Department of Data Science - Data and Visual Analytics Lab

Lab10. Advanced Data Wrangling in Pandas

Objectives ¶

After completing this lab, you will be able to create and apply some advanced features of Pandas including

- pivot table
- crosstab
- cut and qcut
- melt
- stack and unstack

Import necessary modules

In [1]: import pardae as pd.
Import seaborn as Sns
Import madplotlib. pyplot au plt

Pivoting data in MS Excel

People who know Excel, probably know the Pivot functionality:

A	(A	В	C
1	MONTH	CATEGORY	AMOUNT
2	January	Transportation	\$74.00
3	January	Grocery	\$235.00
4	January	Household	\$175.00
5	January	Entertainment	\$100.00
6	February	Transportation	\$115.00
7	February	Grocery	\$240.00
8	February	Household	\$225.00
9	February	Entertainment	\$125.00
10	March	Transportation	\$90.00
11	March	Grocery	\$260.00
12	March	Household	\$200.00
13	March	Entertainment	\$120.00
. "			

Sum of AMOUNT	Column La	4		
Row Labels -	January	February	March	Grand Total
Entertainment	\$100	\$125	\$120	\$345
Grocery	\$235	\$240	\$260	\$735
Household	\$ 175	\$225	\$200	\$600
Transportation	\$74	\$ 115	\$90	\$279
Grand Total	\$584	5705	450	\$279

The data of the table:

In [3]: excelample

Out[3]:

	Month	Category	Amount
0	January	Transportation	74.0
1	January	Grocery	235.0
2	January	Household	175.0
3	January	Entertainment	100.0
4	February	Transportation	115.0
5	February	Grocery	240.0
6	February	Household	225.0
7	February	Entertainment	125.0
8	March	Transportation	90.0
9	March	Grocery	260.0
10	March	Household	200.0
11	March	Entertainment	120.0

Out[4]:

Month	February	January	March	
Category				
Entertainment	125.0	100.0	120.0	
Grocery	240.0	235.0	260.0	
Household	225.0	175.0	200.0	
Transportation	115.0	74.0	90.0	

Interested in Grand totals?

```
In [5]: # sum columns
```

excelample_pivot.sum(axis=1)

Out[5]: Category

Entertainment 345.0 Grocery 735.0 Household 600.0 Transportation 279.0

dtype: float64

In [6]: # sum rows

excelample_pivot.sum(axis=0)

Out[6]: Month

February 705.0 January 584.0 March 670.0 dtype: float64

Pivot is just reordering your data

Small subsample of the titanic dataset:

In [8]: df

Out[8]:

	Fare	Pclass	Sex	Survived
0	7.2500	3	male	0
1	71.2833	1	female	1
2	51.8625	1	male	0
3	30.0708	2	female	1
4	7.8542	3	female	0
5	13.0000	2	male	1

7.8542

Exercise: Create a Pivot table with 'Survided' values for Pclass vs Sex.

7.2500

Let's now use the full Titanic Dataset

And try the same pivot (no worries about the try-except, this is here just used to catch a loooong error):

This does not work, because we would end up with multiple values for one cell of the resulting frame, as the error says: duplicated values for the columns in the selection. As an example, consider the following rows of our three columns of interest:

Since pivot is just restructering data, where would both values of Fare for the same combination of Sex and Pclass need to go?

Well, they need to be combined, according to an $\mbox{aggregation}$ functionality, which is supported by the function $\mbox{pivot_table}$

NOTE:

· Pivot is purely restructering: a single value for each index/column combination is required.

Pivot Tables - Aggregating while Pivoting

Pivot Table is a multidimensional version of GroupBy aggregation.

REMEMBER: * By default, `pivot_table` takes the **mean** of all values that would end up into one cell. However, you can also specify other aggregation functions using the `aggfunc` keyword.

Create a Pivot table with maximum 'fare' values for 'sex' vs 'pclass' columns

Exercise: Create a Pivot table with the count of 'fare' values for 'sex' vs 'pclass' columns

REMEMBER:

• There is a shortcut function for a pivot_table with a aggfunc='count' as aggregation: crosstab

Exercise: Make a pivot table with the mean survival rates for pclass vs sex

In [19]: df. flet_table ("dex = 'Sex', Cetumns = 'pelass', Values: 'Savived',

out [19]:

pelass 1 2 3 aggfunc = mean')

sex

female 0.968085 0.921053 0.500000

male 0.368852 0.157407 0.135447

Plot Bar Chart for Survival ratio

Exercise: Make a pivot table of the median Fare payed by aged vs sex

In [21]: median_age_table = db. parot_ fable (index = age', columns = sex),

values = fore!.

Out[21]:

sex	female	male
age		
0.42	NaN	8.5167
0.67	NaN	14.5000
0.75	19.25830	NaN
0.83	NaN	23.8750
0.92	NaN	151.5500
1.00	13.43750	39,0000
2.00	26.95000	27.5625
3.00	31.32710	22.3750
4.00	22.02500	29.1250
5.00	23.50415	NaN

median_age_table[:5]

Exercise: Make a pivot table of the median Fare payed by 'underaged' vs 'sex'

In [22]: # Create a new column 'underaged' and store the result of the condition age <= 18

In [23]: # Now, make the pivot table for underaged wedian _age_table

Out[23]:

 sex
 female underaged
 male

 False
 24.1500
 10.3354

 True
 20.2875
 20.2500

Grouping Pivot table

We can apply this same strategy when working with the columns as well; let's add info on the fare paid using pd.qcut to automatically compute quantiles

In [25]:	<pre>fare = pd.qcut(df['fare'], 2) df.pivot_table('survived', ['sex', age], [fare, 'class'])</pre>								
Out[25]:		fare	(-0.00	1, 14.454]		(14.454, 5	12.329]		
		class	First	Second	Third	First	Second	Third	
	sex	age							
	female	(0, 18]	NaN	1.000000	0.714286	0.909091	1.000000	0.318182	
		(18, 80]	NaN	0.880000	0.44444	0.972973	0.914286	0.391304	
	male	(0, 18]	NaN	0.000000	0.260870	0.800000	0.818182	0.178571	
		(18, 80]	0.0	0.098039	0.125000	0.391304	0.030303	0.192308	

The result is a four-dimensional aggregation with hierarchical indices

Multiple Aggregate Functions

In [26]:	<pre>: df.pivot_table(index='sex', columns='class', aggfunc={'survived':sum, 'fare':'mean'})</pre>								
Out[26]:		fare			surviv	red .			
	class	First	Second	Third	First	Second	Third		
	sex								
	female	106.125798	21.970121	16.118810	91	70	72		
	male	67.226127	19.741782	12.661633	45	17	47		

Melt - from Pivot Table to long or tidy format

The melt function performs the inverse operation of a pivot . This can be used to make your frame longer, i.e. to make a *tidy* version of your data.

Assume we have a DataFrame like the above. The observations (the average Fare people payed) are spread over different columns. In a tidy dataset, each observation is stored in one row. To obtain this, we can use the melt_function:

In [29]: pd.melt(pivoted)

Out[29]:

	variable	value
0	sex	female
1	sex	male
2	1	106.126
3	1	67.2261
4	2	21.9701
5	2	19.7418
6	3	16.1188
7	3	12.6616

As you can see above, the melt function puts all column labels in one column, and all values in a second column.

In this case, this is not fully what we want. We would like to keep the 'Sex' column separately:

In [30]: pd.melt(pivoted, id_vars=['sex']) #, var_name='pclass', value_rame='fare')
Out[30]:

	sex	variable	value
0	female	1	106.125798
1	male	1	67.226127
2	female	2	21.970121
3	male	2	19.741782
4	female	3	16.118810
5	male	3	12.661633

Reshaping with stack and unstack

The docs say:

Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels.

Before we speak about hierarchical index, first check it in practice on the following dummy example:

Out[31]:

	Α	В	С
0	one	а	0
1	one	b	1
2	two	а	2
3	two	b	3

To use stack / unstack , we need the values we want to shift from rows to columns or the other way around as the index:

```
In [32]: df2 = df2.set_index(['A', 'B']) # Indeed, you can combine two indices
Out[32]:
                  С
            A B
           one
 In [33]: result = df2['C'].unstack()
           result
 Out[33]:
            В
            two 2 3
  In [34]: df2 = result.stack().reset_index(name='(')
  Out[34]:
                A B C
             1 one
                   b 1
             2 two
                   a 2
             3 two b 3
```

REMEMBER:

- · stack: make your data longer and smaller
- unstack: make your data shorter and wider

Mimick Pivot Table

To better understand and reason about pivot tables, we can express this method as a combination of more basic steps. In short, the pivot is a convenient way of expressing the combination of a groupby and stack/unstack.

Let us come back to our titanic dataset

In [35]: df.head()

Out[35]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
2	1	3	female	26.0	0	0	7.9250	s	Third	woman	False
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False
4	0	3	male	35.0	0	0	8.0500	s	Third	man	True

Out[36]:

sex	female	male
pclass		
1	0.968085	0.368852
2	0.921053	0.157407
3	0.500000	0.135447

Exercise:

- Get the same result as above based on a combination of `groupby` and `unstack`
- First use `groupby` to calculate the survival ratio for all groups`unstack`
- Then, use `unstack` to reshape the output of the groupby operation

In [37]: temp = of grouply (['pelaers', 'cox'] ['Survived] range [man]

Out [37]:

sex female male

sex	temale	male
pclass		
1	0.968085	0.368852
2	0.921053	0.157407
3	0.500000	0.135447

In []: