Overview

Andrew Showers

Fully Connected Neural Network Experiments

	Image	Learning	Batch	Epochs	Loss	Training	Training	Testing	Testing	Runtime
	Size	Rate	Size		Function	Loss	Accuracy	Loss	Accuracy	(seconds)
1	32x32	1e ⁻⁴	32	100	Cross Ent.	0.56994	0.7945	0.78156	0.729	19.22
2	32x32	1e ⁻⁴	32	200	Cross Ent.	0.47305	0.828	1.02617	0.701	25.40
3	32x32	1e ⁻⁴	32	500	Cross Ent.	0.30826	0.89	1.32393	0.704	42.68
4	32x32	1e ⁻⁴	16	100	Cross Ent.	0.83195	0.691	0.92442	0.66	16.21
5	32x32	1e ⁻⁴	16	500	Cross Ent.	0.55330	0.7975	0.99478	0.71	26.73
6	32x32	1e ⁻⁴	16	1000	Cross Ent.	0.33097	0.8535	1.10919	0.694	40.67
7	32x32	5e ⁻⁵	16	500	Cross Ent.	0.48625	0.82325	0.85533	0.714	27.18
8	32x32	5e ⁻⁵	16	1000	Cross Ent.	0.29790	0.8975	0.93337	0.739	40.16
9	32x32	5e ⁻⁵	16	2000	Cross Ent.	0.17407	0.9375	1.31197	0.698	66.07
10	32x32	1e ⁻⁴	8	5000	Cross Ent.	0.26871	0.89625	1.29394	0.728	82.17

Convolutional Neural Network Experiments

	Image	Learning	Batch	Epochs	Loss	Training	Training	Testing	Testing	Runtime
	Size	Rate	Size		Function	Loss	Accuracy	Loss	Accuracy	(seconds)
11	32x32	1e ⁻⁴	32	100	Cross Ent.	0.99127	0.602	1.12252	0.558	67.22
12	32x32	1e ⁻⁴	32	200	Cross Ent.	0.74052	0.726	0.93981	0.651	206.34
13	32x32	1e ⁻⁴	32	500	Cross Ent.	0.65623	0.75825	0.86704	0.687	295.02
14	32x32	1e ⁻⁴	32	1000	Cross Ent.	0.43259	0.8485	0.79208	0.732	572.06
15	32x32	3e ⁻⁴	32	100	Cross Ent.	0.84011	0.68525	0.98737	0.627	68.99
16	32x32	3e ⁻⁴	32	200	Cross Ent.	0.66858	0.7485	0.87709	0.66	122.83
17	32x32	3e ⁻⁴	32	500	Cross Ent.	0.39467	0.853	0.89863	0.722	274.77

A significant problem was avoiding overfitting. By allowing the model to train for too long, or by having an overly complex model, the model would learn to fit the training data and would no longer generalize well to testing data that has never been introduced to the model. This can be seen when the training and testing accuracy begin to diverge. For example, experiments 1 and 3 differed by the number of epochs from 100 to 500. While training accuracy increased as a result, the training accuracy decreased. Since the end-goal is to have a model usable to new, untested data, the testing accuracy is the metric that should be maximized.

For the experiments above, the best test accuracy came from the fully connected neural network in experiment 8 with a test accuracy of 73.9%. This implemented a smaller batch size and learning rate, but a significant number of epochs. However, doubling the epochs as seen in experiment 9 showed significant overfitting.