Homework:

The Power of Quantum Computing and Quantum Operations

- Liz works for a delivery company. She discovered that it takes the computer at her office 0.1 seconds to figure out the best route for a trip with 10 stops. Her boss says that's great because then it will only take 1 second to figure out the best route for a trip with 100 stops. Is Liz's boss correct?
- 2. Choose all of the problems that quantum computers are expected to be better at solving, compared to classical computers.
 - a. Simulating molecular systems
 - b. Sorting large sets of numbers
 - c. Storing data
 - d. Finding the most efficient route for UPS truck deliveries
 - e. Cracking modern encryption
 - f. Playing digital music
 - g. Rendering graphics for video games
- 3. Classical encryption schemes are based on
 - a. Factoring
 - b. Addition
 - c. Prime numbers
 - d. Division
- 4. For each statement, indicate whether it is true or false.
 - Quantum computers are expected to replace classical computers for some applications.
 - b. The best current quantum technology is the trapped ion.
 - c. Quantum computers and classical computers solve problems in the same way.
 - d. Quantum computers don't really have any applications, because classical computers are so powerful.
 - e. Quantum computers are expected to solve optimization problems relatively easily.
 - f. A one-way function is easy to both compute and invert.
 - g. Quantum computers are expected to be able to break classical encryption schemes.
 - h. The existing types of quantum technology have trade-offs in terms of speed, reliability, and scalability.

For each circuit shown, select all possible outcomes for the circuit at the ??.

- **A.** _{|1}>
- **B.** |1⟩ ●

C. |0⟩ ○

D. |0> \bigcirc

|1>

|0 \ (0|

|1>

|0 \ ()

A. |1)

B. |1⟩ ●

C. |0> \bigcirc

D. |0> \bigcirc

|1>

10)

|1>

|0 \ (0|

A. _{|1⟩} ●

B. |1⟩ ●

C. |0 \ \

D. |0> \bigcirc

|1>

|O \(O \)

|1>

|0 \ (0|

A. |1)

B. |1⟩ ●

C. |0⟩ ○

D. |0> \bigcirc

|1>

|0 \ (0|

|1>

|0 \ (0|

A. |1)

B. |1⟩ ●

C. |0> \bigcirc

D. |0> \bigcirc

|1>

|0 \ (0|

|1>

|0 \ (0|

A. |1)

B. |1⟩ ●

C. |0> \bigcirc

D. |0> \bigcirc

|1>

|O \(O

|1>

|0 \ (0|