Research 2 (series): Performance Enhancement in Overloaded Networks

Motivation

- Extensive analysis over underloaded systems
- However, overloaded situation becomes more frequent in IoT but under unsystematic study & results

Server Farm

Datacenter

Mobile System

Communication infrastructure in Smart Grid; Cloud; HPC; Edge computing, etc.

Contributions

- 1) Model queue dynamics by flow, which generalizes different network settings.
- overload/underload, shared/split buffer, etc.
- 2) Propose network policies that optimize QoS metrics: latency, fairness, throughput, under network overload.

Two papers are published, and one is submitted.

(1) Latency

Set service rates to minimize queueing latency when network is overloaded:

Prove & evaluate that

- Setting max rates on all links is generally NOT optimal.
- Properly setting smaller rates reduces latency & saves energy.
- 10% \downarrow in avg. & 50% \downarrow in max latency.

(2) Fairness

Balancing input loads when egress buffer is bounded:

Centralized

Distributed

Ongoing

- Study the risk of resource pooling failures on network performance, where the above results may be applied.

(3) Stability

A queue-based policy design criterion to stabilize the networks that generalizes a set of policies:

$$\frac{\partial g_{ij}(q_i, q_j)}{\partial q_i} \ge 0, \ \frac{\partial g_{ij}(q_i, q_j)}{\partial q_i} \le 0$$

Connection to Industry Research:

- **Optimization** & **algorithm design** on network infrastructure: load balancing in VMs, job scheduling for ML tasks, resource allocation in cloud platform, etc.