Heat transfer Chap. 4 two-dimensional conduction

$$\frac{\partial^{2}T}{\partial x^{2}} + \frac{\partial^{2}T}{\partial x^{2}} = 0$$

$$\theta(x, y) = \frac{T(x, y) - T_{1}}{T_{2} - T_{1}}$$
Dimensionless

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial x^2} = 0$$

$$\theta(x,y) = \frac{T(x,y) - T_1}{T_2 - T_1} \qquad \frac{T(x,y) - T_1}{T_2 - T_1} = \theta(x,y) = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1} + 1}{n} \sin \frac{n\pi x}{L} \frac{\sinh n\pi y/L}{\sinh n\pi W/L}$$

$$q''_{x} = -k \frac{\partial T}{\partial x}$$
 $\Rightarrow q = Sk\Delta T_{1-2}$ S shape factor [m] $q''_{y} = -k \frac{\partial T}{\partial y}$

Eksempel

- A two-dimensional rectangular plate is subjected to
- prescribed boundary conditions.
 Using the results of
- the exact solution for the heat equation presented in
- Section 4.2, calculate the temperature at the midpoint
- (1, 0.5) by considering the first five nonzero terms of
- the infinite series that must be evaluated.

Two-dimensional steady-state conduction

Shape factor

$$q = Sk\Delta T_{1-2}$$

Resistance
$$R_{t,cond} = \frac{\Delta T_{1-2}}{q} = \frac{1}{Sk}$$

TABLE 4.1 Conduction shape factors and dimensionless conduction heat rates for selected systems.

	(a) Shape factors $[q = Sk(T_1 - T_2)]$			S	
	System	Schematic	Restrictions	Shape Factor	
$\frac{1}{k}$	Case 1 Isothermal sphere buried in a semi- infinite medium	T_1	z > D/2	$\frac{2\pi D}{1 - D/4z}$	
	Case 2 Horizontal isothermal cylinder of length L buried in a semi-infinite medium		$L \gg D$ $L \gg D$ $z > 3D/2$	$\frac{2\pi L}{\cosh^{-1}(2z/D)}$ $\frac{2\pi L}{\ln(4z/D)}$	
	Case 3 Vertical cylinder in a semi-infinite medium		$L\gg D$	<u>2πL</u> ln (4 <i>L/D</i>)	
	Case 4 Conduction between two cylinders of length L in infinite medium	D_1 D_2 D_2 D_2 D_2	$L \gg D_1, D_2$ $L \gg w$	$\frac{2\pi L}{\cosh^{-1}\left(\frac{4w^2 - D_1^2 - D_2^2}{2D_1D_2}\right)}$	

TABLE 4.1 Continued

System	Schematic	Restrictions	Shape Factor
Case 5 Horizontal circular cylinder of length L midway between parallel planes of equal length and infinite width	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	$z \gg D/2$ $L \gg z$	$\frac{2\pi L}{\ln{(8z/\pi D)}}$

Case 6

Circular cylinder of length L centered in a square solid of equal length

$$w > D$$

 $L \gg w$

 $\frac{2\pi L}{\ln{(1.08 \text{ } w/D)}}$

SCHEMATIC:

$$q = \frac{T_{\infty,1} - T_{\infty,2}}{R_{\text{conv},1} + R_{\text{cond}(2D)} + R_{\text{conv},2}}$$

$$S = \frac{2\pi L}{\ln\left(\frac{1.08w}{D}\right)} = 17.176 \text{ m}$$

$$R_{2D} = \frac{1}{Sk} = 0.00216 \frac{K}{W}$$

Eksempel

A hole of diameter D =0.375 m is drilled through the center of a solid block of square cross section with w = 1,5 m on a side. The hole is drilled along the length, l = 4 m, of the block, which has a thermal conductivity of k = 27 W/m . K. The outer surfaces are exposed to ambient air, with T,2 = 25°C and h2 = 4 W/m² .K, while hot oil flowing through the hole is characterized by T,1 = 300°C and h1 =50 W/m² .K.

Determine the corresponding heat rate and surface temperatures.

(b) Dimensionless conduction heat rate
$$[q = q_{ss}^* kA_s(T_1 - T_2)/L_c; L_c = (A_s/4\pi)^{1/2}]$$

Case 12

System

Isothermal sphere of diameter D and temperature T_1 in an infinite medium of temperature T_2

schematic

 πD^2

Active Area, A,

Infinite medium

Uniform surface temperature

Case 13

Infinitely thin, isothermal disk of diameter D and temperature T_1 in an infinite medium of temperature T_2

 $\frac{2\sqrt{2}}{\pi} = 0.900$

 q_{n}^{*}

Infinitely thin rectangle of length L, width w, and temperature T_1 in an infinite medium of temperature T_2

2wL

0.932

a* -	qL_c		
$q_{ss}^* =$	$\overline{kA_s(T_1-T_2)}$		

Case 15

Cuboid shape of height d with a square footprint of width D and temperature T_1 in an infinite medium of temperature T_2

 $2D^2 + 4Dd$

Opgave 4.8

Radioactive wastes are temporarily stored in a spherical container, the center of which is buried a distance of 10 m below the earth's surface. The outside diameter of the container is 2 m, and 500 W of heat are released as a result of the radioactive decay process. If the soil surface temperature is 20°C, what is the outside surface temperature of the container under steady-state conditions? On a sketch of the soil-container system drawn to scale, show representative isotherms and heat flow lines in the soil.

