Homework 5

Runmin Lu

October 3, 2021

Exercise 2.8

(a)

Given any arbitrary K data sets, we can produce K corresponding final hypothesis $g_1, ..., g_K$.

We know that $\forall k \in [1, K] : g_k \in \mathcal{H}$ and \mathcal{H} is closed under linear combination.

 $\bar{g} = \frac{1}{K} \sum_{k=1}^{K} g_k$, which is a linear combination of $g_1, ..., g_K$. Therefore, $\bar{g} \in \mathcal{H}$.

(b)

 \mathcal{H} has only 2 function, one that always returns -1 and one that always returns +1. The learning algorithm picks g randomly. Then \bar{g} is a function that always returns 0, which is not in \mathcal{H} .

(c)

No because depending on the distribution of the data, $\bar{q}(\mathbf{x})$ can take any value between -1 and +1.

Problem 2.14

(a)

Assume $d_{vc}(\mathcal{H}) \geq K(d_{vc}+1)$ for contradiction. Then there's a set of $2K(d_{vc}+1)$ data points that can be

shattered by \mathcal{H} . Let's list them all in a table.

Data Point	1	2	 $K(d_{vc}+1)$
Dichotomy 1	+1	-1	 +1
Dichotomy 2	+1	+1	 +1
Dichotomy $2^{K(d_{vc}+1)}$	-1	-1	 -1

Look at the first $d_{vc} + 1$ columns. There must be a dichotomy that can't be implemented by \mathcal{H}_1 because it

can't shatter any data set of size $> d_{vc}$. For the same reason, some dichotomy in the second $d_{vc} + 1$ can't be implemented by \mathcal{H}_2 and so on. If we concatenate all of them, then it can't be in this table because none of $\mathcal{H}_1, ..., \mathcal{H}_K$ implements it, which contradict with that all $2^{K(d_{vc}+1)}$ dichotomies are present. Therefore, $d_{vc}(\mathcal{H}) < K(d_{vc}+1)$.

(b)

Assume
$$d_{vc}(\mathcal{H}) > \ell$$
 for contradiction
Then $m_{\mathcal{H}}(\ell) = 2^{\ell}$
 $\forall i : m_{\mathcal{H}_i}(\ell) \leq \ell^{d_{vc}} + 1$

Because \mathcal{H} is the union of all \mathcal{H}_i 's, it can implement at most $\sum_{i=1}^K m_{\mathcal{H}_i}(\ell)$ dichotomies. Therefore

$$m_{\mathcal{H}}(\ell) \le \sum_{i=1}^{K} m_{\mathcal{H}_i}(\ell)$$
$$\le K(l^{d_{vc}} + 1)$$

We can assume that $\ell > 0$. If $\ell = 0$, then the premise $2^0 > 2K0^{d_{vc}}$ is always true but then we force $d_{vc}(\mathcal{H}) = 0$, which isn't always true.

We can also assume that ℓ is an integer. Otherwise, as $\lim_{\ell \to 0^+} 2^{\ell} = 1 > \lim_{\ell \to 0^+} 2K\ell^{d_{vc}} = 0$, which is always true but again we force $d_{vc}(\mathcal{H}) = 0$.

Therefore, for positive integer ℓ ,

$$1 \leq \ell^{d_{vc}}$$

$$\ell^{d_{vc}} + 1 \leq 2\ell^{d_{vc}}$$

$$m_{\mathcal{H}}(\ell) \leq K(\ell^{d_{vc}} + 1)$$

$$\leq 2K\ell^{d_{vc}}$$

$$2^{\ell} \leq 2K\ell^{d_{vc}}$$
Contradiction $\implies d_{vc}(\mathcal{H}) \leq \ell$

(c)

Let
$$\ell = 7(d_{vc} + K) \log_2(d_{vc}K)$$

If we can show $2^{\ell} < 2K\ell^{d_{vc}}$
Then $d_{vc}(\mathcal{H}) \le \ell = 7(d_{vc} + K) \log_2(d_{vc}K)$
Let $d = d_{vc}$
LHS $= 2^{7(d+K) \log_2(dK)}$
 $= (dK)^{7(d+K)}$
 $= d^{7d}d^{7K}K^{7d}K^{7K}$
RHS $= 2K(7(d+K)\log_2(dK))^d$
 $= 2K(7(d+K)(\log_2 d + \log_2 K))^d$
 $< 2K(7(d+K)(d+K))^d$
 $= 2K(7(d+K)^2)^d$

Clearly $K^{7K}>2K$ and $d^{7d}d^{7K}K^{7d}>d^{7d}K^{7d}$ for $K\geq 2$ and $d\geq 1.$

Now we just need to show

$$d^{7d}K^{7d} > (7(d+K)^2)^d$$
$$(dK)^7 > 7(d+K)^2$$

Base Case: d = 1, K = 2

$$2^7 = 128 > 7(3^2) = 63$$

Inductive Step: $(dK)^7 > 7(d+K)^2 \rightarrow (d(K+1))^7 > 7(d+K+1)^2$

$$(d(K+1))^7 = (dK+d)^7$$

$$= (dK)^7 + d^7(7K^6 + 21K^5 + 35K^4 + 35K^3 + 21K^2 + 7K + 1)$$

$$7(d+K+1)^2 = 7((d+K)^2 + 2(d+K) + 1)$$

$$= 7(d+K)^2 + 14(d+K) + 7$$

$$= 7(d+K)^2 + 14d + 14K + 7$$

Knowing that $(dK)^7 > 7(d+K)^2$,

it's sufficient to show $d^7(7K^6 + 21K^5 + 35K^4 + 35K^3 + 21K^2 + 7K + 1) > 14d + 14K + 7$ and it's true because

clearly

$$d^{7}(7K) \ge 14 > 7$$
$$d^{7}(21K^{2}) > 14K$$
$$d^{7}(35K^{3}) > 14d$$

Therefore $2^{\ell} < 2K\ell^{d_{vc}} \to d_{vc}(\mathcal{H}) \le 7(d_{vc} + K)\log_2(d_{vc}K)$.

Also combined with the inequality from part (a), $d_{vc}(\mathcal{H}) \leq \min(K(d_{vc}+1), 7(d_{vc}+K)\log_2(d_{vc}K))$

Problem 2.15

(a)

 $h(x_1, x_2) = sign(x_1 + x_2)$

+1 region: everything above the line $x_1 + x_2 = 0$

-1 region: everything below the line $x_1 + x_2 = 0$

(b)

Lemma: all classifiers with negative slope everywhere and the +1 region above the curve are in \mathcal{H} .

Proof by contraposition. Let there be a point \mathbf{x} and a displacement vector $\Delta \mathbf{x} \geq \mathbf{0}$ and h such that $h(\mathbf{x} + \Delta \mathbf{x}) < h(\mathbf{x})$. We want to show that h does not satisfy the property in the lemma.

To get from \mathbf{x} and $\mathbf{x} + \Delta \mathbf{x}$, we must cross the curve of h. Let the tangent line of that curve have a weight vector \mathbf{w} . Then we have

$$\mathbf{w}^{T}(\mathbf{x} + \Delta \mathbf{x}) < \mathbf{w}^{T}\mathbf{x}$$

$$w_0 + w_1 x_1 + w_1 \Delta x_1 + w_2 x_2 + w_2 \Delta x_2 < w_0 + w_1 x_1 + w_2 x_2$$

$$w_1 \Delta x_1 + w_2 \Delta x_2 < 0$$

$$\mathbf{w}^{T} \Delta \mathbf{x} < 0$$

Because $\Delta \mathbf{x}$ lies somewhere in the first quadrant, including the axis, and $\mathbf{n} = (w_1, w_2)$, the normal vector of the tangent line represented by \mathbf{w} , needs to form obtuse angle to $\Delta \mathbf{x}$, \mathbf{n} cannot be in the first quadrant. Also because \mathbf{n} points to the positive region, the tangent line represented by \mathbf{w} cannot have both negative slope and +1 region above. Therefore, all classifiers with negative slopes and the +1 region above the curve are in \mathcal{H} .

Now we can construct N arbitrary points that lie in the line $x_1 + x_2 = 0$. \mathcal{H} shatters them all by going along those points and freely move above or below each point so each point can be assigned +1 and -1 arbitrarily.

Refer to the picture below if the description isn't good enough. Therefore $m_{\mathcal{H}}(N) = 2^N$ and $d_{vc} = \infty$.

Problem 2.24

(a)

Given \mathcal{D} , let the learning algorithm pick g(x) = ax + b.

$$a = \frac{x_1^2 - x_2^2}{x_1 - x_2}$$

$$= x_1 + x_2$$

$$g(x) = (x_1 + x_2)(x - x_1) + x_1^2$$

$$= (x_1 + x_2)x - x_1x_2$$

$$\bar{x}_1 = 0$$

$$\bar{x}_2 = 0$$

$$x_1\bar{x}_2 = \frac{1}{2} \int_{-1}^1 \frac{1}{2} \int_{-1}^1 -x_1x_2dx_2dx_1$$

$$= 0$$

$$\bar{g}(x) = \boxed{0}$$

(b)

Generate 1000 random data sets. For each of them, compute $g^{\mathcal{D}}(x)$ and record the slope and y-intercept. Take the average of all the slopes and all tye y-intercepts to get $\bar{g}(x)$.

Generate a random test data set of 1000 data points. Loop over it and in an inner loop over all the $g^{\mathcal{D}}(x)$'s, compute $(g^{\mathcal{D}}(x) - \bar{g}(x))^2$. Take the average of all of them to get var.

Loop over the same test data set, compute $(f(x) - \bar{g}(x))^2$. Take the average of all of them to get bias. Loop over the test data set and in an inner loop over all the $g^{\mathcal{D}}(x)$'s, compute $(f(x) - g^{\mathcal{D}}(x))^2$). Take the average to get E_{out} . (c)

 $g(x) \approx -0.0103x + 0.0041$

 $\mathrm{var}\approx0.3110$

bias ≈ 0.1814

 $E_{\rm out} \approx 0.4924$

(d)

$$\operatorname{var} = E_x E_{\mathcal{D}}(g^{\mathcal{D}}(x) - \bar{g}(x))^2$$

$$= \frac{1}{2} \int_{-1}^{1} \frac{1}{2} \int_{-1}^{1} \frac{1}{2} \int_{-1}^{1} ((x_1 + x_2)(x - x_1) + x_1^2 - 0)^2 dx_2 dx_1 dx$$

$$= \left[\frac{1}{3}\right]$$

$$\operatorname{bias} = E_x E_{\mathcal{D}}(f(x) - \bar{g}(x))^2$$

$$= \frac{1}{2} \int_{-1}^{1} (x^2 - 0)^2 dx$$

$$= \left[\frac{1}{5}\right]$$

$$E_{\text{out}} = \operatorname{var} + \operatorname{bias}$$

$$= \frac{1}{3} + \frac{1}{5}$$

$$= \left[\frac{8}{15}\right]$$