Ministère de l'enseignement supérieur et de la recherche scientifique Université Batna 2

Faculté de médecine de Batna Département de médecine

Module Physiologie: 2ème année médecine

Principes des systèmes de contrôle hormonal

Dr J.O. BOUHIDEL

Définition d'une hormone

Les hormones sont des molécules qui sont sécrétées dans le milieu intérieur par des cellules spécifiques, les cellules endocrines, puis transportées par les liquides internes, en particulier le sang, pour agir sur des cellules cibles situées à distance en se fixant sur des récepteurs qui sont des protéines capable de les reconnaître de façon sélective.

Cette définition correspond à l'endocrinie. Mais 'action des hormones peut s'exercer de façon paracrine (sur les cellules voisines) ou encore de façon autocrine (sur les cellules sécrétrices elles-mêmes).

Les différents moyens de communication hormonale endocrine, autocrinie, paracrinie

Les hormones stéroïdes

Représentation schématique de la synthèse des deux types d'hormones

Représentation schématique d'un récepteur ave ses trois fonctions

Représentation schématique d'un récepteur membranaire à sept domaines transmembranaires

Représentation schématique d'un récepteur se liant à l'ADN

Les grands mécanismes d'action des hormones

Mécanisme d'action des hormones à récepteur se liant à l'ADN

E2, œstradiol (par exemple); HRE, Hormone Responsive Element.

Siège de glandes endocrines

Organes ayant des fonctions endocriniennes secondaires

Organe	Hormone	Site d'action	Fonction
Rein	Érythropoïétine	Moelle osseuse rouge	Stimulation de la production de globules rouges (Ch. 4)
Tractus gastro-intestinal			
Muqueuse gastrique	Gastrine	Glandes gastriques	Stimule la sécrétion de suc gastrique (Ch. 12)
Muqueuse intestinale	Sécrétine	Estomac et pancréas	Stimule la sécrétion de suc gastrique, ralentit la vidange de l'estomac (Ch. 12)
Muqueuse intestinale	Cholécystokinine (CCK)	Vessie et pancréas	Stimule la libération de bile et de suc pancréatique (Ch. 12)
Tissu adipeux	Leptine	Hypothalamus et autres tissus	Fournit la sensation d'être rempli («satiété») après avoir mangé (Ch. 11); nécessaire pour la synthèse de la GnRH e de la gonadotrophine (Ch. 18)
Ovaires et testicules	Inhibine	Antéhypophyse	Inhibe la sécrétion de FSH
Cœur (atriums)	Peptide natriurétique auriculaire (ANP)	Tubules rénaux	Diminue la réabsorption de sodium et d'eau dans les tubule rénaux (Ch. 13)
Placenta	hCG	Ovaire	Stimule la sécrétion d'estrogène et de progestérone durant la grossesse (Ch. 5)
Thymus	Thymosine	Globules blancs (lymphocytes T)	Développement des lymphocytes T (Ch. 15)

Exemples d'hormones liposolubles et hydrosolubles

Hormones liposolubles Stéroïdes, par exemple:

glucocorticoïdes, minéralocorticoïdes

Hormones thyroïdiennes

Hormones hydrosolubles

Adrénaline, noradrénaline

Insuline

Glucagon

A retenir..

Une hormone est un messager élaboré par des cellules endocrines.

Il existe deux types différents 'hormones selon leur nature chimique, peptidique ou stéroïde.

La synthèse des hormones stéroïdes se fait à partir du cholestérol et implique différents systèmes enzymatiques. Elles ne sont pas stockées dans les cellules endocrine productrices.

La synthèse des hormones protéiques passe par une préprohormone, puis une prohormone et se déroule dans différents compartments cellulaires. Ces hormones peuvent être stockées dans des granules sécrétoires ou ne le sont pas et ont alors des rythmes de sécrétion.

Les hormones circulates sont pour partie libre, physiologiquement actives, et pour partie liée à différentes protéines de transport ave de constantes d'affinité plus ou moins grande.

Les récepteurs sont de deux types, membranaires pour les hormones peptidiques, et cytosoliques, se liant à l'ADN pour les hormones stéroïdes et les hormones thyroïdiennes.

Les mécanismes d'action sont différents. Les récepteurs se liant à l'ADN modifient le nombre d'unités protéiques à travers une modulation de la transcription de gènes cibles (activation ou répression).

Les récepteurs membranaires modifient l'activité 'enzymes en place ave deux niveaux d'amplification, soit par l'intermédiaire des G protéines trimériques (adénylcyclase et phospholipase C), sit par l'intermédiaire du récepteur lui-même (tyrosine kinase et guanylcyclase).