Evaluation of Machine LearningClassifiers

Machine Learning

Dr. Dinesh K. Vishwakarma

Outline: Evaluation Parameters

- Precision
- Recall
- Accuracy
- F-Measure
- True Positive Rate
- False Positive Rate
- Sensitivity
- ROC

Experiment: Training and Testing

Objective: Unbiased estimate of accuracy

Experiment: Training and Testing...

- How can we get an unbiased estimate of the accuracy of a learned model?
 - ✓ when learning a model, you should pretend that you
 don't have the test data yet (it is "in the mail")*
 - ✓ if the test-set labels influence the learned model in any way, accuracy estimates will be biased
- * In some applications it is reasonable to assume that you have access to the feature vector (i.e. x) but not the y part of each test instance

Learning Curve

- How does the accuracy of a learning method change as a function of the training-set size?
 - ✓ This can be assessed by plotting learning curves.

#Given training/test set partition

- for each sample size s on learning curve
- (optionally) repeat *n* times
- randomly select s instances from training set
 - learn model
- evaluate model on test set to determine accuracy a
- plot (s, a) or (s, avg. accuracy and error bars)

Validation (Tuning) Set

 Consider we want unbiased estimates of accuracy during the learning process (e.g. to choose the best level of decision-tree pruning)?

Partition training data into separate training/validation sets

Limitation of Single Training/Test Partition

- We may not have enough data to make sufficiently large
 - ✓ training and test sets a larger test set gives us more reliable estimate of accuracy (i.e. a lower variance estimate)
 - ✓ but... a larger training set will be more representative of how much data we actually have for learning process
- A single training set doesn't tell us how sensitive accuracy is to a particular training sample

Random Sampling

 It can be addressed the second issue by repeatedly randomly partitioning the available data into training and set sets.

Random Sampling...

- When randomly selecting training or validation sets, we may want to ensure that class proportions are maintained in each selected set.
- This can be done via stratified sampling: first stratify instances by class, then randomly select instances from each class proportionally.

Cross Validation

Partition data into *n* subsamples

Iteratively
leave one
subsample
out for
the test set,
train on
the rest

iteration	train on	test on
1	s ₂ s ₃ s ₄ s ₅	s ₁
2	s ₁ s ₃ s ₄ s ₅	s ₂
3	s ₁ s ₂ s ₄ s ₅	s ₃
4	$\mathbf{s}_1 \ \mathbf{s}_2 \ \mathbf{s}_3 \ \mathbf{s}_5$	S ₄
5	s ₁ s ₂ s ₃ s ₄	s ₅

Cross Validation Example

 Suppose we have 100 instances, and we want to estimate accuracy with cross validation.

iteration	train on	test on	correct
1	$\mathbf{s}_2 \ \mathbf{s}_3 \ \mathbf{s}_4 \ \mathbf{s}_5$	s ₁	11 / 20
2	s ₁ s ₃ s ₄ s ₅	s_2	17 / 20
3	s ₁ s ₂ s ₄ s ₅	s ₃	16 / 20
4	s ₁ s ₂ s ₃ s ₅	S ₄	13 / 20
5	s ₁ s ₂ s ₃ s ₄	s ₅	16 / 20

$$accuracy = 73/100 = 73\%$$

Cross Validation...

- 10-fold cross validation is common, but smaller values of n are often used when learning takes a lot of time
- In leave-one-out cross validation, n = # instances
- In stratified cross validation, stratified sampling is used when partitioning the data
- CV makes efficient use of the available data for testing
- Note that whenever we use multiple training sets, as in CV and random resampling, we are evaluating a learning method as opposed to an individual learned model

Internal Cross Validation

 Instead of a single validation set, we can use crossvalidation within a training set to select a model (e.g. to choose the best level of decision-tree pruning)

Example: using internal cross validation to select *k* in *k*-NN

- Given a training set
 - 1. partition training set into n folds, $s_1 \dots s_n$
 - 2. for each value of k considered

```
for i = 1 to n
learn k-NN model using all folds but si
evaluate accuracy on s_i
```

- 3. select k that resulted in best accuracy for $s_1 \dots s_n$
- 4. learn model using entire training set and selected k.
- The steps inside the box are run independently for each training set (i.e. if we're using 10-fold CV to measure the overall accuracy of our k-NN approach, then the box would be executed 10 times)

Precision and Recall

- Precision: fraction of retrieved docs that are relevant = P(relevant|retrieved)
- Recall: fraction of relevant docs that are retrieved = P(retrieved|relevant)

	Relevant	Nonrelevant
Retrieved	tp	fp
Not Retrieved	fn	tn

- Precision $P = \frac{t_p}{t_p + f_p}$
- Recall $R = \frac{t_p}{t_p + f_n}$

Issues with "Precision & Recall"

True class →	Pos	Neg
Yes	200 TP	100 FP
No	300 FN	400 TN
	P=500	N=500

True class →	Pos	Neg
Yes	200	100
No	300	0
	P=500	N=100

- Both classifiers gives the same precision and recall values of 66.7% and 40% (Note: the data sets are different)
- They exhibit very different behaviours:
 - ✓ Same positive recognition rate
 - ✓ Extremely different *negative* recognition rate: strong on the left / nil on the right
- Note: Accuracy has no problem catching this!

A combined measure: F

Combined measure that assesses precision/recall tradeoff is F measure (weighted harmonic mean):
(R² ± 1) PR

monic mean):
$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- People usually use balanced F₁ measure
 - i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$
- Harmonic mean is a conservative average.

Accuracy Measure

- Given a query, an engine classifies each doc as "Relevant" or "Nonrelevant"
- The accuracy of an engine: the fraction of these classifications that are correct

•
$$Accuracy(\%) = \frac{(t_p + t_n)}{(t_p + t_n + f_n + f_p)} \times 100$$

 Accuracy is a commonly used for evaluation measure in machine learning.

Issues with Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Issues with Accuracy...

True class →	Pos	Neg
Yes	200	100
No	300	400
	P=500	N=500

True class →	Pos	Neg
Yes	400	300
No	100	200
	P=500	N=500

- Both classifiers gives 60% accuracy.
- They exhibit very different behaviours:
 - ✓ On the left: weak positive recognition rate/strong negative recognition rate
 - ✓ On the right: strong positive recognition rate/weak negative recognition rate

Is accuracy adequate measure?

- Accuracy may not be useful measure in cases where
 - there is a large class skew
 - ✓ Is 98% accuracy good if 97% of the instances are negative?
 - there are differential misclassification costs say, getting a positive wrong costs more than getting a negative wrong.
 - ✓ Consider a medical domain in which a false positive results in an extraneous test but a false negative results in a failure to treat a disease
 - we are most interested in a subset of high-confidence predictions

Miss Classification Error

Recognition rate=accuracy=success rate

Hypothesized class (prediction)

		Classified +ve	Classified -ve
Actual class (observation)	Actual +ve	TP	FN
	Actual -ve	FP	TN

	Predicted:	Predicted:
n=165	NO	YES
Actual:		
NO	50	10
Actual:		
1/50	_	400

Table 2.2 A confusion matrix of a model

	Predicted +1	Predicted -1
Actual +1	95	7
Actual -1	4	94

Sensitivity =
$$\frac{\text{TP}}{\text{TP + FN}}$$

Specificity =
$$\frac{TN}{TN + FP}$$

Other form of Accuracy Metrics

actual class

true positive rate (recall) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$
false positive rate = $\frac{FP}{TP + FN}$ = $\frac{FP}{TP + FN}$

actual neg

24

ROC/AUC

 A Receiver Operating Characteristic (ROC)/Area Under Curve plots the TP-rate vs. the FP-rate as a threshold on the confidence of an instance being positive is varied.

Different methods can work better in different parts of ROC space.
This depends on cost of false + vs. false -

expected curve for random guessing

Example Curve of ROC/AUC

False Positive Rate

The principal advantage of the AUC is that it is more robust than Accuracy in class imbalanced situations

ROC curves & Misclassification costs

Step to create ROC

- Sort test-set predictions according to confidence that each instance is positive.
- Step through sorted list from high to low confidence
 - ✓ locate a *threshold* between instances with opposite classes (keeping instances with the same confidence value on the same side of threshold)
 - ✓ compute TPR, FPR for instances above threshold
 - √ output (FPR, TPR) coordinate

Example of ROC Plot

instance	confider positive	nce	correct class
Ex 9	.99		+
Ex 7	.98	TPR= 2/5, FPR= 0/5	+
Ex 1	.72	TPR= 2/5, FPR= 1/5	_
Ex 2	.70		+
Ex 6	.65	TPR= 4/5, FPR= 1/5	+
Ex 10	.51		-
Ex 3	.39	TPR= 4/5, FPR= 3/5	
Ex 5	.24	TPR= 5/5, FPR= 3/5	+
Ex 4	.11		-
Ex 8	.01	TPR= 5/5, FPR= 5/5	

Example of ROC Plot ...

Rearrange the samples according to class

Correct class	Instance	Confidence Po	sitive
+	Ex 9	0.99	
+	Ex 7	0.98	Positive
+	Ex 2	0.70	Class
+	Ex 6	0.65	
+	Ex 5	0.24	
-	Ex 1	0.72	
-	Ex10	0.51	Negative
-	Ex 3	0.39	Negative Class
-	Ex 4	0.11	
_	Ex 8	0.01	

Example of ROC Plot ...

For Threshold 0.72

Correct class	Instance	confidence positive	predicted class
+	Ex 9	0.99	+
+	Ex 7	0.98	+
+	Ex 2	0.70	-
+	Ex 6	0.65	-
+	Ex 5	0.24	-
-	Ex 1	0.72	+
-	Ex10	0.51	-
-	Ex 3	0.39	-
-	Ex 4	0.11	-
-	Ex 8	0.01	-

Confidence > threshold
Positive class
Else
Negative class

TP=2 FP=1 TN=4 FN=3 TPR=TP/TP+FN=2/5 FPR=FP/FP+TN=1/5

Example of ROC Plot ...

For Threshold 0.65

Correct class	Instance	confidence positive	predicted class
+	Ex 9	0.99	+
+	Ex 7	0.98	+
+	Ex 2	0.70	+
+	Ex 6	0.65	+
+	Ex 5	0.24	_
-	Ex 1	0.72	+
-	Ex10	0.51	-
-	Ex 3	0.39	-
-	Ex 4	0.11	-
-	Ex 8	0.01	-

Confidence > threshold
Positive class
Else
Negative class

ROC Plot...

- Can interpolate between points to get convex hull
 - ✓ Convex hull: repeatedly, while possible, perform interpolations that skip one data point and discard any point that lies below a line
 - ✓ Interpolated points are achievable in theory: can flip weighted coin to choose between classifiers represented by plotted points

ROC Curve

- Does a low false-positive rate indicate that most positive predictions (i.e. predictions with confidence > some threshold) are correct?
- Consider: TPR is 0.9, and FPR is 0.01

Fraction of instances that are positive	Fraction of positive predictions that are correct
0.5	0.989
0.1	0.909
0.01	0.476
0.001	0.083

Issues with ROC/AUC

- AUC/ROC has adopted as replacement of accuracy but it has also some criticism such as:
 - The ROC curves on which the AUCs of different classifiers are based may cross, thus not giving an accurate picture of what is really happening.
 - The misclassification cost distributions used by the AUC are different for different classifiers.
 - Therefore, we may be comparing "apples and oranges" as the AUC may give more weight to misclassifying a point by classifier A than it does by classifier B. Ans: H-Measure

Other Accuracy Metrics

actual class

recall (TP rate) =
$$\frac{TP}{\text{actual pos}}$$
 = $\frac{TP}{TP + FN}$

precision =
$$\frac{TP}{\text{predicted pos}} = \frac{TP}{TP + FP}$$

Precision/recall curves

 A precision/recall curve plots the precision vs. recall (TP-rate) as a threshold on the confidence of an instance being positive is varied.

Comment on ROC/PR Curve

Both

- allow predictive performance to be assessed at various levels of confidence
- ✓ assume binary classification tasks
- ✓ sometimes summarized by calculating area under the curve

ROC curves

- ✓ insensitive to changes in class distribution (ROC curve does not change if the proportion of positive and negative instances in the test set are varied)
- ✓ can identify optimal classification thresholds for tasks with differential misclassification costs

Precision/Recall curves

- ✓ show the fraction of predictions that are false positives.
- ✓ well suited for tasks with lots of negative instances