FONCTIONS 2 – PROPRIÉTÉS

I) SIGNE D'UNE FONCTION

Soit f une fonction définie sur un intervalle I

- Si, pour tout x de $I, f(x) \ge 0$, alors on dit que f est positive sur I. Interprétation graphique : Cf est alors située
- Si, pour tout x de $I, f(x) \le 0$, alors on dit que f est négative sur I. Interprétation graphique : Cf est alors située

Ex: Étudier le signe de f définie sur $\mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ par $x \mapsto \frac{-4}{2x-1}$

Tableau de signe :

X	$-\infty$	1/2	$+\infty$
		0	

f est strictement f est strictement

sur] $-\infty$; 1/2 [sur]1/2; $+\infty$ [

II) EXTREMUM D'UNE FONCTION

Soit f une fonction définie sur un intervalle I et a un nombre de I.

• Si, pour tout x de I, on a $f(x) \ge f(a)$ alors on dit que f admet un minimum de f(a) en a sur I.

Interprétation graphique : Le point coordonnées

de Cf est le point de

• Si, pour tout x de I, on a $f(x) \le f(a)$ alors on dit que f admet un maximum de f(a) en a sur I.

Interprétation graphique : Le point coordonnées

de Cf est le point de

Ex: La fonction f définie sur \mathbb{R} par $x \mapsto x^2 - 2x - 3$ a-t-elle un extremum?

Pour tout x de \mathbb{R} , déterminons le signe de f(x) - f(1): f(x) - f(1) =

p289: 46, 47, 48

algo

p297: TP

III) VARIATIONS D'UNE FONCTION

Soit f une fonction définie sur un intervalle [a; b].

• Si, pour tous x_1, x_2 tels que $a \le x_1 < x_2 \le b$, on a $f(x_1) < f(x_2)$ alors on dit que f est strictement croissante sur [a; b].

Interprétation graphique : x_1 , x_2 et leurs images $f(x_1)$, $f(x_2)$ sont toujours dans le même ordre donc Cf « monte ».

• Si, pour tous x_1 , x_2 tels que , on a alors on dit que f est strictement décroissante sur [a;b].

Interprétation graphique : x_1 , x_2 et leurs images $f(x_1)$, $f(x_2)$ sont toujours dans

Ex: Étudier les variations de f définie sur \mathbb{R}^{*-} par $x \mapsto \frac{3}{x} + 1$

Pour tous x_1 , x_2 tels que $x_1 < x_2 < 0$ déterminons le signe de $f(x_1) - f(x_2)$:

$$f(x_1) - f(x_2) =$$

Tableau de variations :

x	$-\infty$	0
f(x)		

oral:

p288: 37

p290: 57, 58, 59, 62

p290: 60, 63, 64

p291: 68

p292: 76