Examenul de bacalaureat 2010 Proba E - c)

Proba scrisă la matematică

Filiera teoretică, profilul real, specializarea ştiințe ale naturii Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

BAREM DE EVALUARE ŞI DE NOTARE

MODEL

- Se punctează oricare alte formulări/ modalități de rezolvare corectă a cerințelor.
- Nu se acordă punctaje intermediare, altele decât cele precizate explicit prin barem. Nu se acordă fractiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

SUBIECTUL I (30 de puncte)

	,	
1.	$\begin{cases} a_1 = 3 \\ a_3 = 7 \end{cases} \Rightarrow \begin{cases} a_1 = 3 \\ r = 2 \end{cases}$	
	$a_3 = 7$ $r = 2$	2p
	$a_{10} = 21$	1p
	$S_{10} = \frac{\left(a_1 + a_{10}\right) \cdot 10}{2} = 120$	2p
2.	$A(m,-1) \in G_f \iff f(m) = -1 \iff m^2 - 3m + 1 = -1$	3р
	m=2 sau $m=1$	2 p
3.	$2x+3>0 \Rightarrow x \in \left(-\frac{3}{2}, \infty\right)$	1p
	$2x+3=25 \Rightarrow x=11 \in \left(-\frac{3}{2}, \infty\right)$	4p
4.	$C_5^3 =$	3p
	=10	2p
5.	Fie M mijlocul segmentului $AB \Rightarrow M(0,0)$	2p
	Scrierea formulei distanței dintre 2 puncte	1p
	$CM = \sqrt{5}$	2p
6.	Aria $\Delta ABC = \frac{AB \cdot AC \cdot \sin A}{2} =$	2p
	$=\frac{8\cdot 8\cdot \frac{1}{2}}{2}=16$	3p
	1 2	

SUBIECTUL al II - lea

(30 d<u>e puncte)</u>

1.a)	(1 3 4)	
	$I_3 + B = \begin{vmatrix} 0 & 1 & 3 \end{vmatrix}$	2p
	$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	3n
	$\det(I_3 + B) = 1$	3р

Barem de evaluare și de notare

Probă scrisă la MATEMATICĂ

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

_	Contrai Majoriai pontra Carricalain gi Evaldaro in invajamantar i Todinvolottai	
b)	$A^2 = \begin{pmatrix} 9 & 6 & 7 \\ 0 & 9 & 6 \\ 0 & 0 & 9 \end{pmatrix}$	2p
	$f(A) = A^2 - 3A + I_3 =$	1p
	$=I_3+B$	2p
c)	$(f(A))^3 = (I_3 + B)^3 = I_3 + 3B + 3B^2 + B^3$	2 p
	$B^3 = O_3$	2 p
	Finalizare	1p
2.a)	$(x-3)^2 - 2(x-3) = 0$ (x-3)(x-5) = 0	2p
	(x-3)(x-5)=0	1p
	x=3 sau $x=5$	2p
b)	(x-3)(a-3)+3=3	2p
	$a=3\in \mathbb{Z}$	3p
c)	$\int x + y = 6$	
	$\begin{cases} x + y = 6 \\ (x - y - 3)(-2) = 2 \end{cases}$	3 p
	$\int x = 4$	
	y = 2	2 p

SUBIECTUL al III - lea

(30 de puncte)

1.a)	(2)'	
,	$\left(x^3\right)' = 3x^2$	2p
	(1)' 1	2p
	$\left(\frac{1}{r}\right)' = -\frac{1}{r^2}$	1p
	Finalizare	1þ
b)	$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = f'(1)$	3p
	f'(1) = 0	2 p
c)	$f'(x) = 0 \iff x_1 = 1, x_2 = -1$	1p
	Din tabelul de variație rezultă f crescătoare pe $(-\infty, -1]$ și pe $[1; +\infty)$	2p
	și f descrescătoare pe $[-1;0)$ și pe $(0;1]$	2p
2.a)	$V = \pi \int_{0}^{1} f^{2}(x) dx = \pi \int_{0}^{1} x^{2}(2 - x^{2}) dx =$	1p
	$=\pi \left(\frac{2x^3}{3} - \frac{x^5}{5}\right) \Big _{0}^{1} =$	2p
	$=\frac{7\pi}{15}.$	2 p
b)	$= \frac{7\pi}{15}.$ $\int_{0}^{1} x\sqrt{2 - x^{2}} dx = -\frac{1}{2} \int_{2}^{1} \sqrt{t} dt =$	3 p

Barem de evaluare și de notare

Probă scrisă la MATEMATICĂ

Filiera teoretică, profilul real, specializarea științe ale naturii.

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale.

Ministerul Educației, Cercetării și Inovării Centrul Național pentru Curriculum și Evaluare în Învățământul Preuniversitar

	$=\frac{t\sqrt{t}}{3}\bigg _{1}^{2} = \frac{2\sqrt{2}-1}{3}$	2p
c)	$\int_{0}^{x} f(t)dt = \frac{2\sqrt{2}}{3} - \frac{(2-x^{2})\sqrt{2-x^{2}}}{3}$	3p
	$\lim_{x \to 0} \frac{2\sqrt{2}}{3} - \frac{\left(2 - x^2\right)\sqrt{2 - x^2}}{3} = \lim_{x \to 0} \frac{-\frac{3}{2} \cdot \frac{\sqrt{2 - x^2}}{3} \cdot \left(-2x\right)}{2x} = \frac{\sqrt{2}}{2}$	2p