Introduction to quantum mechanics I

Tristan Villain – Pierre-François Cohadon – Qinhan Wang Séance de tutorat du 26 septembre 2024

TD de tutorat 1 : Opérateurs

1 Espace de Hilbert - Opérateurs

Soit \mathcal{H} un \mathbb{C} -espace vectoriel dont on note $\langle \cdot | \cdot \rangle$ le produit hermitien. On rappelle que $\langle \varphi | \psi \rangle = \overline{\langle \psi | \varphi \rangle}$

Soit \widehat{A} un endomorphisme de \mathcal{H} . On définit \widehat{A}^{\dagger} tel que :

$$\langle \psi | \widehat{A}^{\dagger} | \varphi \rangle = \overline{\langle \varphi | \widehat{A} | \psi \rangle}$$

- 1. Montrer que :
 - (a) si $\lambda \in \mathbb{C}$, $(\lambda \widehat{A})^{\dagger} = \lambda^* \widehat{A}^{\dagger}$;
 - (b) $(\widehat{A} + \widehat{B})^{\dagger} = \widehat{A}^{\dagger} + \widehat{B}^{\dagger}$;
 - (c) $(\widehat{A} \circ \widehat{B})^{\dagger} = \widehat{B}^{\dagger} \circ \widehat{A}^{\dagger}$.
- 2. Une application \widehat{A} est dite hermitienne $ssi\ \widehat{A}^{\dagger} = \widehat{A}$. Montrer que les éléments diagonaux et les valeurs propres d'une application hermitienne sont réelles.
- 3. Une application \widehat{U} est dite unitaire ssi $\widehat{U}^{\dagger} = \widehat{U}^{-1}$. Montrer que les valeurs propres d'une application unitaire sont des nombres complexes de module 1.
- 4. Si \widehat{A} est hermitienne, montrer que $\forall t \in \mathbb{R}, \ \widehat{U} = e^{it\widehat{A}}$ est unitaire.

2 Espace de dimension finie

1. On se place dans l'espace $\mathcal{H} = \mathbb{C}^2$. Montrer que le polynôme caractéristique d'une matrice A s'écrit :

$$\chi(\lambda) = \det(A - \lambda \operatorname{Id}) = \lambda^2 - \operatorname{Tr}(A)\lambda + \det(A).$$

2. On note **u** le vecteur unitaire repéré par les coordonnées polaires (θ, ϕ) (θ étant l'angle de **u** avec (Oz)) et on considère $\sigma_u = \sigma_x u_x + \sigma_y u_y + \sigma_z u_z$. Donner l'expression de σ_u dans la base où σ_z est diagonale. Calculer les vecteurs propres et les valeurs propres associées. On donne l'expression des matrices de Pauli :

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

3 Quelques propriétés des fonctions d'opérateurs

Soit \widehat{A} une observable, dont on note λ_{α} les valeurs propres (qu'on peut supposer non-dégénérées : $\alpha \neq \beta \Rightarrow \lambda_{\alpha} \neq \lambda_{\beta}$) et $|\psi_{\alpha}\rangle$ les états propres correspondants.

Soit f une fonction du plan complexe dans lui-même. On définit l'opérateur $f(\widehat{A})$ par son action sur les états propres :

 $f(\widehat{A})|\psi_{\alpha}\rangle = f(\lambda_{\alpha})|\psi_{\alpha}\rangle$

1. Montrer que :

$$f(\widehat{A}) = \sum_{\alpha} f(\lambda_{\alpha}) \widehat{P}_{\alpha},$$

où $\widehat{P}_{\alpha} = |\psi_{\alpha}\rangle\langle\psi_{\alpha}|$ est le projecteur sur le sous-espace propre associé à λ_{α} .

- 2. À quelle condition $f(\widehat{A})$ est-elle une observable?
- 3. Montrer que:

$$\widehat{P}_{\alpha} = \prod_{\beta \neq \alpha} \frac{\widehat{A} - \lambda_{\beta}}{\lambda_{\alpha} - \lambda_{\beta}}.$$

On suppose maintenant que f est développable en série entière. On a alors naturellement :

$$f(\widehat{A}) = \sum_{n} a_n \widehat{A}^n.$$

4. Changement de base

Soit $\widehat{\Pi}$ un opérateur (unitaire) de changement de base.

Montrer que $\widehat{\Pi}^{\dagger} f(\widehat{A}) \widehat{\Pi} = f(\widehat{\Pi}^{\dagger} \widehat{A} \widehat{\Pi}).$

5. Soit \widehat{R} un opérateur représenté dans une certaine base par la matrice :

$$\widehat{R} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right).$$

Trouver les valeurs propres de \widehat{R} .

En déduire la matrice de $f(\widehat{R}) = \exp(i\theta \widehat{R})$ dans la base de départ.

Cet opérateur est-il une observable?

- 6. Montrer que $[\widehat{A}, \widehat{B}\widehat{C}] = [\widehat{A}, \widehat{B}]\widehat{C} + \widehat{B}[\widehat{A}, \widehat{C}].$
- 7. Soient \widehat{A} et \widehat{B} deux observables qui commutent avec $[\widehat{A}, \widehat{B}]$. Montrer que $[\widehat{A}, f(\widehat{B})] = [\widehat{A}, \widehat{B}]f'(\widehat{B})$.

4 Inégalité de Heisenberg

1. Que dire de deux observables commutant entre elles?

2. Soient deux observables \widehat{A} et \widehat{B} et un système dans un état $|\psi\rangle$ quelconque. Montrer que :

$$\Delta \widehat{A} \cdot \Delta \widehat{B} \geqslant \frac{1}{2} |\langle [\widehat{A}, \widehat{B}] \rangle|.$$

Indication:

On pourra considérer l'opérateur $\widehat{C}(\lambda) = \widehat{\delta A} + i\lambda \widehat{\delta B}$) où λ est un réel quelconque, $\widehat{\delta A} = \widehat{A} - \langle \widehat{A} \rangle$ et $\widehat{\delta B} = \widehat{B} - \langle \widehat{B} \rangle$, et calculer la norme de $\widehat{C}(\lambda)|\psi\rangle$.