Lattices for Space/Belief and Extrusion/Utterance

PPDP - Siena University. July, 2015

Salim PERCHY, COMÈTE(LIX) - INRIA joint work with Stefan HAAR, Camilo Rueda and Frank VALENCIA

Context: Spatial Multi-Agent Systems

An agent's <u>space</u> has:

Information

Processes

Other agents' spaces

Agents are able to:

Run apps

Move data and apps

Share opinions and/or lies

Goal: A sound mathematical model for mobility

c d

$$[c \sqcup \uparrow_i ([d]_j)]_i \sqcup [e]_j = [c]_i \sqcup [d \sqcup e]_j$$

Goal: A sound mathematical model for mobility

$$[e \sqcup [c \sqcup (c \to \uparrow_j d)]_j]_i = [e \sqcup d \sqcup [c]_j]_i$$

A bit of background: Lattices

Complete Algebraic Lattice

 $\mathbf{C} = (Con, \sqsubseteq, \sqcup, \text{false, true})$

A bit of background: Modal Logics

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid \square_i \varphi$$

 $B_i(\varphi)$: Agent i believes φ

 $K_i(\varphi)$: Agent i knows φ

 $\neg B_i(\text{false})$

 $K_i(\varphi) \Rightarrow \varphi$

A bit of background: CCP

 $P ::= \mathbf{tell}(c) \mid \mathbf{ask}(c) \ \mathbf{do} \ P \mid P \parallel Q \mid \mu X.P$

Processes, constraints and formulas

Process Calculus	Lattice of Information	Modal Logic
tell(C)	С	p
P Q	с⊔d	φΛφ
skip		true
abort	Т	false
÷	:	:
	[c]	В
	?	?

This Talk

 Contribution: Algebraic structure to formalize space and extrusion operations for multi-agent systems

Roadmap:

- 1. Motivation & Background
- 2. Spatial Constraint Systems
- 3. The Extrusion Problem
- 4. Properties of Extrusion
- 5. An application as a bimodal logic

Spatial CS

A **space function** of an agent $[\cdot]_i$ is a selfmap on the elements of the lattice (Con, \sqsubseteq).

- [c]i is interpreted as locality (information c is present in agent i's space)
- [[c]_i]_j is viewed as **nesting** of spaces (Agent i's space inside agent j's space)
- Joining space functions is possible (i.e [c]_i □ [d]_j)

Spatial CS

A **spatial constraint system (scs)** is a cs equipped with n spatial functions.

- The spatial functions must fulfill:
 - **S.1** [true] $_{i}$ = true (emptiness)
 - **S.2** [c]_i \sqcup [d]_i = [c \sqcup d]_i (distribution)
- Distribution yields the next property:
 - **S.3** if $c \sqsubseteq d$ then $[c]_i \sqsubseteq [d]_i$ (monotonicity)

Spatial CS

- SCS's allow the following:
 - [false]_i ≠ false
 (Inconsistency Confinement)
 - [c]_i ⊔ [d]_j ≠ false even if c ⊔ d = false
 (Freedom of opinion)
 - [red]_i = [green]_i still when red ≠ green
 (Information Blindness)

Spatial CS with Extrusion

• **Extrusion**: Movement of information from one space to the outside with no side effect.

We call the epistemic interpretation of this action
 Utterance

Spatial CS with Extrusion

An **extrusion function 1**_i is a self-map on the elements of (Con, ⊑), where:

E.1
$$[\uparrow_i c]_i = c$$

• We then define the extrusion as the right inverse of a space. From **S.2** and **E.1**: $[d \sqcup \uparrow_i c]_i = [d]_i \sqcup c$.

A scs with extrusion (scs-e) is an scs equipped with n extrusion functions satisfying **E.1**

Derived Constructions in scs-e

- c → d is defined as ⊓{ e | e ⊔ c ⊒ d }
 (Heyting implication)
 - This implication satisfies modus ponens:
 c ⊔ (c → d) ⊒ d
- ¬c is defined as c → false
 (complement)

Communication Example

- Guarded extrusion of inconsistency (w.r.t agent i's information):
 - Suppose: $[c \sqcup c \rightarrow (\uparrow_i [d]_j)]_i \sqcup [e]_j$
 - Equivalent to: [c]_i ⊔ [d ⊔ e]_j

Information d is now in the space of agent **j**

This Talk

 Contribution: Algebraic structure to formalize space and extrusion operations for multi-agent systems

Roadmap:

- 1. Motivation & Background
- 2. Spatial Constraint Systems
- 3. The Extrusion Problem
- 4. Properties of Extrusion
- 5. An application as a bimodal logic

Finding an extrusion operator

```
Problem: Given a scs (Con, \sqsubseteq, [\cdot]_i, ..., [\cdot]_n) find maps \uparrow_i, ..., \uparrow_n that satisfy E.1 [\uparrow_i c]_i = c
```

[·]i is surjective iff **1**i exists (Axiom of Choice)

Theorem: If $[\cdot]_i$ is a surjective and continuous function then the map $\mathbf{1}_i c = \sqcup \{d \mid [c]_{i^{-1}}\}$ satisfies **E.1.**

Max. extrusion

Distributed Extrusion

What about S.1 and S.2 counterparts? We say that the extrusion distributes globally/objectively if:

E.2
$$\uparrow_i(true) = true$$

E.3 $\uparrow_i(c \sqcup d) = \uparrow_i(c) \sqcup \uparrow_i(d)$

The soulement of a living as state jeight version and sentented - source textes function of the production of the produc

Min. extrusion

- SCS's SCS-E's allow the following:
 - [false]; ≠ false
 (Inconsistency Confinement)

[false]_i = false Inconsistencies propagate

- [c]_i ⊔ [d]_j ≠ false even if c ⊔ d = false √
 (Freedom of opinion)
- [red]_i = [green]_i still when red ≠ green √
 (Information Blindness)

[·]; is <u>not necessarily</u> injective

This Talk

 Contribution: Algebraic structure to formalize space and extrusion operations for multi-agent systems

Roadmap:

- 1. Motivation & Background
- 2. Spatial Constraint Systems
- 3. The Extrusion Problem
- 4. Properties of Extrusion
- 5. An application as a bimodal logic

Properties of Extrusion

• 1; is distributed then 1; is an order-embedding

• [·]; is injective then [·]; is an order-embedding

• 1; is defined as min. extrusion then

The pair $(\uparrow_i, [\cdot]_i)$ is a Galois connection

Application: Bimodal Logic with Utterance/Belief

$$\varphi ::= p \mid \neg \varphi \mid \varphi \wedge \varphi \mid B_i \varphi \mid U_i \varphi$$
 right inverse of belief

These equivalences hold:

$$\mathcal{O}_{i}(\varphi) \stackrel{\text{def}}{=} B_{i}(\varphi \wedge U_{i}(\varphi)) \qquad \mathcal{O}_{i}(\varphi) \Leftrightarrow (B_{i}\varphi) \wedge \varphi$$

$$\mathcal{H}_{i}(\varphi) \stackrel{\text{def}}{=} B_{i}(\neg \varphi \wedge U_{i}(\varphi)) \qquad \mathcal{H}_{i}(\varphi) \Leftrightarrow (B_{i}\neg \varphi) \wedge \varphi$$

Application: Bimodal Logic with Utterance/Belief

$$(\mathcal{P}(\Delta), \supseteq, [\cdot]_1, \dots, [\cdot]_n, \uparrow_1, \dots, \uparrow_n)$$
 where:

 $\Delta:$ all pairs (M,s) where s is a state of $M\in\mathcal{M}_{ltu}$ $\sqcup:\cap$

$$[c]_i = \{ (M, s) \in \Delta \mid \forall_t \text{ if } s \to_i t \text{ then } (M, t) \in c \}$$

 \uparrow_i : max. extrusion

- Left Unique
- Left Total

Summarizing...

- We proposed a lattice structure to represent information locality and extrusion in a distributed multi-agent system.
- The extrusion is seen as the right-inverse operation of locality. We studied different constructions and their properties.
- The structure can be used to derive a bimodal logic with belief and utterance behaviors.