Introduction to DBMS & Relational Model

TABLE OF CONTENTS

- 1. Scaler's curriculum for SQL
- 2. What is Database?
- 3. Why are we studying it?
- 4. Types of databases
- 5. Introduction to RDBMS
- 6. Introduction to Keys
 - 6.1. Super Keys

- 1. Assignment (MCQs)
 2. Do a quick revision

DSA

Not a DSA fan?

Dive into SQL's path to success

How should you tackle SQL module?

	Task-1	Task-2	Task-3	Task-4	
<u></u>				_	
Я	Attand	Increase			Mission
YOU	Attend Lectures	psp	Contest	Mock	Accomplishe
~	atch Recording	7 90 ·1·	10 MCQs		
	x 2		10 Query		

Curriculum	
 Intro to DBMS and SQL 	
2. Keys	
3. Crud x 2	
4. Joins x 2	
5. Aggregates	
6. Subqueries	
7. Indexes	

HLD

What isn't covered

8. Transactions ×2

9. Schema Design X 2

- 1. Distributed databases
- 2. Scalability and related concepts like NoSQL
- 3. Database Sharding
- 4. Master Slave architecture
- 5. Database Replication

Why do we talk so much about **DATA** always?

What kind of DATA do we use?

Applications:

To-Do

Excel

students.csv

H18

	Α	В	С	D
1	ID	NAME	PSP	ATTENDANCE
2	1	Himanshu	80	85
3	2	Rahul	75	90
4	3	Krish	95	95
5	4	Rahul	92	85
6	5	Rohit	80	88

Question

Find average psp of student corresponding to their batches.

$$TC = O(N)$$

\Box	KON	wh	\sim	10	
U	rav	VU	G	72	

1. Inefficient

2. Data Integrity

> sAudents.cev

K16	(16					
A		В	С	D		
1	ID	NAME	PSP	ATTENDANCE		
2	1	Himanshu	80	85		
3	2	Rahul	75	90		
4	3	Krish	95	95		
5	4	Rahul	Topper	85		
6	5	Rohit	80	88		

→ Dota Inacuracy → In case of PSP alm we expected numerical deta but got six as well.

=> If more than I person

Working on same file at

Same Time.

4. Security Issues

What is Database?

Database Management System (DBMS)

- A DBMS as the name suggests is a software system that allows to efficiently manage a database.
- · A DBMS allows us to create the following:

Create

Read

Update

Delete

- · It allows us to define rules to ensure:
 - 1. Data Integrity
 - 2. Security and
 - 3. Concurrency

Types of Databases

1. Relational

The data is being stored in form of inter-related tables

					X			
id	name	psp	attendance	b_id		id	name	
1	Himanshu	80	85	2		1	A	
2	Rahul	75	90	1		2	В	
3	Krish	95	95	1		3	С	
4	Rahul	92	85	2		4	D	
5	Rohit	80	88	1		5	E	

2. Non - Relational
Don't store data in form of tables.
Store data in form of documents, key-value pairs, graphs, etc.
We will talk more about them in the HLD Module.

Properties of RDBMS

1. Relational Databases represent database as a collection of tables with each

table storing information about something.

Students

Botches

Instructors

2. Every row is unique.

Students

name	psp	attendance	b_id
Himanshu	80	85	2
Rahul	92	85	2
Krish	95	95	1
Rahul	92	85	2
Rohit	80	88	1

Question

Find psp of Rahul.

Duplicacy leads to ambiguity

Students

id	name	psp	attendance	b_id
1	Himanshu	80	85	2
2	Rahul	92	85	2
3	Krish	95	95	1
4	Rahul	92	85	2
5	Rohit	80	88	1

3. A column should have all values of same data type.

Students a sar int

int 2	id	name	psp	attendance	b_id
	1	Himanshu	80	85	2
	2	Rahul	75	90	1
	3	Krish	95	95	1
	4	Rahul	Topper	85	2
	5	Rohit	80	88	1

RDBMS can help us hardbound columns to store data
of a single data type.

4. All values / cell should be atomic.

Students

id	name	psp	phone.no	b_id
IG	name	hah	prioricatio	b_10
1	Himanshu	80	956453789	2
2	Rahul	75	906453875	1
3	Krish	95	829376769, 806122348	1
4	Rahul	92	806122348	2
5	Rohit	80	762766434	1

5. The sequence of column is not guaranteed by RDBMS.

Note: MySQL preserves the order.

s Audents

id	Name	020	affendance
1	Rahul	82	85

6. The sequence of row is not guaranteed.

Note: MySQL preserves the order.

7. Name of every column has to be unique.

Students

id	name	psp	phone.no1	phone.no2
1	Himanshu	80	829376769	72
2	Rahul	75	956453789	Null
3	Krish	95	906453875	Null
4	Rahul	92	806122348	98
5	Rohit	80	762766434	78

Question

7 id = 4

What is the phone number of Rahul?

-> To avoid ambiguity we have unique names to each columns.

Keys

Students

, All nows ar not unique

Students

name	psp	attendance	b_id	id	name	psp	attendance	b_id
Himanshu	80	85	2	1	Himanshu	80	85	2
Rahul	92	85	2	2	Rahul	92	85	2
Krish	95	95	1	3	Krish	95	95	1
PACENZ. T.S			1	4	Rahul	92	85	2
Rahul	92	85	2	5	Rohit	80	88	1
Rohit	80	88	1					

Question

Update psp of Rahul to 100.

Definition: Keys helps us to uniquely identify a row.

Tv	pes	of	Kev	/S

- 1. Super Keys
- 2. Candidate Keys
- 3. Primary Keys
- 4. Composite Keys
- 5. Foreign Keys

1. Super Keys

Students

id	name	psp	attendance	b_id
1	Himanshu	80	85	2
2	Rahul	75	90	1
3	Krish	95	95	1
4	Rahul	92	85	2
5	Rohit	80	88	1

- 1. Can ' name ' column uniquely identify row?
- 2. Can 'batch' column uniquely identify row?

Column Name	Super Key	
name	X	
psp	X	
attendance	X	
psp, name	X	
id		
id, name, psp, b_id		
b_id	X	

Definition: It uses a column / combination of columns to uniquely

identify a row.

• In case of super key it can use redundant columns.

1. String				
2. Number				
3. Date				
4. MySQL Data Types				
5. Window Functions				
6. Query Executation and Optimizatio	n			
7. IF, IFNULL, CASE, COALESCE				
8. ER Diagrams				
Announcement				
9. Database Normalization Forms Announcement				
Announcement				
• What NEXT?				
Announcement		MCC	10 - 1	mins
• What NEXT?		MCG	10 - 1	S mins