

第六章 凸轮机构及其设计

徐鹏 哈尔滨工业大学(深圳)

本章重点:

- 1)从动件运动规律特征及其选择原则(掌握);
- 2) 凸轮轮廓曲线的设计(作图法,解析法);
- 3) 凸轮机构的基本尺寸确定,包括压力角、基圆半径等。

典型的凸轮机构的工作原理

凸轮机构可以通过合理设计凸轮的轮廓曲线,推动从 动件精确的实现各种预期的运动规律。

§ 6-1 凸轮机构的应用及分类

一、凸轮机构的应用

配气凸轮机构(00)

等速运动凸轮绕线机(00)

圆柱凸轮输送机(00)

双凸轮组合写R字机构(00)

凸轮间歇机构(00)

凸轮机构的分类

1、按两活动构件之间 相对运动特性分类 凸轮机构分类

盘形凸轮 空间凸轮机构

2、按从动件运动副 元素形状分类

尖顶从动件 平底从动件

3、按凸轮高副的 锁合方式分类

- 1、按两活动构件之间的相对运动特性分类
- (1) 平面凸轮机构
 - ① 盘形凸轮

② 移动凸轮

(2) 空间凸轮机构

2、按从动件运动副元素形状分类

(1) 直动尖顶从动件

① 对心直动尖顶从动件

② 偏置直动尖顶从动件

(2) 直动滚子从动件

(3) 直动平底从动件

根据运动形式的不同,以上三种从动件还可分为直动从动件,摆动从动件,平面复杂运动从动件。

① 摆动尖顶从动件

② 摆动滚子从动件

③ 摆动平底从动件

④ 平面复杂运动从动件

3、按凸轮高副的锁合方式分类

- (1) 力锁合(重力,弹簧)
 - a) 重力锁合凸轮(00)
 - b) 弹簧锁合凸轮(00)

(2) 形锁合

槽道凸轮机构(00)

等宽凸轮机构(00)

等径凸轮机构(00)

共轭凸轮机构(00)

凸轮机构的优缺点:

优点:

只要设计出适当的凸轮轮廓,即可使从动件实现 预期的运动规律;结构简单、紧凑、工作可靠。应用: 自动机床,轻工、纺织、印刷、食品、包装等机电一 体化产品中。

缺点:

凸轮为高副接触(点或线),压强较大,容易磨损。不可变。

§ 6-2 从动件运动规律及其选择

一、凸轮机构的运动循环及基本名词术语

名称	代号	名称	代号
凸轮基圆		从动件远休程	
基圆半径	r_0	从动件近休程	
偏距	e	从动件位移	S
偏距圆		推程运动角	Φ_{0}
从动件行程	h	回程运动角	${\it \Phi}_0'$
从动件推程		远休程角	Φ_{s}
从动件回程		近休程角	Φ_s'

二、从动件运动规律

从动件的运动规律(Law of motion), 由凸轮轮廓曲线(Cam profile) 形状决定。从动件不同的运动规律,要求凸轮具有不同形状的轮廓曲线。 正确选择和设计从动件的运动规律,是凸轮机构设计的重要环节。

所谓"从动件运动规律"是指凸轮的从动件的位移(S)、速度(V)、 加速度 (a) 随凸轮转角 (φ) 的变化规律。

$$s = s(\varphi)$$
 (规划, 给定)
 $v = v(\varphi) = \frac{ds}{dt} = \frac{ds}{d\varphi} \cdot \frac{d\varphi}{dt} = \frac{ds}{d\varphi} \varphi$

$$a = \frac{dv}{dt} = \frac{d\left(\frac{ds}{d\varphi}\omega\right)}{dt} = \frac{d\left(\frac{ds}{d\varphi}\right)}{dt}\omega + \frac{d\omega}{dt}\frac{ds}{d\varphi} = \frac{d\left(\frac{ds}{d\varphi}\right)}{d\varphi}\frac{d\varphi}{dt}\omega + \frac{d\omega}{dt}\frac{ds}{d\varphi} = \boxed{\frac{d^2s}{d\varphi^2}}\omega^2$$

哈爾濱工業大學 HARBIN INSTITUTE OF TECHNOLOGY

基本运动规律(理想)

(1)等速运动

$$s = \frac{h}{\Phi_0} \varphi \quad v = \frac{h}{\Phi_0} \omega \quad a = 0$$

- ●特点:有刚性冲击。
- ●刚性冲击:

加速度无穷大突变引起的冲击。

●应用:低速,轻载。

哈爾濱工業大學

(2)等加等减速运动

推程(前半段)
$$s = \frac{2h}{{\Phi_0}^2} \varphi^2$$

$$v = \frac{4h\varphi}{\Phi_0^2}\omega$$

$$a = \frac{4h}{\Phi_0^2}\omega^2$$

- ●特点:有柔性冲击
- ●柔性冲击:

加速度有限值突变引起的冲击。

●应用:中速,轻载。

哈爾濱工業大學

(3)余弦加速度运动规律

推程
$$s = \frac{h}{2} \left[1 - \cos \left(\frac{\pi}{\Phi_0} \varphi \right) \right]$$

$$v = \frac{\pi h \omega}{2\Phi_0} \sin\left(\frac{\pi}{\Phi_0}\varphi\right)$$

$$a = \frac{\pi^2 h \omega^2}{2\Phi_0^2} \cos \left(\frac{\pi}{\Phi_0} \varphi\right)$$

加速度曲线不连续,存在柔 性冲击。余弦加速度运动规律适 用于中速中载场合。

哈爾濱工業大學

HARRIN INSTITUTE OF TECHNOLOGY

组合运动规律

为了克服单一运动规律的某些缺陷,获得更好的运动和动力特性,可以把几种运动规律拼接起来,构成组合运动规律(Law of combined motion)。

组合原则

位移曲线、速度曲线必须连续,高速凸轮机构加速度曲线也必须连续。

各段运动规律的位移、速度 和加速度曲线在连接点处其值应 分别相等。

正弦加速度曲线与直线组合

凸轮从动件的运动规律有两类

基本运动规律	组合运动规律		
等速(直线)	抛物线、直线、抛物线		
等加等减速(抛物线)	简谐、直线、简谐		
余弦加速度(简谐)	摆线、直线、摆线运动规律		
正弦加速度(摆线)	摆线、抛物线、摆线		
改进正弦加速度			
3-4-5多项式			
4-5-6-7多项式			

视格严格 功夫到家

若干种从动件运动规律特性比较

运动规律	$v_{ m max} = (h\omega/\Phi_0) \times$	$a_{ m max} = (h\omega^2/\Phi_0^2) \times$	冲击	应用场合
等速	1.00	8	刚性	低速轻负荷
等加速等减速	2.00	4.00	柔性	中速轻负荷
余弦加速度	1.57	4.93	柔性	中低速中负
正弦加速度	2.00	6.28		中高速轻负
3-4-5多项式	1.88	5.77		高速中负荷
改进型等速	1.33	8.38		低速重负荷
改进型正弦加速度	1.76	5.53		中高速重负
改进型梯形加速度	2.00	4.89		高速轻负荷

规格严格 功夫到家

§ 6-3 按预定运动规律设计盘形凸轮廓线

一、凸轮设计的基本问题

以内燃机为例:内燃机动画

二、凸轮设计的步骤

直动从动件盘形凸轮的设计步骤

- 1、确定 $s = s(\varphi)$
- 2、确定 r_0 , e
- 3、设计理论廓线
- 4、设计实际廓线

摆动从动件盘形凸轮的设计步骤

- 1、确定 $\phi = \phi(\varphi)$
- 2、确定 a, l, r₀
- 3、设计理论廓线
- 4、设计实际廓线

三、凸轮理论廓线设计的基本原理

凸轮轮廓线的设计方法有两种——图解法和解析法。

1、直动从动件凸轮理论轮廓设计——图解法

确定凸轮回转方向,绘制凸轮基 圆、偏距圆和去掉滚子。

凸轮轮廓线设计方法基本原理 (61)

直动推杆盘形凸轮设计(61)(作图法)

2、摆动从动件凸轮理论轮廓设计——图解法

确定凸轮回转方向, 绘制凸轮基圆、机架和摆杆长 和去掉滚子。

摆动推杆盘形凸轮设计(作图法)

3、直动从动件凸轮理论轮廓设计——解析法

作图法的缺点

繁琐、误差较大。

解析法的优点

计算精度高、速度快,计算结果得到的数据点,编制加工程序,用于凸轮在数控机床上的加工。

解析法的设计结果

根据基本尺寸的设计结果以及从动件的运动规律,求出凸轮轮廓曲线的方程,利用计算机精确地计算出凸轮轮廓曲线上各点的坐标值。

3、直动从动件凸轮理论轮廓设计——解析法

(1) 建立坐标系

坐标系O-x,y与凸轮(或机架)固连,为固定坐标系

坐标系O-x',y'与从动件固连,为动坐标系

根据反转法原理,凸轮不动,从动件转动和移动。

直动滚子从动件盘形凸轮机构

已知参数

$$r_0$$
, r_r , e , ω , $s=s(\varphi)$

理论轮廓曲线(Pitch curve)方程

$$s_0 = \sqrt{r_0^2 - e^2}$$

$$x_B = (s_0 + s)\sin\varphi + e\cos\varphi$$

$$y_B = (s_0 + s)\cos\varphi - e\sin\varphi$$

借用矩阵的形式

$$\begin{bmatrix} x_{\rm B} \\ y_{\rm B} \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} e \\ (s_0 + s) \end{bmatrix}$$

 \mathbf{r}_0

注意 e为代数量,若从动件导路偏在y轴的右侧,则e > 0;否则,e < 0。对 心移动从动件, e=0。规定凸轮逆时针方向转动时, 转角 $\phi>0$; 否则, $\phi<0$ 。

$$\begin{bmatrix} x_{\mathbf{B}} \\ y_{\mathbf{B}} \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} e \\ s_0 + s(\varphi) \end{bmatrix}$$

(2) 动坐标系中凸轮理论轮廓的方程

$$\begin{cases} x' = e \\ y' = s_0 + s \end{cases}$$

借用矩阵形式

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} e \\ s_0 + s \end{bmatrix}$$

式中:

$$s_0 = \sqrt{r_0^2 - e^2}$$

(3) 坐标变换

(4) 固定坐标系中凸轮理论轮廓的方程

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{cases} x = x' \cos \varphi + y' \sin \varphi \\ y = -x' \sin \varphi + y' \cos \varphi \end{cases}$$

式中:
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} e \\ s_0 + s \end{bmatrix}$$

理论轮廓曲线方程

$$\begin{cases} s = s(\varphi) \\ x = (s_0 + s)\sin\varphi + e\cos\varphi \\ y = (s_0 + s)\cos\varphi - e\sin\varphi \end{cases}$$

4、摆动从动件凸轮理论轮廓设计——解析法

(1) 建立坐标系

坐标系O-x,y

与凸轮固连, 为固定坐标系

坐标系O-x', y'

与从动件固连, 为动坐标系

(2) 动坐标系中凸轮理论轮廓的方程

(3) 坐标变换

$$B(x', y') \rightarrow B(x, y)$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

(4) 固定坐标系中凸轮理论轮廓的方程

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{cases} x = x' \cos \varphi + y' \sin \varphi \\ y = -x' \sin \varphi + y' \cos \varphi \end{cases}$$
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a - l \cos(\psi_0 + \psi) \\ l \sin(\psi_0 + \psi) \end{bmatrix}$$

理论轮廓曲线方程

$$\begin{cases} \psi = \psi(\varphi) \\ x = \left[a - l \cos(\psi_0 + \psi) \right] \cos \varphi + l \sin(\psi_0 + \psi) \sin \varphi \\ y = -\left[a - l \cos(\psi_0 + \psi) \right] \sin \varphi + l \sin(\psi_0 + \psi) \cos \varphi \end{cases}$$

四、凸轮实际廓线设计

1、滚子从动件凸轮实际廓线设计——图解法

2、滚子从动件凸轮 实际廓线加工刀具 中心轨迹确定—— 图解法

马轮]具 实际廓线

凸轮的理论廓线、<mark>实际廓线、</mark> 刀具的中心轨迹是等距曲线。

刀具 r_c

3、滚子从动件凸轮实际廓线设计——解析法

曲线在B点的法线n-n的斜率

$$\tan \beta = \frac{\mathrm{d} x_{\mathrm{B}}}{-\mathrm{d} y_{\mathrm{B}}} = \frac{\mathrm{d} x_{\mathrm{B}}/\mathrm{d} \varphi}{-\mathrm{d} y_{\mathrm{B}}/\mathrm{d} \varphi} = \frac{\sin \beta}{\cos \beta}$$

$$\cos \beta = \frac{-\mathrm{d} y_{\mathrm{B}}/\mathrm{d} \varphi}{\sqrt{\left(\frac{\mathrm{d} x_{\mathrm{B}}}{\mathrm{d} \varphi}\right)^{2} + \left(\frac{\mathrm{d} y_{\mathrm{B}}}{\mathrm{d} \varphi}\right)^{2}}}$$

$$\sin \beta = \frac{\mathrm{d} x_{\mathrm{B}} / \mathrm{d} \varphi}{\sqrt{\left(\frac{\mathrm{d} x_{\mathrm{B}}}{\mathrm{d} \varphi}\right)^{2} + \left(\frac{\mathrm{d} y_{\mathrm{B}}}{\mathrm{d} \varphi}\right)^{2}}}$$

$$x = x_{\rm B} \mp r_{\rm r} \cos \beta$$
$$y = y_{\rm B} \mp r_{\rm r} \sin \beta$$

注意:上面一组减减号表示一条内包络线η', 下面一组加加号表示一条外包络线η"。

刀具中心直角坐标方程

$$x_{c} = x_{B} \pm |r_{c} - r_{r}| \cos \beta$$
$$y_{c} = y_{B} \pm |r_{c} - r_{r}| \sin \beta$$

当r_c>r_r时,取上面一组加加号;当r_c<r_r时,取下面一组减减号。

4、直动平底从动件盘形凸轮实际廓线设计——解析法

(1) 建立坐标系

坐标系O-x,y

与凸轮固连, 为固定坐标系

坐标系O-x', y'

与从动件固连, 为动坐标系

(2) 动坐标系中平底直线的方程

$$x' = ?$$
$$y' = r_0 + s$$

(3) 坐标变换

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

(4) 固定坐标系中平底直线的方程

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{cases} x = x' \cos \varphi + y' \sin \varphi \\ y = -x' \sin \varphi + y' \cos \varphi \end{cases}$$

$$x' = ?$$

$$y' = r_0 + s$$

$$\begin{cases} x = x' \cos \varphi + (r_0 + s) \sin \varphi \\ y = -x' \sin \varphi + (r_0 + s) \cos \varphi \end{cases}$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \sin \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \cos \varphi$$

$$\forall x = x' \cos \varphi + (r_0 + s) \cos \varphi$$

$$f(x, y, \varphi) = x \sin \varphi + y \cos \varphi - (r_0 + s) = 0$$

(5)固定坐标系中凸轮实际廓线的方程

$$\begin{cases} f(x, y, \varphi) = x \sin \varphi + y \cos \varphi - (r_0 + s) = 0\\ \frac{\partial f(x, y, \varphi)}{\partial \varphi} = x \cos \varphi - y \sin \varphi - \frac{ds}{d\varphi} = 0 \end{cases}$$

を原曲线方程
$$\begin{cases} s = s(\varphi) \\ x = (r_0 + s)\sin\varphi + \frac{\mathbf{d}s}{\mathbf{d}\varphi}\cos\varphi \\ y = (r_0 + s)\cos\varphi - \frac{\mathbf{d}s}{\mathbf{d}\varphi}\sin\varphi \end{cases}$$

§ 6-4 盘形凸轮机构基本尺寸的确定

-、压力角 α 及其许用值

1、直动从动件

x:
$$F_{12}\sin(\alpha+\varphi_1)-(R_1-R_2)\cos\varphi_2=0$$

y:
$$F_{12}\cos(\alpha+\varphi_1)-G-(R_1+R_2)\sin\varphi_2=0$$

$$\sum M_B: R_2(l+b)\cos\varphi_2 - R_1b\cos\varphi_2 = 0$$

考虑摩擦时驱动力的表达式

$$F_{12} = \frac{G}{\cos(\alpha + \varphi_1) - \left(1 + \frac{2b}{l}\right)\sin(\alpha + \varphi_1)\tan\varphi_2}$$

理想情况(无摩擦)时驱动力的表达式

$$F_{120} = \frac{G}{\cos \alpha}$$
 $\varphi_1 = 0$, $\varphi_2 = 0$

凸轮机构的瞬时效率

$$\eta = \frac{F_{120}}{F_{12}} = \frac{\cos(\alpha + \varphi_1) - \left(1 + \frac{2b}{l}\right)\sin(\alpha + \varphi_1)\tan\varphi_2}{\cos\alpha}$$

 $\eta \leq 0$ 时,机构自锁。

解方程

$$\eta = \frac{F_{120}}{F_{12}} = \frac{\cos(\alpha + \varphi_1) - \left(1 + \frac{2b}{l}\right) \sin(\alpha + \varphi_1) \tan \varphi_2}{\cos \alpha} \le 0$$

$$\implies \cos(\alpha + \varphi_1) - \left(1 + \frac{2b}{l}\right) \sin(\alpha + \varphi_1) \tan \varphi_2 \le 0$$

$$\implies \arctan \frac{1}{\left(1 + \frac{2b}{l}\right) \tan \varphi_2} - \varphi_1 \le \alpha \quad 自锁的条件$$
临界压力角: $\alpha_c = \arctan \frac{1}{\left(1 + \frac{2b}{l}\right) \tan \varphi_2} - \varphi_1$

(二)许用压力角

在工程实际中,为保证较高的机械效率,改善受力状况,通常规定凸轮机构的最大压力角应小于或等于某一许用压力角。

凸轮机构能正常工作的重要条件

工程上要求: (设计值 α_{max}) \leq [α] $<<\alpha_{c}$

推程 移动从动件[α]=30°~40°; 摆动从动件[α]= 35°~45°。

回程 $[\alpha'] = 70^{\circ} \sim 80^{\circ}$ 。

二、按许用压力角确定凸轮机构的基本尺寸

1、直动从动件

(1) 轮廓压力角的计算

推程:

在点
$$P_{12}$$
: $v_2 = \omega_1 \overline{OP_{12}}$

$$\overline{OP_{12}} = \frac{v_2}{\omega_1} = \frac{\mathrm{d}s}{\mathrm{d}\varphi}$$

$$\tan \alpha = \frac{\overline{OP_{12}} - e}{s_0 + s} = \frac{\frac{\mathrm{d}s}{\mathrm{d}\varphi} - e}{s_0 + s}$$

$$s_0 = \sqrt{r_0^2 - e^2}$$

回程:

在点
$$P'_{12}$$
: $v_2 = \omega_1 \overline{OP'_{12}}$

$$\overline{OP'_{12}} = \frac{v_2}{\omega_1} = \frac{\mathrm{d}s}{\mathrm{d}\varphi}$$

$$\tan \alpha' = \frac{\overline{OP'_{12}} + e}{s_0 + s} = \frac{\frac{\mathrm{d}s}{\mathrm{d}\varphi} + e}{s_0 + s}$$

压力角计算的统一表达式:

$$\tan \alpha = \frac{\overline{OP_{12}} \mp e}{s_0 + s} = \frac{\frac{\mathbf{d}s}{\mathbf{d}\varphi} \mp e}{s_0 + s}$$

速度瞬心与从动件处于凸轮中心同一 侧时取 "-"号, 否则, 取 "+"号。

(2) 影响凸轮压力角变化的因素

$$\tan \alpha = \frac{ds/d\varphi \mp e}{\sqrt{r_0^2 - e^2} + s}$$

$$\frac{\mathrm{d}s}{\mathrm{d}\varphi}$$
, s -凸轮运动规律

 r_0 , e-凸轮基本尺寸

在设计凸轮时, 应保证凸轮机构的最大压力角小于 或等于许用压力角。

即:
$$\alpha_{\max} \leq [\alpha]$$

(3) 凸轮机构基本尺寸确定

如何在满足凸轮许用压力角的前提下确定凸轮 的基圆半径和偏距?

- ① 凸轮轮廓何处有最大压力角?
- ② 如何根据许用压力角确定凸轮的基圆半径和偏距?

这个表达式能否解决这样的命题?

$$\tan \alpha = \frac{\operatorname{d} s / \operatorname{d} \varphi \mp e}{\sqrt{r_0^2 - e^2 + s}} = \frac{\frac{\left(\operatorname{d} s / \operatorname{d} \varphi\right)}{\sqrt{\left(r_0 / e\right)^2 - 1 + \frac{s}{e}}}}{\sqrt{\left(\frac{r_0 / e}{e}\right)^2 - 1 + \frac{s}{e}}}$$

① 凸轮轮廓何处有最大压力角? (作图法,前人智慧)

根据凸轮从动件的运动规律 $s = s(\varphi)$ 绘制 $s - \frac{\mathrm{d}s}{\mathrm{d}\varphi}$ 线图

如果已知基圆半径 r_0 ,和偏距e,确定推程回程最大压力角。

② 如何根据许用压力角确定凸轮的基圆半径和偏距?

(注意条件发生变化)

如何保证以下条 件?

注意问题: 从动件与凸轮的相对位置

推程

$$\tan \alpha = \frac{ds/d\varphi - e}{\sqrt{r_0^2 - e^2} + s}$$

回程

$$\tan \alpha = \frac{ds/d\varphi + e}{\sqrt{r_0^2 - e^2} + s}$$

推程时,速度瞬心 与从动件处于凸轮 中心同一侧。

凸轮逆时针转动

凸轮顺时针转动

偏置方位的选择应有利于减小凸轮机构推程时的压力角。应当使从动件偏置在推程时瞬心P的位置的同一侧。

需要注意的是,若推程压力角减小,则回程压力角将增大,故偏距 e 不能太大。

三、滚子半径的选择

1、凸轮理论轮廓的内凹部分

$$\left| \rho_a \right| = \left| \rho \right| + r_r$$

$$\left| \rho_a \right| > \left| \rho \right|$$

2、凸轮理论轮廓的外凸部分

工作轮廓曲率半径、理论轮廓曲率半径与滚子半径三者之间的关系为:

外凸轮理论轮廓,一般推荐:

$$\rho_{\min} = r_r + \Delta$$
, $\Delta = 3 \sim 5 \text{mm}$

