1º. TRABALHO COMPUTACIONAL

(TI0097 - Introdução ao Reconhecimento de Padrões)

Data: 21/06/2025

Responsável: Prof. Guilherme de Alencar Barreto Graduação em Engenharia de Computação Departamento de Engenharia de Teleinformática (DETI) Universidade Federal do Ceará (UFC)

Objetivos: (1) Estimar a matriz de covariância de um conjunto de dados usando diferentes algoritmos, comparando de modo sistemático e científico o tempo de execução dos algoritmos de estimação. (2) Avaliar *a priori* a invertibilidade da matriz de covariância estimada. (3) Inverter e regularizar matrizes de covariância.

Acesse o conjunto de dados para classificação de padrões disponível no seguinte link: https://archive.ics.uci.edu/dataset/194/wall+following+robot+navigation+data

Pede-se:

Q1. Estimar a matriz de covariância GLOBAL (i.e. sem considerar os rótulos das classes) para o referido conjunto de dados usando os Métodos 1 a 4 descritos nos slides. Comparar com o resultado produzido pelo comando COV nativo do Octave/Matlab ou de outra linguagem de programação de sua preferência. Para a comparação, calcular a norma da matriz de diferenças $\mathbf{E} = \mathbf{C}_{my} - \mathbf{C}_{ref}$, em que \mathbf{C}_{my} é a matriz de covariância estimada pelos métodos implementados e \mathbf{C}_{ref} é a matriz de covariância de referência estimada pela função nativa da linguagem de programação escolhida.

Atenção! Em geral, as funções nativas de diferentes linguagens de programação dividem por (*N*-1) na estimação da matriz de covariância. Use algum *flaq* para permitir a divisão por *N*.

- **Q2.** Comparar (de modo cientficamente correto!) os métodos implementados no Item 1 com o comando COV nativo do Octave/Matlab ou de outra linguagem de programação que melhor lhe convier em termos de tempo médio de execução. No Matlab/Octave usar os comandos tic/toc. Para isso, execute cada método por 100 rodadas, guardando o tempo de execução de cada método em cada rodada. Ao final das 100 rodadas, compare os gráficos do histograma e do *violin plot*¹ do tempo de execução de cada método. Compare-os também numericamente em termos de tempo de execução médio e desvio-padrão. Comente os resultados obtidos.
- **Q3.** Escolher o método mais rápido no Item 1 e estimar as matrizes de covariância de cada classe, avaliando suas invertibilidades comparando com a invertibilidade da matriz de covariância global através do posto e do número de condicionamento. No Matlab/Octave usar comandos rank e rcond. As matrizes em questão são invertíveis e numericamente bem-condicionadas?
- **Q4.** Inverter as matrizes de covariância global e de cada classe individualmente. OBS: Se houver problema de inversão destas matrizes, use alguma técnica de regularização discutidas em sala de aula.

Boa sorte!

OBS: Valor de cada questão: 2,5 pontos

¹ https://en.wikipedia.org/wiki/Violin_plot