Семинар 19

1 Повторение

Примеры к теореме о гомоморфизме групп: \mathbb{C}/\mathbb{R} , $\mathbb{Z}/n\mathbb{Z}$, $\mathrm{GL}_n/\mathrm{SL}_n$. Естественный гомоморфизм. Связь между гомоморфизмом групп, естественным гомоморфизмом и изоморфизмом из теоремы о гомоморфизме.

Сопряжённые элементы. Критерий нормальности подгруппы, использующий понятие сопряжения. Утверждение о том, что нормальными подгруппами являются ядра гомоморфизмов и только они.

Группа кватернионов, её таблица Кэли. Замечание, что группа кватернионов не абелева, но все её подгруппы нормальные. Замечание о том, какими могут быть группы порядка восемь с точностью до изоморфизма.

2 Задачи

Пусть G – группа. Каждый элемент $g \in G$ определяет автоморфизм $c_g : G \to G$ по правилу $x \mapsto gxg^{-1}$ (сопряжение элементом g). Свойства сопряжения:

$$c_1 = 1_G, \ c_{gh} = c_g \circ c_h, \ c_g^{-1} = c_{g^{-1}}.$$

В частности, определён гомоморфизм

$$G \to \operatorname{Aut}(G), \ q \mapsto c_q$$
.

Задача 1. Доказать, что во всякой группе:

- 1. элементы x и yxy^{-1} имеют одинаковый порядок;
- 2. элементы ab и ba имеют одинаковый порядок.

Задача 2. В циклической группе $\langle a \rangle$ порядка n найти все элементы g, удовлетворяющие условию $q^k = 1$, и все элементы порядка k при n = 24, k = 6.

Задача 3. Найти все подгруппы в циклической группе порядка 24.

Задача 4. Существует ли бесконечная группа, все элементы которой имеют конечный порядок?

Задача 5. Найти смежные классы:

- 1. \mathbb{Z} по $n\mathbb{Z}$, где n натуральное число;
- $2. \mathbb{R}$ по \mathbb{Z} ;
- 3. \mathbb{C}^{\times} no \mathbb{R}^{\times} ;
- 4. циклической группы $\langle a \rangle_6$ по подгруппе $\langle a^4 \rangle$.

Задача 6. Пусть g – невырожденная матрица из $G = \mathrm{GL}_n(\mathbb{C})$ и $H = \mathrm{SL}_n(\mathbb{C})$. Доказать, что смежный класс gH состоит из всех матриц $a \in G$, определитель которых равен определителю матрицы g.

Задача 7. Доказать, что прямая сумма циклических групп $\mathbb{Z}_m \oplus \mathbb{Z}_n$ является циклической группой тогда и только тогда, когда HOД(m,n)=1.

Задача 8. Разложить в прямую сумму группу \mathbb{Z}_6 .

Задача 9. Пусть два элемента g,h группы G коммутируют между собой. Пусть порядки g и h конечны и равны n и m соответственно.

- 1. Доказать, что порядок gh конечен и делит HOK(n, m).
- 2. Доказать, что если для некоторых групп X, Y и некоторых их элементов $x \in X, y \in Y$ выполнены равенства $G = X \times Y, g = (x, 1)$ и h = (1, y), то порядок gh равен HOK(n, m).

Задача 10. Доказать, что любая подгруппа индекса 2 является нормальной.

Задача 11. Найти все собственные нормальные подгруппы в группе S_3 .

Задача 12. Чему изоморфна факторгруппа $\mathbb{R}^{\times}/\mathbb{R}_{>0}^{\times}$?

Задача 13. Доказать, что в группе \mathbb{Q}/\mathbb{Z} для каждого натурального n имеется в точности одна подгруппа порядка n.

Задача 14. Пусть U – это подгруппа \mathbb{C}^{\times} , состоящая из всех чисел, модуль которых равен 1. Для $n \in \mathbb{N}$ обозначим также через U_n подгруппу в U корней n-й степени из единицы. Доказать, что:

- 1. $\mathbb{R}/\mathbb{Z} \cong U$;
- 2. $U/U_n \cong U$;

3. $\mathbb{C}^{\times}/\mathbb{R}_{>0}^{\times} \cong U$.

Задача 15. Пусть

$$G = \mathrm{GL}_n(\mathbb{R}), \ P = \mathrm{SL}_n(\mathbb{R}), \ D = \{X \in G \mid \det X > 0\}.$$

Доказать, что:

- 1. $G/P \cong \mathbb{R}^{\times}$;
- 2. $G/D \cong \mathbb{Z}_2$.