Binary MNW Paper

First Author¹, Second Author², Third Author^{2,3} and Fourth Author⁴

¹First Affiliation

²Second Affiliation

³Third Affiliation

⁴Fourth Affiliation

{first, second}@example.com, third@other.example.com, fourth@example.com

- 1 Introduction
- 2 Model
- 3 Properties of binary Maximum Nash Welfare

Theorem 1. When valuations are binary, for a fixed allocation **A**, the following are equivalent:

- 1. A is a Maximum Nash Welfare allocation.
- 2. A is a Leximin allocation.
- 3. A is a possible allocation for a welfare function that satisfies the Pigou-Dalton principle in the strong sense.

(Alternatively, we can define something like a Pigou-Dalton improvement and say no other allocation dominates A)

Theorem 2. For two Maximum Nash Welfare allocations \mathbf{A}^1 , \mathbf{A}^2 , the values for an agent i in each differ by at most 1. That is, $|v_i(A_i^1) - v_i(A_i^2)| \leq 1$

4 Deterministic Setting

Theorem 3. For an allocation problem with at least 2 agents and 6 goods, there is no deterministic, strategyproof mechanism that always outputs a Maximum Nash Welfare allocation.

Theorem 4. MNW^{tie} is deterministic, group-strategyproof, always outputs a Maximum Nash Welfare allocation (but doesn't allocate non-valued goods), and can be computed in polynomial time.

5 Randomized Setting

Theorem 5. There is a randomized mechanism that is group strategyproof, ex-ante envy-free, whose support contains only Maximum Nash Welfare allocations (which implies it is expost Pareto Efficient and ex-post EF1) that can be computed in polynomial time.

6 Conclusion