

भारतीय प्रौद्योगिकी संस्थान पटना

Indian Institute of Technology Patna पाटलिपुत्र कालनी पटना & 800 013] भारत Patliputra Colony, Patna – 800 013, India

MID-SEMESTER EXAMINATION DATE:10-09-2012

Time: 2hours
COURSE NO: PH401

Full Marks: 30

COURSE TITLE: Introduction to Nanomaterials

Attempt all Questions

1.	How many 50 nm nanocubes are required to produce the same surface area as a one cubic me How much volume do they occupy?	eter cube?
2.	Calculate the ratio of surface atoms to volume atoms by a simple procedure for a $R = 25$ nm gol Assume that the surface atoms occupy a thickness of one atomic diameter ($d_{gold} = 0.288$ nm) and	d that the
	packing fraction for gold is at a volume efficiency (V_{volume} /Total volume ($\frac{4}{3}\pi R^3$, $R = 10nm$))	of 0.740
	and surface efficiency (=Volume available for surface gold atoms/ V_{loyer}) of 0.91.	[2.0]
3.	Explain the following nano-phenomena and give one example: (i) Super hydrophobicity, cleaning, and (iii) Localized surface Plasmon.	[3.0]
4.	collection of the magnifying lens is 40°. What will be the resolution of the microscope? How	v can you
	improve the resolution by using same yellow light? Also discuss how you can improve the resmicroscope down to 1nm.	olution of [3.0]
5.		[2.0]
6.	A nanoparticle with mass 5×10^{-27} g exists in a 1-nm one dimensional box. What is the wave length of radiation that is emitted when the nanoparticle loses energy from the n = 2 level to the n = 1 level? [2.0]	
7.	A material (melting point =2000°C) has been milled (ball milling) to make a 5nm size particle. the melting point of nano particle. (particle density = 11340kg/m³, Latent heat of fusion = 67	Calculate x10 ³ J/kg,
	Surface tension coefficient for a liquid – solid interface = 2.2 N/m).	[2.0]
8.	Calculate the de-Broglie wavelength and Bohr radius of electron and hole in GaAs	(III-IV)
	semiconductor. Give an account of semiconductor at nanoscale from the results. (me. 0.067mo, r	$n_{\rm h} \sim 0.5 m_0$
	$v_e \sim 10^5 \text{m/s}, \ v_h \sim 10^5 \text{m/s}, \ m_0 \sim 9.1 \times 10^{-31} \text{kg}, \ \hbar = 1.054 \times 10^{-34} \text{J/s}, \ q = 1.602 \times 10^{-19} \text{C}$). Explain weak, so	trong and
	intermediate confinement for a semiconductor.	[5.0]
	Make a flow chart of multi use MEMS/NEMS process with diagram.	[4.0]
10	. Draw a schematic diagram of a 200kV TEM. What will be the resolution of this TEM? Write th	e working
	principle of magnetic lenses. What is the typical field range of TEM magnetic lenses?	[3.0]
11	Write short notes on LASER ablation method for deposition of nanomaterials.	[2.0]

BEST OF LUCK-