Ausgabe: 20.03.2023 Abgabe: 26.03.2023

Aufgabe 4

Durch welche der folgenden Funktionen werden Skalarprodukte auf \mathbb{R}^2 definiert?

a)
$$(\overrightarrow{x}, \overrightarrow{y}) = x_1^2 + x_2 \cdot y_1 \cdot y_2$$

b)
$$(\overrightarrow{x}, \overrightarrow{y}) = x_1 \cdot y_1 + x_1 \cdot y_2 + x_2 \cdot y_1 + x_2 \cdot y_2$$

Lösung 4a

 $(\overrightarrow{x}, \overrightarrow{y})$ definiert kein Skalarprodukt, da $(\overrightarrow{x}, \overrightarrow{y}) \neq (\overrightarrow{y}, \overrightarrow{x})$:

$$x_1^2 + x_2 \cdot y_1 \cdot y_2 \neq y_1^2 + y_2 \cdot x_1 \cdot x_2$$

Lösung 4b

 $(\overrightarrow{x}, \overrightarrow{y})$ definiert kein Skalarprodukt, die Bedingung 5 $(\overrightarrow{x}, \overrightarrow{x}) = 0 \Leftrightarrow \overrightarrow{x} = \overrightarrow{0}$ verletzt ist:

$$(\overrightarrow{x}, \overrightarrow{x}) = x_1 \cdot x_1 + x_1 \cdot x_2 + x_2 \cdot x_1 + x_2 \cdot x_2$$

$$= x_1^2 + 2x_1x_2 + x_2^2$$

$$= (x_1 + x_2)^2$$

$$(\overrightarrow{x}, \overrightarrow{x}) \stackrel{\text{def}}{=} 0$$

$$\Leftrightarrow 0 = (x_1 + x_2)^2$$

$$\Rightarrow x_1 = -x_2 \lor x_2 = -x_1$$

 $(\overrightarrow{x}, \overrightarrow{y})$ definiert kein Skalarprodukt, da z.B. für $\overrightarrow{a} = (1, 1)^T$ mit $(\overrightarrow{a}, \overrightarrow{a}) = 4 \neq 0$ gilt.