Egy szinguláris nemlinearitást tartalmazó peremértékprobléma megoldásainak száma

Tudományos Diákköri Dolgozat

Írta: Horváth Tamás

Alkalmazott matematikus szak, V.

Témavezető:

Dr. Simon Péter, egyetemi docens Alkalmazott Analízis és Számításmatematikai Tanszék Eötvös Loránd Tudományegyetem, Természettudományi Kar

Eötvös Loránd Tudományegyetem Természettudományi Kar2007

Tartalomjegyzék

1.	Bevezetés	3
2.	A visszatérési leképezés	4
3.	A visszatérési leképezés jellemzése	6
4.	A Tétel bizonyítása	8
Α.	Intergálformula	14
в.	Radiálisan szimmetrikus megoldás	15
C.	Szeparációs tételek	16

1. BEVEZETÉS

3

Kivonat

Dolgozatom célja meghatározni az $u'' - u^{-\gamma} + \beta = 0$, u(-R) = u(R) = 0 peremértékprobléma pontos megoldásszámát. Megmutatom, hogy a pontos megoldásszám 2, 1 vagy 0, γ -tól és R-től függően, ezzel megoldva néhány problémát, melyet Choi, Lazer és McKenna vetettek fel. Vizsgálataim során meghatározom a visszatérési leképezés értelmezési tartományát, monotonitását, határértékét, melyeket egy megfelelő integrálformula becslésével kapok.

1. Bevezetés

A dolgozat célja meghatározni az alábbi peremértékprobléma pozitív megoldásainak számát:

$$u'' + f(u) = 0$$

$$u(-R) = u(R) = 0$$
(1)

ahol
$$f(u) = -\frac{1}{u^{\gamma}} + \beta$$
, $\gamma \in (0,1)$ és $\beta > 0$.

Ezzel a peremértékproblémával legelőször Diaz és társai foglalkoztak ([2]) sokkal általánosabb vonatkozásban. β abban a cikkben függött a tér változótól, x-től is és a feladat egy korlátos tartományon volt kitűzve \mathbb{R}^n -ben. Belátták, hogy ha a feladatnak létezik megoldása, akkor létezik maximális megoldása is, valamint vizsgálták az energetikai funkcionál szélsőértékeinek és a maximális megoldásnak a kapcsolatát.

A $\beta(x) = \beta$ esetben azt látták be, hogy létezik egy $\beta^* > 0$ melyre az igaz, hogy ha $\beta < \beta^*$ akkor nem létezik megoldás, ha pedig $\beta > \beta^*$ akkor létezik megoldás.

Később Choi, Lazer és McKenna foglalkozott a kérdéssel [1]. Az n dimenziós eset kapcsán belátták, hogy $\gamma \geq 1$ esetén nem létezik megoldása. Valamint azt is belátták, hogy legfeljebb két dimenzióban $\beta = \beta^*$ esetén is létezik megoldása a feladatnak. Az egydimenziós eset kapcsán (mely nem más mint az (1) közönséges differenciálegyenlet) bebizonyították, hogy ha $0 < \gamma < 1/3$ akkor létezik $R_1 < R_2$ úgy, hogy minden $R \in (R_1, R_2)$ esetén legalább két megoldás van és $R = R_1$ esetén is van legalább egy megoldás. Valamint azt is bizonyították, hogy $\gamma = 1/2$ esetén amennyiben létezik megoldás, akkor ez egyértelmű.

[1]-ben több problémát is felvetettek, ezek közül háromra fogunk választ adni:

- Meg tud-e valaki határozni egy kritikus kitevőt, γ^* -ot, ami felett a megoldás egyértelmű?
- A kritikus kitevő alatt minden esetben több megoldást létezik?
- A megoldások maximális száma kettő, vagy előfordulhat-e több megoldás?

A következő tételt fogjuk a dolgozatban bizonyítani:

1. Tétel Legyen $R_0 = \frac{1}{\sqrt{2}}\beta^{-1/2-1/2\gamma}(1-\gamma)^{-1/2\gamma}\int_0^1(t^{1-\gamma}-t)^{-1/2}\,dt$. Amennyiben $1/2 \le \gamma < 1$ akkor $R < R_0$ esetén nincs megoldás, $R \ge R_0$ esetén pedig a megoldás egyértelmű. $0 < \gamma < 1/2$ esetén létezik $R_{min} < R_0$ úgy hogy $R < R_{min}$ esetén nincs megoldás, $R = R_{min}$ esetén létezik egyértelmű megoldás, $R \in (R_{min}, R_0]$ esetén pontosan két megoldás létezik, $R > R_0$ esetén ismételten egyértelmű megoldást kapunk.

Ezek alapján a fenti kérdéseket meg tudjuk válaszolni:

- A kritikus kitevő, mely felett a megoldás egyértelmű, nem más mint az 1/2.
- Igen, a kritikus kitevő alatt minden esetben több megoldást létezik.
- Igen, a megoldások maximális száma kettő, több megoldást egyetlen esetben sem kaphatunk.

A bizonyítás az ún. célbalövéses módszeren (az angol nyelvű szakirodalomban shooting method) alapul. Definiáljuk a T visszatérési leképezést (az angol nyelvű szakirodalomban time-map) a következő módon: egy adott p>0-ra tekintsük (1) azon u megoldását, mely eleget tesz az u(0)=p,u'(0)=0 kezdeti feltételeknek, és T a p-hez rendelje hozzá u első gyökét. Ezzel az kapjuk, hogy u(T(p))=0. u pontosan akkor lesz az (1) peremértékprobléma pozitív megoldása, ha T(p)=R. Vagyis a peremértékprobléma pozitív megoldásainak száma megegyezik a T(p)=R egyenlet megoldásainak számával. Ahhoz, hogy ez utóbbit meghatározzuk a visszatérési leképezés következő tulajdonságait kell megállapítanunk: értelmezési tartomány, határérték az értelmezési tartomány határain és a monotonitás.

A második szakaszban bemutatjuk azokat az eszközöket, melyeket felhasználunk a visszatérési leképezés jellemzéséhez. A 3. szakaszban megmutatjuk, hogy T értelmezési tartománya egy félegyenes $(p_{\gamma}, +\infty)$, és $T(p) \to +\infty$ ahogy $p \to +\infty$. Azt is belátjuk, hogy T-nek legfeljebb egy lokális szélsőértéke lehet, mégpedig egy minimuma. Ezek a tulajdonságok általánosabb nemlineáris f-re is beláthatóak, melyek magukba foglalják $\beta - id^{-\gamma}$ -t is. f pontos alakja csak a 4. szakaszban kap szerepet, ahol belátjuk, hogy miként függ $T'(p_{\gamma})$ értéke γ -tól. Azaz belátjuk, hogy $\gamma < 1/2$ esetén negatív, $\gamma = 1/2$ esetén nulla, $\gamma > 1/2$ esetén pedig pozitív. Ezek felhasználásával egyszerűen bizonyíthatjuk Tételünket.

2. A visszatérési leképezés

Egyszerűen megmutatható (ld. Függelék) hogy (1) minden pozitív megoldása radiálisan szimmetrikus, így eleget tesz a következőknek:

$$u''(r) + f(u(r)) = 0$$

$$u'(0) = 0, \ u(R) = 0$$
(2)

és fennáll az is, hogy:

$$u'(r) < 0 \quad \text{minden } 0 < r < R. \tag{3}$$

Jelöljük u(r,p)-vel azokat az u(r) megoldásokat, melyekre u(0)=p. Alkalmazzuk a célbalövéses módszert, ami az alábbi kezdeti érték problémát kielégítő $u(\cdot,p)$ vizsgálatát jelenti:

$$u''(r,p) + f(u(r,p)) = 0$$

$$u(0,p) = p, \quad u'(0,p) = 0$$
(4)

Definiáljuk a visszatérési leképezést, ahogy azt fent ismertettük:

$$T(p) = \sup\{r > 0 : u(s,p) > 0, \forall s \in [0,r)\},$$

azaz T(p) nem más, mint $u(\cdot, p)$ első gyöke. Belátható (ld. Függelék) hogy bevezetve az $F(s) = \int_0^s f(t)dt$ jelölést T(p)-t definiálhatjuk egy integrállal is:

$$T(p) = \frac{1}{\sqrt{2}} \int_0^p \frac{1}{\sqrt{F(p) - F(s)}} \, ds. \tag{5}$$

Felhasználva a fenti integrál reprezentációt belátható, hogy T folytonosan differenciálható. ([1] [3]).

A definíció értelmében T eleget tesz a következő egyenletnek:

$$u(T(p), p) \equiv 0 \tag{6}$$

és u(r, p) > 0 ha $r \in [0, T(p))$.

Differenciálva (6)-t a következő egyenletet kapjuk T deriváltjára:

$$\partial_r u(T(p), p)T'(p) + \partial_p u(T(p), p) \equiv 0,$$
 (7)

$$\partial_r^2 u(T(p),p) T'(p)^2 + 2 \partial_{rp} u(T(p),p) T'(p) +$$

$$\partial_r u(T(p), p)T''(p) + \partial_p^2 u(T(p), p) \equiv 0.$$
 (8)

Differenciálva (4)-t p szerint, és bevezetve a $h(r,p)=\partial_p u(r,p)$ és $z(r,p)=\partial_p^2 u(r,p)$ jelöléseket azt kapjuk, hogy:

$$h''(r,p) + f'(u(r,p))h(r,p) = 0$$

$$h(0,p) = 1, h'(0,p) = 0;$$
(9)

$$z''(r,p) + f'(u(r,p))z(r,p) + f''(u(r,p))h^{2}(r,p) = 0$$

$$z(0,p) = 0, \ z'(0,p) = 0.$$
(10)

Differenciálva (4)-t r szerint, és bevezetve a $v(r,p) = \partial_r u(r,p)$ jelöléseket azt kapjuk, hogy:

$$v''(r,p) + f'(u(r,p))v(r,p) = 0$$

$$v(0,p) = 0, \ v'(0,p) = -f(p).$$
(11)

Ezeket felhasználva (7) így irható:

$$v(T(p), p)T'(p) + h(T(p), p) \equiv 0.$$
 (12)

3. A visszatérési leképezés jellemzése

Először meghatározzuk T értelmezési tartományát, ehhez használjuk a következő Hamilton függvényt:

$$H(r) := \frac{u'(r)^2}{2} + F(u(r)). \tag{13}$$

Ahol $F(u):=\int_0^u f(t)dt$. H'(r)=u'(r)u''(r)+f(u(r))u'(r)=u'(r)u''(r)-u''(r)u'(r)=0, azaz H konstans függvény.

- **1 Lemma** Tetszőleges f nemlineáris függvény esetén a visszatérési leképezés értelmezési tartománya: $D(T)=P_f:=\{p>0: F(p)>F(s)\ \forall s\in(0,p)\}$
 - Ha $f(u) = \beta u^{-\gamma}$, akkor $D(T) = [p_{\gamma}, +\infty)$, ahol $p_{\gamma} = \left(\frac{1}{\beta(1-\gamma)}\right)^{1/\gamma}$

Bizonyítás. Legyen $p \in D(T)$ és $s \in (0, p)$. Ekkor létezik $r \in (0, T(p))$ hogy u(r) = s. Ezzel:

$$F(s) = F(u(r)) = H(r) - \frac{u'(r)^2}{2} < H(r) = H(0) = F(p).$$

Most legyen $p \in P_f$ és az egyszerűség kedvéért jelöljük u(r)-rel u(r,p)-t. Belátjuk, hogy létezik R>0 úgy, hogy u(R)=0, azaz $p \in D(T)$. Indirekt tegyük fel, hogy u(r)>0 minden r>0 esetén. Könnyen látható, hogy f(p)>0 mert $p \in P_f$, azaz u''(0)<0, ennek következtében u'(r)<0 kicsi r-ekre. Felhasználva, hogy H konstans, és $p \in P_f$, (13) segítségével azt kapjuk, hogy u'(r)<0 minden r>0 esetén. Azaz létezik $\lim_{\infty} u=:c\in[0,p)$, és (13) alapján F(c)=F(p), ami ellentmond annak, hogy $p\in P_f$.

Most lássuk a második pontot. Egyszerű integrálással látszik, hogy $F(u)=\beta u-u^{1-\gamma}/(1-\gamma)$. f egyetlen gyöke $f_{\gamma}:=\beta^{-1/\gamma}$, és f $(0,f_{\gamma})$ -n negatív, (f_{γ},∞) -n pozitív, így F szigorúan monoton csökken f_{γ} -ig, majd pedig szigorúan monoton nő. F(0)=0, így könnyű látni, hogy $p\in P_f$ pontosan akkor áll fent, ha p nem kisebb mint F második gyöke, ami p_{γ} .

A visszatérési leképezés határértékét a következő lemma segítségével kapjuk meg:

2 Lemma Haf felülről korlátos akkor $\lim_{p\to\infty}T(p)=\infty.$

Bizonyítás. Integrálva (1)-et azt kapjuk, hogy

$$-u'(r) = \int_0^r f(u(s))ds. \tag{14}$$

Integrálva (14)-et [0,r]-en és felhasználva, hogy $f(r) < \beta$ minden r > 0-ra azt kapjuk, hogy:

$$u(r) \ge p - \frac{\beta r^2}{2}$$

ahol p=u(0). Azaz u első gyöke nagyobb mint a jobboldali parabola első gyöke, ami azt jelenti, hogy $T(p) \geq \sqrt{2p/\beta}$ és a jobboldali kifejezés ∞ -hez tart, ahogy $p \to \infty$, így T(p) is ∞ -hez tart.

Végül vizsgáljuk meg a visszatérési leképezés monotonitását.

3 Lemma Ha f konkáv függvény, akkor T'(p) = 0 esetén T''(p) > 0.

Bizonyítás. Felhasználva (12)-öt azt kapjuk, hogy T'(p)=0-ból h(T(p),p)=0 következik. Belátjuk, hogy h(r,p)>0 minden $r\in[0,T(p))$ esetén. Ellenkező esetben felhasználva a Sturm szeparációs tételt (ld.: Függelék) azt kapnánk, hogy v-nek lenne egy gyöke h előző gyöke, és T(p) között, mert v és h ugyanannak az egyenletnek a két megoldása (9). Ez viszont ellentmond (3)-nak, ugyanis $v=\partial_r u$ végig negatív (0,R)-en.

Ebből azt kapjuk, hogy z(T(p),p)<0 (10) minden megoldására. f''(p)<0 így z''(0)=-f''(p)>0-ból azt kapjuk, hogy z>0 a 0 egy jobboldali környezetében. Tegyük fel, hogy $z(r_1)=0$ valamely $r_1\in(0,T(p)]$ -re. Vizsgáljuk meg az alábbi egyenleteket:

$$h'' + f'(u)h = 0$$
 és $z'' + \left(f'(u) + \frac{f''(u)h^2}{z}\right)z = 0$

ezekből azt kapjuk, hogy h-nak van gyöke $(0,r_1)$ -ben (ld.: Függelék) ami nem lehetséges. Így z>0 (0,T(p)]-ben.

Végül z(T(p), p) > 0 azt eredményezi, hogy T''(p) > 0 felhasználva (8)-at (és azt hogy v(T(p), p) < 0).

1 Megjegyzés A Lemma azt jelenti, hogy T-nek legfeljebb egy lokális szélsőértéke lehet, mégpedig egy lokális minimuma.

Itt jegyezzük meg, hogy a fentiekhez hasonló lemmákat bizonyított Karátson János és Simon L. Péter [4].

4. A Tétel bizonyítása

Ebben a szakaszban meghatározzuk miként függ $T'(p_{\gamma})$ γ -tól, majd ennek segítségével bebizonyítjuk Tételünket.

Behelyettesítve $F(u) = \beta u - u^{1-\gamma}/(1-\gamma)$ -t (5)-be, majd az integrált [0, 1]-be transzformálva $t = (s/p)^{\gamma}$ -val azt kapjuk:

$$T(p) = \frac{1}{\gamma\sqrt{2\beta}} \int_0^1 l(t)\sqrt{\frac{p}{h(t) - p^{-\gamma}/K}} dt.$$
 (15)

ahol

$$h(t) = \frac{1 - t^{1/\gamma}}{1 - t^{1/\gamma - 1}}$$
, $l(t) = \frac{t^{1/\gamma - 1}}{\sqrt{1 - t^{1/\gamma - 1}}}$ és $K = \beta(1 - \gamma)$.

Ugyanis:

$$T(p) = \frac{1}{\sqrt{2}} \int_0^p \frac{1}{\sqrt{F(p) - F(s)}} ds = \frac{1}{\sqrt{2}} \int_0^p \frac{1}{\sqrt{\beta(p - s) - \frac{1}{1 - \gamma}(p^{1 - \gamma} - s^{1 - \gamma})}} ds.$$

$$t=(s/p)^{\gamma}$$
, így $ds=rac{p}{\gamma}t^{1/\gamma-1}dt$. Ezzel:

$$\begin{split} T(p) &= \frac{1}{\sqrt{2}} \int_0^1 \frac{\frac{p}{\gamma} t^{\frac{1}{\gamma} - 1}}{\sqrt{\beta p \left(1 - t^{\frac{1}{\gamma}}\right) - \frac{p^{1 - \gamma}}{1 - \gamma} \left(1 - t^{\frac{1 - \gamma}{\gamma}}\right)}} dt = \\ &\frac{1}{\gamma \sqrt{\beta} \sqrt{2}} \int_0^1 \frac{\sqrt{p} t^{\frac{1}{\gamma} - 1}}{\sqrt{\left(1 - t^{\frac{1 - \gamma}{\gamma}}\right) \left(\frac{1 - t^{\frac{1}{\gamma}}}{1 - t^{\frac{1 - \gamma}{\gamma}}} - \frac{1}{1 - \gamma} \frac{1}{p^{\gamma}} \frac{1}{\beta}\right)}} dt = \\ &\frac{1}{\gamma \sqrt{\beta} \sqrt{2}} \int_0^1 \frac{t^{1/\gamma - 1}}{\sqrt{1 - t^{1/\gamma - 1}}} \sqrt{\frac{p}{\frac{1 - t^{1/\gamma}}{1 - t^{1/\gamma - 1}} - p^{-\gamma}/(\beta(1 - \gamma))}} dt. \end{split}$$

T deriváltja p_{γ} -ban:

$$T'(p_{\gamma}) = \frac{1}{2\gamma\sqrt{p_{\gamma}2\beta}} \int_{0}^{1} l(t)(h(t)-1)^{-\frac{3}{2}}(h(t)-1-\gamma)dt =: \frac{1}{2\gamma\sqrt{p_{\gamma}2\beta}} \int_{0}^{1} I(t,\gamma)dt.$$

Ugyanis vezessük be az

$$L(p) := \frac{p}{h(t) - p^{-\gamma}/K}$$

jelölést. Ezzel:

$$T(p) = \frac{1}{\gamma\sqrt{\beta}\sqrt{2}} \int_0^1 l(t)\sqrt{L(p)}dt.$$
$$T'(p) = \frac{1}{\gamma\sqrt{\beta}\sqrt{2}} \int_0^1 l(t)\frac{L'(p)}{2\sqrt{L(p)}}dt.$$

Így T'(p) kiszámításához L'(p)-re van szükségünk.

$$L'(p) = \frac{h(t) - \frac{1}{Kp^{\gamma}} + \frac{p}{K}(-\gamma)\frac{1}{p^{\gamma+1}}}{(h(t) - 1/(Kp^{\gamma}))^2} = \frac{h(t) - \frac{\gamma+1}{Kp^{\gamma}}}{(h(t) - 1/(Kp^{\gamma}))^2}.$$

$$L'(p_{\gamma}) = \frac{h(t) - \frac{\gamma+1}{Kp^{\gamma}_{\gamma}}}{(h(t) - 1/(Kp^{\gamma}_{\gamma}))^2} = \frac{h(t) - \gamma - 1}{(h(t) - 1)^2}.$$

$$L(p_{\gamma}) = \frac{p_{\gamma}}{h(t) - 1/(p_{\gamma}^{\gamma}K)} = \frac{p_{\gamma}}{h(t) - 1},$$

ugyanis

$$p_{\gamma}^{\gamma} = \left(\left(\frac{1}{\beta(1-\gamma)} \right)^{1/\gamma} \right)^{\gamma} = \frac{1}{\beta(1-\gamma)} = \frac{1}{K}.$$

Így:

$$\begin{split} T'(p) &= \frac{1}{\gamma \sqrt{\beta} \sqrt{2}} \int_0^1 l(t) \frac{h(t) - \gamma - 1}{(h(t) - 1)^2} \frac{1}{2} \sqrt{\frac{h(t) - 1}{p_\gamma}} dt \\ &= \frac{1}{2\gamma \sqrt{p_\gamma} \sqrt{\beta} \sqrt{2}} \int_0^1 l(t) \frac{h(t) - \gamma - 1}{(h(t) - 1)^{3/2}} dt. \end{split}$$

4 Lemma Ha $\gamma < 1/2$ akkor $T'(p_{\gamma}) < 0$, ha $\gamma = 1/2$ akkor $T'(p_{\gamma}) = 0$, ha $\gamma > 1/2$, akkor $T'(p_{\gamma}) > 0$.

Bizonyítás. Közvetlen számolással azt kapjuk, hogy

$$I(t,\gamma) = l(t)(h(t) - 1)^{-\frac{3}{2}}(h(t) - 1 - \gamma) =$$

$$\frac{t^{1/\gamma - 1}}{\sqrt{1 - t^{1/\gamma - 1}}} \left(\frac{1 - t^{1/\gamma}}{1 - t^{1/\gamma - 1}} - 1\right)^{-\frac{3}{2}} \left(\frac{1 - t^{1/\gamma}}{1 - t^{1/\gamma - 1}} - 1 - \gamma\right) =$$

$$\frac{t^{1/\gamma - 1}}{\sqrt{1 - t^{1/\gamma - 1}}} \left(\frac{t^{\frac{1}{\gamma} - 1} - t^{\frac{1}{\gamma}}}{1 - t^{\frac{1}{\gamma} - 1}}\right)^{-\frac{3}{2}} \left(\frac{(1 + \gamma)t^{\frac{1}{\gamma} - 1} - t^{\frac{1}{\gamma}} - \gamma}{1 - t^{\frac{1}{\gamma} - 1}}\right) =$$

$$\frac{t^{1/\gamma-1}}{\sqrt{1-t^{1/\gamma-1}}} \frac{(1-t^{\frac{1}{\gamma}-1})^{3/2}}{t^{\frac{3}{2\gamma}-\frac{3}{2}}(1-t)^{3/2}} \frac{(1+\gamma)t^{\frac{1}{\gamma}-1}-t^{\frac{1}{\gamma}}-\gamma}{1-t^{\frac{1}{\gamma}-1}} = t^{1/2-1/2\gamma} \left[(1+\gamma)t^{1/\gamma-1}-t^{1/\gamma}-\gamma \right] (1-t)^{-3/2}.$$

Azt kell belátnunk, hogy $\gamma < 1/2$ esetén $\int_0^1 I(t,\gamma)dt < 0$ illetve $\gamma > 1/2$ esetén $\int_0^1 I(t,\gamma)dt > 0$. Ehhez elég azt belátni, hogy amennyiben $\gamma < 1/2$ akkor $I(t,\gamma) < I(t,1/2)$ illetve amennyiben $\gamma > 1/2$ akkor $I(t,\gamma) > I(t,1/2)$ minden $t \in (0,1)$, ugyanis $\int_0^1 I(t,1/2) = 0$ -t már [1]-ben bizonyították.

Először vizsgáljuk a $\gamma < 1/2$ esetet. $I(t,\gamma) < I(t,1/2)$ minden $t \in (0,1)$ esetén azt jelenti, hogy:

$$t^{1/2-1/2\gamma} \left[(1+\gamma)t^{1/\gamma-1} - t^{1/\gamma} - \gamma \right] (1-t)^{-3/2} < \frac{t-1/2}{\sqrt{t(1-t)}}.$$

Ezt átalakítva:

$$\begin{split} t^{1-1/2\gamma} \left[(1+\gamma)t^{1/\gamma-1} - t^{1/\gamma} - \gamma \right] &< (t-1/2)(1-t), \\ t^{1-1/2\gamma} \left[t^{1/\gamma-1} - t^{1/\gamma} \right] + t^{1-1/2\gamma} \gamma \left[t^{1/\gamma-1} - 1 \right] &< (t-1/2)(1-t), \\ t^{-1/2\gamma+1/\gamma} \left[1-t \right] + t^{1-1/2\gamma} \gamma \left[t^{1/\gamma-1} - 1 \right] &< (t-1/2)(1-t), \\ t^{1-1/2\gamma} \gamma \left[t^{1/\gamma-1} - 1 \right] &< -t^{1/2\gamma}(1-t) + (t-1/2)(1-t), \\ \gamma t^{1-1/2\gamma} (1-t^{1/\gamma-1}) &> (1-t)(\frac{1}{2} + t^{1/2\gamma} - t). \end{split}$$

Megmutatjuk, hogy:

$$\gamma t^{1-\frac{1}{2\gamma}} (1-t^{\frac{1}{\gamma}-1}) > \frac{1}{2} (1-t) > (1-t) (\frac{1}{2} + t^{\frac{1}{2\gamma}} - t).$$

A jobboldali egyenlőtlenség nyilvánvaló, ugyanis $t > t^{\frac{1}{2\gamma}}$ minden $t \in (0,1)$ esetén, ha $\gamma < \frac{1}{2}$. A baloldali egyenlőtlenség ekvivalens azzal, hogy:

$$r(t) := 2\gamma t^{1-\frac{1}{2\gamma}} (1-t^{\frac{1}{\gamma}-1}) - (1-t) = 2\gamma t^{1-\frac{1}{2\gamma}} - 1 + t - 2\gamma t^{\frac{1}{2\gamma}} > 0 \text{ minden } t \in (0,1).$$

Elég megmutatni, hogy r'(t) < 0 ugyanis r(1) = 0. A derivált:

$$r'(t) = (2\gamma - 1)t^{-\frac{1}{2\gamma}} + 1 - t^{\frac{1}{2\gamma}-1}.$$

Ahhoz, hogy belássuk r'(t)<0-t elég belátnunk azt, hogy r''(t)>0 ugyanis $r'(1)=2\gamma-1<0$. A második derivált:

$$r''(t) = (\frac{1}{2\gamma} - 1)t^{-\frac{1}{2\gamma} - 1} - (\frac{1}{2\gamma} - 1)t^{\frac{1}{2\gamma} - 2}.$$

Itt $\frac{1}{2\gamma} - 1 > 0$ így r''(t) > 0 akkor és csak akkor, ha:

$$t^{-\frac{1}{2\gamma}-1} > t^{\frac{1}{2\gamma}-2}$$
.

ami $t \in (0,1)$ esetén pontosan akkor igaz, ha:

$$-\frac{1}{2\gamma} - 1 < \frac{1}{2\gamma} - 2$$

$$\gamma < 1$$

Most vizsgáljuk a $\gamma > 1/2$ esetet. Ekkor azt kell belátnunk, hogy $I(t,\gamma) > I(t,1/2)$ minden $t \in (0,1)$ esetén. $I(t,\gamma) > I(t,1/2)$ -t hasonlóan átalakítva, mint az előző esetben azt kell bizonyítanunk, hogy minden $t \in (0,1)$ esetén:

$$\gamma t^{1-\frac{1}{2\gamma}} (1-t^{\frac{1}{\gamma}-1}) < (1-t)(\frac{1}{2}+t^{\frac{1}{2\gamma}}-t).$$

Megmutatjuk, hogy:

$$\gamma t^{1-\frac{1}{2\gamma}} \big(1-t^{\frac{1}{\gamma}-1}\big) < \frac{1}{2} (1-t) < (1-t)(\frac{1}{2}+t^{\frac{1}{2\gamma}}-t).$$

A jobboldali egyenlőtlenség nyilvánvaló, ugyanis $t < t^{\frac{1}{2\gamma}}$ minden $t \in (0,1)$ esetén, ha $\gamma > \frac{1}{2}$. A baloldali egyenlőtlenség ekvivalens azzal, hogy:

$$r(t) := 2\gamma t^{1-\frac{1}{2\gamma}} - 1 + t - 2\gamma t^{\frac{1}{2\gamma}} < 0 \text{ minden } t \in (0,1).$$

Elég megmutatni, hogy r'(t) > 0 ugyanis r(1) = 0. A derivált:

$$r'(t) = (2\gamma - 1)t^{-\frac{1}{2\gamma}} + 1 - t^{\frac{1}{2\gamma} - 1}.$$

Ahhoz, hogy belássuk r'(t)>0-t elég belátnunk azt, hogy r''(t)<0 ugyanis $r'(1)=2\gamma-1>0$. A második derivált:

$$r''(t) = (\frac{1}{2\gamma} - 1)t^{-\frac{1}{2\gamma} - 1} - (\frac{1}{2\gamma} - 1)t^{\frac{1}{2\gamma} - 2}.$$

Itt $\frac{1}{2\gamma}-1>0$ így $r^{\prime\prime}(t)>0$ akkor és csak akkor, ha:

$$t^{-\frac{1}{2\gamma}-1} > t^{\frac{1}{2\gamma}-2},$$

ami a fentiek alapján igaz minden $t\in(0,1),$ és $\gamma<1$ esetén.

1. ábra. A visszatérési leképezés tipikus alakja $\gamma < 1/2$ és $\gamma \ge 1/2$ esetén.

Felhasználva az 1 Megjegyzést, a 2 Lemmát és a 4 Lemmát már könnyen be tudjuk bizonyítani Tételünket.

Bizonyítás. [Tétel 1. bizonyítása]

A bizonyítás fő ötlete az, hogy az 1 peremértékprobléma pozitív megoldásainak száma egyenlő T(p)=R megoldásszámával. Felhasználva (5)-öt láthatjuk, hogy $R_0=T(p_\gamma)$ (ld. 1. ábra). Az 1 Lemma alapján tudjuk, hogy T értelmezési tartománya a $[p_\gamma,+\infty)$ félegyenes.

Ha $\gamma \geq 1/2$ akkor (4) alapján tudjuk, hogy Tkezdetben növekszik és az 1 Megjegyzés miatt nem lehet maximuma. Azaz Tvégig nő, és az értékkészlete $[R_0,+\infty)$ felhasználva a 2 Lemmát, mely szerint $T(p)\to\infty$ ha $p\to\infty$. Így T(p)=R megoldásainak száma egy, ha $R\geq R_0$, és nulla, ha $R< R_0$.

Ha $\gamma < 1/2$ akkor (4) alapján T kezdetben csökken, és a 2 Lemma alapján végtelenben végtelenhez tart. Így az 1 Megjegyzés alapján T-nek van minimuma, jelölje ezt R_{min} . Azaz T csökken R_0 -tól R_{min} -ig, majd nő végtelenig. Így T(p) = R megoldásainak száma nulla, ha $R < R_{min}$, egy ha $R = R_{min}$, és kettő ha $R_{min} < R \le R_0$ és ismét egy ha $R > R_0$.

A Tételben szereplő R_0 nem más mint a $T(p_\gamma)$ átalakítva, ugyanis behelyettesítve (15)-be:

$$\begin{split} T(p_{\gamma}) &= \frac{1}{\gamma\sqrt{\beta}\sqrt{2}} \int_{0}^{1} \frac{t^{1/\gamma-1}}{\sqrt{1-t^{1/\gamma-1}}} \sqrt{\frac{p_{\gamma}}{\frac{1-t^{1/\gamma}}{1-t^{1/\gamma-1}}} - p_{\gamma}^{-\gamma}/(\beta(1-\gamma))} dt = \\ & \frac{\sqrt{p_{\gamma}}}{\gamma\sqrt{\beta}\sqrt{2}} \int_{0}^{1} \frac{t^{1/\gamma-1}}{\sqrt{1-t^{1/\gamma-1}}} \sqrt{\frac{1}{\frac{1-t^{1/\gamma}}{1-t^{1/\gamma-1}}}} dt = \\ & \frac{\sqrt{p_{\gamma}}}{\gamma\sqrt{\beta}\sqrt{2}} \int_{0}^{1} \frac{t^{1/\gamma-1}}{\sqrt{1-t^{1/\gamma-1}}} \sqrt{\frac{1}{\frac{1-t^{1/\gamma}-(1-t^{1/\gamma-1})}{1-t^{1/\gamma-1}}}} dt = \\ & \frac{\sqrt{p_{\gamma}}}{\gamma\sqrt{\beta}\sqrt{2}} \int_{0}^{1} \frac{t^{1/\gamma-1}}{\sqrt{1-t^{1/\gamma-1}}} \sqrt{\frac{1-t^{1/\gamma-1}}{t^{1/\gamma-1}-t^{1/\gamma}}} dt = \\ & \frac{\sqrt{p_{\gamma}}}{\gamma\sqrt{\beta}\sqrt{2}} \int_{0}^{1} \frac{t^{1/\gamma-1}}{\sqrt{t^{1/\gamma-1}-t^{1/\gamma}}} dt = \frac{\sqrt{p_{\gamma}}}{\gamma\sqrt{\beta}\sqrt{2}} \int_{0}^{1} \frac{1}{\sqrt{t^{1-1/\gamma}-t^{2-1/\gamma}}} dt. \end{split}$$

$$T(p_{\gamma}) = \frac{\sqrt{p_{\gamma}}}{\gamma\sqrt{\beta}\sqrt{2}} \int_{0}^{1} \frac{\gamma z^{\gamma-1}}{\sqrt{z^{\gamma-1} - z^{2\gamma-1}}} dz = \frac{1}{\sqrt{2\beta^{1+\gamma}}(1-\gamma)^{1/2\gamma}} \int_{0}^{1} \frac{1}{\sqrt{z^{1-\gamma} - z}} dz.$$

 $z=t^{1/\gamma},\,\gamma z^{\gamma-1}dz=dt$ helyettesítéssel élve:

A. Intergálformula

Tekintsük az (1) peremértékproblámát, és annak (4) megközelítését. A visszatérési leképezést eredetileg úgy értelmeztük, hogy

$$T(p) = \sup\{r > 0 : u(s, p) > 0, \forall s \in [0, r)\},\$$

azaz T(p) nem más, mint $u(\cdot,p)$ első gyöke. Most belátjuk hogy bevezetve az $F(s)=\int_0^s f(t)dt$ jelölést, T(p)-t definiálhatjuk egy integrállal is:

$$T(p) = \frac{1}{\sqrt{2}} \int_0^p \frac{1}{\sqrt{F(p) - F(s)}} ds.$$

Használjuk a következő Hamilton függvényt:

$$H(r) := \frac{u'(r)^2}{2} + F(u(r)).$$

Tudjuk, hogy H konstans, így H(0) = F(u(0)) = F(p). Így:

$$u'(r)^2 = 2(F(p) - F(u(r))).$$

Azt tudjuk, hogy u'(r) < 0, ezzel

$$u'(r) = -\sqrt{2(F(p) - F(u(r)))}$$

$$-1 = \frac{u'(r)}{\sqrt{2(F(p) - F(u(r)))}}.$$
(16)

Integrálva 0-tól T(p)-ig:

$$-T(p) = \int_0^{T(p)} \frac{u'(r)}{\sqrt{2(F(p) - F(u(r)))}} dx.$$

s = u(r) helyettesítéssel élve:

$$-T(p) = \int_{p}^{0} \frac{1}{\sqrt{2(F(p) - F(s))}} ds,$$

azaz:

$$T(p) = \frac{1}{\sqrt{2}} \int_0^p \frac{1}{\sqrt{F(p) - F(s)}} ds.$$

Bizonyos esetekben az s = tp helyettesítést még ajánlott alkalmazni, ezzel:

$$T(p) = \frac{1}{\sqrt{2}} \int_0^1 \frac{p}{\sqrt{F(p) - F(pt)}} dt.$$

B. Radiálisan szimmetrikus megoldás

 ${\bf 5}$ Lemma (2) minden megoldása radiálisan szimmetrikus, azaz u(l)=u(-l) minden l< Resetén.

Bizonyítás. Mivel u(-R)=u(R)=0 így létezik x_0 , hogy $u(x_0)\geq u(x)$ minden $x\in (-R,R)$ esetén és $u'(x_0)=0$. Vezessük be a $v(x):=u(2x_0-x)$ -et. Írjuk fel az u-ra és v-re vonatkozó kezdeti érték problémákat:

$$u''(x) + f(u(x)) = 0$$

$$u'(x_0) = 0, \ u(x_0) = u(x_0).$$
(17)

Mivel v nem más mint u eltoltja, így v-re a következő egyenlet áll fenn:

$$v''(x) + f(v(x)) = 0$$

$$v'(x_0) = 0, \ v(x_0) = u(x_0).$$
(18)

Azaz a két egyenlet ugyanaz, így v(x) = u(x), amivel azt kapjuk, hogy u x_0 -ra szimmetrikus, és így az is igaz, hogy pozitív és negatív irányba egyszerre ér le, azaz $x_0 = 0$, vagyis tényleg radiálisan szimmetrikus.

C. Szeparációs tételek

Tekintsük a következő másodrendű homogén lineáris differenciálegyenletet:

$$u'' + a_1 u' + a_2 u = 0 (19)$$

 φ_1 és φ_1 a (19) két ún. **lineárisan összefüggő megoldása** ha létezik olyan c valós szám, hogy $\varphi_1=c\varphi_2$.

6 Lemma A (19) egyenlet megoldásainak gyökhelyei nem torlódhatnak.

Bizonyítás. Legyen φ a (19) egyenlet megoldása, és tegyük fel, hogy gyökhelyeinek torlódási pontja t^* . Ebben a pontban (φ folytonossága, miatt) $\varphi(t)=0$ és (a Rolle tétel, és φ folytonossága miatt) $\varphi'(t^*)=0$ lenne, de mivel (19) megoldása egyértelmű, ezért azt kapnánk, hogy $\varphi=0(\cdot)$, ami viszont ellentmond annak, hogy azt kizárjuk a megoldások közül.

2. Tétel Sturm szeparációs tétele $\text{Ha } \varphi_1$ és φ_2 az (19) egyenlet két lineárisan független megoldása, akkor ezek gyökhelyei elválasztják egymást.

Bizonyítás. Legyen φ_1 és φ_2 a (19) egyenlet két lineárisan független megoldása, és jelölje φ_1 két szomszédos gyökét t_1 és t_2 . Ekkor $\varphi_1(t_1) = \varphi_1(t_2) = 0$, $\varphi_1(t) \neq 0$ ha $t \in (t_1, t_2)$; továbbá nyilvánvalóan $\varphi_1'(t_1) \neq 0$, $\varphi_1'(t_1) \neq 0$, ellenkező esetben ugyanis $\varphi_1 = 0(\cdot)$ lenne. Ha W jelöli a φ_1 és φ_2 megoldás Wrońskideterninánsát, akkor feltehető például, hogy az pozitív definit (a negatív definitást feltételezve hasonlóan érvelhetnénk): W= $\begin{vmatrix} \varphi_1 & \varphi_2 \\ \varphi_1' & \varphi_2' \end{vmatrix} = \varphi_1 \varphi_2' - \varphi_2 \varphi_1' > 0$. Mivel $-\varphi_1'(t_1)\varphi_1'(t_2) > 0$, $-\varphi_1'(t_1)\varphi_2(t_1) > 0$, $-\varphi_1'(t_2)\varphi_2(t_2) > 0$. (Az első egyenlőtlenség tagadása maga után vonná, hogy a gyökök nem szomszédosak, a második és a harmadik egyenlőtlenség pedig a Wroński-determináns előjelére tett feltevésből behelyettesítéssel adódik.) Ezért (például a második és harmadik egyenlőtlenséget összeszorozva, és elosztva az elsővel kapjuk, hogy) $\varphi_2(t_1)\varphi_2(t_2) < 0$, tehát φ_2 -nek van legalább egy gyöke a (t_1, t_2) intervallumban. Több biztos nincs, ekkor ugyanis a két szomszédos gyökhely között az eddigiek szerint lenne φ_1 -nek gyökhelye, ellentétben azzal a feltevéssel, hogy t_1 és t_2 két szomszédos gyöke volt φ_1 -nek.

7 Lemma Legyenek $a_2, b_2 \in C([a, b])$ olyan függvények, melyekre $a_2 \leq b_2$, de $a_2 \neq b_2$. Legyenek

$$L_1u := (au')' + a_2u$$
 és $L_2u := (au')' + b_2u$.

Legyen $L_1\phi=0,\,t_1$ és t_2 pedig a ϕ két egymást követő gyöke. Ekkor $L_2\psi=0$ esetén ψ függvénynek van gyöke a $(t_1.t_2)$ intervallumban.

 $Bizony\acute{t}\acute{a}s.$ Feltehető, hogy $\psi>0$ a (t_1,t_2) intervallumban. Tegyük fel indirekt módon, hogy $\psi>0$ a (t_1,t_2) intervallumban (a $\psi<0$ esetben hasonlóan érvelhetünk). Legyen $A:=a(\phi'\psi-\phi\psi'),$ ekkor $A'=(p\phi')'\psi+(p\phi')\psi'-(p\psi')'\phi-(p\psi')\phi'=(p\phi')'\psi+a_2\psi\phi+a_2\psi\phi-(p\psi')'\phi-b_2\phi\psi+b_2\phi\psi=(b_2-a_2)\phi\psi.$ Így:

$$0 < \int_{t_1}^{t_2} (b_2 - a_2) \phi \psi = A(t_2) - A(t_1) = a(t_2) \phi'(t_2) \psi(t_2) - a(t_1) \phi'(t_1) \psi(t_1) \le 0$$

ami ellentmondás. (Az utolsó egyenlőtlenségnél felhasználtuk, hogy $\phi'(t_1)>0$ és $\phi'(t_2)<0.)$

HIVATKOZÁSOK 18

Hivatkozások

[1] Y.S. Choi, A.C. Lazer, P.J. McKenna: Some remarks on a singular elliptic boundary value problem, *Nonlinear Anal.*, **32** (1998) 305-314.

- [2] J.I. Diaz, J.M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, *Comm. P.D.E.*, **12** (1987) 1333-1344.
- [3] J. Hernández, J. Karátson, P. L. Simon: Multiplicity for semilinear elliptic equations involving singular nonlinearity, *Nonlinear Analysis*, **65** (2006) 265-283.
- [4] J. Karátson, P. L. Simon: Bifurcations of semilinear elliptic equations with convex nonlinearity, *Electron. J. Differential Equations*, **1999** (43)(1999) 1-16.