Statistical Inference Assignment 5

Junhao Yuan (20307130129)

October 22, 2022

Problem 1.

Let W be a statistics, show that $\mathbb{E}_{\theta}(W - \theta)^2 = \mathbb{V}_{\theta}(W) + (\mathbb{E}_{\theta}(W) - \theta)^2$.

SOLUTION.

$$\mathbb{E}_{\theta}(W - \theta)^{2} = \mathbb{E}_{\theta}(W - \mathbb{E}_{\theta}(W) + \mathbb{E}_{\theta}(W) - \theta)^{2}$$

$$= \mathbb{V}_{\theta}(W) + 2\mathbb{E}_{\theta}(W - \mathbb{E}_{\theta}(W))(\mathbb{E}_{\theta}(W) - \theta) + (\mathbb{E}_{\theta}(W) - \theta)^{2}$$

$$= \mathbb{V}_{\theta}(W) + 2(\mathbb{E}_{\theta}(W) - \mathbb{E}_{\theta}(W))(\mathbb{E}_{\theta}(W) - \theta) + (\mathbb{E}_{\theta}(W) - \theta)^{2}$$

$$= \mathbb{V}_{\theta}(W) + (\mathbb{E}_{\theta}(W) - \theta)^{2}.$$

Problem 2.

 $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x|\mu)$ where

$$f(x|\mu) = e^{-(x-\mu)} \cdot \mathbb{I}(x \ge \mu), \qquad \mu \in (-\infty, \infty). \tag{1}$$

- (a) Find $\hat{\mu}_{mle}$.
- (b) Use method of moments to find an unbiased estimator for μ .
- (c) Compare the estimators from (a) and (b), which one has a smaller MSE?

SOLUTION.

(a) The likelihood function is

$$L(\mu) = \prod_{i=1}^{n} e^{-(x-\mu)} \cdot \mathbb{I}(x \ge \mu)$$
$$= e^{-n(\bar{x}-\mu)} \cdot \mathbb{I}(x_{(1)} \ge \mu).$$

Since $e^{-(\bar{x}-\mu)}$ is monotonically increasing of μ , and $\mu \leq x_{(1)}$, we can conclude that the MLE of μ is $x_{(1)}$.

(b) We can denote $Y = X - \mu$ so that $Y \sim Exp(1)$. Since $\mathbb{E}(Y) = 1$ and $\mathbb{V}(Y) = 1$, we have $\mathbb{E}(X) = \mu + 1$ and $\mathbb{V}(X) = 1$. Therefore, by the method of moments, we can use $\bar{X} - 1$ to estimate μ .

(c) Let's compute the MSE of $\mu_{mle} = x_{(1)}$ first. The pdf of $x_{(1)}$ is

$$f_{x_{(1)}}(x) = ne^{-(x-\mu)} \left(e^{-(x-\mu)}\right)^{n-1}$$

= $ne^{-n(x-\mu)}$.

If we denote $Y = X_{(1)} - \mu$, then $Y \sim Exp(n)$. Hence,

$$\mathbb{E}(X_{(1)}) = \mathbb{E}(Y) + \mu = \frac{1}{n} + \mu,$$

$$\mathbb{V}(X_{(1)}) = \mathbb{V}(Y) = \frac{1}{n^2}.$$

Therefore, the MSE of $x_{(1)}$ is $2/n^2$.

Since

$$\mathbb{E}(\bar{X} - 1) = \mu + 1 - 1 = \mu,$$

 $\bar{X}-1$ is an unbiased estimator of μ . And its variance is

$$\mathbb{V}(\bar{X}-1) = \mathbb{V}(\bar{X}) = \frac{\mathbb{V}(X)}{n} = \frac{1}{n}.$$

Therefore, $x_{(1)}$ has a smaller MSE when n > 2.

PROBLEM 3.

Let F(x) and f(x) be the distribution and density functions for iid random variables X_1, \ldots, X_n . Show that

$$\int \dots \int_{a < x_1 < \dots < x_n < b} f(x_1) \dots f(x_n) \, dx_1 \dots dx_n = \frac{1}{n!} [F(b) - F(a)]^n. \tag{2}$$

SOLUTION.

For each value of $\mathbf{a} = (a_1, \dots, a_n)$, there exists n! permutations of X_1, \dots, X_n such that $X_{(1)} = a_1, \dots, X_{(n)} = a_n$. Hence, we have

$$\int_{a < x_1 < \dots < x_n < b} \dots \int_{a < x_1 < \dots < x_n < b} f(x_1) \dots f(x_n) dx_1 \dots dx_n = \frac{1}{n!} \int_{a < x_{(1)} < \dots < x_{(n)} < b} \dots \int_{a < x_{(1)} < \dots < x_{(n)} < b} f(x_{(1)}) \dots f(x_{(n)}) dx_{(1)} \dots dx_{(n)}$$

$$= \frac{1}{n!} \int_a^b f(x_{(1)}) dx_{(1)} \times \dots \times \int_a^b f(x_{(n)}) dx_{(n)}$$

$$= \frac{1}{n!} [F(b) - F(a)]^n.$$

Problem 4.

If $f(x|\theta)$ satisfies

$$\frac{d}{d\theta} \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} log f(X|\theta) \right) = \int \frac{\partial}{\partial \theta} \left[\left(\frac{\partial}{\partial \theta} log f(x|\theta) \right) f(x|\theta) \right] dx \tag{3}$$

(true for an exponential family), show that

$$\mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} log f(X|\theta) \right)^{2} \right] = -\mathbb{E}_{\theta} \left(\frac{\partial^{2}}{\partial \theta^{2}} log f(X|\theta) \right). \tag{4}$$

SOLUTION.

We have already known that

$$\mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta} \ln f(\mathbf{X}|\theta) \right] = 0. \tag{5}$$

Differentiate both sides of (5):

$$0 = \int_{\mathcal{X}} \left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f(x|\theta) \right] f(x|\theta) + \left[\frac{\partial}{\partial \theta} \ln f(x|\theta) \right] \frac{\partial}{\partial \theta} f(x|\theta) dx$$
$$= \int_{\mathcal{X}} \left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f(x|\theta) \right] f(x|\theta) + \left[\frac{\partial}{\partial \theta} \ln f(x|\theta) \right]^{2} f(x|\theta) dx$$
$$= \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f(X|\theta) \right)^{2} \right] + \mathbb{E}_{\theta} \left(\frac{\partial^{2}}{\partial \theta^{2}} \log f(X|\theta) \right),$$

which is just (4).