

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

6/42

7

FIG. 8

FIG. 9

FIG. 10

FIG. 12

FIG. 13

FIG. 14

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 15D

FIG. 15E

FIG. 16

1600

18/42

19/42

FIG. 19

FIG. 21

21/42

FIG. 22

FIG. 22

The diagram illustrates a dispersion compensation system for an optical network. The process starts with data input from an optical network (labeled 2001) through a dispersion compensator (2210) and an O/E converter (2211). The signal then passes through a series of envelope detectors (2221, 2231, 2233, 2255) and delays (2222, 2232, 2233, 2235) to a decision unit (2224, 2262, 2263, 2264). Simultaneously, the signal is processed by an optical switch and ADM module (2207) via a drop connection (2208). The system also includes a read unit (2293, 2292, 2291), a demodulator (2223), a decision unit (2225), and a write unit (2294, 2296). The final output is sent to a modulator (2295) and a header (2216).