华东师范大学期末试卷 (A 卷) 答案

2024-2025 学年第一学期

考试科	目:	数据科学与工程数学基础				诎	任课教师:		树扬
姓	名:					_	学	号: _	
专	业:					_	班	级: _	
题目	_	(选择题)		三	四	五.	六	总分	阅卷人签名
得分									

题 1 (20分)选择题

单选题一道3分,多选题一道5分,总计20分。单选题不选、错选均不得分;多选题不选、错选不得分,少选得3分。

- (1) 若 $A = [\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}] \in \mathbb{R}^{m \times n}$,列空间为 Col(A),行空间为 $Col(A^T)$,零空间为 Null(A),左零空间为 $Null(A^T)$ 。下列说法错误的是(D)
 - (A) $Col(\mathbf{A}^T) \perp Null(\mathbf{A}), Col(\mathbf{A}) \perp Null(\mathbf{A}^T)$
 - (B) $dim(Col(\mathbf{A}^T)) = dim(Col(\mathbf{A})) = rank(\mathbf{A})$
 - (C) 若 $\mathbf{x} \in \mathbb{R}^m$ 在 $Col(\mathbf{A})$ 上的正交投影为 $\pi(\mathbf{x})$,则对 $\forall i = 1, ..., n$ 有 $\mathbf{a}_i^{\mathsf{T}}(\mathbf{x} \pi(\mathbf{x})) = 0$
 - (D) $dim(Null(\mathbf{A}^T)) = n rank(\mathbf{A}), dim(Null(\mathbf{A})) = m rank(\mathbf{A})$
- (2) 已知矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 2 & 0 \end{bmatrix}$, $(\mathbf{A}\mathbf{A}^T)^{-1} = \begin{bmatrix} 5/9 & 1/9 \\ 1/9 & 2/9 \end{bmatrix}$, 则矩阵 \mathbf{A} 的广义逆是(B)

(A)
$$\begin{bmatrix} 2/3 & -1/9 \\ 1/3 & 4/9 \\ -1/3 & -1/9 \end{bmatrix}$$
$$\begin{bmatrix} 4/9 & -1/3 \end{bmatrix}$$

$$\begin{bmatrix} -1/3 & -1/9 \\ 4/9 & -1/3 \\ 2/9 & 1/3 \\ -5/9 & -1/3 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 4/9 & -1/9 \\ 2/9 & 4/9 \\ -5/9 & -1/9 \end{bmatrix}$$

(D)
$$\begin{bmatrix} 4/9 & -1/9 \\ 2/9 & 4/9 \\ -5/9 & 1/9 \end{bmatrix}$$

- (3) 下面的集合不是凸集的是(B)
 - (A) 一条射线, 即 $\{x_0 + \theta v \mid \theta > 0, v \neq 0\}$
 - (B) 若 $0 < r_1 < r_2$, $\{(x,y) \mid r_1^2 < (x-x_0)^2 + (y-y_0)^2 < r_2^2\}$
 - (C) 设 $||\cdot||$ 是 \mathbb{R}^n 中的范数,r > 0, $\{\mathbf{x} \mid ||\mathbf{x} \mathbf{x_0}|| < r\}$
 - (D) 多面体 $\{x|Ax < b, Cx = d\}$. 其中 $A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{p \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^n$ \mathbb{R}^m , $\mathbf{d} \in \mathbb{R}^p$, $\mathbf{x} < \mathbf{y}$ 表示向量 \mathbf{x} 的每个分量均小于等于 \mathbf{y} 的对应分量。
- (4) 下列关于向量范数说法错误的是(C)
 - (A) 设 \mathbf{u} 为 n 维单位列向量, I_n 为 n 维单位矩阵, $\mathbf{A} = I_n 2\mathbf{u}\mathbf{u}^T$ 。若 Ax = v, $||y||_2 = ||v||_2$
 - (B) 若 $\mathbf{x} \in \mathbb{R}^n$,则 $||\mathbf{x}||_2 \le ||\mathbf{x}||_1 \le n||\mathbf{x}||_{\infty}$
 - (C) 若 $\mathbf{x} \in \mathbb{R}^n$, p > 0, 则 $(\sum_{i=1}^n x_i^p)^{\frac{1}{p}}$ 是向量的 l_p 范数
 - (D) $\textbf{\textit{P}}=(\textbf{\textit{p}}_1,\textbf{\textit{p}}_2,...,\textbf{\textit{p}}_n)\in\mathbb{R}^{n\times n}$ 为非奇异矩阵,则对于 $\forall \textbf{\textit{x}}\in\mathbb{R}^n$, $||\textbf{\textit{Px}}||_1\leq$ $\max_{1 \le j \le n} || p_j ||_1 \cdot || x ||_1$
- (5) 考虑一个线性映射 $\Phi: \mathbb{R}^2 \to \mathbb{R}^3$,其在标准基(基矩阵为单位阵)下的变 换矩阵为: $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ 我们寻找一组新的基下的 Φ 的变换矩阵。令新的基分 别为:

$$\tilde{\mathbf{B}} = \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right), \tilde{\mathbf{C}} = \left(\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \right)$$

通过计算可得:

$$\tilde{\mathbf{B}}^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \quad \tilde{\mathbf{C}}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

请问下面哪项为新的基下的变换矩阵 (A)

$$(A) \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 7 & 1 \\ 5 & 3 \end{pmatrix} \quad (B) \begin{pmatrix} -1 & 3 \\ 7 & 1 \\ 5 & 3 \end{pmatrix} \quad (C) \begin{pmatrix} -5 & 5 \\ 1 & 4 \\ -2 & 5 \end{pmatrix} \quad (D) \frac{1}{2} \begin{pmatrix} -7 & 3 \\ 5 & 1 \\ -1 & 3 \end{pmatrix}$$

- (6) 【多选】设矩阵 $A \in \mathbb{R}^{m \times n}$,它的完全奇异值分解为 $A = U \sum V^T$,紧奇异值分解为 $A = U_r \sum_r V_r^T$,r = rank(A),下列关于 SVD(奇异值分解) 的说法错误的是(ADE)
 - (A) 对矩阵 A 的奇异值分解中,U,V矩阵是唯一的
 - (B) $rank(\mathbf{A}) = rank(\mathbf{A}^T \mathbf{A}) = rank(\mathbf{A}\mathbf{A}^T)$
 - (C) A 的奇异值分解可以表示为: $A = \sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{\top}$ 。在 $r \geq 2$ 时,令 $w \in \mathbb{R}^{n}$ 为一个向量且满足: $w = \alpha v_{1} + \beta v_{2}$,则 $Aw = \alpha \sigma_{1} u_{1} + \beta \sigma_{2} u_{2}$
 - (D) $\forall i = r + 1, ...m, j = 1, ...n, \mathbf{u}_i^T A \mathbf{v}_j \neq 0$
 - (E) 利用截断 SVD 方法,寻找秩为 k (k < r) 的矩阵 $X \in \mathbb{R}^{m \times n}$ 使得 $||A X||_F$ 最小。寻找得到的最优矩阵就是在紧奇异值分解中对 \sum_r 任意地选择 k 个奇异值 σ_i 和其对应的 U_r 、 V_r 中的向量 u_i, v_i ,再将选择到的 $\sigma_i u_i v_i^{\mathsf{T}}$ 累加求和即可。

题 2 (12分)完成以下问题:

(1)
$$(4 \, \mathcal{O}) A = \begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 0 & -3 \end{bmatrix}$$
 分别求 A 的 l_1 范数, 1 范数, l_∞ 范数, ∞ 范数

(2) (5 分) 求向量
$$\mathbf{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 在矩阵 $M = \begin{bmatrix} 1 & -1 \\ 2 & 4 \\ 4 & 2 \end{bmatrix}$ 的列空间上的正交投影。

【已知:
$$(M^T M)^{-1} = \frac{1}{72} \begin{bmatrix} 7 & -5 \\ -5 & 7 \end{bmatrix}$$
】

(3) (3 分) 设 $\mathbf{B} \in \mathbb{R}^{n \times n}$, $I \neq n$ 阶单位矩阵, $||\mathbf{B}||$ 是关于 \mathbf{B} 的矩阵 l_2 范数。已 知 $||\mathbf{B}|| < 1$, $I - \mathbf{B}$ 可逆, 证明: $(1 - ||\mathbf{B}||) \cdot ||(I - \mathbf{B})^{-1}|| < n$ 。

【提示:
$$I = (I - \mathbf{B})^{-1} \cdot (I - \mathbf{B}) = (I - \mathbf{B})^{-1} - (I - \mathbf{B})^{-1} \mathbf{B}$$
,

则
$$(I - \mathbf{B})^{-1} = I + (I - \mathbf{B})^{-1}\mathbf{B}$$
 】

解 (1)
$$l_1$$
 范数: $\sum_{i=1}^{3} \sum_{j=1}^{2} |a_{ij}| = 15$, 1 范数: $max\{1+4,2+5+|-3|\} = 10$ l_{∞} 范数: $max\{1,2,4,5,0,|-3|\} = 5$, ∞ 范数: $max\{1+2,4+5,0+|-3|\} = 9$

(2) 可得
$$rank(M) = 2$$
,列空间 $span\left\{\begin{bmatrix}1\\2\\4\end{bmatrix},\begin{bmatrix}-1\\4\\2\end{bmatrix}\right\}$,故 $A = \begin{bmatrix}1&-1\\2&4\\4&2\end{bmatrix}$

投影矩阵
$$P = A(A^T A)^{-1} A^T = \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{5}{6} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{6} & \frac{5}{6} \end{bmatrix}$$

(列出投影矩阵式子 1 分,算出投影矩阵 2 分) 则
$$\mathbf{x}$$
 在 M 的列空间上的正交投影为 $P\mathbf{x} = \begin{bmatrix} \frac{2}{3} \\ \frac{11}{6} \\ \frac{19}{6} \end{bmatrix}$ (求出最后的结果 2 分)

(3) 证明: $(I - \mathbf{B})^{-1} = I + (I - \mathbf{B})^{-1}\mathbf{B}$

根据三角不等式和矩阵 12 范数的相容性,有

$$||(I-\mathbf{B})^{-1}|| = ||I+(I-\mathbf{B})^{-1}\mathbf{B}|| \le ||I|| + ||(I-\mathbf{B})^{-1}\mathbf{B}|| \le ||I|| + ||(I-$$

移项,可得 $(1-||\mathbf{B}||)\cdot||(I-\mathbf{B})^{-1}|| \leq ||I|| = \sqrt{n} \leq n$

(最终结果不等式1分)

题 3 (17分)

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 2 & 0 \\ 2 & 3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 3 & 1 \\ 0 & 4 & -2 \\ 2 & 1 & -1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 17 \\ 6 \\ 1 \end{bmatrix}, \quad \mathbf{d} = \begin{bmatrix} 1 \\ -2 \\ 4 \end{bmatrix}$$

- (1) (2分)矩阵 A 能否进行 QR 分解,为什么?直接写出结论及原因即可。
- (2) (6分) 求矩阵 B的 QR 分解。
- (3) (5 分) 利用 (2) 中的分解结果来求解方程组 $\mathbf{B}\mathbf{x} = \mathbf{c}$
- (4) (4分)利用正规化方程组,求解 \mathbf{A} 和 \mathbf{d} 所对应的最小二乘问题 $\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} \mathbf{d}||_2$ 的全部解。【对正规化方程组的求解方法不限】
 - 解 (1) 因为 A 列满秩, 所以它能进行 QR 分解。

(写出能进行 QR 分解给 1 分, 写出列满秩给 1 分)

(2) 利用施密特正交化方法进行 QR 分解

$$b_1 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}, b_2 = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix}, b_3 = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$$

$$c_1 = b_1 = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

$$c_{2} = b_{2} - \frac{\langle c_{1}, b_{2} \rangle}{\langle c_{1}, c_{1} \rangle} c_{1} = \begin{bmatrix} 3 \\ 4 \\ 1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$

$$c_{3} = b_{3} - \frac{\langle c_{2}, b_{3} \rangle}{\langle c_{2}, c_{2} \rangle} c_{2} - \frac{\langle c_{1}, b_{3} \rangle}{\langle c_{1}, c_{1} \rangle} c_{1} = \begin{bmatrix} \frac{8}{5} \\ -\frac{6}{5} \end{bmatrix}$$

再单位化可得 $q_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $q_2 = \begin{bmatrix} \frac{3}{5} \\ \frac{4}{5} \\ 0 \end{bmatrix}$, $q_3 = \begin{bmatrix} \frac{4}{5} \\ -\frac{3}{5} \\ 0 \end{bmatrix}$

$$R = \begin{bmatrix} |c_1| & < b_2, q_1 > & < b_3, q_1 > \\ 0 & |c_2| & < b_3, q_2 > \\ 0 & 0 & |c_3| \end{bmatrix} = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 5 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

故 $\mathbf{B} = \begin{bmatrix} 0 & \frac{3}{5} & \frac{4}{5} \\ 0 & \frac{4}{5} & -\frac{3}{5} \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & -1 \\ 0 & 5 & -1 \\ 0 & 0 & 2 \end{bmatrix}$

求解 $\mathbf{B}\mathbf{x} = \mathbf{c}$ 即求解 $QR\mathbf{x} = \mathbf{c}$

令
$$\mathbf{y} = R\mathbf{x}$$
 先解 $Q\mathbf{y} = \mathbf{c}$,可得 $\mathbf{y} = \begin{bmatrix} 1 \\ 15 \\ 10 \end{bmatrix}$

再求解 $\mathbf{y} = R\mathbf{x}$,可得 $\mathbf{x} = \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$

(正交化正确得2分)

(单位化正确得1分)

(正确写出 R 得 3 分)

(列出该式子得1分)

(正确解得 y 得 2 分)

(正确解得 x 得 2 分)

(4) 求解 \mathbf{A} 和 \mathbf{d} 所对应的最小二乘问题即求解方程 $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{d}$

(列出该式子得2分)

$$\mathbf{A}^T \mathbf{A} = \begin{bmatrix} 9 & 7 \\ 7 & 10 \end{bmatrix}, \ \mathbf{A}^T \mathbf{d} = \begin{bmatrix} 5 \\ 13 \end{bmatrix}$$

可以解得最小二乘问题的解为 $\mathbf{x} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$

(正确解得 x 得 2 分)

题 4 (15 分)

(1) (6 分) 给定矩阵 $\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ -1 & 2 & 3 \\ 4 & 2 & -2 \end{bmatrix}$, 分别求其完全 SVD 和紧 SVD。 【已知: $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{bmatrix} 18 & 9 & -9 \\ 9 & 17 & 8 \\ -9 & 8 & 17 \end{bmatrix}$, $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ 的特征值 $\lambda_1 = 27, \lambda_2 = 25, \lambda_3 = 0$,

 $\begin{bmatrix} -9 & 8 & 17 \end{bmatrix}$ 特征向量为 $\boldsymbol{q}_1 = \begin{bmatrix} -2 & -1 & 1 \end{bmatrix}^T$, $\boldsymbol{q}_2 = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T$, $\boldsymbol{q}_3 = \begin{bmatrix} -1 & 1 & -1 \end{bmatrix}^T$

- (2) (4 分) 假设 M 是任意一个非奇异 $n \times n$ 的矩阵,已知其奇异值分解(SVD)为 $M = U \Sigma V^{\mathsf{T}}$,其中 $U = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n]$, $\Sigma = \mathrm{diag}(\sigma_1, \sigma_2, \cdots, \sigma_n)$, $V = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n]$ 。请写出 M 的逆矩阵的 SVD 分解。
- (3) (5 分) 已知矩阵 $M \in \mathbb{R}^{m \times n}$ 的元素非负,r = rank(M),其奇异值分解为 $M = U \Sigma V^{\mathsf{T}}$,其中 $U = [\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_r]$, $\Sigma = \mathrm{diag}(\sigma_1, \sigma_2, \cdots, \sigma_r)$, $V = [\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r]$ 。求拼接矩阵 $\mathbf{A} = \begin{bmatrix} O & \mathbf{M} \\ \mathbf{M}^T & O \end{bmatrix}$ 的非零特征值和其对应的特征 向量。【结果用 $\mathbf{u}_i, \mathbf{v}_i, \sigma_i$ 相关形式表示】

解 (1) 通过
$$\mathbf{A}^{\mathsf{T}}\mathbf{A}$$
 的特征向量,可得: $v_1 = q_1, v_2 = q_2, v_3 = q_3$ $u_1 = \frac{Av_1}{\sigma_1} = \frac{1}{\sqrt{3}} \begin{bmatrix} -1 & 1 & -4 \end{bmatrix}^T$ $u_2 = \frac{Av_2}{\sigma_2} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T$

(正确解得 U 的前两个向量得 2 分)

可得紧 SVD:
$$\begin{bmatrix} -\frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{4}{3\sqrt{2}} & 0 \end{bmatrix} \begin{bmatrix} 3\sqrt{3} & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} -\frac{2}{\sqrt{6}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}^T$$

(写出紧 SVD 得 2 分)

求解方程 $A^T x = 0$,可得基础解系向量为 $\begin{bmatrix} -2 & 2 & 1 \end{bmatrix}^T$ 故完全 SVD:

$$\begin{bmatrix} -\frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{2}{3} \\ \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{2}{3} \\ -\frac{4}{3\sqrt{2}} & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 3\sqrt{3} & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -\frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{bmatrix}^{T}$$

(正确求得完全 SVD 得 2 分)

(2) 因为 M 的 SVD 分解为

$$\mathbf{M} = U\Sigma V^{\mathrm{T}} = (u_1|\cdots|u_n) \left[\operatorname{diag}_{n\times n}(\lambda_1,\ldots,\lambda_n)\right] (v_1|\cdots|v_n)^{\mathrm{T}}$$

其中 $U, V \in \mathbb{R}^{n \times n}$ 正交, $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$ 。因为 M 可逆,有 $\operatorname{rank}(M) = n$,故 $\lambda_i > 0$, $\forall i \in \{1, \ldots, n\}$. 又由 $M = U \Sigma V^T$ 有 $M v_i = \lambda_i u_i \ \forall i \in \{1, \ldots, n\}$,因此

$$\mathbf{M}^{-1}u_i = \mathbf{M}^{-1}\left(\frac{1}{\lambda_i}\mathbf{M}v_i\right) = \frac{1}{\lambda_i}v_i$$

其中 $\frac{1}{\lambda_n} \ge \cdots \ge \frac{1}{\lambda_2} \ge \frac{1}{\lambda_1} > 0$ 。综上

$$\mathbf{M}^{-1} = (v_n | \cdots | v_2 \mid v_1) \left[\operatorname{diag}_{n \times n} \left(\frac{1}{\lambda_n}, \dots, \frac{1}{\lambda_2}, \frac{1}{\lambda_1} \right) \right] (u_n | \cdots | u_2 \mid u_1)^{\mathsf{T}},$$

(4分)

(3) 根据特征值的定义,取 $y \in \mathbb{R}^m, z \in \mathbb{R}^n$,设 A 的非零特征值为 λ ,有:

$$A \begin{bmatrix} y \\ z \end{bmatrix} = \begin{bmatrix} Mz \\ M^Ty \end{bmatrix} = \lambda \begin{bmatrix} y \\ z \end{bmatrix}$$

可得: $Mz = \lambda y$ 且 $M^Ty = \lambda z$

(根据特征值定义得到该式子得2分)

由 $Mz=\lambda y$ 可得 $y=\frac{1}{\lambda}Mz$ 将其代入 $M^Ty=\lambda z$ 可得 $\frac{1}{\lambda}M^TMz=\lambda z$,即 $M^TMz=\lambda^2z$

可以看到 λ^2 为 M^TM 的特征值,z 为 M^TM 对应的特征向量 由于 $\Sigma_1 = \operatorname{diag}(\sigma_1, \sigma_2, \cdots, \sigma_r)$ 可得 M^TM 的特征值为 $\sigma_1^2, \sigma_2^2, ..., \sigma_r^2$

1. 若 $\lambda_i = \sigma_i$,显然 λ^2 为 $M^T M$ 的特征值,由于 $M^T M$ 的特征向量为 v_i ,故此时 $z = v_i$,再代入 $y = \frac{1}{\lambda} M z$ 可得 $y = \frac{1}{\lambda} M z = \frac{1}{\sigma} M v_i$

根据奇异值分解的性质, $\frac{1}{\sigma_i}Mv_i = u_i$ 故此时 $y = u_i$,此时特征向量为 $\begin{bmatrix} u_i \\ v_i \end{bmatrix}$ (1.5 分)

2. 若 $\lambda_i = -\sigma_i$,显然 λ^2 为 $M^T M$ 的特征值,由于 $M^T M$ 的特征向量为 v_i ,故此时 $z = v_i$,再代入 $y = \frac{1}{\lambda} M z$ 可得 $y = \frac{1}{\lambda} M z = -\frac{1}{\sigma} M v_i$

根据奇异值分解的性质, $-\frac{1}{\sigma_i}Mv_i=-u_i$ 故此时 $y=-u_i$,此时特征向量为

$$\begin{bmatrix} -u_i \\ v_i \end{bmatrix}$$
 (1.5 分)

题 5 (19分)

- (1) (2 分) 已知 $\mathbf{X} \in \mathbb{R}^{n \times n}$ 非奇异,求证: $d(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}d\mathbf{X}\mathbf{X}^{-1}$ 。
- (2) (5 分) 利用迹微分法求函数 $f(\mathbf{X}) = Tr(\mathbf{X}^{\mathsf{T}}\mathbf{X}^{-1}\mathbf{A})$ 关于变量 \mathbf{X} 的梯度矩阵,其中 $\mathbf{X} \in \mathbb{R}^{n \times n}$ 非奇异, $\mathbf{A} \in \mathbb{R}^{n \times n}$ 是常数矩阵。
- (3) (7分)考虑一个两层的全连接神经网络:

$$y = f(x) = \text{ReLU}(A_2(\text{ReLU}(A_1x + b_1)) + b_2)$$

ReLU 的含义: 若
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
,则 ReLU(\mathbf{x}) = $\begin{bmatrix} \operatorname{ReLU}(x_1) \\ \vdots \\ \operatorname{ReLU}(x_n) \end{bmatrix}$,其中

$$\operatorname{ReLU}(x_i) = \begin{cases} 0, & \text{if } x_i < 0 \\ x_i, & \text{if } x_i \ge 0 \end{cases}$$

己知:

$$m{A}_1 = egin{bmatrix} 2 & 3 \\ -2 & 1 \\ 3 & -1 \end{bmatrix}, m{A}_2 = egin{bmatrix} 3 & -1 & 0 \\ 1 & -2 & 2 \end{bmatrix}, m{b}_1 = egin{bmatrix} 0 \\ 0 \\ -3 \end{bmatrix}, m{b}_2 = egin{bmatrix} -7 \\ 3 \end{bmatrix}$$

假设输入为 $\mathbf{x} = (-1, 2)^T$,并且对应的真实输出为 $\hat{\mathbf{y}} = (0, 1)^T$,采用平方 损失 $L = \frac{1}{2} ||\mathbf{y} - \hat{\mathbf{y}}||_2^2$ 。试计算函数 L 关于 \mathbf{b}_1 的梯度。

(4) (5 分) 卷积是常用的数学运算,运算过程中,卷积核矩阵 \mathbf{F} 在输入矩阵 \mathbf{X} 上滑动,卷积核每滑动到与输入矩阵的某一子矩阵重叠时,卷积核与该子矩阵对应位置元素相乘再累加,得到输出结果在该位置的值。以步长(每次滑动的距离)等于 1 为例,其得到输出矩阵 \mathbf{O} 的过程和公式如图所示。

已知,输入
$$\mathbf{X} = \begin{bmatrix} 3 & 1 & 2 \\ 7 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = (x_{ij})_{3\times 3}$$
,卷积核 $\mathbf{F} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = (f_{ij})_{2\times 2}$

根据卷积过程易得输出 $\mathbf{O} = \begin{bmatrix} 0 & 4 \\ 14 & 9 \end{bmatrix}$, $L = Loss(\mathbf{O})$ 是关于 \mathbf{O} 的某种损失

函数。现在假设
$$\frac{\partial L}{\partial \mathbf{o}} = \begin{bmatrix} 3 & 7 \\ 6 & 8 \end{bmatrix}$$
,请据此求解 $\frac{\partial L}{\partial x_{11}}$ 和 $\frac{\partial L}{\partial \mathbf{x}}$

解 $(1)XX^{-1} = I$ 对两边同时作微分,有 $0 = dI = d(XX^{-1}) = dXX^{-1} + Xd(X^{-1})$

整理可得
$$d(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}d\mathbf{X}\mathbf{X}^{-1}$$
 (2分)

(2)

$$\begin{split} dTr(\mathbf{X}^{\!\top}\mathbf{X}^{\!-1}\!\mathbf{A}) &= Tr(d(\mathbf{X}^{\!\top}\mathbf{X}^{\!-1}\!\mathbf{A})) \\ &= Tr(d\mathbf{X}^{\!\top}\mathbf{X}^{\!-1}\!\mathbf{A} - \mathbf{X}^{\!\top}\mathbf{X}^{\!-1}d\mathbf{X}\!\mathbf{X}^{\!-1}\!\mathbf{A}) \\ &= Tr((\mathbf{A}^{\!\top}(\mathbf{X}^{\!-1})^{\!\top} - \mathbf{X}^{\!-1}\!\mathbf{A}\!\mathbf{X}^{\!\top}\!\mathbf{X}^{\!-1})d\mathbf{X}) \end{split}$$

即

$$\frac{\partial Tr(\boldsymbol{X}^{\!\top}\boldsymbol{X}^{\!-1}\!\boldsymbol{A})}{\partial \boldsymbol{X}} = (\boldsymbol{A}^{\!\top}(\boldsymbol{X}^{\!-1})^{\!\top} - \boldsymbol{X}^{\!-1}\!\boldsymbol{A}\boldsymbol{X}^{\!\top}\boldsymbol{X}^{\!-1})^{\!\top}$$

(5分)

(3) 先计算前项过程:

$$A_1x+b_1 = \begin{bmatrix} 4 \\ 4 \\ -8 \end{bmatrix}, \operatorname{ReLU}(A_1x+b_1) = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix}, A_2(\operatorname{ReLU}(A_1x+b_1)) + b_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

$$y = ReLU(A_2(ReLU(A_1x + b_1)) + b_2) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, L = 1$$

(前向过程计算正确得3分)

记:
$$k = \text{ReLU}(A_1x + b_1)$$

然后分别计算:
$$\frac{\partial L}{\partial y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\frac{\partial y^T}{\partial k} = \begin{bmatrix} 3 & 0 \\ -1 & 0 \\ 0 & 0 \end{bmatrix}$, $\frac{\partial k^T}{\partial b_1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. (三个矩阵各 1 分)

所以有:

$$\frac{\partial L}{\partial b_1} = \frac{\partial k^T}{\partial b_1} \frac{\partial y^T}{\partial k} \frac{\partial L}{\partial y} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ -1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}.$$

(写出最终结果1分)

(3) 根据链式法则,利用公式 $\frac{\partial L}{\partial X_{ij}} = \sum_{pq} \frac{\partial O_{pq}}{\partial X_{ij}} \frac{\partial L}{\partial O_{pq}}$ 其中输出 O_{pq} 和输入 X_{ij} 有

关联, $\frac{\partial O_{pq}}{\partial X_{ij}}$ 由卷积核 \mathbf{F} 具体的元素和 X_{ij} 在 \mathbf{F} 中的相对位置决定

比如
$$\frac{\partial L}{\partial X_{11}} = \frac{\partial O_{11}}{\partial X_{11}} \frac{\partial L}{\partial O_{11}}, \quad \frac{\partial L}{\partial X_{12}} = \frac{\partial O_{11}}{\partial X_{12}} \frac{\partial L}{\partial O_{11}} + \frac{\partial O_{12}}{\partial X_{12}} \frac{\partial L}{\partial O_{12}}$$

比如 $\frac{\partial O_{11}}{\partial X_{11}} = F_{11} = 1, \quad \frac{\partial O_{11}}{\partial X_{12}} = F_{12} = -2, \quad \frac{\partial O_{12}}{\partial X_{12}} = F_{11} = 1$
同理,代入,可得: $\frac{\partial L}{\partial X} = \begin{bmatrix} 3 & 1 & -14 \\ 3 & -2 & 5 \\ -6 & 10 & 24 \end{bmatrix}$

(求得第一个元素得2分,求得完整的结果再得3分)

题 6 (17 分)

- (1) (5 分) 判断函数 $f(\mathbf{x}) = \max(\|\mathbf{A}\mathbf{x} + \mathbf{b}\|_2, \sqrt{\mathbf{x}^T\mathbf{x}}) + \frac{1}{2}\mathbf{x}^T\mathbf{P}\mathbf{x}$ (其中 $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^n, \mathbf{b} \in \mathbb{R}^m, \mathbf{P}$ 为 n 阶半正定矩阵)是否为凸函数,并说明理由。
- (2) (4 分) 考虑优化问题 $minf(\mathbf{x}) = x_1^2 + 4x_1x_2$,从初始点 $\mathbf{x}^{(0)} = (1,0)^T$ 出发,写出用梯度下降法迭代一步的过程,迭代时采用精确线搜索方法。
- (3) (4 分) 利用二阶最优性条件找到问题 $minf(\mathbf{x}) = x_1^2 + 4x_2^2 + 2x_1x_2$ 的全局最优解。
- (4) (4 分) 证明 $f(\mathbf{x}) = (\prod_{k=1}^{n} x_k)^{\frac{1}{n}}$, ($\mathbf{x} \in \mathbb{R}^n \ \text{且} \ x_i > 0$) 是凹函数。

【提示,已知:

$$\nabla f(\mathbf{x}) = \left(\frac{f(\mathbf{x})}{nx_1}, \frac{f(\mathbf{x})}{nx_2}, \dots, \frac{f(\mathbf{x})}{nx_n}\right)^{\top}, \quad \nabla^2 f(\mathbf{x}) = -\frac{f(\mathbf{x})}{n^2} \begin{bmatrix} \frac{n-1}{x_1^2} & -\frac{1}{x_1x_2} & \dots & -\frac{1}{x_1x_n} \\ -\frac{1}{x_2x_1} & \frac{n-1}{x_2^2} & \dots & -\frac{1}{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{1}{x_nx_1} & -\frac{1}{x_nx_2} & \dots & \frac{n-1}{x_n^2} \end{bmatrix}.$$

解 (1) 由仿射函数的任意范数为凸函数可知 $||Ax + b||_2$ 为凸函数,另外 $\sqrt{x^Tx}$ 为 x 的 2 范数,显然为凸函数。根据逐点取最大值具有保凸性,可知 $\max(||Ax + b||_2, \sqrt{x^Tx})$ 为凸函数。

利用二阶条件,易得
$$\frac{1}{5}x^TPx$$
 也是凸函数 (1分)

由于凸函数相加具有保凸性,
$$f(x)$$
 是凸函数。 (1分)

$$(2)\nabla f(\mathbf{x}) = (2x_1 + 4x_2, 4x_1)^T$$

 $f(\mathbf{x}^{(0)} - \lambda \nabla f(\mathbf{x}^{(0)})) = 36\lambda^2 - 20\lambda + 1 : \lambda = \frac{-20}{-2 \times 36} = \frac{5}{18} \text{ 时 } f(\mathbf{x}^{(0)} - \lambda \nabla f(\mathbf{x}^{(0)}))$ 最小

代入
$$\lambda = \frac{5}{18}$$
 可得 $\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \lambda \nabla f(\mathbf{x}^{(0)}) = (\frac{4}{9}, -\frac{10}{9})^T$

(4分)

(3) 根据二阶最优性条件,我们需要使得下列式子同时成立,才能使得 $\mathbf{x_1}$ 为全局最优解: $\nabla f(\mathbf{x_1}) = \mathbf{0}, \nabla^2 f(\mathbf{x_1}) \succ \mathbf{0}$ (两个式子各 1 分)

$$f(\mathbf{x}) = \mathbf{x}^T \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{x}, \quad \nabla f(\mathbf{x}) = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{x}, \quad \nabla^2 f(\mathbf{x}) = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \succ \mathbf{0}$$

(1分)

则只需使
$$\nabla f(\mathbf{x_1}) = \mathbf{0} = \begin{bmatrix} 1 & 1 \\ 1 & 4 \end{bmatrix} \mathbf{x_1}$$
 解得 $\mathbf{x_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 这便是问题的全局最优解。

(1 分)

(4) 要证 $f(\mathbf{x})$ 是凹函数,只需证 $\nabla^2 f(\mathbf{x})$ 半负定。

(1分)

根据提给条件

$$\nabla^2 f(\mathbf{x}) = -\frac{f(\mathbf{x})}{n^2} \begin{bmatrix} \frac{1}{x_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix} \begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix} \begin{bmatrix} \frac{1}{x_1} & 0 & \cdots & 0 \\ 0 & \frac{1}{x_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{x_n} \end{bmatrix}$$

$$\begin{bmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{bmatrix} = nI_n - \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix} I_n 特征值为 1 (n 重),$$

$$T_n 特征值为 n (n 重)$$
根据数学归纳法,
$$\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$
特征值为 n 和 $0(n-1$ 重)

故中间那个矩阵是实对称矩阵,且特征值为 n (n-1 重) 和 0,是半正定矩阵,因此 $\nabla^2 f(x)$ 是半负定矩阵。

(3分)