

=====

Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Keisha Douglas

Timestamp: [year=2008; month=1; day=8; hr=16; min=44; sec=41; ms=854;]

=====

Application No: 10575261 Version No: 1.1

Input Set:

Output Set:

Started: 2008-01-08 16:42:25.301
Finished: 2008-01-08 16:42:27.969
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 668 ms
Total Warnings: 72
Total Errors: 0
No. of SeqIDs Defined: 113
Actual SeqID Count: 113

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20)
W 213	Artificial or Unknown found in <213> in SEQ ID (21)
W 213	Artificial or Unknown found in <213> in SEQ ID (22)
W 213	Artificial or Unknown found in <213> in SEQ ID (23)
W 213	Artificial or Unknown found in <213> in SEQ ID (24)
W 213	Artificial or Unknown found in <213> in SEQ ID (25)
W 213	Artificial or Unknown found in <213> in SEQ ID (26)
W 213	Artificial or Unknown found in <213> in SEQ ID (27)
W 213	Artificial or Unknown found in <213> in SEQ ID (28)
W 213	Artificial or Unknown found in <213> in SEQ ID (29)
W 213	Artificial or Unknown found in <213> in SEQ ID (30)
W 213	Artificial or Unknown found in <213> in SEQ ID (31)
W 213	Artificial or Unknown found in <213> in SEQ ID (32)
W 213	Artificial or Unknown found in <213> in SEQ ID (33)
W 213	Artificial or Unknown found in <213> in SEQ ID (34)
W 213	Artificial or Unknown found in <213> in SEQ ID (35)
W 213	Artificial or Unknown found in <213> in SEQ ID (36)

Input Set:

Output Set:

Started: 2008-01-08 16:42:25.301
Finished: 2008-01-08 16:42:27.969
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 668 ms
Total Warnings: 72
Total Errors: 0
No. of SeqIDs Defined: 113
Actual SeqID Count: 113

Error code Error Description

This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> SHITARA, KENYA
HOSAKA, EMI
NATSUME, AKITO
WAKITANI, MASAKO
UCHIDA, KAZUHISA
SATOH, MITSUO
OHNUKI, NAOKO
NAKAMURA, KAZUYASU

<120> FUSED PROTEIN COMPOSITION

<130> BJS-249-426

<140> 10/575,261
<141> 2006-04-10

<150> PCT/JP04/15325
<151> 2004-10-08

<150> JP 2003-350158
<151> 2003.10.08

<160> 113

<170> PatentIn version 3.3

<210> 1
<211> 1504
<212> DNA
<213> *Cricetulus griseus*

<220>

<221> CDS

<222> (1) .. (1119)

<400> 1

```

atg gct cac gct ccc gct agc tgc ccg agc tcc agg aac tct ggg gac
Met Ala His Ala Pro Ala Ser Cys Pro Ser Ser Arg Asn Ser Gly Asp
   1           5           10          15

```

```

ggc cag gat ggc tca tac ttg gca gaa ttc ctg ctg gag aaa gga tac      144
Gly Gln Asp Gly Ser Tyr Leu Ala Glu Phe Leu Leu Glu Lys Gly Tyr
          35           40           45

```

gag gtt cat gga att gta cg^g cga tcc agt tca ttt aat aca ggt cga 192
Glu Val His Gly Ile Val Arg Arg Ser Ser Ser Phe Asn Thr Gly Arg
50 55 60

att gaa cat tta tat aag aat cca cag gct cat att gaa gga aac atg 240
Ile Glu His Leu Tyr Lys Asn Pro Gln Ala His Ile Glu Gly Asn Met

65	70	75	80	
aag ttg cac tat ggt gac ctc acc gac agc acc tgc cta gta aaa atc Lys Leu His Tyr Gly Asp Leu Thr Asp Ser Thr Cys Leu Val Lys Ile 85		90	95	288
atc aat gaa gtc aaa cct aca gag atc tac aat ctt ggt gcc cag agc Ile Asn Glu Val Lys Pro Thr Glu Ile Tyr Asn Leu Gly Ala Gln Ser 100	105		110	336
cat gtc aag att tcc ttt gac tta gca gag tac act gca gat gtt gat His Val Lys Ile Ser Phe Asp Leu Ala Glu Tyr Thr Ala Asp Val Asp 115	120		125	384
gga gtt ggc acc ttg cgg ctt ctg gat gca att aag act tgt ggc ctt Gly Val Gly Thr Leu Arg Leu Leu Asp Ala Ile Lys Thr Cys Gly Leu 130	135	140		432
ata aat tct gtg aag ttc tac cag gcc tca act agt gaa ctg tat gga Ile Asn Ser Val Lys Phe Tyr Gln Ala Ser Thr Ser Glu Leu Tyr Gly 145	150	155	160	480
aaa gtg caa gaa ata ccc cag aaa gag acc acc cct ttc tat cca agg Lys Val Gln Glu Ile Pro Gln Lys Glu Thr Thr Pro Phe Tyr Pro Arg 165	170		175	528
tgc ccc tat gga gca gcc aaa ctt tat gcc tat tgg att gta gtg aac Ser Pro Tyr Gly Ala Ala Lys Leu Tyr Ala Tyr Trp Ile Val Val Asn 180	185		190	576
ttt cga gag gct tat aat ctc ttt gcg gtg aac ggc att ctc ttc aat Phe Arg Glu Ala Tyr Asn Leu Phe Ala Val Asn Gly Ile Leu Phe Asn 195	200	205		624
cat gag agt cct aga aga gga gct aat ttt gtt act cga aaa att agc His Glu Ser Pro Arg Arg Gly Ala Asn Phe Val Thr Arg Lys Ile Ser 210	215	220		672
cgg tca gta gct aag att tac ctt gga caa ctg gaa tgt ttc agt ttg Arg Ser Val Ala Lys Ile Tyr Leu Gly Gln Leu Glu Cys Phe Ser Leu 225	230	235	240	720
gga aat ctg gac gcc aaa cga gac tgg ggc cat gcc aag gac tat gtc Gly Asn Leu Asp Ala Lys Arg Asp Trp Gly His Ala Lys Asp Tyr Val 245	250		255	768
gag gct atg tgg ctg atg tta caa aat gat gaa cca gag gac ttt gtc Glu Ala Met Trp Leu Met Leu Gln Asn Asp Glu Pro Glu Asp Phe Val 260	265	270		816
ata gct act ggg gaa gtt cat agt gtc cgt gaa ttt gtt gag aaa tca Ile Ala Thr Gly Glu Val His Ser Val Arg Glu Phe Val Glu Lys Ser 275	280	285		864
ttc atg cac att gga aag acc att gtg tgg gaa gga aag aat gaa aat Phe Met His Ile Gly Lys Thr Ile Val Trp Glu Gly Lys Asn Glu Asn 290	295	300		912

gaa gtg ggc aga tgt aaa gag acc ggc aaa att cat gtg act gtg gat			960
Glu Val Gly Arg Cys Lys Glu Thr Gly Lys Ile His Val Thr Val Asp			
305	310	315	320
ctg aaa tac tac cga cca act gaa gtg gac ttc ctg cag gga gac tgc			1008
Leu Lys Tyr Tyr Arg Pro Thr Glu Val Asp Phe Leu Gln Gly Asp Cys			
325	330	335	
tcc aag gcg cag cag aaa ctg aac tgg aag ccc cgc gtt gcc ttt gac			1056
Ser Lys Ala Gln Gln Lys Leu Asn Trp Lys Pro Arg Val Ala Phe Asp			
340	345	350	
gag ctg gtg agg gag atg gtg caa gcc gat gtg gag ctc atg aga acc			1104
Glu Leu Val Arg Glu Met Val Gln Ala Asp Val Glu Leu Met Arg Thr			
355	360	365	
aac ccc aac gcc tga gcacctctac aaaaaaattc gcgagacatg gactatggtg			1159
Asn Pro Asn Ala			
370			
cagagccagc caaccagagt ccagccactc ctgagaccat cgaccataaa ccctcgactg			1219
cctgtgtcgt cccccacagct aagagctggg ccacaggtt gtggggacca ggacggggac			1279
actccagagc taaggccact tcgctttgt caaaggctcc tctcaatgat tttggaaat			1339
caagaagttt aaaatcacat actcattta cttgaaatta tgtcactaga caacttaaat			1399
ttttgagtc tgagattgtt ttctctttt cttattaaat gatcttcta tgacccagca			1459
aaaaaaaaaaa aaaaaaggga tataaaaaaaa aaaaaaaaaa aaaaa			1504

<210> 2
<211> 372
<212> PRT
<213> Cricetulus griseus

<400> 2
Met Ala His Ala Pro Ala Ser Cys Pro Ser Ser Arg Asn Ser Gly Asp
1 5 10 15

Gly Asp Lys Gly Lys Pro Arg Lys Val Ala Leu Ile Thr Gly Ile Thr
20 25 30

Gly Gln Asp Gly Ser Tyr Leu Ala Glu Phe Leu Leu Glu Lys Gly Tyr
35 40 45

Glu Val His Gly Ile Val Arg Arg Ser Ser Ser Phe Asn Thr Gly Arg
50 55 60

Ile Glu His Leu Tyr Lys Asn Pro Gln Ala His Ile Glu Gly Asn Met

65

70

75

80

Lys Leu His Tyr Gly Asp Leu Thr Asp Ser Thr Cys Leu Val Lys Ile
85 90 95

Ile Asn Glu Val Lys Pro Thr Glu Ile Tyr Asn Leu Gly Ala Gln Ser
100 105 110

His Val Lys Ile Ser Phe Asp Leu Ala Glu Tyr Thr Ala Asp Val Asp
115 120 125

Gly Val Gly Thr Leu Arg Leu Leu Asp Ala Ile Lys Thr Cys Gly Leu
130 135 140

Ile Asn Ser Val Lys Phe Tyr Gln Ala Ser Thr Ser Glu Leu Tyr Gly
145 150 155 160

Lys Val Gln Glu Ile Pro Gln Lys Glu Thr Thr Pro Phe Tyr Pro Arg
165 170 175

Ser Pro Tyr Gly Ala Ala Lys Leu Tyr Ala Tyr Trp Ile Val Val Asn
180 185 190

Phe Arg Glu Ala Tyr Asn Leu Phe Ala Val Asn Gly Ile Leu Phe Asn
195 200 205

His Glu Ser Pro Arg Arg Gly Ala Asn Phe Val Thr Arg Lys Ile Ser
210 215 220

Arg Ser Val Ala Lys Ile Tyr Leu Gly Gln Leu Glu Cys Phe Ser Leu
225 230 235 240

Gly Asn Leu Asp Ala Lys Arg Asp Trp Gly His Ala Lys Asp Tyr Val
245 250 255

Glu Ala Met Trp Leu Met Leu Gln Asn Asp Glu Pro Glu Asp Phe Val
260 265 270

Ile Ala Thr Gly Glu Val His Ser Val Arg Glu Phe Val Glu Lys Ser
275 280 285

Phe Met His Ile Gly Lys Thr Ile Val Trp Glu Gly Lys Asn Glu Asn
290 295 300

Glu Val Gly Arg Cys Lys Glu Thr Gly Lys Ile His Val Thr Val Asp
305 310 315 320

Leu Lys Tyr Tyr Arg Pro Thr Glu Val Asp Phe Leu Gln Gly Asp Cys
325 330 335

Ser Lys Ala Gln Gln Lys Leu Asn Trp Lys Pro Arg Val Ala Phe Asp
340 345 350

Glu Leu Val Arg Glu Met Val Gln Ala Asp Val Glu Leu Met Arg Thr
355 360 365

Asn Pro Asn Ala
370

<210> 3
<211> 1316
<212> DNA
<213> Cricetulus griseus

<400> 3
gccccggccc ctccacctgg accgagagta gctggagaat tgtgcaccgg aagttagctct 60
tggactggtg gaacctgcg caggtgcagc aacaatgggt gagccccagg gatccaggag 120
gatcctagtg acagggggct ctggactggt gggcagagct atccagaagg tggtcgcaga 180
tggcgctggc ttacccggag aggaatgggt gtttgtctcc tccaaagatg cagatctgac 240
ggatgcagca caaacccaag ccctgttcca gaaggtacag cccacccatg tcattcatct 300
tgctgcaatg gtaggaggcc tttccggaa tatcaaatac aacttggatt tctggaggaa 360
gaatgtgcac atcaatgaca acgtcctgca cttagcttc gaggtggca ctgc当地 420
ggtctcctgc ctgtccaccc gtatcttccc tgacaagacc acctatccta ttgtatgaaac 480
aatgatccac aatggtccac cccacagcag caatttggg tactcgatg ccaagaggat 540
gattgacgtg cagaacaggg cctacttcca gcagcatggc tgcacccatca ctgctgtcat 600
ccctaccaat gtcttggac ctcatgacaa cttcaacatt gaagatggcc atgtgctgcc 660
tggcctcatc cataaggtgc atctggccaa gagtaatggt tcagccttga ctgtttgggg 720
tacagggaaa ccacggaggc agttcatcta ctcaactggac ctggccggc tcttcatctg 780
ggtcctgcgg gagtacaatg aagttgagcc catcatcctc tcagtgcccg aggaagatga 840
agtctccatt aaggaggcag ctgaggctgt agtggaggcc atggacttct gtggggaaagt 900

cacttttgcat tcaacaaagt cagatggca gtataagaag acagccagca atggcaagct 960
tcgggcttac ttgcctgatt tccgttcac acccttcaag caggctgtga aggagacctg 1020
tgcctggttc accgacaact atgagcaggc ccggaagtga agcatggac aagcgggtgc 1080
tcagctggca atgcccagtc agtaggctgc agtctcatca tttgcttgta aagaactgag 1140
gacagtatcc agcaacctga gccacatgct ggtctctctg ccagggggct tcatgcagcc 1200
atccagtagg gccccatgttt gtccatcctc ggggaaaggc cagaccaaca ctttgttgt 1260
ctgcttctgc cccaacctca gtgcattccat gctggctctg ctgtcccttg tctaga 1316

<210> 4
<211> 321
<212> PRT
<213> Cricetulus griseus

<400> 4
Met Gly Glu Pro Gln Gly Ser Arg Arg Ile Leu Val Thr Gly Gly Ser
1 5 10 15

Gly Leu Val Gly Arg Ala Ile Gln Lys Val Val Ala Asp Gly Ala Gly
20 25 30

Leu Pro Gly Glu Glu Trp Val Phe Val Ser Ser Lys Asp Ala Asp Leu
35 40 45

Thr Asp Ala Ala Gln Thr Gln Ala Leu Phe Gln Lys Val Gln Pro Thr
50 55 60

His Val Ile His Leu Ala Ala Met Val Gly Gly Leu Phe Arg Asn Ile
65 70 75 80

Lys Tyr Asn Leu Asp Phe Trp Arg Lys Asn Val His Ile Asn Asp Asn
85 90 95

Val Leu His Ser Ala Phe Glu Val Gly Thr Arg Lys Val Val Ser Cys
100 105 110

Leu Ser Thr Cys Ile Phe Pro Asp Lys Thr Thr Tyr Pro Ile Asp Glu
115 120 125

Thr Met Ile His Asn Gly Pro Pro His Ser Ser Asn Phe Gly Tyr Ser
130 135 140

Tyr Ala Lys Arg Met Ile Asp Val Gln Asn Arg Ala Tyr Phe Gln Gln
145 150 155 160

His Gly Cys Thr Phe Thr Ala Val Ile Pro Thr Asn Val Phe Gly Pro
165 170 175

His Asp Asn Phe Asn Ile Glu Asp Gly His Val Leu Pro Gly Leu Ile
180 185 190

His Lys Val His Leu Ala Lys Ser Asn Gly Ser Ala Leu Thr Val Trp
195 200 205

Gly Thr Gly Lys Pro Arg Arg Gln Phe Ile Tyr Ser Leu Asp Leu Ala
210 215 220

Arg Leu Phe Ile Trp Val Leu Arg Glu Tyr Asn Glu Val Glu Pro Ile
225 230 235 240

Ile Leu Ser Val Gly Glu Glu Asp Glu Val Ser Ile Lys Glu Ala Ala
245 250 255

Glu Ala Val Val Glu Ala Met Asp Phe Cys Gly Glu Val Thr Phe Asp
260 265 270

Ser Thr Lys Ser Asp Gly Gln Tyr Lys Lys Thr Ala Ser Asn Gly Lys
275 280 285

Leu Arg Ala Tyr Leu Pro Asp Phe Arg Phe Thr Pro Phe Lys Gln Ala
290 295 300

Val Lys Glu Thr Cys Ala Trp Phe Thr Asp Asn Tyr Glu Gln Ala Arg
305 310 315 320

Lys

<210> 5

<211> 2008

<212> DNA

<213> Cricetulus griseus

<400> 5

aacagaaaact tatttcctg tgtggctaac tagaaccaga gtacaatgtt tccaaattttt 60

tgagctccga gaagacagaa gggagttgaa actctgaaaa tgcgggcatg gactggttcc 120
tggcggttggaa ttatgctcat tcttttgcc tgggggacct tattgtttta tataggtgg 180
catttggttc gagataatga ccacctgac cattctagca gagaactctc caagattctt 240
gcaaagctgg agcgcttaaa acaacaaaat gaagacttga ggagaatggc tgagtctctc 300
cgaataccag aaggccctat tcatcagggg acagctacag gaagagtccg ttttttagaa 360
gaacagcttg ttaaggccaa agaacagatt gaaaattaca agaaacaagc taggaatgat 420
ctggaaagg atcatgaaat ctaaggagg aggattgaaa atggagctaa agagctctgg 480
tttttctac aaagtgaatt gaagaaatta aagaaattag aggaaacga actccaaaga 540
catgcagatg aaattctttt ggattnnaga catcatgaaa ggtctatcat gacagatcta 600
tactacctca gtcaaacaga tggagcaggt gagtgccggg aaaaagaagc caaagatctg 660
acagagctgg tccagcggag aataacatat ctgcagaatc ccaaggactg cagcaaagcc 720
agaaagctgg tatgtaatat caacaaaggc tgtggctatg gatgtcaact ccatcatgtg 780
gtttactgct tcattgttc ttatggcacc cagcgaacac tcattttggaa atctcagaat 840
tggcgctatg ctactggagg atgggagact gtgttttagac ctgttaagtga gacatgcaca 900
gacaggtctg gcctctccac tggacactgg tcaggtgaag tgaaggacaa aatgttcaa 960
gtggtcgagc tccccattgt agacagcctc catcctcgtc ctccctactt acccttggt 1020
gtaccagaag accttgcaga tcgactcctg agagtccatg gtgatcctgc agtgtgggg 1080
gtatcccagt ttgtcaaata ctgtatccgt ccacaacctt ggctggaaag ggaaatagaa 1140
gaaaccacca agaagcttgg ctcaaacat ccagttattg gagtccatgt cagacgcact 1200
gacaaagtgg gaacagaagc agccttccat cccattgagg aatacatggt acacgttcaa 1260
gaacattttc agcttctcga acgcagaatg aaagtggata aaaaaagagt gtatctggcc 1320
actgatgacc cttctttgtt aaaggaggca aagacaaaagt actccaatta tgaatttatt 1380
agtgataact ctatttcttg gtcagctgga ctacacaacc gatacacaga aaattcactt 1440
cggggcgtga tcctggatat acacttctc tcccaggctg acttccttgt gtgtacttt 1500
tcattcccagg tctgtagggt tgcttatgaa atcatgcaaa cactgcattcc tcatgcctct 1560
gcaaacttcc attctttaga tgacatctac tattttggag gccaaaatgc ccacaaccag 1620
attgcagttt atcctcacca acctcgaact aaagaggaaa tccccatgga acctggagat 1680
atcattggtg tggctggaaa ccattggaat ggtaactcta aaggtgtcaa cagaaaacta 1740
ggaaaaacag gcctgtaccc ttcttacaaa gtccgagaga agatagaaac agtcaaatac 1800

cctacatatac ctgaagctga aaaatagaga tggagtgtaa gagattaaca acagaattta 1860
gttcagacca tctcagccaa gcagaagacc cagactaaca tatggttcat tgacagacat 1920
gctccgcacc aagagcaagt gggAACCTC agatgctgca ctggtgaaac gccttttgt 1980
gaaggggctgc tgtgcctca agcccatg 2008

<210> 6
<211> 1728
<212> DNA
<213> Mus musculus

<400> 6
atgcgggcat ggactgggttc ctggcggtgg attatgctca ttcttttgc ctgggggacc 60
ttgttatttt atatagggtgg tcatttggtt cgagataatg accaccctga tcactccagc 120
agagaactct ccaagattct tgcaaagctt gaacgcttaa aacagcaaaa tgaagacttg 180
aggcgaatgg ctgagttctt ccgaatacca gaaggccccca ttgaccaggg gacagctaca 240
ggaagagtcc gtgttttaga agaacagctt gttaaggcca aagaacagat tgaaaattac 300
aagaaacaag cttagaaatgg tctgggaaag gatcatgaaa tcttaagaag gaggattgaa 360
aatggagcta aagagctctg gtttttcta caaagcgaac tgaagaaatt aaagcattta 420
gaaggaaatg aactccaaag acatgcagat gaaattctt tggatttagg acaccatgaa 480
aggtctatca tgacagatct atactacctc agtcaaacag atggagcagg ggattggcgt 540
gaaaaagagg ccaaagatct gacagagctg gtccagcgga gaataacata tctccagaat 600
cctaaggact gcagcaaagc caggaagctg gtgtgtaaaca tcaataaagg ctgtggctat 660
ggttgtcaac tccatcacgt ggtctactgt ttcatgattt cttatggcac ccagcgaaca 720
ctcatcttgg aatctcagaa ttggcgctat gctactggtg gatggaa