

典型例题

题型一: 函数的单调区间和极值

例1: 计算下列函数单调区间和极值

(1)
$$y = x^3 - 3x^2 - 9x + 13$$

定义域

导数y'

驻点

y'不存在 的点

增区间

减区间

极大值点为_____, 极小值为_____。

知识储备

1.单调性与导数的关系

定理: 若函数y = f(x)在[a,b]上连续,在(a,b)内可导,则有

- (1) 若在(a,b)内f'(x) > 0,则f(x)在[a,b]上单调递增;
- (2) 若在(a,b)内f'(x) < 0,则f(x)在[a,b]上单调递减.

2.极值点 $x = x_0$ 处导数的特征

 $f'(x_0) = 0$ (驻点) 或 $f'(x_0)$ 不存在

极值点左右两侧的单调性不同

典型例题

题型一: 函数的单调区间和极值

例1: 计算下列函数单调区间和极值

(2)
$$y = 2x - 3x^{\frac{2}{3}}$$

定义域

导数y'

驻点

y'不存在 的点

增区间

减区间

极大值点为_____, 极小值为_____。

知识储备

1.单调性与导数的关系

定理: 若函数y = f(x)在[a,b]上连续,在(a,b)内可导,则有

- (1) 若在(a,b)内f'(x) > 0,则f(x)在[a,b]上单调递增;
- (2) 若在(a,b)内f'(x) < 0,则f(x)在[a,b]上单调递减.

2.极值点 $x = x_0$ 处导数的特征

 $f'(x_0) = 0$ (驻点) 或 $f'(x_0)$ 不存在

极值点左右两侧的单调性不同

典型例题

知识储备

练习1: 求下列函数的单调区间和极值

函数	$y = 2x^3 - 3x^2 - 12x - 3$	$y = \frac{1}{2}x^4 - 2x^3$	$y = \sqrt[3]{x^2}$
定义域			
导数 <i>y</i> '			
驻点			
y'不存在 的点			
增区间			
减区间			

通识教学部

----20分钟后

练习1: 求下列函数的单调区间和极值

函数	$y = 2x^3 - 3x^2 - 12x - 3$	$y = \frac{1}{2}x^4 - 2x^3$	$y = \sqrt[3]{x^2}$
定义域	$(-\infty, +\infty)$	$(-\infty, +\infty)$	$(-\infty, +\infty)$
导数y′	$y^\prime = 6x^2 - 6x - 12$	$y^\prime=2x^3-6x^2$	$y'=rac{2}{3}x^{-rac{1}{3}}$
驻点	x = 2, x = -1	x = 0, x = 3	无
y'不存在 的点	无	无	x = 0
增区间	$(-\infty,-1)$ 和 $(2,+\infty)$	$(3,+\infty)$	$(0, +\infty)$
减区间	(-1, 2)	$(-\infty,0)$ 和 $(0,3)$	$(-\infty,0)$

典型例题

题型二:函数的凹凸区间和拐点

例3: 计算下列函数凹凸区间和拐点

$$y = y = 6x - 24x^2 + x^4$$

定义域

导数y'

二阶导y''

y"不存在 的点

凹区间

凸区间

所以,拐点为_____。

知识储备

1.凹凸性与二阶导数的关系

函数凹凸性判定定理

设函数 y=f(x) 在[a,b]上连续,在(a,b)内具有二阶导数,则

- (1) 若在(a,b)内,f''(x)>0,则曲线 y=f(x)在[a,b]上是凹的;
- (2) 若在(a,b)内,f''(x)<0,则曲线y=f(x)在[a,b]上是凸的.

2.拐点处导数f''(x)的特征

 $f''(x_0) = 0$ 或 $f''(x_0)$ 不存在

拐点左右两侧的凹凸性不同

典型例题

知识储备

练习2: 求下列函数的凹凸区间和拐点

函数	$y = x^3 - 3x^2 - 1$	$y = x + \frac{1}{x+1}$
定义域		
导数y'		
二阶导数y"		
y" = 0的点		
y"不存在 的点		
凹区间		
凸区间		

通识教学部

……10分钟后

典型例题

知识储备

练习2: 求下列函数的凹凸区间和拐点

函数	$y = x^3 - 3x^2 - 1$	$y = x + \frac{1}{x+1}$
定义域	$(-\infty, +\infty)$	$(-\infty, -1)$ U $(-1, +\infty)$
导数 <i>y'</i>	$y'=3x^2-6x$	$y'=1-\tfrac{1}{(x+1)^2}$
二阶导数y"	y''=6x-6	$y'' = \frac{2}{(x+1)^3}$
y'' = 0的点	x = 1	无
y''不存在 的点	无	无
凹区间	(1, +∞)	$(-1,+\infty)$
凸区间	$(-\infty,1)$	$(-\infty, -1)$

