PW/TP 1-2: Ordinary Differential Equations (CH2)

Exercise 1. Solve $(1 - x^2)y' = 4y$; y(0) = 1.

Exercise 2. Solve $(2y \sin x + 3y^4 \sin x \cos x) dx - (4y^3 \cos^2 x + \cos x) dy = 0$.

Exercise 3. Solve $x \frac{dy}{dx} + y = x^3 y^2$.

Exercise 4. Solve $x^2 \frac{dy}{dx} = x^2 + 3xy + y^2$.

Exercise 5. Solve $(xp - y)^2 = p^2 - 1$ with p = y'.

Exercise 6. Find the differential equation for (a) the family of straight lines which intersect at the point (2,1) and (b) the family of circles tangent to the x axis and having unit radius.

1

Exercise 7. Find differential equations for the following families of curves: (a) $x^2 + cy^2 = 1$, (b) $y^2 = ax + b$.

Exercise 8. Solve the following differential equations:

1.
$$x^3y''' = 1 + x^4$$
; $y(1) = y'(1) = y''(1) = 0$

2.
$$(x^2 + x - y^2)dx - ydy = 0$$

3.
$$2x^2y' = xy + y^3$$

4.
$$xy'' - 3y' = x^2$$

5.
$$\frac{dy}{dx} = \frac{3 - 4xy^2}{4x^2y + 6y^2}$$
; $y(1) = -1$

6.
$$y'^2 + (y-1)y' - y = 0$$

7.
$$xy' - 4y = x$$

8.
$$(3y - 2xy^3)dx + (4x - 3x^2y^2)dy = 0$$

9.
$$y = px + 2p^2$$
, with $p = y'$

10.
$$(2y\sin x + 3y^4\sin x\cos x)dx - (4y^3\cos^2 x + \cos x)dy = 0$$

11.
$$\frac{dy}{dx} = \frac{2y}{x} - \frac{y^2}{x^2}$$

12.
$$(x - y)y' + 3y - 5x = 0$$

13.
$$y'' + 4y = 0$$

14.
$$\frac{dy}{dx} = x^2 + 2xy + y^2 + 2x + 2y; \quad y(0) = 0$$

15.
$$x^2y = x^3p - yp^2$$
, with $p = y'$

16.
$$\frac{dy}{dx} + 2y \cot x = \csc x$$

17.
$$\frac{dy}{dx} = \frac{x\sqrt{1-y^2}}{v\sqrt{1-x^2}}$$

18.
$$(ye^x - e^{-y})dx + (xe^{-y} + e^x)dy = 0$$