

PHYS 442 - SPRING 2019

X-RAY EXPERIMENT

$$h\nu_{\text{max}} = qV_{\text{acc}}$$

$$2d\sin\theta = m\lambda$$
,

K-LEVEL AND L-LEVEL EMISSION LINES IN KEV X-RAY EMMISION LINES

No.	Element Kal	Ka2	Kb1	La1	La2	Lb1	Lb2	Lg1
-----	-------------	-----	-----	-----	-----	-----	-----	-----

0.0543

0.1085 0.1833

0.277 0.3924

Li

Ве

В

3

	5
Characteristic X-ray emission lines for some co	mmon anode
materials.[15][16]	

Atomic	Photon 6	energy [keV]	Wavelength [nm]						
number	K _{a1}	Κ _{β1}	K _{a1}	K _{β1}					
74	59.3	67.2	0.0209	0.0184					
42	17.5	19.6	0.0709	0.0632					
29	8.05	8.91	0.154	0.139					
47	22.2	24.9	0.0559	0.0497					
31	9.25	10.26	0.134	0.121					
49	24.2	27.3	0.0512	0.455					
	number 74 42 29 47 31	number K _{a1} 74 59.3 42 17.5 29 8.05 47 22.2 31 9.25	number $K_{\alpha 1}$ $K_{\beta 1}$ 74 59.3 67.2 42 17.5 19.6 29 8.05 8.91 47 22.2 24.9 31 9.25 10.26	number $K_{\alpha 1}$ $K_{\beta 1}$ $K_{\alpha 1}$ 74 59.3 67.2 0.0209 42 17.5 19.6 0.0709 29 8.05 8.91 0.154 47 22.2 24.9 0.0559 31 9.25 10.26 0.134					

iki/X-ray

-									101	- B1	
8	0	0.5249					w	74	59.3	67.2	0.0209
9 10	F Ne	0.6768 0.8486	0.8486				Mo	42	17.5	19.6	0.0709
11	Na	1.04098	1.04098	1.0711							
12	Mg	1.25360	1.25360	1.3022			Cu	29	8.05	8.91	0.154
13	Al	1.48670	1.48627	1.55745			Ag	47	22.2	24.9	0.0559
14	Si	1.73998	1.73938	1.83594			Ga	31	9.25	10.26	0.134
15	P	2.0137	2.0127	2.1391							
16	S	2.30784	2.30664	2.46404			ln	49	24.2	27.3	0.0512
17	Cl	2.62239	2.62078	2.8156			https	·//en v	wikine	dia.org	1/1/1/ik
18	Ar	2.95770	2.95563	3.1905			псерз	.// СП.	Mikipo	a14.01 g	<i>)</i>
19	K	3.3138	3.3111	3.5896							
20	Ca	3.69168	3.68809	4.0127	0.3413	0.3413	0.344	9			
21	Sc	4.0906	4.0861	4.4605	0.3954	0.3954	0.399	6			
22	Ti	4.51084	4.50486	4.93181	0.4522	0.4522	0.458	4			
23	v	4.95220	4.94464	5.42729	0.5113	0.5113	0.519	2			
24	Cr	5.41472	5.405509	5.94671	0.5728	0.5728	0.582	8			
25	Mn	5.89875	5.88765	6.49045	0.6374	0.6374	0.648	8			
26	Fe	6.40384	6.39084	7.05798	0.7050	0.7050	0.718	5			
27	Co	6.93032	6.91530	7.64943	0.7762	0.7762	0.791	4			
28	Ni	7.47815	7.46089	8.26466	0.8515	0.8515	0.868	8			
29	Cu	8.04778	8.02783	8.90529	0.9297	0.9297	0.949	8			
30	Zn	8.63886	8.61578	9.5720	1.0117	1.0117	1.034				
31	Ga	9.25174	9.22482	10.2642	1.09792	1.09792	1.124				
32	Ge	9.88642	9.85532	10.9821	1.18800	1.18800	1.218				
33	As	10.54372	10.50799	11.7262	1.2820	1.2820	1.317				
34	Se	11.2224	11.1814	12.4959	1.37910	1.37910	1.419				
35	Br	11.9242	11.8776	13.2914	1.48043	1.48043	1.525				
36	Kr	12.649	12.598	14.112	1.5860	1.5860	1.636				
37	Rb	13.3953	13.3358	14.9613	1.69413	1.69256	1.752				
38	Sr	14.1650	14.0979	15.8357	1.80656	1.80474	1.871				
39	Y	14.9584	14.8829	16.7378	1.92256	1.92047	1.995				
40	Zr	15.7751	15.6909	17.6678	2.04236	2.0399	2.124		.2194	2.3027	
41	Nb	16.6151	16.5210	18.6225	2.16589	2.1630	2.257		.3670	2.4618	1
42	Мо	17.47934	17.3743	19.6083	2.29316	2.28985	2.394		.5183	2.6235	5
43	Tc	18.3671	18.2508	20.619	2.4240	-	2.536			-	
44	Ru	19.2792	19.1504	21.6568	2.55855	2.55431	2.683		.8360	2.9645	
45	Rh	20.2161	20.0737	22.7236	2.69674	2.69205	2.834	41 3	.0013	3.1438	3

http://www.med.harvard.edu/jpnm/physics/refs/xrayemis.html

PROCEDURE

- First set the voltage to the highest possible value i.e 35kV to take full spectrum for calibration. Θ: from 5 to 35 degree.
- Do not forget to save your data!
- Then set voltage applied to 15kV and Θ : from 5 to 20 degree. You may stop taking data when you see the plateau.
- Repeat the same procedure by incrementing voltage 3kV each time up to 30kV.
- Do not forget to take copy of your data before you leave the lab!

ANALYSIS - CALIBRATION

Intensity of reflected x-rays as a function of theta for V = 35 kV

ANALYSIS - CALIBRATION

Intensity of reflected x-rays as a function of theta for $V = 35 \ kV$

ANALYSIS - CALIBRATION

- **Experimental** Θ_{α} and Θ_{β} are read directly from the full spectrum of 35kV.
- ▶ Calculate theoretical Θ_{α} and Θ_{β} from the X-ray emission lines of Mo42.
- Plot experimental vs theoretical values, then perform a line fit to obtain a calibration function.
- ▶ This function will be used to calibrate angle in the second part

ANALYSIS - FINDING PLANCK CONSTANT

For each voltage data select linear range at the begining and make a line fit to find where it intersects the x-axis.

ANALYSIS - FINDING PLANK CONSTANT

- First correct your Θ_{min} values with the calibration you found in the first part.
- From the corrected Θ_{min} values calculate λ_{min} and then ν_{max} .
- So you will have table of $v_{max}vs(q)V_{app}$!

- -> The slope will give you the Planck constant!
- -> Find the error on Plank constant!
- -> Compare with the theoretical value!

DO NOT FORGET TO ANSWER THESE QUESTIONS IN YOUR REPORT (ANALYSIS OR CONCLUSION PART)

- Why did we perform calibration?
- Why is there a big jump in the intensity at around 5 degree or lower?
- What are the possible sources of errors?
- In your final graph, which you get plank constant, is there a non-zero intercept? Why do you have it?
- Why do we see K-lines only?

THE REPORT

- ▶ (5) Abstract
 - Define the aim of the experiment and your motivation.
 - Explain the research methods you use.
 - Summarize your findings.
- ▶ (15) Theoretical Motivation
 - ▶ Theoretical background used in the experiment.
 - ▶ How X-rays are produced.
 - How X-rays scatter from the crystal (geometry)
 - ▶ Bremstrahlung and Duane Hunt displacement law.
 - Bragg scattering law.
 - ▶ Theoretical values used.
- (20) Apparatus, experimental procedure, data
 - Define the apparatus and how the units work.
 - Explain data taking procedure.
 - Explain how you take data
 - Show your data (graphs)

- (45) Analysis
 - Explain the analysis procedure clearly.
 - ▶ Show all your work; procedure, equations, results
 - ▶ Be careful about significant figure.
 - Use error propagation
 - Do not forget axis names, units, title, error bars in your plots
 - ▶ Express results clearly and discuss!
- ▶ (10) Conclusion
 - Discuss your results and findings.
 - Suggest further studies.
- (5) Reference
 - Include all the references (papers, books etc.) in an appropriate format.
- ▶ +5 bonus for using root,pyhton, matlab etc. & +5 bonus for using latex

IF YOU NEED HELP CONTACT ME!

- Saime Gürbüz
- Office: Engin Arık Lab
- For your questions, please contact via piazza!
- ▶ Email: <u>saimesarikaya@gmail.com</u>
- Phone (Wapp): 0538 367 28 00
- Please contact via phone for arranging meetings and <u>really</u> <u>short</u> questions! For long questions or for the parts that you do not understand, ask me for a meeting!