# Organizing Web Information CS 728

Soumen Chakrabarti IIT Bombay

http://www.cse.iitb.ac.in/~soumen/

# Sequence labeling

#### Tagging token spans

- Text modeled as a sequence of tokens
- Tokens may include punctuations, different kinds of spaces, etc.
- Restricted set of types or domains
  - ► Classic application in NLP: part-of-speech (POS) tagging, with token labels like NN, NNS, VB, VBD, VBP, PP\$, JJ, JJR, RB, etc.
  - Named entity recognition (NER): person, place, organization, date, paper title, conference venue, journal name, page range, number and street name
- Closed domain means examples available for each label
- A test instance is an unlabeled token sequence
- The job is to mark each token with a label seen in training instances
- In NER, most tokens may have a default "none" label

#### Markov models



- ightharpoonup System is in one of M states  $y_t$
- ▶ In each state, emits  $x_t$  one of N symbols
- ▶ Then moves to one of M states  $y_{t+1}$
- Many state transitions disallowed

#### Viterbi decoding



- 1 Ronald Rosenfeld
- x2 <u>roni@cs.cmu.edu</u> x3 Andrew McCallum
- x4 mccallum@justresearch.com
- x5 Pittsburgh, PA 15213
- x6 \$



## Dynamic programming

- Sequence of length T, pad with special positions 0 and T+1, let  $t \in [0, T+1]$  be a token position
- ▶ Let  $m \in [M]$  be a state; add special states  $y_0 = q_I, y_{T+1} = q_F$  at positions 0 and T+1
- Define transitions to/from special states and emissions from special states suitably
- $\psi(m,m')=\Pr(m\to m')$  is the probability of a state transition from m to m'
- $\lambda(m,x) = \Pr(m \uparrow x)$  is the probability of emitting token x while in state m
- Let V(t,m) be the largest probability of a state transition path ending in state m at position t
- ▶ Base case  $V(0, y_0) = 1$

## Dynamic programming (2)

▶ For time steps t > 0 and  $m' \in [M]$ :

$$V(t, m') = \max_{m \in [M]} V(t - 1, m) \, \psi(m, m') \, \lambda(m', x_t)$$

- lacktriangle Highest probability path can be read off as  $V(T+1,q_F)$
- In actual code, multiplying small probabilities will underflow rapidly, so use  $\log \psi(m,m')$  and  $\log \lambda(m,x)$

$$\begin{split} V(0,q_I) &= 0 \\ V(0,m) &= -\infty \quad \text{for } m \neq q_I \\ V(t,m') &= \max_{m \in [M]} V(t-1,m) + \log \psi(m,m') + \log \lambda(m',x_t) \end{split}$$

lackbox Keep track of which m maximized  $V(t,m^\prime)$ , so we can recover the path

#### Max probability ⇔ shortest path

- lacktriangle Each edge (u,v) has a probability p(u,v)
- Probability of a path is the product of edge probabilities
- The goal is to find the max probability path
- ▶ Instead, let the edge have a weight  $w(u, v) = -\log p(u, v) \ge 0$
- Goal changes to conventional shortest path
- ▶ If there are k transitions from state m to m',  $-\log p(m,m')$  is accumulated k times
- Similarly for symbol emission probabilities
- What if you wanted to list the top 10 shortest paths?

## Estimating $\Pr(m \to m')$ and $\Pr(m \uparrow x)$

- If we had completely labeled data sets  $(\vec{x}, \vec{y})$ , then this amounts to just counting
  - ▶ The number of times symbol x was emitted while in state m
  - The number of times state m transitioned to state m' and then normalizing suitably to probabilities
- Care is required with smoothing counts for rare transition and emission events — we covered this in Web Search and Mining (A)
- Given incompletely or not labeled sequences, EM is a common technique:
  - ▶ Start with a "good enough" initial estimate of these probabilities
  - Use these to (re)label given sequences, getting distributions over states
  - Use these distributions to soft-count and update probability estimates

#### B-I-O and B-C-E-O state models

- States none, person, place, epoch
- Roy went to Rio de Janeiro in 1994
- Change state/label definitions to placeB, placel, epochB, epochl, ..., other=none
- "Begin", "In", "Other/out"
- Also used: begin-continue-end, other states
- Emission distributions can be fine tuned to (three kinds of) positions inside long mentions
- ▶  $B \rightarrow I$ ,  $I \rightarrow I$ ,  $I \rightarrow O$  transition probabilities can be tuned separately
- ▶ No  $I \to B$  or  $O \to I$  transitions allowed

#### Surface features

- lackbox Would like to think of  $x_t$  not as a symbol from a set of N symbols
- ▶ But as a feature vector with F features
- ▶ I.e. we are interested in various properties of token  $x_t$  rather than the identity of  $x_t$  itself
- $ightharpoonup x_t[f]$  is the fth feature at position t
- Examples of features: hasCap, isAllCap, isXxx, hasDigit, isAllDigits, isDDDD, part of speech
- Does  $x_t$  start with an uppercase letter and end with "sky", "ski", or "jee"?
- Note that the identity of  $x_t$  itself can still be passed on through lexicalized features: "is  $x_t$  equal to coffee?"
- ▶ I.e., if there are 20,000 words in the vocabulary and 50 derived features, F=20050

#### Limitations of generative models: feature dependence

- Some of the F features are heavily correlated
  - ▶ isAllCap ⇒ hasCap
  - ▶ isDDDD ⇒ isAllDigits
  - ▶ isProperNoun almost always implies isXxx
- Standard generative HMM says

$$\Pr(\vec{x}, \vec{y}) = \Pr(y_0) \prod_{t=1}^{T} \Pr(y_t | y_{t-1}) \Pr(x_t | y_t)$$

- Now  $Pr(x_t|y_t)$  changes from univariate multinomial to a vector of (binary, highly correlated) features
- $ightharpoonup \prod_{t=1}^T \Pr(y_t|y_{t-1}) \left\lceil \prod_{f=1}^F \Pr(x_t[f]|y_t) \right\rceil$  too crude
- Prefer to model  $\Pr(\vec{y}|\vec{x})$  rather than model  $\Pr(\vec{x}|\vec{y})$  and use Bayes rule (naive Bayes vs. logistic regression)

#### Limitations of generative models: segment lengths

- Long named entity spans like "paper title", "movie title", or "organization name" modeled as self-loop on corresponding states
- Implies that the number of tokens in such spans is geometrically distributed
- Assumption does not match data
- Can patch with a collection of chains; training may suffer



## Limitations of generative models: Label bias<sup>1</sup>

- Labels other (O), person (P), location (L)
- Every person and location name has two tokens
- ▶ States specialized to  $P_1, P_2; L_1, L_2$
- ► Harvey Ford: person 9 times, location 1 time
- ► Harvey Park: person 1 time, location 9 times
- $\implies$  No clue to choose correct edge out of O after seeing Harvey

$$\begin{split} \Pr(P_1|O,\mathsf{Harvey}) &= \Pr(L_1|O,\mathsf{Harvey}) = 1/2 \\ \Pr(P_2|P_1,*) &= \Pr(L_2|L_1,*) = 1 \end{split}$$

Normalized transition probability  $\prod_t \Pr(y_t|y_{t-1})$  is culprit



<sup>&</sup>lt;sup>1</sup>Example by Ralph Grishman

#### From local to global normalization

Recall multinomial naive Bayes text classification

$$\Pr(y|x) \propto \Pr(y) \prod_{f} \Pr(f|y)^{x[f]} \propto \Pr(y) \exp \left[ \sum_{f} x[f] \log \Pr(f|y) \right]$$

- ▶ Here  $\Pr(f|y)$  is locally normalized: for each y,  $\sum_f \Pr(f|y) = 1$
- Logistic regression replaced this with general weights

$$\Pr(y|x) \propto \exp(x \cdot w_y) = \exp\left[\sum_f x[f] w_y[f]\right] = \prod_f \exp\left[x[f] w_y[f]\right]$$

- No local normalization requirement on  $w_y$ ; only  $\sum_y \Pr(y|x)$  normalized if needed
- Will repeat this recipe for transitions and features

#### Transition and features for one step

- ▶ Design a function  $\varphi: \mathcal{X} \times [M] \times [M] \to \{0,1\}^{MF+M^2}$  initialize  $A \leftarrow 0^{M \times F}, B \leftarrow 0^{M \times M}$   $B[m,m'] \leftarrow 1$  for each feature f do  $A[m,f] \leftarrow x[f]$  return [A,B]
- ▶ Typically called as  $A_t, B_t \leftarrow \varphi(x_t, y_{t-1}, y_t)$
- ▶ Let model weights be  $w = (\alpha, \beta)$  where  $\alpha \in \mathbb{R}^{M \times F}, \beta \in \mathbb{R}^{M \times M}$
- ▶ The score for the t-th step is written as  $\exp\Big[[A_t,B_t]\otimes[\alpha,\beta]\Big]$  where  $\otimes$  is elementwise inner-product between matrices, i.e.,

$$\exp\left[\sum_{m,f} A_t[m,f]\alpha[m,f] + \sum_{m,m'} B_t[m,m']\beta[m,m']\right]$$
$$= \exp\left[\sum_f x_t[f]\alpha[m,f] + \beta[y_t,y_{t-1}]\right] = e^{\beta[y_t,y_{t-1}]} \prod_f \exp(\cdots)$$

#### Summing over steps *t*

Because of the log-linear form, we can write

$$A = \sum_t A_t, \quad B = \sum_t B_t, \quad \text{and then}$$
 
$$\Pr(\vec{y}|\vec{x}) \propto \exp\Bigl[[A,B] \otimes [\alpha,\beta]\Bigr] = \prod_t e^{\beta[y_t,y_{t-1}]} \prod_{t,f} \exp(\cdots)$$

- $lackbox{ }A[m,f]$  is the number of times feature f was "fired" while in state m
- ightharpoonup B[m,m'] is the number of transitions from m' to m
- To ease notation, let

$$[A, B] = \phi(\vec{x}, \vec{y}) = \sum_{t} \varphi(x_t, y_{t-1}, y_t)$$
$$w = [\alpha, \beta]$$

## Summing over steps t (2)

- Summarizing . . .
- $\vec{x} = (x_t : t = 1, ..., T)$  is the sequence of visible symbols
- Each position is associated with F binary (say) features
- $ightharpoonup ec{y} = (y_t: t=1,\ldots,T)$  is the label/state sequence
- $lackbox{ Suppose there are }M \text{ states; }m\in [1,M]$
- lacktriangle Define a feature map  $\phi(x,y)\in\mathbb{R}^d$
- From labeled training data  $x^\ell, y^\ell: \ell=1,\dots,L$ , learn a model  $w\in\mathbb{R}^d$
- ► Given test sequence  $\vec{x}$ , predict label sequence  $\arg \max_{\vec{v}} w^{\top} \phi(\vec{x}, \vec{y})$
- Enumerating all  $\vec{y}$  not practical, but for chain (and some other) dependency graphs, dynamic programming suffices

#### Inspecting more/all of $\vec{x}$

- ► Can generalize to  $\varphi(t, \vec{x}, m', m)$  to look at more or all of  $\vec{x}$ , provided we retain  $m' = y_{t-1}$  and  $m = y_t$
- ightharpoonup Can also change the behavior of  $\varphi$  with t, e.g., make some states, transitions or emissions more or less likely near specific times/offsets t
- Another application in the next slide
- ► This sort of enhancement usually needs massive state-space blowup in conventional HMMs

#### Features between $x_{t\pm 1}$ and $y_t$

- $\blacktriangleright$  So far we have limited interaction between  $\vec{x}$  and  $\vec{y}$  to individual positions, e.g.,  $x_t$  and  $y_t$
- ► States none, person, place, epoch
  - ▶ Roy went to Rio de Janeiro in 1994
- "at" or "to" often precede place
- "on" or "in" often precede epoch
- ▶ But the state of at, to, on, in are all 'none'
- ▶ Define features between  $x_{t\pm 1}$  and  $y_t$ :
  - $ightharpoonup x_{t-1} = \text{"at"} \land y_t = \mathsf{placeB}$
  - $ightharpoonup x_{t+1} =$  "said"  $\wedge y_t = \mathsf{personl}$
- Effectively multiplies F by some (small) factor

#### Inference

- ▶ Given a partial label sequence  $(y_1, ..., y_{t-1}, y_t = m)$  of length t
- Let v(t,m) be the maximum value of  $w^{\top}\phi(\vec{x},(y_1,\ldots,y_{t-1},y_t=m))$  over all possible states  $y_1,\ldots,y_{t-1}$  and  $y_t$  pinned to m
- ▶ Base case v(0,m) = 0 for all m
- ightharpoonup Recurrence step for t > 0:

$$v(t, m) = \max_{m'} v(t - 1, m') + w \cdot \varphi(t, x_t, m', m)$$

- Final solution is (the path traced to get from  $y_0$  at time 0 to)  $\max_m v(T,m)$
- Viterbi's dynamic programming algorithm

#### Discriminative training of w

- For each sequence  $\vec{x}^{\ell}$ , there is (say) one correct labeling  $\vec{y}^{\ell}$ ; all other (exponentially many) labelings  $\vec{y} \neq \vec{y}^{\ell}$  are incorrect
- Want to fit w such that

$$\forall \ell, \forall \vec{y} \neq \vec{y}^{\ell}: \ w^{\top} \phi(\vec{x}^{\ell}, \vec{y}^{\ell}) > w^{\top} \phi(\vec{x}^{\ell}, \vec{y})$$

- ▶ The worse  $\vec{y}$  is, compared to  $\vec{y}^{\ell}$ , the bigger we want the gap to be
- ▶ Loss function  $\Delta(\vec{y}^{\ell}, \vec{y}) \ge 0$ ;  $\Delta(\vec{y}, \vec{y}) = 0$
- ► E.g., Hamming loss

$$\forall \ell, \forall \vec{y} \neq \vec{y}^{\ell} : w^{\top} \phi(\vec{x}^{\ell}, \vec{y}^{\ell}) \ge w^{\top} \phi(\vec{x}^{\ell}, \vec{y}) + \Delta(\vec{y}^{\ell}, \vec{y})$$

▶ Allow a slack  $\xi_{\ell} \geq 0$ :

$$\forall \ell, \forall \vec{y} \neq \vec{y}^{\ell} \colon w^{\top} \phi(\vec{x}^{\ell}, \vec{y}^{\ell}) + \underline{\xi_{\ell}} \ge w^{\top} \phi(\vec{x}^{\ell}, \vec{y}) + \Delta(\vec{y}^{\ell}, \vec{y})$$

## Discriminative training of w (2)

- Objective has two parts:
  - ightharpoonup  $\sum_{\ell} \xi_{\ell}$  representing upper bound on training loss
  - $ightharpoonup \frac{1}{2} ||w||_2^2$ , the model complexity

usually balanced with a tuned magic constant C

$$\begin{split} \min_{\xi \geq \vec{0}; w} \frac{1}{2} \|w\|_2^2 + C \sum_{\ell} \xi_{\ell} \quad \text{s.t.} \\ \forall \ell, \forall \vec{y} \neq \vec{y}^{\ell}: \ w^{\top} \boxed{\phi(\vec{x}^{\ell}, \vec{y}^{\ell}) - \phi(\vec{x}^{\ell}, \vec{y})} \geq \Delta(\vec{y}^{\ell}, \vec{y}) - \xi_{\ell} \end{split}$$

- ▶  $M^T 1$  constraints per training sequence!
- ► STRUCTSVM to the rescue

## (Loss augmented) inference

- After w is trained, the inference problem is to find  $\arg\max_{\vec{y} \in \mathcal{Y}} w^{\top} \phi(\vec{x}, \vec{y})$  for test x
- ▶ M states, sequence length  $T \implies |\mathcal{Y}| = M^T$
- ▶ Viterbi dynamic programming takes  $O(M^2T)$  time
- Loss augmented inference is to find  $\tilde{y} = \operatorname{argmax}_{\vec{y}} w^\top \phi(\vec{x}^\ell, \vec{y}) + \Delta(\vec{y}^\ell, \vec{y}) \text{ for training instance } (\vec{x}^\ell, \vec{y}^\ell)$
- ▶ (I.e., find bad  $\tilde{y}$  whose loss and score are both large)
- ▶ If  $w \cdot \phi(\vec{x}^{\ell}, \tilde{y}) + \Delta(\vec{y}^{\ell}, \tilde{y}) < w \cdot \phi(\vec{x}^{\ell}, \vec{y}^{\ell})$ , no bad  $\tilde{y}$  really exists, can terminate
- $\blacktriangleright$  Otherwise, make a new constraint using  $\tilde{y}$  and optimize for w again

#### Decomposable loss examples

- $\blacktriangleright$  Can also be solved via dynamic programming for decomposable (and some non-decomposable)  $\Delta$
- ▶ All-or-nothing  $\Delta_{0/1}(\vec{y}, \vec{y}') = [\![\vec{y} \neq \vec{y}']\!]$
- ▶ Hamming  $\Delta_h(\vec{y}, \vec{y'}) = \sum_t \llbracket y_t \neq y_t' \rrbracket$
- At most three errors  $\Delta_{\leq 3}(y,y') = [\![\Delta_h(y,y') > 3]\!]$
- Dimishing marginal annoyance:
  - ▶ In a sequence of length T there can be  $k \in [0,T]$  mistakes
  - Let the loss be  $\Gamma\left(\sum_t \llbracket y_t \neq y_t' \rrbracket\right)$
  - ► E.g.  $\Gamma(\bullet) = \sqrt{\bullet} \text{ or } \log(1+\bullet)$
- ightharpoonup V(t,m,k) is the largest (loss augmented) score of ending in state m at time t with k mistakes
- $V(0,y_0,0) = 0, V(0, \neq y_0, *) = -\infty$
- $V(t,*,>t)=-\infty$  for all t (cannot make >t mistake up to time t)

## Decomposable loss examples (2)

- Let  $\vec{y}^*$  be the gold sequence
- ▶ Suppose  $y_t^* = m$ , i.e., no mistake at time t

$$V(t, m, k) = \max_{m'} \left\{ V(t - 1, m', k) + w \cdot \varphi(x_t, m', m) \right\}$$

▶ Suppose  $y_t^* \neq m$ , i.e., mistake at time t

$$V(t, m, k) = \max_{m'} \left\{ V(t - 1, m', k - 1) + w \cdot \varphi(x_t, m', m) + \Gamma(k) - \Gamma(k - 1) \right\}$$

- lacktriangle Because loss is nonlinear, must remember and take off the previous loss  $\Gamma(k-1)$  and add current accumulated loss  $\Gamma(k)$
- Check, complete and implement
  - Useful for robust learning with some fraction of 'hopeless' training sequences that just add a noise floor to training loss

#### Conditional probability model

- Another option is to model a conditional probability:  $\Pr(\vec{y}|\vec{x}) \propto \exp(w^{\top}\phi(\vec{x},\vec{y}))$
- ▶ Sometimes written as  $\Pr(\vec{y}|\vec{x};w)$  to make model w explicit
- ▶ Inference is  $\arg\max_{\vec{y}}\Pr(\vec{y}|\vec{x}) = \arg\max_{\vec{y}} w^\top \phi(\vec{x}, \vec{y})$  which is exactly the same as in max-margin training
- ▶ Using a normalizing factor  $Z_w(\vec{x}) = \sum_{\vec{y}} \exp(w^\top \phi(\vec{x}, \vec{y}))$ , we can write  $\Pr(\vec{y}|\vec{x}) = \exp(w^\top \phi(\vec{x}, \vec{y}))/Z_w(x)$
- ightharpoonup Training w amounts to optimizing

$$\arg \max_{w} \prod_{\ell} \Pr(\vec{y}^{\ell} | \vec{x}^{\ell}) = \arg \max_{w} \sum_{\ell} \log \Pr(\vec{y}^{\ell} | \vec{x}^{\ell})$$
$$= \arg \max_{w} \sum_{\ell} w^{\top} \phi(\vec{x}^{\ell}, \vec{y}^{\ell}) - \log Z_{w}(\vec{x}^{\ell})$$

Concave, global maximum, use Newton method

# Computing $\nabla_w \log Z_w(x)$

- First let us find  $Z_w(\vec{x})$  in polynomial time
- ► Recall  $\phi(\vec{x}, \vec{y}) = \sum_{1 \le t \le T} \varphi(x_t, y_{t-1}, y_t)$
- Define partial sums

$$\begin{split} \phi_{\boxed{[1:t]}}(\vec{x}[1:t],\vec{y}[1:t]) &= \sum_{1 \leq \tau \leq t} \varphi(x_\tau,y_{\tau-1},y_\tau) \quad \text{and} \\ \alpha(t,m) &= \sum_{\gamma_1,\dots,\gamma_{t-1}} \exp\Bigl(w \cdot \phi_{[1:t]}\bigl(\vec{x}[1:t],(\gamma_1,\dots,\gamma_{t-1},m)\bigr)\Bigr) \end{split}$$

- ▶ By definition,  $Z_w(\vec{x}) = \sum_m \alpha(T, m)$
- ▶ Base case  $\alpha(0,m)=1$  for all m
- ▶ Recurrence (last transition  $m' \to m$ ):

$$\alpha(t,m) = \sum_{m'} \alpha(t-1,m') \exp(w \cdot \varphi(x_t,m',m))$$

# Computing $\nabla_w \log Z_w(x)$ (2)

- $\nabla_w \log Z_w(x) = \frac{1}{Z_w(x)} \nabla_w Z_w(x) = \frac{1}{Z_w(x)} \sum_{\vec{y}} \nabla_w \exp(w \cdot \phi(\vec{x}, \vec{y})) = \frac{1}{Z_w(x)} \sum_{\vec{y}} \phi(\vec{x}, \vec{y}) \exp(w \cdot \phi(\vec{x}, \vec{y}))$
- $\begin{array}{l} \blacktriangleright \quad \text{Btw,} \\ \frac{1}{Z_w(x)} \sum_{\vec{y}} \phi(\vec{x}, \vec{y}) \exp(w \cdot \phi(\vec{x}, \vec{y})) = \sum_{\vec{y}} \phi(\vec{x}, \vec{y}) \frac{\exp(w \cdot \phi(\vec{x}, \vec{y}))}{Z_w(x)} = \\ \sum_{\vec{y}} \phi(\vec{x}, \vec{y}) \Pr(\vec{y} | x; w) = \mathbb{E}_{\Pr(\vec{y} | \vec{x}; w)} \phi(\vec{x}, \vec{y}) \end{array}$
- Note that this is an expected feature vector
- We have already computed  $Z_w(\vec{x})$ , now we need to compute  $\sum_{\vec{y}} \phi(\vec{x}, \vec{y}) \exp(w \cdot \phi(\vec{x}, \vec{y}))$  efficiently
- ► Again define a partial sum over positions

$$\eta(t,m) = \sum_{\gamma_1,\dots,\gamma_{t-1}} \phi_{[1:t]}(\vec{x}[1:t], (\gamma_1,\dots,\gamma_{t-1},m)) 
\exp(w \cdot \phi_{[1:t]}(\vec{x}[1:t], (\gamma_1,\dots,\gamma_{t-1},m)))$$

- ▶ By definition, our goal is  $\sum_{m} \eta(T, m)$
- ▶ Base case  $\eta(0,m) = \vec{0}$  for all m

## Computing $\nabla_w \log Z_w(x)$ (3)

lacksquare By unrolling out once,  $\eta(t,m)=$ 

$$\sum_{m'} \sum_{\gamma[1:t-2]} \left( \phi_{[1:t-1]}(\vec{x}[1:t-1], \underline{\gamma_1, \dots, \gamma_{t-2}, m'}) + \varphi(x_t, m', m) \right)$$

 $\times \exp\left[w \cdot (\mathsf{same})\right]$ 

Simplifying, we get the recurrence

$$\eta(t,m) = \sum_{m'} \left[ \eta(t-1,m') + \alpha(t-1,m')\varphi(t,x_t,m',m) \right] e^{w\cdot\varphi(x_t,m',m)}$$

- Now we can do gradient descent, e.g., AdaGrad
- Given global convexity, can take advantage of second order methods like L-BFGS

#### Modeling long-range influence

- Long segments can still do dynamic programming, at increased cost
- Can extend from linear chains to trees without pain (probabilistic) context free grammars
- Same token distributed through a document should get correlated labels — general graph, intractable, can only approximate

#### Segment CRF motivation

- ➤ Suppose the "paper title" state has a self-loop with probability 0.9
- ► Then the number of tokens in a paper title follows a geometric distribution with mean 10
- Real data may not support a geometric distribution
- Many long text fields like book or movie title comprise ordinary words (e.g., Gone with the Wind)
- Often easier to recognize because of close phrase match with a dictionary
- Or anomalous words just before and after: ... the script for [GWTW], he had no idea ... for Gone and wind, he
- ► Can't model this at a single token level

#### Segment CRF model

- A segment  $s_j$  is defined by start token offset  $\ell_j$  and end token offset  $u_j$
- $ightharpoonup y_t$  replaced with  $s_j = \langle \ell_j, u_j, y_j \rangle$
- ▶ Feature function extended to  $\varphi(\ell, u, \vec{x}, m', m)$
- ▶ Usually instantiated to  $\varphi(\ell_j, u_j, x_{\ell_j} \dots x_{u_j}, y_{j-1}, y_j)$
- lacktriangle Vector of segments called  $\vec{s}$  similar to  $\vec{y}$



#### Inference for segment CRF

- Suppose J is the length of the longest allowed segment
- Let v(t,m) be the best score of segmentations ending at t with label m
- $\triangleright v(0,m) = 0 \text{ for all } m$
- ▶ If t < 0 then  $v(t, m) = -\infty$
- ▶ In general for t > 0, v(t, m) =

$$\max_{m'} \max_{t'=t-J}^{t-1} v(t',m') + w \cdot \varphi(t'+1,t,\vec{x},m',m)$$

#### Limitations of linear segmentation

- ▶ BizContact → BizName Address BizPhone
- ▶ PersonalContact → PersonName Address HomePhone
- ▶ If we see a 1-800 number, the name is more likely to be a business name
- Conversely, "Associates" in name makes the phone number more likely to be a business number
- ▶ Business numbers are more likely to have "1-800" in them

Fred Jones Fred Jones and Associates

10 Main St. 10 Main St.

Cambridge, MA 02146 Cambridge, MA 02146

(425) 994-8021 1-800-555-1212

## Probabilistic context free grammar (PCFG)

- A context-free grammar (CFG) is a 4-tuple  $G=(N,\Sigma,R,S)$  where:
  - N is a finite set of non-terminal symbols.
  - $ightharpoonup \Sigma$  is a finite set of terminal symbols.
  - ▶ R is a finite set of rules of the form  $X \to Y_1Y_2 \dots Y_n$ , where  $X \in N$ ,  $n \ge 0$ , and  $Y_i \in N \cup \Sigma$  for  $i = 1, \dots, n$ . For simplicity we will assume that n = 1 and n = 2 for productions to terminals and non-terminals respectively.
  - $ightharpoonup S \in N$  is a distinguished start symbol.
- ▶ A PCFG, in addition, has a parameter  $q(\alpha \to \beta) \ge 0$  for each rule  $\alpha \to \beta \in R$
- Interpreted as the conditional probability of choosing this rule in a left-most derivation, given that the non-terminal being expanded is  $\alpha$
- ▶ For any  $X \in N$ ,  $\sum_{\beta} q(X \to \beta) = 1$

#### PCFG example



#### **PCFG** inference

- What is the probability of a sentence given a PCFG, over all possible parse trees?
- What is the most likely parse tree for a sentence?
- ► For simplicity consider the retricted grammar

$$N_i \to w_j, \qquad N_i \to w_j N_k$$

- Let input sequence be  $x_1, \ldots, \underbrace{x_p, \ldots, x_q}_{\text{inside}}, \ldots, x_T$
- lacktriangle Suppose inside span was produced from nonterminal  $N_j$
- ▶ Inside probability is  $\beta_j(p,q) = \Pr(x_{[p:q]}|N_j)$

# CYK<sup>2</sup> dynamic programming algorithm

- ▶ Base case  $\beta_j(k,k) = \Pr(x_k|N_j) = \Pr(N_j \to x_k)$
- General case  $\beta_j(p,q)$  can be decomposed as
  - $lackbox{ Pick two nonterminals to produce } N_j 
    ightarrow N_r N_s$
  - lacksquare Pick a split point [p,d) and [d,q]
  - $ightharpoonup N_r$  (eventually) produces  $x_{[p,d)}$
  - $lackbox{ }N_s$  (eventually) produces  $x_{[d,q]}$

$$N_{\overline{p}}$$
  $N_{\overline{s}}$   $N_{\overline{s}}$   $X[p:d)$   $x[d,q]$ 

$$\beta_j(p,q) = \sum_{r,s} \sum_{p < d < q} \Pr(N_j \to N_r N_s) \beta_r(p,d) \beta_s(d+1,q)$$

- ▶ Probability of the entire sentence is  $\beta_{root}(1,T)$
- ▶ Time  $T^3R$  where R is the number of rules in grammar
- ► For single best parse, replace sums above with max
- Rule probabilities  $\Pr(N \to \zeta)$  estimated from fully labeled data as in HMMs

<sup>&</sup>lt;sup>2</sup>Cocke-Kasami-Younger

### The chart

| Book                                                              | the                                                     | flight | through                                                                             | Houston |
|-------------------------------------------------------------------|---------------------------------------------------------|--------|-------------------------------------------------------------------------------------|---------|
| Each nonterminal<br>that can produce<br>Book, with<br>probability |                                                         |        |                                                                                     |         |
|                                                                   | Each nonterminal that can produce the, with probability |        | Each nonterminal<br>that can produce<br>the flight through,<br>with max probability |         |
|                                                                   |                                                         |        |                                                                                     |         |
|                                                                   | '                                                       |        |                                                                                     |         |
|                                                                   |                                                         |        |                                                                                     |         |

#### Discriminative CFGs

- ▶ Replace the probabilistic form of  $\beta_j(p,q)$  with a score computed from a feature vector and a model weight vector
- ▶ Let  $R_k$  be the rule  $N_i \to \zeta_j$ , where  $\zeta_j$  is a sequence of terminals and nonterminals
- lacktriangle Each rule  $R_k$  has associated model weight vector  $oldsymbol{\lambda}_k \in \mathbb{R}^F$ , say
- From  $\vec{x}$ , span [p,q], and rule  $R_k$ , we extract feature vector  $\pmb{\phi}_k(\vec{x},p,q) \in \mathbb{R}^F$  as well

$$S(N_i \to \zeta_j, p, q) = \boldsymbol{\lambda}_k \cdot \boldsymbol{\phi}_k(\zeta_j, \vec{x}, p, q)$$

- ▶ E.g., the terminals of  $\zeta_j$  will be compared to parts of  $\vec{x}$  to fire some features
- There may be features for each (i,r) pair where nonterminal  $N_r$  occurs in  $\zeta_j$
- As in conditional Markov sequence models, it is ok for  $\phi$  to look at  $\vec{x}$  outside the [p,q] span

## Inference and training

- MAP inference is as in generative PCFGs
- ▶ Here " $\vec{y}$ " is replaced by a parse tree expressed in a suitable structured label format
- ► For discriminative training, must assert constraints corresponding to "all wrong parses" difficult
- Collin's averaged perceptron:

```
for each instance (\vec{x}, y^*) do let \hat{y} be the best parse of \vec{x} using \mathbf{\Lambda} = \{ \boldsymbol{\lambda}_k \} if \hat{y} \neq y^* then for each rule R_k used in \hat{y} but not y^* do if feature f is active/fired in \vec{x} then \boldsymbol{\lambda}_k[f] \leftarrow \boldsymbol{\lambda}_k[f] - 1 for each rule R_k used in y^* but not \hat{y} do if feature f is active/fired in \vec{x} then \boldsymbol{\lambda}_k[f] \leftarrow \boldsymbol{\lambda}_k[f] + 1
```

## Skip-chain CRFs



- The same word within a document is likely to have the same label
- Not universally true, can only encourage but not enforce
- "Green party nominees like John Green did not agree."
- Express potential dependencies between distant occurrences  $x_t, y_t$  and  $x_{t'}, y_{t'}$  using a factor node
- ightharpoonup Can also use factor nodes to couple  $y_t, x_t, y_{t+1}$
- Will explain shortly how to use factor nodes in inference

#### Factor graph

- lacktriangle Bipartite graph, factor layer F, variable layer V
- Assume all variables unobserved (will fix later)
- Factors denoted  $a, b, \ldots$ , variables  $u, v, \ldots$
- ▶ Variable neighbors of factor a denoted N(a)
- Factor neighbors of variable u denoted N(u)
- $ightharpoonup ec{y}$  is an assignment of values to all variables
- ightharpoonup u takes values from  $\mathcal{Y}_u$
- ▶ If  $S \subseteq V$  is a subset of variables,  $\vec{y}_S$  is a vector of values for variables in S
- ightharpoonup S except variable v is denoted  $S \setminus v$
- ▶ E.g.,  $\vec{y}_{N(a)} \in \mathcal{Y}_{N(a)} = \times_{u \in N(a)} \mathcal{Y}_u$  is a cartesian product of domains
- Associated with each factor a is a function  $\Psi_a:\mathcal{Y}_{N(a)}\to\mathbb{R}_+$

# Factor graph (2)

- ▶ Joint distribution over  $\vec{y}$  is written in a factored form as  $\Pr(\vec{y}) \propto \prod_a \Psi_a(\vec{y}_{N(a)})$
- lacktriangle (Will see later how  $\Psi$  can be parameterized)

### Marginals

- ▶ Given a specific value  $\gamma \in \mathcal{Y}_u$  for variable u, what is the marginal probability  $\Pr(Y_u = \gamma)$ ?
- If the number of variables is small, this can be enumerated  $\textstyle \sum_{\vec{y} \in \mathcal{Y}_{V \setminus u}} \Pr(Y_{V \setminus u} = \vec{y}, Y_u = \gamma)$
- Prohibitive for large V, factor graph helps us evaluate
- Exact if at most one cycle, effective heuristic otherwise

## Messages

- $ightharpoonup m_{u 
  ightharpoonup a}$  is a message from variable u to factor a
- $ightharpoonup n_{a o u}$  is a message from factor a to variable u
- lacktriangle Both messages are functions mapping  $\mathcal{Y}_u$  to  $\mathbb{R}_+$
- ► I.e., a message is a table
- For each  $\gamma \in \mathcal{Y}_u$ , nodes a and u will send a positive scalar value to each other
- ▶ Usually written as  $m_{u \to a}(y_u)$  and  $n_{a \to u}(y_u)$
- Where  $y_u$  is a specific value like  $\gamma$  that  $Y_u$ , the random variable, can take
- ightharpoonup In step k,

## Messages (2)

- ▶ Note  $y_v$  is bound by the choice of  $\vec{y} \in \mathcal{Y}_{N(a)\setminus u}$
- ightharpoonup m expressed in terms of n and vice versa
- Converges to correct solution if the graph has at most one cycle
- Called the "sum product" algorithm
- Resemblance to Kleinberg's hubs and authorities iterations

### Max product algorithm

- ▶ Recover single variable marginal as  $\Pr(y_u) \propto \prod_{a \in N(u)} n_{a \to u}(y_u)$
- ▶ Clearly, different to ask for  $\arg\max_{\vec{y}}\Pr(\vec{y})$  where  $\Pr(\vec{y})$  given as product of factors
- ▶ The latter can be solved by max-product belief propagation:

$$n_{a \to u}^{(k)}(y_u) = \max_{\vec{y} \in \mathcal{Y}_{N(a) \setminus u}} \Psi(\vec{y}, y_u) \prod_{v \in N(a) \setminus u} m_{v \to a}^{(k)}(y_v)$$

For proofs see books by Koller and Friedman, or Bishop

# Parameterizing $\Psi$ in factors

Commonly used model

$$\Psi_a(\vec{y}_{N(a)}) = \exp\left(w_a \cdot \phi(\vec{y}_{N(a)})\right)$$

where  $\phi$  is a feature function

- Usually this will result in way too many parameters to train
- ► Therefore we tie the models at different factors by sharing parameters
- Represented easily by one level of indirection
- Let  $\tau(a)$  map from factor a to a template
- Index w not with a but with  $\tau(a)$

$$\Psi_a(\vec{y}_{N(a)}) = \exp\left(w_{\tau(a)} \cdot \phi(\vec{y}_{N(a)})\right)$$

- E.g., in the skip-chain graph,
  - lacktriangle all factors connecting  $y_{t-1}, x_{t-1}, y_t$  share one set of parameters

# Parameterizing $\Psi$ in factors (2)

- all factors at the centers of stars like "Green" share a second set of parameters
- A more common way to write this is using clique templates
- Partition the factor nodes into clusters (also called cliques)  $\{C\}$ , and write

$$\Pr(\vec{y}) = \frac{1}{Z} \prod_{C} \prod_{a \in C} \Psi_a(\vec{y}_{N(a)}) = \frac{1}{Z} \prod_{C} \prod_{a \in C} e^{w_C \cdot \phi(\vec{y}_{N(a)})}$$

Therefore,

$$\log \Pr(\vec{y}) = \sum_{C} \sum_{a \in C} w_C \cdot \phi(\vec{y}_{N(a)}) - \log Z$$

Similar to logistic regression and chain CRF, except that evaluating Z and expected feature vectors will be via belief propagation

#### **Training**

- Note that there is no need to represent labeled examples  $\vec{y}^\ell$  separately, because they can be disconnected components in a single graph
- ▶ The training problem is to find  $\{w_C\}$  for all C so as to maximize

$$\sum_{C} \sum_{a \in C} w_C \cdot \phi(\vec{y}_{N(a)}) - \log Z$$

Given a belief propagation subroutine, write down precise pseudocode for computing the objective and gradient for every iteration of a Newton method

### Partially observed data

- lacktriangle Thus far we have represented all random variables as  $Y_u$  that are unobserved, for simplicity
- lacktriangle Recall we started with both  $ec{x}$  and  $ec{y}$
- In our information extraction applications some variables are observed as  $x_t$ s
- $ightharpoonup \Pr(\vec{y}|\vec{x})$  changes to  $\Pr(\vec{y}|\vec{x})$
- ightharpoonup Z changes to  $Z(\vec{x})$
- $lackbox{} \phi(\vec{y}_{N(a)})$  changes to  $\phi(\vec{x}, \vec{y}_{N(a)})$
- ▶ Note we can still use any part of  $\vec{x}$

### Dual decomposition

- ▶ Indicator variables y(t, m', m) = 1 if positions t 1, t are assigned labels m', m, 0 otherwise
- ▶ Sequence label space  $\mathcal{Y} \in \{0,1\}^{TM^2}$ , size is typically exponential in input size
- (Not all combinations may be used)
- ▶ Inference amounts to finding  $\arg \max_{y \in \mathcal{Y}} h(y)$
- For the linear HMM or CRF objective, h(y) has the form  $\theta \cdot y$ , where  $\theta$  depends on observations  $\vec{x}$
- Why didn't we simply design y(t,m)=1 if position t is labeled m and 0 otherwise? Why pull in m'?
  - Suppose there exists  $\mathcal{Y}' \supset \mathcal{Y}$  such that finding  $\arg \max_{y \in \mathcal{Y}'} \theta \cdot y$  is 'easy'
  - ▶ However, the application requires restricting  $\mathcal{Y}'$  in other ways, e.g.,  $\mathcal{Y} = \{y : y \in \mathcal{Y}' \text{ and } Ay = b\}$

# Dual decomposition (2)

- E.g., restricting labels of some distant tokens to be equal or related can be handled with such constraints
- ightharpoonup Say there are c constraints
- Introduce Lagrangian multipliers  $u \in \mathbb{R}^c$  and define

$$L(u,y) = \theta \cdot y + u \cdot (Ay - b)$$

► The dual problem is

$$\min_{u \in \mathbb{R}^c} L(u) = \min_{u \in \mathbb{R}^c} \left\{ \max_{y \in \mathcal{Y}'} L(u, y) \right\}$$

▶ A 'game' between u and y: y tries to satisfy Ay = b, if not, u tries to drag down L(u,y)

# Dual decomposition (3)

▶ Common approach: set  $u^{(0)} = \vec{0}$ , then:

set 
$$y^{(k)} = \operatorname*{argmax}_{y \in \mathcal{Y}'} L(u^{(k-1)}, y)$$
 followed by 
$$u^{(k)} = u^{(k-1)} - \delta_k (Ay^{(k-1)} - b)$$

where  $\delta_k$  is a stepsize

► Note that

$$\underset{y \in \mathcal{Y}'}{\operatorname{argmax}} L(u^{(k-1)}, y) = \underset{y \in \mathcal{Y}'}{\operatorname{argmax}} \left(\theta \cdot y + u^{(k-1)}(Ay - b)\right)$$
$$= \underset{y \in \mathcal{Y}'}{\operatorname{argmax}} \frac{\theta'}{y} \cdot y$$

which is also 'easy'

Theoretical guarantees in the paper

# Dual decomposition (4)

An extension of the above is where there are two overlapping label spaces  $\mathcal{Y}, \mathcal{Z}$ , with

$$f(y) = y \cdot \theta^{(1)} \quad \text{and} \quad g(z) = z \cdot \theta^{(2)}$$

- ► E.g., joint sequence labeling consistent with parsing
- Or joint coref resolution with entity disambiguation
- The decoding objective is

$$\underset{y \in \mathcal{Y}, z \in \mathcal{Z}}{\operatorname{argmax}} y \cdot \theta^{(1)} + z \cdot \theta^{(2)} \quad \text{s.t.} \quad Ay + Cz = b$$

▶ Same approach as before: relax  $\mathcal{Y}, \mathcal{Z}$  to  $\mathcal{Y}', \mathcal{Z}'$  and define

$$\min_{u} \max_{y,z} L(u, y, z) = \min_{u} \left\{ \max_{y,z} y \cdot \theta^{(1)} + z \cdot \theta^{(2)} + u(Ay + Cz - b) \right\}$$

# Dual decomposition (5)

▶ Set  $u^{(0)} = \vec{0}$ , and alternate

$$y^{(k)}, z^{(k)} = \operatorname*{argmax}_{y,z} L(u^{(k-1)}, y, z)$$
 with 
$$u^{(k)} = u^{(k-1)} - \delta_k (Ay^{(k)} + Cz^{(k)} - b)$$

Again, note that updating  $y^{(k)}, z^{(k)}$  amounts to separately optimizing

$$\operatorname*{argmax}_{y \in \mathcal{Y}'} y \cdot \tilde{\theta}^{(1)} \qquad \text{and} \qquad \operatorname*{argmax}_{z \in \mathcal{Z}'} z \cdot \tilde{\theta}^{(2)}$$

▶ Unlike in max-product message passing, at the end of above optimization we still need to round the fractional solutions to feasible 0/1 solutions

### Dependency parsing

- PCFGs are used for constituency parsing, which reveal the hierarchical phrase/clause structure of the sentence; intermediate levels of the hierarchy are represented by nonterminal nodes
- ▶ In contrast, a dependency parse connects pairs of words in a tree structure without introducing new nodes; edges connecting words are labeled with the nature of relationship between them
- Important techniques:
  - Maximum rooted directed arborescence
  - "Deterministic" shift-reduce style
- Apart from standard NLP tasks, used for:
  - Composing continuous representation of sentences
  - Translating questions into structured query plans
  - ► Features in fine type tagging, relation extraction

```
http://nlp.stanford.edu:8080/corenlp/
https://stp.lingfil.uu.se/~nivre/docs/ACLslides.pdf
```

# Embeddings and neural techniques

#### Distributional vectors and word clusters

- Finite labeled data, feature sparsity, and out-of-vocabulary (OOV) words/features have always troubled POS and NER tagging and estimating n-gram statistics
- E.g. we saw <u>car</u> in the training sequences but never <u>sedan</u>, or <u>Shanghai</u> in test data but only other cities in training data
- But an unlabeled corpus has enough clues that these are related words
- ► A well-established partial fix is word cluster features
- First proposed by IBM researchers in 1992 http://aclweb.org/anthology/J/J92/J92-4003.pdf
- ▶ Given a word like <u>sedan</u>, collect all context windows (say) at most 11 words wide centered on it
- From these contexts collect a bag of other words, count them
- Possibly transform from raw counts to TFIDF

# Distributional vectors and word clusters (2)

- Represent as a sparse vector in a space as large as the corpus vocabulary; perhaps scale to unit length
- This is the distributional vector for sedan
- ► Turns out the d.v.'s of similar/related words are similar
- Can cluster these d.v.'s using standard clustering tools; see https://en.wikipedia.org/wiki/Brown\_clustering
- ▶ In standard CRF implementations, one of the features for each token is its cluster ID
- The best number of clusters may be application-dependent

## Word embeddings

- ▶ In a token window, the focus token f is at the center and others are context tokens c
- ▶ Each word in the vocabulary is associated with two embeddings,  $u_w \in \mathbb{R}^D$  as focus and  $v_w \in \mathbb{R}^D$  as context
- Typically D ranges from 100 to 1000
- lacktriangle Two dominant paradigms to train  $oldsymbol{U},oldsymbol{V}$

GloVe: 
$$\log X_{fc} \approx u_f \cdot v_c + b_f + b_c$$
,

where  $b_w \in \mathbb{R}$  is a per-word offset and  $X_{fc}$  is the cooccurrence count of words f and c, and

Word2vec: 
$$\Pr(f, c \text{ cooccur}) = \sigma(u_f \cdot v_c),$$

where  $\sigma(\bullet) = 1/(1 + e^{-\bullet})$  is the sigmoid function

# Word embeddings (2)

- Variations of low-rank factorization of a transformed cooccurrence matrix
- Usually only U used for downstream tasks, one vector per word, usually scaled to unit L2 norm
- Although not explicitly trained to those ends, the focus embeddings are useful for many tasks
  - $u_{\rm auto} \approx u_{\rm sedan}$
  - $ightharpoonup u_{\text{king}} u_{\text{man}} + u_{\text{woman}} pprox u_{\text{queen}}$ , etc.
- A common use of word embeddings is to inject them into sequential networks as " $x_t$ "

## Using word embeddings in sequence labeling

- lacktriangle Concatenate  $u_{
  m sedan}$  with all other lexical and derived features of  ${
  m sedan}$
- ▶ If D=300 and we had 20000 lexical features and 50 derived features, now we have F=20350 features
- (May need some scaling of feature groups so embeddings don't crowd out the high-info derived features)
- Note, the embeddings themselves do not adapt to the task (POS/NER/etc.) at hand
- Best current approach:
  - Directly build neural network to translate from sequence of continuous vectors to sequence of continuous vectors/states
  - ► Learn a translation from continuous to discrete states demanded by application
  - Train through backprop

## Standard neural network terminology

- ▶ A **hidden layer** inputs a vector  $x \in \mathbb{R}^I$ , multiplies by a matrix  $W \in \mathbb{R}^{I \times O}$ , and outputs an output vector  $y = xW \in \mathbb{R}^O$
- ▶ Often a vector  $b \in \mathbb{R}^O$  is added; i.e., y = xW + b
- Usually a hidden layer then applies a nonlinearity
- ▶ **Nonlinearity**, generically denoted  $\sigma(\bullet)$ , applied elementwise to input scalar, vector, matrix or tensor
  - ► Sigmoid:  $\sigma(\bullet) = 1/(1 + e^{-\bullet})$
  - ► Rectified linear unit (ReLU):  $\sigma(\bullet) = \max\{0, \bullet\}$
  - ► Tanh:  $\sigma(\bullet) = \tanh(\bullet) = \frac{e^{\bullet} e^{-\bullet}}{e^{\bullet} + e^{-\bullet}}$

# Standard neural network terminology (2)

When to use each?



 Sometimes a nonlinearity has its own associated model weights to be learnt, e.g.,

$$\sigma_{a,b}(\bullet) = \frac{1}{1 + \exp(-b(\bullet - a))}$$

which changes the offset (a) and slope (b) of saturation

- Or it may be folded into the preceding hidden layer by appending a constant dimension to the input vector
- ▶ I.e., the typical hidden layer amounts to  $y = \sigma(xW + b)$

# Standard neural network terminology (3)

- A softmax layer turns K real (positive or negative) numbers  $a_1,\ldots,a_K$  into a K-way multinomial distribution as  $b_k=\exp(a_k)/\sum_{k'}\exp(a_{k'})$
- ► Typically used for transforming the output of a hidden layer into a multinomial distribution over labels
- ▶ Elementwise product of tensors  $x \circ y$
- Tensorflow hello world: regression.py, svm.py

### Basic network template

- Discrete state  $y_t$  replaced with continuous vector states  $h_t$ ; usually  $h_0 = \vec{0}$
- ▶ The transition network inputs previous state  $h_{t-1}$  and current input  $x_t$  (also continuous form) and outputs current state  $h_t$
- $ightharpoonup y_t$  for end application derived from  $h_t$  using an output network ending in a softmax



### Basic recurrent network (RNN)

► The transition network and the output network are standard multi-layer neural networks with linear combinations and nonlinearities at every hidden layer

Elman network: 
$$h_t = \sigma(x_t \red{W}_h + h_{t-1} \red{U}_h + b_h)$$
 
$$y_t = \sigma(h_t \red{W}_y + b_y)$$
 Jordan network: 
$$h_t = \sigma(x_t \red{W}_h + \red{y_{t-1}} \red{U}_h + b_h)$$
 
$$y_t = \sigma(h_t \red{W}_y + b_y)$$

- ▶ Weights  $W_h, U_h, b_h$  of transition networks at all positions are tied; same for weights  $W_y, b_y$  in the output network
- Potential problems: vanishing or exploding gradient

# Gated recurrent unit (GRU)

```
\begin{array}{ll} \text{Reset} & r_t = \sigma(x_tW_r + h_{t-1}U_r + b_r) \\ \text{Combine} & c_t = \tanh(x_tW_h + (r_t \circ h_{t-1})U_h + b_h) \\ \text{Update} & z_t = \sigma(x_tW_z + h_{t-1}U_z + b_z) \\ \text{Output} & h_t = (1 - z_t) \circ h_{t-1} + z_t \circ c_t \end{array}
```

- $ightharpoonup \sigma$  is sigmoid; other nonlinearities specified explicitly
- $ightharpoonup r_t$  decides if  $c_t$  is computed as in a basic RNN, or  $h_{t-1}$  is discarded and only  $x_t$  is used
- $ightharpoonup z_t$  decides how to blend  $c_t$  and  $h_{t-1}$  as-is
- ▶ If we set by force  $r_t \approx 1$  and  $z_t \approx 1$ , equivalent to basic RNN
- https://arxiv.org/abs/1412.3555

# Long short-term memory (LSTM)

$$\begin{array}{ll} \text{In} & i_t = \sigma(x_tU_i + h_{t-1}W_i + b_i) \\ \text{Forget} & f_t = \sigma(x_tU_f + h_{t-1}W_f + b_f) \\ \text{Out} & o_t = \sigma(x_tU_o + h_{t-1}W_o + b_o) \\ \text{RNN} & g_t = \tanh(x_tU_g + h_{t-1}W_g + b_g) \\ \text{Memory} & c_t = c_{t-1} \circ f_t + g_t \circ i_t \\ \text{State} & h_t = \tanh(c_t) \circ o_t \end{array}$$

- Understanding LSTMs
- Accuracy comparable to GRUs
- Widely used for sequence labeling, sequence-to-sequence comparison, sequence-to-sequence translation, etc.
- Usually left-to-right and right-to-left LSTMs in tandem as a bi-LSTM; captures context from both sides
- Unreasonable effectiveness

#### Composition along parse trees

- ▶ If we have a reliable dependency or constituency parse, makes sense to use it for composing word vectors
- $lackbox{Words }a,b,$  with vectors  $w_a,w_b\in\mathbb{R}^D$ , are children of internal node c
- lackbox First-cut: Fit  $w_c = \sigma\left(M egin{bmatrix} w_a \\ w_b \end{bmatrix}
  ight)$  where  $M \in \mathbb{R}^{D imes 2D}$
- Single M unlikely to be able to capture all natural language 'operators'
- Associate each word a with vector  $w_a \in \mathbb{R}^D$  and matrix  $M_a \in \mathbb{R}^{D \times 2D}$
- Let  $w_c = \sigma\left(\frac{M_0}{M_0} \begin{bmatrix} M_b w_a \\ M_a w_b \end{bmatrix}\right)$  where  $M_0 \in \mathbb{R}^{D \times 2D}$  is a global matrix

# Composition along parse trees (2)

Each word operates on the other, results combined



- For compositionality, must define  $M_c$  as well:  $M_c = M_1 \begin{bmatrix} M_a \\ M_b \end{bmatrix}$  where  $M_1 \in \mathbb{R}^{D \times 2D}$  is another global matrix
- Overall loss depends on task at hand
  - $\blacktriangleright$   $w_{\mathsf{root}}$  can be mapped to  $\operatorname{softmax}(M_{\mathsf{root}}w_{\mathsf{root}})$  for classification tasks
  - ► IMDB movie reviews: unbelievably sad, really awesome, pretty bad, not terrible

## Composition along parse trees (3)

| Method                 | Avg KL |
|------------------------|--------|
| $\frac{1}{2}(w_a+w_b)$ | 0.103  |
| $w_a \circ w_b$        | 0.103  |
| $M_a w_b$              | 0.103  |
| MV-RNN                 | 0.091  |

- Classifying semantic relationships
  - "My [apartment] $_{e_1}$  has a pretty large [kitchen] $_{e_2}$ "  $\longrightarrow$  component-whole

| Sentence with labeled nouns for which to predict relationships                                                 |
|----------------------------------------------------------------------------------------------------------------|
| Avian [influenza] $_{e1}$ is an infectious disease caused by type a strains of the influenza [virus] $_{e2}$ . |
| The $[mother]_{e1}$ left her native $[land]_{e2}$ about the same time and they were married in that city.      |
| Roadside [attractions] $_{e1}$ are frequently advertised with [billboards] $_{e2}$ to attract tourists.        |
| A child is told a [lie] $_{e1}$ for several years by their [parents] $_{e2}$ before he/she realizes that       |
| The accident has spread $[oil]_{e1}$ into the $[ocean]_{e2}$ .                                                 |
| The siege started, with a [regiment] $_{e1}$ of lightly armored [swordsmen] $_{e2}$ ramming down the gate.     |
| The core of the [analyzer] $_{e1}$ identifies the paths using the constraint propagation [method] $_{e2}$ .    |
| The size of a [tree] $_{e1}$ [crown] $_{e2}$ is strongly correlated with the growth of the tree.               |
| The hidden [camera]e1, found by a security guard, was hidden in a business card-sized [leaflet                 |
| $box]_{e2}$ placed at an unmanned ATM in Tokyo's Minato ward in early September.                               |
|                                                                                                                |

## Composition along parse trees (4)

#### ▶ Performance on SemEval-2010, task 8

| SVM POS, stemming, syntactic patterns                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Classifier | Feature Sets                         | F1   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------|------|
| SVM POS, WordNet, stemming, syntactic patterns  SVM POS, WordNet, morphological features, thesauri, Google n-grams  MaxEnt POS, WordNet, morphological features, noun compound system, thesauri, Google n-grams  SVM POS, WordNet, prefixes and other morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner  RNN - 74.8  Lin.MVR POS,WordNet,NER 77.6  Lin.MVR POS,WordNet,NER 77.6  SVM POS, WordNet,NER 78.7 | SVM        | POS, stemming, syntactic patterns    | 60.1 |
| patterns  SVM POS, WordNet, morphological features, thesauri, Google n-grams  MaxEnt POS, WordNet, morphological features, noun compound system, thesauri, Google n-grams  SVM POS, WordNet, prefixes and other morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner  RNN - 74.8  Lin.MVR - 73.0  MV-RNN - 79.1  RNN POS,WordNet,NER 77.6  Lin.MVR POS,WordNet,NER 78.7                                       | SVM        | word pair, words in between          |      |
| SVM POS, WordNet, morphological features, thesauri, Google n-grams  MaxEnt POS, WordNet, morphological features, noun compound system, thesauri, Google n-grams  SVM POS, WordNet, prefixes and other morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner  RNN - 74.8  Lin.MVR - 73.0  MV-RNN - 79.1  RNN POS,WordNet,NER 77.6  Lin.MVR POS,WordNet,NER 78.7                                                 | SVM        | POS, WordNet, stemming, syntactic    | 74.8 |
| Tures, thesauri, Google n-grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | patterns                             |      |
| MaxEnt POS, WordNet, morphological features, noun compound system, the sauri, Google n-grams  SVM POS, WordNet, prefixes and other morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner  RNN - 74.8 Lin.MVR NO- 79.1 RNN POS,WordNet,NER 77.6 Lin.MVR POS,WordNet,NER 78.7                                                                                                                                    | SVM        | POS, WordNet, morphological fea-     | 77.6 |
| tures, noun compound system, the- sauri, Google n-grams  SVM POS, WordNet, prefixes and other morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, Tex- tRunner  RNN - 74.8  Lin.MVR - 73.0  MV-RNN - 79.1  RNN POS,WordNet,NER 77.6  Lin.MVR POS,WordNet,NER 78.7                                                                                                                                                       |            | tures, the sauri, Google $n$ -grams  |      |
| Sauri, Google n-grams   SVM   POS, WordNet, prefixes and other morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner   TA4.8                                                                                                                                                                                                                                                                                   | MaxEnt     | POS, WordNet, morphological fea-     | 77.6 |
| SVM POS, WordNet, prefixes and other morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner  RNN - 74.8 Lin.MVR - 73.0 MV-RNN - 79.1 RNN POS,WordNet,NER 77.6 Lin.MVR POS,WordNet,NER 78.7                                                                                                                                                                                                                      |            | tures, noun compound system, the-    |      |
| morphological features, POS, dependency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner                                                                                                                                                                                                                                                                                                                                                          |            | sauri, Google n-grams                |      |
| dency parse features, Levin classes, PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner   74.8                                                                                                                                                                                                                                                                                                                                                                                     | SVM        | POS, WordNet, prefixes and other     | 82.2 |
| PropBank, FrameNet, NomLex-Plus, Google n-grams, paraphrases, TextRunner                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | morphological features, POS, depen-  |      |
| Google n-grams, paraphrases, Tex-<br>tRunner                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | dency parse features, Levin classes, |      |
| RNN   -     74.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | PropBank, FrameNet, NomLex-Plus,     |      |
| RNN         -         74.8           Lin.MVR         -         73.0           MV-RNN         -         79.1           RNN         POS,WordNet,NER         77.6           Lin.MVR         POS,WordNet,NER         78.7                                                                                                                                                                                                                                                                                    |            | Google n-grams, paraphrases, Tex-    |      |
| Lin.MVR         -         73.0           MV-RNN         -         79.1           RNN         POS, WordNet, NER         77.6           Lin.MVR         POS, WordNet, NER         78.7                                                                                                                                                                                                                                                                                                                     |            | tRunner                              |      |
| MV-RNN         -         79.1           RNN         POS,WordNet,NER         77.6           Lin.MVR         POS,WordNet,NER         78.7                                                                                                                                                                                                                                                                                                                                                                  | RNN        | -                                    | 74.8 |
| RNN POS,WordNet,NER 77.6<br>Lin.MVR POS,WordNet,NER 78.7                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lin.MVR    | -                                    | 73.0 |
| Lin.MVR POS,WordNet,NER 78.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MV-RNN     | -                                    | 79.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RNN        | POS,WordNet,NER                      | 77.6 |
| MV-RNN POS WordNet NER 82.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lin.MVR    | POS,WordNet,NER                      | 78.7 |
| 11. 14.1. 1 00, Hotal legitim                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MV-RNN     | POS,WordNet,NER                      | 82.4 |

Table 4: Learning methods, their feature sets and F1 results for predicting semantic relations between nouns. The MV-RNN outperforms all but one method without any additional feature sets. By adding three such features, it obtains state of the art performance.

#### Convolutional networks over text

- ► Composing continuous representation without parses
- Understanding convnets for NLP

#### References

- [1] D. Freitag and A. McCallum, "Information extraction using HMMs and shrinkage," in *Papers from the AAAI-99 Workshop on Machine Learning for Information Extraction*, 1999, pp. 31–36.
- [2] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, "Large margin methods for structured and interdependent output variables," *JMLR*, vol. 6, no. Sep., pp. 1453–1484, 2005. [Online]. Available: http://ttic.uchicago.edu/~altun/pubs/TsoJoaHofAlt-JMLR.pdf
- [3] J. Lafferty, A. McCallum, and F. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in *ICML*, 2001, pp. 282–289.
- [4] F. Sha and F. Pereira, "Shallow parsing with conditional random fields," in *HLT-NAACL*, 2003, pp. 134–141. [Online]. Available: http://acl.ldc.upenn.edu/N/N03/N03-1028.pdf
- [5] X. Ling and D. S. Weld, "Fine-grained entity recognition." in *AAAI*, 2012. [Online]. Available: http://xiaoling.github.io/pubs/ling-aaai12.pdf

### References (2)

- [6] D. Gillick, N. Lazic, K. Ganchev, J. Kirchner, and D. Huynh, "Context-dependent fine-grained entity type tagging," arXiv preprint arXiv:1412.1820, 2014. [Online]. Available: https://arxiv.org/pdf/1412.1820.pdf
- [7] D. Yogatama, D. Gillick, and N. Lazic, "Embedding methods for fine grained entity type classification," in ACL Conference, 2015, pp. 26–31. [Online]. Available: http://anthology.aclweb.org/P/P15/P15-2048.pdf
- [8] S. Shimaoka, P. Stenetorp, K. Inui, and S. Riedel, "An attentive neural architecture for fine-grained entity type classification," arXiv preprint arXiv:1604.05525, 2016. [Online]. Available: https://arxiv.org/pdf/1604.05525.pdf
- Y. Yaghoobzadeh, H. Adel, and H. Schütze, "Noise mitigation for neural entity typing and relation extraction," arXiv preprint arXiv:1612.07495, 2016. [Online]. Available: https://arxiv.org/pdf/1612.07495.pdf

## References (3)

- [10] S. Dill et al., "SemTag and Seeker: Bootstrapping the semantic Web via automated semantic annotation," in WWW Conference, 2003, pp. 178–186.
- [11] R. Mihalcea and A. Csomai, "Wikify!: linking documents to encyclopedic knowledge," in *CIKM*, 2007, pp. 233–242. [Online]. Available: http://portal.acm.org/citation.cfm?id=1321440.1321475
- [12] R. Bunescu and M. Pasca, "Using encyclopedic knowledge for named entity disambiguation," in EACL, 2006, pp. 9–16. [Online]. Available: http://www.cs.utexas.edu/~ml/papers/encyc-eacl-06.pdf
- [13] S. Cucerzan, "Large-scale named entity disambiguation based on Wikipedia data," in *EMNLP Conference*, 2007, pp. 708–716. [Online]. Available: http://www.aclweb.org/anthology/D/D07/D07-1074
- [14] J. Hoffart et al., "Robust disambiguation of named entities in text," in EMNLP Conference. Edinburgh, Scotland, UK: SIGDAT, Jul. 2011, pp. 782–792. [Online]. Available: http://aclweb.org/anthology/D/D11/D11-1072.pdf

## References (4)

- [15] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti, "Collective annotation of Wikipedia entities in Web text," in SIGKDD Conference, 2009, pp. 457–466. [Online]. Available: http://www.cse.iitb.ac.in/~soumen/doc/CSAW/
- [16] A. Globerson, N. Lazic, S. Chakrabarti, A. Subramanya, M. Ringgaard, and F. Pereira, "Collective entity resolution with multi-focal attention," in ACL Conference, 2016, pp. 621–631. [Online]. Available: https://www.aclweb.org/anthology/P/P16/P16-1059.pdf
- [17] I. Yamada, H. Shindo, H. Takeda, and Y. Takefuji, "Joint learning of the embedding of words and entities for named entity disambiguation," arXiv preprint arXiv:1601.01343, 2016. [Online]. Available: https://arxiv.org/pdf/1601.01343.pdf
- [18] O.-E. Ganea and T. Hofmann, "Deep joint entity disambiguation with local neural attention," *arXiv preprint arXiv:1704.04920*, 2017. [Online]. Available: https://arxiv.org/pdf/1704.04920.pdf

## References (5)

- [19] N. Lazic, A. Subramanya, M. Ringgaard, and F. Pereira, "Plato: A selective context model for entity resolution," *TACL*, vol. 3, pp. 503–515, 2015. [Online]. Available: http://anthology.aclweb.org/Q/Q15/Q15-1036.pdf
- [20] N. Ge, J. Hale, and E. Charniak, "A statistical approach to anaphora resolution," in *Proceedings of the sixth workshop on very large corpora*, vol. 71, 1998, p. 76. [Online]. Available: http://www.aclweb.org/anthology/W98-1119
- [21] M. Charikar, V. Guruswami, and A. Wirth, "Clustering with qualitative information," in FOCS Conference, 2003, pp. 524–533. [Online]. Available: http://www.cs.mu.oz.au/~awirth/pubs/awirthFocs03.pdf
- [22] S. Sarawagi and A. Bhamidipaty, "Interactive deduplication using active learning," in SIGKDD Conference, ser. KDD '02. New York, NY, USA: ACM, 2002, pp. 269–278. [Online]. Available: http://www.cse.iitb.ac.in/~sunita/papers/kdd02.pdf

# References (6)

- [23] N. Bansal, A. Blum, and S. Chawla, "Correlation clustering," in FOCS Conference, 2002, p. 238. [Online]. Available: http://www.cs.cmu.edu/~shuchi/papers/clusteringfull.pdf
- [24] A. McCallum and B. Wellner, "Conditional models of identity uncertainty with application to noun coreference," in NIPS Conference, 2004, pp. 905–912. [Online]. Available: https://papers.nips.cc/paper/2557-conditional-models-of-identity-uncertainty-with-application-to-noun-coreference.pdf
- [25] P. Singla and P. Domingos, "Object identification with attribute-mediated dependences," in *PKDD Conference*, Porto, Portugal, 2005, pp. 297–308. [Online]. Available: http://www.cs.washington.edu/homes/parag/paper s/object-mediated-pkdd05.pdf
- [26] V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts?" *IEEE PAMI*, vol. 26, no. 2, pp. 147–159, Feb. 2004. [Online]. Available: http://www.cs.cornell.edu/rdz/Papers/KZ-ECCV02-graphcuts.pdf

## References (7)

- [27] D. M. Greig, B. T. Porteous, and A. Seheult, "Exact maximum a posteriori estimation for binary images," *Journal of the Royal Statistical Society*, vol. B, no. 51, pp. 271–279, 1989. [Online]. Available: http://jstor.org/stable/2345609
- [28] M. Hearst, "Automatic acquisition of hyponyms from large text corpora," in *International Conference on Computational Linguistics*, vol. 14, 1992, pp. 539–545. [Online]. Available: http://www.aclweb.org/website/old\_anthology/C/C92/C92-2082.pdf
- [29] O. Etzioni, M. Cafarella et al., "Web-scale information extraction in KnowltAll," in WWW Conference. New York: ACM, 2004. [Online]. Available: http: //www.cs.washington.edu/research/knowitall/papers/www-paper.pdf
- [30] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni, "Open information extraction from the Web," in *IJCAI*, M. M. Veloso, Ed., 2007, pp. 2670–2676. [Online]. Available: http://www.ijcai.org/papers07/Papers/IJCAI07-429.pdf

# References (8)

- [31] H. Poon and P. Domingos, "Unsupervised semantic parsing," in EMNLP Conference, 2009, pp. 1–10. [Online]. Available: http://anthology.aclweb.org/D/D09/D09-1001.pdf
- [32] L. Yao, A. Haghighi, S. Riedel, and A. McCallum, "Structured relation discovery using generative models," in *EMNLP Conference*, 2011, pp. 1456–1466. [Online]. Available: http://anthology.aclweb.org/D/D11/D11-1135.pdf
- [33] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin, "Relation extraction with matrix factorization and universal schemas," in *NAACL Conference*, 2013, pp. 74–84. [Online]. Available: http://www.anthology.aclweb.org/N/N13/N13-1008.pdf
- [34] S. Brin, "Extracting patterns and relations from the World Wide Web," in WebDB Workshop, ser. LNCS, P. Atzeni, A. O. Mendelzon, and G. Mecca, Eds., vol. 1590. Valencia, Spain: Springer, Mar. 1998, pp. 172–183. [Online]. Available: http://ilpubs.stanford.edu:8090/421/1/1999-65.pdf

## References (9)

- [35] E. Agichtein and L. Gravano, "Snowball: Extracting relations from large plain-text collections," in *ICDL*, 2000, pp. 85–94. [Online]. Available: http://www.academia.edu/download/31007490/cucs-033-99.pdf
- [36] R. C. Bunescu and R. J. Mooney, "A shortest path dependency kernel for relation extraction," in *EMNLP Conference*. ACL, 2005, pp. 724–731. [Online]. Available: http://acl.ldc.upenn.edu/H/H05/H05-1091.pdf
- [37] M. Surdeanu, J. Tibshirani, R. Nallapati, and C. D. Manning, "Multi-instance multi-label learning for relation extraction," in EMNLP Conference, 2012, pp. 455–465. [Online]. Available: http://anthology.aclweb.org/D/D12/D12-1042.pdf
- [38] G. Angeli, J. Tibshirani, J. Wu, and C. D. Manning, "Combining distant and partial supervision for relation extraction." in *EMNLP Conference*, 2014, pp. 1556–1567. [Online]. Available: http://www.anthology.aclweb.org/D/D14/D14-1164.pdf

#### References (10)

- [39] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. S. Weld, "Knowledge-based weak supervision for information extraction of overlapping relations," in *ACL Conference*, 2011, pp. 541–550. [Online]. Available: http://anthology.aclweb.org/P/P11/P11-1055.pdf
- [40] B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek, "Distant supervision for relation extraction with an incomplete knowledge base." in NAACL Conference, 2013, pp. 777–782. [Online]. Available: http://www.anthology.aclweb.org/N/N13/N13-1095.pdf
- [41] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, "Learning structured embeddings of knowledge bases," in *AAAI Conference*, 2011, pp. 301–306. [Online]. Available: http://www.aaai.org/ocs/index.php /AAAI/AAAI11/paper/viewFile/3659/3898
- [42] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, "Translating embeddings for modeling multi-relational data," in NIPS Conference, 2013, pp. 2787–2795. [Online]. Available: http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf

### References (11)

- [43] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, "Knowledge graph embedding via dynamic mapping matrix." in ACL Conference, 2015, pp. 687–696. [Online]. Available: http://www.aclweb.org/anthology/P/P15/P15-1067.pdf
- [44] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun, "Order-embeddings of images and language," arXiv preprint arXiv:1511.06361, 2015. [Online]. Available: https://arxiv.org/pdf/1511.06361
- [45] K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choudhury, and M. Gamon, "Representing text for joint embedding of text and knowledge bases," in *EMNLP Conference*, 2015, pp. 1499–1509. [Online]. Available: https://www.aclweb.org/anthology/D/D15/D15-1174.pdf
- [46] P. D. Turney, "Mining the Web for synonyms: PMI-IR versus LSA on TOEFL," in ECML, 2001.

#### References (12)

- [47] J. Zhu, Z. Nie, B. Zhang, and J.-R. Wen, "Dynamic hierarchical Markov random fields and their application to Web data extraction," in *ICML*, 2007, pp. 1175–1182. [Online]. Available: http://www.machinelearning.org/proceedings/icml2007/papers/215.pdf
- [48] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan, "Keyword searching and browsing in databases using BANKS," in *ICDE*. IEEE, 2002.
- [49] S. Agrawal, S. Chaudhuri, and G. Das, "DBXplorer: A system for keyword-based search over relational databases," in *ICDE*. San Jose, CA: IEEE, 2002.
- [50] V. Hristidis, L. Gravano, and Y. Papakonstantinou, "Efficient IR-style keyword search over relational databases," in VLDB Conference, 2003, pp. 850–861. [Online]. Available: http://www.db.ucsd.edu/publications/VLDB2003cr.pdf
- [51] G. Jeh and J. Widom, "Scaling personalized web search," in WWW Conference, 2003, pp. 271–279. [Online]. Available: http://www2003.org/cdrom/papers/refereed/p185/html/p185-jeh.html

### References (13)

- [52] T. H. Haveliwala, "Topic-sensitive PageRank," in WWW Conference, 2002, pp. 517–526. [Online]. Available: http://www2002.org/CDROM/refereed/127/index.html
- [53] A. Balmin, V. Hristidis, and Y. Papakonstantinou, "Authority-based keyword queries in databases using ObjectRank," in VLDB Conference, Toronto, 2004.
- [54] M. J. Cafarella, C. Re, D. Suciu, O. Etzioni, and M. Banko, "Structured querying of web text: A technical challenge," in CIDR, 2007, pp. 225–234. [Online]. Available: http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p25.pdf
- [55] S. Chakrabarti, K. Puniyani, and S. Das, "Optimizing scoring functions and indexes for proximity search in type-annotated corpora," in WWW Conference, Edinburgh, May 2006, pp. 717–726. [Online]. Available: http://www.cse.iitb.ac.in/~soumen/doc/www2006i

### References (14)

- [56] T. Cheng, X. Yan, and K. C.-C. Chang, "EntityRank: Searching entities directly and holistically," in VLDB Conference, Sep. 2007, pp. 387–398. [Online]. Available: http: //www-forward.cs.uiuc.edu/pubs/2007/entityrank-vldb07-cyc-jul07.pdf
- [57] S. Chakrabarti, "Dynamic personalized PageRank in entity-relation graphs," in *WWW Conference*, Banff, May 2007. [Online]. Available: http://www.cse.iitb.ac.in/~soumen/doc/netrank/
- [58] P. Sarkar, A. W. Moore, and A. Prakash, "Fast incremental proximity search in large graphs," in *ICML*, 2008, pp. 896–903. [Online]. Available: http://icml2008.cs.helsinki.fi/papers/565.pdf
- [59] D. Milne and I. H. Witten, "Learning to link with Wikipedia," in CIKM, 2008, pp. 509–518. [Online]. Available: http://www.cs.waikato.ac.nz/~d nk2/publications/CIKM08-LearningToLinkWithWikipedia.pdf

#### References (15)

- [60] G. Kasneci, F. M. Suchanek, G. Ifrim, S. Elbassuoni, M. Ramanath, and G. Weikum, "NAGA: harvesting, searching and ranking knowledge," in SIGMOD Conference. ACM, 2008, pp. 1285–1288. [Online]. Available: http://www.mpi-inf.mpg.de/~kasneci/naga/
- [61] F. M. Suchanek, G. Kasneci, and G. Weikum, "YAGO: A core of semantic knowledge unifying WordNet and Wikipedia," in WWW Conference. ACM Press, 2007, pp. 697–706. [Online]. Available: http://www2007.org/papers/paper391.pdf
- [62] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," in NIPS Conference, 2013, pp. 3111–3119. [Online]. Available: https://goo.gl/x3DTzS
- [63] J. Pennington, R. Socher, and C. D. Manning, "GloVe: Global vectors for word representation." in *EMNLP Conference*, vol. 14, 2014, pp. 1532–1543. [Online]. Available: http://www.emnlp2014.org/papers/pdf/EMNLP2014162.pdf

### References (16)

- [64] N. Lao and W. W. Cohen, "Relational retrieval using a combination of path-constrained random walks," *Machine Learning*, vol. 81, no. 1, pp. 53–67, Oct. 2010. [Online]. Available: http://dx.doi.org/10.1007/s10994-010-5205-8
- [65] S. Sarawagi, "Information extraction," FnT Databases, vol. 1, no. 3, 2008. [Online]. Available: http://www.cse.iitb.ac.in/~sunita/papers/ieSurvey.pdf