# Neural Message Passing for Quantum Chemistry, Gilmer+, '17

2017年6月9日 @shima\_x

# Agenda

- 概要
- モチベーション
- 手法
- 実験/結果
- ・コメント

# 概要

- Message Passing Neural Networks (MPNNs)の提案
  - グラフ構造の入力に対してmessage passing algorithmとaggregation functionを学習 するモデル
  - 計算コストの高いDFT (密度汎関数理論)をNNでモデル化したもの(計算高速化)
  - $\circ~10^3$ second ->  $10^{-2}$ secondに計算時間を短縮
- 分子のグラフ構造データから、形状の同形性を考慮した普遍性を学習する
- 新規の構造との関連性/分子特性の把握
- QM9 datasetを使用
  - 約130k個の分子がそれぞれ13個の特性を持っており、それを予測するタスクで評価
- 分子特性を推定するタスクにおいてSoTA

# 貢献

- 精度の高いモデルを構築
  - chemical accuracyで11/13を的中
  - 分子の構造のみを入力とした場合でも5/13の特性を的中
- 大きなグラフ構造が入力されたとしても、高速にメモリ使用量を抑えた計算が可能なモ デルを構築した

## モチベーション

• 有機物の特性の推定を汎用的に低コストで行いたい



Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

# 手法

### Message Passing Neural Networks

forward phaseは2つのphaseが存在

- message passing phase
  - T time steps
    - lacktriangle message functions:  $M_t$
    - lacktriangle vertex update functions:  $U_t$
    - $lacksymbol{\bullet}$  各ノードの隠れ状態: $h_v^t$
    - lacktriangledown messages:  $m_v^t$
- readout phase

# ネットワークイメージ



引用: The graph neural network model, Scarselli+, '09

# ネットワークイメージ



引用: The graph neural network model, Scarselli+, '09

#### **Notation**

- G: undirected graphs
- $x_v$ : node features
- $e_{vw}$ : edge features

### message update

$$h_v^{t+1} = U_t(h_v^t, m_v^{t+1})$$

N(v) denotes the neighbors of  ${
m v}$  in graph  ${
m G}$ 

エッジの隠れ状態も $h_{e_{vw}}^t$ として同じように扱う事ができる(Kearnes et al. (2016) 参照)

readout phase

$$\hat{y} = R(\{h_v^T|v\in G\})$$

R: readout function

- 以下の手法をMPNNとして考える
  - Convolutional Networks for Learning Molecular Fingerprints
  - Gated Graph Neural Networks (GG-NN)
  - Interaction Networks
  - Molecular Graph Convolutions
  - Laplacian Based Methods

## Convolutional Networks for Learning Molecular Fingerprints

message function

$$M(h_v,h_w,e_{vw})=(h_w,e_{vw})$$

(., .) denotes concatenation

• update function

$$U_t(h_v^t, m_v^{t+1}) = \sigma(H_t^{deg(v)} m_v^{t+1})$$

 $\sigma$ : シグモイド関数

deg(v): ノードvの次数

 $H_t^N$ : 時間tの時の学習済みのマトリクス( $\mathsf{N}$ はノードの時数)

## Convolutional Networks for Learning Molecular

Rはskip connectionを持っているすべての隠れ層 $h_v^t$ に対して

$$R = f(\sum_{v,t} softmax(W_t h_v^t)$$

f: neural network

 $W_t$ : time step毎の学習済みのreadout matrices

- エッジとノードをそれぞれで足しこんでconcat
- したがって、エッジとノードを区別することが出来ないのが欠点

$$m_v^{t+1} = (\sum h_w^t, \sum e_{vw})$$

#### Gated Graph Neural Networks (GG-NN)

message function

$$M(h_v,h_w,e_{vw})=A_{e_{vw}}h_w^t$$

 $A_{e_{vw}}$  is a learned matrix, one for each edge label e(the model assumes discrete edge types)

vertex update function

$$U_t = GRU(h_v^t, m_v^{t+1})$$

GRU(Gated Recurrent Unit)はweight tying的な役割で使用

### Gated Graph Neural Networks (GG-NN)

readout function

$$R = \hspace{-2mm} \sum_{v \in V} \hspace{-2mm} \sigma(i(h_v^{(T)}, h_v^0)) \odot j(h_v^{(T)})$$

i and j are neural networks, and ① denotes elementwise multiplication

#### **Interaction Networks**

- ullet message function:  $M(h_v,x_v,m_v)$ 
  - $\circ$  入力が $(h_v,h_w,e_{vw})$ のNeural Network
  - 。 (・,・,・)はconcat
- ullet vertex update function:  $U(h_v,x_v,m_v)$ 
  - $\circ$  入力が $(h_v, x_v, m_v)$ のNeural Network

#### **Interaction Networks**

- readout function
  - 。 入力が最終的な隠れ状態である $h_v^T$ を入力とした $\mathsf{Neural}$   $\mathsf{Network}$

$$R = f(\sum_{v \in G} h_v^T)$$

originalのモデルではT=1でうまく学習/推定可能(らしい)

#### **Molecular Graph Convolutions**

- 一般的なMPNNsからすこし逸脱した手法。
  - message function

$$M(h_v^t,h_w^t,e_{vw}^t)=e_{vw}^t$$

vertex update function

$$U_t(h_v^t, m_v^{t+1}) = ReLU(W_1(lpha(W_0h_v^t), m_v^{t+1}))$$

edge state update

$$e_{vw}^{t+1} = U_t'(e_{vw}^t, h_v^t, h_w^t) = ReLU(W_4(ReLU(W_2, e_{vw}^t), ReLU(W_3(h_v^t, h_w^t))))$$

where the  $W_i$  are also learned weight matrices

#### **Laplacian Based Methods**

message function

$$M_t(h_v^t,h_w^t)=C_{vw}^th_w^t$$

where the matrices  $C^t_{vw}$  are parameterized by the eigenvectors of the graph laplacian L

$$c_{vw} = (deg(v)deg(w))^{-1/2}A_{vw}$$

real valued adjacency matrix A

#### **Laplacian Based Methods**

vertex update function

$$U_t(h_v^t,m_v^{t+1})=\sigma(m_v^{t+1})$$

 $\sigma$  is a chosen non-linearity (such as ReLU)

下の構造がKipf & Welling (2016)では使われている

$$U_v^t(h_v^t,m_v^{t+1}) = ReLU(W^tm_v^{t+1})$$

- 上で説明したアプローチの欠点
  - 計算コストが高い
- 解決策の一つ(Marino et al, 2016参照)
  - 各時間ステップでグラフのサブセットのみにメッセージを渡す
  - これにより、GG-NNアーキテクチャをより大きなグラフに適合

## QM9 Dataset

#### データセット内に含まれている原子

- Hydrogen (H)
- Carbon (C)
- Oxygen (O)
- Nitrogen(N)
- Flourine (F)
- up to 9 heavy (non Hydrogen) atoms

#### 化合物種類

• 134k druglike organic molecules that span a wide range of chemistry

#### 有機物特性

- 1. the atomization energy at  $0KU_0$ (eV)
- 2. atomization energy at room temperature U(eV)
- 3. enthalpy of atomization at room temperature H(eV)
- 4. free energy of atomization G(eV)
- 5. highest fundamental vibrational frequency  $\omega_1(cm^{-1})$
- 6. zero point vibrational energy (ZPVE)(eV)
- 7. highest occupied molecular orbital (HOMO)  $\epsilon_{HOMO}(eV)$
- 8. the energy of the lowest unoccupied molecular orbital (LUMO)  $\epsilon_{LUMO}(eV)$
- 9. the electron energy gap ( $\Delta\epsilon(eV)$ )
- 10. The electron energy gap is simply the difference  $\epsilon_{HOMO}$   $\epsilon_{LUMO}$
- 11. the electronic spatial extent  $\langle R^2 \rangle (Bohr^2)$
- 12. the norm of the dipole moment  $\mu(Debye)$
- 13. the norm of static polarizability  $lpha(Bohr^3)$

## MPNNをイジリたおす

#### これ以降のnotation

- d: 各ノードの隠れ層の次元
- n: グラフ内のノード数

#### 実験概要

- GG-NNをベースラインとして考える
- 様々なmessage function, output functionを試した
- 適切な入力表現を探した
- 適切なハイパーパラメタを探した
- 有向グラフとして計算した
  - message channel数が2倍になる=2dになる

#### MPNNモデルへの入力

- グラフのノードに対する特徴ベクトルのセット $x_v$
- 結合の種類、原子間の距離を含んだ隣接行列A
- 初期隠れ状態 $h_v^0$ は原子入力特徴ベクトル $x_v$ で設定
  次元dまで埋める
- 各時間ステップtで重みを共有
- update functionではGRUを使用

# Message Functionsの実験

3種類つかってイジってみた

## **Matrix Multiplication**

 $ullet \ M(h_v,h_w,e_{vw})=A_{e_{vw}}h_w$ 

#### **Edge Network**

- $ullet \ M(h_v,h_w,e_{vw})=A(e_{vw})h_w$ 
  - $\circ$   $A(e_{vw})$ はニューラルネットワーク
  - o d×dの形に変形する

# Message Functionsの実験

### Pair Message

- matrix multiplication ruleの特徴
  - $\circ$  ノードwからノードvへのメッセージが隠れ状態 $h_w$ およびエッジ $e_{vw}$ の関数のみ
  - $\circ$  隠れ状態 $h_v^t$ に依存しない
- 理論的には、メッセージチャネルをより効率的に使用できる
  - ノードメッセージが送信元ノードと送信先ノードの両方nの情報をよりどころとする 場合は
- したがってメッセージ関数の変形を使用することも試みた(Battaglia et al., 2016)
- ullet エッジeに沿ったwからvへのメッセージは、 $m_{wv}=f(h_w^t,h_v^t,e_{vw})$
- fはニューラルネットワーク
- 有向グラフの場合、message functionsは $M_{in}$ と $M_{out}$ の2つを使用

# **Virtual Graph Elements**

- エッジの無い部分に仮想のエッジを作る
- グラフ内のすべてのノードに仮想的に繋がっている潜"master"ノードを考えたモデルも使用した
- パフォーマンスに大きな影響はないO(|E| $d^2$ + $nd_{master}^2$ )

#### **Readout Functions**

- 2つ実験した
  - GG-NNで使用されていた関数(論文中式4参照)
  - ∘ set2setモデル
    - ORDER MATTERS: SEQUENCE TO SEQUENCE FOR SETS, Vinyals+, '16
    - このモデルを最初に適用

# **Multiple Towers**

- MPNNの問題の一つはスケーラビリティ
  - $\circ$  非常に計算量が大きい $O(n^2d^2)$
- 対応策
  - $\circ$   $h_v^t$ を使用するのではなく、k次元毎に分割した $h_v^{t,k}$ を使用
  - 。 k個並列にupdate functionが計算できるので、計算効率を上げられる

# 入力表現

入力の表現も3考えてみた 今回のデータではノードの上限数は29だった

#### **Chemical Graph**

- ・距離無し
- エッジ情報は結合なし、一重結合、二重結合、三重結合

# 入力表現

#### Distance bins

- matrix multiply message functionは離散的なエッジ型
- 原子間の距離を10のbinに分割
  - [2,6]は1を1binとする
  - [0,2],[6,∞]はまとめて1bin
  - 分割幅は手動で決定した
- 隣接行列
  - 結合された原子の結合タイプ
  - 結合されていない原子の距離
  - 原子間距離は結合タイプによってほぼ決まる
  - 距離の10bin+結合タイプ4=14次元ベクトルの特徴量

# 入力表現

#### Raw distance feature

- 隣接行列Aの次元(1ノードが持つベクトルの次元)は5次元
- 内訳は、原子間距離で1次元、結合タイプを表す4次元の1ホットベクトル

# **Training**

#### ハイパーパラメタ

- 50パターンのハイパーパラメタの探索(一様サンプリング)
- Tは3≤T≤8(経験的にT≥3だといい感じに学習)
- set2setの計算回数 M: 1≤M≤12

#### 学習条件

- 最適化手法: adam
- batch size: 20, N of step: 2million(360epochs)
- ullet initial learning rate: [ $1e^{-5}$ ,  $5e^{-4}$ ]で一様サンプリング
- decay factor F: 線形、学習係数を最終的に初期値の10%から90%にする

# **Training**

### データセット

- QM-9 datasetを使用
- 全130,462分子
- validation set: 10,000分子をランダムに選択
  - early stopping, model選択
- test set: 10,000分子をランダムに選択
  - 結果のスコア算出
- training set: 残り
- すべての特性値を0から1に正規化
- loss: 特性値との2乗誤差

# **Training**

#### 原子の特徴

| Table 1. Atom Features |                                |  |  |  |
|------------------------|--------------------------------|--|--|--|
| Feature                | Description                    |  |  |  |
| Atom type              | H, C, N, O, F (one-hot)        |  |  |  |
| Atomic number          | Number of protons (integer)    |  |  |  |
| Partial Charge         | Calculated charge (float)      |  |  |  |
| Acceptor               | Accepts electrons (binary)     |  |  |  |
| Donor                  | Donates electrons (binary)     |  |  |  |
| Aromatic               | In an aromatic system (binary) |  |  |  |
| Hybridization          | sp, sp2, sp3 (one-hot or null) |  |  |  |
| Number of Hydrogens    | (integer)                      |  |  |  |

# 実験結果

#### アルゴリズムごとの比較

Table 2. Comparison of Previous Approaches (left) with MPNN baselines (middle) and our methods (right)

| Table 2. Comparison of Frevious Approaches (left) with MF 1414 basenines (initiale) and our methods (right) |             |      |      | iletilous (fight) |      |      |       |         |              |
|-------------------------------------------------------------------------------------------------------------|-------------|------|------|-------------------|------|------|-------|---------|--------------|
| Target                                                                                                      | <b>BAML</b> | BOB  | CM   | ECFP4             | HDAD | GC   | GG-NN | enn-s2s | enn-s2s-ens5 |
| mu                                                                                                          | 4.34        | 4.23 | 4.49 | 4.82              | 3.34 | 0.70 | 1.22  | 0.26    | 0.21         |
| alpha                                                                                                       | 3.01        | 2.98 | 4.33 | 34.54             | 1.75 | 2.27 | 1.55  | 1.05    | 0.75         |
| HOMO                                                                                                        | 2.20        | 2.20 | 3.09 | 2.89              | 1.54 | 1.18 | 1.17  | 0.95    | 0.75         |
| LUMO                                                                                                        | 2.76        | 2.74 | 4.26 | 3.10              | 1.96 | 1.10 | 1.08  | 0.88    | 0.73         |
| gap                                                                                                         | 3.28        | 3.41 | 5.32 | 3.86              | 2.49 | 1.78 | 1.70  | 1.56    | 1.29         |
| R2                                                                                                          | 3.25        | 0.80 | 2.83 | 90.68             | 1.35 | 4.73 | 3.99  | 0.22    | 0.14         |
| <b>ZPVE</b>                                                                                                 | 3.31        | 3.40 | 4.80 | 241.58            | 1.91 | 9.75 | 2.52  | 1.44    | 1.16         |
| U0                                                                                                          | 1.21        | 1.43 | 2.98 | 85.01             | 0.58 | 3.02 | 0.83  | 0.43    | 0.31         |
| U                                                                                                           | 1.22        | 1.44 | 2.99 | 85.59             | 0.59 | 3.16 | 0.86  | 0.45    | 0.31         |
| H                                                                                                           | 1.22        | 1.44 | 2.99 | 86.21             | 0.59 | 3.19 | 0.81  | 0.55    | 0.36         |
| G                                                                                                           | 1.20        | 1.42 | 2.97 | 78.36             | 0.59 | 2.95 | 0.78  | 0.42    | 0.31         |
| Cv                                                                                                          | 1.64        | 1.83 | 2.36 | 30.29             | 0.88 | 1.45 | 1.19  | 0.81    | 0.60         |
| Omega                                                                                                       | 0.27        | 0.35 | 1.32 | 1.47              | 0.34 | 0.32 | 0.53  | 0.21    | 0.22         |
| Average                                                                                                     | 2.17        | 2.08 | 3.37 | 53.97             | 1.35 | 2.59 | 1.36  | 0.71    | 0.55         |
|                                                                                                             |             |      |      |                   |      |      |       |         |              |

※ 結果はすべてmean absolute error(MAE)

# 実験結果

データ構造を変えて試してみた

Table 3. Models Trained Without Spatial Information

| Model                | Average Error Ratio |
|----------------------|---------------------|
| GG-NN                | 3.47                |
| GG-NN + Virtual Edge | 2.90                |
| GG-NN + Master Node  | 2.62                |
| GG-NN + set2set      | 2.57                |

# 実験結果

- joint training: 特性値を一括で推定
- individual traing: 特性値1個につき1つのモデルを作成
- tower8: k=8のtower構造にした場合

Table 4. Towers vs Vanilla GG-NN (no explicit hydrogen)

| Model                         | Average Error Ratio |
|-------------------------------|---------------------|
| GG-NN + joint training        | 1.92                |
| towers8 + joint training      | 1.75                |
| GG-NN + individual training   | 1.53                |
| towers8 + individual training | 1.37                |