Problem 1.

1.)

Statistics

		age	income	children	pep
N	Valid	600	600	600	600
	Missing	0	0	0	0
Mean		42.40	27524.0312	1.01	.46
Mediar	ı	42.00	24925.3000	1.00	.00
Mode	40ª	38248.30	0	0	
Std. De	eviation	14.425	12899.46825	1.057	.499
Varian	ce	208.079	166396281.0	1.117	.249
Range		49	58115.89	3	1
Minimu	ım	18	5014.21	0	0
Maxim	um	67	63130.10	3	1
Sum		25437	16514418.73	607	274

a. Multiple modes exist. The smallest value is shown

gender

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	FEMALE	300	50.0	50.0	50.0
	MALE	300	50.0	50.0	100.0
	Total	600	100.0	100.0	

region

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	INNER_CITY	269	44.8	44.8	44.8
	RURAL	96	16.0	16.0	60.8
	SUBURBAN	62	10.3	10.3	71.2
	TOWN	173	28.8	28.8	100.0
	Total	600	100.0	100.0	

married

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	NO	204	34.0	34.0	34.0
	YES	396	66.0	66.0	100.0
	Total	600	100.0	100.0	

car

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	ИО	304	50.7	50.7	50.7
	YES	296	49.3	49.3	100.0
	Total	600	100.0	100.0	

savings_acct

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	ИО	186	31.0	31.0	31.0
	YES	414	69.0	69.0	100.0
	Total	600	100.0	100.0	

current_acct

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	ИО	145	24.2	24.2	24.2
	YES	455	75.8	75.8	100.0
	Total	600	100.0	100.0	

mortgage

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	NO	391	65.2	65.2	65.2
	YES	209	34.8	34.8	100.0
	Total	600	100.0	100.0	

2.)

PEP = 1

```
USE ALL.
COMPUTE filter_$=(pep = 1).
VARIABLE LABELS filter_$ 'pep = 1 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
FORMATS filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.
USE ALL.
COMPUTE filter_$=(pep = 1).
VARIABLE LABELS filter_$ 'pep = 1 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
FORMATS filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.
FREQUENCIES VARIABLES=age income children pep
 /STATISTICS=STDDEV VARIANCE RANGE MINIMUM MAXIMUM MEAN MEDIAN MODE SUM
 /HISTOGRAM NORMAL
 /ORDER=ANALYSIS.
```

Frequencies

Statistics

		age	income	children	рер
N	Valid	274	274	274	274
	Missing	0	0	0	0
Mean		45.13	30644.9195	.95	1.00
Mediar	n	45.00	28080.0500	1.00	1.00
Mode		64	7756.36ª	1	1
Std. Deviation	14.328	13609.61304	.861	.000	
Varian	ce	205.291	185221567.2	.741	.000
Range	:	49	55373.74	3	0
Minimu	um	18	7756.36	0	1
Maxim	um	67	63130.10	3	1
Sum		12365	8396707.93	259	274

a. Multiple modes exist. The smallest value is shown

PEP = 0

```
USE ALL.

COMPUTE filter_$=(pep = 0).

VARIABLE LABELS filter_$ 'pep = 0 (FILTER)'.

VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.

FORMATS filter_$ (f1.0).

FILTER BY filter_$.

EXECUTE.

FREQUENCIES VARIABLES=age income children pep

/STATISTICS=STDDEV VARIANCE RANGE MINIMUM MAXIMUM MEX-
```

/STATISTICS=STDDEV VARIANCE RANGE MINIMUM MAXIMUM MEAN MEDIAN MODE SUM /HISTOGRAM NORMAL /ORDER=ANALYSIS.

Statistics

		age	income	children	рер
N	Valid	326	326	326	326
	Missing	0	0	0	0
Mean		40.10	24900.9534	1.07	.00
Median		40.00	23105.0000	.00	.00
Mode		27 ^a	38248.30	0	0
Std. De	viation	14.124	11661.12342	1.196	.000
Variance		199.473	135981799.464	1.429	.000
Range		49	56540.39	3	0
Minimu	m	18	5014.21	0	0
Maximu	ım	67	61554.60	3	0
Sum		13072	8117710.80	348	0

a. Multiple modes exist. The smallest value is shown

pep = 0 (FILTER) * gender Crosstabulation

Count

		gen		
		FEMALE	MALE	Total
pep = 0 (FILTER)	Selected	170	156	326
Total		170	156	326

pep = 0 (FILTER) * region Crosstabulation

			region			
		INNER_CITY	RURAL	SUBURBAN	TOWN	Total
pep = 0 (FILTER)	Selected	146	50	28	102	326
Total		146	50	28	102	326

pep = 0 (FILTER) * married Crosstabulation

		mar		
		NO	YES	Total
pep = 0 (FILTER)	Selected	84	242	326
Total		84	242	326

pep = 0 (FILTER) * car Crosstabulation

Count				
		Ca	ar	
		NO	YES	Total
pep = 0 (FILTER)	Selected	168	158	326
Total		168	158	326

pep = 0 (FILTER) * savings_acct Crosstabulation

	saving		
	NO	YES	Total
pep = 0 (FILTER) Selected	91	235	326
Total	91	235	326

pep = 0 (FILTER) * current_acct Crosstabulation

	curren		
	NO	YES	Total
pep = 0 (FILTER) Selected	82	244	326
Total	82	244	326

pep = 0 (FILTER) * mortgage Crosstabulation

		mort		
		NO	YES	Total
pep = 0 (FILTER)	Selected	209	117	326
Total		209	117	326

pep = 1 (FILTER) * gender Crosstabulation

Count				
		gen	der	
		FEMALE	MALE	Total
pep = 1 (FILTER)	Selected	130	144	274
Total		130	144	274

pep = 1 (FILTER) * region Crosstabulation

		region				
		INNER_CITY	RURAL	SUBURBAN	TOWN	Total
pep = 1 (FILTER)	Selected	123	46	34	71	274
Total		123	46	34	71	274

pep = 1 (FILTER) * married Crosstabulation

Count						
		mar				
		NO	YES	Total		
pep = 1 (FILTER) S	elected	120	154	274		
Total		120	154	274		

pep = 1 (FILTER) * car Crosstabulation

	Ca		
	NO	YES	Total
pep = 1 (FILTER) Selected	136	138	274
Total	136	138	274

pep = 1 (FILTER) * savings_acct Crosstabulation

	saving	savings_acct		
	NO	YES	Total	
pep = 1 (FILTER) Sele	cted 95	179	274	
Total	95	179	274	

pep = 1 (FILTER) * current_acct Crosstabulation

	curren		
	NO	YES	Total
pep = 1 (FILTER) Selected	63	211	274
Total	63	211	274

pep = 1 (FILTER) * mortgage Crosstabulation

000				
		mort	gage	
		NO	YES	Total
pep = 1 (FILTER)	Selected	182	92	274
Total		182	92	274

For the numerical variables, histograms are used to display difference between PEP=0 and PEP=1. In regard to Age, the mean for PEP=1 is slightly higher by 5 years, with a value of 45.13 as compared to 40.1 for PEP=0. Concerning Income, the mean for PEP=1 is 30,000+ where as PEP=0 has a mean income of 24,900. Regarding the number of Children is fairly close with PEP=1 providing a mean of .95 with a mean of 1.07 for PEP=0.

For the categorical variables, bar charts are used to display differences between PEP=0 and PEP=1. The gender percentages were fairly close, with slightly more Males with PEP=1. The Regions were fairly consisitent in both PEP-0 and PEP=1. For Married, the percentage of "Yes, Married" was much greated in PEP=0. Car was almost identical in both PEP values. For Savings Account, there was a greater percentage in PEP=0. For Current Account, the percentages and values were almost similar in both PEP values. For Mortgage, the percentages are similar in both PEP values.

- **3.**)
- To calculate the z-score normalization on the income variable, click on "Analyze", then select "Descriptives". Add "Income" to the variables list. Click "Save standardized values as variables". Click "Options", then "OK". Review the "Data View" to ensure that the new z-score variable has been created and populated correctly.
- 4.)

To Discretize the "Age" attribute into 3 categories, select "Transform" from top menu, then select "Recode into Different Variables". Select the "age" variable, the provide a name and label for the new variable. Click the "Old and New Values" button. In the pop up screen, click the "Output variables are string" check-box. Select "Range" then add the range of years for "Young", in the "New Value" text, add the string name "Young", then select "Add". Repeat this for the next 2 variables. Check the "Data View" to ensure that the data has been transformed.

5.)

For Min-Max normalization, first, review the formula. Then select "Analyze" and "Descriptives". Select the variables for the Income, Age and Children fields. Click "Options", select "Minimum" and "Maximum" values. From the menu, select "Transform" then "Compute Variable". Add the name of the new target variable, then add the min-max normalization formula to the "Numeric Expression" field. For Min and Max values, use the output from the "Descriptives" screen. Add a new target variable for the Income, Age and Children fields. Then save.

6.)

The "region" variable was transformed by selecting "Transform" from the menu bar, then "Recode into Same Variable". Then click the "Old and New Values" button. On the pop-up screen, enter the "Old Value" or current value, then enter a number for that value in the "New Value" text box. Click "Continue" then "OK". On the "Variable View" tab, select the "region" variable, change its "Type" to "Numeric", then in t1he "Values" field, open that pop-up and add the values for each region: 1,2, 3 and 4 for INNER_CITY, RURAL, SUBURBAN and TOWN. Check "Data View" to ensure that the data is there and has been transformed.

Problem 2.)

- i.) a.) First scale the variables by calculating the z-score for each independent variable. The z-score variables will be created in the Data View. The next step in SPSS is to select:
 - 1.) Analyze ~> Classify ~> K-Means Cluster
 - 2.) Select the variables
 - 3.) Set the number of clusters
 - 4.) Select "Iterate" to set the maximum number of iterations
 - 5.) Select "Save" and check the "Cluster membership" checkbox
 - 6.) Select "Options" and check the "Initial cluster centers" and "ANOVA table" options
 - 7.) Click OK
 - b.) According to documentation, SPSS using the Euclidean distance as its similarity measure.

For K=3 Clusters:

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
area	210	10.59	21.18	14.8475	2.90970
perimeter	210	12.41	17.25	14.5593	1.30596
compactness	210	.8081	.9183	.870999	.0236294
length_of_kernel	210	4.899	6.675	5.62853	.443063
width_of_kernel	210	2.630	4.033	3.25860	.377714
asymmetry_coefficient	210	.7651	8.4560	3.700201	1.5035571
length_of_kernel_grove	210	4.519	6.550	5.40807	.491480
Valid N (listwise)	210				

Iteration History^a

Change in Cluster Centers

Iteration	1	2	3
1	1.968	2.000	2.044
2	.105	.366	.842
3	.072	.465	.457
4	.054	.230	.194
5	.000	.047	.052
6	.029	.028	.000
7	.026	.024	.000
8	.000	.000	.000

a. Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 8. The minimum distance between initial centers is 5.156.

Final Cluster Centers

	Cluster				
	1	2	3		
Zscore(area)	1.21394	23019	-1.04171		
Zscore(perimeter)	1.22275	26715	-1.00856		
Zscore(compactness)	.53414	.41615	-1.05540		
Zscore(length_of_kernel)	1.20788	36266	88234		
Zscore(width_of_kernel)	1.12090	07273	-1.12321		
Zscore(asymmetry_coefficie nt)	06246	64447	.81089		
Zscore(length_of_kernel_grove)	1.26254	67365	58237		

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
Zscore(area)	88.832	2	.151	207	586.818	.000
Zscore(perimeter)	88.064	2	.159	207	554.539	.000
Zscore(compactness)	52.681	2	.501	207	105.222	.000
Zscore(length_of_kernel)	81.298	2	.224	207	362.657	.000
Zscore(width_of_kernel)	85.175	2	.187	207	456.171	.000
Zscore(asymmetry_coefficie	37.082	2	.651	207	56.928	.000
nt)						
Zscore(length_of_kernel_gro	83.831	2	.200	207	419.773	.000
ve)						

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	70.000
	2	75.000
	3	65.000
Valid		210.000
Missing		.000

For K=4 clusters:

Initial Cluster Centers

	Cluster				
	1	2	3	4	
Zscore(area)	-1.24326	2.17633	1.08000	97519	
Zscore(perimeter)	-1.47729	2.02971	.99598	79580	
Zscore(compactness)	.55022	1.18079	1.19349	-1.95090	
Zscore(length_of_kernel)	-1.63980	2.13167	.59013	50452	
Zscore(width_of_kernel)	-1.00500	2.05021	1.15271	-1.27770	
Zscore(asymmetry_coefficie	95188	1.38325	-1.08556	2.18934	
nt)					
Zscore(length_of_kernel_gro	-1.43459	1.67439	.87273	28093	
ve)					

Iteration History^a

Change in	n Cluster	Centers
-----------	-----------	---------

		_		
Iteration	1	2	3	4
1	1.644	1.253	1.083	1.399
2	.390	.567	.121	.191
3	.286	.300	.208	.154
4	.110	.108	.197	.035
5	.028	.088	.154	.000
6	.030	.030	.102	.000
7	.028	.034	.108	.000
8	.030	.000	.069	.000
9	.021	.000	.000	.022
10	.000	.000	.000	.000

a. Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 10. The minimum distance between initial centers is 3.491.

Final Cluster Centers

Cluster				
1	2	3	4	

Zscore(area)	30702	1.46836	.50514	-1.03958
Zscore(perimeter)	35477	1.45479	.55799	-1.00398
Zscore(compactness)	.42528	.66388	.24876	-1.07011
Zscore(length_of_kernel)	45800	1.44163	.53326	87424
Zscore(width_of_kernel)	13425	1.35025	.49198	-1.12385
Zscore(asymmetry_coefficie	73623	15112	.11198	.83395
nt)				
Zscore(length_of_kernel_gro	78115	1.46050	.56658	56601
ve)				

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
Zscore(area)	62.928	3	.098	206	641.259	.000
Zscore(perimeter)	61.996	3	.112	206	555.001	.000
Zscore(compactness)	36.286	3	.486	206	74.645	.000
Zscore(length_of_kernel)	57.779	3	.173	206	333.741	.000
Zscore(width_of_kernel)	59.546	3	.147	206	404.022	.000
Zscore(asymmetry_coefficie	27.441	3	.615	206	44.623	.000
nt)						
Zscore(length_of_kernel_gro	58.512	3	.162	206	360.201	.000
ve)						

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	67.000
	2	49.000
	3	30.000
	4	64.000
Valid		210.000
Missing		.000

For K=5 clusters:

Initial Cluster Centers

	Cluster						
	1	2	3	4	5		
Zscore(area)	2.17633	94083	73806	.24830	05070		
Zscore(perimeter)	2.02971	83409	88003	.45232	26746		
Zscore(compactness)	1.18079	-1.34572	.69411	77440	1.87484		
Zscore(length_of_kernel)	2.13167	-1.05974	-1.00557	.65784	95592		
Zscore(width_of_kernel)	2.05021	59994	44373	07308	.54908		
Zscore(asymmetry_coefficie nt)	1.38325	-1.46200	3.16303	70513	-1.28575		
Zscore(length_of_kernel_grove)	1.67439	-1.80897	83029	.95818	-1.54446		

Iteration History^a

Change	in	Cluster	Centers

Iteration	1	2	3	4	5
1	1.809	2.018	1.956	1.159	1.388
2	.284	.159	.063	.243	.330
3	.055	.114	.132	.183	.104
4	.000	.077	.106	.170	.068
5	.022	.079	.072	.071	.035
6	.000	.020	.063	.000	.000
7	.000	.000	.000	.000	.000

a. Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 7. The minimum distance between initial centers is 3.594.

Final Cluster Centers

	Cluster							
	1	2	3	4	5			
Zscore(area)	1.45626	-1.08742	75669	.47893	20755			
Zscore(perimeter)	1.44408	-1.04571	78371	.54612	26019			
Zscore(compactness)	.65695	-1.18706	18993	.14168	.55314			
Zscore(length_of_kernel)	1.43611	90606	77643	.54258	38641			
Zscore(width_of_kernel)	1.33994	-1.19871	63603	.44951	02707			

Zscore(asymmetry_coefficie	15042	.40134	1.61155	.16569	85882
nt)					
Zscore(length_of_kernel_gro	1.45420	63393	58677	.55343	72743
ve)					

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
Zscore(area)	47.718	4	.088	205	539.589	.000
Zscore(perimeter)	47.090	4	.101	205	467.684	.000
Zscore(compactness)	29.518	4	.444	205	66.551	.000
Zscore(length_of_kernel)	44.157	4	.158	205	279.644	.000
Zscore(width_of_kernel)	45.547	4	.131	205	348.240	.000
Zscore(asymmetry_coefficie	25.721	4	.518	205	49.688	.000
nt)						
Zscore(length_of_kernel_gro	43.411	4	.172	205	251.718	.000
ve)						

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	50.000
	2	55.000
	3	19.000
	4	28.000
	5	58.000
Valid		210.000
Missing		.000

For K=6 clusters:

Initial Cluster Centers

	Cluster					
	1	2	3	4	5	6
Zscore(area)	.35484	90646	29471	1.82578	1.47523	97519
Zscore(perimeter)	.26089	83409	55843	1.89188	1.57027	79580
Zscore(compactness)	1.17656	-1.08757	2.00180	.10586	.05084	-1.95090
Zscore(length_of_kernel)	02377	61285	-1.15002	1.99625	1.42297	50452
Zscore(width_of_kernel)	.65763	96794	.32934	1.36186	1.26655	-1.27770
Zscore(asymmetry_coefficie	-1.95210	-1.35625	1.02011	-1.19064	1.98316	2.18934
nt)						
Zscore(length_of_kernel_gro	64514	46812	-1.27588	1.58079	1.31222	28093
ve)						

Iteration History^a

Change	in	Cluster	Centers

Iteration	1	2	3	4	5	6
1	1.273	1.183	1.422	1.220	1.490	1.302
2	.221	.153	.141	.146	.248	.159
3	.026	.000	.121	.128	.181	.031
4	.038	.076	.129	.142	.288	.000
5	.060	.088	.325	.037	.111	.038
6	.094	.120	.257	.000	.097	.059
7	.022	.034	.083	.029	.043	.031
8	.000	.000	.144	.066	.114	.065
9	.040	.000	.103	.047	.118	.000
10	.029	.000	.203	.049	.093	.051
11	.050	.000	.000	.000	.084	.000
12	.000	.000	.000	.021	.039	.000
13	.000	.000	.000	.000	.000	.000

a. Convergence achieved due to no or small change in cluster centers. The maximum absolute coordinate change for any center is .000. The current iteration is 13. The minimum distance between initial centers is 3.273.

Final Cluster Centers

	Cluster					
	1	2	3	4	5	6
Zscore(area)	06767	86973	61240	1.47902	.55366	-1.15549
Zscore(perimeter)	09836	90611	67951	1.46244	.62418	-1.08874
Zscore(compactness)	.53673	27092	.25425	.68097	.14567	-1.48158
Zscore(length_of_kernel)	20194	92369	74870	1.44521	.63093	90193
Zscore(width_of_kernel)	.10303	80429	40551	1.36170	.50564	-1.32651
Zscore(asymmetry_coefficie	84958	45223	1.59662	15948	.13185	.86667
nt)						
Zscore(length_of_kernel_gro	60092	90990	64806	1.46329	.70777	53892
ve)						

ANOVA

	Cluster		Error			
	Mean Square	df	Mean Square	df	F	Sig.
Zscore(area)	39.155	5	.065	204	603.972	.000
Zscore(perimeter)	38.706	5	.076	204	510.487	.000
Zscore(compactness)	25.130	5	.409	204	61.507	.000
Zscore(length_of_kernel)	36.191	5	.137	204	263.269	.000
Zscore(width_of_kernel)	37.674	5	.101	204	372.574	.000
Zscore(asymmetry_coefficie	22.592	5	.471	204	47.988	.000
nt)						
Zscore(length_of_kernel_gro	35.635	5	.151	204	235.847	.000
ve)						

The F tests should be used only for descriptive purposes because the clusters have been chosen to maximize the differences among cases in different clusters. The observed significance levels are not corrected for this and thus cannot be interpreted as tests of the hypothesis that the cluster means are equal.

Number of Cases in each Cluster

Cluster	1	48.000
	2	32.000
	3	16.000
	4	48.000
	5	27.000
	6	39.000

Valid	210.000
Missing	.000

Case Processing Summary

	Cases					
	Valid		Missing		Total	
	N	Percent	N	Percent	N	Percent
class_label * Cluster Number of Case	210	100.0%	0	0.0%	210	100.0%
class_label * Cluster Number of Case	210	100.0%	0	0.0%	210	100.0%
class_label * Cluster Number of Case	210	100.0%	0	0.0%	210	100.0%
class_label * Cluster Number of Case	210	100.0%	0	0.0%	210	100.0%
class_label * Cluster Number of Case	210	100.0%	0	0.0%	210	100.0%

class_label * Cluster Number of Case Crosstabulation

Count

		Cluste			
		1	2	3	Total
class_label	1	3	64	3	70
	2	67	3	0	70
	3	0	8	62	70
Total		70	75	65	210

class_label * Cluster Number of Case Crosstabulation

ooun						
		1	2	3	4	Total
class_label	1	58	0	10	2	70
	2	1	49	20	0	70
	3	8	0	0	62	70
Total		67	49	30	64	210

class_label * Cluster Number of Case Crosstabulation

Count

	Cluster Number of Case						
		1	2	3	4	5	Total
class_label	1	0	5	2	10	53	70
	2	50	0	0	18	2	70
	3	0	50	17	0	3	70
Total		50	55	19	28	58	210

class_label * Cluster Number of Case Crosstabulation

(J	O	u	r	ìτ	

Cluster Number of Case								
		1	2	3	4	5	6	Total
class_label	1	46	14	3	0	7	0	70
	2	2	0	0	48	20	0	70
	3	0	18	13	0	0	39	70
Total		48	32	16	48	27	39	210

Based on the results, in my opinion the best cluster is K=3. One reason is that it appears to be the easiest to explain. Yes, normalization does influence the clustering results.

ii)

i.) Single linkage

class_label * Single Linkage Crosstabulation

Co	u	nt
\sim	'u	111

		S	Single Linkage			
		1	2	3	Total	
class_label	1	68	1	1	70	
	2	70	0	0	70	
	3	68	2	0	70	
Total		206	3	1	210	

ii.) Complete linkage

class_label * Complete Linkage Crosstabulation

		Co			
		1	2	3	Total
class_label	1	48	2	20	70
	2	4	66	0	70
	3	0	0	70	70
Total		52	68	90	210

K-means and Hierarchial clustering were both performed on the original data that contained the PEP=1 filter. This may lead to the some inaccuracies in the final summaries. However, what we have learned is that if there are a specific number of clusters in the data-set, but their class is unknown, then K-means is a better selection. Hierarchial clustering should be used if the number of clusters is known. K-means computes faster given a large number of variables. The dendrogram allows the number of clusters via hierarchical to be easily determined.

Problem 3.)

a.)

Model Summary

	Model Sum	mary	
Specifications	Growing Method	CRT	
	Dependent Variable	class_label	
	Independent Variables	Zscore(area), Zscore(perimeter),	
		Zscore(compactness),	
		Zscore(length_of_kernel),	
		Zscore(width_of_kernel),	
		Zscore(asymmetry_coefficient),	
		Zscore(length_of_kernel_grove)	
	Validation	Cross Validation	
	Maximum Tree Depth		5
	Minimum Cases in Parent		10
	Node		
	Minimum Cases in Child		5
	Node		
Results	Independent Variables	Zscore(length_of_kernel_grove),	
	Included	Zscore(perimeter),	
		Zscore(length_of_kernel),	
		Zscore(area),	
		Zscore(width_of_kernel),	
		Zscore(compactness),	
		Zscore(asymmetry_coefficient)	
	Number of Nodes		13
	Number of Terminal Nodes		7
	Depth		5

Risk

Method	Estimate	Std. Error
Resubstitution	.029	.011
Cross-Validation	.105	.021

Growing Method: CRT

Dependent Variable: class_label

Classification

	Predicted			
Observed	1	2	3	Percent Correct

1	68	1	1	97.1%
2	2	68	0	97.1%
3	2	0	68	97.1%
Overall Percentage	34.3%	32.9%	32.9%	97.1%

Growing Method: CRT

Dependent Variable: class_label

Model Summary

	Model Sum	mary	
Specifications	Growing Method	CRT	
	Dependent Variable	class_label	
	Independent Variables	Zscore(area), Zscore(perimeter),	
		Zscore(compactness),	
		Zscore(length_of_kernel),	
		Zscore(width_of_kernel),	
		Zscore(asymmetry_coefficient),	
		Zscore(length_of_kernel_grove)	
	Validation	Cross Validation	
	Maximum Tree Depth		5
	Minimum Cases in Parent		20
	Node		
	Minimum Cases in Child		10
	Node		
Results	Independent Variables	Zscore(length_of_kernel_grove),	
	Included	Zscore(perimeter),	
		Zscore(length_of_kernel),	
		Zscore(area),	
		Zscore(width_of_kernel),	
		Zscore(compactness),	
		Zscore(asymmetry_coefficient)	
	Number of Nodes		5
	Number of Terminal Nodes		3
	Depth		2

Risk

Method	Estimate	Std. Error
Resubstitution	.081	.019
Cross-Validation	.100	.021

Growing Method: CRT

Dependent Variable: class_label

Classification

	Predicted			
Observed	1	2	3	Percent Correct
1	55	1	14	78.6%
2	2	68	0	97.1%
3	0	0	70	100.0%
Overall Percentage	27.1%	32.9%	40.0%	91.9%

Growing Method: CRT

Dependent Variable: class_label

Model Summary

	Woder Garm	iui y
Specifications	Growing Method	CRT
	Dependent Variable	class_label
	Independent Variables	Zscore(area), Zscore(perimeter),
		Zscore(compactness),
		Zscore(length_of_kernel),
		Zscore(width_of_kernel),
		Zscore(asymmetry_coefficient),
		Zscore(length_of_kernel_grove)
	Validation	Cross Validation
	Maximum Tree Depth	5
	Minimum Cases in Parent	100
	Node	
	Minimum Cases in Child	50
	Node	

Results	Independent Variables	Zscore(length_of_kernel_grove),	
	Included	Zscore(perimeter),	
		Zscore(length_of_kernel),	
		Zscore(area),	
		Zscore(width_of_kernel),	
		Zscore(compactness),	
		Zscore(asymmetry_coefficient)	
	Number of Nodes	5	
	Number of Terminal Nodes	3	
	Depth	2	

Risk

Method	Estimate	Std. Error
Resubstitution	.081	.019
Cross-Validation	.148	.024

Growing Method: CRT

Dependent Variable: class_label

Classification

	Predicted			
Observed	1	2	3	Percent Correct
1	55	1	14	78.6%
2	2	68	0	97.1%
3	0	0	70	100.0%
Overall Percentage	27.1%	32.9%	40.0%	91.9%

Growing Method: CRT

Dependent Variable: class_label

Model Summary

		•
Specifications	Growing Method	CRT
	Dependent Variable	class_label
	Independent Variables	Zscore(area), Zscore(perimeter),
		Zscore(compactness),
		Zscore(length_of_kernel),
		Zscore(width_of_kernel),
		Zscore(asymmetry_coefficient),
		Zscore(length_of_kernel_grove)

	Validation	Cross Validation
	Maximum Tree Depth	5
	Minimum Cases in Parent	50
	Node	
	Minimum Cases in Child	20
	Node	
Results	Independent Variables	Zscore(length_of_kernel_grove),
	Included	Zscore(perimeter),
		Zscore(length_of_kernel),
		Zscore(area),
		Zscore(width_of_kernel),
		Zscore(compactness),
		Zscore(asymmetry_coefficient)
	Number of Nodes	5
	Number of Terminal Nodes	3
	Depth	2

Risk

Method	Estimate	Std. Error	
Resubstitution	.081	.019	
Cross-Validation	.095	.020	

Growing Method: CRT

Dependent Variable: class_label

Classification

	Predicted			
Observed	1	2	3	Percent Correct
1	55	1	14	78.6%
2	2	68	0	97.1%
3	0	0	70	100.0%
Overall Percentage	27.1%	32.9%	40.0%	91.9%

Growing Method: CRT

Dependent Variable: class_label

Model Summary

Specifications	Growing Method	CRT
	Dependent Variable	class_label
	Independent Variables	Zscore(area), Zscore(perimeter),
		Zscore(compactness),
		Zscore(length_of_kernel),
		Zscore(width_of_kernel),
		Zscore(asymmetry_coefficient),
		Zscore(length_of_kernel_grove)
	Validation	Cross Validation
	Maximum Tree Depth	5
	Minimum Cases in Parent	25
	Node	
	Minimum Cases in Child	5
	Node	
Results	Independent Variables	Zscore(length_of_kernel_grove),
	Included	Zscore(perimeter),
		Zscore(length_of_kernel),
		Zscore(area),
		Zscore(width_of_kernel),
		Zscore(compactness),
		Zscore(asymmetry_coefficient)
	Number of Nodes	11
	Number of Terminal Nodes	6
	Depth	4

Risk

Method	Estimate	Std. Error	
Resubstitution	.052	.015	
Cross-Validation	.110	.022	

Growing Method: CRT

Dependent Variable: class_label

Classification

	icte

	Predicted			
Observed	1	2	3	Percent Correct
1	62	1	7	88.6%
2	2	68	0	97.1%

3	1	0	69	98.6%
Overall Percentage	31.0%	32.9%	36.2%	94.8%

Growing Method: CRT

Dependent Variable: class_label

The best tree choice in my opinion is the first option as it generates 5 levels with 13 nodes and 7 terminal nodes. Neither of the other trees displayed any significant improvement.

b.)
The confusion matrix or misclassification matrix is for the "best tree" is as follows:

Predicted Observed Percent Correct 68 1 1 97.1% 1 2 2 0 68 97.1% 2 3 0 68 97.1% 32.9% **Overall Percentage** 34.3% 32.9% 97.1%

Classification

Growing Method: CRT

Dependent Variable: class_label

To interpret, in the first row, the 68 gives the count of how many cases were classified in class 1 and were in class 1. The 1 give the number that were classified in class 1 but were in class 2. The final 1 gives the number that were classified in class 1 but were in class 3. The second row: the 2 gives the number that were classified in class 1 but should have been in class 2. The 68 gives the number that were classified in class 2 and were in class 2. The third row: the 2 gives the number that was classified in class 1 but were in class 3. The 0 means that there were no class 2/class 3 errors and the 68 means that there were 68 cases classified in class 3 correctly.

c.)
The three most import variables were, "length of kernel grove, area and asymmetry_coefficient":

d.)

The image above appears as one large cluster of data points from the Area, Length of Kernel and Asymmetry variables.