Econometrics 710 Final Exam, Spring 2015 Sample Answers

1. Consumer Surplus

- (a) The plug-in estimator is $\hat{A} = -\hat{\alpha}^2/2\hat{\beta}$.
- (b) Notice

$$a = \frac{\partial}{\partial \theta} A(\theta) = \begin{pmatrix} \frac{\partial}{\partial \alpha} \left(-\alpha^2 / 2\beta \right) \\ \frac{\partial}{\partial \beta} \left(-\alpha^2 / 2\beta \right) \end{pmatrix} = \begin{pmatrix} -\alpha / \beta \\ \alpha^2 / 2\beta^2 \end{pmatrix}$$

Thus by the Delta method, since $\beta \neq 0$

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \to_d N\left(0, a'V_{\theta}a\right)$$

An estimate of the asymptotic variance is $\hat{a}'\hat{V}_{\theta}\hat{a}$ where

$$\hat{a} = \begin{pmatrix} -\hat{\alpha}/\hat{\beta} \\ \\ \hat{\alpha}^2/2\hat{\beta}^2 \end{pmatrix}$$

Thus a 95% confidence interval for A is

$$\hat{A} \pm 1.96 * \sqrt{\hat{a}'\hat{V}_{\theta}\hat{a}/n}$$

- (c) For a bootstrap percentile interval: For b = 1, ..., B, where B = 1000 or higher
 - i. Sample n iid observations from the empirical sample
 - ii. Construct the OLS estimates $\hat{\theta}_b^* = (\hat{\alpha}_b^*, \hat{\beta}_b^*)$
 - iii. Form $\hat{A}_b^* = -\hat{\alpha}_b^{*2}/2\hat{\beta}_b^*$

Given $\{\hat{A}_1^*, ..., \hat{A}_B^*\}$, calculate the $\alpha/2$ and $1 - \alpha/2$ empirical quantiles $q_{\alpha/2}$ and $q_{1-\alpha/2}$. The percentile interval is $[q_{\alpha/2}, q_{1-\alpha/2}]$.

2. Structural quadratic equation

- (a) x_i^2 is endogenous. (If x_i and e_i are correlated, we should in general expect functions of x_i and e_i to be possibly correlated.)
- (b) The number of rhs structural variables is 3, the number of instruments are 3, so this is just-identified (and thus sufficient).
- (c) Given equation (2) and squaring

$$x_i^2 = \gamma_0^2 + \gamma_1^2 z_i^2 + u_i^2 + 2\gamma_0 \gamma_1 z_i + 2\gamma_0 u_i + 2\gamma_1 z_i u_i$$

$$= (\gamma_0^2 + E u_i^2) + 2\gamma_0 \gamma_1 z_i + \gamma_1^2 z_i^2$$

$$+ ((u_i^2 - E u_i^2) + 2\gamma_0 u_i + 2\gamma_1 z_i u_i)$$

$$= \gamma_0^* + 2\gamma_0 \gamma_1 z_i + \gamma_1^2 z_i^2 + u_{2i}$$

say, where the error u_{2i} is mean zero (conditionally on z_i). This is the reduced form equation for x_i^2 . A minimal condition for identification is that the coefficients on the instruments must be non-zero, which requires that $\gamma_1 \neq 0$. (If $\gamma_1 = 0$ then both coefficients are zero.) Furthermore, since the equation for x_i is linear in z_i it will be furthermore necessary for z_i^2 to be relevant in this equation, e.g. that the coefficient γ_1^2 is non-zero. However, this occurs if $\gamma_1 \neq 0$ so this is not an additional requirement. In summary, $\gamma_1 \neq 0$ is sufficient for identification.

3. Two-step model

The question should have stated that $E(z_i e_i) = 0$ and $E(z_i u_i) = 0$.

(a) The first-step is $\hat{\gamma} = \sum z_i x_i / \sum z_i^2$. The second step is

$$\hat{\beta} = \frac{\sum \hat{x}_{i2}y_i}{\sum \hat{x}_i^4}$$

$$= \frac{\sum (\hat{\gamma}z_i)^2 y_i}{\sum (\hat{\gamma}z_i)^4}$$

$$= \frac{\sum z_i^2 y_i}{\hat{\gamma}^2 \sum z_i^4}$$

(b) By the WLLN,

$$\hat{\gamma} = \frac{\frac{1}{n} \sum z_i x_i}{\frac{1}{n} \sum z_i^2} \to_p \gamma = \frac{E z_i x_i}{E z_i^2}.$$

Using $y_i = \beta x_i^2 + e_i$, and then the WLLN

$$\begin{split} \frac{\sum z_i^2 y_i}{\sum z_i^4} &= \beta \frac{\frac{1}{n} \sum z_i^2 x_i^2}{\frac{1}{n} \sum z_i^4} + \frac{\frac{1}{n} \sum z_i^2 e_i}{\frac{1}{n} \sum z_i^4} \\ \to_p \beta \frac{E\left(z_i^2 x_i^2\right)}{E z_i^4} + \frac{E\left(z_i^2 e_i\right)}{E z_i^4}. \end{split}$$

since $Ez_i^2e_i=0$ under $E(e_i\mid z_i)=0$. (If we do not assume $E(e_i\mid z_i)=0$ then there will be an extra term as well.)

One could stop here and state that

$$\hat{\beta} \to_p \frac{\beta}{\gamma^2} \frac{E\left(z_i^2 x_i^2\right)}{E z_i^4} + \frac{E\left(z_i^2 e_i\right)}{\gamma^2 E z_i^4} \tag{1}$$

However, we can try and say a little more. Since $x_i = \gamma z_i + u_i$ then $x_i^2 = \gamma^2 z_i^2 + 2\gamma z_i u_i + u_i^2$ so

$$\frac{E(z_i^2 x_i^2)}{\gamma^2 E z_i^4} = 1 + 2 \frac{E(z_i^3 u_i)}{\gamma E z_i^4} + \frac{E(z_i^2 u_i^2)}{\gamma^2 E z_i^4}$$

Thus we have

$$\hat{\beta} \to_p \beta \left(1 + \frac{E\left(z_i^3 u_i\right)}{\gamma E z_i^4} + \frac{E\left(z_i^2 u_i^2\right)}{\gamma^2 E z_i^4} \right) + \frac{E\left(z_i^2 e_i\right)}{\gamma^2 E z_i^4}$$

Two of the terms drop out under slightly stronger assumptions. Suppose the linear reduced form for x_i is the conditional mean, then $E(u_i \mid z_i) = 0$ and thus $E(z_i^3 u_i) = 0$.

Furthermore if z_i is exogenous in the strong sense that $E(e_i \mid z_i) = 0$ then $E(z_i^2 e_i) = 0$ as well. Under these two plausible restrictions we find

$$\hat{\beta} \to_p \beta \left(1 + \frac{E\left(z_i^2 u_i^2\right)}{\gamma^2 E z_i^4} \right).$$

Finally if we make the even stronger assumption that the error u_i^2 is conditionally homoskedastic $E\left(u_i^2 \mid z_i\right) = \sigma_u^2$ then the limit simplifies to

$$\hat{\beta} \to_p \beta \left(1 + \frac{\sigma_u^2 E z_i^2}{\gamma^2 E z_i^4} \right) = \beta \left(1 + \frac{\sigma_u^2 E z_i^2}{\gamma^2 E z_i^4} \right).$$

$$= \gamma^2 + \frac{E z_i^2 u_i^2}{E z_i^4} = \gamma^2 + \frac{E z_i^2 E u_i^2}{E z_i^4}$$

where the second equality holds if we assume $E(u_i | z_i) = 0$, and the third holds if we further assume that u_i is independent of z_i . We thus have that

$$\hat{\beta} \to_p \beta^* = \beta + \frac{\beta}{\gamma^2} \frac{Ez_i^2 Eu_i^2}{Ez_i^4} \tag{2}$$

(c) In general, $\hat{\beta}$ is not consistent for β , as the limit obtained in the previous sub-question is not simply β . However, we found that if $E(e_i \mid z_i) = 0$, $E(u_i \mid z_i) = 0$, and $E(u_i^2 \mid z_i) = \sigma_u^2$ then we found the simplified limit (2). Are there conditions under which this simplifies to β ? For $\beta \neq 0$ the answer is no. In fact, the plim β^* is biased away from 0, in the sense that if $\beta > 0$ then $\beta^* > \beta$ and if $\beta < 0$ then $\beta^* < \beta$. So there is no condition under which the estimator is generally consistent.

There is, however, one special condition. If $\beta = 0$ then the limit in (2) is also 0, so $\hat{\beta} \to_p 0$ and the estimator is consistent. If you go back to the more general case (1) we see that $E(e_i \mid z_i) = 0$ and $\beta = 0$ are sufficient for $\hat{\beta} \to_p 0$ and hence consistency.

It might seem somewhat odd to say "The estimator is consistent when the true coefficient is zero" but this is a general finding for two-step estimators.

4. The relation between the structural and reduced forms is $\beta = \Gamma \lambda$. Partitioning,

$$\begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \Gamma_{11} & \Gamma_{21} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$
$$= \begin{pmatrix} I & \Gamma_{21} \\ 0 & \Gamma_{22} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

since x_{1i} is exogenous and in both the structural and reduced form equations. Thus

$$\beta_1 = \lambda_1 + \Gamma_{21}\lambda_2$$
$$\beta_2 = \Gamma_{22}\lambda_2$$

The hypothesis is $\beta_2 = 0$, which holds if and only if $\lambda_2 = 0$ (if Γ_{22} is full rank which holds if the model is identified). Thus the hypothesis is equivalent to the restriction $\lambda_2 = 0$, which is a restriction on the reduced form equation (3).

The hypothesis $\lambda = 0$ can be tested in equation (3) by OLS estimation of (3) and a (heteroskedasticity-

robust) Wald test for $\lambda_2=0$

$$W = \hat{\lambda}_2' V_{\hat{\lambda}_2}^{-1} \hat{\lambda}_2$$

Under $H_0: \lambda_2 = 0$ the statistic converges to a $\chi^2_{\ell_2}$ distribution. We reject H_0 in favor of $H_1: \lambda_2 \neq 0$ at the level α if W > c where c satisfies $P(\chi^2_{\ell_2} > c) = \alpha$.