

Question: are the cultivation temperatures of two Bacterial groups different?

- Null hypothesis: cultivation temperatures of the two groups are <u>not</u> different
- Samples: independent and unpaired

Outline of the practical exercise

- Collect data
 - BacDive: https://bacdive.dsmz.de/
- Prepare data for t-test
 - calculate: mean, standard deviation, sample size
- Calculate t-value
- Compare t-value to critical value
- Interpret results

Slides at:

https://github.com/waltercostamb/statistics

BacDive: cultivation metadata of temperature

Collect data

- Go to BacDive: https://bacdive.dsmz.de/
- Collect the first reported temperature for the isolates:
- Group 1
 - Abyssibacter profundi OUC007
 - Abiotrophia defectiva DSM 9849
 - Acetivibrio clariflavus EBR-02E-0045
 - Acetivibrio thermocellus DSM 1237

• Group 2

- Achromobacter denitrificans 12
- Achromobacter insolitus DSM 23807
- Acidovorax defluvii DSM 12644

Collect data: solution

Group 1

- Abyssibacter profundi OUC007: 37 C
- o Abiotrophia defectiva DSM 9849: 37 C
- o Acetivibrio clariflavus EBR-02E-0045: 55 C
- Acetivibrio thermocellus DSM 1237: 55 C

• Group 2

- o Achromobacter denitrificans 12: 30 C
- Achromobacter insolitus DSM 23807: 28 C
- Acidovorax defluvii DSM 12644: 30 C

Prepare data for t-test

- Write down sample size for group 1 (n1)
- Write down sample size for group 2 (n2)
- Calculate means for group 1
- Calculate means for group 2
- Calculate standard deviation for group 1
- Calculate standard deviation for group 2
- Calculate the degrees of freedom (df)

$$\circ$$
 df = n1 + n2 -2

Fórmulas

$$\sigma = \sqrt{rac{\sum (x_i - \mu)^2}{N}}$$

 σ = desvio padrão da população

N = o tamanho da população

 $oldsymbol{x_i}$ = cada valor da população

 μ = a média da população

Prepare data for t-test: solution

- Write down sample size for group 1 (n1): 4
- Write down sample size for group 2 (n2): 3
- · Calculate means for group 1: 46
- Calculate means for group 2: 29.33
- Calculate standard deviation for group 1: 9
- Calculate standard deviation for group 2: 0.94
- Calculate the degrees of freedom (df): 5

Calculate t-value

- x1 = mean of group 1
- x2 = mean of group 2
- s1 = standard deviation of group 1
- s2 = standard deviation of group 2
- n1 = sample size of group 1
- n2 = sample size of group 2
- We will see the balance between <u>signal</u> and <u>noise</u>

Calculate t-value: solution: 3.7

- x1 = mean of group 1 = 46
- x2 = mean of group 2 = 29.33
- s1 = standard deviation of group 1 = 9
- s2 = standard deviation of group 2 = 0.94
- n1 = sample size of group 1 = 4
- n2 = sample size of group 2 = 3
- Conclusion: signal is larger than noise (t-value > 1)

Compare t-value to critical value on t-table

- We know, our signal is larger than noise
- Now we compare t-value to critical value to know if this is due to chance
- t-value < critical value: we do not reject the null hypothesis
- **t-value > critical value**: we reject the null hypothesis

Critical value for df=5 and p-value = 0.05 on t-table: 2.571

df/α	0.9	0.5	0.3	0.2	0.1	0.05	0.02	0.01	0.001
1	0.158	1	2	3.078	6.314	12.706	31.821	64	637
2	0.142	0.816	1.386	1.886	2.92	4.303	6.965	10	31.598
3	0.137	0.765	1.25	1.638	2.353	3.182	4.541	5.841	12.929
4	0.134	0.741	1.19	1.533	2.132	2.776	3.747	4.604	8.61
5	0.132	0.727	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.131	0.718	1.134	1.44	1.943	2.447	3.143	3.707	5.959
7	0.13	0.711	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.13	0.706	1.108	1.397	1.86	2.306	2.896	3.355	5.041
9	0.129	0.703	1.1	1.383	1.833	2.263	2.821	3.25	4.781
10	0.129	0.7	1.093	1.372	1.812	2.228	2.764	3.169	4.587

Compare t-value to critical value on t-table

- We compared t-value = 3.7 to critical value = 2.571
- <u>t-value > critical value</u>: we reject the null hypothesis
- Conclusion: there is a statistical difference between temperatures of groups 1 and 2!
- Remember that: t-tests assume normal distributions of samples and similar variance
 - We do not meet these criteria, so for a scientific experiment, we should do a non-parametric test instead!
 - We used the t-test today for learning purposes

df/α	0.9	0.5	0.3	0.2	0.1	0.05	0.02	0.01	0.001
1	0.158	1	2	3.078	6.314	12.706	31.821	64	637
2	0.142	0.816	1.386	1.886	2.92	4.303	6.965	10	31.598
3	0.137	0.765	1.25	1.638	2.353	3.182	4.541	5.841	12.929
4	0.134	0.741	1.19	1.533	2.132	2.776	3.747	4.604	8.61
5	0.132	0.727	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.131	0.718	1.134	1.44	1.943	2.447	3.143	3.707	5.959
7	0.131	0.718	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.13	0.706	1.108	1.397	1.86	2.306	2.896	3.355	5.041
9	0.129	0.703	1.1	1.383	1.833	2.263	2.821	3.25	4.781
10	0.129	0.7	1.093	1.372	1.812	2.228	2.764	3.169	4.587

Thank you!

