TG I

21/02/2025

Javier Ortín Rodenas Manuel Mateos Suárez Jimena Rubín Sánchez Alejandra García Fernández

Problema:

Sea $\alpha: I \to \mathbb{R}^3$ una p.p.a birregular de clase \mathcal{C}^k $(k \geq 3)$ tal que $\tau(t) \neq 0$, para todo $t \in I$, entonces son equivalentes:

- (i) La curva parametrizada por α está contenida en una esfera.
- (ii) Existe una constante r>0 tal que $r^2=R(t)^2+\left(\frac{R'(t)}{\tau(t)}\right)^2 \quad \forall t\in I$

(iii)
$$\frac{\tau(t)}{\kappa(t)} = \left(\frac{\kappa'(t)}{\tau(t)\kappa^2(t)}\right)'$$

En tal caso, la curva tiene como centro $c=\alpha(t)+R(t)N(t)+\frac{R'(t)}{\tau(t)}B(t)$ para todo $t\in I$, y como radio $r=\sqrt{R(t)^2+\left(\frac{R'(t)}{\tau(t)}\right)^2}>0.$

Demostración:

$$(i) \Rightarrow (ii)$$

Supongamos que α está contenida en una esfera. De este modo, existen $r \in \mathbb{R}, r > 0, c \in \mathbb{R}^3$ constantes tales que para todo $t \in I$ se verifica:

$$(\alpha(t) - c) \cdot (\alpha(t) - c) = r^2$$

Por hipótesis, sabemos que α es birregular, luego existe el Triedro de Frenet para todo $t \in I$. Veamos cómo expresar el vector $(\alpha(t) - c)$ según esta base:

En general, sea $\{v_1, \ldots, v_n\}$ una base ortonormal de \mathbb{R}^n . Sea $v \in \mathbb{R}^n$, podemos expresar v en función de los vectores de la base: $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$ Aplicando la ortonormalidad, sea $i \in \{1, \ldots n\}$:

$$v \cdot v_i = (\lambda_1 v_1 + \dots + \lambda_n) \cdot v_i = \left(\sum_{j=1}^n \lambda_j v_j\right) \cdot v_i = \sum_{j=1}^n \lambda_j \delta_{ij} = \lambda_i$$

Por tanto, para expresar el vector $(\alpha(t) - c)$ en función de $\{T(t), N(t), B(t)\}$ basta ver el producto escalar entre dicho vector y los componentes de la base.

Derivando la expresión $r^2 = (\alpha(t) - c) \cdot (\alpha(t) - c)$ obtentemos:

$$0 = 2\alpha'(t) \cdot (\alpha(t) - c) \Rightarrow T(t) \cdot (\alpha(t) - c) = 0$$

Derivando de nuevo:

$$0 = T'(t) \cdot (\alpha(t) - c) + T(t) \cdot \alpha'(t) = K(t) \cdot (\alpha(t) - c) + ||T(t)||^2 \Rightarrow$$

$$\Rightarrow -1 = K(t) \cdot (\alpha(t) - c) = (\kappa(t)N(t)) \cdot (\alpha(t) - c)$$

$$\Rightarrow N(t) \cdot (\alpha(t) - c) = -R(t)$$

Derivando una vez más, por las ecuaciones de Frenet-Serret:

$$\begin{split} -R'(t) &= N'(t) \cdot \left(\alpha(t) - c\right) + N(t) \cdot \alpha'(t) = N'(t) \cdot \left(\alpha(t) - c\right) + N(t) \cdot T(t) = \\ &= \left(-\kappa(t)T(t) + \tau(t)B(t)\right) \cdot \left(\alpha(t) - c\right) + 0 = -\kappa(t)T(t) \cdot \left(\alpha(t) - c\right) + \tau(t)B(t) \cdot \left(\alpha(t) - c\right) = \\ &= 0 + \tau(t)B(t) \left(\alpha(t) - c\right) = -R'(t) \Rightarrow B(t) \cdot \left(\alpha(t) - c\right) = \frac{-R'(t)}{\tau(t)} \end{split}$$

Por todo lo anterior, concluimos que la expresión del vector respecto de la base es: $\left(\alpha(t)-c\right)=0T(t)-R(t)N(t)-\frac{R'(t)}{\tau(t)}B(t)$. Multiplicando el vector consigo mismo; en efecto, $r^2=R(t)^2+\left(\frac{R'(t)}{\tau(t)}\right)^2>0$ pues α es birregular por hipótesis. Finalmente, despejando concluimos:

$$r = \sqrt{R(t)^2 + \left(\frac{R'(t)}{\tau(t)}\right)^2}$$

$$c = \alpha(t) + R(t)N(t) + \frac{R'(t)}{\tau(t)}B(t)$$

$$(ii) \Rightarrow (iii)$$

Supongamos que existe r > 0 tal que para todo $t \in I$ se cumple:

$$r^2 = R(t)^2 + \left(\frac{R'(t)}{\tau(t)}\right)^2$$

Derivando en la definición de radio de curvatura, obtenemos:

$$R(t) = \frac{1}{\kappa(t)} \Rightarrow R'(t) = \frac{-\kappa'(t)}{\kappa(t)^2}$$

Derivamos ahora la expresión del radio que nos da la hipótesis y sustituimos R'(t) por la expresión anterior:

$$\begin{split} 2R(t)R'(t) + 2\frac{R'(t)}{\tau(t)} \left(\frac{R'(t)}{\tau(t)}\right)' &= 0 \Rightarrow \frac{1}{\kappa(t)} \left(\frac{-\kappa'(t)}{\kappa(t)^2}\right) + \left(\frac{-\kappa'(t)}{\tau(t)\kappa(t)^2}\right) \left(\frac{-\kappa'(t)}{\tau(t)\kappa(t)^2}\right)' &= 0 \Rightarrow \\ \Rightarrow \frac{-\kappa'(t)}{\kappa(t)^3} &= \left(\frac{-\kappa'(t)}{\tau(t)\kappa(t)^2}\right) \left(\frac{\kappa'(t)}{\tau(t)\kappa(t)^2}\right)' \Rightarrow \frac{-\kappa'(t)}{\kappa(t)^3} \left(\frac{-\tau(t)\kappa(t)^2}{\kappa'(t)}\right) &= \left(\frac{\kappa'(t)}{\tau(t)\kappa(t)^2}\right)' \Rightarrow \\ \Rightarrow \frac{\tau(t)}{\kappa(t)} &= \left(\frac{\kappa'(t)}{\tau(t)\kappa(t)^2}\right)' \end{split}$$

Hemos llegado a la expresión deseada.

 $(iii) \Rightarrow (i)$

Supongamos que para todo $t \in I$ se verifica la siguiente expresión:

$$\frac{\tau(t)}{\kappa(t)} = \left(\frac{\kappa'(t)}{\tau(t)\kappa(t)^2}\right)'$$

Buscamos comprobar que la parametrización α se encuentra contenida en una esfera. Para ello, debemos demostrar en primer lugar que la expresión de su centro es constante; es decir, que la derivada de su función es siempre nula.

$$c(t) = \alpha(t) + R(t)N(t) + \frac{R'(t)}{\tau(t)}B(t)$$

$$c'(t) = T(t) + R'(t)N(t) + R(t)N'(t) + \left(\frac{R'(t)}{\tau(t)}\right)'B(t) + \left(\frac{R'(t)}{\tau(t)}\right)B'(t)$$

Recordando las ecuaciones de Frenet-Serret:

$$N'(t) = -\kappa(t)T(t) + \tau(t)B(t) \qquad B'(t) = -\tau(t)N(t)$$

Sustituyendo en la expresión de c'(t) obtenemos:

$$c'(t) = T(t) + R'(t)N(t) + R(t)\left(-\kappa(t)T(t) + \tau(t)B(t)\right) + \left(\frac{R'(t)}{\tau(t)}\right)'B(t) + \left(\frac{R'(t)}{\tau(t)}\right)\left(-\tau(t)N(t)\right) =$$

$$= T(t) + R'(t)N(t) - \frac{\kappa(t)}{\kappa(t)}T(t) + \frac{\tau(t)}{\kappa(t)}B(t) + \left(\frac{R'(t)}{\tau(t)}\right)'B(t) - R'(t)N(t) =$$

$$= \frac{\tau(t)}{\kappa(t)}B(t) + \left(\frac{R'(t)}{\tau(t)}\right)'B(t)$$

Por hipótesis, se cumple $\frac{\tau(t)}{\kappa(t)} = \left(\frac{\kappa'(t)}{\tau(t)\kappa(t)^2}\right)'$, pero, tal y como vimos en el apartado anterior, sabemos que $\left(\frac{\kappa'(t)}{\tau(t)\kappa(t)^2}\right)' = \left(\frac{-R'(t)}{\tau(t)}\right)'$. Juntando ambas expresiones: $\left(\frac{R'(t)'}{\tau(t)}\right)' = \frac{-\tau(t)}{\kappa(t)}$. Sustituyendo en la derivada del centro:

$$c'(t) = \frac{\tau(t)}{\kappa(t)}B(t) + \left(\frac{R'(t)}{\tau(t)}\right)'B(t) = \frac{\tau(t)}{\kappa(t)}B(t) - \frac{\tau(t)}{\kappa(t)}B(t) = 0$$

Concluimos que la expresión del centro es constante. Veamos qué ocurre con la expresión del radio.

Por cómo está definido, el radio es positivo para todo $t \in I$. Por tanto, basta estudiar si r^2 es constante. Podemos manejar así una expresión más sencilla de derivar.

$$r^2 = \left(\alpha(t) - c\right) \cdot \left(\alpha(t) - c\right) = \left(-R(t)N(t) - \frac{R'(t)}{\tau(t)}B(t)\right) \cdot \left(-R(t)N(t) - \frac{R'(t)}{\tau(t)}B(t)\right)$$

Como el Triedro de Frenet es una base ortonormal en \mathbb{R}^3 , obtenemos:

$$r(t)^{2} = R(t)^{2} + \left(\frac{R'(t)}{\tau(t)}\right)^{2}$$
$$r'(t)r(t) = R(t)R'(t) + \left(\frac{R'(t)}{\tau(t)}\right)\left(\frac{R'(t)}{\tau(t)}\right)'$$

Una vez más, aplicando $R(t)=\frac{1}{\kappa(t)}$, y $\left(\frac{R'(t)}{\tau(t)}\right)'=\frac{-\tau(t)}{\kappa(t)}$ obtenemos:

$$r'(t)r(t) = \frac{-\kappa'(t)}{\kappa(t)^3} + \left(\frac{-\kappa'(t)}{\tau(t)\kappa(t)^2}\right) \left(\frac{-\tau(t)}{\kappa(t)}\right) = \frac{-\kappa'(t)}{\kappa(t)^3} + \frac{\kappa'(t)}{\kappa(t)^3} = 0$$

Finalmente $r(t) > 0 \ \forall t \in I$ luego $r'(t)r(t) = 0 \Leftrightarrow r'(t) = 0$.

Por todo lo anterior, concluimos que tanto la expresión del centro como la del radio son constantes. Además, dichas expresiones se corresponden con las vistas para la esfera que contiene a α en el apartado (i). Se cumple la implicación.