INDIAN INSTITUTE OF TECHNOLOGY

Date: Time: 2 Hrs. Full Marks 60

No. of Students 100

5

5

10

Mid-Spring Sem.

Dept. of E & ECE

Sub. No. EC21006

Sub.: Electromagnetic Engineering

Instructions: 1) ATTEMPT ALL THE QUESTIONS

- 2) MAKE NECESSARY ASSUMPTIONS WITH JUSTIFICATIONS, IF **NECESSARY**
- 3) ATTEMPT ALL THE PARTS OF A QUESTIION AT ONE PLACE
- 1. A light source inside a translucent sphere of 20 cm diameter causes a light flux density at the spherical surface 1,000 $\cos^2(\theta/2)\hat{a}_r$ lumens/ m^2 .
 - a) In what direction is the flux density a maximum?
 - b) Determine the angle $\theta = \theta_0$ at which the flux density is one-half its maximum value.
 - c) Determine the angle $\theta = \theta_1$ such that one-half the total light flux is emitted within the case $\theta < \theta_1$.
- 2. State whether the divergence of the following vector fields is positive, negative or zero:
 - a) the thermal energy flow in $J/(m^2 \cdot s)$ at any point in a freezing ice cube
 - b) the current density in A/m^2 in a bus-bar carrying direct current
 - c) the mass flow rate in $kg/(m^2 \cdot s)$ below the surface of water in a basin, in which the water is circulating clockwise as viewed from above.
- 3. A coaxial power cable having a core (conductor) radius of r_1 , is filled with two concentric layers of dielectrics ϵ_1 and ϵ_2 .

- a) Determine the capacitance of the cable per unit length
- b) If the conductor is at a potential V_0 and the outer shield is grounded, determine the maximum electric field in each dielectric from the following data:

$$V_0 = 1200 V$$
, $\epsilon_{r_1} = 1.5$, $\epsilon_{r_2} = 4.5$ and $r_3 = 2r_2 = 4r_1 = 4 cm$.

Contd. next page

- 4. A sphere of radius a and relative permittivity ϵ_r is centred on the origin of a spherical coordinate system and contains a uniform volume free charge distribution $\rho_v C/m^3$. Determine \vec{D} , \vec{E} , \vec{P} and V everywhere and the surface and volume bound charge densities.
- 5. A solid cylindrical nonmagnetic conductor of circular cross section has a radius of 5 mm. The conductor is inhomogenous, i.e. its conductivity varies with radial distance from axis of the conductor. The conductor is 20 m long and there is a potential difference of 0.1V dc between its two ends. Within the conductor, $\vec{H} = 10^5 \, \rho^2 \, \hat{a}_{\phi}$ A/m, where ρ is the cylindrical coordinate.
 - a) Find conductivity as a function of ρ .
 - b) What is the resistance of the conductor between its two ends?
 - c) Find the total magnetic flux inside the conductor.
- 6. A coaxial transmission line has a=5 mm and b=20 mm. Let its center lies on the z axis and let a dc current I flow in the \hat{a}_z direction in the center conductor. The volume between the conductors contain a magnetic material for which $\mu_r=2.5$ as well as air. Find \vec{H} , \vec{B} and \vec{M} everywhere between conductors if $H_{\phi}=\frac{600}{\pi}\,A/m$ at $\rho=10$ mm, $\phi=\frac{\pi}{2}$ and the magnetic material is located at $a<\rho<3a$ and $0<\phi<\pi$
- 7. A rectangular coil is composed of 150 turns of a filamentary conductor. Find the mutual inductance in free space between this coil and an infinite straight filament on the z axis, if the four corners of the coil are located at

(a) (0,1,0), (0,3,0), (0,3,1) and (0,1,1)

10

10

10