第十五届全国大学生数学竞赛预赛试题

(数学 A 类, 2023)

科目名称: 数学竞赛

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分

题 号		<u> </u>	三	四	五.	六	总 分
满 分	15	15	20	15	15	20	100
得 分							

注意:

- 1. 所有答题都须写在本试卷指定的答题区域内.
- 2. 密封线左边请勿答密封线外不得有姓名及相关标记.
- 3. 如答题空白不够, 可写在当页背面, 并标明题号.
- 一、(本题满分 15) 在空间中给定直线 L 及直线外定点 P. 设 M 是过 P 点且与直线 L 相切的球面的球心. 问: 所有可能的球心 M 构成何种曲面? 证明你的结论.
- 二、(本题满分 15 分) 设 $f(x, y, z) = x^2 + (y^2 + z^2)(1-x)^3$.
 - (1) 计算 f 的驻点.
 - (2) 求 f 在 Σ 上的最小值, 其中, Σ 是 $\{(x, y, z) || x | \le 2, y^2 + z^2 \le 4\}$ 的边界.
 - (3) 求 f 在椭球 $x^2 + \frac{y^2}{2} + \frac{z^2}{3} \le 1$ 上的最小值.
- 三、(本题满分 20 分) 设 V 是复数域 $\mathbb C$ 上的 n 维线性空间, $\mathbf A$ 是 V 上的一个线性变换. 证明: 存在 $\alpha \in V$ 使得 $\{\alpha, \mathbf A\alpha, \cdots, \mathbf A^{n-1}\alpha\}$ 成为 V 的一组基当且仅当对于 $\mathbf A$ 的任一特征值 λ, λ 的几何重数 为 1 .
- 四、(本题满分 15 分) 设 $n \ge 3$ 为自然数, $\theta = \frac{2\pi}{n}$. 对任意 $1 \le s, t \le n$, 取 $a_{st} = \sin(s+t)\theta$, 令矩阵 $A = (a_{st})_{n \times n}$, 计算 $E + A^{2023}$ 的行列式, 其中 E 为 n 阶单位矩阵.
- 五、(本题满分 15 分)设 $E \subset \mathbb{R}^n$ 非空有界, $c \in \mathbb{R}^n$, c 非零. 用 diam $E = \sup_{x,y \in E} \|x y\|$ 表示 E 的直径, 记 $E + c = \{x + c \mid x \in E\}$. 证明: diam $E < \text{diam}(E \cup (E + c))$.
- 六、(本题满分 20 分) 设 $a = \sqrt[3]{3}$, $x_1 = a$, $x_{n+1} = a^{x_n}$ (n = 1, 2...). 证明: 数列 $\{x_n\}_{n=1}^{\infty}$ 极限存在, 但不是 3.

考试科目:数学类 第1页 共1页