

Department of Electrical Engineering and Computer Science

EEE 3342: Digital Systems

Chapter 2: Boolean Algebra

Instructor: Suboh A. Suboh

Boolean Algebra

- It is algebra on binary numbers
- Invented by mathematician and philosopher George Boole in 1847
- Claude Shannon first applied Boolean algebra to circuits in 1939

The variables (like X, Y) can be either 0 or 1

Operation: AND

- x = a AND b
 x is equal to 1 if a =1 and b = 1
 X is equal to 0 otherwise
- Also written as: x = a.b or x=ab

This is an AND gate

Below is the truth table for x = a.b

The truth table lists all the possible input and the corresponding output

a b	X
0 0	0
0 1	0
10	0
11	1

Example of Using AND Gate

Home alarm system

Basic Operation: OR

- x = a OR b
 x is equal to 1 if a =1 or b = 1
 X is equal to 0 otherwise
- Also written as: x = a + b

This is an OR gate

Below is the truth table for x = a + b

а	b	X
0	0	0
0	1	1
1	0	1
1	1	1

Example of Using OR Gate

Building door

Basic Operation: Inverse

Also called complement

- x = y'
- Also written as x = y
 x is equal to 1 if y = 0
 X is equal to 0 if y = 1
- x is the complement or inverse of y

This is an inverter

Below is the truth table for x = y'

Example of Using an Inverter

Automatic light switch

Light sensor
Gives 0 when it's dark
Gives 1 when there's light

Let's Recap

AND Operation

$$0.0 = 0$$

$$0.1 = 0$$

$$1.0 = 0$$

OR Operation

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$

Inverse Operation

$$0' = 1$$

$$1' = 0$$

Pronounced:

(zero not equals 1)

(inverse of zero is 1)

(complement of zero is 1)

Diagram figures

Boolean Expression

- It is made of Boolean operations (and, or, inverse)
- F = A' + B

Write the truth table for the function F
 (All possible inputs and corresponding outputs)

Remember: 2 inputs (n=2 bits)
2 ⁿ possible input combination
From 0 to 2 ⁿ -1 From 0 to 3 in this case

A B	A'	F = A' + B
0 0	1	1
0 1	1	1
1 0	0	0
1 1	0	1

Boolean Expressions and Truth Tables

•
$$F = AB' + C$$

Draw the diagram

Write the truth table of F

ABC	B'	AB'	AB'+C
000	1	0	0
001	1	0	1
010	0	0	0
011	0	0	1
100	1	1	1
101	1	1	1
110	0	0	0
111	0	0	1

Two Functions can be Equivalent

We have two functions

$$F = AB' + C$$

 $G = (A + C) \cdot (B' + C)$

- Are these two functions equivalent?
 - Write the truth table of these 2 functions
 - Look at the output
 - They are equivalent if the output is the same for all input combinations

ABC	B'	AB'	AB'+C	A+C	B'+C	(A+C)(B'+C)
000	1	0	0	0	1	Ô
0 0 1	1	0	1	1	1	1
010	0	0	0	0	0	0
0 1 1	0	0	1	1	1	1
100	1	1	1	1	1	1
101	1	1	1	1	1	1
110	0	0	0	1	0	0
111	0	0	1	1	1	1

Yes, F and G are equivalent. They have the same output for any input.

Theorems

$$A + 0 = A$$

A + 1 = 1

$$A . 1 = A$$

 $A\cdot 0=0$

Idempotent laws:

A + A = A

$$A \cdot A = A$$

Involution law:

(A')' = A

Laws of complementarity

$$A + A' = 1$$

 $A \cdot A' = 0$

You can prove these theorems by doing a truth table.

Let's show that: A + A' = 1

If A = 0, then we have: 0 + 0' = 0 + 1 = 1 correct

If A = 1, then we have: 1 + 1' = 1 + 0 = 1 correct

Then the theorem is correct

A can be substituted by an expression:

A: XYZ

We have: $A \cdot 0 = 0$

So, $XYZ \cdot 0 = 0$

(from A . 0 = 0)

And

XYZ + (XYZ)' = 1

(from A + A' = 1)

Commutative, Associative and Distributive Laws

Commutative Law

$$X + Y = Y + X$$

Associative Law

•
$$(X + Y) + Z = X + (Y + Z) = X + Y + Z$$

- (XY).Z = X.(YZ) = XYZ
 - Prove this one
 - Do a truth table

X Y Z	XY	YZ	(XY)Z	X(YZ)
0 0 0	0	0	0	0
0 0 1	0	0	0	0
0 1 0	0	0	0	0
0 1 1	0	1	0	0
1 0 0	0	0	0	0
1 0 1	0	0	0	0
1 1 0	1	0	0	0
1 1 1	1	1	1	1

Distributive law

•
$$X(Y + Z) = XY + XZ$$

- X + YZ = (X + Y) (X + Z)
 - Let's prove this
 - We can do a truth table, but we can also do algebra

$$(X + Y) (X + Z) = XX + XZ + XY + YZ$$

= $X + XZ + XY + YZ$
= $X (1 + Z + Y) + YZ$
= $X (1) + YZ$
= $X + YZ$ Correct

More than Two Inputs

- AND
 - The result is 1 iff (if and only if), A=1, B=1, C=1
 - Otherwise it's 0

- OR
 - The results is 1 if A=1, or B=1, or C=1

Simplification Theorems

To simplify an expression means to make it smaller

$$XY + XY' = X$$

$$(X + Y)(X + Y') = X$$
$$X + XY = X$$
$$(X + Y')Y = XY$$
$$XY' + Y = X + Y$$

We can prove them by truth table or by algebra

$$XY + XY' = X (Y + Y') = X (1) = X$$

 $X + XY = X (1 + Y) = X (1) = X$
 $(X + Y')Y = XY + YY' = XY + 0 = XY$

$$XY' + Y = (Y + X) (Y + Y') = (X + Y) \cdot 1 = X + Y$$

Simplify

$$Z = A'BC + A'$$

Simplify this expression

$$Z = [A + B'C + D + EF] \cdot [A + B'C + (D + EF)']$$

Observe the repetition of terms

You can write this out in a long expression, but if you observe the repetition of terms, you can do substitution

Let
$$X = A + B'C$$
 and $Y = D + EF$
Then, $Z = (X + Y) \cdot (X + Y')$
A theorem in a previous slide, $Z = X$

If you don't remember the theorem
$$(X+Y)(X+Y') = XX + XY' + XY + YY'$$

$$= X (1 + Y' + Y)$$

$$= X$$

Then,
$$Z = A + B'C$$

Simplify this expression

$$Z = (AB + C) \cdot (B'D + C'E') + (AB + C)'$$

Observe the repetition of terms

You can write this out in a long expression, but if you observe the repetition of terms, you can do substitution

Let
$$X = AB + C$$
 and $Y = B'D + C'E'$

Then,
$$Z = XY + X'$$

A theorem in a previous slide,
$$Z = X' + Y$$

If you don't remember the theorem
$$XY + X' = (X + X').(Y+X')$$

$$= 1 \cdot (Y + X')$$

$$= X' + Y$$

Then,
$$Z = (AB + C)' + B'D + C'E'$$

Multiplying Out a Boolean Expression

- To fully multiply out an expression, keep multiplying until there are no parentheses
- It's ok to simplify
- Multiply out: (A + BC) . (A + D + E)

Sum-of-Products

- If you multiply out an expression, it becomes a sumof-products
- Sum-of-products look like this:

```
AB' + CD'E + AC'E'
or ABC' + DEFG + H
or A + B' + C + D'E, but not (A+B) CD + EF
```

Look at these, you can't multiply them anymore!

The digital circuit diagram of sum-of-products is 2-level

Factoring a Boolean Expression

- You can keep factoring a Boolean expression until everything is inside the parentheses
- Multiply out: AB' + C'D

You need to use this rule: $X + YZ = (X + Y) \cdot (X + Z)$

$$AB' + C'D$$

$$= (AB' + C').(AB' + D)$$

$$= (C' + A).(C' + B').(D + A).(D + B')$$

Let X = AB'

We have: X + C'D

Apply the rule, we have: (X + C').(X + D)

Substitute back in X, we have: (AB' + C'). (AB' + D)

24

Product of Sums

- If you keep factoring out an expression, it becomes a product of sums
- The expression in the previous slide became a product of sums
- Product of sums look like this

$$(A + B').(C' + D' + E).(A + C' + E')$$

 $(A + B).(C + D + E).F$ \longleftrightarrow $(A + B).(C + D + E).(F)$
 $AB'C(D' + E)$ \longleftrightarrow $(A).(B').(C).(D' + E)$

But not (A+B)(C+D)+EF

Factor out: C'D + C'E' + G'H

Start by factoring out regularly, Then use the rule in the box below

$$= C'(D + E') + G'H$$

Apply the rule in the box below Consider this equal to XAnd think (X + C').(X + D + E')

$$= (G'H + C').(G'H + D + E')$$

Consider this equal to XAnd think (X + G').(X + H)

$$= (C' + G').(C' + H).(D + E' + G').(D + E' + H)$$

You need to use this rule:

$$X + YZ = (X + Y) \cdot (X + Z)$$

The digital circuit diagram of product-of-sums is 2-level

DeMorgan's Laws

First law:

$$(A + B)' = A'B'$$

OR becomes AND

Second law:

$$(AB)' = A' + B'$$

AND becomes OR

Prove DeMorgan's Laws. Do a truth table

Α	В	A'	В'	A+B	(A+B)'	A'B'	AB	(AB)'	A'+B'
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Second law

DeMorgan's Laws General Form

$$(A+B+C+D+E+F+...)' = A'B'C'D'E'F'...$$

DeMorgan's Laws short form (prev. slide)

$$(ABCDEF...)' = A'+B'+C'+D'+E'+F'+...$$

$$(A + B)' = A'B'$$

 $(AB)' = A' + B'$

How is DeMorgan's laws useful?

They allow us to find the complement of an expression

~Remember, the complement is the inverse~

DeMorgan's Laws

$$(X + Y)' = X'Y'$$

 $(XY)' = X' + Y'$

Find the complement of this expression: (A' + B).C'

Apply: (XY)' = X' + Y'

$$= (A' + B)' + (C')'$$

$$= (A' + B)' + C$$

Apply: (X + Y)' = X'Y'

$$= (A')'.B' + C$$

$$=AB'+C$$

Find the complement of: $(AB' + C).D' + E \frac{(X + Y)' = X'Y'}{(XY)' = X' + Y'}$

Remember, with DeMorgan's, the OR becomes AND the AND becomes OR

Visualizing DeMorgan's Laws

The bar on top means invert

 \overline{A} is the same as A'

We have, F = A'B + AB'. Find the complement of F.

$$F' = (A'B + AB')'$$

= $(A'B)' \cdot (AB')'$
= $(A + B') \cdot (A' + B)$
= $AA' + AB + A'B' + BB'$
= $AB + A'B' + AB' + AB$

Verify this result with a truth table

Duality

- We have a Boolean expression
- To obtain its dual, replace AND with OR and OR with AND
- Replace 1 with 0 and 0 with 1
- The variables stay the same
- The invert signs stay the same

$$(XYZ)^D = X + Y + Z$$

$$(X + Y + Z)^D = XYZ$$

Duality

 When you have a big expression, start from the outwards and go inwards

$$(AB' + C)^{D}$$

= (...) . C
= $(A + B')$. C

Find the dual of: (AB' + C).D' + E

Start from outwards and go inwards

This is the dual. We can multiply it out in the two lines below

You may also write all at once

Another Way to Find the Dual

- Complement the whole expression (using DeMorgan's)
- Then, complement every variable

We want to find the dual of: [(AB' + C).D' + E]'

In a previous slide, we found its complement by using DeMorgan. We got: A'C'E' + BC'E' + DE'

Now let's complement every variable, we get:

$$ACE + B'CE + D'E$$

Correct answer. In the previous slide, we got this answer.

Let's Summarize Duality

- Find the dual of: AB' + C using the two methods
- Method 1: Replace AND with OR. Also, replace OR with AND. Start from outward to inward.

$$(AB' + C)^{D}$$

= (.....) . C
= $(A + B')$. C

 Method 2: Find the complement. Then, invert every variable

```
Complement: (AB' + C)' = (AB')' \cdot C' = (A'+B) \cdot C'
```

Invert every variable: (A + B'). C

Switches

- This is a switch
- If X=0, the switch is open
 - The switch in the figure is open; the two terminals are not connected

- If X=1, the switch is closed
 - It means the two terminals are connected
- What can we do with the switches?
 - We can write the Boolean expression with switches

- F = A.B
- Draw a circuit with switches that implements F

- Remember, when A=1, B=1, the switches will close
- The two terminals are connected

Draw the switch circuit for F = A + B

• If A=1 or B=1 or A=B=1, the two terminals will be connected

Simplification

- We learned that: A.A = A
- The same applied in the switch circuit

- On the left side:
 - If A=1, the two terminals will connect
 - If A=0, the two terminals will not be connected
- So, we can replace the left side with one switch controlled by A

Simplification

- We learned that A + A = A
- The same applied when we draw the switch circuit

- On the left side:
 - The terminals will connect if A=1
 - They will disconnect if A=0
- So, it is equivalent to one switch that's controlled by A

We learned that: A + 0 = AThis is shown in the switch circuit

This switch is always open. So it is equivalent to zero.

We learned that: A + 1 = 1

This is shown in the switch circuit

The bottom part is equivalent to 1 since it's always closed.

$$A + A' = 1$$

This is represented in the switch circuit below.

$$A \cdot A' = 0$$

This is shown in the circuit below.

If one switch closes, the other opens.

This circuit is always open.

We learned:

$$XY' + Y = X + Y$$

$$XY' + Y$$

Apply 2nd distributive law, we get:

$$(Y+Y').(Y+X) = 1.(Y+X) = X+Y$$

The circuit on the left side:

If Y=1, the circuit closes

If X=1, there are two cases of Y

If Y=1, it closes on the top side

If Y=0, the switch on the low side closes (since it's controlled by Y')

So, If X=1, the circuit closes

• Draw the switch circuit for:

$$F = (A'+B').C + A.(B + C')$$

Write the Boolean expression that corresponds to this switch circuit

$$F = (A' + B').C + (A.C')$$