École Polytechnique Année 2 Modal MAP441 TP5 Florent Barret
Florent Benaych-Georges
Noufel Frikha
Emmanuel Gobet

Echantillonnage préférentiel pour les chaînes de Markov

Table des matières

1. Rappel de cours

1.1. **Présentation du problème.** On considère, sur un espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$, une chaîne de Markov X à valeurs dans $\{1, \ldots, d, \Delta\}$, où Δ est un état absorbant (cimetière) de matrice de transitions

$$p = [p_{i,j}]_{(i,j) \in \{1,\dots,d,\Delta\}^2}$$

(p est donc une matrice à termes ≥ 0 de somme 1 sur chaque ligne telle que $p_{\Delta,\Delta}=1$). On suppose que l'absorption par Δ est certaine, i.e. que pour tout état initial i,

$$\lim_{n \to \infty} \mathbb{P}_i \{ X_n = \Delta \} = 1$$

 $(\mathbb{P}_i \text{ la mesure avec laquelle on travaille lorsque avec probabilité } 1, X_0 = i, \text{ et } \mathbb{E}_i \text{ désignant l'espérance associée}).$ On note $\tau = \min\{n \geq 0 \, / \, X_n = \Delta\}.$

On considère, pour tout i, j, un prix $s_{i,j} \ge 0$ à payer pour le passage de i à j et un prix total

$$Y = \sum_{n=1}^{\tau} s_{X_{n-1}, X_n}.$$

Pour chaque $i \in \{1, \dots, d, \Delta\}$, on cherche à estimer $\mu_i := \mathbb{E}_i[Y]$.

Remarquons que $\mu_{\Delta} = 0$ et que pour tout $i \in \{1, \ldots, d\}$,

(1)
$$\mu_i \ge \delta := \min_{j=1,\dots,d} s_{j,\Delta}.$$

1.2. Changements de probabilité pour les chaînes de Markov. Soit $q = [q_{i,j}]$ une autre matrice de transitions, qui domine p (i.e. $p_{i,j} > 0$ implique $q_{i,j} > 0$). Définissons, pour tout n, la v.a. strictement positive

$$L_n = \prod_{i=1}^n \frac{p_{X_{i-1}, X_i}}{q_{X_{i-1}, X_i}}.$$

Alors pour tout entier $T \geq 0$ fixe, sous la mesure de probabilité \mathbb{Q} définie par

$$d\mathbb{Q} = L_T^{-1} d\mathbb{P},$$

le processus aléatoire $(X_n)_{0 \le n \le T}$ est une chaîne de Markov de matrice de transition q. Ainsi, pour toute fonction f(X) fonction de la chaîne jusqu'à un instant T, on a

$$\mathbb{E}_{\mathbb{P}}[f(X)] = \mathbb{E}_{\mathbb{P}}[f(X)L_TL_T^{-1}] = \mathbb{E}_{\mathbb{Q}}[f(X)L_T].$$

Par exemple en utilisant la linéarité, on obtient

(2)
$$\mu_i = \mathbb{E}_i[Y] = \mathbb{E}_{\mathbb{Q}_i} \left[\sum_{n=1}^{\tau} (s_{X_{n-1}, X_n} L_n) \right].$$

Remarque 1. On a aussi

$$\mu_i = \mathbb{E}_{\mathbb{Q}_i} \left[\left(\sum_{n=1}^{\tau} s_{X_{n-1}, X_n} \right) L_{\tau} \right],$$

mais cette formule donne lieu à une estimation moins rapide/précise de μ_i que (??).

1.3. Résolution du problème (variante 0). On cherche à estimer le vecteur

$$\mu := \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_d \end{bmatrix},$$

dont on sait que toutes les coordonnées sont $\geq \delta$ (δ est donné par (??)).

Considérons une approximation (quelconque) $\mu^{\text{approx},0}$ de μ à coordonnées $\geq \delta$ et définissons une suite d'approximations successives de μ notée

$$(\mu^{\operatorname{approx},m})_{m>0}$$
.

On procède ainsi. Tout d'abord, on fixe un entier M qui devra être assez grand. Pour chaque $m \ge 0$, $\mu^{\text{approx},m}$ étant définie, on définit $\mu^{\text{approx},m+1}$ de la façon suivante :

(a) on définit la matrice de transition q par la formule

$$q_{i,j} := \frac{p_{i,j}(s_{i,j} + \mu_j^{\text{approx},m})}{\sum_{k \in \{1,\dots,d,\Delta\}} p_{i,k}(s_{i,k} + \mu_k^{\text{approx},m})},$$

(avec la convention $\mu_{\Delta}^{\text{approx},m} = 0$),

(b) on pose, pour tout $i \in \{1, \ldots, d\}$,

$$\mu_i^{\text{approx},m+1} := \max\{\delta, \mu_i^{\text{simulation}}\},$$

où $\mu_i^{\text{simulation}}$ est calculé en faisant M simulations $X^{(1)}, \ldots, X^{(M)}$ de la chaîne issue de l'état i, de matrice de transition q, et en posant, inspiré par (\ref{q}) ,

(3)
$$\mu_i^{\text{simulation}} = \frac{1}{M} \sum_{\ell=1}^{M} \sum_{n=1}^{\tau} (s_{X_{n-1}^{(\ell)}, X_n^{(\ell)}} L_n^{(\ell)}),$$

les simulations servant au calcul de $\mu_1^{\text{approx},m+1},\dots,\mu_d^{\text{approx},m+1}$ étant indépendantes.

Théorème 2. Si M est assez grand, la convergence de $\mu^{approx,m}$ vers μ se fait à vitesse exponentielle lorsque $m \to +\infty$.

1.4. Une première mise en application simple. On prend d=2,

$$p = \begin{bmatrix} 0 & \varepsilon & 1 - \varepsilon \\ 0 & 1 - \varepsilon^{\alpha} & \varepsilon^{\alpha} \\ 0 & 0 & 1 \end{bmatrix}$$

(avec $0 < \varepsilon < 1$ et $\alpha > 0$) et $s_{i,j} = 1$ pour tout i, j: pour chaque $i \in \{1, 2\}$, μ_i est alors le temps moyen d'atteinte de l'état Δ , en partant de l'état i.

- (1) Donner (sans faire de simulation) la loi du temps d'atteinte de Δ en partant de 2, puis la loi du temps d'atteinte de Δ en partant de 1. Donner aussi μ_2 .
- (2) Pour $\varepsilon \ll 1$, pour quelles valeurs de α pour lesquelles la méthode d'échantillonnage préférentiel a-t-elle des chances d'être plus efficace, pour l'estimation de μ_1 , que l'application "naïve" de la Loi des Grands Nombres?
- (3) Ecrire un programme dans lequel on affiche les valeurs exactes de μ_1 et μ_2 , celles obtenues par la méthode d'échantillonnage préférentiel, et celles obtenues par application "naïve" de la Loi des Grands Nombres. On pourra prendre, par exemple, $\varepsilon = 0.2$, M = 25 et m = 15.

Indications : a) le calcul des valeurs exactes de μ_1 et μ_2 peut se faire via la propriété de Markov, qui permet d'affirmer que

$$\mu_1 = 1 - \varepsilon + \varepsilon (1 + \mu_2)$$
 et $\mu_2 = \varepsilon^{\alpha} + (1 - \varepsilon^{\alpha})(1 + \mu_2),$

si bien que

$$\mu_2 = 1/\varepsilon^{\alpha}$$
 et $\mu_1 = 1 - \varepsilon + \frac{1 + \varepsilon^{\alpha}}{\varepsilon^{\alpha - 1}}$.

b) Pour P matrice de transition k par k, n un entier et X_0 un vecteur de taille m d'états initiaux dans l'ensemble $\{1,\ldots,k\}$, grand $\{n,markov',P,X_0\}$ rend une matrice m par n dont les lignes sont des simulations indépendantes de X_1,\ldots,X_n , avec pour état initial X_0 la coordonnée correspondante de X_0 .

1.5. Résolution plus rapide du problème (variante 1). Il peut arriver que, tout en ne connaissant pas exactement les μ_i , on ait des informations sur le vecteur μ . Supposons par exemple que l'on sache qu'il appartient à un sous-espace vectoriel précis de \mathbb{R}^d , dont on connaît une base Φ_1, \ldots, Φ_p . Autrement dit, supposons que l'on sache que μ est de la forme

$$\mu = \Phi \beta,$$

où $\Phi = [\Phi_1, \dots, \Phi_p]$ est une matrice $d \times p$ de rang p connue et β est un vecteur colonne inconnu. Le problème est alors d'estimer β .

Notons que connaître β permet de connaître μ par la formule (??) et que la réciproque est vraie (car Φ , de rang p, admet un inverse à gauche).

Notons aussi que, une approximation $\hat{\beta}$ de β étant connue, on a une approximation $\hat{\mu}$ par la formule

(5)
$$\hat{\mu}_i = \max\{(\Phi \hat{\beta})_i, \delta\} \qquad \text{(pour tout } i \in \{1, \dots, d\}\text{)}.$$

De même, si des approximations $\hat{\mu}_1, \ldots, \hat{\mu}_d$ de μ_1, \ldots, μ_d sont connues, alors on peut construire une approximation $\hat{\beta}$ de β en projetant orthogonalement le vecteur $[\hat{\mu}_1, \ldots, \hat{\mu}_d]^T$ sur $\text{Vect}(\Phi_1, \ldots, \Phi_p)$ et en définissant $\hat{\beta}_1, \ldots, \hat{\beta}_p$ comme étant les coefficients de ce projeté sur la base (Φ_1, \ldots, Φ_p) . Cela revient à définir

$$\begin{bmatrix} \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_p \end{bmatrix} = (\Phi^T \Phi)^{-1} \Phi^T \begin{bmatrix} \hat{\mu}_1 \\ \vdots \\ \hat{\mu}_d \end{bmatrix}.$$

Si $D = \{i_1, \ldots, i_q\}$ est un sous-ensemble de $\{1, \ldots, d\}$ et que l'on ne connaît que des approximations $\hat{\mu}_{i_1}, \ldots, \hat{\mu}_{i_q}$ de $\mu_{i_1}, \ldots, \mu_{i_q}$, on peut même étendre ce procédé en définissant

(6)
$$\begin{bmatrix} \hat{\beta}_1 \\ \vdots \\ \hat{\beta}_n \end{bmatrix} = (\Phi_D^T \Phi_D)^{-1} \Phi_D^T \begin{bmatrix} \hat{\mu}_{i_1} \\ \vdots \\ \hat{\mu}_{i_d} \end{bmatrix},$$

où Φ_D est la matrice Φ où l'on a supprimé toutes les lignes d'indice $\notin D$ (il est alors nécessaire, pour que la formule (??) aie un sens, que Φ_D soit de rang p, ce qui signifie que l'ensemble D ne doit pas être trop réduit). En appliquant ensuite la formule (??), cela permet d'en déduire une approximation de tous les μ_i .

Cette dernière remarque permet, en se fixant un sous-ensemble D de $\{1, \ldots, d\}$ tel que Φ_D est de rang p, de définir, pour toute approximation $\mu^{\operatorname{approx},m}$ de μ , une autre approximation $\mu^{\operatorname{approx},m+1}$ de μ comme au paragraphe ??, à ceci près que la formule (??) n'est appliquée que pour $i \in D$, et que l'on en déduit une approximation de tous les μ_i par les formules (??) et (??).

Cette idée est à la base du théorème suivant.

Théorème 3. Soit $\mu^{\text{approx},0}$ une approximation (quelconque) de μ . Définissons la suite $(\mu^{\text{approx},m})_{m\geq 0}$ d'approximations de μ selon le schéma ci-dessus. Alors si M est assez grand, la convergence de $\mu^{\text{approx},m}$ vers μ se fait à vitesse exponentielle lorsque $m \to +\infty$.

2. Mise en application

Soit $d \ge 1$ et $p \in]0,1[$. Soit $(G_n)_{n\ge 1}$ une suite de v.a.i.i.d. à valeurs dans $\mathbb N$ dont la loi est donnée par

$$\mathbb{P}(G_1 = k) = (1 - p)^k p \qquad \text{pour tout } k > 0.$$

On considère la chaîne de Markov X à valeurs dans $\{1, \ldots, d+1\}$ dont les transitions sont données par

$$X_{n+1} = \min\{ X_n + G_{n+1}, d+1 \}$$

(ici, bien entendu, l'état absorbant Δ est d+1). Autrement dit, X est une marche aléatoire sur \mathbb{N}^* à sauts de loi géométrique, arrêtée en d+1. On définit $s_{i,j}=1$ pour tout i,j. La v.a. Y est alors simplement τ , le temps nécessaire pour atteindre l'état absorbant d+1. Il est naturel de penser que pour tout $i \in \{1, \ldots, d\}$, μ_i sera proportionnelle à (d+1)-i. La présence d'effets de bord nous incite, plus prudemment, à conjecturer que la fonction $i \in \{1, \ldots, d\} \mapsto \mu_i$ est une fonction affine de (d+1)-i, i.e. une fonction affine de i.

En utilisant la propriété de Markov, on peut en effet prouver par récurrence sur $i \in \{0, \dots, d-1\}$ que

$$\mu_{d-i} = \frac{1+pi}{1-p},$$

i.e.

(7)
$$\mu_i = \frac{1 + pd - pi}{1 - p} \quad \text{(pour } i \in \{1 \dots, d\}).$$

Nous allons retrouver la formule (??) en utilisant l'échantillonnage préférentiel pour les chaînes de Markov, i.e. le théorème ??. Pour les applications numériques, on pourra prendre, par exemple, $d=19,\ p=0.5,$ $D=\{1,7,13,19\}$ et M=6 (on pourra aussi, pour en comprendre l'effet, modifier ces paramètres).

- (1) Nous conjecturons donc que la fonction $i \in \{1, ..., d\} \mapsto \mu_i$ est une fonction affine de i. Donner la matrice Φ dont les colonnes forment une base de l'espace auquel, selon cette conjecture, μ doit appartenir.
- (2) Ecrire un programme dans lequel on affiche les valeurs exactes de β₁ et β₂, celles obtenues par la méthode d'échantillonnage préférentiel, et celles obtenues par application "naïve" de la Loi des Grands Nombres. Indication: Pour la définition de la matrice Φ_D, on pourra utiliser le fait que pour M matrice et u, v vecteurs d'entiers, M(u,v) est la matrice extraite de M où l'on a pris les lignes d'indices appartenant à u et les colonnes d'indices appartenant à v. On pourra aussi utiliser le fait que pour M matrice, M' est la transposée de M.