Hydrogen-Deuterium Spectrum Experiment

1. Introduction

In this experiment, we used the wavelength differences between hydrogen and deuterium Balmer series to calculate the mass ratio of hydrogen and deuterium.

First, we use a monochromator to scan over the sodium spectrum at a constant rate. Since the wavelength difference between the two lines of the yellow sodium doublet is known (sodium D lines), it can be used to calculate a conversion factor between wavelength difference and time difference that depends on the scanning rate we choose. Then we measured the wavelength differences between hydrogen and deuterium Balmer series (namely: α , β , γ , δ , and ϵ lines). Using the expression of effective mass and orbital energy difference

$$\mu = \frac{mM}{M+m}, \quad E_i - E_f \propto \mu(\frac{1}{n_f^2} - \frac{1}{n_i^2})$$

we find that

$$\frac{\Delta \lambda_{HD}}{\lambda_{H}} = \frac{\lambda_{H} - \lambda_{D}}{\lambda_{H}} = \frac{1/\mu_{H} - 1/\mu_{D}}{1/\mu_{H}} = \frac{1 - M_{H}/M_{D}}{1 + M_{H}/m}$$

Since M_H/m and λ_H is known and we can measure $\Delta \lambda_{HD}$, we then can solve for the desired quantity M_H/M_D . To improve accuracy, we plot $\Delta \lambda_{HD}$ for all lines in the Balmer series, and fit the data to find the slop (i.e $\frac{\Delta \lambda_{HD}}{\lambda_H}$) instead of just using one single spectral line.

2. Result for the mass ratio

The data plot for $\Delta \lambda_{HD}$ with respect to hydrogen wavelength is shown below (note that the fitted line is included also)

The fitted line gives a slop of 0.000257 ± 0.000009 . Using the equation given above, the mass ratio is:

$$\frac{M_H}{M_D} = 0.50 \pm 0.02$$

The accepted value of hydrogen-deuterium mass ration is $M_H/M_D = 0.500248$, which is only about 0.0002 off from our measured value, so lies within the uncertainty (0.02). This concluded that our measured value agree very well with the accepted value.

3. Possible error

Assume we made a mistake in measurements by pausing the wavelength scanning for 2 seconds between two sodium D lines, how would it effects our mass ratio final result?

First, we consider how this mistake will effect the scaling factor $K_{Na} = \frac{\Delta \lambda_D}{\Delta t_D}$. Since the time interval between sodium peaks is lengthened by our mistake

$$K_{Na} = \frac{\Delta \lambda_D}{\Delta t_D} \to \frac{\Delta \lambda_D}{\Delta t_D + 2s}$$

The scaling factor will become smaller, namely, it is scaled by $\frac{\Delta t_D}{\Delta t + 2s} = 0.94026 \pm 0.00004$ (with $\Delta t_D = 31.476s \pm 0.025$ from our analysis).

Since we calculate $\Delta \lambda_{HD}$ values using K_{Na} as follow

$$\Delta \lambda_{HD} = K_{Na} \Delta t_{HD}$$

the new $\Delta\lambda_{HD}$ will also be scaled by the same amount (i.e $\Delta\lambda_{HD} \rightarrow 0.94026\Delta\lambda_{HD}$). So the slope $(\frac{\Delta\lambda_{HD}}{\lambda_H})$ will also decrease by a factor of 0.94026. Solving for the mass ratio in the equation on the first page, with the known value $M_H/m=1836.15$, we get

$$\frac{M_H}{M_D} = 1 - 1837.15 \times \frac{\Delta \lambda_{HD}}{\lambda_H}$$

this means that a 0.94026 decrease in slope will result in a new mass ratio of 0.525 ± 0.015 (original slope is 0.000275 ± 0.000009 , detailed calculation is done in the analysis notebook). So, by taking the ratio of the "correct mass ratio" and the "incorrect mass ratio"

$$\frac{(M_H/M_D)_{incorrect}}{(M_H/M_D)_{correct}} = \frac{0.525 \pm 0.015}{0.50 \pm 0.02} = 1.05 \pm 0.0516$$

So the mistake we made causes us to measure a mass ratio that is 105% of the mass ratio without making the mistake.