Physics 2700H: Assignment IV

Jeremy Favro (0805980) Trent University, Peterborough, ON, Canada

March 16, 2025

Problem 1. For atomic hydrogen, the allowed energy levels are given by the Bohr equation

$$E_n = -\frac{13.6 \,\text{eV}}{n^2}$$

which gives energies of -13.6, -3.4, and $1.5\,\mathrm{eV}$ for the first three energy levels. Rework the example in Section 6.3.2 with atomic hydrogen at 7500 K using these three energy levels.

- (a) Compute the partition function.
- (b) Compute the probabilities of the first three levels.
- (c) Compare your results with the example in the text.

Solution 1.

Problem 2. Suppose there is a quantized system that can be in one of three energy states, having energies 0, 0.2, and $0.4 \, \text{eV}$, respectively. The system is at $5000 \, \text{K}$.

- (a) Compute the partition function for this system.
- (b) Find the mean energy.
- (c) Compute the probability that each of the three states will be occupied.

Solution 2.

Problem 3. It is a result of statistical mechanics that the internal energy of an ideal gas is

$$U = U(S, V) = -Nk_B \left(\frac{N}{V}\right)^{2/3} \exp\left(\frac{2S}{3Nk_B}\right)$$

where α is a constant and the other symbols have their usual meanings. Show that the equation of state PV = nRT follows from this equation.

Solution 3. Where is α here?

Problem 4. Water boils at $T=100\,^{\circ}\mathrm{C}$ at one atmosphere of pressure. In the process, the entropy increase is $109\,\mathrm{J\,K^{-1}}$ for each mole of water. Find the molar enthalpy increase.

Solution 4.