Exercise 6.62

Let \(\xi \cdot \xi \xi \xi \xi \ze \) and \(\xi \cdot \xi \xi \xi \ze \) independent CTMCs with the common generator A.

We then form $\{2t\}$ to as $Z_t = X_t + X_t$. As X_t , $X_t \in \{0,1\}$, the state space of $\{2t\}$ must be $S = \{0,1,2\}$. To obtain the generator, Q, of $\{2t\}$, we formally write:

902 = lim P(Zt+h=2/Zt=0)/h

= \im P(Xth=1, Xth=1 | Xt=0, Xt=0)/h.

Due to the independence of Ext's and Ext's we get

902 = lim P(Xt+h=1|Xt=0)P(Xt+h=1|Xt=0)/h h→0

- = lim (\lambda h + o(h))(\lambda h + o(h)) (h
- = $\lim_{h\to 0} (\lambda^2 h^2 + 2ho(h) + o(h))/h$
- = $\lim_{h\to 0} (\chi^2 h + 2h \cdot o(h)/h + o(h)/h)$

= 0

Similarly,

- = lim P(Xtru + Xtru = 1 | Xt + Xt = 0) (h
- = lim P(x+4=1, X+4=0 (X+=0, X+=0)/h
- + lim P(X++=0, X++=1|X+=0, X+=0)/h
- = lim P(X++ = 1 | X+ = 0)P(X++ = 0 | X+ = 0)/h
- + lim P(X++y=0|X+=0)P(X++y=1|X+=0)/h.

Due to the symmetry of Exis and Exis.

$$=2\lambda$$

And thus, goo = - (gor + goz) = - 2).

Continuing this way, we get

$$Q = \begin{bmatrix} -2\lambda & 2\lambda & 0 \\ \mu & -(\mu+\lambda) & \lambda \\ 0 & 2\mu & -2\mu \end{bmatrix}$$

We now find the transition probability matrix, P(t), by using eq. (6.67). The formula is substantially easier to use, whenever a is diagonalizable. Thus, we find the eigenvalues as the roots of the characteristic polynomial P(x).

$$p(x) = \det(Q - xI)$$

= $-x^3 - 3x^2(\lambda + \mu) - 2x(\lambda^2 + \mu^2) - 4x\lambda\mu$,

which yields the eigenvalues

$$x_1 = 0, x_2 = -(\lambda + \mu), x_3 = -2(\lambda + \mu)$$

All roots have algebraic multiplicity one, which implies that the associated eigenvectors have geometric multiplicity one. Consequently, the eigenvectors are linearly independent. By the diagonalization theorem we can conclude that Q is diagonalizable.

Exercise 6.6.2

Furthermore, the theorem states that

where S consists of the eigenvectors of Q, and $\Delta = \text{diag}(x_0, x_1, x_2)$. Thus,

$$S = \begin{pmatrix} 1 - \frac{\lambda}{\mu} & (\frac{\lambda}{\mu})^{2} \\ 1 - (\frac{\mu+\lambda}{2\mu} - \frac{\lambda}{\mu}) & (S_{22} = -\frac{(\lambda-\mu)}{2\mu}) \\ 1 & 1 \end{pmatrix}$$

Hence,

$$P(t) = e^{Qt} = e^{SAtS^{-1}} = Se^{\Delta t}$$

Now, the matrix-exponential of a diagonal matrix is simply a diagonal matrix with the elements exponentiated, i.e. $e^{\pm i} = diag(e^{\pm i}, e^{\pm i}, e^{\pm i})$.

We shall not write out P(t).