ID: 5152Math A4900 2 Proof portfolio draft, Round 1 3

Statement: Let G be a group and let $x \in G$. If $|x| = n < \infty$, prove that the elements $1, x, x^2, \dots, x^{n-1}$ are all distinct. Deduce that $|x| = |\langle x \rangle|$

Problem: 1CNo. stars: $\mathbf{2}$

October 4, 2020

Proof. Let $|x| = n < \infty$. Now suppose that there are numbers $m, k \in \mathbb{Z}$ with $0 \le k < m \le n-1$ such that $x^m = x^k$.

1

4

Then we have that,

$$x^{k} \cdot x = x^{m} \cdot x$$

$$x^{k} \cdot x^{2} = x^{m} \cdot x^{2}$$

$$x^{k} \cdot x^{3} = x^{m} \cdot x^{3}$$

$$\vdots$$

$$x^{k} \cdot x^{n-m} = x^{m} \cdot x^{n-m}$$

However, on the right side of the equality, we have

$$x^m \cdot x^{n-m} = x^{m+n-m}$$
$$= x^n$$
$$= e$$

This implies that,

$$x^k \cdot x^{n-m} = x^{k+n-m}$$
$$= e$$

where $k + n - m \in \mathbb{Z}$ and 0 < k + n - m < m + n - m = n. 8

9

However, we know that the order of x is n, which is defined to be the smallest positive integer of x10 that yields the identity element. Hence, we have a contradiction and thus $e, x, x^2, \dots, x^{n-1}$ are all 11 distinct. 12

Now consider $\langle x \rangle$. We know that each x^c is distinct for every $c \in \mathbb{Z}$ such that $0 \leq k \leq n-1$. Now fix an $m \in \mathbb{Z}$ such that $m \geq n$. Choose $k \in \mathbb{N}$ as the greatest positive integer such that $m \geq kn$. Then we have,

$$x^{m} = x^{kn+(m-kn)}$$
$$= x^{kn}x^{m-kn}$$
$$= x^{m-kn}$$

- Note that $0 \le m kn$ since $m \ge kn$. In addition, m kn < n because, if $m kn \ge n$, it would mean
- 2 that $(k+1)n \leq m$. But we chose k such that it was the greatest positive integer with $m \geq kn$, so
- 3 this is not possible.

4

Hence we have that $0 \le m - kn < n$, and so $x^{m-kn} \in \{1, x, x^2, \dots, x^{n-1}\}$. Since $m \ge n$ was an arbitrary integer, this holds for any x^m with $m \ge n$. Thus, for any $a \in \mathbb{Z}$, we have that,

$$x^a \in \{1, x, x^2, \cdots, x^{n-1}\}$$

5 and so $|\langle x \rangle| = n = |x|$.

6

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

 $\mathbf{2}$

Statement: Show that if $s_1 = s$ and $s_2 = sr$, then those together with the relations

Problem: 1D

No. stars:

$$s_1^2 = s_2^2 = (s_1 s_2)^n = 1$$

forms and alternative presentation of D_{2n}

Proof. By the relations given above we have that,

$$s_1^2 = 1 = s^2$$

Moreover, we have that

$$s_2^2 = 1 = srsr$$

This implies that $sr = (sr)^{-1} = r^{-1}s^{-1}$.

However, we know that $s^{-1} = s$ since $s^2 = 1$, so we have

$$sr = (sr)^{-1} = r^{-1}s^{-1}$$

= $r^{-1}s$

We are also given that $(s_1s_2)^n = 1$. That is,

$$(s_1 s_2)^n = (ssr)^n$$
$$= r^n$$
$$= 1$$

- Hence, the elements s_1 and s_2 together with the relations shown above fully describe the initial
- presentation of D_{2n} .

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

Statement: Prove that if H and K are subgroups of G, then so is $H \cap K$. On the other hand, prove $H \cup K$ is a subgroup if and only if $H \subseteq K$ or $K \subseteq H$. forms and alternative presentation of D_{2n}

Problem:	2A
No. stars:	2

Proof. Suppose $H, K \leq G$. Consider $H \cap K$. Note that $1 \in H, K$ by the definition of groups, so $1 \in H \cap K$. Hence, $H \cap K \neq \emptyset$. Now let $x, y \in H \cap K$. Then $x, y \in H$ and $x, y \in K$, both of which are groups. Hence, $y^{-1} \in H$ and $y^{-1} \in K$, which implies $xy^{-1} \in H$ and $xy^{-1} \in K$. Thus, $xy^{-1} \in H \cap K$. As a result, $H \cap K$ satisfies the subgroup criterion and is hence a subgroup of G.

5

Now consider $H \cup K$. Suppose for contraposition that $H \not\subset K$ and $K \not\subset H$. Then $\exists x \in H$ such that $x \notin K$ and $\exists y \in K$ such that $y \notin H$. Then we have $y^{-1} \notin H$ and $x \notin K$, so $xy^{-1} \notin H$, K. Hence $xy^{-1} \notin H \cup K$ and so $H \cup K$ does not satisfy the subgroup criterion. As a result, we have that if $H \cup K$ is a subgroup of G, then $H \subset K$ or $K \subset H$.

10

Now for the other direction of the proof. Suppose $H \subset K$. Then $\forall x \in H$ we have $x \in K$. Hence, $H \cup K = K$. Since $K \leq G$, we have $H \cup K \leq G$ as well.

13

Suppose $K \subset H$. Then $\forall x \in K$ we have $x \in H$. Hence, $H \cup K = H$. Since $H \leq G$, we have $H \cup K \leq G$ as well. Thus, we have proved that if $H \subset K$ or $H \subset H$, then $H \cup K$ is a subgroup of G.

17 18

Г							
	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

Statement: Prove that \mathbb{R}^{\times} is not isomorphic to \mathbb{C}^{\times} , forms and alternative presentation of D_{2n}

Problem:	2 C
No. stars:	1

Proof. There are only 2 elements in \mathbb{R}^{\times} with order less than ∞ : |1| = 1 and |-1| = 2. However, there are 4 in \mathbb{C}^{\times} : |1| = 1, |-1| = 2, |i| = 4, |-i| = 4.

Since there is no element \mathbb{R}^{\times} with order 4, for any potential isomorphism $\varphi: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$, we have $|i| \neq |\varphi(i)|$

Hence, \mathbb{R}^{\times} and \mathbb{C}^{\times} are not isomorphic.

6

5

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						

Statement: Let G act on a set A. Prove that the relation \sim on A defined by

Problem: 3B

No. stars: 1

 $a \sim b \quad \text{ if and only if } \quad a = g \cdot b \text{ for some } g \in G$ is an equivalence relation.

Proof. We need to check that this relation is reflexive, symmetric, and transitive. We will start with reflexivity. Since G is a group, then $1 \in G$ and so we have

$$a = 1 \cdot a$$

Hence, we have $a \sim a$. Now let $a, b \in A$ and suppose $a \sim b$. Then,

$$a = g \cdot b$$

for some $g \in G$. Since G is a group, we have $g^{-1} \in G$ and hence

$$g^{-1} \cdot a = g^{-1} \cdot (g \cdot b)$$

By properties of group actions, we can write

$$g^{-1} \cdot a = (g^{-1}g) \cdot b$$
$$= b$$

So we have that $b \sim a$ since $g^{-1} \in G$. Hence, the relation is symmetric.

Now let $a, b, c \in A$. Suppose $a \sim b$ and $b \sim c$. Then we have,

$$a = g_1 \cdot b$$

and

$$b = g_2 \cdot c$$

for some $g_1, g_2 \in G$. We can use our equation for b and the properties of group action to rewrite a as

$$a = (q_1q_2) \cdot c$$

- Since $g_1g_2 \in G$, we have that $a \sim c$ and so the relation is transitive. Hence, this is an equivalence
- 4 relation.

5 6

	Points Possible						
complete	0	1	2	3	4	5	
mathematically valid	0	1	2	3	4	5	
readable/fluent	0	1	2	3	4	5	
Total:	(out of 15)						