CS411 Database Systems

01: Introduction

Saurabh Sinha

Welcome to CS411

• Web site:

https://agora.cs.illinois.edu/display/cs411fa10/

Announcements, syllabus, policies, schedule, ...

 Please read the class syllabus, policies, and lecture schedule

Teaching Staff: The Front-End

Yunliang Jiang

Marina Danilevsky

Teaching Staff: The Back-End

Saurabh Sinha

- Research interest:
 - Bioinformatics / computational biology
- Brief history
 - India (B.Tech in CSE from IIT Kanpur)
 - Seattle, WA (PhD in CSE from U.W.)
 - New York, NY (Post-doc in bioinformatics, Rockefeller Univ.)
 - Illinois (Assistant Professor, now in 6th year here)

Projects in Sinha "lab"

Social behavior in honeybees

- Gene activity in the honeybee brain
- Algorithms to figure out the connection between genes and behavior (using Hidden Markov models)

Projects in Sinha "lab"

Predicting regions of DNA that are involved in

development

Probabilistic sequence alignments and Logistic Regression

Projects in Sinha "lab"

Cancer diagnosis from spectroscopy data

You Tell Me --

• Why Are You Taking this Course?

- Are you interested more in being
 - An IT Guru at Goldman-Sachs or Boeing?
 - A System Developer at Oracle or Google?

CS411 Goal: Two Perspectives of DBMS

User perspective

- how to use a database system?
- conceptual data modeling, the relational and other data models, database schema design, relational algebra, and the SQL query language.

Systems perspective

- how to design and implement a database system?
- data representation, indexing, query optimization and processing, transaction processing, concurrency control, and crash recovery

Prerequisite

- Must have data structure and algorithm background
 - CS 225 or equivalent

- Good programming skills
 - project will require lots of programming
 - need C++, Java, or PHP ... to do a good job at talking to DB
 - you or your project group picks the language

Textbook

• Textbook:

Database Systems: The Complete Book, 2/e, by Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer D. Widom

Good references:

- Database Management Systems, by Raghu Ramakrishnan an Johannes Gehrke, McGraw-Hill
- Database System Concepts, by Abraham Silberschatz, Henry F. Korth, and S. Sudarshan, McGraw Hill
- Fundamentals of Database Systems, by Ramez Elmasri and Shamkant Navathe, Addison Wesley
- An Introduction to Database Systems, by C. J. Date,
 Addison Wesley

Course Format

For all students

- two 75-min lectures / week
- 5 assignments planned
- project (significant)
- a midterm and a final exam

Graduate students: 4 credits option

- do an extra project or write a survey paper
- will announce later

Lectures

- Lecture slides will be posted shortly before or after the lecture
 - are to complement the lectures
- Lectures are important for guiding your reading of textbook (and will be covered in exams and homeworks)
 - so please attend lectures regularly

Homework Assignments

Mostly paper-based, some may involve light programming

 Due by noon of the due date; submit through Compass.

No late homework will be accepted

Project:

- Database-Driven Web-based Information System
 - select an database application that needs a database
 - design and build it from start to finish
 - your choice of topic:
 useful, realistic, database-driven, web-based
- Team work
- Significant amount of programming (we will provide tutorials)
- Will be done in stages
 - you will submit some work at the end of each stage
- Will show a demo at semester end

Project Groups

- Project will be done in group of 3-4 students
 - learn how to work in a group: valuable skills
 - also use project group as study partners
- Try to form groups as soon as possible
 - can start by posting requests on the class newsgroup
- There will be a deadline soon for forming groups
 - if you have not formed groups by then
 - we will help assign you to groups
- Grading:
 - all members receive same grade
- _{CS411} if someone drops out, the rest pick up the work

Exams

- Midterm and final
- There will be some brief review before each exam
- Check dates and make sure no conflict!
 - generally no makeup exams unless exceptional cases (see policy page)

In-Class Quiz

To encourage attending and participating in class:

- Three brief in-class quizzes.
- Each tests your participation in class.
- Each accounts for 1% of class grading.

CS411 18

Tentative Grading Breakdown

Homework: 17%

Project: 35%

Midterm: 20%

• Final: 25%

In-class quiz: 3%

How Do We Work Together? Contacting the Staff ---

Office Hours

- The best way for asking questions and clarifications
- Will have office hours three days a week.
- See course Web for schedule

Communications

- Website: "Announcements" page
- Newsgroup: class.fa10.cs411
 - vitally important!
 - make sure to check it regularly for questions/clarifications
 - announcements will appear here and the course Web
- If you have a question/problem
 - 1. talk to people in your group first
 - 2. post your question on newsgroup
 - 3. email TA
 - 4. go to office hours to talk to TA or instructor

Newsgroup: class.fa10.cs411

- Designed for you and your peer
 - to communicate and help one another
 - please do not post solutions/admin-requests
- TAs will monitor and try their best to help with your questions
- There can be many questions
 - may not be able to answer all of them timely manner
 - not good for more complex questions
 - hence should come to office hours or email TA

Database Management System (DBMS)?

 System for providing EFFICIENT, CONVENIENT, and SAFE, MULTI-USER storage of and access to MASSIVE amounts of PERSISTENT data

CS411 24

Example: Banking system

- Data = information on accounts, customers, balances, current interest rates, transaction histories, etc.
- MASSIVE: many gigabytes at a minimum for big banks, more if keep history of all transactions, even more if keep images of checks -> Far too big for memory
- PERSISTENT: data outlives programs that operate on it

MULTI-USER Access

- MULTI-USER: many people/programs accessing same database, or even same data, simultaneously -> Need careful controls
- Alex @ ATM1: withdraw \$100 from account #002

```
get balance from database;

if balance >= 100

then balance := balance - 100;

dispense cash;

put new balance into database;
```

Bob @ ATM2: withdraw \$50 from account #002

```
get balance from database;

if balance >= 50

then balance := balance - 50;

dispense cash;

put new balance into database;
```

MULTI-USER: What Can Go Wrong?

• Initial balance = 200. Final balance = ??

DBMS: More Requirements

SAFE:

- from system failures. E.g., money should not disappear from the account, due to a power failure!
- from malicious users

CONVENIENT:

- simple commands to debit account, get balance, write statement, transfer funds, etc.
- also unpredicted queries should be easy

• EFFICIENT:

 don't search all files in order to get balance of one account, get all accounts with low balances, get large transactions, etc.

Why Direct Implementation Won't Work

- Early DBMS evolved from file systems
- Provided storage of MASSIVE amounts of PERSISTENT data, to some extent
 - Although, size limit by disk or address space

SAFE?

when system crashes we may lose data

EFFICIENT?

Does not intrinsically support fast access to data
 whose location in file is not known

Why Direct Implementation Won't Work

CONVENIENT?

- need to write a new C++/Java program for every new query
- Schema change entails changing file formats; need to rewrite virtually all applications

MULTI-USER ACCESS?

- limited protection
- need to worry about interfering with other users

That's why the notion of DBMS was invented!

DBMS: A Software System

- Buy, install, set up for particular application
- Available for PC's, workstations, mainframes, supercomputers
- Major vendors:
 - Oracle
 - IBM (DB2)
 - Microsoft (SQL Server, Access)
 - Sybase
- all are "relational" (or "object-relational") DBMS

DBMS Examples

 Most familiar use: many Web sites rely heavily on DBMS's

And many non-Web examples

DBMS Architecture

Data Model and Schemas

Data model or schema:

- conceptual structuring of data stored in database
- E.g., data is set of records, each with student-ID, name, address, courses, photo
- E.g., data is graph where nodes represent cities, edges represent airline routes

Schema versus data

- schema describes how data is to be structured, defined at setup time, rarely changes (also called "metadata")
- data is actual "instance" of database, changes rapidly

DDL and DML

- Data definition language (DDL)
 - commands for setting up schema of database
- Data manipulation language (DML)
 - Commands to manipulate data in database:
 - RETRIEVE, INSERT, DELETE, MODIFY
 - Also called "query language"

People

- DBMS user: queries/modifies data
- DBMS application designer
 - set up schema, loads data, ...

- DBMS administrator
 - user management, performance tuning, ...
- DBMS implementer: builds systems

First ½ Topics: User Perspective

- Entity-Relationship Model
- Relational Model
- Relational Database Design
- Relational Algebra
- SQL and DBMS Functionalities:
 - SQL Programming
 - Queries and Updates
 - Indexes and Views
 - Constraints and Triggers

Second 1/2 Topics: System Perspective

- Storage and Representation
- Indexing
- Query Execution and Optimization
- Transaction Management

CS411 39

Project Tutorial Lectures

 Anatomy of a large scale database-driven webbased info system.

Web programming.

DB programming.

Special Topics: 2-3 Lectures

Databases in the Real World

Advanced Database Research

CS411 41

How to Get the Most out of CS411?

- Read and think before class
 - welcome to ask questions before class!
- Study and discuss with your peers
 - discuss readings to enhance understanding
 - discuss assignments but write your own solution!
- Use lectures to guide your study
 - use it as a roadmap for what's important
 - lectures are **starting** points— they do not cover everything you should read

42

Questions?

Any questions? Please come talk to me.

CS411 43