

NAME:

Midterm

Circuits

Duration: 75 minutes

Except when stated otherwise, you should justify all your answers.

Your application of circuit analysis methods will be evaluated and it will reward you with more points than the final answer.

All the values should be given with a unit.

Circuits Page 1 of 7

 \square positive

 \square either positive or negative

Exercise 1 - Simple questions

This generic element as been labeled with voltage v and current i.

Tick the correct answers to the following questions (some questions may have multiple answers):

The element is producing pow ☐ Yes	ver: □ No	□ Cannot tell
• If $v = -5 \mathrm{V}$ and $i = 10 \mathrm{mA}$, w \Box Resistor	which element type could it be: □ Voltage source	□ Current source
• If $v = 3 \text{ V}$ and $i = 5 \text{ mA}$, which \square Resistor	ch element type could it be: □ Voltage source	☐ Current source
• If $v = -1$ V and $i = 2$ mA, pa \square Yes	ssive sign convention is satisfied \square No	ed: □ Cannot tell
• If the element is a resistor (resistance value R), the absorbed power p is expressed by:		
$\Box \ p = v \cdot i$	$\Box \ p = -R \cdot i^2$	$\Box \ p = \frac{v^2}{R}$
• If any other element is connec □ voltage	eted in series with it, it will ex \Box current	hibit the same: \square absorbed power
• If any other element is connected in parallel with it, it will exhibit the same: \Box voltage \Box current \Box absorbed power		
• If the element is a voltage source with $v = 2 V$, then the current i is necessarily:		

 \square negative

Circuits Page 2 of 7

Exercise 2 - Thévenin/Norton equivalence

ullet Determine the Thévenin equivalence and the Norton equivalence for the terminal ab.

Circuits Page 3 of 7

Exercise 3 - Equivalent resistors

Determine the resistance values of the equivalent resistors for the following networks. Be careful, the values of the resistors may change between the networks. No justification is needed.

3.1 Resistive network 1

 $R_{eq} = \underline{\hspace{1cm}}$

3.2 Resistive network 2

 $R_{eg} =$

3.3 Resistive network 3

 $R_{eg} =$

Circuits Page 4 of 7

3.4 Resistive network 4

 $R_{eq} = \underline{\hspace{1cm}}$

Circuits Page 5 of 7

Exercise 4 - Circuit analysis

By the method of your choice (mesh analysis or nodal analysis), determine I and the **power of** the dependent source.

- 1. Label the circuit properly.
- 2. Write the equations from the analysis.
- 3. Solve the system of equations. (time consuming, maybe keep it for last)
- 4. Post-process the results.

Circuits Page 6 of 7

Circuits Page 7 of 7