1.6: Cobweb Diagrams and Equilibria

1 Terminology

• Suppose we have a DDS

$$m_{t+1} = f(m_t).$$

- Ex: Identify the updating functions for these DDS:
 - 1. $m_{t+1} = 2m_t$, f(x) = 2x
 - 2. $m_{t+1} = -m_t$, f(x) = -x
 - 3. $m_{t+1} = (m_t)^2$, $f(x) = x^2$
 - 4. $m_{t+1} = \cos(m_t), \quad f(x) = \cos(x)$
 - 5

$$m_{t+1} = \frac{0.6m_t}{1 + 17m_t}, \quad f(x) = \frac{0.6x}{1 + 17x}$$

We call the function f the <u>updating function</u>, because it takes as input a value m_t and "updates" it to the next value, m_{t+1} .

- \bullet Why do we care about the updating function? It's a function! What do we know how to do with functions? \odot
- Sketch bubble picture.
- We can graphically represent the sequence $m_0, m_1, m_2, m_3, \ldots$ by a cobweb diagram.
- spend lots of time analyzing the cobweb applet.
- Do these examples:
 - 1. f(x) = 0.5x + 1 (concentration model)
 - 2. f(x) = 1.5x 2
 - 3. $f(x) = x^2 1$
 - 4. f(x) = 4x(1-x)
- Cobwebbing synopsis:
 - 1. Draw the updating function (blue in the program)
 - 2. Draw the diagonal (red in the program)
 - 3. start at the initial condition
 - 4. Go vertical to the updating function (up to the update)
 - 5. Go horizontally to the diagonal

- 6. rinse and repeat.
- up/down is evaluating the updating function (steps forward in time)
- left/right is only mechanical; it's more of a mechanical necessity, not the actual math.
- Examples: Plot the solution m_t vs t from the cobweb diagram.
- Ex: Do the cobweb diagram for $m_{t+1} = -2m_t^3$ and use it to sketch a solution graph.

2 Equilibria

- Def: equilibrium or equilibria are the values of a DDS that are constant: if $m_{t+1} = f(m_t)$ is some $\overline{\text{DDS}}$, an equilibrium, which we'll denote by m^* , has $m^* = m_t = m_{t+1} = m_{t+2} = \cdots$. In other words, if the sequence m_0, m_1, m_2, \ldots stabilizes, then that stabilizing value is m^* , the equilibrium.
- Finding Equilibria: You see the equilibria on the graph as the places where f(x) crosses the diagonal.
- Algebraically: Find m^* by solving the equation $f(m^*) = m^*$. (That's the equation corresponding to the blue curve crossing the diagonal.
- Examples:
 - (Concentration model) Verify that $C^* = 2 \text{ mg/L}$ is the equilibrium of the drug concentration model $C_{t+1} = 0.5C_t + 1$.
 - Find equilibria to $m_{t+1} = 6m_t 7$. $m^* = 7/5 = 1.4$.
 - (Bacteria model) Find equilibria to $b_{t+1} = 2b_t$. $b^* = 0$.
- Important: characterize equilibria based on if whether solutions go towards or go away from the equilibria. If nearby solutions go towards m^* , we call it *stable*. If nearby solutions all go away from m^* , we call it *unstable*. If it's half-and-half, I will call it semi-stable.
- Examples:
 - $-m_{t+1}=2m_t+1$. Find equilibrium, decide stable or not. (It's unstable)
 - $-m_{t+1} = 0.2m_t + 5$. Find equilibrium, decide stable or not. (It's stable)
 - $-m_{t+1}=m_t^2+m_t$. Find equilibrium, decide stable or not. (It's semistable)