

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ» (СПбГЭУ)

Факультет экономики и финансов Кафедра прикладной математики и экономико-математических методов

Выпускная квалификационная работа Моделирование оценки объекта недвижимости

Обучающегося очной формы обучения группы Э-2010:

Дмитриева Александра Ростиславовича

Руководитель ВКР: к.э.н., доцент Заграновская Анна Васильевна

Актуальность, цель, задачи

Цель ВКР – моделирование **стоимости квадратного метра** коммерческого торгового объекта путем анализа и оценки актуальных алгоритмов согласно качеству прогноза.

Объект исследования – рынок коммерческой торговой недвижимости города Санкт-Петербурга.

Предмет исследования – методы моделирования оценки стоимости коммерческой торговой недвижимости в Санкт-Петербурге.

Использованные инструменты: Python, QGIS, GitHub.

Задачи ВКР:

- изучение теоретических основ рынка коммерческой недвижимости, его анализа и моделирования;
- сбор и обработка данных, образующих рынок;
- анализ собранных данных, включая геоспатические и корреляционные особенности объектов недвижимости;
- разработка моделей оценки, для выявления оптимального алгоритма, способного точно описывать стоимость квадратного метра коммерческого торгового объекта;
- сравнение и оценка результатов модели, ее интерпретация.

СБОР ДАННЫХ

- Средство сбора данных Парсер на Python
- **Источник данных** Циан

Парсер — это программа, сервис или скрипт, который собирает данные с указанных веб-ресурсов, обрабатывает их и выдает в нужном формате.

Пример наблюдения

ОБРАБОТКА ДАННЫХ

- Количественные признаки приведены к числовому формату;
- Исключены выбросы и аномалии;
- Адреса объектов были расшифрованы в географические координаты;
- Добавлены новые признаки на основе расположения объектов.

<u>Для обработки адресов и перевода их в систему</u> координат было решено обратиться к **геокодеру** от «Яндекс».

Геокодер — это программа, которая переводит адрес текстового формата в географические координаты согласно открытой базе данных того или иного источника.

Формула расчета расстояния между двумя точками.

 $L = q * arccos(sin\varphi_1 * sin\varphi_2 + cos\varphi_1 * cos\varphi_2 * cos|\lambda_1 - \lambda_2|)$

Где:

L — искомое расстояние между пунктами 1 и 2;

q — расстояние в одном градусе, константа ~ 111.2 км;

φ₁, φ₂ — географические широты пунктов 1 и 2;

 λ_1, λ_2 — географические долготы пунктов 1 и 2.

ОБРАБОТКА ДАННЫХ

Распределение всех признаков в

выборке:

Столбцы после обработки данных и расчета новых признаков:

Технические факторы объекта	Географические факторы объекты
Стоимость кв. метра (целевой признак)	Координаты (долгота и широта)
Площадь	Расстояние до центра города
Максимальный этаж здания объекта	Количество парковок в радиусе 1 км
Стоимость аренды кв. метра аналогичного объекта в месяц.	Количество станций метро в радиусе (250м, 500м и 1км)
	Средняя стоимость кв. метра по району
	Население по району и в радиусе 1 км

ГЕОСПАТИЧЕСКИЙ АНАЛИЗ

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

Тепловая карта корреляции признаков по Кендаллу

ПОСТРОЕНИЕ МОДЕЛЕЙ

Основной принцип определения наилучшей модели – **минимизация САПО** (среднее абсолютное процентное отклонение).

Используемые модели:

- Линейная регрессия;
- \(\lambda\) dcco;
- Эластичная сеть;
- Метод ближайших соседей;
- Регрессор деревьев решений;
- Метод опорных векторов.

Используемые ансамблевые модели:

- АдаБустинг;
- Градиентный бустинг;
- Случайный лес;
- Ансамбль дополнительных деревьев.

Отношение тестовой выборки к тренировочной: 2 к 8.

Столбцы, включенные в процесс построения модели:

Ценообразующие факторы объекта

Координаты (широта и долгота) (°)

Расстояние до центра города (км)

Количество парковок в радиусе 1 км (шт.)

Количество станций метро в радиусе 1км (шт.)

Площадь объекта (м2)

Максимальный этаж здания

Средняя стоимость квадратного метра в районе, в котором находится объект (руб./м2)

СРАВНЕНИЕ МОДЕЛЕЙ

СРАВНЕНИЕ МОДЕЛЕЙ

СРАВНЕНИЕ МОДЕЛЕЙ

Статистические показатели моделей после подбора их параметров для улучшения точности на тестовой выборке.

Ансамбль доп. деревьев

- Коэффициент детерминации = 40.99 (%)
- -- CKO = 59850.0712
- CAO = 43456.8520 (руб.)
- -- CA Π O = 21.91 (%)

Случайный лес

- Коэффициент детерминации = 44.97 (%)
- -- CKO = 57794.9583
- CAO = 43021.9394 (pyб.)
- CA Π O = 21.49 (%)

ИНТЕРПРЕТАЦИЯ МОДЕЛИ

Среднее влияние каждого признака на стандартный прогноз

- модели: Площадь = -116.29201861829223
 - Максимальный этаж = 251.0200610573661
 - Количество станций метро в радиусе 1 км = -164.29105783762756
 - **Широта = 931.5595059651902**
 - Долгота = -1371.0091214121162
 - Количество парковок в радиусе 1 км = 531.3646769899101

ИНТЕРПРЕТАЦИЯ МОДЕЛИ

ЛОКАЛЬНАЯ

От факт. значения

Прогноз модели: 339291.04 [-5708.16] (руб./м2)

Признаки интерпретируемого прогноза наблюдения модели:

- Стоимость кв. метра = 344999.2 (руб./м2)
- Площадь = 63 (м2)
- Максимальный этаж = 16
- Количество станций метро в радиусе 1 километра = 0
- Координаты широты = 59.987226°
- Координаты долготы = 30.310128°
- Количество парковок в радиусе 1 километра = 84
- Расстояние до центра = 2.54 (км)
- Средняя стоимость кв. метра в районе = 279766.910244
 (руб./м2)

Площадь +17074 332813/

+17076.332813606758 py6.

Расстояние до центра +50359.64958314775 руб.

Максимальный этаж +21076.97972767247 руб.

Ср. стоим. по району +9658.796439006705 руб.

ΔολΓΟΤα

+3769.7083065712513 руб.

Широта

-184.37957627598684 руб.

Кол-во парковок -3923.067180290473 руб.

Кол-во станций метро -1450.3270034932632 руб.

РЕЗУЛЬТАТЫ РАБОТЫ

- > Полнота решений поставленных задач для достижении цели исследования.
- ▶ Были собраны данные с основного «онлайн-рынка» недвижимости Санкт-Петербурга.
- ▶ Был проведен подробный геоспатический анализ и отбор признаков для прогнозирования стоимости квадратного метра коммерческой торговой недвижимости.
- > Построена и выбрана модель с оптимальной точностью.
- Дальнейшая работа: модель следует подготовить к практическому применению.
- Экономическая эффективность определяется средней ошибкой модели на 29,49%.

