Aleksander Våge Brukernavn: aleksava Dato: 01.11.2015

Oblig 2 – Digital kodelås

Fremgangsmåte

- 1. Bestemte aller først koden 124
- 2. Tegnet så tilstandsdiagram og tilhørende tilstandstabell
- 3. Fulgte deretter den anbefalte fremgangsmåten i oppgaveteksten for å korte ned på tid med hensyn på den kombinatoriske logikken
- 4. La til en interface i programmet, og en priority encoder med en splitter på enden.
- 5. Koblet denne sammen med den kombinatoriske logikken, og koblet to D-FlipFlopper til logikken.
- 6. Endret på tilstandsdiagrammet, -tabellen og logikkne slik at systemet vil stå åpent til D-FlipFloppene blir resatt. ¹
- 7. La til en reset knapp til FlipFloppene slik at det er mulig å teste systemet flere ganger.
- 8. Lagde karnaugh diagram ut fra tilstandstabellen, og skrev ut utrykkene for D1, D0 og Out fra disse.

Tilstandsdiagram

Tilstandsmaskinen vil stå å loope i tilstand 11, mens den venter på et reset signal som skal gå inn til D-flipfloppene. Dermed vil tilstandsmaskinen gå tilbake til tilstand 00.

¹ Grunnen til at tilstandsmaskinen vil stå å loope i tilstand 11, er for å gi eventuell bruker mer enn 1/8 sekund til å registrere at den har tastet inn rett kode. Det er en reset knapp i interfacen som resetter FlipFloppene slik at tilstandsmaskinen vil hoppe tilbake til tilstand 00.

Aleksander Våge Brukernavn: aleksava Dato: 01.11.2015

Tilstandstabell

Q0	Q1	X2	X1	Х0	D1	D0	Out
0	0	0	0	0	0	0	0
0	0	0	0	1	0	1	0
0	0	0	1	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	0	0	0	0
0	0	1	0	1	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	1	0
0	1	0	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	0	1	1	0	0	0
0	1	1	0	0	0	0	0
0	1	1	0	1	0	0	0
0	1	1	1	0	0	0	0
0	1	1	1	1	0	0	0
1	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	0	1	0	0
1	0	0	1	1	0	0	0
1	0	1	0	0	1	1	0
1	0	1	0	1	0	0	0
1	0	1	1	0	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	0	1	1	1
1	1	0	0	1	1	1	1
1	1	0	1	0	1	1	1
1	1	0	1	1	1	1	1
1	1	1	0	0	1	1	1
1	1	1	0	1	1	1	1
1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	1

Aleksander Våge Brukernavn: aleksava Dato: 01.11.2015

Karnaugh diagrammer

Karnaugh diagram for D1

Q0'	X1'*X0'	X1'*X0	X1*X0	X1*X0'	Q0)	<1'*X0'	X1'*X0	X1*X0	X1*X0'
Q1'*X2'	0	0	0	0	Q1'*X2'		L	0	0	1
Q1'*X2	0	0	0	0	Q1'*X2	•	l	0	0	0
Q1*X2	0	0	0	0	Q1*X2	1	l	1	1	1
Q1*X2'	0	0	0	1	Q1*X2'	1	l	1	1	1

Uttrykket for D1 blir: D1 = Q0*Q1 + Q0*X2'*X0' + Q0*X1'*X0' + Q1*X2'*X1*X0'

Karnaugh diagram for D0

Q0'	X1'*X0'	X1'*X0	X1*X0	X1*X0'	Q0	X1'*X0'	X1'*X0	X1*X0	X1*X0'
Q1'*X2'	0	1	0	0	Q1'*X2'	0	0	0	0
Q1'*X2	0	0	0	0	Q1'*X2	1	0	0	0
Q1*X2	0	0	0	0	Q1*X2	1	1	1	1
Q1*X2'	1	1	0	0	Q1*X2'	1	1	1	1

Uttrykket for D0 blir: D0 = Q0*Q1 + Q1*X2'*X1' + Q0'*X2'*X1'*X0 + Q0*X2*X1'*X0'

Karnaugh diagram for Out

Q0'	X1'*X0'	X1'*X0	X1*X0	X1*X0'	Q0	X1'*X0'	X1'*X0	X1*X0	X1*X0'
Q1'*X2'	0	0	0	0	Q1'*X2'	0	0	0	0
Q1'*X2	0	0	0	0	Q1'*X2	0	0	0	0
Q1*X2	0	0	0	0	Q1*X2	1	1	1	1
Q1*X2'	0	0	0	0	Q1*X2'	1	1	1	1

Uttrykket for Out blir: Out = Q0*Q1