Partielle Differentialgleichungen I – Prof. Hieber

Fabian Gabel

23. September 2016

1 Der Raum der Testfunktionen $D(\Omega)$ und der Raum der Distributionen $D'(\Omega)$

In diesem Abschnitt sei $\Omega \subseteq \mathbb{R}^n$ offen. Wir setzen $D(\Omega) := C_c^{\infty}(\Omega)$.

Beispiel 1.1.

$$\varphi(x) := \begin{cases} e^{-\frac{1}{1-|x|^2}} & : |x| < 1\\ 0 & : sonst \end{cases}$$

Dann gilt $\varphi \in D(\mathbb{R}^n)$.

Definition 1.2. Seien $(\varphi_j) \subseteq D(\mathbb{R}^n)$, $\varphi \in D(\Omega)$. Wir sagen $\varphi \to \varphi$ in $D(\Omega)$, fall

- i) es existiert $K \subseteq \Omega$ kompakt mit supp $\varphi_j \subseteq K$ für alle $j \in \mathbb{N}$.
- ii) $\lim_{j\to\infty} \|D^{\alpha}\varphi_j D^{\alpha}\varphi\|_{\infty} = 0$ für alle Multiindizes α .

Bemerkung. $D(\Omega)$ mit diesem Konvergenzbegriff <u>nicht</u> metrisierbar.

Satz 1.3. Seien $\varphi_j \to \varphi$, $\psi_j \to \psi$ in $D(\Omega)$. Dann:

i) $f\ddot{u}r \beta_1, \beta_2 \in \mathbb{R}$ gilt:

$$\beta_1 \varphi_i + \beta_2 \psi_i \rightarrow \beta_1 \varphi + \beta_2 \psi.$$

ii) $D^{\alpha}\varphi \to D^{\alpha}\varphi$ in $D(\Omega)$ für alle Multiindices α , mit anderen Worten: D^{α} sit stetige Abbildung auf $D(\Omega)$

Definition 1.4. Wir setzen $D'(\Omega) := \{T : D(\Omega) \to \mathcal{C} \text{ stetig, linear} \}$. Die Elemente von $D'(\Omega)$ heißen <u>Distributionen</u>.

Notation. $\langle \varphi, T \rangle := T(\varphi) \text{ für } \varphi \in D(\Omega).$