SML 2025, Monsoon, EndSem, Total marks 20

Note:

- Symbols have their usual meanings. Duration: 2 hours. Number in [.] indicate marks. [COx] indicates the question is mapped to the respective course outcome.
- For MCQ, each question may have more than one correct answer. Select all correct options. Each MCQ carries 1.5 marks.
- Bagging (Bootstrap Aggregating) mainly aims to: [CO1]
 - (a) Bagging, in general, should perform better than a single tree
 - (b) Reduce bias of the model
 - (c) Reduce variance of the model
 - (d) Increase both bias and variance of the model
- Q2. In Random Forests, which of the following techniques are used? [CO1]
 - (a) Update the weights of the incorrectly classified samples
 - (b) Not all features are selected at each split
 - (c) Boosting of weak learners
 - (d) Bootstrap sampling of data
- **Q8**. Boosting algorithms generally: [CO1]
 - (a) Focus more on correctly classified points at each step
 - (b) Assign higher weights to misclassified samples
 - (c) Combine weak learners sequentially
 - (d) Require weak learners to have high bias and low variance
- Q4. Regarding Bias-Variance Tradeoff, which of the following are TRUE? [CO3]
 - (a) High-bias models are prone to overfitting.
 - (b) High-variance models are prone to underfitting.
 - (c) Increasing model complexity always reduces both bias and variance.
- (d) Regularization methods (like l_2) can help control model complexity.
- Q5. In Fisher Discriminant Analysis (FDA), which of the following statements are correct? [CO2]
 - (a) FDA seeks a projection that maximizes between-class variance and minimizes within-class variance.
 - (b) FDA is equivalent to PCA when classes are well-separated.
 - (c) FDA uses the generalized Rayleigh quotient for optimization.
 - (d) FDA can only be used when class covariances are unequal.
- Q6. Which of the statement(s) is/are false for Maximum Likelihood Estimation (MLE)? [CO1]
 - (a) MLE finds parameters that minimize the likelihood of observed data.
- (b) MLE always requires specifying prior distributions.
- (c) MLE is always unbiased.

- Q7. Suppose for a binary classification task, there are two Rosenblatt' perceptrons to be used. To classify a point x_i , the decision rule is to compute "sign of the summation of distances of x_i from each perceptron" decision boundary". Suppose L denotes loss of Rosenblatt' perceptron. Now, as there are two Rosenblatt' perceptron, how does the loss change? Using the modified loss, find the update rule for one of the perceptrons. [2] [CO1]
- 28. The idea of PCA is to find an orthogonal bases and project the data onto such bases such that the projected data preserves maximum variance. Let the data be $X = [X_1 \ X_2]$, where $X_1 \in \mathbb{R}^{d \times n_1}$, $X_2 \in \mathbb{R}^{d \times n_2}$ and $X \in \mathbb{R}^{d \times (n_1 + n_2)}$. X_1 denotes data from class 1 and X_2 denotes data from class 2. Suppose we apply PCA on X with an additional constraint - projected data must also maximize the absolute difference between means of the projected classes. That is, if M_1 and M_2 are the respective means of projected classes, then in addition to PCA objective, $|M_1 - M_2|$ must also be maximized. Solve for the first principal component vector $U \in \mathbb{R}^d$. While there may not be a closed form, you must still give an expression to compute U using a known form. [2] [CO2]
- 29. Consider a two-category classification problem. The likelihoods for both categories are multivariate Gaussian with the same covariance matrix but different means. Class 1 mean: $\mu_1 = [1 \ 0 \ 0]^T$, and, Class 2 mean: $\mu_2 = [0 \ 1 \ 0]^T$. Covariance matrix (common for both classes) is えち

$$\Sigma = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A test sample is given by $X = [.5 .25 1]^T$. Find the class of X using the discriminant function. The prior probability $P(\omega_1) = 1/3$. [2] [CO3]

- **Q10.** Being an ML enthusiast interested in applying theory to practice (say who will win IPL), you find a niche area of predicting whether a team will win or lose a match. Based on domain knowledge, you hypothesize that a team's probability of winning depends on three binary independent features:
 - Past record p (1 = good, 0 = poor)
 - Current record c (1 = good, 0 = poor)
 - Health of players h (1 = good, 0 = poor)

Each of p, c, h is independently distributed and follows a Bernoulli distribution. Define:

$$\theta_1 = \Pr(p = 1), \quad \theta_2 = \Pr(c = 1), \quad \theta_3 = \Pr(h = 1)$$

where $\theta_1, \theta_2, \theta_3$ are unknown parameters.

Suppose you collect survey responses from n independent individuals (denoted S_1, S_2, \ldots, S_n), each recording the corresponding values of (p, c, h). An excerpt of the responses is shown below:

Table 1: Survey responses

Response	p	c	h
S-1	1	0	0
S-2	1	0	1
:	:	:	:
S-i	0	1	1

Using only the three rows S-1, S-2, and S-i, estimate $\theta_1, \theta_2, \theta_3$ and compute the win probability Pr(Win)for a team with p = 0, c = 1, h = 1 using your estimates.[2] [CO1]

Q11. Derive the Adaboost algorithm using an exponential loss function. You must clearly derive the update rule for weights of the samples and coefficients of the classifiers. [3][CO3]