

Logout Help

Document Number 1

Entry 1 of 1

File: USPT

Sep 22, 1998

DOCUMENT-IDENTIFIER: US 5811269 A

TITLE: Detection of mycobacteria by multiplex nucleic acid

amplification

The target binding sequences of the amplification primers and the adapter primers confer genus or species hybridization specificity and therefore provide the species- and genus -specificity to the assay. The target binding sequences are essential to obtain the species -specific/genus-specific multiplex amplification of the invention. By way of example, the IS6110 and 16S rDNA amplification primers listed above contain a recognition site for the restriction endonuclease BsoBI which is nicked during the SDA reaction. It will be apparent to one skilled in the art that other nickable restriction endonuclease recognition sites may be substituted for the BsoBI recognition site, including but not limited to those recognition sites disclosed in EP 0 684 315. Preferably, the recognition site is for a thermophilic restriction endonuclease so that the amplification reaction may be performed under optimum conditions. Similarly, the tail sequence of the amplification primer (5' to the restriction endonuclease recognition site) is generally not critical, although it is important to avoid including the restriction site used for SDA and to avoid sequences which will hybridize either to their own target binding sequence or to the other primers. The amplification primers of the invention therefore consist of the 3' target binding sequences indicated in Table I, a nickable restriction endonuclease recognition site 5' to the target binding sequence and a tail sequence about 10-25 nucleotides in length 5' to the restriction endonuclease recognition site. The length of the tail depends on the T.sub.m of the selected sequence, and can be easily adjusted by one skilled in the art to obtain sufficient hybridization. The amplification products of the IS6110, 16S rDNA and the internal control target sequences may be detected by hybridization to an oligonucleotide probe tagged with a detectable label, each target specifically hybridizing to a separately detectable probe. If the target-specific and control-specific probes are hybridized simultaneously to the amplification products, the labels should be separately identifiable to facilitate distinguishing the respective targets. Otherwise, separate aliquots of the amplification reaction may be hybridized to target -specific probes tagged with the same label. The detectable label may be conjugated to the probe after it is synthesized or it may be incorporated into the probe during synthesis, for example in the form of a label-derivatized nucleotide. Such labels are known in the art and include directly and indirectly detectable labels. Directly detectable labels produce a signal without further chemical reaction and include such labels as fluorochromes, radioisotopes and dyes. Indirectly detectable labels require further chemical reaction or addition of reagents to produce the detectable signal. These include, for example, enzymes such as horseradish peroxidase and

alkaline phosphatase, ligands such as biotin which are detected by binding to label-conjugated avidin, and chemiluminescent molecules. The probes may be hybridized to their respective amplification products in solution, on gels, or on solid supports. Following products in solution, the signals from the associated labels are developed, detected and optionally quantitated using methods appropriate for the selected label and hybridization protocol. The amount of signal detected for each amplification product indicates the relative amount of each amplification product present.

Help Logout Main Menu Search Form Posting Counts Show 8 Numbers Edit 8 Numbers

Search Results -

Ocal Cli Results		
Terms		Documents
12 same (tetranucleotide\$ or pentanucleotide\$ or hexanucleotide\$ or septanucleotid	de\$ or	14
octanucleotide\$)		

Database: US Pa	tents Full-Text Database	
Refine Search:	12 same (tetranucleotide\$ or pentanucleotide\$ or	

Search History

DB Name	Query	Hit Count Set Name	
USPT	12 same (tetranucleotide\$ or pentanucleotide\$ or hexanucleotide\$ or septanucleotide\$ or octanucleotide\$)	14	<u>L16</u>
USPT	13 same (tetranucleotide\$ or pentanucleotide\$ or hexanucleotide\$ or septanucleotide\$ or octanucleotide\$)	0	<u>L15</u>
USPT	17 same denatur\$	0	<u>L14</u>
USPT	13 same label\$	88	<u>L13</u>
USPT	13 same genotyp\$	2	<u>L12</u>
USPT	13 same reference	20	<u>L11</u>
USPT	12 same reference	753	<u>L10</u>
USPT	18 same (zinc near0 finger)	5	<u>L9</u>
USPT	12 same protein	1319	<u>L8</u>
USPT	12 same HPLC	13	<u>L7</u>
USPT	12 same RAPD	6	<u>L6</u>
USPT	13 same RAPD	0	<u>L5</u>
USPT	13 same HPLC	0	<u>L4</u>
USPT	12 same (solid near0 support)	190	<u>L3</u>
USPT	11 same amplif\$	5624	<u>L2</u>
USPT	sequenc\$ same hybrid\$	17727	<u>L1</u>
	-		