CE394M: Tresca and Mohr-Coulomb

Krishna Kumar

University of Texas at Austin krishnak@utexas.edu

April 20, 2019

Krishna Kumar (UT Austin)

CE394M: Tresca & MC

April 20, 2010

-

Overview

- Constitutive modeling
- 2 Tresca model
- Mohr-Coulomb model

Stress invariants

- The magnitudes of the component of the stress vector depend on the chosen direction of the coordinate axes (in 3D: 6 variables).
- Principal stresses always act on the same planes and have the same magnitude (invariant to the coordinate axes), but still need to define the corresponding orientations (in 3D: 6 variables).
- For isotropic materials, it is very convenient to work with alternative invariant quantities which are combinations of principal stresses.

Krishna Kumar (UT Austin)

CE394M: Tresca & MC

April 20, 2019

2/46

Stress invariants

- Mean effective stress $p = \frac{1}{3}(\sigma_I + \sigma_I I + \sigma_I II)$
- Deviatoric stress: $J = \frac{1}{\sqrt{6}} \sqrt{(\sigma_I \sigma_{II})^2 + (\sigma_{II} \sigma_{III})^2 + (\sigma_{III} \sigma_I)^2}$
- Lode's angle $\theta=\tan^{-1}\left[\frac{1}{\sqrt{3}}\left(2\frac{(\sigma_{ll}-\sigma_{lll})}{\sigma_{l}-\sigma_{lll}}-1\right)\right]$

Principal stresses can be expressed in terms of invariants:

$$\begin{bmatrix} \sigma_I \\ \sigma_{II} \\ \sigma_{III} \end{bmatrix} = p \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \frac{2}{\sqrt{3}} J \begin{bmatrix} \sin\left(\theta + \frac{2\pi}{3}\right) \\ \sin\theta \\ \sin\left(\theta - \frac{2\pi}{3}\right) \end{bmatrix}$$

Tresca model

Simulation of undrained behavior of saturated clay Failure criteria:

Krishna Kumar (UT Austin)

CE394M: Tresca & MC

April 20, 2019 5 / 16

Tresca model

Yield function

Tresca model

Krishna Kumar (UT Austin)

CE394M: Tresca & MC

April 20, 2019 7 / 16

Mohr-Coulomb model

Mohr-Coulomb model

Krishna Kumar (UT Austin)

CE394M: Tresca & MC

April 20, 2019 9 / 16

Mohr-Coulomb: flow rule?

Can we consider an associative flow rule?

Mohr-Coulomb: Drawbacks (associative)

Solutions:

Krishna Kumar (UT Austin)

CE394M: Tresca & M

April 20, 2019

11 / 16

Mohr-Coulomb: non-associative model

Mohr-Coulomb: Yield and Potential fn

Krishna Kumar (IIT Austin)

CE394M: Tresca & MC

April 20, 2010

12 / 16

Mohr-Coulomb: plastic strains

Interpretation of drained TXC

Plastic volumetric strain:

Note that ψ changes with plastic strain in real soils

Krishan Karana (IIT Arrabia)

CE394M: Tresca & MC

 ϵ_1

 $\frac{d\varepsilon_r}{d\varepsilon_1} = 1 - 2\upsilon$

E /46

Mohr-Coulomb: Tension cut-off

