| ExaMath Groups         | Mathematics Exam<br>Class: LS | Prepared by: Hasan Rizk<br>Edited by: Hasan Ahmad |
|------------------------|-------------------------------|---------------------------------------------------|
| Number of questions: 3 | Sample 02 – year 2023         | Name:                                             |
|                        | Duration: 1½ hours            | Nº:                                               |

- إن هذا النموذج أعد بشكل تطوعى من المؤلف دون أي مقابل بهدف تأمين مادة هدفها تدريبي فقط.
- حقوق التأليف محفوظة للمؤلف ويستطيع الزملاء الأعزاء والأحباء التلامذة الإستفادة منه فنيًا وتعليميا بأي طريقة ممكنة مع حفظ الحقوق تقدير اللجهد المبذول في التأليف .
  - يمنع منعا باتا مقاربة هذا النموذج بشكل مادى بأى طريقة من الطرق فهو نموذج مجانى بالمطلق و هدفه الخدمة العامة فقط.
- لا توجد صفة رسمية لمضمون النّموذج فهو اُجتهاد شخصي للمؤلفُ ولا علاقة لّه بأي شُكل من الأشكال بأي لجان رسمية وغيرها، ومستوى النموذج مستقل كليا عن مستوى الإمتحان الرسمي المفترض ، فهدف النموذج تدريبي محض.
- This exam consists of three problems inscribed on two pages.
- The use of a non-programmable calculator is allowed.

### I- (4 points)

In the table below, only one of the proposed answers is correct. Choose the correct answer and justify your choice.

| No  | Question                                                                                                                                                                     | Pr                                           | oposed answe                      | answers                                          |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|--------------------------------------------------|--|
| 14. | Question                                                                                                                                                                     | A                                            | В                                 | C                                                |  |
| 1)  | The number of solutions of the equation $\ln(x+3) = 2 \ln x - \ln 3$ is:                                                                                                     | 0                                            | 1                                 | 2                                                |  |
| 2)  | Let $f$ be the function defined over $]0$ ; $+\infty[$ by $f(x) = x(\ln x)^2$ and denote by $(C)$ its representative curve in an orthonormal system. The curve $(C)$ admits: | at point of abscissa e a tangent of slope -3 | an inflection point of abscissa e | an inflection point of abscissa $\frac{1}{e}$    |  |
| 3)  | The domain of definition of the function $f$ defined by $f(x) = \ln(e^{2x} - 3e^x - 4)$ is:                                                                                  | ]ln 4; +∞[                                   | ]-∞; ln 4[                        | $]-\infty ; \ln 4[ \cup ] $ $] \ln 4 ; +\infty[$ |  |
| 4)  | We draw simultaneously three balls from an urn containing 5 red balls, 2 yellow and 3 white. The total number of outcomes is:                                                | 720                                          | 1000                              | 120                                              |  |

## II- (6 points)

A survey was done on group of citizens in a certain city in Lebanon reveals the following results:

- 75% of the citizens exchanged their salaries from Lebanese Lira to dollars.
- Out of those who didn't exchange their salaries to dollars, 35% paid more money during buying items.
- 20 % of the citizens paid more money during buying items.

A citizen who responded to this survey was randomly chosen.

Consider the following events:

C: « The chosen citizen exchanged his salary from Lebanese Lira to dollars »;

M: « The chosen citizen paid more money during buying items ».

- 1) Calculate  $P(\overline{C} \cap M)$  and verify that  $P(C \cap M) = \frac{9}{80}$ .
- 2) Calculate P(M/C).
- 3) A citizen paid more money during buying items, what is the probability that he didn't exchange his salary from Lebanese Lira to dollars?

4) The group consists of 800 citizens. 3 citizens were chosen randomly and simultaneously. Calculate the probability that at least one of them paid more money during buying items (give the answer rounded to the nearest hundredths).

# III- (10 points)

### Part A

Consider the function g defined over  $\mathbb{R}$  by  $g(x) = (1+x)e^x - 4$ .

The table below represents the table of variations of g.

| x     | $-\infty$ |   | -2          |   | $+\infty$ |
|-------|-----------|---|-------------|---|-----------|
| g'(x) |           | _ | 0           | + |           |
| g(x)  | -4        |   | $-e^{-2}-4$ | ▼ | +∞        |

- 1) The equation g(x) = 0 admits a unique solution  $\alpha$ . Prove that  $0.7 < \alpha < 0.8$ .
- 2) Use the above table to deduce the sign of g(x) over  $\mathbb{R}$ .

### Part B

Consider the function f defined over  $]-\infty; +\infty[$  by  $f(x)=(x-1)e^x-2x^2$  and let (C) be its representative curve on the orthonormal system  $(O; \vec{i}; \vec{j})$ .

- 1) Calculate  $\lim_{x \to -\infty} f(x)$  and  $\lim_{x \to +\infty} f(x)$ .
- 2) Calculate f(2.5) and f(-1) and give the results to the nearest  $10^{-1}$ .
- 3) Prove that, for every  $x \in \mathbb{R}$ ,  $f'(x) = x(e^x 4)$  then setup the table of variations of f.
- 4) Show that the equation f(x) = 0 admits a unique solution  $\beta$  and prove that  $2 < \beta < 2.1$ .
- 5) a) Prove that for every  $x \in \mathbb{R}$ , f''(x) = g(x).
  - **b)** Deduce that the curve (C) admits an inflexion point I of abscissa  $\alpha$ .
  - c) Show that the director coefficient of the tangent (T) to the curve (C) at point I can be written as:  $\frac{-4\alpha^2}{\alpha+1}$ .
- 6) Draw (T) and (C) (take  $\alpha \approx 0.75$ ).

| QI | Answers                                                                                                                                                            | 4 pts |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|    | The equation exists if $\begin{cases} x+3>0 \\ x>0 \end{cases}$ then if $\begin{cases} x>-3 \\ x>0 \end{cases}$ then for $x \in ]0$ ; $+\infty[$ ;                 |       |
| 1) | $\ln(x+3) = 2\ln x - \ln 3$ ; $\ln(x+3) = \ln\left(\frac{x^2}{3}\right)$ ; since the function $x \mapsto \ln x$ is                                                 |       |
|    | continuous and strictly increasing over its domain then $x+3=\frac{x^2}{3}$ ; $x^2-3x-9=0$ ;                                                                       | 1     |
|    | then $x = \frac{3+3\sqrt{5}}{2} \in \left]0 ; +\infty\right[ \text{ (accepted) or } x = \frac{3-3\sqrt{5}}{2} \notin \left]0 ; +\infty\right[ \text{ (rejected)}.$ | /     |
|    | The correct answer is <b>B</b> .                                                                                                                                   |       |
|    | f is differentiable over $]0$ ; $+\infty[$ , $f'(x) = (\ln x)^2 + 2\ln x \frac{1}{x}x = (\ln x)^2 + 2\ln x$ ;                                                      |       |
|    | $f'$ is differentiable over $]0$ ; $+\infty[$ , $f''(x) = \frac{2\ln x + 2}{x}$ have same sign of                                                                  |       |
|    | $2\ln x + 2 \text{ since } x \in ]0; +\infty[;$                                                                                                                    |       |
|    | $f''(x) = 0$ if $2 \ln x + 2 = 0$ then $x = e^{-1} = \frac{1}{e}$ ;                                                                                                |       |
| 2) | Signe of $f''$ :                                                                                                                                                   | 1     |
|    | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                              |       |
|    | f''(x) - 0 +                                                                                                                                                       |       |
|    | $f''(x) = 0$ if $x = \frac{1}{e}$ and changes sign then the curve $(C)$ of $f$ admits an inflection                                                                |       |
|    | point of abscissa $\frac{1}{e}$ .                                                                                                                                  |       |
|    | The correct answer is <b>C</b> .                                                                                                                                   |       |
|    | f is defined if $e^{2x} - 3e^x - 4 > 0$ ; Let $t = e^x > 0$                                                                                                        |       |
| 3) | $t^2 - 3t - 4 > 0$ for $t < -1$ or $t > 4$ and since $t > 0$ then $t > 4$ then $x > \ln 4$ .                                                                       | 1     |
|    | The domain of definition of the function $f$ is $]\ln 4$ ; $+\infty[$ .                                                                                            | _     |
|    | The correct answer is <b>B</b> .                                                                                                                                   |       |
| 4) | The total number of outcomes is $C_{10}^3 = 120$ .                                                                                                                 | 1     |
|    | The correct answer is C.                                                                                                                                           |       |

| QII | Answers                                                                                                                                                                                                                       | 6 pts |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1)  | $P(\overline{C} \cap M) = P(M / \overline{C}) \times P(\overline{C}) = \frac{35}{100} \times \frac{25}{100} = \frac{7}{80};$<br>$P(C \cap M) = P(M) - P(\overline{C} \cap M) = \frac{20}{100} - \frac{7}{80} = \frac{9}{80}.$ | 2     |
| 2)  | $P(M/C) = \frac{P(M \cap C)}{P(C)} = \frac{9/80}{75/100} = \frac{3}{20}.$                                                                                                                                                     | 1     |
| 3)  | $P(\overline{C}/M) = \frac{P(M \cap \overline{C})}{P(M)} = \frac{7/80}{20/100} = \frac{7}{1600}.$                                                                                                                             | 1     |

|    | The number of citizens who paid more money during buying items is                                                         |   |
|----|---------------------------------------------------------------------------------------------------------------------------|---|
| 4) | $800 \times P(M) = 160$ .<br>Let A be the event "at least one of the three citizens paid more money during buying items". | 2 |
|    | $P(A) = 1 - P(\overline{A}) = 1 - \frac{C_{640}^3}{C_{800}^3} \approx 0.49$ .                                             |   |

| QIII   | Answers                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 pts |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| A.1.   | $g(0.7) \approx -0.56 < 0$ and $g(0.8) \approx 0.005 > 0$ , then $0.7 < \alpha < 0.8$ .                                                                                                                                                                                                                                                                                                                                    | 1/2    |  |
| A.2.   | Using the table of variations of $g$ :<br>$g(x) < 0$ if $x \in ]-\infty$ ; $\alpha[; g(x) = 0$ if $x = \alpha; g(x) > 0$ if $x \in ]\alpha; +\infty[$ .                                                                                                                                                                                                                                                                    | 1.     |  |
| B.1.   | $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left( x e^x - e^x - 2x^2 \right) = 0 - 0 - \infty = -\infty;$ $\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} e^x \left( x - 1 - \frac{2x^2}{e^x} \right) = +\infty \left( +\infty - 1 - 0 \right) = +\infty \text{ since } \lim_{x \to +\infty} \frac{2x^2}{e^x} = \lim_{x \to +\infty} \frac{4x}{e^x} = 0.$                                                         | 1      |  |
| B.2.   | $f(2.5) \approx 5.7$ and $f(-1) \approx -2.7$ (the results are to the nearest $10^{-1}$ by default).                                                                                                                                                                                                                                                                                                                       | 1/2    |  |
| В.3.   | $f'(x) = (1)e^{x} + (x-1)e^{x} - 4x = xe^{x} - 4x = x(e^{x} - 4);$ $x - \infty \qquad 0 \qquad \ln 4 \qquad +\infty$ $f'(x) + 0 - \qquad +$ $f(x) \qquad \bullet \qquad 3e^{4} - 32$                                                                                                                                                                                                                                       | 1½     |  |
| B.4.   | Over $]-\infty$ ; $\ln 4[$ , $f(x) < 0$ ;<br>Over $]\ln 4$ ; $+\infty[$ , $f$ is continuous, strictly increasing and change sign then the equation $f(x) = 0$ admits a unique solution $\beta \in ]\ln 4$ ; $+\infty[$ .<br>Conclusion: The equation $f(x) = 0$ admits a unique solution $\beta$ over $]-\infty$ ; $+\infty[$ ; In addition: $f(2) \approx -0.6 < 0$ and $f(2.1) \approx 0.1 > 0$ then $2 < \beta < 2.1$ . | 1      |  |
| B.5.a. | $f''(x) = (1)(e^x - 4) + x(e^x) = (x+1)e^x - 4 = g(x).$                                                                                                                                                                                                                                                                                                                                                                    | 3/4    |  |
| B.5.b. | $f''(x)$ have the same sign of $g(x)$ over $\mathbb{R}$ , then using part A.2 $f''(x) = 0$ if $x = \alpha$ and change sign then the curve $(C)$ of $f$ admits an inflection point $I$ of abscissa $\alpha$ .                                                                                                                                                                                                               | 3/4    |  |
|        | The director coefficient of the tangent $(T)$ is $f'(x_I) = f'(\alpha) = \alpha(e^{\alpha} - 4)$ ;<br>But $\alpha$ is the solution of the equation $g(x) = 0$ then $g(\alpha) = 0$ then $(\alpha + 1)e^{\alpha} - 4 = 0$                                                                                                                                                                                                   |        |  |
| B.5.c. | $\alpha+1$                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      |  |
|        | Then $f'(\alpha) = \alpha (e^{\alpha} - 4) = \alpha \left(\frac{4}{\alpha + 1} - 4\right) = \alpha \left(\frac{4 - 4\alpha - 4}{\alpha + 1}\right) = \frac{-4\alpha^2}{\alpha + 1}$ .                                                                                                                                                                                                                                      |        |  |

