# DADOS ATÍPICOS (potenciais *outliers*)

Pontos podem ser extremos com relação a X ou Y ou a X e Y

Geralmente, os dados atípicos têm resíduos grandes e podem exercer influencia sobre o modelo ajustado

#### **IMPORTANTE:**

- investigar a causa das discrepâncias
- avaliar a influência das observações atípicas no modelo ajustado

#### Como detectar?

- → análise de resíduos é muito útil na identificação desses pontos
- → resíduos consideravelmente grandes são potenciais *outliers*

3 ou mais desvios padrão distante da média

Qual a razão do seu comportamento não usual?

Se erro de medição ou erro de digitação:

→ corrigir sempre que possível ou então excluir o ponto

Se é um valor particularmente desejável para a resposta (preço baixo, alta produção, etc) ou se o conhecimento da ocorrência dessa resposta pode ser extremamente útil, podendo levar a descoberta de um fenômeno raro:

→ não excluir

PORTANTO, nem sempre o dado atípico deve ser encarado como um valor ruim e muito menos ser automaticamente excluído

Como verificar o efeito de um potencial outlier?

- $\rightarrow$  retirar e reajustar o modelo, comparando as novas estimativas de  $\beta_0$ ,  $\beta_1$  e  $\sigma^2$
- \* Em geral, estas estimativas são extremamente sensíveis a dados atípicos
- \* Dependendo da localização ou do número de pontos, os *outliers* possuem efeito (influência) desde fraco até muito sério no modelo ajustado
- \* Uma avaliação mais detalhada dos pontos influentes será vista no modelo de regressão linear múltiplo

## <u>Ilustação 1</u>

Conjuntos de dados com 20 e 100 observações

Gráfico A  $\rightarrow$  sem ponto atípico Gráficos B, C e D  $\rightarrow$  iguais a A com mais um ponto atípico



conjunto de 20 pontos



conjunto de 100 pontos

Gráfico B: ponto afastado acima, com valor de x próximo a  $\overline{x}$  e valor muito alto de y

Gráfico C: ponto afastado à direita, com valor alto de x (ponto de alavanca) e valor de y próximo a  $\overline{y}$ 

Gráfico D: ponto muito afastado à direita, com valor muito alto de x (ponto de alavanca)e valor de y próximo a  $\overline{y}$ 

#### 20 dados:

Gráfico B → leve acréscimo no intercepto

Gráfico C → mudança na inclinação

Gráfico D → grande mudança no intercepto e na inclinação

#### 100 dados:

Gráfico B → praticamente não teve efeito sobre o ajuste

Gráfico C → leve mudança no ajuste

Gráfico D → mudança maior no ajuste (mais na inclinação)

# Ilustração 2



Casos 1, 2 e 3: discrepantes com relação a Y

Caso 5: discrepante com relação a X

Caso 4: discrepante com relação a *X* e *Y* 

Casos 2, 3 e 4: maior influência sobre o ajuste da reta Caso 1: menor influência, dado sua maior proximidade ao conjunto de pontos

Caso 5: pode ser consistente, dada sua relação com os demais pontos

## Ilustração 3



Diagramas de dispersão com observações atípicas (a reta pontilhada representa a regressão linear simples ajustada com todas as observações e, a contínua, sem a observação atípica).

- (a) ponto destacado tem resíduo elevado; é inconsistente, pois destoa da tendência dos demais pontos e é influente, pelo impacto produzido na reta ajustada
- (b) ponto destacado não tem resíduo elevado; é **ponto de alavanca**, por ter um valor extremo de x; é **consistente**, pois não destoa da tendência dos demais pontos e é **não influente** (c) ponto destacado tem resíduo elevado; é classificado como **ponto de alavanca**, por ter um valor extremo de x; é
- (d) ponto destacado tem resíduo elevado; é inconsistente e influente

inconsistente e influente

Exemplo 1 (cont.): 12 meninas de uma escola de dança

| i  | $\mathcal{Y}_{i}$ | $X_{\overline{i}}$ | $e_{_i}$ | $Z_{\overline{i}}$ | $Z_i^*$ | $\hat{\sigma}_{(i)}^{2}$ | $\hat{\beta}_0 - \hat{\beta}_{0(i)}$ | $\hat{\beta}_1 - \hat{\beta}_{1(i)}$ |
|----|-------------------|--------------------|----------|--------------------|---------|--------------------------|--------------------------------------|--------------------------------------|
| 1  | 34                | 1,35               | 3,89     | 0,71               | 0,70    | 38,05                    | 9,99                                 | -6,77                                |
| 2  | 34                | 1,35               | 3,89     | 0,71               | 0,70    | 38,05                    | 9,99                                 | -6,77                                |
| 3  | 29                | 1,35               | -1,11    | -0,20              | -0,19   | 39,94                    | -2,84                                | 1,93                                 |
| 4  | 27                | 1,35               | -3,11    | -0,57              | -0,55   | 38,80                    | -7,97                                | 5,40                                 |
| 5  | 40                | 1,40               | 3,91     | 0,68               | 0,66    | 38,24                    | 2,53                                 | -1,53                                |
| 6  | 25                | 1,40               | -11,09   | -1,93              | -2,32   | 25,10                    | -7,18                                | 4,35                                 |
| 7  | 40                | 1,40               | 3,91     | 0,68               | 0,66    | 38,24                    | 2,53                                 | -1,53                                |
| 8  | 34                | 1,40               | -2,09    | -0,36              | -0,35   | 39,57                    | -1,35                                | 0,82                                 |
| 9  | 46                | 1,50               | -2,05    | -0,39              | -0,37   | 39,49                    | 6,54                                 | -4,78                                |
| 10 | 42                | 1,50               | -6,05    | -1,15              | -1,17   | 34,80                    | 19,29                                | -14,08                               |
| 11 | 47                | 1,50               | -1,05    | -0,20              | -0,19   | 39,94                    | 3,36                                 | -2,45                                |
| 12 | 59                | 1,50               | 10,95    | 2,08               | 2,62    | 22,76                    | -34,88                               | 25,46                                |

```
###dados - Exemplo 1
x < -c(rep(1.35,4), rep(1.4,4), rep(1.5,4))
v \leftarrow c(34,34,29,27,40,25,40,34,46,42,47,59)
# formando a base de dados
dados < cbind(x,y)
#ajuste de MQ
reta<- lm(y\sim x)
#resíduos
residuo <- reta$res
z <- rstandard(reta) # residuos padronizados</pre>
zstudent <- rstudent(reta) # residuos studentizados</pre>
#Analise de influencia
infl<-influence(reta)</pre>
names(infl)
sigma2i <- infl$sigma^2</pre>
difbeta0i <- infl$coef[,1]</pre>
difbetali <- infl$coef[,2]</pre>
cbind(y,x,residuo,z,zstudent,sigma2i,difbeta0i,difbeta1i)
```