2023.10.27 @福岡県高等学校情報科研究部会

情報科学における 高大接続についての考察

~大学低年次情報教育の経験から~

稲永 俊介

九州大学 システム情報科学研究院 情報学部門

自己紹介

氏名:稲永俊介(いねながしゅんすけ)

1978	福岡県生まれ(現 45歳)	
1996	福岡県立 福岡高等学校 卒	
1996	九工大 情報工学部 知能情報工学科 卒 (石坂裕毅 研)	
2000	九州大学 シス情 情報理学専攻 修士修了 (篠原歩 研)	
2002	九州大学 シス情 情報理学専攻 博士学位取得 (主査: 有川節夫)	
2003	JST ポスドク研究員 (篠原歩 研)	
2003	フィンランド ヘルシンキ大学 ポスドク (ロータリー奨学生 兼任) (ホスト研究者: Esko Ukkonen)	
2004	JST ポスドク研究員 (篠原歩 研)	
2005	京都大学 ポスドク研究員 (岩間一雄 研)	
2005	学振 特別研究員 PD (竹田正幸 研)	
2006	九州大学 SSP学術研究員 (特任准教授)	
2011	九州大学 システム情報科学研究院 情報学部門 准教授	
2023~	九州大学 システム情報科学研究院 情報学部門 教授	

D1で学位取得 (早期修了)

国内・海外 ポスドク (武者修行時代)

テニュアトラック 准教授 教授

専門分野:文字列処理アルゴリズム,情報検索

生物配列データベース

CACTCGCATCG... CACACGCATCG... CACTCGCGTCG...

CTCTCGCATGG...

多様で膨大な系列データの効率的処理を実現

→ 文字列学 (stringology)

専門分野:文字列処理アルゴリズム,情報検索

情報科学

九州大学の情報系学部・学科・コース

高校生への周知を是非お願いします!!

九大 基幹教育「情報科学」(物理学科1年生)

本日の 講演

		授業のテーマ	授業の内容(90分授業=2時間)	事前/事後学修の内容
	1	イントロダクション	本講義全体の導入	講義資料(こよる予習・復習
	2	電卓の能力	電卓計算可能な式	講義資料(こよる予習・復習
	3	情報の表現	計算機上での情報の表現方法	講義資料(こよる予習・復習
	4	偽コイン発見問題	アルゴリズム入門I	講義資料による予習・復習
	5	ユークリッドの互除法	アルゴリズム入門Ⅱ	講義資料による予習・復習
-	6	ソートと計算時間評 価	バブルソート,選択ソート,オーダー表記	講義資料による予習・復習
	7	ヒープソート	ヒープソートアルゴリズムとその時間計算量解析	講義資料(こよる予習・復習
	8	マージソート	マージソートアルゴリズムとその時間計算量解析	講義資料による予習・復習
	9	比較によらないソート	計数ソート,バケツソート,基数ソール	講義資料(こよる予習・復習
	10	2分探索とその応用	2分探索と文字列パターン照合への応用	講義資料(こよる予習・復習
	11	暗号理論入門	シーザー暗号, RSA暗号	講義資料(こよる予習・復習
	12	計算の限界	計算モデルなど	講義資料(こよる予習・復習
	13	石選び問題	枝刈り法など	講義資料(こよる予習・復習
	14	P問題とNP問題	多項式時間で解ける問題, 難しそうな問題のクラス	講義資料(こよる予習・復習
	15	全体のまとめ	講義全体のまとめ	講義資料(こよる予習・復習

高校の情報科目とのいちばんの違い

大学の情報系科目では **数学** を駆使する 。例) 整数,集合,論理,確率,統計など

計算理論:アルゴリズムの正しさや計算時間を

論理的に証明 → プログラム性能保証

情報理論:確率統計に基づく情報エントロピー, データ圧縮,暗号理論 → 情報通信技術

人工知能理論:機械学習のための微分積分,

線形代数,確率統計 → AI技術

数学抜きで情報科目を正しく理解することはできない

整数の表現

通常は,固定長の2進数として表現

例:8ビット(=1バイト)長による自然数の表現

整数	内部表現	
0	00000000	
1	00000001	
2	00000010	
3	00000011	
4	00000100	
5	00000101	

整数	内部表現
250	11111010
251	11111011
252	11111100
253	11111101
254	11111110
255	11111111

0も仲間に 入れて下さい

自然数(符号なし整数)の表現

2進数表記について

$$2^{10} + 2^8 + 2^7 + 2^2 + 2^0 = 1413_{(10)}$$

lacktriangle ビット列 $a_{n-1} a_{n-2}$ ・・・ $a_0 (a_k \in \{0,1\})$ は 自然数 $\sum_{k=0}^{n-1} a_k 2^k$ を表す

符号なし整数の2進数表記の「数学的な定義」

東京書籍「情報I」

図1 2進法の2桁と3桁の表現

2 進法の利占

数研出版「情報I」

具体例による 2進数の説明

具体例による

2進数⇔10進数の変換法の説明

₫ 10 進法と2 進法の変換

2進法で表された数(例:10111 $_{(2)}$)を,10進法に変換するには,図7のようにする。逆に,10進法で表された数(例:23)を2進法に変換するには,図8のように10進法で表された数を,順に2でわっていき,余りを記録して,下から順に並べる。

図7 2 進法から 10 進法への変換

2) 23
$$\Leftrightarrow \emptyset$$
 \uparrow \uparrow $23=2\times 11+1$
2) 11 \cdots 1 \uparrow \downarrow $11=2\times 5+1$
2) 5 \cdots 1 \downarrow \downarrow $1=2\times 5+1$
2) 2 \cdots 1 \downarrow \downarrow $1=2\times 1+1$
2) 1 \cdots 0 \uparrow $1=2\times 0+1$
0 \cdots 1 10111(2)

図8 10 進法から 2 進法への変換

数研出版「情報I」

プログラマー

DEC 11

11

道具(カード)を用いて, 変換法を直感的に説明 (巻末に付録あり)

桁上がりしたらカードをフリップ

日本文教出版「情報I」

具体例による2進数の説明

具体例による 2進数⇔10進数の 変換法の説明

で用いられる数の表現

, 0から9までの10種類の数を使う10進法を用いる。いっぽう, コンピュータは2進法の0と1の2つ表現している。たとえば, 10進法で「9」という数りすると,内部では2進法の「1001」として扱う。 であらわされた数は,次のように相互に変換できる。

2進法の表現は、10進法に比べて桁数が大きくなる。桁数が大きくなると人間には扱いづらくなるため、プログラミング言語などで記述する際は、このような2進法の数を4ビットずつまとめ、0から9、AからFまでの16種類の記号を用いて表現する(16進法)こともある。

◆2進,10進,16進法の対応

10進法	2進法	16進法
0	0	0
1	1	1
2	10	2
3	11	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	C
13	1101	D
14	1110	E
15	1111	F
16	10000	10

◆n進法の表記方法

ここでは、2進法の10011を10011₍₂₎、10進法の19を19₍₁₀₎とあらわしているが、それぞれ(10011)₂、(19)₁₀とあらわすこともできる。

第2節 情報のデジタル化

実教出版「最新情報I」

4ビットの一覧表

● 2 進数の1001を10進 数と区別するために、本書 では、1001四のように表 記する。このほかに (1001) と表記する場合 もある。なお、10進数や 16進数などについても同 様である。

$+\alpha$

●指数の計算

aのn栗 (a") は、aをn回 掛け合わせる数を表現して

20=1 (注) 0ではない $2^1 = 2$

 $2^2 = 2 \times 2 = 4$ $2^3 = 2 \times 2 \times 2 = 8$ となる。

とができる。2進数で数値を表現す を下位(右側)から4桁ずつに区切 法がよく使われる。16進数では、16

~9の数字とA~Fの英字を使用する

では2倍、16進数では16倍になる。

2進数と10進数の関係を調へ

1桁上がるごとに各桁の重みは、10進数では

10進数の11は、2進数の1011である

考え方 10進数を 2 で割り、商が 1 になるまで割って、商と余りを 並べることによって 2 進数に変換する。

解答

1011(2)の10進数への変換 $1011_{(2)} = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

 $=1\times8 + 0\times4 + 1\times2 + 1\times1$ =8 +0 +2 +1

を確かめなさい。

=11 11(10)となる。

考察 20=1, 100=1であることに注意する。

10進数は2進数に、2進数は10進数に変換しなさい。

- (1) $18_{(10)}$ (2) $25_{(10)}$ (3) $32_{(10)}$
- (4) 00101011

アルゴリズムによる説明

(5) 11100101₍₂₎ (6) 11111101₍₂₎

2で割る 2で割る

指数関数の**定義**

実教出版「最新情報I」

すべては計算である

コンピュータ上で行われていることはすべて「計算」である.

その「計算」と上手に付き合ったり, 「計算」をうまく制御するには, 「計算」とは何者であるかを理解する必要がある.

そのための科学が **コンピュータ・サイエンス (計算機科学 / 情報科学)** である.

そもそも「計算」とは?

例:プログラミングコンテストの課題

「円周率の小数点以下100桁までを求めよ」

print("3.141592653589793238462643383279 502884197169399375105820974944 592307816406286208998628034825 3421170679")

は OK ? インチキ?

「計算」とは,の前に...

情報科学で扱う「問題」とは?

・数学的に厳密に定義された関数

問題: f:*X* → *Y*

入力: $x \in X$

出力: f(x)

任意の問題事例 $x \in X$ に対し, 答えが一意に定まっていること

2進数表現を振り返る

問題:2進数から10進数への変換

入力:整数xの10進数表現

出力:整数xの2進数表現

自然数の 10進数表現の集合X 25 •

2進数表現を振り返る

問題:2進数から10進数への変換

入力:整数xの10進数表現

出力:整数xの2進数表現

2 進数表現の定義をせずに アルゴリズムを説明するのは **数学的におかしい**

自然数の 10進数表現の集合*X* 25 • f

変換アルゴリズムは 関数 f の計算手順のこと

この集合 Y を 定義してからでないと 関数 f は定義できない

2進数表現を振り返る

問題:2進数から10進数への変換

入力:整数xの10進数表現

出力:整数xの2進数表現

2 進数表現の定義をせずに アルゴリズムを説明するのは **数学的におかしい**

自然数の 10進数表現の集合X 25 f 11001 ・ f (再掲)

変換アルゴリズムは 関数 f の計算手順のこと

igoビット列 $a_{n-1} a_{n-2} \cdots a_0 (a_k \in \{0,1\})$ は 自然数 $\sum_{k=0}^{n-1} a_k 2^k$ を表す

例題を振り返る

例:「円周率の小数点以下100桁までを求めよ」

入力:なし

出力:円周率の小数点以下100桁まで

print("3.141592653589793238462643383279

502884197169399375105820974944

592307816406286208998628034825

3421170679")

は正しく計算している! 🛑 定義を満たしている

ここまでのまとめと、ご提案

- コンピュータ上で行われていることはすべて「計算」である。
- 「計算」とは「問題」を解くことである。
- 「問題」とは入力の集合から出力の集合への関数である。
- 「アルゴリズム」とは「問題」を解く手続き, すなわち 関数の計算方法である。
- 「プログラム」とは「アルゴリズム」をコンピュータが解釈可能な 言語で記述したものである。

高校の情報科目の授業においても,可能かつ適切な範囲で,数学的な背景があることを,生徒さんに伝えて欲しいです。