Autómatas Finitos con Pila

Juan Mendivelso

Universidad Nacional de Colombia Facultad de Ciencias Departamento de Matemáticas

Presentación basada en las Notas de Clase del Profesor Rodrigo De Castro.

Outline

Inserción/Reemplazo

- 1 Autómatas con Pila (AFP)
 - Autómatas con Pila Deterministas (AFPD)
 - Autómatas Finitos con Pila No Deterministas (AFPN)
- 2 Inserción/Reemplazo de Cadenas en la Pila
- No equivalencia entre AFPD y AFPN
- 4 Producto Cartesiano entre un AFP y un AFD

- Autómatas con Pila (AFP)
 - Autómatas con Pila Deterministas (AFPD)
 - Autómatas Finitos con Pila No Deterministas (AFPN)

Autómatas con Pila Deterministas (AFPD)

 Modelo similar al de autómatas finitos deterministas pero que además tiene una pila que sirve como almacenamiento temporal.

- Se tiene la cinta de entrada semi-infinita dividida en celdas que contiene símbolos de Σ
- Hay una cinta semi-infinita adicional llamada pila dividida en celdas que contiene símbolos de Γ.
- Σ y Γ no necesariamente son disyuntos.
- La unidad de control apunta simultáneamente a una celda de la cinta de entrada y a una celda de la pila.
- Inicialmente, la unidad de control apunta al primer símbolo de la cinta de entrada y al fondo de la pila.
- Las inserciones/borrados/consultas de la pila se hacen en el tope.

AFPD

AFP

Autómatas Finitos con Pila Deterministas (AFPD)

Un Autómata Finito con Pila Determinista (AFPD) es una séxtupla $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$ con las siguientes componentes:

• Q es el conjunto (finito) de estados internos de la unidad de control.

- $Q q_0 \in Q$ es el estado inicial.
- § F es el conjunto de estados finales o de aceptación $\emptyset \neq F \subseteq Q$.
- \bullet Σ es el alfabeto de entrada (alfabeto de cinta).
- Γ es el alfabeto de pila.
- Δ es la función de transición del autómata:

$$\Delta: Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \rightarrow (Q \times (\Gamma \cup \{\lambda\}))$$
$$\Delta(q, a, A) = (q', B).$$

Inserción/Reemplazo

Función de Transición Δ

$$\Delta: Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \rightarrow (Q \times (\Gamma \cup \{\lambda\}))$$

$$\Delta(q, a, A) = (q', B)$$

AFPD

- Δ puede estar parcialmente definida: las cadenas pueden abortarse.
- q es el estado leído por la unidad de control, la cual pasa al estado q'.
- $a \in (\Sigma \cup \{\lambda\})$
 - Si $a \neq \lambda$, a es el símbolo leído por la unidad de control en la cinta de entrada. La unidad se correrá una celda a la derecha en esta cinta.
 - Si $a = \lambda$, se ejecutará una transición λ , por lo que la unidad seguirá apuntando a la misma celda en la cinta de entrada.
- $A, B \in (\Gamma \cup \{\lambda\})$
 - Si $A \neq \lambda$, A es el símbolo en el tope de la pila, el cual será
 - reemplazado si $B \neq \lambda$.
 - removido si $B = \lambda$. La unidad apuntará una celda abajo en la pila.
 - Si $A = \lambda$, y
 - $B = \lambda$, no se hará nada en la pila.
 - $B \neq \lambda$, se inserta el símbolo B en la pila y el tope apuntará a este.

Juan Mendivelso

Grafo de un AFPD

Un AFPD se puede representar por un grafo dirigido y etiquetado.

AFPD

- En la pila puede hacerse alguna de las siguientes operaciones:
 - Reemplazo (R)

Borrado (B)

Inserción (I)

- Ninguna (N)
- La transición $\Delta(q, a, A) = (q', B)$ se representa así:

Parámetros	Grafo	Entr.	Pila
$a \in \Sigma, A, B \in \Gamma$	$ \overbrace{q} a, \ A B q' $	\rightarrow	– R
$a \in \Sigma, A = \lambda, B \in \Gamma$	$ \overbrace{q} a, \ \lambda B \qquad \overbrace{q'} $	\rightarrow	↑ I

Grafo de un AFPD

- Un AFPD se puede representar por un grafo dirigido y etiquetado.
- En la pila puede hacerse alguna de las siguientes operaciones:
 - Reemplazo (R)

Borrado (B)

Inserción (I)

Ninguna (N)

• La transición $\Delta(q, a, A) = (q', B)$ se representa así:

Parámetros	Grafo	Entr.	Pila
$a \in \Sigma, A \in \Gamma, B = \lambda$	$ \overbrace{q} a, \ A \lambda \qquad q' $	\rightarrow	В↓
$a \in \Sigma$, $A = \lambda$, $B = \lambda$	$ \overbrace{q} a, \ \lambda \lambda \qquad q' $	\rightarrow	- N

- Un AFPD se puede representar por un grafo dirigido y etiquetado.
- En la pila puede hacerse alguna de las siguientes operaciones:
 - Reemplazo (R)

Borrado (B)

Inserción (I)

Ninguna (N)

• La transición $\Delta(q, a, A) = (q', B)$ se representa así:

Parámetros	Grafo	Entr.	Pila
$a=\lambda,\ A,B\in\Gamma$	$ \overbrace{q} \lambda, \ A B q' $	_	– R
$a=\lambda,\ A=\lambda,\ B\in\Gamma$	$ \overbrace{q} \lambda, \ \lambda B \qquad \qquad q' $	_	↑ I

- Un AFPD se puede representar por un grafo dirigido y etiquetado.
- En la pila puede hacerse alguna de las siguientes operaciones:
 - Reemplazo (R)

Borrado (B)

Inserción (I)

Ninguna (N)

• La transición $\Delta(q, a, A) = (q', B)$ se representa así:

Parámetros	Grafo	Entr.	Pila
$a=\lambda,\ A\in\Gamma,\ B=\lambda$	$ \overbrace{q} \lambda, \ A \lambda \qquad q' $	_	В↓
$a = \lambda, A = \lambda, B = \lambda$	$ \overbrace{q} \lambda, \ \lambda \lambda \qquad \qquad q' $	_	- N

Inserción/Reemplazo

Función Parcialmente Definida

• La función de transición del AFPD $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$ es:

$$\Delta: Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \rightarrow (Q \times (\Gamma \cup \{\lambda\})) \ \Delta(q, a, A) = (q', B).$$

- Esta función puede estar parcialmente definida: puede no estar definida para algunos valores de $q \in Q$, $a \in (\Sigma \cup \{\lambda\})$ y $A \in (\Gamma \cup \{\lambda\}).$
- Esto quiere decir que el autómata puede abortar el procesamiento de una cadena $u \in \Sigma^*$ sin haberla leída por completo.

Determinismo en los AFPD

• Dada cualquier configuración instantánea $[q, v, \beta]$, solamente hay una instrucción posible (a lo sumo) que se puede aplicar.

- Si la instrucción $\Delta(q, a, A)$, donde $a \in \Sigma$ y $A \in \Gamma$, está definida, entonces ni $\Delta(q, \lambda, A)$ ni $\Delta(q, a, \lambda)$ pueden estar definidas simultáneamente.
- Esto implica que un AFPD lee cada cadena de entrada $u \in \Sigma^*$ de una manera única, aunque es posible que el procesamiento de u se aborte sin consumir toda la entrada.

Configuración o Descripción Instantánea

Paso Computacional

• En un paso computacional, el autómata pasa de la configuración instantánea $[q, v, \beta]$ a la configuración $[q', \omega, \gamma]$ cuando se realiza una transición de la función Δ . Este se denota como

AFPD

$$[q, \upsilon, \beta] \vdash [q', \omega, \gamma].$$

• La siguiente notación denota que el autómata pasa de la configuración $[q, v, \beta]$ a la configuración $[q', \omega, \gamma]$ en cero, uno o más pasos computacionales:

$$[q, \upsilon, \beta] \vdash^* [q', \omega, \gamma].$$

• Si es en uno o más pasos computacionales, la notación es:

$$[q, v, \beta] \vdash^+ [q', \omega, \gamma].$$

• Dado el AFPD $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$, la configuración instantánea inicial para una cadena $u \in \Sigma^*$ es $[q_0, u, \lambda]$.

- La pila está vacía.
- La unidad de control escanea el fondo de la pila y el primer símbolo de u.

• Dado el AFPD $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$, una configuración instantánea de aceptación es $[p, \lambda, \lambda]$ donde $p \in F$.

- Para que una cadena $u \in \Sigma^*$ sea aceptada:
 - u debe ser consumida por completo.
 - La pila debe quedar vacía.
 - Debe terminar en estado de aceptación.

Inserción/Reemplazo

Lenguaje Aceptado por un AFPD

• El lenguaje aceptado por un AFPD $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$ se define como:

$$L(M) := \{u \in \Sigma^* : [q_0, u, \lambda] \vdash^* [p, \lambda, \lambda], p \in F\}.$$

- En otras palabras, $u \in \Sigma^*$ es aceptada si el único procesamiento posible de u, desde la configuración inicial $[q_0, u, \lambda]$, termina en una configuración de aceptación.
- Es decir, dado que la unidad de control empieza en el estado q_0 , la pila vacía y apuntando al primer caracter de u en la cinta de entrada, el único procesamiento de u debe cumplir simultáneamente con:
 - *u* debe ser procesada completamente.
 - el procesamiento debe terminar con pila vacía.
 - la unidad de control debe terminar en estado de aceptación.
- Si $q_0 \in F$, la cadena λ es aceptada. En este caso, la configuración inicial también es de aceptación.

Ejercicio

Diseñar un AFPD M que acepte el lenguaje $L = \{a^n b^n : n \ge 0\}$ definido sobre $\Sigma = \{a, b\}$.

 $a, \lambda | A$

Inserción/Reemplazo

 $b, A|\lambda$

AFPD

 $\vdash [q_1, b, AA] \vdash [q_1, \lambda, A].$

Ejercicio

Diseñar un AFPD M que acepte el lenguaje $L = \{a^{2n}b^n : n \ge 0\}$ definido sobre $\Sigma = \{a, b\}$.

Ejercicio de un AFPD

Ejercicio

Diseñar un AFPD M que acepte el lenguaje $L = \{a^n b^{2n} : n \ge 0\}$ definido sobre $\Sigma = \{a, b\}$.

AFPD

AFP

Ejercicio de un AFP

Ejercicio

Diseñar un AFPD M que acepte el lenguaje

 $L = \{u \in \Sigma^* : \#_a(u) = \#_b(u)\}$ definido sobre $\Sigma = \{a, b\}.$

Outline

- Autómatas con Pila (AFP)
 - Autómatas con Pila Deterministas (AFPD)
 - Autómatas Finitos con Pila No Deterministas (AFPN)
- 2 Inserción/Reemplazo de Cadenas en la Pila
- 3 No equivalencia entre AFPD y AFPN
- 4 Producto Cartesiano entre un AFP y un AFD

Inserción/Reemplazo

Autómatas Finitos con Pila No Deterministas (AFPN)

- Un Autómata Finito No-Determinista (AFPN) $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$ cuenta con los mismos seis compontentes de un AFPD.
- La diferencia es que la función de transicion Δ está definida como:

$$\Delta: Q \times (\Sigma \cup \{\lambda\}) \times (\Gamma \cup \{\lambda\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\lambda\}))$$
$$\Delta(q, a, A) = \{(p_1, B_1), (p_2, B_2), \dots, (p_k, B_k)\}.$$

- Para $\Delta(q, a, A)$ se ejecuta aleatoriamente una de las instrucciones (p_i, B_i) , $1 \le i \le k$ de acuerdo a las reglas establecidas de los AFPDs.
- Una cadena puede tener varios procesamientos.
- Si $\Delta(q, a, A)$ está definida, puede que $\Delta(q, \lambda, A)$ y/o $\Delta(q, a, \lambda)$ estén definidas simultáneamente.
- Al igual que en los AFPD, se permite $\Delta(q, a, A) = \emptyset$, por lo que puede haber procesamientos abortados.

Juan Mendivelso

Inserción/Reemplazo

Lenguaje Aceptado por un AFPN

• El lenguaje aceptado por un AFPN $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$ se definde como:

$$L(M) := \{ u \in \Sigma^* : (\exists [q_0, u, \lambda] \vdash^* [p, \lambda, \lambda])[p \in F] \}.$$

- En otras palabras, u es aceptada si existe por lo menos un procesamiento de u desde la configuración inicial $[q_0, u, \lambda]$ hasta una configuración de aceptación.
- Es decir, dado que la unidad de control empieza en el estado q_0 , la pila vacía y apuntando al primer caracter de u en la cinta de entrada, alguno de sus procesamientos debe cumplir simultáneamente con:
 - *u* debe ser procesada completamente.
 - el procesamiento debe terminar con pila vacía.
 - la unidad de control debe terminar en estado de aceptación.

Ejercicio de un AFPN

Ejercicio

AFP

Diseñar un AFPN M que acepte el lenguaje

$$L = \{u \in \Sigma^* : \#_a(u) = \#_b(u)\}$$
 definido sobre $\Sigma = \{a, b\}$.

Outline

- 1 Autómatas con Pila (AFP)
 - Autómatas con Pila Deterministas (AFPD)
 - Autómatas Finitos con Pila No Deterministas (AFPN)
- 2 Inserción/Reemplazo de Cadenas en la Pila
- No equivalencia entre AFPD y AFPN
- 4 Producto Cartesiano entre un AFP y un AFD

Inserción de Cadenas en la Pila y Reemplazo del Tope de la Pila

- Al ejecutar una instrucción básica, máximo se puede añadir un símbolo a la pila.
- Sin embargo, insertar una cadena γ de longitud arbitraria en la pila se puede simular con una inserciones básica de cada símbolo de γ .
- El nuevo tope será el primer símbolo de γ .
- Entonces, la inserción de cadenas en la pila debe ser permitida.

Inserción de Cadenas en la Pila

Proposición 1

Dado el autómata finito con pila $M=(Q,q_0,F,\Sigma,\Gamma,\Delta)$, la instrucción $\Delta(q,a,\lambda)=(q',\gamma)$, donde $a\in(\Sigma\cup\{\lambda\})$, $q,Q'\in Q$ y γ^* , permite añadir la cadena γ en la extremo del tope de la pila. El nuevo tope de la pila es el primer caracter de γ .

$$\Delta(q, a, \lambda) = (q', \gamma)$$

Inserción de Cadenas en la Pila

Proposición 1

Dado el autómata finito con pila $M=(Q,q_0,F,\Sigma,\Gamma,\Delta)$, la instrucción $\Delta(q,a,\lambda)=(q',\gamma)$, donde $a\in(\Sigma\cup\{\lambda\})$, $q,Q'\in Q$ y γ^* , permite añadir la cadena γ en la extremo del tope de la pila. El nuevo tope de la pila es el primer caracter de γ .

Reemplazo del Tope de la Pila

- De igual manera, el tope de la pila (un símbolo) puede ser reemplazado por toda una cadena γ .
- Esto se puede lograr con instrucciones básicas reemplazando el tope de la pila por el último símbolo de γ y añadiendo los otros arriba de esta.
- El nuevo tope será el primer caracter de γ .
- Entonces, este tipo de reemplazo también debe ser una operación permitida.

Reemplazo del Tope de la Pila

Proposición 2

Dado el autómata finito con pila $M=(Q,q_0,F,\Sigma,\Gamma,\Delta)$, la instrucción $\Delta(q,a,A)=(q',\gamma)$, donde $a\in(\Sigma\cup\{\lambda\})$, $q,Q'\in Q$, $A\in\Gamma$ y γ^* , permite reemplazar el tope de la pila (que es A) por la cadena γ . El nuevo tope de la pila es el primer caracter de γ .

$$\Delta(q, a, A) = (q', \gamma)$$

Reemplazo del Tope de la Pila

Proposición 2

Dado el autómata finito con pila $M=(Q,q_0,F,\Sigma,\Gamma,\Delta)$, la instrucción $\Delta(q,a,\lambda)=(q',\gamma)$, donde $a\in(\Sigma\cup\{\lambda\})$, $q,Q'\in Q$ y γ^* , permite añadir la cadena γ en la extremo del tope de la pila. El nuevo tope de la pila es el primer caracter de γ .

Ejercicio

Ejercicio

Diseñar un AFPD M que acepte el lenguaje $L=\{a^nb^{2n}:n\geq 0\}$ definido sobre $\Sigma=\{a,b\}$ que use la inserción/reemplazo de cadenas de longitud mayor a 1 en la pila.

Ejercicio

Ejercicio

Diseñar un AFPD M que acepte el lenguaje $L = \{u \in \Sigma^* : \#_a(u) = \#_b(u)\}$ definido sobre $\Sigma = \{a, b\}$ que use la inserción/reemplazo de cadenas de longitud mayor a 1 en la pila.

Outline

- Autómatas con Pila (AFP)
 - Autómatas con Pila Deterministas (AFPD)
 - Autómatas Finitos con Pila No Deterministas (AFPN)
- 2 Inserción/Reemplazo de Cadenas en la Pila
- No equivalencia entre AFPD y AFPN
- 4 Producto Cartesiano entre un AFP y un AFD

No equivalencia entre AFPD y AFPN

- Los AFPD y AFPN no son computacionalmente equivalentes.
- Existen lenguajes aceptados por AFPN que no pueden ser aceptados por ningún AFPD.
- Un ejemplo de esto es $L = \{ww^R : w \in \Sigma^*\}$ sobre el alfabeto $\Sigma = \{a, b\}$, i.e. los palíndromes de longitud par.
- $(ww^R)^R = (w^R)^R w^R = ww^R$.

No equivalencia entre AFPD y AFPN

Ejercicio

Dado el alfabeto $\Sigma = \{a, b, c\}$, diseñe un AFPD que acepte el lenguaje $L' = \{wcw_R : w \in \{a, b\}^*\}$.

No equivalencia entre AFPD y AFPN

Ejercicio

Dado el alfabeto $\Sigma = \{a, b\}$, diseñe un AFPN que acepte el lenguaje $L = \{ww_R : w \in \Sigma^*\}$.

Proposición 3

El lenguaje $L = \{ww^R : w \in \Sigma^*\}$, donde $\Sigma = \{a, b\}$, no puede ser aceptado por ningún AFPD.

Demostración (por contradicción)

- Suponer que existe un AFPD $M = (Q, q_0, F, \Sigma, \Gamma, \Delta)$ tal que L(M) = L.
- Las potencias a^2 , a^4 , a^6 , ... $\in L$ son aceptadas por M.
- Como hay infinitas cadenas de la forma a^{2n} , n > 0, y solamente hay un número finito de configuraciones de aceptación, por el Principio de Palomar $[q_0, a^{2i}, \lambda] \vdash^* [p, \lambda, \lambda] \vee [q_0, a^{2j}, \lambda] \vdash^* [p, \lambda, \lambda], p \in F$.
- Como M es determinista, $[q_0, a^{2i}x, \lambda] \vdash^* [p, x, \lambda] v$ $[q_0, a^{2j}x, \lambda] \vdash^* [p, x, \lambda]$ para toda $x \in \Sigma^*$.
- Entonces, $(\forall x \in \Sigma^*)[a^{2i}x \in L \iff a^{2j}x \in L]$.
- La contradicción surge porque, para $x = bba^{2i}$, $a^{2i}x \in L$ y $a^{2j}x \notin L$.

Criterio General

Proposición 4

Sea Σ un alfabeto y $L \subseteq \Sigma^*$. Si L contiene infinitas cadenas L-distinguibles dos a dos, entonces L no puede ser aceptado por ningún AFPD.

Demostración (por contradicción)

- Suponer que existe un AFPD M tal que L(M) = L.
- Por hipótesis, existen infinitas cadenas u₁, u₂, ... ∈ L que son L-distinguibles dos a dos y aceptadas por M.
- Hay infinitas $u_i, u_j \in L$, $u_i \neq u_j$, y |F| configuraciones $[p, \lambda, \lambda]$, $p \in F$. Entonces, $[q_0, u_i, \lambda] \vdash^* [p, \lambda, \lambda]$ y $[q_0, u_j, \lambda] \vdash^* [p, \lambda, \lambda]$.
- $(\forall x \in \Sigma^*)[([q_0, u_i x, \lambda] \vdash^* [p, x, \lambda]) \land ([q_0, u_j x, \lambda] \vdash^* [p, x, \lambda])$ porque M es determinista. Entonces, $(\forall x \in \Sigma^*)[u_i x \in L \iff u_i x \in L]$.
- Esto contradice que u_i y u_i son L-distinguibles.

Ejercicio

Ejercicio

Utilizar la Proposición 4 para demostrar que ningún AFPD puede aceptar el lenguaje $L = \{ww^R : w \in \Sigma^*\}$, donde $\Sigma = \{a, b\}$.

Outline

- Autómatas con Pila (AFP)
 - Autómatas con Pila Deterministas (AFPD)
 - Autómatas Finitos con Pila No Deterministas (AFPN)
- 2 Inserción/Reemplazo de Cadenas en la Pila
- 3 No equivalencia entre AFPD y AFPN
- 4 Producto Cartesiano entre un AFP y un AFD

Producto Cartesiano entre un AFP y un AFD

Sea $M_1 = (Q_1, q_1, F_1, \Sigma, \Gamma, \Delta)$ un AFP y sea $M_2 = (\Sigma, Q_2, q_2, F_2, \delta)$ un AFD. El **Producto Cartesiano** de estos es un AFP definido como:

$$M_1 \times M_2 = (Q_1 \times Q_2, (q_1, q_2), F_1 \times F_2, \Sigma, \Gamma, \Delta')$$

donde la función de transición Δ' consta de las siguientes instrucciones:

- Si $(p', B) \in \Delta(p, a, A)$ y $\delta(q, a) = q'$, entonces $((p', q'), B) \in \Delta'((p, q), a, A)$, donde $a \in \Sigma$, $A, B \in (\Gamma \cup \{\lambda\})$.
- ② Si $(p', B) \in \Delta(p, \lambda, A)$, entonces $((p', q), B) \in \Delta'((p, q), \lambda, A)$, donde $A, B \in (\Gamma \cup {\lambda})$, para todo $q \in Q_2$.

Función de Transición

Para todo estado q de M_2

Lenguaje Aceptado

Teorema

Sea $M_1=(Q_1,q_1,F_1,\Sigma,\Gamma,\Delta)$ un AFP y sea $M_2=(\Sigma,Q_2,q_2,F_2,\delta)$ un AFD tales que $L_1=L(M_1)$ y $L_2=L(M_2)$. El lenguaje aceptado por por $M_1\times M_2$ es $L(M_1\times M_2)=L_1\cap L_2$.

Ejercicio

Diseñar un AFP que acepte el lenguaje L, sobre $\Sigma = \{a, b\}$, de todos los palíndromes de longitud par que no tienen dos bes consecutivas.

Lenguaje Aceptado

M_2 :

$M_1 \times M_2$:

Bibliografía

- Rodrigo De Castro Korgi. Notas de Clase de Introducción a la Teoría de la Computación. 2020. Contenidos e imágenes de estas notas fueron incluidas en esta presentación.
- Warry R. Lewis, Christos H. Papadimitriou. Elements of the Theory of Computation. Prentice Hall. 1998.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation, Third Edition. Pearson. 2006.