OSM Boot Camp: Math ProbSet2

Harrison Beard

2 July 2018

Exercise 3.1.

Question. Verify the polarization and parallelogram identities on a real inner product space, with the usual norm $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ arising from the inner product:

(i)
$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} \left(\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 \right)$$
.

(ii)
$$\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2 = \frac{1}{2} (\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2).$$

It can be shown that in any normed linear space over \mathbb{R} for which (ii) holds, one can define an inner product by using (i).

Answer.

(i)

$$\frac{1}{4} \left(\|\mathbf{x} + \mathbf{y}\|^{2} - \|\mathbf{x} - \mathbf{y}\|^{2} \right) = \frac{1}{4} \left(\left(\sqrt{\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle} \right)^{2} - \left(\sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle} \right)^{2} \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x} + \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} - \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle \right)$$

$$= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle \right)$$

1

(ii)

$$\frac{1}{2} \left(\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 \right) = \frac{1}{2} \left(\left(\sqrt{\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle} \right)^2 + \left(\sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle} \right)^2 \right) \\
= \frac{1}{2} \left(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \right) \\
= \frac{1}{2} \left(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x} + \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{x} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{y} \rangle \right) \\
= \frac{1}{2} \left(\langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} - \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \right) \\
= \frac{1}{2} \left(\langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} - \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \right) \\
= \frac{1}{2} \left(\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle \right) \\
= \frac{1}{2} \left(\langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle \right) \\
= \frac{1}{2} \left(2 \cdot \langle \mathbf{x}, \mathbf{x} \rangle + 2 \cdot \langle \mathbf{y}, \mathbf{y} \rangle \right) \\
= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle \\
= \|\mathbf{x}\|^2 + \|\mathbf{y}\|^2.$$

Exercise 3.2.

Question. Verify the polarization identity on a complex inner product space, with the usual norm $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ arising from the inner product:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} \left(\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 + i \|\mathbf{x} - i\mathbf{y}\|^2 - i \|\mathbf{x} + i\mathbf{y}\|^2 \right).$$

A nice consequence of the polarization identity on a real or complex inner product space is that if two inner products induce the same norm, then the inner products are equal.

Answer.

$$\frac{1}{4} \left(\|\mathbf{x} + \mathbf{y}\|^2 - \|\mathbf{x} - \mathbf{y}\|^2 + i \|\mathbf{x} - i\mathbf{y}\|^2 - i \|\mathbf{x} + i\mathbf{y}\|^2 \right) \\
= \frac{1}{4} \left(\left(\sqrt{\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle} \right)^2 - \left(\sqrt{\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle} \right)^2 \\
+ i \left(\sqrt{\langle \mathbf{x} - i\mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle} \right)^2 - i \left(\sqrt{\langle \mathbf{x} + i\mathbf{y}, \mathbf{x} + i\mathbf{y} \rangle} \right)^2 \right) \\
= \frac{1}{4} \left(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \\
+ i \cdot \langle \mathbf{x} - i\mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle - i \cdot \langle \mathbf{x} + i\mathbf{y}, \mathbf{x} + i\mathbf{y} \rangle \right) \\
= \frac{1}{4} \left(\langle \mathbf{x} + \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x} + \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{x} - \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x} - \mathbf{y}, \mathbf{y} \rangle \\
+ i \cdot \langle \mathbf{x} - i\mathbf{y}, \mathbf{x} \rangle - i^2 \cdot \langle \mathbf{x} - i\mathbf{y}, \mathbf{y} \rangle - i \cdot \langle \mathbf{x} + i\mathbf{y}, \mathbf{x} \rangle - i^2 \cdot \langle \mathbf{x} + i\mathbf{y}, \mathbf{y} \rangle \right) \\
= \frac{1}{4} \left(\langle \mathbf{x}, \mathbf{x} + \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} - \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle \\
+ i \cdot \langle \mathbf{x}, \mathbf{x} - i\mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle - i \cdot \langle \mathbf{x}, \mathbf{x} + i\mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle \right) \\
= \frac{1}{4} \left(\langle (\mathbf{x}, \mathbf{x} + \mathbf{y}) + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} - i\mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{x} - i\mathbf{y} \rangle \right) \\
= \frac{1}{4} \left(\langle (\mathbf{x}, \mathbf{x}) + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - \langle \mathbf{y}, \mathbf{y} \rangle - i \cdot \langle \mathbf{x}, \mathbf{x} \rangle + i^2 \cdot \langle \mathbf{x}, \mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{y} \rangle - i \cdot \langle \mathbf{x}, \mathbf{x} \rangle + i^2 \cdot \langle \mathbf{x}, \mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{y} \rangle - i \cdot \langle \mathbf{x}, \mathbf{x} \rangle + i^2 \cdot \langle \mathbf{x}, \mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{y} \rangle - i \cdot \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - i^2 \cdot \langle \mathbf{y}, \mathbf{y} \rangle - i \cdot \langle \mathbf{y}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle - i \cdot \langle \mathbf{y}, \mathbf{y} \rangle - i \cdot$$

Exercise 3.3.

Question. Let $\mathbb{R}[x]$ have the inner product

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x.$$

Using (3.8), find the angle θ between the following sets of vectors:

- (i) x and x^5 .
- (ii) x^2 and x^4 .

Answer.

(i) In (3.8), we define $\cos \theta$ for the angle θ between vectors x and y as

$$\frac{\langle x,y\rangle}{\|x\|\,\|y\|}.$$

Solving in our case, we have

$$\cos \theta = \frac{\langle x, x^5 \rangle}{\|x\| \|x^5\|}$$

$$= \frac{\langle x, x^5 \rangle}{\sqrt{\langle x, x \rangle} \sqrt{\langle x^5, x^5 \rangle}}$$

$$= \frac{\int_0^1 x^6 \, dx}{\sqrt{\int_0^1 x^2 \, dx} \sqrt{\int_0^1 x^{10} \, dx}}$$

$$= \frac{\frac{\frac{1}{7}x^7|_0^1}{\frac{1}{3}x^3|_0^1 \cdot \frac{1}{11}x^{11}|_0^1}}$$

$$= \frac{\frac{1}{7}}{\frac{1}{3} \cdot \frac{1}{11}}$$

$$= \boxed{\frac{33}{7}}.$$

(ii)

$$\cos \theta = \frac{\langle x^2, x^4 \rangle}{\|x^2\| \|x^4\|}$$

$$= \frac{\langle x^2, x^4 \rangle}{\sqrt{\langle x^2, x^2 \rangle} \sqrt{\langle x^4, x^4 \rangle}}$$

$$= \frac{\int_0^1 x^6 \, dx}{\sqrt{\int_0^1 x^4 \, dx} \sqrt{\int_0^1 x^8 \, dx}}$$

$$= \frac{\frac{1}{7} x^7 \Big|_0^1}{\frac{1}{5} x^5 \Big|_0^1 \cdot \frac{1}{9} x^9 \Big|_0^1}$$

$$= \frac{\frac{1}{7}}{\frac{1}{5} \cdot \frac{1}{9}}$$

$$= \frac{45}{7}.$$

Exercise 3.8.

Question. Let V be the inner product space $\mathcal{C}([-\pi,\pi];\mathbb{R})$ with inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t) dt.$$

Let $X = \operatorname{span}(S) \subset V$, where $S = \{\cos(t), \sin(t), \cos(2t), \sin(2t)\}$.

- (i) Prove that S is an orthonormal set.
- (ii) Compute ||t||.
- (iii) Compute the projection $\operatorname{proj}_X(\cos(3t))$.
- (iv) Compute the projection $\operatorname{proj}_{X}(t)$.

Answer.

(i) Normality:

$$\|\cos(t)\| = \langle \cos(t), \cos(t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(t) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^{2}(t) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} (\cos(2t) + \cos(0)) dt$$

$$= \frac{1}{\pi} \underbrace{\int_{-\pi}^{\pi} \frac{1}{2} \cos(2t) dt + \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} dt}_{2t=u}$$

$$= \underbrace{\frac{du}{dt}}_{2t=u} = \underbrace{\frac{du}{dt}}_{2t} = 2 \Longrightarrow dt = \frac{1}{2} du$$

$$u \in 2 \cdot (-\pi, \pi) = (-2\pi, 2\pi)$$

$$= \frac{1}{4\pi} \int_{-2\pi}^{2\pi} \cos(u) du + \frac{1}{2\pi} \cdot t \Big|_{-\pi}^{\pi}$$

$$= \frac{1}{4\pi} \cdot \sin(u) \Big|_{-2\pi}^{2\pi} + \frac{1}{2\pi} (\pi + \pi)$$

$$= \frac{1}{4\pi} (\sin(2\pi) - \sin(-2\pi)) + 1$$

$$= \frac{1}{4\pi} (0) + 1$$

$$= 1.$$

$$\begin{aligned} \|\sin(t)\| &= \langle \sin(t), \sin(t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^{2}(t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\cos(0) - \cos(2t) \right) \, \mathrm{d}t \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{d}t - \frac{1}{4\pi} \int_{-2\pi}^{2\pi} \cos(u) \, \mathrm{d}u \\ &= \frac{1}{2\pi} (2\pi) - \frac{1}{4\pi} \cdot \sin(u) \big|_{-2\pi}^{2\pi} \\ &= 1. \end{aligned}$$

$$\begin{aligned} \|\cos(2t)\| &= \langle \cos(2t), \cos(2t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \cos(2t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos^{2}(2t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\cos(4t) + \cos(0) \right) \, \mathrm{d}t \\ &= \frac{1}{8\pi} \int_{-4\pi}^{4\pi} \cos(u) \, \mathrm{d}u + \frac{1}{2\pi} \cdot t \big|_{-\pi}^{\pi} \\ &= \frac{1}{8\pi} \cdot \sin(u) \big|_{-4\pi}^{4\pi} + \frac{1}{2\pi} (2\pi) \\ &= 1. \end{aligned}$$

$$\|\sin(2t)\| = \langle \sin(2t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \sin(2t) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin^{2}(2t) dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} (\cos(0) - \cos(4t)) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} dt - \frac{1}{8\pi} \int_{-4\pi}^{4\pi} \cos(u) du$$

$$= \frac{1}{2\pi} (2\pi) - \frac{1}{8\pi} \cdot \sin(u) \Big|_{-4\pi}^{4\pi}$$

$$= 1.$$

Orthogonality:

$$\begin{aligned} \langle \cos(t), \sin(t) \rangle &= \langle \sin(t), \cos(t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cos(t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(2t) - \sin(0) \right) \, \mathrm{d}t \\ &= \frac{1}{4\pi} \int_{-2\pi}^{2\pi} \sin(u) \, \mathrm{d}u - 0 \\ &= \frac{1}{4\pi} \left(-\cos(u) \right) \big|_{-2\pi}^{2\pi} \\ &= \frac{1}{4\pi} (-1+1) \\ &= 0. \end{aligned}$$

$$\begin{aligned} \langle \cos(t), \cos(2t) \rangle &= \langle \cos(2t), \cos(t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \cos(t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\cos(3t) + \cos(-t) \right) \, \mathrm{d}t \\ &= \frac{1}{6\pi} \int_{-3\pi}^{3\pi} \cos(u) \, \mathrm{d}u - \frac{1}{2\pi} \cdot \sin(v) \big|_{\pi}^{-\pi} \\ &= \frac{1}{6\pi} \sin(u) \big|_{-3\pi}^{3\pi} - \frac{1}{2\pi} (\sin(-\pi) - \sin(\pi)) \\ &= \frac{1}{6\pi} \left(\sin(\pi) - \sin(-\pi) \right) - \frac{1}{2\pi} (\sin(-\pi) - \sin(\pi)) \\ &= \frac{1}{6\pi} \left(\sin(\pi) - \sin(-\pi) \right) - \frac{1}{2\pi} (\sin(-\pi) - \sin(\pi)) \\ &= 0. \end{aligned}$$

$$\begin{aligned} \langle \cos(t), \sin(2t) \rangle &= \langle \sin(2t), \cos(t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \cos(t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(3t) - \sin(-t) \right) \, \mathrm{d}t \\ &= \frac{1}{6\pi} \int_{-3\pi}^{3\pi} \sin(u) \, \mathrm{d}u - \frac{1}{2\pi} \cdot \cos(-t) \big|_{-\pi}^{\pi} \\ &= \frac{1}{6\pi} \cdot -\cos(u) \big|_{-3\pi}^{3\pi} - \frac{1}{2\pi} \left(\cos(-\pi) - \cos(\pi) \right) \\ &= \frac{1}{6\pi} \left(-\cos(\pi) + \cos(-\pi) \right) - \frac{1}{2\pi} (-1 + 1) \\ &= \frac{1}{6\pi} (1 - 1) - 0 \\ &= 0. \end{aligned}$$

$$\begin{split} \langle \sin(t), \cos(2t) \rangle &= \langle \cos(2t), \sin(t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \sin(t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(3t) - \sin(t) \right) \, \mathrm{d}t \\ &= \frac{1}{6\pi} \int_{-3\pi}^{3\pi} \sin(u) \, \mathrm{d}u - \frac{1}{2\pi} \cdot \cos(t) |_{-\pi}^{\pi} \\ &= \frac{1}{6\pi} \cdot -\cos(u) |_{-3\pi}^{3\pi} - \frac{1}{2\pi} \left(\cos(\pi) - \cos(-\pi) \right) \\ &= \frac{1}{6\pi} \left(-\cos(\pi) + \cos(-\pi) \right) - \frac{1}{2\pi} (1-1) \\ &= \frac{1}{6\pi} (1-1) - 0 \\ &= 0. \end{split}$$

$$\begin{split} \langle \sin(t), \sin(2t) \rangle &= \langle \sin(2t), \sin(t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \sin(t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\cos(-t) + \cos(3t) \right) \, \mathrm{d}t \\ &= -\frac{1}{2\pi} \int_{3\pi}^{-3\pi} \cos(u) \, \mathrm{d}u - \frac{1}{6\pi} \cdot \int_{-3\pi}^{3\pi} \cos(v) \, \mathrm{d}v \\ &= -\frac{1}{2\pi} \cdot \sin(u)|_{3\pi}^{-3\pi} - \frac{1}{6\pi} \cdot \sin(v)|_{-3\pi}^{3\pi} \\ &= -\frac{1}{2\pi} (\sin(-\pi) - \sin(\pi)) - \frac{1}{6\pi} (\sin(\pi) - \sin(-\pi)) \\ &= 0. \end{split}$$

$$\begin{aligned} \langle \cos(2t), \sin(2t) \rangle &= \langle \sin(2t), \cos(2t) \rangle &= \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \cos(2t) \, \mathrm{d}t \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(3t) - \sin(0) \right) \, \mathrm{d}t \\ &= \frac{1}{6\pi} \int_{-3\pi}^{3\pi} \sin(u) \, \mathrm{d}u - 0 \\ &= \frac{1}{6\pi} \cdot -\cos(u) \big|_{-3\pi}^{3\pi} \\ &= \frac{1}{6\pi} \left(-\cos(\pi) + \cos(-\pi) \right) \\ &= \frac{1}{6\pi} (1 - 1) \\ &= 0. \end{aligned}$$

(ii)

$$\begin{aligned} \|t\| &= \sqrt{\langle t, t \rangle} \\ &= \sqrt{\frac{1}{\pi} \int_{-\pi}^{\pi} t^2 \, \mathrm{d}t} \\ &= \sqrt{\frac{1}{\pi} \cdot \frac{1}{3} t^3 \Big|_{-\pi}^{\pi}} \\ &= \sqrt{\frac{1}{\pi} \cdot \left(\frac{1}{3} \pi^3 - \frac{1}{3} (-\pi)^3\right)} \\ &= \sqrt{\frac{2}{3} \pi^2} \\ &= \sqrt{\frac{2}{3} \pi} \, . \end{aligned}$$

(iii)

$$\begin{aligned} &\text{proj}_{X}\left(\cos(3t)\right) &\triangleq \sum_{i=1}^{m} \left\langle \mathbf{x}_{i}, \cos(3t) \right\rangle \mathbf{x}_{i} \text{ for } \mathbf{x} \in \text{basis}(X) \text{ because } X \subset V \text{ is orthonormal} \\ &= \left\langle \cos(t), \cos(3t) \right\rangle \cdot \cos(t) \\ &+ \left\langle \sin(t), \cos(3t) \right\rangle \cdot \sin(2t) \\ &+ \left\langle \sin(2t), \cos(3t) \right\rangle \cdot \sin(2t) \text{ because } X := \text{span}\left(\left\{\cos(t), \sin(t), \cos(2t), \sin(2t)\right\}\right) \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(3t) \, dt \cdot \cos(t) \\ &+ \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cos(3t) \, dt \cdot \sin(t) \\ &+ \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \cos(3t) \, dt \cdot \sin(2t) \\ &= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\cos(4t) + \cos(2t)\right) \, dt \cdot \cos(t) \\ &+ \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(4t) - \sin(2t)\right) \, dt \cdot \sin(t) \\ &+ \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \left(\sin(5t) - \sin(t)\right) \, dt \cdot \sin(2t) \end{aligned}$$

$$= \frac{\cos(t)}{2\pi} \left(\int_{-\pi}^{\pi} \sin(4t) \, dt - \int_{-\pi}^{\pi} \sin(2t) \, dt \right) \\ &+ \frac{\sin(t)}{2\pi} \left(\int_{-\pi}^{\pi} \sin(4t) \, dt - \int_{-\pi}^{\pi} \sin(2t) \, dt \right) \\ &+ \frac{\sin(2t)}{2\pi} \left(\int_{-\pi}^{\pi} \sin(5t) \, dt - \int_{-\pi}^{\pi} \sin(2t) \, dt \right) \\ &= \frac{\cos(t)}{2\pi} \left(\frac{1}{4} \int_{-4\pi}^{4\pi} \cos(u_{1}) \, du_{1} + \frac{1}{2} \int_{-2\pi}^{2\pi} \cos(u_{2}) \, du_{2} \right) \\ &+ \frac{\sin(2t)}{2\pi} \left(\frac{1}{4} \int_{-4\pi}^{4\pi} \sin(u_{3}) \, du_{3} - \frac{1}{2} \int_{-2\pi}^{2\pi} \sin(u_{4}) \, du_{4} \right) \\ &+ \frac{\cos(2t)}{2\pi} \left(\frac{1}{5} \int_{-5\pi}^{5\pi} \cos(u_{6}) \, du_{5} - \int_{-\pi}^{\pi} \sin(t) \, dt \right) \\ &+ \frac{\sin(2t)}{2\pi} \left(\frac{1}{5} \int_{-5\pi}^{5\pi} \cos(u_{6}) \, du_{5} - \int_{-\pi}^{\pi} \sin(t) \, dt \right) \\ &+ \frac{\sin(2t)}{2\pi} \left(\frac{1}{5} \int_{-5\pi}^{5\pi} \sin(u_{6}) \, du_{6} - \int_{-\pi}^{\pi} \sin(t) \, dt \right) \end{aligned}$$

$$= \frac{\cos(t)}{2\pi} \left(\frac{1}{4} \cdot \sin(u_1) \Big|_{-4\pi}^{4\pi} + \frac{1}{2} \cdot \sin(u_2) \Big|_{-2\pi}^{2\pi} \right) \\
+ \frac{\sin(t)}{2\pi} \left(\frac{1}{4} \cdot (-\cos(u_3)) \Big|_{-4\pi}^{4\pi} - \frac{1}{2} \cdot (-\cos(u_4)) \Big|_{-2\pi}^{2\pi} \right) \\
+ \frac{\cos(2t)}{2\pi} \left(\frac{1}{5} \cdot \sin(u_5) \Big|_{-5\pi}^{5\pi} + \left(\sin(t) \Big|_{-\pi}^{\pi}\right) \right) \\
+ \frac{\sin(2t)}{2\pi} \left(\frac{1}{5} \cdot (-\cos(u_6)) \Big|_{-5\pi}^{5\pi} - \left((-\cos(t)) \Big|_{-\pi}^{\pi}\right) \right) \\
= \frac{\cos(t)}{2\pi} \left(\frac{1}{4} \underbrace{(\sin(0) - \sin(0))} + \frac{1}{2} \underbrace{(\sin(0) - \sin(0))} \right) \\
+ \frac{\sin(t)}{2\pi} \left(\frac{1}{4} \underbrace{(-\cos(0) + \cos(0))} - \frac{1}{2} \underbrace{(-\cos(0) + \cos(0))} \right) \\
+ \frac{\cos(2t)}{2\pi} \left(\frac{1}{5} (\sin(\pi) - \sin(-\pi)) + (\sin(\pi) - \sin(-\pi)) \right) \\
+ \frac{\sin(2t)}{2\pi} \left(\frac{1}{5} (-\cos(\pi) + \cos(-\pi)) - (-\cos(\pi) + \cos(-\pi)) \right) \\
= \frac{\cos(2t)}{2\pi} \left(\frac{1}{5} \underbrace{(0 - 0) + (0 - 0)} \right) + \frac{\sin(2t)}{2\pi} \left(\frac{1}{5} \underbrace{(1 - 1) - (1 - 1)} \right) \\
= \underbrace{0}.$$

(iv)

$$\operatorname{proj}_{X}(t) \triangleq \sum_{i=1}^{m} \langle \mathbf{x}_{i}, t \rangle \mathbf{x}_{i} \text{ for } \mathbf{x} \in \operatorname{basis}(X) \text{ because } X \subset V \text{ is orthonormal}$$

$$= \langle \cos(t), t \rangle \cdot \cos(t)$$

$$+ \langle \sin(t), t \rangle \cdot \sin(t)$$

$$+ \langle \cos(2t), t \rangle \cdot \cos(2t)$$

$$+ \langle \sin(2t), t \rangle \cdot \sin(2t) \text{ because } X \coloneqq \operatorname{span}\left(\{\cos(t), \sin(t), \cos(2t), \sin(2t)\}\right)$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cdot t \, dt \cdot \cos(t) + \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cdot t \, dt \cdot \sin(t)$$

$$\begin{cases} u_{1} = t \\ dv_{1} = \cos(t) \end{cases} \Rightarrow \begin{cases} du_{1} = dt \\ v_{1} = \sin(t) \end{cases} \begin{cases} u_{2} = t \\ dv_{2} = \sin(t) \end{cases} \Rightarrow \begin{cases} du_{2} = dt \\ v_{2} = -\cos(t) \end{cases}$$

$$+ \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \cdot t \, dt \cdot \cos(2t) + \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \cdot t \, dt \cdot \sin(2t)$$

$$\begin{cases} u_{3} = t \\ dv_{3} = \cos(2t) \end{cases} \Rightarrow \begin{cases} du_{3} = dt \\ v_{3} = \frac{1}{2}\sin(2t) \end{cases} \begin{cases} u_{4} = t \\ dv_{4} = \sin(2t) \end{cases} \Rightarrow \begin{cases} du_{4} = dt \\ v_{4} = -\frac{1}{2}\cos(2t) \end{cases}$$

$$= \frac{\cos(t)}{\pi} \left(t \sin(t) - \int_{-\pi}^{\pi} \sin(t) \, dt \right) + \frac{\sin(t)}{\pi} \left(-t \cos(t) + \int_{-\pi}^{\pi} \cos(t) \, dt \right)$$

$$+ \frac{\cos(2t)}{\pi} \left(\frac{1}{2} t \sin(2t) - \frac{1}{2} \int_{-\pi}^{\pi} \sin(2t) \, dt \right) + \frac{\sin(2t)}{\pi} \left(-\frac{1}{2} t \cos(2t) + \frac{1}{2} \int_{-\pi}^{\pi} \cos(2t) \, dt \right)$$

$$= \frac{\cos(t)}{\pi} \left(t \sin(t) + \cos(t) \right) \Big|_{t=-\pi}^{\pi} + \frac{\sin(t)}{\pi} \left(-t \cos(t) + \sin(t) \right) \Big|_{t=-\pi}^{\pi}$$

$$+ \frac{\cos(2t)}{\pi} \left(\frac{1}{2} t \sin(2t) + \frac{1}{4} \cos(w_1) \right) \Big|_{(t,w_1)=(-\pi,-2\pi)}^{(\pi,2\pi)} + \frac{\sin(2t)}{\pi} \left(-\frac{1}{2} t \cos(2t) + \frac{1}{4} \sin(w_2) \right) \Big|_{(t,w_2)=(-\pi,-2\pi)}^{(\pi,2\pi)}$$

$$= \frac{\cos(\pi)}{\pi} \left(\pi \sin(\pi) + \cos(\pi) \right) - \frac{\cos(-\pi)}{\pi} \left(-\pi \sin(-\pi) + \cos(-\pi) \right)$$

$$+ \frac{\sin(\pi)}{\pi} \left(-\pi \cos(\pi) + \sin(\pi) \right) - \frac{\sin(-\pi)}{\pi} \left(\pi \cos(-\pi) + \sin(-\pi) \right)$$

$$+ \frac{\cos(2\pi)}{\pi} \left(\frac{1}{2} \pi \sin(2\pi) + \frac{1}{4} \cos(2\pi) \right) - \frac{\cos(-2\pi)}{\pi} \left(-\frac{1}{2} \pi \sin(-2\pi) + \frac{1}{4} \cos(-2\pi) \right)$$

$$+ \frac{\sin(2\pi)}{\pi} \left(-\frac{1}{2} \pi \cos(2\pi) + \frac{1}{4} \sin(2\pi) \right) - \frac{\sin(-2\pi)}{\pi} \left(\frac{1}{2} \pi \cos(-2\pi) + \frac{1}{4} \sin(-2\pi) \right)$$

$$= -\frac{1}{\pi} \left(-1 \right) + \frac{1}{\pi} \left(-1 \right) + \frac{1}{\pi} \left(\frac{1}{4} \right) - \frac{1}{\pi} \left(\frac{1}{4} \right)$$

$$= \frac{1}{\pi} \frac{\pi}{\pi} + \frac{1}{4\pi} \frac{\pi}{4\pi}$$

$$= \boxed{0}.$$

Exercise 3.9.

Question. Prove that a rotation (2.17) in \mathbb{R}^2 is an orthonormal transformation (with respect to the usual inner product).

Answer.

We can prove the orthonormality of this transformation by showing the following two identities:

$$\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}^{\mathsf{T}} \begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}$$

$$= \begin{pmatrix}
\cos^{2}(\theta) + \sin^{2}(\theta) & 0 \\
0 & \cos^{2}(\theta) + \sin^{2}(\theta)
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$

$$= I.$$

$$\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix} \begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}^{\mathsf{T}}$$

$$= \begin{pmatrix}
\cos^{2}(\theta) + \sin^{2}(\theta) & 0 \\
0 & \cos^{2}(\theta) + \sin^{2}(\theta)
\end{pmatrix}$$

$$= \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}$$

$$= I.$$

11

Exercise 3.10.

Question. Recall the definition of an orthonormal matrix given in Definition 3.2.14. Assume the usual inner product on \mathbb{F}^n . Prove the following statements:

- (i) The matrix $Q \in M_n(\mathbb{F})$ is an orthonormal matrix if and only if $Q^HQ = QQ^H = I$.
- (ii) If $Q \in M_n(\mathbb{F})$ is an orthonormal matrix, then $||Q\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in \mathbb{F}^n$.
- (iii) If $Q \in M_n(\mathbb{F})$ is an orthonormal matrix, then so is Q^{-1} .
- (iv) The columns of an orthonormal matrix $Q \in M_n(\mathbb{F})$ are orthonormal.
- (v) If $Q \in M_n(\mathbb{F})$ is an orthonormal matrix, then $|\det(Q)| = 1$. Is the converse true?
- (vi) If $Q_1, Q_2 \in M_n(\mathbb{F})$ are orthonormal matrices, then the product Q_1Q_2 is also an orthonormal matrix.

Answer.

(i) If Q is orthonormal, then $\langle \mathbf{x}, \mathbf{y} \rangle = \langle Q\mathbf{x}, Q\mathbf{y} \rangle$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$. Moreover, if $Q^{\mathsf{H}}Q = QQ^{\mathsf{H}} = I$, then note that

$$\langle Q\mathbf{x}, Q\mathbf{y} \rangle = (Q\mathbf{x})^{\mathsf{H}}(Q\mathbf{y})$$

 $= x^{\mathsf{H}}Q^{\mathsf{H}}Q\mathbf{y}$
 $\stackrel{Q^{\mathsf{H}}Q=I}{=} \mathbf{x}^{\mathsf{H}}\mathbf{y},$

again for all $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$. It follows that (again if $Q^{\mathsf{H}}Q = QQ^{\mathsf{H}} = I$)

$$\langle Q\mathbf{x}, Q\mathbf{y} \rangle = (Q\mathbf{x})^{\mathsf{H}}(Q\mathbf{y})$$

 $= \mathbf{x}^{\mathsf{H}}Q^{\mathsf{H}}Q\mathbf{y}$
 $= \mathbf{x}^{\mathsf{H}}\mathbf{y}$
 $= \langle \mathbf{x}, \mathbf{y} \rangle$.

(ii)

$$\begin{aligned} \|Qx\| &= \sqrt{\langle Qx,Qx\rangle} \\ &= \sqrt{x^{\mathsf{H}}Q^{\mathsf{H}}Qx} \\ &= \sqrt{\langle x,x\rangle} \\ &= \|x\| \, . \end{aligned}$$

(iii) We can observe that if $QQ^{\mathsf{H}}=Q^{\mathsf{H}}Q=I$, then $Q^{-1}=Q^{\mathsf{H}}$. Moreover, we know Q^{H} is orthonormal because of the fact that $(Q^{\mathsf{H}})^{\mathsf{H}}=Q$. Then,

$$(Q^{\mathsf{H}})^{\mathsf{H}} Q^{\mathsf{H}} = QQ^{\mathsf{H}}$$

$$= I$$

$$= Q^{\mathsf{H}} Q$$

$$= Q^{\mathsf{H}} (Q^{\mathsf{H}})^{\mathsf{H}}.$$

(iv) Let \mathbf{v}_i be the *i*-th column (vector) of Q, which itself is orthonormal. Then, $(Q^{\mathsf{H}}Q)_{ij} = \mathbf{v}_i^{\mathsf{H}}\mathbf{v}_j = \langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{i,j}$ where $\delta_{i,j}$ is the Kronecker delta. Thus, the columns of Q are orthonormal.

(v) No. Counterexample:

$$\begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}.$$

(vi) Consider orthonormal matrices Q and P. Then,

$$(QP)^{\mathsf{H}}QP = P^{\mathsf{H}}Q^{\mathsf{H}}QP$$
$$= P^{\mathsf{H}}P$$
$$= I$$

and

$$QP(QP)^{\mathsf{H}} = QPP^{\mathsf{H}}Q^{\mathsf{H}}$$

= QQ^{H}
= I .

Exercise 3.11.

Question. Describe what happens when we apply the Gram-Schmidt orthonormalization process to a collection of linearly *dependent* vectors.

Answer.

Consider a set $\{x_i\}_{i=1}^n$ of linearly dependent vectors in V, for $n \in \mathbb{N}$. Then let $\{x_i\}_{i=1}^{k-1}$ for $k \in (2, N)$ be a linearly independent set of vectors, also in V. Then, $\{q_i\}_{i=1}^{k-1}$ is a linearly independent set. But Gram Schmidt does not work in this situation; $q_k = 0$ because $x_k \in \text{span}\left(\{x_i\}_{i=1}^{k-1}\right)$.

Exercise 3.16.

Question. Prove the following results about the QR decomposition:

- (i) The QR decomposition is not unique. *Hint*: Consider matrices of the form QD and $D^{-1}R$, where D is a diagonal matrix.
- (ii) If A is invertible, then there is a unique QR decomposition of A such that R has only positive diagonal elements.

Answer.

(i) Claim: -Q for the Q in a resultant QR decomposition of $m \times n$ matrix A is orthonormal:

$$\begin{aligned}
-Q(-Q)^{\mathsf{H}} &= -Q(-Q^{\mathsf{H}}) \\
&= QQ^{\mathsf{H}} \\
&= I.
\end{aligned}$$

and

$$(-Q)^{\mathsf{H}}(-Q) = I.$$

Next, note that -R is clearly upper triangular. Then,

$$A = QR$$
$$= (-Q)(-R).$$

Thus, there are A, Q, R that satisfy both A = QR and A = (-Q)(-R).

(ii) If A is invertible and can be written as two different QR decompositions $(QR \text{ and } \hat{Q}\hat{R})$ in which the diagonal entries of R and \hat{R} are strictly positive. This means that R and \hat{R} are both invertible. Thus, $\hat{R}^{-1}R = Q^{\mathsf{H}}\hat{Q}$. Because R and \hat{R} are both upper triangular matrices, we know $\hat{R}^{-1}R$ is upper triangular. Moreover, since Q and \hat{Q} are both orthonormal, then $Q^{\mathsf{H}}\hat{Q}$ is orthonormal. It follows that $\hat{R}^{-1}R = I$ and $R = \hat{R}$ and $Q = \hat{Q}$ (since the matrix inverse is always unique for a given matrix).

Exercise 3.17.

Question. Let $A \in M_{m \times n}$ have rank $n \le m$, and let $A = \hat{Q}\hat{R}$ be a reduced QR decomposition. Prove that solving the system $A^{\mathsf{H}}A\mathbf{x}$

Answer.

Let A have full column rank where $A = \hat{Q}\hat{R}$ is of reduced form; then, \hat{R} has full rank, and so \hat{R} is invertible. Then,

$$\begin{array}{rcl} A^{\mathsf{H}}_{\ \downarrow}\!A\mathbf{x} & = & A^{\mathsf{H}}_{\ \downarrow}b \\ (\hat{Q}\hat{R})^{\mathsf{H}}_{\ \downarrow}\hat{Q}\hat{R}\mathbf{x} & = & (\hat{Q}\hat{R})^{\mathsf{H}}b \\ \hat{R}^{\mathsf{H}}\hat{Q}^{\mathsf{H}}\hat{Q}\hat{R}\mathbf{x} & = & \hat{R}^{\mathsf{H}}\hat{Q}^{\mathsf{H}}b \\ & & & \downarrow & \\ \hat{R}\mathbf{x} & = & \hat{Q}^{\mathsf{H}}b \end{array}$$

Exercise 3.23.

Question. Let $(V, \|\cdot\|)$ be a normed linear space. Prove that $|\|\mathbf{x}\| - \|\mathbf{y}\|| \le \|\mathbf{x} - \mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in V$. Hint: Prove $\|\mathbf{x}\| - \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|$ and $\|\mathbf{y}\| - \|\mathbf{x}\| \le \|\mathbf{x} - \mathbf{y}\|$.

Answer.

Let $\mathbf{x}, \mathbf{y} \in V$. By definition, norms satisfy nonnegativity and the triangle inequality, so note that

$$\|\mathbf{x}\| - \|-\mathbf{y}\| \le \|\mathbf{x}\| + \|-\mathbf{y}\|$$

$$\le \|\mathbf{x} - \mathbf{y}\|,$$

which implies by homogeneity that

$$\begin{aligned} \|\mathbf{y}\| - \|\mathbf{x}\| & \leq & \|\mathbf{y} - \mathbf{x}\| \\ &= & \|-(\mathbf{y} - \mathbf{x})\| \\ &= & \|\mathbf{x} - \mathbf{y}\|. \end{aligned}$$

Exercise 3.24.

Question. Let $\mathcal{C}([a,b];\mathbb{F})$ be the vector space of all continuous functions from $[a,b] \subset \mathbb{R}$ to \mathbb{F} . Prove that each of the following is a norm on $\mathcal{C}([a,b];\mathbb{F})$:

- (i) $||f||_{L^1} = \int_a^b |f(t)| dt$.
- (ii) $||f||_{L^2} = \left(\int_a^b |f(t)|^2 dt\right)^{1/2}$.
- (iii) $||f||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x)|$.

I will omit this answer.

Exercise 3.26.

Question. Two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on the vector space X are topologically equivalent if there exist constants $0 < m \le M$ such that

$$m \|\mathbf{x}\|_a \le \|\mathbf{x}\|_b \le M \|\mathbf{x}\|_a \qquad \forall \mathbf{x} \in X.$$

Prove that topological equivalence is an equivalence relation. Then prove that the p-norms for $p = 1, 2, \infty$ on \mathbb{F}^n are topologically equivalent by establishing the following inequalities:

- (i) $\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$.
- $\mathbf{(ii)} \;\; \|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \sqrt{n} \, \|\mathbf{x}\|_{\infty} \,.$

Hint: Use the Cauchy-Schwarz inequality.

The idea of topological equivalence is especially important in Chapter 5.

Answer.

Let $\|\cdot\|_{\mathfrak{p}}$ be a norm on X, for $\mathfrak{p} \in \{a,b,c\}$. Clearly, $\|\cdot\|_{\mathfrak{p}}$ is topologically equivalent to itself for any $m \in (0,1]$ and $M \ge 1$.

Suppose that $\|\cdot\|_a$ is topologically equivalent to $\|\cdot\|_b$ with constants $0 < m \le M$. Then, $\|\cdot\|_b$ is topologically equivalent to $\|\cdot\|_a$ with constants $0 < \frac{1}{M'} \le \frac{1}{m'}$. This leads us to: If $\|\cdot\|_a$ is topologically equivalent to $\|\cdot\|_b$ with constants $0 < m \le M$, and $\|\cdot\|_b$ is topologically equivalent with with $\|\cdot\|_c$ with constants $0 < m' \le M'$, then $\|\cdot\|_a$ is topologically equivalent to $\|\cdot\|_b$ with constants $0 < mm' \le MM'$.

Consider arbitrary $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$. Then, we can show $\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$ and $\|\mathbf{x}\|_\infty \le \|\mathbf{x}\|_2 \le \sqrt{n} \|\mathbf{x}\|_\infty$ by the following:

$$\sum_{i=1}^{n} |x_i|^2 \leq \left(\sum_{i=1}^{n} |x_i|^2 + 2\sum_{i \neq j} |x_i| |x_j|\right)$$
$$= \left(\sum_{i=1}^{n} |x_i|\right)^2$$

$$\sum_{i=1}^{n} |x_i| \cdot 1 \leq \left(\sum_{i=1}^{n} |x_i^2|\right)^{1/2} \left(\sum_{i=1}^{n} 1^2\right)^{1/2}$$
$$= \sqrt{n} \left(\sum_{i=1}^{n} |x_i|^2\right)^{1/2}.$$

$$\max_{i \in [1,n]} |x_i| = \left(\max_{i \in [1,n]} |x_i|^2 \right)^{1/2}$$

$$\leq \left(\sum_{i=1}^n |x_i|^2 \right)^{1/2}$$

$$\sum_{i=1}^{n} |x_i|^2 \le n \cdot \max_{i \in [1, n]} |x_i|^2.$$

Exercise 3.28.

Question. Let A be an $n \times n$ matrix. Prove that the operator p-norms are topologically equivalent for $p = 1, 2, \infty$ by establishing the following inequalities:

(i)
$$\frac{1}{\sqrt{n}} \|A\|_2 \le \|A\|_1 \le \sqrt{n} \|A\|_2$$
.

(ii)
$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2 \le \sqrt{n} \|A\|_{\infty}$$
.

Answer.

(i) From above, we know that

$$\sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_1}{\|\mathbf{x}\|_1} \leq \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_1}{\|\mathbf{x}\|_1}$$
$$\leq \sqrt{n} \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2},$$

and

$$\sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_1}{\|\mathbf{x}\|_1} \geq \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_1}$$
$$\geq \frac{1}{\sqrt{n}} \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|A\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.$$

Thus, $\frac{1}{\sqrt{n}} \|A\|_2 \le \|A\|_1 \le \|A\|_2$.

(ii)

$$\begin{split} \sup_{\mathbf{x} \neq \mathbf{0}} & \frac{\left\| A \mathbf{x} \right\|_2}{\left\| \mathbf{x} \right\|_2} \leq \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\sqrt{n} \left\| A \mathbf{x} \right\|_{\infty}}{\left\| \mathbf{x} \right\|_{\infty}} \\ \sup_{\mathbf{x} \neq \mathbf{0}} & \frac{\left\| A \mathbf{x} \right\|_2}{\left\| \mathbf{x} \right\|_2} \geq \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\left\| A \mathbf{x} \right\|_{\infty}}{\sqrt{n} \left\| \mathbf{x} \right\|_{\infty}}. \end{split}$$

Exercise 3.29.

Question. Take \mathbb{F}^n with the 2-norm, and let the norm on $M_n(\mathbb{F})$ be the corresponding induced norm. Prove that any orthonormal matrix $Q \in M_n(\mathbb{F})$ has $\|Q\| = 1$. For any $\mathbf{x} \in \mathbb{F}^n$, let $R_{\mathbf{x}} : M_n(\mathbb{F}) \to \mathbb{F}^n$ be the linear transformation $A \mapsto A\mathbf{x}$. Prove that the induced norm of the transformation $R_{\mathbf{x}}$ is equal to $\|\mathbf{x}\|_2$. Hint: First prove $\|R_{\mathbf{x}}\| \leq \|\mathbf{x}\|_2$. Then recall that by Gram-Schmidt, any vector \mathbf{x} with norm $\|\mathbf{x}\|_2 = 1$ is part of an orthonormal basis, and hence is the first column of an orthonormal matrix. Use this to prove equality.

Answer.

Consider arbitrary $\mathbf{x} \neq \mathbf{0}$ and let $\|\cdot\|$ be the norm induced by the inner product. Then

$$||Q\mathbf{x}|| = (\langle Q\mathbf{x}, Q\mathbf{x} \rangle)^{1/2}$$

$$= (\langle Q^{\mathsf{H}}Q\mathbf{x}, \mathbf{x} \rangle)^{1/2}$$

$$= (\langle \mathbf{x}, \mathbf{x} \rangle)^{1/2}$$

$$= ||\mathbf{x}||,$$

so

$$||Q|| = \sup_{\mathbf{x} \neq \mathbf{0}} \frac{||Q\mathbf{x}||}{||\mathbf{x}||}$$
$$= 1.$$

Then, for the $R_{\mathbf{x}}$ considered in the question, we have that

$$||R_{\mathbf{x}}|| = \sup_{A \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||A||}$$

$$= \sup_{A \neq \mathbf{0}} \frac{||A\mathbf{x}|| ||\mathbf{x}||}{||A|| ||\mathbf{x}||}$$

$$\leq \sup_{A \neq \mathbf{0}} \left(\frac{||A\mathbf{x}|| ||\mathbf{x}||}{||A\mathbf{x}||} \right)$$

$$= ||\mathbf{x}||.$$

Exercise 3.30.

Question. Let $S \in M_n(\mathbb{F})$ be an invertible matrix. Given any matrix norm $\|\cdot\|$ on M_n , define $\|\cdot\|_S$ by $\|A\|_S = \|SAS^{-1}\|$. Prove that $\|\cdot\|_S$ is a matrix norm on M_n .

Answer.

- $||A||_S = ||SAS^{-1}|| \ge 0$ for $A \in M_n(\mathbb{F})$ because $||\cdot||$ is a norm on $M_n(\mathbb{F})$ and $SAS^{-1} \in M_n(\mathbb{F})$.
- $\|\mathbf{0}\|_{S} = \|S\mathbf{0}S^{-1}\| = \|\mathbf{0}\| = 0$. If $0 = \|A\|_{S} = \|SAS^{-1}\|$, then $SAS^{-1} = \mathbf{0}$ implying $A = \mathbf{0}$.
- For arbitrary $a \in \mathbb{F}$,

$$\begin{split} \|aA\|_S &= \|SaAS^{-1}\| \\ &= \|aSAS^{-1}\| \\ &= |a| \|SAS^{-1}\| \\ &= |a| \|A\|_S. \end{split}$$

• For arbitrary $B \in M_n(\mathbb{F})$,

$$\begin{split} \|A+B\|_S &= \|S(A+B)S^{-1}\| \\ &= \|SAS^{-1} + SBS^{-1}\| \\ &\leq \|SAS^{-1}\| + \|SBS^{-1}\| \\ &= \|A\|_S + \|B\|_S \,. \end{split}$$

• So, $\|\cdot\|_S$ is a norm on $M_n(\mathbb{F})$. To show matrix norm:

$$||AB||_S = ||SABS^{-1}||$$

= $||SAS^{-1}ABS^{-1}||$
 $\leq ||SAS^{-1}|| ||SBS^{-1}||$,

so
$$||AB||_S \le ||A||_S ||B||_S$$
.

Exercise 3.37.

Question. Let $V = \mathbb{R}[x;2]$ be the space of polynomials of degree at most two, which is a subspace of the inner product space $L^2([0,1];\mathbb{R})$. Let $L:V\to\mathbb{R}$ be the linear functional given by L[p]=p'(1). Find the unique $q\in V$ such that $L[p]=\langle q,p\rangle$, as guaranteed by the Riesz representation theorem. *Hint*: Look at the discussion just before Theorem 3.7.1.

Answer.

Note that
$$V := \mathbb{R}[x;2] \cong \mathbb{R}^3$$
, so $V \ni p = ax^2 + bx + c$ can be represented as a vector in \mathbb{R}^3 . Let $p = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$. Take $q = \boxed{(2,1,0)}$ where $p'q = 2a + b = p'(1) = L[p]$.

Exercise 3.38.

Question. Let $V = \mathbb{F}[x;2]$, which is a subspace of the inner product space $L^2([0,1];\mathbb{R})$. Let D be the derivative operator $D:V\to V$; that is, D[p](x)=p'(x). Write the matrix representation of D with respect to the power basis $[1,x,x^2]$ of $\mathbb{F}[x;2]$. Write the matrix representation of the adjoint of D with respect to this basis.

Answer.

Let $p = ax^2 + vx + c$ be an arbitrary element of $V = \mathbb{F}[x; 2]$. Because $p = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and $p' = D(p) = \begin{pmatrix} 0 \\ 2a \\ b \end{pmatrix}$, we know the matrix representation of D is

$$D = \left| \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right|$$

and

$$D^{\mathsf{H}} = D^{\mathsf{T}} = \left[\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \right].$$

Exercise 3.39.

Question. Prove Proposition 3.7.12.

Proposition 3.7.12. Let V and W by fin-dim inner product spaces. The adjoint has the following properties:

- (i) If $S, T \in \mathcal{L}(V; W)$, then $(S+T)^* = S^* + T^*$ and $(\alpha T)^* = \bar{\alpha} T^*$, $\alpha \in \mathbb{F}$.
- (ii) If $S \in \mathcal{L}(V; W)$, then $(S^*)^* = S$.
- (iii) If $S, T \in \mathcal{L}(V)$, then $(ST)^* = T^*S^*$.
- (iv) If $T \in \mathcal{L}(V)$ and T is invertible, then $(T^*)^{-1} = (T^{-1})^*$.

Answer.

(i)

$$\begin{split} \langle (S+T)^* \mathbf{w}, \mathbf{v} \rangle_V &= & \langle \mathbf{w}, (S+T) \mathbf{v} \rangle_W \\ &= & \langle \mathbf{w}, S \mathbf{v} + T \mathbf{v} \rangle_W \\ &= & \langle \mathbf{w}, S \mathbf{v} \rangle_W + \langle \mathbf{w}, T \mathbf{v} \rangle_W \\ &= & \langle S^* \mathbf{w}, \mathbf{v} \rangle_V + \langle T^* \mathbf{w}, \mathbf{v} \rangle_V \\ &= & \langle S^* \mathbf{w} + T^* \mathbf{w}, \mathbf{v} \rangle_V \,. \end{split}$$

From above, we have that $(S+T)^* = S^* + T^*$. Also,

$$\begin{split} \langle (\alpha T)^* \mathbf{w}, \mathbf{v} \rangle_V &= & \langle \mathbf{w}, (\alpha T) \mathbf{v} \rangle_W \\ &= & \langle \mathbf{w}, \alpha T \mathbf{v} \rangle_W \\ &= & \alpha \langle \mathbf{w}, T \mathbf{v} \rangle \\ &= & \alpha \langle T^* \mathbf{w}, \mathbf{v} \rangle \\ &= & \langle \bar{\alpha} T^* \mathbf{w}, \mathbf{v} \rangle \,. \end{split}$$

(ii)

$$\begin{split} \langle \mathbf{w}, S \mathbf{v} \rangle_W &= & \langle S^* \mathbf{w}, \mathbf{v} \rangle_V \\ &= & \overline{\langle \mathbf{v}, S^* \mathbf{w} \rangle_V} \\ &= & \overline{\langle S^{**} \mathbf{v}, \mathbf{w} \rangle_W} \\ &= & \langle \mathbf{w}, S^{**} \mathbf{v} \rangle_W \end{split}$$

for $\mathbf{v} \in V$ and $\mathbf{w} \in W$, so it follows that $S = S^{**}$.

(iii)

$$\begin{split} \langle (ST)^* \mathbf{v}', \mathbf{v} \rangle_V &= \langle \mathbf{v}', (ST) \mathbf{v} \rangle_V \\ &= \langle \mathbf{v}', S(T\mathbf{v}) \rangle_V \\ &= \langle S^* \mathbf{v}', T\mathbf{v} \rangle_V \\ &= \langle T^* S^* \mathbf{v}', \mathbf{v} \rangle_V \,, \end{split}$$

(iv) From (iii), we have that

$$T^*(T^*)^{-1} = (TT^{-1})^*$$

= I^*
= I .

Exercise 3.40.

Question. Let $M_n(\mathbb{F})$ be endowed with the Frobenius inner product (see Example 3.1.7). Any $A \in M_n(\mathbb{F})$ defines a linear operator on $M_n(\mathbb{F})$ by left multiplication: $B \mapsto AB$.

- (i) Show that $A^* = A^H$.
- (ii) Show that for any $A_1, A_2, A_3 \in M_n(\mathbb{F})$ we have $\langle A_2, A_3 A_1 \rangle = \langle A_2 A_1^*, A_3 \rangle$. Hint: Recall $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.
- (iii) Let $A \in M_n(\mathbb{F})$. Define the linear operator $T_A : M_n(\mathbb{F}) \to M_n(\mathbb{F})$ by $T_A(X) = AX XA$, and show that $(T_A)^* = T_{A^*}$.

Answer.

(i) Consider arbitrary $B, C \in M_n(\mathbb{F})$. Then, by definition of Frobenius inner product, we have:

$$\begin{split} \langle B, AC \rangle_F &= \operatorname{tr} \left(B^\mathsf{H} AC \right) \\ &= \operatorname{tr} \left((A^\mathsf{H} B)^\mathsf{H} C \right) \\ &= \left\langle A^\mathsf{H} B, C \right\rangle_F. \end{split}$$

(ii)

$$\begin{split} \langle A_2, A_3 A_1 \rangle_F &= \operatorname{tr} \left(A_2^\mathsf{H} A_3 A_1 \right) \\ &= \operatorname{tr} \left(A_1 A_2^\mathsf{H} A_3 \right) \\ &= \operatorname{tr} \left(\left(A_2 A_1^\mathsf{H} \right)^\mathsf{H} A_3 \right) \\ &= \left\langle A_2 A_1^\mathsf{H}, A_3 \right\rangle_F \\ &= \left\langle A_2 A_1^*, A_3 \right\rangle. \end{split}$$

(iii) For arbitrary $B, C \in M_n(\mathbb{F})$, we have $\langle B, AC - CA \rangle = \langle B, AC \rangle - \langle B, CA \rangle$. Then, we showed above, we then have $\langle B, CA \rangle = \langle BA^*, C \rangle$. Moreover,

$$\begin{array}{rcl} \langle B,AC \rangle & = & \operatorname{tr} \left(B^{\mathsf{H}}AC \right) \\ & = & \operatorname{tr} \left((A^{\mathsf{H}}B)^{\mathsf{H}}C \right) \\ & = & \left\langle A^{\mathsf{H}}B,C \right\rangle \\ & = & \left\langle A^{*}B,C \right\rangle. \end{array}$$

Thus, it follows that $T_A^* = T_A$.

Exercise 3.44.

Question. Given $A \in M_{m \times n}(\mathbb{F})$ and $\mathbf{b} \in \mathbb{F}^m$, prove the *Fredholm alternative*: Either $A\mathbf{x} = \mathbf{b}$ has a solution $\mathbf{x} \in \mathbb{F}^n$ or there exists $\mathbf{y} \in \mathcal{N}(A^{\mathsf{H}})$ such that $\langle \mathbf{y}, \mathbf{b} \rangle \neq 0$.

Answer.

• If $\exists \mathbf{x} \in \mathbb{F}^n : A\mathbf{x} = \mathbf{b}$ then $\forall \mathbf{y} \in \mathcal{N}(A^{\mathsf{H}})$, so we have:

$$\langle \mathbf{y}, \mathbf{b} \rangle = \langle \mathbf{y}, A\mathbf{x} \rangle$$

 $= \langle A^{\mathsf{H}}\mathbf{y}, \mathbf{x} \rangle$
 $= \langle \mathbf{0}, \mathbf{x} \rangle$
 $= 0$

- If $\exists \mathbf{y} \in \mathcal{N}(A^{\mathsf{H}}) : \langle y, b \rangle \neq 0$ then $\mathbf{b} \notin \mathcal{N}(A^{\mathsf{H}})^{\perp} = \mathcal{R}(A)$.
- Therefore, $\exists \mathbf{x} \in \mathbb{F}^n : A\mathbf{x} = \mathbf{b}$.

Exercise 3.45.

Question. Consider the vector space $M_n(\mathbb{R})$ with the Frobenius inner product (3.5). Show that $\operatorname{Sym}_n(\mathbb{R})^{\perp} = \operatorname{Skew}_n(\mathbb{R})$. (See Exercise 1.18 for the definition of Sym and Skew.)

Answer.

• Let $A \in \operatorname{Sym}_n(\mathbb{R})$ and $B \in \operatorname{Skew}_n(\mathbb{R})$. Then,

$$\langle B, A \rangle = \operatorname{tr} (B^{\mathsf{T}} A)$$

 $= \operatorname{tr} (AB^{\mathsf{T}})$
 $= \operatorname{tr} (A^{\mathsf{T}} (-B))$
 $= -\langle A, B \rangle$.

(It follows that $\langle A, B \rangle = 0$ and $\operatorname{Skew}_n(\mathbb{R}) \subset \operatorname{Sym}_n(\mathbb{R})^{\perp}$.)

• Let $B \in \operatorname{Sym}_n(\mathbb{R})^{\perp}$, so $B + B^{\mathsf{T}} \in \operatorname{Sym}_n(\mathbb{R})$. Thus,

$$0 = \langle B + B^{\mathsf{T}}, B \rangle$$

$$= \operatorname{tr} ((B + B^{\mathsf{T}})B)$$

$$= \operatorname{tr} (BB + B^{\mathsf{T}}B)$$

$$= \operatorname{tr} (BB) + \operatorname{tr} (B^{\mathsf{T}}B),$$

so $\langle B^{\mathsf{T}}, B \rangle = \langle -B, B \rangle$ so $B^{\mathsf{T}} = -B$. Thus $\mathrm{Sym}_n(\mathbb{R})^{\perp} = \mathrm{Skew}_n(\mathbb{R})$.

Exercise 3.46.

Question. Prove the following for an $m \times n$ matrix A:

- (i) If $\mathbf{x} \in \mathcal{N}(A^{\mathsf{H}}A)$, then $A\mathbf{x}$ is in both $\mathcal{R}(A)$ and $\mathcal{N}(A^{\mathsf{H}})$.
- (ii) $\mathcal{N}(A^{\mathsf{H}}A) = \mathcal{N}(A)$.
- (iii) A and $A^{\mathsf{H}}A$ have the same rank.
- (iv) If A has linearly independent columns, then $A^{\mathsf{H}}A$ is nonsingular.

Answer.

- (i) If $\mathbf{x} \in \mathcal{N}(A^{\mathsf{H}}A)$, then $\mathbf{0} = (A^{\mathsf{H}}A)\mathbf{x} = A^{\mathsf{H}}(A\mathbf{x})$ and $Ax \in \mathcal{N}(A^{\mathsf{H}})$. $A\mathbf{x} \in \mathrm{im}(A)$ by definition.
- (ii) If $\mathbf{x} \in \mathcal{N}(A)$, then $A\mathbf{x} = \mathbf{0}$. Then, $A^{\mathsf{H}}A\mathbf{x} = A^{\mathsf{H}}\mathbf{0} = \mathbf{0}$, so $\mathbf{x} \in \mathcal{N}(A^{\mathsf{H}}A)$. If $\mathbf{x} \in \mathcal{N}(A^{\mathsf{H}}A)$, then $\|A\mathbf{x}\| = \mathbf{x}^{\mathsf{H}}A^{\mathsf{H}}A\mathbf{x} = \mathbf{x}^{\mathsf{H}}\mathbf{0} = \mathbf{0}$, so $A\mathbf{x} = \mathbf{0}$ and $\mathbf{x} \in \mathcal{N}(A)$.
- (iii) $n = \operatorname{rank}(A) + \dim(\mathcal{N}(A))$ by rank-nullity, and $n = \operatorname{rank}(A^{\mathsf{H}}A) + \dim(\mathcal{N}(A^{\mathsf{H}}A))$. Then, by (ii), it follows that $\operatorname{rank}(A) = \operatorname{rank}(A^{\mathsf{H}}A)$.
- (iv) By (iii), we have that $n = \operatorname{rank}(A) = \operatorname{rank}(A^{\mathsf{H}}A)$. We know it is invertible by $A^{\mathsf{H}}A \in M_n$.

Exercise 3.47.

Question. Assume A is an $m \times n$ matrix of rank n. Let $P = A(A^{\mathsf{H}}A)^{-1}A^{\mathsf{H}}$. Prove the following:

- (i) $P^2 = P$.
- (ii) $P^{H} = P$.
- (iii) rank (P) = n.

Whenever a linear operator satisfies $P^2 = P$, it is called a *projection*. Projections are treated in detail in Section 12.1.

Answer.

(i)

$$\begin{split} P^2 &= (A(A^\mathsf{H}A)^{-1}A^\mathsf{H})(A(A^\mathsf{H}A)^{-1}A^\mathsf{H}) \\ &= A(A^\mathsf{H}A)^{-1}A^\mathsf{H}A(A^\mathsf{H}A)^{-1}A^\mathsf{H} \\ &= A(A^\mathsf{H}A)^{-1}A^\mathsf{H} \\ &= P. \end{split}$$

(ii)

$$\begin{split} P^{\mathsf{H}} &= (A(A^{\mathsf{H}}A)^{-1}A^{\mathsf{H}})^{\mathsf{H}} \\ &= (A^{\mathsf{H}})^{\mathsf{H}}(A^{\mathsf{H}}A)^{-\mathsf{H}}A^{\mathsf{H}} \\ &= A(A^{\mathsf{H}}A)^{-1}A^{\mathsf{H}} \\ &= P. \end{split}$$

(iii) rank $(A) = n \implies \text{rank}(P) \le n$. Thus, $\forall \mathbf{y} \in \text{im}(A) : \exists \mathbf{x} \in \mathbb{F}^n : \mathbf{y} = A\mathbf{x}$. So,

$$P\mathbf{y} = A(A^{\mathsf{H}}A)A^{\mathsf{H}}\mathbf{y}$$

$$= A(A^{\mathsf{H}}A)^{-1}A^{\mathsf{H}}A\mathbf{x}$$

$$= A\mathbf{x}$$

$$= \mathbf{y},$$

so $\mathbf{y} \in \operatorname{im}(P)$. Thus, $\operatorname{rank}(P) \ge \operatorname{rank}(A)$, so $\operatorname{rank}(P) = p$.

Exercise 3.48.

Question. Consider the vector space $M_n(\mathbb{R})$ with the Frobenius inner product (3.5). Let $P(A) = \frac{A+A^{\mathsf{T}}}{2}$ be the map $P: M_n(\mathbb{R}) \to M_n(\mathbb{R})$. Prove the following:

- (i) P is linear.
- (ii) $P^2 = P$.
- (iii) $P^* = P$ (note that * here means the adjoint with respect to the Frobenius inner product).
- (iv) $\mathcal{N}(P) = \operatorname{Skew}_n(\mathbb{R}).$
- (v) $\mathscr{R}(P) = \operatorname{Sym}_n(\mathbb{R}).$
- (vi) $||A P(A)||_F = \sqrt{\frac{\operatorname{tr}(A^{\mathsf{T}}A) \operatorname{tr}(A^2)}{2}}$. Here $||\cdot||_F$ is the norm with respect to the Frobenius inner product.

Hint: Recall that $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ and $\operatorname{tr}(A) = \operatorname{tr}(A^{\mathsf{T}})$.

I will omit this answer.

Exercise 3.50.

Question. Let $(x_i, y_i)_{i=1}^n$ be a collection of data points that we have reason to believe should lie (roughly) on an ellipse of the form $rx^2 + sy^2 = 1$. We wish to find the least squares approximation for r and s. Write A, \mathbf{x} , and \mathbf{b} for the corresponding normal equation in terms of the data x_i and y_i and the unknowns r and s.

Answer

Consider the regression $\mathbf{y}^2 = \frac{1}{s} + \frac{r\mathbf{x}^2}{s}$ in the form $A\mathbf{x} = \mathbf{b}$. Let $b_i := y_i^2$ for each component $b_i, y_i \in \mathbf{b}, \mathbf{y}$, and let $\mathbf{x} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ where $\beta_1 = \frac{1}{s}$ and $\beta_2 = \frac{r}{s}$. Then the corresponding normal equation is $A^{\mathsf{H}}A\hat{x} = A^{\mathsf{H}}b$, where

$$A^{\mathsf{H}}A\hat{x} = \begin{pmatrix} \sum_{i} 1 & \sum_{i} x_{i}^{2} \\ \sum_{i} x_{i}^{2} & \sum_{i} x_{i}^{4} \end{pmatrix} \begin{pmatrix} \hat{\beta}_{1} \\ \hat{\beta}_{2} \end{pmatrix}$$
$$= \begin{pmatrix} n\hat{\beta}_{1} - \hat{\beta}_{2} \sum_{i} x_{i}^{2} \\ \hat{\beta}_{1} \sum_{i} x_{i}^{2} - \hat{\beta}_{2} \sum_{i} x_{i}^{4} \end{pmatrix}$$

and

$$A^{\mathsf{H}}b = \begin{pmatrix} \sum_i y_i^2 \\ \sum_i x_i^2 y_i^2 \end{pmatrix}.$$