

NT219-Cryptography

Week 08: Asymmetric Cryptography (P3)

PhD. Ngoc-Tu Nguyen

tunn@uit.edu.vn

Outline

- Why asymmetric cryptography?
- Factoring Based Cryptography (P1)
 - > RSA
 - > Rabin
- Logarithm Based Cryptography (P2)
- Elliptic Curve Cryptography (P3)
- Some advanced cryptography system (quantum resistance)

Warmup

- Agreement a symmetric key (AES) with a server
- 1. RSA, or DHE?
- 2. Setup system parameters?
- 3. Exchange public keys or send AES Key encapsulation (RSA-based Encryption)
- 4. Compute the AES session key?

Implementation the RSA Algorithm (review)

Key Generation by Alice

Select p, qp and q both prime, $p \neq q$

Calculate $n = p \times q$ Fermat's little theorem

Calcuate $\phi(n) = (p_{-} - 1)(q - 1)$

Select integer *e*

$$\gcd(\phi(n), e) = 1; 1 < e < \phi(n)$$

Calculate d $\lambda(n) = \text{lcm}(p-1, q-1)$ $d \equiv e^{-1} \pmod{\phi(n)}$ $e. d = 1 \mod{\phi(n)}$

$$d \equiv e^{-1} \pmod{\phi(n)} \quad e. d = 1 n$$

Public key

$$PU = \{e, n\}$$

Private key

$$PR = \{d, n\}$$

$$e.d = 1 \mod \lambda(n)$$

Encryption by Bob with Alice's Public Key

Plaintext:

Ciphertext:

$$C = M^e \mod n$$

Decryption by Alice with Alice's Public Key

Ciphertext:

Plaintext:

$$M = C^d \mod n$$

$$C^d mod n = (M^e)^d mod n$$

= $M^{ed} mod n = ? M$

Implementation The RSA Algorithm ((review))

Generalization of Fermat's little theorem

- Let n = p.q, $\lambda(n) = lcm(p-1, q-1)$?
- for all a st. gcd(a, n) = 1, $a^{\lambda(n)} mod n = ?$

$$PU = \{n, e\}$$

$$PR = \{n, p, q, d, d_p, d_q, q_{inv}\}$$

$$d_p = d \bmod (p - 1),$$

$$d_q = d \bmod (q - 1),$$

$$q_{inv} = q^{-1} \bmod p$$

$n = 15, \mathbb{Z}_{15} = \{0, 1, 2, \dots 15\}$
$n = 3.5 = 15, \varphi(15) = 8,$
$\lambda(n) = lcm(2,4) = 4$

а	$a^8 mod 15$	$a^4 mod 15$
1		
2		
4		
7		
8		
11		
13		
14		

Implementation The RSA Algorithm

$$PU = \{n, e\}$$

• Encrypt

$$C = m^e mod n$$

$$PR = \{n, p, q, d, d_p, d_q, q_{inv}\}$$

$$d_p = d \mod (p-1),$$

$$d_q = d \mod (q-1),$$

$$q_{inv} = q^{-1} \mod p$$

Decrypt

$$m = C^d mod n!$$

$$m_1 = C^{d_p} \mod p$$

$$m_2 = C^{d_q} \mod q$$

$$h = q_{inv}(m_1 - m_2) \mod p$$

$$m = m_2 + h. q$$

ElGamal Cipher

Encryption message $m (using public key <math>h = g^x$)

- Choose a random number: $r \in_R [1, p-1]$ why?
- Compute $C_1 = g^r \mod p$;
- Computer $C_2 = m \cdot h^r \mod p = m \cdot g^{x \cdot r} \mod p$
- Output cipher message (C_1, C_2)

Decryption (C_1, C_2) (using secret key x)

• Computer
$$\frac{C_2}{(C_1)^x} \mod p = \frac{m.g^{x.r}}{g^{r.x}} \mod p$$

$$= m$$

Diffie-Hellman exchange Protocol (DHE)

p = 1606938044258990275541962092341162602522202993782792835301301

$$g = 123456789$$

 $g^a \mod p = 78467374529422653579754596319852702575499692980085777948593$

 $g^b \mod p =$

560048104293218128667441021342483133802626271394299410128798

a =

) =

685408003627063 761059275919665 781694368639459 527871881531452 362059131912941 987637880257325

269696682836735

524942246807440

 $(g^b)^a \mod p$

g^{ab} mod p = 437452857085801785219961443000 845969831329749878767465041215

 $(g^a)^b mod p$

Computational hardness assumptions

• Integer factorization Problem;

$$n(=p,q) \mapsto \mathbb{P}(n) = (p-1)(q-1)$$

Discrete Log Problem (DLP):

$$g, p, y = g^x \mod p \not\mapsto x$$

• Diffie-Hellman Problem (DHP):

$$g, p, A = g^a mod p, B = g^b mod p \not\mapsto g^{ab}$$

Man-in-the middle attacks the DHE

A(Putin) $sk = (g^b)^a = (g^a)^b = g^{ab} \mod p$

B(Zelensky)

man-in-the-middle attack!

$$sk_1 = g^{am} mod p$$

$$sk_2 = g^{bm} mod p$$

Motivations

Group
$$(G,+)$$
 can do $+$ $-$

lightweight computational overhead?

Ring
$$(R, +, \times)$$
 can do $+ - \times$

Field
$$(F, +, \times)$$

Field
$$(F, +, \times)$$
 can do $+ - \times \div$

$$\Box Z_p = \{0,1,...,p-1\}$$

An elliptic curve is a group defined over a field K

elliptic curve group
$$(E, \bigoplus)$$
 can do $\bigoplus \ominus$ underlying field $(K, +, \times)$ can do $+ - \times \div$

operations in underlying field are used and combined to compute the eliptic curve operation \oplus

Weierstrass form

$$E/K$$
: $y^2 = x^3 + ax + b$

E specified by K , a , b

Weierstrass form

$$E/\mathbb{R}: y^2 = x^3 + x + 1$$

$$E/\mathbb{Z}_7: y^2 = x^3 + x + 1 \pmod{7}$$

X	$y^2 = x^3 + x + 1$	У
1	3	х
2	4	2,5
3	3	x
4	6	x
5	5	x
6	6	x

Montgomery form

Curve25519

```
E/K: y^2 = x^3 + 486662x^2 + x where field K = Z_{2^{255}-19}
```


Twisted Edwards form

https://safecurves.cr.yp.to/

Addition of two points:

If P_1 and P_2 are on E, we can define sum

$$P_1 + P_2 = P_2 + P_1 \stackrel{\text{def}}{=} P_3$$

as shown in picture

Point Doubling

Special case

$$P+P=O$$
 (infinity)

$$P+O=P$$

$$O + P = P$$

$$P'=-P$$

$$P+(-P)=O$$
 (infinity)

Example

Given two points P, Q in E/K, there is a third point, denoted by P + Q on E/K, and the following relations hold for all P, Q, R in E/K, where K be a finite field

- P + Q = Q + P (commutativity)
- (P + Q) + R = P + (Q + R) (associativity)
- P + O = O + P = P (existence of an identity element)
- there exists (-P) such that -P+P=P+(-P)= O (existence of inverses)

- Group points E/K
- Subgroup generated by a point G

$$< G >= \{G, 2G, \dots, kG, \dots\} = \{kG : k \in K\} \subset E/K$$

ECC group parameters:

- \checkmark ECC equation (type, coeffection): a, b, ...
- \checkmark Modulo: $p \ or \ f(x)$
- ✓ Generator point: *G*
- \checkmark Order of $G: n = \langle G \rangle = \{kG: k \in K\}$
- ✓ Cofactor: $h = \frac{|E/K|}{|<G>|}$

http://www.secg.org/sec2-v2.pdf

Using Elliptic Curves In Cryptography

Hardness assumption.

$$\triangleright d \rightarrow Q = dG = G + G + \cdots + G$$

Elliptic curve discrete logarithm problem (ECDLP)

$$G,Q(=dG) \not\mapsto d$$
 where $dG = G + G + \cdots + G$ d times

• Discrete Log Problem (DLP): $g, p, y = g^x mod p \mapsto x$

Elliptic Curve Cryptosystems (ECC)

Algorithm	Encryption/Decrypti on	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie– Hellman	No	No	Yes
DSS	No	Yes	No

What Is ECC?

- Elliptic curve cryptography [ECC] is a <u>public-key</u> cryptosystem just like RSA, Rabin, and El Gamal.
- Every user has a **public key** Q(=dG) and a **private** key d.
 - Public key is used for encryption/signature verification.
 - > Private key is used for decryption/signature generation.
- Elliptic curves are used as an extension to other current cryptosystems.
 - Elliptic Curve Diffie-Hellman Key Exchange
 - Elliptic Curve Digital Signature Algorithm

Generic Procedures of ECC

- Both parties agree to some publicly-known data items
 - > The elliptic curve equation
 - Type, values of a and b (or others)
 - Modulo: prime p or f(x)
 - > A **base point**, **G**, taken from the elliptic group;
 - Others parameters (assure security)
- Each user generates their public/private key pair
 - \triangleright Private Key: $d \in [1, p-1]$
 - Public Key: $Q = d.G = G + G + \cdots + G$ d times

ECC Cipher

- Suppose Alice wants to send to Bob an encrypted message.
 - ➤ Both agree on a ECC curver and a base point **G**.
 - ➤ Alice and Bob create public/private keys.
 - Alice
 - -Private Key = a
 - -Public Key = $Q_A = a \cdot G$
 - Bob
 - -Private Key = b
 - -Public Key = $Q_B = b.\mathbf{G}$

ECC Cipher

- Input: $M \in E/K$
- Select a random integer $k \in [1, p-1]$, compute
- Encrypt $R = kG, C = M + k \cdot PK_{B}$ (R, C)

Decrypt

$$C - bR$$

$$= M + kbG - bkG$$

$$= M$$

ECC Diffie-Hellman (ECDHE)

- **Public:** Elliptic curve and a point G = (x,y) on curve
- Secret: Alice's a and Bob's b

- Alice computes $K_A = a$. $Q_B = ab$. G
- Bob computes $K_B = b \cdot Q_A = ba \cdot G$
- These are the same since $K_A = K_B = ab G$

Diffie-Hellman key exchange attack

Alice

$$sk = (g^b)^a = (g^a)^b = g^{ab} \mod p$$

Bob

man-in-the-middle attack!

 $sk_1 = g^{am} mod p$

Diffie-Hellman key exchange attack

$$Q_A \longrightarrow Q_B \qquad (b, Q_B = bG)$$

Alice

$$sk = aQ_B = bQ_A = abG$$

Bob

man-in-the-middle attack!

$$(a, Q_A = aG)$$

$$sk_1 = amG$$

$$(m, Q_M = mG)$$

$$sk_2 = bmG$$

$$(b, Q_B = bG)$$

Why use ECC?

- How do we analyze Cryptosystems?
 - How difficult is the underlying problem that it is based upon
 - RSA Integer Factorization
 - DH Discrete Logarithms
 - ECC Elliptic Curve Discrete Logarithm problem
 - How do we measure difficulty?
 - We examine the algorithms used to solve these problems

Applications of ECC

- Many devices are small and have limited storage and computational power
- Where can we apply ECC?
 - Wireless communication devices
 - > Smart cards
 - Web servers that need to handle many encryption sessions
 - > Any application where security is needed but lacks the power, storage and computational power that is necessary for our current cryptosystems

Benefits of ECC

- Same benefits of the other cryptosystems: confidentiality, integrity, authentication and non-repudiation but...
- Shorter key lengths
 - > Encryption, Decryption and Signature Verification speed up
 - Storage and bandwidth savings

Security of ECC

- To protect a 128 bit AES key it would take a:
 - > RSA Key Size: 3072 bits
 - > ECC Key Size: 256 bits
- How do we strengthen RSA?
 - Increase the key length
- Impractical?

Symmetric Encryption (Key Size in bits)	RSA and Diffie- Hellman (modulus size in bits)	ECC Key Size in bits	
56	512	112	
80	1024	160	
112	2048	224	
128	3072	256	3
192	7680	384	4
256	15360	512	5

Summary of ECC

- "Hard problem" analogous to discrete log
 - > Q=kG, where Q,G belong to a prime curve given k,G → "easy" to compute Q given Q,G → "hard" to find k
 - > known as the elliptic curve logarithm problem
 - k must be large enough
- ECC security relies on elliptic curve logarithm problem
 - > compared to factoring, can use much smaller key sizes than with RSA etc
 - → for similar security ECC offers significant computational advantages