Rattrapage NMV M2 – MASTER SAR Mars 2009

2 heures – Tout document papier autorisé Barème donné à titre indicatif

M. Shapiro, J. Sopena, G. Thomas

I. MODELE MEMOIRE (10 POINTS)

I.1. (2 points)

Rappeler ce qu'est l'instruction CAS (compare and swap). Donnez un équivalent à CAS en Java.

I.2. (1 points)

Rappeler ce qu'est la signification du mot clé volatile en Java

Soit le code suivant

```
public class Holder {
           private Integer val ;
3.
4.
           public Holder(int val) {
            this.val = new Integer(val) ;
7.
           public String toString() {
8.
             return val.toString();
9.
10.
         }
         public class Buggy {
11.
           public Holder holder ;
12.
13.
           public void test(int n) {
14.
             if(holder == null) {
15.
               synchronized(this) {
16.
                 if(holder == null) {
17.
                   holder = new Holder(n) ;
18.
19.
               }
20.
             }
21.
             System.out.println("Holder: " + holder);
22.
           }
23.
         }
```

I.3. (1 points)

Quel est l'intérêt de tester si la variable holder est null en dehors d'un bloc synchonisé à la ligne 14 ?

I.4. (1 point)

Pour quelle raison ce test est effectué de nouveau à la ligne 16?

I.5. (3 points)

Pour quelle raison l'exécution de la fonction test peut mener à la levée d'une exception NullPointerException. Vous indiquerez à quelle ligne cette exception pourrait être levée et expliquerez précisément la séquence d'action pouvant y amener.

I.6. (2 points)

Expliquez comment corriger le code pour assurer que la fonction test ne puisse pas mener à la levée d'une exception NullPointerException. Vous expliquerez pourquoi votre solution fonctionne.

II. MONITEUR DE MACHINE VIRTUELLE (5 POINTS)

II.1. (2 points)

Expliquez ce qu'est la table des page ombre : à quoi elle sert, comment on la met en œuvre et quel composant s'occupe de la maintenir.

II.2. (3 points)

Décrivez les trois techniques étudiées en cours permettant de maintenir la table des pages ombres.

III. RAMASSE MIETTES (5 POINTS)

III.1. (1 points)

Rappeler ce qu'est l'invariant tri-couleurs de Dijkstra et pourquoi il doit être maintenu dans un ramasse-miettes incrémental.

III.2. (2 points)

Donnez trois algorithmes possibles permettant de maintenir cet invariant dans un ramasse-miettes incrémental.

III.3. (2 points)

Rappelez la définition d'un ramasse-miettes conservatif. Quelle difficulté ce type de ramasse-miettes pose-t-il? Décrivez brièvement une solution vue en cours permettant d'implémenter un ramasse-miettes conservatif.