Ising Model

Saverio Monaco

Quantum Information and Computing

December 10, 2021

Theory

1-D Ising Model:

where

$$\begin{split} \sigma_z^i &= \underbrace{\mathbb{I} \otimes \mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{i-1} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \otimes \underbrace{\mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{N-i} \\ \sigma_x^i &= \underbrace{\mathbb{I} \otimes \mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{N-i} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \underbrace{\mathbb{I} \otimes \ldots \otimes \mathbb{I}}_{N-i} \end{split}$$

Code development

Building the Hamiltonian

H = H - matmul(int_B,int_A)

end do

Results

Energy spectra

Results

Memory limits

Given an hamiltonian

double precision, dimension(:,:), allocatable :: H

Maximum number of spins: $N_{max} = 13$

Data was generated using a Ubuntu machine with 8GB of RAM