1

Let
$$A = \begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix}$$
 and $\mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$.

 \mathbf{a}

Claim: \mathbf{w} is in Col A.

Proof: w is in Col A if it is spanned by the the columns of A, or if the equation $Ax = \mathbf{w}$ is consistent for some x. By creating and row reducing the augmented matrix $\begin{bmatrix} -8 & -2 & -9 & 2 \\ 6 & 4 & 8 & 1 \\ 4 & 0 & 4 & -2 \end{bmatrix} \tilde{1} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & \frac{1}{2} & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. This augmented matrix is consistent, so **w** is in Col A.

b

Claim: \mathbf{w} is in Nul A.

Proof: w is in Nul A if Aw = 0. This is true, because

$$\begin{bmatrix} -8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

2

For any real number k, define S_k to be the set of all polynomials p in \mathbb{P}_n such that p(0) = k.

 \mathbf{a}

Claim: S_0 is a subspace of \mathbb{P}_n .

Proof: The zero vector is in \mathbb{P}_n , which is just 0. S_0 is closed under addition, because any polynomial in S_0 will not have a constant, so added the sum will also not have a constant, so will be in S_0 . Similarly, S_0 is closed under multiplication, because every polynomial in S_0 has no constant, so no matter which scalar it is multiplied by, the product will have no constant, and will also be in S_0 .

b

Claim: S_1 is not a subspace of \mathbb{P}_n ?. Proof The zero vector, 0, is not in S_1 .

3

Let F be a fixed $n \times n$ matrix and define a function $T: M_{n \times n} \longrightarrow M_{n \times n}$ by T(X) = FX - XF.

 \mathbf{a}

Claim: T is a linear transformation. **Proof:** T is linear transformation if

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$
 for all $\vec{u}, \vec{v} \in M_{n \times n}$, and (1)

$$T(c\vec{u}) = cT(\vec{u})$$
 for all $\vec{u} \in M_{n \times n}$ and all scalars c . (2)

Showing (1),

$$T(A+B) = F(A+B) - (A+B)F$$

$$= FA + FB - AF - BF$$

$$= FA - AF + FB - BF$$

$$= T(A) + T(B)$$

Showing (2),

$$T(cA) = F(cA) - (cA)F$$

$$= cFA - cAF$$

$$= c(FA - AF)$$

$$= cT(A)$$

b

Claim: Kernel $T = \{X | X \text{ commutes with } F\}.$

Proof: The kernel of $T = \{\vec{u} \in M_{n \times n} | T(\vec{u}) = 0\}$. To find this, set T(X) = 0 = FX - XF. Adding XF to both sides results in the equation FX = XF, so X must commute with F.

I affirm that I have upheld the highest principles of honesty and integrity in my academic work and have not witnessed a violation of the honor code.