Лабораторная работа №7

Эффективность рекламы

Ишанова А.И. группа НФИбд-02-19

Содержание

1	Цель работы	4
2	Задание работы 2.0.1 Вариант 18	5
3	Теоретическое введение 3.1 Постановка задачи	6 6
4	Выполнение лабораторной работы 4.1 Код в OpenModelica	8
5	Вывод	15
6	Список литературы	16

List of Figures

4.1	Код программы для 1 случая ($\alpha_1 > \alpha_2$)
4.2	График для 1 случая
4.3	Код программы для 2 случая ($\alpha_1 < \alpha_2$)
4.4	График для 2 случая
4.5	График для производной $\frac{dn}{dt}$ во 2 случае
	Код программы для 3 случая
4.7	График для 3 случая

1 Цель работы

Ознакомится с моделью эффективности рекламы и научиться ее моделировать.

2 Задание работы

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (\alpha_1 + \alpha_2 \cdot n(t))(N - n(t)), \alpha_1 \gg \alpha_2$$

2.
$$\frac{dn}{dt} = (\alpha_1 + \alpha_2 \cdot n(t))(N - n(t)), \alpha_2 \gg \alpha_1$$

3.
$$\frac{dn}{dt} = (a1 \cdot t + a2 \cdot \cos(t) \cdot n(t))(N - n(t))$$

2.0.1 Вариант 18

1.
$$\frac{dn}{dt} = (0.61 + 0.000061 \cdot n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000073 + 0.73 \cdot n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.7 \cdot t + 0.36 \cdot \cos(t) \cdot n(t))(N - n(t)) \label{eq:dn}$$

При этом объем аудитории N=1224, в начальный момент о товаре знает $n_0=14$ человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Теоретическое введение

3.1 Постановка задачи

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным. Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь п покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих. [1]

3.2 Модель

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре

и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1(t)$ >0 - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t) \cdot n(t))(N - n(t))$$

При $\alpha_1(t)\gg \alpha_2(t)$ получается модель типа модели Мальтуса, а в обратном случае, при $\alpha_1(t)\ll \alpha_2(t)$ получаем уравнение логистической кривой.[1]

4 Выполнение лабораторной работы

4.1 Код в OpenModelica

1. Пишем код для первого случая. (fig. 4.1)

```
model adv1
parameter Real N = 1224;
parameter Real n0 = 14;
parameter Real a1 = 0.61;
parameter Real a2 = 0.0000061;
Real n(start = n0);
equation
der(n)=(a1+a2*n)*(N-n);
end adv1;
```

Figure 4.1: Код программы для 1 случая ($\alpha_1>\alpha_2$)

2. Компилируем и получаем график. (fig. 4.2)

Figure 4.2: График для 1 случая

3. Пишем код для второго случая. (fig. 4.3)

```
model adv2
parameter Real N = 1224;
parameter Real n0 = 14;
parameter Real a1 = 0.000073;
parameter Real a2 = 0.73;
Real n(start = n0);
equation
der(n)=(a1+a2*n)*(N-n);
end adv2;
```

Figure 4.3: Код программы для 2 случая ($\alpha_1 < \alpha_2$)

4. Компилируем и получаем график. (fig. 4.4)

Figure 4.4: График для 2 случая

5. Для того, чтобы найти максимальную скорость распространения смотрим на график производной. (fig. 4.5)

Figure 4.5: График для производной $\frac{dn}{dt}$ во 2 случае

Скорость распространения рекламы будет иметь максимальное значение между 0.04 и 0.06 ед.времени.

6. Пишем код для второго случая. (fig. 4.6)

```
model adv3
parameter Real N = 1224;
parameter Real n0 = 14;
parameter Real a1 = 0.7;
parameter Real a2 = 0.6;
Real n(start = n0);
equation
der(n)=(a1*time+a2*cos(time)*n)*(N-n);
end adv3;
```

Figure 4.6: Код программы для 3 случая

7. Компилируем и получаем график. (fig. 4.7)

Figure 4.7: График для 3 случая

5 Вывод

В ходе выполнения работы были построены три разных модели эффективности рекламы. Для второго случая также нашли момент, когда скорость распространения рекламы максимальна.

6 Список литературы

1. Теоретические материалы курса.