The Mardešić Conjecture for countably compact spaces

Tetsuya Ishiu

Department of Mathematics Miami University

Saturday, December 3rd, 2022

Space-filling curves

A famous theorem of G. Peano in 1890 says that there exists a continuous surjection from [0,1] onto $[0,1] \times [0,1]$.

It was a groundbreaking result, which challenged the notion of dimensions.

Such curves are called *space-filling curves*. The one used in Peano's proof is called the *Peano curve* while there are many other examples, including the *Hilbert curve*.

Space-filling curves

A famous theorem of G. Peano in 1890 says that there exists a continuous surjection from [0,1] onto $[0,1] \times [0,1]$.

It was a groundbreaking result, which challenged the notion of dimensions.

Such curves are called *space-filling curves*. The one used in Peano's proof is called the *Peano curve* while there are many other examples, including the *Hilbert curve*.

Space-filling curves

A famous theorem of G. Peano in 1890 says that there exists a continuous surjection from [0,1] onto $[0,1] \times [0,1]$.

It was a groundbreaking result, which challenged the notion of dimensions.

Such curves are called *space-filling curves*. The one used in Peano's proof is called the *Peano curve* while there are many other examples, including the *Hilbert curve*.

D. Kurepa's theorem

D. Kurepa asked the following natural question.

Question

For which linearly order topological spaces (LOTS) L, does there exist a continuous surjection from L onto $L \times L$?

In 1952, D. Kurepa showed the following theorem.

Theorem (D. Kurepa

For every nondegenerate connected compact Suslin line S, there is no continuous surjection from S onto $S \times S$.

D. Kurepa's theorem

D. Kurepa asked the following natural question.

Question

For which linearly order topological spaces (LOTS) L, does there exist a continuous surjection from L onto $L \times L$?

In 1952, D. Kurepa showed the following theorem.

Theorem (D. Kurepa)

For every nondegenerate connected compact Suslin line S, there is no continuous surjection from S onto $S \times S$.

In 1964, L. B. Treybig proved the following result.

Theorem (L. B. Treybig)

If X and Y are infinite Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Since *X* and *Y* are compact and metrizable, both of them are separable.

Corollary

In 1964, L. B. Treybig proved the following result.

Theorem (L. B. Treybig)

If X and Y are infinite Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Since *X* and *Y* are compact and metrizable, both of them are separable.

Corollary

In 1964, L. B. Treybig proved the following result.

Theorem (L. B. Treybig)

If X and Y are infinite Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Since X and Y are compact and metrizable, both of them are separable.

Corollary

In 1964, L. B. Treybig proved the following result.

Theorem (L. B. Treybig)

If X and Y are infinite Hausdorff spaces and $X \times Y$ is a continuous image of a compact LOTS, then both X and Y are metrizable.

Since X and Y are compact and metrizable, both of them are separable.

Corollary

Čertanov's Theorem

It seems that the researchers focus on continuous images of *compact LOTS*, but in 1976, G. I. Čertanov proved the following theorem, which says that Treybig's theorem holds even when we replace 'compact LOTS' by 'countably compact GO-space'.

Theorem (G. I. Čertanov)

If X and Y are infinite Hausdorff spaces and $X \times Y$ is a continuous image of a countably compact GO-space, then both X and Y are compact and metrizable.

It seems that this result was hardly recognized, and the paper was only cited once for another result.

Čertanov's Theorem

It seems that the researchers focus on continuous images of *compact LOTS*, but in 1976, G. I. Čertanov proved the following theorem, which says that Treybig's theorem holds even when we replace 'compact LOTS' by 'countably compact GO-space'.

Theorem (G. I. Čertanov)

If X and Y are infinite Hausdorff spaces and $X \times Y$ is a continuous image of a countably compact GO-space, then both X and Y are compact and metrizable.

It seems that this result was hardly recognized, and the paper was only cited once for another result.

Čertanov's Theorem

It seems that the researchers focus on continuous images of *compact LOTS*, but in 1976, G. I. Čertanov proved the following theorem, which says that Treybig's theorem holds even when we replace 'compact LOTS' by 'countably compact GO-space'.

Theorem (G. I. Čertanov)

If X and Y are infinite Hausdorff spaces and $X \times Y$ is a continuous image of a countably compact GO-space, then both X and Y are compact and metrizable.

It seems that this result was hardly recognized, and the paper was only cited once for another result.

The Mardešić Conjecture

S. Mardešić proposed the following conjecture in 1970, which was proved by G. Martínez-Cervantes and G. Plebanek in 2019.

Theorem (G. Martínez-Cervantes and G. Plebanek)

Let d and s be positive integers. Let K_i be a compact LOTS for each i < d, X a compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection from X onto $\prod_{j < d + s} Z_j$, then there exist at least s + 1-many metrizable factors Z_j .

(This statement is slightly stronger than the one presented in their paper, but it clearly holds from their argument).

The Mardešić Conjecture

S. Mardešić proposed the following conjecture in 1970, which was proved by G. Martínez-Cervantes and G. Plebanek in 2019.

Theorem (G. Martínez-Cervantes and G. Plebanek)

Let d and s be positive integers. Let K_i be a compact LOTS for each i < d, X a compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection from X onto $\prod_{j < d + s} Z_j$, then there exist at least s + 1-many metrizable factors Z_j .

(This statement is slightly stronger than the one presented in their paper, but it clearly holds from their argument).

The Mardešić Conjecture

S. Mardešić proposed the following conjecture in 1970, which was proved by G. Martínez-Cervantes and G. Plebanek in 2019.

Theorem (G. Martínez-Cervantes and G. Plebanek)

Let d and s be positive integers. Let K_i be a compact LOTS for each i < d, X a compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection from X onto $\prod_{j < d + s} Z_j$, then there exist at least s + 1-many metrizable factors Z_j .

(This statement is slightly stronger than the one presented in their paper, but it clearly holds from their argument).

What does it mean?

If d = s = 1, then it coincides with Treybig's Theorem.

By using Peano's Theorem, it is easy to see that for all positive integers d and s, there exists a continuous surjection from $[0,1]^d$ onto $[0,1]^{d+s}$. The Mardešić Conjecture implies even this seemingly weaker phenomenon does not happen to a nonmetrizable compact LOTS.

What does it mean?

If d = s = 1, then it coincides with Treybig's Theorem. By using Peano's Theorem, it is easy to see that for all positive integers d and s, there exists a continuous surjection from $[0,1]^d$ onto $[0,1]^{d+s}$. The Mardešić Conjecture implies even this seemingly weaker phenomenon does not happen to a nonmetrizable compact LOTS.

What does it mean?

If d = s = 1, then it coincides with Treybig's Theorem. By using Peano's Theorem, it is easy to see that for all positive integers d and s, there exists a continuous surjection from $[0,1]^d$ onto $[0,1]^{d+s}$. The Mardešić Conjecture implies even this seemingly weaker phenomenon does not happen to a nonmetrizable compact LOTS.

Recall that Čertanov's Theorem is the countably compact version of Treybig's Theorem. As the Mardešić Conjecture is a generalization of Treybig's Theorem, we may wonder if we can prove the countably compact version of the Mardešić Conjecture. We solved this problem positively, namely proved the following theorem.

Theorem (T. Ishiu)

Let d and s be positive integers. Let K_i be a compact LOTS for each i < d, X a countably compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection f from X onto $\prod_{j < d + s} Z_j$, then there exist at least s + 1-many compact and metrizable factors Z_i .

Recall that Čertanov's Theorem is the countably compact version of Treybig's Theorem. As the Mardešić Conjecture is a generalization of Treybig's Theorem, we may wonder if we can prove the countably compact version of the Mardešić Conjecture. We solved this problem positively, namely proved the following theorem.

Theorem (T. Ishiu)

Let d and s be positive integers. Let K_i be a compact LOTS for each i < d, X a countably compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection f from X onto $\prod_{j < d+s} Z_j$, then there exist at least s + 1-many compact and metrizable factors Z_i .

Recall that Čertanov's Theorem is the countably compact version of Treybig's Theorem. As the Mardešić Conjecture is a generalization of Treybig's Theorem, we may wonder if we can prove the countably compact version of the Mardešić Conjecture. We solved this problem positively, namely proved the following theorem.

Theorem (T. Ishiu)

Let d and s be positive integers. Let K_i be a compact LOTS for each i < d, X a countably compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection f from X onto $\prod_{j < d + s} Z_j$, then there exist at least s + 1-many compact and metrizable factors Z_i .

Recall that Čertanov's Theorem is the countably compact version of Treybig's Theorem. As the Mardešić Conjecture is a generalization of Treybig's Theorem, we may wonder if we can prove the countably compact version of the Mardešić Conjecture. We solved this problem positively, namely proved the following theorem.

Theorem (T. Ishiu)

Let d and s be positive integers. Let K_i be a compact LOTS for each i < d, X a countably compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection f from X onto $\prod_{j < d + s} Z_j$, then there exist at least s + 1-many compact and metrizable factors Z_j .

Countably compact GO-spaces

S. Purish proved that Stone-Čech compactification of any countably compact GO-space is a LOTS. By using this result, we can obtain the following corollary.

Corollary (T. Ishiu)

Let d and s be positive integers. Let K_i be a countably compact GO-space for each i < d, X a countably compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection from X onto $\prod_{j < d + s} X_j$, then there exist at least s + 1-many compact and metrizable factors Z_i .

Countably compact GO-spaces

S. Purish proved that Stone-Čech compactification of any countably compact GO-space is a LOTS. By using this result, we can obtain the following corollary.

Corollary (T. Ishiu)

Let d and s be positive integers. Let K_i be a countably compact GO-space for each i < d, X a countably compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection from X onto $\prod_{j < d + s} X_j$, then there exist at least s + 1-many compact and metrizable factors Z_i .

Countably compact GO-spaces

S. Purish proved that Stone-Čech compactification of any countably compact GO-space is a LOTS. By using this result, we can obtain the following corollary.

Corollary (T. Ishiu)

Let d and s be positive integers. Let K_i be a countably compact GO-space for each i < d, X a countably compact subspace of $\prod_{i < d} K_i$, Z_j an infinite Hausdorff space for each j < d + s. If there exists a continuous surjection from X onto $\prod_{j < d + s} X_j$, then there exist at least s + 1-many compact and metrizable factors Z_i .

Beginning

Let me outline the proof of the main theorem.

By the observation of G. Martínez-Cervantez and G. Plebanek, we can focus on the case s=1.

Beginning

Let me outline the proof of the main theorem.

By the observation of G. Martínez-Cervantez and G. Plebanek, we can focus on the case s=1.

The following lemma is the most significant piece of the proof of the main theorem.

Lemma

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem. Suppose that Z_d is not separable. Then, there exists a compact LOTS \tilde{K}_i for each i < d-1, a countably compact subspace \tilde{X} of $\prod_{i < d-1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{j < d} Z_j$.

Namely, if one of Z_j 's is nonseparable, then there exist \tilde{K}_i , \tilde{X} , and \tilde{f} that satisfies the assumption of the main theorem for d-1. This lemma is proved by the heavy use of countable elementary submodels.

The following lemma is the most significant piece of the proof of the main theorem.

Lemma

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem. Suppose that Z_d is not separable. Then, there exists a compact LOTS \tilde{K}_i for each i < d-1, a countably compact subspace \tilde{X} of $\prod_{i < d-1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{j < d} Z_j$.

Namely, if one of Z_j 's is nonseparable, then there exist K_i , X, and \tilde{f} that satisfies the assumption of the main theorem for d-1. This lemma is proved by the heavy use of countable elementary submodels.

The following lemma is the most significant piece of the proof of the main theorem.

Lemma

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem. Suppose that Z_d is not separable. Then, there exists a compact LOTS \tilde{K}_i for each i < d-1, a countably compact subspace \tilde{X} of $\prod_{i < d-1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{j < d} Z_j$.

Namely, if one of Z_j 's is nonseparable, then there exist \tilde{K}_i , \tilde{X} , and \tilde{f} that satisfies the assumption of the main theorem for d-1. This lemma is proved by the heavy use of countable elementary submodels.

The following lemma is the most significant piece of the proof of the main theorem.

Lemma

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem. Suppose that Z_d is not separable. Then, there exists a compact LOTS \tilde{K}_i for each i < d-1, a countably compact subspace \tilde{X} of $\prod_{i < d-1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{i < d} Z_i$.

Namely, if one of Z_j 's is nonseparable, then there exist \tilde{K}_i , \tilde{X} , and \tilde{f} that satisfies the assumption of the main theorem for d-1. This lemma is proved by the heavy use of countable elementary submodels.

I(K, M, p)

We shall sketch the proof of the main lemma. In general, we shall define the following notations.

Definition

Let K be a compact LOTS and M a countable set. Then, for all $p \in K$, define

$$\eta(K, M, p) = \sup \{ u \in \operatorname{cl}(K \cap M) \mid u \leq p \}$$

$$\zeta(K, M, p) = \inf \{ u \in \operatorname{cl}(K \cap M) \mid u \geq p \}$$

$$I(K, M, p) = [\eta(L, M, p), \zeta(L, M, p)]$$

These play an essential role in my results about LOTS.

I(K, M, p)

We shall sketch the proof of the main lemma. In general, we shall define the following notations.

Definition

Let K be a compact LOTS and M a countable set. Then, for all $p \in K$, define

$$\eta(K, M, p) = \sup \{ u \in \operatorname{cl}(K \cap M) \mid u \leq p \}$$

$$\zeta(K, M, p) = \inf \{ u \in \operatorname{cl}(K \cap M) \mid u \geq p \}$$

$$I(K, M, p) = [\eta(L, M, p), \zeta(L, M, p)]$$

These play an essential role in my results about LOTS.

I(K, M, p)

We shall sketch the proof of the main lemma. In general, we shall define the following notations.

Definition

Let K be a compact LOTS and M a countable set. Then, for all $p \in K$, define

$$\eta(K, M, p) = \sup \{ u \in \operatorname{cl}(K \cap M) \mid u \leq p \}$$

$$\zeta(K, M, p) = \inf \{ u \in \operatorname{cl}(K \cap M) \mid u \geq p \}$$

$$I(K, M, p) = [\eta(L, M, p), \zeta(L, M, p)]$$

These play an essential role in my results about LOTS.

Set up

Let d, K_i , X, Z_j , and f be as in the assumption of the main lemma.

- Let f_d be the d-th component function of f.
- Let $g: X \to \prod_{j < d} Z_j$ be defined by $g(x) = f(x) \upharpoonright d$. (Technically, g must be a slight extension of this, but never mind.)
- Let M be a good countable elementary submodel of $H(\theta)$ for a sufficiently large regular cardinal θ .

- Let f_d be the d-th component function of f.
- Let g: X → ∏_{j<d} Z_j be defined by g(x) = f(x) ↑ d. (Technically, g must be a slight extension of this, but never mind.)
- Let M be a good countable elementary submodel of $H(\theta)$ for a sufficiently large regular cardinal θ .

- Let f_d be the d-th component function of f.
- Let g: X → ∏_{j<d} Z_j be defined by g(x) = f(x) ↑ d. (Technically, g must be a slight extension of this, but never mind.)
- Let M be a good countable elementary submodel of $H(\theta)$ for a sufficiently large regular cardinal θ .

- Let f_d be the d-th component function of f.
- Let $g: X \to \prod_{j < d} Z_j$ be defined by $g(x) = f(x) \upharpoonright d$. (Technically, g must be a slight extension of this, but never mind.)
- Let M be a good countable elementary submodel of $H(\theta)$ for a sufficiently large regular cardinal θ .

- Let f_d be the d-th component function of f.
- Let $g: X \to \prod_{j < d} Z_j$ be defined by $g(x) = f(x) \upharpoonright d$. (Technically, g must be a slight extension of this, but never mind.)
- Let M be a good countable elementary submodel of $H(\theta)$ for a sufficiently large regular cardinal θ .

The First Claim

First, we can prove the following claim.

Claim

Let $r \in Z_d \setminus Cl(Z_d \cap M)$. Then, there exist finite sequences $\langle i_n | n < \hat{n} \rangle$ and $\langle p_n | n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$f_d \leftarrow \{r\} \subseteq \bigcup_{n < \hat{n}} \pi_{i_n} \leftarrow I(K_{i_n}, M, p_n)$$

The First Claim

First, we can prove the following claim.

Claim

Let $r \in Z_d \setminus Cl(Z_d \cap M)$. Then, there exist finite sequences $\langle i_n | n < \hat{n} \rangle$ and $\langle p_n | n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$f_d^{\leftarrow} \{ r \} \subseteq \bigcup_{n < \hat{n}} \pi_{i_n}^{\leftarrow} I(K_{i_n}, M, p_n)$$

The Second Claim

We can remove the reference to r, which does not belong to M, by proving the following claim.

Claim

There exist finite sequences $\langle i_n|n < \hat{n} \rangle$ and $\langle p_n|n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$\prod_{j < d} Z_j = g^{\rightarrow} \left(X \cap \bigcup_{n < \hat{n}} \pi_{i_n} {}^{\leftarrow} I(K_{i_n}, M, p_n) \right)$$

 $I(K_{i_n}, M, p_n)$ can be 'approximated' by elements of M. So, we can almost describe this phenomenon within M.

The Second Claim

We can remove the reference to r, which does not belong to M, by proving the following claim.

Claim

There exist finite sequences $\langle i_n|n < \hat{n} \rangle$ and $\langle p_n|n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$\prod_{j < d} Z_j = g^{\rightarrow} \left(X \cap \bigcup_{n < \hat{n}} \pi_{i_n} {\leftarrow} I(K_{i_n}, M, p_n) \right)$$

 $I(K_{i_n}, M, p_n)$ can be 'approximated' by elements of M. So, we can almost describe this phenomenon within M.

The Second Claim

We can remove the reference to r, which does not belong to M, by proving the following claim.

Claim

There exist finite sequences $\langle i_n|n < \hat{n} \rangle$ and $\langle p_n|n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$\prod_{j < d} Z_j = g^{
ightarrow} \left(X \cap \bigcup_{n < \hat{n}} \pi_{i_n}^{\leftarrow} I(K_{i_n}, M, p_n)
ight)$$

 $I(K_{i_n}, M, p_n)$ can be 'approximated' by elements of M. So, we can almost describe this phenomenon within M.

The Third Claim

An argument with elementarity proves the following third claim.

Claim

There exist finite sequences $\langle i_n|n < \hat{n} \rangle$ and $\langle p_n|n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$\prod_{j < d} Z_j = g^{\rightarrow} \left(X \cap \bigcup_{n < \hat{n}} \pi_{i_n} \leftarrow \{ \eta(K_{i_n}, M, p_n), \zeta(K_{i_n}, M, p_n) \} \right)$$

By 'combining' $\pi_{i_n} \leftarrow \{ \eta(K_{i_n}, M, p_n), \zeta(K_{i_n}, M, p_n) \}$ for all $n < \hat{n}$, we can finish proving the main lemma.

The Third Claim

An argument with elementarity proves the following third claim.

Claim

There exist finite sequences $\langle i_n|n < \hat{n} \rangle$ and $\langle p_n|n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$\prod_{j < d} Z_j = g^{\rightarrow} \left(X \cap \bigcup_{n < \hat{n}} \pi_{i_n} \leftarrow \{ \eta(K_{i_n}, M, p_n), \zeta(K_{i_n}, M, p_n) \} \right)$$

By 'combining' $\pi_{i_n} \leftarrow \{ \eta(K_{i_n}, M, p_n), \zeta(K_{i_n}, M, p_n) \}$ for all $n < \hat{n}$, we can finish proving the main lemma.

The Third Claim

An argument with elementarity proves the following third claim.

Claim

There exist finite sequences $\langle i_n|n < \hat{n} \rangle$ and $\langle p_n|n < \hat{n} \rangle$ such that for all $n < \hat{n}$, $i_n < d$ and $p_n \in K_{i_n}$, and

$$\prod_{j< d} Z_j = g^{\rightarrow} \left(X \cap \bigcup_{n < \hat{n}} \pi_{i_n} \leftarrow \{ \eta(K_{i_n}, M, p_n), \zeta(K_{i_n}, M, p_n) \} \right)$$

By 'combining' $\pi_{i_n} \leftarrow \{ \eta(K_{i_n}, M, p_n), \zeta(K_{i_n}, M, p_n) \}$ for all $n < \hat{n}$, we can finish proving the main lemma.

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem.

Let $e = |\{j < d+1 \mid Z_j \text{ is separable }\}|$. Without loss of generality, we may assume that for all j < d+1, Z_j is separable if and only if j < e.

By repeatedly applying the main lemma, we can prove the following:

- $e \ge 2$, and
- there exists a compact LOTS \tilde{K}_i for each i < e 1, a countably compact subspace \tilde{X} of $\prod_{i < e 1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{i < e} Z_i$.

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem.

Let $e = |\{j < d+1 \mid Z_j \text{ is separable }\}|$. Without loss of generality, we may assume that for all j < d+1, Z_j is separable if and only if j < e.

By repeatedly applying the main lemma, we can prove the following:

- \bullet $e \ge 2$, and
- there exists a compact LOTS \tilde{K}_i for each i < e 1, a countably compact subspace \tilde{X} of $\prod_{i < e 1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{j < e} Z_j$.

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem.

Let $e = |\{j < d+1 \mid Z_j \text{ is separable }\}|$. Without loss of generality, we may assume that for all j < d+1, Z_j is separable if and only if j < e.

By repeatedly applying the main lemma, we can prove the following:

- $e \ge 2$, and
- there exists a compact LOTS \tilde{K}_i for each i < e 1, a countably compact subspace \tilde{X} of $\prod_{i < e 1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{i < e} Z_i$.

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem.

Let $e = |\{j < d+1 \mid Z_j \text{ is separable }\}|$. Without loss of generality, we may assume that for all j < d+1, Z_j is separable if and only if j < e.

By repeatedly applying the main lemma, we can prove the following:

- \bullet $e \ge 2$, and
- there exists a compact LOTS \tilde{K}_i for each i < e 1, a countably compact subspace \tilde{X} of $\prod_{i < e 1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{j < e} Z_j$.

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem.

Let $e = |\{j < d+1 \mid Z_j \text{ is separable }\}|$. Without loss of generality, we may assume that for all j < d+1, Z_j is separable if and only if j < e.

By repeatedly applying the main lemma, we can prove the following:

- \bullet $e \ge 2$, and
- there exists a compact LOTS \tilde{K}_i for each i < e 1, a countably compact subspace \tilde{X} of $\prod_{i < e 1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{j < e} Z_j$.

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem.

Let $e = |\{j < d+1 \mid Z_j \text{ is separable }\}|$. Without loss of generality, we may assume that for all j < d+1, Z_j is separable if and only if j < e.

By repeatedly applying the main lemma, we can prove the following:

- \bullet $e \ge 2$, and
- there exists a compact LOTS \tilde{K}_i for each i < e 1, a countably compact subspace \tilde{X} of $\prod_{i < e 1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{i < e} Z_i$.

Let d, K_i , X, Z_j , and f be as in the assumption of the main theorem.

Let $e = |\{j < d+1 \mid Z_j \text{ is separable }\}|$. Without loss of generality, we may assume that for all j < d+1, Z_j is separable if and only if j < e.

By repeatedly applying the main lemma, we can prove the following:

- \bullet $e \ge 2$, and
- there exists a compact LOTS \tilde{K}_i for each i < e 1, a countably compact subspace \tilde{X} of $\prod_{i < e 1} \tilde{K}_i$, and a continuous surjection $\tilde{f}: \tilde{X} \to \prod_{i < e} Z_i$.

Compactness

By using the fact that $\prod_{j < e} Z_j$ is separable, there exist a separable compact LOTS K_i' for each i < e-1, X' a compact subspace of $\prod_{i < e-1} K_i'$, and a continuous surjection $f': X' \to \prod_{j < e} Z_j$.

Now, by using the original Mardešić Conjecture, there exist at least two factors Z_i that are compact and metrizable.

Compactness

By using the fact that $\prod_{j < e} Z_j$ is separable, there exist a separable compact LOTS K_i' for each i < e-1, X' a compact subspace of $\prod_{i < e-1} K_i'$, and a continuous surjection $f': X' \to \prod_{j < e} Z_j$. Now, by using the original Mardešić Conjecture, there exist at

least two factors Z_j that are compact and metrizable.

Mardešić's Theorem

In fact, S. Mardešić proved that the Mardešić Conjecture holds when all Z_j 's are separable. So, we can finish proving the main theorem without using the full Mardešić Conjecture. Thus, this argument gives another proof of the (original) Mardešić Conjecture.

Mardešić's Theorem

In fact, S. Mardešić proved that the Mardešić Conjecture holds when all Z_j 's are separable. So, we can finish proving the main theorem without using the full Mardešić Conjecture.

Thus, this argument gives another proof of the (original) Mardešić Conjecture.

Mardešić's Theorem

In fact, S. Mardešić proved that the Mardešić Conjecture holds when all Z_j 's are separable. So, we can finish proving the main theorem without using the full Mardešić Conjecture. Thus, this argument gives another proof of the (original) Mardešić Conjecture.

Open Questions

Question

Can we extend the main theorem to a wider class than LOTS?

Question

What can we say when there is a continuous surjection from $\prod_{i < d} K_i$ onto $\prod_{i < d} Z_i$?

We know that if all Z_i 's are nonseparable, then Z_i is an image of some LOTS.

Open Questions

Question

Can we extend the main theorem to a wider class than LOTS?

Question

What can we say when there is a continuous surjection from $\prod_{i < d} K_i$ onto $\prod_{i < d} Z_i$?

We know that if all Z_i 's are nonseparable, then Z_i is an image of some LOTS.