ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук

Департамент программной инженерии

Микропроект №1 Тема:

Программа для вычисления числа Пи с точностью не хуже 0.1% посредством дзетафункции Римана на языке ассемблер

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

		Исполнитель
Студ	цент гр	уппы БПИ 199
		/Кочик Д.А./
"	<i>))</i>	2020 г

Москва

Содержание

Сод	Содержание		
	Постановка задачи		
	Применяемые расчетные методы		
	Входные и выходные данные		
	Использованные источники		
	Приложение 1		

1. Постановка задачи

Необходимо разработать программу для вычисления числа $\mathbf{\Pi}\mathbf{u}$ с точностью не хуже 0.1%, посредством дзета-функции Римана (использовать FPU). Программа должна быть разработана на языке ассемблер.

2. Применяемые расчетные методы

Для вычисления числа Пи использовалась дзета-функция Римана[1] при s=2. Таким образом программа вычисляет значение суммы ряда по ф. 1. Указанный в формуле ряд называется рядом обратных квадратов. Значение его суммы было посчитано [2] и равняется $\frac{\pi^2}{6}$.

$$\zeta(2) = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} \dots$$

Формула 1. Ряд обратных квадратов

Таким образом, алгоритм программы можно разделить на следующие этапы:

- 1) Вычисление суммы ряда по ф. 1 до тех пор, пока отношение текущей суммы ряда к сумме ряда на предыдущей итерации не становится меньше или равно чем 0.001 т.е. как пока точность вычисления не достигает 0.1%. В результате мы получаем значение, близкое к $\frac{\pi^2}{6}$.
- 2) Умножение полученной суммы на 6. В результате мы получаем значение, близкое к π^2 .
- 3) Взятие положительного квадратного корня из значения, полученного на шаге 2. В результате мы получаем значение, близкое к π .
- 4) Подсчет ошибки через вычитание полученного приближенного значения π и уже известного точного.
- 5) Вывод известной информации.

3. Входные и выходные данные

Входные и выходные данные не требуется. Этим же обусловлено отсутствие тестовых примеров.

4. Использованные источники

- Дзета-функция Римана [Электронный ресурс]//URL:
 https://ru.wikipedia.org/wiki/%D0%94%D0%B7%D0%B5%D1%82%D0%B0-
 https://ru.wikipedia.org/wiki/%D0%94%D0%B7%D0%B5%D1%82%D0%B0-
 https://ru.wikipedia.org/wiki/%D0%94%D0%B7%D0%B5%D1%82%D0%B0-
 https://ru.wikipedia.org/wiki/%D0%94%D0%BA%D1%86%D0%B8%D1%8F_%D0%A0%D0%B8%D0-
 https://ru.wikipedia.org/wiki/%D0%BD%D0%BA%D1%86%D0%B8%D1%8F_%D0%A0%D0%B8%D0-
 https://ru.wikipedia.org/wiki/%D0%B0%D0%B0%D0%B0%D0%B0
 https://ru.wikipedia.org/wiki/%D0%B0
 https://ru.wikipedia.org/wiki/mara-of-paule-num-20.10.2020

5. Приложение 1 Текст программы

format PE console				
;;;;Кочик Дмитрий Алексеевич ;БПИ199 ;Вариант 11				
entry start				
include 'win32a.in	c'			
section '.data' data	readable writable			
	dq 0.0			
curr_num				
curr_num2	dq?			
answer_val	dq?			
coef	dq 0.001			
coef_pi_cour	ating dq 6.0			
pos	dd?			
counter	dd 1			
sth	dd 1000000			
raw_result	db "PI^2/6 is: %f",10,0			
raw_result2	db "PI^2 is: %f",10,0			
res	db "The result is: %f",10,0			
answer	db "Correct answer is: %f", 10, 0			
inaccuracy	db "Inaccuracy is: %f*10^-6", 10, 0			
inf db "sth: %	f", 10, 0			
section '.code' cod	e readable executable			

start:

FINIT

```
call countSum
                   ; Вычисляем примерное значение дзета-функции Римана для s=2.
  call countPiVal
                   ; Зная примерное значение ф-ии, вычисляем примерное значение числа пи.
  call getAnswer
                   ; Выводим ответ.
  invoke getch
  invoke ExitProcess ; Завершаем выполнение программы.
countSum:
                   ; Запоминаем позиция функции в стеке при вызове.
  mov [pos], esp
startCycle:
                 ; Начинаем цикл для подсчета дзета-функции Римана.
  FLD [sum]
  FSTP [curr num2]
                      ; Запоминаем старое значение суммы.
  FILD [counter]
  FST [curr_num]
  FMUL [curr_num]
  FSTP [curr_num]
                   ; Вычисляем і-й элемент суммы.
  FLD1
  FDIV [curr_num] ; i-й элемент равен 1/(i^2).
  FADD [sum]
  FSTP [sum]
                  ; Обновляем значение суммы.
  mov eax, [counter]
  inc eax
  mov [counter], eax ; увеличиваем счетчик итераций цикла.
  FLD [curr_num2]
  FDIV [sum]
```

```
FCOMP [coef]
                    ; Если отношение суммы предыдущей итерации и текущей больше чем
0.1%
    jge startCycle
                  ; Продолжаем выполнение цикла.
  finish:
    mov esp, [pos]
                   ; Иначе прекращаем выполнение.
    ret
  countPiVal:
    mov [pos], esp ; Запоминаем позиция функции в стеке при вызове.
    invoke printf, raw result, dword[sum], dword[sum+4]; Выводим информацию о вычисленном
значении дзета-функции Римана при s=2.
              ; sum = Pi^2/6
    FLD [sum]
    FMUL [coef_pi_counting]; Умножаем сумму на 6.
    FST [sum]
    invoke printf, raw result2, dword[sum], dword[sum+4]; Выводим информацию о вычисленном
значении дзета-функции Римана при s=2, умноженной на 6.
    FSQRT
    FSTP [sum]
                  ; Вычисляем корень из sum*6. Это и есть число пи.
    mov esp, [pos]
    ret
 getAnswer:
    mov [pos], esp ; Запоминаем позиция функции в стеке при вызове.
    invoke printf, res, dword[sum], dword[sum+4]
                                                    ; Выводим информацию о том, что
нам удалось вычислить.
    FLDPI
    FST [answer_val]
    invoke printf, answer, dword[answer_val], dword[answer_val+4] ; Выводим правильный ответ
```

для сравнения.

```
FLD [sum]
    FSUB [answer_val]
    FIMUL [sth]
    FSTP [answer_val]
    invoke printf, inaccuracy, dword[answer_val], dword[answer_val+4]; Выводим полученную
погрешность.
    mov esp, [pos]
    ret
;------
section '.idata' import data readable
  library kernel, 'kernel32.dll',\
      msvcrt, 'msvcrt.dll'
include 'api\user32.inc'
include 'api\kernel32.inc'
  import kernel,\
      ExitProcess, 'ExitProcess',\
      HeapCreate, 'HeapCreate', \
      HeapAlloc, 'HeapAlloc'
  import msvcrt,\
      printf, 'printf',\
      scanf, 'scanf',\
      getch, '_getch'
```