

تمرین درس شبکه (مبحث پروتکل OSPF) نام و نام خانوادگی:

$^{\mathsf{N}}$ پروتکل مسیریابی مبتنی بر وضعیت لینک

سوال اول – مثال زیر از شبکههای متصل به هم را در نظر بگیرید:

الف) نوع هر یک از لینکهای موجود در توپولوژی را مشخص کنید.

باسخ:

رنگ صورتی: لینک های Transient

رنگ سبز: لینک های Point to Point

رنگ آبی: لینک های Stub

ب) هزینه انتقال بسته در هر یک از موارد زیر را با ذکر مسیر و هزینه گام به گام مشخص کنید.

- F از مسیریاب A به مسیریاب \bullet
- G از مسیریاب E به مسیریاب \bullet
- \mathbf{E} از مسیریاب \mathbf{A} به مسیریاب \bullet

¹ Link State

تمرین درس شبکه (مبحث پروتکل **OSPF**) نام و نام خانوادگی:

پاسخ:

A-F: A -> N4 -> C -> N3-> D -> N2-> F

7 = 4 + 1 + 2

E-G: E -> N2 -> F -> G

6 = 3 + 3

A-E: A -> N4 -> C -> N3-> D -> N2-> E

7 = 4 + 1 + 2

ج) مسیریاب B چه Router Linkهایی را گزارش می کند؟

پاسخ: گزارش وضعیت لینک ها در B

N4: transient
F: point to point
N5: transient

سوال دوم - با فرض استفاده از پروتکل OSPF، به صورت مرحله به مرحله روند یافتن کوتاه ترین مسیرها را در مسیریاب A با لحاظ استفاده از

روش دیجسترا^۲ رسم کنید.

² Dijkstra

تمرین درس شبکه (مبحث پروتکل **OSPF**) نام و نام خانوادگی:

تمرین درس شبکه (مبحث پروتکل **OSPF**) نام و نام خانوادگی:

سوال سوم – جدول زیر را در بیان تفاوتهای میان پروتکلهای مسیریابی RIP و OSPF تکمیل کنید. در ردیف مربوط به قابلیتهای مورد پشتیبانی مواردی از قبیل پشتیبانی از چندین معیار 7 ، پشتیبانی از چند ناحیه 4 ، پشتیبانی از مسیریابی بیندامنه 8 ، احراز هویت 7 ، چندپخشی 8 ، آدرس دهی بدون کلاس 8 درج کنید.

	RIP	OSPF
نوع پروتکل مسیریابی	Distance Vector	Link State
نوع پروتکل مسیریابی الگوریتم مسیریابی (نحوه یافتن مسیر)	Bellman ford	Dijkstra
قابلیتهای مورد پشتیبانی ٔ	Feasible configuration Support all routers Promotes load balancing	Wide scope Fast convergence Authentication Support multicasting Routing hierarchy
مقیاسپذیری ^{۱۰}	Up to 15 hops. suitable for small orginizations	Unlimited hop counts. suitable for larg companies
پیچیدگی ^{۱۱}	Simple complexity, memory usage is low but bandwidth consumption is hight due to sending all routing table every 30 seconds.	More complex. memory usage is high but bandwidth consumption is low. that is because routers only send new updates
جلوگیری از ایجاد حلقه ^{۱۲}	Prevents loop by using max hop count=16	Prevents loop with Dijkstra algorithm and having the topology of network in every node without loops.

³ Multiple metrics

⁴ Multiple areas

⁵ Inter-domain routing

⁶ Authentication

⁷ Multicasting

⁸ Classless addressing

⁹ Supports

¹⁰ Scalability

¹¹ Complexity

¹² Loop avoidance