Bayesian Learning of Sum-Product Networks

Martin Trapp^{1,2} R. Peharz³ H. Ge³ F. Pernkopf¹ Z. Ghahramani^{4,3}

 $^{1}\mathrm{Graz}$ University of Technology, $^{2}\mathrm{OFAI}$

³University of Cambridge, ⁴Uber AI

October 29, 2019

- ► Sum-product networks (SPNs) [Poon2011] are flexible density estimators for complex distributions.
- ► SPNs are so-called tractable probabilistic models, i.e. they allow exact inference in linear time.

- ► Sum-product networks (SPNs) [Poon2011] are flexible density estimators for complex distributions.
- ► SPNs are so-called tractable probabilistic models, i.e. they allow exact inference in linear time.
- ► A critical topic learning SPNs is to learn an appropriate structure from data.
- However, most structure learners are somewhat adhoc and based on intuition rather than a clear learning principle.

- ► Sum-product networks (SPNs) [Poon2011] are flexible density estimators for complex distributions.
- ➤ SPNs are so-called tractable probabilistic models, i.e. they allow exact inference in linear time.
- ► A critical topic learning SPNs is to learn an appropriate structure from data.
- ► However, most structure learners are somewhat adhoc and based on intuition rather than a clear learning principle.
- In fact, all existing approaches do not declare the global goal of structure learning!

- ► We introduce a well-principled Bayesian framework for SPN structure learning by decomposing the problem into:
 - 1. laying out a computational graph, and
 - learning the so-called scope function over the graph.

- We introduce a well-principled Bayesian framework for SPN structure learning by decomposing the problem into:
 - 1. laying out a computational graph, and
 - 2. learning the so-called scope function over the graph.
- ► The first part is rather unproblematic, and the second part is more involved in full generality.

- ► We introduce a well-principled Bayesian framework for SPN structure learning by decomposing the problem into:
 - laying out a computational graph, and
 learning the so-called scope function over the graph.
- ► The first part is rather unproblematic, and the second part is more involved in full generality.
- However, we propose a natural parametrisation of the scope function for a widely used special case of SPNs.

- ► We introduce a well-principled Bayesian framework for SPN structure learning by decomposing the problem into:
 - laying out a computational graph, and
 learning the so-called scope function over the graph.
- ► The first part is rather unproblematic, and the second part is more involved in full generality.
- ► However, we propose a natural parametrisation of the scope function for a widely used special case of SPNs.
- ► We show how to incorporate the parametrisation into a Bayesian model.

- ► We introduce a well-principled Bayesian framework for SPN structure learning by decomposing the problem into:
 - laying out a computational graph, and
 learning the so-called scope function over the graph.
- ► The first part is rather unproblematic, and the second part is more involved in full generality.
- ► However, we propose a natural parametrisation of the scope function for a widely used special case of SPNs.
- ► We show how to incorporate the parametrisation into a Bayesian model.
- ► Finally, show how to perform posterior inference in such a model.

▶ Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables, for which N i.i.d. samples are available.

- ▶ Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables, for which N i.i.d. samples are available.
- ► An SPN is a distribution over X defined as a 4-tuple $S = (\mathcal{G}, \psi, w, \theta)$.

- ▶ Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables, for which N i.i.d. samples are available.
- ► An SPN is a distribution over X defined as a 4-tuple $S = (\mathcal{G}, \psi, w, \theta)$.
 - $-\mathcal{G}$ is a computational graph.

- ▶ Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables, for which N i.i.d. samples are available.
- ► An SPN is a distribution over X defined as a 4-tuple $S = (\mathcal{G}, \psi, w, \theta)$.
 - $-\mathcal{G}$ is a computational graph.
 - ψ is a so-called scope function.

- ▶ Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables, for which N i.i.d. samples are available.
- An SPN is a distribution over X defined as a 4-tuple $S = (\mathcal{G}, \psi, w, \theta)$.
 - $-\mathcal{G}$ is a computational graph.
 - $-\psi$ is a so-called scope function.
 - w denotes the set of sum-weights and θ the set of leaf node parameters.

- ▶ Let $\mathbf{X} = \{X_1, \dots, X_D\}$ be set of D random variables, for which N i.i.d. samples are available.
- ► An SPN is a distribution over X defined as a 4-tuple $S = (\mathcal{G}, \psi, w, \theta)$.
 - $-\mathcal{G}$ is a computational graph.
 - $-\psi$ is a so-called scope function.
 - w denotes the set of sum-weights and θ the set of leaf node parameters.
- Note: This definition is conceptually different to the classic definition of SPNs as it disentangles the definition of the SPNs structure into a computational graph, which has only few requirements, and a scope function, which ensures completeness and decomposability.

Computational Graph G

► Is a connected directed acyclic graph (DAG), containing three types of nodes: sums (S), products (P) and leaves (L).

Computational Graph G

- ▶ Is a connected directed acyclic graph (DAG), containing three types of nodes: sums (S), products (P) and leaves (L).
- ▶ Only encodes the topological layout of the nodes, while the effective SPN structure is encoded via the scope function ψ .

Computational Graph G

- ▶ Is a connected directed acyclic graph (DAG), containing three types of nodes: sums (S), products (P) and leaves (L).
- ▶ Only encodes the topological layout of the nodes, while the effective SPN structure is encoded via the scope function ψ .

Figure: Example of a tree-shaped computational graph with two layers.

► Let **N** denote the set of all nodes.

- ► Let **N** denote the set of all nodes.
- ψ a function $\psi \colon \mathbf{N} \mapsto 2^{\mathbf{X}}$ assigning each node in the graph a sub-set of \mathbf{X} ($2^{\mathbf{X}}$ denotes the power set of \mathbf{X}).

- ► Let **N** denote the set of all nodes.
- ψ a function $\psi \colon \mathbf{N} \mapsto 2^{\mathbf{X}}$ assigning each node in the graph a sub-set of \mathbf{X} ($2^{\mathbf{X}}$ denotes the power set of \mathbf{X}).

A scope function has to fulfil the following properties:

- 1. If N is the root node, then $\psi(N) = X$.
- 2. If N is a sum or product, then $\psi(N) = \bigcup_{N' \in \mathbf{ch}(N)} \psi(N')$.
- 3. For each $S \in \mathbf{S}$ we have $\forall N, N' \in \mathbf{ch}(S) \colon \psi(N) = \psi(N')$ (completeness).
- 4. For each $P \in \mathbf{P}$ we have $\forall N, N' \in \mathbf{ch}(P) : \psi(N) \cap \psi(N') = \emptyset$ (decomposability).

- Let **N** denote the set of all nodes.
- ▶ ψ a function ψ : $\mathbf{N} \mapsto 2^{\mathbf{X}}$ assigning each node in the graph a sub-set of \mathbf{X} ($2^{\mathbf{X}}$ denotes the power set of \mathbf{X}).

A scope function has to fulfil the following properties:

- 1. If N is the root node, then $\psi(N) = X$.
- 2. If N is a sum or product, then $\psi(N) = \bigcup_{N' \in \mathbf{ch}(N)} \psi(N')$.
- 3. For each $S \in \mathbf{S}$ we have $\forall N, N' \in \mathbf{ch}(S) \colon \psi(N) = \psi(N')$ (completeness).
- 4. For each $P \in \mathbf{P}$ we have $\forall N, N' \in \mathbf{ch}(P) : \psi(N) \cap \psi(N') = \emptyset$ (decomposability).

Note: Completeness and decomposability are necessary for any SPN to be a well-defined probability distribution and to allow exact inference in linear time (in the model size).

Example SPN $S = (\mathcal{G}, \psi, w, \theta)$

\downarrow Apply scope function ψ on ${\cal G}$

Bayesian Learning of Sum-Product Networks

Bayesian Parameter Learning

► The key insight for Bayesian parameter learning [Zhao2016, Rashwan2016, Vergari2019] is that *sum nodes can be interpreted as latent variables Z*_S, clustering data instances.

Bayesian Parameter Learning

► The key insight for Bayesian parameter learning [Zhao2016, Rashwan2016, Vergari2019] is that sum nodes can be interpreted as latent variables Z_S, clustering data instances.

$$S(\mathbf{x}) = \sum_{\mathbf{z}} \prod_{S \in \mathbf{S}} w_{S, \mathbf{z}_S} \prod_{L \in \mathcal{T}(\mathbf{z})} L(\mathbf{x}_L)$$

$$= \sum_{\mathcal{T}} \prod_{(S, N) \in \mathcal{T}} w_{S, N} \prod_{L \in \mathcal{T}} L(\mathbf{x}_L) \underbrace{\left(\sum_{\overline{\mathbf{z}}} \prod_{S \in \overline{\mathbf{S}}_{\mathcal{T}} w_{S, \overline{z}_S}}\right)}_{-1}$$
(1)

Bayesian Parameter Learning

► The key insight for Bayesian parameter learning [Zhao2016, Rashwan2016, Vergari2019] is that *sum nodes can be interpreted as latent variables Z*_S, clustering data instances.

$$S(\mathbf{x}) = \sum_{\mathbf{z}} \prod_{S \in \mathbf{S}} w_{S, z_S} \prod_{L \in \mathcal{T}(\mathbf{z})} L(\mathbf{x}_L)$$

$$= \sum_{\mathcal{T}} \prod_{(S, N) \in \mathcal{T}} w_{S, N} \prod_{L \in \mathcal{T}} L(\mathbf{x}_L) \underbrace{\left(\sum_{\overline{\mathbf{z}}} \prod_{S \in \overline{\mathbf{S}}_{\mathcal{T}} w_{S, \overline{z}_S}}\right)}_{=1}$$
(1)

- ▶ \mathcal{T} is a so-called induced tree [Zhao2016] which is a sub-tree in \mathcal{S} such that the root of \mathcal{S} is the root of \mathcal{T} , each $S \in \mathcal{T}$ has only one child and each $P \in \mathcal{T}$ has the same children as in \mathcal{S} .
- ▶ $T(\mathbf{z})$ is a surjective (not injective) function that assigns to each value \mathbf{z} the induced tree T determined by \mathbf{z} .

Bayesian Parameter Learning (cont.)

Bayesian setting.

▶ It is now conceptually straightforward to extend an SPN to a

Bayesian Parameter Learning (cont.)

► It is now conceptually straightforward to extend an SPN to a Bayesian setting.

Generative model for Bayesian parameter learning:

$$w_{S} \mid \alpha \sim \mathcal{D}ir(w_{S} \mid \alpha) \ \forall S, \quad z_{S,n} \mid w_{S} \sim \mathcal{C}at(z_{S,n} \mid w_{S}) \ \forall S \forall n,$$

$$\theta_{L} \mid \gamma \sim p(\theta_{L} \mid \gamma) \ \forall L, \quad x_{n} \mid z_{n}, \theta \sim \prod_{L \in \mathcal{T}(z_{n})} L(x_{L,n} \mid \theta_{L}) \ \forall n.$$

(2)

For Bayesian structure & parameter learning of SPNs we

Bayesian Structure & Parameter Learning

For Bayesian structure & parameter learning of SPNs we assume \mathcal{G} is a tree-shaped region graph.

Bayesian Structure & Parameter Learning

- For Bayesian structure & parameter learning of SPNs we assume \mathcal{G} is a tree-shaped region graph.
- A region graph \mathcal{R} is a vectorised representation of SPNs and is a connected DAG containing two types of nodes: regions $(R \in \mathbf{R})$ and partitions $(P \in \mathbf{P})$.

Bayesian Structure & Parameter Learning

- For Bayesian structure & parameter learning of SPNs we assume \mathcal{G} is a tree-shaped region graph.
- ▶ A region graph \mathcal{R} is a vectorised representation of SPNs and is a connected DAG containing two types of nodes: regions $(R \in \mathbf{R})$ and partitions $(P \in \mathbf{P})$.

Figure: Example region-graph. Based on the illustration by [Peharz2019].

Bayesian Structure & Parameter Learning (cont.)

For each data dimension d we introduce a discrete latent variable $Y_{P,d}$.

Bayesian Structure & Parameter Learning (cont.)

- For each data dimension d we introduce a discrete latent variable $Y_{P,d}$.
- ► The latent variable represents a decision to assign dimension *d* to a particular child, given that all partitions above decided to assign *d* onto the (unique) path leading to the partition.

Bayesian Structure & Parameter Learning (cont.)

- For each data dimension d we introduce a discrete latent variable $Y_{P,d}$.
- ► The latent variable represents a decision to assign dimension *d* to a particular child, given that all partitions above decided to assign *d* onto the (unique) path leading to the partition.

Generative model for joint Bayesian learning:

$$\begin{aligned}
w_{S} \mid \alpha \sim \mathcal{D}ir(w_{S} \mid \alpha) & \forall S, & \mathbf{z}_{S,n} \mid w_{S} \sim \mathcal{C}at(\mathbf{z}_{S,n} \mid w_{S}) & \forall S \forall n, \\
\mathbf{v}_{P} \mid \beta \sim \mathcal{D}ir(\mathbf{v}_{P} \mid \beta) & \forall P, & \mathbf{y}_{P,d} \mid \mathbf{v}_{P} \sim \mathcal{C}at(\mathbf{v}_{P,d} \mid \mathbf{v}_{P}) & \forall P \forall d, \\
\theta_{L} \mid \gamma \sim p(\theta_{L} \mid \gamma) & \forall L, & \mathbf{x}_{n} \mid \mathbf{z}_{n}, \mathbf{y}, \theta \sim \prod_{L \in \mathcal{T}(\mathbf{z}_{n})} L(\mathbf{x}_{\mathbf{y},n} \mid \theta_{L}) & \forall n.
\end{aligned}$$
(3)

 $\mathbf{x}_{\mathbf{v},n}$ denotes the evaluation of L on the scope induced by \mathbf{y} .

Posterior Inference

We perform Gibbs sampling alternating between i) updating parameters w, θ (fixed y), and ii) updating y (fixed w, θ) to learn Bayesian SPNs.

Posterior Inference

- ▶ We perform Gibbs sampling alternating between i) updating parameters w, θ (fixed y), and ii) updating y (fixed w, θ) to learn Bayesian SPNs.
- This approach has shown to be sufficient for most real-world dataset.

Posterior Inference

- ▶ We perform Gibbs sampling alternating between i) updating parameters w, θ (fixed y), and ii) updating y (fixed w, θ) to learn Bayesian SPNs.
- ► This approach has shown to be sufficient for most real-world dataset.
- More sophisticated approaches, e.g. particle Gibbs combined with Hamiltonian Monte Carlo sampling; variational inference or posterior bootstrap, might be a interesting future avenues for large-scale problems.

Experiments

► We performed some experiments agains SOTA structure learners for SPNs on discrete, heterogeneous and data with missing values.

Experiments

- We performed some experiments agains SOTA structure learners for SPNs on discrete, heterogeneous and data with missing values.
- ► The discrete datasets are standard benchmark datasets for SPNs and contain data with up to 1556 dimensions.
- ► The heterogeneous datasets are UCI datasets that have been used in previous literature.

Experiments

- We performed some experiments agains SOTA structure learners for SPNs on discrete, heterogeneous and data with missing values.
- ► The discrete datasets are standard benchmark datasets for SPNs and contain data with up to 1556 dimensions.
- ► The heterogeneous datasets are UCI datasets that have been used in previous literature.
- \blacktriangleright We evaluated against an increasing number of observations having 50% dimensions missing completely at random to assess the robustness.
- ► Note: Existing approach cannot handle missing data during structure learning, so we either removed the samples with missing data or used k-NN imputation.

Experiments (discrete data)

Dataset	LearnSPN	RAT-SPN	СССР	ID-SPN	ours	$ours^\infty$	BTD
NLTCS	-6.11	-6.01	-6.03	-6.02	-6.00	-6.02	-5.97
MSNBC	-6.11	-6.04	-6.05	-6.04	-6.06	-6.03	-6.03
KDD	-2.18	-2.13	-2.13	-2.13	-2.12	-2.13	-2.11
Plants	-12.98	-13.44	-12.87	-12.54	-12.68	-12.94	-11.84
Audio	-40.50	-39.96	-40.02	-39.79	-39.77	-39.79	-39.39
Jester	-53.48	-52.97	-52.88	-52.86	-52.42	-52.86	-51.29
Netflix	-57.33	-56.85	-56.78	-56.36	-56.31	-56.80	-55.71
Accidents	-30.04	-35.49	-27.70	-26.98	-34.10	-33.89	-26.98
Retail	-11.04	-10.91	-10.92	-10.85	-10.83	-10.83	-10.72
Pumsb-star	-24.78	-32.53	-24.23	-22.41	-31.34	-31.96	-22.41
DNA	-82.52	-97.23	-84.92	-81.21	-92.95	-92.84	-81.07
Kosarak	-10.99	-10.89	-10.88	-10.60	-10.74	-10.77	-10.52
MSWeb	-10.25	-10.12	-9.97	-9.73	-9.88	-9.89	-9.62
Book	-35.89	-34.68	-35.01	-34.14	-34.13	-34.34	-34.14
EachMovie	-52.49	-53.63	-52.56	-51.51	-51.66	-50.94	-50.34
WebKB	-158.20	-157.53	-157.49	-151.84	-156.02	-157.33	-149.20
Reuters-52	-85.07	-87.37	-84.63	-83.35	-84.31	-84.44	-81.87
20 Newsgrp	-155.93	-152.06	-153.21	-151.47	-151.99	-151.95	-151.02
BBC	-250.69	-252.14	-248.60	-248.93	-249.70	-254.69	-229.21
AD	-19.73	-48.47	-27.20	-19.05	-63.80	-63.80	-14.00

Experiments (heterogeneous data)

Dataset	MSPN	ABDA	ours	$ours^\infty$
Abalone	9.73	2.22	3.92	3.99
Adult	-44.07	-5.91	-4.62	-4.68
Australian	-36.14	-16.44	-21.51	-21.99
Autism	-39.20	-27.93	-0.47	-1.16
Breast	-28.01	-25.48	-25.02	-25.76
Chess	-13.01	-12.30	-11.54	-11.76
Crx	-36.26	-12.82	-19.38	-19.62
Dermatology	-27.71	-24.98	-23.95	-24.33
Diabetes	-31.22	-17.48	-21.21	-21.06
German	-26.05	-25.83	-26.76	-26.63
Student	-30.18	-28.73	-29.51	-29.9
Wine	-0.13	-10.12	-8.62	-8.65

Experiments (missing data)

Figure: EachMovie (D: 500, N: 5526) Figure: WebKB (D: 839, N: 3361)

Figure: BBC (D: 1058, N: 1895)

- ► Structure learning is an important topic in SPNs, and many promising directions have been proposed in recent years.
- ► However, most of these approaches are based on intuition and refrain from declaring an explicit and global principle to structure learning.

- ► Structure learning is an important topic in SPNs, and many promising directions have been proposed in recent years.
- ► However, most of these approaches are based on intuition and refrain from declaring an explicit and global principle to structure learning.
- ▶ In this paper, our primary motivation is to *change* this practice

- ► Structure learning is an important topic in SPNs, and many promising directions have been proposed in recent years.
- ► However, most of these approaches are based on intuition and refrain from declaring an explicit and global principle to structure learning.
- ▶ In this paper, our primary motivation is to *change* this practice
- We phrase structure (and joint parameter) learning as Bayesian inference in a latent variable model.

- ► Structure learning is an important topic in SPNs, and many promising directions have been proposed in recent years.
- ► However, most of these approaches are based on intuition and refrain from declaring an explicit and global principle to structure learning.
- ▶ In this paper, our primary motivation is to *change* this practice
- We phrase structure (and joint parameter) learning as Bayesian inference in a latent variable model.
- ▶ In various experiments we show that this principled approach competes well with prior art and that we gain several benefits, such as automatic protection against overfitting, robustness under missing data and a natural extension to nonparametric formulations.

- ► Structure learning is an important topic in SPNs, and many promising directions have been proposed in recent years.
- ► However, most of these approaches are based on intuition and refrain from declaring an explicit and global principle to structure learning.
- ► In this paper, our primary motivation is to *change* this practice
- We phrase structure (and joint parameter) learning as Bayesian inference in a latent variable model.
- ▶ In various experiments we show that this principled approach competes well with prior art and that we gain several benefits, such as automatic protection against overfitting, robustness under missing data and a natural extension to nonparametric formulations.
- ► A critical insight for our approach is to decompose structure learning into: constructing a computational graph and separately learning the SPN's scope function.

References

[Poon2011] H. Poon and P. Domingos. Sum-product networks: A new deep architecture. In Proceedings of UAI, pages 337–346, 2011.

[Zhao2016] H. Zhao, T. Adel, G. J. Gordon, and B. Amos. Collapsed variational inference for sum-product networks. In Proceedings of ICML, pages 1310–1318, 2016.

[Rashwan2016] A. Rashwan, H. Zhao, and P. Poupart. Online and distributed Bayesian moment matching for parameter learning in sum-product networks. In Proceedings of AISTATS, pages 1469–1477, 2016.

[Vergari2019] A. Vergari, A. Molina, R. Peharz, Z. Ghahramani, K. Kersting, and I. Valera. Automatic Bayesian density analysis. In Proceedings of AAAI, 2019.

[Peharz2019] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp, K. Kersting, and Z. Ghahramani. Random sum-product networks: A simple but effective approach to probabilistic deep learning. In Proceedings of UAI, 2019.

[Trapp2019] M. Trapp, R. Peharz, H. Ge, F. Pernkopf, and Z. Ghahramani. Bayesian Learning of Sum-Product Networks. To appear at NeurlPS, 2019.