Problema: Parcheggio

Valerija lavora come parcheggiatrice in un ristorante di lusso. Il suo lavoro è di aspettare l'arrivo di ospiti importanti, salutarli educatamente, farsi dare le chiavi dei loro veicoli e parcheggiarli in un parcheggio vicino. Quando l'evento termina, si assicura che ogni ospite riottenga possesso del proprio veicolo e lasci felicemente il locale.

Una sera, subito dopo aver finito di parcheggiare tutti i veicoli, ha notato una proprietà particolarmente interessante riguardo i loro colori. Ovvero, si è realizzato che ci fossero esattamente 2N veicoli nel parcheggio, e che fossero colorati di N colori diversi, di modo che vi fossero esattamente due veicoli di ogni colore. Rappresentiamo i colori dei veicoli con interi da 1 a N.

Il parcheggio è organizzato in una sequenza di M posti, rappresentati con interi da 1 a M, dove ogni posto può contenere al massimo due veicoli. C'è un solo ingresso per ogni posto, e un veicolo può entrare o uscire dal posto se nessun altro veicolo blocca l'ingresso. Chiameremo il veicolo parcheggiato più vicino all'ingresso il veicolo in cima, e il veicolo più lontano dall'ingresso il veicolo in fondo. Valerija ha parcheggiato i veicoli in modo che ogni posto sia vuoto, pieno (ovvero contiene due veicoli), o che contenga solo un veicolo in fondo.

Illustrazione del primo esempio, che mostra l'unica possibile prima guida.

Valerija vorrebbe riparcheggiare i veicoli in modo che ogni coppia di veicoli dello stesso colore sia parcheggiata nello stesso posto. Non le interessa quale posto contenga quale colore, e quale specifico veicolo sia in cima o in fondo al posto. Riparcheggerà i veicoli in una sequenza di *guide*. In ogni guida, si siederà in un veicolo parcheggiato che può uscire dal suo posto corrente, e lo guiderà ad un altro posto che:

- è vuoto, nel qual caso lo parcheggia come veicolo in fondo, oppure
- contiene un solo veicolo parcheggiato **dello stesso colore** di quello che sta attualmente guidando, nel qual caso lo parcheggia come *veicolo in cima*.

Valerija vuole minimizzare il numero di guide necessarie per riparcheggiare i veicoli secondo i suoi desideri. Il tuo obiettivo è di aiutarla trovando la più corta sequenza di guide che raggiunga i suoi obiettivi, o di dimostrare che tale sequenza non esiste.

Input

La prima riga contiene due interi N e M separati da spazio, come da descrizione del problema.

L'i-esima delle successive M righe contiene due interi separati da spazio b_i e t_i ($0 \le b_i, t_i \le N$), che descrivono l'i-esimo posto. Più precisamente, il numero b_i rappresenta il colore del veicolo in fondo, e il numero t_i rappresenta il colore del veicolo in cima. Se una posizione del posto è vuota, l'intero

corrispondente sarà 0. È garantito che nessun posto contenga solo un veicolo in cima, cioè che se $b_i = 0$ allora anche $t_i = 0$.

Output

Se non c'è alcuna sequenza di guide che può riparcheggiare i veicoli come desidera Valerija, scrivi-1 su una singola riga.

Altrimenti, la prima riga deve contenere un intero K, il più piccolo numero di guide necessarie per realizzare l'obiettivo di Valerija.

La *i*-esima delle successive K righe deve descrivere l'*i*-esima guida. Più precisamente, deve contenere due interi, x_i e y_i ($1 \le x_i, y_i \le M, x_i \ne y_i$), che rappresentano che Valerija deve spostare un veicolo dal posto x_i al posto y_i nella *i*-esima guida. Ovviamente, l' x_i -esimo posto deve contenere almeno un veicolo in quel momento, e il veicolo più vicino all'ingresso di quel posto deve essere spostabile al posto y_i , ovvero il posto y_i deve essere vuoto o contenere un veicolo dello stesso colore.

Assegnazione del punteggio

In tutti i subtask vale che $1 \le N \le M \le 200\,000$.

Se la tua soluzione determina correttamente il minimo numero di guide in tutti i testcase di un certo subtask, ma produce una descrizione delle guide incorretta per alcuni di essi (o non produce alcuna descrizione), riceverà il 20% del punteggio assegnato a quel specifico subtask.

Subtask	Punteggio	Assunzioni
1	10	$M \le 4$
2	10	$2N \le M$
3	25	Tutti i posti sono inizialmente pieni oppure vuoti, e $N \leq 1000.$
4	15	Tutti i posti sono inizialmente pieni oppure vuoti.
5	25	$N \le 1000$
6	15	Nessuna assunzione aggiuntiva.

Esempi

${\bf input}$	input	input
4 5	4 5	5 7
1 0	0 0	1 0
2 0	2 1	2 1
1 3	3 1	2 3
4 4	3 4	4 3
3 2	2 4	5 4
		5 0
output	output	0 0
3 5 2	-1	output
5 2	-1	
5 2 3 5	-1	6 2 1
5 2	-1	6 2 1
5 2 3 5	-1	6 2 1 3 7
5 2 3 5	-1	6 2 1 3 7 4 7
5 2 3 5	-1	6 2 1 3 7 4 7 2 3
5 2 3 5	-1	6 2 1 3 7 4 7 2 3

Spiegazione del primo esempio: L'immagine nella descrizione del problema descrive lo stato iniziale del parcheggio in questo esempio. Nota che in questo caso, ogni guida è forzata, ovvero c'è una sola valida prima guida, una sola valida seconda guida, e due terze guide equivalenti, dopo la quale raggiungiamo l'obiettivo finale.