ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN

CONTENIDO DE ASIGNATURA

SISTEMAS DISTRIBUIDOS Y COMPUTACIÓN EN LA NUBE

CCPG1055

A. IDIOMA DE ELABORACIÓN

	~ 1
Hen	anoi

B. OBJETIVO GENERAL DE LA ASIGNATURA

Enseñar a los estudiantes las bases del desarrollo componentes de un sistema informático, cumpliendo con los requerimientos no funcionales de rendimiento, escalabilidad y tolerancia a fallos, para la implementación de una aplicación de software que posea una arquitectura distribuida.

C. DESCRIPCIÓN DE LA ASIGNATURA

El curso introduce principios fundamentales de los sistemas distribuidos y paralelos, con especial énfasis en aquellos que se usan en plataformas de computación en la nube y de procesamiento masivo y escalable de datos. Se exploran conceptos de comunicación y coordinación entre procesos distribuidos, recalcando los conceptos de atomicidad y consenso. Se recalca que resulta imprescindible el usar paralelismo para conseguir mejoras de rendimiento, y se estudian las estrategias de descomposición, diseño y arquitectura de sistemas, incluyendo estrategias de implementación, análisis de rendimiento y mejoras (tuning). Se estudia también los conceptos de tolerancia a fallos, con un énfasis en el mantenimiento de estado replicado, introduciendo conceptos que proporcionan un enlace con los conceptos estudiados bajo el contexto de las redes de datos.

D. CONOCIMIENTOS Y/O COMPETENCIAS PREVIOS

Debe tener conocimientos previos en al menos dos de los siguientes lenguajes de programación: Java, C, C++, Python, Go, Clojure, Rust; haber trabajado en ambiente Linux; y tener experiencia en programación de sistemas (multi-hilos, concurrencia, y sincronización entre hilos/procesos).

E. RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA

1	Comprender los diferentes conceptos y tecnologías que constituyen la base del diseño e	
	implementación de los sistemas distribuidos, a través de su estudio teórico-práctico.	
2	Aplicar el conocimiento adquirido en sistemas distribuidos y paralelos, para el uso, diseño e	
	implementación de los mismos en plataformas de computación en la nube.	
3	Diseñar un algoritmo paralelo mediante la aplicación de "paralelismo de datos" o	
	"descomposición basada en tareas", para la reducción de su tiempo de ejecución.	
4	Analizar las ventajas y desventajas de las diferentes decisiones de diseño que se presentan	
	durante la implementación de un sistema distribuido, mejorando el rendimiento, escalabilidad,	
	consistencia fuerte, y/o alta tolerancia a fallos.	

F. COMPONENTES DE APRENDIZAJE

Aprendizaje en contacto con el profesor	>
Aprendizaje práctico	V
Aprendizaje autónomo:	V

G. EVALUACIÓN DE LA ASIGNATURA

ACTIVIDADES	MARQUE SI APLICA
Exámenes	✓
Lecciones	✓
Tareas	✓
Proyectos	✓
Laboratorio/Experimental	✓
Participación	✓
Salidas de campo	
Portafolio del estudiante	
Otras	

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN

CONTENIDO DE ASIGNATURA

SISTEMAS DISTRIBUIDOS Y COMPUTACIÓN EN LA NUBE

CCPG1055

H. PROGRAMA DE LA ASIGNATURA

UNIDADES/SUBUNIDADES		Horas de docencia por unidad
1.	Introducción a los sistemas distribuidos y la computación en la nube.	
	1.1. Conceptos básicos de sistemas distribuidos y computación en la nube	6
	1.2. Desafíos al construir sistemas distribuidos	6
	1.3. Modelos y arquitecturas distribuidas	
2.	Confiabilidad, escalabilidad y tolerancia a fallos de sistemas distribuidos.	
	2.1. Modelo de fallas en sistemas distribuidos	
	2.2. Redundancia y enmascaramiento de fallas	6
	2.3. Escalabilidad, replicación, consenso y acuerdo	
3.	Modelos de descomposición de tareas paralelas y procesamiento de datos en la nube.	
	3.1. Descomposición de tareas paralelas y distribuidas	6
	3.2. Análisis de rendimiento de algoritmos paralelos	
	3.3. Plataformas de procesamiento distribuido	
4. Comunicaciones entre procesos distribuidos.		
	4.1. Protocolo pedido-respuesta	
	4.2. Comunicación directa entre procesos	6
	4.3. Comunicación indirecta entre procesos (colas de mensajes, publicar- subscribir)	
5.	Decisiones de diseño e implementación de sistemas distribuidos.	
	5.1. Latencia versus throughput	
	5.2. Consistencia, disponibilidad, tolerancia a particiones, en bases de datos distribuidas	12
	5.3. Servicios con estado o sin estado	12
	5.4. Localidad de datos y su aplicación en almacenamiento y cacheo en la nube	
	5.5. Redes de distribución de contenidos	
6.	Teoría de sistemas distribuidos.	
	6.1. Tiempo físico	6
	6.2. Tiempo lógico	U
	6.3. Consenso y elecciones	
7.	Actividades de evaluación	6

I. BIBLIOGRAFÍA

BÁSICA	1. Maarten van Steen y Andrew S. Tanenbaum. (2017).
	Distributed Systems. (3era). EE.UU.: CreateSpace Independent
	Publishing Platform. ISBN-10: 1543057381, ISBN-13:
	9781543057386

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

espol

FACULTAD DE INGENIERÍA EN ELECTRICIDAD Y COMPUTACIÓN

CONTENIDO DE ASIGNATURA

SISTEMAS DISTRIBUIDOS Y COMPUTACIÓN EN LA NUBE

CCPG1055

COMPLEMENTARIA	1. Coulouris, George F. & Dollimore, Jean & Kindberg, Tim &
	Blair, Gordon. (2011). Distributed Systems: Concepts and
	Design (5th Edition). (Hardcover; 2011-05-07). EE.UU.:
	Adison Wesley. ISBN-10: 0132143011, ISBN-13:
	9780132143011
	2. Martin Kleppmann. (2017). Designing Data-Intensive
	Applications. (Primera). EE.UU.: O'Reilly Media. ISBN-10:
	1449373321, ISBN-13: 9781449373320

J. RESPONSABLE DEL CONTENIDO DE ASIGNATURA

Profesor	Correo	Participación
ABAD ROBALINO CRISTINA	cabadr@espol.edu.ec	Responsable del contenido
LUCIA	cabadr@espor.edu.ec	de asignatura
CEDEÑO MIELES VANESSA INES	vcedeno@espol.edu.ec	Colaborador

