Университет ИТМО

Факультет программной инженерии и компьютерной техники Кафедра вычислительной техники

Лабораторная работа № 1 по дисциплине "Методы обработки цифровых сигналов" Вариант 12

Выполнил: Чебыкин И. Б.

Группа: Р3401

Проверяющий: Тропченко А. А.

1 Цель работы

Цель работы - определение возможностей метода когерентного накопления для случаев стационарного и квазистационарного сигнала.

2 Задание

Вид сигнала: сумма двух гармонических

Соотношение сигнал/шум: 0.4 Число циклов накопления: до 1000

Пределы изменения соотношения сигнал/шум: 0.2 - 3

3 Стационарный сигнал

3.1 Зависимость SNR от числа накоплений

M	SNR_{out}
10	3.868
25	5.5653
50	9.211
75	9.6655
100	10.6286
125	12.3413
150	11.7916
200	14.9548
250	15.2979
300	16.1758
350	17.383
400	17.1882
450	17.2875
500	16.8379
550	17.6479
600	17.19
650	16.087
700	17.9941
750	16.107
800	14.964
850	15.4224
900	15.6997
950	14.021
1000	14.4387

3.2 Зависимость SNR_{out} от SNR_{in}

SNR_{in}	SNR_{out}	SNR_{in}	SNR_{out}	SNR_{in}	SNR_{out}
0.2	2.1394	0.2	3.9808	0.2	3.9808
0.5	5.1397	0.5	7.1364	0.5	11.1466
0.8	7.9533	0.8	10.2323	0.8	13.6484
1.0	9.2874	1.0	12.8602	1.0	16.5936
1.3	10.6212	1.3	14.8341	1.3	18.889
1.6	12.3531	1.6	19.6691	1.6	23.2473
1.9	15.134	1.9	18.976	1.9	24.3314
2.2	17.0636	2.2	21.0165	2.2	24.9963
2.5	18.9606	2.5	23.8579	2.5	26.9554
2.8	19.696	2.8	24.7976	2.8	27.951
3.0	20.9596	3.0	25.7825	3.0	29.7736

4 Квазистационарный сигнал

4.1 Зависимость SNR от числа накоплений

M	SNR_{out}									
10	2.1455									
25	0.9983									
50	1.0068									
75	1.0065									
100	1.0005									
125	1.0062									
150	1.0002									
200	1.0004									
300	0.9992									
400	0.9989									
500	0.9994									
600	0.9997									
700	0.9987									
800	0.9997									
900	1.0003									
1000	0.9997									
2.2 2 1.8 1.6		T	ı	1	1	1	1	1	SI	NR _{out} —
1.4 - 1.2 -										-
0.8	100	200	300	400	500	600	700	800	900	1000

4.2 Зависимость SNR_{out} от SNR_{in}

SNR_{in}	SNR_{out}	SNR_{in}	SNR_{out}	SNR_{in}	SNR_{out}
0.1	1.1167	0.1	0.9149	0.1	0.9924
0.3	1.895	0.3	0.9916	0.3	0.9956
0.5	2.1124	0.5	1.0081	0.5	0.992
0.7	2.2351	0.7	1.0271	0.7	1.0043
0.9	2.316	0.9	1.0138	0.9	1.0024
1.1	2.3744	1.1	1.0209	1.1	0.9966
1.5	2.4657	1.5	1.0193	1.5	1.0017
1.9	2.5114	1.9	1,0213	1.9	1.0024
2.1	2.5527	2.1	1.0229	2.1	1.0023
2.5	2.5032	2.5	1.0181	2.5	1.002
2.9	2.5593	2.9	1.0202	2.9	0.9996
3.0	2.5621	3.0	1.0201	3.0	1.0006

5 Функциональная схема устройства

6 Вывод

В ходе данной лабораторной работы я ознакомился с методом когерентного накопления для стационарного и квазистационарного сигналов. В результате подтвердилось, что этот метод эффективен, если сигнал постоянен.