NOM:

INTERRO DE COURS – SEMAINE 9

Exercice 1 – Déterminer la nature des séries suivantes et préciser la somme en cas de convergence.

1.
$$\sum_{n>0} \frac{1}{3^n}$$

2.
$$\sum_{n \ge 1} \left(\frac{2}{3}\right)^n$$
 3. $\sum_{n \ge 0} \frac{5}{6}$ 4. $\sum_{n \ge 1} \left(\frac{3}{2}\right)^n$ 5. $\sum_{n \ge 1} \frac{4}{5^n}$

3.
$$\sum_{n \geqslant 0} \frac{5}{6}$$

4.
$$\sum_{n\geq 1} \left(\frac{3}{2}\right)^n$$

5.
$$\sum_{n\geq 1} \frac{4}{5^n}$$

Solution:

1. Je reconnais la série géométrique de raison $q = \frac{1}{2}$. Comme $\frac{1}{3} \in]-1,1[$, alors la série converge et

$$\sum_{k=0}^{+\infty} \frac{1}{3^k} = \sum_{k=0}^{+\infty} \left(\frac{1}{3}\right)^k = \frac{1}{1 - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2}.$$

2. Je reconnais la série géométrique de raison $q = \frac{2}{3}$, à laquelle il manque le premier terme. Comme $\frac{2}{3} \in]-1,1[$, alors la série converge et

$$\sum_{k=1}^{+\infty} \left(\frac{2}{3}\right)^k = \sum_{k=0}^{+\infty} \left(\frac{2}{3}\right)^k - \left(\frac{2}{3}\right)^0 = \frac{1}{1 - \frac{2}{3}} - 1 = \frac{1}{\frac{1}{3}} - 1 = 3 - 1 = 2.$$

- 3. Le terme général de cette série est $u_n = \frac{5}{6}$ et $\lim_{n \to +\infty} u_n = \frac{5}{6} \neq 0$. Donc la série diverge.
- 4. Je reconnais la série géométrique de raison $q = \frac{3}{2}$. Or $\frac{3}{2} > 1$ donc la série diverge.
- 5. Je commence par calculer la somme partielle de la série. Soit $n \ge 0$,

$$\sum_{k=0}^{n} \frac{4}{5^k} = \sum_{k=0}^{n} 4 \times \frac{1}{5^k} = 4 \times \sum_{k=0}^{n} \left(\frac{1}{5}\right)^k.$$

Je reconnais la somme partielle de la série géométrique de raison $q = \frac{1}{5}$. Comme $\frac{1}{5} \in]-1,1[$, alors la série converge et

$$\sum_{k=0}^{+\infty} \frac{4}{5^k} = 4 \times \sum_{k=0}^{+\infty} \left(\frac{1}{5}\right)^k = 4 \times \frac{1}{1 - \frac{1}{5}} = 4 \times \frac{1}{\frac{4}{5}} = 4 \times \frac{5}{4} = 5.$$

Exercice 2 – On considère la série $\sum_{n \ge 1} \frac{1}{n(n+1)}$.

1. Montrer que pour tout $k \in \mathbb{N}^*$,

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}.$$

Solution : Je calcule la différence :

$$\frac{1}{k} - \frac{1}{k+1} = \frac{k+1}{k(k+1)} - \frac{k}{k(k+1)} = \frac{k+1-k}{k(k+1)} = \frac{1}{k(k+1)}.$$

2. En déduire la somme partielle $\sum_{k=1}^{n} \frac{1}{k(k+1)}$.

Solution : Je somme l'inégalité précédente pour tous les k entre 1 et n et j'obtiens une somme télescopique :

$$\begin{split} \sum_{k=1}^{n} \frac{1}{k(k+1)} &= \sum_{k=1}^{n} \frac{1}{k} - \frac{1}{k+1} \\ &= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} + \frac{1}{n} - \frac{1}{n+1} \\ &= 1 - \frac{1}{n+1}. \end{split}$$

3. En déduire que la série converge et préciser sa somme.

Solution : Comme $\lim_{n \to +\infty} 1 - \frac{1}{n+1} = 1 - 0 = 1$, alors la série converge et

$$\sum_{k=1}^{+\infty} \frac{1}{k(k+1)} = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k(k+1)} = \lim_{n \to +\infty} 1 - \frac{1}{n+1} = 1.$$