CS224
Lab 6
Section 6
Bertan Uran
22102541
28/04/2024

No.	Cache Size KB	N way cache	Word Size in bits	Block size (no. of words)	No. of Sets	Tag Size in bits	Index Size (Set No.) in bits	Word Block Offset Size in bits	Byte Offset Size in bits	Block Replacement Policy Needed (Yes/No)
1	128	1	32	4	213	15	13	2	2	No
2	128	4	32	16	29	17	9	4	2	Yes
4	128	Full	32	16	1	26	0	4	2	Yes
5	256	2	64	8	211	15	11	3	3	Yes
6	256	4	64	32	28	16	8	5	3	Yes
7	256	Full	16	16	1	27	0	4	1	Yes

2)

Memory Address Accessed (hex)	Set No.	Hit (yes/no)		
00 00 20 24	0	no		
00 00 20 42	0	no		
00 00 20 68	1	no		
00 00 20 04	0	no		
00 00 20 0C	1	no		
00 00 20 4C	1	no		

3)

Memory Address Accessed (hex)	Set No.	Hit (yes/no)	
00 00 20 2C	1	no	
00 00 20 48	1	no	
00 00 20 44	0	no	
00 00 20 0C	1	no	
00 00 20 04	0	no	
00 00 20 0C	1	yes	

4)

a) Physical address structure

Tag	Set	Block offset	Byte offset 1 bit
25 bits	1 bit	5 bits	

b) Size of block

LRU bits =
$$\log 2(8) = 3$$

Data bits = word size (bytes) * block size (words) *
$$8 = 2 * 32 * 8 = 512$$

Size of a block in total =
$$V + D + LRU + Tag + Data = 1 + 1 + 3 + 25 + 512 = 542$$
 bits

V	D (Dirty bit)	LRU	Tag	Data
1 bit	1 bit	3 bits	25 bits	512 bits

c) Size of a set, total SRAM size

Size of a set = 8 * size of a block = 8 * 542 = 4336 bits

Total SRAM size = number of sets * size of a set = 2 * 4336 = 8672 bits

d) Random replacement

If we would use random replacement then we won't need 3 bits of LRU since it would be meaningless to store the least recently used block. Therefore, the size of a block would decrease by 3 and become 539 bits.

Size of a new set = 8 * 539 = 4312 bits

New total SRAM size = 2 * 4312 = 8624 bits

Difference = 8672 - 8624 = 48 bits

New SRAM would be 48 bits smaller than the first one.