Exercises 2 for Computational Physics (physik760) WS 2017/2018

B. Kostrzewa, T. Luu, M. Petschlies and C. Urbach

Further probability theory

1: For n independent random variables $X_i \sim \mathcal{N}_{\mu,\sigma_i}$, $i = 1, \ldots, n$ show that the weighted sum $Z = w_1 X_1 + \cdots + w_n X_n$ is normally distributed. What is its variance in terms of $\sigma_1, \ldots, \sigma_n$? Taking $w_1 + \cdots + w_n = 1$, for which system of weights does Z have minimal variance?

Demonstration of the central limit theorem

2: A direct practical application of the central limit theorem is the generation of random variables, whose distribution is a systematically improvable approximation of the normal distribution. To demonstrate this, draw N samples of K independent random variables $X_1, X_2 \ldots X_K$ from $\mathcal{U}_{[-1,1]}$ and look at the sums

$$Z_K = \sum_{k=1}^K \frac{X_k}{\sqrt{n}\sigma_k} \,.$$

- (a) Derive the pdf for Z_2 analytically.
- (b) For each $K=2,\,4,\,8,\,12$ sample $N=10^6$ random numbers and plot a histogram of your observed distribution.

For a random variable X with cumulative distribution function F_X the Q-quantile μ_Q is defined implicitly by $F_X(\mu_Q) = Q$ for $0 \le Q \le 1$. In a QQ-plot the quantiles for two distributions are plotted against each other.

- (c) Employ a QQ-plot to visually check how closely this approximates the implementation of normally distributed random numbers in your chosen programming language.
- (d) How does this relate to example 2.5.1 from the lecture?

Box-Muller method

3: Show (analytically) that the algorithm

step 1: generate $U, V \sim \mathcal{U}([-1,1])$ until $S = U^2 + V^2 \leq 1$;

step 2: define $Z = \sqrt{-2\log(S)/S}$ and $X_1 = ZU$ and $X_2 = ZV$

is an alternative to the Box-Muller algorithm Example 3.2.4 in the lecture.

- (a) What is the average number of generations in step 1?
- (b) Implement the algorithm and compare it to the one above using QQ-plots or otherwise.
- (c) Which algorithm is more efficient and why?

Simulation of the Ising model in two dimensions

Add to your simulation package for the Ising model.

4: Implement the *estimate* $|\bar{m}|$ of $\langle |m| \rangle$ by randomly drawing N spin configurations $s^{(1)}, \ldots, s^{(N)}$ according to the uniform distribution, i.e. the probability for drawing any individual configuration s is $P_{\text{draw}}(s) = 1/2^{L_{\sigma}L_{\tau}}$, and using the weighted sum

$$\bar{m} = \frac{\sum_{i=1}^{N} \exp(-\mathcal{H}(s^{(i)})/(k_B T)) |m|(s^{(i)})}{\sum_{i=1}^{N} \exp(-\mathcal{H}(s^{(i)})/(k_B T))}.$$

For $L_{\sigma} = L_{\tau} = 4, 5, 6$ observe the dependence of \bar{m} on the number of samples N.

5: Implement the estimate $|\bar{m}|$ of $\langle |m| \rangle$ by using the *Metropolis algorithm* below to generate spin configurations $s^{(0)}, s^{(1)}, s^{(2)}, \ldots, s^{(N)}$. The algorithm will be covered in detail later in the lecture, for now we just want to have it ready to generate spin configurations efficiently.

step 1: given $s^{(i)}$ for $i \geq 0$, select a lattice site $y \in \mathbb{L}$, uniformly distributed, i.e. with probability $P_{\text{select}}(x) = 1/(L_{\sigma}L_{\tau})$ for all $x \in \mathbb{L}$;

step 2: make a trial configuration \tilde{s} from $s^{(i)}$ by flipping the spin at y, i.e.

$$\tilde{s}_x = \begin{cases} s_x^{(i)} & x \neq y \\ -s_x^{(i)} & x = y \end{cases}$$

step 3: calculate the energy change $\Delta \mathcal{H}\left(\tilde{s}, s^{(i)}\right) = \mathcal{H}\left(\tilde{s}\right) - \mathcal{H}\left(s^{(i)}\right)$

• think about the difference in spin configurations to compute $\Delta \mathcal{H}$

step 4: calculate the acceptance probability $P_{\text{accept}} = \min \{1, \exp(-\Delta \mathcal{H}(\tilde{s}, s^{(i)}))\};$ draw a random number r from the uniform distribution on the unit interval and set

$$s^{(i+1)} = \begin{cases} \tilde{s} & \text{if } r < \mathbf{P}_{\text{accept}} \\ s^{(i)} & \text{else } . \end{cases}$$

6: Estimate the magnetisation from the simple average over spin configurations, i.e. $|\bar{m}| = \sum_{i=1}^{N} |m\left(s^{(i)}\right)|/N$

(a) take J/T = 1/5 on a $L_{\sigma} = L_{\tau} = 4$ lattice

- (b) start with a random spin configuration
- (c) check if you can reproduce your exact result by using every $10^{\rm th}$ measurement, assuming no residual auto-correlation
- (d) what about an $L_{\sigma} = L_{\tau} = 10$ lattice?