Численные методы

Курс «Численные методы»

ВОЛКОВ Василий Михайлович, Минск, БГУ v.volkov@tut.by

Лекция 8.

1.8 РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ

Нелинейное уравнение. Постановка задачи.

$$f(x) = 0, \quad x \in [a,b]$$

Задача состоит в отыскании нулей функции, т. е. значений переменной х, принадлежащих заданной области определения функции f(x), при которых она принимает нулевые значения.

Отделение корней.

Суть вопроса — сколько корней и где их искать?

Графический способ

$$P_5(x) = x^5 - 2x^4 - x^3 + 2x^2$$

Неустойчивость кратных корней.

Значение $\chi = \chi^*$ называется корнем кратности p, если

$$f(x^*) \cdot (x - x^*)^{-(m-1)} = 0, \quad m = 1, 2, ..., p$$

Слабые возмущения коэффициентов могут приводить к изменению количества корней

Нули непрерывной функции (Теорема Коши).

$$f(x) \in C[a,b], \quad f(a) \cdot f(b) \le 0 \Rightarrow \exists c \in [a,b]: f(c) = 0.$$

Метод деления отрезка пополам

1. пусть
$$f(a)f(b) \le 0$$
, $f(a) < 0$, $f(b) > 0$

2. вычислим
$$f(c_1)$$
, $c_1 = \frac{a+b}{2}$

3. Переопределяем отрезок

$$f(c_1) < 0, \Rightarrow a = c_1;$$

 $f(c_1) \ge 0, \Rightarrow b = c_1.$

Повторяем п.п. 2-3 до тех пор, пока

$$|b-a| \le \varepsilon$$

<u>СКОРОСТЬ СХОДИМОСТИ</u>: $|\mathcal{S}_k| \le 2^{-k} |\mathcal{S}_0|$

$$\left| \mathcal{S}_k \right| \le 2^{-k} \left| \mathcal{S}_0 \right|$$

Метод простой итерации (неподвижной точки)

Исходное уравнение
$$f(x) = 0$$
 приводится к виду: $x = \varphi(x)$

Функция $\phi(x)$ такова, что множество корней уравнений f(x)=0 и $x=\phi(x)$ совпадают

Методом простой итерации (неподвижной точки) называется итерационный процесс вида:

$$x^{(k+1)} = \varphi(x^{(k)})$$

Метод релаксации (способ построения функции ф(х):

$$x^{(k+1)} = x^{(k)} + \tau f(x^{(k)}) \Leftrightarrow \varphi(x) = x + \tau f(x)$$

Сходимость метода простой итерации

Теорема: Пусть на отрезке $R(a,r)=\{x: |x-a| < r\}$ функция $\varphi(x)$ Липшиц-непрерывна, $|\varphi(x_1) - \varphi(x_2)| \le q|x_1 - x_2|$, 0 < q < 1, и

$$|\varphi(a) - a| \le (1-q)r$$
.

Тогда уравнение $x = \varphi(x)$ имеет единственное решение $x=x^*$, к которому сходится метод простой итерации при любом начальном приближении $x=x^{(0)}$, $|a-r| \le x^{(0)} \le |a+r|$, и для погрешности $\delta^{(k)} = x^{(k)} - x^*$ выполняется оценка

$$\left| x^{(k)} - x^* \right| \le q^k \left| x^{(0)} - x^* \right|.$$

Следствие: Для сходимости метода простой итерации условие Липшиц-непрерывности функция $\varphi(x)$ можно заменить на условие

$$|\varphi'(x)| \le q < 1.$$

Геометрическая интерпретация

Оптимальный итерационный параметр.

$$x^{(k+1)} = \phi(x^{(k)}) = x^{(k)} - \tau f(x^{(k)})$$
$$\left| \delta^{(k+1)} \right| = \left| x^{(k+1)} - x^* \right| \le q \left| \delta^{(k)} \right|.$$

$$q \le |\phi'(x)| \to \min$$

$$|\phi'(x^{(k)})| = |1 - \tau f'(x^{(k)})| = 0 \implies \tau = \frac{1}{f'(x^{(k)})}$$

$$x^{(k+1)} = x^{(k)} - \frac{f(x^{(k)})}{f'(x^{(k)})}$$

Пример

Построить метод простой итерации для решения уравнения

$$f(x) = \sqrt[3]{x} - x^2 = 0.$$

$$x^{(k+1)} = \phi(x^{(k)}) = x^{(k)} + \tau f(x^{(k)})$$

$$\phi'(x) = 1 - \tau \left(2x - \frac{1}{3\sqrt[3]{x^2}}\right)$$

$$x = 1$$
, $\phi'(1) = 1 - \tau \frac{5}{3} \implies 0 < \tau < \frac{6}{5}$, $\tau = \frac{3}{5} \Rightarrow \phi'(1) = 0$

$$x = 0$$
, $\forall \tau$ $\lim_{x \to 0} \phi'(x) = \infty$

Результаты численного эксперимента

Сходимость метода простой итерации при различных значениях итерационного параметра: $\tau=\tau_0,~\tau=\tau_0\pm\delta,~\tau_0=3$ / 5, $\delta=10^{-10}$

Метод простой итерации для систем уравнений

$$\mathbf{x}^{(k+1)} = \phi(\mathbf{x}^{(k)}) = \mathbf{x}^{(k)} + \tau \mathbf{f}(\mathbf{x}^{(k)})$$
$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_N(\mathbf{x}))^T = (0, 0, \dots, 0)^T,$$
$$\mathbf{x} = (x_1, x_2, \dots, x_N)^T.$$

Условие сходимости:

$$||J(\mathbf{x})|| \le q < 1, \qquad J(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial x_1} & \cdots & \frac{\partial f_N}{\partial x_N} \end{pmatrix}$$

$$\left\|\mathbf{x}^{(k+1)} - \mathbf{x}^*\right\| \le q \left\|\mathbf{x}^{(k)} - \mathbf{x}^*\right\|$$

СПАСИБО ЗА ВНИМАНИЕ!