

3.20 Voima P, joka vaikuttaa 10 kg massaan kuvan mukaisesti, kasvaa suoraviivaisesti ajan funktiona. Massan ja vaakatason välillä on lepokitkakerroin $\mu_s = 0,6$ ja liikekitkakerroin $\mu_k = 0,4$. Laske massan nopeus, kun t = 4 s.

Ratkaisu:

Lasketaan staattinen kitkavoima $F_{\mu s}$ ja dynaaminen kitkavoima $F_{\mu d}$:

$$F_{\mu s} = 0.6 \cdot 10 \, \text{kg} \cdot 9.81 \frac{\text{m}}{\text{s}^2} = 58.86 \, \text{N} \qquad F_{\mu d} = 0.4 \cdot 10 \, \text{kg} \cdot 9.81 \frac{\text{m}}{\text{s}^2} = 39.24 \, \text{N}$$

Voima P ajan funktiona: $P = 25 \frac{N}{s} \cdot t$

Kappaleen liikkeelle lähtö tapahtuu hetkellä t_1 : $25\frac{N}{s} \cdot t_1 = 58,86N \implies t_1 = 2,354s$ Sovelletaan impulssilausetta $I_{Rx} = p_{x2} - p_{x1}$ aikavälillä $t_1 \rightarrow 4s$:

$$12.5\frac{N}{s} \cdot 4^2 s^2 - 39.24 N \cdot 4 s - 12.5\frac{N}{s} \cdot 2.354^2 s^2 + 39.24 N \cdot 2.354 s = 10 kg \cdot v$$

$$\Rightarrow$$
 $v = 6.61 \frac{m}{s}$