LECTURE 1 - EQUATIONS OF MOTION CE 225

Prof DeJong

UC Berkeley

August 28, 2025

DEFINITIONS

RESPONSE QUANTITIES

Displacement

u(t)

Velocity

$$v(t) = \frac{du}{dt} =$$

Acceleration

$$a(t) = \frac{d^2u}{dt^2} =$$

FORCES IN LINEAR SYSTEMS

DERIVED FOR SIMPLE FRAME

- (1) Stiffness force (elastic resisting force):
 - Rigid beam $(EI_b = \infty)$

• Flexible beam ($EI_b = 0$)

FORCES IN LINEAR SYSTEMS

DERIVED FOR SIMPLE FRAME

(2) Damping force: c = viscous damping coefficient

(3) Inertial force (fictitious): = D'Alembert Force (<u>always opposes the motion</u>)

In rotational terms:

(4) External Forces:

EXAMPLE 1: FRAME

$$\boxed{m\ddot{u} + c\dot{u} + ku = p(t)}$$

EXAMPLE 2: CART ON SLOPE

$$m\ddot{u} + c\dot{u} + ku = mg\sin\theta + p(t)$$

EXAMPLE 2: CART ON SLOPE

Alternatively, define u_{st} as the static equilibrium position:

Define "dynamic" displacement:

$$\dot{u} =$$
 $\dot{u} =$
 $\ddot{u} =$
 $m\ddot{u}_d + c\dot{u}_d + ku_d = -ku_{st} + mg\sin\theta + p(t)$

$$m\ddot{u}_d + c\dot{u}_d + ku_d = p(t)$$
 (2)

EXAMPLE 3: GROUND MOTION (NO OTHER EXTERNAL FORCE)

$$m\ddot{u} + c\dot{u} + ku = -m\ddot{u}_g$$

EXAMPLE 4: ROTATIONAL SYSTEMS

$$mh^2\ddot{\theta} + k_s\theta - mgh\sin\theta = -m\ddot{u}_g(h\cos\theta)$$

$$mh^2\ddot{\theta} + (k_s - mgh)\theta = -mh\ddot{u}_g$$

EXAMPLE 5: ROTATIONAL SYSTEMS WITH ROTATIONAL INERTIA

$$\to (J_c + mR^2)\ddot{\theta} + mg(R\sin\theta) = 0$$

$$(J_c + mR^2)\ddot{\theta} + mg(R\theta) = 0$$