Differentiation af polynomier og potensfunktioner

Polynomier og potensfunktioner

Det er særligt nemt at differentiere potensfunktioner og polynomier. Følgende sætning fortæller os, hvordan vi gør.

Sætning 1.1. Lad f være givet ved

$$f(x) = x^a$$
.

Så gælder, at

$$f'(x) = ax^{a-1}.$$

Sidste gang så vi specialtilfældende

$$(x^3)' = 3x^2$$

og

$$(x^2)' = 2x.$$

Eksempel 1.2. Vi skal differentiere polynomiet

$$f(x) = 5x^7 - 12x^3 - 2x^2 - x - 1.$$

Dette gøres ledvist og konstanter ganget på lades stå som sædvanligt.

$$f'(x) = 5 \cdot 7x^{6} - 12 \cdot 3x^{2} - 2 \cdot 2x - 1$$
$$= 35x^{6} - 36x^{2} - 4x - 1$$

Eksempel 1.3. Vi skal differentiere funktionen

$$f(x) = 2x^{-\frac{1}{7}}$$
.

Vi bruger samme regel og får

$$f'(x) = -\frac{2}{7}x^{-\frac{1}{7}-1}$$
$$= -\frac{2}{7}x^{-\frac{8}{7}}$$

Side 1 af 3

Vi tilføjer denne regel til vores tabel.

Sætning 1.4. Vi har følgende sammenhæng mellem funktioner f og afledede funktion f'.

f(x)	f'(x)
konstant	0
x	1
ax + b	a
x^2	2x
x^3	$3x^2$
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{\frac{1}{2\sqrt{x}}}{ax^{a-1}}$
x^a	ax^{a-1}

Vi skal se vores første bevis for en differentialkvotient. Vi viser, at $(x^2)' = 2x$.

Sætning 1.5 (Differentiation af x^2). For funktionen f givet ved

$$f(x) = x^2$$

gælder der, at

$$f'(x) = 2x.$$

Bevis. Vi betragter definitionen af differentialkvotienten.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

$$= \lim_{h \to 0} \frac{x^2 + h^2 + 2xh - x^2}{h}$$

$$= \lim_{h \to 0} \frac{h^2 + 2xh}{h}$$

$$= \lim_{h \to 0} h + 2x$$

$$= 2x.$$

Opgave 1

Differentiér følgende funktioner

1)
$$x^{5}$$

3)
$$\frac{1}{10}x^{10} + 7x^5 - 11x^2 + 20$$

5)
$$\frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 1$$

7)
$$6x^{\frac{-5}{2}}$$

2)
$$2x^4 - 6x^2 + 10x - 11$$

4)
$$x^4 - 3x^2 + 2x + 1$$

6)
$$x^{\frac{1}{2}}$$

8)
$$0.7x^{1.2}$$

Opgave 2

Bestem hældningen af tangenterne punkterne (2, f(2)) og (3, f(3)) af følgende funktioner. Tegn først funktionerne i Geogebra og prøv at bestemme hældningen der først.

1)
$$5x^2 + 10$$

$$3) \ \frac{\sqrt{x}}{3} + x^3$$

7)
$$x^2 + x^3 + 1$$

9)
$$\frac{10}{3} + x + 3\sqrt{x}$$

$$2) \sqrt{x}$$

$$4) \ \frac{2}{x}$$

$$6) \ \frac{7\sqrt{x}}{2} + \frac{1}{x}$$

$$8) \ \frac{1}{3}x^3 + \frac{1}{2}x^2 + x$$

10)
$$7 + \frac{1}{3} + x^3 + \frac{2}{x}$$