NYCU

International College of Semiconductor Technology

國立陽明交通大學

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Midterm Report

2023.04.25 Yu-Sheng Hsiao Li-Jun Lai **NYCU**

International College of Semiconductor Technology

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Projectile Motion

Outline

- Data Preparation / Model
- Variables
 - 1. Learning rate
 - 2. Epoch
 - 3. Layer numbers
 - 4. Neuron numbers
- Results
 - 1. Ture value-Prediction Scatter
 - 2. Loss / Accuracy

Data preparation / Model

$$R = \frac{{V_0}^2 \sin 2\theta}{g}$$

$$H = \frac{(V_0 \sin \theta)^2}{2g}$$

Dataset

 V_0 : 1~100m/s, total 200 points

 θ : 0~90度, total 200 points

Initial data: 40000

(None, 2)

Dense

output:

- ✓ Optimizer =Adam
- ✓ Learning = 0.001(default)
- ✓ Hidden layer = 5

♦ Variables : Learning rate

1. Learning rate = 0.0001

2. Learning rate = **0.001**

Variables _ Learning rate (Adam) _ Loss / Accuracy

• Learning rate = 0.0001 Epoch = 100

- Learning rate = 0.0001 Epoch = 1000
- Learning rate = 0.001 Epoch = 100

Variables _ Learning rate (Adam) _ Scatter

Epoch = 100

Learning rate = 0.0001Learning rate = 0.001 Epoch = 100

Learning rate = 0.0001 Epoch = 1000

♦ Variables : Epoch

1. Epoch = 100

2. Epoch = 1000

Variables _ Epoch _ Loss / Accuracy

• Epoch = 100

Variables _ Epoch _ Scatter

• Epoch = 100

• Epoch = 1000

True values

1000

1500

2000 2500

True values

3000

3500

Height scatter Epoch 100: R2 score = 1.000

- **◆** Variables: Layer numbers (add 5 Neuron / layer)
 - 1. Hidden layers = 1
 - 2. Hidden layers = 3
 - 3. Hidden layers = 5

Layer numbers_(Epoch=500)

1 Hidden layers

3 Hidden layers

5 Hidden layers

Layer numbers_ Loss / Accuracy

1 Hidden layers

3 Hidden layers

Layer numbers_ Scatter

1 Hidden layers

3 Hidden layers

5 Hidden layers

Layer numbers_ Percentage error (-10%~10%)

Percentage error

3 Hidden layers

Percentage error

5 Hidden layers

Percentage error

Percentage error

DENTIAL

♦ Variables : Neuron numbers

1. add 5 Neurons / layer

2. add 10 Neuros / layer

Neuron numbers_(Epoch=100, Hidden layers = 5)

1. add 5 Neurons / layer

Neuron = 7 / 12 / 17 / 12 / 7

2. add 10 Neuros / layer

Neuron = 12 / 22 / 32 / 22 / 12

Variables _ Neuron numbers _ Loss / Accuracy

add 5 Neurons / layer

add 10 Neurons / layer

Variables _ Neuron numbers _ Scatter

add 5 Neurons / layer

DENTIAL

True values

1000

2000

True values

2500

3000

3500

Variables _ Neuron numbers _ Percentage error (-10%~10%)

add 5 Neurons / layer

Height

Conclusion

1. Learning rate:

→ For the same epoch, lower learning(0.0001) requires more update to minimum point.

2. <u>Epoch</u>:

- → Add more epochs to make sure the result is in the minimum point.
- → The two result is similar and the loss is down to close zero before 20th epoch . Therefore, 100 epoch is enough for this case.

Conclusion

NYCU

3. <u>Layer numbers</u>:

- → The loss for 5 hidden layers model reaches zero quickly.
- → The loss for 1 hidden layers models is higher than that for other two models.
- → Models with 5 hidden layers have a higher count of samples with lower percentage error.

4. Neuron numbers:

- → The convergence result of the model which add 10 Neurons per layer is better.
- → Models which add 10 Neurons per layer have a higher count of samples with lower percentage error.

NYCU

International College of Semiconductor Technology

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Final project Ideas -Explainable AI

Problems to be solved

Problems to be solved

25

Problems to be solved

Explainable model

• CAM-base: The concept of CAM (Class Activation Map) is very straightforward, as shown in Fig. I, the last convolutional layer of the network is formed into an n-dimensional vector after global average pooling, then a fully connected layer and softmax to predict the classification, and finally the trained weights (w_I, w_2, ..., w_n) are multiplied with the feature map of the last layer and weighted to obtain CAM, which is used to observe the effect of different locations on the output.

Explainable interface

Cutting trees Brushing teeth

Flow

NYCU

International College of Semiconductor Technology

國立陽明交通大學

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Thank you for attention