Computational Algebra

-

Transcript

Fabio Gratl

May 7, 2015

Contents

1	Inte	ger Arii	thmetic 3
	1.1	Additi	on and Multiplication
		1.1.1	Algorithm 1 (Simple addition)
		1.1.2	Definition 2 (Bit-Operation)
		1.1.3	Definition 3 (Big O)
		1.1.4	Theorem 4 (Lower bound for addition) 4
		1.1.5	Algorithm 5 (Multiplication by "grid method") 5
		1.1.6	Theorem 6 (Runtime of Algorithm 5) 5
		1.1.7	Algorithm 7 (Karatsuba)
		1.1.8	Theorem 8 (Runtime of Algorithm 7) 6
		1.1.9	Definition 9 (Root of unity)
			Algorithm 10 (Fast Fourier transformation FFT)
			Theorem 11 (Runtime of Algorithm 10)
			Definition 12 (Good root of unity)
		1.1.13	Proposition 13 $(DFT_{\mu^{-1}})$
			Proposition 14 (Finding good roots of unity) 9
			Algorithm 15 (Polynomial multiplication using DFT) 9
			Theorem 16 (Runtime of Algorithm 15)
			Proposition 17 (Add and mul in $O(l)$)
			Proposition 18 (Sort of summary)
		1.1.19	Algorithm 19 (Multiplication using FFT)
			Theorem 20 (Runtime of Algorithm 19)
			Theorem 21 (Schönhage-Strassen 1971)
	1.2	Divisio	on with remainder, Euclidean algorithm
		1.2.1	Algorithm 1 (Division with remainder)
		1.2.2	Proposition 2 (Runtime of Algorithm 1)

		1.2.3	Algorithm 3 (Euclidean algorithm)	15
		1.2.4	Theorem 4 (Correctness of Algorithm 3)	15
		1.2.5	Theorem 5 (Runtime of Algorithm 3)	16
		1.2.6	Algorithm 6 (Extended Euclidean Algorithm)	16
	1.3	Primal	lity testing	17
		1.3.1	Theorem 1 (Cyclic)	17
		1.3.2	Algorithm 2 (Fermat Test)	
		1.3.3	Algorithm 3 (fast exponentiation)	
		1.3.4	Definition 4 (pseudo-prime, witness, Carmichael numbers)	
		1.3.5	Proposition 5:	19
		1.3.6	Proposition 6	
		1.3.7	Algorithm 7 (Miller -Rabin)	
		1.3.8	Definition 8	
		1.3.9	Theorem 7	
		1.3.10	Theorem (Arkeny & Bach)	22
			Proposition 10	
			Algorithm 11 (Test for perfect power)	
			Algorithm 12 (AKS-test)	
2	Note	26		24

1 Integer Arithmetic

Topics:

- Addition and Multiplication
- GCD computation
- Primality testing
- Factorization

1.1 Addition and Multiplication

Agreement:

- $a, x \in \mathbb{N}$ represented as $x = \sum_{i=0}^{n-1} a_i \cdot B^i$ $B \in \mathbb{N}_{>1}$ fixed Base $(a_i \in \{0, B-1\})$
- if $x \neq 0$, assume $a_{n-1} \neq$ then define: length of x := l(x) = n = number of digits = $\lfloor \log_B(x) \rfloor + 1$ (mnemonic: $\log_B(B) + 1 = 2$)
- l(0) = 1 (Amount of memory required to store x = 0)
- l(x) := l(|x|)
- for $x \in \mathbb{Z}$ represent if as x = sgn(x) * |x|

1.1.1 Algorithm 1 (Simple addition)

input :
$$x = \sum_{i=0}^{n-1} a_i \cdot B^i$$
, $y = \sum_{i=0}^{n-1} b_i \cdot B^i$, $x, y \in \mathbb{N}$

output:
$$x + y = \sum_{i=0}^{n} c_i \cdot B^i$$

- (1) $\sigma = 0$
- (2) for i = 0, ..., (n-1):
- (3) set $c_i := a_i + b_i + \sigma_i$ and $\sigma := 0$
- $(4) if (c_i \ge B)$
- $(5) set c_i = c_i B$
- (6) $\operatorname{set} \sigma = 1$
- (7) set $c_n = \sigma$

If B = 2 then (3) - (6) can be realized by logic gates:

1.1.2 Definition 2 (Bit-Operation)

A bit operation is an operation that can be performed by a logic gate or by searching or writing a bit from / into memory.

1.1.3 Definition 3 (Big O)

Let M be a set (usually $M = \mathbb{N}$), $f, g: M \mapsto \mathbb{R}_{>0}$ we write $f \in O(g)$ if $\exists c \in \mathbb{R} : f(x) \leq c \cdot g(x) \forall x \in M$

1.1.4 Theorem 4 (Lower bound for addition)

Let $f: \mathbb{N} \to \mathbb{R}$, $n \mapsto$ maximal number of bit operations required by Algorithm 1 to add $x_y \in \mathbb{N}$ with $l(x), l(y) \leq n$

Let $g = id_{\mathbb{N}}$ Then $f \in O(g)$

We say Algorithm 1 requires O(n) bit operations for adding two numbers of length $\leq n$. ⇒ "linear complexity"

Set $M := \{ \text{Set of all algorithms for addition in } \mathbb{N} \}$

For $A \in M$ define $f_A : \mathbb{N} \to \mathbb{R}$ as above.

We would like to find $f_{odd} : \mathbb{N} \to \mathbb{R}$, $n \mapsto \inf\{f_A(n) | A \in M\}$

Since one needs to read x, y (and write the result) we can not do any better than linear complexity for addition.

Subtraction

let x, y as Algorithm 1, $x \ge y$

For
$$\bar{y} := \sum_{i=0}^{n-1} (B - 1 - b_i)B^i$$
 (digitwise / bitwise complement)

$$\Rightarrow x + \bar{y} = x - y + B^n - 1$$

 $\Rightarrow x - y = x + \bar{y} + 1 - B^n$ (initially set $\sigma = 1$)

Conclusion: Addition and Subtraction have cost O(n)

1.1.5 Algorithm 5 (Multiplication by "grid method")

input :
$$x = \sum_{i=0}^{n-1} a_i \cdot 2^i$$
, $y = \sum_{i=0}^{m-1} b_i \cdot 2^i$

output: $z = x \cdot y$

- (1) z := 0
- (2) for i = 0, ..., (n-1)

(3) if
$$(a_i \neq 0)$$
 set $z := z + \sum_{j=1}^{m-1} b_j 2^{i+j}$

1.1.6 Theorem 6 (Runtime of Algorithm 5)

Algorithm 5 requires O(n*m) bit operations.

As of the total input length n + m:

$$n \cdot m \le \frac{1}{2}(n+m)^2 \to O((n+m)^2)$$

⇒ Quadratic complexity

Karatsuba-multiplication:

Observation for polynomials:

$$a + bx, c + dx$$
 have $(a + bx)(c + dx) = ac + (ac + db - (a - b)(c - d))x + bdx^2$

The point: only used 3 multiplications instead of 4.

Specialize x = B "large" such that x = a + bB partition into two blocks. Then multiply the blocks by a recursive call.

1.1.7 Algorithm 7 (Karatsuba)

input : $x, y \in \mathbb{N}$

output: $z = x \cdot y$

- (1) Choose $k \in \mathbb{N}$ minimal such that $l(x), l(y) \leq 2^k$. Set $B = 2^{2^{k-1}}$
- (2) if (k = 0) return $x \cdot y$ (by bit-operation AND)
- (3) write $x = x_0 + x_1 B$, $y = y_0 + y_1 B$ with $l(x_i), l(y_i) \le 2^{k-1}$
- (4) compute $x_0 \cdot y_0$, $x_1 \cdot y_1$, $(x_0 x_1) \cdot (y_0 y_1)$ by a recursive call
- (5) return $z = x_0 y_0 + (x_0 y_0 + x_1 y_1 (x_0 x_1)(y_0 y_1))B + x_1 y_1 B^2$

1.1.8 Theorem 8 (Runtime of Algorithm 7)

For multiplying two numbers of length $\leq n$ Algorithm 7 requires $O(n^{\log_2 3}) \approx O(n^{1.59})$ bit operations.

Proof:

Set $\Theta(k) := \text{maximal numbers of bit operations for } l(x), l(y) \leq 2^k$ We have for k > 0: $\Theta(k) \le 3\Theta$ (k-1) +c 2^k addition with (c some constant)

Claim: $\Theta(k) \le 3^k + 2c(3^k - 2^k)$

Proof by Induction on k:

$$\begin{array}{l} k=0: \Theta(k)=1 \\ k-1 \to k=\Theta(k)=3\Theta(k-1)+c2^{k-1} \\ & \leq 3(3^{k-1}+2c(3^{k-r}-2^{k-1}))+c2^k \\ & = 3^k+2c(3^k-2^k) \\ \text{So } \Theta(k) \leq (2c+1)3^k \\ \text{Now } l(x) \leq n \text{ hence } 2^{k-1} < n \text{ by minimality of } k \end{array}$$

$$\begin{array}{l} \text{So } k-1 < \log_2 n \\ \Rightarrow \Theta(k) \leq 3(2c+1)3^{\log_2(n)} \\ = 3(2c+1)2^{\log_2(3)\log_2(n)} \\ = 3(2c+1)n^{\log_2(3)} \end{array} \square$$

One can modify the terminal condition of Karatsuba to switch to Grid-Multiplication, which is faster for small numbers.

Fast-Fourier Transform

Reminder: For a function $f: \mathbb{R} \to \mathbb{C}$ define:

$$\hat{f}: \mathbb{R} \to \mathbb{C}$$
 by
$$\hat{f}(\omega) = \int_{\mathbb{R}} f(t)e^{-i\omega t}dt \qquad \text{(if it exists)}$$

Think of ω as frequency.

Definition (Convolution)

Let
$$f, g : \mathbb{R} \to \mathbb{C}$$

 $(f * g)(x) = \int_{\mathbb{R}} f(t)g(x - t)dt$

Convolution is analogous to polynomial multiplication Formula:

For a function $M \mapsto C$ with $|M| < \infty$ we need the discrete Fourier transform (DFT)

1.1.9 Definition 9 (Root of unity)

Let R be a commutative ring with 1. An element $\mu \in R$ is called an n-th root of unity (= root of 1) if $\mu^n = 1$.

It is called primitive if $\mu^i \neq 1$ for (0 < i < n) i.e. $ord(\mu) = n$

let μ be a primitive n-th root of 1 (e.g. $e^{2\pi \frac{i}{n}} \in \mathbb{C}$)

Then the map $DFT_{\mu}: \mathbb{R}^n \mapsto \mathbb{R}^n$

$$(\hat{a}_0, ..., \hat{a}_n) \mapsto (\hat{a}_0, ..., \hat{a}_n)$$
 with $\hat{a}_i = \sum_{j=0}^{n-1} \mu^{ij} a_j$

is called discrete Fourier transformation

For polynomials:

$$DFT_{\mu}: R[x] \mapsto R^{n}$$

$$f \mapsto (f(\mu^{0}), ..., f(\mu^{n-1})$$
Convolution rule: (from $f(\mu^{i})g(\mu^{i}) = (f * g)(\mu^{i})$)
$$DFT_{\mu}(f * g) = DFT_{\mu}(f) \cdot DFT_{\mu}(g) \qquad \text{(component wise product)}$$

Addition of two polynomials in R[x] of deg(n) require O(n) ring operations. Multiplication require $O(n^l)$.

With Karatsuba have $O(n^{\log_2(3)})$ ring operations.

Cost $DFT_{\mu}(f) \cdot DFT_{\mu}(g) : O(n)$ ring operations (with μ as 2n-th root of 1)

Want: Cheap way of doing DFT and back-transformation.

1.1.10 Algorithm 10 (Fast Fourier transformation FFT)

input : $f \in R[x]$, $\mu \in R$ primitive 2^k -th root of 1, such that $\mu^{2^{k-1}} = -1$ output: $DFT_{\mu}(f)$

- (1) Write $f(x) = g(x^2) + xh(x^2)$ with $f, g, h \in R[x]$
- (2) if k = 1 ($\Rightarrow \mu = 1$) return $DFT_{\mu}(f) = (g(1) + h(1), g(1) h(1))$
- (3) Recursive call: compute $DFT_{\mu^2}(g)=\hat{g}, DFT_{\mu^2}(h)=\hat{h} \in R^{2^{k-1}}$
- (4) return $DFT_{\mu}(f) = (\hat{f}_0, ..., \hat{f}_{2^k-1})$ with $\hat{f}_i = \hat{g}_i + \mu \hat{h}_i$ where $\hat{g}_i = \hat{g}_{i-2^{k-1}}$ for $i \geq 2^{k-1}$

Note: Components of \hat{g} and \hat{h} are:

$$\hat{g} = g(\mu^{2i}), \quad \hat{h}_i = h(\mu^{2i}) \quad \text{so}$$

 $\hat{f}_i := f(\mu^i) = \hat{g}_i(\mu^{2i}) + \mu h(\mu^{2i}) = \hat{g}_i + \mu \hat{h}_i$

Convention: $lg(x) = log_2(x)$

1.1.11 Theorem 11 (Runtime of Algorithm 10)

Let $n = 2^k$, $f \in R[x]$ with $deg(\psi) < n$ Then Algorithm 10 requires $O(n \cdot \lg(n))$ ring operations.

Better than $O(n^{1+\epsilon}), \forall \epsilon > 0!$

Proof:

Set $\Theta(k) = \max$ number of ring operations required. By counting obtain for k > 1:

$$\Theta(k) \leq 2\Theta(k-1) + \underbrace{(\text{compute } \mu^i (i \leq 2^{k-1}))}_{2^{k-1}} + \underbrace{(\mu^i \hat{k}_i)}_{2^{k-1}} + \underbrace{(\text{sums and differences})}_{2^k}$$

$$= 2\Theta(k-1) + 2^{k+1}$$

Claim: $\Theta(k) \le (2k-1)2^k$

$$k = 1: f = a_0 + a_1 \cdot x \quad DFT_{\mu}(f) = (a_0 + a_1 \cdot a_0 - a_1) \Rightarrow \Theta(a) = 2$$

$$k - 1 \rightarrow k: \Theta(k) \leq 2 \cdot \Theta(k - 1) + 2^{k+1} \leq 2 \cdot (2k - 3) \cdot 2^{k-1} + 2^{k+1} = (2k - 1) \cdot 2^k$$
since $k = \lg(n)$ obtain $O(k) \leq (2 \cdot \lg(n) - 1) \cdot n \in O(n \cdot \lg(n))$

Back-transformation?

1.1.12 Definition 12 (Good root of unity)

A primitive n-th root of unity is called good (caveat: this is ad-hoc terminology) if:

$$\sum_{i=0}^{n-1} \mu^{ij} = 0 \quad \text{for } (0 < i < n)$$

example:

- (1) $\mu = e^{2\pi \frac{i}{n}}$ is a good primitive root of unity
- (2) $R = \mathbb{Z}/(8)$, $\mu = \bar{3} \Rightarrow \mu \cdot B$ is primitive 2^{nd} root of unity But $\bar{B}^0 + \bar{3}^1 = \bar{u} \neq \bar{0}$ so μ is not good.

1.1.13 Proposition **13** ($DFT_{\mu^{-1}}$)

let $\mu \in R$ be a good root of 1

$$(a) = (a_0, ..., a_{n-1}) \in \mathbb{R}^n \Rightarrow DFT_{\mu}^{-1}(DFT_{\mu}(a)) = n \cdot (a)$$
 where $n = 1 + ... + 1 \in \mathbb{R}$

Proof:

$$DFT_{\mu}(a) = (\hat{a}) = (\hat{a}_0, ..., \hat{a}_{n-1})$$

with
$$\hat{a}_j = \sum_{k=0}^{n-1} \mu^{jk} a_k$$

$$DFT_{\mu^{-1}}(\hat{a}) = (\hat{a}_0, ..., \hat{a}_1)$$

with
$$\hat{a}_i \sum_{i=0}^{n-1} \mu^{-ij} \sum_{k=0}^{n-i} \mu^{jk} a_k = \sum_{k=0}^{n-1} (a_k \cdot \sum_{i=0}^{n-1} \mu^{j(k-i)}) = a_i \cdot n$$
 \square

1.1.14 Proposition 14 (Finding good roots of unity)

let $\mu \in R, n \in \mathbb{N}$

Assume:

- a) R is an integral Domain and μ is a primitive or n-th root of 1 (Integral Domain: nonzero commutative ring in which the product of two nonzero elements is nonzero)
 - \Rightarrow Granted by FFT
- b) $n = 2^b, \, \mu^{\frac{n}{2}} = -1$, then $h > 0 \wedge char(R) \neq 2$ $\rightarrow \mu$ is a good primitive n-th root of 1 ("root of unity")

Proof:

a) for 0 < i < n $\underbrace{(\mu^{i} - 1)}_{\neq 0} \underbrace{(\sum_{j=0}^{n-1} \mu^{ij})}_{=0} = \mu^{in} - 1 = 0$

* Let 0 < i < n, write $i = 2^{k-s} \cdot r$ with r odd $\land s > 0$ $\sum_{j=0}^{2^k-1} \mu^{ij} = \sum_{l=0}^{2^{k-s}-1} \sum_{j=0}^{2^{s-1}} \mu^{i(l \cdot 2^s + j)}$ $\mu^{i \cdot 2^s} = 1$ $i \cdot 2^{s} = 2^{k-s} \sum_{j=0}^{2^{s}-1} \mu^{ij} = 2^{k-s} \sum_{j=0}^{2^{s-1}-1} (\mu^{ij} + \mu^{i(2^{s-1}+j)})$ But $\mu^{i \cdot 2^{s-1}} = \mu^{2^{k-s} \cdot r \cdot 2^{s-1}} = \mu^{2^{k-1} \cdot r} = (-1)^{r} = -1$ So $\sum_{i=0}^{n-1} \mu^{ij} = 0$

b) $\mu^n = 1, n = 2^k \Rightarrow ord(\mu)|n \Rightarrow ord(\mu)$ is power of 2

1.1.15 Algorithm 15 (Polynomial multiplication using DFT)

input: $f, g \in R[x]$ with $deg(f) + deg(g) < 2^k =: n$ $\mu \in R$ as a good root of unity; Assume $2 \in R$ is invertible

output: $h = f \cdot g$

- (1) compute $\hat{f} = DFT_n(f)$, $\hat{q} = DFT_n(q)$ with $f, q \in \mathbb{R}^n$
- (2) compute $\hat{h} = \hat{f} \cdot \hat{q}$
- (3) compute $(h_0, ..., h_{n-1}) = DFT_{\mu^{-1}}\hat{h}$ (same as $DFT_{\mu}(\hat{h})$ but with different order) = Back-transformation $\cdot 2^k$ set $h = \frac{1}{2^k} \sum_{i=0}^{n-1} h_i x^i$

1.1.16 Theorem 16 (Runtime of Algorithm 15)

Algorithm 15 uses $O(n \cdot \log(n))$ ring operations for polynomials of deg < n **Proof:**

- Choose k minimal so that $deg(f) \cdot deg(g) < 2^k$ $\Rightarrow 2^{k-1} \le 2n \quad \Rightarrow k \le \log(n) + 2$
- $\bullet \ \ \underline{O(2k \cdot 2^k)}_{\text{Step 1}} + \underbrace{2^k}_{\text{Step 2}} + \underbrace{O(k \cdot 2^k) + 2^k}_{\text{Step 3}} \ \in \ O(2k \cdot 2^k) = O(n(g(n))) \qquad \Box$

Goal: Multiplication in $\mathbb N$ using DFT

Idea: find roots of 1 in a suitable $\mathbb{Z}/(m)$

Choose $m = 2^l + 1, \mu = \bar{2} \in R$

1.1.17 Proposition 17 (Add and mul in O(l))

Let $m = 2^{l} + 1, \ R = \mathbb{Z}/(m)$

Addition in R and multiplication by $\bar{2}^i \in R$ $(0 \le i < 2l)$ can be done in O(l) bit operations

Proof:

Let $\bar{x} \in R$ with $0 \le x \le 2^l$

- Addition: $x + \bar{y}$
 - (1) compute $x + y \in \mathbb{N}$: O(l)
 - (2) if $x + y > 2^l + 1$ subtract $2^l + 1$: O(l)
- Multiplication by $\bar{2}^i$ $(0 \le i < l)$
 - (1) Bit-shift i Bits to the left by relocating in memory:

 $\underbrace{O(length(i))}_{\text{compute addr. of new first bit}} + \underbrace{l}_{\text{copying}} = O(\log(l)) + l \in O(l)$

- Multiplication by $\bar{2}^i$ $(l \le i < 2l 1)$
 - (1) Multiplication by $\bar{2}^{i-l}$: O(l)
 - (2) take negative $\bar{2}^i \cdot \bar{x} = -\bar{2}^{i-l} \cdot \bar{x}$: O(l)

1.1.18 Proposition 18 (Sort of summary)

Let $k, r \in \mathbb{N}$, r > 0, $m = 2^{2^{k} \cdot r} + 1$, $R = \mathbb{Z}/(m)$, $\mu = \overline{2}^r \in R$ $\Rightarrow 2 \in R$ is invertible, μ is a good primitive 2^{k+1} -th root of 1

 $\Rightarrow \mu^{2^k} = 1$

Proof: \rightarrow from above

1.1.19 Algorithm 19 (Multiplication using FFT)

input : $x, y \in \mathbb{N}$

output: $Z = x \cdot y$

- (1) Choose $k \in \mathbb{N}$ minimal such that $l(x), l(y) \leq 2^{2k}$
- (2) if $k \leq 3$, compute $z = x \cdot y$ by Algorithm 5
- (3) set $B=2^{2^k}, \quad m=2^{2^k\cdot 4}+1, \quad R=\mathbb{Z}/(m), \quad \mu=\bar{2}^4\in R$ (\$\Rightarrow\$ so \$\mu\$ is a good primitive 2^{k+1} -th root of 1)
- (4) write $x = \sum_{i=0}^{2^k-1} x_i \cdot B^i$, same for y with $(0 \le x_i, y_i < B)$ possible since $x, y < 2^{2^{2k}} = 2^{2^k \cdot 2^k} = B^{2^k}$
- (5) compute: $\hat{x} = DFT_{\mu}(\bar{x}_0, ..., \hat{x}_{2^k-1}, \underbrace{0, ..., 0}_{2^k \text{zeros}}) \in R^{2^{k+1}}$ same for y \rightarrow use FFT
- (6) compute: $\hat{z} = \hat{x} \cdot \hat{b} \in R^{2^{k+1}}$ (component wise multiplication) Perform multiplication in R as follows: Multiply representatives (non negative and < m) by recursive call. Then reduce modulo m by "negative bit shift" (see proof of Proposition 17)
- (7) compute: $(\bar{z}_0, ..., \bar{z}_{2^{k+1}}) = \frac{1}{2^{k+1}} DFT_{\mu^{-1}}(\hat{z}) \in R$ with $0 \le z < m$
- (8) set $z := \sum_{i=0}^{2^{k+1}-1} z_i \cdot B^i$

1.1.20 Theorem 20 (Runtime of Algorithm 19)

Algorithm 19 correctly computes $t = x \cdot y$ and requires $O(n \cdot (\log n)^4)$ bit operations for $l(x), l(y) \leq n$

Proof: Correctness

write
$$x(t) \sum_{i=0}^{2^k - i} x_i t^i \in \mathbb{Z}[t], \quad y(t), \quad \bar{x}(t) \in R[t], \bar{y}(t), \bar{z}(t)$$

by Proposition 18 and Proposition 13 we have $\bar{z}(t) = \bar{x}(t) \cdot \bar{y}(t)$
The 1th coefficient of $x(t)$, $y(t)$ is $0 \le \sum_i x_i \cdot x_i \le 2^k$, $R^2 = 2^k$

The l-th coefficient of $x(t) \cdot y(t)$ is $0 \le \sum_{i+j=l} x_i \cdot y_j < 2^k \cdot B^2 = 2^{k+2 \cdot 2^k} \le 2^{2^{k+2}} < m$

So $z(t) = x(t) \cdot y(t) \Rightarrow z = z(B) = x(B) \cdot y(B) = x \cdot y$ Cost:

Write $\Theta(k) := \max \text{ number of bit operations}$

Analyze Steps:

- (1) compute max $\{l(x), l(y)\}: O(l(n)) = O(k)$
- (2) O(1)
- (3) no bit operations
- (4) compute starting addresses of x_i, y_i in memory: $2 * 2^k$ increments of the address: $2 \cdot 2 \cdot 2^k = 2^{k+2}$ bit ops $\Rightarrow O(2^k)$
- (5) By Theorem 11 need $O(2 \cdot 2^{k+1} \cdot (k+1))$ operations in R which are additions and multiplications by powers of \bar{z} costing $O(2^{k+2})$ bit operations. Total for (5): $O(k \cdot 2^{2 \cdot k})$
- (6) 2^{k+1} multiplications of numbers < m, i.e. of length $\le 2^{k+2}$. So $k' \leq \frac{k+3}{2}$ for k': the "new" k used in the next recursion level. For $\alpha \in R_{>0}$ define $\Theta(\alpha) := \Theta(\lfloor \alpha \rfloor)$ Total for (6): $2^{k+1}(\Theta(\frac{k+3}{2}) + \underbrace{O(2^{k+2})}_{\text{reduction mod m}})$
- (7) For $DFT_{n-1}(\hat{z}): O(k \cdot 2^{2 \cdot k})as(5)$ Since \bar{z} is a n root of 1, multiplication by $\bar{2}^{-k-1}$ is multiplication by a positive power of $\bar{2}$, which costs $O(2^{k+2})$ Total for (7): $O(k \cdot 2^{2 \cdot k})$
- (8) For $j \leq 2^{k+1}$ have $\sum_{i=0}^{j-1} z_i \cdot B^i \leq (m-1) \sum_{i=0}^{j-1} B^i = (m-1) \frac{B^j-1}{B-1} < 2(m-1) \frac{B^j}{B} =$ $2^{1+2^{k+2}+(j-1)2^k}$ so the sum has length $(j+3)\cdot 2+1$ Adding $z_i \cdot B^j$ to this sum happens at $(j \cdot 2^k)$ -th bit and higher \Rightarrow cost is $O(2^k)$ Total for (8): $O(2^{2 \cdot k})$

Grad total: For $k \geq 4$: $\Theta(k) \leq 2^{k+1} \cdot \Theta(\frac{k+3}{2}) + c \cdot k \cdot 2^{2 \cdot k} \quad \text{ with } c \text{ constant}$

Also for $k \in \mathbb{R}_{>4}$

$$\begin{array}{ll} \textbf{Define } \Lambda(k) := \frac{\Theta(k)}{2^{2 \cdot k}} \Rightarrow \Lambda(k) \leq \frac{2^{k+1}\Theta(\frac{k+3}{2})}{2^{2 \cdot k}} + c \cdot k = 16 \cdot \Lambda(\frac{k+3}{2}) + c \cdot k \\ \textbf{Define } \Omega(k) := \Lambda(k+3) \quad \text{So for } k \in \mathbb{R}_{\geq 1} \\ \Omega(k) \leq 16 \cdot \Lambda(\frac{k}{2}+3) + c \cdot (k+3) = \underbrace{16\Omega(\frac{k}{2}) + c \cdot (k+3)}_{*} \\ \textbf{Claim: For } in\mathbb{N} \text{ with } 2^{i-1} \leq k-3 \text{ have:} \\ \Lambda(k) \leq 16^{i}\Omega(\frac{k-3}{2^{i}}) + c \cdot (k+3)(1+8+\ldots+8^{i-1}) + 3 \cdot c \cdot (1+16+\ldots+16^{i-1}) \\ \textbf{Proof by induction:} \\ i = 0\Lambda(k) = \Omega(k-3) \\ i \to i+1 : \Lambda(k) \leq 16^{i}\Omega(\frac{k-3}{2^{i}}) + c \cdot (k-3)(1+\ldots+8^{i-1}) + 3 \cdot c \cdot (1+\ldots+16^{i-1}) \leq 2^{i} \leq k-3 \\ \leq 16^{i}(16\Omega(\frac{k-3}{2^{i+1}})) + c(\frac{k-1}{2^{i}}+3) + c(k-3)\ldots = \text{claimed result} \\ \text{Take } u \in \mathbb{N} \text{ minimal with } 2^{u} > k-3 \Rightarrow \Omega(\frac{k-3}{2^{u}}) \leq \Omega(\lfloor \frac{k-3}{2^{u}} \rfloor) = \Omega(0) =: D \text{ (constant)} \\ \text{Note: u rouhly is recursion depth} \\ \text{Have } 2^{u-1} \leq k-3 \underset{\text{claim}}{\Longrightarrow} \Lambda(k) \leq 16^{u} \cdot D + c \cdot \underbrace{(k-3) \cdot \frac{8^{u}-1}{7} + 3c \cdot \frac{16^{u}-1}{15}}_{\leq 2^{u}} \in O(16^{u}) \\ \text{Have } 2^{u-1} \leq k-3 \Rightarrow u \leq \lg(k-3)+1 \\ \Rightarrow \Lambda(k) \in O(16^{\lg(k-3)}) = O((k-3)^{4}) \\ \Rightarrow \Theta(k) = 2^{2 \cdot k} \cdot \Lambda(k) \in O(2^{2k} \cdot (k-3)^{4}) \\ \text{Have } 2^{2(k-1)} < \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\max\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^{l}} \leq \frac{\lg(n)}{2^{l}} + 1 \\ \underbrace{n}_{\min\{l(x) \cdot l(y)\}}_{\leq 2^$$

1.1.21 Theorem 21 (Schönhage-Strassen 1971)

Multiplication of integers of length $\leq n$ can be done in $O(n \cdot \lg(n) \cdot \lg(\lg(n)))$ bit operations. Schönhage-Strassen is used for integers of length ≥ 100.000 . Asymptotically faster: Fürer's algorithm.

Comments on Bit complexity

- Memory requirement may explode!
 ⇒ No Problem as bit complexity is upper bound for memory requirements, since memory access is included in bit operations
 (→ only store what is calculated)
- 2. Computation of addresses in memory take time \Rightarrow length of addresses $\approx \lg(\text{memory space})^2$
- 3. As memory requirement gets larger access times will get longer. \Rightarrow transportation time for data $\geq \frac{\text{diameter of physical storage}}{2*\text{speed of light}}$

1.2 Division with remainder, Euclidean algorithm

1.2.1 Algorithm 1 (Division with remainder)

input :
$$b = \sum_{i=0}^{n-1} b_i 2^i$$
 $a = \sum_{i=0}^{n+m-1} a_i 2^i$ with $a_i, b_i \in [0, 1, b_{n-1}] = [1]$

output: $r, q \in \mathbb{N}$ such that $a = q \cdot qb + r$, $0 \le r < b$

- (1) $r = a_i \quad q = 0$
- (2) for i = m, m 1, ..., 0 do
- (3) if $r < 2^i \cdot b$ then set $r := r 2^i \cdot b$, $q = q + 2^i$

1.2.2 Proposition 2 (Runtime of Algorithm 1)

Algorithm 1 is correct and requires $O(n \cdot (m+1))$ bit operations.

Proof:

Always have $a = q \cdot b + r$

Claim:

before setp (3), have $0 \leq 2^{i+1} \cdot b$

$$i = m;$$
 $0 \le r = a < 2^{m+n} = 2^{m+1}c \cdot 2^{n-1} \le 2^{m-1} \cdot b$ $i < m$ By step (3)

So after last passage through the loop $0 \le r < b$

Running Time: In step(3), have comparison and (possiby) subtraction. Only n bits involved $\Rightarrow O(n)$

Total: $O(b \cdot (m+1))$

Remarks:

(1) Division with remainder can be reduced to multiplication. Precisely: given an algorithm for multiplication that requires M(n) bit operations, there exists an algorithm for division with remainder that requires O(M(n)) bit operations.

14

- (2) Practically relevant: Jebelean's algorithm (1997): $O(n^{\lg 3})$
- (3) Alternatively, may choose $r\mathbb{Z}$ such that $\lfloor \frac{-b}{2} \rfloor < r \leq \lfloor \frac{b}{2} \rfloor$
- (4) Algorithm 1 extends to \mathbb{Z} .
- (5) All Euclidean rings have division with remainder (by definition). (e.g., $R = K[x] \rightarrow \text{polynomial ring over field}$, $R = \mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\} \subseteq \mathbb{C}, \quad i^2 = -1$)

1.2.3 Algorithm 3 (Euclidean algorithm)

input : $a, b \in \mathbb{N}$

output: gcd(a, b) "greatest common divisor"

- (1) set $r_0 := a$, $r_i := b$
- (2) for i = 1, 2, 3, ... perform steps (3) and (4)
- (3) if $r_i = 0$ then $gcd(a, b) = |r_{i-1}|$
- (4) Division with remainder: $r_{i-1} = q \cdot r_i + r_{i+1}$ $r_{i+1} \in \mathbb{Z}$ $|r_{i+1}| \leq \frac{1}{2}|r_i|$

Example:

$$a = 287, \quad b = 126$$

$$287 = 2 \cdot 126 + 35 \tag{1}$$

$$126 = 4 \cdot 35 - 14 \tag{2}$$

$$35 = (-2) \cdot (-14) + 7 \tag{3}$$

$$-14 = (-2) \cdot 7 + 0 \tag{4}$$

So:
$$7|(-14) \Longrightarrow 7|35$$

 $\Longrightarrow 7|126$
 $\Longrightarrow 7|287$

On the other hand take a common divisor d; d|287; d|126 $\Longrightarrow_{(1)} d|d \Longrightarrow_{(2)} d|14 \Longrightarrow_{(3)} d|7$

1.2.4 Theorem 4 (Correctness of Algorithm 3)

Algorithm 3 is correct.

Proof:

Since $r_{i-1} = q \cdot r_i + r_{i+1}$ every integer $x \in \mathbb{Z}$ satisfies the equivalence $x | r_{i-1}$ and $x | r_i \Leftrightarrow x | r_{i+1}$ and $x | r_i$ so $gcd(r_{i-1}, r_i) = gcd(r_i, r_{i+1} = gcd(a, b))$ when terminating have $gcd(a, b) = gcd(r_{i-1}, 0) = |r_{i-1}|$

1.2.5 Theorem 5 (Runtime of Algorithm 3)

Algorithm 3 requires $O(m \cdot n)$ bit operations for n = l(a), m = l(b)

Proof:

If a < b than the first passage yields $r_2 = a$, $r_1 = b$. Cost: O(n)

May assume: $a \ge b$. Write $n_i = l(r_i)$

May assume: $a \ge 0$. When $n_i = 1$.

By Proposition 2 $\exists c$ constant such that the total time is $\leq c \cdot \sum_{i=1}^k n_i \cdot (n_{i-1} - n_i + 1)$ $=:\sigma(n_0, ..., n_k)$

For i > 2: $n_i = n_{i-1} - 1$

Special Case: $n_i = n_{i-1} - 1$ for $i \ge 2$

Special Case. $n_i - n_{i-1}$ $1 - n_i = m$, k = m + 1Obtain $\sigma(n_0, ..., n_k) = m \cdot (n - m + 1) + \sum_{i=2}^{m+1} (m - i + 1) \cdot 2 = m \cdot n - m^2 + m + m(m-1) = m * n$.

Claim: The special case is the worst (most expensive)!

From any sequence $n_1 > n_2 > ... > n_k$ get to the special case by iteratively inserting numbers in the gaps. Insert s with $n_{j-1} > s > n_j$.

 $\sigma(n_0, ..., n_{j-1}, s, n_j, ..., n_k) - \sigma(n_0, ..., n_k) = ... = s + (n_{j-1} - s) \cdot (s - n_j)$

 $sp\sigma(n_0, ..., n_k) \le \sigma(n, m, m - 1, ..., 2, 1, 0) = n \cdot m$ Complexity is quadratic \rightarrow cheap

1.2.6 Algorithm 6 (Extended Euclidean Algorithm)

input : $a, b \in \mathbb{N}$

output: d = qcd(a, b) and $s, t \in \mathbb{Z}$ such that $d = s \cdot a + t \cdot b$

- (1) $r_0 := a, r_1 := b, s_0 := 1, t_0 := 0, s_1 := 0, t_1 = 1$
- (2) for i = 1, 2, ... perform steps (3) (5)
- (3)if $r_i = 0$ set $d = |r_{i-1}|$ $s := sgn(r_{i-1}) \cdot s_{i-1},$ $t := sgn(r_{i-1}) \cdot t_{i-1}$
- division with remainder: (4)

 $r_{i+1} = r_{i-1} - q_i \cdot r_i$, with $|r_{i+1}| \le \frac{1}{2} |r_i|$

(5) $set s_{i+1} := s_{i-1} - q_i \cdot s_i,$ $t_{i+1} := t_{i-1} - q_i \cdot t_i$

Justification: $r_i = s_i \cdot a + t_i \cdot b$ throughout

Application: $m, x \in \mathbb{N}$ such that m, x co-prime (i.e. gcd(x, m) = 1)

Algorithm 6 yields: $1 = s \cdot x + t \cdot m \Rightarrow s \cdot x \equiv 1 \mod m$. So obtain inverse of $\bar{x} \in \mathbb{Z}/(m)$

1.3 Primality testing

Let $\mathbb{P} \subseteq \mathbb{N}$ be the set of prime numbers.

Challenge: Given $n \in \mathbb{N}$ decide if $n \in \mathbb{P}$

Naive Method: Trivial division by $m \leq |\sqrt{n}|$.

Running time is exponential in l(n). Even when restricted to division by prime numbers, need approximatily $\frac{\sqrt{n}}{|n|\sqrt{n}}$ trivial divisions (prime number theorem)

 \rightarrow hardly any better!

Reminder: (arithmetic modulo m)

G finite group $\Rightarrow \forall a \in G \quad a^{|G|} = 1$ Fermat's little theorem

For $G = (\mathbb{Z}/(p)^x \quad a^{p-1} \equiv 1 \mod p \in \mathbb{P} \quad \forall a \in \mathbb{Z}$

Infact $(\mathbb{Z}/(p))^x \cong \mathbb{Z}_{p-1}$ is cyclic

For $m = p_1^e, ...p_r^{e_r}$ with $p_i \in \mathbb{P}$, $e_i \in \mathbb{N}_{>0}$:

 $\mathbb{Z}_{(m)} \cong \mathbb{Z}_{(p_i^{e_i})} \oplus \ldots \oplus \mathbb{Z}_{(p_r^{e_r})} \Rightarrow \mathbb{Z}_{(m)}^x \cong \mathbb{Z}_{(p_r^{e_i})}^x \times \ldots \times \mathbb{Z}_{(p_r^{e_r})}^x$

what is $\mathbb{Z}_{(p^e)}$ for $p \in \mathbb{P}$, $e \in \mathbb{N}_{>0}$?

1.3.1 Theorem 1 (Cyclic)

Let $p \in \mathbb{P}off \ e \in \mathbb{N}_{>0} \Rightarrow (\mathbb{Z}_{(p^e)})^x = Z_{(p-1)\cdot p^{e-1}}$ cyclic

Proof:

$$(\mathbb{Z}_{(p^e)})^x \cong \mathbb{Z}_{p-1} \Rightarrow \exists z \in \mathbb{Z} : order(z+p\mathbb{Z}) = p-1$$

Set
$$a = \bar{z}^{p^{e-1}} \in (\mathbb{Z}_{(p^e)})^x =: G$$

$$a^{p-1} = \bar{z}^{(p-1)} \cdot p^{e-1} = \bar{z}^{|a|} = 1$$

On the other hand, take $i \in \mathbb{Z}$ such that

$$a^i = 1 \Rightarrow z^{i \cdot p^{e-1}} \equiv 1 \mod p \Rightarrow (p-1)|(i-p^{e-1}) \Rightarrow (p-1)|i.$$

So
$$ord(a) = p - 1$$
.

Now consider $b = (p+1) \in G$

Claim: $ord(b) = p^{e-1}$

Proof by induction on $k \in \mathbb{N}_{>0}$ that $(p+1)^{p^{k-1}} \equiv p^k + 1 \mod p^{k+1}$

k=1 \checkmark

 $k \to k+1$: By induction have $(p+1)^{p^{k-1}} = 1 + p^k + x \cdot p^{k+1}, \quad x \in \mathbb{Z}$

Compute: $(p+1)^{p^k} = ((1+p^k) + x \cdot p^{k+1})^p = \sum_{i=0}^p (p \text{ over } i)(i+p^k)^{p-i} \cdot x^i \cdot p^{i \cdot (k+1)}$

$$\underbrace{\equiv}_{\text{Only 0-th summand}} (i+p^k) = \sum_{i=0}^p (p \ over \ i) p^{i \cdot k} \underbrace{\equiv}_{p \ odd} 1 + p^{k+1} \ mod \ p^{k+2} \quad \checkmark$$

For
$$k = e : (p+1)^{p^{e-1}} \equiv | \mod p^e \Rightarrow b^{p^e} = 1 \Rightarrow ord(b)|p^{e-1}$$

But $(p+1)^{p^{e-2}} \equiv p^{e-1} + 1 \mod p^e \Rightarrow b^{p^{e-2}} \neq 1 \in G$

But
$$(p+1)^{p^{e-2}} \equiv p^{e-1} + 1 \mod p^e \Rightarrow b^{p^{e-2}} \neq 1 \in G$$

So $ord(b) = p^{e-1}$

Claim: $ord(a \cdot b) = (p - 1)p^{e-1}$ $(\Rightarrow \text{Theorem})$

Let $(a \cdot b)^i = 1 \in G$ with $i \in \mathbb{Z}$

Then
$$1 = (a \cdot b)^{i \cdot (p-1)} = (a^{p-1})^i \cdot b^{i \cdot (p-1)} = b^{i \cdot (p-1)} \Rightarrow p^{e-1}|i \cdot i(p-1) \Rightarrow p^{e-1}|i$$

Also $1 = (a \cdot b)^{p^{e-1} \cdot i} = a^{p^{e-1}} \Rightarrow (p-1)|p^{e-1} \cdot i \Rightarrow (p-1)|i \rightarrow (p-1) \cdot p^{e-1}|i$

Reminder: $(\mathbb{Z}/(2^e))^x \cong Z_2 \times Z_2^{e-2} \quad (e \ge 2)$

1.3.2 Algorithm 2 (Fermat Test)

input : $n \in \mathbb{N}_{>0}odd$

output: " $n \notin \mathbb{P}$ " or "probably $n \in \mathbb{P}$ "

- (1) Choose $a \in 2, ..., n-1$ randomly
- (2) Compute $a^{n-1} \mod n$
- (3) If $a^{n-1} \neq 1 \mod n$ then return " $n \notin \mathbb{P}$ " otherwise return "probably $n \in \mathbb{P}$ "

Not very satisfying. Is this fast?

1.3.3 Algorithm 3 (fast exponentiation)

input : $a \in G$ G is a monoid, $e \in \mathbb{N}, e = \sum_{i_0}^{n-1} e_i 2^i, e_i \in \{0, 1\}$

output: $a^e \in G$

- (1) Set b := a, y := 1
- (2) For i = 0, ..., n 1 perform (3) (4)
- (3) if $e_i = i$ set $y := y \cdot b$
- $(4) set b := b^2$
- (5) return y

this requires O(l(e)) operations in G

For $G = (\mathbb{Z}/(n)_i)$, each multiplication requires $O(l(n)^2)$ bit operations

 \Rightarrow Fermat test requires $O(l(n)^3)$ bit operations \rightarrow cubic complexity \rightarrow "fast"!

Example:

 $n=56\overline{1}=3\cdot 11\cdot 17$ For $a\in\mathbb{Z}$ with $gcd(a,n)\Rightarrow$ have $a^{n-1}=(a^2)^{280}\equiv 1\ mod\ 3$ $a^{n-1}\equiv 1\ mod\ n$ Fermat's test says "probably $n\in\mathbb{P}$ " in 57% of cases.

 $n = 2207 \cdot 6619 \cdot 15443$: output "probably $n \in \mathbb{P}$ " in 99,93% of cases.

1.3.4 Definition 4 (pseudo-prime, witness, Carmichael numbers)

Let $n \in N_{>1}odd$, $a \in 1, ..., n-1$

- (a) n is pseudo-prime to base a if $a^{n-1} \equiv 1 \mod n$
- (b) otherwise a is called a witness of composition of n
- (c) If $n \notin \mathbb{P}$ but $a^{n-1} \equiv 1 \mod n$ $\forall a \text{ with } \gcd(n, a) = 1$ then n is called a Carmichael number. There are ∞ Carmichael numbers

1.3.5 Proposition 5:

Let $n \in N_{>1}$, $odd \notin \mathbb{P}$ not Carmichael $\Rightarrow |\{a \in \mathbb{Z} | 0 < a < n \text{ a witness of composite of } n\}| > \frac{n-1}{2}$ **Proof:** Consider $\phi: (\mathbb{Z}/(n))^x =: G \to G, \quad \bar{a} \mapsto \bar{a}^{n-1}$ group homomorphism. By assumption, $\begin{aligned} &|im(\phi| > 1 \Rightarrow |Ker(\phi)| \leq \frac{|a|}{2} < \frac{n-1}{2} \\ &\Rightarrow |\{a \in \mathbb{Z} | 0 < a < n \text{ a witness of composite of } n\} > \frac{n-1}{2} \end{aligned}$

Miller-Rabin Test

1.3.6 Proposition 6

Let $p \in \mathbb{P}$ odd, $a \in \{1, ..., p-1\}$ write $p-1=2^k$ with m odd Then: $a^m \equiv 1 \mod p \text{ or } \exists i \in \{0, ..., k-1\};$ $a^{2^{i} \cdot m} \equiv -1 \bmod p_{i}$

Proof:

Little Fermat: $\bar{a}^{2^k \cdot m} = 1 \in \mathbb{F}_p$ Assume $\bar{a}^m \neq 1$ take i maximal such that: $\bar{b} = \bar{a}^{2^i \cdot m} \neq 1 \Rightarrow \bar{b}^2 = 1 \Rightarrow \bar{b} \in \mathbb{F}_p \text{ is a zero of } x^2 - 1 \in \mathbb{F}_p[x] \Rightarrow \bar{b} = -1$

1.3.7 Algorithm 7 (Miller -Rabin)

input : $n \in \mathbb{N}_{>1}$, odd

output: either " $n \notin \mathbb{P}$ " or "probably $n \in \mathbb{P}$ " \to Monte Carlo Algorithm.

- (1) write $n-1=2^k \cdot m$ with m odd
- (2) Choose $s \in \{2, ..., n-1\}$ randomly
- (3) Compute $b := a^m \mod n$
- (4) if $(b \equiv \pm 1 \mod n)$ return "probably $n \in \mathbb{P}$ "
- (5) for (i = 0, ..., k 1) do steps (6) (7)

- (6) $\operatorname{set} b := b^2 \bmod n$
- (7) if $(b \equiv -1 \mod n)$ return "probably $n \in \mathbb{P}$ "
- (8) return $n \notin \mathbb{P}$ "

1.3.8 Definition 8

Let $n \in \mathbb{N}_{>1}$, odd $a \in \{1, ..., n-1\}$

- (a) n is called a strongly pseudo-prime to base a if Proposition 6 holds for a and p replaced by n.
- (b) Otherwise a is called a strong witness of composition of n.

Example

Let $n \in \mathbb{N}_{>1}$, \mathbb{P} odd a = 2 strong witness if n < 2047 (including 561) 2 or 3 strong witness if n < 1373653 2,3 or 5 strong witness if n < 25326001

1.3.9 Theorem 7

- (a) Algorithm 7 requires $O(l(n)^3)$ bit operations. \rightarrow "qubic complecity" \rightarrow fast!
- (b) if $b \in \mathbb{P}$ then Algorithm 7 returns "probably $b \in \mathbb{P}$ " \to no false positives.
- (c) if $n \notin \mathbb{P}$ then more than half of the numbers in $\{1, ..., n-1\}$ are strong witnesses.

Proof:

- (a) Step 1 takes O(l(n)) bit operations: Using Algorithm 3, we need O(l(n-1)) multiplications in $\mathbb{Z}/(n)$ each requiring $O(l(n)^2)$ bit operations.
- (b) Proposition 6
- (c) split in three cases:

Case 1: n is not a Carmichael number. $\xrightarrow{Prop5}$ more than half of all numbers are.

Fermat witness thus also strong witness.

Case 2: $n = p^r \cdot l$ with $p \in \mathbb{P}$ r > 1 $l \in \mathbb{N}_{>0} p \nmid l$

Theorem $1 \exists x \in Z \text{ such that } x^p \equiv 1 \bmod p^r \quad x \neq 1 \bmod p^r$

Chinese remainder theorem: $\exists a \in \mathbb{Z} \text{ such that } a \equiv x \mod p^r \quad a \equiv 1 \mod l$

So $\bar{a}^p = 1 \in \mathbb{Z}(n) \Rightarrow \bar{a}^n = 1 \Rightarrow \bar{a} \in (\mathbb{Z}/(n))^x$

i.e. gcd(n, a) = 1 if $\bar{a}^{n-1} = 1$ then $\bar{a} = 1$

But $a \equiv x \neq 1 \mod p^r$ so $\bar{a}^{n-1} \neq 1$ hence n is not Carmichael \rightarrow Case 1.

Case 3: n is a Carmichael number. By Case 2 have $n = p \cdot l$ with $p \in \mathbb{P}$ $p \nmid l$ $l \geq 3$

```
n Carmichael: \forall a \in \mathbb{Z} with gcd(a, n, ) = 1
have a^{2^k \cdot m} \equiv 1 \mod n (where n - 1 = 2^k \cdot m)
a^{2^k \cdot m} \equiv 1 \mod p Take j minimal such that
a^{2^{j} \cdot m} \equiv 1 \mod p \forall a \in \mathbb{Z} such that gcd(a, n) = 1
so 0 \le j \le l in fact, j > 0 since (-1)^{2^0 \cdot m} = -1 with m \text{ odd}.
Consider the subgroup H := \{\bar{a} \in \mathbb{Z}/(n) | \bar{a}^{2^{j-1} \cdot m} \in \{1, -1\} \subseteq (\mathbb{Z}/(n))^x\}
Let a \in \{1, ..., n-1\} gcd(n, a) = 1 a not a strong witness.
Claim 1: \bar{a} \in H
Case 3.1: \bar{a}^{2^{j-1} \cdot m} = 1 \Rightarrow \bar{a} \in H
Case 3.2: a^{2^{j-1} \cdot m} \neq 1 \mod n a^m \neq 1 \mod n
\underset{a \text{ nonwitness}}{\longrightarrow} \exists i \text{ such that } \underbrace{a^{2^{i \cdot m}} \equiv -1 \mod n}_{*}
\Rightarrow a^{2^{i} \cdot m} \equiv -1 \bmod p \xrightarrow{\text{def of j}} i < j
if i < j - 1 then a^{2^{j-1} \cdot m} = (a^{2^{i} \cdot m})^{2^{j-1-i}} \equiv (-1)^{2^{j-1-i}} = 1 \mod n
\xrightarrow{\text{with *}} not in case 3.2
Claim 2: H \subseteq (\mathbb{Z}_{(n)})^x proper subgroup.
By definition of j\exists x\in\mathbb{Z} such that x^{2^{j-1}\cdot m}\neq 1 mod p
Chinese remainder: \exists a \in \mathbb{Z} such that
                          a \equiv 1 \bmod l \Rightarrow a^{2^{j-1} \cdot m} \neq 1 \bmod p \equiv 1 \bmod l \Rightarrow \bar{a} \notin H
a \equiv x \bmod p
Claim 2 ✓
It follows that |H| \leq \frac{|(\mathbb{Z}/(n))^x|}{2} < \frac{n-1}{2} so the number of witnesses is \geq n-1-|H| > \frac{n-1}{2}
Remarks:
```

- (a) A more careful analysis shows that $2\frac{3}{4}$ of all candidates are strong witnesses
- (b) Calling Algorithm 7 repeatedly decreases the probability of false positives. Running time for prescribed error probability p is $O(\lg(p^{-1} \cdot l(n)^3))$ (Independence assumptions!)

Connection with Riemann hypothesis

Let
$$n \in \mathbb{N}_{>0}$$
 $\bar{X} : (\mathbb{Z}/(n))^x \to \mathbb{C}^x$ group homomorphism $X : \mathbb{Z} \to \mathbb{C}, a \mapsto \begin{cases} \bar{X}(\bar{a}) & \text{if } \gcd(a,n) = 1 \quad \text{for } (\bar{a} = a + n\mathbb{Z}) \\ 0 & \text{otherwise} \end{cases}$

"residence class character mod n

$$Ex: n = 1 \Rightarrow X(a) = 1 \forall a \in \mathbb{Z}$$

Divichlet L-series:

$$L_X(s) = \sum_{n=1}^{\infty} \frac{X(n)}{n^s}$$
 converges for $s \in \mathbb{C}$ until $Re(s) > 1$

 $L_X(s)$ extends to a meromorphic function on $\mathbb{C} \mapsto$ "Divichlet L-function".

For $n = 1 : L_X(s) = \zeta(s)$ Riemann Zeta-function.

Euler Product:

From
$$(1 - X(p) \cdot p^{-s})^{-1} = \sum_{i=0}^{\infty} (X(p) \cdot p^{-s})^i = \sum_{i=0}^{\infty} \frac{X(p^i)}{p^{is}}$$
 derive $L_X(s) = \prod_{p \in \mathbb{P}} \frac{1}{1 - X(p) \cdot r^{-s}}$

Generalized Riemann hypothesis (GRH):

For X residue class character, $s \in \mathbb{C}$

with
$$L_X(s) = 0$$
, $0 < Re(s) < 1$ ("critical strip")

then $Re(s) = \frac{1}{2}$

For $X = 1 \rightarrow$ ordinary Riemann hypothesis.

1.3.10 Theorem (Arkeny & Bach)

 $GRH \Rightarrow \forall X \neq 1$ residence class character

$$\exists p \in \mathbb{P} : X(p) \neq 1, p < 2\ln(n)^2$$

Let $H \nsubseteq (\mathbb{Z}/(n))^x =: G$ propper subgroup.

Choose $N \nsubseteq G$ maximal proper subgroup such that $H \subseteq N \Rightarrow G/N$ cyclic.

$$\bar{X}: G \mapsto \mathbb{C}^{\bar{x}} \text{ with } N = Ker(\bar{X}) \Rightarrow H \subseteq Ker(\mathbb{X})$$

$$\xrightarrow{\text{GRH, Thm1}} \exists p \in \mathbb{P} : p + n\mathbb{Z} \notin H, p < 2 \cdot \ln(n)^2$$

Corollary: Assume GRH.

Let $n \in \mathbb{N}_{>1}$ \mathbb{P} odd Then there is a strong witness a of compositeness of n with $a < 2 \cdot \ln(n)^2$.

 \rightarrow Obtain deterministic primality test with time $O(\ln(n)^5)$ bit operations.

AKS-test

A deterministic polynomial time primaly test \rightarrow "holy grail"

Agrawal, Kayal, Saxena: PRIMES is in P, Annals of Mathematics, 2004.

1.3.11 **Proposition 10**

Let $n \in \mathbb{P}$ $a \in \mathbb{Z} \Rightarrow (x+a)^n \equiv x^n + a \bmod n$

where x is a indeterminate) and for $r \in \mathbb{N}$:

$$(x+a)^n \equiv x^n + a \bmod (n, x^r - 1) \tag{1}$$

(i.e.
$$(x+a)^n - (x^n+a) = n \cdot f + (x^r-1) \cdot g$$
 with $f, g \in \mathbb{Z}[x]$)

$$(x+a)^n = \sum_{i=0}^n \binom{n}{i} \cdot x^i a^{n-1} \qquad \text{(where } \binom{n}{i} \text{ is a multiple of } n \text{ for } 0 < in)$$

$$\equiv x^n + a^n \qquad (\leftarrow \text{ little Fermat})$$

 $\equiv x^n + a$ (1) follows by weakening this.

Cost analysis for checing (1) with l = length(n).

Using Algorithm 3, need O(l) multiplications in $\mathbb{Z}[x]/(n, x^r - 1) =: R$

Elements of R are represented as polynomials of degree $\langle r, \rangle$

coefficients between 0 and n.

Multiply polynomials: $O(r^2)$ operation in $\mathbb{Z}/(n): O(r^2 \cdot l^2)$

since $x^{r+k} \equiv x^k \mod x^r - 1$,

add coefficients of x^{r+k} of product polynomial to coefficients $x^k: O(r \cdot l)$

Total for checking (1): $O(r^2 \cdot l^3)$ bit operations.

Reduction $mod x^r - 1$ is just for keeping the cost under control. The following is part of AKS-test:

1.3.12 Algorithm 11 (Test for perfect power)

input : $n \in \mathbb{N}_{>1}$

output: $m, e \in \mathbb{N}$ e > 1 such that $n = m^e$ or "n is not a perfect power"

- (1) for $(e = 2, ..., |\lg(n)|)$ perform (2) (7) //possible exponents
- (2) set $m_1 = 2, m_2 = n$ //initialize interval $[m_1, m_2]$ for searching $\sqrt[e]{n}$
- (3) while $(m_1 \le m_2)$ do (4) (7)
- (4) set $m = \lfloor \frac{m_1 + m_2}{2} / / \text{ bisect interval}$
- (5) if $m^e = n$ return m, e
- (6) if $m^e > n \text{ set } m_2 = m 1$
- (7) if $e^{e} < n \text{ set } m_1 = m + 1$
- (8) return "not a perfect power"

Cost: (for l = length(n))

Compute $m^e: O(\lg(l) \cdot l^2)$ (abort computation once the result exceeds n)

Number of passages through inner loops $\leq \lg(n)$

Number of passages through outer loops $\leq \lg(n)$

Total cost of Algorithm 11: $O(l^4 \cdot \lg(l))$

1.3.13 Algorithm 12 (AKS-test)

input : $n \in \mathbb{N}_{>1}$ of length $l = \text{length}(n) = \lfloor \lg(n) \rfloor + 1$

output: " $n \in \mathbb{P}$ " or " $n \notin \mathbb{P}$ "

- (1) check if n is a perfect power. if yes, return " $n \notin \mathbb{P}$ "
 - (2) find $r \in \mathbb{N}_{>1}$ minimal such that $r|n \lor n^i \neq 1 \bmod r \quad \forall i = 1, ..., l^2$ //exhaustive search (we will show that $r \leq l^5$)
 - (3) if r|n

if
$$r = n$$
 return " $n \in \mathbb{P}$ " if $r < n$ return " $n \notin \mathbb{P}$ "

- (4) for $a = 1, 2..., |\sqrt{r} \cdot l|$ do (5)
- (5) if $(x+a)^n \neq x^n + a \mod(n, x^r 1)$ return " $n \notin \mathbb{P}$ "
- (6) return " $n \in \mathbb{P}$ "

polynomial rings measure not abs value but max power

2 Notes

- a|b a is divisible by b
- $a \nmid b$ a is not divisible by b
- *ord*(*a*)
- char(A) the smallest positive n such that $\underbrace{1+...+1}_{n \ summands} = 0 \quad \text{with 1 as the multiplicative identity element}$
- $\mathbb{Z}/(m)$ Ring modulo m
- $\lg(x) = \log_2(x)$
- Average number of bit operations for an increment:
 one operation for the last bit + 50% chance for one on the next bit + 25% on the
 following etc. ⇒ Geometrical row
 ⇒ on average two bit operations
- "Monte Carlo Algorithm": Always terminates in reasonable time but might yield false result
- "Las Vegas Algorithm"
- $\mathbb{N}_0 = \mathbb{N}$
- Euclidean Ring: R euclidean Ring if \exists function $F: R \mapsto \mathbb{N}_0 \cup \{0\}$ such that if $\exists q, r \in R \quad a = b \cdot q + r \text{ and } r = 0 \text{ or } a, b \in R \quad F(r) < F(b)$