Course Notes for Math 320: Fundamentals of Mathematics Chapter 4: Relations, Equivalence Relations and Congruence.

October 1, 2013

1 Relations

Definition 1.1. (Kazimierz Kuratowski) Let S be a set and let a and b be members of S. The **ordered pair** (a,b) is the set $\{\{a\},\{a,b\}\}$. The element a is called the **first term** of (a,b) and the element b is called the **second term** of (a,b).

Lemma 1.2. Let (a,b) and (c,d) be ordered pairs. Then (a,b) = (c,d) if and only if a = c and b = d.

Definition 1.3. 1. A relation is a collection of ordered pairs.

- 2. If R is a relation then the collection of all first terms is called the **domain** and the collection of all second terms is called the **range**.
- 3. If x is in the domain of R let $R[x] = \{y \in \text{range of } R \mid (x,y) \in R\}.$
- 4. If A and B are sets then $A \times B = \{(a,b) | a \in A \text{ and } b \in B\}$. This is a relation, called the Cartesian product.

Example 1.4. Find the domain A and range B and if possible express as $A \times B$.

 $R_1 = \{(Pietro, Giuseppe), (Pietro, Matteo), (Giuseppe, Pietro), (Giuseppe, Matteo), (Giuseppe, Marco), (Marco, Giuseppe), (Marco, Matteo), (Pietro, Enrico), (Marco, Enrico), (Giuseppe, Enrico), (Giuseppe, Giuseppe)\}.$

What is $R_1[Giuseppe]$? What is $R_1[Pietro]$?

2.
$$R_2 = \{(1, \pi), (3, 1), (5, 1), (2, 2), (\pi, 1)\}$$
. What is $R_2[1]$?

3.
$$\mathbb{R}^2 = \{(x,y)|x,y \in \mathbb{R}\}.$$
 What is $\mathbb{R}^2[1]$?

4.
$$R_3 = \{(x,y)|x,y \in R \text{ and } y = 2x\}$$
. What is $R_3[1]$?

5.
$$R_4 = \{(x,y)|x,y \in R \text{ and } y = x^2\}$$
. What is $R_3[1]$?

6. Let
$$A = \{a, b, c\}$$
 and $B = \{1, 2\}$ Find $A \times B$.

7. Let
$$A = \{x | 1 < x \le 2\}$$
, $B = \{1, 2, 3\}$, and $C = \{x | 2 < x < 3\}$. Compute $A \times B$, $B \times A$, $A \times C$, and $A \times \mathbb{R}$.

8. Let $A = \{1\}$, $B = \{3\}$, $C = \{4\}$ and $D = \{2\}$. Compute $(A \times B) \cup (C \times D)$ and $(A \cup C) \times (B \cup D)$.

Proposition 1.5. If A, B, C, and D are sets then the following hold:

1.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

2.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

3.
$$(A - B) \times B = (A \times B) - (B \times B)$$
 (F&P Prop 4.2)

4.
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$

5.
$$(A \times B) \cup (C \times D) \subset (A \cup C) \times (B \cup D)$$
.

space

2 Graphs... ways of depicting relations

Graphs are a natural way of describing certain relations and motivating proofs.

 $R_1 = \{(Pietro, Giuseppe), (Pietro, Matteo), (Giuseppe, Pietro), (Giuseppe, Matteo), \\ (Giuseppe, Marco), (Marco, Giuseppe), (Marco, Matteo), (Pietro, Enrico), \\ (Marco, Enrico), (Giuseppe, Enrico), (Giuseppe, Giuseppe)\}.$

2.
$$R_2 = \{(1,2), (3,1), (5,1), (2,2), (2,1)\}.$$

3.
$$R_2 \cup R_2^{-1}$$
.

4.
$$\mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R}\}.$$

5.
$$R_3 = \{(x, y) | x, y \in \mathbb{R} \text{ and } y = 2x \}.$$

6.
$$R_4 = \{(x, y) | x, y \in \mathbb{R} \text{ and } y = x^2 \}.$$

CAUTION: Graphs \neq Proofs. Having said that they can be informative.

Definition 2.1. Let R be a relation. Consider the set:

$$R^{-1} = \{(x, y) | (y, x) \in \mathbb{R}\}.$$

This set is call the R-inverse. We call a relation symmetric if $R = R^{-1}$.

Example 2.2. Find R^{-1} . Which are symmetric?

$$R_1 = \{(Pietro, Giuseppe), (Pietro, Matteo), (Giuseppe, Pietro), (Giuseppe, Matteo), (Giuseppe, Marco), (Marco, Giuseppe), (Marco, Matteo), (Pietro, Enrico), (Marco, Enrico), (Giuseppe, Enrico), (Giuseppe, Giuseppe)\}.$$

2.
$$R_2 = \{(1,2), (3,1), (5,1), (2,2), (2,1)\}.$$

3.
$$R_2 \cup R_2^{-1}$$
.

4.
$$\mathbb{R}^2 = \{(x, y) | x, y \in \mathbb{R} \}.$$

5.
$$R_3 = \{(x, y) | x, y \in \mathbb{R} \text{ and } y = 2x\}.$$

6. $R_4 = \{(x, y) | x, y \in \mathbb{R} \text{ and } y = x^2 \}.$

7. Let $A = \{a, b, c\}$ and $B = \{1, 2\}$ Find $A \times B$.

8. Let $A = \{x | 1 < x \le 2\}$, $B = \{1, 2, 3\}$, and $C = \{x | 2 < x < 3\}$. Compute $A \times B$.

Definition 2.3. Let R be a relation with domain A and range B.

- 1. The cartesian graph of R is the plot of points $\{(x,y) \in A \times B | (x,y) \in R\}$ on a set of axes with horizonal axis representing A and verticle axis representing B.
- 2. Suppose that $A, B \in S$. The directed graph of R is a collection points, randomly placed, each representing exactly one element of S and each element of S being represented. Then given points representing $x, y \in S$ we connect them with an arrow from x to y if $(x, y) \in R$.

Remark 2.4. If a relation R is symmetric what can you say about its cartesian or directed graphs?

Proposition 2.5. Let R and S be relations. Then each of the following statements is true:

- 1. $R = (R^{-1})^{-1}$
- 2. $R \subset S$ if and only if $R^{-1} \subset S^{-1}$
- 3. $(R \cup S)^{-1} = R^{-1} \cup S^{-1}$
- 4. $(R \cap S)^{-1} = R^{-1} \cap S^{-1}$
- 5. $R \cup R^{-1}$ is symmetric
- 6. $R \cap R^{-1}$ is symmetric.

3 Equivalence Relations

Example 3.1. Some more examples:

- $R_1 = \{(Pietro, Giuseppe), (Pietro, Matteo), (Giuseppe, Pietro), (Giuseppe, Matteo), (Giuseppe, Marco), (Marco, Giuseppe), (Marco, Matteo), (Pietro, Enrico), (Marco, Enrico), (Giuseppe, Enrico), (Giuseppe, Giuseppe)\}.$
- 2. Consider the following relation R on \mathbb{Z} .

$$R_2 = \{(x, y) | x, y \in \mathbb{Z} \text{ and } x = -y\}.$$

3. Consider the following relation R on \mathbb{R} .

$$R_3 = \{(x, y) | x, y \in \mathbb{R} \text{ and } x - y = n \text{ for some } n \in \mathbb{Z}_{\geq 0}\}.$$

4. Consider the following relation R on \mathbb{Z} .

$$R_4 = \{(x, y) | x, y \in \mathbb{Z} \text{ and } x - y \text{ is even } \}.$$

Definition 3.2. Let R be a relation on a set S.

- 1. We call R reflexive on S if for every $x \in S$ we have $(x, x) \in R$.
- 2. We call R symmetric if whenever $(x, y) \in R$ then $(y, x) \in R$.
- 3. We call R transitive if whenever $(x, y), (y, z) \in R$ then $(x, z) \in R$.

Remark 3.3. Caution:

- 1. To show that a relation R is reflexive, we take ONE arbitrary element $x \in S$ and show that $(x, x) \in R$. What should the cartesian graph or directed graph of R look like if it is reflexive?
- 2. To show that a relation R is symmetric, we take TWO arbitrary elements $x, y \in S$, such that $(x, y) \in R$ and we use this to show that $(y, x) \in R$. What should the cartesian graph or directed graph of R look like if it is symmetric?
- 3. To show that a relation R is transitive, we take THREE arbitrary elements $x, y, z \in S$ such that $(x, y), (y, z) \in R$ and use this to show that $(x, z) \in R$. What should the cartesian graph or directed graph of R look like if it is transitive?

Example 3.4. Which of the above is reflexive, symmetric, and/or transitive?

Definition 3.5. A relation that is reflexive, symmetric, AND transitive is called an equivalence relation.

Example 3.6. Which of the above is an equivalence relation?

Remark 3.7. Recall that given a relation R on a set S then $[x] = \{y \in S | (x, y) \in R\}$. Or in the 'tilde' notation: $[x] = \{y \in S | x \sim y\}$. Now we can rephrase the requirements to be an equivalence relation in terms of this representative [x].

- 1. For each $x \in S$...
- 2. If $x \in [y]$ then...
- 3. If $y \in [x]$ and ...

Definition 3.8. Given an equivalence relation R on a set S and an element $x \in S$, the set [x] is called the **equivalence class** of x.

Group Work problems for Relations, graphs, and equivalence relations:

- 1. Let $R = \{(a, b) \in \mathbb{N} \times \mathbb{N} \mid a|b \}$. List five members of R[7], and list five members of R[14]. For which $n \in \mathbb{N}$ is it true that $R[n] = \mathbb{N}$? Is R symmetric? Is it an equivalence relation?
- 2. Let $R = \{(x, y \in \mathbb{R} \times \mathbb{R} | x^2 y^2 = 0\}.$
 - (a) Prove that R is an equivalence relation on \mathbb{R} .
 - (b) List all the elements of [3].
- 3. Let $S = \mathbb{N} \times \mathbb{N}$. For any two members (a, b) and (c, d) of S we will define a relation $(a, b) \sim (c, d)$ if ad = bc. Prove that \sim is an equivalence relation.
- 4. Let $A = \{1, 2, 3, 4, 5\}$. Draw the directed graphs associated with each of the following relations on A. Which relations are equivalence relations?
 - (a) $R = \{(a, b) \in A \times A \mid a|b\}$
 - (b) $R = \{(a, b) \in A \times A \mid a \neq b\}$
 - (c) $R = \{(a, b) \in A \times A \mid a + b \in 2\mathbb{Z}\}$
 - (d) $R = \{(a, b) \in A \times A \mid a + b \text{ odd }\}$
- 5. Let R be a relation such that $R^{-1} \subset R$. Must R be symmetric? Prove your answer.

4 Congruence or clock arithmetic: Example of equivalence relation

Example 4.1. Consider the following relation R on \mathbb{Z} .

$$R_n = \{(x, y) | x, y \in \mathbb{Z} \text{ and } x - y = nk \text{ for some } k \in \mathbb{Z}\}.$$

Group Work

- 1. Let p be an odd prime and let $S = \{[1], [2], ..., [p-1]\}$ be the set of nonzero equivalence classes mod p.
 - (a) Prove that for any integer a such that $[a] \in S$, we have that $[-a] \in S$ and that $[-a] \neq [a]$.
 - (b) Prove that if $[a] \in S$ and $[b] \in S$, then $[a] \otimes [b] \in S$.
 - (c) Prove that if $[a]^2 = [b]^2$ then [a] = [b] or [a] = -[b].
 - (d) Prove that exactly (p-1)/2 members of S have square roots (i.e. [a] has a square root provided that there is an integer x such that $[x]^2 = [a]$). Hint. First show that there are at most (p-1)/2 elements of S with square roots by using that $[x]^2 = [-x]^2$. Then consider the following subset of S: $\{[1]^2, [2]^2, ..., [(p-1)/2]^2\}$. Show that no two of these can be equal using above parts. This shows that there are at least (p-1)/2 elements of S with square roots.
- 2. In the previous problem, instead of taking p to be an odd prime number, take p = 16. Show by example that all four statements are then false.