

Lecture: Machine Learning for Data Science

Winter semester 2021/22

Lecture 11: Unsupervised learning —Hierarchical clustering

Prof. Dr. Eirini Ntoutsi

Clustering topics covered in this lecture

- Partitioning-based clustering
 - □ k-Means, k-Medoids
- Hierarchical clustering
- Density-based clustering
- Grid-based clustering
- Soft clustering
- Clustering evaluation

Outline

- Hierarchical clustering basics
- Hierarchical clustering methods
- Bisecting k-Means
- Things you should know from this lecture & reading material

Hierarchical-based clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized also as a dendrogram
 - A tree like diagram that records the sequences of merges or splits & cluster memberships
 - The height at which two clusters are merged in the dendrogram reflects their distance
- An instance can belong to multiple clusters.
 - The assignement though is still hard

Dendrogram

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
- A clustering can be obtained by 'cutting' the dendrogram at the proper level
 - Cutting based on distance (i.e., I want ≤ 0.1 distance)
 - Cutting based on the number of clusters (i.e., I want 2 clusters)

Applications of hierarchical clustering 1/3

- The dendrogram of clusters may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Ma

Source: http://currents.plos.org/treeoflife/article/the-tree-of-life-and-a-new-classification-of-bony-fishes/

Applications of hierarchical clustering 2/3

- The dendrogram of clusters may correspond to meaningful taxonomies
 - Dendrogram showing hierarchical clustering of tissue gene expression data with colours denoting tissues.

Source: http://genomicsclass.github.io/book/pages/clustering_and_heatmaps.html

Applications of hierarchical clustering 3/3

The dendrogram of clusters may correspond to meaning

USArrests dataset: statistics in arrests per 100,000 resident US states in 1973.

Source: https://uc-r.github.io/hc_clustering

Georgia

Montana

New

Mexico

Idaho Wyoming

Hevacla Utah Colorado

Oregon

North Dakota

Dakota

Nebraska

Texas

Kansas Missouri

Oklahoma Arkansas

Hierarchical vs Partitioning

Partitioning clustering

Partitioning algorithms typically have global objectives, e.g., *k*-Means

Dendrogram •p1 Nested clusters p1 p2 p3 p4

Hierarchical clustering algorithms typically have local objectives

Outline

- Hierarchical clustering basics
- Hierarchical clustering methods
- Bisecting k-Means
- Things you should know from this lecture & reading material

Hierarchical clustering methods

Two main types of hierarchical clustering

- Agglomerative or AGNES (Agglomerative Nesting)
 - Bottom-up approach
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters
 - until only one cluster (or k clusters) left
- Divisive or DIANA (Divisive analysis)
 - Top-down approach
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a single point (or there are k clusters)
- Merge or split one cluster at a time

Hierarchical clustering methods

- Hierarchical algorithms use a similarity or distance matrix to decide on which cluster to split/merge next
 - Employed distance/similarity function depends on the application

	p1	p2	р3	 p12	
p1					
p2					
рЗ					
p12					

Proximity matrix

Agglomerative clustering algorithm

- Most popular hierarchical clustering technique
- Basic algorithm is straightforward

Compute the proximity matrix

Let each data point be a cluster

Repeat

Merge the two closest clusters

Update the proximity matrix

Until only a single cluster remains

- Key operation: the computation of the proximity of two clusters
 - Different approaches (single link, complete link,) which lead to different algorithms

Starting situation

Start with clusters of individual points and a proximity matrix

Intermediate situation I

After some merging steps, we have some clusters

C4

C5

C1

C1

C2

C3

Intermediate situation II

• We decide to merge the two closest clusters (C_2 and C_5) and update the proximity matrix.

Merging

- Two major questions for merging
 - How we identify the closest pair of clusters to be merged?
 - How do we update the proximity matrix?

	C1	C2 U C5	СЗ	C4
C1		?		
C2 U C5	?	?	?	?
С3		?		
C4		?		

Proximity matrix

Distance between clusters

- Each cluster is a set of points
 - How do we compare two sets of points/clusters?

- A variety of different methods
 - Single link (or MIN)
 - Complete link (or MAX)
 - Group average
 - Centroid-distance
 - Medoid-distance
 - Other methods driven by an objective function
 - Ward's Method uses squared error

Distance between clusters: Single link distance or MIN

Single link (or MIN) distance between C_i and C_j is the minimum distance between any object in C_i , i.e.,

$$dis_{sl}(C_i, C_j) = \min_{x,y} \{ d(x, y) | x \in C_i, y \in C_j \}$$

i.e., the distance is defined by the two closest objects (shortest edge)

Distance between clusters: Complete link or MAX

Complete link (or MAX) distance between C_i and C_j is the maximum distance between any object in C_i and any object in C_i , i.e.,

$$dis_{cl}(C_i, C_j) = \max_{x,y} \{ d(x, y) | x \in C_i, y \in C_j \}$$

i.e., the distance is defined by the two most dissimilar objects (longest edge)

Distance between clusters: Group average

• Group average distance between C_i and C_j is the average distance between any object in C_i and any object in C_j , i.e.,

$$dis_{avg}(C_i, C_j) = \frac{\sum_{x \in C_i, y \in C_j} d(x, y)}{|C_i||C_j|}$$

Distance between clusters: Centroid distance

• Centroid distance between C_i and C_j is the distance between the centroid c_i of C_i and the centroid c_j of C_i , i.e.,

$$dis_{centroids}(C_i, C_j) = d(c_i, c_j)$$

Centroid of a cluster

Example

Dataset (6 2D points)

Point	x Coordinate	y Coordinate
p1	0.40	0.53
p2	0.22	0.38
p3	0.35	0.32
p4	0.26	0.19
p5	0.08	0.41
p6	0.45	0.30

Distance matrix (Euclidean distance)

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Back to the pseudocode of the agglomerative clustering algorithm

Pseudocode of the algorithm

Compute the proximity matrix

Let each data point be a cluster

Repeat

Merge the two closest clusters

Update the proximity matrix

Until only a single cluster remains

Single link distance or MIN agglomerative clustering algorithm

- Similarity of two clusters is based on the most similar (closest) pair of objects
 - Determined by one pair of points

$$dis_{sl}(C_i, C_j) = \min_{x,y} \{ d(x, y) | x \in C_i, y \in C_j \}$$

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Nested clusters

Short break (5')

 Given the following 1-dimensional dataset, build a hierarchical agglomerative clustering using single-link distance

Single link distance (MIN): strengths

Can discover clusters of arbitrary shapes

Single link distance (MIN): limitations

Sensitive to noise and outliers

- DBSCAN (next lecture) can be viewed as a robust variant of single link distance
 - It excludes noisy points between clusters to avoid undesirable chaining effects.

Single link distance (MIN): limitations

Produces long, elongated clusters (chain-like clusters)

Complete link distance or MAX agglomerative clustering algorithm

- Similarity of two clusters is based on the least similar (most distant) pair of objects
 - Determined by one pair of points

$$dis_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Complete link distance (MAX): strengths

Less susceptible to noise and outliers and comparing to MIN

Complete link distance (MAX): limitations

- Because it focuses on minimizing the diameter of the cluster, it will create clusters so that all of them have similar diameter
 - □ If there are natural larger clusters than others, it tends to break large clusters

Short break (5')

 Given the following 1-dimensional dataset, build a hierarchical agglomerative clustering using complete-link distance

(Group) Average-link distance agglomerative clustering algorithm

- Proximity of two clusters is the average of pairwise distances between objects in the two clusters.
 - Determined by all pairs of points in the two clusters

$$dis_{avg}(C_i, C_j) = \frac{\sum_{x \in C_i, y \in C_j} d(x, y)}{|C_i||C_j|}$$

$_{vg}\left(C_{i},C_{j}\right) = \frac{x \in C_{i}, y \in C_{j}}{ C C }$		
$ C_i C_j$		p1
	p1	0.0
	р2	0.2

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Nested clusters

(Group) Average-link distance: strengths and limitations

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards spherical clusters

Centroid-link distance agglomerative clustering algorithm

The distance between two clusters is the distance of their corresponding centroids

$$dis_{centroids}(C_i, C_j) = d(c_i, c_j)$$

- Difference to other measures (often considered bad): the possibility of inversions
 - \Box Two clusters that are merged at step k might be more similar than the pair of clusters merged in step k-1
 - For the other methods, distance between clusters monotonically increases (or at worst does not increase)

Ward's method

- Ward's method or Ward's minimum variance method
- Clusters are represented by centroids
- The proximity between two clusters is measured in terms of the increase in SSE (sum of squared error) that results from merging the two clusters

$D_W(C_i, C_j) = \sum (x - r_i)^2$	$+\sum (x-r_j)^2$ -	$\sum (x - r_{ij})^2$
$x \in C_i$	$x \in C_j$	$x \in C_{ij}$

r_i: centroid of C_i
r_j: centroid of C_j

r_{ij}: centroid of C_{ij}

 At each step, merge the pair of clusters that leads to minimum increase in total inter-cluster variance after merging.

	p1	p2	p3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Ward's method cont'

- Ward's method seems similarly to k-Means: it tries to minimize the sum of square distances of points from their cluster centroids, but not globally
- Less susceptible to noise and outliers
- Biased towards spherical clusters

Comparison of the different methods

Hierarchical methods: complexity

- $O(n^2)$ space to store the proximity matrix
 - n is the number of points.

- $O(n^3)$ time in most of the cases
 - \Box There are *n* steps and at each step the size, n^2 , proximity matrix must be updated and searched
 - \Box Complexity can be reduced to $O(n^2 \log(n))$ time for some approaches using appropriate data structures

Hierarchical clustering: overview

- No knowledge on the number of clusters
- Produces a hierarchy of clusters, not a flat clustering
 - □ A single clustering can be obtained from the dendrogram
- No backtracking: Merging decisions are final
 - Once a decision is made to combine two clusters, it cannot be undone
- Lack of a global objective function
 - Decisions are local, at each step
 - No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Breaking large clusters
 - Difficulty handling different sized clusters and convex shapes
- Inefficiency, especially for large datasets

Outline

- Hierarchical clustering basics
- Hierarchical clustering methods
- Bisecting k-Means
- Things you should know from this lecture & reading material

Bisecting k-Means

- Hybrid method, combines k-Means and hierarchical clustering
- Idea: first split the set of points into two clusters, select one of these clusters for further splitting, and so on, until k clusters remain.
- Pseudocode:
- 1. All data constitute one cluster ROOT.
- The ROOT is partitioned in two clusters, its children, using K-Means for K=2.
- 3. In each subsequent iteration
 - 2.1. Choose among the leaf clusters the most inhomogeneous one,
 - 2.2. Partition it into two clusters with K-Means, K=2, until K leaf clusters are built.
- Which cluster to split? Different approaches
 - The one with the largest SSE (worse one)
 - Based on SSE and size
 - ...

Bisecting k-Means: an example

Outline

- Hierarchical clustering basics
- Hierarchical clustering methods
- Bisecting k-Means
- Things you should know from this lecture & reading material

Overview and Reading

Overview

- Hierarchical clustering basics
- Agglomerative approach
- Similarity measures between clusters
- Bisecting kMeans

Reading

- Tan P.-N., Steinbach M., Kumar V book, Chapter 8.
- □ Data Clustering: A Review, https://www.cs.rutgers.edu/~mlittman/courses/lightai03/jain99data.pdf
- □ Nando de Freitas youtube video: https://www.youtube.com/watch?v=voN8omBe2r4

Hands on experience

- Try hierarchical clustering on different datasets, e.g. Iris
 - Some interesting analysis (in R) and datasets can be found at: https://cran.r-project.org/web/packages/dendextend/vignettes/Cluster Analysis.html
- For the Iris dataset, cut the dendrogram at 3 clusters
 - Is there some mapping between the clusters and the actual species (available as class-labels, not to be used for clustering)?

Thank you

Questions/Feedback/Wishes?

Acknowledgements

- The slides are based on
 - □ KDD I lecture at LMU Munich (Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Eirini Ntoutsi, Jörg Sander, Matthias Schubert, Arthur Zimek, Andreas Züfle)
 - □ Introduction to Data Mining book slides at http://www-users.cs.umn.edu/~kumar/dmbook/
 - Thank you to all TAs contributing to their improvement, namely Vasileios Iosifidis, Damianos Melidis, Tai Le Quy, Han Tran.