

Central Radio Propagation Laboratory

IONOSPHERIC PREDICTIONS

for
December
1963

TB 11-499-9/TO 31-3-28

U.S. DEPARTMENT of COMMERCE
National Bureau of Standards
Number 9/Issued September 1963

U.S. DEPARTMENT OF COMMERCE
Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS
A. V. Astin, Director

Central Radio Propagation Laboratory

Ionospheric Predictions

for December 1963

[Formerly "Basic Radio Propagation Predictions," CRPL Series D.]

The CRPL Ionospheric Predictions are issued monthly as an aid in determining the best sky-wave frequencies over any transmission path, at any time of day, for average conditions for the month. Issued three months in advance, each issue provides tables

of numerical coefficients that define the functions describing the predicted worldwide distribution of foF2 and M(3000)F2 and maps for each even hour of universal time of MUF(Zero)F2 and MUF(4000)F2.

NOTE: Department of Defense personnel see back cover.

Use of funds for printing this publication approved by the Director of the Bureau of the Budget (June 19, 1961).

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402. Price 15 cents.

Annual subscription (12 issues) \$1.50 (50 cents additional for foreign mailing).

Number 9

Issued

September 1963

National Bureau of Standards

The functions of the National Bureau of Standards are set forth in an Act of Congress, March 3, 1901, as amended. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and tech-

nical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. The Bureau also serves as the Federal technical research center in a number of specialized fields.

Central Radio Propagation Laboratory

The Central Radio Propagation Laboratory at Boulder, Colorado, is the central agency of the Federal Government for the collection, analysis, and dissemination of information on propagation of radio waves at all frequencies along the surface of the earth, in the atmosphere, and in space, and performs scientific studies looking toward new techniques for the efficient use and conservation of the radio spectrum. To carry out this responsibility, the CRPL—

toward the development of techniques for efficient use and conservation of the radiofrequency spectrum as part of its regular program or as requested by other government agencies. In an advisory capacity, coordinates studies in this area undertaken by other government agencies.

3. Furnishes advisory and consultative service on radio wave propagation, on radiofrequency utilization, and on radio systems problems to other organizations within the United States, public and private.

4. Prepares and issues predictions of radio wave propagation and noise conditions and warnings of disturbances in these conditions.

5. Acts as a central repository for data, reports, and information in the field of radio wave propagation.

6. Performs scientific liaison and exchanges data and information with other countries to advance knowledge of radio wave propagation and interference phenomena and spectrum conservation techniques, including that liaison required by international responsibilities and agreements.

1. Acts as the central agency for the conduct of basic research on the nature of radio waves, the pertinent properties of the media through which radio waves are transmitted, the interaction of radio waves with those media, and on the nature of radio noise and interference effects. This includes compilation of reports by other foreign and domestic agencies conducting research in this field and furnishing advice to government and nongovernment groups conducting propagation research.

2. Performs studies of specific radio propagation mechanisms and performs scientific studies looking

Introduction

The "Central Radio Propagation Laboratory Ionospheric Predictions" is the successor to the former "Basic Radio Propagation Predictions," CRPL Series D. To make effective use of these predictions, National Bureau of Standards Handbook 90, "Handbook for CRPL Ionospheric Predictions Based on Numerical Methods of Mapping," should be obtained from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 20402, price 40 cents. This Handbook includes required additional data, nomographs and graphical aids, as well as methods for the use of the predictions. The Handbook supersedes the obsolete NBS Circular 465.

The basic prediction appears in tables 1 and 2, presenting predicted coefficients for f_0F2 and $M(3000)F2$ defining the numerical map functions describing the predicted worldwide variation of these characteristics. With additional auxiliary information, these coefficients may be used as input data for electronic computer programs solving specific high frequency propagation problems. The basic equations, their interpretation, and methods of using the numerical maps are described in two papers by W. B. Jones and R. M. Gallet, "The Representation of Diurnal and Geographic Variations of Ionospheric Data by Numerical Methods," Volume 66D, Number 4, July-August 1962, pages 419-438, and "Methods for Applying Numerical Maps of Ionospheric Characteristics," Volume 66D, Number 6, November-December 1962, pages 649-662, both in the Journal of Research of the National Bureau of Standards, Section D. Radio Propagation. The predicted numerical map coefficients of tables 1 and 2 may be purchased in the form of a tested set of punched cards. Write to the Prediction Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado, to arrange for the purchase of the set of punched cards and for further information and assistance in the application of computer methods and numerical prediction maps to specific propagation problems.

The graphical prediction maps, derived from the basic prediction, are provided for those unable to make use of an electronic computer. Figures 1 to 12 present world maps of $MUF(0)F2$ and $MUF(4000)F2$ for each even hour of universal time. Figures 13 to 16 present the same predictions for hours 00 and 12 universal time for the North and South Polar areas. Predicted polar maps for each even hour of universal time may be obtained by special arrangements with the Central Radio Propagation Laboratory. Handbook 90 describes methods for including regular E-F1 propagation. Figure A is a graph of predicted and observed Zürich sunspot numbers which shows the recent trend of solar activity. Table A lists observed and predicted Zürich smoothed relative sunspot numbers and includes the sunspot number used for the current prediction.

Members of the U.S. Army, Navy, or Air Force desiring the Handbook and the Ionospheric Predictions should send requests to the proper service address; for the Navy: The Director, Naval Communications, Department of the Navy, Washington, D.C., 20350; for the Air Force: Directorate of Command Control and Communications, Headquarters, United States Air Force, Washington, D.C., 20330. Attention: AFOCCAA. Army personnel should refer to the Handbook as TM 11-499 and to the monthly predictions as TB 11-499-(), predictions for the month of December 1963 being distributed in September 1963 and designated TB 11-499-(9), and should requisition these through normal publication channels.

Information concerning the theory of radio wave propagation and such important problems as absorption, field intensity, lowest useful high frequencies, etc., is given in National Bureau of Standards Circular 462, "Ionospheric Radio Propagation." A revised work is in preparation which will be announced in the Ionospheric Prediction series when available. Additional information about radio noise may be found in C.C.I.R. Report Number 65, "Revision of Atmospheric Noise Data," International Telecommunication Union, Geneva, 1957.

Reports to this Laboratory of experience with these predictions would be appreciated. Correspondence should be addressed to the Prediction Services Section, Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado.

Table A

Observed and Predicted Zurich Smoothed Relative Sunspot Numbers

Month	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1952	43 (53)	42 (51)	39 (52)	36 (52)	34 (52)	32 (52)	31 (51)	29 (49)	28 (46)	28 (43)	27 (38)	26 (33)
1953	24 (30)	22 (29)	20 (27)	19 (24)	17 (22)	15 (21)	13 (20)	12 (18)	11 (18)	10 (17)	9 (16)	7 (15)
1954	6 (14)	6 (12)	4 (11)	3 (10)	4 (10)	4 (9)	5 (8)	7 (8)	8 (8)	8 (10)	10 (10)	12 (11)
1955	14 (12)	16 (14)	20 (14)	23 (13)	29 (16)	35 (18)	40 (22)	46 (27)	55 (30)	64 (31)	73 (35)	81 (42)
1956	89 (48)	98 (53)	109 (60)	119 (68)	127 (77)	137 (89)	146 (95)	150 (105)	151 (119)	156 (135)	160 (147)	164 (150)
1957	170 (150)	172 (150)	174 (150)	181 (150)	186 (150)	188 (150)	191 (150)	194 (150)	197 (150)	200 (150)	201 (150)	200 (150)
1958	199 (150)	201 (150)	201 (150)	197 (150)	191 (150)	187 (150)	185 (150)	185 (150)	184 (150)	182 (150)	181 (150)	180 (150)
1959	179 (150)	177 (150)	174 (150)	169 (150)	165 (146)	161 (143)	156 (141)	151 (142)	146 (141)	141 (139)	137 (137)	132 (137)
1960	129 (136)	125 (135)	122 (133)	120 (130)	117 (125)	114 (120)	109 (118)	102 (115)	98 (110)	93 (108)	88 (105)	84 (100)
1961	80 (100)	75 (90)	69 (90)	64 (90)	60 (85)	56 (85)	53 (80)	52 (75)	52 (70)	51 (70)	50 (65)	49 (60)
1962	45 (60)	42 (50)	40 (48)	39 (45)	39 (42)	38 (37)	36 (34)	34 (31)	32 (29)	31 (28)	30 (27)	30 (34)
1963												
1964												

Note: Final numbers are listed through June 1962, the succeeding values being based on provisional data. The predicted numbers are in parentheses.

* Number used for predictions in this issue.

FIG. A. PREDICTED AND OBSERVED SUNSPOT NUMBERS

TABLE I

TIME VARIATION										
Harmonic		O	0	1	2	3	4	5	6	
K	S	0	1	2	3	4	5	6	7	
I	0	6.60466908E CO	2.00638742E 00	2.1294932F 00	-8.22786459E-01	3.1623041E-01	-1.0234251E-01	-3.6534986E-01	2.069715E-01	-1.9452983E-01
	1	-2.4826107E 00	-1.1547072E 00	-6.7646939E-01	-3.0638635E-01	-4.805930E-01	-1.179288E 00	-1.142372E 00	-1.415784E-01	-0.385858E-01
	2	-1.9272714E 00	-1.710266E 00	-3.961425E 00	-1.5481125E 00	-2.8226263E 00	-1.5030942E 00	-1.333171E 00	-1.576621E 01	-9.531993E-01
	3	-1.529192C 01	2.433681E 01	2.923503E 01	1.7704547E 01	1.7704547E 01	1.842120E 01	1.842120E 01	2.9670922E 01	-1.566931E 01
	4	-1.8716462E C1	-1.356281E 01	-8.667202E 00	-1.611820E 00	-1.611820E 00	-1.806543E 01	-1.806543E 01	-2.777423E 01	-8.280764E 00
	5	-7.2354410E 01	-2.219388E 02	-1.7554705E 02	-1.6128577E 02	-1.6128577E 02	-1.7554705E 01	-1.7554705E 01	-5.275674E 01	-1.17935E 01
	6	5.5522828E 01	1.7199242E 01	-2.8646408E 02	-4.0727663E 01	-4.0727663E 01	-4.086191E 01	-4.086191E 01	-1.0662518E 01	-3.595b03E 01
	7	1.589014E C2	2.8646408E 02	2.24295089E 02	9.3434088E 02	2.3687603E 02	2.3687603E 02	9.3433232E 01	9.4533232E 01	-1.0662518E 01
	8	-5.679306E C1	-1.73945045E 01	-6.719691E 01	-1.560347E 01	-1.560347E 01	-1.787845E 02	-1.787845E 02	-6.116445E 01	-7.285763E 01
	9	-1.64934948E 02	-2.849361E 02	-1.3348979E 02	-1.3348979E 02	-1.3348979E 02	-1.3348979E 02	-1.3348979E 02	-1.01630359E 02	-1.01630359E 02
	10	9.811069E 00	1.037318E 02	1.6542656E 02	4.7562799E 01	6.6952988E 01	5.3037055E 00	5.3037055E 00	2.45883134E 01	6.8886331E 01
	11	6.3474743E C1	1.037318E 02	1.6542656E 02	4.7562799E 01	6.6952988E 01	5.3037055E 00	5.3037055E 00	1.591375E 01	-1.6235884E 01
	12	9.5088468E 00	1.9252224E 01	6.6384684E 01	6.6384684E 01	6.8223911E 01	3.132668E 01	3.6550111E 01	2.3235887E 01	2.3235887E 01
II	13	-4.1084361E C2	-5.1886214E-02	-9.4969680E-02	1.03634625E-02	8.1823707E-02	7.9430531E-02	1.3559309E-01	-4.5515419E-02	-8.6603010E-02
	14	-2.1821569E -11	-3.8680018E-01	-2.153031E-01	1.0346715E-01	1.0346715E-01	2.7227047E-02	7.4006377E-02	-3.628163E-02	-4.472944E-02
	15	-6.3693679E-01	-1.293691E-01	-1.633340E-01	-1.593071E-01	-1.593071E-01	-1.584733E-01	-1.448687E-01	-7.788344E-02	-7.788344E-02
	16	-1.5411672E 00	-2.1270795E-01	-5.833167E-01	-2.0164072E-01	-2.0164072E-01	-5.6947908E-01	-5.6947908E-01	7.753571E-01	3.422328E-02
	17	-9.138491E-01	-1.882828E-01	-4.469464E 00	-4.199051E 00	-4.199051E 00	-5.716086E 00	-5.716086E 00	2.3029193E 00	0.0
	18	2.184116E 01	1.865239E 01	2.7525239E 00	2.6633218E 00	2.6633218E 00	5.555979E 00	5.555979E 00	1.6603091E 00	1.9357052E 00
	19	4.0992194E 01	3.0493121E 02	1.531171E 01	1.531171E 01	1.531171E 01	1.7262703E 00	1.7262703E 00	-1.675565E 01	-1.027967E 00
	20	4.311162E 01	2.2329165E 01	2.2329165E 01	1.9723939E 01	1.9723939E 01	4.884950E 00	4.884950E 00	1.048373E 01	-1.026882E 01
	21	3.5889864E 00	5.26962705E 01	8.3096883E 01	5.26962705E 01	5.26962705E 01	4.127148E 01	4.3422518E 01	-3.313395E 01	-1.313395E 01
	22	-2.69327205E 02	-2.0348101E 02	-2.6290651E 02	-2.6290651E 02	-2.6290651E 02	-5.987591E 01	-2.76237205E 01	-2.76237205E 01	-2.514522E 01
	23	-2.0303021E 02	-2.6184214E 02	-2.6184214E 02	-2.6184214E 02	-2.6184214E 02	-5.8752927E 01	-2.7618591E 01	-2.7618591E 01	-2.368165E 01
	24	-2.1424227E 02	-1.2166161E 02	-1.1723386E 02	-7.5332664E 02	-7.5332664E 02	-1.2477791E 01	-1.33307011E 01	-1.4721801E 01	-3.161049E-01
	25	6.2744636E 00	-6.6993686E 02	-1.29484008E 02	-8.5850410E 02	-8.5850410E 02	-1.29484008E 02	-1.29484008E 02	-1.51169126E 02	-2.522207E 01
	26	1.168120E C3	9.0394156E 02	3.01394156E 02	3.01394156E 02	3.01394156E 02	3.01394156E 02	3.01394156E 02	-2.4485422E 02	-1.25454036E 02
	27	7.0059046E 02	6.5279145E 02	1.7544770E 02	1.7544770E 02	1.7544770E 02	6.475644E 01	6.475644E 01	-2.297088E 01	-2.134339E 01
	28	4.9432626E 02	2.3932321E 02	7.151210E 02	4.420211E 02	4.420211E 02	1.910211E 01	1.910211E 01	-1.910211E 01	-4.228607E 00
	29	-9.0662323E 01	3.397900E 02	4.420211E 02	-6.61461612E 02	-6.61461612E 02	1.393895E 01	1.005525E 02	-2.5376329E 02	-1.043367E 01
	30	-2.3077984E 03	-1.8934363E 02	-1.8934363E 02	-1.8934363E 02	-1.8934363E 02	-1.9834363E 02	-1.9834363E 02	-2.8173796E 02	-2.8173796E 02
	31	-7.431171E 02	-4.9054363E 02	-1.1340184E 02	-1.0253063E 02	-1.0253063E 02	-7.3030463E 01	-7.3030463E 01	-1.563119E 02	-2.846204E 01
	32	-4.496761E 02	-1.6213070E 02	-1.6515152E 02	-1.046430E 02	-1.046430E 02				
	33	1.303551E 02	-6.6030903E 02	-2.9896259E 02	1.1313151E 02	1.1313151E 02	-8.9104134E 01	-8.9104134E 01	-1.241160E 02	-2.859338E 00
	34	2.0900010E 03	1.7579081E 02	6.6619034E 02	6.777930A 02	6.777930A 02	2.5103919E 02	2.5103919E 02	-2.0128492E 02	-2.8129075E 02
	35	2.4626358E 02	1.96633556E 02	8.1819710E 02	2.6649046E 02	2.6649046E 02	3.1183747E 01	3.1183747E 01	-1.665655E 01	-1.311166E 01
	36	-4.3117749E 02	3.7678443E 02	4.420211E 02	1.420211E 02	1.420211E 02	-2.0128183E 00	-2.0128183E 00	-3.775567E 01	-3.091939E 00
	37	-6.6111762E 01	2.5036550E 02	6.6191931E 01	-5.9466593E 01	-5.9466593E 01	1.6646476E 01	1.6646476E 01	-1.7910327E 01	-6.1930464E 01
	38	-7.1639588E 02	-6.3357362E 02	1.2424554E 02	-2.5112559E 02	-2.406976E 02	-8.8152391E 01	-8.8152391E 01	-1.3646648E 01	-1.0433666E 02
III	39	2.5022819E -01	7.17880598E-02	-1.1579310F-01	2.0947336E-02	1.9526276E-02	2.4721371E-02	1.9272287E-02	-4.0771556E-02	-1.3808996E-02
	40	3.919537E-02	8.2754548E-02	-3.13643618E-01	2.2218946E-02	-1.4706939E-02	5.4636422E-02	4.0480801E-02	-9.9014535E-03	-2.23263795E-03
	41	3.466070E-01	9.2795642E-01	1.9083930E-01	-3.8791583E-01	-3.8791583E-01	-3.8791583E-01	-3.8791583E-01	-5.4649426E-01	-5.4649426E-01
	42	8.009091E-01	-8.339579E-02	-6.18R2801E-01	3.17134544E-01	-3.9815633E-03	1.6333435E-01	-1.5467633E-03	1.4721801E-01	-2.1673339E-01
	43	-8.2144127E-01	-1.066707E-01	-3.245175E-01	-1.254175E-01	-1.254175E-01	-1.254175E-01	-1.254175E-01	-7.1552062E-01	-7.1552062E-01
	44	-3.7012805E-02	-2.76293397E-01	1.3245175E-01	-9.0638678E-03	-6.6185805E-03	-7.718822E-03	-3.4278024E-03	-3.4278024E-03	-2.19313130E-03
	45	-2.51492705E-02	-1.8887139E-00	-1.632234E-02	-2.4470212E-00	-4.1562607E-02	-2.1032363E-00	-3.536623E-02	-1.35151598E-03	-1.35151598E-03
	46	-2.18826566E-02	-1.14081136E-01	-1.642903E-01	-7.4181144E-01	-4.1562607E-02	-3.536623E-01	-2.4279055E-02	-2.4279055E-02	-7.3759705E-03
	47	5.4377079E-02	-1.662308E-02	-1.642903E-01	6.1773880E-02	-2.833333E-03	-1.0523234E-01	-2.2312358E-01	-6.4612538E-01	-6.9451515E-03
	48	2.5468005E-C1	-3.25123138E-02	-1.642903E-01	7.19122893E-02	-2.6132329E-02	-1.8743595E-02	-1.8743595E-02	-2.917645E-02	-2.917645E-02
	49	5.662308E-02	1.642903E-02	-1.642903E-01	1.642903E-02	-1.642903E-02	-1.642903E-02	-1.642903E-02	-1.0523234E-01	-1.0523234E-01
	50	5.132215E-02	-1.642903E-02	1.642903E-01	1.642903E-02	-1.642903E-02	-1.642903E-02	-1.642903E-02	-1.0523234E-01	-1.0523234E-01
	51	1.12029846E-01	1.929876E-02	1.7199191E-01	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02	-1.0523234E-01	-1.0523234E-01
	52	1.929876E-02	-1.7199191E-02	1.7199191E-01	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02	-1.0523234E-01	-1.0523234E-01

GEOGRAPHICAL VARIATION

GEOGRAPHICAL VARIATION										
Predicted Coefficients D _{SK} Defining the Function $\Gamma(\lambda, \theta, t)$ for Monthly Median f ₂ (Mc/s)		Geographic Variation								
K	S	9	10	11	12	13	14	15	16	
I	0	6.7292458E-02	2.3107548E-01	-4.11161595E-02	-9.4931015E-03	-4.0791578E-02	-9.46252538E-02	-7.6243933E-02	-1.7082209E-02	
I	1	1.7199191E-01	-9.7579372E-02	1.6519073E-01	1.6519073E-01	-2.3108632E-01	-1.4395959E-02	-5.97397372E-02	-5.97397372E-02	
I	2	-1.91826564E-01	-9.7579372E-02	4.3146010E-02	-5.114088E-02	-4.0948036E-02	-5.4561363E-02	-5.75121362E-02	-5.75121362E-02	
I	3	-1.44937618E-01	4.3146010E-02	-1.7199191E-01	-1.7199191E-01	-1.7199191E-01	-1.7199191E-01	-1.7199191E-01	-1.7199191E-01	-1.7199191E-01
I	4	1.929876E-02	-1.7199191E-02	-1.7199191E-01	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02	-1.7199191E-02

I - Main longitudinal variation. Mixed longitudinal and latitudinal variation. II - First order in longitude, III - Second order in longitude.

Notation: For each entry the number given by the first eight digits and sign is multiplied by the power of ten defined by the last two digits and sign.

PREDICTED COEFFICIENTS D_{SK} DEFINING THE FUNCTION $\Gamma(\lambda, \theta, t)$ FOR MONTHLY MEDIAN f₂ (Mc/s)

DECEMBER 1963

TABLE 2
TIME VARIATION

Harmonic	0		1		2		3		4		5		6	
	K	S												
I	0	3.0529609E+00	-7.4897122E-02	-2.7453423E-01	2.0423567E-02	-9.8254400E-02	1.3958490E-02	-3.7024659E-02	1.3658490E-02	-3.7024659E-02	1.3421946E-01	-3.4928882E-03	1.3421946E-01	-3.4928882E-03
	1	2.1074066E-01	-7.096866E-02	1.7096866E-01	3.0994688E-01	3.994688E-01	4.3738720E-02	6.3172416E-03	-1.4840792E-01	-1.4840792E-01	-1.4840792E-01	-1.5263425E-01	-1.5263425E-01	-1.5263425E-01
	2	9.9106536E-01	5.0521197E-01	2.0290322E-01	4.5905215E-01	-5.1478942E-01	-1.4840792E-01	-1.4840792E-01	4.4089961E-01	4.4089961E-01	-1.5406790E-01	-1.5406790E-01	1.3000740E-00	8.2584238E-01
	3	5.0356007E-01	-2.9837132E-01	-8.4227017E-01	-8.2174678E-00	-9.3638270E-00	4.3164212E-01	1.0336019E-01	4.2561776E-01	4.2561776E-01	-5.2493621E-01	-5.2493621E-01	-5.3142058E-01	-5.3142058E-01
	4	-2.4246058E-00	5.9337033E-01	5.2369112E-01	2.2142031E-00	2.7411680E-00	-3.9424265E-01	-2.9013628E-01	-2.9013628E-01	-2.9013628E-01	-1.0077340E-00	-1.0077340E-00	-1.6347684E-01	-1.6347684E-01
	5	-1.6739824E-00	5.7707299E-00	-3.9561712E-01	-3.9561712E-01	-8.0623562E-01	-8.0623562E-01	-1.3223367E-00	1.0432558E-01	1.0432558E-01	-2.0812992E-01	-2.0812992E-01	7.1536803E-01	3.9221733E-01
	6	1.7707299E-00	1.092439F-00	-5.8868806E-02	-5.8868806E-02	-8.0623562E-01	-8.0623562E-01	-1.3223367E-00	1.0432558E-01	1.0432558E-01	-2.0812992E-01	-2.0812992E-01	7.1536803E-01	3.9221733E-01
	7	1.092439F-00	-2.8514656E-01	-2.8514656E-01	-8.0623562E-01	-8.0623562E-01	-1.3223367E-00	1.0432558E-01						
II	9	-4.4550167E-02	-3.3897282E-02	1.7635363E-02	-1.0377829E-02	2.2248725E-02	1.4674526E-02	8.9349511E-03	2.7206313E-02	5.047561E-03	2.7206313E-02	5.047561E-03	2.7206313E-02	5.047561E-03
	10	-7.361023E-02	-2.9946882E-02	-5.068293E-02	-1.6784018E-02	-1.6784018E-02	3.354088E-04	9.929642E-03	2.5700417E-03	5.6188275E-02	2.5700417E-03	5.6188275E-02	2.5700417E-03	5.6188275E-02
	11	1.872433E-01	-8.0694824E-02	1.1349212E-01	-1.4810422E-02	1.5371461E-01	-1.4810422E-02	-4.1138610E-01	-1.7973024E-01	-2.3123055E-01	-2.3123055E-01	-2.3123055E-01	-2.3123055E-01	-2.3123055E-01
	12	-1.5105266E-01	-1.024109E-01	-2.054308E-01	9.3224833E-01	8.9324833E-02	-1.7973024E-01	-1.2449365E-01	-1.1560279E-01	7.0430871E-02	7.0430871E-02	7.0430871E-02	7.0430871E-02	7.0430871E-02
	13	3.6923121E-01	-2.054308E-01	1.6786242E-01	-5.6448889E-02	2.16229293E-01	-5.6448889E-02	-8.829838E-01	-9.094563E-01	-1.6673845E-01	-1.6673845E-01	-1.6673845E-01	-1.6673845E-01	-1.6673845E-01
	14	5.9525845E-01	-2.9273133E-01	2.5662833E-01	3.059215E-01	-9.1059215E-01	5.8532013E-01	-9.1059215E-01						
	15	-8.5947721E-01	2.9273133E-01	1.1591501E-00	3.059215E-00	-9.1059215E-00	-9.1059215E-00	-9.1059215E-00	-9.1059215E-00	-9.1059215E-00	-9.1059215E-00	-9.1059215E-00	-9.1059215E-00	-9.1059215E-00
	16	7.3617472E-01	1.1591501E-00	1.1591501E-00	1.1591501E-00	-1.7786733E-00	-1.7786733E-00	-1.7786733E-00	-1.7786733E-00	-1.7786733E-00	-1.7786733E-00	-1.7786733E-00	-1.7786733E-00	-1.7786733E-00
III	17	-8.945911E-01	6.4509081E-02	-1.739511E-02	-1.739511E-02	1.5480222E-01	7.4669060E-01	7.4669060E-01	7.4669060E-01	7.4669060E-01	7.4669060E-01	7.4669060E-01	7.4669060E-01	7.4669060E-01
	18	-1.6019759E-00	1.0317339E-00	2.2290511E-00	1.0655180E-01	2.386633E-02	1.6960258E-00	1.6960258E-00	1.6960258E-00	1.3377663E-02	-1.8142186E-02	-1.8142186E-02	-1.8142186E-02	-1.8142186E-02
	19	1.3117149E-00	-6.1664424E-01	1.0655180E-01	1.0655180E-01	-2.0260301E-01	-1.1178018E-01	-1.1178018E-01	-1.1178018E-01	-1.0260301E-01	2.0805457E-02	1.1862779E-01	1.1862779E-01	1.1862779E-01
	20	-1.1944502E-00	-2.0260301E-01	7.1908181E-00	4.9019494E-00	4.2111373E-03	5.2672474E-01	7.02338957E-02	7.02338957E-02	-1.6016516E-02	-1.3096998E-01	2.0527871E-01	1.4096956E-00	1.4096956E-00
	21	8.7190838E-C1	-1.1535453E-00	1.1535453E-00	1.1535453E-00	-5.541426E-00	1.7174007E-02	-1.5165750E-02						
	22	1.7953680E-00	-1.0129954E-00	-1.0129954E-00	-1.0129954E-00	-5.541426E-00	1.7174007E-02	-1.6016516E-02						
	23	-6.7949183E-01	3.6999120E-01	1.58127336E-00	3.6605566E-00	-5.0265138E-02	6.9483343E-02	-5.2210875E-01						
	24	6.7949183E-01	-3.5191891E-C1	9.8779241E-01	-2.8582495E-00	-7.0998838E-03	-1.1347047E-03	-1.4279874E-03						
III	25	-7.2032557E-01	3.5939336E-01	3.5043615E-00	-3.5043615E-00	-1.0552111E-02	1.1062210E-00	-7.0042948E-02						
	26	2.1750261E-02	4.0073518E-03	2.7807350E-02	2.0224743E-05	6.961650E-03	2.2479474E-04	-3.2256733E-03						
	27	-4.9148066E-02	-1.1527013E-02	2.6154833E-02	1.0498127E-02	8.4121013E-03	2.9922281E-04	-7.4507314E-03						
	28	-1.5634379E-01	-6.8252980E-02	-7.9589930E-02	2.6301922E-03	-3.0104361E-02	-6.3725911E-02	-6.3725911E-02	-6.3725911E-02	-6.3725911E-02	-6.3725911E-02	-6.3725911E-02	-6.3725911E-02	-6.3725911E-02
	29	-7.0066444E-02	-6.154272E-02	-7.517093E-02	-1.8183080E-01	-8.41102886E-01	-1.3470474E-02	-1.3470474E-02	-1.3470474E-02	-1.3470474E-02	-1.3470474E-02	-1.3470474E-02	-1.3470474E-02	-1.3470474E-02
	30	-3.01052166E-01	-1.2942197E-01	-1.2942197E-01	-9.1466773E-02	-2.0065212E-01	-3.6646273E-03	-4.55430145E-01						
	31	3.4584005E-01	1.8994545E-01	2.5642985E-01	1.6841565E-01	-1.6841565E-01	-3.6646273E-03	-6.5852266E-02						
	32	8.2593988E-02	2.0814865E-01	2.0814865E-01	2.0814865E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01
IV	33	3.4584005E-01	1.8994545E-01	2.5642985E-01	1.6841565E-01	-1.6841565E-01	-3.6646273E-03	-6.5852266E-02						
	34	-1.1980907E-01	2.0814865E-01	2.0814865E-01	2.0814865E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01
	35	7.2544216E-01	1.4279874E-01	1.4279874E-01	1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01
	36	3.4677029E-01	4.5833415E-01	4.5833415E-01	4.5833415E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01
	37	7.0073518E-03	2.7807350E-02	2.0224743E-05	6.961650E-03	2.2479474E-04	-3.2256733E-03	-3.2256733E-03	-3.2256733E-03	-3.2256733E-03	-3.2256733E-03	-3.2256733E-03	-3.2256733E-03	-3.2256733E-03
	38	1.1527013E-02	2.6154833E-02	1.0498127E-02	8.4121013E-03	2.9922281E-04	-7.4507314E-03	-7.4507314E-03	-7.4507314E-03	-7.4507314E-03	-7.4507314E-03	-7.4507314E-03	-7.4507314E-03	-7.4507314E-03

GEOGRAPHICAL VARIATION

Harmonic	4		5		6			
	K	S	7	8	9	10	11	12
I	0	6.6127906E-04	-1.7064704E-05	1.85712469E-05	2.3835946E-02	6.961650E-03	2.2479474E-04	-3.2256733E-03
I	1	-4.214379E-01	-6.154272E-02	-7.517093E-02	-8.9324833E-02	-1.0498127E-02	-2.9922281E-04	-7.4507314E-03
I	2	-6.5033918E-03	-1.6683244E-03	-1.8124097E-03	-2.0348650E-02	-4.4089961E-02	-5.637249E-02	-1.9971457E-02
I	3	-1.0448699E-03	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01	-1.4279874E-01

PREDICTED COEFFICIENTS D_{SK} DEFINING THE FUNCTION $\Gamma(\lambda, \theta, t)$ FOR MONTHLY MEDIAN M(3000)F2
DECEMBER 1963

I - Main latitudinal variation Mixed latitudinal and longitudinal variation: II - First order in longitude, III - Second order in longitude.
Notation : For each entry the number given by the first eight digits and sign is multiplied by the power of ten defined by the last two digits and sign.

DECEMBER 1963 UT=00

FIG 1 A. PREDICTED MEDIAN MUF (ZERO)F2 (Mc/s)

FIG. I B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

DECEMBER 1963 UT=02

FIG. 2A PREDICTED MEDIAN MUF (ZERO)F2 (Mc/s)

FIG. 2B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

DECEMBER 1963 UT=04

DECEMBER 1963 UT=06

FIG 4 A PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 4B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

DECEMBER 1963 UT = 08

DECEMBER 1963 UT=10

DECEMBER 1963 UT=12

FIG 7A PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 7B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

DECEMBER 1963 UT = 14

DECEMBER 1963 UT=16

DECEMBER 1963 UT=18

FIG IOA PREDICTED MEDIAN MUF (ZERO)F2 (Mc/s)

FIG IOB PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

DECEMBER 1963 UT=20

FIG. IIA. PREDICTED MEDIAN MUF (ZERO) F2 (Mc/s)

FIG. IIB. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

DECEMBER 1963 UT=22

NORTH POLAR AREA
DECEMBER 1963 UT=00

FIG. I3A. PREDICTED MEDIAN MUF (ZERO)F2 (Mc/s)

FIG I3B. PREDICTED MEDIAN MUF (4000)F2 (Mc/s)

SOUTH POLAR AREA
DECEMBER 1963 UT=00

FIG. 14A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 14B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

NORTH POLAR AREA
DECEMBER 1963 UT=12

FIG. 15A. PREDICTED MEDIAN MUF (ZERO)F2 (Mc/s)

FIG. 15B. PREDICTED MEDIAN MUF (4000)F2 (Mc/s)

SOUTH POLAR AREA
DECEMBER 1963 UT=12

FIG. 16A. PREDICTED MEDIAN MUF(ZERO)F2 (Mc/s)

FIG. 16B. PREDICTED MEDIAN MUF(4000)F2 (Mc/s)

ERRATUM

Table 1 for May 1963 (IP#2) through October 1963 (IP#7) should be amended as follows:

The cutoff for the coefficients for the first order in longitude (II) should occur after $k=36$. The coefficients for the second order in longitude (III) should begin with $k=37$ and continue through $k=52$.

This error in Table 1 did not occur in the computations for the world-map contours. Figures 1 through 16 are correct as published.

Superintendent of Documents
U.S. Government Printing Office
Washington, D.C., 20402

An Indispensable New Instruction Book

H A N D B O O K for C R P L I O N O S P H E R I C P R E D I C T I O N S

Based on Numerical Methods of Mapping

NBS Handbook 90 — by S. M. Ostrow — 58 pages — December 1962 — \$0.40

All persons engaged in the solution of high frequency radio propagation problems will need this new *Handbook*, which replaces *Instructions for the Use of Basic Radio Propagation Predictions*, Circular 465 of the National Bureau of Standards.

Beginning with the January 1963 issue, the monthly radio propagation predictions from the Central Radio Propagation Laboratory of the National Bureau of Standards at Boulder, Colorado, will be entitled *CRPL Ionospheric Predictions*, instead of *Basic Radio Propagation Predictions (CRPL-D Series)*, as now called.

CRPL Ionospheric Predictions will fulfill the same functions as its predecessor. However, this new version will be prepared by numerical mapping methods, using an electronic computer. The predictions will be presented in two forms, giving the user the choice of either computer or graphical methods. Those using a computer will derive maximum benefits from the system. However, even when a computer cannot be used, the new prediction maps will provide more information than the earlier zone prediction charts, which were prepared by manual methods and designed primarily for graphical solution of high frequency propagation problems.

Thus the new *Handbook* is a necessity. All users of the *CRPL Ionospheric Predictions* should discard the now-obsolete *Instructions* and obtain a copy of the *Handbook*.

Use the order form below. Please order promptly so that you will have your *Handbook* by the time the January issue of *Predictions* arrives.

Superintendent of Documents
U.S. Government Printing Office
Washington, D.C., 20402

Enclosed find \$_____ in check money order for which please send _____ copies of NBS Handbook 90, *Handbook for CRPL Ionospheric Predictions* to:

Name _____

Organization _____

Address _____

City _____ Zone _____ State (or Country) _____

(Please Note: Remittances from foreign countries should be by international money order or by draft on a U.S. bank.)

U.S. DEPARTMENT OF COMMERCE

Luther H. Hodges, *Secretary*

NATIONAL BUREAU OF STANDARDS

A. V. Astin, *Director*

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title.

WASHINGTON, D. C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage. Absolute Electrical Measurements.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics.

Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Radiation Chemistry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryogenic Technical Services.

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Millimeter-Wave Research.

Circuit Standards. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.

UNITED STATES
GOVERNMENT PRINTING OFFICE
DIVISION OF PUBLIC DOCUMENTS
WASHINGTON, D. C., 20402

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE TO AVOID
PAYMENT OF POSTAGE. \$300
(GPO)

DEPARTMENTS OF THE ARMY
AND THE AIR FORCE
WASHINGTON, D. C., 20301, 1 September 1963

TB 11-499-9/TO 31-3-28, CRPL Ionospheric Predictions for December 1963, published for the use of all concerned.

BY ORDER OF THE SECRETARIES OF THE ARMY AND THE AIR FORCE:

EARLE G. WHEELER,
General, United States Army,
Chief of Staff.

OFFICIAL:

J. C. LAMBERT,
Major General, United States Army,
The Adjutant General.

CURTIS E. LE MAY,
Chief of Staff, United States Air Force.

OFFICIAL:

R. J. PUGH,
Colonel, United States Air Force,
Director of Administrative Services.

DISTRIBUTION:

Active Army:

USASA (4); USA Elect Comd (1); CSigO (1); USA MI Comd (1); USA Test & Eval Comd (1); USACD Agcy (1); USA Msl Spt Comd (1); USCONARC (3); ARADCOM (2); OS Maj Comd (5); OS Base Comd (2); Log Comd (2); MDW (1); Armies (5); Corps (2); Div (2); USA Elect RD Agcy (4); Svc Colleges (4); Br Svc Sch (4) except USASCS (20); USAADCEN (4); ARADCOM Rgn (2); WSMR (2); USA Elect RD Actv (4); JBUSMC (12); USA Corps (1); USA Mob Spt Cen (1); USAEPG (2); USAMC (1); Units org under fol TOE: 11-18 (1); 11-95 (1); 11-500 AC (1).

NG: None.

USAR: None.

For explanation of abbreviations used, see AR 320-50.

☆ U. S. GOVERNMENT PRINTING OFFICE: 1963—O.

TB 11-499-9/TO 31-3-28