

Chuck Black

Senior Software Developer Tallac Networks

SDN TODAY

"Who Stole My SDN"?

A Brief History of SDN

The Cisco Effect

APIC-EM/CLI NETCONF/YANG

BGP-LS/PCEP

APIC-DC/OpFlex

trum

Proactive OpenFlow

Reactive OpenFlow

Legacy (no disruption)

Evolutionary (minimal changes)

Network Management ++

Disruptive Revolutionary

Exciting

The Overlay Effect (Nicira)

Intractable Data Center Networking Problems

- MAC table overflow
- @#\$%! Spanning Tree
- VLAN exhaustion
- Traffic Engineering

SDN Landscape Today

Overlay-based

- VMware NSX
- Juniper Contrail
- Cisco ACI

Turnkey

API-based

- OpenDaylight
- APIC-EM
- Tail-f (NSO)

Application development

OpenFlow-based

- ONOS
- BigSwitch
- NEC VTN

Turnkey or App development

SDN Devices Today

OpenFlow

OpenFlow TCAM

SDN Device Control Points

Config

RIB

FIB

Applications

- Config: Configuration parameters for security and policy
- RIB: Routing Information Base entries,
 MPLS Label Switched Paths
- **FIB:** Forwarding Information Base entries such as OpenFlow and BGP-FS

SDN Applications Today: OpenFlow

OpenFlow-based SDN Interfaces

Device-level OpenFlow

OVS-OFCTL

Controller-level OpenFlow

- Matches/Actions
- Set flows per-device

Policy-level OpenFlow

- Intents
- Declarative

SDN Applications Today: APIs

SDN APIs Today

Device-level APIs

 NETCONF, REST, SNMP, CLI

Controller-level APIs

- Abstraction
- Multiple-device operations

Policy-level APIs

- Intents
- Declarative

SDN Applications Today: Overlays

SDN – Automation?

Is Automation a Type of SDN?

- What is Automation? Using Ansible, Python, StackStorm, SaltStack, on-device containers, scripts, etc. to automate tedious manual processes, and to dynamically respond to network and policy changes.
- Compare Automation to traditional SDN characteristics:
 - Plane Separation: Of forwarding and control planes?
 - Programmability: Automation of tasks?
 - Centralized Control: Network-wide views and policies?
 - **Simplified Devices**: Reduced device complexity?
 - Openness for Innovation: Ability to create new networking solutions to old or persistent problems?
- Virtualization: Of network functions and resources?

Summary: SDN Today

More risk

Less Risk

SECURITY ISSUES AND SDN

Vulnerability and SDN Type

Risk depends on SDN application type

OpenFlow-based

• **Reactive**: susceptible to denial of service attacks, overloaded links, overloaded CPU/disk, as well as centralized attacks on controllers

- **Proactive**: less risk, only centralized attacks on controllers
- API-based: less risk, really just network management ++
- Overlay-based: less risk, contained/secure datacenter environment

Vulnerability and SDN Application Type

Risk depends on SDN application type

 Internal (runs inside JVM container, uses Java APIs): Running inside controller mean greater performance and capabilities, but failures more likely to jeopardize operation of entire controller and other applications

API): Running outside controller, potentially on different system or location, protects controller from application failures. Still, invalid or incorrect requests can impact the controller and indirectly, other applications.

App

ODL / MD-SAL

OSGi

RSAConterence 2018

App

App

REST API

Vulnerability and Attack Surface

Attack surface a major criteria for understanding vulnerability

- Distributed Model
 - Huge attack surface, must secure entire network of devices because critical policy is spread throughout, one change can effect the entire network
- Centralized Model
 - Limited attack surface, just centralized controller(s). Easier to defend, protect, isolate, secure.

Reliability of Centralized Systems

Seriously? How can we expect centralized systems to be reliable?

- Telephony centralized their networks three decades ago
- Google, Amazon, Facebook, Twitter (okay maybe one of those should fail)
- Cloud (centralized servers, cloud management, massive quantities of data)

Centralized intelligence is not a new idea – just new to networking. Some other 'dangerous' new ideas:

- Egads old chap! Electricity!We're all going to fry!
- OMG! Flying! In the sky? We're all going to die!

Redundancy Positive Side Effect: Scale

MATTERS #RSAC

- Providing redundancy for reliability also provides scale-out
- Shared device load across controller in cluster
- Shared compute load across controllers in cluster
- Shared network load across links connecting to controller

SECURITY ENHANCEMENT THROUGH SDN

SDN can actually make the network *more* secure

Simplified Devices

MATTERS #RSAC

- Analysis done centrally, device only responsible for forwarding to centralized intelligence
- Frees up device to be less expensive, can concentrate on speeds and feeds, commoditized, not fancy extra proprietary functionality.

Security application from anybody (no vendor lock-in)

Centralized Analysis and Intelligence

 Gather intelligence and information from all locations and sites

 Processing power to do deep analysis, machine learning, network-wide views, etc.

Ability to mitigate threats, dynamically closing down malicious users and/or systems, correlation with other data about users, systems, patterns, history, etc.

Dynamic Monitoring

MATTERS #RSAC

- Detect anomaly, requires further snooping
- Dynamically enable port mirroring for highly granular type of traffic, source or destination of traffic, etc.
- Analyze traffic at central location benefitting from network-wide views, policies, etc.

SDN Security Example - AMQ

Dynamic Mitigation

OpenFlow:

- Redirect suspicious traffic through IDS/IPS, firewall, etc.
- Place user or traffic into quarantine zone
- Drop packets from malicious user
- Only allow certain traffic types

NETCONF or BGP-LS/PCEP:

- Static routes for certain users or traffic types to keep them off main network
- RIB entries to redirect traffic on different path or to IDS/IPS, firewall, etc.
- Deny traffic for malicious users

Cisco – APIC-EM: Using clunky old CLI

SDN and Security: Application

Assuming your organization has chosen to begin its SDN Adventure, the following actions will help you build and maintain a secure SDN network:

 Make sure you have a redundant architecture (controller and links)

- Make sure you have secured communication between network devices and controller
- Make sure you have secured the controller from threats (authentication/authorization of requests, protection from DoS threats, protection from malicious or buggy applications

Thanks!

