ANALYSIS OF VARIANCE

In the previous section we used
 Z- and t-Distributions to answer the question
 "What is the probability that two samples come from the same population?"

ANALYSIS OF VARIANCE

- In this section we introduce a new distribution – the F-Distribution
- Used to answer the question

"What is the probability that two samples come from populations that have the same variance?"

ANALYSIS OF VARIANCE

Can also answer the question

"What is the probability that three or more samples come from the same population?"

ANOVA ANALYSIS OF VARIANCE

- In the previous section we tested two samples to see if they likely came from the same parent population.
- What if we had three (or more) samples?
- Could we do the same thing?

 Our null hypothesis would look like:

$$H_0: \ \mu_A = \mu_B = \mu_C$$

40

• We could test each pair:

$$H_0$$
: $\mu_A = \mu_B$ $\alpha = 0.05$

$$H_0$$
: $\mu_A = \mu_C$ $\alpha = 0.05$

$$H_0$$
: $\mu_B = \mu_C$ $\alpha = 0.05$

The problem is, our overall confidence drops:

$$H_0$$
: $\mu_A = \mu_B$

$$\alpha = 0.05$$

$$.95 \times .95 \times .95 = .857$$

$$H_0$$
: $\mu_A = \mu_C$ $\alpha = 0.05$

$$\alpha$$
 = 0.05

$$H_0$$
: $\mu_B = \mu_C$ $\alpha = 0.05$

$$\alpha$$
 = 0.05

- This is where ANOVA comes in!
- We compute an F value, and compare it to a critical value determined by our degrees of freedom (the number of groups, and the number of items in each group)

${\tt ANOVA}$

Let's work with some data:

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43

First calculate the sample means

Next calculate the overall mean

	GroupA	GroupB	GroupC
	37	62	50
	60	27	63
	52	69	58
	43	64	54
	40	43	49
	52	54	52
	55	44	53
	39	31	43
	39	49	65
	23	57	43
$\mu_{A,B,C}$	44	50	53
μτοτ	49		

ANOVA considers two types of variance:

Between Groups

how far group means stray from the total mean

Within Groups

how far individual values stray from their respective group mean

The F value we're trying to calculate is simply the ratio between these two variances!

$$F = \frac{Variance\ Between\ Groups}{Variance\ Within\ Groups}$$

Recall the equation for variance:

$$s^2 = \frac{\Sigma(x - \bar{x})^2}{n - 1} = \frac{SS}{df}$$

Here $\Sigma(x-\overline{x})^2$ is the "sum of squares" *SS* and n-1 is the "degrees of freedom" df

So the formula for the F value becomes:

$$F = \frac{Variance\ Between\ Groups}{Variance\ Within\ Groups} = \frac{SSG}{df_{groups}}$$

$$SSW = \sum_{j=1}^{R} \sum_{i=1}^{n_{i}} (y_{ij} - \bar{y}_{j})^{2}$$

$$SSW = \int_{j=1}^{R} \sum_{i=1}^{n_{i}} (y_{ij} - \bar{y}_{j})^{2}$$

$$SSW = \int_{j=1}^{R} \sum_{i=1}^{n_{i}} (y_{ij} - \bar{y}_{j})^{2}$$

SSG = Sum of Squares Groups df_{groups} = df_{error} = df_{error} = df_{error}

 df_{groups} = degrees of freedom(groups) df_{error} = degrees of freedom (error)

SSG = 420

Sum of Squares Groups

$$(\mu_A - \mu_{TOT})^2 = (44 - 49)^2 = 25$$

 $(\mu_B - \mu_{TOT})^2 = (50 - 49)^2 = 1$
 $(\mu_C - \mu_{TOT})^2 = (53 - 49)^2 = 16$
 $SS = 42$

Multiply by the number of items in each group:

$$42 \times 10 = 420$$

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53

$$SSG = 420$$

$$df_{groups} = 2$$

Degrees of Freedom Groups

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
11	50	53

μ _{A,B,C}	44	50	53
μ _{тот}	49		

			SSG	G = 420		GroupA	GroupB	GroupC		
					df_{\sim}	= 2		37	62	50
ANOVA					$df_{groups} = 2$ $SSE = 3300$			60	27	63
Sum of Squares Error							_/	52	69	58
								43	64	54
$(x_A-\mu_A)^2$	$(\mathbf{X}_{A} - \mu_{A})^2$	$(\mathbf{X}_{B} - \mu_{B})^2$	$(x_B-\mu_B)^2$	$(\mathbf{x}_{C} - \mu_{C})^2$	$(\mathbf{x}_{C}$ - $\mu_{C})^2$			40	43	49
49_	64	144	16	9	1	$(37-44)^2$		52	54	52
256	121	529	36	100	0	$=(-7)^2$ =49		55	44	53
64	25	361	361	25	100			39	31	43
1	25	196	1	1	144			39	49	65
16	441	49	49	16	100			23	57	43
	1062		1742		496	$\mu_{A,E}$	2.0	(44)	50	53
				TOTAL	3300	μ _{το}		49		

<i>SSG</i> = 420	
$df_{groups} = 2$	
SSE = 3300	
df_{error} = 27	

 $\mu_{\mathsf{A},\mathsf{B}}$

Degrees of Freedom Error

$$df_{error} = (n_{rows} - 1) * n_{groups}$$

= (10 - 1) * 3
= 27

	GroupA	GroupB	GroupC
	GloupA	Groups	Groupe
	37	62	50
	60	27	63
	52	69	58
	43	64	54
	40	43	49
	52	54	52
	55	44	53
	39	31	43
	39	49	65
	23	57	43
,C	44	50	53
	49		

SSG = 420
df_{groups} = 2
<i>SSE</i> = 3300
df_{error} = 27

 $\mu_{\text{A,B,C}}$

 μ_{TOT}

Plug these into our formula:

$$F = \frac{\frac{SS}{df_{group}}}{\frac{SS}{df_{error}}} = \frac{\frac{420}{2}}{\frac{3300}{27}} = \frac{210}{122.22} = 1.718$$

GroupA	GroupB	GroupC
37	62	50
60	27	63
52	69	58
43	64	54
40	43	49
52	54	52
55	44	53
39	31	43
39	49	65
23	57	43
44	50	53
49		

ANOVA WITH EXCEL DATA ANALYSIS

A	Α	В	C	D	E	Data Analysis				7	×
1	Anova: Single Factor					AV SS SX				*	5.0:
2						Analysis Tool	S			ОК	
3	SUMMARY					Anova: Singl		12400	^	2000	
4	Groups	Count	Sum	Average	Variance		Factor With Replicati Factor Without Repli			Canc	el
5	GroupA	10	440	44	118	Correlation				Help	,
6	GroupB	10	500	50	193.555556	Covariance Descriptive S	Statistics			<u> </u>	
7	GroupC	10	530	53	55.11111111	Exponential :	Smoothing				
8						F-Test Two-S Fourier Analy	Sample for Variances				
9						Histogram	y 515		~		
10	ANOVA										
11	Source of Variation	SS	df	MS	F	P-value	F crit				
12	Between Groups	420	2	210	1.718181818	0.198430533	3.354130829				
13	Within Groups	3300	27	122.2222			1111				
14											
15	Total	3720	29								
16											

F DISTRIBUTION

F-DISTRIBUTION

F-DISTRIBUTION

Look up our critical value from an F-table

 use a table set for 95%confidence

find numeratordf

find denominatordf

Critical value = 3.35

F-SCORES IN MS EXCEL

• In Microsoft Excel, the following function returns an F-score:

α	df1	df2	Formula	Output Value
0.05	2	27	=FINV(A2,B2,C2)	3.3541308285292

F-SCORES INPYTHON

```
>>> from scipy import stats
```

>>> stats.f.ppf(1-.05,dfn=2,dfd=27)

3.3541308285291986

$$H_0: \ \mu_A = \mu_B = \mu_C$$

Since F is less than F_{critical}

1.718 < 3.354

we fail to reject the

null hypothesis!

- In an effort to receive faster payment of invoices, a company introduces two discount plans
- One set of customers is given a 2% discount if they pay their invoice early
- Another set is offered a 1% discount
- A third set is not offered any incentive

- The results are as follows:
- Using ANOVA, can we say that the offers result in faster payments?

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21

1.Calculate the means

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
$\mu_{2,1,0}$	12	17	16
μ _{тот}	15		

$$SSG = 70$$

2. Find Sum of Squares Groups

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

$$(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$$

Multiply by the number of items in each group:

$$14 \times 5 = 70$$

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
$\mu_{2,1,0}$	12	17	16
μ _{тот}	15		

$$SSG = 70$$

 $df_{groups} = 2$

3. Degrees of Freedom Groups

$$dfgroups = ngroups -1$$

$$= 3 - 1$$

$$= 2$$

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
$\mu_{2,1,0}$	12	17	16
μ _{тот}	15		

4. Sum of Squares Error

$(x_2-\mu_2)^2$	$(x_1-\mu_1)^2$	$(x_0-\mu_0)^2$
1	16	4
16	4	25
9	36	4
4	49	0
4	1	25
34	106	58
	TOTAL	198

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16
15		
	11 16 9 14 10 12	16 15 9 23 14 10 10 16 12 17

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$
 $df_{error} = 12$

5. Degrees of Freedom Error

$$df_{error} = (n_{rows} - 1) * n_{groups}$$

= $(5 - 1) * 3$
= 12

	2% disc	1% disc	no disc
	11	21	14
	16	15	11
	9	23	18
	14	10	16
	10	16	21
μ _{2,1,0}	12	17	16
μ _{тот}	15		

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$
 $df_{error} = 12$

 $\mu_{2,1,0}$

 μ_{TOT}

15

6. Calculate Fvalue:

$$F = \frac{\frac{SS}{df groups}}{\frac{SS}{df error}} = \frac{\frac{70}{2}}{\frac{198}{12}} = \frac{35}{16.5} = 2.121$$

2% disc	1% disc	no disc
11	21	14
16	15	11
9	23	18
14	10	16
10	16	21
12	17	16

7.	Look	up F	: critical	:	3.885
/ -		97.	critical		3.003

$$SSG = 70$$

 $df_{groups} = 2$
 $SSE = 198$
 $df_{error} = 12$

Since F falls to the left of $F_{critical}$ 2.121 < 3.885 we fail to reject the null hypothesis!

We don't have enough to support the idea that our offers changed the average number of days that customers took to pay their invoices!

- In the previous examples we used one-way ANOVA to test one independent variable.
- For the invoice problem, the independent variable was the **incentive** offered.
- The dependent variable was the time it took to receive payment.

- Two-Way ANOVA lets us test two independent variables at the same time
- For the invoice example, we might also consider the amount due
- We would have 3 invoices for \$50, 3 for \$100, etc. and offer different incentives at each dollar amount.

- The resulting data might look like this:
- Here, each row or dollar amount is called a block.

	2% disc	1% disc	no disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

 Essentially, we want to isolate and remove any variance contributed by the blocks, to better understand the variance in the groups.

So how do we do that?

	2% disc	1% disc	no disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

- The goal of ANOVA is to separate different aspects of the total variance.
- In the previous examples we had only

Sum of Squares Groups (SSG) and »between groups Sum of Squares Error (SSE) » within groups

 These two variances SSG and SSE add up to our total variance
 Sum of Squares Total (SST)

Sum of Squares Groups (SSG) and »between groups Sum of Squares Error (SSE) » within groups

 Now we'll look at variance between rows, or blocks

	Group 1	Group 2	
Block A	8	11	
Block B	10	12	
Block C	12	13	
μ _{1,2}	10	12	11

Sum of Squares Groups (SSG) and »between groups Sum of Squares Error (SSE) » within groups

- First calculate the block means
- Then calculate the

	Group 1	Group	2	μ _{A,B,C}
Block A	8	11		- 9.5
Block B	10	12	٢	- 11
Block C	12	13		- 12.5
$\mu_{1,2}$	10	12		11

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
Sum of Squares Error (SSE)

- » between blocks
- » between groups
- » within groups

$$F = \frac{Var. Between Groups}{Var. Within Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

 ANOVA still considers the relationship between the SSG and the SSE

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
Sum of Squares Error (SSE)

	Group 1	Group	2	μ _{A,B,C}
Block A	8	11		- 9.5
Block B	10	12	٢	- 11
Block C	12	13		- 12.5
$\mu_{1,2}$	10	12		■ 11

- » between blocks
- » between groups
- » within groups

$$F = rac{Var.\,Between\,Groups}{Var.\,WithinGroups} = rac{rac{SSG}{df_{groups}}}{rac{SSE}{df_{error}}}$$

 By calculating the SSB, we remove some of the variance in SSE

	Group 1	Group	2	$\mu_{A,B,C}$
Block A	8	11	-	- 9.5
Block B	10	12	٢	- 11
Block C	12	13	l	- 12.5
μ _{1,2}	10	12	L	= 11

Sum of Squares Blocks (SSB)
Sum of Squares Groups (SSG)
Sum of Squares Error (SSE)

- » between blocks
- » between groups
- » within groups

Sum of Squares Groups (SSG)

$$(\mu_1 - \mu_{TOT})^2 = (10 - 11)^2 = 1$$

 $(\mu_2 - \mu_{TOT})^2 = (12 - 11)^2 = 1$

multiply by the number of items in each group: $2 \times 3 = 6$

Sum of Squares Blocks (SSB)

$$(\mu_A - \mu_{TOT})^2 = (9.5 - 11)^2 = 2.25$$

 $(\mu_B - \mu_{TOT})^2 = (11 - 11)^2 = 0$
 $(\mu_C - \mu_{TOT})^2 = (12.5 - 11)^2 = 2.25$
 4.5

multiply by the number of items in each block: $4.5 \times 2 = 9$

		SSG
E _	Var. Between Groups	$\overline{df_{groups}}$
Г –	Var. Within Groups	<u>SSE</u>
		df_{error}

	Group 1	Group	2	$\mu_{A,B,C}$
Block A	8	11		9.5
Block B	10	12	٢	— 11
Block C	12	13		_12.5
μ _{1,2}	10	12		11

$$SSG = 6$$

 $SSB = 9$

Sum of Squares Total (SST)

$$(8-11)^2+(11-11)^2+$$
 $(10-11)^2+(12-11)^2+$
 $(12-11)^2+(13-11)^2=16$

no need to multiply since every itemis represented

$$SSG = 6$$

$$SSB = 9$$

$$SST = 16$$

$$F = \frac{Var. Between Groups}{Var. Within Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

Sum of Squares Error (SSE)

$$SSE = SST - SSG - SSB$$

= 16 - 6 - 9 = 1

	Group 1	Group 2	μ _{A,B,C}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

no need to multiply since we're working with totals already

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$

$$F = \frac{Var. \, Between \, Groups}{Var. \, Within \, Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

So how do we calculate F?

Degrees of Freedom Groups is unchanged:

$$df_{groups} = n_{groups} - 1$$
$$= 2 - 1$$
$$= 1$$

	Group 1	Group 2	μ _{A,B,C}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$

$$F = \frac{Var. \, Between \, Groups}{Var. \, Within \, Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

So how do we calculate F?

Degrees of Freedom Error has changed:

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

= $(3 - 1)(2 - 1)$
= 2

	Group 1	Group 2	μ _{A,B,C}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

So how do we calculate F?

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{6}{1}}{\frac{1}{2}} = 12$$

$$F = \frac{Var. Between Groups}{Var. Within Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

	Group 1	Group 2	μ _{A,B,C}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

$$F = \frac{Var. Between Groups}{Var. Within Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

 F_{groups} = 12 feels like a high value.

	Group 1	Group 2	$\mu_{A,B,C}$
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
μ _{1,2}	10	12	11

However, in a two-way ANOVA,

 $F_{critical}$ is found for groups and blocks separately!

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

 F_{groups} = 12 feels like a high value.

For groups, with 1 df in the numerator and 2 df in the denominator,

$$F_{critical} = 18.5$$

$$F = \frac{Var. Between Groups}{Var. Within Groups} = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}}$$

	Group 1	Group 2	μ _{A,B,C}
Block A	8	11	9.5
Block B	10	12	11
Block C	12	13	12.5
$\mu_{1,2}$	10	12	11

$$SSG = 6$$

 $SSB = 9$
 $SST = 16$
 $SSE = 1$
 $df_{groups} = 1$
 $df_{error} = 2$

- Let's go back to the invoice problem, and add a new independent variable
- Here each block represents an invoice amount
- The dependent variable is still days elapsed until payment

			1 1
	2% disc	1% disc	no disc
\$50	16	23	21
\$100	14	21	16
\$150	11	16	18
\$200	10	15	14
\$250	9	10	11

1. Calculate the group means, the block means, and the totalmean

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

2. Sum of Squares Groups

$$(\mu_2 - \mu_{TOT})^2 = (12 - 15)^2 = 9$$

$$(\mu_1 - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_0 - \mu_{TOT})^2 = (16 - 15)^2 = 1$$

14

Multiply by the number of items in eachgroup:

$$14 \times 5 = 70$$

			1 1	
	2% disc	1% disc	no disc	$\mu_{ extsf{block}}$
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

3. Degrees of Freedom Groups

$$df_{groups} = n_{groups} - 1$$

$$= 3 - 1$$

$$= 2$$

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$

4 Sum of Squares Block

$$(\mu_{50} - \mu_{TOT})^2 = (20 - 15)^2 = 25$$

$$(\mu_{100} - \mu_{TOT})^2 = (17 - 15)^2 = 4$$

$$(\mu_{200} - \mu_{TOT})^2 = (15 - 15)^2 = 0$$

$$(\mu_{200} - \mu_{TOT})^2 = (13 - 15)^2 = 4$$

$$(\mu_{250} - \mu_{TOT})^2 = (10 - 15)^2 = 25$$

$$58 \times 3 = 174$$

	2% disc	1% disc	no disc	μ_{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$

5. Sum of Squares Total

$(\mathbf{x}_2$ - $\mu_{\text{tot}})^2$	$(x_1-\mu_{tot})^2$	$(x_0-\mu_{tot})^2$
1	64	36
1	36	1
16	1	9
25	0	1
36	25	16
79	126	63
	TOTAL	268

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$
 $SST = 268$

6. Sum of Squares Error

$$SSE = SST - SSG - SSB$$

= 268 - 70 - 174 = 24

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$

 $SSB = 174$
 $SST = 268$
 $SSE = 24$

$$df_{groups} = 2$$

7. Degrees of Freedom Error

$$df_{error} = (n_{blocks} - 1)(n_{groups} - 1)$$

= $(5 - 1)(3 - 1)$
= 8

	2% disc	1% disc	no disc	μ _{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$ $df_{error} = 8$
 $SST = 268$
 $SSE = 24$

8. Calculate F

$$F = \frac{\frac{SSG}{df_{groups}}}{\frac{SSE}{df_{error}}} = \frac{\frac{70}{2}}{\frac{24}{8}} = \frac{35}{3} = 11.67$$

			1 1	
	2% disc	1% disc	no disc	μ_{block}
\$50	16	23	21	20
\$100	14	21	16	17
\$150	11	16	18	15
\$200	10	15	14	13
\$250	9	10	11	10
μ_{col}	12	17	16	15

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$ $df_{error} = 8$
 $SST = 268$ **F=11.67**
 $SSE = 24$

9. Find
$$F_{critical}$$

$$\alpha = 0.05$$

$$df_{numerator} = 2$$

$$df_{denominator} = 8$$

$$F_{critical} = 4.46$$

SSG = 70	$df_{groups} = 2$
SSB = 174	$df_{error} = 8$
<i>SST</i> = 268	F = 11.67
SSE = 24	$F_{critical} = 4.46$

Since F falls to the right of $F_{critical}$ 4.46 < 11.67

we reject the null hypothesis!

Offers don't result in faster payments

$$SSG = 70$$
 $df_{groups} = 2$
 $SSB = 174$ $df_{error} = 8$
 $SST = 268$ $F = 11.67$
 $SSE = 24$ $F_{critical} = 4.46$

2-WAY ANOVA IN EXCEL

1	A	В	C	D	E	F	G	Н	1	J	K	L
1	Anova: Two-Factor V	Vithout F	Replica	tion				"""			1/20	20.2
2						Data Analysis	5				?	×
3	SUMMARY	Count	Sum	Average	Variance	Analysis Tools				0	ОК	
4	Row 1	3	60	20	13	Anova: Single Factor			^	2 1		
5	Row 2	3	51	17	13	Anova: Two-Factor With Replication Anova: Two-Factor Without Replication Correlation					Can	cel
6	Row 3	3	45	15	13							-
7	Row 4	3	39	13	7	Covariance	Covariance Descriptive Statistics Exponential Smoothing				<u>H</u> e	ip
8	Row 5	3	30	10	1							
9						F-Test Two-S	Sample for Variance	s				
10	Column 1	5	60	12	8.5		Fourier Analysis Histogram			~		
11	Column 2	5	85	17	26.5	Tristogram						
12	Column 3	5	80	16	14.5							
13												
14												
15	ANOVA											
16	Source of Variation	SS	df	MS	F	P-value	F crit					
17	Rows	174	4	43.5	14.5	0.000974668	3.837853355					
18	Columns	70	2	35	11.666667	0.004249458	4.458970108					
19	Error	24	8	3								
20												
21	Total	268	14									

TWO-WAY ANOVA WITH REPLICATION

WITHOUT VS WITH REPLICATION

without replication

	GroupA	GroupB	GroupC
Block1	16	23	21
Block2	14	21	16
Block3	11	16	18
Block4	10	15	14
Block5	9	10	11
Block6	8	8	10

with replication

	GroupA	GroupB	GroupC		
Block1	16	23	21		
	14	21	16		
	11	16	18		
Block2	10	15	14		
	9	10	11		
	8	8	10		

Samples have multiple values Samples have a mean value

TWO-WAY ANOVA WITH REPLICATION

- Introduces the conceptof sample means and sample variance
- Introduces the concept of interactions

TWO-WAY ANOVA WITH REPLICATION

- As with our previous 2-way ANOVA, we consider two independent variables organized into groups and blocks
- We sample every block/group combination
- With replication, block/group samples have multiple measurements

TWO-WAY ANOVA WITH REPLICATION

- Consider an experiment that measures the height of plants
- We apply three types of fertilizer A, B & C
 - these are our Groups
- Plants are kept at two temperatures (warm & cold) – these are our Blocks
- We assign 3 plants to each sample

- First calculate the mean for each 3-item sample
- Calculate column means
- Calculate block means
- Calculate the overall mean

				1	
Fertilizer:	Α	В	С		
Warm	13	21	18		В
	14	19	15	16	О О
	12	17	15		C k
Cold	16	14	15		Ŋ
	18	11	13		e a
	17	14	8		n S
Sample	13	19	16		
Means	17	13	12		
Column	15	16	14	15	

 As before, calculate the Sum of Squares Blocks

$$(16-15)^2 + (14-15)^2 = 2$$

×9 items per block = **18**

Fertilizer:	Α	В	С		
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		o c k
Cold	16	14	15		Μ
	18	11	13	14	e a
	17	14	8		n S
Sample Means	13	19	16		
	17	13	12		
Column Means	15	16	14	15	

SSB = 18

 As before, calculate the Sum of Squares Columns

$$(15-15)^2 + (16-15)^2 + (14-15)^2 = 2$$

 \times 6 items per column = **12**

Fertilizer:	Α	В	С		
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		o c k
Cold	16	14	15		Μ
	18	11	13	14	e a
	17	14	8		n S
Sample Means	13	19	16		
	17	13	12		
Column Means	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$

 As before, calculate the Degrees of Freedom Columns

$$df_{columns} = (3-1) = 2$$

Fertilizer:	Α	В	С	
Warm	13	21	18	В
	14	19	15	16
	12	17	15	ck
Cold	16	14	15	M
	18	11	13	14 a
	17	14	8	n S
Sample	13	19	16	
Means	17	13	12	
Column Means	15	16	14	15

SSB =
$$18$$
 SSC = 12 df_{columns} = 2

- We have a new statistic:
 SS Interactions
- For each sample mean, subtract the matching block and column means, add back the overall mean, square the result

Fertilizer:	A	В	С		
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		c k
Cold	16	14	15		Μ
	18	11	13	14	e a
	17	14	8		n s
Sample Means	13	19	16		
	17	13	12		
Column Means	15	16	14	15	

SSB =
$$18$$
 SSC = 12 df_{columns} = 2

$$(13-16-15+15)^{2} +$$
 $(19-16-16+15)^{2} +$
 $(16-16-14+15)^{2} +$
 $(17-14-15+15)^{2} +$
 $(13-14-16+15)^{2} +$
 $(12-14-14+15)^{2} = 28$
 $\times 3 items per sample = 84$

Fertilizer:	A	В	С		
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		o c k
Cold	16	14	15		M
	18	11	13	14	e a
	17	14	8		n s
Sample Means	13	19	16		
	17	13	12		
Column Means	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$ $SSI = 84$

 Calculate theSum of **Squares Total**

4	36	9	
1	16	0	
9	4	0	
1	1	0	
9	16	4	
4	1	49	164

Fertilizer:	A	В	С		
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		0 C k
Cold	16	14	15		Μ
	18	11	13	14	e a
	17	14	8		n S
Sample	13	19	16		
Means	17	13	12		
Column Means	15	16	14	15	
SSB = 18 SSC = 12 $df_{columns}$ = 2 SSI = 84					

$$SSI = 84$$

$$SST = 164$$

 Calculate the Sum of Squares Error by subtracting the other values from the SST:

164 - 18 - 12 - 84 = 50

				_	
Fertilizer:	Α	В	С		
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		o C k
Cold	16	14	15		Μ
	18	11	13	14	e a
	17	14	8		n s
Sample	13	19	16		
Means	17	13	12		
Column Means	15	16	14	15	
CCR - 10	CCC.	_ 10	ط٤	•	ว

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$

$$SSI = 84$$
 $SSE = 50$

$$SST = 164$$

Degrees of Freedom Error

$$blocks \times columns \times (items - 1)$$

= $2 \times 3 \times (3 - 1) = 12$

Fertilizer:	A	В	С		
Warm	13	21	18		E
	14	19	15	16	C
	12	17	15		C k
Cold	16	14	15		M
	18	11	13	14	e r s
	17	14	8		s S
Sample	13	19	16		
Means	17	13	12		
Column Means	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$ $df_{error} = 12$

$$SST = 164$$

Calculate F

$$F = \frac{\frac{SSC}{df_{columns}}}{\frac{SSE}{df_{error}}} = \frac{\frac{12}{2}}{\frac{50}{12}} = \mathbf{1.44}$$

Fertilizer:	Α	В	С		
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		c k
Cold	16	14	15		M
	18	11	13	14	e a
	17	14	8		n S
Sample	13	19	16		
Means	17	13	12		
Column Means	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$ $df_{error} = 12$
 $SST = 164$

$$F = 1.44$$

Look up F_{critical}

 $F_{(0.05, 2, 12)} = 3.885$

Fertilizer:	Α	В	С		
Warm	13	21	18		E
	14	19	15	16	
	12	17	15		k
Cold	16	14	15		N
	18	11	13	14	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	17	14	8		S
Sample	13	19	16		
Means	17	13	12		
Column Means	15	16	14	15	

$$SSB = 18$$
 $SSC = 12$ $df_{columns} = 2$
 $SSI = 84$ $SSE = 50$ $df_{error} = 12$
 $SST = 164$

A look at Interaction:

Fertilizer:	A	В	С		_
Warm	13	21	18		В
	14	19	15	16	0
	12	17	15		o c k
Cold	16	14	15		M
	18	11	13	14	e a
	17	14	8		n S
Sample Means	13	19	16		
	17	13	12		
Column Means	15	16	14	15	
SSB = 18 SSI = 84	SSC :		df _{colur}	_{mns} = 2 _{or} = 12	

SST = 164

2-WAY WITH REPLICATION IN EXCEL

Α	В	C	D	E	F	G	Н	1	J	K	L	
Anova: Two-	Factor With F	Replication										
					Data Analysis	Data Analysis ?						
SUMMARY	Fertilizer A	Fertilizer B	Fertilizer C	Total	Analysis Tools	Analysis Tools Anova: Single Factor Anova: Two-Factor With Replication Anova: Two-Factor Without Replication Cancel						
WARM												
Count	3	3	3	9	Anova: Two-Fa							
Sum	39	57	48	144								
Average	13	19	16	16	Covariance	Covariance Descriptive Statistics						
Variance	1	4	3	8.75								
							ances					
COLD					Fourier Analys					1000		
Count	3	3	3	9	Histogram	Histogram						
Sum	51	39	36	126								
Average	17	13	12	14								
Variance	1	3	13	9.5								
Total					ANOVA							
Count	6	6	6		Source of Variation	SS	df	MS	F	P-value	F crit	
Sum	90	96	84		Sample	18	1	18	4.32	0.059785686	4.747225347	
Average	15	16	14		Columns	12	2	6	1.44	0.275086887	3.885293835	
Variance	5.6	13.6	11.2		Interaction	84	2	42	10.08	0.002698928	3.885293835	
					Within	50	12	4.16667				
	Anova: Two- SUMMARY WARM Count Sum Average Variance COLD Count Sum Average Variance Total Count Sum Average	Anova: Two-Factor With F SUMMARY Fertilizer A WARM Count 3 Sum 39 Average 13 Variance 1 COLD Count 3 Sum 51 Average 17 Variance 1 Total Count 6 Sum 90 Average 15	Anova: Two-Factor With Replication SUMMARY Fertilizer A Fertilizer B WARM 3 3 Count 3 3 Average 13 19 Variance 1 4 COLD 4 4 Count 3 3 Sum 51 39 Average 17 13 Variance 1 3 Total 6 6 Sum 90 96 Average 15 16	Anova: Two-Factor With Replication SUMMARY Fertilizer A Fertilizer B Fertilizer C WARM Count 3 3 3 Sum 39 57 48 Average 13 19 16 Variance 1 4 3 COLD Count 3 3 3 Sum 51 39 36 Average 17 13 12 Variance 1 3 13 Total Count 6 6 6 Sum 90 96 84 Average 15 16 14	Anova: Two-Factor With Replication SUMMARY Fertilizer A Fertilizer B Fertilizer C Total WARM Count 3 3 3 9 57 48 144 Average 13 19 16 16 Variance 1 4 3 8.75 COLD Count 3 3 3 9 57 48 16 16 Variance 1 4 3 8.75 COLD Count 3 3 3 9 36 126 Average 17 13 12 14 Variance 1 3 13 9.5 Total Count 6 6 6 6 5 5 5 5 6 84 Average 15 16 14	Anova: Two-Factor With Replication Data Analysis	Data Analysis	Anova: Two-Factor With Replication	Data Analysis	Data Analysis	Data Analysis SUMMARY Fertilizer A Fertilizer B Fertilizer C Total MARM Sum 39 57 48 144 Avariance 1 4 3 8.75 Sum 51 39 36 126 Average 17 13 12 14 Avariance 1 3 13 9.5 Sum 51 39 36 6 Sumce of Variantor 1 3 13 9.5 Sum 90 96 84 Sample 18 1 18 4.32 0.059785686 Nariance 5.6 13.6 11.2 Interaction 84 2 42 10.08 0.002698928 18 1 18 4.22 0.05268897 10 10 10 10 10 10 10 1	

QUESTIONS TO PONDER

How can ANOVA technique help when there are multiple variable? Is there a multiway ANOVA?