Лабораторна робота 4

1.						
X	-2	-1	0	4	5	7
	0,12	0,18	0,2	0,3	0,17	0,03
p	0,12	0,10	0,2	0,3	0,17	0,03
2.						
X	-3	-1	0	1	3	5
p	0,13	0,17	0,2	0,3	0,18	0,02
3.						
X	-2	-1	0	1	3	4
p	0,15	0,2	0,25	0,2	0,15	0,05
4.						
X	2	4	7	9	12	15
p	0,05	0,15 0,35 0,2 0,15		0,1		
5.						
X	3	4	7	9	12	14
p	0,1	0,3	0,2	0,05	0,15	0,2
6.						
X	1	4	8	9	12	13
p	0,13	0,17	0,2	0,3	0,18	0,02
7.						
X	-5	-4	0	1	2	4
p	0,15	0,2	0,25	0,2	0,15	0,05
8.						
X	-2	-1	0	1	4	6
p	0,12	0,28	0,22	0,18	0,12	0,08
9.						
X	-7	-5	-2	1	5	9
p	0,13	0,17	0,2	0,3	0,18	0,02

4	$^{\circ}$	
-	()	
- 1	v	

X	-8	-6	-2	1	5	6
p	0,12	0,28	0,22	0,18	0,12	0,08

11.

X	-3	-2	0	1	2	4	
	0.12	0.17	0.2	0.2	0.10	0.02	
p	0,13	0,17	0,2	0,3	0,18	0,02	

12.

	X	-6	-5	-2	3	5	7
İ	p	0,13	0,17	0,2	0,3	0,18	0,02

13.

X	-8	-4	-2	2	5	8	
p	0,12	0,18	0,2	0,3	0,17	0,03	

14.

X	-10 -5		-2	1	5	10	
p	0,12	0,28	0,22	0,18	0,12	0,08	

15.

X	-9	-5	-1	1	5	7	
p	0,05	0,15	0,35	0,2	0,15	0,1	

Завдання 2.

Проводять k незалежних випробувань, в яких імовірність успіху для кожного з них дорівнює p. Скласти ряд розподілу випадкової величини X – кількості успішних випробувань та обчислити основні числові характеристики.

Варіант	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
p	0.2	0.55	0.3	0.4	0.6	0.2	0.45	0.3	0.25	0.6	0.4	0.3	0.35	0.3	0.45
k	3	2	4	3	5	4	3	5	3	2	4	5	4	2	6

Завдання 3.

- 3.1. Завод випускає 96% виробів першого сорту та 4% виробів другого сорту. Навмання відібрали партію з 100 виробів. Побудувати закон розподілу ймовірностей дискретної випадкової величини X кількості виробів другого сорту в цій вибірці, зобразити многокутник розподілу, знайти функцію розподілу ймовірностей F(x); обчислити M(X), D(X), $\sigma(X)$.
- 3.2. Радіотелефонна станція отримує цифровий текст. Внаслідок атмосферних завад імовірність спотворення цифри в середньому дорівнює 0,001. Було отримано текст, що налічує 2000 цифр. Записати закон розподілу дискретної випадкової величини X кількості спотворених цифр в отриманому тексті, функцію розподілу ймовірностей F(x); обчислити M(X), D(X), $\sigma(X)$ та побудувати многокутник розподілу.
- 3.3. Серед 12 однотипних телевізорів 8 відповідають вимогам стандарту, а решта ні. Побудувати закон розподілу дискретної випадкової величини X кількості телевізорів, що відповідають вимогам стандарту серед 4 навмання взятих. Обчислити M(X), D(X) та побудувати многокутник розподілу.
- 3.4. Телефонна станція обслуговує 1000 абонентів. Імовірність того, що протягом години абонент розмовлятиме по телефону дорівнює, в середньому, 0,002. Знайти M(X), D(X), $\sigma(X)$ дискретної випадкової величини X кількості абонентів, що розмовляють протягом години; функцію розподілу ймовірностей та побудувати многокутник розподілу.
- 3.5. Серед 10 однотипних планшетів 8 відповідають вимогам стандарту, а решта ні. Побудувати закон розподілу дискретної випадкової величини X кількості планшетів, що відповідають вимогам стандарту серед 6 навмання взятих. Обчислити M(X), D(X) та побудувати многокутник розподілу.
- 3.6. Побудувати ряд розподілу випадкової величини X-кількості попадань м'ячем у кошик при двох киданнях, якщо ймовірність попадання дорівнює 0,4. Знати математичне сподівання, дисперсію та середньоквадратичне відхилення, побудувати многокутник розподілу.
- 3.7. На шляху руху автомобіля стоять п'ять світлофорів, кожний із яких з імовірністю 0,5 дозволяє або забороняє рух. Побудувати закон розподілу ймовірностей дискретної випадкової X кількості світлофорів, що їх автомобіль промине без затримки, та обчислити M(X), D(X), $\sigma(X)$.

- 3.8. Чотири прилади потрібно перевірити на надійність. Імовірність того, що прилад витримає перевірку на надійність, для кожного дорівнює 0,8. Побудувати закон розподілу дискретної випадкової величини X кількості приладів, які пройшли випробування.
- 3.9. На заводі можуть одночасно працювати три однотипних верстати, які вмикаються незалежно. Ймовірність того, що в даний момент працює перший, другий чи третій верстат дорівнює 0,2; 0,5; 0,3 відповідно. Записати ряд розподілу для дискретної випадкової величини X кількості одночасно працюючих верстатів та обчислити M(X), D(X), $\sigma(X)$.
- 3.10. Під час виготовлення деталі робітникові необхідно виконати чотири незалежні між собою технологічні операції. Імовірність того, що при виконанні першої операції робітник не допустить дефекту, дорівнює 0,95; для другої, третьої і четвертої операцій ця ймовірність становить відповідно 0,9; 0,85; 0,8. Побудувати закон розподілу дискретної випадкової величини X-кількості операцій, під час виконання яких робітник не допустить браку.
- 3.11. Серед 15 однакових мобільних телефонів телевізорів 14 відповідають вимогам стандарту. Побудувати закон розподілу дискретної випадкової величини X кількості телефонів, що відповідають вимогам стандарту серед 2 навмання взятих. Обчислити M(X), D(X) та побудувати функцію розподілу.
- 3.12. Побудувати ряд розподілу випадкової величини X суми числа очок, які можуть з'явитися при киданні двох гральних кубиків. Обчислити M(X) та D(X), $\sigma(X)$.
- 3.13. Пристрій складається із чотирьох приладів, які працюють незалежно один від одного. Ймовірності відмови приладів наступні: $p_1=0,3;$ $p_2=0,4;$ $p_3=0,5;$ $p_4=0,6.$ Знайти закон розподілу випадкової величини X- кількості приладів, які відмовили та обчислити $M(X),\ D(X),\ \sigma(X).$
- 3.14. Двічі кидають монету. Нехай дискретна випадкова величина X- кількість випадань герба. Знайти розподіл ймовірностей випадкової величини X, ,функцію розподілу ймовірностей F(x); обчислити M(X), D(X), $\sigma(X)$ та побудувати многокутник розподілу.

3.15. Імовірність того, що футболіст реалізує одинадцятиметровий штрафний удар дорівнює 0,9. Футболіст виконав три такі удари. Побудувати закон розподілу ймовірностей дискретної випадкової величини X – кількості реалізованих штрафних. Обчислити M(X), D(X), $\sigma(X)$.

Завдання 4
Задано ряд розподілу випадкової величини

Xi	-5	-4	-3	-1	1	4	7	10	11	14
p _i	0,02	0,03	0,1	0,05	0,2	0,04	a	0,03	0,1	0,13

Побудувати та обчислити:

- а) Многокутник розподілу.
- б) Функцію розподілу.
- в) Графік функції розподілу.
- г) Моду.
- д) Оцінити медіану.
- е) Математичне сподівання.
- ϵ) Дисперсію.
- ж) Середнє квадратичне відхилення.
- з) Асиметрію.
- и) Ексцес.

Теоретичні запитання до теми

- 1. Означити випадкову величину та навести приклади.
- 2. Пояснити відмінність ДВВ від НВВ.
- 3. Означити закон розподілу ДВВ та пояснити побудову многокутника розподілу.
 - 4. Пояснити на прикладі побудову функції розподілу ДВВ.
- 5. Записати числові характеристики дискретної випадкової величини та формули їх обчислення.
- 6. Пояснити на прикладі обчислення математичного сподівання за формулою та за допомогою функцій Excel.

- 7. Пояснити на прикладі обчислення дисперсії за формулою за допомогою функцій Excel.
 - 8. Навести приклади використання функції БИНОМРАСП.
 - 9. Навести приклади використання функції ПУАССОН.
- 10. Пояснити використання *«итегральная»* 0 чи 1 для обчислень у функціях **БИНОМРАСП, ПУАССОН.**