Exceptional service in the national interest

Plasticity-Enhanced Domain-Wall MTJ Neural Networks for Energy-Efficient Online Learning

Christopher H. Bennett*,[1] T. Patrick Xiao [1], Can Cui,[2], Naimul Hassan [3], Otitoaleke Akinola [2], Jean Anne C. Incorvia [2], Alvaro Velasquez, Joseph S. Friedman [3], Matthew J. Marinella [1]

*cbennet@sandia.gov

[1] Sandia National Laboratories [2] University of Texas, Austin [3] University of Texas, Dallas

Outline

- Intro and Motivation: Building Spintronic Accelerators
- Critical Bio-realistic Neuronal effects with DW-MTJs
- Implementation of Semi-supervised Learning
- Discussion & Future Work

Evolution of Computing Machinery ENIAC 100 J 100 µJ **Energy Per Mathematical Computation** ĮBM PC 10 μJ i486DX PC Dennard 1 μJ **Scaling Era** 100 nJ 10 nJ-Pentium III PC Sony PS3 1 nJ N 100 pJ **Nvidia P100** 3 10 pJ **Google TPU** П Today's Best Systems imit **Pessimistic** Heterogeneous 1 pJ-Special Purpose Integration Era 100 fJ-10 fJ Landauer **New paradigms:** 1 fJ. Neuromorphic, 100 aJ. analog, quantum, 10 aJ. reversible computing 1 aJ 1980 **2010 NOW** 1946 1990 2000 2025 2035

Realizing physical matrix kernels

- Ideal Vector-Matrix Mulitply :
 - Electrically realisable using Kirchoff's + Ohm's laws
- Programmable resistors e.g. ReRAM/MRAM devices- key component
 - Small voltages to read (inference)
 - Large voltages to program

Mathematical VTW=I

$$\begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \\ w_{2,1} & w_{2,2} & w_{2,3} \\ w_{3,1} & w_{3,2} & w_{3,3} \end{bmatrix} =$$

$$\begin{bmatrix} I_1 = \Sigma V_{i,1} W_{i,1} & I_2 = \Sigma V_{i,2} W_{i,2} & I_3 = \Sigma V_{i,3} W_{i,3} \end{bmatrix}$$

Electrical

Challenges for adaptive analog accelerators

- Emerging ReRAM : far from ideal, floating-point 'weights'
- Several key problems:
 - Limited resolution
 - Read and write noise
 - Device stochasticity
 - Device non-linearity
 - Device asymmetry
- Preliminary analysis: most severe impact from <u>asymmetric non-linearity</u>
- How can we get around this??
 - Increase bio-realism of learning accelerators -> lower synapse, neuron requirements
 - The brain does not use backprop (at least as we currently apply it in ML).

Agarwal et al, IJCNN 2016

Major opportunity:

Building neural networks with spintronics components

- Spintronic components alleviate signature device issues of ReRAM accelerators.
 - STT-MTJ/SOT-MTJ: intrinsically binary + stochastic -> non-linearity irrelevant.
 - Magnetic devices with analog behavior (Domain wall, skyrmionics) :
 - different physics, non-linearity often not intrinsic (but can be designed)

Additional Advantages:

- Extreme endurance (important for online learning + inference)
- Extremely fast (<5 ns read and write)
- Low energy footprint: typically <1V programming, <50ns programming.
- Extreme compactness and CMOS-compatible 1T1R array scaling (BEOL integration)

Makarov et al, IOP 2016

Park et al, IEEE IEDM 2016

Issues with existing spintronic NNs

- Several existing spintronic NNs proposals overuse CMOS
 - Since CMOS will also be important at system-level (control blocks, routing...), may lose energy advantages.
- STT/SOT switches can be current heavy devices.
 - DW synapses/neurons -> path to aJ rather than fJ elementary switching costs!!

Sengupta et al, IEEE Biomedical Circuits & Systems 2016

Currivan (Incorvia) et al, IEEE Magnetics Letters 2012

Mondal et al, ACM 2019

Outline

- Intro and Motivation: Building Spintronic Accelerators
- Critical Bio-realistic Neuronal effects with DW-MTJs
- Implementation of Semi-supervised Learning
- Discussion & Future Work

<u>DW-MTJ Basic Device Structure</u>

- Domain wall propagates through ferromagnet nanotrack/strip
- MTJ Output at center expresses:
 - Logic 0/low output if DW has moved past Output
 - Logic 1 / high output if DW has not moved past output.
- Pinned antiferromagnet terminal at end of track: for logic/clock
- Devices have been experimentally fabricated and co-integrated.

Integration and Leak Behavior

- Integration:
 - DW position integrates applied current and stores it (non-volatile)
- Leaking function:
 - Critical for neuron 'reset'/'spike' function and dynamics (volatile)
 - Different methods for realizing leak: bottom fixed ferromagnet, trapezoidal shape, anisotropy gradient

N. Hassan, J.Appl Phys 2018

N. Hassan, J.Appl Phys 2018

W. Brigner, JxCDC 2019

Lateral Inhibition between DW-MTJs

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett, J. A. C. Incorvia, J. S. Friedman, *Journal of Applied Physics*, 2018

Lateral Inhibition: Demonstration

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett, J. A. C. Incorvia, J. S. Friedman, *Journal of Applied Physics*, 2018

<u>Application of LIF DW-MTJs</u>

- Max-out operation was implemented in a perceptron (1 layer NN)
- Weights were prewritten before testing
- 94% success rate
- Inference works!
 - Very fast (<1us for entire test set)
 - Very low energy

N. Hassan*, X. Hu*, L. Jiang-Wei, W. H. Brigner, O. G. Akinola, F. Garcia-Sanchez, M. Pasquale, C. H. Bennett, J. A. C. Incorvia, J. S. Friedman, *Journal of Applied Physics*, 2018

DW-MTJ Synapses

- DW-MTJ devices can be set to various levels of conductance as a function of the DW position under the fixed ferromagnet
 - In this configuration, output 3 (S3) is fabricated to be extremely long so as to encode maximal states
- For repeatable learning that adds resilience to bit-errors, notches can be added to DW-Synapse tracks

Source: https://arxiv.org/pdf/2003.11120.pdf

Source: https://iopscience.iop.org/article/10.1088/1361-6463/ab4157/pdf

Outline

- Intro and Motivation: Building Spintronic Accelerators
- Critical Bio-realistic Neuronal effects with DW-MTJs
- Implementation of Semi-supervised Learning
- Discussion & Future Work

Why semi-supervised learning?

- Fully backpropagation-based learning require high CMOSoverhead and is memory expensive
 - Difficult to implement in hardware- even with emerging (spintronic) memory
- The brain uses an operation called spike-timing-plasticity (STDP) to encode <u>local + simpler</u> representations
- Significant interest in combining the approaches:
 - Less training examples needed -> less energy overhead

Krotov & Hopfield, PNAS, 2019

Makram et al, Frontiers, 2011

Semi-supervised learning: implementation I

- Dual online learning processes used to perform classification tasks on standard machine learning tasks
 - Phase 1 : unsupervised clustering: using k-WTA Algorithm
 - STDP weight updates
 - Phase 2: Read out regression
 - Max-out operation used in the supervised learning process (same as previous).
 - Weight updates: Widrow-Hoff (same as 'delta' rule used in backprop).

Source: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11090/110903I/Semi-supervised-learning-and-inference-in-domain-wall-magnetic-tunnel/10.1117/12.2530308.pdf

$$\Delta W_{i,k} = \Delta Gsign(X_i(T_k - O_k)),$$

Lin et al, Scientific Reports 2016

Zamandioost et al, IEEE WISP 2015

Semi-supervised learning: implementation II (1)

- Neurons are always DW-MTJ devices.
 - First layer: leaky-integrate fire capability
 - Second layer: max-out
- Synapses can be :
 - A) 2 terminal magnetic synapse (STT-MTJ): Binary
 - B) 2 terminal resistive RAM (ReRAM): Binary or Analog
 - C) 3 terminal DW-MTJ: Binary or Analog
- Current work assumes 3T Notched synapse for energy #s

Detail on learning rule and synaptic implementation

- Current difference between pre and post synaptic ports determine plasticity event
- I pre > I post : Weights increase
 - Correlation/Hebbian
- I pre < I post: Weights decrease
 - Anti-correlation/ Anti-Hebbian
- The operation is realized via a special wiring which allows for feedback to occur.
- In the second layer, weights additionally move relative to the teacher signal
 - "Four quadrant learning rule " -- > analogous to stochastic grad descent

Source: https://arxiv.org/abs/2003.02357

Source: https://arxiv.org/abs/2003.02357

Battery of machine learning tasks

- In increasing order of difficulty:
 - Human Activity Recognition: sensor input
 - 21k training, 2.5k test
 - MLP typical result: 98%+
 - MNIST: small images
 - 60k training, 10k test
 - MLP typical result: 96%+
 - F-MNIST: small images
 - 60k training, 10k test
 - MLP typical result: 83%+

HAR Task

MNIST Task

Fashion-MNIST Task

Role of lateral interaction parameter

- Interaction parameter gamma γ defines the interaction of neighboring DW-MTJ competing neurons/nanotracks
- γ is too high: neurons over-compete [current provided by the vector matrixmultiply is noisy]
 - Relates to hard WTA case : too few neurons fire (<10%)
- γ is too low: neurons under-compete [current provided by the vector matrixmultiply is not modified by plasticity]
 - Relates to (very) soft WTA case : too many neurons fire (>50%)
- At optimal γ values, around 15-30% of neurons seem to fire at each moment.
 - Simulations ongoing to see if this is experimentally feasible.

Source: https://arxiv.org/abs/2003.02357

Source: https://arxiv.org/abs/1912.04505

Plasticity-enhanced learning is rapid

- Standard MLP (multi-layer-perceptron) using BP typically requires 200-500k samples
- Our preliminary results demonstrate that plasticityenhanced learning is extremely rapid (<100k samples required)
 - This is task dependent
- Our current results approach BP performance on all three considered tasks at appropriate γ levels

MNIST Task

Policy	Result
Random Weights	93.5%
Perceptron (1 layer NN)	88%
MLP	96.5%
Our Approach	95%

F-MNIST Task

Policy	Result
Random Weights	76%
Perceptron (1 layer NN)	71%
MLP	81.5%
Our Approach	80%

Neural network crossbar architecture

- Required components
 - D/A converters
 - Current mirrors at 'hidden neurons'
 - Ramp ADC for output in second crossbar
 - Teacher signal generation
 - Logic block and clock for control of second crossbar
- Favorable overall footprint! ©
 - Ramp ADC drives power costs; can be pushed down further if we want less output bits

Source: https://arxiv.org/abs/2003.02357

Benchmarking learning overhead energy

- Power reqs are state-of-the-art for magnetic neural networks,
 - Superior to all except for an ionic device
 - But this device requires programming times 1000x+ slower than the DW-MTJ devices!
- Further levers exist for pushing down these numbers even lower:
 - Increasing DW speed
 - Enhancing SOT switching interface efficiency
 - Reducing bits of ADC components
 - Reduced bit activation can be used at training-time to reduce stringency

Result + Energy on MNIST Task (This work)

			_
Policy	Result	Energy	0
Random Weights	93%	7.41 µJ	gate electrolyte LICOO ₂ — LI _{1-C} COO ₂ + XLI ⁺ + xh source channel drain
Our Approach	96% ""	7.41 µJ	(a) 120 (b) 110 (c) 100 (c) 10
MLP	95% ""	53.11 μJ	t (s)

Power estimates for MNIST Task (Benchmark)

System	Ferroelectric	TaOx	LISTA
NoProp, SGD ^a	6.28mJ	0.053J	$1.8\mu J$
NoProp, Batcha	$127.68 \mu J$	1.09mJ	$1.78\mu J$
MLP, SGD Analog ^b	0.75J	6.31J	7.94mJ
MLP, SGD Digital ^c	3.41J	28.86J	184.39mJ
MLP, Batch Analogb	15.3mJ	70.9mJ	7.91mJ
MLP, Batch Digital ^c	34mJ	0.288J	$91.52 \mu J$

Every value shows the total energy cost of learning considering core

Bennett, Christopher H., et al. "Contrasting advantages of learning with random weights and backpropagation in non-volatile memory neural networks." IEEE Access 7 (2019): 73938-73953.

Outline

- Intro and Motivation: Building Spintronic Accelerators
- Critical Bio-realistic Neuronal effects with DW-MTJs
- Implementation of Semi-supervised Learning
- Discussion & Future Work

Comparisons to other STDP learning systems

- STDP results comparable to best results (93%) [1],[2] for NN combining supervised + unsupervised approaches
 - A more realistic + energy-efficient read-out method
- STDP results superior to those obtained using memristor +ReRAM LIF emulator neurons (78%) [3]
 - LIF circuit also had a high level of complexity
- STDP results superior to those using rate-encoding techniques with stochastic MTJs [4]
 - [1] Querlioz et al, IEEE Transactions Nanotechnology 2013
 - [2] Bennett et al, IEEE IJCNN, 2016
 - [3] Al-Shedivat et al, IEEE Jetcas, 2015

Source: [4]

Source: [3]

Future work and physical realizability

- Since correct learning relies on high interaction, more work is done to realize tight coupling between sampling neurons
 - Early works suggests that alternating inter-neuron spacings can realize better WTA performance by maximizing stray-field interactions

Source:

https://iopscience.iop.org/article/10.1088/1361-6528/ab86e8/pdf

- Max bit resolution of DW-MTJ synapses needs to be increased for state of the art tasks
 - 4-5 bits is OK on fMNIST/MNIST, but CIFAR and ImageNet tasks collapse at this level.
 - DW-MTJ tracks may only support 4-5 bits; an alternative to realize 7+ bit is bit-slicing.

Figure 3. Cluster organization.

Source:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8416841

Summary

- DW-MTJ devices have been co-integrated as neurons and synapses in a semisupervised learning system
 - Fares better than ReRAM synapses + CMOS Neurons systems and competing spintronic proposal
 - Actual learning performance on tasks is acceptable (> 90% for MNIST) but can be improved
- Careful circuit and algorithm choices implement efficient learning with low-latency
 - Ground-breaking energy accuracy of : $< 10 \, \mu J$ energy cost is reached by using a Ramp ADC, current mirrors at the hidden layer, and low-bit precision
 - This energy budget will need to increase on more complex machine learning tasks.

Next Steps

- Real DW-MTJ Synapse and neuron devices are being fabricated and benchmarked against simulation
 - Will eventually allow for a cross-bar realistic simulation for full backprop learning using CrossSIm
 - In principle should be able to stack/combine unsupervised layers (compare to Boltzmann Machines)
- Continue to evaluate lateral inhibition effects and possible clustering implementations
 - This is a hard constraint for effective sub-sampling in k-WTA
 - CMOS-supported clustering is a lot more energy expensive.

#ROSS SIM

https://cross-sim.sandia.gov

Thank you! Questions?

Collaborators:

Prof. Joseph S. Friedman, U.T. Dallas Naim Hassan & Xuan Hu, U.T. Dallas

Prof . Jean Anne C. Incorvia, Can Cui, O. Akinola, U.T. Austin

Dr. Matthew J. Marinella, Sandia Labs Dr. T. Patrick Xiao, Sandia Labs

Appendix: Energy and performance data on all tasks

TABLE I
CLASSIFICATION AND REGRESSION TASK PERFORMANCE

Task		Learning Style	
	Random, Ana-BP	STDP, Bin-BP	STDP, Ana-BP
HAR	96.13%	95.83%	97.93%
MNIST	93.52%	93.12%	94.92%
f-MNIST	76.52%	77.52%	79.52%