

Jayanta Mukhopadhyay
Dept. of Computer Science and Engg.

Courtesy: Prof. Pabitra Mitra, CSE, IIT Kharagpur

References

- 1. Chapter 2 and 7 of "Machine learning" by Tom M. Mitchel.
- 2. Chapter 2 of "Introduction to Machine Learning" by Ethem Alpaydin.

Which days does one come out to enjoy sports?

- Sky condition
 - Rainy / Cloudy / Sunny
- Humidity
 - High / Normal
- Temperature
 - Warm / Cold

- Wind
 - Strong / Weak
 - Water
 - Warm / Cool
 - Forecast
 - Same / Change

Attributes of a day: takes on values

Enjoy sports (?): Yes / No

Learning Task

- To make a hypothesis about the day on which a person comes out to enjoy sports.
 - in the form of a boolean function on the attributes of the day.

- Find the right hypothesis/function from historical data
 - Training Examples (TE)

Training Examples for EnjoySport

1	Sky	Temp	Humid	Wind	Water	Forecst EnjoySpt
	•					Same)=1 Yes
C	Sunny	Warm	High	Strong	Warm	Same = 1 Yes
						Change)=0 No
C	Sunny	${\rm Warm}$	High	Strong	Cool	Change = 1 Yes

c is the target concept

- Negative and positive learning examples.
- To learn the target concept c.
 - A Boolean function

Concept learning

- To derive a Boolean function from training examples.
 - Many "hypothetical" Boolean functions
 - \triangleright find h such that h = c.
- Generate hypotheses for concept from TE's

Representing a Hypothesis

- A hypothesis as conjunction of constraints.
 - Each constraint: a Boolean condition on attribute values.
 - Three forms
 - Specific value : Water = Warm
 - Don't-care value: Water = ?
 - Any value satisfies condition.
 - No value allowed : Water = \emptyset
 - i.e., no permissible value given values of other attributes
 - Represented in the form of a vector.

Example of a hypothesis

- Represented in the form of a vector:
 - <sky, temp, humid, wind, water, forecast>
 - h=<Sunny ? ? Strong ? Same> • h(x) = 1 if h is true on x• otherwise
- x is also represented as a vector, an element in the 6-D space.
 - x= <Sunny, Warm, Normal, Strong, Warm, Same>
 - h(x)=1
 - x= <Sunny, Warm, Normal, Strong, Warm, Change>
 - h(x)=0

Space of Hypotheses

- H: A set of all possible hypotheses
 - Finite number of combinations.
- Size of input space X
 - X = Sky x Temp x Humid x Wind x Water x Forecast
 - $|X| = 3 \times 2 \times 2 \times 2 \times 2 \times 2 = 96$
- Size of H
 - Each attribute A can have $|A|+|\{\emptyset,?\}|$ conditions.
 - E.g. for Sky: 3+2=5
 - $|H| = 5 \times 4 \times 4 \times 4 \times 4 \times 4 = 5120$
 - But every h with Ø: empty set of instances (all negatives)
 - No. of distinct hypotheses: 1+4x3x3x3x3x3=973

Concept Learning: Task

TASK T: predicting when a person will enjoy sport

- -Target function c: EnjoySport : X \rightarrow {0, 1}
- -Cannot, in general, know Target function c
 - Adopt hypotheses H about c
- -Form of hypotheses H:
 - Conjunctions of literals
 - **⋄**⟨?, Cold, High, ?, ?, ? ⟩

Concept Learning: Experience

■ EXPERIENCE E

- -Instances X: possible days described by attributes Sky, Temp, Humidity, Wind, Water, Forecast
- -Training examples D: Positive / negative examples of target function $\{\langle x_1, c(x_1) \rangle, \ldots \langle x_m, c(x_m) \rangle\}$

Concept Learning: Performance Measure

PERFORMANCE MEASURE P:

The Hypothesis h in H such that h(x) = c(x) for all x in D (Training Examples).

- may exist several alternative hypotheses that fit examples.
- Assumption of inductive learning on h being true for unseen examples.

Inductive Learning Hypothesis

Any hypothesis h found to approximate the target function c well over a sufficiently large set of training examples D will also approximate the target function well over other unobserved examples (i.e. in population distribution \mathcal{D}).

$$\forall x \in D, h(x) \approx c(x) \rightarrow \forall x \in D, h(x) \approx c(x)$$

Ordering on Hypotheses

- h is more general than $h'(h \ge_g h')$ if for each instance x, $h'(x) = 1 \rightarrow h(x) = 1$
- Which is the most general/most specific hypothesis?

Learning as a search problem

- Search a hypothesis h in the space H to best fit examples.
- If examples are error free, h should satisfy all of them
 - Not unique.
 - several alternative hypotheses may fit examples.
 - May not exist any solution at all!
 - Satisfying all +ve and -ve examples.
 - Constraints may have other form
 - e.g. Sky condition could be (rainy OR cloudy), but not admitted in H.

Approaches to learning algorithms

- Approach 1: Search based on ordering of hypotheses.
- Approach 2: Search based on finding all possible hypotheses using a good representation of hypothesis space.
 - All hypotheses that fit data

The choice of the hypothesis space reduces the number of hypotheses.

Assumes

- There is a hypothesis h in describing target function c.
- There are no errors in the TE's.

Find-S Algorithm

- Initialize h to the most specific hypothesis in H (what is this?)
- For each *positive* training instance *x*For each attribute constraint *a_i* in *h*If the constraint *a_i* in *h* is satisfied by *x*do nothing

Else

replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis *h*.

Example of Find-S

 x_1 = $\langle Sunny\ Warm\ Normal\ Strong\ Warm\ Same \rangle +$ x_2 = $\langle Sunny\ Warm\ High\ Strong\ Warm\ Same \rangle +$ x_3 = $\langle Rainy\ Cold\ High\ Strong\ Warm\ Change \rangle x_4$ = $\langle Sunny\ Warm\ High\ Strong\ Cool\ Change \rangle +$

 h_1 = $\langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$ h_2 = $\langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$ h_3 = $\langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$ h_4 = $\langle Sunny \ Warm \ ? \ Strong \ ? \ ? \rangle$

Problems with Find-S

- Problems:
 - Throws away information!
 - Negative examples
 - Can't tell whether it has learned the concept
 - Depending on H, there might be several h's that fit TEs!
 - Picks a maximally specific h. (why?)
 - Can't tell when training data is inconsistent
 - Since ignores negative TEs

- Advantages
 - Simple
 - Outcome independent of order of examples
 - Why?
 - Any alternative?
 - Keep all consistent hypotheses!
 - Candidate elimination algorithm

Consistent Hypothesis

- if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.
 - consistent with a set of training examples D of target concept c
 - Note that consistency is with respect to specific D.
- Notation:

Consistent
$$(h, D) \equiv \forall \langle x, c(x) \rangle \in D :: h(x) = c(x)$$

Agnostic hypothesis:

May label erroneously a training sample.

$$Agnostic(h, D) \equiv \exists \langle x, c(x) \rangle \in D :: h(x) \neq c(x)$$

Version Space

- VS_{H,D}: The subset of hypotheses from H consistent with D
 - with respect to hypothesis space H and training examples D
- Notation:

$$VS_{H,D} = \{h \mid h \in H \land Consistent(h, D)\}$$

List-Then-Eliminate Algorithm

- 1. VersionSpace \leftarrow list of all hypotheses in H
- 2. For each training example $\langle x, c(x) \rangle$ remove from *VersionSpace* any hypothesis h for which $h(x) \neq c(x)$.
- 3. Output the list of hypotheses in *VersionSpace*.

Essentially a brute force procedure.

Example of Find-S, Revisited

 x_1 = $\langle Sunny\ Warm\ Normal\ Strong\ Warm\ Same \rangle + \\ x_2$ = $\langle Sunny\ Warm\ High\ Strong\ Warm\ Same \rangle + \\ x_3$ = $\langle Rainy\ Cold\ High\ Strong\ Warm\ Change \rangle - \\ x_4$ = $\langle Sunny\ Warm\ High\ Strong\ Cool\ Change \rangle +$

 h_5 : consistent? h_5 = $\langle Sunny Warm ? ? ? ? \rangle$

 $h_0 = \langle \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \rangle$ $h_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle$ $h_2 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$ $h_3 = \langle Sunny \ Warm \ ? \ Strong \ Warm \ Same \rangle$ $h_4 = \langle Sunny \ Warm \ ? \ Strong \ ? \ ? \rangle$

 h_4 : Least general

Restriction on most general hypothesis looking at the -ve sample!

Version Space for this Example

Except +ve samples all -ve.

Compact Representation of the Version Space

- Store the most and the least general boundaries of space.
 - Generalize from most specific boundaries
 Use +ve samples.
 - Specialize from most general boundaries
 Use –ve samples.
- Generate all intermediate h's in VS
 - any h in VS must be consistent with all TE's

Compact Representation of the Version Space VS_{H,D}

- The general boundary, G,
 - the set of its maximally general members consistent with D
 - Summarizes the negative examples;
 - Anything more general covers wrongly a negative TE
- The specific boundary, S,
 - the set of its maximally specific members consistent with D
 - Summarizes the positive examples;
 - Anything more specific fails to cover a positive TE

Theorem

Every member of the version space lies between the S,G boundary

$$VS_{H,D} = \{h \mid h \in H \land \exists s \in S \exists g \in G (g \ge h \ge s)\}$$

- Must prove:
 - 1) every h satisfying RHS is in VS_{H,D;}
 - 2) every member of *VS_{H,D}* satisfies RHS.


```
Every member of the version space lies between the S,G boundary VS_{H,D} = \{h \mid h \in H \land \exists s \in S \ \exists g \in G \ (g \ge h \ge s)\}
```

- Must prove:
 - 1) every h satisfying RHS is in VS_{H,D;}
 - 2) every member of *VS_{H,D}* satisfies RHS.
- For 1), let g, h, s be arbitrary members of G, H, S respectively with g>h>s
 Prove that h is consistent.
 - s must be satisfied by all + TEs and so must h because it is more general;
 - g cannot be satisfied by any TEs, and so nor can h
 - h is in $VS_{H,D}$ since satisfied by all + TEs and no TEs
- For 2),
 - Since h satisfies all + TEs and no TEs, h \geq s, and $g \geq h$.

Candidate Elimination Algorithm

- $G \leftarrow$ maximally general hypotheses in H
- $S \leftarrow$ maximally specific hypotheses in H

For each training example *d*, do

- If d is positive
 - Remove from G every hypothesis inconsistent with d
 - For each hypothesis s in S that is inconsistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of *G* is more general than *h*
 - Remove from S every hypothesis that is more general than another hypothesis in S

Candidate Elimination Algorithm (cont)

- If d is a negative example
 - Remove from S every hypothesis inconsistent with d
 - For each hypothesis g in G that is inconsistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - 1. *h* is consistent with *d*, and
 - 2. some member of *S* is more specific than *h*
 - Remove from G every hypothesis that is less general than another hypothesis in G
 - Essentially use
 - Pos TEs to generalize S
 - Neg TEs to specialize G
 - Independent of order of TEs

- Convergence guaranteed if:
 - no errors
 - there is h in H describing c.

Example

 $\{\langle \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \rangle\}$

$$G_0$$
 $\{\langle ??????\rangle \}$

Recall: If d is positive

Remove from G every hypothesis inconsistent with d For each hypothesis s in S that is inconsistent with d

- •Remove s from S
- •Add to *S* all minimal generalizations *h* of *s* that are specializations of a hypothesis in G
- •Remove from S every hypothesis that is more general than another hypothesis in S

⟨Sunny Warm Normal Strong Warm Same⟩ +

$$S_1$$
 { \langle Sunny Warm Normal Strong Warm Same \rangle }

$$G_1 \left\{ \langle ?????? \rangle \right\}$$

 $S_1 \{ \langle Sunny Warm Normal Strong Warm Same \rangle \}$

$$G_1 \left\{ \langle ? ? ? ? ? ? ? \rangle \right\}$$

⟨Sunny Warm High Strong Warm Same⟩ +

 $S_2 \{ \langle \text{Sunny Warm ? Strong Warm Same} \rangle \}$

$$G_2$$
 { $\langle ?????? \rangle$ }

If *d* is a negative example

- Example (contd)
- $S_2 \quad \{\langle \text{Sunny Warm ? Strong Warm Same} \rangle\}$
- $G_2 \left\{ \langle ?????? \rangle \right\}$

⟨Rainy Cold High Strong Warm Change⟩ -

Current G boundary is incorrect So, need to make it more specific.

 S_3 { \langle Sunny Warm ? Strong Warm Same \rangle }

- Remove from *S* every hypothesis inconsistent with *d*
- For each hypothesis g
 in G that is inconsistent
 with d
 - ightharpoonup Remove g from G
 - ❖Add to G all minimal specializations h of g that generalize some hypothesis in S
 - ❖ Remove from G every hypothesis that is less general than another hypothesis in G

 G_3 {(Sunny????), (? Warm????), \(\langle????) Same\)

- Why are there no hypotheses left relating to:
 - ⟨ Cloudy ? ? ? ? ? ⟩
 - Inconsistent with S.
- The following specialization using the third value

```
\langle? ? Normal ? ? ?\rangle,
```

is not more general than the specific boundary

```
{\langle Sunny Warm ? Strong Warm Same \rangle}
```

■ The specializations ⟨? ? ? Weak ? ?⟩, ⟨? ? ? ? Cool ?⟩ are also inconsistent with S


```
S_3 {\langleSunny Warm ? Strong Warm Same\rangle}
```

```
G_3 {\langle Sunny ? ? ? ? ? \rangle, \langle ? Warm ? ? ? ? \rangle, \langle ? ? ? ? ? ? Same \rangle}
```

⟨Sunny Warm High Strong Cool Change⟩ +

 $S4 \{ \langle \text{Sunny Warm ? Strong ? ?} \rangle \}$

 $G4 \mid \{\langle \text{Sunny}????\rangle, \langle ?\text{Warm}????\rangle \}$

⟨Sunny Warm High Strong Cool Change⟩ +

- Why does this example remove a hypothesis from G?:
 - ⟨? ? ? Same⟩
- This hypothesis
 - Cannot be specialized, since would not cover new TE.
 - Cannot be generalized, because more general would cover negative TE.
 - Hence must drop hypothesis.

Version Space of the Example

Convergence of algorithm

- Convergence guaranteed if:
 - no errors
 - there is h in H describing c.
- Ambiguity removed from VS when S = G
 - Containing single h
 - When have seen enough TEs
- For any false negative TE, algorithm will remove every h consistent with TE, and hence may remove correct target concept from VS
 - If observed enough, TEs will find that S, G boundaries converge to empty VS

Which Next Training Example?

Assume learner can choose the next TE

- Should choose d such that
 - Reduces maximally the number of hypotheses in VS
 - Best TE: satisfies precisely 50% hypotheses;
 - Can't always be done

Example:

Order of examples matters for intermediate sizes of S,G; not for the final S, G

- \(Sunny Warm \)
 Normal \(\frac{\Weak}{\Warm Same}\)\)?
- If pos, generalizes S
- If neg, specializes G

Classifying new cases using VS

- Use voting procedure on following examples:

 - (Rainy Cool Normal Weak Warm Same)

 - Sunny Cold Normal Strong Warm Same >

Effect of incomplete hypothesis space

- Preceding algorithms work if target function is in H
 - Will generally not work if target function not in H
- Consider following examples which represent target function
 - "sky = sunny or sky = cloudy":

 - Cloudy Warm Normal Strong Cool Change Y
 - (Rainy Warm Normal Strong Cool Change) N

Effect of incomplete hypothesis space

```
"sky = sunny or sky = cloudy":

\( \text{Sunny Warm Normal Strong Cool Change} \text{Y} \( \text{Cloudy Warm Normal Strong Cool Change} \text{Y} \( \text{Rainy Warm Normal Strong Cool Change} \text{N} \)
```

- If apply CE algorithm as before, end up with empty VS
 - After first two TEs,
 - S= <? Warm Normal Strong Cool Change>
 - New hypothesis is overly general
 - it covers the third negative TE!
- Our H does not include the appropriate c.

Need more expressive hypotheses

Unbiased Learners

- if no limits on representation of hypotheses (i.e., full logical representation: *and, or, not*), can only learn examples...no generalization possible!
 - Say, 5 TEs {x1, x2, x3, x4, x5}, with x4, x5 negative TEs
- Apply CE algorithm
 - S :disjunction of +ve examples
 - S={x1 OR x2 OR x3}
 - G :negation of disjunction of -ve examples
 - G={*not* (x4 or x5)}
 - Need to use all instances to learn the concept!

- Cannot predict usefully:
 - TEs have unanimous vote
 - other x's have 50/50 vote!
 - For every h
 in H that
 predicts +,
 there is
 another
 that
 predicts -

Inductive Bias

- As constraints on representation of hypotheses
 - Example of limiting connectives to conjunctions
 - Allows learning of generalized hypotheses
 - Introduces bias that depends on hypothesis representation
- Needs formal definition of inductive bias of learning algorithm

Inductive system as an equivalent deductive system

- Inductive bias made explicit in equivalent deductive system
 - Logically represented system that produces same outputs (classification) from inputs (TEs, instance x, bias B)
 - *E.g.* The CE procedure

Equivalent deductive system

- Inductive bias (IB) of learning algorithm L:
 - any minimal set of assertions B used to logically infer the value c(x) of any instance x from B, D, and x for any target concept c and training examples D.
 - for a rote learner, B = {}, and there is no IB.
- Difficult to apply in many cases, but a useful guide

Inductive bias and specific learning algorithms

- Rote learners:
 - no IB
- Version space candidate elimination (CE) algorithm:
 - The target concept c can be represented in H
- Find-S:
 - The target concept c can be represented in H;
 - all instances that are not positive are negative.

Computational Complexity of VS

- The S set for conjunctive feature vectors
 - linear in the number of features and the number of training examples.
- The G set for conjunctive feature vectors
 - exponential in the number of training examples.
- In more expressive languages,
 - both S and G can grow exponentially.
- The order of processing examples significantly affect computational complexity.

Size of S and G?

- h Boolean attributes
- 1 positive example: (T, T, .., T)
- G0: (?,?,...?)

G1: (Ţ,?,..,?), (?,Ţ,?,...?)

- n/2 negative examples:
 - (F,F,T,..T)
 - **(T,T,F,F,T..T)** G2: (T,?,T,?..,?), (T,?,̄?,T..,?), (?,T,T,?,...?), (?,T,?,T,...?)
 - (T,T,T,T,F,F,T..T)
 - **.**.
 - (T,..T,F,F)
- |S|=1
- |G|=2^{n/2}

Probably Approximately Correct (PAC) learning model

- A consistent hypothesis
 - Training error: 0
 - True error \neq 0
 - error_{\mathcal{D}}(h)=P(c(x) \neq h(x))
 - D: Population distribution

Is it possible to bound true error by minimizing training error?

Probably Approximately Correct (PAC) learning model

- C: Concept class defined over a set of instances X of length n
- L: A learner using hypothesis space H.
- C PAC learnable.
 - If \forall c∈C, distribution \mathcal{D} over X, $0 < \varepsilon < \frac{1}{2}$ and $0 < \delta < \frac{1}{2}$
 - learner L with probability at least (1- δ) outputs a hypothesis h \in H, such that error_D(h) $\leq \varepsilon$,
 - in time that is polynomial in $1/\epsilon$, $1/\delta$, n and size(c).

to relate sample complexity, running time, and results.

Sample complexity of a learner

- How many training samples required to get a reliable hypothesis with a high probability with a reasonable amount of computation?
 - low true error, minimum number of samples required, polynomial time complexity
 - Equivalently, how many samples required so that the version space consists of every consistent hypothesis bounded by an error ε .
 - $VS_{H,D}$ for a target concept c having such property called ε -exhausted.

Theorem of ε -exhausting the VS

- Given finite H of a target concept c, and m training samples independently randomly drawn forming data D, for any $0 \le \varepsilon \le 1$,
 - P(VS_{H,D} is not ε -exhausted) < |H|e^{- ε m}

Proof:

For any h with error > ε , it appears consistent if all m samples are correctly labeled with at most prob. $(1-\varepsilon)^m$.

Let there be k such hypotheses with error $> \varepsilon$.

Prob. that at least one of them would be consistent $\leq k (1 - \varepsilon)^m$ As $1 - \varepsilon < e^{-\varepsilon} \rightarrow k (1 - \varepsilon)^m < k e^{-\varepsilon m} < |H| e^{-\varepsilon m}$

Sample complexity of a PAC learner

- Maximum Prob. of providing a consistent hypothesis with error $> \varepsilon$: δ
- Hence, for a PAC learner
 - $|H|e^{-\varepsilon m} \leq \delta$
 - \rightarrow m \geq (1/ ε) (ln |H| + ln (1/ δ))
 - An overestimate as size of version space is much smaller than |H|.
- m grows linearly with 1/ ε and logarithmically with $1/\delta$
 - Also grows logarithmically with |H|

Example

- C= Target functions of n Boolean attributes in conjunctive forms.
 - Each literal can have three values true, false, and ignore (always 1).
- H=C
 - A hypothesis in the same conjunctive form of a literal
- |H|=?
 - 3ⁿ
 - Hence, m \geq (1/ ε) (n ln 3 + ln (1/ δ))
 - Suppose, n=10, ε =0.1 and δ =5%
 - $m \ge (1/.1) (10 \ln 3 + \ln (1/.05)) = 139.82$, i.e. 140

Example

- Learn a concept in the form of any boolean function over n variables.
 - Are such concepts PAC-learnable by a consistent learner?
- Hypothesis Space H: all possible functions.
- |*H*|=?
 - 2²ⁿ
- $m \ge (1/\epsilon) (\ln |H| + \ln (1/\delta)) = ?$
 - $(1/\epsilon)$ $(2^n + \ln(1/\delta))$
- Is it PAC-learnable?
 - NO (Sample complexity not polynomial)

Sample complexity for infinite Hypothesis space

- PAC learners bound Bound for finite hypothesis space not applicable.
- Other sample complexity measure
 - Vapnik-Chervonenkis (VC) dimension

VC Dimension: Sample complexity of infinite H

- Dichotomy on a set of instances S
 - Partitioning into two sets (+ve and –ve examples).
 - No. of all possible dichotomies: 2^{|S|}
- Shattering by a hypothesis space H
 - If there exists a consistent h for every dichotomy of S.
 - Classification problem
 - Can H distinguish all subsets of S?
 - for any bi-partition (S1,S2) of S, there exists one h in H such that h(s)=0 for each $s \in S1$ and h(s)=1 for each $s \in S2$.
- Vapnik-Chervonenkis (VC) dimension:
 - The size of the largest finite subset in X shattered by H.
 - Sufficient to have at least one such instance

A simple upper bound on VC(H)

- Vapnik-Chervonenkis (VC) dimension:
 - The size of the largest finite subset in X shattered by H.
 - $VC(H) \leq log_2 |H|$
 - Proof: H requires 2^d distinct hypothesis to shatter d instances.
 - \rightarrow 2^d < |H|. Hence, d=VC(H) < log₂ |H|

A few examples

- H= Set of intervals [a,b], in real axis.
 - h(x): 1 if x in [a,b], else 0.
- Shatters any pair of distinct points, e.g., p and q, p<q
 - e.g. [p-2, p-1], [p- ε , p+ ε], [q- ε , q+ ε] [q+1,q+2]
 - Existence of any hypothesis sufficient.
 - Existence of any pair of points being shattered sufficient.
- Say three points p < q < r</p>
 - No h shattering {p,r|q} dichotomy.
- VC(H)=2.

VC(H)=3

A few examples (Contd.)

- H= Set of straight lines in a plane. space with (d-1)
 - h(x): 1 if x lies in right half, else 0.

In an d-dimensional space with (d-1)-dimensional hyperplanes,

- Shatters any pair of distinct points. VC(H)=d+1.
 - All points in one half, two points in two different halves.
- Shatters three non-collinear distinct points
 - All three in one half, two in one half and the other point in the opposite half.
 - Need not be true for all instances of three points.
- No set of 4 distinct points could be shattered
 - There exists a dichotomy, each containing a pair of points, non-separable by a straight line.

Another example

- H= All axis aligned rectangles.
- Shatters maximum 4 points.
- VC(H)=4.
- Enough to find any set of 4 points for shattering.
 - Not required for all 4 points in the space.
 - 4 points in a straight line not shattered.

Not possible to place 5 points anywhere for shattering.

Courtesy: "Introduction to Machine" Learning by Ethem Alpaydin (Chapter 2, Fig. 2.6)

Sample complexity infinite space: A few results

- Upper bound for ϵ -exhausted version space
 - $m \ge (1/\epsilon)(4\log(2/\delta) + 8VC(H)\log(13/\epsilon))$

hypothesis h having $ED(h) > \epsilon$.

- Theorem on lower bound:
 - Consider any concept class C such that $VC(C) \ge 2$, any learner L, and any $\epsilon \in (0,1/8)$ and any $\delta \in (0,1/100)$.
 - Then there exists a distribution D and a target concept in C such that if L observes examples fewer than max[(1/ε)log(1/δ), (VC(C)-1)/(32ε)], then with probability at least δ, L outputs a

Example: Rectangle learning

- In a 2-dimensional space, consider a class C of concept of form $(a \le x \le b) \land (c \le y \le b)$, where a,b,c,d are real values.
 - Find a number of training examples drawn randomly to assure that for any target in C, any consistent learner using H=C will, with probability at least 95%, output a hypothesis with error at most 0.15.
- Compute VC(H)
 - **4**
- Use $m \ge (1/\epsilon)(4\log(2/\delta) + 8VC(H)\log(13/\epsilon))$
 - ϵ =0.15, and δ = .05
 - m ≥1515.2 = 1516

VC-dimension: Significance

- Measure of sample complexity.
 - LUT: Rote learner: Infinite VC dimension
 - Sample complexity proportional to VC dimension
- A bit pessimistic measure.
 - Does not consider probability distribution in feature space.
 - A simple model may discern classes (with data points much larger than the VC dimension).

Exercise

- In a 2-dimensional space, consider a class C of concept of form $(a \le x \le b) \land (c \le y \le d)$, where a,b,c,d are integers in [0,99].
 - Find a number of training examples drawn randomly to assure that for any target in C, any consistent learner using H=C will, with probability at least 95%, output a hypothesis with error at most 0.15.

Solution:

- Finite hypothesis space.
- |H|=?
 - ${}^{n}C_{2} \times {}^{n}C_{2}$ where n=100.
 - **=** 24502500
- $m \ge (1/\epsilon) (\ln (|H|) + \ln (1/\delta))$
 - ϵ =0.15, δ = .05, |H|= 24502500
 - m≥ 133.4 =134

Handling noise in data

- Three major sources:
 - Imprecision in measurement of features.
 - Error in labeling (Teacher noise).
 - Missing additional attributes in representation (hidden or latent attributes).
- Noise may not provide consistent hypothesis.
- Tolerate training error within a limit to use simpler model.

Effect of inductive bias

- As training data is a small segment of the input space.
 - Smaller the proportion greater the inductive bias.
 - Low training error still may provide high errors
 on unseen inputs.
 To what extent a model trained on the training set predicts the correct output for

new instances is called *generalization*.

- Generalization error.
- Higher the proportion of training samples in the input space, better is model fitting and lower generalization error.

Matching complexities

- Complexities of model to be matched with the underlying process generating data.
 - Lower complex model → Higher training and generalization error.
 - Underfitting
 - Higher complex model → Low training error, but may have high generalization error.
 - Overfitting
 - Even the chosen complexity is matched, model fitting requires more data point.

- Given comparable empirical error, a simple (but not too simple) model would generalize better than a complex model.
 - simpler explanations more plausible and any unnecessary complexity to be shaved off.

Triple trade-off

- A trade-off between three factors in any data driven learning algorithm:
 - the complexity of the hypothesis
 - the amount of training data, and
 - the generalization error on new examples.

Model selection

- Empirical choice of model complexity
 - Number of parameters
 - Degree of a polynomial for regression
- Divide input in 3 sets:
 - Training, Validation and Test.
 - Increase model complexity by keeping training and validation error low.
 - May adopt cross-validation.
 - Check on generalization error.
- There exist other information theoretic / likelihood ratio based approaches.

Summary

- Concept learning as search through H
- General-to-specific ordering over H
- Version space candidate elimination algorithm
- S and G boundaries characterize learner's uncertainty
- Learner can generate useful queries
- Inductive leaps possible only if learner is biased!
- Inductive learners can be modeled as equiv deductive systems
- Concept learning algorithms: unable to handle data with errors
 - Allow forming hypothesis with low training error.
 - e.g. learning decision trees

Summary

- Learning allowing low error
 - Supervised learning of a model given labelled data.
 - Classification
 - Regression
- Three trade-offs of learning
 - Model capacity and complexity.
 - VC-Dimension
 - Maximum number of points shattered by a hypothesis space.
 - Number of labelled samples.
 - Generalization error.

- Empirical choice of model
 - Training, validation and test sets.
 - Three types of errors.
 - Choose model by keeping training and validation errors low.
 - Generalization error indicated by test error.

