

COM303: Digital Signal Processing

Lecture 17: Sampling and applications

overview

- raw sampling and aliasing
- ▶ DT processing of CT signals

Sinc Sampling

$$x[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x(t) \rangle$$

Sinc Sampling

$$x[n] = (\operatorname{sinc}_{T_s} *x)(nT_s)$$

Sinc Sampling

$$x[n] = (\operatorname{sinc}_{T_s} *x)(nT_s)$$

Sinc Sampling for F_s -BL signals

$$x[n] = (\operatorname{sinc}_{T_s} *x)(nT_s) = T_s x(nT_s)$$

"Raw" sampling - can we always do that?

$$x[n] = x(nT_s)$$

$$x(t) \xrightarrow{T_s} x[n]$$

Remember the wagonwheel effect?

$$x(t) = e^{j2\pi f_0 t}$$

- ightharpoonup always periodic, period $t_0 = 1/f_0$
- ► all angular speeds are allowed
- $\blacktriangleright \mathsf{FT}\left\{e^{j2\pi f_0 t}\right\} = \delta(f f_0)$
- ightharpoonup highest (and only) frequency is f_0

$$x(t) = e^{j2\pi f_0 t}$$

- ightharpoonup always periodic, period $t_0=1/f_0$
- ► all angular speeds are allowed
- $\blacktriangleright \mathsf{FT}\left\{e^{j2\pi f_0 t}\right\} = \delta(f f_0)$
- ▶ highest (and only) frequency is f_0

$$x(t) = e^{j2\pi f_0 t}$$

- ightharpoonup always periodic, period $t_0=1/f_0$
- ► all angular speeds are allowed
- $\blacktriangleright \mathsf{FT}\left\{e^{j2\pi f_0 t}\right\} = \delta(f f_0)$
- ▶ highest (and only) frequency is f_0

$$x(t)=e^{j2\pi f_0t}$$

- ightharpoonup always periodic, period $t_0=1/f_0$
- ► all angular speeds are allowed
- $\blacktriangleright \mathsf{FT}\left\{e^{j2\pi f_0 t}\right\} = \delta(f f_0)$
- ▶ highest (and only) frequency is f_0

Raw samples of the continuous-time complex exponential

$$x[n] = e^{j2\pi f_0 n T_s}$$

- raw samples are snapshots at regular intervals of the rotating point
- resulting digital frequency is $\omega_0 = 2\pi f_0 T_s = 2\pi (f_0/F_s)$

Raw samples of the continuous-time complex exponential

$$x[n] = e^{j2\pi f_0 n T_s}$$

- raw samples are snapshots at regular intervals of the rotating point
- lacktriangleright resulting digital frequency is $\omega_0=2\pi f_0 T_s=2\pi (f_0/F_s)$

Easy: $f_0 < F_s/2 \quad \Rightarrow \quad \omega_0 < \pi$

Tricky: $F_s/2 < f_0 < F_s \quad \Rightarrow \quad \pi < \omega_0 < 2\pi$

Tricky: $F_s/2 < f_0 < F_s \quad \Rightarrow \quad \pi < \omega_0 < 2\pi$

Tricky: $F_s/2 < f_0 < F_s \quad \Rightarrow \quad \pi < \omega_0 < 2\pi$

Tricky: $F_s/2 < f_0 < F_s \quad \Rightarrow \quad \pi < \omega_0 < 2\pi$

Tricky: $F_s/2 < f_0 < F_s \quad \Rightarrow \quad \pi < \omega_0 < 2\pi$

Tricky: $F_s/2 < f_0 < F_s \quad \Rightarrow \quad \pi < \omega_0 < 2\pi$

1:

Aliasing

Aliasing

pick
$$T_s$$
; $F_s=1/T_s$ input: $x(t)=e^{j2\pi f_0 t}$ digital frequency: $\omega_0=2\pi f_0/F_s$

digital frequency $\hat{x}(t)$

$$\begin{array}{lll} f_0 < F_s/2 & 0 < \omega_0 < \pi & e^{j2\pi f_0 t} \\ f_0 = F_s/2 & \omega_0 = \pi & e^{j2\pi f_0 t} \\ F_s/2 < f_0 < F_s & \pi < \omega_0 < 2\pi & e^{j2\pi f_1 t}, & f_1 = f_0 - F_s < 0 \\ f_0 > F_s & \omega_0 > 2\pi & e^{j2\pi f_2 t}, & f_2 = f_0 \mod F_s \end{array}$$

Sampling a Sinusoid

sampling frequency	digital frequency	interpolation
$F_s > 2f_0$ $F_s = 2f_0$ $f_0 < F_s < 2f_0$ $F_s < f_0$	$0<\omega_0<\pi \ \omega_0=\pi \ \pi<\omega_0<2\pi \ \omega_0>2\pi$	OK: $\hat{f_0} = f_0$ OK (max frequency $\hat{f_0} = F_s$) negative frequency: $\hat{f_0} = f_0 - F_s$ full aliasing: $\hat{f_0} = f_0 \mod F_s$

16

Raw-sampling an arbitrary signal

$$x_c(t)$$
 $x_c(t)$ $x_c(nT_s)$

Raw-sampling an arbitrary signal

Key idea

- ightharpoonup pick T_s (and set $F_s = 1/T_s$)
- ightharpoonup pick $f_0 < F_s/2$

Key idea

- ightharpoonup pick T_s (and set $F_s = 1/T_s$)
- ightharpoonup pick $f_0 < F_s/2$

$$e^{j2\pi(f_0+F_s)t}$$
 \longrightarrow $e^{j2\pi(f_0+F_s)T_st}$

- ightharpoonup pick T_s (and set $F_s = 1/T_s$)
- ightharpoonup pick $f_0 < F_s/2$

- ightharpoonup pick T_s (and set $F_s = 1/T_s$)
- ightharpoonup pick $f_0 < F_s/2$

$$e^{j2\pi(f_0+F_s)t}$$
 $e^{j(2\pi f_0 T_s n+2\pi n)}$

- ightharpoonup pick T_s (and set $F_s = 1/T_s$)
- ightharpoonup pick $f_0 < F_s/2$

- ightharpoonup pick T_s (and set $F_s = 1/T_s$)
- ightharpoonup pick $f_0 < F_s/2$

$$Ae^{j2\pi f_0 t} + Be^{j2\pi (f_0 + F_s)t} \longrightarrow (A+B)e^{j2\pi f_0 T_s n}$$

$$T_s$$

outline: start with the inverse Fourier Transform

$$x[n] = x_c(nT_s) = \int_{-\infty}^{\infty} X_c(f) e^{j2\pi f T_s n} df$$

and manipulate the integral until it looks like

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\omega) e^{j\omega n} d\omega$$

frequencies F_s Hz apart will be aliased, so split the integration interval

$$x[n] = \int_{-\infty}^{\infty} X_c(f) e^{j2\pi f T_s n} df$$

$$= \sum_{k=-\infty}^{\infty} \int_{kF_s - \frac{F_s}{2}}^{kF_s + \frac{F_s}{2}} X_c(f) e^{j2\pi f T_s n} df$$

$$x[n] = \sum_{k=-\infty}^{\infty} \int_{kF_{s} - \frac{F_{s}}{2}}^{kF_{s} + \frac{F_{s}}{2}} X_{c}(f) e^{j2\pi f T_{s}n} df$$

operate the change of variable $f \rightarrow f + kF_s$:

- ▶ integration limits become $\pm F_s/2$

$$x[n] = \sum_{k=-\infty}^{\infty} \int_{kF_s - \frac{F_s}{2}}^{kF_s + \frac{F_s}{2}} X_c(f) e^{j2\pi f T_s n} df$$

$$= \sum_{k=-\infty}^{\infty} \int_{-F_s/2}^{F_s/2} X_c(f - kF_s) e^{j2\pi f T_s n} df$$

$$= \int_{-F_s/2}^{F_s/2} \left[\sum_{k=-\infty}^{\infty} X_c(f - kF_s) \right] e^{j2\pi f T_s n} df$$

 F_s -periodization of the spectrum; define:

$$\tilde{X}_c(f) = \sum_{k=-\infty}^{\infty} X_c(f - kF_s)$$

then:

$$x[n] = \int_{-F_s/2}^{F_s/2} \tilde{X}_c(f) e^{j2\pi f T_s n} df$$

set
$$\omega=2\pi f\ T_s$$
, so that $f=rac{\omega}{2\pi}F_s$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_s \, \tilde{X}_c \left(\frac{\omega}{2\pi} F_s \right) e^{j\omega n} d\omega$$
$$= \mathsf{IDTFT} \left\{ F_s \tilde{X}_c \left(\frac{\omega}{2\pi} F_s \right) \right\}$$

$$X(e^{j\omega}) = F_s \tilde{X}_c \left(\frac{\omega}{2\pi} F_s\right) = F_s \sum_{k=-\infty}^{\infty} X_c \left(\frac{\omega}{2\pi} F_s - k F_s\right)$$

- ▶ if the signal is bandlimited to $F_s/2$ or less, raw sampling is fine (i.e. equivalent to sinc sampling up to a scaling factor T_s)
- ▶ if the signal is not bandlimited, two choices:
 - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
 - or, raw sample the signal and incur aliasing
- aliasing introduces errors we cannot control, so the sensible choice is to bandlimit in continuous time
- bandlimiting is also optimal wrt least squares approximation!

- ▶ if the signal is bandlimited to $F_s/2$ or less, raw sampling is fine (i.e. equivalent to sinc sampling up to a scaling factor T_s)
- ▶ if the signal is not bandlimited, two choices:
 - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. since sampling)
 - or, raw sample the signal and incur aliasing
- aliasing introduces errors we cannot control, so the sensible choice is to bandlimit in continuous time
- bandlimiting is also optimal wrt least squares approximation!

- ▶ if the signal is bandlimited to $F_s/2$ or less, raw sampling is fine (i.e. equivalent to sinc sampling up to a scaling factor T_s)
- ▶ if the signal is not bandlimited, two choices:
 - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
 - or, raw sample the signal and incur aliasing
- aliasing introduces errors we cannot control, so the sensible choice is to bandlimit in continuous time
- bandlimiting is also optimal wrt least squares approximation!

- ▶ if the signal is bandlimited to $F_s/2$ or less, raw sampling is fine (i.e. equivalent to sinc sampling up to a scaling factor T_s)
- ▶ if the signal is not bandlimited, two choices:
 - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
 - or, raw sample the signal and incur aliasing
- aliasing introduces errors we cannot control, so the sensible choice is to bandlimit in continuous time
- bandlimiting is also optimal wrt least squares approximation!

Sampling strategies

given a sampling frequency F_s

- ▶ if the signal is bandlimited to $F_s/2$ or less, raw sampling is fine (i.e. equivalent to sinc sampling up to a scaling factor T_s)
- ▶ if the signal is not bandlimited, two choices:
 - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
 - or, raw sample the signal and incur aliasing
- aliasing introduces errors we cannot control, so the sensible choice is to bandlimit in continuous time
- bandlimiting is also optimal wrt least squares approximation!

Sampling strategies

given a sampling frequency F_s

- ▶ if the signal is bandlimited to $F_s/2$ or less, raw sampling is fine (i.e. equivalent to sinc sampling up to a scaling factor T_s)
- ▶ if the signal is not bandlimited, two choices:
 - bandlimit via a lowpass filter in the continuous-time domain before sampling (i.e. sinc sampling)
 - or, raw sample the signal and incur aliasing
- aliasing introduces errors we cannot control, so the sensible choice is to bandlimit in continuous time
- bandlimiting is also optimal wrt least squares approximation!

$$\hat{x}[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x_c(t) \rangle = (\operatorname{sinc}_{T_s} * x_c)(nT_s)$$

$$\hat{x}[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x_c(t) \rangle = (\operatorname{sinc}_{T_s} * x_c)(nT_s)$$

$$\hat{x_c}(t) = \sum_n x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right)$$

 $F_{\rm s}/2$

$$\hat{x}[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x_c(t) \rangle = (\operatorname{sinc}_{T_s} * x_c)(nT_s)$$

$$\hat{x}_c(t) = \sum_n x[n] \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right)$$

$$\hat{x}[n] = \langle \operatorname{sinc}\left(\frac{t - nT_s}{T_s}\right), x_c(t) \rangle = (\operatorname{sinc}_{T_s} * x_c)(nT_s)$$

$$X(e^{j\omega}) = X_c \left(\frac{\omega}{2\pi} F_s\right)$$
 prolonged by periodicity outside of $[-\pi, \pi]$

Alternatively:

$$X(e^{j\omega}) = X_c \left(\left(\frac{\omega}{\pi} - 2 \left\lfloor \frac{\omega - \pi}{2\pi} \right\rfloor - 2 \right) F_s \right)$$

Overview:

- ► Impulse invariance
- Duality
- Examples

Overview:

- ► Impulse invariance
- ► Duality
- Examples

Overview:

- ► Impulse invariance
- ► Duality
- ► Examples

assume $x_c(t)$ is F_s -bandlimited and $T_s=1/F_s$:

assume $x_c(t)$ is F_s -bandlimited and $T_s = 1/F_s$:

assume $x_c(t)$ is F_s -bandlimited and $T_s = 1/F_s$:

- $Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$

assume $x_c(t)$ is F_s -bandlimited and $T_s = 1/F_s$:

- $Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$
- $Y_c(f) = (1/F_s) Y(e^{j2\pi f/F_s})$

$$Y_c(f) = X_c(f) H(e^{j2\pi f/F_s})$$

$$H_c(f) = H(e^{j2\pi f/F_s})$$

quickly design a discrete-time filter to isolate a band of frequencies between 4000 and 5000Hz; input signals are bandlimited to 7KHz.

- ightharpoonup 7KHz band limit \Rightarrow we can use any sampling frequency above 14KHz
- ightharpoonup pick $F_s = 16KHz$
- we need a bandpass with a 1000Hz bandwidth
- ightharpoonup start with some lowpass with cutoff $f_c = 500 \text{Hz}$
- ightharpoonup modulate it to center it on $f_0 = 4500 \text{Hz}$

- ightharpoonup 7KHz band limit \Rightarrow we can use any sampling frequency above 14KHz
- ightharpoonup pick $F_s = 16KHz$
- we need a bandpass with a 1000Hz bandwidth
- ightharpoonup start with some lowpass with cutoff $f_c = 500 \text{Hz}$
- ightharpoonup modulate it to center it on $f_0 = 4500 \text{Hz}$

- ightharpoonup 7KHz band limit \Rightarrow we can use any sampling frequency above 14KHz
- ightharpoonup pick $F_s = 16KHz$
- ▶ we need a bandpass with a 1000Hz bandwidth
- ightharpoonup start with some lowpass with cutoff $f_c = 500 \text{Hz}$
- ightharpoonup modulate it to center it on $f_0 = 4500 \text{Hz}$

- ightharpoonup 7KHz band limit \Rightarrow we can use any sampling frequency above 14KHz
- ightharpoonup pick $F_s = 16KHz$
- ▶ we need a bandpass with a 1000Hz bandwidth
- ightharpoonup start with some lowpass with cutoff $f_c = 500 \text{Hz}$
- ightharpoonup modulate it to center it on $f_0 = 4500 \text{Hz}$

- ightharpoonup 7KHz band limit \Rightarrow we can use any sampling frequency above 14KHz
- ightharpoonup pick $F_s = 16KHz$
- ▶ we need a bandpass with a 1000Hz bandwidth
- ightharpoonup start with some lowpass with cutoff $f_c = 500 \text{Hz}$
- ightharpoonup modulate it to center it on $f_0 = 4500 \text{Hz}$

Impulse invariance

Impulse invariance

Impulse invariance

$$\omega_c = 2\pi \frac{f_c}{F_s} = 2\pi \frac{500}{16000} = 0.0625\pi$$

- $\omega_0 = 2\pi \frac{4500}{16000} = 0.5625\pi$
- ightharpoonup modulate the impulse response of an ideal lowpass with cutoss ω_c by $2\cos\omega_0 n$
- truncate the impulse response with an appropriate window

$$\omega_c = 2\pi \frac{f_c}{F_s} = 2\pi \frac{500}{16000} = 0.0625\pi$$

- $\sim \omega_0 = 2\pi \frac{4500}{16000} = 0.5625\pi$
- ightharpoonup modulate the impulse response of an ideal lowpass with cutoss ω_c by $2\cos\omega_0 n$
- truncate the impulse response with an appropriate window

$$\omega_c = 2\pi \frac{f_c}{F_s} = 2\pi \frac{500}{16000} = 0.0625\pi$$

- $\omega_0 = 2\pi \frac{4500}{16000} = 0.5625\pi$
- lacktriangle modulate the impulse response of an ideal lowpass with cutoss ω_c by $2\cos\omega_0 n$
- truncate the impulse response with an appropriate window

$$\omega_c = 2\pi \frac{f_c}{F_s} = 2\pi \frac{500}{16000} = 0.0625\pi$$

- $\omega_0 = 2\pi \frac{4500}{16000} = 0.5625\pi$
- lacktriangle modulate the impulse response of an ideal lowpass with cutoss ω_c by $2\cos\omega_0 n$
- truncate the impulse response with an appropriate window

we can pick any T_s so pick $T_s=1$:

we can pick any T_s so pick $T_s=1$:

$$X_c(f) = X(e^{j2\pi f})$$

we can pick any T_s so pick $T_s=1$:

- $X_c(f) = X(e^{j2\pi f})$
- $Y_c(f) = X_c(f)H_c(f)$

we can pick any T_s so pick $T_s = 1$:

- $X_c(f) = X(e^{j2\pi f})$
- $Y_c(f) = X_c(f)H_c(f)$
- ▶ LTI systems cannot change the bandwidth $\Rightarrow Y(e^{j\omega}) = Y_c(\frac{\omega}{2\pi})$

$$Y(e^{j\omega}) = X(e^{j\omega}) H_c\left(\frac{\omega}{2\pi}\right)$$

$$H(e^{j\omega}) = H_c\left(rac{\omega}{2\pi}
ight)$$

Delays in continuous time

Delays in continuous time

$$x(t) \longrightarrow y(t) = x(t-d)$$

- lacktriangle in continuous time, delays are well defined for all $d\in\mathbb{R}$
- $H(f) = e^{-j2\pi df}$

Interpretation of fractional delay by duality

Interpretation of fractional delay by duality

- \blacktriangleright chain interpolates x[n], delays the result by d and resamples
- equivalent filter $H(e^{j\omega}) = H_c(\omega/(2\pi)) = e^{-j\omega d}$
- ▶ that's how a discrete-time fractional delay works internally

- $h[n] = \operatorname{sinc}(n-d)$
- ▶ to delay a discrete-time signal by a fraction of a sample we need an ideal filter!
- efficient approximations exist (e.g. cubic local interpolation)

Differentiation in continuous time

Differentiation in continuous time

$$x(t)$$
 $H(f)$ $y(t) = x'(t)$

- easy to show that FT $\{x'(t)\} = j2\pi f X(f)$
- $H(f) = j2\pi f$

By duality

By duality

- \triangleright chain interpolates x[n], differentiates the result by d and resamples
- equivalent filter $H(e^{j\omega}) = H_c(\omega/(2\pi)) = j\omega$
- equivalent filter defines a digital differentiator

Digital differentiator, magnitude response

Digital differentiator, phase response

Digital differentiator, impulse response

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} j\omega e^{j\omega n} d\omega$$

$$= \dots \text{ (integration by parts)} \dots$$

$$= \begin{cases} 0 & n = 0 \\ \frac{(-1)^n}{n} & n \neq 0 \end{cases}$$

Digital differentiator, impulse response

Digital differentiator

- ▶ the digital differentiator is again an ideal filter!
- many approximations exist, with different properties

Wrap up

- ► Continuous-time processing of discrete-time sequences
- ▶ Discrete-time processing of continuous-time signals
- ▶ Jumping back and forth using sampling and interpolation
- ▶ In practice: Many applications of processing continuous-time signals in discrete time!