1 Introduction Workthrough with p-adic Numbers

K is a non-archimedian local field. In this case K will be the p-adic numbers \mathbb{Q}_p , where p > 1 is prime. Let \mathcal{O} be the ring of integers (integral elements) of K. These are elements of the form

$$a = \sum_{i>0} a_i p^i.$$

with each $0 \le a_i \le p-1$ for all i. See [2], page 28 for more explanation of this representation. It is important to note that because of the metric imposed on the field of p-adic numbers, adding terms with higher powers of p does not increase the magnitude of the integer. Thus for every p-adic integer a, $|a| \le 1$. As in the rational numbers (can be shown with rational root theorem) these are the integers. To see that (p) is the maximal ideal, note that for any $a \in \mathbb{O}$, if |a| = 1, then a is invertible. Thus the only non-invertible elements of \mathbb{O} have p as a divisor, and (p) is the unique maximal ideal of \mathbb{O} .

Now let $F_q = \mathbb{O}/(p)$. Then this is a field of characteristic p. Let $F = K[\sqrt{p}]$ be a ramified quadratic extension of K with ring of integers R. From Wikipedia [1]: Define

$$\omega = \begin{cases} \sqrt{p} & \text{if } p \equiv 2, 3 \pmod{4} \\ \frac{1+\sqrt{p}}{2} & \text{if } p \equiv 1 \pmod{4} \end{cases}$$

Then $R = \{a + b\omega\} = \mathbb{O}[\sqrt{p}]$ and $R/(\sqrt{p}) \cong F_p$.

2 Background in Hermitian Geometry

In this section, we'll define several items:

- Let A be a local ring with identity.
- Let \mathfrak{r} be the Jacobsen radical of A. Because A is local, \mathfrak{r} is maximal, and contains all non-units of A.
- Let * be an involution of A. Assume that elements fixed by * are in the center of A, forming a ring $R = \{a \in A : a^* = a\}$. Note that R is local, with maximal ideal $R \cap \mathfrak{r}$. This is because any element of R that is not in $R \cap \mathfrak{r}$ is invertible by definition. Thus the only maximal ideal is $R \cap \mathfrak{r}$.
- Let $Q: A^* \to R^*: a \mapsto aa^*$ (the norm map) be a group homomorphism with kernel N.

Now let V be a right A-module and $h: V \times V \to A$ be a *-hermitian form. By definition, h is linear in the second variable and h(v, u) = h(u, v) * for $u, v \in V$. Then h(u, u) = h(u, u) * and $h(u, u) \in R \subseteq Z(A)$ for all $u \in V$.

Now consider the dual space V^* . We can define an operation $V^* \times A \to V^*$ by $(\alpha a)(v) = a^*\alpha(v)$ where $\alpha \in V^*, a \in A, v \in V$. Under this operation, V^* is a right A-module. Now we can define a homomorphism of right A-modules $\gamma_h : V \to V^*$ associated with h given by $\gamma_h(u) = h(u, -)$.

Some more assumptions:

- Assume that h is non-degenerate; γ_h is an isomorphism.
- Let U be the subgroup of GL(V) preserving h. I'm guessing that this means for $\varphi \in U, u, v \in V, h(\varphi(u), \varphi(v)) = h(u, v)$.
- Assume the existence of an element $d \in A$ such that $d + d^* = 1$.
- Assume that V is a free A-module of rank $m \ge 1$. According to paper: "This is well defined, as can be seen by reducing modulo \mathfrak{r} .

Now let $\{v_1, v_2, \dots, v_m\}$ be a basis of V throughout the section.

Lemma 2.1. There is a vector $u \in V$ such that $h(u, u) \in R^*$.

Proof. Assume otherwise; that for some $h(u, u) \in \mathfrak{m}$ for all $u \in V$. Then using the linearity of h:

$$h(u,v) + h(u,v)^* = h(u+v,u+v) - h(u,u) - h(v,v) \in \mathfrak{m}$$

for all $u, v \in V$. Let $\alpha \in V^*$ be the linear functional such that $\alpha(v_1) = d$ and $\alpha(v_i) = 0$ for all i > 1. Because h is assumed to be non-degenerate, there exists $u \in V$ such that $h(u, -) = \alpha$. Then $d = \alpha(v_1) = h(u, v_1)$ and $1 = d + d^* = h(u, v_1) + h(u, v_1)^* \notin \mathfrak{m}$, contradicting the original hypothesis. \square

Lemma 2.2. V has an orthogonal basis $u_1, u_2, \dots u_m$. Any such basis satisfies $h(u_i, u_i) \in R^*$.

Proof. Prove with induction on m. Assume that m=1. By lemma 2.1, there exists $u\in V$ such that $h(u,u)\in R^*$. Then $u=v_1a_1$ for some $a_1\in A^*$, and $h(u,u)=h(v_1a_1,v_1a_1)=a_1^*h(v_1,v_1)a_1\in R^*$ implying that $h(v_1,v_1)\in R^*$. Now assume that m>1 and that the hypothesis holds for m-1. Once again, there exists $u\in V$ such that $h(u,u)\in R^*$. Then $u=v_1a_1+\cdots+v_ma_m$ with $a_i\in A$. If all $a_i\in \mathfrak{r}$, then $h(u,u)\in \mathfrak{m}$, a contradiction. Without loss of generality, assume that $a_1\not\in \mathfrak{r}$. Then if $u_1=v_1a_1$, the set $\{u_1,v_2,\ldots,v_m\}$ is a basis of V. For $1< i\leq m$, set

$$u_i = v_i - u_1[h(u_1, v_i)/h(u_1, u_1)]$$

Then u_1, u_2, \ldots, u_m is a basis of V satisfying $h(u_1, u_i) = 0$ for $1 < i \le m$. Let $V_1 = u_1 A$ and $V_2 = \operatorname{span}\{u_2, \ldots, u_m\}$. Then $V = V_1 \perp V_2$ and the restriction of h to V_2 induces an isomorphism $V_2 \to V_2^*$. Applying the inductive hypothesis to this space completes the proof.

- **Lemma 2.3.** (a) Suppose $u_1, \ldots, u_s \in V$ are orthogonal and satisfy $h(u_i, u_i) \in R^*$. Then $u_1, \ldots, u_s \in V$ can be extended to an orthogonal basis of V with the same property.
 - (b) If V_1 is a submodule of V such that the restriction of h to V_1 is non-degenerate there is another such submodule V_2 of V such that $V = V_1 \perp V_2$.

Proof. (a) Can represent $u_1 = v_1 a_1 + \cdots + v_m a_m$ for some $a_i \in A$. Since $h(u_1, u_1) \in R^*$ (by lemma 2.1), one of the scalars must be a unit. WLOG assume $a_i \in A*$. Thus u_1, v_2, \ldots, v_m is a basis of V. Suppose $1 \le t \le s$ and the list $u_1, \ldots, u_t, u_{t+1}, \ldots, v_m$ is a basis of V. Then

$$u_{t+1} = u_1b_1 + \dots + u_tb_t + v_{t+1}b_{t+1} + \dots + v_mb_m$$

for some $b_i \in A$. Suppose, if possible, that $b_i \in \mathfrak{r}$ for all $i \geq t + 1$. Then for every $i \leq t$,

$$0 = h(u_i, u_{t+1}) = h(u_i, u_i)b_i + h(u_i, v_{t+1})b_{t+1} + \dots + h(u_i, v_m)b_m$$

implying that $b_i \in \mathfrak{r}$ for all $1 \leq i \leq t$, contradicting the assumptino that $h(u_{t+1}, u_{t+1}) \in R^*$. Thus at least one of b_{t+1}, \ldots, b_m is a unit (assume b_{t+1} and $u_1, \ldots, u_t, u_{t+1}, v_{t+2}, \ldots, v_m$ is a basis of V.

This process can be repeated to extend u_1, \ldots, u_s to a basis $u_1, \ldots, u_s, u_{s+1}, \ldots u_m$ of V. For $s < i \le m$, let

$$z_i = u_i - ([u_1 h(u_1, u_i)/h(u_1, u_1)] + \dots + u_s h(u_s, u_i)/h(u_s, u_s)].$$

Then $u_1, \ldots, u_s, z_1, \ldots, z_{m-s}$ is a basis of V satisfying $h(u_i, z_j) = 0$. If follows that the restriction of h to $M = \text{span}\{z_1, \ldots, z_{m-s}\}$ is non-degenerate and by lemma 2.2 that M has an orthogonal basis with $h(z_i, z_i) \in R^*$ for any $i \leq m - s$.

(b) Follows from (a) and lemma
$$2.2$$

Lemma 2.4. Let $u_1, \ldots u_s \in V$, with corresponding Gram matrix $M \in M_s(A)$, defined by $M_{ij} = h(u_i, u_j)$. If $M \in GL_m(A)$, then u_1, \ldots, u_s are linearly independent.

Proof. Suppose a_1, \ldots, a_s satisfy $u_1 a_1 + \cdots + u_s a_s = 0$. Then for $1 \le i \le s$

$$0 = h(u_i, u_1 a_1 + \dots + u_s a_s) = h(u_i, u_1) a_1 + \dots + h(u_i, u_s) a_s$$

implying that

$$M\left(\begin{array}{c} a_1\\ \vdots\\ c_1 \end{array}\right) = \left(\begin{array}{c} 0\\ \vdots\\ 0 \end{array}\right).$$

Since M is inverible, the desired result follows.

3 Classification of Hermitian Forms

A vector $v \in V$ is said to be **primitive** if $v \notin V\mathfrak{r}$. This is equivalent to saying that v belongs to a basis of V. We say that h is **isotropic** if there is a primitive vector $v \in V$ such that h(v, v) = 0.

Lemma 3.1. Suppose h is isotropic. Then, given any $r \in R$ there is a primitive vector v satisfying h(v, v) = r.

Proof. By assumption, h is isotropic so there is a primitive vector $u \in V$ such that h(u,u)=0. Because h is assumed to be non-degenerate, there exists $w \in V$ such that h(u,w)=d. Set $s=r-h(w,w)\in R$ and v=us+w. Then

$$h(v,v) = h(us + w, us + w)$$

$$= sh(u, w) + sh(u, w) + sh(w, u) + h(w, w)$$

$$= s(d + d^*) + h(w, w)$$

$$= s + h(w, w)$$

$$= r - h(w, w) + h(w, w)$$

$$= r$$

We assume for the remainder of the paper that the squaring map of the 1-group $1+\mathfrak{m}$ is an epimorphism and that $R/\mathfrak{m}=F_q$ is a field of finite order q and odd characteristic. Thus $[F_q^*:F_q^{*2}]=2$. To see this, pick $r\in F_q^*\backslash F_q^{*2}$. Then the minimal polynomial of x is $t^2-r^2\in F_q^{*2}[t]$. A similar argument shows that $[R^*:R^{*2}]=2$. We can now fix an element $\varepsilon\in R^*\backslash R^{*2}$. Since $R^{*2}\subseteq Q(A^*)$, we infer $Q(A^*)=R^*$ if Q is surjective and $Q(A^*)=R^{*2}$ otherwise.

Proposition 3.1. The division ring A/\mathfrak{r} is commutative. Moreover,

- (a) If the involution that * induces on A/\mathfrak{r} is the identity then Q is not surjective and $A/\mathfrak{r} \cong F_q$.
- (b) If the involution that * induces on A/\mathfrak{r} is not the identity then Q is surjective and $A/\mathfrak{r} \cong F_{\sigma^q}$.

Proof. We begin embedding R/\mathfrak{m} in A/\mathfrak{r} using the mapping $x + \mathfrak{m} \mapsto x + \mathfrak{r}$ for $x \in R$. Thus R/\mathfrak{m} can be viewed as a subfield of A/\mathfrak{r} . Now let \circ be the involution that * induces on $A/\mathfrak{r}(a + \mathfrak{r} \mapsto a^* + \mathfrak{r})$ and let $k = \{a \in A/\mathfrak{r} : a \in A/\mathfrak{r}$

 $a^{\circ} = a$ } be the set of all elements of A/\mathfrak{r} that are fixed by \circ . Then $R/\mathfrak{m} \subseteq k$ (by definition, R is fixed under *). Conversely, assume that $a + \mathfrak{r} \in k$. Then $a - a^* \in \mathfrak{r}$, so

$$a = \frac{a+a^*}{2} + \frac{a-a^*}{2} \in R + \mathfrak{r}$$

and $k \subseteq (R + \mathfrak{r})/\mathfrak{r} = R/\mathfrak{m}$. Thus k = R/m.

- (a) In this case, $A/\mathfrak{r} = k = R/\mathfrak{m}$ and the norm map $(A/\mathfrak{r})^* \to (R/\mathfrak{m})^*$ (induced by Q) is the squaring map of F_q^* . This map is not surjective, so the norm map Q is not surjective.
- (b) In this case, we assume that A/\mathfrak{r} properly contains k. Then for any $f \in A/\mathfrak{r} \setminus k$, the minimal polynomial of f is $(t-f)(t-f^\circ) = t^2 (f+f^\circ)t + ff^\circ \in k[t]$.

Let $f, e \in A/\mathfrak{r}$. The goal is to show that f and e commute. Let $f_1 = f - (f + f^{\circ})/2$ and $e_1 = e - (e + e^{\circ})/2$. Since $(f + f^{\circ})/2, (e + e^{\circ})/2 \in k$ (which is a field), it is sufficient to show that f_1 and e_1 commute. Note that $f_1^{\circ} = -f_1$ and $e_1^{\circ} = -e_1$. Then

$$(e_1f_1 + f_1e_1)^{\circ} = f_1^{\circ}e_1^{\circ} + e_1^{\circ}f_1^{\circ} = f_1e_1 + e_1f_1$$

and $e_1f_1+f_1e_1 \in k$. Thus $k\langle f_1, e_1\rangle$ is the k-span of $1, f_1, e_1, f_1e_1$ and $k\langle f_1, e_1\rangle$ is a finite dimensional division algebra over k. Thus by Wedderburn's theorem, $k\langle f_1, e_1\rangle$ is a field, implying that f and e commute.

Thus A/\mathfrak{r} is a field, algebraic over $k = R/\mathfrak{m}$, where every element of $A/\mathfrak{r}\setminus k$ has degree 2 over k. Since every algebraic extension of k is separable, the primitive element theorem implies that $[A/\mathfrak{r}:k]=2$.

We now want to show that the norm map $\hat{Q}: (A/\mathfrak{r})^* \to k^*$ induced by * is surjective. Because $k \subseteq A/\mathfrak{r}$, if $r \in k^2$, then there exists $s \in k$ with s fixed under * and $s^2 = r$. Thus $\hat{Q}(s) = s^2 = r$. Now pick $x \in k \setminus k^2$. Then $\sqrt{x} \notin k$.

Consider two cases:

Case 1: Assume $-x \notin k^2$. Then $A/\mathfrak{r} \cong F_{q^2} = k(\sqrt{-x})$. Every element of A/\mathfrak{r} can be written in the form $a + b\sqrt{-x}$ with $a, b \in k$ and

$$\hat{Q}(a + b\sqrt{-x}) = a^2 - b^2 \cdot -x = a^2 + b^2 x.$$

Then taking $s = \sqrt{-x}$ gives $\hat{Q}(s) = x$ and $x \in \hat{Q}(A/\mathfrak{r})$.

Case 2: Assume that $-x \in k^2$. Because exactly half of the elements in k^* have square roots, there must exist some element $z \in k^*$ where $\sqrt{z} \in k^*$ and $\sqrt{z+1} \notin k^*$. Then $F_{q^2} = k(\sqrt{z+1})$. Now take $s = \sqrt{-x}\sqrt{z} + \sqrt{-x}\sqrt{z+1}$. Then

$$\hat{Q}(s) = (-xz) - (-x(z+1)) = (z+1)x - zx = x$$

and \hat{Q} is surjective.

It follows that the norm map $(A/\mathfrak{r})^* \to (R/\mathfrak{m})^*$ induced by \star is surjective, implying that the norm map $A^* \to R^*$ is as well since the squaring map of $1 + \mathfrak{m}$ is surjective.

Proposition 3.2. Suppose $m \geq 2$. Then given any unit $r \in R$ there is a primitive vector $v \in V$ satisfying h(v, v) = r.

Proof. Cosider two cases:

- h is isotropic. Then 3.1 applies.
- \bullet h is non-isotropic.

By lemma 2.2, there is an orthogonal basis $u_1, u_2, \ldots u_m$ of V such that $h(u_i, u_i) \in R^*$. Let $a = h(u_1, u_2) \in R^*$ and $b = h(u_2, u_2) \in R^*$. if $t_1, t_2 \in R^*$, then $v = u_1 t_1 + u_2 t_2$ is primitive (because it is part of a basis), so

$$0 \neq h(v, v) = at_1^2 + bt_2^2.$$

Dividing by a and letting $c = b/a \in R^*$,

$$0 \neq t_1^2 + ct^2$$

implying that -c is not a square in R^* . Let $S = R[t]/(t^2 + c)$ and $\delta = t + (t^2 + c) \in S$. Then $S = R[\delta], \delta^2 = -c$ and every element of S can be uniquely written in teh form $t_1 + t_2\delta$ with $t_1, t_2 \in R$. We have an involution $s \mapsto \hat{s}$ defined by $t_1 + t_2\delta \mapsto t_1 - t_2\delta$, whose corresponding norm map $J: S^* \to R^*$ given by $s \mapsto s\hat{s}$, or $t_1 + t_2\delta \mapsto t_1^2 + ct_2^2$.

We claim that S is local with maximal ideal $S\mathfrak{m}$. Let $t_1,t_2\in R$, not both in \mathfrak{m} , and consider $J(t_1+t_2\delta)=t_1^2+ct_2^2$. If one of t_1,t_2 is in m, then $t_1^2+ct_2^2\in R^*$. To see this, assume that either t_1 or $t_2\not\in\mathfrak{m}$. Then if $t_1^2+ct_2^2\in\mathfrak{m}$, $t_1^2=-ct_2^2+m$ and $ct_2^2=-t_1^2-m$ for some $m\in\mathfrak{m}$. Since either t_1,t_2 is invertible, this implies that both $t_1,t_2\in\mathfrak{m}$, a contradiction.

Thus $t_1^2 + ct_2^2 \in R^*$ and $t_1 + t_2\delta \in S^*$. Now suppose that both $t_1, t_2 \in R^*$ but $t_1 + t_2\delta \notin S^*$. Then $t_1^2 + ct_2^2 = f \in \mathfrak{m}$, and

$$-c = (t_1^{-1})^2 (t_1^2 - f) = (t_2^{-1})^2 t_1^2 (1 - (t_1^{-1})^2 f)$$

. By assumption (because A is a local ring), $1 - (t_1^{-1})^2 f \in \mathbb{R}^{*2}$, implying that $-c \in \mathbb{R}^{*2}$, a contradiction. Thus S is local with maximal ideal $S\mathfrak{m}$.

Thus $S/S\mathfrak{m}$ is a field. The imbedding $R/\mathfrak{m} \to S/S\mathfrak{m}$ allows us to view $S/S\mathfrak{m}$ as a vector space over R/\mathfrak{m} , with $\{1+S\mathfrak{m},\delta+\mathfrak{m}\}$ as a basis. Thus $S/S\mathfrak{m}$ is a quadratic extension of R/\mathfrak{m} . The involution of S induces the R/\mathfrak{m} -automorphism of $S/S\mathfrak{m}$ of orer 2 and the norm map J induces the norm map $(S/S\mathfrak{m})^* \to (R/\mathfrak{m})^*$.

Since R/\mathfrak{m} is known to be F_q , this map is known to be surjective. We claim that J is surjective. Indeed, pick $e \in R^*$. Then by the surjectivity of the norm map, there is $s \in S$ and $f \in \mathfrak{m}$ such that

$$j(s) = e + f = e(1 + e^{-1}f).$$

Since $1 + e^{-1}f \in \mathbb{R}^{*2}$ (by surjectivity of squaring map of $1 + \mathfrak{m}$), it follows that e is in the image of J, as claimed.

By the claim there are $t_1, t_2 inR$ with at least one in R^* , such that $t_1^2 + t_2^2 c = r/a$. Then $v = u_1 t_1 + u_2 t_2$ is primitive and

$$h(v,v) = at_1^2 + bt_2^2 = r.$$

This completes the proof.

Theorem 3.1. There is an orthogonal basis v_1, v_2, \ldots, v_m of V satisfying

$$h(v_1, v_1) = \dots = h(v_{m-1}, v_{m-1}) = 1$$
 and $h(v_m, v_m) = 1$ if $QA^* = R^*$ $h(v_m, v_m) \in \{1, \varepsilon\}$ if $Q(A^*) = R^{*2}$

Proof. To prove this, we'll use induction on m. Assume that m=1. By lemma 2.2, V has a basis $\{u_1\}$ such that $h(u_1,u_1) \in R^*$. If $Q(A^*) = R^*$, then $h(u_1,u_1) = aa^*$ for some $a \in A^*$. Let $v = u_1a^{-1}$. Then

$$h(v,v) = a^{-1} * a^{-1}h(u,u) = 1.$$

If $Q(A^*) = R^{*2}$, then $h(u_1, u_1) = \varepsilon b$ for some $b \in R^{*2}$ (note that from earlier result, $[R^* : R^{*2}] = 2$). Then $b = r^2$ for some $r \in R^*$. Let $v = r^{-1}u_1$. Then

$$h(v,v) = (r^{-1})^2 h(u,u) = b^{-1} \varepsilon b = \varepsilon.$$

Now assume that m > 1 and that the hypothesis is true for m - 1. By proposision 2.4, there exists u_1 such that $h(u_1, u_1) = 1$. Using lemma 2.3, this can be extended to a basis u_1, v_2, \ldots, v_m . But $V' = \text{span}\{v_2, \ldots v_m\}$ has dimension m - 1 and thus there is a basis $u_2, \ldots u_m$ of V'. Then $\{u_1, u_2, \ldots, u_m\}$ is a basis of V with the desired property. \square

Let \mathfrak{i} be a * invariant ideal of A and let $\overline{A} = A/\mathfrak{i}$. Then * induces an involution on \overline{A} . Moreover, $\overline{V} = V/V\mathfrak{i}$ is a free \overline{A} module of rank m and the map $\overline{h}: \overline{V} \times \overline{V} \to \overline{A}$, given by $\overline{h}(v+V\mathfrak{i},w+V\mathfrak{i}) = h(v,w)$ is a non-degenerate hermitian form.

Recall that when A is commutative the discriminant of h is the element of $R^*/Q(A^*)$ obtained by taking the determinant of the Gram matrix of h relative to any basis of V.

Corollary 3.1. Let h_1 and h_2 be non-degenerate hermitian forms on V. Then the following conditions are equivalent:

- (a) h_1 and h_2 are equivalent.
- (b) The reductions $\overline{h_1}$ and h_2 modulo \mathfrak{r} are equivalent.
- (c) The discriminants of $\overline{h_1}$ and $\overline{h_2}$ are the same.

Proof. Need to fill this in

Given $r_1, \ldots, r_m \in R^*$ we say that h is of type $\{r_1, \ldots, r_m\}$ if there is a basis B of V relative to which h has matrix diag $\{r_1, \ldots, r_m\}$. In that case, h is also of type $\{s_1, \ldots, s_m\}$ for $s_1 \in R^*$, if and only if $(r_1 \cdots r_m)(s_1 \cdots s_m)^{-1} \in Q(A^*)$.

Proof. Assume that h is of type $\{r_1, \ldots, r_m\}$ and of type $\{s_1, \ldots, s_m\}$. Because the determinant is invariant under the choice of basis, $r_1 \cdots r_m = s_1 \cdots s_m$ and $(r_1 \cdots r_m)(s_1 \cdots s_m)^{-1} = 1 \in Q(A^*)$.

Now assume that h is of type $\{r_1, \ldots, r_m\}$ with respect to basis B and $(r_1 \cdots r_m)(s_1 \cdots s_m)^{-1} \in Q(A^*)$. It's clear that if m=1 that this implies that h is of type $\{s_1\}$. Consider the case that m>1 and assume also that h is not of type $\{s_1, s_2, \ldots, s_m\}$. Then for every orthogonal basis B of V, let k_B denote the number of $v_i \in V$ such that $h(v_i, v_i) \neq s_i$, and let $k = \min\{k_B : B \text{ is a basis of } V\}$. Because h is not of type $\{s_1, \ldots, s_m\}$, k>0. Similarly, by proposition 3.4, k <= m-1. Without loss of generality, assume that $h(v_i, v_i) = s_i$ when i <= m-k and $h(v_i, v_i) = d_i s_i$ where $d_i \neq 1$

(mod $Q(A^*)$) when i > m - k. Because h is of type $\{h(v_i, v_i)\}$, and det(h) is invariant under choice of basis,

$$\prod_{i=1}^{m} r_{i} = \prod_{i=1}^{m} h(v_{i}, v_{i}) = \left(\prod_{i=1}^{m-k} s_{i}\right) \left(\prod_{i=m-k}^{m} d_{i} s_{i}\right)$$

and by assumption,

$$\prod_{i=m-k}^{m} d_i = 1 \mod Q(A^*).$$

This result shows that k > 1. Now let $V_1 = \operatorname{span}\{v_i : i \leq m - k\}$ and $V_2 = \operatorname{span}\{v_i : i > m - k\}$. Because $k \geq 2$, by proposition 3.2 there exists an orthogonal basis $\{w_1, \ldots, w_k\}$ with $h(w_1, w_1) = s_{m-k+1}$. But then $V' = \{v_1, v_2, \ldots, v_{m-k}, w_1, \ldots, w_k\}$ is a basis for V with $k_{V'} < k$, contradicting the assumption that k was minimized. Thus $d_i = 1 \pmod{Q(A^*)}$ for all i, and for some basis V, h is of type $\{s_1, s_2, \ldots, s_m\}$.

Lemma 3.2. When m is even then h is of type $\{1, -1, ..., 1, -1\}$ (define this as kind I) or $\{1, -1, ..., 1, -\varepsilon\}$ (kind II). When m is odd then h is of type $\{1, -1, ..., 1, -1, -1\}$ (kind I) or of type $\{1, -1, ..., 1, -1, -\varepsilon\}$ (kind II).

Proof. By theorem 3.1, we know that h is of type $\{1,1,\ldots,1\}$ or $\{1,1,\ldots,\varepsilon\}$. If $-1\in Q(A^*)$, then the result is immediate. Assume that Q is not surjective and that $-1\not\in Q(A^*)$. Let r=1 if h is of type $\{1,1,\ldots,1\}$ and $r=\varepsilon$ if h is of type $\{1,1,\ldots,\varepsilon\}$. Let $k=\frac{m}{2}$ if m is even, and $k=\frac{m}{2}+1$ if m is odd. By the previous result, if $r(-1)^k\delta^{-1}$, then h is of type $\{1,-1,\ldots,1,-\delta\}$ (m even) or $\{1,-1,\ldots,1,-1,-\delta\}$ (m odd), where $\delta\in\{1,\varepsilon\}$. Note that because $-1\not\in Q(A^*)=R^{*2}$ and $\varepsilon\not\in Q(A^*)$, because $[R^*:R^{*2}]=2, -\varepsilon\in Q(A^*)$. Consider 4 cases:

Case 1: r = 1 and k even Let $\delta = 1$. Then $r(-1)^k \delta = 1 \in Q(A*)$ and h is of type $\{1, -1, ..., -1\}$.

Case 2: r = 1 and k odd Let $\delta = \varepsilon$. Then $r(-1)^k \delta = -\varepsilon \in Q(A)$ and h is of type $\{1, -1, \dots, -\varepsilon\}$.

Case 3: $r = \varepsilon$ and k even Let $\delta = \varepsilon$. Result follows similarly.

Case 4: $r = \varepsilon$ and k odd Let $\delta = 1$. Result follows similarly.

Additionally, it is clear from these prior results that h is of kind I and kind II if and only if $Q(A^*) = R^*$.

Even when Q is not surjective, if m is odd there is only one unitary group of rank m, regardless of h, since h and εh are non-equivalent and have the same unitary group.

Lemma 3.3. Let Λ be the set of all values h(u, u) with $u \in V$ primitive. Assume that the involution * induces on A/\mathfrak{r} is the identity.

- (a) Suppose m=1. If h is of type $\{1\}$ then $\Lambda=R^{*2}$ and if h is of type $\{\varepsilon\}$ then $\Lambda=R^*/R^{*2}$.
- **(b)** Suppose m = 2. If h is of type $\{1, -1\}$, then $\Lambda = R$ and if h is of type $\{1, -\varepsilon\}$ then $\Lambda = R^*$.
- (c) If m > 2 then $\Lambda = R$.
- Proof. (a) Assume m=1. Assume that h is of type $\{1\}$. Then $\{u_1\}$ is a basis of V with $h(u_1,u_1)=1$. Pick $r\in R^{*2}$. Because * is the identity on A/\mathfrak{r} , $Q(A^*)=R^{*2}$. Pick $r\in R^{*2}$. Then $r=Q(a)=aa^*$ for some $a\in A^*$ and $h(u_1a^*,u_1a^*)=aa^*=r$. Thus $R^{*2}\subseteq \Lambda$. Now let $v\in V$ be primitive. Because $m=1, v=u_1a$ for some $a\in A^*$ and $h(v,v)\in Q(A)=R^{*2}$. Thus $\Lambda=R^{*2}$. A similar argument shows that $\Lambda=R\backslash R^{*2}$ when h is of type $\{\varepsilon\}$.
- (b) Assume m=2 and h is of type $\{1,-1\}$ with corresponding basis vectors u_1, u_2 . Then $u_1 + u_2$ is primitive and $h(u_1 + u_2, u_1 + u_2) = 0$. Applying Lemma 3.1 shows that $\Lambda = R$.

Suppose instead that h is of type $\{1, -\varepsilon\}$. Assume that $v = u_1 a_1 + u_2 a_2$ is primitive and $h(v,v) \in \mathfrak{m}$. That is, $a_1 a_1^* - \varepsilon a_2 a_2^* = f \in \mathfrak{m}$. Because v is primitive, at least one a_1, a_2 is a unit. Without loss of generality, assume that $a_1 \in A^*$. Then a_2 is also a unit because $\varepsilon a_2 a_2 \star \neq 0$ in A/\mathfrak{r} . Because $Q(A) = R^{*2}$, $a_1^2 = b_1 b_1^*$ and $a_2^2 = b_2 b_2^*$ for some $b_1, b_2 \in R^*$. Then $b_1 b_1^* - \varepsilon b_2 b_2^* = f$ and $c_1^2 - \delta c_2^2 = 0$ in A/\mathfrak{r} with $c_1, c_2, \delta \neq 0$. But $\delta = c_1^2 (c_2^{-1})^2 = (c_1 c_2^{-1})^2$, contradicting the assumption that $\varepsilon \notin R^{*2}$. Thus $h(v,v) \in R^*$ for all primitive v. Because h is of type $\{-1, \varepsilon\}$ as well as $\{1, -\varepsilon\}$ there are primitive vectors u and v with h(u,u) = 1 and $h(v,v) = \varepsilon$. Thus $\Lambda = R^*$.

(c) Assume that $u_1, u_2, \ldots u_m$ is an orthogonal basis of V with $h(u_i, u_i) \in \mathbb{R}^*$. Then $-h(u_3, u_3) \in \mathbb{R}^*$ an by proposition 3.2, there exists a primitive vector $v \in u_1 A \oplus u_2 A$ with $h(v, v) = -h(v_3, v_3)$. Then $u = v + u_3$ is primitive with h(u, u) = 0, and applying lemma 3.1 shows that $\Lambda = \mathbb{R}$.

References

- [1] Wikipedia contributors. Quadratic integer, July 2013.
- [2] Svetlana Katok. *p-adic Analysis Compared with Real*. American Mathematical Society, Providence, Rhode Island, 2007.