אינפי 2 - סמסטר א' תשע"ט תרגיל בית 10

להגשה עד יום חמישי, 3 בינואר, בשעה 23:45, דרך תיבת ההגשה במודל

$$f_n(x)=egin{cases} n^2\cdot x & 0\leqslant x\leqslant rac{1}{n} \\ n^2\cdot \left(rac{2}{n}-x
ight) & rac{1}{n}\leqslant x\leqslant rac{2}{n} \end{cases}$$
 על־ידי $f_n:[0,2] o\mathbb{R}$ על־ידי $f_n:[0,2]$.1

- אגם $f:[0,2] o\mathbb{R}$ מתכנסת לפונקציה על מתכנסת המונקציות הפונקציות וחסומה ואינטגרבילית), וסדרת הפונקציות לפונקציה רציפה (וולכן חסומה ואינטגרבילית), וסדרת הפונקציות אינ היא רציפה (ולכן חסומה ואינטגרבילית).
- בעזרת (ii) ,("sup" א מתכנסת בהגדרה (אפשר בגרסת לייטות לפי הגדרה (וii) בשתי במידה שווה בשתי במידה שווה בשתי דרכים: (ב) איירות לפי הגדרה (אפשר בגרסת ההגדרה עם "sup", לא מתכנסת במידה שווה בשתי דרכים: תכונת שמירת ערך האינטגרל של התכנסות במידה שווה.
 - (ג) נניח שסדרת פונקציות רציפות על קטע סגור I מתכנסת נקודתית לפונקציה רציפה בI. האם ההתכנסות היא בהכרח במ"ש?
 - x_0 ב רציפה ב f כניח ש־f רציפה ב f כדרת פונקציות שמתכנסת במ"ש ב f לפונקציה f נניח ש־f רציפה ב f כיהי f
 - . $\lim_{n \to \infty} f_n(x_n)$ = $f(x_0)$ כי הוכיחו כי x_0 המתכנסת ב־ I המתכנסת סדרת (x_n) ההי
 - . במידה אד לא f לי מתכנסת נקודתית במקרה בו במקרה במקרה במקרה לי אך אד לא נגדית לשיוויון האחרון במקרה בו (ב)
 - . f מתכנסת במ"ש ל־ f_n מתכנסת במ"ש ל־ הוכיחו $f_n(x)=f(x+rac{1}{n})$ על ידי על $f_n:\mathbb{R} o \mathbb{R}$ מתכנסת במ"ש ל־ 3.
- $(f_n)_{n=1}^\infty$ בכל אחד מהתחומים ' D_1,\dots,D_m מספר מפר במ"ש בכל אחד בכל אחד מהתחומים ' D_1,\dots,D_m מספר סופי של הוכיחו ש D_1,\dots,D_m (מספר אחד בכל אחד מהתחומים). $\bigcup_{i=1}^{m} D_i$ מתכנסת במ"ש גם ב
- במ"ש לא מתכנסת הסעיף הקודם, ובעזרת הידוע לכם לגבי סדרת הפונקציות $f_n\left(x\right)=x^n$ בקטע לכם לגבי סדרת הידוע לכם לגבי סדרת הפונקציות במ"ש
- , בנוסף, בוסף הגבול הנקודתי הגבול את מהסעיפים הבאים, מצאו את תחום ההתכנסות הנקודתית של $D \subset \mathbb{R}$ של $D \subset \mathbb{R}$ וחשבו את פונקציית הגבול הנקודתי ב־ D. בנוסף, בדקו האם ההתכנסות היא במ"ש בכל אחד מהתחומים המצוינים¹.
 - . $[0,\frac{\pi}{2})$; $0 < b < \frac{\pi}{2}$ עבור [0,b] ; $[-\frac{\pi}{2},\frac{\pi}{2}]$: תחומים לבדיקת התכנסות במ"ש . $f_n(x) = (\sin(x))^n$ (א) . $f_n(x) = (\sin(x))^n$ (ב) . $f_n(x) = x^n x^{2n}$ (ב)
 - - . (-1,1): מ"ש: התכנסות התכנסות החומים לבדיקת החומים גו $f_n(x)=egin{cases} 0 & n \text{ is odd} \\ x^n & n \text{ is even} \end{cases}$ (ג)
 - [-1,1]: מ"ט במ"ש במ"ש בדיקת התכנסות ה $f_n(x)=egin{cases} rac{n}{x}\sin(x/n) & x
 eq 0 \ 1 & x=0 \end{cases}$ (ד)
 - $f_n(x) = rac{n^2 x^2}{1 + n^2 x^2}$ על ידי $f_n: \mathbb{R} o \mathbb{R}$ נגדיר $n \in \mathbb{N}$.6
 - . $f(x) = \lim_{n \to \infty} f_n(x)$ חשבו את הגבול הנקודתי (א)
 - (ב) הוכיחו: $\lim_{n\to\infty}\int\limits_{-1}^1 f_n(x)dx=\int\limits_{-1}^1 f(x)dx$ (ב)
 - $\{[a,\infty)$ אם במ"ש על הקרן . האם מתקיים $f_n o f$ במ"ש נתון האם a>0 יהי
 - $? \ \mathbb{R}$ במ"ש ב־ $f_n o f$ באם (ד)
 - . $f_n(x) = \Phi(x) \cdot x^n$ נעיין בפונקציות . $\Phi(1) = 0$ המקיימת [0,1] המקיימה רציפה בקטע פונקציה רציפה המקיימת . $\Phi(x)$
 - (א) של $f_n o f$ כמ"ש. $f_n(x)$ של f(x) הנקודתי הגבול את הגבול את חשבו את אוני של הנקודתי
 - במ"ש? במ"ש: $f_n \to f$ ר מתקיים ש Φ ר בינים בהכרח האם עדיין בהכרח הא רק ש Φ ר בינים.
- בקטע [-r,r] (היעזרו בתקציר התרגול).

[.] במ"ש. במ"ש אאלה 2א שימושית לשלילת התכנסות במ"ש.