

Applied Computational Multi-Omics

Genetic Alterations and Functional Impact

Daniel Sobral, INSA 11/03/2024

Genetic Alterations and Functional Impact

Learning Objectives

Introduction to variant calling

- 2 major classes: SNPs / indels and large structural variants
- Factors that influence the variant calling process
- Overview of the VCF file format
- Variant quality and Genotype quality

Introduction to Variant Annotation

Common question: find mutations underlying phenotypes

DNA Extraction

Whole Genome VS Targeted

DNA Extraction

Eg. TruSight One Enrichment Panel (Human)

Eg. SARS-CoV-2 Artic Amplicon panel

Note: Amplicon VS Enrichment

How to calculate coverage

Example for the Human Genome (~3x109 bp):

- WGS 30x coverage, 150bp read pairs
 - $-30 \times 3 \times 10^9 / (150 \times 2) = 3 \times 10^8 = 300$ million read pairs
- WES (~1-2% genome) 30x coverage, 150bp read pairs
 - 6 million read pairs (theoretical minimum, but usually more)

DNA Extraction Sequencing

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT ("raw" fastQ)

DNA Extraction

Sequencing

TGCTCAGTT

TGAC ATGGAGT

GTTGT

("clean" fastQ)

QC and pre-processing

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT

(fasta file)

Reference Genome

geneA geneB geneC

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC

DNA Extraction

Sequencing

TGCTCAGTT

TGAC ATGGAGT

GTTGT

("clean" fastQ)

QC and pre-processing

Û

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT

(fasta file)

Reference Genome

TGCTCAGTT

geneA geneB

geneB

geneC

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC

DNA Extraction

Sequencing

TGCTCAGTT

TGAC ATGGAGT

GTTGT

("clean" fastQ)

QC and pre-processing

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT

(fasta file) Reference Genome

TGCTCAGTT

geneA geneB geneC

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC

DNA Extraction

Sequencing

Alignment

TGCTCAGTT

TGAC ATGGAGT

GTTGT

("clean" fastQ)

QC and pre-processing

TGCTCAGTTA TGAC ATGGAGT TTT CGTTGT

SAM/BAM format

A file format to represent alignments BAM -> binary form of SAM

```
Coor
        12345678901234 5678901234567890123456789012345
        AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCAGTCAGCGCCAT
ref
+r001/1
              TTAGATAAAGGATA*CTG
             aaaAGATAA*GGATA
+r002
+r003
           gcctaAGCTAA
+r004
                         ATAGCT.....TCAGC
-r003
                                ttagctTAGGC
-r001/2
                                              CAGCGGCAT
```

```
@HD VN:1.6 SO:coordinate
@SQ SN:ref LN:45
                                    39 TTAGATAAAGGATACTG
r001
      99 ref 7 30 8M2I4M1D3M = 37
r002
       0 ref 9 30 3S6M1P1I4M * 0
                                     O AAAAGATAAGGATA
       0 ref 9 30 5S6M
                                     O GCCTAAGCTAA
r003
       0 ref 16 30 6M14N5M
r004
                                     O ATAGCTTCAGC
                                     O TAGGC
r003 2064 ref 29 17 6H5M
r001 147 ref 37 30 9M
                              = 7 -39 CAGCGGCAT
```

https://samtools.github.io/hts-specs/SAMv1.pdf

Notes on Alignments

- Alignments are fast but may not be always perfect
 - Nonetheless it works very well in general
- Equally good mappings (multimappings) are marked as such
 - Mapping quality is set as 0 by default
 - May generate secondary alignments (if the program reports them)
- Alignments are made piece-wise
 - A read can be split in a principal and supplementary alignment(s)
 - Eg. splicing in RNA-Seq; large insertions
 - Sometimes, only a part of the read is aligned (the rest is masked)
 - Particularly in repetitive areas this can lead to false alignments

The VCF format

```
##fileformat=VCFv4.4
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
                                                                                       CHROM chromosome
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency">
                                                                                                position of the start of the variant
                                                                                       POS
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
                                                                                                unique identifier of the variant (e.g. rs number for SNPs)
                                                                                       ID
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
                                                                                       REF
                                                                                                reference allele
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
                                                                                       ALT
                                                                                                comma separated list of alternate non-reference alleles
##FILTER=<ID=q10,Description="Quality below 10">
                                                                                                phred-scaled quality score
                                                                                       QUAL
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
                                                                                       FILTER
                                                                                               site filtering information
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
                                                                                       INFO
                                                                                                user extensible annotation (e.g. samtools and GATK may differ in this)
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                                         QUAL FILTER INFO
                                                                                         FORMAT
                                                                                                      NA00001
                                                                                                                      NA00002
                                                                                                                                     NA00003
                                 ALT
       14370
               rs6054257 G
                                              PASS
                                                      NS=3;DP=14;AF=0.5;DB;H2
                                                                                         GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20
                                                                                         GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3
20
       17330
                                                      NS=3;DP=11;AF=0.017
                                                                                                                                     0/0:41:3
                                              q10
                                                      NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2
20
       1110696 rs6040355 A
                                         67
                                              PASS
                                                                                                                                     2/2:35:4
20
       1230237 .
                                              PASS
                                                      NS=3;DP=13;AA=T
                                                                                         GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
                                 G,GTCT 50
       1234567 microsat1 GTC
                                              PASS
                                                      NS=3;DP=9;AA=G
                                                                                         GT:GQ:DP
                                                                                                     0/1:35:4
                                                                                                                     0/2:17:2
                                                                                                                                     1/1:40:3
```

https://samtools.github.io/hts-specs/VCFv4.4.pdf

The VCF format

```
CHROM chromosome

POS position of the start of the variant

ID unique identifier of the variant (e.g. rs number for SNPs)

REF reference allele

ALT comma separated list of alternate non-reference alleles

QUAL phred-scaled quality score

FILTER site filtering information

INFO user extensible annotation (e.g. samtools and GATK may differ in this)
```

#CHROM POS QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003 NS=3;DP=14;AF=0.5;DB;H2 14370 rs6054257 G PASS GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,. GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 17330 q10 NS=3;DP=11;AF=0.017 0/0:41:3 1110696 rs6040355 A NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4 1230237 . PASS NS=3; DP=13; AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2 G,GTCT 50 1234567 microsat1 GTC PASS NS=3; DP=9; AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

https://samtools.github.io/hts-specs/VCFv4.4.pdf

Variant Quality vs Genotype Quality

- Variant Quality
 - Phred score estimating if variant is likely to be an artifact
- Genotype Quality
 - Phred score estimating accuracy of estimated sample genotype

					VQ		GQ				
#CHF	OM POS	ID	REF	$AL\bar{T}$	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003
20	14370	rs6054257	G	A	29	PASS	NS=3;DP=14;AF=0.5;DB;H2	GT:GQ:DP:HQ	0 0:48:1:51,51	1 0:48:8:51,51	1/1:43:5:.,.
20	17330		T	A	3	q10	NS=3;DP=11;AF=0.017	GT:GQ:DP:HQ	0 0:49:3:58,50	0 1:3:5:65,3	0/0:41:3
20	1110696	rs6040355	A	G,T	67	PASS	NS=2;DP=10;AF=0.333,0.667;AA=T;DB	GT:GQ:DP:HQ	1 2:21:6:23,27	2 1:2:0:18,2	2/2:35:4
20	1230237		T		47	PASS	NS=3;DP=13;AA=T	GT:GQ:DP:HQ	0 0:54:7:56,60	0 0:48:4:51,51	0/0:61:2
20	1234567	microsat1	GTC	G,GTCT	50	PASS	NS=3; DP=9; AA=G	GT:GQ:DP	0/1:35:4	0/2:17:2	1/1:40:3

2 Major types of Variants

- Single Nucleotide Variants (SNV) and small Indels
 - Smaller than the size of one read
- Large Structural Variants
 - Usually larger than the size of one read

Single Nucleotide Variants (SNV) and small Indels

Variants detected within reads (smaller than size of read)

- SNVs:
 - Change of a single nucleotide

- Indels:
 - "Small" deletion or amplification

Single Nucleotide Variants (SNV) and small Indels

- Main factors affecting detection of SNVs and Indels
 - Number of reads (coverage supporting a variant)
 - Base quality (affects confidence in the SNVs)
 - PCR amplification bias (can generate duplicates and other biases)
 - Repetitive areas (mostly affects indels, but also affects SNVs)

Duplicated Reads

- Duplicate reads (same fragment) can appear
 - In library preparation during amplification (eg. WES)
 - In the amplification process while sequencing (optical duplicates)

```
AAGCGATG AGTTGTGT

AAGCGATG TCCATGC AGTTGTGT

ACTCCAT GTTGT

TGCTCAGTT

GTGTGTTT-CA
```

AAGCGATGACTGCACAGTTGTGTGTTTTCACGTGAC geneA geneB geneC

Duplicated Reads: optical duplicates

Duplicated Reads

The recommended practice is to ignore duplicates

- Only consider one of the duplicates for variant calling
 - Usually the one with the best quality
- This may remove good information (eg. with high coverage, targeted)
- Duplicates are marked and later ignored (or not)
- Benefits of marking duplicates not always obvious
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4965708/
 - Eg. one can chose to only ignore reads marker as optical duplicates

Base Quality Recalibration

Base Quality Depends on several factors:

- Sample Quality (DNA)
- Nucleotide context
- Machine and cycle of sequencing
- Type of variant (SNP or Indel)

The machine may not estimate well the base quality score

Base Quality Recalibration

Use list of known variants to estimate correct quality values

- All bases different from reference **not in the provided list** of known variants are considered to be errors

Base Quality Recalibration

Base Quality Recalibration:

The covariates being used here:

- ReadGroupCovariate
- QualityScoreCovariate
- ContextCovariate
- CycleCovariate

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083463/ https://www.youtube.com/watch?v=L4D1dwES9s8

https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-

GATK
Best
Practices

https://gatk.broadinstitute.org/hc/en-us/articles/360035535912-Data-pre-processing-for-variant-discovery

Example estimating Genotype Quality

- These calculations are software-dependent
 - Example Genotype Likelihood (GATK)

$$\mathcal{L}(g) = \frac{1}{m^k} \prod_{j=1}^l \left[(m-g)\epsilon_j + g(1-\epsilon_j) \right] \prod_{j=l+1}^k \left[(m-g)(1-\epsilon_j) + g\epsilon_j \right]$$

g: genotype (i.e. 0, 1 or 2)

m: ploidy (2 for human)

€: base error

k: number of bases at the site

I: number of bases that equal reference

Large Structural Variants

Variants larger than the size of reads

- Large Deletions and Amplifications
 - Gene Deletions and Duplications
- Other Structural Variants
 - Fusions; Inversions; Transposons...
- Horizontal Transfer
 - Novel genomic regions

Large Structural Variants

- Evidence used to detect Structural Variants
 - Differences in Coverage
 - Most commonly used
 - Particularly with targeted sequencing
 - Although there's still amplification bias

Large Structural Variants

- Evidence used to detect Structural Variants
 - Junction evidence (difficult in targeted sequencing)
 - Can use paired read information (namely, expected fragment length –noisier)
 - Can use information within reads (more precise requires bigger reads)

GCCACGTTACAATACTCTTATCAGTAATAGGCTGGCAAAAACTTT----GGTAATGACTCCAACTTATTGATAGTGTTTTATGTTCAGATAATGCCCGA

CCACGTTACAATACTCTTATCAGTAATAGGCTGGCAAAAACTTTGGTAATGACTCCAACTTATTGATAGTGTTTT
CCACGTTACAATACTCTTATCAGTAATAGGCTGGCAAAAACTTTGGTAATGACTCCAACTTATTGATAGTGTTTT
CCACGTTACAATACTCTTATCAGTAATAGGCTGGCAAAAACTTTGGTAATGACTCCAACTTATTGATAGTGTTTTA
CCACGTTACAATACTCTTATCAGTAATAGGCTGGCAAAAACTTTGGTAATGACTCCAACTTATTGATAGTGTTTTAT
CCACGTTACAATACTCTTATCAGTAATAGGCTGGCAAAAACTTTTGGTAATGACTCCAACTTATTGATAGTGTTTTATGTT
CCACGTTACAATACTCTTATCAGTAATAGGCTGGCAAAAACTTTTGGTAATGACTCCAACTTATTGATAGTGTTTTATGTTC

Examples of variants

Example mutations

Example deletion

IGV provides colors to signal unusual situations

Besides mutations, information from paired-end is also there

Pair orientation

https://software.broadinstitute.org/software/igv/

Visualization of Read Mappings

Example of mutations

Variant Selection

Criteria to select "valid" variants:

- Higher Number of reads (coverage supporting a variant)
- Low Bias in the Base quality supporting the variant
- Low bias in the strand of the reads supporting the variant
- Avoid variants only at the end of reads (repetitive areas)
- Avoid duplicate reads
- 。 Etc...

Variant Annotation

Criteria to select "relevant" variants:

- Coding versus non-coding
 - Coding: Silent versus non-silent
 - Non-coding: can be complex
 - splice-sites, regulatory regions,...

Variant Annotation

Criteria to select "relevant" variants:

- Population frequency
- Disease-association

Only works for species with a lot of data, such as human

Variant Annotation

- Criteria to select "relevant" variants:
 - Simple exemple with SARS-CoV-2 (Omicron)

A few optional references:

- Single Nucleotide Variants and small Indels
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3083463/
- DeepVariant: Using AI to find variants
 - https://github.com/google/deepvariant; https://www.nature.com/articles/nbt.4235
- Copy Number Alterations and other Structural Variants
 - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300727/
- Finding clonal vs subclonal variants
 - https://www.sciencedirect.com/science/article/pii/S2001037017300946
- Variant annotation
 - https://www.nature.com/articles/nprot.2015.105
 - https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0974-4

Practical Exercise

https://github.com/dsobral/MBCB/blob/main/README.md