预习报告	实验记录与分析	总成绩
30	50	80

年级、专业:	物理学	组号:	实验班 2
姓名:	戴鹏辉	学号:	2344016
日期:	2024/03/25	教师签名:	

光学像差实验 I

【实验报告注意事项】

- 1. 实验报告由两部分组成:
 - 1) 预习报告:课前认真研读<u>实验讲义</u>,弄清实验原理;实验所需的仪器设备、用具及其使用、完成课前 预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(可以参考实验报告模 板,可以打印)。(30分)
 - 2) 实验记录与分析:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得手记的值输入到电脑打印);离开前请实验教师检查记录并签名。(50分)
- 2. 本实验报告可提前打印出来,当场记录分析完成交给带实验的老师,课后无需再提交。若当场完成不了,则请课后完成,再扫描并通过 seelight 提交。

注意:本文档已留出填写空间,若填写空间不够的话请提前规划留白,做到报告的美观

- 3. 注意事项:
 - 1) 实验中避免激光器伤到眼睛
 - 2) 避免用手直接接触镜片的光学面
 - 3) 安装镜片时需在光学平台上尽量靠近台面的高度操作,以免失手跌落摔碎镜片
 - 4) 实验平台配件所用固定螺钉需拧紧,以免镜架晃动;但不可过紧,以免损坏
 - 5) 实验前需按仪器清单检查光学元件是否齐全,实验结束后按照顺序放回元件盒

目录

1	光学	总差实验 I 预习报告	3
	1.1	实验目的	3
	1.2	义器用具	3
	1.3	原理概述	4
	1.4	实验前思考题	4
	.1.37		
		聚差实验 I 实验记录	5
	2.1	实验内容、步骤、结果及讨论	5
	2.2	实验过程中遇到的问题记录	8

光学像差实验 [预习报告

1.1 实验目的

- (1) 了解七种几何像差产生的原理、基本规律;
- (2) 了解各种像差对光学成像质量的影响;
- (3) 掌握慧差、色差产生的原理及其测量表征;
- (4) 掌握光学系统的基本调试方法;

1.2 仪器用具

~ p & p		la la	νμ. ⊟
产品编号	产品名称	规格	数量
1	激光光源	$\lambda = 632.6nm$	1
2	激光器夹持器	3 维调整	1
3	显微物镜	$10 \times / 0.25$	1
4	针孔	Ø100um 或 Ø50um	1
5	五维调整机构	装配显微物镜和针孔用	1
6	衰减片 1	0.0001 (衰减系数),装在镜框中	1
7	衰减片 2	0.01 (衰减系数),装在镜框中	1
8	双凸透镜 1	焦距 $f = 300mm$,装在透镜/反射镜座中	1
9	平凸透镜 2	焦距 $f=100mm$,装在透镜/反射镜座中	1
10	平凸透镜 3	焦距 $f=150mm$,装在透镜/反射镜座中	1
11	白屏	SZ-13,一面白屏,一面带坐标纸	1
12	成像相机	大恒的 MER-130-30UM 或元启智能的 REV-13AMU2C	1
13	数据线	图像采集数据线	1
14	计算机	台式或笔记本,安装有成像相机图像采集软件	1
15	光学导轨	长度 1 米, 带刻度	1
16	二维平移台	行程 >10mm	4
17	平移滑块		8
18	支杆	50mm 长和 75mm 长	3+5
19	磁性表座		4
20	旋转调整台	可调角度 >±5°	1
21	白光灯	GY-6 型,亮度可调,即溴钨灯	1
22	滤光片 1	透光波长: 435nm	1
23	滤光片 2	透光波长: 630nm	1

1.3 原理概述

(15 分)(概述色差和慧差产生的原理)(请用自己的语言描述,勿大幅 copy 讲义等)(填写空间不够的话请提前规划留白,做到报告的美观)

像差理论是光学设计求解光学系统初始结构的理论基础。在建立起理想光学系统后,将实际光学系统所成的像偏离理想光学系统的误差称为几何像差,简称像差。光学设计者将几何像差分为七种,即球差、慧差、像散、场曲、畸变、位置色差和倍率色差。产生像差的原因有三点:

- (1) 光线计算公式的非线性;
- (2) 物面为平面, 折(反)射面为球面(曲面), 成像面为曲面;
- (3) 不同颜色(波长)的光在折射介质中的折射率不同。
- (1) 色差(Chromatic Aberration): 色差是由于不同波长(颜色)的光线在透镜或系统中的折射率不同而引起的。这导致不同波长的光线会聚或发散到不同的焦点位置,从而造成成像时不同波长的光线无法同时聚焦于同一平面上,使得图像产生色彩偏差。色差分为两种:
 - (1) 焦距色差(Longitudinal Chromatic Aberration): 不同波长的光线在透镜中折射后,聚焦于不同的位置,导致成像平面不同。
 - (2) 横向色差(Lateral Chromatic Aberration): 不同波长的光线在透镜中折射后,沿不同的轴向散开,使得不同波长的光线成像位置有所偏移。
- (2) 慧差 (Spherical Aberration): 慧差是由于透镜或反射面的形状不是理想的球面而引起的。理想的球面透镜或反射面能使所有入射光线汇聚于一个焦点,但非理想的球面会导致不同位置的光线汇聚于不同的焦点,产生像差。慧差会使成像的图像产生模糊和失真。

1.4 实验前思考题

思考题 1.1: 慧差与孔径、视场的关系?

思考题 1.2: 产生色差原因? 列举几种消色差的方法

思考题 1.3: 针孔滤波的工作原理

专业:	物理学	年级:	2022 级
姓名:	戴鹏辉	学号:	22344016
室温:		实验地点:	
学生签名:		评分:	
日期:		教师签名:	

光学像差实验 [实验记录

2.1 实验内容、步骤、结果及讨论

(按照实验顺序依次<mark>简要记录</mark>实验内容及步骤,)(空间不够,可自行加页) (注意:

除了记录实验内容、步骤、参数外,还应记录:

按比例绘制操作中实际摆放的实验光路 (各元件间距离可通过直尺测量)

记录光路中物光和参考光的光程差

记录物光和参考光光强比

记录是否可观察到再现图像

)

光学相差实验

光学相差实验

2.2 实验过程中遇到的问题记录

- (1)
- (2)
- (3)