Numeri Complessi

Lorenzo Dentis, lorenzo.dentis@edu.unito.it

22 ottobre 2022

1 definizione

Def. Un numero complesso è una coppia ordinata (x,y) con $x,y \in \mathbb{R}$. Nell' insieme dei numeri complessi $\mathbb{C} = \{z = x + iy | x, y \in \mathbb{R}\}$ (posti $z_1, z_2 \in \mathbb{C}$) si definiscono le seguenti operazioni.

```
Addizione z_1+z_2=(x_1+x_2,y_1+y_2)

Prodotto z_1z_2=(x_1x_2-y_1y_2,\ x_1y_2+x_2y_1)

La "formula" del prodotto si deduce facilmente da (x_1+iy_1)(x_2+iy_2)
```

Un numero complesso può essere anche scritto in forma algebrica z = x + iy.

Def. Dato z=(x,y) definisco "coniugato di z": $\overline{z}=(x,-y)$

2 proprietà

Essendo un numero complesso una coppia di numeri reali, si può affermare $\mathbb{C}=\mathbb{R}^2$?

Sì,no,sì.

Insiemisticamente sono uguali tanto che spesso si rappresentano i numeri immaginari sul piano di Gauss (piano complesso) , z è un punto in \mathbb{R}^2 di coordinate (x,y) Algebricamente non sono uguali, in quanto il prodotto mostrato in \mathbb{C} non è presente in \mathbb{R}^2 .

La somma corrisponde alla somma di vettori in \mathbb{R}^2 ma il prodotto non ha corrispondenza. il prodotto vettoriale è completamente diverso in \mathbb{R}^2 .

Topologicamente sono uguali, dato un numero complesso z, $||z|| = \sqrt{x^2 + y^2}$ chiamata norma o modulo di z. cioè la stessa cosa del vettore di coordinate $(x,y) \in \mathbb{R}^2$. Da cui deriva che la "distanza" tra due numeri complessi z,w è, come in \mathbb{R}^2 , $dist(z,w) = ||z-w|| = \sqrt{(x_z-x_w)^2 + (y_z-y_w)^2}$

Nota: il prodotto fornisce anche una giustificazione alle proprietà dell' $unit\grave{a}$ immaginaria

 $\mathbf{Def.}\ i=(0,1)\ \grave{e}\ detta\ unit\grave{a}\ immaginaria\ e\ verifica\ formalmente\ i^2=1$

Infatti
$$i^2 = (0,1)^2 = (0,1)(0,1) = (0*0-1*1,0*1,1*0) = (-1,0) = 1$$

3 Altre forme di scrittura

3.1 Trigonometrica

Rappresentando sul piano complesso un numero complesso z notiamo che si può esprimere la sua "posizione" anche in coordinate polari.

$$z = x + iy = \rho \cos\theta + i \rho \sin\theta = \rho(\cos\theta + i \sin\theta)$$

Chiamiamo questo modo di esprimere un numero complesso "formai algebrica scritta in modo trigonometrico"

3.2 Esponenzionale

Def (Formula di De Moivre).

$$e^{i\theta} = \cos\theta + i \, sen\theta$$

Dunque

$$z = \rho(\cos\theta + \sin\theta) = \rho e^{i\theta}$$

Def (Esponenziale complesso). In generale, sia z = (x, y)

$$e^z = e^x e^{iy} = e^x (\cos y + i \operatorname{sen} x)$$

La forma esponenziale permette di svolgere calcoli in maniera più semplice (soprattuto moltiplicazioni e potenze).

3.3 note

Equivalenza tra la scrittura in forme algebrica e la scrittura come coppia di numeri reali.

$$x = (x,0) \ y = (y,0), \ i = (0,1) \\ x+iy = (x,0)+(0,1)*(y,0) = (x,0)+(0*y-1*0,0*0+1*y) = (x,0)+(0,y) = (x,y)$$

Analisi a valori complessi: Data un funzione $f: \mathbb{I} \to \mathbb{C}$, $\forall t \in \mathbb{I}$, $f(t) \in \mathbb{C}$ quindi può essere "scomposta": $f(t) = f_1(t) + i f_2(t)$. f_1 è la parte reale di f_t ed f_2 la parte immaginaria

Def (Derivata a valori complessi).

$$f'(t) = f_1'(t) + i f_2'(t)$$

Def (Integrale a valori complessi).

$$\int_{I} f(t)dt = \int_{I} f_{1}(t)dt + i \int_{I} f_{2}(t)dt$$