Übungsgruppe 12 26. Juni 2017

Formale Systeme Automaten und Prozesse

Abgabe 6 Abgabe: 14.06.2017

Georg C. Dorndorf Matr. Nr. 366511 Adrian C. Hinrichs Matr. Nr. 367129 Jan Bordihn Matr. Nr. 364705

Aufgabe 12

Sei L die Sprache mit dem Alphabet 0,1*, in der das Unterwort 010 nicht vorkommen darf.

 M_3 :

Was ist in $pre_G^*(L)$?

Um zu ermitteln, was in $pre_G^*(L)$ enthalten ist konstruieren wir zu erst den Automaten von L.

Abbildung 1: Automat von L

Sättigungsschritte vom Automaten L: M_1 :

Abbildung 2: Automat von L nach der ersten Sättigung

 M_2 :

Abbildung 3: Automat von L nach der zweiten Sättigung

Abbildung 4: Automat von L
 nach der zweiten Sättigung

$$\Rightarrow \{A\} \cup L(G) \in pre_G^*(L)$$

In $pre_G^*(L)$ ist das Nichtterminal A und die Wörter aus L(G) enthalten.

Für welche $\alpha \in L$ gilt A01AA1100 $\Rightarrow^* \alpha$?

Es gibt keine α , um A01AA1100 auf beliebig langen Ableitungen, ableiten zu können. Denn damit $\alpha \in L$ ist darf das A, nach den Terminalen 01 nicht auf 0 ableiten. Denn sonst würde das Teilwort 010 entstehen. Dies darf aber nicht in der Sprache vorkommen.

Nun müssen wir prüfen, welche Ableitungsregeln für A existieren. Das sind zum einen die Regel $A \to 0$ und $A \to 0S$. Beides würde das Teilwort 010 erzeugen. Somit können wir diese Regeln nicht anwenden. Als einzige Regel bleibt somit $A \to AA$. Dort leiten wir das gleiche Nichtterminal auf sich selbst ab, somit können wir als einziges Terminal von Nichtterminal A die 0 ableiten. Diese dürfen wir aber nicht von 01A ableiten. Somit gibt es kein $\alpha \in L$ für A01AA1100.

Was ist $L(G) \cap L$?

 $L(G)\cap L$ ist die leere Menge. Denn wie im vorderen Aufgabenteil erläutert können wir aus dem Nichtterminalel A nur eine 0 als Terminalsymbol ableiten. Nun startet die Grammatik mit der Regel $S\to 01A$, als einzige. Somit können wir direkt mit der einzigen Startregel der Grammatik nur das Wort 010 erzeugen. Dies ist aber nicht in L drin, somit ist $L(G)=\emptyset$. Dementsprechend ist $L(G)\cap L=\emptyset$.

Aufgabe 14

 $\mathbf{a})$

$S \Rightarrow bB$	(I)
$\Rightarrow bBA$	(II)
$\Rightarrow babA$	(III)
$\Rightarrow babb$	(IV)

Also ist $babb \in L(G)$

b)

Der Substitutionsbaum in Figur 5 beweist, dass babbanicht durch die angegeben Grammatik gebildet werden kann.

Georg C. Dorndorf Matr. Nr. 366511 Adrian C. Hinrichs Matr. Nr. 367129 Jan Bordihn Matr. Nr. 364705

Abbildungen

Abbildung 5: Lösung zu Aufgabe 14.b)

 $^{^1}$ Jede Substitution für S hat mehr als 2 Symbole, daher ist das Wort welches durch diesen Ast genriert würde zu lang

²Jede Substitution für jedes nonterminale Symbol hat mindestens 2 Symbole (mindestens ein Nonterminalesymbol wird zu mindestens zwei Symbolen aufgelöst), daher ist das Wort, welches durch diesen Ast genriert würde zu lang