KNIMEによる 材料探索の実際(1)

早稲田大学 応用化学科

講師(任期付) 畠山 歓

https://github.com/KanHatakeyama/

マテリアルズ・ インフォマティクス (MI)

- ・ 機械学習を使った材料探索
- ・人間の代わりにAIが新規材料を見つ けてくれるかもしれない
- ・材料情報をどのようにAIに認識させるか、が課題

書籍

機械学習(色々あります)

• 東京大学のデータサイエンティスト育成講座

マテリアル・インフォマティクス

(未だ種類があまりありません)

- マテリアルズ・インフォマティクス-材料開発 のための機械学習超入門-
- 化学のための Pythonによるデータ解析・機 械学習入門
- 実践マテリアルズインフォマティクスなど

どう 実践する か?

Python (プログラミング言語)

- ・機械学習のデファクトスタンダード
- ・最先端のコードを利用出来る
- 入門者にとっては敷居が高い (Python を使えるようになるまで数十時間...?)

専用のソフトウェア

- 自由度は下がるが、敷居も格段に低い
- ・概観を知るには丁度良い
- KNIME(無料)、SPSS(有料)、...

KNIME

- あらゆるデータの連携・統合・分析を自動化するオープンソースプラット フォーム (出典)
- ・ 機械学習や統計処理に特化した無料ツール
- 化合物を扱う為のExtensionも無料で利用可能
- 必要に応じ、Pythonのコードも追加出来るので便利

ダウンロードはこちら

- https://www.knime.com/downloads/download-knime
- Win, Mac, Linuxに対応
- ・以後、スライドはWindows10で動作確認

化合物を扱う Extensionの インストール

RDKitと呼ばれるモジュール

KNIME起動→File→Install KNIME Extensions

RDKitと入力 →

RDKit KNIME integratioを チェック

利用規約に同意

Licenses must be reviewed and accepted before the software can be installed. License text: Licenses: Please see below the General Public License (GPL), Version 3. Please see below the General Public License (GPL), Version 3, and the Additional Permissions according to Sec. 7 applying to the files in this folder: *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. 無事に終わると The licenses for most software and other practical works are to take away your freedom to share and change the works. By KNIMEが the GNU General Public License is intended to guarantee your share and change all versions of a program--to make sure it remains 再起動する software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that we the freedom to distribute copies of free software (and charge l acce t the terms of the license agreement I do put accept the terms of the license agreement Finish < Back Cancel

再起動後、 ついでに こちら Install すると便利

はじめてのMI

KNIMEで 化合物の融点を 予測

今回のタスク

- ・ Wikipediaに掲載されている1000種 類程度のデータを機械学習する
- ・ 以下の化合物の融点を予測する

これらの構造を見ただけで 融点が予測出来る方には MIは不要かもしれません

データベース

- ここからダウンロード出来ます
- Excelに纏まっています
- ・ 化学構造はSMILESという表記法で 格納されています
- 融点が記録されています

A	В	С	D
ID	SMILES	Melting to	emperatu
1	[Cu]=S	500	
2	c1cc2ccc3c	117	
3	01[Fe]20	1539	
4	O=C1NC(=	245	
5	P#[Y]	200.78	
6	C1=CC=C(0	290	
7	CIC(CI)C(=	98	
8	FC(F)F	-155.2	
9	O=[N+]([C	108	
. 10	CCC[C@@	86	
11	c1ccc2c/c1	-30	

- 化学構造のままだとExcelに記録するのが難しいので、SMILESと呼ばれるアルゴリズムで文字列に変換します
- ChemDraw等のソフトウェアで 可逆に変換出来ます

SMILES とは?

simplified molecular input line entry system

スキーム

- 1. データベースの読み込み
- 2. 化学構造の数値化
- 3. 構造と融点の関係性を機械学習
- 4. 未知化合物の融点を予測

KNIMEの操作

まずは真似してみよう

新規プロジェクト

新規Workflow

好きなファイル名

Excel readerの配置

データベースの読み込み

※2.の意味 Excelの1行目は実際の生データではなく ID, SMILES等の文字列(カラム名)が記録されているので 1行目はデータとしては読み込まない、という指示

1. ファイルが選択されていることを確認

lect file to read	l:		Proves
		¥wikipedia_dbxlsk	▼ Browse
just Settings:			
Selec	ct the sheet	to read: <first dat<="" sheet="" td="" with=""><td>ta> V Connect timeout [s]:</td></first>	ta> V Connect timeout [s]:
p <mark>rum</mark> n Names∷			
☑ Table co	ontains colu	mn names in row number: 1	(Row numbers start with 1. Mouse over header to see row number.)
ow IDs:	2 -	ナエツクすっ	5
	e RowIDs (i	ndex incrementing, starting wit	th 'Row0') Generate RowIDs (index as per sheet content, skipped rows will increment index)
		IDs in column: A	Make row IDs unique
			I make row ibs dirique
elect the colum			
✓ Read en	itire data sh	ieet, or rea	ad columns from: A to:
		and	d read rows from: 1 to:
		an.	71000 10110 1
		Tip: Mouse over the column a	and row headers in the "File Content" tab to identify cell coordinates
n evaluation en	ror.		
Insert	an error pa	ttern: #XL_EVAL_ERROR#	
○ Insert	a missing o	ell	
0 113011	a missing c		
ore Options: —			
☑ Skipem _l	pty columns	Reevaluate	formulas (leave unchecked if uncertain; see node description for details)
☑ Skip hide	den column	s	view (does not compute the output table structure)
☑ Skipem p	pty rows		view (does not compate the output table structure)
eview File Con			
eview with curr	ent settings	s: wikipedia dbxlsx [database]	
refresh	`)	3. 押 9	
Row ID	ID	S SMILES D Meltin	e
Row0	1	[Cu]=S 500	-
Row1	2	c1cc2ccc3cc 117	
Row2	3	O1[Fe]2O[F 1,589	
Row3	5	O=C1NC(=0 245	
Row4 Row5	6	P#[Y] 200.78 C1=CC=C(C 290	
Row6	7	CIC(CI)C(=0 98	
Row7	8	FC(F)F -155.2	
Row8	9	O=[N+]([O-] 108	
Row9	10	CCC[C@@H] 86	
Row10	11	c1ccc2c(c1)30	
Row11	12	O=C(O)[C@ 285	
Row12 Row13	13	F[Co](F)F 927 [Cs+].[I-] 632	les I
Row 14	15	C1CCC(CC1 4	□ 4. 押す
Row15	16	O=C2c3c(O[251	— T. J⊤ y
Row16	17	BrC(F)(F)F -167.78	
			OV Annual County
			OK Apply Cancel

ノードの 実行

Row ID	ID	S SMILES	D Melting
Row0	1	[Cu]=S	500
Row1	2	c1cc2ccc3cc	117
Row2	3	01[Fe]20[F	1,539
Row3	4	O=01N0(=0	245
Row4	5	P#[Y]	200.78
Row5	6	C1=CC=C(C	290
Row6	7	CIC(CI)C(=0	98
Row7	8	FC(F)F	-155.2
Row8	9	O=[N+]([O-]	108
Row9	10	CCC[C@@H]	86
Row 10	11	c 1ccc 2c(c 1)	-30
Row11	12	O=C(O)[C@	285
Row 12	13	F[Co](F)F	927
Row 13	14	[Cs+].[I-]	632
Row 14	15	C1000(001	4
Row 15	16	O=C2c3c(O[251
Row 16	17	BrC(F)(F)F	-167.78
Row 17	18	FCC(F)(F)F	-103.3
Row 18	19	[H]1[BH]2[H	-46.8
Row 19	20	C(No1nono2	269
Row20	21	010020(02	-108.9
Row21	22	OC[C@H](O)	145
Row22	23	c2(¥C=C¥c1	122

データが 読み込ま れている

分子を 処理する ノード の設置

設定確認

KNIMEが SMILESから 分子構造を 認識!

Row ID	ID	os SMILES	D Melting
Row0	1	Cu=S	500
Row 1	2		117
Row2	3	o O Fe	1,539

化学構造を数値化す るノードの設置

Fingerprintと呼ばれる考え方を使います (後述)

ノード設置→ 接続 → 設定→実行 が KNIMEの基本操作です

繋いでクリック

自分の好みの Fingerprintを読み込む

よく分からない方は適当に選んでも大丈夫です

Fingerprint の生成 を確認

Row ID	∏ ID	cas SMILES	■ Melting	[010] Circular fingerprints fo
Row0	1	Cu=S	500	000000000000000000000000000000000000000
Row1	2		117	000000000000000000000000000000000000000
Row2	3	o O Fe	1,539	000000000000000000000000000000000000000
Row3	4	O HIN O	245	000000000000000000000000000000000000000

Fingerprintとは?

機械学習モデルは基本的に数値しか理解出来ない

化学構造も認識出来ない

何らかのアルゴリズムで数値に 変換する必要有り

→ Fingerprint、記述子、...

Fingerprintの イメージ

. . .

000001101100000000101

機械学習モデルの設置

設定確認 (何もいじらなくてOK)

予測用ノードの設置

実行

予測結果を見てみる

			\downarrow		\downarrow	\
Row ID	ID ID	cas SMILES	D Melting	[010] Circular fingerprints fo	D Predicti	D Predicti
Row0	1	Cu <u></u> S	500	000000000000000000000000000000000000000	533.276	109,853.248
Row1	2		117	000000000000000000000000000000000000000	111.938	21,720.777
Row2	3	O Fe	1,539	000000000000000000000000000000000000000	1,073.579	367,562.537
Row3	4	O HIN O	245	000000000000000000000000000000000000000	259.956	41,448.713

結果の 確認

結果をグラフ化する

繋いで実行

グラフ表示

可視化

対角線上にプロット が載っているほど、 高精度です

最後のタスク

未知化合物 の性能予測 データベースの questionシート中 の化合物は融点 が分からない! →予測したい

4	Α	В	С	D	E
	ID	SMILES			
	1	O=C=S			
	2	CC(=O)OI(C1=CC=CC:	=C1)OC(=O)C
Ļ	3	C1CCC(=O	CC1		
•	4	Oc1cccnc1			
,	5	SC(C)(C)C			
7	6	O(c1ncccc	1)C(COc3co	cc(Oc2cccc	2)cc3)C
;					
)					
0					
1					
2					
	← →	databa	ase qu	estion	answer

データベース の 読み込み

Molecule to CDK, Fingerprintsもコピペして実行

予測ノードをコピペして設置・接続

実行し、予測結果を確認

Row ID	∏ ID	os SMILES	[010] Circular fingerprints fo	Predicti	D Predicti
Row0	1	0=C=S	000000000000000000000000000000000000000	102.739	121,135.018
Row1	2	CH ₃	000000100000000000000000000000000000000	123.109	4,031.152
Row2	3		001000000000000000000000000000000000000	262.207	683,451.206
Row3	4	HO	000000000000000000000000000000000000000	256.259	280,385.381
Row4	5	H ₃ C CH ₃	000000000000000000000000000000000000000	10.063	21,828.3
Row5	6	QQ YQ	000000000000000000000000000000000000000	60.816	13,038.264

予測完了!

データベース中のanswerシートに 実際の答えが書いてあります

KNIMEと呼ばれるソフトウェアを使うと、比較的簡単に有機化合物の物性予測を実現出来る

MI操作の8割くらいはKNIMEでカバー 出来る印象(?)

逆に、残りの2割(いわゆる最先端)を追求するには、多くの労力と技能が必要(Pythonなど)

今回は 省略した 内容

Train/Testデータの準備

普通はデータベースをTrain/Testに分けてモデル精度を調べたりしますが、今回は割愛しました

各種モデルの検討

- 今回はRandom forestと呼ばれる、お手軽ながら強力なモデルを使いました
- KNIMEだとGradient boosting, 線形モデル等を使えます
- それ以外のモデルの場合はPythonで専用ノードを作ったりする必要があります (配布予定…?)

yの正規化

多くのモデルではyをそのまま使うのではなく、標準得点等に正規 化する必要があります