# L2(Binary Operations)

### **Morphological Filters**

- Operations where an object is "hit" with a structuring element and thereby reduced/expanded to a more revealing shape.
- originally for binary signals, but extended for non-binary signals (grayscale images)

Dilation is "+" operator while erosion is "-" operator.

#### **Binary Structuring Element**

b[m-k,n-l] denotes translation of b[m,n] so that the origin is centered at position [k,l]. Remember the origin is usually at [0,0], which corresponds to top left corner. Examples for binary structuring elements:



#### **Dilation**

It expands or "grows" the white regions (foreground) of a binary image based on a small shape called the structuring element.

The structuring element b is moved across the image s[m,n]. At each position, the structuring element **hits** (overlaps) the image if any of its "1" values overlap with a "1" value in the image.

It's about **intersection** of structuring element and the image region.

$$s\oplus b=\{(k,l)\mid b[m-k,n-l]\cap s[m,n]
eq\emptyset\}$$

Intersection of structuring element and the image is not empty!

#### **Effects**

expands the size of 1-valued objects (foreground)

- think of the structuring element as a stamp: wherever it touches white, it stamps more white in the output.
- closes holes and gaps
- smoothes object boundaries



Original image



Dilation with 3x3 structuring element



Dilation with 9x9 structuring element

#### **Erosion**

Structuring element is **fully included** in the image region:

$$s \ominus b := \{(k,l)|b[m-k,n-l] \subset s[m,n]\}$$

#### **Effects**

- shrinks the size of 1-valued objects (foreground/white pixels)
- smooths object boundaries
- removes peninsulas, fingers, and small objects



Original image



Erosion with 5x5 structuring element



Erosion with 27x27 structuring element

Note that both in dilation and erosion, the original pixels get altered.

## **Properties of Erosion and Dilation**

Both dilation and erosion have **translational invariance** and are generally irreversible operations.

### **Distributivity**

Consecutive dilation or erosion by different structuring elements:

$$s \oplus (b \cup b') = (s \oplus b) \cup (s \oplus b')$$
  
 $s \ominus (b \cup b) = (s \ominus b) \cap (s \ominus b')$ 

- If you dilate an image s using the union of two structuring elements b and b', it's equivalent to dilating s with b and b' separately and then taking the union of the results.
- If you erode an image s using the union of two structuring elements b and b', it's equivalent to eroding s with b and b' separately and then taking the intersection of the results.

### **Duality**

• The erosion of s by b is equivalent to the complement of the dilation of the background  $\bar{s}$  by the reflection of b ( $\hat{b}$ )

$$\frac{\overline{s \ominus b}}{\overline{s \ominus b}} = \bar{s} \ominus \hat{b}$$
$$= \bar{s} \ominus \hat{b}$$

• The dilation of s by b is equivalent to the complement of the erosion of the background  $\bar{s}$  by the reflection of b ( $\hat{b}$ ).

For point symmetric structuring elements  $b=\hat{b}$ 

### **Opening and Closing**

The goal here is to smooth without size change.

### **Opening**

Opening is erosion combined by dilation:

Opening removes small regions(noise) in the image. Essentially, remove the noise with erosion which also shrinks the objects that we are interested. But this will be undone by a

subsequent application of dilation.



## Closing

Closing is dilation followed by erosion. First, it fills up the holes with dilation. Then, shrinks the objects of interest size back to normal with erosion.



## **Morphological Edge Detectors**

White pixels represent object. We want to find out its boundary (edges)
It seems like the best filter would be the difference of dilated image and eroded image:

$$(s \oplus b) - (s \ominus b)$$

- Dilation expands the boundaries
- Erosion shrinks the boundaries
- The subtraction gives the boundary region by highlighting the difference between the expanded and shrunk versions

## **Iterative Hole Filling**

Let r denote an 8-connected boundary of an object. Iterative hole filling:

$$s_k = (s_{k-1} \oplus b) \cap \bar{r}$$
  $k = 1, 2, 3, ...$ 

a seed point  $s_0$ , which is a known location inside the hole. (This is the starting point for filling). After each dilation constrain the result to remain inside the object by taking the intersection with s.

# **Grayscale images**

Output would be the minimum value (erosion) or maximum value (dilation) of gray-scale image within structuring element