Computação Gráfica na Web Introdução à biblioteca THREE.js

Lucas Diniz da Costa

Universidade Federal de Juiz de Fora (UFJF) 2021

Agenda

- Introdução
- Vantagens
- Aplicações
- Material de apoio
- Planejamento do minicurso

Introdução

- Este minicurso visa estabelecer uma introdução à Computação Gráfica na web através do uso da biblioteca Three.js;
- A Three.js possui muitas ferramentas e artifícios interessantes para desenho e renderização de elementos visuais na web.
- Com o forte crescimento do ambiente web, a biblioteca Three.js veio para facilitar o desenvolvimento de aplicações 2D e 3D na web.

Three.js

- Foi desenvolvida em 2010 por Ricardo Cabello (Mr. doob)
- Criada inicialmente para mostrar o potencial de gráficos 3D nos navegadores web.
- Utiliza o WebGL como estrutura nos navegadores de internet, ou seja, uma biblioteca para facilitar o uso do OpenGL na web.
- Disponível em: https://threejs.org/

Three.js

Vantagens

- Biblioteca de fácil configuração
- Executa em navegadores de internet
- Executam nos dispositivos móveis
- Atualizações frequentes
- Possibilidade de criar projetos mais complexos em 3D
- Alta gama de bibliotecas que complementam as funcionalidades da Three.js

Aplicações

Simulação de Fluidos

Fonte: https://cineshader.com/

Realidade Aumentada

Fonte: https://avrgroup.github.io/vrtools/projects/solar-system.html

Realidade Virtual

Fonte: https://mixedreality.mozilla.org/hello-webxr/

Modelagem de cidades

Fonte: https://www.harp.gl/

Amostra de produtos

Fonte: https://renaultespace.littleworkshop.fr/

Amostra de produtos

Fonte: http://www.simonreeves.com/projects/db5/

Alto detalhamento

Fonte: http://www.vill.ee/eye/

Material de apoio

Material de apoio

- Autor: Jos Dirksen
- Nome: Learning Three.js the Javascript 3D
 Library for WebGL
- Repositório dos exemplos do livro:
- Second Edition 2015:
- https://github.com/josdirksen/learning-threejs
- Third Edition 2018:
- https://github.com/PacktPublishing/Learn-Three.js-Third-Edition

Planejamento

- Apresentação do minicurso;
- Configuração do ambiente de desenvolvimento;
- Aplicação básica em Three.js;
- Câmeras e Luzes;
- Geometrias e Materiais;
- Carregamento de objetos 3D;
- Aplicação do Sistema Solar;
- Outros recursos presentes na Three.js e bibliotecas auxiliares;

Configuração do ambiente de desenvolvimento

Estrutura básica de um projeto

- Arquivo HTML: Página HTML que irá carregar as bibliotecas e dispor a interface da Three.js;
- Servidor local ou online: Para o carregamento de texturas e objetos <u>é fundamental</u>, pois sem ele, por medida de segurança os navegadores podem impedir o carregamento de arquivos externos;
- Biblioteca Three.js;
- Eventualmente o uso de bibliotecas auxiliares para aprimorar o projeto será necessário.

Servidor local (Alternativa 01)

Site para download: https://www.python.org/downloads/

Servidor local (Alternativa 01)

Servidor local (Alternativa 01 - Windows)

Servidor local (Alternativa 01 - Windows)

```
Administrador: C:\WINDOWS\system32\cmd.exe

PS E:\git\MinicursoThreejs> python -m http.server 8000 --bind 127.0.0.1

Serving HTTP on 127.0.0.1 port 8000 (http://127.0.0.1:8000/) ...

C ① ① localhost:8000
```

Directory listing for /

- assets/
- cameras.html
- exemploGeral.html
- geometrias.html
- libs/
- luzes.html
- materiais.html
- Referencia.txt

- Para iniciar o servidor:
 - python -m http.server 8000 --bind 127.0.0.1
 - Se atentando de estar na pasta/diretório do projeto.
- O servidor local será inicializado na porta 8000.
 - Para acessar o projeto, no navegador utilize a url: http://localhost:8000/
- Ou use o script presente na pasta do projeto.

Servidor local (Alternativa 02)

Site de download: https://code.visualstudio.com/

Servidor local (Alternativa 02)

Instalação da extensão Live Server

Three.js

Fonte: https://threejs.org/

Dat.gui.js

Fonte: https://github.com/dataarts/dat.gui

Dat.gui.js

Fonte: https://github.com/dataarts/dat.gui

Aplicação básica em THREE.js

 Scene (Cena): Armazena toda a estrutura da aplicação;

- Scene (Cena): Armazena toda a estrutura da aplicação;
- Renderer (Renderizador): Desenha e processa toda a informação;

- Scene (Cena): Armazena toda a estrutura da aplicação;
- Renderer (Renderizador): Desenha e processa toda a informação;
- Camera: Possibilita a visualização do cenário;

- Scene (Cena): Armazena toda a estrutura da aplicação;
- Renderer (Renderizador): Desenha e processa toda a informação;
- Camera: Possibilita a visualização do cenário;
- Looping de Animação: Cria o movimento e continuidade da cena;

Elementos auxiliares para a construção da cena

Câmeras

OrthographicCamera

- O tamanho de um objeto na imagem renderizada permanece constante, independentemente de sua distância da câmera.
- Ideal para fazer elementos 2D no interface do usuário.
- Fonte:

https://threejs.org/docs/?q=camera#api/ en/cameras/OrthographicCamera

https://threeis.org/examples/#webgl_ca mera

PerspectiveCamera

- É a câmera mais usada para o ambiente 3D
- Representa o olho humano e a distorção na imagem
- https://threejs.org/docs/?q=camera#a
 pi/en/cameras/PerspectiveCamera

Fonte:

https://threeis.org/examples/#webgl camera

Luzes

AmbientLight

- Ilumina todos os objetos igualmente
- Não faz sombra e não tem direção
- Fonte:
- https://threejs.org/docs/?q=light#api/en/ lights/AmbientLight

SpotLight

- Ilumina em uma direção
- Faz sombra e apresenta uma angulação de emissão
- Fonte:
- https://threejs.org/examples/#webgl_lights_spotlight
- <u>https://threeis.org/examples/#webgl_lights_spotlight</u>

SpotLight

PointLight

- Ilumina em todas as direções tal como uma lâmpada
- □ Fonte:
- https://threeis.org/docs/ ?q=light#api/en/lights/P ointLight
- https://threeis.org/exam ples/#webgl_lights_poin tlights

Materiais

MeshBasicMaterial

- A luz não afeta o material !!!
- Pode ter uma distorção e não conseguir diferenciar as faces do objeto

Fonte: https://threejs.org/docs/scenes/material-browser.html#MeshBasicMaterial

*opção Wireframe

MeshDepthMaterial

- Usado para materiais que apresentam profundidade.
- Quanto <u>mais próximo</u> da câmera, <u>mais claro</u> será a cor.
- Quanto <u>mais afastado</u> da câmera, <u>mais escuro</u> será.

MeshLambertMaterial

- Apresenta uma profundidade no material.
- Ideal para simular superfícies mais opacas como madeira ou rocha
- Não pode simular superfícies com muito brilho.

MeshPhongMaterial

- Apresenta o coeficiente especular.
- Logo, o material é indicado para superfícies brilhosas.
- A reflexão de luz pode impactar no desempenho da aplicação.

MeshStandardMaterial

- Apresenta o coeficiente especular.
- Logo, o material é indicado para superfícies brilhosas.
- A reflexão de luz pode impactar no desempenho da aplicação.
- Aparência mais realista em comparação ao MeshLambertMaterial e ao MeshPhongMaterial.

MeshToonMaterial

 Material que deixa um aspecto de desenho animado e cartunesco.

MeshPointsMaterial

- Material voltado para a classe de pontos.
- Fonte:

https://threeis.org/examples/#webgl buffergeometry points

ShadowMaterial

- Material recebe sombras de outros objetos mas ele mesmo é
 Transparente
- Fonte:

https://threeis.org/examples/#w
ebgl geometry spline editor

LineBasicMaterial

Fonte: https://threejs.org/examples/#webgl_lines_colors

LineBasicMaterial

Fonte: https://threejs.org/examples/#webgl_lines_colors

Geometrias

Aplicação do Sistema Solar

Outros recursos presentes na Three.js e bibliotecas auxiliares

Bibliotecas Auxiliares

- Stats.js Exibe o FPS na aplicação (Opcional);
- dat.gui.js Exibe um menu para o controle da aplicação e melhoria de interação do usuário com a aplicação;
- Bibliotecas de carregamento de objetos 3D
- Physijs Trabalhar com física em objetos;
- Oimo.js Trabalhar com física em objetos;
- AR.js Trabalhar com realidade aumentada com Three.js;
- WEBXR Trabalhar com realidade virtual no Three.js;
- AFRAME Trabalhar com realidade virtual em conjunto ao Three.js;