Some Thoughts on Data Science

by Prof. Seungchul Lee Industrial Al Lab http://isystems.unist.ac.kr/ POSTECH

Table of Contents

- I. 1. Get Involved in Data Science Now
- II. 2. Study Materials

1. Get Involved in Data Science Now

- Most researchers will be interested in how data science and machine learning techniques can be applied to their domains
- · but you will need to spend substantial time learning the domain itself

Data Problems We Would Like to Solve

Solving with Deep Learning

- When you come up against some machine learning problem with "traditional" features (i.e., human-interpretable characteristics of the data),
 - do not try to solve it by applying deep learning methods first
 - Instead, use
 - linear regression/classification,
 - linear regression/classification with non-linear features, or
 - gradient boosting methods
- If you really want to squeeze out a 1-2% improvement in performance, then you can apply deep learning
 - However, it's also undeniable that deep learning has made remarkable progress for structured data like images, audio, or text

What About "Superhuman" Machine Learning

- · It's a common misconception that machine learning will outperform human experts on most tasks
 - No, it is supervised learning
 - Cannot be better than your training data
- In reality, the benefit from machine learning often doesn't come from superhuman performance in most cases,
 - it comes from the ability to scale up expert-level performance extremely quickly

Dealing with Impossible Problems

- You've built a tool to manually classify examples, run through many cases (or had a domain expert run through them), and you get poor performance
- · What do you do?
 - You do not try to throw more, bigger machine learning algorithms at the problem
- · Instead you need to change the problem by:
 - 1) changing the input (i.e., the features),
 - 2) changing the output (i.e., decomposing it to smaller sub-problems)

Chainging Input (i.e., Adding Features)

- · Adding more data is good, but:
 - 1) Do spot checks (visually) to see if this new features can help you differentiate between what you were previously unable to predict
 - 2) Get advice from domain experts, see what sorts of data source they use in practice (if people are already solving the problem)

Changing Output (i.e., Changing the Problem)

- · Just make the problem easier!
- Decompose it to smaller sub-problems

Machine Learning vs. Deep Learning

• State-of-the-art until 2012

· Deep supervised learning

- Hyperparameters
 - Learning rate
 - # of iterations
 - # of hidden layers
 - # of hidden units
 - Choice of activation functions

2. Study Materials

Deep Learning for ME

- 딥러닝은 인공지능 연구자보다 여러분에게 더 필요할 수 있습니다.
- 새로운 기술을 어디에 적용해 볼 수 있을지 고민하세요.

인공지능 어떻게 공부할 것인가?

- Deep learning 으로 인공지능을 처음 공부하면 안된다.
- · Linear algebra, Optimization, Statistics, Probability, Machine Learning
 - Then deep learning
- · (Numerical or Scientific) Computer Programming
 - MATLAB or Python
 - 개념, 수식, 코드

유용한 공부 자료

강의 대부분의 내용은 아래 연구자분들의 자료를 선택적으로 취합해서 만들어졌습니다.

1) Linear Algebra

- · Gilbert Strang from MIT
- https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/ (https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/)
- YouTube

Gilbert Strang lectures on Linear Algebra (MIT)

2) Optimization and Linear Systems

- · Stephen Boyd and Sanjay Lall from Stanford
 - Linear Dynamical Systems
 - Linear Control Systems
 - Convex optimization
 - Textbook
 - http://stanford.edu/~boyd/ (http://stanford.edu/~boyd/)
 - https://lagunita.stanford.edu/courses/Engineering/CVX101/Winter2014/about (https://lagunita.stanford.edu/courses/Engineering/CVX101/Winter2014/about)

3) Machine Learning

- CS229 Machine Learning
 - Prof. Andrew NG from Stanford
 - Different from coursera
 - YouTube and lecture note
 - https://see.stanford.edu/Course/CS229 (https://see.stanford.edu/Course/CS229)

- Artificial Intelligence
 - Prof. Zico Kolter from CMU
 - YouTube and lecture note
 - http://zicokolter.com/ (http://zicokolter.com/)

Zico Kolter

Lecture 4: Optimization 1

- Learning theory
 - Prof. Reza Shadmehr from Johns Hopkins Univ.
 - YouTube
 - http://www.shadmehrlab.org/ (http://www.shadmehrlab.org/)

- Artificial Intelligence
 - Prof. Patrick Henry Winston from MIT
 - YouTube
 - https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/ (https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-034-artificial-intelligence-fall-2010/)

- Learning from data
 - Prof. Yaser Abu-Mostafa from Caltech
 - https://work.caltech.edu/telecourse.html (https://work.caltech.edu/telecourse.html)

4) Deep Learning

- · Prof. Andrew Ag from Stanford
 - Coursera
 - http://deeplearning.ai/ (http://deeplearning.ai/)

- · Neural Networks for Machine Learning
 - https://www.coursera.org/learn/neural-networks# (https://www.coursera.org/learn/neural-networks#)

University Lectures on Deep Learning

- Stanford
 - CS231n: Convolutional Neural Networks for Visual Recognition
 - http://deeplearning.stanford.edu/tutorial/ (http://deeplearning.stanford.edu/tutorial/)
- CMU
- NYU
- MIT
- Toronto

Books

- Pattern Recognition and Machine Learning by Christopher Bishop
- https://www.microsoft.com/en-us/research/people/cmbishop/ (https://www.microsoft.com/en-us/research/people/cmbishop/ (https://www.microsoft.com/en-us/research/people/cmbishop/ (https://www.microsoft.com/en-us/research/people/cmbishop/ (https://www.microsoft.com/en-us/research/people/cmbishop/)

Christopher Bishop

Laboratory Director, Microsoft Research Cambridge

한국어 강좌

- 김성훈 교수님, 홍콩과기대 (현재 네이버 AI 팀)
- https://hunkim.github.io/ml/ (https://hunkim.github.io/ml/ (https://hunkim.github.io/ml/ (https://hunkim.github.io/ml/)

모두를 위한 머신러닝/딥러닝 강의

모두를 위한 머신러닝과 답러닝의 강의

알파고와 이세돌의 경기를 보면서 이제 머신 러닝이 언간이 잘 한다고 여겨진 직관과 의사 결정능력에서도 충분한 데이타가 있으면 어느정도 또는 우리보다 더 잘할수도 있다는 생각을 많이 하게 되었습니다. Andrew Ng 교수님이 말씀하신것 처럼 이런 시대에 머신 러닝을 잘 이해하고 잘 다룰수 있다면 그야말로 "Super Power"를 가지게 되는 것이 아닌가 생각합니다.

더 많은 분들이 머신 러닝과 딥러닝에 대해 더 이해하고 본인들의 문제를 이 멋진 도구를 이용해서 풀수 있게 하기위해 비디오 강의를 준비하였습니다. 더 나아가 이론에만 그치지 않고 최근 구글이 공개한 마신러닝을 위한 오픈소스인 TensorFlow를 이용해서 이론을 구현해 봉수 있도록 하였습니다.

수학이나 컴퓨터 공학적인 지식이 없이도 쉽게 볼수 있도록 만들려고 노력하였습니다.

- 문일철 교수님, 카이스트
- http://kaist.edwith.org/machinelearning1 17 (http://kaist.edwith.edwi
- https://www.youtube.com/playlist?list=PLt9QR0WkC4WVszuogbmIIHIIQ2RMI78RC (https://www.youtube.com/playlist?list=PLt9QR0WkC4WVszuogbmIIHIIQ2RMI78RC)

In [1]:

%%javascript

\$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.
js')