Отчет о выполненой лабораторной работе 1.1.4

Воронин Денис, Б04-403 October 8, 2024

Изучение статистических закономерностей на примере измерения фона космического излучения

1 Аннотация

Цель работы: на примере статистики регистрации фоновых космических частиц изучить статистические закономерности однородного во времени случайного процесса; проверить возможность описания исследуемого процесса статистическими законами

В работе используются: счётчик Гейгера—Мюллера, компьютер с интерфейсом для связи со счётчиком, расчётная программа.

2 Теоретические сведения

2.1 Оборудование

В данной работе для регистрации космического излучения используется счётчик Гейгера—Мюллера. Счётчик представляет собой наполненный газом металлический цилиндр с двумя электродами. Одним из электродов (катодом) служит сам корпус. Другим (анодом) является тонкая нить, натянутая вдоль оси цилиндрического корпуса. Необходимое напряжение (400 В) подаётся на счётчик от смонтированного вместе с ним блока питания через повышающий трансформатор. Радиоактивное излучение (космические частицы) ионизует молекулы газа, которым наполнен счётчик, а также выбивает электроны из его стенок. Образовавшиеся электроны, двигаясь в сильном электрическом ноле между электродами счётчика, соударяются с молекулами газа, выбивая из них новые — вторичные электроны. Ускоряясь полем, первичный и вторичные электроны снова ионизуют газ, и т.д. В результате образуется лавина электронов, и через счётчик протекает кратковременный импульс тока (разряд). Этот импульс и регистрируется электрической цепью установки, оцифровывается платой аналогово-цифрового преобразователя, и информация о нём через USBинтерфейс передаётся на компьютер. (рис.1)

Число зарегистрированных частиц за некоторое время зависит, вообще говоря, от размеров счётчика, положения и ориентации его в пространстве, от давления и состава газа и от материала стенок счётчика. Однако при фиксированном положении конкретного счётчика их число пропорционально средней интенсивности пронизывающего счётчик ионизирующего излучения. При постоянной фоновой интенсивности общее количество зарегистрированных частиц будет, конечно, пропорционально времени наблюдения t.

img6.jpg

Рисунок 1: Устройство счетчика

2.2 Базовые погрешности

Наиболее важной характеристикой является среднее число регистрируемых частиц в единицу времени. Если $n_1, n_2, ..., n_N$ - результаты N проведённых в одинаковых условиях измерений, можно вычислить выборочное среднее значение числа измерений:

$$\langle n \rangle = \frac{1}{N} \sum_{i=1}^{N} n_i$$

Если продолжать проводить измерения, можно ожидать, что выборочное среднее будет стремиться к некоторому конечному пределу, который можно назвать «истинным» средним значением числа регистрируемых частиц.

Рисунок 2: График распределения Пуассона

Втеории вероятностей оно называется «математическим ожиданием» случайной величины:

$$\overline{n} = \lim_{N \to \infty} \langle n \rangle$$

Количественно меру флуктуаций среднего значения от опыта к опыту принято измерять среднеквадратичным (или стандартным) отклонением σ_n По определению, средний квадрат отклонения, называемый также дисперсией, равен:

$$\sigma_n^2 = \frac{1}{N} \sum_{i=1}^{N} (n_i - \langle n \rangle)^2 = \langle (n_i - \langle n \rangle)^2 \rangle$$

Погрешность среднего значения $\langle n \rangle$ при независимых измерениях связана с погрешностью отдельного измерения формулой:

 $\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}}$

Таким образом, увеличивая количество измерений, среднее значение приближается к «истинному» п. При конечном N истинное среднее с высокой вероятностью лежит в интервале

$$\overline{n} = \langle n \rangle \pm \frac{\sigma_n}{\sqrt{N}}$$

2.3 Пуассоновский процесс

Если события однородны во времени и каждое следующее событие не зависит от прошлого, то последовательность таких событий называют *пуассоновский процессом*.

Вероятности ω_n того, что в эксперименте будет обнаружено п частиц, для распределения Пуассона имеют вид:

$$\omega_n = \frac{\overline{n}^n}{n!} e^{-\overline{n}}$$

При больших $\overline{n} > 10$ график распределения (рис.2) стремиться к гладкой симметричной кривой, быстро убывающей к нулю при отдалении от центра.

Для пуассоновского процесса справедливо равенство:

$$\sigma = \sqrt{\overline{n}}$$

То есть среднеквадратичное отклонение равно корню из среднего. На практике можно ожидать приближённое равенство для выборочных значений:

 $\sigma_n \approx \sqrt{\langle n \rangle}$

3 Погрешность эксперимента

Если подставить основное свойство распределения Пуассона в формулу погрешности среднего значения, то получится среднеквадратичная погрешность определения среднего:

$$\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}} = \sqrt{\frac{\langle n \rangle}{N}}$$

Для относительного значения погрешности:

$$\varepsilon_{\langle n \rangle} = \frac{\sigma_{\langle n \rangle}}{\langle n \rangle} = \frac{1}{\sqrt{\langle n \rangle N}}$$

Таким образом, единственный способ увеличить точность опыта — увеличивать общее число регистрируемых частиц n_{Σ} за счёт увеличения совокупности времени измерений t. Например, для достижения точности измерений интенсивности фона в $\varepsilon=1\%$ необходимо зарегистрировать в общей сложности сложности не менее $\frac{1}{0,01^2}=10^4$ частиц.

4 Обработка результатов

4.1 Вычисление погрешностей

В данном эксперименте будут обработанны данные для 4x времен: $\tau = 10 \text{c}, \tau = 20 \text{c}, \tau = 40 \text{c}, \tau = 80 \text{c}$. Вычислим среднее число срабатываний счетчика за 10 c, 20 c, 40 c, 80 c:

$$\overline{n_{10}} = \frac{1}{10} \sum_{i=1}^{10} n_i \approx 12, 8$$

$$\overline{n_{20}} = \frac{1}{20} \sum_{i=1}^{20} n_i \approx 25, 7$$

$$\overline{n_{40}} = \frac{1}{40} \sum_{i=1}^{40} n_i \approx 52,28$$

$$\overline{n_{80}} = \frac{1}{80} \sum_{i=1}^{80} n_i \approx 104, 7$$

Вычислим стандартное отклонение для 10с,20с,40с,80с:

$$\sigma_{n_{10}} = \sqrt{\frac{1}{10} \sum_{i=1}^{10} (n_i - \overline{n_{10}})^2} \approx 4,04$$

$$\sigma_{n_{20}} = \sqrt{\frac{1}{20} \sum_{i=1}^{20} (n_i - \overline{n_{20}})^2} \approx 6,41$$

$$\sigma_{n_{40}} = \sqrt{\frac{1}{40} \sum_{i=1}^{40} (n_i - \overline{n_{40}})^2} \approx 6,96$$

$$\sigma_{n_{80}} = \sqrt{\frac{1}{50} \sum_{i=1}^{80} (n_i - \overline{n_{80}})^2} \approx 8,26$$

Рассчитаем среднеквадратическое отклонение по свойству процесса Пуассона и сравним с стандартной:

$$\sigma_{n_{10}} = \sqrt{\overline{n_{10}}} \approx 3,58 \pm 4,04$$

$$\sigma_{n_{20}} = \sqrt{\overline{n_{20}}} \approx 5,07 \pm 6,41$$

$$\sigma_{n_{40}} = \sqrt{\overline{n_{40}}} \approx 7,23 \pm 6,96$$

 $\sigma_{n_{80}} = \sqrt{\overline{n_{40}}} \approx 10,23 \pm 8,26$

Определим долю случаев, когда отклонения от среднего значения не превышают σ_n и $2\sigma_n$ и сравним с теоретическими оценками - Таблица 8. Рассчитаем погрешность среднего значения $\sigma_{\langle n \rangle} = \frac{\sigma_n}{\sqrt{N}}$:

$$\sigma_{\langle n_{10}\rangle} = \frac{\sigma_{n_{10}}}{\sqrt{400}} \approx 0, 18$$

$$\sigma_{\langle n_{20}\rangle} = \frac{\sigma_{n_{20}}}{\sqrt{200}} \approx 0, 36$$

$$\sigma_{\langle n_{40}\rangle} = \frac{\sigma_{n_{20}}}{\sqrt{100}} \approx 0, 723$$

$$\sigma_{\langle n_{80}\rangle} = \frac{\sigma_{n_{20}}}{\sqrt{50}} \approx 1, 45$$

Для каждого τ вычислим среднюю интенсивность регистрируемых частиц в секунду $\overline{j} = \frac{\overline{n}}{\tau}$ и её погрешность $\sigma_j = \frac{\sigma_n}{\tau}$:

$$\overline{j_{10}} = \frac{\overline{n_{10}}}{10} \approx 1,28$$

$$\sigma_{j_{10}} = \frac{\sigma_{\langle n_{10} \rangle}}{10} \approx 0,018$$

$$\overline{j_{10}} = \langle j_{10} \rangle \pm \sigma_{j_{10}} = 1,28 \pm 0,018$$

$$\langle j_{20} \rangle = \frac{\overline{n_{20}}}{20} \approx 1,28$$

$$\sigma_{j_{20}} = \frac{\sigma_{\langle n_{20} \rangle}}{20} \approx 0,018$$

$$\overline{j_{20}} = \langle j_{20} \rangle \pm \sigma_{j_{20}} = 1,28 \pm 0,018$$

$$\langle j_{40} \rangle = \frac{\overline{n_{40}}}{40} \approx 1,3$$

$$\sigma_{j_{40}} = \frac{\sigma_{\langle n_{40} \rangle}}{40} \approx 0,018$$

$$\overline{j_{40}} = \langle j_{40} \rangle \pm \sigma_{j_{40}} = 1,3 \pm 0,018$$

$$\langle j_{80} \rangle = \frac{\overline{n_{80}}}{80} \approx 1,3$$

$$\sigma_{j_{80}} = \frac{\sigma_{\langle n_{80} \rangle}}{80} \approx 0,018$$

$$\overline{j_{80}} = \langle j_{80} \rangle \pm \sigma_{j_{80}} = 1,3 \pm 0,018$$

$$\overline{j_{80}} = \langle j_{80} \rangle \pm \sigma_{j_{80}} = 1,3 \pm 0,018$$

Заметим, что средняя интенсивность регистрируемых частиц в секунду не зависит от величины интервала τ и числа точек N.

Обработаем данные из вышевычисленных и таблиц с данными и построим гистограммы зависимости долей случаев от их числа. Экспериментальные гистограммы (рисунки 3-6) с большой точностью согласуются с распределениями Пуассона.

4.2 Вывод

На примере статистики регистрации фоновых космических частиц изучил статистические закономерности однородного во времени случайного процесса. Выяснил, что средняя интенсивность регистрируемых частиц в секунду не зависит от величины интервала τ и числа точек N. Исследовал Пуассоновский процесс и распределение Гаусса.

5 Данные, таблицы и гистограммы

	1	2	3	4	5	6	7	8	9	10
0	18	24	26	23	37	27	15	15	15	27
10	15	20	33	34	27	31	32	28	23	27
20	32	28	25	32	22	20	30	23	26	34
30	20	27	35	24	24	27	20	31	23	29
40	30	29	27	22	24	28	21	39	29	33
50	35	21	24	24	26	23	24	22	28	18
60	24	27	36	24	29	28	22	40	26	16
70	30	24	21	32	26	20	26	31	31	28
80	24	29	25	25	26	20	32	21	22	38
90	29	26	28	22	30	24	27	31	32	36
100	25	25	29	27	23	30	28	28	16	28
110	27	24	26	26	27	33	23	21	23	25
120	28	31	37	27	34	24	28	33	30	23
130	29	30	27	23	27	24	23	23	31	32
140	27	20	23	28	25	24	23	26	23	23
150	23	26	28	27	29	22	25	34	24	30
160	28	21	33	23	22	28	31	22	34	29
170	25	32	16	31	19	32	32	24	30	19
180	33	24	27	27	22	22	33	29	18	21
190	25	31	30	24	19	24	29	30	31	26

Таблица 1: Число срабатываний счетчика за $\tau=20~{\rm c}$

	1	2	3	4	5	6	7	8	9	10
0	42	49	64	30	42	53	61	63	51	59
10	53	54	50	49	54	62	48	62	51	52
20	44	63	55	50	49	44	49	51	49	53
30	51	60	57	62	42	54	53	46	57	59
40	53	50	46	53	60	55	50	54	58	68
50	50	56	53	56	44	51	52	60	44	48
60	59	64	58	61	53	59	50	51	46	63
70	47	51	49	49	46	49	55	51	59	54
80	49	56	50	53	63	57	47	51	56	49
90	57	54	44	62	39	56	54	43	59	57

Таблица 2: Число срабатываний счетчика за $\tau = 40~{\rm c}$

	1	2	3	4	5	6	7	8	9	10
0	91	94	95	124	110	107	99	116	110	103
10	107	105	93	100	102	106	113	108	108	100
20	116	114	104	94	101	98	92	116	111	110
30	96	91	111	104	116	99	95	122	100	107
40	112	109	101	102	95	114	112	109	98	101

Таблица 3: Число срабатываний счетчика за $\tau = 80~{\rm c}$

Число импульсов, n_i	Доля случаев, ω_n
4	0.003
5	0.003
6	0.023
7	0.033
8	0.030
9	0.073
10	0.083
11	0.123
12	0.093
13	0.113
14	0.090
15	0.078
16	0.088
17	0.063
18	0.038
19	0.028
20	0.010
21	0.015
22	0.005
23	0.008
24	0.003
25	0.005

Таблица 4: Данные для гистограммы распределение при $\tau=10~{\rm c}$

Число импульсов, n_i	Доля случаев, ω_n
15	0.020
16	0.010
17	0.005
18	0.025
19	0.025
20	0.055
21	0.035
22	0.055
23	0.070
24	0.090
25	0.050
26	0.075
27	0.110
28	0.090
39	0.035
30	0.035
31	0.075
32	0.030
33	0.020
34	0.030
35	0.020
36	0.015
37	0.020
38	0.005

Таблица 5: Данные для гистограммы распределение при $\tau=20~{\rm c}$

Число импульсов, n_i	Доля случаев, ω_n
30	0.010
38	0.020
42	0.040
43	0.010
44	0.020
45	0.050
46	0.020
47	0.040
48	0.050
49	0.090
50	0.050
51	0.050
52	0.060
53	0.090
54	0.040
55	0.060
56	0.050
57	0.050
58	0.020
59	0.040
61	0.010
62	0.030
63	0.030
64	0.050
65	0.010
66	0.010

Таблица 6: Данные для гистограммы распределение при $\tau = 40~{\rm c}$

Число импульсов, n_i	Доля случаев, ω_n
91	0.040
92	0.040
93	0.020
94	0.040
95	0.060
96	0.020
98	0.020
99	0.040
100	0.060
101	0.040
102	0.060
103	0.020
104	0.040
105	0.090
106	0.020
107	0.020
108	0.060
109	0.060
110	0.020
111	0.020
112	0.060
113	0.040
114	0.040
116	0.080
122	0.020
124	0.0200

Таблица 7: Данные для гистограммы распределение при $\tau = 80~{\rm c}$

Число импульсов, n_i	Доля случаев при распределении Пуассона, ω_n
4	0.003
5	0.008
6	0.017
7	0.031
8	0.049
9	0.070
10	0.090
11	0.105
12	0.112
13	0.110
14	0.100
15	0.086
16	0.069
17	0.052
18	0.037
19	0.025
20	0.016
21	0.010
22	0.006
23	0.003
24	0.002
25	0.001

Таблица 8: Данные для гистограммы распределение Пуассона при $\tau=10~{\rm c}$

Ошибка	Число случаев	Доля случаев, %	Теоретическая оценка
$\pm \sigma_{n_{20}} = \pm 6,41$	145	72,5	68
$\pm 2\sigma_{n_{20}} = \pm 12,82$	188	94	95
$\pm 3\sigma_{n_{20}} = \pm 19,23$	200	100	99
$\pm \sigma_{n_{40}} = \pm 6,96$	67	67	68
$\pm 2\sigma_{n_{40}} = \pm 13,92$	97	97	95
$\pm 3\sigma_{n_{40}} = \pm 20,88$	100	100	99
$\pm \sigma_{n_{80}} = \pm 8,26$	37	74	75
$\pm 2\sigma_{n_{80}} = \pm 16,52$	48	96	95
$\pm 3\sigma_{n_{80}} = \pm 24,78$	50	100	99

Таблица 9: Оценка распределения доли случаев

Рисунок 3: Гистограмма при $\tau=10$

Рисунок 4: Гистограмма при $\tau=20$

Рисунок 5: Гистограмма при $\tau=40$

Рисунок 6: Гистограмма при $\tau=80$

Рисунок 7: График Пауссона для $\tau=10$

Рисунок 8: Наложение Пауссона и экспериментальной гистограммы для $\tau=10$