Soughia

1. a) We define the following propositions:

 $p \equiv I$ play hockey $s \equiv I$ am sore (the next day) $w \equiv I$ use the whirlpool

Hypothesis:

I. $p \rightarrow s$ II. $s \rightarrow w$ III. $\neg w$

Conclusion:

 $\neg p \equiv 1$ did not play hockey

Steps:

$$s \to w$$
 (Hypothesis II)
 $\equiv \neg w \to \neg s$ (Contra positive of Hypothesis II) (IV)

$$p \rightarrow s$$
 (Hypothesis I)
 $\equiv \neg s \rightarrow \neg p$ (Contra positive of Hypothesis I) (V)

$$\begin{array}{ccc}
\neg w & & \text{(Hypothesis III)} \\
\neg w \to \neg s & & \text{(From IV)} \\
\hline
\therefore \neg s & & \text{(By Modus ponens)} & & \text{(VI)}
\end{array}$$

$$\begin{array}{ccc}
\neg s & & \text{(From VI)} \\
\neg s \to \neg p & & \text{(From V)} \\
\hline
\therefore \neg p & & \text{(Conclusion by Modus ponens)}
\end{array}$$

b) We define the following propositions:

 $P(x) \equiv \text{Day x is a partly sunny day}$

 $S(x) \equiv \text{Day x is a sunny day}$

 $W(x) \equiv I$ work on a day x

Let the domain of discourse be the set of all Days, i.e., $x \in \{\text{Sunday}, \text{Monday}, ..., \text{Saturday}\}.$

Axiom

 $(\forall x)(P(x) \to \neg S(x)) \equiv (\forall x)(\neg P(x) \lor \neg S(x)) \equiv (\forall x)(S(x) \to \neg P(x))$ (The same day can't be both sunny and partially sunny)

20

Hypothesis:

1.
$$(\forall x)(W(x) \to (S(x) \lor P(x))$$

II.
$$W(Monday) \vee W(Friday)$$

III.
$$\neg S(Tuesday)$$

IV.
$$\neg P(Friday)$$

Conclusion with steps:

$$(\forall x)(\neg P(x) \lor \neg S(x))$$
 (From Axiom)

$$\neg P(Friday) \lor \neg S(Friday)$$
 (Universal instantiation)

$$(\forall x)(W(x) \to (S(x) \lor P(x))$$
 (Hypothesis I)

$$W(Friday) \rightarrow (S(Friday) \lor P(Friday))$$
 (Universal instantiation)

$$\equiv (\neg W(Friday) \lor S(Friday)) \lor P(Friday) \ (\lor \text{ is associative}) \ \ (V)$$

$$\neg P(Friday)$$
 (Hypothesis IV)

$$(\neg W(Friday) \lor S(Friday)) \lor P(Friday)$$
 (From V)

$$\therefore \neg W(Friday) \lor S(Friday)$$
 (by Disjunctive syllogism) (VI)

I didn't work on Friday or Friday was sunny.

$$W(Friday) \lor W(Monday)$$
 (Hypothesis I, \lor is commutative)

$$\neg W(Friday) \lor S(Friday)$$
 (From VI)

$$W(Monday) \vee S(Friday)$$

I worked on Monday or Friday was sunny.

(Note: Nothing without an OR can be concluded)

c) We define the following predicates:

$$I(x) \equiv x$$
 is an insect

$$S(x) \equiv x$$
 is a spider

$$D(x) \equiv x$$
 is a dragon fly

$$L(x) \equiv x$$
 has six legs

$$E(x, y) \equiv x \text{ eats } y$$

Let the domain of discourse be the set of all creatures.

Hypothesis:

I.
$$(\forall x)(I(x) \rightarrow L(x))$$

II.
$$(\forall x)(D(x) \rightarrow I(x))$$

III.
$$(\forall x)(S(x) \to \neg L(x))$$

IV. $(\forall x)(\forall y)(S(x) \land D(y) \to E(x, y))$

Conclusion:

$$(\forall x)(S(x) \rightarrow \neg I(x)) \equiv \text{Spiders are not insects.}$$

Steps:

$$(\forall x)(I(x) \to L(x))$$
 (Hypothesis I)
 $\equiv (\forall x)(\neg L(x) \to \neg I(x))$ (Contra positive of Hypothesis I) (V)
 $(\forall x)(S(x) \to \neg L(x))$ (Hypothesis III)
 $(\forall x)(\neg L(x) \to \neg I(x))$ (From V)
 $\therefore (\forall x)(S(x) \to \neg I(x))$ (Conclusion by Hypothetical syllogism)

d) We define the following predicates:

$$I(x) \equiv x$$
 has an internet account

$$S(x) \equiv x$$
 is a student

Let the universe of discourse be the set of all human beings.

$$\therefore \neg I(Maggie) \equiv Maggie does not have an internet account$$

Hypothesis:

I.
$$(\forall x)(S(x) \to I(x))$$

III.
$$\neg I(Maggie)$$

Conclusion:

 $\neg S(Maggie) \equiv Maggie is not a student.$

Steps:

$$(\forall x)(S(x) \to I(x))$$
 (Hypothesis I)
 $\equiv (\forall x)(\neg I(x) \to \neg S(x))$ (Contra positive of Hypothesis I) (IV)

$$(\neg I(Maggie) \rightarrow \neg S(Maggie))$$
 (From IV by Universal instantiation)
 $\neg I(Maggie)$ (From Hypothesis III)

e) We define the following predicates:

 $H(x) \equiv x$ is healthy

 $G(x) \equiv x$ tastes good

 $E(x) \equiv I \text{ eat } x$

Let the domain of discourse be the set of all foods.

Hypothesis:

I. $\neg (\forall x)(H(x) \rightarrow G(x))$

II. H(Tofu)

III. $(\forall x)(E(x) \to G(x))$

IV. ¬E(Tofu)

V. ¬H(Cheeseburgers)

Conclusion:

 $\neg(\forall x)(E(x)) \equiv I$ don't eat all foods

(Note: Nothing can be concluded about Tofu or Cheeseburgers)

Steps:

$$\neg(\forall x)(H(x) \rightarrow G(x))$$
 (From Hypothesis 1)

$$\equiv \neg (\forall x)(\neg H(x) \vee G(x))$$

$$\equiv (\exists x)(H(x) \land \neg G(x)) \quad \text{(By D' Morgan)} \quad \text{(VI)}$$

$$(\exists x)(H(x) \land \neg G(x))$$
 (From VI)

$$H(f) \land \neg G(f)$$
 (By existential instantiation)

$$\therefore \neg G(f)$$
 (by Simplification) (VII)

$$(\forall x)(E(x) \rightarrow G(x))$$
 (From Hypothesis III)

$$E(f) \rightarrow G(f)$$
 (By Universal instantiation)

$$\equiv \neg E(f) \lor G(f)$$
 (VIII)

$$\neg G(f)$$
 (From VII)

$$\neg E(f) \lor G(f)$$
 (From VIII)

$$\therefore \neg E(f)$$
 (By Disjunctive syllogism)

$$(\exists x)(\neg E(x))$$
 (Existential generalization)

$$\therefore \neg (\forall x)(E(x))$$

f) We define the following propositions:

 $d \equiv 1$ am dreaming $h \equiv 1$ am hallucinating

 $e \equiv 1$ see elephants running down the road

Hypothesis:

I.
$$d \lor h$$
II. $\neg d$
III. $h \to e$

Conclusion:

e = 1 see elephants running down the road

Steps:

2. Let's define

i.
$$p_1 = n^2$$
 is odd
ii. $p_2 = 1 - n$ is even

iii.
$$p_3 \equiv n^3$$
 is odd

iv.
$$p_4 \equiv n^2 + 1$$
 is even

To prove: $p_1 \leftrightarrow p_2 \leftrightarrow p_3 \leftrightarrow p_4$

Sufficient to prove: $p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow p_4 \rightarrow p_1$

i.
$$p_1 \rightarrow p_2$$

ii.
$$p_2 \rightarrow p_3$$

iii.
$$p_3 \rightarrow p_4$$

iv.
$$p_4 \rightarrow p_1$$

i. Indirect proof:

ii. Direct proof:

$$p_2 \equiv 1 - n$$
 is even
 $\rightarrow 1 - n = 2.k$, for some $k \in \mathbb{Z}$, where \mathbb{Z} denotes set of all integers
 $\rightarrow n = 1 - 2.k$
 $\rightarrow n^3 = (1 - 2.k)^3 = 1 - 6.k + 12.k^2 - 8.k^3$, for some $k^2 = j \in \mathbb{Z}$
 $\rightarrow n^3 = 2.(6.k^2 - 3.k - 4.k^3) + 1$
 $\rightarrow n^3$ is odd $\equiv p_3$
 $\therefore p_2 \rightarrow p_3$ (Proved)

iii. Proof by contradiction:

We assume $p_3 \land \neg p_4$

$$p_3$$
 ≡ $(n^3$ is odd) \land $(n^2 + 1$ is odd)
 \rightarrow $(\exists k)(\exists l)((n^3 = 2l + 1)) \land $(n^2 + 1 = 2.k + 1)), k, l ∈ Z$
 \rightarrow $(\exists k)(\exists l)((n^3 = 2l + 1)) \land $(n^2 = 2.k)), k, l ∈ Z$
 \rightarrow $(\exists k)(\exists l)(((n^3)^2 = (2l + 1)^2)) \land $((n^2)^3 = (2.k)^3)), k, l ∈ Z$
 \rightarrow $(\exists k)(\exists l)((n^6 = 4l^2 + 4l + 1)) \land $(n^6 = 8.k^3)), k, l ∈ Z$
 \rightarrow $(\exists k)(\exists l)(4l^2 + 4l + 1 = 8.k^3), k, l ∈ Z$
 \rightarrow $(\exists k)(\exists l)(8k^3 - 4l^2 - 4l = 1), k, l ∈ Z$
 \rightarrow $(\exists k)(\exists l)(2(4k^3 - 2l^2 - 2l) = 1), k, l ∈ Z$, which is false, since 2 does not divide 1, a contradiction.
Hence, our assumption was wrong.
∴ $p_3 \rightarrow p_4$ (Proved)$$$$

iv. Direct proof:

$$p_{4} \equiv n^{2} + 1 \text{ is even}$$

$$\rightarrow (\exists k \in Z)(n^{2} + 1 = 2.k)$$

$$\rightarrow (\exists k \in Z)(n^{2} = 2.k - 1)$$

$$\rightarrow (\exists k \in Z)(j = k - 1 \land n^{2} = 2.j + 1)$$