Compact Operators

Definition

Let H be a Hilbert space and let A be an operator on H. To say that A is *compact* (*completely continuous*) means for all bounded subsequences (\vec{x}_n) , the sequence $(A\vec{x}_n)$ in H has a convergent subsequence.

Examples

1). I is not compact.

Consider (\vec{e}_n) be an orthonormal sequence in H.

 $\forall n \in \mathbb{N}, \|\vec{e}_n\| = 1 \text{ and so } (\vec{e}_n) \text{ is bounded.}$

But
$$\forall j, k, ||e_j - e_k|| = \sqrt{2} \not\to 0$$

Therefore $(I\vec{e}_n)$ does not have a convergent subsequence.

2). Let H be finite dimensional and let T be a linear operator on H.

Claim: T is compact.

H is isomorphic to \mathbb{C}^n .

Since H is finite dimensional, T is bounded.

Assume (\vec{x}_n) in H is bounded and let $||\vec{x}_n|| \leq M$.

$$||T\vec{x}_n|| \le ||T|| \, ||\vec{x}_n|| \le M \, ||T|| < \infty$$

And so $(T\vec{x}_n)$ is a bounded sequence in \mathbb{C}^n .

Therefore, by the Bolzano-Weierstrass theorem, $(T\vec{x}_n)$ has a convergent subsequence and thus T is compact.

3). Let H be a Hilbert space and let T be a linear operator on H defined by:

$$T\vec{x} = \langle \vec{x}, \vec{y}_0 \rangle \vec{z}_0$$

for fixed $\vec{y_0}, \vec{z_0} \in H$.

Claim: T is compact.

Assume (\vec{x}_n) in H is bounded.

Let $\|\vec{x}_n\| \leq M$.

$$|\langle \vec{x}_n, \vec{y}_0 \rangle| \le ||\vec{x}_n|| \, ||\vec{y}_0|| \le M \, ||\vec{y}_0||$$

Thus $\langle \vec{x}_n, \vec{y}_0 \rangle$ is a bounded sequence in \mathbb{C} .

And so by Bolzano-Weierstrass, $\exists (\vec{x}_{n_k})$ such that $\langle \vec{x}_{n_k}, \vec{y}_0 \rangle \to \alpha \in \mathbb{C}$

And so $T\vec{x}_{n_k} = \langle \vec{x}_{n_k}, \vec{y}_0 \rangle \vec{z}_0 \rightarrow \alpha \vec{z}_0$.

Therefore T is compact.

Definition: Equicontinuous

Let $f \in L^2[a,b]$. To say that f is equicontinuous means:

$$\forall \epsilon > 0, \exists \delta > 0, \forall n \ge 1, \forall x, y \in [a, b], |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

Theorem: Arzelá-Ascoli

Let H be a Hilbert space and let (q_n) be a sequence in H:

 (q_n) uniformly bounded and equicontinuous $\implies (q_n)$ has a convergent subsequence.

Theorem

Let $H = L^2[a, b]$ and let T be a linear operator on H defined by:

$$(Tf)(s) = \int_{a}^{b} K(s,t)f(t)dt$$

K continuous $\implies T$ compact.

Proof

Assume K is continuous on $Q = [a, b] \times [a, b]$. Assume (f_n) is bounded.

Applying Hölder:

$$|(Tf_n)(s)| = \left| \int_a^b K(s,t) f_n(t) dt \right|$$

$$\leq \int_a^b |K(s,t) f_n(t)| dt$$

$$= \int_a^b |K(s,t)| |f_n(t)| dt$$

$$\leq \left(\int_a^b |K(s,t)|^2 \right)^{\frac{1}{2}} \left(\int_a^b |f_n(t)|^2 \right)^{\frac{1}{2}} dt$$

$$= \left(\int_a^b |K(s,t)|^2 \right)^{\frac{1}{2}} ||f_n||$$

But K is continuous on compact Q and thus is bounded so $K(s,t) \leq C$. Furthermore, (f_n) is bounded and so $||f_n|| \leq M$. And so:

$$|(Tf_n)(s)| \le CM\left(\int_a^b dt\right) = CM\sqrt{b-a}$$

For all $s \in [a, b]$ and all $n \in \mathbb{N}$.

Therefore (Tf_n) is uniformly bounded.

Assume $\epsilon > 0$.

Since Q is compact, Q is uniformly continuous on Q.

So
$$\exists \, \delta > 0, \forall \, x, y \in [a, b], |x - y| < \delta \implies |K(x, t) - K(y, t)| < \frac{\epsilon}{M\sqrt{b - a}}.$$

And so, once again applying Hölder:

$$|(Tf_n)(x) - (Tf_n)(y)| = \left| \int_a^b K(x,t)f_n(t)dt - \int_a^b K(y,t)f_n(t)dt \right|$$

$$= \left| \int_a^b [K(x,t) - K(y,t)]f_n(t)dt \right|$$

$$\leq \int_a^b |[K(x,t) - K(y,t)]f_n(t)dt|$$

$$= \int_a^b |K(x,t) - K(y,t)| |f_n(t)| dt$$

$$\leq \left[\int_a^b |K(x,t) - K(y,t)|^2 dt \right]^{\frac{1}{2}} \left(\int_a^b |f_n(t)|^2 dt \right)^{\frac{1}{2}}$$

$$= \left[\int_a^b |K(x,t) - K(y,t)|^2 dt \right]^{\frac{1}{2}} ||f_n||$$

$$< M \left[\int_a^b \left(\frac{\epsilon}{M\sqrt{b} = a} \right) dt \right]^{\frac{1}{2}}$$

$$= \frac{\epsilon}{\sqrt{b-a}} \sqrt{b-a}$$

$$= \epsilon$$

Therefore ${\cal T}$ is equicontinuous.

Therefore, by Arzelá-Ascoli, (Tf_n) has a convergent subsequence and thus T is compact.

Note that T is compact iff it maps bounded sets to sets with compact closure:

 $\forall B \subset H$ where B is bounded, $\overline{T[B]}$ is compact.

Notation

Let H be a Hilbert space. The set of all compact operators on H is denoted by $\mathcal{K}(H)$.

Theorem

Let *H* be a Hilbert space:

$$\mathcal{K}(H) \subset \mathcal{B}(H)$$

In other words, all compact operators on H are also bounded.

Proof

Assume T is compact.

ABC: T is not bounded.

 $\forall M > 0, \exists \vec{x} \in H, ||\vec{x}|| = 1, ||T\vec{x}|| > M$

Let (\vec{x}_n) in H such that $||\vec{x}_n|| = 1$.

Let M=n.

$$||T\vec{x}_n|| > n \to \infty$$

And so $(T\vec{x}_n)$ does not have a convergent subsequence.

CONTRADICTION!

Therefore T is bounded.

Theorem

Let H be a Hilbert space:

$$\mathcal{K}(H)$$
 is an ideal in $\mathcal{B}(H)$.

Proof

Clearly, $\mathcal{K}(H)$ is a subspace of $\mathcal{B}(H)$.

Assume $T \in \mathcal{K}(H)$.

Assume (\vec{x}_n) is a bounded sequence in H.

 $(T\vec{x}_n)$ has a convergent subsequence $(T\vec{x}_{n_k}) \to \vec{y}$.

Assume $B \in \mathcal{B}(H)$.

 $B(T\vec{x}_n) \to B(\vec{y})$ and so $BT \in \mathcal{K}(H)$.

Also, (\vec{x}_n) bounded $\implies (B\vec{x}_n)$ bounded.

Thus $TB(\vec{x}_n)$ has a convergent subsequence and thus $TB \in \mathcal{K}(H)$.

Therefore $\mathcal{K}(H)$ is an ideal of $\mathcal{B}(H)$.

Definition: Finite Rank

Let H be a Hilbert space and let T be an operator on H. To sat that T is a *finite rank* operator means $\dim \mathcal{R}(T) < \infty$.

Theorem

Finite rank bounded operators are compact.

Proof

Assume H is a Hilbert space and assume $T \in \mathcal{B}(H)$.

Let $\mathcal{R}(T) = S$ such that $\dim S = n$.

Assume $\{\vec{e}_1,\ldots,\vec{e}_n\}$ is an orthonormal basis for S.

Define: $T_n \vec{x} = \langle T\vec{x}, \vec{e}_n \rangle \vec{e}_n$. But $T_n \vec{x} = \langle \vec{x}, T^* \vec{e}_n \rangle \vec{e}_n$, which is compact by above example. Fur-

thermore,
$$\sum_{k=1}^{n} \langle T\vec{x}, \vec{e}_k \rangle \vec{e}_k = T\vec{x} \in S$$
.

Also $\mathcal{R}(T)$ is a vector space.

Therefore T is compact.

Theorem

Let H be a Hilbert space:

 $\mathcal{K}(H)$ is closed in $\mathcal{B}(H)$.

Proof

Assume (T_n) is a sequence in $\mathcal{K}(H)$ such that $||T_n - T|| \to 0$.

Assume (\vec{x}_n) is a bounded sequence in H such that $||\vec{x}_n|| \leq M$.

Since T_1 is compact, there exists a subsequence (\vec{x}_{1_n}) of (\vec{x}_n) such that $(T_1\vec{x}_{1_n})$ converges. Similarly, the sequence $(T_2\vec{x}_{1_n})$ contains a convergent subsequence $(T_2\vec{x}_{2_n})$.

In general, for $k \geq 2$, let (\vec{x}_{k_n}) be a subsequence of $(\vec{x}_{(k-1)_n})$ such that $(T_k \vec{x}_{k_n})$ converges. Let $(\vec{x}_{n_n}) = (\vec{x}_{p_n})$, where (p_n) is increasing positive.

 $\forall k \in \mathbb{N}, (T_k \vec{x}_{p_n}) \text{ converges.}$

Assume $\epsilon > 0$.

$$\exists N > 0, k > N \implies ||T_n - T|| < \frac{\epsilon}{3}$$

Assume n, m > N.

$$||T\vec{x}_{p_{n}} - T\vec{x}_{p_{m}}|| = ||T\vec{x}_{p_{n}} - T_{k}\vec{x}_{p_{n}} + T_{k}\vec{x}_{p_{n}} - T_{k}\vec{x}_{p_{m}} + T_{k}\vec{x}_{p_{m}} - T\vec{x}_{p_{m}}||$$

$$\leq ||T\vec{x}_{p_{n}} - T_{k}\vec{x}_{p_{n}}|| + ||T_{k}\vec{x}_{p_{n}} - T_{k}\vec{x}_{p_{m}}|| + ||T_{k}\vec{x}_{p_{m}} - T\vec{x}_{p_{m}}||$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$

$$= \epsilon$$

Thus $(T\vec{x}_{p_n})$ is Cauchy, and by completeness of H, converges.

Therefore T is compact and $T \in \mathcal{K}(H)$, and thus $\mathcal{K}(H)$ is closed.

Theorem

The adjoint of a compact operator is compact.

Proof

Assume H is a Hilbert space.

Assume $T \in \mathcal{K}(H)$, and thus $T \in \mathcal{B}(H)$.

Hence $T^* \in \mathcal{B}(H)$.

Assume (\vec{x}_n) is a bounded sequence in H such that $||\vec{x}_n|| \leq M$.

Let $\vec{y}_n = T^* \vec{x}_n$.

Since T^* is bounded, \vec{y}_n is bounded.

Thus $T\vec{y}_n$ has a convergent subsequence $(T\vec{y}_{n_k})$.

$$\begin{aligned} \|\vec{y}_{m} - \vec{y}_{n}\|^{2} &= \langle \vec{y}_{m} - \vec{y}_{n}, \vec{y}_{m} - \vec{y}_{n} \rangle \\ &= \langle T^{*}\vec{x}_{m} - T^{*}\vec{x}_{n}, T^{*}\vec{x}_{m} - T^{*}\vec{x}_{n} \rangle \\ &= \langle T^{*}(\vec{x}_{m} - \vec{x}_{n}), T^{*}(\vec{x}_{m} - \vec{x}_{n}) \rangle \\ &= \langle TT^{*}(\vec{x}_{m} - \vec{x}_{n}), \vec{x}_{m} - \vec{x}_{n} \rangle \\ &\leq \|TT^{*}(\vec{x}_{m} - \vec{x}_{n})\| \|\vec{x}_{m} - \vec{x}_{n}\| \\ &\leq \|T(T^{*}\vec{x}_{m} - T^{*}\vec{x}_{n})\| (\|\vec{x}_{m}\| + \|\vec{x}_{n}\|) \\ &= \|T(\vec{y}_{m} - \vec{y}_{n})\| (M + M) \\ &= 2M \|T\vec{y}_{m} - T\vec{y}_{n}\| \end{aligned}$$

Now, apply this to subsequences:

$$\|\vec{y}_{n_i} - \vec{y}_{n_k}\| \le 2M \|T\vec{y}_{n_i} - T\vec{y}_{n_k}\| \to 0$$

Therefore $(\vec{y}_{n_k}) = (T^*\vec{x}_{n_k})$ converges and thus $T^* \in \mathcal{K}(H)$.

Theorem

T is compact iff T maps weakly-convergent sequences to strongly- convergent sequences.

Proof

Assume H is a Hilbert space.

Assume T is an operator on H.

 \implies Assume T is compact.

Assume (\vec{x}_n) is a sequence in H such that $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$.

ABC: $T\vec{x}_n \not\to T\vec{x}$.

$$\exists \epsilon > 0, \forall N > 0, \exists n > N, ||T\vec{x}_n - T\vec{x}|| \ge \epsilon$$

Similarly, $||T\vec{x}_{p_n} - T\vec{x}|| \ge \epsilon$.

Since $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x}$, (\vec{x}_n) is bounded.

And since T is compact, $(T\vec{x})$ has a convergent subsequence $(T\vec{x}_{p_n})$.

Assume $\vec{y} \in H$.

$$\langle T\vec{x}_n, \vec{y} \rangle = \langle \vec{x}_n, T^*\vec{y} \rangle \rightarrow \langle \vec{x}, T^*\vec{y} \rangle = \langle T\vec{x}, \vec{y} \rangle$$
 Thus $T\vec{x}_n \stackrel{w}{\longrightarrow} T\vec{x}$.

Likewise, $T\vec{x}_{p_n} \xrightarrow{w} T\vec{x}$. But $\vec{x}_n \to \vec{x} \implies \vec{x}_n \xrightarrow{w} \vec{x}$, and so $T\vec{x}_{p_n} \to T\vec{x}$.

CONTRADICTION!

Therefore $T\vec{x}_n \to T\vec{x}$.

$$\iff$$
 Assume $\vec{x}_n \stackrel{w}{\longrightarrow} \vec{x} \implies T\vec{x}_n \to T\vec{x}$.

Corollary

Compact operators map orthonormal sequences into sequences that strongly converge to 0.

Proof

Assume ${\cal H}$ is a Hilbert space.

Assume $T \in \mathcal{K}(H)$.

Assume $(\vec{e_n})$ is an orthonormal sequence in H.

$$\vec{e} \xrightarrow{w} \vec{0}$$

Therefore $T\vec{e} \rightarrow 0$.

Corollary

Let H be a Hilbert space and $T \in \mathcal{K}(H)$ such that T is invertible:

$$T^{-1}$$
 is unbounded.

Proof

Assume H is a Hilbert space.

Assume $T \in \mathcal{K}(H)$.

Assume $(\vec{e_n})$ is an orthonormal sequence in H.

$$T\vec{e}_n \to \vec{0}$$

$$T\vec{e}_n \to \vec{0}$$

 $T^{-1}(T\vec{e}_n) = \vec{e}_n \not\to 0.$

Therefore T^{-1} is discontinuous, and thus unbounded.