MobileNet v2 Collab

Group 1: Rohan Sanjay, Carolina Souza, Kartik Balodi, Kelly Huang, Derek Lim

Group 3: Anna Gard, Wendy Qi, Mei Zhang, Chris Lange, Kenneth Su

The Problem :(

- Inaccuracy in classifying lying images
- Sitting and standing classification confusion
- Image loading not optimized (30-45 min)

The Solution :)

- Pre-processing: Data set input images balancing
- Data augmentation
- Border replication with ratio exclusion
- Alternative image loading process
 - tf.data.Dataset object

Model - Full Dataset

Posture	Correct	Total	Accuracy	
Sitting	1679	1906	88.1%	
Standing	3895	4392	88.7%	
Lying	670	988	72%	

[[1679 168 59] [487 3895 10] [262 56 670]]

Test Accuracy:

87.2%

Split: 50, 30, 20

Border replication - Ratio

With Border Replication

Without Border Replication

Border replication - Ratio

Test Accuracy: 86.12%

	Correct	Incorrect Classification - Sitting	Incorrect Classification - Standing	Incorrect Classification - Lying	Total Observations in Class	Categorical Classification Accuracy
Sitting	1316		120	229	1665	79.03%
Standing	4335	477		87	4899	88.5%
Lying	624	91	7		722	86.4%

Data Augmentation - Class Specific

Sitting Augmentation

- Sitting confusion generally
 - Worse confusion with lying
 - sitting/standing confusion
 better but still not great
- 84.4% Sitting correctly categorized: decrease 3.7%
- 93.3% Standing correctly categorized: increase 4.6%
- 84.4% Lying correctly categorized: increase 12.4%

Lying Augmentation

- Sitting/standing confusion
 - ¾ of the error in these classes comes from this confusion
- 78.6% Sitting correctly categorized:
- decrease 9.5%
- 94.4% Standing correctly categorized: increase 5.7%
- 87.5% Lying correctly categorized:
- increase 15.5%

Data Augmentation

Test Accuracy: 90.69%

	Correct	Incorrect Classification - Sitting	Incorrect Classification - Standing	Incorrect Classification - Lying	Total Observations in Class	Categorical Classification Accuracy
Sitting	2357		134	104	2595	90.83%
Standing	3811	351		59	4221	90.29%
Lying	1392	116	24		1532	90.86%

Optimizing Image Loading

- Load images to directory with subfolder structure
- Use tf.data.Dataset object
- Prefetch to load and train in parallel
- Drastically lowers runtime
- Output doesn't function with MobileNet V2 but compatible with other models

```
# ds means dataset
train_ds = tf.keras.preprocessing.image_dataset_from_directory(config.PROCESSED, image_size=(224, 224),
    seed=100, labels='inferred', subset='training', color_mode='rgb',validation_split=0.8)

test_ds = tf.keras.preprocessing.image_dataset_from_directory(config.PROCESSED, image_size=(224, 224),
    seed=100, labels='inferred',subset='validation', color_mode='rgb',validation_split=0.2)

# Enables parallel loading of images and model training
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_ds = train_ds.shuffle(700).cache().prefetch(buffer_size=AUTOTUNE)

test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)
```

Our Deliverable

Questions?