

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴ : A61K 37/02, C07K 7/06, 7/08 C07K 7/10, 1/06	A1	(11) International Publication Number: WO 90/01940 (43) International Publication Date: 8 March 1990 (08.03.90)
(21) International Application Number: PCT/US89/03466		(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).
(22) International Filing Date: 11 August 1989 (11.08.89)		
(30) Priority data: 233,650 18 August 1988 (18.08.88) US 286,640 15 December 1988 (15.12.88) US		(Published) <i>With international search report.</i>
(71) Applicant: CALIFORNIA BIOTECHNOLOGY INC. [US/US]; 2450 Bayshore Parkway, Mountain View, CA 94043 (US).		
(72) Inventor: SCARBOROUGH, Robert, M. ; 29831 Clearbrook Circle, Hayward, CA 94544 (US).		
(74) Agents: MURASHIGE, Kate, H. et al.; Irell & Manella, 545 Middlefield Road, Suite 200, Menlo Park, CA 94025 (US).		
(54) Title: ATRIAL NATRIURETIC PEPTIDE CLEARANCE INHIBITORS		
(57) Abstract		
Compounds with natriuretic, diuretic and/or vasodilation activity which enhance the function of an endogenous ANP are provided. These compounds are capable of both binding to the clearance receptors for ANP and of inhibition of endopeptidase 24.11, an enzyme believed responsible for ANP clearance.		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MG	Madagascar
AU	Australia	FI	Finland	ML	Mali
BB	Barbados	FR	France	MR	Mauritania
BE	Belgium	GA	Gabon	MW	Malawi
BP	Burkina Fasso	GB	United Kingdom	NL	Netherlands
BG	Bulgaria	HU	Hungary	NO	Norway
BJ	Benin	IT	Italy	RO	Romania
BR	Brazil	JP	Japan	SD	Sudan
CA	Canada	KP	Democratic People's Republic of Korea	SE	Sweden
CF	Central African Republic	KR	Republic of Korea	SN	Senegal
CG	Congo	LJ	Liechtenstein	SU	Soviet Union
CH	Switzerland	LK	Sri Lanka	TD	Chad
CM	Cameroon	LJ	Luxembourg	TG	Togo
DE	Germany, Federal Republic of	MC	Monaco	US	United States of America
DK	Denmark				

10 ATRIAL NATRIURETIC PEPTIDE CLEARANCE INHIBITORSTechnical Field

The invention relates to synthetic peptides
15 which are useful as diuretics, natriuretics, and/or
vasodilators in animal subjects. More particularly, the
invention concerns peptides which block specific clearance
receptors for atrial natriuretic peptides and which also
inhibit peptidases for which atrial natriuretic peptides
20 are substrates.

Background Art

Atrial natriuretic peptides (ANP) are circulating hormones which are synthesized in the atrium of the
25 heart and secreted. The hormones regulate blood pressure through their natriuretic, diuretic and vasorelaxant activities, as well as inhibition of aldosterone secretion from the adrenal gland, inhibition of renin secretion from the kidney, and functional antagonism of the renin-
30 angiotensin system. The ANP hormones have been widely studied, and a large number of analogs have been proposed. Copending U.S. applications 138,893, filed 24 December 1987 and 237,299, filed 26 August 1988, assigned to the same assignee and incorporated herein by reference
35 discloses a series of linear analogs of the native ANP, which native ANPs are cyclic disulfides. Cyclic analogs

are disclosed in copending application 174,739, filed 31 May 1988, assigned to the same assignee and also incorporated herein by reference. These copending applications are the latest filed in a series which 5 includes U.S. Serial No. 168,661, filed 16 March 1988 (allowed), U.S. Serial No. 921,360 (abandoned), U.S. Serial No. 904,091 (abandoned), U.S. Serial No. 868,312 now issued as U.S. Patent No. 4,757,048, and U.S. Serial No. 795,220 (abandoned). Various analogs have also been 10 proposed by others, and the literature relating to ANP analogs is now quite extensive.

It is known that the half life of ANPs in the blood stream is relatively short and that many of the 15 analogs of ANP, such as those set forth in the above-referenced U.S. Serial No. 138,893, appear to act by blocking the clearance receptors for ANP, thus increasing the opportunity for the natively produced ANPs to exert their effects. Two distinct pathways have now been identified which appear to contribute to most ANP clearance. The first pathway relates to receptor mediated 20 metabolic clearance which has sufficient affinity and capacity to account for 70-80% of total ANP clearance from the system (Maack, T., et al, Science (1987) 238:675-679, EPO Publication No. 233,143). It was further determined 25 that an additional, nonsaturatable clearance pathway also operates if the specific receptor pathway is inhibited, Almeida, F.A., Amer J Physiol (1988) (submitted).

On the basis of additional evidence from a variety of sources, it is believed that the nonsaturatable 30 clearance pathway may involve the activity of a peptidase, neutral endopeptidase 24.11 (EC3.4.24.11), commonly referred to as endopeptidase 24.11. U.S. 4,740,499, issued 26 April 1988, describes and claims a method of prolonging or enhancing the bioactivity of an atrial 35 peptide using two specific inhibitors of endopeptidase 24.11, thiorphan or kelatorphan. These inhibitors are

administered simultaneously with the atrial peptide. EPO Application Publication No. 254,032, published 27 January 1988, also describes and claims the use of inhibitors of endopeptidase 24.11, or of neutral metallopeptidases in general, to treat hypertension, either alone or in association with ANP (or with an angiotensin converting enzyme inhibitor). In this disclosure, the inhibitors of the neutral metalloendopeptidase include thiorphan but further include compounds disclosed in U.S. 4,610,816, i.e., a substantial class of compounds, and compounds disclosed in EPO Application Publication No. 117,429 which also includes a substantial class. Reference is also made to compounds disclosed in U.S. Serial No. 32,153, filed 27 March 1987, U.S. Patent 4,513,009 and European Application 15 38,046. In addition, a large volume of literature supports the conclusion that endopeptidase 24.11 is responsible for the extracellular inactivation of ANP (Stevenson, S.L., et al, Biochem J (1987) 243:183-187; Olins, G.M., et al, Biochim Biophys Acta (1987) 901:97-20 100; Koehn, J.A., et al, J Biol Chem (1987) 262:11623-11627); including the observation that a metabolic fragment of ANP isolated from human plasma is identical to the primary cleavage product of ANP treated with endopeptidase 24.11 (Yandle, T., et al, Biochem Biophys Res Commun 25 (1987) 146:832-839).

It has also been observed by others that inhibitors of endopeptidase 24.11 potentiates the biological responses of administered ANP (Fennell, S.A., et al, FASEB J (1988) 2:A936; Seymour, A.A., et al, ibid; 30 Trapani, A.J., et al, ibid; McMartin, C., et al, ibid; Zimmerman, M.B., et al, ibid:A937).

In addition to the use of thiorphan, there has been disclosed a variety of strategies for the inhibition of endopeptidase 24.11. These strategies include the use of a metal binding substituent appropriately spaced from an aromatic moiety. Roques, B.P., et al, Nature (1980)

288:286-288; Gordon, E.M., et al, Life Sci (1983) 33(Supplement 1):113-116; Mumford, R.M., et al, Biochem Biophys Res Comm (1982) 109:1303-1309; Fournie-Zaluski, M.C., et al, J Med Chem (1983) 26:60-65; Waksman, G., et al,
5 Biochem Biophys Res Comm (1985) 131:262-268.

Blockage of both the specific receptor and the nonsaturatable endopeptidase 24.11 based clearance mechanisms by suitable inhibitors should greatly enhance the circulating levels of ANP and prolong the activity of
10 the endogenous hormones. Indeed, it has been shown that conscious rats treated with an ANP clearance receptor-specific ligand in combination with the endopeptidase 24.11 inhibitor thiorphan results in greater diuresis and natriuresis than blockade of either pathway alone (Koepke,
15 J., et al, FASEB Jour (1988) 2:A527. However, administration of inhibitors of these pathways separately carries the disadvantage that cerebral endopeptidase 24.11 will also be inhibited since thiorphan is capable of crossing the blood-brain barrier (Bourgoin, S., et al, J Pharm Exp Ther (1986) 238:360-366). This disadvantage could be
20 overcome by utilization of a single agent which would block the clearance receptors for ANP, as well as inhibiting the alternate nonsaturatable enzymatic pathway.

The compounds of the invention described herein
25 incorporate endopeptidase 24.11 inhibition functionality (or functionality which inhibits cleavage at Cys105 - Phe106 of ANP) into analogs which also bind the ANP clearance receptors. Surprisingly, the elements which result in cleavage inhibition do not interfere with the clearance
30 receptor binding capability of these compounds.

Disclosure of the Invention

The invention provides compounds which enhance the ability of endogenously secreted ANP hormones to
35 regulate the homeostatic mechanisms which provide protection against high blood pressure and fluid and sodium

retention. Accordingly, the compounds of the invention are useful for the treatment of hypertension, heart disease, renal failure and edema by virtue of their natriuretic, diuretic, and vasorelaxant activities.

5 Most of the synthetic analog compounds of the present invention retain a core pentapeptide sequence of amino acid residues which correspond in a defined way to the sequence AA₁₀₉-AA₁₁₃ of native ANPs, using the numbering system recommended by Dzau, V.J., et al, N Engl J Med
10 1987) 316:1279 for ANP peptides based on the 126-residue proANP peptide. In the known native ANPs, this core sequence is RIDRI in rat and RMDRI in human. While some defined permutations of this sequence, including some wherein AA₁₁₃ is not present, retain activity, most are
15 not active in in vitro model systems for assay of diuretic or natriuretic activities; these analogs empower the function of endogenous ANPs by blocking clearance receptor(s) for these peptides.

In one aspect the invention is directed to
20 compounds of the formula:

wherein:

each of AA₁₀₉ and AA₁₁₂ is, independently,
25 preferably a basic/noncyclic, but can be also a neutral/polar/large/nonaromatic amino acid residue; in addition, AA₁₀₉ can be a neutral/nonpolar/large/nonaromatic amino acid;

AA₁₁₀ is a neutral/nonpolar/large/nonaromatic
30 amino acid residue in the D or L configuration;

AA₁₁₁ is an acidic amino acid residue; and

AA₁₁₃ is a neutral/nonpolar/large/nonaromatic amino acid residue, in the D or L configuration or is a covalent bond;

wherein Z_1 is

wherein X_1 is a hydrophobic cyclic or noncyclic residue of 4-14C, X_2 is a substituent containing a metal-coordinating atom within 1.5-7 angstroms (2-4 single covalent bonds) of the illustrated -CH-, said metal-coordinating atom selected from S and O; and $-X_3-$ is a bond, $-\text{CH}_2-$, $-\text{CO}-$, or $-\text{NH}-$;

10 Z_2 is a spacer group which provides a spaced dimension of about 4.5-15 angstroms, i.e., contains 3-9 atoms in a linked group or can be conformed to the proper 15 spacing by folding; and

15 Z_3 is (OH), NH_2 , NHR'' or $\text{NR}''\text{R}'''$ wherein R'' or R''' are each independently straight or branched chain alkyl of 1-10 carbon atoms wherein 1 or 2 carbons may be replaced by O, N, or S, or Z_3 is a peptide residue of 1-20 20 amino acid residues, or an amide or alkyl amide thereof, with the proviso that when AA_{113} is a covalent bond, Z_3 cannot be OH, NH_2 or a peptide.

25 In the foregoing compounds of the invention, one or more of the amide backbone linkages between any adjacent amino acid residues may optionally be replaced by a linkage selected from the group consisting of $-\text{CH}_2\text{NH}-$, $-\text{CH}_2-\text{S}-$, $-\text{CH}_2\text{CH}_2-$, $-\text{CH}=\text{CH}-$ (cis and trans), $-\text{COCH}_2-$, $-\text{CH}(\text{OH})\text{CH}_2$ and $-\text{CH}_2\text{SO}-$.

30 One or two of the residues in the peptides of the invention may be replaced by the corresponding D isomer, in addition to, or instead of, AA_{110} and AA_{113} .

Also provided in accordance with aspects of the invention are pharmaceutical compositions useful as natriuretics, diuretics, vasodilators and/or modulators of 35 the renin-angiotensin-aldosterone system, which compositions contain at least one compound of the invention,

including the amides and esters and the nontoxic salts thereof, together with a pharmaceutically acceptable liquid, gel or solid carrier.

Additional aspects of the present invention
5 provide methods for producing such compounds and compositions, and methods for using the compounds and compositions as therapeutic agents.

Brief Description of the Drawings

10 Figure 1 shows the classification of amino acids as they define the compounds of the invention.

Figure 2 shows exemplary embodiments of some preferred Z₁ substituents, along with the abbreviations for them.

15 Figure 3 shows additional abbreviations for certain embodiments of Z₂.

Figure 4 shows exemplary embodiments of the compounds of the invention.

20 Figure 5 shows the effect of a compound of the invention on diuresis and natriuresis in whole animals.

Modes of Carrying Out the Invention

The class of compounds is capable of exhibiting or modulating the natriuretic, diuretic and/or
25 vasorelaxant activity of the native peptides in mammals in vivo by virtue of the ability to impair the clearance of endogenous ANP both by inhibition of the specific receptor clearance system and by inhibition of endopeptidase 24.11 activity.

30 The sequence of amino acid residues of the core pentapeptide, and preferred embodiments thereof, is defined in terms of amino acids of certain characteristics of particular subclasses.

Amino acid residues can be generally
35 subclassified into four major subclasses as follows and as shown in Figure 1.

Acidic: The residue has a negative charge due to loss of H ion at physiological pH and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.

Basic: The residue has a positive charge due to association with H ion at physiological pH and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.

Neutral/nonpolar: The residues are not charged at physiological pH and the residue is repelled by aqueous solution so as to seek the inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium. These residues are also designated "hydrophobic" herein.

Neutral/polar: The residues are not charged at physiological pH, but the residue is attracted by aqueous solution so as to seek the outer positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.

It is understood, of course, that in a statistical collection of individual residue molecules some molecules will be charged, and some not, and there will be an attraction for or repulsion from an aqueous medium to a greater or lesser extent. To fit the definition of "charged", a significant percentage (at least approximately 25%) of the individual molecules are charged at physiological pH. The degree of attraction or repulsion required for classification as polar or nonpolar is arbitrary, and, therefore, amino acids specifically contemplated by the invention have been specifically classified as one or the other. Most amino acids not

specifically named can be classified on the basis of known behavior.

Amino acid residues can be further subclassified as cyclic or noncyclic, and aromatic or nonaromatic, self-explanatory classifications with respect to the side chain substituent groups of the residues, and as small or large. The residue is considered small if it contains a total of 4 carbon atoms or less, inclusive of the carboxyl carbon. Small residues are, of course, always nonaromatic.

For the naturally occurring protein amino acids, classification according to the foregoing scheme is as follows (see also Figure 1)

Acidic: Aspartic acid and Glutamic acid;

15

Basic/noncyclic: Arginine, Lysine;

Basic/cyclic: Histidine;

20

Neutral/polar/small: Glycine, Serine and Cysteine;

Neutral/polar/large/nonaromatic: Threonine, Asparagine, Glutamine;

25

Neutral/polar/large/aromatic: Tyrosine;

Neutral/nonpolar/small: Alanine;

30

Neutral/nonpolar/large/nonaromatic: Valine, Isoleucine, Leucine, Methionine;

Neutral/nonpolar/large/aromatic: Phenylalanine, and Tryptophan.

35

The gene-encoded amino acid proline, although technically within the group neutral/nonpolar/large/cyclic and nonaromatic, is a special case due to its known effects on the secondary conformation of peptide chains, and 5 is not, therefore, included in this defined group.

Certain commonly encountered amino acids, which are not encoded by the genetic code, include, for example, beta-alanine (beta-Ala), or other omega-amino acids, such as 3-amino propionic, 4-amino butyric and so forth, alpha-10 aminoisobutyric acid (Aib), sarcosine (Sar), ornithine (Orn), citrulline (Cit), t-butylalanine (t-BuA), t-butylglycine (t-BuG), N-methylisoleucine (N-MeIle), phenylglycine (Phg), and cyclohexylalanine (Cha), norleucine (Nle), cysteic acid (Cya) and methionine 15 sulfoxide (MSO). These also fall conveniently into particular categories.

Based on the above definition,
Sar and beta-Ala are neutral/nonpolar/small;
t-BuA, t-BuG, N-MeIle, Nle and Cha are neutral/
20 nonpolar/large/nonaromatic;
Orn is basic/noncyclic;
Cya is acidic;
Cit, MSO and (acetyl) Lys are neutral/polar/
large/nonaromatic; and
25 Phg is neutral/nonpolar/large/aromatic.

See, also, Figure 1.
The various omega-amino acids are classified according to size as neutral/nonpolar/small (beta-ala, i.e., 3-aminopropionic, 4-aminobutyric) or large (all others).
30

Other amino acid substitutions for those encoded in the gene can also be included in peptide compounds within the scope of the invention and can be classified within this general scheme.

35 The nomenclature used to describe analog compounds of the present invention follows the

conventional practice wherein the amino group is assumed to the left and the carboxy group to the right of each amino acid in the peptide. In the formulas representing selected specific embodiments of the present invention,

5 the amino- and carboxy-terminal groups, although often not specifically shown, will be understood to be in the form they would assume at physiological pH values, unless otherwise specified. Thus, the N-terminal H₂⁺ and C-terminal-O⁻ at physiological pH are understood to be

10 present though not necessarily specified and shown, either in specific examples or in generic formulas. However, a shared N linking two residues, where conventional peptide linkage is not present, is shown as [N]. Thus, in designating the substituted N-alkylcarboxy peptides and

15 N-alkylcarboxyhydroxamic acid peptides, the structures are written by indicating the shared nitrogen as -[N]--.

(Hydroxylamino in the N-alkylcarboxy hydroxamic peptides is abbreviated HA.) For example, analog #364, which is HOOC-CH(CH₂Ph)-NH-CH₂CO-Gly-Arg-Ile-Asp-Arg-Ile-NH₂, where

20 Ph is phenyl, is written as F[N]G-G-R-I-D-R-I-NH₂, and analog #702 which is the compound HONHCOCH(CH₂Ph)-NH-CH₂CO-Gly-Arg-Ile-Asp-Arg-Ile-NH₂, is written as HAF[N]G-G-R-I-D-R-I-NH₂.

Additionally, when the peptide chain is not linked through the normal alpha-amino and carboxyl groups to form the peptide bond linking the residues, the following symbols are used: [gamma-L-Glu] denotes peptide linkage through the side-chain carboxyl group of L-Glu and the alpha-carboxyl group now becomes the free carboxylic acid side chain; similarly, the designations [gamma-D-Glu], [beta-L-Asp] and [beta-D-Asp] indicate linkages through the carboxyl not normally included in the peptide linkage.

In the peptides shown, each encoded residue where appropriate is represented by a single letter designation, corresponding to the trivial name of the

amino acid, in accordance with the following conventional list:

	<u>Amino Acid</u>	<u>One-Letter Symbol</u>
5	Alanine	A
	Arginine	R
	Asparagine	N
10	Aspartic acid	D
	Cysteine	C
	Glutamine	Q
	Glutamic acid	E
	Glycine	G
15	Histidine	H
	Isoleucine	I
	Leucine	L
	Lysine	K
	Methionine	M
20	Phenylalanine	F
	Proline	P
	Serine	S
	Threonine	T
	Tryptophan	W
25	Tyrosine	Y
	Valine	V

The amino acids not encoded genetically are abbreviated as indicated above.

30 In the specific peptides shown in the present application, the L-form of any amino acid residue having an optical isomer is intended unless otherwise expressly indicated otherwise. While the residues of the invention peptides are normally in the natural L optical isomer form, one or two, preferably one, amino acid in addition 35 to, as well as instead of, AA₁₁₀ and/or AA₁₁₃, may be

replaced with the optical isomer D form (including embodiments where AA₁₁₀ and AA₁₁₃ are both D).

Free functional groups, including those at the carboxy- or amino-terminus, can also be modified by 5 amidation, acylation or other substitution, which can, for example, change the solubility of the compounds without affecting their activity.

In particular, it has been discovered that carboxyl terminal amide-modified analogs are particularly 10 potent and therefore preferred embodiments of the present invention. In general, the nitrogen atom of the amido group, covalently bound to the carbonyl carbon, will be NH₂, -NHR', or NR'R", wherein R' and R" are straight or branched chain alkyl or alkyl acyl of 1-10C, preferably 1- 15 6C, including these groups wherein 1-2 carbons are replaced by nitrogen, oxygen or sulfur atoms.

Representatives of such amido groups are: -NH₂, -NHCH₃, - N(CH₃)₂, -NHCH₂CH₃, -NHC₆H₅, -NHCH₂CH(CH₃)₂, - NHCH₂CH(CH₃)CH₂CH₃, -NHCH₂CH₂OH, -NHCH₂OCH₂CH₃ and - 20 N(CH₃)CH₂CH₂SCH₂CH₃, among others.

The amidated compounds of the present invention can be synthesized directly, for example using Boc-AA_x-pMBHA-Resin or Boc-AA_x-BHA-Resin, wherein AA_x is the selected carboxy-terminal amino acid of the desired analog 25 compound as described in further detail below.

Alternatively, the compounds of the present invention can be chemically or enzymatically amidated subsequent to peptide synthesis using means well known to the art, or prepared by standard solution-phase peptide synthesis 30 protocols.

Preferred Embodiments

A. The Core Pentapeptide

35 The compounds of the invention all contain the pentapeptide core sequence:

$\text{AA}_{109}-\text{AA}_{110}-\text{AA}_{111}-\text{AA}_{112}-\text{AA}_{113}$,

wherein each of AA_{109} and AA_{112} is, independently:

5 a basic/noncyclic; or
 a neutral/polar/large/nonaromatic amino acid residue;

 in addition, AA_{109} can be a neutral/nonpolar/large/nonaromatic amino acid;

10 AA_{110} is a neutral/nonpolar/nonaromatic amino acid residue in the D or L configuration;

AA_{111} is an acidic amino acid residue; and

AA_{113} is a neutral/nonpolar/large/nonaromatic amino acid residue in the D or L configuration, or is a covalent bond.

The most preferred sequence of this core is R(I/M)DRI, wherein all residues are in the L configuration and the amino acid residues contained within the parentheses are alternatives. Next in preference are those sequences wherein only one of the R(I/M)DRI residues has been substituted by an alternative residue within the above definitions. Preferred substitutions are:

For AA_{109} , instead of R: K, (Acetyl)K, Q, N, L or Nle;

25 for AA_{110} , instead of I/M: V, V[†], L, L[†], I[†], M[†], t-BuA, t-BuG, or Cha;

 for A₁₁₁, instead of D: E or Cya;

 for A₁₁₂, instead of R: K, Q, N, Orn, or Cit;

 for A₁₁₃, instead of I: M, M[†], V, V[†], L, L[†], I[†], N-MeIle, t-BuA, or a covalent bond.

(The † indicates the D form.)

Particularly preferred are those embodiments wherein this sequence is selected from the group consisting of:

	RM [†] DRI	R(I/M)DRL
	K(I/M)DRI	RLDRI
	Q(I/M)DRI	R(I/M)ERI
	RVDRI	R(I/M)DKI
5	RI [†] DRI	R(I/M)DQI
		R(I/M)DRV

where the † indicates the D-form of the amino acid preceding it.

More than one alteration from the naturally occurring RIDRI or RMDRI sequence is within the scope of the invention, but less preferred. Particularly favored subsets of this group include those wherein glutamic replaces aspartic as AA₁₁₁ or lysine replaces arginine as AA₁₀₉, in addition to another substitution.

15

B. Embodiments of Z₁

Z₁ has the formula

wherein X₁ is a hydrophobic cyclic or noncyclic residue of 4-14C;

25 X₂ is a substituent containing a metal coordinating atom within 1.5-7 angstroms of the illustrated CH, said metal coordinating atom selected from S and O; and

-X₃- is a bond, -CH₂-, -CO-, or -NH-.

30 In order to provide inhibition of endopeptidase 24.11, both a hydrophobic residue and a metal-coordinating atom must be provided in proximity to each other. Accordingly, X₁ provides the hydrophobicity, and X₂ the metal coordinating atom.

35 The pivotal CH group is a chiral center; accordingly the invention compounds include those in the R-

and S- configuration or mixtures thereof. In general, the preferred enantiomer will be that wherein the chirality is such that an L-amino acid is mimicked.

-X₃- as shown provides linkage of the two essential features of the Z₁ substituent to the remainder of the compound.

-X₁, in preferred embodiments, contains a cyclic or aromatic group conjugated to the illustrated CH through at least one CH₂, NH, O, or S linking group. Occasionally, this linking group may contain two members and thus includes -OCH₂-, -CH₂O-, -CH₂S-, -SCH₂-, -CH₂CH₂-, -NHCH₂-, or -CH₂NH-. The aromatic substituent may be phenyl, indolyl, biphenyl, naphthyl, pyridyl, imidazole, and the like, i.e., any 5-12 member ring system which can include one or two heteroatoms selected from N, O and S. In addition, the hydrophobic moiety may be nonaromatic such as, for example, cyclohexyl or any 5-10 membered nonaromatic ring system including one or two N, S or O heteroatoms. In some instances, the hydrophobic moiety may also be noncyclic.

-X₂, which contains the metal-coordinating atom, effects the appropriate separation of said atom from the illustrated CH. This separation is basically the space provided by 2-4 covalent bonds, or about 1.5-7A°, and thus, -X₂ is exemplified by -CH₂SH, -CH₂CH₂SH, -COOH, -CONHOH, -CH₂COOH, -CH₂CONHOH, -NHCH₂COOH, -NHCHR₂COOH, where R is -CH₂Ph or -CH₂CH₂Ph, and NHPO(OR')₂ wherein each R' is independently H or alkyl (1-7C). When -X₂ is -NHCH₂COOH, -NHCHR₂COOH, or -NHPO(OR')₂, the "N" will be bracketed [N] if X₁ represents an amino acid residue.

Illustrative and preferred embodiments of Z₁ (along with abbreviations therefor) are shown in Figure 2. Especially preferred are compounds wherein Z₁ is such that

X_3 is CO and X_2 is CH_2SH , or X_3 is CO and X_2 is CONOH, or X_3 is CO and X_2 is $-\text{CH}_2\text{CONHOH}$ or X_3 is CO and X_2 is [N]CHR COOH where R is CH_2Ph or $\text{CH}_2\text{CH}_2\text{Ph}$.

The illustrated CH is conjugated to the remainder of the compound of the invention through the linker $-X_3-$. The linker may simply be a bond to the spacer described as Z_2 or may be selected from $-\text{NH}-$, $-\text{CO}-$, and $-\text{CH}_2-$. When the spacer Z_2 is terminated by an amino acid residue, the structures illustrated below may show the NH which forms the N-terminus of the peptide as [N] i.e. N in brackets for convenience in decipherment.

C. Embodiments of Z_2

In the compounds of the invention, Z_2 provides a spacer element separating AA_{109} from Z_1 . The linker Z_2 must be capable to achieve a distance between AA_{109} and Z_1 of about between 4.5 and 15 angstroms, corresponding to 3-9 atoms in a normally extended chain. Of course, longer linkers can be used provided their three-dimensional conformations permit this spacing distance to be accommodated.

Preferred embodiments for Z_2 are selected from the group consisting of

(a) $(\text{AA})_a$ wherein AA is an amino acid and "a" is 1 or 2, especially wherein each AA is selected from G, S, A, D-Ala, Sar, Aib, Asp, Glu, D-Asp, D-Glu, beta-L-Asp, beta-D-Asp, gamma-L-Glu, and gamma-D-Glu (in gamma-Glu and beta-Asp linkage is through the side-chain carboxyl);

(b) $-(\text{P})_n-(\text{CO})_x-$ wherein x is 0 or 1, n is 1-6, and P is CH_2 , wherein 1-2 of said $-\text{CH}_2-$ groups can be replaced by NH, provided N-N does not occur; and

(c) $-(\text{Q})_m-\text{B}-(\text{Q})_m-(\text{CO})_x-$ wherein x is 0 or 1, each m is independently 0-3 but the sum of both m is 5 or less; Q is CH_2 or NH, with the proviso that -N-N- does not occur, and B is a saturated or unsaturated five- or six-membered ring optionally containing an N heteroatom.

Particularly preferred embodiments of Z_2 are shown in Figure 3. These include 4-aminobenzoyl(4-AB); 4-aminophenyl acetyl (4-APA); 4-piperidine carboxyl (4-PIP) and 4-aminomethyl cyclohexoyl (4-AMC).

5

D. Embodiments of Z_3

Preferred for Z_3 are NH_2 , NHR' , and the amide or alkyl amide of peptide residues of 1-3 amino acids.

Especially preferred among the embodiments which are 10 peptide residues are those wherein the amino acids are selected from G, A, and S. In particular, however, when AA_{113} is a covalent bond, Z_3 should be in the alkyl amidated form, e.g., $-\text{NHR}'$ wherein R' is 2-10C.

15 E. Nonpeptide Linkages

In one embodiment of the invention, the amide linkages (-CO-NH-) within the core pentapeptide or those described above within Z_1 and/or Z_2 and/or Z_3 can be replaced with other types of linkages such as $-\text{CH}_2\text{NH}-$, 20 $-\text{CH}_2\text{-S-}$, $-\text{CH}_2\text{CH}_2-$, $-\text{CH}=\text{CH-}$ (cis and trans), $-\text{COCH}_2-$, $-\text{C}(\text{OH})\text{CH}_2-$ and $-\text{CH}_2\text{SO-}$, by methods known in the art. The following references describe preparation of peptide analogs which include these alternative-linking moieties: Spatola, A.F., Vega Data (March 1983), Vol. 1, Issue 3, 25 "Peptide Backbone Modifications" (general review); Spatola, A.F., in "Chemistry and Biochemistry of Amino Acids Peptides and Proteins", B. Weinstein, ed., Marcel Dekker, New York, p. 267 (1983) (general review); Morley, J.S., Trends Pharm Sci (1980) pp. 463-468 (general review); Hudson, D., et al, Int J Pept Prot Res (1979) 30 14:177-185 ($-\text{CH}_2\text{NH-}$, $-\text{CH}_2\text{CH}_2-$); Spatola, A.F., et al, Life Sci (1986) 38:1243-1249 ($-\text{CH}_2\text{-S-}$); Hann, M.M., J Chem Soc Perkin Trans I (1982) 307-314 ($-\text{CH-CH-}$, cis and trans); Almquist, R.G., et al, J Med Chem (1980) 23:1392-1398 (-35 COCH_2-); Jennings-White, C., et al, Tetrahedron Lett (1982) 23:2533 ($-\text{COCH}_2-$); Szelke, M., et al, European Ap-

plication EP 45665 (1982) CA: 97: 39405 (1982)
 (-CH(OH)CH₂-); Holladay, M.W., et al., Tetrahedron Lett
 (1983) 24:4401-4404 (-C(OH)CH₂-); and Hruby, V.J. Life Sci
 (1982) 31:189-199 (-CH₂-S-).

5

F. Preferred Embodiments of the Invention Analogs

Preferred analogs of the invention are shown in Figure 4.

In the figure, in compounds 1-88, the core sequence is R-I-D-R-I, Z₃ is NH₂, Z₂ is AA_a, and Z₁ contains a mercaptyl group, where X₂- is -CH₂SH.

Compounds 89-110 are similar except that Z₂ is of the formula -(P)_n-(CO)- wherein n is 4-5.

Compounds 111-154 are similar except that Z₂ is selected from 4-AB, 4-AMC, 4-APA, and 4-PIP.

Compounds 155-220 are similar except that they have the core sequence K-I-D-R-I, Z₃ is NH₂.

Compounds 221-286 are similar except that they have core sequences R-I-D-R - NHR" wherein R" is CH₂CH(CH₃)CH₂CH₃.

Compounds 287-363 return to the R-I-D-R-I core peptide, Z₃ as NH₂, and embodiments of Z₁ wherein X₂ is -CH₂CH₂SH.

Compounds 364-624 all have the core sequence R-I-D-R-I with Z₃ as NH₂ in various preferred embodiments for Z₂, but Z₁ no longer contains a mercaptyl. Z₁ is selected from F[N], BF[N], Nal2[N], Nall1[N], Cha[N], W[N], homoF[N], homoCha[N], homoNal2[N], F[N]F, F[N]BF, F[N]Nal2, F[N]Nall1, F[N]Cha, F[N]W, F[N]homoF, F[N]homoCha, F[N]homoNal2, and similar structures wherein homoF[N] or G[N] substitutes for F[N]. Thus, in these embodiments Z₁ is

wherein R is -H, -CH₂Ph or -CH₂CH₂Ph.

In compounds 625-701, Z₁ also contains a carboxyl group and is selected from embodiments wherein X₂- is COOH, and -X₃- is -CO-.

5 In compounds 702-764, X₂- contains a hydroxamate and Z₁ is

where X₂- is -CONHOH.

In compounds 765-841 Z₁ is

where X₂ is -CONHOH.

In compounds 842-918, Z₁ is

where X₂- is -CH₂CONHOH.

In compounds 919-981, Z₁ is

wherein X₁ is variable and X₂ is phosphoramidate as shown.

In these embodiments, the various substituents shown in

30 Figure 2 for Z₁ which are aromatic amino acids are conjugated to the Z₂ substituent through their alpha-carboxyl groups and are phosphorylated at the alpha-amino groups. Thus, Z₁ has the structure shown as embodiments Z19-Z27 of Figure 2.

In compounds 982-1056, Z_1 has the formula

wherein X_1 is variable and X_2 is $-CH_2COOH$.

Especially preferred are compounds 1-286, 436-561, and 842-981, inclusive.

Compound 122 is particularly preferred.

10

Synthesis

Compounds within the scope of the present invention can be synthesized chemically by means well known in the art such as, e.g., solid-phase peptide synthesis. The 15 synthesis is commenced from the carboxy-terminal end of the peptide using an alpha-amino protected amino acid. t-Butyloxycarbonyl (Boc) protective groups can be used for all amino groups even though other protective groups are suitable. For example, Boc-Ile-OH, Boc-Arg-OH, Boc-Asp-20 OH, Boc-Ile-OH or Boc-Arg-OH (i.e., selected analog carboxy-terminal amino acids) can be esterified to chloromethylated polystyrene resin supports, preferably of p-methyl benzhydryl amine (pMBHA) resin. The polystyrene resin support is preferably a copolymer of styrene with 25 about 0.5 to 2% divinyl benzene as a cross-linking agent which causes the polystyrene polymer to be completely insoluble in certain organic solvents. See Stewart, et al, Solid-Phase Peptide Synthesis (1969) W.H. Freeman Co., San Francisco and Merrifield, J Am Chem Soc (1963) 85:2149-30 2154. These and other methods of peptide synthesis are also exemplified by US Patent Nos. 3,862,925, 3,842,067, 3,972,859, and 4,105,602.

The synthesis may use manual techniques or automatically employing, for example, an Applied 35 BioSystems 430A Peptide Synthesizer (Foster City, California) or a Biosearch SAM II automatic peptide

synthesizer (Biosearch, Inc. San Rafael, California), following the instructions provided in the instruction manual supplied by the manufacturer.

It will be readily appreciated by those having ordinary skill in the art of peptide synthesis that the intermediates which are constructed in accordance with the present disclosure during the course of synthesizing the present analog compounds are themselves novel and useful compounds and are thus within the scope of the invention.

10

Administration and Use

Compounds of the present invention are shown to have natriuretic, diuretic and hypotensive activity in the intact mammal, and may possess vasorelaxant activity or 15 inhibit the release of aldosterone and renin.

Thus these compounds, and compositions containing them, can find use as therapeutic agents in the treatment of various edematous states such as, for example, congestive heart failure, nephrotic syndrome and hepatic 20 cirrhosis, pulmonary disease, in addition to hypertension and renal failure due to ineffective renal perfusion or reduced glomerular filtration rate.

Thus the present invention also provides compositions containing an effective amount of compounds 25 of the present invention, including the nontoxic addition salts, amides and esters thereof, which may, alone, serve to provide the above-recited therapeutic benefits. Such compositions can also be provided together with physiologically tolerable liquid, gel or solid diluents, 30 adjuvants and excipients.

These compounds and compositions can be administered to mammals for veterinary use, such as with domestic animals, and clinical use in humans in a manner similar to other therapeutic agents. In general, the dosage 35 required for therapeutic efficacy will range from about 0.01 to 1000 mcg/kg, more usually 0.1 to 1000 mcg/kg

of the host body weight. Alternatively, dosages within these ranges can be administered by constant infusion over an extended period of time until the desired therapeutic benefits have been obtained.

5 Typically, such compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be emulsified. The active ingredient
10 is often mixed with diluents or excipients which are physiologically tolerable and compatible with the active ingredient. Suitable diluents and excipients are, for example, water, saline, dextrose, glycerol, or the like, and combinations thereof. In addition, if desired the
15 compositions may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, stabilizing or pH-buffering agents, and the like.

The compositions are conventionally administered
20 parenterally, by injection, for example, either subcutaneously or intravenously. Additional formulations which are suitable for other modes of administration include suppositories, intranasal aerosols, and, in some cases, oral formulations. For suppositories, traditional binders and excipients may include, for example, polyalkylene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10% preferably 1%-2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch,
25 magnesium stearate, sodium saccharin, cellulose, magnesium carbonate, and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained-release formulations, or powders, and contain 10%-95% of active ingredient, preferably 25%-70%.

30 The peptide compounds may be formulated into the compositions as neutral or salt forms. Pharmaceutically

acceptable nontoxic salts include the acid addition salts (formed with the free amino groups) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or organic acids such as acetic, oxalic, 5 tartaric, mandelic, and the like. Salts formed with the free carboxyl groups may be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, 10 histidine, procaine, and the like.

In addition to the compounds of the present invention which display natriuretic, diuretic or vasorelaxant activity, compounds of the present invention can also be employed as intermediates in the synthesis of 15 such useful compounds. Alternatively, by appropriate selection, compounds of the present invention whose activity levels are reduced or eliminated entirely can serve to modulate the activity of other diuretic, natriuretic or vasorelaxant compounds, including compounds outside the 20 scope of the present invention, by, for example, binding to alternate receptors; stimulating receptor turnover, or providing alternate substrates for degradative enzyme or receptor activity and thus inhibiting these enzymes or receptors. When employed in this manner, such compounds 25 can be delivered as admixtures with other active compounds or can be delivered separately, for example, in their own carriers.

Compounds of the present invention can also be used for preparing antisera for use in immunoassays 30 employing labeled reagents, usually antibodies. Conveniently, the polypeptides can be conjugated to an antigenicity-conferring carrier, if necessary, by means of dialdehydes, carbodiimide or using commercially available linkers. These compounds and immunologic reagents 35 may be labeled with a variety of labels such as chromophores, fluorophores such as, e.g., fluorescein or

rhodamine, radioisotopes such as ^{125}I , ^{35}S , ^{14}C , or ^3H , or magnetized particles, by means well known in the art.

These labeled compounds and reagents, or labeled reagents capable of recognizing and specifically binding 5 to them, can find use as, e.g., diagnostic reagents.

Samples derived from biological specimens can be assayed for the presence or amount of substances having a common antigenic determinant with compounds of the present invention. In addition, monoclonal antibodies can be prepared 10 by methods known in the art, which antibodies can find therapeutic use, e.g., to neutralize overproduction of immunologically related compounds in vivo.

15

Examples

The following examples are provided by way of illustration, rather than implying any limitation of the subject invention.

20 Compounds of the present invention were synthesized by solid-phase techniques performed manually or, alternatively, on an Applied BioSystems 430A Peptide Synthesizer (Foster City, California) or a Biosearch Sam II automated peptide synthesizer (Biosearch, San Rafael, 25 California) using t-Boc amino acids in accordance with the instructions of the manufacturer.

Residues $\text{Z}_2\text{-AA}_{109}\text{-AA}_{113}$ are commonly prepared on solid-phase supports using conventional t-Boc chemistry. Where applicable, Z_2 spacers are incorporated into the 30 peptide chain using BOC- Z_2 protected intermediates that are conveniently prepared from the corresponding $\text{NH}_2\text{-Z}_2\text{-COOH}$ and Boc-anhydride. The spacers are coupled to the free amino group on the growing peptide chain using standard carboxyl activating agents such as 35 dicyclohexylcarbodiimide (DCC). For peptides which contain the 3-mercaptopro-2-(substituted)-propionyl, examples

(1-286), or 4-mercaptopro-2-(substituted)-butyryl amino terminus, examples (287-363), the corresponding protected 3-Acetylthio- or 3-Benzoylthio-2-(substituted)-propionic or 4-acetylthio or 4-Benzoylthio-2-(substituted)- butyric acids are used. The S-acetyl or S-benzoyl groups later removed by base hydrolysis as described by Fournie-Zaluski et al, Eur J Biochem (1984) 139:267-274. For examples containing the substituted malonoyl or succinoyl groups, examples (625-918), generally the methods found in Fournie-Zaluski et al, J Med Chem (1985) 28:1158-1169 can be used for their incorporation into the peptide-resins. For peptides containing the (N-hydroxy)carboxamido-2-(substituted)-1-oxo-acetyl group referred to as hydroxyamino malonoyl and 3-(N-hydroxy)carboxamido-2-(substituted)-1-oxo propyl groups referred to as hydroxyamino succinoyl groups, these groups can be introduced according to the methods outlined in Fournie-Zaluski, supra, and in Fr. patent 81.23.488. The N-carboxyalkyl-containing peptides, examples (364-624), are prepared using the methods of Fournie-Zaluski et al, J Med Chem (1983) 26:60-65, Patchett et al, Nature (1980) 288:280-283, or Mumford et al, Biochem Biophys Res Commun (1982) 109:1303-1309. N-alkylation is routinely carried out with the corresponding substituted alpha-ketocarboxylic acid or ester by reductive amination of the free amino group on the peptide resin. N-Phosphoryl peptides, examples (919-981), can be obtained using the procedures outlined in Kam et al, Biochemistry (1979) 18:3032-3038.

30

Procedure APreparation of Boc-AA₁.....AAn-1-AAn-O-Polystyrene Resin

One gram of selected Boc-AA_n-O-Polystyrene-Resin (0.2-0.6 mmole/g resin) (obtainable from, e.g., Peninsula Labs, Inc.) is treated according to schedule A for incorporation of the Boc-AA_{n-1}-OH.

Schedule A

- 1) Wash 3x with dichloromethane (CH_2Cl_2);
- 2) Treat for 1 min with TFA: CH_2Cl_2 :ethane dithiol (EDT) (45:50:5 by volume);
- 5 3) Treat for 20 min. with TFA: CH_2Cl_2 :EDT (45:50:5 by volume);
- 4) Wash 3x with CH_2Cl_2 ;
- 5) Treat 2x for 1 min. 10% (v/v) Diisopropylethylamine (DIPEA) in CH_2Cl_2 ;
- 10 6) Wash 2x with CH_2Cl_2 ;
- 7) Wash 2x with methanol (MeOH);
- 8) Repeat (5-7) once;
- 9) Wash 3x with CH_2Cl_2 ;
- 10) Add 1-6 equivalents of preformed symmetrical anhydride of the suitably protected Boc-amino acid dissolved in CH_2Cl_2 or dimethyl formamide (DMF)/ CH_2Cl_2 (50:50 volume), (Boc-Asn-OH, Boc-Gln-OH and Boc-Arg(TOS)-OH were coupled as active esters using N-hydroxybenzotriazole);
- 15 11) Wash 2x with CH_2Cl_2 ;
- 12) Wash 2x with 10% DIPEA;
- 13) Wash 2x with CH_2Cl_2 ;
- 14) Wash 2x with MeOH;
- 15) Wash 2x with CH_2Cl_2 ;
- 25 16) Repeat steps (11-15) once;
- 17) Test by ninhydrin reaction according to Kaiser et al, Anal Biochem 34:595 (1970). If the coupling reaction was incomplete, repeat steps (10-16) or, alternatively, cap synthesis using N-acetyl imidazole (0.30 M in DMF) or an excess of acetic anhydride in CH_2CL_2 .

Procedure BPreparation of Boc-AA_n-p-Methylbenzhydrylamine resin

The selected Boc-AA_n-OH is attached to a p-Methylbenzhydrylamine (pMBHA) resin via N,N'-5 dicyclohexylcarbodiimide, as described below.

Schedule B

- 1) Wash the pMBHA HCl resin;
- 2) Wash the resin 2x with 10% (v/v) DIPEA in
10 CH₂Cl₂;
- 3) Wash 2x with CH₂Cl₂;
- 4) Wash 2x with MeOH;
- 5) Wash 2x with CH₂Cl₂;
- 6) Add 1-6 equivalents of preformed symmetrical
15 anhydride of the suitably protected Boc-amino acid dissolved in CH₂Cl₂, with reaction time of 0.5-24 hrs.

Unreacted amino groups are acetylated with
20 0.30/M N-acetylimidazole:DMF, or acetic anhydride:CH₂Cl₂. The following examples demonstrate the chemical synthesis of representative analog compounds (identified as Analog #) which illustrate certain aspects of the present invention.

25

Example 1Preparation of Analog #1:MBP-G-G-R-I-D-R-I-NH₂

One gram of pMBHA resin (0.25 meq/g, Applied
30 Biosystems, Foster City, CA) was subjected to procedure B followed by schedule A with the required sequence of amino acids (introduced in order as Boc-Ile-OH, Boc-Arg(Tos)-OH, Boc-Asp(O-cHexyl)-OH, Boc-Ile-OH, Boc-Arg(Tos)-OH, Boc-Gly-OH). After deprotection of the Boc- group followed by neutralization, the MBP-G- group was added using
35 a carboxyl activated form of (D,L)-thiorphan. This was

accomplished by treatment of (D,L)-thiorphan (100 mg, 0.39 mmol, Bachem Biosciences, Philadelphia, PA) with N-hydroxybenzotriazole (0.39 mmol, 1 eq) and 1 eq of 1 M DCC in CH₂Cl₂ to form the activated ester of (D,L)-
5 thiorphan which was reacted with the deprotect peptide resin in 50/50 CH₂Cl₂/DMF for 4 hr. The resin was washed 3x with CH₂Cl₂ and twice with MeOH and dried in vacuo.

The peptide resin was treated with anhydrous hydrogen fluoride (HF) containing 10% anisole, 2% ethyl
10 methyl sulfide for 30 min. at -10°C, and an additional 30 min. at 0°C. The HF was removed in vacuo and the peptide/resin mixture was suspended in diethyl ether followed by alternately washing with chloroform and ether 3x. After a final ether wash, the peptide was extracted from the resin
15 with 2.0 M acetic acid, diluted with distilled water and lyophilized.

Purification of the crude peptide was achieved by desalting on Sephadex G-25F (Pharmacia) using 0.5 M acetic acid as eluant, followed by cation exchange
20 chromatography on CM-Sepharose (Pharmacia) or CM-cellulose (Whatman) using an elution gradient of NH₄OAc. Fractions were analyzed by reversed-phase liquid chromatography on a Vydac C18 column using a 15-35% acetonitrile gradient containing 0.1% trifluoroacetic acid (TFA). Semi-
25 preparative HPLC gave purified peptide #1 as judged by amino acid analysis.

Example 2

Preparation of Analog #445:

30 F[N]F-4-APA-R-I-D-R-I-NH₂
One gram of pMBHA resin (0.45 meq/g, U.S. Biochemical) was subjected to procedure B followed by schedule A with the required sequence of amino acids (introduced in order as Boc-Ile-OH, Boc-Arg(Tos)-OH,
35 Boc-Asp(O-chexyl)-OH, Boc-Ile-OH, Boc-Arg(Tos)-OH, Boc-p-aminophenylacetic acid (Boc-4-APA-OH), Boc-Phe-OH). Fol-

lowing deprotection of the Boc-group and neutralization, reductive amination of the free amine was conducted by treatment with phenylpyruvic acid (246 mg, 1.5 meq, Aldrich) in the presence of catalytic acetic acid (100 ul) 5 and 95 mg of NaCNBH₃ in DMF at room temperature for 1 day. The resin was then washed with DMF and CH₂Cl₂ extensively, followed by MeOH and dried in vacuo.

The peptide resin was treated with anhydrous hydrogen fluoride (HF) containing 10% anisole, 2% ethyl 10 methyl sulfide for 30 min. at -10°C, and an additional 30 min. at 0°C. The HF was removed in vacuo and the peptide/resin mixture was suspended and stirred with diethyl ether for 20 min. This mixture was alternately washed with chloroform and ether 3x. After a final ether wash, the 15 peptide was extracted from the resin with 2.0 M acetic acid, diluted with distilled water and lyophilized.

Purification of the crude peptide was achieved by cation exchange chromatography on CM-Sepharose 20 (Pharmacia) or CM-cellulose (Whatman) using an elution gradient of NH₄OAc. Final purification of the peptide was accomplished by semi-preparative HPLC on a Vydac C18 column using a 15-35% acetonitrile gradient containing 0.1% TFA. Amino acid analysis confirmed the structure of peptide #445.

25

Example 3

Binding to ANP Clearance Receptor

The assay systems used are adapted from those of Schenk, D.B., et al, Biochem Biophys Res Commun (1985) 30 127:433-442 and Scarborough, R.M., J Biol Chem (1986) 261:12960-12964. These assays measure clearance receptor binding affinity through competition with ANP using the receptors on bovine aortic smooth muscle (BASM) or bovine aortic endothelial (BAE) cells. Also employed is the 35 receptor binding affinity assay for the clearance receptor

in isolated perfused rat kidney as described by Maack, T., et al, Science (1987) 238:675-679.

Illustrative compounds of the invention were tested in the BASM assay using I¹²⁵ labeled rANP (102-126) 5 with the iodine substituted at the tyrosine at 126. The results shown as the concentration at which 50% maximal binding of the labeled standard to BASM cells is displaced is designated Ki(app). Thus, the lower the Ki(app), the more effective the binding of the analog.

10 Table 1 shows the results of this competition binding assay with the concentration of analog required for half-maximal inhibition of ANP binding as Ki(app) in units of nanomoles/liter.

15

20

25

30

35

Table 1
BASM Receptor Binding Assay

	<u>Analog</u>	<u>Structure</u>	<u>Ki(app) (nM)</u>
5		rANP(102-126)	7.5
	12	MBP-D-G-R-I-D-R-I-NH ₂	207.4
10	23	MBP-[D-Asp]-G-R-I-D-R-I-NH ₂	115.4
	78	MBP-[-Glu]-R-I-D-R-I-NH ₂	201.8
	122	MBP-4-APA-R-I-D-R-I-NH ₂	10.9
15	364	F-[N]-G-G-R-I-D-R-I-NH ₂	66.9
	427	F-[N]-[beta-Ala]-G-R-I-D-R-I-NH ₂	11.5
20	436	F-[N]-F-G-G-R-I-D-R-I-NH ₂	27.3
	445	F-[N]-F-4-APA-R-I-D-R-I-NH ₂	6.5
	463	F-[N]-F-D-G-R-I-D-R-I-NH ₂	225.4
25	544	homoF-[N]-F-[-Glu]-R-I-D-R-I-NH ₂	58.2
	702	HAF-[N]-G-G-R-I-D-R-I-NH ₂	4.6
30	1	MBP-G-G-R-I-D-R-I-NH ₂	19.6

In the rat kidney receptor binding assay, the native 28-residue labeled ANP was used: I¹²⁵ labeled rANP(99-126), with the label linked to tyrosine at 126. The results of this assay are shown in Table 2 as the ratio of bound-to-free labeled rANP(99-126) in the pres-

ence and absence of competing compound. As shown in Table 2, analog 436 successfully competes with the labeled compound for receptor.

5

Table 2
Ratio of Bound/Free (^{125}I)rANP(99-126)

	<u>Compound</u>	<u>Whole Kidney</u>
10	labeled compound ($4 \times 10^{-12}\text{M}$) (n = 8)	59 ± 16
15	labeled compound ($4 \times 10^{-12}\text{M}$)	0.56
	+	
	rANP(99-126) ($1 \times 10^{-6}\text{M}$) (n = 2)	
20	labeled compound ($4 \times 10^{-12}\text{M}$)	1.31
	+	
25	#436 ($1 \times 10^{-6}\text{M}$) (n = 2)	

Example 4

Inhibition of Endopeptidase 24.11

Endopeptidase 24.11 inactivates ANP by cleavage at the Cys¹⁰⁵-Phe¹⁰⁶ amide bond. The ability of the compounds of the invention to inhibit this degradation was assayed by a modification of the procedure of Ura, N., et al, Kidney Int (1987) 32:507-513 by substituting rANP(99-126) for bradykinin as a substrate.

Briefly, rat urine was collected and desalted on Sephadex G-25 as described by Ura (supra) and 4 ul of sample in 100 ul 0.1 M Tris buffer, pH 7.2 containing

aminopeptidase inhibitor bestatin (10 ug/ml), potato tuber carboxy peptidase inhibitor (10 ug/ml) and aprotinin (5,000 kalikrein inhibitory unit/ml) were incubated for 15 min at 37°C. The assay was then initiated by addition of 5 2-10 ug rANP(99-126) to a final volume of 0.5 ml and incubated at 10-20 min at 37°C. Termination of the reaction was accomplished by boiling, spinning and freezing.

Compounds to be tested for their ability to inhibit the endopeptidase were added to the preincubation 10 mixture 15 min before addition of substrate.

The frozen samples, incubated with or without inhibitor, were thawed and analyzed by HPLC to determine the concentration of starting rANP(99-126) and its degradation product. HPLC analysis was conducted on Vydac 15 C18 reverse phase HPLC column (4.6 mm ID x 12.5 cm; 5 uM, 300A). A linear gradient of 15-35% acetonitrile containing 0.1% TFA was run at 1.0 ml/min on a Perkin-Elmer series 4 HPLC system. The effluent was monitored at 220 nm and the peptide peak heights measured.

20 The results were computed as the percent of the Cys¹⁰⁵-Phe¹⁰⁶ cleavage metabolite peak in the test sample as compared to the peak height for this metabolite in the control. The results are shown in Table 3.

25

Table 3
% Inhibition of Metabolite Formation

Dose	<u>Thiorphan</u>	<u>Phosphoramidon</u>	<u>122</u>	<u>1</u>	<u>526</u>	<u>445</u>
10 uM	92	97	97	92	20	0
30 1 uM	67	80	72	45	0	-
100 nM	53	30	25	23	-	-
20 nM	12	0	12	0	-	-

As shown in Table 3, analog #1 of the invention, 35 though less potent than thiorphan as an inhibitor, is capable of inhibition with an ED₅₀ of approximately 1 uM.

Furthermore, analog #122 is only slightly less potent than thiophan and is comparable to phosphoramidon.

Example 5

In Vivo Assays

The ability of analog #1 to effect diuresis and natriuresis in whole animals was determined as follows. Female Sprague-Dawley rats (230-260 g) anesthetized with inactin (100 mg/kg body weight) were catheterized by placing cannulae in femoral artery (B.P. monitoring), femoral vein (infusion of drugs and saline) and bladders (collection of urine). Post surgery, and prior to administration of test substance, saline was infused at 20 ul/min for 45 min in order to stabilize urine flow. Stabilization of urine flow was determined by collection of urine during several 10 min periods. Once stable urine flow was obtained, three 10 min control periods were collected followed by infusion of test compounds at 20 ul/min for 1 hr after priming with 10 times the infusion dose. Following experimental infusion period, saline was infused at 20 ul/min for 2 additional hr during the recovery phase. The urine volume collected during ten minute collection periods was determined gravimetrically. Urinary sodium excretion $U_{Na}V$ was determined photometrically. For comparison, Table 4 shows the effects of 300 ng/kg/min infusion of hANP(102-126) and compound #1.

30

35

Table 4
 Comparative Effects of hANP(102-126) and #437 in Rats

		<u>V(ul/min)</u>	<u>U_{Na}V(uEq/min)</u>
5	hANP(102-126) 300 ng/kg/min	16.8 _± 9.3	2.24 _± 0.77
	#1 10 ug/kg/min	11.6 _± 2.7	3.72 _± 1.1
10	Control Saline	3.5 _± 1.0	0.13 _± 0.04

Differences (—) between experimental and control periods (mean \pm SE) in rats infused with compound (n=7).

The specific effects of compounds on natriuresis and diuresis in anesthetized rats are shown in Figures 5A-5D. Percent and absolute increase \pm SE for natriuresis and diuresis are displayed in these figures. Analog #1 infused at 10 ug/kg/min gives a mean 10-fold increase in urinary sodium excretion and a 2- to 3-fold increase in urinary flow rate. Maximal effects are not observed until the second or third experimental collection period and are sustained through the infusion. Slow return to baseline urine flow and sodium excretion rates are observed for Analog #1 compared to effects with ANP(102-126) and are consistent with the concept that clearance mechanisms once inhibited require significant time before they can fully participate in ANP clearance.

Claims

1. A linear peptide compound having
natriuretic, diuretic and/or vasodilator activity in mam-
5 mals, which has the formula:

wherein:

10 each of AA_{109} and AA_{112} is, independently, a basic/noncyclic or neutral/polar/large/nonaromatic amino acid residue; and AA_{109} can also be a neutral nonpolar/large/nonaromatic amino acid residue;

15 AA_{110} is a neutral/nonpolar/large/nonaromatic amino acid residue in the D or L configuration;

AA_{111} is an acidic amino acid residue;

20 AA_{113} is a neutral/nonpolar/large/nonaromatic amino acid residue in the D or L configuration or a covalent bond; and

wherein Z_1 is

25 wherein X_1 is a hydrophobic cyclic or noncyclic residue of 4-14C, X_2 is a substituent containing a metal coordinating atom within 1.5-7 angstroms of the illustrated $-CH-$, said metal-coordinating atom selected from S and O, and $-X_3-$ is 30 a bond, $-CH_2-$, $-CO$, or $-NH-$;

Z_2 is a spacer group capable of providing a spaced dimension of 4.5-15 angstroms between AA_{109} and the hydrophobic moiety of Z_1 ;

35 Z_3 is (OH) , NH_2 , NHR'' or $NR''R'''$ wherein R'' or R''' are each independently straight or branched chain alkyl of 1-10 carbon atoms wherein 1 or 2 carbons may be

replaced by O, N, or S; or is a peptide of 1-20 amino acid residues, or an amide or alkyl amide thereof; but when AA₁₁₃ is a covalent bond, Z₃ cannot be (OH), NH₂ or a peptide; and

5 wherein one or more of the amide linkages between adjacent amino acid residues may optionally be replaced by a linkage selected from the group consisting of -CH₂NH-, -CH₂S-, -CH₂CH₂-, -CH=CH-, -COCH₂-, -CH(OH)CH₂- and -CH₂SO-.

10

2. The compound of claim 1 wherein Z₁ is

wherein X₁ comprises a cyclic (5-12 member) aromatic or nonaromatic group conjugated through at least one CH₂, NH, O or S linking group; and

20 -X₂ is selected from -CH₂SH; -CH₂CH₂SH; -COOH; -CH₂COOH; CHRCOOH; wherein R is -CH₂Ph or -CH₂CH₂Ph, wherein Ph is phenyl; -CONHOH; -CH₂CONHOH; -NHCH₂COOH; and -NHPO(OR')₂ wherein each R' is independently H or alkyl (1-7C).

25

3. The compound of claim 2 wherein Z₁ is selected from the group consisting of

4. The compound of claims 1-3 wherein Z_2 is selected from the group consisting of

5 (a) $-(AA)_a-$ wherein AA is an amino acid and a

(b) $-(P)_n-(CO)-_x$ wherein x is 0 or 1, n is 1-6, and P is CH_2 wherein 1-2 of said $-CH_2-$ groups can be replaced by NH, provided N-N does not occur; and

10 (c) $-(Q)_m-B-(Q)_m-(CO)_x-$ wherein x is 0 or 1, each m is 0-3, wherein the sum of m is 5 or less, -B- is a saturated or unsaturated five- or six-membered ring optionally containing an N heteroatom, and Q is CH_2 or NH, provided -N-N- does not occur.

15 5. The compound of claims 1-4 wherein Z_3 is NH_2 or NHR' , or a peptide of 1-2 amino acid residues or the amide or alkyl amide form thereof.

20 6. The compound of claims 1-5 wherein $AA_{109}-$
 $AA_{110}-AA_{111}-AA_{112}-AA_{113}$ is R(I/M)DRI and at most one residue therein is replaced by substituting

K, acetyl K, Q, N, L or NMelle for R as AA_{109}
V, V[†], L, L[†], I[†], M[†], t-BuA, t-BuG or Cha for I

or M as AA_{110} ;

25 E for D as A_{111} ;

Q, N, K, Orn or Cit for R as A_{112} ; and

M, M[†], V, V[†], L, L[†], I[†], P, N-Melle, t-BuA or a covalent bond for I as AA_{113}
wherein [†] indicates the D form.

30

7. The compound of claim 6 wherein $AA_{109}-AA_{110}-$
 $AA_{111}-AA_{112}-AA_{113}$ is selected from the group consisting of:

K(I/M)DRI

35 Q(I/M)DRI

RVDRI
RI[†]DRI
RM[†]DRI
RLDRI
5 R(I/M)ERI
R(I/M)DKI
R(I/M)DQI
R(I/M)DRL
R(I/M)DRM
10 R(I/M)DRM[†]
R(I/M)DRI[†]
R(I/M)DRV and
R(I/M)DRI

15 wherein † indicates the D form of the amino acid preceding it.

8. The compound of claims 1-7 wherein one or more of the amide linkages between adjacent amino acid residues may be replaced by a linkage selected from the group consisting of -CH₂NH-, -CH₂S-, -CH₂CH₂-, -CH=CH- (cis and trans), -COCH₂-, -CH(OH)CH₂- and -CH₂SO-.

9. The compound of claims 1-8 wherein Z₁ is selected from the substituents of Figure 2.

10. The compound of claims 1-9 wherein Z₂ is selected from -G-G-, -D-G-, [D-Asp]-G-, D- or L-gamma-Glu, D- or L-beta-Asp, 4-AB, 4-APA, 4-PIP and 4-AMC.

30 11. The compound of claims 1-10 wherein AA₁₀₉-AA₁₁₀-AA₁₁₁-AA₁₁₂-AA₁₁₃-Z₃ is R(I/M)DR-NHR" wherein R" is alkyl of 3-10 carbons.

35 12. The compound of claims 1-9 wherein AA₁₀₉-AA₁₁₀-AA₁₁₁-AA₁₁₂-AA₁₁₃- is RIDRI, and Z₃ is NH₂.

13. The compound of claim 1 which is analog
#122: MBP-4-APA-R-I-D-R-I-NH₂.

5 14. The compound of claim 1 which is selected
from the group consisting of the compounds of Figure 4.

10 15. A composition useful as a natriuretic,
diuretic and/or vasodilator comprising a therapeutically
effective amount of the compound of claim 1 together with
a pharmaceutically acceptable carrier.

15 16. A process for production of a peptide
compound having natriuretic, diuretic and/or vasodilator
activity in mammals, said peptide compound having the
formula of the compound of claim 1, or the
pharmacologically acceptable salts thereof, which process
comprises the following steps:

- 20 a. preparing a protected peptide bonded to a
solid resin carrier in a reaction mixture, wherein the
peptide has an amino acid sequence as recited above;
- b. removing the solid resin carrier from the
peptide and deprotecting the peptide;
- c. optionally modifying the peptide to add any
25 desired organic substituent groups as recited above; and
- d. isolating the peptide from any reaction
mixture, and optionally, converting the polypeptide into
an acid addition salt thereof.

30

35

1 / 71

FIG. 1

Acidic: Glu (E), Asp (D); Cysteic (Cya)

Non-Cyclic: Lys (K), Arg (R); Ornithine (Orn)

Basic:

Cyclic: His (H)

FIG. 2
Embodiments of Z₁

Z1 F is phenylalanyl; HAF is the hydroxamate thereof:

Z2 W is tryptophanyl; HAW is the hydroxamate thereof:

Z3 BF is p-biphenylalanyl; HABF is the hydroxamate thereof:

Z4 Nal2 is 3-(2'-naphthyl)alanyl; HANal2 is the hydroxamate thereof:

FIG. 2 (contd.)

25 Nall is 3-(1'-naphthyl)alanyl; HANall is the hydroxamate thereof:

26 Cha is 3-(cyclohexyl)alanyl; HACHa is the hydroxamate thereof:

27 homoF is homophenylalanyl; HAhomof is the hydroxamate thereof:

FIG. 2 (contd.)

Z8 homoCha is 3-(cyclohexylmethyl)alanyl; HAhomoCha is the hydroxamate thereof:

Z9 homoNal2 is 3-(2'-naphthyl methyl)alanyl; HAhomoNal2 is the hydroxamate thereof:

Z10 X[N]F is derivatized phenylalanyl, wherein X is F homoF or G, or the hydroxamate thereof:

FIG. 2(contd.)

Z11 X[N]W is derivatized typtophanyl, wherein X is F, homoF, or G, or the hydroxamate thereof:

Z12 X[N]BF is derivatized p-biphenylalanyl, wherein X is F, homoF, or G, or the hydroxamate thereof:

Z13 X[N]Na12 is derivatized beta-(2'-naphthyl)alanyl, wherein X is F, homoF, or G, or the hydroxamate thereof:

FIG. 2 (contd.)

Z14 X[N]Nall is derivatized 3-(1'-naphthyl)alanyl, wherein X is F, homof, or G, or the hydroxamate thereof:

Z15 X[N]Cha is derivatized 3-(cyclohexyl)alanyl, wherein X is F, homof, or G, or the hydroxamate thereof:

Z16 X[N]homof is derivatized homophenylalanyl, wherein X is F, homof, or G, or the hydroxamate thereof:

7/71

FIG. 2 (contd.)

Z17 X[N]homoCha is derivatized 3-(cyclohexylmethyl)alanyl, wherein X is F, homoF, or G, or the hydroxamate thereof:

Z18 X[N]Nal2 is derivatized 3-(2'-naphthylmethyl)alanyl, wherein X is F, homoF, or G, or the hydroxamate thereof:

Z19 phosphoryl-F is

8/71

FIG. 2 (contd.)

Z20 phosphoryl W is

Z21 phosphoryl BF is

Z22 phosphoryl Na12 is

Z23 phosphoryl Na11 is

9/71

FIG. 2 (contd.)

z24 phosphoryl Cha is

z25 phosphoryl homoF is

z26 phosphoryl homoCha is

z27 phosphoryl homoNal2 is

10/71

FIG. 2 (contd.)

Z28 MBP is 3-mercaptopro-2-benzyl-propionyl;

Z29 MPBP is 3-mercaptopro-2-(p-biphenylmethyl)propionyl:

Z30 MNP2 is 3-mercaptopro-2-(2'-naphthylmethyl)propionyl:

Z31 MNP1 is 3-mercaptopro-2-(1'-naphthylmethyl)propionyl:

11/71

FIG. 2 (contd.)

Z32 MCP is 3-mercaptopropanoate-2-cyclohexylmethyl-propionyl:

Z33 MPOP is 3-mercaptopropanoate-2-phenoxy-propionyl:

Z34 MNOP2 is 3-mercaptopropanoate-2-(2'-naphthoxy)propionyl:

Z35 MIP3 is 3-mercaptopropanoate-2-(3-indolemethyl)propionyl:

12/71

FIG. 2 (contd.)

Z36 MPEP is 3-mercaptop-2-phenylethyl-propionyl:

Z37 MCEP is 3-mercaptop-2-cyclohexylethyl-propionyl:

Z38 MNEP2 is 3-mercaptop-2-(2'-naphthylethyl)propionyl:

Z39 MBB is 4-mercaptop-2-benzyl-butyryl:

13 / 71

FIG. 2 (contd.)**Z40 MPBB is 4-mercaptop-2-(p-biphenylmethyl)butyryl:****Z41 MNB2 is 4-mercaptop-2-(2'-naphthylmethyl)butyryl:****Z42 NMB1 is 4-mercaptop-2-(1'-naphthylmethyl)butyryl:****Z43 MCB is 4-mercaptop-2-cyclohexylmethyl-butyryl:**

14/71

FIG. 2 (contd.)

Z44 MPOB is 4-mercaptop-2-phenoxy-butyryl:

Z45 MNOB2 is 4-mercaptop-2-(2'-naphthoxy)butyryl:

Z46 MIB3 is 4-mercaptop-2-(3-indolemethyl)butyryl:

Z47 MPEB is 4-mercaptop-2-phenylethyl-butyryl:

FIG. 2 (contd.)

Z48 MCEB is 4-mercaptop-2-cyclohexylmethyl-butyryl:

Z49 MNEB2 is 4-mercaptop-2-(2'-naphthylethyl)butyryl:

Z50 BMAL is 2-benzylmalonyl:

Z51 PBMAL is 2-(p-biphenylmethyl)malonyl:

16/71

FIG. 2 (contd.)

Z52 NMAL2 is 2-(2'-naphthylmethyl)malonyl:

Z53 NMAL1 is 2-(1'-naphthylmethyl)malonyl:

Z54 CMAL is 2-cyclohexylmethylmalonyl:

Z55 PMAL is 2-phenoxy malonyl:

17/71

FIG. 2 (contd.)

Z56 NOMAL2 is 2-(2'-naphthoxy)malonyl:

Z57 IMAL is 2-(3-indolemethyl)malonyl:

Z58 PEMAL is 2-phenylethylmalonyl:

Z59 CEMAL is 2-cyclohexylethylmalonyl:

18/71

FIG. 2 (contd.)

Z60 NEMAL is 2-(2'-naphthylethyl)malonyl:

Z61 BHAMAL is 2-benzyl-hydroxyamino-malonyl:

Z62 PBHAMAL is 2-(p-biphenylmethyl)-hydroxyamino-malonyl:

Z63 NHAMAL2 is 2-(2'-naphthylmethyl)-hydroxyamino-malonyl:

19/71

FIG. 2 (contd.)

Z64 NHAMAL1 is 2-(1'-naphthylmethyl)-hydroxyamino-malonyl:

Z65 CHAMAL is 2-cyclohexylmethyl-hydroxyamino-malonyl:

Z66 PHAMAL is 2-phenoxy-hydroxyamino-malonyl:

Z67 NOHAMAL2 is 2-(2'-naphthoxy)-hydroxyamino-malonyl:

20/71

FIG. 2 (contd.)

Z68 IHAMAL is 2-(3-indolemethyl)-hydroxyamino-malonyl:

Z69 PEHAMAL is 2-phenylethyl-hydroxyamino-malonyl:

Z70 CEHAMAL is 2-cyclohexylethyl-hydroxyamino-malonyl:

Z71 NEHAMAL is 2-(2'-naphthylethyl)-hydroxyamino-malonyl:

21/71

FIG. 2 (contd.)**Z72 BSUC is 2-benzylsuccinoyl:****Z73 PBSUC is 2-(p-biphenylmethyl)succinoyl:****Z74 NSUC1 is 2-(2'-naphthylmethyl)succinoyl:****Z75 NSUC2 is 2-(1'-naphthylmethyl)succinoyl:**

22/71

FIG. 2 (contd.)

Z76 CSUC is 2-cyclohexylmethylsuccinoyl:

Z77 PSUC is 2-phenoxysuccinoyl:

Z78 NOSUC2 is 2-(2'-naphthoxy)succinoyl:

Z79 ISUC is 2-(3'-indolemethyl)succinoyl:

23/71

FIG. 2 (contd.)

Z80 PESUC is 2-phenylethylsuccinoyl:

Z81 CESUC is 2-cyclohexylethylsuccinoyl:

Z82 NESUC is 2-(2'-naphthylethyl)succinoyl:

Z83 BHASUC is 2-benzyl-hydroxyamino-succinyl:

24/71

FIG. 2(contd.)Z84 PBHASUC is 2-(*p*-biphenylmethyl)-hydroxyamino-succinyl:

Z85 NHASUC2 is 2-(2'-naphthylmethyl)-hydroxyamino-succinyl:

Z86 NHASUC1 is 2-(1'-naphthylmethyl)-hydroxyamino-succinyl:

Z87 CHASUC is 2-cyclohexylmethyl-hydroxyamino-succinyl:

25/71

FIG. 2 (contd.)

Z88 PHASUC is 2-phenoxy-hydroxyamino-succinyl:

Z89 NOHASUC2 is 2-(2'-naphthoxy)-hydroxyamino-succinyl:

Z90 IHASUC is 2-(3-indolemethyl)-hydroxyamino-succinyl:

Z91 PEHASUC is 2-phenylethyl-hydroxyamino-succinyl:

26/71

FIG. 2 (contd.)

Z92 CEHASUC is 2-cyclohexylethyl-hydroxyamino-succinyl:

Z93 NEHASUC is 2-(2'-naphthylethyl)-hydroxyamino-succinyl:

27/71

FIG. 3Embodiments Z₂

4-AB is 4-aminobenzoyl:

4-APA is 4-aminophenylacetyl:

4-PIP is 4-piperidine-carboxyl:

4-AMC is 4-aminomethylcyclohexoyl:

(trans)

28/71

FIG. 4

- 1 MBP-G-G-R-I-D-R-I-NH₂
- 2 MPBP-G-G-R-I-D-R-I-NH₂
- 3 MNP2-G-G-R-I-D-R-I-NH₂
- 4 MNP1-G-G-R-I-D-R-I-NH₂
- 5 MCP-G-G-R-I-D-R-I-NH₂
- 6 MPOP-G-G-R-I-D-R-I-NH₂
- 7 MNOP2-G-G-R-I-D-R-I-NH₂
- 8 MIP3-G-G-R-I-D-R-I-NH₂
- 9 MPEP-G-G-R-I-D-R-I-NH₂
- 10 MCEP-G-G-R-I-D-R-I-NH₂
- 11 MNEP2-G-G-R-I-D-R-I-NH₂
- 12 MBP-D-G-R-I-D-R-I-NH₂
- 13 MPBP-D-G-R-I-D-R-I-NH₂
- 14 MNP2-D-G-R-I-D-R-I-NH₂
- 15 MNP1-D-G-R-I-D-R-I-NH₂
- 16 MCP-D-G-R-I-D-R-I-NH₂
- 17 MPOP-D-G-R-I-D-R-I-NH₂
- 18 MNOP2-D-G-R-I-D-R-I-NH₂
- 19 MIP3-D-G-R-I-D-R-I-NH₂
- 20 MPEP-D-G-R-I-D-R-I-NH₂
- 21 MCEP-D-G-R-I-D-R-I-NH₂
- 22 MNEP2-D-G-R-I-D-R-I-NH₂
- 23 MBP-[D-Asp]-G-R-I-D-R-I-NH₂
- 24 MPBP-[D-Asp]-G-R-I-D-R-I-NH₂
- 25 MNP2-[D-Asp]-G-R-I-D-R-I-NH₂

SUBSTITUTE SHEET

29/71

26 MNP1-[D-Asp]-G-R-I-D-R-I-NH₂
 27 MCP-[D-Asp]-G-R-I-D-R-I-NH₂
 28 MPOP-[D-Asp]-G-R-I-D-R-I-NH₂
 29 MNOP2-[D-Asp]-G-R-I-D-R-I-NH₂
 30 MIP3-[D-Asp]-G-R-I-D-R-I-NH₂
 31 MPEP-[D-Asp]-G-R-I-D-R-I-NH₂
 32 MCEP-[D-Asp]-G-R-I-D-R-I-NH₂
 33 MNEP2-[D-Asp]-G-R-I-D-R-I-NH₂
 34 MBP-[D-Ala]-G-R-I-D-R-I-NH₂
 35 MPBP-[D-Ala]-G-R-I-D-R-I-NH₂
 36 MNP2-[D-Ala]-G-R-I-D-R-I-NH₂
 37 MNP1-[D-Ala]-G-R-I-D-R-I-NH₂
 38 MCP-[D-Ala]-G-R-I-D-R-I-NH₂
 39 MPOP-[D-Ala]-G-R-I-D-R-I-NH₂
 40 MNOP2-[D-Ala]-G-R-I-D-R-I-NH₂
 41 MIP3-[D-Ala]-G-R-I-D-R-I-NH₂
 42 MPEP-[D-Ala]-G-R-I-D-R-I-NH₂
 43 MCEP-[D-Ala]-G-R-I-D-R-I-NH₂
 44 MNEP2-[D-Ala]-G-R-I-D-R-I-NH₂
 45 MBP-[β-L-Asp]-G-R-I-D-R-I-NH₂
 46 MPBP-[β-L-Asp]-G-R-I-D-R-I-NH₂
 47 MNP2-[β-L-Asp]-G-R-I-D-R-I-NH₂
 48 MNP1-[β-L-Asp]-G-R-I-D-R-I-NH₂
 49 MCP-[β-L-Asp]-G-R-I-D-R-I-NH₂
 50 MPOP-[β-L-Asp]-G-R-I-D-R-I-NH₂
 51 MNOP2-[β-L-Asp]-G-R-I-D-R-I-NH₂
 52 MIP3-[β-L-Asp]-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

30/71

53 MPEP-[β -L-Asp]-G-R-I-D-R-I-NH₂
 54 MCEP-[β -L-Asp]-G-R-I-D-R-I-NH₂
 55 MNEP2-[β -L-Asp]-G-R-I-D-R-I-NH₂
 56 MBP-[β -D-Asp]-G-R-I-D-R-I-NH₂
 57 MPBP-[β -D-Asp]-G-R-I-D-R-I-NH₂
 58 MNP2-[β -D-Asp]-G-R-I-D-R-I-NH₂
 59 MNPI-[β -D-Asp]-G-R-I-D-R-I-NH₂
 60 MCP-[β -D-Asp]-G-R-I-D-R-I-NH₂
 61 MPOP-[β -D-Asp]-G-R-I-D-R-I-NH₂
 62 MNOP2-[β -D-Asp]-G-R-I-D-R-I-NH₂
 63 MIP3-[β -D-Asp]-G-R-I-D-R-I-NH₂
 64 MPEP-[β -D-Asp]-G-R-I-D-R-I-NH₂
 65 MCEP-[β -D-Asp]-G-R-I-D-R-I-NH₂
 66 MNEP2-[β -D-Asp]-G-R-I-D-R-I-NH₂
 67 MBP-[γ -D-Glu]-R-I-D-R-I-NH₂
 68 MPBP-[γ -D-Glu]-R-I-D-R-I-NH₂
 69 MNP2-[γ -D-Glu]-R-I-D-R-I-NH₂
 70 MNPI-[γ -D-Glu]-R-I-D-R-I-NH₂
 71 MCP-[γ -D-Glu]-R-I-D-R-I-NH₂
 72 MPOP-[γ -D-Glu]-R-I-D-R-I-NH₂
 73 MNOP2-[γ -D-Glu]-R-I-D-R-I-NH₂
 74 MIP3-[γ -D-Glu]-R-I-D-R-I-NH₂
 75 MPEP-[γ -D-Glu]-R-I-D-R-I-NH₂
 76 MCEP-[γ -D-Glu]-R-I-D-R-I-NH₂
 77 MNEP2-[γ -D-Glu]-R-I-D-R-I-NH₂
 78 MBP-[γ -L-Glu]-R-I-D-R-I-NH₂
 79 MPBP-[γ -L-Glu]-R-I-D-R-I-NH₂

FIG. 4 (contd.)

31/71

80 MNP2-[γ -L-Glu]-R-I-D-R-I-NH₂
 81 MNP1-[γ -L-Glu]-R-I-D-R-I-NH₂
 82 MCP-[γ -L-Glu]-R-I-D-R-I-NH₂
 83 MPOP-[γ -L-Glu]-R-I-D-R-I-NH₂
 84 MNOP2-[γ -L-Glu]-R-I-D-R-I-NH₂
 85 MIP3-[γ -L-Glu]-R-I-D-R-I-NH₂
 86 MPEP-[γ -L-Glu]-R-I-D-R-I-NH₂
 87 MCEP-[γ -L-Glu]-R-I-D-R-I-NH₂
 88 MNEP2-[γ -L-Glu]-R-I-D-R-I-NH₂
 89 MBP-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 90 MPBP-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 91 MNP2-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 92 MNP1-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 93 MCP-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 94 MPOP-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 95 MNOP2-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 96 MIP3-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 97 MPEP-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 98 MCEP-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 99 MNEP2-NH(CH₂)₃CO-R-I-D-R-I-NH₂
 100 MBP-NH(CH₂)₄CO-R-I-D-R-I-NH₂
 101 MPBP-NH(CH₂)₄CO-R-I-D-R-I-NH₂
 102 MNP2-NH(CH₂)₄CO-R-I-D-R-I-NH₂
 103 MNP1-NH(CH₂)₄CO-R-I-D-R-I-NH₂
 104 MCP-NH(CH₂)₄CO-R-I-D-R-I-NH₂
 105 MPOP-NH(CH₂)₄CO-R-I-D-R-I-NH₂
 106 MNOP2-NH(CH₂)₄CO-R-I-D-R-I-NH₂

FIG. 4 (contd.)

SUBSTITUTE SHEET

32/71

107 MIP3-NH(CH₂)₄CO-R-I-D-R-I-NH₂
108 MPEP-NH(CH₂)₄CO-R-I-D-R-I-NH₂
109 MCEP-NH(CH₂)₄CO-R-I-D-R-I-NH₂
110 MNEP2-NH(CH₂)₄CO-R-I-D-R-I-NH₂
111 MBP-4-PIP-R-I-D-R-I-NH₂
112 MPBP-4-PIP-R-I-D-R-I-NH₂
113 MNP2-4-PIP-R-I-D-R-I-NH₂
114 MNPl-4-PIP-R-I-D-R-I-NH₂
115 MCP-4-PIP-R-I-D-R-I-NH₂
116 MPOP-4-PIP-R-I-D-R-I-NH₂
117 MNOP2-4-PIP-R-I-D-R-I-NH₂
118 MIP3-4-PIP-R-I-D-R-I-NH₂
119 MPEP-4-PIP-R-I-D-R-I-NH₂
120 MCEP-4-PIP-R-I-D-R-I-NH₂
121 MNEP2-4-PIP-R-I-D-R-I-NH₂
122 MBP-4-APA-R-I-D-R-I-NH₂
123 MPBP-4-APA-R-I-D-R-I-NH₂
124 MNP2-4-APA-R-I-D-R-I-NH₂
125 MNPl-4-APA-R-I-D-R-I-NH₂
126 MCP-4-APA-R-I-D-R-I-NH₂
127 MPOP-4-APA-R-I-D-R-I-NH₂
128 MNOP2-4-APA-R-I-D-R-I-NH₂
129 MIP3-4-APA-R-I-D-R-I-NH₂
130 MPEP-4-APA-R-I-D-R-I-NH₂
131 MCEP-4-APA-R-I-D-R-I-NH₂
132 MNEP2-4-APA-R-I-D-R-I-NH₂
133 MBP-4-AB-R-I-D-R-I-NH₂

FIG. 4 (contd.)

33/71

134 MPBP-4-AB-R-I-D-R-I-NH₂
135 MNP2-4-AB-R-I-D-R-I-NH₂
136 MNPI-4-AB-R-I-D-R-I-NH₂
137 MCP-4-AB-R-I-D-R-I-NH₂
138 MPOP-4-AB-R-I-D-R-I-NH₂
139 MNOP2-4-AB-R-I-D-R-I-NH₂
140 MIP3-4-AB-R-I-D-R-I-NH₂
141 MPEP-4-AB-R-I-D-R-I-NH₂
142 MCEP-4-AB-R-I-D-R-I-NH₂
143 MNEP2-4-AB-R-I-D-R-I-NH₂
144 MBP-4-AMC-R-I-D-R-I-NH₂
145 MPBP-4-AMC-R-I-D-R-I-NH₂
146 MNP2-4-AMC-R-I-D-R-I-NH₂
147 MNPI-4-AMC-R-I-D-R-I-NH₂
148 MCP-4-AMC-R-I-D-R-I-NH₂
149 MPOP-4-AMC-R-I-D-R-I-NH₂
150 MNOP2-4-AMC-R-I-D-R-I-NH₂
151 MIP3-4-AMC-R-I-D-R-I-NH₂
152 MPEP-4-AMC-R-I-D-R-I-NH₂
153 MCEP-4-AMC-R-I-D-R-I-NH₂
154 MNEP2-4-AMC-R-I-D-R-I-NH₂
155 MBP-G-G-K-I-D-R-I-NH₂
156 MPBP-G-G-K-I-D-R-I-NH₂
157 MNP2-G-G-K-I-D-R-I-NH₂
158 MNPI-G-G-K-I-D-R-I-NH₂
159 MCP-G-G-K-I-D-R-I-NH₂
160 MPOP-G-G-K-I-D-R-I-NH₂

FIG. 4 (contd.)

34/71

161 MNOP2-G-G-K-I-D-R-I-NH₂
162 MIP3-G-G-K-I-D-R-I-NH₂
163 MPEP-G-G-K-I-D-R-I-NH₂
164 MCEP-G-G-K-I-D-R-I-NH₂
165 MNEP2-G-G-K-I-D-R-I-NH₂
166 MBP-4-APA-K-I-D-R-I-NH₂
167 MPBP-4-APA-K-I-D-R-I-NH₂
168 MNP2-4-APA-K-I-D-R-I-NH₂
169 MNP1-4-APA-K-I-D-R-I-NH₂
170 MCP-4-APA-K-I-D-R-I-NH₂
171 MPOP-4-APA-K-I-D-R-I-NH₂
172 MNOP2-4-APA-K-I-D-R-I-NH₂
173 MIP3-4-APA-K-I-D-R-I-NH₂
174 MPEP-4-APA-K-I-D-R-I-NH₂
175 MCEP-4-APA-K-I-D-R-I-NH₂
176 MNEP2-4-APA-K-I-D-R-I-NH₂
177 MBP-D-G-K-I-D-R-I-NH₂
178 MPBP-D-G-K-I-D-R-I-NH₂
179 MNP2-D-G-K-I-D-R-I-NH₂
180 MNP1-D-G-K-I-D-R-I-NH₂
181 MCP-D-G-K-I-D-R-I-NH₂
182 MPOP-D-G-K-I-D-R-I-NH₂
183 MNOP2-D-G-K-I-D-R-I-NH₂
184 MIP3-D-G-K-I-D-R-I-NH₂
185 MPEP-D-G-K-I-D-R-I-NH₂
186 MCEP-D-G-K-I-D-R-I-NH₂
187 MNEP2-D-G-K-I-D-R-I-NH₂

FIG. 4 (contd.)

35/71

- 188 MBP-[D-Asp]-G-K-I-D-R-I-NH₂
 189 MPBP-[D-Asp]-G-K-I-D-R-I-NH₂
 190 MNP2-[D-Asp]-G-K-I-D-R-I-NH₂
 191 MNPL-[D-Asp]-G-K-I-D-R-I-NH₂
 192 MCP-[D-Asp]-G-K-I-D-R-I-NH₂
 193 MPOP-[D-Asp]-G-K-I-D-R-I-NH₂
 194 MNOP2-[D-Asp]-G-K-I-D-R-I-NH₂
 195 MIP3-[D-Asp]-G-K-I-D-R-I-NH₂
 196 MPEP-[D-Asp]-G-K-I-D-R-I-NH₂
 197 MCEP-[D-Asp]-G-K-I-D-R-I-NH₂
 198 MNEP2-[D-Asp]-G-K-I-D-R-I-NH₂
 199 MBP-[γ-L-Glu]-K-I-D-R-I-NH₂
 200 MPBP-[γ-L-Glu]-K-I-D-R-I-NH₂
 201 MNP2-[γ-L-Glu]-K-I-D-R-I-NH₂
 202 MNPL-[γ-L-Glu]-K-I-D-R-I-NH₂
 203 MCP-[γ-L-Glu]-K-I-D-R-I-NH₂
 204 MPOP-[γ-L-Glu]-K-I-D-R-I-NH₂
 205 MNOP2-[γ-L-Glu]-K-I-D-R-I-NH₂
 206 MIP3-[γ-L-Glu]-K-I-D-R-I-NH₂
 207 MPEP-[γ-L-Glu]-K-I-D-R-I-NH₂
 208 MCEP-[γ-L-Glu]-K-I-D-R-I-NH₂
 209 MNEP-[γ-L-Glu]-K-I-D-R-I-NH₂
 210 MBP-[γ-D-Glu]-K-I-D-R-I-NH₂
 211 MPBP-[γ-D-Glu]-K-I-D-R-I-NH₂
 212 MNP2-[γ-D-Glu]-K-I-D-R-I-NH₂
 213 MNPL-[γ-D-Glu]-K-I-D-R-I-NH₂
 214 MCP-[γ-D-Glu]-K-I-D-R-I-NH₂

FIG. 4 (contd.)

36/71

- 215 MPOP-[γ -D-Glu]-K-I-D-R-I-NH₂
 216 MNOP2-[γ -D-Glu]-K-I-D-R-I-NH₂
 217 MIP3-[γ -D-Glu]-K-I-D-R-I-NH₂
 218 MPEP-[γ -D-Glu]-K-I-D-R-I-NH₂
 219 MCEP-[γ -D-Glu]-K-I-D-R-I-NH₂
 220 MNEP2-[γ -D-Glu]-K-I-D-R-I-NH₂
 221 MBP-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 222 MPBP-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 223 MNP2-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 224 MNPL-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 225 MCP-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 226 MPOP-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 227 MNOP2-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 228 MIP3-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 229 MPEP-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 230 MCEP-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 231 MNEP2-G-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 232 MBP-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 233 MPBP-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 234 MNP2-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 235 MNPL-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 236 MCP-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 237 MPOP-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 238 MNOP2-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 239 MIP3-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 240 MPEP-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 241 MCEP-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃

FIG. 4 (contd.)

37/71

- 242 MNEP2-4-APA-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 243 MBP-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 244 MPBP-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 245 MNP2-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 246 MNPI-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 247 MCP-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 248 MPOP-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 249 MNOP2-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 250 MIP3-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 251 MPEP-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 252 MCEP-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 253 MNEP2-[D-Asp]-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 254 MBP-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 255 MPBP-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 256 MNP2-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 257 MNPI-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 258 MCP-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 259 MPOP-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 260 MNOP2-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 261 MIP3-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 262 MPEP-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 263 MCEP-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 264 MNEP2-D-G-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 265 MBP-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 266 MPBP-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 267 MNP2-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
- 268 MNPI-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃

FIG. 4 (contd.)

38 / 71

- 269 MCP-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 270 MPOP-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 271 MNOP2-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 272 MIP3-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 273 MPEP-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 274 MCEP-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 275 MNEP2-[γ -L-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 276 MBP-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 277 MPBP-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 278 MNP2-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 279 MNPL-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 280 MCP-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 281 MPOP-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 282 MNOP2-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 283 MIP3-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 284 MPEP-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 285 MCEP-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 286 MNEP2-[γ -D-Glu]-R-I-D-R-NHCH₂CH(CH₃)CH₂CH₃
 287 MBB-G-G-R-I-D-R-I-NH₂
 288 MPBB-G-G-R-I-D-R-I-NH₂
 289 MNB2-G-G-R-I-D-R-I-NH₂
 290 MNBL1-G-G-R-I-D-R-I-NH₂
 291 MCB-G-G-R-I-D-R-I-NH₂
 292 MPOB-G-G-R-I-D-R-I-NH₂
 293 MNOB2-G-G-R-I-D-R-I-NH₂
 294 MIB3-G-G-R-I-D-R-I-NH₂
 295 MPEB-G-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

39/71

- 296 MCEB-G-G-R-I-D-R-I-NH₂
297 MNEB2-G-G-R-I-D-R-I-NH₂
298 MBB-4-APA-R-I-D-R-I-NH₂
299 MPBB-4-APA-R-I-D-R-I-NH₂
300 MNB2-4-APA-R-I-D-R-I-NH₂
301 MNB1-4-APA-R-I-D-R-I-NH₂
302 MCB-4-APA-R-I-D-R-I-NH₂
303 MPOB-4-APA-R-I-D-R-I-NH₂
304 MNOB2-4-APA-R-I-D-R-I-NH₂
305 MIB3-4-APA-R-I-D-R-I-NH₂
306 MPEB-4-APA-R-I-D-R-I-NH₂
307 MCEB-4-APA-R-I-D-R-I-NH₂
308 MNEB2-4-APA-R-I-D-R-I-NH₂
309 MBB-4-AB-R-I-D-R-I-NH₂
310 MPBB-4-AB-R-I-D-R-I-NH₂
311 MNB2-4-AB-R-I-D-R-I-NH₂
312 MNB1-4-AB-R-I-D-R-I-NH₂
313 MCB-4-AB-R-I-D-R-I-NH₂
314 MPOB-4-AB-R-I-D-R-I-NH₂
315 MNOB2-4-AB-R-I-D-R-I-NH₂
316 MIB3-4-AB-R-I-D-R-I-NH₂
317 MPEB-4-AB-R-I-D-R-I-NH₂
318 MCEB-4-AB-R-I-D-R-I-NH₂
319 MNEB2-4-AB-R-I-D-R-I-NH₂
320 MBB-D-G-R-I-D-R-I-NH₂
321 MPBB-D-G-R-I-D-R-I-NH₂
322 MNB2-D-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

40/71

- 323 MNB1-D-G-R-I-D-R-I-NH₂
 324 MCB-D-G-R-I-D-R-I-NH₂
 325 MPOB-D-G-R-I-D-R-I-NH₂
 326 MNOB2-D-G-R-I-D-R-I-NH₂
 327 MIB3-D-G-R-I-D-R-I-NH₂
 328 MPEB-D-G-R-I-D-R-I-NH₂
 329 MCEB-D-G-R-I-D-R-I-NH₂
 330 MNEB2-D-G-R-I-D-R-I-NH₂
 331 MBB-[D-Asp]-G-R-I-D-R-I-NH₂
 332 MPBB-[D-Asp]-G-R-I-D-R-I-NH₂
 333 MNB2-[D-Asp]-G-R-I-D-R-I-NH₂
 334 MNB1-[D-Asp]-G-R-I-D-R-I-NH₂
 335 MCB-[D-Asp]-G-R-I-D-R-I-NH₂
 336 MPOB-[D-Asp]-G-R-I-D-R-I-NH₂
 337 MNOB2-[D-Asp]-G-R-I-D-R-I-NH₂
 338 MIB3-[D-Asp]-G-R-I-D-R-I-NH₂
 339 MPEB-[D-Asp]-G-R-I-D-R-I-NH₂
 340 MCEB-[D-Asp]-G-R-I-D-R-I-NH₂
 341 MNEB2-[D-Asp]-G-R-I-D-R-I-NH₂
 342 MBB-[γ-L-Glu]-R-I-D-R-I-NH₂
 343 MPBB-[γ-L-Glu]-R-I-D-R-I-NH₂
 344 MNB2-[γ-L-Glu]-R-I-D-R-I-NH₂
 345 MNB1-[γ-L-Glu]-R-I-D-R-I-NH₂
 346 MCB-[γ-L-Glu]-R-I-D-R-I-NH₂
 347 MPOB-[γ-L-Glu]-R-I-D-R-I-NH₂
 348 MNOB2-[γ-L-Glu]-R-I-D-R-I-NH₂
 349 MIB3-[γ-L-Glu]-R-I-D-R-I-NH₂

FIG. 4 (contd.)

41/71

350 MPEB-[γ -L-Glu]-R-I-D-R-I-NH₂
 351 MCEB-[γ -L-Glu]-R-I-D-R-I-NH₂
 352 MNEB2-[γ -L-Glu]-R-I-D-R-I-NH₂
 353 MBB-[γ -D-Glu]-R-I-D-R-I-NH₂
 354 MPBB-[γ -D-Glu]-R-I-D-R-I-NH₂
 355 MNB2-[γ -D-Glu]-R-I-D-R-I-NH₂
 356 MNBL1-[γ -D-Glu]-R-I-D-R-I-NH₂
 357 MCB-[γ -D-Glu]-R-I-D-R-I-NH₂
 358 MPOB-[γ -D-Glu]-R-I-D-R-I-NH₂
 359 MNOB2-[γ -D-Glu]-R-I-D-R-I-NH₂
 360 MIB3-[γ -D-Glu]-R-I-D-R-I-NH₂
 361 MPEB-[γ -D-Glu]-R-I-D-R-I-NH₂
 362 MCEB-[γ -D-Glu]-R-I-D-R-I-NH₂
 363 MNEB2-[γ -D-Glu]-R-I-D-R-I-NH₂
 364 F[N]G-G-R-I-D-R-I-NH₂
 365 BF[N]G-G-R-I-D-R-I-NH₂
 366 Nal2[N]G-G-R-I-D-R-I-NH₂
 367 Nal1[N]G-G-R-I-D-R-I-NH₂
 368 Cha[N]G-G-R-I-D-R-I-NH₂
 369 W[N]G-G-R-I-D-R-I-NH₂
 370 homoF[N]G-G-R-I-D-R-I-NH₂
 371 homoCha[N]G-G-R-I-D-R-I-NH₂
 372 homoNal2[N]G-G-R-I-D-R-I-NH₂
 373 F[N]4-APA-R-I-D-R-I-NH₂
 374 BF[N]4-APA-R-I-D-R-I-NH₂
 375 Nal2[N]4-APA-R-I-D-R-I-NH₂
 376 Nal1[N]4-APA-R-I-D-R-I-NH₂

FIG. 4 (contd.)

42/71

377 Cha[N]4-APA-R-I-D-R-I-NH₂
 378 W[N]4-APA-R-I-D-R-I-NH₂
 379 homoF[N]4-APA-R-I-D-R-I-NH₂
 380 homoCha[N]4-APA-R-I-D-R-I-NH₂
 381 homoNal2[N]4-APA-R-I-D-R-I-NH₂
 382 F[N]4-AB-R-I-D-R-I-NH₂
 383 BF[N]4-AB-R-I-D-R-I-NH₂
 384 Nal2[N]4-AB-R-I-D-R-I-NH₂
 385 Nal1[N]4-AB-R-I-D-R-I-NH₂
 386 Cha[N]4-AB-R-I-D-R-I-NH₂
 387 W[N]4-AB-R-I-D-R-I-NH₂
 388 homoF[N]4-AB-R-I-D-R-I-NH₂
 389 homoCha[N]4-AB-R-I-D-R-I-NH₂
 390 homoNal2[N]4-AB-R-I-D-R-I-NH₂
 391 F[N]D-G-R-I-D-R-I-NH₂
 392 BF[N]D-G-R-I-D-R-I-NH₂
 393 Nal2[N]D-G-R-I-D-R-I-NH₂
 394 Nal1[N]D-G-R-I-D-R-I-NH₂
 395 Cha[N]D-G-R-I-D-R-I-NH₂
 396 W[N]D-G-R-I-D-R-I-NH₂
 397 homoF[N]D-G-R-I-D-R-I-NH₂
 398 homoCha[N]D-G-R-I-D-R-I-NH₂
 399 homoNal2[N]D-G-R-I-D-R-I-NH₂
 400 F[N](D-Asp)-G-R-I-D-R-I-NH₂
 401 BF[N](D-Asp)-G-R-I-D-R-I-NH₂
 402 Nal2[N](D-Asp)-G-R-I-D-R-I-NH₂
 403 Nal1[N](D-Asp)-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

43/71

404 Cha[N][D-Asp]-G-R-I-D-R-I-NH₂
 405 W[N][D-Asp]-G-R-I-D-R-I-NH₂
 406 homoF[N][D-Asp]-G-R-I-D-R-I-NH₂
 407 homoCha[N][D-Asp]-G-R-I-I-R-I-NH₂
 408 homoNal2[N][D-Asp]-G-R-I-D-R-I-NH₂
 409 F[N][γ -L-Glu]-R-I-D-R-I-NH₂
 410 BF[N][γ -L-Glu]-R-I-D-R-I-NH₂
 411 Nal2[N][γ -L-Glu]-R-I-D-R-I-NH₂
 412 Nall[N][γ -L-Glu]-R-I-D-R-I-NH₂
 413 Cha[N][γ -L-Glu]-R-I-D-R-I-NH₂
 414 W[N][γ -L-Glu]-R-I-D-R-I-NH₂
 415 homoF[N][γ -L-Glu]-R-I-D-R-I-NH₂
 416 homoCha[N][γ -L-Glu]-R-I-D-R-I-NH₂
 417 homoNal2[N][γ -L-Glu]-R-I-D-R-I-NH₂
 418 F[N][γ -D-Glu]-R-I-D-R-I-NH₂
 419 BF[N][γ -D-Glu]-R-I-D-R-I-NH₂
 420 Nal2[N][γ -D-Glu]-R-I-D-R-I-NH₂
 421 Nall[N][γ -D-Glu]-R-I-D-R-I-NH₂
 422 Cha[N][γ -D-Glu]-R-I-D-R-I-NH₂
 423 W[N][γ -D-Glu]-R-I-D-R-I-NH₂
 424 homoF[N][γ -D-Glu]-R-I-D-R-I-NH₂
 425 homoCha[N][γ -D-Glu]-R-I-D-R-I-NH₂
 426 homoNal2[N][γ -D-Glu]-R-I-D-R-I-NH₂
 427 F[N][β -Ala]-G-R-I-D-R-I-NH₂
 428 BF[N][β -Ala]-G-R-I-D-R-I-NH₂
 429 Nal2[N][β -Ala]-G-R-I-D-R-I-NH₂
 430 Nall[N][β -Ala]-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

44/71

- 431 Cha[N][β -Ala]-G-R-I-D-R-I-NH₂
- 432 W[N][β -Ala]-G-R-I-D-R-I-NH₂
- 433 homoF[N][β -Ala]-G-R-I-D-R-I-NH₂
- 434 homoCha[N][β -Ala]-G-R-I-D-R-I-NH₂
- 435 homoNal2[N][β -Ala]-G-R-I-D-R-I-NH₂
- 436 F[N]F-G-G-R-I-D-R-I-NH₂
- 437 F[N]BF-G-G-R-I-D-R-I-NH₂
- 438 F[N]Nal2-G-G-R-I-D-R-I-NH₂
- 439 F[N]Nal1-G-G-R-I-D-R-I-NH₂
- 440 F[N]Cha-G-G-R-I-D-R-I-NH₂
- 441 F[N]W-G-G-R-I-D-R-I-NH₂
- 442 F[N]homoF-G-G-R-I-D-R-I-NH₂
- 443 F[N]homoCha-G-G-R-I-D-R-I-NH₂
- 444 F[N]homoNal2-G-G-R-I-D-R-I-NH₂
- 445 F[N]F-4-APA-R-I-D-R-I-NH₂
- 446 F[N]BF-4-APA-R-I-D-R-I-NH₂
- 447 F[N]Nal2-4-APA-R-I-D-R-I-NH₂
- 448 F[N]Nal1-4-APA-R-I-D-R-I-NH₂
- 449 F[N]Cha-4-APA-R-I-D-R-I-NH₂
- 450 F[N]W-4-APA-R-I-D-R-I-NH₂
- 451 F[N]homoF-4-APA-R-I-D-R-I-NH₂
- 452 F[N]homoCha-4-APA-R-I-D-R-I-NH₂
- 453 F[N]homoNal2-4-APA-R-I-D-R-I-NH₂
- 454 F[N]F-4-AB-R-I-D-R-I-NH₂
- 455 F[N]BF-4-AB-R-I-D-R-I-NH₂
- 456 F[N]Nal2-4-AB-R-I-D-R-I-NH₂
- 457 F[N]Nal1-4-AB-R-I-D-R-I-NH₂

FIG. 4 (contd.)

45/71

- 458 F[N]Cha-4-AB-R-I-D-R-I-NH₂
- 459 F[N]W-4-AB-R-I-D-R-I-NH₂
- 460 F[N]homof-4-AB-R-I-D-R-I-NH₂
- 461 F[N]homoCha-4-AB-R-I-D-R-I-NH₂
- 462 F[N]homoNal2-4-AB-R-I-D-R-I-NH₂
- 463 F[N]F-D-G-R-I-D-R-I-NH₂
- 464 F[N]BF-D-G-R-I-D-R-I-NH₂
- 465 F[N]Nal2-D-G-R-I-D-R-I-NH₂
- 466 F[N]Nall-D-G-R-I-D-R-I-NH₂
- 467 F[N]Cha-D-G-R-I-D-R-I-NH₂
- 468 F[N]W-D-G-R-I-D-R-I-NH₂
- 469 F[N]homof-D-G-R-I-D-R-I-NH₂
- 470 F[N]homoCha-D-G-R-I-D-R-I-NH₂
- 471 F[N]homoNal2-D-G-R-I-D-R-I-NH₂
- 472 F[N]F-[D-Asp]-G-R-I-D-R-I-NH₂
- 473 F[N]BF-[D-Asp]-G-R-I-D-R-I-NH₂
- 474 F[N]Nal2-[D-Asp]-G-R-I-D-R-I-NH₂
- 475 F[N]Nall-[D-Asp]-G-R-I-D-R-I-NH₂
- 476 F[N]Cha-[D-Asp]-G-R-I-D-R-I-NH₂
- 477 F[N]W-[D-Asp]-G-R-I-D-R-I-NH₂
- 478 F[N]homof-[D-Asp]-G-R-I-D-R-I-NH₂
- 479 F[N]homoCha-[D-Asp]-G-R-I-D-R-I-NH₂
- 480 F[N]homoNal2-[D-Asp]-G-R-I-D-R-I-NH₂
- 481 F[N]F-[γ-L-Glu]-R-I-D-R-I-NH₂
- 482 F[N]BF-[γ-L-Glu]-R-I-D-R-I-NH₂
- 483 F[N]Nal2-[γ-L-Glu]-R-I-D-R-I-NH₂
- 484 F[N]Nall-[γ-L-Glu]-R-I-D-R-I-NH₂

FIG. 4 (contd.)

46/71

- 485 F[N]Cha-[γ -L-Glu]-R-I-D-R-I-NH₂
 486 F[N]W-[γ -L-Glu]-R-I-D-R-I-NH₂
 487 F[N]homof-[γ -L-Glu]-R-I-D-R-I-NH₂
 488 F[N]homoCha-[γ -L-Glu]-R-I-D-R-I-NH₂
 489 F[N]homoNal2-[γ -L-Glu]-R-I-D-R-I-NH₂
 490 F[N]F-[γ -D-Glu]-R-I-D-R-I-NH₂
 491 F[N]BF-[γ -D-Glu]-R-I-D-R-I-NH₂
 492 F[N]Nal2-[γ -D-Glu]-R-I-D-R-I-NH₂
 493 F[N]Nal1-[γ -D-Glu]-R-I-D-R-I-NH₂
 494 F[N]Cha-[γ -D-Glu]-R-I-D-R-I-NH₂
 495 F[N]W-[γ -D-Glu]-R-I-D-R-I-NH₂
 496 F[N]homof-[γ -D-Glu]-R-I-D-R-I-NH₂
 497 F[N]homoCha-[γ -D-Glu]-R-I-D-R-I-NH₂
 498 F[N]homoNal2-[γ -D-Glu]-R-I-D-R-I-NH₂
 499 homof[N]F-G-G-R-I-D-R-I-NH₂
 500 homof[N]BF-G-G-R-I-D-R-I-NH₂ FIG. 4 (contd.)
 501 homof[N]Nal2-G-G-R-I-D-R-I-NH₂
 502 homof[N]Nal1-G-G-R-I-D-R-I-NH₂
 503 homof[N]Cha-G-G-R-I-D-R-I-NH₂
 504 homof[N]W-G-G-R-I-D-R-I-NH₂
 505 homof[N]homof-G-G-R-I-D-R-I-NH₂
 506 homof[N]homoCha-G-G-R-I-D-R-I-NH₂
 507 homof[N]homoNal2-G-G-R-I-D-R-I-NH₂
 508 homof[N]F-4-APA-R-I-D-R-I-NH₂
 509 homof[N]BF-4-APA-R-I-D-R-I-NH₂
 510 homof[N]Nal2-4-APA-R-I-D-R-I-NH₂
 511 homof[N]Nal1-4-APA-R-I-D-R-I-NH₂

47/71

512 homoF[N]Cha-4-APA-R-I-D-R-I-NH₂
513 homoF[N]W-4-APA-R-I-D-R-I-NH₂ FIG. 4 (contd.)
514 homoF[N]homoF-4-APA-R-I-D-R-I-NH₂
515 homoF[N]homoCha-4-APA-R-I-D-R-I-NH₂
516 homoF[N]homoNal2-4-APA-R-I-D-R-I-NH₂
517 homoF[N]F-4-AB-R-I-D-R-I-NH₂
518 homoF[N]BF-4-AB-R-I-D-R-I-NH₂
519 homoF[N]Nal2-4-AB-R-I-D-R-I-NH₂
520 homoF[N]Nall1-4-AB-R-I-D-R-I-NH₂
521 homoF[N]Cha-4-AB-R-I-D-R-I-NH₂
522 homoF[N]W-4-AB-R-I-D-R-I-NH₂
523 homoF[N]homoF-4-AB-R-I-D-R-I-NH₂
524 homoF[N]homoCha-4-AB-R-I-D-R-I-NH₂
525 homoF[N]homoNal2-4-AB-R-I-D-R-I-NH₂

527 homoF[N]BF-D-G-R-I-D-R-I-NH₂
528 homoF[N]Nal2-D-G-R-I-D-R-I-NH₂
529 homoF[N]Nall1-D-G-R-I-D-R-I-NH₂
530 homoF[N]Cha-D-G-R-I-D-R-I-NH₂
531 homoF[N]W-D-G-R-I-D-R-I-NH₂
532 homoF[N]homoF-D-G-R-I-D-R-I-NH₂
533 homoF[N]homoCha-D-G-R-I-D-R-I-NH₂
534 homoF[N]homoNal2-D-G-R-I-D-R-I-NH₂

536 homoF[N]BF-[D-Asp]-G-R-I-D-R-I-NH₂
537 homoF[N]Nal2-[D-Asp]-G-R-I-D-R-I-NH₂
538 homoF[N]Nall1-[D-Asp]-G-R-I-D-R-I-NH₂

48/71

539 homoF[N]Cha-[D-Asp]-G-R-I-D-R-I-NH₂
 540 homoF[N]W-[D-Asp]-G-R-I-D-R-I-NH₂
 541 homoF[N]homoF-[D-Asp]-G-R-I-D-R-I-NH₂
 542 homoF[N]homoCha-[D-Asp]-G-R-I-D-R-I-NH₂
 543 homoF[N]homoNal2-[D-Asp]-G-R-I-D-R-I-NH₂
 544 homoF[N]F-[γ-L-Glu]-R-I-D-R-I-NH₂
 545 homoF[N]BF-[γ-L-Glu]-R-I-D-R-I-NH₂
 546 homoF[N]Nal2-[γ-L-Glu]-R-I-D-R-I-NH₂
 547 homoF[N]Nall-[γ-L-Glu]-R-I-D-R-I-NH₂
 548 homoF[N]Cha-[γ-L-Glu]-R-I-D-R-I-NH₂
 549 homoF[N]W-[γ-L-Glu]-R-I-D-R-I-NH₂
 550 homoF[N]homoF-[γ-L-Glu]-R-I-D-R-I-NH₂
 551 homoF[N]homoCha-[γ-L-Glu]-R-I-D-R-I-NH₂
 552 homoF[N]homoNal2-[γ-L-Glu]-R-I-D-R-I-NH₂
 553 homoF[N]F-[γ-D-Glu]-R-I-D-R-I-NH₂
 554 homoF[N]BF-[γ-D-Glu]-R-I-D-R-I-NH₂
 555 homoF[N]Nal2-[γ-D-Glu]-R-I-D-R-I-NH₂
 556 homoF[N]Nall-[γ-D-Glu]-R-I-D-R-I-NH₂
 557 homoF[N]Cha-[γ-D-Glu]-R-I-D-R-I-NH₂
 558 homoF[N]W-[γ-D-Glu]-R-I-D-R-I-NH₂
 559 homoF[N]homoF-[γ-D-Glu]-R-I-D-R-I-NH₂
 560 homoF[N]homoCha-[γ-D-Glu]-R-I-D-R-I-NH₂
 561 homoF[N]homoNal2-[γ-D-Glu]-R-I-D-R-I-NH₂
 562 G[N]F-G-G-R-I-D-R-I-NH₂
 563 G[N]BF-G-G-R-I-D-R-I-NH₂
 564 G[N]Nal2-G-G-R-I-D-R-I-NH₂
 565 G[N]Nall-G-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

49/71

- 566 G[N]Cha-G-G-R-I-D-R-I-NH₂
 567 G[N]W-G-G-R-I-D-R-I-NH₂
 568 G[N]homof-G-G-R-I-D-R-I-NH₂
 569 G[N]homoCha-G-G-R-I-D-R-I-NH₂
 570 G[N]homoNal2-G-G-R-I-D-R-I-NH₂
 571 G[N]F-4-APA-R-I-D-R-I-NH₂
 572 G[N]BF-4-APA-R-I-D-R-I-NH₂
 573 G[N]Na12-4-APA-R-I-D-R-I-NH₂
 574 G[N]Na11-4-APA-R-I-D-R-I-NH₂
 575 G[N]Cha-4-APA-R-I-D-R-I-NH₂
 576 G[N]W-4-APA-R-I-D-R-I-NH₂
 577 G[N]homof-4-APA-R-I-D-R-I-NH₂
 578 G[N]homoCha-4-APA-R-I-D-R-I-NH₂
 579 G[N]homoNal2-4-APA-R-I-D-R-I-NH₂
 580 G[N]F-4-AB-R-I-D-R-I-NH₂
 581 G[N]BF-4-AB-R-I-D-R-I-NH₂
 582 G[N]Na12-4-AB-R-I-D-R-I-NH₂
 583 G[N]Na11-4-AB-R-I-D-R-I-NH₂
 584 G[N]Cha-4-AB-R-I-D-R-I-NH₂
 585 G[N]W-4-AB-R-I-D-R-I-NH₂
 586 G[N]homof-4-AB-R-I-D-R-I-NH₂
 587 G[N]homoCha-4-AB-R-I-D-R-I-NH₂
 588 G[N]homoNal2-4-AB-R-I-D-R-I-NH₂
 589 G[N]F-D-G-R-I-D-R-I-NH₂
 590 G[N]BF-D-G-R-I-D-R-I-NH₂
 591 G[N]Na12-D-G-R-I-D-R-I-NH₂
 592 G[N]Na11-D-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

50/71

593 G[N]Cha-D-G-R-I-D-R-I-NH₂
 594 G[N]W-D-G-R-I-D-R-I-NH₂
 595 G[N]homoF-D-G-R-I-D-R-I-NH₂
 596 G[N]homoCha-D-G-R-I-D-R-I-NH₂
 597 G[N]homoNal2-D-G-R-I-D-R-I-NH₂
 598 G[N]F-[D-Asp]-G-R-I-D-R-I-NH₂
 599 G[N]BF-[D-Asp]-G-R-I-D-R-I-NH₂
 600 G[N]Nal2-[D-Asp]-G-R-I-D-R-I-NH₂
 601 G[N]Nall-[D-Asp]-G-R-I-D-R-I-NH₂
 602 G[N]Cha-[D-Asp]-G-R-I-D-R-I-NH₂
 603 G[N]W-[D-Asp]-G-R-I-D-R-I-NH₂
 604 G[N]homoF-[D-Asp]-G-R-I-D-R-I-NH₂
 605 G[N]homoCha-[D-Asp]-G-R-I-D-R-I-NH₂
 606 G[N]homoNal2-[D-Asp]-G-R-I-D-R-I-NH₂
 607 G[N]F-[γ-L-Glu]-R-I-D-R-I-NH₂
 608 G[N]BF-[γ-L-Glu]-R-I-D-R-I-NH₂
 609 G[N]Nal2-[γ-L-Glu]-R-I-D-R-I-NH₂
 610 G[N]Nall-[γ-L-Glu]-R-I-D-R-I-NH₂
 611 G[N]Cha-[γ-L-Glu]-R-I-D-R-I-NH₂
 612 G[N]W-[γ-L-Glu]-R-I-D-R-I-NH₂
 613 G[N]homoF-[γ-L-Glu]-R-I-D-R-I-NH₂
 614 G[N]homoCha-[γ-L-Glu]-R-I-D-R-I-NH₂
 615 G[N]homoNal2-[γ-L-Glu]-R-I-D-R-I-NH₂
 616 G[N]F-[γ-D-Glu]-R-I-D-R-I-NH₂
 617 G[N]BF-[γ-D-Glu]-R-I-D-R-I-NH₂
 618 G[N]Nal2-[γ-D-Glu]-R-I-D-R-I-NH₂
 619 G[N]Nall-[γ-D-Glu]-R-I-D-R-I-NH₂

FIG. 4 (contd.)

51/71

- 620 G[N]Cha-[γ -D-Glu]-R-I-D-R-I-NH₂
 621 G[N]W-[γ -D-Glu]-R-I-D-R-I-NH₂
 622 G[N]homoF-[γ -D-Glu]-R-I-D-R-I-NH₂
 623 G[N]homoCha-[γ -D-Glu]-R-I-D-R-I-NH₂
 624 G[N]homoNal2-[γ -D-Glu]-R-I-D-R-I-NH₂
 625 BMAL-G-G-R-I-D-R-I-NH₂
 626 PBMAL-G-G-R-I-D-R-I-NH₂
 627 NMAL2-G-G-R-I-D-R-I-NH₂
 628 NMAL1-G-G-R-I-D-R-I-NH₂
 629 CMAL-G-G-R-I-D-R-I-NH₂
 630 PMAL-G-G-R-I-D-R-I-NH₂
 631 NOMAL2-G-G-R-I-D-R-I-NH₂
 632 IMAL-G-G-R-I-D-R-I-NH₂
 633 PEMAL-G-G-R-I-D-R-I-NH₂
 634 CEMAL-G-G-R-I-D-R-I-NH₂
 635 NEMAL-G-G-R-I-D-R-I-NH₂
 636 BMAL-4-APA-R-I-D-R-I-NH₂
 637 PBMAL-4-APA-R-I-D-R-I-NH₂
 638 NMAL2-4-APA-R-I-D-R-I-NH₂
 639 NMAL1-4-APA-R-I-D-R-I-NH₂
 640 CMAL-4-APA-R-I-D-R-I-NH₂
 641 PMAL-4-APA-R-I-D-R-I-NH₂
 642 NOMAL2-4-APA-R-I-D-R-I-NH₂
 643 IMAL-4-APA-R-I-D-R-I-NH₂
 644 PEMAL-4-APA-R-I-D-R-I-NH₂
 645 CEMAL-4-APA-R-I-D-R-I-NH₂
 646 NEMAL-4-APA-R-I-D-R-I-NH₂

FIG. 4 (contd.)

52/71

647 BMAL-4-AB-R-I-D-R-I-NH₂
648 PBMAL-4-AB-R-I-D-R-I-NH₂
649 NMAL2-4-AB-R-I-D-R-I-NH₂
650 NMAL1-4-AB-R-I-D-R-I-NH₂
651 CMAL-4-AB-R-I-D-R-I-NH₂
652 PMAL-4-AB-R-I-D-R-I-NH₂
653 NOMAL2-4-AB-R-I-D-R-I-NH₂
654 IMAL-4-AB-R-I-D-R-I-NH₂
655 PEMAL-4-AB-R-I-D-R-I-NH₂
656 CEMAL-4-AB-R-I-D-R-I-NH₂
657 NEMAL-4-AB-R-I-D-R-I-NH₂
658 BMAL-D-G-R-I-D-R-I-NH₂
659 PBMAL-D-G-R-I-D-R-I-NH₂
660 NMAL2-D-G-R-I-D-R-I-NH₂
661 NMAL1-D-G-R-I-D-R-I-NH₂
662 CMAL-D-G-R-I-D-R-I-NH₂
663 PMAL-D-G-R-I-D-R-I-NH₂
664 NOMAL2-D-G-R-I-D-R-I-NH₂
665 IMAL-D-G-R-I-D-R-I-NH₂
666 PEMAL-D-G-R-I-D-R-I-NH₂
667 CEMAL-D-G-R-I-D-R-I-NH₂
668 NEMAL-D-G-R-I-D-R-I-NH₂
669 BMAL-[D-Asp]-G-R-I-D-R-I-NH₂
670 PBMAL-[D-Asp]-G-R-I-D-R-I-NH₂
671 NMAL2-[D-Asp]-G-R-I-D-R-I-NH₂
672 NMAL1-[D-Asp]-G-R-I-D-R-I-NH₂
673 CMAL-[D-Asp]-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

53/71

674 PMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 675 NOMAL2-[D-Asp]-G-R-I-D-R-I-NH₂
 676 IMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 677 PEMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 678 CEMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 679 NEMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 680 BMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 681 PBMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 682 NMAL2-[γ-L-Glu]-R-I-D-R-I-NH₂
 683 NMAL1-[γ-L-Glu]-R-I-D-R-I-NH₂
 684 CMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 685 PMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 686 NOMAL2-[γ-L-Glu]-R-I-D-R-I-NH₂
 687 IMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 688 PEMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 689 CEMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 690 NEMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 691 BMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 692 PBMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 693 NMAL2-[γ-D-Glu]-R-I-D-R-I-NH₂
 694 NMAL1-[γ-D-Glu]-R-I-D-R-I-NH₂
 695 CMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 696 PMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 697 NOMAL2-[γ-D-Glu]-R-I-D-R-I-NH₂
 698 IMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 699 PEMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 700 CEMAL-[γ-D-Glu]-R-I-D-R-I-NH₂

FIG. 4 (contd.)

54/71

701 NEMAL-[γ -D-Glu]-R-I-D-R-I-NH₂
 702 HAF[N]G-G-R-I-D-R-I-NH₂
 703 HABF[N]G-G-R-I-D-R-I-NH₂
 704 HANa12[N]G-G-R-I-D-R-I-NH₂
 705 HANa11[N]G-G-R-I-D-R-I-NH₂
 706 HACha[N]G-G-R-I-D-R-I-NH₂
 707 HAW[N]G-G-R-I-D-R-I-NH₂
 708 HAhomof[N]G-G-R-I-D-R-I-NH₂
 709 HAhomocha[N]G-G-R-I-D-R-I-NH₂
 710 HAhomona12[N]G-G-R-I-D-R-I-NH₂
 711 HAF[N]4-APA-R-I-D-R-I-NH₂
 712 HABF[N]4-APA-R-I-D-R-I-NH₂
 713 HANa12[N]4-APA-R-I-D-R-I-NH₂
 714 NANa11[N]4-APA-R-I-D-R-I-NH₂
 715 HACha[N]4-APA-R-I-D-R-I-NH₂
 716 HAW[N]4-APA-R-I-D-R-I-NH₂
 717 HAhomof[N]4-APA-R-I-D-R-I-NH₂
 718 HAhomocha[N]4-APA-R-I-D-R-I-NH₂
 719 HAhomona12[N]4-APA-R-I-D-R-I-NH₂
 720 HAF[N]4-AB-R-I-D-R-I-NH₂
 721 HABF[N]4-AB-R-I-D-R-I-NH₂
 722 HANa12[N]4-AB-R-I-D-R-I-NH₂
 723 HANa11[N]4-AB-R-I-D-R-I-NH₂
 724 HACha[N]4-AB-R-I-D-R-I-NH₂
 725 HAW[N]4-AB-R-I-D-R-I-NH₂
 726 HAhomof[N]4-AB-R-I-D-R-I-NH₂
 727 HAhomocha[N]4-AB-R-I-D-R-I-NH₂

FIG. 4 (contd.)

55/71

- 728 HAhomоНаl2[N]4-AB-R-I-D-R-I-NH₂
- 729 HAF[N]D-G-R-I-D-R-I-NH₂
- 730 HABF[N]D-G-R-I-D-R-I-NH₂
- 731 HANa12[N]D-G-R-I-D-R-I-NH₂
- 732 HANa11[N]D-G-R-I-D-R-I-NH₂
- 733 HACHa[N]D-G-R-I-D-R-I-NH₂
- 734 HAW[N]D-G-R-I-D-R-I-NH₂
- 735 HAhomоФ[N]D-G-R-I-D-R-I-NH₂
- 736 HAhomоЧa[N]D-G-R-I-D-R-I-NH₂
- 737 HAhomоНаl2[N]D-G-R-I-D-R-I-NH₂
- 738 HAF[N][D-Asp]-G-R-I-D-R-I-NH₂
- 739 HABF[N][D-Asp]-G-R-I-D-R-I-NH₂
- 740 HANa12[N][D-Asp]-G-R-I-D-R-I-NH₂
- 741 HANa11[N][D-Asp]-G-R-I-D-R-I-NH₂
- 742 HACHa[N][D-Asp]-G-R-I-D-R-I-NH₂
- 743 HAW[N][D-Asp]-G-R-I-D-R-I-NH₂
- 744 HAhomоФ[N][D-Asp]-G-R-I-D-R-I-NH₂
- 745 HAhomоЧa[N][D-Asp]-G-R-I-D-R-I-NH₂
- 746 HAhomоНаl2[N][D-Asp]-G-R-I-D-R-I-NH₂
- 747 HAF[N][γ-L-Glu]-R-I-D-R-I-NH₂
- 748 HABF[N][γ-L-Glu]-R-I-D-R-I-NH₂
- 749 HANa12[N][γ-L-Glu]-R-I-D-R-I-NH₂
- 750 NANa11[N][γ-L-Glu]-R-I-D-R-I-NH₂
- 751 HACHa[N][γ-L-Glu]-R-I-D-R-I-NH₂
- 752 HAW[N][γ-L-Glu]-R-I-D-R-I-NH₂
- 753 HAhomоФ[N][γ-L-Glu]-R-I-D-R-I-NH₂
- 754 HAhomоЧa[N][γ-L-Glu]-R-I-D-R-I-NH₂

FIG. 4 (contd.)

56/71

755 HAhomONal2[N][γ -L-Glu]-R-I-D-R-I-NH₂
 756 HAF[N][γ -D-Glu]-R-I-D-R-I-NH₂
 757 HABFT[N][γ -D-Glu]-R-I-D-R-I-NH₂
 758 HANal2[N][γ -D-Glu]-R-I-D-R-I-NH₂
 759 HANall[N][γ -D-Glu]-R-I-D-R-I-NH₂
 760 HACha[N][γ -D-Glu]-R-I-D-R-I-NH₂
 761 HAW[N][γ -D-Glu]-R-I-D-R-I-NH₂
 762 HAhomOF[N][γ -D-Glu]-R-I-D-R-I-NH₂
 763 HAhomOCha[N][γ -D-Glu]-R-I-D-R-I-NH₂
 764 HAhomONal2[N][γ -D-Glu]-R-I-D-R-I-NH₂
 765 BHAMAL-G-G-R-I-D-R-I-NH₂
 766 PBHAMAL-G-G-R-I-D-R-I-NH₂
 767 NHAMAL2-G-G-R-I-D-R-I-NH₂ FIG. 4 (contd.)
 768 NHAMALL1-G-G-R-I-D-R-I-NH₂
 769 CHAMAL-G-G-R-I-D-R-I-NH₂
 770 PHAMAL-G-G-R-I-D-R-I-NH₂
 771 NOHAMAL2-G-G-R-I-D-R-I-NH₂
 772 IHAMAL-G-G-R-I-D-R-I-NH₂
 773 PEHAMAL-G-G-R-I-D-R-I-NH₂
 774 CEHAMAL-G-G-R-I-D-R-I-NH₂
 775 NEHAMAL-G-G-R-I-D-R-I-NH₂
 776 BHAMAL-4-APA-R-I-D-R-I-NH₂
 777 PBHAMAL-4-APA-R-I-D-R-I-NH₂
 778 NHAMAL2-4-APA-R-I-D-R-I-NH₂
 779 NHAMALL1-4-APA-R-I-D-R-I-NH₂
 780 CHAMAL-4-APA-R-I-D-R-I-NH₂
 781 PHAMAL-4-APA-R-I-D-R-I-NH₂

57/71

782 NOHAMAL2-4-APA-R-I-D-R-I-NH₂
 783 IHAMAL-4-APA-R-I-D-R-I-NH₂
 784 PEHAMAL-4-APA-R-I-D-R-I-NH₂
 785 CEHAMAL-4-APA-R-I-D-R-I-NH₂
 786 NEHAMAL-4-APA-R-I-D-R-I-NH₂
 787 BHAMAL-4-AB-R-I-D-R-I-NH₂
 788 PBHAMAL-4-AB-R-I-D-R-I-NH₂
 789 NHAMAL2-4-AB-R-I-D-R-I-NH₂
 790 NHAMALL1-4-AB-R-I-D-R-I-NH₂
 791 CHAMAL-4-AB-R-I-D-R-I-NH₂
 792 PHAMAL-4-AB-R-I-D-R-I-NH₂
 793 NOHAMAL2-4-AB-R-I-D-R-I-NH₂
 794 IHAMAL-4-AB-R-I-D-R-I-NH₂
 795 PEHAMAL-4-AB-R-I-D-R-I-NH₂
 796 CEHAMAL-4-AB-R-I-D-R-I-NH₂
 797 NEHAMAL-4-AB-R-I-D-R-I-NH₂
 798 BHAMAL-D-G-R-I-D-R-I-NH₂
 799 PBHAMAL-D-G-R-I-D-R-I-NH₂
 800 NHAMAL2-D-G-R-I-D-R-I-NH₂
 801 NHAMALL1-D-G-R-I-D-R-I-NH₂
 802 CHAMAL-D-G-R-I-D-R-I-NH₂
 803 PHAMAL-D-G-R-I-D-R-I-NH₂
 804 NOHAMAL2-D-G-R-I-D-R-I-NH₂
 805 IHAMAL-D-G-R-I-D-R-I-NH₂
 806 PEHAMAL-D-G-R-I-D-R-I-NH₂
 807 CEHAMAL-D-G-R-I-D-R-I-NH₂
 808 NEHAMAL-D-G-R-I-D-R-I-NH₂

FIG. 4 (contd.)

58/71

809 BHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 810 PBHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 811 NHAMAL2-[D-Asp]-G-R-I-D-R-I-NH₂
 812 NHAMAL1-[D-Asp]-G-R-I-D-R-I-NH₂
 * 813 CHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 * 814 PHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 815 NOHAMAL2-[D-Asp]-G-R-I-D-R-I-NH₂
 816 IHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 817 PEHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 818 CEHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 819 NEHAMAL-[D-Asp]-G-R-I-D-R-I-NH₂
 820 BHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 821 PBHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 822 NHAMAL2-[γ-L-Glu]-R-I-D-R-I-NH₂
 823 NHAMAL1-[γ-L-Glu]-R-I-D-R-I-NH₂
 824 CHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 825 PHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂ FIG. 4 (contd.)
 826 NOHAMAL2-[γ-L-Glu]-R-I-D-R-I-NH₂
 827 IHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 828 PEHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 829 CEHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 * 830 NEHAMAL-[γ-L-Glu]-R-I-D-R-I-NH₂
 * 831 BHAMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 832 PBHAMAL-[γ-D-Glu]-R-I-D-R-I-NH₂
 833 NHAMAL2-[γ-D-Glu]-R-I-D-R-I-NH₂
 834 NHAMAL1-[γ-D-Glu]-R-I-D-R-I-NH₂
 835 CHAMAL-[γ-D-Glu]-R-I-D-R-I-NH₂

59/71

836 PHAMAL-[γ -D-Glu]-R-I-D-R-I-NH₂
837 NOHAMAL2-[γ -D-Glu]-R-I-D-R-I-NH₂
838 IHAMAL-[γ -D-Glu]-R-I-D-R-I-NH₂
839 PEHAMAL-[γ -D-Glu]-R-I-D-R-I-NH₂
840 CEHAMAL-[γ -D-Glu]-R-I-D-R-I-NH₂
841 NEHAMAL-[γ -D-Glu]-R-I-D-R-I-NH₂
842 BHASUC-G-G-R-I-D-R-I-NH₂
843 PBHASUC-G-G-R-I-D-R-I-NH₂
844 NHASUC2-G-G-R-I-D-R-I-NH₂
845 NHASUC1-G-G-R-I-D-R-I-NH₂ FIG. 4 (contd.)
846 CHASUC-G-G-R-I-D-R-I-NH₂
847 PHASUC-G-G-R-I-D-R-I-NH₂
848 NOHASUC2-G-G-R-I-D-R-I-NH₂
849 IHASUC-G-G-R-I-D-R-I-NH₂
850 PEHASUC-G-G-R-I-D-R-I-NH₂
851 CEHASUC-G-G-R-I-D-R-I-NH₂
852 NEHASUC-G-G-R-I-D-R-I-NH₂
853 BHASUC-4-APA-R-I-D-R-I-NH₂
854 PBHASUC-4-APA-R-I-D-R-I-NH₂
855 NHASUC2-4-APA-R-I-D-R-I-NH₂
856 NHASUC1-4-APA-R-I-D-R-I-NH₂
857 CHASUC-4-APA-R-I-D-R-I-NH₂
858 PHASUC-4-APA-R-I-D-R-I-NH₂
859 NOHASUC2-4-APA-R-I-D-R-I-NH₂
860 IHASUC-4-APA-R-I-D-R-I-NH₂
861 PEHASUC-4-APA-R-I-D-R-I-NH₂
862 CEHASUC-4-APA-R-I-D-R-I-NH₂

60/71

863 NEHASUC-4-APA-R-I-D-R-I-NH₂
864 BHASUC-4-AB-R-I-D-R-I-NH₂
865 PBHASUC-4-AB-R-I-D-R-I-NH₂
866 NHASUC2-4-AB-R-I-D-R-I-NH₂
867 NHASUC1-4-AB-R-I-D-R-I-NH₂
868 CHASUC-4-AB-R-I-D-R-I-NH₂
869 PHASUC-4-AB-R-I-D-R-I-NH₂
870 NOHASUC2-4-AB-R-I-D-R-I-NH₂
871 IHASUC-4-AB-R-I-D-R-I-NH₂
872 PEHASUC-4-AB-R-I-D-R-I-NH₂
873 CEHASUC-4-AB-R-I-D-R-I-NH₂
874 NEHASUC-4-AB-R-I-D-R-I-NH₂
875 BHASUC-D-G-R-I-D-R-I-NH₂
876 PBHASUC-D-G-R-I-D-R-I-NH₂
877 NHASUC2-D-G-R-I-D-R-I-NH₂
878 NHASUC1-D-G-R-I-D-R-I-NH₂
879 CHASUC-D-G-R-I-D-R-I-NH₂
880 PHASUC-D-G-R-I-D-R-I-NH₂ FIG. 4 (contd.)
881 NOHASUC2-D-G-R-I-D-R-I-NH₂
882 IHASUC-D-G-R-I-D-R-I-NH₂
883 PEHASUC-D-G-R-I-D-R-I-NH₂
884 CEHASUC-D-G-R-I-D-R-I-NH₂
885 NEHASUC-D-G-R-I-D-R-I-NH₂
886 BHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
887 PBHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
888 NHASUC2-[D-Asp]-G-R-I-D-R-I-NH₂
889 NHASUC1-[D-Asp]-G-R-I-D-R-I-NH₂

61/71

890 CHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
 891 PHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
 892 NOHASUC2-[D-Asp]-G-R-I-D-R-I-NH₂
 893 IHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
 894 PEHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
 895 CEHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
 896 NEHASUC-[D-Asp]-G-R-I-D-R-I-NH₂
 897 BHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 898 PBHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 899 NHASUC2-[γ -L-Glu]-R-I-D-R-I-NH₂
 900 NHASUC1-[γ -L-Glu]-R-I-D-R-I-NH₂
 901 CHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 902 PHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂ FIG. 4 (contd.)
 903 NOHASUC2-[γ -L-Glu]-R-I-D-R-I-NH₂
 904 IHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 905 PEHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 906 CEHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 907 NEHASUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 908 BHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 909 PBHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 910 NHASUC2-[γ -D-Glu]-R-I-D-R-I-NH₂
 911 NHASUC1-[γ -D-Glu]-R-I-D-R-I-NH₂
 912 CHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 913 PHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 914 NOHASUC2-[γ -D-Glu]-R-I-D-R-I-NH₂
 915 IHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 916 PEHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂

62/71

- 917 CEHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂
918 NEHASUC-[γ -D-Glu]-R-I-D-R-I-NH₂
919 Phosphoryl-F-G-G-R-I-D-R-I-NH₂
920 Phosphoryl-BF-G-G-R-I-D-R-I-NH₂
921 Phosphoryl-Nal2-G-G-R-I-D-R-I-NH₂
922 Phosphoryl-Nall1-G-G-R-I-D-R-I-NH₂
923 Phosphoryl-Cha-G-G-R-I-D-R-I-NH₂
924 Phosphoryl-W-G-G-R-I-D-R-I-NH₂
925 Phosphoryl-homoF-G-G-R-I-D-R-I-NH₂
926 Phosphoryl-homoCha-G-G-R-I-D-R-I-NH₂
927 Phosphoryl-homoNal2-G-G-R-I-D-R-I-NH₂
928 Phosphoryl-F-4-APA-R-I-D-R-I-NH₂
929 Phosphoryl-BF-4-APA-R-I-D-R-I-NH₂
930 Phosphoryl-Nal2-4-APA-R-I-D-R-I-NH₂
931 Phosphoryl-Nall1-4-APA-R-I-D-R-I-NH₂
932 Phosphoryl-Cha-4-APA-R-I-D-R-I-NH₂
933 Phosphoryl-W-4-APA-R-I-D-R-I-NH₂
934 Phosphoryl-homoF-4-APA-R-I-D-R-I-NH₂
935 Phosphoryl-homoCha-4-APA-R-I-D-R-I-NH₂
936 Phosphoryl-homoNal2-4-APA-R-I-D-R-I-NH₂
937 Phosphoryl-F-4-AB-R-I-D-R-I-NH₂
938 Phosphoryl-BF-4-AB-R-I-D-R-I-NH₂
939 Phosphoryl-Nal2-4-AB-R-I-D-R-I-NH₂
940 Phosphoryl-Nal2-4-AB-R-I-D-R-I-NH₂
941 Phosphoryl-Cha-4-AB-R-I-D-R-I-NH₂
942 Phosphoryl-W-4-AB-R-I-D-R-I-NH₂
943 Phosphoryl-homoF-4-AB-R-I-D-R-I-NH₂

FIG. 4 (contd.)

63/71

- 944 Phosphoryl-homoCha-4-AB-R-I-D-R-I-NH₂
945 Phosphoryl-homoNal2-4-AB-R-I-D-R-I-NH₂
946 Phosphoryl-F-D-G-R-I-D-R-I-NH₂
947 Phosphoryl-BF-D-G-R-I-D-R-I-NH₂ FIG. 4 (contd.)
948 Phosphoryl-Nal2-D-G-R-I-D-R-I-NH₂
949 Phosphoryl-Nall1-D-G-R-I-D-R-I-NH₂
950 Phosphoryl-Cha-D-G-R-I-D-R-I-NH₂
951 Phosphoryl-W-D-G-R-I-D-R-I-NH₂
952 Phosphoryl-homoF-D-G-R-I-D-R-I-NH₂
953 Phosphoryl-homoCha-D-G-R-I-D-R-I-NH₂
954 Phosphoryl-homoNal2-D-G-R-I-D-R-I-NH₂
955 Phosphoryl-F-[D-Asp]-G-R-I-D-R-I-NH₂
956 Phosphoryl-BF-[D-Asp]-G-R-I-D-R-I-NH₂
957 Phosphoryl-Nal2-[D-Asp]-G-R-I-D-R-I-NH₂
958 Phosphoryl-Nall1-[D-Asp]-G-R-I-D-R-I-NH₂
959 Phosphoryl-Cha-[D-Asp]-G-R-I-D-R-I-NH₂
960 Phosphoryl-W-[D-Asp]-G-R-I-D-R-I-NH₂
961 Phosphoryl-homoF-[D-Asp]-C-R-I-D-R-I-NH₂
962 Phosphoryl-homoCha-[D-Asp]-G-R-I-D-R-I-NH₂
963 Phosphoryl-homoNal2-[D-Asp]-G-R-I-D-R-I-NH₂
964 Phosphoryl-F-[γ-L-Glu]-R-I-D-R-I-NH₂
965 Phosphoryl-BF-[γ-L-Glu]-R-I-D-R-I-NH₂
966 Phosphoryl-Nal2-[γ-L-Glu]-R-I-D-R-I-NH₂
967 Phosphoryl-Nall1-[γ-L-Glu]-R-I-D-R-I-NH₂
968 Phosphoryl-Cha-[γ-L-Glu]-R-I-D-R-I-NH₂
969 Phosphoryl-W-[γ-L-Glu]-R-I-D-R-I-NH₂
970 Phosphoryl-homoF-[γ-L-Glu]-R-I-D-R-I-NH₂

64/71

- 971 Phosphoryl-homoCha-[γ -L-Glu]-R-I-D-R-I-NH₂
 972 Phosphoryl-homoNal2-[γ -L-Glu]-R-I-D-R-I-NH₂
 973 Phosphoryl-F-[γ -D-Glu]-R-I-D-R-I-NH₂
 974 Phosphoryl-BF-[γ -D-Glu]-R-I-D-R-I-NH₂
 975 Phosphoryl-Nal2-[γ -D-Glu]-R-I-D-R-I-NH₂
 976 Phosphoryl-Nall-[γ -D-Glu]-R-I-D-R-I-NH₂
 977 Phosphoryl-Cha-[γ -D-Glu]-R-I-D-R-I-NH₂
 978 Phosphoryl-W-[γ -D-Glu]-R-I-D-R-I-NH₂
 979 Phosphoryl-homoF-[γ -D-Glu]-R-I-D-R-I-NH₂
 980 Phosphoryl-homoCha-[γ -D-Glu]-R-I-D-R-I-NH₂
 981 Phosphoryl-homoNal2-[γ -D-Glu]-R-I-D-R-I-NH₂
 982 BSUC-G-G-R-I-D-R-I-NH₂
 983 PBSUC-G-G-R-I-D-R-I-NH₂
 984 NSUC2-G-G-R-I-D-R-I-NH₂ FIG. 4 (contd.)
 985 NSUC1-G-G-R-I-D-R-I-NH₂
 986 CSUC-G-G-R-I-D-R-I-NH₂
 987 PSUC-G-G-R-I-D-R-I-NH₂
 988 ISUC-G-G-R-I-D-R-I-NH₂
 989 PESUC-G-G-R-I-D-R-I-NH₂
 990 NESUC-G-G-R-I-D-R-I-NH₂
 991 BSUC-4-APA-R-I-D-R-I-NH₂
 992 PBSUC-4-APA-R-I-D-R-I-NH₂
 993 NSUC2-4-APA-R-I-D-R-I-NH₂
 994 NSUC1-4-APA-R-I-D-R-I-NH₂
 995 CSUC-4-APA-R-I-D-R-I-NH₂
 996 PSUC-4-APA-R-I-D-R-I-NH₂
 997 NOSUC2-4-APA-R-I-D-R-I-NH₂

65/71

998 ISUC-4-APA-R-I-D-R-I-NH₂
 999 PESUC-4-APA-R-I-D-R-I-NH₂
 1000 CESUC-4-APA-R-I-D-R-I-NH₂
 1001 NESUC-4-APA-R-I-D-R-I-NH₂
 1002 BSUC-4-AB-R-I-D-R-I-NH₂
 1003 PBSUC-4-AB-R-I-D-R-I-NH₂
 1004 NSUC2-4-AB-R-I-D-R-I-NH₂
 1005 NSUC1-4-AB-R-I-D-R-I-NH₂
 1006 CSUC-4-AB-R-I-D-R-I-NH₂
 1007 PSUC-4-AB-R-I-D-R-I-NH₂
 1008 NOSUC2-4-AB-R-I-D-R-I-NH₂
 1009 ISUC-4-AB-R-I-D-R-I-NH₂
 1010 PESUC-4-AB-R-I-D-R-I-NH₂
 1011 CESUC-4-AB-R-I-D-R-I-NH₂
 1012 NESUC-4-AB-R-I-D-R-I-NH₂
 1013 BSUC-D-G-R-I-D-R-I-NH₂
 1014 PBSUC-D-G-R-I-D-R-I-NH₂ FIG. 4 (contd.)
 1015 NSUC2-D-G-R-I-D-R-I-NH₂
 1016 NSUC1-D-G-R-I-D-R-I-NH₂
 1017 CSUC-D-G-R-I-D-R-I-NH₂
 1018 PSUC-D-G-R-I-D-R-I-NH₂
 1019 NOSUC2-D-G-R-I-D-R-I-NH₂
 1020 ISUC-D-G-R-I-D-R-I-NH₂
 1021 PESUC-D-G-R-I-D-R-I-NH₂
 1022 CESUC-D-G-R-I-D-R-I-NH₂
 1023 NESUC-D-G-R-I-D-R-I-NH₂
 1024 BSUC-[D-Asp]-G-R-I-D-R-I-NH₂

66/71

1025 PBSUC-[D-Asp]-G-R-I-D-R-I-NH₂
 1026 NSUC2-[D-Asp]-G-R-I-D-R-I-NH₂
 1027 NSUC1-[D-Asp]-G-R-I-D-R-I-NH₂
 1028 CSUC-[D-Asp]-G-R-I-D-R-I-NH₂
 1029 PSUC-[D-Asp]-G-R-I-D-R-I-NH₂
 1030 NOSUC2-[D-Asp]-G-R-I-D-R-I-NH₂
 1031 ISUC-[D-Asp]-G-R-I-D-R-I-NH₂
 1032 PESUC-[D-Asp]-G-R-I-D-R-I-NH₂
 1033 CESUC-[D-Asp]-G-R-I-D-R-I-NH₂
 1034 NESUC-[D-Asp]-G-R-I-D-R-I-NH₂
 1035 BSUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 1036 PBSUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 1037 NSUC2-[γ -L-Glu]-R-I-D-R-I-NH₂
 1038 NSUC1-[γ -L-Glu]-R-I-D-R-I-NH₂
 1039 CSUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 1040 PSUC-[γ -L-Glu]-R-I-D-R-I-NH₂ FIG. 4 (contd.)
 1041 NOSUC2-[γ -L-Glu]-R-I-D-R-I-NH₂
 1042 ISUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 1043 PESUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 1044 CESUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 1045 NESUC-[γ -L-Glu]-R-I-D-R-I-NH₂
 1046 BSUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 1047 PBSUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 1048 NSUC2-[γ -D-Glu]-R-I-D-R-I-NH₂
 1049 NSUC1-[γ -D-Glu]-R-I-D-R-I-NH₂
 1050 CSUC-[γ -D-Glu]-R-I-D-R-I-NH₂
 1051 PSUC-[γ -D-Glu]-R-I-D-R-I-NH₂

67/71

FIG. 4 (contd.)

- 1052 NOSUC₂-[γ -D-Glu]-R-I-D-R-I-NH₂
1053 ISUC-[γ -D-Glu]-R-I-D-R-I-NH₂
1054 PESUC-[γ -D-Glu]-R-I-D-R-I-NH₂
1055 CESUC-[γ -D-Glu]-R-I-D-R-I-NH₂
1056 NESUC-[γ -D-Glu]-R-I-D-R-I-NH₂

68/71

69/71

70/71

71/71

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US89/03466

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC
 IPC(4) : A61 K 37/02, C07K 7/06 C07K 7/08,
 C07K 7/10, C07K 1/06

II. FIELDS SEARCHED

Classification System	Minimum Documentation Searched ?
	Classification Symbols
U.S.	530/324, 530/535, 530/326, 530/327, 530/328
Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched *	

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

Category *	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
Y,P	U.S., A, 4,804,650, Lewicki, Published 14 February, 1989.	1-16
Y	U.S., A, 4,740,499, Ollins, Published 26 April 1988.	1-16
Y	U.S., A, 4,513,009, Roques, Published 23 April 1985	1-16
Y	U.S., A 4,749,688 Haslanger Published 7 June 1988.	1-16
Y	EP, B 0254032, Haslanger, Published 27 January 1988.	1-16

* Special categories of cited documents: *
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 "Z" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search

29 November 1989

Date of Mailing of this International Search Report

19 DEC 1989

International Searching Authority

ISA/US

Signature of Authorized Officer

Susan M. Perkins
 Susan M. Perkins

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
Y	Fennell, <u>FASEB Journal</u> , 2: A936, Published 1988	1-16
Y	Seymour, <u>FASEB Journal</u> , 2: A936, Published 1988.	1-16
Y	Trapani, <u>FASEB Journal</u> , 2: A936, Published 1988.	1-16
Y	McMartin, <u>FASEB Journal</u> , 2: A936, Published 1988.	1-16
Y	Stephenson, <u>Biochemical Journal</u> , <u>243:</u> 183-187, Published 1987.	1-16
Y	Koepke, <u>FASEB Journal</u> 2: A527, Published 1988.	1-16