What is the relationship between the damping coefficient of a spring-mass oscillator submerged in different liquids and the densities of the liquids?

Physics HL

Internal Assessment

Word count: TBD

Table of Contents

1	Intr	roduction	1
	1.1	The Research Question	1
	1.2	Background Information	2
	1.3	Hypothesis	2
	1.4	Variables	2
2	Mai	in Dody	2
	2.1	Data Collection	2
		2.1.1 Apparatus and Materials	2
		2.1.2 Procedures and Reproducing the Experiment	2
		2.1.3 Risk Assessment	2
	2.2	Data Processing	2
	2.3	Data Analysis	2
		2.3.1 Uncertainty Analysis	2
3	Cor	nclusion	2
	3.1	Evaluation	2
	3.2	Extensibility	2

1 Introduction

This essay extends the investigation of simple harmonic motion by studying the damping coefficient and force of a damped oscillator submerged in water. Controlling damping through density is important in real-life systems ranging from shock absorbers to the stabilization of automobiles. The setup of the experiment consists of mainly a springmass oscillator submerged in a glass cylinder of liquid.

1.1 The Research Question

How Accurately Can Stoke's Law Estimate the Damping Coefficient of a Spherical Spring-Mass Simple Harmonic Oscillator Submerged in a Liquid?

- 1.2 Background Information
- 1.3 Hypothesis
- 1.4 Variables
- 2 Main Dody
- 2.1 Data Collection
- 2.1.1 Apparatus and Materials
- 2.1.2 Procedures and Reproducing the Experiment
- 2.1.3 Risk Assessment
- 2.2 Data Processing
- 2.3 Data Analysis
- 2.3.1 Uncertainty Analysis
- 3 Conclusion
- 3.1 Evaluation
- 3.2 Extensibility