Instance-based Classifiers

AW

Lecture Overview

1. Nearest Neighbor Classifier

2. Pebbls

Instance-Based Classifiers

Set of Stored Cases

Atr1	•••••	AtrN	Class
			A
			В
			В
			С
			A
			С
			В

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1	• • • • • • • • • • • • • • • • • • • •	AtrN

Instance Based Classifiers

- Examples:
 - RoTe-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance
 - $d(p,q)\sqrt{\sum_i(p_i-q_i)^2}$
- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small high variance ⇒ sensitive to noise points
 - If k is too large biased data (neighborhood may include points from other classes) ⇒ biased misclassification

Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

1111111111111

VS

011111111110

d = 1.4142

100000000000

00000000001

d = 1.4142

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rulebased systems
 - Classifying unknown records are relatively expensive

Lecture Overview

1. Nearest Neighbor Classifier

2. Pebbls

Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning System (Cost & Salzberg)
 - Works with both continuous and nominal features
 - For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)
 - Each record is assigned a weight factor
 - Number of nearest neighbor, k = 1

$$d(V_1, V_2) = \sum_{i} \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right|$$

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Class	Marital Status			
	Single	Married	Divorced	
Yes	2	0	1	
No	2	4	1	

$$d(V_1, V_2) = \sum_{i} \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right|$$

Distance between nominal attribute values:

$$= |2/4 - 0/4| + |2/4 - 4/4| = 1$$

d(Single, Divorced)

$$= |2/4 - 1/2| + |2/4 - 1/2| = 0$$

d(Married, Divorced)

$$= |0/4 - 1/2| + |4/4 - 1/2| = 1$$

d(Refund=Yes, Refund=No)

$$= |0/3 - 3/7| + |3/3 - 4/7| = 6/7$$

Class	Refund		
Class	Yes	No	
Yes	0	3	
No	3	4	

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
X	Yes	Single	125K	No
Υ	No	Married	100K	No

Distance between record X and record Y:

$$\Delta(X,Y) = w_X w_Y \sum_{i=1}^{d} d(X_i, Y_i)^2$$

where:
$$w_X = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}}$$

 $w_X \cong 1$ if X makes accurate prediction most of the time

 $w_X > 1$ if X is not reliable for making predictions

Nearest Neighbor classifiers in R

```
library(FNN);data(iris3)
x < -sample(1:50,25,F)
train <- rbind(iris3[x,,1], iris3[x,,2], iris3[x,,3])
test <- rbind(iris3[-x,,1], iris3[-x,,2], iris3[-x,,3])
cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
NN < -knn(train, test, cl, k = 3, prob = TRUE)
summary(NN)
table(NN,cl)
err<-(nrow(test)-sum(diag(table(NN,cl))))/nrow(test);err
NN
```

Reading

TSKK Section 4.3

