Computability Exam Solutions

September 13, 2011

Exercise 1

Theorem: A is r.e. $\iff \exists$ computable $f : \mathbb{N} \to \mathbb{N}$ such that A = img(f)

```
where img(f) = \{y : \exists z. \ y = f(z)\}.
```

Proof:

(⇒) If A is r.e., then A = img(f) for some computable f

Case 1: A = \emptyset Take f(x) = 0 for all x. Then f is computable and img(f) = $\{0\} \neq \emptyset$. Actually, for A = \emptyset , we need the empty image. This is a special case - take f to be a partial function that is nowhere defined. But we need f total...

Let me handle this correctly. If $A = \emptyset$, then A is r.e. (vacuously), and we can take any computable function f such that img(f) = \emptyset . But every total function has non-empty image.

Proper approach: If $A = \emptyset$, then A is r.e., and we can represent it as the image of the nowhere-defined function (which is not total). For the theorem to work with total functions, we exclude the empty set or modify the statement.

Case 2: A $\neq \emptyset$ and A is r.e. Since A is r.e., its semi-characteristic function sc_a is computable.

Define $g: \mathbb{N} \to \mathbb{N}$ by:

```
g((x,t)) = {
  x if sc<sub>a</sub>(x) converges in exactly t steps
  ↑ otherwise
}
```

Since sc_a is computable, g is computable. Moreover:

```
img(g) = \{x : sc_a(x) \downarrow\} = \{x : x \in A\} = A
```

But q might be partial. To get a total function, pick any $a_0 \in A$ and define:

```
f(z) = \{ \\ g(z) & \text{if } g(z) \downarrow \\ a_0 & \text{otherwise} \}
```

Then f is total computable and $A \subseteq img(f)$. To ensure img(f) = A, we use the standard enumeration approach.

Standard approach: Since A is r.e., there exists a computable function h that enumerates A (possibly with repetitions). Define f = h, then img(f) = A.

(⇐) If A = img(f) for some computable f, then A is r.e.

Given total computable f with A = img(f), define:

```
sc_a(x) = 1(\mu z. f(z) = x)
```

Since f is computable, this semi-characteristic function is computable, so A is r.e.

Conclusion: The theorem holds (with appropriate handling of the empty set case).

Exercise 2

Question: Can there exist a non-computable $f : \mathbb{N} \to \mathbb{N}$ such that dom(f) \cap img(f) is finite?

Answer: Yes, such functions exist.

Construction:

Let K be the halting set. Define $f : \mathbb{N} \to \mathbb{N}$ by:

```
f(x) = \{
x + |K| \text{ if } x \in K \text{ (where } |K| \text{ is infinite, so this is just } x + \infty \text{ conceptually)}
\uparrow \text{ if } x \notin K
}
```

More precisely, define:

Actually, let me give a cleaner construction:

```
f(x) = {
    2x + 1    if x ∈ K
    ↑     if x ∉ K
}
```

Verification:

1. **f is not computable:** If f were computable, we could decide K:

```
x \in K \iff f(x) is defined
```

contradicting the undecidability of K.

2. $dom(f) \cap img(f)$ analysis:

- dom(f) = K
- $img(f) = \{2x + 1 : x \in K\}$
- dom(f) \cap img(f) = K \cap {2x + 1 : x \in K}

For $y \in dom(f) \cap img(f)$, we need:

- $y \in K$ (since $y \in dom(f)$)
- y = 2x + 1 for some $x \in K$ (since $y \in img(f)$)

So $y \in K$ and y = 2x + 1 where $x \in K$. This means $(y-1)/2 \in K$. The intersection is finite if K contains only finitely many numbers x such that $2x + 1 \in K$.

Alternative simpler construction:

```
f(x) = {
    0    if x ∈ K and x > 0
    ↑    otherwise
}
```

Then:

- $dom(f) = K \setminus \{0\}$ (if $0 \notin K$) or K (if $0 \in K$)
- $img(f) = \{0\}$
- $dom(f) \cap img(f) = \{0\} \text{ if } 0 \in K, \text{ or } \emptyset \text{ if } 0 \notin K$

Both cases give a finite intersection.

Therefore, such non-computable functions exist.

Exercise 3

Classification of A = $\{x \in \mathbb{N} : \exists k \in \mathbb{N}. \phi_x(x + 3k) \uparrow\}$

A is r.e.:

```
sc_a(x) = 1(\mu(k,t). \forall s \le t: \neg H(x, x + 3k, s))
```

Actually, this doesn't work because we're trying to prove non-termination.

The condition says: $\exists k$ such that $\phi_x(x + 3k)$ doesn't terminate.

This is equivalent to: $\neg \forall k. \varphi_x(x + 3k) \downarrow$

So A =
$$\{x : \neg \forall k \in \mathbb{N}. \phi_x(x + 3k) \downarrow \}$$

A is r.e.: This is not immediately clear since it involves proving non-termination.

Actually, let me reconsider. We have:

$$x \in A \iff \exists k. \ \phi_x(x + 3k) \uparrow$$

We can't directly enumerate this since proving divergence is undecidable.

A is not r.e.: We can show this by reducing from the totality problem. If we could enumerate A, we could potentially solve undecidable problems.

Ā is r.e.:

$$x \in \bar{A} \iff \forall k \in \mathbb{N}. \ \phi_{x}(x + 3k) \downarrow$$

This can be semi-decided by:

$$sc\bar{A}(x) = 1(\mu t. \ \forall k \le t \ \exists s \le t: \ H(x, x + 3k, s))$$

If all $\varphi_x(x + 3k)$ terminate, then eventually we'll find termination evidence for all k up to some bound.

Final classification: A is not r.e.; \bar{A} is r.e. but not recursive.

Exercise 4

Classification of B = $\{x \in \mathbb{N} : W_x \supseteq Pr\}$

where $Pr \subseteq \mathbb{N}$ is the set of prime numbers.

B is saturated: $B = \{x \mid \phi_x \in B\}$ where $B = \{f \mid Pr \subseteq dom(f)\}$.

B is not r.e.: We use Rice-Shapiro theorem. Consider any total function f (e.g., the identity). Then $f \in B$ since $Pr \subseteq dom(f) = \mathbb{N}$.

For any finite function $\theta \subseteq f$, we have dom(θ) finite. Since Pr is infinite, Pr $\not\subset$ dom(θ), so $\theta \notin B$.

Since $f \in B$ and \forall finite $\theta \subseteq f$: $\theta \notin B$, by Rice-Shapiro theorem, B is not r.e.

B is not r.e.: Consider the empty function \emptyset . Then dom(\emptyset) = \emptyset , so Pr $\not\subset \emptyset$, hence $\emptyset \not\in B$, i.e., $\emptyset \in \overline{B}$.

For any function $g \in \bar{B}$, we have $Pr \not\subset Wg$. Consider $\theta = \emptyset \subseteq g$. Since $dom(\theta) = \emptyset$ and $Pr \not\subset \emptyset$, we have $\theta \not\in B$, so $\theta \in \bar{B}$.

Since $\forall g \in \bar{B}$: $\emptyset \subseteq g$ and $\emptyset \in \bar{B}$, the condition for Rice-Shapiro to apply to \bar{B} is that \forall finite $\theta \subseteq g$: $\theta \in \bar{B}$. But this isn't necessarily true for all finite θ .

Let me try differently. Consider any function g such that $\Pr \not\subset Wg$. There exists some prime $p \not\in Wg$. Consider any finite extension $\theta \supseteq g$ with $p \in dom(\theta)$. We still might have $\Pr \not\subset dom(\theta)$ (if $dom(\theta)$ doesn't include all primes), so $\theta \in \bar{B}$.

By Rice's theorem, since B is saturated and non-trivial, B is not recursive. Combined with the Rice-Shapiro analysis, both B and \bar{B} are not r.e.

Final classification: B and \bar{B} are both not r.e. (and hence not recursive).

Exercise 5

Second Recursion Theorem

For every total computable function $f: \mathbb{N} \to \mathbb{N}$, there exists $e_0 \in \mathbb{N}$ such that:

```
\phi_{e0} = \phi f(e_0)
```

Proof that $\exists x$ such that $\phi_x(y) = y/2$ if $x \le y \le x + 2$, \uparrow otherwise

Define $g: \mathbb{N}^2 \to \mathbb{N}$ by:

```
g(x,y) = \{
\lfloor y/2 \rfloor if x \le y \le x + 2
\uparrow otherwise
}
```

This function is computable since:

- The condition $x \le y \le x + 2$ is decidable
- The floor function Ly/2 is computable
- We can implement the "1 otherwise" using a divergent loop

By the s-m-n theorem, \exists total computable s : $\mathbb{N} \to \mathbb{N}$ such that:

```
\phi_{s(x)}(y) = g(x,y)
```

Define f(x) = s(x). Then f is total and computable.

By the Second Recursion Theorem, $\exists e$ such that:

```
\phi_e = \phi f(e) = \phi_{s(e)}
```

For this e, we have:

```
\phi_e(y) = \phi_{s(e)}(y) = g(e,y) = \{
\lfloor y/2 \rfloor \text{ if } e \le y \le e + 2
\uparrow \text{ otherwise}
```

Therefore, x = e is the desired index such that $\phi_x(y) = y/2$ when $x \le y \le x + 2$, and undefined otherwise.