Calcolatori Elettronici (12AGA)

Esame del 20.7.2022

Traccia di soluzioni per parte 2

Utilizzando la tabella riportata, si elenchino le micro-operazioni eseguite da un processore MIPS durante la fase di esecuzione (ignorando la fase di fetch) dell'istruzione lw \$\$1, 100(\$\$2).

	PCWrite	Branch	PCSrc	ALUControl	ALUSrcB	ALUSrcA	RegWrite	MemtoReg	RegDst	IRWrite	MemWrite	lorD
1	0	0					0			0	0	0
2	0	0		010 (add)	10	1	0			0	0	0
3	0	0					0			0	0	1
4	0	0					0			0	0	1
5	0	0					1	1	0	0	0	1

Progettare un circuito per il controllo di un motore elettrico. Il circuito riceve in ingresso i segnali relativi ai controlli di accensione (A=1) e spegnimento (S=1). In caso di pressione simultanea, S prevale su A.

Se il motore è acceso (spento) e arriva un altro segnale di accensione (spegnimento), il circuito deve ignorare il segnale.

Il circuito ha una uscita O con il seguente comportamento: O=0 (motore spento), O=1 (motore acceso).

Scrivere la tabella della verità e trovare le funzioni minime.

Il circuito include un FF che ricorda se il motore è acceso o spento, e che pilota il motore stesso.

Si chiede quindi di progettare la logica che, leggendo l'uscita del FF e i due ingressi, pilota l'ingresso del FF.

Tavola di verità

```
F*
FAS
000 0
001
010 1
011 0
100
101 0
110 1
111 0
```

Mappa di Karnaugh

	AS									
F	00	01	11	10						
0	0	0	0	1						
1	1	0	0	1						

$$F^*=A S' + F S'$$