

10/676,031

(FILE 'HOME' ENTERED AT 22:14:17 ON 20 MAR 2005)

FILE 'REGISTRY' ENTERED AT 22:14:51 ON 20 MAR 2005
L1 STRUCTURE uploaded

=> d 11
L1 HAS NO ANSWERS

L1 STR
*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.

=> s 11
SAMPLE SEARCH INITIATED 22:15:25 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 5989 TO ITERATE

16.7% PROCESSED 1000 ITERATIONS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 115141 TO 124419
PROJECTED ANSWERS: 1 TO 265

L2 1 SEA SSS SAM L1

=> s 11 full
FULL SEARCH INITIATED 22:15:30 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 123166 TO ITERATE

100.0% PROCESSED 123166 ITERATIONS
SEARCH TIME: 00.00.01

L3 94 SEA SSS FUL L1

=> fil caplus
COST IN U.S. DOLLARS SINCE FILE TOTAL
ENTRY SESSION
FULL ESTIMATED COST 161.33 161.54

FILE 'CAPLUS' ENTERED AT 22:15:36 ON 20 MAR 2005
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2005 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 20 Mar 2005 VOL 142 ISS 13
FILE LAST UPDATED: 18 Mar 2005 (20050318/ED)

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s 13
L4 38 L3

=> d 1-38 bib abs

L4 ANSWER 1 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 2004:136040 CAPLUS
DN 141:235008
TI Synthesis and characterization of some copper(II) complexes of hydrazines
AU Gaur, Avdesh
CS Department of Chemistry, N.A.S. College, Meerut, 250 001, India
SO Asian Journal of Chemistry (2004), 16(1), 528-530
CODEN: AJCHEW; ISSN: 0970-7077
PB Asian Journal of Chemistry
DT Journal
LA English
AB Some Cu(II) complexes of hydrazine and p-chlorophenylhydrazine were isolated and characterized from chemical anal., magnetic susceptibility, IR and electronic spectral studies.
RE.CNT 7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 2 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 2002:927443 CAPLUS
DN 138:4789
TI An arylation method for the functionalization of O-allyl erythromycin derivatives via modified Heck reaction
IN Zhang, Weijiang; Hsu, Margaret Chi-Ping; Haight, Anthony R.; Peterson, Matthew John; Narayanan, Bikshandarkoil A.
PA Abbott Laboratories, USA
SO PCT Int. Appl., 44 pp.
CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI WO 2002096922	A1	20021205	WO 2002-US18348	20020521
W: AU, BR, CA, CN, IL, IN, JP, KR, MX RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR				
BR 2002006106	A	20031014	BR 2002-6106	20020521
EP 1399458	A1	20040324	EP 2002-741957	20020521
R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, FI, CY, TR				
JP 2004536075	T2	20041202	JP 2003-500101	20020521
US 2003125531	A1	20030703	US 2002-156404	20020528
PRAI US 2001-294326P	P	20010530		
WO 2002-US18348	W	20020521		
OS CASREACT 138:4789				
AB An efficient arylation technique for use in the synthesis of erythromycin derivs., involving a modified Heck reaction which employs less than six mole percent of palladium catalyst and no phosphine is disclosed. With this modified Heck reaction, an O-alkenylaryl macrolide can be obtained in a much shorter reaction time than under conventional Heck reaction conditions. The modified Heck reaction can be utilized in a method for phosphine-free arylation of an O-allylic erythromycin derivative, in a method for preparing an O-alkenylaryl erythromycin A derivative, or in a method for preparing a 2', 4"-hydroxyl protected 6-O-alkenylaryl erythromycin A derivative. Thus, 6-O-(3-(3-quinolyl)-2-propen-1-yl)-erythromycin A 9-oxime benzoate-2', 4''-dibenzoate was prepared via phase transfer catalyst tetra-Bu ammonium chloride and palladium-catalyzed modified Heck reaction.				

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 3 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1999:608604 CAPLUS
DN 131:345683
TI Spectroscopic and magnetic properties of the dimeric $[\text{Cu}(\text{SO}_4) \cdot (1,4\text{-dihydrzinophthalazine}) \cdot \text{H}_2\text{O}]_2$ complex
AU David, L.; Cozar, O.; Chis, V.; Ristoiu, D.; Balan, C.
CS Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, 3400, Rom.

SO Studia Universitatis Babes-Bolyai, Chemia (1997), 42(1), 49-55
CODEN: SUBCAB; ISSN: 1224-7154
PB Studia Universitatis Babes-Bolyai
DT Journal
LA English
AB CuSO₄ complex with 1,4-dihydrazinophthalazine (DHP) was prepared and investigated by UV/visible, IR and ESR spectroscopies and magnetic susceptibility measurements. The complex appears to have a square-pyramidal arrangement of C_{4v} symmetry with four N atoms in the basal (xOy) plane and an apical O atom from a coordinated H₂O mol. Powder ESR spectrum and magnetic susceptibility measurements show the existence of dimeric species characterized by a fairly strong antiferromagnetic exchange coupling ($2J = -92 \text{ cm}^{-1}$). Monomeric species also are reported.

RE.CNT 18 THERE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 4 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1998:751138 CAPLUS
DN 130:141340
TI Study on production of nickelous hydrazine nitrate
AU Chen, Tailin
CS No.9634 Factory, 417618, Peop. Rep. China
SO Baopo Qicai (1998), 27(4), 23-24
CODEN: BAQIEJ; ISSN: 1001-8352
PB Baopo Qicai Bianjibu
DT Journal
LA Chinese
AB The production of nickelous hydrazine nitrate was studied. Nickelous hydrazine nitrate was prepared by Ni(NO₃)₂ and N₂H₄.H₂O. The optimum process design was obtained by orthogonal expts.

L4 ANSWER 5 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1998:175353 CAPLUS
DN 128:206501
TI Metal complexes for use as gas-generating agents for use in airbag inflation
IN Hinshaw, Jerald C.; Doll, Daniel W.; Blau, Reed J.; Lund, Gary K.
PA Thiokol Corp., USA
SO U.S., 16 pp., Cont.-in-part of U.S. Ser. No. 184,456, abandoned.
CODEN: USXXAM

DT Patent
LA English

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 5725699	A	19980310	US 1995-507552	19950726
	CA 2181543	AA	19950727	CA 1995-2181543	19950104
	CA 2181543	C	19990420		
	US 5673935	A	19971007	US 1995-484142	19950607
	US 5592812	A	19970114	US 1996-599634	19960209
	CA 2227872	AA	19970213	CA 1996-2227872	19960723
	WO 9704860	A2	19970213	WO 1996-US12630	19960723
	WO 9704860	A3	19991202		
	W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE				
	RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA				
	AU 9666451	A1	19970226	AU 1996-66451	19960723
	AU 721724	B2	20000713		
	EP 840716	A2	19980513	EP 1996-926229	19960723
	R: AT, BE, DE, ES, FR, GB, IT, SE				
	JP 11510779	T2	19990921	JP 1997-507900	19960723
	BR 9609842	A	19991005	BR 1996-9842	19960723
	CN 1255910	A	20000607	CN 1996-197079	19960723
	US 5735118	A	19980407	US 1996-698657	19960816
	US 6481746	B1	20021119	US 1996-746224	19961107
	US 5970703	A	19991026	US 1997-934900	19970922

AU 757780	B2	20030306	AU 2000-18495	20000222
PRAI US 1994-184456	B2	19940119		
US 1995-507552	A	19950726		
AU 1996-66451	A3	19960723		
WO 1996-US12630	W	19960723		
US 1997-746224	A3	19971107		

AB Metal complexes are used as gas-generating compns. for use in airbag inflation. These complexes are comprised of a metal cation template, a neutral ligand containing hydrogen and nitrogen, and sufficient oxidizing anion to balance the charge of the complex. The complexes are formulated such that when the complex combusts, nitrogen gas and water vapor is produced. Specific examples of such complexes include metal nitrite ammine, metal nitrate ammine, and metal perchlorate ammine complexes, as well as hydrazine complexes. A binder and co-oxidizer can be combined with the metal complexes to improve crush strength of the gas-generating compns. and to permit efficient combustion of the binder.

RE.CNT 167 THERE ARE 167 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 6 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1998:124058 CAPLUS
DN 128:194415
TI Metal complexes for use as gas generants for inflation of airbags
IN Lund, Gary K.
PA Thiokol Corporation, USA; Lund, Gary K.
SO PCT Int. Appl., 97 pp.
CODEN: PIXXD2
DT Patent
LA English
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9806486	A2	19980219	WO 1997-US12565	19970725
	WO 9806486	A3	19990527		
	W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG				
	US 6039820	A	20000321	US 1997-899599	19970724
	CA 2261601	AA	19980219	CA 1997-2261601	19970725
	AU 9739599	A1	19980306	AU 1997-39599	19970725
	AU 721984	B2	20000720		
	EP 958264	A2	19991124	EP 1997-936968	19970725
	R: AT, BE, DE, ES, FR, GB, IT, SE				
	CN 1247525	A	20000315	CN 1997-197921	19970725
	BR 9711958	A	20001024	BR 1997-11958	19970725
	JP 2001508751	T2	20010703	JP 1998-509719	19970725
	KR 2000029646	A	20000525	KR 1999-700717	19990125
	MX 9900916	A	20000731	MX 1999-916	19990125
	US 6241281	B1	20010605	US 1999-434274	19991105
PRAI	US 1996-22645P	P	19960725		
	US 1997-899599	A	19970724		
	WO 1997-US12565	W	19970725		

AB Metal complexes are used as gas generating compns. These complexes are comprised of a metal cation template, a neutral ligand containing hydrogen and nitrogen, and sufficient oxidizing anion to balance the charge of the complex, e.g., hexaamminecobalt(III) nitrate. Such complexes include metal nitrite ammines, metal nitrate ammines, and metal perchlorate ammines, as well as similar hydrazine complexes. The complexes are used in mixts. with ≥1 cool burning organic nitrogen-containing compound, e.g., guanidine nitrate. Nitrogen gas and water vapor are produced when the complex combusts. A binder, e.g., guar gum, and co-oxidizer, e.g., basic copper nitrate, can be combined with the metal complexes to improve crush strength of the gas generating compns. and to permit efficient combustion of the binder. The gas generating compns. are used for inflation of

automobile airbags.

L4 ANSWER 7 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1997:792647 CAPLUS
DN 128:106995
TI Heat capacity and thermodynamic properties of [Ni(N₂H₄)₃]B₁₀H₁₀ in the low temperature range
AU Gavrichev, K. S.; Gorbunov, V. E.; Malinina, E. A.; Solntsev, K. A.; Kuznetsov, N. T.
CS Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, 117907, Russia
SO Russian Journal of Coordination Chemistry (Translation of Koordinatsionnaya Khimiya) (1997), 23(11), 771-772
CODEN: RJCCEY; ISSN: 1070-3284
PB MAIK Nauka/Interperiodica Publishing
DT Journal
LA English
AB The temperature dependence of the heat capacity of [Ni(N₂H₄)₃]B₁₀H₁₀ is studied in the range of low temps. by the method of adiabatic calorimetry. No anomalies of the heat capacity, indicating the presence of phase transitions, were found. Smoothed values of the thermodn. functions of the complex in the studied temperature range were calculated from the exptl. data. Under standard conditions, these functions are as follows: Cp₀ (298.15 K) = 274.6 ± 0.5 J/(mol K), S₀(298.15 K) = 296.3 ± 0.7 J/(mol K), H₀(298.15 K) - H₀(0) = 45960 ± 90 J/mol, Φ₀(298.15 K) = 142.1 ± 0.3 J/(mol K).
RE.CNT 4 THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 8 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1997:230662 CAPLUS
DN 126:301061
TI N₂H_x coordination at the tripod-cobalt template CH₃C(CH₂PPh₂)₃Co. The transformation of η₂-HNNMe₂ into η₁-NNMe₂ ligands
AU Korner, Volkmar; Huttner, Gottfried; Vogel, Sabine; Barth, Annette; Zsolnai, Laszlo
CS Department Inorganic Chemistry, University Heidelberg, Heidelberg, D-69120, Germany
SO Chemische Berichte/Recueil (1997), 130(4), 489-492
CODEN: CHBRFW
PB VCH
DT Journal
LA English
AB While η₂-coordination of N₂H₄ and N₂H₃- to tripod-cobalt entities has been reported, stabilization of N₂H₂ in this system has not yet been achieved. [TripodCo(η₂-HNNMe₂)]⁺ (I) is transformed into [tripodCo(η₁-NNMe₂)]⁺ (II) by reaction with LiN(SiMe₃)₂ as a base. The deprotonation of I is accompanied by a redox reaction, and the overall reaction corresponds to the transformation of I to II with the loss of an electron and a proton. The observed coupling of deprotonation and oxidation is the reverse of the processes assumed to occur during N fixation. The results are established by the usual anal. and spectroscopic techniques and x-ray analyses. [TripodCo(η₂-HNNMe₂)]⁺(BPh₄)⁻.1.5THF: monoclinic, space group C2/c; a 2386.4(9), b 1705.8(9), c 3292(1) pm; β 95.75(3)°; V = 13334·106 pm³; Z = 8. [TripodCo(η₁-NNMe₂)]⁺(BF₄)⁻.1.65CH₂Cl₂: monoclinic, space group P21/c; a 1456.2(8), b 1431.1(8), c 2460.0(1) pm; β 94.72(2)°; V = 5109.2·106 pm³; Z = 4.

L4 ANSWER 9 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1997:218694 CAPLUS
DN 126:214046
TI Metal complexes for use as gas generating composition for inflation of airbags
IN Hinshaw, Jerald C.; Doll, Daniel W.; Blau, Reed J.; Lund, Gary K.
PA Thiokol Corporation, USA
SO PCT Int. Appl., 48 pp.
CODEN: PIXXD2
DT Patent

LA English

FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9704860	A2	19970213	WO 1996-US12630	19960723
	WO 9704860	A3	19991202		
	W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE				
	RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA				
	US 5725699	A	19980310	US 1995-507552	19950726
	AU 9666451	A1	19970226	AU 1996-66451	19960723
	AU 721724	B2	20000713		
	EP 840716	A2	19980513	EP 1996-926229	19960723
	R: AT, BE, DE, ES, FR, GB, IT, SE				
	JP 11510779	T2	19990921	JP 1997-507900	19960723
	BR 9609842	A	19991005	BR 1996-9842	19960723
	AU 757780	B2	20030306	AU 2000-18495	20000222
PRAI	US 1995-507552	A	19950726		
	US 1994-184456	B2	19940119		
	AU 1996-66451	A3	19960723		
	WO 1996-US12630	W	19960723		

AB Metal complexes are used as gas generating compns. and these complexes are comprised of a metal cation template, a neutral ligand containing hydrogen and nitrogen, and sufficient oxidizing anion to balance the charge of the complex. Nitrogen gas and water vapor are produced when the complex combusts. Such complexes include metal nitrite amine, metal nitrate amine, and metal perchlorate amine complexes, as well as hydrazine complexes. A binder and co-oxidizer can be combined with the metal complexes to improve crush strength of the gas generating compns. and to permit efficient combustion of the binder. The gas generating compns. are for use in gas generating devices such as automobile airbags.

L4 ANSWER 10 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1996:723700 CAPLUS

DN 126:69337

TI Ligand interchange from bis(3,3-pentamethylenediaziridine) cobalt dichloride. Evidence of metallacyclic heterobimetallic intermediate formation

AU Faria dos Santos Filho, Pedro

CS Inst. Quimica, Univ. Estadual Campinas, Campinas, 13081, Brazil

SO Journal of the Brazilian Chemical Society (1996), 7(4), 263-266

CODEN: JOCSET; ISSN: 0103-5053

PB Sociedade Brasileira de Quimica

DT Journal

LA English

AB Ligand interchange can be observed in reactions of bis(3,3-pentamethylenediaziridine)cobalt dichloride with Pd(II), Cd(II), Ni(II) and Rh(III) chlorides. In the case of the reaction with bis(benzonitrile)palladium dichloride the stereochem. of the product isolated indicates that the intermediate involved in this reaction is a metallacyclic heterobimetallic complex which, depending on the combination of the metals, can be isolated.

RE.CNT 6 THERE ARE 6 CITED REFERENCES AVAILABLE FOR THIS RECORD

ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 11 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1996:467342 CAPLUS

DN 125:118956

TI Gas-generating compositions in gas generator for inflation of airbags

IN Verneker, V. R. Pai

PA Conducting Materials Corp., USA

SO U.S., 6 pp.

CODEN: USXXAM

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 5536339	A	19960716	US 1994-312779	19940927
PRAI US 1994-312779		19940927		
AB	A non-sodium azide gas generating composition comprises lithium, potassium, or sodium perchlorates, nitride or non-halogenated polymer, styrene peroxides, polystyrene peroxides, zinc peroxide in hydrated form, iron oxalate hydrazinate, and iron nitrate hydrazinate. Thus, a gas generating composition comprising copper nitride, sodium perchlorate, and polyester was made, and the resulting gas had a composition the same as air. The gas generating composition has reduced toxicity, reduced risk of chemical and thermal burning of the driver, and reduced risk of premature deployment.			

L4 ANSWER 12 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1996:428350 CAPLUS
DN 125:195963
TI Conformation of tripod metal templates in MeC(CH₂PPh₂)₃M_n (n = 2, 3). Neural networks in conformational analysis
AU Beyreuther, Stefan; Hunger, Johannes; Huttner, Gottfried; Mann, Susanne; Zsolnai, Laszlo
CS Anorganisch Chemisches Inst., Univ. Heidelberg, Heidelberg, D-69120, Germany
SO Chemische Berichte (1996), 129(7), 745-757
CODEN: CHBEAM; ISSN: 0009-2940
PB VCH
DT Journal
LA English
AB The conformational space spanned by tripod metal templates MeC(CH₂PPh₂)₃M is analyzed on the basis of the solid-state structures of 72 tripodCo templates in compds. tripodCoL2 and tripodCoL3. Systematic anal., including the techniques of conformational space group scatter graphs, principal-component anal., and partial least squares, reveals a series of basic regularities. The torsion of the Ph groups is strongly linked to the torsional skew of the bicyclooctane-type framework of the chelate cage. For 1 sense of this skew there are 2 classes of low-energy conformation that differ by the helicity of the Ph arrangement and by the degree of torsional skew in the chelate backbone. From the scatter graphs it is evident that a change in helicity may occur by 1- or by 2-ring flip mechanisms. The basic regularities found by the above methods are also evident from the anal. of the same data by a neural network approach. The fact that these regularities are found for tripodCoL2 and tripodCoL3, irresp. of the widely different coligands L and crystal environments, means that the conformation of the tripod metal templates is governed by the forces imposed on them by their individual chemical or crystal environment. The classifications, although derived from a data basis only containing Co compds., are characteristic for tripod metal templates irresp. of the specific metal involved.

L4 ANSWER 13 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1995:715825 CAPLUS
DN 123:159338
TI Studies on platinum(II) and palladium(II) complexes of some substituted pyrazole-5-ones, pyrazoles, (hydroxyaryl)pyrazoles and pyranopyrazole
AU Al-Allaf, Talal A. K.; Al-Bayati, Redha I. H.
CS College of Science, University of Mosul, Mosul, Iraq
SO Asian Journal of Chemistry (1995), 7(3), 465-70
CODEN: AJCHEW; ISSN: 0970-7077
PB Asian Journal of Chemistry
DT Journal
LA English
AB The coordination behavior of several pyrazole-5-ones and pyrazoles derivs. with Pt(II) and Pd(II) metals are reported by the isolation and characterization of the resulting complexes. These complexes possess a square planar structure (*cis*-form) as revealed from IR and NMR spectral data. The ligands are coordinated mainly through the N-N linkage of the pyrazole ring.

L4 ANSWER 14 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1995:465056 CAPLUS

DN 123:305170
TI The closo-borate anions B₁₀H₁₀₂⁻ and B₁₂H₁₂₂⁻ in hydrazine complexes of Ni(II) and Pb(II) and in hydrazinium salts
AU Malinina, E. A.; Goeva, L. V.; Votinova, N. A.; Solntsev, K. A.; Kuznetsov, N. T.
CS Inst. Obshch. Neorg. Khim. im. N. S. Kurnakova, Moscow, Russia
SO Zhurnal Neorganicheskoi Khimii (1994), 39(12), 1997-2000
CODEN: ZNOKAQ; ISSN: 0044-457X

PB MAIK Nauka
DT Journal
LA Russian
AB (N₂H₅)₂Z.N₂H₄ (Z = B₁₀H₁₀₂⁻, B₁₂H₁₂₂⁻), [Ni(N₂H₄)₃]Z and [(PbOH)₂N₂H₄]Z were prepared IR spectral data indicate that hydrazine is bidentate in the octahedral Ni complexes and is bidentate bridging in the Pb complexes. The closo-borate anions are outer sphere in the Ni and Pb complexes. In (N₂H₅)₂Z.N₂H₄ hydrogen bonding is observed between N₂H₅⁺ and Z.

L4 ANSWER 15 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1994:660870 CAPLUS
DN 121:260870
TI Synthesis of NiAl fine powder from mechanochemically activated precursors
AU Abe, O.
CS Fac. Engineering, Ibaraki Univ., Nakanarusawa, 316, Japan
SO Proc. Int. Conf. Mechanochem., 1st (1993), Volume 2, 27-31. Editor(s): Tkacova, Klara. Publisher: Cambridge Intersci. Publ., Cambridge, UK.
CODEN: 60LWAT
DT Conference
LA English
AB The effect of mechanochem. activation of organometallic salt precursor on the synthesis of fine powder of intermetallic NiAl has been studied. The precursor was copptd. as a mixture of Al(OH)₂(C₆H₅COO)₂ and [Ni(N₂H₄)₃](C₆H₅COO)₂. The activation promoted the thermal decomposition of the precursor to form fine and homogeneous mixture of intermediate Ni₃C, Al₂O₃, and C at 1000 °C, resulting in the efficient formation of NiAl at 1500 °C. The processes of thermal decomposition and formation reaction of NiAl have been discussed in relation to the activation.

L4 ANSWER 16 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1993:439502 CAPLUS
DN 119:39502
TI Hydrazide (H₂NNH₂⁻) and hydroxylamide (H₂NO⁻) as η₂-coordinated ligands in tripod cobalt complexes
AU Vogel, Sabine; Huttner, Gottfried; Zsolnai, Laszlo; Emmerich, Christiane
CS Anorg.-Chem. Inst., Univ. Heidelberg, Heidelberg, D-W-6900, Germany
SO Zeitschrift fuer Naturforschung, B: Chemical Sciences (1993), 48(3), 353-63
CODEN: ZNBSEN; ISSN: 0932-0776
DT Journal
LA German
AB [(Tripod)Co(η₂-NH₂O)]⁺ (2; tripod = CH₃C(CH₂PPPh₂)₃), containing an η₂-coordinated NH₂O-ligand, is an isoelectronic equivalent to the recently reported [(tripod)Co(η₂-N₂H₃)]⁺ (1), which contains side-on coordinated N₂H₃⁻. The structures of 1 and 2 are almost superimposable. The structural discrimination between the NH₂⁻ and O⁻ parts of the η₂-NH₂O-ligand in 2 was corroborated by the synthesis and x-ray anal. of [(tripod)Co(η₂-NMe₂O)]⁺ and [(tripod)CoCl(NH₂OMe)]⁺. Upon treatment with air transforms into [(tripod)Co(NO)], the structure of which was determined

L4 ANSWER 17 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1993:428331 CAPLUS
DN 119:28331
TI Rhodium(I) complexes of 4-t-butylcyclohexylidiaziridine and adamantylidiaziridine: synthesis, structure and catalytic activity
AU Adedapo, A.; Benyunes, S. A.; Chaloner, P. A.; Claver, C.; Hitchcock, P. B.; Ruiz, A.; Ruiz, N.
CS Sch. Chem. Mol. Sci., Univ. Sussex, Falmer, Brighton, BN1 9QJ, UK
SO Journal of Organometallic Chemistry (1993), 443(2), 241-7
CODEN: JORCAI; ISSN: 0022-328X

DT Journal
LA English
GI

AB Rhodium(I) complexes of the ligands adamantyldiaziridine (I) and 4-t-butylcyclohexyldiaziridine (II) have been prepared and characterized. The structure of [RhCl(cod)(4-t-butylcyclohexyldiaziridine)] has been established by an X-ray diffraction study. The rhodium is coordinated to the equatorial nitrogen atom of the diaziridine. The complexes are rather poor catalysts for hydrogenation or hydroformylation of alkenes.

L4 ANSWER 18 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1991:220055 CAPLUS

DN 114:220055

TI Intermediate in nitrogenase models. Hydrazide and hydrazine as η^2 -coordinated ligands

AU Vogel, Sabine; Barth, Annette; Huttner, Gottfried; Klein, Thomas; Zsolnai, Laszlo; Kremer, Reinhard

CS Anorg. Chem. Inst., Univ. Heidelberg, Heidelberg, W-6900, Germany

SO Angewandte Chemie (1991), 103(3), 325-7 (See also Angew. Chem., Int. Ed. Engl., 1991, 30(3), 303-4)

CODEN: ANCEAD; ISSN: 0044-8249

DT Journal

LA German

AB $\text{Co}(\text{BF}_4)_2 \cdot 6\text{H}_2\text{O}$ reacted with $\text{MeC}(\text{CH}_2\text{PPh}_2)_3$ (tripod) and N_2H_4 to give $[\text{Co}(\text{n}_2\text{-N}_2\text{H}_3)(\text{tripod})]\text{BPh}_4 \cdot 2\text{THF}$ (I.2THF). Protonation of I by HBF_4 gave $[\text{Co}(\text{n}_2\text{-N}_2\text{H}_4)(\text{tripod})](\text{BPh}_4)(\text{BF}_4) \cdot \text{THF}$ (II. THF). I.2THF is monoclinic, space group P21/c, $Z = 4$, $R_1 = 0.1101$, $R_g = 0.0963$. II. THF is triclinic, space group P.hivin.1, $Z = 2$, $R_1 = 0.1213$, $R_g = 0.1084$. The coordination geometry of low-spin Co^{2+} is between square pyramidal and trigonal bipyramidal. The coordination geometry of high-spin Co^{2+} in II is distorted square pyramidal. The N-N bond lengths in I and II are 138.4(14) and 144.6(17) pm, resp. I.2THF and II. THF were characterized by IR spectra. I and II are intermediates of models of nitrogenase.

L4 ANSWER 19 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1989:163665 CAPLUS

DN 110:163665

TI Recording media incorporating complex metal azide explosives and dye-azide explosives

IN Thomson, Paul C. P.

PA Optical Recording Corp., Can.; Cohn, Ronald D.

SO PCT Int. Appl., 46 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
-----	-----	-----	-----	-----
PI WO 8803667	A1	19880519	WO 1987-US2904	19871109

W: JP

RW: AT, BE, CH, DE, FR, GB, IT, LU, NL, SE

PRAI US 1986-928027 A 19861107

AB An optical recording material contains: (1) an energy absorptive dye and (2) an explosive material (a metal azide complex) having an appropriate temperature of explosive decomposition and capable of emitting significant amount of energy upon explosive decomposition. Thus, a low-intensity semiconductor laser recording material was prepared with cupric azide-o-toluidine complex and IR

125 to give satisfactory results.

L4 ANSWER 20 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1988:178912 CAPLUS
DN 108:178912
TI Moessbauer study of complexation in the iron(III) oxalate-hydrazine-alcohol system
AU Nikonenko, E. A.; Marenkova, I. N.
CS Ural. Politekh. Inst., Sverdlovsk, USSR
SO Koordinatsionnaya Khimiya (1987), 13(11), 1481-3
CODEN: KOKHDC; ISSN: 0132-344X
DT Journal
LA Russian
AB Fe₂(C₂O₄)₃.5H₂O reacted with a 60% EtOH solution of N₂H₄ to give Fe(C₂O₄).3N₂H₄.2H₂O as indicated by Moessbauer and IR spectral data. On aging in air Fe(C₂O₄).3N₂H₄.2H₂O decomposed

L4 ANSWER 21 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1988:131558 CAPLUS
DN 108:131558
TI Synthesis and biological activity of 9-hydrazino- and 9-hydrazoneoacridines
AU Gaidukevich, O. M.; Kazakov, G. P.; Levitin, E. Ya.; Timofeeva, V. R.; Kravchenko, O. O.; Martynovskii, O. O.
CS Kharkov Pharm. Inst., Kharkov, USSR
SO Farmatsevtichniy Zhurnal (Kiev) (1987), (3), 34-39
CODEN: FRZKAP; ISSN: 0367-3057
DT Journal
LA Ukrainian
GI

AB Treating 6,9-dichloroacridines I (X = Cl; R = H, 2- and 4-Me and -OMe, 4-Cl) with N₂H₄·H₂O in refluxing MeOH-dioxane gave 53-76% I (X = NHNH₂, same R), which condensed with R₁CHO (R₁ = β-hydroxy-α-naphthyl, p-FC₆H₄, p-Me₂NC₆H₄, o-, m- and p-O₂NC₆H₄, o-ClC₆H₄, o- and p-MeOC₆H₄, 5-nitro-2-thiazolyl, p-O₂NC₆H₄CH:CCl, β-styryl) and isatin in refluxing EtOH containing AcOH to give 42 corresponding I (X = NH:CHR₁) in 62-87% yield. I [X = NHNH₂, R₁ = H (II), 2-OMe, 2-Me; X = NHN:CHC₆H₄OMe-p, R₁ = H] formed 7 1:1 complexes with FeSO₄, CuCl, CuCl₂ and/or CoCl₂ in 29-41% yield. II, I (X = NHN:CHC₆H₄NO₂-p, R₁ = 2-OMe) and II·CuCl had the highest fungicidal activity of the compds. prepared

L4 ANSWER 22 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1982:448583 CAPLUS
DN 97:48583
TI Synthesis and characterization of metal hydrazine nitrate, azide and perchlorate complexes
AU Patil, K. C.; Nesamani, C.; Verneker, V. R. Pai
CS Dep. Inorg. Phys. Chem., Indian Inst. Sci., Bangalore, 560012, India
SO Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry (1982), 12(4), 383-95
CODEN: SRIMCN; ISSN: 0094-5714
DT Journal
LA English
AB M(N₂H₄)_n(NO₃)₂ (M = Mg, Cd, n = 2; M = Mn, Fe, Co, Ni, Zn, Cd, n = 3), M(N₂H₄)₂(N₃)₂ (M = Mg, Co, Ni, Zn), and Mg(N₂H₄)₂(ClO₄)₂ were prepared by dissolving metal powder in solns. of NH₄X (X = NO₃, N₃, ClO₄) in N₂H₄·H₂O. The N₂H₄ complexes were characterized by elemental anal., IR spectra, and DTA. Values for impact sensitivities indicate that the N₂H₄ transition metal complexes are primary explosives; the Mg complexes are

nonexplosives.

L4 ANSWER 23 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1980:596849 CAPLUS
DN 93:196849
TI Spectral and magnetic properties of some heteronuclear complexes of copper and zinc with hydrazine as a ligand
AU Meghea, Aurelia; Mincu, Valentin; Brezeanu, Maria; Gutul, Melania
CS Fac. Tehnol. Chim., Inst. Politeh., Bucharest, Rom.
SO Revistade Chimie (Bucharest, Romania) (1980), 31(6), 556-7
CODEN: RCBUAU; ISSN: 0034-7752
DT Journal
LA Romanian
AB The compds. CuZn(N₂H₄)₄X₄ (X = Cl, Br), in which hydrazine is a bridging ligand, were investigated by several methods to establish their stereochem. The UV absorption spectra indicate that the Cu(II) ion is in an octahedral environment. The 10Dq values were 16,400 and 16,100 cm⁻¹ for the Cl and Br compds., resp. The contribution of the temperature-independent paramagnetism to the total susceptibility (as determined by the Faraday method) is small, showing that the t_{2g} electrons are not delocalized. The resulting values of the magnetic moment were 1.92 and 1.93 ± 0.02 μB at room temperature, resp. The ESR spectra indicated that the octahedral arrangement is tetragonally distorted and that the Br derivative is stable, whereas the Cl derivative decomp. after 24 h into hydrated CuCl₂ and other compds.

L4 ANSWER 24 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1980:470013 CAPLUS
DN 93:70013
TI Experimental determination of coordination numbers. Part III. Coordination compounds of copper and nickel with hydrazine as ligands
AU Maeueler, Guenter
CS Abt. Koeln, PH-Rheinland, Cologne, 5000/41, Fed. Rep. Ger.
SO Praxis der Naturwissenschaften, Chemie (1980), 29(3), 85-8
CODEN: PXNCAP; ISSN: 0342-8737
DT Journal
LA German
AB Coordination nos. of Cu and Ni were determined by the formation of coordination complexes with hydrazine as the ligand, quant. determination of the metal and hydrazine N contents of the complexes, and calcn. of the coordination number from the metal-to-hydrazine ratio.

L4 ANSWER 25 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1979:585793 CAPLUS
DN 91:185793
TI Study on some heteronuclear complexes of copper and zinc with hydrazine as ligand
AU Brezeanu, Maria; Mandravel, Cristina; Gutul, Melania; Todan, Ligia
CS Rom.
SO Revistade Chimie (Bucharest, Romania) (1979), 30(3), 224-6
CODEN: RCBUAU; ISSN: 0034-7752
DT Journal
LA Romanian
AB Hydrazine was added to various amts. of CuO and ZnO in HBr (20%) until the solution attained pH 10. The following complexes were obtained: C_nZ_m(N₂H₄)_{2n(n+m)}Br_{2(n+m)}, where either n = 1, and m = 1, 2, 3, 4, or m = 1, and n = 1, 2, 3, 4. The analyses were performed by gravimetry and IR spectrophotometry.

L4 ANSWER 26 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1979:499318 CAPLUS
DN 91:99318
TI Study on some heteronuclear complexes of copper- and zinc chloride with hydrazine. Part I
AU Gutul, Melanie; Mandravel, Cristina; Brezeanu, Maria; Tomescu, Camelia
CS Inst. Politeh. "Gheorghe Gheorghiu-Dej", Bucharest, Rom.
SO Buletinul Institutului Politehnic Gheorghe Gheorghiu-Dej Bucuresti, Seria Chimie-Metalurgie (1978), 40(4), 35-9
CODEN: BPGCDL; ISSN: 0378-9616

DT Journal
LA Romanian
AB The complex CuZn(N₂H₄)₄Cl₄ was characterized by IR anal. and comparison with the known spectra of related complexes. Interpretation of the spectral data suggested octahedral structure surrounding central metal atoms, the hydrazine acting as ligand between 2 metal atoms.

L4 ANSWER 27 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1979:412949 CAPLUS

DN 91:12949
TI The study of several complex heteronuclear combinations of cobalt and zinc with hydrazine as ligand
AU Mandravel, Cristina; Gutul, Melania; Brezeanu, Maria
CS Dep. Chem., Polytech. Inst., Bucharest, Rom.
SO Revue Roumaine de Chimie (1979), 24(2), 331-5
CODEN: RRCHAX; ISSN: 0035-3930

DT Journal
LA English
AB The heteronuclear complexes Co_nZn_m(N₂H₄)_{3(n+m)}(NO₃)_{2(n+m)} (n = 1, m = 2, 3, 4; m = 1, n = 1, 2, 3, 4) were prepared and characterized by elemental anal. and IR spectra. The IR spectra indicate that N₂H₄ acts as a bidentate and bridging ligand and that the nitrate ion is not coordinated.

L4 ANSWER 28 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1979:214469 CAPLUS

DN 90:214469
TI Coordination compounds of some sulfanilamides
AU Gogorishvili, P. V.; Tskitishvili, M. G.
CS USSR
SO Issledovaniya v Oblasti Khimii Kompleksnykh i Prostykh Soedinenii Nekotorykh Perekhodnykh i Redkikh Metallov (1978), 3, 5-22
CODEN: IOKKBV

DT Journal
LA Russian
AB Metal salts reacted with sulfadimethoxine (HL) in aqueous solution at pH 6-7.5 to give ML₂.nH₂O (M = Mn, Co, Ni, Zn, Cd, Cu). ML₂ were heated in pyridine to give ML₂(py)₂ (M = Co, Ni, Cu) or treated with aqueous N₂H₄.nH₂O to give ML₂(N₂H₄)₃ (M = Co, Ni). Co(NH₃)₆L₃ and Cu(NH₃)₄L₂ were also prepared M(HQ)₂Cl₂ [HQ = HL, 2-(N'-methylsulfanilamido)thiazole (HL'), 3-methyl-2-sulfaniloylimino-2,3-dihydrothiazole (HL'')], M(HL'')₂(OAc)₂ (HL''' = sulfadimezine; M = Cu, Co, Ni, Cd), M(HL'')₂X₂ (X = I, Br, NCS; M = Co, Ni), and [H₂Q]₂[MCl₄] [HQ = HL, HL', HL''; M = Mn, Co, Ni, Cu, Zn, Cd] were also prepared

L4 ANSWER 29 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1977:400157 CAPLUS

DN 87:157
TI Potential anti-tumor activity of platinum and palladium complexes with sulfur and nitrogen ligands
AU Kirschner, Stanley; Maurer, Ana; Dragulescu, Coriolan
CS Dep. Chem., Wayne State Univ., Detroit, MI, USA
SO Journal of Clinical Hematology and Oncology (1977), 7(1), 190-6
CODEN: JCHODP; ISSN: 0162-9360

DT Journal
LA English
AB Seven Pt(II) and Pd(II) complexes which contained thiosemicarbazide, morpholine, hydrazine, piperidine, piperazine, and some of their derivs. as ligands showed antitumor activity in ≥1 testing procedures. All the complexes contained cis-dichloro groups as well as the N-bonded or S-bonded ligands. The complex itself or the complex without the chloride is perhaps directly involved in the observed inhibition of DNA synthesis by leukemia cells and(or) of cell division by Escherichia coli. Probably, the complex itself interferes by coordination, through donor atoms from DNA, with other parts of cells or with viruses.

L4 ANSWER 30 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
AN 1977:89978 CAPLUS

DN 86:89978
TI Reactions of metal complexes with strained heterocyclics. VII. Reactions

AU of metal carbonyls with diaziridine
 CS Danzer, Wolfgang; Beck, Wolfgang; Keubler, Michael
 SO Inst. Anorg. Chem., Univ. Muenchen, Munich, Fed. Rep. Ger.
 DT Zeitschrift fuer Naturforschung, Teil B: Anorganische Chemie, Organische
 LA Chemie (1976), 31B(10), 1360-6
 CODEN: ZNBAD2; ISSN: 0340-5087
 Journal
 German
 GI For diagram(s), see printed CA Issue.
 AB Cyclic carbamoyl complexes I ($R = H, Me$) were prepared in 40, and 35% yields, resp., by treating II with $H\text{Mn}(\text{CO})_5$. Similarly, III ($M = Mo, W$) were prepared in 55, and 80% yields, resp., from II ($R = H$) and $C_5\text{H}_5(\text{CO})_3\text{MH}$. Treating $\text{LMo}(\text{CO})_4$ ($L = \pi$ -norbornadiene) or $(\text{MeCN})\text{W}(\text{CO})_5$ with II ($R = H$) gave IV ($M = Mo, W$), resp. II ($R = H$) forms adducts with Co and Ni chlorides.
 L4 ANSWER 31 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
 AN 1974:76245 CAPLUS
 DN 80:76245
 TI Study of complexes of palladium compounds by x-ray electronic spectroscopy
 AU Nefedov, V. I.; Zakharova, I. A.; Moiseev, I. I.; Porai-Koshits, M. A.;
 Vagraftik, M. N.; Belov, A. P.
 CS Inst. Obshch. Neorg. Khim. im. Kurnakova, Moscow, USSR
 SO Zhurnal Neorganicheskoi Khimii (1973), 18(12), 3264-8
 CODEN: ZNOKAQ; ISSN: 0044-457X
 DT Journal
 LA Russian
 AB The x-ray spectra of Pd and 34 Pd complex compds. were examined and the spectra Pd 3d, Cl 2p, N 1s, K 2p, and Br 3d were studied in detail. The shift parameters of the Pd 3d line and calculated bond energies are given for various ligands.
 L4 ANSWER 32 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
 AN 1972:528618 CAPLUS
 DN 77:128618
 TI Cobalt(II) halide and hydrazine complexes
 IN Stapfer, Christian H.; D'Andrea, Richard W.
 PA Cincinnati Milacron Chemicals Inc.
 SO Fr., 18 pp.
 CODEN: FRXXAK
 DT Patent
 LA French
 FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI FR 2089216		19720211		
CA 970783			CA	
DE 2115520			DE	
DE 2166039			DE	
GB 1307469			GB	
GB 1307799			GB	
US 3715328		19730000	US	
US 3728087		19730000	US	
US 3746733		19730000	US	
US 3884980		19750000	US	
PRAI US 1970-26161		19700406		

AB Trihydrazine and trihydrazinehydrochloride complexes of Co(II), of the general formulas $[\text{Co}(\text{RNHNH}_2)_3]\text{X}_2$ and $[\text{Co}(\text{N}_2\text{H}_4\cdot\text{HX})_3]\text{X}_2$ ($X = \text{halogen}, R = H$ or organic radical) are prepared by addition of the N_2H_4 to $[\text{Co}(\text{Bipy})]\text{X}_2$ in an anhydrous solvent. They are sensitive to O and are kept at 0° in an inert atmospheric (N, He, or Ar). The Cl compds. are more stable than those of Br or I. They are effective catalysts for paint drying and other O-transfer reactions. The $\text{N}_2\text{H}_4\cdot\text{HX}$ complexes are very soluble in water and are effective as homogeneous catalysts in aqueous solution
 L4 ANSWER 33 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN
 AN 1972:463486 CAPLUS
 DN 77:63486
 TI Cobalt(II) halide/hydrazine complexes for making polymers

IN Stapfer, Christian H.; D'Andrea, Richard W.

PA Cincinnati Milacron Chemicals, Inc.

SO S. African, 35 pp.

CODEN: SFXXAB

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	ZA 7101706	A	19711229	ZA 1971-1706	19710316
	DE 2148215	C3	19790412	DE 1971-2148215	19710331
	DE 2166039	B2	19790621	DE 1971-2166039	19710331
	DE 2166039	C3	19800619		
PRAI	US 1970-26161	A	19700406		
AB	Co(II) halide trihydrazinates, [Co(II)(RNHNNH ₂) ₃ X ₂] (I) or [Co(II)(N ₂ H ₄ .HX) ₃]X ₂ (II), where R = H, alkyl, aralkyl, aryl, or haloalkyl and X = halogen, were prepared and used in drying of alkyd or polyester resin coatings. Thus, Co(II) chloride-2,2'-bipyridine complex was dissolved in DMF and treated with H ₂ NNH ₂ to form cobalt(II) trihydrazinate dichloride (I, R = H, X = Cl) (II) [35430-21-8]. The product was refrigerated and kept under N. Cobalt(II) tris(phenylhydrazinate) dichloride [35430-22-9], cobalt(II) trihydrazinate dibromide [35430-23-0], cobalt(II) trihydrazinate diiodide [35430-24-1], and cobalt(II) tris(hydrazine hydrochloride) dichloride (II, X = Cl) [35430-25-2] were also prepared but the middle two compds. decomposed violently in air. The polymerization of Laminac 4152 (styrene-modified rigid polyester resin) was initiated by addition of Me Et ketone peroxide and I solution in cyclohexanone. The gel and cure times were 0.2 and <10 min., resp., compared with 2 and 26, resp., for a similar sample using a dihydrazinate complex and 15 and 57, resp., for a similar sample using Co naphthenate instead of I.				

L4 ANSWER 34 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1972:132726 CAPLUS

DN 76:132726

TI Structure of nickel oxalate complexes with hydrazine

AU Krylov, E. I.; Sharov, V. A.; Makurin, Yu. N.; Nikonenko, E. A.

CS Ural. Politekh. Inst. im. Kirova, Sverdlovsk, USSR

SO Zhurnal Neorganicheskoi Khimii (1972), 17(3), 709-12

CODEN: ZNOKAQ; ISSN: 0044-457X

DT Journal

LA Russian

AB The structure of the title complexes was determined by ir spectra and by their magnetic moments. N₂H₄ reacts with NiC₂O₄.2H₂O partially replacing H₂O and partially C₂O₄²⁻ groups. The product of such an interaction is NiC₂O₄.N₂H₄.(1.5-2)H₂O, having tetraand bidentate C₂O₄²⁻ and bridging N₂H₄. Ni(C₂O₄)₂.0.5-H₂O has a bidentate C₂O₄²⁻ ion and 2 bridging N₂H₄. All 6 coordination sites of Ni(II) in Ni(C₂O₄)₃.0.75H₂O are occupied by bidentate N₂H₄. Subsequent addition of N₂H₄ leads to a cleavage of the chelate bond of N₂H₄, giving products having only monodentate N₂H₄. The absorption maximum of these compds. are given.

L4 ANSWER 35 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1971:429446 CAPLUS

DN 75:29446

TI Complexes of cobalt(II) halides with hydrazine derivatives

AU Stapfer, Christian H.; D'Andrea, Richard W.

CS Cincinnati Milacron Chem. Inc., New Brunswick, NJ, USA

SO Inorganic Chemistry (1971), 10(6), 1224-7

CODEN: INOCAJ; ISSN: 0020-1669

DT Journal

LA English

AB Novel complexes of Co(II) halides with hydrazine and hydrazine derivs. are described as well as some of their chemical properties. Compds. of the type CoIIX₂(R:NN:R) were obtained by direct reaction of Co(II) halides with ketazines and aldazines or by condensation of bis(hydrazinates) with ketones or aldehydes. Tris(hydrazino)cobalt(II) halides of the type CoIIX₂(N₂H₄.HCl)₃ were prepared by ligand exchange of the azino complexes with hydrazine. The hydrochloride analogs, CoIIX₂(N₂H₄.HCl)₃, were the

result of the reaction of Co(II) halides with hydrazones and hydroxylamine hydrochloride.

L4 ANSWER 36 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1971:148564 CAPLUS

DN 74:148564

TI Complexes of phenylhydrazine with transition metal halides

AU Konovalov, L. V.; Maslennikova, I. S.; Shemyakin, V. N.

CS USSR

SO Zhurnal Obshchey Khimii (1970), 40(11), 2443-5

CODEN: ZOKHA4; ISSN: 0044-460X

DT Journal

LA Russian

AB The following complexes of type $MCl_2 \cdot 2PhNHNH_2$ were prepared as air-dried solids (M shown): Co, Ni, Cu, Zn; as well as CdCl₂, CdBr₂, and CdI₂ analogs. These were characterized by ir spectra in which the NH bands appear around 3200 cm⁻¹, M-N bands at 380-450 cm⁻¹, M-halogen bands at 240-300, in partial assignments that were made. The spectra give reason to indicate covalent nature of the bond structures; in complexes based on Cd the halogen atoms appear to be displaced to the outer coordination sphere and the Cl, Br, and I members are not regarded as isostructural owing to this displacement. The Zn complex has tetrahedral coordination whereas the Co complex has a structure of polymeric octahedra linked by Cl bridges. The Ni complex gave such a complex spectrum that its structure could not be judged, and Cu complex had a low-frequency spectrum of such a low quality of resolution that no structure could be deduced from it.

L4 ANSWER 37 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1971:60370 CAPLUS

DN 74:60370

TI Complexes of nickel with aminobenzoic acids

AU Gogorishvili, P. V.; Tskitishvili, M. G.

CS USSR

SO Issled. Obl. Khim. Kompleks. Prostykh Soedin. Nekot. Perekhodnykh Redk.

Metal. (1970), 58-72 Publisher: "Metsniereba", Tiflis, USSR.

CODEN: 22UFAP

DT Conference

LA Russian

AB The reactions of m- and p-aminobenzoic acids with salts of Ni were studied. Under the described conditions, compds. of identical composition (m,p-AB)₂Ni·2H₂O (where HAB represents aminobenzoic acid) are formed from both isomers. When o-HAB reacts with (N₂H₃CO₂)₂Ni₂H₄ a binuclear compound Ni₂(o-AB)·4N₂H₄ is formed, while under analogous conditions m- and p-HAB give compds. of a different composition (m- and p-AB)₂Ni·2-N₂H₄. Depending upon the concns. of the reactants, the isomers of HAB replace the radical of hydrazinecarboxylic acid from N₂H₅[Ni(N₂H₃CO₂)₃]H₂O partially or completely irreversible with the formation of (o, m-, and p-AB)Ni(N₂H₃COO)₂N₂H₄, (o-AB)₄Ni₂·N₂H₄, and (m- and p-AB)₂Ni·2N₂H₄.

L4 ANSWER 38 OF 38 CAPLUS COPYRIGHT 2005 ACS on STN

AN 1968:473539 CAPLUS

DN 69:73539

TI Effect of ammonia and hydrazine on (N₂H₃CO₂)₂CoN₂H₄

AU Tsitsishvili, L. D.

CS USSR

SO Kompleks. Soedin. Nekot. Perekhodnykh Redk. Elemt. (1966), 32-5

CODEN: 19PMAP

DT Conference

LA Russian

AB The reaction of NH₄OH and hydrazine with Co(N₂H₄)₂(N₂H₃CO₂)₂ yields Co(N₂H₅CO₂)₂·NH₃H₂O and Co(N₂H₃CO₂)₂·(N₂H₄)₂, which corroborate the existence of a low-stability 3-member hydrazine ring.

