Para realizar o TESTE GLOBAL, responda às perguntas 1 - 6 Para realizar o 2º TESTE, responda às perguntas 3 - 8

- 1. Sejam G um grupo e $H = \{(x, x) : x \in G\}$.
 - (a) Mostre que H é subgrupo do produto direto $G \times G$.

Nas condições do enunciado, temos que:

- i. $(1_G, 1_G) \in H$, pois $1_G \in G$. Logo, $H \neq \emptyset$;
- ii. dados $(x,x),(y,y)\in H$, temos que $x,y\in G$ e, por isso, $xy\in G$. Logo,

$$(x,x)(y,y) = (xy,xy) \in H;$$

iii. dado $(x,x) \in H$, temos que que $x \in G$ e, consequentemente, $x^{-1} \in G$. Logo,

$$(x,x)^{-1} = (x^{-1}, x^{-1}) \in H.$$

Assim, estamos em condições de concluir que $H < G \times G$.

(b) Mostre que $H \triangleleft G \times G$ se e só se G é abeliano.

Suponhamos primeiro que G é abeliano. Então, o produto direto $G \times G$ é também abeliano e, portanto, qualquer seu subgrupo é normal em $G \times G$. Como, por (a), $H < G \times G$, então $H \triangleleft G \times G$. Reciprocamente, suponhamos que $H \triangleleft G \times G$. Sejam $a,b \in G$. Então, $(a,a) \in H$ e $(a,b) \in G \times G$. Por hipótese, temos que $(a,b)(a,a)(a,b)^{-1} \in H$, ou seja, $(aaa^{-1},bab^{-1})=(a,bab^{-1}) \in H$. Por definição de H, temos que $a=bab^{-1}$. Multiplicando por b à direita, obtemos ab=ba. Assim, estamos em condições de concluir que G é abeliano.

(c) Para $G = \mathbb{Z}_6$, determine um elemento de H que tenha ordem 3.

Sendo G o grupo aditivo \mathbb{Z}_6 , temos que $(\overline{2},\overline{2}) \in H$ é tal que:

- i. $(\overline{2},\overline{2}) \neq (\overline{0},\overline{0})$:
- ii. $(\overline{2},\overline{2}) + (\overline{2},\overline{2}) = (\overline{4},\overline{4}) \neq (\overline{0},\overline{0});$
- iii. $(\overline{2},\overline{2}) + (\overline{2},\overline{2}) + (\overline{2},\overline{2}) = (\overline{6},\overline{6}) = (\overline{0},\overline{0}).$

Logo, $o((\overline{2},\overline{2})) = 3$.

(d) Para $G = \mathbb{Z}_3$, mostre que H é cíclico.

Sendo G o grupo aditivo \mathbb{Z}_3 , $H = \{(\overline{0}, \overline{0}), (\overline{1}, \overline{1}), (\overline{2}, \overline{2})\}$. Então, H é um grupo de ordem prima (3), pelo que é um grupo cíclico.

2. Um grupo G diz-se simples se não admite subgrupos diferentes de $\{1_G\}$ e de G.

Sejam G um grupo simples, G' um grupo e $\varphi:G\to G'$ um morfismo de grupos não constante. Mostre que G' admite um subgrupo isomorfo a G.

Como φ é um morfismo de grupos, temos que $\operatorname{Nuc}\varphi$ é subgrupo de G e $\varphi(G)$ é subgrupo de G'. Como G é um grupo simples, $\operatorname{Nuc}\varphi=\{1_G\}$ ou $\operatorname{Nuc}\varphi=G$. Como φ é não constante, não podemos ter $\operatorname{Nuc}\varphi=G$. Então, temos que $\operatorname{Nuc}\varphi=\{1_G\}$ e, portanto, φ é um monomorfismo. Logo, $G\simeq\varphi(G)$, o que prova o resultado pretendido.

- 3. Seja $\sigma=\left(\begin{array}{ccccc}1&2&3&4&5&6&7\\4&a&1&3&b&c&d\end{array}\right)$ uma permutação de S_7 .
 - (a) Considere a = 2, b = 7, c = 5 e d = 6.
 - i. Mostre que σ é uma permutação par.

Como

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 1 & 3 & 7 & 5 & 6 \end{pmatrix} = (143)(576) = (13)(14)(56)(57),$$

concluímos que, escrevendo σ como um produto de um determinado número de transposições, esse número tem de ser par. Logo, σ é uma permutação par.

ii. Determine σ^{16} .

Como $\sigma=(1\,4\,3)(5\,7\,6)$ e estes dois ciclos são disjuntos e têm comprimento 3, temos que $o(\sigma)=\mathrm{m.m.c.}(3,3)=3$. Assim, $\sigma^3=\mathrm{id.}$ Como $16=3\times5+1$, temos que

$$\sigma^{16} = \sigma^{3 \times 5 + 1} = (\sigma^3)^5 \sigma^1 = (\mathrm{id})^5 \sigma = \mathrm{id}\sigma = \sigma.$$

iii. Existe $\tau \in S_7$ tal que $o(\tau \sigma) = 8$? Justifique.

Nenhuma permutação de S_7 tem ordem 8. De facto, como, em S_7 , um ciclo tem, no máximo, ordem 7, para poder ter ordem maior ou igual a 8, a permutação terá de ser escrita como produto de ciclos disjuntos, sendo a sua ordem, neste caso, o mínimo múltiplo comum dos comprimentos desses ciclos. Como 8 não é mínimo múltiplo comum de números menores que 8, essa permutação não existe. Se não existe qualquer permutação com ordem 8, também não existe τ de tal modo que $\tau\sigma$ tenha ordem 8.

(b) Dê exemplo, ou justifique que não é possível, de valores de a,b,c e d de tal modo que σ tenha ordem 12.

Se considerarmos a=5, b=6, c=7 e d=2, temos que

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 5 & 1 & 3 & 6 & 7 & 2 \end{array}\right) = (1\,4\,3)(2\,5\,7\,6).$$

Como σ se escreve como produto de dois ciclos disjuntos de comprimentos 3 e 4, temos que $o(\sigma)=3\times 4=12$.

- 4. Sejam A um anel comutativo com identidade e $a \in A$.
 - (a) Mostre que $R_a = \{x \in A : xa = 0_A\}$ é um ideal de A.

Nas condições do enunciado, temos:

- i. $0_A \in A$ é tal que $0_A a = 0_A$. Logo, $0_A \in R_a$ e, portanto, $R_a \neq \emptyset$;
- ii. dados $x, y \in R_a$, $x, y \in A$, $xa = 0_A$ e $ya = 0_A$, pelo que $x y \in A$ é tal que

$$(x-y)a = xa - ya = 0_A - 0_A = 0_A.$$

Logo, $x - y \in R_a$;

iii. dado $x \in R_a$ e $y \in A$, $x, y \in A$ e $xa = 0_A$. Assim, $yx \in A$ e

$$(yx)a = y(xa) = y0_A = 0_A.$$

Assim, $yx \in R_a$. Como A é comutativo, podemos também concluir que $xy \in R_a$. Logo, R_a é um ideal de A.

(b) Mostre que o ideal é próprio se e só se $a \neq 0_A$.

Como

$$R_a = A \Leftrightarrow 1_A \in R_a \Leftrightarrow 1_A = 0_A \Leftrightarrow a = 0_A,$$

temos que

$$R_a \neq A \Leftrightarrow a \neq 0_A$$

o que prova o resultado pretendido.

- (c) Determine R_a se:
 - i. A é domínio de integridade e $a \neq 0_A$;

Se A é domínio de integridade, o único divisor de zero é o elemento 0_A . Se $a \neq 0_A$, afirmar que $x \in R_a$ é equivalente a afirmar que x é divisor de zero. Logo, $R_a = \{0_A\}$.

ii. $A = \mathbb{Z}_{12}$ e $a = [2]_{12}$.

Em $A = \mathbb{Z}_{12}$, temos que $[0]_{12}[2]_{12} = [0]_{12}$, $[6]_{12}[2]_{12} = [0]_{12}$ e $[x]_{12}[2]_{12} \neq [0]_{12}$, para todo $x \in \{1, 2, 3, 4, 5, 7, 8, 9, 10, 11\}$. Logo, $R_a = \{[0]_{12}, [6]_{12}\}$.

- 5. Sejam A um anel não nulo com identidade 1_A e $\varphi: \mathbb{Z} \to A$ a aplicação definida por $\varphi(n) = n1_A$, para todo $n \in \mathbb{Z}$.
 - (a) Mostre que φ é um morfismo de anéis.

Sejam $n, m \in \mathbb{Z}$. Então:

$$\begin{array}{ll} \varphi(n+m) &= (n+m)1_A \\ &= n1_A + m1_A \\ &= \varphi n + \varphi m \end{array} \qquad \hbox{[pelas propriedades dos múltiplos]}$$

e

$$\begin{array}{ll} \varphi(nm) &= (nm)1_A \\ &= (nm)(1_A1_A) & \quad \text{[por definição de 1_A]} \\ &= (n1_A)(m1_A) & \quad \text{[pelas propriedades dos múltiplos]} \\ &= \varphi n \varphi m \end{array}$$

Logo, φ é um morfismo de anéis.

- (b) Determine $Nuc\varphi$ se:
 - i. $o(1_A) = \infty$;

Se $o(1_A)=\infty$, temos que $n1_A=0_A$ se e só se n=0, pelo que $\mathrm{Nuc}\varphi=\{0\}$.

ii. $A = \mathbb{Z}_6$.

Se $A = \mathbb{Z}_6$, $n1_A = 0_A$ se e só se $n[1]_6 = [0]_6$. Como $n[1]_6 = [n]_6$, temos que

$$n \in \text{Nuc}\varphi \Leftrightarrow [n]_6 = [0]_6 \Leftrightarrow n \in 6\mathbb{Z}.$$

Logo, $Nuc\varphi = 6\mathbb{Z}$.

- 6. Considere o domínio de integridade $\mathbb{Z}[\sqrt{-7}]$.
 - (a) Determine o conjunto das unidades de $\mathbb{Z}[\sqrt{-7}]$.
 - (b) Seja $a + b\sqrt{-7}$ uma unidade de $\mathbb{Z}[\sqrt{-7}]$. Então, existe $c + d\sqrt{-7} \in \mathbb{Z}[\sqrt{-7}]$ tal que

(A)
$$(a + b\sqrt{-7})(c + d\sqrt{-7}) = 1.$$

Sendo dois números complexos iguais, também são iguais os quadrados dos seus módulos. Assim, temos que

$$(a^2 + 7b^2)(c^2 + 7d^2) = 1.$$

Como $a,b,c,d\in\mathbb{Z}$, concluímos que só podemos ter $a=\pm 1,c=\pm 1$ e b=d=0. Substituindo em (A), concluímos que só podemos ter $a=c=\pm 1$ e b=d=0. Assim, as únicas unidades de $\mathbb{Z}[\sqrt{-7}]$ são 1 e -1. Logo $\mathcal{U}_{\mathbb{Z}[\sqrt{-7}]}=\{-1,1\}$.

(c) Mostre que $1 + \sqrt{-7}$ é irredutível em $\mathbb{Z}[\sqrt{-7}]$

Sejam $a+b\sqrt{-7}, c+d\sqrt{-7} \in \mathbb{Z}[\sqrt{-7}]$ tais que

$$1 + \sqrt{-7} = (a + b\sqrt{-7})(c + d\sqrt{-7}).$$

Sendo estes dois complexos iguais, então, também o são os quadrados dos seus módulos. Logo, temos que

$$8 = (a^2 + 7b^2)(c^2 + 7d^2).$$

Tendo em conta que os fatores são não negativos, as únicas fatorizações possíveis são, a menos da ordem dos fatores, 2×4 e 1×8 . Como a primeira é impossível (pois $a^2+7b^2\neq 2$, para quaisquer inteiros a e b), concluímos que $a^2+7b^2=1$ ou $c^2+7d^2=1$. Aplicando agora o raciocínio usado anteriormente, concluímos que $a+b\sqrt{-7}$ é uma unidade ou $c+d\sqrt{-7}$ é uma unidade. Logo $1+\sqrt{-7}$ é irredutível.

(d) Mostre que $1 + \sqrt{-7}$ não é um elemento primo em $\mathbb{Z}[\sqrt{-7}]$.

 $1+\sqrt{-7}$ não é primo pois divide $(1+\sqrt{-7})(1-\sqrt{-7})=8=2\times 4$ e não divide nem 2 nem 4. De facto, se $1+\sqrt{-7}\mid 2$, existiria $a+b\sqrt{-7}\in\mathbb{Z}[\sqrt{-7}]$ tal que

$$2 = (1 + \sqrt{-7})(a + b\sqrt{-7}) = (a - 7b) + (b + a)\sqrt{-7},$$

ou seja, existiria $b \in \mathbb{Z}$ tal que 2 = -8b, o que é impossível em \mathbb{Z} . Do mesmo modo, se $1 + \sqrt{-7} \mid 4$, existiria $a + b\sqrt{-7} \in \mathbb{Z}[\sqrt{-7}]$ tal que

$$4 = (1 + \sqrt{-7})(a + b\sqrt{-7}) = (a - 7b) + (b + a)\sqrt{-7},$$

ou seja, existiria $b \in \mathbb{Z}$ tal que 4 = -8b, o que também é impossível em \mathbb{Z} .

(e) Determine $[1+\sqrt{-7},4]$.

Por (b), temos que $1+\sqrt{-7}$ é irredutível em $\mathbb{Z}[\sqrt{-7}]$, pelo que existe sempre máximo divisor comum entre este elemento e qualquer outro. Além disso, em (c), vimos que $1+\sqrt{-7}$ não divide 4. Assim, os únicos divisores comuns entre os dois elementos são as unidades, pelo que $[1+\sqrt{-7},4]=\mathcal{U}_{\mathbb{Z}[\sqrt{-7}]}=\{-1,1\}$.

7. Sejam K um corpo, A um anel não nulo com identidade e $\alpha: K \to A$ um homomorfismo de anéis tal que $\alpha(1_K) = 1_A$. Mostre que existe um subanel de A isomorfo a K.

Como α é um homomorfismo de anéis, temos que $\mathrm{Nuc}\alpha$ é ideal de K e $\alpha(K)$ é subanel de A. Como K é um corpo, os seus únicos ideais são $\{0_K\}$ e K, pelo que $\mathrm{Nuc}\alpha=\{0_K\}$ ou $\mathrm{Nuc}\alpha=K$. Como $1_K\not\in\mathrm{Nuc}\alpha$, não podemos ter $\mathrm{Nuc}\alpha=K$. Então, temos que $\mathrm{Nuc}\alpha=\{0_K\}$ e, portanto, α é um monomorfismo. Logo, $K\simeq\alpha(K)$, o que prova o resultado pretendido.

- 8. Seja A um anel comutativo com característica 3. Mostre que:
 - (a) $(a+b)^3 = a^3 + b^3$;

Como A é um anel comutativo, temos que $(a+b)^3=a^3+3a^2b+3ab^2+b^3$. Mais ainda, como A tem característica 3, temos que, para todo $x\in A$, $3x=0_A$. Em particular, $3a^2b=3ab^2=0_A$. Logo, $(a+b)^3=a^3+b^3$.

(b) $B = \{a \in A : a^3 = a\}$ é um subanel de A.

Como $0_A^3=0_A$, temos que $0_A\in B$ e, portanto, $B\neq\emptyset$. Mais ainda, para $x,y\in B$, temos que $x,y\in A$, $x^3=x$ e $y^3=y$, pelo que $x-y,xy\in A$ e

$$(x-y)^3 = x^3 + (-y)^3$$
 [por (a)]
= $x^3 - y^3 = x - y$

e

$$(xy)^3 = x^3y^3$$
 [porque o anel é comutativo]
= xy .

Logo, B é subanel de A.