Collège Sciences et Technologies

Exercice 1: Unions et intersections

Soit E un ensemble. On considère deux familles $(A_i)_{i\in I}$ et $(B_i)_{i\in I}$ de sous-ensembles de E. On suppose que $A_i \cup B_i = E$ pour tout $i \in I$. Montrer que,

$$E = \left(\bigcup_{i \in I} A_i\right) \cup \left(\bigcap_{i \in I} B_i\right).$$

Exercice 2: Injectivité

On considère un ensemble X et une fonction $f:X\to X$. On note $\mathcal{P}(X)$ l'ensemble de tous les sous-ensembles de X. Montrer que les assertions suivantes sont équivalentes :

- 1) f est injective.
- 2) Pour tout $Y \in \mathcal{P}(X)$, on a $f^{-1}(f(Y)) = Y$.
- 3) Pour tous $Y, Z \in \mathcal{P}(X)$, on a $f(Y \cap Z) = f(Y) \cap f(Z)$.
- 4) Pour tous $Y, Z \in \mathcal{P}(X)$ tels que $Y \cap Z = \emptyset$, on a $f(Y) \cap f(Z) = \emptyset$.
- 5) Pour tous $Y, Z \in \mathcal{P}(X)$ tels que $Y \subseteq Z$ on a $f(Z \setminus Y) = f(Z) \setminus f(Y)$.

Exercice 3: Nombres rationnels et irrationnels

On travaille dans l'ensemble $\mathbb R$ des nombres réels. On rappelle qu'un nombre rationnel est un nombre $x \in \mathbb R$ qui peut s'écrire sous la forme d'une fraction $x = \frac{a}{b}$ où $a \in \mathbb Z$ est un entier relatif et $b \in \mathbb N$ est un entier naturel. On note $\mathbb Q$ l'ensemble des nombres rationnels. Inversement, on dit qu'un nombre $x \in \mathbb R$ est irrationnel si et seulement si il n'est pas rationnel (c'est-à-dire si et seulement si $x \in \mathbb R \setminus \mathbb Q$).

- 1) Montrer que pour tout $x \in \mathbb{R} \setminus \mathbb{Q}$ et tout $y \in \mathbb{Q}$, on a $x + y \in \mathbb{R} \setminus \mathbb{Q}$.
- 2) Montrer que pour tout $x \in \mathbb{R} \setminus \mathbb{Q}$ et tout $y \in \mathbb{Q} \setminus \{0\}$, on a $xy \in \mathbb{R} \setminus \mathbb{Q}$.
- 3) Montrer que $\sqrt{2} \in \mathbb{R}$ est un nombre irrationnel.
- 4) Montrer qu'il existe deux nombres irrationnels $x, y \in \mathbb{R}$ tels que $x^y \in \mathbb{R}$ est un nombre rationnel.

Exercice 4: Sommes

Montrer les égalités suivantes :

1) Pour tout $n \in \mathbb{N}$, on a:

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$

2) Pour tout $n \in \mathbb{N}$, on a:

$$\sum_{k=0}^{n} k^3 = \left(\sum_{k=0}^{n} k\right)^2$$

1

Master CSI, Année 2023/2024.

UE 4TCY701U, Théorie de la complexité. Test 2 - 25 Septembre 2023.

Durée 1h - Aucun document autorisé.

Collège Sciences et Technologies

Toute fonction considérée est supposée totale : son ensemble de définition est son ensemble de départ.

Exercice 1 : Injectivité et surjectivité

Dans cet exercice, X,Y et Z désignent des énsembles et f,g des fonctions. On rappelle que si $f:X\to Y$ et $g:Y\to Z$ sont des fonctions, on note $g\circ f:X\to Z$ la fonction obtenue en composant g avec f.

- 1) Soient $f: X \to Y$ et $g: Y \to Z$. Montrer que si $g \circ f$ est surjective, alors g est surjective.
- 2) L'affirmation suivante est-elle vraie : « Pour toutes fonctions $f: X \to Y$ et $g: Y \to Z$, si $g \circ f$ est surjective, alors f est surjective » ? Justifier la réponse.
- 3) Soient $f: X \to Y$ et $g: Y \to Z$. Montrer que si $g \circ f$ est injective, alors f est injective.
- 4) L'affirmation suivante est-elle vraie : « Pour toutes fonctions $f: X \to Y$ et $g: Y \to Z$, si $g \circ f$ est injective, alors g est injective » ? Justifier la réponse.

Exercice 2 : Surjectivité

On considère des ensembles X et Y et une fonction $f:X\to Y$. Montrer que les assertions suivantes sont équivalentes :

- 1) f est surjective.
- 2) Pour tout $B \subseteq Y$, on a $B = f(f^{-1}(B))$.
- 3) Pour tout $B \subseteq Y$, on a $B \subseteq f(f^{-1}(B))$.
- 4) On a $Y = f(f^{-1}(Y))$.

Exercice 3: Ensemble des sous-ensembles

Pour un ensemble E fini ou non, on note $\mathcal{P}(E)$ l'ensemble des sous-ensembles de E.

- 1) Calculer $\mathcal{P}(\emptyset)$ et $\mathcal{P}(\{1,2\})$.
- 2) Si E est fini et a n éléments, quel est le nombre d'éléments de $\mathcal{P}(E)$? Justifier la réponse.
- 3) Montrer que si E est fini, il n'existe pas de surjection de E dans $\mathcal{P}(E)$.
- 4) Montrer que si E est infini, il n'existe pas de surjection de E dans $\mathcal{P}(E)$ en supposant par l'absurde qu'il existe une surjection $f: E \to \mathcal{P}(E)$ et en considérant le sous-ensemble $A = \{x \in E \mid x \notin f(x)\}$.

Exercice 4 : Relations d'équivalence

On va considérer des relations sur l'ensemble \mathbb{R}^2 des paires de nombres réels :

- 1) Soit « \sim » la relation définie par $(u,v)\sim(x,y)\Leftrightarrow uv=xy$ pour tous $(u,v),(x,y)\in\mathbb{R}^2$. Cette relation est-elle une relation d'équivalence? Si oui, décrire les classes d'équivalence. Sinon, justifier.
- 2) Soit $\langle x \rangle = 0$ la relation définie par $(u, v) \rangle = (x, y) \Leftrightarrow uv = xy$ et $ux \geq 0$ pour tous $(u, v), (x, y) \in \mathbb{R}^2$. Cette relation est-elle une relation d'équivalence? Si oui, décrire les classes d'équivalence. Sinon, justifier.

Exercice 5: Entier relatifs et fonctions

Prouver qu'il n'existe pas de fonction $f: \mathbb{Z} \to \mathbb{Z}$ telle que pour tout $n \in \mathbb{Z}$, on a f(f(n)) = n + 1.