Optimalizálás intro

Legmeredekebb csökkenés módszere

• Feladat: minimalizálni akarjuk az f függvényt, azaz keressük $x^* = argmin f(x)$ -ot

Legmeredekebb csökkenés módszere

- Feladat: minimalizálni akarjuk az f függvényt, azaz keressük $x^* = argmin f(x)$ -ot
- Ötlet: adott η lépésköz mellett iteratívan próbáljuk meg közelíteni x*-ot

Legmeredekebb csökkenés módszere

- Feladat: minimalizálni akarjuk az f függvényt, azaz keressük $x^* = argmin f(x)$ -ot
- Ötlet: adott η lépésköz mellett iteratívan próbáljuk meg közelíteni x*-ot

```
1: x^{(0)} \leftarrow 0 # inicializáljuk x-et
2: For i=0 to max_iter:
3: x^{(i+1)} \leftarrow x^{(i)} - \eta f'(x^{(i)})
4: return x^{(max_iter)}
```

Gyakorlás

- Python-t használva próbáljuk meg minimalizálni a 3*x⁴-6*x²+8 függvényt!
- Mit tapasztalunk különböző η értékek használata mellett?
 - Pl. η ={0.01, 0.1, 1}

Legmeredekebb csökkenés kiterjesztése többdimenziós esetre

- $x^{(i+1)} \leftarrow x^{(i)} \eta f'(x^{(i)})$ helyett $x^{(i+1)} \leftarrow x^{(i)} \eta \nabla f(x^{(i)})$
 - ∇f az f függvény gradiense, azaz a parciális deriváltjait tartalmazó vektor $\nabla f = [\partial f(x)/\partial x_1 \ \partial f(x)/\partial x_2 \ ... \ \partial f(x)/\partial x_d]$

Legmeredekebb csökkenés kiterjesztése többdimenziós esetre

- $x^{(i+1)} \leftarrow x^{(i)} \eta f'(\overline{x^{(i)}}) \text{ helyett } \overline{x^{(i+1)}} \leftarrow x^{(i)} \eta \overline{\nabla} f(\overline{x^{(i)}})$
 - ∇f az f függvény gradiense, azaz a parciális deriváltjait tartalmazó vektor $\nabla f = [\partial f(x)/\partial x_1 \ \partial f(x)/\partial x_2 \ ... \ \partial f(x)/\partial x_d]$

Gyakorlás

- Python-t használva próbáljuk meg minimalizálni az
 f(x,y)=3*x⁴-6*y²+8 függvényt! (f most alulról nem korlátos)
- Mit tapasztalunk különböző η értékek használata mellett? (pl. η ={0.01, 0.1, 1})

Másodrendű eljárások

Egyváltozós eset

$$-x^{(i+1)} \leftarrow x^{(i)} - \eta f'(x^{(i)}) \text{ helyett } x^{(i+1)} \leftarrow x^{(i)} - \frac{f'(x^{(i)})}{f''(x^{(i)})}$$

Többváltozós eset

$$-x^{(i+1)} \leftarrow x^{(i)} - H^{-1}(x^{(i)}) \nabla f(x^{(i)})$$

- H az f függvény Hesse-mátrixa (f másodrendű parciális deriváltjait tartalmazza). Mi az előnye/hátránya?
- Gyakorlás: a korábbi optimalizálási feladatok megoldása másodrendű módszereket alkalmazva

Gyakorlati szempontok

- Érzékenység a paraméterek kezdeti értékeire
- η-ra való érzékenység
- Olcsóság-vs-sebesség
 - Másodrenű eljárások sokkal költségesebbek, de gyorsabbak (kevesebb iteráció alatt képesek a tényleges optimum közelébe eljutni)

További olvasnivalók

- Interaktív JS vizualizáció
 - http://www.benfrederickson.com/numerical-optimization/
- Gradiens módszer kiterjesztései
 - http://sebastianruder.com/optimizing-gradient-descent/

Modellezés

- Gépi tanulással valós életbeli jelenségek modellezhetők prediktív jegyek/jellemzők alapján
 - Pl. ha ismerjük egy ember magasságát és testsúlyát, modellezhetjük valamely betegségre való hajlamát
- Tanítóadatbázis: $\{(x_i, y_i)\}_{i=1}^n$ párosok halmaza

N	N	N	N	N	Р	Р	Р	Р	Р
140	150	170	166	170	188	190	210	187	160
55	67	78	66	88	100	88	99	55	108

 Olyan modellt keresünk, ami "minél kevesebbet" hibázik a tanítópéldákon

A modell általánosító képessége is fontos!

Veszteségfüggvények

- A legjobb modell meghatározása fölfogható egy optimalizálási feladatként
- Számos modell,-és hibafüggvény adható ugyanannak a problémának a jellemzésére
 - Egy lehetőség: logisztikus regresszió

Logisztikus regresszió

- Kétosztályos eset, azaz $Y \in \{+1,-1\}$
- Modell: $\widetilde{P}(Y_i=1|x_i)=\sigma(w^Tx_i)=\frac{1}{1+e^{-w^Tx_i}}$
 - Értelemszerűen: $\widetilde{P}(Y_i = -1 | x_i) = \sigma(-w^T x_i) = \frac{1}{1 + e^{w^T x_i}}$
 - Tömörebben: $\widetilde{P}(Y_i = y | x_i) = \frac{1}{1 + e^{-y w^T x_i}}$
- Hogy viselkedik a σ függvény?
- Az egyes tanítópéldák kapcsán az ún.
 - keresztentrópia legyen a hibatag

Hogy viselkedik a σ függvény?

- $\sigma(z) = 1/(1 + \exp(-z))$
 - $-\overline{\sigma(z)} \rightarrow 1$, ha z = ?
 - $-\sigma(z) = 0.5$, ha z = 0
 - $-\sigma(z) \rightarrow 0$, ha z = ?
- Gyakorlás: mi lesz σ(z) deriváltja?

Keresztentrópia

Eloszlások különbözőségének számszerűsítésére

használható
$$H(P,Q) = -\sum_{x \in X} P(X=x) \log Q(X=x)$$

• H(P, Q) = ?

Keresztentrópia mint hibatag

- Az egyes pontokon elszenvedett veszteség mértéke legyen az adott pontra vonatkozó keresztentrópia
 - P eloszlás legyen a pontra vonatkozó osztályeloszlás
 - $P(Y_i=1|X_i) \in \{1.0, 0.0\}$
 - i. pontra vonatkozó hiba: $l_i(x_i, y_i) = H(P, \widetilde{P}) = \log(1 + e^{-y_i w^T x_i})$

$$\nabla_{w} l_{i}(x_{i}, y_{i}) = \frac{1}{1 + e^{-y_{i}w^{T}x_{i}}} e^{-y_{i}w^{T}x_{i}} - y_{i}x_{i} = -y_{i}P(Y_{i} = -y_{i}|x_{i})x_{i}$$

- Értelmezzük a kapott gradienst!
- A tanítóadatbázis hibája a pontonkénti hibák összege

Implementáljuk a saját LogRegünket!

- Töltsük be az Iris adatbázist
 - Az első 100 megfigyelés első 2 jellemzőjét használjuk!
 - Alkalmazzunk 80:20-as tanító:teszt vágást

Egy minimalista LogReg implementáció

```
def cost(x, y, w):
    return sum(np.log(1+np.exp(-y*x.dot(w))))

def gradients(x, y, w):
    misclass_probs = 1/(1+np.exp(y*x.dot(w)))
    return x*(-y*misclass_probs)[:, np.newaxis]
```

Egy másik minimalista implementáció

```
P = lambda x,y,w: 1/(1+np.exp(-y*x.dot(w)))
cost = lambda x,y,w: sum(np.log(1+np.exp(-y*x.dot(w))))
gradients = lambda x,y,w: np.sum(x*(-y*(1-
P(x,y,w))).reshape(x.shape[0], 1), axis=0)
```

Tanulás¹

```
weights = np.array([0.1, -0.1])
costs = []
for it in range(10000):
    train cost = cost(X train, Y train, weights)
    test cost = cost(X test, Y test, weights)
    costs.append([train cost, test cost])
    train g = gradients(X train, Y train, weights)
    weights -= 0.001*np.sum(train g, axis=0)
```

A hibafüggvény változása

- Túltanulás/alultanulás
 - Regularizáció fontossága

Sztochasztikus gradiens módszer

 Gradiensek összegzése helyett véletlenszerűen válasszunk egy pontot, amely szerint frissítünk

- Azaz np.sum(train_g, axis=0) helyett
 train_g[np.random.randint(X_train.shape[0])]
 alapján frissítsünk

 Most egy epoch kicsit mást jelent, mint az előbb

Pontosan mit is?

Fontos!

- A tesztadatokat soha, soha, SOHA ne használd a modell tanítása során
 - A tesztadatokon a modell kiértékelését végezzük, a modell paramétereinek hangolására nem használható

Fontos!

- A tesztadatokat soha, soha, SOHA ne használd a modell tanítása során
 - A tesztadatokon a modell kiértékelését végezzük, a modell paramétereinek hangolására nem használható
- Dedikált tanító/tesztelő adatbázisok helyett alkalmazhatunk keresztvalidációt is
 - Osszuk a teljes adatbázist k részre, amelyből (k-1) egységet használjunk tanításra, a fennmaradó 1/k hányadot pedig tesztelésre