Unsupervised Machine
Learning: Análise de
Correspondências Simples e
Múltiplas

Rafael de Freitas Souza

Introdução às Análises de Correspondências Simples e Múltiplas

As Análises de Correspondências, sejam elas simples ou múltiplas, são técnicas adequadas para se trabalhar com dados que se manifestam de forma qualitativa, não possuindo a intenção de se fazer predições para observações não presentes na amostra.

Quando o número de variáveis de interesse for igual a 2, utilizaremos as Análises de Correspondências Simples (ANACOR); por outro lado, quando o número de variáveis de interesse for maior do que 2, utilizaremos as Análises de Correspondências Múltiplas (ACM).

Ideia e Objetivos das Técnicas

A ideia, portanto, é a de se estudar as relações de interdependência em razão das associações entre as categorias das variáveis de interesse.

O grande objetivo das Análises de Correspondências é o estabelecimento de um mapa perceptual. O mapa perceptual é uma espécie de gráfico que utilizará coordenadas que representarão as linhas e as colunas de uma tabela de contingências.

Exemplo de um Mapa Perceptual de uma ANACOR

Exemplo de um Mapa Perceptual de uma ANACOR

Exemplo de um Mapa Perceptual de uma ACM

Exemplo de um Mapa Perceptual de uma ACM

A construção de uma Tabela de Contingências de Valores Observados:

Considerando-se, portanto, duas variáveis categóricas, em que a primeira possui I categorias, e a segunda possui J categorias, devemos estabelecer uma tabela de contingências $\mathbf{X_0}$.

A matriz X_0 conterá as frequências absolutas observadas das categorias I e J, em que cada célula ij possui certa quantidade n_{ij} (i=1,2,3,...,I e j=1,2,3,...,J) de observações.

A Tabela de Contingências de Valores Observados

O total de observações N que farão parte do estudo é ser dada por $N=\sum_{i=1}^{I}\sum_{j=1}^{J}n_{ij}$. Assim, um exemplo teórico de uma tabela de contingências, seria:

	1	2		J	Total
1	n_{11}	n_{12}		n_{1J}	$\sum l_1$
2	n_{21}	n_{22}	arigue'	n_{21}	$\sum l_1$
:	:	R	000	:	:
I	n_{I1}	n_{I2}		n_{IJ}	$\sum l_I$
Total	$\sum c_1$	$\sum c_2$		$\sum c_J$	N

Construída a Tabela de Contingências, A Matriz $\mathbf{X_0}$, será:

$$\mathbf{X_0} = \begin{bmatrix} n_{11} & n_{12} & \cdots & n_{1J} \\ n_{21} & n_{22} & \cdots & n_{2J} \\ \vdots & \vdots & \ddots & \vdots \\ n_{I1} & n_{I2} & \cdots & n_{IJ} \end{bmatrix}$$

O estudo das associações entre as categorias das variáveis:

Para o estudo das associações entre as categorias das variáveis, utilizaremos dois instrumentos: o Teste χ^2 e a análise dos resíduos padronizados ajustados.

O Teste χ^2 estudará se as associações entre as categorias das variáveis se associam, ou não, de forma aleatória; enquanto a análise dos resíduos padronizados ajustados revelará os padrões característicos de cada categoria de uma variável segundo o excesso ou falta de ocorrências de sua combinação com cada categoria de outra variável.

Logo, deveremos estabelecer uma matriz de valores esperados e, a seguir, uma matriz de resíduos – isso bastará para o estabelecimento do Teste χ^2 .

No caso da análise dos resíduos padronizados ajustados, deveremos utilizar a matriz de resíduos para definirmos uma matriz de resíduos padronizados. Após isso, conseguiremos estabelecer uma matriz de resíduos padronizados ajustados.

Os Valores Esperados:

Nós sabemos que o somatório entre os valores $\sum c_1 + \sum c_2 + \dots + \sum c_I = \sum l_1 + \sum l_2 + \dots + \sum l_I =$ N. Então as frequências esperadas, serão:

Nós sabemos que o somatório entre os valores $\sum c_1 + \sum c_2 + \dots + \sum c_J = \sum l_1 + \sum l_2 + \dots + \sum l_I = N.$ Então as frequências esperadas, serão:							
	1	2)>•	J			
1	$\left(\frac{\sum c_1 \times \sum l_1}{N}\right)$	$\left(\frac{\sum c_2 \times \sum l_1}{N}\right)$		$\left(\frac{\sum c_J \times \sum l_1}{N}\right)$			
2	$\left(\frac{\sum c_1 \times \sum l_2}{N}\right)$	$\left(\frac{\sum c_2 \times \sum l_2}{N}\right)$	•••	$\left(\frac{\sum c_J \times \sum l_2}{N}\right)$			
•	:	•					
I	$\left(\frac{\sum c_1 \times \sum l_I}{N}\right)$	$\left(\frac{\sum c_2 \times \sum l_I}{N}\right)$		$\left \left(\frac{\sum c_J \times \sum l_I}{N} \right) \right $			

A Matriz X_E de Valores Esperados:

$$\mathbf{X_E} = \begin{bmatrix} \left(\frac{\sum c_1 \times \sum l_1}{N}\right) & \left(\frac{\sum c_2 \times \sum l_1}{N}\right) & \cdots & \left(\frac{\sum c_J \times \sum l_1}{N}\right) \\ \left(\frac{\sum c_1 \times \sum l_2}{N}\right) & \left(\frac{\sum c_2 \times \sum l_2}{N}\right) & \cdots & \left(\frac{\sum c_J \times \sum l_2}{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \left(\frac{\sum c_1 \times \sum l_I}{N}\right) & \left(\frac{\sum c_2 \times \sum l_I}{N}\right) & \cdots & \left(\frac{\sum c_J \times \sum l_I}{N}\right) \end{bmatrix}$$

A Matriz R dos Resíduos

Entenderemos por resíduo, a diferença entre os valores observados e os valores esperados. Assim sendo, a matriz \mathbf{R} é dada por:

$$\mathbf{R} = \begin{bmatrix} n_{11} - \left(\frac{\sum c_1 \times \sum l_1}{N}\right) & n_{12} - \left(\frac{\sum c_2 \times \sum l_1}{N}\right) & \cdots & n_{1J} - \left(\frac{\sum c_J \times \sum l_1}{N}\right) \\ n_{21} - \left(\frac{\sum c_1 \times \sum l_2}{N}\right) & n_{22} - \left(\frac{\sum c_2 \times \sum l_2}{N}\right) & \cdots & n_{2J} - \left(\frac{\sum c_J \times \sum l_2}{N}\right) \\ \vdots & \vdots & \ddots & \vdots \\ n_{I1} - \left(\frac{\sum c_1 \times \sum l_I}{N}\right) & n_{I2} - \left(\frac{\sum c_2 \times \sum l_I}{N}\right) & \cdots & n_{IJ} - \left(\frac{\sum c_J \times \sum l_I}{N}\right) \end{bmatrix}$$

O Teste χ^2 :

$$\chi^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left[n_{ij} - \left(\frac{\sum c_j \times \sum l_i}{N}\right)\right]^2}{\left(\frac{\sum c_j \times \sum l_i}{N}\right)}, \text{ com } (I-1) \times (J-1) \text{ graus de liberdade.}$$

São hipóteses do Teste χ^2 :

 H_0 : as duas variáveis categóricas se associam de forma aleatória;

 H_1 : as duas variáveis categóricas não se associam de forma aleatória.

Os Resíduos Padronizados:

Os resíduos padronizados são dados por: $r_{padronizado_{ij}} = \frac{n_{ij} - ne_{ij}}{\sqrt{ne_{ij}}}$. Então a matriz $\mathbf{R}_{padronizados}$ é descrita por:

Os Resíduos Padronizados Ajustados:

Então, os resíduos padronizados ajustados podem ser calculados da seguinte maneira: $r_{padronizado ajustado_{ij}} = \frac{padronizado_{ij}}{\sqrt{\left(1-\frac{\sum c_j}{N}\right) \cdot \left(1-\frac{\sum l_i}{N}\right)}}$. Logo, a matriz

R_{padronizados} ajustados será dada por:

$$\mathbf{R}_{\mathbf{padronizados}} = \begin{bmatrix} \frac{r_{padronizado_{11}}}{\sqrt{\left(1 - \frac{\sum c_1}{N}\right) \cdot \left(1 - \frac{\sum l_1}{N}\right)}} & \frac{r_{padronizado_{12}}}{\sqrt{\left(1 - \frac{\sum c_1}{N}\right) \cdot \left(1 - \frac{\sum l_1}{N}\right)}} & \cdots & \frac{r_{padronizado_{1J}}}{\sqrt{\left(1 - \frac{\sum c_1}{N}\right) \cdot \left(1 - \frac{\sum l_1}{N}\right)}} \\ \frac{r_{padronizado_{21}}}{\sqrt{\left(1 - \frac{\sum c_1}{N}\right) \cdot \left(1 - \frac{\sum l_2}{N}\right)}} & \frac{r_{padronizado_{22}}}{\sqrt{\left(1 - \frac{\sum l_2}{N}\right) \cdot \left(1 - \frac{\sum l_2}{N}\right)}} & \cdots & \frac{r_{padronizado_{2J}}}{\sqrt{\left(1 - \frac{\sum c_J}{N}\right) \cdot \left(1 - \frac{\sum l_2}{N}\right)}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{r_{padronizado_{l_1}}}{\sqrt{\left(1 - \frac{\sum l_1}{N}\right) \cdot \left(1 - \frac{\sum l_1}{N}\right)}} & \frac{r_{padronizado_{l_2}}}{\sqrt{\left(1 - \frac{\sum l_1}{N}\right) \cdot \left(1 - \frac{\sum l_1}{N}\right)}} & \cdots & \frac{r_{padronizado_{l_J}}}{\sqrt{\left(1 - \frac{\sum c_J}{N}\right) \cdot \left(1 - \frac{\sum l_J}{N}\right)}} \end{bmatrix}$$

A Inércia Principal Total I_T :

O Teste χ^2 consegue apontar se associação entre as categorias de dadas variáveis se dá, ou não, de forma aleatória.

Porém, o Teste χ^2 aumenta à medida que a amostra aumenta. Então, no lugar de decompor o χ^2 para realizarmos a análise de correspondência, o padronizaremos em razão do tamanho amostra para, então, decompô-lo.

A inércia principal total é dada por: $I_T = \frac{\chi^2}{N}$.

A decomposição inercial para a elaboração da análise de correspondência perpassa pela extração dos eigenvalues de uma matriz \mathbf{W} , dada por $\mathbf{W} = \mathbf{A}'\mathbf{A}$,

em que
$$\mathbf{A} = \mathbf{D}_{l}^{-2}$$
. $(\mathbf{P} - lc')$. \mathbf{D}_{c}^{-2} .

A Determinação dos Eigenvalues para a Decomposição Inercial:

O método de decomposição dos autovalores, tradicionalmente, é o método de Eckart-Young, em que quantidade m de eigenvalues é dada por $m = \min(I-1, J-1)$.

O passo inicial para a determinação dos autovalores é a construção de uma matriz P de frequências relativas observadas.

	1	2	 J	Total
1	$\frac{n_{11}}{N}$	$\frac{n_{12}}{N}$	$\frac{n_{1J}}{N}$	$\frac{\sum l_1}{N}$
2	$\frac{n_{21}}{N}$	$\frac{n_{22}}{N}$	 $\frac{n_{2J}}{N}$	$\frac{\sum l_2}{N}$
	:	:	:	:
I	$\frac{n_{I1}}{N}$	$\frac{n_{I2}}{N}$	$\frac{n_{IJ}}{N}$	$\frac{\sum l_I}{N}$
Total	$\frac{\sum c_1}{N}$	$\frac{\sum c_2}{N}$	 $\frac{\sum c_J}{N}$	N

A Matriz P de frequências relativas observadas

$$\mathbf{P} = \frac{1}{N} \cdot \mathbf{X_0} = \begin{pmatrix} \frac{n_{11}}{N} & \frac{n_{12}}{N} & \cdots & \frac{n_{1J}}{N} \\ \frac{n_{21}}{N} & \frac{n_{22}}{N} & \cdots & \frac{n_{2J}}{N} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{n_{I1}}{N} & \frac{n_{I2}}{N} & \cdots & \frac{n_{IJ}}{N} \end{pmatrix}$$

Massas das Linhas e Massas das Colunas:

Calculadas as frequências relativas observadas, presentes na matriz **P**, podemos entender o conceito de massa (profiles) como medidas influência de determinada categoria em relação às demais. Nós precisaremos dessas massas para prosseguirmos para a decomposição dos eigenvalues.

A seguir, vamos estudar como calcular as column profiles e as row profiles.

Column Profiles

			314.619-81				
	1	2	005	J	Massa Média		
1	$\left(\frac{n_{11}}{\sum c_1}\right)$	$\left(\frac{n_{12}}{\sum c_2}\right)$	inti	$\left(\frac{n_{1J}}{\sum c_J}\right)$	$\frac{\sum l_1}{N}$		
2	$\left(\frac{n_{21}}{\sum c_1}\right)$	$\left(\frac{n_{22}}{\sum c_2}\right)$		$\left(\frac{n_{21}}{\sum c_2}\right)$	$\frac{\sum l_2}{N}$		
:	:	:		:	:		
I	$\left(\frac{n_{I1}}{\sum c_1}\right)$	$\left(\frac{n_{I2}}{\sum c_2}\right)$		$\left(\frac{n_{IJ}}{\sum c_J}\right)$	$\frac{\sum l_I}{N}$		
Total	1,000	1,000		1,000			

Row Profiles

	1	2	00	5.5 J	Massa Média
1	$\left(\frac{n_{11}}{\sum l_1}\right)$	$\left(\frac{n_{12}}{\sum l_1}\right)$	antilla	$\left(\frac{n_{1J}}{\sum l_1}\right)$	1,000
2	$\left(\frac{n_{21}}{\sum l_2}\right)$	$\left(\frac{n_{22}}{\sum l_2}\right)$		$\left(\frac{n_{2J}}{\sum l_2}\right)$	1,000
•		:		:	:
I	$\left(\frac{n_{I1}}{\sum l_I}\right)$	$\left(\frac{n_{I2}}{\sum l_I}\right)$		$\left(rac{n_{IJ}}{\sum l_I} ight)$	1,000
Total	$\frac{\sum c_I}{N}$	$\frac{\sum c_2}{N}$		$\frac{\sum c_J}{N}$	

214.619-81

Definições das matrizes $D_l e D_c$:

$$\mathbf{D}_{l} = \begin{bmatrix} \frac{\sum l_{1}}{N} & 0 & \cdots & 0 \\ 0 & \frac{\sum l_{2}}{N} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{\sum l_{I}}{N} \end{bmatrix} \qquad \mathbf{D}_{c} = \begin{bmatrix} \frac{\sum c_{1}}{N} & 0 & \cdots & 0 \\ 0 & \frac{\sum c_{2}}{N} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{\sum c_{I}}{N} \end{bmatrix}$$

Definição da matriz lc':

Sendo \mathbf{C} , a matriz que contém as massas das column profiles de cada célula considerada; e \mathbf{L} , a matriz que contém as massas das row profiles de cada célula considerada, a matriz lc é definida por:

$$lc' = C \otimes L$$

Definição da Matriz W:

Construídas as matrizes \mathbf{D}_l , \mathbf{P} , lc' e \mathbf{D}_c , podemos definir a matriz \mathbf{A} , como:

$$\mathbf{A} = \mathbf{D}_{l}^{\frac{1}{2}} \cdot (\mathbf{P} - lc') \cdot \mathbf{D}_{c}^{\frac{1}{2}}$$

E, após isso, podemos definir a matriz W, dada por W = A'A, e dela extrair os eigenvalues, cuja soma é igual à I_T .

A Decomposição do Valor Singular de **A**:

A decomposição do valor singular de **A** é necessária para o cálculo de seus respectivos *eigenvectors* que serão necessários para os cálculos das coordenadas a respeito de cada categoria em nosso mapa perceptual. Chamaremos os vetores dos *eigenvectors* de:

$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_I \end{pmatrix} \qquad \qquad \mathbf{V} = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_I \end{pmatrix}$$

O Cálculo das Coordenadas do Mapa Perceptual:

Variável em linha na tabela de contingências:

Coordenadas da primeira dimensão (abcissas):

(a):
$$\mathbf{X}_l = \begin{pmatrix} \mathbf{x}_{l1} \\ \vdots \\ \mathbf{x}_{ll} \end{pmatrix} = \lambda_1. \, \mathbf{D}_l^{-1/2}. \, \mathbf{u}_1$$

Coordenadas da segunda dimensão (ordenadas):

$$\mathbf{Y}_{l} = \begin{pmatrix} \mathbf{y}_{l1} \\ \vdots \\ \mathbf{y}_{ll} \end{pmatrix} = \lambda_{2} \cdot \mathbf{D}_{l}^{-1/2} \cdot \mathbf{u}_{2}$$

Coordenadas da k-ésima dimensão:

$$\mathbf{Z}_r = \begin{pmatrix} \mathbf{z}_{l1} \\ \vdots \\ \mathbf{z}_{lI} \end{pmatrix} = \lambda_k. \, \mathbf{D}_l^{-1/2}. \, \mathbf{u}_k$$

O Cálculo das Coordenadas do Mapa Perceptual:

Variável em coluna na tabela de contingências:

Coordenadas da primeira dimensão (abcissas):

$$\mathbf{X}_{c} = \begin{pmatrix} \mathbf{X}_{c1} \\ \vdots \\ \mathbf{X}_{cJ} \end{pmatrix} = \lambda_{1} \cdot \mathbf{D}_{c}^{-1/2} \cdot \mathbf{v}_{1}$$

Coordenadas da segunda dimensão (ordenadas):

$$\mathbf{Y}_{c} = \begin{pmatrix} \mathbf{y}_{c1} \\ \vdots \\ \mathbf{y}_{cJ} \end{pmatrix} = \lambda_{2}.\,\mathbf{D}_{c}^{-1/2}.\,\mathbf{v}_{2}$$

Coordenadas da k-ésima dimensão:

$$\mathbf{Z}_c = \begin{pmatrix} \mathbf{z}_{c1} \\ \vdots \\ \mathbf{z}_{cI} \end{pmatrix} = \lambda_k.\,\mathbf{D}_c^{-1/2}.\,\mathbf{v}_k$$

Análise de Correspondência Múltipla (ACM)

A Construção da Matriz Binária **Z**:

Imagine uma base de dados com N observações, com Q variáveis (Q > 2), e que cada variável q(q = 1, 2, ..., Q) possua J_q categorias. Logo, o número total de categorias em uma ACM é:

 $J = \sum_{q=1}^{Q} J_q$

q=1	1	12 (1)2 (1)	 Q
1	Categoria 1	Categoria 4	Categoria 2
2	Categoria 2	Categoria 1	Categoria 1
3	Categoria 1	Categoria 3	Categoria 1
1.14	Categoria 3	Categoria 2	 Categoria 2
:	:	:	:
N	Categoria 2	Categoria 4	Categoria 2
Número de categorias J_q	3	4	 2

A Matriz Binária Z:

	\	/ariável 1	L		Variável 2			4.	Variável Q	
Obs.	Cat. 1	Cat. 2	Cat. 3	Cat. 1	Cat. 2	Cat. 3	Cat. 4	•••	Cat. 1	Cat. 2
1	1	0	0	0	0.0	0	1		0	1
2	0	1	0	101	0	0	0		1	0
3	1	0	0 2	0	0	1	0		1	0
4	0	0 1	111	0	1	0	0	•••	0	1
:	:									
N	0	1	0	0	0	0	0		0	1

A Inércia Principal Total na ACM

$$I_{T} = \frac{\sum_{q=1}^{Q} (J_{q} - 1)}{Q} = \frac{J - Q}{Q}$$

A Matriz de Burt B:

Considerando-se a matriz binária $\mathbf{Z} = \left[\mathbf{Z}_1, \mathbf{Z}_2, \dots, \mathbf{Z}_Q\right]$, podemos definir a matriz do Burt de considera a matriz de Burt da seguinte maneira:

$$\mathbf{B} = \mathbf{Z}'\mathbf{Z}$$

$$\mathbf{B} = \mathbf{Z}'\mathbf{Z}$$

$$\mathbf{B} = \begin{pmatrix} \mathbf{Z}'_1.\mathbf{Z}_1 & \mathbf{Z}'_1.\mathbf{Z}_2 & \cdots & \mathbf{Z}'_1.\mathbf{Z}_K \\ \mathbf{Z}'_2.\mathbf{Z}_1 & \mathbf{Z}'_2.\mathbf{Z}_2 & \cdots & \mathbf{Z}'_2.\mathbf{Z}_K \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Z}'_K.\mathbf{Z}_1 & \mathbf{Z}'_K.\mathbf{Z}_2 & \cdots & \mathbf{Z}'_K.\mathbf{Z}_K \end{pmatrix}_{JxJ}$$

O Cálculo das Coordenadas na ACM:

As coordenadas geradas pela matriz binária ${\bf Z}$ são chamadas de coordenadas-padrão; Já as coordenadas geradas pela matriz ${\bf B}$ são chamadas de coordenadas principais, cuja relação é dada por:

 $(coordenadas\ principais_{\dim.k})_{\mathbf{B}} = \lambda_k.(coordenadas - padrão_{\dim.k})_{\mathbf{Z}}$

MUITO OBRIGADO!

Rafael de Freitas Souza

