Introduction

Madiba Hudson-Quansah

CONTENTS

CHAPTER 1	Introduction	PAGE 2
1.1	Machine Learning	2
1.2	Artificial Intelligence (AI)	2
1.3	Deep Learning vs Machine Learning Machine Learning — 2 • Deep Learning — 2	2
1.4	Supervised Learning Terminology $-3 \cdot$ Supervised Learning Pipeline $-3 \cdot$ Math -3	3
	1.4.3.0.1 Batch Gradient Descent	4
	1.4.3.0.2 Stochastic Gradient Descent	5

Chapter 1

Introduction

1.1 Machine Learning

- · Performing a Task
- With Experience
- Improving Performance

1.2 Artificial Intelligence (AI)

Definition 1.2.1: Artificial Intelligence

The science and engineering of making intelligent machines, especially intelligent computer programs.

1.3 Deep Learning vs Machine Learning

1.3.1 Machine Learning

- Subfield of AI focused on algorithms that learn from data.
- · Works well with structured data.
- · Simpler models.
- Requires manual feature extraction and selection.
- Involves predictive modelling, clustering, and classification.
- Feature extraction and application are done separately.

1.3.2 Deep Learning

- Subfield of ML using neural networks with many layers.
- · Works well with large amounts of unstructured data.
- Complex models with multiple layers.
- Automatically extracts features from raw data.
- · Involves image and speech recognition, natural language processing, and recommendation systems.
- Feature extraction and application are done together by the neural network.

1.4 Supervised Learning

Definition 1.4.1: Supervised Learning

A subfield of Machine Learning where labelled datasets are used to train algorithms that classify data or predict outcomes.

1.4.1 Terminology

Definition 1.4.2: Feature / Input Feature / Independent Variable / X

A feature is an individual measurable property or characteristic of a phenomenon being observed.

Definition 1.4.3: Label / Dependent Variable / Y

The output / target variable that we are trying to predict.

Definition 1.4.4: Classification

Involves predicting a categorical label.

Definition 1.4.5: Regression

Involves predicting a quantitative continuous label.

1.4.2 Supervised Learning Pipeline

- 1. Determine the type of training dataset.
- 2. Gather the labelled training data.
- 3. Split the training dataset into training dataset, test dataset.
- 4. Determine the most suitable algorithm for the model.
- 5. Execute the algorithm on the training dataset.
- 6. Evaluate the accuracy of the model by providing the test set.

Definition 1.4.6: Independent Identical Distribution (IID)

A set of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent.

1.4.3 Math

For a model:

$$h(x) = \theta_0 + \theta_1 x$$

Where h(x) is he hypothesis, The θ are our parameters, and x is an input feature.

$$h(x) = \theta \cdot \mathbf{x}$$

Where $x_0 = 1$, where the number of elements in the parameter vector $\boldsymbol{\theta}$ and input feature vector \mathbf{x} is n + 1 or

$$h\left(x\right) = \sum_{i=0}^{n} \theta_{i} x_{i}$$

Where $x_0 = 1$, For multiple input features.

For the training set (X^i, Y^i) , represents the *i*-th input and the *i*-th label.

Definition 1.4.7: Gradient Descent

A first-order iterative optimization algorithm for finding the minimum of a function.

1.4.3.0.1 Batch Gradient Descent

 θ is chosen such that $h(x) \approx y$ for a training example (x, y). This means minimizing some cost/loss function $L(\theta)$. Le

$$h(x) = \sum_{i=0}^{n} \theta_{i} x_{i}$$

$$h_{\theta}(x) = h(x)$$

$$\operatorname{Let} L(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{i}) - y^{i})^{2}$$

$$L(\theta) = \frac{1}{m} (h_{\theta}(x) - \mathbf{y})^{T} (h_{\theta}(x) - \mathbf{y})$$

$$\operatorname{Let} h_{\theta}(x) = \mathbf{x}\theta$$

$$L(\theta) = \frac{1}{m} (\mathbf{x}\theta - \mathbf{y})^{T} (\mathbf{x}\theta - \mathbf{y})$$
Then $\nabla L(\theta) = 0$

Or iteratively:

$$h_{\theta}(x) = \sum_{i=0}^{m} \theta_{i} x_{i}$$
$$\theta_{i} = \theta_{i} - \alpha \frac{\partial L(\theta)}{\partial \theta}$$
$$\text{Until } \frac{\partial L(\theta)}{\partial \theta} = 0$$

Where α is the learning rate / step size.

The partial derivative $\frac{\partial L(\theta)}{\partial \theta}$ is found;

$$\frac{\partial L(\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\frac{1}{2m} \sum_{i=0}^{m} \left(h_{\theta} \left(x^{i} \right) - y^{i} \right)^{2} \right)$$

$$= \frac{\partial}{\partial \theta} \left(\frac{1}{2m} \left(h_{\theta} \left(x^{i} \right) - y^{i} \right)^{2} \right)$$

$$= 2 \times \frac{1}{2m} \times \frac{\partial}{\partial \theta} \left(h_{\theta} \left(x \right) - y \right) \left(h_{\theta} \left(x \right) - y \right)$$

$$= \frac{1}{m} \times \frac{\partial}{\partial \theta} \left(\theta \mathbf{x} - \mathbf{y} \right) (\theta \mathbf{x} - \mathbf{y})$$
As θ is a vector of constants its partial derivative in each case is $1 = \frac{1}{m} \left(\mathbf{x} \right) (\theta \mathbf{x} - \mathbf{y})$

$$= \frac{1}{m} \left(\theta \mathbf{x} - \mathbf{y} \right) \mathbf{x}$$

$$\frac{\partial L(\theta)}{\partial \theta} = \frac{1}{m} \left(\theta \mathbf{x} - \mathbf{y} \right) \mathbf{x}$$

This method is called the batch gradient descent algorithm.

1.4.3.0.2 Stochastic Gradient Descent

Definition 1.4.8: Stochastic

Randomly determined; having a random probability distribution or pattern that may be analyzed statistically but may not be predicted precisely.

The Stochastic Gradient Descent algorithm is a variation of the gradient descent algorithm that updates the weights after each training example. So instead of the equation above, we have:

$$\theta_{i} = \theta_{i} - \alpha \left(h_{\theta} \left(x^{i} \right) - y^{i} \right) x^{i}$$

Where i is the i-th training example. In this method we calculate the gradient of the loss function at that specific parameter-training set and update the parameter accordingly.