PROBLEM SET 13

Part 1 - Nowhere Differentiable Function

In this problem set we'll construct a function $f_{\infty}(x)$ which is continuous everywhere but differentiable nowhere(!) using only the techniques you've learnt in this course.

Q.1. Define the function $\{x\}$ as

 $\{x\}$ = the distance of x from the nearest integer

Let n denote a positive integer. Define the function

$$f_n(x) = \{x\} + \frac{\{2x\}}{2} + \dots + \frac{\{2^n x\}}{2^n}$$
$$= \sum_{i=0}^n \frac{\{2^i x\}}{2^i}$$

Draw the graph of the functions $\{x\}$, $\frac{\{2x\}}{2}$, $\frac{\{2^nx\}}{2^n}$, and $f_1(x)$.

Q.2. Let $x \in [0,1]$. Determine the relation between

- (1) $\{x\}$ and $\{x+1\}$
- (2) $\{x\}$ and $\{1-x\}$
- (3) $\{x\}$ and $\{x+1/2\}$
- $(4) \{x\} \text{ and } \{2x\}$
- **Q.3.** Using properties of continuous functions argue that $\{x\}$ is a continuous function, and hence so is $f_n(x)$.
- **Q.4.** What are the points at which $f_n(x)$ is not differentiable? Assuming that it makes sense to take limits of functions, what do you think are the points at which the function $\lim_{x\to a} f_n(x)$ is not differentiable. (Proof not needed.)
- **Q.5.** Using your favorite test for series convergence, show that for every real number x the series $\sum_{i=0}^{\infty} \frac{\{2^i x\}}{2^i}$ converges.

Hence we can **define** a new function

$$f_{\infty}(x) = \sum_{i=0}^{\infty} \frac{\{2^{i}x\}}{2^{i}}$$

- **Q.6.** Show that $|f_{\infty}(x) f_n(x)| \leq 2^{-n}$ for all x.
- Q.7. Using the triangle inequality

$$|f_{\infty}(x) - f_{\infty}(a)| \le |f_{\infty}(x) - f_{n}(x)|$$

 $+ |f_{n}(x) - f_{n}(a)|$
 $+ |f_{n}(a) - f_{\infty}(a)|$

and the $\epsilon - \delta$ definition of continuity, prove that $f_{\infty}(x)$ is a continuous function.

In order to show that $f_{\infty}(x)$ is not differentiable anywhere it's helpful to use binary expansions of numbers.

Let x be a real number with binary expansion $x = m + 0.a_1a_2a_3...$ where m is an integer and each $a_i = 0$ or 1.

Q.8. Show that the number whose binary expansion consists of all one's 0.111...1... is equal to 1.* What is the corresponding statement for decimal expansions?

Because of this we can assume that there are no trailing 1's in the binary expansion of any number.

- **Q.9.** (1) Find $\{x\}$ in terms of the binary expansion of x.
 - (2) Find $\frac{\{2^i x\}}{2^i}$ in terms of the binary expansion of x.
 - (3) If x has a finite binary expansion $x = m + 0.a_1a_2 \cdots a_n$, what is $f_{\infty}(x)$?

Let b_n be the position of the n^{th} zero after the decimal point in the binary expansion of x. For example,

if
$$x = 1011.1010101...$$
 then $b_n = 2n$,
if $x = 0.1011011011...$ then $b_n = 3n - 1$, etc.

Q.10. (1) Show that

$$\frac{\{2^{i}(x+2^{-b_n})\}}{2^{i}} - \frac{\{2^{i}x\}}{2^{i}} = \begin{cases} -2^{-b_n} & \text{if } i < b_n - 1\\ 0 & \text{if } i \ge b_n \end{cases}$$

(2) Show that
$$\frac{f_{\infty}(x+2^{-b_n})-f_{\infty}(x)}{2^{-b_n}} < -(b_n-1)+2^{-b_n+1}$$
.

Q.11. Show that $\lim_{n\to\infty} \frac{f_{\infty}(x+2^{-b_n})-f_{\infty}(x)}{2^{-b_n}}$ does not exist. Conclude that f(x) is not differentiable at x.

Hint: This is a geometric series.

PART 2 - TRIGONOMETRY AND COMPLEX NUMBERS

Complex numbers are numbers of the form a+i.b where a, b are real numbers and $i^2 = -1$. Complex numbers are very useful in calculus, especially for finding integrals, because of the following **Euler's identity**

$$e^{i\theta} = \cos\theta + i\sin\theta$$

- **Q.12.** Verify Euler's identity using the Taylor series for e^x , $\sin x$ and $\cos x$.
- **Q.13.** Using the fact that $e^{i(a+b)} = e^{ia}.e^{ib}$ compute the formulae for $\sin(a+b)$, $\cos(a+b)$, $\sin 2x$, $\cos 2x$, $\sin 3x$, and $\cos 3x$.
- Q.14. Show that

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

(Compare these with the formulae for $\sinh x$ and $\cosh x$.)

- Q.15. Use these formulae to compute the following integrals[†]
 - (1) $e^{ax} \sin bx$
 - (2) $e^{ax}\cos bx$
 - $(3) \cos^2 x$
 - (4) $\sin x \cos 4x$

Hint: You might need to use the identity $\frac{1}{a+ib}=\frac{a}{a^2+b^2}\frac{1}{\mu}$