SMA0300 Geometria Analítica Terceira Lista de Exercícios - Base, coordenadas, mudanças de base

Docentes responsáveis: Carlos Maquera, Farid Tari, Karla Spatti, Maria do Carmo Carbinatto, Miriam Manoel, Regilene Oliveira, Roberta Wik Atique

4 de abril de 2022

Para os exercícios 1 a 9 considere fixada uma base $\mathbf{E} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ de V^3 .

Exercício 1. Considere os vetores $\vec{u} = 2\vec{e}_1 - \vec{e}_2 + 2\vec{e}_3$, $\vec{v} = 5\vec{e}_1 + 5\vec{e}_2 - 2\vec{e}_3$ e $\vec{w} = 3\vec{e}_1 + 6\vec{e}_2$.

- (a) Verifique se os vetores são L.D. em cada dos seguintes itens:
 - (i) \vec{u}
 - (ii) \vec{u} , $\vec{0}$
 - (iii) \vec{u} , $(4, -2, 4)_E$
 - (iv) \vec{u} , \vec{v} , $(1, 2, 3)_E$, $(2, 1, 4)_E$
- (b) Determine as coordenadas de $\vec{u} \vec{v} + 3\vec{w}$ na base E.
- (c) Escreva se possível:
 - (i) \vec{u} como combinação linear de $\vec{a} = (4, -2, 4)_E$.
 - (ii) $\vec{0}$ como combinação de \vec{u} .
 - (iii) \vec{u} como combinação de \vec{u} .
 - (iv) \vec{v} como combinação de \vec{u} .
 - (v) \vec{u} como combinação de \vec{v} e \vec{a} .
 - (vi) \vec{v} como combinação de \vec{u} e \vec{w} .

Exercício 2. Exiba, se possível, os exemplos abaixo. Se impossível explique o porquê.

- (a) Uma base de V^3 que contenha os vetores $(1, -2, 3)_E$ e $(-2, 4, 6)_E$
- (b) Três vetores L.I. que não formem uma base do espaço.

Exercício 3. Dado um vector \vec{t} , sabemos que existem números reais α , β , $\gamma \in \mathbb{R}$, tais que $\vec{t} = \alpha \vec{u} + \beta \vec{v} + \beta \vec{v}$ $\gamma \vec{w}$. Mostre que o conjunto $\{\vec{u}+\vec{t},\vec{v}+\vec{t},\vec{w}+\vec{t}\}$ é formado por vetores não coplanares se, e somente se, $\alpha + \beta + \gamma + 1 \neq 0$.

Exercício 4. Determine $m \in \mathbb{R}$, de modo que o vetor $\vec{u} = (1, 2, 2)_E$ seja combinação linear dos vetores $\vec{v}=(m-1,1,m-2)_{\mathbf{E}}$ e $\vec{w}=(m+1,m-1,2)_{\mathbf{E}}$. Determine também $m\in\mathbb{R}$, para que os vetores \vec{v} , \vec{v} , \vec{w} sejam L.D.

Exercício 5. Determine $m \in \mathbb{R}$, de modo que a sequência de vetores abaixo sejam L.D.

(a)
$$(m, 1, m)_{\mathbf{E}}, (1, m, 1)_{\mathbf{E}}$$
 (b) $(1 - m^2, 1 - m, 0)_{\mathbf{E}}, (m, m, m)_{\mathbf{E}}$

Exercício 6. Considere $\vec{u} = (1, 2, -1)_{\mathbf{E}}$, $\vec{f_1} = \vec{e_1} + \vec{e_2} + \vec{e_3}$, $\vec{f_2} = m\vec{e_1} + 2m\vec{e_2} - \vec{e_3}$ e $\vec{f_3} = 4\vec{e_2} + 3\vec{e_3}$.

- (a) Para que valores de $m\in\mathbb{R}$, $\mathbf{F}=\left(\vec{f_1}\,,\vec{f_2}\,,\vec{f_3}
 ight)$ é uma base de V^3 ?
- (b) Nas condições do item (a), calcule $m \in \mathbb{R}$, para que $\vec{u} = (0, 1, 0)_{\mathbf{F}}$.

Exercício 7. Considere $\vec{f_1} = \vec{e_1} - \vec{e_2}$, $\vec{f_2} = \vec{e_2} - \vec{e_3}$ e $\vec{f_3} = 3\vec{e_3}$. (a) Mostre que $\mathbf{F} = \left(\vec{f_1}\,,\,\vec{f_2}\,,\,\vec{f_3}\right)$ é uma base de V^3 .

- (b) Calcule $m \in \mathbb{R}$, para que os vetores $\vec{u} = (0, m, 1)_{\mathbf{E}}$ e $\vec{v} = (0, 1, -1)_{\mathbf{F}}$ sejam L.D.

Exercício 8. Consideremos as relações: $\vec{f_1} = \vec{e_1} - \vec{e_2} - \vec{e_3}$ $\vec{f_2} = \vec{e_1} + 2\vec{e_2} + \vec{e_3}$ $\vec{f_3} = 2\vec{e_1} + \vec{e_2} + 4\vec{e_3}$. (a) Verifique que $\mathbf{F} = \left(\vec{f}_1\,,\vec{f}_2\,,\vec{f}_3\right)$ é uma base de V^3 .

- (b) Ache a matriz de mudança de base, da base $\mathbf{E} = (\vec{e_1}, \vec{e_2}, \vec{e_3})$ para a base $\mathbf{F} = (\vec{f_1}, \vec{f_2}, \vec{f_3})$.
- (c) Sendo $\vec{u}=3\vec{e_1}-5\vec{e_2}+4\vec{e_3}$, achar a expressão do vetor \vec{u} em relação à base $\mathbf{F}=\left(\vec{f_1}\,,\vec{f_2}\,,\vec{f_3}\right)$.

 $\textbf{Exercício 9. Seja F} = \Big((1\,,1\,,1)_{\mathbf{E}}\,, (1\,,2\,,0)_{\mathbf{E}}\,, (1\,,1\,,0)_{\mathbf{E}} \Big) \, \mathbf{e} \, \mathbf{G} = \Big((2\,,1\,,-1)_{\mathbf{E}}\,, (3\,,0\,,1)_{\mathbf{E}}\,, (2\,,0\,,1)_{\mathbf{E}} \Big).$

- a) Mostre que ${f F}$ e ${f G}$ são bases de V^3 .
- b) Determine a matriz de mudança de base, da base $\bf E$ para a base $\bf F$, isto é, $M_{\bf EF}$.
- c) Se $\vec{u}=(m\,,2\,,1)_{\mathbf{E}}$, $\vec{v}=(1\,,1\,,1)_{\mathbf{F}}$ e $\vec{w}=(2\,,-1\,,1)_{\mathbf{F}}$, determinar $m\in\mathbb{R}$, de modo que os vetores $\{\vec{u}, \vec{v}, \vec{w}\}$ não formem uma base de V^3 .

Exercício 10. Assuma que todos os vetores estão expressos segundo uma base arbitrária pré-fixada de V^2 .

- (a) Obtenha a matriz de mudança da base $E=\Big((1,1),(1,-1)\Big)$ para $F=\Big((-1,-1),(1,-1)\Big).$ (b) Obtenha a matriz de mudança da base $E=\Big((3,-2),(-4,3)\Big)$ para $F=\Big((1,0),(1,1)\Big).$