\Pi + 1$, $+ 2$, $- 1$, $- 2$ ······表示,标在元素	用+,2+,-,2表示,标在元素符号
	符号正上方("1"不能省略)	右上角("1"省略)
实例	+1 +2 +3 -1 -1 -2 Na、Mg、A1、C1、OH、SO ₄	$\mathbb{K}^{^{+}} \mathbb{M} \mathbb{g}^{2^{+}} \mathbb{S}^{2^{-}} \mathbb{N} \mathbb{H}_{4}^{+} \mathbb{O} \mathbb{H}^{-} \mathbb{S} \mathbb{O}_{4}^{2^{-}}$
	同种元素(或原子团)的化合价和离子的电荷	· 荷,通常数值相等,位置不同,正负号写法不
联系	同	

5. 化合价的应用:

(1) 根据化合价求化合物的化学式

依据化合物中各种元素的正负化合价的代数和为零,确定化合物中各元素的原子个数。常用的是最小公倍数法。如写氧化铝的化学式:

- ① 按"正价左、负价右"的原则, 先写出组成化合物的元素的元素符号: A10;
- ② 标出每种元素的化合价: $^{+3}_{\text{Al}}$ O;
- ③ 求出两种元素化合价的最小公倍数: 6;

用最小公倍数除以每种元素化合价的绝对值,即得该元素的原子个数: $6 \div 3 = 2, 6 \div 2 = 3$;

- ④ 将所得原子个数写在相应元素符号的右下角,即得该化合物的化学式: A1203。
- (2) 根据化学式求元素的化合价

化合物中正负化合价的代数和为零是解答此类问题的基础,一般是跟据无多价元素的化合价求有多价元素的化合价。例如计算 $KC10_3$ 中氯元素的化合价,方法为:设氯元素的化合价为 X,依据 K、0 在化合物中分别为+1 价和-2 价,各元素正负价的代数和为零列出代数式:(+1)+X+(-2)×3=0 解得 X=+5,所以 $KC10_3$ 中氯元素显+5 价。

注意

- 1. 化合价口诀:一价氢氯钾钠银,二价氧钙钡镁锌,三铝四硅五氮磷,二、三铁,二、四碳,二四六硫都齐全,铜汞二价最常见,莫忘单质零价现。
- 2. 十字交叉法确定化学式的口诀: 一排顺序二标价,(Mg O)

绝对价数来交叉, (Mg₂O₂)

偶数脚码要化简, (MgO)

写好式子要检查。

知识点三、化学式的计算

- 1. 相对分子质量: 化学式中各原子的相对原子质量的总和就是相对分子质量,用符号 M. 表示。
- 2. 化合物中的原子个数之比: 在化学式中,元素符号右下角的数字就是表示该元素原子的个数,因此这些数字的比值就是化合物中的原子个数之比。
- 3. 物质组成中各元素的质量比:即各元素的相对原子质量总和的比。
- 4. 化合物中某元素的质量分数

该元素的相对原子质量 × 该元素的原子个数 化合物的相对分子质量

5. 一定质量的物质中某元素的质量=物质的质量×该元素在物质中的质量分数。

基本计算类型(以 Fe₂O₃为例):

计算物质的相对分子质量	Fe ₂ O ₃ 的相对分子质量=
计算组成物质的各元素质	Fe ₂ O ₃ 中各元素的质量比是:铁元素:氧元素=
量比	
计算物质中某元素的质量	Fe ₂ O ₃ 中 Fe 的质量分数=
分数	
计算一定量化合物中某元	例: 50 吨 Fe ₂ O ₃ 中含铁元素多少吨?
素的质量	
	解:

枝繁叶茂

【例 1】下列有关化学符号"H₂O"表示的意义,正确的是()

Α.	水这种物质
В.	水由氢原子和氧原子构成
С.	一个水分子中含有一个氢分子
D.	水由两个氢元素和一个氧元素组成
T O	列 2】写出对应的化学式:
	(1) 5 个铜原子 (2) 1 个氢分子 (3) 2 个氢原子
	(4) 4 个二氧化碳分子 (5) 二氧化硫
举-	一反三:
[3	变式】下列符号中,表示两个氢分子的是()
	A. H_2 B. $2H$ C. $2H_2$ D. $2H^+$
T (列 3】已知 SO₂中,氧元素化合价为 - 2 价,则 S 元素的化合价为()
	A1 B. +4 C. +2 D. +3
举-	一反三:
[3	变式】红宝石的主要成分是氧化铝(Al ₂ O ₃),氧化铝中铝元素的化合价是()
	A3 B. +3 C. +4 D. +5
T O	列 4】写出下列物质化学式并计算其相对分子质量(写出计算过程)。
	(1) 一氧化碳
	(2) 氧化铝。

d. 环氧乙烷(C₂H₄0)中碳元素的质量分数为_

举一反三:
【变式】计算: (1)二氧化碳(CO ₂)的相对分子质量; (2)二氧化碳中碳元素和氧元素的质量
比。 (3) 二氧化碳中碳元素的质量分数。
【例 5】硅酸钙(CaSiO ₃)是玻璃的主要成分之一。硅酸钙中 Si 的化合价是()
A. $+2$ B. $+3$ C. -4 D. $+4$
【例 6】填空题
a. 用化学式填空:最轻气体:; 地壳中含量最高的金属元素:; 氧化亚铁中铁元素显正二
价:; 2个硝酸根离子。
b. 最近, 科学家研究确认, 一些零食特别是油炸食品含有致癌物质丙烯酰胺(C ₃ H ₅ ON)。丙烯酰胺中碳、氢、氧
氮元素的质量比为。
c. 莽草酸(化学式为 $C_7H_{10}O_5$) 是有效治疗人类禽流感药物"达菲"的主要合成原料。莽草酸的相对分子质量
是。