1 Метод Ритца

Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты и им будет посвящено основное время на лекциях. Альтернативой являются так называемые прямые методы. Эти методы тем или иным способом решают исходную задачу по поиску функции в заданном классе, которая доставляла бы экстремальное значение заданному функционалу. Один из самых популярных методов этого класса — метод Ритца (также называемый методом Рэлея-Ритца).

В основе метода Ритца лежит построение минимизирующей последовательности функций. Пусть, например, необходимо найти минимум функционала V[y] в классе функций M. Чтобы задача имела смысл, потребуем, чтобы существовал конечный инфимум μ значений функционала и в классе допустимых функций существовали функции, на которых функционал принимает конечные значения. Тогда по определению инфимума существует минимизирующая последовательность функций $y_1, y_2, \ldots, y_n, \ldots$ такая, что

$$\lim_{n\to\infty} V[y_n] = \mu .$$

Если существует предел y^* этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход

$$V[y^*] = \lim_{n \to \infty} V[y_n] .$$

Каким же образом стоится эта минимизирующая последовательность в методе Ритца? Сначала изложим общую идею, а потом рассмотрим ее конкретную реализацию для одного типа вариационных задач. Итак, сначала необходимо выбрать некоторую систему функций, которую мы назовем базисной:

$$\varphi_1, \varphi_2, \ldots, \varphi_n, \ldots$$

К функциям φ_n выдвигаются два требования. Во-первых, сами эти функции принадлежат классу M, а во-вторых — любая конечная линейная комбинация этих функций вида

$$y_n = c_1 \varphi_1 + c_2 \varphi_2 + \dots + c_n \varphi_n$$

принадлежит тому же классу M. Исходная задача заменяется следующей: минимизировать функцию многих переменных

$$\max_{c_1,\dots,c_n} V[c_1\varphi_1 + \dots + c_2\varphi_n]$$

Решая эту задачу известными (из курса «Методов оптимизации», например) методами, получаем некоторое минимальное значение μ_n . Поскольку при увеличении числа слагаемых мы только расширяем множество функций, на котором ищется минимум, будет справедлива цепочка неравенств $\mu_1 \geq \mu_2 \geq \dots \mu_n \geq \mu_{n+1} \geq \dots$ Можно доказать, что при некоторых условиях эта последовательность значений сходится к μ .

Теорема. Если функционал V[y] непрерывен (в смысле метрики пространства, в котором он рассматривается) и система функций φ_n полная, то

$$\lim_{n\to\infty}\mu_n=\mu\ ,$$

 $\mathit{rde}\ \mu$ — минимум функционала V[y].

Замечание. Быстрота сходимости метода Ритца сильно зависит от выбора системы базисных функций. Однако при удачном выборе для достижения приемлемой точности часто бывает достаточно 3-4 слагаемых в линейной комбинации.

Применим изложенную идею к достаточно часто встречающейся вариационной задаче. Итак, пусть необходимо минимизировать значение функционала

$$V[y] = \int_{0}^{1} \left[p(x) (y'(x))^{2} + q(x)y^{2}(x) - 2f(x)y(x) \right] dx$$

на множестве функций $M = \left\{ y(x) \mid y(x) \in C^2_{[0,1]}, \ y(0) = y(1) = 0 \right\}$. Зафиксируем теперь некоторую конечную систему линейно-независимых функций $\left\{ \varphi_i \right\}_{i=1}^n$, которые удовлетворяют однородным краевым условиям

$$\varphi_i(0) = \varphi_i(1) = 0, \quad i = \overline{1, n}.$$

Вместо исходной задачи будем решать значительно более узкую задачу минимизации функционала на множестве линейных комбинаций

$$\varphi(x) = \sum_{i=1}^{n} c_i \varphi_i(x) .$$

Подставим эту линейную комбинацию в функционал:

$$V[\varphi(x)] = V\left[\sum_{i=1}^{n} c_i \varphi_i(x)\right] =$$

$$= \int_{0}^{1} \left\{ p(x) \left[\sum_{i=1}^{n} c_i \varphi_i'(x)\right]^2 + q(x) \left[\sum_{i=1}^{n} c_i \varphi_i(x)\right]^2 - 2f(x) \sum_{i=1}^{n} c_i \varphi_i(x) \right\} dx .$$

Чтобы найти минимум функционала, воспользуемся необходимым условием экстремума:

$$\frac{\partial V}{\partial c_j} = 0, \quad j = \overline{1, n}$$

Дифференцирование функционала по c_i дает

$$\frac{\partial V}{\partial c_j} = \int_0^1 \left\{ 2p(x) \sum_{i=1}^n c_i \varphi_i'(x) \varphi_j'(x) + 2q(x) \sum_{i=1}^n c_i \varphi_i(x) \varphi_j(x) - 2f(x) \varphi_j(x) \right\} dx.$$

После очевидных преобразований получаем систему линейных алгебраических уравнений для нахождения коэффициентов линейной комбинации:

$$\sum_{i=1}^{n} \left[\int_{0}^{1} \left(p(x)\varphi_{i}'(x)\varphi_{j}'(x) + q(x)\varphi_{i}(x)\varphi_{j}(x) \right) dx \right] c_{i} - \int_{0}^{1} f(x)\varphi_{j}(x) dx = 0, \quad j = \overline{1, n}$$

В матричной форме эта система запишется в виде Ac=b, где

$$a_{ij} = \int_{0}^{1} (p(x)\varphi_i'(x)\varphi_j'(x) + q(x)\varphi_i(x)\varphi_j(x)) dx,$$
$$b_j = \int_{0}^{1} f(x)\varphi_j(x)dx$$

Рассмотрим теперь вопрос выбора базисных функций. Простейшим вариантом является система кусочно-линейных функций. Чтобы ее построить, необходимо вначале задать разбиение отрезка [0,1] на n отрезков:

$$0 = x_0 < x_1 < \dots < x_n < x_{n+1} = 1$$
.

Полагая $h_i = x_{i+1} - x_i$, определим следующие функции:

$$\varphi_i(x) = \begin{cases} 0, & \text{если} \quad 0 \le x \le x_{i-1}, \\ \frac{1}{h_{i-1}} \left(x - x_{i-1} \right), & \text{если} \quad x_{i-1} < x \le x_i, \\ \frac{1}{h_i} \left(x_{i+1} - x \right), & \text{если} \quad x_i < x \le x_{i+1}, \\ 0, & \text{если} \quad x_{i+1} < x < 1 \end{cases}, \quad i = \overline{1, n}$$

Ниже на рисунке приведены схематические графики этих базисных функций.

Производные базисных функций будут кусочно-постоянными функциями и их нетрудно найти:

$$\varphi_i'(x) = \begin{cases} 0, & \text{если} \quad 0 \le x \le x_{i-1}, \\ \frac{1}{h_{i-1}}, & \text{если} \quad x_{i-1} < x \le x_i, \\ -\frac{1}{h_i}, & \text{если} \quad x_i < x \le x_{i+1}, \\ 0, & \text{если} \quad x_{i+1} < x < 1 \end{cases}, \quad i = \overline{1, n}$$

Поскольку i-ая функция отлична от нуля только на промежутке $(x_{i-1}, x_{i+1}]$, то справедливы равенства

$$\varphi_i(x)\varphi_j(x)=0 \quad \text{if} \quad \varphi_i'(x)\varphi_j'(x)=0, \quad i,j=\overline{1,n}, \quad j\neq i-1, j\neq i, j\neq i+1.$$

Последнее означает, что матрица системы уравнений для c_j при таком выборе базисных функций будет трехдиагональной. А именно, ненулевыми будут элементы:

$$a_{i,i+1} = \int_{0}^{1} \left[p(x)\varphi_{i}'(x)\varphi_{i+1}'(x) + q(x)\varphi_{i}(x)\varphi_{i+1}(x) \right] dx =$$

$$= -\left(\frac{1}{h_{i}}\right)^{2} \int_{x_{i}}^{x_{i+1}} p(x)dx + \underbrace{\left(\frac{1}{h_{i}}\right)^{2} \int_{x_{i}}^{x_{i+1}} (x_{i+1} - x)(x - x_{i}) q(x)dx}_{I_{1,i}}, \quad i = \overline{1, n - 1}.$$

$$a_{ii} = \int_{0}^{1} \left[p(x) \left(\varphi_i'(x) \right)^2 + q(x) \varphi_i^2(x) \right] dx =$$

$$= \left(\frac{1}{h_{i-1}} \right)^2 \int_{x_{i-1}}^{x_i} p(x) dx + \left(\frac{1}{h_i} \right)^2 \int_{x_i}^{x_{i+1}} p(x) dx +$$

$$+ \left(\frac{1}{h_{i-1}} \right)^2 \int_{x_{i-1}}^{x_i} (x - x_{i-1})^2 q(x) dx + \left(\frac{1}{h_i} \right)^2 \int_{x_i}^{x_{i+1}} (x_{i+1} - x)^2 q(x) dx , \quad i = \overline{1, n} ,$$

$$I_{2,i}$$

$$a_{i,i-1} = \int_{0}^{1} \left[p(x)\varphi_{i}'(x)\varphi_{i-1}'(x) + q(x)\varphi_{i}(x)\varphi_{i-1}(x) \right] dx =$$

$$= -\underbrace{\left(\frac{1}{h_{i-1}}\right)^{2} \int_{x_{i-1}}^{x_{i}} p(x)dx + \left(\frac{1}{h_{i-1}}\right)^{2} \int_{x_{i-1}}^{x_{i}} (x_{i} - x) (x - x_{i-1}) q(x)dx}_{I_{4,i}}, \quad i = \overline{2, n},$$

Столбец правых частей будет состоять из элементов вида

$$b_{i} = \int_{0}^{1} f(x)\varphi_{i}(x)dx = \underbrace{\frac{1}{h_{i-1}} \int_{x_{i-1}}^{x_{i}} (x - x_{i-1}) f(x)dx}_{I_{5,i}} + \underbrace{\frac{1}{h_{i}} \int_{x_{i}}^{x_{i+1}} (x_{i+1} - x) f(x)dx}_{I_{6,i}}, \quad i = \overline{1, n}.$$

Используя введенные выше обозначения для некоторых интегралов, эти же выражения можно кратко записать следующим образом:

$$\begin{aligned} a_{ii} &= I_{4,i} + I_{4,i+1} + I_{2,i} + I_{3,i}, \quad i = \overline{2, n}, \\ a_{i,i+1} &= -I_{4,i+1} + I_{1,i}, \quad i = \overline{1, n-1}, \\ a_{i,i-1} &= -I_{4,i} + I_{1,i-1}, \quad i = \overline{2, n}, \\ b_i &= I_{5,i} + I_{6,i}, \quad i = \overline{1, n} \ . \end{aligned}$$

Итак, чтобы построить трехдиагональную систему линейных уравнений, необходимо вычислить 6*n* интегралов. Для некоторых задач это можно сделать аналитически, но чаще приходится прибегать к численным методам интегрирования (например, можно использовать правило Симпсона, см. Приложение).

Запишем теперь формальный алгоритм метода Ритца с кусочно-линейным базисом.