Отчет о выполнении лабораторной работы 1.4.2

Исследование вынужденной регулярной прецессии гироскопа

Студент: Копытова Виктория

Сергеевна

Группа: Б03-304

1 Аннотация

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

В работе используются: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

2 Теоретические сведения

Уравнения движения твердого тела можно записать в виде

$$\frac{d\vec{p}}{dt} = \vec{F},\tag{1}$$

$$\frac{d\vec{L}}{dt} = \vec{M}. (2)$$

Момент импульса твёрдого тела в его главных осях x, y, z равен

$$\vec{L} = \vec{i}I_x\omega_x + \vec{j}I_y\omega_y + \vec{k}I_z\omega_z. \tag{3}$$

Быстро вращающееся тело для которого, например

$$I_z \omega_z \gg I_x \omega_x$$
, $I_y \omega_y$.

Приращение момента импульса из (2) определяется интегралом

$$\Delta \vec{L} = \int \vec{M} dt \tag{4}$$

Если момент внешних сил действует на протяжении короткого промежутка времени, из интеграла (4) следует, что приращение момента импульса значительноо меньше самого момента импульса

$$|\Delta \vec{L}| \ll |\vec{L}|$$

С этим связана устойчивость быстро вращающегося гироскопа. Выясним какие силы нужно приложить к гироскопу, чтобы изменить направление его оси. Рассмотрим для примера маховик, вращающийся вокруг оси z, перпендикулярной к плоскости маховика (рис. 1). Будем считать, что $\omega_z = \omega_0, \omega_x = 0, \omega_y = 0$.

Рис. 1: Маховик

Пусть ось вращения повернулась в плоскости zx по направлению к оси x на бесконечно малый угол $d\varphi$. Такой поворот означает добавочное вращение маховика вокруг оси y, так что

$$d\varphi = \Omega dt$$

где Ω - угловая скорость такого вращения. Будем предполагать, что

$$L_{\Omega} \ll L_{\omega_0} \tag{5}$$

Это означает, что момент импульса маховика, равный $I_z\omega_0$ до приложения внешних сил, только повернется в плоскости zx по направлению к оси x не изменяя своей величины. Таким образом,

$$|d\vec{L}| = Ld\varphi = L\Omega dt$$

Но это изменение направлено вдоль оси x, поэтому вектор $d\vec{L}$ можно представить в виде

$$d\vec{L} = [\vec{\Omega}\vec{L}dt]$$

то есть

$$\vec{M} = [\vec{\Omega}\vec{L}] \tag{6}$$

 Ω называется угловой скоростью прецессии. Она может быть вычислена по формуле

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{7}$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа (рис. 2).

Рис. 2: Схема экспериментальной установки

3 Ход работы

- 1. Установим лсь гироскопа в горизонатльное положение, включим питание и подождём 4-5 минут, чтобы вращение ротора успело стабилизироваться. Для того чтобы, убедиться в том, что ротор достаточно раскручен будем легко постукивать по рычагу С. При этом гироскоп не должени изменять своего положения в пространстве.
- 2. Подвесим к рычагу C груз. При этом начинается прецессия гироскопа. Трение в оси приводит к тому, что рычаг C начинает медленно опускаться.
- 3. Чтобы оценить момент сил трения, поднимем рычаг C на 5-6 градусов и будем измерять время регулярной прецесси за которое, ось опускается примерно на те же 5-6 градусов.

Проведём опыт несколько раз с различными массами грузов. Усреднённые результаты измерений приведены в таблице 1.

Масса груза, г	Период прецессии Т, с	$\sigma_{\text{сист}}$, с	$\sigma_{\text{случ}}, \text{с}$	σ_T , c	ε_T
93	98.2	0.01	0.06	0.06	0.0006
116	79.5	0.01	0.05	0.05	0.0006
138	66.1	0.01	0.04	0.04	0.0006
174	53.2	0.01	0.04	0.04	0.0008
214	42.7	0.01	0.03	0.03	0.0007

Таблица 1: Периоды прецесси для разных масс грузов

Рассчитаем угловую частоту прецессии.

Масса груза, г	$\Omega, \frac{\text{pag}}{c}$	$arepsilon_\Omega$	$\sigma_{\Omega} \cdot 10^{-5}$, рад/с
93	0.064	0.0006	3.8
116	0.079	0.0006	4.7
138	0.095	0.0006	5.7
174	0.118	0.0008	7.1
214	0.147	0.0007	8.8

Таблица 2: Периоды прецесси для разных масс грузов

Зависимость угловой частоты прецессии от момента приложенной силы предствлена на рисунке (3).

Рис. 3: Зависимость угловой частоты прецессии от момента приложенной силы

4. Определим момент инерции ротора с помощью крутильных весов и цилиндра с известными массой и радиусом.

Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}} \tag{8}$$

Зная момент инерции цилинда $T_{\rm q}$ и период его ерутильных колебаний $T_{\rm q}$, можно исключить из формулы (8) модуль кручения. Для I_0 получим

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2}.$$

Результаты измерений

Масса ци-	Радиус	Период	Момент	Период	Момент
линдра	цилиндра	кру-	инерции	кру-	инерции
		тильных	цилиндра	тильных	ротора
		колебаний		колебаний	
		цилиндра		ротора	
1616.6 г	3.75 см	20.48 с	$1.14 \cdot 10^{-3}$ $\text{K} \cdot \text{M}^2$	16.01 с	$0.70 \cdot 10^{-3}$ $\text{K} \cdot \text{M}^2$

$$\sigma_{I_0} = 0.01 \cdot 10^{-3} \mathrm{kg} \cdot \mathrm{m}^2$$

Таблица 3: Вычисление момента инерции ротора

5. С помощью формулы (7) расчитаем частоту вращения гироскопа (l = 122 мм – заданный параметр установки).

Масса груза, г	Ω, рад/с	$\omega_0 \cdot 1/2\pi \ 1/c$
93	0.064	395
116	0.079	399
138	0.095	395
174	0.120	394
214	0.147	396

Таблица 4: Частота вращения ротора гироскопа

Среднее значение: 396 Гц.

6. Определим частоту вращения ротора гироскопа по фигурам Лиссажу. Для этого подадим на входы осциллографа сигнал с обмотки статора гироскопа и сигнал звукового генератора. Меняя частоту сигнала звукового генератора подберём значение, при котором на экране осциллографа получается статичная картинка.

Полученное значение: 388 Гц. Различие с полученным в ходе эксперимента знаяением – 2%.

7. Оценка момента силы трения. Момент силы трения можно рассичтать по формуле

$$M_{\rm TD} = \Omega_{\rm TD} I_0 \omega_0$$

где $\Omega_{\rm TP}$ – угловая скорость опускания оси гироскопа. За время измерения из предыдущего опыта ось опускается примерно на 12 градусов. Значит

$$M_{
m TP} \sim 10^{-3} {
m H} \cdot {
m kg}.$$

4 Вывод

В ходе работы был определён момент инерции статора гироскопа с помощью крутильных колебаний и циоиндра. Основной вклад в погрешность вносит измерение радиуса цилиндра.

Был оценён момент сил трения в оси гироскопа и подтверждены теоретические зависимости, используемые в данной работе.

Разными способами была измерена частота вращения ротора гироскопа. Полученные значения совпадают с точность 2%.