# Frederick National Laboratory for Cancer Research

sponsored by the National Cancer Institute



# COVID-19 Research and Proposal Ideas

BIDS FNLCR

May 29, 2020



# Agenda/Project ideas for discussion

- Preliminary information
  - Introduction to the Sars Cov-2 System; genome description; protein information; vaccine development; data types/sources
- Project-1 (a, b and c): Receptor-focused study (experimental and modeling)
- Project-2: Receptor flexibility and MD simulations to identify conformations
- Project-3 (3, 3a): Modeling Receptor-Drug interactions
  - Docking simulations (may be using the conformations identified by Project-2)
  - Commercial/Open-source small-molecule libraries
  - Custom small-molecule library construction based on COVID-19 drug-discovery publications
- Project-4: ML: Drug-Repurposing
- Project-5: Experimental assays for quantifying COVID-19 viral activity



# The System: SARS-CoV-2 Virion and Its Proteins

The figure is from the following NEJM paper (figure 1)

https://www.nejm.org/doi/full/10.1056/NEJMcibr2007042





# The System: SARS-CoV-2 Virion and Its Proteins



#### What SARS-CoV-2 information is available?

#### Sequences

- NCBI
- Ensembl
- UCSC

#### 3D structures

- Experimental: PDB (US, Europe and Japan)
- Modeling
  - I-TASSER
  - ROSETTA
  - SwissModel
  - Phyre2

https://www.ncbi.nlm.nih.gov/

https://covid-19.ensembl.org/index.html

https://genome.ucsc.edu/covid19.html

https://www.rcsb.org/

https://www.ebi.ac.uk/pdbe/

https://pdbj.org/

https://zhanglab.ccmb.med.umich.edu/COVID-19/

https://www.rosettacommons.org/software

https://swissmodel.expasy.org/

http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index

#### What SARS-CoV-2 3D information is available?

https://cov3d.ibbr.umd.edu

#### 05/28/2020

SARS-CoV-2 structures



# Experimental 3D structure information is common to most projects



#### What if there are no 3D structures?

If experimental structures are not available. Structure-based modeling can help

#### I-TASSER

- All COVID-19 protein structure homology models are available
- Why choose I-TASSER over other modeling software?

#### SwissModel

 All COVID-19 protein structures are available



Phyre2



National Cancer Institute

### What can vaccine developmental landscape teach us?

What receptor will be suitable? Can we get help from ongoing Vaccine development?

# AN ARRAY OF VACCINES



\* Other efforts include testing whether existing vaccines against poliovirus or tuberculosis could help to fight SARS-CoV-2 by eliciting a general immune response (rather than specific adaptive immunity), or whether certain immune cells could be genetically modified to target the virus.

**onature** 

Sources: *Nature* analysis based on: WHO COVID-19 Vaccine Landscape/Milken Institute COVID-19

Treatment and Vaccine Tracker/T. Thanh Le *et al. Nature Rev. Drug. Disc.* http://doi.org/ggrnbr (2020)/F.

Amanat & F. Krammer *Immunity* **52**, 583–589 (2020)/W. Shang *et al. npj Vaccines* **5**, 18 (2020).

#### PUBLIC AND PRIVATE DEVELOPMENT LANDSCAPE



Looks like protein-based efforts are gaining ground



### Project-1a: Sars CoV-2 Druggable Receptor focused search

#### Sars CoV-2 receptor choices?

#### Virus entry

Spike protein (experimental structure availability)

#### Protease

Mpro (Most PDB structures)

#### Viral replication

RdRp (polymerase)

#### Virus fusion

Targeting the Fusion of the vesicle and virion

#### Spike Protein: Active form Trimer



This Photo by Unknown Author is licensed under CC BY



# **Project-1b: Impact of mutation on the choice of receptors**

- Most drug developments focus on nsp
  - nsp: non-structural protein(s)
- Most conserved protein is Envelope protein
- Second most conserved in M-Pro and <u>no human-protein</u> is similar to this protein
  - So less toxic

Table 5: Protein-specific statistics of SARS-CoV-2 single mutations. Length refers to the number of codons in the genome associated with a specific protein.

|        |                                                | 14714                                                                  | 10(50)                                                                                                |
|--------|------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Length | # of mutations                                 | mutation ratio                                                         | Mutation <i>h</i> -index                                                                              |
| 1273   | 385                                            | 0.30                                                                   | 16                                                                                                    |
| 306    | 68                                             | 0.22                                                                   | 9                                                                                                     |
| 1945   | 599                                            | 0.31                                                                   | 15                                                                                                    |
| 932    | 223                                            | 0.24                                                                   | 13                                                                                                    |
| 346    | 87                                             | 0.25                                                                   | 9                                                                                                     |
| 75     | 13                                             | 0.17                                                                   | 5                                                                                                     |
| 222    | 63                                             | 0.28                                                                   | 9                                                                                                     |
| 419    | 235                                            | 0.56                                                                   | 27                                                                                                    |
|        | 1273<br>306<br>1945<br>932<br>346<br>75<br>222 | 1273 385<br>306 68<br>1945 599<br>932 223<br>346 87<br>75 13<br>222 63 | Length# of mutationsmutation ratio12733850.30306680.2219455990.319322230.24346870.2575130.17222630.28 |

Mutation Ratio: # of mutations/residue

Data collection: Jan 05 to Apr 24, 2020

https://arxiv.org/pdf/2004.14114.pdf

sponsored by the National Cancer Institute

# Project-1c: Sars CoV-2 Host Druggable Receptor focused search

- Virus entry (drugs described here are in market)
  - TMPRSS2
  - ACE2
  - Furin

#### Cytokine storm

- Mitigate hyper immune response (or immune system hyper-activity)
- Overproduction of proinflammatory cytokines (tumour necrosis factor [TNF], IL-6, and IL-1β)
- Targeting thrombin, coagulation factor Xa or PAR-1



DOI: 10.1016/j.cell.2020.04.013; CELL

#### Project-1c: Choice of host receptors gleaned via P-P network

- D. E. Gordon et al. Preprint at bioRxiv <a href="https://doi.org/10.1101/2020.03.22.002386">https://doi.org/10.1101/2020.03.22.002386</a>; 2020).
  - "cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS)"
  - we identify 67 druggable human proteins or host factors targeted by 69 existing <u>FDA-approved</u> drugs, drugs in clinical trials and/or preclinical compounds,





Here is an example of how targeting BRD2/4 can possibly interrupt virus infections

Drugs that can target either one of them

# Project-1a/b/c: Modeling Software Commonly Used

#### Structure-based modeling

- ITASSER
- SwissModel
- Rosetta (for small peptides; not so-friendly system to locally setup)
- Phyre2
- Schrodinger (basic protein preparation; commercial)

Modeling Software Commonly Used (based on publications)

#### Visualization and preparation

- VMD
- Schrodinger Maestro (commercial)



# Project-2: Simulations of targets to identify suitable conformation(s)

- Spike protein is conformationally flexible
  - Distinct conformational states of SARS-CoV-2 spike protein
    - doi: https://doi.org/10.1101/2020.05.16.099317
    - https://doi.org/10.26434/chemrxiv.11871402.v3
       (repurposing therapeutics for COVID-19; Smith et al)

Here we combine restrained temperature replica-exchange molecular dynamics

(restrained T-REMD) simulations with virtual high-throughput screening in an ensemble docking campaign to identify well-characterized drugs, metabolites, and/or natural products that may disrupt S-protein: ACE2 receptor interface stability or the ability of the S-protein to recognize the

- GROMACS/NAMD/AMBER for MD simulations
  - https://chemrxiv.org/articles/Repurposing Therapeutics for the Wuhan Coronavirus nCov-2019 Supercomputer Based Docking to the Viral S Protein and Human ACE2 Interface/11871402/4
- The low-energy conformations can be used for docking

# **Project-2: Modeling Software Commonly Used**

#### Software

- NAMD
- GROMACS
- AMBER

- Analysis/visualization
  - VMD
  - Biovia (discovery studio visualizer)

Modeling Software Commonly Used (based on publications)



# **Project-3: Modeling Protein-Drug/Inhibitor Interactions**

- Where can we get the compounds?
  - PubChem
  - DrugBank
  - ZINC
  - DrugBank
  - FDA approved drug database (commercial/free versions)
  - ChEMBL
  - SWETLEAD;
  - DRUGCentral
  - SuperDRUG2
  - Natural-compounds library

Databases Commonly Used (based on publications)

Detailed information from Github repository (will be available soon)

Receptor structures could come from Project-2 or from PDB (conformationally stable)

# **Project-3: Modeling Protein-Drug/Inhibitor Interactions**

#### Questions

- What receptors for docking?
- Conformational effects important?
- What domain to model?
  - Spike: RBD or whole protein
  - Biologically relevant complex (trimer, dimer etc.)
- What compound libraries are important?
  - FDA approved; Drugs of a certain class (anti-viral)
- What if IC50 or ki or kd are not available?
  - Can we estimate them using binding affinity?
  - Scoring and ranking?
- Natural compound library screening (a separate effort?)

Databases Commonly Used (based on publications)

Detailed information from Github repository (will be available soon)

# Project-3a: Carrying out docking using the receptor conformations that had been identified in Project-2



#### We have created a custom small-molecule set (~ 300 compounds)

- Collected from COVID-19 publications (reference; pubchem id and name included)
- Contains inhibitor targets: Spike, M-pro, ACE2, RdRp, Viral replication/activity, Cytokine storm,
   TMPRSS2 etc
- Experimental binding information (Ex. IC50, EC50 etc.)

| PubChem  | Name       | IC50 (mM: Micro Molar) | Reference                                 | Inhibitor Target |
|----------|------------|------------------------|-------------------------------------------|------------------|
| 3194     | Ebselen    | 0.67 +/- 0.09 mM       | https://doi.org/10.1038/s41586-020-2223-y | M(pro) Protease  |
| 3117     | Disulfiram | 9.35 pm 0.18 mM        | https://doi.org/10.1038/s41586-020-2223-y | M(pro) Protease  |
| 11313622 | Tideglusib | 1.55 pm 0.30 mM        | https://doi.org/10.1038/s41586-020-2223-y | M(pro) Protease  |
| 2577     | Carmofur   | 1.82 pm 0.06 mM        | https://doi.org/10.1038/s41586-020-2223-y | M(pro) Protease  |
| 479503   | Shikonin   | 15.75 pm 8.22 mM       | https://doi.org/10.1038/s41586-020-2223-y | M(pro) Protease  |

# An accompanying Jupyter Notebook to analyze and display compounds



sponsored by the National Cancer Institute

```
Python 3

| Covided the project of t
```









3194

3117

11313622

2577



# **Project-4: Machine-learning or Deep-learning methodology**

#### Drug repurposing

- "Drug repurposing is a strategy for identifying new uses for approved or investigational drugs that are outside the scope of the original medical indication" Nat. Rev. 18, 41, 2019
- Data for Modeling and other questions?
  - Assay or experimental data?
  - How many compounds in the data(set)?
    - From where this data came from?
  - How many <u>classes</u> of outcome and are they <u>balanced</u>?

# QFRET-based primary biochemical high throughput screening assay to identify inhibitors of the SARS coronavirus 3C-like Protease (3CLPro)

Frederick
National
Laboratory

For Cancer Research

sponsored by the National Cancer Institute

# Project-4: Can a related Bioassay be used for COVID-19 3CL-Pro

#### https://pubchem.ncbi.nlm.nih.gov/bioassay/1706

| 1111901// 0000110111111 | <u> </u>         | <u>o vi bioacca yi i i</u> |          |       |               |                                                       |  |
|-------------------------|------------------|----------------------------|----------|-------|---------------|-------------------------------------------------------|--|
| Structure               | Tested Substance | SID                        | Activity | Score | Inhibition, % | FDA<br>Dataset                                        |  |
|                         | 4175307          | 22406679                   | Active   | 24    | 19.74         | Balance the                                           |  |
|                         | 24819855         | 49828046                   | Active   | 15    | 12.84         | Model for Protease inhibitors                         |  |
|                         | 859639           | 17508646                   | Active   | 24    | 19.51         | What compound                                         |  |
|                         | 16017527         | 49722098                   | Active   | 15    | 12.42         | What compound from FDA dataset is active for 3CL-Pro? |  |

#### Frederick National Laboratory for Cancer Research sponsored by the

# **Drug Repurposing ML Pipeline**



#### Frederick National Laboratory for Cancer Research

# Important site for ML Drug repurposing effort



What does the drug database have?

Contains annotation-level information including compound name, clinical phase, mechanism of action, and protein target.



13,553 TOTAL SAMPLES

2,183 PROTEIN TARGETS

6,798 UNIQUE COMPOUNDS

670 drug indications

| pert_iname                   | clinical_phase | moa                                        | target                      | disease_area         | indication          |
|------------------------------|----------------|--------------------------------------------|-----------------------------|----------------------|---------------------|
| (R)-(-)-apomorphine          | Launched       | dopamine receptor agonist                  | ADRA2A ADRA2B ADRA2C CALY I | neurology/psychiatry | Parkinson's Disease |
| (R)-(-)-rolipram             | Phase 1        | phosphodiesterase inhibitor                | PDE4A PDE4B PDE4C PDE4D PDE |                      |                     |
| (R)-baclofen                 | Phase 3        | benzodiazepine receptor agonist            | GABBR1 GABBR2               |                      |                     |
| (S)-(+)-rolipram             | Phase 1        | phosphodiesterase inhibitor                | PDE4B PDE4D                 |                      |                     |
| [sar9,met(o2)11]-substance-p | Preclinical    | tachykinin antagonist                      | TACR1                       |                      |                     |
| A-1070722                    | Preclinical    | glycogen synthase kinase inhibitor         | GSK3A   GSK3B               |                      |                     |
| A-1120                       | Preclinical    | retinoid receptor ligand                   | RBP4                        |                      |                     |
| A-317491                     | Preclinical    | purinergic receptor antagonist             | P2RX3                       |                      |                     |
| A-33903                      | Phase 2        |                                            |                             |                      |                     |
| A-366                        | Preclinical    | histone lysine methyltransferase inhibitor | EHMT1 EHMT2                 |                      |                     |
| A-381393                     | Preclinical    | dopamine receptor antagonist               |                             |                      |                     |

6798 Compounds



# **Broad Drug Repurposing Compounds Data (13, 563)**

| broad id               | pert iname          | qc incompatible | purity | vendor    | catalog no | vendor name                             | expected mass | smiles                                 | pubchem_cid deprecated_broad_id |
|------------------------|---------------------|-----------------|--------|-----------|------------|-----------------------------------------|---------------|----------------------------------------|---------------------------------|
| BRD-K76022557-003-28-9 |                     | 0               |        | MedChemEx | HY-12723A  | Apomorphine (hydrochloride hemihydrate) |               | CN1CCc2cccc-3c2[C@H]1Cc1ccc(O)c(O)c-31 | 6005                            |
| BRD-K76022557-003-02-7 | (R)-(-)-apomorphine | 0               | 97.34  | Tocris    | 2073       | (R)-(-)-Apomorphine hydrochloride       | 267.126       | CN1CCc2cccc-3c2[C@H]1Cc1ccc(O)c(O)c-31 | 6005                            |
| BRD-K76022557-003-29-9 | (R)-(-)-apomorphine | 0               | 97.36  | Tocris    | 2073       | (R)-(-)-Apomorphine hydrochloride       | 267.126       | CN1CCc2cccc-3c2[C@H]1Cc1ccc(O)c(O)c-31 | 6005                            |
| BRD-K76022557-001-03-9 | (R)-(-)-apomorphine | 0               | 95.8   | Selleck   | S4350      | R-(-)-Apomorphine HCl Hemihydrate       | 267.126       | CN1CCc2cccc-3c2[C@H]1Cc1ccc(O)c(O)c-31 | 6005                            |
| BRD-K75516118-001-04-1 | (R)-(-)-rolipram    | 0               | 93.92  | Tocris    | 1349       | (R)-(-)-Rolipram                        | 275.152       | COc1ccc(cc1OC1CCCC1)[C@@H]1CNC(=O)C1   | 448055                          |
| BRD-K75516118-001-05-9 | (R)-(-)-rolipram    | 0               | 93.75  | Tocris    | 1349       | (R)-(-)-Rolipram                        | 275.152       | COc1ccc(cc1OC1CCCC1)[C@@H]1CNC(=O)C1   | 448055                          |
| BRD-K75516118-001-03-3 | (R)-(-)-rolipram    | 0               | 97.48  | Tocris    | 1349       | (R)-(-)-Rolipram                        | 275.152       | COc1ccc(cc1OC1CCCC1)[C@@H]1CNC(=O)C1   | 448055                          |

broad\_id
pert\_iname
qc\_incompatible
purity
vendor
catalog\_no
vendor\_name
expected\_mass
smiles
pubchem\_cid
deprecated\_broad\_id



# Project-5: Experimental study of the compounds identified in Project 3/4

- Taken from <a href="https://www.nature.com/articles/s41586-020-2286-9\_reference.pdf">https://www.nature.com/articles/s41586-020-2286-9\_reference.pdf</a>
  - More information on page 4 (Antiviral activity of host-directed drugs and compounds)
  - "medium-throughput <u>immunofluorescence-based assay</u> (detecting the viral NP protein) to <u>screen 37</u>
     <u>compounds for inhibition</u> of SARS-CoV-2 infection in the <u>Vero E6 cell line</u>."
  - "viral RNA was monitored using qRT-PCR upon treatment with 44 drugs and compounds"
  - "TCID50 assays on supernatants from infected cells treated with PB28 (IC90 0.278 μM) and zotatifin (IC90 0.037 μM) revealed a more potent inhibition than was observed in the NP-staining assay"
  - Antiviral effect
    - "To better understand the mechanism by which these inhibitors exert their antiviral effects, we performed a time course assay where the drugs were added at different times relative to infection"





# Project-5: Experimental study of the compounds identified in Project 3

#### Nature Communications

- https://www.nature.com/articles/s41594-020-0440-6; Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur
  - pre-seeded <u>Vero E6 cells</u> used with <u>qRT-PCR analysis</u>, while cells were fixed and subjected to <u>immunofluorescence to monitor intracellular NP level</u> as described previously
  - For cytotoxicity assays, <u>Vero E6 cells</u> were suspended in growth medium in 96-well plates. The next day, appropriate <u>concentrations of carmofur were added</u> to the medium. After 24 h, the <u>relative numbers of surviving cells were measured using a Cell Counting Kit-8</u> (CCK8, Beyotime) assay in accordance with the manufacturer's instructions. All experiments were performed in triplicate, and all the infection experiments were performed <u>at biosafety level 3</u> (BSL-3).



# **Basic Biology of COVID-19**



# Structural protein: surface glycoprotein: Spike Protein





### **Spike Protein: Conserved Domains**

Coronavirus gets its name from the Spike proteins. Spikie proteins are located on the surface. They usually occur as trimers

#### Conserved domains on [gi|1796318598|ref|YP\_009724390|]

surface glycoprotein [Severe acute respiratory syndrome coronavirus 2]



# Crystal structure of SARS-CoV-2 spike receptor-binding domain bound with ACE2 (PDB: 6M0J)





PDBe-KB: 21 experimental 3D structures of either S-protein alone or with other proteins (05/27/2020)

https://www.uniprot.org/uniprot/P0DTC2



# Structural protein: surface glycoprotein: Spike Protein



https://www.ebi.ac.uk/pdbe/pdbe-kb/proteins/P0DTC2#structures

# **Nucleocapsid phosphoprotein**

- https://www.ncbi.nlm.nih.gov/gene/43740575
- https://www.uniprot.org/uniprot/P0DTC9
- Safe-guards/keeps the virus stable RNA
- There are many N-proteins that are linked in a spiral and these are often wrap and coil around the RNA
- https://www.ebi.ac.uk/pdbe/pdbe-kb/proteins/P0DTC9
- 419 aa length



This Photo by Unknown Author is licensed under CC BY-SA



# **Nucleocapsid phosphoprotein**

- 9 PDB structures (PDBe-kb; date: 05/27/2020)
- 3D structure coverage



https://www.ebi.ac.uk/pdbe/pdbe-kb/proteins/P0DTC9#structures

# Crystal structure of RNA binding domain of nucleocapsid phosphoprotein from SARS coronavirus 2 (PDB: 6VYO)









27887

ORF7b -----

#### M membrane glycoprotein



The highlighted area is the only region for which 3D structure data is available, PDB: 3I6G

30 50 MADSNGTITV EELKKLLEQW NLVIGFLFLT WICLLQFAYA NRNRFLYIIK 80 90 100 LIFLWLLWPV TLACFVLAAV YRINWITGGI AIAMACLVGL MWLSYFIASF 130 140 150 RLFARTRSMW SFNPETNILL NVPLHGTILT RPLLESELVI GAVILRGHLR 180 200 190 IAGHHLGRCD IKDLPKEITV ATSRTLSYYK LGASQRVAGD SGFAAYSRYR 210 220 IGNYKLNTDH SSSSDNIALL VQ

# Newly identified epitope Mn2 from SARS-CoV M protein complexed withHLA-A\*0201 (PDB: 3I6G)

Structural protein

Forms the outer coat of the virus

https://www.uniprot.org/uniprot/P59596

221 amino acids

RCSB: One experimental 3D structure (3I6G)

PDBe-KB: three experimental 3D structuers

(see below; as of 05/27/2020)

| ▼ PDB Structures (3) |                |  |  |  |  |
|----------------------|----------------|--|--|--|--|
| ⊚ 3to2               | 📵 🗘 ໝ 🎋 🖽 2.6Å |  |  |  |  |
| ⊚ 3i6k               | □              |  |  |  |  |
| ⊚ 3i6g               | 📵 🗘 ໝ 🎋 🗰 2.2Å |  |  |  |  |



#### Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute

### **E Envelope Protein**



- https://www.ncbi.nlm.nih.gov/gene/43740570
- https://www.uniprot.org/uniprot/P0DTC4
- 75 amino acid
- No 3D structure





This Photo by Unknown Author is licensed under CC BY



### **E** protein

#### Function

The envelope protein is a structural protein that helps form the oily bubble of the virus. It may
also have jobs to do once the virus is inside the cell. Researchers have found that it latches
onto proteins that help turn our own genes on and off. It's possible that pattern changes when
the E protein interferes.



Important nonstructured proteins

# Coronavirus Main Proteinase (3CL<sup>pro</sup>) (M-pro or nsp5 or main protease)







This Photo by Unknown Author is licensed under CC BY

 nsp5 makes most of the cuts that free other nsp proteins to carry out their jobs.

3C-like proteinase (EC:3.4.22.-)

#### **Short name:**

3CL-PRO

#### **Short name:**

3CLp

#### **Alternative name(s):**

M-PRO nsp5 p34





#### **Mpro function**

- Brief summary from <a href="https://www.nature.com/articles/s41586-020-2223-y">https://www.nature.com/articles/s41586-020-2223-y</a>
- "The COVID-19 virus genome is comprised of ~30,000 nucleotides; its replicase gene encodes two overlapping polyproteins, pp1a and pp1ab, required for viral replication and transcription. The functional polypeptides are released from the polyproteins by extensive proteolytic processing, predominantly by a 33.8-kDa main protease (Mpro), also referred to as the 3C-like protease. Mpro digests the polyprotein at no less than 11 conserved sites, starting with the autolytic cleavage of this enzyme itself from pp1a and pp1ab. The functional importance of Mpro in the viral life cycle, together with the absence of closely related homologues in humans, identify the Mpro as an attractive target for antiviral drug design"



# **Frederick National** Laboratory

134 experimental

#### **Main Protease 3D structures**

Polymer: 1

Length: 306 residues

Chain Type: polypeptide(L)

Reference: **UniProtKB** (P0DTD1)

SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19; PDB: 6YB7)





# **Thanks**

Questions
Contact <a href="mailto:ravichandrans@mail.nih.gov">ravichandrans@mail.nih.gov</a>