San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Computation Complexity

Lecture 27 Day 31/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 31

- About Final Exam
- Summary of Lecture 26
- Lecture 27: Teaching ...
 - Computation Complexity

About Final Exam

• Value: 20%

Topics: Everything covered from the beginning of the semester

Type: Closed all materials

	Section 1	Section 2	Section 3
Date	Thursday, May 17 th	Thursday, May 17 th	Tuesday, May 22 nd
Time	2:45 - 5:00 pm	5:15 - 7:30 pm	2:45 - 5:00 pm
Venue	MH 233	MH 233	SCI 311

- We won't need whole 2:15 hours.
- As usual, I'll announce officially the type and number of questions via Canvas. (study guide)

Summary of Lecture 26: We learned ...

Computability

- Turing Thesis
 - Any computation carried out by a mechanical procedure can be performed by a TM.
 - We cannot prove or refute it.
- A language is Turing-recognizable if there is a TM that accept it.
- We have problem with the rejecting of the strings of L .
 - Because the TM might get stuck in a forever loop.
- We prefer TMs that always halt.
- We called these TMs as deciders.

 A language is called Turing-decidable if there is a decider for it.

U = All Formal Languages

- Universal TM is a TM that can simulate other TMs.
- Halting problem shows the limitation of the theory of the computation.

Any question?

Recap

Big Picture: Computer Science Foundation

Objective of This Lecture

What is complexity?

What do we mean when we say:
 Computation A is more complex than computation B.

- How do we classify the problems based on their complexity?
- What classes of complexities do we have?

Computation Complexity

What is Computation Complexity?

- To answer this question, we need to be clear about two things:
 - 1. What is computation?
 - 2. What is complexity?
- We've already defined computation as:

Recap

 The sequence of configurations from when the machine starts until it halts.

Now, let's see what complexity is.

What is Complexity?

- Specifically, what do we mean when we say:
 Computation A is more complex than computation B?
- It means, computation A needs more resources.

- What are the resources?
- Time and space
- We do have other resources such as energy, number of CPU, etc., but time and space are usually our main concerns.

What is the Computation Complexity?

- Since we have two major types of resources, "time" and "space", so, we can talk about two types of complexities:
 - Time-complexity
 - 2. Space-complexity
- In this lecture we focus on "time-complexity" that is usually of more concerns.

Time-Complexity

Assumptions

- 1. We are interested in "worst-cases" that needs the highest resources.
- We define the efficiency of an algorithm as its complexity.
 The complexity of a computation = Efficiency of its algorithm

 Before going further, we need to have a clear understanding about the "computation time".

What is Computation Time?

- For any computation, the machine makes some transitions starting from the initial state until it halts.
 - Recall that if it doesn't halt, there won't be any computation!
- For example, the following "one-dimensional projection" shows a computation for a process.

Computation Time of a Process

Definition

 The computation time of a process is the number of transitions from when the process starts until it halts.

Computation Time = Number of Transitions

Computation Time of Nondeterministic TMs

- Note that we defined the computation time for a single process.
 - Standard TMs use a single process, so the definition of computation time covers them.

What is the computation time of nondeterministic TMs?

- Since all processes of a nondeterministic TM run concurrently, then
 the computation time would be the computation time of
 the longest process.
 - In the next slide, we combined all processes of a nondeterministic
 TM in a tree.
 - The computation time would be the depth of the tree.

Computation Time of Nondeterministic TMs

Note that just input symbol of the labels are shown for readability purpose.

(1) Our Primary Concern

- How fast the resources requirements grow when the input size becomes larger.
- This is called "growth rate of resources".
- Definitely, slower growth of the resources requirements is desirable.

To understand this concept, let's be more precise!

Growth Rate of Resources

Consider the following deterministic automaton:

 We define the worst case computation time of this machine by f(n) that is a function of the input size n.

- What does f(n) look like for different types of automata?
- For example, if M is a DFA, how f(n) looks like?

$$f(n) = n$$

How about for TMs?

Growth Rate of Resources

- For TMs, the computation time for w's with the same size might vary.
- For example, a TM might have the following values for input size 3:

$$f(3) = \begin{cases} 3 & if w = aaa \\ 5 & if w = aba \\ 5 & if w = baa \\ ... & ... \\ 4 & if w = bbb \end{cases}$$

- In this case, we pick the worst case that is the longest one, 5, for f(3).
- If we do this for all sizes of w, we get f(n).
- Next slide shows an example of f(n) for a TM.

Example of a TM's Computation Graph

Growth Rate of Resources

- Almost always, the function f(n) is an unknown function.
 - Know functions such as f(n) = n, or Sin n, ...
- But most of times, we can approximate it with a known function as the next slide shows.

Growth Rate of Resources

 The approximate function T(n) should have the same "growth rate", from a point afterward (e.g. k).

Big-O Notation

 If we find such function, then we use a special notation called "Big-O" (aka "Order of magnitude") to represent it.

$$f(n) = O(T(n))$$

The meaning of the above notation is:

c .T(n) is an upper-bound for the growth rate of f(n).

Where c is a positive real number.

- The above equal sign is an "asymptotic notation", not the regular equal sign.
 - That's why it is a very confusing notation.

Growth Rate Checking

How to prove that T(n) and f(n) have the same growth rate?

• We should calculate the following calculus equation:

$$\lim_{n\to\infty}\frac{T(n)}{f(n)}=?$$

- If the result is a constant > 0, it means both have the same growth rate.
- If it is zero, it means f(n) grows faster.
- If it is +∞, it means T(n) grows faster.

Growth Rate of Some Functions

 The following table shows how different functions grow when the input size grows.

n	k	n	n²	n³	2 ⁿ
1	k	1	1	1	2
2	k	2	4	8	4
3	k	3	9	27	8
10	k	10	100	1000	1024
100	k	100	10,000	1,000,000	2 ¹⁰⁰ = ???

Next slide shows the graphs of some known functions.

Growth Rate of Some Functions

Computation Complexity Comparison

- To be able to compare complexities, we need to quantify them.
- In computer science, it's been proven that Big-O is the best notation to quantify complexities.

Example 1

- Problem A needs O(n²) resources.
- Problem B needs O(n) resources.
- Which problem is more complex?
- Problem A ...
- ... because the resource requirement of problem A grows faster than problem B.

Time-Complexity Classes

Time-Complexity Classes

- In this section, we'll classify problems (languages) based on their complexities.
- The goal of this classification is:

To have an engineering feeling about the types of problems that we encounter.

- To solve problems, we can use standard (deterministic) TM or nondeterministic TM.
 - As we'll see later, there is a huge difference between them.
- Let's start with "deterministic TM".

- Our first complexity class is called DTIME(n).
- It contains all problems that can be decided in O(n) time.
 - The "D" at the beginning of DTIME shows that we are using "deterministic" TMs.

Let's see what problems we can put in this class.

Example 2

- Given an unsorted list of numbers x₁, x₂, ..., x_n and a key number k.
- Search in the list and determine if it contains k (LSEARCH).
- In the worst-case, we need n comparisons.
- So, the time-complexity of this problem is O(n).
- Note that we assume each comparison needs constant amount of time k.
- So, total time needed is n . k.
- In big-O notation, we eliminate constants.

U = All Formal Languages

Example 3

- Given L = $\{a^n b : n \ge 0\}$
- What is the time-complexity of accepting this language?
- L can be decided in O(n) by using a deterministic TM.

U = All Formal Languages

 Also, the following languages can be decided in O(n) by using a deterministic TM.

U = Al Formal Languages

Time-Complexity Classes

What are the complexities of the following languages?


```
• L = \{a^nb^n : n \ge 0\}
```

- $L = \{ww^R : w \in \{a, b\}^*\}$
- $L = \{ww : w \in \{a, b\}^*\}$
- O(n²)
- So, we need a new class of complexity.

 We create a new class called DTIME(n²) and put them in this new class.

U = All Formal Languages

- Matrix multiplication problem can be decided in O(n³) by using a deterministic TM.
- So, we need another class for O(n³).

U = All Formal Languages

We can continue this process for O(n⁴), O(n⁵), ..., O(n^k).

① Class P

- Classifying languages based on the degree of n has less practical benefit.
- We define a general class called "polynomial time-complexity" or just "class P".
- Class P is the set of problems that can be decided in O(n^k) by using a deterministic TM.
 - Where $k \ge 0$
- Also, we call these problems "easy" (aka "tractable").
 - We'll see within a few minutes why they are "easy"!

U = All Formal Languages

```
Class P  \{a^n \ b : n \ge 0\}   \{a^n \ b^n : n \ge 0\}   \{ww^R : w \in \{a, b\}^*\}   \{ww : w \in \{a, b\}^*\}   MatrixMult  ...
```

Exponential Time Algorithms

Introduction

- We continue our study about the classification of complexities by focusing on "exponential algorithms".
- But first, we need to get familiar with some of those problems.
- In the next slides we'll take some examples of problems that need exponential time to be decided.

Satisfiability Problem (SAT)

Problem

As an example, consider the following logical expression:

$$X = (p \vee r) \wedge (\sim q \vee \sim r)$$

For what values of p, q, and r, the expression X is satisfied (= true)?

Solution

- Using "truth table" is the most reliable way to find all solutions.
- The expression has three variable p, q, and r.
- Therefore, there are 2³ = 8 rows in the truth table.
- The algorithm should evaluate X for all rows to find all possible solutions.

Satisfiability Problem (SAT)

$$X = (p \lor r) \land (\sim q \lor \sim r)$$

1.
$$X = (T \lor T) \land (\sim T \lor \sim T) = F$$

2.
$$X = (T \vee F) \wedge (\sim T \vee \sim F) = T$$

3.
$$X = (T \lor T) \land (\sim F \lor \sim T) = T$$

4.
$$X = (T \lor F) \land (\sim F \lor \sim F) = T$$

5.
$$X = (F \lor T) \land (\sim T \lor \sim T) = F$$

6.
$$X = (F \vee F) \wedge (\sim T \vee \sim F) = F$$

7.
$$X = (F \lor T) \land (\sim F \lor \sim T) = T$$

8.
$$X = (F \vee F) \wedge (\sim F \vee \sim F) = F$$

	p	q	r
1	Т	Т	Т
2	Т	Т	F
3	Т	F	Т
4	Т	F	F
5	F	Т	Т
6	F	Т	F
7	F	F	Т
8	F	F	F

Satisfiability Problem (SAT)

In the previous example, we used an exhaustive algorithm.

Algorithm

- Construct a truth table for 3 variables p, q, r.
- Evaluate X for every row.
- Pick those rows that X = true.
- So, theoretically this problem is computable.

Efficiency of Satisfiability Problem (SAT)

- If the number of variables is n, the truth table would have 2ⁿ rows.
- We assume the evaluation of one row needs constant time.
 - We ignore the constant coefficients in big-O notation.
- Therefore, the algorithm needs 2ⁿ evaluations.
- So, the efficiency of SAT problem is O(2ⁿ).

Efficiency of Satisfiability Problem (SAT)

- Is this algorithm practically feasible?
 - What would happen if we had 100 variables?
 - In this case, we'd need a table with 2¹⁰⁰ rows.
 - Do you have any idea how big is this number?
 - To answer this question, let's "do some math".

Let's Do Some Math!

Example 4: A Practical Calculation for 2¹⁰⁰

- Consider a truth table with 100 variables and 2¹⁰⁰ rows.
- If a computer processes each row in 1 Nano sec (10⁻⁹ sec), how long does it take for this computer to process entire table?

Solution

Let's Do Some Math!

Exhaustive Parsing Algorithm

$$S \rightarrow SS \mid a S b \mid b S a \mid \lambda$$

w = abba...b; $|w| = 50$

- Efficiency of exhaustive search parsing algorithm: O(|P| ^{2|w|})
- We have a deterministic computer that can process each substitution in 1 Nano sec (10⁻⁹ sec).
- How long does it take to parse a string of length 50?

Let's Do Some Math Again!

- Let's take another look at the table of growth rate of functions.
- Compare, for example, one million rows of n³ and the number that we just calculated for 2¹⁰⁰.
- One million rows can be processed within less than a second while
 2¹⁰⁰ needs

 That's why we call exponential algorithms as "hard" (aka "intractable").

n	k	n	n²	n³	2 ⁿ
1	k	1	1	1	2
2	k	2	4	8	4
3	k	3	9	27	8
10	k	10	100	1000	1024
100	k	100	10,000	1,000,000	$2^{100} = ???$

Hamilton Path Problem (HAMPATH)

Problem

- Given an undirected graph with n vertices v₁, v₂, ..., v_n.
- Find a simple path that passes through all vertices.
 - This path, if exists, is called "Hamilton path".

Example 6

Is there any Hamilton path in the following graph?

Hamilton Path Problem (HAMPATH)

Example 6 (cont'd)

• Yes, $\{(v_2, v_1), (v_1, v_3), (v_3, v_5), (v_5, v_4), (v_4, v_6)\}$

Hamilton Path Problem Complexity

- Let's use an exhaustive algorithm to check all possible paths.
- How many different paths can we recognize?
- Since we need to visit all n vertices, so, all possible paths have size n.

Hamilton Path Problem Complexity

- The paths can start from all n nodes.
- The second node in each path can be (n-1) remaining nodes.
- The third node in each path can be (n-2) remaining nodes, and so forth ...
- Based on "multiplication rule of counting", total number of possible paths would be: n x (n-1) x (n-2) x ... x 2 x 1 = n!

Hamilton Path Problem Complexity

- Therefore, the total number of paths in the worst-case is n!.
- So, investigating which path is Hamilton path needs O(n!) time.
- We usually don't have a clear feeling about how big is n!.
- So, we use Stirling's approximation for n!.

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Conclusion

- Complexity of HAMPATH ≈ O(nⁿ)
- So, if we have 100 vertices, then we need to check 100¹⁰⁰ possibilities!
- Now you do the math!

Using Nondeterministic TMs

Using Nondeterministic TM

Theorem

 If a deterministic TM solves a problem in an exponential time O(k^{an}), a nondeterministic TM solves it in a polynomial time O(n^p).

- Where:
 - p, k and a are constants

Using Nondeterministic TM

Example 8

- The SAT problem complexity = $O(2^n)$ (by using deterministic TM)
- If we solve this problem by using a nondeterministic TM, the complexity would be O(n).
- Do the math again!

① Class NP

- Class NP is the set of problems that can be decided in polynomial time by using nondeterministic TMs.
- NP = Nondeterministic Polynomial Time-Complexity

What is the relationship between class P and NP?

- All languages in class P can also be decided in polynomial time by using nondeterministic TM.
- So, P ⊆ NP

P vs. NP

- Computer scientists found polynomial time algorithms for some problems such as sorting, multiplication.
- They found exponential algorithms for some others such as SAT, HAMPATH, PRIMES (finding prime numbers), PCRACK (password cracking), ...
- We were lucky to find a polynomial time algorithm for some of them like PRIMES. (Agrawal, Kayal, Saxena / 2004)
- So, we moved PRIMES to class P. (next slide)

U = All Formal Languages

P vs. NP: An Open Question

Now the question is:

Can we find polynomial time algorithms for the rest of them?

- In other words, can we expect one day P = NP?
- We don't know yet.
- This is another "open question" of computer science.
- \$1,000,000 for the solution!
- http://www.claymath.org

U = All Formal Languages

Last Note

- Note that it is not the case that we just have 2 or 3 classes.
- As of this moment, there are 535 known complexity classes!
- For more information, take a look at the "Complexity Zoo" website at:
 - https://complexityzoo.uwaterloo.ca/Complexity Zoo

The End

I wish you all, the Bests!

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790