RSA

CS6025 Data Encoding

Yizong Cheng

3-24-15

Residues Relatively Prime to n in Z_n

- If a and b are relatively prime to n, then so is ab or ab mod n.
 - a is relatively prime to n if gcd(a, n) = 1.
- The number of elements in Z_n that are relatively prime to n is the totient number $\phi(n)$.
- If p is prime, then $\phi(p) = p-1$.
- If p and q are prime, then $\phi(pq) = pq 1 (p 1) (q 1) = (p 1)(q 1)$
 - p-1 multiples of q and q-1 multiples of p
- $\phi(6) = 2$, $\phi(10) = 4$, $\phi(15) = 8$, $\phi(35) = 24$.

Z₈ Multiplication and the Group of the Relatively Prime

•	x 1 2 3 4 5 6 7	mod 8,	$\phi(8) = 4$	Power Table
•	11234567		1357	1 1 1 1
•	22460246			
•	3 3 6 1 4 7 2 5		3 1 7 5	3 1 3 1
•	44040404			
•	55274163		5713	5 1 5 1
•	66420642			
•	77654321		7531	7171

Euler's Theorem

- {1,3,5,7} form a multiplication group mod 8.
- $\phi(8) = 4$.
 - (1)(3)(5)(7) = $(\alpha * 1)(\alpha * 3)(\alpha * 5)(\alpha * 7) = \alpha^{\phi(8)}$ (1)(3)(5)(7)
- $\alpha^{\phi(8)}$ = 1 if α is relatively prime to 8.
- In general, $\alpha^{\phi(n)} = 1 \mod n$ if α is relatively prime to n.
- When n is a prime, $\phi(n) = n 1$, and Euler's Theorem becomes Fermat's Theorem.

RSA

- Choose private primes p and q and compute n = pq and $\varphi(n) = (p 1)(q 1)$.
- Choose e, relatively prime to $\phi(n)$, and compute its multiplicative inverse d = e^{-1} mod $\phi(n)$.
 - Common e = 3 or 0x10001 (65537) so that exponentiation by the public is fast.
- Public key (e,n)
- Private key (d,n) or (d,p,q).

RSA Encryption

- Encryption: m < n, C = m^e mod n
- Decryption: m = C^d mod n
- Proof: $m^{ed} \mod n = m^{k\phi(n)+1} \mod n = (m^{\phi(n)} \mod n)^k \mod n = (1)^k m = m$.
- Basis of the proof: Euler's theorem and the assumption that m is relatively prime to n.
- Slightly incomplete: what happens when m is not relatively prime to n?
 - Need the Chinese Remainder Theorem

The Chinese Remainder Theorem

- Suppose three receivers have public keys $(3, n_1)$, $(3, n_2)$, and $(3, n_3)$ and n_1 , n_2 , n_3 are relatively prime (highly likely).
- A encrypts message $m < n_i$ for the three and generates $c_i = m^3 \mod n_i$ for i = 1, 2, 3.
- Anyone seeing the three ciphertexts c_i can use the Chinese Remainder Theorem (CRT) to compute m^3 mod $n_1n_2n_3 = m^3$ and then take cube root to recover the message m.

CRT: One-to-one Correspondence

- $n_1,...,n_k$ relatively prime
- $n = \prod_i n_i$
- A in Z_n corresponds to
- $a_i = A \mod n_i$ in Z_{ni} for i=1,...,k
- The correspondence is one-to-one (bijection) and the inverse is
- $A = \Sigma_i a_i p_i \mod n$,
- where $(m_i=n/n_i)$ and $p_i = m_i(m_i^{-1} \mod n_i)$

RSA Correctness when m=cp

- Now we have m^{ed} mod p = m mod p
- and m^{ed} mod q = m mod q.
- Chinese Remainder Theorem says that the correspondence is one-to-one and thus med mod n is m mod n.
- The actual inverse map can be computed as follows.

Finding (cp)^{ed} mod pq, c<q

- We know that when m=cp, c<q, m^{ed} =m mod q and m^{ed} = 0 mod p
- CRT formula for med mod pq is
- $a_q M_q (M_q^{-1} \mod q) \mod n =$
- (cp mod q)p(p^{-1} mod q) mod n =
- $(cpp^{-1} \mod q)p \mod n = cp \mod n$
- = m mod n.

CRT for RSA Decryption

- The public key, e is often chosen as simple as possible, like 3 or 65537.
- $d=e^{-1} \mod \phi(n)$ may be very large.
- Decryption c^d mod pq can be accelerated using Chinese Remainder Theorem.
- Need to compute c^d mod p, c^d mod q, p⁻¹ mod q, and q⁻¹ mod p.

CRT for RSA Decryption

- Let d mod p-1 be r.
- d = k(p-1) + r
- $c^d \mod p = (c^{p-1} \mod p)^k c^r \mod p$
- = $c^r \mod p$.
- With precomputed r=d mod p-1, s=d mod q-1, pinv= p^{-1} mod q and qinv = q^{-1} mod p, the accelerated decryption will be the following.

CRT for RSA

- c is the ciphertext.
- $a_p = c^r \mod p$, $a_q = c^s \mod q$
- plaintext is computed as
- $a_pp(pinv) + a_qq(qinv) \mod n$.

RSA Authentication

- RSA can be used to sign digests or certify public keys.
- Signer produces signature (certificate) S = m^d mod n when m is the message digest (the public key of someone else).
- The digest or key is verified with signer's public key e, m = Se mod n.
- Do not use the same key for both encryption and signature.
 - Chosen ciphertext attack: submit ciphertxt for signing

RSA Probabilistic Signature Scheme (RSA-PSS)

- Message → encoded message (EM) m
- Signing EM: s = m^d mod n

• Send Message and s.

- Verification: m = s^e mod n
- Message and m \rightarrow H = H'?

Figure 13.7 RSA-PSS Encoding

Options	Hash	hash function with output $hLen$ octets. The current preferred alternative is SHA-1, which produces a 20-octet hash value.
	MGF	mask generation function. The current specification calls for MGF1.
	sLen	length in octets of the salt. Typically $sLen = hLen$, which for the current version is 20 octets.
Input	M	message to be encoded for signing.
	emBits	This value is one less than the length in bits of the RSA modulus n .
Output	EM	encoded message. This is the message digest that will be encrypted to form the digital signature.
Parameters	emLen	length of EM in octets = $[emBits/8]$.
	padding ₁	hexadecimal string 00 00 00 00 00 00 00 00; that is, a string of 64 zero bits.
	padding ₂	hexadecimal string of 00 octets with a length $(emLen-sLen-hLen-2)$ octets, followed by the hexadecimal octet with value 01.
	salt	a pseudorandom number.
	bc	the hexadecimal value BC.

The encoding process consists of the following steps.

- 1. Generate the hash value of M: mHash = Hash(M)
- 2. Generate a pseudorandom octet string salt and form block $M' = \text{padding}_1 \parallel mHash \parallel salt$
- 3. Generate the hash value of $M': H = \operatorname{Hash}(M')$
- 4. Form data block $DB = \text{padding}_2 \| salt \|$
- 5. Calculate the MGF value of H: dbMask = MGF(H, emLen hLen 1)
- 6. Calculate $maskedDB = DB \oplus dbMsk$
- 7. Set the leftmost 8emLen emBits bits of the leftmost octet in maskedDB to 0
- 8. EM = maskedDB || H || bc

Options Hash hash function with output hLen octets

Input X octet string to be masked

maskLen length in octets of the mask

Output mask an octet string of length maskLen

MGF1 is defined as follows:

1. Initialize variables.

T = empty string $k = \lfloor maskLen/hLen \rfloor - 1$

2. Calculate intermediate values.

for counter = 0 to kRepresent counter as a 32-bit string C $T = T \parallel \operatorname{Hash}(X \parallel C)$

3. Output results.

mask = the leading maskLen octets of T

Signature Verification

Options	Hash	hash function with output hLen octets.	
	MGF	mask generation function.	
	sLen	length in octets of the salt.	
Input	M	message to be verified.	
	EM	the octet string representing the decrypted signature, with length $emLen = \lceil emBits/8 \rceil$.	
	emBits	This value is one less than the length in bits of the RSA modulus n .	
Parameters	padding ₁	hexadecimal string 00 00 00 00 00 00 00 00; that is, a string of 64 zero bits.	
	padding ₂	Hexadecimal string of 00 octets with a length ($emLen-sLen-hLen-2$) octets, followed by the hexadecimal octet with value 01.	

- 1. Generate the hash value of M: mHash = Hash(M)
- 2. If emLen < hLen + sLen + 2, output "inconsistent" and stop
- If the rightmost octet of EM does not have hexadecimal value BC, output "inconsistent" and stop
- 4. Let maskedDB be the leftmost emLen hLen 1 octets of EM, and let H be the next hLen octets
- If the leftmost 8emLen emBits bits of the leftmost octet in maskedDB are not all equal to zero, output "inconsistent" and stop
- 6. Calculate dbMask = MGF(H, emLen hLen 1)
- 7. Calculate $DB = maskedDB \oplus dbMsk$
- 8. Set the leftmost 8emLen emBits bits of the leftmost octet in DB to zero
- 9. If the leftmost (emLen hLen sLen 1) octets of DB are not equal to padding₂, output "inconsistent" and stop
- 10. Let salt be the last sLen octets of DB
- 11. Form block $M' = \text{padding}_1 \| mHash \| salt$
- 12. Generate the hash value of M': H' = Hash(M')
- 13. If H = H', output "consistent." Otherwise, output "inconsistent"

Figure 13.8 RSA-PSS EM Verification

Homework 17: due 3-30-15

- H17C.java generates an RSA key set.
 - RSAPublicKey.txt and RSAPrivateKey.txt have been generated with H17C
- H17A.java generates an RSA-PSS signature
 - java H17A RSAPrivateKey.txt < H17Message.txt > H17Signature.txt
- Complete decrypt() an steps 4-13 in H17B.java to verify an RSA-PSS signature.
 - java H17B RSAPublicKey.txt H17Signature.txt < H17Message.txt
- Submit your H17B.java and the verification of H17Signature.txt.