HPCC SYSTEMS MACHINE LEARNING

Machine Learning

Machine Learning is the study of computer algorithms that improve automatically through experience.

-- Tom Mitchell, 1997

Autonomous Vehicles

AlphaGo

Machine Learning in Daily Life

Machine Learning

- > Supervised
- Unsupervised

Supervised Learning

Machine Learning

- > Supervised
- > Unsupervised

Unsupervised Learning

HPCC Systems Machine Learning Library

Machine Learning Pipeline

Machine Learning

- > Regression
- > Classification
- > Clusering

NYC Taxi Data

48 GB 241M RECORDS JAN 2015 – JUN 2016 16 MONTH W/ WEATHER INFO

Machine Learning Pipeline

Set up Machine Learning environment

Machine Learning Workspace:

https://ide.hpccsystems.com/workspaces/share/4adff453-e8f7-4818-a7fd-1a82cfd0b21c

HPCC Systems Cluster: http://40.76.26.67:8010

Machine Learning – Task 1

Based on A_Read_Data.ecl:

- 1. How many records in the raw New York Taxi Trips dataset?
- 2. Which day has the most taxi trips?

Machine Learning Pipeline

Feature Engineer

Machine Learning – Task 2

Based on B_Feature_Enginner.ecl:

- 1. How many records in the engineered dataset?
- 2. How many taxi trips on July 4th, 2015?

Machine Learning Pipeline

Machine Learning Data Structures

Raw Dataset

а	a1	a2
b	b1	b2
С	c1	c2

TRANSFORM

ML_Core.ToField(ds1, ds2)

ML Dataset

a	a1
а	a2
b	b1
b	b2
С	c1
С	c2

ML_Core.Types.NumericTypes

ML_Core Bundle

- Prerequisite for all HPCC Systems production machine learning bundles
- Main attributes:
 - Definitions for common data types
 - ML_Core.Types
 - Data manipulation utilities
 - ToField()
 - Discretize()
 - Data examination
 - FieldAggregates(): min, max, mean, var, std
- ML_Core Bundle: https://github.com/hpcc-systems/ML_Core

Machine Learning – Task 3

Fix the error in C_Transform.ecl to correctly transform training data to NumericField format.

Machine Learning Pipeline

Linear Regression

```
enhancedData := D_Data_Enhancement.enhancedData;
//Transform to Machine Learning Dataframe, such as NumericField
ML_Core.ToField(enhancedData, train);
// split into input (X) and output (Y) variables
X := train(number < 4);</pre>
Y := train(number = 4);
//Training LinearRegression Model
1r := LROLS.OLS(X, Y);
//Prediction
predict := lr.predict(X);
OUTPUT(predict);
```

wi	id	number	value
1	1	1	1
1	1	2	3
1	1	3	0.001289982354828361
1	1	4	374040
1	2	1	1
1	2	2	1
1	2	3	0.05718114840201266
1	2	4	416962
1	3	1	1
1	3	2	2
1	3	3	0.008881908280789124
1	3	4	224097

ML Dataframe: NumericField

wi	id	number	value
1	1	4	383492.0584366489
1	2	4	358001.6615743856

Machine Learning – Task 4

Complete the tasks in D_Training.ecl to train a Linear Regression model


```
IMPORT ML Core;
IMPORT ML Core. Types AS Types;
IMPORT ML Core.Analysis AS Analysis;
IMPORT LinearRegression AS LROLS;
// Read training data
NFTrain := DATASET('~NCF2021::ML::NFTrain', Types.NumericField, FLAT);
// Independent and dependent split
trainInd := NFtrain(number < 5 );</pre>
trainDep := PROJECT(NFtrain(number = 5 ), TRANSFORM(Types.NumericField, SELF.number := 1, SELF := LEFT));
// Train Linear Regression model
m := LROLS.OLS(trainInd, trainDep);
NFTest := DATASET('~NCF2021::ML::NFTest', Types.NumericField, FLAT);
// Independent and dependent split
testInd := NFtest(number < 5 );</pre>
testDep := PROJECT(NFtest(number = 5 ), TRANSFORM(Types.NumericField, SELF.number := 1, SELF := LEFT));
// Predict with test data
result := m.Predict(testIND);
OUTPUT(result[1..100]);
// Evaluate model
evaluation := Analysis.Regression.Accuracy(result, TestDep);
OUTPUT(evaluation);
```

34

Machine Learning Pipeline

Machine Learning

- > Regression
- > Classification
- > Clustering

K-Means

Unsupervised Machine Learning (ML) algorithms

Automatically find the clusters/groups of the data without previous knowledge

Highly Scalable Parallelized for Big Data machine learning challenge

Applications

Claim\Customer segmentation

Image segmentation

Clustering gene expressions

K-Means

> KMEANS

- Most popular clustering method
- Highly Scalable Parallelized
- Parametric: K, Tolerance
- Sensitive to Initialization
- Spherical Clusters
- Sensitive to Outliers
- Curse of Dimensionality

Apply K-Means

Step 1 Import K-Means bundle

IMPORT KMeans as KM;

Step 2 Train K-Means Model

Model := KM.KMeans(Max_iterations,Tolerance).Fit(Samples, InitialCentroids));

Optional Required

Step 3 Predict the cluster index of the new samples (Optional)

Labels := KM.KMeans().Predict(Model, NewSamples);

Let's Play With The Code

DBSCAN

> DBSCAN

- Density-Based Clustering Metho
- Highly Scalable Parallelized
- Parametric: epsilon, minPoints
- Sensitive to Initialization
- Random Shapes Clusters
- Outliers Detection
- Sensitive to Density Variance
- Curse of Dimensionality

epsilon = 1.00 minPoints = 4

KMeans vs. DBSCAN

- Clusters Shape
- Cluster Size
- Model Parameters
- Number of Clusters (Fixed vs. Variable)
- Outlier Detection
- Curse of Dimensionality

DBSCAN

KMeans

Application Domains

Clustering Demographic/Geospatial Data

Recommendation System

Machine Learning – Task 5

Complete the code in DBSCAN_Clustering.ecl to train a DBSCAN model

Can you apply the Machine Learning models you just learnt to Flight Data?

More Information

- 1. Introduction of HPCC Systems Machine Learning Library
- 2. HPCC Systems Machine Learning Library on Github
- 3. Myriad Interface Tutorial
- 4. LearnECL

Q&A

Lili Xu Lili.xu@Lexisnexisrisk.com

