Package 'cgAUC'

October 12, 2022

Type Package	
Title Calculate AUC-type measure when gold standard is continuous and the corresponding optimal linear combination of variables with respect to it.	
Version 1.2.1	
Date 2014-08-24	
Author Yuan-chin I. Chang, Yu-chia Chang, and Ling-wan Chen	
Maintainer Yu-chia Chang <curare7177@gmail.com></curare7177@gmail.com>	
Description The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold star dard is continuous, and find the optimal linear combination of variables with respect to this measure.	
License GPL (>= 2)	
Imports Rcpp (>= 0.11.2)	
LinkingTo Rcpp	
NeedsCompilation yes	
Repository CRAN	
Date/Publication 2014-08-28 07:01:42	
R topics documented:	
cgAUC-package cgAUC c_cntin c_dscrt c_d_theta_sh_h_p c_s_h optimal.delta	2 3 6 7 8 9
Index	12

2 cgAUC-package

cgAUC-package

Calculate AUC when gold standard is continuous with large variables.

Description

In this package, the cgAUC is used to calculate the AUC-type measure raised in Obuchowski(2006) when gold standard is continuous.

Details

Package: cgAUC
Type: Package
Version: 1.2.1
Date: 2014-08-24
License: GPL (>=2)

Author(s)

Yuan-chin I. Chang, Yu-chia Chang, and Ling-wan Chen Maintainer: Yu-chia Chang <curare7177@gmail.com>

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 2006; 25:481–493.

Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261–3278.

Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.

Examples

```
# n = 100; p = 5;
# r.x = matrix(rnorm(n * p), , p) # raw data
# r.z = r.x[ ,1] + rnorm(n) # gold standard
# x = scale(r.x) # standardized of raw data
# z = scale(r.z) # standardized of gold standard
# h = n^(-1 / 2)
# t1 = cgAUC(r.x, r.z, h, delta = 1, auto = FALSE, tau = 1, scale = 1) # the delta be constant
# t1
```

cgAUC 3

```
\# t2 = cgAUC(r.x, r.z, h, delta = 1, auto = TRUE, tau = 1, scale = 1) \# the delta be variable \# t2
```

cgAUC

Calculate AUC when gold standard is continuous with large variables.

Description

The cgAUC can calculate the AUC-type measure of Obuchowski(2006) when gold standard is continuous, and find the optimal linear combination of variables with respect to this measure.

Usage

```
cgAUC(x, z, h, delta = 1, auto = FALSE, tau = 1, scale = 1)
```

Arguments

x	The potential variables. It is a matrix with column of values of a variables. It should be standardized in this application.
z	The gold standard variable. It should be standardized.
h	The parameter controls the window width of smoothing function.
delta	The parameter be used in TGDM. The default value is one.
auto	Find the optimal delta in TGDN using cross-validation. If the auto is TRUE. The default is FALSE.
tau	The parameter used in TGDM. The default value is one.
scale	Scaling data when scale = 1 , no scaling data when scale = 0 . The default value is 1 .

Details

In this package, we use the TGDM to find the optimal linear combination of variables in order to maximize the AUC-type measure. Before using this function, all of variables, including gold standard variable, should be standardized first. Below are parameters used in the algorithm:

Value

Rev	When Rev = 0 means $1 * 1$; otherwise, $1 * -1$.	
1	The estimate of coefficients for the optimal linear combination of variables.	
theta.sh.h.p	The estimate of the theta of Chang(2012) for the optimal linear combination of variables.	
theta.sh.h.p.var		
	The estimate of variance for the theta of Chang(2012).	
cntin.ri	The estimate of the theta of Chang(2012) for each single vaiable.	
theta.h.p	The estimate of the theta of Obuchowski(2006) for the optimal linear combination of variables.	

4 cgAUC

```
theta.h.p.var The estimate of variance for the theta of Obuchowski(2006).

dscrt.ri The estimate of the theta of Obuchowski(2006) for each single vaiable.

delta The value of delta.
```

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 2006; 25:481–493.

Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261–3278.

Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
# n = 100; p = 5;
\# r.x = matrix(rnorm(n * p), , p) \# raw data
\# r.z = r.x[,1] + rnorm(n) \# gold standard
\# x = scale(r.x) \# standardized of raw data
\# z = scale(r.z) \# standardized of gold standard
# h = n^{-1} / 2
# t1 = cgAUC(r.x, r.z, h, delta = 1, auto = FALSE, tau = 1, scale = 1) # the delta be constant
\# t2 = cgAUC(r.x, r.z, h, delta = 1, auto = TRUE, tau = 1, scale = 1) \# the delta be variable
## The function is currently defined as
function (x, z, h, delta = 1, auto = FALSE, tau = 1)
x = scale(x)
z = scale(z)
conv = FALSE
n = dim(x)[1]
p = dim(x)[2]
cntin.ri = dscrt.ri = rep(0, p)
id = diag(p)
for (i in 1:p) {
dscrt.ri[i] = dscrt(x, z, id[i, ])$theta.h.p
cntin.ri[i] = cntin(x, z, id[i, ], h)$theta.sh.h.p
}
```

cgAUC 5

```
beta.i = ifelse(cntin.ri > 0.5, 1, -1)
dscrt.ri = ifelse(dscrt.ri > 0.5, dscrt.ri, (1 - dscrt.ri))
cntin.ri = ifelse(cntin.ri > 0.5, cntin.ri, (1 - cntin.ri))
y = x * matrix(beta.i, n, p, byrow = TRUE)
max.x = which(cntin.ri == max(cntin.ri))
theta.sh.h.p = 0
l = id[max.x,]
while (conv == FALSE) {
d.1 = d.theta.sh.h.p(y, z, 1, h)
max.d.1 = max(d.1)
ind.d.l = ifelse(d.l >= (tau * max.d.l), 1, 0) * d.l
if (auto == TRUE) {
delta = optimal.delta(y, z, l, h, ind.d.l)
l = l + delta * ind.d.l
1 = 1/\max(1)
theta.temp = cntin(y, z, 1, h)$theta.sh.h.p
ifelse(abs(theta.temp - theta.sh.h.p) < 1e-04, conv <- TRUE, conv <- FALSE)
theta.sh.h.p = theta.temp
optimal.dscrt = dscrt(y, z, 1)
theta.sh.h.p.var = cntin(y, z, l, h)$var
1 = 1 * beta.i
return(list(l = 1, theta.sh.h.p = theta.sh.h.p, theta.sh.h.p.var = theta.sh.h.p.var,
cntin.ri = cntin.ri, theta.h.p = optimal.dscrt$theta.h.p,
theta.h.p.var = optimal.dscrt$var, dscrt.ri = dscrt.ri,
delta = delta))
## The function is currently defined as
function (x, z, h, delta = 1, auto = FALSE, tau = 1)
   x = scale(x)
   z = scale(z)
    conv = FALSE
    n = dim(x)[1]
    p = dim(x)[2]
    cntin.ri = dscrt.ri = rep(0, p)
    id = diag(p)
    for (i in 1:p) {
        dscrt.ri[i] = dscrt(x, z, id[i, ])$theta.h.p
        cntin.ri[i] = cntin(x, z, id[i, ], h)$theta.sh.h.p
    beta.i = ifelse(cntin.ri > 0.5, 1, -1)
    dscrt.ri = ifelse(dscrt.ri > 0.5, dscrt.ri, (1 - dscrt.ri))
    cntin.ri = ifelse(cntin.ri > 0.5, cntin.ri, (1 - cntin.ri))
    y = x * matrix(beta.i, n, p, byrow = TRUE)
    max.x = which(cntin.ri == max(cntin.ri))
    theta.sh.h.p = 0
    l = id[max.x, ]
    while (conv == FALSE) {
        d.1 = d.theta.sh.h.p(y, z, 1, h)
        \max.d.1 = \max(d.1)
        ind.d.l = ifelse(d.l >= (tau * max.d.l), 1, 0) * d.l
```

c_cntin

```
if (auto == TRUE) {
          delta = optimal.delta(y, z, l, h, ind.d.l)
     l = l + delta * ind.d.l
      1 = 1/\max(1)
      theta.temp = cntin(y, z, 1, h)$theta.sh.h.p
      ifelse(abs(theta.temp - theta.sh.h.p) < 1e-04, conv <- TRUE,
          conv <- FALSE)
      theta.sh.h.p = theta.temp
  }
 optimal.dscrt = dscrt(y, z, 1)
  theta.sh.h.p.var = cntin(y, z, 1, h)$var
 1 = 1 * beta.i
  return(list(1 = 1, theta.sh.h.p = theta.sh.h.p, theta.sh.h.p.var = theta.sh.h.p.var,
      cntin.ri = cntin.ri, theta.h.p = optimal.dscrt$theta.h.p,
      theta.h.p.var = optimal.dscrt$var, dscrt.ri = dscrt.ri,
      delta = delta))
}
```

 c_cntin

 c_cntin

Description

Continue function, when variable was continue.

Usage

```
c_{cntin}(y, z, 1, h)
```

Arguments

У	The potential variables. It is a matrix with column of values of a variables. It
	should be standardized in this application.

z The gold standard variable. It should be standardized.

1 Linear combination. A vector.

h The value of h falls into $(n^{-1/2})$, $n^{-1/5}$).

Value

```
theta.sh.h.p The estimate of the theta of Chang(2012).

var The variance of estimate of the theta of Chang(2012).
```

Author(s)

Yu-chia Chang

7 c_dscrt

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuousscale. Statistics in Medicine 2006; 25:481-493.

Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261-3278.

Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function(y, z, 1, h) \{
    .Call('cgAUC_c_cntin', PACKAGE = 'cgAUC', y, z, 1, h)
}
```

c_dscrt

c_dscrt

Description

discrete function, when variable is discrete.

Usage

```
c_dscrt(y, z, 1)
```

Arguments

The potential variables. It is a matrix with column of values of a variables. It У should be standardized in this application.

The gold standard variable. It should be standardized.

Z

1 Linear combination. A vector.

Details

Discrete function, when variable is discrete.

Value

The estimate of theta when variable is discrete. theta.h.p

The variance of estimate of theta. var

8 c_d_theta_sh_h_p

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 2006; 25:481–493.

Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261–3278.

Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.

Examples

```
##--- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function(y, z, l) {
    .Call('cgAUC_c_dscrt', PACKAGE = 'cgAUC', y, z, l)
}
```

Description

Compute the c_d_theta_sh_h_p.

Usage

```
c_d_{h_p(y, z, 1, h)}
```

Arguments

У	The potential variables. It is a matrix with column of values of a variables. It
	should be standardized in this application.

z The gold standard variable. It should be standardized.

1 Linear combination. A vector.

h The value of h falls into $(n^{-1/2})$, $n^{-1/5}$).

Details

Compute the c_d_theta_sh_h_p Come from differential.

c_s_h

Value

d.theta.sh.h.p Theta after differential.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 2006; 25:481–493.

Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261–3278.

Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.

Examples

 c_s_h

Description

Smooth function.

Usage

```
c_s_h(t, h)
```

Arguments

t A value, the difference between any two subjects.

h The value of h falls into $(n^{-1/2})$, $n^{-1/5})$.

Details

Smooth function.

10 optimal.delta

Value

s_h The value of smooth function.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 2006; 25:481–493.

Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261–3278.

Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function(t, h) {
    .Call('cgAUC_c_s_h', PACKAGE = 'cgAUC', t, h)
}
```

optimal.delta

optimal.delta

Description

Find the optimal delta.

Usage

```
optimal.delta(y, z, l, h, ind.d.l)
```

Arguments

У	The potential variables. It is a matrix with column of values of a variables. It
	should be standardized in this application.
z	The gold standard variable. It should be standardized.
1	Linear combination. A vector.
h	The value of h falls into $(n^{-1/2})$, $n^{-1/5}$).
ind.d.l	Void

optimal.delta 11

Value

delta.star Optimal delta.

Author(s)

Yu-chia Chang

References

Chang, YCI. Maximizing an ROC type measure via linear combination of markers when the gold reference is continuous. Statistics in Medicine 2012.

Obuchowski NA. An ROC-type measure of diagnostic accuracy when the gold standard is continuous-scale. Statistics in Medicine 2006; 25:481–493.

Obuchowski N. Estimating and comparing diagnostic tests accuracy when the gold standard is not binary. Statistics in Medicine 2005; 20:3261–3278.

Friedman JH, Popescu BE. Gradient directed regularization for linear regression and classification. Technical Report, Department of Statistics, Stanford University, 2004.

Examples

```
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (y, z, 1, h, ind.d.1)
   1.i = matrix(rep(1, times = 50), nrow = 50, byrow = TRUE)
   delta = seq(0, 5, length = 50)
   m = delta %*% t(ind.d.l)
   1.i = 1.i + m
   l.i.max = apply(l.i, 1, max)
   l.i = l.i/l.i.max
   theta = rep(0, 50)
   for (i in 2:50) {
       theta[i] = cntin(y, z, 1.i[i, ], h)$theta.sh.h.p
   delta.star = delta[which(theta == max(theta))]
    return(delta.star)
 }
```

Index

```
*\ c\_cntin
     c_cntin, 6
*\ c\_d\_theta\_sh\_h\_p
     c_d_{h_p, 8}
* c_dscrt
     c\_dscrt, \textcolor{red}{7}
* c_s_h
     c_s_h, 9
* \ cgAUC
     cgAUC, 3
     cgAUC-package, 2
*\ optimal.delta
     {\tt optimal.delta}, \textcolor{red}{10}
c_cntin, 6
c_d_theta_sh_h_p, 8
c_dscrt, 7
c_s_h, 9
cgAUC, 3
cgAUC-package, 2
{\tt optimal.delta}, \textcolor{red}{10}
```