컴파일러구성, UNIX시스템

2018학년도 2 학기

3 학년 2 교시

*	정답	하나만을	골라	반드시	컴퓨터용	사인펜으로	OMR		
	표기	할 것.						화	벼

학 과		감독관	(1)
학 번	-	성 명	

1과목 컴파일러구성 (1~35)

출제위원 : 방송대 김강현

출제범위:교재 4장~9장 (해당 멀티미디어강의 포함)

- 1. 다음은 컴파일러와 관련된 설명들이다. 틀린 것은?
 - ① 정규언어는 어휘분석에서 단어들을 표현하는데 사용된다.
 - ② 유한오토마타는 정규언어를 인식한다.
 - ③ 푸시다운 오토마타는 구문분석과 관련이 있다.
 - ④ Context-Free-언어는 단어들을 표현하는데 사용된다.
- ※ (2~5) 다음 문법을 보고 물음에 답하라.
 - 1) $S \rightarrow aAS$
 - 2) $S \rightarrow a$
 - 3) $A \rightarrow SbA$
 - 4) $A \rightarrow SS$
 - 5) $A \rightarrow ba$
- 2. 다음은 aaaa를 좌단유도하는 과정이다. 빈 칸에 알맞은 것은?

$$S \Rightarrow aAS$$

$$\Rightarrow ()$$

$$\vdots$$

$$\Rightarrow aaaa$$

① aAa

② aaSS

③ aSSa

- 4 aSSS
- 3. 다음은 aaaa를 우단유도하는 과정이다. 빈 칸에 알맞은 것은?

$$S \Rightarrow aAS$$

$$\Rightarrow ()$$

$$\vdots$$

$$\Rightarrow aaaa$$

① aAa

② aaSS

③ aSSa

- 4 aSSS
- 4. First(A)는?
 - ① a

- ② a, b
- ③ a, b, ε
- 4 a, b, \$
- 5. Follow(A)는?
 - ① a

② b

3 a, b

- 4 a, b, \$
- 6. 다음 문법에 대한 설명으로 가장 적당한 것은?

$$E \rightarrow E + E \mid E * E \mid id$$

- ① id + id * id를 유도하면 오직 하나의 유도트리가 생성된다.
- ② 구문분석기를 구성하는 것이 단순하고 쉽다.
- ③ 구문분석기를 구성하는 것은 복잡하지만 구문분석 시간이 빠르다.
- ④ 모호한 문법이므로 모호하지 않은 문법으로 바꾸어 주어야 한다.

7. 다음 문법을 ϵ -free 문법으로 바꾸려고 한다. 빈칸에 알맞지 **않은** 것은? (단, \mid 표시는 생략한다)

$$P: S \to bSaS \mid \varepsilon$$

$$\Rightarrow P' = S' \to S \mid \varepsilon$$

$$S \to ()$$

① ba

② SaS

③ baS

- 4 bSaS
- 8. 다음은 주어진 문법에서 단일 생성규칙을 효율화시키는 과정의 일부이다. 빈칸 '가'에 알맞은 것은?

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid a$$

$$\Rightarrow$$

$$E \rightarrow E + T \mid ('7)')$$

- ① F
- 2 T * F
- ③ T * F | F
- ① T * F | (E) | a
- ※ (9~10) 다음은 주어진 생성규칙을 적용하여 문장 cabd를 유도 하는 과정이다.

- 9. 이처럼 다시 되돌아가는 문제점을 무엇이라고 하는가?
 - 1 back tracking
 - 2 left recursion
 - ③ 단일 생성규칙
 - 4 left factoring
- 10. 이 문제점을 해결하는 방법은?
 - ① left-factoring
 - 2 backtracking
 - ③ ε생성규칙제거
 - ④ 연산자 우선순위
- 11. 다음 구문분석에 대한 설명 중 잘못 설명된 것은?
 - ① Top-down 구문분석 방법은 backtracking 문제를 갖고 있다.
 - ② Bottom-up 방법은 터미널 노드부터 시작하여 루트 노드를 향하는 반면에, Top-down 방법은 루트 노드로부터 터미널 노드를 향하여 파스트리를 만들어 나간다.
 - ③ Shift-reduce 구문분석은 Top-down 방법으로 시작기호로부 터 출발하여 유도에 의하여 주어진 문자열을 찾아간다.
 - ④ backtracking을 방지하기 위하여 LL(k) 문법을 사용하게 되었다.

※ (12∼16) 다음은 주어진 문법을 보고 id∗id+id를 shift-reduce 구문분석을 하는 과정이다. 물음에 답하라.

--<문 법>--

- 1) $E \rightarrow E * E$
- 2) $E \rightarrow E + E$
- 3) $E \rightarrow id$
- **12.** 문자열 id * id + id를 우단 유도하고 핸들을 표시한 것이다. 다음 중 핸들을 **잘못** 표시한 단계가 있는가?

우단유도 과정	(핸들)
1. $E \rightarrow E * E$	(E * E)
2. $E \rightarrow E * E + E$	(E + E)
3. $E \rightarrow E * E + id$	(id)
4. $E \rightarrow E * id + id$	(id)
5. $E \rightarrow id * id + id$	(id)

- 1단계
- ② 3단계
- ③ 5단계
- ④ 없다.
- ※ (13~16) 계속해서 shift-reduce 구문분석 하는 과정이다.

단 계	스 택	입 력	구문분석 행동
0	\$	id*id+id \$	shift ('フト')
1	\$id	*id+id \$	reduce ('나')
2	\$E	*id+id \$	shift *
3	\$E*	id+id \$	shift id
4	\$E*id	+id \$	reduce $E \rightarrow id$
5	\$E*E	+id \$	shift +
6	\$E*E+	id \$	shift id
7	\$E*E+id	\$	reduce $E \rightarrow id$
8	\$E*E+E	\$	reduce ('다')
9	\$E*E	\$	reduce ('라')
10	\$E	\$	accept

- 13. 빈칸 '가'에 알맞은 것은?
 - ① id
 - $② E \rightarrow id$
 - $3 E \rightarrow E * E$
 - $\textcircled{4} \text{ E} \rightarrow \text{E+E}$
- 14. 빈칸 '나'에 알맞은 것은?
 - ① id
 - $2 E \rightarrow id$
 - $3 E \rightarrow E * E$
 - $\textcircled{4} \text{ E} \rightarrow \text{E+E}$
- 15. 빈칸 '다'에 알맞은 것은?
 - 1 id
 - $② E \rightarrow id$
 - $3 E \rightarrow E * E$
 - $\textcircled{4} \text{ E} \rightarrow \text{E+E}$
- 16. 빈칸 '라'에 알맞은 것은?
 - ① id
 - $② E \rightarrow id$
 - $3 E \rightarrow E * E$
 - $\textcircled{4} \text{ E} \rightarrow \text{E+E}$

※ (17~18) 다음은 단순순위문법을 이용해서 기호들 사이의 순위 관계를 정하는 과정이다. 빈칸에 알맞은 것을 고르시오.

$$E \rightarrow E_1 \rightarrow T_1 \rightarrow T \rightarrow T*F$$
 $\rightarrow T*id ('가')$
 $\rightarrow F*id ('나')$

- 17. 빈칸 '가'에 알맞은 것은?
 - ① T <· *
 - ② * ⟨· id
 - ③ T ·> ∗
 - ④ id ·> *
- 18. 빈칸 '나'에 알맞은 것은?
 - ① F 〈· *
 - ② * < · id
 - ③ F ·> *
 - ④ id ·> *
- ※ (19~21) 다음은 LR(0) 항목 집합의 canonical collection을 구하는 과정이다. 물음에 답하라.
 - (1) 증가문법은 다음과 같다.
 - $0) S' \to E$
 - 1) $E \rightarrow E+T$
 - 2) $E \rightarrow T$
 - 3) $T \rightarrow T*F$
 - 4) $T \rightarrow F$
 - 5) $F \rightarrow (E)$ 6) $F \rightarrow id$
 - (2) Canonical Collection.

 $I_0 = \text{closure } ([S' \rightarrow \cdot E])$

- $I_1 = GOTO (I_0, E)$
- $I_2 = GOTO (I_0, T)$
- $I_3 = GOTO (I_0, F)$
- $I_4 = GOTO (I_0, ()$
- --<보 기>-
- $(7) \{[T \to F \cdot]\}$
- (나) $\{[S' \rightarrow E \cdot], [E \rightarrow E \cdot + T]\}$
- (다) $\{[E \rightarrow T \cdot], [T \rightarrow T \cdot *F]\}$
- (라) {[S' \rightarrow · E], [E \rightarrow · E+T], [E \rightarrow · T], [T \rightarrow · T*F], [T \rightarrow · F], [F \rightarrow · (E)], [F \rightarrow · id]}
- (p) {[F \rightarrow (·E)], [E \rightarrow ·E+T], [E \rightarrow ·T], [T \rightarrow ·T*F], [T \rightarrow ·F], [F \rightarrow ·(E)], [F \rightarrow ·id]}
- 19. I_0 = closure ([S' \rightarrow \cdot E]) 를 보기에서 고르면?
 - ① (가)

② (나)

- ③ (다)
- ④ (라)
- **20.** $I_2 = GOTO(I_0, T)$ 를 보기에서 고르면?
 - ① (나)

② (다)

- ③ (라)
- ④ (마)
- 21. I₄ = GOTO (I₀, ()를 보기에서 고르면?
 - ① (나)

② (叶)

③ (라)

④ (마)

※ (22∼24) 계속해서 GOTO 그래프를 이용하여 SLR 파싱표를 구하는 과정이다. 물음에 답하라.

< SLR 파 싱 표 >

상태		구문분석기의 행동						GOTO 함수		
্ধ পা	id	+	*	()	\$	E	Т	F	
0	S5			S4			1	2	'다'	
1		'가'								
2			'나'							

22. '가'에 알맞은 내용은?

① S4

② S5

3 S6

4 S7

23. '나'에 알맞은 내용은?

① S4

② S5

3 S6

4 S7

24. '다'에 알맞은 내용은?

1

2 2

3 3

4

** (25~30) 다음은 CLR 그래프를 이용하여 파싱표를 구성하고 구 문분석 하는 과정이다.

< CLR 파 싱 표 >

구	문분석기의 형	행동	GOTO) 함수		
c	d	\$	S	С		
S3	S4		1	2		
		acc				
S6	('ፖት')			5		
S3	S4			8		
r3	r3					
		r1				
S6	S7			9		
		('나')				
r2	r2					
		r2				
	c S3 S6 S3 r3	c d S3 S4 S6 ('フト') S3 S4 r3 r3 S6 S7	S3 S4 acc S6 ('가') S3 S4 r3 r3 r1 S6 S7 ('나') r2 r2	c d \$ S S3 S4 1 acc S6 ('가') S3 S4 r3 r3 r1 S6 S7 ('나') r2 r2		

25. 빈칸 '가'에 알맞은 것은?

① S6

2 S7

3 r3

4 acc

26. 빈칸 '나'에 알맞은 것은?

① r3

2 r5

3 r6

4 r7

* (27~30) 계속해서 다음은 CLR 파싱표를 보고 문장 dcd 를 구 문분석 하는 과정이다.

단계	스택	입력기호	구문분석 내용
0	0	dcd\$	'가'
1	0d4	cd\$	'나'
2	0C	cd\$	goto2
3	0C2	cd\$	'다'
4	0C2c6	d\$	'라'
5	0C2c6d7	\$	reduce3
6	0C2c6C	\$	goto9

27. '가'에 알맞은 것은?

1 shift 3

2 shift 4

3 shift 6

4 shift 7

28. '나'에 알맞은 것은?

① reduce 1

② reduce 2

③ reduce 3

4 reduce 4

29. '다'에 알맞은 것은?

① shift 3

2 shift 4

3 shift 6

4 shift 7

30. '라'에 알맞은 것은?

① shift 3

② shift 4

3 shift 6

4 shift 7

** (31~32) 다음은 Top-Down 구문분석에서 predictive 파싱표를 구성하는 과정이다.

-<문 법>-

- 1) $E \rightarrow TE'$
- 2) $E' \rightarrow +TE'$
- 3) $E' \rightarrow \epsilon$
- 4) T \rightarrow FT'
- 5) $T' \rightarrow *FT'$
- 6) T' → ε
- 7) $F \rightarrow (E)$
- 8) F \rightarrow id

$$\begin{split} & FIRST(E) = FIRST(T) = FIRST(F) = \{ \text{ (, id)} \\ & FOLLOW(E) = FOLLOW(E') = \{ \text{), } \} \end{split}$$

[파싱표]

$V_{\rm N}$	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		E'→+TE'			('가')	('나')
Т	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		T′→ε	$T' \rightarrow * FT'$		T'→ε	T ′→ε
F	$F \rightarrow id$			$F \rightarrow (E)$		

31. FOLLOW(E') = {), \$ }로부터 빈칸 '가'에 알맞은 내용은?

- ① E' → ε
- ② $E \rightarrow TE'$
- $\mathfrak{T}' \rightarrow \epsilon$
- $\textcircled{4} E' \rightarrow +TE'$

32. FOLLOW(E') = {), \$ }로부터 빈칸 '나'에 알맞은 내용은?

- ① $E' \rightarrow \epsilon$
- ② $E \rightarrow TE'$
- $3T' \rightarrow \epsilon$
- $\textcircled{4} E' \rightarrow +TE'$

33. Bell 연구소에서 Stephen C. Johnson을 중심으로 개발된 LALR(1) 구문분석기 생성기로 선언부분(declation), 변환규칙 부분(translation rules), 사용자 프로그램 부분(user program) 등의 세 부분으로 구성된 것은?

- ① Lex
- 2 Scan gen
- ③ YACC
- **4** LALR GEN

34. 다음 기호표의 내용 중 식별자의 위치를 나타내는 것은?

- ① 유형
- ② 레벨
- ③ 오프셋
- ④ 차원수

35. 다음은 A := -B*(C+D) 를 3 주소 코드로 표현하는 과정이다.

번호	op	피연산자 1	피연산자 2	결과
(0)	uminus	В		T_1
(1)	+	С	D	('ንነ')
(2)	*	T_1	T_2	T_3
(3)	:=	Т3		A

'가'에 알맞은 것은?

 \bigcirc T_1

 $2 T_2$

 $\Im T_3$

4 A