Candidate Name Centre Number Candidate Number

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

CHEMISTRY4024/2

PAPER 2 Theory

SPECIMEN PAPER

1 hour 45 minutes

Candidates answer on the question paper.

Additional materials: Electronic calculator

Allow candidates 5 minutes to count pages before the examination

This booklet should not be punched or stapled and pages should not be removed.

TIME 1 hour 45 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page and centre number and candidate number on top of the right corner of every page of this paper. Check if the booklet has all the pages and ask the invigilator for a replacement if there are duplicate or missing pages.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any **four** questions.

Write your answers on the spaces provided on the question paper Do not fasten the booklet

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question paper.

A copy of the periodic table is on page 20.

This question paper consists of 20 printed pages.

Copyright: Zimbabwe School Examinations Council, Specimen paper.

©ZIMSEC [Turn over

Section A

Answer all the questions in the spaces provided.

1 (a) A student prepared a blue solution, **P**, by adding black copper (II) oxide powder to nitric acid as shown in **Fig.1.1**.

Fig.1.1

(i)	Name two chemical substances in the blue solution.	
	1.	
	2.	[
(ii)	State two observations made by the student.	
	1.	_
	2.	_ [
(iii)	Write a balanced chemical equation for the reaction.	
		_ [2

1	(b)		a balanced chemical equation for the reaction that will when		
		(i)	zinc granules are added to copper sulphate solution,		
				[1]	
		(ii)	calcium carbonate is heated strongly.		
				[1]	
			[Total:8]		

2	(a)	In a titration, 25 cm ³ of aqueous ammonia required 21.50 cm ³ of 0.1 mol dm ⁻³ sulphuric acid for complete neutralisation. The equation for the reaction is:					
		H_2SO_2	$_{4(aq)} + 2 NH_4OH_{(aq)} \rightarrow (NH_4)_2 SO_{4(aq)} + 2 H_2O_{(aq)}$				
		(i)	Calculate the number of moles of sulphuric acid in 21.50 c of the solution.	m ³			
				[2]			
		(ii)	Deduce the number of moles of ammonia in the 25 cm ³ of ammonia.				
				[2]			
		(iii)	Calculate the concentration of the ammonia solution.	[2]			
				[2]			
	(b)	(i)	Give one physical property in which the oxides, CO_2 and SO_2 , are similar.	F4.7			
		(ii)	Name the industrial process by which $CO_{2(g)}$ is obtained from air.	[1]			

[1] [Total :8]

3	(a)	Table, 3.1	showssome of th	ne gaseous	pollutants

Complete **Table 3.1** by stating a use and an effect of the gases on the environment.

gas	use	effect on the environment
CO_2		
SO ₂		

[4]

3	(b)	Explain why no chemical reaction takes place when
		(i) aluminium powder that has been exposed to air is added to a solution of iron (II) sulphate,
		(ii) magnesium powder is added to a solution of calcium chloride,
		(iii) zinc oxide is heated in a stream of hydrogen,
		(iv) carbon dioxide is bubbled through a solution of hydrochloric acid.

[Total:8]

4 (a) Fig.4.1 shows how an organic compound, **Q**,is produced from ethene.

(i) Name

1. reagentx, _____

2. compound **P**.______[2]

(ii) Draw the displayed structural formula of \mathbf{Q} .

[1]

(iii) Give anytwo uses of P.

1. _____

2. [2]

- 4 (a) (iv) Describe anyone chemical test that is used to distinguish ethenefrom P.
 - **(b) Fig.4.2** shows the structure of a protein molecule.

Fig.4.2

(i) Name the smaller units (monomers) that make up the protein molecule.

_____ [1]

(ii) Describe how the protein molecule can be broken down into the smaller units.

_____ [1] [Total:8]

Fig.5.1 shows a set up of apparatus that was used to identify a blue pen that was used to write a bad message by a student. The ink that was used to write the message is marked M. Sample inks 1,2 and 3 were taken from pens suspected to have been used.

Fig.5.1

(a)	(1)	State the number of dyes in ink M.	
			[1]
	(ii)	Describe one difference and one similarity between inks in samples 1 and 3.	
		difference	
		similarity	
			[2]

		been used to write the bad message.
		ink
		reason
(b)	(i)	Name one property that determines the distance travelled by a dye in chromatography.
	(i)	The solvent travelled 8.0 cm and the dye in ink 3 travelled 3.0 cm.
		Calculate the $R_{\rm f}$ value of the dye into 3.
	(iii)	State the importance of R _f values.
(c)	Eval.	nin why the container in Fig.5.1 was covered.
	CXDla	un wny me containei in Fig.5.1 was covered.

Section: B

Answer any **four** questions from this section.

(a)	Defin	ne the te	rm ionic bonding.	
(b)	The t	able sho	ows some physical properties of t	three compounds.
	comp	ound	electrical conductivity	melting point
	naphtha	alene	does not conduct	low
	copper chloride		good conduction when in solution	high
	ethane		does not conduct	low
	(i)	Expla	copper (II) chloride has a higher ethane,	er melting point than
		2.	naphthalene does not conduct of	electricity.
		2.	naphthalene does not conduct o	electricity.

6	(b)	(ii)	Descri	ibe and explain what happens when
			1.	solid naphthalene is added to water,
				[2
			2.	an electric current is passed through a concentrated solution of copper (II) chloride
				[2
	(c)	Elem	ent ${f X}$ ha	s 9 protons and 10 neutrons.
		(i)	Draw	a diagram showing the full electronic structure of X,
		(i)		two physical properties of the compound formed X reacts with sodium
			1.	
			2.	[2

(a)	Cast iron from the blast furnace contains 4 to 5 % carbon and other impurities.			
	(i)	Name one other impurity in cast iron.		
	(ii)	Describe how the impurities are removed in the oxygen lance furnace.		
(b)	The	structural formulae of butenedioic acid is shown in Fig. 7.1 .		
		$\begin{array}{ccc} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$		
		Fig. 7.1		
	(i)	Give the empirical formulae of butenedioicacid		
	(ii)	Describe how butenedioic acid reacts with		
		1. aqueous bromine		
		2. sodium carbonate		
		3. Magnesium		

7 **(b) (iii)** Draw the structural formula of the product formed when butenedioic acid reacts with bromine.

(c) Fig.7.2 shows the reaction of ethene molecules to produce N.

$$\begin{array}{c|c}
H \\
C = C \\
H
\end{array}$$

$$\begin{array}{c}
H \\
n
\end{array}$$

$$\begin{array}{c}
\text{product } \mathbf{N} \\
\end{array}$$

Fig. 7.2

(i) Name

1. this type of reaction,

______[1]

2. product **N**.

_____ [1]

(ii) Draw the displayed structural formula of N.

[1]

[1]

7	(c)	(iii)	State any two uses of the product N .	
			1. 2.	[2]
		(iv)	Describe how product N can be safely disposed from the environment.	
				[3] al:15]
8	(a)	froms	ribe how a pure sample of sodium chloride can be prepared solutions of hydrochloric acid and sodium hydroxide of an concentrations.	
				[4]

8 (b) Fig.8.1 shows chemical tests carried out on a salt to identify the ionspresent in the salt.

Fig.8.1

8	(h)	(i)	Deduce the cations and anions in the	e calt
o	(1))	(1)	Deduce the cations and amons in the	z san.

cations _____ [2]

anions _____ [2]

(ii) Iodide ions were suspected to be present in the salt.

Describe a chemical test and observations to show the presence of the iodide ions.

[3]

8 (c) A student placed a few calcium granules in a flask containing cold water coloured with universal indicator. The gas given off was collected in a measuring cylinder inverted in water as shown in **Fig. 4.**

Fig. 4

(c)	(i)	State and explain any one observable change that occurs in the flask.
		observation
		explanation
	(ii)	Name the gas produced.
	(iii)	Describe a test for the gas produced.

9 Fig.5 shows the main steps in the manufacture of sulphuric acid.

Fig.5

- (a) (i) Choose from the letters A E, the box that would be labelled

 1. catalytic converter,

 2. chimney,

 3. purifier.
 - (ii) Identify one error on the flow diagram and describe how this can be corrected.

[2]

[3]

9	(a)	(iii)	State any one condition used in C and write the overall equation for the reaction which takes place.								
			condition	_							
			equation	_ [7]							
	(b)		Describe how sulphuric acid is converted into ammonium sulphate fertilizer.								
				- - _ [3]							
				tal:15]							
10	(a)	State									
		(i)	two different physical properties of bromine and iodine.								
			1								
			2.								
		(ii)	two similar chemical chemical properties of bromine and iodine.								
			1								
			2.								
		(iii)	any two uses of chlorine.								
			1								
			2.	[6]							

10	(b)	Chlo	Chlorine reacts with potassium bromide as shown.								
			$2KBr_{(aq)} + Cl_{2(g)} \rightarrow 2KCl_{(aq)} + Br_{2(g)}$								
		(i)	State one observation made as the reaction occurs.								
			[4]								
		(ii)	Name this type of reaction giving a reason for your answer.								
			type of reaction								
			reason [4]								
	(c)	Expl	Explain why								
		(i)	incineration is a controversial method of waste disposal								
		(ii)	the use of landfills as method of waste disposal is being discharged.								

DATA SHEET
The Periodic Table of the Elements

Group																	
1	ll ll											Ш	IV	٧	VI	VII	0
		1 H Hydrogen															4 He Helium 2
7 Li Lithium 3	9 Be Beryllium											11 B Boron 5	12 C Carbon	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon
23 Na Sodium	Mg Magnesium											27 A1 Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulphur 16	35.5 CI Chlorine 17	40 Ar Argon
39 K Potassium 19	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromide 35	84 Kr Krypton 36
Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn Tin	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe Xenon
133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T II Thallium 81	207 Pd Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	227 Ac Actinium 89 †															
*58-71 Lanthanoid series †90-103 Actinoid series				Ce Cerium 58	Pr Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key			232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einstenium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103	

The volume of one mole of any gas is 28 dm³ at room temperature and pressure (r.t.p.)