

NEMO Vol 2. Status of the NEar real-time MOnitoring system

Esther Drolshagen¹, Theresa Ott¹, Detlef Koschny², Gerhard Drolshagen¹, Pierrick Mialle⁴, Jeremie Vaubaillon³, and Björn Poppe¹

¹University of Oldenburg ²ESA, SSA-NEO Segment ³Observatoire de Paris ⁴CTBTO PTS/IDC, Vienna International Center

NEMO Logo

NEMO NEar-real time Monitoring system

Emphasis:

Bright fireballs, not all meteors

Goal:

Validate models of meteoroid fluxes and the near-Earth asteroid population

Fireball over Warwick, Australia – 18. Aug. 2017

Main Objective

Difficult (e.g. at ESA) to react to queries from public or journalists.

Coordination with FIS

Events brighter -10 mag

FIS

- Fireball
 Information System
 from Space Situational
 Awareness Near
 Earth Object (NEO)
- in preparation at the NEO Coordination Center in Frascati, Itlay

Goal

Information on Objects which:

- Regularly impact the Earth atmosphere
- Are too small to be detected by NEO surveys
- Cause bright fireballs
- Close the gap between large meteoroids and small asteroids

Data sources

- Data from infrasound stations of the CTBTO – Comprehensive nuclear-Test-Ban Treaty Organisation
- Publicly available data from US Government sensors
- Re-entry predictions of satellites and space debris
- Internet and social media
- Meteor networks

Some specific goals

Europe: Objects > 10 cm

Local Meteor Detections 29 June 2018 – the Netherlands

FRIPON Fireball Recovery and InterPlanetary Observation Network

- Flux determination
- Sky Coverage

FRIPON.org

Some specific goals

Global: Objects > ca 1 m

Social Media

NASA US Govt. Satellite Data

From CNEOS (Center for NEO Studies) and JPL (Jet Propulsion Laboratory)

CTBTO

IMS (International Monitoring System) - Infrasound

NEMO Event

NEMO

NEMO Event

NEMO Event

NEMO

esa NEMO

Daytime fireball over Russia 21 June 2018 - 01:15 UT (04:15 LT)

10 Infrasound stations

- a source energy of
 2.4 kt TNT.
- a size of about 4 m

CNEOS/JPL found

- a time of 01:16:20 UT
- a velocity of 14.4 km/s
- a source energy of 2.8 kt TNT.

Detected with weather radar

Scientists from the Ural Federal University

- Found 3 meteorites
- Smallest: 3 cm

NEMO

NEMO Events

- First NEMO Event was in August 2017
- About one year of test-operation
- Since then there are 135 Events in our alert-data-base

World Map Event

Fireballs

46

23.5

1

Cesa NEMO

Outlook

- Stable NEMO monitoring of:
 - Twitter
 - Facebook
 - News
 - Etc.
- FRIPON fireball flux determination
- Reliable infrasound energy determination and semi-automation
- Data from existing fireball networks and other sources
 - Access, analyze, and combine

Thank you for your attention

References

- G. Drolshagen, D. Koschny, and B. Poppe, "Space Environment" Lecture Notes (2017)
- S. Drolshagen, J. Kretschmer, D. Koschny, G. Drolshagen, and B. Poppe, "Mass Accumulation of Earth from Interplanetary Dust, Meteoroids, Asteroids and Comets", Proceedings of the International Meteor Conference, Mistelbach, Austria (2015)
- https://cneos.jpl.nasa.gov/fireballs/
- ReVelle, D.O., 1997, Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. In: J.L. Remo (Ed.), Annals of the New York Academy of Sciences Near-Earth Objects –The United Nations International Conference, New York Academy of Sciences, col. 822, pages: 284-302
- Edwards et al. (2006) Estimates of meteoroid kinetic energies from observations of infrasonic airwaves
- Clauter, D.A., Bladford, R.R., 1998, Capability modelling of the proposed International Monitoring System 60-Station Infrasonic Network, LAUR-98-56, Los Alamos National Labs Report, Los Alamos, NM.

World Map Event

