

අධානයන පොදු සහතික පතු (උසස් පෙළ)

භෞතික විදහාව

12 -13 ශුේණි - විෂය නිර්දේශය

(2017 සිට කුියාත්මක වේ.)

විදහා දෙපාර්තමේන්තුව ජාතික අධභාපන ආයතනය මහරගම ශී ලංකාව www.nie.lk

හැඳින්වීම

විශ්වයේ පවතින මූලික සංඝටක, ඒවා එකිනෙකා අතර කියාත්මක වන බල සහ එවැනි බලවල පුතිඵල පිළිබඳ ගවේෂණ කරනු ලබන විදහාව, භෞතික විදහාවයි. සියලු ම ස්වාභාවික සංසිද්ධි සහ විදහාවේ අනෙකුත් සැම ක්ෂේතුයක ම මූලය වන්නේ ද භෞතික විදහාව යි. එ හෙයින්, භෞතික විදහාව, අධායනයත්, භෞතික විදහාඥයින් භාවිත කරන කුමවේද සහ ඇගැයීම් පිළිබඳ අත්දුකීම් ලබා ගැනීමත්, කවර ම හෝ විදහා කේතුයක නියැළෙන ශිෂායකුට වුව ද, අතාවශා වෙයි.

අ.පො.ස (උසස් පෙළ) භෞතික විදහාව විෂය නිර්දේශය දෙ වසරක පාඨමාලාවකි. භෞතික විදහාව සම්බන්ධ උසස් අධහාපනයට යොමුවන්නන්ට උචිත මූලික පසුබිමක් සකසා දීමත්, එදිනෙදා ජීවිතයේ විවිධ කෙෂ්තුවල කටයුතු කරන්නන් හට භෞතික විදහාත්මක අවශාතා සපුරා ගැනීමට සුදුසු නිපුණතා ඇති කරලීමත් සඳහා උසස් පෙළ භෞතික විදහාව පාඨමාලාව සැලසුම් කෙරේ.

ජාතික අරමුණු

- (i) මානව අභිමානයට ගරු කිරීමේ සංකල්පයක් මත පිහිටා ශී ලාංකික බහුවිධ සමාජයේ සංස්කෘතික විවිධත්වය අවබෝධ කර ගනිමින් ජාතික ඒකාබද්ධතාව, ජාතික ඍජු ගුණය, ජාතික සමඟිය, එකමුතුකම සහ සාමය පුවර්ධනය කිරීම තුළින් ජාතිය ගොඩනැඟීම සහ ශී ලාංකීය අනනාතාව තහවුරු කිරීම
- (ii) වෙනස් වන ලෝකයක අභියෝගවලට පුතිචාර දක්වන අතර ජාතික උරුමයේ මාහැඟි දායාද හඳුනා ගැනීම සහ සංරක්ෂණය කිරීම
- (iii) මානව අයිතිවාසිකම්වලට ගරු කිරීම, යුතුකම් හා වගකීම් පිළිබඳ දැනුවත් වීම, හෘදයාංගම බැඳීමකින් යුතු ව එකිනෙකා කෙරෙහි සැලකිලිමත් වීම යන ගුණාංග පුවර්ධනය කිරීමට ඉවහල් වන සමාජ සාධාරණත්ව සම්මත සහ පුජාතාන්තික ජීවන රටාවක් ගැබ් වූ පරිසරයක් නිර්මාණය කිරීම සහ පවත්වා ගෙන යාමට සහාය වීම
- (iv) පුද්ගලයින්ගේ මානසික හා ශාරීරික සුව සම්පත සහ මානව අගයවලට ගරු කිරීම මත පදනම් වූ ති්රසර ජීවන කුමයක් පුවර්ධනය කිරීම
- (v) සුසමාහිත වූ සමබර පෞරුෂයක් සඳහා නිර්මාපණ හැකියාව, ආරම්භක ශක්තිය, විචාරශීලී චින්තනය, වගකීම හා වග වීම ඇතුළු වෙනත් ධනාත්මක අංග ලක්ෂණ සංවර්ධනය කිරීම
- (vi) පුද්ගලයාගේ සහ ජාතියේ ජීව ගුණය වැඩි දියුණු කෙරෙන සහ ශී ලංකාවේ ආර්ථික සංවර්ධනය සඳහා දායක වන එලදායී කාර්ය සඳහා අධාාපනය තුළින් මානව සම්පත් සංවර්ධනය කිරීම
- (vii) ශීසුයෙන් වෙනස් වන ලෝකයක් තුළ සිදු වන වෙනස්කම් අනුව හැඩ ගැසීමට හා ඒවා පාලනය කර ගැනීමට පුද්ගලයින් සූදානම් කිරීම සහ සංකීර්ණ හා අනපේක්ෂිත අවස්ථාවලට සාර්ථක ව මුහුණ දීමේ හැකියාව වර්ධනය කිරීම
- (viii) ජාතාන්තර පුජාව අතර ගෞරවනීය ස්ථානයක් හිමි කර ගැනීමට දායක වන යුක්තිය, සමානත්වය සහ අනෙහා්නා ගරුත්වය මත පදනම් වූ ආකල්ප හා කුසලතා පෝෂණය කිරීම

ජාතික අධාාපන කොමිෂන් සභාවේ වාර්තාව - (2003)

මූලික නිපුණතා

අධාාපනය තුළින් වර්ධනය කෙරෙන පහත දැක්වෙන මූලික නිපුණතා පෙර සඳහන් ජාතික අරමුණු මුදුන්පත් කර ගැනීමට දායක වනු ඇත.

(i) සන්නිවේදන නිපුණතා

සාක්ෂරතාව, සංඛාා පිළිබඳ දැනුම, රූපක භාවිතය සහ තොරතුරු තාක්ෂණ පුවීණත්වය යන අනුකාණ්ඩ හතරක් මත සන්නිවේදන නිපුණතා පදනම් වේ.

- සාක්ෂරතාව : සාවධාන ව ඇහුම්කන් දීම, පැහැදිලි ව කතා කිරීම, තේරුම් ගැනීම සඳහා කියවීම, නිවැරැදි ව සහ නිරවුල් ව ලිවීම, ඵලදායී අයුරින් අදහස් හුවමාරු කර ගැනීම
- සංඛාහ පිළිබඳ දැනුම : භාණ්ඩ, අවකාශය හා කාලය, ගණන් කිරීම, ගණනය සහ මිනුම් සඳහා කුමානුකූල ඉලක්කම් භාවිතය
- රූපක භාවිතය : රේඛා සහ ආකෘති භාවිතයෙන් අදහස් පිළිබිඹු කිරීම සහ රේඛා, ආකෘති සහ වර්ණ ගළපමින් විස්තර, උපදෙස් හා අදහස් පුකාශනය හා වාර්තා කිරීම
- තොරතුරු තාක්ෂණ පුවීණත්වය : පරිගණක දැනුම සහ ඉගෙනීමේ දී ද, සේවා පරිශුයන් තුළ දී ද, පෞද්ගලික ජිවිතයේ දී ද, තොරතුරු සහ සන්නිවේදන තාක්ෂණය උපයෝගී කර ගැනීම

(ii) පෞරුෂත්ව වර්ධනයට අදාළ නිපුණතා

- නිර්මාණශීලී බව, අපසාරී චින්තනය, ආරම්භක ශක්තිය, තීරණ ගැනීම, ගැටලු නිරාකරණය කිරීම, විචාරශීලී හා විගුාත්මක චින්තනය, කණ්ඩායම් හැඟීමෙන් කටයුතු කිරීම, පුද්ගලාන්තර සබඳතා, නව සොයා ගැනීම් සහ ගවේෂණය වැනි වර්ගීය කුසලතා
- ඍජු ගුණය, ඉවසා දරා සිටීමේ ශක්තිය සහ මානව අභිමානයට ගරු කිරීම වැනි අගය
- චිත්තවේගී බුද්ධිය

(iii) පරිසරයට අදාළ නිපුණතා

මෙම නිපුණතා සාමාජික, ජෛව සහ භෞතික පරිසරවලට අදාළ වේ.

• සමාජ පරිසරය : ජාතික උරුම පිළිබඳ අවබෝධය, බහුවාර්ගික සමාජයක සාමාජිකයන් වීම හා සම්බන්ධ සංවේදීතාව හා කුසලතා, සාධාරණ යුක්තිය පිළිබඳ හැඟීම, සමාජ සම්බන්ධතා, පුද්ගලික චර්යාව, සාමානා හා නෛතික සම්පුදාය, අයිතිවාසිකම්, වගකීම්,යුතුකම් සහ බැඳීම්

- ජෛව පරිසරය : සජිවී ලෝකය, ජනතාව සහ ජෛව පද්ධතිය, ගස්වැල්, වනාන්තර, මුහුදු, ජලය, වාතය සහ ජිවය, ශාක, සත්ත්ව හා මිනිස් ජිවිතයට සම්බන්ධ වූ අවබෝධය, සංවේදී බව හා කුසලතා
- භෞතික පරිසරය : අවකාශය, ශක්තිය, ඉන්ධන, දුවා, භාණ්ඩ සහ මිනිස් ජිවිතයට ඒවායේ ඇති සම්බන්ධතාව, ආහාර, ඇඳුම්, නිවාස, සෞඛාය, සුවපහසුව, නින්ද, නිස්කලංකය, විවේකය, අපදුවා සහ මළපහ කිරීම යනාදිය හා සම්බන්ධ වූ අවබෝධය, සංවේදීතාව හා කුසලතාව. ඉගෙනීම, වැඩ කිරීම සහ ජිවත් වීම සඳහා මෙවලම් සහ තාක්ෂණය පුයෝජනයට ගැනීමේ කුසලතා

(iv) වැඩ ලෝකයට සුදානම් වීමේ නිපුණතා

- ආර්ථික සංවර්ධනයට දායක වීම,
- තම වෘත්තීය ලැදියා සහ අභියෝගතා හඳුනා ගැනීම,
- හැකියාවලට සරිලන අයුරින් රැකියාවක් තෝරා ගැනීම සහ වාසිදායක හා තිරසාර ජීවතෝපායක නිරත වීම යන හැකියාවන් උපරිම කිරීමට හා ධාරිතාව වැඩි කිරීමට අදාළ සේවා නියුක්තිය හා සම්බන්ධ කුසලතා
- (v) ආගම සහ ආචාර ධර්මයන්ට අදාළ නිපුණතා පුද්ගයන්ට තම දෛනික ජීවිතයේ දී ආචාරධර්ම, සදාචාරාත්මක හා ආගමානුකූල හැසිරීම් රටාවලට අනුගත වෙමින් වඩාත් උචිත දේ තෝරා ජීවාට සරිලන සේ කටයුතු කිරීම සඳහා අගය උකහා ගැනීම හා ස්වීයකරණය
- (vi) කීඩාව සහ විවේකය පුයෝජනයට ගැනීමේ නිපුණතා සෞන්දර්යය, සාහිතාය, සෙල්ලම් කිරීම, කීඩා හා මලල කීඩා, විනෝදාංශ හා වෙනත් නිර්මාණාත්මක ජීවන රටා තුළින් පුකාශ වන විනෝදය, සතුට, ආවේග සහ එ වන් මානුෂික අත්දැකීම්
- (vii) 'ඉගෙනීමට ඉගෙනීම' පිළිබඳ නිපුණතා ශීසුයෙන් වෙනස් වන, සංකීර්ණ හා එකිනෙකා මත යැපෙන ලෝකයක පරිවර්තන කිුයාවලියක් හරහා වෙනස්වීම් හසුරුවා ගැනීමේ දී හා ඊට සංවේදී ව හා සාර්ථක ව පුතිචාර දැක්වීමත්, ස්වාධීනව ඉගෙන ගැනීමත් සඳහා පුද්ගලයින්ට ශක්තිය ලබා දීම

2.0 විෂය නිර්දේශයේ අරමුණු

මෙම පාඨමාලාව අවසානයේ දී ශිෂායා,

- 1. තාක්ෂණික ලෝකයේ දී ආත්ම විශ්වාසයෙන් යුතු පුද්ගලයකු ලෙස ජීවත් වීමට පුමාණවත් දුනුම සහ අවබෝධය ලබා ගනියි.
- 2. එදිනෙදා ජීවිතයේ දී විදාහත්මක කුමවේදයේ පුයෝජනවත් බව සහ එහි සීමා හඳුනා ගන්නා අතර එහි භාවිත අගය කරයි.
- 3. එදිනෙදා ජීවිතයේ දී භෞතික විදාහව අධායයනයට සහ භාවිතයට අදාළ හැකියාවන් හා කුසලතා වර්ධනය කර ගනියි.
- 4. නිරවදාතාව, සූක්ෂම බව, වාස්තවික බව, විමර්ශනශීලි බව, ආරම්භක හැකියාව සහ නිර්මාණශීලි බව යන භෞතික විදාාව හා සම්බන්ධ ආකල්ප ගොඩ නඟා ගනියි.
- 5. පරිසරයට දක්වන සැලකිල්ල සහ උනන්දුව වැඩි දියුණු කර ගනියි.
- 6. හසුරු කුසලතා, නිරීක්ෂණ සහ පරීකෂණාත්මක කුසලතා සහිත ව භෞතික විදහඥයින් භාවිත කරන උපකරණ පිළිබඳ තමාගේ ම අත්දකීම් ලබා ගනියි.

ඒකක සහ කාලච්ඡේද

		මාතෘකාව	කාලච්ඡේද ගණන
01 ඒකකය	_	මිනුම	30
02 ඒකකය	-	යාන්තු විද ෂාව	110
03 ඒකකය	-	දෝලන හා තරංග	100
04. ඒකකය	-	තාප භෞතිකය	60
05. ඒකකය	-	ගුරුත්වජ කෙෂ්තුය	20
06. ඒකකය	-	ස්ථිති විදහුත් කෙෂ්තුය	60
07. ඒකකය	-	චුම්බක කෙෂ්තුය	40
08. ඒකකය	-	ධාරා විදහුතය	70
09. ඒකකය	-	ඉලෙක්ටුාන්ක වීදහාව	40
10 ඒකකය	-	පදාර්ථයේ යාන්තුික ගුණ	40
11 ඒකකය	-	පදාර්ථ හා විකිරණ	30
		එකතුව	600

		ඒකක සහ කාලච්ඡේද
ලේණිය	වාරය	නිපුණතා මට්ටම්
12	1	1.1 සිට 2.5 දක්වා (නිපුණතා මට්ටම් 11)
ඉේණිය	2	2.6 සිට 3.5 දක්වා (නිපුණතා මට්ටම් 08)
	3	3.6 සිට 4.9 දක්වා (නිපුණතා මට්ටම් 15)
13	1	5.1 සිට 7.6 දක්වා (නිපුණතා මට්ටම් 12)
ලේණීය	2	8.1 සිට 10.2 දක්වා (නිපුණතා මට්ටම් 10)
	3	10.3 සිට 11.7 දක්වා (නිපුණතා මට්ටම් 07)

ඒකකය - 01 මිනුම

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
1.0 භෞතික විදහාවේ පරීක්ෂණාත්මක සහ ගණිතමය රාමුව පිළිබඳ සැලකිලිමත් වෙමින් ගවේෂණය සිදු කරයි.	1.1 භෞතික විදහාවේ විෂය පථය හා ගවේෂණ සඳහා විදහාත්මක කුමවේදය යොදා ගැනීම පිළිබඳ විමසා බලයි.	 භෞතික විදහාව හැඳින්වීම. එදිනෙදා ජිවිතයට සහ සොබා දහමට භෞතික විදහාව සම්බන්ධ වන අයුරු වර්තමාන සමාජයේ දියුණුවට භෞතික විදහාව දායක වී ඇති ආකාරය විදහාත්මක කුමවේදයෙහි මූලික සංකල්ප 	 භෞතික විදහාව ශක්තිය, ශක්ති පරිණාමනය සහ ශක්තිය සමඟ පදාර්ථයේ හැසිරීම අධ්‍යයනය කරන විෂයයක් ලෙස පැහැදිලි කරයි. භෞතික විදහාව මූලික අංශුවල සිට විශ්වය දක්වා අවධානය යොමු කරන විෂයයක් ලෙස විස්තර කරයි. ස්වාභාවික සංසිද්ධි පැහැදිලි කිරීමේ දී සහ එදිනෙදා ජිවිතයේ දී භෞතික විදහාව යොදා ගන්නා ආකාරය පැහැදිලි කරයි. පහත දක්වෙන ක්ෂේතුවල දී නවීන තාක්ෂණයේ වැඩි දියුණුව සඳහා භෞතික විදහාව යොදා ගෙන ඇති ආකාරය ගෙන හැර දක්වයි. පුවාහන කුම • සන්නිවේදනය • බල ශක්ති සැපයුම සහ පරිභෝජනය • වෛදහ විදහාව • පෘථිවිය සහ අභාවකාශ ගවේෂණය. විදහාත්මක ගවේෂණ සඳහා විදහාත්මක කුමය අනුගමනය කරයි. නිරීක්ෂණ මත පදනම්ව ගොඩනගන අනුමිතීන් මගින් භෞතික විදහාවේ වර්ධනය සිදු වී ඇති බව පිළිගනියි. 	02

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	1.2 ලෛතික අවශාතා සහ විදාහත්මක කටයුතුවල දී ඒකක නිවැරදි ව භාවිත කරයි.	 භෞතික රාශි හා ඒකක මූලික භෞතික රාශි අන්තර් ජාතික ඒකක (SI) කුමය (Systeme International d'Unites) මූලික ඒකක පරිපූරක ඒකක (කෝණ මැනීම සඳහා) වයුත්පන්න භෞතික රාශි සහ වයුත්පන්න ඒකක ඒකක නොමැති භෞතික රාශී ඒකකවල ගුණාකාර සහ උප ගුණාකාර 	 මූලික භෞතික රාශි සහ ව්‍යුත්පන්න භෞතික රාශි හඳුනා ගනී. සුදුසු මූලික SI ඒකක සහ ව්‍යුත්පන්න SI ඒකක භාවිත කරයි. සෑම භෞතික රාශියක් ම ඒකකයක් සහිත ව හෝ රහිත ව සංඛ්‍යාත්මක අගයකින් සමන්විත වන බව පිළිගනි. ගුණාකාර සහ උපගුණාකාර දක්වීම සඳහා උපසර්ග සහ ඒවායේ සංකේත භාවිත කරයි. ඒකක අවශ්‍ය පරිදි පරිවර්තනය කරයි. විද්‍යාත්මක අංකනය පිළිබඳ දනුම භාවිත කරයි. 	04
	1.3 මාන ඇසුරින් භෞතික රාශි පිළිබඳ විමසා බලයි.	 මාන යාන්තු විදහාවේ දී භාවිත වන මූලික භෞතික රාශිවල මාන ස්කන්ධය දිග කාලය වසුත්පන්න භෞතික රාශිවල මාන මානවල භාවිත භෞතික සමීකරණයක නිරවදහතාව පරීක්ෂා කිරීම දී ඇති රාශියක ඒකක සහ මාන සෙවීම පුකාශන වයුත්පන්න කිරීම 	 යාන්තු විදහාවේ දී භාවිත වන මූලික රාශින්ගේ මාන හඳුනා ගනී. සමීකරණයක නිරවදහතාව මාන යොදා ගනිමින් පරීක්ෂා කරයි. පුකාශන වහුත්පන්න කිරීම සඳහා මාන යොදා ගනියි. භෞතික රාශිවල ඒකක නිර්ණය කිරීම සඳහා මාන යොදා ගනියි. 	04

නිපුණතා නිපුණ	න ා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
දෝෂ පරිදි මිනුඡ් තෝග මිනුඡ්	ම් උපකරණය ම් උපකරණය ම් උපකරණය ම් නිවැරදි ව ගනියි. ම් නිවැරදි ව ගනියි. ම් නිවැරදි ව ගනියි. ම් නිවැරදි ව ම් නිවැරදි ව මේ වර් රූල වර්නයර් මෙයිකොම් ගෝලමා: මෙය කාම මෙයිකාවේ මෙයිකාවේ මෙයිකාවේ මෙයාගායක මෙයාගාය පරිතියර් කැ	ළ මූලධර්මය, කුඩා ම පරාසය දා්ෂ දෝෂය ෝෂය දෝෂය සහ පුතිශක නුම් උපකරණ දු කැලිපරය ටර ඉස්කුරුප්පු ආමානය නය බක්ෂය ටිකාව/විරාම ඔරලෝසුව වේරාම සටිකාව බෙහු මීටරය ලොව/ සිව් දඬු ලෙක්ටෝනික තුලාව ණ යොදා ගන්නා ක්ෂණ ලිපරය ර ඉස්කුරුප්පු ආමානය ය	 එදිනෙදා ජිවිතයේ දී සහ පරීක්ෂණවල දී මිනුම් ලබා ගැනීමේ වැදගත්කම විස්තර කරයි. උපකරණයක කුඩා ම මිනුම හඳුනා ගනී. මිනුම් සඳහා සුදුසු මිනුම් උපකරණ භාවිත කරයි. වර්තියර් මූලධර්මය සහ මයිකොමීටර මූලධර්මය පැහැදිලි කරයි. මිනුම් ලබා ගැනීම සඳහා වර්නියර් කැලිපරය, මයිකෝමීටර ඉස්කුරුප්පු ආමානය, චල අන්වීක්ෂය, ගෝලමානය, තෙදඬු තුලාව, ඉලෙකටෝනික තුලාව, විරාම සටිකාව, ඉලෙක්ටොනික විරාම සටිකාව යොදා ගනියි. අහඹු දෝෂය සහ ඒකාංග දෝෂය (මූලාංක දෝෂය ඇතුළත් ව) මිනුමක් කෙරෙහි බලපාන ආකාරය පැහැදිලි කරයි. භාගික දෝෂය සහ පතිශත දෝෂය ගණනය කරයි. භාගික දෝෂය සහ පතිශත දෝෂය ගණනය කරයි. ව'නියර් කැලිපරය භාවිත කර කුහර සිලින්ඩරයක අභාන්තර අරය බාහිර අරය සහ ගැඹුර සොයා ගනියි. මයිකොමීටර ඉස්කුරුප්පු ආමානය භාවිත කර කාසියක විෂ්කම්භය සහ සනකම මැන ගනියි. ගෝලමානය භාවිතයෙන් වකු දර්පනයක /කාවයක වකුතා අරය සෙයා ගනියි. වල අණ්වික්ෂය භාවිතයෙන් රබර්නලයක අභාන්තර විශ්කම්භය මැන ගනියි. 	12

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
			දෙන ලද උපකරණ අතුරින් සුදුසු උපකරණය තෝරාගෙන සමාකාර හැඩැති වස්තුවක් තනා ඇති දුවායේ ඝනත්වය සොයා ගනියි.	
	1.5 අවස්ථාවට උචිත ලෙස දෙශික ආකලනය හා විභේදනය යොදා ගතියි.	ලෙදශික සහ අදීශ රාශි අදීශ රාශි ලෙදශික රාශි ලෙදශික රාශි ලෙදශික සම්පුයුක්තය ජක රේඛීය සහ සමාන්තර ලෙදශික දෙකක ආකලනය අානත දෙශික ආකලනය ලෙදශික සමාන්තරාසු කුමය ලෙදශික පද්ධති බහු අසු කුමය ලෙදශික විභේදනය	 ඉදෙශික රාශි සහ අදිශ රාශි වෙන් කර දක්වා ඒවා සඳහා උදාහරණ ගෙන හැර දක්වයි. ඉදෙශික ජාාමිතික ව නිරූපණය කරයි ඒක තල දෙශික ආකලනය සහ වාාකලනය සිදු කරයි. ඉදෙශික සමාන්තරාසු මූල ධර්මය භාවිතයෙන් එකිනෙකට ආනත දෙශික දෙකක සම්පුයුක්තය සොයයි. ඉදෙශික තිකෝණ කුම යොදා ගනිමින් දෙශික දෙකක සම්පුයුක්තය සොයයි. ඉදෙශික බහු අසු කුමය යෙදා ගනිමින් දෙශික කිහිපයක සම්පුයුක්තය සොයයි. ඉදෙශිකයක් ඒකිනෙකට ලම්බක දිශා දෙකකට විභේදනය කරයි. බල කිහිපයක් වෙනුවට තනි බලයක් යොදන අවස්ථා සහ තනි බලයක් වෙනුවට බල කිහිපයක් යොදන අවස්ථා උදාහරණ දක්වයි. 	08

කාලච්ඡේද- 110

ඒකකය - 02 යාන්නු විදහාව

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
2. අප අවට සිදුවන චලිත භෞතික විදාහත්මක මූල ධර්ම මත විශ්ලේෂණය කිරීම සඳහා පදනමක් ඇති කරයි.	2.1 වස්තුවල ඒක මාන චලිතය සහ ද්විමාන චලිතය විශ්ලේෂණය කරයි.	 පුගති විදහාව සාපේක්ෂ චලිතය සමාන්තර මාර්ගවල එක ම දිශාවට චලනය වීම සමාන්තර මාර්ගවල විරුද්ධ දිශාවට චලනය වීම නියත ත්වරණයක් යටතේ සරල රේඛීය චලිතය චලිත පුස්තාර භාවිත S-t සහ v-t වකු චලිත සමීකරණ භාවිතය සරල රේඛීය චලිතය ගුරුත්වය යටතේ පුක්ෂිප්ත 	 සාපේකෂ චලිතය පිළිබඳ සංකල්පය භාවිතයෙන් විස්තර කළ හැකි අවස්ථා සඳහා උදාහරණ සපයයි. සම්මත සංකේත භාවිතයෙන් සාපේක්ෂ චලිතය සඳහා සමීකරණ ලියා දක්වන්න. සමාන්තර මාර්ගවල එක ම දිශාවට සහ විරුද්ධ දිශාවට ගමන් කරන වස්තුවල එක් වස්තුවකට සාපේක්ෂ ව අනෙක් වස්තුවේ පුවේගය ගණනය කරයි. විස්ථාපනය, පුවේගය හා ත්වරණය ගණනය කිරීමට විස්ථාපන - කාල හා පුවේග - කාල පුස්තාර සුදුසු පරිදි භාවිත කරයි. v-t පුස්තාරය භාවිතයෙන් චලිත සමීකරණ වයුත්පන්න කරයි. නියත ත්වරණයකින් සරල රේඛීය මාර්ගයත තිරස් ව ගමන් කරන වස්තුවක චලිතය, ගුරුත්වය යටතේ සිරස් චලිතය හා සර්ෂණය රහිත ආනත තලයක් මත චලිතය විස්තර කිරීමට සහ පුරෝකථනය කිරීමට චලිත සමීකරණ භාවිත කරයි. ගුරුත්ව යටතේ පුක්ෂිප්තය සිරස් හා තිරස් චලිත විස්තර කරයි. සුක්ෂිප්තයක පිහිටීම හා පුවේගය ගණනය කරයි. පුක්ෂිප්ත හා සම්බන්ධ යෙදීම් සඳහා උදාහරණ සපයයි . 	15

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
			 වස්තුවක චලිතය පුස්තාරික ව නිරූපණය කරයි. වස්තුවක චලිතය විස්තර කිරීමට චලිත පුස්තාර භාවිත කරයි. ගැටලු විසඳීම සඳහා චලිත පුස්තාර සහ චලිත සමීකරණ භාවිතයෙන් ගණනය කිරීම් සිදු කරයි. 	
	2.2 බල සම්පුයුක්ත සහ බල සූර්ණය භාවිත කර වස්තුවක රේඛීය චලිතය සහ භුමණ චලිතය පාලනය කරයි.	 බල සම්පුයුක්තය බල දෙකක සම්පුයුක්තය ඒකතල බල පද්ධතියක සම්පුයුක්තය බල සූර්ණය (වාාවර්තය) ලක්ෂායක් වටා බලයක සූර්ණය බල යුග්මයක සූර්ණය සමාන්තර බලවල සම්පුයුක්තය සහ කියා රේඛාව (එකම දිශාවේ ඇති බල සඳහා) වස්තුවක ගුරුත්ව කේන්දුය (සමාන්තර බලවල සම්පුයුක්තය ඇසුරින්) සමාකාර වස්තුවල ගුරුත්ව කේන්දුය සමාකාර සංයුක්ත වස්තුවල ගුරුත්ව කේන්දුය ස්කන්ධ කේන්දුය බල සමාන්තරාසු නියමය භාවිතයෙන් වස්තුවක බර සෙවීම 	 බල පද්ධතියක සම්පුයුක්තය පැහැදිලි කරයි. බල සමාන්තරාසු මූලධර්මය භාවිතයෙන් බල සම්පුයුක්තය සඳහා වීජීය පුකාශනයක් ලියා දක්වන්න. බල විභේදනය සහ ආකලනකය සුදුසු පරිදි සිදු කරයි. ඒක තල බල පද්ධතියක සම්පුයුක්තය සෙවීමට බල විභේදන කුමය හා බල සමාන්තරාශු පුමේය භාවිත කරයි. සමාන්තර බල දෙකක සම්පුයුක්තය හා කියා රේඛාව සොයයි. සමාන්තර බලවල සම්පුයුක්තය ඇසුරින් ගුරුත්ව කේන්දය විස්තරය කරයි. සමාකාර හැඩයෙන් යුත් සංයුක්ත වස්තුවල ගුරුත්ව කේන්දය සොයා ගනියි. බලයක සූර්ණය හා බල යුග්මයක සූර්ණය ගණනය කරයි. තල ආස්තරයක ගුරුත්ව කේන්දය සෙවීම සඳහා සරල කියාකාරකමක් සිදු කරයි. 	15

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 ස්කන්ධ කේන්දුය හඳුන්වාදෙයි ස්කන්ධ කේන්දුය හරහා බලයක් යොදන විට වස්තුවක චලිතය පැහැදිලි කරයි. ස්කන්ධ කේන්දුයෙන් පිටත දී බලයක් යොදනවිට වස්තුවක චලිතය පැහැදිලි කරයි. වස්තුවක අවස්ථිතිය යනු එහි චලිත ස්වභාවය 	
	2.3 වසතුවක චලිතය විශ්ලේෂණය කිරීම සඳහා චලිතය පිළිබඳ නිව්ටන්ගේ නියම භාවිත කරයි.	 බලය සහ චලිතය ස්කන්ධය අවස්ථී ස්කන්ධය ගුරුත්වජ ස්කන්ධය අවස්ථීති සහ අවස්ථීති නොවන රාමු චලිතය පිළිබඳ නිව්ටන්ගේ පළමු වැනි නියමය ගමාතාව චලිතය පිළිබඳ නිව්ටන්ගේ දෙවැනි නියමය F = ma සමීකරණය ලබා ගැනීම නිව්ටනය අර්ථ දක්වීම ආවේගය හා ආවේගී බල රේඛීය ගමාතා සංස්ථීති මූලධර්මය පුතාහාස්ථ සහ අපුතාහස්ථ ගැටුම් චලිතය පිළිබඳ නිව්ටන්ගේ තුන්වැනි නියමය නිව්ටන්ගේ නියමවල යෙදීම ස්වයං සීරු මාරු බල 	 වසතුවක අවසටතය යනු එහ චලත සවභාවය වෙනස් කිරීමට දක්වන නොකැමැත්ත බව පුකාශ කරයි. ස්කන්ධය යනු උත්තාරණ චලිතයේ අවස්ථිතිය පිළිබඳ මිනුමක් බව පුකාශ කරයි. ගුරුත්වාකර්ෂණ බලය ඇසුරින් ලබාගන්නා ස්කන්ධය ගුරුත්වාකර්ෂණ ස්කන්ධය ලෙස හඳුනා ගනී. චලිතය පිළිබඳ නිවුටන් නියම පුකාශ කරයි. නිවුටන්ගේ පළමු නියමය ඇසුරින් බලය අර්ථ දක්වයි. F = ma වයුත්පන්න කරයි. නියත ස්කන්ධ සහ නියත බල සම්බන්ධ ගතික අවස්ථා විශ්ලේෂණය කිරීමට චලිතය පිළිබඳ නිව්ටන්ගේ නියම සහ ගමාතාව පිළිබඳ සංකල්පය භාවිත කරයි. වස්තුවක් මත කියා කරන බලයන් විශ්ලේෂණය කිරීමට නිදහස් බල රූප සටහන් භාවිත කරයි. 	20

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේ ද
	අාතතිය කරපුම/ සම්පීඩනය ස්ථිතික සර්ෂණය සීමාකාරී සර්ෂණය ගතික සර්ෂණය නිදහස් බල සටහන්	 කියාව හා ප්‍රතිකියාව වෙත් කර හඳුනා ගනියි. කියාව හා ප්‍රතිකියාව යන බල සෑම විට ම පවතින බව අවබෝධ කර ගනියි. බලය මැනීමේ SI ඒකකය වන නිවුටනය අර්ථ දක්වයි. ආවේගී බල භාවිත වන අවස්ථා සඳහා උදාහරණ සපයයි. ස්වයං සීරුමාරු බලවල ස්වභාවය හඳුනා ගනියි. ගතික පද්ධති මත ඝර්ෂණයේ බලපෑම විශ්ලේෂණය කරයි. ආවේග බලය ඉතා කෙටි කාලයන් තුල කියාත්මක වන විචලා බලයක් ලෙස අවබෝධ කර ගනියි. නිව්ටන්ගේ නියම සම්බන්ධ ගණනය කිරීම් කරයි. ගමාතාව හා ගමාතා සංස්ථිතිය සම්බන්ධ ගණනය කිරීම් සිදු කරයි. සීමාකාරී ඝර්ෂණය හා ගතික ඝර්ෂණය සම්බන්ධ ගණනය කිරීම සිදු කරයි. නිව්ටන්ගේ නියම අාදර්ශනය කිරීමට සරල කියාකාරකම් සිදු කරයි. 	

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
2.4 වස්තුවක් සමතුලිත ව තැබීම සඳහා අවශා තත්ත්ව හසුරුවයි.	 සමතුලිතතාව සඳහා අවශාතා සුර්ණය පිළිබඳ මූලධර්මය බල දෙකක් යටතේ සමතුලිතතාව ඒකතල බල පද්ධතියක සමතුලිතතාව බල තුන සමාන්තර අවස්ථාව බල තුන ආනත අවස්ථාව බල තිකෝණය පුමේයය බල බහු අසුය සමතුලිතතාවේ අවස්ථා ස්ථායි අස්ථායී උදාසීන සූර්ණ පිළිබඳ මූලධර්මය භාවිතයෙන් වස්තුවක බර සෙවීම. 	 ලක්ෂාාකාර වස්තුවක සමතුලිතතාව සඳහා අවශා තත්ත්ව හඳුනා ගැනීමට කියාකාරකම් සිදු කරයි. ඒකතල බල පද්ධතියක් යටතේ පවතින දෘඪ වස්තුවක සමතුලිතතාව සඳහා අවශා තත්ත්ව හඳුනා ගැනීමට කියාකාරකම් සිදු කරයි. එකිනෙකට සමාන්තර ව කියා කරන බල තුනක සමතුලිතතාව සඳහා අවශාතා විස්තර කරයි. එකිනෙකට ආනතව කියා කරන බල තුනක සමතුලිතතාව සඳහා අවශාතා විස්තර කරයි. සූර්ණ පිළිබඳ මූලධර්මය ප්‍යාශ කරයි. බලවල සමතුලිතතාව ආශි්ත ගැටලු විසඳීමට බල තිකෝණ ප්‍රමේගය සහ සූර්ණය පිළිබඳ මූලධර්මය භාවිත කරයි. සමතුලිතතාව හා සම්බන්ධ ගැටළු විසඳීම සඳහා බල විභේදන කුමය යොදා ගනියි. පද්ධතියක් සමතුලිතතාවට පත් කිරීමට සමතුලිතතාව පිළිබඳ සංකල්ප භාවිත කරයි. සමතුලිතතාවේ අවස්ථා හඳුනා ගනියි. සුර්ණ මූලධර්ම භාවිතයෙන් වස්තුවක බර සෙවීම සඳහා පරීක්ෂණයක් සිදු කරයි. 	10

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
2.5 යාන්තුික ශක්තිය පරිභෝජනය සහ පරිණාමනය පලදායී ලෙස සිදු කරයි.	 කාර්යය කාර්යය රෙබීය චලිතයේ දී බලයක් මගින් සිදු කෙරෙන කාර්යය යාන්තික ශක්තිය උත්තාරණ චාලක ශක්තිය ගිරුත්වජ විභව ශක්තිය ජූතාහස්ථ විභව ශක්තිය ක්ෂමතාව සහ කාර්යක්ෂමතාව ශක්ති සංස්ථිති මූලධර්මය යාන්තික ශක්ති සංස්ථිති මූලධර්මය කාර්යය - ශක්තිය මූලධර්මය 	 ශක්ති වෙනස්වීම් සහ කාර්යක්ෂමතා ගණනය කිරීමට කරන ලද කාර්යය, චාලක ශක්තිය, විභව ශක්තිය සහ ජවය සඳහා වන ප්‍රකාශන භාවිත කරයි. ආතතිය සහ විතතිය යන පද ඇසුරින් ප්‍රකාශස්ථ විභව ශක්තිය සඳහා ප්‍රකාශනයක් ලියා දක්වයි. බල නියතය සහ විතතිය ඇසුරින් ප්‍රතාෂස්ථ විභව ශක්තිය සඳහා ප්‍රකාශනයක් ලියා දක්වයි. ශක්ති සංස්ථිත මූලධර්මය සහ යාන්තික ශක්ති සංස්ථිති මූලධර්මය හවිත කරයි. කාර්යය - ශක්තිය පිළිබඳ මූල ධර්මය ප්‍රකාශ කරයි. ශක්තිය ඵලදායි ලෙස භාවිත කළ හැකි ආකාර පිළිබඳ විමසා බලයි. යාන්තික ශක්තිය හා යාන්තික ශක්ති සංස්ථිති මූලධර්මය සම්බන්ධ ගණනය කිරීම් සිදු කරයි. පද්ධතියක කාර්යක්ෂමතාව යනු ප්‍රයෝජනවත් ශක්ති ප්‍රතිදානය හා මුළු ශක්ති ප්‍රදානය අතර අනුපාතය බව මතකයට නගා අවබෝධ කර ගනියි. ගැටුම් හා පිපිරීම් සඳහා ශක්ති සංස්ථිත මූලධර්මය හා ගමාතා සංස්ථිති මූලධර්මය යොදයි. පූර්ණ ප්‍රතාස්ථ ගැටුම් හා පූර්ණ ප්‍රතාස්ථ නොවන ගැටුම්වල වෙනස පැහැදිලි කරයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
2.6 හුමණ චලිතය හා වෘත්තාකාර චලිතය පිළිබඳ සංකල්ප විමසා බලයි.	 භුමණ චලිතය කෝණික විස්ථාපනය කෝණික පුවේගය කෝණික ත්වරණය භුමණ සංඛාහතය ඒකාකාර කෝණික ත්වරණයෙන් සිදු කරන චලිතය සඳහා භුමණ චලිත සමීකරණය භාවිත කිරීම අවස්ථිති සූර්ණය ඒකාකාර සිහින් දණ්ඩ ඒකාකාර සිහින් වළල්ල ඒකාකාර වෘත්තාකාර තැටිය සහ සිලින්ඩරය ඒකාකාර ගෝලය කෝණික ගමාතාව වාහවර්තය වාහවර්තය ආාවර්තය අතර සම්බන්ධය කෝණික ගමාතා සංස්ථිති මූලධර්මය භුමණ චලිතයේ කාර්ය පුමාණය භුමණ චලිතයේ කාර්ය පුමාණය භුමණ චලිතයේ සහ භුමණ චලිතය අතර අනුරූපතාව 	 කෝණික ව්ස්ථාපනය, කෝණික පුවේගය හා කෝණික ත්වරණය අර්ථ දක්වා SI ඒකකවලින් පුකාශ කරයි. කෝණික පුවේගය හා γpm අගය අතර සම්බන්ධතාව ලියා දක්වයි. රේඛීය ව්ස්ථාපනය හා කෝණික පුවේගය සහ ස්පර්ශීය පුවේගය හා කෝණික පුවේගය සහ ස්පර්ශීය ත්වරණය හා කෝණික පුවේගය සහ ස්පර්ශීය ත්වරණය හා කෝණික ත්වරණය අතර සම්බන්ධතා ලියා දක්වයි. ආවර්ථ කාලය හා සංඛ්‍යාතය භාවිතයෙන් කෝණික චලිතය විස්තර කරයි. කෝණික චලිත සමීකරණ ලියා දක්වයි. කෝණික චලිත සමීකරණ හාවිත කර ගැටලු විසදයි. අවසථිති සූර්ණය භුමණ චලිතයේ අවස්ථිතිය ලෙස විස්තර කරයි. අක්ෂයක් වටා ලක්ෂාාකාර ස්කන්ධයක අවස්ථිති සූර්ණය I = mr² ලෙස ප්‍කාශ කරයි. අක්ෂයක් වටා වස්තුවක අවස්ථිති සූර්ණය I = ∑m₁r² ලෙස ප්‍කාශ කරයි. ස්කන්ධය, භුමණ අක්ෂය හා ස්කන්ධයේ විසිරීම මත අවස්ථිති සූර්ණය රදා පවතින බව ආදර්ශනය කරයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	තිරස් තලයක වූ ඒකාකාර වෘත්තාකාර චලිතය සංඛාගතය. ස්පර්ශීය පුවේගය අාවර්ත කාලය ස්පර්ශීය වේගය කේන්දාභිසාරි ත්වරණය කේන්දාභිසාරි බලය	 කෝණික ත්වරණය හා අවස්ථිති සූර්ණය සහ වගාවර්තනය අතර සම්බන්ධය τ = Iα ලෙස දක්වයි භූමණය වන වස්තුවක් මත කියා කරන වගාවර්තය නිර්ණය කිරීමෙන් එහි චලිතය පුරෝකථනය කරයි. කෝණික පුවේගය හා අවස්ථිති සූර්ණය අතර ගුණිතය කෝණික ගමහතාව ලෙස පුකාශ කරයි. අවස්ථිති සූර්ණය, වහාවර්තය හා කෝණික ගමහතාව සම්බන්ධ ගණනය කිරීම් සිදු කරයි. කෝණික ගමහතා සංස්ථිති මූලධර්මය ආදර්ශනය කිරීමට සරල කියාකාරකම් සිදු කරයි. කෝණික ගමහතා සංස්ථිති මූලධර්මය හා සැබැඳි උදාහරණ ඉදිරිපත් කරයි. තිරස් වෘත්තයක් වටා ඒකාකාර වේගයෙන් වස්තු චලනය වන අවස්ථා විශ්ලේෂණය කරයි. තිරස් වෘත්තාකාර පථයක ඒකාකාර වේගයෙන් චලනය වන වස්තුවක කේන්දාභිසාරි ත්වරණය ගණනය කරයි. විවිධ වෘත්තාකාර චලිතවල කේන්දාභිසාරි බලයන් හඳුනා ගනියි. එවැනි වස්තුවක කේන්දාභිසාරී ත්වරණය එය මත කියා කරන බලයට සම්බන්ධ කරයි. 	

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
			 භුමණ චලිතයට හා වෘත්තාකාර චලිතයට සම්බන්ධ ගණනය කිරීම් සිදු කරයි. කෝණික චලිතය හා රේඛීය චලිතය සංසන්දනය කරයි. 	
	2.7 දෙනික ජීවිතයේ දී හා විදහත්මක කටයුතුවල දී නිශ්චල තරල පිළිබඳ මූලධර්ම සහ නියම භාවිත කරයි	දෙවස්ථිති විදහාව දෙවස්ථිති පීඩනය වායුගෝලීය පීඩනය දෙවවල සාපේක්ෂ සනත්ව සැසඳීම	 නෙයාර්ගේ උපකරණය සහ U නළය යොදා ගෙන දුවවල ඝනත්වය සැසැදීම ආශිුත ගැටලු විසඳීම සහ දාව පද්ධතියක කියාකාරී මූලධර්ම පැහැදිලි කිරීම සඳහා පැස්කල්ගේ මූලධර්මය යොදා ගනියි. ඉපිලීම හා ගිලීම ආශිුත සංසිද්ධි පැහැදිලි කිරීම සහ ගැටලු විසඳීම සඳහා ආකිම්ඩිස්ගේ මූලධර්මය සහ ඉපිලුම් මූලධර්මය භාවිත කරයි. සෙන්ධාන්තික ව හා පායෝගික ව ආකිම්ඩිස් මූලධර්මය සතහාපනය කරයි. දුවවල ඝනත්වය U නළය හා හෙයාර් උපකරණය භාවිතයෙන් සංසන්දනය කරයි. දුව මානය භාවිතයෙන් දුවවල ඝනත්වය සංසන්දනය කරයි. 	12

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
2.8 ඉදෙනික ජීවිතයේ දී හා විදාහත්මක කටයුතුවල දී පුවාහ වන තරල පිළිබඳ මූලධර්ම සහ නියම භාවිත කරයි.	 තරල ගති විදහාව අනාකූල සහ ආකූල පුවාහ අනාකූල අනවරත පුවාහයක් සඳහා සාන්තතා පුවාහ සමීකරණය බ'නුලී මූලධර්මය (සමීකරණය වහුත්පන්න කිරීම අවශා නො වේ) බ'නුලී මුලධර්මයේ යෙදුම් 	 අනාකූල හා ආකූල පුවාහ අතර වෙනස හඳුනා ගනියි. අනවරත, ආස්තරීය පුවාහයක් සඳහා සාන්තතා පුවාහ සමීකරණය භාවිත කරයි. බ'නූලී මූලධර්මය වලංගුවන තත්ත්ව පුකාශ කරයි. ගැටලු විසඳීම සඳහා බ'නුලී මූලධර්මය භාවිත කරයි. බ'නූලී මූලධර්මය ආදර්ශනය කිරීමට සරල කිුයාකාරකම් සිදු කරයි. 	08

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේ ද
3.0 මිනිසාගේ සංවේදී පරාසය වැඩි දියුණු කර ගැනීම සඳහා තරංග පිළිබඳ ගවේෂණයේ යෙදෙයි.	3.1 භෞතික විදහත්මක පදනම ඇසුරින් දෝලනය විගුහ කරයි.	• දෝලනය • සරල අනුවර්තී චලනය • සරල අනුවර්තී චලිනයට සම්බන්ධ භෞතික රාශි • විස්තාරය • සංඛානය • ආවර්ත කාලය • ශක්තිය • සරල අනුවර්තී චලිනය අර්ථ දක්වීම • සරල අනුවර්තී චලිනය සඳහා ලාක්ෂණික සමීකරණය $a=-\omega^2 x$ • සරල අනුවර්තී චලිනය අනුරූප වෘත්ත චලිනයේ පුක්ෂේපණයක් ලෙස • කම්පන කලාව • කලා වෙනස • විස්ථාපනය සඳහා සමීකරණය $x=A\sin\omega t$ ($x=0$ සහ $t=0$ වන විට ආරම්භ වන සරල අනුවර්ටී චලින සඳහා පමණි) • සරල අනුවර්ටී චලින සඳහා පමණි) • සරල අනුවර්ටී චලින සඳහා පමණි) • සරල අනුවර්ටීය චලිනය සඳහා විස්ථාපන කාල පුස්තාරය • සරල අවලම්බයක කුඩා දෝලන $T=2\pi\sqrt{\frac{l}{g}}$ • සරල අවලම්බය භාවිනයෙන් ගුරුත්වජ ත්වරණය සෙවීම	 සරල අනුවර්තී චලිතය සඳහා අතාවශා තත්ත්ව විස්තර කරයි. සරල අනුවර්තී චලිතය නිර්වචනය කරයි. සරල අනුවර්තී චලිතය සඳහා වූ ලාක්ෂණික සමීකරණය ලෙස a = -m²x හඳුනා ගෙන හාවිත කරයි. දෝලනය වන වස්තුවක චලිතය එය මත කියා කරන බලය සමග සම්බන්ධ කරයි. සරල අනුවර්තී චලිතයක දී චාලක ශක්තිය හා විභව ශක්තිය අතර අන්තර් හුවමාරුවීම විස්තර කරයි. සරල අනුවර්තී චලිතය වෘත්තාකාර චලිතයක පක්ෂේපනයක් ලෙස නිරූපණය කරයි. සරල අනුවර්තී චලිතයේ යෙදෙන වස්තුවක චලිත ස්වභාවය කලාව ඇසුරිත් හඳුනා ගනියි. සරල අනුවර්තී චලිත දෙකක චලිත ස්වභාව විස්තර කිරීමට කලා අන්තරය භාවිත කරයි. මධා ලක්ෂයේ සිට දෝලනය අරඹන වස්තුවක විස්ථාපනය ගණනය කරයි. සරල අනුවර්තී චලිතය විස්තර කිරීමට වස්තුවක විස්ථාපන- කාල පුස්තාරය භාවිත කරයි. පරීක්ෂණාත්මක හා පුස්තාරික කුම භාවිතයෙන් දෝලනයක චලිතය අධායනය කරයි. සරල අනුවර්තී චලිතය විස්තර කිරීම සඳහා විස්ථාපන - කාල පුස්තාරය යොදා ගනී. 	15

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
		• සැහැල්ලු හෙලික්සීය දුන්නක එල්වා ඇති ස්කන්ධයක දෝලනය $T = 2\pi \sqrt{\frac{m}{k}}$ • සැහැල්ලු හෙලික්සීය දුන්නක දුනු නියනය සෙවීම. • නිදහස් කම්පන • පරිමන්දිත කම්පන • කෘත කම්පන සහ අනුනාදය	 සරල අවලම්බය භාවිතයෙන් ගුරුත්වජ ත්වරණය නිර්ණය කරයි. සැහැල්ලු හෙලික්සිය දුන්නක දුනු නියතය නිර්ණය කරයි. නිදහස්, පරිමන්දිත හා කෘත දෝලන වෙන් කර හඳුනා ගනියි. බාටන් අවලම්භය භාවිතයෙන් කෘත දෝලන හා අනුනාදය ආදර්ශනය කරයි. කෘත දෝලන හා අනුනාදය සඳහා ප්‍රායෝගික උදාරහණ විස්තර කරයි. අනුනාදය ප්‍රයෝජනවත් වන අවස්ථා මෙන් ම අනුනාදය වැළැක්විය යුතු අවස්ථා ඇති බව වටහා ගනියි. 	
	3.2 විවිධ ආකාරයේ තරංග චලිත හා ඒවායේ භාවිත පිළිබඳ විමසා බලයි.	 යාන්තික තරංග අන්වායාම තරංග තරංගයක පුස්තාරික නිරූපණය තරංගයක් හා බැඳි භෞතික රාශි තරංග වේගය - V තරංග ආයාමය - λ සංඛ්‍යාතය - f විස්තාරය - A සංඛ්‍යාතය, තරංග ආයාමය සහ තරංග වේගය අතර සම්බන්ධය, V = f λ 	 ස්ලිංකය භාවිත කර තරංග චලිතය ආදර්ශනය කරයි. තරංග චලිතය අංශුන්ගේ සරල අනුවර්තී චලිතය අංශුන් ව විස්තර කරයි. අන්වායාම සහ තීර්යක් තරංග වෙන් කොට දක්වයි. තරංග චලිතය පුස්තාරික ව නිරූපණය සහ සම කලාස්ථ (එක ම කලාවේ) සහ විෂම කලාස්ථ (එකිනෙකට විරුද්ධ කලාවේ) ලක්ෂාය හඳුනා ගනියි. සම කලාස්ථ ලක්ෂා ඇසුරින් තරංග ආයාමය හඳුනා ගනියි. 	08

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
			 වේගය, සංඛානතය හා තරංග ආයාමයට අදාළ නිර්වචන භාවිතයෙන් v = f \(\lambda \) වනුත්පන්න කරයි. තරංග චලිතය හා සම්බන්ධ ගැටලු විසඳයි. 	
	3.3 තරංගවල ගුණ පදනම් කර ගනිමින් ඒවයේ භාවිත පිළිබඳ විමසා බලයි.	 තරංගවල ගුණ පරාවර්තනය දෘඪ පරාවර්තනය මෘදු පරාවර්තනය වර්තනය විවර්තනය (ගුණාත්මක ව) ඛැවනය (ගුණාත්මක ව) තරංග අධිස්ථාපනය මූලධර්මය (පුස්තාරික නිරූපණය) නිරෝධනය ස්ථාවර තරංග නුගැසුම් ƒ = ƒ1 - ƒ2 සහ භාවිත (වුයුත්පන්න කිරීම අවශා නො වේ) පුගමන තරංග සහ ස්ථාවර තරංග සැසඳීම. 	 තරංගවල තුණ ආදර්ශනය කිරීමට රැළිති ටැංකිය/ ස්ලිංකිය භාවිතයෙන් සරල කියාකාරකම් මෙහෙයවයි. පරාවර්තනය, වර්තනය, නිරෝධනය සහ විවර්තනය තරංගවල පොදු ගුණ ලෙස පුකාශ කරයි. සරල කියාකාරකම් මගින් දෘඩ පරාවර්තනය මෘදු පරාවර්තනය ආදර්ශනය කරයි. දෘඩ පරාවර්තනය හා මෘදු පරාවර්තනය වෙන් කර දක්වයි. වර්තනයේ දී පුවේගය, තරංග ආයාමය හා විවිධ මාධාවල දී දිශාව වෙනස් වීම පැහැදිලි කරයි. වර්තන අංකය අර්ථ දක්වයි. තරංග වේගය, තරංග ආයාමය, පතන හා වර්තන කෝණ සමග වර්තන අංකය සම්බන්ධ කරයි. කරයි. වර්තනය ආශිත ගණනය කිරීම් සිදු කරයි. තරංග අධිස්ථාපන මූලධර්මය පුකාශ කරයි. තරංග අධිස්ථාපන මූලධර්මය පුස්තාරික ව නිරූපණය කරයි. 	15

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
			 නිරෝධනය, ස්ථාවර තරංග සහ නුගැසුම් හට ගැනීම ගුණාත්මක ව පැහැදිලි කිරීමට තරංග අධිස්ථාපන මූලධර්මය භාවිත කරයි. තන්තු කම්පකය භාවිත කර ස්ථාවර තරංග ආදර්ශනය කරයි. ස්ථාවර තරංග ඇති වීම සඳහා අවශා තත්ත්ව පකාශ කරයි. ස්ථාවර තරංග පුස්තාරිකව නිරූපනය කරයි. ස්ථාවර තරංග හා පුගමන තරංග සංසන්දනය කරයි. කැතෝඩ කිරණ දෝලනේක්ෂය හා සරසුල් භාවිත කර නුගැසුම් ආදර්ශනය කරයි. නුගැසුම් සහ ස්ථාවර තරංග ආශිත ගණනය කිරීම සිදු කරයි. විවර්තනය, නිරෝධනය හා ධුලනය ගුණාත්මක ව විස්තර කරයි. 	
	3.4 විචලෳන් හසුරුවමින් තත්තුවල හා දඬුවල කම්පත විධි පුයෝජනයට ගනියි.	 ඇදි තන්තුවල ස්ථාවර තරංග ඇදි තන්තුවක ස්ථාවර තරංග තීර්යක් තරංග වේගය v = √T/m ඇදි තන්තුවක කම්පන විධි මූලිකය පුසංවාද සහ උපරිතාන ධ්වනිමානය සරසුලක සංඛ්‍යාතය සෙවීම කම්පන දිග හා සංඛ්‍යාතය අතර සම්බන්ධය සෙවීම. 	 ආතතිය සහ රේඛීය ඝනත්වය ඇසුරින් තීර්යක් තරංග වේගය සඳහා පුකාශනයක් ඉදීපත් කරයි. තන්තුවලට හට ගන්නා ස්ථාවර තරංග සඳහා අනුනාද සංඛාභතවල සංඛාභත්මක රටා පැහැදිලි කරයි. මූලික තානය සහ උපරිතාත සංඛාභත සඳහා පකාශන වහුත්පන්න කරයි. තන්තුවල ස්ථාවර තරංග රටා ආශිුත ගණනයන් සිදු කරයි. 	12

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
		 අන්වායාම තරංග වේගය v = \(\frac{E}{\rho} \) භූ කම්පන තරංග, රිච්ටර් පරිමාණය සහ සුනාමි ඇති වීම (ගුණාත්මක ව) 	 ධ්වනි මානය භාවිතයෙන් සරසුලක සංඛාාතය නිර්නය කරයි. කම්පන දිග සහ සංඛාාතය අතර සම්බන්ධතාව පරීක්ෂණාත්මකව නිර්නය කරයි. ප්‍රතාස්ථාතා මාපාංකය සහ ඝනත්වය යන පද ඇසුරින් අන්වායාම තරංග ප්‍රවේගය සඳහා ප්‍රකාශනකයක් ඉදිරිපත් කරයි. භූ කම්පන තරංග, භූමිකම්පා, රිච්ටර් පරිමාණය සහ සුනාම ඇතිවීම ගුණාත්මක ව විස්තර කරයි. ධ්වනිමානය භාවිතයෙන් සරසුලක සංඛාාතය සොයයි. භූ කම්පා සහ සුනාම් ඇතිවීම පිළිබඳ වාර්තාවක් පිළියෙළ කරයි. 	
	3.5 විචලෳයන් හසුරුවමින් වායු කඳන්වල කම්පන විධි පුයෝජනයට ගනියි.	 චාතයේ ධ්වති තරංග චාතයේ ධ්වති තරංග වේගය v = √E/ρ v = √yRT/M චාතයේ ධ්වති තරංග වේගය කෙරෙහි බලපාන සාධක චායු කඳන්වල කම්පන විධි සංවෘත නළ 	 චාතයේ ධ්වති වේගය කෙරෙහි, පීඩනය, උෂ්ණත්වය, මවුලික ස්කන්ධය සහ ආර්දුතාව බලපාන අයුරු විස්තර කරයි. චාතයේ ධ්වති තරංග වේගය සඳහා පුකාශනය ඉදිරිපත් කරයි. √ √ RT/m පුකාශනය අපෝහනය කරයි. සංවෘත සහ විවෘත නළතුල ස්ථාවර තරංග ඇතිවන අයුරු විස්තර කරයි. නළ තුල ස්ථාවර තරංග සඳහා අනුනාද සංඛ්‍යාතවල රටා පැහැදිලි කරයි. ඉළිකය සහ උපරිතාන සංඛ්‍යාත සඳහා පුකාශන ලබා ගනියි. 	10

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	විවෘත නළ සංවෘත නළ භාවිතයෙන් වාතයේ ධ්වනි වේගය සෙවීම එක් සරසුලක් භාවිතයෙන් සරසුල් කට්ටලයක් භාවිතයෙන් (පුස්තාරික කුමය)	 එක් සරසුලක් සහ එක් කෙළවරක් විවෘත නලයක් භාවිත කර වාතයේ දී ධ්වනි වේගය සහ නලයේ ආන්තශෝධනය නිර්ණය කිරීමට පරික්ෂණ සැලසුම් කරයි. සරසුල් කට්ටලයක් සහ එක් කෙළවරක් විවෘත නලයක් භාවිතයෙන් වාතයේ ධ්වීනි වේගය සොයයි. අනුනාද නළ තුළ ස්ථාවර තරංග ආශිත ගණනය කිරීම් සිදු කරයි. 	
3.6 ඩොප්ලර් ආචරණයේ භාවිත පිළිබඳ විමසා බලයි.	සොප්ලර් ආචරණය දෘශා සංඛානය සඳහා ප්‍රකාශන නිරීක්ෂකයා පමණක් චලනය වීම පුභවය පමණක් චලනය වීම නිරීක්ෂකයා සහ ප්‍රභවය එක ම සරල රේඛාවක් ඔස්සේ චලනය වීම සොප්ලර් ආචරණය මගින් පැහැදිලි කළ හැකි සංසිද්ධි සහ යෙදීම Soonic Boom ස්වනික ගිගුරුම (ගුණාත්මක ව ඉදිරිපත් කිරීම-සමීකරණ අවශා නැත)	 ඩොප්ලර් ආචරණය ආදර්ශනය කිරීමට සරල කි්යාකාරකම් සිදු කරයි. පුහවයේ චලිතය හේතුවෙන් තරංග ආයාමයේ දෘශා වෙනස සළකමින් දෘශා සංඛාහතය සඳහා ප්‍රකාශන ව්‍යුත්පන්න කරයි. නිරීක්ෂකයාගේ චලිතය හේතුවෙන් සාපේක්ෂ ධ්වනි වේගය සළකමින් දෘශා සංඛාහතය සඳහා ප්‍රකාශ ව්‍යුත්පන්න කරයි. පුහවය සහ නිරීක්ෂකයා යන දෙදෙනාගේම චලිතය සළකමින් දෘශා සංඛාහතය සඳහා ප්‍රකාශන අපෝහනය කරයි. උච්ත ගණනය කිරීම් සමග ඩොප්ලර් ආචරණය ධ්වනිය සඳහා යොදයි. ඩොප්ලර් ආචරණය භාවිත කර දෘශා සංඛාහතයේ වෙනස් වීම් හා සම්බන්ධ සංසිද්ධ විස්තර කරයි. ස්වනික ගිගුරුම් ගුණාත්මක ව විස්තර කරයි. ඩොප්ලර් ආචරණය සම්බන්ධ භාවිත හා පැහැදිලි කිරීම් විස්තර කරයි. 	05

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	3.7 ධ්වනි ලාක්ෂණික පිළිබඳ සැලකිලිමත් වෙමින් ධ්වනිය නිපදවීම සහ පුචාරණය සිදු කරයි.		 ධ්වනියේ ලාක්ෂණික ගුණ විස්තර කරයි. විවිධ අවස්ථා පැහැදිලි කිරීමට මිනිස් කන සඳහා සංඛාහතය ඉදිරියෙන් තීවුතා මට්ටම් පස්තාරය භාවිත කරයි. ධ්වනි ලාක්ෂණික ආදර්ශනය සඳහා කියාකාරකම් සිදු කරයි. තීවුතා මට්ටම් (ඩෙසිබෙලය) සහ තීවුතාව සම්බන්ධ ගණනය කිරීම් සිදු කරයි. අතිධ්වනි හා අධෝධ්වනි තරංග හඳුන්වා දෙයි. ධ්වනියේ ලාක්ෂණික ගුණ පිළිබඳ දැනුම එදිනෙදා ජීවිතයේ කියාකාරකම් සඳහා යොදා ගනියි. සුදුසු ධ්වනි තීවුතා මට්ටම් පවත්වා ගැනීමේ වැදගත්කම අවබෝධ කර ගනියි. 	05
	3.8 විදහුත් චුම්බක තරංග පිළිබඳ විමසා බලයි.	 විදසුත් චුම්බක තරංග විදසුත් චුම්බක වර්ණාවලිය විදසුත් චුම්බක තරංගවල ගුණ විදසුත් චුම්බක තරංගවල භාවිත ලේසර් කදම්බ (නිෂ්පාදන කුම අවශා නො වේ.) මූලධර්මය ගුණ භාවිත 	 විදහුත් චුම්බක තරංග දෝලනය වන විදහුත් ක්ෂේතුයකින් සහ චුම්බක ක්ෂේතුයකින් සමන්විත වන බව ප්‍රකාශ කරයි. ආරෝපිත අංශුවල ත්වරණය හා මන්දනය හේතුවෙන් විදහුත් චුම්බක තරංග ඇති වන බව ප්‍රකාශ කරයි. විදහුත් චුම්බක තරංග ප්‍රස්තාරිකව නිරූපණය කරයි. විදහුත් චුම්බක වර්ණාවලිය භාවිතයෙන් විදහුත් චුම්බක තරංග වර්ගීකරණය කරයි. විදහුත් චුම්බක තරංගවල ගුණ විස්තර කරයි. එක් එක් ප්‍රධාන තරංග ආයාම පරාසවල විදහුත් චුම්බක තරංගවල යේදීම් විස්තර කරයි. ලේසර්වල මූලධර්මය පැහැදිලි කරයි. ලේසර් කදම්බවල ගුණ හා භාවිත හඳුනා ගතියි 	

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	3.9 ආලෝක වර්තනය පිළිබඳ මූලධර්මය එදිනෙදා ජීවිත අවශාතා සඳහා යොදා ගනියි.	 ජාාමිතික ප්‍රකාශ විදාාව වර්තනය වර්තන නියම වර්තන අංකය නිරපේක්ෂ වර්තනාංකය සාපේක්ෂ වර්තනාංකය වර්තන අංක අතර සම්බන්ධතාව සතා ගැඹුර හා දෘශා ගැඹුර දෘශා විස්ථාපනය d= t(1-1/n) චල අන්වීක්ෂය භාවිතයෙන් වීදුරුවල වර්තන අංකය සෙවීම අවධි කෝණය සහ වර්තනාංකය අතර සම්බන්ධතාව n = 1 / sin c පූර්ණ අභාන්තර පරාවර්තනය පූර්ණ අභාන්තර පරාවර්තනය පූස්මයකින් සිදු වන අපගමනය පරීක්ෂණාත්මක ව අන්වේෂණය කිරීම. අවගමනය අවම අපගමනය අවම අපගමනය සඳහා n = \frac{\sin (A + D)/2}{\sin \frac{A}{2}}\$ සමීකරණය වුහුත්පන්න කිරීම. අවධි කෝණ කුමයෙන් පිස්ම දුවායේ වර්තානංකය සෙවීම 	 වර්තනය නිසා හට ගන්නා පුතිබ්ම්බ නිර්ණය කිරීම සඳහා කියාකාරකම් සැලසුම් කරයි. වර්තන නියම ප්‍රකාශ කරයි. නිරපේක්ෂ වර්තානංකය සහ සාපේක්ෂ වර්තානංකය අර්ථ දක්වයි. සතා ගැඹුර සහ දෘශා ගැඹුර අතර සම්බන්ධය ලබා ගනියි. දෘශා විස්ථාපනය සඳහා ප්‍රකාශනය ලබා ගනී. දෘශා විස්ථාපනය හා සම්බන්ධ ගැටළු විසඳීම සඳහා ගනනය කිරීම් සිදු කරයි. කල මායිම්වල දී වර්තනය සහ ප්‍රර්ණ අභාන්තර පරාවර්තනය සම්බන්ධ ගණනය කිරීම සිදු කරයි. වල අණ්වීක්ෂය භාවිත කර වීදුරුවල වර්තනාංකය සොයයි. අවධි කෝණය හා ප්‍රජ්ණ අභාන්තර පරාවර්තනය විස්තර කරයි. පතන කෝණය හා අපමන කෝණය අතර සම්බන්ධතාව සොයයි. අවධි කෝණය හා වර්තනාංකය අතර සම්බන්ධතාව ලබා ගනියි. අවධි කෝණ කුමයෙන් වර්තනාංකය සෙවීමට පරීක්ෂණයක් සැලසුම් කරයි. පිස්මයක් හරහා කිරණයක ගමන් මග සඳහා කිරණ සටහන අදියි. පිස්මයක් හරහා කිරණයක වර්තනය විස්තර කරයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	 වර්ණාවලි මානයේ ප්‍රධාන සීරු මාරු ප්‍රීස්ම කෝණය සෙවීම අවම අපගමන කෝණය සෙවීම තුනී කාච තුළින් වර්තනය උත්තල සහ අවතල කාචවලින් ඇති වන තාත්වික හා අතාත්වික ප්‍රතිබිම්බ කාච සූතුය සහ කාටීසීයානු ලකුණු සම්මුතිය රේබීය විශාලනය කාචයක බලය, (- අභිසාරි , +අපසාරි) තූනී ස්පර්ශ කාච සංයුතිය 	 පතන කොණය සමග අපගමනයේ විචලනය පරීක්ෂා කිරීම සඳහා පරීක්ෂණයක් සිදු කරයි. අවම අපගමන කෝණය හඳුන්වා දෙයි. ප්‍රීස්ම කෝණය, වර්තන අංකය හා අවම අපගමන කෝණය අතර සම්බන්ධතාව වුහුත්පන්න කරයි. වර්ණාවලි මානයක ප්‍රධාන සිරුමාරු තුන සිදු කරයි. අවම අපගමන කෝණය හා ප්‍රීස්ම කෝණය සෙවීමට වර්නාවලි මාණය භාවිත කරයි. ක්‍රියාකාරකම් භාවිතයෙන් කාචවලින් සැදෙන ප්‍රතිබිම්බ සොයයි. කිරණ රූප සටහන් භාවිතයෙන් කාචවලින් සැදෙන ප්‍රතිබිම්බ නිර්මාණය කරයි. කාටිසියානු ලකුණු සම්මුතිය භාවිතයෙන් ජාාමිතික කුමයෙන් කාච සූතුය වුහුත්පන්න කරයි. රේඛීය විශාලනය අර්ථ දක්වයි. රේඛීය විශාලනය සඳහා ප්‍රකාශනයක් වුන්පන්න කරයි. ගැටළු විසඳීම සඳහා කාච සහ කාච සංයුක්ත ආශ්‍රත ගණනය කිරීම් සිදු කරයි. කාචයක බලය අභිසාරි කාච සඳහා ධන ලෙසත් අපසාරී කාච සඳහා සාණ ලෙසත් භාවිත කරයි. උත්තල කාච හා අවතල කාචවල නාභි දුර නිර්ණය කිරීමට පරීක්ෂණ මෙහෙයවයි. 	

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	3.10 දෘෂ්ටි දෝෂවලට පිළියම් යෙදීම සඳහා කාචවලින් සෑදෙන පුතිබිම්බ පිළිබඳ දනුම උචිත අන්දමින් යොදා ගනියි.	මිනිස් ඇස අලස් පුතිබිම්බයක් ඇති වන අයුරු දෘශා කෝණය දෘෂ්ටි දෝෂ සහ දෝෂ නිරවදාකරණය අව්දුර දෘෂ්ටිකත්වය දුර දෘෂ්ටිකත්වය වෘද්ධ දෘෂ්ටිකතාව.	 මිනිස් ඇසෙහි පුකාශ පද්ධති විස්තර කරයි. ඇසෙහි පුතිබිම්බ ඇති වන ආකාරය විස්තර කරයි. විදුර ලක්ෂාය, අව්දුර ලක්ෂාය සහ විශද දෘෂ්ඨියේ අවම දුර යන පද විස්තර කරයි. දෘෂ්ඨි කෝණය හඳුන්වා දෙයි. කිරණ සටහන් භාවිත කර දෘෂ්ඨි දෝෂ හා ඒවා ශෝධනය කරන ආකාරය විස්තර කරයි. දෘෂ්ටි දෝෂ නිවැරදි කිරීම සම්බන්ධ ගණනය කිරීම සිදු කරයි. වෘද්ධ දෘෂ්ටිකාතව ගුණාත්මකව විස්තර කරයි. 	04
	3.11 පුකාශ උපකරණ නිර්මාණය කිරීම සඳහා කාචවලින් සෑදෙන පුතිබිම්බ පිළිබඳ දනුම උචිත අන්දමින් යොදා ගනියි.	 පුකාශ උපකරණ සරල අණ්වීක්ෂය සාමානා සීරුමාරුව විශාලක බලය (කෝණික විශාලනය) සංයුක්ත අණ්වීක්ෂය සාමානා සීරුමාරුව විශාලක බලය (කෝණි විශාලනය) අවසාන ප්‍රතිබිම්භය අනන්තයේ සෑදීම නක්ෂතු දුරේක්ෂය සාමානා සීරුමාරුව විශාලක බලය (කෝණි විශාලනය) විශාලක බලය (කෝණි විශාලනය) අවසාන ප්‍රතිබිම්බය අවිදුර ලක්ෂයේ සෑදීම. 	 සරල අණ්වීක්ෂය, සංයුක්ත අණ්වීක්ෂය හා නක්ෂතු දුරේක්ෂය නිවැරදි ව භාවිත කරයි. දුරේක්ෂ සහ අන්වීක්ෂ සඳහා විශාලක බලය (කෝණික විශාලනය අර්ථ දක්වයි සරල සහ සංයුක්ත අණ්වීක්ෂවල කියාකාරිත්වය පැහැදිලි කිරීමට කිරණ රූප සටහන් ඇඳීම සහ අදාළ ගණනය කිරීම සිදු කරයි. නක්ෂතු දුරේක්ෂය කියාකාරිත්වය පැහැදිලි කිරීමට කිරණ රූප සටහන් ඇඳීම සහ අදාළ ගණනය කිරීම සිදු කරයි. 	06

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේ ද
4.0 මානව කටයුතු සපුරා ගැනීම සඳහාත්, විදහාත්මක කටයුතුවලදීත්, තාපය පිළිබඳ දැනුම පලදායී ලෙස භාවිත කරයි.	4.1 අවශාතාවට උචිත උෂ්ණත්ව මාන තෝරා ගෙන උෂ්ණත්වය නිවැරදි ව මනියි.	• උෂ්ණත්වය • තාපජ සමතුලිතතාව • තාප ගති විදාහවේ ශූනහාදි නියමය • උෂ්ණත්ව මිතික ගුණ • අවල ලක්ෂහ දෙකක් ඇසුරින් උෂ්ණත්වය සඳහා පුකාශනය $\theta = \frac{x_{\theta} - x_L}{x_H - x_L} \times (\theta_H - \theta_L) + \theta_L$ • සෙල්සියස් පරිමාණය $\theta = \frac{x_{\theta} - x_L}{x_H - x_L} \times 100^{\circ}C$ • නිරපේක්ෂ (තාපගතික) උෂ්ණත්වය පරිමාණය • නිරපේක්ෂ ශූනහය. • ජලයේ තුික ලක්ෂහය ඇසුරින් නිරපේක්ෂ උෂ්ණත්වය සඳහා පුකාශනය $T = \frac{x_T}{x_{tr}} \times 273.16$ • සෙල්සියස් සහ නිරපේක්ෂ පරිමාණ අතර සම්බන්ධය $T = \theta + 273.15$ • උෂ්ණත්ව මාන • ඇල්කොහොල් /රසදිය- වීදුරු උෂ්ණත්ව මාන	 තාප ශක්තිය උෂ්ණත්වය ඉහළ පුදේශයක සිට උෂ්ණත්වය පහළ පුදේශයකට ගලා යන බව පුකාශ කරයි. තාප ගති විදහවේ ශුනහාදි නියමය පුකාශ කරයි එක ම උෂ්ණත්වවල පවතින පුදේශ තාපගතික සමතුලිතතාවේ පවතින බව අවබෝධ කර ගනියි. උෂ්ණත්ව මිතික ගුණ සඳහන් කර ඒ සඳහා උදාහරණ සපයයි. උෂ්ණත්ව පරිමාණයක අවල ලක්ෂහ සඳහන් කරයි. නිශ්චිත දවසයක ගුණ මත රඳා නොපවතින නිරපේක්ෂ උෂ්ණත්ව පරිමාණයක් ඇති බව අවබෝධ කර ගනියි (තාප ගතික පරිමාණය හා නිරපේක්ෂ ශූනහ පිළිබඳ සංකල්පය. අවල ලක්ෂහ දෙකක් මත පදනම්ව උෂ්ණත්වය සඳහා පුකාශනයක් ඉදිරිපත් කරයි. ජලයේ තික ලක්ෂහය සඳහන් කරයි. ජලයේ තික ලක්ෂහය සඳහන් කරයි. ජලයේ තික ලක්ෂහය සඳහන් කරයි. ගැටළු විසදීම සඳහා උෂ්ණත්වය සඳහා පුකාශන හාවිත කර ගනනයක් සිදු කරයි. කෙල්වින් සහ සෙල්සියන් උෂ්ණත්ව පරිමාණ භාවිත කිරීම සහ ඒ අතර සම්බන්ධතාව ලබා ගැනීම සිදු කරයි. 	06

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
4.2 ඝනවල හා දුවවල පුසාරණය භාවිතයට ගන්නා අවස්ථා පිළිබඳ විමසා බලයි.	 තාපජ පුසාරණය සනවල පුසාරණය වර්ගඵල පුසාරණය පරිමා පුසාරණය රේඛීය, වර්ගඵල හා පරිමා පුසාරණතා අතර සම්බන්ධය දවවල පරිමා පුසාරණය සනා පුසාරණය දාශා පුසාරණය දාශා පුසාරණය උෂ්ණත්වය සමග ඝනත්වය විචලනය වීම ජලයේ අනියම් පුසාරණය 	 තාපජ ප්‍රසාරනය විස්තර කරයි. රේඛීය, වර්ගඵල හා පරිමා, ප්‍රසාරණය අර්ථ දක්වයි. රේඛීය, වර්ගඵල හා පරිමා ප්‍රසාරණතා සඳහා ප්‍රකාශන ඉදිරිපත් කරයි. රේඛීය, වර්ගඵල හා පරිමා ප්‍රසාරණතා සඳහා ප්‍රකාශන ඉදිරිපත් කරයි. රේඛීය, වර්ගඵල හා පරිමා ප්‍රසාරණතා අතර සම්බන්ධතා ප්‍රකාශ කරයි. දවායක නිරපේක්ෂ (සතාා) ප්‍රසාරණතාව අර්ථ දක්වයි. දවාක දෘශා ප්‍රසාරනය හඳුන්වා දෙයි. \(\chi_{red} \) \(\chi_{apparent} \) සහ \(\alpha \) අතර සම්බන්ධතාව ප්‍රකාශ කරයි. ඝනවල හා දවවල තාපජ ප්‍රසාරණය පිළිබඳ ගැටලු විසඳීම සඳහා ගණනය කිරීම සිදු කරයි. තාපජ ප්‍රසාරණය හේතුවෙන් දවවල ඝනත්වය වෙනස් වීම පැහැදිලි කරයි. ජලයේ අනියම් ප්‍රසාරණය හා සම්බන්ධ සංසිද්ධි පැහැදිලි කරයි. එදිනෙදා ජීවන කටයුතු සඳහා ඝනවල හා දවවල තාපජ ප්‍රසාරණය පිළිබඳ දැනුම භාවිත කරයි. ඝන සහ දව ප්‍රසාරණයේ භාවිත සහ අවාසි සඳහා උදාහරණ ඉදිරිපත් කරයි. 	06

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
4.3 වායුවල හැසිරීම් වායු නියම ඇසුරිත සොයා බලයි.	 වායු නියම බෝල් නියමය ක්වීල් නළය භාවිතයෙන් වායුගෝලීය පීඩනය සෙවීම චාල්ස් නියමය නියත පීඩනයේ දී වායුවක පරිමාව සහ උෂ්ණත්වය අතර සම්බන්ධය අන්වේෂණය කිරීම පීඩන නියම නියත පරිමාවේ දී වායුවක පීඩනය සහ උෂ්ණත්වය අතර සම්බන්ධතාව අන්වේෂණය කිරීම. පරිපූර්ණ වායු සමීකරණය ඩෝල්ටන්ගේ ආංශික පීඩන නියමය 	 බොයිල් නියමය පුකාශ කරයි බොයිල් නියමය භාවිතයෙන් වායු ගෝලීය පීඩනය සෙවීමට පරීක්ෂණයක් මෙහෙයවයි. නියන පීඩනයේ දී වායුවක පරිමාව උෂ්ණත්වය සමග විචලනය පරීක්ෂා කරයි. චාර්ල්ස් නියමය පුකාශ කරයි. නියත පරිමාවේ දී වායුවක පීඩනය උෂ්ණත්වය සමග විචලනය පරීක්ෂා කරයි. චාර්ල්ස් නියමය පුකාශ කරයි. නියන පරිමාවේ දී වායුවක පීඩනය, උෂ්ණත්වය සමග විචලනය පරීක්ෂා කරයි. පීඩන නියමය පුකාශ කරයි. පීඩන නියමය පුකාශ කරයි. පර්පූර්ණ වායු සමීකරණ වහුත්පන්න කරයි ඩෝල්ටන්ගේ ආංශික පීඩනය නියමය පුකාශ කරයි. වායුවල හැසිරීම නිරීක්ෂණය කිරීමට පරික්ෂණ මෙහෙයවයි. වායුගෝලීය පීඩනය සෙවීමට පරීක්ෂණයක් මෙහෙයවයි. වායුවල හැසිරීම විස්තර කිරීමට වායු නියම භාවිත කරයි. පරිපූර්ණ වායු සමීකරණය භාවිතයෙන් වායුවල හැසිරීම් විශ්ලේෂණය කරයි. වායු නියමයන් භාවිත කර ගණනය කිරීම සිදු කරයි. 	10

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	4.4 වායුවක් එය අඩංගු බඳුන මත ඇති කරන පීඩනය, වායු පිළිබඳ චාලක වාදය ඇසුරින් විමසා බලයි.	• වායු පිළිබඳ චාලක වාදය • චාලක වාදයේ මූලික උපකල්පත • $PV = \frac{1}{3} NmC^{\frac{7}{2}}$ (වුපුත්පන්න කිරීම අවශා නොවේ.) • වායු අණුවක මධානා උත්තාරණ චාලක ශක්තිය සඳහා පුකාශනය $E = \frac{2}{3} kT$	 වායු පිළිබඳ චාලක වාදයේ මූලික උපකල්පන ප්‍රකාශ කරයි. වායුවලින් ඇති කරන පීඩනයට වායු අණුවල චලිතය හේතු වන ආකාරය විස්තර කරයි. උෂ්ණත්වය වායුවක අණුවල මධ්‍යන්‍ය චාලක ශක්තියට සම්බන්ධ කරයි. විවිධ උෂ්ණත්වවලදී අණුක වේග ව්‍යාප්තිය පැහැදිලි කරයි. චාලක වාදය සමීකරණය භාවිත කර ගණනයන් සිදු කරයි. වායු අණුවල අණ්වීක්ෂීය හැසිරීම් පදනම් කරගනිමින් වායුවල හැසිරීම විස්තර කිරීම සම්බන්ධයෙන් වායු පිළිබඳ චාලක වාදය අගය කරයි. 	04
	4.5 දුවාහවල විශිෂ්ට තාප ධාරිතාව ඇසුරිත් වස්තු අතර හුවමාරු වන තාපය පුමාණනය කරයි.	 තාප හුවමාරුව තාප ධාරිතාව සන සහ දුවවල විශිෂ්ට තාප ධාරිතා වායුවල මවුලික තාප ධාරිතා මිශුණ කුමයෙන් සන සහ දුවවල විශිෂ්ට තාප ධාරිතා සෙවීම නිව්ටන්ගේ සිසිලන නියමය සිසිලන කුමයෙන් දුවවල විශිෂ්ට තාප ධාරිතා සැසඳීම 	 වස්තවක තාප ධාරිතාව අර්ථ දක්වයි. ඝන හා දුවවල විශිෂ්ඨ තාප ධාරිතාව අර්ථ දක්වයි. වායුවල මවුලික තාප ධාරිතාව අර්ථ දක්වයි. ඝන හා දුවවල විශිෂ්ට තාප ධාරිතාව සෙවීමට මිශුණ කුමය භාවිතයෙන් පරීක්ෂණ මෙහෙයවයි. තාප හුවමාරුව ආශික ගණනය කිරීම් සිදු කරයි. නිවුටත්ගේ සිසිලන නියමය පුකාශ කරයි. දුවයක විශිෂ්ඨ තාප ධාරිතාව සෙවීම සඳහා සිසිලන කුමය භාවිතයෙන් පරීක්ෂණ මෙහෙයවයි. තාප හානිය පිළිබඳ ගණනය කිරීම් සඳහා නිව්ටන්ගේ සිසිලන නියමය භාවිත කරයි. 	08

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
4.6 පදාර්ථයේ අවස්ථා විපර්යාසවල දී හුවමාරු වන තාපය පලදායි ලෙස යොදා ගන්නා අවස්ථා විමසා බලයි.	 අවස්ථා විපර්යාස පදාර්ථයේ අවස්ථා සන, දව සහ වායුවල අණුක හැසිරීම් පිළිබඳ ගුණාත්මක ව සැසඳීම වාෂ්පීකරණය සහ විලයනය පිළිබඳ අණුක කියාවලියෙහි සරල පැහැදිලි කිරීම විලයනය අවස්ථා විපර්යාස වකුය විලයනයේ විශිෂ්ට ගුප්ත තාපය අයිස්වල විලයනයේ විශිෂ්ට ගුප්ත තාපය සෙවීම (මිශුණ කුමය) වාෂ්පීකරණයේ (නැටීම) අවස්ථා විපර්යාස වකුය වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය ජලයේ වාෂ්පීකරණයේ විශිෂ්ට ගුප්ත තාපය සෙවීම (මිශුණ කුමය) දවාංකය සහ තාපාංකය කෙරෙහි පීඩනයේ බලපෑම 	 අවස්ථා විපර්යාස හා සබැඳි භෞතික ක්‍රියාවලි ගුණාත්මකව විස්තර කරයි. විලයනය හා නැටීම උෂ්ණත්වයේ වෙනසක් සිදු නොවන පරිදි සිදු වන බව ප්‍රකාශ කරයි. වාෂ්පිකරණයේ විශිෂ්ට ගුප්ත තාපය හා විලයනයේ විශිෂ්ට ගුප්ත තාපය අර්ථ දක්වයි. එකම දවා සඳහා වාෂ්පිකරණයේ විශිෂ්ට ගුප්ත තාපය, විලයනයේ විශිෂ්ට ගුප්ත තාපයට වඩා ඉහළ බව පැහැදිලි කරයි. දවාවල ගුප්ත තාපය ආශිත ගණනය කිරීම් සිදු කරයි. කාලය ඉදිරියේ උෂ්ණත්වය ප්‍රස්තාර ඇසුරින් විලයනය හා වාෂ්පිකරණය හඳුනා ගනියි. අයිස්වල ව්ලයනයේ විශිෂ්ට ගුප්ත තාපය නිර්ණය කිරීමට පරීක්ෂණ මෙහෙයවයි. ජලයේ වාෂ්පිකරණයේ විශිෂ්ඨ ගුප්ත තාපය නිර්ණය කිරීමට පරීක්ෂණ මෙහෙයවයි. තාපාංකය හා දුවාංකය කෙරෙහි පීඩනයේ බලපෑම ප්‍රකාශ කරයි. අවස්ථා විපර්යාස හා සබැඳි භෞතික කි්යාවලිය ගුණාත්මක ව විස්තර කරයි. 	08

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
4.7 කාලගුණය කෙරෙහි ජල වාෂ්පවල බලපෑම පිළිබඳ විමසා බලයි.	 වාෂ්පි සහ ආර්දුතාව වාෂ්පිභවනය වාෂ්පිභවනය හා වාෂ්පිකරණය (නැටීම) සැසැඳීම වාෂ්ප පීඩනය සහ සංකෘප්ත වාෂ්ප පීඩනය වාෂ්ප පීඩනය උෂ්ණත්වය සමග විචලනය (පුස්තාරික නිරූපණය) වාෂ්ප පීඩනය පරිමාව සමග විචලනය (පුස්තාරික නිරූපණය) සංකෘප්ත වාෂ්ප පීඩනය සහ තාපාංකය අතර සම්බන්ධය කුෂාර අංකය නිරපේක්ෂ ආර්දුතාව සාපේක්ෂ ආර්දුතාව සෙවීම (ඔප දැමූ කැලරි මීටරයක් භාවිතයෙන්) 	 වාෂ්පිතවනය හා නැටීම වෙන් කොට හඳුනාගනියි. සංතෘප්ත හා අසංකෘප්ත වාෂ්පවල හැසිරීම විස්තර කරයි. උෂ්ණත්වය සමග සහ පරිමාව සමග සංතෘප්ත වාෂ්ප පීඩනය සහ අසංතෘප්ත වාෂ්ප පීඩනය විචලනය පුස්තාරික ව නිරූපණය කරයි. වායුගෝලය තුළ තෙතමනය (පවත්නා ජල වාෂ්ප පුමාණය) පිළිබඳ සැලකීමෙන් ආර්දුතාව පැහැදිලි කරයි. තුෂාර අංකය අර්ථ දක්වයි. නිරපේක්ෂ ආර්දුතාව අර්ථ දක්වයි. සාපේක්ෂ ආර්දුතාව අපර දක්වයි. සාපේක්ෂ ආර්දුතාව අසංතෘප්ත ජල වාෂ්ප පීඩනය ඇසුරින් ප්‍රකාශ කරයි. සාපේක්ෂ ආර්දුතාව තුෂාර අංකයේ හා කාමර උෂ්ණත්වයේ සංතෘප්ත වාෂ්ප පීඩනය ඇසුරින් ප්‍රකාශ කරයි. සාපේක්ෂ ආර්දුතාව, නිරපේක්ෂ ආර්දුතාව සහ ත්‍රෂාර අංකය ආශිත ගණනය කිරීම සිදු කරයි. තාපාංකය හා සංතෘප්ත වාෂ්ප පීඩනය හා සම්බන්ධ කරයි. සාපේක්ෂ ආර්දුතාවය සෙවීමට පරීක්ෂණ මෙහෙයවයි. 	08

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
4.8 විවිධ තාපජ කියාවලි සොයා බැලීමට තාපගති විදාහවේ නියම යෙදා ගනියි.	 තාපගති විදහාව තාපය, ශක්තියේ සංකාමණ අවස්ථාවක් ලෙස පැහැදිලි කිරීම අභහන්තර ශක්තිය තාපගති විදහාවේ පළමු වන නියමය	 තාපය ශක්ති හුවමාරුවක අවස්ථාවක් ලෙස පැහැදිලි කරයි. වස්තුවක උෂ්ණත්වය ඉහළ යාම එහි අභාන්තර ශක්තිය ඉහළ යාමට සම්බන්ධ කරයි. තාප ගති විදාහවේ පළමුවැනි නියමය පැහැදිලි කරයි. වායුවක වෙනස් වීම් පැහැදිලි කිරීම සඳහා තාපගති විදාහවේ පළමුවැනි නියමය භාවිත කරයි. නියත පීඩන කියාවලියක දී වායුවක් අභාන්තර ශක්තිය වෙනස්වන බව පැහැදිලි කරයි. නියත පීඩන කියාවලියක දී වායුවක් වෙත හෝ වායුව මගින් කාර්ය සිදු කරන බව පැහැදිලි කරයි. නියත පරිමා කියාවලියක දී අභාන්තර ශක්තිය වෙනස්වන බව පැහැදිලි කරයි. නියත පරිමා කියාවලියක දී අභාන්තර ශක්තිය වෙනස්වන බව පැහැදිලි කරයි. නියත පරිමා කියාවලියක දී කරන ලද කාර්ය පුමාණය ශූනා බව පැහැදිලි කරයි. නියත පරිමා කියාවලියක දී අභාන්තර ශක්තිය යොදයි. සමෝෂණ කියාවලියේ දී අභාන්තර ශක්තිය වෙනස් නොවන බව පුකාශ කරයි. සමෝෂණ කියාවලියේ දී අභාන්තර ශක්තිය වෙනස් නොවන බව පුකාශ කරයි. සමෝෂණ කියාවලියේ දී අභාන්තර ශක්තිය වෙනස් නොවන බව පුකාශ කරයි. සමෝෂණ කියාවලියේ දී අභාන්තර ශක්තිය වෙනස් නොවන බව පුකාශ කරයි. සමෝෂණ කියාවලියේ දී අභාන්තර ශක්තිය වෙනස් නොවන බව පුකාශ කරයි. සමෝෂණ කියාවලියේ දී අභාන්තර ශක්තිය වෙනස් නොවන බව පුකාශ කරයි. සමෝෂණ කියාවලියේ දී අභාන්තර ශක්තිය වෙනස් නොවන බව පුතාශ කරයි. සමෝෂණ කියාවලියක දී තාප හුවමාරුව ශූනා බව පැහැදිලි කරයි. 	04

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
			 ස්ථිරතාපි කියාවලි සඳහා පළමු නියමය යොදයි. සමෝෂ්ණ සහ ස්ථීරතාපි, නියත පීඩන, නියත පරිමා කියාවලි ආදර්ශනය කිරීමට සරල කියාකාරකම් මෙහෙයවයි. ඉහත කියාවලි සඳහා p-V වකු අදියි දෙන ලද චකීය කියාවලියක් සඳහා p-V වකු අදියි දෙන ලද චකීය කියාවලියක් p-V වකු භාවිතයෙන් පැහැදිලි කරයි. තාප ගති විදහාවේ පළමුවැනි නියමය භාවිත කර ගණනය කිරීම් සිදු කරයි. 	
	4.9 තාප සංකාමණ කුම සහ පුමාණය පිළිබඳ සැලකිලිමත් වෙමින් දෛනික සහ විදහාත්මක කටයුතු සැලසුම් කරයි.	තාප සංකාමණය තාප සන්නයනය තාප සන්නයකතාව තාපය සන්නයනය වීමේ ශීඝුතාව සඳහා සමීකරණය තාප සන්නයකතාව සෙවීම ස'ල් කුමය (ලෝහයක් සඳහා) සංවහනය (ගුණාත්මක ව) විකිරණය (ගුණාත්මක ව)	 සන්නයනය, සංවහනය සහ විකිරණය දක්වමින් තාප සංකුමණ යාන්තුණය විස්තර කරයි. තාප පරිවරණය කළ පරිවරණය නොකළ දඬුවල උෂ්ණත්වය වහාප්තිය ප්‍රස්තාරික වනිරූපණය කරයි. උෂ්ණත්ව අනුකුමණය හඳුන්වා දෙයි. තාපය ගලායාමේ සීග්තාව සඳහා ප්‍රකාශනයක් ඉදිපත් කරයි. තාප සන්නායකතාව අර්ථ දක්වයි. තාප සන්නයනය සම්බන්ධ ගණනය කිරීම් සිදු කරයි. සංවහනය හා විකිරණය ගුණාත්මක ව විස්තර කරයි. තාප සන්නායකතාව සෙවීමට පරීක්ෂණ මෙහෙයවයි. 	06

ඒකකය - 05 - ගුරුත්වාකර්ෂණ ක්ෂේතුය කාලච්ඡේද 20

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කා <u>ලචපෙද 20</u> කාලච්ඡේද
5.0 දෙනික අවශානා හා විදහාත්මක කටයුතු සපුරා ගැනීම සඳහා, ගුරුත්වජ ක්ෂේතු පිළිබඳ නියම හා මූලධර්ම පලදායී ලෙස භාවිත කරයි.	5.1 වස්තු මත ගුරුත්වජ බලයේ බලපෑම නිව්ටන්ගේ ගුරුත්වාකර්ෂණ නියමය ඇසුරෙන් විමසා බලයි.	 ගුරුත්වාකර්ෂණ බල ක්ෂේතුය ස්කන්ධ දෙකක් අතර වූ ගුරුත්වාකර්ෂණ බලය නිච්ටන්ගේ ගුරුත්වාකර්ෂණ නියමය ගුරුත්වාකර්ෂණ ක්ෂේතුය ගුරුත්වාකර්ෂණ ක්ෂේතු තිවුතාව ලක්ෂාාකාර ස්කන්ධයක සිට ඇතින් පිහිටි ලක්ෂායක ක්ෂේතු තිවුතාව ගෝලාකාර ස්කන්ධයකට පිටතින් වූ ලක්ෂායක ක්ෂේතු තීවුතාව ක්ෂේතු තීවුතාව විචලනය පුස්තාරික ව නිරූපණය කිරීම ගුරුත්වජ විභවය m ස්කන්ධයක සිට r දුරකින් වූ ලක්ෂායක ගුරුත්වජ විභවය සඳහා පුකාශනය V = - \frac{Gm}{r} (වනුත්පන්න කිරීම අවශා නොවේ) ගුරුත්වජ ක්ෂේතුයක් තුළ වූ ස්කන්ධයක් සතු විභව ශක්තිය විභවය දුර අනුව විචලනය වීම පුස්තාරික නිරූපණය 	 ස්කන්ධ දෙකක් අතර කියා කරන ආකර්ෂණ බලය ගුරුත්වාකර්ෂණ බලය ලෙස පුකාශ කරයි. නිවුටන්ගේ ගුරුත්වාකර්ෂණ නියමය පුකාශ කරයි. ස්කන්ධ දෙකක් අතර ගුරුත්වාකර්ෂණ බලය සෙවීම සඳහා නිව්ටන්ගේ ගුරුත්වාකර්ෂණ නියමය භාවිත කරයි. ගුරුත්වා කර්ෂණවල බල ක්ෂේතුය යන සංකල්පය පැහැදිලි කරයි. සියලු ම ස්කන්ධ ගුරුත්වාකර්ෂණ ක්ෂේතු නිර්මාණය කරන බව පුකාශ කරයි. ගුරුත්වාකර්ෂණ ක්ෂේතුය බල ක්ෂේතුයක් බව අවබෝධ කර ගනියි. ගුරුත්වාකර්ෂණය පිළිබඳ සංකල්පය දුරස්ථ බල කියාත්මක වීමක් ලෙස පැහැදිලි කරයි. වස්තුවක් මත කියාත්මක වන ගුරුත්වාකර්ෂණ බලය ස්කන්ධයට අනුලෝමව සමානුපතිතක බව සඳහන් කරයි. ගුරුත්වාකර්ෂණ ක්ෂේතුය තුළ තිබෙන ස්කන්ධයක් මත කියාත්මක වන බලය සෙවීම සඳහා ගුරුත්වාකර්ෂණ ක්ෂේතුය පිළිබඳ සංකල්පය යොදා ගනියි. ගුරුත්ව ක්ෂේතු තීවුතාව අර්ථ දක්වයි. 	08

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
			 ලක්ෂාාකාර ස්කන්ධයක් සහ ගෝලාකාර ස්කන්ධයකට පිටතින් වූ ලක්ෂාක ගුරුත්ව ක්ෂේතු තීවුතාව සෙවීම සඳහා නිව්ටන්ගේ ගුරුත්වාකර්ෂණ නියමය යොදා ගනියි. ලක්ෂායක ගුරුත්වාකර්ෂණ විභවය අර්ථ දක්වයි. ගුරුත්ව ක්ෂේතුයක් තුළ තිබෙන ස්කන්ධයක් සතුව ගුරුත්වාකර්ෂණ විභව ශක්තියක් තිබෙන බව පකාශ කරයි. ගුරුත්ව ක්ෂේතුයක් තුළ වූ ලක්ෂාක ගුරුත්වාකර්ෂණ විභවය ගණනය කරයි. ගුරුත්වාකර්ෂණ ක්ෂේතුයක් තුළ වූ ස්කන්ධයක් සතු විභව ශක්තිය දැක්වෙන පකාශනය භාවිත කරයි. ලක්ෂාාකාර ස්කන්ධයක සිට සහ ගෝලාකාර ස්කන්ධයකට පිටතින් දුර සමග ගුරුත්ව ක්ෂේතු තීවුතාවේ විචලනය පුස්තාරික ව නිරූපණය කරයි. 	

නිපුණතා නිපුණතා ම	ට්ටම් විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
5.2 මානව කර සපුරා ගැනී සඳහා ගුරු ක්ෂේතුය පි දැනුම යොද ගන්නා අව විමසා බලයි	 පෘථිවි පෘෂ්ඨය ආසන්නයේ ගුරුත්වන් ක්ෂේතු තීවුතාව මුබඳ ගුරුත්වජ ත්වරණය හා ගුරුත්වජ ක්ෂේතු තීවුතාව අතර සම්බන්ධය පෘථිවි චන්දිකා 	 පෘථිවී ගුරුත්වාකර්ෂණ ක්ෂේතුය සඳහා අදාළ වන සම්බන්ධතා ලබා ගැනීම සඳහා ගුරුත්වාකර්ෂණ ක්ෂේතුය පිළිබඳ දනුම භාවිත කරයි. පෘථිවී පෘෂ්ඨයේ සිට ඉවතට ගුරුත්වාකර්ෂණ ක්ෂේතු තීවෘතාව විචලනය වන අයුරු පැහැදිලි කරයි. පෘථිවී පෘෂ්ඨය මත ගුරුත්වාකර්ෂණ තීවෘතාව සඳහා ප්‍රකාශනයක් ව්‍යුත්පන්න කරයි. ගුරුත්වාකර්ෂණ ක්ෂේතු තීවෘතාව ගුරුත්වජ ත්වරණයක සංඛ්‍යාත්මක සමඟ වන බව ප්‍රකාශ කරයි. ගුරුත්වාකර්ෂණ විභව ශක්තිය සඳහා වන (mgh) ප්‍රකාශනය ව්‍යුත්පන්න කරයි. චන්දිකාවක ස්පර්ශීය වේගය, කෝණික වේගය, ආවර්ත කාලය සහ සංඛ්‍යාතය කක්ෂයේ අරය සමඟ සම්බන්ධ කරයි. චන්දිකාවක චලිතය සඳහා තිබිය යුතු අවශාතා විස්තර කරමින් අදාළ රාශී ගණනය කරයි. වෘත්තාකාර මාර්ගයක ගමන් ගන්නා චන්දිකාවක චලිතය හා සම්බන්ධ ගණනය කිරීම සිදු කරයි. චන්දිකාවල භාවිත අගය කරයි. වියෝග ප්‍රවේගය සඳහා ප්‍රකාශනය ව්‍යුත්පන්න කරයි. වියෝග ප්‍රවේගය ප්‍රවේඛ සඳහා උදාහරණ සැපයිණ. 	12

වුුත් ක්ෂේතුය

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
6.0 දෙනික අවශානා සඳහා විදාත්මක කටයුතු සඳහා විටුත් ක්ෂේතුය පිළිබඳ නියම සහ මූලධර්ම පලදායී අයුරින් යොදා ගනියි.	6.1 විවිධ ආරෝපිත වස්තු මගින් හට ගන්නා විදපුත් ක්ෂේතුවල වහාප්තිය හා අගය සෙවීමට විදපුත් ක්ෂේතු පිළිබඳ නියම උචිත පරිදි යොදා ගනියි.	 ස්ථිති විදහුත් බලය ආරෝපණ දෙකක් අතර වු ස්ථිති විදහුත් බලය කුලෝම් නියමය විදහුත් ක්ෂේතු තීවුතාව විවිධ විදහුත් ක්ෂේතුවල බල රේඛා ලක්ෂහාකාර ආරෝපණ දෙකක් අවට ආරෝපිත සමාන්තර තහඩු දෙකක් අතර ලක්ෂහාකාර ආරෝපණයක සිට කිසියම් දුරකින් වු ලක්ෂයක ක්ෂේතු තීවුතාව ක්ෂේතු තීවුතා විචලනය පුස්තාරික ව නිරූපණය කිරීම 	 ආරෝපණ දෙකක් අතර ස්ථිති විදහුත් බලය ගණනය කිරීම් සඳහා කුලෝම් නියමය යොදා ගනී. සියලු ම ආරෝපණ විදහුත් ක්ෂේතු ඇති කරන බව පුකාශ කරයි. විදහුත් ක්ෂේතු නීවුතාව අර්ථ දක්වයි. විදහුත් ක්ෂේතුයක් තුළ තිබෙන ආරෝපණයක් මත කියා කරන බලය සෙවීම සඳහා විදහුත් ක්ෂේතුයක් තුළ තිබෙන ආරෝපණයක් u; n, h . K k h l su i y d F= Eq පුකාශනය භාවිත කරයි. විදහුත් ක්ෂේතුයක් නිරූපණය කිරීම සඳහා විදහුත් ක්ෂේතු රේඛා සංකල්පය හවිත කරයි. විදහුත් ක්ෂේතුයක් නිරූපණය කිරීම සඳහා විදහුත් ක්ෂේතුයක් නිරූපණය කිරීම සඳහා විදහුත් ක්ෂේතුයක් නිරූපණය කිරීම සඳහා නිර්ලාණය කරයි. විවිධ විදහුත් ක්ෂේතුවල බල රේඛා නිර්මාණය කරයි. කූලෝම් නියමය භාවිත කරමින් ලක්ෂායකාර ආරෝපණයක සිට ඉවතින් වූ ලක්ෂායක නිවුතාව ගණනය කරයි. ලක්ෂායකාර ආරෝපණය සිට ඇති දුර සමග විදහුත් ක්ෂේතු නීවුතාව විචලනය පුස්තාරික ව නිරුපණය කරයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
6.2 සුාව ආකෘතිය භාවිත කරමින් ස්ථිති විදුයුත් ක්ෂේතුය පුමාණනය කරයි.	 විදහුත් සුාවය ගවුස් නියමය ගවුස් නියමය භාවිතයෙන් විදහුත් ක්ෂේතු තීවුතා සෙවීම ලක්ෂාාකාර ආරෝපණයක් අවට ආරෝපිත අපරිමිත සන්නායක තලයක් අසල ආරෝපිත සන්නායක ගෝලයක් අවට ගෝලයෙන් පිටත ගෝලයේ පෘෂ්ඨය මත ගෝලයේ අැතුළත ගෝලයේ කේන්දුයේ සිට ඇති දුර සමග ක්ෂේතු තීවුතාව විචලනය පුස්තාරික නිරූපණය අපරිමිත දිගක් ඇති ආරෝපිත සිහින් කම්බියක අක්ෂයේ සිට දුරක ක්ෂේතු තීවුතාව 	 සුදුසු උදාහරණ යොදා ගනිමින් සුාව ආකෘතිය පැහැදිලි කරයි. ගවුස් පුමේය පුකාශ කරයි. ලක්ෂාාකාර ආරෝපනයක් අසල, ආරෝපිත හෝලීය සන්නයකයක් අසල , ආරෝපිත අපිරිමිත තලයක් අසල සහ ආරෝපිත සිහින් අපරිමිත දිගැති කම්බියක් අසල විදුහුත් ක්ෂේතු තීවුතා සොයා ගැනීම සඳහා ගවුස් පුමේය යොදා ගනී. ආරෝපිත සනනායක ගෝලයක කේන්දයේ සිට ඇති දුර සමග විදුහුත් ක්ෂේතු තීවුතාව විචලනය වීම පුස්තාරික ව නිරූපණය කරයි. අදාළ පුකාශන භාවිත කරමින් විවිධ ආරෝපිත වස්තු හේතුවෙන් ඇති වන ක්ෂේතුවල ක්ෂේතු තීවුතාවක් ගණනය කරයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
6.3 ස්ථිති විදපුත් ක්ෂේතුයක ඇති ආරෝපණ සතු විභව ශක්තිය පුමාණනය කරයි	 විදහුත් විභවය ස්ථිති විදහුත් ක්ෂේතුයක් තුළ වු ලක්ෂායක විභවය අර්ථ දක්වීම ලක්ෂාාකාර ආරෝපණයක සිට කිසියම් දුරක වූ ලක්ෂායක විභවය, V = 1/4πε Q/4πε (වාහුත්පන්න කිරීම අවශා නොවේ) ලක්ෂාාකාර ආරෝපණ වාාප්තියක් හේතුවෙන් ලක්ෂායක විභවය ලක්ෂා දෙකක් අතර විභව අන්තරය විභව අන්තරයක් හරහා ආරෝපණයක් වලනය කිරීමේ දී කරන ලද කාර්යය විදහුත් ක්ෂේතුයක් තුළ වූ ආරෝපණයක් සතු විභව ශක්තිය ආරෝපණ දෙකක් පමණක් සහිත පද්ධතියක විභව ශක්තිය විභව අනුකුමණය හා විදහුත් ක්ෂේතු තිවුතාව අතර සම්බන්ධය සම විභව පෘෂ්ඨ විවිධ ක්ෂේතුවල සම විභව පෘෂ්ඨ ලක්ෂාාකාර ආරෝපණයක් අසල දී සජාතිය ලක්ෂාාකාර ආරෝපණ දෙකක් අසල දී සජාතිය ලක්ෂාාකාර ආරෝපණ දෙකක් අසල දී විජාතීය ලක්ෂාාකාර ආරෝපණ දෙකක් අසල දී 	 විදහුත් විභවය අර්ථ දක්වයි. ලක්ෂාාකාර ආරෝපණයක් සහ ලක්ෂාාකාර ආරෝපණ වාාපෘතියක් හේතුවෙන් ලක්ෂාක ඇතිවන විදහුත් විභවය සොයා ගනියි. ආරෝපිත සන්නායක ගෝලයක කේන්දයේ සිට ඇති දුර සමග විදහුත් විභවය විචලනය වීම පුස්තාරික ව නිරූපණය කරයි. විදහුත් ක්ෂේතුයක් තුළ වූ ආරෝපණයක් සතු විභව ශක්තිය සොයා ගනියි. විදහුත් ක්ෂේතුයක් තුළ වූ ලක්ෂ දෙකක් අතර විභව අන්තරය අර්ථ දක්වයි. ශක්තිය සඳහා ඒකකයක් වන ඉලෙක්ටෝන වෝල්ටය අර්ථ දක්වයි. විභව අනුකුමණය සහ විදහුත් ක්ෂේතු තීවුතා අතර සම්බන්ධතාව පුකාශ කරයි. විදහුත් විභවය සහ විභව ශක්තිය හා සම්බන්ධ ගැටලු විසඳීම සඳහා සංඛ්‍යාත්මක ගණනයක් සිදු කරයි. විවිධ විදහුත් ක්ෂේතුවල සම විභව පෘෂ්ඨ ඇඳ දක්වයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
6.4 විදහුත් පරිපථවල දී සුදුසු පරිදි ධාරිතුක භාවිත කරයි.	 විදහුත් ධාරණාව අර්ථ දක්වීම සමාන්තර තහඩු ධාරිතුක C = \frac{k\varepsilon_0}{d} සමීකරණය වුහුත්පන්න කිරීම සන්නායක ගෝලයක ධාරණාව (ගෝලීය ධාරිතුක ඇතුළත් නොවේ) ධාරිතුක සංයුක්තය ශේණීගත සංයුක්තය සමාන්තර ගත සංයුක්තය ආරෝපිත ධාරිතුකයක් තුළ ගබඩා වී ඇති ශක්තිය ශක්තිය සඳහා ප්‍රකාශනය වහුත්පන්න කිරීම විවිධ හැඩවලින් යුත් සන්නායකවල ආරෝපණ වහාප්තිය තුඩු විසර්ජනය (කොරෝනා විසර්ජනය) 	 සමාන්තර තහඩු ධාරිතුයක ධාරණාව අර්ථ දක්වයි. සමාන්තර තහඩු ධාරිතුකයක සහ සන්නායක ගෝලයක ධාරණාව සඳහා ප්‍රකාශන ව්‍යුත්පන්න කරයි. ශේණීගත සහ සමාන්තරගත ධාරිතුක සංයුක්තවල සමක ධාරිතාව සොයයි. ආරෝපිත ධාරිතුකයක ගබඩා වී ඇති ශක්තිය සඳහා ප්‍රකාශනය ව්‍යුත්පන්න කරයි. ධාරිතුක හා සම්බන්ධ ගැටලු විසඳයි. රූප සටහන් භාවිත කරමින් විවිධ හැඩැති සන්නායකවල ආරෝපණ ව්‍යාප්තිය ව්දහා දක්වයි. 	15

නිපුණතා	නිපුණතා මට්ටම්	 විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
වාපුණාතා 7.0 විදහාත්මක සහ දෙනික කටයුතුවල දී විij නය සහ චුම්බකත්වය අතර අන්තර් සම්බන්ධතාවේ ආචරණ උචිත පරිදි භාවිත කරයි.	7.1 වුම්බක ක්ෂේතුයක තබා ඇති විදහුත් ධාරාවක් රැගෙන යන සන්නායකයක් මත සහ වුම්බක ක්ෂේතුයක ගමන් කරන ආරෝපණයක් මත කියා කරන බලය හසුරුවයි.	• වුම්බක බලය • වුම්බක ක්ෂේතුයක වූ ධාරාවක් රගෙන යන සන්නායකයක් මත කියා කරන බලය • බලයේ විශාලත්වය සඳහා පුකාශනය • වුම්බක සුාව සනත්වය • ෆ්ලේමිංගේ වමත් නීතිය • වුම්බක ක්ෂේතුයක් තුළ චලනය වන ආරෝපණයක් මත බලය • බලයේ විශාලත්වය • බලයේ දිශාව • හෝල් ආචරණය • ගුණාත්මක ව විස්තර කිරීම • හෝල් වෝල්ටීයතාව සඳහා පුකාශනය වුහුත්පන්න කිරීම	• චලනය වන ආරෝපණ සහ විදහුත්ධාරා ගමන් ගන්නා සන්නායක හේතුවෙන් චුම්බක ක්ෂේතු නිර්මාණය වන බව පුකාශ කරයි. • ධාරා තුලාව භාවිතයෙන් විදහුත් චුම්බක බලයේ ස්වභාවය ආදර්ශනය කරයි. • චුම්බක සුාව ඝනත්වය අර්ථ දක්වයි. • චුම්බක සුාව ඝනත්වය සන්නායකයේ දිග සහ විදහුත් ධාරාව ඇසුරින් විදහුත් චුම්බක බලය සඳහා පුකාශනයක් ඉදිරිපත් කරයි. • චුම්බක ක්ෂේතුයක ගමන් ගන්නා ආරෝපණයක් මත බලය සඳහා පුකාශනය භාවිත කරයි. • ප්ලේම්ංගේ වමත් නියමය යොදා ගනිමින් බලයේ දිශාව සොයා ගනියි. • චුම්බක බලය සහ චුම්බක සුාව ඝනත්වය හා සම්බන්ධ ගැටලු විසඳයි. • හෝල් ආවරණය පැහැදිලි කරයි. • හෝල් ආවරණය සඳහා පුකාශනයක් වාුත්පන්න කරයි. • හෝල් ආවරණය හා සම්බන්ධ ගැටලු විසඳයි. • හෝල් ආවරණය හා සම්බන්ධ ගැටලු විසඳයි.	10

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
7.2 අවශාතාව සඳහා විචලා හසුරුවමින් චුම්බක ක්ෂේතුය නිපදවා ගනියි.	 චුම්බක බල ක්ෂේතුය බයෝ - සවාට් නියමය මැක්ස්වෙල්ගේ දකුණත් කස්කුරුප්පු රීතිය ධාරාවක් රැගෙන යන අපරිමිත දිගැති සෘජු සන්නායකයක් අසල වුම්බක සාව සනත්වය (වහුත්පන්න කිරීම අවශා නොවේ) ධාරාවක් රැගෙන යන වෘත්තාකාර පැතැලි දඟරයක කේන්දයේ වුම්බක සාව සනත්වය ධාරාවක් රැගෙන යන දිගු පරිනාලිකාවක අක්ෂය අසල වුම්බක සාව සනත්වය (වහුත්පන්න කිරීම අවශා නොවේ) ධාරා රැගෙන යන අපිරිමිත දිගැති සමාන්තර සන්නායක දෙකක් අතර ඇති බලයේ විශාලත්වය ඇම්පියරය අර්ථ දක්වීම 	 අදාළ ප්‍රකාශනයක් ඇසුරින් බයෝ- සවාට් නියමය ඉදිරිපත් කරයි. ධාරා රැගෙන යන පැතලි වෘත්තාකාර දඟරයක කේන්දුයේ චුම්බක සාව සනත්වය සඳහා ප්‍රකාශනයක් වහුත්පන්න කරයි. අපරිමිත දිගැති සෘජු සන්නායකයක අසල සහ දිගු පරිනාලිකාවක අසෂය මත ලක්ෂාය චුම්බකසාව සනත්වය සඳහා ප්‍රකාශන ඉදිරිපත් කරයි. අපරිමිත දිගැති සෘජු සන්නායක දෙකක් අතර අනොන්නා බලය සඳහා ප්‍රකාශනයක් වහුත්පන්න කරයි. චුම්බක සුාව සනත්වය හා සම්බන්ධ ගැටලු විසඳයි. ඇමිපියරය අර්ථ දක්වයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
7.3 විදහුතය හා චුම්බකත්වයේ අන්තර් සම්බන්ධතාව හේතුවෙන් ඇති වන භුමණ ආවරණය විමසා බලයි.	 ධාරා පුඬුවක කියාත්මක වන වාහවර්තය ඒකාකාර චුම්බක ක්ෂේතුයක් තුළ තබා ඇති සෘජුකෝණාසාකාර දඟරය අරීය චුම්බක ක්ෂේතුයක තබා ඇති සෘජුකෝණාසාකාර දඟරය සල දඟර ගැල්වනෝමීටරය උත්කුමය සඳහා ප්‍කාශනය ධාරා සංවේදිතාව කෙරෙහි බලපාන සාධක සරල ධාරා මෝටරය 	 ඒකාකාර චුම්බක ක්ෂේතුයක තබා ඇති ධාරා රගෙන යන සෘජුකෝණාසාකාර දඟරයක් මත බල යුග්මය සඳහා ප්‍රකාශනයක් ව්‍යුත්පන්න කරයි. අරිය චුම්බක ක්ෂේතුයක තබා ඇති ධාරා රගෙන යන සෘජුකෝණාස්‍රාකාර දඟරයක් මත බල යුග්මය සඳහා ප්‍රකාශනයක් අපෝහනය කරයි. ධාරා ප්‍රඬුවක් මත බල යුග්මය හා සම්බන්ධ ගැටලු විසඳයි. සළ දඟර ගැල්වනෝමීටරයක සැකැස්ම සහ කි්යාව පැහැදිලි කරයි. සළ දඟර ගැල්වනෝ මීටරයක උත්කුමය සඳහා ප්‍රකාශනයක් ව්‍යුත්පන්න කරයි. සළ දඟර ගැල්වනෝ මීටරයක ධාරා සංවේදිතාව විස්තර කරයි. එක් ආමේචරයක් සහිත සරල ධාරා මෝටරයක ව්‍යුහය සහ කි්යාව විස්තර කරයි. 	15

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
8.0 ධාරා විiු තයේ නියම, මූලධර්ම හා ආචරණ උච්ත සහ පලදායි අයුරින් භාවිත කරයි.	8.1 උචිත අවස්ථාවල දී ධාරා විදයුතය හා සම්බන්ධ රාශි හසුරුවයි.	• ධාරා විණුතයේ මූලික සංකල්ප • විණුත් ආරෝපණ සහ විණුත් ධාරාව $I = \frac{Q}{t}$ • ලෝහ සන්නායකයක් තුළ ධාරා සන්නයනයේ යාන්තුණය • ප්ලාවිත පුවේගය සහ විණුත් ධාරාව අතර සම්බන්ධතාව සඳහා පුකාශනය • ධාරා ඝනත්වය • විභව අන්තරය • පුතිරෝධය සහ පුතිරෝධකතාව $R = \frac{\rho l}{A}$ • උෂ්ණත්වය සමග පුතිරෝධයේ විචලනය • පුතිරෝධයේ උෂ්ණත්වය සංගුණකය • සුපිරි සන්නායකතාව • සුපිරි සන්නායකවල හැසිරීම • සුපිරි සන්නායකවල ගුණ • සුපිරි සන්නායකවල ගුණ • සුපිරි සන්නායකවල පුයෝජන • සුපිරි සන්නායකවල පුයෝජන • සුතිරෝධ සංයුක්ත • ශේණිගත සම්බන්ධය • සමාන්තරගත සම්බන්ධය • සරල ජාලාවල සමක පුතිරෝධය සෙවීම • ඔම නියමය	 විදපුත් ධාරාව ආරෝපණ ගලා යාමේ ශීඝුතාව ලෙස අර්ථ දක්වයි. ලෝහ සන්නායකයක් තුළින් විදපුත් ධාරාව සන්නායනයේ යාන්තුණය පැහැදිලි කරයි. විදපුත් ධාරාව සහ ප්ලාවිත පුවේගය අතර සම්බන්ධතාව සඳහා ප්‍රකාශනය ව්‍යුත්පන්න කරයි. ධාරා සනත්වය සඳහා ප්‍රකාශනයක් ලබා ගනියි. විදපුත් ප්‍රතිරෝධය අර්ථ දක්වයි. සන්නායකයක ප්‍රතිරෝධය කෙරෙහි බලපාන සාධක සඳහන් කරයි. ප්‍රතිරෝධකතාව අර්ථ දක්වන්න. සන්නායක සහ පරිවාරක දවාවල ප්‍රතිරෝධකතාව උෂ්ණත්වය සමග විචලනය පැහැදිලි කරයි. සුපිරි සන්නායක දවාවල ගුණ සහ භාවිත අගය කරයි. ඕම් නියමය ප්‍රකාශ කරයි. I - V ප්‍රස්තාර භාවිතයෙන් ඕමික සහ ඕමික නොවන සන්නායකවල හැසිරීම විස්තර කරයි. විචලා චෝල්ටියතාවන් ලබා ගැනීම සඳහා විභව බෙදුම් පරිපථ යොදා ගනියි. සරල ජාලවල සමක ප්‍රතිරෝධය සොයා ගනියි. 	12

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
		 ඔම් නියමය වලංගු වන තත්ත්ව I - V පුස්තාර ඕමික සන්නායක ඕමික නොවන සන්නායක වීභව බෙදුම් පරිපථය 	• ඕම් නියමය යොදා ගනිමින් සරල ගැටලු විසඳයි.	
	8.2 සරල ධාරා පරිපථවල ශක්තිය හා ජවය පුමාණනය කරයි.	• ශක්තිය හා ජවය • ආරෝපණ ගලා යාම නිසා වැය වන ශක්තිය පිළිබඳ පුකාශන $W = QV$ සහ $W = VIt$ • ශක්තිය වැය වීමේ ශීසුතාව සඳහා පුකාශනය $P = VI$ • $P = IR$ $P = \frac{V^2}{R}$ සහ $W = I^2Rt, W = \frac{V^2}{R}t$ ලබා ගැනීම • $P = VI$ සහ $W = VIt$ ඕනෑ ම විදසුත් උපාංගයක් සඳහා යෙදීම • $P = I^2R, P = \frac{V^2}{R}, W = I^2Rt$ සහ $W = \frac{V^2}{R}t$ තාපය පමණක් නිපදවෙන උපාංග සඳහා යෙදීම (ජූල් තාපනය)	 ඕනෑ ම විදහුත් උපකරණයක් තුළින් විදහුත් ධාරාවක් ගලා යන විට ශක්තිය උත්සර්ජනය වන බව පෙන්වීමට සරල කියාකාරකම් සිදු කරයි. ආරෝපණ ගලා යාම හේතුවෙන් විදහුත් පරිපථයක ශක්තිය උත්සර්ජනය සඳහා පකාශන ඉදිරිපත් කරයි. ආරෝපණ ගලා යාම හේතුවෙන් විදහුත් පරිපථයක ශක්තිය උත්සර්ජනය වීමේ සීඝුතා සඳහා පකාශනයක් ඉදිරිපත් කරයි. # P = VI සහ P = VI පකාශන ඕනෑ ම විදහුත් පරිපථයක් සඳහා භාවිත කරයි. අකර්මනා පුතිරෝධයක් යන්න පැහැදිලි කරයි. අකර්මා පුතිරෝධකයක් තුළින් ශක්තිය උත්සර්ජනය සහ ශක්තිය උත්සර්ජනය වීමේ සීඝුතාව සඳහා P = I²R, W = I²Rt P = V²/R, W = V²/R t යන පකාශන යොදා ගනියි. 	06

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
8.3 විදාුත් පරිපථයක ජව සැපයුම පිළිබඳ පුමාණාත්මක ව විමසා බලයි.	 විදහුත්ගාමක බලය සරල කෝෂයක තහඩු අතර විභව අන්තරයක් හට ගන්නා අන්දම සම්මත විදහුත් ධාරාවේ දිශාව විවිධ විදහුත්ගාමක බල පුභවවල විවිධ ආකාරයේ ශක්ති පරිණාමනය විදහුත්ගාමක බලය අර්ථ දක්වීම අභාන්තර පුතිරෝධ හැඳින්වීම විදහුත්ගාමක බල පුභවයක් සහිත පරිපථයක් සඳහා ශක්ති සංස්ථිති නියමය යෙදීම. සංවෘත පරිපථයක වූ පුභවයක අගු අතර විභව අන්තරය සඳහා V = E - Ir පුකාශනය පුභවයක විදහුත් ගාමක බලය සහ අභාන්තර පුතිරෝධය පරීක්ෂණාත්මක ව සෙවීම (පුස්තාරික කුමය) විදහුත් ගාමක බල පුභව සංයුක්ත ශේණිගත ව සම්බන්ධය කිරීම. සර්වසම පුභව සමාන්තරගත ව සම්බන්ධ කිරීම පුතිරෝධය හා සුමතාව අතර පුස්තාරික නිරුපණය. විදහුත් ගාමක බල පුභවයකින් උපරිම ක්ෂමතාව ලබා ගැනීම සඳහා අවශාතාව (වහුත්පන්න කිරීම අවශා නො චේ) 	 සරල කෝෂය කියාව උපයෝගී කරගනිමින් විදයුත් පහවයක විදයුත් ගාමක බලයක් හට ගැනීම පැහැදිලි කරයි. විවිධ විදයුත් පහවවල දී ශක්තිය පරිණාමනය වන ආකාරය විස්තර කරයි. පහවයක සිදු වන ශක්ති පරිණාමනය පදනම් කර ගනිමින් විදයුත් ගාමක බලය අර්ථ දක්වීම සිදු කරයි. විදයුත් පහවයකින් ශක්තිය සැපයීමේ සීඝුතාව EI ගුණිතය මගින් දක්වෙන බව පුකාශ කරයි. සංවෘත පරිපථයක දී කෝෂයක අගු හරහා විභව අන්තරය කෙරෙහි පුභවයක අගු හරහා විභව අන්තරය කෙරෙහි පුභවයක් අගු හරහා විභව අන්තරය කෙරෙහි පුභවයේ අභාන්තර පුතිරෝධයේ බලපෑම අවබෝධ කර ගනියි. ශේණීගත ව සම්බන්ධ කළ පුභව කිහිපයක විදයුත් ගාමක බලය සහ සමාන්තර ගත ව සම්බන්ධ කළ සර්වසම පුභව සමුහයක සමක විදයුත් ගාමක බලය සඳහා පුකාශන ඉදිරිපත් කරයි. පුභවයකින් උපරිම ක්ෂමතා පුතිදානය සඳහා අවශා තත්ත්වය පුකාශ කරයි. පුභවයක විදයුත් ගාමක බලය සහ අභාන්තර පුතිරෝධය සෙවීම සඳහා පරීක්ෂණ සිදු කරයි. 	12

නිපුණතා නිපු	පුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
සම් මූල සැල	තාරා විදයුතය හා එබන්ධ නියම හා අධර්ම පරිපථ ලසුම් කිරීම අහා යොදා ගනී.	 විද\(\textit{B}\) ත් පරිපථ ක'ර්චොෆ් නියම පළමු වැනි නියමය (ආරෝපණ සංස්ථිතිය විදහා දක්වීම) දෙ වැනි නියමය (ශක්ති සංස්ථිතිය විදහා දක්වීම) 	 කර්චොප් නියම ලියා දක්වයි. ආරෝපණ සංස්ථිතය පදනම් කර ගනිමින් කර්චොෆ්ගේ පළමු නියමය පැහැදිලි කරයි. ශක්ති සංස්ථිතිය පදනම් කර ගනිමින් කර්චොප්ගේ දෙවන නියමය පැහැදිලි කරයි. විදහුත් පරිපථ හා සම්බන්ධ ගැටලු විසඳීම සඳහා කර්චොෆ්ගේ නියම යොදා ගනියි. 	08
රාර් උප මෙග උප ව	ශියට ගැළපෙන	 ඇමීටරය, වෝල්ට්මීටරය සහ බහු මීටරය භාවිත කිරීම. විට්සන් සේතු මූලධර්මය සංතුලනය වූ වින්ස්ටන් සේතු පරිපථයක පුතිරෝධ අතර සම්බන්ධතාව. 	 විදහුත් ධාරාව මැනීම සඳහා ඇමීටරය භාවිත කරයි. විභව අන්තරය මැනීම සඳහා වෝල්ට් මීටරය භාවිතා කරයි. විදයුත් ධාරාව, විභව අන්තරය සහ පතිරෝධය මැනීම සඳහා බහු මීටරය භාවිතා කරයි. සංතුලනය වූ විට්ස්ටන් සේතු පරිපථයක පතිරෝධ අතර සම්බන්ධතාව වහුත්පන්න කරයි. සරල පතිරෝධක ජාලවල සමක පතිරෝධය සෙවීමේ දී විට්ස්ටන් සේතු සම්බන්ධතාව උපයෝගී කර ගනියි. පතිරෝධයේ උෂ්ණත්ව සංගුණකය සෙවීම සඳහා මීටර සේතු සම්බන්ධතාව උපයෝගී කර ගනියි. මීටර සේතුව භාවිත කිරීමේ දී සැලකිලිමත් විය යුතු කරුණු පැහැදිලි කරයි. විට්ස්ටන් සේතුව භාවිත කරමින් ගැටලු විසඳීම සඳහා සංඛාගත්මක ගණනය කිරීම් සිදු කරයි. 	12

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
		 මීටර්සේතුව මීටර් සේතුව භාවිතා කිරීමේ දී සැළකිලිමත් විය යුතු කරුණු පුතිරෝධයේ උෂ්ණත්ව සංගුණකය සෙවීම. විභවමානය විභවමානය කුමාංකය කිරීම විභවමානය භාවිතයේ දී සැලකිලිමත් විය යුතු කරුණු විභවමානයේ භාවිත විභවමානයේ භාවිත විභවමානයේ භාවිත විභවමානයේ සහපන්තර පුතිරෝධය සෙවීම විභවමානය භාවිතයේ වාසි සහ අවාසි 	 විභවමාන මූලධර්මය පැහැදිලි කරයි. විභවමානය භාවිතයේ දී සැලකිලිමත් විය යුතු කරුණු පැහැදිලි කරයි. විදහුත් ගාමක බලය සංසන්දනය සඳහා විභව මානය භවිත කරයි. කෝෂයක අභෳන්තර ප්‍රතිරෝධය සේවීම සඳහා විභවමානය භාවිත කරයි. විභව මානය භාවිතයේ වාසි සහ අවාසි සංසන්දනය කරයි. විභවමානය හා සම්බන්ධ ගැටලු විසඳයි. 	
	8.8 විදායුත් චුම්බක පේරණය පිළිබඳ, නියම සහ රීති තාක්ෂණික අවශානා සඳහා යොදා ගනියි.	 විදයුත් චුම්බක පේරණය චුම්බක සාවය සහ චුම්බක සාව බන්ධනය විදයුත් චුම්බක පේරණය පිළබඳ නියම ෆැරඩේ නියමය ලෙන්ස් නියමය විදයුත් චුම්බක පේරණය පිළබඳ නියම ආදර්ශනය කිරීම 	චුම්බක ක්ෂේතුයක චලනය වන සහ භුමණය වන දණ්ඩක දෙකෙළවර අතර පේරිත විදහුත්	20

නිපුණතා 2	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
		 චුම්බක ක්ෂේතුයක් තුළ චලනය වන සෘජු දණ්ඩක පේරිත විදුයුත් ගාමක බලය පේරිත විදුයුත්ගාමක බලය සඳහා පුකාශනය ෆ්ලෙමින්ගේ දකුණත් නීතිය චුම්බක ක්ෂේතුයක් තුළ භුමණය වන දණ්ඩක පේරිත විදුයුත් ගාමක බලය චුම්බක ක්ෂේතුයක් තුළ භුමණය වන තැටියක පේරිත විදුයුත් ගාමක බලය චුම්බක ක්ෂේතුයක් තුළ භුමණය වන සෘජුකෝණාසාකාර දඟරයක පේරිත විදුයුත් ගාමක බලය සහ උපරිම අගය සඳහා පුකාශනය පුතාාවර්ත ධාරා ජනකය සැකසුම විදුයුත් ගාමක බලය කාලය සමග විචලනය පස්තාරික ව නිරූපණය පුතාාවර්ත චෝල්ටීයතාව හා ධාරාව හැඳින්වීම. චෝල්ටීයතාව සහ ධාරාව සඳහා උච්ච අගය සහ වර්ග මධායනය මූල අගය අතර සම්බත්ධ පුතිරෝධක පරිපථයක මධානා ජවය සුළි ධාරා ඇති වීම සහ පුයෝජන 	 ඒකාකාර වුම්බක ක්ෂේතුයක හුමණය වන සෘජු කෝණාසාකාර දඟරයක දෙකෙළවර අතර පේරිත විදපුත් ගාමක බලය කෝණය සමඟ විචලනය වීම විස්තර කරයි. වුම්බක ක්ෂේතුයක හුමණය වන සෘජුකෝණාසාකාර දඟරයක පේරිත උපරිම විදපුත් ගාමක බලය සඳහා ප්‍රකාශනය ව්‍යත්පන්න කරයි. ප්‍රකාවර්ත ධාරා ජනකයක සැකැස්ම සහ කියාකාරිත්වය විස්තර කරයි. ප්‍රකාවර්ත ධාරා ජනකයක පේරිත විදපුත්ගාමක බලය කාලය සමග විචලනය වන අයුරු ප්‍රස්තාරික ව නිරූපණය කරයි. ප්‍රකාවර්ත වෝල්ටීයතාවේ සහ ධාරාවේ උච්ච අගය හා වර්ග මධානා මූල අගය අතර සම්බන්ධතාව ප්‍රකාශ කරයි. ප්‍රකාවර්ත වෝල්ටීයතාවේ සහ ධාරාවේ වර්ග මධානය මුල අගයන් යොදා ගනිමින් ප්‍රතිරෝධක පරිපථයක මධායනය ක්ෂමතාව ගනනය කළ හැකි බව ප්‍රකාශ කරයි. ක්‍රයාරම්භක ස්විච්චියේ කියාව පැහැදිලි කරයි. ක්‍රයාරම්භක ස්විච්චියේ කියාව පැහැදිලි කරයි. පරිණාමකයක ව්‍යහය සහ කියාකාරිත්වය පැහැදිලි කරයි. දඟරවල පොට සංඛාා සහ වෝල්ටීයතා අතර සම්බන්ධය ලියා දක්වයි. 	

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	 සරල ධාරා මෝටරයක පුතිවිදයුත් ගාමක බලය පුතිවිදයුත් ගාමක බලය, ආමේචර ධාරාව කෙරෙහි බලපාන අයුරු ආරම්භක ධාරාව පාලනය කිරීම - කි්යාරම්භක ස්විච්චිය පරිණාමකය වයුහය පාථම්කයේ සහ ද්විතියිකයේ පොට සංඛාා සහ චෝලටීයතා අතර සම්බන්ධය අවකර සහ අධිකර පරිණාමක VI ගුණිතය, පරිණාමයකයක පුදාන/ පුතිදාන ජවය පරිණාමකයක ශක්ති හානිය ජූල් තාප හානිය සුළි ධාරා හානිය ශක්ති හානිය අවම කිරීමේ කුම පරිණාමකවල භාවිත විදුලි බල සම්පේෂණය 	 පරිපූර්ණ පරිණාමකයක පුදාන ජවය සහ ප්‍රතිදාන ජවය අතර සම්බන්ධතාව ප්‍රකාශ කරයි. අයිකර පරිණාමක සහ අවකර පරිණාමක හඳුන්වා දෙයි. අධිකර හා අවකර පරිණාමකවල භාවිත සඳහා උදාහරණ සපයයි. ජුල්තාප හානිය හේතුවෙන් පරිණාමකයක ශක්ති හානිය පැහැදිලි කරයි. සුළි ධාරා හේතුවෙන් පරිණාමකයක ශක්ති හානිය පැහැදිලි කරයි. පරිණාමක හා සම්බන්ධ ගණනයන් සිදු කරයි. විදහුතය සම්පේෂණායේ දී අධිකර සහ අවකර පරිණාමකවල යෙදීම් පැහැදිලි කරයි. 	

කාලච්ඡේද 40

ඒකකය - 9 ඉලෙක්ටුෝනික විදහාව

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
9.0 මානව අවශාතා කාර්යක්ෂම ව ඉටුකර ගැනීම සඳහා අර්ධ සන්නායක උපාංග භාවිත කරයි.	9.1 අර්ධ සන්නායක ඩයෝඩයක කියාව සහ භාවිත විමසා බලයි.	 සන්ධි ඩයෝඩය නිසග අර්ධ සන්නායක n - වර්ගය p - වර්ගය p - n සන්ධි ඩයෝඩය හායිත පෙදෙස ඉදිරි නැඹුරුව පසු නැඹුරුව ඩයෝඩයක ලාක්ෂණික වකු පරිපූර්ණ ඩයෝඩයක් සඳහා	 සංශුද්ධ සිලිකන් සහ ජ.මේනියම් නිසඟ අර්ධ සන්නායක ලෙස හඳුනා ගනී. බාහා අර්ධ සන්නායක පිළිබඳ විස්තර කරයි. p-n සන්ධියක හායික පෙදෙස සහ විභව බාධකයක් හට ගැනීම විස්තර කරයි. ප්‍රායෝගික ඩයෝඩයක සහ පරිපූර්ණ ඩයෝඩයක ලාක්ෂණික ප්‍රස්තාරික වන්රූපණය කරයි. ඉදිරි නැඹුරු සහ පසු නැඹුරු තත්ත්ව යටතේ ඩයෝඩයක කියාව පැහැදිලි කරයි. ප්‍රායෝගික ඩයොඩයක් සඳහා I-V වකුය ලබා ගැනීම සඳහා පරීක්ෂණයක් සිදු කරයි. සුදුසු රුප සටහන් භාවිතයෙන් ඩයෝඩයක අර්ධ තරංග සෘජුකාරක කියාව පැහැදිලි කරයි. සූර්ණ තරංග සමටනය පැහැදිලි කරයි. ස්විච්චියක් ලෙස ඩයෝඩයක කියාව විස්තර කරයි. ස්විච්චියක් ලෙස ඩයෝඩයක කියාව විස්තර කරයි. ඩයෝඩයක සෘජු කාරක කියාව ආදර්ශනය සඳහා කියාකාරකම් සිදු කරයි. ඩයෝඩයක ස්විච්චිකරණය ආදර්ශනය සඳහා කියාකාරකම් සිදු කරයි. LED සහ ප්‍රකාශ ඩයෝඩවල කියාව ගුණාත්මක ව පැහැදිලි කරයි. ඩයෝඩ හා සම්බන්ධ සංඛ්‍යාත්මක ගැටලු විසඳයි. සනාර් ඩයෝඩයක චෝලටීයතා යාමක කියාව පැහැදිලි කරයි. LED යක කියාව ගුණාත්මකව පැහැදිලි කරයි. පුතාශ ඩයෝඩයක කියාව ගුණාත්මකව පැහැදිලි කරයි. පුතාශ ඩයෝඩයක කියාව ගුණාත්මකව පැහැදිලි කරයි. 	10

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
9.	.2 සන්ධි ටුාන්සිස්රයේ කියාකාරිත්වය පුායෝගික අවශාතා සඳහා යොදා ගනියි.	 ද්විධුැව ටුනේසිස්ටරය අවිධුැව ටුනේසිස්ටරය npn සහ pnp ටුනේසිස්ටරවල වපුහය සහ පරිපථ සංකේතය npn ටුනේසිස්ටර පරිපථ ටුනේසිස්ටරයක කියාව පරිපථ විනහාසය පොදු - පාදම පොදු - විමෝචක පොදු විමෝචක විනහාසයේ ටුනේසිස්ටර ලාක්ෂණික වකු පරීක්ෂණාත්මක ව ලබා ගැනීම පුදාන ලාක්ෂණිකය පුතිදාන ලාක්ෂණිකය පුතිදාන ලාක්ෂණිකය පාත්සිස්ටරයක් නැඹුරු කිරීම පොදු විමෝචක ටුන්සිස්ටර වර්ධකය ධාරා වර්ධනය වෝල්ටීයතා වර්ධනය පොදු විමෝචක ටුන්සිස්ටර ස්වීච්චිය ඒකධුැව ටුන්සිස්ටරය ක්ෂේතු ආවරණ ටුනේසිස්ටරය (FET) n චැනල සහ p චැනල FETවල වුහය සහ පරිපථ සංකේතය n චැනල FET යක කියාව ලාක්ෂණික වකු භාවිතයෙන් වෝල්ටීයතාව වර්ධනය 	 pnp සහම npn	12

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
9.3 කාරකාත්මක වර්ධකයේ භාවිත පිළිබඳ විමසා බලයි.	 කාරකාත්මක වර්ධකය සංගෘහිත පරිපථයක් (IC) ලෙස අගු හඳුනා ගැනීම කාරකාත්මක වර්ධකයේ කියාව විවෘත පුඩු අවස්ථාව සඳහා ලාක්ෂණික කාරකාත්මක වර්ධකය වෝල්ටීයතා වර්ධකයක් ලෙස භාවිතය සංවෘත පුඬු අවස්ථාව (සෘණ පුතිපෝෂණය) ස්වර්ණමය නීති I සහ II අපවර්තන වර්ධකය අපවර්තන නො වන වර්ධකය කාරකාත්මක වර්ධකය කාරකාත්මක වර්ධකය තාරකාත්මක වර්ධකය තාවිතය 	 කාරකාත්මක වර්ධයක අගු අංකනය කරයි. කාරකාත්මක වර්ධකයක විවෘත පුඬු අවස්ථාවේ ලාක්ෂණිකය විස්තර කරයි. විවෘත පුඬු අවස්ථාවේ වෝල්ටීයතා ලාභය සඳහා ප්‍රකාශනයක් ඉදිරිපත් කරයි. විවෘත පුඬු අවස්ථාවේ ගුණ පැහැදිලි කරයි. කාරකාත්මක වර්ධකයේ සෘණ ප්‍රතිපෝෂණයේ අවශාතාව පැහැදිලි කර එය වෝල්ටීයතා වර්ධනය කෙරෙහි ඇති කරන බලපෑම පැහැදිලි කරයි. අපවර්තන වර්ධනය සහ අනපවර්තන වර්ධනය සඳහා පරිපථ සටහන් ඇඳ ඒවායේ කියාව සහ ලාක්ෂණික ඉදිරිපත් කරයි. කාරකාත්මක වර්ධකයේ රේඛීය අවස්ථාවේ වර්ධනය සඳහා ස්වර්ණමය නීති I සහ II ඉදිරිපත් කරයි. අපවර්තන සහ අනපවර්තන වර්ධකවල වෝල්ටීයතා ලාභය සඳහා ප්‍රකාශන වාහුත්පන්න කරයි. වෝල්ටීයතා සංසන්දකයක් ලෙස කාරකාත්මක වර්ධකයේ කියාව විස්තර කරයි. කාරකාත්මක වර්ධකය හා සම්බන්ධ ගැටළු විසඳයි. 	06

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
9.4 සංඛ්‍යාත පරිපථවල කියාකාරිත්වය හැසිරවීම සඳහා තාර්කික ද්වාර යොදා ගනියි.	 සංඛාහාක ඉලෙක්ටොනික විදහාව තාර්කික ද්වාරවල බූලියානු ප්‍රකාශන සහ සතාතා වගු AND ද්වාරය NOT ද්වාරය NOR ද්වාරය NOR ද්වාරය EXOR ද්වාරය EXOR ද්වාරය EXOR ද්වාරය සරල මූලික තාර්කික ද්වාරවල සතාතා වගු පරීක්ෂණාත්මක ව වීමසා බැලීම සරල සංඛාහාක පරිපථ සඳහා තාර්කික ප්‍රකාශන (උපරිම ලෙස ප්‍රදාන ත්‍රනක් සඳහා) දී ඇති තර්ක ප්‍රකාශනයක් තාර්කික ද්වාර පරිපථයකට හැරවීම සතාතා වගුවක් තර්ක ප්‍රකාශනයක් මගින් දක්වීම සරල තාර්තික පරිපථ සැලැසුම් කිරීම ඉලෙක්ටොනික මතකය (Electronic memory) NOR ද්වාර සහිත මූලික මතක පරිපථය මූලික පිළි-පොළ පරිපථය (Basic SR flip-flop/Bistable) 	 AND, OR, NOT, NAND, NOR, EXOR, EXNOR කාර්කික ද්වාරය සඳහා සතාතා වගු සහ බුලියානු ප්‍රකාශන ලියා දක්වයි. ප්‍රදාන දෙකක් හෝ ත්‍රනක් සහිත තාර්කික පරිපථ සඳහා තාර්කික ප්‍රකාශන ගොඩ නඟයි දෙන ලද තාර්කික ප්‍රකාශන තාර්කික පරිපථවලට පරිවර්තනය කරයි. දෙන ලද තත්ත්වයන් සඳහා ගැළපෙන තාර්කික පරිපථ සැලසුම් කරයි. NOR ද්වාර භාවිතයෙන් මූලික මතක පරිපථයක ලක්ෂණ පැහැදිලි කරයි. SR පිලිපොළයක ක්‍රියාව සතාතා වගුව භාවිතයෙන් පැහැදිලි කරයි. 	12

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
10 පදාර්ථයේ යාන්තික ගුණ පිළිබඳ දැනුම විදහත්මක කටයුතුවල දී සහ ජීවිත අවශාතාවල දී පුමාණාත්මක ව යොදා ගනියි.	10.1 පුතහාස්ථතාව පිළිබඳ දැනුම යොදා ගනිමින් එදිනෙදා ජීවිත අවශාතා සඳහා උචිත දුවා තෝරා ගනියි.	 සනවල ප්‍රත්‍යාස්ථතාව ආතතිය සහ විතතිය භාර-විතති වකුය ආතතා ප්‍රත්‍යාව යං මාපාංකය භූක්ගේ නියමය ප්‍රත්‍යාවල - විකියා වකුය ලෝහ කම්බියක් භාවිතයෙන් යංමාපාංකය සෙවීම ආතතියකට ලක් ව ඇති තන්තුවක ගබඩා වී ඇති ශක්තිය 	 තන්තුවක හෝ හෙලික්සීය දුන්නක අාතතිය හා විතතිය අතර සම්බන්ධතාව සෙවීම සඳහා පරීක්ෂණ සිදු කරයි. පූතාාස්ත දුන්නක හෝ තන්තුවක ආතතිය හා විතතිය අතර සම්බන්ධතාව ලබා ගැනීම සඳහා පරීක්ෂණ සිදු කරයි. හුක්ගේ නියමය පුකාශ කරයි. පූතාාබලය, විකියාව සහ යංමාපංකය අර්ථ දක්වයි. පූතාාබලය, විකියාව පුස්තාරය භාවිතයෙන් දුවාවල හැසිරීම විස්තර කරයි. සමානුපාතිකව සීමාව, පූතාාස්ථ සීමාව සහ භේදක ලක්ෂාය හඳුනා ගනියි. ලෝහකම්බියක් යොදා ගනිමින් එම දුවායේ යංමාපාංකය නිර්ණය කරයි. පූතාාබලයක් යටතේ පවතින තන්තුවක/ දුන්නක ගබඩා වී ඇති ශක්තිය සඳහා ප්‍රකාශනයක් ඉදිරිපත් කරයි. පූතාාස්තතාව හා සම්බන්ධ ගැටලු විසඳීම සඳහා සංඛාාත්මක ගණනයක් සිදු කරයි. තාක්ෂණික අවශාතා සඳහා ප්‍රතාස්ථතාව පිළිබඳ දනුම යොදාගන්නා අවස්ථා පිළිබඳව වාර්තාවක් සකසයි. 	10

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	10.2 විදහාත්මක හා දෛනික කටයුතුවල දී දුස්සුාවිතාව පිළිබඳ දැනුම භාවිත කරයි.	 දුස්සුාවිතා බලය දුස්සුාවිතා සංගුණකය F = \frac{A\eta(V_1 - V_2)}{d}\$ තරල පුවාහයක් සඳහා පොයිසෙල් සූතුය වලංගු වන තත්ත්ව මාන භාවිතයෙන් සූතුය නිවැරදි බව පෙන්වීම දූස්සුාවිතා සංගුණකය සෙවීම සඳහා පොයිසෙල් සූතුය භාවිත කිරීම දූස්සුාවි මාධා තුළින් වස්තුවක චලිතය වස්තුව මත ක්‍රියාත්මක වන බල ආත්ත ප්‍රවේගය V - t වකුය ඇසුරින් ස්ටොක්ස් නියමය වලංගු වන තත්ත්ව මාන වශයෙන් නිවැරදි බව පෙන්වීම ආන්ත ප්‍රවේගය සඳහා ප්‍රකාශන වනුත්පන්න කිරීම ආන්ත ප්‍රවේගය සඳහා ප්‍රකාශන වනුත්පන්න කිරීම ඉහළට චලිත වන වස්තුවක් සඳහා පහළට චලිත වන වස්තුවක් සඳහා 	 සරල ක්‍රියාකාරකම් මගින් විවිධ දුවවල ගලායාමේ වෙනස්කම් ආදර්ශනය කරයි. පුවේග අනුකුමණය හා ස්පර්ශක ප්‍රත්‍යාඛලය උපයෝගී කර ගනිමින් ප්‍රවාහවන දුවායක දුස්සුාවිතා බලය විස්තර කරයි. දුස්සුාවිතා සංගුණකය අර්ථ දක්වයි. ගැටලු විසඳීම සඳහා දුස්සුාවිතා බලය සඳහා ප්‍රකාශනය භාවිත කරයි. දව ප්‍රවාහයක් සඳහා පොයිසෙල් සමීකරණය ප්‍රකාශ කරයි. සෙහන් කරයි. කෝශික ප්‍රවාහ කුමය මගින් දවාක දුස්සුාවිතාව නිර්ණය කිරීම සඳහා පරීක්ෂණයක් සිදු කරයි. දුස්සුාව් මාධ්‍යයක සිරස් චලිතයේ යෙදෙන ගෝලාකාර වස්තුවක් මත ක්‍රියා කරන බල පිළිබඳව විස්තර කරයි. ස්ටොක්ස් නියමය ප්‍රකාශනයක් ඇසුරින් ඉදිරිපත් කරයි. දූස්සුාව් මාධ්‍යයක සිරස්ව ඉහළට සහ පහළට චලිත වන ගෝලාකාර වස්තුවක ආන්ත ප්‍රවේගය සඳහා ප්‍රකාශනයක් වුනුත්පන්න කරයි. දූස්සුාව් මාධ්‍යයක් තුළින් ගමන් ගන්නා වස්තුවක ආන්ත ප්‍රවේගය සඳහා ප්‍රකාශනයක් වුනුත්පන්න කරයි. දූස්සුාව් මාධ්‍යයක් තුළින් ගමන් ගන්නා වස්තුවක ආන්ත ප්‍රවේගය V- t ප්‍රස්තාරයක් මගින් පැහැදිලි කරයි. දූස්සුාවිතාව හා සම්බන්ධ සරල සංඛ්‍යාත්මක ගැටලු විසඳයි. 	15

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච් ඡේ ද
10.3 පෘෂ්ඨික ආතර් පිළිබඳ දනුම යොදා ගනිමින් ස්වාභාවික සංසිද්ධීන් පැහැදි කිරීම සහ ජීවිත අවශාතා සපුරා ගැනීම සිදු කරයි	 පෘෂ්ඨික ආතතිය අර්ථ දක්වීම ස්පර්ශ කෝණය දුව මාවකයේ ස්වභාවය සහ ස්පර්ශ කෝණය අතර සම්බන්ධය නිදහස් පෘෂ්ඨික ශක්තිය 	 සරල කියාකාරකම් මඟික් දවාක නිදහස් පෘෂ්ඨයේ හැසිරීම ආදර්ශනය කරයි. අන්තර් අනුක බල පිළිබඳ ව සලකමින් දවායක නිදහස් පෘෂ්ඨයේ ස්වභාවය පැහැදිලි කරයි. පෘෂ්ඨික ආතතිය අර්ථ දක්වයි. නිදහස් පෘෂ්ඨික ශක්තිය අර්ථ දක්වයි. පෘෂ්ඨික ආතතිය හා නිදහස් පෘෂ්ඨික ශක්තිය අතර සම්බන්ධතාව ලබා ගනියි. 	15
11.1 ක්වොත්ටම් සිද්ධාන්ත, කෘෂ් වස්තු විකිරණයේ තීවුතා වහාප්තිය පැහැදිලි කිරීම සඳහා යොදා ගතියි.	1 '	 රූප සටහන් භාවිතයෙන් ස්පර්ශ කෝණය විස්තර කරයි. ගෝලාකාර දව මාවකයක දෙපස පීඩන අන්තරය සඳහා ප්‍රකාශනයක් පෘෂ්ඨික ආතතිය සහ වක් පෘෂ්ඨයේ අරය ඇසුරෙන් වයුත්පන්න කරයි. ස්පර්ශ කෝණය සහ දව මාවකයක දෙපස පීඩන අන්තරය ඇසුරින් කේශික උද්ගමනය පැහැදිලි කරයි. පෘෂ්ඨික ආතතිය, ස්පර්ශ කෝණය හා දව මාවකයේ අරය ඇසුරින් කේශික උද්ගමනය සඳහා ප්‍රකාශනයක් වනුත්පන්න කරයි. අන්වීක්ෂ කදා ක්‍රමය, කේශික උද්ගමන ක්‍රමය සහ ජේගර් ක්‍රමය මගින් පෘෂ්ඨික ආතතිය නිර්ණය කිරීම සඳහා පරීක්ෂණ සිදු කරයි. පෘෂ්ඨික ආතතිය හා සම්බන්ධ ගැටලු විසඳයි. 	15

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
11. නවීන භෞතික විදහත්මක සිද්ධාන් විමසා බලයි.	11.1 ක්වොන්ටම් සිද්ධාන්ත, කෘෂ්ණ වස්තු විකිරණයේ තීවුතා වහාප්තිය පැහැදිලි කිරීම සඳහා යොදා ගනියි.	 චිකිරණයේ ක්වොන්ටම් ස්වභාවය කෘෂ්ණ වස්තු විකිරණය ස්ටෙෆාන් නියමය කෘෂ්ණ නො වන වස්තු සඳහා ස්ටෙෆාන් නියමය කෘෂ්ණ වස්තු විකිරණයේ තීවුතා වාහප්තිය චින් විස්ථාපන නියමය විකිරණ තීවුතා වාහප්තිය පැහැදිලි කිරීමට පෞරාණික භෞතික විදහාව අසමත් වීම ප්ලාන්ක්ගේ කල්පිත 	 සරල කියාකාරකම් සහ උදාහරණ මඟින් විවිධ උෂ්ණත්වවල පවත්නා වස්තුවල තාප විකිරණය පැහැදිලි කරයි. කෘෂ්ණ වස්තු විකිරණයේ තීවුතා වහාප්තිය තීවුතාව සහ තරංග ආයාමය අතර පුස්තාර භාවිතයෙන් විස්තර කරයි. ස්ටෙෆාන් නියමය පුකාශ කරයි. ස්ටෙෆාන් නියමය පකාශ කරයි. ස්ටෙෆාන් නියමය භාවිතයෙන් කෘෂ්ණ වස්තු විකිරණයේ තීවුතාව සහ උෂ්ණත්වය අතර සම්බන්ධතාව ඉදිරිපත් කරයි. කෘෂ්ණ නොවන වස්තු සඳහා ස්ටෙෆාන් නියමය විකරණය කරයි. චීන්ගේ විස්ථාපන නියමය පුකාශ කරයි. අදාළ අවස්තා සඳහා චීන්ගේ විස්ථාපන නියමය භාවිත කරයි. කෘෂ්ණ වස්තු විකිරණය පැහැදිලි කිරීමට පුතිෂ්ඨිත භෞතික විදාහව අසමත් වූ බව පැහැදිලි කරයි. අදාළ පද යොදා ගනිමින් මැක්ස් ප්ලාන්ගේ කල්පිත පැහැදිලි කරයි. විකිරණයේ ක්වොන්ටෆ් ස්වභාවය පිළිගනියි. කෘෂ්ණ වස්තු විකිරණය පැහැදිලි කිරීමට ප්ලාන්ක් වාදය යොදා ගත හැකි බව පිළිගනියි. 	04

c

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
11.2 ක්වොන්ටම් සිද්ධාන්ත, පුකාශ විදාපුත් ආචරණය පැහැදිලි කිරීම සඳහා යොදා ගනි	 ළකාශ විදහුත් ආචරණය දේහලිය සංඛානතය I-V ප්‍රස්තාර නැවතුම් විභවය සංඛානතයට එදිරියෙන් නැවතුම් විභවය ප්‍රස්තාරය විවිධ ලෝහ සඳහා ප්‍රස්තාර ප්‍රකාශ විදහුත් ආචරණය පහදා දීමට ප්‍රතිෂ්ඨිත භෞතික විදානව අසමත් වීම ප්‍රකාශ විදහුත් අාචරණය පැහැදිලි කිරීම සඳහා අයින්ස්ටයින් ඉදිරිපත් කළ කල්පිත ප්‍රකාශ විදහුත් ආචරණය ශක්ති පැකට්ටු (ලෝටෝන) සලකමින් පැහැදිලි කිරීම අයින්ස්ටයින්ගේ ප්‍රකාශ විදහුත් සම්කරණය කාර්ය ශ්‍රිතය උපරිම චාලක ශක්තිය කාර්ය ශ්‍රිතය හා දේහලිය සංඛානතය අතර සම්බන්ධය නැවැතුම් විභවය සහ උපරිම චාලක ශක්තිය අතර සම්බන්ධය 	 පුකාශ විදුපුත් කෝෂ පරීක්ෂණය උපයෝගී කර ගනිමින් පකාශ විදුපුත් ආචරණ සංසිද්ධිය විස්තර කරයි. දේහලීය සංඛානය හඳුනා ගනියි. නැවතුම් විභවය පැහැදිලි කරයි. පුකාශ විදුපුත් ආචරණය පැහැදිලි කිරීමට පුතිෂ්ඨිත භෞතික විදානව භාවිත කළ නොහැකි බව පිළිගනියි. අයින්ස්ටයිනගේ කල්පිතය පකාශ කරයි. අයින්ස්ටයිනගේ කල්පිතය පකාශ ක්රයි. අරාල පද ඉදිරිපත් කරමින් අයින්ස්ටයින්ගේ පකාශ විදුපුත් සම්කරණය පැහැදිලි කරයි. අදාළ පද ඉදිරිපත් කරමින් අයින්ස්ටයින්ගේ පකාශ විදුපුත් සම්කරණය පැහැදිලි කරයි. දේහලීය සංඛානය හා කාර්ය ශිතය අතර සම්බන්ධතාව ඉදිරිපත් කරයි. පකාශ ඉලෙක්ටෝනවල උපරිම චාලක ශක්තිය හා නැවතුම් විභවය අතර සම්බන්ධතාව ඉදිරිපත් කරයි. පකාශ විදුපුත් ආචරණ සමීකරණය භාවිතයෙන් සංඛානත්මක ගණනයන් සිදු කරයි. උපරිම චාලක ශක්ති, තීවුතාවෙන් ස්වායත්ත වීම සහ පකාශ ධාරාව තීවුතාව මත රඳා පැවැතීම පැහැදිලි කරයි. විදුපුත් චුම්බක තරංගවල අංශුමය ආකාර හැසිරීම පිළිබඳ ව පකාශ විදුපුත් ආචරණයෙන් සාධක සැපයෙන බව පුකාශ කරයි. 	06

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
	11.3 තරංග අංශු ද්වෛතය/ ද්වේතය පිළිබඳ විමසා බලයි.	 පදාර්ථයේ තරංගමය ස්වභාවය පදාර්ථ තරංග සඳහා ඩි'බෝග්ලි තරංග ආයාමය පදාර්ථයේ තරංගමය ස්වභාවය පිළිබඳ සාක්ෂි ඉලෙක්ටෝන අණ්වික්ෂයේ මූලධර්මය 	 පදාර්ථයේ තරංගමය ස්වභාවය පිළිබඳ සාධක ඉදිරිපත් කරයි. ගමාතාවක් පවතින ඕනෑ ම අංශුවකට ඩි.බෝග්ලි තරංග ආයාමය ලෙස හැඳින්වෙන තරංග ආයාමයක් පවතින බව පිළිගනියි. චලනය වන අංශුවක් හා සම්බන්ධ ඩි බෝග්ලි තරංග ආයාමය සෙවීම සඳහා ඩී.බෝග්ලි කල්පිතය යොදා ගනියි ඉලෙක්ටෝන අන්වීක්ෂයේ මුලධර්මය පැහැදිලි කරයි. 	02
	11.4 මානව අවශාතා සපුරා ගැනීම සඳහා X - කිරණ භාවිත කරයි.	 X - කිරණ X - කිරණ නිපදවීම X - කිරණවල ගුණ X - කිරණවල පුයෝජන 	 X - කිරණ සොයා ගැනීම පැහැදිලි කරයි. X - කිරණ නිපදවීම විස්තර කරයි X - කිරණවල ගුණ පුකාශ කරයි. විවිධ ක්ෂේතුවල දී X - කිරණවල භාවිතයන් පැහැදිලි කරයි. 	02
	11.5 මානව අවශාතා සපුරා ගැනීම සඳහා විකිරණශීලිතාව පිළිබඳ වීමසා බලයි.	 චිකිරණශීලිතාව ස්වාභාවික විකිරණශීලි ක්ෂය වීම α - අංශු විමෝචනය β - අංශු විමෝචනය γ - කිරණ විමෝචනය විකිරණශීලි පෘථක්කරණ නියමය පුස්තාරික නිරූපණය ක්ෂය නියතය සකියතාව අර්ධ ආයු කාලය 	 ස්වාභාවික විකිරණශීලිත්වය සහ ඒවායේ ගුණ පැහැදිලි කරයි. ක, \(\beta\) සහ \(\beta\) විකිරණ විමෝචනය හඳුන්වා දෙයි. විකිරණශීලි ක්ෂයවීම, විකිරණශීලී පෘතක්කරණ නියමය සහ අදාළ පුස්තාරික නිරූපණය පැහැදිලි කරයි. ක්ෂය නියතය, සකියතාව සහ අර්ධ ආයු කාලය පැහැදිලි කරයි. 	06

නිපුණතා	නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
		 විකිරණශීලිකාවේ භාවිත විකිරණශීලි කාල නිර්ණය (C-14 පමණී) වෛදා විදහාව, ඉංජිනේරු විදහාව සහ කෘෂිකර්මය යන ක්ෂේතුවල දී විකිරණයේ සෞඛා අවදානම හා ආරක්ෂිත පූර්වෝපායයන් විකිරණ පුමාණය මැනීම විකිරණ මාකුාව (Gy) RBE (Relative Bialogical Effectiveness) /Q (Quality Factor, Q- සාධකය) සහ විකරිණයේ සඵල මාතුාව (Sv) සඵල මාතුාව සෞඛා අවදානම විකිරණයේ ස්වභාවය විකිරණයට නිරාවරණය වූ ශරීර පුදේශය ආරක්ෂක පූර්වෝපාය 	 වෛදය විදහාව, ඉංජිනේරු විදහාව, කෘෂිකර්මය වැනි ක්ෂේතුවල දී විකිරණශීලීතාව යොදා ගැනීම පැහැදිලි කරයි. පසුබිම් විකිරණය, සෞඛා අවධානය සහ ආරක්ෂිත පූර්වෝකථනයක් පැහැදිලි කරයි. විකිරණශීලීතාව සම්බන්ධ ගැටලු විසඳීම සඳහා සංඛාගත්මක ගණනයන් සිදු කරයි. හානිකර විකිරණ වලින් ආරක්ෂා වීම පිළිබඳව අධායනයක් සිදු කර වාර්තාවක් සකස් කරයි. 	

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
11.6 නාාෂ්ටික ශක්තිය හා එහි භාවිත පිළිබඳ විමසා බලයි.	 පරමාණුක නාෂ්ටිය නාෂ්ටික ස්ථායීතාව ඒකීකෘත පරමාණුක ස්කන්ධ ඒකකය ස්කන්ධ හානිය අයිස්ටයින්ගේ ස්කන්ධ-ශක්ති සමීකරණය බඳන ශක්තිය ස්කන්ධ කුමාංකය සහ නියුක්ලියෝනයක බඳන ශක්තිය අතර පස්තාරික නිරූපණය රසායනික පුතිකියාවල දී මුදා හරින ශක්තිය සහ නාෂ්ටික ශක්තිය සැසැඳීම නාෂ්ටික බක්තිය නාෂ්ටික බලාගාරයක කියාව නාෂ්ටික විලයනය විලයන පුතිකියාව සඳහා තිබිය යුතු තත්ත්ව සුර්යයා තුළ සිදු වන විලයන පුතිකියාව කල ශක්තිය නිපදවීම සඳහා විලයන පුතිකියාව බල ශක්තිය නිපදවීම සඳහා විලයන පුතිකියාව බල ශක්තිය නිපදවීම සඳහා විලයන පුතිකියාව 	 පරමාණුක ව්‍යුහය, නාෂ්ටිය, සමස්තානික, නාෂ්ඨික සංකේතය සහ පරමාණුක ස්කත්ධ ඒකකය හඳුනා ගනියි. නාෂ්ඨික ස්ථායීතාව පිළිබඳව පැහැදිලි කරයි. ස්කන්ධ හානිය පැහැදිලි කරයි. අයින්ස්ටයින්ගේ ස්කන්ධ ශක්ති සමීකරණයක සඳහන් කරයි. බන්ධන ශක්තිය පැහැදිලි කරයි. රසායානික ප්‍රතික්‍රියාවක දී සහ නාෂ්ටික ප්‍රතික්‍රියාවක දී නිදහස් වන ශක්තිය සන්සනදනාත්ක ව දක්වයි. පාලිත නාෂ්ටික ව්ලයන ප්‍රතික්‍රියාව (නාෂ්ටික ශක්තිය ලබා ගැනීමේ දී) සහ පාලනය නොකරන ලද ප්‍රතික්‍රියාව (පරමාණු බොම්බවල දී) පැහැදිලි කරයි. සූර්ය මධ්‍යයේ සිදුවන ව්ලයන ප්‍රතික්‍රියාවේ සහ අනෙකුත් තරකා තුළ සිදුවන නාෂ්ටික ප්‍රතික්‍රියා සහ මූල දුවා නිපදවීම පිළිබඳ ව පැහැදිලි කරයි. 	06

නිපුණතා නිපුණතා මට්ටම්	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ඡේද
1 * * * * * * * * * * * * * * * * * * *	 අංශු භෞතික විදහාව හැඳින්වීම. පදාර්ථයේ වහුහය හැදෑරීම සඳහා වන පරීක්ෂණාත්මක යොමුවීම. අධ්ශක්ති අංශුවල අවශාතාව අංශු ත්වරක සහ අනාවරක වල අවශාතාව මූලික අංශු ක්වාක් ලෙප්ටන් මූලික බල ගුරුත්වාකර්ෂණ බලය විදහුත් චුම්බක බලය පුබල බලය දුර්වල බලය 	 අංශු භෞතික විදහාව වනාහි පදාර්ථයේ මූලික අංශු පිළිබඳව විමසීමේ පෞරාණික ගැටලුවේ නවීන ප්‍‍රකාශනය ලෙස පිළිගනියි. පදාර්ථයේ ව්‍රයුහය සෙවීම සඳහා අධික ගම්‍රයාවක් සහිත අංශු අවශ්‍ය බව පැහැදිලි කරයි. අන්තරික් කිරණ අධි ශක්ති අංශුවල ස්වභාවික ප්‍රභවයක් ලෙස පැහැදිලි කරයි. අංශු ත්වරක අධි ශක්ති අංශු නිපදවීම සඳහා යොදා ගන්නා බව පැහැදිලි කරයි. අංශුවල ගැටුම්වල ප්‍රතිඵල විශ්ලේෂණය සඳහා අනාවරක යොදා ගන්නා බව පැහැදිලි කරයි. මූලික අංශු විශාල සංඛ්‍යාවක් අනාවරණය කර ගෙන ඇති බව ප්‍රකාශ කරයි. පෝටෝන සහ නියුටුෝන ක්වාක්ස් වලින් සමන්විත වී ඇති බව ප්‍රකාශ කරයි. ඉලෙක්ටෝන ලෙප්ටන් කාණ්ඩයට අයත් බව පිළිගනී. එක් එක් මූලික බලයෙහි ප්‍රභවය සහ ප්‍රබල්ඛාව පිළිබඳව හඳුනා ගනියි. 	04

4.0 ඉගෙනුම් -ඉගැන්වීම් කිුයාවලිය

වත්මන් ගෝලීය නිපුණතා පාදක විෂයමාලා පුවණතාව වී ඇත්තේ සහයෝගීතා ඉගෙනුම දිරි ගන්වන ශිෂා කේන්දීය කියාකාරකම් තුළින්, ඉගැන්වීම අබිබවා ගිය ඉගෙනුමක් හඳුන්වා දීමටයි.

පුද්ගල සමාජ සහ මානසික හැකියා සංවර්ධනය පෝෂණය කෙරෙන කිුයාකාරකම් කෙරෙහි සිසුන්ගේ සකීය දායකත්වය මෙහි දී අපේක්ෂා කෙරේ.

මේ සම්බන්ධයෙන් අවධාරණය කෙරෙන කරුණු:-

එක් එක් මාතෘකාවට අදාළ තාක්ෂණික යෙදුම් ගුරුවරයා විසින් සඳහන් කරනු ලැබීම. ස්වයං පෙලඹීමක් සහිත කියාකාරකම්වල යෙදෙමින් හැකි තාක් සෘජු අත්දකීම් ලබා ගැනීමට සිසුනට අවස්ථා සැලසීම අවශාතාව අනුව විශ්වසනීය පුභවලින් දැනුම සහ තොරතුරු උකහා ගැනීමට සිසුන් යොමු කිරීම.

5.0 පාසල් පුතිපත්ති සහ වැඩසටහන්

- 1. අදාළ ඉගෙනුම් ඵල සාක්ෂාත් කර ගැනීම සඳහා ඉගෙනුම්- ඉගැන්වීම් කිුයාවලියක් අනුගමනය කිරීමේ නිදහස ගුරු භවතා සතු ය.
- 2. විෂය නිර්දේශයේ සන්ධාරය යටතේ ම තද කළු අකුරින් මුදුණය කර ඇති පුායෝගික කිුිියාකාරකම්, අදාළ සෛද්ධාන්තික විෂය කරුණු සමග ම කිුියාත්මක කිරීම අපේක්ෂිත ය.
- 3. සිසු ශකාතා වර්ධනය සඳහා පරිගණක ආශිුත ඉගෙනුම් මෘදුකාංග වැනි ඉගෙනුම්-ඉගැන්වීම් ආධාරක, අතිරේක කියවීම් දුවා සහ විෂය බාහිර කියාකාරකම් ආදිය යොදා ගත යුතු ය.
- 4. පන්ති කාමර ඉගෙනුම දීර්ඝ කිරීමට සහ සිසුන්ගේ සුවිශේෂ දක්ෂතා ඔප් නැංවනු වස් පහත දක්වෙන විෂය සමගාමී කිුිිියාකාරකම් හඳුන්වා දීම අපේක්ෂිතය.
- භෞතික විදාාවට අදාළ ව විවිධ අංග ආවරණය වන පරිදි පාසලේ සමිති හා සමාගම් පිහිටු වීම

- භෞතික විදාහත්මක වැදගත්කමක් ඇති ස්ථාන ගවේෂණය සඳහා ක්ෂේතු චාරිකාවල යෙදීම හා ඒ පිළිබඳ වාර්තා සකස් කිරීම
- පාසල් පුදර්ශන සහ තරඟ සංවිධානය කිරීම
- සුදුසු තේමා සඳහා අදාළ වෘත්තිකයන් හෝ විශේෂඥයින් හෝ සම්පත් පුද්ගලයින් හෝ යොදා ගනිමින්, ආරාධිත දේශන පැවැත්වීම
- පාසල් පුකාශන එළි දුක්වීම.
- විවාද තරග, විදහා දින වැනි අවසථා සංවිධානය කිරීම
- 5. පාසල් තුළින් හා ඉන් බැහැර, සම්පත් හා උපකරණ ලබා දීම වැනි සේවා සැපයීම පාසල් කළමනාකරණයේ වගකීමකි.
- 6. භෞතික විදහාවට අදාළ වැඩ සටහන් සංවර්ධනය කිරීම සඳහා සුදුසු ගුරු භවතුන් සහ සිසුන්ගෙන් සැදුම් ලත් කමිටුවක් පිහිටුවා ගැනීම යෝගා ය.
- 7. පාසල, සිසුන්ට පරමාදර්ශී වීම ඉතා වැදගත් ය.
- 8. පුතිපත්තිමය ඉලක්ක සපුරා ගැනීම සඳහා පාසල මගින් විවිධ කිුිියාකාරකම් ඇතුළත් වාර්ෂික වැඩ සටහනක් සකස් කළ යුතු ය. මෙහි දී නිශ්චිත වසරක් තුළ කළ හැකි කිුිිියාකාරකම් නිර්ණය කිරීම උදෙසා පාසලෙහි පුමුඛතා හඳුනා ගැනීමත්, කාලය සහ සම්පත්වල සීමා සලකා බලමින් පුායෝගික බව පිළිබඳ සැලකිලිමත් වීමත්, ඉතා අවශා ය.

6.0 තක්සේරුව හා ඇගයීම

පාසල පදනම් කර ගත් ඇගයීම් වැඩපිළිවෙළ යටතේ එක් එක් වාරය සඳහා නියමිත නිපුණතා මට්ටම් ආවරණය වන පරිදි ඉගෙනුම්-ඉගැන්වීම් ඇගයීම් උපකරණ නිර්මාණාත්මක ව පිළියෙල කොට කිුයාත්මක කිරීම අපේක්ෂිත ය.

මෙම විභාගයේ පුශ්න පතුවල ආකෘතිය හා ස්වභාවය පිළිබඳ අවශා විස්තර විභාග දෙපාර්තමේන්තුව මගින් සැපයෙනු ඇත.