

A64 LCD 使用说明书

文档履历

版本号	日期	制/修订人	制/修订记录
V1.0	2015-06-3		建立初始版本
			*

目 录

1,	,	4
	1.1. 编写目的	4
	1.2. 适用范围	4
	1.3. 相关人员	4
2.	相关配置	5
	2. 1. menuconfig 配置说明	5
	2. 2. sys_config 配置说明	6
3.	屏驱动源码位 <u>置</u>	9
	3.1. 源码位置	[′] 9
4	新屏驱动支持说明	10
	硬件参数说明	
5.		
	5.1. LCD 接口参数说明	
	5. 1. 1. lcd_if	
	5. 1. 2. lcd_hv_if	
	5.1.3. lcd_hv_clk_phase	11
	5.1.4. lcd_hv_sync_polarity	11
	5.1.5. lcd_hv_srgb_seq	12
	5.1.6. lcd_hv_syuv_seq	
	5.1.7. lcd_hv_syuv_fdly	12
	5.1.9. lcd_cpu_te	
	5.1.11. lcd_lvds_colordepth	
	5.1.12. lcd_lvds_mode	
	5.1.14. lcd_dsi_lane	
	5.1.15. lcd_dsi_format	
	5.1.16. lcd_dsi_te	
	5.2. LCD 时序参数说明	
	5. 2. 1. lcd_x	
	5. 2. 2. lcd_y	
	5.2.3. lcd_ht	
	5. 2. 4. lcd_hbp	
	5.2.5. lcd_hspw	
	5. 2. 6. lcd_vt	
	5. 2. 7. lcd_vbp	16
	5.2.8. lcd_vspw	16
	5.2.9. lcd_dclk_freq	17
	5.3. LCD 其他参数说明	18

第 3 页 共 29 页

	5. 3. 1. lcd_width	18
	5. 3. 2. lcd_height	18
	5. 3. 3. lcd_pwm_used	18
	5. 3. 4. lcd_pwm_ch	18
	5.3.5. lcd_pwm_freq	18
	5.3.6. lcd_pwm_pol	18
	5.3.7. lcd_pwm_pol	18
	5.3.8. lcd_pwm_max_limit	18
	5.3.9. lcd_frm	18
	5.3.10. lcd_gamma_en	19
	5. 3. 11. Lcd_bl_n_percent	19
	5.3.12. lcd_cmap_en	20
	5.4. POWER 及 IO 说明	
	5.4.1. lcd_power	21
	5.4.2. lcd_bl_en	
	5.4.3. lcd_bl_regulator	
	5.4.4. lcd_gpio_x	21
	5.4.5. lcddx	
	5.4.6. lcd_io_regulator	
6.	屏驱动说明	
	6.1. 屏驱动说明	23
	6.2. 开关屏流程	23
	6.2.1. 开关屏流程函数说明	24
	6.2.2. 屏驱动可使用接口说明	25
	6.3. 屏的初始化	26
	6.3.1. MIPI PSI 屏的初始化	26
	6.3.2. CPU/I80 屏的初始化	26
	6.3.3. 使用 IO 模拟串行接口初始化	27
	6.3.4. 使用 iic/spi 串行接口初始化	28

1. 概述

1.1. 编写目的

介绍 A64 项目 lcd 使用方法。

1.2. 适用范围

A64 平台

1.3. 相关人员

2. 相关配置

2.1. menuconfig 配置说明

lcd 相关代码包含在 disp 驱动模块中,在命令行中进入内核根目录,执行 make ARCH=arm64 menuconfig 进入配置主界面。并按以下步骤操作:

图 2.1 disp menuconfig 配置图

具体配置目录为: Device Drivers->Graphics support->Support for frame buffer devices->Video Support for sunxi -> DISP Driver Support(sunxi-disp2)

2.2. sys_config 配置说明

sys_config 模板如下所示:

```
;disp init configuration
                          (0:screen0<screen0,fb0>)
;disp_mode
;screenx_output_type
                        (0:none; 1:lcd; 3:hdmi;)
                         (used for hdmi output, 0:480i 1:576i 2:480p 3:576p 4:720p50)
;screenx_output_mode
                          (5:720p60 6:1080i50 7:1080i60 8:1080p24 9:1080p50 10:1080p60)
;fbx format
                             (0:ARGB 1:ABGR 2:RGBA 3:BGRA 5:RGB565 8:RGB888 12:ARGB4444
16:ARGB1555 18:RGBA5551)
;fbx_width,fbx_height (framebuffer horizontal/vertical pixels, fix to output resolution while equal 0)
[disp]
disp_init_enable
                          = 1
disp_mode
                             =0
screen0_output_type
                          = 1
screen0_output_mode
                           =4
screen1_output_type
                          =3
screen1_output_mode
fb0 format
                            = 0
fb0_width
fb0_height
fb1_format
fb1_width
fb1_height
;lcd0 configuration
;lcd if:
                        0:hv(sync+de); 1:8080; 2:ttl; 3:lvds; 4:dsi; 5:edp
;lcd_backlight
                        lcd init backlight
;lcd_x:
                         lcd horizontal resolution
;lcd_y:
                         lcd vertical resolution
                         width of lcd in mm
;lcd_width:
;lcd_height:
                        height of lcd in mm
;lcd_dclk_freq:
                        in MHZ unit
;lcd_pwm_freq:
                         in HZ unit
                          lcd backlight PWM polarity
;lcd_pwm_pol:
;lcd_pwm_max_limit
                          lcd backlight PWM max limit(<=255)</pre>
```

```
;lcd_hbp:
                         hsync back porch
;lcd_ht:
                         hsync total cycle
;lcd_vbp:
                         vsync back porch
;lcd_vt:
                         vysnc total cycle
;lcd_hspw:
                         hsync plus width
                          vysnc plus width
;lcd_vspw:
;lcd_lvds_if:
                        0:single link; 1:dual link
;lcd_lvds_colordepth:
                       0:8bit; 1:6bit
;lcd_lvds_mode:
                         0:NS mode; 1:JEIDA mode
                         0:disable; 1:enable rgb666 dither; 2:enable rgb656 dither
;lcd_frm:
;lcd_hv_clk_phase
                         lcd hv panel lock phase, 0:0 degree; 1:90 degree; 2: 180 degree; 3: 270 degree
;lcd_hv_sync_polarity
                        lcd hv panel sync signals polarity
                           0:vsync active low, hsync active low; 1:vsync active high, hsync active low
                           2:vsync active low, hsync active high; 3:vsync active high, hsync active high
;lcd_gamma_en
                           lcd gamma correction enable
;lcd_bright_curve_en
                        lcd bright curve correction enable
;lcd_cmap_en
                          lcd color map function enable
[lcd0]
lcd_used
                       = 1
lcd_driver_name
                      = "dx0960be40a1"
lcd_backlight
                     = 50
lcd_if
                      = 4
lcd_x
                       = 8004
                       = 1280
lcd_y
lcd_width
                        129
                        206
lcd_height
                      103
lcd_dclk_freq
lcd_pwm_used
                         = 0
lcd_pwm_ch
                         50000
lcd_pwm_freq
lcd_pwm_pol
                        = 1
lcd_pwm_max_limit
                       = 250
lcd_hbp
                       = 60
                       = 1300
lcd_ht ◀
lcd_hspw
                       = 20
lcd_vbp
                       = 21
                       = 1332
lcd vt
                       = 10
lcd_vspw
lcd_lvds_if
                     =0
lcd_lvds_colordepth = 0
lcd_lvds_mode
                       = 0
lcd frm
                       =0
```

```
lcd_hv_clk_phase
                    = 0
lcd_hv_sync_polarity= 0
lcd_dsi_if
                   =0
lcd_dsi_lane
                   = 4
lcd_dsi_format
                   =0
lcd_dsi_te
                   =0
lcd_gamma_en
                      =0
lcd\_bright\_curve\_en = 0
lcd_cmap_en
                     =0
lcd_bl_en
                    = port:PD23<1><0><default><1>
lcd_bl_en_power
                    = "none"
                     = "vcc-mipi"
lcd_power
                    = "vcc-dsi-33"
lcd_fix_power
;pwm config
[pwm]
pwm_used
                     = port:PD22<2><0><default><default>
pwm_positive
```

3. 屏驱动源码位置

3.1. 源码位置

linux3-10/drivers/video/sunxi/disp2/disp/lcd/

4. 新屏驱动支持说明

- 1. 新添加屏驱动,在源码目录下添加新的屏驱动,以 default_panel.c 为模板,新建立一个屏驱动,修改开关屏的流程,以及屏驱动的名字,名字须与 sys_config 中的 lcd_driver_name 对应。
- 2. 在 panels.c 中,将新的屏驱动加到 panel_array 中。
- 3. 修改 Makefile 文件
- 4. 在 sys_config 中,配置屏参数,lcd0,各参数见后续详细说明。
- 5. 在 sys_config 中,配置屏的相关 pin 脚,power,pwm 等。
- 6. 编译,加载 disp.ko,屏亮!!!

5. 硬件参数说明

5.1. LCD 接口参数说明

5.1.1. lcd if

Lcd Interface

设置相应值的对应含义为:

- 0: HV RGB 接口
- 1: CPU/I80 接口
- 2: Reserved
- 3: LVDS 接口
- 4: DSI 接口
- 5: eDP 接口

5.1.2. 1cd hv if

Lcd HV panel Interface

这个参数只有在 lcd_if=0 时才有效。定义 RGB 同步屏下的几种接口类型。

设置相应值的对应含义为:

- 0: Parallel RGB
- 8: Serial RGB
- 10: Dummy RGB
- 11: RGB Dummy
- 12: Serial YUV (CCIR656)

5.1.3. lcd_hv_clk_phase

Lcd HV panel Clock Phase

这个参数只有在 lcd_if=0 时才有效。定义 RGB 同步屏的 clock 与 data 之间的相位关系。

总共有4个相位可供调节。

设置相应值的对应含义为:

- 0: 0°
- 1: 90°
- 2: 180°
- 3: 270°

5. 1. 4. lcd_hv_sync_polarity

Lcd HV panel Sync signals Polarity

这个参数只有在 lcd_if=0 时才有效。定义 RGB 同步屏的 hsync 和 vsync 的极性。

设置相应值的对应含义为:

- 0: vsync active low, hsync active low
- 1: vsync active high, hsync active low

- 2: vsync active low, hsync active high
- 3: vsync active high, hsync active high

5.1.5. lcd_hv_srgb_seq

Lcd HV panel Serial RGB output Sequence

这个参数只有在 lcd_if=0 且 lcd_hv_if=1(Serial RGB)时才有效。

定义奇数行 RGB 输出的顺序:

- 0: Odd lines $R \rightarrow G \rightarrow B$; Even line $R \rightarrow G \rightarrow B$
- 1: Odd lines $B \rightarrow R \rightarrow G$; Even line $R \rightarrow G \rightarrow B$
- 2: Odd lines $G \rightarrow B \rightarrow R$; Even line $R \rightarrow G \rightarrow B$
- 4: Odd lines $R \rightarrow G \rightarrow B$; Even line $B \rightarrow R \rightarrow G$
- 5: Odd lines $B \rightarrow R \rightarrow G$; Even line $B \rightarrow R \rightarrow G$
- 6: Odd lines $G \rightarrow B \rightarrow R$; Even line $B \rightarrow R \rightarrow G$
- 8: Odd lines $R \rightarrow G \rightarrow B$; Even line $G \rightarrow B \rightarrow R$
- 9: Odd lines $B \rightarrow R \rightarrow G$; Even line $G \rightarrow B \rightarrow R$
- 10: Odd lines $G \rightarrow B \rightarrow R$; Even line $G \rightarrow B \rightarrow R$

5.1.6. lcd_hv_syuv_seq

Lcd HV panel Serial YUV output Sequence

这个参数只有在 lcd_if=0 且 lcd_hv_if=2(Serial YUV)时才有效。

定义 YUV 输出格式:

- 0: YUYV
- 1: YVYU
- 2: UYVY
- 3: VYUY

5.1.7. lcd_hv_syuv_fdly

Lcd HV panel Serial YUV F line Delay

这个参数只有在 lcd_if=0 且 lcd_hv_if=2(Serial YUV)时才有效。

定义 CCIR656 编码时 F 相对有效行延迟的行数:

- 0: Ftoggle right after active video line
- 1: Delay 2 lines (CCIR NTSC)
- 2: Delay 3 lines (CCIR PAL)

5.1.8. lcd_cpu_if

Lcd CPU panel Interface

这个参数只有在 lcd_if=1 时才有效。

设置相应值的对应含义为:

- 0: 18bit/1cycle parallel (RGB666)
- 4: 16bit/1cycle parallel (RGB565)
- 6: 18bit/3cycle parallel (RGB666)
- 7: 16bit/2cycle parallel (RGB565)

5.1.9. lcd_cpu_te

Lcd CPU panel tear effect

设置相应值的对应含义为,设置为 0 时,刷屏间隔时间为 $lcd_ht \times lcd_vt$; 设置为 1 或 2 时,刷屏间隔时间为两个 te 脉冲:

- 0: frame trigged automatically
- 1: frame trigged by te rising edge
- 2: frame trigged by te falling edge

5.1.10. lcd_lvds_if

Lcd LVDS panel Interface

设置相应值的对应含义为:

- 0: Single Link(1 clock pair+3/4 data pair)
- 1: Dual Link(2 clock pair)

5.1.11. lcd_lvds_colordepth

Lcd LVDS panel color depth

设置相应值对应含义为:

- 0: 8bit per color(4 data pair)
- 1: 6bit per color(3 data pair)

5.1.12. lcd_lvds_mode

Lcd LVDS Mode

这个参数只有在 lcd_lvds_bitwidth=0 时才有效

设置相应值对应含义为(见下图).

- 0: NS mode
- 1: JEIDA mode

JEDIA mode

NS mode

图 5-1 LVDS JEDIA mode and NS mode

5.1.13. lcd_dsi_if

Lcd MIPI DSI panel Interface

这个参数只有在 lcd_if=4 时才有效。定义 MIPI DSI 屏的两种类型。

设置相应值的对应含义为:

- 0: Video mode
- 1: Command mode
- 2: video burst mode

注: Video mode 的 LCD 屏,是实时刷屏的,有 ht,hbp 等时序参数的定义; Command mode 的屏,屏上带有显示 Buffer,一般会有一个 TE 引脚

5.1.14. lcd_dsi_lane

Lcd MIPI DSI panel Data Lane number

这个参数只有在 lcd_if=4 时才有效。

设置相应值的对应含义为:

1: 1 data lane

- 2: 2 data lane
- 3: 3 data lane
- 4: 4 data lane

5.1.15. lcd_dsi_format

Lcd MIPI DSI panel Data Pixel Format

这个参数只有在 lcd_if=4 时才有效。

设置相应值的对应含义为:

- 0: Package Pixel Stream, 24bit RGB
- 1: Loosely Package Pixel Stream, 18bit RGB
- 2: Package Pixel Stream, 18bit RGB
- 3: Package Pixel Stream, 16bit RGB

5.1.16. lcd_dsi_te

Lcd MIPI DSI panel Tear Effect

这个参数只有在 lcd_if=4 时才有效。

设置相应值的对应含义为:

- 0: frame trigged automatically
- 1: frame trigged by te rising edge
- 2: frame trigged by te falling edge

注: 设置为 0 时,刷屏间隔时间为 $lcd_ht \times lcd_vt$; 设置为 1 或 2 时,刷屏间隔时间为两个 te 脉冲

5.2. LCD 时序参数说明

5.2.1. 1cd x

显示屏的水平像素点

5. 2. 2. 1cd_y

显示屏的垂直像素点

5.2.3. 1cd ht

Horizontal Total time

指一行总的 dclk 的 cycle 个数。见下图:

5. 2. 4. lcd_hbp

Horizontal Back Porch

指有效行间,行同步信号 (hsync) 开始,到有效数据开始之间的 dclk 的 cycle 个数, 包括同步信号区。见上图,注意的是包含了 hspw 段。

5.2.5. lcd_hspw

Horizontal Sync Pulse Width

指行同步信号的宽度。单位为 1 个 delk 的时间(即是 1 个 data cycle 的时间)。见上图。

5.2.6. 1cd vt

Vertical Total time

指一场的总行数。见下图:

5. 2. 7. 1cd_vbp

Vertical Back Porch

指场同步信号(vsync)开始,到有效数据行开始之间的行数,包括场同步信号区。见上图,注意的是包含了 vspw 段。

5.2.8. lcd_vspw

Vertical Sync Pulse Width 指场同步信号的宽度。单位为行。见上图。

5.2.9. lcd_dclk_freq

Data Clock Frequency 指 PIN 总线上数据的传送频率。单位为 MHz 屏幕刷新帧数 = (lcd_dclk_freq×1000×1000) / (ht×vt)。

5.3. LCD 其他参数说明

5.3.1. 1cd width

Width of lcd panel in mm

此参数描述 lcd 屏幕的物理宽度,单位是 mm。用于计算 dpi

5.3.2. 1cd height

height of lcd panel in mm

此参数描述 lcd 屏幕的物理高度,单位是 mm。用于计算 dpi

5.3.3. 1cd_pwm_used

If used pwm

此参数标识是否使用pwm用以背光亮度的控制。

5.3.4. 1cd pwm ch

Pwm channel used

此参数标识使用的 Pwm 通道。

5.3.5. lcd_pwm_freq

Lcd backlight PWM Frequency

这个参数配置 PWM 信号的频率,单位为 Hz

5.3.6. lcd_pwm_pol

Lcd backlight PWM Polarity

这个参数配置 PWM 信号的占空比的极性。设置相应值对应含义为:

0: active high

1: active low

5.3.7. lcd_pwm_pol

Lcd backlight PWM Polarity

这个参数配置 PWM 信号的占空比的极性。设置相应值对应含义为:

0: active high

1: active low

5.3.8. lcd_pwm_max_limit

Lcd backlight PWM 最高限制,以亮度值表示

比如 150,则表示背光最高只能调到 150, 0~255 范围内的亮度值将会被线性映射到 0~150 范围内。用于控制最高背光亮度,节省功耗。

5.3.9. lcd frm

Lcd Frame Rate Modulator

FRM 是解决由于 PIN 减少导致的色深问题。

这个参数设置相应值对应含义为:

- 0: RGB888 → RGB888 direct
- 1: RGB888 → RGB666 dither
- 2: RGB888 → RGB565 dither

有些 LCD 屏的像素格式是 18bit 色深(RGB666)或 16bit 色深(RGB565),建议打开 FRM 功能,通过 dither 的方式弥补色深,使显示达到 24bit 色深(RGB888)的效果。如下 图所示,上图是色深为 RGB66 的 LCD 屏显示,下图是打开 dither 后的显示,打开 dither 后 色彩渐变的地方过度平滑。

5. 3. 10. lcd_gamma_en

Lcd Gamma Correction Enable

设置相应值的对应含义为:

- 0: Lcd 的 Gamma 校正功能关闭
- 1: Lcd 的 Gamma 校正功能开启

设置为1时,需要在屏驱动中对lcd_gamma_tbl [256]进行赋值。

5.3.11. Lcd_bl_n_percent

背光映射值, n 为(0-100)

此功能是针对亮度非线性的 LCD 屏的,按照配置的亮度曲线方式来调整亮度变化,以使亮度变化更线性。

比如 lcd_bl_50_percent = 60, 表明将 50%的亮度值调整成 60%, 即亮度比原来提高 10%。

5.3.12. lcd_cmap_en

Lcd Color Map Enable

设置相应值的对应含义为:

- 0: Lcd 的色彩映射功能关闭
- 1: Lcd 的色彩映射功能开启

设置为 1 时,需要对 lcd_cmap_tbl [2][3][4]进行赋值 Lcd Color Map Table。

每个像素有 R、G、B 三个单元,每四个像素组成一个选择项,总共有 12 个可选。数 组第一维表示奇偶行,第二维表示像素的 RGB,第三维表示第几个像素,数组的内容即表示该位置映射到的内容。

LCD CMAP 是对像素的映射输出功能,只有像素有特殊排布的 LCD 屏才需要配置。

LCD CMAP 定义每行的 4 个像素为一个总单元,每个像素分 R、G、B 3 个小单元,总 共有 12 个小单元。通过 lcd_cmap_tbl 定义映射关系,输出的每个小单元可随意映射到 12 个小单元之一。

如上,上三行代表奇数行的像素排布,下三行代表偶数行的像素排布;

每四个像素为一个单元,第一列代表每四个像素的第一个像素映射,第二列代表每四个像素的第二个像素映射,以此类推。

如上的定义,像素的输出格式如下图所示。

奇数行	G0		G2		G4	В5	G6	В7
	В0	R1	G2	R3	В4	R5	G6	R7
	R0	G1	R2	G3	R4	G5	R6	G7
	В3	G2	B1	G0	В7	G6	В5	G4
偶 数 行	R3	G2	R1	В0	R7	G6	R5	B4
	G3	R2	G1	R0	G7	R6	G5	R4

5.4. POWER 及 IO 说明

5.4.1. lcd_power

示例: lcd_power = "vcc-lcd"

配置 regulator 的名字。配置好之后,需要在屏驱动调用相应的接口进行开、关的控制。 Power 的配置时建议根据 axp 使用文档进行。

5.4.2. lcd bl en

示例: lcd_bl_en = port:PD24<1><0><default><1>

含义: lcd power 引脚为 PD24, PD24 输出高电平时打开 LCD 背光;上下拉不使能。

第一个尖括号:功能分配;1为输出;

第二个尖括号: 内置电阻; 使用 0 的话,标示内部电阻高阻态,如果是 1 则是内部电阻上拉,2 就代表内部电阻下拉。使用 default 的话代表默认状态,即电阻上拉。其它数据无效。

第三个尖括号:驱动能力; default 表驱动能力是等级 1

第四个尖括号:输出有效所需电平;LCD 背光工作时的电平,0为低电平,1为高电平。

需要在屏驱动调用相应的接口进行开、关的控制。

5.4.3. lcd_bl_regulator

示例: lcd_bl_regulator = "xxx"

配置 lcd_bl_en 的 io 的电源。这电源会在 lcd_bl_en 使能时自动开启。

5.4.4. lcd_gpio_x

示例: lcd_gpio_0 = port:PD25<0><0><default><0>

含义: lcd_gpio_0 引脚为 PD25。

第一个尖括号: 功能分配; 0 为输入, 1 为输出;

第二个尖括号:内置电阻;使用0的话,标示内部电阻高阻态,如果是1则是内部电阻

上拉,2就代表内部电阻下拉。使用 default 的话代表默认状态,即电阻上拉。其它数据无效。

第三个尖括号:驱动能力; default 表驱动能力是等级 1

第四个尖括号:表示默认值;即是当设置为输出时,该引脚输出的电平,0为低电平,1为高电平。

需要在屏驱动调用相应的接口进行拉高,拉低的控制。

5. 4. 5. lcddx

示例: lcdd0 = port:PD00<3><0><default><

含义: lcdd0 这个引脚, 即是 PD0, 配置为 LVDS 输出。

第一个尖括号:功能分配;0为输入,1为输出,2为LCD输出,3为LVDS接口输出,7为 disable。

第二个尖括号:内置电阻;使用 0 的话,标示内部电阻高阻态,如果是 1 则是内部电阻上拉,2 就代表内部电阻下拉。使用 default 的话代表默认状态,即电阻上拉。其它数据无效。

第三个尖括号: 驱动能力: default 表驱动能力是等级 1

第四个尖括号:表示默认值;即是当设置为输出时,该引脚输出的电平,0为低电平, 1为高电平。

LCD PIN 的配置如下:

LCD 为 HV RGB 屏, CPU/I80 屏时, 必须定义相应的 IO 口为 LCD 输出(如果是 0 路 输出,第一个尖括号为2;如果是1路输出,第一个尖括号为3);

具体的 IO 对应关系可参考 user manual 手册进行配置。

LCD PIN 的所有 IO,均可通过注释方式去掉其定义,显示驱动对注释 IO 不进行初始化 操作。

需要在屏驱动调用相应的接口进行开、关的控制。

5.4.6. lcd_io_regulator

6. 屏驱动说明

6.1. 屏驱动说明

屏驱动中需要实现的函数接口有 LCD_cfg_panel_info, LCD_open_flow, LCD_close_flow和 LCD_get_panel_funs_0/LCD_get_panel_funs_1 是必须包含的 4 个函数。

函数: LCD_cfg_panel_info

功能:配置的TCON扩展参数

原型:

static void LCD_cfg_panel_info(__panel_extend_para_t * info)

TCON 的扩展参数只能在屏文件中配置,参数的定义见"5.3 LCD 其他参数说明"。

需要 gamma 校正,或色彩映射,在 sys_config 中将相应模块的 enable 参数置 1, lcd_gamma_en, lcd_cmap_en,并且填充 3 个系数表, lcd_gamma_tbl, lcd_emap_tbl,如下所示红色代码部分。注意的是: gamma,模板提供了 18 段拐点值,然后再插值出所有的值 (255 个)。如果觉得还不细,可以往相应表格里添加子项。cmap_tbl 的大小是固定了,不能减小或增加表的大小。

最终生成的 gamma 表项是由 rgb 三个 gamma 值组成的, 各占 8bit, 目前提供的模板中, 三个 gamma 值是相同的。

函数: LCD_open_flow

功能: 定义开屏的流程

原型: static __s32 LCD_open_flow(_u32 sel)

具体说明见"6.2 开关屏流程"。

函数: LCD_close_flow

功能: 定义关屏的流程

原型: static __s32 LCD_close_flow(__u32 sel)

该函数与 LCD_open_flow 对应

屏驱动: __lcd_panel_t default_panel

功能:

原型: 名字可改成屏相对应的名字。

6.2. 开关屏流程

开关屏的操作流程如图 6-2 所示。

其中,LCD_open_flow 和 LCD_close_flow 称为开关屏流程函数,方框中的函数,如 LCD_power_on, TCON_open 等函数,称为开关屏步骤函数。

不需要进行初始化操作的 LCD 屏, LCD_panel_init 及 LCD_panel_exit 这函数可以为空。

LCD_open_flow开屏流程

LCD_power_on

→ Delay

LCD_panel_init

→ Delay

TCON_open

→ Delay

LCD_bl_open

→ Delay

Delay

T Delay

T Delay

图 6-1 开关屏流程

6.2.1. 开关屏流程函数说明

函数: LCD_open_flow

```
功能:初始化开关屏的步骤流程
原型:static __s32 LCD_open_flow(__u32 sel)
函数常用内容为:
static __s32 LCD_open_flow(__u32 sel)
{
    LCD_OPEN_FUNC(sel, LCD_power_on,10);
    LCD_OPEN_FUNC(sel, LCD_panel_init, 50);
    LCD_OPEN_FUNC(sel, sunxi_lcd_tcon_enable, 100);
    LCD_OPEN_FUNC(sel, LCD_bl_open, 0);
    return 0;
}

如上,初始化整个开屏的流程步骤为四个:
打开 LCD 电源,再延迟 10ms;
初始化屏,再延迟 50ms;(不需要初始化的屏,可省掉此步骤)
打开 TCON,再延迟 100ms;
打开背光,再延迟 0ms。
```

LCD_open_flow 函数只会系统初始化的时候调用一次,执行每个 LCD_OPEN_FUNC 即是把对应的开屏步骤函数进行注册,并没有执行该开屏步骤函数。LCD_open_flow 函数的内容必须统一用 LCD_OPEN_FUNC(sel, function, delay_time)进行函数注册的形式,确保正常注册到开屏步骤中。

函数: LCD OPEN FUNC

功能: 注册开屏步骤函数到开屏流程中

原型: void LCD_OPEN_FUNC(__u32 sel, LCD_FUNC func, __u32 delay)

参数说明:

func 是一个函数指针,其类型是: void (*LCD_FUNC) (__u32 sel),用户自己定义的函

```
数必须也要用统一的形式。比如:
void user_defined_func(__u32 sel)
{
    //do something
}
delay 是执行该步骤后,再延迟的时间,时间单位是毫秒。
```

6.2.2. 屏驱动可使用接口说明

函数: sunxi_lcd_delay_ms/sunxi_lcd_delay_us

功能: 延时函数,分别是毫秒级别/微秒级别的延时

原型: s32 sunxi_lcd_delay_ms(u32 ms); / s32 sunxi_lcd_delay_us(u32 us);

函数: sunxi_lcd_tcon_enable /sunxi_lcd_tcon_disable

功能:打开LCD控制器,开始刷新LCD显示。关闭LCD控制器,停止刷新数据。

原型: void sunxi_lcd_tcon_enable(u32 screen_id);/ void sunxi_lcd_tcon_disable(u32 screen_id);

函数: sunxi_lcd_backlight_enable/ sunxi_lcd_backlight_disable

功能: 打开/关闭背光,操作的是 sys_config 中 lcd_bl 配置的 gpio。见 5.4.2 lcd_bl_en 原型: void sunxi_lcd_backlight_enable(u32 screen_id); void sunxi_lcd_backlight_disable(u32 screen_id);

函数: sunxi_lcd_pwm_enable / sunxi_lcd_pwm_disable

功能:打开/关闭 pwm 控制器、打开时 pwm 将往外输出 pwm 波形。对应的是 lcd_pwm_ch 所对应的那一路 pwm

原型: s32 sunxi_lcd_pwm_enable(u32 screen_id); s32 sunxi_lcd_pwm_disable(u32 screen_id);

函数: sunxi_lcd_power_enable / sunxi_lcd_power_disable

功能: 打开/关闭 Lcd 电源,操作的是 sys_config 中的 lcd_power/lcd_power1/lcd_power2。(pwr_id 标识电源索引)

原型: void sunxi_lcd_power_enable(u32 screen_id, u32 pwr_id); void sunxi_lcd_power_disable(u32 screen_id, u32 pwr_id);

函数: sunxi_lcd_pin_cfg

功能:配置 lcd 的 io。

原型: s32 sunxi_lcd_pin_cfg(u32 screen_id, u32 bon);

说明:配置 lcd 的 data/clk 等 pin ,对应 sys_config 中的 lcdd0-lcdd23/lcddclk/lcdde/lcdhsync/lcdvsync。

由于 dsi 是专用 pin,所以 dsi 接口屏不需要在 sys_config 中配置这组 pin,但同样会在此函数接口中打开与关闭对应的 pin。

Bon: 1: 为开, 0: 为配置成 disable 状态。

函数: sunxi_lcd_dsi_clk_enable / sunxi_lcd_dsi_clk_disble

功能: dsi 接口屏使用,使能/关闭 dsi 输出的 clk 信号。

原型: s32 sunxi_lcd_dsi_clk_enable(u32 scree_id);

s32 sunxi_lcd_dsi_clk_disable(u32 scree_id);

6.3. 屏的初始化

一部分屏需要进行初始化操作,在开屏步骤函数中,对应于 LCD_panel_init 函数,提供了几种方式对屏的初始化。

对于 DSI 屏,是通过 DSI-D0 通道进行初始化。对于 CPU 屏,是通过 8080 总线的方式,使用的是 LCDIO (PD,PH)进行初始化。这种初始化方式,其总线的引脚位置定义与 CPU 屏一致。

6.3.1. MIPI DSI 屏的初始化

MIPI DSI 屏,大部分需要初始化,使用的是 DSI-D0 通道的 LP 模式进行初始化。提供的接口函数说明如下:

函数: sunxi_lcd_dsi_dcs_wr

功能:对屏的 dcs 写操作

原型: __s32 sunxi_lcd_dsi_dcs_wr(__u32 sel,__u8 cmd,__u8* para_p,__u32 para_num);

参数说明:

cmd: dcs 写命令内容

para_p: dcs 写命令的参数起始地址

para_num: dcs 写命令的参数个数,单位为 byte

函数: sunxi_lcd_dsi_dcs_wr_2para

功能:对屏的 dcs 写操作,该命令带有两个参数

原型: __s32 sunxi_lcd_dsi_dcs_wr_2para(__u32 sel,__u8 cmd,__u8 para1,__u8 para2);

参数说明:

cmd: dcs 写命令内容

para1: dcs 写命令的第一个参数内容

para2: dcs 写命令的第二个参数内容

dsi_dcs_wr_0para , dsi_dcs_wr_1para , dsi_dcs_wr_3para , dsi_dcs_wr_4para , dsi_dcs_wr_5para 定义与 dsi_dcs_wr_2para 类似。

6.3.2. CPU/I80 屏的初始化

CPU 屏的初始化可以参考"附录 5.3.5"的实例。显示驱动提供 5 个接口函数可供使用。如下:

函数: sunxi_lcd_cpu_write

```
功能:设定 CPU 屏的指定寄存器为指定的值
原型:void sunxi_lcd_cpu_write(__u32 sel, __u32 index, __u32 data)
函数内容为
Void sunxi_lcd_cpu_write(__u32 sel, __u32 index, __u32 data)
{
    Sunxi_lcd_cpu_write_index(sel, index);
    Sunxi_lcd_cpu_wirte_data(sel, data);
}
```

实现了8080总线上的两个写操作。

Sunxi_lcd_cpu_write_index 实现第一个写操作,这时 PIN 脚 RS(A1)为低电平,总线数据上的数据内容为参数 index 的值。

Sunxi_lcd_cpu_wirte_data 实现第二个写操作,这时 PIN 脚 RS(A1)为高电平,总线数据上的数据内容为参数 data 的值。

函数: Sunxi_lcd_cpu_write_index

功能:设定 CPU 屏为指定寄存器

原型: void Sunxi_lcd_cpu_write_index(__u32 sel,__u32 index);

具体说明见 Sunxi_lcd_cpu_write。

函数: Sunxi_lcd_cpu_write_data

功能:设定 CPU 屏寄存器的值为指定的值

原型: void Sunxi_lcd_cpu_write_data(_u32 sel, _u32 data);

具体说明见 Sunxi_lcd_cpu_write。

6.3.3. 使用 IO 模拟串行接口初始化

IO 的位置(PIN 脚)定义,默认属性(输入输出)定义及默认输出值在 sys_config.fex。见 5.4.4 lcd_gpio_x

显示驱动提供2个接口函数可供使用。说明如下:

函数: sunxi_lcd_gpio_set_value

功能: LCD_GPIO PIN 脚上输出高电平或低电平

原型: s32 sunxi_lcd_gpio_set_value(u32 screen_id, u32 io_index, u32 value);

参数说明:

io_index = 0: 对应于 sys_config.fex 中的 lcd_gpio_0

io_index = 1: 对应于 sys_config.fex 中的 lcd_gpio_1

io_index = 2: 对应于 sys_config.fex 中的 lcd_gpio_2

io_index = 3: 对应于 sys_config.fex 中的 lcd_gpio_3

value = 0: 对应 IO 输出低电平

Value = 1: 对应 IO 输出高电平

只用于该 GPIO 定义为输出的情形。

函数: sunxi_lcd_gpio_set_direction

功能:设置 LCD_GPIO PIN 脚为输入或输出模式

原型: s32 sunxi_lcd_gpio_set_direction(u32 screen_id, u32 io_index, u32 direction); 参数说明:

io_index = 0: 对应于 sys_config.fex 中的 lcd_gpio_0 io_index = 1: 对应于 sys_config.fex 中的 lcd_gpio_1 io_index = 2: 对应于 sys_config.fex 中的 lcd_gpio_2 io_index = 3: 对应于 sys_config.fex 中的 lcd_gpio_3

direction = 0: 对应 IO 设置为输入 direction = 1: 对应 IO 设置为输出

6.3.4. 使用 iic/spi 串行接口初始化

需要在屏驱动中注册 iic/spi 设备对串行接口的访问。

