Statistics for the Sciences

ANOVA for Factorial Design

Xuemao Zhang East Stroudsburg University

January 18, 2025

Outline

- Factorial Design
- Lab

Two-factor Factorial Design

- A two-way classification which involves two factors, both of which are of interest to the experimenter.
 - ► There are a levels of factor A and b levels of factor B the experiment is replicated n times at each factor-level combination.
 - The effect of a factor is defined to be the change in mean response produced by a change in the level of the factor (generally when the factor is changed from low to high)
- The replications in the design allow the experimenter to investigate the **interaction** between factors A and B.

Interaction

- There is an interaction between two factors if the effect of one of the factors changes for different levels of the other factor.
- **Interaction** describes the effect of one factor on the behavior of the other. If there is no interaction, the two factors behave independently.

- Example (linton.csv): Linton et al. (2009) studied the effects of the insecticide pyriproxyfen on ovarian development in an endemic Christmas Island land crab, *Geocarcoidea natalis*. The insecticide was proposed as a means of controlling numbers of an introduced ant species that was viewed as a major threat, and it is an endocrine disruptor. The experiment was designed to test whether the insecticide might pose risks to the crabs, which have a hormone similar to the one targeted in insects, and consisted of feeding crabs a mixture of leaf litter and a bait. Half of the baits contained the insecticide, and the other half were controls (bait type factor). The baits were supplied at three rates, with two levels corresponding to levels used in field applications (2 kg ha⁻¹ and 4 kg ha⁻¹), with the third rate being ad libitum feeding (bait dosage factor).
 - ➤ The experimental units in this case were large plastic tubs, each containing a single female crab, and there were 7 crabs for each combination of factors. The response variable was the dry mass of the ovaries of each crab.
- The data are categorized with two factors:
 - type: Control, Experimental
 - ▶ dosage: 2, 4, and ad lib

• The subcategories are called **cells**, and the response variable was the dry mass of the ovaries of each crab. The first 15 rows of data

##		type	dosage	drymass	nitrogen
##	1	Control	2	0.524	3620
##	2	Control	2	0.535	4030
##	3	Control	2	1.094	6530
##	4	Control	2	0.525	3938
##	5	Control	2	0.707	4312
##	6	Control	2	0.551	3740
##	7	Control	2	0.489	3860
##	8	${\tt Control}$	4	0.461	4329
##	9	${\tt Control}$	4	0.584	5108
##	10	${\tt Control}$	4	0.715	5877
##	11	${\tt Control}$	4	0.206	1231
##	12	${\tt Control}$	4	0.885	6583
##	13	${\tt Control}$	4	0.835	6342
##	14	${\tt Control}$	4	2.475	11933
##	15	Control	ad lib	0.619	4232

Cell means

```
## type dosage drymass
## 1 Control 2 0.6321429
## 2 Experimental 2 1.1504286
## 3 Control 4 0.8801429
## 4 Experimental 4 0.9621429
## 5 Control ad lib 0.7258571
## 6 Experimental ad lib 1.6201429
```

• Let's construct an interaction graph based on the cell meams.

• Let's construct an interaction graph based on the cell meams.

Interaction

- An interaction effect is suggested if the line segments are far from being parallel.
- No interaction effect is suggested if the line segments are approximately parallel.
- For the linton data, it appears there is an interaction effect:

- Let y_{ijk} be the k-th replication at the i-th level of A and the j-th level of B. $i=1,2,\ldots,a, j=1,2,\ldots,b, k=1,2,\ldots,r.$
- The data will be look like this

Table 1: Data from a Factorial Design

	Factor A				
Factor B	1	2		а	
1	y_{111},\ldots,y_{11r}	y_{211},\ldots,y_{21r}		y_{a11}, \dots, y_{a1r}	
2	y_{121},\ldots,y_{12r}	y_{221},\ldots,y_{22r}	• • •	y_{a21},\ldots,y_{a2r}	
:	<u>:</u>	<u>:</u>	:	<u>:</u>	
$b y_{1b1}, \ldots, y_{1br}$				y_{ab1}, \dots, y_{abr}	

- A factorial design becomes blocking design when there is no replicate in each cell.
- Random effects model:

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}, k = 1, 2, \dots, n, j = 1, 2, \dots, b, i = 1, 2, \dots, a,$$

- where $\varepsilon_{ijk} \sim N(0, \sigma^2)$ are independent normal random errors with common variance σ^2 .
- ▶ Both τ_i or β_i are random and are independent of the random errors:
- $ightharpoonup au_i \ iid \sim N(0, \sigma_{ au}^2)$
- \triangleright β_j iid $\sim N(0, \sigma_\beta^2)$
- $(\tau\beta)_{ij}$ iid $\sim N(0, \sigma_{\tau\beta}^2)$

• For the above random-effects model, to test the treatment effects for both factors

$$H_0: \sigma_{\tau}^2 = 0$$

$$H_a: \sigma_{\tau}^2 > 0$$

and

$$H_0: \sigma_\beta^2 = 0$$

$$H_a: \sigma_\beta^2 > 0$$

Fixed-effects model

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}, k = 1, 2, \dots, n, j = 1, 2, \dots, b, i = 1, 2, \dots, a,$$

- where $\varepsilon_{ijk} \sim N(0, \sigma^2)$ are independent normal random errors with common variance σ^2 .
 - τ_i is fixed: $\sum_{i=1}^a \tau_i = 0$.
 - β_j is fixed: $\sum_{j=1}^b \beta_j = 0$.
 - $(\tau\beta)_{ij}$ is fixed: $\sum_{i=1}^{a} (\tau\beta)_{ij} = \sum_{j=1}^{b} (\tau\beta)_{ij} = 0$

Mixed Effects Model

$$Y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}, k = 1, 2, \dots, n, j = 1, 2, \dots, b, i = 1, 2, \dots, a,$$

- where $\varepsilon_{ijk} \sim N(0, \sigma^2)$ are independent normal random errors with common variance σ^2 .
- τ_i (for machine) is fixed: $\sum_{i=1}^{a} \tau_i = 0$.
- β_j iid $\sim N(0, \sigma_\beta^2)$
- $(\tau\beta)_{ij}$ iid $\sim N(0, \sigma_{\tau\beta}^2)$

- The SS_{total} is divided into 4 parts:
 - SSA (sum of squares for factor A): measures the variation among the means for factor A
 - SSB (sum of squares for factor B): measures the variation among the means for factor B
 - SS(AB) (sum of squares for interaction): measures the variation among the ab combinations of factor levels
 - ▶ SSE (sum of squares for error): measures experimental error

Partition of the total variation:

$$SS_{total} = SSA + SSB + SS(AB) + SS_E$$

That is,

$$\sum \sum \sum (y_{ijk} - \bar{y_{...}})^2 = \sum \sum \sum (\bar{y_{i..}} - \bar{y_{...}})^2 + \sum \sum \sum \sum (\bar{y_{.j.}} - \bar{y_{...}})^2 + \sum \sum \sum (\bar{y_{.j.}} - \bar{y_{...}})^2 + \sum \sum \sum (\bar{y_{ijk}} - \bar{y_{...}} - \bar{y_{.j.}} + \bar{y_{...}})^2 + \sum \sum \sum (\bar{y_{ijk}} - \bar{y_{...}})^2.$$

- Factor effects (for fixed-effect models)
 - A: $\hat{\tau}_i = \bar{y}_{i..} \bar{y}_{...}, i = 1, ..., a$
 - ▶ B: $\hat{\beta}_j = \bar{y}_{.j.} \bar{y}_{...}, j = 1, ..., b$
 - Interaction: $(\tau \hat{\beta})_{ij} = \bar{y}_{ij} \bar{y}_{i..} \bar{y}_{.j.} + \bar{y}_{...}, i = 1, ..., a, j = 1, ..., b$

• The corresponding degrees of freedom for the sums of squares are

$$abr - 1 = (a - 1) + (b - 1) + (a - 1)(b - 1) + ab(r - 1).$$

2-way ANOVA Table

Table 2: 2-way ANOVA Table for Factorial Design

Source	df	SS	MS	F
Trt A	a – 1	SSA	SSA/(a-1)	MSA/MSE
Trt B	b-1	SSB	SSB/(b-1)	MSB/MSE
Interaction	(a-1)(b-1)	SS(AB)	SS(AB)/(a-1)(b-1)	MS(AB)/MSE
Error	ab(r-1)	SSE	SSE/ab(r-1)	
Total	abr-1	SS_{total}		

- Again, all ANOVA F-tests are right-tailed.
- Procedure for Two-Way ANOVA, see the next two slides

Test for effect from row factor using the P-value for the test statistic

$$F = \frac{MS \text{ (row factor)}}{MS \text{ (error)}}$$

If the *P*-value is small (such as less than 0.05), conclude that there is an effect from the row factor.

Test for effect from column factor using the *P*-value for the test statistic

$$F = \frac{MS (column factor)}{MS (error)}$$

If the *P*-value is small (such as less than 0.05), conclude that there is an effect from the column factor.

Procedure for Two-Way ANOVA

If the interaction effect is not significant, the main effects A and B can be individually tested using F = MSA/MSE and F = MSB/MSE, respectively.

- For the linton data, consider both factors as fixed-effects
 - bait type
 - bait dosage
- ullet Click on Analyze o General Linear Model o Univariate.

We need to add an interaction plot

Multiple comparisons

treatment means

• The SPSS sytax for the above operations

```
DATASET ACTIVATE DataSet1.

UNIANOVA drymass BY type dosage

/METHOD=SSTYPE(1)

/INTERCEPT=INCLUDE

/POSTHOC=type(TUKEY SCHEFFE LSD BONFERRONI)

/PLOT=PROFILE(type*dosage) TYPE=LINE ERRORBAR=NO MEANREFERENCE=NO YAXIS=AUTO
/EMMEANS=TABLES(type)

/EMMEANS=TABLES(dosage)

/CRITERIA=ALPHA(0.05)

/DESIGN=type dosage type*dosage.
```

→ Univariate Analysis of Variance

Warnings

Post hoc tests are not performed for type because there are fewer than three groups.

Between-Subjects Factors

		И
type	Control	21
	Experimental	21
dosage	2	14
	4	14
	ad lib	14

Tests of Between-Subjects Effects

Dependent Variable: drymass

Source	Type I Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	4.433ª	5	.887	2.504	.048
Intercept	41.593	1	41.593	117.471	<.001
type	2.606	1	2.606	7.360	.010
dosage	.671	2	.335	.947	.397
type * dosage	1.157	2	.578	1.634	.209
Error	12.747	36	.354		
Total	58.773	42			
Corrected Total	17.180	41			

a. R Squared = .258 (Adjusted R Squared = .155)

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.