Lista 3

Ej 1. Ejercicio 31.

Sea $\{M_i\}_{i\in I}$ una familia no vacía en Mod(R). Pruebe que:

a) Para cada $i \in I$, las inclusiones i-ésimas

$$inc_i: M_i \longrightarrow \coprod_{i \in I} M_i, \ (inc_i(x))_t = \{x \ si \ x = t \}$$

 $0 \ si \ x \neq i$

$$Inc_i: M_i \longrightarrow \prod_{i \in I} M_i, \ (Inc_i(x))_t = (inc_i(x))_t$$

son monomorfismos en Mod(R).

b) Para cada $i \in I$, las proyecciones i-ésimas

$$Proy_i: \prod_{i\in I} M_i \longrightarrow M_i, \ Proy_i(m) = m_i$$

$$proy_{i}: \coprod_{i\in I} M_{i} \longrightarrow M_{i}, \ proy_{i}\left(m\right) = m_{i}$$

son epimorfismos en Mod(R).

Demostración. (a) Primero, sean $i \in I$ y $x \in Ker(inc_i)$. Entonces $(inc_i(x))_t = (0)_t$. Es decir, en cada entrada $inc_i(x)$ es 0. En particular, para t = x. En consecuencia, x = 0. Por tanto, $inc_i(x)$ es monomorfismo.

Por otro lado, sean $i \in I$ y $x \in Ker(Inc_i)$. De esta forma, $x \in Ker(inc_i)$. Como inc_i es monomorfismo, x = 0. Por lo que Inc_i también lo es.

(b) Sea $i \in I$. $Proy_i$ es un epimorfismo. Dado $x \in M_i$, el elemento $m = (Inc_i(x))_t \in \prod_{i \in I} M_i$ satisface que $Proy_i(m) = x$.

De manera análoga, para cada $i \in I$, la proyección $proy_i$ es un epimorfismo, sustituyendo Inc_i por inc_i .

Ej 2. Ejercicio 34.

Sea $\{M_i\}_{i\in I}$ en Mod(R), $P \in Mod(R)$ y $\{\pi_i : P \longrightarrow M_i\}_{i\in I}$. Pruebe que las siguientes condiciones son equivalentes.

- a) Existe $\varphi:\prod_{e \in I} Mi \longrightarrow P$ en Mod(R) tal que para $i \in I, \pi_i \circ \varphi = Proy_i$
- b) $P y \{\pi_i : P \longrightarrow M_i\}_{i \in I}$ son un producto para $\{M_i\}_{i \in I}$

 $\begin{array}{ll} \textit{Demostraci\'on.} \ \ \overline{(a)\Rightarrow(b)} \ \ \text{Sean} \ \ M \in Mod\left(R\right) \ \ y \ \{f_i: M \longrightarrow M_i\}i \in I \\ \text{una familia de morfismos en } Mod\left(R\right). \ \ \text{Dado que} \ \prod_{i \in I} M_i \ \text{es un producto} \\ \text{para} \ \ \{M_i\}_{i \in I}, \ \text{existe un \'unico morfismo} \ \ f: M \longrightarrow \prod_{i \in I} M_i \ \text{tal que, para} \\ \text{cada} \ \ i \in I, \ Proy_i \circ f = f_i. \ \text{Adem\'as, por hip\'otesis, existe} \ \ \varphi: \prod_{i \in I} Mi \longrightarrow P \\ \text{en } Mod(R) \ \ \text{tal que para} \ \ i \in I, \ \pi_i \circ \varphi = Proy_i. \ \ \text{De modo que} \\ \end{array}$

$$\pi_i \circ \varphi \circ f = Proy_i \circ f = f_i$$

Más aún, esta f es única. En efecto, si $g: M \longrightarrow P$ un morfismo tal que, para $i \in I$, $\pi_i \circ \varphi \circ g = f_i$, entonces

$$Proy_i \circ g = \pi_i \circ \varphi \circ g = f_i$$

Como $\prod_{i\in I}M_i$ es un producto para $\{M_i\}_{i\in I},\, f=g.$ En consecuencia, P y $\{\pi_i:P\longrightarrow M_i\}_{i\in I}$ son un producto para $\{M_i\}_{i\in I}$.

Ej 3. Ejercicio 37.

Para $M \in f.l.(R)$, pruebe que:

- a) l(M) = 0 si y sólo si M = 0
- b) l(M) = 1 si y sólo si M es simple

Demostración. (a) Observe que si M=0, entonces $0=M_0=M$ es la única serie de composición de M, salvo repeticiones. De esta manera

l(M) = 0. Inversamente, si l(M) = 0, entonces la única serie de composición de M, salvo repeticiones, es $0 = M_0 = M$. M = 0.

(b) Para este inciso suponga que M es un R-módulo simple. En consecuencia, $L(M) = \{0, M\}$. Con lo cual, M tiene una serie de composición $0 = M_0 \le M_1 = M$. De modo que l(M) = 1. Por otro lado, suponga que l(M) = 1, y sea $0 = M_0 \le M_1 = M$ una serie de composición para M. $\therefore M \cong M/0 \cong M_1/M_0$ es simple.

Ej 4. Ejercicio 40.

Para una sucesión exacta $0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ en Mod(R), pruebe que: $B \in f.l.(R)$ si y sólo si $A, C \in f.l.(R)$

Demostración. \Longrightarrow Suponga que $B \in f.l.(R)$. Entonces B tiene una serie de composición \mathfrak{F} . Por el **Lema 2.1.1.a**), tanto $f^{-1}(\mathfrak{F})$ como $g(\mathbb{F})$ son series de composición de A y de C respectivamente. En consecuencia, $A, C \in f.l.(R)$.

 (\Leftarrow) Sean $\mathfrak{A} = \{A_i\}_{i=1}^n$ y $\mathfrak{C} = \{C_j\}_{j=1}^m$ series de composición para A y C, respectivamente. Luego, los $f(A_i)$ y los $g^{-1}(C_j)$ son submódulos de B. Definimos la serie $\mathfrak{B} = \{B_t\}_{t=1}^{m+n}$, donde $B_t = f(A_t)$ si $t \leq n$ y $B_t = g^{-1}(C_{t-n})$ si $n+1 \leq t \leq n+m$.

Ahora, dado que f es un monomorfismo, se tiene que $B_t\cong A_t$, para $t\leq n$. Y por otro lado, el teorema de la correspondencia y el tercer teorema de isomorfismo garantizan que $\frac{B_{t+1}}{B_t}=\frac{g^{-1}(C_{t+1})}{g^{-1}(C_t)}\cong \frac{C_{t-n+1}}{C_{t-n}}$ para cada $n+1\leq t\leq n+m$. Más aún, tenemos que los cocientes $\frac{B_{t+1}}{B_t}$ son simples, toda vez que los cocientes $\frac{A_{i+1}}{A_i}$ y $\frac{C_{j+1}}{C_j}$ lo son. De esta forma $\mathfrak B$ es una serie de composición para $B_t : B \in f.l.(R)$

Ej 5. Ejercicio 43.

Para $M \in Mod\left(R\right)$, pruebe que las siguientes condiciones son equivalentes.

- a) M es artiniano
- b) Para toda $\mathfrak{F}\subseteq L\left(M\right),$ con $\mathfrak{F}\neq\emptyset,$ existe un elemento mínimo en en (\mathfrak{F},\leq)

Demostración. (a) \Rightarrow (b) Dada \mathfrak{F} una familia no vacía de submódulos de M, sea $N_1 \in \mathfrak{F}$. Suponga que N_1 no es un elemento mínimo de \mathfrak{F} , de

este modo existe $N_2 \in \mathfrak{F}$ tal que $N_2 \nleq N_1$. Repitiendo este argumento, obtenemos una cadena de submódulos $N_1 \geq N_2 \geq \cdots$ en \mathfrak{F} . En virtud de que M es artiniano, existe $k \in \mathbb{N}$ tal que para cada $t \in \mathbb{N}$, $N_k = N_{k+t}$. $\therefore N_k$ es un elemento mínimo de \mathfrak{F} .

(b) \Rightarrow (a) Sea $N_1 \ngeq N_2 \trianglerighteq \cdots$ una cadena de submódulos de M. Considere $\mathfrak{F} = \{N_k\}_{k \in \mathbb{N}}$. Entonces, por hipótesis, \mathfrak{F} tiene elementos mínimos. Sea N_k uno de dichos mínimos. Dado que \mathfrak{F} es una cadena, $N_k = N_{k+t}$, para toda $t \in \mathbb{N}$. M es artiniano.

Ej 6. Ejercicio 46.

Para $M,N\in f.l.(R),$ pruebe que $M\coprod N\in f.l.(R)$ y que $l(M\coprod N)=l(M)+l(N).$

Demostración. Primero, del **Ejercicio 40** y de la exactitud de la sucesión $0 \longrightarrow M \stackrel{f}{\longrightarrow} M \coprod N \stackrel{g}{\longrightarrow} N \longrightarrow 0$, se tiene que $M \coprod N \in f.l.(R)$, ya que M,N tienen longitud finita. Más aún, dada una serie de composición $\mathfrak F$ para $M \coprod N$, el **Lema 2.1.1.b)** garantiza que

$$l_{\mathfrak{F}}\left(M\coprod N\right) = l_{f^{-1}(\mathfrak{F})}\left(M\right) + l_{g(\mathfrak{F})}\left(N\right)$$
$$\therefore l\left(M\coprod N\right) = l\left(M\right) + l\left(N\right).$$