เฉลยการแข่งขันคณิตศาสตร์โอลิมปิกระดับชาติ ครั้งที่ 15 (อย่างไม่เป็นทางการ)

- 1. สามารถไล่มุมได้ไม่ยากว่า $\angle BPQ + \angle BCQ = (90 + \frac{A+B}{2}) + \frac{C}{2} = 180^\circ$ ดังนั้น B,C,P,Q อยู่บน วงกลมเดียวกัน และจาก $\angle QBP = \angle QCP$ และ $\angle BPD = \angle DQC$ ดังนั้น $\angle PSQ = \angle PRQ$ จึงได้ ว่า P,Q,R,S อยู่บนวงกลมเดียวกัน
- 2. ให้ P(x,y) แทนข้อความ $f(x+f(y))=f(x)+y^2$ จาก P(x,0) จะได้ f(x+f(0))=f(x) จาก P(x,0) และ P(x,f(0)) เราได้ว่า $f(0)^2=0$ ดังนั้น f(0)=0

พิจารณา $P(0,x):f(f(x))=x^2,$ $P(0,f(x)):f(x^2)=f(x)^2$ และ $P(f(x),x):f(2f(x))=2x^2$ และแทน x ด้วย f(x) จะได้ว่า $f(2x^2)=2f(x)^2$ แต่จาก P(f(x),x) ดังนั้น $f(f(2f(x)))=f(2x^2)$ ทำให้

$$4f(x)^2 = 2f(x)^2$$

จึงได้ว่า f(x)=0 สำหรับทุกจำนวนจริง x ซึ่งสามารถตรวจคำตอบได้ว่าฟังก์ชั่นดังกล่าวไม่สอดคล้องเงื่อนไขของโจทย์ ดังนั้น ไม่มีฟังก์ชั่นซึ่งสอดคล้องกับเงื่อนไขดังกล่าว

- 3. สมมติว่ามีบ่าวสองคน A และ B ที่มีผลบวกความจุแฟลชไดรฟ์เท่ากัน (มิฉะนั้นก็จะได้ว่าบ่าวทุกคนมีผลบวก ความจุแฟลชไดรฟ์ต่างกัน) เห็นได้โดยง่ายว่า A และ B ได้แฟลชไดรฟ์ชุดเดียวกัน สมมติว่าเป็น $\{x,y,z\}$ จากนั้นเลือกความจุ $w \not\in \{x,y,z\}$ และพิจารณาบ่าวที่ไม่มีแฟลชไดรฟ์ w และไม่ใช่ A หรือ B จะได้ว่าบ่าว คนนี้จะต้องมีแฟลชไดรฟ์ความจุ x หรือ y หรือ z อย่างน้อยหนึ่งอัน ซึ่งสมมติว่าเป็น x เราจะได้ว่าความจุ w และ x สอดคล้องเงื่อนไขที่ต้องการ
- 4. <u>คำตอบ:</u> 4/27

แทนค่า c=-a-b ในเงื่อนไขโจทย์ เพียงพอที่จะหาค่ามากที่สุดของ

$$\frac{a^2b^2(a+b)^2}{(a^2+ab+b^2)^3}$$

จาก

$$\frac{4}{27} - \frac{a^2b^2(a+b)^2}{(a^2+ab+b^2)^3} = \frac{4(a^2+ab+b^2)^3 - 27a^2b^2(a+b)^2}{27(a^2+ab+b^2)^3}$$
$$= \frac{(a-b)^2(2a+b)^2(2b+a)^2}{27(a^2+ab+b^2)^3}$$
$$\geqslant 0$$

ดังนั้นค่ามากที่สุดของ $\frac{a^2b^2c^2}{(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2)}$ คือ $\frac{4}{27}$ และอสมการเป็นสมการเมื่อ (a,b,c)=(x,x,-2x) และการเรียงสับเปลี่ยนของสามสิ่งอันดับดังกล่าว

คำตอบ: 625

เนื่องจาก $x^5\equiv x\pmod 5$ ดังนั้น $5\mid a+b$ สามารถแสดงได้ว่า $5\mid a^4-a^3b+a^2b^2-ab^3+b^4$ และ $25\nmid a^4-a^3b+a^2b^2-ab^3+b^4$ ดังนั้น $5^4\mid a+b$ ฉะนั้นค่ามากที่สุดของ a+b คือ 625 ซึ่งเป็นจริงได้ เมื่อ (a,b)=(1,624)

6. a) เป็นการเพียงพอที่จะแสดงว่า 2 และ 3 หาร x,y,z ในการแสดงว่า 2 หาร x,y,z เราเริ่มต้นจาก $3y^3=2(2z^4-x^2)$ ซึ่งแสดงว่า $2\mid y$ ฉะนั้น $y=2y_1$ สำหรับบาง $y_1\in\mathbb{Z}_{\geqslant 0}$ จากนั้น $x^2=2(6y_1^3+z^4)$ แสดงว่า $2\mid x$ ดังนั้ $x=2x_1$ สำหรับบาง $x'\in\mathbb{Z}_{\geqslant 0}$ สุดท้าย เราจะได้ว่า $z^4=2n^2-6m^3$ ดังนั้น $z\mid z$.

ในการแสดงว่า 3 หาร x,y,z ให้สังเกตว่า $4z^4\equiv 2x^2\pmod 3$ แต่ $4z^4\mod 3\in\{0,1\}$ และ $2x^2\mod 3\in\{0,2\}$ ดังนั้น $2x^2\equiv 4z^4\equiv 0\mod 3$ ฉะนั้น $3\mid x,z$ สุดท้ายให้ $x=3x_2,z=3z_2$ โดยที่ $x_2,z_3\in\mathbb{Z}_{\geqslant 0}$ จะได้ว่า $y^3=3(36z_2^4-x_2^2)$ เพราะฉะนั้น $3\mid y$

b) $(144t^6, 24t^3, 12t^3) \in A$ สำหรับทุกจำนวนนับ t

7. คำตอบ: 119

ให้ x_i เป็นจำนวนของสมาชิกใน S ซึ่งถูกระบายด้วยสีที่ i สังเกตได้ไม่ยากว่า $m=\sum\limits_{i=1}^{25}(2^{x_i}-1)$

หากมี $i,j\in\{1,2,...,25\}$ ซึ่งทำให้ $x_i-x_j\geqslant 2$ จาก $2^{x_i}+2^{x_j}>2^{x_i-1}+2^{x_j+1}$ เราจะสามารถลดค่า ของ m โดยการแทน x_i,x_j ด้วย x_{i-1},x_{j+1} ดังนั้นค่าน้อยที่สุดของ m จะเกิดเมื่อ $|x_i-x_j|\leqslant 1$ สำหรับ ทุก i,j

ดังนั้น $(x_1,...,x_{25})$ ซึ่งทำให้ m มีค่าน้อยที่สุดคือ (3,3,...,3,2,2,..2) โดมี 3 11 ตัว และ 2 14 ตัว ค่าต่ำ สุดของ m จึงเป็น $(2^3-1)\times 11+(2^2-1)\times 14=119$

8. คำตอบ: 10

พิจารณาสลาก 21 ใบ $\{101,102,...,121\}$ สามารถแสดงได้ไม่ยากว่าสลากดังกล่าวสอดคล้องเงื่อนไขโจทย์ ดังนั้น n=10 เป็นไปได้ ต่อไปจะแสดงว่า $n\leqslant 10$ กำหนดให้สลากแต่ละใบถูกกำกับด้วยจำนวน $x_1< x_2<...< x_{2n+1}$ จากเงื่อนไขของโจทย์ จะได้ว่า

$$x_1 + \dots + x_{2n+1} > 2330 \tag{1}$$

$$x_{n+2} + \dots + x_{2n+1} \leqslant 1165 \tag{2}$$

ดังนั้น $x_1+...+x_{n+1}>x_{n+2}+...+x_{2n+1}$ แสดงว่า

$$x_1 > \sum_{i=1}^{n} (x_{n+1+i} - x_{i+1}) \geqslant \sum_{i=1}^{n}$$
.

ฉะนั้น $x_1\geqslant n^2+1$ สามารถแสดงได้ไม่ยากว่า $x_i\geqslant n^2+i$ สำหรับทุก i จาก (2) เราได้ว่า $1165\geqslant \sum_{i=1}^n n^2+n+1+i=\frac{2n^3+3n^2+3n}{2}$ ดั้งนั้น $n\leqslant 10$

9. ให้วงกลมแนบใน $\triangle ABP$ และ $\triangle ACP$ สัมผัสเส้นตรง BC ที่จุด M และ N ตามลำดับ จะเห็นได้ว่า $\angle LPK = 90^\circ$ กำหนดให้ $\angle APK = x, \angle LPA = 90^\circ - x$

ให้ O เป็นจุดกึ่งกลางส่วนของเส้นตรง KL จะได้ว่า O เป็นจุดศูนย์กลางวงกลมล้อมรอบของรูปสี่เหลี่ยม KPLQ จาก Power of Point เราได้ว่า $AQ\cdot AP=AO^2-OK^2$

โดย Law of Cosine บน $\triangle AOK$ และ $\triangle AOK$ เราได้ว่า

$$AK^2 + AL^2 = 2(AO^2 + OK^2)$$

โดย Law of Cosine บน $\triangle APK$ และ $\triangle APL$ เราได้ว่า

$$AK^{2} = AP^{2} + PK^{2} - 2AP \cdot PK \cdot \cos x$$
$$AL^{2} = AP^{2} + PL^{2} - 2AP \cdot PL \cdot \sin x$$

นำสมการมาบวกกัน ได้ว่า

$$AK^{2} + AL^{2} = 2AP^{2} + PK^{2} + PL^{2} - 2AP(PK \cdot \cos x + PL \cdot \sin x).$$

จาก $\angle LPK = 90^\circ$ ดังนั้น $PK^2 + PL^2 = 4OK^2$ เพราะฉะนั้น

$$2(AO^{2} + OK^{2}) = 2AP^{2} + 4OK^{2} - 2AP(PK \cdot \cos x + PL \cdot \sin x)$$

$$AO^{2} - OK^{2} = AP(AP - PK\cos x + PL \cdot \sin x)$$

$$AP \cdot AQ = AP(AP - PK\cos x + PL \cdot \sin x)$$

จาก $PK\cdot\cos x=PM=rac{AP+PB-AB}{2}$ และ $PL\cdot\sin x=PN=rac{AP+PC-AC}{2}$ จะได้ว่า

$$AQ = \frac{AB + AC - BP - CP}{2} = \frac{AB + AC - BC}{2} = AD.$$

10. จะแสดงว่าฟังก์ชัน $h:\mathbb{R} \to \mathbb{R}$ ที่กำหนดโดย

$$h(k) = \frac{1}{c} (g(y_k + 2k) - 2g(y_k + k) + g(y_k))$$

โดยที่ $y_k = 2019 + 2|k|$ สอดคล้องเงื่อนไขที่ต้องการ

ตรึงค่า $k\in\mathbb{R}$ และสังเกตว่า $y_k,y_k+k,y_k+2k>2018$ จากการแทน $(x,y)=(x,y_k)$ และ $(x+k,y_k+k)$ ในเงื่อนไขของโจทย์ แล้วนำมาลบกัน จะได้

$$a(f(x+y_k+2k) - f(x+y_k)) = c(f(x+k) - f(x)) + g(y_k+k) - g(y_k)$$
(3)

แทน $(x,y_k) \rightarrow (x-k,y_k+k)$ ใน (3) จะได้

$$a(f(x+y_k+2k) - f(x+y_k)) = c(f(x) - f(x-k)) + g(y_k+2k) - g(y_k+k)$$

ดังนั้น สำหรับทุก $x \in \mathbb{R}$,

$$f(x+k) + f(x-k) - 2f(x) = \frac{1}{c} (g(y_k + 2k) - 2g(y_k + k) + g(y_k)) = h(k)$$

เพราะฉะนั้น h สอดคล้องเงื่อนไขที่ต้องการ