數位資料表示法

- 2-1 資料型態
- 2-2 二進位表示法
- 2-3 各種進位表示法的轉換
- 2-4 整數表示法
- 2-5 浮點數表示法
- 2-6 ASCII及Unicode

- 數位在電學上是指不連續變化的數量表示法。
- ➡ 何謂不連續變化?
 - 實數是連續變化的數量表示法,因為任兩數之間 還可以找到第三個數介於它們之間,而且到最後 是沒有空隙的。
 - 整數是不連續變化的數量表示法,例如整數1和整數2之間,我們再也找不到任何整數是介於它們之間的。

- ◆ 針對不連續變化的數量,可以用位元(binary digit; bit)的組合來計數。
- ◆ 位元是數位資訊的基本粒子,也是電腦儲存或傳 遞資料的最小單位,常用0或1來表示。
- 電腦會採用位元表示資料,主要是因為電子元件 的穩定狀態有兩種,單一的0或1稱為位元(bit)。
 - ▶ 「開」(通常用來表示 "1")
 - ▶ 「關」(通常用來表示"0")

- ➡ 早期電腦以8個位元為存取單位,因此8個位元稱 為位元組(byte)。
- → 兩個位元可以有 2的2次方 共4種組合(00, 01, 10, 11)。
- ◆ 每增加一個位元,組合數就加倍。
- ▶ n個位元可以有 2ⁿ 種不同的組合,就可用來表示 2ⁿ 種不同物件。

- ▶ 8個位元可以有 2的8次方 共256種組合,足以表示每一個英文字母(大小寫共52個)、數字(0到9共10個)和標點符號。ASCII就是這類型組合的公定標準。
- ▶ 16個位元可以有 2的16次方 共65,536種組合, 遠超過常用的中文字數目,因此16個位元可表示 中文字。

- ➡ 為避免各國文字的位元表示方式有所衝突,萬國碼(Unicode)依實現方式不同,而以不同位元個數的組合來公定各國文字。
- ◆ 由於電腦的存取機制以位元組為基本單位,所以表示資料所需的位元數,通常是8、16及32等。

TIPS!

關於資料容量的單位,常見的有KB、MB、GB及TB四種。

「B」代表的是Byte(位元組),不是Bit(位元)。

「K」代表了210,為1,024,大約是一千左右。

「M」是 $2^{20} = 2^{10} \times 2^{10} = 1,048,576$,大約是百萬左右。

對於2×的估算,我們常以2¹⁰為簡化的捷徑,因為它和10³(也就是1000)非常接近。

2-1 資料型態

● 電腦需要處理的資料型態(data type)有:數字、態(data type)有:數字文字、語音、音樂、圖形、影像人類,影片及動畫等,會編碼成一字與關係在電腦裡,等到顯不可可時,再解碼成原來的資料格式。

- ▶ 影像數位化
 - 以黑白照片為例,照片的一小部分記錄每個方格的灰度(0~255),每個方格可用八位元來表示(八個0與1可以有256種組合)。可依同樣道理將彩色圖片數位化。
- ▶ 聲音數位化
 - ▶ CD唱片上的取樣是每秒約四萬四千次,每一次取樣的聲波,都可轉化成相對應的位元。

2-1 資料型態

- ▶ 數位化的資訊方便編輯、處理、儲存、傳輸及播放,以便更有效精確地表達意念。
- ➡ 可用電腦編輯及整合不同的數位化資訊,精確安排各種複雜媒體出現的順序、時間及播放設備。
- → 可利用電腦強大的處理及搜尋功能,提供多媒體的互動方式,加強虛擬實境的真實感。

2-2 二進位表示法

- → 古巴比倫人所用的數字系統是六十進位法, 逢 「六十」進一, 現在除了每分鐘六十秒及每小時 六十分外, 此法已不多見。

2-2 二進位表示法

→ 一個數字在不同的位置上所表示的數值也就不同。

523

5 在百位上則表示5個百

在十位上就表示2個十

在個位上表示3個一

 \Rightarrow 523 = 5×10² + 2×10¹ + 3 \circ

2-2 二進位表示法

- 電腦電子元件最穩定簡單的狀態為「開(1)」與「關(0)」,故目前通行電腦用二進位符號來儲存資料。
- ▶ 因為一個位元組有八個位元,可切成兩個十六進位 數,因此電腦系統也常使用十六進位數來顯示資料。
- → 十六進位系統的數字0到15,分別以阿拉伯數字的
 0~9及A~F表示。
- ➡ 二位元字串 11010011 可表示成 D3₁₆ 或 0xD3 (x起 頭,代表該數為十六進位數)。

2-3 各種進位表示法的轉換

十六進位的數字符號及其所對應的十進位及二進位

十進位	二進位	十六進位	十進位	二進位	十六進位
0	0	0	8	1000	8
1	1	1	9	1001	9
2	10	2	10	1010	A
3	11	3	11	1011	В
4	100	4	12	1100	С
5	101	5	13	1101	D
6	110	6	14	1110	Е
7	111	7	15	1111	F

範例

10110101.1101,所對應的十進位數為181.8125

範例

十進位181所對應的二進位數為1011010122

181÷2得商數90,餘數1

 $\rightarrow d_1$ 為 1

90÷2得商數45,餘數0

 $\rightarrow d_2$ 為 0

...以此類推。

得 10110101

- ▶ 因為16為2的整數次方,所以二進位數和十六進位數可說是系出同門。
- 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- → 那十進制呢?? Ans: 23₁₀=15₁₆

二進位數換成十六進位數時,每四個位數合成一項

範例

110110101.110112的十六進位表示法為 1B5.D816

範例

1B5.D8₁₆的二進位表示法為 110110101.11011₂

2-4 整數表示法

- ➡ 只表示非負的整數,只要將最小的位元字串(亦即全為0的字串)給0,依序表示到最大的數即可。
- ▶ n 個位元就可表示 2^n 個數,所表示的整數範圍為 $0 \sim 2^n 1$ 。
- ▶ 例如:使用8個位元,可表示0~28-1間的所有整數,也就是從0~255的所有整數。

無正負符號的整數

▶ 位元字串與十進位數的對應表

以8位元所表示的「無正負符號的整數」

位元字串	十進位數
00000000	0
00000001	1
00000010	2
:	:
11111110	254
11111111	255

带正負符號大小表示法

- ◆ 若要同時表示正數和負數,最直接的作法是採用 「帶正負符號大小表示法」。
- ◆ 位元字串的最左邊位元當作符號位元(0為正數; 1為負數),剩下的n-1個位元用來表示數的大小。
 - ▶ 以位元0開頭的整數範圍為 0 ~ 2ⁿ⁻¹-1
 - ▶ 以位元1開頭的整數範圍為 0 ~ -(2ⁿ⁻¹-1)

帶正負符號大小表示法

- → 若使用8個位元,則可表示 -(2⁷-1) ~ 2⁷-1 間的所 有整數(-127 ~ 127)。
- ▶ 此法的潛在問題:
 - ▶ 有兩個0,+0(000...00)和-0(100...00)。
 - ▶ 正數和負數的運算(例如加和減)並不直接。

以8位元所表示的「帶正負符號大小表示法」

位元字串	十進位數
00000000	0
0000001	1
:	:
01111111	127
10000000	-0
10000001	-1
:	:
11111111	-127

TIPS!

- 1. 次方與位值
 - a. 位值(例:0.1、1、10、100、...)可用 10 的次方來表示(例:10⁻¹、100、101、102、...)。
 - b. 以十進位表示法表示的數字也可用 10 的次方的形式來表示。 例: $2346.531 = 2 \times 10^3 + 3 \times 10^2 + 4 \times 10^1 + 6 \times 10^0 + 5 \times 10^{-1} + 3 \times 10^{-2} + 1 \times 10^{-3}$ 。
- 2. 科學記號表示法
 - a. 把一個正數寫成 $a \times 10^n$ 的形式,其中 a 大於或等於 1 , 但是小於 10^n 目 n 為整數 ,則 $a \times 10^n$ 就是這個數的科學記號表示法。
 - 例:6600000000 = 6.6×10⁹ · 0.000000071 = 7.1×10⁻⁸ 。
 - b. 要比較以科學記號表示的數時,要先把 10 的指數部分化為相同的數字,再比較前面所乘數字的大小。例:若 $a = 1.23 \times 10^{-6}$, $b = 23.1 \times 10^{-7}$, 則 $a = 1.23 \times 10^{-6}$, $b = 2.31 \times 10^{-6}$,因為 2.31 > 1.23,所以 b > a。

- 浮點數表示法是電腦表示實數最常用的方式。
- → 「536.87」表示成科學記號為「5.3687×10²」, 浮點數表示法的運作原理亦同,會移動小數點, 使其「浮動」到標準的位置。
- ◆ 在有限位元數的情況下,浮動小數點所能表示的 數值範圍比固定小數點位置的方式大許多。

2-5 浮點數表示法

科學記號標準化動作:

10110.100011

1.0110100011×24

- ▶ 小數點左邊的數值一定是1。
- ▶ 小數點右邊的0110100011稱為尾數(mantissa), 而指數(exponent)為4。

2-5 浮點數表示法

▶ 目前所採用的浮點數表示法以IEEE 754標準為主, 主要有三部分:

2-5 浮點數表示法

- ➡ 單倍精準數:以1個位元表示符號;8個位元表示 指數;23個位元表示尾數部分。
- ◆ 雙倍精準數:以1個位元表示符號;11個位元表 示指數;52個位元表示尾數部分。

單倍精準數所能表示的數字範圍

2-6 ASCII及Unicode

- → 美國國家標準局在1963年時發表的ASCII(唸成 Asskey;美國國家資訊交換標準碼)是當今最普及的公定標準。
- ➡ 標準ASCII以7個位元儲存一字符,共有2⁷=128
 種組合。電腦的儲存常用的位元組為8個位元,
 多出來的位元用來儲存錯誤檢驗位元(parity bit)。
- → 擴充型ASCII用8個位元儲存一字符,有2⁸=256 種組合,可儲存非英文符號、圖形符號及數學符 號等。

An Introduction to Computer Science

代碼解釋:Dec:10進制 Hx:16進制 Oct:8進制 Char:字元

16進制表示法:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F、10...

==					_										_
Ctrl	Dec	Hex	Char	Code		Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	
^@	0	00		NUL		32	20		64	40	@	96	60	,	
^A	1	01		SOH		33	21	!	65	41	A	97	61	а	
^в	2	02		STX		34	22		66	42	В	98	62	b	
^C	3	03		ETX		35	23	#	67	43	C	99	63	Ç	
^D	4	04		EOT		36	24	\$	68	44	D	100	64	d	
^E	5	05		ENQ		37	25	%	69	45	E	101	65	е	
^F	6	06		ACK		38	26	&	70	46	F	102	66	f	
^G	7	07		BEL		39	27	,	71	47	G	103	67	g	
^н	8	08		BS		40	28	(72	48	H	104	68	h	
^I	9	09		HT		41	29)	73	49	I	105	69	i j	
^յ	10	0A		LF		42	2A	×	74	4A	J	106	6A	j	
^K	11	0B		VT		43	2B	+	75	4B	K	107	6B	k	
^L	12	0C		FF		44	2C	,	76	4C	L	108	6C	1	
^M	13	0D		CR		45	2D	_	77	4D	M	109	6D	m	
^N	14	0E		SO		46	2E	٠. ا	78	4E	N	110	6E	n	
^0	15	0F		SI		47	2F	/	79	4F	0	111	6F	0	
^P	16	10		DLE		48	30	0	80	50	P	112	70	р	
^Q	17	11		DC1		49	31	1	81	51	Q	113	71	q	
^R	18	12		DC2		50	32	2	82	52	R	114	72	r	
^s	19	13		DC3		51	33	3	83	53	S	115	73	S	
^T	20	14		DC4		52	34	4	84	54	T	116	74	t	
^υ	21	15		NAK		53	35	5	85	55	U	117	75	u	
^٧	22	16		SYN		54	36	6 7	86	56	V	118	76	V	
^W	23	17		ETB		55	37	7	87	57	W	119	77	W	
^X	24	18		CAN		56	38	8	88	58	X	120	78	×	
^Y	25	19		EM		57	39	9	89	59	Υ	121	79	У	
^Z	26	1A		SUB		58	ЗА	:	90	5A	Z	122	7A	Z	
^[27	1B		ESC		59	3B	;	91	5B]	123	7B	{	
^\	28	1C		FS		60	3C	<	92	5C	\	124	7C		
^]	29	1D		GS		61	3D	=	93	5D]	125	7D	}	
^^	30	1E	A	RS		62	3E	>	94	5E	^	126	7E	*	
^-	31	1F	▼	US		63	3F	?	95	5F	_	127	7F	∆*	

擴充字元集(Extended Character Set)

_																	-
	128	Ç	144	É	160	á	176		193	Т	209	₹	225	ß	241	±	_
	129	ü	145	æ	161	í	177	*****	194	т	210	π	226	Γ	242	≥	
	130	é	146	Æ	162	ó	178		195	F	211	L	227	π	243	≤	
	131	â	147	ô	163	ú	179		196	_	212	F	228	Σ	244	ſ	
	132	ä	148	ö	164	ñ	180	+	197	+	213	F	229	σ	245	J	
	133	à	149	ò	165	Ñ	181	4	198	F	214	Г	230	μ	246	÷	
	134	å	150	û	166	2	182	\mathbb{H}	199	⊩	215	#	231	τ	247	æ	
	135	ç	151	ù	167	۰	183	П	200	L	216	+	232	Φ	248	۰	
	136	ê	152	_	168	Š	184	Ŧ	201	F	217	٦	233	◉	249		
	137	ë	153	Ö	169	_	185	4	202	ī	218	Г	234	Ω	250		
	138	è	154	Ü	170	\neg	186		203	ī	219		235	δ	251	\checkmark	
	139	ï	156	£	171	1/2	187	ī	204	F	220	•	236	00	252	_	
	140	î	157	¥	172	1/4	188	ī	205	=	221	1	237	ф	253	2	
	141	ì	158	_	173	i	189	Ш	206	#	222	ı	238	ε	254		
	142	Ä	159	f	174	«	190	Ŧ	207	±	223	•	239	\cap	255		
	143	Å	192	L	175	>>	191	٦	208	Ш	224	α	240	=			

Unicode

- → 美國萬國碼制訂委員會於1988-1991年間訂定的 Unicode (萬國碼) 字符編碼標準,已成為ISO認 證之標準(ISO10646)。
- ▶ Unicode發展出下列多種編碼方式:
 - ▶ UTF-8 在全球資訊網最通行。
 - ▶ UTF-16 為JAVA及Windows所採用。
 - ▶ UTF-32 則為一些UNIX系統使用。

Unicode

- ▶ Unicode前面128個符號為ASCII 字符,其餘則為英、中、日、韓 文以及其他非英語系國家之常用 文字。
- ▶ Unicode中最大宗的分類是CJK, 主要是中文、日文及韓文之漢字 集。

在http://www.unicode.org/charts/ 網址裡,提供了各種不同類別字符的對照表。

	1	
「Unicode符號	對照表	代表的字符群
Unicode	0000-007F	基本拉丁字符(與ASCII相同)
	0080-024F	擴充的拉丁字符
	0370-03FF	希臘字符
	0E00-0E7F	泰文
	0E80-0EFF	寮文
	2200-22FF	數學符號
	2500-25FF	方塊圖形及幾何圖形
	3040-30FF	平假名及片假名
	4000-9FFF	CJK;中文、日文及韓文之漢字

EBCDIC

- ▶ 除了ASCII和Unicode外,IBM的EBCDIC也是某 些機型上常用的編碼方式。
- 國際標準局(ISO)用四個位元組(也就是32位元)制定一種編碼方式,可以有232種組合,可表示多達4,294,967,296種字符。

Big5/GB

- ▶ 以正體字而言,大五碼(Big5;約一萬六千字)是 廣受歡迎的一種編碼方式,盛行於台灣及香港。
- ▶ 以簡體字而言,國標(GB;約八千字)是廣受歡迎的編碼方式,盛行於大陸地區。
- → 這些字體已逐步被包含於Unicode的CJK字集中, 未來的整合一致化指日可待。

Homework

- → 請寫出 2⁴ 的所有變化
- → 請寫出11110101₂ , 01101010₂ 的十進位
- ➡ 請寫出85,152的二進位數值
- → 請寫出19₁₆ · 95₁₆的十進位數值
- → 1010110111₂ · 95213的十六進位數值
- ▶ 請寫出8547的十進位科學記號表示法
- ➡ 請寫出ASCII代碼中ThankYou! 的十六進位數值

單倍精準數

- → 符號位元:1個位元,以0表示正數;以1表示負數。
- → 指數部分:8個位元,以過剩127(Excess 127: 將位元數值減去127所得的值,才是真正所儲存 的值)方式表示。8個位元所存的數值可從0~255, 共有28種變化。
- ▶ 尾數部分:23個位元,從標準化的小數點後開始 存起,不夠的位元部分補0。

範例

010000101001010001100000000000000000 所儲存的數值為多少?

第一步

位元符號為O,所以是正數,指數部分是 10000101 = 十進位133,再減去127,得6。

第二步

010000101001010001100000000000000所儲存的數值為1.0010100011×26,也就是1001010.0011。

範例

100000101001010001100000000000000000 所儲存的數值為多少?

第一步

位元符號為1,所以是負數,指數部分是 00000101 = 十進位5,再減去127,得-122。

第二步

100000101001010001100000000000000所儲存的數值為-1.0010100011×2-122。