NLP - 단어의 표현

Index

1. 단어의 표현

- 필요성

2. 원핫-인코딩

- 원핫 인코딩
- 한계점
- 유사도 계산

3. TF-IDF, N-gram

- TF-IDF
- N-gram

4. 단어 임베딩

word Representation

단어의 표현

단어의 표현이 필요한 이유?

One-Hot-Encoding

원핫-인코딩

원핫-인코딩

- 원핫-인코딩은 단어(word)를 숫자료 표현하고자 할 때 적용할 수 있는 간단한 방법론

원숭이, 바나나, 사과를 표현할 때

원숭이 = [1,0,0] 바나나 = [0,1,0] 사과 = [0,0,1] 원숭이, 바나나, 사과, 코끼리를 표현할 때

원숭이 = [1,0,0,0] 바나나 = [0,1,0,0] 사과 = [0,0,1,0] 코끼리 = [0,0,0,1]

원핫-인코딩의 한계점

- 차원 크기의 문제

원숭이, 바나나, 사과를 표현할 때

단어의 수만큼 차원이 필요함

단어수가 많아진다면?

2017년 표준국어대사전에 등재된 단어 수 약 50만개 → 50만개의 차원이 필요

원핫-인코딩의 한계점

- 의미를 담지 못하는 문제

- 원핫 벡터간의 코사인 유사도는 모두 0
- 따라서, 단어 간 의미를 분간하기 어렵다.

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^{n} A_i \times B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} \times \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}$$

유사도 계산 (Text Similarity)

- 유클리디언 거리 (Euclidean distance)
 - → 벡터 간 직진거리를 계산

Cosine Distance/Similarity

- 0도 = 1, 90도 = 0, 180도 = -1 → 1에 가까울수록 유사도 높음 (= 유사한 의미)

TF-IDF, N-gram

TF-IDF, N-gram

TF-IDF (Term Frequency-Inverse Document Frequency)

- 단어 빈도 역문서 빈도
- TDM 내 각 단어의 중요성을 가중치로 표현
- TDM을 사용하는 것보다 더 정확하게 문서비교가 가능

*TDM - 단어 문서 행렬 (Term Document Matrix)

$$\mathsf{tfidf}(t,d,D) = \mathsf{tf}(t,d) \cdot \mathsf{idf}(t,D)$$

tf(d,t)	특정 문서 d에서 특정 단어 t의 등장 횟수		
df(t)	특정 단어 t가 등장한 문서의 수		
idf(d, t) df(t)의 역수			

TF	IDF	TF- IDF	설명	
높	높	높	특정 문서에 많이 등장하고 타 문서에 많이 등장하지 않는 단어 (중요 키워드)	
높	낮	_	특정 문서에도 많이 등장하고 타 문서에도 많이 등장하는 단어	
낮	높	_	특정 문서에는 많이 등장하지 않고 타 문서에만 많이 등장하는 단어	
낮	낮	낮	특성 문서에 많이 등장하지 않고 타 문서에만 많이 등장하는 단어	

TF-IDF 계산 과정

TF 계산 IDF 계산 토큰 Index 생성 TF-IDF 계산 각 토큰(단어)을 그대로 계산한 TF와 IDF를 곱하 각 토큰(단어)의 등장 빈 각 토큰(단어)의 문서 등 사용할 수 없기 때문에 토 도를 계산 여 TF-IDF를 계산 장 빈도를 계산하여 역수 큰에 Index를 부여 를 취함 - 한 문서 내에서 특정 단 어(토큰)이 얼마나 많이 - 단어가 얼마나 많은 문 등장했는지 서에 등장했는지 나타내는 **Document Frequency** - 단어가 문서내에 많이 의 Inverse(역수) 등장할수록 높은 TF값을 가진다. 때문에 자주 등장 - 단어가 여러 문서에 많 할수록 중요한 단어라는 이 등장할수록 IDF는 작아 의미를 가지게 된다. 진다.

예제 1

문서 1: d1 = "The cat sat on my face I hate a cat" 문서 2: d2 = "The dog sat on my bed I love a dog"

1. 토큰 Index 생성

token	index	
The	0	
cat	1	
sat	2	
on	3	
my	4	
face	5	
I	6	
hate	7	
а	8	
dog	9	
bed	10	
lov	11	

2. TF 계산

$$\left. f_{t,d} \middle/ \sum_{t' \in d} f_{t',d}
ight.$$

 $f_{t,d}^{}$ = 문서내 토큰 빈도 $SUM(f_{t,d}^{})$ = 문서내 전체 토큰빈도

문서 1

token	문서 내 토큰 빈도	전체 토큰 수	TF
The	1	10	0.1
cat	2	10	0.2
sat	1	10	0.1
on	1	10	0.1
my	1	10	0.1
face	1	10	0.1
I	1	10	0.1
hate	1	10	0.1
а	1	10	0.1
dog	0	10	0
bed	0	10	0
lov	0	10	0

문서 2

token	문서 내 토큰 빈도	전체 토큰 수	TF
The	1	10	0.1
cat	0	10	0
sat	1	10	0.1
on	1	10	0.1
my	1	10	0.1
face	0	10	0
I	1	10	0.1
hate	0	10	0
а	1	10	0.1
dog	2	10	0.2
bed	1	10	0.1
lov	1	10	0.1

- TF 가중치 계산하는 여러가지 방법

Variants of term frequency (tf) weight

weighting scheme	tf weight	
binary	0,1	
raw count	$f_{t,d}$	
term frequency	$\left f_{t,d} ight/\sum_{t'\in d}f_{t',d} ight $	
log normalization	$\log(1+f_{t,d})$	
double normalization 0.5	$0.5 + 0.5 \cdot rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$	
double normalization K	$K + (1-K) rac{f_{t,d}}{\max_{\{t' \in d\}} f_{t',d}}$	

2. IDF 계산

$$\log rac{N}{n_t} = -\log rac{n_t}{N}$$

N = 문서수

 n_t = 토큰이 등장한 문서수

token	문서 수	토큰 등장한 문서 수	IDF
The	2	2	0
cat	2	1	0.301
sat	2	2	0
on	2	2	0
my	2	2	0
face	2	1	0.301
I	2	2	0
hate	2	1	0.301
а	2	2	0
dog	2	1	0.301
bed	2	1	0.301
lov	2	1	0.301

IDF에 로그를 사용하는 이유

- 총 문서의 수가 증가할수록 IDF의 값이 기하급수적으로 커짐

- IDF 가중치 계산하는 여러가지 방법

Variants of inverse document frequency (idf) weight

weighting scheme	idf weight ($n_t = \{d \in D: t \in d\} $)
unary	1
inverse document frequency	$\log rac{N}{n_t} = -\log rac{n_t}{N}$
inverse document frequency smooth	$\log\!\left(\frac{N}{1+n_t}\right)$
inverse document frequency max	$\log\!\left(rac{\max_{\{t'\in d\}}n_{t'}}{1+n_t} ight)$
probabilistic inverse document frequency	$\log rac{N-n_t}{n_t}$

3. TF-IDF 계산

문서 1

token	TF	IDF	TF-IDF
The	0.1	0	0
cat	0.2	0.301	0.060
sat	0.1	0	0
on	0.1	0	0
my	0.1	0	0
face	0.1	0.301	0.030
	0.1	0	0
hate	0.1	0.301	0.030
а	0.1	0	0
dog	0	0.301	0
bed	0	0.301	0
lov	0	0.301	0

문서 2

token	TF	IDF	TF-IDF
The	0.1	0	0
cat	0	0.301	0
sat	0.1	0	0
on	0.1	0	0
my	0.1	0	0
face	0	0.301	0
l	0.1	0	0
hate	0	0.301	0
а	0.1	0	0
dog	0.2	0.301	0.060
bed	0.1	0.301	0.030
lov	0.1	0.301	0.030

N-gram

- 몇 개(n) 단어를 함께 보느냐에 따라 unigram, bigram, trigram등으로 구분 제한적으로 문맥을 표현할 수 있음

N-gram

an adorable little boy is spreading smile

- unigram : an, adorable, little, boy, is, spreading, smiles
- bigrams : an adorable, adorable little, little boy, boy is, is spreading, spreading smiles
- trigrams : an adorable little, adorable little boy, little boy is, boy is spreading, is spreading smiles
- 4–grams : an adorable little boy, adorable little boy is, little boy is spreading, boy is spreading smiles

N-gram의 한계

- n의 크기는 trade-off 문제
- 1보다는 2를 선택하는 것이 모델 성능을 높일 수 있음
- n을 너무 크게 선택하면 n-gram 이 unique 할 확률이 높아 등장수가 낮을 확률이 높음 (Out of Vocabulary 문제)
- n을 너무 작게 하면 카운트는 잘되지만 정확도가 떨어질 수 있음. n은 최대 5를 넘지 않도록 권장
- N-gram 카운트가 0인 경우
 - N-gram이 모든 단어를 커버할 수 없기 때문에 OOV 문제가 발생할 수 있음

적용 분야에 맞는 corpus 수집

- 분야에 따라 단어들의 확률 분포는 다름 (금융 분야, 마케팅 분야)
- 분야에 적합한 코퍼스를 사용하면 언어 모델의 성능이 높아질 수 있음

word Embedding

단어 임베딩

단어 임베딩 (Word Embedding)

- 단어 임베딩은 단어의 의미를 간직하는 밀집 벡터(Dense Vector)로 표현하는 방법

원숭이, 바나나, 사과를 표현할 때

- 새로운 단어 추가 시 차원을 추가할 필요 없음
 - → 차원을 줄일 수 있음
- → 추후 분류나 예측 모델을 학습할 때 연산을 줄일 수 있는 이점

단어 임베딩의 한계

- 차원의 크기는 밀집벡터로 해결했음
- 하지만 단어 의미는?

분포 가설

- 같은 문맥에서 등장하는 단어는 유사한 의미를 지닌다.

1) 임의의 위치에 벡터 생성

2) 같은 문맥이 등장하는 단어를 더 가까이 표현

Word Representation

- Local representation (Discrete representation): 해당 단어 그 자체만 보고 값을 매핑하여 표현
- Distributed representation (Continuous representation): 단어를 표현하기 위해 주변을 참고