$TD N^{\circ}6$

Dualité de Fenchel

Exercice 1 – Propriétés de la conjuguée convexe

Module A8, Propositions 1 et 2 et Corollaire 1

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ une fonction.

- (a) Montrer que J^* est une fonction convexe.
- (b) Montrer que J^* est une fonction s.c.i.
- (c) On suppose que J n'est pas identiquement égale à $+\infty$ et que J admet une minorante affine. Montrer que J^* est propre.
- (d) En déduire que si J est convexe et propre, alors J^* est convexe, propre et s.c.i.

Exercice 2 – Théorème de FENCHEL-MOREAU

Module A8, Lemme 1, Proposition 5 et Théorème 1

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, s.c.i et propre.

- (a) Montrer que
- $\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \qquad J(x) + J^*(y) \ge \langle x, y \rangle$
- (b) En déduire que J admet une minorante affine et que

$$\forall x \in \mathcal{X}, \qquad J(x) \ge \sup_{y \in \mathcal{X}} \{\langle x, y \rangle - J^*(y)\}$$

- (c) Montrer que J^{**} est l'ensemble supérieure des minorantes affines de J.
- (d) En déduire que

$$\forall x \in \mathcal{X}, \qquad J(x) = \sup_{y \in \mathcal{X}} \left\{ \langle x, y \rangle - J^*(y) \right\}$$

Exercice 3 – Quelques exemples

Module A8

Pour chacune des fonctions suivantes, calculer J^* .

(a)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \|x\|^2 \end{array} \right.$$

(b)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \|x\| \end{array} \right.$$

(a)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \|x\|^2 \end{array} \right.$$
 (b) $J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \|x\| \end{array} \right.$ (c) $J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & \begin{cases} 0 & \text{si } \|x\| \le 1 \\ 1 & \text{sinon} \end{cases} \right.$

Exercice 4 – Règle de bascule

Module A8, Lemme 3, Propositions 6 et 7

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe. Soit $x \in \text{dom } J \text{ et } p \in \mathcal{X}$.

- (a) Montrer que

- $p \in \partial J(x) \iff J(x) + J^*(p) = \langle p, x \rangle$
- (b) Soit $y \in \mathcal{X}$ et $p \in \partial J(x)$. Montrer que

$$\langle p - y, x \rangle + J^*(y) \ge \langle p, x \rangle - \sup_{y \in \mathcal{X}} \left\{ \langle y, x \rangle + J^*(y) \right\}$$

En déduire que

$$\langle p - y, x \rangle + J^*(y) \ge \langle p, x \rangle - \langle p, x \rangle + J^*(p)$$

5MASo1: Méthodes du premier ordre pour l'optimisation non lisse et non convexe

- (c) Montrer que $x \in \partial J^*(p)$.
- (d) On suppose que J est s.c.i. et propre. Montrer que

$$p \in \partial J(x) \qquad \Longleftrightarrow \qquad x \in \partial J^*(p)$$

Exercice 5 – Règles de calcul

Module A8, Propositions 8 et 9

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty, -\infty\}$ une fonction. Soit $x^0 \in \mathcal{X}$ et $\alpha \in \mathbb{R}$. Pour chacune des fonctions suivantes, calculer J^* en fonction de f^* .

(a)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty, -\infty\} \\ x & \mapsto & \alpha f(x) \end{array} \right.$$
 (b) $J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty, -\infty\} \\ x & \mapsto & f(\alpha x) \end{array} \right.$ (c) $J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty, -\infty\} \\ x & \mapsto & f(x-x^0) \end{array} \right.$

Exercice 6 – Identité de MOREAU

Module A8, Proposition 11

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, s.c.i. et propre. Soit $x^0 \in \mathcal{X}$ et $x^+ = \text{prox}_J(x^0)$. On pose $p = x^0 - x^+$.

- (a) Justifier que $p \in \partial J(x^+)$. En déduire que $x^+ \in \partial J^*(p)$.
- (b) Montrer que $p = \text{prox}_{I^*}(x^0)$.
- (c) En déduire que $\forall x \in \mathcal{X}, \qquad x = \operatorname{prox}_J(x) + \operatorname{prox}_{J^*}(x)$

Exercice 7 – Identité de MOREAU

Module A8, Proposition 11 et Corollaire 5

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, s.c.i. et propre. Soit $x^0 \in \mathcal{X}$ et $x^+ = \text{prox}_J(x^0)$. On pose $p = x^0 - x^+$.

- (a) Justifier que $p \in \partial J(x^+)$. En déduire que $x^+ \in partial J^*(p)$.
- (b) Montrer que $p = \text{prox}_{I^*}(x^0)$.
- (c) En déduire que $\forall \, x \in \mathcal{X}, \qquad x = \operatorname{prox}_J(x) + \operatorname{prox}_{J^*}(x)$
- (d) Soit $\tau > 0$. Montrer que

$$\forall x \in \mathcal{X}, \qquad x = \operatorname{prox}_{\tau J}(x) + \tau \operatorname{prox}_{J^*/\tau} \left(\frac{x}{\tau}\right)$$