6.215/6.255J/15.093J/IDS.200J Optimization Methods

Lecture 6: Duality Theory II

September 28, 2021

Today's Lecture

Outline

- Recap on duality
- Geometry view of duality
- The dual simplex algorithm
- Duality and degeneracy
- Farkas lemma
- Duality revisited (bonus)

Recap ... duality

An idea from Lagrange

Consider the linear optimization problem, called the **primal** with optimal solution x^*

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

Relax the equality constraint

$$g(\mathbf{p}) = \min_{\text{s.t.}} \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{p}^{\mathsf{T}} (\mathbf{b} - \mathbf{A}\mathbf{x})$$

For any p we have

$$g(p) \le c^T x^* + p^T (b - Ax^*) = c^T x^*$$

$$\Rightarrow \max_{\mathbf{p}} g(\mathbf{p}) \le c^T x^*$$

$$g(\mathbf{p}) = \min_{\mathbf{X} \geq 0} \left[\mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{p}^{\mathsf{T}} (\mathbf{b} - \mathbf{A} \mathbf{x}) \right] = \mathbf{p}^{\mathsf{T}} \mathbf{b} + \min_{\mathbf{X} \geq 0} (\mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} \mathbf{A}) \mathbf{x} = \begin{cases} \mathbf{p}^{\mathsf{T}} \mathbf{b} & \text{if } \mathbf{c}^{\mathsf{T}} - \mathbf{p}^{\mathsf{T}} \mathbf{A} \geq 0, \\ -\infty & \text{otherwise.} \end{cases}$$

So $\max_{\mathbf{p}} g(\mathbf{p})$ is equivalent to the following problem, called the **dual**:

$$\max_{s.t.} p^T b$$
s.t. $p^T A \le c^T$

Recap ... general form of the dual

primal:

$\begin{array}{lll} \min & \boldsymbol{c^T x} \\ \mathrm{s.t.} & \boldsymbol{a_i^T x} \geq b_i & i \in M_1 \\ \boldsymbol{a_i^T x} \leq b_i & i \in M_2 \\ \boldsymbol{a_i^T x} = b_i & i \in M_3 \\ x_j \geq 0 & j \in N_1 \\ x_j \leq 0 & j \in N_2 \\ x_j \text{ free } & j \in N_3 \end{array}$

dual:

$$\begin{array}{lll} \max & \boldsymbol{p^Tb} \\ \mathrm{s.t.} & p_i \geq 0 & i \in M_1 \\ p_i \leq 0 & i \in M_2 \\ p_i \text{ free } & i \in M_3 \\ \boldsymbol{p^TA_j} \leq c_j & j \in N_1 \\ \boldsymbol{p^TA_j} \geq c_j & j \in N_2 \\ \boldsymbol{p^TA_i} = c_i & j \in N_3 \end{array}$$

Note: The dual of the dual is the primal

Recap ... theorems

Theorem (weak duality)

If x is primal feasible and p is dual feasible then $p^Tb \le c^Tx$

Theorem (strong duality)

If the primal has an optimal solution, then so does the dual, and the optimal costs are equal.

	Finite opt.	Unbounded	Infeasible
Finite opt.	*		
Unbounded			*
Infeasible		*	*

Recap ... complementary slackness

primal:

min
$$c^T x$$

s.t. $a_i^T x \ge b_i$ $i \in M_1$
 $a_i^T x \le b_i$ $i \in M_2$
 $a_i^T x = b_i$ $i \in M_3$
 $x_j \ge 0$ $j \in N_1$
 $x_j \le 0$ $j \in N_2$
 x_j free $j \in N_3$

dual:

$$\begin{array}{lll} \max & \boldsymbol{\rho^T b} \\ \mathrm{s.t.} & p_i \geq 0 & i \in M_1 \\ p_i \leq 0 & i \in M_2 \\ p_i & \mathrm{free} & i \in M_3 \\ \boldsymbol{\rho^T A_j} \leq c_j & j \in N_1 \\ \boldsymbol{\rho^T A_j} \geq c_j & j \in N_2 \\ \boldsymbol{\rho^T A_j} = c_i & j \in N_3 \end{array}$$

Theorem

Let x primal feasible and p dual feasible. Then x, p optimal if and only if

$$p_i(\mathbf{a}_i^T \mathbf{x} - b_i) = 0, \quad \forall i$$
$$(c_i - \mathbf{p}^T \mathbf{A}_i) x_i = 0, \quad \forall j$$

Quick check in ...

Q: What is the dual? primal/dual optimal solutions, and optimal value?

max
$$6x_1 + 2x_2$$

s.t. $3x_1 + x_2 \ge 3$
 $x_1 + 7x_2 \le 8$
 $x_1 - x_2 = 0$
 $x_1 \ge 0$
 x_2 free

The geometry of duality

Geometry using complementary slackness

min
$$c^T x$$
 max $p^T b$
s.t. $a_i^T x \ge b_i$, $i = 1, ..., m$ s.t. $\sum_{i=1}^m p_i a_i = c$
 $p \ge 0$

Equivalent to solving:

- Primal feasibility: $\mathbf{a}_i^T \mathbf{x}^* \geq b_i$ for all $i = 1, \dots, m$
- Dual feasibility: $\boldsymbol{p}^{\star} \geq 0$ and $\sum_{i=1}^{m} p_{i}^{\star} \boldsymbol{a}_{i} = \boldsymbol{c}$
- Complementary slackness : $p_i^{\star}(\boldsymbol{a}_i^T\boldsymbol{x}^{\star}-b_i)=0$ for all $i=1,\ldots,m$

Definitions

- Primal point x is primal feasible if $a_i^T x \ge b_i$ for all i = 1, ..., m
- Primal point x is <u>dual feasible</u> if there exists $p \ge 0$ such that

$$p_i(oldsymbol{a}_i^Toldsymbol{x}-b_i)=0 \quad orall i=1,\ldots,m \qquad ext{and} \qquad \sum_{i=1}^m p_ioldsymbol{a}_i=oldsymbol{c}$$

The geometry of duality

Visualization without drawing dual feasible set

Point x	Primal Feasible?	Dual Feasible?
A	no	no
В	yes	no
C	yes	yes
D	no	yes

Motivation

min
$$c^T x$$
 max $p^T b$
s.t. $Ax = b$ s.t. $p^T A \le c^T$

- Primal problem in standard form.
- Simplex method feasibility $\mathbf{B}^{-1}\mathbf{b} \geq 0$
- Primal optimality condition

$$\boldsymbol{c^T} - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{A} \geq 0$$

which is the same as **dual feasibility** for $m{p^T} = m{c_B^T} m{B}^{-1}$ in dual problem

- Simplex is a **primal algorithm**: maintains **primal feasibility** and works towards **dual feasibility**
- Dual algorithm: maintains dual feasibility and works towards primal feasibility

Mechanics

Tableau as before

$-\boldsymbol{c}_B^T \boldsymbol{x}_B$	\bar{c}_1	 \bar{c}_n
$x_{B(1)}$		
:	$oldsymbol{\mathcal{B}}^{-1}oldsymbol{\mathcal{A}}_1$	 $oldsymbol{\mathcal{B}}^{-1}oldsymbol{\mathcal{A}}_n$
$X_{B(m)}$		

- Do not require $x_B = B^{-1}b \ge 0$ (a basic solution but not necessarily a BFS)
- Require $\bar{c} := c^T c_B^T B^{-1} A := c^T p^T A \ge 0$ (dual feasibility)
- Dual cost is

$$\boldsymbol{p}^{\mathsf{T}}\boldsymbol{b} = \boldsymbol{c}_B^{\mathsf{T}}\boldsymbol{B}^{-1}\boldsymbol{b} = \boldsymbol{c}_B^{\mathsf{T}}\boldsymbol{x}_B$$

- If ${\pmb B}^{-1}{\pmb b} \ge 0$ then both dual feasibility and primal feasibility, and also same cost \Rightarrow **optimality**
- Otherwise, change basis

40 > 40 > 42 > 42 > 2 9 9 9

An iteration

$-\boldsymbol{c}_B^T \boldsymbol{x}_B$	\bar{c}_1	 \bar{c}_n
$\chi_{B(1)}$		
÷	$oldsymbol{B}^{-1}oldsymbol{A}_1$	 $B^{-1}A_n$
$X_{B(m)}$		

- Start with basis matrix \boldsymbol{B} and all reduced costs ≥ 0 .
- ② If $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} \ge 0$ optimal solution found; else, choose ℓ s.t. $x_{B(\ell)} < 0$.
- **②** Consider the ℓ th row (pivot row) $x_{B(\ell)}, v_1, \ldots, v_n$. If $\forall i \ v_i \geq 0$ then dual optimal cost = +∞ and algorithm terminates (this implies that the primal problem is infeasible).
- lacktriangle Else, let j s.t.

$$\frac{\bar{c}_j}{|v_j|} = \min_{\{i|v_i<0\}} \frac{\bar{c}_i}{|v_i|}$$

5 Pivot element v_i : \mathbf{A}_i enters the basis and $\mathbf{A}_{B(\ell)}$ exits.

An example

Primal

min
$$x_1 + x_2$$

s.t. $x_1 + 2x_2 \ge 2$
 $x_1 \ge 1$
 $x_1, x_2 \ge 0$

Dual

max
$$2p_1 + p_2$$

s.t. $p_1 + p_2 \le 1$
 $2p_1 \le 1$
 $p_1, p_2 > 0$

Primal problem in standard for:

$$\begin{array}{ll} \text{min} & x_1+x_2\\ \text{s.t.} & x_1+2x_2-x_3=2\\ & x_1-x_4=1\\ & x_1,x_2,x_3,x_4\geq 0 \end{array}$$

min
$$x_1 + x_2$$

s.t. $-x_1 - 2x_2 + x_3 = -2$
 $-x_1 + x_4 = -1$
 $x_1, x_2, x_3, x_4 \ge 0$

Geometries of the primal and dual

Primal

$$\begin{array}{ll} \text{min} & x_1 + x_2 \\ \text{s.t.} & x_1 + 2x_2 \geq 2 \\ & x_1 \geq 1 \\ & x_1, x_2 \geq 0 \end{array}$$

Dual

$$\begin{array}{ll} \max & 2p_1 + p_2 \\ \text{s.t.} & p_1 + p_2 \leq 1 \\ & 2p_1 \leq 1 \\ & p_1, p_2 \geq 0 \end{array}$$

Initial tableau

Primal

min
$$x_1 + x_2$$

s.t. $-x_1 - 2x_2 + x_3 = -2$
 $-x_1 + x_4 = -1$
 $x_1, x_2, x_3, x_4 > 0$

Initial tableau associated with the dual BFS point A:

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄
	0	1	1	0	0
$x_3 =$	-2	-1	-2*	1	0
x4 =	-1	-1	0	0	1

An example

Two iterations of the dual simplex method:

		<i>x</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
	-1	1/2	0	1/2	0
$x_2 =$	1	1/2	1	-1/2	0
$x_4 =$	-1	-1*	0	0	1

		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	X4	
	-3/2	0	0	1/2	1/2	
$x_2 =$	1/2	0	1	-1/2	1/2	
$x_1 =$	1	1	0	0	-1	

Duality and degeneracy

$$\begin{array}{lll} \min & \boldsymbol{c}^T \boldsymbol{x} & \max & \boldsymbol{p}^T \boldsymbol{b} \\ \mathrm{s.t.} & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} & \mathrm{s.t.} & \boldsymbol{p}^T \boldsymbol{A} \leq \boldsymbol{c}^T \end{array}$$

- Any basis matrix **B** leads to dual basic solution $\mathbf{p}^T = \mathbf{c_B}^T \mathbf{B}^{-1}$.
- The dual constraint $\boldsymbol{p}^T \boldsymbol{A}_j \leq c_j$ is active (i.e., $\boldsymbol{p}^T \boldsymbol{A}_j = c_j$) if and only if the reduced cost $\overline{c}_i = c_i \boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1} \boldsymbol{A}_i$ is zero.
- Since p is m-dimensional, dual degeneracy (more than m active constraints) implies more than m reduced costs that are zero.
- Since all reduced costs of basic variables in the primal must be zero, dual degeneracy is obtained whenever there exists a nonbasic variable (in the primal) whose reduced cost is zero.

Degeneracy

Relation between primal and dual basic solutions: Example

$$\begin{array}{|c|c|c|} \hline \text{Primal} & & \\ & \min & 3x_1 + x_2 \\ & \text{s.t.} & x_1 + x_2 - x_3 = 2 \\ & 2x_1 - x_2 - x_4 = 0 \\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

(equivalent primal problem - easier to visualize in two dimensions)

min
$$3x_1 + x_2$$

s.t. $x_1 + x_2 \ge 2$
 $2x_1 - x_2 \ge 0$
 $x_1, x_2 \ge 0$

Degeneracy

Relation between primal and dual basic solutions: Example

- Four basic solutions in primal: A, B, C, D.
- Six distinct basic solutions in dual: A, A', A", B, C, D.
- Different bases may lead to the same basic solution for the primal, but to different basic solutions for the dual. Some are feasible and some are infeasible.

4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ >

Farkas Lemma

Motivation

Suppose we have the polyhedral set

$$C = \left\{ \boldsymbol{x} \in \Re^n_+: \ \boldsymbol{a}_i^T \boldsymbol{x} = b_i, \quad i \in [1, \dots, m] \right\}$$

How to show that $C \neq \emptyset$?

• Any element $\bar{x} \in C$ serves as a *certificate*

How to show that $C = \emptyset$?

• Certifying nonexistence seems hard ...

Farkas Lemma

Theorem

Exactly one of the following two alternatives hold:

- $\exists \boldsymbol{p} \text{ s.t. } \boldsymbol{p}^T \boldsymbol{A} \geq 0^T \text{ and } \boldsymbol{p}^T \boldsymbol{b} < 0.$

Farkas Lemma

Proof using duality

$$\Rightarrow$$
 (Easy) If $\exists x \geq 0$ s.t. $Ax = b$, and if $p^T A \geq 0^T$, then $p^T b = p^T Ax \geq 0$

 \leftarrow (Harder) Assume there is no $x \ge 0$ s.t. Ax = b

$$(P) \max_{\text{s.t.}} 0^{\mathsf{T}} \mathbf{x}$$
s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$

$$\mathbf{x} > 0$$

(D) min
$$\boldsymbol{p}^T \boldsymbol{b}$$

s.t. $\boldsymbol{p}^T \boldsymbol{A} \ge 0^T$

(P) infeasible \Rightarrow (D) either unbounded or infeasible

Since
$$\mathbf{p} = 0$$
 is feasible \Rightarrow (D) unbounded $\Rightarrow \exists \mathbf{p} : \mathbf{p}^T \mathbf{A} \ge 0^T$ and $\mathbf{p}^T \mathbf{b} < 0$

Duality revisited

- ullet So far: Simplex \longrightarrow Duality \longrightarrow Farkas lemma
 - specialized to LP, relied on a particular algorithm
- ullet Alternative: Separation theorem (a geometric property) \longrightarrow Farkas lemma \longrightarrow Duality
 - purely geometric, generalizes to general nonlinear problems, more fundamental

Separating hyperplane theorem

Theorem

Let S be a nonempty closed convex subset of \Re^n and let $\mathbf{x}^* \in \Re^n$ such that $\mathbf{x}^* \notin S$. Then there exists a vector $\mathbf{c} \in \Re^n$ such that $\mathbf{c}^T \mathbf{x}^* < \mathbf{c}^T \mathbf{x}$ $\forall \mathbf{x} \in S$.

Farkas' lemma revisited

Consider only the hard part of the lemma:

Theorem

If $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\mathbf{x} \ge 0$ is infeasible, then there exists a vector \mathbf{p} such that $\mathbf{p}^T \mathbf{A} \ge 0^T$ and $\mathbf{p}^T \mathbf{b} < 0$.

- let $S = \{ y \mid \exists x \text{ such that } y = Ax, \ x \geq 0 \}$ and assume that $b \notin S$
- S is convex; nonempty; closed (it is indeed the projection of $\{(x,y)\mid y=Ax,\ x\geq 0\}$ onto the y coordinates, so also a polyhedron, and therefore closed)
- $\boldsymbol{b} \notin S$: $\exists \boldsymbol{p}$ such that $\boldsymbol{p}^T \boldsymbol{b} < \boldsymbol{p}^T \boldsymbol{y}$ for every $\boldsymbol{y} \in S$
- since $0 \in S$, we must have $\boldsymbol{p}^T \boldsymbol{b} < 0$
- $\forall \mathbf{A}_i$ and $\forall \lambda > 0$, $\lambda \mathbf{A}_i \in S$ and $\mathbf{p}^T \mathbf{b} < \lambda \mathbf{p}^T \mathbf{A}_i$
- divide by λ and then take limit as λ tends to infinity: $\mathbf{p}^T \mathbf{A}_i > 0 \ \forall i \Rightarrow \mathbf{p}^T \mathbf{A} > 0^T$

Duality theorem revisited

min
$$c^T x$$
 max $p^T b$
s.t. $Ax \ge b$ s.t. $p^T A = c^T$
 $p > 0$

Assume that the primal has an optimal solution x^* . We will show that the dual problem also has a feasible solution with the same cost. Strong duality follows then from weak duality.

6.255J © 2021 (MIT)

Duality theorem revisited

- $I(\mathbf{x}^*) = \{i \mid \mathbf{a}_i^T \mathbf{x}^* = b_i\}$ set of indices of the active constraints
- feasible directions at \mathbf{x}^* are $\{\mathbf{d}: \mathbf{a}_i^T \mathbf{d} \geq 0 \mid \forall i \in I(\mathbf{x}^*)\}$

- we first show that if $\mathbf{a}_i^T \mathbf{d} \geq 0$ for every $i \in I(\mathbf{x}^*)$, then $\mathbf{c}^T \mathbf{d} \geq 0$:
 - consider such a **d**, then $\mathbf{a}_i^T(\mathbf{x}^* + \epsilon \mathbf{d}) \geq \mathbf{a}_i \mathbf{x}^* = b_i$ for all $i \in I(\mathbf{x}^*)$
 - if $i \notin I(\mathbf{x}^*)$, we have $\mathbf{a}_i^T \mathbf{x}^* > b_i \Rightarrow \mathbf{a}_i^T (\mathbf{x}^* + \epsilon \mathbf{d}) > b_i$ for any ϵ small enough
 - $\mathbf{x}^* + \epsilon \mathbf{d}$ is feasible for any ϵ small enough
 - by optimality of x^* , $c^T d \ge 0$

4014012121212121

Duality theorem revisited

• by Farkas' lemma, $\exists p_i \geq 0 \ \forall i \in I(\mathbf{x}^*)$ such that:

$$c = \sum_{i \in I} p_i a_i$$

- for $i \notin I(\mathbf{x}^*)$, define $p_i = 0$, so $\mathbf{p}^T \mathbf{A} = \mathbf{c}^T$
- in conclusion:

$$\boldsymbol{p}^T \boldsymbol{b} = \sum_{i \in I(\boldsymbol{X}^*)} p_i b_i = \sum_{i \in I(\boldsymbol{X}^*)} p_i \boldsymbol{a}_i^T \boldsymbol{x}^* = \boldsymbol{c}^T \boldsymbol{x}^*$$

6.255J ©2021 (MIT)