5.24 OUTPUT

Enter the range Lower Limit a - 0
Upper Limit b - 6
Enter number of subintervals - 6
Value of the integral is 1.3662
Press Enter to Exit

EXAMPLES

Example 1. Use Trapezoidal rule to evaluate $\int_0^1 x^3 dx$ considering five sub-intervals.

Sol. Dividing the interval (0, 1) into 5 equal parts, each of width $h = \frac{1-0}{5}$ = 0.2, the values of $f(x) = x^3$ are given below:

$$x:$$
 0 0.2 0.4 0.6 0.8 1.0 $f(x):$ 0 0.008 0.064 0.216 0.512 1.000 y_0 y_1 y_2 y_3 y_4 y_5

By Trapezoidal rule, we have

$$\int_0^1 x^3 dx = \frac{h}{2} [(y_0 + y_5) + 2(y_1 + y_2 + y_3 + y_4)]$$

$$= \frac{0.2}{2} [(0+1) + 2(0.008 + 0.064 + 0.216 + 0.512)]$$

$$= 0.1 \times 2.6 = 0.26.$$

Example 2. Evaluate $\int_0^1 \frac{dx}{1+x^2}$ using

(i) Simpson's
$$\frac{1}{3}$$
 rule taking $h = \frac{1}{4}$

(ii) Simpson's
$$\frac{3}{8}$$
 rule taking $h = \frac{1}{6}$

(iii) Weddle's rule taking
$$h = \frac{1}{6}$$

Hence compute an approximate value of π in each case.

Sol. (i) The values of $f(x) = \frac{1}{1+x^2}$ at $x = 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}$, 1 are given below:

$$x$$
: 0 $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 1 $f(x)$: 1 $\frac{16}{17}$ 0.8 0.64 0.5

 y_0 y_1 y_2 y_3 y_4

By Simpson's $\frac{1}{3}$ rule,

$$\int_0^1 \frac{dx}{1+x^2} = \frac{h}{3} \left[(y_0 + y_4) + 4(y_1 + y_3) + 2y_2 \right]$$
$$= \frac{1}{12} \left[(1+0.5) + 4\left\{ \frac{16}{17} + .64 \right\} + 2(0.8) \right] = 0.785392156$$

Also
$$\int_0^1 \frac{dx}{1+x^2} = \left[\tan^{-1} x \right]_0^1 = \tan^{-1} 1 = \frac{\pi}{4}$$

$$\therefore \frac{\pi}{4} = 0.785392156 \implies \pi = 3.1415686$$

(ii) The values of $f(x) = \frac{1}{1+x^2}$ at $x = 0, \frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}$, 1 are given below:

$$x:$$
 0 $\frac{1}{6}$ $\frac{2}{6}$ $\frac{3}{6}$ $\frac{4}{6}$ $\frac{5}{6}$ 1

 $f(x):$ 1 $\frac{36}{37}$ $\frac{9}{10}$ $\frac{4}{5}$ $\frac{9}{13}$ $\frac{36}{61}$ $\frac{1}{2}$ y_0 y_1 y_2 y_3 y_4 y_5 y_6

By Simpson's $\frac{3}{8}$ rule,

$$\int_0^1 \frac{dx}{1+x^2} = \frac{3h}{8} \left[(y_0 + y_6) + 3(y_1 + y_2 + y_4 + y_5) + 2y_3 \right]$$

$$= \frac{3\left(\frac{1}{6}\right)}{8} \left[\left(1 + \frac{1}{2}\right) + 3\left(\frac{36}{37} + \frac{9}{10} + \frac{9}{13} + \frac{36}{61}\right) + 2\left(\frac{4}{5}\right) \right]$$
$$= 0.785395862$$

Also,
$$\int_0^1 \frac{dx}{1+x^2} = \frac{\pi}{4}$$

$$\frac{\pi}{4} = 0.785395862$$

$$\Rightarrow \qquad \pi = 3.141583$$

(iii) By Weddle's rule, using the values as in (ii),

$$\int_{0}^{1} \frac{dx}{1+x^{2}} = \frac{3h}{10} (y_{0} + 5y_{1} + y_{2} + 6y_{3} + y_{4} + 5y_{5} + y_{6})$$

$$= \frac{3\left(\frac{1}{6}\right)}{10} \left\{ 1 + 5\left(\frac{36}{37}\right) + \frac{9}{10} + 6\left(\frac{4}{5}\right) + \frac{9}{13} + 5\left(\frac{36}{61}\right) + \frac{1}{2} \right\}$$

$$= 0.785399611$$

Since
$$\int_0^1 \frac{dx}{1+x^2} = \frac{\pi}{4}$$

$$\frac{\pi}{4} = 0.785399611$$

$$\Rightarrow \qquad \pi = 3.141598.$$

Example 3. Evaluate

$$\int_0^6 \frac{dx}{1+x^2} \ by \ using$$

- (i) Simpson's one-third rule
- (ii) Simpson's three-eighth rule
- (iii) Trapezoidal rule
- (iv) Weddle's rule.

Sol. Divide the interval (0, 6) into six parts each of width h = 1.

The values of $f(x) = \frac{1}{1+x^2}$ are given below:

$$x:$$
 0 1 2 3 4 5 6 $f(x):$ 1 0.5 0.2 0.1 $\frac{1}{17}$ $\frac{1}{26}$ $\frac{1}{37}$ y_0 y_1 y_2 y_3 y_4 y_5 y_6

(i) By Simpson's one-third rule,

$$\begin{split} \int_0^6 \frac{dx}{1+x^2} &= \frac{h}{3} \left[(y_0 + y_6) + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4) \right] \\ &= \frac{1}{3} \left[\left(1 + \frac{1}{37} \right) + 4 \left(0.5 + 0.1 + \frac{1}{26} \right) + 2 \left(0.2 + \frac{1}{17} \right) \right] \\ &= 1.366173413. \end{split}$$

(ii) By Simpson's three-eighth rule,

$$\int_{0}^{6} \frac{dx}{1+x^{2}} = \frac{3h}{8} \left[(y_{0} + y_{6}) + 3(y_{1} + y_{2} + y_{4} + y_{5}) + 2y_{3} \right]$$

$$= \frac{3}{8} \left[\left(1 + \frac{1}{37} \right) + 3 \left(.5 + .2 + \frac{1}{17} + \frac{1}{26} \right) + 2(.1) \right]$$

$$= 1.357080836.$$

(iii) By Trapezoidal rule,

$$\int_0^6 \frac{dx}{1+x^2} = \frac{h}{2} \left[(y_0 + y_6) + 2(y_1 + y_2 + y_3 + y_4 + y_5) \right]$$

$$= \frac{1}{2} \left[\left(1 + \frac{1}{37} \right) + 2 \left(.5 + .2 + .1 + \frac{1}{17} + \frac{1}{26} \right) \right]$$

$$= 1.410798581.$$

(iv) By Weddle's rule,

$$\int_0^6 \frac{dx}{1+x^2} = \frac{3h}{10} \left[y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6 \right]$$

$$= \frac{3}{10} \left[1 + 5(.5) + .2 + 6(.1) + \frac{1}{17} + 5\left(\frac{1}{26}\right) + \frac{1}{37} \right]$$
$$= 1.373447475.$$

Example 4. The speed, v meters per second, of a car, t seconds after it starts, is shown in the following table:

t	0	12	24	36	48	60	72	84	96	108	120
υ	0	3.60	10.08	18.90	21.60	18.54	10.26	5.40	4.50	5.40	9.00

Using Simpson's rule, find the distance travelled by the car in 2 minutes. Sol. If s meters is the distance covered in t seconds, then

$$\frac{ds}{dt} = v$$

$$\left[s \right]_{t=0}^{t=120} = \int_{0}^{120} v \, dt$$

since the number of sub-intervals is 10 (even). Hence, by using Simpson's $\frac{1}{3}$ rd rule,

$$\begin{split} \int_0^{120} v \ dt &= \frac{h}{3} \ \left[(v_0 + v_{10}) + 4(v_1 + v_3 + v_5 + v_7 + v_9) + 2(v_2 + v_4 + v_6 + v_8) \right] \\ &= \frac{12}{3} \ \left[(0+9) + 4(3.6 + 18.9 + 18.54 + 5.4 + 5.4) \right. \\ &\quad + 2(10.08 + 21.6 + 10.26 + 4.5) \right] \end{split}$$

= 1236.96 meters.

Hence, the distance travelled by car in 2 minutes is 1236.96 meters.

Example 5. Evaluate $\int_{0.6}^{2} y \, dx$, where y is given by the following table:

Sol. Here the number of subintervals is 7, which is neither even nor a multiple of 3. Also, this number is neither a multiple of 4 nor a multiple of 6, hence using Trapezoidal rule, we get

$$\begin{split} \int_{0.6}^2 y \, dx &= \frac{h}{2} \ [(y_0 + y_7) + 2(y_1 + y_2 + y_3 + y_4 + y_5 + y_6)] \\ &= \frac{0.2}{2} \ [(1.23 + 12.45) + 2(1.58 + 2.03 + 4.32 + 6.25 + 8.36 + 10.23)] \\ &= 7.922. \end{split}$$

Example 6. Find $\int_{1}^{11} f(x) dx$, where f(x) is given by the following table, using a suitable integration formula.

Sol. Since the number of subintervals is 10 (even) hence we shall use Simpson's $\frac{1}{3}$ rd rule.

$$\int_{1}^{11} f(x) dx = \frac{h}{3} [(y_0 + y_{10}) + 4(y_1 + y_3 + y_5 + y_7 + y_9) + 2(y_2 + y_4 + y_6 + y_8)]$$

$$= \frac{1}{3} [(543 + 95) + 4(512 + 489 + 400 + 310 + 172) + 2(501 + 453 + 352 + 250)]$$

$$= \frac{1}{3} [638 + 7532 + 3112] = 3760.67.$$

Example 7. Evaluate $\int_0^1 \frac{dx}{1+x}$ by dividing the interval of integration into 8 equal parts. Hence find $\log_e 2$ approximately.

Sol. Since the interval of integration is divided into an even number of subintervals, we shall use Simpson's one-third rule.

Here,
$$y = \frac{1}{1+x} = f(x)$$

$$y_0 = f(0) = \frac{1}{1+0} = 1, \quad y_1 = f\left(\frac{1}{8}\right) = \frac{1}{1+\frac{1}{8}} = \frac{8}{9}, \qquad y_2 = f\left(\frac{2}{8}\right) = \frac{4}{5}$$

$$y_3 = f\left(\frac{3}{8}\right) = \frac{8}{11}, \qquad y_4 = f\left(\frac{4}{8}\right) = \frac{2}{3}, \qquad y_5 = f\left(\frac{5}{8}\right) = \frac{8}{13}$$

$$y_6 = f\left(\frac{6}{8}\right) = \frac{4}{7}$$
, $y_7 = f\left(\frac{7}{8}\right) = \frac{8}{15}$ and $y_8 = f(1) = \frac{1}{2}$

Hence the table of values is

$$x: \quad 0 \quad \frac{1}{8} \quad \frac{2}{8} \quad \frac{3}{8} \quad \frac{4}{8} \quad \frac{5}{8} \quad \frac{6}{8} \quad \frac{7}{8} \quad 1$$

$$y: \quad 1 \quad \frac{8}{9} \quad \frac{4}{5} \quad \frac{8}{11} \quad \frac{2}{3} \quad \frac{8}{13} \quad \frac{4}{7} \quad \frac{8}{15} \quad \frac{1}{2}$$

$$y_0 \quad y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_6 \quad y_7 \quad y_8$$

By Simpson's $\frac{1}{3}$ rd rule,

$$\int_0^1 \frac{dx}{1+x} = \frac{h}{3} \left[(y_0 + y_8) + 4(y_1 + y_3 + y_5 + y_7) + 2(y_2 + y_4 + y_6) \right]$$

$$= \frac{1}{24} \left[\left(1 + \frac{1}{2} \right) + 4 \left(\frac{8}{9} + \frac{8}{11} + \frac{8}{13} + \frac{8}{15} \right) + 2 \left(\frac{4}{5} + \frac{2}{3} + \frac{4}{7} \right) \right]$$

$$= 0.69315453$$
| Here $h = 1/8$

Since,
$$\int_0^1 \frac{dx}{1+x} = \left[\log_e (1+x) \right]_0^1 = \log_e 2$$

 $\log_e 2 = 0.69315453.$

Example 8. Find, from the following table, the area bounded by the curve and the x-axis from x = 7.47 to x = 7.52.

Sol. We know that

Area =
$$\int_{7.47}^{7.52} f(x) dx$$

with h = 0.01, the trapezoidal rule gives,

Area =
$$\frac{.01}{2}$$
 [(1.93 + 2.06) + 2(1.95 + 1.98 + 2.01 + 2.03)]
= 0.09965.

Example 9. Use Simpson's rule for evaluating

$$\int_{-0.6}^{0.3} f(x) \, dx$$

from the table given below:

$$x: -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 .1 .2 .3$$

 $f(x): 4 2 5 3 -2 1 6 4 2 8$

Sol. Since the number of subintervals is 9(a multiple of 3), we will use Simpson's $3/8^{th}$ rule here.

$$\int_{-0.6}^{0.3} f(x) \, dx = \frac{3(.1)}{8} \left[(4+8) + 3\{2+5+(-2)+1+4+2\} + 2(3+6) \right]$$
$$= 2.475.$$

Example 10. Evaluate $\int_{1}^{2} e^{-\frac{1}{2}x} dx$ using four intervals.

Sol. The table of values is:

$$x:$$
 1 1.25 1.5 1.75 2 $y = e^{-x/2}:$.60653 .53526 .47237 .41686 .36788 y_0 y_1 y_2 y_3 y_4

Since we have four (even) subintervals here, we will use Simpson's $\frac{1}{3}$ rd rule.

$$\int_{1}^{2} e^{-\frac{1}{2}x} dx = \frac{h}{3} [(y_0 + y_4) + 4(y_1 + y_3) + 2y_2]$$

$$= \frac{.25}{3} [(.60653 + .36788) + 4(.53526) + .41686) + 2(.47237)]$$

$$= 0.4773025.$$

Example 11. Find $\int_0^6 \frac{e^x}{1+x} dx$ approximately using Simpson's $\frac{3}{8}th$ rule on integration.

Sol. Divide the given integral of integration into 6 equal subintervals, the arguments are 0, 1, 2, 3, 4, 5, 6; h = 1.

$$f(x) = \frac{e^x}{1+x}$$
; $y_0 = f(0) = 1$

$$y_1 = f(1) = \frac{e}{2},$$
 $y_2 = f(2) = \frac{e^2}{3},$ $y_3 = f(3) = \frac{e^3}{4},$

$$y_4 = f(4) = \frac{e^4}{5}$$
, $y_5 = f(5) = \frac{e^5}{6}$, $y_6 = f(6) = \frac{e^6}{7}$

The table is as below:

$$x: \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$
 $y: \quad 1 \quad \frac{e}{2} \quad \frac{e^2}{3} \quad \frac{e^3}{4} \quad \frac{e^4}{5} \quad \frac{e^5}{6} \quad \frac{e^6}{7}$
 $y_0 \quad y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_6$

Applying Simpson's three-eighth rule, we have

$$\int_{0}^{6} \frac{e^{x}}{1+x} dx = \frac{3h}{8} \left[(y_{0} + y_{6}) + 3(y_{1} + y_{2} + y_{4} + y_{5}) + 2y_{3} \right]$$

$$= \frac{3}{8} \left[\left(1 + \frac{e^{6}}{7} \right) + 3 \left(\frac{e}{2} + \frac{e^{2}}{3} + \frac{e^{4}}{5} + \frac{e^{5}}{6} \right) + 2 \frac{e^{3}}{4} \right]$$

$$= \frac{3}{8} \left[(1 + 57.6327) + 3(1.3591 + 2.463 + 10.9196 + 24.7355 + 2(5.0214)) \right]$$

$$= 70.1652.$$

NOTE It is not possible to evaluate $\int_0^6 \frac{e^x}{1+x} dx$ by using usual calculus method.

Numerical integration comes to our rescue in such situations.

Example 12. A train is moving at the speed of 30 m/sec. Suddenly brakes are applied. The speed of the train per second after t seconds is given by

Apply Simpson's three-eighth rule to determine the distance moved by the train in 45 seconds.

Sol. If s meters is the distance covered in t seconds, then

$$\frac{ds}{dt} = v \qquad \Rightarrow \qquad \left[s \right]_{t=0}^{t=45} = \int_0^{45} v \ dt$$

Since the number of subintervals is **9** (a multiple of 3) hence by using Simpson's $\left(\frac{3}{8}\right)^{th}$ rule,

$$\begin{split} &\int_0^{45} v \ dt = \frac{3h}{8} \ [(v_0 + v_9) + 3(v_1 + v_2 + v_4 + v_5 + v_7 + v_8) + 2(v_3 + v_6)] \\ &= \frac{15}{8} \ [(30 + 5) + 3(24 + 19 + 13 + 11 + 8 + 7) + 2(16 + 10)] \\ &= 624.375 \ \mathrm{meters}. \end{split}$$

Hence the distance moved by the train in 45 seconds is 624.375 meters.

Example 13. Evaluate $\int_0^4 \frac{dx}{1+x^2}$ using Boole's rule taking

(i)
$$h = 1$$
 (ii) $h = 0.5$

Compare the results with the actual value and indicate the error in both.

Sol. (*i*) Dividing the given interval into 4 equal subintervals (*i.e.*, h = 1), the table is as follows:

$$x:$$
 0 1 2 3 4
 $y:$ 1 $\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{10}$ $\frac{1}{17}$
 y_0 y_1 y_2 y_3 y_4

using Boole's rule,

$$\begin{split} \int_0^4 y \, dx &= \frac{2h}{45} \left[7y_0 + 32y_1 + 12y_2 + 32y_3 + 7y_4 \right] \\ &= \frac{2(1)}{45} \left[7(1) + 32 \left(\frac{1}{2} \right) + 12 \left(\frac{1}{5} \right) + 32 \left(\frac{1}{10} \right) + 7 \left(\frac{1}{17} \right) \right] \\ &= 1.289412 \text{ (approx.)} \end{split}$$

$$\int_0^4 \frac{dx}{1+x^2} = 1.289412.$$

(ii) Dividing the given interval into 8 equal subintervals (i.e., h = 0.5), the table is as follows:

$$x:$$
 0 .5 1 1.5 2 2.5 3 3.5 4 $y:$ 1 0.8 0.5 $\frac{4}{13}$.2 $\frac{4}{29}$.1 $\frac{4}{53}$ $\frac{1}{17}$ y_0 y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8

using Boole's rule,

$$\begin{split} \int_0^4 y dx &= \frac{2h}{45} \left[7 \left(y_0 \right) + 32 \left(y_1 \right) + 12 \left(y_2 \right) + 32 \left(y_3 \right) + 7 \left(y_4 \right) \right. \\ &+ 7 \left(y_4 \right) + 32 \left(y_5 \right) + 12 \left(y_6 \right) + 32 \left(y_7 \right) + 7 \left(y_8 \right) \right] \\ &= \frac{1}{45} \left[7(1) + 32(.8) + 12(.5) + 32 \left(\frac{4}{13} \right) + 7(.2) + 7 \left(.2 \right) \right. \\ &+ 32 \left(\frac{4}{29} \right) + 12(.1) + 32 \left(\frac{4}{53} \right) + 7 \left(\frac{1}{17} \right) \right] \\ &= 1.326373 \end{split}$$

$$\int_0^4 \frac{dx}{1+x^2} = 1.326373$$

But the actual value is

$$\int_0^4 \frac{dx}{1+x^2} = \left(\tan^{-1} x\right)_0^4 = \tan^{-1} (4) = 1.325818$$

Error in result I =
$$\left(\frac{1.325818 - 1.289412}{1.325818}\right) \times 100 = 2.746\%$$

Error in result II =
$$\left(\frac{1.325818 - 1.326373}{1.325818}\right) \times 100 = -0.0419\%$$
.

Example 14. A river is 80 m wide. The depth 'y' of the river at a distance 'x' from one bank is given by the following table:

Find the approximate area of cross-section of the river using

- (i) Boole's rule.
- (ii) Simpson's $\frac{1}{3}$ rd rule.

Sol. The required area of the cross-section of the river

$$= \int_0^{80} y \, dx$$

Here the number of sub intervals is 8.

(i) By Boole's rule,

$$\begin{split} \int_0^{80} y \, dx &= \frac{2h}{45} \left[7y_0 + 32y_1 + 12y_2 + 32y_3 + 7y_4 + 7y_4 \\ &\quad + 32y_5 + 12y_6 + 32y_7 + 7y_8 \right] \\ &= \frac{2 \, (10)}{45} \left[7(0) + 32(4) + 12(7) + 32(9) + 7(12) + 7(12) + 32(15) \\ &\quad + 12(14) + 32(8) + 7(3) \right] \\ &= 708 \end{split}$$

Hence the required area of the cross-section of the river = 708 sq. m.

(ii) By Simpson's $\frac{1}{3}rd$ rule

$$\int_0^{80} y \, dx = \frac{h}{3} \left[(y_0 + y_8) + 4(y_1 + y_3 + y_5 + y_7) + 2(y_2 + y_4 + y_6) \right]$$

$$= \frac{10}{3} \left[(0+3) + 4(4+9+15+8) + 2(7+12+14) \right]$$

$$= 710$$

Hence the required area of the cross-section of the river = 710 sq. m.

Example 15. Evaluate $\int_{0.2}^{1.4} (\sin x - \log_e x + e^x) dx$ approximately using Weddle's rule correct to 4 decimals.

Sol. Let $f(x) = \sin x - \log x + e^x$. Divide the given interval of integration into 12 equal parts so that the arguments are: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4.

The corresponding entries are

$$\begin{split} y_0 &= f(0.2) = 3.0295, \quad y_1 = f(0.3) = 2.8494, \quad y_2 = f(0.4) = 2.7975, \\ y_3 &= f(0.5) = 2.8213, \quad y_4 = f(0.6) = 2.8976, \quad y_5 = f(0.7) = 3.0147 \\ y_6 &= f(0.8) = 3.1661, \quad y_7 = f(0.9) = 3.3483, \quad y_8 = f(1) = 3.5598, \\ y_9 &= f(1.1) = 3.8001, \quad y_{10} = f(1.2) = 4.0698, \quad y_{11} = f(1.3) = 4.3705 \\ y_{12} &= f(1.4) = 4.7042 \end{split}$$

Now, by Weddle's rule,

$$\int_{0.2}^{1.4} f(x) dx = \frac{3h}{10} [y_0 + 5y_1 + y_2 + 6y_3 + y_4 + 5y_5 + y_6 + y_6 + 5y_7 + y_8 + 6y_9 + y_{10} + 5y_{11} + y_{12}]$$

$$= \frac{3}{10} (0.1) [3.0295 + 14.2470 + 2.7975 + 16.9278 + 2.8976 + 15.0735 + 3.1661 + 3.1661 + 16.7415 + 3.5598 + 22.8006 + 4.0698 + 21.8525 + 4.7042]$$

$$= (0.03) [135.0335] = 4.051.$$

Example 16. A solid of revolution is formed by rotating about x-axis, the lines x = 0 and x = 1 and a curve through the points with the following coordinates.

Estimate the volume of the solid formed using Simpson's rule.

Sol. If V is the volume of the solid formed then we know that

$$V = \pi \int_0^1 y^2 dx$$

Hence we need the values of y^2 and these are tabulated below correct to four decimal places

x			.25	.5	.75	1	
y^2		1	.9793	.9195	.8261	.7081	

with h = 0.25, Simpson's rule gives

$$V = \pi \frac{(0.25)}{3} [(1 + .7081) + 4(.9793 + .8261) + 2(.9195)]$$

= 2.8192.

Example 17. A tank is discharging water through an orifice at a depth of x meter below the surface of the water whose area is A m^2 . Following are the values of x for the corresponding values of A.

A: 1.257 1.39 1.52 1.65 1.809 1.962 2.123 2.295 2.462 2.650 2.827

x: 1.5 1.65 1.8 1.95 2.1 2.25 2.4 2.55 2.7 2.85 3

Using the formula (0.018) $T = \int_{1.5}^{3.0} \frac{A}{\sqrt{x}} dx$, calculate T, the time (in seconds) for the level of the water to drop from 3.0 m to 1.5 m above the orifice.

Sol. Here h = 0.15

The table of values of x and the corresponding values of $\frac{\mathbf{A}}{\sqrt{x}}$ is

x	1.5	1.65	1.8	1.95	2.1	2.25	2.4	2.55	2.7	2.85	3
$y = \frac{A}{\sqrt{x}}$	1.025	1.081	1.132	1.182	1.249	1.308	1.375	1.438	1.498	1.571	1.632

Using Simpson's $\frac{1}{3}$ rd rule, we get

$$\int_{1.5}^{3} \frac{A}{\sqrt{x}} dx = \frac{.15}{3} [(1.025 + 1.632) + 4(1.081 + 1.182 + 1.308 + 1.438 + 1.571) + 2(1.132 + 1.249 + 1.375 + 1.498)]$$

$$= 1.9743$$

Using the formula

$$(0.018)T = \int_{1.5}^{3} \frac{A}{\sqrt{x}} dx$$

We get $0.018T = 1.9743 \Rightarrow T = 110 \text{ sec. (approximately)}.$

Example 18. Using the following table of values, approximate by Simpson's

rule, the arc length of the graph $y = \frac{1}{x}$ between the points (1, 1) and $\left(5, \frac{1}{5}\right)$

$$\sqrt{\frac{1+x^4}{x^4}}: \qquad 1.414 \qquad 1.031 \qquad 1.007 \qquad 1.002 \qquad 1.001.$$

Sol. The given curve is

$$y = \frac{1}{x}$$

$$\therefore \frac{dy}{dx} = -\frac{1}{x^2}$$

$$\therefore \frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \frac{1}{x^4}} = \sqrt{\frac{1 + x^4}{x^4}}$$

 \therefore The arc length of the curve between the points (1, 1) and $(5, \frac{1}{5})$

$$= \int_{1}^{5} \sqrt{\frac{1+x^4}{x^4}} dx$$

$$= \frac{h}{3} [(1.414 + 1.001) + 4(1.031 + 1.002) + 2(1.007)]$$

$$= \frac{1}{3} (2.415 + 8.132 + 2.014) = 4.187$$

Example 19. From the following values of y = f(x) in the given range of values of x, find the position of the centroid of the area under the curve and the x-axis

$$x: \qquad 0 \qquad \qquad \frac{1}{4} \qquad \qquad \frac{1}{2} \qquad \qquad \frac{3}{4} \qquad \qquad 1$$
 $y: \qquad 1 \qquad \qquad 4 \qquad \qquad 8 \qquad \qquad 4 \qquad \qquad 1$

Also find

- (i) the volume of solid obtained by revolving the above area about x-axis.
- (ii) the moment of inertia of the area about x-axis.

Sol. Centroid of the plane area under the curve y = f(x) is given by $(\overline{x}, \overline{y})$ where

$$\overline{x} = \frac{\int_{0}^{1} xy \, dx}{\int_{0}^{1} y \, dx}$$

$$\overline{y} = \frac{\int_{0}^{1} \frac{y}{2} \cdot y \, dx}{\int_{0}^{1} y \, dx} = \frac{\int_{0}^{1} \frac{y^{2}}{2} \, dx}{\int_{0}^{1} y \, dx}$$
(50)

and

From the given data, we obtain

x:
 0

$$\frac{1}{4}$$
 $\frac{1}{2}$
 $\frac{3}{4}$
 1

 y:
 1
 4
 8
 4
 1

 xy:
 0
 1
 4
 3
 1

 $\frac{y^2}{2}$:
 $\frac{1}{2}$
 8
 32
 8
 $\frac{1}{2}$

.. By Simpson's rule,

$$\int_0^1 xy \, dx = \frac{(1/4)}{3} [(0+1) + 4(1+3) + 2(4)] = \frac{25}{12}$$

$$\int_0^1 \frac{y^2}{2} \, dx = \frac{1}{12} \left[\left(\frac{1}{2} + \frac{1}{2} \right) + 4(8+8) + 2(32) \right] = \frac{129}{12}$$

$$\int_0^1 y \, dx = \frac{1}{12} [(1+1) + 4(4+4) + 2(8)] = \frac{50}{12}$$
From (50),
$$\bar{x} = \frac{25/12}{50/12} = \frac{1}{2} = 0.5$$

$$\bar{y} = \frac{129/12}{50/12} = \frac{129}{50} = 2.58$$

- \therefore Centroid is the point (0.5, 2.58).
- (i) We know that

$$V = Volume = \pi \int_0^1 y^2 dx$$

:. Required volume =
$$\pi.2 \int_0^1 \frac{y^2}{2} dx = 2\pi \times \frac{129}{12} = 67.5442$$

(ii) We know that moment of inertia of the area about the x-axis is given by

$$M.I. = \frac{1}{3} \rho \int_a^b y^3 dx$$

where ρ is the mass per unit area.

Table for y^3 is

x: 0
$$\frac{1}{4}$$
 $\frac{1}{2}$ $\frac{3}{4}$ 1

y: 1 4 8 4 1

y³: 1 64 512 64 1

$$\int_0^1 y^3 dx = \frac{1}{12} [(1+1) + 4(64+64) + 2(512)] = \frac{769}{6}$$

Reqd. M.I. = $\frac{1}{3} \rho \left(\frac{769}{6} \right) = \frac{769}{18} \rho = 42.7222 \rho$.

Example 20. A reservoir discharging water through sluices at a depth h below the water surface, has a surface area A for various values of h as given below:

h (in meters): 10 11 12 13 14 A (in sq. meters): 950 1070 1200 1350 1530

If t denotes time in minutes, the rate of fall of the surface is given by

$$\frac{dh}{dt} = -\frac{48}{A}\sqrt{h}$$

Estimate the time taken for the water level to fall from 14 to 10 m above the sluices.

Sol. From
$$\frac{dh}{dt} = -\frac{48}{A} \sqrt{h}$$
, we have

$$dt = -\frac{A}{48} \frac{dh}{\sqrt{h}}$$

Integration yields,

$$t = -\frac{1}{48} \int_{14}^{10} \frac{A}{\sqrt{h}} dh = \frac{1}{48} \int_{10}^{14} \frac{A}{\sqrt{h}} dh$$

Here, $y = \frac{A}{\sqrt{h}}$. The table of values is as follows:

h:10 12 11 13 14 A: 950 1070 1200 1350 1530 $\frac{A}{\sqrt{h}}$: 300.4164 322.6171346.4102 374.4226 408.9097

Applying Simpson's
$$\frac{1}{3}$$
rd rule, we have

time
$$t = \frac{1}{48} \cdot \frac{1}{3} [(300.4164 + 408.9097) + 4(322.6171 + 374.4226) + 2(346.4102)]$$

= 29.0993 minutes.

ASSIGNMENT 5.2

- 1. Evaluate $\int_1^2 \frac{1}{x} dx$ by Simpson's $\frac{1}{3}$ rd rule with four strips and determine the error by direct integration.
- 2. Evaluate the integral $\int_0^{\pi/2} \sqrt{\cos \theta} \ d\theta$ by dividing the interval into 6 parts.
- 3. Evaluate $\int_4^{5.2} \log_e x \, dx$ by Simpson's $\frac{3}{8}$ th rule. Also write its programme in 'C' language.
- **4.** Evaluate $\int_{30^{\circ}}^{90^{\circ}} \log_{10} \sin x \, dx$ by Simpson's $\frac{1}{3}$ rd rule by dividing the interval into 6 parts.
- 5. Evaluate $\int_4^{5.2} \log_e x \, dx$ using
 - (i) Trapezoidal rule

- (ii) Weddle's rule.
- 6. Evaluate using Trapezoidal rule

$$(i) \int_0^{\pi} t \sin t \, dt$$

(ii)
$$\int_{-2}^{2} \frac{t \, dt}{5 + 2t}$$

- 7. Evaluate $\int_3^7 x^2 \log x \, dx$ taking 4 strips.
- 8. The velocities of a car running on a straight road at intervals of 2 minutes are given below:

Time (in minutes): Velocity (in km/hr):

0

2 22

4 30

6

8 18 12

0

10

7

Apply Simpson's rule to find the distance covered by the car.

9. Evaluate $\int_0^1 \cos x \, dx$ using h = 0.2.

- 10. Evaluate $\int_0^4 e^x dx$ by Simpson's rule, given that e = 2.72, $e^2 = 7.39$, $e^3 = 20.09$, $e^4 = 54.6$ and compare it with the actual value.
- 11. Find an approximate value of $\log_e 5$ by calculating to 4 decimal places, by Simpson's $\frac{1}{3}$ rd rule, $\int_0^5 \frac{dx}{4x+5}$ dividing the range into 10 equal parts.
- 12. Use Simpson's rule, taking five ordinates, to find an approximate value of $\int_1^2 \sqrt{x \frac{1}{x}} dx$ to 2 decimal places.
- 13. Evaluate $\int_0^{\pi/2} \sqrt{\sin x} \ dx$ given that

$$x$$
: 0 $\pi/12$ $\pi/6$ $\pi/4$ $\pi/3$ $5\pi/12$ $\pi/2$ $\sqrt{\sin x}$: 0 0.5087 0.7071 0.8409 0.9306 0.9878 1

14. The velocity of a train which starts from rest is given by the following table, time being reckoned in minutes from the start and speed in kilometers per hour:

Minutes: 0 2 4 6 8 10 12 14 16 18 20
$$Speed (km/hr)$$
: 0 10 18 25 29 32 20 11 5 2 0

Estimate the total distance in 20 minutes.

Hint: Here step-size
$$h = \frac{2}{60}$$

15. A rocket is launched from the ground. Its acceleration is registered during the first 80 seconds and is given in the following table. Using Simpson's $\frac{1}{3}$ rd rule, find the velocity of the rocket at t = 80 seconds.

$$t(sec)$$
: 0 10 20 30 40 50 60 70 80 $f(cm/sec^2)$: 30 31.63 33.34 35.47 37.75 40.33 43.25 46.69 50.67.

16. A curve is drawn to pass through the points given by the following table:

- - (i) Center of gravity of the area.
 - (ii) Volume of the solid of revolution.
- (iii) The area bounded by the curve, the x-axis and lines x = 1, x = 4.
- 17. In an experiment, a quantity G was measured as follows:

$$\begin{split} G(20) &= 95.9, \quad G(21) = 96.85, \quad G(22) = 97.77 \\ G(23) &= 98.68, \quad G(24) = 99.56, \quad G(25) = 100.41, \quad G(26) = 101.24. \end{split}$$

Compute $\int_{20}^{26} G(x) dx$ by Simpson's and Weddle's rule, respectively.

18. Using the data of the following table, compute the integral $\int_{0.5}^{1.1} xy \, dx$ by Simpson's rule:

x: 0.5 0.6 0.7 0.8 0.9 1.0 1.1 y: 0.4804 0.5669 0.6490 0.7262 0.7985 0.8658 0.9281

- 19. Find the value of $\log_e 2$ from $\int_0^1 \frac{x^2}{1+x^3} dx$ using Simpson's $\frac{1}{3}$ rd rule by dividing the range of integration into four equal parts. Also find the error.
- 20. Use Simpson's rule dividing the range into ten equal parts to show that

$$\int_0^1 \frac{\log (1+x^2)}{1+x^2} dx = 0.173$$

21. Find by Weddle's rule the value of the integral

$$I = \int_{0.4}^{1.6} \frac{x}{\sinh x} dx$$

by taking 12 sub-intervals.

- 22. Evaluate $\int_{0.5}^{0.7} x^{1/2} e^{-x} dx$ approximately by using a suitable formula.
- 23. (i) Compute the integral

$$I = \sqrt{\frac{2}{\pi}} \int_0^1 e^{-(x^2/2)} dx$$

Using Simpson's $\frac{1}{3}$ rd rule, taking h = 0.125.

(ii) Compute the value of I given by

$$I = \int_{0.2}^{1.5} e^{-x^2} \ dx$$

Using Simpson's $\left(\frac{1}{3}\right)$ rule with four subdivisions.

24. Using Simpson's $\frac{1}{3}$ rd rule, Evaluate the integrals:

(i)
$$\int_{10}^{18} \frac{e^x + e^{-x}}{2} dx$$
 (taking $h = 0.2$)

(ii)
$$\int_0^{\pi/2} \frac{dx}{\sin^2 x + \frac{1}{4} \cos^2 x}$$

- **25.** Evaluate $\int_0^1 \sqrt{\sin x + \cos x} \ dx$ correct to two decimal places using seven ordinates.
- 26. Use Simpson's three-eighths rule to obtain an approximate value of

$$\int_0^{0.3} (1 - 8x^3)^{1/2} dx$$

- 27. Evaluate $\int_0^{1/2} \frac{dx}{\sqrt{1-x^2}}$ using Weddle's rule.
- **28.** Evaluate $\int_0^1 \frac{x^2+2}{x^2+1} dx$ using Weddle's rule correct to four places of decimals.
- 29. Using $\frac{3}{8}$ th Simpson's rule,

Evaluate:
$$\int_0^6 \frac{dx}{1+x^4}.$$

30. Apply Simpson's $\frac{1}{3}$ rd rule to evaluate the integral

$$I = \int_0^1 e^x dx$$
 by choosing step size $h = 0.1$

Show that this step size is sufficient to obtain the result correct to five decimal places.

- 31. (i) Obtain the global truncation error term of trapezoidal method of integration.
 - (ii) Compute the approximate value of the integral

$$l = \int (1 + x + x^2) \, dx$$

Using Simpson's rule by taking interval size h as 1. Write a C program to implement.

32. The function f(x) is known at one point x^* in the interval [a, b]. Using this value, f(x) can be expressed as

$$f(x) = p_0(x) + f'\{\xi(x)\} (x - x^*)$$
 for $x \in (a, b)$

where $p_0(x)$ is the zeroth-order interpolating polynomial $p_0(x) = f(x^*)$ and $\xi(x) \in (a, b)$. Integrate this expression from a to b to derive a quadrature rule with error term. Simplify the error term for the case when $x^* = a$.

5.25 EULER-MACLAURIN'S FORMULA

This formula is based on the expansion of operators. Suppose $\Delta F(x) = f(x)$, then an operator Δ^{-1} , called inverse operator, is defined as

$$F(x) = \Delta^{-1} f(x) \tag{51}$$