Vlad Predovic

CS325

Due 4/03/2016

Homework 1

1)

Insertion sort: $\frac{8n *}{n}$ n steps Merge sort: $\frac{64n}{n}$ $8* \log_2(n)$ steps

Python Solution:

>>> num1=2 >>> num2=3

>>> while num2 > num1:

... num1 += .1

... num2 = math.log(num1, 2)*8

>>> num2

43.57004983911661

>>> num1

43.60000000000035

Therefore n can be a maximum of 43(if Integer). Merge sort becomes more efficient at higher numbers due to having a logarithmic complexity.

2)

Column1 🔻	1 sec	1 min 🔻	1 hr	1 day	1 mo 🔻	1 yr	1 century
lg n	2^1E6	2^60E6	2^3600E6	2^86400E6	2^2592000E6	2^31104000E6	2^3110400000E6
sqrt(n)	1E+12	3.6E+15	1.296E+19	7.46496E+21	6.71846E+24	9.67459E+26	9.67459E+30
n	1000000	60000000	3600000000	86400000000	2.592E+12	3.1104E+13	3.1104E+15
n lg(n)	62746	2801418	133378058.9	2755147513	71870856404	7.8709E+11	6.76995E+13
n^2	1000	7745.966692	60000	293938.7691	1609968.944	5577096.019	55770960.19
n^3	100	391.4867641	1532.618865	4420.837798	13736.57091	31448.89673	145972.8479
2^n	19.93156857	25.83845916	31.74534976	36.33031226	41.23720286	44.82216536	51.46602155
n!	9	11	12	13	15	16	17

$$T(n) = \begin{cases} 2 & \text{if } n = 2, \\ 2T(n/2) + n & \text{if } n = 2^k, \text{ for } k > 1 \end{cases}$$
is $T(n) = n \lg n$.

For all n,k in \mathbb{N} that are an exact power of 2, T(n) = nlgn.

Base Case: When $n = 2 \rightarrow 2 \lg(2) = 2*1 = 2$

Assume T(n)= nlogn when $n=2^k$ then for a given number k: If $n=2^{k+1}$ then

$$T(2^{k+1}) = 2T(2^{k+1}/2) + 2^{k+1} = 2T(2^{k} + 2/2) + 2^{k+1} = 2T(2^{k}) + 2^{k+1}$$

$$T(2^{k+1}) = 2*2^{k}(log(2^{k})) + 2^{k+1}$$
$$= 2^{k+1}(log2^{k} + 1)$$
$$= 2^{k+1}(log2^{k+1})$$

4)

a.
$$f(n) = n^{0.75}$$
; $g(n) = n^{0.5}$ \rightarrow $f(n) = \Omega(g(n))$

since .75 > .5 and it is known that for example n^3 will always we greater than n^{3-x} for all positive numbers n and x, we can assume that f(n) will at the very least grow as fast as g(n) when n is greater than 1.

b.
$$f(n) = n$$
; $g(n) = \log^2 n$ \rightarrow $f(n) = \Omega(g(n))$

Linear will always be equal to or slower than logarithmic after a set constant c=1

c.
$$f(n) = \log(n)$$
; $g(n) = \lg(n)$ \rightarrow $f(n) = \Theta(g(n))$

When speaking asymptotically, the base of logarithms is irrelevant. This is because of the identity log_a b log_b n = log_a n

d.
$$f(n) = e^n$$
; $g(n) = 2^n \rightarrow f(n) = \Omega(g(n))$

The value of e is approximately 2.7. This will always be greater than 2 therefore at best f(n) will increment at a speed equal to g(n)

e.
$$f(n) = 2^n$$
; $g(n) = 2^{n-1}$ \rightarrow $f(n) = \Theta g(n)$
 $2^{n-1} = 2^n/2$ $O(2^n/2) = 2^n$ as it only differs by a constant/

```
f. f(n) = 2^n; g(n) = 2^{2^n} \rightarrow f(n) = O(g(n))

For all n greater than 1 \ 2^n > n since 2^n > 2*n > n. Therefore f(n) at worst will equal g(n).

g. f(n) = 2^n; g(n) = n! \rightarrow f(n) = O(g(n))
\lim_{n \to \infty} \frac{2^{2^n}}{n!} = 0, \text{ therefore } 2^n \text{ is bounded above by } n!

h. f(n) = n \log n; g(n) = n \sqrt{n} \rightarrow f(n) = O(g(n))

\lim_{n \to \infty} \frac{2^{n}}{n!} = 1/n \text{ while } \sqrt{n} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!} = 1/n \text{ while } \sqrt{n} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!} = 1/n \text{ while } \sqrt{n} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!} = 1/n \text{ while } \sqrt{n} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!} = 1/n \text{ while } \sqrt{n} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!} = 1/n \text{ while } \sqrt{n} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!} = 1/n \text{ while } \sqrt{n} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!} = 1/(2\sqrt{n})
\lim_{n \to \infty} \frac{1}{n!
```

5)

This algorithm needs to determine if there are two numbers in a set S that equal another number X with a time complexity of O(nlogn).

I first use a Mergesort which has a worst case time complexity of O(nlogn) satisfying the requirements.

In order to create this algorithm I nested a search algorithm within an outer loop that would iterate through the set with a complexity of O(n). The algorithm inside this loop would then search for the corresponding number that when summed with the first number. For this I used the binary search. My codeish pseudocode can be found below..

S = {3, 4, 7, 11, 12, 15} after Mergesort.

Step through each number in the array.

For 3 → binary search for 20-3 (17)

Not found, proceed to next

number at next index in array.

For 4 → search for 20-4 (16)

Not found

For 7 → search for 20-7 (13)

Not found

Repeat.......

Loop ends without a match.
Function returns false as no two numbers equaling 20 were found.

Let f_1 and f_2 be asymptotically positive functions. Prove or disprove each of the following conjectures. To disprove give a counter example.

a. If
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$ then $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$.

b. If
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$, then $\frac{f_1(n)}{f_2(n)} = O\left(\frac{g_1(n)}{g_2(n)}\right)$

c.
$$\max(f_1(n), f_2(n)) = \Theta(f_1(n) + f_2(n)).$$

a. Applying the rule of sums results in:

Let
$$f_1(n) = O(g_1(n))$$
 and $f_2(n) = O(g_2(n))$

There exist constants c1,c2>0 where $0 \le f_1(n) \le c1 g_1(n)$ and $0 \le f_2(n) \le c2 g_2(n)$

There must exist a constant c3 where $(f_1(n) + f_2(n)) \le c3(g_1(n) + g_2(n))$ for all positive integers greater than a given n_0 .

$$\begin{split} f_1(n)+f_2(n)) &\leq c1g_1(n)+c2g_2(n)) \\ f_1(n)+f_2(n)) &\leq c3(g_1(n)+g_2(n)) \text{ satisfies the formal definition below} \\ \hline f(n) &= O(g(n)) & \exists c>0, \ \exists n_0, \ \forall n>n_0, f(n) \leq c \cdot g(n) \end{split}$$

$$\begin{array}{ll} \text{b.} & f_1(n)=n^2 \text{ and } f_2(n)=n. \ \ g_1(n)=n^3 \text{ and } g_2(n)=n! \\ & \lim_{n\to\infty}\frac{n^{\wedge 2}}{n}=\infty \ \ \text{while } \lim_{n\to\infty}\frac{n^{\wedge 3}}{n!}=0 \\ \\ \text{Therefore } & \frac{f_1(n)}{f_2(n)}\neq O(\frac{g_1(n)}{g_2(n)}) \text{ so this is false} \end{array}$$

c. To prove this conjecture we first assert the following statements

$$f(n) \le \max(f(n), g(n)) \qquad \qquad g(n) \le \max(f(n), g(n))$$

Therefore it can be said that: $(f(n)+g(n))/2 \le \max(f(n),g(n))$

Due to the properties of max it can also be stated that since both f(n) and g(n) are positive functions $\max(f(n),g(n)) \le 1(f(n)+g(n))$

If substituted h(n) = f(n) + g(n)

Then it can be concluded that $c1(h(n)) \le max(f(n),g(n)) \le c2(h(n))$

Where $c1 = \frac{1}{2}$ and c2 = 1

This satisfies the formal definition given below for the class $f(n) = \Theta(g(n))$

$$\exists c_1, c_2 > 0$$
, $\exists n_0, \forall n > n_0, c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$

For my data I found very aggressive differences in running times. The recursive function fit best with an

exponential graph while the iterative Fibonacci function fit best with a linear graph. The running times are so different due to the algorithmic complexity of each version.

In the iterative version there is one loop in which three constant time actions are performed. This ultimately results in a linear time complexity as shown by the data.

In the recursive version, every time a call to the

Data Points	Iterative	Recursive
20	0	0.003000021
30	0	0.368999958
40	0	46.28600001
50	0	490.2334
400	0	
4000	0.001999855	
40000	0.242000103	
400000	23.03499985	

function is made it spawns two additional functions until an end case is met. Since in each step we call the function twice the result is a complexity of $O(t) = 2^n$ which is incredibly slower than the linear counterpart.

```
import time
```

```
def fiboIterative(x):
       num1 = 0
       num2 = 1
       temp = 0
       if x == 0:
               return 0
       elif x == 1:
               return 1
        else:
               for i in xrange(2, x):
                       temp = num2
                       num2 += num1
                        num1 = temp
        return num2
def fiboRecursive(x):
       if x == 0:
               return 0
       elif x == 1:
               return 1
        else:
               return fiboRecursive(x-1) + fiboRecursive(x-2)
def in_the_forest(duck):
```