Artificial Intelligence: Semi-supervised Learning

Do you remember this slide? Naïve Bayes Example 3

$$P(H_{1} | E_{2}) = \frac{P(H_{1}) \times P(E_{2} | H_{1})}{P(E_{2})} = \frac{.2x.2}{.31} = .129$$

$$P(H_{2} | E_{2}) = \frac{P(H_{2}) \times P(E_{2} | H_{2})}{P(E_{2})} = \frac{.5x.3}{.31} = .484$$

$$P(H_{3} | E_{2}) = \frac{P(H_{3}) \times P(E_{2} | H_{3})}{P(E_{2})} = \frac{.3x.4}{.31} = .387$$

 $\mathbb{R}H_2$ is the most likely hypothesis, given the evidence $P(H_2 \mid E_2)$ is the highest

Tomorrow the weather will be bad

$$H_{NB} = \underset{H_i}{\operatorname{argmax}} \frac{P(H_i) \times P(E|H_i)}{P(E)}$$

How about this slide? (Decision Tree classification error)

What would be the classification error in these leaves?

- In the left leaf, the prediction (predicted label) is class 0
- The predicted probability of class 1 is 0.3
- We are 30% confident that label should be class 1 (thus 70% confident of being class 0)
- In the right leaf, we are 75% confident of predicting class 1

Prediction Probability

- Most machine learning classifiers not only returns (predicts) the class label but also a probability indicating the confidence
- Usually, the class prediction is based on this probability applying a cut point
- Cut point is by default 0.5 for binary classification, but is adjusted based on the importance of performance metrics (recall, precision, specificity, ...)

```
Probability that this observation belongs to class 1 \equiv p (y=1) p (y=1) > 0.5 => Classifier predicts class 1 p (y=1) <= 0.5 => Classifier predicts class 0
```

Why semi-supervised learning?

- Unlabeled data is cheap and available
- Labeled data can be hard to get
- Labelling (data annotation) can be very expensive
 - tedious task and time-consuming
 - may need experts' intervention
 - error-prone
- Motivation: Using both labeled and unlabeled data for learning

(\$17-\$36/hr) from companies with openings that are

HIRING) May 2023

niting now. Find job postings near you and 1-click applyt

Semi-supervised learning: Self training

- n_I labelled samples (x, f(x))
- n_n unlabeled samples (x,)
- Usually, n_I << n_n
- A classifier (learner) x -> f(x)

Assumption: Classifier's high confidence predictions are correct.

- Train on labelled samples
- Predict on unlabeled samples
- Add (x, \hat{y}) 's with high confidence to the labelled samples
- Repeat

Self training semi-supervised

- A simple semi-supervised learning method.
- Iteration using existing classifiers
- Mistakes can be costly especially in the first iterations
 - Add only very confident samples to the labelled set
 - Add samples using the confidence as weight
 - Unable a sample if the confidence drops

• ...

Artificial Intelligence: Unsupervised Learning

Today

- YOU ARE HERE!
- Unsupervised Learning
- 2. k-means Clustering
- 3. Hierarchical Clustering

Types of Machine Learning

Remember this slide?

Unsupervised Learning

- Learn without labeled examples
 - □ i.e. X is given, but not f(X)

	small nose	big teeth	small eyes	moustache	f(X) = ?
--	------------	-----------	------------	-----------	----------

- Without a f(X), you can't really identify/label a test instance
- But you can:
 - Cluster/group the features of the test data into a number of groups
 - Discriminate between these groups without actually labeling them

What is Clustering

- The organization of unlabeled data into similarity groups called clusters.
- A cluster is a collection of data items which are "similar" between them, and "dissimilar" to data items in other clusters.

Applications of Clustering

- Exploratory data analysis (EDA)
- Customer segmentation in marketing to identify similar groups of customers based on their purchase behavior
- Image segmentation in computer vision to group pixels with similar attributes for object recognition
- Document clustering in natural language processing (NLP)

...

Historic Application of Clustering

- John Snow, a London physician plotted the location of cholera on a map during an outbreak in the 1850s.
- The locations indicated that cases were clustered arounds certain intersections where there were polluted wells - thus exposing both the problem and the solution.

FROM: Nina Mishra HP Labs

Clustering

Represent each instance as a vector $\langle a_1, a_2, a_3, ..., a_n \rangle$

Each vector can be visually represented in an n-dimensional

space

_	X_5		
) X ₂		
		X4 ×	
	-,,,,- -,,,,,,,,,-	-	

	a_1	a ₂	a_3	Output
X_1	1	0	0	?
X ₂	1	6	0	?
X ₃	8	0	1	3
X ₄	6	1	0	?
X ₅	1	7	1	?

Clustering

Clustering algorithm

- Represent test instances on a n dimensional space
- Partition them into regions of high density
 - How? ... many algorithms (ex. k-means)
- Compute the centroid of each region as the average of data points in the cluster

Clustering Techniques

k-means Clustering

- User selects how many clusters they want... (the value of k)
- 1. Place k points into the space (ex. at random). These points represent initial group centroids.
- 2. Assign each data point x_n to the nearest centroïd.
- 3. When all data points have been assigned, recalculate the positions of the K centroïds as the average of the cluster (new centroïds)
- 4. Repeat Steps 2 and 3 until none of the data instances change group.

Nearest centroid!! But how to define similarity (distance)?

1. For two objects x^1 , x^2 distance $d(x^1, x^2)$ is a numerical representation of their dissimilarity.

- 2. Several ways to define it in Machine Learning.
 - Euclidean distance
 - Manhattan distance

Euclidean Distance

- To find the nearest centroid...
- a possible metric is the Euclidean distance
- distance between 2 pts

$$p = (p_1, p_2,, p_n)$$

$$q = (q_1, q_2,, q_n)$$

$$d = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

- where to assign a data point x?
- For all k clusters, chose the one where x has the smallest distance

Example (in 2-D... i.e. 2 features)

initial 3 centroïds (ex. at random)

Example

partition data points to closest centroïd

Example re-compute new centroïds

Example

re-assign data points to new closest centroids

Example

Notes on k-means

- converges very fast!
- BUT:
 - very sensitive to initial choice of centroids
 - many find useless clusters...
 - user must set initial k
 - not easy to do...
- many other clustering algorithms...

Why use k-means?

- Strengths:
 - Simple
 - Easy to understand and implement
 - Efficient: Time complexity O(t·k·n)
 - n number of data points
 - k number of clusters
 - t number of iterations
 - With small k and t, linear performance on practical problems

Weakness of k-means

- User needs to specify k
- Algorithm is sensitive to outliers
 - i.e., data points that are far away from others
 - Could be errors in the data or special data points with very different characteristics

Outliers

(A) Undesirable clusters

Special data structures

(B) k-means clusters

Sensitivity to initial seeds

Random selection of seeds (centroids)

Random selection of seeds (centroids)

How to decide the number of clusters (K)

- In some contexts, it may be given
 - Classification of clients into Platinum,
 Gold, and Silver
- Finding the "Optimal" K
 - Trying a few plausible values
 - Using the elbow method

Elbow Method

- Define a clustering performance metric
 - Within cluster sum of square distances (WCSS)
- Calculate the performance for a few K
 - Most performance metrics are expected to decrease when K increasing
 - Take the K at the elbow

Elbow Method

K-means: Summary

- Despite weaknesses, k-means is still one of the most popular algorithms, due to its simplicity and efficiency
- No clear evidence that any other clustering algorithm performs better in general
- Comparing different clustering algorithms is a difficult task.
 - No one knows the correct clusters!

Clustering Techniques

Hierarchical Clustering

- A hierarchical decomposition of the observations using distance-based criteria
- Bottom-Up
 (Agglomerative)
 Clustering is the
 most popular

Bottom-Up (Agglomerative) Clustering Hierarchical

- 1) Start with every observation as a cluster
- 2) Find the best two clusters to merge to become a new cluster
- Repeat Step 2 until all clusters are merged as a single cluster with all n observation.
- Analyze the cluster formation (or the dendrograms) and select the optimal number of clusters

Every observation as a cluster

Nc = m = 8

One cluster with all m=8 observation

Optimal number of clusters

A big jump in distance (A high cost to merge two clusters) indicates that these two clusters are not similar, and the merge is not a proper decision.

A horizontal line cutting such "improper" moves gives the optimal number of clusters

Distance of two clusters?

- We know how to find the distance of two observations. But, what about two cluster?
- Different approaches
 - Closest members
 - Farthest members
 - Average of all members
 - Distance of centroids

• ...

Distance of two clusters: Single Link

- Distance of two closest members
- Potentially results in skinny long clusters

d (ci, cj)	Given by
A, B	d (2,4)
A, C	d (5,3)
A, D	d (7,6)

Distance of two clusters: Complete Link

- Distance of two farthest members
- Prone to noise and outliers

d (ci, cj)	Given by
A, B	d (7,0)
A, C	d (7,1)
A, D	d (4,6)

Distance of two clusters: Average Link

- Average distance of all pairs between two clusters
- More robust against noise and outliers

d (ci, cj)	Given by
A, B	Average of all 6 links
A, C	Average of all 6 links
A, D	Average of d(4,6), d(5,6), and d(7,6)

Distance of two clusters: Centroid Link

- Distance between the centroids of two clusters
- More robust against noise and outliers

d (ci, cj)	Given by
A, B	$d(C_A, C_B)$
A, C	$d(C_A, C_C)$
A, D	$d(C_A, C_D)$

Distance of two clusters: Ward Minimum Variance Link

- Minimizes the total within-cluster variance
- Merges two clusters that results in a minimum increase of within cluster variance
- Tends to merge smaller clusters together

d(A, B) =
$$\frac{||CA - CB||^2}{\frac{1}{n_A} + \frac{1}{n_B}}$$

Compare linkage options

Iris dataset from sklearn, using Euclidean distance

Agglomerative Clustering: Summary

- Simple and easy to understand
- No need to specify the number of clusters in advance.
- Complexity is usually higher than K-Means Number of optimal clusters is subjective.
 No one knows the correct clusters!

Today

- Hierarchical Clustering
- 2. K-means Clustering
- 3. Hierarchical Clustering

