Матан экзамен

27 февраля 2020 г.

Содержание

1	БИЛЕТ 24 — Функция одной вещественной переменной. Области определения и изменения. График функции. Сложная функция. Свойства функции.	
	Обратная функция. Способы задания функции	3
	1.1 Свойства Функций	3
	1.2 Обратная Функция	3
	1.3 Способы задания функций	4
2	БИЛЕТ 25 – Два определения предела функции и их эквивалентность	5
	2.1 Эквивалентность определений	5
3	БИЛЕТ 26 – Бесконечные пределы и односторонние пределы	6
4	БИЛЕТ 27 — Свойства пределов функции. Ограниченность функции, имеющей предел. Предельный переход в неравенстве. Теорема о сжатой переменной. Отделимость от нуля	7
	4.1 Свойства пределов функций	7
	4.2 Ограниченность функции, имеющей предел	7
	4.3 Предельный переход в неравенстве	7
	4.4 Теорема о сжатой переменной	7
5	БИЛЕТ 28 – Арифметические свойства пределов	8
6	ВИЛЕТ 29 – Предел монотонной функции	9
7	ВИЛЕТ 30 – Весконечно малые функции. Критерий Коши существования	
	предела	10
	7.1 Бесконечно малые функции	10
	7.2 Критерий Коши существования предела	10
8	БИЛЕТ 31 – Непрерывность функции в точке. Критерий непрерывности	11
9	ВИЛЕТ 32 – Точки разрыва	12
10	БИЛЕТ 33 – Непрерывность функции на множестве. Теоремы Вейерштрасса	
	и Коши	13

11	БИЛЕТ 34 – Равномерная непрерывность. Теорема Кантора	14
12	БИЛЕТ 35 – Непрерывность элементарных функций	15
13	БИЛЕТ 36 – Сравнение функций. Символы Ландау	16
14	БИЛЕТ 37 – Определение производной. Геометрический смысл производной	17
15	БИЛЕТ 38 – Дифференцируемость функции и её дифференциал	18
16	БИЛЕТ 39 – Односторонние производные	19
17	БИЛЕТ 40 – Правила дифференцирования и таблица производных	20
18	БИЛЕТ 41 – Логарифмическое дифференцирование. Дифференцирование	
	функций, заданных неявно и заданных параметрически	21
	18.1 ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ	21
	18.2 ФУНКЦИИ ЗАДАННЫЕ НЕЯВНО	21
	18.3 ФУНКЦИИ, ЗАДАННЫЕ ПАРАМЕТРИЧЕСКИ	22
19	БИЛЕТ 42 – Производные и дифференциалы высших порядков	23
	19.1 ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ	23
	19.2 ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ	23
20	БИЛЕТ 43 – Свойства дифференцируемых функций. Французские теоремы	24
	20.1 СВОЙСТВА ДИФФЕРЕНЦИАЛОВ ВЫСШИХ ПОРЯДКОВ	$\frac{-}{24}$
	20.2 TEOPEMA ФЕРМА	24
	20.3 ТЕОРЕМА РОЛЛЯ	24
	20.4 TEOPEMA ЛАГРАНЖА	24
	20.5 ТЕОРЕМА КОШИ	$\frac{24}{24}$
21	БИЛЕТ 44 – Формулы Тейлора и Маклорена. Формула остаточного члена	25
22	БИЛЕТ 45 – Разложение элементарных функций по формуле Маклорена	26
23	БИЛЕТ 46 – Правило Лопиталя	27
24	БИЛЕТ 47 – Исследование функций на монотонность и экстремумы	28
25	БИЛЕТ 48 – Исследование функций на выпуклость и точки перегиба	29
26	БИЛЕТ 49 – Нахождение асимптот графика функции	30
27	БИЛЕТ 50 – Науож дение наибольнику и наименьнику значений функции	21

1 БИЛЕТ 24 — Функция одной вещественной переменной. Области определения и изменения. График функции. Сложная функция. Свойства функции. Обратная функция. Способы задания функции

Задание функции y = f(x) вещественной переменной x означает, что каждому значению x из числового множества X (области определения) ставится в соответствие число y из числового множества Y (области значений).

- **Аргументом** функции y = f(x) является вещественная переменная x; аргументом функции $y = f(x_1, ..., x_n)$ является вектор $(x_1, ..., x_n)$, составленный из вещественных переменных $x_1, ..., x_n$.
- Областью определения функции y = f(x) является множество X допустимых значений переменной x.
- Областью изменения функции y = f(x) является множество Y допустимых значений переменной y.

Пусть функция u=g(x) определена на множестве X и U - множество значений этой функции. Пусть, множество U (или его подмножество) является областью определения функции y=f(u). Поставим в соответствие каждому x из X число f(g(x)). Тем самым на множестве X будет задана функция y=f(g(x)). Её называют композицией функций или сложной функцией.

1.1 Свойства Функций

Функция называется чётной, если:

- 1. Область определения функции симметрична относительно нуля, т.е. для любого x, принадлежащего области определения, -x также принадлежит области определения;
- 2. При замене значения аргумента x на противоположное -x значение функции не изменится, т.е. f(-x) = f(x) для любого x из области определения функции.

Функция называется нечётной, если

- 1. Область определения функции симметрична относительно нуля, т.е. для любого x, принадлежащего области определения, -x также принадлежит области определения;
- 2. f(-x) = -f(x) для любого x из области определения функции.

1.2 Обратная Функция

Обратная функция — функция, обращающая зависимость, выражаемую данной функцией. Например, если функция от x даёт y, то обратная ей функция от y даёт x. Обратная функция функции f обычно обозначается f^{-1} .

1.3 Способы задания функций

- 1. Табличный способ
- 2. Графический способ
- 3. Аналитический способ
- 4. Словесный способ

2 БИЛЕТ 25 – Два определения предела функции и их эквивалентность

• Определение предела по Коши

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall U(A) \ \exists U(x_0) : f(X \cap U(x_0)) \subset U(A)$$
$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon \ \exists \delta > 0 \ \forall x \in X : (|x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon)$$

• Определение предела по Гейне

$$\lim_{x \to x_0} f(x) = A \iff \forall x_n, \lim_{n \to \infty} x_n = A : \lim_{n \to \infty} f(x_n) = A$$

2.1 Эквивалентность определений

Пусть число A является пределом функции f(x) в точке a по Коши. Выберем произвольную подходящую последовательность x_n , $n \in N$, то есть такую, для которой $\lim_{n \to \infty} x_n = a$. Покажем, что A является пределом по Гейне.

Зададим произвольное $\varepsilon>0$ и укажем для него такое $\delta>0$, что для всех x из условия $0<|x-a|<\delta$ следует неравенство $|f(x)-A|<\varepsilon$. В силу того, что $\lim_{n\to\infty}x_n=a$, для $\delta>0$ найдётся такой номер $n_\delta\in N$, что $\forall n\geqslant n_\delta$ будет выполняться неравенство $|f(x_n)-A|<\varepsilon$, то есть $\lim_{n\to\infty}f(x_n)=A$.

Докажем теперь обратное утверждение: предположим, что $\lim_{x\to a} f(x) = A$ по Гейне, и покажем, что число A является пределом функции f(x) в точке a по Коши. Предположим, что это неверно, то есть: $\exists \ \varepsilon_0 > 0 \ \forall \ \delta > 0 \ : \ \exists \ x_\delta : 0 < |x_\delta - a| < \delta \Rightarrow |f(x_\delta) - A| \geqslant \varepsilon$. В качестве δ рассмотрим $\delta = \frac{1}{n}$, а соответствующие значения x_δ будем обозначать x_n . Тогда при любом $n \in N$ выполняются условия $|x_n - a| < \frac{1}{n}$ и $|f(x_n) - A| \geqslant \varepsilon$. Отсюда следует, что последовательность x_n является подходящей, но число A не является пределом функции f(x) в точке a. Получили противоречие.

3 БИЛЕТ 26 – Бесконечные пределы и односторонние пределы

Функция имеет бесконечный предел, если

$$\lim_{x \to a} f(x) = +\infty \; (-\infty) \; \Leftrightarrow \; \forall \, M > 0 \; \; \exists \, \delta > 0 \; \; : \; \; \forall x \in X, \; |x-a| < \delta \; \; : \; f(x) > M \; \; (f(x) < -M)$$

Число A называется **левосторонним** пределом, если

$$\lim_{x\to a-0} f(x) = A \Leftrightarrow \forall \, \varepsilon > 0 \, \exists \, \delta > 0 \, : \, \forall x \in X, \, a-x < \delta \, : \, |f(x)-A| < \varepsilon$$

4 БИЛЕТ 27 — Свойства пределов функции. Ограниченность функции, имеющей предел. Предельный переход в неравенстве. Теорема о сжатой переменной. Отделимость от нуля

4.1 Свойства пределов функций

• **ТЕОРЕМА ОБ ОТДЕЛИМОСТИ ОТ НУЛЯ** Если функция имеет конечный предел в точке, то существует окрестность этой точки, в которой функция ограничена на пересечении окрестности с множеством X.

$$\lim_{x \to x_0} f(x) = A \neq 0 \implies \forall c, 0 < c < |A| \ \exists U(x_0) \cap X : f(x) > c \ (if \ A > 0)$$

- Предел постоянной функции равен значению этой постоянной.
- Если значение функции не меньше некоторого числа a на множестве X и существует конечный или определённого знака бесконечный предел функции в некоторой точке x_0 , то и предел в этой точке x_0 будет не меньше числа a.

4.2 Ограниченность функции, имеющей предел

Если функция f(x) имеет предел в точке a, то она ограниченна в некоторой окрестности этой точки a.

4.3 Предельный переход в неравенстве

Пусть $f,g:X\to\mathbb{R},\,x_0$ — предельная точка множества X.

$$\forall \, x \in X \, : f(x) \leqslant g(x), \, \lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B \, \Rightarrow \, A \leqslant B$$

4.4 Теорема о сжатой переменной

$$\lim_{x\to x_0}\varphi(x)=\lim_{x\to x_0}\psi(x)=A,\,\varphi(x)\leqslant f(x)\leqslant \psi(x)\,\Rightarrow\,\lim_{x\to x_0}f(x)=A$$

5 БИЛЕТ 28 – Арифметические свойства пределов

$$\lim_{x \to x_0} f(x) = A, \lim_{x \to x_0} g(x) = B$$

- $\lim_{x \to x_0} (f(x) + g(x)) = A + B;$
- $\lim_{x \to x_0} (f(x) \cdot g(x)) = A \cdot B$
- $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B}$, если $\lim_{x \to x_0} g(x) \neq 0$

6 БИЛЕТ 29 – Предел монотонной функции

Если функция f(x) определена и монотонна на отрезке [a;b], то в каждой точке $x_0 \in (a;b)$ эта функция имеет конечные пределы слева и справа, а в точках a и b – правосторонний и левосторонний пределы.

7 БИЛЕТ 30 – Бесконечно малые функции. Критерий Коши существования предела

7.1 Бесконечно малые функции

Функция называется **бесконечно малой**, если её предел при $x \to \infty$ или $x \to x_0$ её предел равен нулю.

Если функция y=f(x) представима при $x\to x_0$ в виде суммы постоянного числа b и бесконечно малой величины $\alpha(x):f(x)=b+\alpha(x),$ то $\lim_{x\to x_0}f(x)=b.$

7.2 Критерий Коши существования предела

Для того чтобы функция f(x), $x \in x$ имела в (конечной или бесконечно удаленной) точке x_0 конечный предел, необходимо и достаточно, чтобы для любого $\varepsilon > 0$ существовала такая окрестность $U(x_0)$ точки x_0 , что для любых $x' \in X \cap U(x_0)$ и $x'' \in X \cap U(x_0)$ выполнялось бы неравенство $|f(x') - f(x'')| < \varepsilon$.

$$\exists \lim_{x \to x_0} f(x) \Leftrightarrow \forall \varepsilon > 0 \ \exists U(x_0) : \forall x' \in X \cap U(x_0), \forall x'' \in X \cap U(x_0) : |f(x') - f(x'')| < \varepsilon$$

8 БИЛЕТ 31 – Непрерывность функции в точке. Критерий непрерывности

Функция f(x) называется непрерывной в точке x_0 , если:

- 1. Функция f(x) определена в точке x_0 и ее окрестности;
- 2. Существует конечный предел функции f(x) в точке x_0 ;
- 3. Этот предел равен значению функции в точке x_0 , т.е. $\lim_{x \to x_0} f(x) = f(x_0)$

$$\lim_{x \to x_0} = f(x_0)$$

$$\Delta x = x - x_0, \ \Delta y = (x_0 + \Delta x) - f(x_0), \ x_0 \in X, \ x \in X : \lim_{\Delta x \to 0} \Delta y = 0.$$

9 БИЛЕТ 32 – Точки разрыва

$$\lim_{x \to x_0 - 0} f(x) = A, \ \lim_{x \to x_0 + 0} f(x) = B, \ A \in \mathbb{R}, \ B \in \mathbb{R}$$

(A - B) – скачок функции в точке x_0 .

- A B = 0 устранимый разрыв в точке x_0 ;
- $A-B \neq 0$ разрыв I рода в точке x_0 ;
- Если $A\in\{+\infty;-\infty;\infty;\varnothing\},\,B\in\{+\infty;-\infty;\infty;\varnothing\},$ то разрыв II рода в точке $x_0.$

10 БИЛЕТ 33 — Непрерывность функции на множестве. Теоремы Вейерштрасса и Коши

Функция называется **непрерывной на множестве** X, если она непрерывна по множеству X в каждой его точке.

ТЕОРЕМА ВЕЙЕРШТРАССА Непрерывная на отрезке функция ограничена и принимает на нём наибольшее и наименьшее значение.

ТЕОРЕМА БОЛЬЦАНО-КОШИ Непрерывная на отрезке функция, принимая какие-либо два значения, принмиает и любое лежащее между ними значение.

$$\lim_{x \to x_0} f(x) = f(x_0), \ x_0 \in [a;b], \ f(a) = A, \ f(b) = B \ \Rightarrow \ \forall C \in [A;B] \ \exists \varepsilon \in [a;b] \ : \ f(\varepsilon) = C.$$

11 БИЛЕТ 34 – Равномерная непрерывность. Теорема Кантора

Функция f(x) называется **равномерно непрерывной** на множестве X, если

$$\forall \varepsilon > 0 \,\exists \, \delta > 0 \,:\, \forall \, x', x'' \in X, \, |x'' - x'| < \varepsilon \,:\, |f(x'') - f(x')| < \varepsilon$$

ТЕОРЕМА КАНТОРА Функция, непрерывная на отрезке, равномерно непрерывна на нём.

12 БИЛЕТ 35 – Непрерывность элементарных функций

Все элементарные функции являются непрерывными в любой точке свой области определения.

Функция называется **элементарной**, если она построена из конечного числа композиций и комбинаций (с использованием 4 действий - сложение, вычитание, умножение и деление) основных элементарных функций.

Множество основных элементарных функций включает в себя:

- алгебраические многочлены, рациональные дроби;
- показательные, степенные и логарифмические функции;
- тригонометрические, обратные тригонометрические, гиперболические и обратные гиперболические функции.

13 БИЛЕТ 36 – Сравнение функций. Символы Ландау

$$\exists \dot{U}(x_0), c > 0 : \forall x \in \dot{U}(x_0), |f(x)| \le c \cdot |g(x)| \Rightarrow f(x) = O(g(x)), x \to x_0$$

хз че я тут написала, вот норм определения

Пусть f(x) и g(x) — две функции, определенные в некоторой проколотой окрестности точки x_0 , причем в этой окрестности $g(x_0) \neq 0$.

1. f(x) является "О большим" от g(x) при $x \to x_0$ и пишут f(x) = O(g(x)), если существует константа C > 0, что для всех x из некоторой окрестности точки x_0 имеет место неравенство $|f(x)| \le C \cdot |g(x)|$.

$$f(x) = \varphi(x) \cdot g(x), \ \exists \lim_{x \to x_0} \varphi(x) = k \ \Rightarrow \ f(x) = O(g(x)), \ x \to x_0$$

2. f(x) является "о малым" от g(x) при x/tox_0 и пишут f(x) = o(g(x)), если для любого $\varepsilon > 0$ найдётся такая проколотая окрестность $\dot{U}(x_0)$ точки x_0 , что для всех $x \in \dot{U}(x_0)$ имеет место неравенство $|f(x)| < \varepsilon |g(x)|$.

$$\forall \varepsilon > 0 \,\exists \, \dot{U}(x_0) \,:\, \forall \, x \in \dot{U}(x_0) \,:\, |f(x)| < \varepsilon |g(x)|$$

Функция f(x) называется функцией **того же порядка** при $x \to x_0$, что и функция g(x), если существуют такие постоянные $c_1 > 0$ и $c_2 > 0$, что для всех $x \in X \cap U$ выполняется неравенство

$$c_1 \cdot |g(x)| \leqslant |f(x)| \leqslant c_2 \cdot |g(x)|$$

Функция f(x) называется **эквивалентной** функции g(x) (или асимптотически равной ей) при $x \to x_0$, если

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

14 БИЛЕТ 37 – Определение производной. Геометрический смысл производной

Пусть функция f(x) определена в $U(x_0), x \in U(x_0)$. Тогда производная это:

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{\Delta x \to 0} \frac{f(x_0) + \Delta x - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f(x)}{\Delta x}$$

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ Производная – угол наклона касательной к графику функции f(x) в точке x_0 . Касательная – предельное положение секущей.

15 БИЛЕТ 38 – Дифференцируемость функции и её дифференциал

Функция дифференцируется в точке x_0 тогда и только тогда, когда имеет в этой точке производную.

$$dy = f'(x_0)dx$$

Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции. Дифференциал функции y=f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

$$f: X \to \mathbb{R}, \ U(x_0) \subset X.$$

$$\Delta y = f(x_0 + \Delta x) - f(x_0), \ \Delta x = x - x_0,$$

$$\Delta y = A\Delta x + \alpha(\Delta x)$$

 Δx или же dx – дифференциал.

Дифференцируемая в точке функция так же непрерывна в ней.

Дифференциал функции f(x) в точке x_0 равен приращению ординаты касательной в точке x_0 .

$$\Delta x = x - x_0$$

16 БИЛЕТ 39 – Односторонние производные

Правая производная $f'_+(x_0)$ функции y=f(x) в точке x_0 называется:

$$f'_{+}(x_0) = \lim_{\Delta x \to +0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Левая производная $f'_{-}(x_0)$ функции y=f(x) в точке x_0 называется:

$$f'_{-}(x_0) = \lim_{\Delta x \to -0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

ТЕОРЕМА Для того чтобы в точке x существовала производная f'(x), необходимо и достаточно, чтобы в точке x функция f(x) имела правую и левую производные, и эти производные были равны между собой: $f'(x) = f'_+(x) = f'_-(x)$.

17 БИЛЕТ 40 — Правила дифференцирования и таблица производных

десткий сад

18 БИЛЕТ 41 – Логарифмическое дифференцирование. Дифференцирование функций, заданных неявно и заданных параметрически

18.1 ЛОГАРИФМИЧЕСКОЕ ДИФФЕРЕНЦИРОВАНИЕ

Логарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него

Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей:

$$ln y = ln f(x)$$

Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x.

$$(\ln y)' = (\ln f(x))' \Rightarrow \frac{1}{y} \cdot y' = (\ln f(x))'$$

Отсюда видно, что искомая производная равна

$$y' = y \cdot (\ln f(x))' = f(x) \cdot (\ln f(x))'$$

Такая производная от логарифма функции называется логарифмической производной.

18.2 ФУНКЦИИ ЗАДАННЫЕ НЕЯВНО

Если существует y = f(x) такая, что F(x, f(x)) = 0, то говорят, что уравнение F(x, y) = 0 задает y как функцию от x неявно. То есть, функция, заданная **неявно**, – функция, в которой невозможно выразить y через x.

ДИФФЕРЕНЦИРОВАНИЕ Приводим к виду . . . = 0. Рассматриваем функцию двух переменных $F(x,y) = \dots$ Производную y' можно будет найти по формуле $y' = -\frac{F_x'}{F_y'}$, где F_x' , F_y' – частные производные.

18.3 ФУНКЦИИ, ЗАДАННЫЕ ПАРАМЕТРИЧЕСКИ

Функция задана параметрически, если она представлена в виде

$$\begin{cases} y = \varphi(t) \\ x = \psi(t) \end{cases}$$

ДИФФЕРЕНЦИРОВАНИЕ Функции x(t) и y(t) определены и непрерывны еа некотором интервале изменения параметра t. Найдем дифференциалы от правых и левых частей каждого из равенств:

$$\begin{cases} dx = x_t' dt \\ dy = y_t' dt \end{cases}$$

Далее, разделив второе уравнение на первое, и с учетом того, что $\frac{dy}{dx}=y_x'$, получим выражение для первой производной функции, заданной параметрически:

$$\frac{dy}{dx} = y_x' = \frac{y_t'}{x_t'}$$

19 БИЛЕТ 42 — Производные и дифференциалы высших порядков

19.1 ПРОИЗВОДНЫЕ ВЫСШИХ ПОРЯДКОВ

$$f: X \to \mathbb{R}, (a,b) \subset X; x_0 \in (a,b)$$

$$\exists f'(x) \, \forall x \in (a,b) \Rightarrow$$

$$\Rightarrow \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = f''(x_0)$$

$$f^{(n)}(x_0) = \lim_{\Delta x \to 0} \frac{f^{(n-1)}(x_0 + \Delta x) - f^{(n-1)}(x_0)}{\Delta x}, n = 1, 2, \dots$$

Функция называется n раз непрервывно дифференцируемой на некотором промежутке, если во всех точках этого промежутка она имеет непрерывные производные до порядка n включительно, $n=0,1,2,\ldots$

19.2 ДИФФЕРЕНЦИАЛЫ ВЫСШИХ ПОРЯДКОВ

$$dy = f'(x)dx$$

$$d^{2}y = f''(x_{0})dx^{2}$$

$$\dots$$

$$d^{n}y = y^{(n)}dx^{n}, n = 1, 2, \dots$$

$$y^{(n)} = \frac{d^{n}y}{dx^{n}}$$

20 БИЛЕТ 43 – Свойства дифференцируемых функций. Французские теоремы

20.1 СВОЙСТВА ДИФФЕРЕНЦИАЛОВ ВЫСШИХ ПОРЯДКОВ

$$d^{n}(y_{1} + y_{2}) = d^{n}y_{1} + d^{n}y_{2}$$

$$d^{n}(cy) = cd^{n}y, c = const$$

$$d^{n}(y_{1} \cdot y_{2}) = \sum_{k=0}^{n} C_{n}^{k} \cdot dy_{1}^{n-k} \cdot dy_{2}^{k}$$

20.2 ΤΕΟΡΕΜΑ ΦΕΡΜΑ

Если функция определена в некоторой окрестности точки, принимает в этой точке наибольшее (наименьшее) значение и имеет конечную или определенного знака бесконечную производную, то эта производная равна нулю.

$$f: X \to \mathbb{R}, \ U(x_0) \subset X$$
$$f(x_0) \geqslant f(x) \ \forall x \in U(x_0) \ \exists \ f'(x) \ \forall x \in U(x_0) \ : \ f(x_0) = 0$$

20.3 ТЕОРЕМА РОЛЛЯ

Любая действительная дифференцируемая функция, принимающая одинаковые значения на концах интервала, должна иметь в этом интервале хотя бы одну стационарную точку, т.е. точку, в которой первая производная равна нулю.

- 1. Функция f(x) непрерывна на [a;b];
- 2. Функция f(x) имеет производную в широком смысле на (a, b);
- 3. f(a) = f(b)

$$\exists \varepsilon \in (a,b) : f'(\varepsilon) = 0$$

20.4 ТЕОРЕМА ЛАГРАНЖА

Если функция f(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b), то в этом интервале существует хотя бы одна точка $x=\varepsilon$ такая, что

$$f(b) - f(a) = f'(\varepsilon)(b - a)$$

Данная теорема называется также формулой **конечных приращений**, поскольку она выражает приращение функции на отрезке через значение производной в промежуточной точке этого отрезка.

20.5 ТЕОРЕМА КОШИ

Пусть функции f(x) и g(x) непрерывны на отрезке [a,b] и дифференцируются на интервале (a,b). Тогда если $g'(x) \neq 0 \, \forall x \in (a,b)$:

$$\exists \, \varepsilon \in (a,b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\varepsilon)}{g'(\varepsilon)}$$

21 БИЛЕТ 44 — Формулы Тейлора и Маклорена. Формула остаточного члена

Формула Тейлора

$$f(x) = f(a) + \frac{f'(a)}{1!} \cdot (x - a) + \frac{f''(a)}{2!} \cdot (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} \cdot (x - a)^n + R_n(x)$$

где $R_n(x)$ – остаточный член формулы Тейлора. Остаточный член в форме Лагранжа

$$R_n(x) = \frac{f^{(n+1)}(a+\theta \cdot (x-a))}{(n+1)!} \cdot (x-a)^{n+1}, \ 0 < \theta < 1$$

Остаточный член в форме Коши

$$R_n(x) = \frac{f^{(n+1)}(a + \theta \cdot (x - a))}{n!} \cdot (1 - \theta)^n \cdot (x - a)^{n+1}, \ 0 < \theta < 1$$

Остаточный член в форме Пеано

$$R_n(x) = o((x-a)^n)$$

Формула Маклорена

$$P(x) = P(0) + \frac{P'(0)}{1!} \cdot x + \frac{P''(0)}{2!} \cdot x^2 + \dots + \frac{P^{(n)}(0)}{n!} \cdot x^n$$

22 БИЛЕТ 45 — Разложение элементарных функций по формуле Маклорена

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots, |x| < \infty,$$

$$\sin x = \frac{x}{1!} - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + \frac{(-1)^{n+1}x^{2n-1}}{(2n-1)!} - \dots, |x| < \infty,$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots + \frac{(-1)^{n+1}x^{2n}}{(2n)!} - \dots, |x| < \infty,$$

$$\ln(1+x) = \frac{x}{1} - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + \frac{(-1)^{n+1}x^{n}}{n} - \dots, x \in (-1; 1],$$

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!}x + \frac{\alpha(\alpha-1)}{2!}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)x^{n}}{n!} + \dots, |x| < 1,$$

$$\arctan(x) = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + \dots + \frac{(-1)^{n-1}x^{2n-1}}{2n-1} - \dots, |x| \le 1,$$

$$\frac{1}{1-x} = 1 + x + x^{2} + \dots + x^{n} + \dots, |x| < 1,$$

$$\sinh x = x + \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + \dots, |x| < \infty,$$

$$\cosh x = 1 + \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots, |x| < \infty,$$

$$\ln \frac{1+x}{1-x} = 2\left(x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + \frac{x^{2n-1}}{2n-1} + \dots\right), |x| < 1,$$

$$\frac{1}{(1-x)^{2}} = 1 + 2x + 3x^{2} + \dots + (n+1)x^{n} + \dots, |x| < 1.$$

23 БИЛЕТ 46 — Правило Лопиталя

$$f"X \to \mathbb{R}, \, g:Z \to \mathbb{R}, \, [\, a,b\,] \subset X, \, [\, a,b\,] \subset Z$$

1.
$$f(a) = g(a) = 0$$

2.
$$\exists f'_{+0}(a), \ \exists g'_{+0}(c) \neq 0, \ c \in Z : \lim_{x \to a+0} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$$

24 БИЛЕТ 47 — Исследование функций на монотонность и экстремумы

Берём производную и ставим знаки

25 БИЛЕТ 48 — Исследование функций на выпуклость и точки перегиба

Берём вторую проивзодную и расставляем знаки

26 БИЛЕТ 49 – Нахождение асимптот графика функции

Вертикальная асимптота графика, как правило, находится в точке бесконечного разрыва функции. Всё просто: если в точке x=a функция y=f(x) терпит бесконечный разрыв, то прямая, заданная уравнением x=a является вертикальной асимптотой графика.

Таким образом, чтобы установить наличие вертикальной асимптоты x=a в точке x=a, достаточно показать, что хотя бы один из односторонних пределов $\lim_{x\to a-0} f(x), \lim_{x\to a+0} f(x)$ бесконечен. Чаще всего это точка, где знаменатель функции равен нулю.

Наклонные (как частный случай – горизонтальные) асимптоты могут нарисоваться, если аргумент функции стремится к $+\infty$ или к $-\infty$. Поэтому график функции не может иметь больше двух наклонных асимптот. Например, график экспоненциальной функции $f(x)=e^x$ обладает единственной горизонтальной асимптотой при $x\to-\infty$, а график арктангенса f(x)=arctg(x) при $x\to-\infty$, $x\to+\infty$ — двумя такими асимптотами, причём различными. Нахождение:

- 1. Находим вертикальные асимптоты. Ищем точку, где односторонние пределы бесконечны (предельчики ищем)
- 2. Находим наклонные асимптоты. Уравнение вида y = kx + b

$$k = \lim_{x \to \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to \infty} (f(x) - kx)$$

Смотри при $+\infty$ и при $-\infty$

27 БИЛЕТ 50 — Нахождение наибольших и наименьших значений функции

Находим тчоки минимума или максимума, подставляем их и концы отрезка в функцию, выделяем наименьшее или наибольшее.