NLP week 7

Question 1:

Suppose you have a raw text corpus and you compute word co occurrence matrix from there. Which of the following algorithm(s) can you utilize to learn word representations? (Choose all that apply)

- a. CBOW
- b. SVM
- c. PCA
- d. Bagging

Multi-choice multi-correct: <u>a) CBOW (contin. Bag of words), c) PCA (hand-digit recogn.dataset MNSIT dataset)</u>

Question 2: Page no. 135

What is the method for solving word analogy questions like, given A, B and D, find C such that A:B::C:D, using word vectors?

- a. $v_c = v_a + (v_b v_d)$, then use cosine similarity to find the closest word of v_c .
- b. $v_c = v_a + (v_d v_b)$ then do dictionary lookup for v_c
- c. $v_c = v_d + (v_a v_b)$ then use cosine similarity to find the closest word of v_c .
- d. $v_c = v_d + (v_a v_b)$ then do dictionary lookup for v_c .
- e. None of the above

Option C) is correct

Question 3:

What is the value of $PMI(w_1, w_2)$ for $C(w_1) = 250$, $C(w_2) = 1000$,

 $C(w_1, w_2) = 160, N = 100000?$ N: Total number of documents.

 $C(w_i)$: Number of documents, w_i has appeared in.

 $C(w_i, w_i)$: Number of documents where both the words have appeared in.

Note: Use base 2 in logarithm.

- a. 4
- b. 5
- c. 6
- d. 5.64

Option C) is correct

Question 4:

Given two binary word vectors w_1 and w_2 as follows:

 $W_1 = [1010101010]$

 $W_2 = [00111111100]$

Compute the Dice and Jaccard similarity between them.

- a. 6/11, 3/8
- b. 10/11, 5/6
- c. 4/9, 2/7
- d. 5/9, 5/8

Option A) is correct.

Question 5:

Consider two probability distributions for two words be p and q. Compute their similarity scores with KL-divergence.

p = [0.20, 0.75, 0.50]

q = [0.90, 0.10, 0.25]

Note: Use base 2 in logarithm.

- a. 4.704, 1,720
- b. 1.692, 0.553
- c. 2.246, 1.412
- d. 3.213, 2.426

 $\mathsf{KLD}(\mathsf{p},\,\mathsf{q}),\,\mathsf{KLD}(\mathsf{q},\,\mathsf{p})$

Option C)

Question 6:

Consider the following word co-occurrence matrix given below. Compute the cosine similarity between

(i) w1 and w2, and (ii) w1 and w3.

- a. 0.773, 0.412
- b. 0.881, 0.764
- c. 0.987, 0.914
- d. 0.897, 0.315

W1 = [2, 8, 5] |W1| =
$$sqrt(2^2 + 8^2 + 5^2)$$

W2 = [4, 9, 7] |W2| = $sqrt(4^2 + 9^2 + 7^2)$
Cosine $sim(W1, W2)$ == numer / denominator
Numerator = (2 * 4) + (8 * 9) + (5 * 7)

Denominator =
$$sqrt(2^2 + 8^2 + 5^2)$$
 * $sqrt(4^2 + 9^2 + 7^2) = sqrt(4 + 64 + 25)$ * $sqrt(16 + 81 + 49)$

Question 7:

Which of the following type of relations can be captured by word2vec (CBOW or Skipgram)?

- a. Analogy (A:B::C:?)
- b. Antonymy
- c. Polysemy
- d. All of the above

Option a) is correct

Question 8:

Suppose you are computing the word vectors using Skip-gram architecture. You have 5 words in your vocabulary, {passed, through, relu, activation, function} in that order and suppose you have the window, 'through relu activation' in your corpora. You use this window with `relu' as the center word and one word before and after the center word as your context.

Also, suppose that for each word, you have 2-dim in and out vectors, which have the same value at this point given by [-1,-1],[1,1],[2,-1],[1,0] for the 5 words, respectively. As per the Skip-gram architecture, what would be the total loss for this window?