1	TO WHOM IT MAY CONCERN:
2	
3	BE IT KNOWN THAT WE, BEHZAD MIRZAYI, P.E., a
4	citizen of the United States of America, residing in
5	Littleton, in the County of Arapahoe, State of
6	Colorado, MERY C. ROBINSON, a citizen of the United
7	States of America, residing in Carlsbad, in the County
8	of San Diego, State of California, ALVIN J. SMITH, a
9	citizen of the United States of America, residing in
10	Santa Barbara, in the County of Santa Barbara, State of
11	California, and DOMINIC J. COLASITO, a citizen of the
12	United States of America, residing in Bakersfield, in
13	the County of Kern, State of California, have invented
14	a new and useful improvement in
15	
16	
17	TREATMENT OF CONTAMINATED ACTIVATED CHARCOAL
18	
19	
20	
21	
22	
23	
24	

1	BACKGROUND OF THE INVENTION
2	
3	This invention relates generally to treatment
4	of granular activated charcoal (GAC) filtration
5	systems; and more particularly it concerns use of
6	micro-organisms for removal of contaminating
7	hydrocarbons from such systems.
8	''Liquid phase'' GAC systems are typically
9	used as water filtration media to adsorb toxic
10	chemicals found in wastewater and extracted groundwater
11	plumes. Treated water typically must meet Clean Water
12	Act standards for discharge into sewers or streams.
13	GAC becomes spent when its adsorption potentials are
14	met and breakthrough of toxics occurs. There is need
15	for apparatus and methods that not only extend service
16	life, but also, actively effect scrubbing of the
17	effluent water stream to mitigate GAC breakthrough of
18	daughter degradation compounds such as Tri-Butyl
19	Alcohol (TBA), which is created in the breakdown of
20	Methyl Tertiary Butyl Ether (MTBE), the clean fuels
21	additive found in gasoline.
22	More generally, granular activated carbon or
23	charcoal (GAC) is used extensively to treat water,
24	wastewater and groundwater at remediation sites
25	contaminated with various organic pollutants such as

- 1 petroleum hydrocarbons including BTEX and MTBE,
- 2 chlorinated solvents, volatile and semi-volatile
- 3 organic compounds. Historically, this technology has
- 4 been used because it is effective, predictable,
- 5 economical, and simple to implement at a variety of
- 6 sites and operating conditions. Recently, however,
- 7 increasing regeneration costs and the regulation of
- 8 compounds that have lower adsorption efficiencies has
- 9 made traditional GAC systems less economical. For
- 10 example, hundreds of sites across the United States and
- 11 overseas with groundwater impacted by MTBE, and its
- 12 daughter products including TBA, must be remediated to
- 13 near non-detect levels, but GAC has a very low
- 14 adsorption efficiency for MTBE and TBA. The result is
- 15 that MTBE and TBA breakthrough occurs very rapidly and
- 16 carbon change-out frequencies must increase.
- 17 Such toxic chemicals include for example
- 18 tri-butyl alcohol created in the breakdown of MTBE,
- 19 Methyl Tertiary Butyl Ether, the clean fuels additive
- 20 found in gasoline.
- 21 As noted, granular activated carbon (GAC) is
- 22 used extensively to treat groundwater and vapor streams
- 23 at remediation sites and industrial facilities across
- 24 the U.S. and abroad. To date, the standard practice
- 25 has been to replace spent carbon with virgin carbon, or
- 26 to have the carbon thermally regenerated. Replacing

1	spent carbon with virgin carbon is more expensive, but	
2	is often done since the alternative thermal	
3	regeneration breaks down the carbon, resulting in more	
4	''fines''. The cost of thermal regeneration has also	
5	been increasing due to increasing energy costs. At the	
6	same time, the increasing presence of MTBE and its	
7	daughter products like TBA have resulted in increasing	
8	carbon usage rates and expense, since GAC has a lower	
9	adsorption efficiency for these compounds.	
10		
11	SUMMARY OF THE INVENTION	
12		
13	It is a major object of the invention to	
14	provide an improved method for fluid treatment, that	
15	includes	
16	a) providing a treatment zone containing	
17	granular activated charcoal, and	
18	b) providing a stream of water containing	
19	nutrients, contaminant degrading microbes and dissolved	
20	oxygen, and	
21	c) introducing that stream to the treatment	
22	zone to effect adsorption of nutrients and microbes	
23	onto the granular activated chargoal, thereby to	

24 provide a contaminant treatment matrix.

- 1 An important advantage of such a method, and
- 2 its associated system, over traditional granular
- 3 activated charcoal per se treatment of fluid such as
- 4 water, is that the system is very effective in the
- 5 treatment of hydrocarbon contaminants such as MTBE and
- 6 its byproducts, resulting in typical cost savings of up
- 7 to 50 percent relative to traditional GAC systems.
- 8 The surface of granular-activated carbon
- 9 adsorbs organic compounds, such as MTBE, and acts as a
- 10 ''storage site'' to buffer variations in influent
- 11 concentration. The surface is also an excellent
- 12 attachment medium for bacteria. This allows the
- 13 bacteria to thrive in the presence of uniform aqueous
- 14 concentrations of MTBE and other organic compounds.
- 15 A further advantage lies in elimination of
- 16 need for thermal desorption facilities which roast
- 17 toxics from the GAC, causing indirect damage up to 25%
- 18 of the GAC by volume, and necessitating addition of
- 19 virgin GAC to blend back to specified adsorption levels
- 20 or properties. The present on-site process can be
- 21 operated at one-third to one-half the cost of
- 22 conventional thermal reactivation.
- 23 Another object includes provision of a
- 24 process wherein microbial blends are employed to
- 25 inoculate bacteria directly upon out-of-service and
- 26 spent Granular Activated Carbon from both ''liquid

- 1 phase'' and ''vapor phase'' filtration systems.
- 2 ''Liquid phase'' GAC systems are typically used as
- 3 water filtration media to adsorb toxic chemicals found
- 4 in wastewater and extracted groundwater plumes.
- 5 ''Vapor phase'' GAC systems are typically used to scrub
- 6 or reduce airborne or gas-borne toxics that vent from
- 7 filling and emptying large storage tanks and process
- 8 treatment vessels as found in petroleum refineries and
- 9 tank farms.
- 10 A further object includes provision of
- 11 microbe adsorbing granular activated charcoal in a
- 12 treatment zone, where the charcoal has one of the
- 13 following matrix-like forms:
- 14 i) pellets
- ii) a mat or mats
- 16 iii) fabric
- iv) a support matrix
- v) adsorption media.
- 19 Yet another object includes provision of a
- 20 process that includes passing treatable aqueous fluid
- 21 into contact with such matrix adsorbed substances, in a
- 22 treatment path, and recovering treated fluid from that
- 23 path. Such fluid typically includes water. As
- 24 referred to, the GAC is typically disposed as a porous
- 25 support media for such nutrients and microbes.

1	An additional object includes adjusting the
2	pH of the fluid to between 6.0 and 8.5 prior to its
3	introduction to the matrix; and also adjusting the
4	temperature of the fluid to a level less than 110°F,
5	prior to the introducing step.
6	Further objects include provision of a multi-
7	tank system containing GAC, and connected in series for
8	reception of fluid to be treated, and microbial
9	nutrients to be adsorbed on the GAC. At least one of
10	the upstream tanks typically and preferably contains
11	seeding microbes to be carried downstream onto the GAC
12	in successive tanks. Porous synthetic resinous ball-
13	like ''seeders'' may be employed in the upstream tank
14	to disperse microbes into the flow, the microbes having
15	been deposited on the seeders.
16	These and other objects and advantages of the
17	invention, as well as the details of an illustrative
18	embodiment, will be more fully understood from the
19	following specification and drawings, in which:
20	
21	DRAWING DESCRIPTION
22	
23	Fig. 1 is a preferred system diagram;
24	Fig. 2 is another system diagram.
25	

1	DETAILED DESCRIPTION
2	
3	Referring first to Fig. 1, a bioreactor surge
4	tank is shown at 10. Nutrients and microbes are
5	supplied to the upper interior of tank 10 at 11 from a
6	tank 12, via a metering pump 13; and air or oxygen is
7	supplied to the lower interior of the tank 10, as via a
8	blower 14, to increase dissolved 02 levels in the fluid
9	in the tank. Process water, conditioned as to pH level
10	and temperature, is supplied at 15 to the tank upper
11	interior.
12	The reactor 10 contains a bio-support matrix
13	or bed 16 through which process water flows downwardly
14	to an exit at 17. The matrix 16 serves to maintain an
15	active or ''healthy'' microbial population to ensure
16	that a portion of the microbes will be picked up and
17	carried by the water flowing through 16 and to and from
18	exit 17, for seeding the granular activated charcoal
19	GAC in a subsequent vessel or vessels. Matrix or bed
20	16 may advantageously consist of a mass of synthetic
21	resinous (plastic) pieces such as porous balls, held in
22	position as for example by upper and lower screens at
23	19 and 20. The 0_2 supply may include a fine-bubble
24	aeration device or devices, or by adding or supplying

hydrogen peroxide or other oxidizer.

25

Usable bacteria as for treatment (for example 1 2 consumption) of hydrocarbon contaminants, include one or more of: Achromobacter, Arthrobacter, Aspergillus, 3 4 Bacillus, Candida, Cladosporium, Corynebacterium, Myrothecium, Nocardia, Punicillium, Phialophora, 5 Pseudomonas, Rhodotorula, Streptomyces, Trichoderma, 6 and a blend of Anerobic and Faculative Organisms. 7 8 Process water flows through the interstices 9 in and between the plastic pieces or balls in the 10 matrix or mass to entrain bacteria growing in the 11 matrix, by virtue of the nutrient supply. Nutrient material may include one or more of the following: 12 13 simple sugars 14 mono-potassium phosphate 15 nitrogen 16 The second step in the system employs one or more treatment vessels or canisters 25 to which process 17 fluid such as water is supplied. See paths 26 and 27. 18 19 The process water containing nutrients, 20 microbes, and dissolved oxygen enters the vessels where a carbon matrix adsorbs and concentrates the organic 21 22 compounds carried in the upward flow in the vessels. The carbon matrix can consist of GAC or other carbon 23 24 based products, including pellets, mats, fabrics, or a

combination of carbon materials. The carbon material

- 1 acts as an adsorption media for the organic compounds
- 2 and as a support matrix for the microbes.
- 3 The microbes adsorbed onto the GAC matrix
- 4 granules consume hydrocarbon material, such as MTBE, in
- 5 the flowing process water, in the vessels. The matrix
- 6 typically fills the vessels, as schematically indicated
- 7 by in-fill arrows 28. The GAC material from which
- 8 hydrocarbon has been removed by consumption (microbial
- 9 consumption of hydrocarbon to produce CO_2 and water) is
- 10 periodically removed from the vessels, as schematically
- 11 indicated by arrows 29. Treated fluid, or water,
- 12 leaves the vessels as indicated at 30, for return flow
- 13 in a loop to 15.
- 14 The bioreactor and Bio-GACTM vessels must be
- 15 sized to ensure that adequate retention time is
- 16 available for the adsorption and microbial processes to
- 17 be effective. High flow velocities tend to wash the
- 18 microbes through the vessels, and prevent the
- 19 development of suitable microbial populations to be
- 20 effective on the water waste stream being treated, and
- 21 removed at 30.
- Fig. 2 is a diagram illustrative of an
- 23 alternate system. Process water received at 32 is
- 24 sprayed on packing 33 in a bioreactor vessel 34.
- 25 Packing 32 corresponds to the bed 16 in Fig. 1.

- 1 Process water draining to sump 35 in vessel 34 is
- 2 removed at 36 and pumped to the reactors 37, 38, and
- 3 39, corresponding to reactors 25. pH control liquid
- 4 is added at 40 to flow path 41; and microbes and
- 5 nutrients may be added at 42 to the flow 41. After
- 6 passing through the treatment tanks 37-39, process
- 7 water leaves at 46, for use, or for return flow to 32.
- 8 The disclosed system or systems can be used
- 9 for a variety of process streams containing organic
- 10 compounds. In order to protect the microbes in the
- 11 system, the groundwater or process water must be
- 12 conditioned prior to entering the system. As referred
- 13 to, the pH must be adjusted to between 6.0 and 8.5 and
- 14 the temperature should be less than 110 degrees
- 15 Fahrenheit.
- 16 Typically, the process restores GAC to 95% or
- 17 more of its original adsorption value or values,
- 18 without the need for transport handling.
- 19 A variation of the process further
- 20 contemplates that the spent GAC to be treated be placed
- 21 in a gravity feed hopper engineered to drain at an
- 22 optimum rate of flow dependent upon GAC grain sizing
- 23 and available treatment vessel size. Spray nozzles
- 24 sized at 1-3 GPM are suspended above the spent GAC in a
- 25 manifold pattern with overlapping radius in a treatment

1	zone to assure maximum surface area coverage and to
2	minimize the chance for treatment effluent channeling
3	and formation of erosion gaps within the body of GAC
4	deposited in the treatment vessel. Such a system or
5	process employs the application of microbial blends,
6	surfactants, nutrients and water applied through a
7	series of spray nozzles that continually recycle the
8	treatment blend in a closed loop. Gravity fed
9	treatment blend is recovered using a receiving tank
10	under or adjacent the treatment vessel plumbed to a
11	water pump that feeds the spray nozzles atop the GAC
12	treatment tank. Once GAC reactivation levels are
13	achieved, liquid phase GAC can be placed directly back
14	into service. Vapor phase GAC must be dried to
15	specified moisture standards before being placed back
16	into service. Conventional electric fan blowers
17	plumbed directly into the treatment container force air
18	through the GAC to achieve the proper moisture content.
19	The above system can be employed to treat
20	water containing any of the following substances:
21	
22	TABLE 1
23	Benzene
24	Bromobenzene
25	Bromochloromethane

1		Bromodichloromethane
2		Bromoform
3		Bromomethane
4		n-Butylbenzene
5	;	sec-Butylbenzene
6	;	tert-Butylbenzene
7	,	Carbon tetrachloride
8	;	Chlorobenzene
9)	Chloroethane
10		Chloroform
11		Chloromethane
12	2	2-Chlorotoluene
13	,	4-Chlorotoluene
14		1,2-Dibromo-3-chloropropane
15	5	Dibromochloromethane
16	5	1,2-Dibromoethane (EDB)
17	7	Dibromomethane
18	3	1,2-Dichlorobenzene
19)	1,3-Dichlorobenzene
20)	1,4-Dichlorobenzene
21	-	Dichlorodifluoromethane
22	2	1,1-Dichloroethane
23	3	1,2-Dichloroethane
24	Ł	1,1-Dichloroethene
25	5	cis-1,2-Dichloroethene
26	5	trans-1,2-Dichloroethene

1	1,2-Dichloropropane
2	1,3-Dichloropropane
3	2,2-Dichloropropane
4	1,1-Dichloropropene
5	Diisopropyl ether
6	Ethyl benzene
7	Hexachloro-1,3-butadiene
8	Isopropylbenzene (Cumene)
9	p-Isopropyltoluene
10	Methylene chloride
11	Methyl-tert-butyl ether
12	Naphthalene
13	n-Propylbenzene
14	Styrene
15	1,1,1,2-Tetrachloroethane
16	1,1,2,2-Tetrachloroethane
17	Tetrachloroethene
18	Toluene
19	1,2,3-Trichlorobenzene
20	1,2,4-Trichlorobenzene
21	1,1,1-Trichloroethane
22	1,1,2-Trichloroethane
23	Trichloroethene
24	Trichlorofluoromethane
25	1,2,3-Trichloropropane
26	1,2,4-Trimethylbenzene

1	1,3,5-Trimethylbenzene
2	Vinyl chloride
3	m&p-Xylene
4	o-Xylene
5	Toluene-d8 (S)
6	
7	The system can be used in the following
8	industries for treatment of water, wastewater, and
9	impacted groundwater subject to the Toxic Substances
1.0	Control Act (TSCA); Clean Air Act (CAA); Comprehensive
11	Environmental Response, Compensation, and Liability Act
12	(CERCLA); the Resource Conservation and Recovery Act
13	(RCRA) and the Clean-water Act (CWA) including, but not
14	limited to the equivalent state and local requirements.
15	The typical industries with potential beneficial use
16	are:
17	• Local potable water treatment companies,
18	boards, districts
19	• Oil and gas production, transportation,
20	pipeline, bulking, refining, distribution,
21	retail and gas stations]
22	Commercial and industrial facilities with waste
23	water production, and/or NPDES permit
24	requirements to treat facility discharges

1	• Chemical and petrochemical manufacturing
2	facilities
3	• Groundwater remediation sites.
4	
5	In a large-scale test, virgin carbon was
6	loaded into a bioreactor consisting of two 55-gallon
7	drums and exposed to water containing MTBE until the
8	carbon was saturated with MTBE. At this point,
9	microbes were added to the reactors and the system
10	operation was continued by re-circulating water at flow
11	rates of up to 2 gallons per minute. MTBE is added to
12	the feed tank to create MTBE concentrations of
13	approximately 150 mg/l. Continued operation and
14	testing have shown that the bioreactor is effectively
15	reducing MTBE concentrations by more than 99 percent as
16	indicated in Table 1.
17	In the small-scale test, virgin carbon was
18	loaded into two small columns and water containing
19	approximately 180 mg/l MTBE was passed through the
20	columns to simulate field conditions. After passing a
21	volume of water through the columns equivalent to three
22	times the adsorption capacity of the virgin carbon,
23	samples were collected to determine if the system was
24	continuing to adsorb MTBE or if the carbon was
25	saturated. The results in Table 2 show that even after

1 exposing the carbon to three times the adsorption

2 capacity of the carbon, the system continued to adsorb

3 the MTBE.

Table 1
Bio-GAC[™] Reactor Drum Test

Sample ID	MTB E (μg /l)
Feed Water	140,000
Reactor 1 Effluent	17,000
Reactor 2 Effluent	190

Table 2 Bio-GAC[™] Reactor Column Test

Sample ID	MTBE (µg/l)
Feed Water	200,000
Column 1 Effluent	30,000
Column 2 Effluent	6,000

8 The disclosure of U.S. Patent 5,334,533, is

9 incorporated herein, by reference.