Permit Number 18897

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission	Rates
140. (1)		rame (o)	lbs/hour	TPY (4)
XF1011	No. 11 Boiler (8)	NO _X	13.73	60.13
		со	3.64	15.94
		PM	0.77	3.39
		PM ₁₀	0.74	3.22
		PM _{2.5}	0.72	3.16
		VOC	0.56	2.46
		SO ₂	3.06	4.96
		H ₂ S	0.03	0.05
XF1601	No. 6 Crude Unit Furnace 1 (8)	NOx	5.93	25.97
		со	5.93	25.97
		PM	1.26	5.53
		PM ₁₀	1.20	5.25
		PM _{2.5}	1.17	5.14
		VOC	0.91	4.00
		SO ₂	4.98	8.08
		H₂S	0.05	0.09

	T	1	T	<u> </u>
XF1602	XF1602 No. 6 Crude Unit Furnace 2 (8)	NO _x	3.50	15.33
		со	3.00	13.14
		PM	0.75	3.26
		PM ₁₀	0.71	3.10
		PM _{2.5}	0.69	3.04
		VOC	0.54	2.36
		SO ₂	2.94	4.77
		H ₂ S	0.03	0.05
XF3804	Plant 38 Feed Furnace (8)	NO _x	2.59	11.34
		со	0.92	4.05
		PM	0.20	0.86
		PM ₁₀	0.19	0.82
		PM _{2.5}	0.18	0.80
		VOC	0.14	0.62
		SO ₂	0.78	1.26
		H ₂ S	0.01	0.01

XF3901	Plant 39 Diesel Furnace (8)	NO _X	2.59	11.34
		СО	2.59	11.34
		PM	0.55	2.42
		PM ₁₀	0.52	2.29
		PM _{2.5}	0.51	2.25
		voc	0.40	1.75
		SO ₂	2.18	3.81
		H ₂ S	0.02	0.04
XF4131	Naphtha Hydrotreater Furnace No. 1 (8)	NO _X	3.68	16.10
		со	1.31	5.75
		РМ	0.28	1.22
		PM ₁₀	0.27	1.16
		PM _{2.5}	0.26	1.14
		voc	0.20	0.89
		SO ₂	1.10	1.79
		H ₂ S	0.01	0.02

XF4132	Naphtha Hydrotreater Furnace No. 2 (8)	NO _X	3.68	16.10
	. aa.ee. 2 (e)	СО	1.31	5.75
		PM	0.28	1.22
		PM ₁₀	0.27	1.16
		PM _{2.5}	0.26	1.14
		VOC	0.20	0.89
		SO ₂	1.10	1.79
		H ₂ S	0.01	0.02
XF4150-60	Rheniformer Reactor Furnace (F-4150) (8)	NO _X	5.08	22.23
		СО	4.35	19.05
		PM	1.08	4.73
		PM ₁₀	1.03	4.50
		PM _{2.5}	1.00	4.40
		VOC	0.78	3.42
		SO ₂	4.26	6.92
		H ₂ S	0.05	0.07

	1	T	1	1
XF4150-60	Rheniformer Reactor Furnace (F-4160) (8)	NO _X	5.29	23.15
		СО	4.53	19.84
		PM	1.13	4.93
		PM ₁₀	1.07	4.68
		PM _{2.5}	1.05	4.58
		voc	0.81	3.57
		SO ₂	4.44	7.20
		H ₂ S	0.05	0.08
XF4170-80	Rheniformer Reactor Furnace (F-4170) (8)	NO _X	7.28	31.89
		со	4.90	21.46
		РМ	1.04	4.57
		PM ₁₀	0.99	4.34
		PM _{2.5}	0.97	4.25
		voc	0.75	3.31
		SO ₂	4.12	6.68
		H ₂ S	0.04	0.07

XF4170-80	Rheniformer Reactor	NO _X	2.24	9.79
	Furnace (F-4180) (8)	СО	1.51	6.59
		PM	0.32	1.40
		PM ₁₀	0.30	1.33
		PM _{2.5}	0.30	1.31
		voc	0.23	1.02
		SO ₂	1.26	2.05
		H ₂ S	0.01	0.02
6	Boiler No. 1 (H-901) (8)	NO _X	21.46	94.00
		со	6.41	28.05
		PM	1.36	5.97
		PM ₁₀	1.30	5.67
		PM _{2.5}	1.27	5.55
		VOC	0.99	4.32
		SO ₂	5.38	8.73
		H ₂ S	0.06	0.09

	T	T	T	
8	Boiler No. 3 (H-903) (8)	NO _x	10.81	47.35
		со	6.10	26.73
		РМ	1.30	5.69
		PM ₁₀	1.23	5.41
		PM _{2.5}	1.21	5.29
		voc	0.94	4.12
		SO ₂	5.13	8.32
		H ₂ S	0.05	0.09
109	Vacuum Unit Heater (H- 1601) (8)	NO _x	19.68	68.96
	1001) (8)	СО	5.74	25.14
		PM	1.22	5.35
		PM ₁₀	1.16	5.08
		PM _{2.5}	1.14	4.98
		VOC	0.88	3.87
		SO ₂	4.82	7.82
		H ₂ S	0.05	0.08

125	Vacuum Preflash Heater (H-	NO _x	3.31	14.48
	1101) (8)	СО	1.18	5.17
		PM	0.25	1.10
		PM ₁₀	0.24	1.04
		PM _{2.5}	0.23	1.02
		VOC	0.18	0.80
		SO ₂	0.99	1.61
		H₂S	0.01	0.02
K501-04	Relief Gas Compressors (8)	NO _x	7.11	31.15
	(0)	СО	11.25	49.28
		PM	2.18	9.55
		PM ₁₀	2.07	9.07
		PM _{2.5}	2.03	8.88
		VOC	1.80	7.88
		SO ₂	0.01	0.04
97	Fire Water Pump (8)	NO _x	7.25	0.77
		СО	1.56	0.16
		PM	0.51	0.05
		PM ₁₀	0.51	0.05
		PM _{2.5}	0.51	0.05
		VOC	0.59	0.06
		SO ₂	0.48	0.05

XH-103	CPS Crude Heater	NO _x	6.65	29.13
	(H-103) (8)	СО	6.65	29.13
		РМ	1.42	6.20
		PM ₁₀	1.34	5.89
		PM _{2.5}	1.32	5.77
		VOC	1.02	4.49
		SO ₂	5.32	8.99
		H ₂ S	0.06	0.10
XF3902	Plant 39 Furnace (8)	NO _x	1.44	6.33
		СО	1.44	6.33
		PM	0.31	1.35
		PM ₁₀	0.29	1.28
		PM _{2.5}	0.29	1.25
		VOC	0.22	0.97
		SO ₂	1.21	2.13
		H ₂ S	0.01	0.02
111	FCCU (8)	NO _x	74.41	75.04
		СО	58.88	91.36
		PM	24.00	91.98
		PM ₁₀	24.00	91.98
		PM _{2.5}	24.00	91.98
		VOC	3.57	14.39
		SO ₂	33.65	52.21
		H ₂ SO ₄	3.96	15.18
		HCN	8.71	33.37

PK-853	North Wastewater Collection and Treatment	NO _x	0.88	3.87
	System Thermal Oxidizer	СО	0.54	2.38
	(8)	PM	0.05	0.22
		PM ₁₀	0.05	0.22
		PM _{2.5}	0.05	0.22
		VOC	0.07	0.30
		SO ₂	0.07	0.31
		H ₂ S	0.04	0.16
		Benzene	0.02	0.11
T-24	TK-024 (8)	VOC	0.41	0.01
T-61	TK-061 (8)	VOC	0.92	2.39
		Benzene	0.01	0.03
T-94	TK-094 (8)	VOC	0.75	1.86
		Benzene	0.02	0.02
T-120	TK-120 (8)	VOC	1.43	2.12
		Benzene	0.01	0.01
T-135	TK-135 (8)	VOC	0.75	0.17
		Benzene	0.01	0.01
T-138	TK-138 (8)	VOC	1.76	4.18
		H2S	0.02	0.06
T3601	TK-3601 (8)	VOC	0.80	2.49
		Benzene	0.01	0.03
41	TK-4114 (8)	VOC	4.82	15.95
		Benzene	0.07	0.20
50	TK-4117 (8)	VOC	1.34	3.04
		Benzene	0.03	0.04
T4270	TK-4270 (8)	VOC	0.83	0.20
		Benzene	0.01	0.01
T4272	TK-4272 (8)	VOC	1.86	1.30
		Benzene	0.01	0.02
T4273	TK-4273 (8)	VOC	1.86	1.30
		Benzene	0.01	0.01

TK-4274 (8)	voc	0.68	0.03
TK-4275 (8)	VOC	0.68	0.03
TK-4276 (8)	VOC	0.82	0.03
TK-4607 (8)	VOC	0.21	0.21
	Benzene	0.01	0.01
TK-525 (8)	VOC	0.09	0.05
TK-803 (8)	VOC	2.16	7.21
	Benzene	0.01	0.03
TK-804 (8)	VOC	1.92	6.41
	Benzene	0.01	0.03
DEATANK (8)	VOC	0.01	0.01
DEA Tank (8)	VOC	0.01	0.01
TK-4145 (8)	VOC	0.87	0.02
TK-3106 (8)	VOC	3.01	0.25
DHT Wax Cloud Tank (8)	VOC	0.01	0.01
Plant 38 Piping Fugitives	VOC	2.52	11.03
(5) (8)	H ₂ S	0.01	0.01
Plant 39 Fugitives (5) (8)	VOC	4.60	20.14
	H ₂ S	0.02	0.08
	Benzene	0.01	0.01
No. 6 Crude Unit Piping	VOC	9.30	40.71
Fugitives (5) (8)	H ₂ S	0.01	0.01
	Benzene	0.05	0.20
North 84 Plant Amine 1	VOC	1.00	4.37
and 2 Fugitives (5) (8)	H ₂ S	0.01	0.01
North Plant Utilities	VOC	3.42	14.97
Fugitives (5) (8)	H ₂ S	0.02	0.02
North API Separator	VOC	1.82	7.93
Fugitives (5) (8)	Benzene	0.02	0.02
	H ₂ S	<0.01	<0.01
	NH ₃	0.01	0.05
		0.0=	
	TK-4275 (8) TK-4276 (8) TK-4607 (8) TK-525 (8) TK-803 (8) TK-804 (8) DEATANK (8) DEA Tank (8) TK-4145 (8) TK-3106 (8) DHT Wax Cloud Tank (8) Plant 38 Piping Fugitives (5) (8) Plant 39 Fugitives (5) (8) No. 6 Crude Unit Piping Fugitives (5) (8) North 84 Plant Amine 1 and 2 Fugitives (5) (8) North Plant Utilities Fugitives (5) (8)	TK-4275 (8) VOC TK-4276 (8) VOC TK-4607 (8) VOC Benzene TK-525 (8) VOC TK-803 (8) VOC Benzene TK-804 (8) VOC Benzene DEATANK (8) VOC DEA Tank (8) VOC TK-3106 (8) VOC TK-3106 (8) VOC DHT Wax Cloud Tank (8) VOC Plant 38 Piping Fugitives (5) (8) VOC H ₂ S Benzene No. 6 Crude Unit Piping Fugitives (5) (8) WOC H ₂ S Benzene North 84 Plant Amine 1 and 2 Fugitives (5) (8) WOC H ₂ S North Plant Utilities Fugitives (5) (8) VOC H ₂ S North Plant Utilities Fugitives (5) (8) VOC H ₂ S North API Separator Fugitives (5) (8) VOC H ₂ S North API Separator Fugitives (5) (8) VOC Benzene H ₂ S North API Separator Fugitives (5) (8) WOC Benzene H ₂ S	TK-4275 (8) VOC 0.68 TK-4276 (8) VOC 0.82 TK-4607 (8) VOC 0.21 Benzene 0.01 TK-525 (8) VOC 0.09 TK-803 (8) VOC 2.16 Benzene 0.01 TK-804 (8) VOC 1.92 Benzene 0.01 DEATANK (8) VOC 0.01 DEA Tank (8) VOC 0.01 TK-4145 (8) VOC 0.01 TK-3106 (8) VOC 0.87 TK-3106 (8) VOC 0.01 Plant 38 Piping Fugitives (5) (8) Plant 39 Fugitives (5) (8) North 84 Plant Amine 1 and 2 Fugitives (5) (8) North API Separator Fugitives (5) (8) North API Separator Fugitives (5) (8) North API Separator Fugitives (5) (8) Response of the State of the

	(5) (8)			
LE-FUG LER Unit Fugitives (5) (8)	VOC	5.75	25.18	
	Benzene	0.26	1.12	
		H ₂ S	0.01	0.02
F-41	Rheniformer/NHT/LSR Splitter Fugitives (5) (8)	VOC	5.08	22.27
	Splitter Fugitives (3) (0)	Benzene	0.12	0.54
		H ₂ S	0.01	0.02
TNK-FUG	Tank Field Piping Fugitives (5) (8)	VOC	1.65	7.24
	(5) (6)	Benzene	0.02	0.09
		H ₂ S	<0.01	<0.01
F-8	South Poly Plant Fugitives	VOC	3.20	14.00
	(5) (8)	Benzene	0.15	0.62
		H ₂ S	0.01	0.01
F-9	Jet Fuel Treating Fugitives (5) (8)	VOC	1.04	4.54
F-5	Alkylation Fugitives (5) (8)	VOC	9.62	42.13
F-20S	Alky II Fugitives (5) (8)	VOC	3.90	17.07
W-2	South API Separator	VOC	0.75	3.27
	Fugitives (5) (8)	Benzene	0.01	0.01
F-23	South Utilities	VOC	2.79	12.18
	Fugitives (5) (8)	H ₂ S	0.01	0.01
F-19	Butamer Fugitives (5) (8)	VOC	3.21	14.06
F-11	FCCU Fugitives (5) (8)	VOC	8.69	38.04
		H ₂ S	0.01	0.02
		Benzene	0.10	0.41
F-1/2	CPS/DCU Fugitives (5) (8)	VOC	5.86	25.66
		H ₂ S	0.05	0.23
		Benzene	0.03	0.13
F-22	Merox III Fugitives (5) (8)	VOC	0.89	3.87
		Benzene	0.01	0.05
F-10 SP	Naphtha Merox Fugitives (5) (8)	voc	1.33	5.81
F-18	Vacuum Distillation Fugitives (5) (8)	voc	5.10	22.33

F-16S	Receiving, Pumping, and Shipping	VOC	2.24	9.82
Fugitives (5)	Fugitives (5) (8)	Benzene	0.02	0.08
		H ₂ S	<0.01	<0.01
FUG	Terminal Fugitives (5) (8)	VOC	<0.01	<0.01
		Benzene	<0.01	<0.01
		H ₂ S	<0.01	<0.01
F-84		VOC	0.96	4.19
	Fugitives (5) (8)	H ₂ S	0.02	0.06
F-14-5-6	5-6 Cooling Tower (5) (8)	VOC	0.78	3.41
		РМ	1.11	4.88
		PM ₁₀	0.31	1.37
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
F-14-7	7 Cooling Tower (5) (8)	VOC	0.34	1.47
		РМ	4.81	21.05
		PM ₁₀	1.35	5.90
		PM _{2.5}	<0.01	0.04
	Benzene	0.01	0.01	
F-14-8	8 Cooling Tower (5) (8)	VOC	1.09	4.76
		РМ	15.54	68.06
		PM ₁₀	4.35	19.07
		PM _{2.5}	0.03	0.12
		Benzene	0.01	0.01
F-14-9	9 Cooling Tower (5) (8)	VOC	0.48	2.11
		РМ	0.69	3.01
		PM ₁₀	0.19	0.84
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
F-21	Alky Cooling Tower (5) (8)	VOC	0.79	3.44
		PM	1.12	4.93
		PM ₁₀	0.32	1.38
		PM _{2.5}	<0.01	<0.01

	Ī			
		Benzene	0.01	0.01
F-7	F-7 Main Cooling Tower (5) (8	VOC	0.96	4.21
		PM	13.73	60.16
		PM ₁₀	3.85	16.86
		PM _{2.5}	0.02	0.10
		Benzene	0.01	0.01
PK-854	North Wastewater Collection and Treatment	voc	0.13	0.57
	System Carbon Canister	H ₂ S	0.01	0.01
	(8)	NH ₃	0.01	0.04
		Benzene	<0.01	0.01
98	98 South API Oil Water Separator (8)	voc	0.01	0.03
		H ₂ S	0.16	0.68
		NH ₃	0.01	0.06
		Benzene	<0.01	0.01
RHENSCRUB Rheniformer Ca Regeneration	Rheniformer Catalyst	HCI	0.09	0.02
	Regeneration	NOx	<0.01	<0.01
		СО	0.12	<0.01
		PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
PK-855	New North WWCTS	VOC	0.25	1.10
	Carbon Canister (8)	Benzene	<0.01	0.01
		H ₂ S	0.01	0.04
		NH ₃	0.03	0.14
			•	

Compliance Caps - Final (5)(8)		NOx	173.42	446.82
		PM	32.80	96.79
		PM ₁₀	32.48	96.53
			32.22	95.69
		VOC	106.55	480.61
			0.89	1.85
Individual Emission	Rate Limits			
		VOC	9.86	-
D-2914	Relief Gas North Main	NO _x	18.48	-
	Flare (6)	СО	46.20	-
		SO ₂	72.90	-
		H ₂ S	0.77	-
R-2911	Rheniformer Flare (6)	VOC	7.46	-
		NO _x	18.72	-
		СО	48.78	-
		SO ₂	0.01	-
		H ₂ S	0.77	-

D-2914/R-2911 North Main Flare/	voc	-	0.40	
	Rheniformer Flare (6)	NO _x	-	3.51
		СО	-	16.24
		SO ₂	-	0.47
		H ₂ S	-	0.01
112	Plant Emergency/AAG/Main	voc	0.43	1.90
	South Flare (7)	NO _x	0.05	0.23
		СО	0.24	1.03
		SO ₂	0.01	0.01
XF8801/2	Steam Reformer Heater F- 8801 Steam Reformer	voc	0.70	2.61
	Heater	NO _x	4.52	16.96
	F-8802	со	4.52	16.96
		PM	0.96	3.61
		PM ₁₀	0.91	3.43
		PM _{2.5}	0.89	3.36
		SO ₂	3.81	1.92
		H₂S	0.04	0.02
H2FUG	Hydrogen Plant Fugitives (5)	со	0.01	0.06
	(3)	VOC	0.04	0.18
		H₂S	0.01	0.01
XF4301	Reformate Splitter Reboiler Heater	VOC	0.24	0.99
	nealei	NO _x	1.58	6.44
		СО	1.58	6.44
		PM	0.34	1.37
		PM ₁₀	0.32	1.30
		PM _{2.5}	0.31	1.27
		SO ₂	1.21	1.97
		H₂S	0.01	0.02

Permit Number 18897 Page

Emission Sources - Maximum Allowable Emission Rates

MSS CAP Sitewide MSS Sources Excluding Flares	VOC	137.13	10.00	
	Excluding Flares	NO _x	2.38	9.98
		СО	208.65	11.00
		SO ₂	21.17	0.93
		PM	52.21	4.20
		PM ₁₀	52.21	4.20
		PM _{2.5}	52.21	4.20
		H₂S	0.31	0.01
D-2914/R-2911	North Flares [Including North Relief Gas Flare (EPN D-2914) and Rheniformer Flare (EPN R- 2911)]	VOC	92.90	10.16
		NO _x	41.24	9.81
		СО	164.24	30.55
		SO ₂	587.61	5.66
		H₂S	6.24	0.06
112	South Main Flare (MSS)	VOC	579.60	10.16
		NO _x	48.38	3.25
		СО	271.50	12.96
		SO ₂	1,471.87	23.27
		H ₂ S	15.64	0.25

XF4301	Heater Start-Up	VOC	0.24	1.00
		NO _x	2.75	0.13
		СО	15.87	0.76
		PM	0.34	1.38
		PM ₁₀	0.34	1.38
		PM _{2.5}	0.34	1.38
		SO ₂	1.21	1.97
		H₂S	0.01	0.02
F-90	MSAT Plant Fugitives	VOC	8.50	27.24
		Benzene	0.35	1.52
F-90MSS	Planned Routine MSS	voc	351.75	3.67
		PM	0.02	0.02
		PM ₁₀	0.02	0.02
		PM _{2.5}	0.02	0.02
D-2914/R-2911	D-2914/R-2911 North Main Flare/ Rheniformer Flare – MSAT (9)	VOC	70.67	0.57
		NO _x	6.99	0.10
		СО	50.48	0.72
		SO ₂	0.01	0.01
		H ₂ S	0.01	0.01
XF1013 Boiler F-1013	VOC	1.21	5.28	
		NO _x	2.87	12.57
		СО	10.04	43.99
		PM	2.45	8.13
		PM ₁₀	2.37	7.80
		PM _{2.5}	2.34	7.67
		SO ₂	7.58	12.28
		H ₂ S	0.08	0.14
		H ₂ SO ₄	0.70	1.13
		TRS	0.30	0.50
		NH ₃	1.29	5.66
XF1013MSS	Boiler F-1013 MSS	NO _X	34.43	1.65
		СО	200.86	9.64

XF1012	Boiler F-1012	VOC	0.49	2.13
		NO _x	0.90	3.94
		СО	3.15	13.80
		PM	0.67	2.94
		PM ₁₀	0.64	2.79
		PM _{2.5}	0.62	2.73
		SO ₂	0.05	0.23
		H ₂ S	<0.01	<0.01
		NH ₃	0.41	1.77
F-25_SPB	South Cat Gas Hydrotreater Fugitives	VOC	0.01	0.04
	Tryurotreater Fugitives	H₂S	<0.01	<0.01
		Benzene	<0.01	<0.01
CT-CDU6	No. 6 Crude Unit Auxiliary Cooling Tower	VOC	0.72	3.15
	Cooling Tower	PM	0.06	0.26
		PM ₁₀	0.02	0.07
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
CT-5301	Marketing Terminal Cooling Tower	VOC	0.14	0.59
		PM	0.01	0.05
		PM ₁₀	<0.01	0.01
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
NCMSSNCDU	North Crude Expansion Units MSS – NCDU	voc	1.10	0.01
NCMSSCPS	North Crude Expansion Units MSS – CPS	voc	0.12	<0.01
NCMSSLER	North Crude Expansion Units MSS – LER	voc	0.69	<0.01
NCMSSGP	North Crude Expansion Units MSS – SGT	voc	0.13	<0.01
NCMSSALKY	North Crude Expansion Units MSS – ALKY	voc	15.78	0.08
F-25	Aux Alky Cooling Tower #1	VOC	0.15	0.66
		PM	0.05	0.24
		PM ₁₀	0.02	0.07
		PM _{2.5}	<0.01	<0.01

1	I.		1	1
		Benzene	0.01	0.01
F-26	Aux Alky Cooling Tower #2	VOC	0.15	0.66
		PM	0.05	0.24
		PM ₁₀	0.02	0.07
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01
F-27	Aux Alky Cooling Tower #3	VOC	0.15	0.66
		PM	0.05	0.24
		PM ₁₀	0.02	0.07
		PM _{2.5}	<0.01	<0.01
		Benzene	0.01	0.01

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

 NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5}$, as represented - total particulate matter equal to or less than 10 microns in diameter, including $PM_{2.5}$, as represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

 $\begin{array}{lll} \text{CO} & - \text{ carbon monoxide} \\ \text{HCI} & - \text{ hydrochloric acid} \\ \text{H}_2\text{S} & - \text{ hydrogen sulfide} \\ \text{H}_2\text{SO}_4 & - \text{ sulfuric acid} \\ \text{NH}_3 & - \text{ ammonia} \\ \text{HCN} & - \text{ hydrogen cyanide} \\ \end{array}$

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Planned MSS activities described in Special Condition 50 and pilot emissions are authorized.
- (7) Only pilot emissions are authorized for these combustion sources.
- (8) Total emission rates from these emission points shall comply with compliance caps contained in this MAERT.
- (9) Represents emissions associated with flared releases from the Mobile Source Air Toxics (MSAT) Unit.

Date: Septe	mber 15, 2022
-------------	---------------