

TIME SERIES FORECASTING

DATA SCIENCE

ASSIGNMENT - 3

Plotting

By seeing the graph, we get the idea that the about the hyper parameters p,d,q p lies somewhere around 3

Differentiating:

1st Order:

We got promising results with first order; however, we will just check whether it can be improved.

2nd Order:

We can still check further, however, the results indicated we can stop at 1.

Results of RMSE with ARIMA:

With (0,1,0): Train set: 0.0

Testing set: 53.152

With (3,1,0): Train set: 12.55

Testing set: 49.499

As the above model clearly indicates overfitting, the previous better hyper parameters gave better results as forecasted timeseries were predicted much accurately.

Results of RMSE with MLP_regressor:

With random_state=42, learning_rate="invscaling", solver="lbfgs"; window_size = 3

Train set: 35.79

Testing set: 40.281

With random_state=42, learning_rate="invscaling", solver="lbfgs"; window_size = 1

Train set: 35.57

Testing set: 53.789

As the above model clearly indicates overfitting, the previous better hyper parameters gave better results as forecasted timeseries were predicted much accurately. Verdict:

The results indicate ARIMA is a better model for time series data