Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} -1 \\ -4 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 4 \\ -6 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 (1)

1 Vectors

1 VECTORS					
parameters	values	description			
$\mathbf{m_1}$	$\begin{pmatrix} 5 \\ -2 \end{pmatrix}$	AB			
\mathbf{m}_2	$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$	ВС			
m ₃	$\begin{pmatrix} -4 \\ -4 \end{pmatrix}$	CA			
A - B	5.38	length of AB			
B-C	6.08	length of BC			
C - A	5.65	length of CA			
	3	non collinear			
n ₁	$\begin{pmatrix} -2 \\ -5 \end{pmatrix}$	AB			
c_1	22				
n ₂	$\begin{pmatrix} 6 \\ 1 \end{pmatrix}$	ВС			
c_2	18				
n ₃	$\begin{pmatrix} -4\\4 \end{pmatrix}$	CA			
c_3	-12				
Area	14	Area of Triangle			
∠A	66.80°				
∠B	58.73°	Angles			
∠C	54.46°				

Fig. 1: traingle ABC

2 Median

parameters	value	description		
D	$\begin{pmatrix} 3.5 \\ -3 \end{pmatrix}$	BC midpoint		
E	$\begin{pmatrix} 1 \\ -2 \end{pmatrix}$	CA midpoint		
F	$\begin{pmatrix} 1.5 \\ -5 \end{pmatrix}$	AB midpoint		
m ₄	$\begin{pmatrix} 4.5 \\ 1 \end{pmatrix}$	AD		
n ₄	$\begin{pmatrix} 1 \\ -4.5 \end{pmatrix}$			
<i>c</i> ₄	17			
m ₅	$\begin{pmatrix} -3\\4 \end{pmatrix}$			
n ₅	$\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	BE		
<i>c</i> ₅	-2			
$\mathbf{m_6}$	$\begin{pmatrix} 5 \\ -1.5 \end{pmatrix}$	CF		
n_6	$\begin{pmatrix} -1.5 \\ -5 \end{pmatrix}$	CF		
c_6	-15			
G	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	Centroid		
$\frac{\underline{BG}}{\underline{GE}}$ $\frac{\underline{CG}}{\underline{GF}}$ $\underline{\underline{AG}}$ \underline{GD}	2	Division ratio by G		
	2	collinear		
$ \operatorname{rank} \begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix} $				

Fig. 2: traingle ABC with medians

Fig. 3: traingle ABC with altitudes

4 Perpendicular Bisector

			parameters	value	description	
3 Altitude		m ₁₀	$\begin{pmatrix} -6 \\ -1 \end{pmatrix}$	AD_1		
		n ₁₀	$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$			
parameters	value	description	c_{10}	-21.5		
$\mathbf{D_1}$	$\begin{pmatrix} 3.59 \\ -3.56 \end{pmatrix}$	Foot of altitude from A	m ₁₁	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	BE_1	
$\mathbf{E_1}$	(0.8, -4.4)	Foot of altitude from B	n ₁₁	$\left(-2\right)$		
$\mathbf{F_1}$	(0.54)	Foot of altitude from C		(-4)		
F1	(-3.69)	root of altitude from C	c_{11}	4		
m ₇	$\begin{pmatrix} -6 \\ -1 \end{pmatrix}$	AD_1	m ₁₂	$\begin{pmatrix} 2 \\ 3 \end{pmatrix}$	CF_1	
n ₇	$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$		n ₁₂	$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$		
c_7	-25		c_{12}	17.5		
m ₈	$\begin{pmatrix} 4 \\ -2 \end{pmatrix}$	D.C.	О	$\begin{pmatrix} 3.875 \\ -2.9375 \end{pmatrix}$	Circumcentre	
	(-2)	BE_1	$ \mathbf{O} - \mathbf{A} $			
n ₈	$\left(-4\right)$		O -	$\ \mathbf{O} - \mathbf{B}\ $		
<i>c</i> ₈	16		$\ \mathbf{O} - \mathbf{C}\ $	$3.06 \qquad OA = C$	OA = OB = OC = R	
	(2)		R			
m 9	(3)	CF_1	∠BOC	194.125°	. D.C. 2 . D.L.C	
n	(3)		∠BAC	97.125°	$\angle BOC = 2\angle BAC$	
n ₉	$\left(-2\right)$		∠AOC	93.69°	110G 2:17G	
<i>c</i> ₉	9		∠ABC	46.84°	$\angle AOC = 2\angle ABC$	
Н	(0.25)	Orthocentre	∠AOB	72.05°	10D 2 D21	
n	(-4.125)		∠BCA	36.03°	$\angle AOB = 2\angle BCA$	

Fig. 4: traingle ABC with perpendicular bisectors

Fig. 5: traingle ABC with circumcircle

5 Angle Bisector

, ,	description		
1 1			
$ \begin{pmatrix} 0.34 \\ -1.28 \end{pmatrix} $	AI		
5.46			
$\begin{pmatrix} -0.99 \\ 1.54 \end{pmatrix}$	D.		
$\begin{pmatrix} 1.54 \\ 0.99 \end{pmatrix}$	BI		
0.18			
$\begin{pmatrix} -0.28 \\ -1.88 \end{pmatrix}$	G.		
$\begin{pmatrix} -1.88\\0.28\end{pmatrix}$	CI		
-5.64			
$\begin{pmatrix} 2.46 \\ -3.61 \end{pmatrix}$	Incentre		
$\begin{pmatrix} 3.57 \\ -3.42 \end{pmatrix}$	Point of contact with BO		
$\begin{pmatrix} 1.83 \\ -4.55 \end{pmatrix}$	Point of contact with AC		
$\begin{pmatrix} 1.45 \\ -3.11 \end{pmatrix}$	Point of contact with Al		
1.13	$ID_3 = IE_3 = IF_3 = r$		
10 560	(DAI (CAI		
48.36	$\angle BAI = \angle CAI$		
22.420	$\angle ABI = \angle CBI$		
23.42	$\angle ADI = \angle CDI$		
	$ \begin{array}{c} (-1.28) \\ 5.46 \\ (-0.99) \\ 1.54 \end{array} $ $ \begin{array}{c} (1.54) \\ (0.99) \\ 0.18 \end{array} $ $ \begin{array}{c} (-0.28) \\ -1.88 \end{array} $ $ \begin{array}{c} (-1.88) \\ 0.28 \end{array} $ $ \begin{array}{c} -5.64 \\ (2.46) \\ -3.61 \end{array} $ $ \begin{array}{c} (3.57) \\ -3.42 \end{array} $ $ \begin{array}{c} (1.83) \\ -4.55 \end{array} $ $ \begin{array}{c} (1.45) \end{array} $		

Fig. 6: traingle ABC with angle bisectors

Fig. 7: traingle ABC with incircle