作业2

(1) Prove that the OLS estimator $\hat{\beta}$ is the same as the maximum likelihood estimator.

Proof: OLS estimetion $\hat{\beta} = (X^T x)^{-1} X^T y$

Under the cosumption that Σ is one normal, i.e., $\Sigma \sim N(0, \sigma^2 I)$, and suppose $X = \begin{bmatrix} X_1^T \\ X_1^T \end{bmatrix}$,

we have the likelihood function of s:

 $L(\beta) = \prod_{i \ge 1} \frac{1}{|2\pi\sigma^2|} \exp(1 - \frac{1}{2\sigma^2} (y_i - x_i \beta)^2)$

onel log-likelihuod of B:

 $L(\beta) = \sum_{i=1}^{n} L_{h} \left(\frac{1}{|\Delta i|} \right) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - x_{i}^{T} \beta)^{2}$

To moximize L(B), we need to minimize

Σ (y; - xiff)2, then the MLE of β is:

 $\beta = \frac{\text{Otg min}}{\beta} \frac{\sum (y_i - \chi_i^T \beta)^2}{\beta} = \frac{\beta}{\text{obs}}$

Therefore, the OLS estimation of β is the same 08 the maxium likelihood estimation of β .

(2) Prove the Gauss-Markov Theorem. Proof: Assume that $E(\xi) = 0$ and $Cov(\xi) = \sigma^2 I_n$, OLS estimate is \(\hat{\beta} \) and the other linear unbiased estimate is $\vec{B} = \vec{B} \cdot \vec{y}$. $\vec{B} + \vec{R}^{p \times n}$ Since EB=B for all possible B's (définition of unbias) $\Rightarrow EF = E(By) = E(B(x\beta + S)) = Bx\beta = B$ =) Bx = IP and $B = B(XB + \Sigma) = B + B\Sigma$ On the other hand: $\beta = (x^Tx)^{-1}x^Ty = (x^Tx)^{-1}x^T(x\beta + \xi) = \beta + (x^Tx)^Tx^T\xi$ $Vor(\beta) = Vor(\beta \xi)$ $= Vor((x^{T}x)^{T}x^{T} \xi + (\beta - (x^{T}x)^{T}x^{T}) \xi)$ $= Vor((\beta) + Vor((\beta - (x^{T}x)^{T}x^{T}) \xi)$ + C + Cwhere: $C = E[((X^T X^T)^T X^T E - 0) \cdot ((B - (X^T X)^T X^T) E - 0)]$ $= (x^T x^{-1})^T x^T \mathcal{E}(\xi \xi^T) (\beta - x(x^T x)^T)$ $= \sigma^{2} \left(X^{T} X^{-1} \right) X^{T} \left(\beta^{T} - X \left(X^{T} X \right)^{-1} \right) = 0$ $For \quad \forall \quad \eta \in \mathbb{R}^{p}, \quad ||\eta||_{2} = 1:$ Vor (nTB) - Var (nB)

$$= \eta^{\mathsf{T}} \left[Vor(\widetilde{\beta}) - Vor(\widehat{\beta}) \right] \eta$$

$$\Rightarrow$$
 $\hat{\beta} = (X_X)^{-1}X^{T}y$ is the "Blue" of β

(3) Prove
$$E(\widehat{\sigma}^2) = \sigma^2$$
.

Proof:
$$\hat{y} = X\hat{\beta} = X(X^TX)^TX^TY = Ry$$
where $R_X = X(X^TX)^TX^T$

$$P$$
 is a projecting matrix s.t.
 $P_x = x$ and $P_x^2 = P_x$ and $P_x^T = P_x$

$$= \frac{1}{N-p} || (I_N - P_N) y|^2$$

$$= \frac{1}{N-p} || (I_N - P_N) y|$$

$$= \frac{1}{N-p} || (I_N - P_N) y|$$

$$= \frac{1}{N-p} || (X_N + 2)^T (I_N - P_N) || (X_N + 2)$$

$$= \frac{1}{N-p} [|P^T \times^T (I_N - P_N) \times P_N + 2 \times^$$

$$= \frac{\sigma^{2}}{N-P} \left(n - \frac{trace(P)}{N} \right)$$

$$= \frac{\sigma^{2}}{N-P} \left(n - \frac{trace(P)}{N-P} \right)$$

$$= \frac{\sigma^{2}}{N-P} \left(n - \frac{trace(P)}{N-P} \right)$$

$$= \frac{\sigma^{2}}{N-P} \left(n - \frac{P}{N-P} \right)$$

$$= \frac{\sigma^{2}}{N-P} \left(n - \frac{P}{N-P} \right)$$

(A1) The relationship between response (\mathbf{y}) and covariates (\mathbf{X}) is linear;

(A2) **X** is a non-stochastic matrix and rank(**X**) = p;

(A3) $E(\varepsilon) = \mathbf{0}$. This implies $E(\mathbf{y}) = \mathbf{X}\beta$;

(A4) $\operatorname{cov}(\varepsilon) = E(\varepsilon\varepsilon^{\top}) = \sigma^2 I_N$; (Homoscedasticity)

(A5) ε follows multivariate normal distribution $N(\mathbf{0}, \sigma^2 I_N)$ (Normality)

Prove the following results:

$$\widehat{\beta} \sim N(\beta, \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}) \tag{0.1}$$

$$(N-p)\widehat{\sigma}^2 \sim \sigma^2 \chi_{N-p}^2 \tag{0.2}$$

Proof:
$$\xi \sim N(0, \sigma^2 I_N)$$
, $y = \chi \beta + \xi$
 $\Rightarrow y \sim N(\chi \beta, \sigma^2 I_N)$
 $\hat{\beta} = (\chi^7 \chi)^{-1} \chi^7 y$, $y \sim N(\chi \beta, \sigma^2 I_N)$
 $\Rightarrow \hat{\beta} \sim N((\chi^7 \chi)^{-1} \chi^7 \chi^2, (\chi^7 \chi)^{-1} \chi^7 \sigma^2 I_N \chi(\chi^7 \chi)^{-1})$

$$\hat{\beta} \sim N(\beta, \sigma^{2}(\bar{X}^{T}x)^{-1})$$

$$\hat{\beta}^{2} = \frac{1}{N-p} \mathcal{E}^{T}(\bar{Z}_{N}-P_{X}) \mathcal{E}$$

$$(P_{X} \text{ follows the definition in the above publem.})$$

$$\Rightarrow (N-p) \hat{\sigma}^{2} = \mathcal{E}^{T}(\bar{Z}_{N}-P_{X}) \mathcal{E}$$

$$P_{X}=X(\bar{X}^{T}X)^{-1}X^{T}$$

Assume the SVD of X is $X = U \Sigma V^T$ where rank(Σ) = P, $U U^T = I_N$, $V V^T = I_P$

$$\Rightarrow \int_{x} = x (x^{T}x)^{-1}x^{T}$$

$$= U \Sigma V^{T} (V \Sigma^{T} \Sigma V^{T}) V \Sigma^{T} U^{T}$$

$$= U \Sigma V^{T} V (\Sigma^{T} \Sigma)^{-1} V^{T} U \Sigma^{T} U^{T}$$

$$= U \Sigma (\Sigma^{T} \Sigma)^{-1} \Sigma^{T} U^{T}$$

$$\Rightarrow \xi^{T}(I-P_{X}) \xi$$

$$= \Sigma^{\mathsf{T}} (UU^{\mathsf{T}} - U\Sigma (\Sigma^{\mathsf{T}}\Sigma)^{\mathsf{T}}\Sigma^{\mathsf{T}}U^{\mathsf{T}}) \Sigma$$

Let
$$\S = U^T \Sigma$$
, since $\Sigma \sim N(0, \sigma^2 I_N)$
then $\S \sim N(0, U^T \sigma^2 I_N U) = N(0, \sigma^2 I_N)$

$$\Rightarrow$$
 $9^{T}(I_{N}-\Sigma(\Sigma^{T}\Sigma)^{-1}\Sigma^{T})$

Since
$$\sum_{i,j} = \int_{0}^{\infty} \delta_{i}$$
 if $i = \hat{j}$ and $i \leq 0$.

$$\Rightarrow \Sigma(\Sigma^{7}\Sigma)^{-1}\Sigma^{7} = I_{\rho}$$

$$O_{N-\rho}$$

$$I_{\rho}$$

Since
$$\S$$
, $\sim N(0, \sigma^2)$, we have:

$$\sum_{i=N-p+1}^{N} \sum_{i=N-p+1}^{2} \sim \delta^{2} \chi_{N-p}^{2}.$$

That is:
$$(N-p)\hat{\delta}^2 \sim \hat{\delta}^2 \chi_{N-p}^2$$

(5) Suppose y follows the log-linear regression relationship with $x \in \mathbb{R}^p$, i.e.,

$$\log(y) = x^{\top} \beta + \epsilon, \tag{0.3}$$

where ϵ follows normal distribution $N(0, \sigma^2)$. Please calculate E(y).

Solution:

$$y = \exp \left(\chi^{T} \beta + \Sigma \right), \quad \Sigma \sim \mathcal{N} (0, \sigma^{2})$$

$$\Rightarrow E(y) = E[e^{x^{T}\beta + \xi}]$$

$$= E[e^{x^{T}\beta} \cdot e^{\xi}]$$

$$= e^{x^{T}\beta} \cdot E(e^{\xi})$$

$$E\left[e^{\xi}\right] = \int_{-\infty}^{+\infty} e^{t} \frac{1}{12\pi\sigma^{2}} \cdot \exp\left\{-\frac{t^{2}}{2\sigma^{2}}\right\} dt$$

$$= \int_{-\infty}^{+\infty} \frac{1}{12\pi\sigma^{2}} \cdot \exp\left\{-\frac{(t-\sigma^{2})^{2}+\sigma^{4}}{2\sigma^{2}}\right\} dt$$

$$= \exp\left\{\frac{\sigma^{2}}{2}\right\} \int_{-\infty}^{+\infty} \frac{1}{12\pi\sigma^{2}} \cdot \exp\left\{-\frac{(t-\sigma^{2})^{2}}{2\sigma^{2}}\right\} dt$$

$$= \exp\left\{\frac{\sigma^{2}}{2}\right\}$$

$$= \exp\left\{\frac{\sigma^{2}}{2}\right\}$$

$$\Rightarrow E(y) = \exp \left\{ x^T \beta + \frac{g^2}{2} \right\}$$

(6) Define $\hat{y}_i = x_i^{\top} \beta$. Let the intercept be included in the regression model. Define the total sum of squares (TSS) and explained sum of squares (ESS) as follows

TSS =
$$\sum_{i} (y_i - \overline{y})^2$$
, ESS = $\sum_{i} (\widehat{y}_i - \overline{y})^2$.

Please prove:

TSS = ESS + RSS.

Proof.
$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$

$$= \sum_{i} (y_{i} - \hat{y}_{i})^{2} + \sum_{i} (\hat{y}_{i} - \bar{y})^{2} + 2\sum_{i} (y_{i} - \hat{y}_{i})(\hat{y}_{i} - \bar{y})$$

$$= RSS + ESS + 2R$$

Then we need to show that R = 0

RSS =
$$\sum_{i=1}^{N} (y_i - x_{io}\beta_i - x_{ii}\beta_i - \cdots - x_{ip}\beta_p)^2$$

Where XioBo is the intercept and Xio = 1

From the definition of USE,

When we take k=0, we have:

$$\frac{\partial RSS}{\partial \beta_0} = \frac{N}{Z} (y_i - \chi_{io} \beta_0 - \dots - \chi_{ip} \beta_p) = \frac{N}{Z} (y_i - \hat{y_i}) = 0$$

Then:
$$R = \sum_{i} (y_i - y_i) (f_i - y_i)$$

$$= (y - \hat{y})^{\top} \cdot (\hat{y} - \bar{y})$$

$$= (y - \hat{y})^{T} \cdot \hat{y} - (y - \hat{y})' \hat{y}$$

Since the residual
$$\Sigma = y - \hat{y}$$
 is orthogonal to \hat{y} , we have $(y - \hat{y})^T \hat{y} = 0$

Arel since
$$\sum_{i\neq j} (y_i - \hat{y_i}) = 0$$
, we have:
$$(y - \hat{y})^T \bar{y} = 0$$