

Charging Infrastructure

Lecture-11
Single-phase Boost PFC Converter-III

Dr. Apurv Kumar Yadav

Department of Electrical Engineering

Recap

for
$$S_2 \rightarrow d(t) = 1 - d(t)$$

$$= |V_{SPK} Sinwt|$$
but $S_1 \rightarrow d(t), S_1 = d(t)$

utjuste igele worent - 10% ob Is, Ple

Sizing of (C) Assuration, the converter is operated in such a manuer that the upf current is drawn from the grid is = Is, ple sinut Us= Vs, Plc sin wt

$$P_{inlt}$$
 = $\frac{V_{s,plc} T_{s,plc}}{2}$ - $\frac{V_{s,plc} T_{s,plc} (a, 2\omega t)}{2}$ - (

gover at the ontest of bidge

Assure, the horse in vertilier & boost comenter is negligible

icons(t)=
$$\frac{V_{s,plc} T_{s,plc}}{2 V_0}$$
 - $\frac{V_{s,plc} T_{s,plc} C_{s,2\omega} t}{2 V_0}$

will be bloom? 'Fr' DC quantity

nd harmonic flowing - will be through the capacity

2nd line harmonic

the ripple generated by the Lick)

$$\Rightarrow V_{0,nin} = \frac{1}{c} \int x_{c}(t) dt$$

we can write,

Ve, apple =
$$-\frac{IL}{2CW}$$
 sin $2wt \longrightarrow 5$

$$V_{0, \text{winde, ple}} = \frac{IL}{2\omega c}$$

$$C = \frac{I_L}{2 w v_{0, \text{mind}, Plc}}$$

$$C = \frac{I_L}{2 w v_{0, \text{mind}, Plc}}$$

 $C = \frac{P_L}{WDV_0 \cdot V_0}$ $C = \frac{P_L}{WDV_0$

Switch ratings

The rollage rating of S, , Vs. = Vo

$$\int V_{S_1} = (.4 \text{ V}_0) \qquad (40\% - 60\%)$$

$$V_0 = 400 \text{ V}$$

RMs werent of 'S'

relities

The correct through Sa=0

$$\exists \text{Trm}, sa = \int \frac{1}{5} \cdot T^2 \cdot T^{75}$$

$$= \int \frac{1}{5} \cdot T^2 \cdot T^{75}$$

Rms current of Switch's,

(as during dlt) I, period

Thank You

