Recursive Sorting

CSC148, INTRODUCTION TO COMPUTER SCIENCE
DIANE HORTON, SADIA SHARMIN, & JONATHAN CALVER

Splitting lists, divide-and-conquer

Mergesnt + gricksnt both take this strategy:

- 1. **Divide** the input list into smaller lists. •
- 2. Recurse on each smaller list.
- 3. **Combine** the results of each recursive call.

merge pivot mergesort and quicksort

Running time demo

mergesort, quicksort, and insertion s

After daig the on-paper analysis, We van a demo of these and generated this graph:

Worksheet!

How do we analyse the running time of recursive algorithms in general? (Not just for trees.)

Two key parts:

- how long do the non-recursive parts take?
- what is the structure of the recursive calls?

```
def mergesort(lst):
    if len(1st) < 2:
                                         See worksheet
Q3+Q5
        return lst[:]
    else:
        mid = len(lst) // 2
        left = lst[:mid]
        right = lst[mid:]
        left sorted = mergesort(left)
        right sorted = mergesort(right)
        return merge(left sorted, right sorted)
```

Thinking through the recursive calls for mergesort, with a specific n.

O(n) 0(n) (u) Grand Total: mergesort is O (n log n) The picture is the same at the list to decide what to do.

If does the same thing for any list of length n.

worst best : case = case = average case for merges nt

```
See worksheet
                              Q1, Q2 + Q6
def quicksort(lst):
    if len(1st) < 2:
        return lst[:]
    else:
        pivot = lst[0]
        smaller, bigger = partition(lst[1:], pivot)
        smaller sorted = quicksort(smaller)
        bigger sorted = quicksort(bigger)
        return smaller sorted + [pivot] + bigger sorted
```

worst case for Quicksort: work per layer for the non-recursive part is O(n). $\therefore QS is O(u^2) in$ the wrist case.

Could it be better? Yes! We could get a complete + balanced tree of calls. (This happens if, every time, let [0], the pivot, Work per level is is the median.) uly nly n/4 n/4 Now we have only 0 (log n) levels. 0(n) : In this case, total work is O (nlop n).

Quicksort: in theory, a mixed bag

If we always choose a pivot that's an approximate median, then the two partitions are roughly equal, and the running time is $O(n \log(n))$. \equiv we see Sort

If we always choose a pivot that's an approximate min/max, then they two partitions are very unequal, and the running time is $O(n^2)$.

The limitations of Big-Oh

Big-Oh notation is a simplification of running time analysis, and allows us to ignore constants when analysing efficiency.

But constants can make a difference, too!

 $O(n \log n)$ vs. $O(n \log n)$ vs. $O(n^2)$

On average, OS is O(n logn)

Furthermore, the constants for QS are much smaller than MS.

QS is actually better, on average, than MS. (See the graph above.)

In-place quicksort

MUTATING THE INPUT LIST IN A SPACE-EFFICIENT WAY.

Exaple: 10 7 20 30 3 6


```
def quicksort(lst):
    if len(1st) < 2:
        return lst[:]
    else:
        pivot = lst[0]
        smaller, bigger = _partition(lst[1:], pivot)
        smaller sorted = quicksort(smaller)
        bigger sorted = quicksort(bigger)
        return smaller sorted + [pivot] + bigger sorted
```

Simulating slicing with indexes

We often want to operate on just part of a list:

of(lst[start:end])

Rather than create a new list object, we pass in the indexes:

of(lst, start, end)

Simulating slicing with indexes

```
_in_place_partition(lst) →
   _in_place_partition(lst, start, end)

quicksort(lst) →
   in place quicksort(lst, start, end)
```

Lessons in efficiency

A CASE STUDY IN COMPARING SORTING ALGORITHMS

Shuffled input

1. Big-Oh describes behaviour as input size grows

Sorted Input

2. An algorithm can be "good on average" and "bad in the worst case"

3. Big-Oh is *not* good at predicting behaviour on small inputs.

How did wedo - with all that effort? to work inplace

4. Saving space doesn't always mean saving time!

5. Hard work doesn't always mean saving time, either!

6. But sometimes hard work pays off.*

