

Model Name: T260XW04 V7 SKD

MOUEI Mai	iiie. i	200XWU4 V / SI	ND						
Is	sue Dat	e : 2013/1/24	5/30						
		ry Specifications cifications	313/05/30						
Customer Signature	Date	AUO 15	Date						
Approved By		Approvat By PM Director							
Note	of Difference	Reviewed By RD Director							
Note Soft dential se		Reviewed By Project Leader							
HIO		Prepared By PM White Line							

CONTENTS

1.	GEN	IERAL DESCRIPTION	4
2.	ABS	OLUTE MAXIMUM RATINGS	5
3.	ELE	CTRICAL SPECIFICATION	6
	3.1	ELECTRICAL CHARACTERISTICS	
	3.1.1	\	
	3.1.2	A.C. Change description	` 7
	3.1.3	95/	7
	3.2	Interface Connections.	11
	3.2.1	T-Con Board Pin Map LVDS Option SIGNAL TIMING SPECIFICATION	11
	3.2.2	LVDS Option	12
	3.3	SIGNAL TIMING SPECIFICATION	13
	3.4	SIGNAL TIMING WAVEFORMS. COLOR INPUT DATA REFERENCE	14
	3.5	COLOR INPUT DATA REFERENCE	15
	3.6	POWER SEQUENCE FOR LCD.	10
4.	OPT	TICAL SPECIFICATION	17
5.	MEC	CHANICAL CHARACTERISTICS	21
6.	PAC	KING	22
7.	PRE	COLOR INPUT DATA REFERENCE POWER SEQUENCE FOR LCD ICAL SPECIFICATION CHANICAL CHARACTERISTICS KING CAUTIONS MOUNTING PRECAUTIONS	24
	7.1	MOUNTING PRECAUTIONS	24
	7.2	OPERATING PRECAUTIONS	24
	7.3	ELECTROSTATIC DISCHARGE CONTROL	
	7.4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE	
	7.5	STORAGE	
	7.6	HANDLING PRECAUTIONS FOR PROTECTION FILM OF POLARIZER	25

RECORD OF REVISION

Version	Date	Page	Description
1.0	2013/1/24		First release
			001
			201
			73,
			, 2
			115
			(2)
			~<
		ς	
		. 2	
	×		
	ariden	7	
	6.70		
٠	TI.		
	\mathcal{S}		

1. General Description

This specification applies to the 26.0 inch Color TFT-LCD SKD model T260XW04 V7. This Open Cell Unit has a TFT active matrix type liquid crystal panel 768x 1366 pixels, and diagonal size of 26.0 inch. This Open Cell Unit supports 768x 1366 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for 2013/05/30 each dot.

* General Information

Items	Specification	Unit	Note
Active Screen Size	26.0	inch	131
Display Area	575.769 (H) x 323.712 (V)	mm (IV.
Outline Dimension	599.279 (H) X 383.962 (V) x 1.82 (D)	mm	D: cell thickness
Driver Element	a-Si TFT active matrix	15	
Display Colors	8 bit,16.7M	Colors	
Number of Pixels	768 x 1366	Pixel	
Pixel Pitch	0.4215 (H) x 0.4215 (W)	mm	
Pixel Arrangement	RGB Horizontal stripe		
Display Operation Mode	Normally Black		
Surface Treatment	Anti-Glare, 3H		Haze=2%
Weight	3.72kg	g	
Rotate Function	Achievable		Note 1
Display Orientation	Signal input with "ABC"		Note 2

Note 1: Rotate Function refers to LCD display could be able to rotate. Note 2: LCD display as below illustrated when signal input with "ABC".

Front side Rear side ABC Tcon board

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	V_{DD}	-0.3	14	[Volt] DC	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt] _{DC}	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH] 🤇	Note 2
Panel Surface Temperature	PST		65	[°C]\	Note 3

Note 1: Duration:1 sec.

Note 2 : Maximum Wet-Bulb should be 39℃ and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 3: Surface temperature is measured at 50°C Dry condition

3. Electrical Specification

The T260XW04 V7 Open Cell Unit requires power input which is employed to power the LCD electronics and to drive the TFT array and liquid crystal.

3.1 Electrical Characteristics

3.1.1 DC Characteristics

1.1 DC Characteristics							
Daramatar	Cumbal		Value		Lloit	Note	
rarameter	Symbol	Min.	Тур.	Max	Unit	NOLE	
				Α.	3/		
oly Input Voltage	V_{DD}	10.8	12	13.2	V _{DC}		
oly Input Current	I _{DD}		0.27	0.35	Α	1	
sumption	P _C		3.24	4.2	Watt	1	
ent	I _{RUSH}		-01	3.0	Α	2	
Ripple of Power Supply Input Voltage	V_{RP}		\&- - -	V _{DD} * 5%	mV_{pk-pk}	3	
Differential Input High Threshold Voltage	V _{TH}	7	?	+100	mV_{DC}	4	
Differential Input Low Threshold Voltage	V _{TL}	-100			mV _{DC}	4	
Input Common Mode Voltage	Vicm	1.1	1.25	1.4	V _{DC}	4	
Input High Threshold Voltage	V _{IH} (High)	2.7		3.3	V_{DC}	5	
Input Low Threshold Voltage	V _{IL} (Low)	0		0.6	V_{DC}	5	
ontidential for							
	Parameter Oly Input Voltage Oly Input Current Sumption ent Ripple of Power Supply Input Voltage Differential Input High Threshold Voltage Differential Input Low Threshold Voltage Input Common Mode Voltage Input High Threshold Voltage Input Low Threshold Voltage	Parameter Symbol Oly Input Voltage Oly Input Current Sumption ent Ripple of Power Supply Input Voltage Differential Input High Threshold Voltage Differential Input Low Threshold Voltage Input Common Mode Voltage Input High Threshold Voltage Input High Threshold Voltage Input Low Threshold Voltage	Parameter Symbol Min. Oly Input Voltage Oly Input Current Sumption ent PC Ripple of Power Supply Input Voltage Differential Input High Threshold Voltage Differential Input Low Threshold Voltage Input Common Mode Voltage Viet Input High Threshold Voltage Viet Input High Threshold Voltage Input Low Threshold Voltage	Parameter Symbol Min. Typ. Dily Input Voltage Dily Input Current Sumption ent Pipple of Power Supply Input Voltage Differential Input High Threshold Voltage Differential Input Low Threshold Voltage Input Common Mode Voltage Input High Threshold Voltage Input High Threshold Voltage Input High Threshold Voltage Input Low Threshold Vol	Name	Parameter Symbol Walue Unit	

3.1.2 AC Characteristics

	Parameter	Symbol		Value		Unit	Note
	raiametei	Symbol	Min.	Тур.	Max	Offic	Note
	Input Channel Pair Skew Margin (only for TCON: 12403U1, 12405)	t _{SKEW (CP)}	-500		+500	ps	6
LVDS Interface	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%		Fclk +3%	MHz	20
	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30		200	KHŦ	7
	Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5		0.4	ns	8

3.1.3 DRIVER CHARACTERISTICS

	T	T											
ltem	Symbol	Min	Max	Unit	condition								
Driver Surface Temperature	DST		100	[℃]	Note								
Note: Any point on the driver surface must be less than 100°C under any conditions.													
HIO CORP. Adent. Ad. F. Or. District.													
MO CORTIDENTIA													

Note:

- 1. Test Condition:
 - (1) $V_{DD} = 12.0V$
 - (2) Fv = 60Hz
 - (3) Fclk= Max freq.
 - (4) Temperature = 25 °C
 - (5) Typ. Input current : White Pattern
- 2. Measurement condition: Rising time = 400us

- 3. Test Condition:
- 14/2013/05/30 (1) The measure point of V_{RP} is in LCM side after connecting the System Board and LCM.
 - (2) Under Max. Input current spec. condition.
- **4.** $V_{ICM} = 1.25V$

5. The measure points of V_{IH} and V_{IL} are in LCM side after connecting the System Board and LCM.

6. Input Channel Pair Skew Margin.

Note: x = 0, 1, 2, 3, 4

7. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures.

8. Receiver Data Input Margin

Parameter	Symbol		Rating								
Parameter	Symbol	Min	Туре	Max	Unit	Note					
Input Clock Frequency	Fclk	Fclk (min)	-	Fclk (max)	MHz	T=1/Fclk					
Input Data Position0	tRIP1	- tRMG	0	tRMG	ns						
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns						
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns	00,					
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns	6					
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns	0.2.					
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	กร	\					
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns						

3.2 Interface Connections

3.2.1 T-Con Board Pin Map

• LCD connector: 093G30-B0001A-1 (starconn, LVDS connector)

Mating connector:

vialing	connector.	
PIN	Symbol	Description
1	V_{DD}	Power Supply, +12V DC Regulated
2	V_{DD}	Power Supply, +12V DC Regulated
3	V_{DD}	Power Supply, +12V DC Regulated
4	V_{DD}	Power Supply, +12V DC Regulated
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	LVDS_SEL	Open/High(3.3V) for NS, Low(GND) for JEIDA
10	N.C.	AUO Internal Use Only
11	GND	Ground
12	CH1_0-	LVDS Channel 1, Signal 0-
13	CH1_0+	LVDS Channel 1, Signal 0+
14	GND	Ground
15	CH1_1-	LVDS Channel 1, Signal 1-
16	CH1_1+	LVDS Channel 1, Signal 1+
17	GND	Ground
18	CH1_2-	LVDS Channel 1, Signal 2-
19	CH1_2+	LVDS Channel 1, Signal 2+
20	GND	Ground
21	CH1_CLK-	LVDS Channel 1, Clock -
22	CH1_CLK+	LVDS Channel 1, Clock +
23	GND	Ground
24	CH1_3-	LVDS Channel 1, Signal 3-
25	CH1_3+	LVDS Channel 1, Signal 3+
26	GND	Ground
27	N.C.	AUO Internal Use Only
28	N.C.	AUO Internal Use Only
29	GND	Ground
30	GND	Ground

3.2.2 LVDS Option

LVDS Option = High/Open→NS

LVDS Option = Low→JEIDA

Note: x = 1, 2, 3, 4...

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table (DE only Mode)

Signal	Item	Symbol	Min.	Тур.	Max	Unit	
	Period	Tv	784	810	1015	(Th	
Vertical Section	Active	Tdisp (v)		768	<		
	Blanking	Tblk (v)	16	42	247	Th	
	Period	Th	1460	1648	2000	Tclk	
Horizontal Section	Active	Tdisp (h)		1366	19		
	Blanking	Tblk (h)	94	282	634	Tclk	
Clock	Frequency	Fclk=1/Tclk	50	80	86	MHz	
Vertical Frequency	Frequency	Fv	47	60	63	Hz	
Horizontal Frequency	Frequency	Fh	43	48	53	KHz	

Notes:

- (1) Display position is specific by the rise of DE signal only.

 Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2) Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3) If a period of DE "High" is less than 1366 DCLK or less than 768 lines, the rest of the screen displays black.
- (4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

3.4 Signal Timing Waveform

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE

											I	npu	t Co	olor	Data	a									
	Color				RI	ΞD							GRI	EEN	l			BLUE							
	Ooloi	MS	MSB					LSB I			MSB					LS	B	MS	MSB					LSB	
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	B	\ 0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	Q¬	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0\	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	A	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	ſ	B	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	• 0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	4	7	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	À	,1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0,	Q	Ŏ	0	0	0	0	0	0	0	0	0	0	0	0	0
R					••••••				4	1	Y														
	RED(254)	1	1	1	1	1	1	.14	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	J.	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0 ^	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G		Ž	4	\$						4				\$											
	GREEN(254)	0	Q	V O	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	Ø	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В			6			÷								5						ē - - - - -					3
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
2/2	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3.6 Power Sequence for LCD

Davamatar		I India		
Parameter	Min.	Type.	Max.	Unit
t1	0.4		30	ms
t2	0.1	4-70		ms
t3	200	<u> </u>		ms
t4	0*1			ms
t5	0			ms
t6			*2	ms
t7	500			ms
t8	10		50	Ms
t9	0			ms

Note:

(1) t4=0 : concern for residual pattern before BLU turn off.

(2) t6 : voltage of VDD must decay smoothly after power-off. (customer system decide this value)

4. Optical Specification

Optical characteristics are determined after the open cell unit and light source has been 'ON' and stable for approximately 45 minutes in a dark environment at 25 ℃. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of φ and θ equal to 0° .

Fig.1 presents additional information concerning the measurement equipment and method.

<u> </u>							
Parameter	Cumphal	Condition	Values			Llmit	Nistas
Parameter	Symbol	Condition	Min.	Тур.	Max	Unit	Notes
Contrast Ratio	CR	× C	3200	4000			1, 2
White Variation	$\delta_{WHITE(9P)}$	With AUO Module			1.3		1, 3
Response Time (G to G)	Тү	**		6.5		ms	4
Color Chromaticity							5
Red	R_X	O'AL.		0.638			
	R_{Y}	X.		0.335			
Green	G _X 💃	With AUO Module	Тур0.03	0.284			
	Ġ			0.592			
Blue	A_X			0.147			
201	B _Y			0.053			
White	W_{X}			0.280			
	W_{Y}			0.290			
Viewing Angle							1, 6
x axis, right(φ=0°)	θ_{r}			89		degree	
x axis, left(φ=180°)	θ_{l}	With AUO Module		89		degree]
y axis, up(φ=90°)	θ_{u}			89		degree	
y axis, down (φ=270°)	$\theta_{\sf d}$			89		degree	

- 1. Light source here is the BLU of AUO T260XW04 V7 module.
- 2. Contrast Ratio (CR) is defined mathematically as:

Surface Luminance of Lon5

Contrast Ratio = Surface Luminance of Loff5

3. The white variation, δWHITE is defined as:

 $\delta_{WHITE(9P)}$ = Maximum(L_{on1} , L_{on2} ,..., L_{on9})/ Minimum(L_{on1} , L_{on2} ,... L_{on9})

0111/ 2013/05/30
witch 4. Response time T_{Y} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_v =60Hz to optimize.

Me	asured	Target				
Respo	nse Time	0%	25%	50%	75%	100%
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%
Start	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%	

The response time is defined as the following figure and shall be measured by switching the input signal for ATIO CORF. I dentila "any level of gray(bright) " and "any level of gray(dark)".

FIG.3 Response Time

- 5. Light source here is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:
 - A. Measure the "Module" and "BLU" optical spectrums (W, R, G, B).
 - B. Calculate cell spectrum from "Module" and "BLU" spectrums.
 - C. Calculate color chromaticity by using cell spectrum and the spectrum of standard light source "C".
- 6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG4.

FIG.4 Viewing Angle

NO CORFIDERLIA FOR DAINI INTERNAL USE ORINI 2013/05/30

5. Mechanical Characteristics

6. Packing

Open cell shipping label (35*7mm)

3

- 1. S/N Number
- 2. AUO internal use
- 3. Manufactured week
- 4. Model name

Carton Label:

Made in XXXXXX

Carton label location

Packing Process:

Carton: 1130(L)mm*790(W)mm*245(H)mm

Pallet: 1150mm*840mm*138mm

7. Precautions

Please pay attention to the followings when you use this TFT LCD Open Cell unit and strongly recommended to contact AUO if module process advice is required.

7.1 Mounting Precautions

- (1) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the cell. And the frame on which a cell is mounted should have sufficient strength so that external force is not transmitted directly to the cell.
- (2) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (3) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (4) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (5) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (6) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (7) Do not open the case because inside circuits do not have sufficient strength.

7.2 Operating Precautions

- (1) The open cell unit listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer.)
- (4) Brightness/transmittance depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

7.3 Electrostatic Discharge Control

Since a open cell unit is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

7.4 Precautions for Strong Light Exposure

Strong light exposure causes degradation of polarizer and color filter.

7.5 Storage

When storing open cell units as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the open cell unit to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

7.6 Handling Precautions for Protection Film of Polarizer

The protection film of polarizer is still attached on the surface as you receive open cell units. When the protection film is peeled off, static electricity is easily generated on the polarizer surface. This should be peeled off slowly and carefully by people who are electrically grounded and with well on blown equipment or in such a condition, etc.