Lecture 2 - defects

Lecture summary

- Introduction to defects
- Types of defect
- Instrinsic and extrinsic defects
- Defect equations

Defects

All crystals contain defects of some sort, for example:

- Missing atoms (vacancies)
- Atoms in the 'wrong' place
 - interstitials (between lattice sites) or substitutions (different atom types)
- Extended defects of lines or planes of atoms

Defects

All crystals contain defects of some sort, for example:

- Missing atoms (vacancies)
- Atoms in the 'wrong' place
 - interstitials (between lattice sites) or substitutions (different atom types)
- Extended defects of lines or planes of atoms

Defects are often the source of interesting properties

Defect amounts

The number of defects is a fine balance of entropy and enthalpy

• Defects gain entropy but have a (often large) formation energy

Defect concentration

Minimum in ΔG depends on structure and bonding, but typically << 1%.

Types of defect

The three most common defect types in ionic solids are:

Vac	Vacancy					Interstitial						Substitut					
M	X	M	X	М	X	М	X	M	X	M	X	M	X	M	X	M	X
X	М	X	M	X	М	X	M	X	M	X	M	X	M	X	M	X	M
M	X	M	X	М	X	M	X	M	X	M	X	M	X	M	X	M	X
X	M	X		X	M	X	M	X	X M	X	M	X	M	X	M	X	M
M	X	M	X	М	X	M	X	M	X	M	X	M	X	N	X	M	X
X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M
M	X	M	X	М	X	M	X	M	X	M	X	M	X	M	X	M	X
X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M

Types of defect

The three most common defect types in ionic solids are:

Vacancy						Interstitial						Substituti					
M	X	M	X	М	X	М	X	M	X	M	X	М	X	M	X	M	X
X	M	X	M	X	М	X	M	X	M	X	M	X	M	X	M	X	M
M	X	Μ	X	М	X	М	X	M	X	M	X	M	X	M	X	M	X
X	M	X		X	М	X	M	X	M	X	M	X	M	X	M	X	M
M	X	M	X	М	X	М	X	M	X	M	X	M	X	N	X	M	X
X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M
M	X	M	X	М	X	M	X	M	X	M	X	М	X	M	X	M	X
X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M	X	M

Additionally, defects can be either

- intrinsic (maintaining stoichiometry) or
- extrinsic (non-stoichiometric)

Intrinsic defects

Two of the most common stoichiometric defects are:

Schottky

Charge-balanced combination of anion and cation vacancies

Frenkel

lons displaced to interstitial sites

Defects observed depend on both structure type and atoms involved.

Top: <u>Walter Schottky (1886-1976)</u>

Schottky defects

- Typically occur when anions and cations have similar size (e.g. NaCl structure)
- Reduced density compared with the ideal material
- e.g. NaCl equal numbers of Na and Cl vacancies

Frenkel defects

- Smaller ion normally displaced
- Only one ion type shows defect
- e.g. AgCl (NaCl-type)
 - Smaller Ag⁺ ion displaced to tetrahedral holes in CCP Cl⁻ structure

Useful to write equation for defects, using **Kroger-Vink** notation:

Normal chemical symbols used for atoms, and V for vacancies

Useful to write equation for defects, using **Kroger-Vink** notation:

- Normal chemical symbols used for atoms, and V for vacancies
- Subscripts denote lattice or interstitial (i) sites

Useful to write equation for defects, using **Kroger-Vink** notation:

- Normal chemical symbols used for atoms, and V for vacancies
- Subscripts denote lattice or interstitial (i) sites
- Charges shown relative to the ideal host site:

```
∘ ′ for 1−, ″ for 2−, etc.;
```

- \circ for 1+, •• for 2+, etc.;
- x for no net charge (sometimes omitted)

Useful to write equation for defects, using **Kroger-Vink** notation:

- Normal chemical symbols used for atoms, and V for vacancies
- Subscripts denote lattice or interstitial (i) sites
- Charges shown relative to the ideal host site:
 - ∘ ′ for 1−, ″ for 2−, etc.;
 - \circ for 1+, •• for 2+, etc.;
 - x for no net charge (sometimes omitted)
- For example:
 - \circ Na vacancy in NaCl: ${
 m V_{Na}}'$
 - Ag interstital in AgCl: Agi

Defect equations (2)

like normal, defect equations must balance in terms of:

- composition
 - vacancies are not treated as an atom
- charges
- sites
 - specified atomic positions cannot be created or destroyed
 - interstitials are ignored in balancing

Examples

AgCl interstitial formation again:

$$\mathrm{Ag}_{\mathrm{Ag}}
ightleftharpoons \mathrm{Ag}_{\mathrm{i}}^{ullet} + \mathrm{V}_{\mathrm{Ag}}{}'$$

Examples

AgCl interstitial formation again:

$$\mathrm{Ag}_{\mathrm{Ag}} \Longrightarrow \mathrm{Ag}_{\mathrm{i}}^{ullet} + \mathrm{V}_{\mathrm{Ag}}{}'$$

NaCl Schottky formation:

Examples

AgCl interstitial formation again:

$$\mathrm{Ag}_{\mathrm{Ag}} \Longrightarrow \mathrm{Ag}_{\mathrm{i}}^{ullet} + \mathrm{V}_{\mathrm{Ag}}{}'$$

NaCl Schottky formation:

$$\mathrm{Na_{Na}} + \mathrm{Cl_{Cl}} \Longrightarrow \mathrm{V_{Na}}' + \mathrm{V_{Cl}^{ullet}} + \mathrm{NaCl}$$

Easily extended to substitutions, e.g. substituting $\mathrm{Al}^{3\,+}$ with $\mathrm{Cr}^{3\,+}$ in $\mathrm{Al}_2\mathrm{O}_3$ (ruby):

$$2 \operatorname{Al}_{\operatorname{Al}} + \operatorname{Cr}_2 \operatorname{O}_3 \Longrightarrow 2 \operatorname{Cr}_{\operatorname{Al}} + \operatorname{Al}_2 \operatorname{O}_3$$

Quick test - BaTiO₃ Schottky Formation

$$\mathrm{Ba_{Ba} + Ti_{Ti} + 3\,O_{O}} \rightleftharpoons \mathrm{V_{Ba}}'' + \mathrm{V_{Ti}}'''' + ?? + \mathrm{BaTiO_{3}}$$

$$\mathrm{Ba_{Ba}} + \mathrm{Ti_{Ti}} + 3\,\mathrm{O_{O}} \Longrightarrow \mathrm{V_{Ba}}'' + \mathrm{V_{Ti}}'''' + ?? + \mathrm{BaTiO_{3}}$$

Ionic Substitution

• lons of similar size can often replace each other

Ionic Substitution

- lons of similar size can often replace each other
- While an integer number are substituted across a crystal, the average can be nonstoichiometric
 - often represented by a variable such as x:
 - \circ i.e. Ruby is $\mathrm{Al}_{2-x}\mathrm{Cr}_x\mathrm{O}_3$ $(0 \le x \le 2)$

Ionic Substitution

- lons of similar size can often replace each other
- While an integer number are substituted across a crystal, the average can be nonstoichiometric
 - often represented by a variable such as x:
 - \circ i.e. Ruby is $\mathrm{Al}_{2-x}\mathrm{Cr}_x\mathrm{O}_3$ $(0 \leq x \leq 2)$
- Substitution can dramatically affect properties:
 - \circ e.g. $\mathrm{La}_{2-x}\mathrm{Sr}_x\mathrm{CuO}_4$:
 - semiconducting for x=0
 - superconducting (below 40 K) for x=0.15

Extrinsic defects

Substitution can also drive formation of defects, e.g. doping NaCl with CaCl_2 :

Overall synthesis reaction:

$$(1-2x)\mathrm{NaCl} + x\mathrm{CaCl}_2 o \mathrm{Na}_{1-2x}\mathrm{Ca}_x\mathrm{Cl}$$

Extrinsic defects

Substitution can also drive formation of defects, e.g. doping NaCl with CaCl_2 :

Overall synthesis reaction:

$$(1-2x)\mathrm{NaCl} + x\mathrm{CaCl}_2 o \mathrm{Na}_{1-2x}\mathrm{Ca}_x\mathrm{Cl}$$

Kroger-Vink notation:

More complex example

Sometimes, substitution (or 'doping') can give rise to multiple potential defects.

For example, replacing $\mathrm{La^{3}}^{+}$ by $\mathrm{Sr^{2}}^{+}$ in $\mathrm{LaCoO_{3}}$ could occur:

More complex example

Sometimes, substitution (or 'doping') can give rise to multiple potential defects.

For example, replacing $\operatorname{La^{3+}}$ by $\operatorname{Sr^{2+}}$ in $\operatorname{LaCoO_3}$ could occur:

• by creating oxygen vacancies;

$$2\operatorname{La_{La}} + 2\operatorname{SrO} + \operatorname{O_O} \Longrightarrow 2\operatorname{Sr_{La}}' + \operatorname{V_O^{ullet}} + \operatorname{La_2O_3}$$

More complex example

Sometimes, substitution (or 'doping') can give rise to multiple potential defects.

For example, replacing $\operatorname{La^{3+}}$ by $\operatorname{Sr^{2+}}$ in $\operatorname{LaCoO_3}$ could occur:

by creating oxygen vacancies;

$$2\operatorname{La}_{\operatorname{La}} + 2\operatorname{SrO} + \operatorname{O_O} \Longrightarrow 2\operatorname{Sr_{\operatorname{La}}}' + \operatorname{V_O^{ullet}} + \operatorname{La_2O_3}$$

 \bullet or by oxidising $\mathrm{Co}^{3\,+}$ to $\mathrm{Co}^{4\,+}$

$$2\operatorname{La}_{\operatorname{La}} + 2\operatorname{SrO} + rac{1}{2}\operatorname{O}_2 + 2\operatorname{Co}_{\operatorname{Co}} \Longrightarrow 2\operatorname{Sr}_{\operatorname{La}}' + 2\operatorname{Co}_{\operatorname{Co}}^{ullet} + \operatorname{La}_2\operatorname{O}_3$$

Quiz 2 - Extrinsic defects

At high pressure, oxygen vacancies in ${ {\rm Mg}_2{\rm SiO}_4}$ can react with ${ {\rm H}_2{\rm O}}$ to form new defects.

Results - Extrinsic defects

Solid solutions

Frequently, substitutional defect concentrations can exceed 1%

- known as a 'solid solution'
- Very important for tuning properties via synthesis
- Often useful to think of the "average ion" properties at each site
 - ∘ e.g. ionic radius, resulting in *Vegard's Law*
 - Lattice parameter is weighted average of the end-members, e.g. $Al_{2-x}Cr_xO_3$:

Non-stoichiometry

Some materials are naturally non-stoichiometric even without extrinsic defects

- Very common in transition metal compounds
 - multiple oxidation states available
- Example: FeO (wustite, NaCl structure) cannot actually form stoichiometrically at ambient pressure
 - \circ Actually $\mathrm{Fe_{1-x}O}$, with $0.05 \leq x \leq 0.15$

Non-stoichiometry

Some materials are naturally non-stoichiometric even without extrinsic defects

- Very common in transition metal compounds
 - multiple oxidation states available
- Example: FeO (wustite, NaCl structure) cannot actually form stoichiometrically at ambient pressure
 - \circ Actually Fe_{1-x}O, with $0.05 \le x \le 0.15$

Note: From cation:anion ratio alone you cannot determine the defect type(s) e.g. Fe:O ratio of 0.9 could equally be $Fe_{0.9}O$ or $FeO_{1.11}!$

Defect ordering

- At large defect concentrations, defects can interact
 - minimises enthalpy
- Can occur as
 - clusters ('0D')
 - lines ('1D')
 - o planes ('2D')

Often seen from electron microscopy, e.g. ${\rm ZrNb_{24}O_{62}}$ shows 2D order in two directions:

Example - WO_3

Plane-like defects are often described as *shear phases*

 WO_3

$$\mathrm{WO}_{2.90} \; \mathrm{or} \; \mathrm{W}_{10} \mathrm{O}_{29}$$

Lecture recap

- Crystals are never perfect!
 - defects favoured at higher temperature
- Three main types of defect:
 - vacancy (called Schottky if stoichiometry maintained)
 - interstitial (called Frenkel if stoichiometry maintained)
 - substitution or extrinsic
- Kroger-Vink notation is a way to write defect equations
- Some materials can form solid solutions and/or non-stoichiometric compositions
- If defects order, this can lead to new stoichiometric structure types

Feedback

Return to course contents 24