Esercizio

Dimostrare le seguenti uguaglianze:

- 1. f(n) = O(g(n)) sse $g(n) = \Omega(f(n))$
- 2. $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$
- 3. $f(n) = \Theta(f(n))$
- 4. f(n) = O(g(n)) e g(n) = O(h(n)) implica f(n) = O(h(n)) (e dualmente $f(n) = \Omega(g(n))$ e $g(n) = \Omega(h(n))$ implica $f(n) = \Omega(h(n))$, e quindi $f(n) = \Theta(g(n))$ e $g(n) = \Theta(h(n))$ implica $f(n) = \Theta(h(n))$
- 5. $f(n) = \Theta(g(n))$ sse $\Theta(f(n)) = \Theta(g(n))$ sse $g(n) = \Theta(f(n))$

Soluzione. È opportuno richiamare la definizione dei limiti asintotici superiore, inferiore e stretto:

- (i) $\Omega(g(n)) = \{ f(n) \mid \exists c > 0. \exists n_0. \forall n \ge n_0. \ 0 \le c g(n) \le f(n) \}$
- (ii) $O(g(n)) = \{f(n) \mid \exists d > 0. \exists n_0. \forall n \ge n_0. \ 0 \le f(n) \le dg(n)\}\$
- (iii) $\Theta(g(n)) = \{f(n) \mid \exists c, d > 0. \exists n_0. \forall n \ge n_0. \ 0 \le c \ g(n) \le f(n) \le d \ g(n)\}$

Procediamo dunque con la soluzione delle varie domande

1. f(n) = O(g(n)) sse $g(n) = \Omega(f(n))$ Proviamo che se f(n) = O(g(n)) allora $g(n) = \Omega(f(n))$. Supponiamo dunque che valga f(n) = O(g(n)), ovvero esistono d > 0 e n_0 tali che per ogni $n \ge n_0$ vale

$$0 \le f(n) \le dg(n)$$

Dividendo per d (possibile perché d > 0) si ottiene che per ogni $n \ge n_0$ vale

$$0 \le \frac{1}{d}f(n) \le g(n)$$

e quindi, ricordando la definizione (i), $g(n) = \Omega(f(n))$, utilizzando come costante moltiplicativa $c = \frac{1}{d} > 0$.

L'implicazione inversa è totalmente analoga.

2. $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$

Mostriamo separatamente le due inclusioni.

• $\Theta(g(n)) \subseteq O(g(n)) \cap \Omega(g(n))$: Sia $f(n) = \Theta(g(n))$. Dalla definizione (iii) otteniamo che esistono c, d > 0, n_0 tali che per ogni $n \ge n_0$ vale

$$0 < c q(n) < f(n) < d q(n)$$

È immediato dalle definizioni (ii) e (i) dedurre che $f(n) = \Omega(g(n))$ (con costante moltiplicativa c) e f(n) = O(g(n)) (con costante moltiplicativa d). Quindi $f(n) = O(g(n)) \cap \Omega(g(n))$.

• $O(g(n)) \cap \Omega(g(n)) \subseteq \Theta(g(n))$: Sia $f(n) = O(g(n)) \cap \Omega(g(n))$. Dato che $f(n) = \Omega(g(n))$ esistono c > 0, n'_0 tali che per ogni $n \ge n'_0$ vale

$$0 \le c g(n) \le f(n)$$

Analogamente, dato che f(n) = O(g(n)) esistono d > 0, n_0'' tali che per ogni $n \ge n_0''$ vale

$$0 \le f(n) \le dg(n)$$

Quindi, detto $n_0 = \max(n'_0, n''_0)$ si ha che per ogni $n \ge n_0$

$$0 \le c g(n) \le f(n) \le d g(n)$$

e pertanto $f(n) = \Theta(g(n))$, come desiderato.

- 3. $f(n) = \Theta(f(n))$ Immediato dalla definizione (iii), utilizzando come costanti moltiplicative c = d = 1 e n_0 qualsiasi.
- 4. f(n) = O(g(n)) e g(n) = O(h(n)) implica f(n) = O(h(n))Sia f(n) = O(g(n)) e g(n) = O(h(n)). Quindi, dalla definizione (ii), esistono $d' > 0, n'_0$ tali che per ogni $n \ge n'_0$ vale:

$$0 \le f(n) \le d' g(n)$$

e analogamente esistono $d''>0, n_0''$ tali che per ogni $n\geq n_0''$ vale:

$$0 \le g(n) \le d'' h(n)$$

Pertanto, posto $n_0 = \max(n'_0, n''_0)$ si ha che per ogni $n \ge n_0$ risulta

$$0 \le f(n) \le d' g(n) \le d' d'' h(n)$$

ovvero f(n) = O(h(n)), con costante moltiplicativa d = d'd''.

5. $f(n) = \Theta(g(n))$ sse $\Theta(f(n)) = \Theta(g(n))$ sse $g(n) = \Theta(f(n))$ Osserviamo che $f(n) = \Theta(g(n))$ sse $g(n) = \Theta(f(n))$ segue dai punti (1) e (2). Infatti,

$$\begin{array}{ll} f(n) = \Theta(g(n)) \text{ sse} & [\text{usando (2)}] \\ f(n) = \Omega(g(n)) \text{ e } f(n) = O(g(n)) \text{ sse} & [\text{usando (1) due volte}] \\ g(n) = O(f(n)) \text{ e } g(n) = \Omega(f(n)) \text{ sse} & [\text{usando (2)}] \\ g(n) = \Theta(f(n)) & \end{array}$$

Resta solo da dimostrare $f(n) = \Theta(g(n))$ sse $\Theta(f(n)) = \Theta(g(n))$. Proviamo separatamente le due implicazioni.

Sia $f(n) = \Theta(g(n))$. Dobbiamo provare che $\Theta(f(n)) = \Theta(g(n))$. Se $h(n) = \Theta(f(n))$ allora per (4) $h(n) = \Theta(g(n))$, quindi vale $\Theta(f(n)) \subseteq \Theta(g(n))$. L'inclusione opposta segue per simmetria, dato che abbiamo appena dimostrato che $f(n) = \Theta(g(n))$ sse $g(n) = \Theta(f(n))$.

Sia ora $\Theta(f(n)) = \Theta(g(n))$. É sufficiente ricordare che per (3) vale $f(n) = \Theta(f(n))$, da cui si deduce che $f(n) = \Theta(g(n))$.