Quando usar NoSQL?

Termos de Uso

Propriedade Growdev

Todo o conteúdo deste documento é propriedade da Growdev. O mesmo pode ser utilizado livremente para estudo pessoal.

É proibida qualquer utilização desse material que não se enquadre nas condições acima sem o prévio consentimento formal, por escrito, da Growdev. O uso indevido está sujeito às medidas legais cabíveis.

Vantagens

- Flexibilidade: Armazenar dados dinâmicos e sem estrutura rígida.
- Desempenho: Lidar com altas taxas de leitura/escrita em tempo real.
- Escalabilidade: Crescer de maneira econômica com clusters distribuídos.
- **Big Data**: Gerenciar grandes volumes de dados com desempenho e disponibilidade.
- Casos Específicos: Resolver problemas como análise de conexões, sistemas de recomendação, processamento de eventos em massa, entre outros.

Casos de uso

Os bancos de dados NoSQL são amplamente usados em diversos contextos modernos:

- E-commerce
- Gestão e catálogos de produtos
- Streaming e Mídia
- Redes Sociais
- IoT (Internet das Coisas)
- Análise de Dados
- IA
- Sistemas de Cache

Catálogo de produtos

Os produtos de um e-commerce podem ter atributos variados, como tamanho, cor ou especificações técnicas, que não seguem um formato fixo.

Solução com NoSQL: Cada produto é armazenado como um documento JSON com seus atributos específicos. Isso elimina a necessidade de tabelas adicionais ou colunas vazias.

Case Real: eBay usa MongoDB para armazenar catálogos de produtos dinâmicos e gerenciar a enorme variedade de itens em sua plataforma.

https://rutujakonde210.medium.com/mongodb-use-cases-how-ebay-implemented-mongodb-32ad6eb890fc

Gestão de conteúdo (CMS)

Sistemas de gerenciamento de conteúdo lidam com formatos variados, como artigos, vídeos, imagens e metadados personalizados.

Solução com NoSQL: O armazenamento flexível permite que cada tipo de conteúdo tenha seu próprio esquema.

Case Real: O LinkedIn utiliza Voldemort (um banco NoSQL chave-valor) para gerenciar e distribuir conteúdo em sua plataforma.

https://engineering.linkedin.com/voldemort/voldemort-collections-iterating-over-key-value-store

Dispositivos IoT geram dados não estruturados ou semiestruturados de maneira contínua.

Solução com NoSQL: Documentos JSON armazenam registros dinâmicos de sensores ou logs de dispositivos.

Case Real: A Bosch usa MongoDB Atlas para sua solução IoT Insights, que processa dados de sensores instalados em máquinas industriais, veículos e dispositivos domésticos inteligentes.

https://www.mongodb.com/solutions/customer-case-studies/bosch

Cache

Aplicações com milhões de usuários precisam armazenar sessões e caches de forma rápida.

Solução com NoSQL: Bancos chave-valor são ideais para armazenar sessões temporárias ou estados de usuário.

Case Real: X (Twitter) usa Redis para armazenar timelines em cache, proporcionando respostas rápidas para bilhões de usuários.

https://medium.com/@inexturesolutions/redis-as-a-cache-boosting-performance-and-scalability-37df80bc3195

Real-time

Sistemas complexos precisam armazenar configurações dinâmicas que podem ser alteradas frequentemente.

Solução com NoSQL: Bancos chave-valor fornecem armazenamento simples para configurações que podem ser rapidamente lidas ou alteradas.

Case Real: Netflix usa DynamoDB para armazenar configurações que controlam fluxos de vídeo e experiência do usuário.

https://aws.amazon.com/pt/blogs/database/amazon-dynamodb-use-cases-for-media-and-entertainment-customers/

Data Analysis

Empresas precisam analisar dados massivos em tempo quase real.

Solução com NoSQL: Bancos baseados em colunas são otimizados para leitura em massa e análises analíticas.

Case Real: Facebook utiliza Cassandra para armazenar mensagens do Messenger em alta escala, lidando com trilhões de eventos.

https://www.linkedin.com/pulse/how-build-facebook-from-cassandra-databases-frontend-daniel-roy-cfa/

Logs e Monitoramento

Sistemas precisam armazenar e consultar logs de forma eficiente.

Solução com NoSQL: O armazenamento por colunas permite gravar e buscar logs de forma eficiente, mesmo com milhões de entradas.

Case Real: Cisco usa Cassandra para armazenar logs de rede e identificar problemas em tempo real.

https://www.datastax.com/resources/datasheet/cisco-ucs-integrated-infrastructure-big-data-and-analytics-datastax-enterprise

Sistemas de Recomendação

Em sistemas de recomendação é necessário processar grandes volumes de dados de usuários para gerar recomendações personalizadas.

Solução com NoSQL: Bancos de colunas permitem armazenar perfis de usuários e consultar rapidamente grandes volumes de dados.

Case Real: Spotify usa Cassandra para armazenar dados de comportamento de usuários e melhorar recomendações musicais.

https://engineering.atspotify.com/2015/01/personalization-atspotify-using-cassandra/

Redes Sociais

Em redes sociais é essencial modelar conexões e interações entre milhões de usuários.

Solução com NoSQL: Bancos de grafos representam conexões (amizades, curtidas, compartilhamentos) de forma natural e eficiente.

Case Real: LinkedIn usa Neo4j para gerenciar conexões profissionais e recomendações de novos contatos.

https://neo4j.com/blog/exploring-linkedin-in-neo4j/

Detecção de fraudes

Sistemas de pagamentos precisam de uma rígida política para Detectar padrões complexos de fraude em transações financeiras.

Solução com NoSQL: Grafos podem identificar conexões entre usuários, contas bancárias e dispositivos suspeitos.

Case Real: PayPal usa bancos de grafos para identificar rapidamente atividades fraudulentas em sua plataforma.

https://developer.paypal.com/community/blog/graph-usage -in-combating-ato-fraud-risk/

Inteligência Artificial

Soluções de IA, especialmente em aprendizado de máquina (ML) e processamento de linguagem natural (NLP), frequentemente lidam com grandes volumes de dados.

Solução com NoSQL: Decisões de IA são baseadas em dados de larga escala, não estruturados ou semiestruturados.

Case Real: Uber utiliza IA para prever o tempo estimado de chegada (ETA), recomendar rotas e sugerir preços dinâmicos com dados armazenados no Apache Cassandra.

https://www.uber.com/en-BR/blog/how-uber-optimized-cassandra-operations-at-scale/

Parabéns! Nos vemos na próxima etapa!