Estimación y Predicción en Series Temporales

Filtros Adaptivos – descenso por gradiente

Departamento de Procesamiento de Señales

Instituto de Ingeniería Eléctrica Facultad de Ingeniería

2022

Haykin, Adaptive Filter Theory, 4.ª edición, Cap. 4 y 5). Hayes, Statistical Digital Signal Processing and Modeling (1996), Cap. 9.

Agenda

- Desarrollaremos la teoría de filtros adaptivos construídos sobre la base de un filtro FIR.
- Este tipo de filtro no requiere un conocimiento exacto de la estadística de las señales a ser filtradas.
- Identificamos dos procesos básicos en un filtrado adaptivo:
 - 1 El proceso adaptivo, que incluye el ajuste automático de los coeficientes del filtro de acuerdo a cierto algoritmo.
 - El proceso de filtrado, que incluye generar la salida del filtro y estimar el error en la estimación, que luego se utiliza para modificar los coeficientes. De esta forma se cierra el lazo de realimentación.

Veremos:

- Método de máxima pendiente (steepest descent). Vieja técnica de optimización recursiva para buscar el mínimo de una superficie cuando este no se conoce explícitamente.
- El algoritmo LMS (Least Mean Squares). Menos exacto pero menos costoso: no requiere estimar funciones de correlación ni invertir matrices.

Estructura del filtro adaptivo

Recordemos:
$$e(n) = d(n) - \hat{d}(n|\mathcal{U}_n) = d(n) - \mathbf{w}^H(n)\mathbf{u}(n)$$

 $J(\mathbf{w}) = \sigma_d^2 - \mathbf{w}^H(n)\mathbf{p} - \mathbf{p}^H\mathbf{w}(n) + \mathbf{w}^H(n)\mathbf{R}\mathbf{w}(n)$
 $\mathbf{R}\mathbf{w}_o = \mathbf{p}, \ J_{min} = \sigma_d^2 - \mathbf{p}^H\mathbf{w}_o.$

- En condiciones estacionarias el filtro adaptivo se diseña para estar cerca de $\nabla_{\mathbf{w}}J=0$.
- En condiciones no-estacionarias, la superficie de error cambia (estacionaridad local, R y p van variando con n).

El método de máxima pendiente

- El filtro debe satisfacer $\mathbf{R}\mathbf{w}_o = \mathbf{p}$ en todo momento, con \mathbf{R} y \mathbf{p} variando en el tiempo.
- Una forma es obtener una solución analítica para cada n lo cual puede ser muy costoso (M grande) y necesitar gran velocidad de procesamiento.

Una alternativa es el método de máxima pendiente:

- $\mathbf{0}$ $\mathbf{w}(0) = \mathbf{w}_o$. (cierto valor elegido, en general puede ser $\mathbf{0}$).
- 2 Luego nos movemos en la dirección opuesta al gradiente:

$$\begin{split} \mathbf{w}(n+1) &= \mathbf{w}(n) - \frac{1}{2}\mu\nabla_{\mathbf{w}}J(\mathbf{w}(n)), \quad \mu > 0, \\ \text{d\'onde } \nabla_{\mathbf{w}}J(\mathbf{w}(n)) &= 2\frac{\partial J(\mathbf{w}(n))}{\partial \mathbf{w}^*(n)} = -2\mathbf{p} + 2\mathbf{R}\mathbf{w}(n). \\ &\Rightarrow \mathbf{w}(n+1) = \mathbf{w}(n) + \mu[\mathbf{p} - \mathbf{R}\mathbf{w}(n)], \quad n = 0, 1, 2, \dots \end{split}$$

Obs: μ determina el paso de ajuste.

Estabilidad del algoritmo de máxima pendiente. Caso WSS

Al incluir realimentación, el algoritmo puede tornarse inestable. Es claro que la inestabilidad dependerá de μ y de $\mathbf R$. Para estudiar la estabilidad debemos observar los modos

Para estudiar la estabilidad debemos observar los modos naturales del sistema, es decir qué sucede en la base propia de \mathbf{R} :

- $\mathbf{c}(n) := \mathbf{w}(n) \mathbf{w}_o$: vector de error en los coeficientes en tiempo n.
- Teníamos ${\bf w}(n+1)={\bf w}(n)+\mu[{\bf p}-{\bf R}{\bf w}(n)].$ Usando que ${\bf R}{\bf w}_o={\bf p},$ tenemos

$$\mathbf{c}(n+1) = (\mathbf{I} - \mu \mathbf{R})\mathbf{c}(n) = (\mathbf{I} - \mu \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^H)\mathbf{c}(n),$$

siendo las columnas de \mathbf{Q} los vect. ppios de \mathbf{R} , \mathbf{Q} unitaria ($\mathbf{Q}^H = \mathbf{Q}^{-1}$) y $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \ldots, \lambda_M)$ con los λ_i positivos (teorema espectral + \mathbf{R} definida positiva).

Usando el cambio a coordenadas intrínsecas $\mathbf{v}(n) = \mathbf{Q}^H \mathbf{c}(n)$ demostrar que para cada modo normal,

Teníamos que $\mathbf{c}(n+1) = (\mathbf{I} - \mu \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^H) \mathbf{c}(n)$, por lo que

$$\mathbf{Q}^H \mathbf{c}(n+1) = (\mathbf{I} - \mu \mathbf{\Lambda}) \mathbf{Q}^H \mathbf{c}(n).$$

Utilizando el cambio de coordenadas $\mathbf{v}(n) = \mathbf{Q}^H \mathbf{c}(n)$, tenemos

$$\mathbf{v}(n+1) = (\mathbf{I} - \mu \mathbf{\Lambda})\mathbf{v}(n).$$

Esto es para cada modo natural, k = 1, 2, ..., M,

$$v_k(n+1) = (1-\mu\lambda_k)v_k(n);$$
 Luego,
$$v_k(n) = (1-\mu\lambda_k)^n v_k(0).$$

La convergencia de esta serie geométrica se verifica si

$$-1 < 1 - \mu \lambda_k < 1 \stackrel{\lambda_k > 0}{\Longleftrightarrow} 0 < \mu < \frac{2}{\lambda_k} \forall k = 1, 2, \dots, M.$$

$$\Rightarrow \boxed{0 < \mu < \dfrac{2}{\lambda_{max}}}$$
 CNS de convergencia para $\mathbf{w}(n) \overset{n \to \infty}{\longrightarrow} \mathbf{w}_o$

Convergencia del algoritmo de máxima pendiente, caso WSS

Definimos τ_k como el tiempo que demora el modo natural k-ésimo en decaer a 1/e de su valor inicial:

$$(1 - \mu \lambda_k)^{\tau_k} = \exp(-1) \Rightarrow \tau_k = \frac{-1}{\ln(1 - \mu \lambda_k)},$$

y si μ es lo suficientemente pequeño para que $\mu\lambda_k<<1$, $au_k\approx \frac{1}{\mu\lambda_k}.$ Luego, si definimos el tiempo global, este viene dado por

Convergencia del algoritmo de máxima pendiente, caso WSS

Relación con el número de condición de R

- Por un lado, tenemos la CNS de convergencia, $0<\mu<\frac{2}{\lambda_{max}}$, o de forma equivalente $\mu=\alpha\frac{2}{\lambda_{max}}$, con $0<\alpha<1$.
- Por otro lado, el tiempo global de convergencia es $\tau \approx \frac{1}{\mu \lambda_{m.in}}$.

Entonces:

$$\tau \approx \frac{1}{2\alpha} \frac{\lambda_{max}}{\lambda_{min}} = \frac{1}{2\alpha} \chi(\mathbf{R})$$

Convergencia del algoritmo de máxima pendiente, caso WSS

Comportamiento Transitorio de w(n), caso WSS

Teníamos $\mathbf{v}(n) = \mathbf{Q}^H \mathbf{c}(n) = \mathbf{Q}^H (\mathbf{w}(n) - \mathbf{w}_o).$

Pre-multiplicando por Q:

$$\mathbf{w}(n) = \mathbf{w}_o + \mathbf{Q}\mathbf{v}(n)$$

$$= \mathbf{w}_o + [\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_M]\mathbf{v}(n), \quad \mathbf{v}(n) = (v_1(n), v_2(n), \dots, v_M(n))^T$$

$$= \mathbf{w}_o + \sum_{k=1}^M v_k(n)\mathbf{q}_k = \mathbf{w}_o + \sum_{k=1}^M v_k(0)(1 - \mu\lambda_k)^n\mathbf{q}_k$$

Error cuadrático medio

Teníamos $J(n) = J_{min} + \sum_{k=1}^{M} \lambda_k |v_k(n)|^2$. Sustituyendo,

$$J(n) = J_{min} + \sum_{k=1}^{M} \lambda_k (1 - \mu \lambda_k)^{2n} |v_k(0)|^2.$$

Si el algoritmo converge, entonces $\lim_{n\to+\infty} J(n) = J_{min}$, cualquiera sean las condiciones iniciales

Comportamiento Transitorio de w(n), caso WSS

Curva de aprendizaje $n \mapsto J(n)$

