

Lavaan Option for Adjusting for Spatial Autocorrelation Practice Example

Jim Grace

U.S. Department of the Interior
U.S. Geological Survey

The module contains a practice example on adjusting for spatial autocorrelation when modeling using lavaan. It is an accompaniment to the module entitled, "SEM.Sp1-Lavaan Spatial Autocorrelation Procedures."

1

Notes: IP-056512; Support provided by USGS Climate & Land Use R&D and Ecosystems Programs. I would like to acknowledge the major contribution by Jarrett Byrnes, Univ. Mass. – Boston for the lavSpatialCorrect function used in this module. Appreciation also to Darren Johnson for technical advice. Formal review of the material from which this tutorial was derived was provided by Jesse Miller and Phil Hahn, Univ. Wisconsin. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Questions about this material can be sent to sem@usgs.gov.

Last revised 15.06.17.

The Example

VOL. 170, SUPPLEMENT THE AMERICAN NATURALIST AUGUST 2007

Biogeographic Affinity Helps Explain Productivity-Richness Relationships at Regional and Local Scales

Susan Harrison^{1,*} and James B. Grace^{2,†}

ABSTRACT: The unresolved question of what causes the observed positive relationship between large-scale productivity and species richness has long interested ecologists and evolutionists. Here we examine a potential explanation that we call the biogeographic affinity hypothesis, which proposes that the productivity-richness relationship is a function of species' climatic tolerances that in turn are shaped by the earth's climatic history combined with evolutionary niche conservatism. Using botanical data from regions and sites

2

Link for this article:

http://www.jstor.org/stable/10.1086/519010

Cite this example as:

Harrison, S. and Grace, JB. 2007. Biogeographic affinity contributes to our understanding of productivity-richness relationships at regional and local scales. *American Naturalist*. 170:S5-S15.

The Data

The data to be used in this exercise can be found in the file "SEM.Sp1.Exercise_data.csv".

To complete this exercise:

- (1) Use this data to estimate the model on the next page using lavaan.
- (2) Check model fit and respecify if needed.
- (3) Use the lavSpatialCorrect function to check for spatial autocorrelation in residuals and to obtain revised stats.

4

The Model

Figure 7: Relationships of the local richness of the three subordinate affinity groups (Madro-Tertiary [MT], California Floristic Province [CFP], warm temperate desert [WTD]) to normalized difference vegetation index (NDVI) and the local cover of north-temperate (NT) species. Standardized path coefficients are shown. The dashed line indicates that proportional representation of WTD species was unrelated to the cover of NT once the effect of NDVI was taken into account.

This model seeks to determine if the local abundance of species with North-temperate affinity (Cover of NT) might be suppressing the richness of other groups of species (ones with different evolutionary origins).

Refer to the paper for more details (but, the punchline is yes, abundance of NT species appears to suppress species from two of the other groups, MT and CFP).

5

Give it a try! Again, To complete this exercise: (1) Use the data given to estimate the SE model on the previous page using lavaan. (2) Check model fit and respecify if needed. (3) Use the lavSpatialCorrect function to check for spatial autocorrelation in residuals and to obtain revised stats. [when you have finished with your work, go to the next **≥USGS** slides to compare with those anticipated for this exercise]

Lavaan code – part 1: Read data and create data objects.

```
### SEM.Sp1.Exercise-Rcode

### Set directory - example path
setwd("F:/ppt_files/_SEM_educational_materials/Z_SpatialAu
tocorrelation")

### Read and check data
exdat <- read.csv("SEM.Sp1.Exercise_data.csv")
names(exdat)
summary(exdat)
dim(exdat)
attach(exdat)

### Load needed libraries and functions
library(lavaan)
library(ape)
source("lavSpatialCorrect.R") # access the function</pre>
```

≥USGS

7

Here are the preliminary bits of R code needed to get things ready.

Lavaan code – part 2: Specify lavaan model, fit, and correct.

■USGS

8

And here is the code for specifying and fitting the model. Also shown in the code for feeding in xy coordinates (lat and long) and then correcting for spatial autocorrelation.

Note that I set link "coverNT -> propWTD" to a value of zero. This creates one degree of freedom for model testing. I could have just specified the last line as "propWTD ~ regNDVI" and accomplished the same thing.

Also note: Lavaan automatically estimates error correlations for joint responses. It may be possible to constrain some of these error correlations/covariances between response variables to zero, though I do not work through that here.

Corrected Output: Part I

```
> lavSpatialCorrect(ex.mod.fit, lat, long)
$Morans_I
$Morans_I$coverNT
    observed expected sd p.value n.eff
1 0.01768234 -0.009259259 0.0248945 0.2791499 109

$Morans_I$propMT
    observed expected sd p.value n.eff
1 0.08604658 -0.009259259 0.02576962 0.0002169805 91.72804

$Morans_I$propCFP
    observed expected sd p.value n.eff
1 0.07995737 -0.009259259 0.02583072 0.0005525497 92.85982

$Morans_I$propWTD
    observed expected sd p.value n.eff
1 0.029492 -0.009259259 0.02552833 0.1290218 109
```

Modest, but significant amounts of residual autocorrelation for "propMT" and "propCFP", but not for the other variables.

Here is the Moran's I part of the output from the "lavSpatialCorrect" command. Results are given for each endogenous variable.

P-values suggest significant affects of spatial autocorrelation for propMT and propCFP, but not for coverNT or propWTD. Also shown are the effective sample sizes (n.eff) estimated.

Corrected Output (cleaned up a little): Part II

```
$parameters

        Parameter
        Estimate n.eff
        Std.err
        Z-value
        P(>|z|)

        coverNT~regNDVI
        93.57478
        109
        20.22592
        4.626479
        3.719346e-06

        coverNT~coverNT
        567.15546
        109
        76.82523
        7.382412
        1.554478e-13

             coverNT~1 -32.05121 109 13.24998 -2.418963 1.556484e-02

        Parameter
        Estimate
        n.eff
        Std.err
        Z-value
        P(>|z|)

        propMT~regNDVI
        -0.1212172170
        91.72804
        0.0567513469
        -2.1359355
        3.268467e-02

        propMT~coverNT
        -0.0006919510
        91.72804
        0.0002435454
        -2.8411583
        4.494999e-03

        propMT~repropMT
        0.0031516740
        91.72804
        0.0004653773
        6.7722979
        1.267528e-11

propMT~~propCFP 0.0002531823 91.72804 0.0004605114 0.5497852 5.824667e-01
propMT~~propWTD -0.0002714040 91.72804 0.0001980094 -1.3706620 1.704804e-01
            propMT~1 0.2434607855 91.72804 0.0349317606 6.9696111 3.178183e-12
                                                     n.eff
                              Estimate
                                                                         Std.err
                                                                                              Z-value
     Parameter
propCFP~regNDVI -2.743766e-01 92.85982 0.0789390547 -3.47580251 5.093272e-04
propCFP~coverNT -8.785884e-04 92.85982 0.0003417677 -2.57071790 1.014880e-02
propCFP~~propCFP 6.151883e-03 92.85982 0.0009028366 6.81394963 9.495497e-12
propCFP~~propWTD 1.593965e-05 92.85982 0.0002721264 0.05857441 9.532911e-01
             propCFP~1 4.581109e-01 92.85982 0.0485313122 9.43949218 3.745904e-21
```

Hopefully these results match yours (assuming you ran the same model). If you spot problems, please report to sem@usgs.gov.

10

■USGS

And, here are the corrected standard errors and p-values for those relationships affected by spatial autocorrelation.

More information can be found at http://www.nwrc.usgs.gov/SEM

I hope this overview has been useful. For more information, go to our webpage or search for examples involving your subject of interest. Questions and comments can be sent to sem@usgs.gov. Please note I cannot guarantee responses to individual inquiries, but will definitely incorporate suggestions in future tutorials. – Thanks!