

Fair Regression with Wasserstein Barycenters

for Sorbonne Université

Eyal Cohen¹ Eline Pot¹ LPSM

Supervisor(s):

Christophe Denis¹, Rafael Pinot¹

► Problem Statement

General regression problem

- ► Fair regression and the problem of Wasserstein barycenter
- ► Statistical Guarantees
- ▶ Experiments

Notations and General regression problem

1 Problem Statement

$$Y = f^{\star}(X, S) + \xi \tag{1}$$

with $\xi \in \mathbb{R}$ a centered r.v.

 $(X,S) \sim \mathbb{P}_{X,S}$ on $\mathbb{R}^d \times S$, where S is the sensible attribute; $|S| < \infty$

 $f^*: \mathbb{R}^d \times \mathcal{S} \mapsto \mathbb{R}$ the regression function minimizing the squared risk.

 $\forall f : \mathbb{R}^d \times S \mapsto \mathbb{R}, \nu_{f|s} \text{ is the distribution of } f(X, S) | S = s.$

i.e.
$$F_{v_{f|s}}(t) = \mathbb{P}(f(X,S) \leqslant t|S=s)$$
 (2)

Definition (Demographic Parity (DP))

 $a: \mathbb{R}^d \times \mathcal{S} \mapsto \mathbb{R}$ is fair if :

$$\forall s, s' \in S, \quad \sup_{t \in \mathbb{R}} \left| \mathbb{P}(g(X, S) \leqslant t | S = s) - \mathbb{P}(g(X, S) \leqslant t | S = s') \right| = 0$$

In particular, we note that if g is fair, then $v_{g|s} = v_g$

- ▶ Problem Statement
- ► Fair regression and the problem of Wasserstein barycenter Characterization of fair optimal transport General Form of the estimator
- ► Statistical Guarantees
- ▶ Experiments

Wasserstain Distance

2 Fair regression and the problem of Wasserstein barycenter

Definition (Wasserstein-2 distance)

For all μ, ν univariate probabilities measures, we define the Wasserstein-2 distance :

$$W_2^2(\mu,\nu) = \inf_{\gamma \in \Gamma_{\mu,\nu}} \int |x-y|^2 d\gamma(x,y)$$

where $\Gamma_{\mu,\nu}$ is the set of coupling measures on $\mathbb{R} \times \mathbb{R}$

Theorem (Monge map)

Let μ and ν be two univariate measures such that ν has a density. And let $X \sim \nu$. Then there exists a mapping $T : \mathbb{R} \mapsto \mathbb{R}$ such that $W_0^2(\mu, \nu) = \mathbb{E}(X - T(X))^2$.

i.e. $(X, T(X)) \sim \gamma^* \in \Gamma_{\mu,\nu}$ with γ^* and optimal coupling measure.

Also, we have : $T = Q_{\mu} \circ F_{\nu}$

Theorem (Inverse of the cdf)

Let $v_1, \ldots, v_{|S|}$ be |S| univariate probability measures admitting densities. Let $p_1, \ldots, p_{|S|} \geqslant 0$ s.t. $\sum_{s=1}^{|S|} p_s = 1$. Let us denote : $v^* \in \arg\min_v \sum_{s=1}^{|S|} p_s W_2^2(v_s, v)$.

Then :
$$F_{\nu}^{\star}(\cdot) = \left(\sum_{s=1}^{|S|} p_s Q_{v_s}\right)^{\leftarrow}(\cdot)$$
.

Theorem (Characterization of fair optimal prediction)

Let us assume $\forall s \in S$ that the univariate measure $v_{f^{\star}|s}$ has a density and let $p_s = \mathbb{P}(S = s)$. Then :

$$\min_{g \text{ is fair}} \mathbb{E}\left[(f^\star(X,S) - g(X,S))^2 \right] = \min_{\nu} \sum_{s \in S} p_s W_2^2(\nu_{f^\star|s},\nu)$$

Moreover if g^* solves l.h.s and v^* the r.h.s, then $v^* = v_q^*$ and :

$$g^{\star}(x,s) = \left(\sum_{s' \in \mathcal{S}} \rho_{s'} Q_{f^{\star}|s'}\right) \bigcirc F_{f^{\star}|s}(f^{\star}(x,s))$$

Let us show that

$$\min_{\textit{gfair}} \mathbb{E}\left[(f^{\star}(\textit{X}, \textit{S}) - \textit{g}(\textit{X}, \textit{S}))^2 \right] = \min_{\textit{v}} \sum_{\textit{s} \in \mathcal{S}} \textit{p}_{\textit{s}} W_2^2(\textit{v}_{f^{\star}|\textit{s}}, \textit{v})$$

Let us denote \bar{g} a minimizer of the l.h.s., and $\nu_{\bar{g}}$ its ditribution. As $\nu_{f^{\star}|s}$ admits a density, we can use the precedent theorem : for each $s \in \mathcal{S}$, there exists $T_s = Q_{\nu_{\bar{o}}} \circ F_{f^{\star}|s}$ such that with $\tilde{g} = T_s = Q_{\nu_{\bar{o}}} \circ F_{f^{\star}|s} \circ f^{\star}$:

$$\sum_{s \in S} p_s W_2^2(\nu_{f^{\star}|s}, \nu_{\tilde{g}}) = \mathbb{E}\left[\left(f^{\star}(X, S) - \tilde{g}(X, S) \right)^2 \right]$$
(3)

We can write:

$$\mathbb{P}\left(\tilde{g}(X,S) \leqslant t\right) = \sum_{s \in S} p_{s} \mathbb{P}\left(Q_{\nu_{\tilde{g}}} \circ F_{f^{\star}|s} \circ f^{\star}(X,s) \leqslant t\right) \\
= \sum_{s \in S} p_{s} \mathbb{P}\left(f^{\star}(X,s) \leqslant Q_{f^{\star}|s} \circ F_{\nu_{\tilde{g}}}(t)\right) \\
= \sum_{s \in S} p_{s} F_{f^{\star}(X,s)}\left(Q_{f^{\star}|s} \circ F_{\nu_{\tilde{g}}}(t)\right) \\
= \sum_{s \in S} p_{s} F_{\nu_{\tilde{g}}}(t) \tag{5}$$

$$\mathbb{P}\left(\tilde{g}(X,S) \leqslant t\right) = \sum_{s \in S} p_s F_{v_{\tilde{g}}}(t) \tag{5}$$

And since \bar{q} is fair by definition, this implies that \tilde{q} is also fair.

We now define $T^\star = Q_{v^\star} \circ F_{f^\star|s}$ as the optimal transport map between $v_{f^\star|s}$ and

 $v^\star = argmin_v \left(\sum_{s \in S} p_s W_2^2(v_{f^\star|s}, v) \right)$, and we define $g^\star = T^\star \circ f^\star$.

By the result of the Monge map theorem, we get:

$$\min_{v} \sum_{s \in S} p_s \mathcal{W}_2^2(v_{f^{\star}|s}, v) = \mathbb{E}\left[(f^{\star}(X, S) - g^{\star}(X, S))^2 \right]$$

 g^* minimizing the LHS, we note that v^* is independent of s by construction, so g^* is DP. Thus we can bound the LHS by taking the minimum over the DP-fair set:

$$\min_{v} \sum_{s \in S} p_{s} W_{2}^{2}(v_{f^{\star}|s}, v) \geqslant \min_{g \text{ fair}} \mathbb{E}\left[\left(f^{\star}(X, S) - g(X, S) \right)^{2} \right]$$
 (6)

But, by optimality of \bar{g} , we have $\mathbb{E}\left[\left(f^{\star}(X,S)-\tilde{g}(X,S)\right)^{2}\right]\geqslant\mathbb{E}\left[\left(f^{\star}(X,S)-\tilde{g}(X,S)\right)^{2}\right]$.

But we also have that:

$$\begin{split} \mathcal{W}_{2}^{2}\left(v_{f^{\star}|s},v_{\tilde{g}}\right) \leqslant \mathbb{E}\left[\left(f^{\star}(X,S) - g(X,S)\right)^{2}|S = s\right] \\ \Longrightarrow \min_{v} \sum_{s \in \mathcal{S}} \mathcal{W}_{2}^{2}\left(v_{f^{\star}|s},v_{\tilde{g}}\right) \leqslant \min_{g \text{ is fair}} \mathbb{E}\left[\left(f^{\star}(X,S) - g(X,S)\right)^{2}\right] \end{split}$$

This gives the equality, we can then set $\bar{g} = g^*$, as g^* is fair.

Given a base estimator \hat{f} of f^* , we define the final estimator \hat{g} of g^* as :

$$\hat{g}(x,s) = \left(\sum_{s' \in S} \hat{p}_{s'} \hat{Q}_{\hat{f}|s'}\right) \circ \hat{F}_{\hat{f}|s}(\hat{f}(x,s) + \varepsilon)$$

where $\varepsilon \sim \mathcal{U}([-\sigma, \sigma])$, independant from the others r.v.

With \hat{p}_s the empirical frequency of S = s evaluated on $\{S_i\}_{i=1...N} \stackrel{iid}{\sim} \mathbb{P}_S$

With $\hat{F}_{f|s}$ and $\hat{Q}_{f|s}$ the empirical CDF and quantile function of $(f(X,S) + \varepsilon)|S = s$ based on $\{f(X_i^s,S) + \varepsilon_{is}\}_{i \in \mathcal{I}_1^s}$ and $\{f(X_i^s,S) + \varepsilon_{is}\}_{i \in \mathcal{I}_2^s}$ respectively.

They are defined as:

$$\hat{F}_{f|s} = F_{\hat{v}_{f|s}^1}$$
 and $\hat{Q}_{f|s} = Q_{\hat{v}_{f|s}^0}$

Here, $\hat{v}_{f|s}^0$ and $\hat{v}_{f|s}^1$ are estimators of $v_{f|s}$. Fixing I_0^s and I_1^s as an equal partition of $[N_s]$, these estimators read as :

$$\hat{v}_{f|s}^0 = \frac{1}{|\mathcal{I}_0^s|} \sum_{i \in \mathcal{I}_0^s} \delta(f(X_i^s, s) + \varepsilon_{is} - \cdot) \quad \text{and} \quad \hat{v}_{f|s}^1 = \frac{1}{|\mathcal{I}_1^s|} \sum_{i \in \mathcal{I}_1^s} \delta(f(X_i^s, s) + \varepsilon_{is} - \cdot) \quad \text{with} \quad \varepsilon_{is} \stackrel{iid}{\sim} \mathcal{U}([-\sigma, \sigma])$$

- ▶ Problem Statement
- ► Fair regression and the problem of Wasserstein barycenter
- ► Statistical Guarantees
- ► Experiments

Theorem (Fairness guarantee)

For any \mathbb{P} on (X, S, Y), for any \hat{f} constructed on labeled data, and for any $s, s' \in S$, we have fairness guarantee in expectation over the data :

$$\sup_{t\in\mathbb{R}} \left| \mathbb{P}(\hat{g}(X,S) \leqslant t | S = s) - \mathbb{P}(\hat{g}(X,S) \leqslant t | S = s') \right| \leqslant \frac{2}{\min(N_s,N_{s'}) + 2} \mathbb{1}_{N_s \neq N_{s'}}$$

We also have the bound over the expected (over data) violation of the fairness definition (with \mathcal{D} the union of all the datasets):

$$\mathbb{E}\left[\sup_{t\in\mathbb{R}}\left|\mathbb{P}(\hat{g}(X,S)\leqslant t|S=s,\mathcal{D})-\mathbb{P}(\hat{g}(X,S)\leqslant t|S=s',\mathcal{D})\right|\right]\leqslant \frac{6}{\sqrt{\min(N_{S},N_{S'})+1}}$$

PROOF IDEAS: → For the first result, we use that

$$\overline{\forall \mathsf{s}, \mathsf{s}' \in \mathcal{S}, \mathsf{sup}_{t \in \mathbb{R}}} \, |\mathbb{P}(\hat{g}(\mathsf{X}^{\mathsf{s}}, \mathsf{s}) \leqslant t) - \mathbb{P}(\hat{g}(\mathsf{X}^{\mathsf{s}'}, \mathsf{s}) \leqslant t)| \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\hat{F}_{\hat{f}|\mathsf{s}}(\hat{f}(\mathsf{X}^{\mathsf{s}}, \mathsf{s}) + \varepsilon) \leqslant t) - \mathbb{P}(\hat{F}_{\hat{f}|\mathsf{s}'}(\hat{f}(\mathsf{X}^{\mathsf{s}'}, \mathsf{s}') + \varepsilon) \leqslant t)| \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\hat{F}_{\hat{f}|\mathsf{s}}(\hat{f}(\mathsf{X}^{\mathsf{s}}, \mathsf{s}) + \varepsilon) \leqslant t) - \mathbb{P}(\hat{F}_{\hat{f}|\mathsf{s}'}(\hat{f}(\mathsf{X}^{\mathsf{s}'}, \mathsf{s}') + \varepsilon) \leqslant t)| \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\hat{F}_{\hat{f}|\mathsf{s}}(\hat{f}(\mathsf{X}^{\mathsf{s}}, \mathsf{s}) + \varepsilon) \leqslant t) - \mathbb{P}(\hat{F}_{\hat{f}|\mathsf{s}'}(\hat{f}(\mathsf{X}^{\mathsf{s}'}, \mathsf{s}') + \varepsilon) \leqslant t)| \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\hat{f}(\mathsf{sup}) + \varepsilon) | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\hat{f}(\mathsf{sup}) + \varepsilon) | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\hat{f}(\mathsf{sup}) + \varepsilon) | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon) | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)} \, |\mathbb{P}(\mathsf{sup}) + \varepsilon | \leqslant \mathsf{sup}_{t \in (0,1)$$

Then, fixing $t \in (0,1)$ and $k_S(t) \in \{1,\ldots,|I_1^S|\}$ such that $t \in \left[\frac{k_S(t)-1}{|I_S^S|},\frac{k_S(t)}{|I_S^S|}\right]$, and using the fact that conditionally on labeled data, the random variables

$$\textstyle \sum_{i \in I_1^S} \mathbb{1}_{\hat{f}(X_i^S) + \epsilon_{iS} \leqslant \hat{f}(x,s) + \epsilon} \sim \mathcal{U}(\{0,\dots,|I_1^S|\}), \text{ we have: } \mathbb{P}(\hat{F}_{\hat{f}|S}(\hat{f}(X^S,s) + \epsilon) \leqslant t) = \frac{k_S(t)}{|I_1^S| + 1}$$

We use the same argument for s' to get: $\sup_{t \in \mathbb{R}} \left| \mathbb{P}(\hat{g}(X^s, s) \leqslant t) - \mathbb{P}(\hat{g}(X^{s'}, s') \leqslant t) \right| \leqslant \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right| \leq \sup_{t \in (0, 1)} \left| \frac{k_s(t)}{(N_s/2 + 1)} - \frac{k_{s'}(t)}{(N_s/2 + 1)} \right|$

ightarrow For the second result, the beginning of the demonstration is the same, then we use the triangle inequality to finally get the bound $2\mathbb{E}\|F_{\hat{Y}_{\hat{I}|s}}-\hat{F}_{\hat{I}|s}\|_{\infty}+2\mathbb{E}\|F_{\hat{Y}_{\hat{I}|s}}-\hat{F}_{\hat{I}|s'}\|_{\infty}$, where $F_{\hat{Y}_{\hat{I}|s}}=\mathbb{P}(\hat{I}(X^s,s)+\varepsilon\leqslant t|\mathcal{D})$. Then, we conclude applying DKL inequality, conditionally on \mathcal{L} .

Let us make the following assumptions:

- For any $s \in \mathcal{S}$, $v_{f^*|s}$ admits a density q_s such that $0 < \lambda_s \leqslant q_s \leqslant \bar{\lambda_s}$.
- There exist c and C positive and independent of $n, N, N_1, \ldots, N_{|S|}$ and b_n a positive sequence such that for all $\delta > 0$, we have :

$$\mathbb{P}(|f^{\star}(x,s) - \hat{f}(x,s)| \geqslant \delta) \leqslant \exp(-Cb_n\delta^2)$$

Theorem (Estimation guarantee)

Under these assumptions, let us set $\sigma \leq \min_{s \in S} \{ \max(\frac{1}{\sqrt{N_s}}, \frac{1}{\sqrt{N_s}}) \}$, then \hat{g} verifies :

$$\mathbb{E}[|g^{\star}(X,S) - \hat{g}(X,S)|] \lesssim \min\left\{\frac{1}{\sqrt{b_n}}; \sum_{s \in \mathcal{S}} p_s \frac{1}{\sqrt{N_s}}; \sqrt{\frac{|\mathcal{S}|}{N}}\right\}$$

- ▶ Problem Statement
- ► Fair regression and the problem of Wasserstein barycenter
- ► Statistical Guarantees
- ► Experiments

4 Experiments

Gaussian distributions:

• Binary:

4 Experiments

Gaussian distributions:

Three values:

4 Experiments

Gaussian distributions:

• More values (21):

4 Experiments

Exponential distributions:

• Three values:

Fair Regression with Wasserstein Barycenters

Thank you for listening!
Any Questions?