

Summer_2019 VV255_Assignment 3: Functions of several variables.

Deadline: 2019-06-10

Problem 1

Find and sketch the domains of the following functions:

$$f(x,y) = \sin^{-1}(x-y)$$
, $g(x,y) = \sqrt{x^2 + y^2 - 5}$

Problem 2

The function z(x,y) is defined by the equations below. Estimate z_x and z_y at the given point.

a.
$$x^3 + y^3 + z^3 - 3xyz = 4$$
, $P(2,1,1)$, $b.\sqrt{x^2 + y^2} + z^2 - 3z = 3$, $P(4,3,1)$

Problem 3

Let u = u(x, y) and $x = x(r, \varphi), y = y(r, \varphi)$.

a. Let
$$x = r \cos \varphi$$
, $y = r \sin \varphi$. Find $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \varphi}$ and $\frac{\partial^2 u}{\partial r^2}$.

b.
$$u = \frac{x}{y} - \frac{y}{x}$$
, $x = r \sin 2\varphi$, $y = r \tan^2\varphi$, $P\left(1, \frac{\pi}{4}\right)$. Find $\frac{\partial u}{\partial r}$, $\frac{\partial u}{\partial \varphi}$ at the point P .

Problem 4

- a. Find the tangent plane to the surface $x^2 + z^2 4y^2 = -2xy$ at the point P(-2,1,2).
- b. Find the linear approximation at the point P.
- c. What is the shortest distance between the surface and the plane x + 6y 2z = 15?

Problem 5

Find the directional derivative of $x^4 - y^3 + z^2 + xyz = 0$ at the point P(1,1,2) in the direction of the vector (-2,1,2).

Problem 6

Consider the contour map of a function. Estimate f(0,2), $f_x(0,2)$ and $f_y(0,2)$.

Identify the sign of $f_x(P)$, $f_y(P)$, $f_{xx}(P)$, $f_{xy}(P)$, $f_{yy}(P)$.