Computer- and robot-assisted Surgery

Lecture 2
Basics of Computer Vision – Part 1

NATIONALES CENTRUM FÜR TUMORERKRANKUNGEN PARTNERSTANDORT DRESDEN UNIVERSITÄTS KREBSCENTRUM UCC

getragen von:

Deutsches Krebsforschungszentrum Universitätsklinikum Carl Gustav Carus Dresden Medizinische Fakultät Carl Gustav Carus, TU Dresden Helmholtz-Zentrum Dresden-Rossendorf

Process chain computer-assisted surgery

Interaction and Feedback

https://pingo.coactum.de -> 392473

Contents

How can the quality of images be improved and relevant features be extracted for further processing steps?

- Characteristics of images
- Point operations
- Local operations
 - Smoothing filters
 - Edge filters
 - Morphological operators

Image to be processed

Endoscope

- Endoscope = tube- or pipe-shaped instrument that uses an optical system to provide images from the inside of the body
- Usage in diagnostics and surgery: Flexible and rigid endosopes
- Pros: Gentle surgery with low risks, minimal costs and quick recovery

Minimally-invasive surgery

- Complex interventions with complex anatomy
- Difficulties:

Restricted field of view, reduced mobility, difficult hand-eye-coordination, discrepancies between enlarged 2D view and actual 3D environment, reduced tactile feedback

→ Requires high level of dexterity

Computer-assisted endoscopy

Motivation:

Intraoperative support of the surgeon

Goal is the usage of the endoscope as image-processing unit

• Support:

- Image processing
- 3D modelling
- Soft-tissue tracking
- Registration
- Navigation
- Augmented reality

. . .

Laparoscopic Bowel Measurement

Camera system

Camera head: Image acquisition and transformation into electronic signal

- Photo-CCD
- Lens/focus
- Connection CCD/Lens
- Cable

- Camera control unit
 - Receives signal from camera head
 - White balance, shutter control, image processing...
 - Transfer to screen

Goals of preprocessing

- Goals of preprocessing:
 - Correcting unclear or erroneous images (Image correction)
 - Preparation for next processing steps (Image improvement)
 - Highlight important information
 - Adaption of geometry, resolution, ...
- According to law, original data has to be conserved

Preprocessing – Noise reduction

before after

Bring out important information

before after

Image correction

before after

Causes for errors in images

- Geometric distortions
- Defective sensor
- Bad/erroneous calibration
- Read error sensor matrix
- Noise
- Artifacts

Error source	Error type					
	Geometrics Distortions					
Optics	Optical dispersion					
	Color errors					
	Blurring					
Sensor	Inhomogeneity					
	Color errors					
	Transfer function					
	Blurring					
	Aliasing					
A/D Converter	Quantization					
	Aliasing					
Amplifier	Noise					

2D grayscale image: Discrete function

Img:
$$[0..n] \times [0..m] \rightarrow [0..q]$$

 $(x, y) \mapsto G(x, y) = g$

Neighborhoods in 3D

6-Neighborhood: connected surfaces

18-Neighborhood: connected borders

26-Neighborhood: connected corners

- Definition connected regions
- Important for e.g. segmentation

http://www.springerlink.com/content/

gl774141t3272413/fulltext.pdf

RGB-model:

Img:
$$[0..n] \times [0..m] \rightarrow [0..R] \times [0..G] \times [0..B]$$

 $(x, y) \mapsto G(x, y) = (r, g, b)$

3 components: red, green and blue usually 256 x 256 x 256 nuances = 16,8 Mio. colors

- Alternative: Frequency space
- Fourier-Transform: Representing the images as a sum of sin- and cosine functions
- Two forms of information:
 - Amplitude: describes appearance of structure in image
 - Phase: describes position of structure in image

Characteristics of images

- Parameters, for characterizing/classifying global or local properties
- Local characteristics: Gradient, local contrast...
- Global characteristics:
 - Average intensity

$$\frac{1}{g} = \frac{1}{mn} \sum_{x=0}^{n-1} \sum_{y=0}^{m-1} g$$

- Intensity variance

$$q = \frac{1}{mn} \sum_{x=0}^{n-1} \sum_{y=0}^{m-1} (g - \overline{g})^2$$

Characteristics of images

Histogram: occurrence rate of features

$$h(g) = \#(x, y) : G(x, y) = g, g \in [0..q]$$
 $p(g) = \frac{h(g)}{mn}$ = Relative frequency: $\sum_{g=0}^{255} p(g) = 1$

Which images has the same histogram as a?

A: c+g

B: g+h

C: f+g

D: none

Operations on images

Point operation

Results of transform f is only influenced by a single pixel

Local operation

Results of transform f is only influenced by the surroundings of a pixel

Global operation

Results of transform f is influenced by the entire image

Point operation

 Modification of a single pixel through operations that are only depend on value and position of that pixel

$$g'_{xy} = P_{xy}(g_{xy})$$

 Indices x, y of function P describe possible dependency of the function to the position of the pixel

Example:
$$g'_{xy} = \begin{cases} 2g_x, if(xy) \mod 2 \equiv 0 \\ 4g_x, if(xy) \mod 2 \equiv 1 \end{cases}$$

Homogenous point operations

 Independent from position of the position of image point, only dependent on value

$$g'_{xy} = P(g_{xy})$$

Generally not invertible operation (compare threshold segmentation)

- → affine homogenous point operations
- → non-affine homogenous point operations

Affine point operations

Definition:

$$P: [0..q] \rightarrow [0..q]$$
$$g' = ag + b$$

Parameters a, b define function:

$$a > 1, b = 0$$

$$0 < a < 1, b = 0$$

$$a = 1, b > 0$$

$$a = 1, b < 0$$

Contrast increase

Contrast reduction

Brightness increase

Brightness reduction

Affine point operation

- Geometric visualization of P:
 Characteristic line of transformation
- E.g.: Contrast increase (a > 1, b = 0)

Increase contrast

- Histogram only has spikes in a small area of possible grayscale values
 - By increasing contrast, the small area is spread onto a larger area
 - Characteristics
 - Usage of the entire grayscale spectrum
 - Visual effect is improved

Lookup-table

- Computation of the homogenous point operations can be computationally expensive
- Solution:
 - Compute once and create a Lookup-Table (LUT)
 - Generally computation time savings increase
 - Lower number of bits
 - Increasing image size
 - Complexity of the transformation

g	1	2	3	4	5	6	
g'	2	4	9	16	25	36	

Contrast stretch

- Problem: For the human eye, small differences in grayscale values are hard to distinguish
- Solution: To make fine differences visible, the greyscale range of the select area is stretched.

Information in other areas can become lost

Non-affine: Monotone grayscale transformation

- Non-affine point operations: arbitrary function
- Example: non-linear, monotone grayscale transformation
- Results in the following LUT:

$$g' = \left(\sqrt{(G-1)*g}\right)$$

g	0	1	2	3	4	 100	 200	 250	251	252	253	254	255
T(g)	0	16	23	28	32	 160	 226	 252	253	254	254	254	255

• Stretch in lower grayscale range, compression in upper grayscale range

Binarization

- Replace each pixel with a maximum or minimum value, dependent on threshold
- → Simple segmentation, edge detector

This characteristic line of a transformation describes a ...?

- A: Contrast increase and brightness reduction
- B: Inversion
- C: Contrast and brightness reduction
- D: Contrast reduction and brightness increase

Local operations

- Takes the neighborhood of the image point into consideration
- Execution through masks/windows:
 Size defined through the neighborhood
- Usage
 - Smoothing filter (Low-pass filter)
 - Edge filter (High-pass filter)

- ...

Local Operation in 1D

- Input g:
- Filter h:
- Output g':

• Formel:

$$g'(x) = \sum_{u=-r}^{r} h(u)g(x+u)$$

Local Operation in 1D

- Input g:
- Filter h:
- Output g':

Formel:

$$g'(x) = \sum_{u=-r}^{r} h(u)g(x+u)$$

Local Operation in 1D

Local Operation in 2D

- Input: Image matrix g(x,y)
- Filter: Filter matrix h(2r+1, 2r+1)
- Output: Image matrix G'(x,y)
- Image filtering is a convolution with filter matrix/mask:

$$g'(x,y) = \sum_{u=-r}^{r} \sum_{v=-r}^{r} h(u,v)g(x+u,y+v)$$

Local Operation in 2D: Masks

- Discretization of the filter function
- Each entry in the mask is assigned a weight h(i,j)
- Center point of the mask has coordinate (0,0)

$$r = 2$$

Example

Output				

1	1	1
1	2	1
1	1	1

Example

Inpu	ıt
------	----

0	2	2	2	0
1	10	2	10	1
2	2	20	2	2
1	10	5	10	1
0	2	10	2	1

Output

?	?	?	?	?
?	5.1	5.4	5.1	?
?	5.5	9.1	5.5	?
?	6.2	6.8	6.3	?
?	?	?	?	?

 $\frac{1}{0}$

1	1	1
1	2	1
1	1	1

Image boundary

- Problem at image boundary: Filter not defined for all image points of the environment of border points
 - Border points are not transformed
 Con: Image shrinks with iterative transformations
 - Image is extrapolated past the border

Problem: Extrapolation errors can travel into the inside of the image when iterated

- Mask is restricted so it doesn't exceed past the image boundaries
- Image is extended periodically

Problem: Images, that don't have periodicity

Local operations: Smoothing filter

- Goal: Suppression of noise and image smoothing
- Local variations of the image function values are reduced
- Homogenization of the image function values

Box filter

- Averages out extreme points
- Smoothing effect proportional to mask size

1	1	1
1	1	1
1	1	1

- Fast computation
- Can cause "smearing"
 - → Edges are flattend

What will happen?

0	1	1	1	0
1	1	1	1	1
1	1	3	255	1
1	2	1	1	1
0	2	3	1	1

Box filter computation

Computation with constant computational effort: usage of integral images

$$I_{\Sigma}(x,y) = \sum_{i=0}^{i \le x} \sum_{j=0}^{j \le y} I(i,j)$$

- Simple computation of pixel sums out of four values from the integral image
- New grayscale value (dependent on size of neighborhood N):

Integral image

$$g'(P(x,y)) = \frac{1}{size(N)} (I_{\Sigma}(P_1) + I_{\Sigma}(P_4) - I_{\Sigma}(P_2) - I_{\Sigma}(P_3))$$

Example: Box filter

Gaussian filter

- Better smoothing filter than box filter
- Structure is inspired by Gaussian normal distribution
- Normal distribution can be approximated via binomial distribution
- Influence of the environment in dependence to the distance to the image center → no strong flattening of edges

$$h(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$\sigma = 0.625 \implies \frac{1}{121}$$

1	2	3	2	1
2	7	11	7	2
3	11	17	11	3
2	7	11	7	2
1	2	3	2	1

Gaussian filter computation

- Computation with reduced time effort:
 Separation = Combination of two 1D-Gaußfiltern
- First filter in horizontal direction with 1D-Filter
- Then filter in vertical direction with 1D-Filter

$$\frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}} \cdot \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{y^2}{2\sigma^2}}$$

Example: Gaussian filter

Median filter

- Center pixel is assigned the median of the grayscale values of the local neighborhood
- Robust against outliers
- Sharpness barely suffers
 Edges are mostly conserved
- Smoothing effect is less

9 replaced with 4

New:

2	4	3
5	4	2
7	2	4

Median filter computation

- Sorting costly → Usage of a histogram
- Grayscale image: Create histogram out of the neighborhood of the viewed pixel
- Accumulate entries in histogram, starting at smallest element, until sum is larger than half of the size of the neighborhood → Median

2	4	3
5	9	2
7	2	4

Example: Median filter

Problem of filters up to now

- In medical image data, the border between different types of tissue can be difficult to recognize.
- By applying any of the former filters, fine structures can be lost (Smearing of boundaries)
- Idea: Don't use static filter masks/weights, but instead adapt shape of mask or weights to the local image contents.
 - → anisotropic smoothing filter
 - → Bilateralfilter
 - → "Mean Shift"-Filter

Anisotropic smoothing filter

- Anisotropic = varying in magnitude according to the direction
- Consists, for example, out of:
 - A Gaussian filter G (with constant variance)
 - A Conductance-term C
 Both elements are combined via multiplication
- Idea:

To not smear edges, the Conductance-term weakens the Gaussian filter at the required positions

Bilateral filter

Idea: Combination of two filters, e.g. Gaussian filter

• Let p be the center pixel, $q \in N$ of the pixel neighborhood, I_p with I_q being their intensities (e.g. grayscale)

$$I_{new}(p) = \frac{1}{W_p} \sum_{q \in N} G_{\sigma_s}(\|p - q\|) G_{\sigma_r}(|I_p - I_q|) I_q$$

$$W_p = \sum_{q \in N} G_{\sigma_s}(\|p - q\|) G_{\sigma_r}(|I_p - I_q|)$$

- G_{σ_s} : Weight dependent on the distance between the current pixel and the center pixel
- G_{σ_r} : Weight dependent on the difference of intensity between the current pixel and the center pixel

Bilateral filter

Source: Durand et al.: "Fast bilateral filtering for the display of high-dynamic-range images"

Bilateral filter

- Edge conserving smoothing filter
- Non-linear: Relatively expensive for computation

 Joint-Bilateral Filtering: Combination of two images, smoothing of the first image using the intensity differences to the second image

"Mean shift"-Filter

Idea: Replace center pixel with the most probable value from a defined neighborhood

Iterative method:

- Estimate a probability density function that describes the feature space on a defined search window
- The pixel is assigned the value of the local maximum of the probability density function
- 3. Search window is moved to the position of the maximum
- Size of the search windows is reduced with each iteration ("Parzen Window"-method)
- Feature space: spatial- and intensity-distances

Bilateral-filter vs. "Mean shift"-Filter

- Both operate using spatial- and intensity neighborhoods
- Main difference: Mean Shift is iterative with movable search window

Original

Bilateral filter

"Mean Shift"-Filter

Quelle: Dominguez et al.: "Fast 3D Mean Shift Filter for CT Images"

Which filter would most likely improve the image?

- A: Bilateral filter
- B: Median filter
- C: Gaussian filter
- D: Box filter

Edge filter

Goal: Enhancing changes in grayscale between neighboring pixels

Edge filter - Derivatives

Gradient-based edge detection

- Edge: strong, local change in the image function G
 - → Value of the gradient assumes local maximum
- Gradient operations:

Gradient:

$$\nabla G(x, y) = \left[\frac{\partial G(x, y)}{\partial x}, \frac{\partial G(x, y)}{\partial y}\right]^{T}$$

Value/Magnitude:

$$|\nabla G(x, y)| = \sqrt{\left(\frac{\partial G(x, y)}{\partial x}\right)^2 + \left(\frac{\partial G(x, y)}{\partial y}\right)^2}$$

Orientation:

$$\tan \Theta = \frac{\partial G(x, y)}{\partial y} / \frac{\partial G(x, y)}{\partial x}$$

Gradient-based edge detection

- Gradient is always oriented in the direction of the strongest change in the image function
- Value of the gradient is a measurement for the strength of change in the image function
- Discrete approximation of value:

$$|\nabla G(x, y)| = |G(x + 1, y) - G(x, y)| + |G(x, y + 1) - G(x, y)|$$

Saves times as computing square root is expensive

Edge detector - Prewitt Filter

- Differences of pixel values are averaged with the same weight
- Prewitt-X filter enhances vertical, Prewitt-Y filter horizontal edges

$$P_{x} = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$

$$P_{y} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Example Prewitt filter

Prewitt filter

 Prewitt-Operator: Combination of the Prewitt filter for computing the gradient magnitude M

$$M \approx \sqrt{P_x^2 + P_y^2}$$

Afterwards: Threshold filter

Sobel filter

- Gaussian-based weighting the difference of the pixel values to enhance edges
- Sobel-X filter enhances vertical, Sobel-Y Filter horizontal edges

$$S_x = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$S_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Sobel filter

 Sobel-Operator: Combination of the Sobel filters for computing the gradient magnitude M

$$M \approx \sqrt{S_x^2 + S_y^2}$$

Afterwards: Threshold filter

Example Sobel Filter

Laplace filter

- Edges are zero-crossings in the 2nd derivative
- Laplace-Operator:

$$\nabla^{2}G(x, y) = \frac{\partial^{2}G(x, y)}{\partial^{2}x} + \frac{\partial^{2}G(x, y)}{\partial^{2}y} \qquad \text{LP} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- Orientation-independent edges enhancement
- Sensitive to noise (Pseudo-edges)

Combination: Laplace of Gaussian (LoG)

 Problem: 2nd derivative are sensitive to noise, therefore first smoothing using Gaussian filter, then filtering with Laplace filter

Example LoG

- Morphology = Study of shapes
- Morphological operations = binary neighborhood operations for changes of areas with structuring elements
- Application on binary images:
 - Removing stand-alone pixels
 - Removing single, thin lines
 - In a white object, a few pixels remained black

Principle: A structuring element/mask is moved over the binary image

Basic operations

Dilatation: Enlarge object

Erosion: Shrink object

Erosion

- Move mask H over the image B
- For each position, test if H is a subset of B

- Results depend on the size of the structuring element
- Objects shrink
- Thin lines disapear

Example application of erosion

Input Output

Dilatation

- Move mask H over the image B
- For each position, test if the intersection of H and B is not empty

Results depend on the size of the structuring element

- Objects are enlarged/connected
- Holes are closed

Example application of dilatation

Opening and Closing

- Erosion reduces spread of the objects, dilatation enhances spred
 - → Distances are altered

- Avoidance: n-fold combination of erosion and dilatation
- Opening: Erosion followed by dilatation
- Closing: Dilatation followed by erosion

Opening

- "Extremities" of the objects are eliminated
- Thin connection are removed
- Small structures are removed

1 1 Mask H

Opening

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	1	1	1	0
0	1	1	1	0	0	1	1	1	0
0	1	1	1	0	0	1	1	1	0

Closing

- Gaps in the perimeter are filled
- Close objects are connected
- Number of elements is only changed slightly

Closing

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0

What is the result of this Closing opertion on the following image?

Summary - Computer Vision II

- Characteristics of images
- Point operations
- Local operations
 - Smoothing filters
 - Edge filters
 - Morphological operations

Literature

- Lehmann et al.: "Bildverarbeitung für die Medizin"
- Jähne: "Digitale Bildverarbeitung"
- Sonka et al. "Image Processing, Analysis and Machine Vision"
- OpenCV: opencvlibrary.sourceforge.net
- http://saravananthirumuruganathan.wordpress.com/2010/04/01/int roduction-to-mean-shift-algorithm/
- Paris et al: "A gentle introduction to bilateral filtering and its applications"

