ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 3.4.2 Закон Кюри-Вейсса

> Серебренников Даниил Группа Б02-826

Цель работы: изучение температурной зависимости магнитной воприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частотометр, цифровой вольтметр, LC-автогенератор, термопара медьконстантан.

1 Теоретическая часть

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле оринетирует магнитные моменты, которые в отсуствие поля располагались в пространстве хаотическим образом. Однако при $T\to 0$ тепловое движение всё меньше препятствует магнитным моментам атомов оринетироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках – под влиянием обменных сил – это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ . Оказывается, что у ферромагнетиков магнитная восприимчивость должна удовлетворять закону Кюри-Вейсса:

$$\chi \propto \frac{1}{T - \Theta_p},\tag{1}$$

где Θ_p – температура, близкая к температуре Кюри, так как при $T \approx \Theta$ формула (1) недостаточна точна.

2 Экспериментальная установка

Схема установки для проверки закона Кюри-Вейсса показана на рис. 1. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит инудктивностью колебательного конутра, входящего в состав LC-автогенератора. Автогенератор собран на полевом транзисторе КП-103 и смонитрован в виде отдельного блока.

Рис. 1: Схема экспериментальной установки.

Магнитная воосприимчивость образца χ определяется по изменению самоиндукции катушки. Обозначив через L самоиндукцию катушки с образцом и через L_0 – её самоиндукцию в отсутствие образца, получим

$$(L-L_0) \propto \chi$$
.

При изменении самоиндукции образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},$$

где C — ёмкость конутра автогенератора. Период колебаний в отсуствие образца опредлеяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Итак, закон Кюри-Вейсса справедлив, если выполнено соотношение:

$$\frac{1}{\chi} \propto (T - \Theta_p) \propto \frac{1}{\tau^2 - \tau_0^2} \tag{2}$$

3 Экспериментальные данные

Таблица 1: Некоторые измеряемые величины и их погрешность.

	T, °C	τ , MKC
Величина	25,00	10,000
Погрешность	0,01	0,001
ε , %	0,04	0,01

Таблица 2: Измеренные величины.

T, °C	τ , MKC	€, мкВ	ΔT , °C	$1/(\tau^2, -\tau_0^2), \text{ MKc}^{-2}$
12,1	10,873	-10	-0,24	0,027
14,02	10,794	-4	-0,10	0,029
16,06	10,687	-5	-0,12	0,031
18,04	$10,\!555$	-9	-0,22	0,034
20,14	10,146	-1	-0,02	0,047
22,01	9,945	-9	-0,22	0,059
24,02	9,602	-10	-0,24	0,096
26,05	9,428	-9	-0,22	0,141
28,04	9,344	-9	-0,22	0,182
30,07	9,287	-7	-0,17	$0,\!225$
32,04	9,256	-10	-0,24	0,259
34,05	9,228	-9	-0,22	0,299
36,05	9,209	-10	-0,24	0,334
38,05	9,194	-10	-0,24	0,368
40,06	9,182	-11	-0,26	0,400

Отметим, что чувствительность термопары составляет $k=24~^{\circ}{\rm C/mB}$ и период колбеаний пустой катушки есть $\tau_0=9,045~{\rm mkc}.$

4 Обработка результатов

Построим график зависимости $1/(\tau^2-\tau_0^2)$ от T и МНК проведем прямую по точкам, расположенным в интервале от 21 до 41 °C.

Рис. 2: Зависимость $1/(\tau^2 - \tau_0^2)$ от T.

По графику определим температуру Кюри:

$$\Theta_p = (18, 7 \pm 0, 3)^{\circ} \text{C.}$$

5 Выводы

Определили температуру Кюри $\Theta_p = (18,7\pm0,3)^{\circ}$ С, которая отличается от табличного значения 20,2 °C на 7,4 %.