2023-1 AI 융합학부 캡스톤 CI자인

건강을 위한 첫 걸음

다일일시 발당당임 발당당임

2023학년도 1학기 캡스톤 디자인 프로젝트 최종 보고서

AI 융합학부 딩동당

김예린 김혜빈 우미경 이하늘

AI 융합학부 20192897

김혜빈

Contents

UI 세부 설계

전체 화면 구성

시스템 구조 설계

전체 시스템 구조

시스템 상세 설계

세부 시스템 구조

최종 구현 결과

개인 파트 구현 결과물

프로젝트 결과

프로젝트 결과물

UI 세부 설계

로그인 및 메인 화면

UI 세부 설계

혈당 등록 및 조회

UI 세부 설계

식단 등록 및 조회

전체 시스템 구조

MAIN SERVER

플라스크 서버 - Sub server

이미지 디코딩 모듈

- 플라스크 서버 내 안드로이드 앱과의 이미지 송수신을 위한 모듈 내장
- Base64로 인코딩된 이미지를 받아 디코딩하여 PIL Image 객체로 메모리에 저장
- 모델에 활용하기 위해 numpy 배열로 변환

이미지 분류기 활용 모듈

- 플라스크 서버 내에서 학습된 음식 분류 모델을 활용할 수 있도록 하기 위함
- 모델 및 음식 분류 딕셔너리 생성 및 로드
- 이미지 전처리와 예측 결과 반환

학습된 모델 파일 / 음식 분류 JSON

• 플라스크 서버가 실행될 때 서버 메모리에 로드

한식 이미지 분류 모델 구조

기존 모델의 특성 추출 활용 + 새로운 완전 연결 층

- MobileNet 구조 중에서 특성 추출까지만 활용
- 한식 이미지 50종 분류에 맞춰 새로운 Dense 층 추가 구성

사용 가능한 모델 종류 : https://keras.io/api/applications/

MobileNet

- imagenet 가중치로 초기 가중치 셋팅
- GlobalAveragePooling2D 층을 output으로 설정하여 특징 추출까지만 활용

```
x = base_model.output
x = Dense(1024, activation='relu')(x)
x = BatchNormalization()(x)
x = Dropout(0.2)(x)
output = Dense(food_classes, activation='softmax')(x)
```

완전 연결 층

- 다중 클래스 분류를 위해 softmax 활용
- 일반화 성능 향상을 위해 BatchNormalization 층과 Dropout 층 추가 구성

한식 이미지 분류 모델 학습

Kaggle kernel을 활용한 학습

- Google Colab과 Kaggle kernel 모두 사용
- GPU P100을 사용하여 학습 진행
- gdown 라이브러리를 통해 이미지셋 다운로드

모델 컴파일 및 학습

• 최적화 알고리즘 : Adam

손실 함수 : categorical_crossentropy

• Batch size: 32

• Epoch: 20

한식 이미지 분류 모델 테스트 및 성능 확인

Classification Report:

		pre	precision		fl-score	support
	고사리나물무침	0.98	0.85	0.	91 10	00
달걀국		0.91	0.5	1 0	.65	100
	닭개장	0.7		34		100
	삼겹살구이		0.78			00
	소고기무국	0.8	1 0.	76	0.78	100
	숙주나물무침	0.96				0
	시금치나물무침	0.95	0.99	0.9	7 100	0
	시래기된장국	0.91	0.51	0.6	5 10	0
	훈제오리	0.	95 0.	71	0.81	100
		갈비탕	0.92	0.56	0.70	100
	감자조림 감자탕 건새우볶음 고등어구이 김치볶음밥 김치찌개 누룽지 동태찌개		0.81	0.81	0.81	100
			0.87	0.77	0.81	100
			0.73	0.70	0.71	100
			0.68	0.94	0.79	100
			0.90	0.61	0.73	100
			0.90	0.88	0.89	100
			0.59	0.70	0.64	100
			0.58	0.94	0.72	100
			0.57	0.53	0.55	100
			0.94	0.16	0.27	100
			0.90	1.00	0.95	100
	두부조림		0.80	0.77	0.79	100
		떡갈비	0.80	0.79	0.79	100

```
[ ] # 테스트 이미지셋을 통한 손실값, 예측값 확인
loss, acc = model.evaluate(test_generator, verbose=1)
print('모델 loss: {:5f}'.format(loss))
print('모델 accuracy: {:5.2f}%'.format(100*acc))
```

모델 loss: 1.186464 모델 accuracy: 76.92%

Confusion Matrix

모델 및 분류 정보 저장

```
# 학습된 모델 h5 파일로 저장
modelFile = f'MobileNet-32-20-{acc}.h5' # modelName-batch-epochs-accuracy
model.save(models_path+modelFile)
```

```
    ✓ AI_PACKAGE_AND_FLASK
    android_with_flask_foodmodel.py
    food_classes.json
    foodmodel_module.py
    foodmodel.h5
```

학습된 모델 파일 : foodmodel.h5 음식 분류 json 파일 : food_classes.json

이미지 분류기 활용 모듈

<이미지 분류기 활용 모듈> foodmodel_module.py 중 일부

```
{"0": "고사리나물무침", "1": "달걀국", "2": "닭개장", "3": "삼겹살구이", "4": "소고기무국", "5": "숙주나물무침", "6": "시금치나물무침", "7": "시래기된장국", "8": "훈제오리", "9": "갈비탕", "10": "갈치구이", "11": "감자조림", "12": "감자탕", "13": "건새우볶음", "14": "고등어구이", "15": "김치볶음밥", "16": "김치찌개", "17": "누룽지", "18": "동태찌개", "19": "된장찌개", "20": "두부김치", "21": "두부조림", "22": "떡갈비", "23": "떡볶이", "24": "멸치볶음", "25": "물냉면", "26": "미역국", "27": "북엇국", "28": "비빔냉면", "29": "비빔밥", "30": "삼계탕", "31": "새우볶음밥", "32": "새우튀김", "33": "소세지볶음", "34": "순두부찌개", "35": "알밥", "36": "애호박볶음", "37": "어묵볶음", "38": "오징어튀김", "39": "유부초밥", "40": "육개장", "41": "잡곡밥", "42": "제육볶음", "43": "주꾸미볶음", "44": "짜장면", "45": "짬뽕", "46": "쫄면", "47": "칼국수", "48": "콩나물국", "49": "황태구이"}
```

<음식 분류 JSON> food_classes.json

✓ AI_PACKAGE_AND_FLASK

- android_with_flask_foodmodel.py
- {} food_classes.json
- foodmodel_module.py

전역 변수 설정

- 모델 파일과 음식 분류 JSON 파일 경로를 설정하는 함수
- 모델 및 음식 분류를 메모리에 로드하기 전 미리 설정해야 함

모델 및 음식 분류 로드

- 플라스크 서버 내에서 학습된 음식 분류 모델을 활용할 수 있도록 하기 위함
- 모델 및 음식 분류 딕셔너리 load
- 이미지 전처리와 예측 결과 반환

예측 결과 반환

• 플라스크 서버가 실행될 때 서버 메모리에 load

최종 테스트 진행 환경

MAIN SERVER

SUB SERVER

이미지 등록 및 예측 시연 영상

```
Success to decode base64 c
           's image: /9j/4AAQS
   Success to get image data
   <class 'PIL.JpegImagePlugin</pre>
   (512, 512, 3)
  image path reload success
 image preprocess success
 predict image
192.168.137.243 - - [28/May/202
```


출처 자료

아이콘 활용 : https://www.iconfinder.com/

음식 이미지 : <ai hub 한식 이미지 데이터> https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=79

spring framework icon: https://ko.m.wikipedia.org/wiki/%ED%8C%8C%EC%9D%BC:Spring_Framework_Logo_2018.svg

Flask framework icon:

https://ko.m.wikipedia.org/wiki/%ED%94%8C%EB%9D%BC%EC%8A%A4%ED%81%AC_(%EC%9B%B9_%ED%94%84%EB%A0%88%EC%9E%84%EC%9B%8C%ED%81%AC)

31 A B L C