Trabajo Práctico Final – TUIA NLP 2025

Título del proyecto: Agente ReAct para el juego de mesa **Pradera**

Autor: Brisa Moresco

Fecha de entrega: 29 de junio de 2025

1. Introducción

El presente trabajo final consiste en la implementación progresiva de un sistema de Recuperación Aumentada con Generación (RAG) y su posterior evolución a un agente autónomo basado en el paradigma ReAct. Todo el desarrollo se centra en el juego de mesa **Pradera**, utilizando datos estructurados, no estructurados, estadísticos y relacionales.

Durante el **Ejercicio 1** se construyó un pipeline clásico de RAG con recuperación semántica, integración de datos tabulares y consultas sobre grafos. En el **Ejercicio 2**, dicho sistema fue transformado en un **agente autónomo**, capaz de decidir qué herramienta utilizar para responder preguntas complejas de los usuarios. El desarrollo se realizó en **Google Colab**, utilizando herramientas como **LangChain**, **SentenceTransformers**, **FAISS**, **ChromaDB**, **Neo4j**, y modelos LLM.

Ejercicio 1 – Sistema RAG aplicado a Pradera

Objetivo

El objetivo fue diseñar un sistema capaz de responder preguntas sobre el juego *Pradera* utilizando múltiples fuentes de datos:

- Textos extraídos del reglamento y materiales del juego.
- Estadísticas en tablas.
- Relaciones entre componentes del juego en formato de grafo.

Para eso, se empleó un modelo de lenguaje que accede a estas fuentes mediante técnicas de recuperación semántica, re-ranking y consultas específicas (Pandas y Cypher).

1. Montaje de Google Drive y carga de datos

Se utilizó Google Colab como entorno de desarrollo. Los datos fueron almacenados en una carpeta compartida de Drive:

```
from google.colab import drive drive.mount('/content/drive')
```

Una vez montado el drive, se exploró el contenido del directorio PRADERA, que incluía subcarpetas como:

- /datos/informacion/ (reglamento en español)
- /datos/estadisticas/ (meadow_stats.csv)
- /datos/relaciones/ (relaciones.csv para el grafo)

Esta organización permitió separar claramente las tres fuentes clave del sistema RAG.

2. Limpieza de texto y segmentación

El reglamento en español fue el insumo principal para la parte textual. Se diseñó una función personalizada de limpieza (limpiar_texto_raw) que:

- Repara palabras partidas por guiones.
- Elimina saltos de línea innecesarios.
- Combina oraciones sueltas en bloques semánticamente completos.

Luego, usando **spaCy**, se segmentó el texto en **fragmentos de oraciones**, lo cual fue fundamental para la recuperación basada en embeddings:

```
doc = nlp(texto_limpio)
fragments = [sent.text.strip() for sent in doc.sents if len(sent.text.strip()) >
50]
```

Esto generó más de 300 fragmentos, listos para su vectorización.

3. Generación de embeddings con BGE-M3

Para vectorizar los fragmentos, se utilizó el modelo **BAAI/bge-m3**, que mostró excelente desempeño en tareas de recuperación multilingüe y se encuentra optimizado para **Semantic Search**.

```
model = SentenceTransformer("BAAI/bge-m3")
fragment_embeddings = model.encode(fragments, normalize_embeddings
=True)
```

Decisión justificada: Se optó por bge-m3 en lugar de modelos como all-mpnet-base-v2 debido a su entrenamiento más reciente, mayor capacidad multilingüe, y compatibilidad con modelos open source.

4. Pruebas de recuperación con métricas múltiples

Se realizaron pruebas de recuperación usando queries como:

- "¿Cómo se consiguen puntos?"
- "¿Qué cartas hay en el juego?"
- "¿Cuál es el objetivo del juego?"

Se compararon distintos métodos de similitud:

Métrica	Ventajas principales		
Cosine Similarity	Comparación semántica directa sobre los embeddings (mejor resultado)		
Jaccard / Dice	Comparación sobre sets de palabras		
Levenshtein / Jaro- Winkler	Comparación carácter a carácter		

```
# Cosine Similarity
sim_matrix = cosine_similarity(query_embeddings, fragment_embeddings)
```

Conclusión: la **similitud de coseno** fue la más efectiva para capturar significado, mientras que las otras métricas mostraron resultados pobres ante reordenamientos o reformulaciones.

5. Indexación con ChromaDB

Finalmente, se almacenaron los embeddings y textos en una base persistente usando **ChromaDB**:

collection = chroma_client.create_collection(name="fragmentos_pradera")
collection.add(documents=fragments, embeddings=fragment_embedding
s.tolist(), ids=ids)

Esto permitió consultas eficientes con collection.query() y luego encapsuladas en una función doc_search(query).

Ejemplo de uso:

doc_search("¿Qué tipos de cartas hay en Pradera?", k=3)

Dificultades enfrentadas en esta etapa

- Fragmentación demasiado fina o ruidosa: en pruebas iniciales, los fragmentos eran demasiado cortos o mal segmentados (por listas, puntos suspensivos, etc.). Esto obligó a implementar un sistema de limpieza más robusto.
- Texto con caracteres especiales (como la ñ mal codificada): el archivo del reglamento tenía problemas de codificación UTF-8 (e.g., reglamento_español.txt) que debimos detectar y corregir manualmente.
- Persistencia de vectores en ChromaDB: en algunos entornos, al reiniciar Colab, la colección debía reconstruirse; esto nos llevó a encapsular mejor la creación y consulta de colecciones.
- Evaluación subjetiva: si bien el sistema funcionaba bien, validar la calidad de las respuestas requería interpretación humana.

6. Consulta sobre Datos Estadísticos del Juego

Una de las fuentes relevantes para este proyecto fue el archivo meadow_stats.csv , que contiene datos estadísticos del juego *Pradera*, incluyendo cantidad de usuarios que lo poseen, puntuaciones, cantidad de partidas, y otras métricas de interacción registradas en plataformas como BoardGameGeek.

Carga y limpieza de datos

Los datos fueron cargados y procesados usando Pandas. En una primera etapa, se realizó la conversión del campo "valor" desde texto (con comas o caracteres especiales) hacia valores numéricos. Esto permitió utilizar filtros y cálculos de forma precisa. A su vez, se extrajo una estructura general del DataFrame para poder alimentar un modelo de lenguaje:

```
estructura = {
  'columnas': df_stats.columns.tolist(),
  'tipos': df_stats.dtypes.astype(str).to_dict(),
  'nulos': df_stats.isnull().sum().to_dict(),
  ...
}
```

Esta estructura sirvió como insumo para construir un prompt dirigido a un modelo LLM, con el fin de generar dinámicamente código Python que permita responder preguntas sobre las estadísticas del juego.

Interacción con el modelo de lenguaje

La pregunta del usuario fue:

¿Cuántas personas tienen el juego o lo desean?

Para responderla, se diseñó un prompt específico que describe la estructura del DataFrame y pide al modelo generar únicamente código Python (sin explicaciones), utilizando Pandas para filtrar y procesar la información:

```
PROMPT = f"""

Eres un modelo encargado de convertir consultas en lenguaje natural a cód igo Python con pandas.
...

RESPONDE UNICAMENTE CON CÓDIGO PYTHON, SIN EXPLICACIONES. L a variable se llama df_stats.
"""
```

El modelo respondió con código que selecciona las filas adecuadas y suma los valores correspondientes:

df_stats[df_stats['Estadistica'].str.contains('Own|Want', case=False, na=False)]['Valor'].sum()

Este código fue ejecutado y evaluado dinámicamente en el entorno. Posteriormente, se construyó otro prompt para que el modelo explique el resultado en lenguaje natural, sin reproducir el código ni el contexto original.

Resultado obtenido

El sistema respondió correctamente, indicando la cantidad de personas que tienen o desean el juego. Este mecanismo se generalizó para que el chatbot pueda responder preguntas sobre cualquier estadística registrada en el CSV, sin necesidad de hardcodear columnas ni valores esperados.

Justificación del enfoque

Se optó por delegar la construcción de filtros en el modelo LLM porque:

- La cantidad de consultas posibles es variada y difícil de anticipar.
- Permite mantener un flujo flexible sin reentrenamiento de reglas.
- El prompt es fácilmente reutilizable con otros DataFrames similares.

Esta estrategia también permitió trabajar con un modelo LLM local (Gemini/Ollama), sin depender de procesamiento externo.

Dificultades y resoluciones

Durante el desarrollo, se identificaron algunos problemas puntuales:

- Errores en la conversión de tipos: algunas celdas incluían texto con signos de puntuación o caracteres especiales que impedían convertir los valores correctamente. Se solucionó con expresiones regulares.
- Instrucciones ambiguas al modelo: al principio, el modelo generaba código que asumía la existencia de columnas inexistentes o filtraba mal los textos. Se resolvió proporcionando una descripción estructurada del DataFrame en el prompt.
- Evaluación dinámica del código: ejecutar el código generado por el modelo requería un entorno controlado para evitar errores o resultados inesperados. Se aplicó eval() con un diccionario de contexto seguro.

Este módulo estadístico resultó fundamental para responder preguntas cuantitativas sobre el juego y se integró como una de las herramientas clave en el sistema RAG y en el agente del ejercicio 2.

7. Consultas sobre relaciones del juego mediante una base de grafos

Además del texto y las estadísticas, el sistema debía poder responder preguntas sobre **relaciones** entre entidades del juego, como qué componentes dependen de otros, cómo se agrupan, o cómo se traducen. Para eso, se creó una **base de datos de grafos** con Neo4j a partir de un archivo CSV con triples (sujeto, relación, objeto).

Construcción del grafo

Los datos fueron cargados desde relaciones_juego.csv y transformados en un DataFrame con tres columnas: sujeto1, relacion, y sujeto2. Cada fila representa una relación dirigida entre dos entidades. Luego, se conectó con una instancia de Neo4j AuraDB, y se ejecutaron consultas para crear los nodos y relaciones.

```
MERGE (a:Entidad {nombre: $sujeto1})

MERGE (b:Entidad {nombre: $sujeto2})

MERGE (a)-[:`{relacion}`]→(b)
```

Se usó la etiqueta común Entidad para todos los nodos y se mantuvieron los nombres originales en el atributo nombre. Las relaciones fueron representadas tal cual aparecen en el archivo, lo que permitió conservar el vocabulario específico del juego.

Integración con un modelo de lenguaje

Para responder preguntas, se usó un modelo LLM (Gemini) que transforma preguntas en lenguaje natural a **consultas Cypher**, el lenguaje de consultas de Neo4j. Se diseñó un prompt con contexto estructurado para que el modelo genere consultas correctas:

Sos un modelo que transforma consultas en lenguaje natural a consultas e n Cypher...

```
Las relaciones disponibles son: [...]
Usá siempre la propiedad 'nombre' para identificar los nodos
```

Por ejemplo, ante la pregunta "¿Cómo se dice 'Meadow' en otros idiomas?", el modelo generó una consulta Cypher del tipo:

```
MATCH (e1:Entidad)-[:SE_TRADUCE_COMO]→(e2:Entidad)
WHERE e1.nombre = 'Meadow'
RETURN e2.nombre AS nombre
```

Este resultado fue ejecutado directamente contra la base de datos y se obtuvo como respuesta la lista de traducciones disponibles, extraídas desde los nodos conectados.

Automatización del proceso

Para encapsular esta lógica, se definieron dos funciones clave:

- generar_cypher_llm(pregunta): genera la consulta Cypher usando el LLM.
- consultar_grafo_Ilm(pregunta): ejecuta la consulta y devuelve los resultados como lista.

Este esquema permitió hacer uso del grafo de forma natural dentro del sistema RAG y, posteriormente, desde el agente del ejercicio 2.

Dificultades encontradas

Durante la implementación surgieron varios obstáculos:

- Errores por caracteres especiales: algunos nombres incluían acentos, símbolos o codificaciones incompatibles. Se resolvió releyendo el CSV con el argumento encoding_errors='replace'.
- Consultas mal generadas: al principio, el LLM generaba consultas con nombres de nodos o relaciones inexistentes. Para evitar esto, se le dio al modelo una descripción concreta de las relaciones válidas en el grafo (tipos_de_relaciones).
- Errores de conexión con Neo4j AuraDB: algunos errores de conexión se solucionaron ajustando la URI (neo4j+s) y revisando los permisos del proyecto en la nube.

 Validación de resultados: fue necesario revisar manualmente algunos resultados para asegurarse de que las relaciones reflejaban lo que indicaba el material original del juego.

Justificación del enfoque

Utilizar una base de grafos resultó especialmente útil para representar relaciones como:

- Tipos de cartas que están conectadas entre sí.
- Traducciones entre nombres de componentes.
- Relaciones de tipo "requiere", "es parte de", "se combina con", entre otras.

Elegir **Neo4j** permitió una representación flexible y escalable de estas relaciones, y al delegar la generación de Cypher al modelo de lenguaje se evitó tener que anticipar todas las posibles consultas.

8. Clasificador de intención

Para identificar qué fuente de información debía usar el sistema RAG al recibir una consulta, se desarrolló un **clasificador de intención**. Este módulo permite decidir si una pregunta requiere acceder al texto, al grafo o a los datos estadísticos.

Definición de clases

Se definieron tres categorías de intención:

- Información: consultas sobre reglas, mecánicas, funcionamiento de cartas o generalidades del juego.
- **Relaciones**: preguntas sobre vínculos entre componentes, condiciones cruzadas o interacción entre elementos.
- Estadística: preguntas cuantitativas, sumatorias, promedios, frecuencias o conteos.

Estas categorías fueron seleccionadas en función de las fuentes de datos del sistema RAG (texto, grafo y tabla), con el objetivo de que cada clase se asocie directamente a una herramienta.

Entrenamiento del clasificador tradicional

Para entrenar el clasificador, se generó un conjunto de **300 preguntas simuladas**, con 100 ejemplos por clase. Las preguntas fueron redactadas manualmente para cubrir una gran variedad de formulaciones posibles dentro de cada categoría.

Los pasos principales fueron:

- 1. **Vectorización de las preguntas** usando el modelo de SentenceTransformer "BAAI/bge-m3".
- 2. Codificación de las etiquetas con LabelEncoder.
- 3. División en entrenamiento y prueba con train_test_split y estratificación.
- 4. Entrenamiento de tres modelos supervisados:
 - Random Forest
 - Regresión Logística
 - K-Nearest Neighbors (KNN)

El código utilizado es el siguiente:

```
X = model.encode(df_preguntas['pregunta'].tolist())
y = le.fit_transform(df_preguntas['categoria'])
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y)
```

Resultados de los modelos entrenados

El modelo con mejor desempeño fue **Random Forest**, que mostró alta precisión en todas las clases. La Regresión Logística también obtuvo buenos resultados, pero el modelo KNN fue más sensible a clases cercanas como "Información" y "Relaciones".

Esto sugiere que los embeddings generados capturan bien la semántica de las preguntas, permitiendo que modelos clásicos puedan clasificarlas con éxito.

El sistema final utilizó RandomForestClassifier como clasificador por defecto.

Clasificación con modelo de lenguaje (LLM)

Además del clasificador entrenado, se implementó una alternativa basada en **few-shot prompting** usando un modelo LLM (Gemini). Para esto, se diseñó un prompt con 25 ejemplos representativos, siguiendo el formato:

Consulta: [texto de la pregunta] Intención: [clase correspondiente]

Este enfoque permitió clasificar preguntas nuevas sin necesidad de entrenar un modelo, ideal para casos con escaso volumen de datos.

La función clasificar_IIm_gemini(pregunta) se encargó de aplicar el prompt y recuperar la clase predicha. Se usó para validar su desempeño sobre ejemplos aleatorios del conjunto de prueba.

Comparación entre ambos enfoques

Se comparó el rendimiento entre el clasificador entrenado y el LLM sobre una muestra de 10 preguntas del conjunto de test. Los resultados mostraron:

- Buena concordancia general entre ambos enfoques.
- El clasificador entrenado fue más consistente y preciso.
- El LLM fue más flexible en la interpretación pero menos fiable en clases límites o formulaciones ambiguas.

La elección final fue mantener ambos mecanismos, con prioridad al modelo entrenado, y el LLM como respaldo para casos no previstos o inputs inusuales.

Dificultades y observaciones

- **Desbalance inicial**: Se tuvo que generar el mismo número de ejemplos por clase para evitar sesgos en el entrenamiento.
- **Formulaciones ambiguas**: Algunas preguntas podían pertenecer a más de una clase. Se resolvió mediante revisión manual y curado del dataset.
- Desempeño del LLM: Aunque es flexible, el modelo cometía errores en preguntas muy cortas o cuando usaba términos que no aparecían en los ejemplos.
- Reintentos por límite de uso: Al probar múltiples consultas con Gemini, se alcanzó el límite de uso por minuto. Se agregó un mecanismo de retry con pausa automática.

9. Pipeline de Recuperación (Retrieval híbrido)

Para mejorar la capacidad del sistema RAG al momento de recuperar información textual, se implementó un **pipeline híbrido de recuperación** que combina dos enfoques complementarios:

- Búsqueda semántica, basada en embeddings de frases y comparación por similitud de coseno.
- **Búsqueda por palabras clave**, utilizando el modelo BM25 (Best Matching 25), una técnica clásica de recuperación basada en términos.

Este enfoque permite aprovechar lo mejor de ambos mundos: la flexibilidad semántica de los modelos modernos y la precisión léxica de las búsquedas tradicionales.

Preparación de los datos

Se trabajó con una lista de *chunks* de texto, que representan fragmentos relevantes del reglamento del juego *Pradera*. Cada chunk contiene una unidad de información sobre componentes, mecánicas, objetivos o reglas.

Se construyó un DataFrame con estos fragmentos, y se realizaron dos procesos paralelos:

- 1. **Vectorización semántica** usando el modelo "all-MiniLM-L6-v2" de Sentence Transformers, por su buen equilibrio entre velocidad y calidad.
- 2. **Tokenización para BM25**, dividiendo los textos en palabras minúsculas.

Estos pasos permitieron crear dos índices distintos:

- Un índice FAISS, para recuperar los fragmentos más cercanos en el espacio vectorial.
- Un índice BM250kapi, para buscar fragmentos que contengan palabras clave del input.

Lógica de la búsqueda híbrida

Se diseñó una función hybrid_search() que recibe una consulta y realiza los siguientes pasos:

- 1. Recupera los k_sem fragmentos más cercanos según embeddings y similitud de coseno.
- 2. **Recupera los K_bm25 fragmentos más relevantes** según puntuación de BM25.

- 3. **Une ambos conjuntos** y calcula un score combinado por re-rank, usando el promedio inverso de las posiciones en cada método.
- 4. Devuelve los top_n fragmentos más relevantes luego del reordenamiento.

Este pipeline demostró ser eficaz incluso con fragmentos cortos, donde a veces los métodos semánticos fallan por falta de contexto, pero BM25 sigue funcionando gracias a la coincidencia léxica.

Ejemplo de uso

Con la consulta:

¿Cómo obtengo cartas usando las fichas de sendero?

El sistema devolvió fragmentos como:

- 1. "Los jugadores obtienen cartas colocando fichas en ranuras del tablero, cumpliendo requisitos de símbolos para jugarlas..."
- 2. "En cada ronda, los jugadores juegan una ficha en el tablero para tomar una carta del portacartas correspondiente..."
- 3. "El tablero de hoguera permite colocar fichas para realizar acciones especiales..."

Estos resultados mezclan fragmentos relevantes por contexto semántico y otros que contienen términos como "fichas" y "cartas", reforzando la cobertura de la búsqueda.

Justificación del enfoque

Este pipeline híbrido fue preferido por las siguientes razones:

- La búsqueda semántica sola es sensible a cómo se formula la consulta, y
 puede ignorar detalles importantes si no se encuentra el "sentido general".
- BM25 es robusto ante coincidencias exactas de palabras, pero falla cuando el usuario formula la pregunta de manera indirecta.
- Combinarlas permite compensar las debilidades de cada una, y mejora significativamente la cobertura y precisión en pruebas reales.

Limitaciones encontradas

- Tamaño reducido de los fragmentos: con texto muy corto, la búsqueda semántica pierde efectividad. En estos casos, BM25 ayuda a recuperar contexto, pero puede haber fragmentos ambiguos.
- Ambigüedad en los términos de la consulta: algunos términos como "fichas", "acciones" o "cartas" aparecen en muchos fragmentos. Se podría mejorar usando desambiguación semántica o clasificadores previos.

Este sistema de recuperación híbrido se utilizó tanto en el sistema RAG (Ejercicio 1) como en el agente autónomo (Ejercicio 2), mejorando la precisión de las respuestas generadas a partir del reglamento del juego.

10. Herramientas independientes para consultas por tipo de fuente

Con el objetivo de encapsular el acceso a cada fuente de datos del sistema RAG, se diseñaron **herramientas independientes** para consultas tabulares (estadísticas) y de grafos (relaciones), que operan de forma desacoplada y reutilizable. Estas herramientas se integraron luego al agente conversacional, pero también pueden usarse por separado como funciones auxiliares.

10.1. Consultas sobre datos tabulares

Para responder preguntas sobre el archivo meadow_stats.csv , se desarrolló una función llamada table_search_llm() que combina:

- Un modelo LLM que transforma la consulta en lenguaje natural en código
 Python que filtra un DataFrame.
- Un resumen estructural del DataFrame, con columnas, tipos, valores máximos y mínimos.
- Un sistema de validación que ejecuta el código generado y devuelve el resultado al usuario.

Estructura general

def table_search_llm(prompt_usuario, df, modelo_llm=None):

- # resume estructura del dataframe
- # genera código Python con LLM
- # ejecuta el código y devuelve resultado

Por ejemplo, ante la consulta:

¿Cuántas personas tienen el juego o lo desean?

El modelo genera una línea de código como:

df[df['Estadistica'].str.contains('Own|Want', case=False, na=False)]['Valor'].sum()

Este código se ejecuta y devuelve el valor correcto, en este caso: la suma total de usuarios que poseen o desean el juego.

Justificación

Este enfoque evita tener que predefinir reglas para cada tipo de consulta y permite gran flexibilidad, siempre que el prompt y la estructura estén correctamente definidos. Además, se evita enviar el DataFrame completo al modelo, lo que reduce consumo de tokens y mejora la privacidad de los datos.

10.2. Consultas sobre base de grafos

De forma similar, se creó una herramienta llamada graph_search_llm() que permite transformar preguntas naturales en **consultas Cypher** válidas sobre la base de grafos en Neo4j.

Funcionalidad

La función recibe:

- Un prompt con la pregunta del usuario.
- Un esquema simplificado del grafo (tipos de nodos y relaciones).
- Un modelo de lenguaje (Gemini) que genera el Cypher.
- Un driver de conexión a Neo4j para ejecutar la consulta y devolver los resultados.

Por ejemplo, ante la pregunta:

¿Cómo se dice 'Meadow' en otros idiomas?

El modelo genera una consulta Cypher como:

MATCH (e1:Entidad)-[:NOMBRE_ALTERNATIVO]→(e2:Entidad)
WHERE e1.nombre = "Meadow"
RETURN e2.nombre AS nombre

Que devuelve correctamente las traducciones del nombre del juego.

Justificación

- El uso de un prompt con restricciones (sin explicaciones, con esquema predefinido) minimiza errores del modelo.
- Se garantiza que solo se usen relaciones y etiquetas conocidas del grafo.
- La respuesta se obtiene directamente desde Neo4j, sin intervención manual.

Ventajas del diseño modular

- Reutilización: cada herramienta puede usarse de forma independiente o integrada a un sistema mayor.
- **Escalabilidad**: si se agregan nuevas fuentes (por ejemplo, imágenes o texto OCR), se puede crear una nueva herramienta similar.
- **Mantenibilidad**: cada fuente tiene una función específica y clara, lo que facilita su depuración y actualización.

11. Flujo conversacional del sistema RAG

Una vez desarrolladas las herramientas individuales (clasificador de intención, retrieval textual, consultas tabulares y gráficas), se integraron en un **bucle conversacional completo**, donde el sistema RAG funciona como un chatbot que decide qué información utilizar para responder al usuario.

Este flujo fue diseñado para ofrecer respuestas contextualizadas y precisas según el tipo de consulta, manteniendo una pequeña memoria conversacional para permitir cierto grado de coherencia entre turnos.

Arquitectura general del flujo

El esquema de funcionamiento del chatbot es el siguiente:

USUARIO →

- → Clasificador de intención →
- → Herramienta correspondiente (texto, tabla, grafo) →
- → Si la respuesta es clara → Bot responde directamente
- → Si no → Se genera prompt con evidencia → LLM responde
- → Se guarda memoria del turno →
- → Se espera nueva entrada

Componentes principales

1. Clasificador de intención

- Basado en palabras clave, determina si la consulta es de tipo:
 - o "texto": se consulta el reglamento mediante recuperación semántica.
 - "estadistica": se consulta el DataFrame con Gemini y Pandas.
 - "relacional": se consulta Neo4j con una query Cypher generada dinámicamente.
- Si bien no es un modelo entrenado, el clasificador basado en palabras clave fue suficiente para los tipos de consulta previstos en esta etapa.

2. Herramientas de recuperación

- Cada tipo de intención activa una herramienta distinta:
 - hybrid_search() para buscar en texto.
 - table_search_llm() para filtrar datos estadísticos.
 - o graph_search_llm() para consultar relaciones en el grafo.

3. Generación de respuesta

- Si la evidencia recuperada permite una respuesta directa, esta se devuelve sin intervención del modelo LLM.
- Si la información no es suficiente o requiere explicación, se construye un prompt final con instrucciones, evidencia y memoria, que se envía a Gemini.

4. Memoria conversacional

- Se implementó una memoria de los últimos 6 turnos con deque(maxlen=6) para mejorar la coherencia.
- Esta memoria se incluye en cada nuevo prompt como contexto previo.

Ejemplo de ejecución

Una consulta como:

"¿Qué cartas otorgan puntos según el hábitat?"

Sigue el siguiente recorrido:

- Es clasificada como "texto".
- Se recuperan fragmentos del reglamento mediante hybrid_search()).
- Como no hay una respuesta directa, se construye un prompt con los fragmentos y la memoria reciente.
- El prompt se envía a Gemini, que genera una respuesta contextualizada.

Dificultades encontradas

1. Manejo de errores y excepciones

- Al integrar múltiples componentes (FAISS, Pandas, Neo4j, Gemini), era común que una de las herramientas falle por una entrada inesperada o una respuesta inválida del modelo.
- Se implementaron bloques try/except para capturar errores, continuar el flujo y dar respuestas alternativas o pedir reformulación.

2. Evaluación de respuestas directas

- En muchos casos, el resultado de una consulta a la tabla o al grafo podía ser devuelto directamente sin necesidad del LLM.
- Se añadió lógica para detectar cuando el resultado es un único valor (por ejemplo, un número) o una lista de strings simples y se devuelve como respuesta directa.

3. Ruido en la evidencia

 Algunos fragmentos recuperados eran irrelevantes o repetitivos, sobre todo cuando el texto tenía poca cobertura para cierta pregunta. Se resolvió usando un re-ranking que combina la posición en la búsqueda semántica y BM25, además de aplicar un límite de tokens para evitar prompts excesivos.

4. Inestabilidad del modelo LLM

- Gemini en algunos casos devolvía respuestas vacías o mal formateadas (por ejemplo, código en vez de texto).
- Se incluyó validación de respuesta mínima y mensajes por defecto como fallback.

5. Desempeño y tiempo de respuesta

- Al usar múltiples modelos y llamadas a red, la latencia del sistema podía ser alta.
- Se usó el modelo gemini-1.5-flash por su velocidad y se priorizó la respuesta directa en todos los casos posibles para evitar llamados innecesarios al LLM.

Con esta sección se completa el **Ejercicio 1**, que representa la primera etapa del sistema: un RAG modular capaz de recuperar información desde texto, tablas y grafos, y generar respuestas contextualizadas según la intención de la consulta.

Resultados de ejecucion del chatbot:

Ejercicio 2 – Evolución del sistema RAG a un Agente Autónomo

Objetivo

El segundo ejercicio del trabajo consistió en **transformar el sistema RAG modular** del Ejercicio 1 en un **agente autónomo**, capaz de razonar paso a paso, elegir qué herramienta usar, analizar la evidencia y generar una respuesta final.

Este enfoque se inspiró en el paradigma **ReAct** (Reasoning + Acting), donde el modelo realiza un bucle iterativo:

Input del usuario →

Thought: "¿Qué necesito hacer?"

Action: "Usar la herramienta adecuada"

Observation: "Resultado de la herramienta"

→ Repetir el ciclo hasta tener suficiente evidencia

→ Final Answer: Generar la respuesta final.

A diferencia del RAG tradicional, donde el flujo está preestablecido, el agente tiene libertad para decidir cuántos pasos seguir, cuándo usar cada fuente de datos, y cuándo generar la respuesta final. Esto aumenta la flexibilidad y hace posible resolver consultas más complejas y abiertas.

Implementación con LangChain

El agente fue construido usando la librería **LangChain**, que permite definir herramientas externas (Tools) y coordinar la lógica de planificación y ejecución. Las herramientas utilizadas fueron:

Tool	Función
doc_search	Búsqueda híbrida en texto del reglamento del juego
table_search	Generación de código dinámico para filtrar datos estadísticos
graph_search	Traducción a Cypher y consulta sobre relaciones en Neo4j
wikipedia_search	Consulta enciclopédica para datos externos al juego
duckduckgo_search	Consulta libre en la web abierta

Definición de herramientas

Se adaptaron funciones ya existentes del sistema RAG para convertirlas en herramientas compatibles con LangChain. Cada una implementa una interfaz simple: recibe una **consulta en lenguaje natural** y devuelve una **respuesta textual**.

Ejemplo: búsqueda en documentos

```
def doc_search(query: str, top_n: int = 5) → str:
  resultados = hybrid_search(query, top_n=top_n)
  return "\n\n".join(resultados)
```

Ejemplo: búsqueda tabular

```
def table_search(query: str) → str:
    try:
        resultado = table_search_llm(query, df_stats, modelo_llm=model_gemi
ni)
    return resultado.to_markdown(index=False)
    except Exception as e:
    return f"Error al procesar la consulta tabular: {e}"
```

Ejemplo: búsqueda en grafo

```
def graph_search(query: str) → str:
    try:
    result = graph_search_llm(query, driver, modelo_llm=model_gemini)
    return f"Cypher: {result['query']}\nResultados:\n{result['results']}"
    except Exception as e:
    return f"Error al procesar la consulta al grafo: {e}"
```

Herramientas externas

También se incorporaron funciones para buscar en **Wikipedia** y **DuckDuckGo**, extendiendo la cobertura del agente más allá del dominio del juego:

```
def wikipedia_search(query: str) → str:
return wikipedia.run(query)
```

def duckduckgo_search(query: str) → str:
 return duckduckgo.run(query)

Justificación del enfoque

Transformar el sistema en un agente autónomo permitió resolver consultas más complejas que no podían ser abordadas con un único paso o fuente. Por ejemplo:

- "¿Qué cartas del juego están relacionadas con climas extremos, y cuál es su puntuación promedio?"
- "¿Quién ilustró las cartas que otorgan más de 5 puntos y tienen hábitat de montaña?"

Este tipo de preguntas requieren combinar recuperación de texto, estadísticas y relaciones, y decidir el orden adecuado de ejecución. El uso del patrón ReAct habilitó esa capacidad.

Dificultades en esta etapa

- Adaptación de funciones existentes: algunas funciones, como hybrid_search, estaban diseñadas para devolver listas o DataFrames. Fue necesario reescribirlas para que devuelvan texto plano, compatible con LangChain.
- Gestión de errores: cada tool debía manejar sus propios errores y devolver mensajes claros. Se añadieron bloques try/except y mensajes personalizados.
- Reducción de resultados: los resultados recuperados (especialmente de tablas) eran a veces demasiado largos. Se introdujo el formateo con .to_markdown() y el recorte de tokens para evitar problemas en los prompts.
- Uso de herramientas externas: si bien Wikipedia y DuckDuckGo expanden el conocimiento del agente, también introducen ruido. Se definió un orden de preferencia en el uso de herramientas para priorizar las fuentes internas (documentos, tablas y grafos).

Ejercicio 2 – Agente autónomo ReAct con herramientas especializadas

Objetivo

En esta etapa se buscó **evolucionar el sistema RAG** del Ejercicio 1 hacia un **agente autónomo**, que no solo recupere información, sino que también **planifique, actúe y razone** paso a paso. Para esto, se implementó el patrón **ReAct** (Reasoning + Acting), siguiendo una arquitectura donde el modelo decide qué herramienta utilizar, observa el resultado y repite el proceso hasta obtener la información suficiente para generar una respuesta final.

Estructura general del agente ReAct

El agente opera en ciclos del tipo:

Input del usuario →

Thought: ¿Qué necesito hacer?

Action: usar herramienta("consulta")

Observation: resultado de la herramienta

... (repite si es necesario)

Final Answer: respuesta generada con toda la evidencia

Este enfoque permite que el agente:

- Elija entre herramientas según la naturaleza de la consulta.
- Realice múltiples pasos de búsqueda si la información inicial es insuficiente.
- Justifique su razonamiento a lo largo del proceso.

Implementación técnica

Se definió una clase Herramientas Pradera que encapsula el acceso a todas las fuentes de información disponibles en el sistema:

Herramienta	Fuente consultada	
buscar_documentos	Texto del reglamento mediante búsqueda híbrida	
consultar_tabla	CSV con datos estadísticos vía Pandas + LLM	
consultar_grafo	Relaciones del juego en Neo4j	
wikipedia_search	Wikipedia (LangChain API)	
duckduckgo_search	Web abierta mediante DuckDuckGo	

Cada herramienta tiene trazabilidad vía logging, y las acciones se ejecutan con validación y manejo de errores.

Control del flujo ReAct

El agente evalúa la respuesta del modelo en cada paso buscando las etiquetas:

- Thought: (razonamiento)
- Action: (llamada a herramienta)
- Observation: (resultado devuelto)
- Final Answer: (respuesta final generada)

Si no se encuentra una respuesta final, el ciclo continúa hasta un máximo de 6 iteraciones.

Prompt del agente

El agente fue configurado con un prompt de sistema estricto que define las reglas del flujo:

Eres un agente experto en el juego Pradera. DEBES seguir el método ReAct paso a paso.

HERRAMIENTAS DISPONIBLES:

...

REGLAS:

- 1. No puedes responder directamente. Solo con herramientas.
- 2. Usá Thought y Action para cada paso.
- 3. Solo Final Answer cuando tengas toda la información necesaria.
- 4. NO inventes datos. Siempre usá herramientas primero.

Este prompt se mantuvo constante para asegurar coherencia en las acciones y evitar que el modelo se salte pasos.

Problemas enfrentados durante la implementación

Intento con modelo local: Ollama

Inicialmente se probó la integración del agente ReAct con **Ollama**, un modelo local que permite ejecutar LLMs sin conexión externa. Sin embargo, surgieron varios inconvenientes:

- Latencia alta al usar modelos como phi3 o mistral, que ralentizaban el bucle ReAct.
- Falta de control sobre el formato de respuesta: muchos modelos no respetaban el formato ReAct con Thought, Action y Observation.
- Errores de truncamiento: las respuestas se cortaban antes de completar la acción o la observación.

Aunque se lograron pequeñas pruebas funcionales con prompts bien definidos, se descartó para el trabajo final por **inestabilidad en la generación de pasos intermedios**.

Prueba con modelo Zyphr

También se probó **Zyphr**, una implementación que prometía herramientas embebidas y razonamiento con pasos múltiples. Los problemas encontrados fueron:

- Incompatibilidad con herramientas personalizadas: no permitía definir funciones externas como buscar_documentos o consultar_tabla.
- Poca transparencia en cómo decide qué acción ejecutar.
- **Dificultad para debuggear**: la estructura interna del agente no se podía modificar fácilmente.

Por estas razones, se optó por continuar con una **implementación personalizada del patrón ReAct** usando gemini-1.5-flash como modelo principal y

LangChain como entorno base.

Resultados obtenidos

Se probaron múltiples consultas reales para validar el comportamiento del agente:

Ejemplo 1

Pregunta: ¿Cómo se colocan las cartas en el tablero personal?

 \rightarrow El agente buscó en documentos \rightarrow encontró reglas sobre la colocación \rightarrow generó una explicación completa.

Ejemplo 2

Pregunta: ¿Cuál es el promedio de puntos que otorgan las cartas de observación?

- → Usó consultar_tabla → filtró el DataFrame usando código generado por el LLM
- → devolvió el valor promedio como respuesta final.

Ejemplo 3

Pregunta: ¿Qué cartas están relacionadas con el hábitat de bosque?

→ Usó primero buscar_documentos → luego consultar_grafo → generó una respuesta combinada con información de ambas fuentes.

Conclusión del agente

El agente ReAct demostró ser **mucho más flexible y completo** que el sistema RAG estático. Fue capaz de razonar, combinar herramientas, validar evidencia y generar respuestas contextualizadas, incluso en consultas compuestas o abiertas.

La implementación personalizada permitió adaptar cada herramienta al dominio del juego, y al mismo tiempo mantener un flujo controlado y replicable.

Ejemplos de las respuestas del agente autonomo

Conclusiones finales

Este trabajo final abordó el diseño, implementación y evolución de un sistema de acceso a información especializado, centrado en el juego de mesa *Pradera*. A lo largo del proyecto se construyeron dos versiones funcionales:

- Un sistema RAG modular, que combina recuperación semántica, procesamiento tabular y consultas sobre una base de grafos.
- Un agente autónomo ReAct, capaz de razonar paso a paso, usar herramientas específicas y generar respuestas complejas.

Ambos enfoques se complementan: el primero ofrece una arquitectura clara y bien estructurada, y el segundo agrega flexibilidad, autonomía y adaptabilidad ante consultas más desafiantes.

El sistema final no solo responde preguntas simples como "¿cómo se juega?" o "¿cuántas cartas hay?", sino que también puede manejar consultas como "¿quién ilustró las cartas que otorgan más de 5 puntos en hábitats de montaña?", integrando datos desde distintas fuentes.

Posibles mejoras

Durante el desarrollo y las pruebas surgieron varios puntos de mejora para versiones futuras:

1. Mejor clasificación de intención

- Si bien se usaron clasificadores entrenados y un LLM con few-shot, algunos casos borde seguían siendo ambiguos.
- Una mejora sería integrar un modelo entrenado con feedback real de usuarios, o aplicar clasificación jerárquica con mayor granularidad.

2. Respuesta basada en múltiples herramientas combinadas

- Actualmente, el agente ejecuta una herramienta por vez.
- En futuras versiones podría combinar resultados de varias herramientas antes de generar la respuesta final, incluso si no lo pide explícitamente el prompt.

3. Uso más robusto de modelos locales

 Se intentó usar Ollama como motor LLM, pero tuvo limitaciones con el formato ReAct y la estabilidad. Una versión optimizada de prompts o la integración con servidores ligeros como LLaMA.cpp podría hacer viable esta opción sin depender de conexión externa.

4. Interfaz visual y accesible

 Aunque el sistema funciona por consola o notebook, podría integrarse a una interfaz web o chatbot embebido con historia de conversación, visualización de resultados tabulares y representación gráfica de relaciones.

5. Explicabilidad

 Sería útil mostrar al usuario qué herramientas usó el agente, qué pasos siguió y qué fuentes consultó. Esto mejoraría la transparencia del sistema y la confianza en sus respuestas.

Bibliografía y herramientas utilizadas

• Modelos y librerías:

- SentenceTransformers BAAI/bge-m3, all-MiniLM-L6-v2
- scikit-learn Modelos supervisados y métricas de evaluación
- LangChain Framework para agentes y herramientas
- ChromaDB y FAISS Indexado y recuperación vectorial
- Neo4j Base de grafos y lenguaje Cypher
- o pandas, re, nltk, py2neo Manipulación de datos y procesamiento básico
- Gemini 1.5 Flash Modelo de lenguaje utilizado como motor principal
- DuckDuckGoSearchAPIWrapper , WikipediaAPIWrapper Acceso a datos externos
- Ollama Probado como motor local LLM (no utilizado en la versión final)

• Documentación técnica y papers:

- OpenAl (2022). WebGPT and ReAct agents.
- Google DeepMind (2023). Retrieval-Augmented Generation (RAG) architectures.
- LangChain (2024). LangChain documentation.
- Neo4j (2023). The Cypher Query Language Manual.

• HuggingFace (2022). Sentence Transformers: Pretrained Models.