

## CENTRAL LIMIT THEOREM

## Why

The (normalized) sum of several independent and identically distributed random variables tends toward a normal distribution.<sup>1</sup>

## Result

**Proposition 1.** Let  $(X, \mathcal{A}, \mu)$  be a probability space. Let  $(f_n)_n$  be a sequence of independent and identically distributed real-valued random variables on X with  $\mathbf{E}(f_n) = \mu < \infty$  and  $\mathrm{var}(f_n) = \sigma^2 < \infty$  for all n. Define  $s_n = \sum_{i=1}^n f_i$ . For all real numbers t,

$$\lim_{n \to \infty} \mu \left\{ x \in X \mid \frac{s_n(x) - n\mu}{\sigma \sqrt{n}} \le t \right\} = \Phi(t).$$

<sup>&</sup>lt;sup>1</sup>Future editions may modify this statement and further specify the word "tends."

