

Normalization: Part II

Complete Course on Database Management System

Basis, E-R modeling 5QL

DBMS Relational DB

By: Vishvadeep Gothi

Relational Model

Relational Model

The relational model uses a collection of tables to represent both data and the relationships among those data

Relation

The main construct for representing data in the relational model is a relation, which is table.

Attribute (column, field)

Attributes are used to describe relations

Or

Columns of relations are attributes

Tuple Or Record / 🗝 🗸

A row in a relation

Relation Example

The account relation with unordered tuples

account-number	branch-name	balance
A-101	Downtown	500
A-215	Mianus	700
A-102	Perryridge	400
A-305	Round Hill	350
A-201	Brighton	900
A-222	Redwood	700
A-217	Brighton	750

Database Schema

Logical design of database

*

Database Instance

Snapshot of the data in the database at a given instant in time

Domain

A unique set of values permitted for an attribute

Domain Constraint

Specifies an important condition that we want each instance of relation to satisfy

Degree or Arity

Number of attributes in relation

Cardinality

Number of tuples in a relation

Relational Database

A relational database is a collection of relations

Keys

An attribute or set of attributes whose values can uniquely identify a tuple in a relation

Keys

- Super Key
- Candidate Key
- Primary Key
- 4. Alternate Key
- Foreign Key

Functional Dependency

Consider a relation R and 2 attributes A and B in R.

B is functionally dependent on A (denoted by A \rightarrow B), if each value of A is associated with exactly one value in B in relation R.

Functional Dependency

Consider a relation R and 2 attributes A and B in R.

B is functionally dependent on A (denoted by A \rightarrow B), if each value of A is associated with exactly one value in B in relation R.

A	В	C	D
a_1	b_1	c_1	d_1
a_1	b_2	c_1	d_2
a_2	b_2	c_2	d_2
a_2	b_2	c_2	d_3
a_3	b_3	c_2	d_4

Functional Dependency: Example

Α	В	С
10	B1	1
10	B2	2
11	B4	1
12	В3	4
13	B1	1
14	В3	4

Functional Dependency

- Functional dependencies play a key role in differentiating good database designs from bad database designs
- A functional dependency is a type of constraint that is a generalization of the notion of key
- X → Y, where X is a set of attributes that can determine the value of Y

Closure of an Attribute

what all attributes we can derive from given attribute

closure of A = A+ = {A}

$$A^{+} = \{A, B\}$$
 $B^{\perp} = \{B\}$
 $C^{+} = \{C, D\}$
 $T^{+} = \{D\}$

$$FD = \{A \rightarrow B,$$

$$C \rightarrow D,$$

$$D \rightarrow A?$$

$$A^{+} = \{A, B\}$$

$$B^{+} = \{B\}$$

$$C^{+} = \{C, D, A, B\}$$

$$D^{+} = \{D, A, B\}$$

Trivial Functional Dependency

Some functional dependencies are said to be trivial because they are satisfied by all relations

$$C \rightarrow C$$

Armstrong's Axioms

- Reflexivity Rule
- Augmentation Rule
- 3. Transitivity Rule

Reflexivity Rule

A functional dependency $\alpha \rightarrow \beta$ holds, If $\beta \subseteq \alpha$ where α , β are attributes or set of attributes in a relation R

Augmentation Rule

A functional dependency $\alpha \to \beta$ holds, then $\gamma \alpha \to \gamma \beta$ also holds where α , β and γ are attributes or set of attributes in a relation R

"if
$$A \longrightarrow B$$
 holds thun

AC \rightarrow BC holds

if $E \longrightarrow F$ holds

then $AB \in \longrightarrow ABF$ also hold

Transitivity Rule

A functional dependencies $\alpha \rightarrow \beta$ and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma$ also holds

where α , β and γ are attributes or set of attributes in a relation R

Additional Rule

Union Rule: A functional dependencies $\alpha \to \beta$ and $\alpha \to \gamma$ holds, then $\alpha \to \beta \gamma$ also holds

where α , β and γ are attributes or set of attributes in a relation R

$$\begin{array}{c} AB \rightarrow C \\ E \rightarrow A \\ D \rightarrow B \end{array}$$

$$\begin{array}{c} EB \rightarrow C \\ AD \rightarrow C \\ \end{array}$$

$$\begin{array}{c} AD \rightarrow C \\ \end{array}$$

$$\begin{array}{c} AD \rightarrow C \\ \end{array}$$

pseudo transitivity Rules

 $AB \rightarrow C$ $AB \rightarrow C$ A

Closure of a Set of Functional Dependencies

$$\frac{2\pi}{R}$$

$$R(A,B,C)$$

$$CD = \{A \rightarrow C\}$$

$$C \rightarrow B\}$$

Closure of a Set of Functional Dependencies

$$R (A, B, C, D)$$

$$FDs = \{A \rightarrow B, B \rightarrow C, AB \rightarrow D\}$$

$$B \rightarrow C$$

$$AB \rightarrow D$$

$$B \rightarrow C$$

$$AB \rightarrow D$$

$$AB \rightarrow D$$

Question GATE-2005

In a schema with attributes A, B, C, D and E following set of functional dependencies are given

$$\{A \rightarrow B, A \rightarrow C, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$$

Which of the following functional dependencies is NOT implied by the above set?

$$A. CD \rightarrow AC$$

R (A, B, C, X, Y, F),
$$\angle$$
, \bigcirc
FDs = {A -> B, A -> Y, BC -> XY, AYZ -> G, Y -> C}

$$\begin{array}{c} B \nearrow \rightarrow \times \nearrow \Rightarrow B \nearrow \rightarrow \times \\ A B C Z \rightarrow G \\ A Z \rightarrow G \\ A C \rightarrow \times \nearrow \end{array}$$

$$\begin{array}{c} A \nearrow C \\ A \rightarrow C \\ A \rightarrow \times \nearrow \end{array}$$

Finding Keys Using FDs

les condidate keys

		R	
A	B	C	J
	~		

Finding Keys Using FDs

Consider a relation R (A, B, C, D)

FDs =
$$\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$$

Find all keys?

$$A^{+} = \{A, B, C, D\}$$
 $B^{+} = \{B, C, D\}$
 $C^{+} = \{C, D\}$
 $C^{+} = \{C, D\}$

Consider a relation R (A, B, C, D) $FDs = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A\}$

$$\mathfrak{I}^{+} = \{ \mathfrak{D}, A, B, C \}$$

Consider a relation R (A, B, C, D, E, F)

FDs = {

$$AB \rightarrow C$$
,

 $B \rightarrow D$,

 $C \rightarrow E$,

 $CD \rightarrow F$

}

$$C \leftarrow E = \{A,B,C,D,E,F\}$$

Consider a relation R (A, B, C, D, E, F)

FDs = {

$$AB \rightarrow D$$
,

 $C \rightarrow B$,

 $D \rightarrow CF$,

 $B \rightarrow E$

A

$$AC^{\dagger} = \{A, C, B, D, E, C, F\}$$

$$AC^{\dagger} = \{A, C, B, D, F, E\}$$

$$AD^{\dagger} = \{A, D, C, F, B, E\}$$

(.lays = \{AB, AC, AD\}


```
Consider a relation R (A, B, C, D, E, F, G)
FDs = {
```

```
AB \rightarrow D,
```

$$G \rightarrow A$$
,

$$D \rightarrow F$$
,

$$B \rightarrow E$$
,

$$E \rightarrow C$$
,

$$A \rightarrow G$$

$$C \rightarrow B$$
,


```
Consider a relation R (A, B, C, D, E, G)
```

```
FDs = \{

AD \rightarrow E,

AB \rightarrow C,

B \rightarrow D,

AC \rightarrow B,

E \rightarrow G,

BC \rightarrow A

}
```



```
Consider a relation R (A, B, C, D, E, G)

FDs = \{

A \rightarrow B,
```

```
BC \rightarrow D,
```

$$E \rightarrow C$$
,

$$D \rightarrow A$$

}


```
Consider a relation R (A, B, C, D, F, G)
FDs = {
BCD \rightarrow A,
BC \rightarrow E,
A \rightarrow F,
F \rightarrow G,
C \rightarrow D,
A \rightarrow G
```

Find the minimal set?

Happy Learning.!

