Chapitre 2 : Généralisation et Applications des notions de flot maximum/coupe minimum

M1-OPTION RO- PARTIE FLOTS

Université Paul Sabatier

Année 2013-2014

- R Ahuia, TL Maananti, JB Orlin, and MR Reddy. Applications of Network Optimization, volume 7, chapter 1. Elsevier Science B.V., 1995
- A. Alj and R. Faure. Guide de la recherche opérationnelle : Les applications. Masson, 1990.
- R. Faure, B. Lemaire, and C. Picouleau. Précis de Recherche Opérationnelle. Dunod, Paris, 2000.
- J.C. Fournier. <u>Théorie des graphes et applications :</u>
 Avec exercices et problèmes. Collection Informatique. Hermes Science Publications, 2011.
- D. Hochbaum. Selection, provisioning, shared fixed costs, maximum closure, and implications on algorithmic methods today. Management Science,
- E. Tardos J. Kleinberg. Algorithm Design. Addison Wesley, 2005

M1-option RO (UPS)

Généralisation et applications des Flots

Année 2013-2014 1 / 32

Pb du flot de coût minimum

 $R = (X, U, c, \gamma)$ réseau de transport avec

- c(u) > 0 capacité de l'arc u et
- $\gamma(u) \ge 0$ coût de passage d'une unité de flux dans l'arc u
- avec $c(u_0) = \infty$ et $\gamma(u_0) = 0$.

Le coût d'un flot $\varphi : \gamma(\varphi) = \sum_{u \in U} \gamma(u) \varphi(u)$

Trouver un flot compatible de coût minimum. Voire un flot max de coût min.

Plan

Flots de coûts minimum

Le problème **Algorithmes**

Circulations

Circulation avec demande Circulation avec demandes et bornes inférieures Programme de transport

Tensions

Applications

Couplage

Couplage dans un graphe biparti

Chemins disjoints

Connectivité

Segmentation d'image

6 Conclusion sur les flots

M1-option RO (UPS) Généralisation et applications des Flots

Recherche d'un flot de coût minimum

Algorithme de Roy (1960) (Roy, 1969), Busacker et Gowen (1961) (Busacker and Gowen, 1961)

- Initialisation : $\varphi \leftarrow (0, \dots, 0)$ (flot nul)
- Étape courante : Construire le graphe d'écart $G_R(\varphi) = (X, U_{\varphi}, c_{\varphi}, \gamma_{\varphi})$ avec

 $\gamma(u)$ si u même sens dans U et U_{φ}

- Si \exists chemin [s,t] dans $G_R(\varphi)$ alors FIN : φ est un flot maximum de coût minimum Sinon
 - déterminer un chemin ν_{st} élémentaire st-minimal de $(X, U_{\omega}, \gamma_{\omega})$
 - $\varepsilon \leftarrow \min_{u \in \nu_{st}} c_{\varphi}(u)$
 - $\mu_{st} \leftarrow \text{vecteur cycle } \nu_{st} \cup \{u_0\}$
 - $\varphi \leftarrow \varphi + \varepsilon \mu_{st}$ nouveau flot compatible $\gamma(\varphi) \leftarrow \gamma(\varphi) + \varepsilon \gamma_{\varphi}(\nu_{st})$ coût du nouveau flot
- réitérer pour obtenir un flot de valeur supérieure

Généralisation et applications des Flots Année 2013-2014 5 / 32 Généralisation et applications des Flots

Autre méthode: suppression des circuits négatifs

Théorème (Théorème d'optimalité de Berges)

Soit φ un flot compatible, φ est de coût minimum ssi $G_{\mathbb{R}}(\varphi)$ n'admet aucun circuit de coût négatif.

Algorithme de Klein 1967 (Klein, 1967):

- construire un flot φ compatible sur $R \cup \{u_0\}$
- tant que le graphe d'écart admet un circuit négatif u faire
 - soit k la capacité résiduelle minimale de ce circuit,
 - $\varphi \leftarrow \varphi + k\mu$.

Variante alao polynomial: choisir de supprimer le circuit de coût moyen minimum (= coût du circuit/ nombre d'arcs du circuit).

- complexité O(nm) pour le trouver
- garantit un nombre max de $O(nm^2 logn)$ iterations.
- D'où un algo polynomial en : $O(n^2m^3logn)$.

Généralisation et applications des Flots

Année 2013-2014 6 / 32

Circulation avec demande: exemple

Une circulation est une fonction f aui satisfait :

- $\forall u \in U$, 0 < f(u) < c(u) (capacité)
- $\forall x \in X$, $\sum_{u \in \omega^-(\{x\})} f(u) \sum_{u \in \omega^+(\{x\})} f(u) = d(x)$ (conservation)

Condition nécéssaire d'existence :

$$\sum_{\{x|d(x)>0\}} d(x) = \sum_{\{x|d(x)<0\}} d(x) = D$$

Circulation avec demande

Un graphe orienté G = (X, U), les arcs $u \in U$ munis de capacités c(u), les sommets $x \in X$ associés à des demandes (d(x) < 0 apports ou offre, d(x) > 0 demande ou besoin, d(x) = 0 transbordement).

Définition

Une circulation est une fonction f aui satisfait:

- $\forall u \in U$, 0 < f(u) < c(u) (capacité)
- $\forall x \in X$, $\sum_{u \in \omega^-(\{x\})} f(u) \sum_{u \in \omega^+(\{x\})} f(u) = d(x)$ (conservation)

Problème : Existe-t'il une circulation étant donné (X, U, c, d)?

Condition nécéssaire d'existence

somme des demandes = somme des offres

$$\sum_{\{x|d(x)>0\}} d(x) = \sum_{\{x|d(x)<0\}} d(x) = D$$

Circulation avec demande: formulation en flots

- Ajouter 2 nouveaux sommets : une source s et un puits t.
- Pour chaque sommet x avec d(x) < 0, ajouter un arc (s, x) de capacité -d(v).
- Pour chaque sommet x avec d(x) > 0, ajouter un arc (x, t) de capacité d(v).
- G admet une circulation ssi G' admet un flot maximum de valeur D.

Un graphe orienté G = (X, U), les arcs $u \in U$ munis de capacités c(u) et de bornes inférieures b(u), les sommets $x \in X$ associés à des demandes.

Définition

Une circulation dans (X, U, b, c, d) est une fonction f qui satisfait :

- $\forall u \in U$, b(u) < f(u) < c(u) (capacité)
- $\forall x \in X$, $\sum_{u \in \omega^-(\{x\})} f(u) \sum_{u \in \omega^+(\{x\})} f(u) = d(x)$ (conservation)

Problème : Existe-t'il une circulation étant donné (X, U, b, c, d) ?

Transformation du problème

Idée : Considérer les bornes inférieures comme des demandes :

- envoyer b(u) unités sur chaque arc u
- mettre à jour les demandes aux deux extrémités de u

Généralisation et applications des Flots

Programme de transport

Graphe biparti complet:

Transformation du problème de circulation avec bornes inférieures

Transformation du problème

Idée: Considérer les bornes inférieures comme des demandes:

- envoyer b(u) unités sur chaque arc u
- mettre à jour les demandes aux deux extrémités de u

G:G':

borne inférieure borne supérieure

Propriété

Il existe une circulation dans G ssi il existe une circulation dans G'.

Généralisation et applications des Flots

d(x)

Programme de transport : exemple

Une fabrique de conserves expédie des caisses vers des dépôts. Il y a trois usines I, II et III et cinq dépôts A, B, C, D et E. Les coûts d'expédition sont donnés dans le tableau ci-dessous, ainsi que les auantités disponibles et demandées.

coût (c_{ij})	Destinations					disponibles (a_i)
Origine	Α	В	C	D	E	
I	8	5	3	2	6	220
II	4	2	3	5	8	440
III	5	4	2	6	7	340
demandées (b _j)	150	200	320	230	100	I

Déterminer le nombre de caisses que chacune des usines doit expédier vers chacun des dépôts de facon à minimiser le coût de transport total.

Généralisation et applications des Flots Généralisation et applications des Flots

Résolution d'un programme de transport

On peut le résoudre de deux façons :

- Programmation linéaire.
- Algorithme de Roy (ou Busacker et Gowen)

NB. si l'offre et la demande sont de 1 alors c'est un pb d'affectation.

M1-option RO (UPS) Généralisation et applications des Flots Année 2013-2014 15 /

Flots de coûts minimum

Circulations

ons Applica

Conclusion sur les flo

Comment connaître tous les cycles élémentaires?

- On prend un arbre partiel H de G=(X,U) (avec |X|=n et |U|=m)
- Tout arc ajouté crée un cycle unique :
- $\Rightarrow n-1$ arcs dans l'arbre donc m-n+1 cycles élémentaires indépendants
- Les autres sont des combinaisons linéaires de ces cycles.
- Il suffit de vérifier sur ces cycles élémentaires de base.

Tensions

La notion duale de flot est celle de tension. Les cocyles étant remplacés par des cycles.

Définition

Une tension (ou différence de potentiel) est un vecteur θ de \mathbb{Z}^m t.q. pour tout cycle élémentaire μ , on ait :

$$\sum_{u \in \mu^+} \theta(u) = \sum_{u \in \mu^-} \theta(u)$$

On obtient de façon duale tous les résultats des flots :

- le vecteur nul est une tension,
- tout vecteur cocycle est une tension,
- toute combinaison linéaire de tension est une tension
- ...

M1-option RO (UPS) Généralisation et applications des Flots Année 2013-2014 17 / 32

ots de coûts minimum

Circulation 000000 Tensions

Couplage

Aparier des éléments étant données des contraintes de compatibilités, chaque élément ne peut avoir au plus qu'un seul correspondant.

Définition (Couplage)

- Entrée : un graphe non orienté G = (X, U).
- V ⊆ U couplage si chaque sommet est présent au plus une fois dans les arêtes de V.
- Couplage maximum : couplage de cardinalité maximum.

Flots de coûts minimum

Circulations

Applicat

Conclusion sur les flots

Couplage dans un graphe biparti

Aparier des éléments de deux ensembles distincts.

Définition (Couplage dans un graphe biparti)

- Entrée : un graphe non orienté biparti $G = (X \cup Y, U \subseteq X \times Y)$.
- $V \subseteq U$ couplage si chaque sommet est présent au plus une fois dans les arêtes de V. Couplage maximum = cardinalité maximum.
- Couplage parfait : |V| = |X| = |Y|. Chaque sommet apparaît exactement une fois dans V.

Flots de coûts minimum

00000000

Te

Application

Conclusion sur les flot

Problème des chemins disjoints

Soit G=(X,U) et deux sommets s et t, trouver un nombre maximal de chemins arcs-disjoints de s à t.

Définition (Chemins arcs-disjoints)

Deux chemins sont arcs-disjoints s'ils n'ont pas d'arc en commun.

Couplage: Traduction en flot maximum

Créer un graphe orienté $R = (X \cup Y \cup \{s\} \cup \{t\}, U')$.

Chaque arête de X vers Y donne un arc (capacité = ∞ ou 1).

U': Les arcs de s vers tous les sommets de X de capacité 1.

Les arcs de tous les sommets de Y vers t de capacité 1.

M1-option RO (UPS)

Généralisation et applica

Appée 2012 2014

22 / 32

Flots de coûts minimum

Circulations 0000000 ions App

Conclusion sur les flots

Chemins arcs-disjoints: Formulation en flots

Soit G=(X,U) et deux sommets s et t, trouver un nombre maximal de chemins arcs-disjoints de s à t.

Attribuer une capacité de 1 à chaque arc.

Propriété

Le nombre de chemins arcs disjoints est la valeur du flot maximum.

Flots de coûts minimum

Circulations

Applications

Conclusion sur les flots

Connectivité

Soit G = (X, U) et deux sommets s et t, trouver un nombre minimal d'arc dont la suppression déconnecte s de t.

Définition

Un ensemble d'arc $V \subseteq U$ déconnecte s de t si tout chemin de s à t utilise au moins un arc de V

Propriété (Menger 1927)

M1-option RO (UPS)

néralisation et applications des Flots

Année 2013-2014 25 / 3

/ 32

Flots de coûts minimum

Circulations

ns Applica

Conclusion sur les flo

Segmentation d'image en termes de flots

- Maximiser $\sum_{i \in A} a_i + \sum_{j \in B} b_j \sum_{(i,j) \in U, |A \cap \{i,j\}| = 1} p_{ij}$ avec (A,B) = partition des sommets
- revient à Minimiser $\sum_{i \not\in A} a_i + \sum_{j \not\in B} b_j + \sum_{(i,j) \in U, |A \cap \{i,j\}| = 1} p_{ij}$.

- $\omega^+(A)$ a pour capacité : $\sum_{i
 otin A} a_i + \sum_{j \in A} b_j + \sum_{(i,j) \in U, |A \cap \{i,j\}| = 1} p_{ij}$.
- Trouver une coupe de capa min => trouver un flot max.

Segmentation d'image

- étiqueter chaque pixel en arrière-plan ou premier-plan
- $a_i > 0$ proba que le pixel i soit du premier-plan
- $b_i > 0$ proba que le pixel i soit en arrière-plan
- $p_{ij} \ge 0$ pénalité de séparation des voisins (quand deux voisins ne sont pas dans le même plan)

But:

- précision : si $a_i > b_i$ préférer i en premier-plan
- lissage : si beaucoup de voisins en premier-plan préferer le premier-plan
- trouver une partition (A,B) qui maximise : $\sum_{i \in A} a_i + \sum_{j \in B} b_j \sum_{(i,j) \in U, |A \cap \{i,j\}| = 1} p_{ij}.$

1-option RO (UPS)

Généralisation et applications des Flots

26 / 32

Flots de coûts minimum

Circulations 000000 Applicat

Conclusion sur les flots

Conclusion sur les flots

- Beaucoup de problèmes peuvent se formuler en terme de flots (pbs d'affectation, couplage, pb d'expédition idéale, fournisseurs clients, transports de marchandise etc.), il faut savoir les formaliser.
- Connaître l'algorithme de Ford-Fulkerson pour obtenir un flot maximal (il existe d'autres algorithmes).
- Lien entre coupe de capacité minimale et flot maximum.
- Pour minimiser les coûts de transports, utiliser le graphe d'écart et l'algorithme de Roy (Busacker et Gowen) à partir du flot nul.

M1-option RO (UPS) Généralisation et applications des Flots Année 2013-2014 27 / 32 M1-option RO (UPS) Généralisation et applications des Flots Année 2013-2014 29 / 3

Flots de coûts minimum Circulations Tensions Applications Conclusion sur les flots

Références I

- Ahuja, R., Magnanti, T., Orlin, J., and Reddy, M. (1995).

 Applications of Network Optimization, volume 7, chapter 1.

 Elsevier Science B.V.
- Alj, A. and Faure, R. (1990).

 Guide de la recherche opérationnelle : Les applications.

 Masson.
- Busacker, R. and Gowen, P. (1961).

 A procedure for determining minimal-cost network flow patterns.

 Technical Report ORO-15, Operational Research Office, John
 Hopkins University.
- Faure, R., Lemaire, B., and Picouleau, C. (2000).

 Précis de Recherche Opérationnelle.

 Dunod, Paris.

M1-option RO (UPS)

Généralisation et applications des Flots

Année 2013-2014 30 / 32

Flots de coûts minimum

Circulations

OOO

Tensions

Applications
OOO

Conclusion sur les flots

Références |||

Roy, B. (1969).

Algèbre moderne et théorie des graphes.

Dunod, Paris.

M1-option RO (UPS) Généralisation et applications des Flots Année 2013-2014 32 / 32

Flots de coûts minimum Circulations Tensions Applications Conclusion sur les flot

Références II

Fournier, J. (2011).

<u>Théorie des graphes et applications : Avec exercices et problèmes.</u>
Collection Informatique. Hermes Science Publications.

Hochbaum, D. S. (2004).
Selection, provisioning, shared fixed costs, maximum closure, and implications on algorithmic methods today.

Management Science, 50(6):709–723.

Klein, M. (1967).
A primal method for minimal cost flows with applications to the assignment and transportation problems.

Management Science, 14:205–220.

Kleinberg, J. and Tardos, E. (2005).

Algorithm Design.

Addison Wesley.

M1-option RO (UPS) Généralisation et applications des Flots Année 2013-2014 31 / 32