Topic 16 Programmable Logic Device

Outline

- Programmable Logic Devices (PLD)
- Programmable Logic Array (PLA)
- Programmable Array Logic (PAL)
- Complex Programmable Logic Device (CPLD)
- Field Programmable Gate Array (FPGA)

Programmable Logic Devices

PLD

- First introduced in 1970s
- Can be viewed as a "black box" containing logic gates and programmable switches
 - The logic gates and programmable switches can be customized to implement specific logic circuit
- Simple programmable logic devices (SPLD)
 - Programmable logic array (PLA)
 - Programmable array logic (PAL)
- Complex programmable logic array (CPLD)
- Field-programmable gate array (FPGA)

Programmable Logic Array (PLA)

- Comprises a collection of buffers, inverters, AND gates, OR gates
- Can be used to realize logic circuit in sum-of-products (SOP) form,
- Example:
 f = x'yz + xy

$$f = x'yz + xy'z'$$

Programmable Logic Array (PLA)

- Buffers and inverters provide both true value and complement of each input
- AND plane provides the product terms
- OR plane provides the sum of the product terms
- Example:

$$- P1 = x1x2$$

$$- P2 = x1x3'$$

$$- P3 = x1'x2'x3$$

$$- P4 = x1x3$$

$$-$$
 F1 = P1 + P2 + P3

$$-$$
 F2 = P1 + P3 + P4

Programmable Logic Array (PLA)

- Each AND gate has 2xN inputs
 - N, number of primary inputs
- Each OR gate has M inputs
 - M, number of and gates
- **Problem**: size of the inputs
- Commercially available PLAs typically have:
 - 16 inputs
 - 32 AND gates
 - 8 OR gates
- Connections replaced by single lines, "x" indicates a connected input to the gate

Programmable Array Logic (PAL)

- Drawbacks of PLA
 - Hard to fabricate correctly due to the programmable connections
 - Special implementation of the programmable connections reduce the speed of circuits in PLA
- Solution: fix the OR plane PAL
 - Less expensive
 - Better performance
 - Became popular in practical applications

Programmable Array Logic (PAL)

Programmable Array Logic (PAL)

 In order to provide additional flexibility, an extra circuit is inserted between the OR output and the chip pin - Macrocell

PAL Example

- Compensate for the reduced flexibility
 - Various numbers of inputs to the OR gates

Complex Programmable Logic Devices (CPLD)

- Composed of multiple PAL/PLA-like circuit blocks
 - Blocks are connected through a set of interconnection wires
 - Blocks are connected to the IC chip pins through a set of I/O blocks
 - Number of blocks may vary from 2 to over 100
- Provides more inputs and outputs
- Provides more flexibility
- May accommodate bigger size circuit

CPLD

Field Programmable Gate Array (FPGA)

- First introduced by Xilinx in 1985
- Most FPGA providers are "fabless", allows
 - focus on device capability
 - improvement of design software
 - offering IP cores

Types of FPGA

- Reprogrammable
 - SRAM-based FPGA
 - Volatile, often the best choice for prototyping and development
 - Supports in-system-programming (ISP)
 - What we used in the labs
 - EEPROM-based (Flash-based) FPGA
- One-Time Programmable (OTP)
 - Anti-Fuse-based FPGA
 - EPROM-based FPGA

Configuration Technologies FPGA

- Configure SRAM-based FPGA
 - ISP, fast reconfiguration, but volatile
 - External device (EEPROM, may be onboard), programming on power up
- Configure flash-based FPGA
 - Similar to EEPROM programming devices
 - nonvolatile, may or may not support ISP
- Configure EPROM-based FPGA
 - Similar to EPROM programming devices
 - nonvolatile, off-board one-time configuration
- Configure Anti-Fuse-based FPGA
 - Fuse burning devices (electronically or optically)
 - nonvolatile, off-board one-time configuration

Internal Structure

- No AND and OR planes
- Composed of logic blocks and wires
 - Configurable Logic blocks (CLB)
 - I/O blocks (IOB)
 - Interconnection wires and switches

FPGA Architecture

Typical FPGA architecture

Programmable (Configurable) Logic Block

 PLB (or CLB), like in SPLD and CPLD, macrocell is added to provide more flexibility

Look Up Table (LUT)

- A typical PLB has a LUT
- Each LUT contains 2^N storage cells, N is the number of inputs to the LUT
 - SRAM for storage cell
 - Each storage cell can hold a value, either "1" or "0"
 - The cells are programmed to implement particular logic functions
 - The cells may be reconfigured to implement a different logic function in the same LUT
- N input LUT can implement any N variable logic function

LUT Example

 Implement the logic function specified by the truth table using a 2-input LUT

Static RAM (SRAM) Cell

Static Random Access Memory (SRAM) cell

SRAM cell

Dynamic RAM (DRAM) cell

DRAM cell

3-input LUT

FPGA Internals: Lookup Tables (LUTs)

- Partitioning among smaller LUTs is more size efficient
 - Example: 9-input circuit

Logic Implemented with LUTs

Circuits with more inputs

2-Output LUTs

• LUT typically has 2 (or more) outputs, not just one

2-Output LUTs

Example: Partitioning a circuit among 3-input 2-output lookup tables

2-Output LUTs

Example: Mapping a 2x4 decoder to 3-input 2-output LUTs

FPGA Configuration Example

- Blue x indicates a connection
- $f1 = x_1x_2$
- $f2 = x_2'x_3$
- f = f1 + f2

Xilinx Spartan 3 FPGA CLB Structure

Xilinx FPGA Switches and Wires

Programmable Switch

Xilinx FPGA PSM

Programmable Switch Matrix (PSM)

Basic I/O Block Structure

Advanced FPGA Features

- Dozens of millions of equivalent logic gates
- Enhanced clock features
- Flexible embedded memory blocks
- Intellectual property (IP) cores
- Embedded processors (hard and soft)
- Digital signal processing (DSP) blocks, tools, design flows (specific FPGA vendors)
- Dedicated hardware multipliers
- high-speed communication capabilities
- Advanced I/O standards and protocol support

FPGA Example – Spartan 3

Example of FPGA Implementation

Pros and Cons of FPGA

Pros

- Fast turnaround.
- Low NRE (non-recurring engineering) cost.
- Low risk.
- Effective design verification.
- Low testing cost.
- Cons (compare to regular IC chip implementation)
 - Bigger chip size
 - Higher cost
 - Higher power consumption
 - Slower speed
- Technology is still advancing

Example of FPGA Applications

