

# LOW POWER MONOLITHIC DTL ELEMENT

# DUAL EXPANDABLE FOUR-INPUT NAND GATE

**NE416A** 

The NE416A is a monolithic semiconductor integrated circuit designed for use in low power digital systems. The element provides for input expansion capability in the NE400A logic system. Input expansion elements from the NE100A logic family may be used for expansion of the NE416A.



The same planar and epitaxial techniques used in fabricating the SE400J-Series elements are employed in making the NE400A-Series. These elements are tested under the appropriate portion of Signetics established SURE Program (Systematic Uniformity and Reliability Evaluation), as described in Bulletin No. 5001. Acceptance Test Sub-Groups called out in the tabular data refer to selection and test criteria as specified in Table II of SURE Program Bulletin No. 5001.

#### BASIC CIRCUIT SCHEMATIC



#### **ABSOLUTE MAXIMUM RATINGS**

| INPUT VOLTAGE   | 6.0V       | OPERATING TEMP.           | 0°C to +70°C             |
|-----------------|------------|---------------------------|--------------------------|
| V <sub>cc</sub> | 6.0V       | STORAGE TEMP.             | -65°C to +150°C          |
| INPUT CURRENT   | ±10mA      | $\theta$ JUNCTION TO CASE | $0.2^{\circ}\text{C/mW}$ |
| OUTPUT CURRENT  | +30, -10mA | JUNCTION TEMP.            | 150°C                    |

Maximum ratings are limiting values above which serviceability may be impaired.



#### ELECTRICAL CHARACTERISTICS (Notes: 1, 2, 3, 4, 5, 6) V<sub>cc</sub>=5.0V±5%

| ACCEPTA           |  | CHARACTERISTIC                     |                   | LII  | MITS                 |                |                       | TE                      | ST CONDI                | TIONS                      |             |  |
|-------------------|--|------------------------------------|-------------------|------|----------------------|----------------|-----------------------|-------------------------|-------------------------|----------------------------|-------------|--|
| TEST<br>SUB-GRO   |  |                                    |                   | TYP. | MAX.                 | UNITS          | TEMP.                 | DRIVEN<br>INPUT         | OTHER<br>INPUTS         | OUTPUTS                    | NOTES       |  |
| A-5<br>A-3<br>A-4 |  | "1" OUTPUT VOLTAGE                 | 3.2<br>3.2<br>3.2 |      |                      | V<br>V<br>V    | 0°C<br>+25°C<br>+70°C | 0.8V<br>0.8V<br>0.8V    |                         | -180μΑ<br>-180μΑ<br>-180μΑ | 8<br>8<br>8 |  |
| A-5<br>A-3<br>A-4 |  | "0" OUTPUT VOLTAGE                 |                   |      | 0.35<br>0.35<br>0.35 | V<br>V<br>V    | 0°C<br>+25°C<br>+70°C | 2. 0V<br>2. 0V<br>2. 0V | 2. 0V<br>2. 0V<br>2. 0V | 7.0 mA<br>7.0 mA<br>7.0 mA |             |  |
| C-1<br>A-3<br>C-1 |  | "0" INPUT CURRENT                  |                   |      | -1.5<br>-1.5<br>-1.5 | mA<br>mA<br>mA | 0°C<br>+25°C<br>+70°C | 0.35V<br>0.35V<br>0.35V |                         |                            |             |  |
| A-4               |  | "1" INPUT CURRENT                  |                   |      | 25                   | μΑ             | +70°C                 | 5. 0V                   | 0V                      |                            |             |  |
|                   |  | PAIR DELAY<br>(Figure 1)           |                   | 65   |                      | ns             | +25°C                 |                         |                         | DC F.O.=7                  | 9           |  |
|                   |  | INPUT CAPACITANCE                  |                   | 3.0  |                      | pf             | +25°C                 | 2. 0V                   |                         |                            | 7           |  |
|                   |  | AVERAGE POWER CONSUMPTION PER GATE |                   | 9.0  |                      | mW             | +25°C                 |                         |                         |                            | 11          |  |
| A-2               |  | INPUT VOLTAGE RATING               | 6.0               |      |                      | v              | +25°C                 | 50μΑ                    | 0V                      |                            |             |  |
|                   |  | DC FAN-OUT                         | 7                 |      |                      |                |                       |                         |                         |                            | 9, 10       |  |

#### NOTES:

- (1) All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

  (2) All measurements are taken with Pin 7 tied to zero volts.

  (3) Positive current flow is defined as into the terminal referenced.

  (4) Positive NAND Logic definition: "UP" Level = '1", "DOWN" Level = "0".

  (5) Precautionary measures should be taken to ensure current limiting in accordance with maximum ratings should the isolation diodes become forward biased.

  (6) Measurements apply to each gate element independently.

  (7) Capacitance as measured on Boonton Electronic Corporation Model 75A -S8 Capacitance

- Bridge or equivalent, f = 1 MHz, Vac =  $25 \text{mV}_{\text{rms}}$ . All pins not specifically refer-
- bridge or equivalent, 1= 1 Mnz, vac = 25m v<sub>rms</sub>. All plus not specifically referenced are tied to guard for capacitance tests.

  Output leakage current is supplied through a resistor to ground.

  DC fan-out is defined in terms of SIGNETICS Standard Unit Load, which is an NE480A gate input or an equivalent impedance.

  This is not a test point, but is guaranteed as a result of calculations using guaranteed
- (10)
- test points.
  (11) Measured at 50 percent duty cycle.

#### FIGURE 1 — PAIR DELAY







### LOW POWER MONOLITHIC ELEMENT

**DUAL AC BINARY** 

The NE424A is a monolithic silicon integrated circuit containing two RS/T binary elements in a 14-lead dual in-line package. The device is designed to operate in low power digital systems at frequencies up to 10 MHz over the operating temperature range of 0°C to 70°C.

The same planar and epitaxial techniques used in fabricating the SE400J-Series elements are employed in making the NE400A-Series. These elements are tested under the appropriate portion of Signetics established SURE Program (Systematic Uniformity and Reliability Evaluation), as described in Bulletin No. 5001. Acceptance Test Sub-Groups called out in the tabular data refer to selection and test criteria as specified in Table II of SURE Program Bulletin No. 5001.

#### BASIC CIRCUIT SCHEMATIC



#### **ABSOLUTE MAXIMUM RATINGS**

| INPUT VOLTAGE   | 6.0V       | OPERATING TEMP.    | 0°C to +70°C    |
|-----------------|------------|--------------------|-----------------|
| V <sub>cc</sub> | 6.0V       | STORAGE TEMP.      | -65°C to +150°C |
| INPUT CURRENT   | ±10mA      | θ JUNCTION TO CASE | 0.2°C/mW        |
| OUTPUT CURRENT  | +30, -10mA | JUNCTION TEMP.     | 150°C           |
|                 |            |                    |                 |

Maximum ratings are limiting values above which serviceability may be impaired.





#### TRUTH TABLE

| R <sub>C</sub>    | $s_{C}$       | $Q_{N+1}$ |
|-------------------|---------------|-----------|
| 1                 | 0             | 1         |
| 0                 | 1             | 0         |
| 1                 | 1             | No Change |
| 0                 | 0             | ?         |
| R <sub>D</sub> =0 | $\Rightarrow$ | Q=0       |



- Lead spacing shall be measured within this zone.
   Molded Plastic Body.
- Kovar Leads.
- 4. Lead spacing tolerances are non-cumulative.

5. Thermal resistance from junction to still air,  $\theta_{\text{J-A}}{=}~0.16\,^{\circ}\text{C/mW}$ 



| I | ACCEPTANCE<br>TEST                            | CHARACTERISTIC                                    |                      | LI               | MITS                                                 |                                  |                                                         |                         | TE    | ST CON         | DITION         | NS .                       | -                    |
|---|-----------------------------------------------|---------------------------------------------------|----------------------|------------------|------------------------------------------------------|----------------------------------|---------------------------------------------------------|-------------------------|-------|----------------|----------------|----------------------------|----------------------|
| 1 | SUB-GROUP                                     | CHARACTERISTIC                                    | MIN.                 | TYP.             | MAX.                                                 | UNITS                            | TEMP.                                                   | $R_{\mathrm{D}}$        | CLOCK | $s_{C}$        | RC             | OUTPUT                     | NOTES                |
|   | A-5<br>A-3<br>A-4                             | "1" OUTPUT VOLTAGE $Q, ar Q$                      | 3. 2<br>3. 2<br>3. 2 |                  | *                                                    | V<br>V<br>V                      | 0°C<br>+25°C<br>+70°C                                   | 0.8V<br>0.8V<br>0.8V    |       |                |                | -180μΑ<br>-180μΑ<br>-180μΑ | 8, 9<br>8, 9<br>8, 9 |
|   | A-5<br>A-3<br>A-4                             | ''0'' OUTPUT VOLTAGE                              |                      |                  | 0.35<br>0.35<br>0.35                                 | V<br>V<br>V                      | 0°C<br>+25°C<br>+70°C                                   | 2.0V<br>2.0V<br>2.0V    |       |                |                | 7.0 mA<br>7.0 mA<br>7.0 mA |                      |
|   | A-5<br>A-3<br>A-4<br>A-5<br>A-3<br>A-4<br>A-3 | "0" INPUT CURRENT RD RD RD RD SC, RC SC, RC CLOCK |                      |                  | -1.0<br>-1.0<br>-1.0<br>-0.6<br>-0.6<br>-0.6<br>-500 | mA<br>mA<br>mA<br>mA<br>mA<br>mA | 0°C<br>+25°C<br>+70°C<br>0°C<br>+25°C<br>+70°C<br>+25°C | 0.35V<br>0.35V<br>0.35V | 0V    | 0V<br>0V<br>0V | 0V<br>0V<br>0V |                            |                      |
|   |                                               | TURN-ON DELAY<br>(Figure 1)                       |                      | 45               |                                                      | ns                               | +25°C                                                   |                         |       |                |                | F.O.=7                     | 10                   |
|   |                                               | TURN-OFF DELAY (Figure 1)                         |                      | 45               |                                                      | ns                               | +25°C                                                   |                         |       |                |                | F. O.=7                    | 10                   |
|   |                                               | AVERAGE POWER CONSUMPTION PER BINARY              |                      | 14               |                                                      | mW                               | +25°C                                                   |                         |       | Q              | Q              |                            | 12                   |
| 1 | C-2                                           | TOGGLE SPEED                                      |                      | 9.0              |                                                      | MHz                              | +25°C                                                   |                         |       | Q              | Q              |                            |                      |
|   | C-2                                           | OUTPUT FALL TIME<br>(Figure 2)                    |                      |                  | 75                                                   | ns                               | +25°C                                                   |                         |       |                |                | AC F. O. =2                | 11                   |
|   |                                               | INPUT CAPACITANCE CLOCK $R_{\mathrm{D}}$ Sc. RC   |                      | 50<br>3.0<br>3.0 |                                                      | pf<br>pf<br>pf                   | +25°C<br>+25°C<br>+25°C                                 | 2.0V                    | 2. 0V | 2.0V           | 2. 0V          |                            | 7<br>7<br>7          |
|   | A-2                                           | INPUT VOLTAGE RATING RD                           | 6.0                  |                  |                                                      | v                                | +25°C                                                   | -50μA                   |       |                |                |                            |                      |
|   |                                               | DC FAN-OUT                                        | 5. 0<br>7            |                  |                                                      | V                                | +25°C                                                   |                         | -10μΑ | 0V             | 0V             |                            | 10                   |

#### NOTES

- (1) All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specifically referenced are left electrically open.

  (2) All measurements are taken with Pin 7 tied to zero volts.

  (3) Positive current flow is defined as into the terminal referenced.

  (4) Positive NAND Logic definition: "UP" Level = "1", "DOWN" Level = "0".

  (5) Precautionary measures should be taken to ensure current limiting in accordance with maximum ratings should the isolation diodes become forward biased.

  (6) Measurements apply to each binary element independently.

  (7) Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent, f = 1 MHz, Vac = 25mVrms. All pins not specifically

- referenced are tied to guard for capacitance tests.

  (8) The binary C side is set in a "1" by clocking once with the R<sub>C</sub> line high and the S<sub>C</sub> line low, R<sub>D</sub> set at 2.0V. For alternate Q test S<sub>C</sub> is set high, R<sub>C</sub> low and the binary clocked once.

  (9) Output leakage current is supplied through a resistor to ground.

  (10) DC fan-out is defined in terms of a Signetics Standard Unit Load, which is an NE480A gate input or an equivalent impedance.

  (11) One AC fan-out is defined as equivalent to one clock pulse input of an NE424A or a 50 pf capacitance load.

  (12) Measured at 50 percent duty cycle.

#### FIGURE 1—CLOCKED MODE TURN ON AND TURN OFF DELAY



#### FIGURE 2—OUTPUT FALL TIME CIRCUIT





SIGNETICS CORPORATION • 811 EAST ARQUES AVENUE, SUNNYVALE CALIFORNIA • TEL: (408) 739-7700 • TWX: (910) 339-9220



## **LOW POWER** MONOLITHIC DTL ELEMENT

**DUAL EXCLUSIVE OR GATE** 

NE440A

The NE440A is a monolithic semiconductor integrated circuit designed for use in low power digital systems. The element provides for implementation of the Exclusive-OR function in the logic system.



The same planar and epitaxial techniques used in fabricating the SE400J-Series elements are employed in making the NE400A-Series. These elements are tested under the appropriate portion of Signetics established SURE Program (Systematic Uniformity and Reliability Evaluation), as described in Bulletin No. 5001. Acceptance Test Sub-Groups called out in the tabular data refer to selection and test criteria as specified in Table II of SURE Program Bulletin No. 5001.

#### BASIC CIRCUIT SCHEMATIC



#### **ABSOLUTE MAXIMUM RATINGS**

| INPUT VOLTAGE  | 6.0V       | OPERATING TEMP.    | 0°C to +70°C    |
|----------------|------------|--------------------|-----------------|
| Vcc            | 6.0V       | STORAGE TEMP.      | -65°C to +150°C |
| INPUT CURRENT  | ±10mA      | θ JUNCTION TO CASE | 0.2°C/mW        |
| OUTPUT CURRENT | +30, -10mA | JUNCTION TEMP.     | 150°C           |

Maximum ratings are limiting values above which serviceability may be impaired.



- 3. Kovar Leads.
- 4. Lead spacing tolerances are non-cumulative.

5. Thermal resistance from junction to still air,  $\Theta_{J-A}$ = 0.16°C/mW



### **ELECTRICAL CHARACTERISTICS** (Notes: 1, 2, 3, 4, 5, 6) V<sub>cc</sub>=5.0V±5%

| ACCEPTANCE        |                                    |                   | LI   | MITS                 |                |                       | TES                     | ST CONDI             | TIONS                      |             |
|-------------------|------------------------------------|-------------------|------|----------------------|----------------|-----------------------|-------------------------|----------------------|----------------------------|-------------|
| TEST<br>SUB-GROUP | CHARACTERISTIC                     | MIN.              | TYP. | MAX.                 | UNITS          | TEMP.                 | DRIVEN<br>INPUT         | OTHER<br>INPUTS      | OUTPUTS                    | NOTES       |
| A-5<br>A-3<br>A-4 | "1" OUTPUT VOLTAGE                 | 3.2<br>3.2<br>3.2 |      |                      | V<br>V<br>V    | 0°C<br>+25°C<br>+70°C | 0.8V<br>0.8V<br>0.8V    |                      | -180μΑ<br>-180μΑ<br>-180μΑ | 8<br>8<br>8 |
| A-5<br>A-3<br>A-4 | "0" OUTPUT VOLTAGE                 |                   |      | 0.35<br>0.35<br>0.35 | V<br>V<br>V    | 0°C<br>+25°C<br>+70°C | 2. 0V<br>2. 0V<br>2. 0V | 2.0V<br>2.0V<br>2.0V | 7.0 mA<br>7.0 mA<br>7.0 mA |             |
| C-1<br>A-3<br>C-1 | "0" INPUT CURRENT                  |                   |      | -1.0<br>-1.0<br>-1.0 | mA<br>mA<br>mA | 0°C<br>+25°C<br>+70°C | 0.35V<br>0.35V<br>0.35V |                      |                            |             |
| A-4               | "1" INPUT CURRENT                  |                   |      | 25                   | μΑ             | +70°C                 | 5. 0V                   | 0V                   |                            |             |
|                   | PAIR DELAY<br>(Figure 1)           |                   | 50   |                      | ns             | +25°C                 |                         |                      | DC F.O.=7                  | 9           |
|                   | INPUT CAPACITANCE                  |                   | 3.0  |                      | pf             | +25°C                 | 2. 0V                   |                      |                            | 7           |
|                   | AVERAGE POWER CONSUMPTION PER GATE |                   | 10   |                      | mW             | +25°C                 |                         |                      |                            | 12          |
| A-2               | INPUT VOLTAGE RATING               | 6.0               |      |                      | v              | +25°C                 | 50μΑ                    | 0V                   |                            |             |
|                   | DC FAN-OUT                         | 7                 |      |                      |                |                       |                         |                      |                            | 9, 11       |

- (1) All voltage and capacitance measurements are referenced to the ground terminal. Terminals not specificially referenced are left electrically open.

  (2) All measurements are taken with Pin 7 tied to zero volts.

  (3) Positive current flow is defined as into the terminal referenced.

  (4) Positive NAND Logic definition: "UP" Level = "1", "DOWN" Level = "0".

  (5) Precautionary measures should be taken to ensure current limiting in accordance with maximum ratings should the isolation diodes become forward biased.

  (6) Measurements apply to each gate element independently.

  (7) Capacitance as measured on Boonton Electronic Corporation Model 75A-S8 Capacitance Bridge or equivalent, f = 1 MHz, Vac = 25mVrms. All pins not specifically

- referenced are tied to guard for capacitance tests.

  (8) Output leakage current is supplied through a resistor to ground.

  (9) DC fan-out is defined in terms of Signetics Standard Unit Load, which is an NE480A gate input or an equivalent impedance.
- (10) One AC fan-out is defined as equivalent to one clock pulse input of an NE424A or a 50 pf capacitance load.
- (11) This is not a test point, but is guaranteed as a result of calculations using guaranteed test points.
  (12) Measured at 50 percent duty cycle.

#### FIGURE 1 — PAIR DELAY





SIGNETICS CORPORATION • 811 EAST ARQUES AVENUE, SUNNYVALE CALIFORNIA • TEL: (408) 739-7700 • TWX: (910) 339-9220