PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2002-086285

(43) Date of publication of application: 26.03.2002

(51)Int.CI.

B23K 26/00 B23K 26/10 // B23K103:16

(21)Application number: 2000-277073

(71)Applicant:

HONDA MOTOR CO LTD

(22)Date of filing:

12.09.2000

(72)Inventor:

ODA KOJI FUKAI NAOKI

KUMAGAI TORU OTSUKA KEIJI KITAGAWA JUN **TANABE JUNYA**

(54) METHOD FOR LASER BEAM WELDING AND EQUIPMENT THERFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To weld stacked works by forming a gap between the works without using inserted members.

SOLUTION: A positioning mechanism 18 is composed of an upper roller part 96 and a lower roller part 98, and a first supporting member 202 and a second supporting member 204 are fixed with a predetermined distance on the bottom face of the upper roller fixing part 100 of the upper roller 96. A first positioning bolt 206 and a second positioning bolt 208, which face the fist supporting member 202 and the second supporting member 204, respectively, are screwed into the lower roller fixing part 110 of the lower roller 98. A first positioning pin 210 is provided at the tip of the first positioning bolt 206, and a second positioning pin 214 is provided at the tip of the second positioning bolt 208.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(II)特許出願公開番号 特開2002—86285

(P2002-86285A) (43)公開日 平成14年3月26日(2002.3.26)

(51) Int. Cl. 7	識別記号	FI		テーマコート	(参考)
B23K 26/00	310	B23K 26/00	310	G 4E068	
26/10		26/10			
// B23K103:16		103:16			

審査請求 未請求 請求項の数4 OL (全7頁)

(21)出願番号 特願2000-277073(P2000-277073) (71)

(71)出願人 000005326

本田技研工業株式会社

(22)出願日 平成12年9月12日(2000.9.12)

東京都港区南青山二丁目1番1号

(72)発明者 小田 幸治

埼玉県狭山市新狭山1-10-1 ホンダエ

ンジニアリング株式会社内

(72)発明者 深井 直樹

埼玉県狭山市新狭山1-10-1 ホンダエ

ンジニアリング株式会社内

(74)代理人 100077665

弁理士 千葉 剛宏 (外1名)

最終頁に続く

(54) 【発明の名称】レーザ溶接方法及びその装置

(57)【要約】

【課題】インサート材などを用いずに重ね合わせたワークの間に間隙を形成して該ワークを溶接する。

【解決手段】位置決め機構18は上ローラ部96と下ローラ部98とから構成され、該上ローラ部96の上ローラ固定部100の底面には所定間隔離間した第1の受け部材202及び第2の受け部材204が固着される。下ローラ部98の下ローラ固定部110には、前記第1の受け部材202及び前記第2の受け部材204のそれぞれに対向する第1の位置決めボルト206の先端には第1の位置決めピン210が設けられ、第2の位置決めボルト208の先端には第2の位置決めピン214が設けられる。

FIG. 2

【特許請求の範囲】

【請求項1】ワークを重ね合わせ、その重ね合わせた部 位に対してレーザビームを照射することにより該ワーク を溶接するレーザ溶接方法であって、

1

位置決め機構によって前記ワークの間を所定間隔離間さ せた状態でレーザピームを照射して該ワーク同士を溶着 させることを特徴とするレーザ溶接方法。

【請求項2】ワークを重ね合わせ、その重ね合わせた部 位に対してレーザビームを照射することにより該ワーク を溶接するレーザ溶接方法であって、

一対のローラによってワークを押圧挟持することにより 少なくとも1つのワークを塑性変形させて該ワークの間 に間隙を形成し、

前記間隙が形成された部位の前記ワークに対してレーザ ビームを照射することにより、該ワーク同士を溶着させ ることを特徴とするレーザ溶接方法。

【請求項3】ワークを重ね合わせ、その重ね合わせた部 位に対してレーザビームを照射することにより該ワーク を溶接するレーザ溶接装置であって、

前記ワークの溶接部位の位置決めを行うための位置決め 20 機構を有し、

前記位置決め機構は、第1のローラ部と第2のローラ部 とを含み、

前記第2のローラ部は前記第1のローラ部に対して接近 離反自在であるとともに、 該第2のローラ部に設けられ るストッパ機構によって該第1のローラ部に対する該第 2のローラ部の位置を決定することを特徴とするレーザ 溶接装置。

【請求項4】ワークを重ね合わせ、その重ね合わせた部 を溶接するレーザ溶接装置であって、

前記ワークの溶接部位の位置決めを行うための位置決め 機構を有し、

前記位置決め機構は、第1のローラ部と第2のローラ部

前記第2のローラ部はサーボ機構に連結されるととも に、該サーボ機構の作用下に前記第1のローラ部に対す る該第2のローラ部の位置を決定することを特徴とする レーザ溶接装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、重ね合わせたワー クに対してレーザビームを照射することにより溶接を行 うレーザ溶接方法及びその装置に関する。

[0002]

【従来の技術】例えば、亜鉛メッキされたワークを重ね 合わせてレーザピームを照射することにより溶接を行う レーザ溶接方法としては、特許第2743708号公報 に開示されている方法が知られている。

【0003】この溶接方法は、亜鉛メッキされたワーク 50 該第2のローラ部に設けられるストッパ機構によって該

の間に、薄いインサート材を介在させて溶接を行うもの である。この場合、インサート材を構成する有機物の融 点及び沸点は、亜鉛の融点及び沸点より低いものが選定 されている。従って、ワークの間にインサート材を介在 させた状態でレーザピームを照射することにより、先 ず、インサート材が気化し、その後に亜鉛メッキが気化 する。その際、最初にインサート材が気化することによ りワークの間に間隙が形成され、その間隙から気化した 亜鉛成分が流出しながらワーク同士が溶着される。

10 [0004]

【発明が解決しようとする課題】しかしながら、この従 来技術に係るレーザ溶接方法においては、亜鉛メッキさ れたワークの間にインサート材を介在させる作業が必要 であるため、生産工程が増加するとともに、多大な人件 費がかかり、ひいては生産コストの高騰を招くという問 題点が指摘されている。さらに、例えば、ワークが自動 車車体のような大型な部材に対してインサート材を介在 させる作業は非常に煩雑であるという不具合が生じてい

【0005】本発明はこのような課題を考慮してなされ たものであり、例えば、インサート材などを介在させる ことなく重ね合わされたワークの間に容易に間隙を形成 して該ワークを溶接することができ、これにより、生産 工程の簡略化と生産コストの低廉化を達成し、しかも、 ワークが自動車車体のような大型な部材に対しても、煩 雑な作業を行うことなく溶接を施すことができるレーザ 溶接方法及びその装置を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明は、ワークを重ね 位に対してレーザビームを照射することにより該ワーク 30 合わせ、その重ね合わせた部位に対してレーザビームを 照射することにより該ワークを溶接するレーザ溶接方法 であって、位置決め機構によって前記ワークの間を所定 間隔離間させた状態でレーザビームを照射して該ワーク 同士を溶着させることを特徴とする。

> 【0007】また、本発明は、ワークを重ね合わせ、そ の重ね合わせた部位に対してレーザビームを照射するこ とにより該ワークを溶接するレーザ溶接方法であって、 一対のローラによってワークを押圧挟持することにより 少なくとも1つのワークを塑性変形させて該ワークの間 40 に間隙を形成し、前記間隙が形成された部位の前記ワー クに対してレーザビームを照射することにより、該ワー ク同士を溶着させることを特徴とする。

【0008】さらに、本発明は、ワークを重ね合わせ、 その重ね合わせた部位に対してレーザビームを照射する ことにより該ワークを溶接するレーザ溶接装置であっ て、前記ワークの溶接部位の位置決めを行うための位置 決め機構を有し、前記位置決め機構は、第1のローラ部 と第2のローラ部とを含み、前記第2のローラ部は前記 第1のローラ部に対して接近離反自在であるとともに、

4

第1のローラ部に対する該第2のローラ部の位置を決定することを特徴とする。

【0009】さらにまた、本発明によれば、ワークを重ね合わせ、その重ね合わせた部位に対してレーザピームを照射することにより該ワークを溶接するレーザ溶接装置であって、前記ワークの溶接部位の位置決めを行うための位置決め機構を有し、前記位置決め機構は、第1のローラ部と第2のローラ部とを含み、前記第2のローラ部はサーボ機構に連結されるとともに、該サーボ機構の作用下に前記第1のローラ部に対する該第2のローラ部の位置を決定することを特徴とする。

【0010】本発明によれば、ストッパ機構を調整するか、若しくはサーボ機構を作用させることによって第1のローラ部に対する第2のローラ部を所定の位置に決定する。これにより、第1のローラ部と第2のローラ部とのそれぞれに備えられたローラ間の間隔を所望の間隔にすることができる。従って、ローラによって重ね合わされたワークを挟持する場合に、ワーク間隔を所望の間隔にすることが可能となる。すなわち、重ね合わされたワークの間に間隙を形成することができる。

【0011】さらに、本発明によれば、一対のローラによってワークを押圧挟持することにより、少なくとも1つのワークを塑性変形させることができる。これにより、重ね合わされたワークの間に間隙を形成することが可能となる。

【0012】従って、本発明に係るレーザ溶接方法及びその装置によれば、例えば、亜鉛メッキされたワークを重ね合わせて溶接する場合、該ワークに対してレーザビームを照射することにより該ワークに施された亜鉛メッキが気化するが、ワーク間に間隙を形成できるため、該 30間隙から気化した亜鉛成分が流出して確実にワーク同士を溶着させることが可能となる。

[0013]

【発明の実施の形態】本発明に係るレーザ溶接方法につきそれを実施するための溶接装置との関係において好適な実施の形態を挙げ、添付の図1~図7を参照しながら以下詳細に説明する。なお、このレーザ溶接装置は、その用途が限定されるものではないが、例えば、自動車のドアなどフランジ部(板状部)を有する亜鉛メッキされたワークWを重ね合わせて溶接する場合に用いると好ま 40 しい。

【0014】本発明の第1の実施の形態に係るレーザ溶接装置10は、図1に示すように、原位置復帰機構12と、レーザビームヘッド16と、位置決め機構18とを有し、該レーザ溶接装置10はロボットアーム20の先端に取着されている。

【0015】原位置復帰機構12はロボットアーム20 に固着される支持プラケット22を有し、該支持プラケット22は上面板24と、この上面板24と平行して延 在する下面板26とを備える。前記上面板24と前記下50

面板26との間にはガイドバー28が橋架され、該ガイドバー28には該上面板24及び該下面板26に略平行な支持部材30が摺動自在に嵌合する。この支持部材30は、前記ガイドバー28の軸方向に対して長尺に形成される(図1参照)。前記上面板24と前記支持部材30との間には、前記ガイドバー28に巻回された第1のコイルスブリング32が介装される。同様に、前記ガイドバー28に巻回された第2のコイルスプリング34が介装される。従って、前記支持部材30は、図1中、矢印A方向に移動した場合には、前記第1のコイルスプリング32の弾発力の作用下に、また、図1中、矢印A、方向に移動した場合には、前記第2のコイルスプリング34の弾発力の作用下に、それぞれ原位置(図1に示す状態)に復帰することができる。

【0016】支持部材30の一側面にはロボットアーム20側に指向して一体的に形成される屈曲部38を有するベースプレート36が固着される。さらに、前記ベースプレート36には、該ベースプレート36に固着される第1のスペーサ64及び該第1のスペーサ64に固着される第2のスペーサ66を介してレーザビームLを照射するためのレーザビームへッド16が取着されている。このレーザビームへッド16は、その内部に集光レンズ(図示せず)を保持し、光ファイバ70を介して送られるレーザビームLを所定の焦点距離で集束させてワークWに照射するものである。

【0017】前記ベースプレート36の屈曲部38の底 面72には、図1において下方に所定角度傾斜して延在 する板状の保持部74が一体的に形成される第1のガイ ド76が固着され、該第1のガイド76の屈曲部近傍に は第2のガイド78が固定される。この第2のガイド7 8には第1の軸80が係合する。前記第1の軸80に は、例えば、エアシリンダなどのアクチュエータ82が 回動自在に枢支される。このアクチュエータ82から延 在するロッド84の先端には略コの字型のホルダ86が ナット88によって螺着され、該ホルダ86にはヨーク 92が第2の軸90に回動自在に軸支される(図2参 照)。図1から諒解されるように、このヨーク92は、 図1において上方に所定角度傾斜して延在している。 な お、前記ヨーク92は、レーザ溶接装置10を設置する 場所によって、図1において下方に所定角度傾斜して延 在していてもよい。

【0018】第1の実施の形態においては、前記保持部74と前記ヨーク92とによってワークWの位置決めを行うための位置決め機構18が支持されており、該位置決め機構18は上ローラ部96と下ローラ部98とから構成される(図2参照)。

【0019】上ローラ部96は、前記保持部74の下部に固着される上ローラ固定部100と、該上ローラ固定部100の一側面に固定された軸102aに固着される

10

第1のローラ102と、該上ローラ固定部100の両端 面に取着される一組の第1のステー106及び108を 有する(図2参照)。前記上ローラ固定部100の底面 には、所定間隔離間した第1の受け部材202及び第2 の受け部材204が固着されている。なお、前記第1の ローラ102は、該第1のローラ102の温度が上昇し た際に該第1のローラ102の温度を下げるための冷却 機構(図示せず)に接続されている。

【0020】下ローラ部98は、前記上ローラ固定部1 00に対向し、かつ前記ヨーク92の前記第2の軸90 に軸支されていない側に固着される下ローラ固定部11 0と、該下ローラ固定部110の一側面に固定された軸 112aに固着され、かつ前記第1のローラ102に対 向する第2のローラ112と、該下ローラ固定部110 の両端面に取着される一組の第2のステー116及び1 18を有する(図2参照)。前記下ローラ固定部110 には、所定間隔離間した第1の位置決めボルト206及 び第2の位置決めボルト208が螺入されている。この 第1の位置決めポルト206は、その先端に前記第1の 受け部材202に当接する第1の位置決めピン210が 20 設けられるとともに、第1の位置決めナット212によ って下ローラ固定部110に対する位置決めが行われて いる。第2の位置決めボルト208も、前記第1の位置 決めボルト206と同様に、その先端に前記第2の受け 部材204に当接する第2の位置決めピン214が設け られるとともに、第2の位置決めナット216によって 下ローラ固定部110に対する位置決めが行われてい る。従って、図4中、矢印G-G'方向に第1の位置決 めボルト206及び第2の位置決めボルト208の下口 ーラ固定部110に対する締め具合を調整することによ 30 り、第1のローラ102と第2のローラ112との間を 所望の間隔にすることができる。

【0021】なお、前記第2のローラ112は、前記第 1のローラ102と同様に、該第2のローラ112の温 度が上昇した際に該第2のローラ112の温度を下げる ための冷却機構(図示せず)に接続されている。

【0022】第1のステー106及び108は、第2の ステー116及び118の外方に位置するとともに、該 第1のステー106及び108と該第2のステー116 及び118とは第3の軸120によって軸支される。す 40 なわち、前記下ローラ部98は前記上ローラ部96に対 して、図2中、矢印C-C'方向に回動自在である。な お、図2中、参照符号94は、リングを示す。

【0023】第1の実施の形態に係るレーザ溶接装置1 0は、基本的には以上のように構成されるものであり、 次にその作用及び効果について説明する。

【0024】 先ず、図1に示すように、フランジ部(板 状部)WF1及びWF2を有するとともに、図1中、奥 方向から手前方向に向かって亜鉛メッキされた長尺なワ ークWの該フランジ部WF1及びWF2を重ね合わせ

て、位置決め機構18で該ワークWの位置決めを行う。 具体的には、アクチュエータ82の駆動作用下に下ロー ラ部98を上ローラ部96に対して、図2中、矢印C方 向に回転させる。このとき、第1のローラ102及び第 2のローラ112との間に空間部250が形成され(図 3参照)、該空間部250に前記フランジ部WF1及び WF2を挿入する。その後、前記アクチュエータ82の 駆動作用下に前記下ローラ部98を前記上ローラ部96 に対して、図2中、矢印C¹方向に回転させて前記フラ ンジ部WF1及びWF2を挟持する(図4参照)。この 場合、第1の実施の形態においては、ワークWのフラン ジ部WF1及びWF2を重ね合わせて挟持した際に、重 ね合わされた該フランジ部WF1及びWF2の間に間隙 H1が形成されるように、前記第1の位置決めボルト2 06及び前記第2の位置決めボルト208の位置が予め 調整されている(図4参照)。

【0025】その状態で、レーザビームヘッド16から フランジ部WF1及びWF2に対してレーザピームLを 第1のローラ102の近傍に照射する(図4参照)。こ の場合、第1の実施の形態においては、図4において第 1のローラ102の右側にレーザビームしを照射してい るが、図4において第1のローラ102の左側にレーザ ピームしを照射してもよい。レーザピームしはフランジ 部WF1及びWF2に対して垂直に照射されるととも に、該レーザビームLを該フランジ部WF1及びWF2 に照射することによって該フランジ部WF1及びWF2 に施された亜鉛メッキが気化する。しかしながら、第1 の実施の形態においては、ワークWの間に間隙H1が形 成されるため、該間隙H1から気化された亜鉛成分が流 出して、確実にワークW同士を溶着させることが可能と なる。なお、フランジ部WF1及びWF2を溶接してい る際、第1のローラ102及び第2のローラ112は溶 接熱を帯びるため、該第1のローラ102及び該第2の ローラ112は、常時、冷却機構(図示せず)によって 冷却されている。

【0026】ワークWの溶接が終了した後、該ワークW は次工程に搬送され最終的に製品として完成される。

【0027】なお、第1の実施の形態においては、2本 の位置決めボルト206、208を設けたが、第1の位 置決めボルト206、若しくは第2の位置決めボルト2 08の何れか1本のみを設けるようにしてもよい。

【0028】さらに、下ローラ部98を図示しないサー ボ機構に連結させてもよい。これにより、第1の位置決 めボルト206及び第2の位置決めボルト208を設け る必要がなくなり、サーボ機構の作用下にワークWのフ ランジ部WF1及びWF2を重ね合わせて挟持した際、 重ね合わされた該フランジ部WF1及びWF2の間に間 隙H1が形成されるように、第2のローラ112を第1 のローラ102に接近させることが可能となる。従っ 50 て、位置決め機構18の構成を簡素化することができ

1

【0029】次に、本発明の第2の実施の形態に係るレ ーザ溶接装置300について、図5~図7を参照しなが ら説明する。この第2の実施の形態に係るレーザ溶接装 置300において、第1の実施の形態に係るレーザ溶接 装置10における構成要素と同一の構成要素には同一の 参照符号を付し、その詳細な説明を省略する。

【0030】この第2の実施の形態に係るレーザ溶接装 置300は、前記第1の実施の形態に係るレーザ溶接装 置10と略同様の構成を有するが、図5に示すように、 下ローラ部98に第1の位置決めボルト206及び第2 の位置決めボルト208が設けられていない点で異なっ

【0031】従って、この第2の実施の形態に係るレー ザ溶接装置300において亜鉛メッキされたワークWの 溶接を行う場合、先ず、図5及び図6に示すように、第 1のローラ102及び第2のローラ112によってワー クWのフランジ部WF1及びWF2を挟持押圧する。こ れにより、図5において第1のローラ102の右側に位 置するフランジ部WF1が塑性変形して、重ね合わされ 20 た該フランジ部WF1及びWF2の間に間隙H2が形成 される。この状態で、前記間隙H2が形成された部位の 前記フランジ部WF1及びWF2に対してレーザピーム Lを照射する。その際、フランジ部WF1及びWF2に 施された亜鉛メッキが気化するが、該フランジ部WF1 及びWF2の間に間隙H2が形成されているため、該間 隙H2から気化された亜鉛成分が流出して、確実にワー クW同士を溶着させることが可能となる。

【0032】この第2の実施の形態に係るレーザ溶接装 置300においても、第1の実施の形態に係るレーザ溶 30 決め機構の近傍を示す一部省略拡大正面説明図である。 接装置10と同様に、下ローラ部98をサーボ機構に連 結させ、該サーボ機構の作用下に第2のローラ112を 第1のローラ102に接近させてワークWのフランジ部 WF1及びWF2を挟持押圧してもよい。

【0033】図7は、第2の実施の形態に係るレーザ溶 接装置300を構成する第1のローラ102の変形例を 示す。この変形例に係る第1のローラ102は、半径方 向外方に向かうにつれてテーパ状に形成されるととも に、その先端部302は尖形に形成されている。

【0034】なお、第2の実施の形態において用いられ 40 る好ましいワークWの例としては、少なくとも1枚が薄 板(約1mmの板厚)である亜鉛メッキされた2枚の板 組、若しくは亜鉛メッキされた薄板3枚の板組、若しく は亜鉛メッキされた2枚の薄板の板組に亜鉛メッキされ ていないスチール製の板材(SP材)を介装したものな どを例示することができるが、このこの限りではない。 [0035]

【発明の効果】以上説明したように、本発明によれば、 第1の位置決めボルト及び第2の位置決めボルトの下口 ーラ固定部に対する締め具合を調整することにより、第 50 WF1、WF2…フランジ部

1のローラと第2のローラとの間の間隔を所望の間隔に することができる。従って、第1のローラと第2のロー ラとによって重ね合わされたワークを挟持する場合に、 ワークの間隔を所望の間隔にすることが可能となる。す なわち、重ね合わされたワークの間に間隙を形成するこ とができる。

【0036】さらに、本発明によれば、一対のローラに よってワークを押圧挟持することにより、少なくとも1 つのワークを塑性変形させることができる。これによ 10 り、重ね合わされたワークの間に間隙を形成することが 可能となる。

【0037】従って、例えば、亜鉛メッキされたワーク を重ね合わせて溶接する場合において、該ワークに対し てレーザピームを照射することにより、該ワークに施さ れた亜鉛メッキが気化するが、ワークの間に間隙を形成 できるため、該間隙から気化された亜鉛成分が流出して 確実にワーク同士を溶着させることができるという特有 の効果が得られる。

【図面の簡単な説明】

【図1】第1の実施の形態に係るレーザ溶接装置を示す 側面説明図である。

【図2】図1におけるレーザ溶接装置の位置決め機構の 近傍を示す一部省略拡大斜視説明図である。

【図3】図2における位置決め機構の下ローラ部が上口 ーラ部から離間した状態を示す一部省略拡大側面説明図 である。

【図4】図2における位置決め機構の近傍を示す一部省 略拡大正面説明図である。

【図5】第2の実施の形態に係るレーザ溶接装置の位置

【図6】図5におけるVI-VI線から見た矢視説明図 である。

【図7】図5におけるレーザ溶接装置を構成する第1の ローラの変形例によってワークを挟持押圧する状態を示 す一部省略側面説明図である。

【符号の説明】

10.3	300…レーザ溶接装置	16…レーザ
ピームへ	ヘッド	
18…位	位置決め機構	9 6 …上口一
ラ部		
9 8 ⋯7	ドローラ部	102…第1
のローラ	7	
1 1 2	·・第2のローラ	202…第1
の受け音	『材	
	・・第2の受け部材	206…第1
	やめボルト	
	··第2の位置決めボルト	H1, H2
間隙		
L…レ-	-ザビーム	W…ワーク

[図4]

【図5】

フロントページの続き

(72)発明者 熊谷 徹 埼玉県狭山市新狭山1-10-1 ホンダエ ンジニアリング株式会社内

(72) 発明者 大塚 啓示 埼玉県狭山市新狭山 1 - 10 - 1 ホンダエ ンジニアリング株式会社内

(72)発明者 北川 純 埼玉県狭山市新狭山1-10-1 ホンダエ ンジニアリング株式会社内

(72) 発明者 田辺 順也 埼玉県狭山市新狭山1-10-1 ホンダエ ンジニアリング株式会社内

F ターム(参考) 4E068 BF00 CA11 CA14 CE06 DA14 DB01 DB15