

KIIT Deemed to be University Online Mid Semester Examination(Autumn Semester-2020)

Subject Name & Code:

Applicable to Courses:

Design & Analysis of Algorithms (DAA) (CS-2012)

Full Marks=20 Time:1 Hour

SECTION-A(Answer All Questions. All questions carry 2 Marks)

Time:20 Minutes

(5×2=10 Marks)

Question No	Question Type (MCQ/	Question	Answ er Key	<u>CO</u> <u>Mappi</u>
110	SAT)		(if MCQ)	<u>ng</u>
Q.No:1(a)	SAT	Rank the following functions by order of growth in increasing sequence? $\log \sqrt{n}$, \sqrt{n} , 2^{2^n} , \sqrt{n} log n		1
	SAT	Rank the following functions by order of growth in increasing sequence? $\log \sqrt{n}$, n , 2^{n^2} , $n^2 \log n$		1
	<u>SAT</u>	Rank the following functions by order of growth in increasing sequence? n^2 , n^{2^n} , nlog n, 500		1
	SAT	Rank the following functions by order of growth in increasing sequence? n^{2^n} , $n \log \sqrt{n}$, n^3 , \sqrt{n}		1
Q.No:1(b)	SAT	What is time complexity of the following function fun1()? int fun1(int n) { int i, j, s=0; for (i = n; i >= n; i /= 2) for (j = 0; j < i; j++) s += 1; return s; }		3
	SAT	What is time complexity of the following function fun2()? int fun2(int n) { int i, j, s=0; for $(j = 0; j < n; j++)$ for $(i = n; i>=n; i/= 2)$ $s += 1;$		3

		return s;		
		}		
	<u>SAT</u>	What is time complexity of the following function fun3()? int fun3(int n) { int i, j, s=0; for (i = 1; i <= n; i ++) for (j = 1; j <= i; j++) s += 1; return s;		3
	C A T	}		
	<u>SAT</u>	What is time complexity of the following function fun4()? int fun4(int n) { int i, j, s=0; for (i = n; i <= n; i ++) for (j = 1; j <= i; j++) s += 1; return s; }		3
Q.No:1(c)	<u>SAT</u>	What is the running time of QUICKSORT when all elements of array A have the same value?		4
	SAT	What is the running time of INSERTION SORT when all elements of array A have the same value?		4
	SAT	What is the running time of merge sort when all elements of array A have the same value?		4
	SAT	What is the nature of data set and position of pivot element, so that quick sort exhibits worst case behaviour.		4
Q.No:1(d)	SAT	What is the effect of calling MIN-HEAPIFY(A, i) for i > size[A]/2?		5
	<u>SAT</u>	What is the effect of calling MAX-HEAPIFY(A, i) for i > size[A]/2?		5
	SAT	Where in a min-heap might the largest element reside, assuming that all elements are distinct?		5
	<u>SAT</u>	Where in a max-heap might the smallest element reside, assuming that all elements are distinct?		5
Q.No:1(e)	MCQ	What is the solution to the recurrence $T(n) = 4T (n/2) + n^2, T(1)=1$ A) $T(n) = \Theta(n)$ B) $T(n) = \Theta(\log n)$ C) $T(n) = \Theta(n^2 \log n)$ D) $T(n) = \Theta(n^2)$	С	2
	MCQ	What is the solution to the recurrence $T(n) = 16T(n/4) + n$, $T(1)=1$ A) $T(n) = \Theta(n)$ B) $T(n) = \Theta(\log n)$	D	2

		1	
	$C) T(n) = \Theta(n^2 \log n)$		
	D) $T(n) = \Theta(n^2)$		
MCQ	What is the solution to the recurrence	C	2
	$T(n) = 6T (n/4) + n^2 logn, T(1)=1$		
	A) $T(n) = \Theta(n)$		
	B) $T(n) = \Theta(\log n)$		
	C) $T(n) = \Theta(n^2 \log n)$		
	D) $T(n) = \Theta(n^2)$		
\mathbf{MCQ}	What is the solution to the recurrence	A	2
	$T(n) = 3T(n/3) + \sqrt{n}, T(1)=1$		
	A) $T(n) = \Theta(n)$		
	B) $T(n) = \Theta(\log n)$		
	C) $T(n) = \Theta(n^2 \log n)$		
	D) $T(n) = \Theta(n^2)$		

SECTION-B(Answer Any One Question. Each Question carries 10 Marks)

<u>Time: 30 Minutes</u> (1×10=10 Marks)

Question	<u>Question</u>	<u>CO</u>
<u>No</u> Q.No:2	Given a set S of n integers and another integer x, determine	Mapping 5
	whether or not there exist two elements in S whose sum is	
	exactly x. Describe a $\Theta(\text{nlogn})$ time algorithm for the above problem.	
Q.No: 3	Write HEAPIFY() procedure and derive its time complexity.	4
	The elements of a heap structure are given as < 21, 1, 17, 8, 9, 6, 7, 4, 3, 8, 5 >. Find the node i, where the procedure	
	HEAPIFY(i) should be applied to covert the given sequence	
	into a max-heap. Show all the steps for performing	
	HEAPIFY(i) operation on the above sequence.	
Q.No:4	Write the PARTITION() procedure of QUICK-SORT()	4
	algorithm. Show the application of partitioning procedure at	
	each step on the array $A = \{99, 88, 77, 66, 55, 44, 33, 22, 11\}$	
	11 }. Derive the best case time complexity of QUICK-SORT() algorithm. What is the time complexity of QUICK-SORT() on	
	a sorted array of size 'n'?	
Q.No:5	Write the INSERTION-SORT() algorithm and apply to the list	6
	{2, 7, 5, 1, 2}. Derive the time complexities of	
	INSERTION-SORT() on the data that are sorted & reversely	
	sorted respectively.	
Q.No:6	Given an unsorted array A[1n] where first x ($x \le n$) elements of	6
	the array are sorted in ascending order and rest elements of	
	the array are sorted in descending order. Design an algorithm	
	to sort the array in O(n) worst-case time.	

Controller of Examinations