Statystyka

Lista 3

Zadanie 1.

Podaj przedział ufności dla średniej w modelu normalnym o znanej wariancji na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 2.

Wygeneruj n = 50 obserwacji z rozkładu

- (a) normalnego z parametrem przesunięcia μ i skali σ
 - (i) $\mu = 0, \, \sigma = 1,$
 - (ii) $\mu = 0, \, \sigma = 2,$
 - (iii) $\mu = 0, \, \sigma = 3;$
- (b) logistycznego z parametrem przesunięcia μ i skali σ
 - (i) $\mu = 0, \, \sigma = 1,$
 - (ii) $\mu = 0, \, \sigma = 2,$
 - (iii) $\mu = 0, \, \sigma = 3;$
- (c) Cauchy'ego z parametrem przesunięcia μ i skali σ
 - (i) $\mu = 0, \, \sigma = 1,$
 - (ii) $\mu = 0, \, \sigma = 2,$
 - (iii) $\mu = 0, \, \sigma = 3;$
- (d) wykładniczego z parametrem λ
 - (i) $\lambda = 1$,
 - (ii) $\lambda = 1/2$,
 - (iii) $\lambda = 1/3$,
- (e) chi-kwadrat z ν stopniami swobody
 - (i) $\nu = 1$,
 - (i) $\nu = 2$,
 - (i) $\nu = 3$.

Na tej podstawie wyznacz przedział ufności dla średniej z zadania 1 na poziomie ufności 0.95 oraz jego długość. Doświadczenie powtórz 10 000 razy. Oszacuj prawdopodobieństwo pokrycia nieznanej średniej przez przedział ufności oraz jego długość. Przedyskutuj uzyskane wyniki.

Zadanie 3.

Podaj przedział ufności dla średniej w modelu normalnym o nieznanej wariancji na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 4.

Powtórz eksperyment numeryczny z zadania 2. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanej średniej przez przedział ufności z zadania 3 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane rezultaty.

Zadanie 5.

Podaj przedział ufności dla wariancji w modelu normalnym o znanej średniej na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 6.

Powtórz eksperyment numeryczny z zadania 2. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanej wariancji przez przedział ufności z zadania 5 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane rezultaty.

Zadanie 7.

Podaj przedział ufności dla wariancji w modelu normalnym o nieznanej średniej na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 8.

Powtórz eksperyment numeryczny z zadania 2. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanej wariancji przez przedział ufności z zadania 7 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane rezultaty.

Zadanie 9.

Podaj asymptotyczny przedział ufności dla proporcji na poziomie ufności $1-\alpha$. Uzasadnij jego postać.

Zadanie 10.

Powtórz eksperyment numeryczny z zadania 2, podpunkty: a, b, c. Na jego podstawie oszacuj prawdopodobieństwo pokrycia nieznanej proporcji dodatnich obserwacji przez przedział ufności z zadania 9 na poziomie ufności 0.95 oraz jego długość. Przedyskutuj uzyskane rezultaty.

Zadanie 11.

Powtórz eksperyment numeryczny z zadań 2, 4, 6, 8, 10, dla n=20 i n=100. Przedyskutuj uzyskane rezultaty w nawiązaniu do wcześniejszych wyników.

Literatura

Hogg, R. V., McKean, J. W., Craig, A. T. (2005). *Introduction to Mathematical Statistics*. Pearson Education International, London.

Koronacki, J., Mielniczuk, J. (2009). Statystyka dla studentów kierunków technicznych i przyrodniczych. Wydawnictwa Naukowo-Techniczne, Warszawa.