Total No. of Questions: 8]	26	SEAT No.:	
P3510	[5560]-160	[Total No. of Pages	: 2

T.E. (E&TC Engineering) POWER ELECTRONICS (2012 Pattern) (Semester - II)

Time: 2½ Hours] [Max. Marks: 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams and waveforms must be drawn wherever necessary.
- 3) Use of non-programmable calculator is allowed.
- 4) Assume suitable data if necessary.
- Q1) a) Draw the steady-state characteristic of SCR and explain all regions. [6]
 - b) Draw the circuit diagram of single phase Full converter with R load. Explain the circuit operation with neat equivalent circuit diagrams. Sketch the neat waveform for output voltage at firing angle 90°. [7]
 - c) Draw the circuit diagram of single phase Full Bridge Inverter with R load. Explain the circuit operation with neat equivalent diagrams. Also, sketch the waveform for output voltage. [7]

OR.

- Q2) a) Draw the circuit diagram of synchronized UJT triggering circuit for SCR.
 Sketch the waveforms of voltage across zener, capacitor and base voltage.
 Show firing angle α in waveforms.
 - b) Draw and explain 3φ semi-converter with R load. Draw the output voltage waveform.
 - c) Draw the circuit diagram of 3φ inverter with balanced star R load with 180° conduction mode. Explain the operation. [7]
- Q3) a) Draw the circuit diagram of stepdown chopper. Explain the operation with neat waveforms for i/p and o/p voltages. [6]
 - b) A DC chopper is operated with resistive load $R = 10\Omega$, input voltage $V_s = 230V$, Determine the average and rms output voltage with duty cycle 50%. [4]
 - c) Draw the circuit diagram of two quadrant chopper and explain the operation with neat equivalent diagram. [8]

OR

Q 4)	a)	braw the circuit diagram of single-phase Full Wave AC voltage controll with R load. Explain its operation with neat waveform of output voltage at $\alpha = 90^{\circ}$.	
	b)	A step up chopper is operated with R load. $R = 10\Omega$, input voltage $V_s = 100$ V. Determine the average and rms output voltage when du cycle is 50%.	_
	c)	Draw and explain DC step-up chopper. Sketch the waveform for outp voltage.	ut 8]
Q 5)	a)	Draw and explain on-line and off-line UPS system.	8]
	b)	Write a short note on any two:	8]
		i) Battery charger.	
		ii) HVDC.	
		iii) Stepper motor control.	
		iv) Induction motor speed control	
		OR	
Q6)	a)	Draw and explain 1φ separately excited DC motor speed control circuit	te
Q0)	aj		ւՏ. 8]
	b)		8]
		i) HVAC.	-
		ii) Circuit breaker.) ご
		iii) UPS system specifications.	7
		m) of a system specimens.	
Q 7)	a)	Draw and explain ZCS resonant converter with neat waveforms as	ad.
Q /)	aj	equivalent diagrams. [1]	
	b)	What is EMI? List sources of EMI and explain its reduction technique	_
			6]
		OR	
Q8)	a)	Explain over voltage and over current protection circuits.	8]
	b)	Draw and explain SLR with neat equivalent diagrams and waveforms.	8]
		++++	