Università degli Studi di Salerno

Penetration Testing & Ethical Hacking

Tipi e Metodologie di Testing Parte 2

Arcangelo Castiglione arcastiglione@unisa.it

Outline

- Terminologia
- > Tipologie di Test di Sicurezza
- > Tipi di Penetration Testing
- Metodologie di Testing
- Framework Generale per il Penetration Testing (FGPT)
- Penetration Testing Report

- > Tre approcci principali per il Penetration Testing
 - Black Box Testing
 - White Box Testing
 - Grey Box Testing

Black Box Testing

- > Simula nel modo più fedele possibile gli attacchi che potrebbero accadere nel mondo reale
 - Opera allo stesso modo di chi è intenzionato ad attaccare un determinato asset (Black Hat Hacker)

Black Box Testing

- Garantisce che
 - Tutte le componenti di un determinato asset siano correttamente enumerate
 - > Server, client, switch, etc
 - > Tutte le possibili vulnerabilità siano identificate
 - > Sia tramite approcci automatici che manuali
 - Tutti i potenziali strumenti (*vettori*) di attacco siano utilizzati per (provare a) sfruttare le vulnerabilità identificate

Black Box Testing

➤ Il pentester non ha alcuna conoscenza preliminare sull'asset da analizzare

- ➤ Il pentester non conosce
 - Architetture dei sistemi
 - Software
 - Hardware
 - Eventuali processi interni sottoposti a valutazione
 - > Etc

Black Box Testing

- Va usato solo quando necessario
 - Richiede molte risorse in termini di tempo e di costo
 - Rischia di causare interruzioni e/o danni all'asset sottoposto a valutazione

White Box Testing

- ➤ Il pentester ha conoscenza approfondita dell'asset da analizzare
 - > Sistemi, applicazioni, hardware, software, etc.
- > Il pentester potrebbe avere accesso a
 - Diagrammi di rete completi
 - Inventari dei sistemi operativi
 - Livelli di aggiornamento/patch
 - Codici sorgente e file di configurazione
 - ➤ Informazioni sul personale
 - > Etc

White Box Testing

- ➤ Il pentester
 - Non attacca l'asset così come lo farebbe una minaccia esterna
 - Valida i controlli di sicurezza dell'asset in esame
- Spesso rivolto a nuove applicazioni o sistemi in fase di sviluppo

- ➤ I pentester cercano le vulnerabilità nei sistemi in fase di sviluppo
 - Prima che questi siano messi in produzione e risultino esposti alle minacce del mondo reale

Gray Box Testing

Forma ibrida di penetration testing

- ➤ Il pentester ha a disposizione solo alcune informazioni sull'asset da valutare, ad esempio
 - Versioni del sistema operativo
 - Documentazione sull'architettura di rete interna
 - > Etc

Gray Box Testing

- Attività di portata limitata, con uno specifico obiettivo di valutazione
 - Specifico segmento di rete
 - Sottosistemi di un asset
 - > Etc
- ➤ Lo scopo del Gray Box Testing è spesso la validazione dei controlli di sicurezza delle componenti di un asset
 - Senza la messa offline dell'asset stesso

Come Scegliere il Tipo di Testing?

Scelta spesso dettata dagli obiettivi del cliente o dell'organizzazione che ha commissionato il processo di penetration testing per il proprio asset

Come Scegliere il Tipo di Test?

- In generale, un asset
 - > Se vuole verificare la sicurezza di un **nuovo sistema** da mettere in produzione, spesso richiederà un **White Box Testing**
 - Se ha un **programma di sicurezza consolidato** e vuole valutare la propria sicurezza rispetto a possibili attacchi del mondo reale, spesso richiederà un **Black Box Testing**

Outline

- Terminologia
- > Tipologie di Test di Sicurezza
- ➤ Tipi di Penetration Testing
- Metodologie di Testing
- Framework Generale per il Penetration Testing (FGPT)
- Penetration Testing Report

Motivazioni

- Permettono di
 - Condurre il processo di penetration testing usando un approccio strutturato e ben definito
 - Eseguire efficacemente un compito impegnativo e critico in termini di tempo
 - Indipendentemente dalle dimensioni e dalla complessità dell'asset da analizzare

Motivazioni

- Formalizzare il processo di penetration testing mediante un framework strutturato è estremamente importante
 - > Sia da un punto di vista tecnico che gestionale
- > Un processo di penetration testing condotto in accordo ad una determinata metodologia consente di ereditare da essa
 - Caratteristiche
 - Processi
 - Conformità
 - Vantaggi
 - Svantaggi

Come Scegliere quella Migliore?

- Alcune metodologie si concentrano su aspetti tecnici, altre su criteri manageriali
 - Pochissime su entrambi

- ➤ La scelta della metodologia migliore richiede un'accurata selezione
 - Attraverso cui si potrà stimare il costo e l'efficacia del processo di penetration testing che si andrà a condurre

Come Scegliere quella Migliore?

- La scelta della metodologia migliore dipende da diversi fattori, tra i quali
 - ➤ Dettagli tecnici forniti sull'asset
 - > Tipo di asset
 - Disponibilità di risorse (tempo, denaro, etc)
 - Competenza del/dei penetration tester
 - Obiettivi aziendali
 - Vincoli normativi
 - > Etc

Quali sono quelle Principali?

- Esistono numerose metodologie per il penetration testing
- > Alcune tra le principali metodologie sono le seguenti
 - Open Source Security Testing Methodology Manual (OSSTMM)
 - Information Systems Security Assessment Framework (ISSAF)
 - Open Web Application Security Project (OWASP)
 - Web Application Security Consortium Threat Classification (WASC-TC)
 - Penetration Testing Execution Standard (PTES)
 - NIST Special Publication (SP) 800-115

Security Project

Open Source Security Testing Methodology Manual (OSSTMM)

- Open Source Security Testing Methodology Manual (OSSTMM)
 - Nata nel 2001
 - Creata da Pete Herzog e sviluppata da ISECOM (Institute for Security and Open Methodologies)
 - Versione Stabile: 3.0
 - Versione Draft: 4.0
 - Metodologia molto complessa

Open Source Security Testing Methodology Manual (OSSTMM)

- Open Source Security Testing Methodology Manual (OSSTMM)
 - Metodologia completa che permette di
 - Gestire penetration testing, vulnerability assessment e security audit
 - > Definire le «migliori difese di sicurezza possibili» per un determinato asset

Open Source Security Testing Methodology Manual (OSSTMM)

https://www.isecom.org/OSSTMM.3.pdf

OSSTMM – Aspetti Chiave

- > Alcuni aspetti chiave della metodologia OSSTMM sono
 - ➤ Focus Operativo: identificazione e valutazione delle vulnerabilità tecniche, dei processi operativi, della sicurezza fisica e dei fattori umani, fornendo una visione completa della sicurezza di un determinato asset
 - ➤ **Test dei Canali:** analisi dei canali di comunicazione in entrata ed in uscita da/verso un asset, ad es., Bluetooth, Wi-Fi, VoIP, SMS, E-mail, Web, etc
 - ➤ Metriche e Misurazioni: introduzione di misurazioni e metriche oggettive nel processo di valutazione della sicurezza, consentendo un'analisi quantitativa, anziché una semplice valutazione di tipo pass/fail
 - Risk Assessment Value (RAV) Score Maggiori dettagli in seguito...
 - Previsioni sulla Sicurezza: stima di quanto l'asset rimanga sicuro nel tempo in base ai suoi controlli di sicurezza
 - ➤ Superficie di Attacco: identificazione dei punti tramite cui un utente malintenzionato potrebbe inserire o esfiltrare dati da un sistema

- Un test di sicurezza secondo OSSTMM prevede 7 passi
- 1. Definire le **Risorse** che si intende proteggere (asset)
 - I meccanismi di protezione per queste risorse sono detti **Controlli**, i quali saranno valutati per identificare le **Limitazioni** dal punto di vista della sicurezza (i.e., vulnerabilità)
- 2. Identificare l'Area (o Zona) di Ingaggio
 - È qui che avrà luogo l'interazione con gli asset
 - Tale area può includere, oltre ai meccanismi di protezione, anche i processi ed i servizi utilizzati o erogati dagli asset

- Un test di sicurezza secondo OSSTMM prevede 7 passi
- 3. Identificare tutto ciò che è necessario, al di fuori dell'Area di Ingaggio, per mantenere operativi gli asset
 - Ciò potrebbe includere elementi
 - Che non possono essere controllati direttamente dall'asset, come elettricità, fattori climatici, legislazione, regolamenti, etc
 - Con cui l'asset si potrebbe trovare ad interagire, come appaltatori, colleghi, branding, partnership, etc
 - Bisognerebbe considerare anche altri elementi che mantengono operativi gli asset, come processi, protocolli, risorse, etc
- Ciò che è stato identificato dai punti 2. e 3. rappresenta l'Ambito di Valutazione

- Un test di sicurezza secondo OSSTMM prevede 7 passi
- 4. Definire come avvengono le «*interazioni*» sia all'interno dell'**Ambito di Valutazione** che verso il suo esterno
 - Compartimentare logicamente le risorse appartenenti all'Ambito di Valutazione, basandosi sulla «direzione» delle interazioni effettuate da tali risorse
 - Ad es., dall'interno dell'asset verso l'esterno, dall'esterno verso l'interno, dall'interno verso l'interno, dalla risorsa A alla risorsa B, etc
 - Ad es., la ricezione di una e-mail da parte di una persona appartenente all'asset, sarà una interazione dall'esterno dell'asset verso il suo interno.
 - Tali interazioni sono chiamate Vettori
 - Ciascun vettore dovrebbe essere valutato da un test di sicurezza separato, così da mantenere breve la durata di ciascun test prima che possano verificarsi cambiamenti significativi nell'asset

- Un test di sicurezza secondo OSSTMM prevede 7 passi
- 5. Identificare i **Canali** da valutare per ogni test
 - All'interno di ciascun Vettore le interazioni possono avvenire utilizzando cinque Canali: Human, Physical, Wireless, Telecommunications e Data Networks
 - Maggiori dettagli in seguito...
 - Ogni Canale deve essere valutato separatamente per ciascun Vettore

Class	Channel	Descrizione
Physical Security (PHYSSEC)	Human	"Comprises the human element of communication where interaction is either physical or psychological"
	Physical	"Physical security testing where the channel is both physical and non-electronic in nature"
Spectrum Security (SPECSEC)	Wireless	"Comprises all electronic communications, signals, and emanations which take place over the known EM spectrum"
Communications Security (COMSEC)	Telecommunications	"Comprises all telecommunication networks, digital or analog, where interaction takes place over established telephone or telephone-like network lines"
	Data Networks	"Comprises all electronic systems and data networks where interaction takes place over established cable and wired network lines"

- Un test di sicurezza secondo OSSTMM prevede 7 passi
- 6. Determinare le informazioni che si vogliono acquisire dal test
 - Ad es., se verranno valutate solo le interazioni con l'asset (i.e., valutazione di ciascun **Canale** per ciascun **Vettore**, etc) o anche le misure di sicurezza poste a protezione dell'asset (*firewall*, *IDS*, etc)
 - ▶ I tipi di test da condurre: la metodologia OSSTMM definisce sei Tipi di Test: Blind, Double Blind, Grey Box, Double Grey Box, Tandem e Reversal
 - Maggiori dettagli in seguito...
 - **Etc**

- Un test di sicurezza secondo OSSTMM prevede 7 passi
- 7. Assicurarsi che i test di sicurezza definiti tramite i passi precedenti siano conformi alle **Regole di Ingaggio**
 - Regole di Ingaggio: Linee guida per garantire che il processo di valutazione della sicurezza sia autorizzato, adeguato, e non crei incomprensioni, idee sbagliate o false aspettative
 - Maggiori dettagli in seguito...
- Il risultato finale, dato dall'esecuzione dei test di sicurezza, fornirà informazioni quantitative (i.e., misurazioni date dal RAV Score) sulla Superficie di Attacco
 - La Superficie di Attacco rappresenta la parte non protetta dell'Ambito di Valutazione

OSSTMM – Tipi di Test

- ➤ I tipi di test si differenziano in base alla quantità di informazioni che
 - Il pentester possiede sull'asset (Asse X)
 - L'asset possiede sul pentester (Asse Y)

Target = asset
Attacker = pentester

OSSTMM – Tipi di Test

Blind

- ➤ Non richiede al pentester alcuna conoscenza preliminare sull'asset da valutare
- L'asset viene informato prima dell'esecuzione del test
 - > Ciò rende questo tipo di test ampiamente accettato

OSSTMM – Tipi di Test

Double Blind

- ➤ Né il pentester ha alcuna conoscenza dell'asset né l'asset viene informato prima dell'esecuzione del test
- ➤ N.B. La maggior parte delle valutazioni di sicurezza oggi viene eseguita utilizzando questa strategia

OSSTMM – Tipi di Test

Gray Box

- > Il pentester ha conoscenza limitata sull'asset
- L'asset viene informato prima dell'esecuzione del test

OSSTMM – Tipi di Test

Double Gray Box

- Opera in modo analogo al Gray Box testing: il pentester ha conoscenza parziale sull'asset e l'asset viene informato solo parzialmente sull'esecuzione del test
- Pone generalmente specifici vincoli sulla durata del test

OSSTMM – Tipi di Test

> Tandem

- Il pentester ha piena conoscenza dell'asset
- L'asset è informato su come e quando verrà condotto il test

OSSTMM – Tipi di Test

Reversal

- Il pentester ha piena conoscenza dell'asset
- L'asset non ha alcuna conoscenza del pentester

OSSTMM – Casi e Procedure di Test

- SSTMM permette anche di definire Casi di Test, che generalmente valutano aspetti quali
 - Sicurezza del controllo accessi
 - Sicurezza dei processi
 - Controllo dei dati
 - Protezione perimetrale
 - Livello di consapevolezza della sicurezza da parte del personale
 - > Etc

OSSTMM – Casi e Procedure di Test

- Le **Procedure di Test** si concentrano su
 - Cosa deve essere valutato (asset)
 - Come deve avvenire la valutazione
 - Quali azioni devono essere messe in atto prima, durante e dopo la valutazione
 - Come devono essere interpretati e correlati i risultati ottenuti al termine della valutazione

OSSTMM – Risk Assessment Value (RAV) Score

- ➤ Al termine del processo di valutazione viene calcolato un valore (*metrica*) di sicurezza
 - > RAV (Risk Assessment Value) Score

> RAV Score

- Rappresenta lo stato dell'asset in termini di sicurezza
- Può essere usato
 - Dal pentester per fornire un'idea precisa sulla sicurezza di un asset
 - ➤ Da un'organizzazione per ottimizzare la quantità di investimenti richiesti per la messa in sicurezza del proprio asset

OSSTMM – Risk Assessment Value (RAV) Score

Mostra quanto un asset sia sicuro

- È un valore quantitativo, di tipo numerico
 - Un RAV Score pari a 100 denota una «sicurezza perfetta»
 - Equilibrio «ottimale» tra Vettori e Controlli
 - Un RAV Score inferiore a 100 evidenzia quali controlli sono insufficienti o assenti
 - Quando il RAV Score è 100 e vengono aggiunti ulteriori controlli esso supera 100
 - Ciò denota che si stanno «sprecando» risorse: «inutile» investire risorse per migliorare qualcosa che è già «perfettamente sicuro»

OSSTMM – Risk Assessment Value (RAV) Score

> RAV Calculator

- Foglio di calcolo che permette di ottenere un RAV Score
 - Metrica standard per misurare la Superficie di Attacco di un asset
- Necessario per completare il **S**ecurity **T**est **A**udit **R**eport (**STAR**) Sheet

Attack Surface Security Metrics							
		SSTMM vers					
 Fill in the white number	fields for O	PSEC, Contr	ols, and Limit	ations with the results of			
the security test. Refer	to OSSTMM	3 (www.os	stmm.org) for	more information.			
OPSEC				ICECOAA			
Visibility	0			INSTITUTE FOR SECURITY AND OPEN METHODOLOGIES			
Access	0						
Trust	0			OPSEC			
Total (Porosity)	0			0,000000			

https://www.isecom.org/rav_calc_OSSTMM3.xls

OSSTMM – Security Test Audit Report (STAR) Sheet

Security Test Audit Report (STAR) Sheet

- ➤ Riepilogo, in formato standard, dei risultati prodotti da unsecurity audit, vulnerability assessment o penetration testing OSSTMM
- Fornisce in maniera strutturata
 - Indicazioni precise sulla Superficie di Attacco
 - Dettagli su cosa è stato valutato e come
- ➤ Il Security Test Audit Report (STAR) Sheet è richiesto quando la sicurezza di un asset deve essere certificata secondo la ISECOM OSSTMM

OSSTMM – Security Test Audit Report (STAR) Sheet – Esempio

Report ID

Security Test Audit Report

OSSTMM 3.0 Security Verification Certification
OSSTMM.ORG - ISECOM.ORG

OSSTMM

	Lead Auditor		Test Date Duration				
	Scope and Index		Vectors				
STAR Sheet	L						
	Channels		Test Type				
	I am responsible for the information within this report and have personally verified that all information herein is factual and true.						
	SIGNATURE		COMPANY STAMP/SEAL				
	ODST Contists only on #		ODSA Carliffaction #				
	OPST Certification #		OPSA Certification #				

Date

OSSTMM – Principali Vantaggi

- > Si adatta a molti tipi di test di sicurezza
 - Penetration Testing, Vulnerability Assessment, Security Audit
- Riduce il verificarsi di falsi positivi e falsi negativi

Fornisce metriche di sicurezza riproducibili

- Garantisce che
 - La valutazione di sicurezza sia condotta in maniera accurata
 - I risultati siano raccolti in modo coerente, quantificabile ed affidabile

OSSTMM – Principali Vantaggi

«Aggiornata» in base alle nuove tendenze dei test di sicurezza, alle regolamentazioni ed alle questioni etiche

➤ Si adatta facilmente alle *best practice* del settore, alle politiche aziendali ed alle norme

➤ Una verifica di sicurezza certificata in base alla metodologia OSSTMM può essere accreditata direttamente dall'ISECOM (Institute for Security and Open Methodologies)

Open Source Security Testing Methodology Manual (OSSTMM)

- Fornisce varie tipologie di certificazione
 - https://www.isecom.org/certification.html

OSSTMM Professional Security Analyst

The OPSA is a technical, skills-based certification designed to accredit professional security analysts.

OSSTMM Professional Security Tester

The OPST is a technical, skills-based certification designed to accredit professional penetration testers.

OSSTMM Professional Security Expert

The OPSE is an introductory, knowledgebased certification designed to accredit security professionals working with the OSSTMM.

Open Source Security Testing Methodology Manual (OSSTMM)

- Fornisce varie tipologie di certificazione
 - https://www.isecom.org/certification.html

OSSTMM Wireless Security Expert

The OWSE is a technical, knowledge-based certification designed to accredit professional penetration testers.

OSSTMM Certified Trust Analyst

The CTA is a knowledge-based certification designed to accredit professionals measuring trust or making trust-based decisions either in a business or security capacity.

Certified Security Awareness Instructor

The SAI is a knowledge-based certification designed to accredit professionals teaching cybersecurity awareness.

Open Web Application Security Project (OWASP)

- Open Web Application Security Project (OWASP)
 - https://owasp.org/

OWASP – Caratteristiche

- Fornisce
 - Linee guida a sviluppatori e pentester per gestire la sicurezza in diversi settori (applicazioni Web e mobile, sistemi IoT, firmware, etc) mediante vari progetti
 - OWASP Web Security Testing Guide (WSTG)
 - OWASP Mobile Application Security (MAS)
 - OWASP Internet of Things Project
 - OWASP Top 10 Project
 - OWASP Top 10 for Large Language Model Applications
 - **Etc**
 - Numerosi strumenti (tipicamente Open Source) per valutare la sicurezza in vari contesti
 - https://owasp.org/www-community/Free_for_Open_Source_Application_Security_Tools

OWASP – Web Security Testing Guide (WSTG)

OWASP Web Security Testing Guide 4.2

OWASP – Web Security Testing Guide (WSTG)

- Fornisce linee guida per
 - ➤ Integrare la sicurezza nelle Web Application e nei Web Service attraverso principi e pratiche di programmazione sicura
 - Effettuare il penetration testing di Web Application e Web Service
- È costituita da due sezioni principali
 - Web Security Testing Framework
 - Web Application Security Testing

OWASP – WSTG – Web Security Testing Framework

- ➤ Definisce generiche linee guida ed attività da utilizzare per il controllo della sicurezza nelle varie fasi del ciclo di vita di un software
 - Può anche essere utilizzato per sviluppare testing framework ad hoc
- ➤ Utilizzato per valutare la sicurezza di un software durante le sue fasi di analisi dei requisiti, progettazione, sviluppo, distribuzione, configurazione e manutenzione
 - Evitando così di attendere fino al completamento della creazione di un software per poterne valutare la sicurezza
- Non definisce una particolare metodologia di sviluppo e non fornisce indicazioni specifiche appartenenti ad una determinata metodologia
 - Modello di sviluppo generico, che può essere seguito e adattato in base alle proprie esigenze

OWASP – WSTG – Web Security Testing Framework

- > Definisce una serie di attività che dovrebbero essere condotte
 - Prima che inizi lo sviluppo del software
 - In fase di definizione e progettazione del software
 - Durante lo sviluppo del software
 - Durante la distribuzione del software
 - Durante la configurazione, il funzionamento e la manutenzione del software

OWASP – WSTG – Web Application Security Testing

➤ Si concentra sulla valutazione della sicurezza di una Web application (già creata)

Consente di effettuare *analisi* di sicurezza *passive o attive* di una Web application per rilevare eventuali punti deboli, difetti tecnici o vulnerabilità

- Eventuali problemi di sicurezza riscontrati verranno presentati al committente, insieme a
 - Una valutazione dell'impatto
 - Una proposta di mitigazione o una soluzione tecnica

OWASP - WSTG - Web Application Security Testing

➤ Raccoglie e descrive numerose tecniche di analisi della sicurezza per le Web application, mantenendosi costantemente aggiornato

- Si basa su un approccio «black box»
 - ➤ Il pentester non sa nulla (o ha pochissime informazioni) sull'applicazione da testare
- > Tale framework è costituito da tre elementi principali
 - > Tester: chi esegue le attività di testing
 - Strumenti e Metodologie: la parte più importante del Web Application Security Testing, che stabilisce in che modo deve essere condotta l'analisi
 - Applicazione: la «black box» da valutare

OWASP - WSTG - Web Application Security Testing

- L'attività di testing può essere di tipo attivo o passivo
 - Testing Passivo
 - ➤ Il pentester cerca di comprendere la logica dell'applicazione, utilizzandola ed esplorandola così come farebbe un normale utente

> Testing Attivo

- Il pentester effettuata un insieme di test, raggruppati in 12 categorie
 - 1. Information Gathering
 - 2. Configuration and Deployment Management Testing
 - 3. Identity Management Testing
 - 4. Authentication Testing
 - 5. Authorization Testing
 - 6. Session Management Testing
 - 7. Input Validation Testing
 - 8. Error Handling

- 9. Cryptography
- 10. Business Logic Testing
- 11. Client-side Testing
- 12. API Testing

OWASP – Web Security Testing Guide (WSTG)

La OWASP Web Security Testing Guide fornisce anche dettagli sulla valutazione specifica delle tecnologie

- Visione ampia e collaborativa di numerose tecnologie
 - Per supportare il pentester nella scelta della procedura di testing più adeguata

