Задачи к экзамену «Квантовая механика II»

Авторы заметок: Хоружий Кирилл

Примак Евгений

От: 14 июня 2022 г.

Содержание

№1. Линейный эффект Штарка в атоме водорода
№2. Матричный элемент оператора эволюции для свободной частицы
№3. Функционал гармонического осциллятора
№4, 5. Спиновые состояния
№6. Сумма по поляризациям спиноров Дирака
№7, 8, 9. Термы оболочки
№10. Аномальный эффект Зеемана
\mathbb{N} 11, 12, 13. Правила отбора
№14. Время жизни уровня
№15. Эффект Рамзауэра
№16. Рассеяние тождественных частиц
№17. Рассеяние на сфере
№18. Фазы рассеяния
№19. Рассеяние в борновском приближении

№1. Линейный эффект Штарка в атоме водорода

Переписать интегралы в сферических гармониках. Теперь рассмотрим возмущение, вила

$$\hat{H} = \frac{\hat{p}^2}{2m} - \frac{e^2}{r} + \hat{V}, \quad \hat{V} = -eE\hat{z}$$

Известно, что n=2, тогда вырождение $n^2=4$. Можем явно выписать несколько функций

$$|200\rangle = \frac{2}{\sqrt{4\pi}} \left(\frac{z}{2a}\right)^{3/2} e^{-r/2a} \left(1 - \frac{r}{2a}\right),$$

$$|210\rangle = \sqrt{\frac{3}{4\pi}}\cos\theta \left(\frac{1}{2a}\right)^{3/2} e^{-r/2a} \frac{r}{\sqrt{3}a},$$

а для $|211\rangle$ и $|21-1\rangle$ важно только что есть фактор $e^{im\varphi}$

Действительно,

$$\langle 21m|\hat{V}|21m'\rangle = 0, \quad m, m' = \pm 1.$$

Осталось посчитать

$$\kappa \stackrel{\text{def}}{=} \langle 200 | \hat{V} | 210 \rangle = \int_{\mathbb{R}^3} \dots d^3 \mathbf{r} = 3eEa.$$

Получилось матрица ненулевыми коэффициентами только в первом блоке 2 на 2:

$$\hat{V} = \begin{pmatrix} 0 & \kappa \\ \kappa & 0 \end{pmatrix}, \qquad \lambda_1 = \kappa, \quad \lambda_2 = -\kappa, \quad \lambda_3 = \lambda_4 = 0.$$

Решая секулярное уравнение, находим

$$E_2 = -\frac{\text{Ry}}{2^2}, \quad \left[\hat{H} + \hat{V} - (E_2 \pm \kappa)\mathbb{1}\right] |\psi\rangle = 0, \quad \Rightarrow \quad c_+ = \frac{1}{\sqrt{2}} (1, 1, 0, 0), \quad c_- = \frac{1}{\sqrt{2}} (1, -1, 0, 0).$$

Энергии расщепления

$$E^{+} = E_2^{(0)} + \kappa, \quad E^{-} = E_2^{(0)} - \kappa.$$

№2. Матричный элемент оператора эволюции для свободной частицы

Матричный элемент. Найдём матричный элемент опратора эволюции для свободной частицы

$$Z[0] = \langle q_N | U(t'', t') | q_0 \rangle = \int \mathcal{D}q \, \mathcal{D}p \, e^{\frac{i}{\hbar}S} = \lim_{N \to \infty} \int \frac{dp_N}{2\pi\hbar} \prod_{k=1}^{N-1} \frac{dq_k \, dp_k}{2\pi\hbar} \exp\left(\frac{i}{\hbar} \sum_{k=1}^N \left(p_k \dot{q}_k \, dt - \frac{p_k^2}{2m} \, dt\right)\right).$$

Перепишем аргумент экспоненты в виде

$$\sum_{k=1}^{N} p_k \dot{q}_k dt - \frac{p_k^2}{2m} dt = \sum_{k=1}^{N-1} q_k (p_k - p_{k+1}) + q_N p_N - q_0 p_1 - \sum_{k=1}^{N} \frac{p_k^2}{2m} dt$$

Вспоминая, что

$$\int_{\mathbb{R}} dt \ \delta(t) e^{i\omega t} = 1, \quad \Rightarrow \quad \int_{\mathbb{R}} \frac{d\omega}{2\pi} e^{-i\omega t} = \delta(t),$$

можем проинтегрировать по всем координатам и получить

$$\int \exp\left(\frac{i}{\hbar}q_k(p_k-p_{k+1})\right) = 2\pi\hbar\,\delta(p_k-p_{k+1}), \quad k=1,\ldots,N-1.$$

Теперь интегрирование по импульсу тривиально

$$Z[0] = \lim_{N \to \infty} \int \frac{dp_N}{2\pi\hbar} \exp\left(\frac{i}{\hbar} p_N(q_N - q_0) - \frac{p_N^2}{2m} \underbrace{N \, dt}_{t'' - t'}\right) = \sqrt{\frac{-im}{2\pi\hbar(t'' - t')}} \exp\left(\frac{i}{\hbar} \frac{m}{2} \frac{(q'' - q')^2}{t'' - t'}\right),$$

где мы воспользовались

$$\int_{\mathbb{R}} e^{-ax^2 + bx} \, dx = \sqrt{\frac{\pi}{a}} e^{b^2/4a}, \quad \int_{\mathbb{R}} e^{\pm ix^2} \, dx = e^{\pm i\pi/4} \sqrt{\pi}.$$

Уравнение Шрёдингера. Убедимся, что $Z[0] = \langle q|U(t,t')|q' \rangle$ удовлетворяет уравнению Шредингера

$$i\hbar\partial_t Z = -\frac{\hbar^2}{2m}\partial_q^2 Z.$$

Введем для удобства

$$\sqrt{\frac{-im}{2\pi\hbar(t''-t')}}\exp\left(\frac{i}{\hbar}\frac{m}{2}\frac{(q''-q')^2}{t''-t'}\right)\stackrel{\mathrm{def}}{=}\alpha e^{\beta}.$$

Тогда

$$\partial_t Z = \alpha \left(-\frac{1}{2} \frac{1}{t - t'} - \frac{im}{2\hbar} \frac{(q - q')^2}{(t - t')^2} \right) e^{\beta}, \quad \partial_q Z = \alpha \frac{im}{\hbar} \frac{q - q'}{t - t'} e^{\beta}, \quad \partial_q^2 Z = \frac{i\alpha m}{\hbar (t - t')} \left(1 + \frac{im}{\hbar} \frac{(q - q')^2}{t - t'} \right) e^{\beta},$$

что и требовалось доказать.

№3. Функционал гармонического осциллятора

Рассмотрим действие, вида

$$S = \frac{1}{2} \int_{x'}^{x''} dt \ q(t) \hat{\Gamma} q(t) + \int_{x'}^{x''} dt \ j(t) q(t),$$

где верно, что $\hat{\Gamma} = \hat{\Gamma}^{\dagger}$.

Сделаем замену переменных в известном интеграле

$$Z[j] = \mathcal{N} \int \mathcal{D}q \, \exp\left(\frac{i}{\hbar}S(t', t'', j)\right), \qquad q(t) \to \tilde{q}(t) = q(t) - \mathcal{G}^{(1)}(t), \quad \hat{\Gamma}\mathcal{G}^{(1)}(t) = 0.$$

Нам поможет, что $\mathcal{G}^{(1)}(t)\hat{\Gamma} = \left(\hat{\Gamma}\mathcal{G}^{(1)}(t)\right)^{\dagger}$, тогда

$$S = \frac{1}{2} \int dt \left(\tilde{q}(t) + \mathcal{G}^{(1)}(t) \right) \Gamma \left(\tilde{q}(t) + \mathcal{G}^{(1)}(t) \right) + \int dt \ j(t) \left(\tilde{q}(t) + \mathcal{G}^{(1)}(t) \right).$$

Подставляя в Z, находим

$$Z[j] = \mathcal{N} \int \mathcal{D}q \, \exp\left(\frac{i}{\hbar} \int_{t'}^{t''} dt \, \dots\right) = \mathcal{N} \exp\left(\frac{i}{\hbar} \int_{t'}^{t''} dt \, j(t) \mathcal{G}^{(1)}(t)\right) \int \mathcal{D}\tilde{q} \, \exp\left(\frac{i}{\hbar} \int_{t'}^{t''} dt \, \left(\frac{1}{2}\tilde{q}(t)\hat{\Gamma}\tilde{q}(t) + j(t)\tilde{q}(t)\right)\right).$$

Теперь делаем замену $\tilde{q} \to \bar{q} = \tilde{q} + \hat{\Gamma}^{-1} j(t)$. Тогда

$$frac12\tilde{q}(t)\hat{\Gamma}\tilde{q}(t) + j(t)\tilde{q}(t) = \frac{1}{2}\bar{q}\hat{\Gamma}\bar{q} - \frac{1}{2}j(t)\hat{\Gamma}^{-1}j(t),$$

тогда для функционального интеграла получаем

$$Z[j] = \exp\left(\frac{i}{\hbar} \int_{t'}^{t''} dt \left(j(t)\mathcal{G}^{(1)}(t) - \frac{1}{2}j(t)\hat{\Gamma}^{-1}j(t)\right)\right) \times \mathcal{N} \int \mathcal{D}\bar{q} \exp\left(\frac{i}{\hbar} \int_{t'}^{t''} dt \frac{1}{2}\bar{q}\hat{\Gamma}\bar{q}\right),$$

где последний множитель может быть представлен в виде $\exp\left(\frac{i}{\hbar}\mathcal{G}_0\right)$:

$$Z[j] = \exp\left(\frac{i}{\hbar} \left[\mathcal{G}_0 + \ldots + \ldots \right] \right) = \exp\left(\frac{i}{\hbar} G[j] \right),$$

что и требовалось доказать.

№4, 5. Спиновые состояния

Два электрона. Для системы из двух электронов возможны конфигурации

$$S=1, \qquad |1,+1\rangle = |++\rangle, \\ |1,-1\rangle = |--\rangle, \\ |1,0\rangle = \frac{1}{\sqrt{2}} \left(|+-\rangle + |-+\rangle \right). \\ S=0, \qquad |0,0\rangle = \frac{1}{\sqrt{2}} \left(|+-\rangle - |-+\rangle \right).$$

Для вывода полезно помнить, что

$$\hat{j}_{\pm} \left| j, m \right\rangle = \sqrt{j(j+1) \pm m(m \pm 1)} \left| j, m - 1 \right\rangle,$$

и заметить, что S=0 нечетное по перестановкам, S=1 четно по перестановкам.

Гелий. Для двух протонов (фермионов) в основном состоянии l=0, откуда $(-1)^0=1$, а значит спиновая часть должна быть антисимметрична

$$|p\rangle = \frac{1}{\sqrt{2}} (|+-\rangle - |-+\rangle).$$

Аналогично верно для нейтронов (фермионов) $|n\rangle$.

В обще случае для $l \neq 0$ можем записать

$$|\psi\rangle = \frac{1}{2} (|+-\rangle + (-1)^{l+1} |-+\rangle) \otimes (|+-\rangle + (-1)^{l+1} |-+\rangle).$$

№6. Сумма по поляризациям спиноров Дирака

Для покоящихся спиноров сумму по поляризациям

$$\Pi(\mathbf{0}) = \sum_{\lambda} u_{\lambda}(\mathbf{0}) \bar{u}_{\lambda}(\mathbf{0})$$

можем вычислить в явном виде, как прямое проивзедение

$$\Pi(\mathbf{0}) = mc\left(1,\,0,\,1,\,0\right) \otimes \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix} + mc\left(0,\,1,\,0,\,1\right) \otimes \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} = mc\begin{pmatrix} 1&0&1&0\\0&1&0&1\\1&0&1&0\\0&1&0&1 \end{pmatrix}.$$

В ковариантном виде

$$\Pi(\mathbf{0}) = mc(\gamma_0 + 1) = (k + mc), \quad k_{\mu} = (mc, \mathbf{0}).$$

Можем посчитать (посчитать), что $\Lambda \not k \Lambda^{-1} \to \not p$, откуда сразу находим

$$\Pi(\boldsymbol{p}) = (\not p + mc), \qquad \Pi^{c}(\boldsymbol{p}) = \sum_{\lambda} v_{\lambda}(\boldsymbol{p}) \bar{v}_{\lambda}(\boldsymbol{p}) = (\not p - mc),$$

где $p = p_{\mu} \gamma^{\mu} = p_0 \gamma_0 - \boldsymbol{\gamma} \cdot \boldsymbol{p}$.

№7, 8, 9. Термы оболочки

Кремний $2p^2$. По правилам Хунда конфигурация незаполненой части $2p^2$ будет вида: \square 1 \square , а значит можем найти J = |L - S| = 0. Основное состояние 3P_0 .

Сера $2p^4$. Незполненной явлеется оболочка $2p^4$, для которой находим основное состояние 3P_0 в силу конфигурации [1] [1] [1].

Все термы. Найдём все термы для p^2 , l=1, тогда $L=\{0,1,2\}$ и $S=\{0,1\}$. Для S=1 и L=1 возможны конфигурации $^3P_{0,1,2}$. Для S=0 и $L=\{0,2\}$ получим 1S_0 , 1D_2 , аналогичные рассуждения будут верны для p^4 . SDP.

Фосфор $2p^3$. Для фосфора p^3 основным состоянием будет $^4S_{3/2}$. Состоянию с $M_s=\frac{1}{2}$ соответсвует конфигурация $\boxed{1}$ $\boxed{1}$, и $^2D_{3/2,5/2}$. Для $M_L=1$ возможны конфигурации $\boxed{1}$ $\boxed{1}$, не приводящие к новым независимым состояниям. SPD.

№10. Аномальный эффект Зеемана

Расщепление будет происходить на величину

$$E = \hbar \Omega g_{LSJ} M_j,$$
 $g = \frac{3}{2} + \frac{S(S+1) - L(L+1)}{2J(J+1)},$ $\Omega = \frac{eH}{2mc}.$

Вспомним правила отбора $|\Delta J| \leqslant 1$, $|\Delta M_s| \leqslant 1$, $\Delta S = 0$, а также про смену четности Е1 перехода и запрет на J = J' = 0.

Для уровния ${}^2P_{3/2}$ фактор Ланде равен 4/3. Осталось отдельно рассмотреть переходы с ${}^2S_{1/2}$ на ${}^2P_{1/2}$ и с ${}^2S_{1/2}$ на ${}^2P_{3/2}$, что проще проделать руками, чем приводить здесь.

№11, 12, 13. Правила отбора

Спин. Справедливы следующие соотношения

$$[s_{\alpha}, d_{\beta}] = 0, \quad [s^2, d_{\beta}] = 0.$$

А таком случае

$$\langle f|[s^2, d_\alpha]|i\rangle = [s_f(s_f+1) - s_i(s_i+1)] d_{fi} = 0.$$

Так как $d_{fi} \neq 0$, то $s_f = s_i$, а значит $\Delta s = 0$.

Аналогично раскрываем

$$\langle f|[s_z, \mathbf{d}]|i\rangle = [M_s'(M_s'+1) - M_s(M_s+1)]\mathbf{d}_{fi} = 0, \quad \Rightarrow \quad \Delta M_s = 0.$$

А вообще помним про J и M_s по теореме Вигнера-Эккарта $\Delta J \leqslant 1, \ \Delta M_J \leqslant 1, \ 1 \leqslant J_i + J_f.$

Четность Е1. Важно помнить, что

$$\mathbb{P}d\ket{\psi} = -d\mathbb{P}\ket{\psi}, \quad \forall \psi, \quad \Rightarrow \quad \mathbb{P}d = -d\mathbb{P}.$$

Говорим про состояния с заданной четностью, а значит $\mathbb{P} | \psi \rangle = \Pi | \psi \rangle$, $\Pi = \pm 1$. Тогда

$$\langle f|\mathbb{P}\boldsymbol{d}|i\rangle = -\langle f|\boldsymbol{d}\mathbb{P}|i\rangle, \quad \Rightarrow \quad \Pi_f = -\Pi_i,$$

а значит четность меняется.

Четность M1. Немного иначе для M1 перехода:

$$oldsymbol{r} \overset{\mathbb{P}}{
ightarrow} -oldsymbol{r}, \qquad oldsymbol{\mu} \overset{\mathbb{P}}{
ightarrow} oldsymbol{\mu},$$

а значит для М1 перехода четность не меняется, возможны переходы в рамках одного терма.

№14. Время жизни уровня

Уже считали для атома водорода

$$\frac{1}{\tau} = \frac{2}{3c^3} \omega_f^3 |d_{fi}|^2 \frac{1}{\hbar}.$$

Ион гелия – водородоподобный атом, с отличным радиусом Бора:

$$a_{\rm H} = \frac{\hbar^2}{me^2}, \quad a_{\rm He} = \frac{\hbar^2}{me^2Z} = \frac{\hbar^2}{me^22}, \quad \Rightarrow \quad d_{fi}^{\rm He} = \frac{1}{Z}d_{fi}.$$

Аналогично для частоты

$$\omega_f \sim e^4 \sim \frac{1}{a^2}, \quad \Rightarrow \quad \omega_f^{\rm He} \sim Z^2 \omega_f.$$

Таким образом находим, что

$$\tau_{\mathrm{He}} = \frac{1}{Z^4} \tau_{\mathrm{H}} = 10^{-10} \ \mathrm{c}.$$

№15. Эффект Рамзауэра

Найдём сечение рассеяния медленных частиц на глубокой сферической яме радиуса a_0 . Потеницал

$$U(r) = \begin{cases} -U_0, & r \leqslant a_0, \\ 0, & r > a_0. \end{cases}$$

Теперь

$$R_{k0} = \frac{1}{r}u(r), \quad u(0) = 0, \quad -\frac{\hbar^2}{2m}u'' + Vu = Eu.$$

Для $r > a u'' + k^2 u = 0$, тогда

$$u_{\rm II} = A\sin(kr + \delta_0).$$

Для $r \leqslant a$

$$u'' + (k^2 + \kappa^2)u = 0$$
, $k_u^2 \stackrel{\text{def}}{=} k^2 + \kappa^2$, $U_0 = \frac{\hbar^2 \kappa^2}{2m}$, $\Rightarrow u_{\text{I}} = B\sin(k_u r)$.

Решение для радиальной волновой функции при
$$l=0$$
 запишется в виде
$$R_{k0}(r) = \begin{cases} A \frac{1}{k_u r} \sin(k_u r), & k_u^2 = \frac{2m}{\hbar^2} (E+U_0), & r \leqslant a_0, \\ B \frac{1}{kr} \sin(kr+\delta_0) & k^2 = \frac{2m}{\hbar^2} E, & r > a_0, \end{cases}$$

где A, B определяются из непрерывности $R_{k0}(r)$. Фазу можем найти из

$$\left. \frac{R'_{k0}(r)}{R_{k0}(t)} \right|_{r=a_0-0} = \frac{R'_{k0}(r)}{R_{k0}(t)} \right|_{r=a_0+0},$$

Подставляя $R_{k0}(r)$, находим

$$\operatorname{tg}(ka_0 + \delta_0) = \frac{k}{k_u} \operatorname{tg}(k_u a_0), \quad \Rightarrow \quad \delta_0 = -ka_0 + \operatorname{arctg}\left(\frac{k}{k_u} \operatorname{tg}(k_u a_0)\right).$$

Рассмотрим случай $\operatorname{tg}(k_u a) \to \pm \infty$. Тогда $\delta_0 \approx \operatorname{arctg}(\pm \infty) = \pm \frac{\pi}{2}$, что ещё называют резонансным рассеянием, так как $\sin\delta_0=\pm 1$. Также посмотрим на $\frac{\operatorname{tg}(\tilde{k}a)}{\tilde{k}a}\approx 1$, тогда $\delta_0\approx 0$, и получается $k_ua\ll 1$ и $f_0\to 0$ – эффект Рамзаура.

№16. Рассеяние тождественных частиц

Для двух тождественных частиц можем написать Ψ в виде

$$\Psi(\mathbf{r}_1, \mathbf{r}_2, s_1, s_2) = \Phi(\mathbf{R})\psi(\mathbf{r})\chi(s_1, s_2),$$

для приведенной массы $\mu=m/2,\, {m r}={m r}_1-{m r}_2,\, {m R}$ – коордианты центра масс.

 α -частицы. Спин α -частицы равен нулю, так что говорим про Ψ для бозонов, симметричную по перестановкам. Тогда асмиптотика на бесконечности имеет вид

$$|\psi(\mathbf{r})|_{r\to\infty} \sim e^{i\mathbf{k}\mathbf{r}} + e^{-i\mathbf{k}\mathbf{r}} + (f(\theta) + f(\pi - \theta))\frac{e^{i\mathbf{k}\mathbf{r}}}{r}.$$

Тогда сечение рассеяние может быть записано в виде

$$d\sigma = |f(\theta) + f(\pi - \theta)|^2 d\Omega.$$

№17. Рассеяние на сфере

Рассмотрим рассеяние медленных частиц на потенциале

$$U(r) = \begin{cases} U_0 \to +\infty, & r \leqslant a_0, \\ 0, & r > a_0, \end{cases}$$

где для $ka \ll 1$ существенным будет только l = 0, тогда

$$R_{k0}(r) = A \frac{\sin(kr + \delta_0)}{kr}, \quad k^2 = \frac{2mE}{\hbar^2}, \quad A = \text{const.}$$

Из непрерывности волновой функции находим, что $\sin(ka_0 + \delta_0) = 0$, откуда

$$\delta_0 = -ka_0, \quad f_0 \approx \frac{\delta_0}{k} = a_0,$$

что и обуславливает определение длины рассеяния.

№18. Фазы рассеяния

Изменить константу $\beta \to \frac{\hbar^2 \beta^2}{2m}$. Для потенциала, вида

$$V(r) = \frac{\beta}{r^2}, \quad \beta > 0,$$

найдём фазы рассеняи δ_l .

Запишем уравнение Шредингера для парциальной волны $u_l(r) = rR_l(r)$:

$$\left(\frac{d^2}{dr^2} + k^2 - \frac{1}{r^2} \left(l(l+1) + \frac{2m\beta}{\hbar^2} \right) \right) u_l(r) = 0.$$

Рассмотрим замену $u_l(r) = \sqrt{r}\varphi(r)$

$$\varphi'' + \frac{1}{r}\varphi' + \left(k^2 - \frac{1}{r^2}\left(\left(l + \frac{1}{2}\right)^2 + \frac{2m\beta}{\hbar^2}\right)\right)\varphi = 0,$$

решения которого знаем в виде функций Бесселя $J_{\pm\nu}(kr)$, где

$$\nu = \sqrt{\left(l + \frac{1}{2}\right)^2 + \frac{2m\beta}{\hbar^2}}.$$

Требуя $u_l(0) = 0$, находим решение в виде

$$u_l(r) = c\sqrt{\frac{\pi kr}{2}}J_{\nu}(kr).$$

Полезно посмотреть асмиптотику на бесконечности, для которой

$$u_l(r) \sim c \sin\left(kr - \frac{\pi\nu}{2} + \frac{\pi}{4}\right) = c \sin\left(kr - \frac{\pi l}{2} + \delta_l\right),$$

откуда находим искомые фазы рассеяния

$$\delta_l = -\frac{\pi}{2} \left(\sqrt{\left(l + \frac{1}{2}\right)^2 + \frac{2m\beta}{\hbar^2}} - \left(l + \frac{1}{2}\right) \right).$$

Предельный случай. В пределе $2m\beta/\hbar^2 \ll 1$ получаем

$$\delta_l \approx -\frac{\pi}{2} \frac{m\beta}{\hbar^2 (l + \frac{1}{2})},$$

откуда также получаем $|\delta_l| \ll 1$.

В таком случае можем просуммировать ряд

$$f(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) \left(e^{2i\delta_l} - 1 \right) P_l(\cos \theta) \approx \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) \delta_l P_l(\cos \theta) \approx -\frac{\pi m\beta}{\hbar^2 k} \sum_{l=0}^{\infty} P_l(\cos \theta).$$

Суммируя полиному Лежанда, находим

$$f(\theta) \approx -\frac{\pi m \beta}{2k\hbar^2 \sin(\theta/2)},$$

аналогично тому, что получили бы в борновском приближении.

№19. Рассеяние в борновском приближении

Рассмотрим в борновском приближении два короткодейтсвующих потенциала. Амплитуда рассения может быть найдена в виде

$$f(\theta) = -\frac{m}{2\pi\hbar^2} \int V(r)e^{-i\boldsymbol{q}\boldsymbol{r}} d^3\boldsymbol{r} = -\frac{2m}{\hbar^2q} \int_0^\infty V(r)\sin(qr)r dr, \qquad \boldsymbol{q} \stackrel{\text{def}}{=} \boldsymbol{k}' - \boldsymbol{k}, \quad q = 2k\sin(\theta/2).$$

Полное сечение рассения находим интегрируя амплитуду рассеяния:

$$\sigma = \int |f(\theta)|^2 d\Omega = 2\pi \int_0^{\pi} |f(\theta)|^2 \sin \theta \, d\theta.$$

Условие применимости запишется в виде

$$\frac{m}{2\pi\hbar^2}\bigg|\int\frac{e^{ikr}}{r}V(r)e^{ikz}\,d^3r\bigg|\ll 1.$$

Потенциал Юкавы. Подставляя $V(r) = \frac{\alpha}{r} e^{-\kappa r}$, находим

$$f = -\frac{2m\alpha}{\hbar^2(\kappa^2 + q^2)}, \quad \Rightarrow \quad \sigma = \left(\frac{m\alpha}{\hbar^2\kappa}\right)^2 \frac{4\pi}{4k^2 + \kappa^2}, \quad k^2 = \frac{2mE}{\hbar^2}.$$

Условие применимости для любых энергий: $\alpha m/\kappa \ll \hbar^2$. Для быстрых частиц можем ослабить условие до $\alpha \ll \hbar \times \hbar k/m$.

В пределе $\kappa \to 0$ можем получить резерфодовское сечение на отталкивающем кулоновском центре:

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{4E^2} \frac{1}{\sin^4 \frac{\theta}{2}}.$$