MS-002 Kick off meeting

汇报人:洪洁

● 产品名称模块化手术导引系统

● 产品型号

MS-001

● 适用范围

模块化手术导引系统需与C形臂x光机配合使用,用于骨组织 手术中体内规划目标的定位与导引,为手术提供辅助参考。

● 结构组成

模块化手术导引系统由规划模块、导引模块、工具包、体位反馈模块组成。

V O C

市场营销部、客户服务部在面对客户时,经常会被问到:"术中患者必须保持不动吗?目前市面上有些手术机器人,在手术过程中,通过光学跟踪系统实时监控机械臂与患者示踪器的相对位置关系,实时控制机械臂完成呼吸追踪,有效补偿患者呼吸运动及体位移动导致的定位精度波动,保证手术安全。那你们的机器人手术中患者动了怎么办?"

通过以上的实际问题,可分析出:

- ①医生可能认为世面上大部分设备都是带有光学跟踪的,而三坛没有,医生可能会在潜意识上认为设备不完整或不可靠。
- ②医生认为患者手术过程中,势必会造成体位的移动,而没有光学跟踪势必无法感知。
- ③三坛提供的激光定位器,不能提供反馈和动态调整,患者体位移动无法感知反馈。

竞 品 对 比

产品	MS-001	天玑2.0	鑫君特orthbot	MazorX	ROSA One
适应症	骨科脊柱手术(NMPA)	脊柱外科、 <mark>创伤骨科</mark> (NMPA)	脊柱外科手术(NMPA)	脊柱外科手术(NMPA)	脊柱外科手术(NMPA)
组成	由规划模块、导引模块、工 具包、体位反馈模块组成。 其中规划模块由规划软件、 规划台车组成。导引模块由 导引软件、导引台车组成。 工具包由套筒、配准板、定 位器组成。	划与控制软件、光学跟踪系统、主控台车和导航定位工具包组成,其中导航定位工具包含有基座、跟	站、系统软件及附件组	由Mazor X导航摄像台车、 Mazor X Stealth Edition应 用软件、Mazor X系统、手 术辅助套件、耗材套件组 成	
售价(人民币)	未定	14,990,000	15,498,900	9,800,000 (前代产品)	未知
	*	9			

在MS-001产品的基础上进行升级,主要涉及:

- 1) 适应症的拓展。从脊柱外科拓展维脊柱外科与创伤骨科;
- 2) 导航系统的增加。通过双目相机实时监控患者、机械臂、手术器械的相对位置;
- 3) 在产品易用性上做升级,提升医生术中操作的便捷性。

产品	MS-001	MS-002
类别界定	有源医疗器械,Ⅲ类	有源医疗器械,Ⅲ类
组成	规划模块、导引模块、工具包、体位反馈模块	主机、机械臂、规划与控制软件、 <mark>导航相机</mark> 系统、 主控台车和器械工具包
功能	<mark>脊柱手术</mark> 中体内规划目标的定位与导引	脊柱外科或创伤骨科中,用以辅助医生进行经皮或 开放手术的体内规划目标的定位与导引
功能使用	需配合C臂机使用	需配合C臂机使用
配准方式	CT-X片配准	CT-X片配准、 <mark>纯二维配准</mark>
体位监测方式	激光定位	双目相机追踪
配准板位置	机械臂末端	机械臂末端、C臂机影增/平板处
可视化显示	无	可视化追踪机械臂、手术器械以及患者的相对位置

产品组成

A台车、B台车、C台车和器械工具包。

其中,

A台车:导航相机+显示器+电脑主机+UPS;

B台车:机械臂+UPS;

C台车:显示器(无线)+键鼠(无线);

预期使用场景

产品预期使用环境为配有C臂机的外科手术室。

优势:

- 1. 术中C台车可以远离手术床, 减少床旁占用面积;
- 2. 机械臂B台车体积相对较小;
- 3. 无线方案减少了硬件构成;
- 4. 如医生选择不用机械臂,也可作为纯导航设备使用;
- 5. 无线方案是创新点。

目标消费群体、设计要求

● 目标消费群体

提供给需要进行骨外科手术或创伤骨科手术的基层医院。

● 设计要求

- ① 设备应模块化设计;
- ② 产品主体结构的美观度;
- ③ 产品整体外包装专业性;
- ④ 产品设计需要考虑其可制造性;
- ⑤ 产品设计需要考虑其可维修性。

骨科机器人是手术机器人中发展较为成熟的一个分支领域,据Medgadget公布的数据称,2020年骨科手术机器人约为3亿美元,到2027年,全球骨科手术机器人市场将达到35亿美元。

骨科机器人的主要应用领域有: 创伤骨科、脊柱外科和关节外科。

市场价值

- 1) MS-002拓宽了适用范围,有更丰富的应用前景,具备优秀的市场价值;
- 2) MS-002新增了实时追踪导航,将定位精度优化、量化,更易被市场接受。

法 规 文 件

1. 指导原则

- 医疗器械产品技术要求编写指导原则(2022年第8号通告附件)
- 人工智能医疗器械注册审查指导原则(国家药监局器审中心2022年第8号附件)
- 医疗器械网络安全注册审查指导原则(2022年修订版)(国家药监局器审中心2022年第7号附件)
- 医用软件通用名称命名指导原则(2021年第48号通告)
- 人工智能医用软件产品分类界定指导原则(2021年第47号)
- 真实世界数据用于医疗器械临床评价技术指导原则(试行)(2020年第77号)
- 医疗器械临床评价技术指导原则(2021年第73号)
- 决策是否开展医疗器械临床试验技术指导原则(2021年第73号)
- 医疗器械临床评价等同性论证技术指导原则(2021年第73号)
- 医疗器械注册申报临床评价报告技术指导原则(2021年第73号)

2. 标准

- GB 9706.1-2007 医用电气设备 第1部分:安全通用要求
- GB/T 14710-2009 医用电器环境要求及试验方法
- GB 7247.1-2012 激光产品的安全 第1部分设备分类、要求
- YY 0505-2012 医用电气设备 第1-2部分 安全通用要求并列标准 电磁兼容 要求和试验
- YY 1057-2016 《医用脚踏开关通用技术条件》
- YY/T 1630-2018 医疗器械唯一标识基本要求
- YY/T 1474-2016 医疗器械可用性工程对医疗器械的应用
- YY/T 1712-2021 采用机器人技术的辅助手术设备和辅助手术系统(2022.10.1实施)
- GB9706.1-2020 《医用电气设备第1部分:基本安全和基本性能的通用要求》(2023.5.1实施)
- YY 9706.102-2021《医用电气设备 第1-2部分:基本安全和基本性能的通用要求并列标准:电磁兼容要求和试验》的要求(2023.5.1实施)

3. 征求意见稿

- 医疗器械人因设计技术审查指导原则(征求意见稿)
- 软件相关法规要求
- 医疗器械网络安全注册审查指导原则(2022年修订版)(国家药监局器审中心2022年第7号附件)
- 医用软件通用名称命名指导原则(2021年第48号通告)
- 人工智能医用软件产品分类界定指导原则(2021年第47号)
- 医疗器械软件注册审查指导原则(2022年修订版)(国家药监局器审中心2022年第9号)
- 医疗器械生产质量管理规范独立软件现场检查指导原则(国家药监局综合司药监综械管〔2020〕57号附件)
- YY/T 1406.1-2016 医疗器械软件 第1 部分: YY/T0316 应用于医疗器械软件的指南
- GB/T 25000.51-2016 《系统与软件工程 系统与软件质量要求和评价》
- YY/T 0664-2020《医疗器械软件软件生存周期过程》

MS-002若开展临床试验,试验周期较长;

如果能搜集到同品种产品临床试验数据、相关文献数据和上市后数据等,

同品种对比可行性较高。

专 利 分 析

● 公司该类产品知识产权状况

☑发明专利30项 ☑实用新型专利6项 区外观专利

技术领域	应用技术模块	专利数
网 角垂冲矫壮	图像超分辨技术	1
图像重建领域	二维X片重建三维技术	1
	CT骨性特征自动识别技术	1
图像识别领域	图像畸变校正技术	3
	图像高保真修复技术	5
图像分割领域	CT骨组织分割技术	1
国家方司狄埃	X光骨组织分割技术	3
	2D-3D配准确定手术路径	1
图像配准领域	点云3D-3D配准技术	1
国家加推 次线	图像相似度评价技术	2
	脊柱2D-3D图像自动配准技术	7
手术路径规划领域	椎弓根通道自动规划技术	2
机器人定位跟踪领域	基于可见光的定位跟踪及微型MARK技术	3
机械臂控制	机械臂碰撞检测技术	1
小小水台江市	机器人超高精度手眼标定技术	7

1 系统及方法

CT-X片配准+光学导航机器人系统;纯2维配准+光学导航机器人系统;机械臂避障、路径规划算法;CT/光图像处理算法;植入物路径规划算法。

2 结构类

机械臂末端器械(含示踪器,快装快卸结构配准版),C臂机双层板+光学示踪器,置钉装置+光学示踪器等。

专 利 布 局 计 划

关于拟研发产品的系统原理、机械臂末端结构等关键技术,国内外主要竞品均有较多的相关专利申请,本产品最终技术方案的确定需重点研究上述竞品的相关专利,取其精髓,去其糟粕,同时注意专利技术规避问题。

类别	项目	指标	总数量	完成日期	责任人
专利	MS-002	13件A级 7件B级	20	第一阶段 2022年5月31日以前完成5件技术交底书 第二阶段 2022年8月31日以前完成4件技术交底书 第三阶段 2022年11月30日以前完成剩下11件技术交底书	洪洁 李明
软著	MS-002	12	12	2022年12月31日	洪洁 李明

技术分析-关键技术

序号	项目	关键技术	解决方案
1	CT-X片配准	非脊柱区域的自动配准算法	现有MS-001配准方案改良
2	CT处理	CT的半自动分割	区域生长算法;已有原型
3	纯二维配准	多张二维X光图像的3D定位技术	已在DEMO机上实现
4	手眼标定	基于双目相机的空间位置计算与追踪导航	已在DEMO机上实现
5	机械臂控制	对控制软件的二次开发	沿用原有MS-001使用的机械臂,已有开发经验
6	X片处理	X光图像的畸变校准	已有矫正算法;可以优化

系统精度精度维分解

● 机械臂选型

根据调研,选择可以满足MS-002功能需求,且开发难度低、开发时间短、 供货稳定、价格低的机械臂型号:UR5e。

● 双目相机选型

基于原材料成本、技术成熟度和开发时间考虑,采用NDI公司的Polaris双目相机产品。经测试,上述产品在成本、定位精度、稳定性上相对有优势。

三坛-设计开发流程

DCP重点关注内容:

- DCP0 产品开发提议决策,确定是否启动产品开发 策划与成立策划小组:
- DCP1 立项申请决策、项目组签署开发的合同;资 源扩大投入:
- DCP2 确认设计需求与设计任务、确定的最终设计 计划:
- 模块)。

TR重点关注内容:

- TR1 产品需求与产品概念:
- TR2 产品技术需求规格、产品系统方案、分配需求;
- TR3 各模块概要设计:
- TR4 单元测试、研发样机 (原理样机)制作与调试、详细设计文档:
- TR5 工程样机制作与集成测试、性能摸底; 试产样机制作准备(物料、 设计文档、工艺文档、质量与采购文档等)
- DCP3 项目验收评审(复盘,经验与教训沉淀、共享 TR6 设计转换: 试产样机生产,制造系统验证、产品系统测试、性能 测试(EMC等测试)、用户测试、型式检验、非临床研究、临床研究。

研发样机 (原理样机) (第一版): 验证设计或方案的合理性和正确性, 关注模块 功能,产品模型,由开发工程师负责制作。

工程样机 (第二版): 关注各模块的功能集成以及整体功能及可靠性, NPI主导、生 产人员协助制作。

试产样机 (第三版): 关注系统级功能以及生产制造的可行性, NPI指导, 生产部负 责生产与可制造性评估。

里程碑节点

	计划时间	实际时间
TR1	3月29日	3月29日
DCP1	3月30日	3月30日
TR2	4月中	
DCP2	4月中	
TR3	5月中	
TR4	8月中	
TR5	11月中	
TR6	2023年1月中	
DCP3	2024年Q12	

					20)22						20	23	20	24
	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月			Q1	Q2
TR1															
DCP1															
TR2															
DCP2															
TR3															
TR4															
TR5															
TR6															
DCP3															

项 目 组 成 员

角色	人员	信息	沟通方法
经营管理团队 (DCP评审)	总监及以上	重大决策,总体进展	会议,OA邮件
技术专家团队(TR评审)	各专业组(技术、临床)主管 医学专家	· · 周例会,关键进展,风险点	会议,OA邮件
项目经理	洪洁	所有相关	会议,OA邮件,钉钉
产品经理	严凌霄	周例会,关键进展,风险点	会议,OA邮件,钉钉
系统工程师	徐琦	涉及技术影响	会议,OA邮件,钉钉
临床经理	方华磊	涉及临床影响	会议,OA邮件,钉钉
开发经理	李明	研发内部资源调配,阶段成果物交付	会议,OA邮件,钉钉
生产经理/制造经理	黄春建	涉及生产影响	会议,OA邮件,钉钉
采购经理	朱明丽	涉及采购影响	会议,OA邮件,钉钉
质量经理	詹佳丹	涉及质量影响,体系管控	会议,OA邮件,钉钉
注册经理	赵枫	涉及注册影响	会议,OA邮件,钉钉
配置管理员(CMO)	吴辉	软件配置相关	会议,OA邮件,钉钉
硬件工程师(含嵌入式软件工程师)	雷俊勇	电子、嵌软相关	会议,OA邮件,钉钉
软件工程师	jun	软件相关	会议,OA邮件,钉钉
结构工程师	钱华芳	结构相关	会议,OA邮件,钉钉
测试工程师(软件/硬件)	王江	测试相关	会议,OA邮件,钉钉
学术经理	王沙沙	涉及学术	会议,OA邮件,钉钉
知识产权经理	林鵬	涉及专利影响	会议,OA邮件,钉钉
企宣经理	黄凌寒	UI、排版等	会议,OA邮件,钉钉
新产品导入工程师(NPI)	颜廷威(代)	涉及生产转化	会议,OA邮件,钉钉
研发质量保证主管/工程师(DQA)	程焕	研发质量保证相关	会议,OA邮件,钉钉
HR经理	钟国银	绩效考核,教育培训等	会议,OA邮件,钉钉
下游产品经理	孙盼	市场端沟通反馈,合作对接	会议,OA邮件,钉钉
售后经理	TBD	售后信息收集反馈	会议,OA邮件,钉钉

项目沟通机制

类别	参与人员	主要内容	频率	组织人
项目周例会	项目组成员	项目进展状态,争议,风险,变更内容状态汇报	每周	项目经理
项目阶段会议	项目经理 关键人员	阶段性汇报,阶段偏差,下阶段计划	每阶段结束	项目经理
临时会议	相关人员	对项目中出现的争议、变更、差异进行商讨	不定期	项目经理
OA邮件	项目组成员	成果物交付,会议纪要,正式性讨论	不定期	项目组成员
钉钉	项目组成员	非正式性讨论	不定期	项目组成员

● 邮件

① 标题:【MS-002】【专业组】xxx

② 收件人TO、抄送人CC

③ 正文

④ 结论:用颜色高亮

⑤ 动作:需要谁做什么?请@相关人员,写明截止时间

风险管理机制

序号	项目风险	危害	解决方法
1	关键人员不能全职投入	不能及时完成分配的项目任务,导致项目拖延	业务领导,以及HR经理介入,确保关键人员在项目中的全 身心投入
2	项目任务未能及时按要求完成	导致项目任务返工,从而影响后面的项目任务进行,导 致项目拖延	列入问题清单,限时完成
3	关键人员提出系统需求及方案变更	之前工作被推翻,造成严重损失,导致项目拖延	需求变更进行严格管控,并考虑全流程影响
4	C台车无线方案,视频传输延迟严重	需要变更成有线方案,导致项目拖延	提前对无线方案进行深入评估(研发、临床等),中期持续观察,有线作为保底方案提前预留相关接口
5	法规文件学习、理解不到位	产品设计没有遵从最新法规标准,后期返工,导致项目 拖延	研发中心、运营中心、人事部做好法规方面的教育计划
6	由于是前代产品升级,专利重复度高	有可能导致专利侵权	做好专利规避,专利布局方向提前构思,分阶段完成,研 发跟知识产权同事密切沟通
7	系统精度链分解不够	系统精度达不到技术要求	对系统精度链拆解设专利讨论会,最好能找到一种方法把 每个环节都量化定义
8	软件开发人力资源不满足需求	导致软件开发进度拖延	继续招聘软件工程师,通过一定的加班去补足,定期观察 进度偏差做出应对
9	ID设计是新的供应商	设计无法满意,需要另寻供应商,导致项目拖延	已启动一家在骨科机器人领域市占比较高的供应商,同时 持续考察其他供应商,同步启动

有其他风险点,请提前预估!

项目立项后,

- ① 项目经理布置任务给主管层(主管层可以掌握全面的信息),主管层交代任务给工程师(包含任务需求以及任务需要注意的技术点),
- ② 后续项目经理可以直接跟主管层要结果,也可以跟工程师要结果,
- ③ 如若工程师交付的成果有偏差,需要问责主管层。

中心思想

- ① 主管层必须全面介入项目开发过程,
- ② 项目经理和主管层,同时对该工程师具有考核权和淘汰权。

需要人事部支持,做相应绩效考核制度,尽快落地

二阶需完成工作

一阶资料(补)	负责人
适用质量标准清单	质量经理
风险分析	DQA
学术调研分析报告	学术经理

二阶资料	负责人
技术需求规格书	系统工程师
系统设计方案	系统工程师
项目进度计划	项目经理
质量保证计划	DQA
风险管理计划	DQA
可用性测试方案	上游产品经理
关键物料计划	采购经理
工艺和装备的初始清单	新产品导入工程师(NPI)
供应商认证活动	采购经理

Thanks

MS-002