Devoir à la maison n° 22

À rendre le 9 juin

Dans tout le problème, E est un \mathbb{R} -espace vectoriel de <u>dimension 3</u>.

Pour u endomorphisme de E et n entier naturel non nul, on note $u^n = u \circ u \circ \cdots \circ u$ (n fois).

On note $\mathcal{M}_3(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices carrées d'ordre 3, $\mathrm{GL}_3(\mathbb{R})$ le groupe des matrices inversibles de $\mathcal{M}_3(\mathbb{R})$, et I_3 la matrice unité de $\mathcal{M}_3(\mathbb{R})$.

On notera par 0 l'endomorphisme nul, la matrice nulle et le vecteur nul.

Partie A

- 1) Soit u un endomorphisme de E et soit i et j deux entiers naturels. On considère l'application w de Ker u^{i+j} vers E définie par : $w(x) = u^j(x)$.
 - a) Montrer que Im $w \subset \operatorname{Ker} u^i$.
 - **b)** En déduire que $\dim(\operatorname{Ker} u^{i+j}) \leq \dim(\operatorname{Ker} u^i) + \dim(\operatorname{Ker} u^j)$.
- 2) Soit u un endomorphisme de E vérifiant : $u^3 = 0$ et $\operatorname{rg} u = 2$.
 - a) Montrer que dim(Ker u^2) = 2. (On pourra : calculer dim Ker u et dim Ker u^3 , puis utiliser deux fois la question 1)b), pour u^2 et u^3 .).
 - b) Montrer que l'on peut trouver un vecteur a non nul de E tel que $u^2(a) \neq 0$, et en déduire que la famille $(u^2(a), u(a), a)$ est une base de E.
 - c) Ecrire alors la matrice U de u et la matrice V de $u^2 u$ dans cette base.
- 3) Soit u un endomorphisme de E vérifiant : $u^2 = 0$ et $\operatorname{rg} u = 1$.
 - a) Montrer que l'on peut trouver un vecteur b non nul de E tel que $u(b) \neq 0$.
 - b) Justifier l'existence d'un vecteur c de Keru tel que la famille (u(b), c) soit libre, puis montrer que la famille (b, u(b), c) est une base de E.
 - c) Ecrire alors la matrice U' de u et la matrice V' de $u^2 u$ dans cette base.

Partie B

Soit désormais une matrice A de $\mathcal{M}_3(\mathbb{R})$ semblable à une matrice du type

$$T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

On se propose de montrer que la matrice A est semblable à son inverse A^{-1} . On pose

$$N = \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & \gamma \\ 0 & 0 & 0 \end{pmatrix}$$

et l'on considère une matrice $P \in GL_3(\mathbb{R})$ telle que

$$P^{-1}AP = T = I_3 + N.$$

- 4) Expliquer pourquoi la matrice A est bien inversible.
- 5) Calculer N^3 et montrer que $P^{-1}A^{-1}P = I_3 N + N^2$.
- **6)** On suppose dans cette question que N=0, montrer alors que les matrices A et A^{-1} sont semblables.
- 7) On suppose dans cette question que rg(N) = 2. On pose $M = N^2 N$.
 - a) Montrer que la matrice N est semblable à la matrice $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ et en déduire, en utilisant la question 2), une matrice semblable à la matrice M.
 - b) Calculer M^3 et déterminer rg(M).
 - c) Montrer que les matrices M et N sont semblables.
 - d) Montrer alors que les matrices A et A^{-1} sont semblables.
- 8) On suppose dans cette question que rg(N) = 1. On pose $M = N^2 N$. Montrer que les matrices A et A^{-1} sont semblables.
- **9) Exemple** : soit la matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$.

On note (a, b, c) une base de E et u l'endomorphisme de E de matrice A dans cette base.

- a) Montrer que $Ker(u Id_E)$ est un sous-espace vectoriel de E de dimension 2 dont on donnera une base (e_1, e_2) .
- **b)** Justifier que la famille (e_1, e_2, c) est une base de E, et écrire la matrice de u dans cette base.
- c) Montrer que les matrices A et A^{-1} sont semblables.
- 10) Réciproquement, toute matrice de $\mathcal{M}_3(\mathbb{R})$ semblable à son inverse est-elle nécessairement semblable à une matrice du type $T = \begin{pmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix}$?