LLM-Generated Reward Shaping at Student Scale

Leon Biermann

1 Motivation

Text2Reward showed that a single LLM-written reward script can replace painstaking manual shaping, reaching > 94% success on 23 continuous-control robotics tasks. But two practical gaps matter for everyday RL users:

- 1. **Model variability.** Is a cutting-edge "thinking" model like Gemini 2.5 Pro uniquely good, or can a lighter-weight variant such as GPT-4 mini generate rewards that work nearly as well?
- 2. **Domain breadth.** Does language-driven shaping help on lightweight, *discrete* benchmarks such as CartPole or MiniGrid that dominate introductory courses and quick research prototypes?

Answering both—on a single-GPU laptop budget—will clarify whether "prompt-to-reward" is a robust everyday tool or a niche trick that requires top-tier models and heavy simulators.

2 Research Question

Confirmatory-comparative study (student-scale).

- **RQ1** (**Model Effect**). Between Gemini 2.5 Pro and GPT-4 mini, how much does the choice of LLM affect reward-shaping quality?
- **RQ2** (**Domain Generalisation**). Does an LLM-generated dense reward improve learning on a simple classic-control task *and* on a sparse grid-world puzzle versus standard baselines?

3 Related Topics

4 Idea

We adopt the Text2Reward pipeline with two key reductions:

- 1. **LLM back-ends.** Gemini 2.5 Pro and GPT-4 mini. One *zero-shot* prompt, temperature 0.0, generated offline once per task (with a single retry if code fails).
- 2. Target environments.
 - (a) CartPole-v1 tiny, well-understood; tests whether shaping is still useful.
 - (b) MiniGrid-LavaGap-S7-v0 sparse-reward puzzle requiring exploration.
- 3. **RL algorithms.** PPO for CartPole (0.5 M steps) and DQN for MiniGrid (1 M steps) via Stable-Baselines3.
- 4. Evaluation. Compare against the sparse reward and a minimal hand-tuned dense potential.

Algorithm 1 Training with an LLM-generated reward

Require: environment e, LLM \mathcal{M} , RL algorithm APrompt \mathcal{M} with task description \rightarrow reward code r_{θ}

Integrate r_{θ} into e to obtain shaped environment \bar{e} return policy $\pi \leftarrow \text{Train } A$ on \bar{e} for N timesteps

$$\pi \in \Pi, \qquad \pi : \mathcal{S} \to \mathcal{A}$$
 (1)

5 Experiments

Environments & Metrics

- CartPole-v1 success = average return ≥ 195 over 100 episodes.
- MiniGrid-LavaGap-S7-v0 success = $\geq 90\%$ completion over 100 episodes.

Measured values: timesteps-to-success, final success rate, reward script lines-of-code (LOC), and per-step reward latency.

Experimental Scope

Factor	Levels
Reward type	sparse, hand-dense, LLM-shaped
LLM back-end	Gemini 2.5 Pro, GPT-4 mini
Prompt style	zero-shot (fixed)
Temperature	0.0 (fixed)
Random seeds	3

 $2 \text{ envs} \times 3 \text{ rewards} \times 2 \text{ LLMs} \times 3 \text{ seeds} = 36 \text{ training runs.}$

Estimated Computational Load

- CartPole-v1: 0.5 M steps \approx 10 min per run on an RTX 4060 laptop GPU.
- MiniGrid-LavaGap: 1 M steps \approx 45 min per run (largely CPU-bound).

Total ≈ 32 GPU-hours. Sequential execution fits in ~ 1.5 days; each environment can run overnight.