LING 570: Hw7 Due at 11pm on Nov 15 Total points: 100

All the example files are under dropbox/18-19/570/hw7/examples/.

Q1 (45 points): Write a script, viterbi.sh, that implements the Viterbi algorithm. You can reuse some functions from your check_hmm.sh in Hw6.

- The format is: viterbi.sh input_hmm test_file output_file
- Your code should work for any HMM, not just the HMM for ngram POS taggers:
 - Do not do anything special for BOS and EOS. Do not insert BOS marker or EOS marker to the input.
 - Use input_hmm as it is. Do NOT smooth it. For instance, if there is no transition probability line from state s_i to s_j , that means that it is impossible to go from s_i to s_j . If there is no emission line for state s_i and output symbol w_k , that means that s_i cannot generate w_k .
 - Your code should be able to handle unknown "word" in the observation: let the observation be " $o_1 o_2 \dots o_n$ ". For each o_i , if o_i does not appear in the input_hmm at all, o_i is an unknown word and should be treated as a special output symbol <unk>. The special symbol can be generated by any state s_j whose probability $P(<unk>|s_j)$ is larger than 0. If for some s_j , $P(<unk>|s_j)$ is zero or does not appear in the input_hmm, that means s_j cannot generate this special symbol.
- *input_hmm* is an input file:
 - input_hmm is a state-emission hmm and the output symbols are produced by the *to-states*. It has the same format as the HMM format in Hw6.
 - You can assume that the input_hmm does not contain any emission probability for empty string (i.e., a state cannot generate an empty string).
 - For hw7, you don't need to check whether the three probability distributions (initial, transition, and emission ones) in the input_hmm satisfy the constraints that are checked by check_hmm.sh in Hw6. If a line contains a probability that is not in the [0, 1] range, your code just prints out a warning message to stderr ("warning: the prob is not in [0,1] range: \$line", where \$line is the line), ignore the line, and continue.
- *test_file* is an input file;
 - Each line is an observation (i.e., a sequence of output symbols). For instance, if you use HMM for POS tagging, an observation will be a sentence (cf. **test.word**):
 - Once again, do not insert anything (e.g., BOS or EOS marker) to the observation.
- The format of the output_file (cf. sys) is "observ => state_seq lgprob":
 - state_seq is the best state sequence for the observation. The length of state_seq should be equal to the length of observ plus one.

- Igprob is $lg\ P(observ, state_seq)$; lg(x) is base-10 log.
- If there is a tie (i.e., more than one state sequence with the highest probability), you can pick any of those sequences.

Q2 (30 points): Use viterbi.sh for trigram POS tagging:

- The input_hmm for viterbi.sh is the one for a trigram POS tagger:
 - The state name has the format "tag1_tag2", and the output symbol is produced by the *to-state*.
 - hw7/examples/hmm[1-5] are some examples of the input_hmm. For the transition and emission probability lines, please ignore anything after ##.
- Write your own script, conv_format.sh, to convert the format of the output file of viterbi.sh.
 - The format of the command line is "cat file1 | conv_format.sh > file2".
 - file1 is the file created by viterbi.sh, and has the format "observ => state_seq lgprob".
 - file2 has the format "w1/t1 w2/t2 ... wn/tn". where t_i is the second tag of the state that generates w_i .
 - For instance, if file1 has a line " w_1 w_2 ... $w_n => x_-t_0$ t_0 - t_1 t_1 - t_2 ... t_{n-1} - t_n lgprob", conv_format.sh should print " w_1/t_1 ... w_n/t_n " to stdout, which can then be redirected to file2. Note that x, t_0 (the two tags in the 1st state in the state sequence), and lgprob should NOT be included in the output string.
- Run calc_tagging_accuracy.pl (which is given to you) to calculate the tagging accuracy.
 - The format is: calc_tagging_accuracy.pl gold_standard sys_res > sys_res.acc
 - gold_standard and sys_res have the format "w1/t1 w2/t2 ... wn/tn" (e.g., test.word_pos).
 - The gold standard for the file *test.word* is *test.word_pos*, and the sys_res is the file created by conv_format.sh.
- Fill out Tablel 1 with each of the HMM files under hw7/examples/. For instance, to get the accuracy for the first row in Table 1, you should run the following commands:
 - viterbi.sh hmm1 test.word sys1
 - cat sys1 | conv_format.sh > sys1_res
 - calc_tagging_accuracy.pl test.word_pos sys1_res > sys1_res.acc 2>&1
- Submit the files as specified in submit-file-list.

The submission should include:

- readme.[txt|pdf] that includes Table 1.
- hw.tar.gz that includes the files specified in submit-file-list.

Table 1: Tagging accuracy

	00 0
HMM model	tagging accuracy
hmm1	
hmm2	
hmm3	
hmm4	
hmm5	