Erick M.

Escuela Superior de Física y Matemáticas Instituto Politécnico Nacional

Contenido

Introducción

- 2 Criptografía Visual
- 3 Algoritmo

Introducción •000000

Criptología

- Criptografía
- Criptoanálisis

Introducción •000000

Criptología

- Criptografía
- Criptoanálisis

- Mensaje: Colección de texto.
- Texto claro: Es el texto original del mensaje y que se busca cifrar.
- Criptotexto o texto cifrado: Texto resultante de cifrar el texto claro.
- Cifrar/descifrar: Procedimiento que permite transformar un texto claro en texto cifrado y viceversa.
- Clave o llave: Información necesaria para cifrar y/o descifrar un mensaje.
- Alfabeto: Colección de símbolos utilizados para escribir el texto, ya sea el texto claro o el criptotexto. El alfabeto del texto claro puede ser diferente al usado en el criptotexto pero generalmente es el mismo.

- Mensaje: Colección de texto.
- Texto claro: Es el texto original del mensaje y que se busca cifrar.

- Mensaje: Colección de texto.
- Texto claro: Es el texto original del mensaje y que se busca cifrar
- Criptotexto o texto cifrado: Texto resultante de cifrar el texto claro.

- Mensaje: Colección de texto.
- Texto claro: Es el texto original del mensaje y que se busca cifrar.
- Criptotexto o texto cifrado: Texto resultante de cifrar el texto claro.
- **Cifrar/descifrar**: Procedimiento que permite transformar un texto claro en texto cifrado y viceversa.
- Clave o llave: Información necesaria para cifrar y/o descifrar un mensaje.
- Alfabeto: Colección de símbolos utilizados para escribir el texto, ya sea el texto claro o el criptotexto. El alfabeto del texto claro puede ser diferente al usado en el criptotexto pero generalmente es el mismo.

- Mensaje: Colección de texto.
- Texto claro: Es el texto original del mensaje y que se busca cifrar.
- Criptotexto o texto cifrado: Texto resultante de cifrar el texto claro.
- **Cifrar/descifrar**: Procedimiento que permite transformar un texto claro en texto cifrado y viceversa.
- Clave o llave: Información necesaria para cifrar y/o descifrar un mensaje.
- Alfabeto: Colección de símbolos utilizados para escribir el texto, ya sea el texto claro o el criptotexto. El alfabeto del texto claro puede ser diferente al usado en el criptotexto pero generalmente es el mismo.

- Mensaje: Colección de texto.
- Texto claro: Es el texto original del mensaje y que se busca cifrar.
- Criptotexto o texto cifrado: Texto resultante de cifrar el texto claro.
- **Cifrar/descifrar**: Procedimiento que permite transformar un texto claro en texto cifrado y viceversa.
- Clave o llave: Información necesaria para cifrar y/o descifrar un mensaje.
- Alfabeto: Colección de símbolos utilizados para escribir el texto, ya sea el texto claro o el criptotexto. El alfabeto del texto claro puede ser diferente al usado en el criptotexto pero generalmente es el mismo.

- El cifrado de texto ha sido ampliamente usado a lo largo de la historia humana.
- Principalmente en el ámbito militar
- y en aquéllos en los que es necesario enviar mensajes cor información confidencial a través de medios no seguros.

- El cifrado de texto ha sido ampliamente usado a lo largo de la historia humana.
- Principalmente en el ámbito militar;
- y en aquéllos en los que es necesario enviar mensajes con información confidencial a través de medios no seguros.

- El cifrado de texto ha sido ampliamente usado a lo largo de la historia humana.
- Principalmente en el ámbito militar;
- y en aquéllos en los que es necesario enviar mensajes con información confidencial a través de medios no seguros.

Criptografía clásica

 Sistema criptográfico más antiguo conocido se debe a Julio César.

Criptografía clásica

Texto claro «CRIPTOGRAFIA VISUAL»

Texto cifrado «FULSWRJUDILD SLVXDO»

Criptografía clásica

Texto claro ≪CRIPTOGRAFIA VISUAL≫

Texto cifrado ≪FULSWRJUDILD SLVXDO≫

Criptografía clásica

Texto claro ≪CRIPTOGRAFIA VISUAL≫ Texto cifrado ≪FULSWRJUDILD SLVXDO≫

Criptografía Moderna

AES

Figure: AES

Criptografía Moderna

RSA

Figure: Adi Shamir

Criptografía			Criptografía Visual
Mensaje	\leftrightarrow	lmagen	Formada por pixeles
Texto claro	\leftrightarrow	lmagen clara	Contenido de
			la imagen a cifrar
Texto cifrado	\leftrightarrow	Imagen cifrada	lmagen resultante
			de cifrar la imagen clara
Alfabeto	\leftrightarrow	Pixeles	Generalmente serán claros
			y negros

Criptografía			Criptografía Visual
Mensaje	\leftrightarrow	Imagen	Formada por pixeles
Texto claro	\leftrightarrow	Imagen clara	Contenido de
			la imagen a cifrar
Texto cifrado	\leftrightarrow	Imagen cifrada	lmagen resultante
			de cifrar la imagen clara
Alfabeto	\leftrightarrow	Pixeles	Generalmente serán claros
			y negros

Criptografía			Criptografía Visual
Mensaje	\leftrightarrow	lmagen	Formada por pixeles
Texto claro	\leftrightarrow	lmagen clara	Contenido de
			la imagen a cifrar
Texto cifrado	\leftrightarrow	Imagen cifrada	lmagen resultante
			de cifrar la imagen clara
Alfabeto	\leftrightarrow	Pixeles	Generalmente serán claros
			y negros

Criptografía			Criptografía Visual
Mensaje	\leftrightarrow	Imagen	Formada por pixeles
Texto claro	\leftrightarrow	Imagen clara	Contenido de
			la imagen a cifrar
Texto cifrado	\leftrightarrow	Imagen cifrada	lmagen resultante
			de cifrar la imagen clara
Alfabeto	\leftrightarrow	Pixeles	Generalmente serán claros
			y negros

Criptografía			Criptografía Visual
Mensaje	\leftrightarrow	Imagen	Formada por pixeles
Texto claro	\leftrightarrow	lmagen clara	Contenido de
			la imagen a cifrar
Texto cifrado	\leftrightarrow	Imagen cifrada	lmagen resultante
			de cifrar la imagen clara
Alfabeto	\leftrightarrow	Pixeles	Generalmente serán claros
			y negros

- Técnica de encriptación especial para ocultarion en imágenes.
- Puede ser desencriptada por la visión humana si se usa la imagen clave correcta.
- Utiliza dos imágenes transparentes.

- Técnica de encriptación especial para ocultar información en imágenes.
- Puede ser desencriptada por la visión humana si se usa la imagen clave correcta.
- Utiliza dos imágenes transparentes.

- Técnica de encriptación especial para ocultar información en imágenes.
- Puede ser desencriptada por la visión humana si se usa la imagen clave correcta.
- Utiliza dos imágenes transparentes.

- Técnica de encriptación especial para ocultar información en imágenes.
- Puede ser desencriptada por la visión humana si se usa la imagen clave correcta.
- Utiliza dos imágenes transparentes.

- Una imagen contiene píxeles aleatorios y la otra imagen contiene la información secreta.
- Es imposible recuperar la información secreta de una de las imágenes.
- Se requieren tanto imágenes transparentes como capas para revelar la información.

- Una imagen contiene píxeles aleatorios y la otra imagen contiene la información secreta.
- Es imposible recuperar la información secreta de una de las imágenes.
- Se requieren tanto imágenes transparentes como capas para revelar la información.

- Una imagen contiene píxeles aleatorios y la otra imagen contiene la información secreta.
- Es imposible recuperar la información secreta de una de las imágenes.
- Se requieren tanto imágenes transparentes como capas para revelar la información.

Compartición de secretos

Compartición de secretos

Nuestro objetivo es dividir un conjunto de datos D (por ejemplo, una clave) en n partes $D_1, ..., D_n$ de manera que:

- El conocimiento de k o más Di partes hace que D sea fácilmente computable
- El conocimiento de k − 1 o menos D_i partes hace que D esté indeterminado, en el sentido de que todos sus valores posibles tienen la misma probabilidad de ser verdaderos.

Compartición de secretos

Compartición de secretos

Nuestro objetivo es dividir un conjunto de datos D (por ejemplo, una clave) en n partes $D_1, ..., D_n$ de manera que:

- El conocimiento de k o más D_i partes hace que D sea fácilmente computable.
- El conocimiento de k-1 o menos D_i partes hace que D esté indeterminado, en el sentido de que todos sus valores posibles tienen la misma probabilidad de ser verdaderos.

Compartición de secretos

Compartición de secretos

Nuestro objetivo es dividir un conjunto de datos D (por ejemplo, una clave) en n partes $D_1, ..., D_n$ de manera que:

- El conocimiento de k o más Di partes hace que D sea fácilmente computable.
- El conocimiento de k-1 o menos D_i partes hace que D esté indeterminado, en el sentido de que todos sus valores posibles tienen la misma probabilidad de ser verdaderos.

Compartición de secretos

Compartición de secretos

Esta combinación se denomina combinación o esquema de umbral (k, n)

Si k = n se requiere la concurrencia de todos los participantes para reconstruir el secreto.

Esquema umbral 2 de 2

Esquema umbral 2 de 2

Se tiene el conjunto de elementos $\{0,1\}$, forman un campo con las operaciones módulo 2.

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 0$$

Esquema umbral 2 de :

Biyección

- Negro = 1
- Blanco = 0

Esquema umbral 2 de 2 (Caso particular)

Construimos dos matrices cuadradas S_1 y S_2 de tamaño mxm.

Construimos y dibujamos nuestro secreto sobre una matriz temporal S_{temp} de tamaño $m \times m$.

Esquema umbral 2 de 2 (Caso particular)

Construimos dos matrices cuadradas S_1 y S_2 de tamaño $m \times m$. Construimos y dibujamos nuestro secreto sobre una matriz temporal S_{temp} de tamaño $m \times m$.

Esquema umbral 2 de 2 (Caso particular)

Cifrando el mensaje

- Si $S_{temp}[i][j]$ es negro, pintamos cada cuadro de S_1 de manera aleatoria. S_2 es identico a S_1 tal que $S_1[i][j] \oplus S_2[i][j] = 1$
- Si $S_{temp}[i][j]$ es blanco, S_1 y S_2 se pintan de forma aleatoria tal que $S_1[i][j] = S_2[i][j]$

División de pixeles

Ejecución del programa

Figure: S_1

Ejecución del programa

Figure: S₂

Ejecución del programa

Figure: Mensaje

