1. Rychlá Fourierová transformácia

Budeme značiť teleso T a ω jeho prvok.

Veta 1.1 (o interpolácií). Nech $\alpha_0, \alpha_1, \ldots, \alpha_n$ sú po dvoch rôzne prvky telesa $\mathbf{T}[x]$. Potom pre každé $u_0, u_1, \ldots, u_n \in \mathbf{T}$ existuje práve jeden polynóm $p \in \mathbf{T}[x]$ stupňa najviac n splňujúci

$$p(\alpha_0) = u_0$$

$$p(\alpha_1) = u_1$$

$$\vdots$$

$$p(\alpha_n) = u_n.$$

Definícia (modulárna reprezentácia polynómu). Zobrazenie

$$\mathbf{T}[x] \to \mathbf{T}[x]/(x-\alpha_0) \times \cdots \times \mathbf{T}[x]/(x-\alpha_n), p \mapsto (p(\alpha_0), \dots, p(\alpha_n))$$

je modulárnou reprezentáciou polynómu nad telesom $\mathbf{T}[x]$ vzhľadom k bodom $\alpha_0, \alpha_1, \dots, \alpha_n$.

Síce skutočná všeobecná definícia modulárnej reprezentácia je založená na pozorovaniach, ktoré vyplývajú z čínskej vety o zbytkoch a z vety o interpolácií polynómu, bude nám pre ďalšie účely postačovať definícia modulárnej reprezentácii polynómu vyššie, preto nebudeme zavádzať všeobecnú definíciu.

Diskrétnou Fourierovou transformáciou DFT(ω) s parametrom ω rozumieme výpočet hodnôt polynómu $p \in \mathbf{T}[x]$ stupňa nejviac n-1 v bodoch $1, \omega, \omega^2, \ldots, \omega^{n-1}$. Diskrétnu Fourierovú transformáciu môžeme chápať aj ako zobrazenie medzi vektorovými priestormi $\mathbf{T}^n \to \mathbf{T}^n$, ktoré vektoru koeficientov priradí vektor hodnôt v týchto bodoch. Teda pre polynóm $p = \sum_{i=0}^{n-1} a_i x^i$ platí

$$DFT(\omega)(a_0, a_1, \dots, a_{n-1}) = (p(1), p(\omega), \dots, p(\omega^{n-1})).$$

Pretože hodnotu polynómu v ľubovoľnom bode α môžeme dostať násobením istého riadkového vektoru závislého na α a stále rovnakého stĺpcového vektoru podľe vzorca

$$p(\alpha) = \sum_{i=0}^{n-1} a_i \alpha^i = (1, \alpha, \alpha^2 \dots, \alpha^{n-1}) \cdot \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix},$$

pre diskrétnu Fourierovu transformáciu platí vzorec

$$DFT(\omega)(u) = A(\omega) \cdot u,$$

kde u je stĺpcový vektor $(a_0, a_1, \dots, a_{n-1})^T$ a $A(\omega)$ je Vandermondova matice tvaru

$$A(\omega) = \begin{pmatrix} 1 & 1 & 1 & \dots & 1\\ 1 & \omega & \omega^2 & \dots & \omega^{n-1}\\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(n-1)}\\ \vdots & & & & \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)(n-1)} \end{pmatrix}$$

Teda DFT (ω) je lineárne zobrazenie. Naviac, ak sú prvky $1, \omega, \dots, \omega^{n-1}$ po dvoch rôzne, potom je toto zobrazenie bijektívne, pretože determinant Vandermondovej

matice $A(\omega)$ je rovný súčinu $\prod_{i>j} (\omega^i - \omega^j)$. Za tohoto predpokladu môžeme uvažovať inverzné zobrazenie DFT $(\omega)^{-1}$, ktoré sa nazýva inverzná diskrétna Fourierová transformácia a budeme ho značiť IDFT (ω) . Môžeme vidieť, že

$$IDFT(\omega)(u) = A(\omega)^{-1} \cdot u.$$

IDFT je vlastne interpolácia polynómu z hodnôt v bodoch $1, \omega, \omega^2, \dots, \omega^{n-1}$ a celá diskrétna Fourierová transformácia a jej inverz sú špeciálnym prípadom modulárnej reprezentácie. Jej zmysel je v tom, že pre isté ω existuje veľmi rýchly algoritmus na ich výpočet.

Definícia (n-tá odmocnina z jednej). Povieme, že prvok $\omega \in \mathbf{T}$ je primitívna n-tá odmocnina z jednej v telese \mathbf{T} , ak platí

- (1) $\omega^n = 1$,
- (2) $\omega^i \neq 1$ pre všetky $i = 1, 2, \dots, n-1$.

Inými slovami, ak je rád prvku ω v grupe \mathbf{T}^* rovný n.

- **Príklad** (n-té odmocniny z jednej). (1) V telese \mathbb{C} je $\omega = e^{\frac{2\pi i}{n}} = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$ primitívnou n-tou odmocninou z jednej, ako sa dá ukázať, keď si nakreslíte jej mocniny v komplexnej rovine (tvorí vrcholy pravidelného n-uholníka)
- (2) V telese \mathbb{Z}_5 je $\omega = 2$ primitívnou štvrtou odmocninou z jednej, pretože $2^2 = 4$, $2^3 = 3$ a $2^4 = 1$. Všeobecne, každý generátor grupy \mathbb{Z}_p^* je primitívnou p-1-tou odmocninou z jednej v telese \mathbb{Z}_p .

Všimnime si, že ak je ω primitívna $n\text{-}{\rm t\acute{a}}$ odmocnina z jednej, tak potom je matica $A(\omega)$ regulárna.

Tvrdenie 1.2. Ak je ω primitívna n-tá odmocnina z jednej v telese T a

$$A(\omega) = \left(\omega^{ij}\right)_{i,j=0}^{n-1},$$

potom

$$A(\omega)^{-1} = \frac{1}{n} \cdot (\omega^{-ij})_{i,j=0}^{n-1}.$$

Inými slovami,

$$IDFT(\omega) = \frac{1}{n} \cdot DFT(\omega^{-1}).$$

Proof. Dokážeme, že súčin týchto dvoch matíc je jednotková matica (z toho vyplýva, že sú navzájom inverzné). Podľa vzorca pre súčin matíc platí

$$(\omega^{ij})_{i,j=0}^{n-1} \cdot \frac{1}{n} \cdot (\omega^{-ij})_{i,j=0}^{n-1} = \frac{1}{n} \cdot (\sum_{k=0}^{n-1} \omega^{ik} \omega^{-kj})_{i,j=0}^{n-1}.$$

Pritom pre i = j máme

$$\frac{1}{n} \cdot \sum_{i=1}^{n-1} \omega^{ik} \omega^{-ki} = \frac{1}{n} \cdot \sum_{i=1}^{n-1} 1 = \frac{1}{n} \cdot (n \cdot 1) = 1.$$

Naopak, pre $i \neq j$

$$\sum_{k=0}^{n-1} \omega^{ik} \omega^{-kj} = \sum_{k=0}^{n-1} \omega^{k(i-j)} = \sum_{k=0}^{n-1} (\omega^{i-j})^k,$$

dostali sme geometrickú radu. Pretože ω je primitívna odmocnina, máme $\omega^{i-j} \neq 1$ a môžeme použiť známy vzorec, ktorý hovorí, že

$$\sum_{k=0}^{n-1} (\omega^{i-j})^k = \frac{(\omega^{i-j})^n - 1}{\omega^{i-j} - 1}.$$

Zároveň však $\omega^n=1$, a teda $(\omega^{i-j})^n=(\omega^n)^{i-j}=1^{i-j}=1$. Máme výsledek a ten je 0.

Dokázali sme, že na diagonále súčinu týchto dvoch matíc sú jednotky a mimo diagonálu nuly. Súčinom je teda jednotková matica.

Nemusíme sa teda zaoberať výpočtom IDFT, pretože ten môžeme urobiť rovnako ako DFT, len s iným parametrom.

Princípom rýchleho algoritmu na výpočet DFT je metóda rozdeľ a panuj. Ak je n nepárne, môžeme počítať hodnotu polynómu $p = \sum_{i=0}^{n-1} a_i x^i$ v bode α rekurzívne takto:

$$p(\alpha) = \underbrace{(a_0 + a_2 \alpha^2 + a_4 \alpha^4 + \dots + a_{n-2} \alpha^{n-2})}_{q(\alpha^2)} + \underbrace{(a_1 \alpha + a_3 \alpha^3 + \dots + a_{n-1} \alpha^{n-1})}_{\alpha r(\alpha^2)},$$

tj.

$$p(\alpha) = q(\alpha^2) + \alpha r(\alpha^2),$$

pričom q, r sú polynómy definované

$$q(x) = \sum_{i=0}^{\frac{n}{2}-1} a_{2i}x^i$$
 a $r(x) = \sum_{i=0}^{\frac{n}{2}-1} a_{2i+1}x^i$.

Teda úlohu dosadenia hodnoty α do polynómu s n koeficientmi sme rozdelili na dve úlohy dosadenia hodnoty α^2 do polynómov polovičnej veľkosti.

Aby sme mohli úlohu deliť na polovičnú vo všetkých krokoch, predpokladajme naďalej, že n je mocninou dvojky.

Algoritmus 1.3 (Rýchla Fourierová transformácia). $FFT(\omega)$

VSTUP: a_0, a_1, \dots, a_{n-1} .

VÝSTUP: DFT $(\omega)(a_0, a_1, \ldots, a_{n-1})$.

- 0. If n=1 THEN RETURN a_0 , STOP.
- 1. $(b_0, \ldots, b_{\frac{n}{2}-1}) := \text{FFT}(\omega^2)(a_0, a_2, \ldots, a_{n-2}),$ $(c_0, \ldots, c_{\frac{n}{2}-1}) := \text{FFT}(\omega^2)(a_1, a_3, \ldots, a_{n-1}).$
- 2. Pro $i = 0, \ldots, \frac{n}{2} 1$ polož $d_i := b_i + \omega^i c_i, d_{i+\frac{n}{2}} := b_i \omega^i c_i,$ RETURN (d_0, \ldots, d_{n-1}) .

Tvrdenie 1.4. Ak je n mocnina dvojky a ω primitívna n-tá odmocnina z jednej v telese **T**, potom Algoritmus 1.3 funguje.

Proof. Dôkaz predvedieme indukciou podľa n. Pre n=1 je DFT(ω) dosadenie do konštantného polynómu s koeficientom a_0 , teda výsledok je a_0 . Prevedieme indukční krok. Nech $p=\sum_{i=0}^n a_i x^i$ a definujeme polynómy q,r ako vyššie. Podľa indukčného predpokladu

$$(b_0, \dots, b_{\frac{n}{2}-1}) = (q(1), q(\omega^2), q(\omega^4), \dots, q(\omega^{n-2}))$$

 \mathbf{a}

$$(c_0, \ldots, c_{\frac{n}{3}-1}) = (r(1), r(\omega^2), r(\omega^4), \ldots, r(\omega^{n-2})).$$

Chceme dokázať, že pre $i = 0, 1, \dots, \frac{n}{2} - 1$ platí

$$d_i = p(\omega^i)$$
 a $d_{i+\frac{n}{2}} = p(\omega^{i+n/2})$.

Prvý vzťah plynie priamo zo vzorca odvodeného vyššie:

$$p(\omega^i) = q(\omega^{2i}) + \omega^i r(\omega^{2i}) = b_i + \omega^i c_i = d_i.$$

Podobne odvodíme aj druhý vzťah:

$$p(\omega^{i+n/2}) = q(\omega^{2i+n}) + \omega^{i+n/2} r(\omega^{2i+n}) = b_i - \omega^i c_i = d_{i+\frac{n}{2}}.$$

Na tomto mieste využívame jednoduché pozorovanie, že $\omega^{2i+n} = \omega^{2i}\omega^n = \omega^{2i}$ a že $\omega^{i+n/2} = \omega^i\omega^{n/2} = -\omega^i$. Pritom $\omega^{n/2} = -1$, pretože to je druhá odmocnina z jednej, a tie sú len dve: 1 (tá to nie je, pretože ω je primitívna odmocnina) a -1.

K funkčnosti algoritmu ostáva dokázať, že ω^2 je primitívna $\frac{n}{2}$ -tá odmocnina z jednej. Zrejme $(\omega^2)^{n/2} = \omega^n = 1$ a ďalej pre všetky $i = 1, 2, \ldots, \frac{n}{2} - 1$ platí $(\omega^2)^i = \omega^{2i} \neq 1$, pretože 2i < n a ω je primitívna odmocnina.

Tvrdenie 1.5. Algoritmus 1.3 má časovú zložitosť $\mathcal{O}(n \log n)$ (ako jednotkovú operáciu uvažujeme akúkoľvek operáciu v telese **T**).

Proof. Budeme postupovať podľa už niekoľkokrát použitého schématu pre algoritmy rozdeľ a panuj. Predpokladajme, že $n = 2^k$. Označme T(n) počet operácií v telese \mathbf{T} , ktoré algoritmus vykoná na vstupe dĺžky n. Všimnime si, že T(1) = 0 a

$$T(n) = 2T(\frac{n}{2}) + cn$$

pre istú konštantu c. Platí teda

$$T(2^{k}) = 2T(2^{k-1}) + c2^{k}$$

$$= 2(2T(2^{k-2}) + c2^{k-1}) + c2^{k} = 4T(2^{k-2}) + c(2^{k} + 2^{k})$$

$$= \dots$$

$$= 2^{k}T(2^{k-k}) + ck2^{k} = 2^{k}T(1) + ck2^{k} = \mathcal{O}(k2^{k}).$$

Teda $T(n) = \mathcal{O}(n \log n)$.

Príklad (FFT). Uvažujme polynóm $p = 5x^3 + x + 1 \in \mathbb{Z}_{41}[x]$. Môžeme zvoliť $\omega = -9$, pretože $\omega^2 = -1$, $\omega^3 = 9$ a $\omega^4 = 1$. Spočítajme DFT(ω)(1, 1, 0, 5) pomocou Rýchlej Fourierovej transformácie: FFT(ω^2)(1, 0) = (1, 1), FFT(ω^2)(1, 5) = (6, -4), výsledok teda je $(1 + \omega^0 6, 1 + \omega^1 \cdot (-4), 1 - \omega^0 6, 1 - \omega^1 (-4)) = (1 + 6, 1 + (-9) \cdot (-4), 1 - 6, 1 - (-9) \cdot (-4)) = (7, -4, -5, 6).$

Ostáva vyriešiť otázku, ako zvoliť parameter ω , tj. odkiaľ vziať v telese ${\bf T}$ primitívnu n-tú odmocninu z jednej. Ako už bolo povedané, v telese ${\mathbb C}$ existuje primitívna n-tá odmocnina z jednej pre každé n, napr.

$$\omega = e^{\frac{2\pi i}{n}} = \cos\frac{2\pi i}{n} + i\sin\frac{2\pi i}{n}.$$

Pre telesa \mathbb{Z}_p platí nasledujúce tvrdenie:

Tvrdenie 1.6. V telese \mathbb{Z}_p existuje primitívna n-tá odmocnina z jednej práve vtedy, ak $n \mid p-1$. V tom prípade je primitívnou n-tou odmocninou každý prvok $a^{\frac{p-1}{n}}$, kde a je generátor grupy \mathbb{Z}_p^* .

Proof. Pripomeňme, že primitívna n-tá odmocnina z jednej je vlastne prvok $\omega \in \mathbb{Z}_p^*$ rádu n. Vieme, že $|\mathbb{Z}_p^*| = p-1$, a teda, podľa Lagrangeovej vety, ak $n \nmid p-1$, potom žiadny prvok rádu n neexistuje. V opačnom prípade využijeme faktu, že grupa \mathbb{Z}_p^* je cyklická, teda existuje prvok $a \in \mathbb{Z}_p^*$, ktorý túto grupu generuje, a teda má rád p-1. Zrejme $\omega = a^{\frac{p-1}{n}}$ je prvok rádu n, pretože $\omega^i = a^{i\frac{p-1}{n}} \neq 1$ pre každé i < n a pritom $\omega^n = a^{p-1} = 1$ v \mathbb{Z}_p .

Ako ale také a v \mathbb{Z}_p nájsť? Vieme, že grupa \mathbb{Z}_p^* obsahuje $\varphi(p-1)$ generátorov, kde φ značí Eulerovu funkciu. Ich hustota je teda relatívne veľká a existuje odhad (dokazovaný obvykle v teórií čísel)

$$\frac{\varphi(p-1)}{p} \sim \frac{3}{\pi^2} \doteq 0, 3.$$

Nejefektívnejšia metóda je teda náhodna voľba a následne overenie, či skutočne rád náhodne zvoleného prvku je p-1. Spomenutý odhad Hovorí, že se trafíme do generátoru v priemere v každom treťom prípade.

Poznamenejme, že nás vlastne zaujímajú primitívne n-té odmocniny z jednej pre n rovno mocnine dvojky. Zaujímavé sú telesa \mathbb{Z}_p , kde $2^k \mid p-1$ pre veľmi veľké k (napr. 17, 41, atď.)

Záverom okomentujeme nepríjemnú námietku, ktorá vás už možno napadla: čo ak v našom obľúbenom telese \mathbf{T} (ako napríklad v racionálnych číslach) žiadne primitívne n-té odmocniny z jednej nie sú? Potom v \mathbf{T} nemôžeme robiť Rýchlu Fourierovú transormáciu. Nikto nám však nebráni si príslušnú odmocninu k \mathbf{T} adjungovať a pracovať v algebraickom rozšíreni $\mathbf{T}(\omega)$. Ako $\mathbf{T}(\omega)$ si samozrejme zvolíme vhodné koreňové nadteleso polynómu x^n-1 . V prípade racionálnych čísel je prirodzenou voľbou $\mathbb{Q}(e^{\frac{2\pi i}{n}})$.

2. RÝCHLE NÁSOBENIE POLYNÓMOV

Princípom rýchleho algoritmu na násobenie a delenie polynómov je nasledujúcie pozorovanie: ak je

$$(c_0,\ldots,c_n)$$

modulárna reprezentácia polynómu p a

$$(d_0,\ldots,d_n)$$

modulárna reprezentácia polynómu q vzhľadom k daným bodom α_0,\dots,α_n , a ak je naviac $n \geq \deg(p) + \deg(q)$, potom modulárna reprezentácia polynómu $p \cdot q$ vzhľadom k týmto bodom je

$$(c_0d_0,\ldots,c_nd_n),$$

pretože $(p \cdot q)(\alpha_i) = p(\alpha_i) \cdot q(\alpha_i)$ pre ľubovoľný bod α_i . Analogicky, ak $q \mid p$, potom $\frac{p}{q}$ má modulárnu reprezentáciu

$$\left(\frac{c_0}{d_0}, \dots, \frac{c_n}{d_n}\right).$$

Pritom k výpočtu súčinu a podielu v takejto modulárnej reprezentácii stačí n+1 operacií (násobení, resp. delení) v telese ${\bf T}$. Vzhľadem k tomu, že užívateľ obvykle vyžaduje vstup aj výstup v štandardnej reprezentácii, zložitost násobenia a delenia závisí na algoritmu pre prevod do vhodne zvolenej modulárnej bázi.

 $p = \sum_{i=0}^{n} a_i x^i, q = \sum_{i=0}^{m} b_i x^i \in \mathbf{T}[x].$ $p \cdot q = \sum_{i=0}^{m+n} f_i x^i.$ **VÝSTUP:**

Zvoľ $N=2^k>m+n$ a nejakú primitívnu n-tú odmocninu z jednej ω v ${\bf T}.$

2. $\bar{c} := \text{FFT}(\omega)(a_0, \dots, a_n, 0, \dots, 0),$

 $\bar{d} := \text{FFT}(\omega)(b_0, \dots, b_m, 0, \dots, 0).$ $\bar{e} := \bar{c} \cdot \bar{d} = (c_0 \cdot d_0, \dots, c_{N-1} \cdot d_{N-1}).$

 $\bar{f} := \frac{1}{N} \text{FFT}(\omega^{-1})(e_0, \dots, e_{N-1}).$ 4. RETURN $\sum_{i=0}^{N-1} f_i x^i$. 5.

Algoritmus 2.1 (Rýchle násobenie).

Tvrdenie 2.2. Predpokladajme, že ω je daná. Časová zložitosť Algoritmu 2.1 je

 $\mathcal{O}(n \log n)$, kde n je väčší zo stupňov p, q.

Proof. Rozoberieme zložitosť jednotlivých krokov: 1. je triviálny. Krok 2. má zložitosť $2\mathcal{O}(N\log N)$. Krok 3. má zložitosť N. Krok 4. má zložitosť $\mathcal{O}(N\log N)$.

A krok 5. je triviálny. Pretože $N \leq 4n$, máme celkovú časovú zložitosť algoritmu

 $\mathcal{O}(N \log N) = \mathcal{O}(n \log n).$ Poznámka. Zložitosť hľadania primitívnej odmocniny z jednej sme nepočítali, pretože toto záleží na telese $\mathbf T$. Napríklad v prípade $\mathbb Q$ nemusíme nič hľadať, stačí položiť $\omega = e^{\frac{2\pi i}{N}}$ a $\omega^{-1} = e^{-\frac{2\pi i}{N}}$ a počítať v telese $\mathbb{Q}(\omega)$. V prípade \mathbb{Z}_p môžeme hľadať

 pravdepodobnostným algoritmom popísaným v predošlej sekcii. Ak v \mathbb{Z}_p žiadna primitívna N-tá odmocnina z jednej neexistuje, pracujeme v príslušnom rozšíreni.

Príklad. Spočítajme súčin $(3x^3 + x^2 - 4x + 1) \cdot (x^3 + 2x^2 + 5x - 3)$ v \mathbb{Z}_{41} . (1) zvoľme $N = 2^3 = 8 > 3 + 3$ a $\omega = 14$. (2) $\bar{c} = \text{FFT}(14)(1, -4, 1, 3, 0, 0, 0, 0) = (1, 9, -19, -18, 3, 16, 19, -3),$

 $\bar{d} = \text{FFT}(14)(-3, 5, 2, 1, 0, 0, 0, 0) = (5, 5, 0, 14, -7, -6, -10, 16).$ (3) $\bar{e} = (5, 4, 0, -6, 20, -14, 15, -7).$

(4) Platí $\omega^{-1} = 3$ a $\frac{1}{N} = \frac{1}{8} = -5$. Tedy

 $\bar{f} = -5 \cdot \text{FFT}(3)(5, 4, 0, -6, 20, -14, 15, -7) = (-3, 17, 20, -11, 13, 7, 3, 0).$ (5) Súčin je $-3 + 17x + 20x^2 - 11x^3 + 13x^4 + 7x^5 + 3x^6$

Poznámka. Algoritmus na rýchle delenie funguje analogicky. V kroku 1. stačí $N=2^k>n$ a v kroku 3. počítame $\bar{e}=(\frac{c_0}{d_0},\ldots,\frac{c_{N-1}}{d_{N-1}})$. Aj v tomto prípade bude časová zložitosť $\mathcal{O}(n \log n)$.