Section 4.2 Homogeneous Linear Equations: The General Solution

Definition: Homogeneous Linear Equations

Linear second-order constant-coefficient differential equation:

(1) ay'' + by' + cy = f(t) $(a \neq 0)$

with the special case where the function f(t) is zero:

 $(2) \qquad ay'' + by' + cy = 0$

Equation (2) is called the **homogeneous** form of equation (1).

Auxiliary Equation:

Substitute $y = e^n$, $y' = re^n$, $y'' = r^2 e^n$ into (2), we obtain

$$ar^{2}e^{rt} + bre^{rt} + ce^{rt} = 0$$

$$\Rightarrow (ar^2 + br + c)e^{rt} = 0$$
 (: e^{rt} is never zero)

 $\Rightarrow (ar^2 + br + c) = 0$ is called the auxiliary equation.

$$\Rightarrow r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \Rightarrow \begin{cases} \text{相 同 實 } \mathbb{R}(r_1 = r_2) \Rightarrow y(t) = C_1 e^{nt} + C_2 t e^{nt} \\ \text{相 異 實 } \mathbb{R}(r_1 \neq r_2) \Rightarrow y(t) = C_1 e^{nt} + C_2 e^{r_2 t} \\ \text{共 軛 複 } \mathbb{R}(r = \alpha \pm \beta i) \Rightarrow y(t) = C_1 e^{at} \cos \beta t + C_2 e^{at} \sin \beta t \end{cases}$$

Theorem: Existence and Uniqueness: Homogeneous Case

For any real number $a(\neq 0)$, b, c, t_0 , Y_0 , and Y_1 , there exists a unique solution to the initial value problem

(10)
$$ay'' + by' + cy = 0$$
, $y(t_0) = Y_0$, $y'(t_0) = Y_1$.

The solution is valid for all t in $(-\infty, \infty)$.

Definition: Linear Independent of Two Functions

- (1) $y_1(t)$ and $y_2(t)$ is said to be **linearly independent** on the interval $I \Leftrightarrow y_1 \neq ky_2$ on I.
- (2) $y_1(t)$ and $y_2(t)$ is said to be **linearly dependent** on the interval $I \Leftrightarrow y_1 = ky_2$ on I.

Theorem: Representation of Solution to Initial Value Problem

If $y_1(t)$ and $y_2(t)$ are two solution to the differential equation (2) that are linearly independent on $(-\infty,\infty)$, then unique constants c_1 and c_2 can always be found so that $c_1y_1(t)+c_2y_2(t)$ satisfies the initial value problem (10) on $(-\infty,\infty)$.

Lemma: A Condition for Linear Dependence of Solutions

For any real number $a(\neq 0)$, b, and c, if $y_1(t)$ and $y_2(t)$ are two solution to the differential equation (2) on $(-\infty,\infty)$ and if the equality

(11)
$$y_1(\tau)y_2'(\tau) - y_1'(\tau)y_2(\tau) = 0$$

Hold at any point τ , then y_1 and y_2 are linearly dependent on $(-\infty,\infty)$.

Wronskian:

 $W[y_1, y_2] = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2 \text{ is called the Wronskian of } y_1 \text{ and } y_2.$

(1)
$$\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y'_1 y_2 = 0 \Rightarrow y_1 \text{ and } y_2 \text{ are L.D.}$$

(2) $\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y'_1 y_2 \neq 0 \Rightarrow y_1 \text{ and } y_2 \text{ are L.I.}$

(2)
$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2 \neq 0 \Rightarrow y_1 \text{ and } y_2 \text{ are L.I.}$$

♦ Find a general solution to the given differential equation.

6.
$$y'' + 8y' + 16y = 0$$

Sol.

Consider the auxiliary equation $r^2 + 8r + 16 = 0$

$$\Rightarrow (r+4)^2 = 0 \Rightarrow r = -4 \pmod{\Phi}$$

Hence, the general solution is $y(t) = C_1 e^{-4t} + C_2 t e^{-4t}$.

11.
$$4w'' + 20w' + 25w = 0$$

Sol.

$$4r^2 + 20r + 25 = 0$$

$$\Rightarrow (2r+5)^2 = 0 \Rightarrow r = \frac{-5}{2} \pmod{\text{$\frac{1}{2}$}}$$

$$\therefore y(t) = C_1 e^{\frac{-5}{2}t} + C_2 t e^{\frac{-5}{2}t}.$$

♦ Solve the given initial value problem.

13.
$$y'' + 2y' - 8y = 0$$
; $y(0) = 3$, $y'(0) = -12$

Sol.

$$r^2 + 2r - 8 = 0$$

$$\Rightarrow$$
 $(r+4)(r-2)=0$

$$\Rightarrow r = -4, 2$$

$$\therefore$$
 $y(t) = C_1 e^{-4t} + C_2 e^{2t}$

$$\Rightarrow y'(t) = -4C_1e^{-4t} + 2C_2e^{2t}$$

$$v(0) = 3$$
, $v'(0) = -12$

$$\Rightarrow \begin{cases} C_1 + C_2 = 3 \\ -4C_1 + 2C_2 = -12 \end{cases} \Rightarrow \begin{cases} C_1 = 3 \\ C_2 = 0 \end{cases}$$

$$\therefore y(t) = 3e^{-4t}$$

18.
$$y'' - 6y' + 9y = 0$$
; $y(0) = 2$, $y'(0) = 25/3$

Sol.

21. First-Order Constant-Coefficient Equations.

(a) Substituting $y = e^{rt}$, find the auxiliary equation for the first-order linear equation ay' + by = 0, where a and b are constants with $a \ne 0$.

Sol.

Let
$$y = e^n$$

 $\Rightarrow y' = re^n$
 $\Rightarrow are^n + be^n = 0$
 $\Rightarrow (ar + b)e^n = 0$
 $\therefore ar + b$ is the auxiliary equation for $ay' + by = 0$

(b) Use the result of part(a) to find the general solution.

Sol.

$$ar + b = 0 \Rightarrow r = \frac{-b}{a}$$

 $\therefore \quad y(t) = Ce^{\frac{-b}{a}t}$

 \diamondsuit Use Definition: Linear Independent of Two Functions to determine whether the functions y_1 and y_2 are linearly dependent on the interval (0,1).

31.
$$y_1(t) = \tan^2 t - \sec^2 t$$
, $y_2(t) \equiv 3$

Sol.

$$\therefore \tan^2 t - \sec^2 t = -1 \Rightarrow -3y_1 = y_2$$

 \therefore y_1 and y_2 are linearly dependent.

34. Wronskian. For any two differentiable functions y_1 and y_2 , the function

(18)
$$W[y_1, y_2](t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

is called the Wronskian of y_1 and y_2 . This function plays a crucial role on proof of Theorem 2.

(a) Show that $W[y_1, y_2]$ can be conveniently expressed as the 2×2 determinant

$$W[y_1, y_2](t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix}.$$

Sol.

$$\begin{vmatrix} y_1(t) & y_2(t) \\ y_1'(t) & y_2'(t) \end{vmatrix} = y_1(t)y_2'(t) - y_1'(t)y_2(t) = W[y_1, y_2](t)$$

(b) Let $y_1(t), y_2(t)$ be a pair of solutions to the homogeneous equation ay'' + by' + cy = 0 (with $a \neq 0$) on an open interval I. Prove that $y_1(t)$ and $y_2(t)$ are linearly independent on I if and only if their Wronskian is never zero on I. [Hint: This is just a reformulation of Lemma.] Sol.

 (\Rightarrow)

From Lemma 1 (p.172),
$$y_1y_2' - y_1'y_2 = 0 \Rightarrow y_1$$
 and y_2 are L.D. on I .
Hence, y_1 and y_2 are L.I. on $I \Rightarrow y_1y_2' - y_1'y_2 \neq 0$

 (\Leftarrow)

Assume that
$$y_1$$
 and y_2 are L.D. on I

$$\Rightarrow \exists C \text{, such that } y_1 = Cy_2 \text{ on } I$$

$$\Rightarrow y_1' = Cy_2'$$

$$\Rightarrow y_1y_2' - y_1'y_2 = Cy_2y_2' - Cy_2'y_2 = 0 \quad \rightarrow \leftarrow$$
Hence, y_1 and y_2 are L.I. on I .

35. Linear Dependence of Three Functions. For each of the following, determine whether the given three functions are linearly dependent or linearly independent on $(-\infty,\infty)$:

(a)
$$y_1(t) = 1$$
, $y_2(t) = t$, $y_3(t) = t^2$.

Sol.

Consider
$$C_1 y_1 + C_2 y_2 + C_3 y_3 = 0$$

$$\Rightarrow C_1 + C_2 t + C_3 t^2 = 0$$

$$\Rightarrow C_1 = C_2 = C_3 = 0$$

Hence, y_1 , y_2 and y_3 are L.I.

(b)
$$y_1(t) = -3$$
, $y_2(t) = 5\sin^2 t$, $y_3(t) = \cos^2 t$.

Sol.

Consider
$$C_1 y_1 + C_2 y_2 + C_3 y_3 = 0$$

$$\Rightarrow -3C_1 + 5C_2 \sin^2 t + C_3 \cos^2 t = 0$$

$$\Rightarrow \begin{cases} C_1 = \frac{-5}{3} \\ C_2 = 1 \end{cases}$$
 satisfies the equation.

$$C_3 = 5$$

Hence, y_1 , y_2 and y_3 are L.D.

(c)
$$y_1(t) = e^t$$
, $y_2(t) = te^t$, $y_3(t) = t^2 e^t$.

Sol.

Consider
$$C_1 y_1 + C_2 y_2 + C_3 y_3 = 0$$

$$\Rightarrow C_1 e^t + C_2 t e^t + C_3 t^2 e^t = 0$$

$$\Rightarrow (C_1 + C_2 t + C_3 t^2) e^t = 0$$

$$\Rightarrow C_1 + C_2 t + C_3 t^2 = 0$$

$$\Rightarrow C_1 = C_2 = C_3 = 0$$

Hence, y_1 , y_2 and y_3 are L.I.

(d)
$$y_1(t) = e^t$$
, $y_2(t) = e^{-t}$, $y_3(t) = \cosh t$.

Sol.

Consider
$$C_1 y_1 + C_2 y_2 + C_3 y_3 = 0$$

$$\Rightarrow C_1 e^t + C_2 e^{-t} + C_3 \cosh t = 0$$

$$\Rightarrow C_1 e^t + C_2 e^{-t} + C_3 \cdot \frac{e^t + e^{-t}}{2} = 0$$

$$\Rightarrow (C_1 + \frac{C_3}{2}) e^t + (C_2 + \frac{C_3}{2}) e^{-t} = 0$$

$$\Rightarrow \begin{cases} C_1 + \frac{C_3}{2} = 0 \\ C_2 + \frac{C_3}{2} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} C_1 = C_2 = -1 \\ C_3 = 2 \end{cases}$$
 satisfies the equation.

Hence, y_1 , y_2 and y_3 are L.D.