Name____

Student Number

All solutions are to be presented on the paper in the space provided. The quiz is closed book, no calculators.

(1) Evaluate the following:

(a)
$$\cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

(b) $\tan \frac{\pi}{3} = \sqrt{3}$

(c)
$$\csc \frac{\pi}{6} = 2$$

(d)
$$\sin \pi = 0$$

(e)
$$\cos \pi = -1$$

(f)
$$\tan \frac{11\pi}{4} = -1$$

(g)
$$\sec\left(-\frac{3\pi}{2}\right) = 0$$

(h)
$$\sin^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$$

(i)
$$f^{-1}(3)$$
 where $f(x) = \frac{1}{x-1}$

$$3 = \frac{1}{x-1},$$

$$3(x-1) = 1,$$

$$3x = 4,$$

$$x = \frac{4}{3}$$
So $f^{-1}(3) = \frac{4}{3}$.

(2) Find the regions where $f(x) = x^2 + 2x - 15$ is positive.

$$x^{2} + 2x - 15 > 0,$$

$$(x+5)(x-3) > 0,$$

	x < -5	-5 < x < 4	3 < x
x+5		+	+
x-3	_	_	+
(x+5)(x-3)	+	_	+
	F) (0	1	

so, $x \in (-\infty, -5) \cup (3, \infty)$.

(3) Solve the equation $x^3 = x$.

$$x^{3} - x = 0$$
$$x(x^{2} - 1) = 0$$
$$x = 0, \pm 1$$

(4) Draw the graph of $f(x) = -(x+1)^2 - 1$.

(5) Solve the following equations and inequalities:

(a)
$$e^{2x} - e^{-x-1} = 0$$

$$e^{2x} = e^{-x-1},$$

$$2x = -x - 1,$$

$$x = -\frac{1}{3}.$$

(b) $\log_5 x^2 + \log_5 4 = 2$

$$\log_5(4x^2) = 2,$$

$$4x^2 = 5^2,$$

$$x^2 = \frac{25}{4},$$

$$x = \pm \frac{5}{2}.$$

(c) $e^{|x|} > 2$

$$|x| > \ln 2$$
,

 $x > \ln 2$, or $x < -\ln 2$.

(d)
$$\ln|x^3 - 1| = 4$$

$$|x^3 - 1| = e^4,$$

 $x^3 - 1 = e^4 \text{ or } x^3 - 1 = -e^4,$
 $x = \sqrt[3]{e^4 + 1} \text{ or } x = \sqrt[3]{-e^4 + 1}.$

(6) Find the domains of the following functions:

(a)
$$f(x) = \frac{x}{x-1}$$

$$x \in (-\infty, 1) \cup (1, \infty).$$

(b)
$$f(x) = \frac{1}{\sqrt{x}} + \frac{1}{x+1}$$

$$x \in (0, \infty)$$

(c)
$$f(x) = \log_7(x^2 - 2x)$$

$$x^2 - 2x > 0,$$

$$x(x-2) > 0.$$

	x < 0	0 < x < 2	2 < x
\overline{x}	_	+	+
x-2	_	_	+
x(x-2)	+	=	+

So
$$x \in (-\infty, 0) \cup (2, \infty)$$
.

(d)
$$f(x) = e^{x^{-1}}$$

$$x \in (-\infty, 0) \cup (0, \infty)$$

(7) Draw the graph of $f(x) = -1 + \cos x$

