Binary Tree

Maximum node on 3^{rd} level $= 2^{(N-1)}$ $= 2^{(3-1)}$ $= 2^2$ = 4

Maximum node until 3^{rd} level = $2^{N} - 1$ = $2^{3} - 1$ = 8 - 1= 7

Types of Binary Tree

Full Binary Tree

- All nodes (except leaf) have two children.
- Each subtree has same length of path.

Complete Binary Tree

- All nodes (except leaf) have two children.
- Each subtree can has different length of path.

MAKING OF BINARY TRE

Making of Binary Tree

- From input data
- From general tree
- From result of traversal process

From Input Data

- If value of inserted node is bigger than parent then it will be right subtree.
- If value of inserted node is smaller than parent then it will be left subtree.
- This tree is known as binary search tree.

From Input Data

H will be root

A < H:

A will be left child of H

K > H:

K will be right child of H

$$C < H \rightarrow C > A$$
:

C will be right child of A

$$B < H \rightarrow B > A \rightarrow B < C$$
:

B will be left child of C

$$L>H\rightarrow L>K$$
:

L will be right child of K

$$J < H \rightarrow J < K$$
:

J will be left child of K

Exercise

Make binary tree from these input data:

- GHCKJALBEFD
- KGMDLSBRJP

From General Tree

- First son in general tree will be left son in binary tree
- Next brother of first son in general tree
 will be right son in binary tree.

From General Tree

Exercise

Make binary tree from this general tree:

Exercise

a. K,C,P,E,I

b. E = A +

Make binary tree from this statement:

K, C, P, E, M, B, R, G, Q, F, W

•
$$E = A + BD^{H} - F$$

 $G - K$

THANK YOU

GRACIAS

Contact Person:

Adam Mukharil Bachtiar

Informatics Engineering UNIKOM

J alan Dipati Ukur Nomor. 112-114 Bandung 40132

Email: adfbipotter@gmail.com

Blog: http://adfbipotter.wordpress.com

Copyright © Adam Mukharil Bachtiar 2012

DEFINITION

Tree

Tree is data structure that is non linear and can

be used to represents data in hierarchy

between those elements. For example:

organization structure, family tree, and the

tournament.

Components of Tree

TERMINOLOGY

Terminology of Tree

- Predecessor node that is above certain node.
- Successor node that is below certain node
- Ancestor all nodes that is before certain node and in the same path.
- Descendant all nodes that is after certain node and in the same path.

Terminology of Tree

- Parent predecessor that is one level above certain node.
- Sibling nodes that have same parent
- Degree number of child in one node.

Ilustration

Predecessor(B) : A

Successor(A) : B,C,D

Ancestor(E) : B,A

Descendant(B) : E,F

Parent(E) : B

Sibling(E) : F

Degree(A):3

Binary Tree

Binary Tree

The maximum degree of one node is 2.

The maximum number of node each level is 2 (N-1)

Maximum node until level N is $2^N - 1$