Generator Labiryntu

Marcin Data

1. Zawartość projektu:

Projekt składa się z trzech plików napisanych w języku Python:

- main.py
- graph.py
- sdj.py

W pliku main.py znajduje część kodu odpowiedzialna za utworzenie instancji generatora a także wygenerowania labiryntu przy pomocy każdego z trzech algorytmów.

W pliku sdj.py znajduje się implementacja zbiorów rozłącznych przy pomocy słownika, którą zaczerpnięto z podręcznika Cormana.

W pliku graph.py znajduje się klasa generatora oparta na grafie z macierzą sąsiedztwa. Metody zawarte w klasie Lab_Graph to przede wszystkim konstruktor przyjmujący na wejściu wymiary labiryntu, metoda __str__ w celu wypisania wygenerowanego labiryntu oraz metody KurskalGenerate, PrimGenerate, AldousBroderGenerate.

2. Opis najważniejszych metod

a) KruskalGenerate()

Metoda KrukalGenerate wykorzystuje przy tworzeniu labirytntu nieco zmieniony algorytm Kruskalla służący do znajdowania minimalnego drzewa rozpinającego. Algorytm generujący działa w sposób następujący :

```
DJ – zbiór wszystkich wierzchołków w postaci zbiorów rozłącznych s = losowy z V startowy while wszystkie zbiory w DJ nie są jednym zbiorem jeśli s nie jest w tym samym zbiorze DJ co któryś z sąsiadujących wierzchołków e z V:

połącz s z e w DJ
oznacz (s,e) w M
s = losowy z V
```

b) PrimGenerate

Metoda PrimGenerate wykorzystuje przy tworzeniu labiryntu zmodyfikowany algortym Prima służący znajdowaniu minimalnego drzewa rozpinającego. Algorytm genrujący działa w następujący sposób:

```
V – zbiór wierzchołków
M – macierz sąsiedztwa
Q – kolejka priorytetowa
```

V – zbiór wierzchołków M – macierz sąsiedztwa

```
s = losowy z V startowy
wrzuć do Q krawędz (s,s) z maksymalnym możliwym priorytetem
oznacz s jako gotowy
while Q nie jest pusta:
    if wierzchołek e z V będący sąsiadem s nie jest dodany:
    wrzuc do Q krawędz (s,e) z losowym priorytetem
    oznacz e jako dodany
    Zdejmij krawędz (l,i) o najmnijeszej wadzę
    if i nie jest częścią labirytnu:
        oznacz krawedz (l,i) w M
        oznacz wieszchołek i jako gotowy
s = i
```

c) Aldous Broder Generate

Metoda AldousBroderGenerate wykorzystuje przy tworzeniu labiryntu zmodyfikowany algortym Aldous-Broder'a. Algorytm generujący działa w następujący sposób:

V – zbiór wierzchołków

M– macierz sąsiedztwa

s = losowy wierzchołek z V
oznacz s jako odwiedzony
while jakiś wierzchołek jest nie odwiedzony:
 wylosuj wierzchołek e z V będący sąsiadem s
 przemieśc się do e
 jeśli e nie jest oznaczony:
 oznacz e jako odwiedzony
 oznacz krawedź (s,e) w M

3. Prezentacja przykładowych wyników:

a) Labirynt 20x39 wygenerowany przy pomocy metody KruskalGenerate: 555555 5 5 5 5 5 \$ 5 5 5 5 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 5 5 5 \$ \$55 \$55 \$55 \$5555555555 \$555555555555 \$5555 \$555 \$55 \$555 \$ 5 55555 \$ 5 5 5 5 5 5 5 \$ \$ 5 5 5 5 5 \$ \$ \$ 5 5 \$ 5 5 \$ \$ \$ \$ \$ 5 5 5 5 5 5 5 5 \$ \$ 5 5 \$ \$ 5 5 \$ 5 5 5 5 \$ 555 555 \$ \$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$ \$\$\$ \$ \$\$\$\$\$\$\$ \$\$\$\$\$ \$555\$\$ \$555 \$5 5 5 5 5 5 5 5 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 5 5 5 \$55 \$555\$ \$555555555555 \$55 \$ \$555555 \$55555 \$555 \$ \$ \$ \$ \$55 \$55 \$55 5 5 5 \$

a) Labirynt 20x39 wygenerowany przy pomocy metody PrimGenerate:

```
$
          $
             5555 55
55555 5
    5 5
      5 5
        5
555 55555 55
             5 5 5 5
                $
5 5
            55555
               5 5
S S S
      5 5
        5 55 555555 55555
$ $
      55 5 55
         5 5
           5 5
$55 $55 $55 $ $555555 $55 $5555 $5555 $ $5555 $55 $55 $ $555 $555 $55 $ $5555
       $
        $ $
$ $ $ $ $ $ $ $ $ $ $
            $
555555
    $ $
      $
      $ $ $
          5555 555 5
               $ $ $ $
5555
         $ $ $ $ $
            $
$ $ $
           $ $
5 5 5
 5 5
$ $ $
      $
          5 5 5
55555
      5 5 5
          $ $
            5 5
$55555555 $55 $55 $5555 $ $55 $ $5555 $ $5555 $ $55 $555 $ $55 $ $55 $ $55
      5 5 5 5 5 5
             5 5 5
5 5 5 5
             $ $
               $ $
$
        5 5
              $ $
```

a) Labirynt 20x39 wygenerowany przy pomocy metody AldousBroderGenerate:

```
$ $ $$$$$$$$$ $$$
                               $
       SSS S S SSS SSS S SSSSSSSSS
                          SSSSSSS SSSSS S
                                    $$$ $$$ $ $$$$$$$
      SSS S SSS SSS SSSSS
                  5 5 5
                       S SSS S SSS SSSSSSS
                                      S S SSSSSSS SSS
$$$ $$$$$ $$$ $ $$$$$$$$$ $
                                      S SSSSSSSS SSS
       $ $$$
           $ $$$$$$$ $
           S S S SSSSS S S SSSSSSS SSSSS SSSSSS SSS SSS SSS
   SSS SSS SSS
  $$$$$
                                          $$$
      S S SSSSS SSS S SSS S SSSSSSS
                          $$$ $$$
                               S SSS S
                                    $$$ $
                                        $$$
                                  $
 $$$$$$$ $$$ $
          SSSSS SSSSSSS SSSSS S SSS S
                   S SSS SSS SSS SSSS SSS S
                                   $ $$$$$$$ $$$$$$$
                   $
           5 5 5
               S 555 555 S
                      S S SSS SSSSSSSS
                                   $$$ $$$
                                          $
   $$$$$ $$$
       $ $
          S SSS S SSS SSS S SSSSSSSSS S
                                 $
                                  SSS SSSSS SSS SSS
$
                                    $ $$$ $
 $$$ $$$ $ $$$ $$$$$
                    $ $$$ $$$
                            $ $$$
                               $
                                 $ $
                                   $
                                      $$$$$
             $
               $$$$$
                  $
                          $
                                    $
                                    $
 $$$$$$$$$ $$$ $$$$$ $ $$$ $
                  $
                    S SSS S S SSS
                             $
                                 $$$ $$$$$$$$$ $$$$$ $$$
 $$$ $$$ $$$$$$$ $$$$$$$ $$$$$$$$$$$ $$$
                          $
                           $ $$$
                               S $$$ $
                                          $$$$$$$
                 $ $
  SSS S SSS SSS S S
               $$$ $
                  $
                    S SSSSS S S SSSSS SSS SSS S
                                      $$$$$$$
  S SSSSSSS S S S S S SSSSS S SSS S SSS
                          $
                           $$$ $ $
                                 $
                                  $$$$$
 $
                $
```

Porównując szybkość działania zastosowanych algorytmów, najszybciej wykonującym się jest metoda KruskalGenerate, a najwolniejszym jest AldousBroderGenerate.