

planetmath.org

Math for the people, by the people.

Hilbert module

Canonical name HilbertModule

Date of creation 2013-03-22 13:01:01 Last modified on 2013-03-22 13:01:01

Owner mhale (572) Last modified by mhale (572)

Numerical id 8

 $\begin{array}{lll} \text{Author} & \text{mhale (572)} \\ \text{Entry type} & \text{Definition} \\ \text{Classification} & \text{msc 46C05} \\ \text{Synonym} & \textit{C*-module} \\ \text{Related topic} & \text{HilbertSpace} \end{array}$

Related topic FinitelyGeneratedProjectiveModule

Defines pre-Hilbert module

Definition 1. A (right) pre-Hilbert module over a C^* -algebra A is a right A-module \mathcal{E} equipped with an A-valued inner product $\langle -, - \rangle \colon \mathcal{E} \times \mathcal{E} \to A$, i.e. a sesquilinear pairing satisfying

$$\langle u, va \rangle = \langle u, v \rangle a \tag{1}$$

$$\langle u, v \rangle = \langle v, u \rangle^* \tag{2}$$

$$\langle v, v \rangle \ge 0$$
, with $\langle v, v \rangle = 0$ iff $v = 0$, (3)

for all $u, v \in \mathcal{E}$ and $a \in A$. Note, positive definiteness is well-defined due to the notion of positivity for C^* -algebras. The norm of an element $v \in \mathcal{E}$ is defined by $||v|| = \sqrt{||\langle v, v \rangle||}$.

Definition 2. A (right) Hilbert module over a C^* -algebra A is a right pre-Hilbert module over A which is complete with respect to the norm.

Example 1 (Hilbert spaces)

A complex Hilbert space is a Hilbert \mathbb{C} -module.

Example 2 (C^* -algebras)

A C^* -algebra A is a Hilbert A-module with inner product $\langle a, b \rangle = a^*b$.

Definition 3. A **Hilbert** A-B-**bimodule** is a (right) Hilbert module \mathcal{E} over a C^* -algebra B together with a *-homomorphism π from a C^* -algebra A to $\operatorname{End}(\mathcal{E})$.