Homework 1

PB17000297 罗晏宸

September 5 2019

1 Exercise 1

证明:包含n个元素的堆的 MAX-HEAPIFY 函数的时间复杂度是 O(logn),BUILD-MAX-HEAP 函数的时间复杂度是 O(n)。

解 MAX-HEAPIFY 的时间复杂度由递归式

$$T(n) \le T(2n/3) + \Theta(1)$$

给出,要证对某个常数 c > 0, $T(n) \le c \cdot \lg n$ 成立。

证明. 假设此上界对所有正数 m < n 都成立,特别是对于 m = 2n/3,有 $T(2n/3) \le c \cdot \lg{(2n/3)}$,将其代入递归式,得到

$$T(n) \le c \cdot \lg\left(\frac{2n}{3}\right) + \Theta(1)$$

 $\le c \cdot \lg n$

其中,为使最后一步成立,应有

$$c \lg \left(\frac{2n}{3}\right) + \Theta(1) \le c \lg n$$

$$\Rightarrow \qquad c \lg \left(\frac{2}{3}\right) + \Theta(1) \le 0$$

$$\Rightarrow \qquad c \lg \left(\frac{3}{2}\right) \ge \Theta(1)$$

$$\Rightarrow \qquad c \ge \frac{\Theta(1)}{\lg \left(\frac{3}{2}\right)}$$

因此对于充分大的 n,存在常数 c>0,使得 $T(n)\leq c\cdot \lg n$ 成立,因此 $T(n)=O(\lg n)$ 。

一个共有 n 各元素的堆高度为 $\lfloor \lg n \rfloor$,并且高度为 h 的结点有至多 $\left\lceil \frac{n}{2^{h+1}} \right\rceil$ 个,而对于一个高度为 h 的结点,Max-Heapify 函数的时间复杂 度是 O(logn) = O(h),因此 Build-Max-Heap 的时间复杂度可以由以下证明给出

证明.

$$\sum_{h=0}^{\lfloor \lg n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil \cdot O(h) = O\left(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h}\right)$$

$$= O\left(n \sum_{h=0}^{\infty} \frac{h}{2^h}\right)$$

$$= O\left(n \sum_{h=0}^{\infty} \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2}\right)$$

$$= O(n \cdot 2)$$

$$= O(n)$$

2 Exercise 7.2-6 & 7.2-5

- (a) 试证明: 在一个随机输入数组上,对于任何常数 $0 < \alpha \le 1/2$, PARTITION 产生比 $1-\alpha$: α 更平衡的划分的概率约为 $1-2\alpha$ 。
- (b) 假设快速排序的每一层所做的划分比例都是 $1-\alpha$: α , 其中 $0 < \alpha \le 1/2$ 且是一个常数. 试证明: 在相应的递归树中,叶结点的最小深度大约是 $-\lg n/\lg \alpha$,最大深度大约是 $-\lg n/\lg (1-\alpha)$ (无需考虑舍入问题)。 (注: 堆中结点的高度为该结点到叶结点最长简单路径上边的数目: 结点的深度为该结点到根结点的简单路径上结点的数目)

解

- (a) 设随机输入数组 A 有 n 个数 A_0 , A_1 , \cdots , $A_{\alpha n}$, \cdots , $A_{(1-\alpha)n}$, \cdots , A_n 。 证明. 设新的划分为 $1-\beta$: β , 要使得划分更平衡,应有 $|(1-\beta)-\beta|<1-2\alpha=|(1-\alpha)-\alpha|$
 - $\mbox{ } \mbox{ }$
 - $\stackrel{\text{\tiny \bot}}{=} \beta \ge 1 \alpha$ ff, $1 \beta \ge \alpha$, $|(1 \beta) \beta| = 2\beta 1 \ge 1 2\alpha$
- 当 $\alpha < \beta < 1 \alpha$ 时, $\alpha < 1 \beta < 1 \alpha$, $0 < |(1 \beta) \beta| < 1 2\alpha$ 其中最后一种情况满足要求,假设 β 是 [0, 1] 上的均匀分布,则有

$$P = P\{\alpha < \beta < 1 - \alpha\} = \frac{(1 - \alpha) - \alpha}{1 - 0} = 1 - 2\alpha$$

- (b) 对递归式 $T(n) = T(\alpha n) + T((1-\alpha)n) + cn$ 构造递归树如图1所示。
- 证明. 从递归树的根到叶结点最右和最左的简单路径长度分别为 $-\log_{1-\alpha} n$

图 1: 为表达式式 $T(n) = T(\alpha n) + T((1-\alpha)n) + cn$ 构造递归树

与 $-\log_{\alpha} n$,

$$0 < \alpha \le 1/2$$

$$\Rightarrow \qquad \alpha \le 1 - \alpha$$

$$\Rightarrow \qquad \lg \alpha \le \lg (1 - \alpha)$$

$$\Rightarrow \qquad -\frac{1}{\lg \alpha} \le -\frac{1}{\lg (1 - \alpha)}$$

$$\Rightarrow \qquad -\frac{\lg n}{\lg \alpha} \le -\frac{\lg n}{\lg (1 - \alpha)}$$

$$\Rightarrow \qquad -\log_{\alpha} n \le -\log_{1-\alpha} n$$

对于两者之间其他任何一个叶结点的深度 l,有

$$\begin{split} \alpha^k (1-\alpha)^{l-k} n &\leq 1, & 0 < k \leq l \\ \Rightarrow & k + (l-k) \log_\alpha (1-\alpha) + \log_\alpha n \leq 0, & 0 < k \leq l \\ \Rightarrow & l \geq -\frac{\log_\alpha n + k}{\log_\alpha (1-\alpha)} + k, & 0 < k \leq l \\ \Rightarrow & l \geq -(\log_\alpha n + k) - k, & 0 < k \leq l \\ \Rightarrow & l \geq -\log_\alpha n \end{split}$$

同理可证 $l \le -\log_{1-\alpha} n$ 。因此叶结点的最小深度大约是 $-\log_{\alpha} n = -\lg n/\lg \alpha$,最大深度大约是 $-\log_{1-\alpha} n = -\lg n/\lg (1-\alpha)$

- 3 OnlineJudge Problem H3-1 数字统计
- 解 Accepted
- 4 OnlineJudge Problem H3-2 考试排名
- 解 Accepted