

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15100080403

FCC REPORT (BLE)

Applicant: XTR S.A.C.

Address of Applicant: Av. Camino Real 1225 Of 201-A San Isidro LIMA/ PERU

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: X4.5

FCC ID: 2AGAK-X45

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 21 Oct., 2015

Date of Test: 21 Oct., to 06 Nov., 2015

Date of report issued: 09 Nov., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	09 Nov., 2015	Original

Reviewed by: Oney (her Date: 09 Nov., 2015

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	
	6.6.1	0	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
8		CONSTRUCTIONAL DETAILS	26

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	±3.28dB	Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	XTR S.A.C.
Address of Applicant:	Av. Camino Real 1225 Of 201-A San Isidro LIMA/ PERU
Manufacturer:	Shenzhen Richpad Communication Technology Co.,LTD.
Address of Manufacturer:	Room 315, HKUST SZ IER Building, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, P.R.C

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	X4.5
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	3.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model: X4.5
	Input:100-240V AC,50/60Hz 300mA
	Output:5V DC MAX 1A

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		
Operation mode	Keep the EUT in continuous transmitting with modulation	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCIS151000804RF

Report No: CCIS15100080403

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	HP 8447D		CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	· I PAP-1G18 I		04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz AFS33-18002 650-30-8P-44		GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Con	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 3.0 dBi.

6.2 Conducted Emission

T. (1 D. ()	F00 Peri 45 0 0 edit 45 00	7					
Test Requirement:	FCC Part 15 C Section 15.207	,					
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average						
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test procedure	 The E.U.T and simulators a line impedance stabiliz 50ohm/50uH coupling impound in the peripheral devices through a LISN that prowith 50ohm termination. test setup and photograph interference. In order to positions of equipment changed according to measurement. 	zation network (L.I.S.I) pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs). The are checked for find the maximum of and all of the interfine	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative				
Test setup:	Refere	nce Plane					
	AUX Equipment E.U Test table/Insulation pla Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Neutral:

Trace: 23

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

EUT : Smartphone Model : X4.5 Test Mode : BLE TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Remark

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∀	<u>dB</u>	₫B	dBu₹	dBu√	<u>dB</u>		
1	0.202	35.79	0.25	10.76	46.80	63.54	-16.74	QP	
2	0.211	20.35	0.25	10.76	31.36	53.18	-21.82	Average	
3	0.274	32.26	0.26	10.74	43.26	60.98	-17.72	QP	
4	0.274	19.09	0.26	10.74	30.09	50.98	-20.89	Average	
1 2 3 4 5 6 7 8 9	0.679	13.95	0.19	10.77	24.91	46.00	-21.09	Average	
6	0.697	26.18	0.18	10.77	37.13	56.00	-18.87	QP	
7	2.309	26.11	0.29	10.95	37.35	56.00	-18.65	QP	
8	9.654	10.57	0.25	10.92	21.74	50.00	-28.26	Average	
9	10.508	25.30	0.25	10.93	36.48	60.00	-23.52	QP	
10	12.716	10.81	0.25	10.91	21.97	50.00	-28.03	Average	
11	17.291	26.94	0.25	10.91	38.10	60.00	-21.90	QP	
12	17.568	13.79	0.26	10.90	24.95	50.00	-25.05	Average	

Report No: CCIS15100080403

Line:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Condition

EUT Smartphone Model : X4.5

Test Mode : BLE TX mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Viki

Remark

iomazii	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.211	36.00	0.28	10.76	47.04	63.18	-16.14	QP
2	0.211	18.49	0.28	10.76	29.53	53.18	-23.65	Average
3	0.277	32.90	0.26	10.74	43.90	60.90	-17.00	QP
2 3 4 5 6 7 8 9	0.277	17.41	0.26	10.74	28.41	50.90	-22.49	Average
5	0.337	30.74	0.27	10.73	41.74	59.27	-17.53	QP
6	0.337	16.80	0.27	10.73	27.80	49.27	-21.47	Average
7	0.486	28.11	0.29	10.76	39.16	56.23	-17.07	QP
8	0.494	13.93	0.29	10.76	24.98	46.10	-21.12	Average
9	0.686	15.50	0.22	10.77	26.49	46.00	-19.51	Average
10	2.133	27.10	0.26	10.95	38.31	56.00	-17.69	QP
11	3.547	26.51	0.28	10.90	37.69	56.00	-18.31	QP
12	4.797	6.81	0.29	10.86	17.96	46.00	-28.04	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-3.36		
Middle	-3.54	30.00	Pass
Highest	-4.04		

Test plot as follows:

Date: 21.0CT.2015 20:34:08 Lowest channel

Date: 21.0CT.2015 20:36:52 Middle channel

Date: 21.00tt.2015 20:37:21
Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.74		
Middle	0.71	>500	Pass
Highest	0.71		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	1.03			
Middle	1.04	N/A	N/A	
Highest	1.04			

Test plot as follows:

6dB EBW

Date: 21.0CT.2015 22:11:04

Lowest channel

Date: 21.0CT.2015 20:47:01

Middle channel

Date: 21.0CT.2015 20:45:54

Highest channel

99% OBW

Date: 5.NOV.2015 09:05:36

Lowest channel

Date: 21.0CT.2015 20:43:36

Middle channel

Date: 21.0CT.2015 20:44:21

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2				
Limit:	8 dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-4.06		
Middle	-4.13	8.00	Pass
Highest	-4.64		

Test plots as follow:

Date: 21.0CT.2015 20:50:01

Lowest channel

Date: 21.0CT.2015 20:50:59

Middle channel

Date: 21.0CT.2015 20:51:33

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 21.OCT.2015 20:40:47

Lowest channel

Date: 21.OCT.2015 20:39:21

Highest channel

6.6.2 Radiated Emission Method

Test Requirement: Test Method: ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1 Test Frequency Range: Z.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Above 1GHz Test Procedure: Test Procedure: Test Procedure: Test Procedure: Test Requirement: Test Requirement: ANSI C63.10: 2013 and KDB 558074v03r03 section 12.1 Test State: Measurement Distance: 3m Frequency Detector RBW VBW Rema RMS AMHz Average RMS AMHz Average Above 1GHz Test Procedure: Te
Test site: Measurement Distance: 3m
Test site: Receiver setup: Frequency Detector RBW VBW Rema
Frequency Detector RBW VBW Remanded Peak Vamily Peak Vamily Peak Name Peak Name Peak Name Peak Name
Limit: Peak 1MHz 3MHz Peak Varage Variable Peak Varage Variable Peak Varage Variable Peak Varia
Limit: Frequency Limit (dBuV/m @3m) Rema Above 1GHz S4.00 Average Normal Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters the ground at a 3 meter camber. The table was rotated 360 deto determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height at tower. The antenna height is varied from one meter to four meters also the ground to determine the maximum value of the field streng Both horizontal and vertical polarizations of the antenna are seen make the measurement. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters.
Limit: Frequency
Above 1GHz Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height a tower. 3. The antenna height is varied from one meter to four meters also the ground to determine the maximum value of the field streng Both horizontal and vertical polarizations of the antenna are seen make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters.
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height at tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength and vertical polarizations of the antenna are seen make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters.
the ground at a 3 meter camber. The table was rotated 360 de to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height a tower. 3. The antenna height is varied from one meter to four meters about the ground to determine the maximum value of the field strength and vertical polarizations of the antenna are seen make the measurement. 4. For each suspected emission, the EUT was arranged to its work case and then the antenna was tuned to heights from 1 meters.
to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lowe the limit specified, then testing could be stopped and the peak of the EUT would be reported. Otherwise the emissions that d have 10 dB margin would be re-tested one by one using peak peak or average method as specified and then reported in a d sheet.
Test setup: Horn Antenna Tower Ground Reference Plane Test Receiver Test Receiver
Test Instruments: Refer to section 5.7 for details
Test mode: Refer to section 5.3 for details
Test results: Passed

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone mode: : X4.5
Test mode : BLE-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK : : X4.5 Model

יוניוניו	600		Antenna Factor						
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
	2390.000 2390.000								

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Smartphone : X4.5 Model

Test mode : BLE-L Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki REMARK :

1 2

ш.		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∜		dB	<u>dB</u>	dBu√/m	dBuV/m	dB	 _
	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Smartphone : X4.5 Model

Test mode : BLE-H Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki REMARK :

шина	•	Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor							
-	MHz	dBuV	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
	2483.500									
2	2483.500	10.87	27.52	6.85	0.00	45.24	54.00	-8.76	Average	

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Smartphone : X4.5 EUT Model : BLE-H Mode Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki REMARK:

	Freq		Antenna Factor						Remark
	MHz	dBu₹	— <u>d</u> B/m	d <u>B</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
-	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 4.NOV.2015 09:39:22

30MHz~25GHz

Middle channel

Date: 23.0CT.2015 23:25:24

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 23:26:25

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205						
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark				
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak V								
	Above 1GHz	Peak Value							
	Above IGI12	Average Value							
Limit:	Frequency Limit (dBuV/m @3m) Remark								
	30MHz-88MHz 40.0 Quasi-peak Value								
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH	Z	46.0		Quasi-peak Value				
	960MHz-1GHz		54.0		Quasi-peak Value				
	Above 1GHz		54.0		Average Value				
Test Procedure:			74.0		Peak Value le 0.8 meters above				
	to determin 2. The EUT of antenna, we tower. 3. The antenre the ground Both horizon make the most case and the meters and to find the meters. 5. The test-respecified Both limit specified Both lim	e the position was set 3 m hich was more and height is was not and very measurement. Suspected enter the rota table maximum read exerciver systems and width with sion level of the would be resumargin would set and would be resumargin would set and would be resumargin would set and	n of the highest eters away funted on the trained from one the maximutical polarizations on the Enna was turned ding. In Maximum How EuT in peresting could be corted. Other do be re-tested.	st radiation. from the in op of a variance meter to um value or ions of the EUT was also to height from 0 deg to Peak Dolold Mode. ak mode wo stopped wise the end one by on	rotated 360 degrees aterference-receiving table-height antenna of four meters above of the field strength, antenna are set to arranged to its worst is from 1 meter to 4 rees to 360 degrees are tect. Function and the peak values missions that did not e using peak, quasimire ported in a data				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

: FCC PART15 CLASS B 3m

EUT : Smartphone

Model : X4.5

Test mode : BLE Mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

REMARK :

EWEVE									
	Freq		Antenna Factor					Over Limit	Remark
_	MHz	dBu₹	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	60.918	47.85	12.43	0.70	29.77	31.21	40.00	-8.79	QP
2	102.001	47.63	12.97						
3	198.588	48.01	10.57	1.38	28.84	31.12	43.50	-12.38	QP
4	400.432	33.89	15.10	2.12	28.78	22.33	46.00	-23.67	QP
5	449.556	32.41	15.57	2.25	28.87	21.36	46.00	-24.64	QP
6	597.223	29.57	18.40	2.62	28.95	21.64	46.00	-24.36	QP

Vertical:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT Smartphone Model X4.5 Test mode : BLE Mode Power Rating : AC 120V/60Hz

Lower Mating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Viki
REMARK

TURNITAL									
	Freq		Antenna Factor				Limit Line		Remark
_	MHz	dBu∇	$-\overline{dB}/\overline{m}$	dB	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	60.280	51.66	12.69	0.69	29.77	35.27	40.00	-4.73	QP
2	102.001	42.18	12.97	0.98	29.51	26.62	43.50	-16.88	QP
3	134.088	47.05	8.61	1.22	29.31	27.57	43.50	-15.93	QP
4	199.286	44.85	10.57	1.38	28.83	27.97	43.50	-15.53	QP
2 3 4 5	286.982	34.60	12.81	1.73	28.47	20.67	46.00	-25.33	QP
6	397.633	31.78	15.01	2.11	28.77	20.13	46.00	-25.87	QP

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	49.57	31.53	10.57	40.24	51.43	74.00	-22.57	Vertical
4804.00	49.20	31.53	10.57	40.24	51.06	74.00	-22.94	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	39.39	31.53	10.57	40.24	41.25	54.00	-12.75	Vertical
4804.00	39.25	31.53	10.57	40.24	41.11	54.00	-12.89	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	47.73	31.58	10.66	40.15	50.53	74.00	-23.47	Vertical
4884.00	48.44	31.58	10.66	40.15	2.09	74.00	-71.91	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	37.45	31.58	10.66	40.15	39.54	54.00	-14.46	Vertical
4884.00	38.70	31.58	10.66	40.15	40.79	54.00	-13.21	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.14	31.69	10.73	40.03	50.53	74.00	-23.47	Vertical
4960.00	49.52	31.69	10.73	40.03	51.91	74.00	-22.09	Horizontal

Test channel:			Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.60	31.69	10.73	40.03	39.99	54.00	-14.01	Vertical
4960.00	39.59	31.69	10.73	40.03	41.98	54.00	-12.02	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366