

Figure A1. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G} = (V, E, \mu_P)$. $\alpha = 0.5$; $\varphi = \max$; $\phi = \min$.

Figure A2. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\alpha=0.4$; $\varphi=\max$; $\phi=\min$.

Figure A3. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\alpha=0.3; \ \phi=\max; \ \phi=\min$.

Figure A4. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\alpha=0.2$; $\phi=\max$; $\phi=\min$.

Figure A5. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\alpha=0.1$; $\phi=\max$; $\phi=\min$.

Figure A6. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\alpha=0.5; \ \phi=\max; \ \phi=prod.$

Figure A7. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G} = (V, E, \mu_P)$. $\alpha = 0.4$; $\varphi = \max$; $\phi = prod$.

Figure A8. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\alpha=0.3$; $\varphi=\max$; $\phi=prod$.

Figure A9. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G} = (V, E, \mu_P)$. $\alpha = 0.2$; $\varphi = \max$; $\phi = prod$.

Figure A10. Partitions obtained with the Polarization Louvain algorithm in the polarization extended fuzzy graph $\widetilde{G}=(V,E,\mu_P)$. $\alpha=0.1$; $\phi=\max$; $\phi=prod$.