

本节主题:

稀疏矩阵

□ 定义

一一个阶数较大的矩阵中的非零元素个数s相对于矩阵元素的总个数 t 很小时,即s<<t时,称该矩阵为稀疏矩阵。

□ 例

一个100×100的矩阵,其中只有100个非零元素

稀疏矩阵的压缩存储方法

- □策略
 - □ 只存储非零元素
- □ 约束
 - △ 稀疏矩阵中非零元素的分布没有任何规律
- □方案
 - □ 存储非零元素
 - □ 同时存储该非零元素所对应的行下标和列 下标
 - □ 稀疏矩阵中的每一个非零元素需由一个三元组(i, j, a_{ij})唯一确定,稀疏矩阵中的所有非零元素构成三元组线性表。

定义存储结构

```
#define MaxSize
             100
typedef struct
   int r; //行号
   int c; //列号
   ElemType d; //元素值
} TupNode; //三元组定义
typedef struct
   int rows; //行数值
   int cols; //列数值
   int nums; //非零元素个数
   TupNode data[MaxSize];
} TSMatrix; //三元组顺序表定义
```

		0	0	1	0	0	0	0
		0	2	0	0	0	0	0
6	$A_{6\times7} =$	3	0	0	0	0	0	0
	6×7 —	0	0	0	5	0	0	0
7		0	0	0	0	6	0	0
7		0	0	0	0	0	0 0 0 0 0 0	4

0	2	1	[0]
1	1	2	[1]
2	0	3	[2]
3	3	5	[3]
4	4	6	[4]
5	5	7	[5]
5	6	4	[6]
			[]

- □ 约定: data域中表示的非零元素通常以行序为主序顺序排列——下标按行有序的存储结构。
- □ 目标: 简化大多 数矩阵运算算法。

从二维矩阵创建其三元组表示

约定:data域以行序为主序顺序排列

□ 算法:以行序方式扫描二维矩阵A,将其非零的元素加入到三元组t

```
void CreatMat(TSMatrix &t, ElemType A[M][N])
  int i,j;
  t.rows=M;
  t.cols=N;
 t.nums=0;
  for (i=0; i<M; i++)
    for (j=0; j<N; j++)
      if (A[i][i]!=0) //只存非零值
        t.data[t.nums].r=i;
        t.data[t.nums].c=j;
        t.data[t.nums].d=A[i][j];
        t.nums++;
```


将指定位置的元素值赋给变量: 执行X=A[i][j]

7			0 0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 7 & 4 \end{bmatrix}$
0	2	1	[0]	
1	1	2	[1]	
2	0	3	[2]	
3	3	5	[3]	
4	4	6	[4]	
5	5	7	[5]	
5	6	4	[6]	$a_{ij} \rightarrow x$
			[]	

```
bool Assign(TSMatrix t,ElemType &x,int i,int j)
 int k=0;
 if (i>=t.rows | | j>=t.cols)
   return false;  //失败时返回false
 while (k<t.nums && i>t.data[k].r)
    k++; //查找行
 while (k<t.nums \&\& i==t.data[k].r \&\& j>t.data[k].c)
                  //查找列
   k++:
 if (t.data[k].r==i && t.data[k].c==j)
   x=t.data[k].d;
 else
                //没有找到,是零元素
   x=0;
 return true;  //成功时返回true
```

三元组元素赋值:执行A[i][j]=x 运算

①将一个非0元素修改为非0值,如A[5][6]=8 ②将一个0元素修改为非0值,如A[3][5]=8

]	[0	0	1	0	0	0	0
	0	2	0	0	0	0	0
4 –	3	0	0	0	0	0	0
$A_{6\times7} =$	0	0	0	5	0	0	0
A _{6×7} =	0	0	0	0	6	0	0
	0	0	0	0	0	7	8

_			•
0	2	1	[0]
1	1	2	[1]
2	0	3	[2]
3	3	5	[3]
4	4	6	[4]
5	5	7	[5]
5	6	8	[6]
			[]

$A_{6\times7} =$	0	0	1	0	0	0	0	
	0	2	0	0	0	0	0	
1 -	3	0	0	0	0	0	0	
A 6×7 =	0	0	0	5	0	8	0	
	0	0	0	0	6	0	0	
	0	0	0	0	0	7	4	

0	2	1	[0]
1	1	2	[1]
2	0	3	[2]
3	3	5	[3]
3	5	8	[4]
4	4	6	[5]
5	5	7	[6]
5	6	4	[7]
			[]

三元组元素赋值算法

```
bool Value(TSMatrix &t, ElemType x, int i, int i)
 int k=0.k1:
 if (i>=t.rows | | i>=t.cols)
    return false; //失败时返回false
 while (k<t.nums && i>t.data[k].r)
                //查找行
    k++:
 while (k<t.nums && i==t.data[k].r && j>t.data[k].c)
    k++; //查找列
 if (t.data[k].r==i && t.data[k].c==i)
   t.data[k].d=x; //存在时直接改
 else
                        即完成顺序表的插入
    //不存在时要插入
 return true; //成功时返回true
```

```
for (k1=t.nums-1; k1>=k; k1--)
{
    t.data[k1+1].r=t.data[k1].r;
    t.data[k1+1].c=t.data[k1].c;
    t.data[k1+1].d=t.data[k1].d;
}
t.data[k].r=i;
t.data[k].c=j;
t.data[k].d=x;
t.nums++;
```

输出三元组

□ 从头到尾扫描三元组t,依次输出元素值。

```
void DispMat(TSMatrix t)
  int i;
  if (t.nums<=0) return;</pre>
  printf("\t%d\t%d\t%d\n",t.rows,t.cols,t.nums);
  printf(" -----\n");
  for (i=0; i<t.nums; i++)
    printf("\t%d\t%d\t%d\n",t.data[i].r,t.data[i].c, t.data[i].d);
```

矩阵转置

□ 对于一个m×n的矩阵A_{m×n},其转置矩阵是一个n×m的矩阵B_{n×m},满足b_{ij}=a_{ji},其中 0≤i≤m-1,0≤j≤n-1。

$$A_{6\times7} = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 & 4 \end{bmatrix}$$

r	c	d	r	c	d
0	2	1	0	2	3
1	1	2	1	1	2
2	0	3	2	0	1
3	3	5	3	3	5
4	4	6	4	4	6
5	5	7	5	5	7
5	6	4	6	5	4

矩阵转置算法

```
void TranTat(TSMatrix t,TSMatrix &tb)
  int p,q=0,v;
 tb.rows=t.cols;
  tb.cols=t.rows;
  tb.nums=t.nums;
  if (t.nums!=0) //当存在非零元素时...
    for (v=0; v<t.cols; v++)
      for (p=0; p<t.nums; p++)
        if (t.data[p].c==v)
          tb.data[q].r=t.data[p].c;
          tb.data[q].c=t.data[p].r;
           tb.data[q].d=t.data[p].d;
          q++;
```

空间

时间

」 时间复杂度:

O(t.cols*t.nums),

量坏情况:当稀疏 矩阵中的非零元素 个数t.nums和m*n同 数量级时,O(m*n²)。

□ 对比:将二维数组 存储在一个m行n列 矩阵中时,转置算 法的时间复杂度为 O(m*n)。

		0	U	I	U	U	U	U	
6		0	2	0	0	0	0	0	
	,	3	0	0	0	0	0	0	
7	$A_{6\times7} =$	0	0	0	5	0	0	0	
		0	0	0	0	6	0	0	
7		0	0	0	0	0	7	0 4	

			•
0	2	1	[0]
1	1	2	[1]
2	0	3	[2]
3	3	5	[3]
4	4	6	[4]
5	5	7	[5]
5	6	4	[6]
			[]

思考:矩阵加法?矩阵乘法?

		0	0	1	0	0	0	0	ı
6		0	2	0	0	0	0	0	l
	4 -	3	0	0	0	0	0	0	
7	$A_{6\times7} =$	0	0	0	5	0 0	0	0	l
		0	0	0	0	6	0	0	l
7		0	0	0	0	0	7	4	

0	2	1	[0]
1	1	2	[1]
2	0	3	[2]
3	3	5	[3]
4	4	6	[4]
5	5	7	[5]
5	6	4	[6]
			[]