Symbolizing in Sentential Logic

P>(QNP)RN(Q, S))

Part II

Alex Koo

"Philosophy... neither explains nor deduces anything."

P: Philosophy explains thing.

Q: Philosophy deduces things.

~PV~Q

or

~(PVQ)

Р	Q	~PV~Q	~(PvQ)

Р	Q	~PV~Q	~(PvQ)
Т	Т	F	F
Т	F	Т	F
F	Т	Т	F
F	F	Т	Т

Р	Q	~PV~Q	~(PVQ)	~P^~Q
Т	Т	F	F	F
Т	F	Т	F	F
F	Т	Т	F	F
F	F	Т	Т	Т

 $\sim P \land \sim Q$

or

 \sim (P \wedge Q)

Р	Q	~P^~Q	~(P ₁ Q)

Р	Q	~P^~Q	~(P _{\(\Delta\Q\)})
Т	Т	F	F
Т	F	F	Т
F	Т	F	Т
F	F	Т	Т

Р	Q	~P^~Q	~(PAQ)	~PV~Q
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	Т	Т	Т

"You can have results or excuses, but not both."

P Exclusive Or Q

 $(PVQ) \wedge \sim (P \wedge Q)$

or

 $\sim (P \leftrightarrow Q)$

"He'll die unless we operate"

"He'll die unless we operate"

Operate and he lives

Don't operate and he lives

Don't operate and he dies

P unless Q

If not P, then Q

If not Q, then P

P or Q

P unless Q

Р	Q	~P→Q	~Q→P	PvQ
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	F	F	F

All of P, Q, and R

None of P, Q, and R

 $P \wedge Q \wedge R$

 $\sim P \land \sim Q \land \sim R$

~(PVQVR)

At least one of P, Q, and R

PVQVR

(P∧Q)

 $(P \wedge Q) \vee (P \wedge R)$

 $(P \wedge Q) \vee (P \wedge R) \vee (R \wedge Q)$

 $(P \wedge Q) \vee (P \wedge R) \vee (R \wedge Q) \vee (P \wedge Q \wedge R)$

 $(P \wedge Q) \vee (P \wedge R) \vee (R \wedge Q)$

Exactly one of P, Q, and R

Exactly P: PA~QA~R

Exactly Q: ~PAQA~R

Exactly R: ~P^~Q^R

Exactly one of P, Q, and R

 $(P \land \sim Q \land \sim R) \lor (\sim P \land Q \land \sim R) \lor (\sim P \land \sim Q \land R)$

Exactly two of P, Q, and R

 $(P \wedge Q \wedge \sim R) \vee (P \wedge \sim Q \wedge R) \vee (\sim P \wedge Q \wedge R)$

At most one of P, Q, and R

None of them or Exactly 1

At most one of P, Q, and R

 $(\sim P \land \sim Q \land \sim R)$

 $((P \wedge \sim Q \wedge \sim R) \vee (\sim P \wedge Q \wedge \sim R) \vee (\sim P \wedge \sim Q \wedge R))$

None of them

or

Exactly 1

or

Exactly 2

 $(\sim P \land \sim Q \land \sim R)$

 $((P \land \neg Q \land \neg R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land R))$

V

 $((P \land Q \land \sim R) \lor (P \land \sim Q \land R) \lor (\sim P \land Q \land R))$

Four cases for P, Q, and R

None

Exactly 1 At most 2

Exactly 2

All three

Four cases for P, Q, and R

```
None

Exactly 1

At most 2

Exactly 2

All three
```

 \sim (P \wedge Q \wedge R)

P: Peter walks to school. S: Sarah walks to school.

T: Peter has a coffee. W: Rick has a coffee.

X: Sarah has a coffee.

P: Peter walks to school. S: Sarah walks to school.

T: Peter has a coffee. W: Rick has a coffee.

X: Sarah has a coffee.

P: Peter walks to school. S: Sarah walks to school.

T: Peter has a coffee. W: Rick has a coffee.

X: Sarah has a coffee.

~(PVS)

~P^~S

P: Peter walks to school. S: Sarah walks to school.

T: Peter has a coffee. W: Rick has a coffee.

X: Sarah has a coffee.

```
~(PVS)
~P \land \sim S (~T \land \sim W)\lor (\sim T \land \sim X) \lor (\sim W \land \sim X)
```

P: Peter walks to school. S: Sarah walks to school.

T: Peter has a coffee. W: Rick has a coffee.

X: Sarah has a coffee.

```
~(PVS)

~P\wedge~S \rightarrow (~T\wedge~W)\vee(~T\wedge~X)\vee(~W\wedge~X)
```

$P \wedge Q$

P: Cats are scary. Q: Clowns are scary.

Cats are scary

Cats and clowns are scary

~(PVQ)

P: Cats are friendly. Q: Bats are friendly

are friendly or bats are friendly

Neither cats nor bats are friendly

 \sim (P \land Q) \rightarrow (X \land Y) \lor (X \land Z) \lor (Y \land Z)

P: Subway is delayed. Q: Streetcar is delayed.

X: Peter is on time. Y: John is on time. Z: Mary is on time.

\sim (P \land Q) \rightarrow (X \land Y) \lor (X \land Z) \lor (Y \land Z)

P: Subway is delayed. Q: Streetcar is delayed.

X: Peter is on time. Y: John is on time. Z: Mary is on time.

If not both, then at least two