

SRM Institute of Science and Technology College of Engineering and Technology

Batch 1 SET B

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2023-2024 (EVEN)

Test: CLAT-1 Date: 17.02.23
Course Code & Title:21ECC202T & ANALOG AND LINEAR ELECTRONIC CIRCUITS Duration: 1 hour
Year & Sem: II and IV Max. Marks: 25

Course Articulation Matrix:

Course Lea	arning Rationale (CLR):	The purpose of learning this course is to:	81	4			Progr	am Oı	itcome	es (PO)				Pr	rograi pecifi	m
CLR-1:	understand the operation and design of transistor amplifier circuits for a given specification 1 2 3 4 5		6	7	8	9	10	11	12		pecifi						
CLR-2:	discuss the elementary co	ncepts and characteristics of an operational amplifier	1		10				it								
CLR-3:		memary concepts and characteristics of an operational amplither tendency concepts and characteristics of an operational amplither from the concepts of negative feedback or amplified ricruits, and investigate different feedback understand their properties, such as transfer gain, input resistances, and output sign RC and LC oscillator circuits		gi.													
CLR-4:	analyze and design RC ar	nd LC oscillator circuits	2	Analysis	lop	estig De-	- N	r and	∞5		Team	ioi	∞ర	a			
CLR-5:	analyze and design linear	and non-linear applications of op-amp	mal 8 mal 8 mal 9		_	2	8										
Course Ou	tcomes (CO):	At the end of this course, learners will be able to:	ııgı	qu	Design	Duo di	Mode	The	Ni.	thics	ndivi	l le	Proje	ie	8	Sc	န္တြ
CO-1:	apply the small signal equi circuits	ivalent circuit in the analysis of single and multistage transistor amplifier	2	2	3		-	7	-	-	-	-	-	-	-		3
CO-2:	infer the DC and AC characteristics of operational amplifier		2	2	3	-	-	-	-	-	-	14	141	-	-	-	3
CO-3:	classify and identify the suitable feedback topologies and oscillators as per application		2	2	3	-	-	-	-	-	-		0.40	-		-	3
CO-4:	elucidate and design linear and non-linear applications of op-amp		2	2	3	-	-		-	-		-	-	-		-	3
CO-5:	illustrate the function of ac	plication specific ICs	2	2	3	-		-	-								3

	Part - A (5x1 = 5 Marks)							
	Answer all the questions							
Q. No	Question	Marks	BL	CO	PO			
1.	The emitter current is always	1	1	CO1	1			
	A) greater than the base current							
	B) less than the collector current							
	C) greater than the collector current							
	D) greater than the base current and greater than the collector							
	current							
2.	The approximate voltage across the forward-biased base-emitter	1	1	CO1	1			
	junction of a silicon BJT is							
	A) 0 V							
	B) 0.7 V							
	C) 0.3 V							
	D) V _{BB}							
3.	The bias condition for a transistor to be used as a linear amplifier is	1	1	CO1	1			
	called							
	A) forward-reverse							
	B) forward-forward							
	C) reverse-reverse							
	D) collector bias							
4.	Most small-signal E-MOSFETs are found in (mark1)	1	1	CO1	1			
	A) Heavy-current applications							
	B) Discrete circuits							
	C) Disk drives							
	D) Integrated circuit							
5.	In an Enhancement MOSFET, drain current starts only when VGS	1	1	CO1	1			
	(th) is							
	A) Positive							
	B) Negative							
	C) Zero							
	D) greater than Vgs (th)							
	Part - B (2 x 4 = 8 Marks)							
	Instructions: Answer any 2 Questions							
6.	Draw a two stage RC coupled amplifier and explain its working	4	1	CO1	1			
1	principle.							

	Ans: The two transistors used are identical and use a common power supply V_{cc} . The resistors R_1 , R_2 and R_E form the biasing and stabilization network. In this arrangement, the signal developed across collector resistor R_c of the first stage is coupled to the base of the second stage through the coupling capacitor C_c . As the coupling from one stage to the next is obtained by a coupling capacitor followed by a connection to a shunt resistor, therefore, such amplifiers are called Resistance-capacitance coupled or RC Coupled Transistor Amplifier. The input capacitor C_{in} couples ac signal voltage to the base of transistor Q_1 . In the absence of C_{in} the signal source will be in parallel with resistor R_2 and the bias voltage of the base will be affected. Thus the function of C_{in} is to allow only the alternating current from signal source to flow into the input circuit.				
	R ₁ C _C R ₁ R _C C _C R ₁ R _C C _C R _L				
7.	Write a short note on low frequency response of CE amplifier. Ans:	4	1	CO1	1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	The total resistance is now (R _s + R _{in}) and the cutoff frequency is $f_{L_i} = \frac{1}{2\pi (R_s + R_{in}) C_{in}} \qquad(15.37)$				
	$2\pi(R_s+R_{in})C_{in} \qquad(15.37)$ At mid or high frequencies, the reactance of the capacitor C_{in} will be considerably small to allow a short-circuit approximation for the element. The relation between V_{in} and V_s is given as				

At f_{Li} , input voltage V_{in} will be 0.707 times the value determined by above Eq. (15.38), assuming that C_{in} is the only capacitive element that controls the Low Frequency Response of BJT Amplifier. For the network given in Fig.1, in analysis of the effects of C_{in} , we must assume that the capacitors C_{E} and C_{out} are performing their designed function or the analysis becomes too unwieldy, that is, that the magnitudes of the reactances of C_{out} and C_{E} allow using a short-circuit equivalent as compared to the magnitude of the other series impedances. Using this hypothesis, the ac equivalent network for the				
input section of the circuit shown in Fig. 1 will become as shown in Fig. 15.16. $ \begin{array}{c} C_{in} \\ V_{in} \\ \downarrow \\ R_1 \parallel R_2 \end{array} $ $ \begin{array}{c} h_{io} = \beta r_o \end{array} $ Fig. 15.16				
The value of R_{in} is given by the equation $R_{in} = R_1 \parallel R_2 \parallel \beta r_c \qquad(15.39)$				
The voltage $V_{\mbox{\tiny in}}$ applied to the input of device can be determined by using voltage-divider rule and is given as				
$V_{in} = \frac{R_{in} V_s}{R_s + R_{in} - j X_{C_{in}}}$ (15.40)				
Thus with the decrease in frequency, the reactance of the capacitor C_{in} increases, some of the signal or source voltage is lost across the input capacitor C_{in} and the voltage V_{in} applied to the input of the device is reduced resulting in decrease in output voltage and hence the gain.				
8. Determine the voltage gain and input impedance of the amplifier shown in Figure . Assume β =150	4	2	CO1	2

				T	
	$g_{m1}V_{\pi 1} = g_{m1}r_{\pi 1}I_i = \beta_1I_i \tag{6.10}$	4)			
	Then,				
	$V_{\pi 2} = (I_i + \beta_1 I_i) r_{\pi 2} \tag{6.10}$	5)			
	The output current is				
	$I_o = g_{m1}V_{\pi 1} + g_{m2}V_{\pi 2} = \beta_1 I_i + \beta_2 (1 + \beta_1) I_i $ (6.10)	6)			
	where $g_{m2}r_{\pi2}=\beta_2$. The overall current gain is then				
	$A_i = \frac{I_o}{I_i} = \beta_1 + \beta_2(1 + \beta_1) \cong \beta_1\beta_2$ (6.10)	7)			
	From Equation (6.107), we see that the overall small-signal current gain of the Darlington pair is essential the product of the individual current gains. The input resistance is $R_i = V_i/I_i$. We can write that	ly			
	$V_i = V_{\pi 1} + V_{\pi 2} = I_i r_{\pi 1} + I_i (1 + \beta_1) r_{\pi 2} $ (6.10)	8)			
	so that				
	$R_i = r_{\pi 1} + (1 + \beta_1)r_{\pi 2} \tag{6.10}$				
	The base of transistor Q_2 is connected to the emitter of Q_1 , which means that the input resistance to Q_2 is multiplied by the factor $(1 + \beta_1)$, as we saw in circuits with emitter resistors. We can write	22			
	$r_{\pi 1} = \frac{\beta_1 V_T}{I_{CQ1}} \tag{6.11}$	0)			
	and				
	$I_{CQ1} \cong \frac{1_{CQ2}}{\beta_2}$ (6.11)	1)			
	Therefore,				
	$r_{\pi 1} = \beta_1 \left(\frac{\beta_2 V_T}{I_{CQ2}} \right) = \beta_1 r_{\pi 2}$ (6.11)	2)			
	From Equation (6.109), the input resistance is then approximately				
	$R_i \cong 2\beta_1 r_{\pi 2}$				
	$K_i = 2\rho_1 r_{\pi 2}$				
	$\beta_D = \beta_d \times \beta_M$				
	$\beta_{\rm M=} 12500/200 = 62.5$				
	Or			1	
10.	Explain with circuit diagram of common gate amplifier and derive the expression for Av, Ri &Ro. A MOSFET has a drain resistance R_L of 44 k Ω and operates a 20kHz. Calculate the voltage gain of the device as a single stage	+2	2	CO1	2
	amplifier. The MOSFET parameters are g_m = 1.6 mA/V, r_d = 100 kC. Ans:				
	v_{i} R_{Si} C_{C1} V_{G} R_{C2} R_{D} R_{D} R_{C2} R_{D} R_{C1} R_{C2} R_{C2} R_{C2} R_{C3} R_{C4} R_{C5} R_{C5} R_{C6} R_{C6} R_{C7} R_{C9} R_{C1} R_{C2} R_{C2}				
	V = V = V = V = V = V = V = V = V = V =				
	Figure 4.37 Small-signal equivalent circuit of common-gate amplifier		1	1	

The small-signal voltage gain is found to be $A_v = \frac{V_v}{V_t} = \frac{g_m(R_D \| R_L)}{1 + g_m R_{St}} \tag{4.41}$ Also, since the voltage gain is positive, the output and input signals are in phase. In many cases, the signal input to a common gate circuit is a current. Figure 4.38 shows the small-signal equivalent common-gate circuit with a Norton equivalent circuit as the signal source. We can calculate a current gain. The output current I_o can be written $I_o = \left(\frac{R_D}{R_D + R_L}\right) \left(-g_m V_{gs}\right) \tag{4.42}$ At the input we have $I_t + g_m V_{gs} + \frac{V_{gs}}{R_{Si}} = 0 \tag{4.43}$ or $V_{gs} = -I_t \left(\frac{R_{gi}}{1 + g_m R_{Si}}\right) \tag{4.44}$ The small-signal current gain is then $A_i = \frac{I_g}{I_i} = \left(\frac{R_D}{R_D + R_L}\right) \cdot \left(\frac{g_m R_{Si}}{1 + g_m R_{Si}}\right) \tag{4.45}$ We may note that if $R_D \gg R_L$ and $g_m R_{Si} \gg 1$, then the current gain is essentially unity. $A\mathbf{V} = \mathbf{g}_{\mathbf{m}} \left(\mathbf{r}_{\mathbf{d}} || \mathbf{R}_L \right) = 1.6 \times 10^{-3} (100 \times 10^3 || 44 \times 10^3) = 48.9$

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student:

Register No.:

	Part- A (5 x 1= 5 Marks)						
Q.	CO	PO	Maximum	Marks	Total		
No			Marks	Obtained			
1	CO1		1				
2	CO1		1				
3	CO1		1				
4	CO1		1				
5	CO1		1				
		Part-	$B (2 \times 4 = 8 \text{ Ma})$	rks)			
6	CO1		4				
7	CO1		4				
8	CO1		4				
	Part- C (1 x 12= 12 Marks)						
9	CO1		12				
10	CO1		12				

Consolidated Marks:

CO	Maximum Marks	Marks Obtained
1	25	
Total		

PO	Maximum Marks	Marks Obtained
Total	25	

Signature of Course Teacher

Approved by the Course Coordinator

Approved by the Academic Advisor