IDWD1020 指纹识别模块用户手册

IDWD1020 Fingerprint Module User's Guide

(Ver 1.1)

2014年6月 第二版

IDWD2200xx 指纹识别模块用户手册

目录

(-)	概述	1
<u>(</u> _)	通讯协议	2
2.1 追	虽 讯处理过程	2
2.2 追	通讯包 Packet 的分类	3
2.2.1	命令包 Command packet	3
2.2.2	响应包 Response packet	3
2.2.3	指令/响应的数据包 Data Packet	3
2.3 追	通讯包的帧结构	4
2.3.1	通讯包 Parket 识别代码	
2.3.2	命令包(Command packet)的帧结构	
2.3.3	响应包(Response packet)的帧结构	
2.3.4	指令数据包(Command Data Packet)的帧结构	5
2.3.5	响应数据包 (Response data packet) 的帧结构	6
(\equiv)	通讯命令(COMMAND)综述	7
3. 1	指纹特征模板(TEMPLATE RECORD)的数据结构	7
3. 2	命令列表(COMMAND LIST)	7
(四)	各通讯命令(COMMAND)详细说明	9
4. 1	连接测试 (CMD_TEST_CONNECTION)	9
4.2	设置参数 (CMD_SET_PARAM)1	0
4. 3	读取参数(CMD_GET_PARAM)1	2
4.4	读取设备信息(CMD_DEVICE_INFO)1	.3
4. 5	使模块进入 IAP 模式 (CMD_ENTER_IAP_MODE)1	4
4.6	采集指纹图像(CMD_GET_IMAGE)1	.5
4.7	检测手指 (CMD_FINGER_DETECT) 1	6
4.8	上传指纹图像到主机(CMD_UP_IMAGE_CODE)1	7
4.9	下载指纹图像到模块(CMD_DOWN_IMAGE)1	9
4.10	控制采集器背光灯(CMD_SLED_CTRL)开/关2	
4.11	保存指纹模板数据到模块指纹库(CMD_STORE_CHAR)2	22
4. 12	读取指纹库中的指纹并暂存在指定的 RAMBUFFER 中(CMD_LOAD_CHAR)2	:4
4. 13	将暂存在 RAMBUFFER 中的指纹模板上传到主机(CMD_UP_CHAR)2	25
4. 14	下载指纹模板数据到模块指定的 RAMBUFFER (CMD_DOWN_CHAR)2	
4. 15	删除指定编号范围内的指纹 (CMD_DEL_CHAR)2	
4. 16	获取指定编号范围内可注册的首个编号 (CMD_GET_EMPTY_ID)2	
4. 17	检查指定的编号是否已被注册(CMD_GET_STATUS)3	
4. 18	检查指定编号范围内的指纹库是否有数据损坏(CMD_GET_BROKEN_ID)3	1

	IDWD2200xx 指纹识别模块用户手册
4. 19	获取指定编号范围内已注册的指纹总数(CMD_GET_ENROLL_COUNT)32
4.20	从暂存在 ImageBuffer 中的指纹图像产生模板(CMD_GENERATE)33
4.21	合成指纹模板数据用于入库(CMD_MERGE)34
4. 22	指定 2 个 RAMBUFFER 之间的模板做比对 (CMD_MATCH)35
4. 23	指定编号范围的 1: N 识别 (CMD_SEARCH)36
4. 24	指定 RAMBUFFER 与指纹库中指定编号的模板比对(CMD_VERIFY)37
4. 25	设置模块序列号(CMD_SET_MODULE_SN)38
4. 26	读取模块序列号(CMD_GET_MODULE_SN)40
4. 27	取消采集指纹 (CMD_FP_CANCEL)41
4. 28	获取已注册 ID 列表(CMD_GET_ENROLLED_ID_LIST) 42
4. 29	进入休眠状态(CMD_ENTER_STANDBY_STATE) 44
4.30	通讯错误返回(Incorrect Command)45
4.31	注意事项45
(五)	响应(RESPONSE)及错误代码表(ERROR CODE)46
(六)	登记及比对流程图47
6. 1	光学及面阵式半导体指纹采集器模块的注册流程 (ENROLL PROCESS) 47
6.2	滑动采集器模块的注册流程(ENROLL PROCESS)48
6. 3	光学及面阵式半导体采集器模块的验证及识别流程(VERIFY & IDENTIFY) 49
6.4	滑动采集器模块指纹验证和识别流程 (VERIFY & IDENTIFY)50
(七)	硬件描述51
7. 1	主处理板尺寸51
7.2	指纹传感器尺寸图 错误!未定义书签。
7.3	指纹模块接口信号定义 51

7.4 各型号指纹识别模块技术参数 52

(一) 概述

本文描述了 IDWorld 公司指纹识别模块的串口参数,通讯过程,指令/数据格式。 本指令集适用于光学和面阵式半导体指纹传感器及滑动式指纹传感器。

滑动式指纹传感器在采集图像(CMD_GET_IMAGE)时手指要有一个滑动操作过程,需要模块自身控制和判别滑动是否结束,因此增加了采集指纹超时(FP TimeOut)及取消采集指纹命令(CMD_FP_CANCEL)。参数(FP TimeOut)及指令(CMD_FP_CANCEL)只适用于滑动指纹传感器

通讯过程:

所有指令的发送、接收必须要遵循一发一收的原则。 主机(Host)在没有收到应答时,不可以向目标模块(TARGET)发送指令。

数据传送:

数据以串行异步方式传送,第一位为起始位,其后是数据位。 字节(Byte)遵循最低有效位优先传送的规则 字(Word)遵循低字节优先高字节在后传送的规则。

串行通讯所用参数如下:

起始位: 1位(1bit) 数据位: 8位 (8bit) 停止位: 1位(1bit)

校验位:无

波特率: 9600/19200/38400/57600/115200/230400/460800/921600 , 默认值: 115200BPS

IDWorld 指纹识别模块所采用的指纹图像如下:

分辨率: 500DPI

灰度: 256(8位)灰度

像素大小:

光学采集器: 242*266:

按压式半导体采集器: 202*258;

滑动式半导体采集器 FPC1080: 128*436:

主要功能:

不仅仅具有活体指纹注册入库(容量支持:1700/2000/3000),指纹验证(Verify)和识别(Identify),删除指定编号范围的指纹等常规功能外,还具有如下功能:

- 1. 上传指纹特征数据到主机,下载指纹特征数据到模块(入库/验证/识别)
- 2. 上传指纹图像到主机,下载指纹图像到模块(提取指纹特征入库/与活体指纹验证/识别)
- 3. 检查指定编号范围内的已注册保存在模块闪存内的指纹模板数据是否有坏损情况
- 4. 设置/读取指纹模块的序列号

(二) 通讯协议

2.1 通讯处理过程

图 2-1 通讯过程

注:

通讯过程中,所有指令的发送、接收必须要遵循一发一收的原则。 Host 在没有收到应答时,不可以向 TARGET 发送指令。

2.2 通讯包 Packet 的分类

2.2.1 命令包 Command packet

- 命令包说明从 Host 至 Target 的指令内容。
- 从 Host 中发出的所有指令,都通过命令包 Command packet 传输。
- 命令包 Command packet 的帧长度为 26 字节 bytes。

2.2.2 响应包 Response packet

- 响应包指从 Target 至 Host 的应答内容。
- 所有指令收到相应处理结果即 Response packet 后终止其使命。
- 响应包 Response packet 的长度为 26 字节 byte 。

2.2.3 指令/响应的数据包 Data Packet

- 当指令参数或响应数据的长度大于 16byte 时,利用指令/响应数据包 Data Packet 传输数据。
- Host 须在发送指令数据包之前,利用命令包 Command packet 将数据包的长度告知模块 Target
- 指令参数或相应数据包的最大长度为 500byte

2.3 通讯包的帧结构

2.3.1 通讯包 Parket 识别代码

通讯包 Packet 的开始 2byte 为表示通讯包 packet 种类的识别码,其如下表 2-1:

Packet 类别	Code 包类别识别码
命令包 Command packet	0xAA55
响应包 Response packet	Ox55AA
指令数据包 Command Data Packet	0xA55A
响应数据包 Response Data Packet	0x5AA5

表 2-1 Packet 识别代码

2.3.2 命令包(Command packet)的帧结构

PRI	EFIX	SID	DID	CM	CMD LEN				CKS				
0x55	OxAA	源 ID	目标 ID	L	Н	L	Н	DO	D1	•••	D15	L	Н
0	1	2	3	4	5	6	7	8	9	•••	23	24	25

表 2-2 命令包 (Command packet) 的结构如下:

偏移值	域定义	数据类型	字节数	描述
OFFSET	FIELD	TYPE	SIZE	DESCRYPTION
0	PREFIX	WORD	2byte	包识别码 Packet Identify code
2	SID	ВҮТЕ	1byte	源标识 Soruce Device ID
3	DID	ВҮТЕ	1byte	目标标识 Destination Device ID
4	CMD	WORD	2byte	命令字 Command Code
6	LEN	WORD	2byte (=n, n < 16)	数据长度 Length of DATA
				命令参数 Command Parameter
8	DATA	Byte Array	16byte	(实际数据为 n byte)
				校验和 Check Sum: 从 PREFIX ~ DATA
24	CKS	WORD	2byte	所有数据的算术和的最低 2 字节

2.3.3 响应包(Response packet)的帧结构

PRE	FIX	SID	DID	RCM LEN		RET DATA				CKS					
0x55	OxAA	源 ID	目标 ID	L	Н	L	Н	L	Н	DO	D1	•••	D15	L	Н
0	1	2	3	4	5	6	7	8	9	10	11	•••	24	25	26

表 2-3 响应包 (Response packet) 的结构如下:

偏移值	域定义	数据类型	字节数	描述
OFFSET	FIELD	TYPE	SIZE	DESCRYPTION
0	PREFIX	WORD	2byte	包识别码 Packet Identify code
2	SID	ВҮТЕ	1byte	源标识 Soruce Device ID
3	DID	ВҮТЕ	1byte	目标标识 Destination Device ID
4	RCM	WORD	2byte	响应码 Response Code
6	LEN	WORD	2byte(=n, n < 16)	长度 Length of RET and DATA
8	RET	WORD	2byte	结果码 Result Code(0:成功, 1:失败)
10	DATA	Byte Array	14byte	响应数据 Response Data(实际为 n-2 byte)
				校验和 Check Sum: 从 PREFIX ~ DATA 所有
24	CKS	WORD	2byte	数据的算术和的最低 2 字节

2.3.4 指令数据包(Command Data Packet)的帧结构

P	REFIX	SID	DID	CMD		LEN DATA		CMD LEN DATA		LEN DATA		C	KS
0x5A	0xA5	源 ID	目标 ID	L	Н	L	Н	DO	D1	•••	Dn-1	L	Н
0	1	2	3	4	5	6	7	8	9	•••	8+n-1	8+n	8+n+1

表 2-4 指令数据包 (Command Data Packet) 的结构如下:

偏移值	域定义	数据类型	字节数	描述
OFFSET	FIELD	ТҮРЕ	SIZE	DESCRYPTION
0	PREFIX	WORD	2byte	包识别码 Packet Identify code
2	SID	ВҮТЕ	1byte	源标识 Source Device ID
3	DID	ВҮТЕ	1byte	目标标识 Destination Device ID
4	CMD	WORD	2byte	命令码 Command Code
6	LEN	WORD	2byte(=n , n <500)	数据长度 Length of DATA
8	DATA	Byte Array	nbyte	命令参数 Command parameter
				校验和 Check Sum: 从 PREFIX ~ DATA 所
8+n	CKS	WORD	2byte	有数据的算术和的最低 2 字节

Host 须在发送指令数据包之前先传输命令包(Command packet),使得模块 Target 进入指令数据包(Command Data packet)接收等待状态。

在该命令包(Command packet)的数据域(DATA field)中,须设定待传输的指令数据包的长度。 Host 应在确认 Target 处于指令数据包接收等待状态后传输指令数据包(Command Data Packet)。

2.3.5 响应数据包 (Response data packet) 的帧结构

P	REFIX	SID	DID	RC	CM	LE	N	RI	ΞT		D	ATA		C	CKS
0xA5	0x5A	源 ID	目标 ID	L	Н	L	Н	L	Н	DO	D1	•••	Dn-3	L	Н
0	1	2	3	4	5	6	7	8	9	10	11	•••	8+n-1	8+n	8+n+1

表 2-5 响应数据包 (Response Data Packet) 的结构如下:

偏移值	域定义	数据类型	字节数	
OFFSET	FIELD	TYPE	SIZE	DESCRYPTION
0	PREFIX	WORD	2byte	包标识 Packet Identify code
2	SID	ВҮТЕ	1byte	源标识 Soruce Device ID
3	DID	ВҮТЕ	1byte	目标标识 Destination Device ID
4	CMD	WORD	2byte	响应码 Response Code
				结果接数据长度
6	LEN	WORD	2byte(=n, n <500)	Length of result data (RET + DATA)
8	RET	WORD	2byte	结果码 Result code(0 : 成功, 1 : 失败)
10	DATA	Byte Array	n-2 byte	响应数据 Response data
				校验和 Check Sum: 从 PREFIX ~ DATA 所有数
8+n	CKS	WORD	2byte	据的算术和的最低 2 字节

注: 从模块 Target 至 Host 中传输 14byte 以上数据时,需利用响应数据包(Response data packet)

(三) 通讯命令(Command)综述

3.1 指纹特征模板 (Template Record) 的数据结构

Template Data	CheckSum
496 byte	2 byte
Template Data	Template Data 的每个字节的算术和的最低2字节.

表 3-1 Template Record 的结构

注: 每个指纹特征模板数据为 498 字节: Template Data(496Bytes)+CheckSum(2Bytes)

3.2 命令列表 (Command List)

序号	命令名称	命令码	命令功能	
No	Command Name	Code	Function	
1	CMD_TEST_CONNECTION	0x0001	进行与设备的通讯测试	
2	CMD_SET_PARAM	0x0002	设置设备参数 (Device ID, Security Level, Baudrate,	
			Duplication Check, Auto Learn)	
3	CMD_GET_PARAM	0x0003	获取设备参数 (Device ID, Security Level, Baudrate,	
			Duplication Check, Auto Learn)	
4	CMD_GET_DEVICE_INFO	0x0004	获取设备信息	
5	CMD_ENTER_IAP_MODE	0x0005	将设备设置为 IAP 状态	
6	CMD_GET_IMAGE	0x0020	从采集器采集指纹图像并保存于 ImageBuffer 中	
7	CMD_FINGER_DETECT	0x0021	检测指纹输入状态	
8	CMD_UP_IMAGE	0x0022	将保存于 ImageBuffer 中的指纹图像上传至 HOST	
9	CMD_DOWN_IMAGE	0x0023	HOST 下载指纹图像到模块的 ImageBuffer 中	
10	CMD_SLED_CTRL	0x0024	控制采集器背光灯的开/关(注:半导体传感器不用此功能)	
11	CMD_STORE_CHAR	0x0040	将指定编号 Ram Buffer 中的 Template, 注册到指定编号的库中	
12	CMD_LOAD_CHAR	0x0041	读取库中指定编号中的 Template 到指定编号的 Ram Buffer	
13	CMD_UP_CHAR	0x0042	将保存于指定编号的 Ram Buffer 中的 Template 上传至 HOST	
14	CMD_DOWN_CHAR	0x0043	从 HOST 下载 Template 到模块指定编号的 Ram Buffer 中	
15	CMD_DEL_CHAR	0x0044	删除指定编号范围内的 Template 。	
16	CMD_GET_EMPTY_ID	0x0045	获取指定范围内可注册的(没有注册的)第一个模板编号。	
17	CMD_GET_STATUS	0x0046	获取指定编号的模板注册状态。	
18	CMD_GET_BROKEN_ID	0x0047	检查指定编号范围内的所有指纹模板是否存在坏损的情况	
19	CMD_GET_ENROLL_COUNT	0x0048	获取指定编号范围内已注册的模板个数。	
20	CMD_GENERATE	0x0060	将 ImageBuffer 中的指纹图像生成模板数据,	
			并保存于指定编号的 Ram Buffer 中。	
21	CMD_MERGE	0x0061	将保存于 Ram Buffer 中的两或三个模板数据融合成一个模板数据	
22	CMD_MATCH	0x0062	指定 Ram Buffer 中的两个指纹模板之间进行 1:1 比对	

IDWD2200xx 指纹识别模块用户手册

序号	命令名称	命令码	命令功能	
No	Command Name	Code	Function	
23	CMD_SEARCH	0x0063	指定 Ram Buffer 中的模板与指纹库中指定编号范围内的所有模	
			板之间进行 1:N 比对	
24	CMD_VERIFY	0x0064	指定 Ram Buffer 中的指纹模板与指纹库中指定编号的指纹模板	
			之间进行 1:1 比对	
25	CMD_SET_MODULE_SN	0x0008	在设备中设置模块序列号信息 (Module SN)	
26	CMD_GET_MODULE_SN	0x0009	获取本设备的模块序列号 (Module SN)	
27	CMD_FP_CANCEL	0x0025	取消指纹采集操作 (只适用于带 TimeOut 参数的滑动传感器)	
28	CMD_GET_ENROLLED_ID_L	0x0049	获取已注册 ID 列表	
	IST			
29	CMD_ENTER_STANDY_STAT	0x000C	使模块进入休眠状态。	
	E			

(四) 各通讯命令(Command)详细说明

模块中含有指令通讯用的 ImageBuffer 和 Ram Buffer 。

ImageBuffer: 用于保存图像。

Ram Buffer 用于暂存指纹模板数据,模块共有三个 Ram Buffer:

Ram Buffer0, Ram Buffer1 和 Ram Buffer2。

注: 断电情况下, ImageBuffer 和 Ram Buffer 中的数据会丢失。

4.1 连接测试 (CMD TEST CONNECTION)

[功能 Function]

检查 Target 和 Host 的连接状态。

Host 需要首先发送此指令检查与 Target 的连接状态。

若不成功,则可认为与 Target 的连接不正常,或 Target 的工作不正常,或波特率的设置有误。

[工作过程 Sequence]

连接正常,则返回 ERR_SUCCESS。

[命令和响应Command and Response]

PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0001
LEN	0
DATA	无数据
PREFIX	Ox55AA
SID	Source Device ID
DID	Destination Device ID
RCM	0x0001
LEN	2
RET	Result Code
DATA	无数据

表 4-1 CMD_TEST_CONNECTION 指令

4.1 例子: HOST 发送 CMD_TEST_CONNECTION 指令及模块的响应

4.2 设置参数 (CMD_SET_PARAM)

[功能 Function]

根据指定 Parameter Type,设置设备参数 (Device ID, Security Level, Baudrate, Duplication Check, Auto Learn, FP TimeOut)并返回其结果。

[工作过程 Sequence]

- ①若指定 Parameter Type 无效,则返回 ERR_INVALID_PARAM。
- ②若指定 Parameter Value 无效,则返回 ERR_INVALID_PARAM。
- ③根据 Parameter Type,设置 Parameter Value并返回其结果。

[命令和响应 Command and Response]

PREFIX	0xAA55		
SID	Source Device ID		
DID		Destination Device ID	
CMD		0x0002	
LEN		5	
DATA	1bytes	Parameter Type	
DATA	4bytes Parameter Value		
	Ox55AA		
PREFIX		0x55AA	
PREFIX SID		0x55AA Source Device ID	
SID		Source Device ID	
SID DID		Source Device ID Destination Device ID	
SID DID RCM		Source Device ID Destination Device ID 0x0002	

表 4-2 CMD SET PARAM 指令

[参数类型 Parameter Type]

Parameter	Parameter ValueDescription
Type	
0	表示本设备编号 (Device ID) 。可设置 1 ~ 255 。

1	表示安全等级(Security Level):可设置值:1~5。	默认为: 3		
	Security Level 对应的识别率如下表:			
	Security Level 识别率			
	认假率 FAR(False Acceptance Rate)	0. 1%		
	拒真率 FRR (False Rejection Rate)	0.005%		
	人假率 FAR (False Acceptance Rate)	0.003%		
	拒真率 FRR (False Rejection Rate)	0 01%		
	Level 3 认假率 FAR(False Acceptance Rate)	0.001 %		
	拒真率 FRR (False Rejection Rate)	0.1 %		
	Level 4 认假率 FAR(False Acceptance Rate)	0. 003%		
	拒真率 FRR (False Rejection Rate) 认假率 FAR (False Acceptance Rate)	0.5%		
	Level 5 拒真率 FRR (False Rejection Rate)	%		
	10兵平 TKK (Paise Rejection Rate)	//0		
2	指纹重复检查(Duplication Check)状态开/关。可说	と置 0 或 1。		
	若为 1 , 则处理 CMD_STORE_CHAR 指令时进行重复检	测。		
	若为 0 ,则不进行重复检测。			
3	波特率 (Baudrate) 参数。可设置索引值: 1 ~ 8 。			
	1:9600bps, 2:19200bps, 3:38400bps, 4:57600bps,	5:115200bps		
	6:230400bps, 7:460800bps, 8:921600bps			
4	表示指纹模板自学习(Auto Learn)状态开/关。可设置 0 或 1 。			
	若为 1: 则处理 CMD_SEARCH, CMD_VERIFY 指令时进行智能更新。			
	若为 0 : 则不进行智能更新。			
5	表示采集指纹超时时间 (Fp TimeOut)参数,可设置	 值: 1 秒至 60 秒。		
-	CMD_GET_IMAGE 指令中采用该参数,在FP TimeOUT 时			
	注: 本参数只用于滑动指纹传感器模块,默认值为: 5s			

4.2 例子: 设置波特率为 921600BPS

4.3 读取参数 (CMD_GET_PARAM)

[功能 Function]

根据指定 Parameter Type ,获取设备参数(Device ID, Security Level, Baudrate, Duplication Check, Auto Learn, FP TimeOut)。

有关 Parameter Type , 请参考上述 CMD_SET_PARAM 。

[工作过程 Sequence]

- ① 若指定 Parameter Type 无效,则返回 ERR INVALID PARAM 。
- ② 返回指定 Parameter Type 相应的设备参数。

[命令及响应 Command and Response]

PREFIX	0xAA55	
SID	Source Device ID	
DID		Destination Device ID
CMD		0x0003
LEN		1
DATA	1byte	Parameter Type
PREFIX	0x55AA	
SID	Source Device ID	
DID	Destination Device ID	
RCM	0x0003	
LEN	成功 : 6, 失败 : 2	
RET	Result Code	
DATA	4bytes 成功时: Parameter Value	

表 4-3 CMD GET PARAM 指令

4.3 例子1: 读取当前安全等级(返回安全等级=3)

4.3 例子2: 读取当前TimeOut 值(TimeOut=5S);用于滑动指纹模块

4.4 读取设备信息 (CMD DEVICE INFO)

[功能 Function] 获取模块的版本等设备信息(Device Information of Target)。本设备信息格式如下: "SEON_GD_FPC1020(xfp)Vy.y". x表示可注册指纹个数。y.y表示固件版本(F/W Version)。

[工作过程 Sequence]

- ①首先利用指令应答包,将下次发送的应答数据包的数据长度发送至 HOST。
- ②利用应答数据包,发送 Device Information。

[命令及响应 Command and Response]

0xAA55		
Source Device ID		
Destination Device ID		
	0x0004	
	0	
	无数据	
	0x55AA	
	Source Device ID	
	Destination Device ID	
0x0004		
	4	
	ERR_SUCCESS	
2bytes 数据应答包的数据长度		
成功时		
0x5AA5		
Source Device ID		
Destination Device ID		
0x0004		
2 + Device Information 长度		
ERR_SUCCESS		
Device Information		
	2bytes	

表 4-4 CMD DEVICE INFO 指令

<mark>3028323030306670292056312E3000</mark>2B08; 蓝色数据为设备信息"SEON_GD_FPC1020(2000fp) V1.0"的 ASCII 码

4.5 使模块进入 IAP 模式 (CMD_ENTER_IAP_MODE)

[功能 Function]

将设备设置为 IAP 状态。

[工作过程 Sequence]

收到指令包后,将设备设置为 IAP 状态。

[命令及响应 Command and Response]

PREFIX	0xAA55	
SID	Source Device ID	
DID	Destination Device ID	
CMD	0x0005	
LEN	0	
DATA	无数据	
PREFIX	0x55AA	
SID	Source Device ID	
DID	Destination Device ID	
RCM	0x0005	
LEN	2	
RET	Result Code	
DATA	无数据	

表 4-5 CMD_ENTER_IAP_MODE 指令

注: CMD_ENTER_IAP_MODE 命令将清除固件程序,需要升级固件时才需执行该指令。 执行该指令后必须用 USB 重新烧写固件,请慎用该指令!!

4.6 采集指纹图像 (CMD_GET_IMAGE)

[功能 Function]

从采集器采集指纹图像并保存于 ImageBuffer 中。

[工作过程 Sequence]

从采集器采集指纹图像。若采集图像正确,则返回 ERR_SUCCESS。否则返回错误码。

对于滑动式半导体指纹传感器:

- ①若在 Fp TimeOut 时间内没有检测到指纹,则返回 ERR_TIME_OUT。
- ②若在采集过程中或等待指纹输入过程中收到 CMD_FP_CANCEL 指令,则取消此指令的运行并返回 ERR_FP_CANCEL。

[命令及响应 Command and Response]

PREFIX	0xAA55	
SID	Source Device ID	
DID	Destination Device ID	
CMD	0x0020	
LEN	0	
DATA	无数据	
PREFIX	0x55AA	
SID	Source Device ID	
DID	Destination Device ID	
RCM	0x0020	
LEN	2	
RET	Result Code	
DATA	0	

表 4-6CMD IMAGE 指令

4.6 例子1: 发送采集指纹图像后模块检测到手指的命令及响应

4.6 例子2: 发送采集滑动指纹图像后结果超时(FP TimeOut)的命令及响应

4.7 检测手指(CMD_FINGER_DETECT)

[功能 Function]

检查收到指令时刻指纹输入状态并返回其结果。

[工作过程 Sequence]

返回收到该指令时刻 Sensor 的指纹输入状态。

[命令及响应 Command and Response]

PREFIX	0xAA55	
SID	Source Device ID	
DID	Destination Device ID	
CMD	0x0021	
LEN	0	
DATA	无数据	
PREFIX	0x55AA	
SID	Source Device ID	
DID	Destination Device ID	
RCM	0x0021	
LEN	成功 : 3, 失败: 2	
RET	Result Code	
DATA	成功时:指纹输入状态 (1:有指纹输入,0:无指纹输入)	

表 4-7CMD FINGER DETECT 指令

4.7 例子1: 没检测到指纹

4.7 例子2: 检测到有指纹

4.8上传指纹图像到主机(CMD_UP_IMAGE_CODE)

[功能 Function]

根据指定 Image Type ,将保存于 ImageBuffer 中的图像发送至 Host 。若 Image Type 为 0: 则发送全图:

(光学采集器及按压式半导体采集器: 242*266(202*258), FPC1080: 128*436)。 若为 1: 则发送 1/4 图像(4 个点取 1 个点)。

(光学采集器及按压式半导体采集器: 121*133(101*129), FPC1080: 64*218)。

[工作过程 Sequence]

- ③ 若指定 Image Type 无效,则返回 ERR_INVALID_PARAM。
- ④ 利用指令应答包,将 HOST 待收到图像的大小发送至 HOST。
- ⑤ 根据 Image Type,利用应答数据包,将图像以 496bytes 单位分成并发送至 HOST。

[命令及响应Command and Response]

PREFIX	0xAA55		
SID	Source Device ID		
DID	Destination Device ID		
CMD	0x0022		
LEN	1		
DATA	1byte Image Type (0: Full, 1: Quarter)		
PREFIX	0x55AA		
SID	Source Device ID		
DID	Destination Device ID		
RCM	0x0022		
LEN	6/2		
RET	Result Code		
DATA	成功: 图像的宽度 2bytes Full 全图像 (242/202/128) Quarter 图像 (121/101/64)		
	成功: 图像的高度 2bytes Full 全图像 <mark>(266/258/436)</mark> Quarter 图像 <mark>(133/129/218)</mark>		
成功时:成功时 Target 发送应答数据包至 HOST			
PREFIX	0x5AA5		
SID	Source Device ID		
DID	Destination Device ID		
RCM	0x0022		
LEN	4+ 图像数据长度		

RET	ERR_SUCCESS
DATA	图像数据长度(2bytes) + 图像数据

• • •

继续发送应答数据包 表 4-8CMD UP IMAGE 指令

注:

- 1. 调用该指令之前,必须先调用 CMD GET IMAGE 将指纹图像保存于 ImageBuffer 中。
- 2. 高分辨率模式(Full Mode) 宽度*高度: 242*266/202*258/128*436
- 3. 低分辨率模式 (Quarter Mode) 宽度*高度: 121*133/101*129/64*218

4.8 例子1: 上传全分辨率光学指纹图像

Target 响应: AA 55 01 00 2200<mark>060000000CA000201</mark> 00 00 00 00 00 00 00 00 00 F5 01

注: 全图像宽度=0xCA=202, 全图像高度=0x102=258

Target 响应数据包: 图像数据大小为 202*258=52116 字节, 分为 105*496 字节+1*36 字节

A5 5A 01 00 2200F4010000F001 本帧的 496 字节数据 2 字节校验码

0 0 0

共 105 个包含 496 字节图像数据的响应数据包

A5 5A 01 00 <mark>2200<mark>2800</mark>0000<mark>2400 最后一帧 36 字节数据</mark> 2 字节校验码</mark>

最后1个包含36字节图像数据的响应数据包

4.8 例子2: 上传1/4 图像分辨率的光学指纹图像

Target 响应: AA 55 01 00 220006000000065008100 00 00 00 00 00 00 00 00 00 00 02

注: 1/4 图像宽度=0x65=101, 全图像高度=0x81=129

Target 响应数据包: 图像数据大小为 202*258/4=13029 字节, 分为 26*496 字节+1*133 字节

A5 5A 01 00 <mark>2200F4010000F001 本帧的 496 字节数据</mark> 2 字节校验码

0 0 0

共 26 个包含 496 字节图像数据的响应数据包

A5 5A 01 00 <mark>22008900<mark>0000</mark>8500 最后一帧 133 字节数据</mark> 2 字节校验码

最后1个包含133字节图像数据的响应数据包

4.9 下载指纹图像到模块(CMD_DOWN_IMAGE)

[功能 Function]

将从 Host 收到的图像数据保存于 ImageBuffer 中。

Host 以 496bytes 单位将图像发送至 Target 。这时,同时发送图像数据编号。

注:指纹图像要求:分辨率:500DPI,灰度:8位灰度

像素大小: 光学采集器: 242*266;

按压式半导体采集器(如 FPC1011): 202*258; 滑动式半导体采集器(如 FPC1080): 128*436;

[工作过程 Sequence]

- ◎若图像高度或图像宽度不正确,则返回 ERR INVALID PARAM。
- ②利用应答包返回 ERR_SUCCESS 。
- ◎接收指令数据包将图像保存于 ImageBuffer 中。

[命令及响应 Command and Response]

		指令包	
PREFIX	0xAA55		
SID	Source Device ID		
DID	Destination Device ID		
CMD		0x0023	
LEN		4	
DATA	2bytes	图像宽度: 242/202/128	
DATA	2bytes	图像高度: 266/258/436	
PREFIX		Ox55AA	
SID		Source Device ID	
DID		Destination Device ID	
RCM		0x0023	
LEN		2	
RET		Result Code	
DATA		0	
		指令数据包	
PREFIX		0xA55A	
SID		Source Device ID	
DID		Destination Device ID	
CMD		0x0023	

LEN	2 + 图像数据大小
DATA	图像数据编号(2bytes) + 图像数据
	响应数据包
PREFIX	0x5AA5
SID	Source Device ID
DID	Destination Device ID
RCM	0x0023
LEN	2
RET	Result Code
DATA	0

...

	指令数据包
PREFIX	0xA55A
SID	Source Device ID
DID	Destination Device ID
CMD	0x0023
LEN	2 + 图像数据大小
DATA	图像数据编号(2bytes) + 图像数据
	响应数据包
PREFIX	0x5AA5
SID	Source Device ID
DID	Destination Device ID
RCM	0x0023
LEN	2
RET	Result Code
DATA	0

表 4-9CMD_DOWN_IMAGE 指令

4.9 例子: 下载指纹图像到 ImageBuffer 中

。。。共 105 个包含 496 字节图像数据的命令数据包及响应数据包

Host 命令数据包: 5A A5 00 00230026006900 包含 36 字节图像数据的最后数据块 2 字节校验码 Target 响应数据包: A5 5A 01 00 230002000000 25 01; 数据应答包的长度因为没有数据是 12 个字节

4.10 控制采集器背光灯(CMD_SLED_CTRL)开/关

[功能 Function]

控制采集器背光灯的开/关。

注: 半导体采集器无需用此功能。

[工作过程 Sequence]

不进行任何操作返回 ERR_SUCCESS 。

[命令及响应 Command and Response]

PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0024
LEN	2
DATA	LED 状态(1: 开, 0: 关)
PREFIX	Ox55AA
SID	Source Device ID
DID	Destination Device ID
RCM	0x0024
LEN	2
RET	ERR_SUCCESS
DATA	0

表 4-10 CMD_SLED_CTRL 指令

4.10 例子: Backlight LED On

4.11 保存指纹模板数据到模块指纹库(CMD STORE CHAR)

[功能 Function]

将保存于指定 Ram Buffer 中的模板保存于指定编号的模块指纹库中。

[工作过程 Sequence]

- ◎若指定 Template 编号无效,则返回错误码 ERR_INVALID_TMPL_NO 。
- ②若指定 Ram Buffer 编号无效,则返回错误码 ERR INVALID BUFFER ID 。
- ③若 Duplication Check 设置为 OFF,则直接将指定 Ram Buffer 中的指纹模板数据注册于指定编号的指纹库中并返回其结果。
- Ф若 Duplication Check 设置为 ON,则将指定 Ram Buffer 中的 Template 和已注册的指纹库中的所有 Template 之间进行 1:N 比对。

若存在比对成功的模板,说明该指纹已注册,则返回(RET): ERR_DUPLICATION_ID, 且 DATA 返回比对成功的 Template 编号。

否则,将该模板注册于指定 Template 编号的指纹库中并返回其结果。

[命令及响应 Command and Response]

PREFIX		OxAA55	
SID	Source Device ID		
DID		Destination Device ID	
CMD		0x0040	
LEN		4	
DATA	2bytes	Template 编号	
DATA	2bytes	Ram Buffer 编号	
PREFIX		Ox55AA	
SID		Source Device ID	
DID		Destination Device ID	
RCM		0x0040	
LEM	Result Code 为		
LEN	ERR_DUPLICATION_ID 时为: 4; 否则为: 2		
RET		Result Code	
DATA	2bytes Result Code 为 ERR_DUPLICATION_ID时:为Template编号;否则为: 0		

表 4-11 CMD STORE CHAR 指令

4.11 例子: 保存 RamBuffer0 中的模板数据到指定编号为 1 的模块数据库中

IDWD2200xx 指纹识别模块用户手册

4.12 读取指纹库中的指纹并暂存在指定的 RamBuffer 中 (CMD_LOAD_CHAR)

[功能 Function]

将指纹库中指定编号中的指纹模板(Template)取出并暂存于指定的 Ram Buffer 中。

[工作过程 Sequence]

- ①若指定 Template 编号无效,则返回 ERR_INVALID_TMPL_NO 。
- ②若指定 Template 编号中没有注册 Template,则返回错误码 ERR TMPL EMPY。
- ③若指定 Ram Buffer 编号无效,则返回错误码 ERR_INVALID_BUFFER_ID 。
- ④将指定编号中的 Template 保存于指定 Ram Buffer 中并返回 ERR_SUCCESS 。

[命令及响应 Command and Response]

PREFIX		OxAA55		
SID		Source Device ID		
DID	Destination Device ID			
CMD		0x0041		
LEN	4			
DATA	2bytes	Template 编号		
DATA	2bytes	Ram Buffer 编号		
	0x55AA			
PREFIX		Ox55AA		
PREFIX SID		Ox55AA Source Device ID		
SID		Source Device ID		
SID DID		Source Device ID Destination Device ID		
SID DID RCM		Source Device ID Destination Device ID 0x0041		
SID DID RCM LEN		Source Device ID Destination Device ID 0x0041 2		

表 4-12 CMD LOAD CHAR 指令

4.12 例子: 读取编号为1的模板数据暂存在 RamBuffer0 中

4.13 将暂存在 RamBuffer 中的指纹模板上传到主机 (CMD_UP_CHAR)

[功能 Function]

将指定 Ram Buffer 中的 Template 发送至 Host 。

[工作过程 Sequence]

- ®指定 Ram Buffer 编号无效,则返回 ERR_INVALID_BUFFER_ID 。
- ◎利用指令应答包将 HOST 待接收的 Template 数据的大小发送至 HOST。
- ◎利用应答数据包将指定编号中的 Template 数据发送至 HOST。

[命令及响应 Command and Response]

PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0042
LEN	2
DATA	Ram Buffer ID
PREFIX	0x55AA
SID	Source Device ID
DID	Destination Device ID
RCM	0x0042
LEN	4
RET	ERR_SUCCESS or ERR_FAIL
DATA	成功: 下次数据应答包的数据长度 (Template Record Size + 2), 失败: 错误码
	成功时模块发送响应数据包
PREFIX	0x5AA5
SID	Source Device ID
DID	Destination Device ID
RCM	0x0042
LEN	Template Record Size + 2
RET	ERR_SUCCESS
DATA	Template Record Data

表 4-13CMD_UP_CHAR 指令

注:调用该指令之前,必须先调用 CMD_GENERATE, CMD_DOWN_CHAR, CMD_LOAD_CHAR 当中的一个指令,将 Template 保存于 Ram Buffer 中。

4.13 例子: 上传 RamBuffer0 中的模板数据到 HOST

4.14 下载指纹模板数据到模块指定的 RamBuffer (CMD DOWN CHAR)

[功能 Function]

从 Host 接收指纹模板数据 (Template Data) 并保存于指定的 Ram Buffer 中。

[工作过程 Sequence]

®Host 发送指令包, 使 Target 进入数据 (Ram Buffer + Template)接收等待状态。

该指令包的 DATA 域中已设有下次发送的指令数据包的长度。

②Target 检查接收到的指令包的准确性。

若不正确,则返回错误码并结束处理。

若待接收的数据大小不正确,则返回 ERR INVALID PARAM。

若正确,则向 HOST 发送应答包表示模块已进入数据(Ram Buffer 编号 + Template 数据)接收等待状态,并进入数据(Ram Buffer 编号 + Template 数据)接收等待状态。

- ③ Host 收到 Target 已进入数据接收等待状态的应答包,则利用指令数据包设置 RamBuffer编号和 Template数据并发送至 Target。@Target 收到指令数据包后,若 Ram Buffer ID 无效,则返回 ERR INVALID BUFFER ID。
- ⑤检查收到的 Template 的 CheckSum 。若不正确,则返回 ERR_INVALID_TMPL_DATA 。
- ⑥将收到的 Template 保存于指定 Ram Buffer 中并返回 ERR SUCCESS 。

[命令及响应 Command and Response]

	指令包
PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0043
LEN	2
DATA	2 + Template Record Size
PREFIX	Ox55AA
SID	Source Device ID

DID	Destination Device ID
RCM	0x0043
LEN	4
RET	Result Code
DATA	0
	指令数据包
PREFIX	0xA55A
SID	Source Device ID
DID	Destination Device ID
CMD	0x0043
LEN	2 + Template 大小(498)
DATA	Ram Buffer编号(2byte) + Template数据
PREFIX	0x5AA5
SID	Source Device ID
DID	Destination Device ID
RCM	0x0043
LEN	4
RET	Result Code
DATA	0

表 4-14CMD_DOWN_CHAR 指令

注:保存于 Ram Buffer2 中的 Template,若调用 (CMD_SEARCH, CMD_VERIFY, CMD_GENERATE, CMD_STORE_CHAR, CMD_DEL_CHAR, CMD_GET_EMPTY_ID, CMD_GET_STATUS, GET_BROKEN_ID, CMD_GETN_ENROLL_COUNT) 等指令后,则会被清掉。建议,不要使用 Ram Buffer2 。

4.14 例子: 下载指纹模板数据到模块的 Rambuffer0 中

4.15 删除指定编号范围内的指纹 (CMD_DEL_CHAR)

[功能 Function]

删除指定编号范围(起始 Template 编号 ~ 结束 Template 编号)内全部已注册的 Template 。

[工作过程 Sequence]

- ① 若指定范围无效,则返回 ERR_INVALID_PARAM 。
- ② 若指定范围内没有注册 Template,则返回 ERR_TMPL_EMPTY。
- ③ 删除指定范围内已注册的所有 Template 并返回其结果。

[命令及响应 Command and Response]

PREFIX		OxAA55	
SID		Source Device ID	
DID		Destination Device ID	
CMD	0x0044		
LEN	4		
DATA	2bytes	起始 Template 编号	
DATA	2bytes	结束 Template 编号	
PREFIX		0x55AA	
PREFIX SID		Ox55AA Source Device ID	
SID		Source Device ID	
SID		Source Device ID Destination Device ID	
SID DID RCM		Source Device ID Destination Device ID 0x0044	

表 4-15CMD DEL CHAR 指令

4.15 例子: 删除数据库中编号为 1-2000 的所有指纹

4.16 获取指定编号范围内可注册的首个编号 (CMD_GET_EMPTY_ID)

[功能 Function]

获取指定范围(起始 Template 编号 [~] 结束 Template 编号)内可注册(没有注册 Template 的)的第一个 Template 编号。

[工作过程 Sequence]

- ① 若指定范围无效,则返回 ERR INVALID PARAM。
- ② 搜索指定范围内可注册的第一个 ID。 若存在,则返回其值。否则,返回 ERR_EMPTY_ID_NOEXIST 。

[命令及响应Command and Response]

PREFIX	OxAA55		
SID		Source Device ID	
DID		Destination Device ID	
CMD	0x0045		
LEN	4		
DATA	2bytes 起始 Template 编号		
DATA	2bytes 结束 Template 编号		
	0x55AA		
PREFIX		0x55AA	
PREFIX SID		Ox55AA Source Device ID	
SID		Source Device ID	
SID DID		Source Device ID Destination Device ID	
SID DID RCM		Source Device ID Destination Device ID 0x0045	

表 4-16CMD GET EMPTY ID 指令

4.16 例子: 获取 1-2000 编号范围内(0x0001-0x07D0)的首个可注册编号,结果该编号为11

4.17 检查指定的编号是否已被注册(CMD_GET_STATUS)

[功能 Function]

获取指定编号中的 Template 的注册状态。

[工作过程 Sequence]

若指定 Template 编号无效,则返回 ERR_INVALID_TMPL_NO。 若指定编号中已有 Template 注册,则返回 1 。否则,返回 0 。

[命令及响应 Command and Response]

PREFIX	0xAA55		
SID	Source Device ID		
DID	Destination Device ID		
CMD	0x0046		
LEN	2		
DATA	Template 编号		
PREFIX	0x55AA		
SID	Source Device ID		
DID	Destination Device ID		
RCM	0x0046		
LEN	成功 : 4, 失败 : 2		
RET	Result Code		
DATA	1byte	成功时:注册状态 (1:已注册,0:没有注册)	

表 4-17CMD GET STATUS 指令

4.17 例子1: 获取 ID 编号=1 的注册状态,可注册

4.17 例子二: 获取 ID 编号=1 的注册状态,已注册

4.18 检查指定编号范围内的指纹库是否有数据损坏(CMD GET BROKEN ID)

[功能 Function]

检查指定范围(起始 Template 编号 [~] 结束 Template 编号)内的已注册模板的是否有损坏。 在 Flash 的 Write 操作中,有可能因突然断电等原因导致模板的损坏。

HOST 在任意时刻(例如,Target 的初始启动),利用该指令,检查模板的破损情况。已破损的模板,需要删除重新注册。

[工作过程 Sequence]

- ●若指定范围无效,则返回 ERR_INVALID_PARAM 。
 - ②检查指定范围内所有已注册的模板的破损情况。

若存在已破损模板,则返回已破损模板的个数和第一个已破损模板编号。

否则,模板个数和模板编号都为 0。

[命令及响应 Command and Response]

PREFIX	0xAA55		
SID	Source Device ID		
DID	Destination Device ID		
CMD	0x0047		
LEN	4		
DATA	2bytes	起始 Template 编号	
DATA	2bytes	结束 Template 编号	
PREFIX	0x55AA		
SID	Source Device ID		
DID	Destination Device ID		
RCM	0x0047		
LEN	成功 : 6, 失败 : 2		
RET	Result Code		
DATA	2byte	成功时: 破损 Template 的个数	
	2byte	成功时: 第一个破损 Template 编号	

表 4-18CMD_GET_BROKEN_ID 指令

4.18 例子: 获取1-2000 范围内的指纹坏损的ID 编号

4.19 获取指定编号范围内已注册的指纹总数 (CMD GET ENROLL COUNT)

[功能 Function]

获取指定范围(起始 Template 编号 ~ 结束 Template 编号)内已注册的指纹总数。

[工作过程 Sequence]

- ①若指定范围无效,则返回 ERR_INVALID_PARAM。
- ②返回模块中注册的指纹的个数。

[命令及响应 Command and Response]

PREFIX	0xAA55				
SID	Source Device ID				
DID	Destination Device ID				
CMD	0x0048				
LEN	4				
DATA	2bytes	起始 Template 编号			
	2bytes	结束 Template 编号			
	0x55AA				
PREFIX		0x55AA			
PREFIX SID		0x55AA Source Device ID			
SID		Source Device ID			
SID DID		Source Device ID Destination Device ID			
SID DID RCM		Source Device ID Destination Device ID 0x0048			

表 5-19CMD_GET_ENROLL_COUNT 指令

4.19 例子: 获取1-2000 (0x0001~0x07D0) 范围内的已注册用户总数,总数为10 (0x000A)

4.20 从暂存在 ImageBuffer 中的指纹图像产生模板 (CMD GENERATE)

[功能 Function]

从 ImageBuffer 中的指纹图像产生指纹模板 Template 并保存于指定 Ram Buffer 中。

[工作过程 Sequence]

- ①若指定 Ram Buffer 编号无效,则返回错误码 ERR_INVALID_BUFFER_ID 。
- ②检查 ImageBuffer 中图像的正确性。若不正确,则返回 ERR BAD QUALITY 。
- ③将生成的 Template 保存于指定 Ram Buffer 中并返回 ERR SUCCESS 。

[命令及响应 Command and Response]

PREFIX	0xAA55		
SID	Source Device ID		
DID	Destination Device ID		
CMD	0x0060		
LEN	2		
DATA	2bytes	Ram Buffer 编号	
PREFIX	0x55AA		
SID	Source Device ID		
DID	Destination Device ID		
RCM	0x0060		
LEN	2		
RET	Result Code		
DATA	0		

表 4-20CMD GENERATE 指令

4.20 例子1: 从ImageBuffer 中生成模板数据保存在RamBuffer0 中

4.20 例子2: 从ImageBuffer 中生成模板数据保存在RamBuffer1 中

4.20 例子3: 从ImageBuffer 中生成模板数据保存在RamBuffer2 中

4.21 合成指纹模板数据用于入库(CMD MERGE)

[功能 Function]

将暂存在 Ram Buffer 中的模板合并生成模板数据并后保存于指定的 Ram Buffer 中。合成个数可为 2 或 3:

若为 2: 则合成 Ram BufferO 和 Ram BufferI 的 Template 。

若为 3: 则合成 Ram BufferO、Ram Buffer1 和 Ram Buffer2 的 Template 。

[工作过程 Sequence]

- ①若指定 Ram Buffer 编号无效,则返回错误码 ERR INVALID BUFFER ID 。
- ②若合成个数无效,则返回 ERR_GEN_COUNT。
- ③根据合成个数,合成 Template 并生成一个 Template 。若合成失败返回错误码。
- ④将生成的 Template 保存于指定的 Ram Buffer 中并返回 ERR SUCCESS 。

[命令及响应 Command and Response]

PREFIX		0xAA55
SID		Source Device ID
DID		Destination Device ID
CMD		0x0061
LEN		3
DATA	2bytes	Ram Buffer 编号
DATA	1byte	合成个数(2/3)
PREFIX		0x55AA
SID		Source Device ID
DID		Destination Device ID
RCM		0x0061
LEN		2
RET		Result Code
DATA		0

表 4-21 CMD MERGE 指令

4.21 例子: 将 RamBuffer 中 3 个暂存的指纹模板融合为 1 个指纹模板数据

4.22 指定 2 个 RamBuffer 之间的模板做比对 (CMD MATCH)

[功能 Function]

指定的两个 Ram Buffer 中的 Template 之间进行比对。

[工作过程 Sequence]

- ①若指定 Ram Buffer 编号无效,则返回错误码 ERR_INVALID_BUFFER_ID 。
- ②指定的 Ram Buffer 中的两个 Template 之间进行比对并返回其结果。 若比对成功,则 RET 返回 ERR_SUCCESS 且 DATA 返回智能更新结果。 否则, RET 返回 ERR_VERIFY 。

[命令及响应 Command and Response]

PREFIX		0xAA55
SID	Source Device ID	
DID		Destination Device ID
CMD		0x0062
LEN		4
DATA	2bytes	待比对的第一个 Ram Buffer编号
DATA	2bytes	待比对的第二个 Ram Buffer 编号
PREFIX		0x55AA
SID		Source Device ID
DID		Destination Device ID
RCM		0x0062
LEN		2
RET		Result Code
DATA		无数据

表 4-22CMD MATCH 指令

4.22 例子: 将 RamBuffer0 与 RamBuffer1 中的指纹模板进行1:1 比对

4.23 指定编号范围的 1: N 识别 (CMD SEARCH)

[功能 Function]

指定 Ram Buffer 中的 Template 与指定搜索范围(起始 Template 编号 [~] 结束 Template 编号) 内的所有已注册指纹 Template 之间进行 1:N 比对并返回其结果。

[工作过程 Sequence]

- ①若指定 Ram Buffer 编号无效,则返回错误码 ERR INVALID BUFFER ID 。
- ②若指定搜索范围无效,则返回错误码 ERR INVALID BUFFER ID 。
- ③若没有已注册 Template , 则返回错误码 ERR ALL TMPL EMPTY 。
- ④指定 Ram Buffer 中的 Template 与已注册的所有模板之间进行比对并返回其结果。 若搜索成功,则 RET 返回 ERR_SUCCESS 且在 DATA 域返回被搜索出的模板编号和智能更 新结果。否则,RET 返回 ERR IDENTIFY。

[命令及响应 Command and Response]

PREFIX		0xAA55	
SID	Source Device ID		
DID	Destination Device ID		
CMD		0x0063	
LEN	6		
	2bytes	Ram Buffer 编号	
DATA	2bytes	待搜索的起始 Template 编号	
	2bytes	待搜索的结束 Template 编号	
	0x55AA		
PREFIX		0x55AA	
PREFIX SID		0x55AA Source Device ID	
SID		Source Device ID	
SID		Source Device ID Destination Device ID	
SID DID RCM		Source Device ID Destination Device ID 0x0063	
SID DID RCM LEN	3bytes	Source Device ID Destination Device ID 0x0063 成功 : 5, 失败 : 2	

表 4-23 CMD_SEARCH 指令

4.23 例子: 暂存在RamBuffer0中的指纹模板与1-2000编号范围内的指纹比对,返回比对结果

Host命令: 55 AA 00 00 <mark>63 0006 0000 0001 0000 07</mark> 00 00 00 00 00 00 00 00 00 00 00 40 02

Target响应: AA 55 01 00 63 0005 0000 0008 0001 00 00 00 00 00 00 00 00 00 00 00 71 01

4.24 指定 RamBuffer 与指纹库中指定编号的模板比对 (CMD VERIFY)

[功能 Function]

指定 Ram Buffer 中的模板与数据库中指定编号的模板之间进行 1:1 比对并返回其结果。

[工作过程 Sequence]

- ①若指定 Template 编号无效,则返回错误码 ERR INVALID TMPL NO 。
- ②若指定 Ram Buffer 编号无效,则返回错误码 ERR INVALID BUFFER ID 。
- ③若不存在指定编号注册的 Template , 则返回错误码 ERR TMPL EMPTY。
- ④指定 Ram Buffer 中的模板与指定编号中的模板之间进行比对并返回其结果。 若比对成功:则 RET 返回 ERR_SUCCESS 且 DATA 返回 Template 编号和智能更新结果。 否则: RET 返回 ERR VERIFY 。

[命令及响应 Command and Response]

PREFIX	0xAA55	
SID	Source Device ID	
DID	Destination Device ID	
CMD	0x0064	
LEN	4	
DATA	2bytes	待比对的 Template 编号
DATA	2bytes	Ram Buffer 编号
PREFIX	0x55AA	
SID	Source Device ID	
DID	Destination Device ID	
RCM	0x0064	
LEN	成功 : 5, 失败 : 2	
RET	Result Code	
DATA	Backwidth 成功时: Template 编号(2bytes) + 智能更新结果(1:已进行智能更新, 0:没有更新)	

表 4-24CMD VERIFY 指令

4.24 例子: RamBuffer0中的指纹模板与数据库中编号为8的指纹1:1验证

4.25 设置模块序列号(CMD_SET_MODULE_SN)

[功能 Function]

从 Host 接收模块序列号 (Module SN) 并保存于模块中。Module SN为 16字节。

[工作过程 Sequence]

OHost 发送指令包, 使得 Target 进入数据(Module SN)接收等待状态。

该指令包的 DATA 域中,已设置有下次发送的指令数据包的长度。

②Target 检测接收到的指令包的正确性:

若不正确:则返回错误码并结束处理。

若待接收数据的大小不正确:则返回 ERR_INVALID_PARAM。

若正确:则为了告知已进入数据(Module SN)接收等待状态向 HOST 发送应答包,并进入数据(Module SN)接收等待状态。

◎Host 收到应答包后,在指令数据包中设置 Module SN 并发送至 Target。

®Target 收到指令数据包后,将 Module SN 设置于模块并返回其结果。

[命令及响应 Command and Response]

	指令包
PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0008
LEN	2
DATA	16(Module SN Size)
PREFIX	0x55AA
SID	Source Device ID
DID	Destination Device ID
RCM	0x0008
LEN	2
RET	Result Code
DATA	无
	指令数据包
PREFIX	0xA55A
SID	Source Device ID
DID	Destination Device ID
CMD	0x0008

IDWD2200xx 指纹识别模块用户手册

LEN	16(Module SN Size)
DATA	Module SN(16bytes)
PREFIX	0x5AA5
SID	Source Device ID
DID	Destination Device ID
RCM	0x0008
LEN	2
RET	Result Code
DATA	无

表 4-27 CMD_SET_MODULE_SN 指令

4.26 读取模块序列号 (CMD_GET_MODULE_SN)

[功能 Function]

将保存于模块的 Module SN 发送至 Host。

[工作过程 Sequence]

①以指令应答包的形式,将 HOST 待接收的 Module SN 的大小指定为应答数据并应答。 ②将保存于模块的 Module SN, 利用应答数据包发送。

[命令及响应 Command and Response]

PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0009
LEN	0
DATA	无
PREFIX	0x55AA
SID	Source Device ID
DID	Destination Device ID
RCM	0x0009
LEN	4
RET	Result Code
DATA	成功:下一个数据应答包的数据长度(Module SN Size(16)) 失败:错误码
	成功时的应答数据包
PREFIX	0x5AA5
SID	Source Device ID
DID	Destination Device ID
RCM	0x0009
LEN	Module SN Size(16)
RET	ERR_SUCCESS
DATA	Module SN(16bytes)

表 4-28 CMD_GET_MODULE_SN 指令

4.27 取消采集指纹 (CMD_FP_CANCEL)

注: CMD_FP_Cancel 指令只适用于滑动采集器的模块

[功能 Function]

取消指纹采集过程指令。

若在处理 CMD GET IMAGE 指令过程中收到 CMD FP CANCEL 指令:

则中止 CMD_GET_IMAGE 指令的处理并以 ERR_FP_CANCEL 作为 CMD_GET_IMAGE 指令的返回值返回该错误码。

注: CMD_FP_CANCEL 指令没有应答包。

[工作 Sequence]

设置当前处理中的指令运行取消标记。

[命令及响应 Command and Response]

PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0025
LEN	0
DATA	无

表 4-31 CMD_FP_CANCEL 指令

4.27 例子1: 在采集指纹图像过程中给模块发送取消指令(CMD_FP_CANCE)

4.28 获取已注册 ID 列表 (CMD_GET_ENROLLED_ID_LIST)

[功能 Function]

将注册于模块中的 ID 列表信息发送至 HOST。

其 ID 列表信息结构如下:

每个字节的每个位表示第 $\mathbf{x}(\mathbf{x} = \mathbf{y}$ 节号(从 0 开始) * $\mathbf{8}$ + 位号(从 0 开始))个编号的指纹注册状态。

若为0,则表示没有注册。若为1,则表示已注册。

例如;假设ID列表信息的第二个字节为01000001(2进制),每个位的含义如下:

从右开始第 0 位(1): 8*2+0 = 16 (第 16 编号中已注册指纹)

从右开始第 1 位(0): 8*2+1 = 17 (第 17 编号中没注册指纹)

. . .

从右开始第 6 位(1): 8*2+6 = 22 (第 22 编号中已注册指纹)

从右开始第7位(0):8*2+7=23(第23编号中没注册指纹)

[工作 Sequence]

①以指令应答包的形式将 HOST 待接收的 ID 列表信息的大小设为应答数据发送应答。

◎以应答数据包发送模块中已注册 ID 列表信息。

[Command and Response]

PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x0049
LEN	0
DATA	无
PREFIX	0x55AA
SID	Source Device ID
DID	Destination Device ID

IDWD2200xx 指纹识别模块用户手册

RCM	0x0049		
LEN	4		
RET	Result Code		
DATA	成功:下一个应答数据包的数据长度(ID List Information Size)		
	失败: 错误码		
PREFIX	0x5AA5		
SID	Source Device ID		
DID	Destination Device ID		
RCM	0x0049		
LEN	ID List Information Size		
RET	ERR_SUCCESS		
DATA	ID List Information		

表 4-28 CMD_GET_ENROLLED_ID_LIST 指令

4.29 进入休眠状态 (CMD_ENTER_STANDBY_STATE)

[功能 Function]

使模块进入休眠状态。

[工作 Sequence]

模块收到指令包之后,返回 ERR_SUCCESS 并进入休眠状态。

[Command and Response]

DDDDT!!	^ · · · = -
PREFIX	0xAA55
SID	Source Device ID
DID	Destination Device ID
CMD	0x000C
LEN	0
DATA	无数据
DDDDIA	O FEAA
PREFIX	0x55AA
SID	Ox55AA Source Device ID
SID	Source Device ID
SID DID	Source Device ID Destination Device ID
SID DID RCM	Source Device ID Destination Device ID 0x000C

表 4-29 CMD_ENTER_STANDBY_STATE

4.30 通讯错误返回(Incorrect Command)

[功能 Function]

因通讯错误、干扰造成的误码等原因,模块收到不正确指令的情况,向 HOST 发送该应答。

[响应 Command and Response]

PREFIX	0x55AA
SID	Source Device ID
DID	Destination Device ID
RCM	0x00FF
LEN	2
RET	ERR_SUCCESS
DATA	-

表 4-31 Incorrect Command 返回

4.31 注意事项

- ①CMD_GENERATE 指令是从 ImageBuffer 生成 Template Data。因此,调用该指令之前,需要事先调用 CMD GET IMAGE 指令,将图像保存于 ImageBuffer 中。
- ②调用 CMD_VERIFY, CMD_SEARCH, CMD_GENERATE, CMD_MERGE, CMD_MATCH 指令,则保存于 ImageBuffer 中的图像会被清掉。
- ③保存于 Ram Buffer2 中的 Template ,调用 CMD_SEARCH, CMD_VERIFY, CMD_GENERATE, CMD_STORE_CHAR, CMD_DEL_CHAR, CMD_GET_EMPTY_ID, CMD_GET_STATUS, GET_BROKEN_ID, CMD_GETN_ENROLL_COUNT 指令,会被清掉。

因此,除了注册之外,不要使用 Ram Buffer2。

(五) 响应(Response)及错误代码表(Error Code)

No	Response 及错误代码	值	说明
1	ERR_SUCCESS	0x00	指令处理成功。
2	ERR_FAIL	0x01	指令处理失败。
3	ERR_VERIFY	0x10	与指定编号中 Template 的 1:1 比对失败。
4	ERR_IDENTIFY	0x11	已进行 1:N 比对,但相同 Template 不存在。
5	ERR_TMPL_EMPTY	0x12	在指定编号中不存在已注册的 Template 。
6	ERR_TMPL_NOT_EMPTY	0x13	在指定编号中已存在 Template 。
7	ERR_ALL_TMPL_EMPTY	0x14	不存在已注册的 Template 。
8	ERR_EMPTY_ID_NOEXIST	0x15	不存在可注册的 Template ID 。
9	ERR_BROKEN_ID_NOEXIST	0x16	不存在已损坏的 Template 。
10	ERR_INVALID_TMPL_DATA	0x17	指定的 Template Data 无效。
11	ERR_DUPLICATION_ID	0x18	该指纹已注册。
12	ERR_BAD_QUALITY	0x19	指纹图像质量不好。
13	ERR_MERGE_FAIL	0x1A	Template 合成失败。
14	ERR_NOT_AUTHORIZED	0x1B	没有进行通讯密码确认。注: □若已设有通讯密码但没有调用 CMD_VERIFY_DEVPASS 进行确认,则除了 CMD_TEST_CONNECTION, CMD_VERIFY_DEVPASS 之外的所有指令都返回该错误码。 ②若没有设置通讯密码,则可以不经过确认密码就可以使用所有指令。
15	ERR_MEMORY	0x1C	外部 Flash 烧写出错。
16	ERR_INVALID_TMPL_NO	0x1D	指定 Template 编号无效。
17	ERR_INVALID_PARAM	0x22	使用了不正确的参数。
18	ERR_GEN_COUNT	0x25	指纹合成个数无效。
19	ERR_TIME_OUT	0x23	在 TimeOut 时间内没有输入指纹。
20	ERR_INVALID_BUFFER_ID	0x26	Buffer ID 值不正确。
21	ERR_FP_NOT_DETECTED	0x28	采集器上没有指纹输入。
22	ERR_FP_CANCEL	0x41	指令被取消。

(六) 登记及比对流程图

6.1光学及面阵式半导体指纹采集器模块的注册流程 (Enroll Process)

图 6-1 光学及面阵式半导体指纹采集器模块的注册流程

6.2滑动采集器模块的注册流程(Enroll Process)

图 6-2 滑动指纹采集器模块的注册流程

6.3光学及面阵式半导体采集器模块的验证及识别流程(Verify & Identify)

图 6-3 光学及面阵式半导体采集器模块的验证及识别流程

6.4滑动采集器模块指纹验证和识别流程 (Verify & Identify)

图 6-4 滑动指纹采集器模块指纹验证和识别流程

(七) 硬件描述

7.1 主处理板尺寸

7.2 指纹模块接口信号定义(接插件为1.25mm间距)

引脚号	信号名称	信号描述	注释
1	Wakeup	FPC1020检测到手指信号输出	可以作为应用MCU的休
			眠唤醒信号
2	Tx	本模块发送输出端	UART 串口通讯
3	Rx	本模块接收输入端	3.3V TTL电平
4	GND	地	输入电压范围:
5	VIN	电源输入正端	DC3.3V-6V
6	RESET	本硬件模块复位输入, 低有效	
7	USB-DN	USB D-	USB通讯
8	USB-DP	USB D+	

7.3 IDWD1020 指纹识别模块技术参数

项目	参数	注释
处理器 (CPU)	心理器 (CPU) Core: 32-bit ARM Cotex-M3, 108MHz,	
	RAM:96KB,Flash memory:1MB	
指纹采集器	FPC1020	
指纹容量	1700/2000/3000可选。默认为1700枚	
误识率 (FAR)	< 0.001 % (Security Level: 3)	
拒识率 (FRR)	< 0.1 % (Security Level: 3)	
比对模式	1:N 识别/ 1:1 验证	
指纹模板数据大小	498 字节 (Byte)	
安全等级	1-5可设置,默认: 3	
响应时间	指纹预处理< 0.45 s	
	1:N 识别时间(3000枚满容量注册)< 1.5s	
通讯接口	USB2.0 或 UART (3.3V-TTL logic)	
串口通讯参数	起始位: 1, 停止位: 1, 奇偶校验: 无, 支持如下波特率:	
	9600/19200/38400/57600/115200/230400/460800/921600	
	出厂值为: 115200	
供电	输入电压: DC3.3V-6V	
	工作动态电流: 小于40mA	
	休眠静态电流:小于20uA	
工作环境	温度: -10 ℃- 60 ℃	
	湿度: 20% - 80%	
支持的操作系统	Windows or Android	