Relational Schema Mapping

What is a set?

$$A=\{1,2\}; B=\{a,b\}$$

What is a product set
$$\rightarrow$$
 AxB = { (1,a), (1,b), (2,a), (2,b) }

Product set $\leftarrow \rightarrow$ Cartesian Product

Its elements can be written in \rightarrow Table form

It has no duplicates. It is a set.

1	a
1	b
2	a
2	b

This 'Product set' \rightarrow relates elements of set A $\{1,2\}$ with elements of set B $\{a,b\}$.

Example:

Apple	Red
Banana	Green

Apple is red, and Banana is green.

Therefore, Product set is also called as a relation.

A **proper subset** of AxB also relates few elements.

1	a
1	b
2	a

Any proper subset of a [Product set] \rightarrow is a **relation**.

- → It is a set. It is a relation
- → Table with 2 or more columns is a relation (with no duplicate rows/columns)

Database Schema \rightarrow a set of relations

```
Schema 1:
Columns: COURSE-name(6), TEACHER-name(8), STUDENT-number(8),
         STUDENT-name(8), GRADE(4)
  Courses (COURSE, TEACHER, SNO, SNAME, GRADE)
       DB Blake s102000 NakaMura A
       OS Blake s102000 NakaMura A
       OS Blake s201000 Kato B
     Physics Billard s102000 NakaMura B
    Physics Billard s201000 Kato C
       _____
Schema 2:
in the previous exercise (Exercise Class 1).
      Teachers (COURSE, TEACHER)
      Classes ( COURSE, SNO, SNAME, GRADE ).
Schema 3:
       Teachers (COURSE, TEACHER)
       Grades (COURSE, SNO, GRADE)
       Students (SNO, SNAME)
```

Schema 1 \longleftrightarrow schema 2 \longleftrightarrow schema 3

Perform Schema Mapping:

- 1. Join Table Grades and Students in Schema 3 Check if, result is same as Table classes in Schema 2
- 2. Join 2 tables in Schema 2, Check if, the result is same As Courses Table in Schema 1