NOTAÇÕES

K : con	: conjunto dos numeros reais				
\mathbb{C} : con	: conjunto dos números complexos				
i : unio	: unidade imaginária $i^2 = -1$				
$\det M$: determinante da matriz M					
M^{-1} : inve	M^{-1} : inversa da matriz M				
MN : pro-	MN : produto das matrizes M e N				
\overline{AB} : segn	\overline{B} : segmento de reta de extremidades nos pontos A e B				
$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$					
Observaçã	o: Os sistemas de coor	denadas considera	dos são os cartesianos	retangulares.	
Questão 1. afirmações:	Sejam X e Y dois cor	ijuntos finitos con	$\mathbf{n} \ X \subset Y \in X \neq Y.$	Considere as seguintes	
I. Existe u	ma bijeção $f: X \to Y$.				
II. Existe u	ma função injetora $g: \mathbb{R}$	$Y \to X$.			
III. O númer	co de funções injetoras $\it f$	f:X o Y é igual i	ao número de funções s	sobrejetoras $g: Y \to X$.	
É (são) verda	deira(s)				
A () nenhuma delas. D () apenas I e II.		() apenas I. () todas.	C () apenas III.		
Questão 2.	O número de soluções d	la equação (1 + se	$c\theta$)(1 + cossec θ) = 0, $c\theta$	com $\theta \in [-\pi, \pi]$, é	
A () 0.	В () 1.	C () 2.	D () 3.	E () 4.	
				ordem, uma progressão itmética. Então, o valor	
A () -140 .	B () -120.	C () 0.	D () 120.	Е () 140.	
Questão 4.	O maior valor de tg x ,	$com x = \frac{1}{2}arcsen(\frac{3}{5})$	$(\frac{3}{5}) e x \in [0, \frac{\pi}{2}], é$		
A () 1/4. D () 2.	B E	() 1/3. () 3.	C () 1/2.		
	Considere a reta r : y está contida em r . A á			quadrado $ABCD$, cuja	
A () $\frac{9}{5}$.	B () $\frac{12}{5}$.	C () $\frac{18}{5}$.	D () $\frac{21}{5}$.	E () $\frac{24}{5}$.	

Questão 6. Considere o sistema de equações

$$S \begin{cases} \frac{1}{x} + \frac{27}{y^2} + \frac{8}{z^3} = 3 \\ \frac{4}{x} + \frac{81}{y^2} + \frac{40}{z^3} = 10 \\ \frac{2}{x} + \frac{54}{y^2} + \frac{24}{z^3} = 7 \end{cases}$$

Se (x,y,z) é uma solução real de S,então |x|+|y|+|z| é igual a

- A () 0.
- B () 3.
- C () 6.
- D () 9.
- E () 12.

Questão 7. O número de soluções inteiras da inequação $0 \le x^2 - |3x^2 + 8x| \le 2$ é

- A () 1.
- B () 2.
- C () 3. D () 4. E () 5.

Questão 8. Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{-1, -2, -3, -4, -5\}$. Se $C = \{xy : x \in A \text{ e } y \in B\}$, então o número de elementos de C é

- A () 10.
- B () 11.
- C () 12.
- D () 13.
- E () 14.

Questão 9. Sejam $S_1 = \{(x,y) \in \mathbb{R}^2 : y \ge ||x|-1|\}$ e $S_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + (y+1)^2 \le 25\}$. A área da região $S_1 \cap S_2$ é

- A () $\frac{25}{4}\pi 2$. B () $\frac{25}{4}\pi 1$. C () $\frac{25}{4}\pi$. D () $\frac{75}{4}\pi 1$. E () $\frac{75}{4}\pi 2$.

Questão 10. Sejam a, b, c, d números reais positivos e diferentes de 1. Das afirmações:

- $I. \ a^{(\log_c b)} = b^{(\log_c a)}.$
- II. $\left(\frac{a}{b}\right)^{\log_d c} \left(\frac{b}{c}\right)^{\log_d a} \left(\frac{c}{a}\right)^{\log_d b} = 1.$
- III. $\log_{ab}(bc) = \log_a c$

é (são) verdadeira(s)

A () apenas I.

B () apenas II.

C () apenas I e II.

- D () apenas II e III.
- E () todas.

Questão 11. Sejam
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 e $P = \begin{bmatrix} 7 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 5 \end{bmatrix}$.

Considere $A = P^{-1}DP$. O valor de $det(A^2 + A)$ é

A () 144.

- B () 180.
- C () 240.
- D () 324.
- E () 360.

Questão 12. Considere dois círculos no primeiro quadrante:

- C_1 com centro (x_1, y_1) , raio r_1 e área $\frac{\pi}{16}$.
- C_2 com centro (x_2, y_2) , raio r_2 e área 144π .

Sabendo que (x_1,y_1,r_1) e (x_2,y_2,r_2) são duas progressões geométricas com somas dos termos iguais a $\frac{1}{4}$ e 21, respectivamente, então a distância entre os centros de C_1 e C_2 é igual a

- A () $\frac{\sqrt{123}}{2}$. B () $\frac{\sqrt{129}}{2}$. C () $\frac{\sqrt{131}}{2}$. D () $\frac{\sqrt{135}}{2}$. E () $\frac{\sqrt{137}}{2}$.

Questão 13. Das afirmações:

- I. Todo número inteiro positivo pode ser escrito, de maneira única, na forma $2^{k-1}(2m-1)$, em que k e m são inteiros positivos.
- II. Existe um número $x \in [0, \pi/2]$ de tal modo que os números $a_1 = \operatorname{sen} x$, $a_2 = \operatorname{sen} (x + \pi/4)$, $a_3=\mathrm{sen}\left(x+\pi/2\right)$ e $a_4=\mathrm{sen}\left(x+3\pi/4\right)$ estejam, nesta ordem, em progressão geométrica.
- III. Existe um número inteiro primo p tal que \sqrt{p} é um número racional.

é (são) verdadeira(s)

A () apenas I.

B () apenas II.

C () apenas III.

D () apenas I e II.

E () todas.

Questão 14. Com os elementos $1, 2, \ldots, 10$ são formadas todas as sequências (a_1, a_2, \ldots, a_7) . Escolhendo-se aleatoriamente uma dessas sequências, a probabilidade de a sequência escolhida não conter elementos repetidos é

A () $\frac{7!}{107 \cdot 3!}$. B () $\frac{10!}{107 \cdot 3!}$. C () $\frac{3!}{107 \cdot 7!}$. D () $\frac{10!}{10^3 \cdot 7!}$. E () $\frac{10!}{10^7}$.

Questão 15. Considere a equação $(a - bi)^{501} = \frac{2(a + bi)}{(a^2 + b^2)^{250} + 1}$.

O número de pares ordenados $(a,b) \in \mathbb{R}^2$ que satisfazem a equação é

A () 500.

B () 501.

C () 502.

D () 503.

E () 504.

Questão 16. Seja ABC um triângulo cujos lados \overline{AB} , \overline{AC} e \overline{BC} medem 6 cm, 8 cm e 10 cm, respectivamente. Considere os pontos M e N sobre o lado \overline{BC} tais que \overline{AM} é a altura relativa a \overline{BC} e N é o ponto médio de \overline{BC} . A área do triângulo AMN, em cm², é

A () 3, 36.

B () 3,60. C () 4,20. D () 4,48.

E () 6, 72.

Questão 17. Seis circunferências de raio 5 cm são tangentes entre si duas a duas e seus centros são vértices de um hexágono regular, conforme a figura abaixo. O comprimento de uma correia tensionada que envolve externamente as seis circunferências mede, em cm.

A () $18 + 3\pi$.

B () $30 + 10\pi$.

C () $18 + 6\pi$.

D () $60 + 10\pi$.

E () $36 + 6\pi$.

Questão 18. O lugar geométrico dos pontos $(a,b) \in \mathbb{R}^2$ tais que a equação, em $z \in \mathbb{C}$,

$$z^2 + z + 2 - (a + ib) = 0$$

possua uma raiz puramente imaginária é

A () uma circunferência.

B () uma parábola.

C () uma hipérbole.

D () uma reta.

E () duas retas paralelas.

Questão 19. Um atirador dispõe de três alvos para acertar. O primeiro deste encontra-se a 30m de distância; o segundo, a 40m; o terceiro alvo, a 60m. Sabendo que a probabilidade de o atirador acertar o alvo é inversamente proporcional ao quadrado da distância e que a probabilidade de ele acertar o primeiro alvo é de 2/3, então a probabilidade de acertar ao menos um dos alvos é

A () $\frac{120}{160}$. B () $\frac{119}{154}$. C () $\frac{110}{144}$. D () $\frac{105}{135}$. E () $\frac{119}{144}$.

Questão 20. Considere o triângulo ABC, em que os segmentos \overline{AC} , \overline{CB} e \overline{AB} medem, respectivamente, 10 cm, 15 cm e 20 cm. Seja D um ponto do segmento \overline{AB} de tal modo que \overline{CD} é bissetriz do ângulo $A\hat{C}B$ e seja E um ponto do prolongamento de \overline{CD} , na direção de D, tal que $D\hat{B}E = D\hat{C}B$. A medida, em cm, de CE é

A () $\frac{11\sqrt{6}}{3}$. B () $\frac{13\sqrt{6}}{3}$. C () $\frac{17\sqrt{6}}{3}$. D () $\frac{20\sqrt{6}}{3}$. E () $\frac{25\sqrt{6}}{3}$.

AS QUESTÕES DISSERTATIVAS, NUMERADAS DE 21 A 30, DEVEM SER RESOLVIDAS E RESPONDIDAS NO CADERNO DE SOLUÇÕES.

Questão 21. Considere as retas de equações

$$r: y = \sqrt{2}x + a$$
 e $s: y = bx + c$,

em que a, b, c são reais. Sabendo que r e s são perpendiculares entre si, com r passando por (0,1) e s, por $(\sqrt{2}, 4)$, determine a área do triângulo formado pelas retas r, s e o eixo x.

Questão 22. Determine todos os valores reais de x que satisfazem a inequação $4^{3x-1} > 3^{4x}$.

Questão 23. Considere o polinômio

$$p(x) = x^4 - (1 + 2\sqrt{3})x^3 + (3 + 2\sqrt{3})x^2 - (1 + 4\sqrt{3})x + 2.$$

- a) Determine os números reais a e b tais que $p(x) = (x^2 + ax + 1)(x^2 + bx + 2)$.
- b) Determine as raízes de p(x).

Questão 24. Sejam A e B dois conjuntos com 3 e 5 elementos, respectivamente. Quantas funções sobrejetivas $f: B \to A$ existem?

Questão 25. Sejam $A = \{1, 2, ..., 29, 30\}$ o conjunto dos números inteiros de 1 a 30 e (a_1, a_2, a_3) uma progressão geométrica crescente com elementos de A e razão q > 1.

- a) Determine todas as progressões geométricas (a_1, a_2, a_3) de razão $q = \frac{3}{2}$.
- b) Escreva $q = \frac{m}{n}$, com $m, n \in \mathbb{Z}$ e $\mathrm{mdc}(m, n) = 1$. Determine o maior valor possível para n.

Questão 26. Esboce o gráfico da função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \left| 2^{-|x|} - \frac{1}{2} \right|.$$

Questão 27. Determine todos os valores reais de a para os quais o seguinte sistema linear é impossível:

$$\begin{cases} x + ay + z &= 2 \\ -x - 2y + 3z &= -1 \\ 3x + az &= 5 \end{cases}$$

Questão 28. Um triângulo retângulo com hipotenusa $c = 2(1 + \sqrt{6})$ está circunscrito a um círculo de raio unitário. Determine a área total da superfície do cone obtido ao girar o triângulo em torno do seu maior cateto.

Questão 29. Determine o conjunto das soluções reais da equação $3\operatorname{cossec}^2\left(\frac{x}{2}\right) - \operatorname{tg}^2 x = 1.$

Questão 30. Considere o cubo ABCDEFGH de aresta 2 tal que: ABCD é o quadrado da base inferior; EFGH, o quadrado da base superior e \overline{AE} , \overline{BF} , \overline{CG} e \overline{DH} são as arestas verticais. Sejam L, M e N os pontos médios das arestas \overline{AB} , \overline{CG} e \overline{GH} , respectivamente. Determine a área do triângulo LMN.