

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

y © CKE 20]	UZUP	EŁNIA ZDAJĄCY	miejsce
graficzny	KOD	PESEL	miejsce na naklejkę
Układ gr			

EGZAMIN MATURALNY **Z INFORMATYKI**

POZIOM ROZSZERZONY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

10 maja 2017

Godzina rozpoczęcia: 14:00

WYBRANE:
(środowisko)
(kompilator)
(program użytkowy)

Czas pracy: 90 minut

Liczba punktów do uzyskania: 20

MIN-R1 **1**P-172

Zadanie 1. Sortowanie

Rozważmy problem sortowania ciągu liczb całkowitych z przedziału [1..*k*] dla znanej całkowitej wartości *k*. Poniżej prezentujemy algorytm rozwiązujący ten problem, zgodny z następującą specyfikacją:

```
Specyfikacja:
```

```
Dane:
         n, k

    liczby całkowite dodatnie

         T[1..n]
                   - ciąg liczb całkowitych z zakresu [1..k]
Wynik:
         W[1..n]
                   – uporządkowany niemalejąco ciąg liczb z tablicy T[1..n]
Algorytm Sortowanie
  dla i=1..k wykonuj
       Liczba wystapien[i] \leftarrow 0
  dla i=1..n wykonuj
       Liczba\_wystapien[T[i]] \leftarrow Liczba\_wystapien[T[i]] + 1
  p \leftarrow 1
  dla j=1..k wykonuj
       dla i=1..Liczba wystapien[j] wykonuj
             W[p] \leftarrow j
            p \leftarrow p+1
```

Zadanie 1.1 (0-1)

Uzupełnij poniższą tabelę – podaj końcową zawartość tablicy *Liczba_wystapien* dla odpowiednich danych wejściowych.

n	k	T[1n]	Końcowa zawartość <i>Liczba_wystapien</i> [1k]
10	5	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	[2, 2, 2, 3, 1]
5	10	[1, 3, 3, 5, 10]	
5	5	[5, 5, 5, 5, 5]	
10	4	[1, 2, 3, 1, 2, 3, 1, 1, 2, 3]	

Miejsce na obliczenia.

Zadanie 1.2 (0-2)

Rangą elementu T[i] w ciągu T[1..n] nazywać będziemy liczbę elementów ciągu T[1..n], które są mniejsze od T[i].

Przykład:

Dla n=10, k=5 oraz T[1..10] = [1, 2, 3, 4, 5, 1, 4, 3, 2, 5] mamy:

- ranga elementu T[8] (T[8] = 3) jest równa 4, gdyż w ciągu T[1..10] występują cztery elementy mniejsze od T[8]: dwa razy występuje liczba 1 i dwa razy występuje liczba 2;
- ranga T[10] (T[10] = 5) jest równa 8, gdyż w ciągu T[1..10] występuje osiem liczb mniejszych od T[8];
- ranga T[6] (T[6] = 1) jest równa 0.

Przyjmij, że tablica *Liczba_wystapien* ma zawartość uzyskaną po wykonaniu algorytmu *Sortowanie*. Na podstawie tego faktu uzupełnij poniższy algorytm w taki sposób, aby po jego wykonaniu wartość zmiennej r była równa randze elementu T[i], dla ustalonego i $(1 \le i \le n)$:

$$r \leftarrow 0$$
dla j=1.. wykonuj
$$r \leftarrow r+Liczba_wystapien[j]$$

Miejsce na obliczenia.

Zadanie 1.3 (0-3)

Rozważmy algorytm, w którym teraz elementy tablicy T mogą być dowolnymi dodatnimi liczbami całkowitymi.

```
Algorytm LicznikiMod
dla i=1..k wykonuj

Liczba\_wystapien[i] \leftarrow 0
dla i=1..n wykonuj

m \leftarrow 1+(T[i] \mod k)

Liczba\_wystapien[m] \leftarrow Liczba\_wystapien[m] + 1
```

Uzupełnij poniższą tabelę:

 $w \leftarrow Liczba wystapien[1]$

n	k	T[1n]	Końcowa zawartość <i>Liczba_wystapien</i> [1k]
10	2	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	[5, 5]
10	3	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	
10	4	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	
10	5	[1, 2, 3, 4, 5, 1, 2, 3, 4, 4]	

Uzupełnij specyfikację algorytmu *LicznikiMod*:

Dane: n, k – liczby całkowite dodatnie

T[1..n] – tablica liczb całkowitych dodatnich

Wynik: *w* –

Miejsce na obliczenia.

	Nr zadania	1.1.	1.2.	1.3.
Wypełnia	Maks. liczba pkt.	1	2	3
egzaminator	Uzyskana liczba pkt.		·	

Zadanie 2. Ciąg Pentanacciego

Rozważmy ciąg liczb p_0, p_1, p_2, \dots zdefiniowany w następujący sposób:

$$\begin{cases} p_0 = 0 \\ p_1 = 1 \\ p_2 = 1 \\ p_3 = 2 \\ p_4 = 4 \\ p_n = p_{n-1} + p_{n-2} + p_{n-3} + p_{n-4} + p_{n-5} \, dla \, n \geq 5 \end{cases}$$

Zadanie 2.1 (0-2)

Uzupełnij poniższą tabelę.

n	p_n
5	8
7	
9	

Zadanie 2.2 (0-3)

Poniżej prezentujemy algorytm, który powinien wyznaczać *n*-ty element podanego ciągu. Uzupełnij luki w algorytmie tak, aby jego działanie było zgodne z podaną specyfikacją.

Specyfikacja:

Dane: n – nieujemna liczba całkowita Wynik: w – liczba całkowita równa p_n

Algorytm:

$$tab[0] \leftarrow 0$$
 $tab[1] \leftarrow 1$
 $tab[2] \leftarrow 1$
 $tab[3] \leftarrow 2$
 $tab[4] \leftarrow 4$
 $i \leftarrow 5$
 $dopóki i \leq wykonuj$
 $temp \leftarrow tab[0] + tab[1] + tab[2] + tab[3] + tab[4]$
 $tab[..... mod 5] \leftarrow temp$
 $i \leftarrow i+1$
 $w \leftarrow$

Uwaga: a mod b oznacza resztę z dzielenia liczby a przez liczbę b.

Miejsce na obliczenia.

Zadanie 2.3 (0–3)

Rozważmy poniższy ciąg r_n :

$$\begin{cases} r_0 = 0 \\ r_1 = 1 \\ r_2 = 1 \\ r_3 = 0 \\ r_4 = 0 \end{cases}$$

$$r_n = (r_{n-1} + r_{n-2} + r_{n-3} + r_{n-4} + r_{n-5}) \ mod \ 2 \ dla \ n \geq 5$$
 liczba n_n jest parzysta wtedy i tylko wtedy, gdy $r_n = 0$. Można te

Zauważmy, że liczba p_n jest parzysta wtedy i tylko wtedy, gdy r_n =0. Można też sprawdzić, że wartości r_n powtarzają się cyklicznie – każda wartość jest taka sama jak wartość wcześniejsza o sześć wyrazów – a zatem wartość r_n zależy wyłącznie od liczby n mod 6. Na podstawie tego faktu podaj algorytm **o jak najmniejszej złożoności obliczeniowej**, który działa zgodnie z poniższą specyfikacją.

Specyfikacja:

Dane: n – nieujemna liczba całkowita

Wynik: w - 0 (zero), gdy liczba p_n jest parzysta, natomiast 1 (jeden), gdy liczba p_n jest nieparzysta

Algorytm:

	Nr zadania	2.1.	2.2.	2.3.
Wypełnia	Maks. liczba pkt.	2	3	3
egzaminator	Uzyskana liczba pkt.			

Zadanie 3. Test

W każdym z poniższych zadań oceń, które z podanych zdań są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, lub F – jeśli jest fałszywe.

Zadanie 3.1 (0-1)

Dane są tablica A[1..6] o zawartości [6, 2, -1, 5, 1, 2] oraz następujący fragment algorytmu:

 $s \leftarrow 0$

 $n \leftarrow 3$

 $i \leftarrow 6$

dopóki i > n - 1 wykonuj

 $s \leftarrow s + A[i]$

 $i \leftarrow i - 1$

Po wykonaniu tego algorytmu spełniony jest warunek

10 wykonamu tego argorytmu spennony jest warunek	
s jest parzyste.	PF
s=7.	PF
s > 6.	PF
s=3.	PF

Zadanie 3.2 (0-1)

Realizacji usług poczty elektronicznej służy protokół

SMTP.	PF
IMAP.	P F
EMAIL.	PF
POP3.	PF

Zadanie 3.3 (0-1)

Liczbą większą od 150(10) jest

1222 ₍₄₎ P 227 ₍₈₎ P P	10011001(2)	P	F
	1222(4)	Р	F
	227(8)	T)	F
9B(16)	9B ₍₁₆₎	P	F

Zadanie 3.4 (0-1)

Obrazy rastrowe

są reprezentowane jako tablice pikseli, co powoduje istotną utratę jakości przy powiększaniu obrazu.	Р	F
tworzone są przy użyciu wyrażeń matematycznych opisujących występujące w obrazie odcinki, krzywe, elipsy itp.	P	F
mogą być wprowadzane do komputera przy użyciu urządzeń takich jak aparat cyfrowy lub skaner.	Р	F
mogą powstać w efekcie cyfrowego zapisu obrazu widzialnego.	P	F

Zadanie 3.5 (0-1)

Algorytm zwany sitem Eratostenesa opierający się na "wykreślaniu" wielokrotności kolejnych (niewykreślonych wcześniei) liczb naturalnych służy wyznaczeniu

(mewykiesionych wczesniej) nczo naturanych służy wyżnaczeniu		
największego wspólnego dzielnika dwóch liczb.	P	F
najmniejszej wspólnej wielokrotności dwóch liczb.	P	(F)
liczb pierwszych z zadanego przedziału.	P	F
potęg dwójki z zadanego przedziału.	P	(F)

Zadanie 3.6 (0-1)

Przykładem programu, który służy do tłumaczenia instrukcji kodu źródłowego **programu komputerowego** na jezyk maszynowy, jest

Komputerowego na język maszynowy, jest		
walidator.	PF	ノ
kompilator.	PF	
edytor tekstu.	P F	フ
defragmentator.	P	

Wypelnia egzaminator	Nr zadania	3.1.	3.2.	3.3.	3.4.	3.5.	3.6.
	Maks. liczba pkt.	1	1	1	1	1	1
	Uzyskana liczba pkt.						

BRUDNOPIS (nie podlega ocenie)