Comprehensive Examination CSE - 2019 Batch

S.NO.				Ques	stions		Choices	Answers
	Given the follo	owing state	table of an FS	SM with two states	A and B, one input and o	ne output:		
	Present P	resent State		Next State A	Next State B	Output		
	State A 0	B 0	0	0	0	1		
	0	1	0	1	0	0	2.	
	1	0 1	0	0 1	1 0	0	4	
1	0	0	1	0	1	0	3.	1.0
	0	1	1	0	0	1	5	
	1	0 1	1	0	1 0	1	4.	
	If also initial say	-4- i- A-O	D=0b=t i= i		of an input string which	.30 4-1 41	6	
	machine to the				or an input string which	will take the		
							1. {a(cd)^nb n>=1}	
							2.	
2	(a+b)(cd)*(a-	+b) deno	es the follo	wing set			$\{a(cd)^n>=1\}U\{b(cd)^n n>=1\}$	3.0
							3. $ \{a(cd)^na n>=0\}U\{a(cd)^nb n>=0\}U\{b(cd)^na n>=0\} $	$\{U\{b(cd)^nb n>=0\}$
							4. {ac^nd^nb n>=1}	
							1.	
							11101000	
3							2.	
	-24 is 2's cor	nplemen	form is				01111111	
								1.0
							3.	
							01001000	
							4. 00111111	
							1.	
							2 input ANDs only	
							2.	
	A 2 h	it himowy		an be implemen	tad maina		2 input X-ORs and 4-input AND gate	s only
4	A 2 0	it biliary	munipher c	an de implemen	ned using			2.0
							3. XOR gates and shift registers	
							4.	
							Two (2) input NORs and one XNOR g	ate
							1.	
							Address registrar	
							Address registrar	
							2. Program counter	
							3.	
5	Α	_ registra	stores the	intermediate ari	thmetic and logic res	ults in it.	Index registrar	4.0
							index regional	
							4.)	
							Accumulator	
							Accumulator	

S.NO.	Questions	Choices	Answers
		1. Structure	
		2. Memory	
6	A class is a	3. Template	3.0
		4. Function	
		1. default constructor	
		2. parameterized constructor	
7	A constructor without any arguments is	3. none	1.0
		4. overloading	
		1. that takes all default arguments	
		2. have to be called explictly	
8	A default constructor is one that	3. gets called automatically	1.0
		4. does take many parameters	
		1.	
		n 2. n/2	
9	A finite automata that will accept only string X of length n will have many states	3. n+1	3.0
		4. infinite	
		1. the data members of the derived class of A.	
10	A friend function to a class A cannot access	2. public data members and member functions.	1.0
		3. protected data members and member functions.	
		4. private data members and member functions.	
		1. Can closely model objects in the real world.	
11	A property which is not true for classes is that they	2. bring together all aspects of an entity in one place.	2.0
11	A property which is not true for classes is that they	3. permit data to be hidden from other classes.	2.0
		4. are removed from memory when not in use.	
		1.3	
12	A quadruple is a record structure with fields.	2. 4	2.0
12	A quadruple is a record structure with nerus.	3. 1	2.0
		4. 2	
		1. Zero addressing	
	A Stock apparied Computer year instruction of	2. Two-addressing	
13	A Stack-organised Computer uses instruction of	3.	1.0
		Indirect addressing	
		4. Index addressing	
		Restricted to methods of the same class	+
		2. Restricted to methods of other classes	
14	Access to private data is	3. Available to methods of the same class and other classes	1.0
		4. Not an issue because the program will not compile	
		1. constant	+
		2. non static	
15	All member functions are to it's class by default	3. dynamic	4.0
		4. static	
		The LR(1) parser for G has S-R conflicts.	
		2. The LR(0) parser for G has S-R conflicts.	
16	An LALR(1) parser for a grammar G can have shift-reduce (S-R) conflicts if and only if	3. The LALR(1) parser for G has reduce-reduce conflicts	1.0
		4. The SLR(1) parser for G has S-R conflicts.	
		1. Is optimized to occupy less space	
17	An optimizing compiler	2. Optimized the code	2.0
		3. Is optimized to take less time for execution	
		4. Secured Code	1

S.NO.	Questions	Choices	Answers
		1. Exactly one leftmost derivation for a string w	
	An unambiguous grammar has	2. At most one leftmost and one rightmost derivation for a string w	
18		3. At most one rightmost derivation for a string w	1.0
		Exactly one leftmost and rightmost derivation for a string w	
		Exactly one leftmost derivation for a string w	
		At most one leftmost and one rightmost derivation for a string w	
19	An unambiguous grammar has	3. At most one rightmost derivation for a string w	1.0
		4. Exactly one leftmost and rightmost derivation for a string w	
		1. integrated circuits	
20	ASCH PRODUCT IVI	2. binary coding schemes	1.0
20	ASCII, EBCDIC, and Unicode are examples of	3. two-state systems	1.0
		4. adapter cards	
		1. {b^na^mc^p n,m,p>=1}	
		2. {ba^nc n>=0}	
21	baa*c denotes the set	3. {ba^nc n>=1}	3.0
		4. {w w is a string of a,b,c}	
		1. encoder	
		2. carry look ahead	
22	BCD to seven segment is a	3. comparator	1.0
		4. decoder	
		1.2	
23	Calculate the person months for a project that was completed in two months with two people	2. 4	2.0
23	working on it.	3. 1	2.0
		4. 8	
		1. sizeof(int) * 2	
24	class A { int a; static float b; } ; What is the size of class A?	2. sizeof(int) + sizeof(float)	2.0
24	class A \ Int a, static float 0, \(\), what is the size of class A:	3. sizeof(int)	2.0
		4. sizeof(float)	
		1. nothing	
25	class n { int a=0;} obj; what will happen?	2. initializes the data member with 0	3.0
	C 1000 00 00 00 00 00 00 00 00 00 00 00 0	3. error	
		4. initializes the object with 0	
		1. deep copy	
26	class n{ public: int *a;}o,p; assigning o=p is called?	2. shallow copy	2.0
		3. error	
		4. constructor	
		1. error	
27	class n{ public: int a;}	2. 10	1.0
	obj; obj.a=10; cout << a;	3.1	
		4.0	

S.NO.	Questions	Choices	Answers
		1.0	
		2. error	
28	class n{ public: int a=7;} p,q; cout<< n.a;	3. depends on compiler	2.0
		4. 7	
		1.	
		3	
	Consider the regular language $L = (111 + 11111)^*$. The minimum number of states in any DFA	2. 5	
29	accepting the language is	3.	4.0
		8	
		4.9	
		index addressing mode.	
		2	
30	Content of the program counter is added to the address part of the instruction in order to obtain the effective address is called.	register mode.	4.0
50	orice to dadress is called.	3. implied mode.	1.0
		4.	
		relative address mode.	
		1. are directly accessible in the derived class	
		2. are visible in the derived class	<u> </u>
31	Data Members of the base class that are marked private:	exist in memory when the object of the derived class is created the derived class	4.0
		4. does exist in memory when the object of the derived class is created	
		1. 1111	
		2.	
		1101	
	Decimal number 9 in Gray code is	3.	
32	Decimal number 9 in Gray code is	1100	2.0
		4.	
		1110	
		1. There is no relationship between the phase in which a defect is	
		discovered and its repair cost 2. The most expensive defect to correct is the one detected during the	
33	During a software development project two similar requirements defects were detected. One was detected in the requirements phase, and the other during the implementation phase. Which of the	implementation phase.	2.0
33	following statements is mostly likely to be true?	3. The most expensive defect to correct is the one detected during the	2.0
		requirements phase. 4. The cost of fixing either defect will usually be similar.	
		1. people, product, process, project	1
34	Effective software project management focuses on four P's which are	2. people, product, performance, process	1.0
		3. people, performance, payoff, product	
		4. people, process, payoff, product	ļ
		Indexed Allocation and used in Windows OS used in Windows OS	
35	FAT file system is	2. used in windows OS 3. about storage in RAM	1.0
		about storage in KAM Indexed Allocation.	
		1. helper	
36	Files whose names end in .h are called files	2. header	2.0
		3. handy	1
		4. helping	

S.NO.	Questions	Choices	Answers
		1. type-1	
		2.	
37	Finite automata recognizesgrammars	type-3	2.0
		3. type-0 4.	
		type-2	
		I. Boolean values	
		Bootem values	
20	Floating point representation is used to store	2. real integers	
38		3. integers	2.0
		4.	
		whole numbers	
		1. Only parameters of the basic type	
39	Function templates can accept	2. Only one parameter	1.0
		3. Any type of parameters 4. Only parameters of the derived type.	
		Only parameters of the derived type Use-case Diagram	
		Use-case Diagram Sequence Diagram	
40	Functional requirements of a system is modelled using	3. Class Diagram	1.0
		4. Package Diagram	
		1.	-
		N^2	
41	Given an arbitrary non-deterministic finite automaton (NFA). with N states, the maximum number	2. 2N	2.0
41	of states in an equivalent minimized DFA is at least.	3.	3.0
		2^N	
		4. N!	
		1. 1, 2 and 3	
	Given the language $L = \{ab, aa, baa\}$, which of the following strings are in L*? 1) abaabaaabaa	2. 2, 3 and 4	
	3) baaaabaaaa 3) baaaaabaaaab	3.	3.0
	4) baaaaabaa	1, 2 and 4	
		4.	
		1, 3 and 4	
		1. not possible	
43	Having more than one constructor in a class is	2. compile time polymorphism	3.0
		3. constructor overriding 4. error	
		1.	-
		16	
	How many DFAs exit with two state over the input alphabet (a,b)	2. 26	
44	How many DI AS exit with two state over the input appliance (4,0)	3.	4.0
		32	
		4. 64	
		1. 16	
45	How many possible outputs would a decoder have with a 6-bit binary input?	2. 64	2.0
		3. 128 4. 32	
		<u></u>	<u> </u>

S.NO.	Questions	Choices	Answers
	· ·	1. 2	
	Tarrament colors lines would be appried for an O first to 1 first 1 first 2 first 2	2. 4	
46	How many select lines would be required for an 8-line-to-1-line multiplexer?	3. 3	3.0
		4. 8	
		1. three	
_		2. four	
47	How many stages are there in process improvement?	3. five	4.0
		4. six	
		1. 12	
40	How many two state FA can be drawn over alphabet {0,1} which accepts(0+1)*	2. 14	2.0
48	, , , , , , , , , , , , , , , , , , , ,	3.	3.0
		20	
		4. 15	
		1. delete(var-name);	
40		2. dalloc(var-name);	
49	How will you free the allocated memory ?	3. free(var-name);	3.0
		4. remove(var-name);	
		1. for (; ;)	
		2. if (1)	
50	Identify the invalid statement from the following	3. break(0)	3.0
		4. while(false)	
		1. (10011000)	
	If a register containing binary data (11001100) is subjected to arithmetic shift left operation, then the content of the register after 'ashl' shall be	2. (11001100)	
l			
51		3. (1101100)	1.0
		4.	
		(10011001)	
		1. intranet	
52	If a university sets up web-based information system that faculty could access to record student	2. ERP	1.0
32	grades and to advise students, that would be an example of an	3. extranet	1.0
		4. CRM	
		1. n+2	
		2.	
53	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.	n+1	2.0
		3. n	
		4. n-1	
		1.	
		n+2	
	ISMI machine accomining I with a state of the MO accomining I will be a state of the MO accomining I will	2.	
	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will havestates.		2.0
		3. n	
		4. n-1	
		1.	
		m+2	
	If there is a complete DFA M1 recognizing a language L1 and has m states out of which two are	2. m	
55	final states then the machine M recognizing L1 complement will have final states.		1.0
		3. m-2	
		4. 2	
			\Box

S.NO.	Questions	Choices	Answers
		1. X(class X* arg)	
	If X is the name of the class, what is the correct way to declare copy constructor of X?	2. X(X& arg)	
56		·	2.0
			1
		4. X(X arg)	
		1. all parameters to the left of that variable must have default values	
		2. all parameters to the right of that variable must have default values	
57	If you assign a default value to any variable in a function prototype's parameter list, then	3. all other parameters in the function prototype must have default values	2.0
		4. no other parameters in that prototype can have default values	
		. , ,	
		1. text	
		2. source	
	in a C++ file	3. header	3.0
		4. program	
		1. to convert the 4-bit BCD into Gray code	
		•	
59	In a BCD-to-seven-segment converter, why must a code converter be utilized?	2. to convert the 4-bit BCD into 7-bit code	2.0
39	in a Deb-to-seven-segment converter, why must a code converter or utilized:	3. to convert the 4-bit BCD into 10-bit code	2.0
		4. No conversion is necessary	
		1. new	
60		2. this	1.0
	n C++ dynamic memory allocation is accomplished with the operator	3. malloc	
		4. delete	
61		1. malloc()	
		2. delete	
	In C++, dynamic memory allocation is achieved with the operator	3. new	3.0
		4. this	
		1. Software Product Engineering	
		į į	
62	In CMM, the life cycle activities of requirements analysis, design, code, and test are described in	2. Software Quality Assurance	1.0
02	in Civily, the fire cycle activities of requirements analysis, design, code, and test are described in	3. Software Subcontract Management	1.0
		4. Software Quality Management	
		1.	
		9's complement	
		2. 2's complement	
63	In computers, subtraction is generally carried out by		2.0
		10's complement	
		4.	
		1's complement	
		1. The value of x is assigned to y or the value of y is assigned t o x.	
		2. The value of x is assigned to y and the value of y is assigned t o x.	
64	In the types of Three-Address statements, copy statements of the form $x := y$ means	3. The value of y is assigned to x.	3.0
		4. The value of x is assigned to y.	
		one for the primary functions and one for the auxiliary functions	
65	Many programmers separate a class into two files:	2. one for the public data and one for the private data	4.0
0.5		3. one for the void functions and one for the other functions	
		4. one for the declarations and one for the implementations	
		1. Useless Code	
	Multiplication of a positive integrable	2. Strength Reduction	
	Multiplication of a positive integer by a power of two can be replaced by left shift, which executes faster on most machines. This is an example of	3. Induction Variable	2.0
		4. Loop unwinding	

S.NO.	Questions		Answers
J		1. input data select lines	
		2. the internal OR gate	
67	One can safely state that the output lines for a demultiplexer are under the direct control of the:	3. the internal AND gates	1.0
		4. Input data line	
\dashv		Three arguments	
		2. Two arguments	
68	Overloading a prefix increment operator by means of a member function takes	3. No argument	3.0
		4. One argument	
		different names and different argument lists	-
69	Overloading involves writing two or more functions with	2. different names and the same argument list	4.0
		the same name and the same argument list the same name and different argument lists malloc() and calloc() malloc() and memalloc() memalloc() and faralloc() Project Organization Monitoring Adopting Planning Origanizing Monitoring Adjusting project oriented maintenance and administration 4.0 1.0 2.0	
		1. malloc() and calloc()	
70 (2. malloc() and memalloc()	1.0
70	Specify the 2 library functions to dynamically allocate memory?	3. alloc() and memalloc()	1.0
		4. memalloc() and faralloc()	
\dashv		1. Project Organization Monitoring Adopting	
		2. Planning Origanizing Monitoring Adjusting	
71 8	State the acronym of POMA in software project management	project oriented maintenance and administration	2.0
		4. Project Orientation Mapping Adjusting	
\dashv		1. inheritance	+
		2. reusability	
72	Templates improve	3. class	2.0
		4. functions	
		1. p	
73	The Epsilon-Closure of any state q will contain the state irrespective of q.	2. Epsilon	3.0
		<mark>3. q</mark>)	
		4. Final State	
		1. 0.1111	
		2.	
		0.0111	
74	The binary value for 0.4375 is	3.	2.0
		0.0011	
		4. 0.1010	
\dashv		appears inside the definition of the derived class	
		2. ppears inside the definition of the derived class constructor	
75	The call to the parameterized constructor of base class in the derived class	3. appears at the statement where the derived class object is created	2.0
		4. appears in the member initialization list of the derived class	
		constructor	
\Box		1. Software reuse	
		2. Software Security	
76	The fundamental notions of software engineering does not account for?	3. Software Validation	3.0
		4. Software processes	
		1	

S.NO.	Questions	Choices	Answers
		Context-sensitive but not context-free	
		2. Recursive but not Context-free	
	THE TAX CONTROL TO A LOCAL DESCRIPTION OF THE PROPERTY OF THE		
77	The language is $L=\{0^p1^q0^r p,q,r^{-3}0, p^{-1}r\}$ is	3. Regular	4.0
		4. Context-free	
		1. strnstr()	
		2. strrchr()	
78	The library function used to find the last occurrence of a character in a string is	3. laststr()	2.0
		4. strstr()	
		1.	
		Electronic Switching System	
79	The major source of data for other systems are:	2. Transaction Processing Systems	2.0
		3. Decision Support System	
		4. Management Information System	
		1. private	
		2. protected	
80	The members of a class in c++ by default, are	3. public	1.0
		4. mandatory to specify	
		1. Infinite	
		2. One	
81	The minimum length for strings in the regular expression (10* + 001*)* is	3. Zero	3.0
		4. Two	
		1. 10's Complement	
		2. 2's complement	
82	The negative numbers in the binary system can be represented by	Sign magnitude	2.0
		4.	
		I's complement	
		1.	
		8 half-adders, 8 full-adders	
		2.	
	The number of full and half-adders required to add 16-bit numbers is	1 half-adders, 15 full-adders	
83			2.0
		3.	
		16 half-adders, 0 full-adders	
		4. 4 half-adders, 12 full-adders	
		1.	
		m-n	
	The number of states in a machine M. recognizing LIHI 2 will be	2.	
84	The number of states in a machine M recognizing L1UL2 will be where n is the number of states in M1 and m is the number of states in M2.	m+n	2.0
		3. m+n+1	
		4. n-m	

S.NO.	Questions	Choices	Answers
85	The number of states in a machine M recognizing L1UL2 will be where n is the number of states in M1 and m is the number of states in M2 .	1. m-n 2. m+n 3. m+n+1 4. n-m	2.0
86	The number of states in DFA is the number of states in NFA for the same Language.	1. Greater then 2. equal to 3. less then 4. greater then or equal to	3.0
87	The processor 80386/80486 and the Pentium processor uses bits address bus:	 36 32 16 4.64 	2.0
88	The set of all strings over the alphabet $\{a,b\}$ (including epsilon) is denoted by	1. (a+b)^+ 2. a^+b^+	4.0
89	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
90	The set of fundamental assumptions about what products the organization should produce, how and where it should produce them, and for whom they should be produced is	organizational culture. behavioral model. rational model. agency theory.	1.0
91	The special memory used to store the micro routines of a computer is	1. Control table 2. Control store 3. Control mart 4. Control shop	2.0
92	The system having memory elements are called.	sequential circuits complex circuits combinational circuits logic circuits	1.0

S.NO.	Questions	Choices	Answers
		1. 6	
00		2. 31	• •
93	The term m45 should be made up of at least literals.	3. 4	2.0
		4. 5	
		1. Team, Organization, contractor	
		2. Project, Strategic, Activity	
94	The three key levels at which responsibility can be defined is at the,	3. Project, Activity, WBS	4.0
		4. Project, Organization, Team	
		1. priming	
95	The while loop is referred to as a(n) loop because the loop condition is tested at the	2. pretest	2.0
93	beginning of the loop	3. initial	2.0
		4. beginning	
		1. global variable in the C++ language	
		2. function in the C++ language	
96	The word case used in the switch statement represents a	3. keyword in the C++ language	3.0
		4. data type in the C++ language	
		1. void and free	
		2. public and private	
97	Two access specifiers in C++ are	3. int and double	2.0
		4. formal and informal	
		1. Actors	
		2. Objects	
98	Usecase analysis focuses upon	3. Data	1.0
		4. Entities	
		1. Local	
		2. Global	
99	Variables inside parenthesis of functions declarations havelevel access.	3. Module	1.0
		4. Universal	
		1. A type of memory used in super computers	
100	Virtual mamory is	2. An illusion of extremely large main memory	2.0
		3. An extremely large main memory	
		4. An extremely large secondary memory	
		1.	
		IGP	
		2. EGP	
101	WE RECEIVED "404 – PAGE NOT FOUND" MESSAGE, WHEN WE BROWSE THE WEB PAGE. WHICH PROTOCOL PROVIDES THIS MESSAGE?	3.	4.0
101		SNMP	4.0
		4.	
		ICMP	

e NO	Questions	Chainea	Angwaya
S.NO.	Questions	Choices	Answers
		1 and 2	
		1 and 2	
		2.	
	What are the minimum number of 2-to-1 multiplexers required to generate a 2- input AND	1 and 3	
102	gate and a 2-input Ex-OR gate?		1.0
		3.	
		1 and 1	
		4. 2 and 2	
		1. ptr is array of pointers to 10 integers	
		2. ptr is a pointer to an array of 10 integers	
103	What does the following declaration mean?		2.0
	int (*ptr)[10];	3. ptr is an array of 10 integers	
		4. ptr is an pointer to array	
		1. A Flip flop	
		2. A counter	
104	What is an Accumulator?	3. A Sequential Logic Circuit	3.0
		4. A Combinational Logic Circuit	
		Į .	
		1. A Combinational Logic Circuit	
		2. A Sequential Logic Circuit	
105	What is an ALU?	3. A Combination of Combinational Circuit and Sequential Circuit	2,3
		4. A flip flop	
		1. Last two sum bits are different	
406		2. Last two carrys are same	
106	What is the condition for setting the Overflow flag in status register?	3. Last two sum bits are same	3.0
		4. Last two carrys are different	
		1. n/2	
107	What is the maximum number of reduce moves that can be taken by a bottom-up parser for a	2. n-1	2.0
107	The state of the s	3. 2n-1	2.0
		4. 2^n	
		1. 50-20-30	
		2. 50-30-20	
108	What is the recommended distribution of effort for a software project?	3. 30-40-30	4.0
		4. 40-20-40	
		1. no return type	
		2. int	
109	What is the return type of the conversion operator function?	3. void	1.0
		4. float	
		1. $S0 = 1$, $S1 = 0$, $S2 = 1$	
		2. S0 = 1, S1 = 1, S2 = 0	
110	What is the status of the inputs S0, S1, and S2 of the 74151 eight-line multiplexer in order for the output Y to be a copy of input 15?	3. S0 = 0, S1 = 1, S2 = 0	1.0
	· ····································	4. S0 = 0, S1 = 0, S2 = 1	
		1. cannot access any of its class data members	
_		2. cannot modify values of its class data members	
111	What is true about constant member function of a class?	3. cannot modify values of its class data members which are mutable	2.0
		4. can modify values of its class data members	
			1

S.NO.	Questions	Choices	Answers
	-	1.005	
l,	What will be the output of the following code #include void main() { int i; int a[3]=5; for	2.500	
112		3. 5 garbage garbage	3.0
		4. 5 null null	
_		1.	
		Memory Read cycle	
		2.	
113	When an instruction is read from the memory, it is called	Fetch cycle	3.0
		3. Instruction cycle	
		4. Memory write cycle	
		1. Two	
	When FA M is given which recognizes language L and reverse of L is found by using M then	2. Three	
114 t	here can beFinal states	3.	3.0
		Only one	
		4. Any number	
\dashv		1.	\vdash
		3	
l,	When there is complete DFA with Five states out of which two are final states if F is modified	2. 2	
115 S	such that it recognizes complement of the original language then there will be at least final states.		3.0
	ina sacs.	3. 5	
		4. 7	
		1. dot	
116	When there is more than one final state in the reduced FA, then its regular expression will contain	2. binary +	4.0
-	operator surely	3. star	4.0
		4. unary +	
		1. M1 OR M2	
	When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a	2. M1 AND M2	
117 r	machine with final state same as that of	3. M2	2.0
		4. M1	
		Two level directory structure	
		Acyclic directory structure	
118 V	Which directory implementation is used in most Operating System?	3. Single level directory structure	4.0
		4. Tree directory structure	
		1. double funct(char x)	
119	Which is not a proper prototype?	2. void funct();	1.0
11)		3. char x();	1.0
		4. intfunct(char x, char y);	
		1.	
		191.168.1.1/24	
		2.	
		191.168.1.1/16	
120	WHICH OF THE BELOW IS CALLED CLASSLESS ADDRESS?		2.0
120	WHICH OF THE DELOW IS CALLED CLASSLESS ADDIRESS!	3.	2.0
		191.168.1.1/8	
		4.	
		191.168.1.1/4	

S.NO.	Questions	Choices	Answer
_		1. SMTPMP	
101	NAMES OF THE PER OWNS VOTAN EN AND PAGE	2. IMAP	
121	WHICH OF THE BELOW IS NOT AN EMAIL PROTOCOL?	3. POP	4.0
		4. SNMP	
		1. call displayName	
		2. call displayName ()	
122	Which of the following calls a function named displayName, passing it no actual arguments?	3. displayName	4.0
		4. displayName()	
		1. nondeterministic PDA to deterministic PDA	
		2. nondeterministic FSA to deterministic FSA	
123	Which of the following conversion is not possible (algorithmically)?		1.0
		3. regular grammar to context-free grammar	
		4. nondeterministic TM to deterministic TM	
		1. Leftmost derivation	
		Leftmost derivation traced out in reverse	
124	Which of the following derivations does a top-down parser use while parsing an input string? The input is assumed to be scanned in left to right order.	3. Rightmost derivation	1.0
		Rightmost derivation traced out in reverse	
		1. compare();	
	Which of the following functions compares two strings?	2. cmp();	
125		3. stringcompare();	4.0
		4. stremp();	
		1. a;	
		2. *a;	
126	Which of the following gives the memory address of a variable pointed to by pointer a?	3. &a	3.0
		4. address(a);	
		1. Quadraples	
		Postfix notation and Three address code	
127	which of the following intermediate language can be used in intermediate code generation?	3. Triples	1,3,2
		Infix notation and two address code	
			_
		1. void funct(int) { printf(?Hello"); }	
128	Which of the following is a complete function?	2. int funct();	4.0
	,	3. void funct(x) { printf(?Hello"); }	
		4. int funct(int x) { return x=x+1; }	
		1. void ~Country()	
120	Which of the following is a valid destructor of the class name "Country"	2. int ~Country(Country obj)	4.0
129	which of the following is a valid desiration of the class fiante. Country	3. int ~Country()	4.0
		4. Country()	
		1. void * operator new () { }	
		2. int operator ++() { }	
130	which of the following is an incorrect definition inside a class?	3. void operator delete(void * ptr) { }	2.0

S.NO.	Questions	Choices	Answers
	- Carrier - Carr	The output toggles if one of the inputs is held HIGH.	
131	Which of the following is correct for a gated D flip-flop?	2. Only one of the inputs can be HIGH at a time.	4.0
		3. The output complement follows the input when enabled.	
		4. Q output follows the input D when the enable is HIGH.	
		1. Collaborative technologies	\Box
		2. Knowledge asset management	
132	Which of the following is not a technology driver for an information system?	3. Enterprise applications	2.0
		4. Object technologies	
		1. Copy Constructor	
		2. Friend Constructor	
133	Which of the following is not a type of constructor?	3. Default Constructor	2.0
		4. Parametrized Constructor	
		1. /*	
		2. //	
134	Which of the following is the insertion operator?	3. <<	4.0
		4. >>	
		Hardware and software costs	
	Which of the following is/are main parameters that you should use when computing the costs of a software development project?	2. Effort costs (the costs of paying software engineers and managers)	
135		3. Travel and training costs	4.0
		4. All the parameters required given in the option.	
		1. internal	
126	While on the control of the control	2. protected	1.0
136	Which of the following language feature is not an access specifier in C++?	3. public	1.0
		4. private	
		1. (aaa+ab+a)+(bbb+bb+a)	
		2. ((a+b) (a+b) (a+b))*	
	Which of the following regular expression denotes a language comprising of all possible strings over {a,b} of length n where n is a multiple of 3?	3	2.0
137	ora (a,c) or engar a marco a manape or 5.	(aaa+bbb)*	
		4. (a+b+aa+bb+aba+bba)*	
		1. r* s* = r* + s*	+-+
		$2. (r + s)^* = (r^*s^*)^*$	
	Which of the following regular expression identities are true?		
138	which of the following regular expression identities are true:	3. $(r + s)^* = r^* + s^*$	2.0
130			2.0
		4. $(r + s)^* = r^* s^*$	
		1. int f2() { static int i; i++; return i; }	+-+
		2. int f3(static int i) { return 300;}	
139	Which of the following results in a compile-time error?	3. static int f1() { return 100; }	3.0
		4. static int a;	
		1	

S.NO.	Questions	Choices	Answer
		1. FCFS	
140	Which of the following scheduling algorithm comes under preemptive scheduling?	2. Round Robin	2.0
1.0		3. Multilevel Queue Scheduling	
		4. Largest Job First	
		1 (underscore)	
1.41		2 (hyphen)	1.0
141	Which of the following special symbol is allowed in a variable name?	3. (pipeline)	1.0
		4. * (asterisk)	
		1. For $R = RI^*$, $L(R)$ is empty if and only if $L(RI)$ is empty	
		2. For $R = (R1)$, $L(R)$ is empty if and only if $L(R1)$ is empty	
142	Which of the following statement is false?	3. For $R = R1R2$, $L(R)$ is empty if and only if either $L(R1)$ or $L(R2)$ is empty.	1.0
		4. If $R = RI + R2$, $L(R)$ is empty if and only if both $L(RI)$ and $L(R2)$ are empty.	
		I. If there is a PDA by acceptance state that accept L, then there is also a PDA by empty stack that accept L	
	Which of the following statement is false?	2. If there is a NPDA that accept L, then there is also a DPDA that accept L.	
143		3. If there is a PDA by empty stack, then there is also a CFG G that accept L.	
		 If there is a CFG G that accepts L, then there is also a PDA that accept L. 	
	Which of the following statements is/are FALSE ?	Turing recognizable languages are closed under union and complementation.	
144		Turing decidable languages are closed under intersection and complementation	
144		Turing recognizable languages are closed under union and intersection.	
		For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine.	t
		Removing left recursion alone	
		2. Factoring the grammar alone	
145	Which of the following suffices to convert an arbitrary CFG to an LL(1) grammar?	Removing left recursion and factoring the grammar	4.0
		4. Removing left recursion, left factoring and ambiguity of the grammar	
		1. this.x	
		2. *this.x	
146	Which of the following ways are legal to access a class data member using this pointer?	3. this.>x	3.0
		4. *this-x	
		1. An LR(k) parser.	
		2. An LALR(k) parser	4.0
147	Which one of the following is a top down parcer?		ı→ \/
147	Which one of the following is a top-down parser?	3. Operator precedence parser.	

S.NO.	Questions	Choices	Answers
		1. Master schedule.	
	Which one of the following is a valid project Key Performance Indicator (KPI)?	2. Staff appraisals.	
148		3. Management buy in.	4.0
		4. Milestone achievement.	
		1. virtual void Display(void){0};	
		2. void Display(void) = 0;	
149	Which one of the following is the correct way to declare a pure virtual function?	3. virtual void Display(void) = 0;	3.0
		4. virtual void Display = 0;	
		1	
		The set of all strings containing at least two 0's	
		2. The set of all strings that begin and end with either 0 or 1.	
150	Which one of the following languages over alphabet $\{0,1\}$ is described by the regular expression: $(0+1)*0(0+1)*0(0+1)*?$	3.	1.0
		The set of all strings containing at most two 0's.	
		4. The set of all strings containing the substring 00.	
		1. Build & Fix Model	
151	Which one of the following models is not suitable for accommodating any change?	2. RAD Model	3.0
1.71		3. Waterfall Model	5.0
		4. Prototyping Model	
		1. 0*(11*0)*	
	Which one of the following regular expressions over $\{0,1\}$ denotes the set of all strings not	2. 0*1*01	
152	containing 100 as a substring?	3. 0*(10+1)*	1234.0
		4.	
		0*1010*	
		To identify the health and safety strategies and procedures to be used	
		on the project	
		2. To establish the extent of work required prior to project	
153	Which one of the following statements best defines the purpose of a Product Breakdown Structure	commissioning and the handover	4.0
	(PBS)?	To define how the products are produced by identifying derivations and dependencies	
		4. To define the hierarchy of deliverables that are required to be	
		produced on the project	
		1. The project team.	
1.54	NA A D I A NA A NA A NA A NA A NA A NA A	2. The chief executive.	
154	Who owns the Project Management Plan (PMP)?	3. The project manager.	3.0
		4. The project support office.	
		1. a*b*	\vdash
	Write the regular expression to denote the language L over ? = { a,b} such that all the string do not	2. b*a*	
155	contain the substring " ab".	3. (ab)*	24.0
		4. (ba)*	
		1.	+
		Von-Neuman architecture	
		2.	
		RISC architecture	
156	Zero address instruction format is used for		4.0
		3.	
		CISC architecture	
		C.S.C. M.C.M.C.	
		4. Stack-organized architecture	
		Saak organized defineethe	
			I

S.NO.	Questions	Choices	Answers
		1.	
		Steeper	
155		2.	
	In a slab under steady state conduction if the thermal conductivity increases along the thickness, the	Flatter	3.0
157	In a slab under steady state conduction if the thermal conductivity increases along the thickness, the temperature gradient along the direction will become	3.	3.0
		Constant	
		4.	
		mixed pattern	
		1.	
		2 sec	
		2.	
	The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as 1-mm-dia sphere. The properties of the junction are $k = 35 \text{ W/m}^{\circ}\text{C}$, $\rho = 8500 \text{ kg/m}^{3}$,	10 sec	
158	and C_p = 320 J/kg $^{\circ}$ C, and the convection heat transfer coefficient between the junction and the gas is h =	3.	3.0
	210 W/m ² °C. The time taken by the thermocouple to read 99 percent of the initial temperature difference	28 sec	
		4.	
		63 sec	
		1.)	
		increase	
		2.	
150	Assuming flagges to be laminary if the diameter of the gire is believed than the garassum days will	decrease	1.0
139	Assuming flow to be laminar, if the diameter of the pipe is halved, then the pressure drop will	3.	1.0
		remain same	
		4.	
		be quadrupled	
		L)	
		ML ⁻¹ T ⁻¹	
		2.	
_		MLT ⁻¹	
160	Dimension of absolute viscosity is	3.	1.0
		ML ⁻¹ T	
		4.	
		MLT	
		1.Octal code	\vdash
		2.Grey code	
	Which of the following is minimum error code?	3.Binary code	
161	STORE COLUMN STORE	4.	2.0
		Excess 3 code	
		Excess 5 code	
		1.	$\vdash \vdash \vdash$
		4 circuits	
		2.	
	When used with an IC, what does the term "QUAD" indicate?	2 circuits	
162	acce and all re, mad does the tellit QUID indicate.	3.	1.0
		8 circuits	
		4.	
		6 circuits	

s.NO.	Questions	Choices	Answer
		1.	
		1011	
		2.	
163	Adding 1001 and 0010 gives	1111	1.0
105	Adding 1001 and 0010 gives		1.0
		3.	
		0	
		4.	
		1010	
		1.	
		0	
		2.	
		1	
164	Radix of binary number system is?	3.	3.0
		2)	
		4.	
		A&B	
		1. is connected to Q	
		2.R is connected to Q	
165	SR Flip flop can be converted to T-type flip-flop if?	3.Both S and R are shortend	4.0
		4.S and R are connected to Q and Q' respectively	
		1.	
		JK flip-flop does not need a clock pulse	
		2.	
		there is feedback in JK flip-flop	
166	The main difference between JK and RS flip-flop is that?		3.0
100	The main difference between 3K and KS Inp-hop is mac.	3.	3.0
		JK flip-flop accepts both inputs as 1	
		4.	
		JK flip-flop is acronym of junction cathode multivibrator	
		1.Set of capacitor used to register input instructions in a digital computer	
		2.Set of paper tapes and cards put in a file	
		3.	
167	Register is a	Temporary storage unit within the CPU having dedicated or general	3.0
		purpose use	
		4.Part of the auxiliary memory	
		1. addition	
		addition	
		2.	
168	Magnitude comparator compares using operation of	subtraction	xnor1
		3.	
		multiplication	
		4. division	
		Idizzion	1

S.NO.	Questions	Choices	Answer
		1.	
		Both input zero	
		2.	
		zero at R and one at S	
169	An SR flip flop cannot accept the following input entry		4.0
		3.	
		zero at S and one at R	
		4.	
		Both inputs one	
		1.	
		equal	
		2.	
170	One operation that is not given by magnitude comparator	less	2.0
		3.	
		greater	
		4.	
		addition	
		1.	
		<mark>a*</mark>	
		2.	
		a	
171	Automaton accepting the regular expression of any number of a 's is:	3.	1.0
		a*b*	
		4.	
		abc	
		1	-
		Q	
		2.	
172	Let L be a set accepted by a nondeterministic finite automaton. The number of states in non-deterministic finite automaton is $ Q $. The maximum number of states in equivalent finite	2 Q	4.0
1/2	automaton that accepts L is	3.	4.0
		2 raise to power Q *1	
		4.	
		2 raise to power Q	
		1.	1
		4	
		2.	
		2	
173	Number of final state require to accept $\Phi(phi)$ in minimal finite automata.		4.0
	F (F.)	3.	"
		1	
		4.	
		0	
		ı	1

S.NO.	Questions	Choices	Answer
		the machine code corresponding to the processor of the PC used for application development	
174	The embedded c program is converted by cross compiler to	2. the machine code corresponding to a processor which is different from the processor of the PC used for application development 3.	2.0
		the machine code for all the microcontrollers 4. assemble code of the PC used for application development	
		1. (1*0)*1* 2.	
175	The regular expression $0*(10*)*$ denotes the same set as	0 + (0 + 10)* 3. (0 + 1)* 10(0 + 1)* 4.	1.0
		(0+1)* 1. 1 and 4 only	
176	Which of the following statements is/are FALSE? (1) For every non-deterministic Turing machine, there exists an equivalent deterministic Turing machine. (2) Turing recognizable languages are closed under union and complementation. (3) Turing decidable languages are closed under intersection and complementation (4) Turing recognizable languages are closed under union and intersection.	2. 1 and 3 only 3. 2 only	3.0
		4. 3 only	
		both are under union	
		both are under same language	
177	Two automata are equal when	3.	2.0
		both are having equal number of states 4.	
		both are having same number of final states	

	Questions	Choices	Answers
		1.	
		2 states	
		2.	
	What is the minimum number of states needed to a DFA over Σ = (a, b) which accept those words	4 states	
178	from Σ such that the number of a is even and the number of b is divisible by three.	3.	3.0
		6 states	
		4.	
		5 states	
\dashv		1.	
		yx	
		2.	
	If a language is denoted by a regular expression L = (x)*(x y x),	xyx	4.0
	then which of the following is not a legal string within L?	3.	
		X	
		4.	
		xyxyx	
		1.	
		(a+b)	
		2.	
	The CFG	$(a+b)(a+b)^*$	
	s> as bs a b	3.	2.0
	is equivalent to regular expression	(a+b)(a+b)	
		4.	
		(a+b)(a+b)(a+b)(a+b)	
		1.	
		Pumping Lemma	
		2.	
		RE	
		3.	
181	is used to check whether the language is not regular.	MN Theorem	1.0
		4.	
		* .	
		n	
		Pigeon hole principle	
		1.	
		the instruction set architecture	
		2.	
	The minimum number of page frames that must be allocated to a running process in a virtual memory environment is determined by	page size	
182	menor, controlled to determined by	3.	1.0
		physical memory size	
		4.	
J		number of processes in memory	
Ì			

S.NO.	Questions	Choices	Answers
		1.	
		11	
183	A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry	2.	
	contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit. The size of the cache tag directory is	14	4.0
	the education and direction, is	3.	
		27	
		4.	
		16	
		1.)	
		before the CPU time slice expires	
		2.	
184	Pre-emptive scheduling is the strategy of temporarily suspending a running process	to allow starving processes to run	1.0
		3.	
		when it requests IO	
		4.	
		None of mentioned	-
		Are easier to develop than single programming systems	
		2.	
		Execute each job faster	
105	Multipus comming systems		3.0
163	Multiprogramming systems	3.	3.0
		Execute more jobs in the same time	
		4.	
		Are used only on large main frame computers	
		1.	
		4	
		2	
		2	
186	The DMA controller has registers	2	3.0
		5.	
		5	
		4.	
		ı.	
		X	
	The truth table X Y f(X,Y)		
		2.	
	0 1 0 1 0 1	X+Y	
10,	1 1 1		1.0
	represents the Boolean function	3.	
		X'Y'	
		4.	
		Y	

S.NO.	Questions	Choices	Answers
,	Questions	1.	Allsweis
		(a+b+aa+bb+aba+bba)*	
		2.	
		(aaa+bbb)*	
100	Which of the following regular expression denotes a language comprising of all possible		
188	strings over $\Sigma = \{a,b\}$ of length n where n is a multiple of 3?	3.	3.0
		((a+b) (a+b) (a+b))*	
		4.	
		(aaa+ab+a)+(bbb+bb+a)	
\dashv		1.NFA is more powerful than DFA	
		2.DFA is more powerful than NFA	
189	Which of the following statement is true?	3.	3.0
102	The state solo in a golden control to the state of the st	NFA and DFA have equal power	5.0
		4.None	
\neg			
190	Assume that a mergesort algorithm in the worst case takes 30 seconds for an input of size 64.	1.256 2.2048 3.1024 4.512	4.0
	Which of the following most closely approximates the maximum input size of a problem that can be solved in 6 minutes?		
\dashv		1.	
		symmetric key encryption algorithm	
		2.	
		asymmetric key encryption algorithm	
191	ElGamal encryption system is:		2.0
		3.	
		not an encryption algorithm	
		4.	
		none of the mentioned	
		none of the mentioned	
		1.	
		var=100	
	#include < stdio.h > int main()		
	{	2.	
	typedef auto int AI;	var=AI	
192	A1 var=100; printf("var=%d",var);	3.	4.0
	return 0;		
	}	var=0	
	Find the output	4.	
		Error	
		1.	
	#include < stdio.h >	myName=ABCDEFG(size=7)	
	int main()	2.	
	{		
100	typedef char* string; string myName="ABCDEFG";	Error	4.6
193	printf("myName=%s (size=%d)",myName,sizeof(myName));	3.	4.0
	return 0;	myName=ABCDEFG(size=4)	
	J		
	Find the output	<u>4.</u>	
		myName=ABCDEFG(size=8)	
\dashv		1.	-
	#include < stdio.h > int main()		
	{	Error	
	typedef int AAA,BBB,CCC,DDD;	2.	
	AAA aaa=10; BBB bbb=20;	10,10,10,10	
194	CCC ccc=30;		3.0
	DDD ddd=40;	3.	3.0
194	muntat 1997 d 07 d 07 d 07 d 18 ooo lalah ooo ddd).	10 20 20 40	
174	printf("%d,%d,%d,%d",aaa,bbb,ccc,ddd);	10,20,30,40	
127	return 0;	10,20,30,40	
	return 0; }	4.	

S.NO.	Questions	Choices	Answers
	#include < stdio.h >	1.	
	int main() {	10012,12100	
	typedef struct {	2.	
	int empid; int bsal;	0,0	
195	}EMP;	3.	1.0
	EMP E={10012,15100}; printf("%d,%d",E.empid,E.bsal);	Error	
	retum 0;	4.	
		10012,10012	
	Find the output	1.	
	#include < stdio.h > void main()	0 1 2 255	
	{ unsigned char var=0;	2.	
106	for(var=0;var<=255;var+++);	255	1.0
196	printf("%d ",var);	3.	1.0
	}	256	
	Find the output	4.	
		blank screen as output	
			_
	#include <stdio.h></stdio.h>		
	#define MOBILE 0x01 #define LAPPY 0x02	1.	
	int main()	I have purchased:	
	unsigned char item=0x00;	2.	
	<pre>item =MOBILE; item =LAPPY;</pre>	I have purchased:Mobile, Lappy	
197	printf("I have purchased:"):		2.0
	<pre>if(item & MOBILE) { printf("Mobile, ");</pre>	I have purchased:Mobile,	
	} if(item & LAPPY){	4.	
	<pre>printf("Lappy"); }</pre>	I have purchased:Lappy	
	return 1;		
	}	1	
		1.	
		13	
	int main() {	2.	
198	char flag=0x0f; flag &= ~0x02;	d	1.0
196	riag &= ~vxuz; printf("%d",flag);	3.	1.0
	return 0;	22	
	Predict the Output.	4.	
	Treate the Output.	10	
		1	
	#include <stdio.h></stdio.h>	1.	
	int main()	c = 12	
	{ int a=10;	2.	
100		c = 10	
199	c=(a & b);	3.	3.0
	<pre>printf("c= %d",c);</pre>	c = 2	
	return 0; }	4.	
	Find the output.	c = 0	

S.NO.	Questions	Choices	Answer
		1.	
	#include <stdio.h> #define FUN(x,y) x##y</stdio.h>	Error	
	int main()	2. 1010	
200	tint a1=10,a2=20; printf("%d%d",FUN(a,1),FUN(a,2));	3.	4.0
	print(/ ///////	2020	
	Find the output	4.	
	rina die output	1020	
_		1.	
	#include <stdio.h></stdio.h>	a=10,b=20,largest=20	
	#define LARGEST(x,y) (x>=y)?x:y int main()	2.	
	{ int a=10,b=20,l=0;	a=11,b=21,largest=20	
201	l=LARGEST(a++,b++);	3.	4.0
	printf("a=%d,b=%d,largest=%d",a,b,1); return 0;	a=11,b=21,largest=21	
	}	4.	
	Find the output	a=11,b=22,largest=21	
		1.	
	#include <stdio.h></stdio.h>	Error	
	#define MAX 100 int main()	2.	
	{ #define MAX 20	MAx=100	
202	printf("MAX=%d",MAX); return 0;	3.	3.0
	}	MAx=20	
	Find the output	4.	
		MAX=10020	
		1.	
	#include <stdio.h></stdio.h>	Error	
	#define MAX 10 int main()	2.	
	in than() { int array[MAX]={1,2,3},tally; for(tally=0;tally< sizeof(array)/sizeof(int);tally+=1)	134567891011	3.0
203	printf("%d ",*(tally+array)); return (%	3. 1 2 3 0 0 0 0 0 0 0	3.0
	}	4.	
	Find the output	000000000	
		1.	
	#include <stdio.h> #define MAX 99</stdio.h>	990	
	int main() {	2.	
204	printf("%d",MAX); #undef MAX	9999	3.0
	printf("%d",MAX); return 0;	3.	
	}	Error	
	Find the output	4. MAXMAX	
		1.	
		IncludeHelp	
	#include <stdio.h> #define TEXT IncludeHelp</stdio.h>	2.	
	facinit main()	TEXT	
205	{ printf("%s",TEXT); return 0:	3.	3.0
	return 0; }	Error	
	Find the output	4.	
		TEXT IncludeHelp	

S.NO.	Questions	Choices	Answers
	#include <stdio.h> #define TRUE 1</stdio.h>	1.	
	int main()	1	
206	if(TRUE)	2.	
	printf("2");	Error Carlon Car	2.0
200	else printf("3");	3.	2.0
	<pre>printf("4"); return 0;</pre>	2	
	}	4.	
	Find the output.	12	
		1.	
	#include <stdio.h></stdio.h>	Hello	
	#define TRUE 1 int main()	2.	
207	{ int loop=10;	Hello Hello Hello (infinite times)	4.0
207	while(printf("Hello ") && loop);	3.	1.0
		Hello (10 times)	
	Find the output	4.	
		Hello (11 times)	
		1.	
	#include <stdio.h> #define VAR1 VAR2+10</stdio.h>	VAR2+10	
	#define VAR2 VAR1+20	2.	
	int main()	VAR1+20	
208	{ printf("%d",VAR1);	3.	3.0
	return 0;	Error	
	Find the output	4.	
		10	
	#include <stdio.h> #include < string.h ></stdio.h>		
	struct student {	1.	
	char name[20]; }std;	Mike Thomas	
	char * fun(struct student *tempStd) {	2.	
209	strcpy(tempStd->name,"Thomas"); return tempStd->name;	Mike Mike	3.0
	}	3.	
	int main()	Thomas Thomas	
	strcpy(std.name,"Mike ");	4.	
	printf("%s%s",std.name,fun(&std)); return 0;	ThomasMike	
	}		
	Find the output	1	
	#include <stdio.h></stdio.h>	I.	
	#include <string.h> int main()</string.h>	Inclu	
	{ char s1[]="IncludeHelp";	2. LeglyCADDACE VALUE	
210	char s2[10];	IncluGARBAGE_VALUE	1.0
	strncpy(s2,s1,5); printf("%s",s2);	3.	
	print(768 (82)); return 0;	Error	
	}	4.	
	Find the output	IncludeHelp	

S.NO.	Questions	Choices	Answers
		1.	
	#include \stalio.ii>	IncludeHelp.Com	
	int main()	2.	
211	char str1[]="IncludeHelp",str2[]=".Com";	<mark>udeHelp</mark>	2.0
211	printf("%s",strl+strlen(str2)); return 0;	3.	2.0
	}	Error	
	Find the output	4.	
		IncludeHelp4	
		1.	
	#include <staio.n></staio.n>	50501150	
	#include <string.h> int main()</string.h>	2.	
	{ char str[50]="IncludeHelp";	1150	
212	printf("%d%d",strlen(str),sizeof(str)); return 0;	3.	2.0
	}	1111	
	Find the output	4.	
		5011	
		1.	
	#include <stdio.h> #include <string.h></string.h></stdio.h>	o	
	int main() {	2.	
	int val=0; char str[]="IncludeHelp.Com";	1	
213	val=strcmp(str,"includehelp.com");	3.	3.0
	printf("%d",val);	<u>-1</u>	
	return 0; }	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>	1.	
	#define OFF 0	1122	
	#if debug == OFF int a=11;	2.	
	#endif	Error	
214	int main ()	3.	1.0
	int b=22;		
	printf("%d%d",a,b); return 0;	4.	
	}	2222	
	Find the output		
	#include <stdio.h></stdio.h>	1.	
	int main()	Garbage	
	{ char *text="Hi Babs.";	2.	
215	char x=(char)(text+3);	B	4.0
		3.	
	return 0;	Error	
	Find the output	4. Null	
	rina me output		
	#include <stdio.h></stdio.h>	1.	
	int main()	Garbage	
	{ char *text="Hi Babs.";	2.	
216	<pre>char x=(char)(text[3]);</pre>	B	2.0
	printf("%c\n".x):	3.	
	return 0;	Error	
	}	4.	
	Find the output	Null	

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h></stdio.h>	Complie time error	
	int main()	2.	
	int anyVar=10;	10	2.0
217	printf("%d",10); return 0;	3.	2.0
	} extern int anyVar;	Run Time error	
	Find the output	4.	
		No output	
	#include <stdio.h></stdio.h>	1.	
		Error	
	{	2.	
	const char cr (noat)x,	2.3,2	
218	const char c2=(int)x;	3.	2.0
	printf("%d,%d\n",c1,c2);	2.3000000,2	
	return 0;	4.	
	Find the output	2,2	
	#include <stdio.h></stdio.h>	1.	
	struct sample	0	
	{ int a;	2.	
	}sample;	100	
219	int main() {	3.	2.0
	sample.a=100; printf("%d",sample.a);	ERROR	
	return 0;	4.	
		arning	
	Find the output #include <stdio.h></stdio.h>		
	char* funl(void) {		
	char str[]="Hello"; return str;	1.	
	}	ERROR	
	char* fun2(void)	2.	
220	char *str="Hello";	Hello,Hello	4.0
	}	3.	
	{	Hello,Garbage	
	printit(705,705 ,1ui12()),	4.	
	}	Garbage, Hello	
	Find the output		
	#include <stdio.h> char* strFun(void)</stdio.h>	1.	
	{ char *str="IncludeHelp";	str value= Garbage value	
	return str;	2.	
221	int main()	str value = IncludeHelp	2.0
221	char *x;	3.	2.0
	printf("str value = %s",x);	Error	
	return 0;	4.	
	Find the output	No output	
		1	

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h></stdio.h>	step1: 1	
	int fooo(void)	step2: 1	
	static int num=0;	step3: 1	
	num++; return num;	2.	
	} int main()	step1: 1	
		step2: 2	
222	val=fooo(); printf("step1: %d\n",val);	step3: 3	2.0
	val=fooo();	3.	
	vai 1000(),	step1: 0	
	printf("step3: %d\n",val); return 0;	step2: 0	
	}	step3: 0	
	Find the output	4.	
		ERROR	
\dashv		1.	
	#include <stdio.h></stdio.h>	Start debuggingIncludeHelp	
	int main()	2.	
	{ #ifdef debug	IncludeHelp	
223	#endif		2.0
	printf("IncludeHelp"); return 0;		
	}	Error	
	Find the output	4.	
		debug	
	#include <stdio.h></stdio.h>	1.	
	$\{ \text{ int a}[5] = \{0x00,0x01,0x02,0x03,0x04\}, i; \}$	00 01 02 03 04	
	i=4; while(a[i])	2.	
		04 03 02 01 00	
224	i;	3.	3.0
	retum 0;	04 03 02 01	
		4.	
	Find the output	01 02 03 04	
\dashv	#include <stdio.h></stdio.h>	1.	
	int main() { int a[5]={1,2,3,4,5},b[5]={10,20,30,40,50},tally;	1 2 3 4 5	
		2.	
	for(tally=0;tally< 5;++tally) *(a+tally)=*(tally+a)+*(b+tally);	10 20 30 40 50	
225	for(tally=0;tally< 5;tally++)	3.	3.0
	printf("%d ",*(a+tally));	11 22 33 44 55	
	return 0;	4.	
	<i>}</i>	Error	
	Find the output		
		1.	
	#include <stdio.h></stdio.h>	Error	
	int main()	2.	
226	{ static int array[]={10,20,30,40,50}; printf("%d%d",*array,*(array+3)* *array);	1040	4.0
220	return 0;	3.	1.0
	Find the output	10300	
	i ind the output	4.	
		10400	
-		<u> </u>	1

S.NO.	Questions	Choices	Answers
		1.	
		Error	
		2.	
		A,A,A	
		B,B,B	
		C,C,C	
		D,D,D	
		E,E,E	
	#include <stdio.h> int main()</stdio.h>	3.	
	C. C. C. C. CLAUDUCUDUDUCU	B,B,B	
227	printf("%c,%c,%c,%c'n",*(x+tally)+1,x[tally]+1,*(tally+x)+1);	C,C,C	3.0
	return 0; }	D,D,D	
	Find the output	E,E,E	
	•	F,F,F	
		4.	
		E,E,E	
		D,D,D	
		C,C,C	
		B,B,B	
		A,A,A	
		1.	
	#include <stdio.h> int main()</stdio.h>	\0IncludeHelpTRUE	
	{ char result,str[]="\0IncludeHelp";	2.	
	result=printf("%s",str); if(result)	\0IncludeHelpFALSE	
228	printf("TRUE");	3.	4.0
	else printf("FALSE");	Error	
	return 0;	4.	
	Find the output	FALSE	
	i ind the output		<u> </u>
		1.	
	#include <stdio.h></stdio.h>	IncludeHelp	
	int main()	2.	
220	char su o = metadericip,	IncludeH	2.0
229	printf("%s",str); return 0;	3.	3.0
	}	Error	
	Find the output	4.	
		No output	
		1.	
		HelloFriends	
		HelloFriends	
	#include <stdio.h> int main()</stdio.h>	2.	
	{	Hello%s%dFriends	
	printf(str);		
230	printf("'n"); printf("%s",str);	Hello%s%dFriends	3.0
	return 0;	3.	
		Hello(null)0Friends	
	Find the output	Hello%s%dFriends	
		4.	
		Garbage value	

S.NO.	. Questions	Choices 1.	Answer
	#include <stdio.h> int main()</stdio.h>	value is = %d	
	{ char str[]="value is =%d";	2.	
231	int a='7'; str[11]='c';	value is = %c 3.	4.0
	printf(str,a); return 0;	value is = 55	
	}	4.	
	Find the output	value is = 7	
		1.	
	#include <stdio.h></stdio.h>	A 0 0 0 0 0 0 0 0 0	
	int main() {	2.	
232	char X[10]={'A'},i; for(i=0; i<10; i++)	A	4.0
232	printf("%d ",X[i]); return 0;	3.	4.0
	}	A 32 32 32 32 32 32 32 32 32 32 4.	
	Find the output	Error	
		1.	
		Error	
	#include <stdio.h> int main()</stdio.h>	2.	
	{ char *str="IncludeHelp";	IncludeHelp	
233	printf("%c\n",*&*str); return 0;	3.	3.0
		I)	
	Find the output	4.	
		*I 1.	
		4, 4, 4	
		1, 4	
	#include <stdio.h> int main(){</stdio.h>	2.	
	float a=125.50; int b=125.50;	4, 4, 8	
22.4	char c='A';	1, 1	
234	<pre>printf("%d,%d,%d\n",sizeof(a),sizeof(b),sizeof(125.50)); printf("%d,%d\n",sizeof(c),sizeof(65));</pre>	3.	4.0
	return 0; }	4, 4, 4	
	What will be the output on a 32 bit compiler.	1, 1 4.	
		4, 4, 8	
		1, 4	
		1.	
	#include <stdio.h></stdio.h>	Condition is True	
	int main() { if((-100 && 100) (20 && -20))	2.	
235	print("%s","Condition is true.");	Condition is False	1.0
233	printf("%s","Condition is false."); return 0;	3.	1.0
	}	No output 4.	
	Find the output	Error	

.NO.	Questions	Choices	Answers
	#include <stdio.h> int main()</stdio.h>	1.	
	{ int a=10;	10	
	if(10L == a)		
	printf("10L"); else if(10==a)	2.	
	printf("10");	10L	
236	else printf("0");	3.	2.0
	return 0;	10L10	
	ri ta	4.	
	Find the output.	Error	
	(P. 1.1		
	<pre>#include <stdio.h> int main()</stdio.h></pre>	1.	
	{ int a=10;	Hello	
	if(a==10)	2.	
	rintf("Hello"); break;	HelloOK	
237	printf("Ok");	3.	4.0
	else	OK	
	{ printf("Hii");		
	} return 0;	4.)	
	Find the output.	Error	
	. III III Gupui	1.	
		1.234	
	#include <stdio.h> int main()</stdio.h>	2.	
	{ int a=15;		
238	float b=1.234;	1.234000	3.0
	printf("%*f",a,b); return 0;	3.	
	}	1.234000	
	Predict the output?	4.	
		Error	
	#include <stdio.h></stdio.h>		
	int main()	1.	
	{ int i;	0IHelp 1IHelp 2IHelp 3IHelp 4IHelp	
	for(i=0; i< 5; i++) {	2.	
	if(i*i > 30)		
239	else	0IHelp 1IHelp 2IHelp 4IHelp	1.0
237	printf("%d",i); lbl:	3.	1.0
	printf("IHelp ");	11Help	
	}	4.	
	return 0;	Error	
	<i>}</i>		
	Find the output	1.	
	Windows and in In		
	#include <stdio.h> int main()</stdio.h>	size of array is = 20	
	int MAY=10:	2.	
240	int array[MAX];	size of array is = 40	2.0
∠40	printf("size of array is = %d",sizeof(array); return 0;	3.	2.0
		size of array is = 4	
	Find the output	4.	
		Error	

S.NO.	Questions	Choices	Answers	
	#include <stdio.h></stdio.h>	1.		
241	int main() {	No output		
	int pn=100; if(pn>20)	2.		
	if(pn<20) printf("Heyyyyy");	Hiiiii Hiiiii	2.0	
241	else	3.	2.0	
	printf("Hiiiii"); return 0;	Неууууу		
	}	4.		
	Find the output.	НеуууууНііііі		
	#include <stdio.h></stdio.h>	1.		
	int main()	ERROR		
	int var=100;	2.		
	iii vai 200,	200200		
242	printf("%d",var); }	3.	4.0	
	printf("%d",var); return 0;	100100		
	}	4.		
	Find the output	200100		
		1.		
		value of var = 250		
	#include <stdio.h></stdio.h>	includehelp.com		
	int main()	2.		
	int var=250;	value of var = 250		
243	printf("value of var = $%d\n"$,var); 200+50;	includehelp	2.0	
2.0	"includehelp.com"; printf("%s\n","includehelp");	3.	2.0	
	return 0;	Error		
	Find the output	4.		
		value of var = 250		
		Garbage		
	#include <stdio.h></stdio.h>	1.	 	
	int main()	Error		
	int iVal; char cVal;	2.		
	void *ptr; // void pointer	value =50,size= 4		
	iVal=50; eVal=65;			
244	ptr=&iVal printf("value =%d,size= %d\n",*(int*)ptr,sizeof(ptr));	value =65,size= 4	2.0	
	ptr=&cVal	3.		
	printf("value =%d,size= %d\n",*(char*)ptr,sizeof(ptr)); return 0;	value =50,size= 4		
	}	value =65,size= 1		
		4.		
	Find the output	Garbage value 1.		
	#include <stdio.h> int main()</stdio.h>	01000		
	{ static int var[5];			
	int count=0;	2. 0 2 0 0 0		
245	var[++count]=++count;		3.0	
	for(count=0;count<5;count++) printf("%d ",var[count]);	3.		
	return 0;	00200		
	}	4.		
	Find the output	00000		

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	int main() {	12, 12	
	struct sample { int a;	2.	
	int b;	12, 0	
246	sample *s; }t;	3.	4.0
	printf("%d,%d",sizeof(sample),sizeof(t.s));	Error	
	return 0;	4.	
	}		
	Find the output	12, 4	
	#include <stdio.h> int main()</stdio.h>	1.	
	{	Name: Mike, Age: 26	
	struct std {	2.	
	char name[30]; int age;	Name: Garbage, Age: Garbage	
247	};	3.	1.0
	struct std s1={"Mike",26}; struct std s2=s1;	Name: Null, Age: 26	
	printf("Name: %s, Age: %d\n",s2.name,s2.age); }	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>	1.	
	int main() {	ERROR	
	typedef struct tag {		
	char str[10]; int a;	2.	
	}har;	IHelp, 10	
248	har h1,h2={"IHelp",10};	3.	4.0
	h1=h2; h1.str[1]='h';	IHelp, 0	
	printf("%s,%d",h1.str,h1.a); return 0;	4.	
	}	Ihelp, 10	
	Find the output		
	#include <stdio.h></stdio.h>	1.	
	int main()	10,10	
	{ union test		
	{	2.	
249	int i; int j;	10,0	4.0
249	};	3.	4.0
	union test var=10;	0,10	
	printf("%d,%d\n",var.i,var.j); }	4.	
	Find the output	Error	
	#include <stdio.h></stdio.h>		
	int main()	1.	
	union values	A,B,0	
	{ int intVal;	2.	
	char chrVal[2];i		
250	};	A,B,16961	2.0
- 0	union values val;	3.	
	val.chrVal[0]='A'; val.chrVal[1]='B';	B,B,66	
	printf("\n%c,%c,%d",val.chrVal[0],val.chrVal[1],val.intVal); return 0;	4.	
	}	A,A,65	
	Find the output		
	-	·	

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>		
	int main() {		
	union values	1.)	
	{ unsigned char a;	44,44,300	
	unsigned char b;	2.	
	unsigned int c; };	1,2,300	
251			1.0
	union values val; val.a=1;	3.	
	val.b=2; val.c=300;	2,2,300	
İ		4.	
İ	printf("%d,%d,%d",val.a,val.b,val.c); return 0;	256,256,300	
	}		
	Find the output		
		1.	
ĺ		2004	
	#include <stdio.h> int main()</stdio.h>	2.	
İ	{		
252	void *ptr; ++ptr;	2001	2.0
232	printf("%u",ptr); return 0;	3.	2.0
	}	2000	
	Find the output	4.	
		ERROR	
	#include <stdio.h> struct employee{</stdio.h>	1.	
	int empId;	Id: 3, Age: 24, Name: Mike	
	char *name; int age;	2.	
	ş.	Id: 3, Age: 23, Name: Mike	
253	{		3.0
	struct employee emp []={ {1,"Mike",24}, {2,"AAA",24}, {3,"BBB",25}, {4,"CCC",30} };		
	printf("Id: %d, Age: %d, Name: %s", emp[2].empId,3[emp].age,(*(emp+1)).name);	Id: 3, Age: 30, Name: AAA	
	return 0;	4.	
1	, P' 14	Error	
	Find the output	1.	
ĺ	#include <stdio.h></stdio.h>	Case-2	
	void main()		
	{ int a=2;	2.	
	switch(a)	Message	
	{ printf("Message\n");	3.	
254	default:	Message	4.0
234	case 2:	Case-2	1.0
	printf("Case-2\n"); case 3:		
	printf("Case-3\n");	4.	
	} printf("Exit from switch\n");	Case-2	
	}	Case-3	
	Find the output	Exit from switch	

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>		
	void main(){ static int staticVar;		
	int j;		
	for(j=0;j<=5;j+=2) switch(j){	1.	
	case 1:	0	
	staticVar++; break;	2.	
	case 2:		
255	staticVar+=2; case 4:		1.0
	staticVar%=2;	3.	
	j=-1; continue;	2	
	default:	4.	
	staticVar; continue;	Error	
	 	Elitor	
	printf("%d",staticVar);		
	}		
	Find the output		
		1.	
		2	
	#include <stdio.h> void main() {</stdio.h>	2.	
	int a=0;	1	
256	a=5 2 1;		2.0
230	printf("%d",a); }	3.	2.0
	pri tal	0	
	Find the output.	4.	
		8	
		0	
	#include <stdio.h></stdio.h>		
	void main(){ int a=1;	1.	
	switch(a/2)	Case NULL	
	{ case NULL:		
	printf("Case NULL\n");	2.	
	break; case 0:	Case ZERO	l
257	<pre>printf("Case ZERO\n");</pre>	3.	4.0
	break; default:	Case DEFAULT	
	<pre>printf("DEFAULT\n");</pre>	4.	
	break;		
	}	Error	
	Find the output		
	The die output	1.	<u> </u>
	#include <stdio.h></stdio.h>	Case-2	
	void main() {		
	int a=2;	2.	
	int b=a;	Error: case expression not constant	
	switch(b)	3.	
	{ case a:	Message	<u>.</u>
258	printf("Case-a\n"); break;		2.0
	case 3: printf("Case-3\n"); break;	Case-2	
	default:	4.	
'	printf("No option\n"); break;	Case-2	
	printf("Exit from switch");	Case-3	
		10000	1
	} Find the output	Exit from switch	

NO.	Questions	Choices	Answe
	#include <stdio.h></stdio.h>	1.	
	void main()	After loop cnt= 1	
	{ int cnt=1;	2.	
	while(cnt>=10)	1,	
259	printf("%d,",cnt);	After loop cnt= 2	1.0
	cnt+=1; }	3.	
	<pre>printf("\nAfter loop cnt=%d",cnt); printf("\n");</pre>	After loop cnt= 2	
	}	4.	
	Find the output	11	
\dashv			<u> </u>
		1.	
		ABCDE	
		2.	
	#include <stdio.h></stdio.h>	ABCD	
	void main()	A B C D	
	int i,j,charVal='A';	A B C D	
	for(i=5;i>=1;i)	A B C D	
60	$\begin{cases} for(j=0;j< i;j++) \end{cases}$		3.0
	printf("%c ",(charVal+j));	3.	
	<pre>printf("\n"); }</pre>	A B C D	
)	ABC	
	Identify the output	A B	
		A	
		4.	
		ABCDE	
		ABCD	
		A B C	
		A B	
		A	
\dashv	Hinalanda zatdia ka		
	#include <stdio.h> void main()</stdio.h>	1.	
	{ int i=1;		
	while (i<=5)	Error	
	printf("%d",i);	2.	
	if (i==5) goto print;	12345includehelp.com	
61	i++; }	3.	1.0
	}	1234includehelp.com	
	fun() {	4.	
	<pre>print: printf("includehelp.com");</pre>	1includehelp.com 2includehelp.com 3includehelp.com 4includehelp.com	ı
	}	5includehelp.com	
	Find the output		
		L.	
	#include <stdio.h></stdio.h>	Value of intVar=23, x=21	
	void main(){ int intVar=20,x;	2.	
62	x=++intVar,intVar++,++intVar; printf("Value of intVar=%d, x=%d",intVar,x);	Value of intVar=23, x=23	1.0
	}	3.	
	Find the output	Value of intVar=21, x=21	
		4.ERROR	
		I.LAKOK	

S.NO.	Questions	Choices	Answers
	#include <stdio.h></stdio.h>	1.	
	void main() {	#0#1#2#3#4#5#6###	
	int tally;	2.	
	for(tally=0;tally<10;++tally) {	#0#1#2#3#4#5#6#7#8#9#10	
263	printf("#"); if(tally>6)		1.0
	continue;	3.	
	printf("%d",tally); }	#0#1#2#3#4#5##7#8#9#10	
	}	4.	
	Find the output	#0#1#2#3#4#5#	
		1.	\vdash
		34	
		2.	
	#include <stdio.h> void main(){</stdio.h>		
264	unsigned char c=290; printf("%d",c);	290	1.0
204	} }	3.	1.0
	Find the output	Garbage value	
		4.	
		Error	
		1.	
		0 1 2 infinity	
	#include <stdio.h></stdio.h>		
	void main() {	2.	
265	chai chi 0,	1 2 2 127	4.0
263	for(;cnt++;printf("%d",cnt)); printf("%d",cnt);	3.	4.0
	}	0	
	Find the output	4.	
		1	
		1.	
	#include <stdio.h< #include="" <string.h=""></stdio.h<>	Hello	
	int main()	2.	
	{	Error	2.0
266	char str[]; strcpy(str,"Hello"); printf("%s",str);	3.	2.0
	printf("%s",str); return 0;	NULL	
	}	4.	
	Find the output	NO OUTPUT	
		1.	\vdash
	#include	sum=30	
	#define SUM(x,y) int s; s=x+y; printf("sum=%d\n",s);	2.	
	int main()	10,20	
267	{ SUM(10,20);	3.	1.0
	return 0:	Error	
	р 	4.	
	Find the output	sum=0	
		I.	\Box
	#include	11, 11	
	#include int main()	2.	
	{ char ch=10;	10, 11	
268	void *ptr=&ch printf("%d,%d",*(char*)ptr,++(*(char*)ptr));	3.	1.0
	return 0;		
	}	Error	
	Find the output	4.	
		10, 10	
		1	-

S.NO.	Questions	Choices	Answer
	#include	1.	
	int main() {	ВВВВВ	
	char *str []={"AAAAA","BBBBB","CCCCC","DDDDD"}; char **sptr []={str+3,str+2,str+1,str};	2.	
	char ***pp;	ccccc	
269	pp=sptr;	3.	3.0
	++pp; printf("%s",**++pp+2);	BBB	
	retum 0; }	4.	
	Find the output	Error	
	•	1.	
	#include	5	
	int main()	2.	
	{ int a=10,b=2;	5.0	
270	int *pa=&a,*pb=&b printf("value = %d", *pa/*pb);	3.	1.0
	return 0:	ERROR	
	,	4.	
	Find the output		
		No output	
	#include void fun(int *ptr)	1.	
	{ *ptr=100;	100,100	
	}	2.	
	int main() {	50,50	
271	int num=50; int *pp=#	3.	3.0
	fun(Å *pp); printf("%d,%d",num,*pp);	50,100	
	return 0;	4.	
	}	Error in function calling	
	Find the output	1.	
	#include	2	
	#define FUN(x) x*x int main()		
	{ int val=0;	2.	
		12864	2.0
	val=128/FUN(8); printf("val=%d",val); return 0;	3.	
	}	40	
	Find the output	4.	
		1	
		1.	
	#include	43	
	int main () {	2.	
	static int a[]= $\{10, 20, 30, 40, 50\}$; static int *p[]= $\{a, a+3, a+4, a+1, a+2\}$;	140	
213	int **ptr=p;	3.	2.0
	ptr++; printf ("%d%d", ptr p, **ptr);	89	
	} The output of the program is	4.	
	The output of the program is	78	
		1.	-
	#include <stdio.h> #define TRUE 1</stdio.h>	Hello	
	int main()	2.	
274	{ switch(TRUE)	ERROR	3.0
	{ printf("Hello");	3.	
	}	No output	
	Find the output	4.	
		Garbage	1
		Outouge .	1

.NO.	Questions	Choices	Answei
		1.	
	#include <stdio.h> enum numbers</stdio.h>	0, 1, 2, 3, 3, 4, 5, 0, 1	
	{	2.	
	zero, one, two, three , four=3,five,six,seven=0,eight };	0, 1, 2,3,3,1,2,3,4	
275	void main() {	3.	1.0
	printf("%d,%d,%d,%d,%d,%d,%d,%d,%d",zero,one,two,three,four,five,six,seven,eight);	0,1,2,3,3,1,2,3,4	
	What will be the output.	4.	
	what will be the output.	0, 1, 2, 3, 3, 4, 5, 0, 9	
		1.	
		-5	
	#include <stdio.h> int main(){</stdio.h>	2.	
	char val=250; int ans;	-6	
276	ans= $val+ !val + \sim val + ++val;$	3.	2.0
	printf("%d",ans); return 0;	0	
	} Find the output.		
		4.	
		6	
		1.	
	#include <stdio.h></stdio.h>	1, 0.8, 0.75	
	int main() {	2.	
	float a,b; a=3.0f;	0, 0.7, 0.75	
277	b=4.0f;	3.	3.0
	printf("%.0f,%.1f,%.2f",a/b,a/b,a/b); return 0;	0, 0.8, 0.75	
	}	4.	
	Find the output.	Error: Invalid format Specifier	
		1.	
		value of a=10	
	#include <stdio.h></stdio.h>	2.	
	int main(){ float a;	value of a=10.000000	
278	(int)a= 10; printf("value of a=%d",a);	3.	4.0
	retum 0;	value of a=0	
	Find the output	4.	
		L-Value required	
		1.	
	#include <stdio.h></stdio.h>	0 0 1 2 1	
	int main() {	2.	
	int i=-1,j=-1,k=0,l=2,m; m=i++&&j++&&k++ l++;	0 0 1 3 2	
279	printf("%d %d %d %d %d",i,j,k,l,m);	3.	3.0
	return 0; }	0 0 1 3 1	
	Find the output	4.	
	•	0 1 1 3 1	
		1.	
		24, 24	
	#include <stdio.h> int main()</stdio.h>	2.	
	{ int intVar=24;		
280	static int x=intVar;	24, 0	3.0
	printf("%d,%d",intVar,x); return 0;	3.)	
	}	Error: Illegal Initialization	
	Find the output of this program, (program name is: static_ec.c)	4.	
		Run time error	

S.NO.	Questions	Choices	Answers
		1.	
	#include <stdio.h> int main()</stdio.h>	0	
	{	2.	
201	int ok=-100; -100;	-100	2.0
281	printf("%d",ok); return 0;	3.	2.0
	}	100	
	Find the output.	4.	
		Error	
		1.	
		ERROR	
	#include <stdio.h></stdio.h>	2.	
	int main()	value of var= -10	
	{ int var;	value of var= 10	
202	var=10; printf("value of var= %d\n",var);	3.	2.0
282	var=++10; printf("value of var= %d\n",var);	value of var= 10	3.0
	return 0;	value of var= 10	
	}	4.	
	Find the output	value of var= 10	
		value of var= 11	
		1.	
		x=100	
		x=100	
	#include <stdio.h></stdio.h>	2.	
	int main() { int x;	x=100	
	x=100,30,50;	x=50	
283	printf("x=%d\n",x); x=(100,30,50);	3.	2.0
	printf("x=%d\n",x); return 0;	x=50	
	} Find the output	x=50	
		4.	
		x=50	
		x=100	
		1.	-
		Hello	
	#include <stdio.h> void main()</stdio.h>		
	int a=10;	2.	
	switch(a){	OK	
284	case 5+5: printf("Hello\n");	3.	3.0
	default: printf("OK\n");	Hello Hello	
	}	OK.	
	Find the output	4.	
		Error	
		1.	
	#include <stdio.h></stdio.h>	var : E, 69	
	void main()	2.	
	unsigned short var='B';	var : E, 68	
285	var+=2; var++;	3.	1.0
	printf("var : %c , %d ", var,var); }	var : D, 69	
	Find the output	4.	
	i ma me output		
		var : D, 68	

S.NO.	Questions	Choices	Answer
	#include <stdio.h> void main()</stdio.h>		
	{	1.	
	int a=2; switch(a/2*1.5)	One	
	{ case 1:	2.	
	printf("One"); break;	Two	
286	case 2: printf("Two");	3.	4.0
	break;	Other	
	default: printf("Other");	4.	
	break;	Error	
	}		
	Find the output		
	#include <stdio.h> void main()</stdio.h>		
	{ short a=2;	1.	
	switch(a)	One	
	{ case 1L:	2.	
287	printf("One\n"); break;	Two	2.0
201	case 2L: printf("Two\n");	3.	2.0
	break; default:	Else	
	<pre>printf("Else\n");</pre>	4.	
	break;	Error	
	} Find the output		
	#include <stdio.h></stdio.h>	1.	
	void main()	2 nd	
	{ short day=2;	2.	
	switch(day)	22 nd	
288	case 2: case 22: printf("%d nd",day);	3.	3.0
200	break;	Error	3.0
	default: printf("%d th",day);	4.	
	break;	2 nd	
	Find the output	22 nd	
		1.	_
		Addition is = 20	
	#include <stdio.h> int main(){</stdio.h>		
	int a,b,c; a=0x10; b=010;	2.	
289	c=a+b; printf("\nAddition is= %d",c);	Addition is = 24	2.0
20)	return 0;	J.	2.0
		Addition is = Garbage	
	Find the output.	4.	
		Error	
		1.	
		AABB1	
	#inaluda cetdia h	AABB1	
	#include <stdio.h> void main()</stdio.h>	2.	
	{ int x;	1	
	x= (printf("AA") printf("BB")); printf("%d",x);	1	
290	printf("\n");	3.	4.0
	x= (printf("AA")&&printf("BB"));	AABB1	
	printf("%d",x); }	AAI	
	Find the output	4.	
	£ ""	AAI	
		AABB1	
			<u> </u>
			_

S.NO.	Questions	Choices	Answers
291	$a = array(null => 'a', true => 'b', false => 'c', 0 => 'd', 1 => 'e', " => 'f'); echo count($a), "\n"; What will be printed?$	1.2 2.3 3.4 4.5	2.0
292	\$a = array(); if (\$a[1]) null; echo count(\$a), "\n"; What will be printed?	1.0 2.1 3.2 4.Code wont work	1.0
		1.)	
		Incremental development	
		2.	
		Agile	
293	What is the most common approach for the development of application system now?	3.	1.0
		Waterfall	
		4.	
		None of the options	
		1.)	
		RAW	
		2.	
294	data type can store unstructured data	CHAR	1.0
234	data type can store districtmed data	3.	1.0
		NUMERIC	
		4.	
		VARCHAR	
		1.	
		infrastructure mode	
		2.	
		ad-hoc mode	
295	A wireless network interface controller can work in	3.	3.0
		both infrastructure and ad-hoc mode	
		4.	
		none	
		1.)	
		The omitted value takes "undefined"	
		2.	
296	Consider the code snippet given below	This results in an error	1.0
	<pre>var count = [1,,3]; What is the observation made?</pre>	3.	1.0
	made 10 cite 03001 validi made.	This results in an exception	
		4.	
		Can't predict	
		I.	
		$x = \sim (-y); w = (x = (y = z));$ q = a?b: (c?d: (e?f:g));	
		2.	
	Consider the following javascript statements	x = a?b:(c?d:(e?f:g)); q = ~(-y); w = (x = (y = z));	
297	$x = \sim -y;$ w = x = y = z;	3.	4.0
	<pre>q = a?b:c?d:e?f:g; The above code snippet is equivalent to:</pre>	$x = (x = (y = z)); w = \sim (-y);$	
	inc above code shipper is equivalent to.	q = a?b:(c?d:(e?f:g));	
		4.	
		$x = \sim (-y); w = (x = (y = z));$ q = (c?d:(e?f:g));	

S.NO.	Questions	Choices	Answers
		1.	
		text==pattern	
		2.	
		text.equals(pattern)	
298	var text = "testing: 1, 2, 3"; // Sample text var pattern = $/\d+/g$ // Matches all instances of one or more digits	3.	4.0
	In order to check if the pattern matches with the string "text", the statement is	text.test(pattern)	
		4.	
		pattern.test(text)	
		1.	
		Partial Key	
		2.	
		Candidate Key	
299		3.	2.0
ı		Surrogate Key	
ı		4.	
ı		Unique Key	
300	is a built - in JavaScript function which can be used to execute another function after a given time interval.	1.Timeout() 2.TimeInterval() 3.setTimeout() 4.All of the above	3.0
	given time interval.	1.	
		alter	
		2.	
		update	
301	command can be used to modify a column in a table	3.	1.0
		set	
		4.	
		create	
		1.)	
		Constraints	
		2.	
		Stored Procedure	
302	is preferred method for enforcing data integrity	3.	1.0
		Triggers	
		4. Cursors	
		1.	
		very low	
		2.	
303	66.6% risk is considered as	low	4.0
303	00.0 % fisk is considered as	3.	4.0
		moderate	
		4.	
		high	
304	8086 microprocessor is interfaced to 8253 a programmable interval timer. The maximum number	1.216 2.28 3.210 4.220	1.0
	by which the clock frequency on one of the timers is divided by		1

S.NO.	Questions	Choices	Answers
		1.	
		User Interfaces	
		2.	
		Web Services	
305	Which activity most easily lends itself to incremental design?	3.	3.0
		Enterprise resource planning	
		4.	
		Embedded Sofftware	
		1.Gantt Chart 2.	
		Structure Chart	
		3.	
306	Graphical representation of the project, showing each task and activity as horizontal bar whose length is proportion to time taken for a completion of that activity is called	Pert Chart	1.0
	tengui is proportion to time taken for a completion of that activity is cancel	4.	
		Time Line	
		1.	
		Software suffers from exposure to hostile environments	
		2.	
		Defects are more likely to arise after software has been used often	
3017.		3.	3.0
		Multiple change requests introduce errors in component	
		interactions	
		4.	
		Software spare parts become harder to order	
		1.Estimation and planning 2.	
		Analysis and design	
		3.	
3018	The 40-20-40 rule suggests that the least amount of development effort can be spent on	Coding	3.0
		4.	
		Testing	
		1.	
		A reasonable approach when requirements are well defined	
		2.	
		A Useful approach when a customer cannot define requirements	
3019.	The prototyping model of software development is	clearly	2.0
3012	The prototyping model of software development is	3.	2.0
		The best approach to use projects with larger development teams	
		4.	
		A risky model that rarely produces a meaningful product	
		1.	
		component analysis	
		2.	
		requirements modification	
310	In reuse-oriented software engineering the last stage is	3.	3.0
		system validation	
		4.	
		system design	
		13	

S.NO.	Questions	Choices	Answers
		1.	
		Feasibility study	
		2.	
311	Which of the following is not a part/product of requirements engineering?	Requirements validation	4.0
		3.	
		System models	
		4.	
		Architectural design	
		1.	
		you decide what software you will use to program 2.	
		you develop a prototype and show it to the client	
3 112 s	oftware Specification is the process where		3.0
		You find out what services are required from the system	
		4.	
		none	
		1.	
		everything is coded at once, so the customer receives the full	
		product	
		2.	
		replacement systems are easily developed with full features that clients expected from the old system	
3 113 V	That is an advantage of incremental delivery?	3.	3.0
		Customers can use prototypes and gain experience that informs	
		their requirements for later systems	
		4.	
		none of the mentioned	
		1.waterfall model 2.	
		Incremental model	
2 1:4		3.	4.0
3 IH.	nns is a software development process model	Boehm's Spiral model	4.0
		4.	
		all	
		1.	
		architectural design	
		2.	
31 ¹ 5.	What is the type of software design that defines interfaces between system	Interface Design	2.0
	components?	3.	
		component Design	
		4.	
		database design	<u> </u>
		1.	
		454	
	The size of the data count register of a DMA controller is 16 bits. The processor needs to transfer a		
	file of 29,154 kilobytes from disk to main memory. The memory is byte addressable. The minimum number of times the DMA controller needs to get the control of the system bus from the	455	
316	minimum number of times the DMA controller needs to get the control of the system bus from the processor to transfer the file from the disk to main memory is	3.	3.0
		456	
		4.	
		4. 457	
		737	<u> </u>
ı			

.NO.	Questions	Choices	Answer
	-	1.	
		D type flip-flop	
		2.	
	For which of the following flip-flop the output clearly defined for all combinations of two inputs?	R S type flip-flop	
317	rot which of the following hip-hop the output clearly defined for an combinations of two inputs:		3.0
		3.	
		J K flip-flop	
		4.	
		T flip-flop	
		1.	
		Next State	
		2.	
		Present State	
	In excitation table of D flipflop next state is equal to		
318		3.	4.0
		Previous State	
		4.	
		D State	
_		1.	-
		33	
	A computer system implements 8 kilobyte pages and a +32-bit physical address space. Each page	2.	
	table entry contains a valid bit, a dirty bit, three permission bits, and the translation. If the	35	1.0
319	maximum size of the page table of a process is 24 megabytes, the length of the virtual address supported by the system is bits.	3.	4.0
		34	
		4	
		36	
		1.	
		Mapping	
		IMapping	
		2.	
320	A graphical display of the fundamental products in a truth-table is known as	Graphing	4.0
		3.	
		T-map	
		4.	
		Karnaugh-Map	
		1.	
		30	
		2.	
	A processor can support a maximum memory of 4 GB, where the memory is word-addressable (a	31	
321	word consists of two bytes). The size of the address bus of the processor is at leastbits	3.	2.0
		32	
		4.	
		33	
		1	1

S.NO.	Questions	Choices	Answers
		1.	
		Indirect addressing	
		2.	
322	A Stack-organized Computer uses instruction of	Two-addressing	3.0
		3.	
		Zero addressing	
		4.	
		Index addressing	
		1.	
		19	
		2.	
	A 4-way set-associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. The number of	20	
323	bits for the TAG field is		2.0
		21	
		4.	
		22	
		1.	
		Encoder	
		2.	
324	A circuit that converts n inputs to 2 ⁿ outputs is called	Decoder	1.0
		3.	
		Comparator	
		4.	
		Carry Look Ahead	
		1.	
		849	
		2.	
	A Program Counter contains a number 825 and address part of the instruction contains the number 24. The effective address in the relative address mode, when an instruction is read from the	<u>850</u>	
	memory is		2.0
		3.	
		801	
		4.	
		802	
		1.	
		It makes it seem like there's more memory in the computer	
		2.	
		It reduces the number of memory copies required	
	Buffering is useful because		
326	-	3.	4.0
		It allows all device drivers to use the same code	
		4.	
		It allows devices and thee CPU to operate asynchronously	

s.no.	Questions	Choices	Answers
		1.	
	Consider a 6-stage instruction pipeline, where all stages are perfectly balanced. Assume that there	1	
		2.	
	is no cycle-time overhead of pipelining. When an application is executing on this 6-stage pipeline, the speedup achieved with respect to non-pipelined execution if 25% of the instructions incur 2	2	
	pipeline stall cycles is	3.	3.0
		4	
		4.5	
		1.	
		Relation r(R) is in the outer loop.	
		Relation (Re) is in the outer toop.	
	Consider a join (relation algebra) between relations r(R) and s(S) using the nested loop method. There are 3 buffers each of size equal to disk block size, out of which one buffer is reserved for	2.	
	intermediate results. Assuming size(r(R))	Relation s(S) is in the outer loop.	1.0
		3.	
		Join selection factor between r(R) and s(S) is more than 0.5	
		4.	
		Join selection factor between r(R) and s(S) is less than 0.5.	
		1.	-
		5535	
		5555	
	Consider a main memory system that consists of 8 memory modules attached to the system bus, which is one word wide. When a write request is made, the bus is occupied for 100 nanoseconds		
	(ns) by the data, address, and control signals. During the same 100 ns, and for 500 ns thereafter, the addressed memory module executes one cycle accepting and storing the data. The (internal)	2.	
329	operation of different memory modules may overlap in time, but only one request can be on the bus	65335	4.0
	at any time. The maximum number of stores (of one word each) that can be initiated in 1 millisecond is	3.	
		53892	
		4.	
		10000	
		1.	
		1.5	
	Consider two processors P1 and P2 executing the same instruction set. Assume that under identical	2.	
	conditions, for the same input, a program running on P2 takes 25% less time but incurs 20% more CPI (clock cycles per instruction) as compared to the program running on P1 If the clock	1.6	2.0
	frequency of P1 is 1GHz, then the clock frequency of P2 (in GHz) is	3.	2.0
		1.7	
		4.	
		1.8	
		1.	}
		relative address mode.	
		iciative dutiess moue.	
	Content of the program counter is added to the address part of the instruction in order to obtain the	2.	
331	effective address is called	index addressing mode.	1.0
		3.	
		register mode	
		4.	
		implied mode	

S.NO.	Questions	Choices	Answers	
5(0.	Questions	1.	rinswers	
	How many address bits are needed to select all memory locations in the $16K \times 1$ RAM?	0		
		8		
		2.		
		10		
332		3.	3.0	
		14		
		4.		
		16		
		1.		
		Width of tag comparator		
		2.		
	If the associativity of a processor cache is doubled while keeping the capacity and block size	Width of set index decoder		
333	unchanged, which one of the following is guaranteed to be NOT affected?		4.0	
		3.		
		Width of way selection multiplexer		
		4.		
		Width of processor to main memory data bus		
		1.		
		11 bits		
		2.		
	If the main memory is of 8K bytes and the cache memory is of 2K words. It uses associative	21 bits		
334	mapping. Then each word of cache memory shall be		3.0	
		3.		
		16 bits		
		4.		
		20 bits		
		1		
		1.		
		interrupt of lower priority		
		2.		
	If two interrupts, one of higher priority and other of lower priority occur simultaneously, then the	interrupt of higher priority		
335	service provided is for	3.	2.0	
		both the interrupts		
		4.		
		none of the mentioned		
		1.]	
		binary sequence		
	Mintarms are arranged in man in a converge of	2.		
336	Minterms are arranged in map in a sequence of	gray code	2.0	
		3.		
		binary variables		
		4.		
		BCD code		
		<u>I</u>		

S.NO.	Questions	Choices	Answers
		1.	
		As an alternative to register allocation at compile time	
		2.	
337	Register renaming is done is pipelined processors	For efficient access to function parameters and local variables	3.0
331		3.	3.0
		To handle certain kinds of hazards	
		4.	
		As part of address translation	
		1.	
		X + Y + Z	
		2.	
		XY + YZ	
338	Simplified form of the boolean expression $(X + Y + XY)(X + Z)$ is		3.0
338		3.	3.0
ı		X + YZ	
		4.	
		XZ + Y	
		1.	
	The 16-bit 2's complement representation of an integer is 1111 1111 1111 0101, its decimal representation is	1	
		2.	
		2	
339		3.	4.0
		3	
		4.	
		-11	
		1.	
		Absolute	
		2.	
	The addressing mode used in an instruction of the form ADD R1, R2 is	Indirect	
340		3.	3.0
		Index	
		4.	
		Register	
		1	<u> </u>
		1.	
		10 address, 16 data lines	
		2.	
	The capacity of a memory unit is defined by the number of words multiplied by the number of	11 address, 8 data lines	
341	bits/word. How many separate address and data lines are needed for a memory of 4 K \times 16?	3.	4.0
		12 address, 12 data lines	
		4.	
		12 address, 16 data lines	

S.NO.	Questions	Choices	Answers	
	-	1.		
		read by host to get input		
		2.		
		read by controller to get input		
342	The data-in register of I/O port is	3.	1.0	
		written by host to send output		
		4.		
		written by host to start a command		
		1.		
		Flash memory		
		2.		
	The Firmware are stored in read-only memory or chips.	Dynamic random access memory		
343		3.	3.0	
		EEPROM		
		4.		
		Random-access memory		
		1.		
		hit ratio		
		2.		
344		miss ratio	1.0	
		3.		
		average ratio		
		4.		
		ratio		
		1.		
		-256		
		2.		
345	The smallest integer than can be represented by an 8-bit number in 2?s complement form is	<mark>-128</mark>	2.0	
		3.		
		-127		
		4.		
		1		
		1.		
		JK flip flop needs a clock pulse		
		2.		
		There is a feedback in JK flip-flop		
346	The main difference between JK and RS flip-flop is that		3.0	
340		<u>5.</u>		
		JK flip-flop accepts both inputs as 1		
		4.		
		JK flip-flop is acronym of Junction cathode multi-vibrator		

S.NO.	Questions	Choices	Answers
		1.	
		Clock rate	
		2.	
	The rate at which a computer clock deviates from a perfect reference clock is called as	Clock speed	
347		3.	3.0
		clock drift rate	
		4.	
		Transmission Bandwidth	
		1.	
		21	
	The state of the s	2.22	
348	The width of the physical address on a machine is 40 bits. The width of the tag field in a 512 KB 8-way set associative cache is bits		4.0
5.0		3.	
		23	
		4 .	
		24)	
		1.	
		3	
		2.	
		5	
349	To build a mod-19 counter the number of flip-flops required is		2.0
		3.	
		7	
		4.	
		9	
		1.	
		<mark>69282</mark>	
		2.	
		69272	
350	Using 10's complement 72532- 3250 is	3.	1.0
		69252	
		4.	
		69232	
		1.	
		How they are initiated	
		2.	
	What is the main difference between traps and interrupts?	The kind of code that's used to handle them	
351			1.0
		3.	
		Whether or not the scheduler is called	
		4.	
		How the operating system returns from them	

S.NO.	Questions	Choices	Answers
		1.	
		Memory Read cycle	
352		2.	
	When an instruction is read from the memory, it is called	Fetch cycle 3.	3.0
		Instruction cycle	
		4.	
		Memory write cycle	
		1.	
		move R1, R2	
		2.	
	Which amongst the following refers to Absolute addressing mode	move LOC1, LOC2	
353			1.0
		3.	
		move LOC1, R2	
		4.	
		move LOC2, R1	
		1.	
		RAID level 1	
		2.	
354	which level of retail feles to disk milloring with breek supplies.	RAID level 2	1.0
331		3.	
		RAID level 0	
		4.	
		RAID level 3	
		1. 1 ⊕ 0 = 1	
		1 4 0 - 1	
		2.	
		1 ⊕ 1 ⊕ 0 = 1	
355	Which of the following logic expression is incorrect?		2.0
333		3.	2.0
		1 1 1 1 1 1 1 1	
		4.	
		1 ⊕ 1 = 0	
		1.	
		FIFO	
	Which of the following paging algorithms is most likely to be used in a virtual memory system?	2.	
356	5 6 a virtual memory system:	Second chance	3.0
		3.	
		Least Recently Used	
		4.	
		Least Frequently Used	

s.no.	Questions	Choices	Answers
	-	1.	
		expansion bus	
		2.	
357	which one of the following connects high-speed high-bandwidth device to memory subsystem and	DCI l	1.0
551		3.	1.0
		SCSI bus	
		4.	
		none of the mentioned	
		1.	
		Distributed parity	
		2.	
		No Parity	
358	Which one of these is characteristic of RAID 5?		1.0
		3.	
		All parity in a single disk	
		4.	
		Double Parity	
		1.	
		RAID 1	
	Which two RAID types use parity for data protection?	2.	
359		RAID 4	4.0
		3. 	
		RAID 1+0	
		4.	
		RAID 5	
		1.	
		-10111	
		2.	
		-10011	
360	X=1010100 and Y=1000011 using 1's complement Y-X is		3.0
200		3.	5.0
		-10001	
		4.	
		-11001	
		1.	
		Zero	
		2.	
	The minimum number of NAND gates required to implement the Boolean function. A + AB' + AB'C is equal to	1	
361	• " "	3.	1.0
		4	
		4.	
		7	
			<u> </u>

S.NO.	Questions	Choices	Answers
		1.	
		ab + (cd)' + cd + bd'	
		2.	
		a(b+c)+cd	
	Which of the following boolean expressions is not logically equivalent to all of the rest?	3.	
362	and the control of th	ab + ac + (cd)'	3.0
		4.	
		bd' + c'd' + ab + cd	
		1.	
		Encoder	
		2.	
		Decoder	
363	Which of the following unit will choose to transform decimal number to binary code?	3.	1.0
		Multiplexer	
		4.	
		Counter	
		1. Width of tag comparator	
	If the associativity of a processor cache is doubled while keeping the capacity and block size unchanged, which one of the following is guaranteed to be NOT affected?	2. Width of set index decoder	4.0
364	unchanged, which one of the following is guaranteed to be 1901 affected:	3.Width of way selection multiplexer	
		4. Width of processor to main memory data bus	
		1.	
		Hash function	
		2.	
		Mapping function	
365	The correspondence between the main memory blocks and those in the cache is given by	3.	2.0
		Locale function	
		4.	
		Assign function	
		1.	
		<mark>33</mark>	
	The stage delays in a 4-stage pipeline are 800, 500, 400 and 300 picoseconds. The first stage (with	2.	
366	delay 800 picoseconds) is replaced with a functionally equivalent design involving two stages with respective delays 600 and 350 picoseconds. The throughput increase of the pipeline is	34	1.0
300	percent.	3.	1.0
		35	
		4.	
		32	
		1.	
		driver	
		2.	
	What is the software that runs a computer, including scheduling tasks, managing storage, and	application suitex	
367	handling communication with peripherals?	3.	3.0
		operating system	
		4.	
		bluetooth technology	

S.NO.	Questions	Choices	Answers
		1.2n	
		2.	
	For an undirected graph with n vertices and e edges, the sum of the degree of each vertex isequal	(2n-1)/2 3.2e	3.0
	to	4.	
		pow(e,2)/2 1.	
		higher-age	
		2.	
		increase-age	
369	Which attribute is used to extend the lifetime of a cookie?	3.	3.0
		max-age	
		4.	
		lifetime	
		1.	
		Internal Style	
		2.	
370		Inline Style	2.0
370	<h2 style="color:blue">I am Blue</h2> is way of styling HTML elements	3.	2.0
		External Style	
		4.	
		Default	
		1.	
		Web 1.0	
		2.	
		Web 2.0	
371	is referred to as Static Web	3.	1.0
		Web 3.0	
		4.	
		Web 4.0	
		1.	
		10, 8, 7, 3, 2, 1, 5	
		2.	1.0
		10, 8, 7, 2, 3, 1, 5	
372	A priority queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order traversal of the heap is: 10, 8, 5, 3, 2. Two new elements 1 and 7 are inserted into the heap in that	3.	
	order. The level-order traversal of the heap after the insertion of the elements is:	10, 8, 7, 1, 2, 3, 5	
		4.	
		10, 8, 7, 5, 3, 2, 1	
		1.	
		full binary tree	
		2.	
373	A binary tree in which if all its levels except possibly the last, have the maximum number of nodes and all the nodes at the last level appear as far left as possible, is known as	AVL tree	1.0
		3.	
		threaded tree 4.	
		complete binary tree	

S.NO.	Questions	Choices	Answers
		1.	
		34	
374		2.	
		99	4.0
3/4	A binary tree T has 20 leaves. The number of nodes in T having two children is	3.	1.0
		7	
		4.	
		19	
		1.	
		3	
	A process executes the code	2.	
	A process executes the code fork (); fork ();	4	2.0
	fork ();	3.	3.0
	The total number of child processes created is		
		4.	
		8	
		1.	
		both as a server and a client	
		2. As Client always	
376	A Search engine can serve as	As Chent always	1.0
		3.	
		As Server always	
		4.	
		Neither client nor server	
		I.	
		Generalization	
		2.	
		Association	
377	An object of class A receives a message with an argument that is an instance of class B. Identify the type of relationship between class A and Class B:	3.	1.0
		Aggregation	
		4.	
		Realization	
		1.	
		505	
		2.	
378	Consider an undirected graph G where self-loops are not allowed. The vertex set of G is $\{(i, j): 1 = i = 12, 1 = j = 12\}$. There is an edge between (a, b) and (c, d) if $ a - c = 1$ and $ b - d = 1$. The	506	2.0
3/8	$i = 12$, $1 = j = 12$ }. There is an edge between (a, b) and (c, d) if $ a - c = 1$ and $ b - d = 1$. The number of edges in this graph is	3.	2.0
		507	
		4.	
		508	
		1.	
		1/8 2.	
		1	
319	Consider an undirected random graph of eight vertices. The probability that there is an edge between a pair of vertices is ½. What is the expected number of unordered cycles of length	3.	3.0
	between a pair of vertices is ½. What is the expected number of unordered cycles of length three?	7	
		4.	
		8	
		L	
			I

S.NO.	Questions	Choices	Answers
	-	1.	
	Consider the C function given below. int f(int j)	The function returns 0 for all values of j.	
	{	2.	
	static int $i = 50$; int k ;	The function prints the string something for all values of j.	
380	if(i=j)		4.0
	printf("something");	3.	4.0
	k = f(i); return 0;	The function returns 0 when $j = 50$.	
	}		
	else return 0; }	4.	
	Which one of the following is TRUE?	The function will exhaust the runtime stack or run into an infinite loop when $j = 50$.	
		1.	
		ABCD EFGH	
	Consider the following function written the C programming language. void foo (char * a) {	2.	
	if (* a & & * a ! =' '){	ABCD	
381	putchar (*a);		1.0
) } }	3.	
	} The output of the above function on input 'ABCD EFGH' is	HGFE DCBA	
		4.	
		DCBA	
		+-167*2?5-34*	
		T-107 · 213-34 ·	
	Consider the following New-order strategy for traversing a binary tree:	2.	
	1)Visit the root; 2)Visit the right subtree using New-order;	+ 1 * 6 7 ? 2 - 5 * 3 4	3.0
	3)Visit the left subtree using New-order;	3.	3.0
	The New-order traversal of the expression tree corresponding to the reverse polish expression 3 4 * $5 - 2 ? 6 7 * 1 + -$ is given by:	-+1*76?2-5*43	
		4.	
		. 1 7 6 * + 2 5 4 3 * - ? -	
		1.	
ı	Consider the following program:	2	
	int f(int *p, int n)		
	$ \begin{cases} \text{if } (n \leq 1) \text{ return } 0; \end{cases} $	2.	
383	else return max (f (p+1, n-1),p[0]-p[1]);	1	3.0
	int main()	3.	3.0
	{ int a[] = {3,5,2,6,4};	3	
	printf("%d", f(a,5));	4.	
	The value printed by this program is	4	
		1.	
		15	
	Consider the following recursive C function.	2	
	Void get (int n) {if (n<1) return;	25	
384	get (n-1) get (n-3);	25	2.0
	printf ("%d",n);	3.	
	If $get(6)$ function is being called in main () then how many times will the $get()$ function be invoked before returning to the main ()?	43	
		4.	
		24	

S.NO.	Questions	Choices	Answers
		1.	
	Consider the function func shown below:	7	
	int func(int num) {	2.	
	int count = 0; while (num) {	8	
	count++; num>>= 1;	3.	3.0
	} return (count);	9	
	}	4.	
	The value returned by func(435)is	0	
		1.	
		80 30 62 114 77 9 99 L	
		2.	
386	For the array (77,62,114,80,9,30,99), write the order of the elements after two passes using the	114 30 62 77 9 99 3.	2.0
	Radix sort	9 114 30 62 77 80 99	
		4.	
		9 30 62 77 80 99 114	
		1.	
		list>	
		2.	
			
387	How can you make a list that lists the items with numbers?	3.	2.0
		 <dl></dl>	
		4.	
			
		1.	
		using System.out.println 2.	
		using Document.Write("Hello World")	
388	Harry do you write "Hallo World" in DHD9	3.	4.0
	How do you write "Hello World" in PHP?	"Hello World"	
		4.	
		using echo("Hello World")	
		1.	
		UDP	
		2.	
		TCP	2.0
389	HTTP is implemented over	3.	2.0
		SMTP	
		4.	
		POP	
		1.	
		isolated 2.	
390	If every node u in G adjacent to every other node v in G, A graph is said to be	complete 3.	2.0
		finite	
		4.	
		strongly connected	

391		1.	
391		A tree has no bridges 2.	
	In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statements is true?	A bridge cannot be part of a simple cycle 3.	4.0
		Every edge of a clique with size 3 is a bridge (A clique is any compete sub graph of a graph) 4.	
		A graph with bridges cannot have a cycle	
		1. GET	
		2.	
		POST	
392	In HTTP, which method gets the resource as specified in the URI	3.	3.0
		PUT	
		4.	
		TRACE	
		1. Providing the library for the Java program	
		2.	
	Java package is a grouping mechanism with the purpose of	Controlling the visibility of the classes, interfaces and methods	
393	vava package is a grouping incenanism with the purpose of	3.	2.0
		Replacing header file used in C/C++	
		need in the control of the control o	
		4.	
		An application framework 1.	
		full: (REAR+1) mod n==FRONT empty: REAR ==FRONT 2.	
		(REAR) mod n==FRONT	
394	Assume that the insertion and deletion operations are carried out using REAR and FRONT as	empty: REAR ==FRONT	1.0
	array index variables, respectively. Initially, REAR = FRONT = 0 . The conditions to detect queue full and queue empty are	3. (REAR+1) mod n==Rear	
		empty: REAR ==FRONT 4.	
		full: (FRONT+1) mod n==FRONT	
		empty: REAR ==FRONT 1.	1
	The following function computes the maximum value contained in an integer array	a != n	
	p[] of size n (n >= 1). int max(int *p, int n) {	2.	
205	int a=0, b=n-1; while () {	b != 0	4.0
I	if $(p[a] \le p[b]) \{ a = a+1; \}$ else $\{ b = b-1; \}$	3.	4.0
	} return p[a];	b > (a+1)	
	} The missing loop condition is	4. b!=a	
		1.	-
			
		2.	
		<ins></ins>	
396	The following HTML element helps making animated text	3.	4.0
		<mark></mark>	
		4.	1
		<marquee></marquee>	

S.NO.	Questions	Choices	Answers
		1.	
397		63	
		2.	
	The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary	<mark>64</mark>	2.0
	The number of ways in which the numbers 1, 2, 3, 4, 5, 6, 7 can be inserted in an empty binary search tree, such that the resulting tree has height 6, is	3.	2.0
		65	
		4.	
		66	
		1.	
		To cache page translation information	
		2.	
398	The purpose of a TLB is	To cache frequently used data 3.	2.0
	The purpose of a TLD is	To hold register values while a process is waiting to be run	
		4.	
		To hold the start and length of the page table	
		1.	
		 br>	
		2.	
200		<h>></h>	2.0
399	The following HTML element is used to display horizontal line	3.	3.0
		<hr/>	
		4.	
		<h2></h2>	
		I.	
		static	
		2.	
	To prevent any method from overriding, the method has to declared as,	const	
400	To prevent any memora from overfiding, the memora has to declared as,	Const	3.0
		3.	
		final 4.	
		extends	
		1.	
		multiprogramming	
		2.	2.0
		multiuser interfacing	
401	Use of allows for some processes to be waiting on I/O while another process executes.	3.	1.0
		Random scheduling	
		4.	
		Variable cpu cycles	
		1.	
		ServletRequest and ServletResponse	
		2.	
402		HttpServletRequest and HttpServletResponse	2.0
102	What are the parameters of the service method?	3.	[
		HttRequest and HttpResponse	
		4.	
		Request and Response	

S.NO.	Questions	Choices	Answei
		1.	
		Java Scripting Pages	
		2.	
402		Java Service Pages	
403	What does JSP stand for?	3.	3.0
		Java Server Pages	
		4.	
		Java Script Program	
		1.)	
		5, undefined, undefined	
		2.	
	What does the following bit of JavaScript print out?	5,3,undefined	
404	var a = [1,3,4,5];	2	1.0
	console.log([a[4], a[1], a[5]]);	3.	
		5,0,undefined	
		4.	
		5,null,undefined	
		1.	
		Used to separate cell walls from their contents	
		2.	
10.5		Used to set space between cells	
405	What is cell padding?	3.	2.0
		Used to provide width to a cell	
		osed to provide width to a cen	
		4.	
		Used to merge two cells	
		1.)	
		<input type="text"/>	
		2.	
106		<textfield></textfield>	1.0
406	What is the correct HTML for making a text input field?	3.	1.0
		<input type="textfield"/>	
		4.	
		<textinput type="text"></textinput>	
		1.	
		I = 0	
	What will be printed as the output of the following program? public class testiner	2.	
	. { public static void main(String args[])	I = 1	
407	{	3.	2.0
	$\begin{aligned} &\text{int } i = 0; \\ &i = i + + + i; \end{aligned}$	I = 2	
	System.out.println(" I = " +i);	4.	
	}	I = 3	

S.NO.	Questions	Choices	Answers
		1.	
		getYear()	
		2.	
408		getYYYY()	1.0
	Which method is used to get the year of a date object in YYYY format in Javascript.	3.	
		getFullYear()	
		4.	
		get4Year()	
		1.	
		Text	
		2.	
409		Password	4.0
105	Which of the following input controls that cannot be placed using <input/> tag?	3.	1.0
		Submit	
		4.	
		Textarea Textarea	
		1.	
		body:color=black	
		2.	
		{body;color:black}	
410	Which is the correct CSS syntax?	()	4.0
	When is the contest cast of man.	3.	
		{body:color=black(body}	
		4.	
		body {color: black}	
		1.	
		n + 9378	
		2.	
411	Which of the following asymptotic notation is the worst among all?	2^ n-1 3.	2.0
		2^ n - 1	
		4.	
		2n ? 1 1.	_
		(i) and (ii) only	
	Which of the following is/are example(s) of stateful application layer protocols?	2.	
	(i)HTTP	(ii) and (iii) only 3.	3.0
	(ii)FTP (iii)TCP	(ii) and (iv) only	2.0
	(iv)POP3	4.	
		(iv) only	
		1.	
		valign	
		2.	
		bgcolor	
413	Which of these is not a valid attribute of	3.	4.0
		align	
		4.	
		rowspan	
			ļ

	Questions	Choices	Answers
		1.	
		GET 2.	
		HEAD	
	Which of these methods has no restrictions on content size when a form is submitted.		
414		3.	3.0
		POST	
		4.	
		PUT	
		1.	
		Google	
		2.	
	Which one is the first search engine in internet?	Archie	
415	when one is the instruction of agric in instruction	3.	2.0
		AltaVista	
		4.	
		WAIS	
		1.	
		45 2.	
416		67	
	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree (BST) in the	3.	2.0
410	sequence shown, the element in the lowest level is	34	2.0
		4.	
		78	
		1.	
		Browser enriched mail client	
		2.	
		HTML-enabled mail client	
417	A mailer that transforms a message body of an e-mail into a web page is called a	3.	2.0
	A maner that transforms a message body of an e-man into a web page is cance a	Rich Text mail client	
		4.	
		client server mail client	
		1.	
		a prompt	
		2.	
418	An incorrectly typed command will cause the operating system to display	an error message	2.0
	An incorrectly typed command will cause the operating system to display	3.	
		a question mark	
		4.	
		causes exception	
		1.	
		<tdeft></tdeft>	
		2.	
419	Chasse the correct HTML to left alies the content incide a table will		4.0
-	Choose the correct HTML to left-align the content inside a table cell	3.	
		4.	

S.NO.	Questions	Choices	Answers
		1.	
	Consider the below code fragment: iff(fork k() = = 0)	u=x+10 and $v=y$	
	{ a= a+5; printf("%d, %d \n", a, &a); }	2.	
420	felse	u=x+10 and $v!=y$	3.0
	a= a ? 5; printf("%d %d \n", 0, &a);	3.	
	Let u, v be the values printed by parent process and x, y be the values printed by child process. Which one of the following is true?	u + 10= x and v = y 4.	
		u + 10= x and v != y 1.	
	Consider the following C code segment: int a, b, c = 0; void prtFun(void);	31 41 42 2.	
	main() { static int a = 1; /* Line 1 */ prtFun(); a + = 1;	42 61	
421	prtFun() printf("\n %d %d", a, b); }	61 3.	4.0
	void prtFun(void) { static int a=2; /* Line 2 */ int b=1; a+=++b; printf("n %d %d", a, b);	42 62 20 4.	
	What output will be generated by the given code segment if: Line 1 is replaced by auto int a = 1; Line 2 is replaced by register int a = 2;	42 42 20	
	Consider the following C program. #include <stdio.h> int f1 (void); int f2 (void); int x = 10;</stdio.h>	1. 434 2.	
l_	int main () { int x=1;	230	2.0
	x+=f1()+f2()+f3()+f2(); printf("%d", x); return 0;	3. 43	
	} int f1(){int x=25; x++; return x;} int f2(){static int x =50; x++; return x;} int f3(){x*=10; return x}; The output of the program is	4. 432	
	ine output of the program is	1.	
	Consider the following program: int f(int *p, int n)	1	
	int (tint *p, int n) { if (n <= 1) return 0;	2.	
423	ii (ii ~ 1) return 0; else return max (f (p+1, n-1),p[0]-p[1]);	2	3.0
	} int main() f	3.	3.0
	{ int a[] = {3,5,2,6,4}; printf("%d", f(a,5));	3 4	
	The value printed by this program is	4	

S.NO.	Questions	Choices	Answers
	Find the output of the following program?		
	#include <iostream.h></iostream.h>		
	using namespace std;	1.	
	void myFunction(int& x, int* y, int* z) { static int temp=1;	3 3 3 2	
	temp += (temp + temp) - 1; x += *(y+++*z)+ temp - ++temp;	2.	
	*y=x;	3 2 3 3	
424	x=temp; *z= x;	3.	gar3
	cout< <x<*y<<*z<<temp; td="" }<=""><td>3 2 3 2</td><td></td></x<*y<<*z<<temp;>	3 2 3 2	
	int main() {	4.)	
		3 1 3 3	
	i=i++ - ++i;		
	myFunction(i, j, &i); return 0;		
	}		
		1.	
		save	
		2.	
425		dontresize	3.0
123	If you don't want the frame windows to be resizeable, simply add what to the lines?	3.	3.0
		noresize	
		4.	
		Delete 1.	
		BSD Unix	
		2.	
426	Contact with the Contact	Windows	1.0
	Sockets originate from	3.	
		Linux	
		4.	
		Mac	
		1.	
		10,20,15,23,25,35,42,39,30	
		2.	
		15,10,25,23,20,42,35,39,30	
427	The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Which one of the following is the postorder traversal sequence of the same tree?	3.	4.0
		15,20,10,23,25,42,35,39,30	
		4.	
		15,10,23,25,20,35,42,39,30	
		1.	
	What will be the output of the following C program? void count(int n){	3 1 2 2 1 3 4 4 4	
	static int d=1; printf("%d ", n);		
	print('%d ', n); printf("%d '', d); d++;	2.	
428	if(n>1) count(n-1);	3 1 2 1 1 1 2 2 2 3.	1.0
	printf("%d ", d);	3122134	
	void main() { count(3);		
	}	4.	
		3121112	

S.NO.	Questions	Choices	Answers
		1.	
		In the section	
		2.	
		In the section	
429	Where in an HTML document is the correct place to refer to an external style sheet?		head
		3.	
		At the end of the document	
		4.	
		At the top of the document	
		title,body,form and script	
		2.	
		title,meta tag,script and CSS	
430	Which of the following is included in the head section of HTML	3.	2.0
		title , meta tag,css and form	
		4.	
		title, body,script and CSS	
		1.	
421		CGI	
		2.	
		HTML	2.0
431	Which of these is Server side technology?	3.	3.0
		JavaScript	
		4.	
		CSS	
		1.	
		2.	
		<tdleft></tdleft>	4.0
432	Which of the following in HTML is used to left align the content inside a table cell?		4.0
		3.	
		4.	
		1.	
		A cookie is a piece of code that has the potential to compromise the security of an internet user	
		2.	
433	Which one of the following statements is NOT correct about HTTP cookies?	A cookie gains entry to the user's work area through an HTTP header	1.0
		3.	
		A cookie has an expiry date and time	
		4.	
		Cookies can be used to track the browsing pattern of a user at a particular site	
	Consider the following program:	1.	
	Consider the following program: int f(int *p, int n)	1	
	$\begin{cases} if (n \le 1) \text{ return } 0; \end{cases}$	2.	
131	else return max (f (p+1, n-1),p[0]-p[1]);	2	3.0
	int main() {	3.	
	int a[] = {3,5,2,6,4}; printf("%d", f(a,5));		
	The value printed by this program is	4.	
		4	

S.NO.	Questions	Choices	Answer
		1.	
		GET	
435		2.	
		HEAD	2.0
	Which of these methods has no restrictions on content size when a form is submitted.	3.	3.0
		POST	
		4.	
		PUT	
		I.	
		Stack	
		2.	
	datastructure used in pushdown automata.	array	
436		3.	1.0
		queue	
		4.	
		linked list	
	Consider the following:		+
	-	1.Inorder successor of the root 2.	
	temp=root->left;	Maximum element in the right subtree of root	
	while(temp->right!=NULL)	3.	
437	temp=temp->right;	Minimum element in the right subtree of root	4.0
	return temp;	4.	
		Inorder predecessor of the root	
		moraci producessor of the root	
	The above code snippet for a BST with the address of the root node in pointer 'root' returns	1	-
		1. Class attribute	
		Class attribute	
		2.	
438	is used to define a special CSS style for a group of HTML elements	name attribute	1.0
430		3.	1.0
		group attribute	
		4.	
		id attribute	
		1.	
		method attribute	
		2.	
		action attribute	
439	The attribute defines the action to be performed when the form is submitted	3.	
		onSubmit attribute	
		4.	
		onClick attribute	
		1.	1
		S1 is a serializable schedule	
		2.	
	Consider a schedule S1 given below; R1(A); W1(A); R2(B); R2(A); R1(B); W2(A+B); W1(B); where R1 and W1 are	A deadlock will occur if 2DL is used	
	read and write operations of transaction T1 and R2 and W2 are read and write operations of transaction T2.	3.	1.0
		S1 is a conflict serializable schedule	
	J J J	4.	
		<u>"</u>	1
		S1 is a view serializable schedule	

S.NO.	Questions	Choices	Answers
		1.	
		switching algebra	
		2.	
		arithmetic algebra	
	Boolean algebra is also called	aritimetre argeora	
441			1.0
		3.	
		linear algebra	
		4.	
		algebra	
		1.	
		generate code	
		2.	
		provide thorough testing	
442	Software prototyping helps to	3.	2.0
		explore possible software solutions	
		4.	
		collect initial software requirements	
		1.	
		Primary	
		2.	
		Validation	
443	Activities such as documentation and software configuration management are what	3.	4.0
	kind of process activities?		
		Design	
		4.	
		supporting	
		1.	
		quickest to complete	
		2.	
		highest-priority	
444	In incremental delivery the services are typically delivered first	3.	2.0
		cheapest	
		4.	
		most fun to code	
		1.)	
		degrade	
		2.	
		improve	
445	In incremental development system structure tends to as many new increments are added.	3.	1.0
		develop its own AI	
		4.	
		shrink	

attention of the developers to the clients 2. to marketing 3. of the clients to the developers 4. to the general public 1. Incremental development 4. development, validation, and evolution and represents them as separate process objecting and so on 447 chase such as requirements specification, software design, implementation, resting, and so on 448 what is a software process model? 448 what is a software process model? 3. he waterfall model 3. he waterfall model 4. bookm's spiral model 4. bookm's spiral model 4. a presentation put together in Powerpoint 4. A prototype of the final software product 4. a prototype of the final software product architectural design	3.0
446 3. Software specifications are intended to communicate the system needs 4. to the general public 1. Incremental development 2. The waterfall model 4. As requirements specification, software design, implementation, testing, and so on 447 448 What is a software process model? 448 What is a software process model? 448 A prototype of the final software product 1. Incremental development 2. The waterfall model 3. Reuse-oriented software engineering 4. Soehm's spiral model 4. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1. Incremental development 2. The waterfall model 3. A work flow model of the software's components 4. A prototype of the final software product 1. Incremental development 2. The waterfall model 3. A work flow model of the software's components 4. A prototype of the final software product 1. Incremental development 2. The waterfall model 3. A work flow model of the software process 4. A prototype of the final software product 4. A prototype of the final software product	
to marketing 3. of the clients to the developers 4. to the general public I. Incremental development 2. This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on 1. Reuse-oriented software engineering 4. Bookm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
448 That is a software process model? 488 What is a software process model? 488 What is a software process model? 498 What is a software process model? 498 What is a software process model? 498 What is a software process model? 499 Software process model? 499 Software process model? 490 Software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, teating, and so on 490 Software process model of the software engineering and process software engineering and process software engineering and process software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 490 Software process model? 50 Software process model? 51 Software process model? 52 Software process model? 53 Software process model? 54 Software process model? 55 Software process model? 67 Software process model? 68 Software process model? 68 Software process model? 69 Software process model? 60 Software process model? 60 Software process model? 60 Software process model? 60 Software process model? 61 Software process model? 61 Software process model? 61 Software process model? 62 Software process model? 63 Software process model? 64 Software process model? 65 Software process model? 66 Software process model? 67 Software process model? 68 Software process model? 68 Software process model? 69 Software process model? 70 Software process model? 71 Software process model? 72 Software process model? 73 Software process model? 74 Software process model? 75 Software process model? 76 Software process model? 77 Software process model? 78 Software pr	
This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on The waterfall model A. Boehm's spiral model I. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product I. I. Incremental development 2. The waterfall model 3. Reuse-oriented software engineering 4. Boehm's spiral model I. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product II. Incremental development 2. The waterfall model 3. Reuse-oriented software engineering 4. Boehm's spiral model I. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product	
4. to the general public 1. Incremental development 2. This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on 447 Phases such as requirements specification, software design, implementation, testing, and so on 448 What is a software process model? 448 What is a software process model? 448 What is a software process model? 54. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
to the general public 1. Incremental development 2. This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on 447 This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process 3. Reuse-oriented software engineering 4. Boehm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on 1. A seuse-oriented software engineering 4. Boohm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on Reuse-oriented software engineering 4. Boehm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on Reuse-oriented software engineering 4. Boehm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
This software process model takes the fundamental activities of specification, development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product	
development, validation, and evolution and represents them as separate process phases such as requirements specification, software design, implementation, testing, and so on Reuse-oriented software engineering 4. Boehm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product I.	
448 What is a software process model? 448 What is a software process model? 3. Reuse-oriented software engineering 4. Boehm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1. I. A prototype of the final software product 1. A prototype of the final software product 1. A prototype of the final software product	ا م
Reuse-oriented software engineering 4. Boehm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	2.0
Boehm's spiral model 1. A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
448 What is a software process model? What is a software process model? 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
A simplified representation of a software process 2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
2. A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
A presentation put together in Powerpoint 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
What is a software process model? 3. A work flow model of the software's components 4. A prototype of the final software product 1.	
A work flow model of the software's components 4. A prototype of the final software product 1.	1.0
4. A prototype of the final software product 1.	1.0
A prototype of the final software product 1.	
architectural design	
uronicecturu eesign	
2.	
interface Design What is a type of software design that designs system data structures to be used	4.0
what is a type of software design that designs system data structures to be used in a database? 3.	4.0
component Design	
4.	
Database design	
1.	
The Waterfall Method	
2.	
What is based on the idea of developing an initial implementation, exposing this	
450 to user comment and evolving it through several versions until an adequate system has been developed?	2.0
Reuse-oriented Software Engineering	
4.	
Implementation And Unit Testing	
1.	
Architectural design	
2.	
Database design	
451 What is NOT part of the design process 3.	4.0
Component design	
4.	
Validation testing	

	I. Requirements Definition	
	Requirements Definition	
		1
	2.	
	System and Software Design	
Which is not part of the waterfall method?	3.	4.0
	Implementation and Unit Testing	
	4.	
	System Validation	
		-
waterfall model	3.	3.0
	It is easier to get customer feedback on the development	
	It is easier to reuse existing components.	
	1.	
	Picture quality	
	2.	
	Production	
	3.	4.0
	Software speed	
	Change	
Given the following structure template, choose the correct syntax for accessing the 5th subject marks of the 3rd student:	1.	
struct stud	stud[2].marks[4]	
{	2	
int marks[6]·		
	stud[4].marks[2]	3.0
	3.	
is[10];	4.	
	s[4].marks[2]	
	I.	
	a float	
	2.	
	a double	
By default, any real number in C is treated as	3.	1.0
		-
	Plan test	
is the 1st step in the testing process	3.	2.0
	Release product	
	4.	
	Conduct tests	
	1	1
t t	adds to the costs of Software Development because it usually means that work that has been completed has to be redone Given the following structure template, choose the correct syntax for accessing the 5th subject marks of the 3rd student: struct stud { int marks[6]; char sname[20]; char rno[10]; !s[10]; By default, any real number in C is treated as is the 1st step in the testing process	System Validation To possible to gather some of the requirements up from: 1

S.NO.	Questions	Choices	Answers
158	A set of documents in which a given document can contain text, graphics video and audio clips as well as embedded references to other documents world wide web pages are called as	1. Hypermedia message 2. Hypertext document 3. Hypermedia Documents 4. Path rectangular grid of Pixels	3.0
459	A software requirements specification (SRS) document should avoid discussing which one of the following?	1. User interface issues 2. Non-functional requirements 3. Design specification 4.Interfaces with third party softwareKey	1.0
460	Consider a B+ tree in which the search Answer is 12 bytes long, block size is 1024 bytes,record pointer is 10 bytes long and block pointer is 8 bytes long. The maximum number of keys that can be accommodated in each non-leaf node of the tree is	1. 40 2. 50 3. 60 4. 70	2.0
461	Extreme Programming process model includes framework activities such as	1. analysis, design,coding,testing 2. planning,analysis,design,coding 3. planning,analysis,coding,testing 4. planning, design, coding, testing	4.0
462		1. enter and leave scope 2. inherit parent class 3. are constructed 4. are destroyed	1.0
463	Important capability needed for an agile software developer is	1. Trust 2. Competence 3. Decision-making 4. HardworkKey	3.0

S.NO.	Questions	Choices	Answers
		1.	
		Analysis	
		2.	
		Coding	
464	In which phase is Agile Modeling(AM) carried out	3.	3.0
		Planning	
	4. Te	4.	
		TestingKey	
		1.	
		Machine language	
		2.	
		Assembly language	
465	Mnemonic codes and variable names are used in	3.	2.0
		high level language	
		4.	
		Used nowhere	
		1.)	
		The linear sequential model	
		2.	
		Fountain model	
466	Waterfall model of software development is also termed as	3.	1.0
		Spiral model	
		4.	
		Concurrent development model	
		1.	
		Fire Dispatch Systems	
		2.	
467	Which of the following is not a Life-critical System?	Nuclear Reactors	4.0
		3.	
		Power Utilities	
		4.	
		Inventory Management	
		1.	
		A destructor has void return type.	
		2.	
		A destructor has integer return type.	
468	Which of the following statement is correct about destructors?	3.	3.0
		A destructor has no return type.	
		4.	
		A destructors return type is always same as that of main()	
		1.	
	#include <iostream.h></iostream.h>		
	using namespace std; int main()	20	
	{ int x=20;	2.	
	if(!(!x)&&x) cout< else	10	1.0
	{	3.	1.0
	x=10; cout< return 0;	1	
	}	4.	
	}	0	

S.NO.	Questions	Choices	Answers
	Find the output of the following program?		
	#include <iostream.h></iostream.h>	1.	
	using namespace std; typedef int * IntPtr; int main()	62010206	
	Int mann() { IntPtr A, B, C;		
	int D,E;	2.	
470	A = new int(3); B = new int(6);	72010107	2.0
	C = new int(9); D = 10; E = 20;	3.	
	*A = *B;	71020106	
	B = &E D = (*B)++;	4.	
	*C= (*A)++ * (*B); E= *C++ - *B;	10720107	
	cout<**A<**B<**C< return 0; }	10/2010/	
		1.	
		a->next=c	
		2.	
		b->next=c	
471	If a, b, c, are three nodes connected in sequence in a singly linked list, find the valid statement that may help to change this list to a circular linked list?	3.	4.0
		a->next=c	
		4.	
		c->next=b	
		1.	
		After the CPU time slice expires	
		2.	
472	Round Robin scheduling is the strategy of temporarily suspending a running process	to allow starving processes to run	1.0
4/2		3.	1.0
		when it requests IO	
		4. when OS wait	
		1.	
		if there are more than two processes competing for that resource	
		2.	
		if there are only two process completing for that resource	
473	With a single resource, deadlock occurs	3.	1.0
		if there is a single process competing for that resource	
		4.	
		it never occur in this case	
		1.	
		Distributed	
		2.	
47:		Network	2.6
474	OS pays more attention on the meeting of the time limits.	3.	3.0
		Real time	
ı		4. Dockton	
<u></u>		Desktop	

S.NO.	Questions	Choices	Answers
		1.	
		121	
	2.	2.	
	Consider a software program that is artificially seeded with 100 faults. While testing this program, 159 faults are detected, out of which 75 faults are from those artificially seeded faults. Assuming	175	
475	that both are and seeded faults are of same nature and have same distribution, the estimated number of undetected real fault is	3.	4.0
	number of undetected real fault is	432	
		4.	
		428	
		1.	
		s1 == s2	
	Given the code	2.	
	String $s1 = ? VIT?$;	s1 = s2	
	String s2 = ? VIT ?; String s3 = new String (s1);	3.	13.0
	Which of the following would equate to true?	s3 == s1	
		4.	
		s3=s1	
		1.	
		0	
		2.	
		3	
477	Suppose T is a binary tree with 14 nodes. What is the minimum possible depth of T?	3.	2.0
		4	
		4.	
		5	
		1.	
		<form></form>	
		2.	
		<title></td><td></td></tr><tr><td>478</td><td>The following HTML element contains meta data which is not displayed inside the document</td><td>3.</td><td>2.0</td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td><frame></td><td></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><STYLESHEET></td><td></td></tr><tr><td></td><td></td><td>2.</td><td></td></tr><tr><td></td><td></td><td><STYLE></td><td></td></tr><tr><td>479</td><td>To link your Web page to a style sheet, you must use the tag</td><td>3.</td><td>3.0</td></tr><tr><td></td><td></td><td>link></td><td></td></tr><tr><td></td><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td><web></td><td></td></tr><tr><td></td><td></td><td>1.</td><td></td></tr><tr><td></td><td></td><td><o ></td><td></td></tr><tr><td></td><td></td><td>2.</td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td rowspan=3>480 Which of these will create a shuffled list?</td><td>Which of these will create a shuffled list?</td><td>3.</td><td>1.0</td></tr><tr><td></td><td><dl></td><td></td></tr><tr><td></td><td>4.</td><td></td></tr><tr><td></td><td></td><td>Nested list</td><td></td></tr><tr><td></td><td></td><td><u> </u></td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td></tr></tbody></table></title>	

S.NO.	Questions	Choices	Answers
		Stream Control Transmission Protocol (SCTP).	
		2. Transport Layer Security (TSL).	
481	Which one of the following is a cryptographic protocol used to secure HTTP connection?	3. Explicit Congestion Notification (ECN).	2.0
		4. Resource Reservation Protocol.	
		1. Bubble Sort 2.	
482	Which of the following is example of in-place algorithm?	Merge Sort 3.	3.0
		Insertion Sort 4.	
		1. 79n²+43n	
		2. 65n ³ +34n	
483	Which of these is asymptotically bigger?	3. 6*2 ⁿ	2.0
		4.	
		5*2n	
484	bit in ICW1 indicates whether the 8259A is cascade mode or not messages are typically used for diagnostic or control purposes or generated in response to	1.LTIM=0 2.LTIM=1 3.SNGL=1 4.SNGL=0	4.0
485	errors in IP operations.	1.ICMP 2.TCP 3.UDP 4.IP	1.0
486	gives the number of bits that can be transmitted over a network in a fixed time period. cryptography refers to encryption methods in which both the sender and receiver share the	1.Latency 2.Jitter 3.Bandwidth 4.Delay	3.0
487	same key.	1.Symmetric 2.Asymmetric 3.Ceaser key 4.Asymmetric key	1.0
488	is responsible for the final encapsulation of higher-level messages into frames that are sent over the network using the physical layer.	1.Data link layer 2.Network layer 3.Application layer 4.Session layer	1.0
489	appends to the address a slash character and the decimal number of leading bits of the routing prefix.	1.CIDR 2.TCP 3.UDP 4.IP	1.0
490	is assigned to an organization by a global authority.	1.Subnet ID 2.Supernet ID 3.Host ID 4.Network ID 1.	4.0
		Cartesian product 2.	
491	produces the relation that has attributes of R1 and R2	Difference 3.	1.0
		Intersection 4.	
		Product	
492	should keep track of multiple file downloads requested by a particular FTP application, or multiple telnet connections from a single terminal client, or web page retrievals from a web server.	1.Transport layer 2.Application layer 3.Presentation layer 4.Session layer	1.0
493	functions as a request-response protocol in the client-server computing model.	1.HTTP 2.IP 3.TCP 4.UDP	1.0
		1. time division multiplexing	
494	is commonly used in wireless LAN.	2. orthogonal frequency division multiplexing	2.0
		space division multiplexing	
		4. long division multiplexing	

S.NO.	Questions	Choices	Answers
		L)	
		Long term	
		2.	
105	scheduler selects the jobs from the pool of jobs and loads into the ready queue. 3.	Short trem	1.0
495		3.	1.0
		Medium term	
		4.	
		None of these	
		1.	
		Long term scheduler	
		2.	
406		Short term scheduler (CPU Scheduler)	4.0
496	does the job of allocating a process to the processor.	3.	4.0
		Medium term scheduler	
		4.	
		Dispatcher	
497	has a dedicated communication path between stations	1.Circuit switching 2.Frame relay 3.Packet switching 4.ATM	1.0
		I.	
		Translation Look-aside buffer	
		2.	
498	is a high speed cache used to hold recently referenced page table entries as a part of	Inverse page table	1.0
	paged virtual memory	3.	
		Segmented page table	
		4.	
		Hierarchical page table	
		1.	
		Best Fit	
		2.	
499		Worst Fit	1.0
	memory management scheme will produce least fragement	3.	
		First Fit	
		4.	
		None of these	
		AR (Address Register)	
		2. VD (feder Presiden)	
500	register keeps tracks of the instructions stored in program stored in memory.	XR (Index Register)	3.0
		3. PC (Program Country)	
		PC (Program Counter)	
		4.	
		AC (Accumulator)	
		I.	
		Replace the page that will not be used for a longest period of time	
		2.	
501	states that it is Optimal Replacement algorithm	Replace the page that will not be used for a shortest period of time	1.0
		3.	
		Replace the page that will be used for a longest period of time	
		4.	
		Replace the page that will be used for a shortest period of time	
502	algorithm is used for the flow control of data between sender and receiver.	1.Dijkstra 2.RIP 3.Leaky bucket 4.Go Back N	4.0

S.NO.	Questions	Choices	Answers
		1.	
		Web Servers	
		2.	
503	programs automatically connects to web sites and download documents and save	Web Downloading Utilities	2.0
303	them to local drive	3.	2.0
		Stay Connected	
		4.	
		Offline Browsers	
504 505	signal prevent the microprocessor from reading the same data more than one	1.pipelining 2.handshaking 3.controlling 4.signaling	2.0
303	function in PHP returns a list of response headers sent (or ready to send)	1.header() 2.headers_list() 3.header_sent() 4.header_send() 1.	2.0
		Prototype	
		2.	
	is an initial version of a software system that is used to demonstrate concepts, try	Architectural Design	
506	out design options, and find out more about the problem and its possible solutions.	3.	1.0
		Subsystem	
		4.	
		Module	
		1.	+
		Process	
		2.	
		Thread	
507	is a basic unit of CPU utilization	3.	2.0
		Process Control Block	
		4.	
		Program Counter	
		-	
		1.Transaction	
508	is a logical unit of access to a DBMS	2.Optimization	1.0
		3.Schema	
		4.Data	
		1.	
		Q needs to send at least 2 HTTP requests to S, each necessarily in a separate TCP connection to server S	
		2.	
	A graphical HTML browser resident at a network client machine Q accesses a static HTML	Q needs to send at least 2 HTTP requests to S, but a single TCP connection to server S is sufficient	
500	webpage from a HTTP server S. The static HTML page has exactly one static embedded image which is also at S. Assuming no caching, which one of the following is correct about the HTML	3.	2.0
	webpage loading (including the embedded image)?	A single HTTP request from Q to S is sufficient, and a single TCP	
		connection between Q and S is necessary for this	
		4.	
		A single HTTP request from Q to S is sufficient, and this is possible	
		without any TCP connection between Q and S 1.	
		1,048,576 locations	
		2.	
		2. 2,097,152 locations	
510	A 20-bit address bus can locate	2,097,152 locations 3.	1.0
		4,194,304 locations	
		4.	
		8,388,608 locations	
511	A 32-bit address bus allows access to a memory of capacity	1.1 GB 2.16 MB 3.64 MB <mark>4.4 GB</mark>	4.0

s.no.	Questions	Choices	Answers
		1.	
		m	
		2.	
		m + 1	
512	A B-tree of order m has maximum of children	3.	1.0
		m - 1	
		4.	
		m/2	
513	A binary code that progresses such that only one bit changes between two successive codes is:	1.Gray code 2.excess-3 code 3.8421 code 4.nine's-complement code	1.0
	A certain 5-bit self-complementary code is used to represent the 10 decimal digits 0 through 9.	1.00110 00100 00010 2.00011 00111 00101 3.11001 11101 11011	
514	Given that (246) in decimal is represented as 00010 00100 00110 in this code, what is the representation for (375)?	4.11101 11011 11001	4.0
		1.	
		connect () system call returns successfully	
		2.	
	A client process P needs to make a TCP connection to a server process S. Consider the following situation: the server process S executes a socket(), a bind() and a listen() system call in that order,	connect () system call blocks	
	following which it is preempted. Subsequently, the client process P executes a socket() system call followed by connect() system call to connect to the server process S. The server process has not	3.	3.0
	executed any accept() system call. Which one of the following events could take place?	connect () system call returns an error	
		4.	
		connect () system call results in a core dump	
		1	
		Common Coot Estimation Model	
		Common Cost Estimation Model.	
		2.	
516	A COCOMO model is	Constructive Cost Estimation Model,	2.0
010	A COCOMO IIIodel IS	3.	2.0
		Complete Cost Estimation Model.	
		4.	
		Comprehensive Cost Estimation Model.	
517	A collection of unused memory reserved for dynamic allocation is called	1.Heap 2.Static 3.array 4.stack dynamic	1.0
		1.A ring counter has fewer flip-flops but requires more decoding circuitry 2.A ring counter has an inverted feedback path 3.A Johnson	
518	A comparison between ring and Johnson counters indicates that:	counter has more flip-flops but less decoding circuitry 4.A Johnson counter has an inverted feedback path	4.0
		1.	
		1.6 seconds	
		2.	
		2 seconds	
	A computer on a 10Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2Mbps. It is initially filled to capacity with 16Megabits. What is the maximum duration for	3.	2.0
	which the computer can transmit at the full 10Mbps?		
		5 seconds	
		4.	
		8 seconds	
520	A data structure where elements can be added or removed at either end but not in the middle	1.linked lists 2.Stacks 3.Queues 4.Deque	4.0
		Mutation testing	
		Mutation testing	
		2.	
521	A fault simulation testing technique is	Stress testing	1.0
	7	3.	
		Black box testing	
		4.	
		White box testing	
522	A grammar that produces more than one parse tree for some sentence is called	1.Ambiguous 2.Irregular 3.Regular 4.Unambiguous	1.0

.NO.	Questions	Choices	Answ
	•	1.	
		Instruction code	
		2.	
		Micro-operation	
23	A group of bits that tell the computer to perform a specific operation is known as	3.	1.0
		Accumulator	
		4.	
		Register	
24	A J-K flip-flop is in a "no change" condition when	1.J = 1, K = 1 2.J = 1, K = 0 3.J = 0, K = 1 4.J = 0, K = 0 1.	4.0
		aaa	
		2.	
	A language is represented by a regular expression (a)*(a+ba). Which of the following string does	aba	
25	not belong to the regular set represented by the above expression.	3.	3.0
		<mark>ababa</mark>	
		4.	
		aa	
		1.	-
		block HTTP traffic during 9:00PM and 5:00AM	
		2.	
		block all ICMP traffic	1.0
26	A layer-4 firewall cannot	3.	
		stop incoming traffic from a specific IP address but allow outgoing traffic to same IP	
		4.	
		block TCP traffic from a specific user on a specific IP address on multi- user system during 9:00PM and 5:00AM	
27	A linear collection of data elements where the linear node is given by means of pointer is called	1.primitive list 2.node list 3.linked list 4.array	3.0
. /	A finear conection of data elements where the finear node is given by means of pointer is called	1. Primitive list 2.node list 3.mixed list 4.array	3.0
		Definite blocking	
		2	
		Starvation	
28	A major problem with priority scheduling is		2.0
		3.	
		Low priority	
		4.	
		None of these	
		1.)	
		15 states	
		2.	
		7 states	
29	A minimum state DFA accepting the language L={w/w belongs {0,1}*} number of 0s and 1s in w		1.0
	are divisible by 3 and 5, respectively} has	3.	
		9 states	
		4.	
		8 states	
	A network that contains multiple hubs is most likely configured in which topology?	1.Mesh 2.Tree 3.Bus 4.Star	2.0
30	A network that contains multiple hubs is most likely configured in which topology?		

531 A		1.	
531 A			1
531) A		True	
531		2.	
531		False	
	4.	3.	1.0
		may be true	
		4.	
		always true	
\dashv			
		1. Where each record in table A can have one or more matching records in table B	
		2. Where each record in table B can have one or more matching records	
532 A	A one to many relationship (of table A to Table B) is	in table A	1.0
		3. Where each record in Table B is required to have a match in table A	
		4. Where each record in table A is required to have a match in table B	
\dashv		1.can reduce the cost of using an information utility 2.allows	
533	A packet switching network	communications channel to be shared among more than one user 3.can reduce the cost of using an information utility and allows	3.0
		communications channel to be shared among more than one user 4.is	
\dashv		free 1.	
		when the page is not in the main memory	
		2.	
534	A page fault occurs	when the page is in the cache memory	1.0
551	Trugo num occurs	3.	1.0
		when the process enters the blocked state	
		4.	
		when the process is in the ready state	
535 A	A parameterized constructor with all arguments initialized is same as	1.default constructor 2.parameterized constructor 3.overriding	1.0
333 1	t parameterized constructor with an arguments initialized is same as	4.overloading	1.0
		Let ppp c i il d de	
		encapsulating PPP frames inside ethernet frames	
		2.	
526		encapsulating ethernet frames inside PPP frames	1.0
536 P	A point-to-point protocol over ethernet is a network protocol for	3.	1.0
		for security of ethernet frames	
		4.	
		for security of PPP frames	
\dashv		1.Many to many relationships between the tables that connect them	
537 A	A primary key, if combined with a foreign key creates	2.Network model between the tables connect them 3.one to many	4.0
		relationship between the tables that connect them 4.Parent child relationship between the tables that connect them	
\neg		1.	
		be loyal to the organization	
		2.	
		build trust from customers	
538	A professional software engineer must:	3.	4.0
		socialize with customers	
		4.)	
		be loyal to the organization and build trust from customers	
			•

S.NO.	Questions	Choices	Answers
		1.)	
		Partial Dependencies	
		2.	
539	A relation R is said to be in 2NF when it does not have	Transitive Dependencies	1.0
227		3.	
		Multivalued Attributes	
		4.	
		Both Partial dependencies and Multivalued Dependencies	
		1.the same as a flat file database	
		2.one that consists of two or more tables that are joined in some way	
540		3.one that consists of two or more tables	4.0
		4.a database that is able to process tables, queries, forms, reports and macros	
541	A ring counter is same as.	1.up-down counter 2.parallel adder 3.shift register 4.ALU	3.0
		1.	
		attribute	
		2.	
5.40		degree	
542	A set of possible data values is called	3.	4.0
		domain	
		4.	
		tuple	
543	A shift register can be used for.	1.Digital delay line 2.Serial to parallel conversion 3.All of these	4.0
		4.Parallel to serial conversion 1.	+
		analog modulation	
		2.	
		digital modulation	
544	A single channel is shared by multiple signals by	3.	3.0
		multiplexing	
		4.	
		none of the mentioned	
			
		1.Database	
545	A software package designed to store and manage databases	2.DBMS	2.0
		3.Data Model	
		4.Data	
		1.Three-address Instruction	
	A shall accoming to a company to	2. Two-address Instruction	
546	A stack organized computer has	3.One-address Instruction	4.0
		4. Zero-address Instruction	
			_
		1.	
547	2.0	TRUE	2.0
347		2.	2.0
		False	
		3. 4.	+
5.10	A collision of the state of	1. Within the class definition 2. Outside the class definition 3. When the	۵ ۵
_	A static data member is given a value A synchronous sequential circuit is made up of.	Within the class definition 2.Outside the class definition 3.When the program is exeuted 4.Never 1.combinational gates 2.flip-flops 3.both flip-flops and latches 4.both	2.0

	1.	1
	100	
	196	
	2.	
A system uses FIFO policy for page replacement. It has 4 page frames with no pages loaded to	192	1.0
pages but now in the reverse order how many page faults will occur?	3.	1.0
	197	
	4.	
	195	
	1.	
S 2.	Secondary key	
	2.	
	Alternate key	
A table can have only one		4.0
	Primary key	
	1.	
	allows easy storage and retrieval of file names	
	2.	
	is not essential when we have millions of files	
		1.0
	none of these	
A value that has no defined value is expressed in PHP with the following keyword:	1. undef 2.null 3. Cant Define 4. There is no such concept in PHP	2.0
A variable P is called pointer if	and the address of DATA 3.P can store only memory addresses 4.P points to the address of first element in DATA	1.0
A variable P is called pointer if	1.P contains the address of an element in DATA 2.P contain the DATA and the address of DATA 3.P can store only memory addresses 4.P	1.0
	points to the address of first element in DATA	
	2.	
	subset of the table	
A view is a	3.	1.0
	base table	
	4.	
	super table	
	1.)	
	Disk stack	
	2.	
	Removable disk	
	3.	1.0
	None of these	1
	A system uses EFO policy for page replacement. It has 4 page frames with no pages loaded to begin with. The system first accesses 100 distinct pages in some order and accesses the same 100 pages but now in the reverse order how many page faults will occur? A table can have only one A tree sturctured file directory system A value that has no defined value is expressed in PHP with the following keyword: A variable P is called pointer if A variable P is called pointer if A view is a	hegin with. The system first accesses 100 distinct pages in some order and accesses the same 100 pages but now in the reverse order how many page faults will occur? A table can have only one A table can have

S.NO.	Questions	Choices	Answers
		1.	
		7	
		2.	
558	A complete binary min-heap is made by including each integer in [1;1023] exactly once. The depth of a node in the heap is the length of the path from the root of the heap to that node. Thus,	8	2.0
	the root is at depth 0. The maximum depth at which integer 9 can appear is	3.	
		9	
		4.	
559	Abstraction is	Having public members 2.having private member and public function friend function 4.friend classes	2.0
		1. developer	
		2.	
560	2.0	end users 3.	2.0
		test team 4.	
		systems engineers	
_		1.	
		ROM	
		2.	
		SRAM	
561	Access time is faster for	3.	2.0
		DRAM	
		4.	
		ERAM	
562	Additive rule	1.cyan+ magenta+ Yellow= white 2.Red + Green + Blue = white	2.0
		3.cyan+ Green+ Yellow= white 4.cyan+ magenta+ Yellow= Black 1.	
		0023H	
		2.	
		0024H	
563	Address line for TRAP is?	3.	2.0
		0033Н	
		4.	
		0099Н	
		1.	
		address latch enable	
		2.	
564	ALE stands for	address level enable	1.0
		3.	
		address leak enable	
		4. address leak extension	
	ALCODITUM HAS THE TO THE DRODUEN BY		-
565	ALGORITHM HAS THE TO THE PROBLEM IN NUMBER OF STEPS	1.SOLUTION & FINITE 2.PROBLEM & INFINITE 3.SOLUTION & INFINITE 4.PROBLEM & FINITE	1.0
566	All devices/host connect to a central switch in topology.	1. Star 2.Ring 3.Bus 4.Tree 1.	1.0
		Bottom up testing	
		2.	
		Top-down testing	
567	All the modules of the system are integrated and tested as complete system in the case of	3.	4.0
		Sandwich testing	
		4.	
		Big-Bang testing	
			1

S.NO.	Questions	Choices	Answers
		1.	
		SLR, LALR	
		2.	
	Among simple LR (SLR), canonical LR, and look-ahead LR (LALR), which of the following pairs identify the	CLR , LALR	
	method that is very easy to implement and the method that is the most powerful, in that order?	3.	3.0
		SLR, CLR	
		4.	
		SLR	
		1.	-
		0	
		2.	
560	An antivity is said to be suitised if alsolytims is social to	1	1.0
569	An activity is said to be critical if slack time is equal to	3.	1.0
		2	
		4.	
		3	
		1.Elimination of the data redundancy 2.Ability to associate related data	
570	An advantage of the database approach is	3.Increase security 4.All of the options	4.0
		1.relation	
571	A. Fotis Comp. TD discourse who appropriately also what makes the delibert	2.domain	1.0
5/1	An Entity from an ER diagram can be represented in the relational model by a	3.functional dependency	1.0
		4.single attribute	
		1.short frame	
		2.runt frame	
572	An ethernet frame that is less than the IEEE 802.3 minimum length of 64 octets is called	3.mini frame	2.0
		4.man frame	
573	An intermediate code form is	1.Postfix notation 2.Syntax trees 3.Three address code 4.Postfix notation, Syntax trees and Three address code	4.0
		1.	
		255.255.0.0	
		2.	
		255.255.64.0	
	An organization has a class B network and wishes to form subnets for 64 departments. The subnet mask would be:	3.	4.0
	mask would be.	255.255.128.0	
		4.	
		255.255.252.0	
	Any code inside a loop that always computes the same value can be moved before the loop. This is called	1.Loop invariant computation 2.Interchange of statements 3.inducation variable 4.Algebraic Transformation	1.0
_	caned	variable 4.Algebraic Transformation 1.	_
		types of messages exchanged	
		2.	
576	Application layer protocol defines	message format, syntax and semantics	4.0
210	rippheadon tayer protocol defines	3.	7.0
		rules for when and how processes send and respond to messages	
			1
		4.	
		4. all of the mentioned	

S.NO.	Questions	Choices	Answers
		1.	
		two levels	
		2.	
577	Architecture of the database can be viewed as 3.	four levels	3.0
		three levels	
		4.	
		one level	
		1.	
		->, %, +, =	
		2.	
		=, +, %, ->	
578	Arrange the operators according to their precedence: $+, \frac{9}{6}, ->, =$	3.	1.0
		%, +, =, ->	
		4.	
		%, ->, =, +	
		1.	
		1000	
		2.	
	Assume that a table R with 1000 records is to be joined with another table S with 10000 records.	10000	
	What is the maximum number of records that would result in if we join R with S and the equi-join	3.	1.0
	attribute of S is the primary key?	1,00,00,000	
		4.	
		11000	
		1.Derived class constructor followed by Base class constructor. 2.Base class constructor followed by derived class constructor. 3.Base class	2.0
200	declaration in main(). Base * P = New Derived; in what sequence will the constructor be called ?	constructor will not be called. 4.Derived class constructor will not be called.	2.0
581	Assume the base address of CS is 3000H and IP is 2000H. Calculate the memory address.	1.32000H 2.3000H 3.30000H 4.2000H	1.0
		1.	
		ksort()	
		2.	
582	Assume you would like to sort an array in ascending order by value while preserving key	asort()	2.0
302	associations. Which of the following PHP sorting functions would you use?	3.	2.0
		krsort()	
		4.	
		sort()	
		1.	
		17-JUL-00	
		2.	
	Assuming today is 10 July 2000 what is enturned by this statement, SELECT	10-JUL-00	
	Assuming today is , 10 July 2000, what is returned by this statement: SELECT to_char(Last_DAY(sysdate), 'DD-MON-RR') FROM dual;	3.	4.0
		31-DEC-00	
		4.	
		31-JUL-00	
	Binary search algorithm can not be applied to	1.sorted linked list 2.sorted binary trees 3.sorted linear array 4.pointer	4.0
501	minary scarcii argoriumii can noi oc appneu io	array array	4.0
584		Il inserting a '0' in user data stream to differentiate it with a flag	
	Bit stuffing refers to	1.inserting a '0' in user data stream to differentiate it with a flag 2.inserting a '0' in flag data stream to avoid ambiguity 3.appending a nibble to the flag sequence 4.appending a nibble to the user data stream	1.0

S.NO.	Questions	Choices	Answers
		1.	
		digital modulation	
		2.	
		amplitude modulation	
586	Bits can be send over guided and unguided media as analog signal using	3.	1.0
		frequency modulation	
		4.	
		phase modulation	
		1.	
	2.0	true	
587		2.	2.0
		false	
		3. 4.	
		1. 2.0 _{True}	
588	By following modern system engineering practices simulation of reactive systems is no longer	2.	2.0
300	necessary.	FALSE	2.0
		3. 4.	
		1.	
		CPU and RAM	
		2.	
		RAM and ROM	
589	Cache memory acts between	3.	1.0
		CPU and Hard Disk	
		4.	
		None of these	
		1.	
		59	
		2.	
	Calculate the block number in free storage management of files system with number of bits per word is 8, the bit vector is	51	1.0
390	000110101010, offset of first 1 bit is 3	3.	1.0
	000110101011, 01100 01 1100 1 01 10 5	45	
		4.	
		53	
		1.	
		6.2 micro second	
		2.	
		7.8 micro second	
591	Calculate the EAT(Effective access time) if 5 micro second is associative look-up time and 0.80 is		3.0
	the hit-ratio in paging hardware with TLB	5.	
		2.2 micro second	
		4.	
		3.2 micro second	
		1.	
		a Unary operator	
		2.	
		a Binary operator	
592	Cartesian product in relational algebra is	3.	2.0
		a Ternary operator	
		4.	
		not defined	
		niot defined	

		Γ	Τ.
S.NO.	Questions	Choices	Answers
	Change cannot be easily accommodated in most software systems, unless the system was designed	True	
593	with change in mind.	2.	1.0
		False	
		3. 4.	
		1.	
		Preventative maintenance.	
		2.	
	Changes made to an information system to add the desired but not necessarily the	Adaptive maintenance.	
594	required features is called	3.	4.0
	1041104		
		Corrective maintenance.	
		4.	
		Perfective maintenance.	
595	Class IP addresses are used for large organizations	1.A 2.B 3.D 4.C	1.0
596	class n{ int a;}; how much memory the compiler allocates for this class	1.0 2.2 3.depends on compiler 4.4	4.0
		1.	
		true	
597	1.0	2.	1.0
		false	
		3. 4.	
598	Classes and components that exhibit functional, layer, or communicational cohesion are relatively	true	1.0
398	easy to implement, test, and maintain.	2.	1.0
		false	
599	Compile time polymorphism is	1. function overloading 2.template 3.function overriding 4.abstraction	1.0
377	Compile time polymorphism is	1.	1.0
		giving programming versatility to the user by providing facilities as	
		pointers to memory counters for loop control	
		2.	
		to reduce no. of bits in the field of instruction	
600	Computers use addressing mode techniques for .		4.0
	·	3.	
		specifying rules for modifying or interpreting address field of the instruction	
		4.	
		All of these	
		1.	
		1.0rely on basis path testing	
		exercise the logical conditions in a program module	
601	Condition testing is a control structure testing technique where the criteria used to design test cases		1.0
601	is that they	select test paths based on the locations and uses of variables	1.0
		4.	
		focus on testing the validity of loop constructs	
		1.	
	Consider 2 scenarios:	Both are true	
	C1: For DFA $(\phi, \Sigma, \delta, go, F)$,	2.	
	if F = ϕ , then L = Σ^*	Both are False	
602	C2: For NFA $(\phi, \Sigma, \delta, qo, F)$, if $F = \phi$, then $L = \Sigma^*$	3.	3.0
	Where F = Final states set $\varphi = Total \ states \ set$		
		C1 is true, C2 is false	
	Choose the correct option ?	4.	
		C1 is false, C2 is true	
	Consider a binary tree T that has 200 leaf nodes. Then, the number of nodes in T that have exactly	1.199 2.200 3.Any number between 0 and 199 4.Any number between	_
	two children are	1.199 2.200 3.Arry number between 0 and 199 4.Arry number between 100 and 200	1.0

	Questions	Choices	Answei
		1.	
		8	
		2.	
		14	
	Consider a DFA over $\Sigma = \{a, b\}$ accepting all strings which have number of a's divisible by 6 and number of b's divisible by 8. What is the minimum number of states that the DFA will have?	3.	4.0
	divisible by 6. What is the minimum number of states that the DFA will have?		
		15	
		4.	
		48	
$\overline{}$	Consider a hash table with 9 slots. The hash function is $h(k) = k \mod 9$. The collisions are resolved		1
	by chaining. The following 9 keys are inserted in the order: 5, 28, 19, 15, 20, 33, 12, 17, 10. The maximum, minimum, and average chain lengths in the hash table, respectively, are	1.3, 3, and 3 2.3, 0, and 1 3.4, 0, and 1 4.3, 0, and 2	2.0
	maximum, minimum, and average chain lengths in the hash table, respectively, are	1.	1
		8 MSS	
	G. C. CTOD ALC I MICH & D. (ADD) I SI I	2.	
606	Consider an instance of TCP's Additive Increase Multiplicative Decrease(AIMD) algorithm where the window size at the start of the slow start phase is 2 MSS and the threshold at the start of the	14 MSS	3.0
_	first transmission is 8 MSS. Assume that a time out occurs during the fifth transmission. Find the congestion window size at the end of the tenth transmission.	3.	3.0
	congestion window size at the end of the tenth dansmission.	7 MSS	
		4.	
		12 MSS	
607			1.0
607	Consider an undirected graph G with 100 nodes. The maximum number of edges to be included is	1.2451	4.0
		5	
		2.	
		3	
608	Consider S->SS a what is the number of different derivation trees for aaaaa	3.	3.0
		14	
		4.	
		7	
		1.	
		aaaabb	
	Consider the CFG with {S,A,B} as the non-terminal alphabet, {a,b} as the terminal alphabet, S as the start symbol and the following set of production rules	2.	
	S> aB S> bA	aabbbb	
609	B> b A> a	3.	3.0
	B> bS A> aS B> aBB A> bAA		
	Which of the following strings is generated by the grammar?	aabbab 	
	This of the following energy to generate by the grammar.	4.	
		abbbba	
		1.	1
		16ms	
		2.	
	Consider the data of previous question. Suppose that the sliding window protocol is used with the		
	sender window size of 2 [^] i where is the number of bits identified in the previous question and acknowledgments are always piggybacked. After sending 2 [^] i frames, what is the minimum time	18ms	3.0
	the sender will have to wait before starting transmission of the next frame? (Identify the closest	3.	1.0
	choice ignoring the frame processing time).	20ms	
		4.	
		22ms	

S.NO.	Questions	Choices	Answers
		1.	
		0	
		2.	
	Consider the DFAs M and N given above. The number of states in a minimal DFA that accepts the	1	
	language $L(M) \cap L(N)$ is	3.	1.0
		2	
		4.	
		3	
612	Consider the following array of elements. {89,19,50,17,12,15,2,5,7,11,6,9,100}. The minimum	1.4 2.2 3.5 4.3	4.0
	number of interchanges needed to convert it into a max-heap is		
	Consider the following C code segment. for $(i = 0, i < n; i++)$		
	for (j=0; j <n; j++)<="" td=""><td></td><td></td></n;>		
613	{ if (i%2)	4.0	4.0
	{ $x += (4*j + 5*i);$ $y += (7 + 4*j);$		
	}		
	, Which one of the following is false?		
	Consider the following C declaration struct {		
	short s [5] union {		
	float y;	1101 (2101 (2001 (4141 (2.0
	long z; }u;	1.10 bytes 2.18 bytes 3.22 bytes 4.14 bytes	2.0
	} t; Assume that objects of the type short, float and long occupy 2 bytes, 4 bytes and 8 bytes,		
	respectively. The memory requirement for variable t, ignoring alignment considerations, is		
		1.	
	Consider the following code segment.	6	
	x = u - t;	2.	
615	y = x * v; x = y + w;	8	4.0
013	y = t - z; y = x * y;	3.	4.0
	The minimum number of total variables required to convert the above code segment to static single	9	
	assignment form is	4.	
		10	
		1.	
		true false	
	Consider the following code snippet	2.	
616	<pre>var al = [,,,]; var a2 = new Array(3);</pre>	false true	1.0
	0 in al 0 in a2	3.	1.0
	Result of Javascript is:	true true	
		4.	
		false true	
	Consider the following code snippet: var $a = [1,2,3,4,5]$; a.slice $(0,3)$; What is the possible output for the above code snippet?	1.Returns [1,2,3] 2.Returns [4,5] 3.Returns [1,2,3,4] 4.Returns [1,2,3,4,5]	1.0
	Consider the following code snippet	1.	
	function oddsums(n) {	Returns [1,4,9,16,25]	
	<pre>let total = 0, result=[]; for(let x = 1; x <= n; x++)</pre>	2.	
618	{ let odd = 2*x-1; total += odd;	Returns [1,2,3,4,5]	1.0
010	result.push(total); }	3.	1.0
	return result; }	Returns [3,6,9,12,15]	
	What would be the output if	4.	
	oddsums(5);	Returns [1,3,5,7,9]	
619	Consider the following code: var a = []; a.unshift(1); a.unshift(22); a.shift(); a.unshift(3,[4,5]); a.shift(); a.shift(); a.shift(); the final output for the shift() is	1.1 2.[4,5] 3.[3,4,5] 4.Exception	1.0
	O O		

S.NO.	Questions	Choices	Answers
	Consider the following function		
	double f(double x)		
	if $(abs(x*x - 3) < 0.01)$ return x;	1.1.723 2.1.732 3.0.732 4.1.733	2.0
	else return $f(x/2 + 1.5/x)$;		
	Give a value q (to 2 decimals) such that f(q) will return q:	•	
		1.	
	Consider the following javascript code snippet:	1)	
	var a = [];	2.	
	a.unshift(1); a.unshift(22);	[4,5]	
	a.shift(); a.unshift(3,[4,5]);	3.	1.0
	a.shift(); a.shift();	[3,4,5]	
	a.shift();		
	The final output for the shift() is	4.	
		Exception	
	Consider the following program in C language:	1.	
		Compilation fails.	
	#include main()	2.	
	{	Execution results in a run-time error.	
	int i; int *pi = &i	3.	4.0
	scanf(?%d?,pi); printf(?%d\n?, i+5);	On execution, the value printed is 5 more than the address of variable i	
	}	4.	
	Which one of the following statements is TRUE?	On execution, the value printed is 5 more than the integer value entered	
	Consider the following statements for priority queue:		
I	S1: It is a data structure in which the intrinsic ordering of the elements does determine the result of its basic operations.	1.Both S1 and S2 are incorrect 2.S1 is correct and S2 is incorrect 3.Both	4.0
	S2: The elements of a priority queue may be complex structures that are ordered on one or several fields.	S1 and S2 are correct 4.S1 is incorrect and S2 is correct	4.0
	Which of the following is correct?		
	Consider the following two sets of LR(1) items of an LR(1) grammar.		
		1.	
	X -> c.X, c/d X -> .cX, c/d	1 only	
	X -> .d, c/d X -> c.X, \$	2.	
	X -> .cx, \$ X -> .d, \$	2 only	
624		3.	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are FALSE?	1 and 4 only	
	1. Cannot be merged since look aheads are different.		
	2. Can be merged but will result in S-R conflict.	4.	
	3. Can be merged but will result in R-R conflict. 4. Cannot be merged since goto on c will lead to two different sets.	1,2,3,4	
			
	Consider the following two sets of LR(1) items of an LR(1) grammar.	1.	
	x -> c.x, c/d	1 only	
	X -> .cX, c/d X -> .d, c/d	2.	
	X -> c.X, \$ X -> .cX, \$	2 only	
625	x -> .d, \$	-	4.0
	Which of the following statements related to merging of the two sets in the corresponding LALR parser is/are		
	FALSE?	3 and 4 only	
	1. Cannot be merged since look aheads are different. 2. Can be merged but will result in S-R conflict.	4.	
	3. Can be merged but will result in R-R conflict.	1,2,3,4	
	4. Cannot be merged since goto on c will lead to two different sets.		
		1.	
		LL(1)	
		2.	
	Consider the grammar shown below.	SLR(1) but not LL(1)	
626	$S \rightarrow C \ C$ $C \rightarrow c \ C \mid d$	3.	1.0
	The grammar is	LALR(1) but not SLR(1)	
		4.	
		LR(1) but not LALR(1)	
		1	1
			ļ

S.NO.	Questions	Choices	Answers
		1.	
	Consider the grammar with the following translation rules and E as the start symbol.	200	
	E - E1 # T { E.value = E1.value * T.value }	2.	
627	T { E.value = T.value } T - T1 & F { T.value = T1.value + F.value }	180	3.0
027	F{T.value = F.value } F - num { F.value = num.value }	3.	3.0
	Compute E.value for the root of the parse tree for the expression: 2 # 3 & 5 # 6 & 4.	160	
	Compute E. value for the root of the parse fee for the expression. 2 # 3 & 3 # 6 & 4.	4.	
		40	
		1.	
		n1 <n2<n3< td=""><td></td></n2<n3<>	
	Consider the grammar	2.	
	S → (S) a	n1=n3 <n2< td=""><td>2.0</td></n2<>	2.0
628	Let the number of states in SLR(1), LR(1) and LALR(1) parsers for the grammar be n1, n2 and n3 respectively. The following relationship holds good	3.	2.0
		n1=n2=n3	
		4.	
		n1>n2>n3	
	Consider the intermediate code given below:	1.	
	i. i = 1	5 and 7	
	1. i = 1 2. j = 1 3. t1 = 5 * i	2.	
	4. $t2 = t1 + j$	6 and 7	
629	5. t3 = 4 * t2 6. t4 = t3	3.	2.0
	7. $a[t4] = -1$ 8. $j = j + 1$	5 and 2	
	9. if j <= 5 goto(3) 10. i = i + 1	4.	
	11. if i < 5 goto(2)	7 and 8	
	The number of nodes and edges in the control-flow-graph constructed for the above code, respectively, are		
		1.	
		<mark>mn</mark>	
		2.	
630	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the	m+n	1.0
	maximum size of join is:	3.	
		(m+n)/2	
		4.	
		2(m+n)	
		1.	
		<mark>mn</mark>	
		2.	
631	Consider the join of a relation R with relation S. If R has m tuples and S has n tuples, then the	m + n	1.0
551	maximum size of join is:	3.	
		(m+n)/2	
		4.	
		2(m+n)	
		1.	
		3	
		2.	
622	Consider the regular language L = (111 + 11111)*. The minimum number of states in any DFA accepting this	5	
	languages is:	3.	4.0
		8	
		4.	
		9	
			ļ

	Questions	Choices	Answers
		1.	
		2NF	
		2.	
	Consider the relation R1(employee_name, project_name, dependent_name). If {{employee_name>-> project_name}, {employee_name>-> dependent_name}}, what is the highest normal form	3NF 3.	1.0
	it sausnes?	BCNF	
		4.	
		4NF	
		1.	
		9 + 5 + 2	
	Consider the translation scheme shown below	2.	
		9 5 + 2 +	
634	$R \rightarrow +$ T {print ('+');} R ϵ T \rightarrow num {print (num.val);}	3.	2.0
	Here num is a token that represents an integer and num.val represents the corresponding integer value. For an	952++	
	input string '9 + 5 + 2', this translation scheme will print	4.	
		++952	
635	Consider two strings A ='qpqrr' and B = 'pqprqrp'. Let x be the length of the LCS between A and B	1.42 <mark>2.34</mark> 3.32 4.30	2.0
033	and let y be the number of such longest common subsequences between A and B. Then $x + 10y =$	1.42 2.34 5.52 4.50	2.0
		values	
		2.	
	Count function in SQL returns the number of	distinct values	
636		3.	1.0
		groups	
		4.	
		columns	
		1.	
		Batch	
		2.	
		Real Time	
637	CPU Scheduling is the basis of operating system	3.	2.0
ı		Multi-programming	
		4.	
ı		network	
		1.	
ı		Error	
		2.	
		Table created	
638	create table student_\$(id number(4), namee varchar2(10)); reponse would be	3.	2.0
		Table created with error	
		4.	
		Table created with data	
639	Creating additional function similar to template function is called	1.implicit specialization 2.explicit specialization 3.abstraction 4.template overriding	4.0
640	Cross-compiler is a compiler	1. which is written in a language that is same as the source language. 2. that runs on one computer but produces object code for different type of computer, 3. that generates object code for its host machine. 4. which is	2.0

.NO.	Questions	Choices	Answer
		1.)	
		to find some insecurity in a cryptographic scheme	
		2.	
C41	Cryptanalysis is used	to increase the speed	1.0
641	Cryptanarysis is used	3.	1.0
		to encrypt the data	
		4.	
		none of the mentioned	
		1.	
		fixed size bit string	
		2.	
		variable size bit string	
542	Cryptographic hash function takes an arbitrary block of data and returns	3.	1.0
		both (a) and (b)	
		4.	
		None	
	Comments there is no single standard file time that see he wood to also evaluate asing the endi-	1.Use JavaScript to determine the web browser in use 2.Use Adobe	<u> </u>
643	Currently there is no single standard file type that can be used to play audio using the audio element consistently on all browsers. Which is the solution that the audio element provides to resolve this conflict?	Flash to play the audio 3.Include multiple audio file formats in the src attribute 4.No Solution	<u> </u>
		rely on basis path testing	
		2. exercise the logical conditions in a program module	
644	1.0	3.	1.0
		select test paths based on the locations and uses of variables	
		4.	
		focus on testing the validity of loop constructs	
		1.	
		data is defined separately and not included in programs.	
		2.	
		programs are not dependent on the physical attributes of data	
645	Data independence means	3.	4.0
		programs are not dependent on the logical attributes of data	
		4.	
		programs are not dependent on both physical and logical attributes of	
		<mark>data</mark>	
		1.does exist in memory when the object of the derived class is created 2.exist in memory when the object of the derived class is created	
646	Data Members of the base class that are marked private:	the derived class 3.are visible in the derived class 4.are directly accessible in the derived class	2.0
		1.does exist in memory when the object of the derived class is created	1
647	Data Members of the base class that are marked private:	2.exist in memory when the object of the derived class is created the derived class 3.are visible in the derived class 4.are directly	2.0
	<u>.</u>	accessible in the derived class	
		1.	
		Physical file	
		2.	
		Data Structure	
548	Data Store Symbol in DFD represents a	3.	2.0
		Logical file	
		4.	
		ALL	
		F	1
	DB, DW and DD directives are used to place data in particular location or to simplyallocate space	1.f ull address of labels 2.offsets of full address of labels and variables	+

S.NO.	Questions	Choices	Answers
		1.	
		Data Control Language	
		2.	
		Data Console Language	
650	DCL stands for	3.	1.0
		Data Console Level	
		4.	
		Data Control Level	
		1.	
		allows the virtual address space to be independent of the physical memory	
		2.	
651	Demand paged memory allocation	allows the virtual address space to be a multiple of the physical memory size	1.0
		3.	
		allows deadlock to be detected in paging schemes	
		4.	
		is present only in Windows NT	
		1.All of the options	
	Desirable properties of relational database design include	2.minimizing update anomalies	
652	Debinable properties of relational database design invade	3.minimizing redundancy	1.0
		4.minimizing insertion/deletion anomalies	
		1.	
		String instructions	
		2.	
		Stack instructions.	
653	Direction flag is used with	3.	1.0
		Arithmetic instructions	
		4.	
		Branch instructions	
654	Divide and conquire mechanism is used in	1.selection sort 2.merge sort 3.quick and merge sorts 4.indexed sequential search	3.0
		1.	
		Description of logical structure of database.	
		2.	
		Addition of new structures in the database system.	
655	DML is provided for	3.	3.0
		Manipulation & processing of database.	
		4.	
		Definition of physical structure of database system.	
		1.	
		Drops only the values from the table	
		2.	
		drops structure of the table along with values	
656	Drop SQL clause	3.	2.0
		None of the options	
		4.	
		changes the structure of the table	
657	Duality principle is used when SE is	1.square 2.symmetric 3.asymmetricd 4.translated	2.0
/	7,		,

S.NO.	Questions	Choices	Answers
		1.	
		applications, data, technology infrastructure	
(50	1.0	2. communications, organization, financial infrastructure	1.0
658		3.	1.0
		network, database, reporting structure	
		4. systems, requirements, data structure	
		1.6	
		2.5	
659	Each counter of IC 8254 can work indiffernt modes of operation	3.4	1.0
		4.3	
		1.	
		symmetric key encryption algorithm	
		2.	
		asymmetric key encryption algorithm	
660	ElGamal encryption system is	3.	2.0
		not an encryption algorithm	
		4.	
		none of the mentioned	
		1.	
		Ultraviolet rays	
		2.	
		infrared rays	
661	EPROM is generally erased by using	3.	1.0
		12 V electrical pulse	
		4.	
		24 V electrical pulse	
		1.	
		pure ethernet	
		2.	
		ethernet over SDH	
662	Ethernet in metropolitan area network (MAN) can be used as	3.	4.0
		ethernet over MPLS	
		4.	
		combination of all of the above mentioned	
		1.	
		reduce the granularity of the plan 2.	
		analyze requirements in depth	
663	3.0	3.	3.0
		get all team members to "sign up" to the plan	
		4.	
		begin design	
		1.	
		Are not iterative in nature	
		2.	
664	2.0	Can easily accommodate product requirements changes	2.0
004		3.	
		Generally produce throwaway systems	
		4.	
		Are not specific to applications	

S.NO.	Questions	Choices	Answers
		1. can be avoided by paging	
665		2. occurs only if the file system is used improperly	
	External Fragmentation of the file system	3. can be removed by compaction	4.0
		4.can be avoided by Segmentation	
	Find the output	1.	
		012345678910	
	#include < stdio.h >	2.	
	int main()	0 1 2 3 infinte times	
666	int tally=0;	3.	3.0
000	for(;;) {		3.0
	if(tally==10) break;	12345678910	
	<pre>printf("%d ",++tally);</pre>	4.	
	retum 0;	123456789	
	}		
	Find the output	1.	
		Error	
	#include <stdio.h></stdio.h>	2.	
	int main() {	65	
667	int x=65; const unsigned char c=(int)x;	3.	3.0
		A	
	printf("%c\n",c);	4.	
	return 0; }	NULL	
	Find the output		
		1	
	#include <stdio.h></stdio.h>	1.	
	struct sample	Error	
668	int a=0;	2.0,A,10.5 3.	1.0
	float c=10.5;	0,A,10.500000	
	int main()	4.	
	struct sample s;	No Error, No Output	
	printf("%d,%c,%f",s.a,s.b,s.c); return 0;		
	}		
		1.	
		Error	
		2.	
	Find the output:	101,	
	#include <stdio.h> int main()</stdio.h>	Value is $= 103$	
669	{ int a=100;	3.	3.0
	printf("%d\n"+1,a);	d	
	printf("Value is = %d"+3,a); return 0;	ue is = 100	
	}	4.	
		100	
		100	
		1	

Questions	Choices	Answer
	1.)	
the output:	23	
ude <stdio.h></stdio.h>	2.	
ain()	Error	
a=23;	3.	1.0
rintf("%d",a);	;23;	
turn 0;	4.	
	;23	
	1.	-
the output:	В	
ude <stdio.h></stdio.h>	2.	
main()	A	3.0
nst char var='A';	3.)	
-var; intf("%c",var);	ERROR	
	4.	
	66	
	1.	
	44	
O THE OUTPUT:	2.	
ude <stdio.h> main()</stdio.h>	45	
	3.	2.0
x=10; =(x++)+(++x)+x;	46	
intf("%d",x);	4.	
	47	
	1.	
	x= 60	
the output:	2.	
ude <stdio.h> main()</stdio.h>	x= 70	4.0
x=(20 40) && (10);	3.	
intf("x= %d",x);	x= 0	
	4.)	
	x= 1	
	1.	
	ERROR: can not modify var.	
the output:	2.)	
ude <stdio.h></stdio.h>	ERROR: L-Value required	
main()	3.	2.0
ar var=10; $intf("var is = %d" ++var++)$	12	
(var 15 - 762 3 · · · var · ·);	4.	
	ERROR: Expression syntax	
derivative approximation says that values of constant intensities must be		2.0
approximation on jo that rules of consum mensions must be	1.For the given PS and NS what will be the inputs 2.For the given PS	
flop excitation tables shows that	the type of flip-flops 4. For the given PS and NS what will be the values	4.0
uning one hay used to implement a COD Complete with and the control of the contro	of NS and PS respectively	10
owing can be used to implement a SOP function without changing it into minterms	JI.MUX 2.PLA 3.KUM <mark>4.DeMUX</mark>	4.0
der flop	"var is = %d",++var++); ivative approximation says that values of constant intensities must be	"var is = %d",++var++); 4. ERROR: Expression syntax ivative approximation says that values of constant intensities must be 1.1 2.0 3.positive 4.negative 1.For the given PS and NS what will be the inputs 2.For the given PS and NS what will be the outputs 3.For the given PS and NS what will be the type of flip-flops 4.For the given PS and NS what will be the values of NS and PS respectively

S.NO.	Questions	Choices	Answers
		1.	
		The waterfall model	
		2.	
678	For a well understood data processing application it is best to use	prototyping model	1.0
		3.	
		the evolutionary model	
		4.	
		the spiral model	<u> </u>
		1. 3.0	
		2.	
679	For purposes of behavior modeling a state is any	data object hierarchy.	3.0
		3. observable mode of behavior.	
		4.	
		well defined process.	┼
		A field in a table that matches a key field in another table	
		2.	
		A field in a table that contains data that is also contained elsewhere in	
680	Foreign Key is	another table	1.0
	Total Levy to	3.	
		A key that consists of more than one field	
		4.	
		A field in a table that has the same name as a key field in another table	
		1.	
		i=2	
	Frames of 1000 bits are sent over a 10^6 bps duplex link between two hosts. The propagation time is 25ms. Frames are to be transmitted into this link to maximally pack them in transit (within the	2.	
		i=3	
001	link). What is the minimum number of bits, i will be required to represent the sequence numbers distinctly? Assume that no time gap needs to be given between transmission of two frames.	3.	4.0
	distinctly: Assume that no time gap needs to be given between transmission of two frames.	i=4	
		4.	
		i=5	
		1.	
		20	
		2.	
		21	
682	FTP server listens for connection on port number	3.	2.0
		22	
		4.	
		23	
683	Functions that combines to produce $f(x,y)$	1.illumination and frequency 2.intensity and reflectance 3.illumination	4.0
003	Takenonia mat comonica to produce f (inj)	and radiance 4.illumination and reflectance	1
		Consumes less power	
		2.	
		has higher speed	
684	Generally Dynamic RAM is used as main memory in a computer system as it	3.	2.0
		has lower cell density	
		4.	
		needs refreshing circuitry	

S.NO.	Questions	Choices	Answers
		1.	
		waterfall, componet-based, iterative	
		2.	
685	Generic process models are:	waterfall, structural, component-based 3.	4.0
		sequential, waterfall, iterative	
		4.	
		component-based, object-oriented, iterative	
		1.	_
		strstr()	
		2.	
		extract	
686	Given a comma-separated list of values in a string, which function from the given list can create an array of each individual value with a single call in PHP?	3.	3.0
		explode()	
		4.	
		strtok()	
687	Given a hash table T with 25 slots that stores 2000 elements, the load factor a for T is	1.80 <mark>2.0.0125</mark> 3.8000 4.1.25	2.0
		1.	
		substr(\$email, strpos(\$email, "@"));	
		2.	
	Given a variable \$email containing the string user@example.com, which of the following PHP	strstr(\$email, "@");	
688	statements would extract the string example.com?	3.	4.0
		strchr(\$email, "@");	
		4.	
		substr(\$email, strpos(\$email, "@")+1);	
	Given an array that represents elements of arithmetic progression in order. It is also given that one		
	element is missing in the progression, the worst case time complexity to find the missing element efficiently is:	1.theta(n) 2.theta(nLogn) 3.theta(Logn) 4.theta(1)	3.0
690	Given CF=0, BX=00111011 01110101 ROR BX,1. The result is	1.CF=1 BX=10011101 10111010 3.CF=0 BX=01001110 11011101 4.CF=0 BX=01010011 10110111	1.0
		1.	
		An attributes of an entity can have more that one value	
		2.	
		An attribute of an entity can be composite	
691	Given the basic ER and relational models, which of the following is INCORRECT?	3.	3.0
		In a row of a relational table, an attribute can have more than one value	
		4.	
		In a row of a relational table, an attribute can have exactly one value or a NULL value	
692	Given the Code segment CS = 1000H and the offset BX=0050H. Calculated physical address is	1.10000H <mark>2.10050H</mark> 3.11050H 4.11000H	2.0
693	Given the Extra segment ES = 52B9H and the offset BX=D470H. Calculated physical address is	1.60000H 2.70000H 3.11000H <mark>4.11050H</mark>	4.0
694	Given the frequency f=1.5MHZ for 8253 timer the value of time period T is	1.10ms 2.0.66us 3.1ms 4.100ms	2.0
		1.	
		A is a key for R	
		2.	
	Given the functional dependencies, {AB -> CDE and A -> E}, for relation schema R =	BE is a key for R	3.0
093	(A,B,C,D,E) we can infer the following:	3.	
		AB is a key for R	
		4. B is a least for P	
		B is a key for R	

S.NO.	Questions	Choices	Answers
		1.	
		1, 2 and 3	
	Given the language L = {ab, aa, baa}, which of the following strings are in L*?	2.	
	abaabaaabaa	1, 2 and 4	
696	2) aaaabaaaa	3.	2.0
	3) baaaaabaaab 4) baaaaabaa	1, 3 and 4	
		4.	
		2, 3 and 4	
		1.	
		DDL	
		2	
		TCI	
607		TCL	2.0
697	Grant and revoke are statements.	3.	3.0
		DCL	
		4.	
		DML	
		1	-
		1.	
		coaxial cable	
		2.	
698	High speed ethernet works on	twisted pair cable	3.0
098	ringii speed culcinet works on	3.	3.0
		optical fiber	
		4.	
		none of the mentioned	
699	How can we count the number of elements in an array?	1.Using sizeof() 2.count() 3.Writing a user defined function and using array_search() 4.using sizeof() and count()	4.0
700	How can you specify default text in an input field?	1.Using JavaScript 2.Using the 'text' attribute 3.Using the 'placeholder'	4.0
701	How do I create PHP arrays in a HTML ?	element 4.Using the 'placeholder' attribute 1.< input name= MyArray[]/> 2.< input ="MyArray[]" /> 3.< input	3.0
701	now do recede iiii anays iii a iii wiL :	name="MyArray[]" /> 4.< input MyArray[] /> 1.One is not a method of the String object. 2.substr() takes three	5.0
702	How do substring() and substr() differ?	length as an argument. 4.Besides the spelling, nothing.	3.0
703	How do we access the value of 'd' later? $a = array('a', 3 => 'b', 1 => 'c', 'd');$	1.\$a[0] 2.\$a[1] 3.\$a[2] 4.\$a[4]	4.0
704	How do we prevent margins, borders and padding from overlapping?	1.Setting zero paddings and margins 2.By displaying our list as block elements 3.Using table cells 4.By displaying our list as inline elements	2.0
705	How do we submit form data without a Sumbit button?	1.Using header() function 2.Using Javascript 3.Using	4.0
706	How do you check queue is full in array implementation	fdf_set_submit_form_action() fucntion 4.using header() and javascript 1.if(rear==size) 2.if(front==size) 3.if(rear==-1) 4.if(front==-1)	1.0
707	How do you get information from a form that is submitted using the "get" method?	1.Request.QueryString; 2.\$_GET[]; 3.Request.Form; 4.\$_POST[];	2.0
	How is a J-K flip-flop made to toggle? How many bits are required to store one BCD digit?	1.J = 0, K = 0 2.J = 0, K = 1 3.J = 1, K = 0 4.J = 1, K = 1 1.1 2.2 3.3 4.4	4.0
,,,,	The many one are required to dote one DeD digit.	1.	1
		six	
		2.	
		seven	
710	How many diagrams are here in Unified Modelling Language?	3.	4.0
		eight	
		4.	
		nine	2.6
	How many different states does a 3-bit asynchronous counter have? How many flip-flops are required to construct a mod10 counter?	1.2 2.4 <mark>3.8</mark> 4.16 1.10 2.8 3.5 <mark>4.4</mark>	3.0 4.0
713	How many flip-flops are required to make a MOD-32 binary counter?	1.3 2.4 <mark>3.5</mark> 4.6	3.0
714	How many instances of an abstract class can be created?	1.13 2.5 3.1 4.0	4.0
713	How many flip-flops are required to make a MOD-32 binary counter?	1.3 2.4 <mark>3.5</mark> 4.6	

S.NO.	Questions	Choices	Answers
51.10.	Questions	1.	7 KHS WCFS
	How many minimum states are required in a DFA to find whether a given binary string has odd number of 0's	1 2. 2	
	or not, there can be any number of 1's.	3.4.4	2.0
716	How many nodes in a tree have no ancestors.	1.2 2.n <mark>3.1</mark> 4.0	3.0
717	How many operating modes are available in 8253A.	1.1 2.2 <mark>3.6</mark> 4.3	3.0
718	How many transistors does the 8086 have	1.29,000 2.10,000 3.129,000 4.110,000	1.0
	How to create a Date object in JavaScript?	1.dateObjectName = new Date([parameters]) 2.dateObjectName.new	1.0
720	How to create a memory without a name during the execution of the program?	1.malloc() 2.Queue 3.stack 4.list	1.0
721	How will you free the allocated memory?	1.remove(var-name); 2.free(var-name); 3.delete(var-name); 4.dalloc(var-name);	2.0
722	How will you handle the overflow condition of a linked queue through code(note: new_node is a newly created node in a memory)	1.if(rear=size) 2.if(new_node=0) 3.if(front=size) 4.if(new_node=null)	1.0
723	HTTP client requests by establishing a connection to a particular port on the server.	1. user datagram protocol 2. transmission control protocol 3. broader gateway protocol 4. RIP 1.	2.0
724	IC 8237 hasmany pins	40 2. 28 3. 24 4. 20	1.0
725	IC 8257 hasmany channels for data transfer	1. 1 2. 2 3. 3 4.	4.0
726	Identify different segments in a program	1.only code segment 2.data and code segment 3.only data segment 4.data, code, stack and extra segments	4.0
727	Identify the accurate control word for operate counter 0, Read/Write LSB only, Mode 2, BCD countdown.	1.00010111B 2.0001X111B 3.00010101B 4.00110111B	2.0
728	Identify the addressing mode for the instruction MOV AH,47H	1.Immediate addressing mode 2.Direct addressing mode 3.Based addressing mode 4.Indirect addressing mode	2.0
729	Identify the proper data direction and modes of operation of the 8255 ports if the control word written into it is 9BH.	1.Port A as output 2.Port C lower as output 3.Port C upper as input 4.Port B as output	3.0

S.NO.	Questions	Choices	Answers
		1.	
		1024	
		2.	
	If a class B network on the Internet has a subnet mask of 255.255.248.0, what is the maximum	1023	
	number of hosts per subnet?	3.	3.0
		2046	
		4.	
		2047	
	If a class C is derived from class B, which is derived from class A, all through public inheritance,	1.protected and public data only in C and B 2.protected and public data	
	then a class C member function can access	only in C. 3.private data in A and B. 4.protected data in A and B.	4.0
732	If a constructor function is defined in private section of a class, then	1. The object cannot be created 2. Only its member functions and friends may declare objects of the class 3. Only its friends may declare objects of the class 4. Only its member functions may declare objects of the class	2.0
		1.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=1 . 2.CF=0,PF=1,AF=0,ZF=0,SF=1,OF=1	
733	If AL= 7FH and instruction ADD AL,1 is given, specify the contents of the six status flag	3.CF=0,PF=1,AF=1,ZF=O,SF=1,OF=1	4.0
734	If AL=C0H, Determine the content of the register AL after SAL AL,1 instruction is executed.	4.CF=0,PF=0,AF=1,ZF=0,SF=1,OF=0 1.E0H 2.80H 3.0CH 4.0EH	2.0
		1.	
		10	
		2.	
	If all page frames are initially empty, and a process is allocated 3 page frames in real memory and	7	
735	references its pages in the order 1 2 3 2 4 5 2 3 2 4 1 and the page replacement is FIFO, the total	3.	4.0
	number of page faults caused by the process will be	8	
		4	
		9	
		1.	
		Functional Cohesion	
		2.	
		Temporal Cohesion	
736	If all tasks must be executed in the same time-span, what type of cohesion is being exhibited?	3.	2.0
		Functional Cohesion	
		4.	
		Sequential Cohesion	
		1.Class C is friend of Class A 2.Class A is friend of Class C 3.Class A	
737	If class A is friend of class B and if class B is friend of class C, which of the following is true?	and Class C don't have any friend relationship 4. Class A and Class C are	4.0
		mutual friends	
		1.	
		correct.	
		2.	
	If every requirement stated in the Software Requirement Specification (SRS) has only one	unambiguous.	
738	interpretation, SRS is said to be	3.	2.0
		consistent.	
		4.	
		verifiable.	
	If inspected in a browser, what will be the total width of the div in the following code snippet?		\vdash
739	#container { width: 600px; border: 2px solid #CCCCCC; padding: 30px 20px; margin: 20px 10px 40px 10px;}	1.664px 2.660px 3.644px 4.600px	1.0
	··r···	1.	
		regular	
		2.	
		context-free	
740	If L and L' are recursively enumerable, then L is	3.	4.0
		context-sensitive	
		4.	
		recursive	

	Questions	Choices	Answers
(741)	If M1 machine recognizing L with n states, then M2 recognizing L* constructed Using Thompson construction will have states.	1. n 2. n+1 3. n+2 4. n-1	2.0
742	If p and q are assigned the values 2 and 3 respectively then the statement $P = q++$	1.assigns a value 5 to p <mark>2.assigns a value 3 to p</mark> 3.gives an error message 4.assigns a value 4 to p	2.0
743	If para1 is the DOM object for a paragraph, what is the correct syntax to change the text within the paragraph?	1."New Text"? 2.para1.value="New Text"; 3.para1.firstChild.nodeValue= "New Text"; 4.para1.nodeValue="New Text";	2.0
744	If the class name is X, what is the type of its "this" pointer?	1.X* 2.const X* const 3.X& 4.X* const	3.0
745	If the disk size is 2^30 bytes and block size is 2^12 bytes then find how many such blocks are there?	2^42 2. 2^18 3. 2^360 4. 2^30	2.0
746	If the PIC outputs the type number of C8H, the CPU will retrive the vector stored in the address	1.00320H - 00323H 2.00324H - 00327H 3.00223H - 00226H 4.00140H - 00143H	
747	If the size of logical address space is 2 to the power of m, and a page size is 2 to the power of n addressing units, then the high order bits of a logical address designate the page number, and the low order bits designate the page offset.	1. m,n 2. n,m 3. m-n,m 4.	4.0
748	If there are n relations how many number of join conditions has to be applied to retrieve the data from all the n relations?	1. N+1 2. N 3. N-1 4. A Number in the range 0 toN.	3.0
749	If we create a file by 'ifstream', then the default mode of the file is	1.ios :: out 2.ios :: in 3.ios :: app 4.ios :: binary	1.0
750	If X->Y and X->Z then	1. Y->Z 2. Z->Y 3. X->YZ	3.0

S.NO.	Questions	Choices	Answers
		1.	
		True	
		2.	
	To a set of the set of	False	
751	If $x> y$ then $y> x$. This statement is	3.	3.0
		Can't Say	
		4.	
		Doesn't hold	
		1.	
		X> Y	
		2.	
		Y>X	
752	IF Y is a subset of X then	3.	2.0
		Y>> X	
		4.	
		X is a sub set of Y	
753	If you have an empty queue and you insert characters 'r', 'a', 't' (in this order only), what is the order of the characters when you dequeue all the elements?	1.'r', 'a', 't' 2.'t', 'a', 'r' 3.'r', 't', 'a' 4.'t', 'r', 'a'	1.0
		1.	
		multiplication	
		2.	
		addition	
754	IMUL source is a signed	3.	1.0
		subtraction	
		4.	
		division	
755	In 8086 microprocessor one of the following statements is not true	1.Coprocessor is interfaced in MAX mode 2.Coprocessor is interfaced in MIN mode 3.I/O can be interfaced in MAX / MIN mode 4.Supports	2.0
756	In 8086 microprocessor the following has the highest priority among all type interrupts	pipelining 1.TYPE 255 2.DIV 0 3.NMI 4.OVER FLOW	3.0
		1.	
		TRAP	
		2.	
		RST6.5	
757	In 8086, Example for Non maskable interrupts are	3.	1.0
		INTR	
		4.	
		RST6.6	
		1.	-
		always be evaluated	
		2.	
758	In a bottom-up evaluation of a syntax directed definition, inherited attributes can	be evaluated only if the definition is L-attributed	2.0
750		3.	2.0
		be evaluated only if the definition has synthesized attributes	
		4.	
		never be evaluated	
750	To a classical Debug & Black	1. components are arranged hierarchically 2.there is no beginning and no	2.0
/59	In a circular linked list	end 3.forward and backward traversal within the list is permitted 4.components are arranged from top to bottom	2.0

S.NO.	Questions	Choices	Answers
		1.	
		parsing of the program	
		2.	
		the code generation	
760	In a compiler, keywords of a language are recognized during	3.	3.0
		the lexical analysis of the program	
		4.	
		dataflow analysis	
		1.	
		Student credit hours	
		2.	
		Course prerequisites	
761	In a conceptual model for a university, which of the following could most appropriately be represented via a recursive relationship?		2.0
	represented via a recursive relationship?	3.	
		Parking sticker assignments	
		4.	
		Final exam schedules	
		1.A tree has no bridge 2.A bridge cannot be part of a simple cycle	
	In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statements is True?	3.Every edge of a clique with size>=3 is a bridge (A clique is any complete subgraph of a graph) 4.A graph with bridges cannot have a	4.0
	tonowing statements is 11te:	cycle	
		1.	
		from I/O to memory	
		2.	
		from memory to I/O	
763	In a DMA write operation the data is transferred	3.	1.0
		from memory to I/O	
		4.	
		from I/O to I/O	
	In a microprocessor, the service routine for a certain interrupt starts from a fixed location	1.maskable and non-vectored 2.non-maskable and vectored 3.maskable	
	of memory which cannot be externally set, but the interrupt can be delayed or rejected. Such aninterrupt is	and vectored 4.non-maskable and non-vectored	3.0
	•	1.	
		For shortest path routing between LANs	
		2.	
		For avoiding loops in the routing paths	
	In a network of LANs connected by bridges, packets are sent from one LAN to another through intermediate bridges. Since more than one path may exist between two LANs, packets may have to		2.0
	be routed through multiple bridges. Why is the spanning tree algorithm used for bridge-routing?	3.	
		For fault tolerance	
		4.	
		For minimizing collisions	
	In a syntax directed translation schema ,if value of an attribute of a node is function of the values of	1.Inherited attributes 2.Synthesized attributes 3.Canonical attributes	2.0
	the attributes of its children, then it is called	4.Derived attributes	2.0
		11.	
		500 metres of cable.	
		2.	
		200 metres of cable.	
767	In a token ring network the transmission speed is 10^7 bps and the propagation speed is 200 metres/micro second. The 1-bit delay in this network is equivalent to:	3.	3.0
_	medico/micro second. The 1-on delay in this network is equivalent to:	20 metres of cable.	
		4.	
		50 metres of cable.	
			<u></u>
			-

ct for the 'RWX' notation of the order	3. segmentation and page tables are stored in the RAM 4. only page table is stored in cache 1. 1111110001 2. 110111001	1.0
ct for the 'RWX' notation of the order	substantial overhead 2. slow down the computer system considerable 3. segmentation and page tables are stored in the RAM 4. only page table is stored in cache 1. 111110001 2.	1.0
ct for the 'RWX' notation of the order	2. slow down the computer system considerable 3. segmentation and page tables are stored in the RAM 4. only page table is stored in cache 1. 111110001 2. 110111001	1.0
ct for the 'RWX' notation of the order	slow down the computer system considerable 3. segmentation and page tables are stored in the RAM 4. only page table is stored in cache 1. 1111110001 2.	1.0
ct for the 'RWX' notation of the order	3. segmentation and page tables are stored in the RAM 4. only page table is stored in cache 1. 111110001 2.	1.0
ct for the 'RWX' notation of the order	segmentation and page tables are stored in the RAM 4. only page table is stored in cache 1. 1111110001 2. 110111001	
ct for the 'RWX' notation of the order	4. only page table is stored in cache 1. 1111110001 2. 110111001	
ct for the 'RWX' notation of the order	only page table is stored in cache 1. 111110001 2. 110111001	
ct for the 'RWX' notation of the order	1. 1111110001 2. 110111001	
ct for the 'RWX' notation of the order	111110001 2. 110111001	
ct for the 'RWX' notation of the order	2. 110111001	
ct for the 'RWX' notation of the order	2. 110111001	
ct for the 'RWX' notation of the order	110111001	
ct for the 'RWX' notation of the order		
		2.0
	3.	
	001111110	
	4.	
	001110111	
node is located at		4.0
node is located at		3.0
	1.	
	rectangle	
	2.	
	ellipse	
	3.	1.0
	diamond box	
	4.	
	circle	
	1.	├──
	rectangle	
	2.	
	square	3.0
	3.	
	ellipse	
	4.	
	triangle	
s:	1.is twice number of edges 2.is always ODD 3.need not be even 4.must be even	1.0
	1.	
	Zero	
	2.	
	One	
		1.0
perands required for an instruction	3.	
perands required for an instruction	Two	
perands required for an instruction	4.	
perands required for an instruction	Three	
perands required for an instruction		
perands required for an instruction	1.start and stop signalling	
perands required for an instruction		3.0
perands required for an instruction	1.start and stop signalling 2.flow control	3.0
	1.start and stop signalling 2.flow control 3.both (a) and (b)	3.0
	1.start and stop signalling 2.flow control 3.both (a) and (b) 4.none of the mentioned	3.0
	1.start and stop signalling 2.flow control 3.both (a) and (b) 4.none of the mentioned 1.To make sure that it is still complete binary tree possible way 3.Because left and right subtree might be missing	1.0
	1.start and stop signalling 2.flow control 3.both (a) and (b) 4.none of the mentioned 1.To make sure that it is still complete binary tree 2.It is the easiest	
op		

S.NO.	Questions	Choices	Answer
		1.not Null	
		2.Null	
778	In case of entity integrity, the primary key may be	3.a foreign key	1.0
		4.any value	
		1.	
		cannot be a member of the software team	
		2.	
779	3.0	cannot be a customer	2.0
1		3.	
ı		controls and facilitates the process	
		4. must be an outsider	
		1.Major difference between LAN and WAN is that the later uses	
780	In context of OSI or TCP/IP computer network models, which of the following is false?	switching element 2.Network layer is connection oriented 3.A repeater is used just to forward bits from one network to another one 4.A gateway is	2.0
		used to connect incompatible networks	
		1.	
		transpositional ciphers	
		2.	
		substitution ciphers	
781	In cryptography, the order of the letters in a message is rearranged by	3.	1.0
		both (a) and (b)	
		4.	
		none of the mentioned	
		1.	
		Half the baud rate.	
		2.	
		Twice the baud rate.	
782	In Ethernet when Manchester encoding is used, the bit rate is:		1.0
	-	3.	
		Same as the baud rate.	
		4.	
		Grows exponentially	
		1.	
		transmission control protocol	
		2.	
		user datagram protocol	
783	In FTP protocol, client contacts server using as the transport protocol.	3.	1.0
		datagram congestion control protocol	
		4.	
		stream control transmission protocol	
784	In general tree to binary tree conversion, the two links of the binary tree node points to	1.two leaf nodes in the general tree 2.its right child and sibling in the genral tree 3.its left child and sibling in the general tree 4.its left and	4.0
	The state of the s	right child in the general tree	ļ
		1.)	
		multiple HTTP requests are sent on a single TCP connection without waiting for the corresponding responses	
		2.	
785	In HTTP pipelining	multiple HTTP requests can not be sent on a single TCP connection	1.0
		3.	
		multiple HTTP requests are sent in a queue on a single TCP connection	
		4.	
		none of the mentioned	
		1	

S.NO.	Questions	Choices	Answers
786	In interactive environments such as time-sharing systems, the primary requirement is to provide reasonably good response time and in general, to share system resources equitably. In such situations, the scheduling algorithm that is most popularly applied is	Shortest Remaining Time Next (SRTN) Scheduling Priorities Based Preemptive Scheduling Round Robin Scheduling 4.	3.0
		First Come First Serve	
787	In javascript, RegExp Object Method test() is used to search a string and returns	1.true or false 2.found value 3.index 4.Matched or not matched 1.The item is somewhere in the middle of the array 2.The item is not in	1.0
788	In linear search algorithm the Worst case occurs when	the array at all 3.The item is the last element in the array 4.The item is the last element in the array or is not there at all	4.0
789	In max mode, control bus signal So,S1 and S2 are sent out in form	1. shared 2. decoded 3. encoded 4. unshared	3.0
790	In mysql_fetch_array(),if two or more columns of the result have the same field names, what action is taken?	the first column will take precedence the column is skipped the last column will take precedence an error is thrown.	3.0
791	In operator precedence parsing, precedence relations are defoned	1.To delimit the handle 2.For all pair of terminals 3.For all pair of non terminals 4.Only for a certain pair of terminals	3.0
792	In PHP, array values are keyed by values (called indexed arrays) or using values (called associative arrays). Of course, these key methods can be combined as well.	1. Float, string 2. Positive number, negative number 3. String, Boolean 4. Integer, String	4.0
	In PHP, which of the following function is used to insert content of one php file into another php	1.include[] 2.#include() 3.include() 4.#include{}	3.0
794	In Priority Scheduling a priority number (integer) is associated with each process. The CPU is allocated to the process with the highest priority (smallest integer = highest priority). The problem of, Starvation? low priority processes may never execute, is resolved by	1. Terminating the process. 2. Aging 3. Mutual Exclusion 4. Semaphore	2.0
795	In software engineering development, if there are no applicable theories, people often use adhoc approach.	1. True 2. False 3. 4.	1.0

S.NO.	Questions	Choices	Answers
		1.	
	2.0	true	
796	2.0	2.	1.0
		false	
		3. 4.	
		The operand is inside the instruction	
		2.	
		The address of the operand is inside the instruction	
797	In the absolute the addressing mode	3.	1.0
	· ·	The register containing the address of the operand is specified inside the	
		instruction	
		4.	
		The location of the operand is implicit	
		1.view level	
700		2.conceptual level	
798	In the architecture of a database system external level is the	3.logical level	1.0
		4.physical level	
		1.In both AST and CFG, let node N2 be the successor of node N1. In the input program, the code corresponding to N2 is present after the code	
	In the context of abstract-syntax-tree (AST) and control-flow-graph (CFG), which one of the	corresponding to N1 2.For any input program, neither AST nor CFG will	4.0
	following is True?	statement in the input program 4.The maximum number of successors of	
000		a node in an AST and a CFG depends on the input program	
	In the context of object-oriented software engineering a component contains	4.0	4.0
801	In the following code snippet, what is the correct value of the left margin? margin: 10px 5px 20px 15px;	1.10px 2.5px 3.20px 4.15px	4.0
		1.	
		Greater than 100	
		2.	
802	In the multi-programming environment, the main memory consisting of number of	only one	4.0
002	process.	3.	1.0
		Greater than 50	
		4.	
		More than one	
		1.	
ı		uniform resource identifier	
		2.	
803	In the network HTTP resources are located by	unique resource locator	1.0
		3.	
		unique resource identifier	
		4.	
		unique resource identifier	<u> </u>
		1.	
		a file	
		2.	
804	In the operation read_item(x), what does x mean?	a record	4.0
004		3.	
		a disk block	
		4.	
		all of the options	

S.NO.	Questions	Choices	Answers
		1.	
		only the process which has control of the processor is found	
		2.	
805	In the running state	all the processes waiting for I/O to be completed are found	1.0
	in the fullning state	3.	1.0
		all the processes waiting for the processor are found	
		4.	
		everything in these options are found	
		1.	
		does not increase	
		2.	
	In the slow start phase of the TCP congestion control algorithm, the size of the congestion window	increases linearly	
806	in the slow start phase of the TeT congestion control algorithm, the size of the congestion window	3.	4.0
		increases quadratically	
		4.	
		increases exponentially	
		1.	
		In the first loop	
		2.	
		in the first and second loop	
807	In the spiral model 'risk analysis' is performed	3.	3.0
		In every loop	
		4.	
		before using spiral model 1.	
		entire IP packet	
		2.	
		IP header	
808	In tunnel mode IPsec protects the	3.	1.0
		IP payload	
		4.	
		none of the mentioned	
		1.Control Coupling	
809	In what type of coupling, the complete data structure is passed from one module to another?	2.Stamp Coupling	2.0
		3.External Coupling	
		4.Content Coupling	
		1.	
		Absolute	
		2.	
010	To add the addressing and address on the Control of	Immediate	
810	In which addressing mode the operand is given explicitly in the instruction	3.	2.0
		Indirect	
		4.	
		Direct	
		1.Class for which copy constructor is defined 2.Class for which two or	<u> </u>
811	In which case is it mandatory to provide a destructor in a class?	more than two objects will be created 3.Almost in every class 4.Class whose objects will be created dynamically	4.0

S.NO.	Questions	Choices	Answers
		1.	
		active mode	
		2.	
0.1.0		passive mode	
812	In which mode FTP, the client initiates both the control and data connections.	3.	2.0
		active mode and passive mode	
		4.	
		none of the mentioned	
813	In which topology, if there are n devices in a network, each device has n-1 ports for cables?	1.Mesh 2.Star 3.Ring 4.Bus	1.0
		1.	
		1978	
		2.	
014	In which were 2006 over intended 19	1979	1.0
814	In which year, 8086 was introduced?	3.	1.0
		1977	
		4.	
		1981	
		1.	
		TRUE	
815	2.0	2.	1.0
		FALSE	
		3. 4.	
		1.	
		multiple access point are inter-connected with each other	
		2.	
		there is no access point	
816	In wireless distribution system	3.	1.0
		only one access point exists	
		4.	
		none of the mentioned	
		1.	-
		connected basic service sets	
		2.	
817	In wireless network an extended service set is a set of	all stations	1.0
		3.	
		all access points	
		4.	
		all nodes	
		1.	
		Floppy disk	
		2.	
		Magnetic tape	
818	Information retrieval is faster from	3.	3.0
		Hard disk	
		4.	
		CD	

010		1. missing Select keyword	
010		missing Select keyword	
010			
910		2.	
819 II	nsert into Emp(101, 'XXX') gives the following error	Missing Values	2.0
		3.	
		both of the errors	
		4.	
		No of the errors	
		1.	
i	nt main()	x=100,y=200	
1	int x,y;	2.	
	x=(100,200);	x=200,y=200	
820	y=100,200;	3.	4.0
	printf("x=%d,y=%d",x,y);	ERROR	
 	return 0;	4.	
} F	rind the output	x=200,y=100	
\dashv		1.	
		Sequence Diagram + Collaboration Diagram	
		2.	
		Activity Diagram + State Chart Diagram	
821 I	nteraction Diagram is a combined term for	3.	1.0
		Deployment Diagram + Collaboration Diagram	
		4.	
		None	
_		1moz-opacity:x 2.filter: alpha(opacity=x) 3.filter: beta(opacity=x) 4	
822 I	nternet Explorer uses property to create transparent images.	IE-opac:y	2.0
823 I	nterpolation search is an improved variant of binary search. t is necessary for this search algorithm to work that data collection should be	1.in sorted form and equally distributed 2.in sorted form and but not equally distributed 3.equally distributed but not sorted 4.unsorted and not	1.0
	t is necessary for this search algorithm to work that data confection should be	evenly distributed 1.	
		transport layer	
		2.	
		network layer	
824 I	PSec is designed to provide the security at the	3.	2.0
		application layer	
		4.	
		session layer	
825 I	t is difficult to design asynhronous sequential circuit because.	1.External clock is to be provided 2.It is using Flip flops 3.It is more complex 4.Generally they involve stability problem	4.0
		1.	
		True	
826 I	t is ok to have a single ideal approach to develop a software.	2.	2.0
		False	
\dashv		3. 4.	<u> </u>
		1.	
		False	
827 I	t would be ideal if all of computer science theories can be used in software engineering.	2.	2.0
		True	
		3. 4.	1
828 J	avaScript RegExp Object has modifier 'i' to	1.Perform case-sensitive matching 2.Perform case-insensitive matching 3.Perform both case-sensitive & case-insensitive matching 4.None of the	2.0

S.NO.	Questions	Choices	Answer
		1. Cartesian Product	
829	Join is equal to	Combination of Union and Cartesian productCombination of selection and Cartesian product	3.0
		4. Combination of intersection and Cartesian product	
830	K-map follow following code for marking adjacent variables	1.84-2-1 2.Gray Code 3.2421 4.8421	2.0
	Let G be a weighted connected undirected graph with distinct positive edge weights. If every edge	1. P Only 2.	
	weight is increased by the same value, then which of the following statements is/are TRUE? P: Minimum spanning tree of G does not change. Q: Shortest path between any pair of vertices does not change	Q Only 3. Neither P nor Q	1.0
		4. Both P and Q 1.	
832	Let E1 and E2 be two entities in an E/R diagram with simple single-valued attributes. R1 and R2 are two relationships between E1 and E2, where R1 is one-to-many and R2 is many-to-many. R1 and R2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relational model?	2 2. 3 3. 4 4. 5	2.0
833	Let G be a graph with n vertices and m edges, What is the tightest upper bound on the running time on Depth First Search of G? Assume that the graph is represented using adjacency matrix	1.O(n) 2.O(m+n) 3.O(mn) 4.O(n^2)	4.0
834	Let G be the CFG, I be the number of left most derivations, r be the number of right most derivations and P be the number of parse trees. Assume I, r and P are computed for a particular string. For a given CFG 'G' and given string 'w', what is the relation between I, P, r?	1. =P=r 2. <=P>=r 3. >=P<=r 4. <=P<=r	1.0
835	Let $G(x)$ be the generator polynomial used for CRC checking. What is the condition that should be satisfied by $G(x)$ to detect odd number of bits in error?	1. G(x) contains more than two terms 2. G(x) does not divide 1+x^k, for any k not exceeding the frame length 3. 1+x is a factor of G(x) 4. G(x) has an odd number of terms.	3.0

S.NO.	Questions	Choices	Answers
		1.	
		L1' is recursive and L2' is recursively enumerable	
		2.	
	Let L1 be a recursive language, and let L2 be a recursively enumerable but not a recursive language. Which one of the following is TRUE?	L1' is recursive and L2' is not recursively enumerable	
836	L1'> Complement of L1	3.	2.0
	L2'> Complement of L2	L1' and L2' are recursively enumerable	
		4.	
		L1' is recursively enumerable and L2' is recursive	
	Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot,	·	
837		1.t1=5 2.t1>t2 3.t1 4.t1=t2	2.0
838	Let $T(n)$ be the function defined by $T(n) = 1$ and $T(n) = 2T(n/2) + n$,	$1.T(n) = O(n) 2.T(n) = O(\log_{2}n) \frac{3.T(n) = O(n)}{4.T(n)} 4.T(n) = O(n2)$	3.0
050	which of the following is TRUE ?	1.	3.0
		n+1	
		2.	
839	Let w be any string of length n is {0,1}*. Let L be the set of all substrings of w. What is the minimum number of	n	1.0
657	states in a non-deterministic finite automaton that accepts L?	3.	1.0
		n-1	
		4.	
		2n+1	
		1.Peephole optimization 2.DFA and Constant folding 3.Basic Code	
840	Local and loop optimization in turn provide motivation for	Analysis 4.Data flow analysis .	4.0
841	LOCK prefix is used most often	1.during normal execution. 2.during DMA accesses 3.during interrupt servicing. 4.during memory accesses	3.0
842	Logical addressing is used in layer	1.Network 2.Transport 3.Physical 4.Session	1.0
		1.	
		rely basis path testing	
	1.0	2.	
843	1.0	exercise the logical conditions in a program module	2.0
		3.	
		select test paths based on the locations and uses of variables 4.	
		focus on testing the validity of loop constructs	
		1.	
		backup and low volume data	
		Landard High control day	
0.1.1		backup and high volume data	
844	Magnetic tapes are good storage media for	3.	2.0
		storing original but low volume data	
		4.	
		storing original but high volume data	
845	Manager salary details are hidden from the employee. This is	1. Conceptual level data hiding 2. Physical level data hiding 3. External	1.0
		level data hiding 4.None of mentioned 1.	
		TRUE	
846	1.0	2.	2.0
		FALSE	
		3. 4.	
		P* **	1
ł			

.NO.	Questions	Choices	Answer
		1.	
		P-4. Q-1, R-2, S-3	
		2.	
	Match all items in Group 1 with correct options from those given in Group 2.	P-3, Q-1, R-4, S-2	
347	Group 1 Group 2 P. Regular expression 1. Syntax analysis	r-5, Q-1, R-4, 5-2	2.0
, ,	Q. Pushdown automata 2. Code generation	3.	2.0
	R. Dataflow analysis 3. Lexical analysis S. Register allocation 4. Code optimization	P-3, Q-4, R-1, S-2	
		4.	
		P-2, Q-1, R-4, S-3	
		1-2, Q-1, R-4, 3-3	
		1.	
	Match the following:	a	
	List-I List-II A. Lexical analysis 1. Graph coloring	2	
	B. Parsing 2. DFA minimization		
848	C. Register allocation 3. Post-order traversal D. Expression evaluation 4. Production tree	b e e e e e e e e e e e e e e e e e e e	2.0
546	Codes:	3.	2.0
	A B C D	c	
	(a) 2 3 1 4 (b) 2 1 4 3	4	
	(c) 2 4 1 3	i.	
	(d) 2 3 4 1	d	
849	Memory elements in clocked sequential circuits are called.	1.latches 2.gates 3.signals 4.flipflop	4.0
		1.	
		Read only memory	
		2.	
850	Memory unit accessed by content is called	Programmable Memory	4.0
350	vicinity unit accessed by content is canced	3.	7.0
		Virtual Memory	
		4.	
		Associative Memory	
	Mode of communication in which transmission takes place in both directions, but only in one	1.simplex 2.four wired 3.full duplex 4.half-duplex	4.0
\dashv	direction at a time is called	1.	
		adaptive maintenance	
		2.	
		corrective maintenance	
352	Modifying the software to match changes in the ever changing environment is called	3.	1.0
		perfective maintenance	
		4.	
		preventive maintenance	
_		1.)	-
		Component reuse is common in the software world.	
		2.	
		4.0Reusable components are too expensive to use.	
353	Most software continues to be custom built because	3.	1.0
		Software is easier to build without using someone else's components	
		4.	
		Off-the-shelf software components are unavailable in many application	
		domains.	1
		domains.	1

S.NO.	Questions	Choices	Answers
		Optical Mark Reader 2.	
854	Multiple choice examination answer sheets can be evaluated automatically by	Optical Character Reader 3.	1.0
		Magnetic tape reader 4.	
		Magnetic ink character reader. 1.	
		persistent HTTP 2.	
855	Multiple object can be sent over a TCP connection between client and server in	nonpersistent HTTP 3.	1.0
		both persistent HTTP and nonpersistent HTTP 4. p-persistent HTTP	
856	Multiple variable declaration of same data type can be avoided by?	1.array 2.identifiers 3.functions 4.Pointer	1.0
	,	1. frame filter 2.	
857	Network layer firewall works as a	packet filter 3.	2.0
		both (a) and (b) 4. none of the mentioned	
858	Network models are complicated by physical keys, but the relation model is	1.Slower because it uses logical keys 2.Slower because it uses physical keys 3.Faster because it uses physical keys 4.Faster because it uses logical keys	4.0
859	Network operating system that does not support symmetric multi-processing (SMP) is	1.Banyan (VINES) 2.Microsoft NT advanced server 3.SCO Unix 4.Novell Network 3.X	4.0
860	NOR Gate does NOT follow	1.DeMorgan's Theorem 2.Associative Law 3.Commutative Law 4.Distributive Law	4.0
861	Normalisation of database is used to	Minimise Errors 2.Improve Security 3.Eliminate redundancy Himprove security	3.0
	Number of the times the instruction sequence below will loop before coming out of loop is, MOV AL, 00h A1: INC AL JNZ A1	1.255 2.01 3.00 <mark>4.256</mark>	4.0
		Object Database Connectivity. 2.	
863	ODBC stands for	Oral Database Connectivity. 3.	4.0
		Oracle Database Connectivity. 4. Open Database Connectivity.	
864	One application of a digital multiplexer is to facilitate:	1.data generation 2.serial-to-parallel conversion 3.data selector 4.parity checking	1.0
		1. unit testing. 2.	
865	One of the fault base testing techniques is	beta testing. 3.	4.0
		Stress testing. 4. mutation testing.	
		1	

S.NO.	Questions	Choices	Answers
		1.	
		It can be used to priortize packets	
		2.	
866	One of the header fields in an IP datagram is the Time to Live (TTL) field. Which of the following	It can be used to reduce delays	4.0
800	statements best explains the need for this field?	3.	4.0
		It can be used to optimize throughput	
		4.	
		It can be used to prevent packet looping	
867	One of the main advantage of using src attribute is	1.It becomes self-cached 2.It makes the HTML file modular 3.It restricts	4.0
		manipulation in the HTML file 4.It simplifies the HTML files 1.	
		make parsing and semantic analysis simpler	
		2.	
		improve error recovery and error reporting	
868	One of the purposes of using intermediate code in compilers is to	3.	3.0
000	one of the purposes of using intermediate code in complete to to	increase the chances of reusing the machine-independent code optimizer	3.0
		in other compilers.	
		4.	
		improve the register allocation.	
0.60		1.reference parameter has to be returned 2.binary addition requires that	2.0
869	overloading + operator requires return type as object because,	3.all overloading functions require that 4.chain of additions	3.0
870	Overloading involves writing two or more functions with	1.different names and different argument lists 2.different names and the same argument list 3.the same name and different argument lists, 4.the same name and the same argument list	3.0
871	Overloading the function operator	1.usually make use of a constructor that takes arguments. 2.allows you to create objects that act syntactically like functions. 3.requires a class with	3.0
0/1	Overloading the function operator	an overloaded operator. 4.requires a class with an overloaded [] operator.	
		1.	
		TCP, but not UDP	
		2.	
972	Packets of the same session may be routed through different paths in:	TCP and UDP	2.0
672	rackets of the same session may be found unough different pants in.	3.	2.0
		UDP, but not TCP	
		4.	
		Neither TCP nor UDP	
		1.	
		solves the memory fragmentation problem	
		2.	
		allows modular programming	
873	Paging	3.	1.0
		allows structured programming	
		4.	
		avoids deadlock	
		1.)	-
		Many-to-one model	
		2.	
874	Parallelism and concurrency is fully achieved in which of the following thread model	Many-to-many	1.0
0/4		3.	
		one-to-one model	
		4.	
ı		All the models	

S.NO.	Questions	Choices	Answers
		1.	
		Mapping Mappin	
		2.	
875	Passing the request from one schema to another in DBMS architecture is called as	Communication	1.0
675	a assing the request from one schema to another in Dibbis architecture is called as	3.	1.0
		Relational	
		4.	
		network	
876	Pee hole optimization	1.Local optimization 2.Loop optimization 3.Constant folding 4.Data flow analysis	3.0
		1.	
		true	
877	2.0	2.	4.0
		false	
		3. 4. 1.	
		mechanical specifications of electrical connectors and cables	
		2.	
		electrical specification of transmission line signal level	
878	Physical layer provides	3.	4.0
		specification for IR over optical fiber	
		4.	
		all of the mentioned	
		1.	
		1	
	Pick an incorrect declaration:	2	
	1. int x[5];	2	
	2. int x[5]={1,2,3,4,5};	3.	4.0
	3. int $x[5] = \{1,2\}$	3	
		4.	
		4	
880	Pick the odd one out.	1.[] 2.() <mark>3.::</mark> 4.~	3.0
		Coupling objects together more tightly	
		2.	
881	Polymorphism reduces the effort required to extend an object system by	2.0enabling a number of different operations to share the same name.	4.0
		making objects more dependent on one another	
		4. removing the barriers imposed by encapsulation.	
882	Popular application of flip-flop are.	1.Shift registers 2.Transfer register 3.Counters 4.All of these	4.0
883	Postorder Tree travsersal is recursive	1.LDR <mark>2.LRD</mark> 3.DLR 4.DRL 1.Value is =1250 2.	2.0
	PREDICT THE OUTPUT:	Value is =80	
	#include <stdio.h></stdio.h>	3.	
884	void main() {	Value is =125	2.0
	int a=10,b=2,x=0; x=a+b*a+10/2*a;	4.	
	printf("value is =%d",x);	Error	
	Prim's algorithm is a method available for finding out the minimum cost of a spanning tree.		
885	Its time complexity is given by:	1.O(1) 2.O(n*n) 3.O(n logn) 4.O(n)	3.0
		1.	
006	Decree of the control	true	2.0
886	Program flow graphs are identical to program flowcharts.	2.	2.0
		false	
		3. 4.	1

	Questions	Choices	Answers
		l.	
		interrupt recognized	
		2.	
		execution of RST instruction	
887	PSW is saved in stack when there is a	3.	1.0
		Execution of CALL instruction	
		4.	
		All of these	
\dashv		1.	
		TRUE	
888	Quantitative methods for assessing the quality of proposed architectural designs are readily	2.	2.0
000	available.		2.0
		FALSE	
\dashv		3. 4. 1.	
		Relational Algebra	
		2.	
		Tuple Relational Calculus	
889	Query Tree uses		4.0
		3.	
		Domain Relational Calculus	
		4.	
		All of the options	
	Relations produced from an E - R model will always be in Relocating bits used by relocating loader are specified by	1.3 NF 2.B CNF 3.2 NF 4.1 NF 1.Relocating loader itself 2.Linker 3.Assembler 4.Macro processor	2.0
071	to the control of the	1.	2.0
		FIFO Page replacement algorithm	
		2.	
		Optimal Page replacement algorithm	
892	Replace the page that has not be used for the longest period of time. This principle is adopted by	3.	4.0
ľ		Round robin scheduling algorithm	
		4.	
		LRU Page replacement algoorithm	
		1.	
		Allows multiple tasks to simultaneously use resource	
		2.)	
_		Forces only one task to use any resource at any time	
893	Resource locking	3.	2.0
		Can easily cause a dead lock condition	
		4.	
		Is not used for disk drives	
\dashv		1.	
		Client	
		2.	
ı	Risk management is one of the most important jobs for a	Investor	4.0
894		3.	
894		Production team	
894			
894		4.	
894		4. Project manager	
20.5	Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format. The main program is loaded into memory & is executed. This type of loading is called		3.0

S.NO.	Questions	Choices	Answers
		1.	
		Static loading	
		2.	
	Routine is not loaded until it is called. All routines are kept on disk in a relocatable load format.	Dynamic loading	
896	The main program is loaded into memory & is executed. This type of loading is called	3.	3.0
		Dynamic linking	
		4.	
		Overlays	
007		1.friend function 2.virtual function 3.operator overloading 4.function	2.0
897	Run time polymorphism is achieved by	overloading	2.0
		All palindromes	
		2.	
909	S -> aSa bSb a b; The language generated by the above grammar over the alphabet {a,b} is the set of	All odd length palindromes.	2.0
090	5 -> asa oso a o; The language generated by the above grammar over the alphabet {a,b} is the set of	3.	2.0
		Strings that begin and end with the same symbol	
		4.	
		All even length palindromes	
		1.	
		true	
899	1.0	2.	2.0
		false	
		3. 4.	
		1.	
		Displays the department ID along with the average salary of employees	
		in each department if their average of salary is greater than 8000.	
		2.	
900	SELECT department_id, AVG(salary) FROM employees WHERE AVG(salary) > 8000 GROUP	Displays a error	2.0
	BY department_id	3.	
		Displays the department ID along with the average salary of employees	
		4.	
		None of the options	
		1.	
		Displays a error	
		2.	
		Displays the department ID along with the number of employees in each	
901	SELECT department_id, COUNT(last_name) FROM employees;	department.	2.0
		3.	
		None of the options	
		4.	
		Dsiplays department ID and a null value	
		1.	
		Displays the employee_id and name of employees who gets minimum	
		salary in their department	
		2.	
902	SELECT employee_id, last_name FROM employees WHERE salary = (SELECT MIN(salary) FROM employees GROUP BY department_id);	Error	1.0
	. Non employees erecer by department_ta),	3.	
		None of the options	
		4.	
		Displays the employee_id, name of employees and their salary	

s.no.	Questions	Choices	Answers
		1.	
		Displays number of days an employee has worked in the company.	
		2.	
903	SELECT last_name, SYSDATE-hire_date FROM employees;	Displays number of months an employee has worked in the company.	1.0
903	SELECT last_name, \$15DATE-nire_date FROW employees,	3.	1.0
		Error	
		4.	
		None of the mentioned	
		1.	
		the selection operation in relational algebra	
		2.	
		the selection operation in relational algebra, except that select in SQL	
904	Select operation in SQL is equivalent to	retains duplicates	4.0
704	select operation in SQL is equivalent to	3.	7.0
		the projection operation in relational algebra	
		4.	
		the projection operation in relational algebra, except that select in SQL retains duplicates	
			<u> </u>
		1.	
		r1(x), w2(y)	
		2.	
005	Colored and Colored and Colored	r1(x), w1(x)	2.0
905	Select the conflicting operation:	3.	3.0
		w1(y), w2(x)	
		4.	
		r1(x), $w2(x)$	
906	SELECT THE HIGHEST PRIORITY OPERATOR	1.&& 2., 3.?: 4.++	4.0
907	Shift reduce parsers are	1. Vertical parser 2.top down and bottom up parser 3. Bottom up parser 4. Top down parser	3.0
908	Simple network management protocol (SNMP) is implemented with a daughter board in	1.the nodes 2.the server 3.the hubs 4.a separate PC that managers the	3.0
	Skewed binary trees can be efficiently represented using	1.Arrays 2.Linked lists 3.Stacks 4.Queues	2.0
	7 1 2	1.	
		True	
910	2.0	2.	1.0
		False	
		3.4.	
011	C. Denne and in the land of th	True	1.0
911	Software engineering includes system engineering.	2.	1.0
		False	
		3. 4. 1.Customer visible usage scenarios	1
		2.	
912	4.0	Important software features	2.0
914		3.System inputs and outputs 4.	2.0
		ALL	
		1.	
		True	
913	Software is a product and can be manufactured using the same technologies used for other	2.	2.0
,13	engineering artifacts.		2.0
		False	
		3. 4.	

S.NO.	Questions	Choices	Answer
		1.	
		true	
	Software validation is achieved through a series of tests performed by the user once the software is deployed in his or her work environment.	2.	2.0
		false	
		3. 4.	
		1.	
		they enhance the portability of the compiler to other target processors	
		2.	
		program analysis is more accurate on intermediate code than on machine code	
915	Some code optimizations are carried out on the intermediate code because	3.	1.0
		the information from dataflow analysis cannot otherwise be used for optimization	
		4.	
		the information from the front end cannot otherwise be used for	
		optimization	
916	Some code optimizations are carried out on the intermediate code because	1. The information from data flow analysis cannot otherwise be used for optimization 2. They enhance the portability of the complier to other target processors 3. The information from the front end cannot otherwise be used for optimization 4. Program analysis is name accurate on intermediate code than on machine code	2.0
917	Specify the 2 library functions to dynamically allocate memory?	1.alloc() and memalloc() 2.malloc() and calloc() 3.memalloc() and	2.0
		faralloc() 4.malloc() and memalloc() 1.	
		join operation done on a non-key attribute	
		2.	
		outer join operation	
918	Spurious tuples are formed because of		1.0
		3.	
		transitive dependencies	
		4.	
		inner join	
		1.	
		White box testing	
		2.	
		Stress testing	
919	SRS is also known as specification of	3.	4.0
		Integrated testing	
		4.	
		Black box testing	
		-	
		1.	
		12	
		2.	
	Station A needs to send a message consisting of 9 packets to Station B using a sliding window (window size 3) and go-back-n error control strategy. All packets are ready and immediately	14	
920	available for transmission. If every 5th packet that A transmits gets lost (but no acks from B ever	3.	3.0
	get lost), then what is the number of packets that A will transmit for sending the message to B?	16	
		4.	
		T-	
		18	

S.NO.	Questions	Choices	Answer
		1.	
		2.	
921	Station A uses 32 byte packets to transmit messages to Station B using a sliding window protocol. The round trip delay between A and B is 80 milliseconds and the bottleneck bandwidth on the path	3.	2.0
	between A and B is 128 kbps. What is the optimal window size that A should use?		
		160	
		4.	
		320	
		1.	
	2.0	true	
922	2.0	2.	4.0
		false	
022		3. 4.	1.0
923	String length is found by the condition Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements.	1.str[i]!=NULL 2.str[i]!=sizeof(str) 3.str[i]>='\0' 4.str[i]!='\0'	4.0
924	Assume that the insertion and deletion operation are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	REAR == FRONT, empty: (REAR+1) mod n == FRONT 3.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR 4.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT	4.0
925	Suppose a circular queue of capacity $(n-1)$ elements is implemented with an array of n elements. Assume that the insertion and deletion operation are carried out using REAR and FRONT as array	1.Full: (REAR+1) mod n == FRONT, empty: REAR == FRONT2.Full: (REAR+1) mod n == FRONT, empty: (FRONT+1) mod n == REAR	1.0
923	index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect queue full and queue empty are	3.Full: REAR == FRONT, empty: (REAR+1) mod n == FRONT 4.Full: (FRONT+1) mod n == REAR, empty: REAR == FRONT	1.0
	Suppose P, Q, R, S, T are sorted sequences having lengths 20, 24, 30, 35, 50 respectively. They		
926	are to be merged into a single sequence by merging together two sequences at a time, The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.672 2.740 3.358 4.354	3.0
927	Suppose P, Q, R, S, T are sorted sequences having lengths 20,24,30,35,50 respectively. They are to be merged into a single sequence by merging together two sequences at a time. The number of comparisons that will be needed in the worst case by the optimal algorithm for doing this is	1.368 2.338 3.348 4.358	4.0
		1.	
		94	
		2.	
020	Suppose the round trip propagation delay for a 10 Mbps Ethernet having 48-bit jamming signal is	416	4.0
928	46.4 micro sec. The minimum frame size is:	3.	4.0
		464	
		4.	
		512	
929	Suppose x is dead, that is, never subsequently used, at the point where the statement x=y+z appears in a basic block. Then this statement may be safely removed without changing the value of the basic block. This transformation is known as	1.Common subexpression elimination 2.Dead code elimination 3.Renaming temporary variables 4.Loop invarient	2.0
930	Suppose you want to delete the name that occurs before 'Vellore' in an alphabetical listing. Which of the following data structures shall be most efficient for this operation?	1.Circular linked list 2.Dequeue 3.Linked list 4.Doubly linked list	2.0
\neg	dual of most entered the operation.	1.	
		True	
931	Symantec Antivirus is a customized product.	2.	2.0
		False	
		3. 4.	
932	Synchronous counters eliminate the delay problems encountered with asynchronous (ripple) counters because the.	1. input clock pulses are applied simultaneously to each stage 2. input clock pulses are applied only to the first and last stages 3. input clock pulses are applied only to the last stage 4. input clock pulses are not used to activate any of the counter stages	4.0
933	Syntax for creating a RegExp object: (i). var txt=new RegExp(pattern,modifiers); (ii). var	1.(i) only 2.(ii) only 3.Both (i) and (ii) 4.None of these	3.0
934	txt=/pattern/modifiers; Which of the above mentioned syntax is correct? Synthesized attribute can be easily simulated by a	1.LR grammar 2.Ambiguous grammar 3.LL grammar 4.LF grammer	1.0
		1.	
		to see how well the system supports their work	
		2.	
		to start working on the system	
935	System prototypes allow users	3.	1.0
		to put the system to production	
		4.	
		to program the software	
			1

.NO.	Questions	Choices	Answer
		1.	
		State diagram	
		2.	
		Activity diagram	
936	System reactions to external events is depicted by	3.	1.0
		Usecase diagram	
		4.	
		Sequence diagram	
		1.	
	2.0	TRUE	
937	2.0	2.	1.0
		FALSE	
		3. 4.	_
		1.	
	1.0	true	
938	1.0	2.	1.0
		false	
		3. 4.	
		1.	
	1.0	True	
939	1.0	2.	3.0
		False	
	Theis neither an input nor an output; it is an internal bit programmed via the PC4(Port A) or	3. 4.	
240	PC2(Port B)bits	1.IFB 2.INTR 3.INTE 4.NMI	3.0
941	The instruction is used to specify the number of stop bits, data bits,parity bit, and baud rate clock factor for the 8251 UART	1.bit set/reset 2.Mode 3.Command 4.Code	2.0
		1.	
		1 Kbyte	
		2.	
		64 Kbyte	
942	The 1 MB byte of memory can be divided into segment	3.	2.0
		33 Kbyte	
		4.	
		34 Kbyte	
		1.	
		the condition of result of ALU operation	
		2.	
042		the condition of memory	1.0
943	The 16 bit flag of 8086 microprocessor is responsible to indicate	3.	1.0
		the result of addition	
		4.	
		the result of subtraction	
-	The 16-bit data segment value is 1000H and the offset is 2000H. calculated physical address is		+
944	-	1.10000Н 2.11000Н 3.12000Н 4.12500Н	3.0
744		1	
	The 16-bit stack segment value is 5D27H and the offset is 2C30H. calculated physical address is	1.5FFEOH 2.5FAE0H 3.5FEA0H 4.12500H	3.0

S.NO.	Questions	Choices	Answers
		1. internal 2. data	
946		3. external 4. address	3.0
947	The translates internet domain and host names to IP address.	1. domain name system 2. routing information protocol 3. network time protocol 4. internet relay chat	1.0
948	The method of an Array object adds and/or removes elements from an array.	1. Slice 2. Reverse 3. Shift 4. Splice	4.0
949	Theensures that only one IC is active at a time to avoid a bus conflict caused by two ICs writing different data to the same bus	1.control bus 2.control instructions 3.address decoder 4.CPU	3.0
	The property specifies the stack order of an element	1.d-index 2.s-index 3.x-index 4.z-index	4.0
951	The access method used for magnetic tape is	1. Direct 2. Random 3. Sequential 4. None of these	3.0
952	The address resolution protocol (ARP) is used for:	1. Finding the IP address using DNS 2. Finding the IP address of the default gateway 3. Finding the IP address that corresponds to a MAC address 4. Finding the MAC address that corresponds to an IP address	4.0
953	The advantage of DBMS over file systems is	1. redundancy 2. data dependence 3. multiple user 4. single user	1.0

1.0 1. data, hardware, software, people 2. data, documentation, hardware, software 3. data, hardware, software, procedures 4.documentation, hardware, people, procedures 1. base 64 encoding 2. base 32 encoding 3. base 16 encoding 4. base 8 encoding 1. seek time	1.0
1.0 2. data, documentation, hardware, software 3. data, hardware, software, procedures 4.documentation, hardware, people, procedures 1. base 64 encoding 2. base 32 encoding 3. base 16 encoding 4. base 8 encoding 1.	
954 1.0 data, documentation, hardware, software 3. data, hardware, software, procedures 4.documentation, hardware, people, procedures 1. base 64 encoding 2. base 32 encoding 3. base 16 encoding 4. base 8 encoding 1. 1. base 8 encoding 1. base 8 encoding 1. base 8 encoding	
data, documentation, hardware, software 3. data, hardware, software, procedures 4.documentation, hardware, people, procedures 1. base 64 encoding 2. base 32 encoding 3. base 16 encoding 4. base 8 encoding 1.	
data, hardware, software, procedures 4.documentation, hardware, people, procedures 1. base 64 encoding 2. base 32 encoding 3. base 16 encoding 4. base 8 encoding 1.	1.0
4.documentation, hardware, people, procedures 1. base 64 encoding 2. base 32 encoding 3. base 16 encoding 4. base 8 encoding 1.	1.0
955 The ASCII encoding of binary data is called The ASCII encoding of binary data is called The ASCII encoding of binary data is called 3. base 16 encoding 4. base 8 encoding 1.	1.0
2. base 32 encoding 3. base 16 encoding 4. base 8 encoding 1.	1.0
base 32 encoding The ASCII encoding of binary data is called The ASCII encoding of binary data is called 3. base 16 encoding 4. base 8 encoding 1.	1.0
The ASCII encoding of binary data is called 3. base 16 encoding 4. base 8 encoding 1.	1.0
The ASCII encoding of binary data is called 3. base 16 encoding 4. base 8 encoding 1.	1.0
4. base 8 encoding 1.	
4. base 8 encoding 1.	
base 8 encoding 1.	
1.	
seek time	
2.	
The average time required to reach a storage location in memory and obtain its contents is called turnaround time	
the the 3.	3.0
access time	
4.	
transfer time	
1.	
Bucket Hash	
2.	
Quad tree 957 The best index for exact match query is	1.0
3.	
B Tree	
4.	
B+ Tree	
1.software developers do not need to do any test	
2.a test team will test the software more thoroug	
958 3.testers do not get involved with the project unt	til testing begins 4.0
4.arguments between developers and testers are	reduced
1.	
examine the system model for errors	
2.	
have the customer look over the requirements	
959 4.0	2.0
send them to the design team and see if they hav	ve any concerns
4.	c any concerns
	uirement
use a checklist of questions to examine each req	unoncut
8	
2.	
6	
960 The BIU contains FIFO register of size bytes 3.	2.0
4	
4.	
12	

S.NO.	Questions	Choices	Answers
		1.	
		queue	
		2.	
		register	
961	The BIU prefetches the instruction from memory and store them in	3.	1.0
		memory	
		4.	
		stack	
		1.ppears inside the definition of the derived class constructor 2.appears	
962	The call to the parameterized constructor of base class in the derived class	in the member initialization list of the derived class constructor 3.appears inside the definition of the derived class 4.appears at the statement where	4.0
		the derived class object is created	
		1.ppears inside the definition of the derived class constructor 2.appears	
963	The call to the parameterized constructor of base class in the derived class	in the member initialization list of the derived class constructor 3 appears inside the definition of the derived class 4 appears at the statement where	4.0
		the derived class object is created	
964	The combination of Sixteen adjacent squares in four variable K-map represent the function equal to	1.Four literal 2.One literal 3.Unity 4.Zero	3.0
965	The counters of 8253 can be operated in modes of operation.	1.4 2.3 3.6 4.5	3.0
		1.	
		cycles in the program	
		2.	
		errors in the program	l
966	The cyclomatic complexity metric provides the designer with information regarding the number of	2	4.0
		3.0independent logic paths in the program	
		4.	
		statements in the program	
967	The data structure required for Breadth First Traversal on a graph is	1.tree 2.array 3.stack 4.queue	4.0
	THE DATA TYPE IS ALL ABOUT	1.NAME VALUE ADDRESS 2.BITS BYTES WORD 3.SIZE LIMITS	4.0
		RESTRICTIONS 4.TYPE SIZE RANGE	
969 970	The decimal equivalent of hexadecimal number of 'A580' is The default copy constructor performs	1.43286 2.42368 3.43288 4.48632 1.Deep Copy 2.Shallow Copy 3.Soft Copy 4.Hard Copy	2.0
	The degree sequence of a simple graph is the sequence of the degrees of the nodes in the graph in		
971	decreasing order. Which of the following sequences can not be the degree sequence of any graph? I. 7, 6, 5, 4, 4, 3, 2, 1 II. 6, 6, 6, 6, 3, 3, 2, 2 III. 7, 6, 6, 4, 4, 3, 2, 2 IV. 8, 7, 7, 6, 4, 2, 1, 1	1.IV only 2.III and IV 3.I and II 4.II and IV	4.0
		1.	
		Architectural design	
		2.	
		Lateration desires	
972	The design process related to data structures and their representation is	Interface design	4.0
		3.	
		Component design	
		4.	
		Database design	
		1.A record form a hierarchical structure but a linear array does not 2.All	1
973	The difference between linear array and a record is	of above 3.An array is suitable for homogeneous data but the data items	3.0
	•	in a record may have different data type 4.In a record, there may not be a natural ordering in opposed to linear array	
	The Document object is which part of the object?	1.Tree 2.System 3.Window 4.Screen	3.0
975	The efficient data structure to insert/delete a number in a stored set of numbers is	1.Queue 2.Linked list 3.Doubly linked list 4.Binary tree	2.0
		1.	
		depicts relationships between data objects	
		2.	
		depicts functions that transform the data flow	
976	The entity relationship diagram	3.	1.0
		indicates how data are transformed by the system	
		·	
		4.	
		indicates system reactions to external events	
	The ESC instruction of 8086 may have two formats. In one of the formats, no memory operand is		
	used. Under this format, the number of external op-codes (for the co- processor) which can be specified is	1.64 2.128 3.256 4.512	2.0
	•		

S.NO.	Questions	Choices	Answers
		1.	
		Pascal	
		2.	
978	The external system bus architecture is created using from architecture	Dennis Ritchie	4.0
	· <u> </u>	3.	
		Charles Babbage	
		4.	
		Von Neumann	
1		1.	
1		data centric architecture	
		2.	
979	The file transfer protocol is built on	service oriented architecture	3.0
919	The the transfer protocol is built on	3.	3.0
		client server architecture	
		4.	
		peer to peer architecture	
980	The first processor to include Virtual memory in the Intel microprocessor familywas	1.Pentium 2.80486 3.80286 4.80386	3.0
981	The following is not a Relational Model Constraint	Referential Integrity Constraint 2.Check Constraint 3.Foreign Key Constraint 4.Entity Integrity Constraint	1.0
		1.	
		Equi-join Equi-join	
		2.	
	The following SOL is which type of join: SELECT CUSTOMER T. CUSTOMER ID	Natural join	
982	The following SQL is which type of join: SELECT CUSTOMER_T. CUSTOMER_ID, ORDER_T. CUSTOMER_ID, NAME, ORDER_ID FROM CUSTOMER_T,ORDER_T;	3.	4.0
		Outer join	
		4.	
		Cartesian join	
		1.	
		Define the specification for computer-based system 2.	
		Develop defect free computer-based systems	
983	4.0	3.	1.0
763		Verify the correctness of computer-based systems	1.0
		4.	
		ALL	
		1.	
		ltrim	
1		2.	
984	The function used to remove the leading spaces is	lpad 3.	1.0
, .	The fall that are to remove the retaining spaces is		1.0
		rpad	
		4.	
		rtrim	
		1.	
		TRUE	
985	The goal of product engineering is to translate the customer's desire for a set of defined capabilities into a working product.	2.	1.0
		FALSE	
		3. 4.	

S.NO.	Questions	Choices	Answers
		1.	
		ambiguous	
		2.	
		left-recursive	
986	The grammar A \rightarrow AA (A) ϵ is not suitable for predictive-parsing because the grammar is	3.	2.0
		right-recursive	
		4.	
		an operator-grammar	
		1.	
		LL(1) but not LR(1)	
		2.	
		LR(1)but not LR(1)	
987	The grammar $S \rightarrow aSa \mid bS \mid c$ is	3.	3.0
		Both LL(1)and LR(1)	
		4.	
		Neither LL(1)nor LR(1)	
		1.	
		Polling	
		2.	
988	The Hardware mechanism that enables a device to notify the CPU is called	Interrupt	2.0
,00		3.	2.0
		Systems Call	
		4.	
		None of these	
		1.	
		Inter process communication	
		2.	
000	77. 111	Thrashing	2.0
989	The high paging activity is called	3.	2.0
		Context Switching	
		4.	
		Working Set	
		1.	
		DMA Controller	
		2.	
		Interrupt Controller	
990	The IC 8237 is a	3.	1.0
		Keyboard controller	
		4.	
		Serial Interface Controller	
		1.	
		24	
		2.	
		28	
991	The IC 8251 A hasmany pins		3.0
		40	
		4.	
		30	

S.NO.	Questions	Choices	Answers
		1.	
		24	
		2.	
	TI 10.0011	28	
992	The IC 8254 hasmany pins	3.	1.0
		34	
		4.	
		40	
		1.	
		1	
		2.	
		2	
993	The IC 8254 hasmany 16 bit counters	3.	3.0
		3	
		4.	
		4	
		1.	
		20	
		2.	
		30	
994	The IC 8279 hasmany pins	3.	4.0
		40	
		4.	
		10	
		1.	
		IC 8251A	
		2.	
		IC8259	
995	The IC Number for USART is	3.	1.0
		IC5255	
		4.	
		IC 8254	
		1.	
		on the property of locality of reference	
		2.	
		on the heuristic 90-10 rule	
996	The idea of cache memory is based		1.0
		3.	
		on the fact that references generally tend to cluster	
		4.	
		all of these	L
		1.	
		accuracy	
		2.	
997	The importance of software design can be summarized in a single word	complexity	3.0
		3. 4.0efficiency	
		4.	
		quality	

S.NO.	Questions	Choices	Answers
		1.	
		Build & FIX Model & Waterfall Model	
		2.	
998	The Incremental Model is a result of combination of elements of which two models?	Linear Model & RAD Model	3.0
990		3.	3.0
		Linear Model & Prototyping Model	
		4.	
		Waterfall Model & RAD Model	
		1.	
		A reasonable approach when requirements are well defined.	
		2.	
999	The incremental model of software development is	A good approach when a working core product is required quickly.	2.0
,,,	The metallicular includes of southware development is	3.	2.0
		The best approach to use for projects with large development teams.	
		4.	
		A revolutionary model that is not used for commercial products.	
		1.	
		8 bit	
		2.	
1000	The intel 8086 microprocessor is a processor	16 bit	2.0
1000	, processor	3.	2.0
		32 bit	
		4.	
		4bit	
	The internal block diagram of 80286 contains functional parts. The interrupt cycle ends when the instruction is executed	1.6 2.4 3.2 4.8 1.IRET 2.CALL 3.PUSH 4.POP	3.0
		1.	
		Is always regular and context free	
		2.	
1002		Is always regular	
1003	The intersection of CFL and regular language	3.	3.0
		Is always context free	
		4.	
		Need not be regular	
		1.	
		8 bits	
		2.	
1004	The IP is bits in length	4 bits	4.0
1004	THE IT IS OILS IN LENGTH	3.	4.0
		16 bits	
		4.	
		32 bits	
		1.	
		Both a and b are equal in value, type and reference address	
		2.	
1005	The javascrint statement a===h refers to	Both a and b are equal in value	3.0
1003		3.	
		Both a and b are equal in value and type	
		4.	
		There is no such statement	
			l

S.NO.	Questions	Choices	Answers
		1.	
		Process control block	
		2.	
1006	The kernel keeps track of the state of each task by using a data structure called	Process Status Word	1.0
		3.	
		Memory control block	
		4. None of these	
		1. Regular	
		2.	
		context free	
1007	The language accepted by a Pushdown Automation in which the stack is limited to 10 items is best described	3.	1.0
		Recursive	
		4.	
		Deterministic context free	
		1.	
		not recursive	
		2.	
		is recursive and is a deterministic CFL	
1008	The language L= {0 ⁱ 21 ⁱ i≥0 } over the alphabet {0,1, 2} is:	3.	2.0
		is a regular language	
		4.	
		is not a deterministic CFL but a CFL	
		1.	+
		Machine language	
		2.	
1009	The language that the computer can understand and execute is called	Application software	1.0
1007	The language that the computer can understand and execute is called	3.	1.0
		System program	
		4.	
		None of these 1.	
		Regular language	
		2.	
		context free but not regular	
1010	The language $\{a^m b^n C^{m+n} \mid m, n \ge 1\}$ is	3.	2.0
		context sensitive but not context free	
		4.	
		type-0 but not context sensitive	
		1.	
		2	
		2.	
	The length of the shortest string NOT in the language (over $\Sigma = \{a, b\}$) of the following regular expression is	3	
1011	a*b*(ba)*a*	3.	2.0
		4	
		4.	
		5	
	The length property belongs to which of the following objects?	1.Window 2.Element 3.History 4.Document	2.0
1013	The levels of hierarchy in inheritance helps to handle	1. Hexibility 2. complexity 3. detailed information 4. security	4.0
	The levels of hierarchy in inheritance helps to handle	1.flexibility 2.complexity 3.detailed information 4.security	_

S.NO.	Questions	Choices	Answers
		1.	
		Deterministic pushdown automata	
		2.	
	The lexical analysis for a modern language such as Java needs the power of which one of the	Finite state automata	
1014	following machine models in a necessary and sufficient sense?	3.	2.0
		Non-deterministic pushdown automata	
		4.	
		Turing machine	
1015	The liberature of the state of the last of the state of t		3.0
1015	The library function used to find the last occurrence of a character in a string is	1.strnstr() 2.laststr() 3.strrchr() 4.strstr() 1.	3.0
		A reasonable approach when requirements are well defined.	
		2.	
		A good approach when a working program is required quickly.	
1016	The linear sequential model of software development is	3.	1.0
		The best approach to use for projects with large development teams.	
		4.	
		An old fashioned model that cannot be used in a modern context.	
		1.	
		Classical life cycle model	
		2.	
		Spiral model	
1017	The linear sequential model of software development is also known as the	3.	3.0
		Waterfall model	
		4.	
		Incremental Model	
		1.	
		Accumulator	
		2.	
		Instruction Register	
1018	The load instruction is mostly used to designate a transfer from memory to a processor register known as	3.	1.0
		Program counter	
		4.	
		Memory address Register	
1019	The main purpose of a data link content monitor is to	1.detect problems in protocols 2.determine the type of switch used in a data link 3.determine the flow of data 4.determine the type of switching	1.0
		used in data link	
		7	
		0	
1020	The maximum number of superkeys for the relation schema R(E,F,G,H) with E as the key is		2.0
		3.	
		9	
		4.	
		6	
l			

S.NO.	Questions	Choices	Answers
		1.	
		1000 bytes	
	The maximum size of navload field in ethernet frame is	2. 1200 bytes	
1021		3.	4.0
		1300 bytes	
		4.	
		1500 bytes	
		1.	
		2^n	
		2.	
1022	The maximum window size for data transmission using the selective reject protocol with n-bit	2^(n-1)	2.0
1022	frame sequence numbers is:	3.	2.0
		2^n - 1	
		4.	
		2^(n-2)	\vdash
		TTL to RS 232C Level converter	
		2.	
		RS-232 to TTL level converter	
1023	The MC 1488 is	3.	1.0
		Bidirectional Level converter	
		4.	
		Unidirectional level converter	
		1.	
		Segmentation	
		2.	
1024	The mechanism that bring a page into memory only when it is needed is called	Fragmentation	3.0
		3. Demand Paging	
		4.	
		Page Replacement	
1025	The members of a class, by default, are	1.private 2.protected 3.public 4.mandatory to specify	3.0
		1.	
		main memory	
		2.	
1026		Secondary memory	1.0
1026	The memory unit that communicates directly with the CPU is called the	3.	1.0
		shared memory	
		4.	
		auxiliary memory	
		1.	
		memory	
		2.	
1027	The microprocessor can read/write 16 bit data from or to	I /O device	1.0
		3. processor	
		4.	
		register	
		<u> </u>	

S.NO.	Questions	Choices	Answers
		1.	
		carry flag	
		2.	
		conditional flag	
1028	The microprocessor determines whether the specified condition exists or not by testing the		2.0
		3.	
		common flag	
		4.	
		sign flag	
	The minimum number of arithmetic operations required to evaluate the polynomial $P(X) = X^5 +$		-
	$4X^3 + 6^3X + 5$ for a given value of X using only one temporary variable is.	1.6 2.9 3.8 <mark>4.7</mark>	4.0
	The minimum number of arithmetic operations required to evaluate the polynomial	1.6 2.7 3.8 4.9	2.0
	P(X)=X^5+4X^3+6^X+5 for a given value of X using only one temporary variable. The minimum number of nodes in a binary tree of depth d (root at level 0) is	1.2d - 1 <mark>2.d + 1</mark> 3.2d + 1 - 1 4.d	2.0
	, , ,	1.	
		Hardware	
		2.	
1000		Software	
1032	The MMU (Memory Management Unit) is a	3.	1.0
	, ,	Firmware	
		4.	
		Malware	
		1.	
		TRUE	
	The nature of collaboration is such that all system requirements are defined by consensus of a		2.0
1033	committee of customers and developers.	2.	2.0
		FALSE	
		3. 4.	
1034	The node type for document returns the value	1.2 2.9 3.3 4.8	4.0
		1.	
		0	
		2.	
		2	
1035	The number of auxiliary memory required for a Push Down Machine (PDM) to behave like a Finite State Machine (FSM) is	2	1.0
	State (viacinite (1 Sivi) is		
		4	
		4.	
		1	
	The number of clock nulses needed to shift one buts of data from input to the custout of a 4 hit shift		-
	The number of clock pulses needed to shift one byte of data from input to the output of a 4-bit shift register is.	1.10 2.12 3.16 4.32	3.0
1037	The number of components in a graph with n nodes and 1 edge are	1.n 2.n-2 3.n-1 4.n-3	3.0
	The number of components in a graph with n nodes and 1 edge are	1.n 2.n-2 3.n-1 4.n-3	3.0
1039	The number of counters available in internal block diagram of 8253 is	1.2 2.1 3.3 4.4	3.0
		Greater	
		2.	
		less	
1040	The number of states in DFA isthan the number of states in NFA for the same Language.	3.	2.0
		greater equal	
		4.	
		equal	
_			
1041	The number of tokens in the following C statement is	2.0	4.0
	printf(" $i = \%d, \&i = \%x$ ", i, &i);		
		1.0 0.1	4.0
	The operation of processing each element in the list is known as	1.Sorting 2.Merging 3.Inserting 4.Traversal	111
1042		1.Sorting 2.Merging 3.Inserting 4.1raversal 1.software triggered strobe 2.Programmable one shot 3.Interrupt on terminal count 4.Square wave rate generator	3.0

S.NO.	Questions	Choices	Answer
		1.	
		bit-by-bit delivery	
		2.	
		process to process delivery	
1044	The physical layer concerns with	3.	1.0
		application to application delivery	
		4.	
		Hop by hop delivery	
\dashv		1.	-
		line coding	
		_	
		2.	
1045	The physical layer is responsible for	channel coding	4.0
1015	The physical layer is responsible for	3.	1.0
		modulation	
		4.	
		all of the mentioned	
\dashv		1.	
		data link layer	
		2.	
046	The physical layer translates logical communication requests from the into hardware	network layer	1.0
.040	specific operations.	3.	1.0
		trasnport layer	
		4.	
		application layer	
		1.	
		decrements the total length by 1	
		2.	
		increments the total length by 1	
1047	The pop() method of the array in javascript does which of the following task?		1.0
		3.	
		prints the first element but no effect on the length	
		4.	
		don't return the value of deleted element	
		1.	
		physical signalling sublayer	
		2.	
		physical data sublayer	
048	The portion of physical layer that interfaces with the media access control sublayer is called	3.	1.0
		physical address sublayer	
		4.	
		none of the mentioned	
	The postfix expression for * + a b - c d is?	1.ab + cd - * 2.ab + cd * - 3.ab + - cd * 4.ab cd + - * 1.AB + CD* E - *F *G / 2.AB + CD* E - F **G / 3.AB + CD*E - FG /**	1.0
	The postfix form of the expression $(A+B)*(C*D-E)*F/G$ is	1.AB + CD* E - *F *G / 2.AB + CD* E - F **G / 3.AB + CD*E - FG /** 4.AB + CDE * - *F *G /	3.0
1051	The preorder traversal sequence of a binary search tree is 30,20,10,15,25,23,39,35,42. Which one of the following is the postorder traversal sequence of the same tree?	1.10,20,15,23,25,35,42,39,30 2.15,10,25,23,20,42,35,39,30 3.15,20,10,23,25,42,35,39,30 4.15,10,23,25,20,35,42,39,30	4.0
.051		10.10.40.10.40.14.37.3U	1

Percess of reasining data for future use is called 2		Answers
hose is process of returning data for future use is called Process of		
The process of retaining data for future use is called 2 coding 1 Association 2 Composition 3 Secondary		
Process of retaining data for future use is called String		
the project planner examines the statement of scope and extracts all important sortware functions become project planner examines the statement of scope and extracts all important sortware functions becomposition and which is known as become and extracts all important sortware functions becomposition and becomposed the statement of scope and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions becomposed to a score and extracts all important sortware functions as		
the project planner examines the statement of scope and extracts all important software functions shown as the statement of scope and extracts all important software functions as the statement of scope and extracts all important software functions as the statement of scope and extracts all important software functions as the statement of scope and extracts all important software functions as the statement of scope and extracts all important software functions as the scope as the statement of scope and extracts all important software functions as the scope as		3.0
The project planner examines the statement of scope and extracts all important software functions of shitch is known as 1053 2 2 2 2 2 2 2 2 2		
Property planer examines the statement of scope and extracts all important software function 2		
Association Composition		
Propest planner examines the statement of scope and extracts all important software functions which is known as substitute is known as		
The project planner examines the statement of scope and extracts all important software functions which is known as a substitute of scope and extracts all important software functions which is known as a substitute of the scope and extracts all important software functions which is known as a substitute of the scope and extracts all important software functions which is known as a substitute of the scope and extracts all important software functions and substitute of the scope and extracts all important software functions and scope and extracts all important software functions and scope and extracts all important software functions and scope and extracts all important software functions and scope and extracts all important software functions and scope and extracts all important software functions and scope and extracts all important software functions and scope and extracts all important software functions and scope and extracts all important software functions and another name for component-based development. 2. Another name for component-based development. 2. Intribute 2. Intribute 2. Intribute 2. Interpolation of the linear sequential model. 3. A high speed adaptation of the linear sequential model. 4. Intribute 2. Intribute 2. Intribute 3. A pligh speed adaptation of the linear sequential model. 4. Intribute 2. Intribute 3. A contribute and scope and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all important software functions and extracts all importa		
Second S		
Second S		
Planning process 4, ALL		3.0
ALL		
1054 3.0 3.0 3.0 3.1 1054 3.0 1055 The RDBMS terminology for a row is 1056 The recognizing capabilities of NDFSM and DFSM 1057 The recognizing capabilities of NDFSM and DFSM 1058 The recognizing capabilities of NDFSM and DFSM 1058 The recognizing capabilities of NDFSM and DFSM 1059 The recognizing capabilities of NDFSM and DFSM 1050 1051 The recognizing capabilities of NDFSM and DFSM 1053 The recognizing capabilities of NDFSM and DFSM 1054 1055 The recognizing capabilities of NDFSM and DFSM 1056 The recognizing capabilities of NDFSM and DFSM 1057 The recognizing capabilities of NDFSM and DFSM 1058 1058 The recognizing capabilities of NDFSM and DFSM 1059 1050		
1054 Another name for component-based development. 2. Another name for component-based development. 3. A high speed adaptation of the linear sequential model. 4. ALL 1055 The RDBMS terminology for a row is 1056 The recognizing capabilities of NDFSM and DFSM 1057 The recognizing capabilities of NDFSM and DFSM 1058 The removal of process from active contention of CPU and reintroduce them into memory later is known as 1. Interrupt 2. Supplies 1058 The removal of process from active contention of CPU and reintroduce them into memory later is known as 5. Supplies 3. Supplies 4. Supplies 4. Supplies 4. Supplies 4. Supplies 4. Supplies 5. Supplies 5. Supplies 6. Suppli		
Another name for component-based development. 2. Another name for component-based development. 3. A high speed adaptation of the linear sequential model. 4. ALL 1.attribute 2.relation 3.degree 4.tuple 1. may be different 2. must be different 2. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1058 The removal of process from active contention of CPU and reintroduce them into memory later is known as		
2. Another name for component-based development. 3. A high speed adaptation of the linear sequential model. 4. ALL		
Another name for component-based development. 3. A high speed adaptation of the linear sequential model. 4. ALL 1. attribute 2. relation 3. degree 4. tuple 1. may be different 2. must be different 2. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. record 2. field 3. file 4. database 1. Interrupt 2. Swapping 3. Swappi		
1054 A high speed adaptation of the linear sequential model. 4. ALL. 1. attribute 2. relation 3. degree 4. tuple 1. may be different 2. must be different 2. must be different 3. must be different 3. must be different 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1058 The removal of process from active contention of CPU and reintroduce them into memory later is known as		
A high speed adaptation of the linear sequential model. 4. ALL 1.attribute 2.relation 3.degree 4.tuple 1. may be different 2. must be different 3. must be different 3. must be different 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1.058 The removal of process from active contention of CPU and reintroduce them into memory later is known as		
4. ALL 1.attribute 2.relation 3.degree 4.tuple 1. may be different 2. must be different 3. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. Interrupt 2. Swapping 3. 1. Interrupt 2. Swapping 3. Swapping 3.		4.0
ALL Lattribute		
1. Attribute 2. relation 3. degree 4. tuple 1.		
2.relation 3.degree 4.tuple 1. may be different 2. must be different 3. must be different 3. must be different 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. linterrupt 2. Swapping 3. 3. degree 4. tuple 1. Interrupt 2. Swapping 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3		
2.relation 3.degree 4.tuple 1. may be different 2. must be different 3. must be different 3. must be different 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. linterrupt 2. Swapping 3. 3. degree 4. tuple 1. Interrupt 2. Swapping 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3		
1055 The RDBMS terminology for a row is 1. may be different 2. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1058 The removal of process from active contention of CPU and reintroduce them into memory later is known as from active contention of CPU and reintroduce them into memory later is 1. The removal of process from active contention of CPU and reintroduce them into memory later is 3. degree 4. tuple 1. may be different 2. must be same 4. none of the mentioned 1. Interrupt 2. Swapping 3. 3.		
1. may be different 2. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1058 The removal of process from active contention of CPU and reintroduce them into memory later is known as Swapping 3. Swapping 3. Swapping 3. Swapping 3. Swapping		
1056 The recognizing capabilities of NDFSM and DFSM The recognizing capabilities of NDFSM and DFSM The recognizing capabilities of NDFSM and DFSM 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. record 2.field 3.file 4.database 1. Interrupt 2. Swapping 3. The removal of process from active contention of CPU and reintroduce them into memory later is known as		4.0
may be different 2. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. Interrupt 2. Interrupt 2. Swapping 3. Swapping 3. Swapping 3. Swapping 3. Swapping 3.		
2. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. record 2. field 3. file 4. database 1. Interrupt 2. Swapping 4. Swapping 3.		
2. must be different 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. record 2. field 3. file 4. database 1. Interrupt 2. Swapping 4. Swapping 3.		
The recognizing capabilities of NDFSM and DFSM The recognizing capabilities of NDFSM and DFSM 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. Interrupt 2. Swapping The removal of process from active contention of CPU and reintroduce them into memory later is known as 3. must be different 4. none of the mentioned		
The recognizing capabilities of NDFSM and DFSM 3. must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1.record 2.field 3.file 4.database 1. Interrupt 2. Swapping 3. must be same 4. none of the mentioned 1.record 2.field 3.file 4.database 3. Swapping 3. Swapping 3. Swapping 3. Swapping 3. Swapping 3. Swapping 3. Swapping 3. Swapping 3. Swapping		
must be same 4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. record 2.field 3.file 4.database 1. Interrupt 2. Swapping The removal of process from active contention of CPU and reintroduce them into memory later is known as 3.		3.0
4. none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1.record 2.field 3.file 4.database 1. Interrupt 2. Swapping The removal of process from active contention of CPU and reintroduce them into memory later is known as 3.		
none of the mentioned 1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. record 2.field 3.file 4.database 1. Interrupt 2. Swapping The removal of process from active contention of CPU and reintroduce them into memory later is known as		
1057 The relational model uses some unfamiliar terminology. A tuple is equivalence to a: 1. record 2.field 3.file 4.database 1. Interrupt 2. Swapping The removal of process from active contention of CPU and reintroduce them into memory later is known as 3.		
1. Interrupt 2. Swapping the removal of process from active contention of CPU and reintroduce them into memory later is known as 3.		
The removal of process from active contention of CPU and reintroduce them into memory later is known as 3.		1.0
The removal of process from active contention of CPU and reintroduce them into memory later is known as 3.		
The removal of process from active contention of CPU and reintroduce them into memory later is known as Swapping 3.		
The removal of process from active contention of CPU and reintroduce them into memory later is known as		
Known as 5.		2.0
Signal		2.0
4.		
Thread		
1059 The restriction while using the hinary search is 2 1. List should be small in number 2. List should be large in the restriction while using the hinary search is 2	in number 3.List	3.0
1059 The restriction while using the binary search is? 11.13s should be shall in fullifier 2.13s should be large 1 should be sorted 4.No restriction 1060 The result evaluating the postfix expression (10 5 + 60 6 / * 8 –) is 1.284 2.142 3.213 4.71		2.0
1000 The result evaluating the postrix expression (10.5 + 60.6 / * 8 –) is 1.284 2.142 3.213 4.71 1061 The searching technique that takes O (1) time to find a data is 1.8 inary Search 2.Linear Search 3.Tree Search 4.Hashir		4.0
, .		

S.NO.	Questions	Choices	Answers
		1.	
		S < STBR	
		2.	
		S > STBR	
1062	The segment number S is legal if	3.	3.0
		S < STLR	
		4.	
		S > STLR	
1063	The simplest image processing technique is	1.coordinates transformation 2.intensity transformation 3.spatial	1.0
	The situation when in a linked list START=NULL is	transformation 4.domain transformation 1.overflow 2.underflow 3.housefull 4.saturated	2.0
		1.lower bound 2.range	
1065	The smallest element of an array's index is called its	D. extract 3.upper bound 4.ion	1.0
		1.	
		2 states	
		2.	
		3 states	
1066	The smallest finite automation which accepts the language $\{x \mid length \ of \ x \ is \ divisible \ by \ 3\}$ has :	3.	3.0
		4 states	
		4.	
		5 states	
		1.Counting the average memory needed by the algorithm 2.Counting the	
1067	The space factor when determining the efficiency of algorithm is measured by	minimum memory needed by the algorithm 3.Counting the maximum memory needed by the algorithm 4.Counting the maximum disk space	3.0
		needed by the algorithm	
		1.	
	40	Ends with the delivery of the software product	
1068	4.0	2.	2.0
		Is not more chaotic than the incremental model 3.Do not Include project risks evaluation during each iteration 4.Includes	
		feasibility risks	
		1.	
		IBM	
		2.	
		Barry Boehm	
1069	The spiral model was originally proposed by	3.	2.0
		Pressman	
		4.	
		Royce	
		1.)	
		Specifies a range to test	
		2.	
		specifies between which tables the data is present	
1070	The SQL BETWEEN operator		1.0
		3.	
		specifies the columns between which columns the data is present	
		4.	
		None of the options	
		1 4411 2 4011 2 4211 4 4711	3.0
1071	The starting address for counter 0 of 8253 is 0038H, then port address for control word register is	1.44H 2.49H <mark>3.42H</mark> 4.46H	13.0

S.NO.	Questions	Choices	Answers
		1.	
		depicts relationships between data objects	
		2.	
		depicts functions that transform the data flow	
1072	The state diagram	3.	1.0
		indicates how data are transformed by the system	
		4.	
		indicates system reactions to external events	
1073	The status that cannot be operated by direct instructions is	1.Z 2.Cy 3.P 4.AC	4.0
1074	The stream insertion operator should be overloaded as	1.friend functions 2.member function 3.non member functions 4.static functions	4.0
1075	The stream insertion operator should be overloaded as	1.friend functions 2.member function 3.non member functions 4.static	4.0
_		functions 1. circuit switching 2. Message Switching 3. Packet switching 4. Frame	1.0
1076	The switching method fixes the path from source to destination is	Relay	1.0
1077	The syntax of Eval is	[l.[objectName.]eval(numeriC) 2.[objectName.]eval(string) 3. [EvalName.]eval(string) 4.[EvalName.]eval(numeriC)	2.0
		1.	
		detailed view	
		2.	
		domain view	
1078	The system engineering process usually begins with the	2	1.0
		4.0element view	
		4.	
		world view	
		1.	
		Function, performance and constraints of a computer-based system	
		i unction, performance and constraints of a computer-based system	
1079	1.0	implementation of each allocated system	3.0
		3.	
		element software architecture	
		4.time required for system simulation	
1080	The tightest upper bound for the worst case performance of quicksort implemented on an array of	1.T(n! logn) 2.O(n logn) 3.O(n^2) 4.O(n^3)	3.0
	n elements by always chosing the pivot as the central element is The time complexity to build a heap with a list of n numbers is	1.O(n logn) 2.O(n) 3.O(log n) 4.O(n2)	2.0
	The topology with highest reliability is	1.ring topology 2.star topology 3.bus topology 4.mesh topology	4.0
		1.	
		28	
		2.	
	The total number of pins for the IC 8255 is	40	
1083		3.	2.0
		30	
		4.	
		20	
1084	The two statements that can be used to change the flow of control are	1.switch and do-while 2.if and while 3.if and switch 4.break and continue	3.0
		I.	
		none of the options	
		2.	
		the SELECT clause only	
1085	The UNION SQL clause can be used with		2.0
		3.	
		the UPDATE clause only	
		4.	
		the DELETE and UPDATE clauses	
		<u> </u>	1

S.NO.	Questions	Choices	Answers
		debug programs following the detection of run-time errors	
		2.	
1086	The use of traceability tables helps to	determine the performance of algorithm implementations	3.0
		3.	
		identify, control, and track requirements changes	
		4. Analyze design changes	
1087	The value in AL=11011010 after the operation of CBW, the result is	1.AX=1101 1010 1111 1111 2.AX=1101 1010 0000 0000 .3.AX=1111 1111 1101 1010 4.AX=0000 0000 1101 1010	3.0
1		1.	
		Object oriented file implementation 2.	
1		Structured programming file implementation	
1088	The virtual file system provides us the following	3.	2.0
		Linked file allocation	
		4.	
		Indexed file allocation	
		1.	
		encoding	
		2.	
1089	The work of EU is	decoding	3.0
1007		3.	3.0
		processing	
		4. calculations	
		1	
		size of the budget	
		2.	
1090	2.0	size of the product being built 3.	3.0
		software process being used	
		4. stakeholders needs	
	The worst case running time to search for an element in a balanced binary search tree with n*2^n		
1091	elements is	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
1092	The worst case running time to search for an element in a balanced in a binary search tree with n*2^n elements is	1.theta(n log n) 2.theta(n*2^n) 3.theta(n) 4.theta(log n)	3.0
1		1.	
1		(1-p)^(n-1) 2.	
		np(1-p)^(n-1)	
1093	There are n stations in a slotted LAN. Each station attempts to transmit with a probability p in each time slot. What is the probability that only one station transmits in a given time slot?	3.	2.0
		p(1-p)^(n-1)	
		4.	
		1-(1-p)^(n-1)	
1094	There is no connection setup phase in	1.Frame relay 2.Virtual Circuit Switching 3.Datagram 4.ATM	3.0
		when excessive swapping takes place 2.	
		when you thrash your computer	
1095	Thrashing occurs	3.	1.0
		whenever deadlock occurs	
		4.	
		when no swapping takes place	
		I	

-	Questions	Choices	Answer
1096	Thresholding function in contrast stretching creates	1.binary image 2.high quality image 3.low quality image 4.enhanced image	1.0
1097	To create an alias Objects have to be passed by	1.address 2.reference 3.value 4.field by field	2.0
1098	To Delete an item from a Queue identify the correct set of statements	1.Q[REAR] = item; REAR ++ 2.item = Q[FRONT]; FRONT++ 3.item = Q[REAR]; FRONT ++ 4.item = Q[FRONT]; REAR ++	2.0
1099	To determine the architectural style or combination of styles that best fits the proposed system, requirements engineering is used to uncover	algorithmic complexity characteristics and constraints control and data design patterns	2.0
1100	To interface memory with the microprocessor, connect register the lines of the address bus must be added to address lines of the chip.	1. single 2. memory 3. multiple 4. triple	2.0
1101	To operate correctly, starting a ring counter requires	1.presetting all the flip-flops 2.clearing one flip-flop and presetting all the others 3.presetting one flip-flop and clearing all the others 4.clearing all the flip-flops	1.0
1102	Today the increased power of the personal computer has brought about an abandonment of the practice of team development of software	1. True 2. false 3. 4.	1.0
1103		1.Statement that enables to start any DBMS 2.Statement that is executed by the user when debugging an application program 3.Statement that is executed automatically by the system as a side effect of a modification to the database 4.Condition the system tests for the validity of the database user	3.0
	Two computers C1 and C2 are configured as follows. C1 have IP address as 203.197.2.53 and netmask 255.255.128.0. C2 have IP address as 203.197.75.201 and netmask 255.255.192.0. Which one of the following statements is true?	1. C1 and C2 both assume they are on the same network 2. C2 assumes C1 is on same network, but C1 assumes C2 is on a different network 3. C1 assumes C2 is on same network, but C2 assumes C1 is on a different network 4. C1 and C2 both assume they are on different networks.	3.0
1105	Two sets of functional dependencies E and F are equivalent if E+ = F+ . This statement is	1. True 2. False 3. Cant Say 4.	1.0
		1.deleting database 2.modifying or adding record occurrences 3.revising	2.0

S.NO.	Questions	Choices	Answers
	-	1.	
		customers	
		2.	
1107		3.0experienced programmers 3.	2.0
1107	Usability questionnaires are most meaningful to the interface designers when completed by		2.0
		product users	
		4.	
		project managers	
	Using linked list node representation, inserting a node in general tree is performed efficiently	1.not possible 2.by merging with an existing node 3.after introducing a new link 4.after converting to binary tree	2.0
1109	Using the 8259A, the INT input of the 8086 can be expanded to accomodeate up toprioritized interrupt inputs	1.60 2.64 3.16 4.32	2.0
	Usually a pure virtual function	1. Will be called only to delete an object 2.Is defined only in derived class	2.0
	7 · · · · · · · · · · · · · · · · · · ·	Will never be called 4.Has complete function body	-
		RAM	
		2.	
1111	Virtual memory is the portion of	Cache Memory	3.0
1111	virtual inclinity is the portion of	3.	3.0
		Hard Disc	
		4.	
		None of these	
		1.	
		A5/2 cipher	
		2.	
		b5/4 cipher	
1112	Voice privacy in GSM cellular telephone protocol is provided by	3.	1.0
		b5/6 cipher	
		4.	
		b5/8 cipher	
1113	VOLATILE MEMORY IS ?	1.COMPACT DISK 2.HARD DISK 3.RANDOM ACCESS MEMORY 4.READ ONLY MEMORY	3.0
		1.	
		architecture, interface, component	
		2.	
		cost, risk, schedule	
1114	1.0	3.	1.0
		Information, function, behavior	
		4.	
		NONE	
		1.	
		Risk monitoring	
		2.	
	What assess the risk and your plans for risk mitigation and revise these when you learn more about	Risk planning	
1115	the risk?	3.	1.0
		Risk analysis	
		4.	
		- Continuation	
		Risk identification	_

S.NO.	Questions	Choices	Answer
		1.	
		too slow	
		2.	
		unreliable	
1116	What characteristic of RAM memory makes it not suitable for permanent storage?		3.0
		3.	
		it is volatile	
		4.	
		too bulky 1.'c' means argument count 'v' means argument vector 2.'c' means	-
1117	What do the let and let in any stands for?	argument count 'v' means argument vertex 3.'c' means argument	1.0
111/	What do the 'c' and 'v' in argy stands for?	configuration 'v' means argument visibility 4.'c' means argument control	1.0
		'v' means argument vector 1.Match one or more characters that are not open paranthesis 2.Match	
1110	What does //\discrete assures indicate 2	zero or more characters that are open paranthesis 3.Match zero or more	2.0
1116	What does /[^(]* regular expression indicate?	characters that are not open paranthesis 4.Match one or more characters	2.0
		that are open paranthesis 1.Used to convert a string to an array 2.Used to split a given string into	
1119	What does explode function in php do	the number of chunks specified 3.Used to split a string by a string 4.Used	1.0
		to split string into two equal halves	
	What does microprocessor speed depends on What does parseFloat(9+10) evaluates to in JavaScript?	1.Clock 2.Address bus width 3.Data bus width 4.Size of register 1.19 2.910 3.9109 4.91	2.0
	What does parseFloat(9+10) evaluates to in JavaScript? What does the following declaration mean?	1.19 2.910 3.9109 4.91 1.ptr is array of pointers to 10 integers 2.ptr is a pointer to an array of 10	1.0
1122	int (*ptr)[10];	integers 3.ptr is an array of 10 integers 4.ptr is an pointer to array of 10	2.0
		1.	
		1 => 'b'	
	What elements will the following script output?	2.	
	.0.1	True => 'a', a => 'b'	
1123	php<br \$array = array (true => 'a', 1 => 'b');	3.	3.0
	var_dump (\$array);	NHH I	
	?>	NULL	
		4.	
		0 => 'a', 1 => 'b'	
1124	What are size 40 for the LaWall and a form	1 show with a 2 show with a 2 show 4 show a ship a	2.0
	What gets printed? \$str = 'a\\b\n'; echo \$str;	1.ab(newline) 2.a\b(newline) 3.a\b\n 4.a\b(newline) 1.PHP continues to execute the script. 2.Results in a fatal error	3.0
1125	What happens if no file path is given in include() function?	3.Include_path is made use of 4.It haults the script.	3.0
		1.	
		Software is set of programs	
		2.	
		Software is documentation and configuration of data	
1126	What is a Software ?	3.	3.0
		Software is set of programs and Software is documentation and	
		configuration of data	
		4.	
		4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all	
1127	What is asynchronous counter.	4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own	4.0
1127	What is asynchronous counter.	4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all	4.0
1127	What is asynchronous counter.	4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1.	4.0
1127	What is asynchronous counter.	4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock	4.0
1127	What is asynchronous counter.	4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1.	4.0
1127	What is asynchronous counter.	4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1. block cipher	4.0
	What is asynchronous counter. What is data encryption standard (DES)?	4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1. block cipher 2. stream cipher	4.0
		4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1. block cipher 2.	
		4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1. block cipher 2. stream cipher	
		4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1. block cipher 2. stream cipher 3.	
		4. Software is a set of documents. 1.none of them 2.A master clock triggers all the flip-flops at a time 3.all the flip-flop are combined to common clock 4.each flip-flop has it own clock 1. block cipher 2. stream cipher 3. bit cipher	

S.NO.	Questions	Choices	Answers
		1.	
		idle time between frames	
		2.	
		idle time between frame bits	
1129	What is interframe gap?	3.	1.0
		idle time between packets	
		4.	
		none of the mentioned	
		1.Shifting the data in all flip-flops simultaneously 2.Loading data in two	_
1130	What is meant by parallel-loading the register?	of the flip-flops 3.Loading data in all flip-flops at the same time	3.0
1131	What is the best case for linear search	4.Momentarily disabling the synchronous SET and RESET inputs 1.O(n) 2.O(1) 3.O(log n) 4.O(2n)	2.0
	What is the code to start displaying the time when document loads?	1.onload = displayTime; 2.window. = displayTime; 3.window.onload =	3.0
		displayTime; 4.window.onload = start; 1.MSB of the result is One 2.MSB of the result is zero 3.LSB of the	
1133	What is the condition for resetting(s=0) the S flag in status register?	result is one 4.LSB of the result is zero	2.0
1134	What is the correct CSS syntax for making all the elements bold?	1.p {font-weight:bold;} 2.p style="text-size:bold" 3.p {text-size:bold} 4.p style="font-size:bold">	1.0
		1.mysqli_db(host,username,password,dbname);	
		2.mysqli_connect(host,username,password,dbname);	
1135	What is the correct way to connect to a MySQL database?	3.mysqli_open(host,username,password,dbname);	2.0
		4.	
		mysqli connect(,,)	
1136	What is the data structures used to perform recursion?	1.list 2.queue 3.stack 4.Tree	3.0
_	What is the default execution time set in set_time_limit()?	1.20 secs 2.30 secs 3.40 secs 4.50 secs	2.0
1138	What is the default size of a file set in upload_max_filesize?	1.1 MB 2.2 MB 3.2.5 MB 4.3 MB	2.0
1139	What is the difference between echo and print?	1. They both behave the same. 2. Print can take multiple parameters where as echo cannot 3. Echo can take multiple parameters where as print cannot 4. Print is a function where as echo is not.	3.0
1140	What is the following style an example of? img[alt~="Pie"]	1.Attribute Match 2.Exact Value Match 3.Contains Value Match 4.Subcode Match	3.0
		1.	
		1 NF	
		2.	
		2 NF	
1141	What is the highest normal form level satisfied by the following table design? $R = \{A1,A2,A3,A4,A4\}$ $F = \{A1->A3,A3->A4\}$ $Key = \{A1,A2\}$	3.	2.0
		3 NF	
		4.	
		BCNF 1.	
		n/2	
		2.	
1142	What is the maximum number of reduce moves that can be taken by a bottom-up parser for a grammar with no	n-1	2.0
1142	epsilon- and unit-production (i.e., of type A -> ε and A -> a) to parse a string with n tokens?	3.	2.0
		2n-1	
		4.	
		2^n	
		1	
		1.	
		Any size	
		Any size 2.	
1143	What is the maximum size of data that the application layer can pass on to the TCP layer below?	Any size 2. 2^16 bytes-size of TCP header	1.0
1143	What is the maximum size of data that the application layer can pass on to the TCP layer below?	Any size 2.	1.0
1143	What is the maximum size of data that the application layer can pass on to the TCP layer below?	Any size 2. 2^16 bytes-size of TCP header	1.0
1143	What is the maximum size of data that the application layer can pass on to the TCP layer below?	Any size 2. 2^16 bytes-size of TCP header 3.	1.0
1143	What is the maximum size of data that the application layer can pass on to the TCP layer below?	Any size 2. 2^16 bytes-size of TCP header 3. 2^16 bytes	1.0
	What is the maximum size of data that the application layer can pass on to the TCP layer below? What is the minimum number of NAND gates required to implement $A + AB^+$	Any size 2. 2^16 bytes-size of TCP header 3. 2^16 bytes 4.	1.0
1144		Any size 2. 2^16 bytes-size of TCP header 3. 2^16 bytes 4. 1500 bytes	

S.NO.	Questions	Choices	Answe
1146	what is the need of segmenting the memory in 8086	1.Increase the memory accessibility 2.Increase the memory addressibility 3.easy to retrieve data 4.faster access	y 2.0
		1.	
		a, d, c, b	
		2.	
	What is the normal order of activities in which traditional software testing is organized? a.		1, 0
1147	integration testing b. system testing c. unit testing d.validation testing	b, d, a, c	1.0
		3. 3.0c, a, d, b	
		4.	
		d, b, c, a	
		1.	
		Requirements Definition, System & Software Design, Implementation & Unit Testing, Integration & System Testing, Operation & Maintenance.	2
		2.	
		Requirements Definition, Integration & System Testing, System & Software Design, Implementation & Unit Testing, Operation &	
		Maintenance.	
1148	What is the order of the stages in the waterfall mode?	3.	1.0
		System & Software Design, Requirements Definition, Operation &	
		Maintenance, Implementation & Unit Testing, Integration & System Testing.	
		4.	
		Implementation & Unit Testing, Requirements Definition, System & Software Design, Integration & System Testing, Operation &	
		Maintenance.	
		1.	
		10***24000	
		10***24000	
		2.	
1140	what is the output for the following function? LPAD(salary,10,'*')	*****24000	
1149		3.	2.0
		24000****	
		4.	
		error	
		1	-
		1.	
	W/Let is the control	1,2	
	What is the output?	2.	
	#include <stdio.h> void main()</stdio.h>	3,2	
1150	{ int a=3,b=2;	3.	1.0
	a=a==b==0;	0,0	
	printf("%d,%d",a,b);	4.	
	,	2,3	
			-
		1.	
		Used to register a global variable	
		2.	
		Used to initialize a session	
1151	What is the purpose of \$_SESSION[]?	3.	3.0
		Used to store variables of the current session	
		4.	
		Used to initialize a cookie	
			<u> </u>
			2.0
1152	What is the result of the following code snippet? window.location ==== document.location	1. False 2. True 3.0 4.1	
	What is the result of the following code snippet? window.location === document.location What is the strpos() function used for?	1.Find the last occurrence of the string within a string 2.Find the first occurrence of the string within a string 3.Find both last and first	2.0
1153	What is the strpos() function used for?	1.Find the last occurrence of the string within a string 2.Find the first occurrence of the string within a string 3.Find both last and first occurrence 4.Search for all occurrence within a string	
1153 1154		1.Find the last occurrence of the string within a string 2.Find the first occurrence of the string within a string 3.Find both last and first	2.0 1.0 3.0

S.NO.	Questions	Choices	Answers
		1.	
		security algorithm for ethernet	
		2.	
		security algorithm for wireless networks	
1157	What is Wired Equivalent Privacy(WEP)?	3.	2.0
		security algorithm for USB	
		4.	
		None	
		1.	
		wi-fi protected access	
		2.	
		wired protected access	
1158	What is WPA?	3.	1.0
		wired process access	
		4.	
		wi-fi process access	
		1.	
		Read/Write. Creates a new file. Returns FALSE and an error if file already exists	
		2.	
1159	What is x+ mode in fopen() used for?	Write only. Creates a new file. Returns TRUE and an error if file already exists	1.0
		3.	
		Read/Write. Opens and clears the contents of file	
		4.	
		Write. Opens and clears the contents of file	
1160	What keyword covers unhandled possibilities?	1.other 2.default 3.contingency 4.all	2.0
		1.Relaional	
	What kind of schema it is?	2.Logical Schema	
1161	Student(sid, sname, dob, address, pincode)	3.Conceptual Schema	1.0
		4.External View	
		1.	
		GD library	
		2.	
		ZIP library	
1162	What library do you need in order to process images?	3.	1.0
		Win32 API library	
		4.	
		BOGUS library	
		1.	
		num is unsigned integer	
		2.	
	What type of declaration is this:	num is unsigned float	
1163	unsigned num;		4.0
		num is unsigned character	
		4.	
		Invalid declaration	
11.61	What type of register would shift a complete binary number in one bit at a time and shift all the	L DIDO A DIGO A GIDO A GIGO	1.0
1164	stored bits out one bit at a time?	1.PIPO 2.PISO 3.SIPO 4.SISO	4.0

S.NO.	Questions	Choices	Answers
		1.	
	What will be the output?	Declaration Error	
	#include <stdio.h></stdio.h>	2.	
1165	extern int ok;	value of $ok = 1000$	2.0
1103	printf("value of ok = $\%$ d",ok);	3.	2.0
	return 0;	value of ok = 0	
	extern int ok=1000;	4.	
		Linking Error	
1166	What will be the result of the expression 13 & 25	1.25 2.38 3.9 4.12	3.0
		1.	
		High paging activity	
		2.	
		Thrasing happens	
1167	What will be the status of a computer during storage compaction	3.	4.0
		Working set model developed	
		4.	
		It will sit idle	
1168	What will happen if the first argument of open() is omitted?	1.Error Page 2.Remains in the same page 3.about:blank 4.Open the first page in the history	3.0
		1.	
	What will the following script output?	78	
	php</td <td>2.</td> <td></td>	2.	
	Sarray = array (1, 2, 3, 5, 8, 13, 21, 34, 55)	19	
	sum = 0; for (\$i = 0; \$i < 5; \$i++) {	3.	1.0
	\$sum += \$array[\$array[\$i]]; }	NULL	
	echo \$sum; ?>	4.	
		5	
	What would be the output of the below code fragment? var $a = ["s","a","v","e"];$		
	document.write(a.join(""));	1.Undefined 2.save 3.vase 4.S	2.0
		1.	
	10	true	
1171	1.0	2.	1.0
		false	
		3. 4.	
		1.	
		Primary Key constraint	
		2.	
		Referential Integrity Constraint	
1172	When a new row is inserted the constraints that can be violated are	3.	1.0
		all of the options	
		4.	
		Domain Constraint	
		1. 3.0high coupling	
		2.	
1173	When a single item that triggers other data flow along one of many paths of a data flow diagram,	poor modularity 3.	1.0
1113	characterizes the information flow.	transaction flow	1.0
		4	
		["	1
		transform flow	

S.NO.	Questions	Choices	Answers
		1.	
		HTTP protocol	
		2.	
1174	When displaying a web page, the application layer uses the	FTP protocol	1.0
11/4	when displaying a web page, the application layer uses the	3.	1.0
		SMTP protocol	
		4.	
		IMAP Protocol	
1175	When operated in slave mode, the PIC outputs its type number only if the cascaded address received on CAS0-CAS2 matches the address programmed in bits D0-D2	1.ICW1 2.ICW2 3.ICW3 4.ICW4	4.0
T		1.	
		4.0low coupling 2.	
,,,,,	When the overall flow in a segment of a data flow diagram is largely sequential and follows	good modularity	
1176	straight-line paths, is present.		3.0
		transaction flow 4.	
		transform flow	
	When the pre-order and post-order traversal of a Binary Tree generates the same output, the tree	1.Three nodes 2.Two nodes 3.One node 4.Any number of nodes	3.0
\dashv		1.	
		automata	
		2.	
		finite automata	
1178	When there are infinite distinguishable strings then there cannot be a	3.	2.0
		regular expression	
		4.	
		both finite automata and regular expression	
ヿ		1.	
		Prints an exception error	
		2.	
		Prints an overflow error	
1179	When there is an indefinite or an infinity value during an arithmetic value computation, javascript	3.	3.0
		Displays "Infinity"	
		4.	
		Prints the value as such	
1180	When used with the datalist element, what is the list attribute in HTML5 used to accomplish?	1.Local databases 2.Drop down lists 3.Autocompletion 4.Global	3.0
\dashv	·	Databases 1.	
		M2	
		2.	
	When we consistent two lenguages L1 and L2 account of humanities AG 1100	M1 and M2	
1181	When we concatenate two languages L1 and L2 recognized by machine M1 and M2 we obtain a nachine with final state same as that of	3.	2.0
		м1	
		4.	
		M1 or M2	
\dashv		1.	
		Primary Key	
		2.	
,	when you were asked to design a relation, you come across a situation, where passport number is	Not Null	
1182 t	o be included for the people. All the students wont be having passport. So what constraint you would be using?	3.	4.0
		Default	
		4.	
		Unique	
		o mque	

S.NO.	Questions	Choices	Answer
		1.	
		Register values	
		2.	
	Which of the following is shared between all of the threads in a process? Assume a kernel level	File descriptors	
1183	thread implementation	3.	2.0
		Scheduler priority	
		4.	
		Local variables	
	Which buffer is a parallel to serial converter that receives a parallel byte for conversion into a		-
1184	serial signal and further transmission onto the communication channel.	1.Transmit buffer 2.Receive buffer 3.Data bus buffer 4.Modem control	1.0
		1.	
		INSTR	
		2.	
		SUBSTRING	
1185	Which character function can be used to return a specified portion of a character string?	3.	3.0
		SUBSTR	
		4.	
		POS	
		1.image-background:url('R4R_Logo.jpg') 2.background-	
1186	Which command we use to set an image on background?	image:url('R4R_Logo.jpg') 3.bg-image:url('R4R_Logo.jpg') 4.background-image:href('R4R_Logo.jpg')	2.0
1187	Which Data structure is best suited for the UNDO operation in Windows	1.Both Stack and Queues 2.Queues 3.Stack 4.Arrays	3.0
		1.	
		External	
		2.	
		Conceptual	
1188	Which database level is closest to the users?	3.	1.0
		Internal	
		4.	
		Physical	
		1.	
		NEXT_DAY	
		2.	
		LAST_DAY	
1189	Which date function is used to obtain the date of next Wednesday	3.	3.0
		NEXT_DATE	
		4.	
		All of the options	
		1.	
		Architectural design	
		2.	
	4.0	Component-level design	
1190	٠٠.٠	3.	3.0
		Data design	
		4.	
		Interface design	

S.NO.	Questions	Choices	Answer
		1.	
		Single level directory structure	
		2.	
		Two level directory structure	
1191	Which directory implementation is used in most of the Operating Systems?	3.	3.0
		Tree directory structure	
		4.	
		Acyclic directory structure	
		-	
		1.	
		Single level directories	
		2.	
1102		Two level directories	4.0
1192	Which directory implementation method creates more dangling pointers?	3.	4.0
		Tree Structured Diretories	
		4.	
		Acyclic graph directories	
1193	Which element is used to draw graphics images on a web page?	1.script 2.audio 3.embed 4.canvas	4.0
		1.	
		Unit Testing	
		2.	
		Integration Testing	
1194	Which granularity level of testing checks the behavior of module cooperation?	3.	2.0
		Acceptance Testing	
		4.	
		Regression Testing	
1105			4.0
	Which header file should be included to use functions like malloc() and calloc()? Which Instruction word is used to specify the number of stop bits, data bits, parity bit and the baud	1.string.h 2.dos.h 3.memory.h 4.stdlib.h 1.Mode 2.Command followed by Mode 3.Command 4.Mode followed	4.0
1196	rate clock factor for the 8251A USART	by command	4.0
		1.	
		SQL cannot support object-orientation	
		2.	
		The same query can be written in many ways, each with vastly different execution plans.	
1197	Which is a major problem with SQL?	3.	2.0
		SQL syntax is too difficult for non-computer professionals to use	
		4.	
		SQL creates excessive locks within the database	
		1.	
		Safe State	
		2.	
		Unsafe State	
1198	Which is not related to deadlock avoidance?	3.	3.0
		Safe Sequence	
		4.	
		Resource sequence	

S.NO.	Questions	Choices	Answers
		1.	
		Entry level personnel	
		2.	
		Middle level stakeholder	
1199	Which is one of the most important stakeholder from the following?	3.	4.0
		Managers	
		4.	
		Users of the software	
		1.	
		var txt = new Array(1:"tim",2:"kim",3:"jim")	
		2.	
1200	Which is the compet you to write a Jave Corint amou?	var txt = new Array:1=("tim")2=("kim")3=("jim")	3.0
1200	Which is the correct way to write a JavaScript array?	3.	3.0
		var txt = new Array("tim","kim","jim")	
		4.	
		var txt = new Array="tim","kim","jim"	
		1.	
		Stack	
		2.	
		Queue	
1201	Which is used to store critical pieces of data during subroutines and interrupts		1.0
		3.	
		Accumulator	
		4.	
		Data register	
	Which item is an example of a physical network address?	1.IP address 2.MAC address 3.Workstation name 4.www.proprofs.com	2.0
1203	Which JavaScript function is most useful for finding errors?	1.Confirm 2.Prompt 3.Debug 4.Alert	3.0
		Software interrupts	
		2.	
1204	Which method bypasses the CPU for certain types of data transfer?	Interrupt-driven I/O	4.0
		3.	
		Polled I/O	
		4.	
		Direct memory access (DMA)	
		1.	
		getDriver() method	
		2.	
1205	Which method is used for loading the driver in Java JDBC.	class.forName() 3.	1.0
	which inclined is used for loading the driver in Java JDBC.	createStatement()	
		4.	
		getConnection()	
		1.	
		stringVariable.substring(subString)	
		2.	
1206	Which method is used to search for a substring?	stringVariable.find(subString)	3.0
		3.	
		stringVariable.indexOf(subString)	
		4.	
1		stringVariable.indexOf(charAt(0))	

.NO.	Questions	Choices	Answei
		1.	
		Waterfall Model	
		2.	
		Prototyping Model	
1207	Which model can be selected if user is involved in all the phases of SDLC?	3.	3.0
		RAD Model	
		4.	
		Prototyping Model and RAD model	
			Ь—
		1.	
		design model	
		2.	
1208	3.0	implementation model 3.	2.0
		user model	
		4.	
		client model	
		1.	
		CDMA	
		2.	
		CSMA/CA	
209	Which multiple access technique is used by IEEE 802.11 standard for wireless LAN?		2.0
	which multiple access technique is used by 1222 002.11 standard for whereas 2711.	3.	
		ALOHA	
		4.	
		CSMA/CD	
1210	Which of the below given sorting techniques has highest best-case runtime complexity?	1.bubble sort 2.insertion sort 3.quick sort 4.selection sort	3.0
	Which of the following (in file scope) leads to a compile-time error?	1.const int a=90; 2.const int f1() { return 100; } 3.int f2() const { return	3.0
		200; } 4.const int f3(const int i) { return 300;}	
		3.0 Develop overall project strategy	
		2.	
1212	Which of the following activities is not one of the four things that need to be accomplished by the	Identify the functionality to deliver in each software increment	4.0
1212	generic planning task set?	3.	7.0
		Create a detailed schedule for the complete software project	
		4.	
		Devise a means of tracking progress on a regular basis	
		1 and 4	
	Which of the following addressing modes are suitable for program relocation at run time?	2.	
	1. Absolute addressing	1 and 2	4.0
	2. Based addressing	3.	4.0
	3. Relative addressing 4. Indirect addressing	2 and 3	
		4.	
		1,2 and 4	
		1.Greedy method 2.Backtracking 3.Divide and conquer 4.Dynamic	<u> </u>
1214	Which of the following algorithm design technique is used in the quick sort algorithm?	programming	3.0
1215	Which of the following algorithm is Minimum Spanning Tree in graph	1.Dijiktra's algorithm 2.AVL Tree algorithm 3.Kruskal's algorithm 4.Merge algorithm	3.0
		1.Dijiktra's algorithm 2.Prim's algorithm 3.Kruskal's algorithm 4.Merge	1.0
216	Which of the following algorithm is used to find the shortest path between two nodes in graph	algorithm	

S.NO.	Questions	Choices	Answers
	-	1.	
	Which of the following are decidable?	I and II	
	I. Whether the intersection of two regular languages is infinite	2.	
	II. Whether a given context-free language is regular	I and IV	
1217	III. Whether two push-down automata accept the same language	3.	3.0
	IV. Whether a given grammar is context-free	II and III	
		4.	
		I and III	
		1.	
		enctype='multipart/form-data'	
		2.	
		enctype='singlepart/data'	
1218	Which of the following attribute is needed for file upload via form?	3.	1.0
		enctype='file'	
		4.	
		enctype='form-data/file'	
		1.	-
		Column	
		1000 Inning	
1219	Which of the following can be a valid column name?	1966_Invoices	3.0
		3.	
		Catch_#22	
		4.	
		#Invoices 1. Validating a form 2. Sending a form's contents by email 3. Storing the	
	Which of the following can't be done with client-side JavaScript?	form's contents to a database file on the server 4. Testing the form	3.0
	Which of the following case does not exist in complexity theory? Which of the following command words need to be programmed to operate a single PIC in fully	1.Average case 2.Worst case 3.Best case 4.Null case 1.ICW1 and ICW2 2.ICW1, ICW2 and ICW3 and ICW3	4.0
1222	nested mode with an 8086 microprocessor	4.ICW1 and ICW4	2.0
1223	Which of the following correctly describes C++ language?	Statically typed language 2.Dynamically typed language 3.Both Statically and dynamically typed language 4.Type-less language	4.0
		1.	
		It is the position in a sentential form where the next shift or reduce operation will occur	
		2	
		It is non-terminal whose production will be used for reduction in the next	
		step	
1224	Which of the following describes a handle (as applicable to LR-parsing) appropriately?	3.	4.0
		It is a production that may be used for reduction in a future step along	
		with a position in the sentential form where the next shift or reduce operation will occur	
		4.	
		It is the production p that will be used for reduction in the next step	
		along with a position in the sentential form where the right hand side of the production may be found	
1225	Which of the following explains cookies nature?	1.Non Volatile 2.Volatile 3.Intransient 4.Transient	4.0
		1.	
		Contiguous allocation	
		2.	
		Linked allocation	
1226	Which of the following file access method needs a relative block number 'n'?	3.	3.0
		Direct access	
		4.	
		Sequential access	
l			

S.NO.	Questions	Choices	Answers
	· ·	1.	
		break()	
		2.	
		quit()	
1227	Which of the following function is used to terminate the script execution in PHP?	3.	3.0
		die()	
		4.	
		exit()	
1228	Which of the following function sets first n characters of a string to a given character?	1.strset() 2.strnset() 3.strinit() 4.strcset() 1.	2.0
		1 and 3 only	
	Which of the following grammar rules violate the requirements of an operator grammar ? P, Q, R are nonterminals, and r, s, t are terminals.	2.	
1229		l only	1.0
1227	2. $P \rightarrow Q s R$	3.	1.0
	 P → ε P → Q t R r 	2 and 3 only	
		4.	
		1,2,3 and 4 only	
1230	which of the following intermediate language can be used in intermediate code generation?	1.Postfix notation and Three address code 2.Quadraples 3.Triples 4.Infix	1.0
		notation and two address code 1.	
		All Statements Coverage	
		2.	
1231	Which of the following is a black box testing strategy?	Control Structure Coverage	3.0
		3.	
		Cause-Effect Graphs	
		4.	
		ALL	
		1.	
		=	
		2.	
		LIKE	
1232	Which of the following is a comparison operator in SQL?	3.	4.0
		BETWEEN	
		4.	
		all of the options	
		1.	
		system context model	
		2.	
	which of the following is a dynamic model that shows now the system interacts with its	interaction model	
1233	environment as it is used?	3.	2.0
		environmental model	
		4.	
		both system context and interaction	

S.NO.	Questions	Choices	Answers
		1.	
		SELECT NULL FROM EMPLOYEE;	
		2.	
		SELECT NAME FROM EMPLOYEE;	
1234	Which of the following is a legal expression in SQL?	3.	2.0
		SELECT NAME FROM EMPLOYEE WHERE SALARY = NULL;	
		4.	
		None of the options	
		1	
		1.	
		difficult to update	
		2.	
1235	Which of the following is a problem of file management system?	lack of data independence	4.0
1200	The of the following is a proofer of the management system.	3.	
		data redundancy	
		4.	
		all options given	
		1.	
		PERT	
		2.	
	Which of the following is a project scheduling method that can be applied to software	СРМ	
1236	development?	3.	4.0
		СММ	
		4.	
		both PERT and CPM	
		1.X.25 level 2-ISO 2.Source routing and Domains Naming Usenet	
1237	Which of the following is a wrong example of network layer	3.X.25 packet land protocols (PLP-ISO) 4.Internet protocol (I/P) ARPA NET	
1238	which of the following is an incorrect definition inside a class?	1.void * operator new(size t size) { } 2.void * operator new () { } 3.void operator delete(void * ptr) $\overline{$ } 4.int operator ++() { }	
1239	which of the following is an incorrect definition inside a class?	1.void * operator new(size t size) { } 2.void * operator new () { } 3.void	2.0
		1.It is a class of which stream is an object. 2.Using cin, the data can be	
1240	Which of the following is false for cin?	read from user's terminal. 3.It represents standard input. 4.It is an object of istream class.	1.0
		1.	
		Place the user in control	
		2.	
		Reduce the user's memory load	
1241	Which of the following is golden rule for interface design?	3.	4.0
		Make the interface consistent	
		4.	
		ALL	
		1.	
		Cache memory	
		2.	
1242	Which of the following is lowest in memory hierarchy?	Secondary memory	3.0
	5. and following is forest in memory interesting.	3.	
		Registers	
		4.	
		RAM	

S.NO.	Questions	Choices	Answer
		1.	
		Join	
		2.	
1242	Which of the following is not a binary operator in relational algebra?	Semi-Join	4.0
1243	which of the following is not a binary operator in relational algebra:	3.	4.0
		Assignment	
		4.	
		Project	
		1.	
		Instruction cache	
		2.	
		Instruction register	
1244	Which of the following is not a form of memory?	3.	3.0
		Instruction opcode	
		4.	
		Translation-a-side buffer	
		1.	
		atomicity	
		2.	
		consistency	4.0
1245	Which of the following is not a property of a transaction?	3.	
		dirty read	
		4.	
		durability	
		1.	
		evaluations to be performed	
		2.	
		amount of technical work	
1246	Which of the following is not a SQA plan for a project?	3.	2.0
		audits and reviews to be performed	
		4.	
		documents to be produced by the SQA group	
	Which of the following is not a valid attribute of the INPUT tag?	1.TEXT 2.NAME 3.SIZE 4.MAXLENGTH	4.0
1248	Which of the following is NOT a valid PHP comparison operator?	1.!= 2.>= 3.&&& 4.=== 1.	3.0
		Communications components	
		2.	
	Which of the following is not an example of infrastructure components that may need to be	Database components	
1249	integrated into the software architecture?	3.	2.0
		4.0Interface components	
		4.	
		Memory management components	
1250	Which of the following is not characteristics of a relational database model	Complex logical relationships 2.Treelike structure 3.Tables 4.Records 1.	2.0
		Specification delays	
		2.	
10-	Which of the following is not considered as a risk in project management?	Product competition	4.0
1251	which of the following is not considered as a risk in project management?	3.	7.0
1251			
1251		Testing	
1251		Testing 4. Staff turnover	

Particular Par	S.NO.	Questions	Choices	Answers
Part Part				
Printer Printer Print				
1920 Which of the following is not bardware: 1920 Which of the following is not been of Hoder's corptionises of software registering peace of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not possible using PHP? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles of good carding? 1920 Which of the following is not one of the principles				
Assembler Asse	1252	Which of the following is not hardware:		4.0
Assemble Assemble			VDU terminal	
1254 Which of the following is not one of Booker's core principles of software engineering practice of any produce requires 80% of the ether) All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible, but no simpler All designs should be as simple as possible value of the element All designs should be as simple as possible value of the solid part of the stocked in a solid part of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the element All designs should be as simple as possible value of the elemen			4.	
All design should be as simple as possible, but no simple 1 2.53 Which of the following is run one of Hooker's care principles of suftware engineering principe 2.54 A software system exists only to provide value to its users. 3.6 Parette principle (20% of any produce requires 80% of the effort) 4.0 Remember that you produce oftens will consume 1.1 Create on the test before you begin ending 2.5 Differenther that you produce oftens will consume 3.6 Differenther that you produce oftens will consume 4.0 Nice of the following is not one of the principles of good coding? 4.0 Nice of the following is not one of the principles of good coding? 4.0 Destring files from the server 2 Redirect a vision of unather page 1.85 deviate of fix vision of the following is not possible using PHP? 4.0 Destring files from the server 2 Redirect a vision of unather page 1.85 deviate of fix vision of the following is not the attribute of PCD? 4.0 Destring files from the server 2 Redirect a vision of unather page 1.85 deviate of fix vision of the following is not the attribute of PCD? 4.0 Destring files from the server 2 Redirect a vision of unather page 1.85 deviate of fix vision of the following is not the attribute of PCD? 4.0 Destring files from the server 2 Redirect a vision of unather page 1.85 deviate of fix vision of the vision of the following is not the attribute of PCD? 5. Program Counter 5. Destring files from the server 2 Redirect a vision of unather page 1.85 deviate of the vision of the vision of the vision of the vision of the vision of the following is not the attribute of PCD? 5. Destring files from the server 2 Redirect a vision of unather page 1.85 deviated in the page 2 deviated of the vision of the vision of the vision of the following is not the attribute of PCD? 5. Destring files from the server 2 Redirect a vision of unather page 1.85 deviated of the vision of the vision of the vision of the vision of the vision of the vision of the vision of the vision of the vision of the vision of the vision of the vision of the			Assembler	
2. As software system exists only to provide value to its users. 3.0 Pareto principle (20% of any product requires 80% of the effort) 4. 30/Remember that you produce others will consume 1. Create until tests before you begin coding. 2. 30/Create a visual layout that aids understanding. 3. Create until tests before you begin coding. 4. Which of the following is not one of the principles of good coding? 4. Which of the following is not possible using PHP? 4. Deleting files from the server 2. Redirect a visitor to another page 35cf. 4. Which of the following is not possible using PHP? 4. Deleting files from the server 2. Redirect a visitor to another page 35cf. 4. Prince self-documenting code, not program documentation 1. Deleting files from the server 2. Redirect a visitor to another page 35cf. 4. Prince self-documenting code, not program documentation 2. Program Counter 3. Access Countred List 4. Pointers to file counted blocks 1. They should be deleted in the public section. 2. Program Counter 3. Create a visual should be deleted in the public section. 3. They should be deleted in the public s			1.	
A software system exists only to provide value to its users. 3.0 A software system exists only to provide value to its users. 3.1 Pareto principle (20% of any product requires 80% of the effort) 4. 3.0 Remember that you produce others will consume Ceata unit tests before you begin coding 2. 3.0 Ceata a visual layout that adds undestanding 3. Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation Deleting files from the server 2 Redirects a visitor to another page 1.5st Which of the following is not possible using PHP? Deleting files from the server 2 Redirects a visitor to another page 1.5st be value of the window standard 4.Obeain the 1P address of a Visitor 1. File permissions 2. Program Counter 3. Access Control 1 is 4 4. Program Counter 3. Access Control 1 is 4 4. Program Counter 4. Program Counter 5. They aloued by declared in the pubble section. 2. They do not have return type. 3.They can not be inherited. 4.They can 4.0 Excess Control 1 is 4 4. File permissions 2. Temporal Colesion 3. Temporal Colesion 4. Sequential Colesion 4. Sequential Colesion 5. Corror Coupling 5. Stamp Coupling 5. Started Coupling 4. 3.0			All design should be as simple as possible, but no simpler	
1.25 Which of the following is not one of Iroder's clear principles of software engineering practice? 1.			2.	
Parcto principle (20% of any product requires 80% of the effort) 4. 3.08 cmember that you produce others will consume 1. Create an itsets before you begin coding 2. 3.06 create a visual layout that aids understanding 3. 4.0 3.08 creates a visual layout that aids understanding 3. 4.0 4.0 4. Write self-documenting code, not program documentation 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1253	Which of the following is not one of Hooker's core principles of software engineering practice?		3.0
1256 Which of the following is not one of the principles of good coding? 1. Create unit tests before you begin coding 2. 3.0 Create a visual layout that aids understanding 3.0 Create a visual layout that aids unde				
1254 Which of the following is not one of the principles of good coding? 2-3			Pareto principle (20% of any product requires 80% of the effort)	
254 Which of the following is not one of the principles of good coding? 2.5 OC create a visual layout that aids understanding 3.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Program Counter 2.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 4. P			3.0Remember that you produce others will consume	
254 Which of the following is not one of the principles of good coding? 2.5 OC create a visual layout that aids understanding 3.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 2.5 Keep variable names short so that code is compact 4. Program Counter 2.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 3.5 Keep variable names short so that code is compact 4. Program Counter 4. P			1.	
1254 Which of the following is not one of the principles of good coding? 3. Keep variable names short so that code is compact 4. Write self-documenting code, not program documentation 4. Write self-documenting code, not program documentation 4. Write self-documenting code, not program documentation 4. Publish of the following is not possible using PHP? 4. Publish of the window statusbar 4. Obtain the IP address of a Visitor the value of the window statusbar 4. Obtain the IP address of a Visitor 4. Program Counter 2. Program Counter 3. Access Control List 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control blocks 4. Promisers to file control file cont			Create unit tests before you begin coding	
Reep variable names short so that code is compact Note of the following is not possible using PHP? Liberting files from the server 2.Redirect a visitor to another page 3.5ct the value of the window statusbar 4.Obtain the IP address of a Visitor In File permissions 2. Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Program Counter Access Control List A. Pointers to file control blocks Access Control List A. Pointers to file control blocks Access Control List A. Pointers to file control blocks Access Control List A. Pointers to file control blocks Access Control Counter Access Control Counte	1254		2. 3.0Create a visual layout that aids understanding	4.0
1256 Which of the following is not possible using PHP? 1. Deleting files from the server 2. Redirect a visitor to another page 3.54 40	1254	which of the following is not one of the principles of good coding?	Keep variable names short so that code is compact	4.0
1255 Which of the following is not possible using PHP? 1. Deleting files from the server 2.Redirect a visitor to another page 3.8 of the value of the window statusbar 4.Obtain the IP address of a Visitor of the following is not the attribute of PCB? 2. Program Counter 3. Access Control List 4. Pointers to file control blocks 4.0 Pointers to file control blocks 1. They should be declared in the public section. 2. They do not have return type. 3. They can not be inherited. 4. They can be virtual. 1. Functional Cohesion 2. Temporal Cohesion 3. Access Control List 4. Pointers to file control blocks 4.0 Pointers to				
1256 Which of the following is not the attribute of FCB? 1257 Which of the following is not the characteristic of constructor? 1258 Which of the following is not the characteristic of constructor? 1259 Which of the following is the best type of module cohesion? 1250 Which of the following is the best type of module cohesion? 1250 Which of the following is the best type of module cohesion? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling? 1250 Which of the following is the worst type of module coupling?			Write self-documenting code, not program documentation	
1. File permissions 2. Program Counter 3. Access Control List 4. Pointers to file control blocks 1. They should be declared in the public section. 2. They do not have return type. 3. They can not be inherited. 4. They can have return type. 3. They can have	1255	Which of the following is not possible using PHP?	1. Deleting files from the server 2. Redirect a visitor to another page 3. Set	4.0
2. Program Counter 3. Access Control List 4. Pointers to file control blocks				
Program Counter Rollowing is not the attribute of FCB? Rollowing is not the attribute of FCB? Rollowing is not the attribute of FCB? Rollowing is not the characteristic of constructor? Rollowing is the virtual. Rollowing is the best type of module cohesion?			File permissions	
1256 Which of the following is not the attribute of FCB? 3. Access Control List 4. Pointers to file control blocks 1.They should be declared in the public section. 2.They do not have return type. 3.They can not be inherited. 4.They can be virtual. 1. Functional Cohesion 2. Temporal Cohesion 3. Functional Cohesion 4. Sequential Cohesion 4. Sequential Cohesion 4. Sequential Cohesion 2. Stamp Coupling 2. Stamp Coupling 3. External Coupling 4. Starp Coupling 4. Starp Coupling 5. Stamp Coupling 6. Starp Coupling 7. Starp Coupling 8. Starp Coupling 9. Starp Coupling 1. Starp Coupling			2.	
Access Control List 4. Access Control List 4. Pointers to file control blocks 1. They should be declared in the public section. 2. They do not have return type. 3. They can not be inherited. 4. They can be virtual. 1. Functional Cohesion 2. Temporal Cohesion 3. Functional Cohesion 4. Sequential Cohesion 4. Sequential Cohesion 1. Control Coupling 2. Stamp Coupling 3. External Coupling 4. External Coupling 4.	1256		Program Counter	4.0
4. Pointers to file control blocks 1.They should be declared in the public section. 2.They do not have return type. 3.They can not be inherited. 4.They can be virtual. Functional Cohesion 2. Temporal Cohesion 3. Functional Cohesion 4. Sequential Cohesion 4. Control Coupling 2. Stamp Coupling 3. External Coupling 4.	1230	which of the following is not the authors of Yes.		1.0
Pointers to file control blocks 1.They should be declared in the public section. 2.They do not have return type. 3.They can not be inherited. 4.They can 4.0 be virtual. Functional Cohesion 2. Temporal Cohesion 3. Functional Cohesion 4. Sequential Cohesion 4. Sequential Cohesion 1. Control Coupling 2. Stamp Coupling 3. External Coupling 4.				
1257 Which of the following is not the characteristic of constructor? 1. They should be declared in the public section. 2. They do not have return type. 3. They can not be inherited. 4. They can be virtual. 1.				
1257 Which of the following is not the characteristic of constructor? 2. They do not have return type. 3. They can not be inherited. 4. They can 4.0 be virtual. 1.				
1. Functional Cohesion 2. Temporal Cohesion 3. Functional Cohesion 4. Sequential Cohesion 1. Control Coupling 2. Stamp Coupling 3. External Coupling 4. A. Seternal Coupling 4. Seternal Coupling 4. Seternal Coupling 4. Sequential Cohesion 4. Sequential Cohesion 4. Sequential Cohesion 4. Sequential Cohesion 4. Sequential Cohesion 5. Stamp Coupling 6. Stamp Coupling 7. Stamp Coupling 8. Stamp Coupling 9. Stamp Coupling 1. Control Coupling 1. Con	1257	Which of the following is not the characteristic of constructor?	. 2. They do not have return type. 3. They can not be inherited. 4. They can	4.0
2. Temporal Cohesion 3. Functional Cohesion 4. Sequential Cohesion 1. Control Coupling 2. Stamp Coupling 3. External Coupling 4. External Coupling 4.			1.	
Temporal Cohesion 3. Functional Cohesion 4. Sequential Cohesion 1. Control Coupling 2. Stamp Coupling 3.0 External Coupling 3.0 External Coupling 4. Coupling 4. Coupling 4. Coupling 4. Coupling 4. Coupling 4. Coupling 4. Coupling 4. Coupling 4. Coupling 5. Coupling 6. Coupling 7. Coupling 8. Coupling 9. Coupling 1.		Functional Cohesion		
1258 Which of the following is the best type of module cohesion? Sunctional Cohesion				
Functional Cohesion 4. Sequential Cohesion 1. Control Coupling 2. Stamp Coupling 3. External Coupling 4.	1258	Which of the following is the best type of module cohesion?		3.0
4. Sequential Cohesion 1. Control Coupling 2. Stamp Coupling 3. External Coupling 4. 4. 4. Control Coupling 4. 4. Coupling 4. Control Coupling 4.				
Sequential Cohesion				
1. Control Coupling 2. Stamp Coupling 3. External Coupling 4.				
Control Coupling 2. Stamp Coupling 3. External Coupling 4.				
2. Stamp Coupling 3. External Coupling 4.				
1259 Which of the following is the worst type of module coupling? 3. External Coupling 4.				
External Coupling 4.			Stamp Coupling	
4.	1259	Which of the following is the worst type of module coupling?	3.	3.0
			External Coupling	
Content Coupling				
			Content Coupling	

S.NO.	Questions	Choices	Answers
		1.	
		Every subset of a regular set is regular.	
		2.	
		Every finite subset of a non-regular set is regular.	
1260	Which of the following is TRUE?	3.	1.0
		Every finite subset of a non-regular set is regular.	
		4.	
		Infinite union of finite sets is regular.	
		1.	
		The complement of a recursive language is recursive.	
		2.	
		The complement of a recursively enumerable language is recursively enumerable	
1261	Which of the following is true?	3.	1.0
		The complement of a recursive language is either recursive or	
		recursively enumerable	
		4.	
		The complement of a context-free language is context-free	
		1.	
		Every relation in 2NF is also in BCNF	
		2.	
		A relation R is in 3NF if every non-prime attribute of R is fully	
1262	Which of the following is TRUE?	functionally dependent on every key of R	3.0
		3.	
		Every relation in BCNF is also in 3NF	
		4.	
		No relation can be in both BCNF and 3NF	
		1.	
		Segmentation is faster than paging	
		2.	
		Paging is faster than segmentation	
1263	Which of the following is true?	3.	2.0
		Pages are unequal sized pieces	
		4.	
		Segments are equal sized pieces	
1264	Which of the following is useful in traversing a given graph by breadth first search?	1.List 2.Queue 3.Set 4.Stack	2.0
1204	o. and ronorming is about in a arterioring a given graph by breathin instruction;	1. I. J. S. L. Quede 5. Set 4. Stack	2.0
		Do not allows developers to make changes to the delivered increment	
	Which of the following is valid reason for collecting customer feedback concerning delivered	2.	
1265	software?	2.0 Delivery schedule can be revised to reflect changes 3.	4.0
		Developers can not identify changes to incorporate into next increment	
		Delivery schedule can't be revised to reflect changes 1.	\vdash
		Create	
		2.	
		Drop	
1266	Which of the following is/are the DDL statements?	3.	4.0
		Alter	
		4.	
		All of the options	

S.NO.	Questions	Choices	Answers
		1.L1 and L2 only 2.	
		L1 and L3 only	
	Which of the following languages are context-free?	3.	
1267	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	L3 only	2.0
	$L3 = \{a^mb^n \mid m = 2n + 1\}$	4.	
		L1 only	
		1.	
		Segmentation	
		2.	
		Pure Demand Paging	
1268	Which of the following memory allocation scheme suffers from External fragmentation?	3.	1.0
		swapping	
		4.	
		paging	
		1.	
		A binary relationship	
		2.	
4.50		A ternary relationship	
1269	Which of the following most certainly implies the need for an entire table to implement?	3.	4.0
		A recursive relationship	
		4.	
		An identifying relationship	
1270	Which of the following name does not relate to stacks?	1.FIFO lists 2.LIFO list 3.Push-down lists 4.Piles	1.0
		1.	
		PROJECTION	
		2.	
		SELECTION	
1271	Which of the following operation is used if we are interested in only certain columns of a table?	3.	1.0
		UNION	
		4.	
		JOIN	
1272	Which of the following operator can be overloaded through friend function?	1> 2.= 3.() 4.*	4.0
	Which of the following operators has an associativity from Right to Left?	1.+= 2.== 3.<< 4.<=	3.0
		1.	
		architecture	
		2.	
	Which of the following pattern is the basis of interaction management in many web-based systems?	repository pattern	3.0
		3.	
		model-view-controller	
		4.	
		different operating system	
		1.	
		Membership problem for CFGs	
		2.	
1275	Militab of the fellowing amplicant is under 111.0	Ambiguity problem for CFGs.	2.0
12/5	Which of the following problems is undecidable?	3.	2.0
		Finiteness problem for FSAs	
		4.	
		Equivalence problem for FSAs.	
		I.	1

S.NO.	Questions	Choices	Answers
		Deciding if a given context-free grammar is ambiguous.	
		2.	
		Deciding if a given string is generated by a given context-free grammar	
1276	Which of the following problems is undecidable?	Deciding if the language generated by a given context-free grammar is empty	1.0
		4.	
		Deciding if the language generated by a given context-free grammar is finite.	
		1.	
		Change management	
		2.	
1277	Which of the following process is concerned with analyzing the costs and benefits of proposed changes?	Version management	1.0
		3.	
		System building	
		4.	
		Release management	
1278	Which of the following property allows you to specify an element's position with respect to the	1.relative 2.fixed 3.static 4.absolute	1.0
	browser window?	1.	1
		Product risk	
		2	
		2.	
1070	Which of the following risk is the failure of a purchased component to perform as expected?	Project risk	1.0
1279		3.	1.0
		Business risk	
		4.	
		Programming risk	
		1.	
		People risks	
		2.	
	Which of the following risks are derived from the organizational environment where the software	Technology risks	
	is being developed?	3.	4.0
		Estimation risks	
		4.	
		Organizational risks	
			lacksquare
		1.	
		Managerial risks	
		2.	
	Which of the following risks are derived from the software or hardware technologies that are used	Technology risks	
1281	to develop the system?	3.	2.0
		Estimation risks	
		4.	
		Organizational risks	
1282	Which of the following statements about queues is incorrect?	1.Queues are first-in, first-out (FIFO) data structures 2.Queues can be implemented using arrays 3.Queues can be implemented using linked	4.0
		lists 4.New nodes can only be added at the front of the queue 1.Class members are public by default. 2.Structures can not have	_
1283	Which of the following statements are true in c++?	functions as members. 3.Classes can not have data as public members. 4.Structures can have functions	1.0

S.NO.	Questions	Choices	Answer
		1.	
	Which of the following statements are TRUE?	I and II	
	I. There exist parsing algorithms for some programming languages	2.	
	whose complexities are less than $O(n^2)$. II. A programming language which allows recursion can be implemented	I and IV	
1284	with static storage allocation.	3.	2.0
	III. No L-attributed definition can be evaluated in The framework of bottom-up parsing.	III and IV	
	IV. Code improving transformations can be performed at both source language and intermediate code level.	4.	
		I, II and III	
1285	Which of the following statements best describes the operation of a synchronous up-/down-counter?	1.In general, the counter can be reversed at any point in its counting sequence. 2.The counter can be reversed, but must be reset before counting in the other direction. 3.The counter can count in either direction, but must continue in that direction once started. 4.The count sequence cannot be reversed, once it has begun, without first resetting the counter to zero.	1.0
		It is a degree to which software running on one platform can easily be converted to run on another platform.	
		2.	
		It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
	Which of the following statements are bine as a billion in an Co. Co. 1	3.	
1286	Which of the following statements explains portability in non-functional requirements?	The ability of the system to behave consistently in a user-acceptable manner when operating within the environment for which the system was intended.	1.0
		4.	
		It is a degree to which software running on one platform can easily be converted to run on another platform as well as It can be enhanced by using languages, OS' and tools that are universally available and standardized.	
		1.	
		Every NFA can be converted to an equivalent DFA	
		2	
1287		Every non-deterministic Turing machine can be converted to an equivalent deterministic Turing machine	4.0
1207	Which of the following statements is false?	3.	1.0
		Every regular language is also a context-free language	
		4.	
		Every subset of a recursively enumerable set is recursive	
1288	Which of the following statements is NOT valid about operator overloading?	1. Overloaded operator must have at least one operand of its class type. 2. Only existing operators can be overloaded. 3. The overloaded operators follow the syntax rules of the original operator. 4. The arity of the operator can be changed	3.0
1289	Which of the following statements is NOT valid about operator overloading?	1.Overloaded operator must have at least one operand of its class type. 2.Only existing operators can be overloaded. 3.The overloaded operators follow the syntax rules of the original operator. 4.The arity of the	4.0
1290	Which of the following statements is true?	operator can be changed 1.An INPUT field of type password provides excellent security 2.An INPUT field of type password provides a masked field but no real security 3.A maximum length can not be set for a password field 4.A password INPUT field can only be included in a FORM that uses the get METHOD	4.0
1291	Which of the following statements is true?	1.Quadraples have some disadvantages over triples notation for an optimizing compiler 2.For optimizing compiler, moving a statement that defines a temporary value requires us to change all references to that statements. It is an overhead for triples notation 3.For optimizing compiler, triples notation has important benefit where statements are often moved around as it incurs no movements or change 4.All the statements are false	2.0
			l
1292	Which of the following statements is/are TRUE for an undirected graph?P:Number of odd degree vertices is even,Q: Sum of degrees of all vertices is even	1.P Only 2.Q Only 3.Both P and Q 4.Neither P nor Q	1.0

S.NO.	Questions	Choices	Answers
		1.	
		Avoidance strategies	
		2.	
	Which of the following strategies means that the impact of the risk will be reduced?	Minimization strategies	
1294	in the second se	3.	2.0
		Contingency plans	
		4.	
		ALL	
		1.	
		socket	
		2.	
		bind	
1295	Which of the following system calls results in the sending of SYN packets?		4.0
		3.	
		listen	
		4.	
		connect	
		1.	
		Branching	
		2.	
	Which of the following term is best defined by the statement "The creation of a new codeline from	Merging	
1296	Which of the following term is best defined by the statement "The creation of a new codeline from a version in an existing codeline"?	3.	1.0
		Codeline	
		4.	
		Mainline	
		1.	
		Underestimated development time	
		2.	
	Which of the following term is best defined by the statement: "Derive traceability information to	Organizational restructuring	
1297	Which of the following term is best defined by the statement: "Derive traceability information to maximize information hiding in the design."?		3.0
		Requirements changes	
		4.	
		None	
		1.	
		Technology change	
		2.	
		Product competition	
1298	Which of the following term is best defined by the statement: "The underlying technology on which the system is built is superseded by new technology."?		1.0
		3. Paguiramenta ahanga	
		Requirements change	
		4.	
		None	
		1.	
		Staff turnover	
		2.	
1200	Which of the following term is best defined by the statement: "There will be a change of organizational management with different priorities."?	Technology change	3.0
1279	o-gameanovan managomone man arrotone provinces.	3.	5.0
		Management change	
		4.	
		Product competition	

S.NO.	Questions	Choices	Answers
		1. Competence	
1300	Which of the following traits need to exist among the members of an agile software team?	Decision-making ability3.	4.0
		4.0Mutual trust and respect 4.	
		ALL	
1301	Which of the following tree may have smaller elements in its left subtree and larger element in its right subtree	1.B+ Tree 2.AVL Tree 3.Binary tree 4.Binary search Tree	4.0
	Which of the following ways below is correct to write a CSS?	1.p {color:red;text-align:center}; 2.p {color:red;text-align:center} 3.p {color:red;text-align:center;} 4.p (color:red;text-align:center;)	3.0
		1. direct access from a magnetic tape	
		2.	
1303	Which of the following would cause quickest access	direct access from a hard disk	2.0
	, , , , , , , , , , , , , , , , , , , ,	3.	
		direct access from a floppy disk	
		4. direct access from a cassette tape	
		1.	
		I and II only	
		2.	
1204		I and III only	2.0
1304	I) 0*1(1+00*1)* II) 0*1*1+11*0*1 III) (0*1)*1	3.	3.0
	, (,	II and III only	
		4.	
		I,II,III	
1305	Which of these contains an executable statement?	1.// var a = 0; // var b = 0; 2./* var a = 0; // var b = 0; */3./* var a = 0; */ var b = 0; 4.// var a = 0; /* var b = 0; */	3.0
		Adequacy	
		2.	
		Feasibility	
1306	Which of these does not belong to the basic principles of good product design?	3.	4.0
		Portability	
		4.	
		Economy	
		1.	
		cost estimation	
1307	Which of these framework activities is not normally associated with the user interface design processes?	2. 1.0interface construction	3.0
		3. interface validation 4.	
		user and task analysis	1

1309 WI	hich of these is incorrect? hich of these is not an element of an object-oriented analysis model?	Computer science belongs to Software engineering 4. Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements	3.0
1309 WI	hich of these is incorrect? hich of these is not an element of an object-oriented analysis model?	2. Software engineering is a part of more general form of System Engineering 3. Computer science belongs to Software engineering 4. Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	
1309 WI	hich of these is incorrect? hich of these is not an element of an object-oriented analysis model?	Software engineering is a part of more general form of System Engineering 3. Computer science belongs to Software engineering 4. Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	
1309 WI	hich of these is incorrect? hich of these is not an element of an object-oriented analysis model?	Engineering 3. Computer science belongs to Software engineering 4. Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	
1309 WI	hich of these is incorrect? hich of these is not an element of an object-oriented analysis model?	3. Computer science belongs to Software engineering 4. Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	
1309 WI	hich of these is not an element of an object-oriented analysis model?	Computer science belongs to Software engineering 4. Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	
1310 WI	hich of these is not an element of an object-oriented analysis model?	4. Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	Software engineering is concerned with the practicalities of developing and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	and delivering useful software 1. Behavioral elements 2. Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	1. Behavioral elements 2. Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	Behavioral elements 2. Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	2. Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	2. Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	Class-based elements 3.	4.0
1310 WI	hich of these is not an element of an object-oriented analysis model?	3.	4.0
1310 WI		3.	14.0
		Data alamants	i
		Data Cicilicius	
		4.	
		Scenario-based elements	
	high of these cate of HTML 5 attributes are house 16 or 5 cm. 111 of 5	1.required, pattern, min and max 2.auto, fixed, number 3.number, text,	1.0
1311 IW	hich of these sets of HTML5 attributes can be used for form validation?	currency 4.input, radio,checkbox	
- - - - - - - - - - 	hich one is not a self complementary code?	1.8 4 - 2 - 1 2.4 8 1 2 3.4 4 3 - 2 4.2 4 2 1 1.Network Model	3.0
1312 W	hich one of the following is currently the most popular data model?	2.Object Model 3.Notation Model	4.0
		4.Relational Model	
		1.	
		Linked allocation	
		2.	
		Fixed Indexed allocation	
1313 W	hich one of the file allocation scheme cannot be adopted for dynamic storage allocation		2.0
		3.	
		Variable Indexed allocation	
		4.	
		Contiguous allocation	
		1.	
		RSA algorithm	
		2.	
		diffie-hellman algorithm	
1314 W	hich one of the following algorithm is not used in asymmetric-key cryptography?	3.	3.0
		electronic code book algorithm	
		4.	
\perp		ECC	
		1.	
		НТТР	
		2.	
		FTP	
1315 WI	hich one of the following allows a user at one site to establish a connection to another site and en pass keystrokes from local host to remote host?		3.0
		telnet	
		4.	
		none of the mentioned	
\dashv		1.namespaces provide facilities for organizing the names in a program to	
1316 W	hich one of the following correctly describes the meaning of 'namespace' feature in C++?	avoid name clashes 2.Namespaces refer to space between the names in a program 3.Namespaces refer to the memory space allocated for names	1.0
		used in a program 4.Namespaces refer to the space for names.	

S.NO.	Questions	Choices	Answers
		collision detection Acknowledgement of data frames	
1317	Which one of the following event is not possible in wireless LAN.	3. multi-mode data transmission 4. none of the mentioned	1.0
1318	Which one of the following is a cryptographic protocol used to secure HTTP connection?	1. stream control transmission protocol (SCTP) 2. transport layer security (TSL) 3. explicit congestion notification (ECN) 4. resource reservation protocol	2.0
1319	Which one of the following is a requirement that fits in a developer's module?	1. Availability 2. Testability 3. Usability 4. Flexibility	2.0
1320	Which one of the following is an internet standard protocol for managing devices on IP network?	1. dynamic host configuration protocol 2. simple network management protocol 3. internet message access protocol 4. media gateway protocol	2.0
1321	Which one of the following is FALSE?	 A basic block is a sequence of instructions where control enters the sequence at the beginning and exits at the end. Available expression analysis can be used for common subexpression elimination. Live variable analysis can be used for dead code elimination. x = 4 * 5 => x = 20 is an example of common subexpression elimination. 	2.0

S.NO.	Questions	Choices	Answers
		1.	
1322	Which one of the following is FALSE?	There is unique minimal DFA for every regular language	
		Every NFA can be converted to an equivalent PDA	
		3.	4.0
		Complement of every context-free language is recursive	
		4.	
		Every nondeterministic PDA can be converted to an equivalent	
		deterministic PDA	
		1.	
		Elicitation	
		2.	
1323	Which one of the following is not a step of requirement engineering?	Design a model	2.0
		3. Analysis	
		4.	
		Documentation	
		1.	
		FAT	
		2.	
		NTFS	
1324	Which one of the following is not a windows file system?	3.	4.0
		FAT32	
		4.	
		EXT	
		1.	
		media gateway protocol	
		2.	
1225		dynamic host configuration protocol	3.0
1323	Which one of the following is not an application layer protocol?	3.	
		resource reservation protocol	
		4.	
		session initiation protocol	
		application layer protocols are used by both source and destination devices during a communication session	
		2.	
1326		application layer protocols implemented on the source and destination host must match	3.0
		3.	
		both the options	
		4.	
		1.	
		Killing a process	
		2.	4.0
1327		Rollback to the previous state	
	Which one of the following is not the process of Deadlock Recovery?	3. Selecting a Victim	
		Selecting a Victim 4.	
		Delaying the process	

C NO	0 4	CI :	T
S.NO.	Questions	Choices 1.provide security	Answers
	Which one of the following is not the responsibility of the DBA?	2.develop applications	
1328			2.0
		3.periodically tunes the database	
		4.restores the system after a failure	
1329	Which one of the following is the recurrence equation for the worst case time complexity of the Quicksort algorithm for sorting n>=2 numbers? In the recurrence equations given in the options below, c is a constant.	1.T(n)=2T(n/2)+cn 2.T(n)=T(n-1)+T(0)+cn 3.T(n)=T(n/2)+cn 4.T(n)=2T(n-2)+cn	1.0
	Which one of the following is the very first task executed by a session enabled page?	1.Delete the previous session 2.Start a new session 3.Check whether a valid session exists 4.Handle the session	3.0
		1.	\vdash
	Which one of the following is True at any valid state in shift-reduce parsing?	Viable prefixes appear only at the bottom of the stack and not inside 2.	
1331		Viable prefixes appear only at the top of the stack and not inside 3.	3.0
		The stack contains only a set of viable prefixes	
		4.	
		The stack never contains viable prefixes	
		1.	
		10101010	
		2.	
1222	Which are of the following is used as the start frame delimeter in otherwat frame?	10101011	2.0
1332	Which one of the following is used as the start frame delimeter in ethernet frame?	3.	2.0
		00000000	
		4.	
		11111111	
		1.	\vdash
		The set of all strings containing the substring 00.	
		2.	
1333	Which one of the following languages over the alphabet {0,1} is described by the regular expression:	The set of all strings containing at most two 0's.	3.0
1333	(0+1)*0(0+1)*0(0+1)*?	3.	
		The set of all strings containing at least two 0's.	
		4.	
		The set of all strings that begin and end with either 0 or 1.	
		1.	\vdash
		Build & Fix Model	
		2.	
	Which one of the following models is not suitable for accommodating any change?	Prototyping Model	
1334			4.0
		3.	
		RAD model	
		4.	
		Waterfall Model	
		1.	
	Which one of the following modulation scheme is supported by WiMAX?	binary phase shift keying modulation	
		2.	
		quadrature phase shift keying modulation	
1335		3.	4.0
		quadrature amplitude modulation	
		4.	
		all of the mentioned	

.NO.	Questions	Choices	Answe
		1.	
1336	Which one of the following protocol delivers/stores mail to reciever server?	simple mail transfer protocol	
		2.	
		post office protocol	
		3.	1.0
		internet mail access protocol	
		·	
		4.	
		hypertext transfer protocol	
		1.	
		a and b	
		2.	
227	Which one of the following regular expressions over {0, 1} denotes the set of all strings not	b and c	14.0
331	containing 100 as a substring (a) $0*(11)*0*$ (b) $(0*1010)*$ (c) $0*1*010$ (d) $0*(10)*01*$	3.	14.0
		only c	
		4.	
		only b	
		only b	
		1.	
		Any relation with two attributes is in BCNF	
		2.	
		A relation in which every key has only one attribute is in 2NF	
338	Which one of the following statements if FALSE?	3.	4.0
	Ç	A prime attribute can be transitively dependent on a key in a 3 NF	
		relation.	
		4.	
		A prime attribute can be transitively dependent on a key in a BCNF	
		relation.	
339	Which one of the following uses 8B/6T encoding scheme	1.100 Base-T1 2.100 Base-T4 3.100 Base TX 4.100 Base-FX	2.0
	Which property is used to obtain browser vendor and version information?	1.modal 2.version 3.browser 4.navigator	4.0
		1.	
		session initiation protocol	
		session initiation protocol	
		2.	
		2.	
341	Which protocol is a signalling communication protocol used for controlling multimedia	2. session modelling protocol	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2.session modelling protocol3.	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2.session modelling protocol3.	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1.	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1.	1.0
341	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much?	1.0
	Which protocol is a signalling communication protocol used for controlling multimedia communication sessions? Which question no longer concerns the modern software engineer?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish?	1.0
	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3.	
	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software?	
341	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3.	
	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software?	
342	communication sessions? Which question no longer concerns the modern software engineer?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software? 4. Why can't software errors be removed from products prior to delivery?	1.0
3342	communication sessions?	2. session modelling protocol 3. session maintenance protocol 4. none of the mentioned 1. Why does computer hardware cost so much? 2. Why does software take a long time to finish? 3. Why does it cost so much to develop a piece of software? 4.	

S.NO.	Questions	Choices	Answei
		1.	
		Sum	
		2.	
		Count	
1345	Which SQL functions is used to count the number of rows in a SQL query?	3.	2.0
		Max	
		4.	
		ALL	
		1.	
		goto xyz	
		2.	
1346	Which statement does not require semicolon?	int x = 20	3.0
1340	which statement does not require sentection:	3.	3.0
		#define MAX 100	
		4.	
		do { } while(count<=100)	
		1.Standard form must consists of minterms 2.All standard form are	
1347	Which statement is true:	canonical forms 3.Canonical form can consist of a term with a literal missing 4.All canonical form are standard form	1.0
		1.	
		coaxial cable	
		2.	
		twisted pair cable	
1348	Which transmission media has the highest transmission speed in a network?	3.	3.0
	-		
		optical fiber	
		4.	
		electrical cable	
		1.	
		form	
		2.	2.0
		frame	
1349	Which of these is a stand alone tag?		
		3.	
		table	
		4.	
		anchor	
1350	While inserting the elements 71,65,84,69,67,83 in an empty binary search tree(BST)in the	1.65 2.67 3.83 4.69	2.0
	sequence shown, the element in the lowest level is	1.	1
		Time consuming	
	Why 'critical section' is not imposed on file systems instead 'file locks' when more than one process tries to access the file?	2.	
		Process entered in to critical section may close the file	
1351	tries to access the file?		3.0
		we cannot satisfy the three conditions of mutual exclusion, progress and bounded waiting	
		4.	
		we cannot use semaphore	

S.NO.	Questions	Choices	Answers
		1.	
1352		higher transport layers and physical layer	
		2.	
	WiMAX MAC layer provides an interface between	application layer and network layer	1.0
		3.	1.0
		data link layer and network layer	
		4.	
		none of the mentioned	
		1.	
		simplex communication	
		2.	
		half duplex communication	
1353	WiMAX provides	3.	2.0
		full duplex communication	
		4.	
		none of the mentioned	
		1.	_
		wireless maximum communication	
		2.	
		worldwide interoperability for microwave access	
1354	WiMAX stands for	3.	2.0
		worldwide international standard for microwave access	
		4.	
		none of the mentioned	
		1.	
		orthogonal frequency division multiplexing	
		2	
		time division multiplexing	1.0
1355	WiMAX uses the	3.	
		space division multiplexing	
		4.	
		all of the mentioned	
		1.	
		radio waves	
	Wireless transmission can be done via	2. microwaves	
1356			4.0
		3.	
		infrared	
		4. all of the mentioned	
	Write Through technique is used in which memory for updating the data	1.	
		Virtual memory	4.0
		2.	
1357		Main memory	
		3.	
		Auxiliary memory	
		4.	
		Cache memory	
1358	You can find the element you want to manipulate by way?	1.getElementById() 2.getElementsByTagName() 3.getElementsByClassName() 4.All of the these	4.0

S.NO.	Questions	Choices	Answers
1359	You have an array of n elements, Suppose you implement quicksort by always choosing the central element of the array as the pivot, Then the tightest upper bound for the worst case performance is	1.O(log n) 2.O(n) 3.O(n^2) 4.O(1)	3.0
1360	You have to sort a list L consisting of a sorted list followed by a few "random" elements. Which of the following sorting methods would be especially suitable for such a task?	1.Bubble sort 2.Selection sort 3.Quick sort 4.Insertion sort	4.0
1361	You need to check the size of a file in PHP function. \$size = X(filename); Which function will suitably replace 'X'?	1. filesize 2. size 3. sizeofFile 4. getSize	1.0
1362	'Aging registers' are	Counters which indicate how long ago their associated pages have been referenced. Registers which keep track of when the program was last accessed 3. Counters to keep track of last accessed instruction Counters to keep track of the latest data structures referred	1.0