unit for each i = 1,2,...n. From the fact that the product of two similar prime quanta is a prime quantum similar to them we deduce that if x is a non unit we can write

x = p₁p₂...p_m , p_{i,9} dissimilar if i ≠ j.

That H is multiplicative is quite obvious. To prove

that H is saturated let ab c H,.

First suppose that ab=q a single prime quantum. Either, one of them is a unit or both are similar prime quanta, and in both cases a,b \in H.

Further let $ab = q_1q_2$ where q_1,q_2 are distinct prime quants. Now as q_1,q_2 are distinct q_1 ab completely and so $q_1 = q_1q_2$ where q_1,q_2 are distinct q_1 ab completely and $q_1 = q_1q_1$, $q_2 = q_1q_2$, $q_1 = q_1q_2$, $q_2 = q_1q_1$, $q_1 = q_1q_2$, $q_2 = q_1q_1$, $q_1 = q_1q_2$, $q_2 = q_1q_1$, $q_1 = q_1q_1$, $q_2 = q_1q_1$, $q_1 = q_1q_1$, $q_2 = q_1q_1$, $q_1 = q_1q_1$, $q_1 = q_1q_1$, $q_2 = q_1q_1$, $q_1 = q_1q$

ta involved we can prove that if

sb = $q_1 q_2 \cdots q_n$; $q_i \cdot q_j$ distinct for i \neq j, then s,b are products of prime quanta and hence are in H

i.e. H is saturated.

An integral domain in which every two elements a,b have the highest common factor is called an HCF domain. It is well shown that a UED is an HCF domain and in analogy to this we

known that a UFD is an HCF domain and in analogy to this we state the

Proposition 4. A GUFD is an HCF domain.

Proof. Let R be a GUFD and let x,y & R if one of them is a unit then obviously they have a highest common factor; a unit. If one of them say y is zero then x is the highest unit.

common factor. thus we can assume x and y to be non zero non

units. (Now let