

1. Exercise

Spatial Information Systems (GIS)

Winter term 2024/25

Computer Vision in Engineering

Volker Rodehorst

Group:

Regulation

Begin: November 08, 2024

- The processing of the exercises should be **in groups** (<u>5-6 students</u> postulated)
- The submission is done **online via moodle-upload**. If you have problems, it is possible to send an email to thomas.gebhardt@uni-weimar.de (hint: If you send me an email please note in the subject line "GIS" and specify the group number.)

End: November 21, 2024

• A successful processing in time of all exercises is expected (credits!)

1.1 Research via internet

Please research via internet for pages, where with (e. g. your) **name** a map or **geo-information** is linked. Try to find out what **spatial reference** hides behind? Give a short report about your results.

1.2 Georeferencing of aerial photographs with QGIS

To bring images and data together in a GIS, each record (data set) must be placed. With the help of a **georeferencing** task such information can be transformed into a specified coordinate system. The steps are as follows:

- 1. Download and install the open source program **QGIS** (www.qgis.org)
- 2. Download the archive **GeoRef2019.zip** from moodle and unzip it. As a reference, it contains a DTK section (GeoTIFF, EPSG: 25832) and two aerial images (JPG)
- 3. Start QGIS and check under Settings→Options the coordinate reference system (ETRS89 / UTM zone 32N, EPSG 25832)
- 4. Import the DTK in QGIS e. g. Drag and Drop
- 5. Open the georeference tool under Layer→Georeferencer and open one aerial image (File→Open raster)
- 6. Click at least four well distributed corresponding (identical) points between image and map
- 7. Start georeferencing (<u>transformation settings:</u> Helmert, Nearest neighbour, EPSG:25832), generate a corrected aerial image (output file) as well as a PDF report and save the used control points (GCP) (File -> Save GCP points as) INTERACTION TO IMPROVE THE RESULT
- 8. Import the corrected aerial image in QGIS
- Set the layer properties to partially transparent to check the result (Layer→Layer Properties→Transparency)
- 10. Repeat georeferencing for the **second** aerial image and **save** your project
- 11. Please submit the two point files and PDF reports of your georeferencing no images!

1. Übung

Computer Vision in Engineering

Volker Rodehorst

Raumbezogene Informationssysteme (GIS)

Wintersemester 2024/25

Ausgabe: 08. November 2024 Abgabe: 21. November 2024 Gruppe:

Regelungen

- Die Bearbeitung der Belege soll in Gruppen erfolgen (5-6 Studierende).
- Die Abgabe erfolgt mittels Upload im moddle-Kurs. Bei Problemen auch per Email an thomas.gebhardt@uni-weimar.de möglich. (Hinweis: Bei Abgabe via Email bitte im Betreff "GIS" vermerken und immer die Gruppennummer mit angeben.)
- Eine rechtzeitige und erfolgreiche Bearbeitung aller Belege wird erwartet (credits!)

1.1 Internetrecherche

Recherchieren Sie im Internet nach Seiten, wo mit (z. B. ihrem) **Namen** Karten- bzw. **Geoinformationen** verknüpft sind. Versuchen Sie herauszufinden welche **Raumbezugsformen** sich dahinter verbergen? Fassen Sie Ihre Ergebnisse in einem kurzen Bericht zusammen.

1.2 Georeferenzierung von Luftbildern mit QGIS

Um Bilder und Daten in einem GIS zusammenbringen zu können, muss jeder Datensatz verortet sein. Mit Hilfe einer **Georeferenzierung** können solche Informationen auf ein zuvor festgelegtes Koordinatensystem transformiert werden. Die Arbeitsschritte lauten:

- Herunterladen und installieren des openSource-Programms QGIS (www.qgis.org).
- 2. Archiv **GeoRef2019.zip** (moodle) herunterladen und entpacken; Es enthält als Referenz einen DTK-Ausschnitt (GeoTIFF, EPSG: 25832) und zwei Luftbilder (JPG).
- 3. QGIS starten und überprüfen, ob das Koordinatenreferenzsystem mit ETRS89 / UTM zone 32N festgelegt ist (Einstellungen→Optionen→KBS ID: EPSG 25832)
- 4. Importieren der DTK, z. B. per Drag & Drop
- 5. Starten des Georeferenzierung-Tools (Layer->Georeferenzierung) und Laden eines Luftbilds (Datei→Raster öffnen)
- 6. Mindestens vier gut verteilte korrespondierende Punkte zwischen Bild und Karte wählen
- 7. Georeferenzierung (<u>Parameter</u>: *Helmert, Nächster Nachbar, EPSG 25832*) mit Erzeugung eines **korrigierten Luftbildes** (*Ausgabedatei*) und <u>PDF-Berichts, Passpunkte speichern</u> (Datei→Passpunkte speichern als) INTERAKTION ZUR ERGEBNISVERBESSERUNG
- 8. Importieren des korrigierten Luftbilds in QGIS
- 9. Layer-Eigenschaften auf teilweise transparent einstellen, um das überlagerte Ergebnis zu kontrollieren (Layer→Layereigenschaften→Transparenz)
- 10. Wiederholung der Georeferenzierung für das zweite Luftbild, Speichern des Projekts
- 11. Abzugeben sind die beiden Passpunktdateien und PDF-Berichte der Georeferenzierung