1.1 Давление идеального газа

Выделим элемент объема (параллелепипед) с ребром $v_x \cdot \Delta t$ и боковой гранью ΔS . Количество молекул в данном объеме

$$\Delta N = n \cdot \Delta V = n v_x \Delta S \Delta t \tag{1}$$

Изменение импульса, передаваемое стенке одной молекулой, будет $2p_x$. Суммарный импульс, переданный стенке молекулами, будет

$$\langle \Delta p_x^{\Sigma} \rangle = \Delta p_x \cdot \Delta N \cdot \frac{1}{2} \tag{2}$$

Суммарная сила, действующая на грань, будет

$$F_{\perp} = \frac{\langle \Delta p_x^{\Sigma} \rangle}{\Delta t} \tag{3}$$

И соответственно, суммарное давление на грань

$$p = \frac{F_{\perp}}{\Delta S} = \frac{\langle \Delta p_x^{\Sigma} \rangle}{\Delta t \Delta S} = n \langle v_x p_x \rangle \tag{4}$$

$$(\vec{v}, \vec{p}) = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} \cdot \begin{bmatrix} p_x & p_y & p_z \end{bmatrix} = v_x p_x + v_y p_y + v_z p_z$$
 (5)

Но так как выделенных направлений нет, то

$$(\vec{v}, \vec{p}) = 3v_x p_x \tag{6}$$

Или

$$\langle v_x p_x \rangle = \frac{1}{3} \langle (\vec{v}, \vec{p}) \rangle \tag{7}$$

Но тогда

$$p = \frac{1}{3}n\langle (\vec{v}, \vec{p})\rangle \tag{8}$$

Реально эта формула малопригодна, поэтому имеет смысл нерелятивистское приближение

$$(\vec{v}, \vec{p}) = mv^2 = 2W_k \tag{9}$$

Где W_k – кинетическая энергия одной молекулы. Тогда

$$p = \frac{1}{3} \frac{N}{V} \langle (\vec{v}, \vec{p}) \rangle = \frac{2}{3} \frac{NW_k}{V} = \frac{2}{3} \frac{U}{V}$$

$$\tag{10}$$

Или иначе

$$pV = \frac{2}{3}U\tag{11}$$

 Γ де U – полная внутренняя энергия идеального газа. Из эксперимента известно, что

$$pV = \nu RT = NkT \tag{12}$$

Тогда

$$p = \frac{2}{3}U\frac{1}{V} = NkT\frac{1}{V} = nkT \tag{13}$$

Окончательно

$$p = nkT (14)$$

1.2 Давление фотонного газа

Без привязки к исследуемому объекту было уравнение

$$p = \frac{1}{3}n\langle(\vec{v}, \vec{p})\rangle \tag{15}$$

Для фотонов

$$\vec{v} = \vec{c}, \quad \vec{p} = \frac{W}{\vec{c}} \tag{16}$$

Тогда

$$p = \frac{1}{3} \frac{N}{V} W \langle (\vec{c}, \frac{1}{\vec{c}}) \rangle = \frac{1}{3} \frac{U}{V} = \frac{1}{3} u \tag{17}$$

где $u = \frac{U}{V}$ – плотность энергий.

В курсе атомной физики известен закон Стефана-Больцмана:

$$u \sim T^4 \tag{18}$$

2 Вопрос 2

2.1 Биномиальное распределение. Распределение молекул по объему сосуда

Рассмотрим объем V, в котором выделим часть объема ΔV . Какова вероятность попадания $\Delta N \equiv m$ молекул в этот объем? Пусть вероятность попадания одной молекулы в выделенный объем p:

$$P(m \in \Delta V) = p \tag{19}$$

Тогда вероятность того, что она туда не попадет,

$$P(m \notin \Delta V) = 1 - p = q \tag{20}$$

Отметим каким-то образом m молекул, например, покрасим их. Вероятность попадания P_N^m только m в ΔV будет сложным событием:

- 1. покрашенные молекулы находятся в ΔV
- 2. остальные молекулы находятся вне ΔV

T.e

$$P_N^m = p^m \cdot q^{N-m} \tag{21}$$

Мы покрасили строго определенную группу молекул. Ясно, что покрасить m молекул из N можно многими способами. Из комбинаторики известно, что такое количество способов есть количество сочетаний

$$C_N^m = \frac{N!}{m!(N-m)!} \tag{22}$$

Тогда чтобы найти полную вероятность, нужно просуммировать все вероятности для разных способов окраски молекул. Их будет ровно C_N^m слагаемых, т.е. полная вероятность

$$P(\Delta N \in \Delta V \text{ and } N - \Delta N \notin \Delta V) = C_N^{\Delta N} \cdot p^{\Delta N} \cdot q^{N - \Delta N}$$
 (23)

Это и есть биномиальное распределение.

2.2 Свойства биномиального распределения

Свойство 1. Сумма вероятностей всех возможных значений биномиальной случайной величины равна единице:

Доказательство. Запишем формулу бинома Ньютона:

$$(px+q)^{N} = \sum_{m=0}^{N} C_{N}^{m} p^{m} x^{m} q^{N-m}$$
(24)

Домножим сумму биномиального распределения на формальную единицу:

$$1 = x^m \big|_{x=1} \tag{25}$$

$$P_{\text{full}} = \sum_{m=0}^{N} P_N^m = \sum_{m=0}^{N} C_N^m p^m q^{N-m} \Big| \times x^m \Big|_{x=1} =$$
 (26)

$$= (px+q)^N \bigg|_{r=1} = (p+q)^N = 1^N = 1$$
 (27)

Свойство 2. *Матожидание биномиальной случайной величины* $\langle m \rangle = Np$

Доказательство. Запишем матожидание по определению:

$$\langle m \rangle = \sum_{m=0}^{N} m P_N^m \tag{28}$$

Домножим на формальную единицу:

$$1 = x^{m-1} \Big|_{x=1} \tag{29}$$

$$\langle m \rangle = \sum_{m=0}^{N} m x^{m-1} C_N^m p^m q^{N-m} \bigg|_{x=1}$$
(30)

Продифференцируем по x слева и справа выведенное ранее выражение P_{full}

$$\frac{d[P_{full}]}{dx} = \sum_{m=0}^{N} mx^{m-1} C_N^m p^m q^{N-m} = \frac{d}{dx} (px+q)^N = Np(px+q)^{N-1}$$
(31)

Сравним с выражением для матожидания:

$$\langle m \rangle = Np(px+q)^{N-1} \bigg|_{x=1} = Np \tag{32}$$

Свойство 3. Дисперсия биномиальной случайной величины D = Npq

Доказательство. Введем индикатор случайного события ξ :

$$\langle \xi \rangle = 1 \cdot p + 0 \cdot (1 - p) = p \tag{33}$$

$$\langle \xi^2 \rangle = 1^2 \cdot p + 0^2 \cdot (1 - p) = p$$
 (34)

Найдем дисперсию ξ :

$$D_{\xi} = \langle (\xi - \langle \xi \rangle)^2 \rangle = [\langle \xi^2 \rangle - \langle \xi \rangle^2] = p - p^2 = p(1 - p) = pq$$
(35)

Тогда

$$D = ND_{\varepsilon} = Np(1-p) = Npq \tag{36}$$

2.3 Предельный переход к распределению Пуассона (закон редких событий)

Условия:

$$N \gg 1, \quad m \ll N \tag{37}$$

Запишем распределение Бернулли:

$$P_N^m = \frac{N!}{m!(N-m)!} p^m q^{N-m}$$
(38)

Как было доказано ранее,

$$\langle m \rangle = Np \quad \to \quad p = \frac{\langle m \rangle}{N}$$
 (39)

Тогда

$$P_N^m = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot (N-m) \cdot (N-m+1) \cdot \dots \cdot (N-1) \cdot N}{m! \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot (N-m)} \left(\frac{\langle m \rangle}{N}\right)^m \left(1 - \frac{\langle m \rangle}{N}\right)^{N-m} = \tag{40}$$

$$= \frac{(N-m+1)\cdot\ldots\cdot(N-1)\cdot N}{m!N^m} \langle m \rangle^m \left(1 - \frac{\langle m \rangle}{N}\right)^{N-m} = \tag{41}$$

$$= \frac{\left(1 - \frac{m-1}{N}\right) \cdot \dots \cdot \left(1 - \frac{1}{N}\right) \cdot 1}{m!} \langle m \rangle^m \left(1 - \frac{\langle m \rangle}{N}\right)^{N-m} \tag{42}$$

При наложенных условиях можно переписать выражение:

$$P_N^m = \frac{\langle m \rangle^m}{m!} \left(1 - \frac{\langle m \rangle}{N} \right)^N = \tag{43}$$

$$=\frac{\langle m\rangle^m}{m!} \left[\left(1 - \frac{\langle m\rangle}{N}\right)^{\frac{N}{\langle m\rangle}} \right]^{\langle m\rangle} = \tag{44}$$

$$= \frac{\langle m \rangle^m}{m!} \exp(-\langle m \rangle) \tag{45}$$

2.4 Предельный переход к распределению Гаусса

Воспользуемся формулой Стирлинга:

$$n! = \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \tag{46}$$

$$P_N^m = C_N^m p^m q^{N-m} (47)$$

$$C_N^m = \frac{N!}{m!(N-m)!} = \frac{\left(\frac{N}{e}\right)^N \sqrt{2\pi N}}{\left(\frac{m}{e}\right)^m \sqrt{2\pi m} \cdot \left(\frac{N-m}{e}\right)^{N-m} \sqrt{2\pi (N-m)}}$$
(48)

$$C_N^m = \frac{N^N}{m^m \cdot (N-m)^{N-m}} \sqrt{\frac{N}{2\pi m(N-m)}}$$
(49)

$$P_N^m = \frac{N^m \cdot N^{N-m}}{m^m \cdot (N-m)^{N-m}} \sqrt{\frac{N}{2\pi m(N-m)}} \cdot p^m q^{N-m}$$
 (50)

$$P_N^m = \sqrt{\frac{N}{2\pi m(N-m)}} \left(\frac{Np}{m}\right)^m \left(\frac{Nq}{N-m}\right)^{N-m}$$
(51)

Сделаем замену $\xi = m - \langle m \rangle = m - Np$.

$$N - m = N - (Np + \xi) = N(1 - p) - \xi \tag{52}$$

Отсюда

$$N - m = Nq - \xi \tag{53}$$

$$m = Np + \xi \tag{54}$$

Тогда

$$P_N^m = \sqrt{\frac{N}{2\pi(Np+\xi)(Nq-\xi)}} \left(\frac{Np}{Np+\xi}\right)^{Np+\xi} \left(\frac{Nq}{Nq-\xi}\right)^{Nq-\xi}$$
(55)

$$P_N^m = \sqrt{\frac{N}{2\pi(Np+\xi)(Nq-\xi)}} \cdot \frac{1}{\left(1 + \frac{\xi}{Np}\right)^{Np+\xi} \left(1 - \frac{\xi}{Nq}\right)^{Nq-\xi}}$$
 (56)

Прологарифмируем выражение под второй дробью:

$$\ln f = \ln \left(\left(1 + \frac{\xi}{Np} \right)^{Np+\xi} \left(1 - \frac{\xi}{Nq} \right)^{Nq-\xi} \right) = (Np+\xi) \ln \left(1 + \frac{\xi}{Np} \right) + (Nq-\xi) \ln \left(1 - \frac{\xi}{Nq} \right) \quad (57)$$

Разложим выражения под логарифмом в ряд Тейлора до второго члена:

$$\ln f \approx (Np + \xi) \left(\frac{\xi}{Np} - \frac{\xi^2}{2(Np)^2} \right) + (Nq - \xi) \left(-\frac{\xi}{Nq} - \frac{\xi^2}{2(Nq)^2} \right) =$$
 (58)

$$= \xi + \frac{\xi^2}{Np} - \frac{\xi^2}{2Np} - \frac{\xi^3}{2(Np)^2} - \xi + \frac{\xi^2}{Nq} - \frac{\xi^2}{2Nq} + \frac{\xi^3}{2(Nq)^2} \approx$$
 (59)

$$\approx \frac{\xi^2}{Np} - \frac{\xi^2}{2Np} + \frac{\xi^2}{Nq} - \frac{\xi^2}{2Nq} = \frac{\xi^2}{N} \left(\frac{1}{p} + \frac{1}{q} \right) - \frac{\xi^2}{2N} \left(\frac{1}{p} + \frac{1}{q} \right) = \frac{\xi^2}{2N} \left(\frac{q+p}{pq} \right) = \frac{\xi^2}{2Npq}$$
 (60)

Тогда

$$f^{-1} = \exp\left(-\frac{\xi^2}{2Npq}\right) \tag{61}$$

И

$$P_N^m = \sqrt{\frac{N}{2\pi(Np+\xi)(Nq-\xi)}} \exp\left(-\frac{\xi^2}{2Npq}\right)$$
(62)

 $T.к. \xi$ мало, то

$$Np + \xi \approx Np$$
 (63)

$$Nq - \xi \approx Nq \tag{64}$$

И тогда

$$P_N^m = \frac{1}{\sqrt{2\pi Npq}} \exp\left(-\frac{\xi^2}{2Npq}\right) \tag{65}$$

Введя обозначение $Npq=\sigma^2$ и сделав обратную замену $\xi=m-\langle m \rangle$, получим окончательную формулу:

$$P_N^m = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(m - \langle m \rangle)^2}{2\sigma^2}\right) \tag{66}$$

Данное решение является качественным, и проведено при помощи ряда приближений, причем оперирующих пренебрежением одной величины (ξ) разных порядков. Корректное рассмотрение проводится в рамках центральной предельной теоремы и выходит за рамки программного курса.

3.1 Распределение молекул газа по скоростям. Распределения Максвелла

Рассмотрим газ в равновесном состоянии, без внешних воздействий.

Введем понятие пространства скоростей:

$$\vec{v}_i = \begin{bmatrix} v_{xi} \\ v_{yi} \\ v_{zi} \end{bmatrix} \tag{67}$$

Количество молекул, обладающих векторами скорости, лежащими в данном выделенном объеме скоростей, пропорционально всему количеству молекул и пропорционально выделенному объему скоростей:

$$dN = f(\vec{v})Ndv_x dv_y dv_z \tag{68}$$

Коэффициентом выступает функция распределения (плотность вероятностей)

Функция распределения обладает следующими свойствами:

1.

$$f(\vec{v}) = \phi(v_x)\phi(v_u)\phi(v_z)$$

2.

$$f(\vec{v}) = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

Известно, что этим свойствам удовлетворяет функция:

$$f(\vec{v}) = A \exp\left(-\frac{v^2}{2\sigma^2}\right) \tag{69}$$

Уточним константу A из условия нормировки:

$$1 = \int_{-\infty}^{+\infty} A \exp\left(-\frac{v^2}{2\sigma^2}\right) d\vec{v} = \int_{-\infty}^{+\infty} A \exp\left(-\frac{v_x^2}{2\sigma^2}\right) dv_x \int_{-\infty}^{+\infty} A \exp\left(-\frac{v_y^2}{2\sigma^2}\right) dv_y \int_{-\infty}^{+\infty} A \exp\left(-\frac{v_z^2}{2\sigma^2}\right) dv_z = (70)$$

$$= A \left(\int_{-\infty}^{+\infty} A \exp\left(-\frac{v_z^2}{2\sigma^2}\right) dv_z \right)^3 \tag{71}$$

Используя интеграл Пуассона:

$$\int_{-\infty}^{+\infty} \exp\left(-ax^2\right) dx = \sqrt{\frac{\pi}{a}} \tag{72}$$

Где $a = \frac{1}{2\sigma^2}$:

$$A\left(\int_{-\infty}^{+\infty} A \exp\left(-\frac{v_z^2}{2\sigma^2}\right) dv_z\right)^3 = A(\sqrt{2\pi\sigma^2})^3 = 1$$
 (73)

Откуда

$$A = \left(\frac{1}{2\pi\sigma^2}\right)^{3/2} \tag{74}$$

Уточним значение σ^2 .

$$\frac{m\langle v^2 \rangle}{2} = \frac{3}{2}kT \quad \Rightarrow \quad \langle v^2 \rangle = 3\frac{kT}{m} \tag{75}$$

Причем

$$\langle v^2 \rangle = 3 \langle v_x^2 \rangle \quad \Rightarrow \quad \langle v_x^2 \rangle = \frac{kT}{m}$$
 (76)

Воспользуемся формулой

$$\int_{-\infty}^{+\infty} x^2 e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a^3}}$$
 (77)

По определению,

$$\langle v_x^2 \rangle = \int_{-\infty}^{+\infty} A^{\frac{1}{3}} v_x^2 \exp\left(-\frac{v_x^2}{2\sigma^2}\right) dv_x = \frac{1}{2} A^{\frac{1}{3}} \sqrt{8\pi\sigma^6} = \frac{1}{2} \left(\frac{8\pi\sigma^6}{2\pi\sigma^2}\right)^{1/2} = \sigma^2$$
 (78)

Откуда

$$\sigma^2 = \frac{kT}{m} \tag{79}$$

И тогда окончательный вид распределения Максвелла для вектора скорости:

$$f(\vec{v}) = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{mv^2}{2kT}\right) \tag{80}$$

Из сформулированного свойства

$$f(\vec{v}) = \phi(v_x)\phi(v_y)\phi(v_z)$$

следует распределение Максвелла для проекции скорости:

$$\phi(v_x) = \left(\frac{m}{2\pi kT}\right)^{1/2} \exp\left(-\frac{mv_x^2}{2kT}\right) \tag{81}$$

Воспользовавшись тем, что функция распределения есть коэффициент в формуле

$$dN = Nf(\vec{v}) \, dV_v, \tag{82}$$

найдем последнее распределение. Выделим в пространстве скоростей сферический слой. Если вектор попадает в него, можно говорить о том, что его модуль лежит между радиусами этого слоя:

$$v \in [v_0, v_0 + dv] \tag{83}$$

Тогда объем этого слоя

$$dV_v = 4\pi v^2 dv \tag{84}$$

Но тогда можно записать функцию распределения как

$$F(v) = 4\pi f(\vec{v})v^2 \tag{85}$$

Окончательно получим распределение Максвелла для модуля скорости:

$$F(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$
(86)

3.2 Наивероятнейшая, средняя и среднеквадратичная скорости

Наивероятнейшая скорость соответствует максимуму функции F(v). Тогда

$$F' = (2v - v^2 \frac{2mv}{2kT}) \exp\left(-\frac{mv^2}{2kT}\right) \Big|_{v=v_{\text{BeD}}} = 0$$
 (87)

Откуда наивероятнейшая скорость

$$v_{\rm Bep} = \sqrt{\frac{2kT}{m}} \tag{88}$$

Среднюю скорость найдем по определению:

$$\langle v \rangle = \int_{0}^{+\infty} v F(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} \int_{0}^{+\infty} v^3 \exp\left(-\frac{mv^2}{2kT}\right) dv \tag{89}$$

Воспользуемся табличным интегралом (выводится из интеграла Пуассона дифференцированием по константе):

$$\int_0^\infty x^3 e^{-ax^2} \, dx = \frac{1}{2a^2} \tag{90}$$

В нашем случае $a = \frac{m}{2kT}$ И тогда

$$\langle v \rangle = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} \cdot \frac{1}{2} \left(\frac{2kT}{m}\right)^2 = \sqrt{\frac{8kT}{\pi m}}$$
 (91)

Мы нашли среднюю скорость:

$$\langle v \rangle = \sqrt{\frac{8kT}{\pi m}} \tag{92}$$

Среднеквадратичную скорость также найдем по определению:

$$\langle v^2 \rangle = \int_0^{+\infty} v^2 F(v) dv = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} \int_0^{+\infty} v^4 \exp\left(-\frac{mv^2}{2kT}\right) dv \tag{93}$$

Воспользуемся табличным интегралом:

$$\int_0^\infty x^4 e^{-ax^2} \, dx = \frac{3\sqrt{\pi}}{8a^{5/2}} \tag{94}$$

Тогда

$$\langle v^2 \rangle = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} \cdot \frac{3\sqrt{\pi}}{8} \left(\frac{2kT}{m}\right)^{5/2} = \frac{3kT}{m} \tag{95}$$

Отсюда среднеквадратичная скорость

$$v_{\rm ck} = \sqrt{\frac{3kT}{m}} \tag{96}$$

4 Вопрос 4

4.1 Распределение Максвелла-Больцмана

Обратим внимание, что в распределении Максвелла есть кинетическая энергия:

$$f(\vec{v}) = A \exp\left(-\frac{mv^2}{2} \cdot \frac{1}{kT}\right) \tag{97}$$

Формально запишем новую функцию распределения, зависящую от полной механической энергии:

$$f^*(\vec{v}, \vec{r}) = A \exp\left(-\left[\frac{mv^2}{2} + W_p\right] \cdot \frac{1}{kT}\right) = A \exp\left(-\frac{mv^2}{2kT}\right) \exp\left(-\frac{W_p}{kT}\right)$$
(98)

Рассмотрим элемент $\Delta\Gamma$ пространства Γ :

$$\Delta\Gamma = \Delta x \cdot \Delta y \cdot \Delta z \cdot \Delta v_x \cdot \Delta v_y \cdot \Delta v_z \tag{99}$$

Тогда

$$dN = N f^*(\vec{v}, \vec{r}) d\Gamma \tag{100}$$

И

$$\int_{\Lambda\Gamma} f^*(\vec{v}, \vec{r}) d\Gamma = 1 \tag{101}$$

Проинтегрируем f^* по скоростям:

$$g(\vec{r}) = \int_{-\infty}^{\infty} f^* d^3 \vec{v} = \iiint_{-\infty}^{\infty} f^* dv_x dv_y dv_z =$$

$$\tag{102}$$

$$= A \iiint_{-\infty}^{\infty} \exp\left(-\frac{mv^2}{2kT}\right) dv_x dv_y dv_z \exp\left(-\frac{W_p}{kT}\right) = B \exp\left(-\frac{W_p}{kT}\right)$$
(103)

Полученное распределение называется распределением Больцмана.

4.2 Вывод барометрической формулы

Рассмотрим модель однородного поля тяжести. На самом деле эта идеализация не так сильно влияет на модель, как еще одна, которую мы примем: пусть атмосфера будет изотермической.

Известно, что $W_p = mgh$ в нашей модели:

$$n(h) = B \exp\left(-\frac{mgh}{kT}\right) \tag{104}$$

Пусть

$$n(h=0) = n_0, \quad p(h_0) = n_0 kT = p_0.$$
 (105)

$$p = nkT (106)$$

Тогда из первой формулы

$$n(h) = n_0 \exp\left(-\frac{mgh}{kT}\right) \tag{107}$$

Домножим на kT:

$$p(h) = n_0 kT \exp\left(-\frac{mgh}{kT}\right) = p_0 \exp\left(-\frac{mgh}{kT}\right)$$
(108)

Величина

$$L = \frac{kT}{mg} \tag{109}$$

называется эффективной толщиной атмосферы. На этом расстоянии концентрация падает примерно в три раза, что в многих прикладных задачах считается отсутствием атмосферы вообще.

4.3 Опыт Перрена

В 1909 году Перрен провел опыт с частицами гуммигута (определенный сорт смолы тропических деревьев). Гуммигут примечателен тем, что его плотность очень близка к плотности воды.

Создав уравновешенную взвесь воды с частицами гуммигута диаметром $\varnothing \sim 0.1$ мкм, Перрен мог посчитать концентрацию на двух уровнях смеси (расстояние между уровнями было $\Delta h \sim 1$ мкм):

$$n_1 = n(h_1) = n_0 \exp\left(-\frac{mgh_1}{kT}\right) \tag{110}$$

$$n_2 = n(h_2) = n_0 \exp\left(-\frac{mgh_2}{kT}\right) \tag{111}$$

Откуда

$$\frac{n_1}{n_2} = \exp\left(-\frac{mg\Delta h}{kT}\right) \tag{112}$$

И

$$k = \frac{mg\Delta h}{T \ln \frac{n_1}{n_2}} \tag{113}$$

Тогда можно найти число Авогадро:

$$N_a = \frac{R}{k} = \frac{RT \ln \frac{n_1}{n_2}}{mg\Delta h} \tag{114}$$

5 Вопрос 5

5.1 Теорема о равнораспределении энергии по степеням свободы

Нам известно, что внутренняя энергия идеального газа

$$U = \frac{3}{2}\nu RT = \frac{3}{2}NkT \tag{115}$$

Теорема о равнораспределении предполагает, что коэффициент 3N является количеством степеней свободы i, и на одну степень свободы **одной** молекулы приходится энергия

$$\varepsilon = \frac{kT}{2} \tag{116}$$

Соответственно, N молекул обладает 3N степенями свободы. Полная энергия

$$U = i\varepsilon \tag{117}$$

Эта теорема термодинамики, которую мы примем на веру.

5.2 Классическая теория теплоемкости газов

Теплоемкость определяется как

$$c = \frac{\delta Q}{dT}, \quad c \in (-\infty \dots + \infty)$$
 (118)

Для идеального газа при постоянном объеме (V = const):

$$\delta Q = dU = \frac{3}{2}\nu R dT \quad \Rightarrow \quad c_v = \frac{3}{2}\nu R \tag{119}$$

Полученное выражение не универсально и верно только для газа с одноатомными (i=3) молекулами.

5.3 Теплоемкость кристаллов

Наша модель - кристаллическая решетка, где молекулы колеблются по гармоническому закону (гармонический осциллятор).

Необходимо найти, как и для идеального газа, энергию всех молекул. Для начала найдем энергию одной молекулы.

$$\langle W \rangle = \langle W_p \rangle + \langle W_k \rangle \tag{120}$$

$$\dot{x}(t) = -A\omega\sin(\omega t) \tag{121}$$

$$x(t) = A\cos(\omega t) \tag{122}$$

где $\kappa = m\omega^2$:

$$\langle W_k \rangle = \frac{m\langle \dot{x}^2 \rangle}{2} = \frac{mA^2}{2} \omega^2 \langle \sin^2(\omega t) \rangle$$
 (123)

$$\langle W_p \rangle = \frac{\kappa \langle x^2 \rangle}{2} = \frac{mA^2}{2} \omega^2 \langle \cos^2(\omega t) \rangle$$
 (124)

По определению,

$$\langle \sin^2(\omega t) \rangle = \frac{1}{T} \int_0^T \sin^2(\omega t) dt = \frac{1}{2}$$
 (125)

аналогично

$$\langle \cos^2(\omega t) \rangle = \frac{1}{2} \tag{126}$$

Тогда полная энергия одной молекулы

$$\langle W \rangle = \langle W_p \rangle + \langle W_k \rangle + \frac{\kappa A^2}{2} = 2 \langle W_k \rangle$$
 (127)

Но

$$\langle W_k \rangle = 3\varepsilon = \frac{3kT}{2} \tag{128}$$

Отсюда

$$\langle W \rangle = 3kT \tag{129}$$

А полная энергия

$$\langle W_{full} \rangle = 3\nu RT \tag{130}$$

И тогда теплоемкость кристалла

$$c_v = 3\nu R \tag{131}$$

5.4 Недостатки классической теории теплоемкости

Классическая теория не дает объяснения зависимости теплоемкости тел от температуры. Экспериментально установлено, что при приближении к абсолютному нулю теплоемкости всех тел, в том числе и кристаллов, стремятся к нулю.

При нагреве газа молекулы меняют количество степеней свободы.

Сначала «заморожены» вращательные степени свободы, и i=3. Затем количество степеней свободы становится i=5.

Однако по теореме о равномерном распределении энергии все степени свободы равноправны, и не могут «замораживаться»

При дальнейшем нагреве молекула теряет жесткость, и появляются колебательные степени свободы: i=7.

В квантовой теории постулируется, что энергия дискретна:

$$E_n = n\hbar\omega + \frac{\hbar\omega}{2} \tag{132}$$

Расхождение теплоемкости имеет квантовую природу.

6 Вопрос 6

6.1 Средняя длина свободного пробега молекул в газах

Допустим, что эффективный диаметр молекулы $\sigma \neq f(T)$. Чтобы найти длину свободного пробега, нам нужна некая модель.

Пусть молекула претерпевает M столкновений. Тогда пройденный ею путь

$$l_M = \sum_{i=1} M l_i \tag{133}$$

И тогда, по определению,

$$\langle l \rangle = \frac{l_M}{M} \tag{134}$$

Весь путь молекулы за M столкновений лежит в ломаной цилиндрической трубке диаметром 2σ и длиной l_M . Её объем почти точно равен

$$V = \pi \sigma^2 l_M = \pi \sigma^2 \langle l \rangle M \tag{135}$$

Так как молекула претерпевала столкновения со всеми молекулами в данном объеме, то

$$M = nV (136)$$

Тогда

$$V = \pi \sigma^2 \langle l \rangle nV \tag{137}$$

Или

$$\langle l \rangle = \frac{1}{\pi \sigma^2 n} \tag{138}$$

Это выражение *почти* верно. Мы учли движение всего одной молекулы, считая все остальные неподвижными. В жизни это выражение выглядит так:

$$\langle l \rangle = \frac{1}{\sqrt{2\pi\sigma^2 n}} \tag{139}$$

С учетом

$$p = nkT (140)$$

Можно записать формулу в удобном для использования виде:

$$\langle l \rangle = \frac{kT}{\sqrt{2}\pi\sigma^2 p} \tag{141}$$

7.1 Диффузия в газах. Закон Фика, расчёт коэффициента диффузии

Диффузия вызвана **случайным** блужданием молекул примеси. Известен эмпирический закон (Фика):

$$\Delta m = -D\frac{dn}{dx}mS\Delta t \tag{142}$$

где m — масса всей примеси, n — концентрация примеси, Δm — перенесенная примесь.

Выберем ось +x. Мы рассмотрим два сечения одной площади S, перпендикулярные оси (и потоку примеси): сечение в точке $x-x_0$ и сечение в точке $x+x_0$.

В сечение x частицы могут попадать только двумя способами: либо в направлении +x («туда») из сечения $x-x_0$, либо в обратном направлении из сечения $x+x_0$ («обратно»):

$$N_{\to} = \frac{1}{6}n(x - x_0)S\langle v\rangle\Delta t \tag{143}$$

$$N_{\leftarrow} = \frac{1}{6}n(x+x_0)S\langle v\rangle\Delta t \tag{144}$$

Понятно, что полное количество частиц, движущихся в выбранном направлении распространения примеси, будет

$$N = N_{\rightarrow} - N_{\leftarrow} \tag{145}$$

И

$$\Delta m = mN = \frac{1}{6}mS\langle v\rangle \Delta t[n(x-x_0) - n(x+x_0)]$$
(146)

Разложим функцию n(z) в ряд Тейлора до второго члена (линеаризуем):

$$n(x - x_0) = n(x) + \frac{dn(x)}{dx}(x - x_0 - x) = n(x) - \frac{dn}{dx}x_0$$
(147)

$$n(x+x_0) = n(x) + \frac{dn(x)}{dx}(x+x_0-x) = n(x) + \frac{dn}{dx}x_0$$
(148)

Тогда

$$n(x - x_0) - n(x + x_0) = -2\frac{dn}{dx}x_0$$
(149)

Имеет смысл взять за x_0 длину свободного пробега, но тогда

$$\Delta m = -\frac{1}{3} \langle v \rangle \langle l \rangle \frac{dn}{dx} mS \Delta t \tag{150}$$

Мы уточнили значение коэффициента диффузии:

$$D = \frac{1}{3} \langle v \rangle \langle l \rangle \tag{151}$$

8.1 Внутреннее трение в газах. Формула Ньютона, расчет вязкости

Известна формула Ньютона:

$$F_{\rm Tp} = \eta \left| \frac{\partial u}{\partial y} \right| S \tag{152}$$

Рис. 1: Поток газа

Рассмотрим модель Перена: перенос импульса при переходе молекулы между слоями с разными скоростями.

$$F_{\rm TP} = \left| \frac{dp_x}{dt} \right| \tag{153}$$

В отличии от предыдущей задачи, концентрацию мы будем считать постоянной, $n \neq f(y)$:

$$N_{\uparrow} = N_{\downarrow} = \frac{1}{6} nS \langle v \rangle \Delta t \tag{154}$$

$$p_{\uparrow}^{\text{\tiny{MOJI}}} = mu(y - y_0) \tag{155}$$

$$p_{\perp}^{\text{\tiny MOJI}} = mu(y + y_0) \tag{156}$$

Тогда

$$p_{\uparrow} = p_{\uparrow}^{\text{MOJ}} \cdot N_{\uparrow} = \frac{1}{6} mnS \langle v \rangle \Delta t \cdot u(y - y_0)$$
(157)

$$p_{\downarrow} = p_{\downarrow}^{\text{\tiny{MOЛ}}} \cdot N_{\downarrow} = \frac{1}{6} mnS \langle v \rangle \Delta t \cdot u(y + y_0)$$
(158)

И

$$\left| \frac{dp_x}{dt} \right| = \left| \frac{p_{\uparrow} - p_{\downarrow}}{\Delta t} \right| = \frac{1}{6} mnS \langle v \rangle \Delta t \cdot |u(y - y_0) - u(y + y_0)| \tag{159}$$

Разложим функцию u в ряд Тейлора до второго члена (линеаризуем):

$$u(y - y_0) = u(y) + \frac{du(y)}{dy}(y - y_0 - y) = u(y) - \frac{du}{dy}y_0$$
(160)

$$u(y+y_0) = u(y) + \frac{du(y)}{dy}(y+y_0 - y) = u(y) + \frac{du}{dy}y_0$$
(161)

Тогда

$$u(y - y_0) - u(y + y_0) = -2\frac{dy}{dy}y_0$$
(162)

Имеет смысл взять за y_0 длину свободного пробега, но тогда

$$F_{\rm Tp} = \frac{1}{3} m n \langle v \rangle \langle l \rangle \left| \frac{\partial u}{\partial y} \right| S \tag{163}$$

Где

$$mn = \rho \tag{164}$$

Мы уточнили значение коэффициента вязкости:

$$\eta = \frac{1}{3}\rho \langle v \rangle \langle l \rangle \tag{165}$$

или

$$\eta = \rho D \tag{166}$$

9 Вопрос 9

9.1 Теплопроводность газов. Закон Фурье, расчет коэффициента теплопроводности

Пусть температура T=f(x) и $\frac{dT}{dx}>0$. Известен закон Фурье:

$$Q = -\varkappa \frac{dT}{dx} S\Delta t \tag{167}$$

Аналогично предыдущим задачам, перенос энергии осуществляется случайным блужданием:

$$N_{\uparrow} = N_{\downarrow} = \frac{1}{6} nS \langle v \rangle \Delta t \tag{168}$$

$$W_{\uparrow}^{\text{\tiny MOЛ}} = W(x - x_0) \tag{169}$$

$$W_{\perp}^{\text{\tiny MOJI}} = W(x + x_0) \tag{170}$$

Тогда

$$W_{\uparrow} = W_{\uparrow}^{\text{MOJ}} \cdot N_{\uparrow} = \frac{1}{6} mnS \langle v \rangle \Delta t \cdot W(x - x_0)$$
(171)

$$W_{\downarrow} = W_{\downarrow}^{\text{\tiny{MOJ}}} \cdot N_{\downarrow} = \frac{1}{6} mnS \langle v \rangle \Delta t \cdot W(x + x_0)$$
 (172)

И

$$Q = W_{\uparrow} - W_{\downarrow} = \frac{1}{6} nS \langle v \rangle \Delta t \cdot [W(x - x_0) - W(x + x_0)]$$
(173)

Разложим функцию W в ряд Тейлора до второго члена (линеаризуем):

$$W(x - x_0) = W(x) + \frac{dW(x)}{dx}(x - x_0 - x) = W(x) - \frac{dW}{dx}x_0$$
(174)

$$W(x+x_0) = W(x) + \frac{dW(x)}{dx}(x+x_0-x) = W(x) + \frac{dW}{dx}x_0$$
 (175)

Тогда

$$W(x - x_0) - W(x + x_0) = -2\frac{dW}{dx}x_0 = -ik\frac{dT}{dx}$$
(176)

Имеет смысл взять за x_0 длину свободного пробега, но тогда

$$Q = \frac{i}{6} nk \langle v \rangle \langle l \rangle \frac{dT}{dx} S \Delta t \tag{177}$$

где

$$nk = \frac{N}{V}k = \frac{\nu R}{V} = \frac{\nu R\rho}{M} \tag{178}$$

Но тогда с учетом

$$c_v = \frac{i}{2}\nu R, \quad c_v^{yz} = \frac{i\nu R}{2M} \tag{179}$$

$$Q = -\frac{1}{3}\rho\langle v\rangle\langle l\rangle c_v^{y\pi} \frac{dT}{dx} S\Delta t$$
 (180)

Отсюда получили коэффициент теплопроводности

$$\varkappa = \frac{1}{3} c_v^{y\pi} \eta \tag{181}$$

10 Вопрос 10

10.1 Вычисление среднего квадрата смещения броуновских частиц

Рассмотрим броуновское движение в дискретной модели. Каждый «шаг» частица будет совершать в случайном направлении, но на одно и тоже расстояние L и за одно и тоже время T:

$$\forall i | \vec{r_i} | = L \tag{182}$$

За N шагов частица переместится в точку с радиус-вектором

$$\vec{R}_N = \vec{r}_1 + \vec{r}_2 + \ldots + \vec{r}_N \tag{183}$$

Понятно, что радиус-вектор перемещения (как и любой случайный вектор):

$$\langle \vec{R}_N \rangle = 0 \tag{184}$$

И имеет смысл искать

$$\langle R_N^2 \rangle = ? \tag{185}$$

$$\vec{R}_N = \vec{R}_{N-1} + \vec{r}_N \tag{186}$$

Будем обозначать $\vec{r}_N = \vec{l}$:

$$\vec{R}_N = \vec{R}_{N-1} + \vec{l} \tag{187}$$

Тогда

$$(\vec{R}_N)^2 = (\vec{R}_{N-1} + \vec{l})^2 = R_{N-1}^2 + l^2 + 2(\vec{R}_{N-1}, \vec{l})$$
(188)

И

$$\langle (\vec{R}_N)^2 \rangle = \langle R_{N-1}^2 \rangle + \langle l^2 \rangle + 2 \langle (\vec{R}_{N-1}, \vec{l}) \rangle \tag{189}$$

Откуда

$$\langle R_N^2 \rangle = \langle R_{N-1}^2 \rangle + \langle l^2 \rangle \tag{190}$$

Получили рекуррентную формулу, откуда, очевидно,

$$\langle R_N^2 \rangle = N \langle l^2 \rangle \tag{191}$$

С другой стороны,

$$t_N = T \cdot N \tag{192}$$

Тогда

$$\langle R^2 \rangle \sim t$$
 (193)

10.2 Формула Эйнштейна

Так как частота ударов $\nu \sim 10^{21} \, [c^{-1}]$, можно перейти к непрерывной модели:

$$m\vec{a} = -h\vec{v} + \vec{F} \tag{194}$$

Движение происходит под действием вязкого сопротивления и случайных толчков. Перейдем к проекциям:

$$m\ddot{x} = -h\dot{x} + F_x \tag{195}$$

Первый шаг решения: Домножим на x и усредним:

$$m\langle x\ddot{x}\rangle = -h\langle x\dot{x}\rangle + \langle xF_x\rangle \tag{196}$$

$$\langle xF_x\rangle = \langle x\rangle\langle F_x\rangle = 0 \tag{197}$$

Откуда

$$m\langle x\ddot{x}\rangle = -h\langle x\dot{x}\rangle \tag{198}$$

Второй шаг решения (хитрые производные):

$$\langle x\dot{x}\rangle = \frac{1}{2}\frac{d}{dt}\langle x^2\rangle \tag{199}$$

$$\frac{d(x\dot{x})}{dt} = \dot{x}^2 + x\ddot{x} \quad \to \quad \langle x\ddot{x}\rangle = \frac{d\langle x\dot{x}\rangle}{dt} - \langle \dot{x}^2\rangle \tag{200}$$

Тогда

$$m\frac{d\langle x\dot{x}\rangle}{dt} - m\langle \dot{x}^2\rangle = -h\langle x\dot{x}\rangle \tag{201}$$

$$m\langle \dot{x}^2 \rangle 2 = \frac{1}{2}kT \quad \to \quad m\langle \dot{x}^2 \rangle = kT$$
 (202)

Тогда

$$m\frac{d\langle x\dot{x}\rangle}{dt} - kT + h\langle x\dot{x}\rangle = 0 \tag{203}$$

Третий шаг решения: обратимся к дискретной модели.

$$X_N = X_{N-1} \pm l (204)$$

$$\dot{X}_N = \dot{X}_{N-1} \tag{205}$$

Тогда

$$\langle X_N \dot{X_N} \rangle = \langle (X_{N-1} \pm l) \dot{X}_{N-1} \rangle = \langle X_{N-1} \dot{X}_{N-1} \rangle \pm \langle l \dot{X}_{N-1} \rangle = \langle X_{N-1} \dot{X}_{N-1} \rangle \tag{206}$$

Значит,

$$\langle X_N \dot{X}_N \rangle = \text{const} \quad \rightarrow \quad \langle x \dot{x} \rangle = \text{const} \quad \rightarrow \quad m \frac{d \langle x \dot{x} \rangle}{dt} = 0$$
 (207)

Тогда

$$-kT + h\langle x\dot{x}\rangle = 0 (208)$$

или

$$h\frac{1}{2}\frac{d}{dt}\langle x^2\rangle = kT \quad \to \quad \frac{d}{dt}\langle x^2\rangle = \frac{2kT}{h}$$
 (209)

И окончательно

$$\langle r^2 \rangle = 3 \langle x^2 \rangle = \frac{6kT}{h} \cdot t$$
 (210)

Данное уравнение называется формулой Энштейна.