Université Ouagal JKZ

UFR-SEA, Département de Mathématiques

Professeur: Dr Marie Françoise Ouedraogo

L₂S₄ Examen d'algèbre bilinéaire Durée: *2 heures*

Exercice 1: (5 pts)

Soit (E, <, >) un espace euclidien et || || la norme associée.

1. Démontrer l'identité du parallélogramme: $\forall x, y \in E$, $||x+y||^2 + ||x-y||^2 = 2\left(||x||^2 + ||y||^2\right)$.

2. Démontrer l'identité de la médiane: $\forall x, a, b \in E$, $\left\|x - \frac{a+b}{2}\right\|^2 = \frac{\left\|x - a\right\|^2 + \left\|x - b\right\|^2}{2} - \frac{1}{4}\left\|a - b\right\|^2$.

Exercice 2 : (7 pts)

On considère l'espace vectoriel $E = \mathbb{R}_2[X]$ des polynômes à coéfficients réels de degré inférieur ou égal à 2. Soit φ l'application définie sur E par:

$$\varphi(P) = \int_{-1}^{1} \left[P(t) \right]^2 dt$$

- 1. Montrer que φ définit un produit scalaire sur E.
- 2. Déterminer une base orthonormée pour φ .

Exercice 3: (8 pts)

Soit E un \mathbb{C} -espace vectoriel de dimension 3 et \mathcal{B} une base de E. On considère la forme hermitienne Φ dont la matrice relative à la base \mathcal{B} est: $M = \begin{pmatrix} 4 & i & -i \\ -i & 4 & 1 \\ i & 1 & 4 \end{pmatrix}$.

- 1. Montrer que Φ est définie positive.
- 2. Déterminer une base orthomormée pour Φ .
- 3. On suppose que E est hermitien et la base \mathcal{B} est orthonormée. Soit f l'endomorphisme hermitien de matrice M dans la base \mathcal{B} . Trouver une base orthonormée \mathcal{B}' de E formée de vecteurs propres de f.
- 4. Réduire la forme hermitienne Φ .