chap01 拉格朗日力学-新

	错误	更正
P28/L5	$\frac{d\vec{p}}{dt} = q\vec{E} + q\vec{v} \times \vec{B}$	$\frac{d\vec{p}}{dt} = q\vec{E} + \frac{1}{c}q\vec{v} \times \vec{B}$
P28/L15		$ec{E} = - \vec{\nabla} \phi - \partial_t \vec{A}$
(7.15)式中	$\vec{E} = -\vec{\nabla}\phi - \frac{1}{c}\partial_t \vec{A}$	$E = -V\phi - \sigma_t A$
P35 (9.15) 式	$u = \sqrt{\kappa/\lambda} = \sqrt{K/\lambda}$	$u = \sqrt{\kappa/\lambda} = \sqrt{K/\rho}$
下方	$u = \sqrt{\kappa/\lambda} = \sqrt{\kappa/\lambda}$	$u = \sqrt{\kappa/\lambda} = \sqrt{\kappa/\rho}$

chap02 哈密顿力学概要

	错误	更正
P5/L10	$\partial_t[A,B] = [\partial_t A, B] + [\partial_t A, B]$	$\partial_t[A,B] = [\partial_t A, B] + [A, \partial_t B]$