Claims:

1. The use of a compound of the formula I:

5

10

15

30

$$(R^2)_{m}$$

$$H$$

$$(I)$$

wherein:

ring C is an 8, 9, 10, 12 or 13-membered bicyclic or tricyclic moiety which moiety may be saturated or unsaturated, which may be aromatic or non-aromatic, and which optionally may contain 1-3 heteroatoms selected independently from O, N and S;

Z is -O-, -NH-, -S-, -CH₂- or a direct bond n is an integer from 0 to 5; m is an integer from 0 to 3:

R² represents hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C_{1.3}alkyl, C_{1.3}alkoxy, C_{1.3}alkylsulphanyl, -NR³R⁴ (wherein R and R⁴, which may be the same or different, each represents hydrogen or C_{1.3}alkyl), or R⁵X¹- (wherein X¹ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁶C(O)-, -C(O)NR⁷-, -SO₂NR⁸-, -NR⁹SO₂- or -NR¹⁰- (wherein R⁶, R⁷, R⁸, R⁹ and R¹⁰ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkyl, and R⁵ is selected from one of the following twenty-two groups:

1) hydrogen, oxiranylC₁₋₄alkyl or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, chloro, bromo and amino; 2) C₁₋₅alkylX²C(O)R¹¹ (wherein X² represents -O- or -NR¹²- (in which R¹² represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R¹¹ represents C₁₋₃alkyl, -NR¹³R¹⁴ or -OR¹⁵ (wherein R¹³, R¹⁴ and R¹⁵ which may be the same or different each represents hydrogen, C₁₋₅alkyl or C₁₋₃alkoxyC₂₋₃alkyl);

- 3) $C_{1.5}$ alkylX 3 R 16 (wherein X 3 represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR 17 C(O)-, -C(O)NR 18 -, -SO $_2$ NR 19 -, -NR 20 SO $_2$ or -NR 21 (wherein R 17 , R 18 , R 19 , R 20 and R 21 each independently represents hydrogen, $C_{1.5}$ alkyl or $C_{1.5}$ alkyl or $C_{1.5}$ alkoxy $C_{2.5}$ alkyl) and R 16 represents hydrogen, $C_{1.5}$ alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which $C_{1.5}$ alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and $C_{1.4}$ alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, $C_{1.5}$ 4cyanoalkyl, $C_{1.4}$ alkyl, $C_{1.4}$ alkyl, $C_{1.4}$ alkoxycarbonyl, $C_{1.4}$ alkoxycarbonyl, $C_{1.4}$ alkoxycarbonyl, $C_{1.4}$ alkylamino, di($C_{1.4}$ alkyl)amino, $C_{1.5}$
- 4alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
- 4) C_{1.5}alkylX⁴C_{1.5}alkylX⁵R²² (wherein X⁴ and X⁵ which may be the same or different are each O-, -S-, -SO-, -SO₂-, -NR²³C(O)- C(O)NR²⁴-, -SO₂NR²⁵-, -NR²⁶SO₂- or -NR²⁷- (wherein R²³, R²⁴, R²⁵, R²⁶ and R²⁷ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R²² represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl);
- 5) R²⁸ (wherein R²⁸ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁.

 4cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁.

 4alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁.

 4alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁.
- alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
 - 6) C_{1.5}alkylR²⁸ (wherein R²⁸ is as defined herein);
- 30 7) C₂₋₅alkenylR²⁸ (wherein R²⁸ is as defined herein);
 - 8) C_{2.5}alkynylR²⁸ (wherein R²⁸ is as defined herein);

10

- 9) R²⁹ (wherein R²⁹ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -C(O)NR³⁰R³¹, -NR³²C(O)R³³ (wherein R³⁰, R³¹, R³² and R³³, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which
- 10) C₁₋₅alkylR²⁹ (wherein R²⁹ is as defined herein);
 - 11) C_{2.5}alkenylR²⁹ (wherein R²⁹ is as defined herein);

cyclic group may bear on more substituents selected from C₁₋₄alkyl));

- 12) C₂₋₅alkynylR²⁹ (wherein R²⁹ is as defined herein);
- 13) C_{1.5}alkylX⁶R²⁹ (wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -NR³⁴C(O)-, -C(O)NR³⁵-, -
- SO₂NR³⁶-, -NR³⁷SO₂- or -NR³⁸-wherein R³⁴, R³⁵, R³⁶, R³⁷ and R³⁸ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein);

 14) C₂₋₅alkenylX⁷R²⁹ (wherein X⁷ represents -O-, -S-, -SO-, -SO₂-, -NR³⁹C(O)-, -C(O)NR⁴⁰-, -SO₂NR⁴¹-, -NR⁴²SO₂- or -NR⁴³- (wherein R³⁹, R⁴⁰, R⁴¹, R⁴² and R⁴³ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined herein):
- 15) C_{2.5}alkynylX⁸R²⁹ (wherein X⁸ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁴C(O)-, -C(O)NR⁴⁵-, -SO₂NR⁴⁶-, -NR⁴⁷SO₂- or -NR⁴⁸- (wherein R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷ and R⁴⁸ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxy C_{2.3}alkyl) and R²⁹ is as defined herein);

 16) C_{1.4}alkylX⁹C_{1.4}alkylR²⁹ (wherein X⁹ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁹C(O)-, -C(O)NR⁵⁰-, -SO₂NR⁵¹-, -NR⁵²SO₂- or -NR⁵³- (wherein R⁴⁹, R⁵⁰, R⁵¹, R⁵² and R⁵³ each
- 25 independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R²⁹ is as defined herein);
 - 17) C_{1.4}alkylX⁹C_{1.4}alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein);
 - 18) C_{2-5} alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C_{1-4} alkylamino, N,N-di(C_{1-4} alkylamino,
- aminosulphonyl, \underline{N} - C_{1-4} alkylaminosulphonyl and \underline{N} , \underline{N} -di $(C_{1-4}$ alkyl)aminosulphonyl;

20

25

21) C₂₋₅alkynyl X⁹C₁₋₄alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein); and 5 22) C₁₋₄alkylR⁵⁴(\(\daggregath_{1-4}alkyl\)_q(X⁹)_rR⁵⁵ (wherein X⁹ is as defined herein, q is 0 or 1, r is 0 or 1, and R⁵⁴ and R⁵⁵ are each independently selected from hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl and a 5-6-membered\saturated heterocyclic group with 1-2 heteroatoms, selected independently from O\S and N, which C_{1.3}alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁-alkoxy and which cyclic group may bear 1 or 2

substituents selected from oxo, hydroxy, halogeno, cyano, C14cyanoalkyl, C14alkyl, C15 $_4$ hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} ₄alkoxycarbonyl, C₁₋₄aminoa\kyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, $di(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ $C_{1-4}alkylaminoC_{1-4}alkoxy,$ $di(C_{1-4}alkyl)aminoC_{1-4}alkoxy$ and a

group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered 15 saturated heterocyclic group with 12 heteroatoms, selected independently from O, S and N, which cyclic group may bear one ar more substituents selected from C₁₋₄alkyl), with the proviso that R54 cannot be hydrogen);

and additionally wherein any C1.5alkyl, C2.5alkenyl or C2.5alkynyl group in R5X1- may bear one or more substituents selected from hydroxy, halogeno and amino);

R¹ represents hydrogen, oxo, halogeno, hydroxy, C₁₋₄alkoxy, C₁₋₄alkoxy, C₁₋₄alkoxymethyl, C₁. ₄alkanoyl, C_{1-4} haloalkyl, cyano, amino, C_{2} alkenyl, C_{2-5} alkynyl, C_{1-3} alkanoyloxy, nitro, C_{1-1} 4alkanoylamino, C14alkoxycarbonyl, C14alkylsulphanyl, C14alkylsulphinyl, C15 $_4$ alkylsulphonyl, carbamoyl, \underline{N} - $C_{1.4}$ alkylcarbamoyl, \underline{N} , \underline{N} -di($C_{1.4}$ alkyl)carbamoyl,

aminosulphonyl, \underline{N} - $C_{1.4}$ alkylaminosulphonyl, \underline{N} - \underline{N} -di($C_{1.4}$ alkyl)aminosulphonyl, \underline{N} -($C_{1.4}$ $_4$ alkylsulphonyl) $_2$ M-($C_{1,4}$ alkylsulphonyl) $_2$ M-($C_{1,4}$ alkyl)amino, N_1 M-di($C_{1,4}$ alkylsulphonyl) 4alkylsulphonyl)amino, a C3.7alkylene chain joined to two ring C carbon atoms, C1. ₄alkanoylaminoC_{1.4}alkyl, carboxy or a group R⁵⁶X¹ (wherein X¹⁰ represents a direct bond, -O-, -CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁵⁷C(O)-, -C(O)NR⁵⁸-, -SO₂NR⁵⁹-, -NR⁶⁰SO₂- or -

NR61- (wherein R57, R58, R59, R60 and R61 each independently represents hydrogen, C1.3alkyl or 30 C_{1.3}alkoxyC_{2.3}alkyl), and R⁵⁶ is selected from one of the following twenty-two groups:

- 1) hydrogen, oxiranylC_{1.4}alkyl or C_{1.5}alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, chloro, bromo and amino; 2) C_{1.5}alkylX¹¹C(O)R⁶² (wherein X¹¹ represents -O- or -NR⁶³- (in which R⁶³ represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R⁶² represents C_{1.3}alkyl, -NR⁶⁴R⁶⁵ or -OR⁶⁶ (wherein R⁶⁴, R⁶⁶ and R⁶⁶ which may be the same or different each represents hydrogen, C_{1.5}alkyl or C_{1.3}alkoxyC_{2.3}alkyl);
 3) C_{1.5}alkylX¹²R⁶⁷ (wherein X¹² represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR⁶⁸C(O)-, -C(O)NR⁶⁹-, -SO₂NR⁷⁰, -NR⁷¹SO₂- or -NR⁷²- (wherein R⁶⁸, R⁶⁹, R⁷⁰, R⁷¹ and R⁷² each independently represents hydrogen C_{1.3}alkyl or C_{1.3}alkoyyC_{2.3}alkyl or C_{1.4}alkyl or C_{1.4}alkyl or C_{1.5}alkyl o
- C(O)NR⁶⁹-, -SO₂NR⁷⁰, -NR⁷¹SO₂- or -NR⁷²- (wherein R⁶⁸, R⁶⁹, R⁷⁰, R⁷¹ and R⁷² each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R⁶⁷ represents hydrogen, C_{1.3}alkyl, cyclopentyl, cyclopexyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1.3}alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C_{1.4}alkoxy and which cyclic
- group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁.

 4cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁.

 4alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁.

 4alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1
 - and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C₁₋₄alkyl));
 - 4) C_{1.5}alkylX¹³C_{1.5}alkylX¹⁴R⁷³ (wherein X¹³ and X¹⁴ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR⁷⁴C(O)-, -C(O)NR⁷⁵-, -SO₂NR⁷⁶-, -NR⁷⁷SO₂- or -NR⁷⁸- (wherein R⁷⁴, R⁷⁵, R⁷⁶, R⁷⁷ and R⁷⁸ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkyl);
- 5) R⁷⁹ (wherein R⁷⁹ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁.

 4cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁.

 4alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁.
- 30 4alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)₁(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected

- 6) C_{1.5}alkylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 7) C_{2.5}alkenylR⁷⁹ (wherein R⁷⁹ is as defined herein);
- 5 8) C_{2.5}alkyny R⁷⁹ (wherein R⁷⁹ is as defined herein);
 - 9) R⁸⁰ (wherein R⁸⁰ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁.
- 4aminoalkyl, C₁₋₄alky amino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, C(O)NR⁸¹R⁸², -NR⁸³C(O)R⁸⁴ (wherein R⁸¹, R⁸², R⁸³ and R⁸⁴, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which
 cyclic group may bear one of more substituents selected from C₁₋₄alkyl));
 - 10) C₁₋₅alkylR⁸⁰ (wherein R⁸⁰ islas defined herein);
 - 11) C₂₋₅alkenylR⁸⁰ (wherein R⁸ as defined herein);
 - 12) C₂₋₅alkynylR⁸⁰ (wherein R⁸ is as defined herein);
 - 13) $C_{1.5}$ alkyl $X^{15}R^{80}$ (wherein X^{15} represents -O-, -S-, -SO-, -SO₂-, -NR⁸⁵C(O)-, -C(O)NR⁸⁶-, -
- SO₂NR⁸⁷-, -NR⁸⁸SO₂- or -NR⁸⁹- (wherein R⁸⁵, R⁸⁶, R⁸⁷, R⁸⁸ and R⁸⁹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R⁸⁰ is as defined herein);
 - 14) $C_{2.5}$ alkenyl $X^{16}R^{80}$ (wherein X^{16} represents -O-, -S-, -SO-, -SO₂-, -NR⁹⁰C(O)-, -C(O)NR⁹¹-, -SO₂NR⁹²-, -NR⁹³SO₂- or -NR⁹⁴- (wherein R^{90} , R^{91} , R^{92} , R^{93} and R^{94} each independently represents hydrogen, $C_{1.3}$ alkyl or $C_{1.3}$ alkoxy $C_{2.3}$ alkyl) and R^{80} is as defined herein);
- 15) $C_{2.5}$ alkynyl $X^{17}R^{80}$ (wherein X^{17} represents -O-, -S-, -SO-, -SO₂-, -NR⁹⁵C(O)-, -C(O)NR⁹⁶-, -SO₂NR⁹⁷-, -NR⁹⁸SO₂- or -NR⁹⁹- (wherein R⁹⁵, R⁹⁶, R⁹⁷, R⁹⁸ and R⁹⁹ each independently represents hydrogen, $C_{1.3}$ alkyl or $C_{1.3}$ alkoxy $C_{2.3}$ alkyl) and R⁸⁰ is as defined herein); 16) $C_{1.4}$ alkyl $X^{18}C_{1.4}$ alkyl X^{80} (wherein X^{18} represents -O-, -S-, -SO-, -SO₂-, -NR¹⁰⁰C(O)-, -C(O)NR¹⁰¹-, -SO₂NR¹⁰²-, -NR¹⁰³SO₂- or -NR¹⁰⁴- (wherein R¹⁰⁰, R¹⁰¹, R¹⁰², R¹⁰³ and R¹⁰⁴ each
- independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R⁸⁰ is as defined herein);
 - 17) C_{1.4}alkylX¹⁸C_{1.4}alkylR⁷⁹ (wherein X¹⁸ and R⁷⁹ are as defined herein);

- 18) C2.5alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl; 19) C2.5alkyn vl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C1.4alkylamino, N,N-di(C1.4alkyl)amino, 5 aminosulphonyl, $N-C_{1-4}$ alkylaminosulphonyl and $N,N-di(C_{1-4}$ alkyl) aminosulphonyl; 20) C₂₋₅alkenylX¹⁸Q₁₋₄alkylR⁷⁹ (wherein X¹⁸ and R⁷⁹ are as defined herein); 21) C₂₋₅alkynylX¹⁸C₁ alkylR⁷⁹ (wherein X¹⁸ and R⁷⁹ are as defined herein); and 22) C_{1-4} alkyl R^{105} (C_{1-4} alkyl)_x(X^{18})_y R^{106} (wherein X^{18} is as defined herein, x is 0 or 1, y is 0 or 1, and R¹⁰⁵ and R¹⁰⁶ are each independently selected from hydrogen, C₁₋₃alkyl, cyclopentyl, 10 cyclohexyl and a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C1-3alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C14alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C1-4cyanoalkyl, C1-4alkyl, C1- $_4$ hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkyl, C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} 15 $_4$ alkoxycarbonyl, C_{1_4} aminoalkyl, O_{1_4} alkylamino, di $(C_{1_4}$ alkyl)amino, C_{1_4} alkylamino C_{1_4} alkyl, $di(C_{14}alkyl)aminoC_{14}alkyl,\ C_{14}alkyl\\aminoC_{14}alkoxy,\ di(C_{14}alkyl)aminoC_{14}alkoxy\ and\ a$ group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C1.4alkyl) with the 20 proviso that R¹⁰⁵ cannot be hydrogen): and additionally wherein any C₁₋₅alkyl, C₂₋₅alkenyl or C₂₋₅alkynyl group in R⁵⁶X¹⁰- may bear one or more substituents selected from hydroxy, halogeno and amino); or a salt thereof in the manufacture of a medicament for use in the production of an 25 antiangiogenic and/or vascular permeability reducing effect in warm-blooded animals such as humans.
 - 2. The use of a compound of the formula \according to claim 1:

$$(R^{2})_{m}$$

$$(R^{2})_{m}$$

$$(R^{2})_{m}$$

$$(I)$$

wherein:

5

10

ring C is a 9-10-membered bicyclic moiety which may be saturated or unsaturated, which may be aromatic or non-aromatic, and which optionally may contain 1-3 heteroatoms selected independently from O, N and S;

Z is -O-, -NH-, -S-, -CH₂- or a direct bond;

R¹ represents hydrogen, oxo, halogeno, hydroxy, C₁₋₄alkoxy, C₁₋₄alkyl, C₁₋₄alkoxymethyl, C₁₋₄ 4alkanoyl, C_{1.4}haloalkyl, cyano, amino, C_{2.5}alkenyl, C_{2.5}alkynyl, C_{1.3}alkanoyloxy, nitro, C_{1.}

₄alkanoylamino, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphinyl, C₁₋₄ 15 $_4$ alkylsulphonyl, carbamoyl, \underline{N} - C_{1-4} alk χ lcarbamoyl, \underline{N} , \underline{N} -di(C_{1-4} alkyl)carbamoyl, aminosulphonyl, \underline{N} - C_{1-4} alkylaminosulphonyl, \underline{N} - \underline{N} -di(C_{1-4} alkyl)aminosulphonyl, \underline{N} -(C_{1-4} $_4$ alkylsulphonyl)amino, \underline{N} - $(C_{1-4}$ alkylsulphonyl)- \underline{N} - $(C_{1-4}$ alkyl)amino, \underline{N} - \underline{N} -di $(C_{1-4}$ alkylsulphonyl) ₄alkylsulphonyl)amino or a C_{3.7}alkylene chan joined to two ring C carbon atoms;

20 n is an integer from 0 to 5; m is an integer from 0 to 3;

> R² represents hydrogen, hydroxy, halogeno, cyano, nitro, trifluoromethyl, C₁₋₃alkyl, C₁ 3alkoxy, C1.3alkylsulphanyl, -NR3R4 (wherein R3 and R4, which may be the same or different, each represents hydrogen or C_{1.3}alkyl), or R⁵X¹- (wherein X¹ represents a direct bond, -O-, -

CH₂-, -OC(O)-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁶C(O)-, -C(O)NR⁷-, -SO₂NR⁸-, -NR⁹SO₂- or -25 NR^{10} - (wherein R^6 , R^7 , R^8 , R^9 and R^{10} each independently represents hydrogen, C_{1-3} alkyl or C_{1-1} 3alkoxyC₂₋₃alkyl), and R⁵ is selected from one of the following twenty-one groups:

- 1) hydrogen or C_{1.5}alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydrox: fluoro and amino;
- 2) C₁₋₅alkylX²C(O)R¹¹ (wherein X² represents -O- or -NR¹²- (in which R¹² represents 30 hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{11} represents C_{1-3} alkyl, -NR¹³R¹⁴ or -OR¹⁵

(wherein R¹³, R¹⁴ and R¹⁵ which may be the same or different each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl));

- 3) $C_{1.5}$ alkyl X^3 R¹⁶ (wherein X^3 represents -O-, -S-, -SO-, -SO₂-, -OC(O)-, -NR¹⁷C(O)-, -C(O)NR¹⁸-, -SO₂NR¹⁹-, -NR²⁰SO₂- or -NR²¹- (wherein R¹⁷, R¹⁸, R¹⁹, R²⁰ and R²¹ each
- independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R¹⁶ represents hydrogen, C_{1.3}alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1.3}alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C_{1.4}alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C_{1.4}alkyl, C_{1.4}
- 10 4hydroxyalkyl and C1-alkoxy),

- 4) C_{1-5} alkyl X^4C_{1-5} alkyl X^5R^{22} (wherein X^4 and X^5 which may be the same or different are each O-, -S-, -SO-, -SO₂-, -NR²³C(O)-, -C(O)NR²⁴-, -SO₂NR²⁵-, -NR²⁶SO₂- or -NR²⁷- (wherein R²³, R²⁴, R²⁵, R²⁶ and R²⁷ each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkyl) and R²² represents hydrogen or C_{1-3} alkyl);
- 5) R²⁸ (wherein R²⁸ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁.

 4cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl and C₁.

 4alkylsulphonylC₁₋₄alkyl);
- 20 6) C₁₋₅alkylR²⁸ (wherein R²⁸ is as defined herein);
 - 7) C_{2-5} alkenyl R^{28} (wherein R^{28} is as defined herein);
 - 8) C_{2.5}alkynylR²⁸ (wherein R²⁸ is as defined herein);
 - 9) R²⁹ (wherein R²⁹ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents on an available carbon atom selected from hydroxy, halogene, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -C(O)NR³⁰R³¹ and -NR³²C(O)R³³ (wherein R³⁰, R³¹, R³² and R³³, which may be the same or different, each represents hydrogen, C₁₋₄alkyl\or C₁₋₃alkoxyC₂₋₃alkyl));
- 30 10) C_{1.5}alkylR²⁹ (wherein R²⁹ is as defined herein);
 - 11) C₂₋₅alkenylR²⁹ (wherein R²⁹ is as defined herein);
 - 12) C_{2-5} alkynyl R^{29} (wherein R^{29} is as defined herein);

10

- 13) G_{1.3}alkylX⁶R²⁹ (wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -NR³⁴C(O)-, -C(O)NR³⁵-, -SO₂NR³⁶-, -NR³⁷SO₂- or -NR³⁸- (wherein R³⁴, R³⁵, R³⁶, R³⁷ and R³⁸ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R²⁹ is as defined herein);
 14) C_{2.5}alkenylX⁷R²⁹ (wherein X⁷ represents -O-, -S-, -SO-, -SO₂-, -NR³⁹C(O)-, -C(O)NR⁴⁰-, -SO₂NR⁴¹-, -NR⁴²SO₂- or -NR⁴³- (wherein R³⁹, R⁴⁰, R⁴¹, R⁴² and R⁴³ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R²⁹ is as defined herein);
 15) C_{2.5}alkynylX⁸R²⁹ (wherein X⁸ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁴C(O)-, -C(O)NR⁴⁵-, -SO₂NR⁴⁶-, -NR⁴SO₂- or -NR⁴⁸- (wherein R⁴⁴, R⁴⁵, R⁴⁶, R⁴⁷ and R⁴⁸ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R²⁹ is as defined herein);
 16) C_{1.3}alkylX⁹C_{1.3}alkylR²⁹ (wherein X⁹ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁹C(O)-, -C(O)NR⁵⁰-, -SO₂NR⁵-, -NR⁵²SO₂- or -NR⁵³- (wherein R⁴⁹, R⁵⁰, R⁵¹, R⁵² and R⁵³ each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and R²⁹ is as defined herein):
 - 17) C_{1.3}alkylX⁹C_{1.3}alkylR² (wherein X⁹ and R²⁸ are as defined herein);
- 18) C_{2.5}alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy fluoro, amino, C_{1.4}alkylamino, N,N-di(C_{1.4}alkyl)amino, aminosulphonyl, N-C_{1.4}alkylaminosulphonyl and N,N-di(C_{1.4}alkyl)aminosulphonyl;

 19) C_{2.5}alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C_{1.4}alkylamino, N,N-di(C_{1.4}alkyl)amino,

 20 aminosulphonyl, N-C_{1.4}alkylaminosulphonyl and N,N-di(C_{1.4}alkyl)aminosulphonyl;

 20) C_{2.5}alkenylX⁹C_{1.4}alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein); and

 21) C_{2.5}alkynylX⁹C_{1.4}alkylR²⁸ (wherein X⁹ and R²⁸ are as defined herein); and salts thereof, and prodrugs thereof for example esters, amides and sulphides, in the manufacture of a medicament for use in the production of an antiangiogenic and/or vascular permeability reducing effect in warm-blooded animals such as humans.
 - 3. The use of a compound of the formula I according to claim 1, wherein R^2 represents hydroxy, halogeno, cyano, nitro, trifluoromethyl, C_{1-3} alkyl, amino or R^5X^1 -[wherein X^1 is as defined in claim 1 and R^5 is selected from one of the following twenty-two groups:

10

- 2) C_{2-3} alkyl X^2 C(O) R^{11} (wherein X^2 is as defined in claim 1 and R^{11} represents -NR¹³ R^{14} or -OR¹⁵ (wherein R^{13} , R^{14} and R^{15} which may be the same or different are each C_{1-4} alkyl or C_{1-4} alkyl or C_{1-4} alkyl);
- 3) C₂₋₄alkylX³R¹⁶ (wherein X³ is as defined in claim 1 and R¹⁶ is a group selected from C₁. ³alkyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl and tetrahydropyranyl, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₂alkoxy and which cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl or tetrahydropyranyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₃cyanoalkyl, C₁₋₃alkyl, C₁. ³hydroxyalkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁. ³alkoxycarbonyl, C₁₋₃alkylamino, di(C₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁.
- 3alkyl)aminoC₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(-O-)₁(C₁₋₃alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C₁₋₃alkyl));
- 4) C₂₋₃alkylX⁴C₂₋₃alkylX⁵R²² (wherein X⁴ and X⁵ are as defined in claim 1 and R²² represents hydrogen or C₁₋₃alkyl);
 - 5) R²⁸ (wherein R²⁸ is as defined in claim 1);
 - 6) C₁₋₄alkylR¹¹⁰ (wherein R¹¹⁰ is a group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidin-1-yl, azetidinyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl and 1,3-dithian-2-yl, which group is linked to C₁₋₄alkyl through a carbon atom and which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₃cyanoalkyl, C₁. 3alkyl, C₁₋₃alkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁. 3alkoxycarbonyl, C₁₋₃alkylamino, di(C₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁. 3alkyl)aminoC₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(-
- O-)_t(C_{1.3}alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C₁.

10

20

 $_3$ alkyl)) or C_{2-4} alkyl R^{111} (wherein R^{111} is a group selected from morpholino, thiomorpholino, azetidin-1-yl, pyrrolidin-1-yl, piperazin-1-yl and piperidino which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-3} cyanoalkyl, C_{1-3} alkyl, C_{1-3} alkyl, C_{1-2} alkoxy C_{1-3} alkyl, C_{1-2} alkylsulphonyl C_{1-3} alkyl, C_{1-3}

- 3alkoxycarbonyl, C₁₋₃alkylamino, di(C₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(-O-)₁(C₁₋₃alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C₁₋₃alkyl);
 - 7) C₃₋₄alkenylR¹¹² (wherein R¹¹² represents R¹¹⁰ or R¹¹¹ as defined herein);
 - 8) C₃₋₄alkynylR¹¹² (wherein R¹¹² represents R¹¹⁰ or R¹¹¹ as defined herein);
 - 9) R²⁹ (wherein R²⁹ is as defined in claim 1);
 - 10) C₁₋₄alkylR²⁹ (wherein R²⁹ is as defined in claim 1);
- 11) 1-R²⁹prop-1-en-3-yl or 1-R²⁹but-2-en-4-yl (wherein R²⁹ is as defined in claim 1 with the proviso that when R⁵ is 1-R²⁹prop-1 en-3-yl, R²⁹ is linked to the alkenyl group via a carbon atom);
 - 12) 1-R²⁹prop-1-yn-3-yl or 1-R²⁹but-2-yn-4-yl (wherein R²⁹ is as defined in claim 1 with the proviso that when R⁵ is 1-R²⁹prop-1-yn-3-yl, R²⁹ is linked to the alkynyl group via a carbon atom);
 - 13) C_{1.5}alkylX⁶R²⁹ (wherein X⁶ and R²⁹ are as defined in claim 1);
 - 14) 1-($R^{29}X^7$)but-2-en-4-yl (wherein X^7 and R^{29}) are as defined in claim 1);
 - 15) 1-(R²⁹X⁸)but-2-yn-4-yl (wherein X⁸ and R²⁹ are as defined in claim 1);
 - 16) C₂₋₃alkylX⁹C₁₋₃alkylR²⁹ (wherein X⁹ and R²⁹ are as defined in claim 1);
- 25 17) C₂₋₃alkylX⁹C₁₋₃alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 1);
 - 18) C_{2-5} alkenyl which may be unsubstituted or which may be substituted with one or more fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino, C_{1-4} alkylamino, N_1 -di(C_{1-4} alkylamino, aminosulphonyl, N_1 - C_{1-4} alkylaminosulphonyl; di(C_{1-4} alkylaminosulphonyl;
- 30 19) C₂₋₅alkynyl which may be unsubstituted or which may be substituted with one or more fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino, C₁.

15

20

30

₄alkylamino, N,N-di($C_{1,4}$ alkyl)amino, aminosulphonyl, N- $C_{1,4}$ alkylaminosulphonyl and N,N-di($C_{1,4}$ alkyl)aminosulphonyl;

- 20) C₂₋₄alkenylX°C₁₋₃alkylR²⁸ (wherein X° and R²⁸ are as defined in claim 1);
- 21) C₂₋₄alkynylX C₁₋₃alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 1); and
- 22) C₁₋₃alkylR⁵⁴(C₁₋₃alkyl)_q(X⁹)_rR⁵⁵ (wherein X⁹, q, r, R⁵⁴ and R⁵⁵ are as defined in claim 1); and additionally wherein any C₁₋₅alkyl, C₂₋₅alkenyl or C₂₋₅alkynyl group in R⁵X¹- may bear one or more substituents selected from hydroxy, halogeno and amino].
- 4. The use of a compound of the formula I according to any one of the preceding claims wherein Z is -O-, -NH- or -S-.
 - 5. The use of a compound of the formula I according to any one of the preceding claims wherein ring C is a 9-10-membered heteroaromatic bicyclic moiety which contains 1-3 heteroatoms selected independently from O, N and S.
 - 6. The use of a compound of the formula I according to any one of the preceding claims wherein R¹ represents oxo, halogeno, hydroxy, C₁₋₂alkoxy, C₁₋₂alkyl, C₁₋₂alkoxymethyl, C₂₋₃alkanoyl, C₁₋₂haloalkyl, cyano, amino, C₂₋₄alkenyl, C₂₋₄alkynyl, C₂₋₃alkanoyloxy, nitro, C₂₋₃alkanoylamino, C₁₋₂alkoxycarbonyl, C₁₋₂alkylsulphanyl, C₁₋₂alkylsulphinyl, C₁₋₂alkylsulphonyl, carbamoyl, M-C₁₋₂alkylcarbamoyl, M-di(C₁₋₂alkyl)carbamoyl, aminosulphonyl, M-C₁₋₂alkylaminosulphonyl, M-C₁₋₂alkylsulphonyl) amino, M-(C₁₋₂alkylsulphonyl)-M-(C₁₋₂alkyl) amino or a C₃₋₇alkylene chain joined to two ring C carbon atoms.
- 7. The use of a compound of the formula I according to any one of the preceding claims wherein n is 0, 1 or 2.
 - 8. The use of a compound of the formula I according to any one of the preceding claims wherein m is 1 or 2.
 - 9. A compound of the formula II:

(II)

$$\begin{array}{c|c}
 & C \\
 & (R^1)_n \\
 & N \\
 & N \\
 & H \\
 & N \\
 & H
\end{array}$$

10 [wherein:

5

15

20

25

30

or a salt thereof.

ring C, R¹, R² and n are as defined in claim 1, Zb is -O- or -S- and R^{2a} represents hydrogen, halogeno, C₁₋₃alkyl, trifluoromethyl, C₁₋₃alkoxy, C₁₋₃alkylsulphanyl, -NR^{3a}R^{4a} (wherein R^{3a} and R^{4a}, which may be the same or different, each represents hydrogen or C₁₋₃alkyl), or $R^{5a}(CH_2)_{za}X^{1a}$ (wherein R^{5a} is a 5- or 6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁. ₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxy (Malkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋ $_4$ alkoxycarbonyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, di $(C_{1-4}$ alkyl)amino, C_{1-4} alkylamino C_{1-4} alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_gringD (wherein f is 0 or 1 and ring D is a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from C1-alkyl), za is an integer from 0 to 4 and X1a represents a direct bond, -O-, -CH2-, -S-, -SO-, -SO2-, -NR6aC(O)-, -C(O)NR 7a -, -SO $_2$ NR 8a -, -NR 9a SO $_2$ - or -NR 10a - (wherein R 6a , R 7a , R 8a , R 9a and R 10a each independently represents hydrogen, C_{1.3}alkyl or C_{1.3}alkyl); with the proviso that R² is not hydrogen and excluding the compounds: 6,7-dimethoxy-4-(1-naphthylsulphanyl)quinazoline, 6,7-dimethoxy-4-(2naphthylsulphanyl)quinazoline, 6,7-dimethoxy-4-(1-naphthyloxy)quinazoline and 6,7dimethoxy-4-(2-naphthyloxy)quinazoline;

- 10. A compound of the formula II according to claim 9 wherein R² represents hydroxy, halogeno, cyano, nitro, trifluoromethyl, C_{1.3}alkyl, amino or R⁵X¹- [wherein X¹ is as defined in claim 1 and R⁵ is selected from one of the following twenty-two groups:
- 1) $C_{1.4}$ alkyl which may be unsubstituted or which may be substituted with one or more groups selected from fluoro, chloro and bromo, or $C_{2.5}$ alkyl which may be unsubstituted or substituted with one or more groups selected from hydroxy and amino;
- 2) C_{2-3} alkyl X^2 C(O) R^{11} (wherein X^2 is as defined in claim 1 and R^{11} represents -N R^{13} R¹⁴ or -OR¹⁵ (wherein R^{13} , R^{14} and R^{15} which may be the same or different are each C_{1-4} alkyl or C_{1-2} alkoxyethyl));
- 3) C₂₋₄alkylX³R¹⁶ (wherein X³ is as defined in claim 1 and R¹⁶ is a group selected from C₁. ³alkyl, cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl and tetrahydropyranyl, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₂alkoxy and which cyclopentyl, cyclohexyl, pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl or tetrahydropyranyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₃cyanoalkyl, C₁₋₃alkyl, C₁₋₁
 - 3hydroxyalkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁₋₃alkyl, C₁₋₃alkyl, C₁₋₃alkylamino, dike₁₋₃alkyl)amino, C₁₋₃alkylaminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(-O-)_f(C₁₋₃alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino
 - selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C₁.

 3alkyl));
 - 4) $C_{2.3}$ alkyl $X^4C_{2.3}$ alkyl X^5R^{22} (wherein X^4 and X^5 are as defined in claim 1 and R^{22} represents hydrogen or $C_{1.3}$ alkyl);
- 25 5) R²⁸ (wherein R²⁸ is as defined in claim 1);
 - 6) C_{1-4} alkyl R^{110} (wherein R^{110} is a group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidin-1-yl, azetidinyl, 1,3-dioxolan-2-yl, 1,3-dioxan-2-yl, 1,3-dithiolan-2-yl and 1,3-dithian-2-yl, which group is linked to C_{1-4} alkyl through a carbon atom and which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-3} cyanoalkyl, C_{1-3}
- 30 ₃alkyl, C₁₋₃hydroxyalkyl, C₁₋₃alkoxy, C₁₋₂alkoxyC₁₋₃alkyl, C₁₋₂alkylsulphonylC₁₋₃alkyl, C₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkylaminoC₁₋₃alkylaminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, di(C₁₋₃alkyl)aminoC₁₋₃alkyl, C₁₋₃alkylaminoC₁₋₃alkoxy, di(C₁₋₃alkyl)aminoC₁₋₃alkoxy and a group -(-

- O-)(C_{1.3}alkyl)_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C_{1.3}alkyl)) or C_{2.4}alkylR¹¹¹ (wherein R¹¹¹ is a group selected from morpholino, thiomorpholino, azetidin-1-yl, pyrrolidin-1-yl, piperazin-1-yl and piperidino which group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1.3}cyanoalkyl, C_{1.3}alkyl, C_{1.3}alkylamino, di(C_{1.3}alkyl)amino, C_{1.3}alkylaminoC_{1.3}alkyl, di(C_{1.3}alkyl)aminoC_{1.3}alkyl, C_{1.3}alkylaminoC_{1.3}alkyl_gringD (wherein f is 0 or 1, g is 0 or 1 and ring D is a heterocyclic group selected from pyrrolidinyl, piperazinyl, piperidinyl, imidazolidinyl, azetidinyl, morpholino and thiomorpholino, which cyclic group may bear one or more substituents selected from C_{1.3}alkyl));
 - 7) C_{3.4}alkenylR¹¹² (wherein R¹¹² represents R¹¹⁰ or R¹¹¹ as defined herein);
- 15 8) C_{3.4}alkynylR¹¹² (wherein R¹¹² represents R¹¹⁰ or R¹¹¹ as defined herein);
 - 9) R²⁹ (wherein R²⁹ is as defined in claim 1);
 - 10) C₁₋₄alkylR²⁹ (wherein R²⁹ is an defined in claim 1);
 - 11) 1-R²⁹prop-1-en-3-yl or 1-R²⁹prop-1 en-3-yl, R²⁹ is as defined in claim 1 with the proviso that when R⁵ is 1-R²⁹prop-1 en-3-yl, R²⁹ is linked to the alkenyl group via a carbon atom);
 - 12) 1-R²⁹prop-1-yn-3-yl or 1-R²⁹but-2-yn-4-yl (wherein R²⁹ is as defined in claim 1 with the proviso that when R⁵ is 1-R²⁹prop-1-yn-3-yl, R²⁹ is linked to the alkynyl group via a carbon atom);
 - 13) C_{1.5}alkylX⁶R²⁹ (wherein X⁶ and R²⁹ are as defined in claim 1);
- 25 14) 1-($R^{29}X^7$)but-2-en-4-yl (wherein X^7 and R^{10} are as defined in claim 1);
 - 15) 1-(R²⁹X⁸)but-2-yn-4-yl (wherein X⁸ and R²⁹\are as defined in claim 1);
 - 16) $C_{2.3}$ alkyl $X^9C_{1.3}$ alkyl R^{29} (wherein X^9 and R^{29} are as defined in claim 1);
 - 17) C₂₋₃alkylX⁹C₁₋₃alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 1);
- 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more

 30 fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;

10

15

- 19) $C_{2.5}$ alkynyl which may be unsubstituted or which may be substituted with one or more fluorine atoms or with one or two groups selected from hydroxy, fluoro, amino, $C_{1.4}$ alkylamino, N_1 -di($C_{1.4}$ alkyl)amino, aminosulphonyl, N_2 - $C_{1.4}$ alkylaminosulphonyl and N_1 -di($C_{1.4}$ alkyl)aminosulphonyl;
- 20) C_{2.4}alkenylX⁹C_{1.3}alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 1); 21) C_{2.4}alkynylX⁹C_{1.3}alkylR²⁸ (wherein X⁹ and R²⁸ are as defined in claim 1); and 22) C_{1.3}alkylR⁵⁴(C_{1.3}alkyl)_q(X⁹)_rR⁵⁵ (wherein X⁹, q, r, R⁵⁴ and R⁵⁵ are as defined in claim 1); and additionally wherein any C_{1.5}alkyl, C_{2.5}alkenyl or C_{2.5}alkynyl group in R⁵X¹- may bear one or more substituents selected from hydroxy, halogeno and amino].
 - 11. A compound according to any one of claims 9 and 10 wherein Zb is -O-.
 - 12. A compound according to any one of claims 9, 10 and 11 wherein ring C is a 9-10-membered heteroaromatic bicyclic moiety which contains 1-3 heteroatoms selected independently from O, N and S.
- 13. A compound according to any one of claims 9, 10, 11 and 12 wherein R¹ represents oxo, halogeno, hydroxy, C₁₋₂alkoxy, C₁₋₂alkyl, C₁₋₂alkoxymethyl, C₂₋₃alkanoyl, C₁₋₂alkanoyl, C₂₋₃alkanoyloxy, nitro, C₂₋₃alkanoylamino, C₁₋₂alkoxycarbonyl, C₁₋₂alkylsulphanyl, C₁₋₂alkylsulphinyl, C₁₋₂alkylsulphonyl, carbamoyl, N-C₁₋₂alkylcarbamoyl, N-di(C₁₋₂alkyl)carbamoyl, aminosulphonyl, N-C₁₋₂alkylsulphonyl)amino, N-(C₁₋₂alkylsulphonyl). N-C₁₋₂alkylsulphonyl)-N-di(C₁₋₂alkyl)amino or a C₃₋₇alkylene chain joined to two ring C carbon atoms.
 - 14. A compound according to any one of claims 9, 10, 11, 12 and 13 wherein n is 0, 1 or 2.
 - 15. A compound of the formula IIb:

(IIb)

5

10

25

30

 $\begin{array}{c|c}
 & C & (R^{1})_{n} \\
 & R^{2a} & N \\
 & N & H
\end{array}$

15 [wherein:

ring C, R¹, R² and n are as defined in claim 1, Zb is -O- and R^{2a} is as defined in claim 9 with the proviso that R² does not have any of the following values:

hydrogen, substituted or unsubstituted c_1 alkyl, halogeno, c_1 alkoxy, c_2 alkenyl, phenoxy or phenyl c_1 alkoxy;

20 or a salt thereof.

16. A compound according to claim 9 selected from

6-methoxy-7-((1-methylpiperidin-4-yl)methoxy)-(2-naphthyloxy)quinazoline,

6-methoxy-7-((1-methylpiperidin-4-yl)methoxy)-4\((quinolin-7-yloxy)\)quinazoline,

7-(3-(1,1-dioxothiomorpholino)propoxy)-6-methoxy 4-(quinolin-7-yloxy)quinazoline,

6-methoxy-7-(3-(4-methylpiperazin-1-yl)propoxy)-4-(quinolin-7-yloxy)quinazoline,

6-methoxy-7-((1-methylpiperidin-3-yl)methoxy)-4-(quinolin-7-yloxy)quinazoline,

4-(4-chloroquinolin-7-yloxy)-6-methoxy-7-(3-morpholin propoxy)quinazoline,

6-methoxy-7-((1-methylpiperidin-4-yl)methoxy)-4-(4-methylquinolin-7-yloxy)quinazoline,

6-methoxy-4-(4-methylquinolin-7-yloxy)-7-(3-(pyrrolidin-1\v1)propoxy)quinazoline,

6-methoxy-7-(2-(2-methoxyethoxy)-4-(quinolin-7-yloxy)quinazoline,

- 6-methoxy-7-((1-(2-methylsulphonylethyl)piperidin-4-yl)methoxy)-4-(quinolin-7-yloxy)quinazoline,
- 4-(2,3-dimethylindol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)quinazoline,
- 4-(2,3-dimethylindol-5-yloxy)-6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazoline,
- 6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)-4-(2-trifluoromethylindol-5-yloxy)quinazolme,
 - 6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)-4-(2-trifluoromethylindol-5-yloxy)quinazoline, (*R*,*S*)-4-(3-fluoroquinolin-7-yloxy)-6-methoxy-7-((1-methylpiperidin-3-yl)methoxy)quinazoline,
- 4-(indol-5-yloxy)-6-methoxy-7-(3-methylsulphonylpropoxy)quinazoline,
 7-(3-N,N-dimethylaminopropoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(2-morpholinoethoxy)ethoxy)quinazoline,
 7-(2-(N,N-diethylamino)ethoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 6-methoxy-7-(3-piperidinopropoxy)-4-(quinolin-7-yloxy)quinazoline,
- 4-(2-methylindol-5-yloxy)-7-(3-morpholinopropoxy)quinazoline,
 4-(2-methylindol-5-yloxy)-7-(2-(1/1-1,2,4-triazol-1-yl)ethoxy)quinazoline,
 4-(2-methylindol-5-yloxy)-7-(2-(1/1-1,2,4-triazol-1-yl)ethoxy)quinazoline,
 6-methoxy-7-(3-piperidinopropoxy)-4-(6-trifluoromethylindol-5-yloxy)quinazoline,
 7-(3-(methylsulphonyl)propoxy)-4-(2-methylindol-5-yloxy)quinazoline,
- 7-(3-(N,N-dimethylamino)propoxy)-4-(2,3-dimethylindol-5-yloxy)-6-methoxyquinazoline, 4-(2,3-dimethylindol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-3-ylmethoxy)quinazoline, 7-(2-(N,N-diethylamino)ethoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline, 4-(indol-5-yloxy)-6-methoxy-7-(2-(piperidin-2-yl)ethoxy)quinazoline, 4-(indol-5-yloxy)-6-methoxy-7-(2-(piperidin-1-yl)ethoxy)quinazoline,
- 4-(indol-6-yloxy)-6-methoxy-7-(3-morpholinopropoxy)quinazoline,
 7-(3-(ethylsulphonyl)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 6-methoxy-4-(3-methylindol-5-yloxy)-7-(3-piperidinopropoxy)quinazoline,
 7-(2-hydroxy-3-piperidinopropoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 7-(2-hydroxy-3-(4-methylpiperazin-1-yl)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 yloxy)quinazoline,
- 6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(N-methylamino)ethoxy)quinazoline, and 7-(2-hydroxy-3-(isopropylamino)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

or a salt thereof.

17. A compound according to claim 9 selected from

6-methoxy-7-\(3-morpholinopropoxy)-4-(quinolin-7-yloxy)quinazoline,

5 6-methoxy-4-(^λ-methylindol-5-yloxy)-7-((1-methylpiperidin-4-yl)methoxy)quinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)quinazoline,

4-(indol-5-yloxy)-6-methoxy-7-(3-pyrrolidin-1-ylpropoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-methylsulphonylpropoxy)quinazoline,

7-((1-cyanomethyl)preridin-4-ylmethoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,

10 6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-morpholinoethoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-pyrrolidin-1-ylethoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(1-methylpiperidin-3-ylmethoxy)quinazoline,

6-methoxy-4-(2-methylindal-5-yloxy)-7-(2-piperidinoethoxy)quinazoline,

6-methoxy-4-(2-methylindol $\sqrt{5}$ -yloxy)-7-(2-(N-methyl-N-(4-

15 pyridyl)amino)ethoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-\loxy)-7-(3-morpholinopropoxy)quinazoline,

6-methoxy-7-(2-(2-methoxyethoxy)-4-(2-methylindol-5-yloxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(1H-1,2,4-triazol-1-yl)ethoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(4-methylpiperazin-1-

20 yl)ethoxy)ethoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-\(\frac{1}{2}\)-(3-piperidinopropoxy)quinazeline,

4-(indol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline

6-methoxy-7-(1-(2-methoxyethyl)piperidin-4-ylmethoxy)-4-(2-methylindol-5-

yloxy)quinazoline,

25 6-methoxy-4-(2-methylindol-5-yloxy)-7-((2-\(2-pyrrolidin-1-

ylethyl)carbamoyl)vinyl)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-(4-methypiperazin-1-yl)propoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(piperidin-4-ylmethoxy)quinazoline,

6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(piper)din-4-yloxy)ethoxy)quinazoline,

30 6-methoxy-4-(2-methylindol-5-yloxy)-7-(2-(N-methyl-N-methyl-N-methyl-n

methylsulphonylamino)ethoxy)quinazoline,

- 7-(2-(1-(2-cyanoethyl)piperidin-4-yloxy)ethoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
- 4-(2-methylindol-5-yloxy)-7-(3-(pyrrolidin-yl)propoxy)quinazoline,
- 4-(2-methylindol-5-yloxy)-7-(3-(1,1-dioxothiomorpholino)propoxy)quinazoline,
- 5 4-(2-methylindol-5-yloxy)-7-(piperidin-4-ylmethoxy)quinazoline,
 - 4-(indol-5-yloxy)-6-methoxy-7-(2-(2-methoxyethoxy)ethoxy)quinazoline,
 - 7-(3-(N,N-dimethylamino)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
 - 7-(3-(N,N-diethylamino)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
 - 7-(3-(1,1-dioxothiomorpholino)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
- 4-(indol-5-yloxy)-6-methoxy-7-(2-(4-pyridyloxy)ethoxy)quinazoline,
 - 4-(indol-6-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
 - 7-(1-(2-methoxyethyl)piperidin-4-ylmethoxy)-4-(2-methylindol-5-yloxy)quinazoline,
 - 7-(2-hydroxy-3-morpholino propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 - 7-(2-(1-(2-methoxyethyl)piperidin-4-yl)ethoxy)-6-methoxy-4-(2-methylindol-5-
- 15 yloxy)quinazoline,
 - 7-(2-hydroxy-3-pyrrolidin-1-ylproppxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 - 7-(3-(N,N-diethylamino)-2-hydroxypropoxy)-6-methoxy-4-(2-methylindol-5-

yloxy)quinazoline,

- 7-(3-(1,1-dioxothiomorpholino)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
- 20 6-methoxy-4-(2-methylindol-5-yloxy)-χ-(2-(4-pyridyloxy)ethoxy)quinazoline,
 - 4-(indol-5-yloxy)-6-methoxy-7-(3-morpholinopropoxy)quinazoline,
 - (2R)-6-methoxy-(2-methyl-1H-indol-5-yloxy)-7-(2-hydroxy-3-

piperidinopropoxy)quinazoline,

- (5R)-6-methoxy-4-(2-methyl-1H-indol-5-yloxy)-7-(2-oxopyrrolidin-5-ylmethoxy)quinazoline,
- 25 4-(4-bromoindol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
 - 6-methoxy-4-(2-methylindol-5-yloxy)-7-(1-(2-(pyrrolidin-1-yl)ethyl)-piperidin-4-ylmethoxy)quinazoline,
 - (2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline,
 - (2R)-7-(2-hydroxy-3-morpholinopropoxy)-4-(indol-5)yloxy)-6-methoxyquinazoline,
- 30 (2R)-7-(2-hydroxy-3-piperidinopropoxy)-4-(indol-5-ylqxy)-6-methoxyquinazoline,
 - (2S)-7-(2-hydroxy-3-((N,N)-diisopropyl)amino)propoxy) 4-(indol-5-yloxy)-6-methoxyquinazoline,

- (2S)-7 (2-hydroxy-3-piperidinopropoxy)-4-(indol-5-yloxy)-6-methoxyquinazoline, (2R)-7-(2-hydroxy-3-piperidinopropoxy)-6-methoxy-4-(3-methylindol-5-yloxy)quinazoline, (2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-6-methoxy-4-(3-methylindol-5-yloxy)quinazoline,
- 5 (2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-6-methoxy-4-(2-methylindol-5-yloxy)quinazoline,
 - (2R)-7-(2-hydroxy-3-(4-methylpiperazin-1-yl)propoxy)-6-methoxy-4-(2-methylpindol-5-yloxy)quinazoline,
 - 6-methoxy-4-(2-methylindol-5-yloxy)-7-(1-(2-morpholinoethyl)piperidin-4-
- 10 ylmethoxy)quinazoline,
 - 4-(3-fluoro-quinolin 7-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
 - 4-(3-fluoro-quinolin-\(\frac{1}{2}\)yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
 - 6-methoxy-7-(3-(pyrrol\din-1-yl)propoxy)-4-(1H-pyrrolo[2,3-b]pyridin-5-yloxy)quinazoline,
 - (2S)-6-methoxy-(2-methyl-1H-indol-5-yloxy)-7-(2-hydroxy-3-piperidinopropoxy)quinazoline,
- 15 and
 - 4-(6-fluoro-2-methylindol-pyloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline, or a salt thereof.
 - 18. A compound according to claim 9 selected from
- 20 6-methoxy-4-(2-methylindol-5-yloxy)-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
 - 4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(1-methylpiperidin-4-ylmethoxy)quinazoline,
 - 4-(4-fluoroindol-5-yloxy)-6-methoxy 7-(3-(4-methylpiperazin-1-yl)propoxy)quinazoline,
 - 4-(6-fluoroindol-5-yloxy)-6-methoxy-\(\frac{1}{2}\)-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
 - 4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
- 25 4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
 - 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-(pyrrolidin-1-yl)propoxy)quinazoline,
 - 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(3-piperidinopropoxy)quinazoline,
 - 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-((1-methylpiperidin-4-
 - yl)methoxy)quinazoline,
- 30 4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-\(\frac{1}{3}\)-(3-(4-methylpiperazin-1-yl)propoxy)quinazoline,
 - 4-(4-fluoroindol-5-yloxy)-6-methoxy-7-(2-(1-meth lpiperidin-4-yl)ethoxy)quinazoline,

(2R)-7-(2-hydroxy-3-(pyrrolidin-1-yl)propoxy)-4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxyquinazoline, and

4-(4-fluoro-2-methylindol-5-yloxy)-6-methoxy-7-(2-(1-methylpiperidin-4-yl)ethoxy)quinazoline,

5 or a salt thereof.

19. A compound according to claim 9 in the form of a pharmaceutically acceptable salt.

20. A process for the preparation of a compound of formula I or salt thereof which comprises:

(a) the reaction of a compound of the formula III:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

20

15

(wherein R² and m are as defined in claim 1 and L¹ is a displaceable meiety), with a compound of the formula IV:

$$(R^{1})_{n}$$

25

(IV)

(wherein ring C, R1, Z and n are as defined in claim 1);

(b) a compound of formula I or a salt thereof wherein at least one R^2 is R^5X^1 wherein R^5 is as defined in claim 1 and X^1 is -O-, -S-, -OC(O)- or -NR¹⁰- (wherein R¹⁰ independently

15

20

25

30

represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) may be prepared by the reaction of a compound of the formula V:

$$(R^{2})_{s}$$

$$HX^{1}$$

$$H$$

$$N$$

$$H$$

10 \ (V)

(wherein ring C, Z, R^1 , R^2 and n are as defined in claim 1 and X^1 is as herein defined in this section and s is an integer from 0 to 2) with a compound of formula VI:

$$R^{5}-L^{1}$$
 (VI)

(wherein R⁵ is as defined in claim \ and L¹ is as herein defined);

(c) a compound of the formula I or a salt thereof wherein at least one R^2 is R^5X^1 wherein R^5 is as defined in claim 1 and X^1 is -O-, -S-, -OC(O)- or -NR¹⁰- (wherein R^{10} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) may be prepared by the reaction of a compound of the formula VII:

$$(R^{2})_{s}$$

$$L^{1}$$

$$H$$

$$(VII)$$

with a compound of the formula VIII:

(VIII)

(wherein R¹, R², R⁵, ring C, Z and n are as defined in claim 1 and L¹, s and X¹ are as herein defined);

- 5 (d) a compound of the formula I or a salt thereof wherein at least one R² is R⁵X¹ wherein X¹ is as defined in claim 1 and R⁵ is C₁₋₅alkylR¹¹³, wherein R¹¹³ is selected from one of the following nine groups:
 - 1) $X^{19}C_{1.3}$ alkyl (wherein X^{19} represents -O-, -S-, -SO₂-, -NR¹¹⁴C(O)- or -NR¹¹⁵SO₂- (wherein R¹¹⁴ and R¹¹⁵ which may be the same or different are each hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC₂. ₃alkyl);
 - 2) $NR^{116}R^{117}$ (wherein R^{116} and R^{117} which may be the same or different are each hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl);
 - 3) $X^{20}C_{1.5}alkylX^5R^{22}$ (wherein X^{20} represents -O-, -S-, -SO₂-, -NR¹¹⁸C(O)-, -NR¹¹⁹SO₂- or NR¹²⁰- (wherein R¹¹⁸, R¹¹⁹, and R¹²⁰ which may be the same or different are each hydrogen, $C_{1.5}alkyl$ or $C_{1.5}alkoxyC_{2.5}alkyl$) and X^5 and X^{22} are as defined in claim 1);
 - 4) R²⁸ (wherein R²⁸ is as defined in claim 1);

10

- 5) $X^{21}R^{29}$ (wherein X^{21} represents -O₇, -S-, -SO₂-, -NR¹²¹C(O)-, -NR¹²²SO₂-, or -NR¹²³- (wherein R¹²¹, R¹²², and R¹²³ which may be the same or different are each hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined in claim 1); and
- 6) X²²C₁₋₃alkylR²⁹ (wherein X²² represents -O-, -S-, -SO₂-, -NR¹²⁴C(O)-, -NR¹²⁵SO₂- or -NR¹²⁶- (wherein R¹²⁴, R¹²⁵ and R¹²⁶ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and R²⁹ is as defined in claim 1);
 - 7) R²⁹ (wherein R²⁹ is as defined in claim 1);
 - 8) X²²C₁₋₄alkylR²⁸ (wherein X²² and R²⁸ are as defined in claim 1); and
- 9) R⁵⁴(C₁₋₄alkyl)_q(X⁹)_rR⁵⁵ (wherein q, r, X⁹, R⁵⁴ and R⁵⁵ are as defined in claim 1); may be prepared by reacting a compound of the formula IX:

30

$$(R^{2})_{s}$$

$$L^{1}-C_{1-s}alkyl-X^{1}$$

$$H$$

$$(IX)$$

(wherein X¹, R¹, R², ring C, Z and n are as defined in claim land L¹ and s are as herein defined) with a compound of the formula X:

(wherein R¹¹³ is as defined herein);

- 15 (e) a compound of the formula I or a salt thereof wherein one or more of the substituents $(R^2)_m$ is represented by $NR^{127}R^{128}$, where one (and the other is hydrogen) or both of R^{127} and R^{128} are C_{1-3} alkyl, may be effected by the reaction of compounds of formula I wherein the substituent $(R^2)_m$ is an arraino group and an alkylating agent; or
- (f) a compound of the formula I or a salt thereof wherein X¹ is -SO- or -SO₂- may be
 20 prepared by oxidation from the corresponding compound in which X¹ is -S- or -SO-;
 and when a salt of a compound of formula I is required, reaction of the compound obtained with an acid or base whereby to obtain the desired salt.
- 21. A pharmaceutical composition which comprises as active ingredient a compound of formula I or a pharmaceutically acceptable sall thereof according to claim 9 in association with a pharmaceutically acceptable excipient or carrier.
 - 22. A method for producing an antiangiogenic and/or vascular permeability reducing effect in a warm-blooded animal in need of such treatment which comprises administering to said animal an effective amount of a compound of formula I as defined in claim 1 or a pharmaceutically acceptable salt thereof.

- -
- 23. A compound 4-fluoro-5-hydroxy-2-methylindole or a salt thereof.
- 24. A compound 4-fluoro-5-hydroxyindole or a salt thereof.
- 5 25. A compound 6-Nuoro-5-hydroxy-2-methylindole or a salt thereof.
 - 26. A compound 6-fluoro-5-hydroxyindole or a salt thereof.
- 27. A process for the preparation of 4-fluoro-5-hydroxy-2-methylindole according to any one of those described in Example 237.
 - 28. A process for the preparation of 4-fluoro-5-hydroxyindole as described in Example 242.
- 15 29. A process for the preparation of 6-fluoro-5-hydroxyindole as described in Example 242.
 - 30. A process for the preparation of 6-fluoro-5-hydroxy-2-methylindole as described in Example 250.

add A23