Incentive Design and Market Evolution of Mobile User-Provided Networks

Mohammad Mahdi Khalili[†], **Lin Gao***, Jianwei Huang*, and Babak Hossein Khalaj[†]

[†] Department of Electrical Engineering Sharif University of Technology (SUT), Iran

* Network Communications and Economics Lab (NCEL)
The Chinese University of Hong Kong (CUHK), Hong Kong

Outline

- Background
- System Model
- Game Analysis
- 4 Conclusion

What is Mobile UPN?

Mobile User-Provided Network (UPN)

▶ Mobile users act as micro-providers (hosts) through their personal devices (e.g., smartphones and customized portable devices), and provide Internet connections for others (clients).

Key Challenges

Security

- ► E.g., a host may be a phishing user, or a client may be a hacker.
- ▶ It is difficult for a mobile user to detect a phishing user or a hacker.

Incentive

- ▶ When acting as hosts, mobile users will incur certain hosting cost, such as energy cost and cellular data payment.
- ▶ Direct money transfer among anonymous users is difficult.

Current Solution

Operator-Assisted Mobile UPN

- A network operator is introduced to address the security and incentive issues in mobile UPN.
 - Security: Achieved via certificates provided by the operator (i.e., users with certificates can operate as UPN);
 - ★ Incentive: Achieved via the agency of operator (i.e., no direct money transfer among users → money transfer among each user and operator);

A Real Case — Karma

- Karma (https://yourkarma.com)
 - A recent mobile virtual network operator (MVNO) in USA;
 - ★ Providing 4G services (with usage-based pricing) to its customers, using cellular networks leased from traditional mobile network operators;
 - Offer a (certified) custermized device to its customers;
 - ★ Enabling its customers to operate as WiFi hotspots (hosts) and provide Internet connections for others (clients) → Operator-Assisted UPN

A Real Case — Karma

Karma's Incentive Approach

- Connectivity Sharing (Not Data Sharing)
 - * Hosts only pay the data they actually consume, and clients pay their own data usage on hosts' cellular links.
- ► Free Data Quota
 - * Every host gets 100MB of free data when sharing its Internet connection with every new mobile user at the first time.

- Drawbacks
 - ► Easy to employ, but fail to provide consistent incentives!

A Generalized Karma Model

- Generalized Karma Model in [Gao et al. INFOCOM 2014]
 - Connectivity Sharing (same as Karma)
 - * Hosts only pay the data they actually consume, and clients pay their own data usage on hosts' cellular links.
 - ► Flexible Free Data Quota (more general than Karma)
 - * Key Idea: The free data quota for a host is not fixed, but proportional to the data that the host routes for clients.

A Generalized Karma Model

- Generalized Karma Model in [Gao et al. INFOCOM 2014]
 - ► Focus only on the interaction of a particular host (and its clients) in a fixed network, without considering
 - Network Topology Change: Due to user mobility, a client connecting to a host may not be able to connect to the host in the future;
 - * User Membership Change: Due to the varying of incentive level or QoS requirement, a user may change its membership, e.g., a host (client) may choose to be a client (host) with a reduced (increased) incentive.

Our Focus in This Work

 In this work, we will study the generalized Karma model from a system perspective, considering both the network topology change and user membership change.

Key Problems

- What is the *best membership choice* for each mobile user, and how different users' membership choices affect each other?
- What is the operator's best pricing and free data quota rewarding strategy, considering the network topology change and user membership change?

Outline

- Background
- 2 System Model
- Game Analysis
- 4 Conclusion

One MVNO

- Provide 4G service to mobile users, and enable operator-assisted UPN;
 - Incentivize mobile users to operate as hosts and provide Internet connections for other users (clients);
- Charge hosts and clients a usage-based data price;
- Reward hosts a flexible free data quota;
- Multiple Mobile Users
 - Move randomly in a certain area;
 - Request service (data transmission) with a certain probability;
 - ▶ Choose different memberships $s \in \{H, C, A\}$:
 - Host (H): Connect to the MVNO's network at any time; Gain free data quota via providing Internet connection for others (clients);
 - ★ Client (C): Connect to the MVNO's network through a nearby host;
 - ★ Alien (A): Not connect to the MVNO's network at all;

• Illustration of Operator-Assisted Mobile UPN

▶ Mobile Users: Hosts (Blue), Clients (Red), Aliens (Gray).

- MVNO Parameters
 - ▶ $p \in [0, p_{\text{MAX}}]$: the usage-based price changed to hosts and clients;
 - ▶ $\delta \in [0,1]$: the free data quota ratio rewarded to hosts.
- User Parameters
 - $\mathcal{N} = \{1, 2, ..., N\}$: the set of mobile users;
 - ***** We assume a large network with $N \to \infty$;
 - ▶ $\rho \in [0, 1]$: the meeting (encountering) probability of any two users;
 - ★ We assume the homogeneous mobility pattern for users;
 - ▶ $\lambda = N \cdot \rho$: the average number of other users that a user encounters;
 - \star We assume that λ is a finite value:
 - ▶ $\theta \in [0, 1]$: the **service request probability** of each user, referred to as the user type;
 - * We assume that different users may have different types, which are independent and identically distributed (i.i.d) according to a probability distribution function $f(\theta)$.

- User Payoff: For a type- θ user,
 - (i) When choosing to be an alien (s = A), its expected payoff is

$$U_{\theta}(A)=0$$

• (ii) When choosing to be a client (s = C), its expected payoff is

$$U_{ heta}(C) = \theta \cdot P_{H} \cdot \underbrace{\left(v_{C} - \gamma_{C} - p\right)}_{consumption \ benefit} - \phi_{C}$$

- ★ v_C: the average data value of clients;
- ★ $\gamma_{\rm C}$: the average transmission cost of clients;
- \star $\phi_{\rm C}$: the time-average cost of clients (e.g., subscription fee);
- ★ $P_{\rm H}$: the probability of a client meeting at least one host (to be derived);

- User Payoff: For a type- θ user,
 - \blacktriangleright (iii) When choosing to be a host (s = H), its expected payoff is

$$U_{ heta}(\mathbf{H}) = \theta \cdot \underbrace{\left(\mathbf{v}_{\mathbf{H}} - \gamma_{\mathbf{H}} - \mathbf{p}\right)}_{consumption\ benefit} + \bar{\theta}_{\mathbf{C}} \cdot \mathbf{Y}_{\mathbf{C}} \cdot \underbrace{\left(\delta \cdot \mathbf{p} - \gamma_{\mathbf{HC}}\right)}_{sharing\ benefit} - \phi_{\mathbf{H}}$$

- ★ v_H: the average data value of hosts:
- * γ_H: the average transmission cost of hosts for its own data;
- * γ_{HC}: the average transmission cost of hosts for client data;
- ★ $\phi_{\rm H}$: the time-average cost of clients (e.g., the device cost);
- \star $\bar{\theta}_{\rm C}$: the average service request probability of clients (to be derived);
- \star $Y_{\rm C}$: the average number of clients that a host serves (to be derived);

MVNO Profit

- **Pay** a usage-based wholesale price ω to traditional MNOs;
- ► Earn a usage-based service price p from hosts and $p \cdot (1 \delta)$ from clients;
- ► Hence, its expected profit is

$$V(p,\delta) = \underbrace{\mu_{\mathrm{H}} \cdot \bar{\theta}_{\mathrm{H}} \cdot (p - \omega)}_{\textit{profit from hosts}} + \underbrace{P_{\mathrm{H}} \cdot \mu_{\mathrm{C}} \cdot \bar{\theta}_{\mathrm{C}} \cdot (p \cdot (1 - \delta) - \omega)}_{\textit{profit from clients}}$$

- \star $\mu_{\rm H}$ and $\mu_{\rm C}$: the percentages of hosts and clients;
- \star $ar{ heta}_{ ext{H}}$ and $ar{ heta}_{ ext{C}}$: the average service request probabilities of hosts and clients;
- \star $\mu_{\rm H} \cdot \bar{\theta}_{\rm H}$: the total data requested and consumed by hosts;
- $\star \mu_{\rm C} \cdot \bar{\theta}_{\rm C}$: the total data requested by clients;
- ★ $P_{\rm H} \cdot \mu_{\rm C} \cdot \bar{\theta}_{\rm C}$: the total data consumed by clients;

- Two-stage Game Formulation
 - ► Stage I MVNO Pricing Strategy
 - * The MVNO decides the price p and the free data quota ratio δ , aiming at maximizing the expected profit $V(p, \delta)$;
 - ► Stage II User Membership Selection
 - ★ The mobile users with each type- θ decide their memberships $s(\theta)$ $\in \{H, C, A\}$, aiming at maximizing the expected payoff $U_{\theta}(s)$;
- We will derive the Subgame Perfect Equilibrium (SPE).

Outline

- Background
- System Model
- Game Analysis
- 4 Conclusion

Preprocessing

Derivation of Important Variables

- Let ⊖_A, ⊖_C, ⊖_H denote the sets of users (types) choosing to be aliens, clients, and hosts, respectively.
- \blacktriangleright (i) μ_A , μ_C , μ_H : the percentages of aliens, clients, and hosts

$$\mu_{s} = \int_{\theta \in \Theta_{s}} f(\theta) d\theta, \quad \forall s \in \{A, C, H\}$$

ightharpoonup (ii) $\bar{ heta}_{C}$, $\bar{ heta}_{H}$: the average service request probabilities of clients and hosts

$$ar{ heta}_s = rac{1}{\mu_s} \cdot \int_{ heta \in \Theta_s} heta \cdot f(heta) \mathrm{d} heta, \quad orall s \in \{ ext{C}, ext{H}\}$$

Preprocessing

Derivation of Important Variables

ightharpoonup (iii) $P_{\rm H}$: the probability of a client meeting at least one host

$$P_{ ext{H}} = 1 - (1 -
ho \mu_{ ext{H}})^{N-1} = \underbrace{1 - e^{-\mu_{ ext{H}} \lambda}}_{ ext{when } N o \infty}$$

- $\star \rho \mu_{\rm H}$: the probability of meeting an user and meanwhile the latter is a host;
- ★ $P_{\rm H}$ increases with the percentage of hosts $\mu_{\rm H}$;
- \triangleright (iv) Y_c : the average number of clients connected to a host

$$Y_{ ext{C}} = (N-1) \cdot
ho \mu_{ ext{C}} \cdot P_{ ext{C}}^{ ext{CON}} = \underbrace{\frac{\mu_{ ext{C}}}{\mu_{ ext{H}}} \cdot (1 - e^{-\mu_{ ext{H}} \lambda})}_{when N
ightarrow \infty}$$

- ★ PCON: the probability that a host is chosen by a client that he meets;
- * $Y_{\rm C}$ increases with the percentage of clients $\mu_{\rm C}$, and decreases with the percentage of hosts $\mu_{\rm H}$;

Stage II - User Membership Selection

User Best Response

▶ Given the MVNO's strategy (p, δ) , and under a particular membership distribution $\{\Theta_A, \Theta_C, \Theta_H\}$, the payoff of a type- θ user is:

$$U_{ heta}(s) = \left\{ egin{aligned} 0, & & ext{if } s = ext{A}, \ heta P_{ ext{H}}\Pi_{ ext{C}} - \phi_{ ext{C}}, & & ext{if } s = ext{C}, \ heta \Pi_{ ext{H}} + ar{ heta}_{ ext{C}}Y_{ ext{C}} ilde{\Pi}_{ ext{H}} - \phi_{ ext{H}}, & & ext{if } s = ext{H}. \end{aligned}
ight.$$

- ★ $P_{\rm H}$, $\bar{\theta}_{\rm C}$, $Y_{\rm C}$ depend on the choices of other users;
- ightharpoonup A type- θ user will choose to be a client, if and only if

$$U_{\theta}(s = C) \ge \max\{0, U_{\theta}(s = H)\},\$$

 \blacktriangleright A type- θ user will choose to be a host, if and only if

$$U_{\theta}(s = H) \ge \max\{0, U_{\theta}(s = C)\}.$$

Stage II - User Membership Selection

Membership Selection Equilibrium

- Existence: There exists at least one equilibrium in the membership selection game in Stage II.
- ► Shape of Equilibrium:

Equilibrium Condition:

$$\begin{cases} \mu_{\rm C} = \theta_{\rm H}(\mu_{\rm C}, \mu_{\rm H}) - \theta_{\rm A}(\mu_{\rm C}, \mu_{\rm H}), \\ \mu_{\rm H} = 1 - \theta_{\rm H}(\mu_{\rm C}, \mu_{\rm H}), \end{cases}$$
(1)

- ★ θ_A : the largest θ that a type- θ user prefers to be an alien;
- ★ $\theta_{\rm H}$: the smallest θ that a type- θ user prefers to be a host;
- **\star** Users with a type between θ_A and θ_H prefer to be clients;

Stage II - User Membership Selection

- Illustration of Membership Selection Equilibrium
 - ► Green: Aliens; Red: Clients; Black: Hosts.
 - (a) $\lambda \nearrow$: Clients \nearrow , Host \searrow ;
 - ▶ (b) $p \nearrow$: Clients \searrow , Host first \nearrow and then \searrow ;
 - \blacktriangleright (c) δ \nearrow : Clients \searrow , Host \nearrow ;

Stage I – MVNO Pricing Strategy

MVNO Profit Optimization Problem

$$\max_{\{p,\delta\}} \ \underbrace{\mu_{ ext{H}} \cdot ar{ heta}_{ ext{H}}}_{X_{ ext{H}}} \cdot (p - \omega) + \underbrace{P_{ ext{H}} \cdot \mu_{ ext{C}} \cdot ar{ heta}_{ ext{C}}}_{X_{ ext{C}}} \cdot (p \cdot (1 - \delta) - \omega)$$

- ★ X_H: the total amount of data consumed by hosts under the membership selection equilibrium in Stage II;
- * X_C: the total amount of data consumed by clients under the membership selection equilibrium in Stage II;
- ★ Both X_H and X_C are functions of p and δ .

Stage I – MVNO Pricing Strategy

- Illustration of MVNO's Best Pricing Strategy
 - ▶ The contours of MVNO profit under different p and δ ;
 - ▶ Blue Dash Curve $\delta^*(p)$: The best δ under different p;
 - ▶ Black Dot Curve $p^*(\delta)$: The best p under different δ ;

Performance Evaluation

MVNO's Maximum Profit

- Hybrid Pricing Policy (proposed in this work)
 - ★ The MVNO's maximum profit *always increases* with λ ;
 - ***** Exploit the benefit of a larger λ for both hosts and clients;
- Pricing-Only Policy
 - ***** The MVNO's maximum profit *first increases then decreases* with λ ;
 - ***** Exploit the benefit of a larger λ for clients only;

Outline

- Background
- System Model
- Game Analysis
- 4 Conclusion

Conclusion

- Model an operator-assisted mobile UPN from a system perspective;
- Analyze the user membership selection equilibrium and the operator's best hybrid pricing strategy.

Future Extension

- Practical mobility model based on real data traces;
- Practical service model based on real data traces:
- Whether the price discrimination is profitable, and how to discriminate prices in the best way?

Thank You

LGAO@IE.CUHK.EDU.HK

Network Communications and Economics Lab (NCEL)
The Chinese University of Hong Kong (CUHK)