SOME DEPENDENCY PARSING WORK

MARK ANDERSON

OVERVIEW

Developing

- Chunk-and-Pass
- Distillation

Evaluating

- Edge displacement
- POS tags

PART I

DEVELOPING PARSERS

PARETO FRONT FOR PTB (WSJ)

CHUNK AND PASS

CHUNK AND PASS

"Now-or-never" bottleneck¹ 3 steps

- 1. Shallow parse (chunk) --> Compressed data and shallow syntax
- 2. Parse chunks --> Higher-order syntactic relations
- 3. Collate --> Combined 1 and 2 for full parse

¹ Christiansen, M.H. and Chater N., *The Now-or-Never bottleneck: A fundamental constraint on language*, 2015

PARETO FRONT FOR UD (ZH, HI, KO, PL)

PARETO FRONT FOR UD (ZH, HI, KO, PL)

CHUNKING — Each word is labelled, **B**, **I**, or **O**.

B C

A token that begins a chunk.

A token inside of a chunk.

Anything outside of a chunk.

Suffixed with chunk phrase type.

Also suffixed with chunk phrase type.

E.g. B-NP for a noun phrase.

E.g. I-VP for a verb phrase.

EXTRACTING CHUNKS

- 1. Evolutionary technique (slow...)
 - 2. Information theory

CHUNK CANDIDATE CRITERIA

- 1. The components are syntactically linked
- 2. There is only one level of dependency (one head and its dependents)
- 3. The components are continuous.
- 4. No dependents within a chunk has a dependent outwith the chunk.

(DET ADJ NOUN)

(PRON AUX ADV)

(PART VERB)

(ADP ADV PRON AUX)

(SCONJ ADV VERB)

(AUX AUX VERB)

(PRON PROPN VERB)

(CCONJ PRON AUX DET ADJ NOUN)

Extract 2615 unique rules from UD English EWT treebank v2.3

512 occur more than 5 times.

1.34x10¹⁵⁴ different rule sets.

EVOLUTIONARY SEARCH

EVOLUTIONARY SEARCH

Individual =
$$[0,1,0,0,1 \dots 0,1]$$

(DET ADJ NOUN) (PRON AUX ADV) (PART VERB)

Fitness = Chunking F1-score + 0.5 x proportion of max compression

PROPORTION OF MAX COMPRESSION

$$r = rac{N_{tokens} + N_{chunks}}{N_{tokens}}$$

$$r_{prop} = rac{r_{subset} - 1}{r_{all} - 1}$$

English-EWT

Japanese-GSD

SYSTEM DETAILS.

We use a neural sequence labelling toolkit, NCRF++. And a relative POS tag position encoding for sequence labelling parsing. 2

¹Yang, J. and Zhang Y., NCRF++: An Open-source Neural Sequence Labeling Toolkit, 2018 ²Spoustová, D.J. and Spousta M. Dependency Parsing as a Sequence Labeling Task, 2010

BROAD RESULTS

Difference between with and without chunks.

CHUNK AND PASS PARSING

- Normalised PMI (used various thresholds to obtain different amount of compression)
- Compared to/with leading sytems (biaffine, I2r, and sequence labelling).
- All same network type (BiLSTM).

Chunker performance (BiLSTM w/ fastText and char embeddings)

Varying compression and network size. Reasonable performance.

Extends to labelled edge predictions.

(Chinese, Hindi, Korean, and Polish)

PARETO FRONT FOR UD (ZH, HI, KO, PL)

DISTILLATION

TEACHER-STUDENT DISTILLATION

 $\mathcal{L}_{KL}(Q(\mathbf{x}), P(\mathbf{x})) + \mathcal{L}_{CE}(p(h|\mathbf{x}))$

EXPERIMENTS

- Used Biaffine (fast and accurate).
- Compared against teacher and small models.
- Used UDv2.4 (Ancient Greek, Chinese, English, Finnish, Hebrew, Russian, Tamil, Uyghur, and Wolof). Treebanks based on subset used in de Lhoneux et al. (2017).¹
- Compress to 20%, 40%, 60%, and 80% of original model.
- fastText and gold POS tags. (° °)

¹de Lhoneux, M., Stymne, S. and Nivre, J. Old school vs. new school: Comparing transition-based parsers with and without neural network enhancement, 2017

SPEED

GPU

CPU

ACCURACY

LAS

ENERGY COST

INCONSISTENT

- Subsequent work using only randomly initialised word and character.
- Didn't outperform small baselines.

PARETO FRONT FOR PTB (WSJ)

PART II

EVALUATING PARSERS

DEPENDENCY DISPLACEMENT

TRANSITION-BASED ALGORITHMS

Different transition-based algorithms perform differently on different treebanks

Perhaps because certain algorithms are inherently biased to creating edges that match given languages/treebanks?

- Used a non-NN parser, MaltParser. 1
- Contains multiple algorithms.
- Differences between algorithms observed still seen in NN implementations.²
- 76 treebanks from UD v2.2.

¹Nivre, J. et al., MaltParser: A language-independent system for data-driven dependency parsing, 2007. ²de Lhoneux, M., Stymne, S. and Nivre, J. Old school vs. new school: Comparing transition-based parsers with and without neural network enhancement, 2017

Transition-based algorithms

STACK	BUFFER	
	Estoy muy ca	
SHIFT	b0 to top of sтаск	
Estoy	muy cansado	
SHIFT		
Estoy muy	cansado por	
REDUCE(right-advmod)	remove s0 from stack	m
Estoy	cansado por	111

ALGORITHMS

Projective

- Arc Standard
- Arc Eager
- Covington Projective

Non-projective

- Arc Swap
- Covington Non-projective

DEPENDENCY DISPLACEMENT

DET edge between der and Nott: -1 (2-3)

OBJ edge between frisst and Fliegen: 3 (7-4)

PROJECTIVE ALGORITHMS

Recall

Non-projective algorithms

Recall

TRAINING VS TEST DATA

ADVERSARIAL SPLITS

UNIVERSAL POS TAGS

PARSERS

UUParser

Biaffine

Transition-based parser out of Uppsala developed from TB BIST Parser. 1,2

Graph-based parser developed from GB BIST Parser.³

word⊕char⊕upos
External pre-trained word embeddings, mainly fastText.
Same treebanks from distillation work.

¹Kiperwasser, E. and Goldberg, Y. Simple and accurate dependency parsing using bidirectional LSTM feature representations, 2016 ²Smith, A., de Lhoneux, M., Stymne, S. and Nivre, J. An investigation of the interactions between pre-trained word embeddings, character models and POS tags in dependency parsing, 2018

³Dozat, T. and Manning, C.D., Deep biaffine attention for neural dependency parsing, 2017

CONTROLLING UPOS ACCURACY

NCRF++ BiLSTM SL framework

BINS:: 2.5±0.3 from 60 to 80 and 1±0.3 from 80 onwards.

PARSERS: For training used gold tags and a subset of accuracy bins (60, 70, 80, 86, 91, and 93).

EXPERIMENT 1

EXPERIMENT 1

EXPERIMENT 2

Biaffine						UUParser					
Gold -	2.3 (0.5)	2.6 (0.6)	3.0 (0.8)	2.7 (0.7)	2.8 (0.6)	5.7 (1.5)	4.7 (1.2)	4.6 (1.1)	4.6 (1.1)	4.6 (1.2)	
Max ₉₁₍₃₎ -	-1.5 (0.4)	-1.3 (0.3)	-0.9 (0.2)	-1.2 (0.2)	-1.0 (0.2)	-0.9 (0.9)	-1.9 (0.5)	-2.3 (0.4)	-2.0 (0.4)	-2.3 (0.5)	$\Delta \mathrm{UAS}$
86 -	-0.3 (0.2)	-0.4 (0.1)	-0.3 (0.2)	-0.5 (0.2)	-0.2 (0.2)	-0.9 (0.4)	-1.2 (0.4)	-1.2 (0.4)	-1.4 (0.5)	-1.4 (0.4)	AS
Accuracy	-0.8 (0.4)	-0.4 (0.3)	0.0 (0.1)	-0.2 (0.2)	-0.3 (0.2)	0.4 (0.8)	-0.6 (0.4)	-0.6 (0.3)	-0.2 (0.3)	-0.7 (0.3)	
UPOS Ac	3.6 (0.8)	3.8 (0.8)	4.3 (1.0)	4.1 (1.0)	4.1 (0.9)	7.4 (1.6)	6.4 (1.5)	6.4 (1.4)	6.1 (1.3)	6.0 (1.3)	
Max ₉₁₍₃₎ -	-2.3 (0.4)	-2.1 (0.4)	-1.7 (0.3)	-1.8 (0.3)	-1.8 (0.3)	-1.9 (0.8)	-2.9 (0.5)	-3.3 (0.4)	-3.1 (0.5)	-3.4 (0.5)	$\Delta ext{LAS}$
86 -	-0.8 (0.3)	-0.8 (0.2)	-0.6 (0.3)	-0.7 (0.3)	-0.6 (0.4)	-1.5 (0.5)	-1.9 (0.6)	-1.8 (0.7)	-1.9 (0.7)	-1.9 (0.6)	AS
80 -	-0.9 (0.5)	-0.7 (0.4)	-0.2 (0.2)	-0.4 (0.2)	-0.6 (0.3)	-0.0 (0.6)	-0.9 (0.4)	-1.0 (0.4)	-0.7 (0.4)	-1.1 (0.4)	
	32	100	180	325	500	32	100	180	325	500	
	Character Embedding Size										

TAMIL RESULTS (~400 SENTENCES)

Still some improvement with low-accuracy taggers.

VERY LOW-RESOURCE

	UP	OS	LAS					
	Single	Multi	None	Pred	Gold	Multi		
bxr	48.72	48.34	10.45	12.36	20.31	14.41		
kk	53.37	52.14	22.48	21.63	36.66	23.50		
kmr	50.56	53.73	19.16	18.31	35.54	21.58		
olo	37.84	37.37	9.74	10.89	17.54	7.59		
hsb	53.44	47.28	18.36	20.03	41.88	14.66		
avg	48.79	47.77	16.04	16.64	30.39	16.25		

FAIRLY LOW-RESOURCED

	UP	OS	LAS					
	Single	Multi	None	Pred	Gold	Multi		
be	92.82	87.29	61.82	64.91	68.87	62.28		
gl	93.54	88.56	70.60	72.73	79.06	70.54		
It	79.25	71.51	37.17	35.94	48.30	38.96		
mr	80.58	76.46	57.04	58.74	64.32	56.31		
orv	87.77	81.60	49.53	51.34	60.24	50.33		
ta	86.88	79.23	63.85	62.75	74.31	63.15		
су	91.77	86.41	72.10	72.93	80.71	73.00		
avg	85.89	77.77	55.24	56.52	64.13	55.10		

ARTIFICIAL LOW-RESOURCE

Indonesian GSD, Irish IDT, Japanese GSD, and Wolof WTB.

PROBING EXPERIMENT

Arabic, Basque, Finnish, Indonesian, Irish, Japanese, Korean, Tamil, Turkish, Vietnamese, and Wolof

- Trained parser (Biaffine)
- Finetuned parser to predict POS tags
- Trained taggers with same sytem

PROBING EXPERIMENT

Union of errors (average over treebanks).

	None	Pred.	M¬E _T	M¬E _P	MAE ^L	Gold
ar	83.29	82.87	84.17	84.06	84.45	84.73
eu	81.12	81.14	82.33	82.62	83.13	84.45
fi	85.96	86.04	86.88	87.09	87.61	88.80
id	79.04	78.95	82.20	82.69	81.08	82.95
ga	76.13	76.57	76.62	76.65	77.46	77.90
ja	93.15	92.72	94.41	94.38	94.39	95.30
ko	85.40	85.86	87.53	87.82	87.44	88.52
ta	65.61	64.50	70.24	66.67	66.01	71.95
tr	66.67	67.68	67.62	67.66	67.84	68.86
vi	58.43	60.09	65.42	66.75	65.18	70.87
wo	77.87	78.49	82.03	81.39	81.11	85.41
avg	77.52	77.72	79.95	79.80	79.61	81.79

Masking Experiment

- None no tags.
- Pred. predicted tags.
- M¬E_T gold tags except tagger errors.
- M¬E_P gold tags except parser errors.
- MVE_T gold tags only tagger errors.
- Gold all gold tags.

END

COLLABORATORS (WORK PRESENTED)

Carlos Gómez Rodríguez

Mathieu Dehouck

David Vilares

CONCLUSION

Developing

- Chunk-and-Pass
- Distillation

Evaluating

- Edge displacement
- POS tags