Mathematical Foundations: Linear Algebra

Prof. Ziping Zhao

School of Information Science and Technology ShanghaiTech University, Shanghai, China

CS182: Introduction to Machine Learning (Fall 2021) http://cs182.sist.shanghaitech.edu.cn

Matrix

$$\mathbf{A} = [a_{ij}]_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$$

diagonal matrix:

$$\operatorname{diag}(a_{11}, a_{22}, \cdots, a_{nn}) = \left[egin{array}{cccc} a_{11} & 0 & \cdots & 0 \ 0 & a_{22} & \cdots & 0 \ dots & dots & dots & dots \ 0 & 0 & \cdots & a_{nn} \end{array}
ight]$$

- ▶ identity matrix: $I = diag(1, 1, \dots, 1)$
- ightharpoonup trace: $\operatorname{tr}(\mathbf{A}) = \sum_{j=1}^{n} a_{jj}$

Matrix Addition/Subtraction

If
$$\mathbf{C} = \mathbf{A} \pm \mathbf{B}$$
, then $[c_{ij}] = [a_{ij}] \pm [b_{ij}]$

- ightharpoonup commutative: $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
- ightharpoonup associative: $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$

Multiply a Vector by a Matrix

$$\mathbf{A}\mathbf{x} = \mathbf{y}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
$$y_i = \sum_{j=1}^n a_{ij} x_j$$

write $\mathbf{A} = [\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n]$, then

$$\mathbf{y} = \sum_{i=1}^{n} x_i \mathbf{a}_i$$

▶ y can be written as a weighted sum of A's column vectors

Matrix Multiplication

If
$$\mathbf{C}_{m \times n} = \mathbf{A}_{m \times p} \mathbf{B}_{p \times n}$$
, then $[c_{ij}] = \sum_{k=1}^p a_{ik} b_{kj}$

- ightharpoonup in general, non-commutative: $AB \neq BA$
- ightharpoonup associative: (AB)C = A(BC)
- ▶ distributive: (A + B)C = AC + BC

Transpose

- ▶ If $\mathbf{B} = \mathbf{A}^T$, then $b_{ij} = a_{ji}$ - \mathbf{A}^T is sometimes also denoted as \mathbf{A}' or \mathbf{A}^t
- $(A^T)^T = A, (AB)^T = B^T A^T, (A+B)^T = A^T + B^T$
- **>** symmetric matrix: $a_{ii} = a_{ii}$ or $\mathbf{A} = \mathbf{A}^T$
- ▶ Matrix **A** is orthogonal if $\mathbf{A}^T \mathbf{A} = \mathbf{I}$

Determinant

▶ if
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, then $\det(\mathbf{A}) = |\mathbf{A}| = a_{11}a_{22} - a_{21}a_{12}$

in general,

$$|\mathbf{A}| = \sum_{j=1}^n a_{ij} \operatorname{cof}(a_{ij}),$$

- $cof(a_{ij})$ is the cofactor of element a_{ij} and is defined as the product of $(-1)^{i+j}$ times the determinant of **A** after deleting its *i*th row and *j*th column

Properties:

- determinant is a scalar quantity
- ightharpoonup if $|\mathbf{A}| = 0$ then \mathbf{A} is singular, otherwise non-singular
- $|\mathbf{A}^T| = |\mathbf{A}|$
- $\blacktriangleright |AB| = |BA| = |A||B|$

Inverse

$$\mathbf{A}^{-1} = \frac{\left[\mathsf{cof}(\mathbf{A})\right]^T}{|\mathbf{A}|}$$

- $ightharpoonup (A^{-1})^{-1} = A$
- ightharpoonup $(AB)^{-1} = B^{-1}A^{-1}$
- $ightharpoonup (\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T = \mathbf{A}^{-T}$

Inner Product, Outer Product

The inner product (dot product) of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = \sum_{i=1}^n x_i y_i$$

ightharpoonup if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, then \mathbf{x} and \mathbf{y} are orthogonal

The outer product (cross product) of two vectors $\mathbf{x} \in \mathbb{R}^m$ and $\mathbf{y} \in \mathbb{R}^n$ is a matrix $\mathbf{A} = \mathbf{x}\mathbf{y}^T$, where

$$[a_{ij}] = [x_i y_j] = \begin{bmatrix} x_1 y_1 & x_1 y_2 & \cdots & x_1 y_n \\ x_2 y_1 & x_2 y_2 & \cdots & x_2 y_n \\ \vdots & \vdots & \vdots & \vdots \\ x_m y_1 & x_m y_2 & \cdots & x_m y_n \end{bmatrix}$$

Gradient Vector

Given: $f(\mathbf{x})$ is a real valued function

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \frac{\partial f}{\partial \mathbf{x}} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n} \right]^T$$

first order derivatives

Example

$$\mathbf{x} = [x_1, x_2, x_3]^T$$
, $f(\mathbf{x}) = 2x_1^2x_2 - x_1x_3^3$

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}) \\ \frac{\partial}{\partial x_2} f(\mathbf{x}) \\ \frac{\partial}{\partial x_3} f(\mathbf{x}) \end{bmatrix} = \begin{bmatrix} 4x_1x_2 - x_3^3 \\ 2x_1^2 \\ -3x_1x_3^2 \end{bmatrix}$$

Gradient Vector: Properties

$$\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{x}) = 2\mathbf{x}$$

$$ightharpoonup
abla_{\mathbf{x}}(\mathbf{x}^{T}\mathbf{A}\mathbf{y}) = \mathbf{A}\mathbf{y}$$

$$ightharpoonup
abla_{\mathbf{x}}(\mathbf{y}^T \mathbf{A} \mathbf{x}) = \mathbf{A}^T \mathbf{y}$$

$$\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{A}\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{A}^T\mathbf{x}$$
 (if **A** is symmetric: $= 2\mathbf{A}\mathbf{x}$)

Hessian Matrix

Second order derivatives

$$\mathbf{H}(\mathbf{x}) = \frac{\partial^{2} f(\mathbf{x})}{\partial \mathbf{x} \partial \mathbf{x}^{T}} = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \vdots \\ \vdots & \vdots & & & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}} \end{bmatrix}$$

Obviously, the Hessian matrix is always symmetric

Eigenvalue λ ; Eigenvector v

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 $(\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$ $|\mathbf{A} - \lambda\mathbf{I}| = \mathbf{0}$ (characteristic equation)

Solutions (λ) to the characteristic equation are called eigenvalues and their corresponding ${\bf v}$ eigenvectors