《现代信息检索》大作业实验报告

小组成员信息

组长: 王猛 2018E8013261020 计算技术研究所

组员: 梁付槐 2018Z8013261003 计算技术研究所

组员: 王丽颖 201828013229034 计算技术研究所

组员: 马聪 2018E8013261047 计算技术研究所

组员: 郑好 2018E8013261020 计算技术研究所

Email: wangmeng182@mails.ucas.ac.cn

手机号: 18311016966

目录

— ,	实验目的	5
二、	实验环境	···· 5
三、	实验过程	5
	1. Terrier 安装·······	···· 5
	2. 数据预处理	6
	3. 收集数据文档	···· 7
	4. 修改配置文件	8
	<i>5.</i> 建立索引	8
	6. 查询检索	8
	7. 相关反馈	9
	8. 结果评估	9
	9. 界面交互	10
四、	实验结果	.11
	1. 模型选择	.11
	2. 相关反馈	12
五、	实验基本原理	.12
	1. 评价指标	12
	2. 模型介绍	.13
六、	程序运行	·14
	1. 运行方法	·14
	2. 文件说明	.14

1	实验当结	_
\Box	大巡 心知 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

一、实验目的

本课程大作业要求:在 TREC Precision Medicine (PM)2017 数据上进行检索竞赛。 TREC 的 PM 评测任务就是为解决临床中的现实需求、促进医疗文献文本检索技术的发展与交流而设立。PM 评测任务致力于解决病人信息匹配,相关文档检索问题,主要有两个子任务:科学文献子任务和临床试验子任务。Scientific Abstract 是医疗文献的摘要部分,目标是为医生提供学术研究上相关的治疗信息。Clinical trials 是病人病历数据库,目标是为医生提供与此病是病人病历数据库,目标是为医生提供与此病是病人病历数据库,目标是为医生提供与此病是病人病历数据库,目标是为医生提供与此病人相关的电子病历。大作业要求完成第二个任务,即 Clinical trials。

二、实验环境

开发环境: Ubuntu 16.0.4、Java JRE1.8.0、Python 3.0

开源工具: Terrier 5.0

三、实验过程

1. Terrier 安装

在进行具体的实验操作之前,本小组调研了多个信息检索的开源工具,包括 Lucene 和 Elasticsearch。相比之下,Terrier 更适合用于完成本次任务,其专门为 TREC 比赛定制 了接口,而且 Lucene 的评分函数比较简单,适合于工程开发,而 Terrier 对语言模型做了 很多优化,更适合科研类任务。根据以往经验,用 terrier 实现要比用 Lucene 实现效果普遍更好。

(1) Terrier 下载:本实验中使用的是 Terrier 5.0 的版本,需要 Java JRE1.8.0 或更高版本。可以使用 echo \$JAVA_HOME 命令,查看已安装的 Java 版本。如果不满足要求,则需要重新安装,具体的安装过程不在实验过程中说明。可以从官网

上或者 Github 下载 terrier-project-5.0-bin.tar.gz。

(2) Terrier 安装:下载的版本已经编译过,可以直接解压,如下图所示。

mkdir terrier tar -zxvf terrier-project-5.0-bin.tar.gz

(3) 文件说明:

bin: 存放运行脚本,在 linux 系统下用.sh,在 windows 下用相应的.bat

doc: 帮助说明文档集

etc: 存放建立索引和检索时的配置文件,如 collection.spec, terrier.properties var: 检索结果的存放位置,存放 index, result,可以通过修改 etc 文件夹下的 terrier.properties 配置文件,定位到其他文件夹

share: 存放 stopword -list.txt 等文件

src: 搜索引擎源代码

2. 数据预处理

在利用 Terrier 进行检索实验之前,首先对给定数据集进行预处理,既是为了满足 Terrier 的数据格式要求,也是为了提升查询检索的效果。

原始数据集是从 Trec 官网上下载的 xml 类型的数据,每一个数据文件中的标签都很多,包含很多不必要的信息,噪声较大,其存在无法提升检索效果。可以只提取部分信息,既可以压缩存储空间,又可以提升检索效果。下图是处理之后的数据文件,<POC>和<POCNO>

是为了满足 Terrier 的数据格式要求,这里也可以不做预处理,但是需要修改配置文件,这会在第四步中说明。提取的标签主要有索引要求中涉及的,例如 brief_title、official_title、brief_summary、detailed_description、MeSH Terms 和 criteria 等,以及查询文件中涉及的标签,例如 minimum_age、maximum_age、gender。

评测的查询输入是半结构化文本,描述了患者的癌症类型、相关的基因变异、年龄性别以及其他可能相关的因素,文件格式如下。需要说明的是,原始查询文件的根标签是 topic 和 number,改成 TOP 和 NUM 之后,便于之后处理。

```
<TOP>
<NUM>1</NUM>
<disease>Liposarcoma</disease>
<gene>CDK4 Amplification</gene>
<demographic>38-year-old male</demographic>
<other>GERD</other>
</TOP>
```

3. 收集数据文档

收集须要建索引的文档,设置 data 的路径,将会在 etc 目录下创建一个 collection.spec 文件,包含了刚刚选定的语料库目录下的文件列表。执行命令如下图。

```
#收集文档
echo 收集文档
./bin/trec_setup.sh ../clinicaltrials_xml/
```

4. 修改配置文件

配置文件中的部分参数需要调整,配置文件如下图所示。由于在预处理过程中已经处理 了标签问题,而且,不做特殊说明的话,系统默认对文件中的所有域建立索引,所以此处不 修改也可以。如果之前没有修改标签,此处需要改成第二张图的格式。

```
TrecDocTags.doctag=DOC
TrecDocTags.idtag=DOCNO
TrecDocTags.skip=DOCHDR
#set to true if the tags can be of various case
TrecDocTags.casesensitive=false

#query tags specification
TrecQueryTags.doctag=TOP
TrecQueryTags.idtag=NUM
TrecQueryTags.process=TOP,NUM,TITLE
TrecQueryTags.skip=DESC,NARR
```

```
xml.doctag=clinical_study
xml.idtag=nct_id
xml.terms=textblock,description,

#set to true if the tags can be of various case
TrecDocTags.casesensitive=false

#query tags specification
TrecQueryTags.doctag=topic
TrecQueryTags.idtag=number
TrecQueryTags.process=topic,disease,gene,demographic
#TrecQueryTags.skip=DESC,NARR
```

5. 建立索引

以此命令./bin/trec_terrier.sh -i 建立索引。如果不想保留直接索引结构,可以加上参数-j,用更快的单通道索引,但会导致无法进行查询扩展。

6. 查询检索

检索命令含有多个参数,可以在 etc/terrier.properties 文件里预先设好,也可以一个

一个在命令行里指定。 – Dtrec.topics 指定查询的位置,也就是 topic 文件路径, – Dtrec.model 指定要使用的加权模型, – r 参数指示 Terrier 做检索, – c 指定 Terrier 加权模型的参数。下图以 BM25 为例,正常情况下将在/var/results 的位置产生.res 文件。

```
#检索 BM25模型
./bin/trec_terrier.sh -r -Dtrec.model=BM25 -c 0.75 -Dtrec.topics=../topics2017.xml
res 文件格式如下图:
```

```
1 Q0 NCT01209598 0 42.88400158550261 BM25
2 1 Q0 NCT02187783 1 40.82808803504023 BM25
3 1 Q0 NCT02571829 2 35.83861538814905 BM25
4 1 Q0 NCT03096912 3 34.20675190002517 BM25
5 1 00 NCT03024489 4 29.176565838904374 BM25
```

7. 相关反馈

加入伪相关反馈,其命令如下图。相较于上一步的检索命令,增加了-q和-Dqe.feedback.filename参数,用于指定用哪一个模型的检索结果作为反馈的输入。下图中是以 In_expB2 模型的结果作为反馈输入。

```
#BM25 + In_expB2模型
./bin/trec_terrier.sh -r -Dtrec.model=BM25 -c 0.5 -Dtrec.topics=../topics2017.xml
-q -Dqe.feedback.filename=./var/results/In_expB2_2.res
```

本小组利用 Terrier 开源工具中已经实现的 Bo1、Bo2、KL 等伪相关反馈模型进行实验。可以在配置文件 terrier.properties 中添加相关的配置项。trec.qe.model 表示使用的伪相关反馈模型,expansion.terms 表示从前 k 篇文档中提取的重要词项的个数,即前文中的 n 值, expansion.documents 表示使用返回结果中的前几个文档来提供伪相关反馈信息,qe.feedback.filename 是前一次查询返回的结果文件所在路径。另一种方法是在没一行命令下添加上述参数。

8. 结果评估

利用给定数据 qrels-final-trials.txt,对检索结果进行评估,命令如下图所示。

```
#检验结果
echo query结果评估
./bin/trec_eval.sh ../qrels-final-trials.txt ./var/results/BM25_0.res >> ../eval_res/BM25.eval
./bin/trec_eval.sh ../qrels-final-trials.txt ./var/results/BB2_1.res >> ../eval_res/BB2.eval
```

该命令执行后会生成一个模型对应的 eval 文件。该文件中包含了 MAP、Bpref、Recall、

P_5、P_10 等度量指标值,下图是 BB2.eval 文件内容。

```
Setting TERRIER_HOME to /usr/local/terrier-project-5.0
runid
                       all BB2
                       all 29
num_q
                       all 29000
num_ret
num_rel
                       all 1171
                       all 900
num_rel_ret
                       all 0.2429
                       all 0.1524
gm_map
                      all 0.2901
Rprec
bpref
                      all 0.2798
                      all 0.5807
recip rank
iprec_at_recall_0.00 all 0.6357
iprec at recall 0.10 all 0.5343
iprec_at_recall_0.20 all 0.4652
iprec_at_recall_0.30 all 0.3484
iprec_at_recall_0.40 all 0.2840
iprec_at_recall_0.50 all 0.2317
iprec_at_recall_0.60 all 0.1713
                      all 0.1322
iprec_at_recall_0.70
                      all 0.0765
iprec_at_recall_0.80
iprec_at_recall_0.90
                       all 0.0499
iprec_at_recall_1.00
                       all 0.0164
                       all 0.4276
P_5
P_10
P_15
                       all 0.3483
                       all 0.3034
P_20
                       all 0.2793
P 30
                       all 0.2506
P 100
                       all 0.1528
P 200
                       all 0.1045
P 500
                       all 0.0546
 1000
                       all 0.0310
```

9. 界面交互

执行./bin/http_terrier.sh 命令,启动 HttpServer 服务,这样就可以基于 web 的查询界面与检索系统交互。

```
root@iZm5e296kyz53dtw98j42jZ:~/terrier/terrier-project-5.0# ./bin/http_terrier.sh
Setting TERRIER HOME to /root/terrier/terrier-project-5.0#
14:17:06.395 [main] INFO org.eclipse.jetty.util.log - Logging initialized @578ms
14:17:06.566 [main] INFO org.eclipse.jetty.server.Server - jetty-9.2.z-SNAPSHOT
14:17:06.723 [main] INFO o.e.j.server.handler.ContextHandler - Started o.e.j.w.WebAppContext@6121c9d6{/,file:/root/terrier/terrie
BLE}
14:17:06.725 [main] INFO o.e.j.server.handler.ContextHandler - Started o.e.j.s.h.ContextHandler@87f383f{/images.null,AVAILABLE}
14:17:06.739 [main] INFO o.e.jetty.server.ServerConnector - Started ServerConnector@78e118d2{HTTP/1.1}{0.0.0.0:8080}
org.eclipse.jetty.server.Server - Started @925ms
```

在浏览器输入 http://47.10.152.193:8080,就可以进入查询界面。

Project	邮箱	研究生	二 实用	□ 移动无线登录	6♥ 搜索 - 六维空间 - 較	□ 校园网认证	
					Terrier	2)	
					Search		

四、实验结果

1. 模型选择

Terrier 开源工具中集成了许多信息检索模型,可以直接进行接口调用。实验过程中,本小组选择了 10 中模型进行测试,下表展示了不同模型的测试指标值,MAP、P_5和P_10 均是通过 5 折交叉验证并在测试集上求平均得到。在没有添加相关反馈的情况下,MAP 的最优结果为 0.2620,由 In_expB2 模型得到: P@5 的最优结果为 0.4276,由 BB2 模型得到: P@10 的最优结果为 0.3724,由 BM25 模型得到。经过实验分析,发现各个模型参数的变动对最终结果几乎没有影响,所以在实验中使用了默认参数。

Mode1	MAP	P@5	P@10
In_expB2	0. 2620	0.4000	0.3621
BB2	0. 2429	0. 4276	0.3483
BM25	0. 2582	0.3862	0.3724
IFB2	0. 2610	0.3724	0.3552
TF-IDF	0. 2130	0.3310	0.3276
DPH	0. 1715	0.3172	0.3034
PL2	0. 1992	0.3586	0. 3241
DFIC	0. 1505	0. 3241	0. 2621
DLH13	0. 1529	0.3310	0.2828
DLH	0. 1526	0. 2966	0.2586

2. 相关反馈

通过 5 折交叉验证,选出 4 个结果较好的模型添加相关反馈进行下一步测试,分别是 In_expB2、BB2、BM25 和 IF**B2**,也使用了一些初始结果较差的模型进行相关反馈实验。由于组合较多,下表只展示部分结果。

Model	MAP	P@5	P@10
BM_25+In_expB2	0. 2865	0. 3862	0. 3828
IFB2+BM25	0.2859	0.4000	0.3621
In_expB2+BM25	0. 2634	0. 3655	0. 3414
BB2+BM25	0.2703	0. 4207	0. 3414
DLH13+In_expB2	0. 2166	0. 3448	0. 2966

在使用伪相关反馈的情况下,MAP的最优结果为 O.2865,由 BM25+In_expB2 模型得到,相较于未添加相关反馈的结果提升了近 10%; P@5 的最优结果为 O.42O7,由 BB2+ BM25 模型得到,相较于未添加相关反馈的结果没有提升; P@1O 的最优结果为 O.3828,由 BM25+In_expB2 模型得到,相较于未添加相关反馈的结果提升了近 6%;。经过实验分析,发现利用 BM25 的查询结果作为反馈,再利用 In_expB2 模型进行查询检索,得出的效果最优。

五、实验基本原理

1. 评价指标

- (1) 召回率(Recall): RR/(RR + NR),返回的相关结果数占实际相关结果总数的比率, 也称为查全率,R \in [0,1]。
- (2) 正确率(Precision): RR/(RR + RN),返回的结果中真正相关结果的比率,也称为 查准率, P∈ [0,1]。
- (3) Bpref: 基本的思想: 在相关性判断(Relevance Judgment) 不完全的情况下, 计

算在进行了相关性判断的文档集合中,在判断到相关文档前,需要判断的不相关文档的篇数。

- (4) NDCG:每个文档不仅仅只有相关和不相关两种情况,而是有相关度级别,比如 O,1,2,3。我们可以假设,对于返回结果,相关度级别越高的结果越多越好,相关度 级别越高的结果越靠前越好。
- (5) MAP: 平均正确率(Average Precision, AP): 对不同召回率点上的正确率进行平均。
- (6) P@K: 计算前 K 个位置的平均正确率。

2. 模型介绍

- (1) PL2 (DFR): 随机性的泊松估计,第一归一化的拉普拉斯连续,以及术语频率归一 化的归一化。
- (2) BM25: BM25 模型是一种经典的概率检索模型,由于它的高效性而被广泛应用在信息检索领域。给定一篇文档 d 和一个查询 Q, 排序函数:

$$score(d,Q) = \sum_{t \in Q} \log_2 \frac{N - df_t + 0.5}{df_t + 0.5} \cdot \frac{(k_1 + 1)tf}{k_1 \left((1 - b) + b \cdot \frac{l}{aval} \right) + tf} \cdot \frac{(k_3 + 1)qtf}{k_3 + qtf}$$

其中 t 表示查询中的词项;qtf 为词项 t 在查询 Q 中的词频;tf 为词项 t 在文档 d 中的词频; $df_{-}t$ 表示词项 t 的文档频率;I 和 $avg_{-}I$ 分别表示文档 d 的长度和语料库中文档的平均长度;N 表示语料库中的文档总数目;k1,k3 和 b 是可调参数,此处我们使用其默认值 k1=1.2,k3=1000,b=0.75。

- (3) BB2 (DFR): 随机性的 Bose Einstein 模型,第一次归一化的两个伯努利过程的比率,以及术语频率归一化的归一化。
- (4) DPH (DFR): 使用 Popper 归一化 (无参数)的不同超几何 DFR 模型。
- (5) LGD (DFR): 对数逻辑 DFR 模型。
- (6) IFB2 (DFR): 随机性的反向项频率模型,第一次归一化的两个伯努利过程的比率,以及术语频率归一化的归一化。

- (7) DLH13 (DFR): DLH的改进版本 (无参数)。
- (8) InL2 (DFR): 随机性的逆文档频率模型,第一次归一化的拉普拉斯序列,以及术语频率归一化的归一化 2。

六、程序运行

1. 运行方法

实验过程中,本小组开发了"一键执行"的脚本 runTerrier.sh,可以直接从原始文件得到结果文件,用于结果评估检测。解压源代码压缩包,进入解压目录,执行如下命令。

bash ./runTerrier.sh

2. 文件说明

解压的文件目录如下图所示,clinicaltrials_xml 是经过预处理的数据文件,qrels-final-trials.txt 是用于结果评估的文件,topics2017.xml 也是经过预处理的查询文件,terrier-project-5.0 是开源工具的安装目录,finally.res 是最终的检索结果,可以用于结果评估检查,finally.eval 是最终评估结果。

data_process.py 用于对数据进行预处理,由于处理时间较长,在一键运行脚本中没有添加该命令,每次运行都是使用的已经预处理过的文件。runTerrier.sh 文件内容如下图所示。

```
#別論之前生成的文件
echo 制能之前生成的文件
m - rf ./terrier-project-5.0/var/results ./terrier-project-5.0/var/index/data* ./finally*
d ./terrier-project-5.0/
#收集文档
echo 收集文档
./bin/trec_setup.sh ../clinicaltrials_xml/
#並至言
echo 建立案引
./bin/trec_terrier.sh -i
#检查
echo 搜索query
#In exp8/增生
./bin/trec_terrier.sh -r -Dtrec.model=In_exp82 -Dtrec.topics*../topics2017.xml
#检验结果
#echo query结果评估
#./bin/trec_eval.sh ../qrels-final-trials.txt ./var/results/In_exp82_0.res >> ../eval_res/In_exp82.eval
#相关反馈
echo 相关反馈
#BN25 + In_exp8/模型
./bin/trec_terrier.sh -r -Dtrec.model=BN25 -c 0.5 -Dtrec.topics*../topics2017.xml -q -Dqe.feedback.filename*./var/results/In_exp82_0.res
#检验结果
echo 相关反馈
#BN25 + In_exp82/模型
./bin/trec_terrier.sh -r -Dtrec.model=BN25 -c 0.5 -Dtrec.topics*../topics2017.xml -q -Dqe.feedback.filename*./var/results/In_exp82_0.res
#检验结果
echo 相关反馈
#BN25 + In_exp82/模型
./bin/trec_terrier.sh -r -Dtrec.model=BN25 -c 0.5 -Dtrec.topics*../topics2017.xml -q -Dqe.feedback.filename*./var/results/In_exp82_0.res
#检验结果
echo 相关反馈
#BN25 + In_exp82/exp4
./bin/trec_terrier.sh ../qrels-final-trials.txt ./var/results/BN25_d_3_t_10_1.res ../finally.eval

cp ./var/results/BN25_d_3_t_10_1.res ./finally.res
```

finally.eval 就是最终的评估结果文件,文件内容如下图所示。

Setting TERRIER HOME to	/root/t	errier/terrier-project-5.0
runid	all	BM25 d 3 t 10
num q	all	29
num ret	all	29000
num_rel	all	1171
num_rel_ret	all	999
пар	all	0.2865
gm_map	all	0.1585
Rprec	all	0.3138
bpref	all	0.3038
recip_rank	all	0.6368
iprec_at_recall_0.00	all	0.6763
iprec at recall 0.10	all	0.5412
iprec at recall 0.20	all	0.4975
iprec_at_recall_0.30	all	0.3801
iprec at recall 0.40	all	0.3396
iprec at recall 0.50	all	0.2941
iprec_at_recall_0.60	all	0.2377
iprec_at_recall_0.70	all	0.1916
iprec at recall 0.80	all	0.1326
iprec at recall 0.90	all	0.0874
iprec at recall 1.00	all	0.0269
P 5	all	0.3862
P_10	all	0.3828
P. 15	all	0.3379
P 20	all	0.3138
P_30	all	0.2816
P 100	all	0.1828
P_200	all	0.1228
P_500	all	0.0634
P 1000	all	0.0344

七、实验总结

为了高效地完成本次任务,小组成员调研了多个信息检索的开源工具,最终决定使用 Terrier。另外,原始的数据文件过于冗杂,含有大量的不必要信息,占用空间大,处理过 程非常消耗时间,因此我们进行了数据预处理工作。数据预处理之后,我们建立索引,选择 模型。在选择检索模型的过程中,我们基于交叉验证技术比较了多种加权模型,依据实验要 求选择了十个不同的加权检索模型进行实验的检索评估,并在其中四个得到的检索结果较好的模型基础上进行相关反馈,优化检索结果。

当然,针对上述的实验方案进行改进时遇到了许多问题,比如伪相关反馈技术,MAP和 P@10都有比较明显得提高,然而 P@5结果并没有像预期一样得到较高的提升,反而降低。我们分析认为,可能是不同模型的 P@5均已经取得较好的结果,再进行相关反馈,可能带来负面影响。如果查询反馈轮数过多,还会引起主题漂移,导致结果更差。

未来还有许多地方值得改进。首先,对 Terrier 工具的理解程度不够。另外,我们没有使用词嵌入技术对语料进行处理,在进行伪相关反馈时,只利用了前 k 个文档中 TF-IDF 权重比较大的词语进行查询扩展,却无法使用前 k 篇文档语义层面的信息。比如,深度学习方面有著名的 Word2Vec 模型,HMM 等模型,可以对文档进行更深层次的主题定义,在数据量较大的时候,往往具有很好的效果,CNN,RNN 对文档特征的抽取效果很好。