Mètodes Bayesians Juliol 2015

- 1. Quina diferència hi ha entre la distribució a priori i la distribució predictiva a priori?
- 2. Suposa que tens una mostra de 1.000 observacions de la distribució a posteriori d'un paràmetre real, θ . Com estimaries la mitjana i la mediana de la distribució a posteriori d'una funció de θ , $g(\theta)$, a partir d'aquesta mostra?

L'observatori meteorològic del "Turó de l'Home" ha recollit el nombre de llampecs i la duració en minuts de les quatre darreres tempestes. El meteoròleg vol estimar la freqüència de llampecs per minut (λ) . Les dades es troben a la següent taula:

tempesta	n. llampecs	duració
1	1	20
2	9	40
3	0	25
4	0	15

Sabent que la funció de porbabilitat per a una variable aleatòria, y, que segueix una distribució de Poisson és $p(y|\lambda)=e^{-\lambda}\frac{\lambda^y}{y!}$, amb $E[y]=\lambda$ i $V(y)=\lambda$, i que la funció de denistat per a una variable aleatria, λ , que segueix una distribució Gamma és $p(\lambda|a,b)=\frac{b^a\lambda^{(a-1)}e^{-b\lambda}}{\Gamma(a)}$, amb $E[\lambda]=\frac{a}{b}$ i $V(\lambda)=\frac{a}{b^2}$:

- 3. Defineix un Model Bayesià utilitzant una distribució a priori conjugada no informativa.
- 4. Calcula la funció de versemblança.
- 5. Calcula de forma analítica la distribució a posteriori per λ .
- 6. Com triaries entre: $H_1: \lambda < 0.01, H_2: 0.01 \le \lambda < 0.1 \text{ i } H_3: \lambda \ge 0.1$?
- 7. Com construiries un interval de creditilitat del 95% per al nombre de llampecs en una tempesta de mitja hora?