Федеральное государственное бюджетное образовательное учреждение высшего образования «Новосибирский государственный технический университет»

Кафедра Автоматизированных электроэнергетических систем

ОТЧЕТ ПО ПРАКТИКЕ

Учебная практика: практика по получению первичных навыков работы с программным обеспечением (наименование практики в соответствии с учебным планом) Направление подготовки: ____«Электроэнергетика и электротехника» _____

Выполнил:	Проверил:
Студент <u>Полозов А. А.</u> (Ф.И.О.)	Руководитель от НГТУ <u>Дулов И.В.</u> (Ф.И.О.)
Группа ЭН2-31	Балл:, ECTS, Оценка
Факультет <u>ФЭН</u>	«отлично», «хорошо», «удовлетворительно», «неуд
подпись	подпись
« <u>01</u> » <u>06</u> 2024 г.	«» 2024 г.

Оглавление

1. Цель работы	3
2. Задание	
3. Описание исходных данных	
4. Описание языка программирования Python	
5. Пояснения к заданию	
5.1. Математическая модель	
5.2. Численное интегрирование при помощи встроенной функции	
5.3. Численное интегрирование при помощи метода левых/правых прямоугольнико	ов
реализованным самостоятельно	8
Список используемых источников	.10

1. Цель работы

Получение навыков алгоритмизации, разработки и тестирования программ на языке Python на примере задачи из области электроэнергетики.

2. Задание

- 1. Ознакомиться с поставленной задачей.
- 2. Выбрать подходящую среду разработки.
- 3. Определить библиотеки для решения задачи.
- 4. Составить математическую модель решения задачи с описанием используемых библиотек и функций. Каждый вариант должен быть решён двумя способами:
 - 4.1. Численное интегрирование при помощи встроенной функции.
 - 4.2. Численное интегрирование при помощи метода левых/правых прямоугольников, реализованным самостоятельно.
- 5. Составить алгоритм решения задачи в графическом виде.
- 6. Разработать интерфейс программы, содержащий следующий набор элементов:
 - 6.1. Поля ввода, позволяющие вводить исходные данные.
 - 6.2. Выпадающий список для выбора способа решения (реализованная или встроенная функции).
 - 6.3. Кнопка для запуска программы.
 - 6.4. Текст с результатами расчёта.
 - 6.5. Графики с необходимой графической информацией.
- 7. Выполнить реализацию составленного алгоритма в выбранной среде разработки.
- 8. Провести тестирование программы.

3. Описание исходных данных

Напряжение в электрической сети изменяется согласно выражению:

$$u(t) = U_0 \cdot \sin(2\pi \cdot f \cdot t) + \frac{U_0}{10} \cdot \sin(6\pi \cdot f \cdot t)$$
 (1),

где:

 U_0 – номинальное напряжение сети, В;

f – частота тока, Γ ц;

t – время, с.

Включённый в сеть вольтметр будет показывать значение, определяемое как:

$$U = \sqrt{\frac{1}{T} \int_{0}^{T} u^{2}(t) dt}$$
 (2),

где:

T — период изменения напряжения, с.

Необходимо по показанию вольтметра определить номинальное напряжение сети. Отобразить графически вместе изменение напряжения во времени.

4. Описание языка программирования Python

Python — это высокоуровневый интерпретируемый язык программирования, который был разработан в конце 1980-х годов Гвидо ван Россумом в Нидерландах. Язык Python предоставляет простой и элегантный синтаксис, что делает его популярным средством для быстрого и эффективного написания программ на различных платформах.

История

Python был первоначально создан как универсальный язык программирования, который мог бы облегчить задачи разработки. Со временем Python стал одним из самых популярных языков программирования, используемых в различных областях, таких как веб-разработка, научные исследования, анализ данных и машинное обучение.

Типы и структуры данных

Python поддерживает различные типы данных, включая числа, строки, списки, кортежи, множества, словари и другие. Язык также предоставляет возможность создания пользовательских типов данных и структур.

Синтаксис

Синтаксис Python легко читается и понимается, что делает его идеальным выбором для начинающих программистов. Python использует отступы для определения блоков кода, что способствует более читаемому и структурированному коду.

Возможности

Python обладает мощными функциональностями, такими как динамическая типизация, автоматическое управление памятью, модульность, расширяемость и большое количество сторонних библиотек.

Основные библиотеки

В Python существует огромное количество стандартных модулей и библиотек, таких как NumPy, Pandas, Matplotlib, TensorFlow, Flask и многие другие, которые обеспечивают расширенные возможности для решения различных задач.

Применимость к практическим задачам

Python охватывает широкий спектр областей применения, включая веб-разработку, научные исследования, обработку данных, машинное обучение, искусственный интеллект, автоматизацию задач, разработку игр и многое другое. Язык Python позволяет быстро и эффективно решать разнообразные задачи.

Применимость в энергетике

Руthon также широко применяется в энергетике для анализа данных, моделирования и прогнозирования, контроля и управления энергосистемами, разработки алгоритмов оптимизации и других задач. Руthon обладает богатым набором инструментов и библиотек для работы с временными рядами, машинным обучением, глубоким обучением и другими технологиями, которые могут быть полезны в энергетической отрасли.

5. Пояснения к заданию

5.1. Математическая модель

В уравнении (1) U_0 является постоянной величиной, поэтому в уравнении (2) её можно вынести за знак интеграла:

$$U = U_0 \sqrt{\frac{1}{T} \int_0^T \left(\sin(2\pi \cdot f \cdot t) + \frac{1}{10} \cdot \sin(6\pi \cdot f \cdot t) \right)^2 dt}.$$

Если учесть, что $T = \frac{1}{f}$, то уравнение примет вид:

$$U = U_0 \sqrt{f \int_0^{\frac{1}{f}} \left(\sin(2\pi \cdot f \cdot t) + \frac{1}{10} \cdot \sin(6\pi \cdot f \cdot t) \right)^2 dt}.$$

Тогда номинальное напряжение можно найти следующим образом:

$$U_0 = \left(f \int_0^{\frac{1}{f}} (\sin(2\pi \cdot f \cdot t) + 0.1 \cdot \sin(6\pi \cdot f \cdot t))^2 dt \right)^{-\frac{1}{2}} U.$$

Если коэффициент пропорциональности обозначить за α , то формула для расчёта номинального напряжения через показания вольтметра и частоту сети выглядит так:

$$U_0 = \alpha \cdot U$$
,

где:

$$\alpha = \left(\int_{0}^{\frac{1}{f}} (\sin(2\pi \cdot f \cdot t) + 0, 1 \cdot \sin(6\pi \cdot f \cdot t))^{2} dt \right)^{-\frac{1}{2}}.$$

5.2. Численное интегрирование при помощи встроенной функции

Для нахождения определённого интеграла требуются следующие библиотеки:

- 1. питру для определения диапазонов определённых интегралов;
- 2. scipy для вычисления численного решения интеграла.

Блок-схема алгоритма численного интегрирования при помощи встроенной функции представлена на рисунке 5.2.1.

Рис. 5.2.1 – Блок-схема алгоритма численного интегрирования при помощи встроенной функции

Техническая реализация численного интегрирования при помощи встроенной функции представлена в листинге 5.2.1.

Данный программный код содержится в модуле common/built_in_integration.py.

Листинг 5.2.1. – Техническая реализация численного интегрирования при помощи встроенной функции

```
import numpy as np
import scipy as sc

def alpha(f):
   p = np.pi
   integrand = lambda t: np.square(np.sin(2*p*f*t) + 0.1 * np.sin(6*p*f*t))
   integral = sc.integrate.quad(integrand, 0, 1/f)
   result = np.power(f*integral[0], -0.5)
   return result
```

<u>5.3. Численное интегрирование при помощи метода левых прямоугольников,</u> реализованным самостоятельно

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах.

Значение интеграла для элементарного участка находится по следующей формуле:

$$\int_{x}^{x+h} f(x)dx \approx f(x) \cdot h.$$

Блок-схема алгоритма численного интегрирования при помощи метода левых прямоугольников, реализованным самостоятельно, представлена на рисунке 5.3.1.

Рис. 5.3.1 — Блок-схема алгоритма численного интегрирования при помощи метода левых прямоугольников, реализованным самостоятельно

Техническая реализация численного интегрирования при помощи метода левых прямоугольников, представлена в листинге 5.3.1.

Данный программный код содержится в модуле common/my_integration.py.

Листинг 5.3.1. – Техническая реализация численного интегрирования при помощи метода левых прямоугольников

```
import numpy as np

def alpha(f):
    p = np.pi
    integrand = lambda t: np.square(np.sin(2*p*f*t) + 0.1 * np.sin(6*p*f*t))
    integral = integrate(integrand, 0, 1/f)
    result = np.power(f*integral, -0.5)
    return result

def integrate(function, a, b):
    integral = 0
    x = a
    h = np.power(10.0, -5)

while x < b:
    integral += function(x) * h
    x += h

return integral</pre>
```

Список используемых источников

- $1.\ \underline{https://www.geeksforgeeks.org/how-to-find-definite-integral-using-python/}$
- 2. https://ru.wikipedia.org/wiki/Mетод_прямоугольников