Chapitre : Nombres

I. <u>Ensemble de nombres</u>	回溯傳教
Définition 1 :	
Les	sont les nombres 0, 1 , 2, 3 , 100, etc .
L'ensemble des	
est noté	
Exemple :	
<u>Définition 2 :</u>	
Less	sont les nombres, -3 , -2 , -1 , 0 , 1 , 2 , 3 ,
L'ensemble des	est donc formé des entiers
	, il est noté
Remarque 1 : Tout entier naturel est donc un e	entier
Définition 3 : Soit p un entier relatif et n un en	tier naturel
Lessort	
L'ensemble des	
Exemples: 2,28 est un nombre décimal car 2,2	$28 = \frac{100}{100} = \frac{10^2}{10^2}.$
$\frac{2}{5}$ est un nombre décimal aussi car $\frac{2}{5} = \frac{4}{10}$	
Mais:	
Propriété 1 : $\frac{1}{3}$ ≈ 0,33333	·
Remarque 2 :	
On peut voir les nombres décimaux comme de	es nombres « »
avec un nombre fini de chiffres après la virgule	2.
Remarque 3 : Un entier relatif est un nombre	.
$\underline{ \text{D\'efinition 4:} } \text{Soit } p \text{ un entier relatif et } q \text{ un en}$	tier naturel non nul.
_	sont des nombres de la
forme:	
L'ensemble des	est noté
Nous étudierons plus précisément ce chapitre d	dans le chapitre Arithmétique
Remarque 4 : Un nombre décimal est un nomb	

Définition 5 : L'ensemble des abscisses des profession l'ensemble des nombres	
Remarque 5 : L'ensemble des nombres réels	est l'ensemble des nombres que l'on utilise.
Remarque 6 : Un nombre rationnel est un no	ombre
<u>Définition 6 :</u> Un nombre réel qui n'est pas rationnel est di	it
Exemple: π , $\sqrt{2}$, 3 ne sont pas rationnels.	
II. <u>Symbole</u>	
 ∈ se lit « appartient à », ∉ se lit « n'appar ⊂ se lit « est inclus dans », ⊄ se lit « n'est ℝ* est l'ensemble ℝ privé de zéro. (et de ℝ₊est l'ensemble des réels positifs (avec strictement positifs. ℝ₋ est l'ensemble des réels négatifs (ave strictement négatifs. Ø signifie « ensemble vide » Application 1 : Compléter par ∈ ou ∉.	: pas inclus dans ». même \mathbb{N}^*) le zéro). \mathbb{R}_+^* est l'ensemble des réels
	$3\ldots D$; 2, $3\ldots \mathbb{Z}$; $\pi\ldots \mathbb{R}_+^*$; $\pi\ldots \mathbb{Q}$
$\sqrt{2}\ldots\mathbb{Q}; \sqrt{2}\ldots\mathbb{R}; \qquad \frac{1}{2}\ldots\mathbb{Q};$	$\frac{5}{3}$ \mathbb{Z} ; $\frac{8}{4}$ \mathbb{Z} ; -5 D ; $\frac{1}{7}$ D
Application 2 : Compléter par ∈ ou ∉ puis d valeur approchée au centième près.	onner la forme décimale si elle existe, ou une
<u>1</u> ⅅ	<u>3</u> ⅅ
1/3 D	<u>1</u>
<u>1</u> D	² / ₃ ⅅ
<u>1</u>	$\frac{1}{6}$ \mathbb{D}

Propriété 2 :

On a $\mathbb{N} \subset \mathbb{Z} \subset D \subset \mathbb{Q} \subset \mathbb{R}$

Remarque 7 : Ce n'est qu'une conséquence des remarques 1, 3, 4 et 6.

Exercice 1: Compléter par ∈ ou ∉ :

- a) 7 ... $\mathbb Z$ b) -12,4 ... $\mathbb R$ c) 41 ... $\mathbb D$ d) 0,145 ... $\mathbb N$

- e) π ... \mathbb{Q} f) $\sqrt{16}$... \mathbb{Q} g) 10^{45} ... \mathbb{Z} h) -78 ... \mathbb{Z} i) $\frac{1}{3}$... \mathbb{D} j) 4,789 ... \mathbb{Q} k) $-\frac{3}{2}$... \mathbb{D} l) 7×10^{-3} ... \mathbb{N} m) $\frac{\pi}{2}$... \mathbb{R} n) $\frac{12}{3}$... \mathbb{D} o) 10^{-5} ... \mathbb{Z} p) $\sqrt{51}$... \mathbb{Q}

Exercice 2: Mettre une croix dans chaque case correspondant aux ensembles auxquels le nombre appartient.

	N	\mathbb{Z}	\mathbb{D}	Q	\mathbb{R}
1,23					
$\frac{\sqrt{64}}{2}$					
0,003					
$\frac{4}{10}$					
- 2 √7					
<u>526</u> 7					

Exercice 3:

- 1) Donner un entier relatif qui ne soit pas un entier naturel.
- 2) Donner un nombre décimal qui ne soit pas un entier relatif.
- 3) Donner un nombre rationnel qui ne soit pas un nombre décimal.
- 4) Donner un nombre réel qui ne soit pas un rationnel.

Exercice 4:

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Justifier.

- a) L'opposé d'un entier naturel est un entier naturel.
- b) L'opposé d'un entier relatif est un entier négatif.
- c) L'inverse d'un entier non nul est un décimal.
- d) L'inverse d'un rationnel non nul est un rationnel.
- e) La racine carrée d'un entier naturel est toujours irrationnelle.

III. Intervalle

<u>Définition 7 :</u> Sur une droite graduée, les	sont les
de $\mathbb R$ qui correspondent à un segment, à une demi-d	roite, ou à la
droite toute entière.	

Comparaison	Représentation	Traduction	Autrement dit :	Intervalle
		x est compris	Tous les nombres sont	
		entre a et b	entre a et b (que l'on	
			prend)	
		x est compris	Tous les nombres sont	
		entre a et b	entre a (que l'on	
		(exclu)	prend) et b (exclu)	
		x est compris	Tous les nombres sont	
		entre a (exclu) et	entre a (exclu) et b	
		b		
		x est compris	Tous les nombres sont	
		entre a (exclu) et	entre a (exclu) et b	
		b (exclu)	(exclu)	
		x est inférieur ou	Tous les nombres sont	
		égal à b	à gauche de b sur la	
			droite.	
		x est strictement	Tous les nombres sont	
		inférieur à b	à gauche de b (exclu)	
			sur la droite.	
		x est supérieur	Tous les nombres sont	
		ou égal à a	à droite de a sur la	
			droite.	
		x est strictement	Tous les nombres sont	
		supérieur à a	à droite de a (exclu)	
		-	sur la droite.	

Remarques 8:

- Les symboles $-\infty$ et $+\infty$ se lisent "moins l'infini" et "plus l'infini".
- Les nombres a et b sont appelées de l'intervalle.
- Un crochet tourné vers l'extérieur est un crochet un crochet tourné vers l'intérieur est un crochet ______.
- En $-\infty$ et $+\infty$, les crochets sont ouverts.
- Pour les intervalles [a; b],]a; b[, [a; b [et]a; b], l'amplitude (longueur) de l'intervalle est :

Définition 8 : L'intersection de deux intervalles *I* et *J* est l'ensemble des réels appartenant à I à J. On le note:

Définition 9 : La réunion de deux intervalles *I* et *J* est l'ensemble des réels appartenant à *I* _____ à *J*. On le note :

Application 3 : Déterminer des intervalles

Inégalité	Intervalles	Représentation sur une droite graduée
<i>x</i> < −1		
]3; +∞[
		-8 I/3
$-\frac{1}{2} \le x < 5$		
$x \le -2 \text{ ou } x > \frac{1}{5}$		

Exercice 5:

Inégalité	Intervalles	Représentation sur une droite graduée
$-1 \le x < 3$		
	[7;12]	
0 < x < 4		
] $-1;\pi$]	
] - 5;3[
$3,14 < x \le \pi$		
	[-100;50[
	[4; +∞[
<i>x</i> > -7		
<i>x</i> ≤ 5		
$x \le -5 \text{ ou } x > 1$		

Exercice 6 : Compléter par ∈ ou ∉

- a) 2,5 ... $[2; +\infty[$
- d) π ... [0;4]
- g) 2 ... [2;4]

j)
$$-5 ...] - \infty; -6]$$

Exercice 7 : Compléter le tableau suivant :

- b) $5,1 \dots] \infty; 5]$
- e) 6,02 ... [6; +∞[
- h) 7,53 ... [7,5 ; 7,6 [
- f) $\frac{\sqrt{3}}{2}$... [1; 3] i) $\sqrt{2}$... [1; 3] k) 1,2 ...] – ∞; 0 [∪ [2; 5] $1) \frac{1}{4} \dots [1; 4]$

c) 3 ...] - ∞; 3 [

I	J	I∪J	I∩J	
		Représentation sur une droite :		
[-4; 3]	[1;5]			
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
] - ∞; 2[[-4; +∞[
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
] - ∞;3]] - ∞; 5[
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
$\left[\sqrt{6};+\infty\right[$	[3; +∞[
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
] - ∞;7]	[7;+∞[
		$I \cup J =$	$I \cap J =$	
		Représentation sur une droite :		
[-3; +∞[] - ∞; -3[
		$I \cup J =$	$I \cap J =$	

iv. <u>Encadrement decimal et arrondi</u>			
Autrement dit : il existe un nombre décimal a	d et un entier naturel n tel que :		
$d \le x <$	$d d + 10^{-n}$		
Remarque 9 : Pour arrondir : dans la pratique : on regarde le n+1 ième chiffre. Si ce chiffre est inférieur ou égal à, on "arrondit ". Si ce chiffre est supérieur ou égal à, on "arrondit ".			
Exemple : L'arrondi de $\frac{1}{3} \approx 0,333$ à 10^{-2} près est 0,33 et l'arrondi de $\frac{2}{3} \approx 0,6666$ au millième est 0,667.			
Exercice 8 : On prend le nombre $A=915,457845631$ a) Donner la valeur arrondie de A au dixième.	Exercice 9 : On prend le nombre $B=4562,7814932$ a) Donner la valeur arrondie de B au millième.		
b) Donner la valeur arrondie de A à 10^{-3} près.	b) Donner la valeur arrondie de B à 10^{-2} près.		
c) Donner la valeur arrondie de A à l'unité.	c) Donner la valeur arrondie de B à 10^{-1} près.		
	d) Donner la valeur arrondie de B à la centaine		
Exercice 10 : On prend le nombre C = 123,456789 a) Donner un encadrement de C au millième. b) Donner un encadrement de C à l'unité. c) Donner un encadrement de C à 10 ⁻² .	près. Exercice 11 : On prend le nombre D = 3,1415926535 a) Donner un encadrement de D au centième b) Donner un encadrement de D à l'unité.		
d) Donner la valeur arrondie au dixième.	c) Donner un encadrement de D à 10^{-4} .		
e) Donner la valeur arrondie à $10^{-2}\ \text{près}$.	d) Donner la valeur arrondie de D au centième.		
V. Equations 1) Equation	e) Donner la valeur arrondie de D à 10^{-4} près .		
<u>Définition 11 :</u>			
Une équation est une	•		
) dans lesquelles figurent des lettres		
(appelées			
 Résoudre une équation d'inconnue x, c'e peut donner à x pour que l'égalité soit vé 	est trouver toutes les valeurs possibles que l'on rifiée.		

Application 4

Vérifier si $x = 4$ puis si $x = -3$ est solution de l'équation : $x^2 - 10 = 2x + 5$		

Propriété 3 : Soient a, b et c des nombres, $c \neq 0$

• On ne change pas une égalité lorsqu'on ajoute ou on soustrait un même nombre à chacun de ses membres.

Autrement dit : Si a = b alors :

et si a = b alors :

• On ne change pas une égalité lorsqu'on multiplie ou on divise par un même nombre non nul chacun de ses membres.

Autrement dit : Si a = b alors : si a = b alors : et

<u>Définition 12</u>: Une équation du 1^{er} degré à une inconnue est une équation du type : où a, b, c et d sont des nombres.

Application 5: Résoudre les équations suivantes (en notant à la fin S =):

a) $6x - 5 = 2$	b) $5x + 2 = 3x - 4$	c) $4x - 7 = 3(2x + 5)$

2) Equation produit

Propriété 4: Un produit de facteurs est nul si et seulement si l'un, au moins, des facteurs est nul.

Application 6: Résoudre les équations suivantes (en notant à la fin S =):

a)
$$(3x-2)(-x+7)=0$$

b)
$$(2-3x)(x-4)-(x-4)(5+2x)=0$$

Exercice 12 : Résoudre les équations suivantes :

a)
$$2x + 4 = 9$$

c)
$$\frac{5}{3} + 6x = 4x + 10$$

e)
$$3 - \frac{2}{5}x = \frac{3}{2} + 5x$$

g)
$$3(2x + 1) = 2 + 2x$$

i)
$$\frac{-2x+3}{4} + \frac{x-5}{2} = \frac{-3x+2}{2}$$

k)
$$-2x(-x-3) = 0$$

m)
$$(1-x)(-2-x)=0$$

o)
$$\frac{x+2}{3} = \frac{1-x}{4}$$

b)
$$3x - 5 = 6$$

d)
$$3x + 7 = x + 12$$

f)
$$3(-2x + 1) = 5 - 2(x + 1)$$

h)
$$\frac{2x+1}{3} - \frac{x}{2} = \frac{2x-3}{2}$$

j)
$$(-2x + 3)(\frac{5}{3} - 4x) = 0$$

I)
$$\left(-5 + \frac{2}{3}x\right)(-4x + 1) = 0$$

n)
$$\frac{2x+3}{2} = 8$$

VI. Inéquations

Propriété 5 : Soient a, b et c sont des nombres.

• On ne change pas une inégalité lorsqu'on ajoute ou on soustrait un même nombre à chacun de ses membres.

Autrement dit : Si $a \le b$ alors :

et si a < b alors:

• On ne change pas une inégalité lorsqu'on multiplie ou on divise par un même nombre **positif** non nul chacun de ses membres. On prend c > 0

Autrement dit : Si $a \le b$ alors :

et si $a \le b$ alors:

• On change une inégalité lorsqu'on multiplie ou on divise par un même nombre négatif non nul chacun de ses membres. On prend c < 0

Autrement dit : Si $a \le b$ alors :

et si a < b alors :

Application 7: Résoudre les inéquations suivantes (en notant à la fin S = 1):

a)
$$2x + 5 \ge 7$$
 b) $-4x + 8 > 6$ c) $-2x - 1 < 0$ d) $4x + 7 \le 3(2x + 5)$

Exercice 13 : Résoudre les inéquations suivantes :

a)
$$-6x < -3$$

d)
$$2x > \frac{5}{2} - 3$$

g)
$$-1 + 2x < 0$$

j)
$$-3x > 0$$

m)
$$45 + 12 \times 2154$$

b)
$$3x + 1 < 2$$

d)
$$2x > \frac{5}{2} - 3$$
 e) $2x + \frac{1}{2} \ge 4 + 5x$

h)
$$10x < 5x - 3$$

k)
$$3(2x-1) > 5(x+2)$$

n)
$$-5x + 6 \le 2x + 8$$

c)
$$3x + 3 < 1 - 2x$$

f)
$$3(-2x + 1) < 5 - 2(x + 1)$$

i)
$$35 x + 14 \le 43 x - 1$$

$$| \cdot | -16x + 3 \ge -2x + 25$$

o)
$$2(x-1) > 2x + 5$$

Exercice (supplémentaire) 14: Résoudre, en donnant l'ensemble des solutions S = ...

a)
$$13x - 5 = 20x + 12$$

b)
$$2x - 3 < 6x + 9$$

c)
$$(3x + 1)(x - 2) = 0$$

d)
$$(x-2)-(2x+3)=0$$

e)
$$3x + 5 > x - 4$$

f)
$$x(2x + 8) = 0$$

g)
$$\frac{1}{3}x + 2 = 5x - \frac{6}{5}$$

h)
$$4x + 7 < 7x - 2$$

i)
$$\frac{3}{2}x + 2 > \frac{5}{2}x - 7$$

i)
$$3x + 2 > 1 + 3x$$

k)
$$-5x - 12 > -10x + 3$$

1)
$$2x + 3 = 2x - 1$$

m)
$$3x - 1 < 5x - 4$$

n)
$$\frac{2}{3}x + 1 > \frac{5}{2}x - \frac{1}{3}$$

o)
$$2x + 3(x-1) = 0$$

p)
$$2x + 3 = (x + 2) + (x + 1)$$

q)
$$3x - 1 < 3x + 3$$

r)
$$(x-1)(2x+3)(4x-2) = 0$$

s)
$$3x - 5 = 12x + 4$$

t)
$$-4x + 2 > x + 18$$

Problèmes

Exercice 15:

Lisa s'est inscrite auprès d'un club nautique pour louer du matériel pendant un an afin de faire des sorties en rivière. L'inscription lui a coûté 22 € et la location d'un kayak lui revient à 2,80 € par heure. Lisa a un budget de 100 € sur l'année.

Quel nombre d'heures de kavak peut-elle prévoir ?

Exercice 17:

Dans une salle de spectacles, chaque place à un spectacle coûte 40 €.

On peut aussi acheter pour 75 € une carte d'adhérent, valable un an, qui donne droit à une réduction de 40 % sur tous les spectacles.

A partir de combien de spectacles vus dans l'année est-il plus intéressant d'acheter une carte d'adhérent?

Exercice 16:

Dans une boulangerie, Romain veut acheter autant de croissants que de pains au chocolat. Un croissant est vendu 1,10€ et un pain au chocolat 1,35 € . Avec 30€, combien Romain peut-il acheter de viennoiseries au total?

Exercice 18:

Pour entrer dans une école de théâtre, Thomas passe une épreuve écrite qui compte avec un coefficient 4 et une épreuve orale qui compte avec un coefficient 6.

Il a obtenu 7/20 à l'écrit. Il doit avoir une moyenne supérieure ou égale à 13/20 pour être admis.

Thomas peut-il être admis ? Si oui, quelle note minimale doit-il obtenir à l'oral?

Exercice 19 : Résoudre les problèmes suivants :

- 1) Trouver trois nombres entiers naturels consécutifs dont la somme est 363.
- 2) Trouver un nombre, qui multiplié par 3, augmente de 100.
- 3) La jauge de la voiture de M. Dupont indique que le réservoir est à moitié plein.

M. Dupont rajoute 15 litres d'essence, le réservoir est alors rempli au $\frac{3}{4}$ de son volume.

Déterminer la contenance du réservoir.

- 4) Un père a 32 ans et son fils 4 ans.
 - a) Quel âge auront-ils dans 6 ans ?
 - b) Quel âge auront-ils dans x années?
 - c) Déterminer pendant combien d'années l'âge du père sera supérieur ou égal au triple de l'âge de
- 5) Je dépense le quart de mon salaire pour mon logement et les deux cinquièmes pour la nourriture. Il me reste 378 € pour les autres dépenses. Calculer mon salaire mensuel.
- 6) Pour acheter un lave-linge, Antoine dépense les $\frac{3}{5}$ de son revenu mensuel. Il utilise ensuite $\frac{1}{8}$ du reste pour payer sa note d'électricité. Il lui reste alors 560 euros. Quel est, en euros, le prix du lave-linge?
- 7) Soit un carré de côté x .On transforme ce dernier en rectangle: de telle sorte qu'un côté fasse 4 cm de plus et l'autre côté 1 cm de moins que le côté du carré. On s'apercoit que le périmètre du rectangle est le double du périmètre du carré. Quelle est la mesure du côté du carré?
- 8) On considère le rectangle ci-dessou 5 cm

Déterminer la longueur x du rectangle sachant que son aire est égale à 42,5 cm².

9) On donne L = 10 cm et l = 7 cm.

ABC est un triangle isocèle en A tel que AH = 11.2 cm. Calculer BC sachant que le triangle ABC et le rectangle ont la même aire.

- 10) ABCD est un carré de côté x.
- EDC est un triangle isocèle en E tel que EH = 2.
- 1. Exprimer l'aire A₁ du carré ABCD en fonction de x.
- 2. Exprimer l'aire A_2 du triangle EDC en fonction de x.
- 3. En déduire l'expression de l'aire A de la partie hachurée en fonction de x.
- 4. L'aire de la partie hachurée est égale à 2 cm². Quelle équation obtient-on?
- 5. Développer, réduire et ordonner (x-2)(x+1).
- 6. En déduire les solutions de l'équation de la guestion 4.
- 7. En déduire la valeur de x pour laquelle l'aire A de la partie hachurée est de 2 cm².

