AMENDMENTS TO THE CLAIMS

1. (Previously presented) A triazolopyrimidine of the formula I

in which the substituents are as defined below:

R¹, R² independently of one another are hydrogen, C₁-C₈-alkyl, C₁-C₈-haloalkyl, C₃-C₈-cycloalkyl, C₃-C₈-halocycloalkyl, C₂-C₈-alkenyl, C₂-C₈-haloalkenyl, C₃-C₆-cycloalkenyl, C₃-C₆-halocycloalkenyl, C₂-C₈-alkynyl, C₂-C₈-haloalkynyl or phenyl, naphthyl, or a five- or six-membered saturated, partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S,

R¹ and R² together with the nitrogen atom to which they are attached may also form a five- or six-membered heterocyclyl or heteroaryl which is attached via N and may contain a further heteroatom from the group consisting of O, N and S as ring member and/or may carry one or more substituents from the group consisting of halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-alkenyl, C₂-C₆-haloalkenyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₃-C₆-alkenyloxy, C₃-C₆-haloalkenyloxy, C₁-C₆-alkylene and oxy-C₁-C₃-alkyleneoxy;

R¹ and/or R² may carry one to four identical or different groups R^a:

R^a is halogen, cyano, nitro, hydroxyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₂-C₈-alkenyl, C₂-C₈-haloalkenyl, C₃-C₈-cycloalkenyl, C₂-C₆-alkynyloxy, C₃-C₆-haloalkenyloxy, C₂-C₆-alkynyl, C₂-C₆-haloalkynyloxy, C₃-C₆-cycloalkoxy, C₃-C₆-cycloalkenyloxy, C₁-C₃-C₆-cycloalkenyloxy, C₁-C₃-C₆-cycloalkenyloxy, C₁-C₃-C₆-cycloalkenyloxy, C₁-C₃-cycloalkenyloxy, C₁-C₂-cycloalkenyloxy, C₁-C₂-cycloalkenyloxy, C₁-C₂-cycloalkenyloxy, C₁-C₂-cycloalkenyloxy, C₁-C₂-cycloalkenyloxy, C₁-C₂-cycloalkenyloxy, C₁-C₂-cycloalkenyloxy, C₁-cycloalkenyloxy, C₂-cycloalkenyloxy, C₂-cycloalkenyl

oxyalkyleneoxy, phenyl, naphthyl, a five- to ten-membered saturated, partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S,

where these aliphatic, alicyclic or aromatic groups for their part may be partially or fully halogenated or may carry one to three groups R^b:

R^b is halogen, cyano, nitro, hydroxy, mercapto, amino, carboxyl, aminocarbonyl, aminothiocarbonyl, alkyl, haloalkyl, alkenyl, alkenyloxy, alkynyloxy, alkoxy, haloalkoxy, alkylthio, alkylamino, dialkylamino, formyl, alkylcarbonyl, alkylsulfonyl, alkylsulfoxyl, alkoxycarbonyl, alkylcarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, where the alkyl groups in these radicals contain 1 to 6 carbon atoms and the abovementioned alkenyl or alkynyl groups in these radicals contain 2 to 8 carbon atoms;

and/or one to three of the following radicals:

cycloalkyl, cycloalkoxy, heterocyclyl, heterocyclyloxy, where the cyclic systems contain 3 to 10 ring members; aryl, aryloxy, arylthio, aryl- C_1 - C_6 -alkoxy, aryl- C_1 - C_6 -alkyl, hetaryl, hetaryloxy, hetarylthio, where the aryl radicals preferably contain 6 to 10 ring members and the hetaryl radicals 5 or 6 ring members, where the cyclic systems may be partially or fully halogenated or substituted by alkyl or haloalkyl groups;

Hal is halogen;

- L^1 , L^2 are hydrogen, cyano, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy or C(=0)A, where at least one group L^1 or L^2 is not hydrogen;
 - A is hydrogen, hydroxy, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_8 -alkylamino or di- $(C_1$ - C_8 -alkyl)amino;
- L³ is hydrogen, halogen, cyano, nitro, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl;

X is halogen, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₂-haloalkoxy.

- 2. (Original) The compound of the formula I according to claim 1 in which R¹ is not hydrogen.
- 3. (Currently amended) The compound of the formula I according to claim 1-or 2, where R² is hydrogen, methyl or ethyl.
- 4. (Previously presented) The compound of the formula I according to claim 1, which corresponds to the formula I.1

in which

G is C_2 - C_6 -alkyl, C_1 - C_4 -alkoxymethyl or C_3 - C_6 -cycloalkyl;

R² is hydrogen or methyl; and

X is chlorine, methyl, cyano, methoxy or ethoxy and

L¹ to L³ and Hal are as defined according to claim 1.

5. (Previously presented) The compound of the formula I according to claim 1 which corresponds to the formula I.2

$$\begin{array}{c|c}
 & L^1 \\
 & L^3 \\
 & L^2 \\
 & N \\$$

4

in which

D together with the nitrogen atom forms a five- or six-membered heterocyclyl or heteroaryl which is attached via N and may contain a further heteroatom from the group consisting of O, N and S as ring member and/or may carry one or more substituents from the group consisting of halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy and C₁-C₂-haloalkyl;

X is chlorine, methyl, cyano, methoxy or ethoxy and L^1 to L^3 and Hal are as defined according to claim 1.

6. (Previously presented) A process for preparing the compounds of the formula I according to claim 1 in which X is halogen, cyano, C₁-C₄-alkyl, C₁-C₄-alkoxy or C₁-C₂-haloalkoxy, by reacting 5-aminotriazole of the formula II

with phenylmalonates of the formula III,

in which R is alkyl, to give dihydroxytriazolopyrimidines of the formula IV,

5

halogenation to give the dihalo compounds of the formula V,

in which Y is halogen and reaction of V with amines of the formula VI

$$R^1$$

 R^2 N-H VI

to give compounds of the formula I in which X is halogen, if desired, to prepare compounds of the formula I in which X is cyano, C₁-C₄-alkoxy or C₁-C₂-haloalkoxy, reaction of compounds I in which X is halogen with compounds of the formula VII

which, depending on the group X' to be introduced, are inorganic cyanides, alkoxides or haloalkoxides and in which M is an ammonium, tetraalkylammonium, alkali metal or alkaline earth metal cation, and, if desired, to prepare compounds of the formula I according to claim 1 in which X is alkyl, by reaction of the compounds of the formula I in which X is halogen with malonates of the formula VIII

in which X" is hydrogen or C₁-C₃-alkyl and R is C₁-C₄-alkyl, to give compounds of the formula IX

and decarboxylation to give compounds I in which X is alkyl.

7. (Currently amended) A process for preparing the compounds of the formula I according to claim 1 in which X is C₁-C₄-alkyl or C₁-C₄-haloalkyl by reacting 5-aminotriazole of the formula II according to claim 5

with keto esters of the formula IIIa

in which X^1 is C_1 - C_4 -alkyl or C_1 - C_4 -haloalkyl and R is C_1 - C_4 -alkyl,

- L^1 , L^2 are hydrogen, cyano, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy or C(=0)A, where at least one group L^1 or L^2 is not hydrogen;
 - A is hydrogen, hydroxy, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_8 -alkylamino or di- $(C_1$ - C_8 -alkyl)amino;
- L³ is hydrogen, halogen, cyano, nitro, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl;

to give 5-alkyl-7-hydroxy-6-phenyltriazolopyrimidines of the formula IVa,

halogenation of IVa to give 7-halotriazolopyrimidines of the formula Va

in which Y is halogen and reaction of Va with amines of the formula VI according to claim 5

R^{1} R^{2} N-H			VI

R¹, R² independently of one another are hydrogen, C₁-C₈-alkyl, C₁-C₈-haloalkyl,

C₃-C₈-cycloalkyl, C₃-C₈-halocycloalkyl, C₂-C₈-alkenyl, C₂-C₈-haloalkenyl, C₃-C₆
cycloalkenyl, C₃-C₆-halocycloalkenyl, C₂-C₈-alkynyl, C₂-C₈-haloalkynyl or phenyl,

naphthyl, or a five- or six-membered saturated, partially unsaturated or aromatic

heterocycle which contains one to four heteroatoms from the group consisting of O,

N and S,

R¹ and R² together with the nitrogen atom to which they are attached may also form a five- or six-membered heterocyclyl or heteroaryl which is attached via N and may contain a further heteroatom from the group consisting of O, N and S as ring member and/or may carry one or more substituents from the group consisting of halogen,

 C_1 - C_6 -alkyl, C_1 - C_6 -haloalkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -haloalkenyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkoxy, C_3 - C_6 -haloalkenyloxy, C_1 - C_6 -alkylene and oxy- C_1 - C_3 -alkyleneoxy;

R¹ and/or R² may carry one to four identical or different groups R^a:

is halogen, cyano, nitro, hydroxyl, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkylcarbonyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, C₁-C₆-alkylamino, di-C₁-C₆-alkylamino, C₂-C₈-alkenyl, C₂-C₈-haloalkenyl, C₃-C₈-cycloalkenyl, C₂-C₆-alkenyloxy, C₃-C₆-haloalkenyloxy, C₂-C₆-alkynyl, C₂-C₆-haloalkynyloxy, C₃-C₆-haloalkynyloxy, C₃-C₆-cycloalkoxy, C₃-C₆-cycloalkenyloxy, C₁-C₃-oxyalkyleneoxy, phenyl, naphthyl, a five- to ten-membered saturated, partially unsaturated or aromatic heterocycle which contains one to four heteroatoms from the group consisting of O, N and S,

where these aliphatic, alicyclic or aromatic groups for their part may be partially or fully halogenated or may carry one to three groups R^b:

R^b is halogen, cyano, nitro, hydroxy, mercapto, amino, carboxyl, aminocarbonyl, aminothiocarbonyl, alkyl, haloalkyl, alkenyl, alkenyloxy, alkynyloxy, alkoxy, haloalkoxy, alkylthio, alkylamino, dialkylamino, formyl, alkylcarbonyl, alkylsulfonyl, alkylsulfoxyl, alkoxycarbonyl, alkylcarbonyloxy, alkylaminocarbonyl, dialkylaminocarbonyl, alkylaminothiocarbonyl, dialkylaminothiocarbonyl, where the alkyl groups in these radicals contain 1 to 6 carbon atoms and the abovementioned alkenyl or alkynyl groups in these radicals contain 2 to 8 carbon atoms;

and/or one to three of the following radicals:

cycloalkyl, cycloalkoxy, heterocyclyl, heterocyclyloxy, where the cyclic systems contain 3 to 10 ring members; aryl, aryloxy, arylthio, aryl- C_1 - C_6 -alkyl, hetaryl, hetaryloxy, hetarylthio, where the aryl radicals preferably contain 6 to 10 ring members and the hetaryl radicals

5 or 6 ring members, where the cyclic systems may be partially or fully halogenated or substituted by alkyl or haloalkyl groups;

to give compounds I in which X is C₁-C₄-alkyl or C₁-C₄-haloalkyl.

- 8. (Currently amended) The compound of the formula IV, IVa, V or Va according to claims 6 and 7 claim 6, in which
 - L^1 , L^2 are hydrogen, cyano, C_1 - C_6 -alkoxy, C_3 - C_6 -alkenyloxy or C(=O)A, where at least one group L^1 or L^2 is not hydrogen;
 - A is hydrogen, hydroxy, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_6 -haloalkoxy, C_1 - C_8 -alkylamino or di- $(C_1$ - C_8 -alkyl)amino;
 - L³ is hydrogen, halogen, cyano, nitro, C₁-C₆-alkoxy, C₁-C₆-alkoxycarbonyl;

Y is a halogen and X^1 is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl.

- 9. (Previously presented) A fungicidal composition, comprising a solid or liquid carrier and a compound of the formula I according to claim 1.
- (Previously presented) Seed, comprising 1 to 1000 g of a compound of the formula I according to claim 1 per 100 kg.
- 11. (Previously presented) A method for controlling phytopathogenic harmful fungi, which method comprises treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of a compound of the formula I according to claim 1.
- 12. (New) The compound of the formula I according to claim 2, where R² is hydrogen, methyl or ethyl.