Tema 13

4.24 Teorema (**Teorema de los ceros de Bolzano**). Toda función continua en un intervalo que toma valores positivos y negativos se anula en algún punto de dicho intervalo.

Demostración. Es suficiente probar que si $f:[a,b] \to \mathbb{R}$ es continua y f(a) < 0 < f(b), entonces f se anula en algún punto del intervalo]a,b[. Una buena estrategia para demostrar un teorema es "darlo por demostrado" y trabajar hacia atrás. Tenemos que buscar un punto $c \in]a,b[$ tal que f(c)=0. Por supuesto, puede haber muchos puntos donde f se anule (el teorema dice que al $menos\ hay\ uno)$, pero de todos ellos el más fácil de caracterizar es el "primero", porque a la izquierda de él la función es siempre negativa. Esto lleva a considerar el conjunto E de los puntos $x \in [a,b]$ tales que f toma valores negativos en [a,x]:

$$E = \{x \in [a,b] : f(t) < 0 \text{ para todo } t \in [a,x]\}$$

Por su definición, tenemos que $E \subset [a,b]$ y $a \in E$. La propiedad del supremo nos dice que hay un número real, c, que es el supremo de E. Es evidente que $a \le c \le b$. La propiedad de conservación local del signo implica que existe algún $\delta > 0$ tal que $a + \delta < b - \delta$ y f es negativa en todos los puntos del intervalo $[a,a+\delta]$ y positiva en todos los puntos del intervalo $[b-\delta,b]$. Esto implica que a < c < b.

Veamos que $[a,c[\subset E.$ Sea $a < x_0 < c.$ Como $x_0 < c$ y c es el mínimo mayorante de E, tiene que existir algún punto $z_0 \in E$ tal que $x_0 < z_0 \leqslant c.$ Por tanto, si $t \in [a,x_0]$ también $t \in [a,z_0]$ y, como, $z_0 \in E$, será f(t) < 0, luego $x_0 \in E$. Nótese que hemos probado también que f(x) < 0 para todo $x \in [a,c[$.

Finalmente, probaremos que f(c)=0. Como a la izquierda de c la función f toma valores negativos y f es continua, deducimos, por la conservación local del signo, que *no puede ser* f(c)>0 y, por tanto, $f(c)\leqslant 0$. Pero tampoco puede ser f(c)<0, pues entonces, por la conservación local del signo, habría un intervalo de la forma $]c-\rho,c+\rho[\subset [a,b]$ tal que f(t)<0 para todo $t\in]c-\rho,c+\rho[$ lo que implica que en E hay puntos mayores que c lo que es contradictorio. Concluimos así que f(c)=0.

Un enunciado equivalente del teorema de Bolzano es el siguiente.

4.25 Teorema (Teorema del valor intermedio). La imagen de un intervalo por una función continua es un intervalo.

Demostración. Supongamos que I es un intervalo y $f: I \to \mathbb{R}$ es una función continua en I. Queremos probar que la imagen de f, esto es, el conjunto J = f(I) es un intervalo. Teniendo en cuenta la definición de intervalo, deberemos probar que si dos números están en J, todos los números comprendidos entre ellos también se quedan dentro de J. Sean pues, u, v elementos de J con u < v. Debe haber elementos α, β en I tales que $f(\alpha) = u, f(\beta) = v$. Como f es una función, debe ser $\alpha \neq \beta$; podemos suponer que $\alpha < \beta$. Sea $z \in]u, v[$, esto es, u < z < v. Definamos la

función $h: I \to \mathbb{R}$ dada por h(x) = z - f(x) para todo $x \in I$. Como f es continua, h es continua en I. Tenemos que $h(\alpha) = z - f(\alpha) = z - u > 0$ y $h(\beta) = z - f(\beta) = z - v < 0$. Como I es un intervalo, tenemos que $[\alpha, \beta] \subset I$. Podemos, pues, aplicar el teorema antes demostrado a la función h en el intervalo $[\alpha, \beta]$ y obtenemos que tiene que haber algún punto $\lambda \in]\alpha, \beta[$ tal que $h(\lambda) = z - f(\lambda) = 0$. Hemos probado así que $f(\lambda) = z$. Como $\lambda \in [\alpha, \beta] \subset I$, concluimos que $z \in J = f(I)$. Como esto es cierto cualquiera sea el punto $z \in]u, v[$, concluimos que $[u, v] \subset J$ y, en consecuencia, J es un intervalo.

Recíprocamente, si suponemos que la imagen de un intervalo por una función continua es un intervalo, y $f: I \to \mathbb{R}$ es una función continua en un intervalo I que toma valores positivos y negativos, entonces J = f(I) es un intervalo en el que hay números negativos y positivos, luego debe contener al 0, es decir f tiene que anularse en algún punto de I.

4.27 Corolario (Existencia de raíces). Dados a > 0 y $k \in \mathbb{N}$ hay un único número c > 0 tal que $c^k = a$.

Demostración. La función $f: \mathbb{R}_0^+ \to \mathbb{R}$ dada por $f(x) = x^k - a$, es continua, f(0) = -a < 0 y $f(1+a) = (1+a)^k - a > 0$. Deducimos que hay algún número c > 0 tal que f(c) = 0. Dicho número es único porque la función f es estrictamente creciente.

4.28 Corolario (Ceros de polinomios de grado impar). Toda función polinómica de grado impar se anula en algún punto.

Demostración. Sea

$$P(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1} + c_n x^n$$

una función polinómica de grado impar $n \ge 3$. Nuestro objetivo es probar que P(x) toma valores positivos y negativos. Podemos suponer que $c_n > 0$. Supongamos en lo que sigue que $|x| \ge 1$. Dividiendo por x^n tenemos que

$$\frac{P(x)}{x^n} = \frac{c_0}{x^n} + \frac{c_1}{x^{n-1}} + \frac{c_2}{x^{n-2}} + \dots + \frac{c_{n-1}}{x} + c_n$$
(4.4)

Para $0 \le k \le n-1$, tenemos, por ser $|x| \ge 1$ y $n-k \ge 1$, que:

$$\frac{|c_k|}{|x|^{n-k}} \leqslant \frac{|c_k|}{|x|}$$

Por otra parte

$$\frac{|c_k|}{|x|} \leqslant \frac{c_n}{2n} \Longleftrightarrow |x| \geqslant \frac{|c_k|}{c_n} 2n$$

Definamos

$$M = \max \left\{ \frac{|c_k|}{c_n} 2n : k = 0, 1, 2 \dots, n-1 \right\}, \quad K = \max \left\{ M, 1 \right\}$$

Para $|x| \ge K$ y para $k = 0, 1, 2, \dots, n-1$, tenemos que:

$$\frac{c_k}{x^{n-k}} \geqslant -\frac{|c_k|}{|x|^{n-k}} \geqslant -\frac{|c_k|}{|x|} \geqslant -\frac{c_n}{2n}$$

Deducimos que para $|x| \ge K$ es:

$$\frac{P(x)}{x^n} \geqslant -n\frac{c_n}{2n} + c_n = \frac{c_n}{2} > 0 \tag{4.5}$$

Ahora si x < -K, se tiene por ser n impar que $x^n < 0$, y la designaldad anterior implica que P(x) < 0. Análogamente, si x > K debe ser P(x) > 0.

Hemos probado que P(x) toma valores positivos y negativos, como es una función continua y está definida en un intervalo, \mathbb{R} , concluimos que debe anularse en algún punto.