Supplemental Material for "How soil erosion model conceptualization affects soil loss projections under climate change"

Introduction

This supplemental material provides the figure and table obtained from a literature review on the impact of climate change on soil erosion. The literature review focused on studies with a catchment size $> 10 \text{ km}^2$. From these studies the soil erosion models were recorded and reordered into three soil erosion model forcing classes, i.e. precipitation, runoff and precipitation + runoff.

Contents of this file

- 1. Figure S1
- 2. Table S1

Figure S1. Number of publications of climate change impact assessments on soil erosion in the period 1994-2018 with a catchment size $> 10 \text{ km}^2$, specified per soil erosion model forcing (precipitation, runoff and precipitation + runoff).

Table S1: Publications of climate change impact assessments on soil erosion with a catchment size $> 10 \text{ km}^2$.

Reference	Catchment	Precipitation	Soil erosion	Soil erosion
	size (km ²)	time step	model	model forcing
Amanambu et al. (2019)	528000	yearly	RUSLE	precipitation
Eekhout and de Vente (2019)	15978	daily	SPHY-MMF	precipitation + runoff
Op de Hipt et al. (2019)	126	daily	SHETRAN	precipitation + runoff
Shrestha et al. (2018)	26181	daily	SWAT (MUSLE)	runoff
Chen et al. (2018)	7685	daily	SWAT (MUSLE)	runoff
Dahl et al. (2018)	12138	daily	SWAT (MUSLE)	runoff
Eekhout et al. (2018)	15978	daily	SPHY-MMF	precipitation + runoff
Op de Hipt et al. (2018)	126	daily	SHETRAN	precipitation + runoff
Teng et al. (2018)	2300000	monthly	RUSLE	precipitation
Thang et al. (2018)	7500	daily	SWAT (MUSLE)	runoff
Wang et al. (2018)	645300	sub-daily	VIC-WEPP	precipitation + runoff
Azari et al. (2017)	7138	daily	SWAT (MUSLE)	runoff
Giang et al. (2017)	9000	daily	SWAT (MUSLE)	runoff
Gupta and Kumar (2017)	380	yearly	RUSLE	precipitation
Kim et al. (2017)	149.42	daily	SWAT (MUSLE)	runoff
Li and Fang (2017)	7366	daily	TETIS	runoff
Pheerawat and Udmale (2017)	3428	daily	EI30	precipitation
Ren et al. (2017)	7725	daily	SWAT (MUSLE)	runoff
Yu et al. (2017)	132000	daily	SWAT (MUSLE)	runoff
Zhou et al. (2017)	1861	daily	SWAT (MUSLE)	runoff
Adem et al. (2016)	1654	daily	SWAT (MUSLE)	runoff
Azari et al. (2016)	7138	daily	SWAT (MUSLE)	runoff
Azim et al. (2016)	1043	daily	SHETRAN	precipitation + runoff
Bussi et al. (2016)	927	daily	INCA	precipitation + runoff
Carvalho-Santos et al. (2016)	252	daily	SWAT (MUSLE)	runoff
Correa et al. (2016)	34544	monthly	RUSLE	precipitation
Gould et al. (2016)	36000	daily	VIC-WEPP	precipitation + runoff
Hoomehr et al. (2016)	1026	daily	EI30	precipitation
Kourgialas et al. (2016)	215	monthly	RUSLE	precipitation
Mondal et al. (2016)	20558	monthly	RUSLE	precipitation
Nerantzaki et al. (2016)	5350	daily	SWAT (MUSLE)	runoff
Parajuli et al. (2016)	7660	daily	SWAT (MUSLE)	runoff
Rodríguez-Blanco et al. (2016)	16	daily	SWAT (MUSLE)	runoff
Rodriguez-Lloveras et al. (2016)	429	daily	TETIS	runoff
Trisurat et al. (2016)	112	NA	USLE	precipitation

Zare et al. (2016)	343	monthly	RUSLE	precipitation
Mondal et al. (2015)	20561	monthly	USLE	precipitation
Nerantzaki et al. (2015)	130	daily	SWAT (MUSLE)	runoff
Paroissien et al. (2015)	75	daily	STREAM	runoff
Pohlert (2015)	124614	daily	PESERA	runoff
Serpa et al. (2015)	11	daily	SWAT (MUSLE)	runoff
Simonneaux et al. (2015)	225	sub-daily	STREAM	runoff
Bussi et al. (2014)	1532	daily	TETIS	runoff
Giang et al. (2014)	22798	daily	SWAT (MUSLE)	runoff
Khoi and Suetsugi (2014)	7500	daily	SWAT (MUSLE)	runoff
Litschert et al. (2014)	144000	yearly	RUSLE	precipitation
Ramos Iensen et al. (2015)	504	daily	SWAT (MUSLE)	runoff
Bangash et al. (2013)	4957	yearly	USLE	precipitation
Burris and Skagen (2013)	780000	yearly	RUSLE	precipitation
Kazimierski et al. (2013)	180000	yearly	EPM	precipitation
Maina et al. (2013)	114822.4	monthly	RUSLE	precipitation
Mukundan et al. (2013)	891	daily	SWAT (MUSLE)	runoff
Nunes et al. (2013)	405	sub-daily	MEFIDIS	precipitation + runoff
Perazzoli et al. (2013)	30.74	daily	SWAT (MUSLE)	runoff
Plangoen et al. (2013)	1532	monthly	RUSLE	precipitation
Shrestha et al. (2013)	26181	daily	SWAT (MUSLE)	runoff
Coulthard et al. (2012)	186	sub-daily	CEASAR	runoff
Principe (2012)	27700	daily	SWAT (MUSLE)	runoff
Zhang et al. (2012)	40765	daily	RHEM	precipitation + runoff
Hoomehr et al. (2011)	1026	daily	EI30	precipitation
Phan et al. (2011)	2941	daily	SWAT (MUSLE)	runoff
Maeda et al. (2010)	850	monthly	RUSLE	precipitation
Marshall and Randhir (2008)	28500	daily	SWAT (MUSLE)	runoff
Nunes et al. (2008)	2778	daily	SWAT (MUSLE)	runoff
Zhang et al. (2005)	752443	yearly	EI30	precipitation
Hanratty and Stefan (1998)	3400	daily	SWAT (MUSLE)	runoff

References

- Adem, A. A., S. A. Tilahun, E. K. Ayana, A. W. Worqlul, T. T. Assefa, S. B. Dessu, and A. M. Melesse, Climate Change Impact on Sediment Yield in the Upper Gilgel Abay Catchment, Blue Nile Basin, Ethiopia, in *Landscape Dynamics, Soils and Hydrological Processes in Varied Climates*, edited by A. M. Melesse, , and W. Abtew, pp. 615–644, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-18787-7_28, 2016.
- Amanambu, A. C., L. Li, C. N. Egbinola, O. A. Obarein, C. Mupenzi, and D. Chen, Spatio-temporal variation in rainfall-runoff erosivity due to climate change in the Lower Niger Basin, West Africa, *CATENA*, *172*(October 2017), 324–334, https://doi.org/10.1016/j.catena.2018.09.003, 2019.
- Azari, M., H. R. Moradi, B. Saghafian, and M. Faramarzi, Climate change impacts on streamflow and sediment yield in the North of Iran, *Hydrological Sciences Journal*, *61*(1), 123–133, https://doi.org/10.1080/02626667.2014.967695, 2016.
- Azari, M., B. Saghafian, H. R. Moradi, and M. Faramarzi, Effectiveness of Soil and Water Conservation Practices Under Climate Change in the Gorganroud Basin, Iran, *Clean Soil, Air, Water*, 45(8), https://doi.org/10.1002/clen.201700288, 2017.
- Azim, F., A. S. Shakir, H. ur Rehman, and A. Kanwal, Impact of climate change on sediment yield for Naran watershed, Pakistan, *International Journal of Sediment Research*, 31(3), 212–219, https://doi.org/10.1016/j.ijsrc.2015.08.002, 2016.
- Bangash, R. F., A. Passuello, M. Sanchez-Canales, M. Terrado, A. López, F. J. Elorza, G. Ziv, V. Acuña, and M. Schuhmacher, Ecosystem services in Mediterranean river basin: Climate change impact on water provisioning and erosion control, *Science of The Total Environment*, 458-460, 246–255, https://doi.org/10.1016/j.scitotenv.2013.04.025, 2013.
- Burris, L., and S. K. Skagen, Modeling sediment accumulation in North American playa wetlands in response to climate change, 1940–2100, *Climatic Change*, 117(1-2), 69–83, https://doi.org/10.1007/s10584-012-0557-7, 2013.
- Bussi, G., F. Francés, E. Horel, J. A. López-Tarazón, and R. J. Batalla, Modelling the impact of climate change on sediment yield in a highly erodible Mediterranean catchment, *Journal of Soils and Sediments*, pp. 1921–1937, https://doi.org/10.1007/s11368-014-0956-7, 2014.
- Bussi, G., S. J. Dadson, C. Prudhomme, and P. G. Whitehead, Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK), *Journal of Hydrology*, 542, 357–372, https://doi.org/10.1016/j.jhydrol.2016.09.010, 2016.
- Carvalho-Santos, C., J. P. Nunes, A. T. Monteiro, L. Hein, and J. P. Honrado, Assessing the effects of land cover and future climate conditions on the provision of hydrological services in a medium-sized watershed of Portugal, *Hydrological Processes*, 30(5), 720–738, https://doi.org/10.1002/hyp.10621, 2016.
- Chen, D., J. Li, Z. Zhou, Y. Liu, T. Li, and J. Liu, Simulating and mapping the spatial and seasonal effects of future climate and land -use changes on ecosystem services in the Yanhe watershed, China, *Environmental Science and Pollution Research*, 25(2), 1115–1131, https://doi.org/10.1007/s11356-017-0499-8, 2018.
- Correa, S. W., C. R. Mello, S. C. Chou, N. Curi, and L. D. Norton, Soil erosion risk associated with climate change at Mantaro River basin, Peruvian Andes, *CATENA*, *147*, 110–124, https://doi.org/10.1016/j.catena.2016.07.003, 2016.
- Coulthard, T. J., J. Ramirez, H. J. Fowler, and V. Glenis, Using the UKCP09 probabilistic scenarios to model the amplified impact of climate change on drainage basin sediment yield, *Hydrology and Earth System Sciences*, *16*(11), 4401–4416, https://doi.org/10.5194/hess-16-4401-2012, 2012.
- Dahl, T. A., A. D. Kendall, and D. W. Hyndman, Impacts of projected climate change on sediment yield and dredging costs, *Hydrological Processes*, 32(9), 1223–1234, https://doi.org/10.1002/hyp.11486, 2018.

- Eekhout, J. P. C., and J. de Vente, Assessing the effectiveness of Sustainable Land Management for large-scale climate change adaptation, *Science of The Total Environment*, 654, 85–93, https://doi.org/10.1016/j.scitotenv.2018.10.350, 2019.
- Eekhout, J. P. C., J. E. Hunink, W. Terink, and J. de Vente, Why increased extreme precipitation under climate change negatively affects water security, *Hydrology and Earth System Sciences*, 22(11), 5935–5946, https://doi.org/10.5194/hess-22-5935-2018, 2018.
- Giang, P., L. Giang, and K. Toshiki, Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia, *Climate*, *5*(1), 22, https://doi.org/10.3390/cli5010022, 2017.
- Giang, P. Q., K. Toshiki, M. Sakata, and S. Kunikane, Modelling the Seasonal Response of Sediment Yield to Climate Change in the Laos-Vietnam Transnational Upper Ca River Watershed, *Environment Asia*, 7(2), 152–162, https://doi.org/10.14456/ea.2014.34, 2014.
- Gould, G. K., M. Liu, M. E. Barber, K. A. Cherkauer, P. R. Robichaud, and J. C. Adam, The effects of climate change and extreme wildfire events on runoff erosion over a mountain watershed, *Journal of Hydrology*, *536*, 74–91, https://doi.org/10.1016/j.jhydrol.2016.02.025, 2016.
- Gupta, S., and S. Kumar, Simulating climate change impact on soil erosion using RUSLE model A case study in a watershed of mid-Himalayan landscape, *Journal of Earth System Science*, 126(3), 43, https://doi.org/10.1007/s12040-017-0823-1, 2017.
- Hanratty, M. P., and H. G. Stefan, Simulating Climate Change Effects in a Minnesota Agricultural Watershed, *Journal of Environment Quality*, 27(6), 1524, https://doi.org/10.2134/jeq1998.00472425002700060032x, 1998.
- Hoomehr, S., J. S. Schwartz, Y.-F. Lam, and J. S. Fu, Potential Changes in Rainfall Erosivity under Climate Change from Multi-Scenario Projections in Southern Appalachian Region, in *World Environmental and Water Resources Congress 2011*, vol. 136, pp. 1418–1428, American Society of Civil Engineers, Reston, VA, https://doi.org/10.1061/41173(414)148, 2011.
- Hoomehr, S., J. S. Schwartz, and D. C. Yoder, Potential changes in rainfall erosivity under GCM climate change scenarios for the southern Appalachian region, USA, *CATENA*, *136*, 141–151, https://doi.org/10.1016/j.catena.2015.01.012, 2016.
- Kazimierski, L. D., M. Irigoyen, M. Re, A. N. Menendez, P. Spalletti, and J. D. Brea, Impact of Climate Change on sediment yield from the Upper Plata Basin, *International Journal of River Basin Management*, 11(4), 411–421, https://doi.org/10.1080/15715124.2013.828066, 2013.
- Khoi, D. N., and T. Suetsugi, The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam, *Hydrological Processes*, 28(3), 640–652, https://doi.org/10.1002/hyp.9620, 2014.
- Kim, Y. D., J. M. Kim, and B. Kang, Projection of runoff and sediment yield under coordinated climate change and urbanization scenarios in Doam dam watershed, Korea, *Journal of Water and Climate Change*, 8(2), 235–253, https://doi.org/10.2166/wcc.2016.068, 2017.
- Kourgialas, N. N., G. C. Koubouris, G. P. Karatzas, and I. Metzidakis, Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change, *Natural Hazards*, 83(S1), 65–81, https://doi.org/10.1007/s11069-016-2354-5, 2016.
- Li, Z., and H. Fang, Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China, *Geomorphology*, 293(December 2016), 255–271, https://doi.org/10.1016/j.geomorph.2017.06.005, 2017.
- Litschert, S., D. Theobald, and T. Brown, Effects of climate change and wildfire on soil loss in the Southern Rockies Ecoregion, *CATENA*, 118, 206–219, https://doi.org/10.1016/j.catena.2014.01.007, 2014.
- Maeda, E. E., P. K. Pellikka, M. Siljander, and B. J. Clark, Potential impacts of agricultural expansion and climate change on soil erosion in the Eastern Arc Mountains of Kenya, *Geomorphology*, 123(3-4), 279–289, https://doi.org/10.1016/j.geomorph.2010.07.019, 2010.
- Maina, J., H. de Moel, J. Zinke, J. Madin, T. McClanahan, and J. E. Vermaat, Human deforestation outweighs future climate change impacts of sedimentation on coral reefs, *Nature Communications*, 4(May), 1–7, https://doi.org/10.1038/ncomms2986, 2013.

- Marshall, E., and T. Randhir, Effect of climate change on watershed system: a regional analysis, *Climatic Change*, 89(3-4), 263–280, https://doi.org/10.1007/s10584-007-9389-2, 2008.
- Mondal, A., D. Khare, S. Kundu, P. K. Meena, P. K. Mishra, and R. Shukla, Impact of Climate Change on Future Soil Erosion in Different Slope, Land Use, and Soil-Type Conditions in a Part of the Narmada River Basin, India, *Journal of Hydrologic Engineering*, 20(6), C5014.003, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001065, 2015.
- Mondal, A., D. Khare, and S. Kundu, Impact assessment of climate change on future soil erosion and SOC loss, *Natural Hazards*, 82(3), 1515–1539, https://doi.org/10.1007/s11069-016-2255-7, 2016.
- Mukundan, R., S. M. Pradhanang, E. M. Schneiderman, D. C. Pierson, A. Anandhi, M. S. Zion, A. H. Matonse, D. G. Lounsbury, and T. S. Steenhuis, Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA, *Geomorphology*, 183(June), 110–119, https://doi.org/10.1016/j.geomorph.2012.06.021, 2013.
- Nerantzaki, S., G. Giannakis, D. Efstathiou, N. Nikolaidis, I. Sibetheros, G. Karatzas, and I. Zacharias, Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed, *Science of The Total Environment*, 538, 288–297, https://doi.org/10.1016/j.scitotenv.2015.07.092, 2015.
- Nerantzaki, S. D., G. V. Giannakis, N. P. Nikolaidis, I. Zacharias, G. P. Karatzas, and I. A. Sibetheros, Assessing the Impact of Climate Change on Sediment Loads in a Large Mediterranean Watershed, *Soil Science*, *181*(7), 306–314, https://doi.org/10.1097/SS.000000000000164, 2016.
- Nunes, J. P., J. Seixas, and N. R. Pacheco, Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds, *Hydrological Processes*, 22(16), 3115–3134, https://doi.org/10.1002/hyp.6897, 2008.
- Nunes, J. P., J. Seixas, and J. J. Keizer, Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis, *Catena*, 102, 27–39, https://doi.org/10.1016/j.catena.2011.04.001, 2013.
- Op de Hipt, F., B. Diekkrüger, G. Steup, Y. Yira, T. Hoffmann, and M. Rode, Modeling the impact of climate change on water resources and soil erosion in a tropical catchment in Burkina Faso, West Africa, *Catena*, *163*(August 2017), 63–77, https://doi.org/10.1016/j.catena.2017.11.023, 2018.
- Op de Hipt, F., B. Diekkrüger, G. Steup, Y. Yira, T. Hoffmann, M. Rode, and K. Näschen, Modeling the effect of land use and climate change on water resources and soil erosion in a tropical West African catch-ment (Dano, Burkina Faso) using SHETRAN, *Science of The Total Environment*, 653, 431–445, https://doi.org/10.1016/j.scitotenv.2018.10.351, 2019.
- Parajuli, P., P. Jayakody, G. Sassenrath, and Y. Ouyang, Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin, *Agricultural Water Management*, *168*, 112–124, https://doi.org/10.1016/j.agwat.2016.02.005, 2016.
- Paroissien, J.-B., F. Darboux, A. Couturier, B. Devillers, F. Mouillot, D. Raclot, and Y. Le Bissonnais, A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France), *Journal of Environmental Management*, 150, 57–68, https://doi.org/10.1016/j.jenvman.2014.10.034, 2015.
- Perazzoli, M., A. Pinheiro, and V. Kaufmann, Assessing the impact of climate change scenarios on water resources in southern Brazil, *Hydrological Sciences Journal*, 58(1), 77–87, https://doi.org/10.1080/02626667.2012.742195, 2013.
- Phan, D. B., C. C. Wu, and S. C. Hsieh, Impact of climate change on stream discharge and sediment yield in Northern Viet Nam, *Water Resources*, 38(6), 827–836, https://doi.org/10.1134/S0097807811060133, 2011.

- Pheerawat, P., and P. Udmale, Impacts of climate change on rainfall erosivity in the Huai Luang watershed, Thailand, *Atmosphere*, 8(8), https://doi.org/10.3390/atmos8080143, 2017.
- Plangoen, P., M. Babel, R. Clemente, S. Shrestha, and N. Tripathi, Simulating the Impact of Future Land Use and Climate Change on Soil Erosion and Deposition in the Mae Nam Nan Sub-Catchment, Thailand, *Sustainability*, 5(8), 3244–3274, https://doi.org/10.3390/su5083244, 2013.
- Pohlert, T., Projected Climate Change Impact on Soil Erosion and Sediment Yield in the River Elbe Catchment, in *Sediment Matters*, edited by P. Heininger and J. Cullmann, pp. 97–108, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-14696-6_7, 2015.
- Principe, J. a., EXPLORING CLIMATE CHANGE EFFECTS ON WATERSHED SEDIMENT YIELD AND LAND COVER-BASED MITIGATION MEASURES USING SWAT MODEL, RS AND GIS: CASE OF CAGAYAN RIVER BASIN, PHILIPPINES, *ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B8*(September), 193–198, https://doi.org/10.5194/isprsarchives-XXXIX-B8-193-2012, 2012.
- Ramos Iensen, I. R., G. Bauer Schultz, and I. Dos Santos, Simulation of hydrosedimentological impacts caused by climate change in the Apucaraninha River watershed, southern Brazil, *Proceedings of the International Association of Hydrological Sciences*, *367*(2013), 366–373, https://doi.org/10.5194/piahs-367-366-2015, 2015.
- Ren, Z., Z. Feng, P. Li, D. Wang, S. Cheng, and J. Gong, Response of Runoff and Sediment Yield from Climate Change in the Yanhe Watershed, China, *Journal of Coastal Research*, 80(80), 30–35, https://doi.org/10.2112/SI80-006.1, 2017.
- Rodríguez-Blanco, M., R. Arias, M. Taboada-Castro, J. Nunes, J. Keizer, and M. Taboada-Castro, Potential Impact of Climate Change on Suspended Sediment Yield in NW Spain: A Case Study on the Corbeira Catchment, *Water*, 8(12), 444, https://doi.org/10.3390/w8100444, 2016.
- Rodriguez-Lloveras, X., W. Buytaert, and G. Benito, Land use can offset climate change induced increases in erosion in Mediterranean watersheds, *CATENA*, *143*, 244–255, https://doi.org/10.1016/j.catena.2016.04.012, 2016.
- Serpa, D., et al., Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments, *Science of The Total Environment*, 538, 64–77, https://doi.org/10.1016/j.scitotenv.2015.08.033, 2015.
- Shrestha, B., M. S. Babel, S. Maskey, A. van Griensven, S. Uhlenbrook, A. Green, and I. Akkharath, Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR, *Hydrology and Earth System Sciences*, *17*(1), 1–20, https://doi.org/10.5194/hess-17-1-2013, 2013.
- Shrestha, B., S. Maskey, M. S. Babel, A. van Griensven, and S. Uhlenbrook, Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: a case study of the Nam Ou Basin, Lao PDR, *Climatic Change*, *149*(1), 13–27, https://doi.org/10.1007/s10584-016-1874-z, 2018.
- Simonneaux, V., A. Cheggour, C. Deschamps, F. Mouillot, O. Cerdan, and Y. Le Bissonnais, Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco), *Journal of Arid Environments*, 122, 64–75, https://doi.org/10.1016/j.jaridenv.2015.06.002, 2015.
- Teng, H., Z. Liang, S. Chen, Y. Liu, R. A. Viscarra Rossel, A. Chappell, W. Yu, and Z. Shi, Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models, *Science of The Total Environment*, 635, 673–686, https://doi.org/10.1016/j.scitotenv.2018.04.146, 2018.
- Thang, L. V., D. N. Khoi, and H. L. Phi, Impact of climate change on streamflow and water quality in the upper Dong Nai river basin, Vietnam, *La Houille Blanche*, 1, 70–79, https://doi.org/10.1051/lhb/2018010, 2018.

- Trisurat, Y., P. Eawpanich, and R. Kalliola, Integrating land use and climate change scenarios and models into assessment of forested watershed services in Southern Thailand, *Environmental Research*, 147, 611–620, https://doi.org/10.1016/j.envres.2016.02.019, 2016.
- Wang, L., K. Cherkauer, and D. Flanagan, Impacts of Climate Change on Soil Erosion in the Great Lakes Region, *Water*, 10(6), 715, https://doi.org/10.3390/w10060715, 2018.
- Yu, X., X. Xie, and S. Meng, Modeling the responses of water and sediment discharge to climate change in the upper yellow river basin, China, *Journal of Hydrologic Engineering*, 22(12), https://doi.org/10.1061/(ASCE)HE.1943-5584.0001590, 2017.
- Zare, M., A. A. Nazari Samani, M. Mohammady, T. Teimurian, and J. Bazrafshan, Simulation of soil erosion under the influence of climate change scenarios, *Environmental Earth Sciences*, 75(21), 1405, https://doi.org/10.1007/s12665-016-6180-6, 2016.
- Zhang, G.-H., M. A. Nearing, and B.-Y. Liu, Potential effects of climate change on rainfall erosivity in the Yellow River basin of China, *Transactions of the ASAE*, 48(2), 511–517, https://doi.org/10.13031/2013.18325, 2005.
- Zhang, Y., M. Hernandez, E. Anson, M. A. Nearing, H. Wei, J. J. Stone, and P. Heilman, Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with conservation practices, *Journal of Soil and Water Conservation*, 67(5), 390–405, https://doi.org/10.2489/jswc.67.5.390, 2012.
- Zhou, Y., Y. Xu, W. Xiao, J. Wang, Y. Huang, and H. Yang, Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China's Far Northeast, *Water*, *9*(12), 966, https://doi.org/10.3390/w9120966, 2017.