Math 341 Homework 5

Theo Koss

September 2020

1 Practice problems

1.1 Problem 2

Suppose a : b. Show that gcd(a, b) = b.

Proof. If a : b, then by definition, a = bn, for some $n \in \mathbb{Z}$. This also, by definition, implies that b is a factor of a. The common denominators, $\operatorname{cd}(a,b) = \{1,\ldots,b\}$, at the very least, includes 1 and b. Also, b must be the largest element, because the factors of b are $b = \{1,\ldots,b\}$, meaning the largest factor is b itself. And the factors of a are $a = \{1,\ldots,b,\ldots,a\}$. The largest element that both of these share is b, since b is the largest factor of b and is also included in a. Therefore $\gcd(a,b) = b$ if a : b. QED

1.2 Problem 3

Suppose $a \not | b$, divide a by b with remainder r. Show that gcd(a, b) = gcd(b, r).

Proof. If $a \not = b$, then by definition, $\exists q, r \in \mathbb{Z}$, such that a = bq + r, and $0 \le r < b$. Denote $X = \gcd(a, b)$ and $Y = \gcd(b, r)$. By definition, a : X must be true, as must b : X. And, by example 2.2, since a : X, b : X, and (a - bq) : X. Then r : X. Also since both b, r : X, then $X \le \gcd(b, r)$. This means that X is in Y, or $X \subset Y$. Similarly, since b : Y, r : Y, and (bq + r) : Y, that means a : Y. And, since a : Y and $b : Y, Y \le \gcd(a, b)$. This means that $Y \subset X$. Since $X \subset Y$ and $Y \subset X$, Y = X, and therefore if $a \not = b$, $\gcd(a, b) = \gcd(b, r)$.

1.3 Problem 7

Prove that Euclid's algorithm works, i.e. it always stops and produces gcd(a, b).

Proof. By definition of division, for any $a, b \in \mathbb{N}$, such that a > b, $\exists q, r \in \mathbb{N}$, s.t. a = bq + r. Due to the iterative nature of Euclid's algorithm, I'll denote the first "step" as $a = bq_1 + r_1$, second, $b = r_1q_2 + r_2$, all of the form $r_{n-1} = r_nq_{n+1} + r_{n+1}$. Since you take a smaller value every time, it follows that $0 \le r_n < r_{n-1} < \dots < r_1 < b$. And, due to the fact that it is a strictly decreasing sequence of positive integers, you can't keep getting smaller indefinitely, and so eventually $r_{n+1} = 0$. In other words, it always terminates. As for why Euclid's Alg. always produces $\gcd(a, b)$, by problem 5.3, $\gcd(a, b) = \gcd(b, r_1) = \gcd(r_1, r_2) = \dots = \gcd(r_{n-1}, r_n)$, and since $r_{n+1} = 0$, then $\gcd(a, b) = \gcd(r_n, 0) = r_n$. So Euclid's algorithm always terminates, and always produces $\gcd(a, b)$.