Assignment 02

Solution

(question number from PDF)

- Minimum = 0
 - No entity-set has total participation constraints
 - At minimum, no entity is required to participate in R
 - Hence, minimum is 0
- Maximum = 10
 - E3 has key constraint
 - E3 can participate in R at most 1 time
 - There are 10 entities in E3
 - Maximum is achieved when all E3 has participated
 - Hence, maximum is 10

- Minimum = 60
- Maximum = 60
 - Covering constraint means that every element in E0 must be in either E1, E2, or E3
 - Additionally, not satisfying overlap constraint means that entities in E1 cannot be in E2, etc
 - Hence, minimum = maximum = 15+20+25 = 60

- Minimum = 10
 - By covering constraint, minimum is 50-25-15 = 10
 - Since there are 10 entities in E0 not in either E1 or E2
- Maximum = 50
 - By overlap constraint, all entities in E0 can be in E3
 - Hence, maximum is 50

- Answer: C,E
 - Reasoning for C
 - Consider table E2 to mean combined relation R and entity E2
 - PK (a_1, a_2) ensures that
 - Every a_2 is in R
 - total participation constraint
 - There can be (a_1^1, a_2) and (a_1^2, a_2)
 - no key constraint
 - Every unique a_2 can uniquely identify an entity E2
 - by virtue of not having any other attributes
 - Reasoning for E
 - By translation of weak entity-set to SQL from lecture note

- Answer: E
 - Reasoning for NOT C
 - Consider table E2 to mean combined relation R and entity E2
 - PK (a_1, a_2) ensures that
 - Every a_2 is in R
 - total participation constraint
 - There can be (a_1^1, a_2) and (a_1^2, a_2)
 - no key constraint
 - a_2 cannot uniquely identify entity in E2
 - we can have (a_1^1,a_2,b_2^1) and (a_1^2,a_2,b_1^2) and thus violate PK of E2
 - Reasoning for E
 - By translation of weak entity-set to SQL from lecture note

- Answer: B,C
 - A. Consider (a, b) as PK, this cannot be enforced by column constraint
 - B. But (a, b) can be enforced by table constraint
 - PRIMARY KEY (a,b)
 - C. CHECK (a IS NOT NULL)
 - D. Consider the pair (a, b) as unique, this cannot be enforced by column constraint
 - Consider a integer UNIQUE, b integer UNIQUE
 - This means both a and b is individually unique
 - Need to use UNIQUE (a,b)
 - E. Since B,C is true, this statement is automatically false

- Answer: A,B,C
 - C1. No covering constraint is specified
 - C2. No overlap constraint is specified
 - C3. Should use double-line arrow between adventurer and registered (i.e., Adventurer ==> Registered)
 - C4. Correct use of double-line without arrow
 - C5. Since Party is a relationship, each tuple in Party consists of a triple (Fighter, Mage, Healer)

- Answer: C,D,E
 - C1. type can only be the three specified value
 - C2. type cannot be null
 - C3. gid is not part of Adventurer table
 - C4. gid is a PK, cannot have (gid_1, aid_1) and (gid_1, aid_2)
 - C5. Not checked if fighter have type='fighter', etc