Relatório de Análise de Algoritmos

Nomes: Miguel Sanches Rocha, Marcos Felipe Belisário Costa, Lucas do

Nascimento Macedo

Matrículas: 11811BCC001, 11811BCC020, 11811BCC044

Descrição dos experimentos:

Foi realizado o desenvolvimento de 2 algoritmos para o problema da multiplicação de matrizes, o algoritmo tradicional e o algoritmo Strassen, ambos em linguagem de programação C++. Os códigos dos algoritmos estão disponíveis no repositório GitHub que foi encaminhado juntamente com este relatório e o link para o vídeo demonstrativo.

As matrizes foram inicializadas com valores aleatórios entre 0 e 10 e foram geradas com tamanhos 50x50, 100x100, 300x300, 500x500, 600x600, 700x700 e 800x800. Para cada um dos tamanhos, foram realizados 10 testes em ambos os algoritmos, de modo que os tempos gastos fossem comparados posteriormente.

As tabelas abaixo apresentam os valores de tempo adquiridos em cada um dos testes realizados. Também estão presentes os valores de média e desvio padrão para os dois algoritmos.

N = 50	Tradicional	Strassen
teste 1	0,000998s	0,002967s
teste 2	0,003137s	0,005687s
teste 3	0,001995s	0,002656s
teste 4	0,001218s	0,003864s
teste 5	0,002995s	0,005587s
teste 6	0,000818s	0,001264s
teste 7	0,003837s	0,001992s
teste 8	0,001582s	0,004202s
teste 9	0,001056s	0,003727s
teste 10	0,001868s	0,005386s
Media	0,0019504s	0,0037332s
Desvio Padrão	0.00104	0.00145

N = 100	Tradicional	Strassen
teste 1	0,011479s	0,015591s
teste 2	0,014359s	0,017534s
teste 3	0,01533s	0,014078s
teste 4	0,014089s	0,01676s

teste 5	0,015934s	0,01634s
teste 6	0,013671s	0,014825s
teste 7	0,012404s	0,013964s
teste 8	0,014387s	0,014323s
teste 9	0,013386s	0,017688s
teste 10	0,014101s	0,017885s
Media	0,013914s	0,0158988s
Desvio Padrão	0,00130	0,00155

N = 300	Tradicional	Strassen
teste 1	0,094577s	0,067417s
teste 2	0,087844s	0,062748s
teste 3	0,090638s	0,062339s
teste 4	0,088966s	0,06302s
teste 5	0,091468s	0,063529s
teste 6	0,089585s	0,062731s
teste 7	0,088321s	0,061929s
teste 8	0,08749s	0,063377s
teste 9	0,087539s	0,062707s
teste 10	0,088528s	0,062275s
Media	0,089495s	0,0632071s
Desvio Padrão	0,00222	0,00156

N = 500	Tradicional	Strassen
teste 1	0,659671s	0,286219s
teste 2	0,669905s	0,291652s
teste 3	0,654955s	0,301177s
teste 4	0,762814s	0,303054s
teste 5	0,458824s	0,297908s
teste 6	0,463198s	0,312104s
teste 7	0,438865s	0,299232s
teste 8	0,437387s	0,29641s
teste 9	0,428588s	0,296455s
teste 10	0,439934s	0,309438s
Media	0,541414s	0,299364s
Desvio Padrão	0,12897	0,00769

N = 600	Tradicional	Strassen
teste 1	0,849988s	0,772114s
teste 2	0,866907s	0,825033s
teste 3	0,857394s	0,807646s
teste 4	0,831762s	0,763063s
teste 5	0,909101s	0,770351s

teste 6	0,829499s	0,762358s
teste 7	0,817464s	0,788265s
teste 8	1,058916s	0,774486s
teste 9	1,390344s	0,784905s
teste 10	0,909383s	0,787805s
Media	0,932075s	0,783602s
Desvio Padrão	0,17557	0,02000

N = 700	Tradicional	Strassen
teste 1	1,393825s	1,221381s
teste 2	2,059844s	1,327969s
teste 3	2,054857s	1,437566s
teste 4	1,860498s	1,318639s
teste 5	2,969297s	1,369938s
teste 6	2,292935s	1,294593s
teste 7	2,439418s	1,262796s
teste 8	2,352465s	1,30709s
teste 9	1,400708s	1,693613s
teste 10	1,422303s	1,365301s
Media	2,024615s	1,3598886s
Desvio Padrão	0,51887	0,13162

N = 800	Tradicional	Strassen
teste 1	3,810802s	1,392208s
teste 2	5,11877s	1,614689s
teste 3	4,889025s	2,089011s
teste 4	3,318782s	2,260111s
teste 5	2,604156s	2,766168s
teste 6	2,414533s	1,455945s
teste 7	2,506927s	1,80384s
teste 8	2,491162s	1,411132s
teste 9	2,624548s	1,649632s
teste 10	2,73218s	1,52106s
Media	3,251088s	1,796379s
Desvio Padrão	1,02200	0,44712

Nota-se que a partir de N=300, o algoritmo de Strassen apresenta um desempenho superior ao do algoritmo tradicional, o que comprova sua complexidade assintótica inferior quando comparado à complexidade cúbica do algoritmo tradicional.

O gráfico abaixo apresenta as curvas de tempo médias de execução, à medida que o valor de N cresce.

Percebe-se que o a curva do algoritmo tradicional possui um desempenho melhor até N=100. Isso se deve aos vários passos sofisticados que formam o algoritmo de Strassen, o que acaba elevando o tempo de execução. Porém, a partir de N=300, este algoritmo apresenta um desempenho muito superior ao do algoritmo tradicional pois com um N muito grande, a eficiência do Strassen se sobrepõe à complexidade de sua estrutura interna.