Intro to Quantum Physics F3241

Dr Lily Asquith (Lily)

Week 3

Blackbody Radiation

This week's topics:

- 3.1 Blackbody Radiation
- 3.2 The Ultraviolet Catastrophe, Planck to the rescue

Your homework questions for this week are on canvas - please complete these by the end of the week.

Temperature: observations

Let's do a quiz: pollev.com/ilovephysics

Wien's Law & Stefan-Boltzman Law

The Peak Wavelength $\lambda_P \sim T^{-1}$.

Wien's law:
$$\lambda_P = \sigma T^{-1}$$
, where $\sigma = 2.90 \times 10^{-3}$ [units?]

The Peak Power Density $R_P \sim T^4$.

Stefan-Boltzman Law:
$$R_P = kT^4$$
, where $k = 5.67 \times 10^8 \; \mathrm{Wm}^{-2}$

Note that astronomers use really silly units.

Silly Astronomers

From Wikipedia: Radiant_intensity with a page search for "confusing":

Radiance	$L_{\mathrm{e},\Omega}^{[\mathrm{nb}\;5]}$	watt per steradian per square metre	W-sr ⁻¹ ·m ⁻²	M-T-3	Radiant flux emitted, reflected, transmitted or received by a <i>surface</i> , per unit solid angle per unit projected area. This is a <i>directional</i> quantity. This is sometimes also confusingly called "intensity".
Spectral radiance	$L_{e,\Omega,v}$ [nb 3]	watt per steradian per square metre per hertz	W-sr ⁻¹ ·m ⁻² ·Hz ⁻¹	M·T-2	Radiance of a <i>surface</i> per unit frequency or wavelength. The latter is commonly measured in W-sr ⁻¹ ·m ⁻² ·nm ⁻¹ . This is a directional quantity. This is sometimes also containingly called "spectral intensity".
	$L_{\mathrm{e},\Omega,\lambda}$ [nb 4]	watt per steradian per square metre, per metre	W-sr ⁻¹ ·m ⁻³	M-L-1-T-3	
Irradiance Flux density	E _e [nb 2]	watt per square metre	W/m ²	M-T-3	Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity".
Spectral irradiance Spectral flux density	E _{e,v} [nb 3]	watt per square metre per hertz	W·m ⁻² ·Hz ⁻¹	M·T-2	Irradiance of a surface per unit frequency or wavelength. This is sometimes also containingly called "spectral intensity". Non-SI units of spectral flux density include janeky (1 Jy = 10 ⁻²⁸ W·m ⁻² -Hz ⁻¹) and solar flux unit (1 sfu = 10 ⁻²² W·m ⁻² -Hz ⁻¹ = 10 ⁴ Jy).
	E _{θ,λ} ^[nb 4]	watt per square metre, per metre	W/m ³	M-L-1-T-3	
Radiosity	J _@ [nb 2]	watt per square metre	W/m ²	M-T-3	Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also onlusingly called "intensity".
Spectral radiosity	J _{e,v} [nb 3]	watt per square metre per hertz	W·m ⁻² ·Hz ⁻¹	M·T-2	Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W·m ⁻² .nm ⁻¹ . This is sometimes also controlly called "spectral intensity".
	J _{e,λ} [nb 4]	watt per square metre, per metre	W/m ³	M-L-1-T-3	
Radiant exitance	M _e ^[nb 2]	watt per square metre	W/m²	M-T-3	Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity".
Spectral exitance	M _{e,v} ^[nb 3]	watt per square metre per hertz	W-m ⁻² -Hz ⁻¹	M·T ⁻²	Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W-m ⁻² -m ⁻¹ . "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity".
	Mo x [nb 4]	watt per square	W/m ³	M-L-1-T-3	

Energy Density: The Rayleigh-Jeans law

We can understand the blackbody spectrum in pieces, but what about the whole thing?

R-J Law:
$$U(T) = \frac{8\pi}{\lambda^4} k_B T$$
 where

$$k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$$

Let's analyse this...

The UV catastrophe: Aargh!

Classical Physics has failed us!

R-J Law:
$$U(T) = \frac{8\pi}{\lambda^4} k_B T$$
 where

$$k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$$

Let's analyse this...

Relating Frequency, Wavelength, Speed

The wavelength λ

The frequency *f*

The speed c

8/10

Planck's "Solution"

R-J Law:
$$U(T) = \frac{8\pi}{\lambda^4} k_B T$$

Does not agree with countless observations

The theory (classical) to be modified somehow if it is to describe the data

Planck found that if he insisted **the energy only take discrete values**, he got this modification for free.

Allowed Energy $E = [some integer n] \times [some constant h] \times [frequency]$

Planck Law:
$$U(T) = \frac{8\pi}{\lambda^4} \frac{hc}{\lambda(e^{(hc/\lambda)k_BT}-1)}$$

This Planck formula of the 'energy density' perfectly matched the observations, and solved the UV catastrophe.

Allowed Energies

Allowed Energy $E = [n] \times [h] \times [f] = [n] \times [h] \times [\frac{c}{\lambda}]$

Consider three wavelengths of em radiation:

10 m (radio)

500 nm (visible light)

100 pm (x-ray)

If hc = 1240 eV nm, what is the smallest (n = 1) allowed energy in eV?

Note!

Planck did not think his restriction of Energies using E=nhf was anything more than a mathematical trick.

Week 3