Dipartimento di Matematica

Milano, 22 March 2024

Relative ideals in homological categories

Giuseppe Metere* Università degli Studi di Milano

*From an ongoing joint project with Sara Lapenta e Luca Spada

An elementary example

R unital ring, $I \subseteq R$ (bilateral) ideal.

Fact. If $I \leq R$ in **Ring**, then I = R.

Can we deal with ideals of unital rings categorically?

Observe: $I \leq R$ in Rng, and Ring is a subcategory of Rng.

More precisely, ideals in Ring are kernels in the semi-abelian category Rng

Idea. Investigate the inclusion functor

$$U \colon \mathsf{Ring} \to \mathsf{Rng}$$

+ determine nice behavior of ideals that can be deduced from properties of \it{U} .

Observe

- U is faithful, but not full.
- U is conservative, i.e. it reflects isomorphisms.
- *U* is a right adjoint, and its left adjoint *F* freely adds the unit element

An elementary example

R unital ring, $I \subseteq R$ (bilateral) ideal.

Fact. If $I \leq R$ in **Ring**, then I = R.

Can we deal with ideals of unital rings categorically?

Observe: $I \leqslant R$ in Rng, and Ring is a subcategory of Rng.

More precisely, ideals in Ring are kernels in the semi-abelian category Rng

Idea. Investigate the inclusion functor

$$U \colon \mathsf{Ring} \to \mathsf{Rng}$$

+ determine nice behavior of ideals that can be deduced from properties of U.

Observe:

- U is faithful, but not full.
- *U* is conservative, i.e. it reflects isomorphisms.
- *U* is a right adjoint, and its left adjoint *F* freely adds the unit element.

Some glossary

A category B with finite limits is:

- pointed: $0 \rightarrow 1$ is an isomorphism.
- regular: p.b. stable regular epis + coequalizers of effective equiv. relations
- Barr-exact: regular + all equiv. relations are effective
- protomodular: $f^* : \mathbf{Pt_B}(B) \to \mathbf{Pt_B}(E)$ is conservative $\forall f : E \to B$.
- with semidirect products: $f^* : Pt_B(B) \to Pt_B(E)$ is monadic $\forall f : E \to B$.
- homological: regular + pointed + protomodular
- semi-abelian: Barr-exact + pointed + protomodular + finite coproducts

Basic setting and relative ideals

Definition (Lapenta, M., Spada)

A basic setting for relative *U*-ideals is an adjunction $\mathbf{B} \xrightarrow{U} \mathbf{A}$ where \mathbf{A} is homological and U is conservative and faithful.

Observe:

- A, B with finite limits (+ U preserves them), U conservative $\Rightarrow U$ faithful
- since U fin. limit. pres. + conservative, **A** protomodular \Rightarrow **B** protomodular

Definition (Lapenta, M., Spada)

 $k: A \rightarrow U(B)$ is a *relative U-ideal* of an object B in **B** if

there exists a morphism $f: B \to B'$ of **B** that makes the square diagram on the right a pullback in **A**

$$\begin{array}{ccc}
B & A \xrightarrow{k} U(B) \\
\exists f \downarrow \text{ s.t.} & \downarrow & \downarrow U(f) \\
B' & 0 \longrightarrow U(B')
\end{array}$$

Unital rings: Ring
$$\xrightarrow{F}$$
 Rng

$$F(R) = R \rtimes \mathbb{Z} \quad (r, n)(r', n') = (rn' + nr' + rr', nn')$$

Unital (associative) R-algebras: $UAlg_R \xrightarrow{\perp} UAlg_R$

$$F(A) = A \times R$$
 $(a, r)(a', r') = (r'a + ra' + aa', rr')$ $r(a, r') = (ra, rr')$

Unital C^* -algebras: UCStar $\stackrel{'}{\longrightarrow}$ CStar

$$F(A) = A \oplus \mathbb{C}$$
 with multiplication as above, and $(a, z)^* = (a^*, \overline{z})$

Algebraic varieties.

Unital rings: Ring
$$\xrightarrow{F}$$
 Rng

$$F(R) = R \rtimes \mathbb{Z} \quad (r, n)(r', n') = (rn' + nr' + rr', nn')$$

Unital (associative)
$$R$$
-algebras: $UAlg_R \xrightarrow{F} Alg_R$

$$F(A) = A \times R$$
 $(a,r)(a',r') = (r'a + ra' + aa',rr')$ $r(a,r') = (ra,rr')$

Unital
$$C^*$$
-algebras: UCStar $\stackrel{'}{\longrightarrow}$ CStar

$$F(A) = A \oplus \mathbb{C}$$
 with multiplication as above, and $(a, z)^* = (a^*, \overline{z})$

Algebraic varieties.

Unital rings: Ring
$$\xrightarrow{F}$$
 Rng

$$F(R) = R \rtimes \mathbb{Z} \quad (r, n)(r', n') = (rn' + nr' + rr', nn')$$

Unital (associative)
$$R$$
-algebras: $UAlg_R \xrightarrow{F} Alg_R$

$$F(A) = A \times R$$
 $(a,r)(a',r') = (r'a + ra' + aa',rr')$ $r(a,r') = (ra,rr')$

Unital
$$C^*$$
-algebras: UCStar $\stackrel{F}{\longrightarrow}$ CStar

$$F(A) = A \oplus \mathbb{C}$$
 with multiplication as above, and $(a, z)^* = (a^*, \overline{z})$

Algebraic varieties..

Unital rings: Ring
$$\xrightarrow{F}$$
 Rng

$$F(R) = R \rtimes \mathbb{Z} \quad (r, n)(r', n') = (rn' + nr' + rr', nn')$$

Unital (associative)
$$R$$
-algebras: $UAlg_R \xrightarrow{F} Alg_R$

$$F(A) = A \times R$$
 $(a,r)(a',r') = (r'a + ra' + aa',rr')$ $r(a,r') = (ra,rr')$

Unital
$$C^*$$
-algebras: UCStar $\stackrel{F}{\longrightarrow}$ CStar

$$F(A) = A \oplus \mathbb{C}$$
 with multiplication as above, and $(a, z)^* = (a^*, \overline{z})$

Algebraic varieties...

The varietal case: basic setting for varieties

Recall from [BJ03] that a variety **V** is protomodular iff there exist $n \in \mathbb{N}$, 0-ary terms e_1, \ldots, e_n , binary terms $\alpha_1, \ldots, \alpha_n$, and (n+1)-ary term θ such that:

$$\theta(\alpha_1(x,y),\ldots,\alpha_n(x,y),y)=x,\quad \alpha_i(x,x)=e_i\quad \text{for }i=1,\ldots,n$$

Fact. If **V** is semi-abelian, then $e_1 = \cdots = e_n = 0$.

Vice-versa, variety is called classically ideally determined (BIT-speciale in [U72]) if equations above hold for a specified constant $0 = e_1 = \cdots = e_n$.

Definition (Lapenta, M., Spada)

Let $A = (A, \Sigma_A, Z_A)$ and $B = (B, \Sigma_B, Z_B)$ be algebraic varieties, s.t.

- A homological, hence semi-abelian
- ullet signatures $\Sigma_{\mathsf{A}} \subseteq \Sigma_{\mathsf{B}}$ and equations $Z_{\mathsf{A}} \subseteq Z_{\mathsf{E}}$

The forgetful functor $U: \mathbf{B} \to \mathbf{A}$ determines a special kind of basic setting that we call *basic setting for varieties*.

The varietal case: basic setting for varieties

Recall from [BJ03] that a variety **V** is protomodular iff there exist $n \in \mathbb{N}$, 0-ary terms e_1, \ldots, e_n , binary terms $\alpha_1, \ldots, \alpha_n$, and (n+1)-ary term θ such that:

$$\theta(\alpha_1(x,y),\ldots,\alpha_n(x,y),y)=x,\quad \alpha_i(x,x)=e_i\quad \text{for }i=1,\ldots,n$$

Fact. If **V** is semi-abelian, then $e_1 = \cdots = e_n = 0$.

Vice-versa, variety is called *classically ideally determined* (*BIT-speciale* in [U72]) if equations above hold for a specified constant $0 = e_1 = \cdots = e_n$.

Definition (Lapenta, M., Spada)

Let $\mathbf{A}=(\mathbf{A},\Sigma_{\mathbf{A}},Z_{\mathbf{A}})$ and $\mathbf{B}=(\mathbf{B},\Sigma_{\mathbf{B}},Z_{\mathbf{B}})$ be algebraic varieties, s.t.

- A homological, hence semi-abelian
- signatures $\Sigma_A \subseteq \Sigma_B$ and equations $Z_A \subseteq Z_B$

The forgetful functor $U \colon \mathbf{B} \to \mathbf{A}$ determines a special kind of basic setting that we call *basic setting for varieties*.

0-ideals vs. *U*-ideals

Let **V** be a variety with a constant $0 \in \Sigma_V$, $\mathbf{x} = (x_1, \dots, x_m)$, $\mathbf{y} = (y_1, \dots, y_n)$.

- t(x,y) is a 0-ideal term in y if t(x,0) = 0 in V, $0 = (0,\ldots,0)$.
- $\emptyset \neq H \subseteq A$ is a 0-ideal of the algebra $A \in V$, for every ideal term t(x,y)

$$t(\mathbf{a},\mathbf{h}) \in H, \quad \mathbf{a} \in A^m, \mathbf{h} \in H^n.$$

Fact. In (classically) ideal determined varieties, {congruences} \leftrightarrow {0-ideals}.

Proposition (Lapenta, M., Spada)

If $U \colon B \to A$ is a basic setting for varieties, B is classically ideally determined

Proposition (Lapenta, M., Spada

Let $U \colon \mathbf{B} \to \mathbf{A}$ be a basic setting for varieties. A subset H of an algebra $B \in \mathbf{B}$ is a 0-ideal iff $H \subseteq U(B)$ is a U-ideal of B with respect to $U \colon \mathbf{B} \to \mathbf{A}$.

A number of examples arise from the varietal case. Moreover, one can consider topological models of the corresponding theories and develop other examples (if $Set^{\mathbb{T}}$ is semi-abelian, $Top^{\mathbb{T}}$ is homological).

0-ideals vs. *U*-ideals

Let **V** be a variety with a constant $0 \in \Sigma_{\mathbf{V}}$, $\mathbf{x} = (x_1, \dots, x_m)$, $\mathbf{y} = (y_1, \dots, y_n)$.

- t(x,y) is a 0-ideal term in y if t(x,0) = 0 in V, 0 = (0,...,0).
- $\emptyset \neq H \subseteq A$ is a 0-ideal of the algebra $A \in V$, for every ideal term t(x,y)

$$t(\mathbf{a},\mathbf{h}) \in H, \quad \mathbf{a} \in A^m, \mathbf{h} \in H^n.$$

Fact. In (classically) ideal determined varieties, {congruences} \leftrightarrow {0-ideals}.

Proposition (Lapenta, M., Spada)

If $U \colon \mathbf{B} \to \mathbf{A}$ is a basic setting for varieties, \mathbf{B} is classically ideally determined

Proposition (Lapenta, M., Spada)

Let $U: \mathbf{B} \to \mathbf{A}$ be a basic setting for varieties. A subset H of an algebra $B \in \mathbf{B}$ is a 0-ideal iff $H \subseteq U(B)$ is a U-ideal of B with respect to $U: \mathbf{B} \to \mathbf{A}$.

A number of examples arise from the varietal case.

Moreover, one can consider topological models of the corresponding theories and develop other examples (if $Set^{\mathbb{T}}$ is semi-abelian, $Top^{\mathbb{T}}$ is homological).

Augmentation ideals

Back to the basic setting
$$\mathbf{B} \xrightarrow{F} \mathbf{A}$$
, let $A \in \mathbf{A}$: $\exists ! p_A \downarrow s.t.$ $0 \downarrow U(p_A) \downarrow U(I)$

Definition (Lapenta, M., Spada)

The unit η_A is an augmentation *U*-ideal if it is the kernel of $U(p_A)$.

Condition (*)

For every A in A, η_A is an augmentation U-ideal

Proposition (Lapenta, M., Spada)

Condition (*) holds iff the unit η is cartesian

$$A' \xrightarrow{f} A \xrightarrow{} 0 \qquad F(0) = I$$
Idea of the proof: $\eta_{A'} \downarrow \qquad \eta_{A} \downarrow \qquad \downarrow \eta_{0}$

$$UF(A') \xrightarrow{UF(f)} UF(A) \xrightarrow{UF(1_A)} UF(0) \qquad F(1_A) = p_A$$

Theorem (Lapenta, M., Spada)

Given a basic setting s.t. Condition (*) holds, with I initial in B, the kernel functor

$$K \colon \mathsf{B}/I \to \mathsf{A} \qquad f \mapsto \mathit{Ker}(\mathit{U}(f))$$

establishes an equivalence of categories.

Proof. (Janelidze's take)

Step 1. Given
$$\mathcal{B} \xrightarrow{\mathcal{U}} \mathcal{A}$$
, $\eta = id$ and \mathcal{U} conservative $\Rightarrow (\mathcal{F}, \mathcal{U})$ equivalence

Step 2. Given $\mathbf{B} \xrightarrow{\mathcal{U}} \mathbf{A}$, and $X \in \mathbf{A}$, define the induced adjunction

$$\mathbf{B}/F(X) \xrightarrow{\perp} \mathbf{A}/X \qquad F^{X}(\alpha) = F(\alpha), \quad U^{X}(\beta) = (\eta_{X})^{*}(U(\beta))$$

Step 3. Specialize to
$$B/I = B/F(0) \xrightarrow{L} A/0 = A$$
 and apply Step 1.

Theorem (Lapenta, M., Spada)

Given a basic setting s.t. Condition (*) holds, with I initial in $\mathbf B$, the kernel functor

$$K \colon \mathsf{B}/I \to \mathsf{A} \qquad f \mapsto \mathit{Ker}(U(f))$$

establishes an equivalence of categories.

Proof. (Janelidze's take)

Step 1. Given $\mathcal{B} \xrightarrow{\stackrel{\mathcal{F}}{\sqcup}} \mathcal{A}$, $\eta = id$ and \mathcal{U} conservative \Rightarrow $(\mathcal{F}, \mathcal{U})$ equivalence.

Step 2. Given $\mathbf{B} \xrightarrow{\iota} \mathbf{A}$, and $X \in \mathbf{A}$, define the induced adjunction

$$\mathsf{B}/\mathsf{F}(X) \xrightarrow{f^{X}} \mathsf{A}/X \qquad \mathsf{F}^{X}(\alpha) = \mathsf{F}(\alpha), \quad U^{X}(\beta) = (\eta_{X})^{*}(U(\beta))$$

Step 3. Specialize to $B/I = B/F(0) \xrightarrow{\int_{0}^{\bot} A/0} A/0 = A$ and apply Step 1.

Remarks

When the functor $K \colon \mathbf{B}/I \to \mathbf{A}$ is an equivalence,

- All objects of A can be seen as (augmentation) U-ideals of objects of B, so that, in a sense, A sits inside B.
- Since I is initial in B, $B/I = Pt_B(I)$.

This means that one is motivated to describe the pseudoinverse H of K by a semidirect product in A (whenever A has semidirect products with I):

$$H: X \mapsto \bigvee_{i=1}^{X \times A}$$

• In the examples considered, Ring, UAIg, UCStar, Condition (*) holds.

Comparison with Ideally Exact Categories

At CT2023, G. Janelidze presented the novel notion of *ideally exact category*, as a first step towards "a development of a new non-pointed counterpart of semi-abelian categorical algebra" ([Ja23]).

In fact this notion shows a consistent connection with our basic setting for relative U-ideal. Let us clarify by starting again from the case of unital rings.

- (F, U) basic setting
- (H, K) adjoint equivalence $\Rightarrow (F, U) \simeq (! \circ -, !^*)$

Idea: study properties of Ring that descend from properties of Ring via the monadic change of base functor along $!: \mathbb{Z} \to \{0\}$.

It turns out that the corresponding monad is essentially nullary.

Definition (Janelidze)

A monad $T=(T,\eta,\mu)$ on a cat. **X** with fin. coprod. is *essentially nullary* if, for every X in **X** the morphism $[T(!_X),\eta_X]: T(0)+X\to T(X)$ is a strong epi.

Examples.

- If **X** is a variety, any monad on **X** that adds constants + equations.
- If X is protomodular with finite coproducts, and T is a monad with cartesian units.

Definition (Janelidze

A category B is ideally exact if it satisfies any of the following conditions:

- (i) B Barr-exact protomodular with finite coprod. and 0 ightarrow 1 regular epi
- (ii) B Barr-exact with finite coprod. and

 \exists **B** \rightarrow **A** monadic. with **A** semi-abelian

Notice that one can ask the monad in (ii) to be cartesian or essentially nullary.

Definition (Janelidze)

A monad $T = (T, \eta, \mu)$ on a cat. **X** with fin. coprod. is *essentially nullary* if, for every X in **X** the morphism $[T(!_X), \eta_X]: T(0) + X \to T(X)$ is a strong epi.

Examples.

- If **X** is a variety, any monad on **X** that adds constants + equations.
- If X is protomodular with finite coproducts, and T is a monad with cartesian units.

Definition (Janelidze)

A category B is ideally exact if it satisfies any of the following conditions:

- (i) B Barr-exact protomodular with finite coprod. and $0 \to 1$ regular epi
- (ii) B Barr-exact with finite coprod. and

 \exists **B** \rightarrow **A** monadic. with **A** semi-abelian

Notice that one can ask the monad in (ii) to be cartesian or essentially nullary.

Ideally exact varieties

A non-trivial algebraic variety V is ideally exact iff it is protomodular. If θ , $\alpha_1, \ldots, \alpha_n$ and e_1, \ldots, e_n are terms that witness protomodularity, relevant examples are:

- n = 2, Heyting algebras, MV-algebras (we will discuss these later...)
- n = 1, groups (loops) with operations, unital R-algebras
- n = 0, in this case the characterization reduces to the existence of a unary term t satisfying the equation t(x) = y. There are two such varieties:

$$\emptyset \in V_0$$
 and $\emptyset \not\in V_1$

Both are protomodular, but only V_1 is ideally exact.

Basic setting for relative *U*-ideals VS Ideally Exact Categories

A relevant point is that the notion of Ideally Exact category is intrinsic:

- (i) \boldsymbol{B} Barr-exact protomodular with finite coprod. and $0 \to 1$ regular epi
- However, concerning
- (ii) **B** Barr-exact + fin. coprod. $+ \exists U : \mathbf{B} \to \mathbf{A}$ monadic, with **A** semi-abelian our *basic setting* has weaker assumptions, in that U is just (faithful and) conservative, and **A** is only homological.

In fact, it is possible to give up to Barr-exactness, while keeping monadicity.

Janelidze has shown that U comes from the change of base along $0 \to 1$ iff the unit of the adjunction is cartesian, which is the same as our Condition (*) on augmentation ideals. Then, one could replace Barr-exactness with the requirement that $0 \to 1$ be effective descent.

Or, as it has been suggested by Bourn, one could consider an efficiently regular protomodular **B** with regular epi $0 \to 1$, so that $\mathbf{A} = \mathbf{B}/0$ is homological and $\mathbf{B} \to \mathbf{B}/0$ is monadic.

The category **Hoop** of hoops.

A *hoop* is an algebra $(A; \cdot, \rightarrow, 1)$ such that

- (H0) $(A; \cdot, 1)$ is a commutative monoid and the following equations hold:
- (H1) $x \rightarrow x = 1$
- (H2) $x \cdot (x \rightarrow y) = y \cdot (y \rightarrow x)$
- (H3) $(x \cdot y) \rightarrow z = x \rightarrow (y \rightarrow z)$

Facts:

- Hoops are \land -semilattices, with $x \land y := x \cdot (x \rightarrow y)$.
- Hoops are partially ordered, with $x \leq y$ iff $x \to y = 1$ iff $\exists u \text{ s.t. } x = u \cdot y$.
- Hoops are residuated structures, with $x \cdot y \leqslant z$ iff $y \leqslant x \to z$.

A bounded hoop is an algebra $(A;\cdot,\to,1,0)$ such that $(A;\cdot,\to,1)$ is a hoop, and the following equation holds:

(B)
$$0 \to x = 1$$

Hoop is semi-abelian

Theorem (Lapenta, M., Spada)

Hoop is semi-abelian.

Proof. Since it is a pointed variety of algebras, it suffices to prove it's protomodular. Define terms:

$$\begin{aligned} \mathbf{e}_1 &\coloneqq 1 \,, & \mathbf{e}_2 &\coloneqq 1 \,, & \alpha_1(x,y) &\coloneqq x \to y \,, \\ \alpha_2(x,y) &\coloneqq ((x \to y) \to y) \to x \,, & \theta(x,y,z) &\coloneqq (x \to z) \cdot y \,. \end{aligned}$$

and apply the characterization in [BJ03].

Remark

Hoops satisfying $x \cdot x = x$ are called **idempotent**.

Idempotent hoops are (term equivalent to) Heyting ∧-semilattices.

 $\textbf{HSLat} \ \textit{is semi-abelian (HAlg is protomodular)}, \ \textit{proved by Johnstone in} \ [\text{Jo04}].$

Here we use essentially the same terms as Johnstone's: same e_i and same α_i , while his $\beta(x,y,z) := (x \to z) \land y$ coincide with our θ under idempotency, but does not work verbatim for hoops.

Varieties of hoops

$$\begin{array}{lll} (x \rightarrow y) \lor (y \rightarrow x) = 1 & \textit{Basic hoops} \ (\textbf{BHoop}) & (P) \\ (x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x & \textit{Wajsberg hoops} \ (\textbf{WHoop}) & (W) \\ x \cdot x = x & \textit{Idempotent hoops} \ (\textbf{IHoop}) & (I) \\ (P) + (I) & \textit{G\"{o}del hoops} \ (\textbf{GHoop}) \\ (P) + (x \rightarrow z) \lor ((y \rightarrow x \cdot y) \rightarrow x) = 1 & \textit{Product hoops} \ (\textbf{PHoop}) \\ where \ x \lor y := ((x \rightarrow y) \rightarrow y) \land ((y \rightarrow x) \rightarrow x) \, . \end{array}$$

If the corresponding theories are expanded by adding a constant 0 and the axiom $0 \rightarrow x = 1$, one obtains the "equations"

$$\begin{aligned} \text{WHoop} + 0 &= \text{WAlg} \ (\simeq \text{MVAlg}) \\ \text{BHoop} + 0 &= \text{BAlg} \\ \text{IHoop} + 0 &\simeq \text{HSLat} + 0 = \text{HAlg} \\ \text{GHoop} + 0 &= \text{GAlg} \\ \text{PHoop} + 0 &= \text{PAlg} \end{aligned}$$

Basic setting for varieties of hoops

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product hoops are semi-abelian.

Proposition (Lapenta, M., Spada)

The forgetful functors $U: XAIg \rightarrow XHoop$, for X = B, W, G, P determine basic settings for varieties:

$$X$$
Alg \xrightarrow{F} X Hoop

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product algebras are protomodular.

Corollary (See [Jo04])

The variety of Heyting semilattices is semi-abelian, while the variety of Heyting algebras is protomodular.

Case study: MV-algebras

An MV-algebra is an algebra $(A; \oplus, \neg, 0)$ such that $(A; \oplus, 0)$ is a commutative monoid and the the following equations hold

$$\neg \neg x = x$$
, $x \oplus \neg 0 = \neg 0$, $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x$.

Other (derived) operations are be defined as follows:

$$\begin{split} 1 &\coloneqq \neg 0 \,, \qquad x \odot y \coloneqq \neg (\neg x \oplus \neg y) \,, \qquad x \to y \coloneqq \neg x \oplus y \\ x \lor y &\coloneqq \neg (\neg x \oplus y) \oplus y \quad x \land y \coloneqq x \odot (\neg x \oplus y), \end{split}$$

Fact. $(A; \odot, \rightarrow, 1, 0)$ is a 0-bounded Wajsberg hoop (aka Wajsberg algebra). MV-algebras and W-algebras are the same, modulo term equivalence.

The functor $U \colon \mathbf{MVAlg} \to \mathbf{WHoop}$ that forgets the 0 determines a basic setting for varieties.

[ACD10] describes the left adjoint, which is called *MV-closure*. We revisit the construction in the present context.

Observation. For MV-algebras the notions of *kernels* and *filters* are interchangeable. Here we focus on filters, described as relative *U*-ideals.

MV-closure MV: WHoop \rightarrow MVAlg

Given a Wajsberg hoop $W = (W; \odot, \rightarrow, 1)$, recall that a binary operation \oplus_W can be canonically defined by letting $w \oplus_W w' := (w \to (w \odot w')) \to w'$.

Define the MV-closure of W

$$MV(W) := (W \times \mathbf{2}; \oplus, \neg, 0)$$

where

- $2 = \{0, 1\}$ is the initial MV-algebra.
- $\neg (w, i) := (w, 1 i), 0 := (1, 0),$
- the operation \oplus is defined by letting

$$(w,1) \oplus (w',1) := (w \oplus_W w',1), \qquad (w,0) \oplus (w',0) := (w \odot w',0), (w,0) \oplus (w',1) = (w',1) \oplus (w,0) := (w \to w',1).$$

then we obtain the split extension

$$W \xrightarrow{\eta_W} UMV(W) \xrightarrow[U(\sigma_W)]{U(\rho_W)} U(2)$$

with $\eta_W(w) := (w, 1), p_W(w, i) := i$ and $\sigma_W(i) := (1, i)$. In particular, η_W is an augmentation ideal and the unit η is cartesian. □▶→□▶→□▶→□▶ □ 夕♀◎

Adding 0 to other varieties of hoops (work in progress with F. Piazza)

 The case of product algebras vs product hoops has been analized in [GU23], where they show that the forgetful functor U: PAlg → PHoop has a left adjoint P defined as follows for a product hoop S:

$$P(S) = B(S) \otimes_{\vee_S} C(S)$$

where

- $C(S) = \{x \to x^2 : x \in S\}$ (the cancellative elements)
- B(S) = MV(G(S)), where MV is the MV-closure and $G(S) = \{(x \to x^2) \to x : x \in S\}$ (the boolean elements),
- $\vee_S : B(S) \times C(S) \rightarrow C(S) := b \vee_S c = 1$ if $b \in G(S)$, $b \vee_S c = c$ otherwise,
- the "tensor product" is defined as a suitable quotient of $B(S) \times C(S)$.

The relevant fact to us is that S is a (maximal) U-ideal of P(S), with $P(S)/S \cong \mathbf{2}$, and the canonical inclusion $S \to P(S)$ is the unit of the adjunction, that, therefore, satisfies Condition (*).

• The other cases are under investigation...

References

- [ACD10] M. Abad, D. N. Castaño, and J. P. Díaz Varela. MV-closures of Wajsberg hoops and applications. Algebra Universalis 64 (2010).
- [BJ03] D. Bourn, G. Janelidze. Characterization of protomodular varieties of universal algebras. Theory and applications of Categories 11 No. 6 (2003).
- [GU23] V. Giustarini, S. Ugolini. Maximal Theories of Product Logic. In Fuzzy Logic and Technology, and Aggregation Operators, LNCS 14069 (2023).
- [Ja23] G. Janelidze. Ideally exact categories. arXiv:2308.06574 (2023).
- [Jo04] P. Johnstone. A note on the semiabelian variety of Heyting semilattices. Fields Institute Communications 43 (2004).
- S. Lapenta, G. Metere, L. Spada. Relative ideals in homological categories. Submitted, 2023.

THANK YOU FOR YOUR ATTENTION!

