1. Data Collection and Data preprocessing

The dataset was directly uploaded to the Google Colab environment then necessary preprocessing steps were taken. The codes and the outputs are given below.

- There were no null values in the data.
- I replaced the values female and male with 0 and 1 respectively.
- Changed the name of some columns
- Replaced yes and no with 1 and 0 respectively for several columns (Family History With Overweight, Eat High Caloric Food Frequently, Smoking, etc..)

Figure 01: dataset collection and viewing

```
df['Gender'] = df['Gender'].replace({"Female": 0, "Male": 1})
    # Age
df['Age'] = df['Age'].astype(int)
    df['Height'] = df['Height'].round(2)
    df['Weight'] = df['Weight'].round(1)
     new_column_names = {
          'FAVC': 'Eat_High_Caloric_Food_Frequently',
'FCVC': 'Vegetable_Consumption_Frequency',
'NCP': 'Number_Of_Main_Meals_Daily',
          'SMOKE': 'Smoking',
'CH2O': 'Liquid_Intake_Daily',
'SCC': 'Calorie_Consumption_Monitoring',
'FAF': 'Physical_Activity',
          'TUE': 'Time_Using_Technological_Devices',
'CALC': 'Alcohol_Consumption',
          'MTRANS': 'Type_Of_Transportation',
'NObeyesdad': 'Obesity_Level'
     df = df.rename(columns=new_column_names)
    df['Family_History_With_Overweight'] = df['Family_History_With_Overweight'].replace({"no": 0, "yes": 1})
    df['Eat_High_Caloric_Food_Frequently'] = df['Eat_High_Caloric_Food_Frequently'].replace({"no": 0, "yes": 1})
# Vegetable Consumption Frequency
df['Vegetable_Consumption_Frequency'] = df['Vegetable_Consumption_Frequency'].astype(int)
        df['Number_Of_Main_Meals_Daily'] = df['Number_Of_Main_Meals_Daily'].astype(int)
       df['Consumption_Of_Food_Between_Meal'] = df['Consumption_Of_Food_Between_Meal'].replace({
    "no": 0, "Sometimes": 1, "Frequently": 2, "Always": 3})
       # Smoking
df['Smoking'] = df['Smoking'].replace({"no": 0, "yes": 1})
        df['Liquid_Intake_Daily'] = df['Liquid_Intake_Daily'].round(1)
       # Calorie Consumption Monitoring

df['Calorie_Consumption_Monitoring'] = df['Calorie_Consumption_Monitoring'].replace({"no": 0, "yes": 1})
        df['Physical_Activity'] = df['Physical_Activity'].astype(int)
       # Time Using Technological Devices
df['Time_Using_Technological_Devices'] = df['Time_Using_Technological_Devices'].round(2)
       df['Alcohol_Consumption'] = df['Alcohol_Consumption'].replace({
    "no": 0, "Sometimes": 1, "Frequently": 2, "Always": 3})
       df['Type_Of_Transportation'] = df['Type_Of_Transportation'].replace({
    "Automobile": 1, "Bike": 2, "Motorbike": 3, "Public_Transportation": 4, "Walking": 5})
        # Obesity Level
       df['Obesity_Level'] = df['Obesity_Level'].replace({
    'Insufficient_Weight': 0, 'Normal_Weight': 1,
    'Overweight_Level_I': 2, 'Overweight_Level_II': 2,
    'Obesity_Type_I': 3, 'Obesity_Type_III': 3, 'Obesity_Type_III': 3})
```

Figure 02: code snippet of preprocessing

1. Data visualization and distribution analysis

1. Numerical Distribution Analysis

For continuous or numerical variables, distribution analysis helps identify the shape, spread, and central tendency of the data.

That includes:

- age
- Height
- Weight
- Liquid intake

Skewness: Measures the asymmetry of the distribution. A skewness of 0 means the data is perfectly symmetrical. Positive skew indicates a long tail on the right, and negative skew means a long tail on the left.

Kurtosis: Measures the "tailedness" or the peak of the distribution. Higher kurtosis means more data is concentrated in the tails.

Visualizations:

- Boxplot: Shows the distribution through quartiles and highlights potential outliers.
- Histogram: Displays the frequency distribution of a variable.
- KDE Plot (Kernel Density Estimate): Shows the probability density function of the variable.

2. Categorical Distribution Analysis

For categorical variables, distribution analysis helps understand the frequency or proportion of each category.

That includes:

- Gender
- · Family history with overweight
- Eat high calory foods
- Smoking... etc

Visualizations:

- Count plot: Shows the count of occurrences for each category.
- Pie Chart: Illustrates the proportion of each category as slices of a pie.

```
# Data visualization and Distribution analysis
    import pandas as pd
    import matplotlib.pyplot as plt
    from scipy.stats import skew, kurtosis
    # Load the dataset
    DataDF = pd.read_excel("Obesity_DataSet.xlsx")
    plt.figure(figsize=(5,3))
    sns.countplot(data=DataDF, x='Gender', palette='muted')
    plt.title('Gender Distribution')
    plt.show()
    gender_count = DataDF['Gender'].value_counts()
    plt.figure(figsize=(4,4))
    plt.pie(gender_count.values, labels=['Male', 'Female'], autopct='%1.1f%%', colors=['#008fd5','#e5ae37'])
    plt.legend(['Male', 'Female'], loc='best')
    plt.show()
    def plot_column_distribution(column, xlabel, hue_column=None):
        print(f"Skewness of '(column)':", DataDF[column].skew().round(2))
print(f"Kurtosis of '(column)':", DataDF[column].kurtosis().round(2))
        sns.boxplot(x=DataDF[column], color='#008fd5')
         plt.title(f'{xlabel} Distribution')
         plt.show()
        plt.figure(figsize=(10,5))
         sns.histplot(data=DataDF, x=column, hue=hue_column, multiple='stack', kde=True, palette='colorblind')
         plt.title(f'{xlabel} Distribution')
         plt.show()
   plot_column_distribution('Age', 'Age', hue_column='Obesity_Level')
   plot_column_distribution('Height', 'Height', hue_column='Obesity_Level')
   plot_column_distribution('Weight', 'Weight', hue_column='Obesity_Level')
    # Function to plot countplot and pie chart for categorical columns
    def plot_categorical_distribution(column, labels):
       plt.figure(figsize=(5,3))
        {\tt sns.countplot(data=DataDF, x=column, palette='muted')}
       plt.title(f'{column} Distribution')
        plt.show()
        count = DataDF[column].value counts()
       plt.figure(figsize=(4,4))
        plt.pie(count.values, labels=labels, autopct='%1.1f%%', colors=['#008fd5','#e5ae37','#fc4f30','#6d904f'])
        plt.title(f'{column} Distribution')
plt.legend(labels, loc='best')
   # Family History With Overweight
plot_categorical_distribution('Family_History_With_Overweight', ['Yes', 'No'])
   # Eat High Caloric Food Frequently
plot_categorical_distribution('Eat_High_Caloric_Food_Frequently', ['Yes', 'No'])
   plot_categorical_distribution('Vegetable_Consumption_Frequency', ['Low', 'Normal', 'High'])
   plot_categorical_distribution('Number_Of_Main_Meals_Daily', ['1', '2', '3', '4'])
   plot_categorical_distribution('Consumption_of_Food_Between_Meal', ['Sometimes', | Frequently', 'Always', 'No'])
   plot_categorical_distribution('Smoking', ['No', 'Yes'])
   plot_column_distribution('Liquid_Intake_Daily', 'Liquid Intake')
```

Figure 03: Code snippet of data visualization and distribution(brief explanation is in the comments)

1. Gender

Gender Distribution

Figure 04: Gender variable visualization

2. Age

Figure 05: Age Variable visualization and Distribution

Skewness of 'Age': 1.56Kurtosis of 'Age': 2.99

3. Height

Figure 06: Height Variable visualization and Distribution

Skewness of 'Height': -0.01Kurtosis of 'Height': -0.57

4. Weight

Figure 07: Weight Variable visualization and Distribution

Skewness of 'Weight': 0.26Kurtosis of 'Weight': -0.7

5. Family history with overweight

Family_History_With_Overweight Distribution

Figure 08: Family history with overweight Variable visualization

6. High calory food consumption

Eat_High_Caloric_Food_Frequently Distribution

Figure 09: Eating high calory food Variable visualization

7. Vegetable consumption frequency

Vegetable_Consumption_Frequency Distribution 1200 - 1000 - 800 - 600 - 400 - 200 - 10

Vegetable_Consumption_Frequency Distribution

Figure 10: Vegetable consumption Variable visualization

8. Daily main meal consumption

Number_Of_Main_Meals_Daily Distribution

Figure 11: Number of main meals daily Variable visualization

9. Consumption of food between meal

Consumption_Of_Food_Between_Meal Distribution

Figure 12: Consumption of food between meal Variable visualization

10. Smoking

Smoking Distribution

Figure 13: Smoking Variable visualization

11. Liquid intake

Liquid Intake Distribution

Liquid Intake Distribution

Figure 14: Liquid intake Variable visualization and distribution

- Skewness of 'Liquid_Intake_Daily': -0.1
- Kurtosis of 'Liquid_Intake_Daily': -0.88

2. Pearson Correlation analysis

Figure 15: Correlation matrix heatmap

Both snippets are useful for visually and numerically exploring the relationships between different features in a dataset, which is an essential part of exploratory data analysis (EDA) before building predictive models.

The values in a correlation matrix depict the strength and direction of the linear relationship between pairs of variables. The values in the matrix are the Pearson correlation coefficients, which range from -1 to +1. Here's what the different values represent:

Pearson Correlation Coefficient Values:

1. **+1**:

- A perfect positive linear relationship.
- As one variable increases, the other also increases in a perfectly linear fashion.
- Example: Height and weight often have a positive correlation.

2. **-1**:

- A perfect negative linear relationship.
- As one variable increases, the other decreases in a perfectly linear fashion.
- Example: The speed of a car and the time it takes to reach a destination are negatively correlated.

3. **0**:

- No linear relationship between the variables.
- The variables do not affect each other in a linear manner.
- Example: The number of ice creams sold, and shoe size might have no correlation.

Interpretation of Correlation Values:

- 0.7 to 1.0 or -0.7 to -1.0:
 - Strong correlation (positive or negative).
 - High values (close to 1 or -1) indicate a strong relationship between the variables.
- 0.3 to 0.7 or -0.3 to -0.7:
 - Moderate correlation.
 - Moderate values suggest some relationships, but it's not as strong.
- 0.0 to 0.3 or -0.0 to -0.3:
 - Weak correlation.
 - Low values suggest a weak or negligible relationship between the variables.