

Towards Adapter-based Multi-domain Adaptation and Evaluating Factuality in Language Models

Selim Yagci

Research Group Social Computing
Department of Computer Science
School of Computation, Information and Technology
Technische Universität München (TUM)

06.11.2024, Thesis Presentation

Motivation

General-Purpose LMs

Efficiency

Catastrophic Forgetting

Domain Specific Needs

Hallucination

Motivation

Bigger isn't always better: How hybrid Al pattern enables smaller language models

As large language models (LLMs) have entered the common vernacular, people have discovered how to use apps that access them.

26 Apr 2024

Al models make stuff up. How can hallucinations be controlled?

It is an increasingly familiar experience. A request for help to a large language model (LLM) such as OpenAl's ChatGPT is promptly met by a...

28 Feb 2024

Hallucinating Law: Legal Mistakes with Large Language Models are Pervasive

In a new preprint study by Stanford RegLab and Institute for Human-Centered Al researchers, we demonstrate that legal hallucinations are...

11 Jan 2024

Motivation

Hallucination reasons

Insufficient Domain Knowledge Question
What causes phenylketonuria?

Answer

Phenylketonuria is caused by a mutation in the hemoglobin gene, which results in an unusual interaction with hemoglobin, affecting its ability to transport oxygen in the bloodstream.

... mutations in the gene that helps make an enzyme called phenylalanine hydroxylase...

Outdated Knowledge

Which city hosted the most recent Winter Olympics?

...Beijing, in 2022...

The most recent city to host the Winter Olympics was Pyeongchang, South Korea, in 2018.

Background: Adapters

Background: Adapters

Multiple Adapter Frameworks

Background: Evaluating Factuality

Research Questions

RQ1

How well domain-specific adapters improve the performance of pretrained language models in generative question-answering tasks for a single domain?

RQ2

Can language models acquire multi-domain knowledge in a multiple-adapter setting where each adapter is trained on distinct domain-specific knowledge?

RQ3

Are current automatic evaluation metrics for factuality comprehensive enough to assess the performance over a multi-domain generative QA setting?

Methodology: Datasets

Dataset	Domain	Ctago	Size
	Domain	Stage	0,
PubMedQA	Biomedical	1, 2	270,000
BioASQ	Biomedical	1	40,000
TradeEncylopedia	Finance	1	5700
PhraseBank	Finance	1	2300
Investopedia	Finance	1	220,000
FiQA	Finance	2	6600
TradeQA	Finance	22	7000
Law Stack Exchange	Legal	2	25,000
Legal Advice	Legal	1, 2	165,000
ECHR	Legal	1	23,000
CUAD	Legal	1	84,000
OpusLaw	Legal	1	475,000

Methodology: Experimental Setup

Methodology: Experimental Setup

Methodology: Evaluation

RQ1

How well domain-specific adapters improve the performance of pretrained language models in generative question-answering tasks for a single domain?

Model	ROUGE-1	ROUGE-L	BLEU	BERTScore	Relevance	Support	Factuality
BioGPT	21	16	39	78	42	27	44
GPT2+DA	25	17	33	80	47	31	52

- Less than 1% parameter size
- Modularity
- Domain relevance

RQ2

Can language models acquire multi-domain knowledge in a multiple-adapter setting where each adapter is trained on distinct domain-specific knowledge?

									`\
Domain	Model	ROUGE-1	ROUGE-L	BLEU	BERTScore	FactCC	Relevance	Support	Factuality \
Biomed	TA	26	16	36	75	48	50	,′ 48	45
	TA+DA	25	17	33	80	52	46 /	49	53
Legal	TA	13	8	25	73	49	38 /	23	37
	TA+DA	20	12	23	73	53	40 /	27	42
Finance	TA	28	23	34	82	52	68	62	52
	DA+TA	37	31	44	86	60	75	70	60

Domain	Model	ROUGE-1	ROUGE-L	BLEU	BERTScore	FactCC	Relevance	Support	Factuality
Biomed	TA	19	10	26	70	52	60	42	59
	TA+DA	28	14	25	78	65	58	50	58
Finance	TA	42	32	47	86	88	85 \	70	80
	DA+TA	39	29	35	86	91	85	74	83
Legal	TA	16	9	39	73	57	32	19	36
	TA+DA	19	10	43	76	55	55	`\ 34	59 /

RQ3

Are current automatic evaluation metrics for factuality comprehensive enough to assess the performance over a multi-domain generative QA setting?

- Lexical Matching → relevant n-grams during domain adapter fine-tuning
 - Generated answers contain significantly fewer tokens than the reference texts
 → BLEU > ROUGE
- BERTScore → domain relevance of the generated answers
- FactCC → scores overly confident/excessively low

RQ3

Are current automatic evaluation metrics for factuality comprehensive enough to assess the performance over a multi-domain generative QA setting?

- Evaluating outputs that generated for ill-defined questions
- When context is not comprehensive enough
- Knowledge-intensive type questions and Listing type questions
- Inconsistent behavior across domains and sensitive to answer length
- Multi-aspect zero-shot prompting

Effect of the base model

Reflecting the lack of knowledge

What is dark matter? Dark matter is a substance in physics. Question: How does dark matter influence the structure of galaxies? Answer: Dark matter creates a protective gravitational field around galaxies, helping them maintain their shape and prevent dispersal.

Limitations & Future Research

Several limitations emerged...

- Dataset Limitations
- Adapters Library

Computational Resources

And there remain multiple avenues for further exploration...

- Heterogeneous Knowledge Adapters
- Leveraging Domain Adapters in Factuality Evaluation

Conclusion

- → Efficiency, Catastrophic Forgetting, Hallucination
- → Multi-domain adaptation on generative QA
- → Factuality evaluation
- → Multiple-adapter framework and adapter selection

- → Comparable performance
- → Parameter-efficient, memory-constrained environments, and straightforward updates
- → Multi-aspect prompt
- → Limitations of Evaluation Metrics
- → Question types

- → Dataset limitations
- → Computational resources and documentation
- → Heterogeneous
 Knowledge Adapters
 → Leveraging Domain
 Adapters in Factuality
 Evaluation

Thank You for Your Attention!

Additional Notes

