Sachant que la machine a déjà fonctionné 3 ans ,quelle est la probabilité reste fonctionnelle encore 4 ans.

EXERCICEN® 4 (7 pts)

Soit f la fonction définie sur $]-1,+\infty[$ par $f(x)=\begin{cases} -x+2Ln(1+x) \ x-1+e^{-x} \end{cases}; si \ x\in]-1,0[$ et on désigne par C_f sa courbe représentative dans un repère orthonormé (o,\vec{i},\vec{j}) .

- a- Etudier la continuité de f en 0.
 b-Etudier la dérivabilité de f en 0 et interpréter graphiquement les résultats.
- 2) a- calculer $\lim_{x\to -1^+} f(x)$ et interpréter graphiquement le résultat. b- calculer $\lim_{x\to +\infty} f(x)$ puis démontrer que la droite $D\colon y=x-1$ est une asymptote à C_f au voisinage de $+\infty$.
 - c- Etudier la position relative de C_f et D.
- a- calculer f'(x) sur chaque intervalle de son domaine de définition et en déduire que ∀x ∈]-1, +∞[; f'(x) ≥ 0.
 - b- Dresser alors le tableau de variation de f.
- 4) On considère h la restriction de f sur]-1,0[.
 - a- Justifier que h réalise une bijection de]−1,0[sur un intervalle J qu'on déterminera.
 - b- On a tracé C_f sur la feuille annexe (figure 2) ;tracer C_{h-1} dans le même repère.
- 5) Soit α un réel strictement supérieur à 1 ($\alpha > 1$); on désigne par $\Gamma(\alpha)$ la partie du plan limitée par C_f ; D; $\Delta : x = 1$ et; $\Delta' : x = \alpha$
 - a- Hachurer sur la figure 2 la partie Γ(α)
 - b- Exprimer en fonction de α ; $A(\alpha)$ l'aire de $\Gamma(\alpha)$.
 - c- Trouver: $\lim_{\alpha\to+\infty} A(\alpha)$.
 - d- Calculer : $I = \int_0^1 (x 1)e^{-x} dx$.

BON TRAVAIL BONNE REUSSITE

- b) Exprimer alors (V_n) en fonction de n.
- c) Montrer que $U_n = Ln(3 + (\frac{2}{3})^n)$.
- d) Retrouver la limite de la suite (U_n)

EXERCICE N° 3 (5 pts)

Une usine fabrique des tablettes de chocolats ; à l'issue de la fabrication, l'usine considère que certaines tablettes de chocolats ne sont pas bien finies (cassées ; mal emballées,...).

L'usine dispose deux chaines de fabrications :

*la chaine A : une chaine lente pour laquelle la probabilité d'obtenir une tablette bien finie est 0,98

* la chaine B : une chaine rapide pour laquelle la probabilité d'obtenir une tablette bien finie est 0,95

I/ à la fin de la journée on prélève au hasard une tablette de chocolat ; on note les évènements suivants : A « la tablette est fabriquée par A »

et F « la tablette est bien finie »

On désigne par x la probabilité de l'évènement A.

- 1) Construire un arbre pondéré qui correspond à cette situation.
- 2) Montrer que P(F) = 0.03x + 0.95
- 3) On remarque que 96% des tablettes de chocolats sont bien finies ; montrer que : $P(A) = \frac{1}{3}$.

II/ on prélève au hasard successivement et avec remise 3 tablettes ; soit X la variable aléatoire qui correspond au nombre de tablettes fabriquées par la chaine A .

- 1) Donner la loi de X
- 2) Calculer E(x) et V(X).

III/ L'usine a acheté une machine électronique pour tester la qualité du cacao ; Y: la durée de vie de cette machine suit la loi exponentielle de paramètre $\lambda = 0.2$; trouver à 10^{-2} prés:

1) $P(Y \le 5)$ et P(Y > 2).

EXAMENDU BACALOREAT BLANC	Lycée : ZARZIS
EPREUVE : MATHEMATIQUES	Section : sciences de l'informatique
Durée: 3H	Coefficient de l'épreuve : 3

Le sujet comporte 4 pages dont une page(feuille annexe)

à rendre avec la copie

EXERCICE N° 1 (4 pts)

- 1) Résoudre dans \mathbb{C} l'équation (E): $(z-2i)(z^2-2\sqrt{3}z+4)=0$.
- 2) Dans le plan complexe muni d'un repère orthonormé direct (o, \vec{u}, \vec{v}) on considère les points A, B, C et D d'affixes respectives :

$$z_A = \sqrt{3} - i$$
; $z_B = \sqrt{3} + i$; $z_C = 2i$ et $z_D = -\sqrt{3} - i$.

- a) Montrer que A, B, C et D appartiennent au cercle C de centre o et de rayon R=2.
- b) Placer les points A, B, C et D soigneusement sur la feuille annexe (figure 1)
- 3) Calculer : $(z_C z_D)\overline{(z_C z_B)}$ et en déduire la nature du triangle DBC.
- Soit Δ l'ensemble des points M du plan d'affixe z vérifiant

$$|z-2i| = |z-\sqrt{3}-i|$$
.

- a) Déterminer et représenter Δ sur la figure 1 de la feuille annexe.
- b) Trouver l'affixe de G le point d'intersection de Δ et (BC).

EXERCICE N° 2(4 pts)

- 1) Soit la suite (U_n) définie par : $U_0 = 2Ln2$ et $U_{n+1} = Ln(\frac{2}{3}e^{U_n} + 1)$
 - a) Montrer que $\forall n \in \mathbb{N} \ U_n > Ln3$.
 - b) Vérifier que $\forall n \in \mathbb{N} \ e^{U_n} e^{U_n+1} = \frac{1}{3}(e^{U_n} 3)$.
 - c) Comparer alors e^{U_n} et e^{U_n+1} et en déduire que (U_n) est décroissante.
 - d) Justifier que (U_n) est convergente et trouver sa limite l
- 2) Soit (V_n) la suite définie par $V_n = e^{U_n} 3$
 - a) Montrer que (V_n) est géométrique de raison $q = \frac{2}{3}$

Exercice N°4(3 points)

Soit la suite U_n définie par $U_n = \int_0^1 x^{n+1} e^x dx$

- 1) En utilisant une intégration par partie calculer Uo.
- 2) Montrer que la suite U est décroissante.
- 3) On a représenté Cf et Cg ci-dessous dans un repère $(O; \vec{t}; \vec{j})$

où
$$f(x) = x^2 e^x$$
 et $g(x) = x e^x$

- 4) a- Résoudre graphiquement g(x) = f(x)
 - a- Comparer f et g sur l'intervalle [0,1].
 - b- Déterminer La valeur de la partie en couleur grise sur la figure ci-dessus (vous pouvez calculer U1).

- 2) Montrer que pour tout $x \in \left]0; +\infty\right[; f'(x) = -\frac{g(x)}{2x^2}$
- 3) Etudier alors le tableau des variations de f.
- 4) Calculer $\lim_{x \to +\infty} f(x) + \frac{1}{2}x$, que peut-on déduire?
- 5) Montrer que $f(\alpha) = -\alpha + \frac{2}{\alpha}$ puis donner un encadrement $f(\alpha)$.
- Tracer alors Cf.(on prendra α = 1.15)
- 7) Soit la fonction $h(x) = -\frac{1}{2}x + \frac{1}{x}(1 + 2\ln|x|)$ ou x est un réel non nul
 - a- Montrer h est une fonction impaire.
 - b- Vérifier si x est strictement positif on aura h(x) = f(x)
 - c- Déduire alors une construction de Ch où Ch est la courbe représentative de le même repère
- 8) Soit A l'aire de la partie du plan limitée par la courbe Cf, l'axe des abscisses et les axes x= 1, x=2
 - a- Hachurer la partie A
 - b- Vérifier que $\frac{1}{2}$ (lnx) ² est une primitive de de $\frac{\ln x}{x}$.
 - c- Déterminer la valeur de A.

Exercice N°3(4 points)

On considère l'équation (E):11x-7y=5 où x et y sont des entiers relatifs.

- 1) Justifiant que (E) admet au moins des solutions dans $\mathbb{Z}^*\mathbb{Z}$.
- 2) En utilisant l'algorithme d'Euclide déterminer une solution particulière de (E).
- 3) Résoudre alors (E).
- On considère l'équation (F) 11x²-7y²=5 où x et y sont des entiers relatifs.
 - a- Démontrer que si le couple (x;y) est une solution de (F) alors $x = 2y^2[5]$
 - b- Soient x et y des entiers relatifs .Recopier et compléter les deux tableaux suivants.

Modulo 5, x est congru à	0	1	2	3	4
Modulo 5, x² est congru à		10	- 2	12	*

Modulo 5, y est congru à	0	1	2	3	4
Modulo 5, 2y² est congru à		*		*	

Quelles sont les valeurs possibles du reste de la division euclidienne de x^2 et de $2y^2$ par 5.

- c- En déduire que si le couple (x;y) est solution de (F) alors x et y sont multiples de 5.
- d- Démontrer que si x et y sont multiple de 5 alors le couple (x ;y) n'est pas solution de
 (F) .Que peut-on en déduire pour l'équation (F)

Lycée Utique -BIZERTE	Devoir de synthèse N°2	A.S 2020-2021
BAC info	JELASSI Adel	Durée : 3h

Exercice N°1(5 points)

La courbe (C) ci-dessous représente dans un repère orthonormé (O, \vec{t} , \vec{j}) une fonction

f définie sur IR par : $f(x) = \frac{ae^x + b}{e^x + 1}$ où a et b sont deux réels. Les droites d'équations : y = 1 et y = -1 sont des asymptotes à (C) respectivement au voisinage de $+\infty$ et au voisinage de $-\infty$. (L'unité graphique :

2cm)

- 1) a) A l'aide d'une lecture graphique déterminer : $\lim_{x \to \infty} f(x)$ et $\lim_{x \to \infty} f(x)$
 - b) En déduire que : a=1 et b=-1.
- 2) Montrer que la fonction f est impaire.
- 3) a) Vérifier que pour tout réel x on a : $f(x) = -1 + \frac{2e^x}{e^x + 1}$
- b) Calculer, en cm², l'aire A de la partie du plan limitée par la courbe (C), l'axe (O, \vec{i}) et les droites d'équations : x=0 et x=1.
- c) En déduire, en cm², l'aire \mathcal{A}' de la partie du plan limitée par la courbe (C), la droite d'équation y=1 et les droites d'équations x=0 et x=1.
- 4) a) Montrer que f réalise une bijection de IR sur un intervalle J que l'on précisera.
 - b) Déterminer l'expression de f ·1 (x); pour tout x de J.
 - c) Montrer que f⁻¹ est dérivable en 0 et Déterminer le signe de (f⁻¹)'(0).

Exercice N°2(6 points)

- A) Soit la fonction g définie sur $]0; +\infty[$ par $g(x) = 4 \ln x + x^2 2$.
- Calculer g'(x) puis déduire son tableau de variation (on doit calculer les limites au bornes de son domaine de définition)
- Montrer que l'équation g(x) = 0 admet une unique solution α puis vérifier que 1.1 < α < 1.2
- 3) Déduire le tableau de signe de g.
- B) Soit la fonction f définie sur $]0; +\infty[$ par $f(x) = -\frac{1}{2}x + \frac{1}{x}(1 + 2\ln x)$

et Cf sa courbe représentative de dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

1) Calculer $\lim_{x\to+\infty} f(x)$, $\lim_{x\to 0^+} f(x)$

Annexe à rendre avec la copie

Nom et prénom :

Exercice 4

Exercice 4 (6 points)

On considère la fonction f définie sur $]-1,+\infty[$ par $f(x)=-2x+x\ln(x+1)$.

On désigne par C_f la courbe représentative de f dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) a) Calculer $\lim_{x\to(-1)^+} f(x)$.
 - b) Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement les résultats.
- 2) a) Montrer que pour tout $x \in]-1, +\infty[$, $f'(x) = -\frac{x+2}{x+1} + \ln(x+1)$.
 - b) Le tableau ci-dessous indique la variation de la fonction dérivée f' de f . Le réel α vérifie $f'(\alpha) = 0$.

Déterminer le signe de f'(x) sur $]-1,+\infty[$.

- c) Dresser le tableau de variations de f.
- 3) Dans <u>l'annexe ci-jointe (page 4)</u>, on a tracé dans le repère orthonormé $(0, \vec{i}, \vec{j})$ la courbe C_g de la fonction g définie sur]-1, $+\infty[$ par $g(x)=\frac{-x^2}{x+1}$, la droite $\Delta: x=-1$ et on a placé le réel α .
 - a) Vérifier que $\ln(\alpha + 1) = \frac{\alpha+2}{\alpha+1}$
 - b) En déduire que $f(\alpha) = g(\alpha)$.
 - c) Construire la point P d'abscisse α de la courbe C_f .
- a) Montrer que la courbe C_f coupe l'axe des abscisses en deux points que l'on déterminera.
 - b) Tracer C_f dans le repère $(0, \vec{i}, \vec{j})$.
- 5) a) Vérifier que pour tout x > -1 on a : $g(x) = 1 x \frac{1}{x+1}$.
 - b) Montrer que $\int_0^{\alpha} g(x) dx = \alpha \frac{1}{2}\alpha^2 \ln(\alpha + 1)$.
 - c) A l'aide d'une intégration par parties, monter que :

$$\int_0^\alpha x \ln(x+1) \ dx = \frac{1}{2} \alpha^2 \ln(\alpha+1) + \frac{1}{2} \int_0^\alpha g(x) \ dx \ .$$

d) Soit \mathcal{A} l'aire, en unité d'aire, de la partie du plan limitée par la courbe \mathcal{C}_f , l'axe des abscisses et les droites d'équations respectives x=0 et $x=\alpha$.

Montrer que
$$\mathcal{A} = \frac{3\alpha^3 - \alpha^2 + 4}{4(\alpha + 1)}$$
.

Exercice 2 (5 points)

On considère les matrices
$$A = \begin{pmatrix} 4 & 2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & -1 & -1 \\ -2 & 2 & 4 \\ 2 & 0 & -4 \end{pmatrix}$.

- 1) a) Montrer que la matrice A est inversible.
 - b) Calculer $A \times B$. En déduire la matrice inverse A^{-1} de la matrice A.
- 2) On considère le système (S): $\begin{cases} 4x + 2y + z = -8 \\ y + z = 2 \\ 2x + y = -2 \end{cases}$ où x, y et z sont des réels.
 - a) Donner l'écriture matricielle du système (S).
 - b) Résoudre alors dans R³ le système (S).
- 3) Soit l'application f définie par $f(z) = z^3 + az^2 + bz + c$; où $z \in \mathbb{C}$ et a, b et c sont des réels.
 - a) Déterminer a, b et c sachant que : f(2) = f(1 i) = 0.
 - b) Résoudre dans \mathbb{C} l'équation (E): $z^3 4z^2 + 6z 4 = 0$.
- 4) Le plan complexe étant muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on désigne par A et B les points d'affixes respectives $z_A = 2$ et $z_B = 1 i$.
 - a) Montrer que le triangle OAB est rectangle en B.
 - Soit C le symétrique de B par rapport à l'axe des abscisses.
 Montrer que le quadrilatère OBAC est un carré.

Exercice 3 (4 points)

- 1) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 11x 7y = 5.
 - a) Vérifier que le couple (10, 15) est solution de l'équation (E).
 - b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
- 2) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (F): $11x^2 7y^2 = 5$.
 - a) Montrer que si le couple (x, y) est une solution de (F), alors $x^2 \equiv 2y^2$ [5].
 - b) Soient x et y deux entiers relatifs. Recopier et compléter les tableaux suivants :

Modulo5; x est congru à	0	1	2	3	4
Modulo5; x ² est congru à					

Modulo5; y est congru à	0	1	2	3	4
Modulo5;2y2est congru à					

- c) Quelles sont les valeurs possibles du reste de la division euclidienne de x^2 et de $2y^2$ par 5?
- d) En déduire que si le couple (x, y) est une solution de (F), alors x et y sont des multiples de 5.
- e) Montrer que si x et y sont des multiples de 5 , alors le couple (x, y) n'est pas une solution de (F).
 Que peut-on conclure ?