Sharing rides on ride-hailing services

Three perspectives:

Driver

 Question: what is the relationship between ride sharing and tipping?

Sharing rides on ride-hailing services

Ride-hailing

Flow-chart of ride-sharing authorization:

(Bellemare et al., 2024) Y

Our question of interest

- Clearly, it is in the interest of ride-hailing services for their drivers to get plentiful tips
- If a driver does shared rides, the driver potentially gets two tips – seems good for the service and for the driver!
- So services might "nudge" riders to authorize sharing
- But, superficially, sharing is associated with lower tipping:

		Total charge (\$)		Tip (\$)	
	Ride type	Mean	SD	Mean	SD
Full sample	Dedicated		` ,		` ,
	Sharing authorized	9.686	(5.269)	0.181	(0.698)
Sharing authorized	Shared	9.827	(5.365)	0.175	(0.683)
	Not shared	9.356	(5.024)	0.193	(0.731)

What should services do?

(Bellemare et al., 2024)

In the calculus of causal inference:

- X: does a passenger opt in to ride sharing? (1=yes, 0=no)
- M: does a passenger actually ride share? (1=yes, 0=no)
- Y: does the driver get a tip? (Or, how much does the driver tip?)
- What are the relevant quantities in the calculus of causal inference?
 - Driver's question: P(Y | do(M = 1), X = 1)
 - "to nudge?" question (simplified) : P(Y | do(X = 1))
- Can we estimate these quantities from observational data?

Trouble with unobserved variables

		Total charge (\$)		Tip (\$)	
	Ride type	Mean	SD	Mean	SD
Full sample	Dedicated Sharing		(7.605) (5.269)		,
Sharing authorized	authorized Shared Not shared		,		,

• $E[Y|X=1] \ll E[Y|X=0]$, but we can't conclude that $E[Y|\operatorname{do}(X=1)] \ll E[Y|\operatorname{do}(X=0)]$

 And, we can't resort to back-door adjustment (i.e., controlling for back-door confounders)

Front-door adjustment

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y \rangle$ if:
 - Z intercepts all directed paths from X to Y;
 - ullet there is no unblocked back-door path from X to Z; and
 - all back-door paths from Z to Y are blocked by X.
- If Z satisfies the front door criterion relative to $\langle X, Y \rangle$ and if P(x,z) > 0, then the causal effect of X on Y is identifiable and is given by:

$$P(y | do(X = x)) = \sum_{z} P(z | x) \sum_{x'} P(y | x', z) P(x')$$

6

Front-door adjustment, conceptually

- A set of variables Z satisfies the FRONT-DOOR CRITERION relative to an ordered pair of variables $\langle X,Y\rangle$ if:
 - Z intercepts all directed paths from X to Y;
 - there is no unblocked back-door path from X to Z; and
 - all back-door paths from Z to Y are blocked by X.

(Pearl, 2009)

Exercise for today

- Based on these slides, set up a causal model of the tipping problem, treating Y as dichotomous (the rider does or doesn't tip):
 - Determine your model structure
 - Choose example conditional probability distributions
 - Sample observational data from your model
 - Use the observational data to estimate the causal "nudge the passenger" quantity of interest, P(Y | do(X = 1))
- Time allowing, we can discuss this scenario further