Optimization of Machine Learning Workloads with Experiment Databases

Behrouz Derakhshan

Behrouz.derakhshan@dfki.de

Experiment Database

- Contains meta-data of machine learning experiments
- Based on Schelter, et al., [1] database schema for storing experiments' meta-data
- Their meta-data extraction system collects information about the datasets, models, transformations, and evaluations

Database schema for storing declarative description of machine learning experiments [1]

Machine Learning Workloads

Next paper Future Work

1. Interactive batch workload

- Multi-user (from tens to thousands of users)
- Primarily consists of repeated data preprocessing and data transformations
- Aggressive Hyperparameter tuning and model evaluation
- Use case: OpenML[2], Kaggle[3]
- Opportunities for Reuse, materialization, multiquery optimization, and warm-starting

2. Incremental Training Workload

- Multi-user (tens of users)
- Incremental improvement of existing data processing pipelines and ML models
- Retrain models and pipelines (typically daily)
- Use case : Industry
- Speed up in data preprocessing, decreasing the search space of hyperparameters, multi-model training, and warm-starting

3. Continuous Training Workload

- Real-time (or near realtime) data processing
- Online ML models
- Use case : Industry
- Speed up in data preprocessing, multimodel training, and fast detection of model quality degradation

The green color indicates how Experiment Database can help in optimizing the specific type of workload

Plan for next Paper

- VLDB 2018 (Deadline: 1st of March)
- Focus on Workload 1 (Interactive batch)
- Plan:
 - Develop a simple database based on [1]
 - Experiment:
 - Focus only on a few frameworks (scikit-learn, R mlr package*)
 - Popular Kaggle competitions, OpenML datasets and tasks
 - Report the reduction in the processing time and the development time
- I currently have a paper under review for SIGMOD2018. Depending on the result of the review, this work may have to be pushed back to SIGMOD2019/VLDB2018

- Early Results:
 - The Most popular pipeline in OpenML (scikitlearn) consists of:
 - Missing Value Imputer
 - Dimensionality reduction using PCA
 - Random Forest Classifier
 - It is repeatedly executed on 100 different tasks (average of 9 times on each task)
 - A simple reuse can save around 2 hours of processing time

This figure may include executions performed by bots, therefore, we cannot reach a conclusion about the reduction on the development time

References

[1] Sebastian Schelter, Joos-Hendrik Böse, Johannes Kirschnick, Thoralf Klein, Stephan Seufert, Automatically Tracking Metadata and Provenance of Machine Learning Experiments, Machine Learning Systems workshop at the conference on Neural Information Processing Systems (NIPS) 2017

[2] https://www.openml.org/

[3] https://www.kaggle.com/