Bio 1M: Speciation

1 How are species defined? — S24.1 (2ndEd S26.1)

- Conceptually, we define species as "evolutionary units":
 - Individuals within a species are evolving together
 - Individuals of different species evolve independently Fig 24.1 (2ndEd Fig 26.1)
- It is difficult to make this conceptual definition into a practical definition

- Life is complex

1.1 Biological species concept

- Biological species are defined by reproductive isolation
- Different biological species either:
 - Don't breed in nature
 - Breed but fail to produce offspring
 - Produce **inviable** offspring offspring do not develop to adulthood
 - Produce **sterile** offspring offspring that cannot themselves reproduce

Mechanisms of isolation

- Mechanisms of isolation are often divided into two classes:
 - Prezygotic isolation refers to any mechanism that prevents successful mating
 - **Postzygotic** isolation refers to any mechanism that prevents offspring from producing offspring of their own
 - "Zygote" means a cell formed by the fusion of a sperm and an egg

Mechanism examples

- Pre- or post-?
 - Different malaria parasites breed inside different hosts
 - Different species of doves can nest together, but eggs fail to hatch or chicks fail to grow
 - The offspring of horses and donkeys grow up to be healthy, infertile adults
 - Sea urchin eggs cannot be penetrated by sperm from other species
 - Species of pine trees release and receive pollen and different times of year

Pre- vs. post-zygotic mechanisms

•	Which should be adaptively favored?
	_
	_
	_
	*
Disa	advantages of the biological species concept
•	
•	
•	
	_
1.2	Morphological species concept
•	Morphological species are defined to be different if they ${f look}$ different
	- Useful for working with fossils, or very diverse groups (e.g., insects)
	 A lot of expertise and experience guides morphospecies decisions
•	Disadvantages?
	_
	_
	_
1.3	Ecological species concept
•	An ecological species is a set of related organisms occupying the same ecological \mathbf{niche}
	- Exploit similar resources
	- Tolerate similar environments
	- Face similar natural enemies
•	Commonly used for small things, particularly small as exual things

1.4 Phylogenetic species concept

- A phylogenetic species is a monophyletic group of *populations*
 - Must not be divisible into smaller species
- A monophyletic group is a group defined by a single common ancestor
 - All descendants of the ancestor must be in the group Fig 24.2 (2ndEd Fig 26.2)

Phylogenetic species concept

- Advantages
 - Well defined (as long as you know what a population is)
 - Broadly applicable
- Disadvantages
 - Hard to estimate phylogenies
 - Requires a lot of information about populations
- Believers in the phylogenetic species concept recognize a lot of species

Defining species

- Defining species formally can be very tricky
 - No one way is agreed to be the best
- Usually we know more or less what we mean by a species, though

Generating species

- We believe new species are generated from old species
- One species can gradually evolve into another
 - We can't say exactly when the switch occurs
- Species can also diverge: one species splits into two species
 - Divergence is the origin of **diversity**

How do species split?

- Genetic isolation
- Genetic divergence
- Which comes first?

_

3

2 Species divergence in allopatry — S24.2 (2ndEd S26.2)

- Allopatry refers to organisms living apart from each other
- If two populations are isolated from each other, we would expect that they might diverge. Why?

_ _ *

• How can two populations of the same species be isolated from each other? — Fig 24.5

2.1 Dispersal

- Isolated populations of the same species can develop if some individuals **disperse** (move) to a new area and **colonize** it (establish a new population).
- Since colonizing populations are usually small, we expect founder effects and drift to be particularly important

2.2 Vicariance

- Isolated populations of the same species can develop when a population is split by a geographical or ecological barrier
- Such splits are called **vicariance** events.
 - Rivers change course, mountains appear or disappear, continents split and join
 - When temperature changes, some species may only be able to survive in "refuges", small, protected parts of their original range

Example: ratites

• The ancestors of today's ostriches, emus, etc. were isolated when the super-continent of Gondwanaland drifted apart starting about 140 million years ago

3 Species divergence in sympatry — S24.3 (2ndEd S26.3)

- Sympatry refers to organisms living in the same geographic area
- In general, it should be hard for populations of the same species living in sympatry to diverge.

Are there exceptions to this expectation?––

3.1 Disruptive selection

Divergence by partitioning habitats — Fig 24.7 (2ndEd Fig 26.10)

- Insects that feed on many different plants may be subject to divergent selection
 - An individual may do most of its feeding on one particular plant
- In some cases, gene flow will prevent divergence
- In other cases, individuals may mate preferentially with individuals with the same host plant, and divergence may occur

3.2 Genetic incompatibility

- Divergence can also occur when mutation causes genetic incompatibility
 - If two populations are in the same place, but can't produce fertile offspring, they are reproductively isolated
- \bullet Genetic incompatibility is less likely to produce divergence than physical separation

Polyploidy

- Reproductive mistakes can occur that produce individuals with extra copies of each chromosome
- Sometimes these **polyploid** individuals survive, and can even mate
- This produces instant reproductive isolation Fig. 24.9
- It can also provide material for new genetic innovation

—

4 Reuniting — S24.4 (2ndEd S26.4)

- What happens when isolated populations come back into contact?
- Usually this happens when a geographic barrier disappears
 - a land bridge forms between an island and the continent
 - a river changes course

4.1 Fusion

- When two isolated populations come into contact, they may **fuse** go back together
 - Adaptive differences may be small
 - Adaptive differences may be overwhelmed by gene flow

4.2 Reinforcement

 \bullet In some cases, hybrid offspring may have low fitness

- In these cases we expect natural selection for traits that **reinforce** the distinction between the two species
 - They avoid mating, using coloration, timing, courtship rituals

Meadowlarks

- Eastern and Western meadowlarks have hybrid zones in the Great Plains
- Hybrids don't reproduce well
 - Probably due to incompatible alleles after evolving separately
- They have evolved to avoid inter-breeding:

—

Sticklebacks — Box 24.1

- Closely related freshwater sticklebacks live on the bottom (benthic) or in the water column (limnetic)
- Benthic sticklebacks arrived first (from the ocean), and are highly adapted to live on the bottom
- Limnetic sticklebacks arrived later

• The two groups evolved to avoiding breeding with each other

4.3 Hybrid zones

- When hybrid offspring are functional, and well-adapted to the overlap zone, there may be a zone where hybrids occur
- Not always clear when we should consider the species to be different
 - What if species B has hybrid zones with A and C but A and C don't mate in nature?

4.4 Exclusion

- One species might eliminate the other species, either by competition, or by better success in mating
 - Warblers competing for mates Fig 24.14 (2ndEd Fig 26.12)
 - Modern humans

4.5 New species

Sunflowers — p. 510–512 (2ndEd 516–518)

- A cool species of sunflower
 - Resembles natural hybrids from a hybrid zone
 - Is that how it arose?
- Breeding experiments suggest that it's likely
- Why is this surprising?

• How did it happen?

Conclusion

- The diversity we see in the world arises from speciation events; mostly by single species splitting into two
- Species splits typically involve isolation and divergence
 - Isolation can happen allopatrically or sympatrically
 - New species can also sometimes arise from hybridization between related species
- Defining species can be complicated
 - Particularly if we want definitions that include both asexual and sexual species