

ARMY RESEARCH LABORATORY

Analytic Model Development for Ceramic Gun Tubes

by Robert Carter

ARL-TR-3648

September 2005

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5069

ARL-TR-3648

September 2005

Analytic Model Development for Ceramic Gun Tubes

**Robert Carter
Weapons and Materials Research Directorate, ARL**

REPORT DOCUMENTATION PAGE				<i>Form Approved OMB No. 0704-0188</i>
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p> <p>PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.</p>				
1. REPORT DATE (DD-MM-YYYY) September 2005	2. REPORT TYPE Final	3. DATES COVERED (From - To) November 2002–November 2004		
4. TITLE AND SUBTITLE Analytic Model Development for Ceramic Gun Tubes			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Robert Carter			5d. PROJECT NUMBER 622618H80	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army Research Laboratory ATTN: AMSRD-ARL-WM-MB Aberdeen Proving Ground, MD 21005-5069			8. PERFORMING ORGANIZATION REPORT NUMBER ARL-TR-3648	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT The equations for calculating the probability of failure for an internally pressurized ceramic tube are straightforward and well defined in the literature. The most common solution is for a tube subjected only to an internal pressure. This approach neglects any external pressure, over wrap, or sheathing system that may be used to maintain or promote a beneficial compressive pre-stress. The current research has focused on the development of a model, based on elasticity theory, of a sheathed ceramic tube augmented with probability of failure calculations used to calculate stress, strain, and probability of failure of the ceramic tube component. The model calculated the Weibull probability of failure for volumetric- and surface-strength-limiting flaws with the consideration of predicted (isothermal, mechanical, or combined) stress states on the surfaces and throughout the volume.				
15. SUBJECT TERMS ceramic gun tubes, Weibull statistics, failure surface				
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT UL	18. NUMBER OF PAGES 30	19a. NAME OF RESPONSIBLE PERSON Robert Carter
a. REPORT UNCLASSIFIED	b. ABSTRACT UNCLASSIFIED			c. THIS PAGE UNCLASSIFIED

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Contents

Acknowledgments	iv
1. Introduction	1
1.1 Statistical Model Development	1
1.2 Volume Flaws.....	2
1.3 Surface Flaws	3
1.4 Total Probability of Failure	4
2. Sheathed Tubes	4
2.1 Sheathed Tube Mechanics.....	5
2.2 Failure Surfaces for Pressurized Sheathed Tubes	8
3. Summary	10
4. References	11
Distribution List	12

Acknowledgments

The author would like to acknowledge Dr. Andy Wereszczak for his help and guidance with this work. Also, this research was supported in part by an appointment to the Research Participation Program at the U.S. Army Research Laboratory (ARL) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and ARL.

1. Introduction

Ceramic materials are being investigated as bore materials for high performance gun barrels. The superior high temperature behavior and excellent erosion resistance make them strong candidates for application in the harsh environment produced during a ballistic event. The application of these materials is not a novel approach. Several previous investigations by the U.S. Army, Navy, and different contract organizations have considered the use of ceramic materials in gun bores. The success of these previous investigations has been limited at best, but advances in ceramic material processing, probabilistic design, and sheathing technologies have prompted the U. S. Army Research Laboratory to renew investigations into ceramic materials.

The primary factor preventing the simple insertion of ceramics into gun bores has been the inability to design around the low tensile strength, large variability in the observed strength, and brittle behavior of the materials. The objective of the present research is to develop analytic models for the design of ceramic-lined gun barrels capable of surviving interior ballistic events. The first section of this report will focus on the derivation of the statistical equations for predicting failure in ceramics, while the second will deal with the development of a model for calculating stress. The results of the completed model will be presented showing the usefulness of the model.

1.1 Statistical Model Development

Statistical methods are necessary to properly design around the variability in observed strength of ceramic components. The most recognized approach incorporates the Weibull distribution equation. The original Weibull equation calculates a probability of failure (P_f) for a brittle material subjected to a uniaxial stress distribution:

$$P_f = 1 - e^{-\int \left(\frac{\sigma}{\sigma_o}\right)^m dV}, \quad (1)$$

with σ being the stress, σ_o is the Weibull strength or scale parameter, and m being the Weibull modulus. This expression considers only one type of flaw population located in the volume of the ceramic body subjected to a uniform stress (1). For a pressurized tube, additional conditions need to be evaluated, namely the probability for a nonuniform stress state and multiple flaw populations. This report will derive the equations needed to calculate the probability of failure due to volume and surface flaws for a tube subjected to internal and external pressures only. Failure calculations evaluate the nonuniform hoop tensile stresses only and assume that the probability of failure of a part in compression is zero (as described in ASTM Standard C 1239-00) (2). The calculations also assume that the tube is loaded along its entire length, thus eliminating the consideration of any edge effects.

1.2 Volume Flaws

For the condition when the stress distribution is unidirectional, but not uniform,

$$P_{fV} = 1 - e^{-k_v V \left(\frac{\sigma_{\max}}{\sigma_{oV}} \right)^{m_v}}, \quad (2)$$

where

$$k_v V = \int \left(\frac{\sigma(r)}{\sigma_{\max}} \right)^{m_v} dV, \quad (3)$$

σ_{\max} is the maximum stress in the material, $\sigma(r)$ is the function describing the stress distribution, m_v is the volumetric Weibull modulus, and $k_v V$ is the effective volume of the sample (3). Some distinction needs to be placed on the Weibull material scale parameter (σ_o) since it is not always the same as the Weibull characteristic strength (often listed as σ_θ – but not to be confused with hoop stress in this report). The characteristic strength term, σ_θ , is often reported, but is test and sample geometry dependant. The volumetric material scale parameter, σ_{oV} , is strength per unit volume of uniform, uniaxial tension (hence the unusual units of MPa*mm^{3/m_v}).

For a tube subjected to internal and external pressures, the Lamé cylinder expression for the hoop stress (σ_θ) is

$$\sigma_\theta(r) = \frac{P_i r_i^2 - P_o r_o^2}{r_o^2 - r_i^2} - \frac{r_i^2 r_o^2 (P_o - P_i)}{r_o^2 - r_i^2} \frac{1}{r^2}, \quad (4)$$

where r is radius, P is the pressure, and i and o refer to the inner and outer surfaces, respectively (4). This distribution exhibits maximum stress at the inner surface when $P_i > P_o$, and is given by

$$\sigma_{\theta\max} = \frac{P_i (r_i^2 + r_o^2) - 2P_o r_o^2}{r_o^2 - r_i^2}. \quad (5)$$

The effective volume, $k_v V$, for a tube subjected to internal and external pressures is found by substituting equations 4 and 5 into 3:

$$k_v V = 2\pi L \int_{r_i}^{r_o} \left[\frac{P_i r_i^2 - P_o r_o^2}{P_i (r_i^2 + r_o^2) - 2P_o r_o^2} + \frac{r_i^2 r_o^2 (P_i - P_o)}{P_i (r_i^2 + r_o^2) - 2P_o r_o^2} \frac{1}{r^2} \right]^{m_v} r dr. \quad (6)$$

It should be noted that including the external pressure condition creates three regimes of behavior: P_i dominant, transition, and P_o dominant. In the P_i dominant condition, where $P_i \gg P_o$, the hoop stress is tensile through the thickness, and exhibits a maximum at the inner

surface. In the P_o dominant case, where $P_o \gg P_i$, it is compressive throughout the thickness. In the transition regime, where $P_i > P_o$, the inner portion of the tube is tension, while the outer is in compression.

The limits for the different dominant behaviors are determined by setting the hoop stress terms to zero at both surfaces and solving for the external pressure:

$$\begin{aligned} P_{otrans} &= \frac{2P_i r_i^2}{r_i^2 + r_o^2} , \\ P_{ocompression} &= \frac{P_i(r_i^2 + r_o^2)}{2r_o^2} . \end{aligned} \quad (7)$$

P_{otrans} is the solution for when the outer surface of the tube goes into compression, while $P_{ocompression}$ is when the entire tube is in compression. In the transition region, the radial position where the hoop stress is zero is necessary for evaluating $k_V V$. This location, termed r_{neu} , is given by

$$r_{neu} = \frac{-r_i^2 r_o^2}{(P_i r_i^2 - P_o r_o^2)} \sqrt{(P_i r_i^2 - P_o r_o^2)(P_o - P_i)} . \quad (8)$$

When $P_{otrans} < P_o < P_{ocompression}$, a portion of the tube is in compression (r_i to r_{neu}), so $k_V V$ changes to

$$k_V V = 2\pi L \int_{r_i}^{r_{neu}} \left[\frac{P_i r_i^2 - P_o r_o^2}{P_i(r_i^2 + r_o^2) - 2P_o r_o^2} + \frac{r_i^2 r_o^2 (P_i - P_o)}{P_i(r_i^2 + r_o^2) - 2P_o r_o^2} \frac{1}{r^2} \right]^{m_v} r dr . \quad (9)$$

As stated earlier, if $P_o > P_{ocompression}$, then $k_V V = 0$.

With the $k_V V$ term, the expression in equation 2 can be solved for the P_f value for volume flaws.

1.3 Surface Flaws

The expression for the probability of failure is similar to that of the volume flaws:

$$P_{fa} = 1 - e^{-k_A A \left(\frac{\sigma_{\theta, \max}}{\sigma_{oA}} \right)^{m_A}} , \quad (10)$$

however, due to the population of flaws located at surface the integral for the effective area, $k_A A$ operates over the surface area, not the volume. The effective area is evaluated over the inner surface, the two ends, and the outer surface as shown in equation 11:

$$k_A A = 2\pi L r_i + 4\pi \int_{r_i}^{r_o} \left[\frac{P_i r_i^2 - P_o r_o^2}{P_i(r_i^2 + r_o^2) - 2P_o r_o^2} + \frac{r_i^2 r_o^2 (P_i - P_o)}{P_i(r_i^2 + r_o^2) - 2P_o r_o^2} \frac{1}{r^2} \right]^{m_A} r dr + 2\pi L r_o \left[\frac{2P_i r_i^2 - P_o(r_i^2 + r_o^2)}{(r_i^2 + r_o^2) P_i - 2P_o r_o^2} \right]. \quad (11)$$

In the case when $P_{otrans} < P_o < P_{ocompression}$, the $k_A A$ expression changes to

$$k_A A = 2\pi L r_i + 4\pi \int_{r_i}^{r_{new}} \left[\frac{P_i r_i^2 - P_o r_o^2}{P_i(r_i^2 + r_o^2) - 2P_o r_o^2} + \frac{r_i^2 r_o^2 (P_i - P_o)}{P_i(r_i^2 + r_o^2) - 2P_o r_o^2} \frac{1}{r^2} \right]^{m_A} r dr. \quad (12)$$

Since the outer surface is in compression the outer surface term is dropped and the integral is evaluated on the tensile region. If $P_o > P_{ocompression}$, then $k_A A = 0$.

1.4 Total Probability of Failure

The two expressions for probability of failure, one for volume flaws and one for surface flaws, are combined to calculate the probability of failure for the tube (5):

$$P_f = 1 - \prod_{i=1}^N (1 - P_{fi}), \quad (13)$$

where P_f is the total probability of failure for the component and P_{fi} is the probability of failure for the i^{th} flaw population or location. Given the two Weibull parameters (for each flaw population), the new P_f value can be calculated for a combination of internal and external pressure. Also, more terms can be added to equation 13 to address multiple flaw populations or to address each flaw type encountered.

2. Sheathed Tubes

In order to develop a gun system capable of withstanding the pressure loads induced by the ballistic firing, sheathing material needs to be applied in a way to generate beneficial compressive pre-stress. The level of the pre-stress is highly dependant upon the elastic properties of the sheath and ceramic, the strengths of both materials, and the thermal expansion coefficients. Analytic models are available to describe the response of tubes to the loading conditions that can be expected from a gun system.

2.1 Sheathed Tube Mechanics

The simplest model for sheathed tubes is that of two isotropic materials, which is adequate for a metal-sheathed ceramic tube. The equations located in the text by Herakovich and the works by Rousseau and Hyer provide good guidance to calculating the stress, strain, and displacement relations for a system of axisymmetric, nested tubes subjected to uniform internal and external pressure, axial tension and compression, axial torsion, and uniform temperature changes (6–8). They are sufficient to model interference stresses from shrink-fit and press-fit operations which are needed for imparting a beneficial pre-stress into the ceramic.

The most well known and simplest expression for stress in an isotropic tube due to internal and external pressure is the Lamé cylinder expression:

$$\begin{aligned}\sigma_\theta(r) &= -\frac{a^2 b^2 (p_o - p_i)}{(b^2 - a^2)} \frac{1}{r^2} + \frac{p_i a^2 - p_o b^2}{(b^2 - a^2)} \\ \sigma_r(r) &= \frac{a^2 b^2 (p_o - p_i)}{(b^2 - a^2)} \frac{1}{r^2} + \frac{p_i a^2 - p_o b^2}{(b^2 - a^2)},\end{aligned}\quad (14)$$

where

σ_θ	=	hoop stress
a	=	inner radius
b	=	outer radius
p_o	=	external pressure
p_i	=	internal pressure
r	=	radial location.

This expression is useful for calculating the stresses in a monolithic ring with an external pressure representing the effects of the sheath. Simulations using this approach are useful for determining the effects of varying the material properties, but it is not effective for simulating a sheathed system since the external pressure on the ceramic is constant.

In order to accurately model a sheathed system, a more comprehensive model is necessary. In the chapter on laminated tubes in the text by Herakovich, expressions for a layered tube are developed. The following expressions use the cylindrical coordinate system labeled x (axial), θ (circumferential), and r (radial) directions.

For an isotropic material, the axial, tangential, and radial displacements, $u(x)$, $v(x, r)$, and $w(r)$ respectively, are defined as

$$\begin{aligned}u(x) &= \varepsilon_x^o x \\ v(x, r) &= \gamma^o x r \\ w(r) &= A_1 r + A_2 r^{-1},\end{aligned}\quad (15)$$

where A_1 , A_2 , ε_x^o , and γ^o are unknown constants. Similarly, the expressions for anisotropic materials are identical for $u(x)$ and $v(x,r)$, but $w(r)$ becomes

$$\begin{aligned} w(r) &= A_1 r^\lambda + A_2 r^{-\lambda} + \Gamma \varepsilon_x^o r + \Omega \gamma^o r^2 + \Psi r \Delta T \\ \Gamma &= \left(\frac{\bar{C}_{12} - \bar{C}_{13}}{\bar{C}_{33} - \bar{C}_{22}} \right) \\ \Omega &= \left(\frac{\bar{C}_{26} - 2\bar{C}_{36}}{4\bar{C}_{33} - \bar{C}_{22}} \right) \\ \Psi &= \left(\frac{\tilde{\Sigma}}{\bar{C}_{33} - \bar{C}_{22}} \right) \\ \tilde{\Sigma} &= \sum_i (\bar{C}_{i3} - \bar{C}_{i2}) \alpha_i \quad , \end{aligned} \quad (16)$$

where \bar{C}_{ij} is a transformed stiffness matrix value.

For a single ply, there are the four unknowns for which to solve, but the number of unknown scales for laminates of more than one ply. There are single values for ε_x^o and γ^o , but there are values for A_1 and A_2 for every layer. For a structure with N layers, this translates to a total number of unknowns of $2N + 2$.

The first step to solve for the unknown values is to transform the equations for displacement to the strain and stress relations. This allows for the use of the stress and strain boundary conditions to help define the unknown values. First consider the strain-displacement relations for cylindrical coordinates:

$$\begin{aligned} \varepsilon_x &= \frac{\partial u}{\partial x} & \gamma_{r\theta} &= \frac{\partial v}{\partial r} - \frac{v}{r} \\ \varepsilon_\theta &= \frac{w}{r} & \gamma_{xr} &= \frac{\partial u}{\partial r} \\ \varepsilon_r &= \frac{\partial w}{\partial r} & \gamma_{x\theta} &= \frac{\partial v}{\partial x} \quad . \end{aligned} \quad (17)$$

Substituting equations 15–17, the strains can be written in terms of the unknown values. Using the three-dimensional constitutive equations in cylindrical coordinates, the stress expression can be derived from the strain equations:

$$\begin{bmatrix} \sigma_x \\ \sigma_\theta \\ \sigma_r \\ \tau_{\theta r} \\ \tau_{xr} \\ \tau_{x\theta} \end{bmatrix} = \begin{bmatrix} \bar{C}_{11} & \bar{C}_{12} & \bar{C}_{13} & 0 & 0 & \bar{C}_{16} \\ \bar{C}_{12} & \bar{C}_{22} & \bar{C}_{23} & 0 & 0 & \bar{C}_{26} \\ \bar{C}_{13} & \bar{C}_{23} & \bar{C}_{33} & 0 & 0 & \bar{C}_{36} \\ 0 & 0 & 0 & \bar{C}_{44} & \bar{C}_{45} & 0 \\ 0 & 0 & 0 & \bar{C}_{45} & \bar{C}_{55} & 0 \\ \bar{C}_{16} & \bar{C}_{26} & \bar{C}_{36} & 0 & 0 & \bar{C}_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_\theta \\ \varepsilon_r \\ \gamma_{\theta r} \\ \gamma_{xr} \\ \gamma_{x\theta} \end{bmatrix} \quad , \quad (18)$$

where σ and τ are normal and shear stresses, \bar{C}_{ij} is the transformed stiffness matrix, and ε and γ are the normal and shear strains. Thermal and filament winding stresses can be included with a modification to the constitutive equations. If the strain values are modified to include thermal and winding strain values, as in

$$\varepsilon = \varepsilon^E - \varepsilon^{Th} + \varepsilon^w , \quad (19)$$

where ε is the total strain, ε^E is the elastic strain, ε^{Th} is the thermal strain ($\alpha\Delta T$), and ε^w is the elastic strain in the tow due to winding tension. Winding strain is the elastic strain imparted due to tow tension in winding, or

$$\varepsilon^w = \frac{F}{AE} , \quad (20)$$

where F is the force on the tow, A is the area of the tow, and E is the elastic modulus of the fibers (9).

With the equations for stress, strain, and displacement, the unknowns can be found by applying different boundary conditions. There are force and torque conditions that must be met:

$$\begin{aligned} F_x &= 2\pi \sum_{k=1}^N \int_{r_{k-1}}^{r_k} \sigma_x^{(k)} r dr \\ T_x &= 2\pi \sum_{k=1}^N \int_{r_{k-1}}^{r_k} \tau_{x\theta}^{(k)} r^2 dr . \end{aligned} \quad (21)$$

The applied axial force (F_x) and axial torque (T_x) are equal to the sum of the axial and shear stresses integrated over the area of each layer. This provides two equations for the $2N + 2$ unknowns.

Two more equations come from the balance of stresses at the inner and outer surfaces of the tube. The radial stress at each surface must balance the applied pressure, or

$$\begin{aligned} -p_i &= \sigma_r^1(R_i) \\ -p_o &= \sigma_r^N(R_o) . \end{aligned} \quad (22)$$

The final $2N - 2$ equations come from continuity of traction and displacement at each internal interface. The radial stresses and displacements must be continuous across each interface, so

$$\begin{aligned} w^{(k)}(r_k) &= w^{(k+1)}(r_k) \\ \sigma_r^{(k)}(r_k) &= \sigma_r^{(k+1)}(r_k) . \end{aligned} \quad (23)$$

There are now $2N + 2$ equations and $2N + 2$ unknowns, so the system can be solved for a given loading conditions.

2.2 Failure Surfaces for Pressurized Sheathed Tubes

The stress relations are used to calculate the stress profile through the wall of the ceramic tube. The values are the input into the probability of failure expressions derived in the previous sections, and the probability of failure for a pressurized tube is calculated. Mathcad^{*} software was used to solve for variations in the material properties of the sheath and ceramic, geometry of the tubes, and operating conditions. With the implementation of a failure criterion for the sheath, the model can be used for designing optimal pre-stress generation with failure of the different materials.

A good example of this problem is the effect of the change in temperature has on the volumetric P_f of a steel-sheathed silicon nitride tube with an internal pressure of 500 MPa. The material properties are listed in table 1, and the failure curves in figure 1 are for a tube with an inner diameter (ID) of 10 cm, and outer diameter (OD) of 20 cm, length of 1 m. The thickness of the ceramic was varied from 2.5, 5, and 7.5 cm with the remaining portion of the 10-cm thickness being steel. Due to the thermal expansion mismatch between steel ($\alpha = 12.8 \text{ ppm}^{\circ}\text{C}$) and silicon nitride ($\alpha = 3 \text{ ppm}^{\circ}\text{C}$), cooling the tube assembly will generate compressive stresses in the ceramic. The probability of failure decreases as the ΔT value becomes more negative.

Table 1. Material properties for steel and silicon nitride.

Property	Steel	Si_3N_4
Modulus (GPa)	200	310
Poisson's ratio	0.32	0.24
CTE (ppm/ $^{\circ}\text{C}$)	12.8	3
σ_{ov} (MPa*mm ^{3/m})	—	1190
m_v	—	25

The probability of failure is plotted on a logarithmic scale to illustrate the behavior when the values become increasingly small. The thinner ceramic wall has a larger probability of failure at a small ΔT , but surpasses the thicker ceramic assemblies between -100 and -200 $^{\circ}\text{C}$.

A more informative method of displaying the effects of varying ceramic wall thickness and pre-stress levels is to create failure surfaces for the sheath and ceramic materials (10). This is accomplished by fixing the total wall thickness and varying the ceramic-to-sheath ratio. Also, the pre-stress level can be varied from an unstressed condition to a large magnitude stress. Failure will be calculated by the probability of failure of the ceramic and by a yield failure criterion for the sheath. The resulting plot is illustrated in figure 2. The x -axis is the change in temperature from when the sheath makes initial contact with the ceramic for a shrink-fit operation. The y -axis is the ratio of the ceramic wall thickness to total wall thickness (0% is a steel tube with no ceramic and 100% is all ceramic with no sheath). The color codes are for the log of the probability of failure—zero is a P_f of 100% or zero chance of success, negative six is a

^{*} Mathcad is a registered trademark of Mathsoft.

Figure 1. Probability of failure for a steel-sheathed silicon nitride tube with an internal pressure of 500 MPa. The three curves are for different ceramic wall thickness for a tube with an ID of 10 cm, an OD of 20 cm, and a length of 1 m.

Figure 2. Failure surface for a pressurized tube. The yellow is ceramic failure, green is the sheathing failure, and red and purple are the optimal designs.

one in 1 million chance of failure. Also, the sheathing material can be evaluated for failure as well, allowing for the determination of an optimal design space for the system. For the materials selected here, a Von Mises yield criterion was used to calculate failure in the sheathing layer. When the sheathing failure criterion is met, the value is boosted to a value of one to separate it from the ceramic failures ($\log(P_f)$ is always less than or equal to zero).

For this example, the design space with the optimal chance of success would be to have the wall thickness between 20%–40% ceramic and a ΔT of –300 to –375 °C.

3. Summary

This work derived equations for calculating the effective area and volume and the probability of failure for a ceramic tube subjected to internal and external pressure. The equations have been connected to an elasticity model to calculate the probability of failure for a sheathed ceramic tube. By combining the probability of failure for the ceramic and a failure criterion for the sheath, maps of the optimal design spaces can be generated. A sample calculation demonstrated the ability to model a pressurized, sheathed tube with varying amounts of thermal expansion mismatch.

4. References

1. Weibull, W. A Statistical Theory of the Strength of Materials. *Proceedings of the Royal Swedish Institute of Engineering Research*, 1939, Vol. 151, pp 1–45.
2. ASTM C 1239-00. Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics. *Annu. Book ASTM Stand.* **2004**.
3. Jadaan, O. M.; Shelleman, D. L.; Conway, J. C., Jr.; Mecholsky, J. J., Jr.; Tressler, R. E. Prediction of the Strength of Ceramic Tubular Components: Part I—Analysis. *Journal of Testing and Evaluation* **1991**, *19* (3), 181–191.
4. Timoshenko, S. P.; Goodier, J. N. Two-Dimensional Problems in Polar Coordinates. In *Theory of Elasticity*; 3rd ed.; McGraw-Hill: New York, NY, 1987; pp 68–71.
5. Johnson, C. A. *Fracture Statistics in Design and Application*; Report No. 79CRD212; General Electric: Schenectady, NY, 1979.
6. Herakovich, C. T. Laminated Tubes. In *Mechanics of Fibrous Composites*; John Wiley & Sons: New York, NY, 1998, 362–401.
7. Rousseau, C. Stresses and Deformations in Angle-Ply Composite Tubes. Master Thesis, Virginia Tech, Blacksburg, VA, 1987.
8. Rousseau, C.; Hyer, M.; Tompkins, S. *Stresses and Deformations in Angle-Ply Composite Tubes*; CCMS-87-04; Virginia Tech: Blacksburg, VA, 1987.
9. Eduljee, R. F.; Gillespie, J. W. Elastic Response of Post- and In Situ Consolidated Laminated Cylinders. *Composites: Part A* **1996**, *27A*, 437–446.
10. Carter, R. Model Development for Parametric Design of Pressurized Ceramic Tubing. *Ceramic Engineering & Science Proceedings* **2003**, *24* (4), 477–482.

NO. OF
COPIES ORGANIZATION

1 DEFENSE TECHNICAL
(PDF INFORMATION CTR
ONLY) DTIC OCA
8725 JOHN J KINGMAN RD
STE 0944
FORT BELVOIR VA 22060-6218

1 US ARMY RSRCH DEV &
ENGRG CMD
SYSTEMS OF SYSTEMS
INTEGRATION
AMSRD SS T
6000 6TH ST STE 100
FORT BELVOIR VA 22060-5608

1 INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS
AT AUSTIN
3925 W BRAKER LN
AUSTIN TX 78759-5316

1 DIRECTOR
US ARMY RESEARCH LAB
IMNE ALC IMS
2800 POWDER MILL RD
ADELPHI MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRD ARL CI OK TL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

3 DIRECTOR
US ARMY RESEARCH LAB
AMSRD ARL CS IS T
2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

1 DIR USARL
AMSRD ARL CI OK TP (BLDG 4600)

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL SE DE R ATKINSON 2800 POWDER MILL RD ADELPHI MD 20783-1197	13	COMMANDER US ARMY ARDEC AMSTA AR CCH A F ALTAMURA M NICOLICH M PALATHINGUL D VO R HOWELL A VELLA M YOUNG L MANOLE S MUSALLI R CARR M LUCIANO E LOGSDEN T LOUZEIRO PICATINNY ARSENAL NJ 07806-5000
5	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL WM MB A ABRAHAMIAN M BERMAN M CHOWDHURY T LI E SZYMANSKI 2800 POWDER MILL RD ADELPHI MD 20783-1197		
1	COMMANDER US ARMY MATERIEL CMD AMXMI INT 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001	1	COMMANDER US ARMY ARDEC AMSTA AR CCH P J LUTZ PICATINNY ARSENAL NJ 07806-5000
2	PM MAS SFAE AMO MAS MC PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR FSF T C LIVECCHIA PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR CC COL JENKER PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA ASF PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR FSE PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR QAC T C J PAGE PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR TD PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR M D DEMELLA PICATINNY ARSENAL NJ 07806-5000

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
3	COMMANDER US ARMY ARDEC AMSTA AR FSA A WARNASH B MACHAK M CHIEFA PICATINNY ARSENAL NJ 07806-5000	1	PM ARMS SFAE GCSS ARMS BLDG 171 PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR FSP G M SCHIKSNIS D CARLUCCI PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY ARDEC AMSTA AR WEA J BRESCIA PICATINNY ARSENAL NJ 07806-5000
2	COMMANDER US ARMY ARDEC AMSTA AR CCH C H CHANIN S CHICO PICATINNY ARSENAL NJ 07806-5000	1	PM MAS SFAE AMO MAS PICATINNY ARSENAL NJ 07806-5000
1	COMMANDER US ARMY ARDEC AMSTA AR QAC T D RIGOGLIOSO PICATINNY ARSENAL NJ 07806-5000	1	PM MAS SFAE AMO MAS PS PICATINNY ARSENAL NJ 07806-5000
1	US ARMY ARDEC INTELLIGENCE SPECIALIST AMSTA AR WEL F M GUERRIERE PICATINNY ARSENAL NJ 07806-5000	2	PM MAS SFAE AMO MAS LC PICATINNY ARSENAL NJ 07806-5000
9	COMMANDER US ARMY ARDEC AMSTA AR CCH B P DONADIA F DONLON P VALENTI C KNUTSON G EUSTICE K HENRY J MCNABOC R SAYER F CHANG PICATINNY ARSENAL NJ 07806-5000	1	COMMANDER US ARMY TACOM PM COMBAT SYSTEMS SFAE GCS CS 6501 ELEVEN MILE RD WARREN MI 48397-5000
		1	COMMANDER US ARMY TACOM AMSTA SF WARREN MI 48397-5000
		1	DIRECTOR AIR FORCE RESEARCH LAB MLLMD D MIRACLE 2230 TENTH ST WRIGHT PATTERSON AFB OH 45433-7817

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	OFC OF NAVAL RESEARCH J CHRISTODOULOU ONR CODE 332 800 N QUINCY ST ARLINGTON VA 22217-5600	1	US ARMY COLD REGIONS RSCH & ENGRNG LAB P DUTTA 72 LYME RD HANOVER NH 03755
1	COMMANDER US ARMY TACOM PM SURVIVABLE SYSTEMS SFAE GCSS W GSI H M RYZYI 6501 ELEVEN MILE RD WARREN MI 48397-5000	13	COMMANDER US ARMY TACOM AMSTA TR R R MCCLELLAND D THOMAS J BENNETT D HANSEN AMSTA JSK S GOODMAN J FLORENCE D TEMPLETON A SCHUMACHER AMSTA TR D D OSTBERG L HINOJOSA B RAJU AMSTA CS SF H HUTCHINSON F SCHWARZ WARREN MI 48397-5000
1	COMMANDER US ARMY TACOM CHIEF ABRAMS TESTING SFAE GCSS W AB QT T KRASKIEWICZ 6501 ELEVEN MILE RD WARREN MI 48397-5000		
1	COMMANDER WATERVLIET ARSENAL SMCWV QAE Q B VANINA BLDG 44 WATERVLIET NY 12189-4050	14	BENET LABS AMSTA AR CCB R FISCELLA M SOJA E KATHE M SCAVULO G SPENCER P WHEELER S KRUPSKI J VASILAKIS G FRIAR R HASENBEIN AMSTA CCB R S SOPOK E HYLAND D CRAYON R DILLON WATERVLIET NY 12189-4050
2	HQ IOC TANK AMMUNITION TEAM AMSIO SMT R CRAWFORD W HARRIS ROCK ISLAND IL 61299-6000		
2	COMMANDER US ARMY AMCOM AVIATION APPLIED TECH DIR J SCHUCK FORT EUSTIS VA 23604-5577		
1	NSWC DAHlgren DIV CODE G06 DAHlgren VA 22448		
2	US ARMY CORPS OF ENGR CERD C T LIU CEW ET T TAN 20 MASSACHUSETTS AVE NW WASHINGTON DC 20314	1	USA SBCCOM PM SOLDIER SPT AMSSB PM RSS A J CONNORS KANSAS ST NATICK MA 01760-5057

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	NSWC TECH LIBRARY CODE B60 17320 DAHLGREN RD DAHLGREN VA 22448	1	NAVAL SEA SYSTEMS CMD D LIESE 1333 ISAAC HULL AVE SE 1100 WASHINGTON DC 20376-1100
2	USA SBCCOM MATERIAL SCIENCE TEAM AMSSB RSS J HERBERT M SENNETT KANSAS ST NATICK MA 01760-5057	7	US ARMY SBCCOM SOLDIER SYSTEMS CENTER BALLISTICS TEAM J WARD W ZUKAS P CUNNIFF J SONG MARINE CORPS TEAM J MACKIEWICZ AMSSB RCP SS W NYKVIST S BEAUDOIN KANSAS ST NATICK MA 01760-5019
2	OFC OF NAVAL RESEARCH D SIEGEL CODE 315 J KELLY 800 N QUINCY ST ARLINGTON VA 22217-5560	7	US ARMY RESEARCH OFC A CROWSON H EVERITT J PRATER G ANDERSON D STEPP D KISEROW J CHANG PO BOX 12211 RESEARCH TRIANGLE PARK NC 27709-2211
1	NSWC CRANE DIVISION M JOHNSON CODE 20H4 LOUISVILLE KY 40214-5245	1	AFRL MLBC 2941 P ST RM 136 WRIGHT PATTERSON AFB OH 45433-7750
2	NSWC U SORATHIA C WILLIAMS CODE 6551 9500 MACARTHUR BLVD WEST BETHESDA MD 20817	1	DIRECTOR LOS ALAMOS NATL LAB F L ADDESSIO T 3 MS 5000 PO BOX 1633 LOS ALAMOS NM 87545
2	COMMANDER NSWC CARDEROCK DIVISION R PETERSON CODE 2020 M CRITCHFIELD CODE 1730 BETHESDA MD 20084	8	NSWC J FRANCIS CODE G30 D WILSON CODE G32 R D COOPER CODE G32 J FRAYSSE CODE G33 E ROWE CODE G33 T DURAN CODE G33 L DE SIMONE CODE G33 R HUBBARD CODE G33 DAHLGREN VA 22448
8	DIRECTOR US ARMY NGIC D LEITER MS 404 M HOLTUS MS 301 M WOLFE MS 307 S MINGLEDORF MS 504 J GASTON MS 301 W GSTATTENBAUER MS 304 R WARNER MS 305 J CRIDER MS 306 2055 BOULDERS RD CHARLOTTESVILLE VA 22911-8318		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	NSWC CARDEROCK DIVISION R CRANE CODE 6553 9500 MACARTHUR BLVD WEST BETHESDA MD 20817-5700	1	OAK RIDGE NATL LAB R M DAVIS PO BOX 2008 OAK RIDGE TN 37831-6195
1	AFRL MLMP R THOMSON 2977 HOBSON WAY BLDG 653 RM 215 WRIGHT PATTERSON AFB OH 45433-7739	1	OAK RIDGE NATL LAB C EBERLE MS 8048 PO BOX 2008 OAK RIDGE TN 37831
2	AFRL MLMP F ABRAMS J BROWN 2977 HOBSON WAY BLDG 653 RM 215 WRIGHT PATTERSON AFB OH 45433-7739	3	DIRECTOR SANDIA NATL LABS APPLIED MECHS DEPT MS 9042 J HANDROCK Y R KAN J LAUFFER PO BOX 969 LIVERMORE CA 94551-0969
5	DIRECTOR LLNL R CHRISTENSEN S DETERESA F MAGNESS M FINGER MS 313 M MURPHY L 282 PO BOX 808 LIVERMORE CA 94550	1	OAK RIDGE NATL LAB C D WARREN MS 8039 PO BOX 2008 OAK RIDGE TN 37831
1	AFRL MLS OL L COULTER 5851 F AVE BLDG 849 RM AD1A HILL AFB UT 84056-5713	4	NIST M VANLANDINGHAM MS 8621 J CHIN MS 8621 J MARTIN MS 8621 D DUTHINH MS 8611 100 BUREAU DR GAITHERSBURG MD 20899
1	OSD JOINT CCD TEST FORCE OSD JCCD R WILLIAMS 3909 HALLS FERRY RD VICKSBURG MS 29180-6199	1	HYDROGEOLOGIC INC SERDP ESTCP SPT OFC S WALSH 1155 HERNDON PKWY STE 900 HERNDON VA 20170
3	DARPA M VANFOSSEN S WAX L CHRISTODOULOU 3701 N FAIRFAX DR ARLINGTON VA 22203-1714	3	NASA Langley Research CTR AMSRD ARL VT W ELBER MS 266 F BARTLETT JR MS 266 G FARLEY MS 266 HAMPTON VA 23681-0001
		1	FHWA E MUNLEY 6300 GEORGETOWN PIKE MCLEAN VA 22101

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	USDOT FEDERAL RAILROAD M FATEH RDV 31 WASHINGTON DC 20590	1	SIMULA R HUYETT 10016 S 51ST ST PHOENIX AZ 85044
3	CYTEC FIBERITE R DUNNE D KOHLI R MAYHEW 1300 REVOLUTION ST HAVRE DE GRACE MD 21078	2	PROTECTION MATERIALS INC M MILLER F CRILLEY 14000 NW 58 CT MIAMI LAKES FL 33014
1	DIRECTOR NGIC IANG TMT 2055 BOULDERS RD CHARLOTTESVILLE VA 22911-8318	2	FOSTER MILLER M ROYLANCE W ZUKAS 195 BEAR HILL RD WALTHAM MA 02354-1196
2	3TEX CORP A BOGDANOVICH J SINGLETON 109 MACKENAN DR CARY NC 27511	1	ROM DEVELOPMENT CORP R O MEARA 136 SWINEBURNE ROW BRICK MARKET PLACE NEWPORT RI 02840
1	DIRECTOR DEFENSE INTLGNC AGNCY TA 5 K CRELLING WASHINGTON DC 20310	2	TEXTROL SYSTEMS M TREASURE T FOLTZ 1449 MIDDLESEX ST LOWELL MA 01851
1	COMPOSITE MATERIALS INC D SHORTT 19105 63 AVE NE PO BOX 25 ARLINGTON WA 98223	1	O GARA HESS & EISENHARDT M GILLESPIE 9113 LESAIN DR FAIRFIELD OH 45014
1	JPS GLASS L CARTER PO BOX 260 SLATER RD SLATER SC 29683	1	MILLIKEN RESEARCH CORP M MACLEOD PO BOX 1926 SPARTANBURG SC 29303
1	COMPOSITE MATERIALS INC R HOLLAND 11 JEWEL CT ORINDA CA 94563	1	CONNEAUGHT INDUSTRIES INC J SANTOS PO BOX 1425 COVENTRY RI 02816
1	COMPOSITE MATERIALS INC C RILEY 14530 S ANSON AVE SANTA FE SPRINGS CA 90670	1	ARMTEC DEFENSE PRODUCTS S DYER 85 901 AVE 53 PO BOX 848 COACHELLA CA 92236

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
3	PACIFIC NORTHWEST LAB M SMITH G VAN ARSDALE R SHIPPELL PO BOX 999 RICHLAND WA 99352	5	NORTHROP GRUMMAN B IRWIN K EVANS D EWART A SHREKENHAMER J MCGLYNN BLDG 160 DEPT 3700 1100 W HOLLYVALE ST AZUSA CA 91701
1	ALLIANT TECHSYSTEMS INC 4700 NATHAN LN N PLYMOUTH MN 55442-2512	1	BRIGS COMPANY J BACKOFEN 2668 PETERBOROUGH ST HERNDON VA 22071-2443
1	APPLIED COMPOSITES W GRISCH 333 NORTH SIXTH ST ST CHARLES IL 60174	1	ZERNOW TECHNICAL SERVICES L ZERNOW 425 W BONITA AVE STE 208 SAN DIMAS CA 91773
1	CUSTOM ANALYTICAL ENG SYS INC A ALEXANDER 13000 TENSOR LANE NE FLINTSTONE MD 21530	2	GENERAL DYNAMICS OTS FLINCHBAUGH DIV K LINDE T LYNCH PO BOX 127 RED LION PA 17356
1	AAI CORP DR N B MCNELLIS PO BOX 126 HUNT VALLEY MD 21030-0126	1	GKN WESTLAND AEROSPACE D OLDS 450 MURDOCK AVE MERIDEN CT 06450-8324
1	OFC DEPUTY UNDER SEC DEFNS J THOMPSON 1745 JEFFERSON DAVIS HWY CRYSTAL SQ 4 STE 501 ARLINGTON VA 22202	5	SIKORSKY AIRCRAFT G JACARUSO T CARSTENSAN B KAY S GARBO MS S330A JADELMANN 6900 MAIN ST PO BOX 9729 STRATFORD CT 06497-9729
3	ALLIANT TECHSYSTEMS INC J CONDON E LYNAM J GERHARD WV01 16 STATE RT 956 PO BOX 210 ROCKET CENTER WV 26726-0210	1	AEROSPACE CORP G HAWKINS M4 945 2350 E EL SEGUNDO BLVD EL SEGUNDO CA 90245
1	PROJECTILE TECHNOLOGY INC 515 GILES ST HAVRE DE GRACE MD 21078	2	CYTEC FIBERITE M LIN W WEB 1440 N KRAEMER BLVD ANAHEIM CA 92806
1	PRATT & WHITNEY C WATSON 400 MAIN ST MS 114 37 EAST HARTFORD CT 06108		

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
2	UDLP G THOMAS M MACLEAN PO BOX 58123 SANTA CLARA CA 95052	6	INST FOR ADVANCED TECH H FAIR I MCNAB P SULLIVAN S BLESS W REINECKE C PERSAD 3925 W BRAKER LN STE 400 AUSTIN TX 78759-5316
2	UDLP R BRYNSVOLD P JANKE MS 170 4800 E RIVER RD MINNEAPOLIS MN 55421-1498	1	ARROW TECH ASSOC 1233 SHELBOURNE RD STE D8 SOUTH BURLINGTON VT 05403-7700
1	LOCKHEED MARTIN SKUNK WORKS D FORTNEY 1011 LOCKHEED WAY PALMDALE CA 93599-2502	1	R EICELBERGER CONSULTANT 409 W CATHERINE ST BEL AIR MD 21014-3613
1	NORTHROP GRUMMAN CORP ELECTRONIC SENSORS & SYSTEMS DIV E SCHOCH MS V 16 1745A W NURSERY RD LINTHICUM MD 21090	1	SAIC G CHRYSSOMALLIS 8500 NORMANDALE LAKE BLVD SUITE 1610 BLOOMINGTON MN 55437-3828
1	GDLS DIVISION D BARTLE PO BOX 1901 WARREN MI 48090	1	UCLA MANE DEPT ENGR IV H T HAHN LOS ANGELES CA 90024-1597
2	GDLS D REES M PASIK PO BOX 2074 WARREN MI 48090-2074	1	UMASS LOWELL PLASTICS DEPT N SCHOTT 1 UNIVERSITY AVE LOWELL MA 01854
1	GDLS MUSKEGON OPER M SOIMAR 76 GETTY ST MUSKEGON MI 49442	1	IIT RESEARCH CTR D ROSE 201 MILL ST ROME NY 13440-6916
1	GENERAL DYNAMICS AMPHIBIOUS SYS SURVIVABILITY LEAD G WALKER 991 ANNAPOLIS WAY WOODBRIDGE VA 22191	1	GA TECH RESEARCH INST GA INST OF TCHNLGY P FRIEDERICH ATLANTA GA 30392
		1	MICHIGAN ST UNIV MSM DEPT R AVERILL 3515 EB EAST LANSING MI 48824-1226

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	PENN STATE UNIV R S ENGEL 245 HAMMOND BLDG UNIVERSITY PARK PA 16801	1	MISSISSIPPI STATE UNIV DEPT OF AEROSPACE ENGRG A J VIZZINI MISSISSIPPI STATE MS 39762
1	PENN STATE UNIV C BAKIS 212 EARTH ENGR SCIENCES BLDG UNIVERSITY PARK PA 16802	1	DREXEL UNIV A S D WANG 3141 CHESTNUT ST PHILADELPHIA PA 19104
1	PURDUE UNIV SCHOOL OF AERO & ASTRO C T SUN W LAFAYETTE IN 47907-1282	3	UNIV OF TEXAS AT AUSTIN CTR FOR ELECTROMECHANICS J PRICE A WALLS J KITZMILLER 10100 BURNET RD AUSTIN TX 78758-4497
1	UNIV OF MAINE ADV STR & COMP LAB R LOPEZ ANIDO 5793 AEWC BLDG ORONO ME 04469-5793	1	SOUTHWEST RESEARCH INST ENGR & MATL SCIENCES DIV J RIEGEL 6220 CULEBRA RD PO DRAWER 28510 SAN ANTONIO TX 78228-0510
1	JOHNS HOPKINS UNIV APPLIED PHYSICS LAB P WIENHOLD 11100 JOHNS HOPKINS RD LAUREL MD 20723-6099	3	DIRECTOR US ARMY RESEARCH LAB AMSRD ARL WM MB A FRYDMAN 2800 POWDER MILL RD ADELPHI MD 20783-1197
1	UNIV OF DAYTON J M WHITNEY COLLEGE PARK AVE DAYTON OH 45469-0240		<u>ABERDEEN PROVING GROUND</u>
5	UNIV OF DELAWARE CTR FOR COMPOSITE MTRLS J GILLESPIE M SANTARE S YARLAGADDA S ADVANI D HEIDER 201 SPENCER LAB NEWARK DE 19716	1	US ARMY ATC CSTE DTC AT AC I W C FRAZER 400 COLLERAN RD APG MD 21005-5059
1	DEPT OF MTRLS SCIENCE & ENGRG UNIV OF ILLINOIS AT URBANA CHAMPAIGN J ECONOMY 1304 W GREEN ST 115B URBANA IL 61801	88	DIR USARL AMSRD ARL CI AMSRD ARL O AP EG M ADAMSON AMSRD ARL SL BA AMSRD ARL SL BB D BELY AMSRD ARL WM J SMITH AMSRD ARL WM B CHIEF T KOGLER AMSRD ARL WM BA D LYON

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
	AMSRD ARL WM BC J NEWILL P PLOSTINS		E RIGAS W SPURGEON
	AMSRD ARL WM BD P CONROY B FORCH M LEADORE C LEVERITT R LIEB R PESCE-RODRIGUEZ B RICE A ZIELINSKI		AMSRD ARL WM MD B CHEESEMAN P DEHMER R DOOLEY G GAZONAS S GHIORSE M KLUSEWITZ W ROY J SANDS D SPAGNUOLO
	AMSRD ARL WM BF S WILKERSON		S WALSH S WOLF
	AMSRD ARL WM M J MCCUALEY S MCKNIGHT		AMSRD ARL WM RP J BORNSTEIN C SHOEMAKER
	AMSRD ARL WM MA CHIEF L GHIORSE E WETZEL		AMSRD ARL WM T B BURNS
	AMSRD ARL WM MB J BENDER T BOGETTI J BROWN L BURTON R CARTER K CHO W DE ROSSET G DEWING R DOWDING W DRYSDALE R EMERSON D GRAY D HOPKINS R KASTE L KECSKES M MINNICINO B POWERS D SNOHA J SOUTH M STAKER J SWAB J TZENG		AMSRD ARL WM TA W BRUCHEY M BURKINS W GILLICH B GOOCH T HAVEL C HOPPEL E HORWATH J RUNYEON M ZOLTOSKI
	AMSRD ARL WM MC CHIEF R BOSSOLI E CHIN S CORNELISON D GRANVILLE B HART J LASALVIA J MONTGOMERY F PIERCE		AMSRD ARL WM TB P BAKER AMSRD ARL WM TC R COATES AMSRD ARL WM TD D DANDEKAR M RAFTENBERG S SCHOENFELD T WEERASOORIYA AMSRD ARL WM TE CHIEF J POWELL

<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>	<u>NO. OF COPIES</u>	<u>ORGANIZATION</u>
1	LTD R MARTIN MERL TAMWORTH RD HERTFORD SG13 7DG UK	1	DEF RES ESTABLISHMENT VALCARTIER A DUPUIS 2459 BLVD PIE XI NORTH VALCARTIER QUEBEC CANADA PO BOX 8800 COURCELETTE GOA IRO QUEBEC CANADA
1	CIVIL AVIATION ADMINISTRATION T GOTTESMAN PO BOX 8 BEN GURION INTRNL AIRPORT LOD 70150 ISRAEL	1	ECOLE POLYTECH J MANSON DMX LTC CH 1015 LAUSANNE SWITZERLAND
1	AEROSPATIALE S ANDRE A BTE CC RTE MD132 316 ROUTE DE BAYONNE TOULOUSE 31060 FRANCE	1	TNO DEFENSE SECURITY & SAFETY R R IJSSELSTEIN PO BOX 96864 2509 JG THE HAGUE THE NETHERLANDS
1	DRA FORT HALSTEAD P N JONES SEVEN OAKS KENT TN 147BP UK	2	FOA NATL DEFENSE RESEARCH ESTAB DIR DEPT OF WEAPONS & PROTECTION B JANZON R HOLMLIN S 172 90 STOCKHOLM SWEDEN
1	SWISS FEDERAL ARMAMENTS WKS W LANZ ALLMENDSTRASSE 86 3602 THUN SWITZERLAND	2	DEFENSE TECH & PROC AGENCY GROUND I CREWTHER GENERAL HERZOG HAUS 3602 THUN SWITZERLAND
1	DYNAMEC RESEARCH LAB AKE PERSSON BOX 201 SE 151 23 SODERTALJE SWEDEN	1	MINISTRY OF DEFENCE RAFAEL ARMAMENT DEVELOPMENT AUTH M MAYSELESS PO BOX 2250 HAIFA 31021 ISRAEL
1	ISRAEL INST OF TECHLGY S BODNER FACULTY OF MECHANICAL ENGR HAIFA 3200 ISRAEL	1	B HIRSCH TACHKEMONY ST 6 NETAMUA 42611 ISRAEL
1	DSTO WEAPONS SYSTEMS DIVISION N BURMAN RLLWS SALISBURY SOUTH AUSTRALIA 5108 AUSTRALIA		

NO. OF
COPIES ORGANIZATION

1 DEUTSCHE AEROSPACE AG
DYNAMICS SYSTEMS
M HELD
PO BOX 1340
D 86523 SCHROBENHAUSEN
GERMANY