

ARJUNA NEET BATCH

Structure of Atom

LECTURE - 3

BY : DOLLY SHARMA

Objective of today's class

RUTHERFORD'S NUCLEAR MODEL OF ATOM

THOMSON Model of Atom (W)

J.J. Thomson in 1298, proposed a model of atom which looked more or less like plum pudding or raisin pudding.

He assumed atom to be a spherical body in which electrons are unevenly distributed in a sphere having positive charge which balance the electron's charge. It is called Plum Pudding model.

Failure: It failed after Rutherford's α-scattering experiment, which proved atom to be quite different.

Representation of atom (W

Atomic number (Z)

The number of unit positive charge on the nucleus of an atom of the element is called atomic number

- Atomic number = Number of protons
 - = Number of electrons in an atom 🥓
- Mass number (A)
- The number of protons and neutrons in the nucleus is called mass number of the

ass number (A) = Number of protons + Number of neutons

Isotopes: - Atomis of Same element having Same Atomic number but different Atomic mass.

Isobars: Species having same Atomic mass but different
Atomic mass.

Number 19 (20)

Isotones: - Species having Same no. of Neutrons Eg. 14 15 No. of Neutrons neutron = (8)

Isosters: Décies franing Danne no. 7 atoms and és

<u>Isodiaphers</u>: Spean having Same isotopic Encess

A-22 [07] n-b->(Same)

A-1 Atomic mass Z - Atomic no n - new rong

p -> protong

Isoelectronic: Deux having Similar no. of E.

Note > All Isostow are Isoelectronic but All

Isoelectronic species are not Isosters.

Identification Relation: - 1505ters,

Isoelectron

(1) 16 0 17 0 18 0 0 -> Isotopus

(2) ¹²₆C ¹³₆C ¹⁴₆C ⊕ → Isotopes

(3) 40 Ar 40 K 40 Ca 5 -> Isobars

(4) ³H ⁴He Tsotomes

(5) ${}^{14}_{6}C$ ${}^{15}_{7}N$ ${}^{16}_{8}O$ \bigcirc \longrightarrow

(6) N2 CO @ -> Isosters

 $(7) \underset{\sim}{N_2} \underline{0} \quad CO @ \longrightarrow \bigvee$

Scockestrowclo) Na Mg

(22)

ARJUN

238 234 (92) 90 B3 N3 H6 B heutrony Th 1 234 B N

:

RUTHERFORD'S NUCLEAR MODEL OF ATOM

 α -scattering Experiment Rutherford allowed a narrow beam of α -particles to fall

on Very thin gold foil. This foil had circular fluorescent zinc sulphide screen around it. The α -particles by radioactive substance are dipositive helium ions

(He⁺⁺) having a mass of 4 units and 2 units of positive charge.

A tiny flash of light was produced at the point where α -particles stuck.

N. K.

The observation and conclusions made from the experiment by Rutherford

are as following:

Observation	Conclusion
Most of the α - particles passed through the foil without any deflection.	Presence of large empty space in the atom.
Few α- particles were deflected by small angles.	Positive charge is concentrated at a very small region and not uniformly distributed in whole atom. (If not then large number of α- particles would have been deflected by experiencing the enormous repulsive force from positive charge of the atom.)
Very few α- particles (1 out of 20,000 particles) rebounded completely i.e., deflected at ~ 180°.	Positively charged core is known as nucleus.

- \triangleright α -scattering Experiment:
- Discovery of Nucleus

Main features RUTHERFORD'S MODEL:-

- Nucleus: In an atom, the mass and positive charge is centrally located in extremely small region called nucleus.
- The volume of nucleus is negligible as compared to the total volume of the atom. As the radius of atom is about 10^{-10} m and the radius of nucleus is 10^{-15} m.
- ► Both protons and neutrons present in the nucleus are collectively called nucleons.

- Extra-nuclear part: The nucleus is surrounded by revolving electrons.
- Rutherford's model of atom resembles the solar system in which the nucleus plays the role the electrons of revolving planets.

Density of nucleus = $2.3 \times 10^{17} \text{ kg/m}^3$

Range

 \rightarrow Approx. size of Nucleus = 1.5 × 10⁻¹³ cm ----- 6.5 × 10⁻¹³ cm

= 1.5 fermi ----- 6.5 fermi

Approx. size (radius) of Nucleus $\neq 10^{-13}$ cm = 10^{-15} m

Approx. size (radius) of atom = 10^{-8} cm = 10^{-10} m

Radius of nucleus = 10^{-5} Radius of atom

Fraction size of total atom = Volume of nucleus /Volume of atom

$$=\frac{\frac{4}{3}\pi r^{3}}{\frac{4}{3}\pi r^{3}} = \frac{\left(10^{-13}\right)^{3}}{\left(10^{-8}\right)^{3}} = 10^{-15} \text{ m}^{3}$$

$$\frac{mv^2}{r} = \frac{Kq_1q_2}{r^2}$$

elect. Force/ centripetal force balance centri figal force.

Other Types of Rays:-

2. Radioactivity

(i) Alpha (α) rays: -> α-rays Consists of α-particles carrying two units of 1 positive ocharge and jour units atomic (ii) Beta (β) rays: > (onsists of -ive charge particles similar ho

Ly These rays do not consists of particles.

Thue are neutral Electronnagnetic Rediation

Teneraliration

thanks for watching

