1986 FG6.1

若 $12345 \times 6789 = a \times 10^p$,其中 p 為正整數,且 $1 \le a < 10$,求 p 的值。 If $12345 \times 6789 = a \times 10^p$ where p is a positive integer and $1 \le a < 10$, find the value of p.

1993 HG7

 $\ddot{a} \ a \ A - 整數$,且 $a^7 = 8031810176$,求 a 的值。 If a is an integer and $a^7 = 8031810176$, find the value of a.

1995 HG5

已知 37^{100} 為一 157 位數,且 37^{15} 為一 n 位數,求 n 的值。 Given that 37^{100} is a 157-digit number, and 37^{15} is an n-digit number. Find the value of n.

1997 FGS.3

 \div 5 的平方根是 2.236,以同一準確度,80 的平方根是 d。求 d 的值。 If the square root of 5 is approximately 2.236, the square root of 80 with the same precision is d. Find the value of d.

2003 FI2.1

若一個兩位數 P 的 50 次方是一個 69 位數 , 求 P 的值。 (已知 $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 11 = 1.0414$)

If the 50^{th} power of a two-digit number P is a 69-digit number, find the value of P. (Given that $\log 2 = 0.3010$, $\log 3 = 0.4771$, $\log 11 = 1.0414$.)

2004 HG4

已知 $a \cdot b$ 為實數並且滿足 $a^3 = 2004$ 及 $b^2 = 2004$ 。 若滿足不等式 a < x < b 的整數 x 有 h 個 , 求 h 的值。

Given that a, b are positive real numbers satisfying $a^3 = 2004$ and $b^2 = 2004$. If the number of integers x that satisfy the inequality a < x < b is h, find the value of h.

2007 FG1.4

已知 $\log_{10} \left(2007^{2006} \times 2006^{2007} \right) = a \times 10^k$,

其中 $1 \le a < 10$ 及k 是整數, 求k的值。

It is known that $\log_{10} (2007^{2006} \times 2006^{2007}) = a \times 10^k$,

where $1 \le a < 10$ and k is an integer. Find the value of k.

2007 FG4.3

已知 $z = \sqrt[3]{456533}$ 是一整數,求 z 的值。

Given that $z = \sqrt[3]{456533}$ is an integer, find the value of z.

2008 HG1

已知 $5+\sqrt{11}$ 的小數部分為 A 及 $5-\sqrt{11}$ 的小數部分為 B。 設 C=A+B,求 C 的值。

Given that the decimal part of $5 + \sqrt{11}$ is A and the decimal part of $5 - \sqrt{11}$ is B. Let C = A + B, find the value of C.

2008 FI3.4

設與 $\sqrt{45}$ 最接近的整數是 D, 求 D 的值。

Let D be the integer closest to $\sqrt{45}$, find the value of D.

2013 FG4.1 2015 FG1.3

若 P 為整數 3,659,893,456,789,325,678 與 342,973,489,379,256 的乘積,求 P 的位數。

Let *n* be the product 3659893456789325678 and 342973489379256.

Determine the number of digits of n.

2016 HI3

有多少個 x 使得 $\sqrt{2016-\sqrt{x}}$ 為整數?

How many x are there so that $\sqrt{2016 - \sqrt{x}}$ is an integer?

2016 FG3.2

若 n 為正整數, $a_1 = 0.8$ 及 $a_{n+1} = a_n^2$,求 L 的最小值,满足 $a_1 \times a_2 \times ... \times a_L < 0.3$ 。

If $a_1 = 0.8$ and $a_{n+1} = a_n^2$ for positive integers n, determine the least value of L satisfying $a_1 \times a_2 \times ... \times a_L < 0.3$.

2018 FG4.1

設 $X = \sqrt{2018 - \sqrt{A}}$ 是正整數,求 A 的最大值。

Let $X = \sqrt{2018 - \sqrt{A}}$ be a positive integer. Determine the largest value of A.

2019 FG2.1

設 $X = \sqrt{2020 - \sqrt{A}}$ 為正整數,求 A 的最小值。

Let $X = \sqrt{2020 - \sqrt{A}}$ be a positive integer. Determine the least value of A. **2022 P1Q7**

已知 $459 + x^3 = 3^y$, 其中 x 及 y 均為正整數。求 y 的 最小值。

Given that $459 + x^3 = 3^y$, where both x and y are positive integers. Find the least value of y.

Answers

1986 FG6.1	1993 HG7	1995 HG6	1997 FGS.3	2003 FI2.1
7	26	24	8.944	23
2004 HG4	2004 FG2.1	2007 FG1.4	2007 FG4.3	2008 HG1
32	2	4	77	1
2008 FI3.4	2013 FG4.1 2015 FG1.3	2016 HI3	2016 FG3.2	2018 FG4.1
7	34	45	3	4068289
2019 FG2.1	2022 P1Q7	_		
7056	7			