O Método Simplex

Prof. Gustavo Peixoto Silva Departamento de Computação Univ. Federal de Ouro Preto

 $Max Z(X) = 5X_1 + 2X_2$ sujeito a

 $Max Z(X) = 5X_1 + 2X_2$ sujeito a

$$X_1 <= 3$$
 $B >= 0$ $X_2 <= 4$ $X_1 >= 0$ Forma padrão (<=) $X_1 + 2X_2 <= 9$ $X_2 >= 0$

Acrescentando as variáveis de folga X_3 , X_4 e X_5 às restrições, temos:

Forma canônica (base óbvia), solução óbvia?

Queremos encontrar aquela que maximiza a função objetivo Z(X)

Max
$$Z(X) = 5X_1 + 2X_2 + 0X_3 + 0X_4 + 0X_5$$
 sujeito a
$$X_1 + X_3 = 3 \quad B >= 0, X_1 >= 0,..., X_5 >= 0$$

$$X_2 + X_4 = 4 \quad \text{O problema neste formato \'e dito estar na}$$

$$X_1 + 2X_2 + X_5 = 9 \quad \text{forma canônica, e apresenta uma base \'obvia e uma solução trivial. Quem \'e ela?}$$

Solução básica viável:

$$X_1 = X_2 = 0$$
 variáveis não-básicas (VNB): assumem **valor nulo** $X_3 = 3$, $X_4 = 4$, $X_5 = 9$ variáveis básicas (VB): assumem **valor não nulo** $Z(X) = 5X_1 + 2X_2 = 0$ valor da função objetivo para esta solução!

Resumo do Simplex:

- 1. Encontrar uma solução básica viável inicial. OK
- 2. Verificar se a solução atual é ótima. Se for ótima FIM, senão
- 3. Determinar a VNB que deve entrar na base
- 4. Determinar a VB que deve sair da base
- 5. Encontrar a nova solução básica viável e voltar para o passo 2.

- 1. Solução básica viável trivial: $X_1 = X_2 = 0$ (VNB), $X_3 = 3$, $X_4 = 4$, $X_5 = 9$ (VB), Z = 0. VERIFICANDO SE A SOLUÇÃO É ÓTIMA
- 2. Escrever Z(X) em função das vars não básicas corrente:
- $Z(X) = 5X_1 + 2X_2$ já está escrito. Se pelo menos uma delas tem **coeficiente > 0 e o problema é de maximização, então** a solução não é ótima!!!

ENCONTRANDO A VARIÁVEL QUE DEVE ENTRAR NA BASE

3. Entra na base a VNB com **maior coeficiente positivo**. X₁ entra na base e deve assumir o maior valor possível, sem que as variáveis básicas fiquem negativas!

ENCONTRANDO O VALOR DA VARIÁVEL QUE ENTRA NA BASE

$$X_3 = 3 - X_1$$
 temos que $X_2 = 0$ e X_1 deve aumentar
 $X_4 = 4 - X_2$ o máximo possível. Qual é o valor para X_1 ?
 $X_5 = 9 - X_1 - 2X_2$

olhando para X₃, X₁ pode ser no máximo 3

olhando para
$$X_4$$
, X_1 pode ser infinito

olhando para X_5 , X_1 pode ser no máximo 9. Portanto,

$$X_1 = \min \{3, \infty, 9\} = 3$$

X₁ assumirá valor 3

QUEM DEVE SAIR DA BASE?

4. Sai da base a VB que se anular primeiro com o crescimento da VNB que esta entrando. Lembre-se que $X_2 = 0$

Para $X_1 = 3$ temos

$$X_3 = 3 - X_1$$
 => $X_3 = 3 - 3 = 0$ Logo X_3 sairá da base.
 $X_4 = 4 - X_2$ => $X_4 = 4 - 0 = 4$
 $X_5 = 9 - X_1 - 2X_2$ => $X_5 = 9 - 3 - 2.0 = 6$

Resumo da iteração:

- > X_1 entra na base com valor 3 e X_3 sai da base pois seu valor foi zerado.
- > A nova solução básica viável será VB = (X_1, X_4, X_5) = (3, 4, 6), VNB = (X_2, X_3) = (0, 0) e Z(X) = 5*3 + 2*0 = 15. Melhorou!!!
- 5. Transformar o sistema considerando a nova base.

 X_1 + $\begin{bmatrix} 1X_3 \\ X_2 \end{bmatrix}$ = 3 A coluna da base que "aparecia" na var. X_3 agora deve "aparecer" na var. X_1 . $X_1 + 2X_2 \begin{bmatrix} 0 \\ + X_5 \end{bmatrix}$ = 9 Este é um pivoteamento de Gauss (Cálc. Num.)

Final da primeira iteração: VB = $(X_1, X_4, X_5) = (3, 4, 6)$, VNB = $(X_2, X_3) = (0, 0)$ e Z(X) = 15. O sistema transformado é:

$$\begin{bmatrix} X_1 \\ X_2 \\ +2X_2 \\ -X_3 \end{bmatrix} + \begin{bmatrix} A_2 \\ X_4 \\ +X_5 \end{bmatrix} = 3$$

 $\begin{vmatrix} X_1 \\ X_2 \\ +2X_2 \end{vmatrix} + \begin{vmatrix} X_4 \\ X_5 \end{vmatrix} = 3$ VBásicas sempre maiores do que zero VNãoBásicas sempre iguais a zero... a não ser em casos especiais!!!

Esta solução é ótima? Se não for, repetir o processo. Para saber, devemos voltar ao passo 2. Escrever $Z(X) = 5X_1 + 2X_2$ em função das VNB X_2 e X_3 .

Da primeira equação temos que $X_1 = 3 - X_3$, portanto:

$$Z(X) = 5(3-X_3) + 2X_2 = Z(X) = 15 + 2X_2 - 5X_3.$$

Logo a solução ainda não é ótima pois tem uma **VNB com coeficiente positivo**.

- 3. Como X_2 é a VNB com maior coeficiente positivo, ela entra na base.
- 4. Quem sairá da base? Escrever as VBs em função das VNBs e aumentar o valor de X_2 . A primeira VB que zerar é a que deve sair da base.

4. Quem sairá da base? Escrever as VBs em função das VNBs e aumentar o valor de X_2 . A primeira VB que zerar é a que deve sair da base. Lembrar que $X_3 = 0$.

$$X_1 = 3 - X_3$$
 => $X_2 <= infinito$
 $X_4 = 4 - X_2$ => $X_2 <= 4$
 $X_5 = 6 - 2X_2 + X_3$ => $X_2 <= 3$. Portanto $X_2 = min \{\infty, 4, 3\} = 3 e$
 $X_5 = 0$ sai da base.

Ao substituir os valores $X_2 = 3$ e $X_5 = 0$ no sistema teremos a nova solução básica viável:

VB =
$$(X_1, X_2, X_4) = (3, 3, 1)$$
, VNB = $(X_3, X_5) = (0, 0)$ e $Z(X) = 3*5 + 2*3 = 21$ melhorou!!!

Ou seja, a função objetivo melhorou mais um pouco.

Olhando o sistema pivoteado teremos:

Pivoteamento do sistema

X₂ entra na base e X₅ sai da base. Isso significa que X₂ entra no lugar de X₅!

Final da segunda iteração. O sistema transformado é:

Passo 2. Escrever Z(X) em função de X_3 e X_5 .

$$Z(X) = 5X_1 + 2X_2 => Z(X) = 5(3-X_3) + 2(3 + 0.5X_3 - 0.5X_5) \Rightarrow$$

 $Z(X) = 15 - 5X_3 + 6 + X_3 - X_5 \Rightarrow Z(X) = 21 - 4X_3 - X_5$

Como nenhuma VNB tem coeficiente > 0 a solução

VB =
$$(X_1, X_2, X_4)$$
 = $(3, 3, 1)$, VNB = (X_3, X_5) = $(0, 0)$ é ótima com $Z(X)$ = 21!

O Método Simplex usando Quadros ou Tablôs – Resolução Prática

Acrescentando as variáveis de folga X_3 , X_4 e X_5 às restrições e transformando a função objetivo em uma equação temos

$$Z(X) - 5X_{1} - 2X_{2} = 0$$

$$X_{1} + X_{3} = 3$$

$$X_{2} + X_{4} = 4$$

 X_1+2X_2 + $X_5=9$ Temos agora quatro equações representando o problema, sendo que a primeira diz respeito à função objetivo. Na Tablô temos:

	1X	NB				
	X ₁	X_2	X_3	X ₄	X_5	В
Z	-5	-2	0	0	0	0
X_3	1	0	1	0	0	3
X ₄	0	1	0	1	0	4
X ₅	1	2	0	0	1	9

					-				_	
		√XN	ΝB		XB			TR		
		X ₁	X_2	X_3	X_4	X_5	В	Bi/Aji		
	Z	-5 pivô	-2	0	0	0	0	===		
	X_3		0	1	0	0	3	3/1	\vdash	Mínimo do Teste da Razão
,	X ₄	0	1	0	1	0	4	NA		
	X ₅	1	2	0	0	1	9	9/1		

Obs. nesta representação, os coeficientes estão invertidos na FO e os coeficientes de X_3 , X_4 e X_5 já são todos nulos.

Logo, Z(X) já está escrito em função de X_1 e X_2 . Como tem XNB com coeficiente < 0 (antes era > 0, mas foi invertido o sinal), a solução NÃO É ÓTIMA, pode melhorar.

 X_1 é a VNB com coeficiente mais negativo, portanto é quem entra na base.

Para saber quem deve sair da base devemos fazer o "teste da razão" para i = índice da variável que entra na base, ou seja i = 1.

Min {
$$B_j/A_{ji}$$
: j tal que $A_{ji} > 0$ } = Min { 3/1, 9/1} = 3 \Rightarrow j = 1 é o índice da a sair j = 1,...,m

Assim temos o pivô da iteração que nos dará o próximo quadro.

	_		<u>-</u>			
	XNB					
	X ₁	X_2	X_3	X_4	X_5	В
Z	-5 pivô	-2	0	0	0	0
X_3		0	1	0	0	3
X_4	0	1	0	1	0	4
X ₅	1	2	0	0	1	9

transformações: a) repetir as linhas (1) pois o pivô já é = 1

- b) repetir a linha (2) pois o elemento abaixo do pivô já é = 0
- c) zerando o elemento $A_{31} \Rightarrow (3) := -1*(1) + (3)$
- d) zerando o coeficiente $C_1 \Rightarrow (0) := 5*(1) + (0)$, teremos o quadro

	X ₁	X ₂	X_3	X ₄	X_5	В
Z	0	-2	5	0	0	15
X ₁	1	0	1	0	0	3
X ₄	0	1	0	1	0	4
X ₅	0	2	-1	0	1	6

linhas

- (0)
- (1)
- (2)
- (3)

O pivô deve ser transformado em 1.

Os elementos acima e abaixo do pivô devem ser transformados em 0 usando o pivô.

-									linhas
		X_1	\dot{X}_2	X_3	X_4	X_5	В	TR	
	Z	0	-2	5	0	0	15	==	(0)
	X ₁	1	0	1	0	0	3	NA	(1)
	X ₄	0	1 nivô	0	1	0	4	4/1	(2) Mínimo do
	X ₅	0	2	-1	0	1	6	6/2 —	Mínimo do (3) Teste da Razão

Solução Corrente XB = (X_1, X_4, X_5) = (3, 4, 6), XNB = (X_2, X_3) = (0, 0) e Z(X) = 15

Obs. que da linha (0) temos que $Z - 2X_2 + 5X_3 = 15 \Rightarrow Z = 2X_2 - 5X_3 + 15$.

Ou seja, a FO já esta escrita em função das variáveis XNB.

Como tem XNB com coeficiente < 0 ⇒ solução não é ótima.

X₂ entra na base.

Teste da razão para i = 2,

Min $\{4/1, 6/2\}$ = 6/2 referente à linha 3 portanto X_5 deve sair da base.

_							
		X ₁	X_2	X_3	X_4	X_5	В
	Z	0	-2	5	0	0	15
	X ₁	1	0	1	0	0	3
	X_4	0	1 — pivĝ	0	1	0	4
	X ₅	0	2	-1	0	1	6

transformações: a) (0) := (0) + (3); b) (2) := (2) -0.5*(3) e c) (3) := 0.5*(3)

linhas

	X ₁	X_2	X_3	X_4	X ₅	В
Z	0	0	4	0	1	21
X ₁	1	0	1	0	0	3
X ₄	0	0	0.5	1	-0.5	1
X ₂	0	1	-0.5	0	0.5	3

Esta solução é ótima pois todas as XNB: X₃ e X₅ têm coeficientes > 0

	X ₁	X_2	X ₃	X_4	X ₅	В
Z	0	0	4	0	1	21
X ₁	1	0	1	0	0	3
X ₄	0	0	0.5	1	-0.5	1
X ₂	0	1	-0.5	0	0.5	3

linhas

- (0)
- (1)
- (2)
- (3)

Solução ótima $X^* \Rightarrow XB = (X_1, X_4 X_2) = (3, 1, 3) XNB = (X_3, X_5) = (0, 0) e$ $Z^*(X) = 21$.

A variável X_4 = 1 mostra que a equação onde ela foi introduzida,

 X_2 + X_4 = 4 tem uma folga de 1 unidade, como pode ser conferido no sistema original.

Nas demais equações não existe qualquer folga.

Características do Tablô do Método Simplex para Problemas de Maximização

Exercícios – Resolver pelo método Simplex utilizando tablôs

Max
$$Z(X) = 4X_1 + 8X_2$$
 sujeito a
 $3X_1 + 2X_2 \le 18$
 $X_1 + X_2 \le 5$
 $X_1 < 4$
 $X_1, X_2 >= 0$

Max
$$Z(X) = 5X_1 + 4X_2 + 3X_3$$
 sujeito a
 $2X_1 + 3X_2 + X_3 \le 5$
 $4X_1 + 2X_2 + 2X_3 \le 11$
 $3X_1 + 2X_2 + 2X_3 \le 8$
 $X_1, X_2, X_3 \ge 0$

Exercícios – Resolver pelo método Simplex utilizando tablôs

Max
$$Z(X) = 4X_1 + 8X_2$$
 sujeito a
 $3X_1 + 2X_2 \le 18$
 $X_1 + X_2 \le 5$
 $X_1 < 4$
 $X_1, X_2 >= 0$