Do Judges Flip A Coin

Judicial Inattention in the US Asylum Courts

Sai Zhang

November 28, 2022

Outline

1 Evaluation

Evaluation

Predicted denial Predicted success

Actual denial

Actual success

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success		reverse and predicted reverse

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success	reverse but predicted affirm	reverse and predicted reverse

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success	reverse but predicted affirm	reverse and predicted reverse

reverse: denial asylum in the lower court, but grant asylum in the appeal court

	Predicted denial	Predicted success
Actual denial	affirm and predicted affirm	affirm but predicted reverse
Actual success	reverse but predicted affirm	reverse and predicted reverse

- reverse: denial asylum in the lower court, but grant asylum in the appeal court
- surprising reverse: predicted affirm, but actually reversed

Event Study: around Surprising Reverses

An event study design around the surprising reverse shock:

$$\bar{y}_{i,s,t} = \alpha D_{s,k} + \beta \mathbf{1} \left(\mathsf{Surprising Reverse} \right)_s + \gamma D_{s,k} \times \mathbf{1} \left(\mathsf{Surprising Reverse} \right)_s + \mu_t + \nu_c + \varepsilon_{i,s,t}$$

where:

- lacksquare $\bar{y}_{i,s,t}$: the leave-out average grant rate of judge i, for case s
- lacksquare μ_t : appeal decision year and month fixed effects
- $\mathbf{\nu}_c$: court fixed effects
- $k \in \{T-6, T-5, T-4, T-3, T-2, T-1, T, T+1, T+2, T+3, T+4, T+5, T+6\}$, where T is the time when the appeal decision is made.

Event Study: Results

(With appeal decision year-month fixed effect, weighted on number of cases in each aggregation unit.)

Event Study: Robustness to Granular Dependent Variable Construction

Event Study: Construct A Measure of Attentiveness

$$\begin{split} \bar{y}_{i,s,t} = & \alpha D_{s,k} \\ &+ \beta \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ &+ \gamma D_{s,k} \times \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ &+ \mu_t + \nu_c + \varepsilon_{i,s,t} \end{split}$$

Event Study: Construct A Measure of Attentiveness

$$\begin{split} \bar{y}_{i,s,t} = & \alpha D_{s,k} \\ & + \beta \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ & + \gamma D_{s,k} \times \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ & + \mu_t + \nu_c + \varepsilon_{i,s,t} \end{split}$$

Now, limit to a smaller window and re-pool data: $k\in\{T'-1,T',T'+1\}$, and extract γ as attentiveness of judges

Event Study: Construct A Measure of Attentiveness

$$\begin{split} \bar{y}_{i,s,t} = & \alpha D_{s,k} \\ & + \beta \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ & + \gamma D_{s,k} \times \mathbf{1} \left(\text{Surprising Reverse} \right)_s \\ & + \mu_t + \nu_c + \varepsilon_{i,s,t} \end{split}$$

Now, limit to a smaller window and re-pool data: $k\in\{T'-1,T',T'+1\}$, and extract γ as attentiveness of judges

Validity of the Attentiveness Measure: Judges' Effort

Validity of the Attentiveness Measure: Judges' Errors

Validity of the Attentiveness Measure: Early Predictability

Variation in Attentiveness of Judges

Generate a residualized, leave-out judge leniency measure following Arnold et al. (2018):

Generate a residualized, leave-out judge leniency measure following Arnold et al. (2018):

■ Step 1: Regression lower court decisions on court-by-year-by-month FEs

Generate a residualized, leave-out judge leniency measure following Arnold et al. (2018):

- Step 1: Regression lower court decisions on court-by-year-by-month FEs
- Step 2: Extract the residuals

Generate a residualized, leave-out judge leniency measure following Arnold et al. (2018):

- Step 1: Regression lower court decisions on court-by-year-by-month FEs
- Step 2: Extract the residuals
- Step 3: Calculate the leave-out average grant rate in the lower court

Generate a residualized, leave-out judge leniency measure following Arnold et al. (2018):

- Step 1: Regression lower court decisions on court-by-year-by-month FEs
- Step 2: Extract the residuals
- Step 3: Calculate the leave-out average grant rate in the lower court

This will give us a leniency measure

Risk Ranking of Judges

Risk Ranking of Judges: Appeal Courts

Implicit Risk Ranking and Inattention

(Time window: 3 monthly periods pooled together before/after shock. More attentiveness: the coefficient of interaction of surprisingly reversed dummy and time-period dummy is bigger)

Risk Ranking of Judges: Asian Applicants

Risk Ranking of Judges: Government Experience

Risk Ranking of Judges: Workload

Judges' Inattention: Experience Heterogeneity

Judges' Inattention: Experience Heterogeneity

Judges' Inattention: Gender Heterogeneity

References I

Arnold, D., Dobbie, W., & Yang, C. S. (2018). Racial bias in bail decisions. *The Quarterly Journal of Economics*, 133(4), 1885–1932.

Thank you!