B. Tech. Degree IV Semester Examination April 2018

CE/CS/EC/EE/IT/ME/SE AS 15–1401 COMPLEX VARIABLES AND PARTIAL DIFFERENTIAL EQUATIONS

(2015 Scheme)

Time: 3 Hours

Maximum Marks: 60

PART A (Answer ALL questions)

 $(10 \times 2 = 20)$

- I. (a) Prove the polar form of Cauchy Riemann Equations, $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$ and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$.
 - (b) Prove that $v = \tan^{-1}(y/x)$ is harmonic.
 - (c) Find the bilinear transform which maps the points z:1, i, -1 into the points $w:0, 1, \infty$.
 - (d) Evaluate $\int_{0}^{2+3i} (x^2 iy) dz$ along the path $y = x^2$.
 - (e) State and prove Cauchy's Integral formula.
 - (f) Evaluate $\int_{C} \frac{e^{2z}dz}{(z+1)^4} dz, C: |z| = 2.$
 - (g) Form partial differential equation from $z = f(x+ct) + \phi(x-ct)$.
 - (h) Solve p(1+q) = qz.
 - (i) Using method of separation of variables solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$.
 - (j) Find the solution of one dimensional heat equation.

PART B

 $(4 \times 10 = 40)$

- II. (a) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied at the origin.
 - (b) Let w = u + iv be an analytic function. Then prove that the family of curves $u(x, y) = c_1$ and $v(x, y) = c_2$ cut orthogonally.

OR

- III. (a) Show that the function $f(z) = \sinh z$ is an analytic function and find its derivative.
 - (b) Find the image of |z-2i|=2 under the mapping $w=\frac{1}{z}$.

IV. (a) Using Cauchy's Integral Formula, evaluate $\int_{C} \frac{z}{(z-1)(z-2)^2} dz$, $C:|z-2|=\frac{1}{2}$.

(b) Expand using Laurent's series:

(i)
$$f(z) = \frac{1}{z(z-1)}, 0 < |z| < 1$$

(ii)
$$f(z) = \frac{1}{z^2 - 3z - 2}, \ 0 < |z - 1| < 1$$

OR

V. (a) Using Cauchy's Residue theorem, evaluate $\int_{C} \frac{3z^2 + z - 1}{(z^2 - 1)(z - 3)} dz, C: |z| = 2.$

(b) Using Contour integration, evaluate $\int_{0}^{2\pi} \frac{\cos \theta}{3 + \sin \theta} d\theta$.

VI. Solve

(i)
$$z^2(p^2+q^2+1)=b^2$$

(ii)
$$p^2 + q^2 = z^2(x+y)$$

VII. Solve

(i) $x^2(y-z)p + y^2(z-x)q - z^2(x-y) = 0$

(ii)
$$(D^3 - 3D^2D^1 + 4D^{1^3})z = e^{x+2y}$$

VIII. (a) Derive one dimensional wave equation.

(b) Obtain solution of Laplace equation by the method of separation of variables.

OR

OR

IX. A tightly stretched string with fixed end points x = 0 and x = l is initially in the position y = f(x). It is vibrating by giving each of its points a velocity $\frac{\partial y}{\partial t} = g(x)$ at t = 0. Find y(x, t) in the form of Fourier Series.

