Homework #7

A. Shawn Bandy

April 22, 2013

1 Lab Problems

L1 STATA log:

```
______
    name: <unnamed>
     log: /Users/shawn/src/econ485/lab7/homework7.log
 log type: text
opened on: 23 Apr 2013, 09:10:19
. /*
> a. Use OLS regression to estimate the following model. First, run OLS assuming
> homoskedasticity. After you estimate that model, use the Breusch-Pagan test to test
> for heteroskedasticity. If you find that the errors are heteroskedastic, use robust
> standard errors to correct for heteroskedasticity by re-estimating that model. Also, test
> for multicollinearity after your 2nd model (if you need to account for
> heteroskedasticity).
> i. Dependent variable: lnwage; explanatory variables are educ exper
> black smsa
> */
> regress lnwage educ exper black smsa;
               SS
                      df MS
                                            Number of obs =
    Source |
                                                           1184
                                            F(4, 1179) = 61.40
     Model | 34.9845998 4 8.74614994
                                            Prob > F = 0.0000
   Residual | 167.94877 1179 .142450187
                                            R-squared = 0.1724
-----
                                            Adj R-squared = 0.1696
     Total | 202.93337 1183 .17154131
                                            Root MSE
    lnwage | Coef. Std. Err. t P>|t| [95% Conf. Interval]
_____
     educ | .0714313 .0059652 11.97 0.000 .0597277
exper | .0446856 .0037508 11.91 0.000 .0373267
                                                         .0831349
                                                        .0520446
     black | -.1896232 .037656 -5.04 0.000 -.2635035
                                                       -.1157428
```

smsa | .1431147 .0271522 5.27 0.000 .0898427 .1963868

```
_cons | 4.898209 .1061538 46.14 0.000 4.689937
                                                                     5.10648
. //rvfplot;
> estat hettest;
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
         Ho: Constant variance
         Variables: fitted values of lnwage
         chi2(1) = 0.45
         Prob > chi2 = 0.5023
. vif;
                   VIF
    Variable |
                             1/VIF
-----
      educ | 1.55 0.646982

exper | 1.52 0.656554

black | 1.03 0.967542

smsa | 1.03 0.974066
   Mean VIF |
                  1.28
> b. Use outreg2 to create a nice formatted table named wageapril with your
> regression results from part a). Have the output be sent to BOTH word and excel.
> Make sure you title the table Wage Regression and that you title this column
> OLS. Also include the Adjusted R-squared e(r2_a) in your results.
> */
> outreg2 using wageapril, replace word title("Wage Regression") ctitle("OLS") e(r2_a);
wageapril.rtf
dir : seeout
. outreg2 using wageapril, replace excel title("Wage Regression") ctitle("OLS") e(r2_a);
wageapril.xml
dir : seeout
. outreg2 using wageapril, replace tex title("Wage Regression") ctitle("OLS") e(r2_a);
wageapril.tex
dir : seeout
. /*
> c. You decide that you need more explanatory variables. So, you decide to include the
> ID for each individual in your model. Use OLS regression to estimate the following
> model. If you found you needed to use robust standard errors in part a), do so again
> i. Dependent variable: lnwage; explanatory variables are educ exper
```

```
> black smsa id
```

> */

>

> regress lnwage educ exper black smsa id;

Source	SS	df	MS	Number of obs =	1184
+				F(5, 1178) =	49.29
Model	35.1130527	5	7.02261054	Prob > F =	0.0000
Residual	167.820317	1178	.142462069	R-squared =	0.1730
+				Adj R-squared =	0.1695
Total	202.93337	1183	.17154131	Root MSE =	.37744

lnwage	Coef.	Std. Err.	t	P> t	=	. Interval]
educ exper black smsa id cons	.0713493	.0059661 .0037509 .0384769 .027615 .0000113	11.96 11.91 -4.73 5.01 -0.95 45.28	0.000 0.000 0.000 0.000 0.343 0.000	.0596439 .0373263 2576146 .0841595 0000328 4.707059	.0830546 .0520448 1066328 .1925199 .0000114 5.133479

. estat hettest;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of lnwage

chi2(1) = 0.46Prob > chi2 = 0.4994

. vif;

Variable	VIF	1/VIF
educ exper black id smsa	1.55 1.52 1.08 1.07 1.06	0.646846 0.656554 0.926777 0.933358 0.941766
Mean VIF	1 26	

^{. /*}

> d. Now, you are worried that your measure of education is endogenous because the error

 $[\]gt$ term includes ability. Use IQ as a proxy for ability and use OLS regression to

 $[\]gt$ estimate the following model. Use robust standard errors if you found the presence of

> heteroskedasticity in part a).

```
> i. Dependent variable: lnwage; explanatory variables are educ exper
> black smsa IQ
> */
>
```

> regress lnwage educ exper black smsa IQ;

Source	SS	df	MS	Number of obs =	1184
+				F(5, 1178) =	50.66
Model	35.9128978	5	7.18257955	Prob > F = 0	0.000
Residual	167.020472	1178	.141783083	R-squared = 0).1770
+				Adj R-squared = 0).1735
Total	202.93337	1183	.17154131	Root MSE $=$.	37654

	Coef.	Std. Err.	t	P> t	=	Interval]
educ	.0644704	.0065435	9.85	0.000	.0516322	.0773087
exper	.0454306	.0037533	12.10	0.000	.0380667	.0527945
black	1567381	.0397053	-3.95	0.000	234639	0788372
smsa	.1406109	.0271062	5.19	0.000	.087429	.1937927
IQ	.0023745	.000928	2.56	0.011	.0005538	.0041952
_cons	4.74046	.1225423	38.68	0.000	4.500034	4.980885

. estat hettest;

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of lnwage

chi2(1) = 0.67Prob > chi2 = 0.4139

. vif;

Variable	VIF	1/VIF
educ IQ exper black smsa	1.87 1.56 1.53 1.15 1.03	0.535159 0.639176 0.652604 0.866173 0.972796
Mean VIF	1.43	

^{. /*}

> e. Now, return to the model in part a). Suppose that you are mostly interested in the

> effect of education on wages. Instead of trying to control for ability with a proxy, you

> decide to use IV estimation. You believe that a good instrument is whether or not a

```
> person lived near a 4-year college in 1966 (nearc4). Use instrumental variable
> regression to estimate the model in part a). Use ivreg2 and make sure you use the
> first and endog options in order to get the first-stage estimates and the test
> for endogeneity of educ. After you estimate that model, use ivhettest to test for
> heteroskedasticity. If you find that the errors are heteroskedastic, re-estimate the
> model using IV regression and including robust to correct for heteroskedasticity.
> */
> ivreg2 lnwage (educ=nearc4) exper black smsa, first endog(educ);
First-stage regressions
First-stage regression of educ:
OLS estimation
-----
Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only
                                                 Number of obs =
                                                                 1184
                                                 F(4, 1179) = 164.79
                                                Prob > F = 0.0000
Total (centered) SS = 6187.553209
                                                Centered R2 = 0.3586
Total (uncentered) SS = 243857
                                               Uncentered R2 = 0.9837
              = 3968.705434
Residual SS
                                                Root MSE = 1.835
       educ | Coef. Std. Err. t P>|t| [95% Conf. Interval]
______

    exper | -.3654329
    .0148109
    -24.67
    0.000
    -.3944916
    -.3363742

    black | -.6555666
    .182057
    -3.60
    0.000
    -1.012759
    -.2983747

    smsa | .2862191
    .1355166
    2.11
    0.035
    .0203384
    .5520997

     nearc4 | .4199662 .131125 3.20 0.001
                                                              .6772307
                                                   .1627017
     _cons | 16.59676 .183997 90.20 0.000
                                                   16.23577 16.95776
______
Included instruments: exper black smsa nearc4
______
F test of excluded instruments:
 F(1, 1179) = 10.26
 Prob > F = 0.0014
Angrist-Pischke multivariate F test of excluded instruments:
```

Summary results for first-stage regressions

= 0.0014

F(1, 1179) = 10.26

Prob > F

Variable F(1, 1179) P-va educ 10.26 0.001	(Underid) al AP Chi-sq(1) P-val 4 10.30 0.0013	
Stock-Yogo weak ID test critical v	alues for single endogeno	ous regressor:
	10% maximal IV size	16.38
	15% maximal IV size	8.96
	20% maximal IV size	6.66
	25% maximal IV size	5.53
Source: Stock-Yogo (2005). Reprod		
Underidentification test		
Ho: matrix of reduced form coeffic		eridentified)
Ha: matrix has rank=K1 (identified	•	
Anderson canon. corr. LM statistic	Chi-sq(1)=10.21	P-val=0.0014
Weak identification test		
Ho: equation is weakly identified		40.00
Cragg-Donald Wald F statistic		10.26
Stock-Yogo weak ID test critical v	values for K1=1 and I1=1.	
Stock logo weak in test clitical v	10% maximal IV size	16.38
	15% maximal IV size	8.96
	20% maximal IV size	6.66
	25% maximal IV size	5.53
Source: Stock-Yogo (2005). Reprod		0.00
201101 20011 1000 (2000) 1 110b100	accurate programme and a second	
Weak-instrument-robust inference		
Tests of joint significance of end	logenous regressors B1 in	main equation
Ho: B1=0 and orthogonality conditi	_	-
Anderson-Rubin Wald test	F(1,1179) = 0.30	P-val=0.5839
Anderson-Rubin Wald test	Chi-sq(1) = 0.30	P-val=0.5830
Stock-Wright LM S statistic	Chi-sq(1) = 0.30	P-val=0.5830
· ·	-	
Number of observations	N = 1184	
Number of regressors	K = 5	
Number of endogenous regressors	K1 = 1	
Number of instruments	L = 5	
Number of excluded instruments	L1 = 1	
IV (2SLS) estimation		

Estimates efficient for homoskedasticity only Statistics consistent for homoskedasticity only

Number of obs = 1184

```
F(4, 1179) =
                                                        24.94
                                          Prob > F = 0.0000
                                          Centered R2 = 0.1494
Total (centered) SS = 202.9333701
                                         Uncentered R2 = 0.9964
Total (uncentered) SS = 48108.50864
Residual SS
                  = 172.622443
                                          Root MSE =
                                                        .3818
    lnwage |
              Coef. Std. Err. z P>|z| [95% Conf. Interval]
______
      educ | .037263 .0649795 0.57 0.566 -.0900946 .1646205
     exper | .0321384 .0240597 1.34 0.182 -.0150178 .0792945
     black | -.2120682 .057075 -3.72 0.000 -.3239332 -.1002032
     smsa | .1564774 .0373467 4.19 0.000 .0832792 .2296756
     _cons | 5.47404 1.095629 5.00 0.000 3.326646 7.621434
Underidentification test (Anderson canon. corr. LM statistic):
                                                        10.213
                                      Chi-sq(1) P-val = 0.0014
______
Weak identification test (Cragg-Donald Wald F statistic):
                                                        16.38
Stock-Yogo weak ID test critical values: 10% maximal IV size
                                15% maximal IV size
                                                         8.96
                                20% maximal IV size
                                                          6.66
                                25% maximal IV size
                                                         5.53
Source: Stock-Yogo (2005). Reproduced by permission.
Sargan statistic (overidentification test of all instruments): 0.000
                                       (equation exactly identified)
-endog- option:
Endogeneity test of endogenous regressors:
                                                          0.287
                                        Chi-sq(1) P-val =
                                                         0.5924
Regressors tested: educ
______
Instrumented: educ
Included instruments: exper black smsa
Excluded instruments: nearc4
      ______
. ivhettest;
IV heteroskedasticity test(s) using levels of IVs only
Ho: Disturbance is homoskedastic
   Pagan-Hall general test statistic : 0.683 Chi-sq(4) P-value = 0.9534
. /*
> f. You decide to add another instrument to your model in part e), now you use both
> nearc4 and fatheduc (the education level of persons father) as instruments for
> education. Otherwise the model should be similar to part e). Use ivreg2 and make
> sure you use the first and endog options in order to get the first-stage
> estimates and the test for endogeneity of educ. If in part e) you found that the errors
> are heteroskedastic, include robust to correct for heteroskedasticity.
```

```
> */
> ivreg2 lnwage (educ=nearc4 fatheduc) exper black smsa, first endog(educ);
First-stage regressions
First-stage regression of educ:
OLS estimation
-----
Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only
                                                  Number of obs =
                                                                     1184
                                                  F(5, 1178) = 162.95
                                                  Prob > F = 0.0000
                                                  Centered R2 = 0.4089
Total (centered) SS = 6187.553209
Total (uncentered) SS = 243857
                                                 Uncentered R2 = 0.9850
Residual SS
              = 3657.734504
                                                 Root MSE
                                                                  1.762
      educ | Coef. Std. Err. t P>|t| [95% Conf. Interval]
      exper | -.3189218 .0149648 -21.31 0.000 -.3482825 -.289561
      black | -.3006298 .1784139 -1.69 0.092 -.6506743 .0494147

    smsa |
    .1057065
    .1313982
    0.00
    0.01

    nearc4 |
    .3596716
    .1260805
    2.85
    0.004
    .1123041

    1 1703282
    .01702
    10.01
    0.000
    .1369353

      smsa | .1057065 .1313982 0.80 0.421 -.1520942 .3635071
                                                                 .607039
    fatheduc | .1703282 .01702 10.01 0.000
                                                                 .2037212
     _cons | 14.55211 .2701329 53.87 0.000
                                                   14.02212
                                                                 15.08211
______
Included instruments: exper black smsa nearc4 fatheduc
F test of excluded instruments:
 F(2, 1178) = 55.64
             = 0.0000
  Prob > F
Angrist-Pischke multivariate F test of excluded instruments:
 F(2, 1178) = 55.64
  Prob > F
             = 0.0000
```

Summary results for first-stage regressions

\text{Variable | F(2, 1178) P-val | AP Chi-sq(2) P-val | AP F(2, 1178) educ | 55.64 0.0000 | 111.84 0.0000 | 55.64

Stock-Yo	ogo	weak	ID	test	crit	ical	values	for	singl	e endogenous	regressor:
							10%	maxin	nal IV	size	19.93
							15%	maxin	nal IV	size	11.59
							20%	maxim	nal IV	size	8.75
							25%	maxim	nal IV	size	7.25
Source:	Sto	ck-Yo	ogo	(200	5).	Repro	oduced	by pe	ermiss	ion.	

Underidentification test

Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)

Ha: matrix has rank=K1 (identified)

Anderson canon. corr. LM statistic Chi-sq(2)=102.19 P-val=0.0000

Weak identification test

Ho: equation is weakly identified Cragg-Donald Wald F statistic

55.64

Stock-Yogo weak ID test critical values for K1=1 and L1=2:

10%	maximal	ΙV	size	19	9.93
15%	${\tt maximal}$	IV	size	11	L.59
20%	${\tt maximal}$	IV	size	8	3.75
25%	maximal	ΙV	size	7	7.25

Source: Stock-Yogo (2005). Reproduced by permission.

Weak-instrument-robust inference

Tests of joint significance of endogenous regressors B1 in main equation Ho: B1=0 and orthogonality conditions are valid

Anderson-Rubin Wald test	F(2,1178)=	10.99	P-val=0.0000
Anderson-Rubin Wald test	Chi-sq(2)=	22.10	P-val=0.0000
Stock-Wright LM S statistic	Chi-sq(2)=	21.70	P-val=0.0000

Number of	observations	N	=	1184
Number of	regressors	K	=	5
Number of	endogenous regressors	K1	=	1
Number of	instruments	L	=	6
Number of	excluded instruments	L1	=	2

IV (2SLS) estimation

Estimates efficient for homoskedasticity only Statistics consistent for homoskedasticity only

			Number	of obs =	=	1184
			F(4,	1179) =	=	30.85
			Prob >	F =	=	0.0000
Total (centered) SS	=	202.9333701	Center	ed R2 =	=	0.1586
Total (uncentered) SS	=	48108.50864	Uncent	ered R2 =	=	0.9965
Residual SS	=	170.7512787	Root M	ISE =	=	.3798

```
lnwage | Coef. Std. Err. z P>|z| [95% Conf. Interval]
______
     _cons | 4.452306 .3460176 12.87 0.000
                                             3.774124
                                                       5.130488
 ______
Underidentification test (Anderson canon. corr. LM statistic):
                                      Chi-sq(2) P-val = 0.0000
______
Weak identification test (Cragg-Donald Wald F statistic):
                                                        55.635
Stock-Yogo weak ID test critical values: 10% maximal IV size
                                                         19.93
                                15% maximal IV size
                                                         11.59
                                20% maximal IV size
                                                          8.75
                                25% maximal IV size
                                                          7.25
Source: Stock-Yogo (2005). Reproduced by permission.
Sargan statistic (overidentification test of all instruments):
                                                         0.978
                                        Chi-sq(1) P-val = 0.3227
-endog- option:
Endogeneity test of endogenous regressors:
                                                         1.866
                                        Chi-sq(1) P-val = 0.1719
Regressors tested: educ
Instrumented:
                 educ
Included instruments: exper black smsa
Excluded instruments: nearc4 fatheduc
> g. Use outreg2 to append your results from part f) to your table you created in part b).
> Make sure you title the table Wage Regression and that you title this column IV.
> Also include Adjusted R-squared e(r2_a), the F-test for weak instruments
> e(widstat), the p-value test of overidentifying restrictions e(sarganp) and
> the Instruments e(exexog) in your results.
> outreg2 using wageapril, append word title("Wage Regression") ctitle("IV") e(r2_a, widstat, sarganp, exer
wageapril.rtf
dir : seeout
. outreg2 using wageapril, append excel title("Wage Regression") ctitle("IV") e(r2_a, widstat, sarganp, exc
> );
wageapril.xml
dir : seeout
```

```
. outreg2 using wageapril, append tex title("Wage Regression") ctitle("IV") e(r2_a, widstat, sarganp, exext
wageapril.tex
dir : seeout
.
end of do-file
```

2 Questions

Q1 Use the results from L1 to answer this question.

- a. Assuming you dont have any violations of OLS, interpret the coefficient on educ from the regression you ran in L1, part a).
- b. What was the result of your test for heteroskedasticity in L1, part a)?
- c. What was the result of your test for multicollinearity in L1, part a)?
- d. Compare the Adjusted R-squared from your results in L1, part a) and part c). Explain the difference and why there is a problem with the model in part c).
- e. Assuming you don't have any violations of OLS, interpret the coefficient on IQ from the regression you ran in L1, part d).
- f. Explain why you do or do not think IQ is a good proxy for ability.