Weeks 1-6 Revision

Basis methods for circuit analysis

- Ohm's Law
- Voltage/Current Division Laws
- Kirchhoff's Current Law (KCL)
- Kirchhoff's Voltage Law (KVL)
- Nodal Analysis
- Mesh Analysis
- Superposition
- Source Transformation
- Thévenin's Theorem
- Norton's Theorem
- Maximum Power Transfer
- Capacitor, Inductor, Transient analysis

Weeks 7-12 Contents

AC signals (sinusoid signal)

- Phasor
- AC Power

Other electrical/electronic elements

- OpAmp
- Transformers

Combination logic, digital circuit analysis

The basic laws & analysis methods in weeks 1-4 can be applied in all electrical circuits and will be used to analyse the circuit with AC input source

Lecture 9: Sinusoids and Phasors

ELEC1111 Electrical and Telecommunications Engineering

Never Stand Still

Faculty of Engineering

School of Electrical Engineering and Telecommunications

Objectives

- Introduce sinusoids and phasors for AC circuit analysis
- Derive phasor relationships for circuit elements
- Introduce Impedance and Admittance
- Derive Kirchhoff's current and voltage laws in the frequency domain

- Time varying signals with the form of a sine or cosine function
 - Common in nature:
 - Pendulum motion
 - Vibration of a string
 - Natural response of second order systems
 - Easy to generate and transmit
 - Electrical machines (generators)
 - Oscillators
 - Used in Fourier analysis,
 - Easy to handle mathematically

$$v(t) = V_m \sin \omega t$$
 period $T = \frac{2\pi}{\omega}$

$$v(t) = V_m \sin \omega t$$

Sinusoids are periodic functions, satisfying

$$v(t+nT) = v(t)$$

for all t and all integer values of n.

$$v(t+nT) = V_m \sin \omega (t+nT) = V_m \sin \omega (t+n\frac{2\pi}{\omega})$$
$$= V_m \sin(\omega t + 2\pi n) = V_m \sin(\omega t) = v(t)$$

Can be expressed in either a sine or a cosine form.

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

Sine to cosine form transformation and vice-versa

$$\sin(\omega t \pm 180^{\circ}) = -\sin \omega t$$

$$\cos(\omega t \pm 180^{\circ}) = -\cos \omega t$$

$$\sin(\omega t \pm 90^{\circ}) = \pm \cos \omega t$$

$$\cos(\omega t \pm 90^{\circ}) = \mp \sin \omega t$$

How to Sum Sinusoids

> Sum DC voltages: $V_0 = V_1 + V_2 = 3V + 5V = 8V$

Sum Sinusoid voltages:

$$v_0(t) = v_1(t) + v_2(t) = 3\sin(4\omega t + \pi/3) + 5\sin(4\omega t + \pi/4) = ?$$

Sinusoids can be added and subtracted using a graphical approach

$$A\cos\omega t + B\sin\omega t = C\cos(\omega t - \theta)$$

$$C = \sqrt{A^2 + B^2} \quad \theta = \tan^{-1} \frac{B}{A}$$

Phasors

- A phasor is a complex number that represents the amplitude and the phase of a sinusoid
 - A convenient way to express sinusoids.
- > A complex number can be written in three forms

$$z = x + jy$$

$$z = r \angle \phi$$

$$z = re^{j\phi}$$

Phasors

Rectangular to polar

$$r = \sqrt{x^2 + y^2} \qquad \phi = tan^{-1} \frac{y}{x}$$

Polar to rectangular

$$x = r\cos\phi \qquad y = r\sin\phi$$
$$z = x + jy = r\angle\phi = r(\cos\phi + j\sin\phi)$$

Euler's Identity

$$e^{\pm j\phi} = \cos\phi \pm j\sin\phi$$

Show the following numbers in phasor diagram

$$V_1 = 5 \angle 30^\circ$$

$$V_2 = 5 \angle -60^\circ$$

$$V_3 = 3 + j2$$

$$\mathbf{V}_{4} = -3 + j2$$

$$V_5 = -3 - j2$$

Phasors

$$V_{m}e^{j(\omega t + \phi)} = \underbrace{V_{m}\cos(\omega t + \phi)}_{\text{Re al}} + j\underbrace{V_{m}\sin(\omega t + \phi)}_{\text{Im aginary}}$$

$$v(t) = V_m \cos(\omega t + \phi) = \text{Re}(V_m e^{j(\omega t + \phi)}) = \text{Re}(V_m e^{j\phi} e^{j\omega t})$$
$$v(t) = \text{Re}(\mathbf{V} e^{j\omega t})$$

Phasor diagram

A phasor has a magnitude and phase, behaves as a vector and can by represented graphically in a phasor diagram

$$v(t) = V_m \cos(\omega t + \phi) \iff \mathbf{V} = V_m \angle \phi$$

time domain phasor domain

Phasor diagram

$$v(t) = V_m \cos(\omega t + \phi)$$

 \succ Differentiating a sinusoid is equivalent to multiplying its corresponding phasor by $j\omega$

$$\frac{dv}{dt} = -\omega V_m \sin(\omega t + \phi) = \omega V_m \cos(\omega t + \phi + 90^\circ)$$
$$= \text{Re}(\omega V_m e^{j\omega t} e^{j\phi} e^{j90^\circ}) = \text{Re}(j\omega \mathbf{V} e^{j\omega t})$$

- Integrating a sinusoid is equivalent to dividing its corresponding phasor by $j\omega$.
- Adding sinusoids of the same frequency is equivalent to adding their corresponding phasors.

Phasor diagram

> Note: $-\sin(\omega t + \phi) = \cos(\omega t + \phi + 90^\circ) = j\cos(\omega t + \phi)$

Imaginary Axis

$$e^{j90^{\circ}} = \cos(90^{\circ}) + j\sin(90^{\circ}) = j = 1\angle 90^{\circ}$$

$$e^{-j90^{\circ}} = \cos(-90^{\circ}) + j\sin(-90^{\circ}) = -j = 1\angle -90^{\circ}$$

$$-1 = \cos(180^{\circ}) + j\sin(180^{\circ}) = e^{j180} = 1\angle 180^{\circ} = 1\angle -180^{\circ}$$

Phasor relationships for circuit elements

- Transform the voltage-current relationship of circuit elements from the time domain to the frequency domain.
- Resistor

$$i = I_m \cos(\omega t + \phi) \rightarrow I = I_m \angle \phi$$

$$v = iR = RI_{m} \cos(\omega t + \phi)$$

$$\mathbf{V} = RI_{m} \angle \phi$$

$$\mathbf{V} = R\mathbf{I}$$

$$\mathbf{V} = R\mathbf{I}$$

$$\mathbf{V} = R\mathbf{I}$$

$$\mathbf{V} = R\mathbf{I}$$

Phasor relationships for circuit elements

Inductor

$$v = L\frac{di}{dt} = -\omega LI_{m} \sin(\omega t + \phi)$$

$$v = \omega LI_{m} \cos(\omega t + \phi + 90^{\circ})$$

$$\mathbf{V} = \omega LI_{m} e^{j(\phi + 90^{\circ})} = \omega LI_{m} e^{j\phi} e^{j90^{\circ}} = \omega LI_{m} \angle(\phi + 90^{\circ})$$

$$\mathbf{V} = j\omega L\mathbf{I}$$

$$\mathbf{Im} \mathbf{A}$$

Current lags (behind) the voltage by 90 degrees

Phasor relationships for circuit elements

Capacitor

$$i = C \frac{dv}{dt}$$

$$\mathbf{I} = j\omega C\mathbf{V} \Rightarrow \mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

- The current leads (advances) the voltage 90 degrees.
- Convention to give the current relative to the voltage.

Impedance Z of a circuit is defined as the ratio of the phasor voltage V to the phasor current I, measured in Ohms (Ω).

$$Z = \frac{V}{I}$$

- The impedance represents the opposition of the circuit to the flow of sinusoidal current.
- Admittance is the reciprocal of impedance, measured in Siemens (S).

$$\mathbf{Y} = \frac{1}{\mathbf{Z}} = \frac{\mathbf{I}}{\mathbf{V}}$$

Resistor

$$V = RI$$

$$\mathbf{V} = j\omega L \mathbf{I}$$

$$\mathbf{V} = \frac{\mathbf{I}}{j\omega C}$$

$$\frac{\mathbf{V}}{\mathbf{I}} = R$$

$$\frac{\mathbf{V}}{\mathbf{I}} = j\omega L$$

$$\frac{\mathbf{V}}{\mathbf{I}} = \frac{1}{j\omega C}$$

Open circuit at de

Short circuit at high frequencies

$$Z_{-} = \frac{1}{C}(\Omega)$$

Impedance

$$\mathbf{Z} = R + jX$$

Where *R* is the resistance and *X* is the reactance

Admittance

$$\mathbf{Y} = G + jB$$

Where *G* is the conductance and *B* the susceptance.

$$G + jB = \frac{1}{R + jX}$$

$$G = \frac{R}{R^2 + X^2} \qquad B = -\frac{X}{R^2 + X^2}$$

Kirchhoff's laws in the frequency domain

- Kirchhoff's Voltage Law
 - Considering the voltages across a closed loop

$$v_1 + v_2 + \dots + v_n = 0$$

In the sinusoidal state

$$V_{m1}\cos(\omega t + \theta_1) + V_{m2}\cos(\omega t + \theta_2) + \dots + V_{mn}\cos(\omega t + \theta_n) = 0$$

which can be written as

$$\operatorname{Re}[(\mathbf{V}_1 + \mathbf{V}_2 + \ldots + \mathbf{V}_n)e^{j\omega t}] = 0$$

And since the exponential term cannot be equal to zero

$$\mathbf{V}_1 + \mathbf{V}_2 + \ldots + \mathbf{V}_n = 0$$

Kirchhoff's laws in the frequency domain

- Kirchhoff's Current Law
 - Similarly to KVL, considering the currents on a node

$$i_1 + i_2 + \ldots + i_n = 0$$

and in the phasor form for frequency domain representation

$$\mathbf{I}_1 + \mathbf{I}_2 + \ldots + \mathbf{I}_n = 0$$

 Based on the frequency domain forms of the KVL and KCL, impedance combination, nodal and mesh analysis, superposition and source transformation can be easily performed

Impedance combinations

Impedances connected in series

$$\mathbf{V}_1 + \mathbf{V}_2 + \ldots + \mathbf{V}_N = \mathbf{I}(\mathbf{Z}_1 + \mathbf{Z}_2 + \ldots + \mathbf{Z}_N)$$

$$\mathbf{Z}_{eq} = \mathbf{Z}_1 + \mathbf{Z}_2 + \ldots + \mathbf{Z}_N$$

 \mathbf{Z}_{od}

Voltage divider

$$\mathbf{V}_{1} = \frac{\mathbf{Z}_{1}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}} \mathbf{V} \quad \mathbf{V}_{2} = \frac{\mathbf{Z}_{2}}{\mathbf{Z}_{1} + \mathbf{Z}_{2}} \mathbf{V}$$

Impedance combinations

Impedances connected in parallel

$$\mathbf{I}_{1} + \mathbf{I}_{2} + \ldots + \mathbf{I}_{N} = \mathbf{V}(\frac{1}{\mathbf{Z}_{1}} + \frac{1}{\mathbf{Z}_{2}} + \ldots + \frac{1}{\mathbf{Z}_{N}})$$

$$1 \quad 1 \quad 1 \quad 1$$

$$\frac{1}{\mathbf{Z}_{eq}} = \frac{1}{\mathbf{Z}_1} + \frac{1}{\mathbf{Z}_2} + \dots + \frac{1}{\mathbf{Z}_N}$$

Current divider

$$\mathbf{I}_1 = \frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{I} \qquad \mathbf{I}_2 = \frac{\mathbf{Z}_1}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{I}$$

- Phase shifters
 - Used to correct undesirable phase-shift or to produce a required phase shift in signal.
 - Simplest configuration of an RC circuit

$$\theta = tan^{-1} \frac{X}{R}$$

Lagging arrangement

- Phase shifters
 - Used to correct undesirable phase-shift or to produce a required phase shift in signal.
 - Simplest configuration of an RC circuit

$$\theta = tan^{-1} \frac{X}{R}$$

Leading arrangement

Lagging arrangement

- AC Bridges
 - Used in measurements of inductances and capacitances of elements.
 - In a general configuration, the bridge is balanced when no current flows through the meter.
 - In a balanced bridge

$$\mathbf{V}_1 = \mathbf{V}_2$$

$$\mathbf{V}_1 = \frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} \mathbf{V}_s \qquad \mathbf{V}_2 = \frac{\mathbf{Z}_x}{\mathbf{Z}_3 + \mathbf{Z}_x} \mathbf{V}_s \qquad \mathbf{V}_s$$
 hence

$$\frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} = \frac{\mathbf{Z}_x}{\mathbf{Z}_3 + \mathbf{Z}_x} \Rightarrow \mathbf{Z}_x = \frac{\mathbf{Z}_3}{\mathbf{Z}_1} \mathbf{Z}_2$$

AC bridge configuration for measuring capacitance (C)

$$C_{x} = \frac{R_{2}}{R_{1}}C_{s}$$

 AC bridge configuration for measuring inductance (L)

$$L_{x} = \frac{R_{2}}{R_{1}} L_{s}$$

Balancing of the bridges is not affected by the frequency of the AC source.

Summary

- Sinusoids and phasors
 - Application in the analysis of AC circuits
- Phasor relations for circuit elements
 - Resistor
 - Inductor
 - Capacitor
- Impedance and Admittance
- KCL and KVL in the frequency domain
- Applications of RLC circuits with AC signals

Sinusoidal steady-state analysis

- Steps to analyze AC circuits
 - 1. Transform the circuit to the frequency domain.
 - 2. Solve the problem using circuit techniques learnt previously.
 - Analysis is similar to the DC circuit analysis but uses complex numbers.
 - 3. Transform the resulting phasor to the time domain.

Determine v(t) and i(t). Show V and I in phasor diagram

Determine v(t)

Find $v_s(t)$ in the following circuit if it is known that the current $i_x(t)=0.5\sin 200t$ A

Ans: $v_s(t)=1.41\sin(200t-15^\circ)V$

 $v_1(t)=30\sin(10t+60^\circ)V$ and $v_2(t)=40\cos(10t-45^\circ)V$. Which voltage is leading and in how many degree?

Ans: v₂ leads v₁ by 15°

