Problem Set 2

[Your Full Name Here]

MATH 100 — Introduction to Proof and Problem Solving — Summer 2023

Problem 2.1.	For the sets $A =$	$\{1,2,\ldots,10\}$	and l	$B = \{2, 4, 6, 9, 12, 25\}$, consider the statements
		$P:A\subseteq B$.	and	$Q: A\setminus B =6.$

Determine which of the following statements are true, with justification.

Solution.

(a)	$P \lor Q$	
	Solution.	
(b)	$P \lor \neg Q$	
	Solution.	
(c)	$P \wedge Q$	
	Solution.	
(d)	$\neg P \land \neg Q$	
	Solution.	
(e)	$\neg P \lor \neg Q$	

Problem 2.2. Consider the open sentences:

$$P(x,y): x + y = -2$$
. and $Q(x,y): x^2 + y^2 = 4$.

where the domain of both x and y is $S = \{-2,0,2\}$.

State each of the following in words and determine all values of $x, y \in S$ for which the resulting statements are true, with justification.

(a)
$$\neg P(x, y)$$

Solution.

(b) $P(x,y) \vee Q(x,y)$

Solution.

(c) $P(x,y) \wedge Q(x,y)$

Solution.

(d)
$$P(x,y) \implies Q(x,y)$$

Solution. \Box

(e)
$$Q(x,y) \implies P(x,y)$$

Solution.

(f)
$$P(x,y) \iff Q(x,y)$$

Solution.

Problem 2.3.

(a) For statements P, Q and R, show t	that
---------------------------------------	------

$$((P \lor Q) \Rightarrow R) \equiv (P \Rightarrow R) \land (Q \Rightarrow R)$$

Solution.

(b)	For statements P and Q , the implication $\neg P \implies \neg Q$ is called the <i>inverse</i> of the implication
	$P \implies Q$ which it is <i>not</i> equivalent to. Find another implication that is logically equivalent
	to $\neg P \implies \neg Q$ and verify your answer.

Solution.

Collaborators:

References:

• [Book(s): Title, Author]

• [Online: Link]

• [Notes: Link]

Fin.