Building and Training Basic Neural Networks

Wolfram Research training@wolfram.com
© Wolfram Research, Inc.

Overview

Network Data

Neural networks are built up using tensors. So the first step is to convert different data types to tensors.

- Tensors
- Encoders and Decoders

Network Structure

- Layers
- Network Constructors

Network Training

This section focuses on training the networks in an optimized fashion.

- Basic Theory
- Loss Layers

Performing Logistic Regression on Real-World Data

- Basic Layers
- Network Construction
- Accuracy Estimation

LeNet Trained on Handwritten Digits

This section of the talk focuses on logistic regression using neural networks for classification and training the LeNet (Yann LeCun) on handwritten digits. For each of the examples, each layer, encoders/decoders and constructors are considered.

- Basic Layers
- Network Construction
- Accuracy Estimation

Network Data: Tensors

Ranks of Tensors

Tensors are multidimensional arrays.

■ Rank 1 (vectors): {0.0, 1.0}

■ Rank 2 (matrices): {{1.,2.,3.}, {3., 2., 1.}}

■ Rank-*n* tensors: {... {... {1., 2., 3.}...}...}

Examples of Tensors:

Vectors as coordinates of points:

Matrices as grayscale images:

■ Rank-3 tensors as a colored image:

 $= \left(\left(\begin{smallmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{smallmatrix} \right) \, \left(\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right) \, \left(\begin{smallmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{smallmatrix} \right) \, \right)$

Network Data: Encoders and Decoders

Class Encoders and Decoders

Encode the user-defined class (here the class of male and females):

```
In[*]:= enc = NetEncoder[{"Class", {"male", "female"}}]
Out[ \circ ]=  $Aborted
```

Use it to create the input tensor:

```
ln[●]:= enc[{"male", "female", "female"}]
Out[*]= {1, 2, 2}
```

Create the decoder for the same classes:

```
In[@]:= dec = NetDecoder[{"Class", {"male", "female"}}]
                                   Class
                         Type:
Out[*]= NetDecoder
                         Input:
                                   vector (size: 2)
```

Use a probabilistic approach to decode the output (make sure each of the tensors to be decoded follows the dimension specification of the decoder):

```
In[*]:= dec[{{1.9, 1.9}, {0.9, 0.7}}]
Out[*]= {female, male}
```

Image Encoder


```
\textit{ln[@]} := \texttt{enc} = \texttt{NetEncoder[\{"Image", ImageDimensions[image], ColorSpace} \rightarrow "Grayscale"\}]
                        Type:
Output:
                                          Image
Out[*]= NetEncoder
                                          array (size: 1×213×236)
In[*]:= encoded = enc[image];
ln[\bullet]:= dec = NetDecoder[{"Image", ColorSpace -> "Grayscale"}]
                        Type: Input:
                                        Image
Out[*]= NetDecoder
                                        array (rank: 3)
```

In[•]:= dec[encoded]

Layers

A neural network is a biologically inspired model and consists of "layers" in between the input and output tensors.

The implemented layers in the Wolfram Language $^{\mbox{\tiny TM}}$ are the following:

Layer Type	Layers
Basic Layers	LinearLayer ElementwiseLayer SoftmaxLayer
Elementwise Computation Layers	ElementwiseLayer ThreadingLayer ConstantTimesLayer ConstantPlusPlayer
Convolution and Filtering Layers	ConvolutionLayer DeconvolutionLayer PoolingLayer ResizeLayer SpecialTransformationLayer
Training optimization Layers	ImageAugmentationLayer BatchNormalizationLayer DropoutLayer LocalResponseNormalizationLayer InstanceNormalizationLayer
Structure Manipulation Layers	CatenateLayer FlattenLayer ReshapeLayer ReplicateLayer PaddingLayer PartLayer TransposeLayer
Array Operation Layers	ConstantArrayLayer SummationLayer TotalLayer AggregationLayer DotLayer
Recurrent Layers	BasicRecurrentLayer GatedRecurrentLayer LongShortTermMemoryLayer
Sequence-Handling Layers	EmbeddingLayer SequenceLastLayer SequenceReverseLayer SequenceMostLayer SequenceRestLayer SequenceAttentionLayer UnitVectorLayer

Network Constructors

NetChain

NetChain can be used to connect different layers in a chain-like fashion to create a neural net.

Create a simple chain performing logistic regression:

 $\textit{ln[•]} := \text{ net = NetChain[{LinearLayer[], ElementwiseLayer[LogisticSigmoid]}]}$

NetGraph

NetGraph can be used to connect different layers to create a graphical neural network.

Concatenating output from intermediate layers:

NetGraph[layer list, topology list: input(s)→outputs(s)]

 $ln[\@]:= \ \ \text{net} = \ \ \text{NetGraph}[\ \{\text{Ramp, LogisticSigmoid, CatenateLayer}[\]\}, \ \{1 \rightarrow 2, \ \{1, \ 2\} \rightarrow 3\}]$

NetPort

NetPort represents the specified port for a layer in a NetGraph or similar structure.

Creating a simple total NetGraph with two inputs:

lo[v]:= net = NetGraph[{Ramp, LogisticSigmoid, TotalLayer[]}, {NetPort["Input1"] \rightarrow 1, NetPort["Input2"] \rightarrow 2, {1, 2} \rightarrow 3}]

Network Training: Basic Theory

Neural Networks Learn on Training Data

- Neural networks are data-driven algorithms.
- You can think of training data as implicitly specifying a function, where training "tunes" a net to approximate this function.

Basic Theory

- Training a network finds a (local) optimum of the loss as a function of the learned parameters.
- To train one parameter x, the error or loss ε of the network is computed on subsets (batches) of the training data. The chain rule is used to backpropagate the error ϵ through the network.
- Updating the parameter $x \rightarrow x r \partial x$ is known as *gradient descent* with learning rate r. Here is an example that shows how the error (cost function) is minimized with respect to the two parameters, using gradient descent.

- The parameters of the network gradually converge on a local optimum, i.e. the error is minimized.
- In practice, more complicated update schemes like ADAM are used.

The aim of the training (optimization) is to:

- · Evaluate the vector of class scores f, that is a function of the initial weights and inputs, given, the dataset of pairs of input and class,
- · Minimize the loss function, L, which comprises of regularization loss and data loss.
- · The data loss computes the differences between the scores f and the labels y (given by Loss Layers in the Wolfram Language).
- The regularization loss is only a function of the weights or the parameters

So the question now is:

- a) How do we initialize the weights?
- b) What method to use for parameter updates?
- c) What hyperparameter to use?

NetInitialize

Answers a) How to initialize the parameters?

NetIntiailize[net] gives a net in which all uninitialized learnable parameters in net have been given initial values. By default, all methods initialize bias vectors to zero.

Possible settings for Method include:

"Xavier"	choose weights to preserve variance of random tensors propagated through affine layers
"Orthogonal"	choose weights to be orthogonal matrices
"Random"	choose weights from a given univariate distribution
"Identity"	choose weights so as to preserve components of tensor when propogated through affine layers

□ Random :

- · Initialize the weights of the neurons to small numbers to break symmetry.
- · Assures that they are unique
- You can separately initialize the weight matrices and vectors using the suboptions present

W ∝ RandomVariate[NormalDistribution[0,0.1/0.01]]

• For the method "Random", the following suboptions are supported:

"Weights"	NormalDistribution[0, 1]	random distribution to use to initialize weight matrices
"Biases"	None	random distribution to use to initializ€ vectors

Identity:

- In the above approach outputs from a randomly initialized neuron has a variance that grows with the number of inputs.
- · Normalize the variance of each neuron's output to 1 by scaling its weight vector by the square root of the number of inputs.
- · Initialize the net using the "Identity" method, which results in a net that attempts to preserve the components of tensors as they pass through

W \propto RandomVariate[UniformDistribution[-1/ $\sqrt{n_{in}}$,1/ $\sqrt{n_{in}}$]]

Xavier

W ∝ RandomVariate[UniformDistribution[-r,r]]

• For the method "Xavier", the following suboptions are supported:

"FactorType"	"Mean"	one of "In", "Out", or "Mean"
"Distribution"	"Normal"	either "Normal" or "Uniform"

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf (Xavier et.al)

Tanh: RandomVariate[UniformDistribution[-r,r]]; $r = \sqrt{\frac{6}{n_0 + n_{out}}}$

Sigmoid: RandomVariate[UniformDistribution[-r,r]]; $r = 4 \sqrt{\frac{6}{n_n + n_{out}}}$

https://arxiv.org/pdf/1502.01852v1.pdf (He. et.al)

ReLU: RandomVariate[UniformDistribution[-r,r]]; $r = \sqrt{\frac{2}{n_0}}$

- Orthogonal:
- · First initialize the weight matrix, then perform SingularValueDecomposition.
- W_{init} = RandomReal[{0,0.1}, {n,m}]; {W_{fin},w,v} = SingularValueDecomposition[W_{init}]; W_{fin} is your required weight

NetTrain: Methods

Answers b) What method to use for parameter update?

Stochastic Gradient Descent:

- □ Vanilla Update (not used in the Wolfram Language, here only for teaching purpose):
- · Update parameters in the negative direction of the gradient.
- Parameters x and the gradient dx, form used is: x += learning_rate * dx
- □ Momentum Update (not used in the Wolfram Language, here only for teaching purpose)::
- · Better convergence for rates on deep networks.
- The update has the form:
- $v = \mu * v learning rate*dx # integrate velocity$
- x += v # integrate position

Here we see an introduction of a v variable that is initialized at zero, and an additional hyperparameter μ , which is entered in the Wolfram Language (as Momentum)

• For the method "SGD", the following additional suboptions are supported:

"Momentum"

0.93

how much to preserve the I when updating the derivati

Nesterov Momentum Update: In this method of updating the momentum, we are looking one-step ahead, and as a result we have a little bit better guess for the step (SGD in Wolfram Language)

v_prev = v # back this up

 $v = \mu * v$ - learning_rate * dx # velocity update stays the same

x += - μ * v_prev + (1 + μ) * v # position update changes form

□ AdaGrad: http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

cache += dx**2

 $x += - learning_rate * dx / (Sqrt(cache) + \epsilon)$

The smoothing term ϵ (~1e-4 to 1e-8) avoids division by zero.

RMSProp: Geoff Hinton's Coursera class http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (Slide 29)

(RMSProp in Wolfram Language)

cache += Beta* cache + (1 - Beta) * dx**2

 $x += - Beta * dx / (Sqrt(cache) + \epsilon)$

Here, Beta is a hyperparameter and typical values are [0.9, 0.99, 0.999]

Adam: https://arxiv.org/pdf/1412.6980.pdf

(Adam in Wolfram Language)

m = Beta1*m + (1-Beta1)*dx

v = Beta2*v + (1-Beta2)*(dx**2)

 $x += - learning rate * m / (Sqrt(v) + \epsilon)$

Recommended values in the paper are ϵ = 1e-8, beta1 = 0.9, beta2 = 0.999

NetTrain: Regularization and Hyperparameter Optimization

Regularization

It refers to a process of introducing additional information in order to solve an ill-posed problem or to prevent over fitting. As a result of regularization, the total loss function gets modified to include the data loss as well as the regularization loss. There are different ways you can obtain regularization for your

neural networks:

- □ L2 Regularization:
- For all weighs ω in the network, we add the term $\frac{1}{2}\lambda$ ω^2 to the objective, where λ is the regularization strength.
- · Heavily penalizes peaky weight vectors and preferring diffuse weight vectors.
- Gradient and Weight Clipping
- Network Layers specific for regularization (e.g. DropoutLayer)

Hyperparameter Optimization

Neural networks training involve many hyperparameter settings. The most common hyperparameters include:

- the initial learning rate
- learning rate decay schedule (such as the decay constant)
- regularization strength (L2 penalty)

Certain aspects of hyperparameter optimization are:

Hyperparameter ranges: A typical sampling of the learning rate would look as follows: learning_rate = 10^UniformDistribution(-6, 1) Random Search: http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf It is better to search randomly than on grid.

In the Wolfram Language, the hyperparameters can be obtained from suboptions for methods:

■ Suboptions for specific methods can be specified using Method \rightarrow {"method", opt₁ suboptions are supported for all methods:

"LearningRate"	Automatic	the size of steps to take the derivative
"LearningRateSchedule"	Automatic	how to scale the learnir progresses
"L2Regularization"	None	the global loss associate of all learned tensors
"GradientClipping"	None	the magnitude above w should be clipped
"WeightClipping"	None	the magnitude above w be clipped

Loss Layers

Loss Layer Types

The loss layer specifies the functional form of loss to be computed, which measures the compatibility between a prediction (e.g. the class scores in classification) and the actual value of the label. The data loss takes the form of an average over the data losses for every individual example. In the iteration of training the network, this explicit loss function is minimized by tuning the parameters (via back propagation). The implemented loss layers are as follows:

• MeanAbsoluteLossLayer: represents a loss layer that computes the mean absolute difference between the "Input" port and "Target" port (Poisson type used for regression problem):

```
data = <|"Input" \rightarrow \{1, 2, 3\}, "Target" \rightarrow \{3, 2, 1\}|>; MeanAbsoluteLossLayer[][data]
       meanAbsoluteLoss = N[Mean[Flatten[Abs[#Input - #Target]]]] &;
       meanAbsoluteLoss[data]
Out[*]= 1.33333
Out[ ]= 1.33333
    • MeanSquaredLossLayer: represents a loss layer that computes the mean squared difference between the "Input" port and "Target" port
       (Gaussian type used for regression problem):
ln[@]:= data = <|"Input" \rightarrow \{1, 2, 3\}, "Target" \rightarrow \{3, 2, 1\}|>;
       MeanSquaredLossLayer[][data]
       meanSquaredLoss = N[Mean[Flatten[(#Input - #Target) ^2]]] &;
       meanSquaredLoss[data] // N
Out[ ]= 2.66667
Out[*]= 2.66667
```

• CrossEntropyLossLayer: represents a net layer that computes the information-theoretic distance by comparing probabilities with specified target values (used for classification problem):

```
In[@]:= ceLoss = -Total[#Target*Log@#Input] &; data = <|"Input" → {0.1, 0.2, 0.7}, "Target" → {0.1, 0.3, 0.6}|>;
      CrossEntropyLossLayer["Probabilities"][data]
Out[*]= 0.927095
Out[ ]= 0.927095
```

When a loss layer is chosen automatically for a port, the loss layer to use is based on the layer within the net whose output is connected to the port. For SoftmaxLayer and LogisticSigmoid, CrossEntropyLossLayer is chosen; for non-loss layers, MeanSquaredLossLayer is chosen. If a loss layer is specified, it is used unchanged.

Performing Logistic Regression with Real-World Data: Basic Layers

LinearLayer

A LinearLayer is essentially an affine transformation $x \to Ax + b$, where A is the "weight matrix" and the vector b is the "bias vector". This type of layer has a lot of parameters, and hence is used toward the end of the network (after the dimensions of the tensor have been reduced). To understand the LinearLayer, it is easiest to construct a net with a single LinearLayer, which is solving a simple linear approximation:

```
ln[\circ]:= data = \{2, 10, 3\};
        layer = NetInitialize@LinearLayer[2, "Input" → 3]
        laver[data]
                                                       vector (size: 3)
Out[ • ]= LinearLayer
                                                       vector (size: 2)
Out[\circ]= {7.08937, -4.08089}
 \label{eq:linear_data_point} \textit{linear[data\_, weight\_, bias\_] := Dot[weight, data] + bias}
```

```
In[•]:= linear[data, NetExtract[layer, "Weights"], NetExtract[layer, "Biases"]]
                           Type: Real32
                                                                                Type: Real32
Out[ ]= NumericArray
                                               .{2, 10, 3} + NumericArray
                           Dimensions: {2, 3}
                                                                                Dimensions: {2}
```

ElementwiseLayer

The **ElementwiseLayer** applies a unary function f to every element of the input tensor. The function f is referred to as the activation function in the literature; commonly used activation functions are LogisticSigmoid, Tanh and Ramp (Rectified Linear Unit, ReLU):

```
|n[•]:= Row[Table[
        \{min, max\} = \{-1, 1\} * If[f === Ramp, 1, 3];
        Plot[f[x], {x, min, max}, PlotLabel → f, ImageSize → 300, Frame → True, PlotRange → {{min, max}, {-1, 1}}, AspectRatio → 0.5,
         FrameTicks → {{{-1,0,1},{}}, {{min,0,max},{}}}], {f, {LogisticSigmoid, Tanh, Ramp}}], Spacer[180]]
```



```
In[@]:= elem = ElementwiseLayer[Tanh]; data = RandomReal[{0, 10}, 10];
        elem[data]
\textit{Out}[\ @] = \ \{0.999993, \ 0.969795, \ 0.999623, \ 1., \ 0.999935, \ 0.998672, \ 1., \ 0.999306, \ 0.9942, \ 0.999992\}
```

As expected, it applies **Tanh** to the data:

```
In[@]:= Tanh[data]
\textit{Outf} \texttt{0} \texttt{1=} \texttt{ \{0.999993, 0.969795, 0.999623, 1., 0.999935, 0.998672, 1., 0.999306, 0.9942, 0.999992\} }
```

SoftmaxLayer

The softmax classifier takes an input (a vector) and returns normalized class probabilities. The element x_i in a vector is converted to $e^{x_i}/\sum_i e^{x_i}$, and generally the innermost dimension is used as the normalization dimension.

Apply the SoftmaxLayer on a list of random data to get probabilistic interpretations. On a list:

```
ln[•]:= data = RandomReal[{0, 10}, 10]
       SoftmaxLayer[]@data
       Total@SoftmaxLayer[]@data
Outf = \{0.721154, 1.09536, 5.24204, 1.68959, 2.11553, 8.23392, 7.36807, 4.38206, 7.98477, 7.07688\}
\textit{Out[o]} = \{0.000210757, \, 0.000306407, \, 0.0193722, \, 0.000555099, \, 0.00084987, \, 0.385954, \, 0.162368, \, 0.00819771, \, 0.300835, \, 0.12135\}
Out[ • ]= 1.
```

See what SoftmaxLayer is actually evaluating by using the functional approach:

```
ln[@]:= fsoftmax[x_] := N@Exp[x] / Total[Exp[x], {-1}];
       fsoftmax[data]
       Total@fsoftmax[data]
\textit{Out[o]} = \{0.000210757, 0.000306407, 0.0193722, 0.000555099, 0.00084987, 0.385954, 0.162368, 0.00819771, 0.300835, 0.12135\}
Out[ • ]= 1.
```

Performing Logistic Regression with Real-World Data: Constructing the Network

This example uses the Titanic dataset to perform logistic regression with both categorical and numerical input data. The dataset contains information for the passengers traveling on the Titanic: the class of travel, their age, their gender and if they survived or not.

Get the data from the Wolfram server, delete incomplete entries, and split the data into a training and a test dataset:

 $ln[\bullet]:=$ titanicdata = ExampleData[{"Dataset", "Titanic"}]; titanicdata = DeleteMissing[titanicdata, 1, 2]; {trainingData, testData} = TakeDrop[RandomSample@titanicdata, 800]

		class	age	sex	survived
		1st	58	male	False
		3rd	25	male	False
		2nd	26	male	True
		2nd	36	male	False
		2nd	47	male	False
		1st	28	female	True
		2nd	19	male	False
		2nd	55	female	True
		2nd	3	male	True
		3rd	28	male	False
Out[@]= {		3rd	19	male	False
		2nd	29	female	True
		3rd	31	male	False
		1st	61	male	False
		3rd	3	female	False
		1st	27	male	True
		3rd	21	female	False
		1st	42	male	False
	3rd	20	male	False	
	3rd	9	female	False	

class	age	sex	survived
3rd	35	male	False
1st	21	female	True
3rd	21	male	False
3rd	41	male	False
3rd	19	male	False
1st	31	female	True
3rd	37	male	False
3rd	21	male	False
3rd	19	male	False
1st	54	female	True
2nd	39	male	False
3rd	40	male	False
3rd	32	male	False
2nd	33	male	False
2nd	29	male	False
2nd	40	female	True
2nd	8	male	True
2nd	20	female	True
1st	37	male	False
3rd	25	male	True

In the next step, encoders for each of the features are created: class (with 3 values), sex (with 2 values) and survived can use the built-in Boolean encoder:

```
ln[*]:= classEncoder = NetEncoder[{"Class", {"1st", "2nd", "3rd"}, "UnitVector"}]
      genderEncoder = NetEncoder[{"Class", {"male", "female"}, "UnitVector"}]
                                   Class
                        Type:
                    Output:
Out[*]= NetEncoder
                                   vector (size: 3)
                     Type:
Output:
                                   Class
Out[ • ]= NetEncoder
                                   vector (size: 2)
```

Combine all the input from the different class encoders, label the input ports, and connect to the first layer:

```
ln[*]:= net1 = NetGraph[{CatenateLayer[]}, {{NetPort["class"], NetPort["age"], NetPort["sex"]} \rightarrow 1},
         "class" → classEncoder, "age" → "Scalar", "sex" → genderEncoder]
                             Number of inputs:
Out[*]= NetGraph
                                Output port:
                                                     vector (size: 6)
```

In the second step, the layers that perform the logistic regression are added. Take the already existing NetGraph that was built for inputting the layers and add the necessary layers for logistic regression. Connect the LogisticSigmoid to the appropriate decoder so that it outputs a Boolean to indicate if the passenger survived or not:

ln[@]:= net2 = NetGraph[{net1, LinearLayer[], LogisticSigmoid}, {1 → 2 → 3 -> NetPort["survived"]}, "survived" → "Boolean"]

Performing Logistic Regression with Real-World Data: Training, Predicting and **Accuracy**

Train the network using NetTrain. MaxTrainingRounds is specified as an option to specify how many times the data is revisited. As the training progresses, you can see the training progress report that shows the update and displays the error function:

<code>/n[•]:= trained = NetTrain[net2, trainingData, MaxTrainingRounds → 1000]</code>

 $\textit{ln[@]:=} \quad \textbf{Export[FileNameJoin[{NotebookDirectory[], "trained.wlnet"}], trained]}$

 $\textit{Out}[\, \bullet \,] = \, \, / \texttt{Users/robertjfrey/Documents/Work/Stony} \,\, \texttt{Brook}$ University/AMS/QF/public_html/Instruction/Spring2020/AMS512/Class09/trained.wlnet Once the network is trained, you can enter the input features for fictitious passengers and find the probability for their survival:

```
{trained[<|"class" → "3rd", "age" → 30, "sex" → "male"|>], trained[<|"class" → "3rd", "age" → 30, "sex" → "male"|>, None]}
Out[ ]= {True, 0.945925}
Out[ ]= {False, 0.0728203}
```

You can take a further step and plot the probability of survival with age for all the variations in class and gender:

```
\ln[*]:= p[class_, age_, sex_] := trained[<|"class" -> class, "age" -> age, "sex" -> sex|>, None];
      Plot[{p["1st", x, "female"], p["2nd", x, "female"], p["3rd", x, "female"],
        p["1st", x, "male"], p["2nd", x, "male"], p["3rd", x, "male"]\}, \ \{x, 0, 100\},
       PlotLegends → {"female, 1st class", "female, 2nd class", "female, 3rd class", "male, 1st class",
          "male, 2nd class", "male, 3rd class"}, Frame → True, FrameLabel → {"age (years)", "survival probability"}]
         0.8
                                                                                         female, 1st class
         0.6
                                                                                          female, 2nd class
                                                                                         female, 3rd class
                                                                                         male, 1st class
                                                                                         male, 2nd class
         0.2
                                                                                         male, 3rd class
         0.0
                          20
                                       40
                                                    60
                                                                  80
                                                                               100
                                           age (years)
```

Assess the accuracy of the network by testing it against the test dataset created. Compare the accuracy with the built-in Classify function:

```
ln[\bullet]:= cm = ClassifierMeasurements[trained, testData \rightarrow "survived", "Accuracy"]
Out[ • ]= 0.784553
In[♠]:= cf = Classify[trainingData → "survived"];
       ClassifierMeasurements[cf, testData → "survived", "Accuracy"]
Out[*]= 0.776423
```

LeNet explained

LeNet is a simple convolution network that performs feature extraction that can be used to classify an image:

```
NetChain[
(*STEP 1: FETAURE EXTRACTION*)
(*FIRST CONVOLUTION BLOCK*)
ConvolutionLayer[20,3],
                            (*first convolution => 20 feature images*)
ElementwiseLayer[Ramp],
                            (*activation function (ReLU) => non-linearity, sparsity*)
(*FIRST POOLING BLOCK*)
                           (*max pooling => downsampling*)
PoolingLayer[2,2],
(*SECOND CONVOLUTION BLOCK*)
ConvolutionLayer[50,3],
                          (*second convolution => 50 feature images*)
ElementwiseLayer[Ramp],
                           (*activation function (ReLU) => non-linearity, sparsity*)
(*SECOND POOLING BLOCK*)
PoolingLayer[2,2],
                           (*max pooling => downsampling*)
FlattenLayer[],
                            (*flattening => images to vector*)
(*STEP 2: COMPUTING CLASS PROBABILITY*)
(*FULLY-CONNECTED BLOCK 1*)
LinearLayer[500],
                         (*first fully connected layer => feature vector from image features*)
ElementwiseLayer[Ramp], (*activation function (ReLU) => non-linearity, sparsity*)
(*FULLY-CONNECTED BLOCK 2*)
LinearLayer[10],
                          (*second fully connected layer => class prediction*)
(*PROBABILITY COMPUTATIONS*)
SoftmaxLayer[]
                            (*normalization*)
},
"Input" \rightarrow NetEncoder[{"Image", {32, 32}}], (*encoder => image to tensor*)
"Output" → NetDecoder[{"Class", classes}] (*decoder => tensor to class*)
];
```

LeNet: Network Training (with Options and Properties)

Network Data

In this example, LeNet is trained on the handwritten digits from the MNIST database. In the Wolfram Language database, the digits are classified into training and test datasets. ResourceData can be used to access the data:

```
ln[•]:= trainingData = ResourceData[ResourceObject["MNIST"], "TrainingData"];
       testData = ResourceData[ResourceObject["MNIST"], "TestData"];
In[*]:= trainingData[[1]]
Out[\circ] = \bigcirc \rightarrow 0
```

Constructing the Network

```
/// In[*]:= lenet = NetChain[{
          ConvolutionLayer[20, 5], Ramp, PoolingLayer[2, 2],
          ConvolutionLayer[50, 5], Ramp, PoolingLayer[2, 2],
          FlattenLayer[], 500, Ramp, 10, SoftmaxLayer[]},
         "Output" → NetDecoder[{"Class", Range[0, 9]}],
         "Input" → NetEncoder[{"Image", {28, 28}, "Grayscale"}]
                                Input port:
                                               image
Out[ ]= NetChain
                                Output port:
                                               class
```

Training the Network, with Various Options

Train the network now on the training data (with different options to make the process faster):

If a simple **NetTrain** is performed, you will see that the training takes approximately 40 minutes:

Try to improve the speed by changing the number of MaxTrainingRounds to 2 (reduces training time by a factor of 5) and changing the BatchSize, which in turn improves the number of inputs per second:

| Info|:= trained = NetTrain[lenet, trainingData, MaxTrainingRounds → 2, BatchSize → 512]

Finally, if you have a GPU, the training goes much faster; in this case the training completes in 20s:

trained = NetTrain[lenet, trainingData, MaxTrainingRounds → 2, BatchSize → 512, TargetDevice → "GPU"]

Obtaining Different Properties

In[@]:= cm = ClassifierMeasurements[trained, testData]

/n[*]:= cm["ConfusionMatrixPlot"]

predicted class

/n[@]:= cm["Accuracy"]

Out[*]= 0.9533

In[*]:= result = NetTrain[lenet, trainingData, {"LossEvolutionPlot", "RMSGradientsEvolutionPlot", "RMSWeightsEvolutionPlot"}, MaxTrainingRounds → 2, BatchSize → 512];

// In[●]:= Column@result

Exporting a Trained Net

Export["trainedLenet.wlnet", trainedLenet]

Out[*]= testnet.wlnet

trained = Import["trainedLenet.wlnet"]

Glossary

BatchSize	CatenateLayer	CellAnnotation	Class	ClassifierMeasureme: nts
Classify	ColorSpace	ConfusionMatrixPlot	ConvolutionLayer	DeleteMissing
Dot	ElementwiseLayer	ExampleData	Exp	Flatten
FlattenLayer	Frame	FrameLabel	Image	ImageDimensions
Input	LinearLayer	LogisticSigmoid	LossEvolutionPlot	MaxTrainingRounds
Mean	MeanAbsoluteLossL [∴] . ayer	MeanSquaredLossLa [·] . yer	N	NetChain
NetDecoder	NetEncoder	NetExtract	NetInitialize	NetPort
Output	Plot	PlotLegends	PoolingLayer	Ramp
RandomReal	RandomSample	ResourceData	ResourceObject	RMSGradientEvoluti ⁻ . onPlot
RMSWeightEvolution: Plot	SoftmaxLayer	TakeDrop	Tanh	Target
TargetDevice	Total	TotalLayer		