Programowanie obiektowe

Lista 9.

Poniższa lista zadań jest do zrobienia w języku Ruby. Każde zadanie to 4 punkty. Wybierz 2 zadania.

Zadanie 1. Bloki jednoparametrowe można traktować jak definicję jednoargumentowej funkcji matematycznej. Na przykład blok $\{ \mid \mathbf{x} \mid \mathbf{x} + \mathbf{x} + \mathbf{math.sin}(\mathbf{x}) \}$ reprezentuje funkcję $x \to x^2 + \sin(x)$. Dzięki temu można zdefiniować własną klasę Funkcja reprezentującą funkcje, gdzie definicja funkcji jest zadana blokiem (a właściwie obiektem klasy Proc) w konstruktorze. Zaimplementuj klasę $Funkcja^5$ wraz z metodami:

- .value(x) oblicza wartość funkcji w punkcie x;
- .zerowe(a,b,e) oblicza miejsca zerowe funkcji w przedziale [a,b] z dokładnością e lub zwraca nil jeśli miejsce zerowe nie zostało znalezione;
- .pole(a,b) oblicza przybliżone pole powierzchni między wykresem a osią OX w przedziale [a,b] (czyli całkę oznaczoną ;). Można tu przyjąć, że wykres jest zawsze nad osią OX;
- \bullet .poch(x) oblicza wartość (przybliżoną) pochodnej w punkcie x.

Zadanie 2. Zadanie jest podobne do poprzedniego, ale tym razem chcemy reprezentować funkcje dwuargumentowe za pomocą obiektów klasy *Funkcja2*. Zaprogramuj taką klasę wraz z metodami:

- .value(x, y) oblicza wartość funkcji w punkcie (x,y);
- .objetosc(a, b, c, d) oblicza przybliżoną objętość między wykresem funkcji a leżącym na płaszczyźnie OXOY prostokątem $[a,b] \times [c,d]$;
- .poziomica(a,b,c,d,wysokosc) oblicza listę par (x,y) takich że $f.value(x,y) \approx wysokosc$, przy czym $a \leq x \leq b$ oraz $c \leq y \leq d$. Dokładność przybliżenia do wysokosc może być zadana w metodzie, podobnie jak dokładność wyszukiwania poziomicy.

Zadanie 3. Rozszerz implementację jednej z klas *Funkcja* lub *Funkcja* o metodę rysującą wykres funkcji w zadanym przedziale. Wynikiem działania tej metody może być bądź szkic wykresu zrobiony za pomocą znaków ASCII na konsoli, bądź też plik z bitmapą wykresu, do obejrzenia w jakimś programie graficznym; stosunkowo łatwo będzie skorzystać z bitmapowego formatu PBM lub PPM. Zamiast generowania pliku bitmapowego można wygenerować plik wejściowy do programu rysującego wykresy, np. gnuplot.

Dla *Funkcja2* wykresem może być narysowane poziomice; takie jak np. na mapach fizycznych czy topograficznych.

Można skorzystać z gotowych bibliotek do tworzenia plików graficznych.

Marcin Młotkowski

⁵można alternatywnie rozszerzyć jakąś istniejącą klasę