# Московский авиационный институт (национальный исследовательский университет)

## Факультет информационных технологий и прикладной математики

Кафедра вычислительной математики и программирования

Лабораторная работа №4 по курсу «Численные методы» Вариант №1

Студент: А.О. Дубинин

Преподаватель: И.Э. Иванов Группа: М8О-306Б

Дата:

Оценка: Подпись:

## Лабораторная работа N=4

#### Вариант 1

1

Реализовать методы Эйлера, Рунге-Кутты и Адамса 4-го порядка в виде программ, задавая в качестве входных данных шаг сетки h. С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

| $N^{\underline{o}}$ | Задача Коши                                                                    | Точное решение                                        |
|---------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|
| 1                   | $y'' + y - \sin 3x = 0,$<br>y(0) = 1,<br>y'(0) = 1,<br>$x \in [0, 1], h = 0.1$ | $y = \cos x + \frac{11}{8}\sin x - \frac{\sin 3x}{8}$ |

 $\mathbf{2}$ 

Реализовать метод стрельбы и конечно-разностный метод решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

| Nº | Задача Коши                                                      | Точное решение         |
|----|------------------------------------------------------------------|------------------------|
| 1  | xy'' + 2y' - xy = 0,<br>y'(1) = 0,<br>$1.5y(2) + y'(2) = e^{2},$ | $y(x) = \frac{e^x}{x}$ |

#### 1 Решение

1 Метод Эйлера, Рунге-Кутты и Адамса 4-го порядка

Рассматривается задача Коши для одного дифференциального уравнения первого порядка, разрешенного относительно производной

$$y' = f(x, y), \quad y(x_0) = y_0.$$

Требуется найти решение на отрезке [a,b], здесь  $x_0 = a$ . Введем разностную сетку на отрезке [a,b]:

$$\Omega^{(k)} = x_k = x_0 + hk, h = |b - a|/N, h = 0, 1, ..., N.$$

Точки  $x_k$  называются узлами разностной сетки, расстояние h между узлами — шагом разностной сетки, а совокупность заданных в узлах сетки значений какой-либо величины называется сеточной функцией у(h) =  $y_k$ , k = 0, 1, ..., N. Приближенное решение задачи Коши будем искать численно в виде сеточной функции  $y^{(h)}$ . Для оценки погрешности приближенного численного решения  $y^{(h)}$  будем рассматривать это решение как элемент (N + 1) — мерного линейного векторного пространства с какой-либо нормой. В качестве погрешности решения принимается норма элемента этого пространства  $\delta^{(h)} = y^{(h)} - [y]^{(h)}$ ,  $[y]^{(h)}$ — точное решение задачи в узлах расчетной сетки. Таким образом  $\epsilon_h = ||\delta^{(h)}||$ .

Пусть необходимо решить задачу Коши для ОДУ второго порядка:

$$y'' = f(x, y, y'),$$
  
 $y(x_0) = y_0,$   
 $y'(x_0) = y_{01},$ 

Путем введения замены z = y' приведем к системе:

$$y' = z,$$
  
 $z' = f(x, y, z),$   
 $y(x_0) = y_0,$   
 $z(x_0) = y_{01},$ 

Метод Эйлера

Метод Эйлера играет важную роль в теории численных методов решения ОДУ, хотя и не часто используется в практических расчетах из-за невысокой точности. Вывод расчетных соотношений для этого метода может быть произведен несколькими способами: с помощью геометрической интерпретации, с использованием разложения в ряд Тейлора, конечно разностным методом (с помощью разностной аппроксимации производной), квадратурным способом (использованием эквивалентного интегрального уравнения).

Рассмотрим вывод соотношений метода Эйлера геометрическим способом. Решение в узле  $x_0$  известно из начальных условий рассмотрим процедуру получения решения в узле  $x_1$ 

График функции  $y^{(h)}$ , которая является решением задачи Коши, представляет собой гладкую кривую, проходящую через точку  $(x_0,y_0)$  согласно условию  $y(x_0)=y_0$ , и имеет в этой точке касательную. Тангенс угла наклона касательной к оси Ох равен значению производной от решения в точке  $x_0$  и равен значению правой части дифференциального уравнения в точке  $(x_0,y_0)$  согласно выражению  $y'(x_0)=f(x_0,y_0)$ . В случае небольшого шага разностной сетки h график функции и график касательной не успевают сильно разойтись друг от друга и можно в качестве значения решения в узле  $x_1$  принять значение касательной  $y_1$ , вместо значения неизвестного точного решения  $y_1$ . При этом допускается погрешность  $|y_1-y_1|$  геометрически представленная отрезком CD на рис.4.1. Из прямоугольного треугольника ABC находим CB=BA tg(CAB) или  $\Delta y = hy'(x_0)$ . Учитывая, что  $\Delta = y_1 - y_0$  и заменяя производную  $y'(x_0)$  на правую часть дифференциального уравнения, получаем соотношение  $y_1 = y_0 + hf(x_0,y_0)$ . Считая теперь точку  $(x_1,y_1)$  начальной и повторяя все предыдущие рассуждения, получим значение  $y_2$  в узле  $x_2$ .

Переход к произвольным индексам дает формулу метода Эйлера:

$$y_{k+1} = y_k + h f(x_k, y_k)$$



#### Пример

Реализовать методы Эйлера в виде программы, задавая в качестве входных данных шаг сетки h. С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

| $N_{ar{o}}$ | Задача Коши                                                                    | Точное решение                                        |
|-------------|--------------------------------------------------------------------------------|-------------------------------------------------------|
| 1           | $y'' + y - \sin 3x = 0,$<br>y(0) = 1,<br>y'(0) = 1,<br>$x \in [0, 1], h = 0.1$ | $y = \cos x + \frac{11}{8}\sin x - \frac{\sin 3x}{8}$ |

#### Решение.

Итак, исходя из начальной точки  $x_0=0,y_0=1,z_0=y_0'=1$  рассчитаем значение  $z_1,y_1$  в узле  $x_1=0.1$  по формулам:

$$z_1 = z_0 + hf(x_0, y_0, y'_0) = 1 + 0.1 * (0.0 - 1) = 0.9$$
  
 $y_1 = y_0 + hz_1 = 1.09$ 

Аналогично получим решение в следующем узле  $x_2 = 0.2$ :

$$z2 = z1 + hf(x1, y1, y'1) = 0.9 + 0.1 * (0.2955202066613396 - 1.09) = 0.820552020666134$$

$$y2 = y1 + hz = 1.1720552020666135$$

Продолжим вычисления и, введя обозначения  $\Delta y_k = hz$  и  $\epsilon_k = |y_{src}(x_k) - y_k|$ , где  $y_{src}(x_k)$  — точное решение в узловых точках, получаемые результаты занесем в таблицу

| X   | V          | $\Delta y_k$  | 21         | ۲,                | Romberg's       |
|-----|------------|---------------|------------|-------------------|-----------------|
| Λ   | У          | $\Delta g_k$  | $y_{src}$  | $\epsilon_k$      | method error    |
| 0   | 1          | -0.1          | 1.0        | 0.0               | 0.0             |
| 0.1 | 1.09       | -0.0794479793 | 1.09533509 | 0.005335087334746 | 0.0903350873347 |
| 0.2 | 1.1720552  | -0.0607412728 | 1.1826566  | 0.010601396443457 | 0.1692021099143 |
| 0.3 | 1.24803628 | -0.0464709367 | 1.26376091 | 0.015724632735001 | 0.2397639782966 |
| 0.4 | 1.31937026 | -0.0387331171 | 1.34000633 | 0.020636070977157 | 0.3043251166349 |
| 0.5 | 1.38683093 | -0.0389335940 | 1.4121058  | 0.025274876803588 | 0.3639314154264 |
| 0.6 | 1.45039824 | -0.0476550606 | 1.47998806 | 0.029589824645564 | 0.4181064569088 |
| 0.7 | 1.50920004 | -0.0645990674 | 1.54274034 | 0.033540295166676 | 0.4647500739992 |
| 0.8 | 1.56154194 | -0.0886078757 | 1.59863844 | 0.037096498356469 | 0.5002104698976 |
| 0.9 | 1.60502305 | -0.1177643167 | 1.64526198 | 0.040238935979036 | 0.5195252544050 |
| 1.0 | 1.63672773 | _             | 1.67968491 | 0.042957183057446 | 0.5168112676677 |

Метод Рунге – Кутты четвертого порядка

Семейство явных методов Рунге-Кутты р-го порядка записывается в виде совокупности формул:

$$y_{k+1} = y_k + \Delta x_k$$

$$\Delta y_k = \sum_{i=1}^p c_i K_i^k$$

$$K_i^k = h f(x_k + a_i h, y_k + h \sum_{j=1}^{i-1} b_{ij} K_j^k)$$

$$i = 2, 3...p$$

Параметры  $a_i, b_{ij}, c_i$  подбираются так, чтобы значение  $y_{k+1}$ , рассчитанное по соотношению совпадало со значением разложения в точке  $x_{k+1}$  точного решения в ряд Тейлора с погрешностью  $O(h^{p+1})$ 

Метод Рунге-Кутты четвертого порядка точности

$$p = 4, a_1 = 0, a_2 = \frac{1}{2}, a_3 = \frac{1}{2}, a_4 = 1, b_{21} = \frac{1}{2}, b_{31} = 0, b_{32} = \frac{1}{2}, b_{41} = 0, b_{42} = 0, b_{43} = \frac{1}{2}, c_1 = \frac{1}{6}, c_2 = \frac{1}{3}, c_3 = \frac{1}{6}$$

является одним из самых широко используемых методов для решения Задачи Коши:

$$y_{k+1} = y_k + \Delta y_k$$

$$\Delta y_k = \frac{1}{6} (K_1^k + 2K_2^k + 2K_3^k + K_4^k)$$

$$K_1^k = hf(x_k, y_k)$$

$$K_2^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_1^k)$$

$$K_3^k = hf(x_k + \frac{1}{2}h, y_k + \frac{1}{2}K_2^k)$$

$$K_4^k = hf(x_k + h, y_k + K_3^k)$$

#### Пример

Реализовать методы Рунге-Кутты 4-го порядка в виде программы, задавая в качестве входных данных шаг сетки h. С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

| No | Задача Коши                           | Точное решение                                        |
|----|---------------------------------------|-------------------------------------------------------|
| 1  | $y'' + y - \sin 3x = 0,$<br>y(0) = 1, | $y = \cos x + \frac{11}{8}\sin x - \frac{\sin 3x}{8}$ |
|    | $y'(0) = 1,  x \in [0, 1], h = 0.1$   |                                                       |

#### Решение.

Введем новую переменную z=y' решение исходной начальной задачи для дифференциального уравнения второго порядка сводится к решению системы двух дифференциальных уравнений первого порядка.

$$y' = z$$

$$z' = \sin 3x - y$$

$$y(0) = 1$$

$$z(0) = 1$$

Вычислим значения вспомогательных величин

$$K_1^0 = hf(x_0, y_0, z_0) = hz_0 = 0.1$$
  
 $L_1^0 = hg(x_0, y_0, z_0) = h\frac{2x_0z_0}{x_0^2 + 1} = -0.1$ 

$$K_{2}^{0} = hf(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{1}^{0}, z_{0} + \frac{1}{2}L_{1}^{0}) = 0.095$$

$$L_{2}^{0} = hg(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{1}^{0}, z_{0} + \frac{1}{2}L_{1}^{0}) = -0.09$$

$$K_{3}^{0} = hf(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{2}^{0}, z_{0} + \frac{1}{2}L_{2}^{0}) = 0.095$$

$$L_{3}^{0} = hg(x_{0} + \frac{1}{2}h, y_{0} + \frac{1}{2}K_{2}^{0}, z_{0} + \frac{1}{2}L_{2}^{0}) = -0.089$$

$$K_{4}^{0} = hf(x_{0} + h, y_{0} + K_{3}^{0}, z_{0} + L_{3}^{0}) = 0.091$$

$$L_{4}^{0} = hg(x_{0} + h, y_{0} + K_{3}^{0}, z_{0} + L_{3}^{0}) = -0.079$$

Найдем приращения функций на первом интервале

$$\Delta y_0 = \frac{1}{6} (K_1^0 + 2K_2^0 + 2K_3^0 + K_4^0) = 0.095$$
$$\Delta z_0 = \frac{1}{6} (L_1^0 + 2L_2^0 + 2L_3^0 + L_4^0) = -0.090$$

и значения функций в первом узле

$$y_1 = y_0 + \Delta y_0 = 1.095$$
  
 $z_1 = z_0 + \Delta z_0 = 0.910$ 

Аналогично получим решения в остальных узлах, результаты вычислений занесем в таблицу.

| X   | у       | Z       | $\Delta y_k$ | $\Delta z_k$ | $y_{src}$ | $\epsilon_k$ | Romberg's method |
|-----|---------|---------|--------------|--------------|-----------|--------------|------------------|
|     |         |         |              |              |           |              | error            |
| 0   | 1       | 1       | 0.09534      | -0.08995     | 1.0       | 0.0          | 0.0              |
| 0.1 | 1.09534 | 0.91005 | 0.08732      | -0.07062     | 1.09534   | 1e-06        | 0.04965          |
| 0.2 | 1.18266 | 0.83942 | 0.0811       | -0.05446     | 1.18266   | 1e-06        | 0.09314          |
| 0.3 | 1.26376 | 0.78496 | 0.07625      | -0.04381     | 1.26376   | 1e-06        | 0.13214          |
| 0.4 | 1.34001 | 0.74116 | 0.0721       | -0.04043     | 1.34001   | 2e-06        | 0.16784          |
| 0.5 | 1.41211 | 0.70073 | 0.06788      | -0.04533     | 1.41211   | 2e-06        | 0.20077          |
| 0.6 | 1.47999 | 0.6554  | 0.06275      | -0.05864     | 1.47999   | 2e-06        | 0.23064          |
| 0.7 | 1.54274 | 0.59676 | 0.0559       | -0.07962     | 1.54274   | 2e-06        | 0.25633          |
| 0.8 | 1.59864 | 0.51714 | 0.04662      | -0.10672     | 1.59864   | 2e-06        | 0.27587          |
| 0.9 | 1.64526 | 0.41042 | 0.03442      | -0.13772     | 1.64526   | 1e-06        | 0.28662          |
| 1.0 | 1.67969 | 0.27269 | 0            | 0            | 1.67968   | 1e-06        | 0.28542          |

#### Метод Адамса четвертого порядка

Многошаговые методы решения задачи Коши характеризуются тем, что решение в текущем узле зависит от данных не в одном предыдущем узле, как это имеет место в одношаговых методах, а от нескольких предыдущих узлах. Многие многошаговые методы различного порядка точности можно конструировать с помощью квадратурного способа (т.е. с использованием эквивалентного интегрального уравнения).

Решение дифференциального уравнения y' = f(x, y) удовлетворяет интегральному соотношению:

$$y_{k+1} = y_k + \int_{x_k}^{x_{k+1}} f(x, y(x)) dx$$

Если решение задачи Коши получено в узлах вплоть до k-го, то можно аппроксимировать подынтегральную функцию, например: интерполяционным многочленом какой-либо степени. Вычислив интеграл от построенного многочлена на отрезке  $[x_k, x_{k+1}]$  получим ту или иную формулу Адамса. В частности, если использовать многочлен нулевой степени (то есть заменить подынтегральную функцию ее значением на левом конце отрезка в точке  $x_k$ ), то получим явный метод Эйлера. Если проделать то же самое, но подынтегральную функцию аппроксимировать значением на правом конце в точке  $x_{k+1}$ , то получим неявный метод Эйлера.

При использовании интерполяционного многочлена 3-ей степени построенного по значениям подынтегральной функции в последних четырех узлах получим метод Адамса четвертого порядка точности:

$$y_{k+1} = y_k + \frac{h}{24}(55f_k - 59f_{k-1} + 37f_{k-2} - 9f_{k-3}),$$

где  $f_k$  значение подынтегральной функции в узле  $x_k$ .

Метод Адамса как и все многошаговые методы не является самостартующим, то есть для того, что бы использовать метод Адамса необходимо иметь решения в первых четырех узлах. В узле  $x_0$  решение  $y_0$  известно из начальных условий, а в других трех узлах  $x_1, x_2, x_3$  решения  $y_1, y_2, y_3$  можно получить с помощью подходящего одношагового метода, например: метода Рунге-Кутты четвертого порядка.

#### Пример

Реализовать методы Адамса 4-го порядка в виде программы, задавая в качестве входных данных шаг сетки h. С использованием разработанного программного обеспечения решить задачу Коши для ОДУ 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

| Nº | Задача Коши                                                                    | Точное решение                                        |
|----|--------------------------------------------------------------------------------|-------------------------------------------------------|
| 1  | $y'' + y - \sin 3x = 0,$<br>y(0) = 1,<br>y'(0) = 1,<br>$x \in [0, 1], h = 0.1$ | $y = \cos x + \frac{11}{8}\sin x - \frac{\sin 3x}{8}$ |

#### Решение.

Для нахождения решения в первых узлах беем использовать результаты решения этой задачи методом Рунге-Кутты четвертого порядка.

| X   | у       | $f(x_k, y_k)$ | $y_{src}$ | $\epsilon_k$ | Romberg's method error |
|-----|---------|---------------|-----------|--------------|------------------------|
| 0   | 1       | 1             | 1.0       | 0.0          | 0.0                    |
| 0.1 | 1.09534 | 0.91005       | 1.09534   | 1e-06        | 5e-07                  |
| 0.2 | 1.18266 | 0.83942       | 1.18266   | 1e-06        | 1.1e-06                |
| 0.3 | 1.26376 | 0.78496       | 1.26376   | 1e-06        | 1.5e-06                |
| 0.4 | 1.34009 | 0.74099       | 1.34001   | 8.5e-05      | 0.0094652              |
| 0.5 | 1.41221 | 0.7003        | 1.41211   | 0.000109     | 0.0183401              |
| 0.6 | 1.48008 | 0.65468       | 1.47999   | 8.9e-05      | 0.0272846              |
| 0.7 | 1.54275 | 0.59573       | 1.54274   | 1e-05        | 0.0361916              |
| 0.8 | 1.59851 | 0.51582       | 1.59864   | 0.000133     | 0.0448635              |
| 0.9 | 1.64493 | 0.40885       | 1.64526   | 0.00033      | 0.0531971              |
| 1.0 | 1.67911 | 0.27096       | 1.67968   | 0.000572     | 0.0610962              |

**2** Численные методы решение краевой задачи для ОДУ. Примером краевой задачи является двухточечная краевая задача для обыкновенного дифференциального уравнения второго порядка.

$$y'' = f(x, y, y')$$

с граничными условиями, заданными на концах отрезка [a ,b].

$$y(a) = y_0$$

$$y(b) = y_1$$

Следует найти такое решение y(x) на этом отрезке, которое принимает на концах отрезка значения  $y_0, y_1$ . Если функция f(x, y, y') линейна по аргументам y, y', то задача - линейная краевая задача, в противном случае — нелинейная.

Кроме граничных условий называемых граничными условиями первого рода, используются еще условия на производные от решения на концах - граничные условия второго рода:

$$y'(a) = \tilde{y}_0$$
$$y'(b) = \tilde{y}_1$$

или линейная комбинация решений и производных - граничные условия третьего рода:

$$\alpha y(a) + \beta y'(a) = \tilde{y}_0,$$
  
$$\delta y(b) + \gamma y'(b) = \tilde{y}_1$$

 $\alpha, \beta, \delta, \gamma$  – такие числа, что  $|\alpha| + |\beta| \neq 0, |\delta| + |\gamma| \neq 0$ 

Метод стрельбы

Суть метода заключена в многократном решении задачи Коши для приближенного нахождения решения краевой задачи.

Пусть надо решить краевую задачу на отрезке. Вместо исходной задачи формулируется задача Коши с уравнением и с начальными условиями

$$y(a) = y_0$$

$$y'(b) = \eta$$

где  $\eta$  - некоторое значение тангенса угла наклона касательной к решению в точке x=a.

Положим сначала некоторое начальное значение параметру  $\eta=\eta_0$ , после чего решим каким либо методом задачу Коши. Пусть  $y=y_0(x,y_0,\eta_0)$  решение этой задачи на интервале [a,b], тогда сравнивая значение функции  $y_0(b,y_0,\eta_0)$  со значением  $y_1$  в правом конце отрезка можно получить информацию для корректировки угла наклона касательной к решению в левом конце отрезка. Решая задачу Коши для нового значения  $\eta=\eta_1$ , получим другое решение со значением  $y_1(b,y_0,\eta_1)$  на правом конце. Таким образом, значение решения на правом конце  $y(b,y_0,\eta)$  будет являться функцией одной переменной  $\eta$ . Задачу можно сформулировать таким образом: требуется найти такое значение переменной  $\eta^*$ , чтобы решение  $y(b,y_0,\eta^*)$  в правом конце отрезка совпало со значением  $y_1$ . Другими словами решение исходной задачи эквивалентно нахождению корня уравнения

$$\Phi(\eta) = 0,$$

где 
$$\Phi(\eta) = y(b, y_0, \eta) - y_1$$

Уравнение является "алгоритмическим" уравнением, так как левая часть его задается с помощью алгоритма численного решения соответствующей задачи Коши. Но методы решения уравнения аналогичны методам решения нелинейных уравнений, изложенным в разделе 2. Следует заметить, что так как невозможно вычислить производную функции  $\Phi(\eta)$ , то вместо метода Ньютона следует использовать метод секущих, в котором производная от функции заменена ее разностным аналогом. Данный разностный аналог легко вычисляется по двум приближениям, например  $\eta_k \eta_{k+1}$ .

Следующее значение искомого корня определяется по соотношению

$$\eta_{j+2} = \eta_{j+1} + \frac{n_{j+1} - n_j}{\Phi(\eta_{j+1}) - \Phi(\eta_j)} \Phi(\eta_{j+1})$$

Итерации по формуле выполняются до удовлетворения заданной точности.

#### Пример

Реализовать метод стрельбы решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге – Ромберга и путем сравнения с точным решением.

| Nº | Задача Коши                                                      | Точное решение         |
|----|------------------------------------------------------------------|------------------------|
| 1  | xy'' + 2y' - xy = 0,<br>y'(1) = 0,<br>$1.5y(2) + y'(2) = e^{2},$ | $y(x) = \frac{e^x}{x}$ |

#### Решение

Заменой переменных z=y'сведем дифференциальное уравнение второго порядка к системе двух дифференциальных уравнений первого порядка

$$y' = z,$$

$$z' = \frac{(xy - 2y')}{x}$$

Задачу Коши для системы с начальными условиями на левом конце  $y(1)=\eta, y'(1)=0$  будем решать методом Рунге — Кутты четвертого порядка точности с шагом h=0.1 до удовлетворения на правом конце условия

$$|1.5 * y(1, \eta_k, 0.0) + y'(1, \eta_k, 0.0)) - e^2| \le \epsilon = 0.0001$$

Примем в качестве первых двух значений параметра  $\eta$  следующие:  $\eta_0=1.0, \eta_1=0.8$ . Дважды решив задачу Коши с этими параметрами методом Рунге – Кутты с шагом

h = 0.1, получим два решения:

$$y(1, \eta_0, 0.0) = 1.359142328788921, y(1, \eta_1, 0.0) = 1.087313863031137$$

Вычислим новое приближение параметра  $\eta$  по формуле:

$$\eta_2 = 0.8 - \frac{(0.8 - 1)}{(2.14787 - 1.39258)} * (2.14787 - 7.38906) = 2.75214$$

Решая задачу Коши с параметром  $\eta_2$ , получим решение  $y(1, \eta_2, 0.0) = 3.7405466629205852$ Остальные вычисления заносим в таблицу:

| j | $\eta_j$          | y                  | $\Phi(\eta_j)$        |
|---|-------------------|--------------------|-----------------------|
| 0 | 1                 | 1.359142328788921  | 4.704213529419357     |
| 1 | 0.8               | 1.087313863031137  | 5.241182043321615     |
| 2 | 2.752137567706865 | 3.7405466629205852 | 3.552713678800501e-15 |

| X   | 37      | a         | 6,           | Romberg's  | method |
|-----|---------|-----------|--------------|------------|--------|
| X   | У       | $y_{src}$ | $\epsilon_k$ | error      |        |
| 1   | 2.75214 | 2.71828   | 0.03386      | 0.0113231  |        |
| 1.1 | 2.76508 | 2.73106   | 0.03402      | 0.01137563 |        |
| 1.2 | 2.80123 | 2.76676   | 0.03446      | 0.01152403 |        |
| 1.3 | 2.85769 | 2.82254   | 0.03516      | 0.01175621 |        |
| 1.4 | 2.93265 | 2.89657   | 0.03608      | 0.01206457 |        |
| 1.5 | 3.02501 | 2.98779   | 0.03722      | 0.01244456 |        |
| 1.6 | 3.13421 | 3.09565   | 0.03856      | 0.01289386 |        |
| 1.7 | 3.26008 | 3.21997   | 0.04011      | 0.01341178 |        |
| 1.8 | 3.40278 | 3.36092   | 0.04186      | 0.01399894 |        |
| 1.9 | 3.56272 | 3.51889   | 0.04383      | 0.01465704 |        |
| 2.0 | 3.74055 | 3.69453   | 0.04602      | 0.0153887  |        |

#### Пример

Реализовать конечно-разностный метод решения краевой задачи для ОДУ в виде программ. С использованием разработанного программного обеспечения решить краевую задачу для обыкновенного дифференциального уравнения 2-го порядка на указанном отрезке. Оценить погрешность численного решения с использованием метода Рунге — Ромберга и путем сравнения с точным решением.

| $N_{\overline{0}}$ | Задача Коши                                                      | Точное решение         |
|--------------------|------------------------------------------------------------------|------------------------|
| 1                  | xy'' + 2y' - xy = 0,<br>y'(1) = 0,<br>$1.5y(2) + y'(2) = e^{2},$ | $y(x) = \frac{e^x}{x}$ |

Решение

Здесь

$$p(x) = \frac{2}{x}, q(x) = -1, f(x) = 0, N = 10$$

$$x_0 = 1, x_1 = 1.1, x_2 = 1.2, x_3 = 1.3, x_4 = 1.4, x_5 = 1.5$$

$$x_6 = 1.6, x_7 = 1.7, x_8 = 1.8, x_9 = 1.9, x_{10} = 2.0$$

С помощью группировки слагаемых, приведения подобных членов и подстановки значений  $_k$  и с учетом граничного условия получим систему линейных алгебраических уравнений:

В данной трехдиагональной системе выполнено условие преобладания диагональных элементов, и можно использовать метод прогонки. В результате решения системы методом прогонки получим следующие значения:

$$y_0 = 2.71433$$

$$y_1 = 2.7279$$

$$y_2 = 2.76421$$

$$y_3 = 2.82046$$

$$y_4 = 2.89486$$

$$y_5 = 2.98636$$

 $y_6 = 3.09441$ 

 $y_7 = 3.21888$ 

 $y_8 = 3.35992$ 

 $y_9 = 3.51795$ 

 $y_10 = 3.69359$ 

#### Таблица с результатами:

| X   | V       | 21        | 6.           | Romberg's | method |
|-----|---------|-----------|--------------|-----------|--------|
| Λ   | У       | $y_{src}$ | $\epsilon_k$ | error     |        |
| 1   | 2.71433 | 2.71828   | 0.00395      | 2.53e-06  |        |
| 1.1 | 2.7279  | 2.73106   | 0.00316      | 1.94e-06  |        |
| 1.2 | 2.76421 | 2.76676   | 0.00255      | 1.48e-06  |        |
| 1.3 | 2.82046 | 2.82254   | 0.00208      | 1.12e-06  |        |
| 1.4 | 2.89486 | 2.89657   | 0.00171      | 8.3e-07   |        |
| 1.5 | 2.98636 | 2.98779   | 0.00144      | 6e-07     |        |
| 1.6 | 3.09441 | 3.09565   | 0.00123      | 4.1e-07   |        |
| 1.7 | 3.21888 | 3.21997   | 0.00109      | 2.6e-07   |        |
| 1.8 | 3.35992 | 3.36092   | 0.00099      | 1.4e-07   |        |
| 1.9 | 3.51795 | 3.51889   | 0.00094      | 4e-08     |        |
| 2.0 | 3.69359 | 3.69453   | 0.00094      | 3e-08     |        |

### 2 Исходный код

1 Метод Эйлера, Рунге-Кутты и Адамса 4-го порядка

```
1 | import argparse
   import numpy as np
3
   from prettytable import PrettyTable
4
5
6
   def foo(x, y, y1):
7
       # return (y + x) ** 2
        # return (2 * x * y1) / (x ** 2 + 1)
8
9
       return np.sin(3 * x) - y
10
11
12
   def orig_foo(x):
13
        # return np.tan(x) - x
14
        # return x ** 3 + 3 * x + 1
15
       return np.cos(x) + 11 / 8 * np.sin(x) - np.sin(3 * x) / 8
16
17
18
   def euler(f, xa, xb, ya, y1a, h, fl=None):
       if fl:
19
20
           fl.write(f'Euler:\n\n')
21
           fl.write(f'z = y)' \n'
22
                    f'z' = sin(3x) - y \n'
23
                    f'[{xa}, {xb}]\n'
                    f'x0 = \{xa\}, y0 = \{ya\}, z0 = \{y1a\}\n')
24
       n = int((xb - xa) / h)
25
26
       x = xa
27
       y = ya
28
       x_res = [x]
29
       y_res = [y]
30
       deltaYk = []
31
       y = ya
32
       y1 = y1a
33
       for i in range(n):
34
           if i < 2 and fl:
               fl.write(f'x{i + 1} = \{x + h\}\n'
35
36
                        f'z\{i + 1\} = z\{i\} + hf(x\{i\},y\{i\}, y\setminus'\{i\}) = '
37
                        f'\{y1\} + \{h\} * (\{np.sin(3 * x)\} - \{y\}) = \{y1 + h * f(x, y, y1)\} \setminus n'
38
                        f'y\{i + 1\} = y\{i\} + hz = \{y + h * (y1 + h * f(x, y, y1))\}\n\n')
39
           deltaYk.append(h * f(x, y, y1))
40
           y1 += h * f(x, y, y1)
           y += h * y1
41
            # y += h * f(x, y, y1)
42
43
           x += h
44
           x_res.append(x)
45
           y_res.append(y)
46
        deltaYk.append('-')
```

```
47
       x_res = [round(x, 5) for x in x_res]
48
       return x_res, y_res, deltaYk
49
50
51
   def runge_kutta(f, xa, xb, ya, y1a, h, fi=None):
52
       n = int((xb - xa) / h)
53
       x = xa
54
       y = ya
55
        z = y1a
56
       x_res = [x]
57
       y_res = [y]
58
       z_res = [z]
59
       deltaY = []
60
       deltaZ = []
61
       for i in range(1, n + 1):
62
           k1 = h * z
63
           11 = h * f(x, y, z)
64
           k2 = h * (z + 0.5 * 11)
65
           12 = h * f(x + 0.5 * h, y + 0.5 * k1, z + 0.5 * 11)
66
           k3 = h * (z + 0.5 * 12)
           13 = h * f(x + 0.5 * h, y + 0.5 * k2, z + 0.5 * 12)
67
68
           k4 = h * (z + 13)
69
           14 = h * f(x + h, y + k3, z + 13)
70
           x = xa + i * h
71
           deltaY.append((k1 + 2 * k2 + 2 * k3 + k4) / 6)
72
           deltaZ.append((11 + 2 * 12 + 2 * 13 + 14) / 6)
73
74
           y += (k1 + 2 * k2 + 2 * k3 + k4) / 6
           z += (11 + 2 * 12 + 2 * 13 + 14) / 6
75
76
           if fi and i == 1:
77
               fi.write(f'\nRunge-Kutt:\n\n')
78
               fi.write(f''K_1 = {k1}\n''
79
                        f"L_1 = {11}\n"
80
                        f''K_2 = {k2}\n''
                        f"L_2 = {12}\n"
81
82
                        f''K_3 = {k3}\n''
83
                        f"L_3 = {13}\n"
84
                        f''K_4 = {k4}\n''
85
                        f"L_4 = \{14\} \setminus n \setminus n")
86
               fi.write(f"deltaY_0 = {deltaY[0]}\n"
87
                        f"deltaZ_0 = {deltaZ[0]}\n\n")
88
               fi.write(f"y1 = {y}\n")
               fi.write(f"z1 = {z}\n\n")
89
90
           x_res.append(x)
91
           y_res.append(y)
92
           z_res.append(z)
93
        deltaY.append(0)
94
        deltaZ.append(0)
95
        x_res = [round(x, 5) for x in x_res]
```

```
96
        return x_res, y_res, z_res, deltaY, deltaZ
97
98
99
    def adams(f, x, y, h, n, z):
100
        z = z[:4] + [0] * (len(z) - 4)
101
        for i in range(3, n):
102
            z[i + 1] = z[i] + h / 24 * (55 * f(x[i], y[i], z[i]) - \
103
                                      59 * f(x[i - 1], y[i - 1], z[i - 1]) + 
104
                                      37 * f(x[i - 2], y[i - 2], z[i - 2]) - 
105
                                      9 * f(x[i - 3], y[i - 3], z[i - 3]))
106
            tmp = y[i] + h / 24 * (55 * z[i] - 59 * z[i - 1] + 
107
                                 37 * z[i - 2] - 9 * z[i - 3])
            x.append(x[-1] + h)
108
109
            y.append(tmp)
110
        x = [round(i, 2) for i in x]
111
        return x, y, z
112
113
114
    def print_result_table(f, name, res, runge_y, p):
115
        if 'Euler' == name:
            table = PrettyTable(['x', 'y', 'delta_Yk', 'y_src', 'eps_k',
116
117
                               'Romberg\'s method error'])
            for x, y, delta, yr in zip(*res, runge_y):
118
               tmp = orig_foo(x)
119
120
               table.add_row([round(x, 8), round(y, 8), delta, round(tmp, 8), abs(y - tmp)
121
                              abs(y + abs(y - yr) / (0.5 ** p - 1) - tmp)])
122
            f.write(f'\n{str(table)}\n')
123
        elif 'Runge-Kutta' == name:
124
125
            table = PrettyTable(['x', 'y', 'z', 'delta_Yk', 'delta_Zk', 'y_src', 'eps_k',
126
                               'Romberg\'s method error'])
127
            for x, y, z, deltaY, deltaZ, yr in zip(*res, runge_y):
128
               tmp = orig_foo(x)
129
               table.add_row([round(x, 5), round(y, 5), round(z, 5), round(deltaY, 5),
130
                             round(deltaZ, 5), round(tmp, 5), abs(round(y - tmp, 6)),
131
                              abs(y + abs(y - yr) / (0.5 ** p - 1) - tmp)])
132
            f.write(f'\n{str(table)}\n')
133
        elif 'Adams' == name:
134
            f.write(f'\nAdams:\n')
            table = PrettyTable(['x_k', 'y_k', 'f(x_k, y_k)', 'y_src', 'eps_k',
135
                               'Romberg\'s method error'])
136
137
            for x, y, z, yr in zip(*res, runge_y):
138
               tmp = orig_foo(x)
139
               table.add_row([round(x, 5), round(y, 5), round(z, 5), round(tmp, 5), abs(
                   round(y - tmp, 6)),
140
                              abs(round(y + abs(y - yr) / (0.5 ** p - 1) - tmp, 7))])
141
            f.write(f'\n{str(table)}\n')
142
```

```
143
144
    def main():
145
        parser = argparse.ArgumentParser()
146
        parser.add_argument('--output', required=True, help='File for answer')
        parser.add_argument('--h', required=True, help='Step', type=float)
147
148
        args = parser.parse_args()
149
150
        # a = 0
        # b = 0.5
151
152
        # y0 = 0
        # y10 = 0
153
        a = 0
154
        b = 1
155
156
        y0 = 1
157
        y10 = 1
158
        step = args.h
159
        f = open(args.output, 'w')
160
161
        res1 = euler(foo, a, b, y0, y10, step, f)
162
        res1_half_h = euler(foo, a, b, y0, y10, step / 2)
        h_half = [y for x, y in zip(res1_half_h[0], res1_half_h[1]) if x in res1[0]]
163
164
        print_result_table(f, 'Euler', res1, h_half, 1)
165
166
        res2 = runge_kutta(foo, a, b, y0, y10, step, f)
167
        z = res2[2]
168
        res2_half_h = runge_kutta(foo, a, b, y0, y10, step / 2)
169
        z_half_h = res2_half_h[2]
170
        h_half = [y for x, y in zip(res2_half_h[0], res2_half_h[1]) if x in res2[0]]
        print_result_table(f, 'Runge-Kutta', res2, h_half, 4)
171
172
173
        res3 = adams(foo, res2[0][:4], res2[1][:4], step, int((b - a) / step), z)
174
        res3_half_h = adams(foo, res2[0][:4], res2[1][:4], step / 2,
175
                           int((b - a) / (step / 2)), z_half_h)
        h_half = [y for x, y in zip(res3_half_h[0], res3_half_h[1]) if x in res3[0]]
176
177
        print_result_table(f, 'Adams', res3, h_half, 4)
178
179
        f.close()
180
181
182 | if __name__ == "__main__":
183
        main()
```

2 Численные методы решение краевой задачи для ОДУ.

```
1 | import argparse
2 | import numpy as np
3 | from prettytable import PrettyTable
4 |
5 |
6 | def func(x, y, y1):
```

```
7
       # return np.e ** x + np.sin(y)
 8
       return (x * y - 2 * y1) / x
 9
10
11
   def orig_func(x):
12
       return np.exp(x) / x
13
14
15
   def p(x):
16
       return 2 / x
17
18
19
    def q(x):
20
       return -1
21
22
23
   def f(x):
24
       return 0
25
26
27
   def tma(a, b, c, d, shape):
28
       p = [-c[0] / b[0]]
29
       q = [d[0] / b[0]]
30
       x = [0] * (shape + 1)
31
       for i in range(1, shape):
32
           p.append(-c[i] / (b[i] + a[i] * p[i - 1]))
           q.append((d[i] - a[i] * q[i - 1]) / (b[i] + a[i] * p[i - 1]))
33
34
       for i in reversed(range(shape)):
           x[i] = p[i] * x[i + 1] + q[i]
35
36
       return x[:-1]
37
38
39
    def runge_kutta(f, xa, xb, ya, y1a, h):
40
       n = int((xb - xa) / h)
41
       x = xa
42
       y = ya
43
       z = y1a
44
       x_res = [x]
45
       y_res = [y]
46
       z_res = [z]
47
       for i in range(1, n + 1):
48
           k1 = h * z
49
           11 = h * f(x, y, z)
           k2 = h * (z + 0.5 * 11)
50
51
           12 = h * f(x + 0.5 * h, y + 0.5 * k1, z + 0.5 * 11)
52
           k3 = h * (z + 0.5 * 12)
53
           13 = h * f(x + 0.5 * h, y + 0.5 * k2, z + 0.5 * 12)
54
           k4 = h * (z + 13)
55
           14 = h * f(x + h, y + k3, z + 13)
```

```
56
           x = xa + i * h
57
           y += (k1 + 2 * k2 + 2 * k3 + k4) / 6
           z += (11 + 2 * 12 + 2 * 13 + 14) / 6
58
59
           x_res.append(x)
60
           y_res.append(y)
61
           z_res.append(z)
62
       return (x_res, y_res), z_res
63
64
65
   def der_one(xi, yi, x):
66
       i = 0
67
       while xi[i + 1] < x - 1e-7:
68
           i += 1
69
       return (yi[i + 1] - yi[i]) / (xi[i + 1] - xi[i])
70
71
72
   def next_n(cur_n, prev_n, ans_cur, ans_prev, alpha1, beta1, B, b, fi=None):
73
       num1 = beta1 * der_one(ans_cur[0], ans_cur[1], b)
       num2 = beta1 * der_one(ans_prev[0], ans_prev[1], b)
74
       num3 = alpha1 * ans_prev[1][len(ans_prev[0]) - 1]
75
       num4 = alpha1 * ans_cur[1][len(ans_cur[0]) - 1] + num1 - B
76
77
       num5 = alpha1 * ans_cur[1][len(ans_cur[0]) - 1] + num1 - num3 - num2
78
       if fi:
           fi.write(f'{round(cur_n, 5)} - ({round(cur_n, 5)} - {round(prev_n, 5)}) / '
79
80
                   f'({round(alpha1 * ans_cur[1][len(ans_cur[0]) - 1] + num1, 5)} - {round
                        (num3 - num2, 5)) * '
81
                   f'({round(alpha1 * ans_cur[1][len(ans_cur[0]) - 1] + num1, 5)} - {round
                        (B, 5)}),
                   f' = {round(cur_n - num4 * (cur_n - prev_n) / num5, 5)}\n')
82
       return cur_n - num4 * (cur_n - prev_n) / num5
83
84
85
86
   def shooting_method(a, b, h, eps, f, alpha0, alpha1, beta0, beta1, A, B, fi=None):
       table = PrettyTable(['j', 'n_j', 'y', '|Phi(n_j)|'])
87
88
89
       n_{prev} = 1
90
       n_{cur} = 0.8
91
       if fi:
92
           fi.write(f'|{alpha1} * y({a}, n_k, {(A - alpha0 * n_prev) / beta0}) '
93
                   f'+ {beta1} * y\'({a}, n_k, {(A - alpha0 * n_prev) / beta0})) - {B} | <=
                        eps\n')
94
           fi.write(f'eps = {eps}\n')
95
       ans_prev = runge_kutta(f, a, b, n_prev, (A - alpha0 * n_prev) / beta0, h)[0]
96
       ans_cur = runge_kutta(f, a, b, n_cur, (A - alpha0 * n_cur) / beta0, h)[0]
       table.add_row([0, n_prev, ans_prev[1][-1], abs(alpha1 * ans_prev[1][len(ans_prev
97
           [0]) - 1] +
98
                                                   beta1 * der_one(ans_prev[0], ans_prev
                                                       [1], b) - B)])
99
       table.add_row([1, n_cur, ans_cur[1][-1], abs(alpha1 * ans_cur[1][len(ans_cur[0]) -
```

```
1] +
100
                                                  beta1 * der_one(ans_cur[0], ans_cur[1], b)
                                                        - B)])
101
        i = 2
102
        while abs(alpha1 * ans_cur[1][len(ans_cur[0]) - 1] +
                 beta1 * der_one(ans_cur[0], ans_cur[1], b) - B) > eps:
103
104
            if i == 2 or i == 3:
105
               n = next_n(n_cur, n_prev, ans_cur, ans_prev, alpha1, beta1, B, b, fi)
106
            else:
107
                n = next_n(n_cur, n_prev, ans_cur, ans_prev, alpha1, beta1, B, b)
108
            n_prev = n_cur
109
            n_cur = n
110
            ans_prev = ans_cur
111
            ans_cur = runge_kutta(f, a, b, n_cur, (A - alpha0 * n_cur) / beta0, h)[0]
            table.add_row([i, n_cur, ans_cur[1][-1], abs(alpha1 * ans_cur[1][len(ans_cur
112
                [0]) - 1] + \
113
                                                      beta1 * der_one(ans_cur[0], ans_cur[1],
                                                           b) - B)])
114
            i += 1
115
        if fi:
            fi.write(f'\n{str(table)}\n')
116
117
        return ans_cur
118
119
120
    def finite_difference_method(a1, b1, h, alpha_0, alpha_1, beta_0, beta_1, A, B, fi=
        None):
121
        x = [a1]
122
        a = []
123
        b = []
124
        c = []
125
        d = \prod
126
        n = round((b1 - a1) / h)
127
        a.append(0)
128
        b.append(-2 / (h * (2 - p(a1) * h)) + q(a1) * h /
129
                 (2 - p(a1) * h) + alpha_0 / beta_0)
        c.append(2 / (h * (2 - p(a1) * h)))
130
        d.append(A / beta_0 + h * f(a1) / (2 - p(a1) * h))
131
132
        x.append(x[0] + h)
133
        if fi:
            fi.write(f'\{b[0]\}y_0 + \{c[0]\}y_1 = \{d[0]\}\n')
134
135
136
        for i in range(1, n):
137
            a.append(1 / h ** 2 - p(x[i]) / (2 * h))
            b.append(-2 / h ** 2 + q(x[i]))
138
139
            c.append(1 / h ** 2 + p(x[i]) / (2 * h))
140
            d.append(f(x[i]))
141
            x.append(x[i] + h)
142
            if fi:
143
                fi.write(f'{a[i]}y_{i - 1} + {b[i]}y_{i} + {c[i]}y_{i+1} = {d[i]}\n')
```

```
144
        a.append(-2 / (h * (2 + p(x[n]) * h)))
145
        b.append(2 / (h * (2 + p(x[n]) * h)) - q(x[n]) * h /
146
                 (2 + p(x[n]) * h) + alpha_1 / beta_1)
147
        c.append(0)
        d.append(B / beta_1 - h * f(x[n]) / (2 + p(x[n]) * h))
148
149
        if fi:
            fi.write(f'\{a[-1]\}y_{\{len(a) - 2\}} + \{b[-1]\}y_{\{len(a) - 1\}} = \{d[-1]\}\n')
150
151
        y = tma(a, b, c, d, len(a))
152
         # print(a)
         # print(b)
153
         # print(c)
154
155
         # print(d)
156
        return x, y
157
158
159
     def print_result_table(f, name, res, runge_y, p):
160
        f.write(f'\n{name}\n')
161
        table = PrettyTable(['x', 'y', 'y_src', 'eps_k',
162
                             'Romberg\'s method error'])
163
        for x, y, yr in zip(*res, runge_y):
            tmp = orig_func(x)
164
165
            table.add_row([round(x, 2), round(y, 5), round(tmp, 5), abs(round(y - tmp, 5)),
166
                           abs(round(y + (y - yr) / (0.5 ** p - 1) - tmp, 8))])
167
        f.write(f'\n{str(table)}\n')
168
169
170
    def main():
171
        parser = argparse.ArgumentParser()
172
        parser.add_argument('--output', required=True, help='File for answer')
173
        parser.add_argument('--h', required=True, help='Step', type=float)
174
        parser.add_argument('--eps', type=float, help='Epsilon', default=1e-5)
175
        args = parser.parse_args()
176
177
        a = 1
178
        b = 2
        alpha0 = 0
179
180
        alpha1 = 1.5
181
        beta0 = 1
182
        beta1 = 1
        y0 = 0
183
184
        y10 = np.e ** 2
185
        \# \ a = 0
         \# b = 1
186
         \# alpha0 = 1
187
188
         \# alpha1 = 1
        # beta0 = 0
189
190
         # beta1 = 0
191
         # y0 = 1
192
         # y10 = 2
```

```
193
         step = args.h
194
         eps = args.eps
195
         f = open(args.output, 'w')
196
197
         res1 = shooting_method(a, b, step, eps, func, alpha0, alpha1,
198
                                beta0, beta1, y0, y10, f)
199
         res2 = shooting_method(a, b, step / 2, eps, func, alpha0, alpha1,
200
                                beta0, beta1, y0, y10)
201
         h_h = [y \text{ for } x, y \text{ in } zip(res2[0], res2[1]) \text{ if } x \text{ in } res1[0]]
202
         print_result_table(f, 'Shooting method', res1, h_half, 2)
203
204
         res1 = finite_difference_method(a, b, step, alpha0, alpha1,
205
                                         beta0, beta1, y0, y10, f)
         res2 = finite_difference_method(a, b, step / 2, alpha0, alpha1,
206
207
                                         beta0, beta1, y0, y10)
         h_{h} = [y \text{ for } x, y \text{ in } zip(res2[0], res2[1]) \text{ if } x \text{ in } res1[0]]
208
         print_result_table(f, 'Finite difference method', res1, h_half, 2)
209
210
211
         f.close()
212
213
214
    if __name__ == "__main__":
215
         main()
```

#### Вывод программы 3

```
1
Входные данные: Имя файла для результата и шаг h.
Выходные данные: В выходном файле таблицы со значениями.
art@mars:~/study/NM/lab_4/p_1 python3 Lw4_1.py --output output --h 0.1
art@mars:~/study/NM/lab_4/p_1 cat output
Euler:
z = y
z' = \sin(3x) - y
[0,1]
x0 = 0, y0 = 1, z0 = 1
x1 = 0.1
z1 = z0 + hf(x0,y0,y'0) = 1 + 0.1 * (0.0 -1) = 0.9
y1 = y0 + hz = 1.09
x2 = 0.2
z2 = z1 + hf(x1,y1,y'1) = 0.9 + 0.1 * (0.2955202066613396 -1.09) = 0.820552020666134
y2 = y1 + hz = 1.1720552020666135
```

| +         |     | _+. |            | +- |                       | +.    |            | +. |                       | 4 |
|-----------|-----|-----|------------|----|-----------------------|-------|------------|----|-----------------------|---|
|           | x   | 1   | У          | -  | delta_Yk              | <br>_ | y_src      |    | eps_k                 |   |
|           | 0   |     | 1          |    | -0.1                  |       | 1.0        |    | 0.0                   |   |
|           | 0.1 |     | 1.09       |    | -0.07944797933386605  |       | 1.09533509 |    | 0.0053350873347468575 |   |
| <br> <br> | 0.2 | I   | 1.1720552  | I  | -0.0607412728671578   | I     | 1.1826566  | I  | 0.0106013964434577    |   |
| <br>      | 0.3 | 1   | 1.24803628 | I  | -0.04647093672190277  |       | 1.26376091 | 1  | 0.015724632735001354  |   |
| <br>      | 0.4 | 1   | 1.31937026 | 1  | -0.03873311719869922  | 1     | 1.34000633 | 1  | 0.020636070977157805  |   |
| <br>      | 0.5 | 1   | 1.38683093 | 1  | -0.03893359407380016  | 1     | 1.4121058  | 1  | 0.025274876803588864  |   |
| <br>      | 0.6 | 1   | 1.45039824 |    | -0.047655060644431826 |       | 1.47998806 | 1  | 0.029589824645564144  |   |
| İ         | 0.7 | 1   | 1.50920004 | 1  | -0.06459906745896539  |       | 1.54274034 | 1  | 0.03354029516667656   |   |

```
| 0.8 | 1.56154194 | -0.08860787578574947 | 1.59863844 | 0.037096498356469665
| 0.9 | 1.60502305 | -0.11776431677663582 | 1.64526198 | 0.040238935979036716
| 1.0 | 1.63672773 |
                                   | 1.67968491 | 0.042957183057446224
Romberg's method error |
0.0
0.01084477799711503
0.02154246256086423
0.03193192142376611
0.041865460344849614
0.05121438933729516
0.05987308610652309
0.06776126650175018
0.07482432950978124
0.0810318131883554
0.08637416289208999
-----+
Runge-Kutt:
K_1 = 0.1
L_1 = -0.1
K_2 = 0.095
L_2 = -0.09005618675264009
K_3 = 0.095497190662368
L_3 = -0.08980618675264009
K_4 = 0.091019381324736
L_4 = -0.07999769840010285
deltaY_0 = 0.09533562710824534
deltaZ_0 = -0.0899537409017772
y1 = 1.0953356271082453
z1 = 0.9100462590982228
```

```
0.09534 | -0.08995 |
                                                  1.0
| 0.1 | 1.09534 | 0.91005 | 0.08732 | -0.07062 | 1.09534 | 1e-06 |
| 0.2 | 1.18266 | 0.83942 | 0.0811 | -0.05446 | 1.18266 | 1e-06 |
| 0.3 | 1.26376 | 0.78496 | 0.07625 | -0.04381 | 1.26376 | 1e-06 |
| 0.4 | 1.34001 | 0.74116 | 0.0721 | -0.04043 | 1.34001 | 2e-06 |
0.5 | 1.41211 | 0.70073 | 0.06788 | -0.04533 | 1.41211 | 2e-06 |
| 0.6 | 1.47999 | 0.6554 | 0.06275 | -0.05864 | 1.47999 | 2e-06 |
| 0.7 | 1.54274 | 0.59676 | 0.0559 | -0.07962 | 1.54274 | 2e-06 |
| 0.8 | 1.59864 | 0.51714 | 0.04662 | -0.10672 | 1.59864 | 2e-06 |
| 0.9 | 1.64526 | 0.41042 | 0.03442 | -0.13772 | 1.64526 | 1e-06 |
| 1.0 | 1.67969 | 0.27269 | 0 | 0 | 1.67968 | 1e-06 |
Romberg's method error |
0.0
3.4429792350465505e-11 |
1.6584467132929603e-10 |
5.652300849590119e-10
1.1037109004519152e-09 |
1.7029053722694698e-09 |
2.2738670946154116e-09 |
2.7259083879016544e-09 |
2.9756614949860705e-09 |
2.955536704263295e-09
2.620814898435242e-09
Adams:
| x_k | y_k | f(x_k,y_k) | y_src | eps_k
                                                | Romberg's method error
          1
                                1.0
                                         0.0
                      1
                                                           0.0
| 0.1 | 1.09534 | 0.91005
                             | 1.09534 | 1e-06
                                                 5e-07
                                                                         | 0.2 | 1.18266 | 0.83942 | 1.18266 | 1e-06
                                               - 1
                                                         1.1e-06
```

| delta\_Yk | delta\_Zk | y\_src | eps\_k |

```
| 0.3 | 1.26376 |
                           | 1.26376 | 1e-06
                  0.78496
                                                      1.5e-06
| 0.4 | 1.34009 |
                  0.74099
                           | 1.34001 | 8.5e-05
                                                      0.0094652
| 0.5 | 1.41221 |
                  0.7003 | 1.41211 | 0.000109 |
                                                      0.0183401
| 0.6 | 1.48008 |
                           | 1.47999 | 8.9e-05 |
                  0.65468
                                                      0.0272846
| 0.7 | 1.54275 | 0.59573 | 1.54274 | 1e-05
                                                      0.0361916
| 0.8 | 1.59851 | 0.51582 | 1.59864 | 0.000133 |
                                                      0.0448635
| 0.9 | 1.64493 | 0.40885
                           | 1.64526 | 0.00033 |
                                                      0.0531971
| 1.0 | 1.67911 |
                  0.27096
                           | 1.67968 | 0.000572 |
                                                      0.0610962
```

art@mars:~/study/NM/lab\_4/p\_1

#### 2

Входные данные: Имя файла для результата и шаг h.

Выходные данные: В выходном файле таблицы со значениями.

art@mars:~/study/NM/lab\_4/p\_2 python3 Lw4\_2.py --output output --h 0.1 art@mars:~/study/NM/lab\_4/p\_2 cat output

#### Shooting method

```
|1.5 * y(1,n_k,0.0) + 1 * y'(1,n_k,0.0)) -7.3890560989306495| \le eps = 1e-05

0.8 - (0.8 - 1) / (2.14787 -1.39258) * (2.14787 -7.38906) = 2.75214
```

| - | +   | -+- |                   | +- |                    | -+- |                       | -+      |
|---|-----|-----|-------------------|----|--------------------|-----|-----------------------|---------|
|   | l j | •   | =3                |    | У                  |     | Phi(n_j)              |         |
|   | 0   | •   |                   | •  | 1.359142328788921  |     | 4.704213529419357     | - ·<br> |
|   | 1   |     | 0.8               |    | 1.087313863031137  |     | 5.241182043321615     |         |
|   | 2   |     | 2.752137567706865 |    | 3.7405466629205852 | -   | 3.552713678800501e-15 | 1       |
| _ | L   | +   |                   | _  |                    | +   |                       | +       |

| İ | х | Ì | у | y_src | 1 | eps_k | İ | Romberg's method erro | r |
|---|---|---|---|-------|---|-------|---|-----------------------|---|
| • |   | • | • |       | • |       | • | 0.0113231             | • |

```
| 1.1 | 2.76508 | 2.73106 | 0.03402 |
                                          0.01137563
| 1.2 | 2.80123 | 2.76676 | 0.03446 |
                                           0.01152403
| 1.3 | 2.85769 | 2.82254 | 0.03516 |
                                           0.01175621
| 1.4 | 2.93265 | 2.89657 | 0.03608 |
                                          0.01206457
| 1.5 | 3.02501 | 2.98779 | 0.03722 |
                                          0.01244456
| 1.6 | 3.13421 | 3.09565 | 0.03856 |
                                           0.01289386
| 1.7 | 3.26008 | 3.21997 | 0.04011 |
                                          0.01341178
| 1.8 | 3.40278 | 3.36092 | 0.04186 |
                                          0.01399894
| 1.9 | 3.56272 | 3.51889 | 0.04383 |
                                          0.01465704
| 2.0 | 3.74055 | 3.69453 | 0.04602 |
                                          0.0153887
```

#### Finite difference method

| + |     | +       | <b></b> | +       | ++                     |
|---|-----|---------|---------|---------|------------------------|
| İ | х   | •       | · ·     | -       | Romberg's method error |
| + |     | t       | r       | +       | ++                     |
|   | 1   | 2.71433 | 2.71828 | 0.00395 | 2.53e-06               |
|   | 1.1 | 2.7279  | 2.73106 | 0.00316 | 1.94e-06               |
|   | 1.2 | 2.76421 | 2.76676 | 0.00255 | 1.48e-06               |
|   | 1.3 | 2.82046 | 2.82254 | 0.00208 | 1.12e-06               |
|   | 1.4 | 2.89486 | 2.89657 | 0.00171 | 8.3e-07                |
|   | 1.5 | 2.98636 | 2.98779 | 0.00144 | 6e-07                  |
|   | 1.6 | 3.09441 | 3.09565 | 0.00123 | 4.1e-07                |
|   | 1.7 | 3.21888 | 3.21997 | 0.00109 | 2.6e-07                |
|   | 1.8 | 3.35992 | 3.36092 | 0.00099 | 1.4e-07                |
|   | 1.9 | 3.51795 | 3.51889 | 0.00094 | 4e-08                  |
|   | 2.0 | 3.69359 | 3.69453 | 0.00094 | 3e-08                  |

## 4 Выводы

Благодаря этой лабораторной работе, я узнал, что можно быстро с помощью компьютера решать задачу Коши с помощью методов Эйлера, Рунге-Кутты и Адамса и решать краевую задачу с помощью метода стрельбы и конечно-разностного метода.

## Список литературы

[1] Численные методы. Учебник Пирумов Ульян Гайкович, Гидаспов Владимир Юрьевич (ISBN 978-5-534-03141-6)