

BLG 231E - Digital Circuits Assignment 4

Student ID: 150200054

Full Name: Aslı Yel

1. The combinational circuit shown on the right performs arithmetic operations on three 4-bit integers, A, B, and C based on the values of inputs x and y, as explained in the table below. We ignore carry, borrow, and overflow for this circuit.

ху	Operation
00	Z = A + B
01	Z = 2A
10	Z = B - C
11	Z = A - C

Design this circuit using <u>only</u> a single parallel adder, two 4-bit 2:1 MUXs, and NOT gates. Use the fewest possible number of gates and multiplexers to make your circuit design as simple as possible. (<u>Note:</u> A 4-bit 2:1 MUX has two inputs, each having a size of 4 bits.)

Implement and test the circuit using the Logisim tool. Do not show the internal structure of the parallel adder; show it only as a block. <u>Fully label</u> all inputs and outputs. <u>Write your name and student ID</u> at the top of the **.circ** file.

Explain briefly how your circuit works. Create a pdf file for your explanations.

With the NOT gate here, not the integer C but the 1's complement of C (C) is the input1 of mux1. This is for taking the advantage of 2's compenent operation while we use parallel adder as a subtracter.

When x=1, mux1 selects \overline{C} and carry input value of the parallel adder is 1. In this case;

 $Z = < integer selected by mux2 > + \overline{C} + 1$

Z = <integer selected by mux2> + 2's complement(C)

Z = < integer selected by mux2> - C

A subtraction operation is carried out by the parallel adder. In our case, it is either B-C or A-C depending on the value of input y.

While inputs of multiplexers are fixed, those of the parallel adder are not since they are a combination of the changable outputs of the multiplexers.

When x=0, mux1 selects A and carry input value of the parallel adder is 0. In this case; Z = A + integer selected by mux2> + 0

Z = A + < integer selected by mux2>

An addition operation is carried out by the parallel adder. In our case, it is either A+B or A+A depending on the value of input y.

x	у	integer selected by mux1	integer selected by mux2	inputs of parallel adder	carry	What happens through the circuit?	Z
0	0	A	В	A and B	0	$ \begin{array}{c} x=0 \to mux1 \text{ selects A} \\ y=0 \to mux2 \text{ selects B} \\ x=0 \to carry \text{ input is } 0 \end{array} \right] \text{these ara added by} $	A+B+0 = A+B
0	1	A	A	A and A	0	$ \begin{array}{c} x=0 \to mux1 \text{ selects A} \\ y=1 \to mux2 \text{ selects A} \\ x=0 \to carry \text{ input is } 0 \end{array} \right] \text{these ara added by} $	A+A+0=2A
1	0	C	В	\mathbf{B} and $\overline{\mathbf{C}}$	1	$ \begin{array}{c} x=1 \rightarrow mux1 \text{ selects } \overline{C} \\ y=0 \rightarrow mux2 \text{ selects } B \\ x=1 \rightarrow carry \text{ input is } 1 \end{array} \right] \text{these ara added by} $	$B+\overline{C}+1=B-C$
1	1	C	A	A and \overline{C}	1	$ \begin{array}{c} x=1 \rightarrow mux1 \text{ selects } \overline{C} \\ y=1 \rightarrow mux2 \text{ selects } A \\ x=1 \rightarrow carry \text{ input is } 1 \end{array} \right] \text{these ara added by} $	$A + \overline{C} + 1 = A - C$