Álgebra homológica, día 3

Alexey Beshenov (cadadr@gmail.com)

10 de agosto de 2016

1. Funtores adjuntos

Como hemos notado en la primera lección, el funtor $\underline{\mathrm{Hom}}_R(M,-)$: R-**Mód** \to R-**Mód** está relacionado con el funtor $-\otimes_R M$: R-**Mód** por la biyección natural

$$\operatorname{Hom}_R(L \otimes_R M, N) \xrightarrow{\cong} \operatorname{Hom}_R(L, \operatorname{\underline{Hom}}_R(M, N)).$$

Este es un caso particular de funtores adjuntos:

1.1. Definición. Sean $F: \mathbf{C} \to \mathbf{D}$ y $G: \mathbf{D} \to \mathbf{C}$ dos funtores entre categorías \mathbf{C} y \mathbf{D} . Se dice que F es **adjunto por la izquierda** a G y que G es **adjunto por la derecha** a F si para cada $X \in \mathbf{C}$ y $Y \in \mathbf{D}$ tenemos una biyección natural

$$\operatorname{Hom}_{\mathbf{D}}(F(X), Y) \cong \operatorname{Hom}_{\mathbf{C}}(X, G(Y)).$$

La naturalidad quiere decir que para X fijo la biyección

$$\operatorname{Hom}_{\mathbf{D}}(F(X), -) \cong \operatorname{Hom}_{\mathbf{C}}(X, G(-))$$

es un isomorfismo de funtores $D \rightarrow Set$, y para Y fijo la biyección

$$\operatorname{Hom}_{\mathbf{D}}(F(-), Y) \cong \operatorname{Hom}_{\mathbf{C}}(-, G(Y))$$

es también un isomorfismo de funtores $C^{\circ} \to Set$.

1.2. Ejemplo.

■ En la primera lección hemos visto que el funtor $- \otimes_R M$ es adjunto por la izquierda a $\underline{\operatorname{Hom}}_R(M, -)$:

$$\operatorname{Hom}_R(L \otimes_R M, N) \cong \operatorname{Hom}_R(L, \operatorname{\underline{Hom}}_R(M, N)).$$

■ Tenemos un isomorfismo *natural* $L \otimes_R M \cong M \otimes_R L$, de donde el funtor $M \otimes_R -$ es adjunto por la izquierda a $\underline{\operatorname{Hom}}_R(M, -)$:

$$\operatorname{Hom}_R(M \otimes_R L, N) \cong \operatorname{Hom}_R(L \otimes_R M, N) \cong \operatorname{Hom}_R(L, \operatorname{\underline{Hom}}_R(M, N)).$$

■ El funtor contravariante $\underline{\text{Hom}}_R(-,N)$ es adjunto... a sí mismo:

$$\operatorname{Hom}_R(L, \operatorname{\underline{Hom}}_R(M, N)) \cong \operatorname{Hom}_R(L \otimes_R M, N) \cong \operatorname{Hom}_R(M \otimes_R L, N) \cong \operatorname{Hom}_R(M, \operatorname{\underline{Hom}}_R(L, N)).$$

En efecto, el funtor $\underline{\mathrm{Hom}}_R(-,N)$ es contravariante y puede ser visto como un funtor $R\text{-}\mathbf{Mód}^\circ \to R\text{-}\mathbf{Mód}$ o como un funtor $R\text{-}\mathbf{Mód} \to R\text{-}\mathbf{Mód}^\circ$. Entonces la biyección natural de arriba puede ser escrita como

$$\operatorname{Hom}_{R\operatorname{-M\acute{o}d}^{\circ}}(\operatorname{\underline{Hom}}_R(L,N),M)\cong \operatorname{Hom}_{R\operatorname{-M\acute{o}d}}(L,\operatorname{\underline{Hom}}_R(M,N)).$$

y el funtor $\underline{\mathrm{Hom}}_R(-,N)\colon R\text{-M\'od}^\circ$ es adjunto por la izquierda al funtor $\underline{\mathrm{Hom}}_R(-,N)\colon R\text{-M\'od}^\circ\to R\text{-M\'od}$. Es una situación bastante común cuando un funtor contravariante $F\colon \mathbf{C}^\circ\to \mathbf{C}$ es adjunto a sí mismo, precisamente porque F puede ser visto como un funtor $\mathbf{C}\to\mathbf{C}^\circ$.

Curiosamente, los funtores adjuntos fueron descubiertos por Daniel Kan (1927–2013) en los 50 cuando él asistió a lecciones de álgebra homológica de Eilenberg y vio la adjunción entre $-\otimes_R M$ y $\underline{\mathrm{Hom}}_R(M,-)$. Cuando Eilenberg y Mac Lane sentaron las bases de la teoría de categorías, ellos no se dieron cuenta de la importancia de las adjunciones ya que relacionan funtores $F\colon \mathbf{C}\to \mathbf{D}$ y $G\colon \mathbf{D}\to \mathbf{C}$ que van en direcciones *opuestas*. Kan era estudiante de Eilenberg y descubrió varias aplicaciones de métodos categóricos a geometría, específicamente la teoría de homotopías.

El término "funtores adjuntos" fue introducido por el categorista William Lawvere y viene del análisis funcional: se dice que dos operadores $A: H_1 \to H_2$ y $A^*: H_2 \to H_1$ entre espacios de Hilbert son **adjuntos** si

$$\langle Ah_1, h_2 \rangle_2 = \langle h_1, A^*h_2 \rangle_1.$$

Lawvere aprendió categorías mientras daba clases de análisis funcional. ¿No es un ejemplo espectacular de la utilidad del análisis?

- **1.3. Ejercicio.** Los funtores adjuntos aparecen en varios contextos en álgebra y geometría. Lamentablemente, no tenemos bastante tiempo para ver muchos ejemplos; aquí sugiero algunos como ejercicios. Verifique que en la lista de abajo los funtores son de verdad funtores, describa explícitamente las biyecciones $\operatorname{Hom}_{\mathbf{D}}(F(X),Y) \cong \operatorname{Hom}_{\mathbf{C}}(X,G(Y))$ y demuestre que son naturales.
 - Ya hemos visto otra adjunción en la primera lección. Tenemos el funtor olvidadizo R-Mód \rightarrow Set que para cada R-módulo M "olvida" su estructura y asocia a M el conjunto subyacente M. La construcción del R-módulo libre $R \setminus X$ a partir de un conjunto X es el funtor adjunto por la izquierda a este funtor:

$$\operatorname{Hom}_R(R\langle X\rangle, M) \cong \operatorname{Hom}_{\mathbf{Set}}(X, M).$$

■ La adjunción entre $-\otimes_R M$ y $\underline{\operatorname{Hom}}_R(M,-)$ tiene un análogo aún más sencillo. Para cada conjunto fijo X tenemos el funtor

$$- \times X \colon \mathbf{Set} \to \mathbf{Set}$$

que es adjunto por la izquierda al funtor

$$(-)^X := \operatorname{Hom}_{\operatorname{\mathbf{Set}}}(X, -) \colon \operatorname{\mathbf{Set}} \to \operatorname{\mathbf{Set}},$$

es decir, tenemos una biyección natural

$$\operatorname{Hom}_{\mathbf{Set}}(Y \times X, Z) \cong \operatorname{Hom}_{\mathbf{Set}}(Y, Z^X).$$

• Si X es un espacio topológico, podemos olvidar su topología y considerar a X como un conjunto. Esto define el funtor olvidadizo

$$Olv : \mathbf{Top} \rightarrow \mathbf{Set}.$$

Un funtor adjunto a Olv debe ir en la otra dirección: para un conjunto X definir alguna topología sobre el mismo. De hecho, hay dos modos canónicos de hacerlo: definir sobre X la **topología discreta**, donde cada subconjunto $U \subseteq X$ es abierto, o la **topología indiscreta**, donde los únicos subconjuntos abiertos son \emptyset y X. Esto define dos funtores diferentes

Discr, *Indiscr*: **Set**
$$\rightarrow$$
 Top.

Resulta que Olv es adjunto por la izquierda a Indiscr y por la derecha a Discr:

$$\operatorname{Hom}_{\operatorname{\mathbf{Set}}}(Olv(X),Y)\cong \operatorname{Hom}_{\operatorname{\mathbf{Top}}}(X,Indiscr(Y)),$$

 $\operatorname{Hom}_{\operatorname{\mathbf{Top}}}(Discr(X),Y)\cong \operatorname{Hom}_{\operatorname{\mathbf{Set}}}(X,Olv(Y)).$

■ Tenemos el funtor de inclusión de la categoría de grupos abelianos en la categoría de grupos:

$$i: \mathbf{Ab} \to \mathbf{Grp}$$
.

Un funtor adjunto a i debe construir un grupo abeliano a partir de un grupo G de manera canónica. Como sabemos, tenemos que considerar la **abelianización**:

$$G^{ab} := G/[G, G].$$

Es un funtor $Grp \rightarrow Ab$ que es adjunto por la izquierda a i:

$$\operatorname{Hom}_{\mathbf{Ab}}(G^{\operatorname{ab}}, A) \cong \operatorname{Hom}_{\mathbf{Grp}}(G, i(A)).$$

• Si R es un anillo, entonces sus elementos invertibles forman un grupo R^{\times} . Es un funtor

$$(-)^{\times}$$
: Ring \rightarrow Grp.

Un funtor adjunto debe construir cierto anillo a partir de un grupo G de manera canónica. Es la construcción del anillo $\mathbb{Z}[G]$ que consiste de las sumas formales $\sum_{g \in G} n_g g y$ la multiplicación está definida por la multiplicación en G. Esto es un funtor

$$\mathbb{Z}[-]\colon \mathsf{Grp} \to \mathsf{Ring}$$

que es adjunto por la izquierda a $(-)^{\times}$:

$$\operatorname{Hom}_{\operatorname{\mathbf{Ring}}}(\mathbb{Z}[G],R) \cong \operatorname{Hom}_{\operatorname{\mathbf{Grp}}}(G,R^{\times}).$$

Los funtores adjuntos están relacionados con los funtores representables:

1.4. Observación.

1) Para un funtor $F: \mathbb{C} \to \mathbb{D}$ existe un adjunto por la derecha si y solamente si para cada $Y \in \mathbb{D}$ el funtor

$$\operatorname{Hom}_{\mathbf{D}}(F(-),Y)\colon \mathbf{C}^{\circ} \to \mathbf{Set},$$
 $X \mapsto \operatorname{Hom}_{\mathbf{D}}(F(X),Y)$

es representable, es decir isomorfo a $\operatorname{Hom}_{\mathbb{C}}(-,X')$ para algún $X' \in \mathbb{C}$.

2) Para un funtor $G: \mathbf{D} \to \mathbf{C}$ existe un adjunto por la izquierda si y solamente si para cada $X \in \mathbf{C}$ el funtor

$$\operatorname{Hom}_{\mathbf{C}}(X,G(-))\colon \mathbf{D}\to \mathbf{Set},$$

 $Y\mapsto \operatorname{Hom}_{\mathbf{C}}(X,G(Y))$

es representable, es decir isomorfo a $\operatorname{Hom}_{\mathbf{D}}(Y', -)$ para algún $Y' \in \mathbf{D}$.

Demostración. Por ejemplo, veamos la primera parte. Si F es adjunto por la izquierda a G, entonces para cada $Y \in \mathbf{D}$ tenemos el isomorfismo natural

$$\operatorname{Hom}_{\mathbf{D}}(F(-), Y) \cong \operatorname{Hom}_{\mathbf{C}}(-, G(Y))$$

y X' := G(Y) representa el funtor $\operatorname{Hom}_{\mathbf{D}}(F(-),Y)$. Recíprocamente, supongamos que para cada $Y \in \mathbf{D}$ tenemos isomorfismos

$$\operatorname{Hom}_{\mathbf{D}}(F(-),Y) \cong \operatorname{Hom}_{\mathbf{C}}(-,X').$$

Sea G(Y) := X'. Un morfismo $f: Y_1 \to Y_2$ en **D** induce una transformación natural entre funtores

$$\operatorname{Hom}_{\mathbf{C}}(-, X_1') \cong \operatorname{Hom}_{\mathbf{D}}(F(-), Y_1) \xrightarrow{f \circ -} \operatorname{Hom}_{\mathbf{D}}(F(-), Y_2) \cong \operatorname{Hom}_{\mathbf{C}}(-, X_2'),$$

que por el encajamiento de Yoneda corresponde a un morfismo único $X_1' \to X_2'$. Esto define un morfismo $G(f): G(X_1) \to G(X_2)$, y se ve que G es un funtor $\mathbf{D} \to \mathbf{C}$.

1.5. Observación (Uno de los adjuntos define al otro, salvo isomorfismo).

- 1) Si $F: \mathbb{C} \to \mathbb{D}$ es adjunto por la izquierda a dos funtores $G, G': \mathbb{D} \to \mathbb{C}$, entonces $G \cong G'$.
- 2) Si $G: \mathbf{D} \to \mathbf{C}$ es adjunto por la derecha a dos funtores $F, F': \mathbf{C} \to \mathbf{D}$, entonces $F \cong F'$.

Demostración. Demostremos la primera parte y la segunda es idéntica. Si tenemos biyecciones naturales

$$\operatorname{Hom}_{\mathbb{D}}(F(X), Y) \cong \operatorname{Hom}_{\mathbb{C}}(X, G(Y)) \cong \operatorname{Hom}_{\mathbb{C}}(X, G'(Y)),$$

entonces por el lema de Yoneda tenemos isomorfismos $\alpha_Y \colon G(Y) \xrightarrow{\cong} G'(Y)$ para cada Y. Para que esto sea un isomorfismo de funtores $G \cong G'$, falta verificar que los α_Y definen una transformación natural, es decir que para cada morfismo $f \colon Y \to Y'$ el siguiente diagrama es conmutativo:

$$G(Y) \xrightarrow{\alpha_{Y}} G'(Y)$$

$$G(f) \downarrow \qquad \qquad \downarrow G'(f)$$

$$G(Y') \xrightarrow{\alpha_{Y'}} G'(Y')$$

Pero, también gracias a Yoneda, este diagrama es conmutativo si y solamente si para cada X el diagrama

$$\operatorname{Hom}_{\mathbf{C}}(X,G(Y)) \xrightarrow{\alpha_{Y*}} \operatorname{Hom}_{\mathbf{C}}(X,G'(Y))$$

$$\downarrow^{G'(f)_{*}} \qquad \qquad \downarrow^{G'(f)_{*}}$$

$$\operatorname{Hom}_{\mathbf{C}}(X,G(Y')) \xrightarrow{\alpha_{Y'*}} \operatorname{Hom}_{\mathbf{C}}(X,G'(Y'))$$

es conmutativo, y por la naturalidad de la biyección, el último diagrama corresponde a

1.6. Ejemplo. Todo esto quiere decir que el funtor $\underline{\operatorname{Hom}}_R(M,-)$ define, salvo isomorfismo, el funtor $-\otimes_R M$ y vice versa.

La propiedad de ser un funtor adjunto (por la izquierda o por la derecha) es muy fuerte y tiene muchas consecuencias interesantes. Por ejemplo,

$$F(X \sqcup X') \cong F(X) \sqcup F(X'),$$

 $G(Y \times Y') \cong G(Y) \times G(Y').$

Demostración. Según un ejercicio de la última lección, para cualquier objeto Z tenemos isomorfismos naturales

$$\operatorname{Hom}(Z, X \times X') \cong \operatorname{Hom}(Z, X) \times \operatorname{Hom}(Z, Y'),$$

 $\operatorname{Hom}(X \sqcup X', Z) \cong \operatorname{Hom}(X, Z) \times \operatorname{Hom}(X', Z).$

Ahora tenemos isomorfismos naturales para cada $Z \in \mathbf{D}$

$$\begin{aligned} \operatorname{Hom}_{\mathbf{D}}(F(X \sqcup X'), Z) &\cong \operatorname{Hom}_{\mathbf{C}}(X \sqcup X', G(Z)) \\ &\cong \operatorname{Hom}_{\mathbf{C}}(X, G(Z)) \times \operatorname{Hom}_{\mathbf{C}}(X', G(Z)) \\ &\cong \operatorname{Hom}_{\mathbf{D}}(F(X), Z) \times \operatorname{Hom}_{\mathbf{C}}(F(X'), Z) \\ &\cong \operatorname{Hom}_{\mathbf{D}}(F(X) \sqcup F(X'), Z). \end{aligned}$$

Y el lema de Yoneda implica que $F(X \sqcup X') \cong F(X) \sqcup F(X')$. De modo similar se demuestra que $G(Y \times Y') \cong G(Y) \times G(Y')$.

A veces es útil otra descripción de adjunción de funtores:

1.8. Observación. Consideremos una adjunción

$$\operatorname{Hom}_{\mathbf{D}}(F(X), Y) \cong \operatorname{Hom}_{\mathbf{C}}(X, G(Y)).$$

En particular, tenemos

$$\operatorname{Hom}_{\mathbf{D}}(F(X), F(X)) \cong \operatorname{Hom}_{\mathbf{C}}(X, GF(X)),$$

 $\operatorname{Hom}_{\mathbf{D}}(FG(Y), Y) \cong \operatorname{Hom}_{\mathbf{C}}(G(Y), G(Y)).$

- Sea η_X : $X \to GF(X)$ el morfismo que corresponde al morfismo identidad id: $F(X) \to F(X)$ bajo la primera biyección.
- Sea $\epsilon_Y \colon FG(Y) \to Y$ el morfismo que corresponde al morfismo identidad $id \colon G(Y) \to G(Y)$ bajo la segunda biyección.

Entonces los η_X definen una transformación natural $\mathrm{Id}_{\mathbf{C}} \Rightarrow G \circ F$ (la **unidad de la adjunción**) y los ϵ_Y definen una transformación natural $F \circ G \Rightarrow \mathrm{Id}_{\mathbf{D}}$ (las **counidad de la adjunción**), y la adjunción puede ser escrita como

$$\operatorname{Hom}_{\mathbf{D}}(F(X),Y) \cong \operatorname{Hom}_{\mathbf{C}}(X,G(Y)),$$

$$(F(X) \xrightarrow{f} Y) \mapsto (GF(X) \xrightarrow{G(f)} G(Y)) \circ (X \xrightarrow{\eta_X} GF(X)),$$

$$(FG(Y) \xrightarrow{\epsilon_Y} Y) \circ (F(X) \xrightarrow{F(g)} FG(Y)) \longleftrightarrow (X \xrightarrow{g} G(Y)).$$

Demostración. Por ejemplo, para ver que $\eta_X \colon X \to GF(X)$ define una transformación natural, tenemos que ver que los siguientes diagramas son conmutativos para cada morfismo $\phi \colon X \to X'$:

$$X \xrightarrow{\eta_X} GF(X)$$

$$\downarrow \phi \qquad \qquad \downarrow GF(\phi)$$

$$X' \xrightarrow{\eta_{X'}} GF(X')$$

De hecho, por la definición de η_X , tenemos el diagrama conmutativo

De modo similar, tenemos el diagrama conmutativo

$$\begin{array}{cccc} \operatorname{Hom}_{\mathbf{D}}(F(X),F(X)) & \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathbf{C}}(X,GF(X)) & \operatorname{id}_{F(X)} \longmapsto \eta_{X} \\ & & \downarrow^{G(f)\circ -} & & \downarrow^{} & & \downarrow^{} \\ \operatorname{Hom}_{\mathbf{D}}(F(X),Y) & \stackrel{\cong}{\longrightarrow} \operatorname{Hom}_{\mathbf{C}}(X,G(Y)) & & f \longmapsto G(f)\circ \eta_{X} \end{array}$$

Entonces $F(X) \xrightarrow{f} Y$ corresponde a $G(f) \circ \eta_X$. La verificación que ϵ es una transformación natural $F \circ G \Rightarrow \mathrm{Id}_{\mathbf{D}} y$ que $X \xrightarrow{g} G(Y)$ corresponde a $\epsilon_Y \circ F(g)$ es similar.

Nuestra introducción minimalista y pragmática a las categorías se termina aquí. A partir de ahora vamos a estudiar categorías con estructuras adicionales, en particular objetos cero y estrucura aditiva (cuando los Hom(X, Y) son grupos abelianos).

10. Categorías con objeto cero

10.1. Definición. Se dice que 0 es un **objero cero** de una categoría si para cada objeto M existe un morfismo único $0 \to M$ y $M \to 0$.

- 10.2. Observación. Supongamos que un objeto cero 0 existe.
 - 1) Entre cada par de objetos M y N existe un morfismo único 0_{MN} (morfismo cero) que se factoriza a través de 0:

$$M \xrightarrow{0_{MN}} N$$

2) Tenemos

$$(L \xrightarrow{0_{LM}} M \xrightarrow{f} N) = (L \xrightarrow{f} M \xrightarrow{0_{MN}} N) = 0_{LN}$$

y en particular, $0_{MN} \circ 0_{LM} = 0_{MN}$:

3) Un objeto cero es único salvo isomorfismo.

Demostración. 1) y 2) están claros. Para 3) notemos que si 0 y 0' son dos objetos ceros, entonces existen morfismos únicos $0 \to 0'$ y $0' \to 0$. Pero sus composiciones $0 \to 0' \to 0$ y $0' \to 0 \to 0'$ deben ser id₀ y id_{0'}.

- **10.3. Ejemplo.** En la categoría R-**Mód** un módulo cero 0 es objeto cero en el sentido de arriba. En teoría, cada módulo cero puede tener cualquier conjunto subyacente $\{*\}$, pero todos son obviamente isomorfos. Por eso solemos decir "el modulo cero", y "el objeto cero" en general. El morfismo cero 0_{MN} : $M \to N$ es el morfismo que aplica cada elemento $x \in M$ a $0 \in N$.
- **10.4. Ejemplo.** En la categoría de grupos **Grp** el grupo trivial $\{e\}$ es un objeto cero.
- **10.5. Ejemplo.** En la categoría de conjuntos **Set** no hay objeto cero. Específicamente, se ve que si I es un conjunto tal que para cualquier otro conjunto X tenemos una sola aplicación $I \to X$, entonces $I = \emptyset$. Si T es un conjunto tal que para cualquier otro conjunto X tenemos una sola aplicación $X \to T$, entonces $T = \{*\}$ es algún conjunto compuesto de un elemento.

10.6. Ejercicio.

- 1) Si m es un monomorfismo y $m \circ f = 0$ para algún f, entonces f = 0.
- 2) Si e es un epimorphismo y $g \circ e = 0$ para algún g, entonces g = 0.

11. Núcleos y conúcleos

En una categoría con objeto cero, tiene sentido la noción de núcleos y conúcleos:

11.1. Definición. En cualquier categoría con objeto cero, sea $f: M \to N$ un morfismo. Entonces su **núcleo** es un objeto ker f junto con morfismo ker $f \to M$ que tiene la siguiente propiedad universal: la composición ker $f \to M \xrightarrow{f} N$ es el morfismo cero, y si $k: L \to M$ es otro morfismo tal que $f \circ k = 0$, entonces k se factoriza de modo único por ker $f \to M$:

El **conúcleo** de f es un objeto coker f junto con morfismo $N \to \operatorname{coker} f$ que tiene la siguiente propiedad universal: la composición $M \xrightarrow{f} N \to \operatorname{coker} f$ es cero, y si $k \colon N \to L$ es otro morfismo tal que $k \circ f = 0$, entonces k se factoriza de modo único por $N \to \operatorname{coker} f$

11.2. Ejemplo. Si $f: M \to N$ un morfismo de R-módulos, entonces se ve que el núcleo está definido por

$$\ker f = \{ x \in M \mid f(x) = 0 \},$$

y el morfismo ker $f \to M$ es la inclusión. El conúcleo está definido por

$$\operatorname{coker} f = N / \operatorname{im} f$$
,

donde im f es la **imagen**, que es el submódulo de N definido por

$$\operatorname{im} f = \{ f(x) \mid x \in M \}.$$

El morfismo $N \rightarrow \operatorname{coker} f$ es la proyección.

11.3. Observación.

- 1) $Si \ker(M \xrightarrow{f} N)$ existe, entonces el morfismo $\ker f \to M$ es mono y el objeto $\ker f$ es único salvo isomorfismo.
- 2) Si $\operatorname{coker}(M \xrightarrow{f} N)$ existe, entonces el morfismo $N \to \operatorname{coker} f$ es epi y el objeto $\operatorname{coker} f$ es único salvo isomorfismo.

Demostración. Para el lector que no había sufrido antes argumentos categóricos, voy a demostrar la parte sobre ker f y dejo la parte sobre coker f como un ejercicio (invirtiendo las flechas).

Sean $L \xrightarrow{g,g'} \ker f$ dos flechas tales que $k \circ g = k \circ g'$. En particular, $f \circ k \circ g = f \circ k \circ g' = 0$, y por la propiedad universal del núcleo, debe existir un morfismo único $L \xrightarrow{h} \ker f$ tales que $k \circ g = k \circ g' = k \circ h$. Entonces h = g = g'.

8

$$L \xrightarrow{g} \ker f \xrightarrow{k} M \xrightarrow{f} N$$

Ahora sean K y K' dos objetos con morfismos $K \xrightarrow{k} M$ y $K' \xrightarrow{k'} M$ que satisfacen la propiedad universal del núcleo. Entonces existen morfismos únicos $K' \xrightarrow{i} K$ y $K \xrightarrow{j} K'$ tal que $k \circ i = k'$ y $k' \circ j = k$. Tenemos $k \circ i \circ j = k \circ \mathrm{id}_K$, pero k es un monomorfismo, y por lo tanto $i \circ j = \mathrm{id}_K$. De modo similar, $k' \circ j \circ i = k' \circ \mathrm{id}_{K'}$ y $j \circ i = \mathrm{id}_{K'}$. Las flechas i y j definen un isomorfismo $K \cong K'$.

Aquí están algunas propiedades inmediatas:

11.4. Ejercicio.

- 1) Si $m: M \rightarrow N$ es un monomorfismo, entonces su núcleo es el morfismo cero $0 \rightarrow M$.
- 2) Si e: M woheadrightarrow N es un epimorfismo, entonces su conúcleo es el morfismo cero N o 0.
- 3) Para el morfismo cero $0_{MN} \colon M \to N$ el morfismo $\ker(0_{MN}) \to M$ debe ser (salvo isomorfismo) el morfismo identidad $\mathrm{id}_M \colon M \to M$.
- 4) Para el morfismo cero 0_{MN} : $M \to N$ el morfismo $N \to \operatorname{coker}(0_{MN})$ debe ser (salvo isomorfismo) el morfismo identidad $\operatorname{id}_N \colon N \to N$.