Twierdzenie 1 (o lokalnej odwracalności)

Niech $f: E \to E, E$ - otwarty, $E \subset \mathbb{R}^N, f$ - różniczkowalna w sposób ciągły na E.

$$(f - klasy \ \mathcal{C}^1(E)), \exists_{a,b \in E} : f(a) = b \land f'(a) - odwracalna \ (det(f'(a)) \neq 0), \ to:$$

1.
$$\exists_{U,V \subseteq E}, \exists_{a \in U, b \in V}, U, V$$
 - otwarte, f - bijekcja między U, V

2.
$$\exists \bigcup_{g:V \to U} \forall f(g(x)) = x, g$$
 - ciągła i różniczkowalna na V

Uwaga: Dowód składa się z trzech części:

- 1. Pokażemy, że $\mathop{\exists}_{UV}$: f bijekcja na U,V
- 2. Pokażemy, że $\stackrel{.}{U},V$ otwarte
- 3. Pokażemy, że $\overset{\neg}{\exists}_{a:V\to U}, g$ różniczkowalna na Vi ciągła.

Przykład 1

$$\begin{split} f(x,y) &= \begin{bmatrix} e^x \cos y \\ e^x \sin y \end{bmatrix}, f'(x,y) = \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix} \\ det(f'(x,y)) &= e^{2x} \neq 0, \text{ ale } f(x,y) = f(x,y+2\pi) \text{ (czyli funkcja jest okresowa)} \end{split}$$

Dowód 1

Część I:

Szukamy U,V:f - bijekcja miedzy U i V Skoro f'(a) - odwracalne, to znaczy, że $\underset{(f'(a))^{-1}}{\exists}$, zatem $\underset{\lambda}{\exists}:2\lambda\|(f'(a))^{-1}\|=1$

Wiemy, że f'(x) - ciągła w x = a, czyli

$$\forall .\exists . \forall . d(x, a) < \delta \implies ||f'(x) - f(a)|| < \varepsilon \tag{1}$$

Połóżmy $\varepsilon = \lambda$.

Oznacza to, że

$$\exists \forall x \in K(a, \delta_{\lambda}) \implies ||f'(x) - f'(a)|| < \lambda$$
 (2)

Więc $U=K(a,\delta_{\lambda}),$ niech V=f(U). Chcemy pokazać, że f - bijekcja między U i V.

Wprowadźmy funkcję pomocnicza:

$$\varphi_y(x) = x + [f'(a)]^{-1}(y - f(x)), x, y \in E$$
(3)

Pytanie 1 Co by było gdyby $\varphi_y(x)$ posiadała punkt stały? (jakie własności x by z tego faktu wynikały) dla $x \in U, y \in V, (y \in f(a))$?

Z zasady Banacha wiemy, że odwzorowanie zwężające ma dokładnie jeden punkt stały, czyli $\bigvee_{y\in V}.\exists_{x\in U}:f(x)=y$

O f - z taką własnością mówimy, że jest 1-1 na U. (iksa nie obchodzą sąsiedzi, f musi być ciągłe to będzie bijekcja)

Policzmy $\varphi_y'(x) = \mathbb{I} + (f'(a))^{-1}(-f'(x)) = (f'(a))^{-1}(f'(a) - f'(x)), \text{ wiec}$ $\|\varphi_y'(x)\| = \|f'(a)^{-1}(f'(a) - f'(x))\| \leqslant \|(f'(a)^{-1})\| \|f'(a) - f'(x)\| \leqslant \bigvee_{x \in U} \frac{1}{2\lambda} \lambda = \frac{1}{2}$

Pamiętamy, że jeżeli $\frac{\exists}{M}\|\varphi_y'(x)\| \leqslant M,$ to $\underset{x,y}{\forall}\|\varphi(x)-\varphi(y)\| < M\|x-y\|$

Zatem skoro $\|\varphi_y'(x)\| \leq \frac{1}{2}$, to

$$\forall _{x_1,x_2 \in U} \|\varphi_y(x_1) - \varphi_y(x_2)\| \leqslant \frac{1}{2} \|x_1 - x_2\|,$$

więc φ - zwężający na U, więc posiada dokładnie jeden punkt stały $\bigvee_{y \in V}$. Zatem f - bijekcja między U i V.

Część II - otwartość U i V

1. Zbiór U - otwarty (bo tak go zdefiniowaliśmy) ($U=K(a,\delta_1)$), więc $\underset{x_0\in U}{\exists}, \exists K(x_0,r)\subset U$, lub równoważnie $\|x-x_0\|\leqslant r\wedge x\in U$.

Chcemy pokazać, że dla $y_0 = f(x_0) \underset{K(y_0, \lambda_T) \subset V}{\exists}$, czyli że V - otwarty.

Rysunek 1: Trochę jak listy do św. Mikołaja (??)

Weźmy $y\in K(y_0,\lambda r).$ Zauważmy, że $\varphi_{y_1}(x_1)$ - zwężające, jeżeli $y_1\in V, x_1\in U$

Jeżeli pokażemy, że dla $\|y-y_0\|<\lambda r, \varphi_y(x)$ - zwężająca na $K(x_0,r)\subset U$, to będziemy wiedzieli, że $\|y-y_0\|<\lambda r$ oraz $y\in V\iff K(y_0,\lambda r)\subset V$

Żeby pokazać, że $\varphi_y(x)$ - zwężające na $K(x_0,r)$, zbadamy tę wielkośc dla $x \in K(x_0,r)$. $\|\varphi_y(x)-x_0\|$, chcielibyśmy, aby $\|\varphi_y(x)-x_0\| \leqslant r$ i $\|y-y_0\| < \lambda r$, ale z drugiej strony

$$\|\varphi_{u}(x) - x_{0}\| = \|\varphi_{u}(x) - \varphi_{u}(x_{0}) + \varphi_{u}(x_{0}) - x_{0}\| \le \|\varphi_{u}(x) - \varphi_{u}(x_{0})\| + \|\varphi y(x_{0} - x_{0})\|$$

Rysunek 2: Nie ok.

Ale $\|\varphi_y(x_0)-x_0\| \le \|(f'(a))^{-1}\|\|y-y_0\| \le \frac{1}{2\lambda}\lambda r = \frac{r}{2}$, więc $\|\varphi_y(x)-x_0\| \le r$, jeżeli $\|y-y_0\| < \lambda r, \|x-x_0\| \le r$.

Stąd wiemy , że punkt stały dla $\varphi_y(x):x\in K(x_0,r)$ należy do $K(x_0,r)$ i $\|y-y_0\|<\lambda r$, zatem y=f(x), czyli V - otwarty.

Rysunek 3

Część III:

Szukamy $g: V \to U$

Skoro f - bijekcja między U i V, to znaczy, że $\underset{g:V \to U}{\exists} f(g(x)) = x \underset{x \in V}{\forall}$.

Chcemy pokazać, że g(x) - różniczkowalne. Wiemy, że f - różniczkowalna w $x \in U$, czyli

$$\frac{f(x+h)-f(x)-f'(x)h}{\|h\|}\overset{h\to 0}{\to} 0, x, x+h \in V$$

Jeżeli pokażemy, że

$$\frac{g(y+k) - g(y) - [f'(x)]^{-1}k}{\|k\|} \stackrel{k \to 0}{\to} 0$$
 (4)

to będziemy wiedzieli, że:

- 1. g różniczkowalne dla $y \in V$
- 2. $g'(y) = [f'(x)]^{-1}$.

W tym celu pokażemy, że:

- 1. $(||k|| \to 0) \implies (||h|| \to 0)$
- 2. $[f'(x)]^{-1}$ istnieje dla $x \in U$. (na razie wiemy, że $(f'(a))^{-1}$ istnieje) $Ad\ 1$. Zauważmy, że

$$\varphi_y(x+h) - \varphi_y(x) = x + h + [f'(a)]^{-1}(y - f(x+h)) - x - [f'(a)]^{-1}(y - f(x)) =$$

$$= h + [f'(a)]^{-1}(y - f(x+h) - y + f(x)) = h - (f'(a))^{-1}(f(x+h) - f(x)),$$

$$czyli\|\varphi_y(x+h) - \varphi_y(x)\| = \|h - (f'(a))^{-1}(k)\| \le \frac{1}{2}\|h\|,$$

zatem
$$||h - (f'(a))^{-1}k|| \le \frac{1}{2}||h|| \Longrightarrow ||k|| \ge ||h||, k = f(x+h) - f(x)$$

Stąd ostatecznie mamy: $\frac{g(y+k) - g(y) - [f'(x)]^{-1}k}{||k||} = [f'(x)]^{-1} \frac{hf'(x) - f(x+h) + f(x)}{||k||} \le \frac{[f'(x)]^{-1}}{\lambda} \frac{hf'(x) - f(x+h) + f(x)}{||h||} \to 0$, o ile $\exists f'(x)]^{-1}$

Pytanie 2 skąd wiadomo, że $(f'(x))^{-1}$?

Wiemy, że f'(a) jest odwracalna, więc $(f'(a))^{-1}$ istnieje, $a \in U$. Chcemy pokazać, że f'(x) jest odwracalna dla $x \in U$. Oznacza to, że

$$0 < ||f'(x)y||$$
dla $y \neq 0, x \in U$.

Pamiętamy, że $2\lambda \| (f'(a))^{-1} = 1$ oraz U - taka, że

$$\underset{x \in U}{\forall} ||f'(x) - f'(a)|| < \lambda.$$

Zatem

$$0 \leqslant \frac{1}{\|(f'(a))^{-1}\|} \|y\| = \|(f'(x) + f'(a) - f'(x))y\| \leqslant \|f'(a) - f'(x)\| \|y\| + \|f'(x)\| \|y\|.$$

Dalej $2\lambda \|y\| \le \lambda \|y\| + \|f'(x)y\|$ dla $x \in U$ $0 \le \lambda \|y\| \le \|f'(x)y\|$ dla y = 0 Czyli

$$\bigvee_{x \in U} ||f'(x)y|| > 0 \quad \Box.$$