

Magyarország, 2025. február 6.

maxdifference-pp • HU

Maximális eltérés (maxdifference-pp)

Adott egy N egész számot tartalmazó A tömb. A tömböt egy vagy több nem üres, összefüggő (egymást követő elemeket tartalmazó) résztömbre kell felosztanod.

Egy résztömb **értéke** a benne lévő maximális és minimális elem közötti különbség.

A feladatod, hogy meghatározd azt a felosztást, amelyben ezen értékek összege maximális. Írj programot, amely kiszámítja ezt az optimális összeget!

1. ábra. Meg tudod találni az optimális felosztást?

Az értékelő rendszerből letölthető csatolmányok közt találhatsz maxdifference.* nevű fájlokat, melyek a bemeneti adatok beolvasását valósítják meg az egyes programnyelveken. A megoldásodat ezekből a hiányos minta implementációkból kiindulva is elkészítheted.

Bemenet

A bemeneti fájl első sorában egyetlen egész szám van: T, a tesztesetek száma. Ezután T teszteset következik.

Minden teszteset két sorból áll:

- az első sorban egyetlen egész szám van: N.
- a második sor az A tömb elemeit tartalmazza: $A_0, A_1, \ldots A_{N-1}$.

maxdifference-pp 1/3. oldal

Kimenet

A kimeneti fájlnak T sort kell tartalmaznia, egyet-egyet minden tesztesethez. Minden sorban egyetlen egész szám legyen, amely az optimális felosztással elérhető maximális összeg.

Korlátok

- $1 \le N \le 200000$.
- $1 \le A_i \le 1\,000\,000\,000$ minden $i = 0 \dots N 1$ -re.
- Az összes tesztesetben szereplő N értékek összege legfeljebb 200 000.

Pontozás

A megoldásodat sok különböző tesztesetre lefuttatjuk. A tesztesetek részfeladatokba vannak csoportosítva. Egy-egy részfeladatot akkor tekintünk megoldottnak, ha volt legalább egy olyan beadásod, amely az adott részfeladat minden tesztesetére helyes megoldást adott. A feladat összpontszámát a megoldott részfeladatokra kapott pontszámok összege adja.

- 0. Részfeladat (0 pont)
 1. Részfeladat (30 pont)
 Az összes tesztesetben szereplő N értékek összege legfeljebb 5000.
- 2. Részfeladat (30 pont) $1 \le A_i \le 2$.
- **3. Részfeladat** (40 pont) Nincs további megkötés.

Példák

input	output
7	2
7	3
4	2
2 1 4 3	8
5	9
1 2 2 1 2	23
6	17
1 3 6 2 4 5	299999997
6	
1 4 6 2 5 3	
10	
7 1 10 9 4 2 8 5 3 6	
10	
3 1 4 1 5 9 2 6 5 3	
6	
1000000000 1 1000000000 1 1000000000 1	

Magyarázat

A példa első tesztesetében az egész tömb értéke 4 - 1 = 3.

maxdifference-pp 2 / 3. oldal

A második tesztesetben az A felosztása [1,2] és [2,1,2] résztömbökre az 1+1=2 összértéket eredményezi.

A harmadik tesztesetben az A felosztása [1,3,6] és [2,4,5] résztömbökre a 3+5=8 összértéket adja. Bizonyítható, hogy a fenti összértékek optimálisak.

 ${\tt maxdifference-pp} \hspace{3mm} 3 \hspace{2mm} / \hspace{2mm} 3. \hspace{2mm} {\sf oldal}$