

<u>Home</u>

Gameboard

Physics Mechanics Kinematics

Relative Motion 5.1

Relative Motion 5.1

Figure 1: Achilles chasing the tortoise.

Quantities:

 v_{A} velocity of Achilles (m s^{-1})

 v_{T} velocity of tortoise $(\mathrm{m\,s^{-1}})$

T time for Achilles to catch up (s)

 s_0 initial displacement (m)

s displacement (m)

t time since start (s)

Equations:

$$v=rac{s}{t}$$

Use the equations above to derive expressions for:

The velocity of Achilles relative to the tortoise Part A

the velocity of Achilles relative to the tortoise v_{REL} .

The following symbols may be useful: T, s, s_0 , t, v_A , v_REL , v_T

Part B The time for Achilles to catch up

the time for Achilles to catch up with the tortoise T, in terms of v_{A} and v_{T} .

The following symbols may be useful: T, s, s_0, t, v_A, v_REL, v_T

Part C The displacement of the tortoise relative to Achilles

the displacement of the tortoise \boldsymbol{s} relative to Achilles as a function of time t.

The following symbols may be useful: T, s, s_0 , t, v_A , v_REL , v_T

Home Gameboard Physics Mechanics Kinematics Relative Motion 5.3

Relative Motion 5.3

Figure 1: Achilles chasing the tortoise.

Following on from Example 1, when the tortoise travelling at $18.0\,\mathrm{m\,s^{-1}}$ is $1.00\,\mathrm{km}$ away from Achilles, Achilles gets into a motor vehicle that can travel at $96.5\,\mathrm{km\,h^{-1}}$. Calculate how far ahead of the tortoise Achilles is after $2\,\mathrm{minutes}$.

Gameboard:

STEM SMART Physics 26 - Collisions

<u>Home</u> <u>Gameboard</u>

Physics

Mechanics Dynamics

Essential Pre-Uni Physics F2.5

Essential Pre-Uni Physics F2.5

A rocket (containing a space probe) is travelling at $7000\,\mathrm{m\,s^{-1}}$ in outer space. The $2000\,\mathrm{kg}$ probe is ejected from the front of the rocket (forwards) using a big spring. If the speed of the probe afterwards is $7200\,\mathrm{m\,s^{-1}}$, and the rest of the rocket has a mass of $6000\,\mathrm{kg}$, what is the speed of the rest of the rocket? Give your answer to 4 significant figures.

Gameboard:

STEM SMART Physics 26 - Collisions

<u>Home</u> Physics Mechanics Dynamics Elastic Collisions 1

Elastic Collisions 1

Linking Concepts in Pre-Uni Physics 4.1

This question has been amended and may differ from the version you have in your book (if you are using a printed book). The original question can be found <u>by clicking here</u>.

Before collision

After collision

Figure 1: Definitions of variables used in elastic collisions questions

Quantities:

p, P momentum (kg m s⁻¹)

v,V velocity (m $m s^{-1}$)

k, K kinetic energy (J)

m,M mass (kg)

Equations:

$$p=mv$$
 $k=rac{1}{2}mv^2$ $P=MV$ $K=rac{1}{2}MV^2$ $p_0+P_0=p_1+P_1$ $k_0+K_0=k_1+K_1$

Use the equations above to derive expressions for:

Part A Final velocity V_1 of M

the final velocity V_1 of M if M was <u>stationary</u> at the beginning and the initial and final velocities of m (v_0 and v_1) are known.

The following symbols may be useful: M, V_1, m, v_0, v_1

Part B V_1 with equal masses and m stopped

 V_1 if the masses are equal (M = m), M begins at rest $(V_0 = 0)$, m is stopped by the collision $(v_1 = 0)$ and v_0 is known.

The following symbols may be useful: M, V_0 , V_1 , m, v_0 , v_1

Part C Separation speed in terms of approach speed

the separation speed V_1-v_1 in terms of the approach speed v_0-V_0 .

Hint: Start by writing out $k_0 - k_1 = K_1 - K_0$ in terms of m, M, v_0 , v_1 , V_0 and V_1 . Factorise your expression, then simplify it remembering that $p_0 - p_1 = P_1 - P_0$.

The following symbols may be useful: V_0, V_1, v_0, v_1

Home Gameboard Physics Mechanics Dynamics Elastic Collisions 4.6

Elastic Collisions 4.6

In space, an elastic 'sling shot' collision is arranged between a $6.4 \times 10^{24} \, \mathrm{kg}$ planet moving at $9.0 \, \mathrm{km \, s^{-1}}$ towards a $6000 \, \mathrm{kg}$ spacecraft which is also moving at $4.5 \, \mathrm{km \, s^{-1}}$ towards the planet.

Calculate the final speed of the spacecraft.

Gameboard:

STEM SMART Physics 26 - Collisions

Home Gameboard Physics Mechanics Dynamics Elastic Collisions 4.7

Elastic Collisions 4.7

A neutron (of mass m) travelling at $2.4 \times 10^5 \, \mathrm{m \, s^{-1}}$ collides elastically with a <u>stationary</u> carbon nucleus (mass M=12m) head on. Calculate,

Part A The final speed of the nucleus

Calculate the final speed of the carbon nucleus.

Part B The percentage of the KE given to the nucleus

Calculate the percentage of the neutron's kinetic energy which is given to the nucleus.

Gameboard:

STEM SMART Physics 26 - Collisions

Home Gameboard Physics Mechanics Dynamics Elastic Collisions 4.8

Elastic Collisions 4.8

A neutron (of mass m) travelling at $2.4 \times 10^5 \, \mathrm{m \, s^{-1}}$ collides elastically with a <u>stationary</u> iron nucleus (mass M=65m) head on. Calculate,

Part A The final speed of the nucleus

Calculate the final speed of the iron nucleus.

Part B The percentage of the energy given to the nucleus

Calculate the percentage of the neutron's kinetic energy which is given to the nucleus.

Gameboard:

STEM SMART Physics 26 - Collisions