Tensor Analysis

Mathematical Methods in the Physical Sciences

Steve Mazza

Naval Postgraduate School Monterey, CA

SE3030, Winter/2014
Quantitative Methods of Systems Engineering

Introduction

- Tensors are designated by their size and order.
- Tensors of order 0 are scalars
- Tensors of order 1 are vectors
- A second order tensor has 3² = 9 components
- In general, an *n*th ranked tensor can be described by 3ⁿ coefficients.

Cartesian Tensors

Under passive rotation the vectors are fixed and the axes are rotated. We want to know how the components of a displacement vector in one coordinate system are related to its components in a rotated system. A vector \vec{r} has components x, y, z or x', y', z' relative to the two coordinate systems.

The table lists the cosines of the nine angles between the (x, y, z) and the (x', y', z') axes.

Cartesian Tensors (continued)

Let $\vec{i}, \vec{j}, \vec{k}$ be unit vectors along (x, y, z) axes and $\vec{i'}, \vec{j'}, \vec{k'}$ be unit vectors along (x', y', z'). Then we can represent \vec{r} as follows.

$$r = \vec{i}x + \vec{j}y + \vec{k}z = \vec{i}'x' + \vec{j}'y' + \vec{k}'z'$$

$$\vec{r} \cdot \vec{i} = \vec{i} \cdot \vec{i}'x + \vec{j} \cdot \vec{i}'y + \vec{k} \cdot \vec{i}'z = x'$$
since $\vec{i}' \cdot \vec{i}' = 1$, and $\vec{i}' \cdot \vec{j}' = \vec{i}' \cdot \vec{k}' = 0$
and $\vec{i} \cdot \vec{i}' = l_1, \vec{j} \cdot \vec{i}' = m_1, \vec{k} \cdot \vec{i}' = n_1$

$$x' = l_1x + m_1y + n_1z$$

$$y' = l_2x + m_2y + n_2z$$

$$z' = l_3x + m_3y + n_3z$$

These are the transformation equations from (x, y, z) to (x', y', z').

Tensor Notation and Operations

- For simplicity, we drop the summation sign and assume summation over any index which appears twice in one term.
- Contraction
 - Obtained by setting unlike indices equal and summing
 - Reduces the order by 2
- First and second order tensors can be displayed as matrices.
- Symmetry
 - Symmetric if $T_{ij} = T_{ji}$.
 - Antisymmetric if $T_{ij} = -T_{ji}$.
 - Any second order tensor can be written as a sum of a symmetric and antisymmetric tensor.
- Combination
 - The linear combination of two tensors of order n is a tensor of order n.
 - Addition is not defined for tensors of different order.
- Quotient Rule is useful for identifying components of a tensor.

Inertia Tensor

For a rigid body rotating about a fixed axis, we know that the velocity, ω , and momentum, L, are related by the equation $L = I\omega$ where I is the moment of inertia. But if the rotation axis is not fixed, then I must be replaced by a second order tensor with components I_{ik} .

Kronecker Delta and Levi-Civita Symbol

Kronecker Delta

$$\delta_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ otherwise} \end{cases}$$

Levi-Civita Symbol

$$\epsilon_{ijk} = \begin{cases} 1 & \text{for an even permutation} \\ -1 & \text{for an odd permutation} \\ 0 & \text{if any indices are repeated} \end{cases}$$

Vector Identities

3-by-3 determinant

$$\det A = a_{1i}a_{2j}c_{3k}\epsilon_{ijk}$$

Dot Product

$$A \cdot B = A_i B_i$$

Cross Product

$$(A \times B)_i = \epsilon_{ijk} B_j C_k$$

Curl

$$(\nabla \times V)_i = \epsilon_{ijk} \frac{\partial}{\partial x_i} V_k$$

Pseudovectors and Pseudotensors

The general case of orthogonal transformations includes reflections.

- If det A = 1 (rotation), it is called a *polar* or true vector.
- If det A = -1 (reflection), it is called an *axial* or pseudovector.

Physical Examples

Consider the current density in an anisotropic material like graphite. In general the current density, \vec{j} , will be parallel to the applied electric field, \vec{E} according to Ohm's law $(\vec{j}=\sigma\vec{E})$. However, due to the crystalline structure, each component of the density vector depend on all other components of the electric field. 1

$$j_1 = {}_{11}E_1 + {}_{12}E_2 + {}_{13}E_3$$
$$j_2 = {}_{21}E_1 + {}_{22}E_2 + {}_{23}E_3$$
$$j_3 = {}_{31}E_1 + {}_{32}E_2 + {}_{33}E_3$$

Other second rank tensors include thermal conductivity, stress, and strain (see Boas , p. 519). Higher order tensors describe properties related to more than one 2^{nd} rank tensor (e.g., stiffness = stress + strain).

Steve Mazza Tensor Analysis

Curvilinear Coordinates

Equivalence between rectangular and cylindrical coordinates. As usual,

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

$$\sin \theta dr - r \sin \theta d\theta$$

$$dy = \sin \theta dr + r \cos \theta d\theta$$

$$dz = dz$$

Squaring and reducing, we obtain,

$$ds^{2} = dx^{2} + dy^{2} + dz^{2} = dr^{2} + r^{2}d\theta^{2} + dz^{2}$$

For orthogonal coordinate systems, all cross products will cancel nicely.

Vector Operations in Orthogonal Curvilinear Coordinates

Gradient

$$\nabla u = \sum_{i=1}^{3} e_i \frac{1}{h_i} \frac{\partial u}{\partial x_i}$$

Div

$$\nabla \cdot \vec{V} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial x_1} \left(h_2 h_3 V_1 \right) + \frac{\partial}{\partial x_2} \left(h_1 h_3 V_2 \right) + \frac{\partial}{\partial x_3} \left(h_1 h_2 V_3 \right) \right]$$

Laplacian

$$\nabla^2 u = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial x_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial u}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial u}{\partial x_2} \right) + \frac{\partial}{\partial x_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial u}{\partial x_3} \right) \right]$$

Non-Cartesian Tensors

Questions?

