RAPPELS (2)

Exercice 1 (Convergences). Soit $\{X_i\}_{i\geq 1}$ une suite de variables aléatoires indépendantes uniformes sur $\{-1,+1\}$. Donner un équivalent simple de $\mathbb{E}[|X_1+\cdots+X_n|]$ lorsque $n\to\infty$.

Exercice 2 Soient M_n des variables aléatoires iid d'espérance 1 et de variance finie. Montrer que $X_n = M_0 M_1 \cdots M_n$ est une martingale par rapport à $\mathscr{F}_n = \sigma(M_i : i \leq n)$.

Exercice 3 (variation quadratique) Soit (X_n) une martingale L^2 , avec $X_0 = 0$. On pose $Q_0 = 0$ et $Q_{n+1} - Q_n = (X_{n+1} - X_n)^2$.

1. Montrer que le processus $\langle X \rangle_n$ défini par

$$X_n^2 = \langle X \rangle_n + Q_n$$

est une martingale issue de 0.

2. Montrer que

$$\operatorname{Var}(\langle X \rangle_n) = \sum_{i=1}^n \operatorname{Var}(X_i - X_{i-1}).$$

Exercice 4 (Classes monotones). Soient \mathbb{P} et \mathbb{Q} deux mesures de probabilité sur un espace mesurable (Ω, \mathcal{A}) .

- 1. Vérifier que l'ensemble $\mathcal{M} = \{A \in \mathcal{A}, \ \mathbb{P}(A) = \mathbb{Q}(A)\}$ est une classe monotone.
- 2. En déduire que si \mathbb{P} et \mathbb{Q} coïncident sur un π -système engendreant \mathcal{A} , alors $\mathbb{P} = \mathbb{Q}$.
- 3. Montrer que la fonction de répartition d'une variable aléatoire réelle caractérise sa loi.
- 4. Soient X et Y deux variables aléatoires réelles intégrables sur $(\Omega, \mathcal{A}, \mathbb{P})$, telles que

$$\forall A \in \mathcal{C}, \qquad \mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[Y\mathbf{1}_A],$$

où \mathcal{C} est un π -système vérifiant $\Omega \in \mathcal{C}$ et $\sigma(\mathcal{C}) = \mathcal{A}$. Que peut-on conclure?

5. Soient C_1, \ldots, C_n des π -systèmes inclus dans A et contenant l'élément Ω . On suppose que pour tout $(A_1, \ldots, A_n) \in C_1 \times \cdots \times C_n$,

$$\mathbb{P}(A_1 \cap \cdots \cap A_n) = \mathbb{P}(A_1) \times \cdots \times \mathbb{P}(A_n).$$

Montrer que les tribus $\sigma(\mathcal{C}_1), \dots, \sigma(\mathcal{C}_n)$ sont indépendantes.

Exercice 5 (Marche aléatoire). Soit $\{X_n\}_{n\geq 1}$ une suite de variables indépendantes uniformes sur $\{-1,+1\}$ et soit $\{\mathscr{F}_n\}_{n\geq 0}$ sa filtration naturelle. On pose $S_0:=0$ et pour tout $n\in\mathbb{N}$,

$$S_n := X_1 + \cdots + X_n$$
.

- 1. Vérifier que $\{S_n\}_{n>0}$ est une martingale de carré intégrable et expliciter son crochet.
- 2. Pour $a \in \mathbb{Z}$, on note $T_a = \inf\{n \in \mathbb{N} \colon S_n = a\}$. Pour a, b > 0, calculer $\mathbb{E}[T_{-a} \wedge T_b]$ et $\mathbb{P}(T_{-a} < T_b)$. En déduire que presque-sûrement, la marche visite tous les sites.

3. Construire une martingale à partir de $e^{\lambda S_n}$ pour $\lambda \in \mathbb{R}$.

Exercice 6 Dans cet exercice on identifie un nombre $x \in [0,1]$ avec son développement en base 2. On appelle motif une suite finie de 0 et de 1 pour un motif m on note N(m,x,k) le nombre de fois que le motif m apparaît dans les k premières décimales de x. On dit que x est un nombre parfait si pour tout motif

$$\lim_{k \to \infty} N(m, x, k)/k = 2^{-|m|},$$

où |m| est la longueur de m. Montrer qu'il existe un nombre parfait.

Exercice 7 (Implication et contre exemple) Rappeler le tableau d'implication entre convergence L^p pour $p \ge 1$, convergence en probabilité, convergence en loi et convergence ps. Pour chaque implication fausse, donner un contre exemple.

Exercice 8 (Espérance conditionnelle) Soit X une variable aléatoire réelle intégrable et de densité f strictement positive sur \mathbb{R} . Déterminer $\mathbb{E}(X \mid |X|)$.

Exercice 9 (Hoeffding-Azuma)Soit (X_n) une martingale. On suppose qu'il existe un c tel que \mathbb{P} -presque sûrement, pour tout n, $|X_{n+1}-X_n|\leq c$. On pose $\mathscr{F}_n=\sigma(X_0,\ldots,X_n)$ et $\xi_n=X_n-X_{n-1}$.

1. Montrer que pour tout t,

$$\mathbb{E}[e^{tX_n}] = \mathbb{E}[e^{tX_{n-1}}\mathbb{E}[e^{t\xi_n}|\mathscr{F}_{n-1}]].$$

- 2. Montrer que $\mathbb{E}[e^{t\xi_n}|\mathscr{F}_{n-1}]] \leqslant e^{t^2}$.
- 3. En déduire que $\mathbb{E}[e^{tX_n}] \leqslant e^{nt^2}$ puis que

$$\mathbb{P}(X_n > t\sqrt{n}) \leqslant Ce^{-ct^2}$$