The group G is isomorphic to the group labelled by [24, 13] in the Small Groups library. Ordinary character table of $G \cong C2 \times A4$:

	1 <i>a</i>	2a	3a	2b	6a	2c	3b	6b
χ_1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1	-1
χ_3	1	-1	$E(3)^{2}$	1	$-E(3)^2$	-1	E(3)	-E(3)
χ_4	1	-1	E(3)	1	-E(3)	-1	$E(3)^{2}$	$-E(3)^2$
χ_5	1	1	$E(3)^{2}$	1	$E(3)^{2}$	1	E(3)	E(3)
χ_6	1	1	E(3)	1	E(3)	1	$E(3)^{2}$	$E(3)^{2}$
χ_7	3	-3	0	-1	0	1	0	0
χ_8	3	3	0	-1	0	-1	0	0

Trivial source character table of $G \cong C2 \times A4$ at p = 2:

<u> </u>																
Normalisers N_i		N_1		N_2		N_3	N_4	N_5			N_6	N_7		N_8		
p-subgroups of G up to conjugacy in G		P_1		P_2		P_3	P_4	P_5		P_6	P_7	P_8				
Representatives $n_j \in N_i$		3a	3b	1a	3a	3b	1a	1a	1 <i>a</i>	3a	3b	1a	1 <i>a</i>	1 <i>a</i>	3a	3b
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	8	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	8	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	8	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	4	1	1	4	1	1	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	4	E(3)	$E(3)^{2}$	4	E(3)	$E(3)^{2}$	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	4	$E(3)^{2}$	E(3)	4	$E(3)^{2}$	E(3)	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8$	12	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 2 \cdot \chi_7 + 1 \cdot \chi_8$	12	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2	2	0	0	0	2	0	2	2	2	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	2 * E(3)	$2 * E(3)^2$	0	0	0	2	0	2	2 * E(3)	$2*E(3)^2$	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	2	$2 * E(3)^2$	2 * E(3)	0	0	0	2	0	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	6	0	0	6	0	0	2	2	0	0	0	2	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	6	0	0	0	0	0	2	4	0	0	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$	1	1	1	E(3)	$E(3)^{2}$	1	1	1	E(3)	$E(3)^2$
$0 \cdot \gamma_1 + 0 \cdot \gamma_2 + 0 \cdot \gamma_3 + 0 \cdot \gamma_4 + 1 \cdot \gamma_5 + 0 \cdot \gamma_6 + 0 \cdot \gamma_7 + 0 \cdot \gamma_8$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)	1	1	1	$E(3)^{2}$	E(3)	1	1	1	$E(3)^{2}$	E(3)