Barycentre dans le plan

Capacités attendues

- Utilisation de la notion de barycentre pour simplifier les expressions vectorielles.
- Utilisation de la notion de barycentre dans le plan pour établir des alignements de points, des points de concours de droites.
- Construction du barycentre de n points tels que $2 \le n \le 4$.
- Utilisation du barycentre pour résoudre les problèmes géométriques et les problèmes de lieu.

5	Barycentre dans le plan	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	2
	Point pondéré	•		•			•		• •	•	•	•	•	• •	•	•	•		3
	Barycentre de deux points :	•		•	•			•		•	•	•	• 1		•	•	•	•	3
	1 Définition:	•		•	•	• •	•	•			•	•	•	• •	•	•	•	•	3
	2 Position du barycentre :	•			•	•	•	•			•	•	•	• •		•	•	•	3
	3 Homogénéité du barycentre	•		•	•	• •	•	•			•	•	•	• •	•	•	•	•	4
	4 Réduction vectorielle	•		•	•	• •	•	•	• •	•	•	•	• 1	• •	•	•	•	•	4
	5 Coordonnées du barycentre :	•		•	•	• •	•	•	• •	•	•	•	• 1	• •	•	•	•	•	4
Ш	Barycentre de trois points pondérés :	•		•	•		•	•			•	•	•	• •		•	•	•	5
	1 Définition:	•		•	•	• •	•	•			•	•	•	• •	•	•	•	•	5
	2 Propriétés:	•		•	•	• •	•	•			•	•	•	• •		•	•	•	6
	3 Associativité du barycentre :	•		•	•	• •	•	•	• •	•	•	•	• 1	• •	•	•	•	•	6
	4 Détermination de l'ensemble des points :	•		•	•	• •	•	•	• •	•	•	•	• 1	• •	•	•	•	•	7
IV	Barycentre d'un nombre quelconque de points	5		•	•		•	•		•	•	•	• 1			•	•	•	7
V	Exercices d'applications																		Я

Activité N°1:

Soient A et B deux points dans le plan.

- 1 On considère le point G dans le plan tel que : $2\overrightarrow{GA} 3\overrightarrow{GB} = \overrightarrow{0}$
 - **a.** Déterminer \overrightarrow{AG} en fonction de \overrightarrow{AB}
 - **b.** En déduire que le point *G* existe et unique.
 - **c.** Placer le point *G*.
- **2** Est-ce qu'il existe un point M dans le plan tel que : $\overrightarrow{MA} \overrightarrow{MB} = \overrightarrow{0}$

Point pondéré

Définition On appelle point pondéré ou point massif le couple (A; a) où A est un point du plan ou de l'espace et a un réel.

Barycentre de deux points :

1 Définition :

Définition

Soient A et B deux points et a et b deux réels dont la somme n'est pas nulle. Alors il existe un unique point G du plan tel que $a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0}$. Ce point G est le barycentre des points A et B affectés des coefficients a et b. On dit que G est le barycentre du système de points (A;a) et (B;b). On écrit : $G = Bar\{(A;a),(B;b)\}$

Position du barycentre :

Soit G le barycentre du système de points (A; a) et (B; b). On a :

•
$$\overrightarrow{AG} = \frac{b}{a+b} \overrightarrow{AB}$$
.

- Les vecteurs \overrightarrow{AG} et \overrightarrow{AB} sont colinéaires.
- Le points *G*, *A* et *B* sont alignés.

Remarque

Si a = b, on dit que G est l'isobarycentre de A et B, c'est-à-dire G est le milieu de [AB] et on a : $\overrightarrow{AG} = \frac{1}{2}\overrightarrow{AB}$.

Homogénéité du barycentre

Propriété Si G est le barycentre de (A;a) et (B;b), alors pour tout réel $k \neq 0$, alors G est le barycentre de (A;ka) et (B;kb).

Démonstration

Soit G est le barycentre de (A; a) et (B; b). On a : $a \overrightarrow{GA} + b \overrightarrow{GB} = \overrightarrow{0} \implies ka \overrightarrow{GA} + kb \overrightarrow{GB} = \overrightarrow{0}$ $\implies G = Bar\{(A; ka), (B; kb)\} \qquad (Car ka + kb \neq 0)$

4 Réduction vectorielle

Propriété Si G est le barycentre de (A;a) et (B;b), avec $a+b \ne 0$, alors pour tout point M du plan, on a : $a\overrightarrow{MA} + b\overrightarrow{MB} = (a+b)\overrightarrow{MG}$

Démonstration

On a : $a\overrightarrow{MA} + b\overrightarrow{MB} = a(\overrightarrow{MG} + \overrightarrow{GA}) + b(\overrightarrow{MG} + \overrightarrow{GB}) = (a+b)\overrightarrow{MG} + a\overrightarrow{GA} + b\overrightarrow{GB}$. Or si G est le barycentre de (A;a) et (B;b), $a\overrightarrow{GA} + b\overrightarrow{GB} = \overrightarrow{0}$. D'où l'égalité : $a\overrightarrow{MA} + b\overrightarrow{MB} = (a+b)\overrightarrow{MG}$.

5 Coordonnées du barycentre :

Dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$, si $A(x_A; y_A)$ et $B(x_B; y_B)$ alors les coordonnées du barycentre G du système (A; a) et (B; b) sont $x_G = \frac{ax_A + bx_B}{a + b}$ et $y_G = \frac{ay_A + by_B}{a + b}$.

Démonstration

Soit G le barycentre du système (A; a) et (B; b).

Alors pour tout M du plan on $a: a\overrightarrow{MA} + b\overrightarrow{MB} = (a+b)\overrightarrow{MG}$.

Si M = O, on obtient $a\overrightarrow{OA} + b\overrightarrow{OB} = (a+b)\overrightarrow{OG}$ Et $\overrightarrow{OG} = \frac{a}{a+b}\overrightarrow{OA} + \frac{b}{a+b}\overrightarrow{OB}$ C'est-à-dire $\overrightarrow{OG} = \frac{ax_A}{a+b}\overrightarrow{i} + \frac{ay_A}{a+b}\overrightarrow{j} + \frac{bx_B}{a+b}\overrightarrow{i} + \frac{by_B}{a+b}\overrightarrow{j}$ Soit $\overrightarrow{OG} = \frac{ax_A + bx_B}{a+b}\overrightarrow{i} + \frac{ay_A + by_B}{a+b}\overrightarrow{j}$ D'où $G\left(\frac{ax_A + bx_B}{a+b}; \frac{ay_A + by_B}{a+b}\right)$

Ш

Barycentre de trois points pondérés :

Définition:

Définition

Soient A, B et C trois points distincts et a, b et c trois réels dont la somme n'est pas nulle. Alors il existe un unique point G du plan tel que $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$. G est le barycentre des points pondérés (A;a), (B;b) et (C;c).

On écrit : $G = Bar\{(A; a), (B; b), (C; c)\}$

De même si $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} + d\overrightarrow{GD} = \overrightarrow{0}$ et $a + b + c + d \neq 0$ alors;

$$G = Bar\{(A; a), (B; b), (C; c), (D; d)\}$$

Démonstration

Quels que soient *a*, *b* et *c* :

$$a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0} \iff a\overrightarrow{GA} + b(\overrightarrow{GA} + \overrightarrow{AB}) + c(\overrightarrow{GA} + \overrightarrow{AC}) = \overrightarrow{0}$$

$$\iff a\overrightarrow{GA} + b\overrightarrow{GA} + b\overrightarrow{AB} + c\overrightarrow{GA} + c\overrightarrow{AC} = \overrightarrow{0}$$

$$\iff (a+b+c)\overrightarrow{GA} = -b\overrightarrow{AB} - c\overrightarrow{AC}$$

$$\iff (a+b+c)\overrightarrow{AG} = b\overrightarrow{AB} + c\overrightarrow{AC}$$

- 1 Si $a+b+c \neq 0$ alors l'équation équivaut à $\overrightarrow{AG} = \frac{b}{a+b+c} \overrightarrow{AB} + \frac{c}{a+b+c} \overrightarrow{AC}$ Le point G existe et est unique.
- 2 Si a + b + c = 0 alors l'équation équivaut à $b \overrightarrow{AB} + c \overrightarrow{AC} = \overrightarrow{0}$.

Cette équation n'admet pas de solution si $b\overrightarrow{AB} + c\overrightarrow{AC} \neq \overrightarrow{0}$ et en admet une infinité si $b\overrightarrow{AB} + c\overrightarrow{AC} = \overrightarrow{0}$.

Conséquences:

- $G = Bar\{(A; a), (B; b), (C; c)\} \Leftrightarrow \overrightarrow{AG} = \frac{1}{a + b + c} \left(b \overrightarrow{AB} + c \overrightarrow{AC} \right)$
- Si A, B et C ne sont pas alignés le point G appartient au plan (ABC).
- Le barycentre ne change pas si on multiplie les trois coefficients par un réel $k \neq 0$.
- Si a = b = c, G est le barycentre de (A;1), (B;1) et (C;1), G est l'isobarycentre de A, B et C ou G est aussi le centre de gravité du triangle ABC.

Propriétés:

Si G est le barycentre de (A; a), (B; b) et (C; c), avec $a + b + c \neq 0$, alors pour tout point M du plan, on a : $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a+b+c)\overrightarrow{MG}$.

Démonstration

On a:
$$a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = a(\overrightarrow{MG} + \overrightarrow{GA}) + b(\overrightarrow{MG} + \overrightarrow{GB}) + c(\overrightarrow{MG} + \overrightarrow{GC})$$

= $(a + b + c)\overrightarrow{MG} + a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC}$

Or si G est le barycentre de (A;a), (B;b) et (C;c), $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$.

D'où l'égalité : $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a+b+c)\overrightarrow{MG}$.

Propriété 2

Dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ si $A(x_A; y_A)$, $B(x_B; y_B)$ et $C(x_C; y_C)$ alors les coordonnées du barycentre G du système (A;a), (B;b) et (C;c) sont :

$$x_G = \frac{x_A + x_B + x_C}{a + b + c}$$
 et $y_G = \frac{y_A + y_B + y_C}{a + b + c}$

Démonstration

Soit G le barycentre du système (A;a), (B;b) et (C;c).

Alors pour tout M du plan on a : $a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a+b+c)\overrightarrow{MG}$.

Si M = O, on obtient $a\overrightarrow{OA} + b\overrightarrow{OB} + c\overrightarrow{OC} = (a + b + c)\overrightarrow{OG}$

Soit
$$\overrightarrow{OG} = \frac{a}{a+b+c} \overrightarrow{OA} + \frac{b}{a+b+c} \overrightarrow{OB} + \frac{c}{a+b+c} \overrightarrow{OC}$$

C'est-à-dire
$$\overrightarrow{OG} = \frac{ax_A}{a+b+c}\overrightarrow{i} + \frac{ay_A}{a+b+c}\overrightarrow{j} + \frac{bx_B}{a+b+c}\overrightarrow{i} + \frac{by_B}{a+b+c}\overrightarrow{j} + \frac{cx_C}{a+b+c}\overrightarrow{i} + \frac{cy_C}{a+b+c}\overrightarrow{j}$$
Soit $\overrightarrow{OG} = \frac{ax_A + bx_B + cx_C}{a+b+c}\overrightarrow{i} + \frac{ay_A + by_B + cy_C}{a+b+c}\overrightarrow{j}$. D'où $G\left(\frac{ax_A + bx_B + cx_C}{a+b+c}; \frac{ay_A + by_B + cy_C}{a+b+c}\right)$

Associativité du barycentre :

Propriété Si G est le barycentre de (A;a), (B;b) et (C;c), avec $a+b+c\neq 0$ et si H est le barycentre de (A;a) et (B;b) avec $a+b\neq 0$, alors G est le barycentre de (H;a+b) et (C;c).

Démonstration

On a : $a\overrightarrow{GA} + b\overrightarrow{GB} + c\overrightarrow{GC} = \overrightarrow{0}$. On déduit $(a+b)\overrightarrow{GH} + a\overrightarrow{HA} + b\overrightarrow{HB} + c\overrightarrow{GC} = \overrightarrow{0}$.

Or H est le barycentre de (A; a) et (B; b), donc $a\overrightarrow{HA} + b\overrightarrow{HB} = \overrightarrow{0}$ et $(a + b)\overrightarrow{GH} + c\overrightarrow{GC} = \overrightarrow{0}$. Donc G est le barycentre de (H; a + b) et (C; c).

Remarque

Soit G est le barycentre des points pondérés (A;a), (B;b) et (C;c).

- ▶ Si $b + c \neq 0$, A' est le barycentre partiel de (B; b) et (C; c), alors $G = Bar\{(A; a), (A'; b + c)\}$.
- ▶ Si $a + c \neq 0$, B' est le barycentre partiel de (A; a) et (C; c), alors $G = Bar\{(B; b), (B'; a + c)\}$.
- ▶ Si $a + b \neq 0$, C' est le barycentre partiel de (A; a) et (B; b), alors $G = Bar\{(C; c), (C'; a + b)\}$. Lorsqu'elles existent les droites (AA'), (BB') et (CC') sont concourantes en G.

4

Détermination de l'ensemble des points :

L'ensemble des points : $(\Gamma_k) = \{ M \in (P) / || a \overrightarrow{MA} + b \overrightarrow{MB} + c \overrightarrow{MC} || = k \} :$

Si $a + b + c \neq 0$ alors il existe un point G (barycentre des points (A; a), (B; b) et (C; c)) tel que :

$$a\overrightarrow{MA} + b\overrightarrow{MB} + c\overrightarrow{MC} = (a+b+c)\overrightarrow{MG}$$
. Donc $M \in (\Gamma_k) \Leftrightarrow MG = \frac{k}{|a+b+c|}$.

 1^{ier} cas : si k < 0 alors $(\Gamma_k) = \emptyset$

 2^{ime} cas: si k = 0 alors MG = 0. Soit $(\Gamma_0) = \{G\}$

 3^{ime} cas : si k > 0 alors (Γ_k) est un cercle de centre G et de rayon $r = \frac{k}{|a+b+c|}$

Barycentre d'un nombre quelconque de points

Toutes les définitions et propriétés précédentes se généralisent à n points pondérés.

• Soient $A_1, A_2, ..., A_n$ n points et $a_1, a_2, ..., a_n$ n réels.

Il existe un unique point G tel que $a_1 \overrightarrow{GA_1} + a_2 \overrightarrow{GA_2} + \cdots + a_n \overrightarrow{GA_n} = \overrightarrow{0}$ si et seulement si $a_1 + a_2 + \cdots + a_n \neq 0$.

Ce point est appelé barycentre des n points pondérés $(A_1, a_1); (A_2, a_2); \dots; (A_n, a_n)$.

• Règle d'associativité :

Pour trouver le barycentre G, de n points, lorsque $n \ge 3$, on peut remplacer p points, pris parmi les n points, par leur barycentre (s'il existe) affecté de la somme de leurs coefficients.

• Soit $k \neq 0$.

$$G = \text{Bar}(A_1, a_1), (A_2, a_2), \dots, (A_n, a_n) \iff G = \text{Bar}(A_1, ka_1), (A_2, ka_2), \dots, (A_n, ka_n).$$

Autrement dit, on ne change pas le barycentre en changeant les coefficients par des coefficients proportionnels.

- Si $a_1 = a_2 = \cdots = a_n \neq 0$ alors G est appelé isobarycentre des n points A_1, A_2, \ldots, A_n .
- Pour tout point *M*,

$$a_1 \overrightarrow{MA_1} + a_2 \overrightarrow{MA_2} + \dots + a_n \overrightarrow{MA_n} = (a_1 + a_2 + \dots + a_n) \overrightarrow{MG}$$

• Dans un repère, le barycentre de *n* points pondérés a pour coordonnées la moyenne des coordonnées des *n* points pondérés par les *n* coefficients.

Dans le cas d'un repère du plan, on obtient :

$$\begin{cases} x_G = \frac{a_1 x_{A_1} + a_2 x_{A_2} + \dots + a_n x_{A_n}}{a_1 + a_2 + \dots + a_n} \\ y_G = \frac{a_1 y_{A_1} + a_2 y_{A_2} + \dots + a_n y_{A_n}}{a_1 + a_2 + \dots + a_n} \end{cases}$$

Exercices d'applications

Application 1

Soient *ABC* un triangle, *P* le symétrique de *B* par rapport à *C*, *Q* le point défini par $\overrightarrow{CQ} = \frac{1}{3}\overrightarrow{CA}$ et

R le milieu de [AB]. Prouver que P, Q et R sont alignés. (Il suffit de montrer que, Q est le barycentre de P et R)

Solution : On a *P* le symétrique de *B* par rapport à *C*, alors $\overrightarrow{QP} = -\overrightarrow{QB} + 2\overrightarrow{QC}$ (1)

Puisque R est l'isobarycentre de (A;1) et (B;1) alors on a : $2\overrightarrow{QR} = \overrightarrow{QA} + \overrightarrow{QB}$ (2)

Or
$$\overrightarrow{CQ} = \frac{1}{3}\overrightarrow{CA}$$
 alors $\overrightarrow{QA} + 2\overrightarrow{QC} = \overrightarrow{0}$ (3)

De (1), (2) et (3) on a:
$$\overrightarrow{QP} + 2\overrightarrow{QR} = -\overrightarrow{QB} + 2\overrightarrow{QC} + \overrightarrow{QA} + \overrightarrow{QB} = \overrightarrow{QA} + 2\overrightarrow{QC} = \overrightarrow{0}$$

D'où Q est le barycentre de (P;1) et (R;2). Donc, P, Q et R sont alignés et $\overrightarrow{PQ}=2\overrightarrow{QR}$

Application 2

Soit ABC un triangle. Les points A, B, C et G sont tels que C est le barycentre de (A;1), (B;1) et (G;-3). Montrer que G est le centre de gravité du triangle ABC.

Solution

On a C est le barycentre de (A;1), (B;1) et (G;-3).

Donc pour tout point $M: \overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MG} = (1+1-3)\overrightarrow{MC}$. Soit $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$.

En particulier pour le point G on : $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$. D'où G est le centre de gravité de ABC

Application 3

Dans un quadrilatère ABCD, on appelle I le milieu de [AC], J le milieu de [BD] et G le point défini

par :
$$\overrightarrow{AG} = \frac{1}{2} \left(\overrightarrow{BC} + \overrightarrow{DC} \right)$$
.

Montrer que G est le barycentre de (A, 2), (B, -1), (C, 2) et (D, -1).

En déduire que les points *I*, *J* et *G* sont alignés.

Solution

On a:

$$\overrightarrow{AG} = \frac{1}{2} \left(\overrightarrow{BC} + \overrightarrow{DC} \right) \Leftrightarrow 2\overrightarrow{AG} = \overrightarrow{BC} + \overrightarrow{DC}$$

 $\Leftrightarrow 2\overrightarrow{AG} = \overrightarrow{BG} + \overrightarrow{GC} + \overrightarrow{DG} + \overrightarrow{GC}$
 $\Leftrightarrow 2\overrightarrow{AG} = \overrightarrow{BG} + 2\overrightarrow{GC} + \overrightarrow{DG}$
 $\Leftrightarrow 2\overrightarrow{GA} - \overrightarrow{GB} + 2\overrightarrow{GC} - \overrightarrow{GD} = \overrightarrow{0}$

 $\Leftrightarrow G = Bar\{(A;2),(B;-1),(C;2),(D;-1)\}$ Et on a I est le milieu de [AC] et J est le milieu de [BD] .

Alors $I = Bar\{(A; 2), (C; 2)\}$ et $J = Bar\{(B; -1), (D; -1)\}$

Donc $G = Bar\{(I; 4), (J; -2)\}$. D'où l'alignement des points I, J et G.

Application 4

Démontrer que l'on peut exprimer *G* comme barycentre de *A* et *B* de telle façon que la somme des coefficients soit égale à 1.

Solution

Si
$$G = \text{Bar}\{(A, \alpha), (B, \beta)\}$$
 alors $G = \text{Bar}\left\{\left(A, \frac{1}{\alpha + \beta} \times \alpha\right), \left(B, \frac{1}{\alpha + \beta} \times \beta\right)\right\}$ car $\alpha + \beta \neq 0$.
On a ainsi $G = \text{Bar}\left\{\left(A, \frac{\alpha}{\alpha + \beta}\right), \left(B, \frac{\beta}{\alpha + \beta}\right)\right\}$ avec $\frac{\alpha}{\alpha + \beta} + \frac{\beta}{\alpha + \beta} = 1$

Application 5

Dans un repère du plan, on a A(2;-1), B(0;3) et C(-2;0). Déterminer les coordonnées de G barycentre de (A,1); (B,3); (C,-2).

Solution

On a:

$$\begin{cases} x_G = \frac{x_A + 3 \times x_B - 2 \times x_C}{1 + 3 - 2} = \frac{2 + 3 \times 0 - 2 \times (-2)}{2} = 3\\ y_G = \frac{y_A + 3 \times y_B - 2 \times y_C}{1 + 3 - 2} = \frac{-1 + 3 \times 3 - 2 \times 0}{2} = 4 \end{cases}$$

Ainsi G(3;4)

Application 6

Soient dans un triangle ABC

- $I = Bar\{(A; 2), (C; 1)\};$
- $J = Bar\{(A; 1), (B; 2)\};$
- $K = Bar\{(C; 1), (B; -4)\}.$
- **1** Montrer que $B = Bar\{(K;3), (C;1)\}$. En déduire le barycentre de (A;2), (K;3) et (C;1);
- **2** Montrer que J est le milieu de [KI].

Solution

- On a $K = Bar\{(C;1), (B;-4)\}$, alors pour tout point M du plan $\overrightarrow{MC} 4\overrightarrow{MB} = -3\overrightarrow{MK}$. Posons M = B, alors $\overrightarrow{BC} = -3\overrightarrow{BK}$. C'est-à-dire $3\overrightarrow{BK} + \overrightarrow{BC} = \overrightarrow{0}$. Donc B est le barycentre de (K;3) et (C;1). Et on a : $J = Bar\{(A;1), (B;2)\} = Bar\{(A;2), (B;4)\}$. Et $B = Bar\{(K;3), (C;1)\}$. On déduit que $J = Bar\{(A;2), (K;3), (C;1)\}$.
- On a : $J = Bar\{(A; 2), (K; 3), (C; 1)\}$ et $I = Bar\{(A; 2), (C; 1)\}$ Alors $I = Bar\{(I; 3), (K; 3)\}$. Donc I est la milieu de [KI]

Application 7

Dans un triangle ABC on définit I le barycentre de (B; 2), (C; 1), J le barycentre de (A; 3), (C; 2) et K le barycentre de (A; 3) et (B; 4).

- **1** Faire une figure.
- **2** En considérant $G = Bar\{(A;3), (B;4), (C;2)\}$, montrer que les droites (AI), (BJ) et (CK) sont concourantes en G.

Solution

1 Faisons une figure :

On a
$$I = Bar\{(B; 2), (C; 1)\}$$
, alors $\overrightarrow{BI} = \frac{1}{3} \overrightarrow{BC}$.
On a $J = Bar\{(A; 3), (C; 2)\}$, alors $\overrightarrow{AJ} = \frac{2}{5} \overrightarrow{AC}$.
On a $K = Bar\{(A; 3), (B; 4)\}$, alors $\overrightarrow{AK} = \frac{4}{7} \overrightarrow{AB}$.

La figure

Montrons que les droites (AI), (BJ) et (CK) sont concourantes en G: On a : $I = Bar\{(B; 2), (C; 1)\}$, c'est-à-dire $I = Bar\{(B; 4), (C; 2)\}$. Or $G = Bar\{(A; 3), (B; 4), (C; 2)\}$, alors $G = Bar\{(A; 3), (I; 6)\}$. D'où $G \in (AI)$ (1) On a : $J = Bar\{(A; 3), (C; 2)\}$ et $G = Bar\{(A; 3), (B; 4), (C; 2)\}$, alors $G = Bar\{(B; 4), (J; 5)\}$. D'où $G \in (BI)$ (2) On a : $K = Bar\{(A; 3), (B; 4)\}$ et $G = Bar\{(A; 3), (B; 4), (C; 2)\}$, alors $G = Bar\{(C; 2), (K; 7)\}$. D'où $G \in (CK)$ (3) On déduit de (1), (2) et (3) que les droites (AI), (BJ) et (CK) sont concourantes en G.

- Soient A et B deux points dans le plan tel que AB = 10cm.
 - Déterminer l'ensemble des nombres réels m tel que le système des points $(A; m^2 8)$ et (B; -2m + 6) a un barycentre.
 - **2** Construire le barycentre G des points pondérés (A; -7) et (B; 4).
 - 3 On considère le point H dans le plan tel que : $\overrightarrow{BH} = \frac{1}{5}\overrightarrow{AB}$. Montrer que H est un barycentre d'un système des points pondérés à déterminer.

02 Première partie :

Soit ABC un triangle et soit α un nombre réel.

On considère deux points D et E tels que : $\overrightarrow{AD} = \alpha \overrightarrow{AB}$ et $\overrightarrow{CE} = \alpha \overrightarrow{CA}$.

- **1** Faire une figure dans le cas où $\alpha = \frac{1}{3}$ et $\alpha = -1$.
- **2** Montrer que $D = Bar\{(A; 1 \alpha), (B; \alpha)\}.$
- **3** Montrer que $E = Bar\{(C; 1 \alpha), (A; \alpha)\}$

Deuxième partie:

- **1** Construire le point G le barycentre des points pondérés (A; 1), (B; 4) et (C; -1).
- **2** Déterminer puis construire l'ensemble des points *M* dans le plan tel que :

$$\|\overrightarrow{MA} + 4\overrightarrow{MB} - \overrightarrow{MC}\| = 8$$

- **03** Soit *ABCD* un rectangle de centre *O*.
 - Construire le barycentre I du système des points (A;1) et (B;3) et le barycentre K du système des points (C;1) et (D;3).
 - **2** En déduire l'ensemble (Γ) des points M tel que :

$$\|\overrightarrow{MA} + 3\overrightarrow{MB}\| = \|\overrightarrow{MC} + 3\overrightarrow{MD}\|$$

- **3** Montrer que *O* est le milieu de [*IK*].
- Construire le barycentre G du système des points (A;1), (B;1) et (C;2), puis montrer que $G \in [BD]$. En déduire l'ensemble des points M tel que : $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC}$ et \overrightarrow{BD} sont colinéaires.
- **5** Construire le barycentre J du système des points (B;2) et (C;1) et le barycentre L du système des points (A;1) et (D;2).
- 6 Montrer que le quadrilatère *IJKL* est un parallélogramme de centre O

Soit ABC un triangle isocèle de sommet A tels que : AB = 6cm, BC = 4cm et I le milieu de [BC].

On considère les points J et K définis par : $\overrightarrow{AJ} = \frac{1}{3}\overrightarrow{AC}$ et $\overrightarrow{AK} = \frac{1}{4}\overrightarrow{BC}$.

- **1** Construire les points *J* et *K*.
- Montrer que $J = Bar\{(A; a), (C; c)\}$ en déterminant les coefficients a et c.
- **3** Construire le barycentre G des points pondérés (A;4), (B;3) et (C;-1)
- 4 Le plan est muni au repère $(A; \overrightarrow{AB}; \overrightarrow{AC})$.
 - **a.** Déterminer les cordonnées des point *I*, *J*, *K* et *G*.
 - **b.** Montrer que les points *I*, *J* et *K* sont alignés.
 - **c.** Déterminer puis construire l'ensemble (E_1) des points M dans le plan tel que :

$$||4\overrightarrow{MA} + 3\overrightarrow{MB} - \overrightarrow{MC}|| = 3||\overrightarrow{MB} + \overrightarrow{MC}||$$

d. Soit (E_2) l'ensemble des points M dans le plan tel que :

$$||4\overrightarrow{MA} + 3\overrightarrow{MB} - \overrightarrow{MC}|| = ||4\overrightarrow{MA} - 3\overrightarrow{MB} - \overrightarrow{MC}||$$

- i. Vérifier que $B \in (E_2)$.
- ii. Montrer que $M \in (E_2) \Rightarrow GM = \frac{\sqrt{10}}{6}$ puis construire (E_2) .

05

- On considère M, E et N trois points non alignés. Soit H le barycentre du système $\{(M;3),(E;1),(N;1)\}$, Q celui de $\{(M;3),(N;1)\}$ et R celui de $\{(M;3),(E;1)\}$.
 - **a.** Démontrer que les droites (EQ) et (NR) passent par H.
 - **b.** Soit P le milieu du segment [EN].
 - i. Prouver que *M*, *P* et *H* sont alignés.
 - ii. Exprimer \overrightarrow{PH} en fonction de \overrightarrow{PM} .
- **2** On donne un triangle rectangle direct ABC et isocèle en A tel que AB = AC = a, a > 0.
 - **a.** Déterminer le point G barycentre du système $\{(A;4),(B;-1),(C;-1)\}$. Construire G.
 - **b.** Déterminer l'ensemble (*E*) des points *M* du plan tels que : $4\overrightarrow{MA}^2 \overrightarrow{MB}^2 \overrightarrow{MC}^2 = 2a^2$. Construire (E).