Química IS 2018

Métodos de cálculo molecular y simulación Prof M. L. Ferreira

Dominios Básicos de la física

La Mecánica molecular es una parte del modelado molecular, ya que implica el uso de mecánica clásica/mecánica newtoniana para describir las bases físicas tras los modelos. Los modelos moleculares describen normalmente átomos (núcleos y electrones en conjunto) como cargas puntuales con una masa asociada. Las interacciones entre los átomos vecinos son descritas por interacciones tipo oscilador armónico, "resortes", (representando enlaces químicos) y Fuerzas de van der Waals. El Potencial de Lennard-Jones es mayormente usado para describir las Fuerzas de van der Waals. Las interacciones electrostáticas son calculadas por la Ley de Coulomb. A los átomos se les asignan coordenadas en el espacio cartesiano o en Coordenadas internas, y también se les pueden asignar velocidades al realizar simulaciones dinámicas. Las velocidades atómicas están relacionadas a la temperatura del sistema, una cantidad macroscópica. La expresión matemática completa se conoce como una Función potencial y está relacionada a la energía interna del sistema una cantidad termodinámica igual a la suma de las energías potencial y cinética.

Los métodos que minimizan la energía potencial, son conocidos como técnicas de disminución energética mientras que los métodos que recrean el comportamiento del sistema con el correr del tiempo son conocidos como Dinámica molecular.

Definición

La Química Cuántica es una rama de la Química, principalmente teórica, en la que a través de modelos se describe el comportamiento fundamental de la materia a una escala atómica o molecular

Materia → "Molécula" → Átomo

Entender el comportamiento de la materia y sus propiedades desde sus "primeros principios" (desde la raíz "ab initio")

Método	Fundamento	Rango de aplicación	Ventajas	Desventajas
Mecánica molecular	Potenciales de interacción, física clásica.	1-10 ⁵ átomos	Se requiere poca potencia del ordenador Gran rapidez, muy eficientes en fases condensadas.	Aplicación delimitada por el
Ab initio	Ecuación de Shrödinger y función de onda, utiliza matemáticas rigurosas.	1-10 ² átomos	Exactitud y precisión controlable, no requiere parámetros experimentales	
DFT	Teorema de Kohn Sham y densidad electrónica	1-10 ³ átomos	Más rápido que ab initio pero aplicación limitada	Exceso de métodos, No hay pautas para mejorar los resultados
Semiempíricos	Ecuación de Shrödinger y función de onda o Teorema de Kohn Sham y densidad electrónica (utilizando forma de ajuste)	1-10 ⁴ átomos	bastante fiable en moléculas	Errores no sistemáticos. Escasa fiabilidad en moléculas con metales y especies inestables, requiere datos experimentales.

Fuente: Suárez D. 2012

Campo de fuerza tipo de MM. Términos

$$E = E_{bonds} + E_{angle} + E_{dihedral} + E_{non-bonded}$$

 $E_{non-bonded} = E_{electrostatic} + E_{vanderWaals}$

Términos. "The animated version"

La vida real del Químico Cuántico (III)

¿Será buena nuestra aproximación?

Métodos más utilizados en química cuántica y su interrelación entre ellos

¿Qué podemos calcular hoy?

Casi todo, pero con diferentes aproximaciones

Átomos o moléculas pequeñas (10 átomos)

Métodos post Hartree-Fock y H correguidos

- Moléculas medianas (10-100 átomos)

Métodos Hartree-Fock ó DFT

Moléculas grandes y sólidos (100-1000 átomos)

Métodos DFT (OA o Ondas Planas, Pseudos)

Moléculas muy grandes y líquidos (>1000 átomos)

Dinámica y Mecánica molecular: mecánica clásica + campos de fuerza Método Car-Parinello: guasi-cuántico

P. Nobel Química 2013: M. Karplus, M. Levitt y A. Warshel

Coste Computaciona

Yodo en la Biosfera (I)

CSIC-UPM, 2010-2011

El papel del CI y del Br en procesos atmosféricos (destrucción del ozono en la estratosfera, en particular) se conoce bien. Menos se sabe del Yodo, a pesar de su importancia atmosférica. Medidas recientes (2007-2008) muestran grandes cantidades de óxidos de yodo en el litoral antártico que son responsables de procesos de destrucción del ozono troposférico.

El Yodo en la atmósfera tiene un origen natural. Fitoplancton y algas son los emisores. Cogen el I⁻ (sal yodada) del mar y lo transforman en I₂ y CH_xI liberándolo a la atmósfera

Atmosphere

No se conoce el mecanismo. No se sabe cómo lo hacen...

¿Y eso interesa? → "Entendimiento, modelado y predicción"

$$I' + H_2O_2/O_3/ROS \rightarrow I_2/I_3'/HOI + ...$$

Necesita catálisis enzimática: VIPO (VanadiumIodoPerOxidase)

No se conoce su estructura (sí la secuencia), no se conoce el proceso enzimático, pero... lo podemos intentar predecir

Yodo en la Biosfera (IV)

CSIC-UPM, 2010-2011

Paso previo a la liberación de HOI

Una vez liberado

	1	Aug COSD(T)		
R-H	HOI	Rt	l, Hz	7 80
2944	(CHU)	-B4.34	+00.24	4100.5
14.	CHIL	~17.10	0.117.4	4167.7
H,=OH-OH ₀	CPC=CH-CH ₂	-129.3	+5.29	1-56.58
REMOTH CHE	Z-CHI-CH-CH,	-1267	+7.68	4.58.14
H-CH-CH	&-CHICHCHi-	-129.7	+10.66	440.71
HI-CH-CH-	160-CH-CH-CH-CH4	-124.5	4.90,71	+460.00
H-CH-0H-	GRI- CHI-CHI-CHI	-110.0	+15.67	1.60.00
H-CHO	INF-CHA-CHO	-117.1	+17.60	+42.79
H-CHO	INI- CHU-CHO	-110.0	+03.71	+ 23.90
H-COOH	Mr. CHA-COOK	-117.0	+47.50	+47.60
HIDOOH	Int. Ohr COOK	-146.1	2.19.47	1.40 71
HOM	minana (Phritis)	- P7 AD	487.46	4 107 A
hC344	VID-EDBOOK (EPROCIAL)	-79.81	454.72	4 106.0
WOMAN .	49-1899-034-4	Marian	1.000,000	-1 104 W
WORL .	one ran APPACRA	PO V5	475.47	1 104.0
NCM4	month of Process	- 20.00	445.00	1,000,00

Tiempos de cálculo. GAUSSIANO9.	Base aug-cc-pVTZ
---------------------------------	------------------

Molécula	Nº átomos	Nº func.base	Opt MP2	Freq MP2	Energia CCSD(T)
CH ₄ (e)-CH ₂ ICOOH p-IPhOH	5	138	3 min	28 min	16 min
(e)-CH2ICOOH	1 8	298	3 h	4 h	18 h
p-IPhOH	13	482	20 h	8 d + 4 h	11 d + 11 h

Yodo en la Atmósfera (I)

CSIC-UPM-UK(Leeds), 2011-2012

Química del yodo en la atmósfera marina y polar

