

Departamento de Ciencias Básicas y Modelado

SIMULACION ESTOCASTICA

Tema 2

El método de Monte Carlo: Integración de Monte Carlo

Profesor: Javier Riascos Ochoa, MSc, PhD

(javier.riascos@utadeo.edu.co)

Monte Carlo

Monte Carlo, Casino

- El término Monte Carlo es usado para referirse a toda clase de técnicas que involucran la simulación computacional a través del uso de generadores de números aleatorios.
- Alude a los juegos de azar en los casinos de Monte Carlo,
 Mónaco.

Monte Carlo

- La idea básica es repetir un experimento numérico muchas veces para obtener cantidades de interés usando la Ley de los Grandes Números y otros métodos.
- Actualmente, los métodos de Monte Carlo son una herramienta esencial en muchas investigaciones cuantitativas en ciencias, ingeniería, finanzas, etc.
- Aplicaciones básicas en: Muestreo, Estimación, Optimización, Integración numérica.

Stanislaw Ulam

John Von Neumann

Monte Carlo

- Actualmente, los métodos de Monte Carlo son una herramienta esencial en muchas investigaciones cuantitativas en ciencias, ingeniería, finanzas, etc.
- Aplicaciones básicas en: Muestreo, Estimación, Optimización, Integración numérica.

Queremos computar la integral:

$$I = \int_{a}^{b} f(x) dx$$

Si $f(x) \in [c, d]$, entonces:
$$I = |A| + c(b - a)$$

Queremos computar la integral:

$$I = \int_{a}^{b} f(x) dx$$

Si $f(x) \in [c, d]$, entonces:

$$I = |A| + c(b - a)$$

Generamos variables aleatorias X, Y $X \sim U(a, b)$ $Y \sim U(c, d)$

Entonces (X, Y) está uniformemente distribuido sobre la caja $[a, b] \times [c, d]$

Luego:
$$|A| = P((X,Y) \in A) * (b-a)(d-c)$$

Y si definimos:
$$Z = \begin{cases} 1 & si & (X,Y) \in A \\ 0 & si & (X,Y) \notin A \end{cases}$$

entonces: $P((X,Y) \in A) = E[Z]$

La idea es generar un número suficientemente grande *n* de variables *iid*

$$X_i \sim U(a, b)$$

 $Y_i \sim U(c, d)$

De las cuales se obtiene Z_i .

Y si definimos:
$$Z = \begin{cases} 1 & si & (X,Y) \in A \\ 0 & si & (X,Y) \notin A \end{cases}$$

entonces: $P((X,Y) \in A) = E[Z]$

La idea es generar un número suficientemente grande *n* de variables *iid*

$$X_i \sim U(a, b)$$

 $Y_i \sim U(c, d)$

De las cuales se obtiene Z_i .

El promedio de estos números Z_i se aproximará a su valor esperado, para un número n suficientemente grande:

$$\sum_{i=1}^{n} \frac{Z_i}{n} \to E[Z] \quad para \quad n \to \infty$$
Ley fuerte de los grandes números

Del cual se obtendrá el estimado de |A| y de ahí de la integral I.

Programa:

Este programa realiza integración por el método de Hit-and-miss de la función ftn sobre el intervalo [a,b] y plotea las sucesivas aproximaciones a la integral en función de n

```
hit_miss2 <- function(ftn, a, b, c, d, n) {
  # Monte-Carlo integration using the hit & miss method
  # partially vectorised version
  X <- runif(n, a, b)
  Y <- runif(n, c, d)
  Z <- (Y <= sapply(X, ftn))
  I <- (b - a)*c + (cumsum(Z)/(1:n))*(b - a)*(d - c)
  plot(1:n, I, type = "l")
  return(I[n])
}</pre>
```

Ejecución:

```
> source('hit_miss2.r')
> f <- function(x) x^3 - 7*x^2 + 1
> hit_miss2(f, 0, 1, -6, 2, 10000)
[1] -1.052
> lines(c(1, 10000), c(-13/12, -13/12))
9
```


Programa: Hit_miss2(modified).R

Versión modificada del código: imprime todos los valores de *I* obtenidos de cada iteración. Plotea en color rojo el valor real.

Queremos computar θ donde:

$$\theta = \int_0^1 g(x) dx$$

Sea $X \sim U(0,1)$ entonces:

$$\theta = E[g(X)]$$

(Demostración en el tablero)

Queremos computar θ donde:

$$\theta = \int_0^1 g(x) dx$$

Sea $X \sim U(0,1)$ entonces:

$$\theta = E[g(X)]$$

(Demostración en el tablero)

Si generamos n v.a.'s $iid: X_i \sim U(0,1)$, las v.a.'s $g(X_i)$ también son iid, con valor esperado θ .

Luego,

$$\sum_{i=1}^{n} \frac{g(X_i)}{n} \to E[g(X)] = \theta \quad para \quad n \to \infty$$

El promedio de g(Xi) se aproximará a su valor esperado que es el valor de la integral

Ahora: Si queremos computar θ donde:

$$\theta = \int_{a}^{b} g(x) dx$$

Definimos $X \sim U(a, b)$ entonces:

$$\theta = E[g(X)] \times (b - a)$$

Valor esperado Ancho de la altura

Ahora: Si queremos computar θ donde:

$$\theta = \int_{a}^{b} g(x) dx$$

Definimos $X \sim U(a, b)$ entonces:

$$\theta = E[g(X)] \times (b - a)$$

Valor esperado Ancho de la altura

$$\frac{\theta}{b-a}$$
.

$$\sum_{i=1}^{n} \frac{g(X_i)}{n} \to E[g(X)] = \frac{\theta}{b-a} \quad para \quad n \to \infty$$

Programa: *mc_integral.R*

Este programa realiza integración de Monte Carlo de la función *ftn* sobre el intervalo [a,b].

```
mc_integral <- function(ftn, a, b, n) {
  # Monte Carlo integral of ftn over [a, b] using a sample of size n
  u <- runif(n, a, b)
  x <- sapply(u, ftn)
  return(mean(x)*(b-a))
}</pre>
```

Ejercicio:

Plotee las sucesivas aproximaciones a la integral, en función de n.

Ahora: Si queremos computar θ donde:

$$\theta = \int_0^\infty g(x) dx$$

Hacemos el cambio de variables

$$y = \frac{1}{x+1}$$
, $dy = -\frac{dx}{(x+1)^2} = -y^2 dx$.

Entonces, con $h(y) = \frac{g(\frac{1}{y}-1)}{y^2}$:

$$\theta = \int_0^1 h(y) dy$$
 (Demostración en el tablero)

Luego, si generamos n v.a.'s $iid: Y_i \sim U(0,1)$, las v.a.'s $h(Y_i)$ también son iid, con valor esperado:

$$\frac{\theta}{1-0} = \theta$$

Integración de Monte Carlo en dimensiones superiores

El método de Monte Carlo es más adecuado para evaluar integrales en dimensiones superiores d:

$$\theta = \int_0^1 \int_0^1 \cdots \int_0^1 g(x_1, x_2, \cdots, x_d) dx_1 dx_2 \cdots dx_d$$

Entonces $\theta = E[g(X_1, X_2, ..., X_d)]$ donde $X_1, X_2, ..., X_d$ son v.a's independientes distribuidas U(0,1).

Entonces, si generamos n conjuntos independientes de v.a's *iid* para cada una de las d variables X_i con distribución U(0,1):

$$X_1^1, X_2^1, \dots, X_d^1$$

 $X_1^2, X_2^2, \dots, X_d^2$
...
 $X_1^n, X_2^n, \dots, X_d^n$

Se aproxima θ a partir del promedio:

$$\theta \sim \sum_{i=1}^{n} \frac{g(X_1^i, X_2^i, \dots, X_d^i)}{n}$$

Ejercicio: Plantee el caso

$$\theta = \int_{a_d}^{b_d} \cdots \int_{a_1}^{b_1} g(x_1, x_2, \cdots, x_d) dx_1 dx_2 \cdots dx_d$$

Precisión de la Integración por Monte Carlo

Notación O grande

Que el error de un método numérico sea O(f(n)), con n el número de llamadas de función en el programa, significa que para n suficientemente grande, el **error** es a lo más $k \cdot f(n)$, para alguna constante k.

Precisión de MC integration en más dimensiones

Sea d la dimensión y n el número de llamadas de función en el programa. La precisión de diferentes métodos de integración es:

Method	Error
Trapezoid	$O(n^{-2/d})$ $O(n^{-4/d})$
Simpson's rule	
Hit-and-miss Monte Carlo	$O(n^{-1/2})$
Improved Monte Carlo	$O(n^{-1/2})$

El error del Método de Monte Carlo no depende de d. Se aconseja utilizarlo cuando:

d > 8

