Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 2

Forecaster (

Forecaster 4

SVM

Setup Results

FIN 580: Homework 3

Nina Gnedin Chase Perlen

April 5th, 2017

Outline

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

Forecaster 4

SVM

Setup Results

Data Preprocessing

Logistic Regression

Forecaster 1

Forecaster 2

Forecaster 3

Forecaster 4

SVM

Setup

SVM

- As in past assignments, converted given price series to annualized volatility and took log, after removing days in which asset price didn't change
- Days were randomly labeled as train or test, so we defined daily volatility as the volatility of the five minute returns from 0:00 to 23:55
- Similarly weekly vol as volatility of 5 min returns over 5 day span

V IVI

- Weekly vols lead to lower MSES across the board
- ▶ Generally lower values of ∆ lower MSE although the shape of the curve is parabolic but heavily skewed
- lacktriangle MSES tend to remain similar across currencies by Δ
- ► For moving averages daily returns require larger windows
 likely because they have a lower signal/noise ratio
- Including moving average returns and volatilities decreases testing error - most significantly in the daily case
 - The optimal window for returns averaging is much higher than for volatilities implying returns are less sticky
 - In this forecaster in the weekly case the optimal ∆ is 0 meaning we have essentially a random walk model

- $\sigma_{t+1} = \sigma_t (1 + v_t \Delta)$ $\implies y_t = \frac{1}{\Delta} \frac{1}{\sigma_t} (\sigma_{t+1} - \sigma_t)$
- ▶ We optimize over a range of Δ s from [0,0.15] with 10 Δs
- ▶ To optimize we fit logistic regressions on the training data using each Δ and record the MSE
- \triangleright We use the \triangle of the model with the lowest MSE on the training data to predict testing data and record MSE

Training MSE by Delta - Daily Vols

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 1

Forecaster 3 Forecaster 4

Setup

Training MSE by Delta - Weekly Vols

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2

Forecaster 4

0	r	е	a	S		е	r	2	
0	r	e	a	S	t	e	r	3	

Ol	re	20	a	st	e	r	3	
Ol	re	20	a	st	e	r	4	

·	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK ^{Forecas}
0	0.057	0.111	0.102	0.087	0.096	0.079	0.061	0.058	0.056 ^{VM}
0.02	0.093	0.161	0.147	0.132	0.143	0.114	0.097	0.093	0.086 etup
0.03	0.142	0.225	0.208	0.190	0.204	0.161	0.145	0.140	0.128Results
0.05	0.203	0.303	0.282	0.264	0.280	0.221	0.206	0.200	0.183
0.07	0.278	0.397	0.370	0.351	0.370	0.293	0.280	0.272	0.248
0.08	0.366	0.505	0.472	0.454	0.476	0.378	0.367	0.356	0.326
0.1	0.467	0.627	0.589	0.570	0.596	0.475	0.466	0.454	0.416
0.12	0.581	0.765	0.719	0.701	0.732	0.585	0.578	0.563	0.517
0.13	0.708	0.916	0.864	0.847	0.882	0.708	0.702	0.685	0.630
0.15	0.848	1.083	1.022	1.007	1.047	0.843	0.840	0.819	0.755

Table: Training MSEs by Delta for Daily Vols

SE	K orecaster 4
0.0	02VM
0.0	16Setup
0.0	45Results
0.0	91
0.1	54
0.2	32
0.2	26

NZD

0.003

Table: Training MSEs by Delta for Weekly Vols

EUR

0.003

AUD

0.004

CAD

0.004

CHF

0.005

0.15	0.788	0.859	0.837	0.850	0.867	0.758	0.761	0.753	0.706
0.13	0.630	0.687	0.671	0.680	0.693	0.606	0.608	0.602	0.563
0.12	0.491	0.535	0.522	0.529	0.539	0.472	0.473	0.469	0.437
0.1	0.369	0.401	0.393	0.397	0.404	0.354	0.354	0.352	0.326
0.08	0.264	0.287	0.282	0.284	0.289	0.254	0.253	0.252	0.232
0.07	0.177	0.192	0.189	0.190	0.193	0.170	0.169	0.168	0.154
0.05	0.107	0.116	0.115	0.115	0.117	0.103	0.102	0.102	0.091
0.03	0.055	0.059	0.060	0.059	0.060	0.053	0.052	0.052	0.045 ^{Res}
0.02	0.021	0.022	0.023	0.021	0.022	0.021	0.019	0.019	0.016 et
0	0.004	0.004	0.005	0.005	0.004	0.005	0.005	0.005	0.002

GBP

0.004

JPY

0.005

NOK

0.003

Forecaster 3
Forecaster 4

Setup

Results

Table: Testing MSES for optimal Delta

	Daily Testing	Weekly Testing
AUD	0.057	0.004
CAD	0.111	0.004
CHF	0.102	0.005
EUR	0.087	0.003
GBP	0.096	0.004
JPY	0.079	0.005
NOK	0.061	0.003
NZD	0.058	0.003
SEK	0.056	0.002
Average	0.079	0.004

Forecaster 4

Setup

- $\sigma_{t+1} = \sigma_t (1 + y_t \Delta) + r_t$ $\implies y_t = \frac{1}{\Delta} \frac{1}{\sigma_t} (\sigma_{t+1} r_t \sigma_t)$
- As in Forecaster 1 we optimize over Δ using the same range and the training data
- ightharpoonup We then report the results using the optimized Δ on the testing data

Forecaster 2: Training MSE by Delta - Daily Vols

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2
Forecaster 3

Forecaster

Forecaster 2: Training MSE by Delta - Weekly Vols

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 1 Forecaster 2

Forecaster 3 Forecaster 4

								Forecaster 3
AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK ^{Forecaster 4}
0.058	0.111	0.101	0.087	0.097	0.079	0.062	0.059	0.056VM
0.094	0.161	0.147	0.132	0.143	0.113	0.097	0.094	0.087Setup
0.142	0.225	0.207	0.191	0.204	0.161	0.146	0.141	0.129Results
0.204	0.304	0.281	0.264	0.280	0.220	0.207	0.201	0.183

0.058	0.111	0.101	0.087	0.097	0.079	0.062	0.059	0.056VM
0.094	0.161	0.147	0.132	0.143	0.113	0.097	0.094	0.087Setup
0.142	0.225	0.207	0.191	0.204	0.161	0.146	0.141	0.129 ^{Resul}
0.204	0.304	0.281	0.264	0.280	0.220	0.207	0.201	0.183
0.279	0.397	0.369	0.352	0.371	0.293	0.281	0.273	0.249
0.367	0.505	0.472	0.454	0.476	0.377	0.368	0.358	0.327
0.468	0.628	0.588	0.571	0.597	0.475	0.467	0.455	0.416
0.582	0.765	0.718	0.702	0.732	0.585	0.579	0.564	0.518
0.710	0.917	0.863	0.847	0.882	0.707	0.703	0.686	0.631
0.850	1.084	1.022	1.007	1.047	0.842	0.841	0.821	0.756
	0.094 0.142 0.204 0.279 0.367 0.468 0.582 0.710	0.094 0.161 0.142 0.225 0.204 0.304 0.279 0.397 0.367 0.505 0.468 0.628 0.582 0.765 0.710 0.917	0.094 0.161 0.147 0.142 0.225 0.207 0.204 0.304 0.281 0.279 0.397 0.369 0.367 0.505 0.472 0.468 0.628 0.588 0.582 0.765 0.718 0.710 0.917 0.863	0.094 0.161 0.147 0.132 0.142 0.225 0.207 0.191 0.204 0.304 0.281 0.264 0.279 0.397 0.369 0.352 0.367 0.505 0.472 0.454 0.468 0.628 0.588 0.571 0.582 0.765 0.718 0.702 0.710 0.917 0.863 0.847	0.094 0.161 0.147 0.132 0.143 0.142 0.225 0.207 0.191 0.204 0.204 0.304 0.281 0.264 0.280 0.279 0.397 0.369 0.352 0.371 0.367 0.505 0.472 0.454 0.476 0.468 0.628 0.588 0.571 0.597 0.582 0.765 0.718 0.702 0.732 0.710 0.917 0.863 0.847 0.882	0.094 0.161 0.147 0.132 0.143 0.113 0.142 0.225 0.207 0.191 0.204 0.161 0.204 0.304 0.281 0.264 0.280 0.220 0.279 0.397 0.369 0.352 0.371 0.293 0.367 0.505 0.472 0.454 0.476 0.377 0.468 0.628 0.588 0.571 0.597 0.475 0.582 0.765 0.718 0.702 0.732 0.585 0.710 0.917 0.863 0.847 0.882 0.707	0.094 0.161 0.147 0.132 0.143 0.113 0.097 0.142 0.225 0.207 0.191 0.204 0.161 0.146 0.204 0.304 0.281 0.264 0.280 0.220 0.207 0.279 0.397 0.369 0.352 0.371 0.293 0.281 0.367 0.505 0.472 0.454 0.476 0.377 0.368 0.468 0.628 0.588 0.571 0.597 0.475 0.467 0.582 0.765 0.718 0.702 0.732 0.585 0.579 0.710 0.917 0.863 0.847 0.882 0.707 0.703	0.094 0.161 0.147 0.132 0.143 0.113 0.097 0.094 0.142 0.225 0.207 0.191 0.204 0.161 0.146 0.141 0.204 0.304 0.281 0.264 0.280 0.220 0.207 0.201 0.279 0.397 0.369 0.352 0.371 0.293 0.281 0.273 0.367 0.505 0.472 0.454 0.476 0.377 0.368 0.358 0.468 0.628 0.588 0.571 0.597 0.475 0.467 0.455 0.582 0.765 0.718 0.702 0.732 0.585 0.579 0.564 0.710 0.917 0.863 0.847 0.882 0.707 0.703 0.686

Table: Training MSEs by Delta for Daily Vols

Forecaster	3
K ^{Forecaster}	4
03VM	
17Setup	

	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK
0	0.005	0.004	0.005	0.004	0.004	0.005	0.004	0.004	0.003 ^{VM}
0.02	0.023	0.023	0.023	0.022	0.022	0.020	0.020	0.021	0.017Setup
0.03	0.058	0.061	0.060	0.059	0.060	0.053	0.053	0.055	0.047Results
0.05	0.110	0.118	0.115	0.116	0.118	0.103	0.104	0.105	0.094
0.07	0.181	0.195	0.189	0.191	0.194	0.169	0.171	0.172	0.156
0.08	0.268	0.290	0.281	0.285	0.290	0.253	0.256	0.256	0.235
0.1	0.374	0.405	0.392	0.399	0.406	0.353	0.358	0.357	0.330
0.12	0.497	0.539	0.521	0.531	0.541	0.471	0.477	0.474	0.441
0.13	0.637	0.692	0.669	0.682	0.695	0.605	0.613	0.609	0.568
0.15	0.795	0.864	0.836	0.853	0.869	0.756	0.766	0.760	0.711

Table: Training MSEs by Delta for Weekly Vols

Forecaster 2 Forecaster 3

Forecaster 4

Setup

Setup Results

Table: Testing MSES for optimal Delta

	Daily Testing	Weekly Testing
AUD	0.057	0.004
CAD	0.111	0.004
CHF	0.102	0.005
EUR	0.087	0.003
GBP	0.096	0.004
JPY	0.079	0.005
NOK	0.061	0.003
NZD	0.058	0.003
SEK	0.056	0.002
Average	0.079	0.004

Forecaster 3 Forecaster 4

Setup

- $\sigma_{t+1} = \left(\frac{1}{p} \sum_{i=t-p+1}^{t} \sigma_i\right) (1 + y_t \Delta)$ $\implies y_t = \frac{1}{\Delta} \frac{1}{\sum_{i=t-p+1}^{t} \sigma_i} \left(\sigma_{t+1} \sum_{i=t-p+1}^{t} \sigma_i\right)$
- ▶ To optimize p and Δ we fit over all possible Δ s (same range as previously) and over $p \in \{3, 5, 10\}$ using training data
- ightharpoonup We then use the optimal p and Δ to get MSE on testing data

Forecaster 3: Training MSE by Delta - Daily Vols - p=10

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2 Forecaster 3

Forecaster 4

Forecaster 3: Training MSE by Delta - Weekly Vols - p=10

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2

Forecaster 4

Satur

<u>or</u> ecaster	3
precaster	4

	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK ^{Forec}
0	0.056	0.079	0.078	0.074	0.073	0.068	0.049	0.054	0.043 ^{VM}
0.02	0.078	0.107	0.105	0.102	0.101	0.089	0.072	0.076	0.062 etup
0.03	0.114	0.150	0.147	0.145	0.144	0.122	0.108	0.111	0.093 ^{Resul}
0.05	0.162	0.208	0.203	0.202	0.201	0.167	0.156	0.157	0.136
0.07	0.224	0.280	0.273	0.273	0.274	0.226	0.217	0.217	0.191
80.0	0.298	0.367	0.356	0.359	0.361	0.296	0.291	0.288	0.257
0.1	0.386	0.469	0.454	0.459	0.463	0.379	0.377	0.372	0.335
0.12	0.487	0.585	0.566	0.574	0.579	0.475	0.476	0.469	0.425
0.13	0.601	0.716	0.692	0.703	0.711	0.583	0.587	0.578	0.526
0.15	0.727	0.861	0.832	0.846	0.857	0.704	0.711	0.699	0.640

Table: Training MSEs by Delta for Daily Vols, p=3

·	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK Forecast
0	0.020	0.015	0.018	0.015	0.016	0.027	0.013	0.016	0.008VM
0.02	0.040	0.035	0.039	0.036	0.036	0.046	0.031	0.035	0.024Setup
0.03	0.078	0.075	0.077	0.076	0.075	0.082	0.066	0.070	0.056Results
0.05	0.133	0.133	0.135	0.135	0.134	0.136	0.118	0.122	0.104
0.07	0.206	0.211	0.211	0.213	0.212	0.206	0.187	0.191	0.168
0.08	0.297	0.308	0.306	0.311	0.310	0.293	0.274	0.276	0.248
0.1	0.405	0.424	0.419	0.427	0.427	0.397	0.377	0.379	0.344
0.12	0.530	0.559	0.551	0.562	0.564	0.518	0.498	0.498	0.457
0.13	0.674	0.713	0.701	0.716	0.720	0.656	0.635	0.634	0.585
0.15	0.834	0.887	0.870	0.889	0.895	0.811	0.790	0.787	0.730

Table: Training MSEs by Delta for Weekly Vols, p=3

Forecaster 3: Training MSE by Delta - Daily Vols - p=10

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2 Forecaster 3

Forecaster 4

Forecaster 3: Training MSE by Delta - Weekly Vols - p=10

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2 Forecaster 3

Forecaster

CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK ^{Forecast}
0.066	0.067	0.064	0.061	0.065	0.045	0.051	0.040VM
0.094	0.094	0.092	0.089	0.086	0.067	0.073	0.058 etup
0.137	0.135	0.134	0.131	0.119	0.102	0.107	0.089Results
0.195	0.190	0.190	0.188	0.164	0.149	0.154	0.131
0.267	0.259	0.260	0.259	0.222	0.209	0.213	0.185
0.353	0.342	0.345	0.346	0.292	0.282	0.285	0.251
0.455	0.439	0.445	0.447	0.375	0.368	0.369	0.329
0.571	0.550	0.559	0.563	0.471	0.466	0.466	0.418
0.701	0.675	0.687	0.694	0.579	0.576	0.575	0.519
0.846	0.814	0.829	0.840	0.699	0.699	0.696	0.632

Table: Training MSEs by Delta for Daily Vols, p=5

AUD

0.054

0.076

0.111

0.160

0.221

0.295

0.383

0.483

0.597

0.723

0.02

0.03

0.05

0.07

0.08

0.1

0.12

0.13

0.15

-	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK ^{Forec}
0	0.024	0.017	0.021	0.017	0.018	0.031	0.015	0.020	0.009VM
0.02	0.043	0.037	0.040	0.038	0.037	0.049	0.033	0.038	0.025 etup
0.03	0.080	0.075	0.078	0.077	0.075	0.085	0.067	0.072	0.056 ^{Resul}
0.05	0.135	0.133	0.135	0.135	0.133	0.137	0.118	0.123	0.103
0.07	0.207	0.210	0.210	0.213	0.211	0.207	0.187	0.192	0.167
0.08	0.296	0.306	0.304	0.309	0.307	0.293	0.273	0.276	0.246
0.1	0.403	0.422	0.417	0.425	0.423	0.396	0.375	0.378	0.342
0.12	0.528	0.556	0.548	0.559	0.559	0.516	0.495	0.497	0.454
0.13	0.670	0.710	0.697	0.713	0.714	0.653	0.632	0.632	0.582
0.15	0.830	0.883	0.865	0.885	0.888	0.807	0.786	0.784	0.726

Table: Training MSEs by Delta for Weekly Vols, p=5

Forecaster 3: Training MSE by Delta - Daily Vols - p=10

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2 Forecaster 3

SVM

Forecaster 3: Training MSE by Delta - Weekly Vols - p=10

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

Forecaster 2 Forecaster 3

Forecaster 4

- :	
Forecaster	2
Orccaster	-

TOTCCASCCI	5
K ^{Forecaster}	4
40VM	
596etup	

	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK ^{Foreca}
0	0.058	0.066	0.068	0.066	0.061	0.065	0.047	0.053	0.040 ^{VM}
0.02	0.079	0.093	0.094	0.092	0.087	0.084	0.068	0.075	0.059 etup
0.03	0.114	0.134	0.133	0.133	0.128	0.116	0.103	0.109	0.089Results
0.05	0.161	0.190	0.187	0.188	0.184	0.160	0.150	0.155	0.130
0.07	0.222	0.260	0.255	0.257	0.254	0.217	0.209	0.214	0.184
0.08	0.296	0.345	0.337	0.341	0.340	0.286	0.281	0.285	0.249
0.1	0.382	0.445	0.433	0.439	0.440	0.368	0.366	0.368	0.326
0.12	0.482	0.559	0.543	0.552	0.555	0.462	0.464	0.464	0.415
0.13	0.595	0.688	0.667	0.679	0.684	0.569	0.574	0.572	0.516
0.15	0.721	0.831	0.806	0.820	0.829	0.689	0.696	0.693	0.628

Table: Training MSEs by Delta for Daily Vols, p=10

								Forecaster 2
								Forecaster 3
AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK Forecaster 4
0.030	0.020	0.024	0.020	0.020	0.033	0.019	0.025	0.011VM
0.049	0.030	0.042	0.030	0.030	0.040	0.035	0.041	0.026 atup

	AUD	CAD	CHF	EUR	GBP	JPY	NOK	NZD	SEK
0	0.030	0.020	0.024	0.020	0.020	0.033	0.019	0.025	0.011VM
0.02	0.048	0.038	0.042	0.039	0.038	0.049	0.035	0.041	0.026 etup
0.03	0.083	0.075	0.078	0.077	0.075	0.082	0.068	0.075	0.056Results
0.05	0.136	0.131	0.134	0.135	0.131	0.132	0.119	0.125	0.103
0.07	0.207	0.207	0.207	0.211	0.207	0.199	0.186	0.192	0.165
0.08	0.295	0.302	0.300	0.306	0.303	0.283	0.271	0.276	0.244
0.1	0.401	0.415	0.410	0.420	0.418	0.384	0.372	0.376	0.339
0.12	0.524	0.548	0.540	0.553	0.552	0.501	0.491	0.494	0.450
0.13	0.664	0.701	0.688	0.705	0.706	0.636	0.627	0.628	0.577
0.15	0.823	0.872	0.854	0.877	0.879	0.788	0.780	0.779	0.720

Table: Training MSEs by Delta for Weekly Vols, p=10

Table: Testing MSES for optimal Delta and p

	Daily Testing, p=5	Weekly Testing, p=3
AUD	0.056	0.020
CAD	0.079	0.015
CHF	0.078	0.018
EUR	0.074	0.015
GBP	0.073	0.016
JPY	0.068	0.027
NOK	0.049	0.013
NZD	0.054	0.016
SEK	0.043	0.008
Average	0.064	0.016

$$\sigma_{t+1} = \left(\frac{1}{p} \sum_{i=t-p+1}^{t} \sigma_i\right) (1 + y_t \Delta) + \left(\frac{1}{q} \sum_{i=t-p+1}^{t} r_i\right)$$

$$\implies y_t = \frac{1}{\Delta} \frac{1}{\left(\frac{1}{p} \sum_{i=t-p+1}^{t} \sigma_i\right)} \left(\sigma_{t+1} - \frac{1}{q} \sum_{i=t-p+1}^{t} r_i - \frac{1}{p} \sum_{i=t-p+1}^{t} \frac{\text{SVM}}{\text{Setup}} \right)$$

$$\blacktriangleright$$
 Fit model over same sequence of Δ s

- ▶ Also fit over $p \in \{3, 5, 10\}$ and $q \in \{3, 5, 10\}$
- ▶ Due to large number of combinations we do not output graphs and tables for all the combinations over the training data - we simply output the optimal parameters and the testing MSEs for that combination

Table: Testing MSES for optimal Delta and p

Daily Testing 0 5 10	Weekly Testing 0 3 10
0.054	0.020
0.066	0.015
0.067	0.018
0.064	0.015
0.061	0.016
0.065	0.027
0.045	0.013
0.051	0.017
0.040	0.008
0.057	0.017
	0.054 0.066 0.067 0.064 0.061 0.065 0.045 0.051

Optimal parameters

► Daily: *Delta*=0.017,p=5,q=10

► Weekly: *Delta*=0,p=3,q=10

Forecaster 4

SVM

- Modeled daily and weekly volatilities as $\sigma_{t+1} = \sigma_t(1 + \Delta y_t)$, where $y_t \in \{-1, +1\}$
- ► Trained an SVM to predict labels (ie *y*_t) using R package 'e1071'
 - ▶ Model 1 : $y(\sigma_t)$
 - ▶ Model 2: $y(\sigma_t, r_t)$
 - Model 3: $y\left(\frac{1}{p}\sum_{k=t-p+1}^{t}\sigma_{t}\right)$
 - Model 4: $y\left(\frac{1}{p}\sum_{k=t-p+1}^{t}\sigma_{t},\frac{1}{p}\sum_{k=t-p+1}^{t}r_{t}\right)$
- ▶ Having fit the SVM, optimized in sample over Δ and the lag parameters, p and q.

$$\min_{w \in {}^{n}, b \in , s \in {}^{m}} 1/2||w||^{2} + C \sum_{j=1}^{m} s_{j}$$
s.t. $y_{j}(x_{j}^{T}w + b) \ge 1 - s_{j}, j = 1, \dots, m$

$$s_{j} \ge 0$$

- Kernel SVM
 - We choose to use the radial basis function kernel $k(x,z) := e^{-\frac{\gamma}{2}x z_2^2}$, giving rise to the kernalized model

$$\max_{\alpha \in \mathcal{I}} \mathbf{1}^T \alpha - 1/2\alpha^T \phi(Z)^T \phi(Z) \alpha$$

s.t. $\mathbf{0} \le \alpha \le C \mathbf{1}$

where
$$\phi(Z)^T \phi(Z)_{i,j} = y_i y_j k(x_i, x_j)$$

The cost C > 0 and, for rbf, γ are hyperparameters which we train via 10-fold cross validation

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 4

C) // 4

Setup

- ► Tuning △
 - ▶ Given labels y_t , t = 1, ..., T from SVM, we seek to solve

$$\min_{\Delta} \frac{1}{T} \sum_{t=1}^{T} (\sigma_{t+1} - \sigma_t (1 + \Delta y_t))^2$$
s.t. $\Delta \ge 0$

- ▶ Ignoring the nonnegativity constraint, this is equivalent to least-square regression of $\sigma_{t-1} \sigma_t$ on $y_t \sigma_t$
- KKT conditions for optimality call for setting $\Delta=\Delta_{LS}$ if $\Delta_{LS}\geq 0$ and $\Delta=0$ otherwise
- Tuning p and q
 - ▶ We do a grid search on $p, q \in \{3, 5, 10\}$

Predicting Daily Volatility - Accuracy

Aggregate Training Accuracy for Forecasting Daily Vol

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

Forecaster 4

SVM

Predicting Daily Volatility - Accuracy

Aggregate Testing Accuracy for Forecasting Daily Vol

Method

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

Forecaster 4

SVM

Predicting Daily Volatility - MSE

Aggregate Training MSE for Forecasting Daily Vol

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

Forecaster 4

SVM

Predicting Daily Volatility - MSE

Aggregate Testing MSE for Forecasting Daily Vol

Method

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

N/M

Predicting Weekly Volatility - Accuracy

Aggregate Training Accuracy for Forecasting Weekly Vol

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Predicting Weekly Volatility - Accuracy

Aggregate Testing Accuracy for Forecasting Weekly Vol

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

Forecaster 4

Satur

Predicting Weekly Volatility - MSE

Aggregate Training MSE for Forecasting Weekly Vol

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

Forecaster 4

SVM

Predicting Weekly Volatility - MSE

Aggregate Testing MSE for Forecasting Weekly Vol

FIN 580: Homework 3

Nina Gnedin, Chase Perlen

Data Preprocessing

Logistic Regression

orecaster 1

Forecaster 3

Forecaster 4

SVM

- ► Non moving average models outperformed for accuracy yet not MSE
- MSE results should be taken with grain of salt, frequently had nonnegativity constraint bind producing $\Delta=0$
- ▶ Weekly results seem to be more sensible.
- As model generally performed best for smallest $|\Delta|$, converging towards random walk of $|\Delta|=0$
- ▶ SVM useful in predicting up or down, though the regression model $\sigma_{t+1} = \sigma_t(1 + \Delta y_t)$ is flawed