MG I Panikzettel

Caspar Zecha

5. April 2018

Dieser Panikzettel ist über die Vorlesung Maschinengestaltung I und basiert auf der Vorlesung von Univ.-Prof. Dr.-Ing. Georg Jacobs vom Institut für Allgemeine Konstruktionstechnik.

Der aktuelle Master liegt auf panikzettel.philworld.de.

Möge eure Leistung in der Klausur reibungsfrei übertragen werden und das Ergebnis in eurer Toleranzzone liegen.

Inhaltsverzeichnis

1	Zeic	chnungen und Ansichten
	1.1	Dreitafelprojektion
	1.2	Darstellung
2	Elen	nente der technischen Zeichnung
	2.1	Liniengruppen
	2.2	Linienarten
3	Fert	igungsgerechte Bemaßung 4
	3.1	Allgemein
	3.2	Bauteile
4	Schi	nitt- und Bruchdarstellungen 4
	4.1	Allgemein
	4.2	Schnittarten
	4.3	Schnittverlauf
	4.4	Ungeschnittene Bauteile
5	Gew	vinde und Schraubenverbindungen 5
	5.1	Schraubenschäfte
	5.2	Gewindegeometrie
	5.3	Gewindeprofile
	5.4	Außengewinde
	5.5	Innengewinde
	5.6	Schraubensicherung
6	Wel	le-Nabe-Verbindung

7	Lage	erung von Wellen	6
	7.1	Fest-Los-Lagerung	6
	7.2	Stütz-Traglagerung	7
		7.2.1 Schwimmende Lagerung	7
	7.3	Lagerungsprinzipien	7
	7.4	Wälzlager	7
	7.5	Kugellager	7
	7.6	Rollenlager	7
	7.7	Axiale Sicherung von Wälzlagern	7
	7.8	Sicherungsringe	7
	7.9	Umlaufverhältnisse	7
	7.10	Dichtungen	8
		7.10.1 Dynamische Dichtungen	8
		7.10.2 O-Ring	8
		7.10.3 Radialwellendichtring	8
8			8
	8.1		8
	8.2	Zahnradgetriebe	
		8.2.1 Arten	8
9	Maß	Stoleranzen und Passungen	9
9	9.1		9
	9.1		9 9
	9.3	<u> </u>	9
	9.0	1 assungen	ט
10	Forn	n- und Lagetoleranzen	9
	10.1	Grundsätze	9
	10.2	Zeichnungseintragung	9
	10.3	Toleriertes Element	0
	10.4	Formtoleranzen	0
	10.5	Lagetoleranzen	0
			_
11		nnische Oberflächen und Kanten 10	
		Ordnungssystem für Gestaltabweichungen	
		Oberflächenkenngrößen	
		Oberflächensymbole	
	11.4	Darstellung von Kanten	1
12	Schv	veißen 1	1
		Schweißverfahren	
	12.1	12.1.1 MIG-/MAG-Schweißen	
		12.1.2 WIG-Schweißen	
		12.1.3 Laserstrahlschwißen	
	12.2	Stoßarten	
		Nähte	
		Zeichnungseintragung	
		Gestaltungsrichtlinien	
	12.0		_
13	Lösu	ingswege für Aufgaben 13	2
	13.1	Dreitafelprojektion	2

13.2	Bemaßung	12
	13.2.1 Bleche	12
	13.2.2 Wellen	12
13.3	Schnittdarstellung	13
13.4	Schrauben und Gewinde	13
13.5	Passungen	13
13.6	Welle-Nabe-Verbindung	13
13.7	Lagerung von Wellen	13
13.8	Leistungsübertragung	13
13.9	Maßtoleranzen und Passungen	13
13.10	Form- und Lagetoleranzen, Oberflächen und kanten	13

1 Zeichnungen und Ansichten

- Normen: DIN(National), EN(Regional), ISO(International)
- Geometrische Produktspezifikation: Geometrie ermöglicht Funktion, Tolerierung stellt Funktion sicher
- Zentralprojektion: Vergrößerung/Verkleinerung
- Parallelprojektion: Orthogonal/Schief

1.1 Dreitafelprojektion

"Koordinatensystem" mit 4 Quadranten:

- Oben Links: Vorderansicht
- Oben Rechts: Seitenansicht von links
- Unten Links: Draufsicht
- Unten Rechts: Linie in 45° zum Spiegeln

1.2 Darstellung

- Dimetrische Darstellung: Ansicht mit 7°/42°, Kanten nach hinten nur 50 %
- Isometrische Darstellung: Ansicht mit 30°/30°, alle Kanten 100 %

2 Elemente der technischen Zeichnung

Maßstäbliche Darstellung nach DIN ISO 5455, z.B. 2:1, Vergrößerung, oder 1:5, Verkleinerung.

2.1 Liniengruppen

- \bullet 0,5: breite Volllinie = 0,5, schmale Volllinie = 0,25, Maß-, Textangaben = 0,35, Blattformate = A2, A3, A4
- \bullet 0,7: breite Volllinie = 0,7, schmale Volllinie = 0,35, Maß-, Textangaben = 0,5, Blattformate = A0, A1

2.2 Linienarten

- Breite Volllinie: Körperkanten, Gewindeabschlusslinie
- Schmale Volllinie: Bemaßung, Gewinde, Schraffur
- Freihandlinie: Unterbrochen dargestellte Schnittansicht, trifft Volllinie in 90°
- Schmale Strichlinie: Verdeckte Kanten

- Schmale Strichpunktlinie: Symmetrielinie, Mittellinie
- Breite Strichpunktlinie: Schnittebenen und Schnittverläufe
- Schmale Strichzweipunktlinie: Endposition beweglicher Teile

3 Fertigungsgerechte Bemaßung

3.1 Allgemein

- Fertigungsgerechte Bemaßung bedeutet, dass alle Maße ohne Rechnung ablesbar sind.
- Lesbarkeit immer von unten oder rechts
- Maßlinien sind dünne Volllinien, mit ausgefüllten 15° Pfeilen an beiden Enden, dürfen nicht geschnitten werden
- $\bullet\,$ die Maßangabe in mm liegt auf der Maßlinie
- Maßhilfslinien sind ebenfalls dünne Volllinien und dürfen sich schneiden
- Die Pfeile sind je nach Liniengruppe 0,35 bis 0,5 mm lang
- Abstand Maßlinie-Umriss ; 10mm
- Abstand Maßlinie-Maßlinie ; 7mm
- Hinweißlinien die auf einer Fläche enden, enden mit einem Punkt
- Kettenbemaßung ist nicht zulässig
- Maßzahlen müssen frei stehen, ggf. Schraffur unterbrechen
- \bullet Nicht maßstäblich: [Zahl]
- Hilfsmaß: ([Zahl]) z.B. (80)

3.2 Bauteile

- Runde Bauteile, wie Wellen, mit dem Durchmessersymbol vor der Maßangabe
- Gewindebemaßung mit M, Radien mit R, Kugeln mit S jeweils vor der Maßangabe
- Fasen nur bei 45° mit Maßangabe: z.B. 2x45°, sonst Winkel und Länge
- Neigungssymbol und Kegelverjüngung in Richtung des Gefälle

4 Schnitt- und Bruchdarstellungen

4.1 Allgemein

- Schnitte stellen innere Besonderheiten des Bauteils dar
- erzeugen keine neuen Körperkanten
- \bullet dünne Schraffur von Schnittflächen in 45° bzw. 135°, angrenzende Flächen verschieden schraffieren, zusammengehörende Flächen aber gleich, kleine Flächen geschwärzt
- Bruchkanten durch schmale Freihandlinie
- Spitze außerhalb der Bohrlänge
- Aufeinandertreffende Bohrungen: Diagonale bei gleichem Durchmesser; sonst Rundung in größerer Bohrung

4.2 Schnittarten

- Halbschnitt: Darstellung eines symmetrischen Körpers zur unteren Hälfte als Schnitt, obere Hälfte ganz; horizontal liegt der geschnittene Bereich rechts
- Vollschnitt: Schnitt durch das gesamte Bauteil in der gekennzeichneten Ebene
- Teilschnitt: Freihandlinie um z.B. Wellennuten darzustellen
- Teilausschnitt: Darstellung eines Teilbereichs ohne Begrenzung

- Profilschnitt: Geschnittene Ansicht ins Bauteil gedreht
- Stufenschnitt: bei prismatischen Bauteilen; Schnittverlauf einzeichnen
- Einzelheiten: Stelle mit dünnem Kreis und Buchstaben(z.B. X) kennzeichnen; an anderer Stelle im Teilausschnitt mit Vergrößerungsverhältnis darstellen

4.3 Schnittverlauf

- Dicke Strichpunktlinie an Anfang, Ende und allen Knicken des Verlaufs
- Bei mehreren Schnitten mit Buchstaben bezeichnen
- Blickrichtung: Dicke 30° Pfeile an Anfang und Ende des Verlaufs

4.4 Ungeschnittene Bauteile

- Normteile
- Schrauben und Muttern
- Scheiben, Nieten und Stifte
- Bolzen, Federn und Keile
- Wälzkörper
- Teile ohne verdeckte Elemente oder Hohlräume
- Auch Elemente die sich vom Körperprofil abheben: Rippen, Stege, Speichen, Wellen und Achsen

5 Gewinde und Schraubenverbindungen

- Befestigen Bauteile durch Klemmkraft und Reibung
- Schrauben sind selbst hemmend, lösen sich also nicht durch Zugkräfte
- Nehmen normal keine Querkräfte auf, außer Paßschraube
- Gewinde verwandeln rotatorische in translatorische Bewegung um
- Standard: Rechtsgewinde, sonst Kennzeichnung mit LH für Linksgewinde
- Regel: Innengewinde vor Außengewinde beim Zeichnen!

5.1 Schraubenschäfte

- Vollschaftschraube: Schaftdurchmesser = Gewindedurchmesser
- Paßschraube: Schaftdurchmesser > Gewindedurchmesser

In der Regel ist ein Schraubenende eine Spitze von 120°.

Es gibt viele Kombinationen aus verschiedenen Schäften, Köpfen und Spitzen.

5.2 Gewindegeometrie

- Teilung: Abstand von zwei Flanken
- Steigung: Höhengewinn bei einer vollen Umdrehung, relevant bei mehreren unabhängigen Flanken
- Flankenwinkel: Winkel zwischen zwei Flanken
- Kerndurchmesser: Durchmesser ohne Gewinde
- Außengewinde: Gesamtdurchmesser
- Schnittschraffur: Bis zur Gewindelinie, ggf. über äußere Gewindelinie

5.3 Gewindeprofile

- Spitzgewinde: Standard für Schraube und Muttern
- Trapezgewinde: Bewegungs- und Verstellspindeln
- Sägegewinde: Spindeln mit einseitig hoher Belastung
- Rundgewinde: Spindeln mit hoher Abnutzung

5.4 Außengewinde

- Gewindelänge: Nutzbare Länge mit Gewinde, einschließlich Kuppe
- Kegelkuppe: Ende der Schraube mit kleiner werdendem Gewinde
- Gewindeabschlusslinie(Volllinie): Zwischen Gewindeende und Schaft, ggf. Gewindeauslauf
- \bullet Sicht auf Stirnfläche: $\frac{3}{4}$ -tel Kreis mit Kerndurchmesser
- Gewindefreistich: innerhalb der Gewindelänge

5.5 Innengewinde

- Frontalsicht: Innendurchmesser = Volllinie, Außen dünner $\frac{3}{4}$ -tel Kreis
- Sacklochbohrung: Tiefer als Gewindelänge bohren

5.6 Schraubensicherung

- Spannscheibe: Baut durch axiale Stauchung Kraft auf
- Formschlüssige Verliersicherung: Kronenmutte+Spint, Drahtsicherung, Sicherungsblech
- Kraftschlüssige Verliersicherung: Federringe und -scheiben, Sperrkantring

6 Welle-Nabe-Verbindung

- Verbindung durch Stoff-, Kraft- oder, im folgenden besonders, Formschluss:
- Stiftverbindungen: Nehmen Scherkräfte auf, sichern Lage aneinander liegender Teile, z.B. bei Naben, neben Schrauben oder als Steckstifte
- Bolzenverbindungen: Gelenkverbindung mit einem Freiheitsgrad, ggf. mit Kopf
- Keilverbindungen: vorgespannte Welle-Nabe-Verbindung, Wirkung durch Formschluß und Reibung
- Pass- und Scheibenfeder: für konstante Lasten, Kräfte nur an seitlichen Flächen übertragen
- Pass- vs. Scheibenfeder: Passfeder kann mehr Moment aufnehmen, ist aber teurer
- Zahn- und Keilwellenverbindung: Übertragen von Drehmomenten, nur Profilierung von Nabe und Welle; Innenzentrierung: besserer Rundlauf, Flankenzentrierung: kleines Verdrehspiel und bessere Momentübertragung
- \bullet Prinzip von Druckhülse(ggf. mit Medium) und Sternscheibe: Druckkraft \to Querkraft
- Stoffschluss: Kleben, Schweißen, Löten
- Kraftschluss: Reibung fixiert Bauteile

7 Lagerung von Wellen

7.1 Fest-Los-Lagerung

- Festlager fixiert Welle in radialer und axialer Richtung, Loslager nur in radialer
- Zweck: Ausgleich der Wellenausdehnung

7.2 Stütz-Traglagerung

- beide Lager nehmen Kräfte in je eine Richtung auf
- nur bei kurzen Wellen
- O- oder X-Anordnung, je nach Kraftfluss

7.2.1 Schwimmende Lagerung

Stütz-Traglagerung mit axialem Spiel: Keine eindeutige Lagerung, aber unempfindlich und günstig

7.3 Lagerungsprinzipien

- Gleitreibung durch Flüssigkeit
- Rollreibung durch Wälzkörper

7.4 Wälzlager

- Käfig hält Wälzkörper seitlich in Lage
- Wälzkörper: Kegel, Kugel, Nadel
- Innenring, Außenring als Anlageflächen

7.5 Kugellager

- Rillenkugellager (ein-/zweireihig)
- Schulter-/Schrägkugellager (ein-/zweireihig)

7.6 Rollenlager

- Zylinder-/Kegelrollenlager (ein-/zweireihig)
- Nadellager

7.7 Axiale Sicherung von Wälzlagern

- Mutter und Sicherungsscheibe
- Sicherungsring
- Endscheibe

7.8 Sicherungsringe

- Sichern gegen Verschieben
- Können Kräfte entlang der Welle aufnehmen
- für Wellen und Bohrungen

7.9 Umlaufverhältnisse

Belastung \downarrow Umlaufender Ring \rightarrow	Innenring	Außenring
Unveränderliche Richtung	Umfangslast Innen + Punkt-	Punktlast Innen + Umfangs-
	last Außen \rightarrow Feste Passung	$ $ last Außen \rightarrow Lose Passung $ $
	Innen + Lose Außen	Innen + Feste Außen
Umlaufender Ring	Punktlast Innen + Umfangs-	Umfangslast Innen + Punkt-
	last Außen \rightarrow Lose Passung	$ $ last Außen \rightarrow Feste Passung $ $
	Innen + Feste Außen	Innen + Lose Außen

7.10 Dichtungen

7.10.1 Dynamische Dichtungen

- Labyrinthdichtung
- Dichtung mit Flüssigkeitssperrung

7.10.2 O-Ring

- Einbau in Rechtecknut
- Darstellung unter Druck gequetscht

7.10.3 Radialwellendichtring

- Versteifungsring aus Metall für Stabilität
- Außenmantel und Schutzlippe zum Abdichten
- Zugfeder innen

8 Leistungsübertragung

Einteilung in gleichmäßig und ungleichmäßig übersetzende Getriebe

8.1 Zugmittelgetriebe

- Reibschlüssig: Riemenscheibe mit Flach-, Rund oder Keilriemen
- Formschlüssig: Hülsenkette auf Kettenrad, Zahnkette auf Zahnrad und Synchronriemen auf Synchronscheibe

8.2 Zahnradgetriebe

- zwischen zwei oder mehr parallelen oder kreuzenden Wellen
- geringe Verluste
- kleines Zahnrad: Ritzel (antreibend), großes Zahnrad: Rad (angetrieben)
- Schrägverzahnung: Laufruhe, aber teurer und benötigt besseres Lager
- Pfeilverzahnung: Mit schwimmender Lagerung
- \bullet Zähnezahl z, Modul m, Drehmoment M, Leistung P, Drehzahl n
- Winkelgeschwindigkeit ω , Achsenabstand a, Übersetzung i

Formeln:

$$i = \frac{\omega_1}{\omega_2} = \frac{d_2}{d_1} = \frac{z_2}{z_1} = \frac{n_1}{n_2}, i_{ges} = \prod_i i_j, a = \frac{d_1 + d_2}{2}$$

 $M_{ein} \cdot i_{ges} = M_{aus}$, Teilkreisdurchmesser $d = m \cdot z$, $P = M \cdot \omega$

8.2.1 Arten

- Stirnradgetriebe: Zähnezahl von Ritzel und Rad teilerfremd
- Kegelradgetriebe: Achsen der Kegelräder schneiden sich
- Schneckengetriebe: Kreuzende Achsen; meist selbst hemmend; Achsen liegen nicht in einer Ebene
- Planetengetriebe: mehrstufige Stirnrädergetriebe, große Übersetzungsverhältnisse; geringe Belastung

9 Maßtoleranzen und Passungen

9.1 Toleranzen

- "So ungenau wie möglich, aber so genau wie nötig."
- Direktes Antragen ans Maß mittels kleiner Zahlen oben und unten rechts
- Allgemeintoleranzen: Toleranzklassen enthalten Toleranzen für viele Maße, gelten nicht für bereits tolerierte Elemente.
- ISO-Toleranzfelder: Toleranzintervalle mit Toleranztabelle

9.2 Begriffe

- Höchstmaß ULS und Mindestmaß LLS; ULS-LLS=Toleranzzone
- Oberes Grenzmaß es = ULS-Nennmaß
- Unteres Grenzmaß ei = Nennmaß-LLS

9.3 Passungen

- Kleinbuchstabe: Außenmaße z.B. Welle
- Großbuchstabe: Innenmaße z.B. Bohrung
- Spiel: Positive Differenz zwischen Bohrung und Welle
- Übermaß: Negative Differenz vor dem Fügen
- Spielpassung: Mindestmaß der Bohrung \geq Höchstmaß der Welle, S_a, S_k
- \bullet Übergangspassung: Beim Fügen entsteht Spiel oder Übermaß, S_q, U_q
- Übermaßpassung: Höchstmaß der Bohrung \leq Mindestmaß der Welle, U_g, U_k
- Passtoleranz: Betragsmäßige Summe der Toleranzen von Bohrung und Welle

Einführung von Einheitsbohrung und Einheitswelle, mit Toleranzfeldlage H/h, um Kosten zu sparen.

10 Form- und Lagetoleranzen

Es gibt Gestaltabweichung in Maß, Form, Lage und Oberfläche.

Allgemeintoleranzen tolerieren nicht alle Eigenschaften.

10.1 Grundsätze

- Unabhängigkeit: Maß- und Formtoleranz können jeweils unabhängig ihr Maximum erreichen
- Hüllbedingung: Maßtoleranzen begrenzen Toleranzzone der Form
- Ausnahmen z.B. durch (E) hinter der Maßangabe

10.2 Zeichnungseintragung

- Rechteckiger Rahmen mit 15° Pfeil senkrecht auf zu tolerierendes Bauteil
- Mehrere Felder im Rechteck:
 - 1. Feld: Symbol für toleriertes Merkmal
 - 2. Feld: Toleranzwert, ggf. mit Durchmessersymbol, oder S für Kugeln
 - 3. und ggf. weitere Felder: Buchstabe als Bezug
- Bezug auf Teil mit ausgefüllter Pyramide und dünner Volllinie auf Rechteck mit Großbuchstaben

10.3 Toleriertes Element

Hinweislinie zeigt auf:	Toleriertes Geometrieelement
Zylinder, aber nicht auf Maßlinie	Teil des Zylinders
Verlängerung der Maßlinie des Zylinders	Teil der Achse des Zylinders
Ebene, aber nicht auf Maßlinie	Teil der Ebene
Maßlinie zwischen zwei entgegengesetzt	Teil der Mittelebene von zwei Ebenen
gerichteten parallelen Ebenen	

10.4 Formtoleranzen

Tolerierte Elemente:

• Geradheit: -

• Ebenheit: [liegendes Trapez]

Rundheit: Zylinderform:

Jeder Punkt muss sich innerhalb der Toleranzzone befinden. Die Lage relativ zum Nennmaß ist nicht vorgegeben.

10.5 Lagetoleranzen

Tolerierte Elemente:

- Richtung: Parallelität //, Rechtwinkligkeit ⊥, Neigung ∠
- Ort: Position, Koaxialität ©, Symmetrie
- Lauf: Plan-/Rundlauftoleranz, Gesamtlauf

Jeder Punkt muss sich innerhalb der Toleranzzone befinden. Nur in Bezug auf andere Geometrieelemente.

11 Technische Oberflächen und Kanten

Der Oberflächenzustand teilt sich in chemische, physikalische und für uns relevante geometrische Eigenschaften auf.

11.1 Ordnungssystem für Gestaltabweichungen

- 1. Ordnung: Formabweichungen(Geradheit, Ebenheit, Rundheit)
- 2. Ordnung: Welligkeit(Wellen)
- 3. Ordnung: Rauheit(Rillen)
- 4. Ordnung: Rauheit(Riefen, Schuppen, Kuppen)

Ist-Oberfläche: Überlagerung von 1. bis 4. Ordnung

11.2 Oberflächenkenngrößen

- \bullet Rz: Gemittelte Rautiefe aus n Messstrecken
- Ra: Mittenrauwert (Integral)

11.3 Oberflächensymbole

- Grundsymbol: kein vorgeschriebenes Fertigungsverfahren
- mit geschlossenem Dreieck: Materialabtrennendes Verfahren
- mit Kreis unten: Kein Materialabtrennendes Verfahren

- mit Kreis oben: Gleiche Oberflächenbeschaffenheit für alle Flächen eines Teils
- \bullet Vereinfachte Eintragung mit x oder y und Erklärung an anderer Stelle
- Vereinfachte Legende mit normaler Beschaffenheit und ggf. leerer Klammer für explizit eingetragene Werte

11.4 Darstellung von Kanten

Außenkante Innenkante		Zeicheneintragungssymbol	
gratig	Übergang	+	
gratfrei	Abtragung	-	

Darstellung in der Zeichnung mit Hinweispfeil und -linie auf Kante, sowie Innen-/Außenkante und +/- Wert, z.B. +0,1.

12 Schweißen

Schweißen ist das Vereinigen von Werkstoffen in der Schweißzone unter Anwendung von Wärme und/oder Kraft ohne oder mit Schweißzusatz.

- Verbindungsschweißen: Zusammenfügen von Teilen mit Schweißnähten am Schweißstoß zum Schweißteil
- Schweißgruppe: Mehrere Schweißteile ergeben die Schweißgruppe
- Schweißkonstruktion: Besteht aus mehreren Schweißkonstruktionen

12.1 Schweißverfahren

12.1.1 MIG-/MAG-Schweißen

- Metall-Schutzgas-Schweißen
- hohe Abschmelzleistung und Schweißgeschwindigkeit
- gut automatisierbar
- Nachteil Wärme: Anfangsbindefehler und Endkraterrisse

12.1.2 WIG-Schweißen

- Trennung von Wärme und Zusatzwerkstoff: Schmelzbad besser beeinflussbar
- In vielen Schweißposition nutzbar, z.B. Reparatur
- hochwertige Schweißverbindungen
- geringe Leistung ud Geschwindigkeit
- schwierige Automation

12.1.3 Laserstrahlschwißen

- wenig Wärme; hohe Leistung und Geschwindigkeit
- Präzise und gut automatisierbar
- Teurer als andere Verfahren

12.2 Stoßarten

- Stumpfstoß: -
- Parallelstoß: =
- T-Stoß: ⊥
- Kreuzstoß: -|-

- Eckstoß: L
- Überlappungsstoß, Mehrfachstoß, Schrägstoß

12.3 Nähte

- \bullet V-Naht: \mathbf{V}
- Kehlnaht

12.4 Zeichnungseintragung

- dünne Pfeillinie mit 15° Pfeil auf Fügekante
- Bezugslinie und ggf. Bezugslinie-Strichlinie für Gegenseite untereinander an Pfeillinie
- Nahtzeichen auf gewünschte Linie setzen
- Doppelkehlnaht: Zeichen auf und unter Bezugslinie anstatt Strichlinie
- Kreis an Treffpunkt von Bezugs- und Pfeillinie: Umlaufende Naht
- Bemaßung mit a, Dicke der Naht, Symbol und Länge, z.B.: a4V20

Die beste Schweißnaht ist keine Schweißnaht, da Veränderung durch Wärme an Steifigkeit und Festigkeit.

12.5 Gestaltungsrichtlinien

Eckenabbrand und Nahtanhäufungen vermeiden.

13 Lösungswege für Aufgaben

Im folgenden werden Tipps und Vorgehensweisen für bestimmte Aufgabentypen gegeben:

13.1 Dreitafelprojektion

- 1. Zeichnung und gegebene Ansicht solange hart anstarren, bis ein drehbares Modell im Kopf ist
- 2. Auf die Blickrichtung der schon gegebenen Ansicht achten und das Modell entsprechend drehen
- 3. Mithilfe der Spiegellinie und der gegebenen Ansicht die restlichen Ansichten herleiten
- 4. Zuerst die Außenkanten zeichnen und dann ins Detail arbeiten

13.2 Bemaßung

13.2.1 Bleche

- Von zwei nicht gegenüberliegenden Seiten alle Maße antragen
- Dicke angeben, ggf. Wert ausdenken
- Bohrungen, Fasen, Radien etc. mit Symbol und ggf. Lage vom Rand bemaßen

13.2.2 Wellen

- Von beiden Seiten bis zum dicksten Absatz bemaßen und Gesamtlänge angeben, Durchmesser und ggf. Nuttiefe angeben
- Bohrungen, Fasen etc. mit Symbol und ggf. Lage vom Rand bemaßen

13.3 Schnittdarstellung

- An einer Seite anfangen und zur anderen durcharbeiten
- Geschnittene Flächen dünn schraffieren
- Gewinde mit Symmetrielinien einzeichnen
- An nicht geschnittene Bauteile denken, falls nicht anders angegeben
- ggf. Schnittverlauf und Blickrichtung in gegebener Ansicht einzeichnen

13.4 Schrauben und Gewinde

- Außengewinde vor Innengewinde
- Bohrungen tiefer als Gewinde und mit 120° Spitze, sowie Gewinde länger als Schraubenlänge
- Draufsicht auf Gewinde mit dünnem $\frac{3}{4}$ -Kreis
- Auf Doppelpassung achten

13.5 Passungen

- Tabellen mitnehmen, Zahlen mit Starren heraussuchen und ausrechnen
- Passung gesucht: Passung mit größtmöglichem Bereich wählen
- ggf. auf Kosten achten, z.B. h6 Einheitswelle

13.6 Welle-Nabe-Verbindung

- Freihandlinie für Darstellung der Nut mit Schraffur
- Freihandlinie trifft Kante mit 90°

13.7 Lagerung von Wellen

- Lagerart und ggf. Anordnung erkennen
- Meist nur mit Sicherungsringen und Wellenabsätzen befestigen
- Bei Deckeln etc. auf Doppelpassung achten

13.8 Leistungsübertragung

Formeln nachschlagen, umstellen und einsetzen.

13.9 Maßtoleranzen und Passungen

Bei gegebenem Durchmesser, sowie den gewünschten Spielen/Übermaßen: Auswahl der Passung mithilfe der Passungsauwahl DIN 7157.

13.10 Form- und Lagetoleranzen, Oberflächen und kanten

- Zeichen und Toleranzen zuordnen können
- Mit Kästchen nach und nach die geforderten Toleranzen anhand der IT Qualität einzeichnen
- Oberflächen meist mit Ra und ggf. auf Verfahren achten
- \bullet sinnvolle Werte für Kanten: +0.1 oder -