Prática 2: Módulo de elasticidade

2.1 Objetivos

Nesta prática será estudado o comportamento de deflexão elástica de uma barra metálica, fixada em um extremo, em função do comprimento e da força de carga aplicada no extremo oposto. Será determinado, também, o módulo de elasticidade do material na tração (módulo de Young). Para o processamento dos dados, serão utilizadas metodologias descritas no capítulo 2 (escalas logarítmicas, linearização e cálculo de coeficiente angular de uma reta), que deverão ser cuidadosamente estudadas antes de realizar essa prática.

2.2 Introdução

Todos os materiais apresentam deformação quando sujeitos a esforços, como, por exemplo, forças de compressão, tração ou cisalhamento. A resposta do material pode ser caracterizada através de um coeficiente, o *módulo de elasticidade*, que indica a resistência do material à deformação frente a um tipo particular de esforço aplicado:

$$m\'odulo de elasticidade = \frac{esforço}{deformaç\~ao}$$
 (1)

Elasticidade é a propriedade que o corpo tem de recuperar sua forma inicial depois de uma deformação. No entanto, esforços acima de certo valor limite causam deformações permanentes. O comportamento elástico de um material está determinado para esforços abaixo desse valor. Nesse regime, a deformação é diretamente proporcional ao esforço externo aplicado. Para o

caso particular de uma força de tração F produzindo um alongamento x do corpo na mesma direção da força, se define o módulo de Young E do material de acordo a equação (1).

$$E = \frac{F/A}{x/l} \tag{2}$$

sendo A a área de aplicação da força no corpo, perpendicular à força e l, o comprimento inicial do corpo. No limite elástico, como E é uma constante, a relação entre x e F é linear:

$$F = \frac{EA}{I}x\tag{3}$$

O fator constante, que multiplica x na equação (3), define a rigidez do corpo frente às forças de tração e constitui a *constante de força* ou *constante elástica* da peça. Claramente, pode-se notar em (3) que a constante elástica depende da geometria da peça, assim como do material.

Questão: De acordo com a equação (3), determine as unidades, no sistema internacional, do módulo de Young e da constante de força.

Analogamente, é possível definir módulos de *compressão B* e de *cisalhamento S* caracterizando a resposta do material diante de forças de compressão e tangencial, respectivamente. Na tabela 2.1 são mostrados valores de módulos elásticos para diferentes materiais. Observe que a resposta elástica na tração e na compressão podem ser diferentes. O concreto é um exemplo extremo desse comportamento, apresentando alta resistência à compressão e baixíssima resistência à tração.

Tabela 2.1 - Valores de referência para módulos de elasticidade na tração *E* (módulo de Young), na compressão *B* e no cisalhamento *S* para diferentes materiais.

Material	Módulo de Young <i>E</i> (10 ¹⁰ Pa)	Módulo de compressão <i>B</i> (10 ¹⁰ Pa)	Módulo de cisalhamento S (10 ¹⁰ Pa)
Alumínio	7,0	7,5	2,5
Cobre	11,0	14,0	4,4
Bronze	9,0	6,0	3,5
Aço	20,0	16,0	7,5
Ferro	21,0	16,0	7,7
Chumbo	1,6	4,1	0,6
Concreto		3,0	2,1
Vidro Crown	6,0	5,0	2,5

Fonte: Elaborada pelo compilador.

2.2.1 Deflexão de uma barra

Um caso de deformação muito importante em engenharia é a deflexão de uma barra ou uma viga sofrendo cargas de forças externas. A deflexão resulta da combinação de tração e compressão atuando, respectivamente, sobre a parte convexa e côncava da barra deformada. Nessa prática será considerada uma barra de aço de seção retangular fixada em uma extremidade, como mostrado na figura 2.1. A barra será carregada no extremo oposto com uma força F, que causará uma deflexão. A deformação, nesse caso, será quantificada mediante a variação da posição vertical x do ponto extremo. Dentro do regime elástico, a relação entre a força e a deformação de flexão é:

$$F = \overbrace{\left(E\frac{d^3b}{4L^3}\right)}^{k} x \tag{4}$$

em que E é o módulo de Young do material da barra, b é a largura, d a espessura e L o comprimento medido entre o ponto de suspensão e o ponto de

aplicação da força. A equação (4) é válida unicamente para as condições de carga indicadas: um extremo fixo e o oposto sujeito à carga. Para barras com outros pontos de fixação e carga, o coeficiente que relaciona F e x dependerá de forma diferente da geometria da barra. No entanto, dentro do limite elástico, a relação entre a deformação e a força será sempre linear.

Figura 2.1 - Dispositivo para a medida da deflexão *x* de uma barra de aço de comprimento *L* fixa em um extremo e carregada no extremo livre.

Fonte: Elaborada pelo compilador.

Questão: De acordo com a relação (4), para aumentar a rigidez de uma barra de comprimento L fixo, quais parâmetros geométricos devem ser aumentados? Qual parâmetro tem mais efeito sobre a rigidez?

A Física e a Engenharia: materiais dúcteis e frágeis

A relação de proporcionalidade entre a força de tensão (tração), aplicada a um material e sua deformação (alongamento), é conhecida como Lei de Hooke. No entanto, esse comportamento é válido apenas para deformações relativamente pequenas, tipicamente menores que 1%. Para forças que causam deformações maiores, o comportamento do material é radicalmente diferente. Na figura está representado o diagrama de esforço-deformação para um material típico sujeito a uma força de tração. A região de resposta elástica do material corresponde à parte inicial do gráfico, até o ponto b. Nesse regime, as deformações são reversíveis: quando a força é retirada, o corpo recupera sua forma inicial. A região de deformação proporcional, para qual a Lei de Hooke é válida, estende-se desde a origem do gráfico até o ponto a. O coeficiente de inclinação dessa reta é o módulo de Young do material. A proporcionalidade deixa de ser válida para deformações maiores na região entre a e b, porém, o material ainda se comporta elasticamente. O ponto b, na curva, corresponde ao limite de ruptura; deformações acima desse valor não são reversíveis quando se retira a força. A região de deformações acima do ponto de ruptura corresponde ao regime de deformação plástica do material. Por exemplo, se o material fosse deformado até o ponto c, ao retirar a força, o retorno ocorreria ao longo da reta c-d. O ponto d corresponde a uma deformação com força nula, indicando que o corpo sofreu uma deformação permanente. Esse fenômeno é usado para moldar materiais metálicos a frio. Se a força aplicada for mais intensa, eventualmente se atinge o limite da fratura do material, no ponto f. Um material é dúctil quando os pontos b e f estão muito separados no diagrama, indicando uma região extensa de deformação plástica. Em contraste, o material é frágil quando a ruptura ocorre próximo ao limite elástico, determinando um regime plástico estreito ou inexistente.

Fonte: Elaborada pelo compilador.

2.3 Parte experimental

Será estudado o fenômeno de deflexão de uma barra de aço inox, de perfil retangular, disposta horizontalmente com um extremo fixo. Para isso, será utilizada a montagem mostrada na figura 2.1. Sobre o extremo livre, um gancho permite pendurar massas, que determinam a força de deformação atuante. As deflexões verticais x do extremo livre da barra serão medidas com uma régua milimetrada encapsulada em um tubo de plástico, cuja ponta encosta no extremo da barra. A régua acompanha livremente a deflexão da barra quando carregada. O ponto de fixação da barra pode ser escolhido, de forma a controlar o comprimento L.

Para a realização da prática é *imprescindível* ter estudado o uso de escalas logarítmicas e a determinação do coeficiente angular de retas traçadas graficamente, discutidos no capítulo 2.

2.3.1 Determinação do módulo de Young

Nesse experimento, será analisada a variação da deformação em função da força de deflexão aplicada sobre a barra, com a finalidade de determinar o módulo de Young do material. Durante a execução dos experimentos, verifique periodicamente se a barra retorna ao seu estado inicial quando não for adicionado peso.

- a) Determine os parâmetros geométricos da barra (largura e espessura).
- b) Fixe a barra por uma de suas extremidades, deixando um comprimento da ordem de 27 cm. Verifique o correto alinhamento horizontal. Escolha um ponto de medida sobre a barra e encoste o extremo da régua deslizante. Verifique que o percurso de medida é apropriado,

pendurando a maior massa de carga que será aplicada durante o experimento. Meça o valor do comprimento L correspondente.

- c) Aplique diferentes cargas, entre zero e o valor máximo, e meça a deformação x da barra. Construa uma tabela de dados da deformação x em função da força peso F.
- d) Faça um gráfico em papel milimetrado, ambos os eixos em escalas lineares, de F contra x. Observe se a relação observada é linear ou não.
 Caso seja linear, trace a melhor reta que represente o conjunto de dados experimentais.
- e) Escolha dois pontos da melhor reta (distantes entre si) e determine seu coeficiente angular.
- f) Usando o coeficiente angular medido e a equação (4), determine o valor do módulo de Young do material. Compare com o valor tabelado para o aço. Discuta os resultados do seu experimento em função dos valores obtidos.

2.3.2 Análise da relação comprimento-deformação

Nesse experimento, será analisada a dependência da deformação em função do comprimento da barra, para uma força de carga fixa.

- a) Escolha uma massa de carga, que será mantida constante durante o experimento, e meça a deformação x para diferentes valores de comprimento L, variando, para isso, o ponto de fixação da barra.
- b) Com os valores registrados, construa uma tabela contendo colunas para L, x e L^3 .

- c) Faça um gráfico em papel log-log de x contra L. Em função da dependência observada nesse gráfico, identifique que tipo de relação vincula estas grandezas (linear ou não linear). Esse resultado é coerente com a equação (4)?
- d) Se a relação observada no gráfico log-log for linear, trace a melhor reta que represente esses dados experimentais. Escolha dois pontos da reta (distantes entre si) e calcule sua inclinação.
- e) Analise se o valor obtido para esse coeficiente é consistente com a relação esperada a partir da equação (4).
- f) Faça um gráfico em papel milimetrado, com ambos os eixos em escalas lineares, de x em função de L^3 e trace a melhor reta que represente o conjunto de dados.
- g) Escolha dois pontos da reta (distantes entre si) e determine o coeficiente angular.
- h) Usando o coeficiente angular obtido no item (g), determine o valor do módulo de Young. Compare com o valor tabelado para o aço. Discuta os resultados! Os métodos para determinar *E* forneceram resultados compatíveis? Algum dos métodos é mais confiável?

Bibliografia

Halliday, D., Resnick, R., Walker, J.. Fundamentos de Física. Vol. 1. LTC.

Tipler, P. A., Mosca, G., Física para Cientistas e Engenheiros. Vol. 1. LTC.

Young, H. D.; Freedman, R. A.. **Sears and Zemanski Física I.** 12. ed. São Paulo: Addison Wesley, 2008.