MATH 313 HMWK 2

Daniel Xu

February 5, 2018

- 1. 3.8. i. Infima: 0, Suprema: 1
 - ii. Infima: -1, Suprema: 1
 - iii. Infima: $\frac{1}{4}$, Suprema: $\frac{1}{3}$
 - iv. Infima: 0, Suprema: 1
 - 4.1. i. Let $a = \frac{m}{n}$ and $b = \frac{p}{q}$. Then

$$ab = \frac{m}{n} \cdot \frac{p}{q}$$
$$= \frac{mp}{nq}$$

$$a + b = \frac{m}{n} + \frac{p}{q}$$
$$= \frac{mq}{qn} + \frac{pn}{qn}$$
$$= \frac{mq + pn}{qn}$$

Since ab and a+b can be written as fractions, by definition, they must be rational. Therefore, the set of rational numbers are closed under addition and multiplication.

ii. Let us assume that $a+t\in\mathbb{Q}$. Then we should be able write a+t as p/q, where p and q are integers. The same goes for a. Then

$$\frac{m}{n} + t = \frac{p}{q}$$

$$t = \frac{p}{q} - \frac{m}{n}$$

$$= \frac{pn}{qn} - \frac{mq}{qn}$$

$$= \frac{pn - mq}{qn}$$

This, however, contradicts our given statement that t is irrational. Therefore, a+t cannot be rational, so $a+t \in \mathbb{I}$. As for showing that $at \in \mathbb{I}$, we proceed in a similar fashion: assume that $at \in \mathbb{Q}$. Then

$$\begin{split} \frac{m}{n} \cdot t &= \frac{p}{q} \\ t &= \frac{p}{q} \cdot \frac{m}{n} \\ &= \frac{pm}{qn} \end{split}$$

Once again, we reach a contradiction. Since t is irrational, it cannot be written as a fraction, so therefore, $at \in \mathbb{I}$.

- iii. If $s,t\in\mathbb{I}$, then $s+t\not\in I$ and $st\not\in I$. Let $s=-\sqrt{2}$. Let $t=\sqrt{2}$, which we proved to irrational in the first chapter. Then s+t=0, which is a rational number. Let $s=\sqrt{2}$ and $t=\sqrt{2}$. Then $st=\sqrt{2}\cdot\sqrt{2}=2$. 2 is a rational number, even though $\sqrt{2}$ is not rational.
- 4.2. We approach this problem in a similar fashion as **Theorem** 1.4.5. First, we assume that $s \neq \sup A$. In order for this to be true, there must exist a real number $a \in A$ such that a > s. In search of a real number greater than s, let a = s + r, where r is a real number. However, we can do a little better than that. By the second part of the **Archimedean Property**, we can choose a rational number 1/n such that 1/n < r. So we let $a = s + \frac{1}{n}$, which will be less than the quantity s + r. However, it is given that $s + \frac{1}{n}$ is an upper bound for A for all $n \in \mathbb{N}$! Thus, we now know that s must be an upper bound for A.

However, in order for $s = \sup A$, for any upper bound b of A, $s \geq b$. We assume that the opposite is true, that there exists b such that s < b. In search of such a b, we might set b = s - t, where $t \in \mathbb{R}$. We can do better than that, since by the **Archimedean Property** (again), we can choose a rational number 1/n such that 1/n < t. So we set $b = s - \frac{1}{n}$ in hope of finding a b that is less than s. As given by the problem though, $b - \frac{1}{n}$ is not an upper bound for A! Thus, there does not exist an upper bound b such that s < b, so we can safely conclude that $s \geq b$.

Thus, we have proven the two requirements for $s = \sup A$.

4.6. i. Not dense in \mathbb{R} . Since $\mathbb{Q} \subset \mathbb{R}$, any rational number is also a real number. Let a = 1/100 and b = 0. Assume that there exists p and q such that 0 < p/q > 1/100 with $q \le 10$, $p \in \mathbb{Z}$

and $q \in \mathbb{N}$. Then

$$\begin{aligned} 0 &< \frac{p}{q} < \frac{1}{100} \\ 100q \cdot 0 &< 100q \cdot \frac{p}{q} < 100q \cdot \frac{1}{100} \\ 0 &< 100p < q \\ 0 &< 100p < q \leq 10 \\ 0 &< 100p \leq 10 \\ 0 &< p \leq \frac{1}{10} \end{aligned}$$

However, this contradicts the fact that $p \in \mathbb{Z}$ since there are no integers greater than zero but less than 1/10. Therefore, the set is not dense in \mathbb{R} .

- ii. Dense. If q was just a natural number, then we would already be done since we proved that the rational numbers were dense in the reals. Even though q must be a power of 2, we can still proceed in a similar fashion if we show that for any real number $x \in \mathbb{R}$, there exists $q: q=2^k$ for some $k \in \mathbb{N}$. such that q > x. In this case, let $T = q: q=2^k$ for some $k \in \mathbb{N}$. For contradiction, we assume that T is bounded above. By \mathbf{AoC} , T should have a least upper bound, so we can set $\alpha = \sup T$. If we consider $\alpha 2^p$ for some p
- 5.4. i. It is known that the function $f(x) = \frac{x}{(x-1)(x+1)}$ is a bijection from the interval (-1,1) to the real numbers. We get a similar bijective function if we translate f(x) to halfway the interval (a,b) and then increase the width of the translated f(x) by a factor of (b-a)/2. Recall that the function

$$f(x) = \frac{x}{1 - x^2}$$

is a bijection $(-1,1) \to \mathbb{R}$.

$$g:(a,b) \to (-1,1)g(x) = \lambda x + \tau g(b) = 1\lambda a + \tau = -1\lambda b + \tau = 1\lambda(b-a) = 2\lambda = \frac{2}{b-a}\tau = 0$$

ii. By the Archimedean property, we can choose $b \in \mathbb{N}$ such that b > a. Let $f(x) = \frac{x^2 - b^2}{x - a}$ with domain (a, ∞) . If f(x) is a bijection from (a, ∞) to the reals, then (a, ∞) \mathbb{R} . To show that f(x) is a bijection, we show that f(x) is an injection and surjection first. For the case of surjection, we must show that

for every $r \in \mathbb{R}$, there exists $x \in (a, \infty)$ such that f(x) = r.

$$\frac{x^2 - b^2}{x - a} = r$$

$$x^2 - b^2 = r \cdot (x - a)$$

$$x^2 - b^2 = rx - ra$$

$$x^2 - rx - b^2 + ra = 0$$

$$x = \frac{r + \sqrt{r^2 - 4(ra - b^2)}}{2}$$

Thus, for every $r \in \mathbb{R}$, we have a corresponding x such that f(x) = r, showing that f(x) is a surjection. Now, we must show that f is surjective or that $f(x_1 = f(x_2) \implies x_1 = x_2$.

$$f(x_1) = f(x_2)$$

$$\frac{x_1^2 - b^2}{x_1 - a} = \frac{x_2^2 - b^2}{x_2 - a}$$

$$(x_1^2 - b^2)(x_2 - a) = (x_2^2 - b^2)(x_1 - a)$$

$$x_2x_1^2 - ax_1^2 - b^2x_2 + ab^2 = x_1x_2^2 - ax_2^2 - b^2x_1 + ab^2$$

$$x_2x_1^2 - x_1x_2^2 + ax_2^2 - ax_1^2 - b^2x_2 + b^2x_1 = 0$$

$$x_2x_1 \cdot (x_1 - x_2) + a(x_2 - x_1)(x_2 + x_1) + b^2(x_1 - x_2) = 0$$

$$(x_1 - x_2) \cdot [x_1x_2 + b^2 - ax_1 - ax_2] = 0$$

The only way for the last line to be true is if $x_1 = x_2$, so f(x) is also injective. Therefore, f is bijective and $(a, \infty) \sim \mathbb{R}$.

5.5. Since $C \subset [0,1]$, then we can say that is bounded below by zero. By the **AoC** for the lower bound, we know that there exists m such that $m = \inf C$. Set a = m