CPSC 304 2015W2 Project Part II

Group Members

\mathbf{Name}	Student No.	$\mathbf{Unix}\;\mathbf{ID}$	Email
Albert Xing	40640104	z6k8	albert.xing@alumni.ubc.ca
Calvin Cheng	36090132	o7x8	calvin.cheng@alumni.ubc.ca
Kyle Stadnyk	52749025	b5p5	b5p5@ugrad.cs.ubc.ca

By typing our names and student numbers in the above table, we certify that the work in the attached assignment was performed solely by those whose names and student IDs are included above.

In addition, we indicate that we are fully aware of the rules and consequences of plagiarism, as set forth by the Department of Computer Science and the University of British Columbia.

ER Diagram

Please find the ER diagram in a separate folder ER-Diagram.

Database Schemas

Stock(symbol: CHAR(6), exchange: CHAR(6), name: VARCHAR(64))

Primary key: (symbol, exchange)

Functional dependencies: $symbol, exchange \rightarrow name$

The Stock entity represents a single stock, identified by a symbol and the exchange it is traded in. The given FD asserts that a unique symbol and exchange implies the name of the stock.

 $Holding(\underline{holding_id}:\ INT,\ \underline{portfolio_id}:\ INT,\ symbol:\ CHAR(6),\ exchange:\ CHAR(6),\ date:\ DATE,\ time:\ TIME,$

price: INT)

Primary key: (holding_id, portfolio_id Foreign key: portfolio_id references Portfolio Foreign key: (symbol, exchange) references Stock

Functional dependencies: $holding_id$, $portfolio_id \rightarrow symbol$, exchange, date, time, price

A Holding is a particular instance of a stock inside a portfolio, with the date, time, and price it was bought for. The FD states that a holding can be uniquely identified by a holding_id and the ID of the portfolio in which it belongs.

 $Portfolio(\underline{id}:\ INT,\ purpose:\ VARCHAR(64),\ creation_date:\ DATE,\ principal:\ INT,\ cash:\ INT,\ owner_id:\ INT,$

manager_id: INT) Primary key: id

Foreign key: owner_id references User Foreign key: manager_id references User

Functional dependencies: $id \rightarrow purpose, creation_date, principal, cash, owner_id, manager_id$

A Portfolio is a collection of stock holdings for a particular purpose. The FD states that a portfolio

can be identified by its unique ID. Also note that portfolios for self-directed investors are both owned and managed by the same investor, while managed portfolios are owned by an investor and managed by an advisor.

```
User(<u>id</u>: INT, name: VARCHAR(64), email: VARCHAR(64), phone: CHAR(10), password: BINARY(60), address_id: INT)

Primary key: id

Foreign key: address_id references Address

Functional dependencies: id → name, email, phone, password, address_id
```

Users are either investors (who provide principal), advisors (who trade on behalf of investors), or self-directed investors (who assume both roles). Each user has a unique ID, as the FD states, through which they can be identified.

```
Address(\underline{id}: INT, number: CHAR(5), street: VARCHAR(32), city: VARCHAR(32), country: VARCHAR(32), postal_code: CHAR(6))

Primary key: id

Functional dependencies: id \rightarrow number, street, city, country, postal\_code
```

An Address represents a particular mailing address with a street number, street, city, country, and postal code. For a more efficient implementation, a unique ID is assigned to each address which allows for faster queries through a single column instead of multiple columns. Note that although postal codes often uniquely identify cities, this is not generally the case especially internationally. We decided not to include the FDs $postal_code \rightarrow city$ and $number, street, city \rightarrow postal_code$ on this basis.

Normalization

All of our tables are already in BCNF, and thus in 3NF. This is because the entities on the left-hand-size of all FDs are exactly the primary keys of each table.

Also note that there are no candidate keys other than the primary keys already given.

SQL DDL

```
CREATE TABLE User (
   Id INT PRIMARY KEY,
   Name VARCHAR(64),
   Email VARCHAR(64),
   Phone CHAR(10),
   Password BINARY(60),
   Address_Id INT
)

CREATE TABLE Holding (
   Holding_Id INT,
   Portfolio_Id INT REFERENCES Portfolio,
   Symbol CHAR(6),
   Exchange CHAR(6),
   Date DATE,
   Time TIME,
```

```
Price INT,
    PRIMARY KEY (Holding_Id, Portfolio_Id),
    FOREIGN KEY (Symbol, Exchange) REFERENCES Stock
)
CREATE TABLE Stock (
    Symbol CHAR(6),
    Exchange CHAR(6),
    Name VARCHAR(64),
    PRIMARY KEY (Symbol, Exchange)
)
CREATE TABLE Portfolio (
    Id INT PRIMARY KEY,
    Purpose VARCHAR(64),
    Creation_Date DATE,
    Principal INT,
    Cash INT,
    Owner_Id INT REFERENCES User,
    Manager_Id INT REFERENCES User
)
CREATE TABLE Address (
   Id INT PRIMARY KEY,
    Number CHAR(5),
    Street VARCHAR(32),
    City VARCHAR(32),
    Country VARCHAR(32),
    Postal_Code CHAR(6)
)
```

Tables

Stock

\mathbf{symbol}	exchange	name
FB	NASDAQ	Facebook Inc
AAPL	NASDAQ	Apple Inc
MSFT	NASDAQ	Microsoft Corporation
GOOGL	NASDAQ	Alphabet Inc
300431	SHE	Beijing Baofeng Technology Co Ltd

Holding

${f holding_id}$	${f portfolio_id}$	${f symbol}$	$\mathbf{exchange}$	${f date}$	\mathbf{time}	\mathbf{price}
1	1	FB	NASDAQ	02/01/2016	13:23	98.63
2	1	AAPL	NASDAQ	13/06/2011	20:34	46.56
1	2	MSFT	NASDAQ	27/03/2009	12:13	18.13
2	3	GOOGL	NASDAQ	25/06/2010	13:08	236.57
3	5	300431	SHE	27/03/2015	09:03	6.22

Portfolio

id	purpose	${\bf creation_date}$	principal	cash	$\mathbf{owner_id}$	${f manager_id}$
1	investing	03/01/2015	10230	124	5	3
2	investing	08/13/2012	400000	3728	4	3
3	trading	10/04/2008	23000	12039	4	4
4	retirement	03/29/2007	340000	28377	5	2
5	bored	12/25/2004	4932000	0	1	1

User

id	name	email	${f phone}$	$\operatorname{address}$
1	George Preece	gkp@example.com	6392840427	6271
2	Erik Combs	${\bf ecombs@example.com}$	4382719285	3827
3	Natalie Bolduc	natalie@example.com	5837163859	285
4	Madeleine Nilsen	mnilsen@example.com	5829774637	6834
5	Patrik Larsson	patrik@example.com	7947252898	982

Address

id	number	street	\mathbf{city}	country	${\bf postal_code}$
6271	6271	32nd St.	New York	US	10001
3827	3827	Main St. N	North Royalton	US	44133
285	285	Dewhurst Blvd.	Toronto	CA	M4J3J7
6834	6834	Burrard St.	Vancouver	CA	V6C2E8
982	982	De Castro St	Road Town	VGB	

Note that in these examples the various IDs may seem to exhibit external constraints, for example the id and number fields in Address are equal. However these patterns will not be enforced or implemented and are only for demonstrative purposes.