BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – RÉSOLUTIONS À LA MAIN

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Avec 7 facteurs	2
2.	8 facteurs?	3
3.	Sources utilisées	4
4.	AFFAIRE À SUIVRE	5

Date: 25 Jan. 2024 - 3 Fév. 2024.

1. Avec 7 facteurs

Fait 1.1.
$$\forall n \in \mathbb{N}^*, \, \pi_n^6 \notin {}^2\mathbb{N}$$
.

La très jolie démonstration suivante vient d'un échange sur https://math.stackexchange.com (voir la section 3). Nous avons juste comblé quelques rares oublis, et apporté de petites simplifications.

Preuve. Supposons que $\pi_n^6 \in {}_*^2\mathbb{N}$.

Commençons par quelques observations immédiates.

- $\forall p \in \mathbb{P}_{>5}$, $\forall i \in [0; 6]$, $v_p(n+i) \in 2\mathbb{N}$.
- $\exists u \in \{0, 1, 2\}$ tel que $\{u, u + 2, u + 4\} \subset 2\mathbb{N} + 1$. Nous avons alors $\forall p \in \mathbb{P}_{>5} - \{2\}$, $(v_p(u), v_p(u+2), v_p(u+4)) \in (2\mathbb{N})^3$. Donc, pour tout naturel $m \in \{u, u + 2, u + 4\}$, il existe $M \in \mathbb{N}^*$ tel que $m = M^2$, $m = 3M^2$, $m = 5M^2$ ou $m = 15M^2$.
- Parmi les trois naturels u, u + 2 et u + 4, ...
 - il en existe un, et un seul, divisible par 3, comme on le constate vite en raisonnant modulo 3,
 - au plus un est divisible par 5,
 - au plus un est un carrée parfait d'après le fait ??.

Donc, il existe $(M,P,Q)\in (\mathbb{N}^*)^3$ tel que $\{u,u+2,u+4\}=\{M^2,3P^2,5Q^2\}$. Ceci permet de considérer les trois cas suivants qui lèvent tous une contradiction.

- Supposons avoir $u = M^2$.
 - (1) Comme $\{u+2, u+4\} = \{3P^2, 5Q^2\}$, nous savons que $3 \nmid (u+3)$ et $5 \nmid (u+3)$, d'où $u+3=2^aT^2$ avec $(a,T) \in \mathbb{N} \times \mathbb{N}^*$.
 - (2) Modulo 4, $u \equiv M^2 \equiv 1$ car $u \in 2\mathbb{N} + 1$, donc $u + 3 \equiv 0$, d'où $a \geq 2$.
 - (3) Modulo 8, $u\equiv M^2\equiv 1$ car $u\in 2\mathbb{N}+1$, donc $u+3\equiv 4$, d'où a=2 .
 - (4) Dès lors, $u+3\in{}^2\mathbb{N}$, puis (u+3,u)=(4,1) via le fait ??.
 - (5) Forcément n = u = 1, mais $v_7(\pi_1^6) = 1$ contredit $\pi_n^6 \in {}_*^2\mathbb{N}$.
- Supposons maintenant que $u + 4 = M^2$.

Comme $\{u,u+2\}=\{3P^2,5Q^2\}$, la preuve précédente s'adapte à (u+1,u+4).

• Supposons enfin que $u + 2 = M^2$.

 $\{u,u+4\}=\{3P^2,5Q^2\}$ est impossible d'après ce qui suit en travaillant modulo 4 .

- (1) Si $(u, u+4)=(3P^2, 5Q^2)$, alors $u\equiv 0$ ou 3, $u+4\equiv 0$ ou 1, et $u\equiv \pm 1$ se contredisent.
- (2) Si $(u, u + 4) = (5Q^2, 3P^2)$, on obtient une contradiction de façon analogue à la précédente.

BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS - RÉSOLUTIONS À LA MAIN

2. 8 FACTEURS?

Fait 2.1. $\forall n \in \mathbb{N}^*, \ \pi_n^7 \notin {}^2\mathbb{N}$.

3. Sources utilisées

- (1) Un échange consulté le 28 janvier 2024, et titré « n(n+1)...(n+k) est un carré? » sur le site lesmathematiques.net.
 - La démonstration du fait ?? via le principe des tiroirs trouve sa source dans cet échange.
- (2) L'article « Le produit de 5 entiers consécutifs n'est pas le carré d'un entier. » de T. Hayashi, Nouvelles Annales de Mathématiques, est consultable via Numdam, la bibliothèque numérique française de mathématiques.
 - Cet article a inspiré la preuve alternative du fait ??.
- (3) Un échange consulté le 28 janvier 2024, et titré « product of six consecutive integers being a perfect numbers » sur le site https://math.stackexchange.com.
 - La démonstration courte du fait ?? est donné dans cet échange. Vous y trouverez aussi un très joli argument basé sur les courbes elliptiques rationnelles.
- (4) Un échange consulté le 3 février 2024, et titré « Proof that the product of 7 successive positive integers is not a square » sur le site https://math.stackexchange.com.
 - La démonstration courte du fait 1.1 est donné dans cet échange, mais certaines justifications manquent.

BROUILLON - CARRÉS PARFAIT	ET	PRODUITS	D'ENTIERS	CONSÉCUTIFS -	- RÉSOLUTIONS	À LA	MAIN
	4.	AFFAIR	E À SUIV	VRE			