Assignment 2

Design And Analysis of Algorithms

Practical 4:

- 1. Solve the following sequence using the Heap sort algorithm. Show each line tracing. {5,25,9,96,26,35,18,28,65,14}
- 2. Solve the following sequence using the Counting sort algorithm. Show each line tracing. {1,2,5,4,2,5,3,6,2,1,3,4,6,2,4,1,5,3,6,4,3,2,2,1,4,5,6,2,4,1}

Practical 5:

1. Solve the following recurrence using substitution method

a.
$$T(n) = 2T(n-1)+c1$$
, $(n>1)$

$$T(1)=1$$
, $(n=1)$

b.
$$T(n) = T(n-1) + 1$$

$$T(1)=1$$
, $(n=1)$

c.
$$T(n) = T(n) = 5T(n/4) + 4n$$
, $n>2$

$$T(1)=1$$
, $n=2$

2. Solve the following recurrence using recurrence tree method

a.
$$T(n) = 3T(n/2) + n^2$$

b.
$$T(n) = 2T(n/2) + cn$$

c.
$$T(n) = 25T(n/5) + n^2$$

3. Solve the following recurrence using master's theorem method

a.
$$T(n) = 8T(n/2) + 1000n^2$$

b.
$$T(n) = 4T(n/2) + n^2 + n$$

c.
$$T(n) = 7T(n/3) + n^2$$

d.
$$T(n) = 25T(n/5) + n^2$$

Practical 6:

- 1. What is the Principle of optimality? Explain in brief.
- 2. Solve the following problem using the 0/1 Knapsack problem.

Objects	1	2	3	4	5	6	7
Profit	10	5	15	7	6	18	3
Weight	2	3	5	7	1	4	1

3. Solve the following problem using the All pair shortest path algorithm.

