Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (currently amended) A method for routing a call from a <u>wireless</u> communications device to a call center, comprising:

receiving the call, having an associated communication device identifier, at a first call center, the call being routed to the first call center based on said [[a]] communications device identifier, said first call center being designated to handle all calls having said communications device identifier regardless of the location of said wireless communication device;

determining the geographic vicinity of the <u>wireless</u> communications device at said first <u>call center</u>; and

re-routing the call to a second call center if that second call center is closer to the geographic vicinity of the wireless communications device than the first call center.

2. The method according to claim 1, wherein the communications device identifier is automatic number identification (ANI).

Reply to Office Action Dated March 19, 2008

3. The method according to claim 1, further comprising receiving a signaling stream associated with the call, the signaling stream including at least a caller location identifier or an initiating switch locator for respectively identifying the geographic vicinity of the caller or a switch through which the call is initially being routed.

4. The method according to claim 3, wherein the geographic vicinity of the communications device is determined by decoding the caller location identifier or the initiating switch locator.

- 5. The method according to claim 4, wherein the caller location identifier comprises a caller geodetic location information parameter (CGLIP).
- 6. The method according to claim 5, wherein the decoding comprises converting the CGLIP from WGS format to latitude and longitude.
- 7. The method according to claim 4, wherein the initiating switch locator comprises a jurisdiction information parameter (JIP).
- 8. The method according to claim 7, wherein the decoding comprises: converting the JIP to a switch ID; converting the switch ID to geographical coordinates; and converting the

Application No. 10/813,974

Amendment Dated September 19, 2008

Reply to Office Action Dated March 19, 2008

geographical coordinates to latitude and longitude.

9. The method according to claim 4, wherein the initiating switch locator comprises a

call reference parameter (CRP).

10. The method according to claim 9, wherein the decoding comprises: converting the

CRP to a switch ID; converting the switch ID to geographical coordinates; and

converting the geographical coordinates to latitude and longitude.

11. The method according to claim 4, wherein the initiating switch locator comprises a

common language location identification (CLLI) code.

12. The method according to claim 11, wherein the decoding comprises: converting the

CLLI code to geographical coordinates; and converting the geographical coordinates to

latitude and longitude.

13. The method according to claim 3, wherein the signaling stream is formatted in

accordance with an SS7 protocol.

14. The method according to claim 3, wherein the content of the call is formatted

according to a VoIP protocol and the signaling stream is formatted according to a session

Application No. 10/813,974

Amendment Dated September 19, 2008

Reply to Office Action Dated March 19, 2008

initiation protocol.

15. The method according to claim 3, wherein the content of the call is formatted

according to a VoIP protocol and the signaling stream is formatted according to an

H.323 protocol.

16. The method according to claim 1, wherein the second call center is within the same

state as that of the communications device.

17. The method according to claim 1, wherein the second call center is within the same

LATA as that of the communications device.

18. The method according to claim 1, wherein the second call center is within the same

time zone as that of the communications device.

19. The method according to claim 1, wherein there is a plurality of call centers closer to

the geographic vicinity of the communications device than the first call center, and the

second call center is the one call center out of the plurality of call centers that is closest

to the geographic vicinity of the communications device.

20. The method according to claim 19, further comprising routing the call to a third call

center based on the expected wait time at the second call center.

21. (currently amended) A system for routing a call from a <u>wireless</u> communications device to a call center, comprising:

a switch for routing a call , having an associated communication device identifier, to a first call center based on said [[a]] communications device identifier, said first call center being designated to handle all calls having said communications device identifier regardless of the location of said wireless communication device;

an interface for receiving at [[a]] said first call center a signaling stream associated with the call, the signaling stream including at least said [[a]] communications device identifier and a caller location identifier or an initiating switch locator, the caller location identifier identifying the geographic vicinity of the caller, and the initiating switch locator identifying the geographic vicinity of the switch through which the call is initially being routed;

a database <u>at said call center</u> for relating the caller location identifier or initiating switch locator to the geographic vicinity of the caller or initiating switch, respectively; and

a processor for retrieving the geographic vicinity of the caller or initiating switch, for determining a second call center closer to the geographic vicinity of the caller location or initiating switch location, and for <u>re-routing</u> the call to that second call center.

- 22. The system according to claim 21, wherein the communications device identifier is automatic number identification (ANI).
- 23. The system according to claim 21, wherein the caller location identifier comprises a caller geodetic location information parameter (CGLIP).
- 24. The system according to claim 23, wherein the processor decodes the caller location identifier by converting the CGLIP from WGS format to latitude and longitude.
- 25. The system according to claim 21, wherein the initiating switch locator comprises a jurisdiction information parameter (JIP).
- 26. The system according to claim 25, wherein the processor decodes the initiating switch locator by: converting the JIP to a switch ID; converting the switch ID to geographical coordinates; and converting the geographical coordinates to latitude and longitude.
- 27. The system according to claim 21, wherein the originating switch identifier comprises a call reference parameter (CRP).
- 28. The system according to claim 27, wherein the processor decodes the initiating

switch locator by: converting the CRP to a switch ID; converting the switch ID to geographical coordinates; and converting the geographical coordinates to latitude and longitude.

- 29. The system according to claim 21, wherein the initiating switch locator comprises a common language location identification (CLLI) code.
- 30. The system according to claim 29, wherein the processor decodes the initiating switch locator by: converting the CLLI code to geographical coordinates; and converting the geographical coordinates to latitude and longitude.
- 31. The system according to claim 21, wherein the signaling stream is formatted in accordance with an SS7 protocol.
- 32. The system according to claim 21, wherein the content of the call is formatted according to a VoIP protocol and the signaling stream is formatted according to a session initiation protocol.
- 33. The system according to claim 21, wherein the content of the call is formatted according to a VoIP protocol and the signaling stream is formatted according to an H.323 protocol.

Application No. 10/813,974

Amendment Dated September 19, 2008

Reply to Office Action Dated March 19, 2008

34. The system according to claim 21, wherein the second call center is within the same

state as that of the communications device.

35. The system according to claim 21, wherein the second call center is within the same

LATA as that of the communications device.

36. The system according to claim 21, wherein the second call center is within the same

time zone as that of the communications device.

37. The system according to claim 21, wherein there is a plurality of call centers closer

to the geographic vicinity of the communications device than the first call center, and the

second call center is the one call center out of the plurality of call centers that is closest

to the geographic vicinity of the caller location or initiating switch location.

38. The system according to claim 37, wherein the call is routed to a third call center

based on the expected wait time at the second call center.

39. (currently amended) A method for routing a call from a wireless communications

device to a call center, comprising:

receiving at a first call center a call from a caller via a communications

device, having an associated communication device identifier, the call being routed to said first call center based on said communications device identifier, said first call center being designated to handle all calls having said communications device identifier regardless of the location of said wireless communication device, the call center comprising at least one operator capable of communicating with the caller by voice.

determining, at said first call center, the geographic vicinity of said wireless the communication device; and

re-routing the call to second call center if that second call center is close to the geographic vicinity of the said wireless communications device than the first call center

- 40. The method of claim 39, wherein the at least one operator comprises a human.
- 41. The method of claim 39, wherein the at least one operator comprises at least one processor.
- 42. (currently amended) The method of claim [[39]] 41, wherein said processor comprises at least one software application capable of VR (voice response).