שעור חזרה – Kernels

גירסת הגרעין של בעיית SVM דואלית

C = 1: נתבונן בגרסת הגרעין של הבעיה הדואלית

$$\max_{\alpha \in \mathbb{R}^n} \left(\sum_{k=1}^n \alpha_k - \frac{1}{2} \sum_{k=1}^n \sum_{l=1}^n \alpha_k \alpha_l y_k y_l K(x_k, x_l) \right)$$
 subject to: $0 \le \alpha_k \le 1$ $k = 1, ..., n$
$$\sum_{k=1}^n \alpha_k y_k = 0$$
 (1)

.
$$K(x,z) = \exp\Biggl(\!\!-rac{\left\|x-z
ight\|^2}{2\sigma^2}\!\!\Biggr):$$
כאשר K הוא גרעין גאוסייני

- א. הוכח כי הנורמה של כל קלט במרחב המאפיינים $\|\phi(x)\|$ שווה ל-1.
- $\phi(x),\phi(y)$ ב. הוכח כי הזווית בין כל שני וקטורי קלט שונים במרחב ב. הוכח פין כל שני הזווית בין כל שני האפינים פטנה מ-90.

$$.S_2 = \left\{(Ax_k,y_k), k=1,...,n\right\}$$
וסדרה ק $.S_1 = \left\{(x_k,y_k), k=1,...,n\right\}$ טדרה כדרה אורתנורמאלית הכפלת הדגימות של S_1 הכפלת עייי הכפלת הדגימות של S_2

- , S_1 א. נניח כי $\widehat{\alpha}^1$ הוא הפתרון האופטימאלי של בעיה (1) תוך שימוש בסט האימון ... א. נניח כי $\widehat{\alpha}^2$ הוא הפתרון האופטימאלי של בעיה (1) תוך שימוש בסט האימון ... הוכח כי $\widehat{\alpha}^2$ האם תכונה זו נכונה לכל גרעין!
- ב. נתון כי $h_1(x)$ הוא הסיווג של דוגמא חדשה x עייי המסווג שאומן עייי סט האימון האימון $h_2(x)$ ו- $h_2(x)$ הוא הסיווג של דוגמא זו עייי מסווג שאומן עייי סט האימון S_1 לשם סעיף זה בלבד, הנח כי הקבוע b של המסווגים שווה לאפס. איזו אחת מהטענות הבאות בהכרח נכונה, הוכח טענה זו:

$$\forall x, \quad h_1(x) = h_2(x) \quad .\mathbf{i}$$

$$\forall x, \quad h_1(x) = h_2(Ax) \quad .ii$$

$$\forall x, \quad h_1(Ax) = h_2(x)$$
 .iii

מערכות לומדות - 046195 חורף תשע"ד (2013)

פתרון

א. הוכח כי הנורמה של כל קלט במרחב המאפינים שווה ל-1:

$$\left\|\phi(x)\right\|^2 = \left\langle\phi(x),\phi(x)\right\rangle = K(x,x) = \exp\left(\frac{\left\|x-x\right\|^2}{2\sigma^2}\right) = 1$$

ב. הוכח כי הזווית בין כל שני וקטורי קלט שונים קטנה מ-90:

$$(1) \left\langle \phi(x), \phi(y) \right\rangle = K(x, y) = \exp\left[-\frac{\left\| x - y \right\|^2}{2\sigma^2} \right] > 0$$

$$angle(\phi(x), \phi(y)) = \arccos\left[\frac{\left\langle \phi(x), \phi(y) \right\rangle}{\left\| \phi(x) \right\| \left\| \phi(y) \right\|} \right] = \arccos\left[\frac{\left\langle \phi(x), \phi(y) \right\rangle}{1 \cdot 1} \right]^{(1)} < 90$$

 $\stackrel{\hat{\alpha}}{\alpha} = \stackrel{\hat{\alpha}}{\alpha}$ c. α

 $K(x_i,x_i)$ נשים לב כי בפתרון האופטימאלי תלוי בסט הדגימות רק דרך הביטוי

K(x,z) = K(Ax,Az) $\forall x,z:$ לכן מספיק להראות כי

$$K(Ax, Az) = \exp\left(-\frac{\left\|Ax - Az\right\|^2}{2\sigma^2}\right) = \exp\left(-\frac{\left(A(x-z)\right)^T \left(A(x-z)\right)}{2\sigma^2}\right)$$
$$= \exp\left(-\frac{\left(x-z\right)^T A^T A \left(x-z\right)}{2\sigma^2}\right) = \exp\left(-\frac{\left(x-z\right)^T I \left(x-z\right)}{2\sigma^2}\right)$$

באופן כללי תכונה זו אינה קיימת לכל גרעין. הסיבה לקיום תכונה זו בגרעין הגאוסיאני נובעת מהאינווריאנטיות של הנורמה ביחס למטריצות אורתונורמאליות.

$$\forall x, \qquad h_1(x) = h_2(Ax)$$
 ד.

יש להוכיח שמתקיים

$$\begin{split} h_1(x) &= sign\left(w_1^{\ T}\Phi(x)\right) = sign\left(w_2^{\ T}\Phi(Ax)\right) = h_2(Ax) \\ w_2^{\ T}\Phi(Ax) &= \sum_{i=1}^m \alpha_i y_i \Phi(Ax_i) \Phi(Ax) = \sum_{i=1}^m \alpha_i y_i K(Ax_i,Ax) \underset{(1)}{=} \sum_{i=1}^m \alpha_i y_i K(x_i,x) = \\ &= \sum_{i=1}^m \alpha_i y_i \Phi(x_i) \Phi(x) = w_1^{\ T}\Phi(x) \end{split}$$