Programming Languages: Imperative Program Construction Practicals 0: Non-Looping Constructs and Weakest Precondition

Shin-Cheng Mu

Autumn Term, 2024

Guarded Command Language Basics

- 1. Which of the following Hoare triples hold?
 - (a) $\{x = 7\}$ skip $\{$ odd $x\}$;
 - (b) $\{x > 60\}x := x \times 2\{x > 100\};$
 - (c) $\{x > 40\}x := x \times 2\{x > 100\};$
 - (d) $\{true\}$ if $x \leq y \rightarrow y := y x \mid x \geqslant y \rightarrow x := x y$ fi $\{x \geqslant 0 \land y \geqslant 0\}$;
 - (e) $\{even \ x \land even \ y\}$ if $x \leqslant y \rightarrow y := y x \mid x \geqslant y \rightarrow x := x y$ fi $\{even \ x \land even \ y\}$.
- 2. Is it always true that $\{True\}$ x := E $\{x = E\}$? If you think the answer is yes, explain why. If your answer is no, give a counter example.
- 3. Verify:

$$\{x = X \land y = Y\}$$

$$x := x \not\Leftrightarrow y$$

$$y := x \not\Leftrightarrow y$$

$$x := x \not\Leftrightarrow y$$

$$\{x = Y \land y = X\}$$

where x and y are boolean and $(\not\Leftrightarrow)$ is the "not equal" or "exclusive or" operator. In fact, the code above works for any (\otimes) that satisfies the properties that for all a, b, and c:

associative :
$$a \otimes (b \otimes c) = (a \otimes b) \otimes c$$
,
unipotent : $a \otimes a = 1$,

where 1 is the unit of (\otimes), that is, 1 \otimes *b* = *b* = *b* \otimes 1.

4. Verify the following program:

$$\mathbf{var} \ r, b : Int$$

$$\{0 \leqslant r < 2 \times b\}$$

$$\mathbf{if} \ b \leqslant r \rightarrow r := r - b$$

$$\mid \ r < b \rightarrow skip$$

$$\mathbf{fi}$$

$$\{0 \leqslant r < b\}$$

5. Verify:

```
var x, y : Int

{ True}

x, y := x \times x, y \times y

if x \ge y \to x := x - y

| y \ge x \to y := y - x

fi

{x \ge 0 \land y \ge 0}.
```

6. Verify:

```
var a, b : Bool

{True}

if \neg a \lor b \rightarrow a := \neg a

\mid a \lor \neg b \rightarrow b := \neg b

fi

{a \lor b}.
```

7. Assuming that x, y, and z are integers, prove the following

```
(a) \{True\}\ if x \ge 1 \to x := x + 1 \mid x \le 1 \to x := x - 1 fi \{x \ne 1\}.
```

(b)
$$\{True\}$$
 if $x \geqslant y \rightarrow skip \mid y \geqslant x \rightarrow x, y := y, x$ fi $\{x \geqslant y\}$.

(c)
$$\{x = 0\}$$
 if $True \rightarrow x := 1 \mid True \rightarrow x := -1 \{x = 1 \lor x = -1\}.$

(d)
$$\{A = x \times y + z\}$$
 if even $x \to x$, $y := x / 2$, $y \times 2 \mid True \to y$, $z := y - 1$, $z + x \{A = x \times y + z\}$.

(e)
$$\{x \times y = 0 \land y \leq x\}$$
 if $y < 0 \rightarrow y := -y \mid y = 0 \rightarrow x := -1 \{x < y\}$.

Weakest Precondition of Simple Statements

- 8. Given below is a list of statements and predicates. What are the weakest precondition for the predicates to be true after the statement?
 - (a) $x := x \times 2, x > 100$;
 - (b) $x := x \times 2$, even x;
 - (c) $x := x \times 2, x > 100 \land even x$;
 - (d) $x := x \times 2$, odd x.
 - (e) skip, odd x.
- 9. Determine the weakest *P* that satisfies
 - (a) $\{P\} x := x + 1; x := x + 1 \{x \ge 0\}.$
 - (b) $\{P\} x := x + y; y := 2 \times x \{y \ge 0\}.$
 - (c) $\{P\} x := y; y := x \{x = A \land y = B\}.$
 - (d) $\{P\} x := E; x := E \{x = E\}.$
- 10. What is the weakest *P* such that the following holds?

$$var x : Int$$

$$\{P\}$$

$$x := x + 1$$

$$if x > 0 \rightarrow x := x + 1$$

$$| x < 0 \rightarrow x := x + 2$$

$$| x = 1 \rightarrow skip$$

$$fi$$

$$\{x \ge 1\} .$$

11. Two programs S_0 and S_1 are equivalent if, for all Q, $wp S_0 Q = wp S_1 Q$. Show that the two following programs are equivalent.

if
$$B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$$
 fi; S if $B_0 \rightarrow S_0$; $S \mid B_1 \rightarrow S_1$; S fi

12. Consider the two programs:

$$\begin{array}{l} \mathsf{IF}_0 = \textbf{if} \ B_0 \to S_0 \ | \ B_1 \to S_1 \ \textbf{fi} \ , \\ \mathsf{IF}_1 = \textbf{if} \ B_0 \to S_0 \ | \ B_1 \ \land \ \neg \ B_0 \to S_1 \ \textbf{fi} \ . \end{array}$$

Show that for all Q, $wp \ \mathsf{IF}_0 \ Q \Rightarrow wp \ \mathsf{IF}_1 \ Q$.

Properties of Weakest Precondition

- 13. Prove that $(wp \ S \ Q_0 \lor wp \ S \ Q_1) \Rightarrow wp \ S \ (Q_0 \lor Q_1)$.
- 14. Recall the definition of Hoare triple in terms of *wp*:

$$\{P\} S \{Q\} = P \Rightarrow wp S Q$$
.

Prove that

1.
$$(\{P\} S \{Q\} \land (P_0 \Rightarrow P)) \Rightarrow \{P_0\} S \{Q\}.$$

2.
$$\{P\} S \{Q\} \land \{P\} S \{R\} \equiv \{P\} S \{Q \land R\}.$$

15. Recall the weakest precondition of if:

$$wp ext{ (if } B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1 ext{ fi) } Q = (B_0 \Rightarrow wp S_0 Q) \land (B_1 \Rightarrow wp S_1 Q) \land (B_0 \lor B_1) .$$

Prove that

$$\begin{array}{l} \{ P \} \ \mbox{if} \ B_0 \to S_0 \ | \ B_1 \to S_1 \ \mbox{fi} \ \{ Q \} \ \equiv \\ \{ P \wedge B_0 \} \ S \ \{ Q \} \ \wedge \ \{ P \wedge B_1 \} \ S \ \{ Q \} \ \wedge \ (P \Rightarrow (B_0 \vee B_1)) \ . \end{array}$$

Note: having proved so shows that the way we annotate **if** is correct:

$$P$$

$$\mathbf{if} \ B_0 \to \{P \land B_0\} \ S_0 \ \{Q\}$$

$$| \ B_1 \to \{P \land B_1\} \ S_1 \ \{Q\}$$

$$\mathbf{fi}$$

$$\{Q\} \ .$$

- 16. Recall that *wp S Q* stands for "the weakest precondition for program *S* to terminate in a state satisfying *Q*". What programs *S*, if any, satisfy each of the following conditions?
 - 1. wp S True = True.
 - 2. wp S True = False.
 - 3. wp S False = True.
 - 4. wp S False = False.