Compartment Models cont'd	
A J_{AB} B	
$J_{AB} = k \left(A - B \right)$	

Berkeley-Madonna tutorial...

General transfer equations A $J_{AB} = k$ Constant flow $J_{AB} = k_{AB}A$ donor dependent $J_{AB} = k_{AB}B$ recipient dependent $J_{AB} = k_{AB}(A - B)$ donor-recipient difference $J_{AB} = k_{AB}AB$ donor-recipient product $J_{AB} = k_{AB}AB$ donor-recipient product $J_{AB} = k_{AB}A - l_{AB}A^2$ like logistic function $J_{AB} = k_{AB}f(t)$ forcing function (time)

Model for Lab exercise 4

Berkeley-Madonna Program

- 1) Draw compartments
- 2) Add flows between compartments
- 3) Define any parameters (like k)
- 4) Define flows (transfer equations)
- 5) Set initial conditions
- 6) Set run options
- 7) Check compartment DEs
- 8) Run model (solve)
- 9) Examine results (draw graphs)