Introduction to learning of text representations

Prakhar Gupta

Department of Computer and Communication Sciences EPFL

Advanced Topics in Machine Learning

Outline

- Learning of word representations
 - GloVe
 - Word2Vec

- Second Main Section
 - Another Subsection

Outline

- Learning of word representations
 - GloVe
 - Word2Vec

- Second Main Section
 - Another Subsection

Matrix Factorization Methods

Matrix Factorization Methods

Models that can be described as optimization problems of the form

$$\min_{U,V} F(UV^T) \tag{1}$$

Some important definitions and notation

Some important definitions and notation

• Context window is defined as the neighbourhood of a word and its length can be chosen as desired.

Some important definitions and notation

- Context window is defined as the neighbourhood of a word and its length can be chosen as desired.
- Word co-occurrence matrix is denoted by X

Some important definitions and notation

- Context window is defined as the neighbourhood of a word and its length can be chosen as desired.
- Word co-occurrence matrix is denoted by X
 - where $X_{ij} = \text{Number of times word } j$ appears in context of word i

• The aim is to capture X_{ij} using the source embeddings u_i and target embeddings v_i

- The aim is to capture X_{ij} using the source embeddings u_i and target embeddings v_i
- The GloVe problem is thus formulated as

$$\min_{U,V} \sum_{i,j} \sum_{i,j} f(X_{ij}) \left(u_i^T v_j + b_i + c_j + \log(X_{ij}) \right)$$
 (2)

where $f(X_{ij})$ is the weight assigned to the source-target pair, b_i and c_j are the biases associated with u_i and v_j respectively and W is the vocabulary.

- The aim is to capture X_{ij} using the source embeddings u_i and target embeddings v_j
- The GloVe problem is thus formulated as

$$\min_{U,V} \sum_{i,j} \sum_{j} i, j \in Wf(X_{ij})(u_i^T v_j + b_i + c_j + \log(X_i j))$$
 (2)

where $f(X_{ij})$ is the weight assigned to the source-target pair, b_i and c_j are the biases associated with u_i and v_j respectively and W is the vocabulary.

• $f(X_{ij})$ is often chosen to be $(\frac{X_{ij}}{Y})^{\alpha}$ where $Y = \max_{kl} X_{kl}$.

- The aim is to capture X_{ij} using the source embeddings u_i and target embeddings v_i
- The GloVe problem is thus formulated as

$$\min_{U,V} \sum_{i,j} i,j \in Wf(X_{ij})(u_i^T v_j + b_i + c_j + \log(X_{ij}))$$
 (2)

where $f(X_{ij})$ is the weight assigned to the source-target pair, b_i and c_j are the biases associated with u_i and v_j respectively and W is the vocabulary.

- $f(X_{ij})$ is often chosen to be $(\frac{X_{ij}}{Y})^{\alpha}$ where $Y = \max_{kl} X_{kl}$.
- Empirically $\alpha = \frac{3}{4}$ gives the best performance.

Outline

- Learning of word representations
 - GloVe
 - Word2Vec

- Second Main Section
 - Another Subsection

Uses two difference architectures

- Uses two difference architectures
 - Continuous bag-of-words (CBOW)

- Uses two difference architectures
 - Continuous bag-of-words (CBOW)
 - Continuous Skipgram

Intuition

For the CBOW architecture, the task is to

Intuition

For the CBOW architecture, the task is to

ullet predict the word w given the context $\mathcal{C}(w)$

Intuition

For the CBOW architecture, the task is to

• predict the word w given the context C(w)

Formulation

Given a sequence of training words w_1, \ldots, w_n , the maximum likelihood formulation for the CBOW architecture can be written as

$$\sum_{i=1}^{n} \sum_{w_j \in \mathcal{C}(w_i)} \log p(w_j | w_i)$$
(3)

Intuition

For the Skipgram architecture, the task is to

Intuition

For the Skipgram architecture, the task is to

ullet predict the context $\mathcal{C}(w)$ given the word w

Intuition

For the Skipgram architecture, the task is to

• predict the context C(w) given the word w

Formulation

Given a sequence of training words w_1, \ldots, w_n , the maximum likelihood formulation for the CBOW architecture can be written as

$$\sum_{i=1}^{n} \sum_{w_j \in \mathcal{C}(w_i)} \log p(w_i | w_j)$$
 (4)

Outline

- Learning of word representations
 - GloVe
 - Word2Vec

- Second Main Section
 - Another Subsection

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

Theorem

There are separate environments for theorems, examples, definitions and proofs.

Example

Here is an example of an example block.

Summary

- The first main message of your talk in one or two lines.
- The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50–100, 2000.