Talisman

November 26, 2018

目表	录	3.19 斯坦纳树	
1 t	十算几何 3		0.20 [五国
	.1 二维计算几何-wrz	4	数学 17
	.2 basis		4.1 杜教筛
1	.3 圆交		4.2 直线下整点 17
1	.4 圆的面积并 5		4.3 拉格朗日插值
1	.5 凸包		4.4 FFT-wrz
1	.6 三角形内心,外心,垂心 6		4.5 NTT-gwx
1	.7 费马点 6		4.6 FWT
1	.8 多边形和圆的交 6		4.7 高精度-wrz
1	.9 点到凸包切线 6		4.8 线性基-gwx
1	.10 闵可夫斯基和 6		4.9 线性递推
1	.11 最近点对 6		4.10 单纯形
1	.12 最小覆盖圆 6		4.11 素数测试-gwx 19
1	.13 最小覆盖球 7		4.12 原根-gwx
1	.14 阿波罗尼茨圆		4.13 勾股数 20
1	.15 圆幂		4.14 Pell 方程
1	.16 球面		4.15 平方剩余 20
1	.17 公式		4.16 多点求值与快速插值
	1.17.1 Heron's Formula		4.16.1 多点求值与快速插值 20
	1.17.2 四面体内接球球心 7		4.17 多项式牛顿法
	1.17.3 三角形内心 7		4.17.1 多项式牛顿法 20
	1.17.4 三角形外心 7	5	字符串 20
	1.17.5 三角形垂心	J	5.1 AC 自动机-wrz
	1.17.6 三角形偏心		5.2 扩展 KMP-gwx
	1.17.7 三角形内接外接圆半径 7		5.3 Manacher-gwx
	1.17.8 Pick's Theorem		5.4 最小表示-gwx
	1.17.9 Euler's Formula		5.5 回文树-wrz
1	.18 三角公式 7		5.6 后缀数组-wrz
	1.18.1 超球坐标系		5.7 后缀数组 SAIS
	1.18.2 三维旋转公式		5.8 后缀自动机-wrz
	1.18.3 立体角公式		5.9 扩展后缀自动机-wrz
	1.18.4 常用体积公式		5.10 结论
4	1.18.5 高维球体积		5.10.1 双回文串 22
	.19 三维计算几何		5.10.2 Border 的结构
1	.20 三维凸包 8		5.10.3 子串最小后缀
2 数	y据结构 8		5.10.4 子串最大后缀 22
	.1 KD 树-wrz		
	.2 KD 树-gwx	6	
	.3 LCT-wrz		6.1 蔡勒公式
	.4 左偏树-wrz		6.2 dancing-links
	.5 splay-wrz		6.3 枚举子集
	.6 treap-gwx		6.4 梅森旋转
	.7 可持久化平衡树		6.5 大数乘法取模
		7	提示 23
3	图论 11	•	7.1 Vimrc
	.1 匹配		7.2 make 支持 c++11
	.2 Hopcoft-Karp		7.3 Java
	.3 KM-truly-n3		7.4 cout 输出小数 24
	.4 tarjan-gwx		7.5 释放容器内存
	.5 边双联通-gwx 12		7.6 tuple
	.6 最大团		7.7 读入优化 & 手开 O3 24
	.7 欧拉回路-wrz 12		7.8 手开栈
	.8 SPFA 判负环-wrz		
	.9 k 短路 a 星-gwx	8	111.41.294.4
	.10 K 短路可并堆		8.1
	.11 上下界网络流		8.1.1 Mobius Inversion
	.12 zkw 费用流		8.1.2 Arithmetic Function 24
	.13 stoer-wagner 无向图最小割树		8.1.3 Binomial Coefficients
	.14 朱刘算法-gwx		8.1.4 Fibonacci Numbers
	.15 树哈希		8.1.5 Lucas Numbers
	.16 矩阵树定理 15		8.1.6 Catlan Numbers
	.17 带花树		8.1.7 Stirling Cycle Numbers
3	.18 支配树-gwx		8.1.8 Stirling Subset Numbers 25

8.1.9	Motzkin Numbers
8.1.10	Eulerian Numbers
8.1.11	Harmonic Numbers
8.1.12	Pentagonal Number Theorem
8.1.13	Bell Numbers
8.1.14	Bernoulli Numbers
8.1.15	Sum of Powers
8.1.16	Sum of Squares
8.1.17	Pythagorean Triple
8.1.18	Tetrahedron Volume
8.1.19	杨氏矩阵与钩子公式
8.1.20	重心
8.1.21	常见游戏
8.1.22	错排公式
8.1.23	概率相关
8.1.24	常用泰勒展开
8.1.25	Others (某些近似教值公式在汶里)

1 计算几何

1.1 二维计算几何-wrz

```
#include < bits / stdc++.h>
  using namespace std;
const double inf = 1e9;
const double eps = 1e-9;
const double pi = acos(-1.0);
bool le(double x, double y){return x < y - eps;} // x
  bool leq(double x, double y){return x < y + eps;} // x</pre>
  bool equ(double x, double y) {return fabs(x - y) < eps
  ;} // x等于y
double mysqrt(double x) {return x < eps ? 0 : sqrt(x)
;} // 开根号
  double sqr(double x) {return x * x;} // 平方
  struct point // 点或向量
12
13
        double operator * (point that) {return x*that.x + y
            *that.y;}
        double operator ^ (point that){return x*that.y - y
15
             *that.x:}
        point operator * (double t){return (point){x*t, y*
            t};}
       point operator + (point that) {return (point){x +
18
       that.x, y + that.y};}
point operator - (point that) {return (point){x - that.x, y - that.y};}
double len(){return mysqrt(x*x+y*y);} // 到原点距
             离/向量长度
       point reset_len(double t) // 改变向量长度为t, t为
正则方向不变, t为负则方向相反
{double p = len();return (point){x*t/p, y*t/p};}
        point rot90() {return (point){-y, x};} // 逆时针旋
             转90度
        point rotate(double angle) // 使向量逆时针旋转
             angle 弧度
       {double c = cos(angle), s = sin(angle); return (
    point){c * x - s * y, s * x + c * y};}
25
26
  struct line // 参数方程表示, p为线上一点, v为方向向量
27
28
        point p, v; // p为线上一点, v为方向向量
29
       double angle; // 半平面交用,用atan2计算,此时v的
左侧为表示的半平面。注意有的函数声明一个新的
30
        line 时没有初始化这个值!
bool operator < (const line &that) const {return
31
             angle < that.angle;} // 半平面交用, 按与x轴夹
  struct circle{point c; double r;};
  double distance(point a, point b) // a, b两点距离 {return mysqrt(sqr(a.x - b.x) + sqr(a.y - b.y));} circle make_circle(point a, point b) // 以a, b两点为直
        径作圆
   {double d = distance(a, b); return (circle){(a+b)/2, d
        /21:1
  double point_to_line(point a, line b) // 点a到直线b距
   {return fabs((b.v ^ (a - b.p)) / b.v.len());}
  point project_to_line(point a, line b) // 点a到直线b的
40
        垂足/投影
   {return b.v.reset_len((a - b.p) * b.v / b.v.len()) + b
41
        .p;}
  vector<point> circle_inter(circle a, circle b) // 圆a和圆b的交点,需保证两圆不重合,圆的半径必须大于0
        double d = distance(a.c, b.c);
44
        vector<point> ret;
45
        if(le(a.r + b.r, d) \mid\mid le(a.r + d, b.r) \mid\mid le(b.r)
             + d, a.r)) return vector<point>(); // 相离或内
       point r = (b.c - a.c).reset_len(1);
double x = ((sqr(a.r) - sqr(b.r)) / d + d) / 2;
double h = mysqrt(sqr(a.r) - sqr(x));
48
49
        if(equ(h, 0)) return vector<point>({a.c + r * x});
50
                  内切或外切
        else return vector <point > ({a.c + r*x + r.rot90()*h
            , a.c + r*x - r.rot90()*h}); // 相交两点
  vector<point> line_circle_inter(line a, circle b) //
53
        直线a和圆b的交点
55
        double d = point_to_line(b.c, a);
        if(le(b.r, d)) return vector < point > (); // 不交
56
        double x = mysqrt(sqr(b.r) - sqr(d));
       point p = project_to_line(b.c, a);
if(equ(x, 0)) return vector<point> ({p}); // 相切
else return vector<point> ({p + a.v.reset_len(x),
    p - a.v.reset_len(x)}); // 相交两点
62 point line_inter(line a, line b) // 直线a和直线b的交
```

```
点,需保证两直线不平行
{double s1 = a.v ^ (b.p - a.p);double s2 = a.v ^ (b.p + b.v - a.p);return (b.p * s2 - (b.p + b.v) * s1)
/ (s2 - s1);}
    vector<point> tangent(point p, circle a) // 过点p的圆a
的切线的切点,圆的半径必须大于0
    {circle c = make_circle(p, a.c); return circle_inter(a,
65
           c);}
    vector<line> intangent(circle a, circle b) // 圆a和圆b
          的内公切线
          point p = (b.c * a.r + a.c * b.r) / (a.r + b.r);
vector<point> va = tangent(p, a), vb = tangent(p,
                b):
          vector<line> ret;
if(va.size() == 2 && vb.size() == 2){ret.push_back
          ((line){va[0], vb[0] - va[0]});ret.push_back((line){va[1], vb[1] - va[1]});}
else if(va.size() == 1 && vb.size() == 1){ret.
                push_back((line){p, (a.c - b.c).rot90()});}
          return ret;
74
75 // 判断半平面交是否有解,若有解需保证半平面交必须有界,可以通过外加四个大半平面解决76 // lcnt为半平面数量,1为需要做的所有半平面的数组,p为
          存交点的临时数组, h为时刻更新的合法的半平面数组, rk均从1开始
    bool HP(int lcnt, line *1, line *h, point *p)
         sort(l+1, l+1+lcnt);
int head = 1, tail = 1;
h[1] = l[1];
for(int i = 2; i <= lcnt; i++)</pre>
                line cur = l[i];
                for(; head < tail && le(cur.v ^ (p[tail-1]-cur
               (p[tail-1]-cur
.p), 0); tail--); // 先删队尾再删队头,顺
序不能换
for(; head < tail && le(cur.v ^ (p[head]-cur.p
), 0); head++);
h[++tail] = cur;
                if(equ(h[tail].v ^ h[tail-1].v, 0)) // 平行
                      if(le(h[tail].v * h[tail-1].v, 0)) return false; // 方向相反的平行直线,显然已经不可能围出有界半平面了tail--;
                      if(le(h[tail+1].v ^ (h[tail].p - h[tail
92
                             +1].p), 0)) h[tail] = h[tail+1];
                if(head < tail) p[tail-1] = line_inter(h[tail
-1], h[tail]);</pre>
94
          for(; head < tail && le(h[head].v ^ (p[tail-1]-h[</pre>
         head].p), 0); tail--); return tail - head > 1;
97
98 }
99 double calc(double X){return 0;} // 计算给定X坐标上的
   double calc(double x)(return 0;} // 计算给定X坐标上的 覆盖的长度,配合辛普森积分使用
// 自适应辛普森积分,参数分别为(左端点x坐标,中点x坐标,右端点x坐标,左端点答案,中点答案,右端点答案)
// 改变计算深度应调整eps
double simpson(double 1, double mid, double r, double f1, double fm, double fr)
          double lmid = (l+mid)/2, rmid = (r+mid)/2, flm =
          calc(lmid), frm = calc(rmid);
double ans = (r-1) * (fl + 4*fm + fr), ansl = (mid
                -1)
                     * (fl + 4*flm + fm), ansr = (r-mid) * (fm)
         + 4*frm + fr);
if(fabs(ansl + ansr
         if(fabs(ansl + ansr - ans) < eps) return ans / 6;
else return simpson(1,lmid,mid,fl,flm,fm) +</pre>
                simpson(mid,rmid,r,fm,frm,fr);
    }
   int main(){}
    1.2 basis
```

```
struct Point {
    DB x, y;
    Point rotate(DB ang) const {return Point(cos(ang) * x - sin(ang) * y, cos(ang) * y + sin(ang) * x);} // 逆时针旋转 ang 孤度
    Point turn90() const {return Point(-y, x);} // 逆时针旋转 90 度
    Point unit() const {return *this / len();}
};

DB dot(const Point& a, const Point& b) {return a.x * b.x + a.y * b.y;}

DB det(const Point& a, const Point& b) {return a.x * b.y - a.y * b.x;}

#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x - p1.x)*(p2.y-p1.y))

#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
bool isLL(const Line& l1, const Line& l2, Point& p) {
    // 直线与直线交点
    DB s1 = det(l2.b - l2.a, l1.a - l2.a);
    s2 = -det(l2.b - l2.a, l1.b - l2.a);
    if (!sign(s1 + s2)) return false;
```

```
= (11.a * s2 + 11.b * s1) / (s1 + s2);
         return true;
17
   bool onSeg(const Line& 1, const Point& p) { // 点在线
  19
   DB disToLine(const Line& 1, const Point& p) { // 点到
22
         直线距离
         return fabs(det(p - 1.a, 1.b - 1.a) / (1.b - 1.a).
23
              len());}
   DB disToSeg(const Line& 1, const Point& p) { // 点到
24
         线段距离
         return sign(dot(p - 1.a, 1.b - 1.a)) * sign(dot(p - 1.b, 1.a - 1.b)) == 1 ? disToLine(1, p) : std::min((p - 1.a).len(), (p - 1.b).len());}
25
   // 圆与直线交点
bool isCL(Circle a, Line 1, Point& p1, Point& p2) {
    DB x = dot(l.a - a.o, l.b - l.a),
28
             y = (1.b - 1.a).len2(),
d = x * x - y * ((1.a - a.o).len2() - a.r * a.r
29
        31
32
        p1 = p + delta; p2 = p - delta; return true;
34
35
    //圆与圆的交面积
  DB areaCC(const Circle& c1, const Circle& c2) {
    DB d = (c1.o - c2.o).len();
    if (sign(d - (c1.r + c2.r)) >= 0) return 0;
    if (sign(d - std::abs(c1.r - c2.r)) <= 0) {
                  r = std::min(c1.r, c2.r);
turn r * r * PI; }
        return r * r * PI; }
DB x = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 *
43
              d),
              t1 = acos(x / c1.r), t2 = acos((d - x) / c2.r)
        return c1.r * c1.r * t1 + c2.r * c2.r * t2 - d *
45
              c1.r * sin(t1);
46
   // 圆与圆交点
47
  50
        DB s2 = (a.r * a.r - b.r * b.r) / s1;

DB aa = (s1 + s2) * 0.5, bb = (s1 - s2) * 0.5;

P o = (b.o - a.o) * (aa / (aa + bb)) + a.o;

P delta = (b.o - a.o).unit().turn90() * msqrt(a.r
52
53
54
                a.r - aa * aa);
         p1 = o + delta, p2 = o - delta;
         return true:
56
57
   // 求点到圆的切点,接关于点的顺时针方向返回两个点
bool tanCP(const Circle &c, const Point &p0, Point &p1
, Point &p2) {
58
59
        | double x = (p0 - c.o).len2(), d = x - c.r * c.r; | if (d < eps) return false; // 点在圆上认为没有切点 | Point p = (p0 - c.o) * (c.r * c.r / x); | Point delta = ((p0 - c.o) * (-c.r * sqrt(d) / x)).
61
62
63
              turn90();
        p1 = c.o + p + delta;
p2 = c.o + p - delta;
65
         return true;
66
68 // 求圆到圆的外共切线, 按关于 c1.0 的顺时针方向返回两
   vector < Line > extanCC (const Circle &c1, const Circle &
         c2) {
         vector < Line > ret;
        rector \text{Line / ret;}
if (sign(c1.r - c2.r) == 0) {
   Point dir = c2.o - c1.o;
   dir = (dir * (c1.r / dir.len())).turn90();
   ret.push_back(Line(c1.o + dir, c2.o + dir));
   ret.push_back(Line(c1.o - dir, c2.o - dir));
}
71
73
74
              Point p = (c1.o * -c2.r + c2.o * c1.r) / (c1.r)
              - c2.r);
Point p1, p2, q1, q2;
if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1,
                    if(c1.r < c2.r) swap(p1, p2), swap(q1, q2)
80
                    ret.push_back(Line(p1, q1));
                    ret.push_back(Line(p2, q2));
              }
83
84
        return ret;
   // 求圆到圆的内共切线,按关于 c1.o 的顺时针方向返回两
   std::vector<Line> intanCC(const Circle &c1, const
         Circle &c2)
         std::vector<Line> ret;
         Point p = (c1.0 * c2.r + c2.o * c1.r) / (c1.r + c2)
```

```
Point p1, p2, q1, q2;
if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1, q2))
{ // 两圆相切认为没有切线
ret.push_back(Line(p1, q1));
              ret.push_back(Line(p2, q2));
         return ret;
97 }
98 | bool contain(vector < Point > polygon, Point p) { // 判断
        点 p 是否被多边形包含,包括落在边界上int ret = 0, n = polygon.size();
for(int i = 0; i < n; ++ i) {
              Point u = polygon[i], v = polygon[(i + 1) % n
              if (onSeg(Line(u, v), p)) return true; //
                    Here I guess.
              ret += sign(det(p, v, u)) > 0;
        return ret & 1;
108 }
109 // 用半平面 (q1,q2) 的逆时针方向去切凸多边形
std::vector<Point>&
ps, Point q1, Point q2) {
        ps, Foint q1, Foint q2) \( \)
std::vector<Point> qs; int n = ps.size();
for (int i = 0; i < n; ++i) {
    Point p1 = ps[i], p2 = ps[(i + 1) % n];
    int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2)</pre>
              if (d1 >= 0) qs.push_back(p1);
if (d1 >= 0) qs.push_back(isSS(p1, p2, q1,
                     q2));
        } return qs;
118 }
```

1.3 圆交

```
struct Event {
             Point p; double ang; int delta;

Event (Point p = Point(0, 0), double ang = 0,

double delta = 0) : p(p), ang(ang), delta(

delta) {}
     bool operator < (const Event &a, const Event &b) {
    return a.ang < b.ang;}
void addEvent(const Circle &a, const Circle &b, vector</pre>
             pRatio = sqrt(-(d2 -
                                        o = sqrt(-(d2 - sqr(a.r - b.r)) * sqr(a.r + b.r)) / (d2 * d2 * 4));
             - sqr(a.r + b.r) / (d2 * d2 *

Point d = b.o - a.o, p = d.rotate(PI / 2),

q0 = a.o + d * dRatio + p * pRatio,

q1 = a.o + d * dRatio - p * pRatio;

double ang0 = (q0 - a.o).ang(),

ang1 = (q1 - a.o).ang();

evt.push_back(Event(q1, ang1, 1));

evt.push_back(Event(q0, ang0, -1));

cnt += ang1 > ang0;
bool issame(const Circle &a, const Circle &b) { return sign((a.o - b.o).len()) == 0 && sign(a.r - b.r)
     bool overlap(const Circle &a, const Circle &b) {
    return sign(a.r - b.r - (a.o - b.o).len()) >= 0; }
bool intersect(const Circle &a, const Circle &b) {
    return sign((a.o - b.o).len() - a.r - b.r) < 0; }</pre>
     Circle c[N]
double area[N]; // area[k] -> area of intersections
>= k.
     Point centroid[N];
     bool keep[N];
     void add(int cnt, DB a, Point c) {area[cnt] += a;
    centroid[cnt] = centroid[cnt] + c * a;}
void solve(int C) {
26
             for (int i = 1; i <= C; ++ i) {area[i] = 0;
    centroid[i] = Point(0, 0);}
for (int i = 0; i < C; ++i) {</pre>
                      int cnt = 1;
                      vector < Event > evt;
                      for (int j = 0; j < i; ++j) if (issame(c[i], c
        [j])) ++cnt;
for (int j = 0; j < C; ++j) {
    if (j != i && !issame(c[i], c[j]) &&</pre>
                                        overlap(c[j], c[i])){++cnt;}
                      for (int j = 0; j < C; ++j) {
   if (j != i && !overlap(c[j], c[i]) && !
        overlap(c[i], c[j]) && intersect(c[i])</pre>
                                          c[j])) {addEvent(c[i], c[j], evt, cnt
                                       );}}
                     if (evt.size() == 0u) { add(cnt, PI * c[i].r *
                               c[i].r, c[i].o);}
                              sort(evt.begin(), evt.end());
evt.push_back(evt.front());
```

1.4 圆的面积并

```
//n^2*logn
    struct point
          point rotate(const double &ang) {return point(cos(
    ang) * x - sin(ang) * y, cos(ang) * y + sin(
    ang) * x);}
           double ang() {return atan2(y, x);}
   struct Circle {
          point o; double r;
int tp; // 正圆为1 反向圆为-1
Circle (point o = point(0, 0), double r = 0, int
tp = 0) : o(o), r(r), tp(tp) {}
10
   struct Event {
11
           bool operator < (const Event &a, const Event &b) {
    return a.ang < b.ang;}
void addEvent(const Circle &a, const Circle &b, vector</pre>
           <Event> &evt, int &cnt) {
double d2 = (a.o - b.o).len2(),
    dRatio = ((a.r - b.r) * (a.r + b.r) / d2 + 1)
                  / 2,
pRatio = sqrt(-(d2 - sqr(a.r - b.r)) * (d2 -
sqr(a.r + b.r))) / d2 / 2;
19
          sqr(a.r + b.r)) / d2 / 2;
point d = b.o - a.o, p = d.rotate(PI / 2),
  q0 = a.o + d * dRatio + p * pRatio,
  q1 = a.o + d * dRatio - p * pRatio;
double ang0 = (q0 - a.o).ang(),
  ang1 = (q1 - a.o).ang();
evt.push_back(Event(q1, ang1, b.tp));
evt.push_back(Event(q0, ang0, -b.tp));
cnt += (ang1 > ang0) * b.tp;
21
22
26
   bool issame(const Circle &a, const Circle &b) {return sign((a.o - b.o).len()) == 0 && sign(a.r - b.r) ==
   bool overlap(const Circle &a, const Circle &b) {return
    sign(a.r - b.r - (a.o - b.o).len()) >= 0;}
bool intersect(const Circle &a, const Circle &b) {
    return sign((a.o - b.o).len() - a.r - b.r) < 0;}</pre>
30
   double area[N];
void solve() { // area[1]..area[C]
35
           memset(area, 0, sizeof(double) * (C + 1));
for (int i = 0; i < C; ++i) {
  int cnt = (c[i].tp > 0);
                 39
40
42
                                 overlap(c[i], c[j]) && intersect(c[i],
                  addEvent(c[i], c[j], evt, cnt);
if (evt.size() == 0) area[cnt] += c[i].tp * PI
    * c[i].r * c[i].r;
                  else {
47
                         sort(evt.begin(), evt.end());
evt.push_back(evt.front());
48
                          for (int j = 0; j + 1 < (int)evt.size(); ++j) {
                                 52
                                 double ang = evt[j + 1].ang - evt[j].
                                        ang;
```

```
if (ang < 0) ang += PI * 2;

area[cnt] += c[i].tp * (ang * c[i].r *

c[i].r / 2 - sin(ang) * c[i].r *

c[i].r / 2);

}

56

}

}
```

1.5 凸包

```
// 凸包中的点按逆时针方向
struct
        Convex {
    int n;
std::vector<Point> a, upper, lower;
void make_shell(const std::vector<Point>& p,
               std::vector<Point>& shell) { // p needs
          to be sorted.

clear(shell); int n = p.size();

for (int i = 0, j = 0; i < n; i++, j++) {
    for (; j >= 2 && sign(det(shell[j-1] -
                    shell[j-2],
                                   p[i] - shell[j-2])) <= 0;
                                         --j) shell.pop_back();
               shell.push_back(p[i]);
          }
     void make convex() {
          std::sort(a.begin(), a.end());
          make_shell(a, lower);
std::reverse(a.begin(), a.end());
          make_shell(a, upper);
a = lower; a.pop_back();
a.insert(a.end(), upper.begin(), upper.end());
if ((int)a.size() >= 2) a.pop_back();
n = a.size();
     void init(const std::vector<Point>& _a) {clear(a);
     a = _a; n = a.size();make_convex();}
void read(int _n) { // Won't make convex.
    clear(a); n = _n; a.resize(n);
    for (int i = 0; i < n; i++) a[i].read();</pre>
     Point& vec) {
          int l = 0, r = (int)convex.size() - 2;
          assert(r >= 0);
for (; l + 1 < r; ) {
   int mid = (l + r) / 2;</pre>
               if (sign(det(convex[mid + 1] - convex[mid
               ], vec)) > 0)r = mid;
else l = mid;
          return std::max(std::make_pair(det(vec, convex
                [r]), r),
                    std::make_pair(det(vec, convex[0]), 0)
     int binary_search(Point u, Point v, int 1, int r)
          int s1 = sign(det(v - u, a[1 % n] - u));
          for (; 1 + 1 < r; ) {
   int mid = (1 + r) / 2;
               int smid = sign(det(v - u, a[mid % n] - u)
               if (smid == s1) l = mid;
               else r = mid;
          return 1 % n;
     // 求凸包上和向量 vec 叉积最大的点,返回编号,共线的多个切点返回任意一个
     int get_tangent(Point vec) {
          std::pair<DB, int> ret = get_tangent(upper,
               vec);
          ret.second = (ret.second + (int)lower.size() -
          1) % n;
ret = std::max(ret, get_tangent(lower, vec));
          return ret.second;
     // 求凸包和直线 u, v 的交点,如果不相交返回 false
,如果有则是和 (i, next(i)) 的交点,交在点上不确定返回前后两条边其中之一
     bool get_intersection(Point u, Point v, int &i0,
    int &i1) {
          int p0 = get_tangent(u - v), p1 = get_tangent(
          return true:
          else return false;
};
```

1.6 三角形内心,外心,垂心

1.7 费马点

Find a point P that minimizes |PA| + |PB| + |PC|.

1.8 多边形和圆的交

```
double sector_area (const point &a, const point &b,
         const double &r)
         double c = (2.0 * r * r - (a - b).norm2) / (2.0)
                * r * r);
         double al = acos (c);
return r * r * al / 2.0; }
   double area(const point &a, const point &b, const double
          &r) {
         double dA = dot (a, a), dB = dot (b, b), dC =
    point_to_segment (point (), line (a, b)), ans
    = 0.0;
         if (sgn (dA - r
                                * r) <= 0 && sgn (dB - r * r) <=
         0) return det (a, b) / 2.0;
point tA = a.unit () * r;
point tB = b.unit () * r;
         if (sgn (dC - r) > 0) return sector_area (tA, tB,
         std::pair <point, point> ret =
    line_circle_intersect (line (a, b), circle (
    point (), r));
if (sgn (dA - r * r) > 0 && sgn (dB - r * r) > 0)
11
               ans += sector_area (tA, ret.first, r);
ans += det (ret.first, ret.second) / 2.0;
14
               ans += sector_area (ret.second, tB, r);
         return ans; }
if (sgn (dA - r * r) > 0)
  return det (ret.first, b) / 2.0 + sector_area
17
                    (tA, ret.first, r);
              20
   double solve(const std::vector<point> &p, const circle
21
          &c)
         double ret = 0.0;
for (int i = 0; i < (int) p.size (); ++i) {
   int s = sgn (det (p[i] - c.c, p[ (i + 1) % p.
        size ()] - c.c));
22
23
               if (s > 0)
                    ret += area (p[i] - c.c, p[ (i + 1) % p. size ()] - c.c, c.r);
26
        ret -= area (p[ (i + 1) % p.size ()] - c.c
    , p[i] - c.c, c.r); }
return fabs (ret); }
```

1.9 点到凸包切线

```
typedef vector<vector<P>> Convex;
  #define sz(x) ((int) x.size())
int lb(P x, const vector<P> & v, int le, int ri, int
       sg) {
if (le > ri) le = ri;
       int s(le), t(ri);
while (le != ri) {
   int mid((le + ri) / 2);
   if (sign(det(v[mid] - x, v[mid + 1] - v[mid]))
                    sg)
       le = mid + 1; else ri = mid;
return le; } // le 即为下标,按需返回
11 // v[0] 为顺时针上凸壳, v[1] 为顺时针下凸壳, 均允许起始两个点横坐标相同
   // 返回值为真代表严格在凸包外, 顺时针旋转在 d1 方向先
       碰到凸包
   bool getTan(P x, const Convex & v, int & d1, int & d2)
       if (x.x < v[0][0].x) {
   d1 = lb(x, v[0], 0, sz(v[0]) - 1, 1);
   d2 = lb(x, v[1], 0, sz(v[1]) - 1, -1) + (int)
      v[0].size() - 1;</pre>
      d2 = lb(x, v[0], 0, sz(v[0]) - 1, -1);
21
           return true;
       } else {
22
           for(int d(0); d < 2; d++) {
                [d].begin());
                if (d) {
                    d1 += (int) v[0].size() - 1;
d2 += (int) v[0].size() - 1; }
return true; } }
       return false; }
```

1.10 闵可夫斯基和

1.11 最近点对

1.12 最小覆盖圆

最小覆盖球 1.13

```
vector<point3D> vec;
Circle calc() {
         if(vec.empty()) { return Circle(point3D(0, 0, 0),
         }else if(1 == (int)vec.size()) {return Circle(vec
        [0], 0);
}else if(2 == (int)vec.size())
        2 / fabs(cross(vec[0] - vec[0]).len() /
2 / fabs(cross(vec[0] - vec[2], vec[1] -
vec[2]).len());
Plane ppp1 = Plane(vec[1] - vec[0], 0.5 * (vec
[1] + vec[0]));
               return Circle(intersect(Plane(vec[1] - vec[0],
                    0.5 * (vec[1] + vec[0])), Plane(vec[2] - vec[1], 0.5 * (vec[2] + vec[1])), Plane(cross(vec[1] - vec[0], vec[2] - vec[0]),
                     vec[0])), r);
        }else {
  12
14
        Circle res(calc());
for(int i(0); i < n; i++) {
15
               if(!in_circle(a[i], res)) { vec.push_back(a[i
17
                    if(i) { point3D tmp(a[i]);
  memmove(a + 1, a, sizeof(point3D) * i)
18
19
                          a[0] = tmp; } }
21
        return res; }
22
   int main() {
        main() {
int n; scanf("%d", &n);
for(int i(0); i < n; i++) a[i].scan();
sort(a, a + n); n = unique(a, a + n) -
vec.clear(); random_shuffle(a, a + n);</pre>
24
25
26
         printf("%.10f\n", miniBall(n).r);}
```

阿波罗尼茨圆 1.14

硬币问题: 易知两两相切的圆半径为 r1, r2, r3, 求与他们都相切的圆的 半径 r4 分母取负号, 答案再取绝对值, 为外切圆半径分母取正号为内切圆半 径 // $r_4^{\pm} = \frac{r_1 r_2 r_3}{r_1 r_2 + r_1 r_3 + r_2 r_3 \pm 2\sqrt{r_1 r_2 r_3(r_1 + r_2 + r_3)}}$

1.15 圆幂

圆幂: 半径为 R 的圆 O, 任意一点 P 到 O 的幂为 $h = OP^2 - R^2$

圆幂定理: 过 P 的直线交圆在 A 和 B 两点, 则 $PA \cdot PB = |h|$

根轴: 到两圆等幂点的轨迹是一条垂直于连心线的直线 反演: 已知一圆 C, 圆心为 O, 半径为 r, 如果 P 与 P' 在过圆心 O 的直线 上,且 $OP\cdot OP'=r^2$, 则称 P 与 P' 关于 O 互为反演. 一般 C 取单位圆. 反演的性质:

不过反演中心的直线反形是过反演中心的圆, 反之亦然.

不过反演中心的圆,它的反形是一个不过反演中心的圆。 两条直线在交点 A 的夹角,等于它们的反形在相应点 A' 的夹角,但方向相 反. 两个相交圆周在交点 A 的夹角等于它们的反形在相应点 A' 的夹角,但方向

相反. 直线和圆周在交点 A 的夹角等于它们的反演图形在相应点 A^\prime 的夹角, 但方

正交圆反形也正交. 相切圆反形也相切, 当切点为反演中心时, 反形为两条 平行线.

球面 1.16

球面距离: 连接球面两点的大圆劣弧 (所有曲线中最短)

球面角: 球面两个大圆弧所在半平面形成的二面角

球面凸多边形: 把一个球面多边形任意一边向两方无限延长成大圆, 其余边 都在此大圆的同旁.

球面角盈 E: 球面凸 n 边形的内角和与 $(n-2)\pi$ 的差

离北极夹角 θ , 距离 h 的球冠: $S = 2\pi Rh = 2\pi R^2(1-\cos\theta)$, $V = \frac{\pi h^2}{3} (3R - h)$

球面凸 n 边形面积: $S = ER^2$

1.17 公式

1.17.3 三角形内心 1.17.1 Heron's Formula

$$S=\sqrt{p(p-a)(p-b)(p-c)}$$

$$\frac{a\vec{A}+b\vec{B}+c\vec{C}}{a+b+c}$$
 $p=\frac{a+b+c}{2}$ 1.17.4 三角形外心

1.17.2 四面体内接球球心

$$\frac{\vec{A} + \vec{B} - \frac{\vec{BC} \cdot \vec{CA}}{\vec{AB} \times \vec{BC}} \vec{AB}^T}{2}$$

假设 s_i 是第 i 个顶点相对 面的面积,则有

1.17.5 三角形垂心

$$\begin{cases} x = \frac{s_1x_1 + s_2x_2 + s_3x_3 + s_4x_4}{s_1 + s_2 + s_3 + s_4} & \vec{H} = 3\vec{G} - 2\vec{O} \\ = \frac{s_1y_1 + s_2y_2 + s_3y_3 + s_4y_4}{s_1 + s_2 + s_3 + s_4} & -a\vec{A} + b\vec{B} + c\vec{C} \\ z = \frac{s_1z_1 + s_2z_2 + s_3z_3 + s_4z_4}{s_1 + s_2 + s_3 + s_4} & \eta_{\hat{\pi}} & \text{ on } \vec{E} \end{cases}$$

体积可以使用 1/6 混合积求, 内 接球半径为

1.17.7三角形内接外接圆

$$r \; = \; \frac{3V}{s_1 + s_2 + s_3 + s_4} \hspace{1.5cm} r = \frac{2S}{a + b + c}, \; R = \frac{abc}{4S}$$

1.17.8 Pick's Theorem

$$S = I + \frac{B}{2} - 1$$

S is the area of lattice polygon, I is the number of lattice interior points, and B is the number of lattice boundary points.

1.17.9 Euler's Formula

For convex polyhedron: V - E + F = 2.

For planar graph: |F| = |E| - |V| + n + 1, n denotes the number of connected components.

1.18 三角公式

$$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$

$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

$$\tan(a \pm b) = \frac{\tan(a) \pm \tan(b)}{1 \mp \tan(a) \tan(b)}$$

$$\tan(a) \pm \tan(b) = \frac{\sin(a \pm b)}{\cos(a) \cos(b)}$$

$$\sin(a) + \sin(b) = 2\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

$$\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})$$

$$\cos(a) + \cos(b) = 2\sin(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

$$\sin(a) = n\cos^{n-1} a \sin a - \binom{n}{3}\cos^{n-3} a \sin^3 a + \binom{n}{5}\cos^{n-5} a \sin^5 a - \dots$$

$$\cos(na) = \cos^n a - \binom{n}{2} \cos^{n-2} a \sin^2 a + \binom{n}{4} \cos^{n-4} a \sin^4 a - \dots$$

1.18.1 超球坐标系

 $\sin(na)$

$$x_1 = r\cos(\phi_1)$$

$$x_2 = r\sin(\phi_1)\cos(\phi_2)$$

$$\dots$$

$$x_{n-1} = r\sin(\phi_1)\cdots\sin(\phi_{n-2})\cos(\phi_{n-1})$$

$$x_n = r\sin(\phi_1)\cdots\sin(\phi_{n-2})\sin(\phi_{n-1})$$

$$\phi_{n-1} \in [0, 2\pi]$$

$$\forall i = 1..n - 1\phi_i \in [0, \pi]$$

1.18.2 三维旋转公式

绕着 (0,0,0)-(ux,uy,uz) 旋转 θ , (ux,uy,uz) 是单位向量

 $\cos\theta + u_x^2(1 - \cos\theta) - u_x u_y(1 - \cos\theta) - u_z \sin\theta - u_x u_z(1 - \cos\theta) + u_y \sin\theta$ $R = u_y u_x (1 - \cos \theta) + u_z \sin \theta \quad \cos \theta + u_y^2 (1 - \cos \theta) \quad u_y u_z (1 - \cos \theta) - u_x \sin \theta .$ $u_z u_x (1-\cos\theta) - u_y \sin\theta \quad u_z u_y (1-\cos\theta) + u_x \sin\theta \quad \cos\theta + u_z^2 (1-\cos\theta)$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = R \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

1.18.3 立体角公式

 ϕ : 二面角

$$\Omega = (\phi_{ab} + \phi_{bc} + \phi_{ac}) \text{ rad } - \pi \text{ sr}$$

$$\tan \left(\frac{1}{2}\Omega/\text{rad}\right) = \frac{\left|\vec{a} \ \vec{b} \ \vec{c}\right|}{abc + \left(\vec{a} \cdot \vec{b}\right)c + \left(\vec{a} \cdot \vec{c}\right)b + \left(\vec{b} \cdot \vec{c}\right)a}$$

$$\theta_s = \frac{\theta_a + \theta_b + \theta_c}{2}$$

1.18.4 常用体积公式

- Pyramid $V = \frac{1}{3}Sh$.
- Sphere $V = \frac{4}{3}\pi R^3$.
- Frustum $V = \frac{1}{3}h(S_1 + \sqrt{S_1S_2} + S_2)$.
- Ellipsoid $V = \frac{4}{3}\pi abc$.

1.18.5 高维球体积

$$V_2 = \pi R^2, S_2 = 2\pi R$$

$$V_3 = \frac{4}{3}\pi R^3, S_3 = 4\pi R^2$$

$$V_4 = \frac{1}{2}\pi^2 R^4, S_4 = 2\pi^2 R^3$$
Generally, $V_n = \frac{2\pi}{n} V_{n-2}, S_{n-1} = \frac{2\pi}{n-2} S_{n-3}$
Where, $S_0 = 2, V_1 = 2, S_1 = 2\pi, V_2 = \pi$

1.19 三维计算几何

```
/* 大拇指指向x轴正方向时,4指弯曲由y轴正方向指向z轴正
         大拇指沿着原点到点(x, y, z)的向量, 4指弯曲方向旋转w度
     /* (x, y, z) * A = (x_new, y_new, z_new), 行向量右乘转
移矩阵 */
     移矩阵 */
void calc(D x, D y, D z, D w) { // 三维绕轴旋转
    w = w * pi / 180;
    memset(a, 0, sizeof(a));
    s1 = x * x + y * y + z * z;
    a[0][0] = ((y*y+z*z)*cos(w)+x*x)/s1; a[0][1] = x*y
        *(1-cos(w))/s1+z*sin(w)/sqrt(s1); a[0][2] = x*
        z*(1-cos(w))/s1-y*sin(w)/sqrt(s1);
    a[1][0] = x*y*(1-cos(w))/s1-z*sin(w)/sqrt(s1); a
        [1][1] = ((x*x+z*z)*cos(w)+y*y)/s1; a[1][2] = y*z*(1-cos(w))/s1+x*sin(w)/sqrt(s1);
    a[2][0] = x*z*(1-cos(w))/s1+y*sin(w)/sqrt(s1); a
               y*z*(1-cos(w))/s1+x*sin(w)/sqrt(s1);
a[2][0] = x*z*(1-cos(w))/s1+y*sin(w)/sqrt(s1); a
[2][1] = y*z*(1-cos(w))/s1-x*sin(w)/sqrt(s1);
a[2][2] = ((x*x+y*y)*cos(w)+z*z)/s1;
     point3D cross (const point3D & a, const point3D & b) {
    point3D cross (const point3D & a, const point3D & b)
return point3D(a.y * b.z - a.z * b.y, a.z * b.x -
a.x * b.z, a.x * b.y - a.y * b.x); }
double mix(point3D a, point3D b, point3D c) {
return dot(cross(a, b), c); }
struct Line { point3D s, t; };
struct Plane { // nor 为单位法向量, 离原点距离 m
point3D nor; double m;
Plane(point3D r, point3D a) : nor(r) {
nor = 1 / r.len() * r;
m = dot(nor, a); } };
22 // 以下函数注意除以O的情况
23 // 点到平面投影
     point3D project_to_plane(point3D a, Plane b) {
return a + (b.m - dot(a, b.nor)) * b.nor; }
// 点到直线投影
     point3D project_to_line(point3D a, Line b) {
return b.s + dot(a - b.s, b.t - b.s) / dot(b.t - b.s,
    b.t - b.s) * (b.t - b.s); }
            直线与直线最近点
     pair < point3D , point3D > closest_two_lines(Line x, Line
     y) {
double a = dot(x.t - x.s, x.t - x.s);
    double a = dot(x.t - x.s, x.t - x.s);
double b = dot(x.t - x.s, y.t - y.s);
double e = dot(y.t - y.s, y.t - y.s);
double d = a*e - b*b; point3D r = x.s - y.s;
double c = dot(x.t - x.s, r), f = dot(y.t - y.s, r);
double s = (b*f - c*e) / d, t = (a*f - c*b) / d;
return {x.s + s*(x.t - x.s), y.s + t*(y.t - y.s)}; }
// 直线与平面交点
     point3D intersect(Plane a, Line b) {
double t = dot(a.nor, a.m * a.nor - b.s) / dot(a.nor,
    b.t - b.s);
return b.s + t * (b.t - b.s); }
     // 平面与平面求交线
Line intersect(Plane a, Plane b) {
     point3D d=cross(a.nor,b.nor), d2=cross(b.nor,d);
     double t = dot(d2, a.nor);
point3D s = 1 / t * (a.m - dot(b.m * b.nor, a.nor)) *
    d2 + b.m * b.nor;
return (Line) {s, s + d}; }
                  个平面求交点
     point3D intersect(Plane a, Plane b, Plane c) {
return intersect(a, intersect(b, c));
```

1.20 三维凸包

```
--inline P cross(const P& a, const P& b) { return P(a. y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);}
--inline DB mix(const P& a, const P& b, const P& c) {
return dot(cross(a, b), c);}
--inline DB volume(const P& a, const P& b, const P& c, const P& d) { return mix(b - a, c - a, d - a);}
   struct Face {
  int a, b, c;
  __inline Face() {}
  __inline Face(int _a, int _b, int _c):a(_a), b(_b)
          , c(_c) {}
__inline DB area() const { return 0.5 * cross(p[b]
          --inline DB area() const { return 0.5 * cross(p[b] - p[a], p[c] - p[a]).len();}
--inline P normal() const { return cross(p[b] - p[a], p[c] - p[a]).unit();}
--inline DB dis(const P& p0) const {return dot(normal(), p0 - p[a]);}
   std::vector<Face> face, tmp; // Should be O(n).
int mark[N][N], Time, n;
__inline void add(int v) {
    ++ Time;
13
          clear(tmp);
                 (int i = 0; i < (int)face.size(); ++ i) {
int a = face[i].a, b = face[i].b, c = face[i].
          for (int
                 if (sign(volume(p[v], p[a], p[b], p[c])) > 0)
                        mark[a][b] = mark[b][a] = mark[a][c] =
                              mark[c][a] = mark[b][c] = mark[c][b] =
Time;
                 else {tmp.push_back(face[i]);}
          clear(face); face = tmp;
for (int i = 0; i < (int)tmp.size(); ++ i) {
   int a = face[i].a, b = face[i].b, c = face[i].</pre>
                 if (mark[a][b] == Time) face.emplace_back(v, b
                 if (mark[b][c] == Time) face.emplace_back(v, c
                 if (mark[c][a] == Time) face.emplace_back(v, a
                 assert(face.size() < 500u);
    }
    void reorder() {
         std::swap(p[j], p[3]); return;
   }
    void build_convex() {
          reorder(); clear(face);
          face.emplace_back(0, 1, 2);
face.emplace_back(0, 2, 1);
for (int i = 3; i < n; ++ i)add(i);</pre>
```

2 数据结构

2.1 KD 树-wrz

```
void build(int x, int 1, int r, int d)
21
22
        if(1 == r)
23
              for(int i = 0; i < 3; i++)
   t[x].d[0][i] = t[x].d[1][i] = p[1].d[i];</pre>
26
              return:
27
        D = d; int mid = (1+r) >> 1;
nth_element(p+1, p+mid, p+r+1);
        (++d̄) %= 3;
build(x<<1, 1, mid, d);
build(x<<1|1, mid+1, r, d);
30
31
32
        pushup(x);
34
  int d[2][3]:
   bool query(int x, int 1, int r)
        int in = 1, out = 0;
for(int i = 0; i < 3; i++)</pre>
38
39
40
              if(!(d[0][i] <= t[x].d[0][i] && t[x].d[1][i]
              [0][i]) out = 1; // 不交
        if(in) return true; if(out) return false;
int mid = (1+r) >> 1;
return query(x<<1, 1, mid) || query(x<<1|1, mid+1,</pre>
44
45
               r);
47
```

2.2 KD 树-gwx

```
struct Point
       double x, y;
        int id;
       Point operator - (const Point &a) const {
            return (Point){x - a.x, y - a.y, id};
  } b[maxn],
               c[maxn];
  struct node
10
       Point p;
int ch[2];
11
  } a[maxn];
14
  struct rev
15
       int id;
       double dis;
17
       bool operator < (const rev &a) const{
   int tmp = sign(dis - a.dis);</pre>
18
            if(tmp)
            return tmp < 0;
return id < a.id;
21
22
23
  typedef pr priority_queue <rev>;
  pr p0;
  int build(int 1, int r, int f)
29
       if(1 > r)
30
           return 0;
       int x = (1 + r) >> 1;
if(f == 0)
33
            nth_element(a + 1, a + x, a + r + 1, cmp0); //
34
                 按x排序
           nth_element(a + 1, a + x, a + r + 1, Cmp1); //
       接y排序
a[x].ch[0] = build(l, x - 1, f ^ 1);
a[x].ch[1] = build(x + 1, r, f ^ 1);
38
       return x;
  void update(pr &a, rev x)
42
       if(a.size() < K)
43
44
            a.push(x);
        else if(x < a.top())
46
            a.pop();
47
            a.push(x);
48
  pr merge(pr a, pr b)
51
52
       int s1 = a.size(), s2 = b.size();
53
       if(s1 < s2)
55
            while(!a.empty())
56
                 update(b, a.top());
59
                 a.pop();
60
            return b;
61
       else
63
```

```
while(!b.empty())
                  update(a, b.top());
                 b.pop();
            return a;
71
72 }
73 pr query(int u, Point x, int f)
        if(!u)
       return p0;//empty priority_queue
int d = (dis(a[a[u].ch[0]].p, x) > dis(a[a[u].ch
76
             [1]].p, x));
        double dx;
       pr res = query(a[u].ch[d], x, f ^ 1);
update(res, (rev){a[u].p.id, dis(a[u].p, x)});
if(f = - ^)
            dx = abs(x.x - a[u].p.x);
        else
       dx = abs(x.y - a[u].p.y);
if(dx > res.top().dis)
            return res;
       res = merge(res, query(a[u].ch[d ^ 1], x, f ^ 1));
       return res:
89 }
90 pr solve(Point p)
                          // 离p最近的K个点
       int root = build(1, tot, 0);
       return query(root, p, 0);
```

2.3 LCT-wrz

```
struct node
   node *ch[2], *fa;
    uint v, sum, k, b; int rev, siz;
}mem[N], *tot, *null, *pos[N];
   void init()
         null = tot = mem:
         null->ch[0] = null->ch[1] = null->fa = null;
         null->v = null->sum = null->b = null->rev = null->
    siz = 0; null->k = 1;
for(int i = 1; i <= n; i++) pos[i] = ++tot, *pos[i]</pre>
11
               ] = *null, pos[i]->v = pos[i]->sum = 1;
is int type(node *x){return x->fa->ch[1]==x?1:0;}
int isroot(node *x){return x->fa->ch[type(x)] != x;}
is void mswap(node *&x, node *&y){node *t = x; x = y; y =
16
   void pushup(node *x)
17
         x->sum = (x->v + x->ch[0]->sum + x->ch[1]->sum) %
18
               MOD;
19
         x->siz = (x->ch[0]->siz + x->ch[1]->siz + 1) % MOD
   }
20
   void pushdown(node *x)
22
23
         if(x->rev)
24
               x \rightarrow rev = 0, x \rightarrow ch[0] \rightarrow rev ^= 1, x \rightarrow ch[1] \rightarrow rev
25
               mswap(x->ch[0]->ch[0], x->ch[0]->ch[1]);
               mswap(x->ch[1]->ch[0], x->ch[1]->ch[1]);
         for(int i = 0; i <= 1; i++)
               x->ch[i]->v = (x->k * x->ch[i]->v % MOD + x->b
                       % MOD;
               x->ch[i]->sum = (x->ch[i]->sum * x->k % MOD + x->ch[i]->siz % MOD) % MOD;
(x->ch[i]->k *= x->k) %= MOD;
(x->ch[i]->b *= x->k) %= MOD, (x->ch[i]->b +=
34
                    x->b) %= MOD;
36
         x->k = 1; x->b = 0;
37
   void update(node *x){if(!isroot(x))update(x->fa);
38
   pushdown(x);}
void rotate(node *x)
39
40
         node *f = x->fa; int d = type(x);
x->fa = f->fa, !isroot(f) ? x->fa->ch[type(f)] = x
41
42
         : 0;
(f->ch[d] = x->ch[d^1]) != null ? f->ch[d]->fa = f
43
         f \rightarrow fa = x, x \rightarrow ch[d^1] = f; pushup(f);
45 }
   void splav(node *x)
46
47
         update(x):
49
         for(; !isroot(x); )
50
               if(isroot(x->fa)) rotate(x);
51
               else if(type(x) == type(x->fa)) rotate(x->fa),
52
                      rotate(x);
               else rotate(x),rotate(x);
53
```

```
pushup(x);
   void access(node *x)
57
58
         node *tmp = null;
for(; x != null; )
59
62
              splay(x);
x->ch[1] = tmp;
63
              pushup(x);
              tmp = x;
x = x->fa;
66
67
   void makeroot(node *x)
70
71
         access(x);
         splay(x);
x->rev ^= 1;
72
         swap(x->ch[0], x->ch[1]);
74
75
   void link(node *x, node *y)
78
         makeroot(x);
79
         x->fa = y;
80
   void cut(node *x, node *y)
         makeroot(x); access(y);
splay(y); y->ch[0] = x->fa = null;
pushup(y);
83
84
85
```

2.4 左偏树-wrz

```
struct heap
                  *ch[2];
          heap
   int dis, siz, v;
}mem[N*2], *h[N], *null, *tot;
   heap* newheap()
         heap *p = ++tot;
*p = *null:
         return p;
10
11
   void init()
13
         null = tot = mem;
null->ch[0] = null->ch[1] = null;
14
15
         null->v = null->dis = null->siz = 0;
for(int i = 1; i <= n; i++) h[i] = null;
17
18
   heap *merge(heap *x, heap *y) // big
         if(x == null) return y;
if(y == null) return x;
if(x->v < y->v) swap(x, y);
x->ch[1] = merge(x->ch[1], y);
if(x->ch[0]->dis < x->ch[1]->dis) swap(x->ch[0], x
21
22
23
                 ->ch[1]);
         x \rightarrow dis = x \rightarrow ch[1] \rightarrow dis + 1;
         x->siz = x->ch[0]->siz + x->ch[1]->siz + 1;
          return x;
29
   heap *pop(heap *x){return merge(x->ch[0], x->ch[1]);}
33
          init();
         heap *a = newheap(); a->siz = 1; a->v = 233;
heap *b = newheap(); b->siz = 1; b->v = 233;
34
35
          heap *c = merge(a, b);
```

2.5 splay-wrz

```
struct node
  node *ch[2], *fa;
    ll key; int siz, tag;
}mem[N*20], *tot, *null, *root;
void init()
        root = null = tot = mem;
null->ch[0] = null->ch[1] = null->fa = null;
         null->key = null->siz = null->tag = 0;
   int type(node *x){return x->fa->ch[1]==x;}
node *newnode(ll key)
12
13
         node *p = ++tot; *p = *null;
p->key = key; p->siz = 1;
return p;
17
   void pushup(node *x)
20
        x->siz = x->ch[0]->siz + x->ch[1]->siz + 1;
21
22
   void rotate(node *x)
         node *f = x->fa; int d = type(x);
```

```
(x->fa = f->fa) != null ? x->fa->ch[type(f)] = x :
       (f->ch[d] = x->ch[!d]) != null ? f->ch[d]->fa = f
27
       x\rightarrow ch[!d] = f, f\rightarrow fa = x, pushup(f);
  }
  void pushdown(node *x)
31
       if(x->tag)
32
            int &tag = x->tag;
if(x->ch[0] != null) x->ch[0]->key += tag, x->
34
35
            ch[0] -> tag += tag;
if(x->ch[1] != null) x->ch[1] -> key += tag, x->
36
                ch[1]->tag += tag;
37
            tag = 0;
38
  }
39
  void update(node *x)
40
41
       if(x==null) return;
42
       update(x->fa):
       pushdown(x);
  }
45
  void splay(node *x, node *top)
{
46
47
       for(;x->fa!=top;)
50
            if(x->fa->fa == top) rotate(x);
51
            else if(type(x) == type(x->fa)) rotate(x->fa),
52
                 rotate(x);
53
            else rotate(x), rotate(x);
54
       if(top == null) root = x;
55
       pushup(x);
  }
57
58
  \begin{tabular}{ll} \begin{tabular}{ll} void & insert(node *x, node *f, node *p, int d) \\ \end{tabular}
59
       if(x == null)
            p\rightarrow fa = f, f\rightarrow ch[d] = p;
            return:
63
       pushdown(x);
       if(p->key < x->key) insert(x->ch[0], x, p ,0);
else insert(x->ch[1], x, p, 1);
67
       pushup(x);
68
  }
69
  void insert(node *p)
71
72
       if(root == null) root = p, p->fa = p->ch[0] = p->
   ch[1] = null;
       \verb|else| insert(root, null, p, 0), splay(p, null); \\
  node *findl(node *x){return x->ch[0]==null?x:findl(x->
       ch[0]);]
  node *findr(node *x){return x->ch[1]==null?x:findr(x->
    ch[1]);}
   void insertlr()
       insert(newnode(-INF));
81
       insert(newnode(INF));
   void delet(node *p)
       ->fa = null;
       else if(lp == null && rp == null)root = null;
       else
91
            splay(rp, null); splay(lp,rp);
lp->ch[1] = null; splay(lp,null);
92
93
  }
95
  node* findk(node *p, int k)
96
97
       for(; ; )
            ); return p;}
else k -= p->ch[0]->siz + 1, p = p->ch[1];
104
105
  node* findv(node *p, int v)
       node* ret = null;
       for(; p!=null; )
            pushdown(p);
if(p->key >= v) re
else p = p->ch[1];
                              ret = p, p = p->ch[0];
       splay(ret, null);
```

Page 11

```
return ret;
return;
retur
```

2.6 treap-gwx

```
//srand()
   struct node
        int pri, val, c, s;    //pri: random valuatimes of showing; s: size of subtree
                                         //pri: random value; c:
         int ch[2];
        int cmp(int x) const {
   if(x == val) return -1;
              return x < val ? 0 : 1;
   } a[maxn];
   void maintain(int u) {
11
        a[u].s = a[u].c + a[a[u].ch[0]].s + a[a[u].ch[1]].
12
   void rotate(int &u, int d)
14
15
        int tmp = a[u].ch[d ^ 1];
a[u].ch[d ^ 1] = a[tmp].ch[d];
a[tmp].ch[d] = u;
18
         maintain(u); maintain(tmp);
19
         u = tmp;
20
   void insert(int &u, int val)
22
23
         if(!u)
24
              u = ++cnt;
26
              a[cnt] = (node){rand(), val, 1, 1};
27
28
30
        a[u].s++;
        int d = a[u].cmp(val);
if(d == -1) {a[u].c++; return;}
insert(a[u].ch[d], val);
31
32
         if(a[a[u].ch[d]].pri > a[u].pri) rotate(u, d ^ 1);
34
35
   int find(int u, int val, int comp, int &res)
36
37
        int d = a[u].cmp(val);
if(!u) return -1;
if(d == -1) return u;
if(d == comp)
39
40
41
43
              if(d) res = max(res, a[u].val);
else res = min(res, a[u].val);
44
45
         return find(a[u].ch[d], val, comp, res);
48
   void remove(int &u)
49
         if(!a[u].ch[0]) u = a[u].ch[1];
50
         else if(!a[u].ch[1]) u = a[u].ch[0];
52
         else
53
              int d = a[a[u].ch[0]].pri < a[a[u].ch[1]].pri</pre>
54
55
              rotate(u, d); remove(a[u].ch[d]);
56
57
   void del(int &u, int val)
59
         if(find(root, val, -2, val) == -1) return;
60
        a[u].s--;
int d = a[u].cmp(val);
61
62
         if(d == -1)
64
65
              a[u].c--:
              if(!a[u].c) remove(u);
66
68
         else del(a[u].ch[d], val);
69
   int find_rank(int u, int val)
70
71
        int d = a[u].cmp(val);
if(d == -1) return 1 + a[a[u].ch[0]].s;
if(d == 0) return find_rank(a[u].ch[0], val);
return a[u].s - a[a[u].ch[1]].s + find_rank(a[u].
73
74
75
              ch[1], val);
   int find_kth(int u, int k)
77
78
         if(k <= a[a[u].ch[0]].s) return find_kth(a[u].ch</pre>
79
         [0], k);
if (k > a[a[u].ch[0]].s + a[u].c) return find_kth(a
[u].ch[1], k - a[a[u].ch[0]].s - a[u].c);
80
         return a[u].val;
   int pre(int val)
83
```

```
int ans = -inf;
        int pos = find(root, val, 1, if(pos!= -1 && a[pos].ch[0])
                                                ans);
87
88
              pos = a[pos].ch[0];
while(a[pos].ch[1]) pos = a[pos].ch[1];
89
              ans = max(ans, a[pos].val);
91
92
         return ans:
93
   }
94
   int post(int val)
         int ans = inf;
97
         int pos = find(root, val, 0, ans);
         if (pos != -1 && a[pos].ch[1])
              pos = a[pos].ch[1];
while(a[pos].ch[0]) pos = a[pos].ch[0];
ans = min(ans, a[pos].val);
101
         return ans:
105
   }
```

2.7 可持久化平衡树

3 图论

3.1 匹配

```
\frac{1}{2} \min_{U \subseteq V} \left( |U| - \operatorname{odd}(G - U) + |V| \right) \,,
```

where $\mathrm{odd}(H)$ counts how many of the connected components of the graph H have an odd number of vertices.

Tutte theorem A graph, G = (V, E), has a perfect matching if and only if for every subset U of V, the subgraph induced by V - U has at most |U| connected components with an odd number of vertices.

Hall's marriage theorem A family S of finite sets has a transversal if and only if S satisfies the marriage condition.

3.2 Hopcoft-Karp

Page 12

3.3 KM-truly-n3

```
struct KM {
// Truly O(n^3)
           // 邻接矩阵, 不能连的边设为 -INF, 求最小权匹配时边
权取负, 但不能连的还是 -INF, 使用时先对 1 -> n
调用 hungary(), 再 get_ans() 求值
           int w[N][N]; int lx[N], ly[N], match[N], way[N], slack[N];
           bool used[N];
void init() {
                  for (int i = 1; i <= n; i++) {
                          match[i] = 0;
                         lx[i] = 0;
ly[i] = 0;
11
                          way[i] = 0;
12
13
           void hungary(int x) {
                  match[0] = x;
int j0 = 0;
for (int j = 0; j <= n; j++) {
    slack[j] = INF;
    used[j] = false;</pre>
16
17
18
20
21
                  do {
                          used[j0] = true;
24
                         used[J0] = true;
int i0 = match[j0], delta = INF, j1 = 0;
for (int j = 1; j <= n; j++) {
    if (used[j] == false) {
        int cur = -w[i0][j] - lx[i0] - ly[</pre>
                                         j];
if (cur < slack[j]) {</pre>
                                                slack[j] = cur;
way[j] = j0;
32
                                        if (slack[j] < delta) {
    delta = slack[j];
    j1 = j;</pre>
33
                                        }
36
                                 }
37
                          for (int j = 0; j <= n; j++) {
    if (used[j]) {
        lx[match[j]] += delta;
        ly[j] -= delta;
}</pre>
41
42
                                  else slack[j] -= delta;
45
                          j0 = j1;
46
                  } while (match[j0] != 0);
49
                          int j1 = way[j0];
50
                          match[j0] = match[j1];
                          j0 = j\bar{1};
                  } while (j0);
53
54
          int get_ans() {
   int sum = 0;
   for(int i = 1; i <= n; i++) {
      if (w[match[i]][i] == -INF); // 无解</pre>
57
58
59
                          if (match[i] > 0) sum += w[match[i]][i];
62
                  return sum;
63
      km;
64
```

3.4 tarjan-gwx

```
//cut[i]: i是否为割点
  //bridge[i]: e[i]是否为桥
   void dfs(int u, int pa)
        d[u] = 1[u] = ++timer;
        st.push(u); vst[u] = 1;
int child = 0;
for(int i = tail[u]; i; i = e[i].next)
             if(!d[e[i].v])
11
                  child++
                  dfs(e[i].v, u);
l[u] = min(l[u], l[e[i].v]);
13
                  if(l[e[i].v] >= d[u])
                       cut[u] = 1;
if(l[e[i].v] > d[u])
17
                            bridge[i] = 1;
20
             else if(vst[e[i].v]) l[u] = min(l[u], d[e[i].v
21
                  ]);
        if(!pa && child < 2) cut[u] = 0;
if(1[u] == d[u])</pre>
23
24
             int v; scc++;
25
             while(true)
27
                  v = st.top(); st.pop();
28
```

3.5 边双联通-gwx

```
//G[i]: 第i个边双联通分量中有哪些点
void tarjan(int u, int pa)
            = l[u] = ++timer;
       for(int i = tail[u]; i; i = e[i].next)
           if(!d[e[i].v])
                st[++top] = i;
tarjan(e[i].v, u);
l[u] = min(l[u], l[e[i].v]);
if(l[e[i].v] >= d[u])
                    while(true)
                         int now = st[top-
                         if(vst[e[now].u] != bcc)
                              vst[e[now].u] = bcc;
                              G[bcc].push_back(e[now].u);
                         if(vst[e[now].v] != bcc)
                              vst[e[now].v] = bcc:
                              G[bcc].push_back(e[now].v);
                         if(now == i) break;
                    }
                }
           33
  }
```

3.6 最大团

```
1 /*
2 Int g[][]为图的邻接矩阵。
3 MC(V)表示点集V的最大团
          令Si={vi, vi+1, ..., vn}, mc[i]表示MC(Si)
倒着算mc[i], 那么然MC(V)=mc[i]
          此外有mc[i]=mc[i+1] or mc[i]=mc[i+1]+1
    */
   void init(){
         for (i=1; i<=n; ++i) for (j=1; j<=n; ++j) scanf("%
d", &g[i][j]);
11
    void dfs(int size){
         int i, j, k;
if (len[size]==0) {
                if (size>ans)
                      ans=size; found=true;
18
                return:
19
          for (k=0; k<len[size] && !found; ++k) {
                if (size+len[size]-k<=ans) break;
i=list[size][k];
if (size+mc[i]<=ans) break;
for (j=k+1, len[size+1]=0; j<len[size]; ++j)
if (g[i][list[size][j]]) list[size+1][len[size]; ++j)</pre>
22
23
24
25
                       +1]++]=list[size][j];
                dfs(size+1):
26
27
   }
28
   void work(){
         int i, j;
mc[n]=ans=1;
for (i=n-1; i; --i) {
30
                found=false;
                lon[1]=0;
for (j=i+1; j<=n; ++j) if (g[i][j]) list[1][
    len[1]++]=j;
35
                dfs(1);
37
                mc[i]=ans;
38
   }
```

3.7 欧拉回路-wrz

```
e[++ecnt] = (edge){last[a], b};
        last[a] = ecnt;
11
12
   void dfs(int x)
13
        for(int &i = last[x]; i; i = e[i].next)
16
              int y = e[i].to, j = i;
17
              if(!vis[j>>1])
18
                    vis[j>>1] = 1;
20
                   dfs(y);
ans[++cnt] = j;
21
22
23
25
   int main()
26
        int t, n, m, a, b;
scanf("%d%d%d",&t,&n,&m);
for(int i = 1; i <= m; i++)</pre>
29
30
31
              scanf("%d%d",&a,&b);
              addedge(a,b);
33
              if(t == 1)addedge(b,a), in_deg[a]++, in_deg[b
34
              else ecnt++, in_deg[b]++, out_deg[a]++;
37
        if(t == 1) // 无向
38
39
              for(int i = 1; i <= n; i++)
                   if((in_deg[i]+out_deg[i]) & 1)
    return !printf("NO\n");
42
43
        else // 有向
44
45
              for(int i = 1; i <= n; i++)
   if(in_deg[i] != out_deg[i])
       return !printf("NO\n");</pre>
46
48
49
        dfs(a);
50
         if(cnt != m)
52
              puts("NO");
53
54
56
              puts("YES");
for(int i = cnt; i; i--)
57
58
                   printf("%du", ans[i]&1?-(ans[i]>>1):(ans[i
                         1>>1)):
61
62
```

3.8 SPFA 判负环-wrz

```
int inq[N], inqt[N], dis[N];
bool SPFA()
      int x = q.front(); q.pop(); inq[x] = 0;
for(int i = last[x]; i; i = e[i].next)
10
              if (dis[x] + e[i].val < dis[y])
13
                  dis[y] = dis[x] + e[i].val;
14
                  if(!inq[y])
18
                      if(++inqt[y] > n) return false; //
17
                      入队n次即有负环
inq[y] = 1;
18
                      q.push(y);
19
21
              }
         }
22
23
      return true;
25
26
      步骤:
27
      1.建好原图
28
      2.SPFA() // 若返回为true表示无负环, false表示有负
29
      多次调用时记得清空inqt等数组
31
      有负环时理论复杂度是O(n^2)的
32
```

3.9 k 短路 a 星-gwx

```
const int maxn = 1005;
   int n, m;
int S, T, K;
int dist[maxn], cnt[maxn];
5 bool vst[maxn];
   vector<pair<int, int>> G[maxn], H[maxn];
                                                                      //正图&反
         图
   struct node
         int id;
         node(){}
11
         node(ll d, int id): d(d), id(id) {}
         bool operator< (const node &other) const{
    return d + dist[id] > other.d + dist[other.id
15
16 };
  priority_queue <pair<11, int>> q;
priority_queue <node> Q;
18
   void init()
22
         for(int i = 1; i <= n; ++i)
   G[i].clear(), H[i].clear(), cnt[i] = 0;</pre>
   }
26
   void diikstra(int S)
27
28
         memset(dist, 127, sizeof(dist));
memset(vst, 0, sizeof(vst));
while(!q.empty()) q.pop();
dist[S] = 0;
30
31
         q.push(make_pair(0, S));
for(int i = 1; i <= n; ++i)</pre>
35
               if(q.empty()) break;
while(vst[q.top().second]) q.pop();
int u = q.top().second; q.pop();
vst[u] = 1;
39
               for(auto i: H[u])
40
41
                      if(dist[i.first] > dist[u] + i.second)
                            dist[i.first] = dist[u] + i.second;
44
                            q.push(make_pair(-dist[i.first], i.
45
                                  first));
                     }
               }
47
48
49
   }
51
   int solve()
52
         while(!Q.empty()) Q.pop();
53
         Q.push(node(0, S));
         while (!Q.empty())
56
               auto u = Q.top(); Q.pop();
if(++cnt[u.id] > K) continue;
if(u.d + dist[u.id] > ti) continue;
if(u.id = T && cnt[T] == K)
57
                     return u.d;
                for(auto i: G[u.id])
                     Q.push(node(u.d + i.second, i.first));
         return -1;
66
```

3.10 K 短路可并堆

```
1 //Kth Shortest Path via Persistable Mergeable Heap
  //可持久化可并堆求k短路 O(SSSP+(m+k)\log n)
3 //By ysf
4 //通过题目: USACO Mar08 牛跑步 (板子題)
  //注意这是个多项式算法,在k比较大时很有优势,但k比较小
      时最好还是用A*
  //DAG和有环的情况都可以,有重边或自环也无所谓,但不能
      有零环
  //以下代码以Dijkstra+可持久化左偏树为例
  const int maxn=1005, maxe=10005, maxm=maxe*30; // 点数, 边
       数, 左偏树结点数
11
  //需要用到的结构体定义
12
  struct A{//用来求最短路
      int x,d;
A(int x,int d):x(x),d(d){}
14
15
      bool operator<(const A &a)const{return d>a.d;}
  };
17
18
  struct node{//左偏树结点
int w,i,d;//i: 最后一条边的编号 d: 左偏树附加信息
node *lc,*rc;
19
20
21
      node(){}
      node(int w,int i):w(w),i(i),d(0){}
void refresh(){d=rc->d+1;}
24
| 125 |  null [maxm], *ptr=null, *root [maxn];
```

```
struct B{//维护答案用
27
         int x,w;//x是结点编号,w表示之前已经产生的权值
node *rt;//这个答案对应的堆顶,注意可能不等于任何
28
29
                 - 个结点的堆
         B(int x, node *rt, int w): x(x), w(w), rt(rt){}
         bool operator < (const B &a) const{return w+rt->w>a.w
31
               +a.rt->w;}
   }:
32
33
   //全局变量和数组定义
34
   //全向变重和效组度入

vector < int > G[maxn], W[maxn], id[maxn]; //最开始要存反向

图, 然后把G清空作为儿子列表

bool vis[maxn], used[maxe]; // used表示边是否在最短路树上

int u[maxe], v[maxe], w[maxe]; // 存下每条边, 注意是有向边

int d[maxn], p[maxn]; // p表示最短路树上每个点的父边
35
36
37
   int n,m,k,s,t;//s,t分别表示起点和终点
41 //以下是主函数中较关键的部分
42 for(int i=0;i<=n;i++)root[i]=null;//一定要加上!!!
    //(读入&建反向图)
43
   Dijkstra();
44
   //(清空G,W,id)
for(int i=1;i<=n;i++)
    if(p[i]){
45
46
              used[p[i]]=true;//在最短路树上
48
               G[v[p[i]]].push_back(i);
50
   for(int i=1;i<=m;i++){</pre>
51
         w[i]-=d[u[i]]-d[v[i]];//现在的w[i]表示这条边能使路
52
         径长度增加多少
if(!used[i])
               root[u[i]] = merge(root[u[i]], newnode(w[i],i));
54
   dfs(t)
   \verb"priority_queue<B>heap;
57
   heap.push(B(s,root[s],0));//初始状态是找贡献最小的边加
58
          讲夫
   printf("%d\n",d[s]);//第1短路需要特判while(--k){//其余k-1短路径用二叉堆维护if(heap.empty())printf("-1\n");
59
60
61
         else{
62
               int x=heap.top().x,w=heap.top().w;
63
               node *rt=heap.top().rt;
              heap.pop();
printf("%d\n",d[s]+w+rt->w);
65
66
               if (rt->lc!=null||rt->rc!=null)
67
                    \verb|heap.push(B(x,merge(rt->lc,rt->rc),w));//
               pop掉当前边,换点if(root[v[rt->i]]!=null)
                                             换成另一条贡献大一点的边
                    \verb|heap.push(B(v[rt->i],root[v[rt->i]],w+rt->|
70
                          w));//保留当前边,往后面再接上另一条边
         }
72
   //主函数到此结束
73
    //Dijkstra预处理最短路 O(m\log n)
void Dijkstra(){
         memset(d,63,sizeof(d));
77
         d[t:]=0:
78
         priority_queue < A > heap;
         heap.push(A(t,0));
while(!heap.empty()){
   int x=heap.top().x;
   heap.pop();
81
82
83
               if(vis[x])continue;
               vis[x]=true;
for(int i=0;i<(int)G[x].size();i++)
    if(!vis[G[x][i]]&&d[G[x][i]]>d[x]+W[x][i])
86
87
                          d[G[x][i]]=d[x]+W[x][i];
p[G[x][i]]=id[x][i];
heap.push(A(G[x][i],d[G[x][i]]));
89
90
         }
93
94
   //dfs求出每个点的堆 总计O(m\log n)
95
   //需要调用merge, 同时递归调用自身
void dfs(int x){
97
         root[x]=merge(root[x],root[v[p[x]]]);
for(int i=0;i<(int)G[x].size();i++)
    dfs(G[x][i]);</pre>
100
101
102
    //包装过的new node() D(1)
103
   node *newnode(int w,int i){
         *++ptr=node(w,i);
108
         ptr->lc=ptr->rc=null;
return ptr;
106
107
109
   //带可持久化的左偏树合并 总计O(\log n) //递归调用自身 node *merge(node *x,node *y){
110
111
112
         if(x==null)return y;
if(y==null)return x;
113
114
         if(x->w>y->w)swap(x,y);
```

```
node *z=newnode(x->w,x->i);
           z\rightarrow 1c=x\rightarrow 1c;
            z \rightarrow rc = merge(x \rightarrow rc, y);
            if(z\rightarrow lc\rightarrow d>z\rightarrow rc\rightarrow d)swap(z\rightarrow lc,z\rightarrow rc);
119
            z->refresh();
            return z;
    }
```

3.11上下界网络流

有源汇上下界费用流 转换为求无源汇上下界最小费用可行循环流, 通过 $T \to S$ 连边, 流量上下界为 (原总流量, ∞)。

无源汇上下界最小费用可行循环流 在原基础上再新增一个超级 源点 supS, supT, 构造只有上界的网络。

对于原图的每一条边 (u,v),再新图中添加一条 $\sup S \to v$ 流量为 u,v 流量下界的边,一条 $u \to \sup T$ 流量为 u,v 流量下界的边,一条 $u \to v$ 流 量为 u,v 流量上界-流量下界的边。

做从 $supS \rightarrow supT$ 的最小费用流, 限定到达 supT 的流量为满流(即 supS 所有出边的流量和)。此即为答案。

HINT: 原图中所有未提及的边费用都应记为 0 。新图中的重新构造的 边的费用等同原图中对应边的费用。

上下界网络流 B(u,v) 表示边 (u,v) 流量的下界,C(u,v) 表示边 (u,v)流量的上界,F(u,v) 表示边 (u,v) 的流量。设 G(u,v) = F(u,v) - B(u,v), 显然有 $0 \le G(u,v) \le C(u,v) - B(u,v)$

无源汇的上下界可行流 建立超级源点 S_* 和超级汇点 T_* , 对于原图 每条边 (u,v) 在新网络中连如下三条边: $S_* \to v$, 容量为 B(u,v); $u \to T_*$,容量为 B(u,v);

 $u \to v$, 容量为 C(u,v)-B(u,v)。

最后求新网络的最大流,判断从超级源点 S_* 出发的边是否都满流即可,边 (u,v) 的最终解中的实际流量为 G(u,v)+B(u,v)。

有源汇的上下界可行流 从汇点 T 到源点 S 连一条上界为 ∞, 下界 为 0 的边。按照无源汇的上下界可行流一样做即可,流量即为 $T \to S$ 边上的流量。

有源汇的上下界最大流

- 1. 在有源汇的上下界可行流中,从汇点 T 到源点 S 的边改为连一条上界为 ∞ ,下界为 x 的边。 x 满足二分性质,找到最大的 x 使得新网络存在无源汇的上下界可行流即为原图的最大流。
 2. 从汇点 T 到源点 S 连一条上界为 ∞ ,下界为 0 的边,变成无源汇的网络。按照无源汇的上下界可行流的方法,建立超级源点 S_* 和超级工程, S_* 证据 S_* 不知是一次, S_* 不知是一次, S_* 不知是一次, S_* 不知
- 汇点 T_* , 求一遍 $S_* \to T_*$ 的最大流, 再将从汇点 T 到源点 S 的这条边拆掉, 求一次 $S \to T$ 的最大流即可。

有源汇的上下界最小流

- 1. 在有源汇的上下界可行流中, 从汇点 T 到源点 S 的边改为连一条上界为 x, 下界为 0 的边。 x 满足二分性质, 找到最小的 x 使得新网络
- 存在无源汇的上下界可行流即为原图的最小流。 2. 按照无源汇的上下界可行流的方法,建立超级源点 S_* 与超级汇点 T_* 按照无源汇的上下界可行流的方法,建立超级源点 S_* 与超级汇点 I_* ,求一遍 S_* \to T_* 的最大流,但是注意这一次不加上汇点 T 到源点 S 的这条边,即不使之改为无源汇的网络去求解。求完后,再加上那条汇点 T 到源点 S 上界 ∞ 的边。因为这条边下界为 0,所以 S_* , T_* 无影响,再直接求一次 S_* \to T_* 的最大流。若超级源点 S_* 出发的边全部满流,则 T \to S 边上的流量即为原图的最小流,否则无解。

zkw 费用流 3.12

```
//稠密图、二分图中较快,稀疏图中不如SPFA int flow, cost, price;
   int dfs(int u, int f)
5
       if(u == t)
            flow += f:
            cost += price * f;
            return f;
       vst[u] = 1:
       int used = 0;
       for(int i = tail[u]; i; i = e[i].next)
    if(!vst[e[i].v] && e[i].c > 0 && e[i].w == 0)
                 int w = dfs(e[i].v, min(e[i].c, f - used))
17
                 e[i].c -= w; e[i ^ 1].c += w; used += w;
if(used == f) return f;
18
19
20
       return used;
   7
   bool modlabel()
23
24
25
        int d = inf;
       for(int u = s; u <= t; u++)
    if(vst[u])</pre>
26
27
                 for(int i = tail[u]; i; i = e[i].next)
28
                      if(e[i].c > 0 && !vst[e[i].v]) d = min
29
       (d, e[i].w);
if(d == inf) return 0;
       for(int u = s; u <= t; u++)
    if(vst[u])
31
                price += d:
35
       return 1;
36
   void zkw()
{
```

```
do
do
do memset(vst, 0, sizeof(vst));
while(dfs(s, inf) > 0);
while(modlabel());

do
while(modlabel());
```

3.13 stoer-wagner 无向图最小割树

```
int cost[maxn] [maxn], seq[maxn], len[maxn], n, m, pop, ans;
  bool used[maxn];
void Init(){
       int i,j,a,b,c;
for(i=0;i<n;i++) for(j=0;j<n;j++) cost[i][j]=0;
       for(i=0;i<m;i++){
    scanf("%du%du%d",&a,&b,&c); cost[a][b]+=c;
                  cost[b][a]+=c;
       pop=n; for(i=0;i<n;i++) seq[i]=i;
10
  void Work(){
11
       ans=inf; int i,j,k,l,mm,sum,pk;
12
        while(pop > 1){
   for(i=1;i<pop;i++) used[seq[i]]=0; used[seq</pre>
14
                   [0]]=1;
             for(i=1;i<pop;i++) len[seq[i]]=cost[seq[0]][
15
                  seq[i]
             pk=0; mm=-inf; k=-1;
for(i=1;i<pop;i++) if(len[seq[i]] > mm){ mm=
    len[seq[i]]; k=i; }
17
             for(i=1;i<pop;i++){
                  used[seq[1=k]]=1;
if(i==pop-2) pk=k;
if(i==pop-1) break;
20
21
                  mm=-inf;
22
                  for(j=1;j<pop;j++) if(!used[seq[j]])
    if((len[seq[j]]+=cost[seq[1]][seq[j]])</pre>
24
                              > mm)
                            mm=len[seq[j]], k=j;
             }
27
             sum=0:
             for(i=0;i<pop;i++) if(i != k) sum+=cost[seq[k ]][seq[i]];
28
             ans=min(ans, sum);
             31
             seq[pk]=seq[--pop];
33
        printf("%d\n",ans);
34
```

3.14 朱刘算法-gwx

```
//时间复杂度: O(nm)
  int pre[maxn], in[maxn], f[maxn], id[maxn];
  struct node {int u, v, w;} a[maxm * 2]; //边表
  int find(int x)
       return f[x] == x ? x : f[x] = find(f[x]);
10
  int mst()
11
12
       long long res = 0;
int root = 1;
int n = N;
13
14
18
       while(true)
17
            for(int i = 1; i <= n; i++) in[i] = INT_MAX,
18
            pre[i] = 0;
for(int i = 1; i <= m; i++)
                 if(a[i].u != a[i].v && in[a[i].v] > a[i].
20
                      w)
                      in[a[i].v] = a[i].w, pre[a[i].v] = a[i
21
                           ].u;
            for(int i = 1; i <= n; i++)
if(in[i] == INT_MAX && i != root) return
23
                      0;
            int cnt = 0;
            for(int i = 1; i <= n; i++) f[i] = i, id[i] =
28
            for(int i = 1; i <= n; i++)
27
                 if(i == root) continue;
28
                 res += in[i];
if(find(i)_!= find(pre[i])) f[f[i]] = f[
29
30
                      pre[i]];
                 else
32
33
                      for(int j = i; j && !id[j]; j = pre[j
                           id[j] = cnt;
                 }
36
37
            if(!cnt) break;
            for(int i = 1; i <= n; i++)
    if(!id[i]) id[i] = ++cnt;</pre>
39
40
```

3.15 树哈希

A[n] is the hash of the sub-tree with root n. B[n] is the hash of the whole tree with root n.

```
template <int MAXN = 100000, int MAXM = 200000, long long MOD = 10000000000000000311>
   struct tree_hash {
        static long long ra[MAXN];
tree_hash () {
              std::mt19937_64 mt (time (0));
              std::uniform_int_distribution <long long> uid
   (0, MOD - 1);
              for (int i = 0; i < MAXN; ++i) ra[i] = uid (mt
         struct node {
              13
              long long hash () {
   h1 = h2 = 1; for (long long i : s) {
     h1 = mul_mod (h1, ra[d1] + i, MOD);
     h2 = mul_mod (h2, ra[d2] + i, MOD); }
                               return h1;
         std::pair <int, long long> del (int d, long long v
        19
21
         long long A[MAXN], B[MAXN];
        void dfs1 (const edge_list <MAXN, MAXM> &e, int x,
   int p = -1) {
   tree[x] = node ();
24
              tree[x] = node ();
for (int i = e.begin[x]; ~i; i = e.next[i]) {
   int c = e.dest[i]; if (c != p) {
      dfs1 (e, c, x); tree[x].add (tree[c].
      d1 + 1, tree[c].h1); } }
25
27
                    A[x] = tree[x].hash
         void dfs2 (const edge_list <MAXN, MAXM> &e, int x,
              int p = -1) {
if (~p) tree[x].add (u[x].first, u[x].second);
B[x] = tree[x].hash ();
        for (int i = e.begin[x];
                                           ~i; i = e.next[i]) {
                   34
         void solve (const edge_list <MAXN, MAXM> &e, int
root) {
   dfs1 (e, root); dfs2 (e, root); } ;
template <int MAXN, int MAXM, long long MOD>
long long tree_hash <MAXN, MAXM, MOD>::ra[MAXN];
```

3.16 矩阵树定理

C= 度数矩阵-邻接矩阵 无向图 G 的生成树个数 = C 的任意 n-1 阶主子式 (对角线的乘积)

3.17 帯花树

```
vector<int> link[maxn];
    int n,match[maxn],Queue[maxn],head,tail;
   int pred[maxn], base [maxn], start, finish, newbase;
bool InQueue[maxn], InBlossom[maxn];
void push(int u) { Queue[tail++]=u; InQueue[u]=true; }
int pop() { return Queue[head++]; }
int FindCommonAncestor(int u,int v) {
         bool InPath[maxn];
for(int i=0;i<n;i++) InPath[i]=0;
while(true){ u=base[u];InPath[u]=true;if(u==start)</pre>
10
                  break; u=pred[match[u]];
          while(true){ v=base[v];if(InPath[v]) break;v=pred[
                match[v]]; }
         return v:
   }
   void ResetTrace(int u){
          int v
          while(base[u]!=newbase){
                v=match[u];
17
                InBlossom[base[u]] = InBlossom[base[v]] = true;
                u=pred[v];
if(base[u]!=newbase) pred[u]=v;
19
```

```
void BlossomContract(int u,int v){
            newbase=FindCommonAncestor(u,v);
24
            for (int i=0; i<n; i++)
25
            InBlossom[i]=0;
            ResetTrace(u); ResetTrace(v);
if(base[u]!=newbase) pred[u]=v;
if(base[v]!=newbase) pred[v]=u;
28
            for(int i=0;i<n;++i)
            if(InBlossom[base[i]]){
                    base[i]=newbase;
32
                    if(!InQueue[i]) push(i);
33
34
    bool FindAugmentingPath(int u){
            bool found=false;
for(int i=0;i<n;i++i) pred[i]=-1,base[i]=i;
for (int i=0;i<n;i++) InQueue[i]=0;
start=u;finish=-1; head=tail=0; push(start);</pre>
37
38
            while(head<tail){
41
                   e(head \ call \ c
int u = pop();
for(int i = link[u] . size() -1; i > = 0; i - -) {
    int v = link[u][i];
    if(base[u]! = base[v] && match[u]! = v)
        if(v == start | | (match[v] > = 0 && pred[match[u]] > = 0) )
42
46
                                            BlossomContract(u,v);
                                    else if (pred[v]==-1) {
    pred[v]=u;
49
                                             if(match[v]>=0) push(match[v]);
else{ finish=v; return true; }
50
                   }
53
54
55
            return found:
    void AugmentPath(){
            \label{eq:continuity} \begin{array}{ll} \mbox{int } u = \mbox{finish} \,, v \,, w \,; \\ \mbox{while} \,(u > = 0) \, \{ \ v = \mbox{pred} \, [u] \,; \, w = \mbox{match} \, [v] \,; \, \mbox{match} \, [v] = u \,; \, \mbox{match} \, \\ \end{array}
58
59
                     [u]=v;u=w;
60
    void FindMaxMatching(){
            for(int i=0;i<n;++i) match[i]=-1;
for(int i=0;i<n;++i) if(match[i]=-1) if(
62
63
                    FindAugmentingPath(i)) AugmentPath();
64
```

3.18 支配树-gwx

```
用 ins() 加 边
       build前设置n为点数, s为源点
树中的i号点对应原图的id[i]号点
  struct Dominator_Tree {
       int n, s, cnt;
int dfn[N], id[N], pa[N], semi[N], idom[N], p[N],
            mn[N]:
       vector<int>e[N], dom[N], be[N];
void ins(int x, int y) {e[x].push_back(y);}
void dfs(int x) {
    dfn[x] = ++cnt; id[cnt] = x;
            for (int i : e[x])
                if (!dfn[i])dfs(i), pa[dfn[i]] = dfn[x];
be[dfn[i]].push_back(dfn[x]);
            }
       int get(int x) {
    if (p[x] != p[p[x]]) {
        if (semi[mn[x]] > semi[get(p[x])])mn[x] =
20
                get(p[x]);
p[x] = p[p[x]];
23
            return mn[x];
24
       void LT() {
            32
            for (int i = 2; i <= cnt; i++) {
    if (idom[i] != semi[i])idom[i] = idom[idom
                 dom[id[idom[i]]].push_back(id[i]);
            }
       void build() {
           41
42
43
```

3.19 斯坦纳树

```
//N点数, M边数, P关键点数
const int inf = 0x3f3f3f3f;
int n, m, p, status, idx[P], f[1 << P][N];
priority_queue<pair<int, int> > q; //int top, h[N];
void dijkstra(int dis[]) {}
  k][j]);
[j] != inf)
                       if (f[i][j]
                             q.push(make_pair(-f[i][j], j)); //h[++
                                    top] = j, vis[j] = 1;
15
                dijkstra(f[i]); //SPFA(f[i]);
16
   }
   int main() {
    scanf("%d%d%d", &n, &m, &p);
19
          tatus = 1 << p;
tot = 0; memset(lst, 0, sizeof(lst));</pre>
          /*求最小生成森林
             每棵生成树中至少选择一个点,点权为代价新开一个空白关键点0作为源
          Add(0, i, val[i]); Add(i, 0, val[i]); */
for (int i = 1; i <= p; i++) scanf("%d", &idx[i]);
memset(f, 0x3f, sizeof(f));
for (int i = 1; i <= n; i++) f[0][i] = 0;
for (int i = 1; i <= p; i++) f[1 << (i - 1)][idx[i]]
                11 = 0:
          Steiner_Tree();
int ans = inf;
          for (int i = 1; i <= status - 1][i]);
                                   i <= n; i++) ans = min(ans, f[
34 }
```

3.20 弦图

```
template <int MAXN = 100000, int MAXM = 100000>
struct chordal_graph {
  int n; edge_list <MAXN, MAXM> e;
  int id[MAXN], seq[MAXN];
  void init () {
             struct point {
  int lab, u;
  point (int lab = 0, int u = 0) : lab (lab)
                   , u (u) {}
bool operator < (const point &a) const {
             return lab < a.lab; } };
std::fill (id, id + n, -1);
                        int label[MAXN]; std::fill (label,
                   label + n, 0);
             std::priority_queue <point> q;
for (int i = 0; i < n; ++i) q.push (point (0,
                    i));
             for (int i = n - 1; i >= 0; --i) {
   for (; ~id[q.top ().u]; ) q.pop ();
   int u = q.top ().u; q.pop (); id[u] = i;
   for (int j = e.begin[u], v; ~j; j = e.next
        [j])
            bool is_chordal ()
             static int vis[MAXN], q[MAXN]; std::fill (vis,
             vis + n, -1);
for (int i = n - 1; i >= 0; --i) {
  int u = seq[i], t = 0, v;
                          (int j = e.begin[u]; ~j; j = e.next[j
                          if (v = e.dest[j], id[v] > id[u]) q[t
++] = v;
                    if (!t) continue; int w = q[0];
                   ir (:t) continue; int w = q[0];
for (int j = 0; j < t; ++j) if (id[q[j]] <
    id[w]) w = q[j];
for (int j = e.begin[w]; ~j; j = e.next[j
    ]) vis[e.dest[j]] = i;
for (int j = 0; j < t; ++j) if (q[j] != w
    && vis[q[j]] != i) return 0;</pre>
             }
             return 1: }
      int min_color () {
   int res = 0;
            return res; } };
```

Page 17

4 数学

4.1 杜教筛

```
1 // 用之前必须先init(); 如果n很大, 求和记得开long long; 如果有取模, 求和记得改取模 2 #define N 1000005 // (10^9)^(2/3) 3 #define M 3333331 // hash siz
  int prime[N], notprime[N], pcnt, mu[N], pre[N];
int hash[M], nocnt; struct node{int id, f, next;}no
      [1000000];
  int F(int n) // calculate mu[1]+mu[2]+...+mu[n]
         if(n<N) return pre[n];</pre>
        int h = n%M; for(int i = hash[h]; i; i = no[i].
    next) if(no[i].id == n) return no[i].f;
int ret = 1;
         for(int i = 2, j; i \le n; i = j + 1)
12
                                                                                    11
              j = n/(n/i)
13
              ret -= F(n/i) * (j-i+1);
14
         no[++nocnt] = (node){n, ret, hash[h]};
         hash[h] = nocnt;
17
        return ret;
18
   void init()
20
21
        mu[1] = 1;
for(int i = 2; i < N; i++)</pre>
22
23
25
               if(!notprime[i]) prime[++pcnt] = i, mu[i] =
               for(int
                         j = 1; j <= pcnt && prime[j] * i < N;</pre>
                    notprime[prime[j] * i] = 1;
if(i % prime[j]) mu[prime[j] * i] = -mu[i
28
29
                    else {mu[prime[j] * i] = 0; break;}
                                                                                    31
31
32
         for(int i = 1; i < N; i++) pre[i] = pre[i-1] + mu[
               i];
34
                                                                                    35
```

4.2 直线下整点

```
\sum_{i=0}^{n-1} \lfloor \frac{a+bi}{m} \rfloor, n, m, a, b > 0
```

```
1 LL solve(LL n, LL a, LL b, LL m) {
2          if(b==0) return n*(a/m);
3          if(a>=m) return n*(a/m)+solve(n,a%m,b,m);
4          if(b>=m) return (n-1)*n/2*(b/m)+solve(n,a,b%m,m);
5          return solve((a+b*n)/m,(a+b*n)%m,m,b);
6    }
```

4.3 拉格朗日插值

```
1 // 用之前必须先init(); 如果所有的逆元都能预处理就是O(n)的, 否则是O(nlogn)的 2 #define MOD 1000000007
  int inv[N], invf[N],
                          f[N];
  int fpow(int a, int b)
       int r = 1:
       for(; b; b >>= 1)
           if(b \& 1) r = 111*r*a%MOD:
           a = 111*a*a%MOD;
10
11
       return r;
12
13
  int la(int x, int k) // k次, 求f(x)
15
       int lim = k+2, ff = 1;
16
       for(int i = 1; i <= lim; i++)
    ff = 111 * ff * (x-i) % MOD;
for(int i = 1; i <= lim; i++)
18
19
           f[i] = (f[i-1] + fpow(i, k)) % MOD; // 预处理
20
       f(1),f(2),...,f(1
if(x <= lim) return f[x];
                                 ,f(lim), 注意修改
       int ret = 0;
       for(int i = 1; i <= lim; i++)
24
            25
26
                     fpow(x-i, MOD-2)) % MOD // 复杂度
* invf[i-1] % MOD * invf[lim-i] % MOD
* ((lim-i) % 2 ? MOD-1 : 1) % MOD
           ) %= MOD:
28
29
       return ret:
31
32
  void init()
33
       inv[1] = 1;
34
```

```
for(int i = 1; i < N; i++) invf[i] = 111 * invf[i
-1] * inv[i] % MOD;</pre>
```

4.4 FFT-wrz

37

38 }

```
typedef complex < double > comp;
  int len;
   comp w[N<<1], a[N<<1], b[N<<1], c[N<<1]; // 数组记得至
        少开两倍
   void init()
       double pi = acos(-1.0);
for(int i = 0; i < len; i++) w[i] = (comp){cos(2*)</pre>
       for(int
            pi*i/len), sin(2*pi*i/len);
   void FFT(comp *a, comp *w)
       for(int i = 0, j = 0; i < len; i++)
            if(i<j) swap(a[i], a[j]);
for(int 1 = len>>1; (j^=1)<1; 1 >>= 1);
       for(int i = 2: i <= len: i <<= 1)
            int m = i >> 1;
            for(int j = 0; j < len; <math>j += i)
                 for(int k = 0; k < m; k++)
                      }
29 }
30 | void mul(comp *a, comp *b, comp *c, int 1) // 多项式乘
        法, c = a * b, c的长度为1
       for(len = 1; len <= 1; len <<= 1);
init(); FFT(a, w); FFT(b, w);
for(int i = 0; i < len; i++) c[i] = a[i] * b[i];</pre>
       reverse(c+1, c+len); FFT(c, w);
for(int i = 0; i < len; i++) c[i].r /= len; // 转
36
             化为int等时应加0.5, 如int(c[i].r+0.5)
  }
```

4.5 NTT-gwx

```
const int G:
                                              //maxn > 2 ^ k
  int rev[maxn], a[maxn], b[maxn];
  ll power(ll b, int k)
       11 res = 1;
       for(; k; k >>= 1, b = b * b % mod)
            if(k & 1)
                 res = res * b % mod;
       return res:
  }
12
   void ntt(ll*a, int f)
       for(int i = 0; i < m; i++)
    if(rev[i] < i)</pre>
16
       swap(a[i], a[rev[i]]);
for(int 1 = 2, h = 1; 1 <= m; h = 1, 1 <<= 1)
            int ur;
21
            if(f =
                 ur = power(G, (mod - 1) / 1);
            else
            ur = power(G, mod - 1 - (mod - 1) / 1);
for(int i = 0; i < m; i += 1)
                 11 w = 1;
                 for(int k = i; k < i + h; k++, w = w * ur
                      % mod)
                      }
            }
       if(f == -1)
            for(int i = 0; i < m; i++)
a[i] = a[i] * inm % mod;
  }
40
   void multi()
       ntt(a, 1); ntt(b, 1);
for(int i = 0; i < m; i++)
   a[i] = a[i] * b[i] % mod;</pre>
       ntt(a, -1);
  }
48
```

47

51

52

95

4.6 FWT

```
void FWT(int a[],int n)
            for (int d = 1; d < n; d <<= 1)
  for (int m = d << 1, i = 0; i < n; i += m)
  for (int j = 0; j < d; j++) {
    int x = a[i + j], y = a[i + j + d];</pre>
                                    a[i + j] = (x + y) \% mod,
a[i + j + d] = (x - y + mod) \% mod;
                                    //xor: a[i + j] = x + y, a[i + j + d]

= (x - y + mod) % mod;

//and: a[i + j] = x + y;

//or: a[i + j + d] = x + y;
14
15
16
    void UFWT(int a[], int n)
18
            for (int d = 1; d < n; d <<= 1)
  for (int m = d << 1, i = 0; i < n; i += m)
  for(int j = 0; j < d; j++) {
    int x = a[i + j], y = a[i + j + d];</pre>
19
22
                                    //xor: a[i + j] = (x + y) / 2, a[i + j
+ d] = (x - y) / 2;
//and: a[i + j] = x - y;
//or: a[i + j + d] = y - x;
27
28
29
30
    void solve(int a[], int b[], int n)
33
34
            FWT(b, n);
            for (int i = 0; i < n; i++)
a[i] = 1LL * a[i] * b[i] % mod;
37
                                                                                                                     91
38
            UFWT(a, n);
```

4.7 高精度-wrz

```
98
   #include < bits / stdc ++ . h >
   #define BASE 10000
#define L 20005
   using namespace std;
   int p; char s[10*L];
struct bigint
          int num[L], len;
         bigint(int x = 0) {memset(num,0,sizeof(num)); len =
    1; num[0] = x;}
bigint operator + (bigint b)
11
                bigint c;
c.len = max(b.len, len);
for(int i = 0; i < c.len; i++)</pre>
14
15
                       c.num[i] += num[i] + b.num[i];
c.num[i+1] = c.num[i] / BASE;
c.num[i] %= BASE;
19
                if(c.num[c.len])c.len++;
20
                return c;
22
                                                                                              119
          bigint operator - (bigint b)
23
                c.len = max(len, b.len);
for(int i = 0; i < c.len; i++)</pre>
27
                       c.num[i] += num[i] - b.num[i];
if(c.num[i] < 0) {c.num[i] += BASE; c.num[</pre>
                             i+1]--:}
                while(!c.num[c.len-1] && c.len > 1)c.len--;
33
                return c;
34
          void operator -= (int b)
35
                num[0] -= b;
for(int i = 0; i < len; i++)</pre>
                                                                                              133
```

```
num[i+1] += num[i] / BASE;
             num[i] %= BASE;
             if(num[i] < 0)num[i] += BASE, num[i+1]--;
      while(!num[len-1] && len > 1) len--;
bigint operator * (bigint b)
      bigint c;
c.len = len + b.len;
      for(int i = 0; i < len; i++)
    for(int j = 0; j < b.len; j++)</pre>
                   c.num[i+j] += num[i] * b.num[j];
c.num[i+j+1] += c.num[i+j] / BASE;
c.num[i+j] %= BASE;
      if(!c.num[c.len-1] && c.len > 1)c.len--;
      return c;
bigint operator * (int b)
      bigint c;
      for(int i = 0; i < len; i++) c.num[i] = num[i]</pre>
      * b; // long long
for(int i = 0; i < len; i++){c.num[i+1] += c.
num[i] / BASE;c.num[i] %= BASE;}
      c.len = len;
      while (c.num[c.len])c.len++:
      return c;
bool substract(bigint b, int pos)
      if(len < b.len - pos)return false;
else if(len == b.len-pos)
    for(int i = len-1; i>=0; i--)
        if(num[i] < b.num[i+pos])return false;
        else if(num[i] > b.num[i+pos])break;
for(int i = 0; i < len; i++)</pre>
             num[i] -= b.num[i+pos];
if(num[i] < 0) {num[i] += BASE;num[i+1]</pre>
      while(!num[len-1] && len > 1)len--;
      return true:
// remember to change [BASE] to 10 !!!
// [this] is the remainder
bigint operator / (bigint b)
      bigint c;
if(len < b.len)return c;
int k = len - b.len;
c.len = k + 1;</pre>
       for(int i = len-1; i>=0; i--)
             if(i>=k)b.num[i] = b.num[i-k];
else b.num[i] = 0;
      b.len = len;
for(int i = 0; i <= k; i++) while(this->
    substract(b,i)) c.num[k-i]++;
       for(int i = 0; i < c.len; i++)
             c.num[i+1] += c.num[i] / BASE;
             c.num[i] %= BASE;
       while(!c.num[c.len-1] && c.len > 0) c.len--;
      return c;
// [this] is not the remainder
bigint operator / (int b)
      bigint c; int tmp = 0;
for(int i = len-1; i>=0; i--)
             tmp = tmp * BASE + num[i];
c.num[i] = tmp / b;
tmp %= b;
      for(c.len = len; !c.num[c.len-1] && c.len > 1;
              c.len--);
      return c:
bool scan()
      int n = -1; char ch = getchar(); while(ch < '0' || ch > '9') if(ch == EOF)
      return false; else ch = getchar();
while(ch >= '0' && ch <= '9') s[++n] = ch - '0
      ', ch = getchar();
len = 0;
       for(int i = n; i \ge 0; i-4)
             num[len] += s[i];
if(i>=1)num[len] += s[i-1] * 10;
if(i>=2)num[len] += s[i-2] * 100;
if(i>=3)num[len] += s[i-3] * 1000;
             ++len:
      return true;
```

4.8 线性基-gwx

4.9 线性递推

```
O(m^2logn)
  // U(m 210gn)
// Given a[0], a[1], ..., a[m - 1]
// a[n] = c[0] * a[n - m] + ... + c[m - 1] * a[n - 1]
// Solve for a[n] = v[0] * a[0] + v[1] * a[1] + ... +
v[m - 1] * a[m - 1]
  void linear_recurrence(long long n, int m, int a[],
        int c[], int p) {
  long long v[M] = {1 % p}, u[M << 1], msk = !!n;
  for(long long i(n); i > 1; i >>= 1) {
    msk <<= 1;</pre>
        13
14
                 u[x] = 1 \% p;
             }else {
                  17
18
                            u[t] = (u[t] + v[i] * v[j]) % p;
                       }
20
21
                  for(int i((m << 1) - 1); i >= m; i--) {
                       for(int j(0), t(i - m); j < m; j++, t
                             u[t] = (u[t] + c[j] * u[i]) % p;
25
                  }
28
             copy(u, u + m, v);
29
        for(int i(m); i < 2 * m; i++) {
             a[i] = 0;
             for(int j(0); j < m; j++) {
    a[i] = (a[i] + (long long)c[j] * a[i + j -
32
33
                        m]) % p;
        for(int j(0); j < m; j++) {
b[j] = 0;
36
37
             for(int i(0); i < m; i++) {
                  b[j] = (b[j] + v[i] * a[i + j]) % p;
41
        for(int j(0); j < m; j++) {
    a[j] = b[j];
42
44
```

4.10 单纯形

```
// max{c * x | Ax <= b, x >= 0}的解, 无解返回空的
vector, 否则就是解. 答案在an中
template <int MAXN = 100, int MAXM = 100>
struct simplex {
   int n, m; double a[MAXM][MAXN], b[MAXM], c[MAXN];
   bool infeasible, unbounded;
   double v, an[MAXN + MAXM]; int q[MAXN + MAXM];
   void pivot (int l, int e) {
      std::swap (q[e], q[l + n]);
      double t = a[l][e]; a[l][e] = 1; b[l] /= t;
```

4.11 素数测试-gwx

15

16

18

19

22

24

33

35

```
ll multi(ll x, ll y, ll M) {
         ll res = 0;
for(; y; y >>= 1, x = (x + x) % M)
if(y & 1) res = (res + x) % M;
   }
   ll power(ll x, ll y, ll p)
         11 res = 1;
         for(; y; y >>= 1, x = multi(x, x, p))
    if(y & 1) res = multi(res, x, p);
10
11
         return res:
   }
    int primetest(ll n, int base)
         11 n2 = n - 1, res;
         int s = 0;
while(!(n2 & 1)) n2 >>= 1, s++;
         res = power(base, n2, n);
if(res == 1 || res == n - 1) return 1;
         while(s >= 0)
              res = multi(res, res, n);
if(res == n - 1) return 1;
26
              s--:
27
         return 0; // n is not a strong pseudo prime
28
   }
30
   int isprime(ll n)
31
        32
              if(n < lim[i]) return 1;
if(!primetest(n, testNum[i])) return 0;</pre>
37
40
         return 1:
41
42 ll pollard(ll n)
         11 i, x, y, p;
if(isprime(n)) return n;
if(!(n & 1)) return 2;
for(i = 1; i < 20; i++)</pre>
44
45
46
              x = i, y = func(x, n), p = gcd(y - x, n);
while(p == 1)
49
                    y = func(func(y, n), n);
p = gcd((y - x + n) % n, n) % n;
               if(p == 0 \mid \mid p == n) continue;
               return p;
```

59 | }

4.12 原根-gwx

```
bool check_force(int g, int p)
{
    int cnt = 0, prod = g;
    for(int i = 1; i <= p - 1; ++i, prod = prod * g %
        p)
        if(prod == 1) if(++cnt > 1) return 0;
    return 1;
}
//d[]: prime divisor of (p - 1)
    bool check_fast(int g, int p)
{
    for(int i = 1; i <= m; ++i)
        if(power(g, (p - 1) / d[i], p) == 1) return 0;
    return 1;
}
int primitive_root(int p)
{
    for(int i = 2; i < p; ++i) if(check(i, p)) return
        i;
}</pre>
```

4.13 勾股数

 $a=m^2-n^2, b=2mn, c=m^2+n^2,$ 其中 m 和 n 中有一个是偶数,则 (a,b,c) 是素勾股数

4.14 Pell 方程

Find the smallest integer root of $x^2-ny^2=1$ when n is not a square number, with the solution set $x_{k+1}=x_0x_k+ny_0y_k, y_{k+1}=x_0y_k+y_0x_k$.

4.15 平方剩余

Solve $x^2 \equiv n \mod p (0 \le a < p)$ where p is prime in $O(\log p)$.

4.16 多点求值与快速插值

4.16.1 多点求值与快速插值

多点求值: 给出 F(x) 和 x_1, \cdots, x_n ,求 $F(x_1), \cdots, F(x_n)$. 考虑分治,设 $L(x) = \prod_{i=-1}^{\lfloor n/2 \rfloor} (x-x_i)$, $R(x) = \prod_{i=-\lfloor n/2 \rfloor+1}^n (x-x_i)$,那么 $\frac{36}{37}$ 对于 $1 \le i \le \lfloor n/2 \rfloor$ 有 $F(x_i) = (F \mod L)(x_i)$,对于 $\lfloor n/2 \rfloor < i \le n$ 有 $\frac{39}{27}$ 快速插值: 给出 $n \land x_i = y_i$,求一个 n-1 次多项式满足 $F(x_i) = y_i$. $\frac{F(x_i)}{2} = (F \mod R)(x_i)$. 复杂度 $O(n \log^2 n)$. $\frac{1}{2}$ 考虑拉格朗日插值: $F(x) = \sum_{i=1}^n \frac{\prod_{i \ne j} (x-x_j)}{\prod_{i \ne j} (x-x_j)} y_i$. $\frac{42}{43}$ 对每个 i 先求出 $\prod_{i \ne j} (x_i - x_j)$. 设 $M(x) = \prod_{i=1}^n (x-x_i)$,那么想要的是 $\frac{M(x)}{x-x_i}$ 、取 $x=x_i$ 时,上下都为 0,使用洛必达法则,则原式化为 M'(x). 使 $\frac{44}{27}$ 用分治算出 M(x),使用多点求值算出每个 $\prod_{i \ne j} (x_i - x_j) = M'(x_i)$. 设 $\frac{y_i}{\prod_{i \ne j} (x_i - x_j)} = v_i$,现在要求出 $\sum_{i=1}^n v_i \prod_{i \ne j} (x-x_j)$. 使 $\frac{46}{47}$

用分治: 设 $L(x) = \prod_{i=1}^{\lfloor n/2 \rfloor} (x - x_i), \ R(x) = \prod_{i=\lfloor n/2 \rfloor + 1}^{n} (x - x_i)$

4.17 多项式牛顿法

4.17.1 多项式牛顿法

已知函数 G(x), 求多项式 $F(x) \mod x^n$ 满足方程 $G(F(x)) \equiv 0 \mod x^n$.

当 n=1 时,有 $G(F(x))\equiv 0\mod x$,根据实际情况(逆元,二次剩余)求解.假设已经求出了 $G(F_0(x))\equiv 0\mod x^n$,考虑扩展到 $\mod x^{2n}$ 下:将 G(F(x)) 在 $F_0(x)$ 点泰勒展开,有

$$G(F(x)) = G(F_0(x)) + \frac{G'(F_0(x))}{1!} (F(x) - F_0(x)) + \cdots$$

因为 F(x) 和 $F_0(x)$ 的最后 n 项相同, 所以 $(F(x) - F_0(x))^2$ 的最低的非 0 项次数大于 2n, 经过推导可以得到

$$F(x) \equiv F_0(x) - \frac{G(F_0(x))}{G'(F_0(x))} \mod x^{2n}$$

应用 (以下复杂度均为 $O(n \log n)$):

多项式求逆 (给定 A(x), 求 $A(x)B(x) \equiv 1 \mod x^n$): 构造方程 $A(x)B(x)-1\equiv 0 \mod x^n$, 初始解 $G_{invA}(B(x))\equiv A[0]^{-1}\mod x$, 递推式 $F(x)\equiv 2F_0(x)-A(x)F_0^2(x)\mod x^{2n}$

多项式开方(给定 A(x),求 $B^2(x) \equiv A(x) \mod x^n$): 初始解 $G_{sqrtA}(B(x)) \equiv \sqrt{A[0]} \mod x$,递推式 $F(x) \equiv \frac{F_0^2(x) + A(x)}{2F_0(x)} \mod x^{2n}$

多项式对数 (给定常数项为 1 的 A(x), $B(x)\equiv \ln A(x)$) : 对 x 求导得 $(\ln A(x))'=\frac{A'(x)}{A(x)}$,使用多项式求逆,再积分回去 $\ln A(x)\equiv\int\frac{A'(x)}{A(x)}$

多项式指数 (给定常数项为 0 的 A(x) , 求 $B(x)\equiv e^{A(X)}$) : 初始解 $G_{expA}(B(x))\equiv 1$, 递推式 $F(x)\equiv F_0(x)(1-\ln F_0(x)+A(x))$

多项式任意幂次 (给定 A(x), 求 $B(x)\equiv A^k(x), k\in Q)$: $A^k(x)\equiv e^{k\ln A(x)}$

5 字符串

5.1 AC 自动机-wrz

```
struct ACAM
       ACAM *next[S], *fail;
  int ban;
}mem[N], *tot,
                   *null, *root, *q[N];
  ACAM *newACAM()
       ACAM *p = ++tot;
*p = *null; return p;
  }
  void init()
       null = tot = mem;
13
       for(int i = 0; i < alpha; i++) null->next[i] =
       null;
null->fail = null; null->ban = 0;
       root = newACAM();
16
  }
  void inser(char *s)
       ACAM *p = root;
for(int i = 0; s[i]; i++)
            int w = s[i] -
           if(p->next[w] == null) p->next[w] = newACAM();
           p = p->next[w];
       p->ban = 1;
  }
28
  void build()
29
       root->fail = root; int head = 0, tail = 0;
31
       for(int i = 0; i < alpha; i++)</pre>
32
33
            if(root->next[i] == null) root->next[i] = root
           else root->next[i]->fail = root, q[tail++] =
                root->next[i];
       for(; head < tail; head++)</pre>
           ACAM *p = q[head];
           p->ban |= p->fail->ban;
for(int i = 0; i < alpha; i++)
                if(p->next[i] == null) p->next[i] = p->
                     fail->next[i];
                else p->next[i]->fail = p->fail->next[i],
                     q[tail++] = p->next[i];
           }
```

5.2 扩展 KMP-gwx

```
void get_next()
       int a = 0, p = 0;
      nxt[0] = m;
       for(int i = 1; i < m; i++)
           if(i >= p || i + nxt[i - a] >= p)
               11
12
               a = i;
           else nxt[i] = nxt[i - a];
15
16
  void exkmp()
      int a = 0, p = 0;
get_next();
for(int i = 0; i < n; i++)</pre>
20
21
23
           if(i >= p || i + nxt[i - a] >= p) // i >= p 的
24
                作用: 举个典型例子, s 和 t 无一字符相同
               if(i >= p) p = i;
while(p < n && p - i < m && s[p] == t[p -
    i]) p++;</pre>
                ext[i] = p - i;
29
               a = i:
30
           else ext[i] = nxt[i - a];
32
33
```

5.3 Manacher-gwx

```
//maxn = 2 * n
   void manacher(int n)
         int p = 0, r = 0;
for(int i = 1; i <= n; i++)</pre>
               if(i <= r) len[i] = min(len[2 * p - i], r - i
                     + 1);
               else len[i] = 1;
               while (b[i + len[i]] == b[i - len[i]]) len[i
                    ]++:
               if(i + len[i] - 1 >= r)
                    r = i + len[i] - 1, p = i;
13
14
   int main()
         scanf("%d\n%s", &n, a + 1);
b[++tot] = '@'; b[++tot] = '#';
for(int i = 1; i < n; i++)
   b[++tot] = a[i], b[++tot] = '#';</pre>
17
        b[++tot] = a[n];
b[++tot] = '#'; b[++tot] = '$';
22
         manacher(tot);
23
```

5.4 最小表示-gwx

5.5 回文树-wrz

```
char s[N], out[N];
struct PT
{
    PT *fail, *next[A];
    int len;
} mem[N], *tot, *null, *root1, *root0, *last;
PT *newPT()
{
    PT *p = ++tot;
    *p = *null; return p;
}

void init()
{
    null = tot = mem;
    null ->fail = null;
```

```
for(int i = 0; i < A; i++) null->next[i] = null;
16
        null \rightarrow len = 0
        root1 = newPT(); root1->fail = root1; root1->len =
18
                -1;
         root0 = newPT(); root0->fail = root1; last = root1
19
20 }
|21| int extend(int c, int i) // 返回这一次是否多了一个回文
   {
22
        PT *p = last;
        for(; s[i-p->len-1] != c+'a'; p = p->fail);
if(p->next[c] != null) {last = p->next[c]; return
              0;}
        PT *np = p->nextlc_J - _____

->len + 2;

if(p->len == -1) np->fail = root0;
                  = p->next[c] = last = newPT(); np->len = p
28
29
              for(p=p->fail; s[i-p->len-1] != c+'a'; p = p->
                    fail);
              np->fail = p->next[c];
31
32
        return 1;
   }
35
   void main()
36
        scanf("%s",s+1); init();
for(int i = 1, ii = strlen(s+1); i <= ii; i++)
  out[i] = extend(s[i]-'a', i)?'1':'0';</pre>
        puts(out+1);
40
   }
41
```

5.6 后缀数组-wrz

```
1 // 对都是数字的数组做SA时要保证数组中没有O, 否则height
         等可能由于s[0]=s[n+1]=0出问题
  // 多次使用要保证s[0]=s[n+1]=0
char s[N];
  int n, t1[N], t2[N], sa[N], rank[N], sum[N], height[N], lef, rig; // 数组开两倍
   void SA_build()
        int *x = t1, *y = t2, m = 30;
for(int i = 1; i <= n; i++) sum[x[i] = s[i] - 'a'
                1]++;
        for(int i = 1; i <= m; i++) sum[i] += sum[i-1];
for(int i = n; i >= 1; i--) sa[sum[x[i]]--] = i;
for(int k = 1; k <= n; k <<= 1)</pre>
             int p = 0; for(int i = n-k+1; i <= n; i++) y[++p] = i; for(int i = 1; i <= n; i++) if(sa[i] - k > 0)
15
                   y[++p] = sa[i] - k;
             for(int i = 1; i <= m; i++) sum[i] = 0;
17
             for(int i = 1; i <= n; i++) sum[x[i]]++; for(int i = 1; i <= m; i++) sum[i] += sum[i]
19
                   -1];
20
             for(int i = n; i >= 1; i--) sa[sum[x[y[i]]]--]
                    = y[i];
             24
             m = x[sa[n]];
26
             if(m == n) break;
27
        for(int i = 1; i <= n; i++) rank[sa[i]] = i;
for(int i = 1, k = 0; i <= n; height[rank[i++]] =
             k?k-:k)
for(; s[i+k] == s[sa[ran[i]-1]+k] && i+k \le n
30
                   && sa[ran[i]-1]+k <= n; k++);
31 }
```

5.7 后缀数组 **SAIS**

```
// string is 0-based
// sa[] is 1-based
// s[] is 1-based
// s[] is 1-based
// s[] is a 0...n-1
namespace SA {
    int sa[MAXN], rk[MAXN], ht[MAXN], s[MAXN << 1], t[
        MAX << 1], p[MAXN], cnt[MAXN], cur[MAXN];
#define pushS(x) sa[cur[s[x]]--] = x
#define pushL(x) sa[cur[s[x]]++] = x
#define inducedSort(v) std::fill_n(sa, n, -1); std::
    fill_n(cnt, m, 0);
    for (int i = 0; i < n; i++) cnt[s[i]]++;\
    for (int i = 0; i < n; i++) cur[i] = cnt[i-1];\
    for (int i = 0; i < m; i++) cur[i] = cnt[i]-1;\
    for (int i = n1-1; ~i; i--) pushS(v[i]);\
    for (int i = 0; i < n; i++) cur[i] = cnt[i-1];\
    for (int i = 0; i < n; i++) if (sa[i] > 0 && t[sa [i]-1]) pushL(sa[i]-1);\
    for (int i = 0; i < m; i++) cur[i] = cnt[i]-1;\
    for (int i = n-1; ~i; i--) if (sa[i] > 0 && !t[sa [i]-1]) pushS(sa[i]-1)
    void sais(int n, int m, int *s, int *t, int *p) {
```

```
int n1 = t[n-1] = 0, ch = rk[0] = -1, *s1 = s+
             for (int i = n-2; ~i; i--) t[i] = s[i] == s[i
+1] ? t[i+1] : s[i] > s[i+1];
for (int i = 1; i < n; i++) rk[i] = t[i-1] &&
                 (int i = 1; i < n; i++) rl
!t[i] ? (p[n1] = i, n1++)
20
             inducedSort(p);
            for (int i =
                            0, x, y; i < n; i++) if (~(x = rk)
22
                  [sa[i]])) {
                 if (ch < 1 || p[x+1] - p[x] != p[y+1] - p[
     y]) ch++;</pre>
                 else for (int j = p[x], k = p[y]; j \le p[x + 1]; j++, k++)
                      if ((s[j] << 1|t[j]) != (s[k] << 1|t[k]))
28
            27
28
            for (int i = 0; i < n1; i++) s1[i] = p[sa[i]];
       inducedSort(s1); }
int mapCharToInt(int n, const T *str) {
30
31
             int m = *std::max_element(str, str+n);
            35
       return rk[m]; }
void suffixArray(int n, const T *str) {
38
            int m = mapCharToInt(++n, str);
            for (int i = 0; i < n; i++) rk[sa[i]] = i;
for (int i = 0, h = ht[0] = 0; i < n-1; i++) {</pre>
42
                 int j = sa[rk[i]-1];
while (i+h < n \&\& j+h < n \&\& s[i+h] == s[j]
43
                       +h1) h++:
                 if (ht[rk[i]] = h) h--; } };
```

5.8 后缀自动机-wrz

```
struct SAM
  SAM *next[A], *fail;
int len, mi, mx;
}mem[N], *tot, *null, *root, *last, *q[N];
  SAM *newSAM(int len)
         SAM *p = ++tot;
        *p = *null;
p->len = p->mi = len;
p->mx = 0;
         return p;
13
   void init()
14
15
        null = tot = mem;
for(int i = 0; i < A; i++) null->next[i] = null;
null->fail = null;
null->len = null->mi = null->mx = 0;
17
18
         root = last = newSAM(0);
21
   void extend(int v)
22
23
         SAM *p = last, *np = newSAM(p->len + 1); last = np
        for(; p->next[v] == null && p != null; p = p->fail
    ) p->next[v] = np;
if(p==null) np->fail = root;
25
27
         else
28
               SAM *q = p->next[v];
29
               if(q->len == p->len+1) np->fail = q;
               else
32
                    SAM *nq = newSAM(p->len+1);
33
                    memcpy(nq->next, q->next, sizeof(nq->next)
                    nq->fail = q->fail;
                    q->fail = np->fail = nq;
                    for(; p->next[v] == q && p != null; p = p ->fail) p->next[v] = nq;
37
              }
38
        }
```

5.9 扩展后缀自动机-wrz

```
null = tot = mem; null->fail = null; null->len =
       for(int i = 0; i < A; i++) null->next[i] = null;
      root = newsam();
15
  }
16
  sam* extend(sam *p, int v)
      if(p->next[v] != null)
19
           sam *q = p->next[v];
if(p->len + 1 == q->len) return q;
           else
25
                sam *nq = newsam(); *nq = *q; nq -> len = p
                    ->len + 1;
                q->fail = nq;
                return nq;
           }
           sam *np = newsam(); np->len = p->len + 1;
for(; p->next[v] == null && p != null; p = p->
    fail) p->next[v] = np;
           if(p == null) np->fail = root;
36
           else
               else
                    sam *nq = newsam(); *nq = *q; nq -> len
                            ->len + 1
                    np->fail = q->fail = nq;
for(; p->next[v] == q && p != null; p
                          p->fail) p->next[v] = nq;
               }
46
47
           return np;
  }
  void build_tree()
50
51
      for(sam *i = tot; i != mem; i--)
52
           addedge(i->fail - mem, i - mem);
  }
```

5.10 结论

5.10.1 双回文串

如果 $s = x_1x_2 = y_1y_2 = z_1z_2, |x_1| < |y_1| < |z_1|, x_2, y_1, y_2, z_1$ 是回文串,则 x_1 和 z_2 也是回文串,

则 x_1 和 z_2 也是回文串. **5.10.2 Border 的结构**

字符串 s 的所有不小于 |s|/2 的 border 长度组成一个等差数列.

字符串 s 的所有 border 按长度排序后可分成 $O(\log |s|)$ 段, 每段是一个等差数列. 回文串的回文后缀同时也是它的 border.

5.10.3 子串最小后缀

设 s[p..n] 是 s[i..n], $(l \le i \le r)$ 中最小者,则 minsuf(l, r) 等于 s[p..r] 的 最短非空 border. $minsuf(l, r) = min\{s[p..r], minsuf(r - 2^k + 1, r)\}$, $(2^k < r - l + 1 < 2^{k+1})$.

5.10.4 子串最大后缀

从左往右扫,用 set 维护后缀的字典序递减的单调队列,并在对应时刻添加"小于事件"点以便在之后修改队列;查询直接在 set 里 lower_bound.

6 其他

6.1 蔡勒公式

```
int zeller(int y,int m,int d) {
    if (m<=2) y--,m+=12; int c=y/100; y%=100;
    int w=((c>>2)-(c<<1)+y+(y>>2)+(13*(m+1)/5)+d-1)%7;
    if (w<0) w+=7; return(w);
}</pre>
```

6.2 dancing-links

```
struct Node {
         Node *1, *r, *u, *d, *col;
         int size, line_no;
         Node() {
               size = 0; line_no = -1;
l = r = u = d = col = NULL;
   } *root;
   void cover(Node *c) {
         c->1->r = c->r; c->r->1 = c->1;
         for (Node *u = c->d; u != c; u = u->d)
for (Node *v = u->r; v != u; v = v->r) {
                     v->d->u = v->u;
v->u->d = v->d;
13
                      -- v->col->size;
15
               }
16
17
   void uncover(Node *c) {
   for (Node *u = c->u; u != c; u = u->u) {
      for (Node *v = u->1; v != u; v = v->1) {
```

```
++ v->col->size;
                       v \rightarrow u \rightarrow d = v:
22
                      v \rightarrow d \rightarrow u = v;
23
24
25
          c \rightarrow 1 \rightarrow r = c; c \rightarrow r \rightarrow 1 = c;
26
27
    std::vector<int> answer;
28
    bool search(int k) {
          if (root->r == root) return true;
Node *r = NULL;
for (Node *u = root->r; u != root; u = u->r)
    if (r == NULL || u->size < r->size)
        r = u;
if (r == NULL || root; u = u->r)
31
32
33
          if (r == NULL || r->size == 0) return false;
35
          else {
36
                 cover(r);
                bool succ = false;
for (Node *u = r->d; u != r && !succ; u = u->d
39
                       answer.push_back(u->line_no);
                       42
                       succ |= search(k + 1);
for (Node *v = u->1; v != u; v = v->1)
    uncover(v->col);
43
                       if (!succ) answer.pop_back();
46
47
                 uncover(r);
49
                return succ;
50
51
    bool entry[CR][CC];
Node *who[CR][CC];
52
    int cr, cc;
void construct() {
55
          root = new Node();
Node *last = root;
for (int i = 0; i < cc; ++ i) {</pre>
58
                59
62
                                            < cr; ++ j)
63
                                                                                            10
                             Node *cur = new Node();
who[j][i] = cur;
cur->line_no = j;
68
66
                                                                                            11
67
                                                                                            12
                             cur->col = u;
cur->u = v; v->d = cur;
69
70
                             v = cur;
72
                                                                                            16
                v -> d = u; u -> u = v;
73
74
                                                                                            17
          last->r = root; root->l = last;
          76
77
78
                             break:
81
82
                      (int i = 0; i < cc; ++ i)
if (entry[j][i]) {
    last->r = who[j][i];
                                                                                            25
85
                             who[j][i]->1 =
                                                                                            26
86
                                                    last;
                             last = who[j][i];
87
                       }
          }
89
90
    void destruct() {
          for (Node *u = root->r; u != root; ) {
    for (Node *v = u->d; v != u; ) {
        Node *nxt = v->d;
93
                       delete(v);
                       v = nxt;
                                                                                            31
                 Node *nxt = u->r;
98
                 delete(u); u = nxt;
                                                                                            32
                                                                                            33
101
          delete root;
                                                                                            34
102
                                                                                            35
```

枚举子集 6.3

```
(int x = 1; x <= n; x++)
for (int y = x & (x - 1); y; (--y) &= x) {
for (int y = x & (x - 1 //y is a subset of x
```

6.4 梅森旋转

```
41
#include <random>
int main() {
                                                                                       43
      std::mt19937 g(seed); // std::mt19937_64
std::cout << g() << std::endl;</pre>
                                                                                       44
```

6.5 大数乘法取模

```
// 需要保证 x 和 y 非负
long long mult(long long x, long long y, long long MODN) {
  }
```

7 提示 7.1 Vimrc

```
set ru nu ts=4 sts=4 sw=4 si sm hls is ar bs=2 mouse=a
 syntax on
 nm <F3> :vsplit %<.in <CR>
nm <F4> :!gedit % <CR>
nm <F4>:!gedit % <CR>
au BufEnter *.cpp set cin
au BufEnter *.cpp nm <F5> :!time ./%< <CR>|nm <F7> :!
        gdb ./%< <CR>|nm <F8> :!time ./%< < %<.in <CR>|nm
        <F9> :!g+ % -o %< -g -std=gnu++14 -O2 -DLOCAL -
        Wall -Wconversion && size %< <CR>
au BufEnter *.java nm <F5> :!time java %< <CR>|nm <F8>
        :!time java %< <CR>|nm <F9> :!javac %</CR</pre>
```

make 支持 c++11 7.2

```
export CXXFLAGS='-std=c++11_-Wall'
source .bashrc
```

7.3 Java

39

40

```
import java.util.*;
import java.math.*;
public class javaNote
     static BigInteger q[] = new BigInteger[5000000];
         // 定义数组的正确姿势,记得分配内存
    public static void main(String[] args)
         long currentTime = System.currentTimeMillis(); // 获取时间, 单位是ms
         Scanner sc = new Scanner(System.in); // 定义输
         int a = sc.nextInt(), b;
         System.out.println("integeru=u" + a); // 输出
         BigInteger x = new BigInteger("233"), y = new
BigInteger("666");
         BigInteger.valueOf(1); // 将指定的表达式转化成
              BigInteger 类型
         x.add(y); //x+y
x.subtract(y); //x-y
         x.multiply(y); //x*y
x.divide(y);
         x.pow(233); // x**233
         x.compareTo(y); // 比較x和y, x < y : -1, x = y : 0, x > y : 1
         BigDecimal n = new BigDecimal("233"), m = new
              BigDecimal("666")
         n.divide(m,a,RoundingMode.DOWN); //n/m并精确到
              小数点后第a位, a=0表示精确到个位, a为负数
              表示精确到小数点前-a+1位,可能变成科学计数
              取整方式
              RoundingMode.CEILING: 取右边最近的整数, 即
                   向正无穷取整
              RoundingMode.FLOOR: 取左边最近的整数, 即向
                   负无穷取整
              RoundingMode.DOWN: 向O取整
              RoundingMode.UP: 远离O取整
              RoundingMode.HALF_UP:上取整的四舍五入,
>=0.5会进位, <0.5会舍去, 负数会先取绝
对值再四舍五入再变回负数
              RoundingMode .HALF_DOWN: 下取整的四舍五入,
>0.5会进位, <=0.5会舍去, 负数原理同上
RoundingMode .HALF_EVEN: 分奇偶的四舍五入,
>0.5会进位, <0.5会舍去, =0.5会向最近的
                   偶数取整, 如2.5->2, (-2.5)->(-2)
         Math.max(a, b);//取大
Math.min(a, b);//取小
         Math.PI;//pi
         HashSet<BigInteger> hash = new HashSet<</pre>
         BigInteger>(); // hash table
hash.contains(x); // hash table中是否有a, 有则返回true, 反之返回false
hash.add(x); // 把x加进hash table
```

Talisman's template base Page 24

```
hash.remove(x); // 从hash table中删去x
          Arrays.sort(arr, 1, n+1); // arr 是需要排序的数组, 后两个参数分别是排序的起始位置和结束位置+1, 还可以有第四个参数是比较函数
          // Arrays.sort(arr, a, b, cmp) = sort(arr+a,
49
              arr+b, cmp)
50
51
      53
54
             / 2);
      BigInteger d2 = d;
56
          BigInteger y = d.add (x.divide (d)).shiftRight
57
          if (y.equals (d) || y.equals (d2)) return d.
58
              min (d2):
          d2 = d; d = y; }
```

7.4 cout 输出小数

```
std::cout << std::fixed << std::setprecision(5);
```

7.5 释放容器内存

```
template <typename T>
__inline void clear(T& container) {
    container.clear(); // 或者删除了一堆元素
    T(container).swap(container);
}
```

7.6 tuple

```
mytuple = std::make_tuple (10, 2.6, 'a');  //
   packing values into tuple
std::tie (myint, std::ignore, mychar) = mytuple;  //
        unpacking tuple into variables
std::get<I>(mytuple) = 20;
std::cout << std::get<I>(mytuple) << std::endl;  //
        get the Ith(const) element</pre>
```

7.7 读入优化 & 手开 O3

```
1 // getchar()读入优化 << 关同步cin << 此优化
2 // 用isdigit()会小幅变慢
3 // 返回 false 表示读到文件尾
4 #define ____inline __attribute__((_gnu_inline__, __artificial__))
5 namespace Reader {
     namespace Reader {
   const int L = (1 << 15) + 5;
   char buffer[L], *S, *T;</pre>
                __inline bool getchar(char &ch) {
    if (S == T) {
        T = (S = buffer) + fread(buffer, 1, L,
11
                                           stdin);
(S == T) {
ch = EOF;
                                                return false:
14
15
16
                           ch = *S++;
17
                          return true;
18
19
                f
--inline bool getint(int &x) {
    char ch; bool neg = 0;
    for (; getchar(ch) && (ch < '0' || ch > '9');
        ) neg ^= ch == '-';
    if (ch == EOF) return false;
    x = ch - '0';
    for (; getchar(ch) -ch > '0' | ch > '9');
21
22
                          for (; getchar(ch), ch >= '0' && ch <= '9'; )
    x = x * 10 + ch - '0';
if (neg) x = -x;
25
26
                           return true;
                }
29
30
```

7.8 手开栈

The following lines allow the program to use larger stack memory.

8 附录-数学公式

8.1

8.1.1 Mobius Inversion

$$F(n) = \sum_{d|n} f(d) \Rightarrow f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$$

$$F(n) = \sum_{n|d} f(d) \Rightarrow f(n) = \sum_{n|d} \mu(\frac{d}{n}) F(d)$$

$$[x = 1] = \sum_{d|x} \mu(d), \quad x = \sum_{d|x} \mu(d)$$

8.1.2 Arithmetic Function

$$(p-1)! \equiv -1 \pmod{p}$$
 $a > 1, m, n > 0$, then $\gcd(a^m - 1, a^n - 1) = a^{\gcd(n, m)} - 1$
 $a > b, \gcd(a, b) = 1$, then $\gcd(a^m - b^m, a^n - b^n) = a^{\gcd(m, n)} - b^{\gcd(m, n)}$

$$\prod_{k=1, gcd(k, m)=1}^{m} k \equiv \begin{cases} -1 & \mod{m, m = 4, p^q, 2p^q} \\ 1 & \mod{m, \text{ otherwise}} \end{cases}$$

$$\sigma_k(n) = \sum_{d|n} d^k = \prod_{i=1}^{\omega(n)} \frac{p_i^{(a_i+1)k} - 1}{p_i^k - 1}$$

$$J_k(n) = n^k \prod_{i=1}^{m} (1 - \frac{1}{p^k})$$

 $J_k(n)$ is the number of k-tuples of positive integers all less than or equal to n that form a coprime (k+1)-tuple together with n.

$$\sum_{\delta|n} J_k(\delta) = n^k$$

$$\sum_{\delta|n} \delta^s J_r(\delta) J_s(\frac{n}{\delta}) = J_{r+s}(n)$$

$$\sum_{\delta|n} \varphi(\delta) d(\frac{n}{\delta}) = \sigma(n), \ \sum_{\delta|n} |\mu(\delta)| = 2^{\omega(n)}$$

$$\sum_{\delta|n} 2^{\omega(\delta)} = d(n^2), \ \sum_{\delta|n} d(\delta^2) = d^2(n)$$

$$\sum_{\delta|n} d(\frac{n}{\delta}) 2^{\omega(\delta)} = d^2(n), \ \sum_{\delta|n} \frac{\mu(\delta)}{\delta} = \frac{\varphi(n)}{n}$$

$$\sum_{\delta|n} \frac{\mu(\delta)}{\varphi(\delta)} = d(n), \ \sum_{\delta|n} \frac{\mu^2(\delta)}{\varphi(\delta)} = \frac{n}{\varphi(n)}$$

$$n|\varphi(a^n - 1)$$

$$\sum_{\substack{1 \le k \le n \\ \gcd(k, n) = 1}} f(\gcd(k - 1, n)) = \varphi(n) \sum_{d|n} \frac{(\mu * f)(d)}{\varphi(d)}$$

$$\varphi(\operatorname{lcm}(m, n)) \varphi(\gcd(m, n)) = \varphi(m) \varphi(n)$$

$$\sum_{\delta|n} d^3(\delta) = (\sum_{\delta|n} d(\delta))^2$$

$$d(uv) = \sum_{\delta|\gcd(u, v)} \mu(\delta) d(\frac{u}{\delta}) d(\frac{v}{\delta})$$

$$\sigma_k(u) \sigma_k(v) = \sum_{\delta|\gcd(u, v)} \delta^k \sigma_k(\frac{uv}{\delta^2})$$

$$\mu(n) = \sum_{k=1}^n [\gcd(k, n) = 1] \cos 2\pi \frac{k}{n}$$

$$\varphi(n) = \sum_{k=1}^n [\gcd(k, n) = 1] = \sum_{k=1}^n \gcd(k, n) \cos 2\pi \frac{k}{n}$$

$$\begin{cases} S(n) = \sum_{k=1}^n (f * g)(k) \\ \sum_{k=1}^n (f * g)(k) \end{cases}$$

$$\begin{cases} S(n) = \sum_{k=1}^{n} (f \cdot g)(k), g \text{ completely multiplicative} \\ \sum_{k=1}^{n} S(\lfloor \frac{n}{k} \rfloor) g(k) = \sum_{k=1}^{n} (f * 1)(k) g(k) \end{cases}$$

8.1.3 Binomial Coefficients

$$\binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \quad \sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

$$\sum_{k=0}^n \binom{k}{m} = \binom{n+1}{m+1}$$

$$\sqrt{1+z} = 1 + \sum_{k=1}^\infty \frac{(-1)^{k-1}}{k \times 2^{2k-1}} \binom{2k-2}{k-1} z^k$$

$$\sum_{k=0}^r \binom{r-k}{m} \binom{s+k}{n} = \binom{r+s+1}{m+n+1}$$

$$C_{n,m} = \binom{n+m}{m} - \binom{n+m}{m-1}, n \ge m$$

$$\binom{n}{k} \equiv [n\&k = k] \pmod{2}$$

$$\binom{n_1 + \dots + n_p}{m} = \sum_{k_1 + \dots + k_n = m} \binom{n_1}{k_1} \dots \binom{n_p}{k_p}$$

8.1.4 Fibonacci Number

$$F(z) = \frac{z}{1 - z - z^2}$$

$$f_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}, \phi = \frac{1 + \sqrt{5}}{2}, \hat{\phi} = \frac{1 - \sqrt{5}}{2}$$

$$\sum_{k=1}^n f_k = f_{n+2} - 1, \quad \sum_{k=1}^n f_k^2 = f_n f_{n+1}$$

$$\sum_{k=0}^n f_k f_{n-k} = \frac{1}{5}(n-1)f_n + \frac{2}{5}nf_{n-1}$$

$$\frac{f_{2n}}{f_n} = f_{n-1} + f_{n+1}$$

$$f_1 + 2f_2 + 3f_3 + \dots + nf_n = nf_{n+2} - f_{n+3} + 2]$$

$$\gcd(f_m, f_n) = f_{\gcd(m, n)}$$

$$f_n^2 + (-1)^n = f_{n+1}f_{n-1}$$

$$f_{n+k} = f_n f_{k+1} + f_{n-1}f_k$$

$$f_{2n+1} = f_n^2 + f_{n+1}^2$$

$$(-1)^k f_{n-k} = f_n f_{k-1} - f_{n-1}f_k$$
Modulo $f_n, f_{mn+r} \equiv \begin{cases} f_r, & m \bmod 4 = 0; \\ (-1)^{r+1}f_{n-r}, & m \bmod 4 = 2; \\ (-1)^{r+1+n}f_{n-r}, & m \bmod 4 = 3. \end{cases}$

8.1.5 Lucas Numbers

$$L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2} = \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1-\sqrt{5}}{2}\right)^n$$
$$L(x) = \frac{2-x}{1-x-x^2}$$

8.1.6 Catlan Numbers

$$c_{1} = 1, c_{n} = \sum_{i=0}^{n-1} c_{i} c_{n-1-i} = c_{n-1} \frac{4n-2}{n+1} = \frac{\binom{2n}{n}}{n+1} = \binom{2n}{n} - \binom{2n}{n-1}$$
8.1.12 Pentagonal Number Theorem

$$c(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

Usage: n 对括号序列; n 个点满二叉树; n*n 的方格左下到右上不过对角线方案数; 凸 n+2 边形三角形分割数; n 个数的出栈方案数; 2n 个顶点连接, 线段两两不交的方案数.

8.1.7 Stirling Cycle Numbers

把 n 个元素集合分作 k 个非空环方案数.

$$s(n,0) = 0, s(n,n) = 1, s(n+1,k) = s(n,k-1) - nS(n,k)$$

$$s(n,k) = (-1)^{n-k} \begin{bmatrix} n \\ k \end{bmatrix}$$

$$\begin{bmatrix} n+1 \\ k \end{bmatrix} = n \begin{bmatrix} n \\ k \end{bmatrix} + \begin{bmatrix} n \\ k-1 \end{bmatrix}, \begin{bmatrix} n+1 \\ 2 \end{bmatrix} = n!H_n$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k, \quad x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k$$

8.1.8 Stirling Subset Numbers

把 n 个元素集合分作 k 个非空子集方案数。

$${n+1 \choose k} = k {n \choose k} + {n \choose k-1}$$

$$x^n = \sum_k {n \choose k} x^{\underline{k}} = \sum_k {n \choose k} (-1)^{n-k} x^{\overline{k}}$$

$$m! {n \choose m} = \sum_k {m \choose k} k^n (-1)^{m-k}$$

For fixed k, generating funct

$$\sum_{n=0}^{\infty} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{n-k} = \prod_{r=1}^{k} \frac{1}{1 - rx}$$

圆上 n 点间画不相交弦的方案数. 选 n 个数 $k_1,k_2,...,k_n \in \{-1,0,1\}$,保证 $\sum_i^a k_i (1 \le a \le n)$ 非负且所有数总和为 0 的方案

$$M_{n+1} = M_n + \sum_{i=0}^{n-1} M_i M_{n-1-i} = \frac{(2n+3)M_n + 3nM_{n-1}}{n+3}$$

$$M_n = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} Catlan(k)$$

$$M(X) = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}$$

8.1.10 Eulerian Numbers

8.1.11 Harmonic Numbers

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$

$$\sum_{k=1}^{n} kH_k = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}$$

$$\sum_{k=1}^{n} \binom{k}{m} H_k = \binom{n+1}{m+1} (H_{n+1} - \frac{1}{m+1})$$

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=-\infty}^{\infty} (-1)^k x^{k(3k-1)/2}$$

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots$$

$$f(n,k) = p(n) - p(n-k) - p(n-2k) + p(n-5k) + p(n-7k) - \cdots$$

8.1.13 Bell Numbers

n 个元素集合划分的方案数.

$$B_n = \sum_{k=1}^n {n \brace k}, \quad B_{n+1} = \sum_{k=0}^n {n \brack k} B_k$$

$$B_{p^m+n} \equiv mB_n + B_{n+1} \pmod{p}$$

$$B(x) = \sum_{n=0}^\infty \frac{B_n}{n!} x^n = e^{e^x - 1}$$

8.1.14 Bernoulli Numbers

$$B_n = 1 - \sum_{k=0}^{n-1} \binom{n}{k} \frac{B_k}{n - k + 1}$$

$$G(x) = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k = \frac{1}{\sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k} B_k n^{m-k+1}$$

8.1.15 Sum of Powers

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^{3} = (\frac{n(n+1)}{2})^{2}$$

$$\sum_{i=1}^{n} i^{4} = \frac{n(n+1)(2n+1)(3n^{2}+3n-1)}{30}$$

$$\sum_{i=1}^{n} i^{5} = \frac{n^{2}(n+1)^{2}(2n^{2}+2n-1)}{12}$$

8.1.16 Sum of Squares

 $r_k(n)$ 表示用 k 个平方数组成 n 的方案数. 假设:

$$n = 2^{a_0} p_1^{2a_1} \cdots p_r^{2a_r} q_1 b_1 \cdots q_s b_s$$

其中 $p_i \equiv 3 \mod 4$, $q_i \equiv 1 \mod 4$, 那么

$$r_2(n) = \begin{cases} 0 & \text{if any } a_i \text{ is a half-integer} \\ 4 \prod_{i=1}^{r} (b_i + 1) & \text{if all } a_i \text{ are integers} \end{cases}$$

 $r_3(n) > 0$ 当且仅当 n 不满足 $4^a(8b+7)$ 的形式 (a,b) 为整数).

8.1.17 Pythagorean Triple

枚举 $x^2+y^2=z^2$ 的三元组: 可令 $x=m^2-n^2, y=2mn, z=m^2+n^2,$ 枚举 m 和 n 即可 O(n) 枚举勾股数. 判断素勾股数方法: m,n 至少一个为偶数并且 m,n 互质, 那么 x,y,z 就是素勾股数.

8.1.18 Tetrahedron Volume

If U, V, W, u, v, w are lengths of edges of the tetrahedron (first three form a triangle; u opposite to U and so on)

$$V = \frac{\sqrt{4u^2v^2w^2 - \sum_{cyc} u^2(v^2 + w^2 - U^2)^2 + \prod_{cyc} (v^2 + w^2 - U^2)}}{12}$$

8.1.19 杨氏矩阵与钩子公式

满足: 格子 (i,j) 没有元素,则它右边和上边相邻格子也没有元 素; 格子 (i,j) 有元素 a[i][j], 则它右边和上边相邻格子要么没有元素,要么有元素且比 a[i][j] 大.

计数: $F_1 = 1, F_2 = 2, F_n = F_{n-1} + (n-1)F_{n-2}, F(x) = e^{x + \frac{x^2}{2}}$ 钩子公式: 对于给定形状 λ , 不同杨氏矩阵的个数为:

$$d_{\lambda} = \frac{n!}{\prod h_{\lambda}(i,j)}$$

 $h_{\lambda}(i,j)$ 表示该格子右边和上边的格子数量加 1.

8.1.20 重心

半径为 r , 圆心角为 θ 的扇形重心与圆心的距离为 $\frac{4r\sin(\theta/2)}{3\theta}$ 半径为 r , 圆心角为 θ 的圆弧重心与圆心的距离为 $\frac{4r\sin^3(\theta/2)}{3(\theta-\sin(\theta))}$

8.1.21 常见游戏

Anti-Nim 游戏 n 堆石子 轮流拿,谁走最后一步输。结论: 先手胜当且仅当 1. 所有堆石子 数都为 1 且游戏的 SG 值为 0 (即有偶数个孤单堆-每堆只有 1 个石子数) 2. 存在某堆石子数 大于 1 且游戏的 SG 值不为 0. 大于 1 且游戏的 SG 值不为 0. **斐波那契博弈** 有一堆物品,两人轮流取物品,先手最少取一个,至多无上限,但不能把物品取完,之后每次取的物品数的二倍取完,之后每次取的物品数的二倍担至少为一件,取走最后一件物品的人获胜. 结论: 先手胜当且仅当物品数 n 不是斐波那契数.

威佐夫博弈 有两堆石子,博 奔双方每次可以取一堆石子中的任意个,不能不取,或者取两 堆石子中的相同个. 先取完者 赢. 结论: 求出两堆石子 A和 B 的差值 C, 如果 $\left| C * \frac{\sqrt{5}+1}{2} \right| =$ min(A,B) 那么后手赢, 否则先

约瑟夫环 令 n 个人标号为 0,1,2,...,n-1, 令 $f_{i,m}$ 表示 i 个人报 m 胜利者的编号,则 $f_{1,m} = 0, f_{i,m} = (f_{i-1,m} + f_{i,m})$

8.1.22 错排公式

$$D_1 = 0, D_2 = 1, D_n = n! \left(\frac{1}{0!} - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}\right)$$
$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

8.1.23 概率相关

对于随机变量 X, 期望用 E(X) 表示, 方差用 D(X) 表示, 则 $D(X) = E(X - E(X))^2 = E(X^2) - (E(X))^2, D(X + Y) =$ $D(X) + D(Y)D(aX) = a^2D(X)$

$$E[x] = \sum_{i=1}^{\infty} P(X \ge i)$$

8.1.24 常用泰勒展开

$$f(x) = \frac{f(x_0)}{0!} + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots$$
$$\frac{1}{(1 - x)^n} = 1 + \binom{n}{1}x + \binom{n+1}{2}x^2 + \binom{n+2}{3}x^3 + \cdots$$
$$e^x = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^i}{5!}$$

8.1.25 Others (某些近似数值公式在这里)

$$S_{j} = \sum_{k=1}^{n} x_{k}^{j}$$

$$h_{m} = \sum_{1 \leq j_{1} < \dots < j_{m} \leq n} x_{j_{1}} \dots x_{j_{m}}, \quad H_{m} = \sum_{1 \leq j_{1} \leq \dots \leq j_{m} \leq n} x_{j_{1}} \dots x_{j_{m}}$$

$$h_{n} = \frac{1}{n} \sum_{k=1}^{n} (-1)^{k+1} S_{k} h_{n-k}$$

$$H_{n} = \frac{1}{n} \sum_{k=1}^{n} S_{k} H_{n-k}$$

$$\sum_{k=0}^{n} k c^{k} = \frac{n c^{n+2} - (n+1) c^{n+1} + c}{(c-1)^{2}}$$

$$\sum_{k=0}^{n} \ln(n) + \Gamma, (\Gamma \approx 0.57721566490153286060651209)$$

$$\sum_{i=1}^{n} = \ln(n) + \Gamma, (\Gamma \approx 0.57721566490153286060651209)$$

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + O\left(\frac{1}{n^3}\right)\right)$$

 $\max\{x_a - x_b, y_a - y_b, z_a - z_b\} - \min\{x_a - x_b, y_a - y_b, z_a - z_b\}$ $= \frac{1}{2} \sum |(x_a - y_a) - (x_b - y_b)|$

$$(a+b)(b+c)(c+a) = \frac{(a+b+c)^3 - a^3 - b^3 - c^3}{3}$$

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2), a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

$$a^n + b^n = (a+b)(a^{n-1} - a^{n-2}b + a^{n-3}b^2 - \dots - ab^{n-2} + b^{n-1})(n \bmod 2 = 1)$$
划分问题: $n \uparrow k - 1$ 维向量最多把 k 维空间分为 $\sum_{i=0}^k C_n^i$ 份.

Binomial coefficients

$$\binom{n}{k} = (-1)^k \binom{k-n-1}{k}, \quad \sum_{k \le n} \binom{r+k}{k} = \binom{r+n+1}{n}$$

$$\sum_{k=0}^{n} {k \choose m} = {n+1 \choose m+1}$$

$$\sqrt{1+z} = 1 + \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k \times 2^{2k-1}} {2k-2 \choose k-1} z^k$$

$$\sum_{k=0}^{r} {r-k \choose m} {s+k \choose n} = {r+s+1 \choose m+n+1}$$

$$C_{n,m} = {n+m \choose m} - {n+m \choose m-1}, n \ge m$$

$${n \choose k} \equiv [n\&k = k] \pmod{2}$$

$${n_1 + \dots + n_p \choose m} = \sum_{k_1 + \dots + k_n = m} {n_1 \choose k_1} \dots {n_p \choose k_p}$$

Fibonacci numbers

$$F(z) = \frac{z}{1-z-z^2}$$

$$f_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}, \phi = \frac{1+\sqrt{5}}{2}, \hat{\phi} = \frac{1-\sqrt{5}}{2}$$

$$\sum_{k=1}^n f_k = f_{n+2} - 1, \quad \sum_{k=1}^n f_k^2 = f_n f_{n+1}$$

$$\sum_{k=0}^n f_k f_{n-k} = \frac{1}{5}(n-1)f_n + \frac{2}{5}nf_{n-1}$$

$$\frac{f_{2n}}{f_n} = f_{n-1} + f_{n+1}$$

$$f_1 + 2f_2 + 3f_3 + \dots + nf_n = nf_{n+2} - f_{n+3} + 2]$$

$$\gcd(f_m, f_n) = f_{\gcd(m, n)}$$

$$f_n^2 + (-1)^n = f_{n+1}f_{n-1}$$

$$f_{n+k} = f_n f_{k+1} + f_{n-1}f_k$$

$$f_{2n+1} = f_n^2 + f_{n+1}^2$$

$$(-1)^k f_{n-k} = f_n f_{k-1} - f_{n-1}f_k$$

$$m \mod 4 = 0;$$

$$(-1)^{n+1}f_{n-r}, \quad m \mod 4 = 1;$$

$$(-1)^n f_r, \quad m \mod 4 = 2;$$

$$(-1)^{r+1+n}f_{n-r}, \quad m \mod 4 = 3.$$

Period modulo a prime p is a factor of 2p + 2 or p - 1. Only exception: G(5) = 20.

Period modulo the power of a prime p^k : $G(p^k) = G(p)p^{k-1}$. Period modulo $n = p_1^{k_1}...p_m^{k_m}$: $G(n) = lcm(G(p_1^{k_1}),...,G(p_m^{k_m}))$

Lucas numbers

$$L_0 = 2, L_1 = 1, L_n = L_{n-1} + L_{n-2} = \left(\frac{1+\sqrt{5}}{2}\right)^n + \frac{1-\sqrt{5}}{2}^n$$

$$L(x) = \frac{2-x}{1-x-x^2}$$

Catlan numbers

$$c_1 = 1, c_n = \sum_{i=0}^{n-1} c_i c_{n-1-i} = c_{n-1} \frac{4n-2}{n+1} = \frac{\binom{2n}{n}}{n+1}$$
$$= \binom{2n}{n} - \binom{2n}{n-1}, c(x) = \frac{1-\sqrt{1-4x}}{2x}$$

Stirling cycle numbers Divide n elements into k non-empty cycles.

$$s(n,0) = 0, s(n,n) = 1, s(n+1,k) = s(n,k-1) - ns(n,k)$$

$$s(n,k) = (-1)^{n-k} {n \brack k}$$

$${n+1 \brack k} = n {n \brack k} + {n \brack k-1}, {n+1 \brack 2} = n!H_n$$

$$x^{\underline{n}} = x(x-1)...(x-n+1) = \sum_{k=0}^{n} {n \brack k} (-1)^{n-k} x^k$$

$$x^{\overline{n}} = x(x+1)...(x+n-1) = \sum_{k=0}^{n} {n \brack k} x^k$$

Stirling subset numbers Divide n elements into k non-empty subsets

$${n+1 \choose k} = k {n \choose k} + {n \choose k-1}$$
$$x^n = \sum_{k=0}^n {n \choose k} x^{\underline{k}} = \sum_{k=0}^n {n \choose k} (-1)^{n-k} x^{\overline{k}}$$

$$m! {n \brace m} = \sum_{k=0}^{m} {m \choose k} k^{n} (-1)^{m-k}$$
$$\sum_{k=1}^{n} k^{p} = \sum_{k=0}^{p} {p \brace k} (n+1)^{\underline{k}}$$

For a fixed k, generating functions

$$\sum_{n=0}^{\infty} {n \brace k} x^{n-k} = \prod_{r=1}^{k} \frac{1}{1 - rx}$$

 ${f Motzkin\ numbers}$ Draw non-intersecting chords between n points on a circle.

Pick n numbers $k_1, k_2, ..., k_n \in \{-1, 0, 1\}$ so that $\sum_i^a k_i (1 \le a \le n)$ is non-negative and the sum of all numbers is 0.

$$M_{n+1} = M_n + \sum_{i=0}^{n-1} M_i M_{n-1-i} = \frac{(2n+3)M_n + 3nM_{n-1}}{n+3}$$

$$M_n = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} Catlan(k)$$

$$M(X) = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{n+3}$$

Eulerian numbers Permutations of the numbers 1 to n in which exactly k elements are greater than the previous element.

Harmonic numbers Sum of the reciprocals of the first n natural numbers

$$\sum_{k=1}^{n} H_k = (n+1)H_n - n$$

$$\sum_{k=1}^{n} kH_k = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}$$

$$\sum_{k=1}^{n} {k \choose m} H_k = {n+1 \choose m+1} (H_{n+1} - \frac{1}{m+1})$$

Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=-\infty}^{\infty} (-1)^k x^{k(3k-1)/2}$$

$$n(n-1) + n(n-2) - n(n-5) - n(n-7) + \cdots$$

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + \cdots$$

$$f(n,k) = p(n) - p(n-k) - p(n-2k) + p(n-5k) + p(n-7k) - \cdots$$

Bell numbers Divide a set that has exactly n elements.

$$B_n = \sum_{k=1}^n {n \brace k}, \quad B_{n+1} = \sum_{k=0}^n {n \brack k} B_k$$

$$B_{p^m+n} \equiv mB_n + B_{n+1} \pmod{p}$$

$$B(x) = \sum_{k=0}^\infty \frac{B_n}{n!} x^n = e^{e^x - 1}$$

Bernoulli numbers

$$B_n = 1 - \sum_{k=0}^{n-1} \binom{n}{k} \frac{B_k}{n-k+1}$$

$$G(x) = \sum_{k=0}^{\infty} \frac{B_k}{k!} x^k = \frac{1}{\sum_{k=0}^{\infty} \frac{x^k}{(k+1)!}}$$

$$\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k} B_k n^{m-k+1}$$

Sum of powers

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = (\frac{n(n+1)}{2})^2$$

$$\sum_{i=1}^{n} i^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

$$\sum_{i=1}^{n} i^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

Sum of squares Denote $r_k(n)$ the ways to form n with k squares.

$$n = 2^{a_0} p_1^{2a_1} \cdots p_r^{2a_r} q_1 b_1 \cdots q_s b_s$$

where $p_i \equiv 3 \mod 4$, $q_i \equiv 1 \mod 4$, then

$$r_2(n) = \begin{cases} 0 & \text{if any } a_i \text{ is a half-integer} \\ 4\prod_{1}^r (b_i+1) & \text{if all } a_i \text{ are integers} \end{cases}$$

 $r_3(n) > 0$ when and only when n is not $4^a(8b+7)$.

Derangement

$$D_1=0, D_2=1, D_n=n!(\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{(-1)^n}{n!})$$

$$D_n=(n-1)(D_{n-1}+D_{n-2})$$
 Tetrahedron volume If U,V,W,u,v,w are lengths of edges of the tetrahedron (first three form a triangle; u opposite to U and so on)

$$V = \frac{\sqrt{4u^2v^2w^2 - \sum_{cyc} u^2(v^2 + w^2 - U^2)^2 + \prod_{cyc} (v^2 + w^2 - U^2)}}{12}$$