Example 8. Calculate the mean deviation about the mean for the following series:

Solution. Here n = 11, and therefore

Mean =
$$\frac{15+20+17+19+21+13+12+10+17+9+12}{11} = \frac{165}{11} = 15 = M \text{ (say)}.$$

Now

х	d = x - M = (x - 15)	
15	0	0
20	5	5
17	2	2
19	4	4
21	6	6
13	- 2	2
12	– 3	3
10	- 5	5
17	2	2
9	- 6	6
12	-3	3
		$\Sigma \mid d \mid = 38$

$$\therefore \text{ Mean deviation} = \frac{\sum |d|}{N} = \frac{38}{11} = 3.455.$$

Example 9. The marks obtained by 10 students in an examination were as follows:

Find the mode, median and mean deviation about the mean.

Solution. Arranging the data in the ascending order we have;

Mode = 70.
$$(\because 70 \text{ occurs maximum number of times})$$

Median =
$$\frac{10+1}{2}$$
 th item = 5.5th item

= Average of 5th and 6th item =
$$\frac{70+73}{2}$$
 = 71.5.

Mean =
$$\frac{\sum X}{n} = \frac{65 + 68 + 70 + 70 + 70 + 73 + 75 + 80 + 83 + 86}{10} = \frac{740}{10} = 74$$
.

Mean Deviation about mean = $\frac{\sum |X - \overline{X}|}{n}$

$$= \frac{4+9+6+4+1+1+6+4+9+12}{10} = \frac{56}{10} = 5.6$$

5.4.2 Mean Deviation for Grouped data

Let $x_1, x_2, x_3, \dots, x_n$ occur with frequencies $f_1, f_2, f_3, \dots, f_n$ respectively and let $\Sigma f = n$ and M can be either Mean or Median or Mode, then the mean deviation is given by the formula.

Mean Deviation
$$=\frac{\sum f |x-M|}{\sum f} = \frac{\sum f |d|}{n}$$
, where $d = |x-M|$ and $\sum f = n$.

Example 13. Calculate the mean deviation from the mean for the following data:

Marks:	0 - 10	10 – 20	20 - 30	30 - 40	40 – 50	50 - 60	60 - 70
No. of Students:	6	5	8	15	7	6	3

Solution.

Table: Computation of Mean Deviation

	$\Sigma f = 50$	$\Sigma fx = 1670$		$\sum f \mid x - \overline{x} \mid = 659.2$
65	3	195	31.6	94.8
55	6	330	21.6	129.6
45	7	315	11.6	81.2
35	15	525	1.6	24.0
25	8	200	8.4	67.2
15	5	75	18.4	92.0
5	6	30	28.4	170.4
Mid-value: (x)	Frequency: (f)	$f \times x$	$ x-\overline{x} $	$f \mid x - \overline{x} \mid$

Mean:

$$\bar{x} = \frac{\sum f \times x}{N} = \frac{1670}{50} = 33.4$$

Mean Deviation =
$$\frac{\sum f |x - \overline{x}|}{\sum f} = \frac{659.2}{50} = 13.184$$
.

Example 14. Find the mean deviation from the mean for the following data.

						·	
Class Interval:	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
					. 0	50 40	-
Frequency:	8	12	-10	R	3	2	7
1 requertey .			10	0	J	2	,

WORKING RULE

Find the mid-values or mid-points of the various classes and denote it by m STEPI

Find the mid-values or non-point. Take any one of the values of m's as the assumed mean A (Generally, the $m_{\frac{1}{2}}$), the $m_{\frac{1}{2}}$ STEPII

value is taken as A_i .

Take the deviations of the mid-points from the assumed mean A and $d_i v_{ide}$ is b_i . STEP III

Multiply the respective frequencies f with the corresponding deviation d and STEPIV obtain \(\Sigma fd.\)

Square the deviations d and multiply it with their respective frequencies, $Ob_{k_{ij}}$ STEP V Σfd^2 .

Substitute the values of Σfd , Σfd^2 , i in the formula: STEP VI

$$\sigma = \sqrt{\frac{\sum f d^2}{n} - \left(\frac{\sum f d}{n}\right)^2} \times i$$
, where $n = \sum f$

to get the desired standard deviation σ .

Example 21. Find the standard deviation for the following distribution:

Marks	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
No. of Students	5	12	15	20	10	4	2

Solution. Let us prepare the following table in order to calculate the standard deviation, by assuming A = 45.

Table: Computation of Standard Deviation

Total	$\Sigma f = n = 68$			$\Sigma fd = -30$	$\sum f d^2 = 152$
70 - 80	2	75	3	6	18
60 - 70	4	65	2	8	16
50 - 60	10	55	1	10	10
40 - 50	20	45	0	0	0
30 - 40	15	35	~ 1	- 15	15
20 – 30	12	25	- 2	- 24	48
10 - 20	5	15	- 3	- 15	45
Marks (Class interval)	No. of Students (f)	Mid-value (m)	$d=\frac{m-45}{10}$	fd	fd ²

$$= i \times \sqrt{\frac{\sum fd^2}{n} - \left(\frac{\sum fd}{n}\right)^2} = 10 \times \sqrt{\frac{152}{68} - \left(\frac{-30}{68}\right)^2} = 10 \times \sqrt{(2.2352 - 0.1946)}$$

= $10 \times \sqrt{2.0406}$ = 14.3 Approx.

Example 22. Find the standard deviation by the step deviation method for the following data:

Class-Interval: 0	- 10 10 - 20	20 20	20 40			70 70
Frequency:	4	20 - 30	30 - 40	40 - 50	50 - 60	60-70
A TO GREET TO THE PROPERTY OF	0 14	10	8	1	3	8