Aufgaben aus den Übungsgruppen 4(Lösungsvorschläge)

Aufgabe 4.1

Betrachten Sie die folgenden Begriffe. Charakterisieren Sie diese möglichst präzise.

- Pumping-Lemma
- Grammatik
- kontextsensitiv
- surjektiv
- regulär
- Potenzmengenkonstruktion
- Chomsky-Hierarchie
- rechtslinear
- Ableitungsbaum
- Linksableitung
- bijektiv

- Relation
- einfache Turingmaschine
- Äquivalenzrelation
- abzählbar
- Kellerautomat
- Diagonalisierung
- Sprache
- kontextfrei
- injektiv
- Konfiguration
- Determinismus

- überabzählbar
- Nichtdeterminismus
- endlicher Automat
- Fortsetzungssprachen
- Satz von Myhill-Nerode
- ε -Übergang
- DEA-Minimierung
- Nicht-Terminale
- Chomsky-Normalform
- Greibach-Normalform
- Turingmaschine

Aufgabe 4.2

Geben Sie die Inklusionshierarchie aller Klassen von Sprachen an, die sie bisher kennengelernt haben.

Aufgabe 4.3

Wahr oder falsch? Begründen Sie!

1.	$\mathbb Q$ ist überabzählbar.	\square wahr	■ falsch
2.	A abzählbar $\Leftrightarrow \exists$ Injektion $f: \mathbb{N} \to A$	\square wahr	\blacksquare falsch
3.	A abzählbar $\Leftrightarrow \exists$ Surjektion $f: \mathbb{N} \to A$	\blacksquare wahr	\square falsch
4.	$L = \{a^n b^n \mid n \in \mathbb{N}\}$ ist eine DEA-Sprache.	\square wahr	■ falsch
5.	$L = \{0^{n!} \mid n \in \mathbb{N}\}$ ist eine reguläre Sprache.	\square wahr	■ falsch
6.	$L = \{w \in \{0,1\}^* \mid w \text{ ist durch 3 oder 4 teilbar}\}$ ist eine NKA-Sprache.	\blacksquare wahr	\square falsch
7.	$L = \{w \in \{a, b\}^* \mid \#_a(w) \mod \#_b(w) = 0\}$ ist eine NKA-Sprache.	\Box wahr	\blacksquare falsch
8.	L ist DEA-Sprache $\Leftrightarrow \mathcal{F}_L$ ist endlich.	\blacksquare wahr	\square falsch
9.	Reguläre Sprachen sind unter Schnitt und Vereinigung abgeschlossen.	\blacksquare wahr	\square falsch
10.	NKA-Sprachen sind unter Schnitt und Vereinigung abgeschlossen.	\square wahr	■ falsch
11.	DKA-Sprachen sind unter Komplementbildung abgeschlossen.	\blacksquare wahr	\square falsch
12.	NKA-Sprachen sind unter Komplementbildung abgeschlossen.	\square wahr	■ falsch
13.	Jede kontextfreie Sprache über einem Alphabet Σ mit $ \Sigma =1$ sind regulär.	\blacksquare wahr	\square falsch
14.	Die kontextsensitiven Sprachen entsprechen genau den NKA-Sprachen.	\Box wahr	■ falsch

Aufgabe 4.4

Geben Sie folgende Dinge an:

- 1. Eine Grammatik, die alle Palindrome über $\{a,b\}^*$ beschreibt.
- 2. Eine Grammatik, die folgende Sprache $\{w | \#_a(w) \mod 3 = 1\}$ beschreibt.
- 3. Einen NKA, der $\{a^nb^m|n>m\}$ erkennt.

Finden Sie eine möglichst einfache Lösung. In welchen Sprachklassen befinden sich die beschriebenen Sprachen?

Lösungsvorschlag 4.4

- 1. $(\{a,b\},\{S\},S,\{S\to\varepsilon,S\to aSa,S\to bSb,S\to a,S\to b\})$ kontextfreie Sprache, sowie alles größere.
- 2. Sei Σ das Terminalalphabet und $a\in \Sigma.$

$$(\Sigma, \{S, T\}, S, \{S \rightarrow uaT \mid u \in (\Sigma \setminus \{a\})^*\} \cup \{T \rightarrow uavawaT \mid u, v, w \in (\Sigma \setminus \{a\})^*\} \cup \{T \rightarrow u \mid u \in (\Sigma \setminus \{a\})^*\})$$

3. Der NKA hat einen Zustand S. Zuerst schreibt der NKA für jedes n ein $n\pounds$ in den Keller, falls dass £ Zeichen noch oben liegt. Der Automat entscheidet nichtdeterministisch, wann er beim letzten a angekommen ist und entfernt dann, beim lesen dieses a das £-Symbol vom Keller. Nun wird beim lesen eines b ein a entfernt, so lange dieses oben auf dem Keller liegt. Zum Schluss, können mit ε -Transitionen überzählige a entfernt werden. Der Automat akzeptiert mit leerem Keller.