Àlex Batlle Casellas

1. Proveu que $f(x) = \sqrt{x}$ és uniformement contínua a $[0, \infty)$. Indicació: Separeu el cas [0, 1] de l'interval $[1, \infty)$. En aquest darrer cas, proveu que f satisfà una condició de Lipschitz.

Per a que una funció sigui uniformement contínua, ha de complir la següent condició:

$$\forall \epsilon > 0 \ \exists \delta > 0: \ |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Si partim l'interval en els intervals [0,1] i $[1,\infty)$, podem raonar-ho pels dos casos. Per l'interval [0,1], tenim que $\sqrt{x} \ge x \ \forall x \in [0,1]$. Aleshores, $|x-y| \le |\sqrt{x} - \sqrt{y}|$ Recordem l'enunciat de la condició de K-Lipschitz:

$$\forall x, y \quad |f(x) - f(y)| \le K|x - y|$$

- 2. Proveu que $f(x) = x^2$ no és uniformement contínua a $[0, \infty)$, veient explícitament que existeix $\epsilon > 0$, i successions $(x_n)_n$ i $(y_n)_n$ no fitades amb $(x_n y_n)_n$ convergent a zero i tal que $|f(x_n) f(y_n)| \ge \epsilon$.
- 3. Proveu que $f(x) = \sin x$ és uniformement contínua a tot \mathbb{R} veient que satisfà una condició 1-Lipschitz a tota la recta real.

 Indicació: Useu que, per tot $a, b \in \mathbb{R}$,

$$\sin a - \sin b = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right).$$

(Observació: $f(x) = \sin x$ és, doncs, una funció vàlida com l'exemple que es demana a l'exercici 16 del Tema 3).