Московский физико-технический институт

Лабораторная работа № 4.3.1

Изучение дифракции света

Выполнила студентка группы Б01-903 Прохорова Юлия **Цель работы:** исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

Оборудование: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

1. Теоретическая часть

1.1. Дифракция Френеля на щели

Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π .

Рис. 1: Схема установки для наблюдения дифракции Френеля

Суммарная ширина m зон Френеля z_m определяется соотношением:

$$z_m = \sqrt{am\lambda} \tag{1}$$

где a — расстояние от щели до плоскости наблюдения (рис. 1), а $\lambda = 546$ нм — длина волны. Вид наблюдаемой дифракционной картины определяется числом Френеля Φ : квадрат числа Френеля - это отношение ширины щели D к размеру первой зоны Френеля, т.е. число зон Френеля, которые укладываются на ширине щели.

$$\Phi^2 = \frac{D}{\sqrt{a\lambda}} \tag{2}$$

Обратную величину называют волновым параметром:

$$P = \frac{1}{\Phi^2} = \frac{\sqrt{a\lambda}}{D} \tag{3}$$

1.2. Дифракция Фраунгофера на щели

Рис. 2: Схема установки для наблюдени дифракции Фраунгофера

Расстояние X_m тёмной полосы от оптической оси объектива O_2 пропорционально фокусному расстоянию f_2 . Получаем $X_m = \frac{f_2 m \lambda}{D}$. При малых углах минимумы эквидистантны, а расстояния ΔX между минимумами обратно пропорциональны ширине D щели S_2 .

1.3. Дифракция Фраунгофера на двух щелях

Рис. 3: Схема установки для наблюдния дифракции Фраунгофера на двух щелях

Если входная щель достаточно узка, то дифракционная картина в плоскости Π (рис. 3) подобна той, что получалась при дифракции на одной щели (рис. 2), однако теперь вся картина испещрена рядом дополнительных узких полос.

2. Ход работы

2.1. Дифракция Френеля на щели

- 1) Провели натсройку приборов, собрали установку. Наблюдали дифракцию Френеля на щели на ярком фоне изображения щели появляются темные полосы, количество которых уменьшается по мере удаления от микроскопа
- 2) Сняли зависимость количества полос от расстояния до микроскопа

Таблица 1: Зависимость координаты микроскопа от числа n темных полос

m	1	2	3	4	5
X, MM	23	14	11	9	8

3) Посчитаем зависимость ширины зон Френеля от количества и построим график зависимости по формуле (1)

Таблица 2: Зависимость координаты микроскопа от числа n темных полос

m	1	2	3	4	5
$2z_m$, mm	0.226	0.249	0.271	0.283	0.298
$\delta 2z_m$, MM	0.002	0.004	0.006	0.007	0.009

Рис. 4: График зависимости между шириной зон Френеля от количества полос

- 4) Ширина щели S_2 $D=0,310\pm0,001$ мм.
- 5) Теперь расчитаем ширину щели с помощью таблицы 2 и рассчитаем погрешности. $\delta x = 0.5$ мм.

$$\delta 2z_m = 2z_m \cdot \frac{\delta x}{2x}$$
 $\delta D = \frac{1}{m(1-m)} \sqrt{\sum (D_i - D)} \ D = 0.265 \pm 0.007 \ \mathrm{MM}$

6) Построим график.

Рис. 5: График зависимости распределения интенсивности

7) В начале наблюдалась дифракционная картина с одной темной плосой, далее при увеличении ширины - количество полос растет, причем возле границ - самая яркая полоса. После вместо щели установили тонкую нить, настроив микроскоп на ее резкое изображение. При удалении микроскопа от нити количество наблюдаемых нитей растет, наблюдаем четное количество темных полос.

3. Дифракция Фраунгофера на одной щели

- На значительном удалении от щели, когда ширина щели становится значительно меньше ширины первой зоны Френеля, изображение щели размываетмя и возникае дифракцонная картина, называемая дифракцией ФФраунгофера.
- 2) Фокусные рассояния линзы $F_2 = 13.8$ см.
- 3) Добавим линзу O_2 и настроим микроскоп на окальную плоскость. Затем подберем ширину щели для получения дифракции. Измерим координаты нескольких минимумов, запишем в таблицу и построим график.
- 4) Величина щели по винту равна $D=0,312-0,052=0,26\pm0,01$ мм. Измерим с помощью винта поперечного перемещения микроскопа координаты X_m нескольких дифракционных минимумов. Здесь x_m измерения, которые затем умножаем на $\alpha=0,02$ мм цену деления винта, т.е. $X_m=\alpha x_m$. Результаты занесем в табл. 2 и построим график зависимости минимумов от их номеров.

Таблица 3: Зависимость минимумов от их номера m

x_m	X_m , mkm	m
-2.2	-88	-2
-1.0	-41	-1
0.0	0	0
1.0	41	1
2.1	84	2

5)
$$tg\alpha = \frac{X_m}{m} = 42,2 \text{ MKM}$$

Таблица 4: Зависимость минимумов от их номера *m*

m	-2	-1	0	1	2
D, mm	0,236	$0,\!253$	0,260	0,253	0,247

6)
$$D = \frac{f_2 \cdot \lambda}{t g \alpha} = 0,25 \pm 0,01$$
 мм - усредненное значение

7)
$$\delta D = D \frac{1}{\sqrt{m(m-1)}} \cdot \sqrt{\sum_{i=1}^{n} (D_i - D)^2}$$

Рис. 6: График зависимость X_m минимумов от их номера m

8) Убедились, что смещение щели S_2 не приводит к сдвигу картины. При уменьшении щели масштаб картинки уменьшается, пока картинка полностью не исчезнет.

4. Дифракция Фраунгофера на двух щелях

- 1) Не перемещая линз заменим S_2 и, слегка передвигая ее вдоль скамьи, найдем резкое изображение. Получим для 1 и 2 максимума слева и справа соответственно координаты на винте x_m , а затем получим $X_m = \alpha x_m$ аналогично предыдущему пункту.
- 2) Самый левый 2.24 мм, правый 3.68 мм, расстояние между ними 1,44 мм, расстояние между краями максимумов $\delta x=0.08$ мм. Отсюда $d=f_2\frac{\lambda}{\delta x}=1.2$ мм. Из него получаем рассчетное число максимумов $n=\frac{2d}{D}=12$, что совпадает с экспериментальным.

Таблица 5: Измерения максимумов на двух щелях

m	-2	-1	1	2
x_m	1,55	1,6	2,3	2,4
X_m , mm	0,031	0,032	0,046	0,048

5. Влияние дифракции на разрешающую способность оптического инструента.

1) Соберем схему. Поставим между линзами щель S_2 и, уменьшая ее ширину, наблюдаем ухудшение изображения. Подберем ширину щели так, чтобы изображения почти сливались.

$$D_0$$
изм = 0.03 ± 0.01 мм (4)

2) Рассчитаем D_0 по формуле D_0 рас = $\frac{\lambda f_1}{b} = 0.04 \pm 0.01$ мм. Значения сходятся в педелах погрешности.

6. Вывод

Мы изучили два основных типа дифракции: Френеля и Фраунгофера при разных размерах щели и провели качественные наблюдения этих явлений, а также экспериментально проверили справедливость теоретических формул.