# 普通物理学实验 II 电子实验报告

| 实验名 | 3称:   | 热敏电阻和热电偶的温度特性 | 生研究 |
|-----|-------|---------------|-----|
| 指导教 | 女师: _ | 张利            |     |
|     |       |               |     |
| 班   | 级:    |               |     |
| 姓   | 名:    |               |     |
| 学   | 号:    |               |     |
|     |       |               |     |
|     |       |               |     |

实验日期: <u>2024</u> 年 12 月 4 日 星期 三 \_\_\_

## 目录

| 1 | 实验  | 综述    |                  | 3  |
|---|-----|-------|------------------|----|
|   | 1.1 | 热敏电   | B阻温度特性原理         | 3  |
|   | 1.2 | 金属电   | B阻温度特性原理         |    |
|   | 1.3 | 热电偶   | B温度特性原理          | 3  |
| 2 | 实验  | 内容    |                  | 4  |
|   | 2.1 | 实验数   | 女据               | 4  |
|   |     | 2.1.1 | 热敏电阻的温度特性        | 4  |
|   |     | 2.1.2 | 金属电阻的温度特性        | 7  |
|   |     | 2.1.3 | 热电偶的温度特性         | 11 |
|   | 2.2 | 实验结   | 告果与误差分析          | 13 |
|   |     | 2.2.1 | 热敏电阻的温度特性        | 13 |
|   |     | 2.2.2 | 金属电阻的温度特性        | 14 |
|   |     | 2.2.3 | 热电偶的温度特性         | 14 |
|   | 2.3 | 热电效   | 效应的基本原理          | 14 |
|   |     | 2.3.1 | 塞贝克效应            | 14 |
|   |     | 2.3.2 | 珀尔帖效应            | 14 |
|   |     | 2.3.3 | 汤姆逊效应            | 15 |
|   | 2.4 | 利用热   | A.敏电阻控制空调启停的系统设计 | 15 |
|   |     | 2.4.1 | 测温基本原理           | 15 |
|   |     | 2.4.2 | 系统框图设计           | 15 |
|   |     | 2.4.3 | 系统工作过程           | 15 |
| 3 | 参考  | 文献    |                  | 15 |

## 1 实验综述

本实验主要利用 **FB203** 型多档恒流智能控温实验仪与万用表等探究金属电阻,热敏电阻与热电偶的温度特性。实验中,我们通过改变电阻的温度,测量电阻的阻值,从而得到电阻的温度特性曲线。

#### 1.1 热敏电阻温度特性原理

热敏电阻是一种电阻随温度变化的电阻,其阻值随温度的变化规律可以用以下公式 表示:

$$\rho = A_1 \exp^{\frac{B}{T}} \tag{1}$$

带入  $R = \rho_S^L$ , 可以得到电阻与温度的关系:

$$R_T = A \exp^{\frac{B}{T}} \tag{2}$$

对于一定的电阻来说, A和B都是定值。对上式取对数,可以得到:

$$ln R_T = ln A + \frac{B}{T}$$
(3)

得到这样的线性表达式后,用作图法可以得到 A 和 B 的值。

## 1.2 金属电阻温度特性原理

在一定温度范围内, 金属电阻的阻值与温度一般为线性关系。可以用以下公式表示:

$$R_T = R_0(1 + \alpha(T - T_0)) \tag{4}$$

其中  $R_0$  为参考温度下的电阻值,  $\alpha$  为温度系数,  $T_0$  为参考温度。

## 1.3 热电偶温度特性原理

热电偶是利用两种不同金属的热电势差来测量温度的一种仪器。是由两种不同材料的 A,B 金属丝的端点彼此紧密接触而组成的。当两个接点处于不同温度时,会产生热电势差。热电势差与温度的关系可以用以下公式表示:

$$E_x \approx \alpha (T - T_0) \tag{5}$$

其中  $\alpha$  为热电势系数, $T_0$  为参考温度。

在实验中,利用万用表,我们可以便捷地测出电阻的阻值与电动势大小。

## 2 实验内容

## 2.1 实验数据

#### 2.1.1 热敏电阻的温度特性

#### 正温度系数热敏电阻

表 1: 正温度系数热敏电阻的升温数据, 室温为 15°C

| T/°C             | 17.0  | 22.1  | 27.1  | 32.1  | 37.1 | 42.1 | 47.1 | 52.1 |
|------------------|-------|-------|-------|-------|------|------|------|------|
| $R_{\mathbb{H}}$ | 280.3 | 315.1 | 355.7 | 403.6 | 458  | 521  | 592  | 672  |
| T/°C             | 57.1  | 62.1  | 67.1  | 72.1  | 77.1 | 82.1 | 87.1 |      |
| $R_{ m I\!E}$    | 763   | 864   | 975   | 1098  | 1231 | 1373 | 1525 |      |

表 2: 正温度系数热敏电阻的降温数据, 室温为 15°C

| T/°C             | 87.1 | 82.1 | 77.1 | 72.1  | 67.1  | 62.1  | 57.1  | 52.1 |
|------------------|------|------|------|-------|-------|-------|-------|------|
| $R_{\mathbb{H}}$ | 1525 | 1379 | 1241 | 1107  | 978   | 860   | 755   | 662  |
| T/°C             | 47.1 | 42.1 | 37.1 | 32.1  | 27.1  | 22.1  | 17.1  | _    |
| $R_{\mathbb{E}}$ | 581  | 511  | 440  | 387.0 | 343.6 | 307.6 | 277.5 |      |







(b) 降温拟合曲线

图 1: 正温度系数热敏电阻实验结果图



图 2: 两曲线比较

 $R_{\mathbb{H}} = 2487737.36e^{-2666.80/T}$ 

 $R_{\mathbb{E}} = 3011626.19e^{-2732.94/T}$ 

#### 负温度系数热敏电阻

表 3: 负温度系数热敏电阻的升温数据, 室温为 15°C

| T/°C               | 18.0 | 23.0 | 28.1 | 33.1 | 38.1 | 43.1 | 48.1 | 53.1 |
|--------------------|------|------|------|------|------|------|------|------|
| $R_{\mathfrak{H}}$ | 3938 | 3469 | 2985 | 2534 | 2180 | 1877 | 1659 | 1447 |
| T/°C               | 58.1 | 63.1 | 68.1 | 73.1 | 78.1 | 83.1 | 88.1 |      |
| $R_{\mathfrak{H}}$ | 1255 | 1100 | 959  | 835  | 737  | 650  | 573  |      |

表 4: 负温度系数热敏电阻的降温数据, 室温为 15°C

| T/°C               | 88.1 | 83.1 | 78.1 | 73.1 | 68.1 | 63.1 | 58.1 | 53.1 |
|--------------------|------|------|------|------|------|------|------|------|
| $R_{\oplus}$       | 573  | 601  | 652  | 726  | 823  | 946  | 1090 | 1257 |
| T/°C               | 48.1 | 43.1 | 38.1 | 33.1 | 28.1 | 23.1 | 18.1 |      |
| $R_{\mathfrak{H}}$ | 1453 | 1676 | 2129 | 2593 | 2936 | 3284 | 3762 |      |





(a) 升温拟合曲线

(b) 降温拟合曲线

图 3: 负温度系数热敏电阻实验结果图



图 4: 两曲线比较

$$R_{\text{ff}} = 0.26e^{2813.22/T}$$
  
 $R_{\text{ff}} = 0.14e^{2979.62/T}$ 

## 2.1.2 金属电阻的温度特性

铜电阻

表 5: 铜电阻的升温数据, 室温为 15°C

| T/°C                | 15.0 | 20.0 | 25.1 | 30.1 | 35.1 | 40.1 | 45.1 | 50.1 |
|---------------------|------|------|------|------|------|------|------|------|
| $R_{\mathfrak{fl}}$ | 53.5 | 54.6 | 55.6 | 56.7 | 57.8 | 58.8 | 59.9 | 61.0 |
| T/°C                | 55.1 | 60.1 | 65.1 | 70.1 | 75.1 | 80.1 | 85.1 |      |
| $R_{\mathfrak{P}}$  | 62.1 | 63.2 | 64.3 | 65.3 | 66.4 | 67.4 | 68.5 |      |

表 6: 铜电阻的降温数据, 室温为 15°C

| T/°C                           | 85.1 | 80.1 | 75.1 | 70.1 | 65.1 | 60.1 | 55.1 | 50.1 |
|--------------------------------|------|------|------|------|------|------|------|------|
| $\overline{R_{\mathfrak{fl}}}$ | 68.5 | 67.4 | 66.4 | 65.4 | 64.3 | 63.2 | 62.1 | 61.0 |
| T/°C                           | 45.1 | 40.1 | 35.1 | 30.1 | 25.1 | 20.1 | 15.1 |      |
| $\overline{R_{\mathfrak{fl}}}$ | 60.0 | 58.9 | 57.8 | 56.7 | 55.6 | 54.7 | 53.8 |      |





(a) 升温拟合曲线

(b) 降温拟合曲线

图 5: 铜电阻实验结果图



图 6: 两曲线比较

$$R_{fij} = 8.36 + 0.21 T$$
 
$$R_{fij} = 7.78 + 0.21 T$$

## 铂电阻

表 7: 铂电阻的升温数据, 室温为 15°C

| T/°C             | 16.0  | 21.1  | 26.1  | 31.1  | 36.1  | 41.1  | 46.1  | 51.1  |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| $R_{\dot{ m H}}$ | 106.8 | 108.8 | 110.7 | 112.7 | 114.6 | 116.6 | 118.6 | 120.5 |
| T/°C             | 56.1  | 61.1  | 66.1  | 71.1  | 76.1  | 81.1  | 86.1  |       |
| $R_{$            | 122.5 | 124.5 | 126.4 | 128.3 | 130.3 | 132.3 | 134.2 |       |

表 8: 铂电阻的降温数据, 室温为 15°C

| T/°C             | 86.1  | 81.1  | 76.1  | 71.1  | 66.1  | 61.1  | 56.1  | 51.1  |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|
| $R_{\dot{ m H}}$ | 134.2 | 132.3 | 130.3 | 128.4 | 126.5 | 124.5 | 122.6 | 120.6 |
| T/°C             | 46.1  | 41.1  | 36.1  | 31.1  | 26.1  | 21.1  | 16.1  |       |
| $R_{ mathred}$   | 118.7 | 116.7 | 114.7 | 112.8 | 110.7 | 108.8 | 106.7 |       |





(a) 升温拟合曲线

(b) 降温拟合曲线

图 7: 铂电阻实验结果图



图 8: 两曲线比较

$$R_{\rm fil} = 6.40 + 0.39T$$

$$R_{\rm fil} = 6.54 + 0.39T$$

## 2.1.3 热电偶的温度特性

表 9: 热电偶的升温数据, 室温为 15°C

| T/°C              | 19.0 | 24.1 | 29.1 | 34.1 | 39.1 | 44.1 | 49.1 | 54.1 |
|-------------------|------|------|------|------|------|------|------|------|
| $\overline{E/mv}$ | 0.1  | 0.3  | 0.5  | 0.7  | 0.9  | 1.1  | 1.3  | 1.6  |
| T/°C              | 59.1 | 64.1 | 69.1 | 74.1 | 79.1 | 84.1 | 89.1 |      |
| $\overline{E/mv}$ | 1.8  | 2.0  | 2.2  | 2.4  | 2.5  | 2.8  | 2.9  |      |

表 10: 热电偶的降温数据, 室温为 15°C

| T/°C              | 89.1 | 84.1 | 79.1 | 74.1 | 69.1 | 64.1 | 59.1 | 54.1 |
|-------------------|------|------|------|------|------|------|------|------|
| $\overline{E/mv}$ | 2.9  | 2.8  | 2.6  | 2.3  | 2.0  | 1.8  | 1.6  | 1.3  |
| T/°C              | 49.1 | 44.1 | 39.1 | 34.1 | 29.1 | 24.1 | 19.1 |      |
| $\overline{E/mv}$ | 1.2  | 0.9  | 0.8  | 0.6  | 0.4  | 0.3  | 0.0  |      |



图 9: 热电偶升温结果图



图 10: 热电偶降温结果图

$$E = 0.68 + 0.411T$$
$$E = 0.84 + 0.0421T$$

在升温曲线中, 斜率  $\alpha = 0.0411 mv/^{\circ}C$ , 与理论值  $0.0428 mv/^{\circ}C$  相比, 相对误差为:

$$\frac{0.0428-0.0411}{0.0428}\times 100\%=3.97\%$$

在降温曲线中, 斜率  $\alpha = 0.0421 mv/^{\circ}C$ , 与理论值  $0.0428 mv/^{\circ}C$  相比, 相对误差为:

$$\frac{0.0428-0.0421}{0.0428}\times 100\%=1.64\%$$

## 2.2 实验结果与误差分析

#### 2.2.1 热敏电阻的温度特性

在正负系数的热敏电阻中,利用函数  $R=Ae^{B/T}$  进行拟合,从图中可以看出,拟合的效果都很好。

另外观察可发现,对于正温度系数热敏电阻,降温时的电阻在一开始高于升温,但 之后保持持平甚至低于,对于负温度系数热敏电阻,降温时的电阻几乎总是低于升温时 的。 推测可能的原因是,实验仪器显示的温度并非是电阻的温度,在降温时,一开始温度下降不均匀,电阻的温度高于显示的温度,但随着时间的推移,温度逐渐均匀,电阻的阻值也几乎回归正常。并且从图中数据可看出,所用的负温度系数热敏电阻的温度特性曲线更加陡峭,升降温差异更大,说明其对温度的敏感度更高。

#### 2.2.2 金属电阻的温度特性

铜和铂电阻的温度特性曲线都很好地拟合了线性关系,说明金属电阻的阻值与温度的关系是线性的。另外,由于金属对温度的敏感度不如热敏电阻,在升温与降温时电阻 差异不大。

从拟合的函数表达式可以看出,铂电阻相比于铜电阻阻值更大,且随温度变化幅度 更大。

#### 2.2.3 热电偶的温度特性

热电偶的温度特性曲线也符合线性关系,符合预期。另外,由于热电偶对温度的敏 感度较高,升温与降温时电动势存在差异。

最后计算出的热电势系数与理论值相比,误差在 5% 以内,说明实验结果较为准确。 降温时的热电势系数相比于升温时更接近理论值,也说明了前面提到的温度下降不均匀的温度。

本实验的误差来源有:

- 1. 仪器的温度显示不一定是电阻的真实温度,存在系统误差。
- 2. 温度变化较快时,读数可能也变化较快,难以读取精确值。
- 3. 万用表的测量精度限制了实验的精度。

#### 2.3 热电效应的基本原理

查阅资料得知,热电效应是指在导体或半导体中,由温度差引起电动势或电流的现象,主要包括塞贝克效应、珀尔帖效应和汤姆逊效应。

#### 2.3.1 塞贝克效应

当两种不同的导体或半导体组成闭合回路,且两端存在温度差时,回路中会产生电动势,形成电流。

#### 2.3.2 珀尔帖效应

当电流通过两个不同导体的接点时,接点处会发生放热或吸热现象。

#### 2.3.3 汤姆逊效应

当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量

#### 2.4 利用热敏电阻控制空调启停的系统设计

#### 2.4.1 测温基本原理

热敏电阻的电阻值会随着温度的变化而发生显著变化。通过测量热敏电阻的电阻值 变化,可以准确感知环境温度,实现温度的实时监测,进而判断是否需要开启空调。

#### 2.4.2 系统框图设计



#### 2.4.3 系统工作过程

系统利用热敏电阻传感器实时检测环境温度,传感器的电阻变化经过信号转换后,转化为数字信号输入控制器。控制器根据设定的温度阈值,判断当前温度是否需要开启或关闭空调。当温度高于设定值时,控制器控制继电器驱动电路接通空调电源,启动空调降温; 当温度低于设定值时,断开继电器,关闭空调。

## 3 参考文献

本实验无参考文献。