

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification: H01R 4/24	A1	(11) International Publication Number: WO 00/60701 (43) International Publication Date: 12 October 2000 (12.10.2000)
(21) International Application Number: PCT/GB00/01196		Published
(22) International Filing Date: 29 March 2000 (29.03.2000)		
(30) Priority Data: 9907737.2 01 April 1999 (01.04.1999) GB 9912328.3 26 May 1999 (26.05.1999) GB		
(60) Parent Application or Grant NOR.WEB DPL LIMITED [/]; () BROWN, Paul, Anthony [/]; () SUMMERSCALES, Brian [/]; () BROWN, Paul, Anthony [/]; () SUMMERSCALES, Brian [/]; () HACKNEY, Nigel, J.; ()		
(54) Title: COUPLING APPARATUS AND METHOD (54) Titre: APPAREIL ET PROCEDE DE COUPLAGE		
(57) Abstract The present invention relates to coupling apparatus for fitting to a conductor or cable. In particular, it refers to high frequency coupling apparatus suitable for telecommunications signals propagated, at least in part, along conventional power distribution cables. Accordingly, in a first aspect, the present invention provides a coupling apparatus suitable for coupling with an electricity cable (2), where the cable includes an electrically insulated conducting member (1), where the coupling apparatus includes cable insulation penetration means (3) for penetrating the electricity cable to provide an electrical connection to the conducting member, the penetration means (3) being electrically connected to a coupling member (5) suitable for connection to a telecommunications signal source or receiver. In this way, a coupling member suitable for connection to a telecommunications signal source or receiver may be electrically connected to the conducting core of a power cable or other type of conductor.		
(57) Abrégé L'invention concerne un appareil de raccordement destiné à être couplé à un conducteur ou un câble et, plus particulièrement, un appareil de raccordement haute fréquence approprié pour des signaux de télécommunication diffusés, au moins partiellement, par des câbles de distribution de puissance. En conséquence, dans un premier aspect, l'invention concerne un appareil de raccordement conçu pour être couplé à un câble électrique (2), qui comporte un élément conducteur isolé électriquement (1). L'appareil de raccordement comporte un dispositif de pénétration d'isolation (3) du câble destiné à pénétrer le câble électrique afin d'établir une connexion électrique avec l'élément conducteur, le dispositif de pénétration (3) étant électriquement connecté à un élément de raccordement (5) conçu pour être connecté à une source ou à un récepteur de signaux de télécommunication. De cette manière, un élément de raccordement conçu pour être connecté à une source ou à un récepteur de signaux de télécommunication peut être électriquement connecté au noyau conducteur d'un câble de puissance ou à un autre type de conducteur.		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : H01R 4/24	A1	(11) International Publication Number: WO 00/60701 (43) International Publication Date: 12 October 2000 (12.10.00)
(21) International Application Number: PCT/GB00/01196		(81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 29 March 2000 (29.03.00)		
(30) Priority Data: 9907737.2 1 April 1999 (01.04.99) GB 9912328.3 26 May 1999 (26.05.99) GB		
(71) Applicant (<i>for all designated States except US</i>): NOR.WEB DPL LIMITED [GB/GB]; Regus Building, 268 Bath Road, Slough SL1 4DX (GB).		Published <i>With international search report.</i>
(72) Inventors; and		
(75) Inventors/Applicants (<i>for US only</i>): BROWN, Paul, Anthony [GB/GB]; 30 Applerigg, Kendal, Cumbria LA9 6EA (GB). SUMMERSCALES, Brian [GB/GB]; 68 Bolshaw Road, Heald Green, Cheadle, Cheshire SK3 3PD (GB).		
(74) Agents: HACKNEY, Nigel, J. et al.; Mewburn Ellis, York House, 23 Kingsway, London WC2B 6HP (GB).		

(54) Title: COUPLING APPARATUS AND METHOD

(57) Abstract

The present invention relates to coupling apparatus for fitting to a conductor or cable. In particular, it refers to high frequency coupling apparatus suitable for telecommunications signals propagated, at least in part, along conventional power distribution cables. Accordingly, in a first aspect, the present invention provides a coupling apparatus suitable for coupling with an electricity cable (2), where the cable includes an electrically insulated conducting member (1), where the coupling apparatus includes cable insulation penetration means (3) for penetrating the electricity cable to provide an electrical connection to the conducting member, the penetration means (3) being electrically connected to a coupling member (5) suitable for connection to a telecommunications signal source or receiver. In this way, a coupling member suitable for connection to a telecommunications signal source or receiver may be electrically connected to the conducting core of a power cable or other type of conductor.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Description

5

10

15

20

25

30

35

40

45

50

55

5

1

COUPLING APPARATUS AND METHOD

10

The present invention relates to coupling apparatus for fitting to a conductor or cable. In particular, it
15 refers to high frequency coupling apparatus suitable for telecommunications signals propagated, at least in part,
20 along conventional power distribution cables.

The transfer of communication signals along electricity
25 distribution and/or transmission networks is a promising
10 development in the telecommunications industry. The
30 communication signals may be transferred even whilst the
power cables/conductors are energized.

35

15 Various technical aspects of systems whereby
telecommunications signals can be conveyed along an
40 electricity distribution and/or transmission network are
disclosed in published patent applications of the present
45 applicant. These applications include the following:
20 WO94/09572, WO95/29572, WO95/29537, WO96/07245,
WO98/19398, the disclosures of which are incorporated
50 herein by reference.

55

5

2

It is desirable that the coupling of telecommunication signals onto power distribution and/or transmission networks be achieved in a safe, efficient and cost-effective way.

15

5

The present invention aims to provide a method and apparatus for effectively coupling communication signals onto and off an existing, possibly energized, mains electricity distribution and/or transmission network.

25

10

Accordingly, in a first aspect, the present invention provides a coupling apparatus suitable for coupling with an electricity cable, where the cable includes an electrically insulated conducting member, where the 35 15 coupling apparatus includes cable insulation penetration means for penetrating the electricity cable to provide an electrical connection to the conducting member, the penetration means being electrically connected to a coupling member suitable for connection to a 40 20 telecommunications signal source or receiver.

50

In this way, a coupling member suitable for connection to

5

3

10 a telecommunications signal source or receiver may be
electrically connected to the conducting core of a power
cable or other type of conductor.

15

5 Thus the coupling device could be retro-fitted to an
existing power distribution and/or transmission network.

20

To minimize disruption to consumers' power supplies and
to avoid time-consuming installation, preferably the
coupling device should be adapted to be fitted to, for
25 example, an insulated power cable without disconnecting
that power cable from the power source, i.e. while the
cable is "energized" or live.

30

35 The coupling member is electrically isolated at low
frequencies (e.g. 50/60 Hz or possibly up to 100 or 200
Hz) from the insulation penetration means using a low
40 frequency protection means such as a high pass filter,
for example a suitable capacitor. Furthermore, the
coupling member may be electrically protected from the
45 20 cable insulation protection means by, for example a fuse
and/or transformer, e.g. a balun transformer.

50

55

5

4

The insulation penetration means is adapted to pierce a
10 sleeve of electrical insulation material around the power
cable or conductor and hence come into and establish
15 electrical contact with the electrical current carrying
part of the conductor. In this way, the coupling device
is suitable for attachment to a power cable or conductor
20 at many different places along the cable or conductor
length.

25

10 In some instances, it might not be desirable for the
electronic components to be attached to the cable at all
times. Accordingly, in a second aspect, the present
30 invention provides a coupling device including a clamp
and a clamp head. The clamp includes the insulation
35 penetration means and means for fitting the insulation
penetration means to the cable. The clamp head includes
40 a coupling member suitable for connection to a
telecommunications signal source or receiver. The
coupling member is preferably protected by low frequency
45 protection means such as a high pass filter, for example
20 a suitable capacitor. Furthermore, the coupling member
may be electrically protected from the cable insulation

50

55

5

5

penetration means by, for example, a fuse and/or balun
10 transformer.

In a preferred embodiment of the present invention, one
15 5 end of the primary winding and/or one end of the
secondary winding of the transformer is/are electrically
20 bonded to an earth potential. Furthermore, in another
preferred embodiment, one end of both the primary and
25 secondary windings of the transformer are electrically
10 bonded to the same earth potential.

In another preferred embodiment of the present invention,
30 the cable insulation means includes a spike.
Additionally or alternatively, this spike may be rigid.
35 15 Additionally or alternatively, the spike may be
electrically conducting. Additionally or alternatively,
40 there may be a plurality of spikes, preferably spaced 0.5
- 1.5cm apart, most preferably around 1cm apart.

45 20 Preferably, the present invention includes clamping means
for urging the penetration means into the cable the
50 clamping means may include a screw operated compression

5

6

member.

10

Preferably, the present invention includes a housing which, in use, fits around the cable.

15

5

In another preferred embodiment of the present invention, the coupling apparatus includes a two part housing, the first part containing the coupling member and the second part containing the penetration means wherein the two parts are releasably joined together. Preferably, the clamping means is included in the second part of the housing.

25

10 parts are releasably joined together. Preferably, the clamping means is included in the second part of the

30

housing.

35

15 Preferably, the cable insulation penetration means and the coupling member are electrically connected via a conducting spring.

40

Embodiments of the present invention will now be

described with reference to the accompanying drawings in

45

20 which:-

50

Figure 1 is a schematic diagram of a coupling device

55

5

7

according to a first embodiment in which the main
10 internal components are illustrated.

15 Figure 2 is an exploded schematic diagram of a coupling
5 device according to the first embodiment, showing the
device in its two main component pieces.

20

Figure 3 is an exploded schematic diagram of a coupling
25 device according to the first embodiment, corresponding
10 to a section viewed in a plane which is perpendicular to
the axis of the cable at the line marked "X-X" in Figure
30 2.

35 Figure 4 is a schematic diagram of a coupling device
15 according to a second embodiment in which the main
internal components are illustrated.

40

Figure 5 is an exploded schematic diagram of a coupling
45 device according to the second embodiment, showing the
20 device in its three main component pieces.

50 Figure 6a is a side view of a coupling device according

55

5

8

to a further embodiment of the present invention;

10

Figure 6b is an end view of the device of Figure 6a;

15

5 Figure 7a is a side view of a further embodiment of a coupling device according to the present invention; and

20

Figure 7b is an end view of the device of Figure 7a.

25

10 Figures 1, 2 and 3 show a coupling device according to the first embodiment of the present invention. The unit consists of two parts 21 and 22, constructed in part using a strong, non-conducting material, which are clamped tightly together using, for example, two screws

30

35 15 The device is preferably clamped across an insulated power cable 2. The outline of the unit is preferably shaped to fit an insulated cable 2 between the two parts of the coupling device 21 and 22. For example, the outline of the coupling device is concave, as shown in

40

45 20 Figure 3. The insulation penetration means preferably includes a rigid conducting spike 3. This spike protrudes a pre-set distance into the concave outline of

50

55

5

9

the unit. The insulation 8 is pierced and electrical contact is made between the rigid conducting spike 3 and the metallic power conductor 1 as the clamping screws 7 are tightened.

15

5

The rigid conducting spike 3 is electrically connected to a circuit 4, schematically shown in Figure 1. This circuit preferentially includes one or more protection devices such as a fuse and a balun transformer. The circuit further includes a low frequency protection device such as a high pass filter for the high frequency communication signals, for example a suitable capacitor. The circuit is provided with a coupling member such as a communications signal input/output port, typically a coaxial, unbalanced, high frequency, standard BNC connector 5 well known in the art. Preferably, a safety earth is attached via 6 in Figure 1. Additionally or alternatively an isolation capacitor may be included on the "braid" side of the coaxial connector 5 in order to isolate it from the mains electricity supply in the event of a fault.

50

55

5

10

In this first embodiment, the circuit 4 is entirely contained within the insulating casing of the device. Therefore, during installation of the coupling device, no 'live' conducting elements are exposed, either on the 15 cable or on the device itself.

Figures 4 and 5 illustrate a coupling device according to a second embodiment of the present invention. The device is constructed in part using a strong, non-conducting 25 material and is made up of three main parts 51, 52 and 53. Main parts 51 and 52 are shaped, for example in a concave sense, so that an insulated cable 31 may fit 30 between them in a similar sense to the first embodiment, shown in Figure 3. Parts 51 and 52 may be clamped 35 15 tightly together using a single screw 40. A rigid conducting spike 34, similar to a spike 3 in the first 40 embodiment, protrudes a pre-set distance into the concave outline of part 52. The insulation 42 is pierced and electrical contact is made between the rigid conducting 45 20 spike 34 and the metallic power conductor 32 as the clamping screw 40 is tightened.

50

5

11

The rigid conducting spike may be electrically connected
10 to a fuse carrier and link 36 via a conducting spring 35
when the clamp 33, made up using main parts 51 and 52, is
attached to a clamp head 37 (or 53) via screws 41. The

15

5 clamp head contains a circuit 36, preferentially
including protection devices such as a fuse and a balun
transformer. The circuit further includes a low
20 frequency protection device such as a high pass filter
for high frequency communication signals and is similar

25

10 to the circuit 4 described in outline in the first
embodiment of the invention. The circuit 36 is provided
with a coupling member such as a communications signal
30 input/output port, typically a coaxial, unbalanced, high
frequency, standard BNC connector 38 well known in the
35 art. Preferably, a safety earth is attached via 39.

40

The second embodiment of the present invention allows the
clamp head 53 to be easily removed from the cable clamp
51 and 52 whilst, if desired, leaving the cable clamp 51
45 and 52 still attached to the cable. The cable clamp may
then be covered using a fascia plate. This removes the
50 need to place an insulating sleeve over the puncture hole

5

12

in the cable insulation if it is required to remove the
10 coupling device from the cable at some later date.

15 The embodiment of the invention shown in Figures 6a and
5 6b consists principally of a first part 60 of the
coupling unit and a saddle 61. As will be seen, the
20 saddle 61 sits on top of the coupling unit part 60. The
saddle may, for example, be made of steel and may be
around 20 x 30 x 3mm in size including a tapped hole for
25
10 receipt of a screw 62, with for example a 5mm thread.

30 In use, the unit 60 is placed against an insulated cable
63 to a conductor of which contact is required to be
made. Initially, the saddle lies against or adjacent the
35
15 top of the part 60 as shown in Figure 6a. The contacts
(not shown) project against the cable 63.

40

45 One or more cable ties 64 (in this embodiment, two ties
are used) secure the unit 60 against the cable 63. In
20 this embodiment each of the cable ties 64 is located on
a respective side of the screw 62 and also serve to hold
50 the saddle against the unit 60. As will be seen more

5

13

clearly in Figure 6b, the eye 65 of each cable tie abuts
10 against a square edge 66 of the saddle 61. By contrast,
the edge 67 of the saddle 61 over which the elongate
portion of the cable tie 64 lies is rounded so as to
15 5 relieve the stress on the cable tie. Also optionally
provided are locating notches in the saddle 61 (not
20 shown) which serve to locate the elongate portion of the
cable ties 64. In some embodiments, the rounded edges
mentioned previously may only be provided in the locating
25 10 notches.

30 Once the cable ties have been tightened as much as
possible by hand in the conventional manner, the machine
screw 62 may then be operated (in this case turned
35 15 clockwise) so that its end moves against the top of the
unit 60 and forces the saddle 61 away from the unit 60.
40 This action serves to drive the electrical connection
spikes through the installation cable 63. As will be
apparent to the skilled person, means other than the
45 20 screw 62 may be provided to perform this same function.

50 Figures 7a and 7b show a further embodiment of the

5

14

present invention which is similar to the embodiment of
10 Figures 6a and 6b with the exception that the saddle is
omitted. The cable tie locating notches may instead be
formed directly in an upper edge 70 of the unit 71.

15

5 Means are provided inside the unit 71 (not shown) for
moving the tips of the electrical connection spikes in a
20 direction away from the unit 71 so that, in use, the
spikes extend further towards the cable 72. These means
are operable by, in this example, rotation of a rod head
25 10 73 which is located on the top surface of the unit 71.
Naturally other means for operating the spike driving
30 means will be apparent to the skilled person and may be
used instead.

35

15 In use, the unit 71 is placed adjacent the cable 72 and
the cable ties 74 are tightened by hand as previously.
40 The rod 73 (which may be made of nylon of, for example a
millimetre diameter) is then operated (e.g. turned
clockwise) to drive the contact spike(s) out of the base
45 20 of the coupler into the cable thereby tensioning the
cable ties and piercing the cable insulation to make
50 contact with the conductor.

5

15

In either of the embodiments of Figure 6 or Figure 7, or
10 indeed in any of the embodiments described previously,
the base 68, 78 of the unit 60, 71 may be shaped
differently to that shown in the drawings. In a
15 5 preferred embodiment, the base 68, 78 may be shaped so as
to conform more closely to the surface shape of the cable
20 which, in this example, is roughly circular. This
enables the unit 60, 71 to be more easily located against
the cable.

25

10

Each of the embodiments of the present invention
30 described above may be self supporting in that they are
supported only by the cable to which they are clamped.
A further embodiment of the invention includes having one
35 15 or more lugs attached to the clamp devices. In this way,
the clamps themselves may be attached to a suitable
40 surface.

45

Furthermore, the embodiments described above are also
50 20 suitable for coupling communications signals to/from
cables with more than one conducting core. In this way,
a range of, for example differential, phase to phase,

55

5

16

phase to neutral/earth, phase to earth, neutral to earth
10 or polyphase modes of high frequency signal coupling may
be provided.

15

5 As will be appreciated, the above embodiments are given
by way of example only and modifications will be apparent
20 to those skilled in the art.

25

30

35

40

45

50

55

Claims

5

10

15

20

25

30

35

40

45

50

55

5

17

10

CLAIMS

15

1. A coupling apparatus suitable for coupling with an electricity cable, where the cable includes an electrically insulated conducting member, where the coupling apparatus includes cable insulation penetration means for penetrating the electricity cable to provide an electrical connection to the conducting member, the penetration means being electrically connected to a coupling member suitable for connection to a telecommunications signal source or receiver.

20

25

10 2. A coupling apparatus according to any one of the above claims including a clamp and a clamp head, wherein the clamp includes the insulation penetration means and means for fitting the insulation penetration means to the cable, and the clamp head includes the coupling member.

35

40

15 3. A coupling apparatus according to claim 1 including means for fitting the insulation penetration means to the cable, and the clamp head includes the coupling member.

45

20

50

3. A coupling apparatus according to claim 1 including low frequency protection means for electrically

55

5

18

isolating the coupling member at low frequencies
from the insulation penetration means.

10

4. A coupling apparatus according to claim 1 or claim
15 5 2 including a fuse and/or transformer by which the
coupling member may be electrically protected from
20 the cable insulation protection means.

5. A coupling apparatus according to claim 4 in which
25 10 one end of the primary winding and/or one end of the
secondary winding of the transformer is/are
30 electrically bonded to an earth potential.

6. A coupling according to claim 5 in which one end of
35 15 both the primary and secondary windings of the
transformer are electrically bonded to the same
40 earth potential.

7. A coupling apparatus according to any one of the
45 20 above claims wherein the cable insulation means
includes a spike.

50

55

5

19

10

8. A coupling apparatus according to any one of the
above claims including clamping means for urging the
penetration means into the cable.

15

20

5 9. A coupling apparatus according to any one of the
above claims including a housing which, in use, fits
around the cable.

25

30

10. A coupling apparatus according to any one of the
above claims wherein the cable insulation
penetration means and the coupling member are
electrically connected via a conducting spring.

35

40

45

50

55

1 / 3

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

3 / 3

Fig.6a.

Fig.6b.

Fig.7a.

Fig.7b.

INTERNATIONAL SEARCH REPORT

International Application No PCT/GB 00/01196

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H01R4/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H01R

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 283 012 A (SUMITOMO ELECTRIC INDUSTRIES) 21 September 1988 (1988-09-21) column 2, line 52 -column 4, line 38; figures 2,4,5 -----	1,2,7-9
X	US 5 367 251 A (MCTIGUE JAMES F) 22 November 1994 (1994-11-22) column 5, line 20-68; figure 3 -----	1,7-9
X	EP 0 471 630 A (GREILLIER BERNARD) 19 February 1992 (1992-02-19) column 3, line 14 -column 4, line 26 figures 2-4 -----	1,8,9
X	WO 98 45896 A (WHITAKER CORP) 15 October 1998 (1998-10-15) claim 1; figures 1,3 -----	1,8,9 ----

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- 'A' document defining the general state of the art which is not considered to be of particular relevance
- 'E' earlier document but published on or after the international filing date
- 'L' document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- 'O' document referring to an oral disclosure, use, exhibition or other means
- 'P' document published prior to the international filing date but later than the priority date claimed

- 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- '&' document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
8 June 2000	19/06/2000
Name and mailing address of the ISA European Patent Office, P.B. 5810 Patentaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 851 epo nl. Fax: (+31-70) 340-3016	Authorized officer Waern, G

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International Application No
PCT/GB 00/01196

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	PATENT ABSTRACTS OF JAPAN vol. 013, no. 366 (E-806), 15 August 1989 (1989-08-15) & JP 01 122576 A (FURUKAWA ELECTRIC CO LTD:THE), 15 May 1989 (1989-05-15) abstract; figures 1,2	1,7,8
X,P	EP 0 977 309 A (ASCOM SYSTECH AG) 2 February 2000 (2000-02-02) abstract	1,7,8

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter. Application No
PCT/GB 00/01196

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0283012 A	21-09-1988	JP 1995613 C		08-12-1995
		JP 7021971 B		08-03-1995
		JP 63231804 A		27-09-1988
		CA 1295703 A		11-02-1992
		DE 3850155 D		21-07-1994
		DE 3850155 T		17-11-1994
US 5367251 A	22-11-1994	NONE		
EP 0471630 A	19-02-1992	FR 2665868 A		21-02-1992
WO 9845896 A	15-10-1998	AU 6887398 A		30-10-1998
JP 01122576 A	15-05-1989	NONE		
EP 0977309 A	02-02-2000	AU 4495699 A		21-02-2000
		WO 0007262 A		10-02-2000