

TRIGONOMETRY

Chapter 2

V LEVEL

Razones Trigonométricas de Ángulos Notables y Propiedades de las R.T.

TRIGONOMETRY

indice

01. Motivating Strategy >

03. Helico Practice

02. HelicoTheory

04. HelicoWorkshop

MOTIVATING STRATEGY

Resumen 💿

TRIÁNGULOS ► NOTABLES

Son aquellos triángulos más importantes y conocidos de las matemáticas, donde sus lados son proporcionales. Entre ellos tenemos:

CÁLCULO DE LAS R.T DE ÁNGULOS NOTABLES

Las R.T. de ángulos notables se deducen de sus respectivos triángulos rectángulos notables.

Tenemos que recordar:

sen	cos	tan	cot	sec	csc
Со	Ca	Со	Са	Н	Н
Н	Н	Ca	Со	Ca	Co

Ejemplo:

$$sen37^{\circ} = \frac{3k}{5k} = \frac{3}{5}$$

Si calculamos con los ▶ notables, obtenemos:

RT✓	30°	60°	45°	37°	53°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	3 5	4 5
cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	4 5	3 5
tan	$\frac{\sqrt{3}}{3}$	√3	1	$\frac{3}{4}$	4/3
cot	√3	$\frac{\sqrt{3}}{3}$	1	$\frac{4}{3}$	$\frac{3}{4}$
sec	$\frac{2\sqrt{3}}{3}$	2,	$\sqrt{2}$	<u>5</u>	<u>5</u> 3
csc	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	<u>5</u>	<u>5</u>

PROPIEDADES DE LAS R.T DE ÁNGULOS AGUDOS

• R.T. RECÍPROCAS

sena.
$$csca = 1$$

$$\cos\alpha$$
 . $\sec\alpha = 1$

$$tan\alpha \cdot cot\alpha = 1$$

ángulos iguales

• R.T. DE ÁNGULOS COMPLEMENTARIOS

α, β son ángulos complementarios

$$\alpha + \beta = 90^{\circ}$$

$$sen \alpha = \frac{a}{c}$$

$$sen \alpha = cos \beta$$

$$tan \alpha = cot \beta$$

$$sec \alpha = csc \beta$$

Resolución de Problemas

Problema 01 2

Problema 02 ②

Problema 03 **⊙**

Problema 04 **⊘**

Problema 05 2

HELICO PRACTICE

Resolución

Problema 01 ②

N

1. Halle el valor de x, si:

$$sen(4x+10^{\circ}) \cdot csc(6x-10^{\circ}) = 1$$

Resolución

sen(
$$4x + 10^\circ$$
) · csc($6x - 10^\circ$) = 1
ángulos iguales

Aplicamos propiedad de las R.T. Recíprocas

$$4x + 10^{\circ} = 6x - 10^{\circ}$$

 $20^{\circ} = 2x$

$$x = 10^{\circ}$$

Problema 02 🏵

 \bigcup

2. calcule el valor de α , si:

$$cos(3\alpha - 5^{\circ}) \cdot sec(\alpha + 27^{\circ})$$

= 2 sen30° · tan45°

Resolución

$$cos(3\alpha-5^{\circ}) \cdot sec(\alpha +27^{\circ}) = 2 sen30^{\circ} \cdot tan45^{\circ}$$

$$\cos(3\alpha - 5^{\circ}) \cdot \sec(\alpha + 27^{\circ}) = 2\left(\frac{1}{2}\right)(1)$$

$$\cos(3\alpha - 5^{\circ}) \cdot \sec(\alpha + 27^{\circ}) = 1$$

Por RTR:

ángulos iguales

$$3\alpha - 5^{\circ} = \alpha + 27^{\circ}$$
$$2\alpha = 32^{\circ}$$

$$\alpha = 16^{\circ}$$

Problema 03 **⊘**

Resolución

Si sen(2y + 10°) = cos(y - 25°)
Calcule
$$P = sec^2(y + 10°)$$

sen(2y + 10°) = cos(y- 25°)

Suman 90°

$$2y + 10^{\circ} + y - 25^{\circ} = 90^{\circ}$$

$$3y = 105^{\circ}$$

$$y = 35^{\circ}$$

Aplicamos propiedad de las R.T. de ángulos complementarios.

Calculamos P:

$$P = \sec^2(y + 10^\circ)$$

$$P = \sec^2(35^\circ + 10^\circ)$$

$$P = sec^2 45^\circ$$

$$\mathbf{P} = (\sqrt{2})^2$$

$$\therefore P = 2$$

Resolución

Problema 04 🗇

Karina ha pedido un pollito a la brasa por ser su cumpleaños y el delivery demorará (60 sen3β) minutos.

Determine el tiempo que demorará en llegar su pedido, si:

 $tan(5\beta-15^{\circ}) = 2cot(2\beta+35^{\circ}) \cdot sen30^{\circ}$

Resolución

tan(
$$5\beta-15^{\circ}$$
) = 2 cot($2\beta+35^{\circ}$) . sen30°

tan(
$$5\beta - 15^{\circ}$$
) = $2 \cot(2\beta + 35^{\circ}) \cdot \left(\frac{1}{2}\right)$
tan($5\beta - 15^{\circ}$) = $\cot(2\beta + 35^{\circ})$

Por CO - RT : Suman 90°

$$5\beta - 15^{\circ} + 2\beta + 35^{\circ} = 90^{\circ}$$

$$7\beta = 70^{\circ}$$

$$\beta = 10^{\circ}$$

Determinamos el tiempo:

$$t = 60 \text{ sen} 3\beta$$

$$t = 60 \text{ sen} 30^{\circ}$$

$$t=60\left(\frac{1}{2}\right)$$

$$\therefore$$
 t = 30 min

Resolución

Problema 05 🗇

Hoy es cumpleaños de Karen y está cumpliendo 2M años. Determine la edad de Karen, si:

tan(3M+25)°.cot(M+45)°= 0,5 csc30°

Resolución

Por RTR:

$$3M + 25 = M + 45$$

$$2M = 20$$

∴ Karen tiene 20 años.

Problemas Propuestos

Problema 06 🗵

Problema 07 ⊘

Problema 08[⊙]

Problema 09 💿

Problema 10 2

HELICO WORKSHOP

Problema 06 **⊙**

M

Problema 07

Problema 08 🗇

Si $tan3\theta = cot2\theta$, calcule el valor de:

$$H = \csc(2\theta - 6^{\circ})$$

A)1 B) 2 C) 3

D) 4 E) 5

Si senx.secy = 1, calcule:

$$\mathsf{M} = 4 \operatorname{sen}(\frac{x+y}{3}) + \operatorname{csc}^2(\frac{x+y}{2})$$

A)1 B) 2 C) 3

D) 4 E) 5

Simplifique

$$E = \frac{3 \operatorname{sen}(24^{\circ} - 2x)}{\cos(2x + 66^{\circ})} + \frac{5 \tan(5y - 31^{\circ})}{\cot(121^{\circ} - 5y)}$$

A)16 B) 8 C) 3

D) 5 E) 2

Problema 09 💿

Problema 10 💿

Carlos quiere ir a jugar canicas y recuerda que tiene "x" canicas en su mochila.

Calcule cuántas canicas tiene Carlos, si:

$$tan45^{\circ}$$
. $sec(5x + 10^{\circ}) = csc(3x + 16^{\circ})$

C)12

- A) 10 B) 14
- D) 8 E) 6

Sarita ha ido a Plaza Vea a comprar y le dieron de vuelto "m – 15" soles que dio de propina al cuidador del estacionamiento. Determine cuánto dio de propina Sarita, si:

- $sen(3m-25)^{\circ} = cos(m+15)^{\circ}$
- A) 10 soles B) 12 soles
- C) 13 soles D) 15 soles
- E) 20 soles

