

1

ECOR1043: Circuits

Additional Analysis Techniques

Thevenin's and Norton's Theorems

Reminder From Earlier

Thévenin and Norton's Theorems

- Why do we use them?
 - We want to replace a complicated circuit with a simple one, such that the 'load' cannot tell the difference

- They make analysis easier when performing & evaluating load design
- We replace circuit "A" with a simple circuit with the same voltage-current characteristics

5

Thévenin and Norton's Theorems

• Why do we use them?

6

6

Thévenin Theorem

• Thévenin's Theorem replaces the linear two-terminal circuit with a voltage source in series with a resistance

- This is a general voltage-current relation for a linear, two-terminal network
- V_{OC} is the terminal voltage if i = 0 (open-circuit voltage)
- Thevenin voltage $V_{TH} = V_{OC}$
- R_{TH} is the equivalent resistance seen at the terminals (the Thévenin resistance)

7

Creating the Thévenin equivalent circuit

- Procedure to get the Thévenin equivalent
 - 1) Identify and isolate the circuit and terminals for which the Thévenin equivalent circuit is desired
 - 2) Eliminate the independent sources in the circuit (short-circuit voltage sources, open-circuit current sources) and determine the equivalent resistance R_{TH} of the circuit
 - 3) Re-activate the sources and determine the open-circuit voltage V_{OC} across the circuit terminals. This will be V_{TH} for the circuit.
 - 4) Place the Thévenin equivalent circuit into the original overall circuit and perform the desired analysis

8

8

Norton's Theorem

• Norton's Theorem: any linear two-terminal circuit can also be modeled as a current source in parallel with a resistor

- This is a general voltage-current relation for a linear, two-terminal network
- I_{SC} is the short-circuit current through the terminals

12

12

Norton's Theorem

- Procedure to get Norton equivalent
 - 1) Identify and isolate the circuit and terminals the circuit for which the Norton equivalent circuit is desired
 - 2) Eliminate sources and determine R_{TH} of the circuit
 - 3) Re-activate the sources, short-circuit the output terminals, and determine I_{SC}
 - 4) Place the Norton equivalent circuit into the original overall circuit and perform the desired analysis

Norton's Theorem • Ex. 2(cont.): Find the Norton equivalent circuit at terminals a-b. To Find V_{TH} : 3) Re-activate the sources, short the output terminals, 4Ω and determine I_{SC} $20i_2 - 4i_1 - 12 = 0$ $i_1 = 2A$ I_{SC} Solve for i_2 $20i_2 - 4 \times 2 - 12 = 0$ $20i_2 - 8 - 12 = 0$ $20i_2=20$ $i_2 = \frac{20}{20} = 1A$ Find I_{SC} Homework: Use Nodal Analysis to find I_{SC} $i_{sc} = i_2 = 1A$ 17

Norton's Theorem

• Ex. 2 (cont.): Find the Norton equivalent circuit at terminals a-b.

Finally: 4) Implement the Norton equivalent

18

Thévenin's and Norton's Theorems

- Maximum Power Transfer
 - The Thévenin equivalent is useful in finding the maximum power transferred to a load

$$P = \frac{R_L}{R_L}$$

$$P = \left(\frac{R_L}{R_{TH} + R_L} V_{TH}\right)^2 \frac{1}{R_L}$$

$$P = \left(\frac{V_{TH}}{R_{TH} + R_L}\right)^2 R_L$$

– The maximum power dissipated P_{max} occurs when R_{TH} = R_L

Thévenin's and Norton's Theorems

• Ex. 3 (cont.): Find the Thévenin equivalent circuit, and P_{max} $V_{TH} = 300V$ $R_{TH} = 25\Omega$ So the Thevenin equivalent cct is

Max power transfer occurs when $R_L = R_{TH}$ $P_{max} = \frac{V_{TH}^2}{4R_L}$ $P_{max} = \frac{V_{TH}^2}{4R_L} = \frac{(300V)^2}{4(25\Omega)} = 900W$

Practice Problems

22

Thevenin's Theorems

23

Thevenin's Theorems

• Prob 1(sol.): Find v_{th} and R_{th}

2. To find $\emph{V}_{\emph{TH}}$, apply KCL at \emph{v}_1

$$\frac{v_1 - 25}{5} + \frac{v_1}{20} - 3 = 0$$

$$4v_1 - 100 + v_1 = 60$$

$$v_1 = \frac{160}{5}$$

$$v_{TH} = v_1 = 32V$$

1. Eliminate the sources and find R_{TH}

3. So Thevenin equivalent cct:

24

24

Thevenin's Theorems

• Prob 2: Find V_o using Thevenin's theorem.

- Note that $1k\Omega$ is the load resistor so you need to find the Thevenin's equivalent of the circuit to the left of it.

Thevenin's and Norton's Theorems

• Prob 3: (In Ex. 3) Find % of power delivered to the load if $R_L =$

27

