RECONSTRUCTION AND THE DIRECTIONALITY OF SYNTACTIC DERIVATIONS

Carlos Muñoz Pérez

cmunozperez@filo.uba.ar

Pontifical Catholic University of Chile

1. Background

Within current minimalism, syntactic displacement is understood in terms of the *copy theory* (Chomsky 1995). Most versions of it (e.g., Nunes 2004) incorporate a copying procedure.

- (1) a. $[\text{TP was }[\text{VP arrested } \text{Cosmo}_{qap}]]$
 - b. $[\text{TP Cosmo}_{filler} [\text{TP was } [\text{VP arrested } \mathcal{D} \text{Sym} \phi_{gap}]]]$

Anti-reconstruction effects provide evidence against the *copy* operation.

(2) [filler] The claim that $Cosmo_i$ was asleep] seems to $him_i e_{gap}$ to be correct.

Takahashi & Hulsey (2009) advanced an account of anti-reconstruction effects in terms of a copying procedure: wholesale late merger.

- (3) a. seems to $\lim_{i} [gap]$ the to be correct
 - b. [filler] the seems to $him_i [gap]$ the to be correct
 - c. [filler] the [NP] claim that $Cosmo_i$ was asleep]] seems to him_i [gap] the to be correct

Notice that in this system:

- Lower constituents are combined earlier in the derivation.
- Fillers are generated (i.e., copied) from gaps.

2. The challenge of Barss' Generalization

Reconstruction of a filler to its gap is impossible if the filler does not c-command the gap in the surface representation (Barss 1986, Sauerland & Elbourne 2002).

- (4) a. [filler Some young lady] seems to be likely e_{gap} to dance with every senator. $\exists < \forall, \forall < \exists$
 - b. How likely e_{qap} to dance with every senator does [filter some young lady] seem to be? $\exists < \forall, *\forall < \exists$
 - a. [filler] A doctor with any reputation] was certain *(not) to be e_{gap} available.
 - b. * ... and certain not to be e_{gap} available [filter a doctor with any reputation] was.

Takahashi & Hulsey's (2009) system cannot capture this restriction: in a configuration like (6), there is no way in which movement of ZP over YP_{filler} can influence the internal structure of YP_{gap} because YP_{gap} was formed even before the head Z entered the derivation.

(6) $\left[\text{XP YP}_{filler} \left[\text{ZP Z } \mathcal{Y} \mathcal{P}_{gap} \right] \right]$

3. The objective

Advancing a unified system capturing both (i) Takahashi & Hulsey's (2009) predictions and (ii) Barss' Generalization. I argue that this result can be achieved if it is assumed that:

- Higher constituents are combined earlier in the derivation.
- The internal structure of movement gaps is calculated from the content of the filler.

4. Abandoning strict bottom-up derivations

Syntactic phenomena have received successful accounts by exploting top-down derivations (e.g., Georgi & Salzmann 2016, den Dikken 2018); evidence from processing suggests that a formalism mixing both top-down and bottom-up steps is psycholinguistically more plausible (e.g., Resnik 1992). For simplicity, I assume the following.

- (7) a. left corner constituents, i.e., specifiers, are assembled and combined to a main structure earlier than complements;
 - b. overt constituents are base-generated in their surface position;
 - c. overt constituents form movement dependencies, i.e., *chains*, with null syntactic objects, i.e., gaps, to satisfy *Full Interpretation*.

5. Gaps are anaphoric

The internal structure of gaps is calculated through the same mechanisms that determine the distribution of anaphoric expressions. I adopt a generalized version of Schlenker's (2005) economy principle *Minimize restrictors!*:

(8) Given a DP^1 that c-commands an anaphorically dependent DP^2 , the restrictor in DP^2 must be as little redundant **as possible** with respect to the restrictor in DP^1 .

As this definition implies competition between different DPs for a single position, the set of competitors must be constrained in some way. For gaps, this may be done by resorting to conditions of recoverability.

(9) The lexico-syntactic structure of a gap cannot contain information that is not available in its preceding filler.

The condition in (9) determines the alternatives in (10b) for the DP² position in (10a).

- (10) a. ... $[DP^1]$ the neighbour that I met last week] ... $[XP ... \not DP^2 ...]$
 - b. $[DP^2]$ the $] > [DP^2]$ he $_{\varphi}$ $] > [DP^2]$ the neighbour $] > [DP^2]$ the neighbour that I met...

References

Barss, Andrew. 1986. Chains and anaphoric dependence. Cambridge, MA: MIT dissertation.

Chomsky, Noam. 1995. The minimalist program. Cambridge, MA: MIT Press.

den Dikken, Marcel. 2018. Dependency and directionality. Cambridge: Cambridge University Press. doi:10.1017/9781316822821. Fox, Danny. 2002. Antecedent-contained deletion and the copy theory of movement. Linguistic Inquiry 33(1). 63–96. doi: 10.1162/002438902317382189.

Freidin, Robert. 1986. Fundamental issues in the theory of binding. In Barbara Lust (ed.), Studies in the acquisition of anaphora, 151–188. Dordrecht: Reidel.

Georgi, Doreen & Martin Salzmann. 2016. The matching effect in resumption: A local analysis based on case attraction and top-down derivation. Natural Language & Linguistic Theory 35(1). 61–98. doi:10.1007/s11049-016-9338-8.

Lebeaux, David. 1988. Language acquisition and the form of the grammar. Amherst, MA.: University of Massachusetts dissertation.

Nunes, Jairo. 2004. Linearization of chains and sideward movement. Cambridge, MA: The MIT Press.

Resnik, Philip. 1992. Left-corner parsing and psychological plausibility. In Proceedings of the 14th International Conference on

Sauerland, Uli & Paul Elbourne. 2002. Total reconstruction, PF movement, and derivational order. *Linguistic Inquiry* 33(2). 283–319. doi:10.1162/002438902317406722. Schlenker, Philippe. 2005. Minimize restrictors! (notes on definite descriptions, condition C and epithets). In Emar Maier, Corien

Computational Linguistics (COLING 92). 191-197. Nantes. https://www.aclweb.org/anthology/C92-1032/.

Bary & Janneke Huitink (eds.), *Proceedings of Sinn und Bedeutung 9.* 385–416. Nijmegen: NCS.

Takahashi, Shoichi & Sarah Hulsey. 2009. Wholesale late merger: Beyond the A/Ā distinction. *Linguistic Inquiry* 40(3). 387–426.

doi:10.1162/ling.2009.40.3.387.
Thoms, Gary. 2010. Syntactic reconstruction and scope economy. In *Glow 33*. Wrocław: University of Wrocław. Handout.

6. Reconstruction and anti-reconstruction effects

A-movement typically employs a placeholder D, i.e., a bare determiner, as a gap, e.g., (11).

(11) a. $[DP^1]$ The claim that $Cosmo_i$ was asleep] seems to $him_i \mathcal{DP}^2$ to be correct. b. $[DP^2]$ the $] > [DP^2]$ it $_{\varphi}] > [DP^2]$ the claim that Cosmo...

In (12a), DP² must be redundant regarding the restrictor in DP¹. This redundancy is required and enforced because DP² must be interpreted as an anaphoric definite description to generate a proper operator-variable dependency at LF (Fox 2002).

- (12) a. $*[DP^1]$ Which picture of $Cosmo_i$] did he_i buy DP^2 ?
 - For what x, x a picture of $Cosmo_i$, he_i bought the picture x of $Cosmo_i$
 - b. $[\underline{DP^2 \text{ which }}] > [\underline{DP^2 \text{ what}_{\varphi}}] > [\underline{DP^2 \text{ which picture of Cosmo}}]$

Adjuncts modifying nouns do not reconstruct for Condition C (e.g., Freidin 1986, Lebeaux 1988). In (13a), the gap DP² is required to be the smallest possible anaphoric definite description. Thus, it will not include an optional clausal adjunct within its structure.

- (13) a. $[DP^1]$ Which argument [ADJ] that $Cosmo_i$ made $[DP^2]$?
 - For what x, x an argument that $Cosmo_i$ made, he_i believed the argument x
 - b. $[\underline{DP^2 \text{ which }}] > [\underline{DP^2 \text{ what}_{\varphi}}] > [\underline{DP^2 \text{ which arg. }}] > [\underline{DP^2 \text{ which arg. }}] > [\underline{DP^2 \text{ which arg. }}]$

7. Back to Barss' Generalization

The mechanisms introduced so far allow to sketch a promising account of *Barss' Generalization*: since the remnant is generated earlier than the extracted constituent, the condition in (9) dictates that the gap must be the simplest available element, i.e., a placeholder D.

(14) a. $\left[\text{XP} \left[\text{remnant} \dots e_{gap} \dots \right] \left[\text{X}, \text{X}^0 \dots \right] \right]$ b. $\left[e_{gap} \text{ D} \right] > \text{NO OTHER ALTERNATIVES}$

8. Distance effects

Gaps exhibiting internal structure are closer to their filler than gaps that function simply as placeholders. Take the pair in (15) from Thoms (2010).

- (15) a. * Morag helped him_i with most of Tam's_i homework.
 - b. Which of Tam's_i assignments did Morag help him_i with?

Such a pattern follows elegantly from a system that calculates the content of traces "from left to right" in terms of an economy principle like (8).

- (16) a. $[DP^1]$ Which of Tam's assignments did Morag [VP] help him with $[DP^3]$?
 - b. $[DP^2 \text{ which }] > [DP^2 \text{ what}_{\varphi}] > [DP^2 \text{ which of Tam's assignments }]$
 - c. $[DP^3 \text{ which }] > [DP^3 \text{ what}_{\varphi}] > [DP^3 \text{ which of Tam's assignments }]$