Announcements for the test

- 1. Whatever Sean wrote on quercus.
- 2. Don't quote numbers of Theorems, but their content and why they apply in this case.
- 3. Famous theorems have names, for example Extend-, Reduce- and Fundamental Theorem.
- 4. The test covers everything we did from sections 1.1 1.6 and section 2.1, homework problems 1 to 4 and Assignments 1 & 2
- 5. Please read the Term-Test-1 information document about logistics well in advance!
- 6. Don't leave the upload to the last minute! Plan for some technical difficulties, they always occur! :(

Kernel and Image

Textbook: Section 2.3

Definition (2.3.1 & 2.3.10)

For a linear transformation $V \xrightarrow{T} W$, we define

- 1. the preimage $T^{-1}(S)$ of $S \subseteq W$ under T as all $\vec{v} \in V$ that map into S.
- 2. the kernel $\ker(T)$ of T as all $\vec{v} \in V$ that map to $\vec{0}$ under T,
- 3. the image $\operatorname{im}(T)$ of T as all $\vec{w} \in W$ such that $\vec{w} = T(\vec{v})$ for some $\vec{v} \in V$,

Example

- The kernel of $\mathcal{P}_n(\mathbb{R}) \xrightarrow{\frac{d}{dx}} \mathcal{P}_n(\mathbb{R})$ are all constant polynomials, while the image consists of polynomials of degree n-1.
- The kernel of the evaluation map $\mathcal{P}_n(\mathbb{R}) \xrightarrow{\text{ev}_2} \mathcal{P}_n(\mathbb{R})$ are all polynomials that have a root at x = 2. What is the image?
- What is the image of the linear transformation defined in example 2.2.2 $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$?

$$T(\vec{e}_1) = \vec{e}_1 + \vec{e}_2$$

$$T(\vec{e}_2) = \vec{2}e_1 - 2\vec{e}_2$$

Proposition 2.3.2 & 2.3.11

For every linear transformation $V \xrightarrow{T} W$

- 1. ker(T) is a subspace in V
- 2. im(T) is a subspace in W.

Proof.

Proposition 2.3.7

The subspace $\ker(T)$ is the solution space to the homogeneous system of $[T]_{\alpha}^{\beta}$.

Proof.

${\bf Example}$

Example of computation to find $\ker(T)$

Observation

The subspace $\operatorname{im}(T)$ is the space of all $\vec{b} \in \mathbb{R}^n$ such that the system $[T]^\beta_\alpha \vec{x} = \vec{b}$ has a solution.

Proposition 2.3.12

If $\{\vec{v}_1,\ldots,\vec{v}_k\}$ spans V, then $\{T(\vec{v}_1),\ldots,T(\vec{v}_k)\}$ spans $\operatorname{im}(T)$. *Proof.*

Definition

For a matrix $A = [a_1, a_2, \dots, a_m] \in \operatorname{Mat}_{n,m}(\mathbb{R})$ we denote the span of the columns of A by

$$col(A) = span\{a_1, \dots, a_m\}$$

Proposition

For every linear transformation $V \xrightarrow{T} W$

$$\operatorname{im}(T) = \operatorname{col}([T]_{\alpha}^{\beta})$$

Proof.

Examp	ماد
Lixami	лe

Example computation to find im(T)

Notice that the columns might not be independent, in which case the columns are a spanning set of the image, but not a basis.

Theorem

Given a linear transformation $V \xrightarrow{T} W$ with matrix $[T]^{\beta}_{\alpha}$ for some bases α and β . Let $R = \text{RREF}([T]^{\beta}_{\alpha})$ be the reduced row echolon form of $[T]^{\beta}_{\alpha}$.

Then if the leading 1s in are R lie in columns j_1, j_2, \ldots, j_r , the columns j_1, j_2, \ldots, j_r of $[T]^{\beta}_{\alpha}$ are a basis for $\operatorname{col}([T]^{\beta}_{\alpha})$

Proof.

Discussion

Suppose a linear transformation $V \xrightarrow{T} W$ is given in a some bases α and β by

$$[T]_{\alpha}^{\beta} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 0 \end{pmatrix}$$

Find a basis for im(T) and ker(T).

Dimension Theorem

Textbook: Section 2.3 & 2.4

Theorem 2.3.17 (Rank-Nullity)

For any linear transformation $V \xrightarrow{T} W$

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T))$$

\mathbf{Remark}

- $\dim(\operatorname{im}(T))$ is the same as the rank of $[T]^{\beta}_{\alpha}$ and by abuse of notation also referred to as $\operatorname{rank}(T)$.
- Some books refer to $\dim(\ker(T))$ as the *nullity* of T.

Proof.

Theorem

A linear transformation T is injective if and only if $\ker(T) = {\vec{0}}$

Proof.

True or False Let $V \xrightarrow{T} W$ be a linear transformation

- \square If T is an isomorphism, then $\dim(V) = \dim(W)$.
- \square If $\dim(V) > \dim(W)$, T has to be injective.

Composition

Textbook: Section 2.5

Discussion

Without doing a lot of work, can you argue what the matrix representing the composition $F \circ T$ is assuming you know [F] and [T]?

Review session

- Vector spaces
- subspaces
- $\bullet\,$ Sum, intersection, direct sum
- ullet Linear independence
- $\bullet \;$ Spanning set
- Basis
- Dimension
- Linear Transformation