

Application of Generative Models: X Learning

Hao Dong

Peking University

Data in both input x and output y with known mappings (Learn the mapping f)

$$y = f(x)$$

Supervised Learning

- Image classification
- Object detection
- ...

Data in both input x and output y without known mappings (Learn the mapping f)

$$y = f(x)$$

Unsupervised Learning

- Autoencoder (when output is features)
- GANs
- • • •

Data in both input x and output y with known partial mappings (Learn the mapping f)

$$y = f(x)$$

Semi-supervised Learning

• ...

Data in both input x and output y with known mappings for y (Learn the mapping f for another output y')

$$y' = f(x)$$

Weakly-supervised Learning

- Learn segmentation via classification
- ...

From Data Point of View

From Mapping Point of View

Data in both input and output (Learn the mapping f, f')

$$y = f(x), x = f'(y)$$

(Unsupervised) Dual Learning

- VAE
- CycleGAN

Data in input x, x' only with known mapping f'(Learn the mapping *f*)

$$x' = f(x)$$

Self-supervised Learning

- Word2Vec
- **Denoising Autoencoder**

Data in input only with known inverse mapping *f* ' (Learn the mapping *f* and output *y*)

$$y = f(x), x = f'(y)$$

Self-augmented Learning

Application of Generative Models: Learning Methods

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

Data in both input x and output y (Learn the mapping f)

$$y = f(x)$$
 Unsupervised Learning

- In practice, it is difficult to obtain a large amount of labelled data, but it is easy to get a large amount of unlabeled data.
- Learn a good feature extractor using unlabelled data and then learn the classifier using labelled data can improve the performance.

社主大学 PEKING UNIVERSITY

Unsupervised Learning

• Unsupervised learning is about problems where we don't have labelled answers, such as clustering, dimensionality reduction, and anomaly detection.

- Clustering: EM
- Dimension Reduction: PCA

• ...

Autoencoder

(when the output is extracted features)

Autoencoder: Encode the input image x into a hidden state, then decode the latent space representation into a image \bar{x} . Then minimize the reconstruction loss between x and \bar{x} .

GANs

Update the discriminator – ascending gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

Update the generator – descending gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

HoloGAN: learn the rotation concept

HoloGAN: How it works

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

Data in both input *x* and output *y* with known partial mappings

(Learn the mapping *f*)

Motivation:

- Unlabelled data is easy to be obtained
- Labelled data can be hard to get

Goal:

 Semi-supervised learning mixes labelled and labelled data to produce better models.

vs. Transductive Learning:

- Semi-supervised learning is eventually applied to the testing data
- Transductive learning is only related to the unlabelled data

和京大学 PEKING UNIVERSITY

Semi-supervised Learning

Semi-supervised GAN

https://jostosh.github.io/ssl-gan/

Semi-supervised Learning

- Semi-supervised GAN
- Discriminator loss

the probability of it being real:

$$p(x) = \frac{Z(x)}{Z(x) + \exp(l_{fake})} = \frac{Z(x)}{1 + Z(x)}$$

where Z(x) is the sum of the unnormalised probabilities in the softmax operation.

$$\log(\mathbf{Z}(\mathbf{x})) = \operatorname{logsumexp}(l_1, \dots, l_k)$$

$$-\log(D(x)) - \log(1 - D(G(\mathbf{z})))$$

$$= -\log(\frac{Z(x)}{1 + Z(x)}) - \log(1 - \frac{Z(G(\mathbf{z}))}{1 + Z(G(\mathbf{z}))})$$

Semi-supervised Learning

Example: 2D Video to 3D shape

The model can learn from videos with only 2D pose annotations in a semisupervised manner. L_{2D} , L_{3D} : supervision from ground-truth

 $L_{adv\ prior}$: each prior discriminator judge a corresponding joint rotation of the body model

$$\sum_{k} (D_k(\mathbf{\Theta}) - 1)^2$$

make sure that the hallucinator can recover the current 3D mesh as well as its 3D past and future motion.

train a temporal encoder $f_{{
m mov}ie}$ that learns a representation of 3D human dynamics Φ_t over the **temporal window centered at frame t**

Semi-supervised Learning

Example: 2D Video to 3D shape

From a single image, the model can recover the current 3D mesh as well as its 3D past and future motion.

$$L_t = L_{2D} + L_{3D} + L_{adv prior} + L_{\beta prior}$$

$$L_{\text{const shape}} = \sum_{t=1}^{T-1} ||\beta_t - \beta_{t+1}||. \qquad L_{\text{temporal}} = \sum_t L_t + \sum_{\Delta t} L_{t+\Delta t} + L_{\text{const shape}}.$$

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

Data in both input x and output y with known mapping for y (Learn the mapping f for another output y')

Weakly-supervised Learning

• Weakly supervised learning is a machine learning framework where the model is trained using examples that are only partially annotated or labeled.

22

Weakly-supervised Learning

Attention CycleGAN

Learn the segmentation via synthesis $\widehat{\widehat{X}}_{\mathrm{A}}$ \widehat{X}_{B} G_{A2B} G_{B2A} X_A real D_B fake \widehat{X} X $1-s_a$

- Attention CycleGAN
 - Learn the segmentation without segmentation masks

Semantic Image Synthesis: Language Image Manipulation

Semantic Image Synthesis: Language Image Manipulation

Semantic Image Synthesis: Learn the segmentation via synthesis

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

Data in both input and output (Learn the mapping f, f')

y = f(x), x = f'(y)
(Unsupervised) Dual Learning

Motivation

- Human label is expensive
- No feedback if using unlabeled data

Application	Primal Task	Dual (Inverse) Task
Machine translation	Translate language from A to B	Translate language from B to A
Speed processing	Speech to text (STT)	Text to speech (TTS)
Image understanding	Image captioning	Image generation
Conversation engine	Question	Answer
Search engine	Search	Query

Language Translation

Feedback signals during the loop:

- $s(x, x_1)$: BLEU score of x_1 given x
- L(y) and $L(x_1)$: Likelihood and language model of y_1 and x_1

Reinforcement learning is used to improve the translation models from these feedback signals

Language Translation

Starting from initial models obtained from only 10% bilingual data, dual learning can achieve similar accuracy as the NMT model learned from 100% bilingual data!

Unpaired Image-to-Image Translation

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

Data in input x, x' only with known mapping f' (Learn the mapping f)

Self-supervised Learning

- Self-supervised learning is autonomous supervised learning, it learns to predict part of its input from other parts of its input.
- Examples: Word2Vec, Denoising Autoencoder
- Self-supervised vs. unsupervised learning: Self-supervised learning is like unsupervised Learning because the system learns without using explicitly-provided labels. It is different from unsupervised learning because we are not learning the inherent structure of data. Self-supervised learning, unlike unsupervised learning, is not centered around clustering and grouping, dimensionality reduction, recommendation engines, density estimation, or anomaly detection.

Self-supervised Learning

Denoising Autoencoder

Self-supervised Learning

• Image Example: Colorisation

Self-supervised Learning

Image Examples

Video Example

- Videos contain
 - Colour, Temporal info
- Possible proxy tasks
 - Temporal order of the frames
 - Optical flow: Motion of objects
 - ...

• Video Example: Shuffle and Learn

Given a start and an end, can this point lie in between?

• Video Example: Shuffle and Learn

和桌大学 PEKING UNIVERSITY

Self-supervised Learning

Video Example: Shuffle and Learn

Video Example: Shuffle and Learn

Image Retrieval: Nearest Neighbors of Query Frame (FC5 outputs)

• Video Example: Shuffle and Learn

Dataset	Initialization	Mean Classification Accuracy
UCF101	Random	38.6
	Shuffle & Learn	50.2
	ImageNet pre-trained	<u>67.1</u>

Video Example: Odd-One-Out

Mean Classification Accuracy
38.6
50.2
60.3
<u>67.1</u>

Video Example: Learning the Arrow of Time

Forward or backward plays?

- Depending on the video, solving the task may require
- (a) low-level understanding (e.g. physics)
- (b) high-level reasoning (e.g. semantics)
- (c) familiarity with very subtle effects
- (d) camera conventions

- Input: optical flow in two chunks
- Final layer: global average pooling to allow class activation map (CAM)

Video Example: Temporal Coherence of Color

Colorize all frames of a grey scale version using a reference frame

Reference Frame

What color is that?

Video Example: Temporal Coherence of Color

Tracking Emerges: Only the first frame is given, colors indicate different instances

Tracking Emerges by Colorizing Videos

Vondrick, Shrivastava, Fathi, Guadarrama, Murphy, ECCV 2018

• Video Example: Temporal Coherence of Color

Segment Tracking: Only the first frame is given, colors indicate different instances

• Video Example: Temporal Coherence of Color

Pose Tracking: Only the skeleton in the first frame is given

Video Example: Temporal Coherence of Color

Unsupervised Key-point Detection: Only paired images of the same object is given

- Achieve retargeting
- Disentangling Style and Geometry
- Invariant Localization

Unsupervised Learning of Object Landmarks through Conditional Image Generation *Tomas Jakab, Ankush Gupta et al. NIPS, 2018.*

Video + Sound Example

- Sound and frames are:
 - Semantically consistent
 - Synchronized
- Two types of proxy task:
 - Predict audio-visual correspondence
 - Predict audio-visual synchronization

Video + Sound Example: Audio-Visual Co-supervision

Train a network to predict if image and audio clip correspond

Video + Sound Example: Audio-Visual Co-supervision

- Learn good visual features
- Learn good audio features
- Learn aligned audio-visual embeddings
- Learn to localize objects that sound
- Using learned features
 - Sound classification
 - Query on image to retrieve audio
 - Localizing objects with sound

Video + Sound Example: Audio-Visual Co-supervision

- - Active speaker detection
 - Audio-to-video synchronization
 - Voice-over rejection
 - Visual features for lip reading

Out of time: Automatic lip sync in the wild. Chung, Zisserman, 2016

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

Data in input only with known inverse mapping f' (Learn the mapping f and output y)

$$y = f(x), x = f'(y)$$

Self-augmented Learning

Self-augmented Learning

Example: Unsupervised 3D shape generation

View prediction network

Summary

- Unsupervised Learning
- Semi-supervised Learning
- Weakly-supervised Learning
- Dual Learning
- Self-supervised Learning
- Self-augmented Learning

Thanks