1	2	3	CALIF.

Nombre: Carrera: LU:

Examen Final de Análisis II - Matemática 3 - Análisis Matemático II - 09/12/2021

1. (3.5 pts) Sea C la curva $x^2+y^2=1$ con $y\geq x$ orientada desde $(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ a $(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$. Calcular $\int_C F\cdot ds$, donde F el campo vectorial $F(x,y)=(x^2e^{x^3-y^3}-2y,-y^2e^{x^3-y^3}+y^2)$.

Demostrar el Teorema/Proposición/Lema que utilice para la resolución del ejercicio.

2. (3 pts) Sea S la porción del paraboloide $S=\{(x,y,z):z=9-(x^2+y^2)\}\cap\{(x,y,z):z\geq 0\}$, con vector normal en (0,0,9) dado por (0,0,1). Para $F=(F_1,F_2,F_3)$ y $G=(G_1,G_2,G_3)$ campos en \mathbb{R}^3 de clase C^1 tal que $\frac{\partial F_2}{\partial x}=x+y$, $\frac{\partial F_1}{\partial y}=y+1$, $G_1(x,y,z)=-y$ y $G_2(x,y,z)=x$ calcular

$$\int_{S} \nabla \times (F + G),$$

3. (3.5pts) Dado el sistema

$$\begin{cases} x' = x(y+1) \\ y' = 2y(3+x-y) \end{cases}$$

- i) Hallar todos los puntos de equilibrio y decir si son o no estables.
- ii) Realizar un diagrama de fases entorno de cada punto critico (x_0, y_0) con $y_0 \ge 0$.

JUSTIFIQUE TODAS SUS RESPUESTAS