

Цель работы:

изучение вольт-амперной характеристики нормального тлеющего разряда; исследование релаксационного генератора на стабилитроне.

В работе используются:

стабилитрон СГ-2 (газонаполненный диод) на монтажной панели, амперметр, магазин сопротивлений, магазин ёмкостей, источник питания, осциллограф (90), генератор звуковой частоты (3Γ).

Описание работы

Зависимость тока от напряжения для газоразрядной лампы не подчиняется закону Ома и характеризуется рядом особенностей, ее вольтамперная характеристика указана на рис. 1.

Рис. 1: Вольтамперная характеристика стабилитрона с последовательно включенным резистором

При малых напряжениях лампа практически не пропускает ток. Как только разность потенциалов на ее электродах достигает напряжения зажигания в лампе начинает течь ток. После, так как наш источник напряжения не может поддерживать такую силу тока, напряжение на лампе начинает падать и достигая напряжения гашения, силу тока на ней скачком падает до нуля.

Рис. 2: Режимы работы релаксационного генератора

Колебательный процесс возможен когда нагрузочная прямая не пересекает характеристику лампы (3 прямая на рис. 3). Это происходит из-за того, что в стационарном режиме ток черещ лампу равен:

$$I_{cm} = \frac{U - V}{R},$$

где V - напряжение на конденсаторе и оно постоянно. Тогда прямая 2 проходящая через точку (I_2, V_2) , соответствует критическому сопротивлению:

$$R_{\kappa p} = \frac{U - V_2}{I_2},$$

тогда для $R > R_{\kappa p}$ в системе установятся колебания.

Рис. 3: Схема установки для изучения релаксационных колебаний

Схема установки изображена на рис. 3. Здесь период колебаний будет складываться из времени заряда τ_3 и времения разряда τ_p . В случае, когда сопротивление R существенно превосходит внутреннее сопротивление стабилитрона, справедливо соотношение $\tau_3 \gg \tau_p$. В таком случае период колебаний можно посчитать при помощи такой формулы:

$$T \approx \tau_3 = RC \ln \frac{U - V_2}{U - V_1},\tag{1}$$

где V_1 и V_2 потенциалы зажигания и гашения соответственно.

Ход работы

Снимем вольтамперную характеристику стабилитрона, внутреннее сопротивление стабилитрона $r = 5, 1 \ \kappa O M$. Запишем данные в таблицу для систем из стабилитрона и дополнительного сопротивления r и для стабилитрона без сопротивления r. Построим графики зависимости I = f(V) по данным таблицам.

С учетом		Без у		
сопротивления		сопроти		
U	I	U	I	
10,1	0	10,1	0	
15,3	0	15,3	0	
22,6	0	22,6	0	
35	0	35	0	
40,2	0	40,2	0	
49,8	0	49,8	0	
59,9	0	59,9	0	
64,4	0	64,4	0	
75,2	0	75,2	0	
83,9	0	83,9	0	
86,1	2,51	73,299	2,51	U1
88,45	3,01	73,099	3,01	
93,4	3,96	73,204	3,96	
98,3	4,86	73,514	4,86	
105	6,14	73,686	6,14	
113	7,8	73,22	7,8	
119,3	8,89	73,961	8,89	
84	2,14	73,086	2,14	
79,6	0	79,6	0	
82,4	1,82	73,118	1,82	U2

Рис. 4: Зависимость U(I)

Соберем релаксационный генератор. Подберем частоту развертки так, чтобы было видно пилообразную картинку. Получаем период колебаний $T=11,4\pm0,4$ мс. Отношение времени зарядки к времени разрядки $\tau_3/\tau_p=18\pm6$. Такая погрешность обусловлена очень маленьким временем разряда (оно всего лишь в 3 раза больше погрешности измерения).

Уменьшая сопротивление магазина определим $R_{\kappa p}$, при котором пропадают колебания. $R_{\kappa p}=150$ $\kappa O M$, при этом теоретическое значение критического сопротивления $R_{meop}=15~\kappa O M$. Такие различия возникают в результате неидеальности схемы и возникновения в ней помех.

Подадим сигнал с генератора на вход X осциллографа. Меняя частоту 3Γ получим на экране фигуру Лиссажу без самопересечений. Не меняя параметров релаксационного генератора получим фигуры Лиссажу при соотношении частот 2:1, 3:1, 1:2, 1:3.

ΨΣ 4

Рис. 5: Пилообразная картинка

Рис. 6: Соотношение частот 3:1

При значении сопротивления $R=3R_{\kappa p}$ снимем с помощью фигур Лиссажу зависимость частоты колебаний от емкости C.

Рис. 7: Соотношение частот 1:2

Рис. 8: Соотношение частот 1:3

Теорет	ические	Экспериментальны	
дан	ные	е данные	
C, 10^(-3)	т.	C, 10^(-3)	т.
мкф	Т, с	мкф	Т, с
48	0,0031126	48	0,009132
42	0,0027235	42	0,013699
38	0,0024641	38	0,005479
35	0,0022696	35	0,004566
40	0,0025938	40	0,006849
45	0,002918	45	0,009132
50	0,0032423	50	0,013699

Рис. 9: Зависмость Т(С)

Аналогично проведем серию измерений $\nu = f(R)$ при постоянной емкости $C = 5 \cdot 10^{-2}$ мк Φ , меняя величину R от максимального значения до критического.

Построим графики по получившимся данным. Также рядом с ними построим графики теореических значений рассчитанных по формуле:

$$T = RC \ln \frac{U - V_2}{U - V_1},\tag{2}$$

где V_1 и V_2 значения указанные в первой таблице.

Теорети	ические	Экспериментальны		
дан	ные	е данные		
R, кОм	Т, с	R, кОм	Т, с	
300	0,002162	300	0,013699	
400	0,002882	400	0,013699	
500	0,003603	500	0,027397	
600	0,004323	600	0,006849	
700	0,005044	700	0,005479	
800	0,005764	800	0,013699	
900	0,006485	200	0,006849	
200	0,001441			

Рис. 10: Зависимость Т(R)

Можем заметить, что наклоны экспериментальной и теоретической прямой заметно отличаются. Это происходит в результате неидеальности собранной схемы и метода измерения частоты колебаний. Мы можем рассчитать динамический потенциал гашения для получившихся экспериментальных прямых по формуле:

$$T \approx RC \ln \frac{U - V_2}{U - V_1}$$

Тогда в случае зависимости T(C) получим $V_2 = 85,34~B$, а в случае зависимости T(R) получим $V_2 = 86,39~B$, что ожидаемо, так как у нашей прямой отрицательный наклон. Оценивать погрешности для данных величин нет смысла, так как мы имеем очень большой расброс точек на графике, следовательно проблема кроется и методе измерения.

Вывод

Познакомились с релаксационными колебаниями и стабилитроном. Получили плохие данные для зависимостей T(C) и T(R), так как пользовались плохим методом определения частоты колебаний.

Также получили фигуры Лиссажу на осциллографе при помощи ЗГ.