Analyse Mathématique

Cours n°1

EPITA Cyber 1 2024-2025

1 Introduction

Ce cours est un préambule au cours "Complexité Algorithmique" du semestre 3. Il présente les notions mathématiques fondamentales pour étudier la complexité d'un algorithme, c'est-à-dire, étudier le temps d'exécution d'un algorithme.

Motivation

Considérons le problème suivant : un étudiant de l'Epita souhaite se rendre de la Défense au Kremlin-Bicêtre en métro. Il demande donc à une application de trouver le chemin le plus court. L'application peut utiliser deux algorithmes différents :

- L'algorithme A : algorithme dit par "brute force" (qui génère tous les chemins possibles, calcul la durée de chaque chemin, et retourne le plus court),
- \bullet L'algorithme B: algorithme de Dijkstra (qui est très efficace pour calculer un plus court chemin).

Le temps d'exécution 1 de ces algorithmes varie en fonction du nombre total de stations de métro (~ 300 stations de métro à Paris). Le tableau suivant résume le temps d'exécution de ces algorithmes en fonction du nombre de stations de métro.

Nombre de stations	50	100	200	300	500	1000	5000
Temps Algo. A (en ms)	0,13	1	8	27	125	1000	125 000
Temps Algo. B (en ms)	0,010	0,05	0,2	0,5	1	7	200

On observe que le temps d'exécution de l'algorithme A croît très vite par rapport à celui de l'algorithme B. Dans un réseau de transport avec 5000 stations, l'algorithme A nécessitera plusieurs minutes de calculs, tandis que l'algorithme B prendra moins d'une seconde.

 \rightarrow L'étude de la complexité d'un algorithme fournit une estimation du temps d'exécution d'un algorithme. Cela permet d'évaluer son utilité en pratique et de choisir l'algorithme le mieux adapté à une situation.

Dans ce cours, nous présenterons les notions mathématiques nécessaires pour cette étude, à savoir : les suites numériques (introduction, calcul de somme, limites), ainsi que la comparaison asymptotique de suite à l'aide des notations de Landau.

^{1.} Par simplification, on définie le temps d'exécution d'un algorithme comme étant le nombre d'opérations élémentaires qu'effectue l'algorithme dans le pire des cas, divisé par 10^9 (considérant un processeur avec 1GHz de fréquence). De plus, le nombre d'opérations élémentaires est estimé à n^3 pour l'algorithme A et à $n^2 * log(n)$ pour l'algorithme B.

2 Introduction aux suites numériques

2.1 Généralités

Définition

Une suite numérique est une liste infinie de nombres réels :

$$3 \; ; \; 4 \; ; \; 27,1 \; ; \; -2 \; ; \; 7 \; ; \; \cdots$$

On peut l'écrire sous la forme suivante :

$$u_0 = 3$$
 ; $u_1 = 4$; $u_2 = 27, 1$; $u_3 = -2$; $u_4 = 7$; \cdots

Une suite est donc une fonction u définie sur \mathbb{N} à valeurs dans \mathbb{R} , c'est-à-dire que pour tout $n \in \mathbb{N}$, u associe $u(n) \in \mathbb{R}$. En général, u(n) sera noté u_n .

Exemples de suites :

1.
$$u_0 = 3$$
 ; $u_1 = 4$; $u_2 = 27, 1$; $u_3 = -2$; $u_4 = 7$; \cdots

2.
$$\forall n \in \mathbb{N}, \quad u_n = n^2 - 1$$
.
On a alors, $u_0 = 0^2 - 1 = -1$; $u_1 = 1^2 - 1 = 0$; · · ·

3.
$$\forall n \in \mathbb{N}, n \ge 6$$
, $u_n = \frac{1}{n-5}$.
On a alors, $u_6 = \frac{1}{6-5} = 1$; $u_7 = \frac{1}{7-5} = \frac{1}{2}$; ...

4.
$$\forall n \in \mathbb{N}$$
, $u_{n+1} = 3u_n + 2$ et $u_0 = 4$.
On a alors, $u_0 = 4$; $u_1 = 3 \times u_0 + 2 = 3 \times 4 + 2 = 14$; $u_2 = 3 \times u_1 + 2 = 3 \times 14 + 2 = 44$; \cdots

Remarques:

- Dans les exemples 1, 2 et 4, le premier terme de la suite est u₀. Dans l'exemple 3, le premier terme est u₆. Le premier terme d'une suite peut être : u₀ ou u₆ ou u₂₀₂₅!
 Le premier terme d'une suite est noté u_{n0} avec n₀ ∈ N.
- 2. Dans la suite du cours $(u_n)_{n\geq n_0}$ désigne toute la liste :

$$u_{n_0}$$
 ; u_{n_0+1} ; u_{n_0+2} ; ...

3. Pour désigner une suite, on peut écrire

$$(u_n)_{n>n_0}$$
 ou $(u_n)_{n\in\mathbb{N}}$ ou (u_n) ou u .

Dans les deux derniers cas, le premier terme n'est pas précisé!

On appelle u_n le terme général de la suite (u_n) . On dit aussi que la suite (u_n) est de terme général u_n .

Mode de définition d'une suite

Une suite peut être définie de plusieurs manières :

1. La donnée de toute la liste des termes de la suite :

 u_0 ; u_1 ; u_2 ; \cdots ou u_{n_0} ; u_{n_0+1} ; u_{n_0+2} ; \cdots

2. La donnée du terme général u_n de la suite (u_n) :

 $\forall n \in \mathbb{N}, \quad u_n = n^2 - 1$.

On peut écrire ce terme sous la forme $\forall n \in \mathbb{N}, u_n = f(n)$, où f est une fonction définie de \mathbb{R} dans \mathbb{R} , par $f(x) = x^2 - 1$.

3. Par une relation de récurrence entre u_{n+1} et u_n :

 $\forall n \in \mathbb{N}, \quad u_{n+1} = 3u_n + 2 .$

On peut écrire ce terme sous la forme $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$, où f est une fonction définie de \mathbb{R} dans \mathbb{R} par f(x) = 3x + 2.

Ici, la donnée du premier terme u_0 est capital pour calculer tous les termes de la suite $u_1=3u_0+2$; $u_2=3u_1+2$; \cdots

Pour calculer u_{37} , il faut d'abord déterminer u_{36} . Et pour calculer u_{36} , il faut d'abord déterminer u_{35} ; \cdots

Cas particulier de suites définies par une relation de récurrence :

 $\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b \quad \text{ où } a \in \mathbb{R} \text{ et } b \in \mathbb{R},$

1. Si a = 1

Alors $\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + b.$

2. Si b = 0

Alors $\forall n \in \mathbb{N}, \quad u_{n+1} = au_n.$

Exemples:

Pour a = 1 et b = 3: $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + 3$.

Pour $u_0 = 1$, on a $u_1 = 1 + 3 = 4$; $u_2 = 4 + 3 = 7$; \cdots

Pour a = 5 et b = 0: $\forall n \in \mathbb{N}$, $u_{n+1} = 5u_n$.

Pour $u_0 = 2$, on a $u_1 = 5 \times 2 = 10$; $u_2 = 5 \times 10 = 50$; ...

Exercices (Généralités)

- 1. Calculer les 5 premiers termes des suites ci-dessous :
 - (a) $\forall n \in \mathbb{N}, \quad u_n = 3n 1.$
 - (b) $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n$, avec $u_0 = 2$.

- (c) $\forall n \in \mathbb{N}, n \ge 4, \quad u_n = (n+3)/2.$
- 2. soit (u_n) une suite définie par $\forall n \in \mathbb{N}$, $u_n = 3n^2 + 1$.

Déterminer, en fonction de n, les termes suivants :

- (a) u_{n+1} .
- (b) u_{2n+1} .
- (c) u_{3n+2} .
- 3. Soit f une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} par $\forall x \in \mathbb{R}$, f(x) = 2x 5.
 - (a) Soit (u_n) une suite définie par $\forall n \in \mathbb{N}, \quad u_n = f(n)$. Détérminer le 3ème terme, u_2 de cette suite.
 - (b) Soit (v_n) une suite définie par $\forall n \in \mathbb{N}$, $v_{n+1} = f(v_n)$ et $v_0 = 4$. Détérminer le 3ème terme, v_2 de cette suite.
- 4. Donner l'expression du terme général, u_n , de la suite des nombres pairs, c'est-à-dire $u_0 = 2$; $u_1 = 4$, $u_2 = 6$, \cdots .

Donner l'expression du terme général, v_n , de la suite des nombres impairs, c'est-à-dire $v_0 = 1; v_1 = 3, v_2 = 5, \cdots$

2.2 Représentation graphique d'une suite

- 1. Représentation sur la droite réelle.
- 2. Représentation sur le plan
- 3. Représentation sur le plan dans le cas où $u_n = f(n)$.
- 4. Représentation sur le plan dans le cas où la suite est définie par une relation de récurrence : $u_{n+1} = f(u_n)$.

Exercices (Représentation graphique)

- 1. Soit (u_n) la suite définie par $\forall n \in \mathbb{N}, \quad u_n = 3n-1$. (Exercice 1 de la section précédente!)
 - (a) Représenter les 5 premiers termes de cette suite sur la droite réelle.
 - (b) Représenter les cinq premiers termes de cette suite sur le plan.
- 2. Soit (u_n) la suite définie par $\forall n \in \mathbb{N}, \quad u_n = (-1)^n$.
 - (a) Représenter cette suite sur la droite réelle.
 - (b) Représenter cette suite sur le plan.
- 3. Soit f une fonction définie sur $\mathbb{R}+$ à valeurs dans $\mathbb{R}+$ par $\forall x \in \mathbb{R}+$, $f(x)=\sqrt{x}$.
 - (a) Soit (u_n) une suite définie par $\forall n \in \mathbb{N}, \quad u_n = f(n)$. Représenter cette suite sur le plan.
 - (b) Soit (v_n) une suite définie par $\forall n \in \mathbb{N}$, $v_{n+1} = f(v_n)$ et $v_0 = 16$. Représenter cette suite sur le plan.

2.3 Sens de variation : suite croissante, suite décroissante

Suite croissante

Une suite (u_n) est croissante si $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$. Une suite (u_n) est strictement croissante si $\forall n \in \mathbb{N}, u_n < u_{n+1}$.

Exemple:

- La suite de terme général $\forall n \in \mathbb{N}, u_n = 3 * n$ est croissante.
- La suite définie par $\forall n \in \mathbb{N}, u_{n+1} = u_n + 2$, avec $u_0 = 1$ est strictement croissante.

Suite décroissante

Une suite (u_n) est décroissante si $\forall n \in \mathbb{N}, u_n \geq u_{n+1}$. Une suite (u_n) est strictement décroissante si $\forall n \in \mathbb{N}, u_n > u_{n+1}$.

Exemple:

- La suite de terme général $\forall n \in \mathbb{N}, u_n = 1/(n+1)$ est décroissante.
- La suite définie par $\forall n \in \mathbb{N}, u_{n+1} = u_n 13$, avec $u_0 = 20$ est strictement décroissante.

Suite monotone

Une suite (u_n) est monotone si elle est croissante ou décroissante.

Une suite (u_n) est strictement monotone si elle est strictement croissante ou strictement décroissante.

Suite constante

Une suite (u_n) est constante si $\forall n \in \mathbb{N}, \quad u_n = u_{n+1}$.

Remarque:

1. Ces définitions peuvent être reformulées pour les suites vérifiant les inégalités seulement à partir d'un certain rang :

Une suite (u_n) est croissante à partir d'un certain rang si $\exists n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0, u_n \leq u_{n+1}$.

Exemple : La suite définie par $\forall n \in \mathbb{N}, u_n = (n-10)^2$ est croissante à partir du rang $n_0 = 10$.

Etude du sens de variation d'une suite

Pour déterminer le sens de variation d'une suite numérique u_n , on étudie le signe de l'expression :

$$u_{n+1} - u_n$$

Par exemple, lorsque $\forall n \in \mathbb{N}, u_{n+1} - u_n \geq 0$, nous pouvons en déduire que u_n est croissante.

Exemples:

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = 3n - 4.$$

On va montrer que la suite (u_n) est strictement croissante.

Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = 3(n+1) - 4 - (3n-4) = 3n+3-4-3n+4 = 3.$$

Comme 3>0 alors $u_{n+1}-u_n>0$, d'où $u_{n+1}>u_n.$

On a donc,

$$\forall n \in \mathbb{N}, u_{n+1} > u_n.$$

La suite (u_n) est alors strictement croissante.

2. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = -3n^2 + 6.$$

On va montrer que la suite (u_n) est strictement décroissante.

Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = -3(n+1)^2 + 6 - (-3n^2 + 6) = -3(n^2 + 2n + 1) + 6 + 3n^2 - 6 = -3n^2 - 6n - 3 + 6 + 3n^2 - 6 = -6n - 3$$
. Comme $-6n - 3 < 0$ (car $n \ge 0$) alors $u_{n+1} - u_n < 0$ d'où $u_{n+1} < u_n$.

On a donc,

$$\forall n \in \mathbb{N}, u_{n+1} < u_n.$$

La suite (u_n) est alors strictement décroissante.

3. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = n^2 - 5n + 3.$$

On va montrer que la suite (u_n) est strictement croissante à partir d'un certain rang.

Soit $n \in \mathbb{N}$,

$$u_{n+1} - u_n = (n+1)^2 - 5(n+1) + 3 - (n^2 - 5n + 3) = n^2 + 2n + 1 - 5n - 5 + 3 - n^2 + 5n - 3 = 2n - 4.$$

On va déterminer le signe de 2n-4.

$$2n-4>0 \iff 2n>4 \iff n>2.$$

Alors, si n > 2, $u_{n+1} - u_n > 0$ d'où $u_{n+1} > u_n$.

On a donc,

$$\forall n \geq 3, u_{n+1} > u_n.$$

La suite (u_n) est alors strictement croissante à partir de rang $n_0 = 3$.

Exercices:

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = 3^n.$$

Démontrez que la suite (u_n) est strictement croissante.

2. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = (\frac{1}{3})^n.$$

Démontrez que la suite (u_n) est strictement décroissante.

3. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = (-1)^n.$$

La suite (u_n) est-elle monotone?

Remarque:

Dans le cas où (u_n) est une suite strictement positive (c'est-à-dire, $\forall n \in \mathbb{N}, u_n > 0$), nous pouvons aussi étudier l'expression :

$$\frac{u_{n+1}}{u_n}$$

et déterminer si cette fraction est supérieur ou inférieur à 1.

Par exemple, si $\forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} \geq 1$ alors la suite (u_n) est croissante. En effet, $(\forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} \geq 1)$ est équivalent à $(\forall n \in \mathbb{N}, \quad u_{n+1} \geq u_n)$.

Exemples:

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = 3^n.$$

On va montrer que la suite (u_n) est strictement croissante.

Soit $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \frac{3^{n+1}}{3^n} = 3.$$

Comme 3 > 1 alors $\frac{u_{n+1}}{u_n} > 1$.

On a donc,

$$\forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} > 1.$$

La suite (u_n) est alors strictement croissante.

2. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = (\frac{1}{3})^n.$$

On va montrer que la suite (u_n) est strictement décroissante.

Soit $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \frac{\frac{1}{3^{n+1}}}{\frac{1}{3^n}} = \frac{1}{3}.$$

Comme $\frac{1}{3} < 1$ alors $\frac{u_{n+1}}{u_n} < 1$.

On a donc,

$$\forall n \in \mathbb{N}, \quad \frac{u_{n+1}}{u_n} < 1.$$

La suite (u_n) est alors strictement décroissante.

2.4 Suites majorées, suites minorées et suites bornées

Définition

 (u_n) est une suite majorée si : $\exists M \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}$, $u_n \leq M$.

 (u_n) est une suite minorée si : $\exists m \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}$, $m \leq u_n$.

 (u_n) est une suite bornée si : $\exists K \in \mathbb{R}$ tel que $\forall n \in \mathbb{N}$, $|u_n| \leq K$.

Remarque : Si une suite est bornée alors elle est majorée et minorée et réciproquement, si une suite est majorée et minorée alors elle est bornée.

Exemples:

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}^*, u_n = \frac{1}{n}.$$

On va montrer que la suite (u_n) is majorée.

On a: $u_1 = 1$; $u_2 = \frac{1}{2}$; ...

On a donc, $\forall n \in \mathbb{N}^*$, $u_n \leq 1$.

La suite (u_n) est donc majorée (M=1).

2. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}^*, u_n = \frac{1}{n}.$$

On va montrer que la suite (u_n) is minorée.

On a: $u_1 = 1$; $u_2 = \frac{1}{2}$; \cdots

On a donc, $\forall n \in \mathbb{N}^*$, $u_n \ge 0$.

La suite (u_n) est donc minorée (m=0).

3. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}^*, u_n = \frac{1}{n}.$$

On va montrer que la suite (u_n) est borée.

On sait déjà que la suite est majorée et minorée donc elle est bornée.

(On a, $\forall n \in \mathbb{N}^*$, $|u_n| \leq 1$).

4. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = 3n + 4.$$

On va montrer que la suite (u_n) n'est pas majorée.

On va raisoner par l'absurde.

Supposons que la suite (u_n) est majorée

alors:
$$\exists M \in \mathbb{R} \quad t.q. \quad \forall n \in \mathbb{N} \quad , \quad u_n \leq M$$

$$\iff$$
 \exists $M \in \mathbb{R}$ $t.q.$ $\forall n \in \mathbb{N}$, $3n + 4 \le M$

$$\iff \quad \exists \quad M \in \mathbb{R} \quad t.q. \quad \forall n \in \mathbb{N} \quad , \quad 3n+4 \leq M$$

$$\iff \quad \exists \quad M \in \mathbb{R} \quad t.q. \quad \forall n \in \mathbb{N} \quad , \quad n \leq \tfrac{M-4}{3}.$$

Absurde!

Donc la suite (u_n) n'est pas majorée.

5. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = -3n + 2.$$

On va montrer que la suite (u_n) n'est pas minorée.

On va raisoner par l'absurde.

Supposons que la suite (u_n) est minorée

alors:
$$\exists m \in \mathbb{R} \ t.q. \ \forall n \in \mathbb{N} \ , m \leq u_n$$

$$\iff \quad \exists \quad m \in \mathbb{R} \quad t.q. \quad \forall n \in \mathbb{N} \quad , \quad m \le -3n+2$$

$$\iff \quad \exists \quad m \in \mathbb{R} \quad t.q. \quad \forall n \in \mathbb{N} \quad , \quad 3n \le 2 - m$$

$$\iff \quad \exists \quad m \in \mathbb{R} \quad t.q. \quad \forall n \in \mathbb{N} \quad , \quad n \leq \frac{2-m}{3}.$$

Absurde!

Donc la suite (u_n) n'est pas minorée.

Exercices:

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = (-1)^n.$$

Démontrez que la suite (u_n) est bornée.

2. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = 2^n.$$

Démontrez que la suite (u_n) n'est pas majorée (en raisonnant par l'absurde).

3. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_n = -2^n.$$

Démontrez que la suite (u_n) n'est pas bornée.

3 Le raisonnement par récurrence :

Le raisonnement par récurrence fait intervenir trois notions mathématiques :

- une propriété P(n) qui dépend d'un entier naturel n,
- l'hérédité de la propriété : si P(n) est vraie alors P(n+1) est vraie,
- l'initialisation : un entier n_0 pour lequel $P(n_0)$ est vraie.

3.1 Exemple introductif

Pour la rentrée du S2, un étudiant prend une bonne résolution et affirme à son professeur :

"Pour ce semestre, je ferai des efforts pour être moins en retard en cours. Cependant, si je suis un retard à un cours, alors je serai en retard au cours suivant."

Le début du semestre se déroule très bien car l'étudiant n'est pas en retard à un seul cours. Suite à un problème de transport, l'étudiant arrive pour la première fois du semestre en retard au cours n°3. Suivant son affirmation, l'étudiant arrivera alors en retard au cours suivant, le cours n°4. En retard au cours n°4, l'étudiant arrivera également en retard au cours n°5, et ainsi de suite jusqu'à la fin du semestre.

Cet exemple peut s'écrire mathématiquement comme suit :

- Propriété : Soit la propriété P(n) "L'étudiant est en retard au cours numéro n".
- Hérédité : L'affirmation de l'étudiant "Si je suis en retard à un cours, alors je serai en retard au cours suivant." correspond à l'hérédité de la propriété :

$$\forall n \in \mathbb{N}$$
, Si $P(n)$ est vraie, alors $P(n+1)$ est vraie.

- Initialisation : L'étudiant arrive en retard au cours n°3, on a donc "P(3) est vraie".
- Conclusion : Avec l'initialsation et l'hérédité, on peut conclure que P(n) est vraie pour tout $n \geq 3$, c'est-à-dire, l'étudiant sera en retard à chaque cours à partir du cours n°3.

3.2 Principe du raisonnement par récurrence

Théorème

Soit P(n) une propriété dépendant d'un entier naturel n. On suppose que :

- 1. P(0) est vraie
- 2. $\forall n \in \mathbb{N} \text{ t.q. si } P(n) \text{ est vraie alors } P(n+1) \text{ est vraie}$

Alors $\forall n \in \mathbb{N}$, P(n) est vraie.

Théorème (Version "à partir d'un certain rang") Soit P(n) une propriété dépendant d'un entier naturel n. On suppose que :

- 1. $P(n_0)$ est vraie pour un $n_0 \in \mathbb{N}$
- 2. $\forall n \in \mathbb{N}$ t.q. $n \geq n_0$ si P(n) est vraie alors P(n+1) est vraie

Alors $\forall n \in \mathbb{N}$; $n \ge n_0$, P(n) est vraie.

Méthode: Utilisation du raisonnement par récurrence

Quand on utilise un raisonnement par récurrence, il faut commencer par définir -identifier-la propriété P(n) puis respecter les 3 Étapes suivantes :

1. Étape 1 : Initialisation :

Vérifier que P(0) (ou $P(n_0)$) est vraie.

2. Étape 2 : Hérédité :

Montrer que si P(n) est vraie alors P(n+1) est vraie.

3. Étape 3 : Conclusion :

Initialisation + Hérédité donnent :

 $\forall n \in \mathbb{N} \quad ; (ou \quad n \geq n_0) , P(n) \text{ est vraie.}$

Exemples:

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n - 3 \quad et \quad u_0 = 4.$$

On va montrer que la suite (u_n) est strictement croissante. :

$$\forall n \in \mathbb{N}$$
 , $u_n < u_{n+1}$.

On a donc, $P(n) : u_n < u_{n+1}$.

(a) Étape 1 : Initialisation :

Vérifier que P(0) est vraie : $u_0 < u_1$?

On a $u_0 = 4$ et $u_1 = 2u_0 - 3 = 5$. On a bien $u_0 < u_1$.

Donc P(0) est vraie.

(b) Étape 2 : Hérédité :

Montrer que si P(n) est vraie alors P(n+1) est vraie.

Soit $n \in \mathbb{N}$; P(n) est vraie et montrons que P(n+1) est vrraie

c.a.d. si $u_n < u_{n+1}$ alors $u_{n+1} < u_{n+2}$

$$u_{n+2} - u_{n+1} = 2u_{n+1} - 3 - (2u_n - 3) = 2u_{n+1} - 3 - 2u_n + 3 = 2(u_{n+1} - u_n).$$

D'après l'hypothèse de récurrence : P(n) vraie c.a.d. $u_n < u_{n+1}$. Par suite $u_{n+1} - u_n > 0$, d'où $u_{n+2} - u_{n+1} > 0$. Donc $u_{n+1} < u_{n+2}$. P(n+1) est alors vraie.

(c) Étape 3 : Conclusion :

Initialisation + Hérédité donnent :

 $\forall n \in \mathbb{N} \quad ; P(n) \text{ est vraie}$

c.a.d. $\forall n \in \mathbb{N}$; $u_n < u_{n+1}$.

Donc la suite (u_n) est strictement croissante.

2. Montrer que pour tout $n \in \mathbb{N}$ t.q. $n \ge 4$ on a $n! \ge 2^n$.

On rappelle que : $n! = n(n-1)(n-2)\cdots 3 \times 2 \times 1$ et 0! = 1.

Et on a : (n+1)! = (n+1)n!.

On pose alors:

$$P(n): n! > 2^n$$

et montrons par un raisonnement par récurrence que P(n) est vraie $\forall n \geq 4$.

(a) Étape 1 : Initialisation :

Vérifier que P(4) est vraie : $4! \ge 2^4$?

On a $4! = 4 \times 3 \times 2 \times 1 = 24$ et $2^4 = 16$. On a bien $4! \ge 2^4$.

Donc P(4) est vraie.

(b) Étape 2 : Hérédité :

Montrer que si P(n) est vraie alors P(n+1) est vraie.

Soit $n \in \mathbb{N}$; P(n) est vraie et montrons que P(n+1) est vrraie

c.a.d. si $n! \ge 2^n$ alors $(n+1)! \ge 2^{n+1}$.

 $(n+1)! = (n+1)n! \ge (n+1)2^n \ge 2 \times 2^n = 2^{n+1}$

car, $n+1 \geq 2$ et d'après l'hypothèse de récurrence $n! \geq 2^n$.

P(n+1) est alors vraie.

(c) Étape 3 : Conclusion :

Initialisation + Hérédité donnent :

 $\forall n \geq 4$, P(n) est vraie

c.a.d. $\forall n \ge 4$; $n! \ge 2^n$.

Exercices:

1. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + 2n + 1 \quad et \quad u_0 = 0.$$

Montrez que :

$$\forall n \in \mathbb{N} \quad , \quad u_n \ge n.$$

2. (u_n) est une suite définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{3u_n + 7} \quad et \quad u_0 = 10.$$

Montrez que la suite (u_n) est strictement décroissante. :

$$\forall n \in \mathbb{N} \quad , \quad u_n > u_{n+1}.$$

3. Montrez que :

$$\forall n \in \mathbb{N}^*$$
 , $1+2+3+\cdots+(n-1)+n=\frac{n(n+1)}{2}$,

en posant : P(n) : $1 + 2 + 3 + \dots + (n-1) + n = \frac{n(n+1)}{2}$.

4. Montrez que:

$$\forall n \in \mathbb{N}^*$$
 , $1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$,

en posant : P(n) : $1^2 + 2^2 + 3^2 + \dots + (n-1)^2 + n^2 = \frac{n(n+1)(2n+1)}{6}$.