

Hardware Software Platforms Project Presentation

Distance Detection

Abrassart Theo & Hubert Louis Theo. Abrassart@student.umons.ac.be Louis. Hubert@student.umons.ac.be

- Sensor presentation with tools
- □ I2C
- Unit tests
- Application

- Sensor presentation with tools
- □ I2C
- Unit tests
- Application

Sensor presentation with tools Hardware: Sonar sensor (SRF02)

- I2C communication
- ☐ Driven by STM32

Road trip time

Distance

Chip presentation

Hardware: STM32F303RE nucleo 64 chip

fritzing

Software presentation

• AC6:

Complete and useful environment Allows to compile and put code on chip

CubeMX:

Chip selection and pins configuration Code creation to set the drivers

Hardware Software link

Visualization of the com.

- Sensor presentation with tools
- □ I2C
- Unit tests
- Application

Communication protocol I2C

3 signals → SDA/SCL/Bulk

Data frame:

Start condition: SDA passes to 0 while SCL is equal to 1

Stop condition: SDA passes to 1 while SCL stays at 1

- Sensor presentation with tools
- **□** I2C
- Unit tests
- Application

Unit tests: LED and button

Driving LED with switch case Using the button


```
while (1)
{
   /* USER CODE END WHILE */
if(!HAL_GPIO_ReadPin(GPIOC,GPIO_PIN_13)) {
   choix = ((choix+1)%3);
   HAL_Delay(10);
}
```



```
switch (choix){

case 0 :
    HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, 0);
    HAL_Delay(250);
    HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, 1);
    HAL_Delay(250);
    break;

case 1 :
    HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, !HAL_GPIO_ReadPin(LD2_GPIO_Port, LD2_Pin));
    HAL_Delay(500);
    break;

case 2 :
    HAL_GPIO_TogglePin(LD2_GPIO_Port, LD2_Pin);
    HAL_Delay(50);
    break;
}
```


Unit tests: I2C

Test transmission and reception of sequences

Unit tests: interrupt

- 1. detection of the triggering event
 - end of the current instruction
 - ident, of the event occurred
- saving the address of current instruction in a stack
- 2. traversal to the interrupt processing routine
- 3. treatment of the corresponding interrupt
- 4. retrieving the return address
- 5. Return to the initial program

Sensor's datasheet

Location	Read	Write
0	Software Revision	Command Register
1	Unused (reads 0x80)	N/A
2	Range High Byte	N/A
3	Range Low Byte	N/A
4	Autotune Minimum - High Byte	N/A
5	Autotune Minimum - Low Byte	N/A

Information: 16 bits

→ Concatenation of MSB and LSB registers

Information MSB register LSB register

Different commands of the sensor

Command		0 -ti	
Decimal	Hex	- Action	
80	0x50	Real Ranging Mode - Result in inches	
81	0x51	Real Ranging Mode - Result in centimeters	
82	0x52	Real Ranging Mode - Result in micro-seconds	
86	0x56	Fake Ranging Mode - Result in inches	
87	0x57	Fake Ranging Mode - Result in centimeters	
88	0x58	Fake Ranging Mode - Result in micro-seconds	
92	0x5C	Transmit an 8 cycle 40khz burst - no ranging takes place	
96	0x60	Force Autotune Restart - same as power-up. You can	
		ignore this command.	
160	0xA0	1st in sequence to change I2C address	
165	0xA5	3rd in sequence to change I2C address	
170	0xAA	2nd in sequence to change I2C address	

Here are the different commands to put in the CR

UART communication:

Enable the UART com. with STM32

```
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif

PUTCHAR_PROTOTYPE{
   HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 100);
   return ch;
}
```


Software implementation

- Sensor presentation with tools
- **□** I2C
- Unit tests
- Application

Application: Finite State Machine

Final results:

Don't forget:

Video: hardware and software

https://www.youtube.com/watch?v=smweBf85Wjg&feat ure=youtu.be&fbclid=IwAR36StgG NxwbV-TLYLgbpehZIk4X9RS3St-fv-t5zZuzoIZ4vy58R3xnsk

Acknowledgement

We would like to thank Mr. Valderrama, Mr. Binon and Mr. Quenon for their help in this project and their valuable advices.

Bibliography

- https://robot-electronics.co.uk/srf02.html; (SRF02)
 https://chauve-souris.ca/tout-savoir-sur-les-cha1uves-souris; (bat)
 https://www.javcar.com.au/white-5mm-led-4000mcd-round-
- https://www.jaycar.com.au/white-5mm-led-4000mcd-round-clear/p/ZD0190; (LED)
- https://www.robot-italy.com/download/srf02_i2c.pdf; (Datasheet)
- → https://moodle.umons.ac.be/mod/resource/view.php?id=7403 (Interrupt)
- https://french.alibaba.com/product-detail/volume-control-adjustable-potentiometer-knob-switch-rotary-angle-sensor-for-arduino-avr-stm32-60294805563.html. (button)

