Работа 4.1.1 ИЗУЧЕНИЕ ЦЕНТРИРОВАННЫХ ОПТИЧЕСКИХ СИСТЕМ

Подлесный Артём группа 827

5 июля 2020 г.

Цель работы: изучить методы определения фокусных расстояний линз и сложных оптических систем; определить характеристики оптической системы, составленной из тонких линз; изучить недостатки реальных линз сферическую и хроматическую аберрации.

Оборудование: измерительный оптическая скамья с набором рейтеров, положительные и отрицательные линзы, экран, осветитель с ирисовой диафрагмой, зрительная труба, светофильтры, кольцевые диафрагмы, линейка.

1 Определение фокусных расстояний тонких линз с помощью зрительной трубы

Перед началом работы все оптические системы были отцентрированы. Всего в измерениях участвуют 5 линз, каждая из которых соответсвующе пронумерована. Качественно было определено, что все линзы с 1 по 4 являются собирающими, с увеличивающимся фокусным расстоянием от порядкового номера. 5 линза — рассеивающая.

Экспериментальная установка представлена на рис.1. Показанные на схеме величины снимались после получения четкого изображения источника в зрительной трубе.

Зрительная труба предварительно установлена на бесконечность (с помощью куртки Булата и коридора). На схеме видно, какие данные снимались для определения фокусного расстояния f линз. Для каждой линзы аналогичные измерения проведены, когда ее повернули другой стороной к источнику

Рис. 1: Экспериментальная установка для определения фокусного расстояния тонкой а)собирающей и б)рассеивающей линз с помощью зрительной трубы.

(для исключения влияния толщины линз). Данные по измерению каждого фокуса показаны на таблице 1.

Линза	$f_{ m str},~{ m cm}$	$f_{ m opp},{ m cm}$	f, cm	σ_f , cm
1	7.8	7.8	7.8	0.1
2	10.8	10.5	10.7	0.2
3	19.6	19.1	19.4	0.2
4	28.4	28.8	28.6	0.1
5	-8.8	-9.1	-9.0	0.3

Таблица 1: $f_{\rm str}$ и $f_{\rm opp}$ — фокусы, посчитанные для разных сторон линз. Для рассеивающей линзы были соответственно померяны l и a_0 , я лишь опустил расчеты.

2 Определение фокусных расстояний тонких линз при помощи экрана

2.1 С помощью метода Бесселя

Схема метода показана на рис.2.

Рис. 2: Схема определения фокусного расстояния собирающей линзы методом Бесселя. В данных обозначениях $l=l_2-l_1$.

Суть метода в следующем: пусть L – расстояние между источником и экраном. Тогда если l – расстояние между двумя положениями линзы, при котором наблюдается четкое изображения источника на экране, то из формулы тонкой линзы следует, что:

$$f = \frac{L^2 - l^2}{4L}.\tag{1}$$

Так как таким методом можно определить лишь действительные значения фокусов, то измерялись лишь собирающие линзы. Результаты - на таблице 2.

Линза	L, cm	l_1 , cm	l_2 , cm	f, cm	σ_f , cm
1	43.6	9.8	33.4	7.7	0.1
2	49.8	15.1	34.3	10.6	0.1
3	84.1	29.3	55.3	19.0	0.1
4	120.8	44.6	76.4	28.1	0.1

Таблица 2: Фокусные расстояния линз, измеренные методом Бесселя. Погрешность измерений определяется погрешностью измерений линейки, но в реальности она, конечно, выше.

2.2 По формуле тонкой линзы

В данном эксперименте использовались линзы под номерами 1 и 5 – с положительным и отрицательным фокусом соответственно. Схема эксперимента представлена на рис.3.

Рис. 3: Схема определения фокусного расстояния а)собирающей линзы, и б)рассеивающей линзы. С помощью линзы 2 на фиксированном расстоянии l_0 фокусируется мнимый источник. Далее изображение фокусируют путем изменения положения экрана.

Расстояние $l_0 = 42.3$ см определяется непосредственно с помощью экрана, и после этого линза 2 не меняет положение. С помощью формулы тонкой линзы, в данных величинах получаем зависимость:

$$f = \frac{b(l_1 - l_0)}{b + l_1 - l_0}. (2)$$

Экспериментальная зависимость $b(l_1)$ представлены на таблице 3.

Фокусы можно найти по усреднению этих зависимостей из формулы 2. Получаем:

$$f_1 = 7.60 \pm 0.08 \text{ cm},$$

Линза 1	l_1 , cm	61.4	58.5	57.3	54.5	53
	b, cm	12.6	14.8	15.5	20.6	22.8
Линза 5.	l_1 , cm	38.5	38.2	36.7	34.9	33.8
	b, cm	8.3	8.7	15.8	43.1	60.5

Таблица 3: Зависимость $b(l_1)$.

$$f_5 = -8.5 \pm 0.5$$
 cm.

Стоит прокомментировать разброс значений для фокуса 5 линзы. Если посчитать отдельно f по самому первому измерению для Π 5, то он получался верным, а все остальные – нет. Это наводит на мысль, что во время первого измерения изменилось положение линзы Π 2, из-за чего остальные результаты недостоверны.

2.3 Сравнение всех результатов

Будет удобно сравнить фокусные расстояния линз, измеренные разными способами, показав их на одном графике f(n) от номера линзы n. Эта зависимость показана на рисунке 4.

Рис. 4: Значения фокусов для линз, измеренных разными методами.

Из этого графика видно, что сходимость результатов всех линз достаточно хорошая, что подтверждает, что приближение тонкой линзы работает в нашем эксперименте.

3 Аберрации оптических систем

3.1 Сферическая аберрация

Зависимость сферической аберрации выглядит следующим образом:

$$s(h) = \frac{R}{n-1} \left(1 - \frac{n^2 h^2}{2R^2} \right). \tag{3}$$

Характеристической кривой сферической аберрации называют зависимость

$$\delta s(h) = -\frac{1}{2} \left(\frac{n}{n-1} \right)^2 \left(\frac{h}{f} \right)^2 f. \tag{4}$$

При h = r(r - радиус линзы) формула (4) определяет продольную сферическую аберрацию линзы.

Для исследования сферической аберрации использовались 3 диафрагмы диаметром 2h, которые ставились перед линзой, и с помощью нониусной шкалы линзы, можно было измерить величину сферической аберрации s(h). Данные, как водится, на таблице. 4.

s, cm	h, см
0.84	0.5
1	1
1.4	2

Таблица 4: Зависимость s от ширины диафрагмы (по модулю).

Построим график $s(h^2)$, из (3) он является прямой. Тогда экстраполировав его на точку h=r=2.5 см – радиус линзы, получим сферическую аберрацию. График представлен на рис.5.

Из графика получаем значения для коэффициентов в уравнении

$$s(h) = bh^2 + a,$$

откуда получаем, что

$$\delta s = br^2 = 0.91 \text{ cm}.$$

Так как значение в большей степени оценочное, погрешности не существенны.

Рис. 5: Зависимость продольной аберрации от h^2 . Знаменитая прямая по 3 точкам.

3.2 Хроматическая аберрация

Хроматическая аберрация (зависимость фокусного расстояния линзы от длины волны) возникает вследствие дисперсии показателя преломления стёкол, т. е. из-за того, что показатель преломления $n=n(\lambda)$. Хроматическую аберрацию принято характеризовать разностью фокусных расстояний для двух характерных спектральных линий водорода, располо женных в крайних частях видимой области спектра: $\lambda_F=486,1$ нм (голубая линия F водорода), $\lambda_C=656,3$ нм (красная линия C водорода):

$$\delta f_{\rm xp} = f_F - f_C. \tag{5}$$

Для характеристики дисперсионных свойств стёкол часто пользуются так называемым коэффициентом дисперсии, или числом Аббе ν , которое выражается через продольную хроматическую аберрацию так:

$$\delta f_{\rm xp} = -\frac{1}{\nu} f_D,\tag{6}$$

где f_D – фокусное расстояние для желтой линии натрия D $\lambda_D=589.3$ нм.

Используя 3 светофильтра из комплекта, можно получить фокусные расстояния для каждой спектральной линии, что мы собственно сделали. Таким образом получаем:

$$\delta f_{
m xp} = -1.5$$
 мм, $u pprox 47.$

4 Вывод

Полученные значение фокусов линз разными методами оказались одинаковы, что свидетельствует о хорошей применимости геометрической оптики в нашей работе.

Были изучены понятия сферической и хроматической аберраций, и они были достаточно достоверно измерены для участвующей в эксперименте линзы.

Все здорово и жизнь прекрасна.

$$x = \frac{\sqrt{2\hbar/m\nu}}{2}(a+a^+) = X_1\sqrt{2\hbar/m\nu}$$
$$p = \frac{\sqrt{2\hbar m\nu}}{2i}(a-a^+) = X_2\sqrt{2\hbar m\nu}$$

$$R = \frac{\lambda}{\delta\lambda} = \frac{m\beta}{2}$$