

The North Face ecommerce

Machine Learning

⊖ Context

- Problem: E-commerce platform wants to boost its online sales
- Solution 1: deploy a recommender system for the products catalogue
- Solution 2: Improve the catalogue structure using topic extraction
- Dataset: 500 product descriptions gathered from the website

Problem: E-commerce platform wants to boost its online sales

- Solution 1: deploy a recommender system for the products catalogue
- Solution 2: Improve the catalogue structure using topic extraction
- Dataset: 500 product descriptions gathered from the website

Tasks

- Process the product descriptions into a TF-IDF matrix
- Use unsupervised learning to make clusters of similar products
- Design a recommender system to find items similar to the selection
- Extract topics from descriptions using latent semantic analysis

Descriptions overview

- 500 product descriptions
- About 100 words each
- Gathered by web scraping
- Corpus preprocessing
 - Remove HTML tags
 - Remove punctuation
 - Remove numbers
 - Remove stop words
 - Strip diacritics and casefold
 - Lemmatize words

Descriptions overview

- 500 product descriptions
- About 100 words each
- Gathered by web scraping
- Corpus preprocessing
 - Remove HTML tags
 - Remove punctuation
 - Remove numbers
 - Remove stop words
 - Strip diacritics and casefold
 - Lemmatize words

Descriptions overview

- 500 product descriptions
- About 100 words each
- Gathered by web scraping
- Corpus preprocessing
 - Remove HTML tags
 - Remove punctuation
 - Remove numbers
 - Remove stop words
 - Strip diacritics and casefold
 - Lemmatize words

Garment descriptions

Clustering: Methods

- Convert description corpus to TF-IDF
- 2 methods: DBSCAN / HDBSCAN
- Optimize parameters
 - Limit the number of outliers
 - Make about 10 clusters

Clustering: Methods

- Convert description corpus to TF-IDF
- 2 methods: DBSCAN / HDBSCAN
- Optimize parameters

8

Clustering: Methods

- Convert description corpus to TF-IDF
- 2 methods: DBSCAN / HDBSCAN
- Optimize parameters
 - Limit the number of outliers
 - Make about 10 clusters

DBSCAN grid search

0

Clustering: Methods

- Convert description corpus to TF-IDF
- 2 methods: DBSCAN / HDBSCAN
- Optimize parameters
 - Limit the number of outliers
 - Make about 10 clusters

DBSCAN grid search

Clustering: Methods

- Convert description corpus to TF-IDF
- 2 methods: DBSCAN / HDBSCAN
- Optimize parameters
 - Limit the number of outliers
 - Make about 10 clusters

DBSCAN grid search

- Difficult to find good parameters!
- DBSCAN
 - 16 clusters
 - 48 outliers (10%)
- HDBSCAN
 - 18 clusters
 - 80 outliers (16 %)
- Strong cluster inhomogeneity
 - Largest cluster : about 180 items
 - Smallest cluster: 4 items

Clustering: t-SNE Vizualization

Low dimensional embedding

t-distributed Stochastic Neighbor Embedding (t-SNE)

DBSCAN (16 clusters)

HDBSCAN (18 clusters)

 Similar clusterization with DBSCAN and HDBSCAN

Small well-defined clusters

- Large central aggregate
 - One big cluster (180 items)
 - Intertwined with outliers

Clustering: Wordcloud visualization

Clusters difficult to interpret

Outliers

Largest cluster

Clustering: Wordcloud visualization

Clusters difficult to interpret

Outliers

Largest cluster

Clear garment categories

Brims

Bras

Topic extraction

- Truncated SVD
 - Get eigenvectors of the covariance matrix
- Representation of the corpus topics
- Visualize as wordclouds
 - Split positive and negative components

Topic extraction

- Truncated SVD
 - Get eigenvectors of the covariance matrix
- Representation of the corpus topics
- Visualize as wordclouds
 - Split positive and negative components

Synthetic

Cold

Hot

Hot / Synthetic

Cold / Organic

Conclusion

- Good clusterization and topic extraction from only 500 descriptions
- Limited clustering performance
- Mixing of topics from different semantic fields (eg garment type and garment composition)
- For a better clustering / topic extraction
 - More descriptions
 - Split descriptions (garment usage / composition / ...)

Thanks!

