Universidad Nacional de Río Negro Física III B - 2020

Unidad 01

Clase
 U01 C03 - 03

Fecha 17 Mar 2019

Cont Calores

Cátedra Asorey

Web https://gitlab.com/asoreyh/unrn-f3b

Unidad 1: Calor

Gases reales

- Átomos y moléculas con interacción entre si (pero de corta distancia) → Fuerzas de Van der Waals
 - Monoatómicos: nobles, He, Ar,...
 - Diatómicos: H₂, O₂, N₂,...
 - Triatómicos: CO₂, H₂O(*)
 - Complejos: NH₃
- Mejor aproximación: gases monoatómicos en condiciones de baja presión y temperatura (baja densidad)

Postulados de la teoría cinética: Gas ideal

- Formado por un gran número de moléculas idénticas
- Separación media es grande respecto a las dimensiones
 - Volumen despreciable respecto al volumen contenedor
- Se mueven aleatoriamente con velocidades diferentes
 - La velocidad media de las moléculas es constante
- Obedecen las leyes de Newton
 - Sólo interactúan (con el recipiente) a través de choques elásticos
- El gas está en equilibrio térmico con el recipiente

Choques en las paredes del recipiente

¿Cuántos choques se producen en la pared en un tiempo At?

- En el intervalo ∆t, sólo impactarán en la pared A aquellas que estén a cierta distancia y en una cierta dirección
 - tres casos posibles

La presión, hasta aquí:

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \langle v^2 \rangle \right)$$

Reordenando

$$\frac{PV}{N} = \left(\frac{2}{3} \langle E_K \rangle\right)$$

Ecuación de estado microscópica

O también:

$$\frac{PV}{N}$$
 = constante

¿Cómo? ¿¿¿no era PV = n R T????

- La <E_k> es "macroscópicamente inaccesible"
- Definimos la temperatura media

$$T \equiv \frac{1}{k_{B}} \left(\frac{2}{3} \langle E_{K} \rangle \right)$$

donde k_B = 1,3806 x 10⁻²³ J/K es la constante de Boltzmann.

- La temperatura media es una medida de la energía cinética media de las partículas del sistema.
- Luego: $\frac{PV}{N} = k_b T$
- Y entonces

$$PV = Nk_bT$$

Al fin, PV = nRT

Multiplicando y dividiendo por el Número de Avogadro:

$$PV = \frac{N}{N_A}(N_A k_b)T$$

• N/N_A es el número de moles de gas en el recipiente V, n:

$$PV = n(N_A k_b)T$$

Y al producto (N_A k_B):

$$R = N_A k_b = (6,022 \times 10^{23} \text{ mol}^{-1})(1,3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R = N_A k_b = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$$

• Resultando:

PV=nRT

H. Asorey - F3B 2020

Ecuación de estado de un gas ideal 10/21

La constante universal de los gases ideales, R

- Relaciona, a través de la ecuación de estado, las distintas magnitudes físicas asociadas a un gas ideal:
 - Cantidad de gas, n (moles)
 - Presión del gas, P (Pa)
 - Volúmen del gas, V (m³)
 - Temperatura del gas, T (K)
- En unidades del SI:

$$R = N_A k_b = (6,022 \times 10^{23} \text{ mol}^{-1})(1,3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R = N_A k_b = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$$

• Otro valor usual (no SI): $R = 0.082 L atm K^{-1} mol^{-1}$

Condiciones "Normales" de Presión y Temperatura (CNPT)

- Parámetros "estandarizados" para trabajar con un gas...
 - Hay muchas convenciones → no son estándares...
 - ¿qué presión? ¿qué temperatura? ¿en qué unidades?
- Nuestra convención:

$$V = \frac{nRT}{P}$$

- $T = O^{\circ}C \rightarrow T = 273,15 \text{ K}$
- P = 1atm \rightarrow P = 101325 Pa (\acute{o} P=1013,25 hPa \acute{o} P=101,325 kPa)
- \rightarrow V_{molar}=0,022309m³=22,398 L (volumen molar normal)
- Otras, por ej., T=273,15 K; P = 10^5 Pa \rightarrow V_{molar} = 22,7 L ó, T=293.15K; P = 1atm \rightarrow V_{molar} = 24,06 L, etc

Aplicación: buscando al Helio

- La concentración de Helio en la atmósfera es tan baja (~5.2 ppm) que este gas fue descubierto en el Sol (Lockyer, 1868)
- Sin embargo, es muy abundante en el Universo
- ¿Dónde está el Helio?

Escape atmosférico (1ra parte)

Ма

VOI-COZ - 2

Mejorando el cálculo

- Lo que hay que recordar es que hemos utilizado la velocidad promedio del Helio
- Un conjunto grande (~Número de Avogadro) de átomos de Helio a 300K, la <v> ~ 1370 m/s ~ 0,1 v_e.
- Es ~ 10% de la velocidad de escape
- Las velocidades de cada átomo individual podrá distar (y mucho) de la promedio

Paréntesis: Distribución de probabilidad

- Función que asigna a cada suceso la probabilidad de que dicho suceso ocurra:
- Se puede determinar empíricamente a partir de la fracción de sucesos observados sobre el total

Distribución normal o Gaussiana

Sea un gas ideal a una temperatura T

 ¿Cuál es la distribución de probabilidad del módulo de la velocidad |v| de las moléculas que componen un gas

$$|\vec{\mathbf{v}}| = \sqrt{\mathbf{v}_{x}^{2} + \mathbf{v}_{y}^{2} + \mathbf{v}_{z}^{2}}$$

 ¿Cuál es la distribución de probabilidad de cada componente v_i de las moléculas que componen un gas?

Ley de los grandes números → v_i tiene distribución Normal

 La Distribución de Maxwel-Boltzmann representa la distribución |v| si sus componentes son normales

Si v_i tiene una distribución normal, |v| tiene una distribución de Maxwel-Boltzmann

Maxwell-Boltzmann

En um gos de N moleculos, harrà Cuatos prábados en
odocudad o tengo?
$$\rightarrow 0$$
. É y en robocudad
of y N+2N? $\rightarrow 0$ $f(\vec{r})$ $\rightarrow 0$ $f(\vec{r})$ $\rightarrow 0$ \rightarrow

$$\frac{n}{2} = f(n) dx$$

Se pende ver per 15m20 se do poro 3+=0=5

$$f(v) = \frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$

$$F(E) = \frac{2}{\sqrt{\pi}} \left(\frac{1}{kT}\right)^{3/2} E^{\frac{1}{2}} e^{-\frac{E}{kT}}$$

$$\frac{1}{\sqrt{E}} = \frac{1}{\sqrt{E}} = \frac{1$$

Funciones de distribución

probability density $f(u) = \left[\frac{M}{2\pi RT}\right]^{3/2} \cdot 4\pi u^2 \cdot e^{-Mu^2/2RT}$

H. Asorey - F3B 2020

El problema de Richter

H. Asorey - F3B 2020