OBJECTIVE

- 1. APPLYING RANDOM FOREST WITH TFIDF VECTORIZATION
 - FINDING THE BEST HYPERPARAMETER USING GRIDSEARCHCV WITH TRAIN DATA AND CROSS-VALIDATION DATA BY PLOTTING THE RESLUTS OF VAROIUS TRAIN DATA AND CROSS VALIDATION DATA
 - USING THE APROPRIATE VALUE OF HYPERPARAMETER, TESTING ACCURACY ON TEST DATA USING F1-SCORE
 - PLOTTING THE CONFUSION MATRIX TO GET THE PRECISOIN ,RECALL VALUE WITH HELP OF HEATMAP
 - PRINTING THE TOP 30 MOST IMPORTANT FEATURES

```
In [0]: from sklearn.model_selection import train_test_split
    g the necessary libraries
    from sklearn.model_selection import RandomizedSearchCV
    from sklearn.datasets import *
    from sklearn import naive_bayes
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.feature_extraction.text import TfidfVectorizer
    import numpy as np
    import pandas as pd
    from sklearn import *
    import warnings
    warnings.filterwarnings("ignore")
    from sklearn.ensemble import RandomForestClassifier
```

In [4]: from google.colab import drive
 drive.mount('/content/gdrive')#geeting the content from the google driv
 e

Drive already mounted at /content/gdrive; to attempt to forcibly remoun
t, call drive.mount("/content/gdrive", force_remount=True).

```
In [0]: final_processed_data=pd.read csv("gdrive/My Drive/final new data.csv")#
        loading the preprocessed data with 100k points into dataframe
In [6]: # getting the counts of 0 and 1 in "SCORE" column to know whether it is
         unbalanced data or not
        count of 1=0
        count of 0=0
        for i in final processed data['Score']:
           if i==1:
            count of 1+=1
           else:
            count of 0+=1
        print(count of 1)
        print(count of 0)
        #it is an imbalanced dataset
        88521
        11479
In [0]: #spliiting the data into train and test data
        x train,x test,y train,y test=model selection.train test split(final pr
        ocessed data['CleanedText'].values,final processed data['Score'].values
        ,test size=0.3,shuffle=False)
In [8]: vectorizer=TfidfVectorizer(min df=2)#building the vertorizer with word
         counts equal and more then 2
        train tfidf=vectorizer.fit transform(x train)#fitting the model on trai
        ning data
        print(train tfidf.shape)
        (70000, 16382)
In [9]: test tfidf=vectorizer.transform(x test)#fitting the bow model on test d
        print("shape of x test after tfidf vectorization ",test tfidf.shape)
        shape of x_test after tfidf vectorization (30000, 16382)
```

```
In [0]:
In [10]: #biudling the model
         #using time series split method for cross-validation score
         from sklearn.model selection import TimeSeriesSplit
         tscv = TimeSeriesSplit(n splits=5)
         rf=RandomForestClassifier(criterion='gini',class weight={1:.5,0:.5})
         tuned parameters=[{'max depth':[61,64,68,73,77,80],'n estimators':[21,3
         0,35,40,45,50]}]
         #applying the model of decision tree and using gridsearchev to find the
          best hyper parameter
         %time
         from sklearn.model selection import GridSearchCV
         model = GridSearchCV(rf, tuned parameters, scoring = 'f1', cv=tscv,n jo
         bs=-1)#building the gridsearchcv model
         CPU times: user 4 μs, sys: 1 μs, total: 5 μs
         Wall time: 7.63 µs
In [11]: %time
         model.fit(train tfidf, y train)#fiitting the training data
         CPU times: user 11.2 s, sys: 284 ms, total: 11.5 s
         Wall time: 26min 40s
Out[11]: GridSearchCV(cv=TimeSeriesSplit(max train size=None, n splits=5),
                error score='raise-deprecating',
                estimator=RandomForestClassifier(bootstrap=True, class weight=
         {1: 0.5, 0: 0.5},
                     criterion='gini', max depth=None, max features='auto',
                     max leaf nodes=None, min impurity decrease=0.0,
                     min impurity split=None, min samples leaf=1,
                     min samples split=2, min weight fraction leaf=0.0,
                     n estimators='warn', n jobs=None, oob score=False,
                     random state=None, verbose=0, warm start=False),
                fit params=None, iid='warn', n jobs=-1,
                param grid=[{'max depth': [61, 64, 68, 73, 77, 80], 'n estimator
         s': [21, 30, 35, 40, 45, 50]}],
```

```
pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
scoring='f1', verbose=0)
```

In [20]: print(model.best_estimator_)#printing the best_estimator

In [21]: print(model.score(test_tfidf,y_test))#checking the score on test_Data

0.9376672494380418

Out[22]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
0	8.207892	0.125787	0.942826	0.968657	61
1	11.751353	0.175003	0.942623	0.968801	61

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
2	13.598304	0.196765	0.942794	0.968604	61
3	15.517566	0.228227	0.942471	0.968346	61
4	17.657933	0.251955	0.942571	0.968759	61
5	19.466890	0.272821	0.942472	0.969249	61
6	8.745539	0.132947	0.942786	0.970711	64
7	12.032980	0.176906	0.943092	0.970263	64
8	14.123110	0.203084	0.942750	0.970345	64

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
9	16.386997	0.228492	0.942637	0.970659	64
10	18.190747	0.255849	0.942665	0.970313	64
11	20.558136	0.284757	0.942728	0.970934	64
12	9.144402	0.134296	0.943007	0.972365	68
13	12.795353	0.185571	0.942633	0.971862	68
14	15.200046	0.212584	0.942648	0.972416	68
15	17.023168	0.234259	0.942667	0.972219	68

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
16	19.363737	0.266417	0.942464	0.972856	68
17	21.581563	0.289683	0.942622	0.942622 0.971730	
18	9.801576	0.143186	0.943570	0.974136	73
19	14.160118	0.194498	0.943043	0.973793	73
20	16.824344	0.218368	0.943022	0.974422	73
21	18.932823	0.247959	0.943131	0.973988	73
22	21.523917	0.281439	0.942929	0.974456	73

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
23	24.093993	0.315355	0.942896	0.974129	73
24	10.646736	0.146012	0.943391	0.975058	77
25	15.027038	0.198350	0.943395	0.975380	77
26	17.612787	0.228716	0.943262	0.976097	77
27	19.867350	0.254089	0.943224	0.975760	77
28	22.579286	0.295588	0.943239	0.975469	77
29	24.659954	0.314257	0.943005	0.976081	77

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_d
30	10.896179	0.148836	0.943315	0.976295	80
31	15.231942	0.198558	0.943331	0.976448	80
32	17.803722	0.228328	0.943447	0.976752	80
33	20.242478	0.261301	0.943186	0.977049	80
34	22.851599	0.298497	0.943296	0.976556	80
35	23.545404	0.307550	0.943202	0.977062	80

36 rows × 22 columns

```
In [0]: results['mean_test_score']=results['mean_test_score']*100
results=results.round(decimals=2)
```

```
results['cv_error_score']=100-results['mean_test_score']
```

PLOTTING THE HEATMAP WITH HYPERPARAMETERS FOR CV_ERROR SCORE

In [25]: test_score_heatmap

Out[25]:

param_n_estimators	21	30	35	40	45	50
param_max_depth						
61	5.72	5.74	5.72	5.75	5.74	5.75
64	5.72	5.69	5.72	5.74	5.73	5.73
68	5.70	5.74	5.74	5.73	5.75	5.74
73	5.64	5.70	5.70	5.69	5.71	5.71
77	5.66	5.66	5.67	5.68	5.68	5.70
80	5.67	5.67	5.66	5.68	5.67	5.68

Out[26]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb8be172a58>

In [27]: print(model.best_estimator_)#printing the best_estimator

FROM THE ABOVE HEATMAPS RESULTS FOR CV DATA, WE FOUND THAT BEST HYPERPARAMETERS AS MAX_DEPTH=73 AND N_ESTIMATORS=21

PLOTTING THE ROC CURVE FOR GETTING AUC SCORE

```
In [29]: rf=RandomForestClassifier(criterion='gini', class weight={1:.5,0:.5}, max
         depth=73 ,n estimators=21)
         rf.fit(train_tfidf,y_train)#fitting the model
         probs = rf.predict proba(test tfidf)
         preds = probs[:,1]
         fpr, tpr, threshold = metrics.roc curve(y test, preds)
         roc auc = metrics.auc(fpr, tpr)
         import matplotlib.pyplot as plt
         plt.title('Receiver Operating Characteristic')
         plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
         plt.legend(loc = 'best')
         plt.plot([0, 1], [0, 1], 'r--')
         plt.xlim([0, 1])
         plt.ylim([0, 1])
         plt.ylabel('True Positive Rate')
         plt.xlabel('False Positive Rate')
         plt.show()
```



```
'horribl' 'mayb' 'stale' 'love' 'threw' 'wast' 'bad' 'worst' 'terribl'
'aw' 'would' 'great' 'disappoint']
```

REPRESENTING TOP IMPORTANT FEATURES USING WORDCLOUD LIBRARY

TESTING OUR MODEL ON TEST DATA AND CHECKING ITS PRECISION, RECALL, F1_FCORE

```
In [34]: #Testing Accuracy on Test data
import seaborn as sns #importing seaborn as sns
from sklearn.metrics import *#importing varoius metrics from sklearn
#building the model
y_pred = rf.predict(test_tfidf)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*1
00))#printing accuracy
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
```

```
#printing precision score
         print("Recall on test set: %0.3f"%(recall score(y test, y pred))) #prin
         ting recall
         print("F1-Score on test set: %0.3f"%(f1 score(y test, y pred)))
         print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
         df cm = pd.DataFrame(confusion matrix(y test, y_pred), range(2),range(2)
         )) #generating the heatmap for confusion matrix
         sns.set(font scale=1.4)#for label size
         sns.heatmap(df cm, annot=True,annot kws={"size": 16}, fmt='q',cmap="YlG
         nBu")
         Accuracy on test set: 88.443%
         Precision on test set: 0.884
         Recall on test set: 0.999
         F1-Score on test set: 0.938
         Confusion Matrix of test set:
          [ [TN FP]
          [FN TP] ]
Out[34]: <matplotlib.axes. subplots.AxesSubplot at 0x7fb8b91d6e80>
```


BOW VECTORIZATION FOR RANDOM FOREST IS COMPLETED

OBJECTIVE

- 1. APPLYING GBDT WITH TFIDF VECTORIZATION
 - FINDING THE BEST HYPERPARAMETER USING GRIDSEARCHCV WITH TRAIN DATA AND CROSS-VALIDATION DATA BY PLOTTING THE RESLUTS OF VAROIUS TRAIN DATA AND CROSS VALIDATION DATA
 - USING THE APROPRIATE VALUE OF HYPERPARAMETER, TESTING ACCURACY ON TEST DATA USING F1-SCORE
 - PLOTTING THE CONFUSION MATRIX TO GET THE PRECISOIN ,RECALL VALUE WITH HELP OF HEATMAP

PRINTING THE TOP 30 MOST IMPORTANT FEATURES.

```
In [35]: from xgboost import XGBClassifier
         #biudling the model
         #using time series split method for cross-validation score
         from sklearn.model selection import TimeSeriesSplit
         tscv = TimeSeriesSplit(n splits=5)
         xg=XGBClassifier(n jobs=-1)
         tuned parameters=[{'max depth':[11,15,20,24,27,30],'n estimators':[21,3
         0,35,40,45,50]}]
         #applying the model of decision tree and using gridsearchev to find the
          best hyper parameter
         %time
         from sklearn.model selection import GridSearchCV
         model = GridSearchCV(xq, tuned parameters, scoring = 'f1', cv=tscv,n jo
         bs=-1)#building the gridsearchcv model
         CPU times: user 3 μs, sys: 1 μs, total: 4 μs
         Wall time: 6.91 µs
In [36]: %time
         model.fit(train tfidf, y train)#fiitting the training data
         CPU times: user 2min 51s, sys: 362 ms, total: 2min 51s
         Wall time: 1h 12min 21s
Out[36]: GridSearchCV(cv=TimeSeriesSplit(max train size=None, n splits=5),
                error score='raise-deprecating',
                estimator=XGBClassifier(base score=0.5, booster='gbtree', colsam
         ple bylevel=1,
                colsample bytree=1, gamma=0, learning rate=0.1, max delta step=
         Θ,
                max depth=3, min child weight=1, missing=None, n estimators=100,
                n jobs=-1, nthread=None, objective='binary:logistic',
                random state=0, reg alpha=0, reg lambda=1, scale pos weight=1,
                seed=None, silent=True, subsample=1),
                fit params=None, iid='warn', n jobs=-1,
                param grid=[{'max depth': [11, 15, 20, 24, 27, 30], 'n estimator
         s': [21, 30, 35, 40, 45, 50]}],
```

pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
scoring='f1', verbose=0)

In [43]: print(model.best_estimator_)#printing the best_estimator

Out[60]:

	mean_fit_time	mean_score_time	mean_test_score	mean_train_score	param_max_de
0	14.193161	0.189327	0.946074	0.959469	11
1	20.153732	0.204038	0.947127	0.962851	
2	23.310932	0.210168	0.947627	0.964501	11

	mean_fit_time	mean_score_time	mean_test_score	ean_test_score mean_train_score	
3	26.559028	0.217920	0.947915	0.966236	11
4	29.652577	0.224765	0.948380	0.967831	11

5 rows × 22 columns

```
In [0]: results['mean test score']=results['mean test score']*100
        results=results.round(decimals=2)
        results['cv_error_score']=100-results['mean_test_score']
```

PLOTTING THE HEATMAP WITH HYPERPARAMETERS FOR CV_ERROR **SCORE**

```
In [48]: test score heatmap=results.pivot( 'param max depth' ,'param n estimator
        s','cv error score' )
        test score heatmap
Out[48]: _____
```

param_n_estimators	21	30	35	40	45	50
param_max_depth						

param_n_estimators	21	30	35	40	45	50
param_max_depth						
11	5.39	5.29	5.24	5.21	5.16	5.13
15	5.31	5.23	5.15	5.10	5.04	5.03
20	5.25	5.17	5.11	5.08	5.07	5.02
24	5.22	5.10	5.02	5.01	4.96	4.94
27	5.18	5.06	5.01	4.96	4.94	4.91
30	5.18	5.02	5.01	4.97	4.93	4.91

```
In [49]: import seaborn as sns
    sns.heatmap(test_score_heatmap,annot=True,annot_kws={"size": 15}, fmt=
    'g',linewidths=.3)

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb8b81160b8>
```


In [50]: print(model.best_estimator_)#printing the best_estimator

FROM THE ABOVE HEATMAPS RESULTS FOR CV DATA, WE FOUND THAT BEST HYPERPARAMETERS AS MAX_DEPTH=30 AND N_ESTIMATORS=50

PLOTTING THE ROC CURVE FOR GETTING AUC SCORE

```
In [0]: xg=XGBClassifier(n jobs=-1, max depth=30 , n estimators=50)
         xg.fit(train tfidf,y train)#fitting the model
In [53]: probs = xg.predict proba(test tfidf)
         preds = probs[:,1]
         fpr, tpr, threshold = metrics.roc curve(y test, preds)
         roc auc = metrics.auc(fpr, tpr)
         import matplotlib.pyplot as plt
         plt.title('Receiver Operating Characteristic')
         plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc auc)
         plt.legend(loc = 'best')
         plt.plot([0, 1], [0, 1], 'r--')
         plt.xlim([0, 1])
         plt.ylim([0, 1])
         plt.ylabel('True Positive Rate')
         plt.xlabel('False Positive Rate')
         plt.show()
```



```
st'
  'horribl' 'mayb' 'stale' 'love' 'threw' 'wast' 'bad' 'worst' 'terribl'
  'aw' 'would' 'great' 'disappoint']
```

REPRESENTING TOP IMPORTANT FEATURES USING WORDCLOUD LIBRARY


```
In [59]: y_pred = xg.predict(test_tfidf)
print("Accuracy on test set: %0.3f%%"%(accuracy_score(y_test, y_pred)*1
00))#printing accuracy
print("Precision on test set: %0.3f"%(precision_score(y_test, y_pred)))
#printing precision score
print("Recall on test set: %0.3f"%(recall_score(y_test, y_pred))) #printing recall
print("F1-Score on test set: %0.3f"%(f1_score(y_test, y_pred)))
print("Confusion Matrix of test set:\n [ [TN FP]\n [FN TP] ]\n")
df_cm = pd.DataFrame(confusion_matrix(y_test, y_pred), range(2),range(2))) #generating the heatmap for confusion matrix
sns.set(font_scale=1.4)#for label size
sns.heatmap(df_cm, annot=True,annot_kws={"size": 16}, fmt='g')
Accuracy on test set: 90.110%
```

Precision on test set: 0.905 Recall on test set: 0.991 F1-Score on test set: 0.946 Confusion Matrix of test set: [[TN FP] [FN TP]] Out[59]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb8b7f11128> 25000 20000 2740 960 0 15000 10000 227 26073 5000 0 1