

## microplastics already found its way back to us







## tiny plastic, big problem!

microplastics detection with deep learning

gaspar | jayme | nepomuceno | paderes cpt 5

ml3 public presentation, 18 mar 2022



# microplastic count indicate pollution levels



## digital holographic microscopy



- √ non-invasive and non-contact
- ✓ suitable for underwater imaging where species are fragile
- ✓ offers more information on 3d shapes than 2d images
- ✓ compact and low-cost

## digital holographic microscopy



- requires image pre-processing for feature extraction
- classification and analysis dependent on SMEs

×

how can we use
deep learning to
enhance the
microplastics
detection process?





INTRODUCTION MOTIVATION PROBLEM METHODS RESULTS TAKEAWAYS

## methodology















data gathering



model building

evaluation of results









METHODS INTRODUCTION MOTIVATION PROBLEM RESULTS TAKEAWAYS

## data

#### sample images





1 PE w/ dust

1 PHA





- 472 open-source hologram images
- includes various plastic types
- microplastic count varies from 0 to 5
- 40% of images include dust















## image annotation & augmentation

roboflow

unannotated



annotated

augmented image

INTRODUCTION MOTIVATION PROBLEM METHODS RESULTS TAKEAWAYS

## microplastics detection with YOLOv5



### you only look once

divides the image into regions and predicts bounding bo

- 1. resize image.
- 2. run convolutional network.
- 3. non-max suppression.

INTRODUCTION MOTIVATION PROBLEM METHODS RESULTS TAKEAWAYS

## results visual inspection

| model                        | YOLOv5s |
|------------------------------|---------|
| epochs                       | 500     |
| training time                | 1h 25m  |
| mean average precision (mAP) | 90.2%   |
| inference time               | 0.008s  |



✓ 1 plastic, 1 dust



**✓** 0 plastic, 2 dusts



✓ 1 plastic, 2 dusts



**√** 5 plastics

## key takeaways



low-cost digital holographic microscopy is sufficient for microplastic classification tasks.



YOLOv5 performed well in automating feature extraction and classification of microplastics.



our implementation also distinguished and located microplastics unlike previous studies.



















measuring microplastic levels will lead to appropriate actions and policies.



## let's continue the conversation.





jayme



nepomuceno



join our meeting room after all the presentations at

https://bit.ly/microplastics-cpt5

