

Preliminary

DS-CC6920B-SC-rev0.1 crossMAG series

CC6920B

高性能霍尔效应电流传感器 5A/10A/20A/25A/30A/40A/50A

概述

CC6920B 是一款高性能霍尔效应电流传感器,能够更为有效的测量直流或交流电流,并具有精度高、出色的线性度和温度稳定性,广泛应用于工业、消费类及通信类设备。

CC6920B 内部集成了一颗高精度、低噪声的线性霍尔电路和一根低阻抗的主电流导线。输入电流流经内部的 0.9mΩ导线,其产生的磁场在霍尔电路上感应出相应的电信号,经过内部处理电路输出电压信号,使得产品易于使用。低阻抗的导线可最大限度减少功率损耗和热散耗,内部固有绝缘在输入电流路径与二次侧电路之间提供了 600V 的基本工作隔离电压和 3500V_{RMS} 绝缘耐压。线性霍尔电路采用先进的 BiCMOS 制程生产,包含了高灵敏度霍尔传感器组件、霍尔信号预放大器、共模磁场抑制电路、温度补偿单元、振荡器、动态失调消除电路和放大器输出模块。在无电流的情况下,静态输出为 50%VCC。

在电源电压 3.3V 条件下,输出可以在 0.33~2.97V 之间随磁场线性变化,线性度可达 0.1%。CC6920B 内部集成的差分共模抑制电路可以 让芯片输出不受外部干扰磁信号影响,集成的动态失调消除电路使 IC 的灵敏度不受外界压力和 IC 封装应力的影响。

CC6920B 提供 SOP8 封装,工作温度范围为-40 至+125°C,符合 RoHS 相关规定要求。

特性

- ◆ 提供 0.5VCC 零电流基准输出,提供更加灵活的应用模式
- ◆ 测量范围宽, 5A,10A,20A,25A,30A,40A,50A 多种量程可选
- ◆ 隔离耐压高,导线引脚到信号引脚有 3500VRMS 的安全隔离电压
- ◆ 低损耗,导线电阻 0.9mΩ
- ◆ 带宽高,可达 250kHz,阶跃响应时间 1.2μs
- ◆ 常温误差 0.5%,全温度范围内误差±3%
- ◆ 温度稳定性好,采用专利的霍尔信号放大电路和温度补偿电路
- ◆ 差分霍尔结构, 抗外部磁干扰能力强
- ◆ 抗机械应力,磁参数不会因为受外界压力而偏移
- ♦ ESD (HBM) 4000V

应用

- ◆ 电机控制
- ◆ 负载监测系统
- ◆ 开关电源
- ◆ 过流故障保护
- ◆ 其他需要电流检测的应用

功能框图

订购信息

产品名称	灵敏度(mV/A)	封装外形	包装
CC6920BSO-05A	264	SOP8	编带, 2000 片/卷
CC6920BSO-10A	132	SOP8	编带,2000 片/卷
CC6920BSO-20A	66	SOP8	编带,2000 片/卷
CC6920BSO-25A	52.8	SOP8	编带,2000 片/卷
CC6920BSO-30A	44	SOP8	编带,2000 片/卷
CC6920BSO-40A	33	SOP8	编带,2000 片/卷
CC6920BSO-50A	26.4	SOP8	编带,2000 片/卷

管脚定义

SOP8 封装

名称	编号	功能	名称	编号	功能
IP+	1	采样电流正端	GND	5	地
IP+	2	采样电流正端	VZCR	6	零电流基准信号输出
IP-	3	采样电流负端	OUT	7	信号输出端
IP-	4	采样电流负端	VCC	8	电源电压

极限参数

参数	符号	数值	单位
电源电压	Vcc	7	V
输出电压	V _{оит}	-0.3~VCC+0.3	V
输出源电流	I _{OUT(SOURCE)}	6	mA
输出沉电流	lout(sink)	30	mA
通用型绝缘电压	V _{ISO}	3500	VRMS
输入电流峰值电流(3秒)	IPEAK	100	Α
输入电流持续电流	Icon	40	А
工作环境温度	T _A	-40~125	°C
最大结温	TJ	165	°C
存储环境温度	Ts	-55~150	°C
磁场强度	В	无限制	mT
静电保护	ESD(HBM)	4000	V

注意: 应用时不要超过最大额定值,以防止损坏。长时间工作在最大额定值的情况下可能影响器件的可靠性。

隔离特性

参数	符号	测试条件/注释	数值	单位
介电强度测试电压	V _{iso} 型式试验 50/60Hz,1min		3500	V _{RMS}
月 电强度侧 医电压	V _{TEST}	t = 1s (100% production)	3900	V_{RMS}
基本绝缘工作电压	Vwesi	基本绝缘	600	V_{PK}
基 本纪缘工作电压	VWFSI	UL standard 62368-1:2014	424	V _{RMS}
电气间隙		输入端至输出端,最短距离	3.8	mm
最大重复峰值隔离电压	V _{IORM}	交流电压 (双极)	600	V_{PK}
最大工作隔离电压	V _{IOWM}	交流电压 (正弦波)	424	V _{RMS}
取八工行附內电压	VIOWM	直流电压	600	V_{DC}
最大瞬态隔离电压	V _{IOTM}	型式试验, t = 60s	4949	V
取八桝心隔齿电压	V _{TEST}	t = 1s (100% production)	5515	V_{PK}
最大浪涌隔离电压(注1)	V _{IOSM}	型式试验 V _{TEST} = 1.3×V _{IOSM} IEC 62368-1,1.2/50µs 波形	6000	V _{РК}

注 1: 在空气或油中进行测试,以确定芯片自身的抗浪涌能力。

推荐工作环境 (若无特别指明,开放环境,静止空气)

	符号	最小值	最大值	单位
输入电压(<i>注 1</i>)	VIN+,VIN-(注1)	-600	600	V_{PK}
输入电流(直流/交流有效值)(注2)	IP	-50	50	Α
电源电压	Vcc	3.0	3.6	V
环境温度	T _A	-40	125	°C

注 1: VIN+,VIN-是指电流输入引脚 IP+和 IP-的电压,相对于 5 脚(GND)。

工作特性 (若无特别指明, Vcc=3.3V @ 25°C)

参数	符号	条件	最小值	典型值	最大值	单位
电气特性						
供电电压	Vcc	-	3.0	-	3.6	V
静态电流	Icc	OUT 悬空	-	20	25	mA
内部基准	VZCR		-	1.65	-	V
静态输出电压	V _{OUTQ}	IP=0	-	1.65	-	V
输出电容负载	CL		-	-	1	nF
输出电阻负载	RL		1.5	-	-	kΩ
主电流端电阻	R _P	IP=2A	-	0.9	1.2	mΩ
传输延迟时间	t₀			1	2	μs
上升时间	tr		-	1	2.2	μs
共模抑制比	CMRR		38	-	-	dB
系统带宽	BW	-3dB	250	-	-	kHz
基准输出源电流	I _{ZCR(SOURCE)}		-	-	400	μΑ

注 2: 因环境温度升高而降低。

接上表

参数	符号	条件	最小值	典型值	最大值	单位			
电气特性									
基准输出沉电流	Izcr(sink)		-	-	3000	μΑ			
线性度误差	Lin _{ERR}		-	0.1	0.5	%			
对称性误差	Sym _{ERR}		-	0.5	1.5	%			
POR 时间	T _{POR}	输出从 0 到 90%	-	10	-	μs			

5A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电流范围	I _P	-	-5	-	5	Α
灵敏度	Sens	全电流范围	258	264	270	mV/A
零电流差分输出误差	V _{OE}		-30		30	mV
输出噪声	V _{N(P-P)}		-	47	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.22	-	mV/°C
灵敏度温度系数	Δ_{SENS}		-	0.020	-	mV/A /°C
总输出误差	Етот		-2.0	-	2.0	%

10A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电流范围	I _P	-	-10	-	10	Α
灵敏度	Sens	全电流范围	127	132	135	mV/A
零电流差分输出误差	V _{OE}		-27		27	mV
输出噪声	V _{N(P-P)}		-	37	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.22	-	mV/°C
灵敏度温度系数	Δ_{SENS}		-	0.020	-	mV/A /°C
总输出误差	Етот		-2.0	-	2.0	%

20A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电流范围	l _P	-	-20	-	20	Α
灵敏度	Sens	全电流范围	63	66	69	mV/A
零电流差分输出误差	V _{OE}		-17		17	mV
输出噪声	V _{N(P-P)}		-	24	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.22	-	mV/°C
灵敏度温度系数	Δ_{SENS}		-	0.013	-	mV/A /℃
总输出误差	Етот		-2.0	-	2.0	%

crosschip Preliminary

25A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电流范围	lР	-	-25	-	25	Α
灵敏度	Sens	全电流范围	51	52.8	54	mV/A
零电流差分输出误差	V _{OE}		-14		14	mV
输出噪声	V _{N(P-P)}		-	20	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.22	-	mV/°C
灵敏度温度系数	Δ_{SENS}		-	0.011	-	mV/A /°C
总输出误差	Етот		-2.0	-	2.0	%

30A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电流范围	lР	-	-30	-	30	Α
灵敏度	Sens	全电流范围	42	44	46	mV/A
零电流差分输出误差	VoE		-10		10	mV
输出噪声	V _{N(P-P)}		-	20	-	mV
零电流输出温度系数	$\Delta V_{\text{OUT(Q)}}$		-	0.18	-	mV/°C
灵敏度温度系数	Δ_{SENS}		-	0.010	-	mV/A /°C
总输出误差	Етот		-2.0	-	2.0	%

40A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电流范围	I _P	-	-40	-	40	А
灵敏度	Sens	全电流范围	32	33	34	mV/A
零电流差分输出误差	Voe		-7		7	mV
输出噪声	V _{N(P-P)}		-	17	-	mV
零电流输出温度系数	$\Delta V_{\text{OUT(Q)}}$		-	0.14	-	mV/°C
灵敏度温度系数	Δsens		-	0.007	-	mV/A /°C
总输出误差	Етот		-2.0	-	2.0	%

50A 系列

参数	符号	条件	最小值	典型值	最大值	单位
电流范围	I _P	-	-50	-	50	Α
灵敏度	Sens	全电流范围	25	26.4	27	mV/A
零电流差分输出误差	V _{OE}		-7		7	mV
输出噪声	V _{N(P-P)}		-	17	-	mV
零电流输出温度系数	$\Delta V_{OUT(Q)}$		-	0.11	-	mV/°C
灵敏度温度系数	Δsens		-	0.007	-	mV/A /°C
总输出误差	Етот		-2.0	-	2.0	%

典型应用电路

典型应用

过流故障检测器

电流峰值监测应用

零点迁移应用

注意: Vour的输出方向

整流输出,代替电流互感器应用

增益放大应用

建议设计时按照 0.3mA 预留余量

单向电流 单电源 零点迁移应用

crossMAG series

功能描述

CC6920B 是基于霍尔传感器的精密电流传感器,具有 600V 的基本隔离工作电压,在整个温度范围内<3%的满量程误差和零电流基准信 号输出,可实现单向或双向电流检测。输入电流流经隔离的输入电流引脚之间的导线,该导线在室温下具有1mΩ的电阻,可减少插入损耗。 输入电流产生的磁场由霍尔传感器感测,并由精密信号链放大。可用于交流和直流电流测量,带宽为 250kHz。测量电流 5-50A,共有 7 种电 流量程可选择,可以在 3.0V 至 3.6V 的单电源下工作。CC6920B 针对高精度和温度稳定性进行了优化,在整个范围内均补偿了失调和灵敏度。

CC6920B 的输入电流通过 IP+和 IP-引脚流经封装体的一次侧,流过芯片的电流会产生与输入电流成比例的磁场,并由隔离的精密霍尔 传感器 IC 进行测量。与其他电流测量方法相比,低阻抗的引线框路径减少了功耗,并且在一次侧不需要任何外部器件。此外,内部集成的差 分共模抑制电路可以让芯片输出不受外部干扰磁信号影响,仅测量了由输入电流产生的磁场,从而抑制了外部磁场的干扰。

一次侧电流输入导线在 25°C 时的典型电阻为 0.9mΩ。引线框由铜制成,输入导线的温度系数为正,导线电阻随温度增加而变大,典型 的温度系数为 3300ppm/°C, 温度每升高 100°C, 一次侧电阻就会上升 33%。

输入电流

在使用时,芯片一次侧(封装引脚 1-4)串联于整个回路中的任意位置。输入电流以 IP+(封装引脚 1-2)流向 IP-(封装引脚 3-4)为正,反之为 负。不要在 IP+和 IP-之间并联电阻,除非有极其特殊的原因——例如最大限度的降低插入损耗——这样会使流经芯片的电流减小,导线电阻也 会受到温度漂移影响,需要外部对整个系统进行温度以及精度校正。

输出特性

CC6920B 的静态输出点(IP = 0A 时)为 VCC / 2。

电流增大时, VouT 增大, 直至输出运放的饱和电压(Vcc - 轨电压); 电流减小时, VouT减小, 直至输出运放的饱和电压(GND+轨电 压)。芯进保证 Vour 在 0.33~2.97V 内的精度及线性度,为了保证大批量制造的一致性,该范围留有一定的余度,但是不建议客户使用该余度。 输入电流超过量程时,Vour的输出趋近于电源的轨电压,输入电流未超过芯片的耐受极限时,该电压会一直保持,输入电流恢复到量程

范围之内后,	Vour 的输出会恢复正常,	不会对芯片造成任	何损伤。	
	产品名称	输入电流	灵敏度(mV/A)	计算公式 (注 1)
	CC6920BSO-05A	-5A ~ +5A	264	$V_{OUT} = VCC / 2 + 0.264 \times I_P(A)(V)$

厂吅石协	和八电 机	火蚁及(IIIV/A)	り昇公式 (注 1)
CC6920BSO-05A	-5A ~ +5A	264	$V_{OUT} = VCC / 2 + 0.264 \times I_P(A)(V)$
CC6920BSO-10A	-10A ~ +10A	132	$V_{OUT} = VCC / 2 + 0.132 \times I_P(A)(V)$
CC6920BSO-20A	-20A ~ +20A	66	$V_{OUT} = VCC / 2 + 0.066 \times I_P(A)(V)$
CC6920BSO-25A	-25A ~ +25A	52.8	V _{OUT} = VCC / 2 + 0.0528 × I _P (A)(V)
CC6920BSO-30A	-30A ~ +30A	44	$V_{OUT} = VCC / 2 + 0.044 \times I_P(A)(V)$
CC6920BSO-40A	-40A ~ +40A	33	V _{OUT} = VCC / 2 + 0.033 × I _P (A)(V)
CC6920BSO-50A	-50A ~ +50A	26.4	V _{OUT} = VCC / 2 + 0.0264 × I _P (A)(V)

注 1: 该公式仅适用于直流电流计算,交流电流应用时,应注意 | PEAK = 1.414 × | RMS,并注意电流方向的正负。

320mV 1.62 V Δ1.30 V

9 3月 2021 -3.00 A 09:38:02

Vout vs IP(正向电流上升沿阶跃响应)(5A)

Vout vs IP(负向电流上升沿阶跃响应)(5A)

Vout vs IP(负向电流下降沿阶跃响应)(5A)

280.933ns 1.96093µs

∆1.68000µs

1.60 V

∆1.22 V

9 3月 2021 -3.80 A 09:58:30

Vout vs IP(正向电流上升沿阶跃响应)(10A)

Vout vs IP(负向电流上升沿阶跃响应)(10A)

Vouт vs IP (正向电流下降沿阶跃响应) (10A)

Vouт vs IP (负向电流下降沿阶跃响应) (10A)

Vour vs IP (负向电流上升沿阶跃响应) (20A)

Vour vs IP(正向电流下降沿阶跃响应)(20A)

Vour vs IP(负向电流下降沿阶跃响应)(20A)

crossMAG series

Vout vs IP(正向电流上升沿阶跃响应)(30A)

Vout vs IP(负向电流上升沿阶跃响应)(30A)

Vouт vs IP (负向电流下降沿阶跃响应) (30A)

1.60 V 580mV ∆1.02 V

明 1 93月 2021 -8.80 A 14:33:29

Vout vs IP(正向电流上升沿阶跃响应)(40A)

Vout vs IP(负向电流上升沿阶跃响应)(40A)

Vour vs IP(正向电流下降沿阶跃响应)(40A)

Vouт vs IP (负向电流下降沿阶跃响应) (40A)

Vouto vs. Ta V_{ZCR} vs. Ta

 V_{OE} vs. Ta Sens error vs. Ta

Vout error vs. Ta ICC vs. Ta

V_{OUTQ} vs. Ta V_{ZCR} vs. Ta

Voe vs. Ta Sens error vs. Ta

 V_{OUT} error vs. Ta ICC vs. Ta

V_{OUTQ} vs. Ta V_{ZCR} vs. Ta

Voe vs. Ta Sens error vs. Ta

Vout error vs. Ta ICC vs. Ta

Vouto vs. Ta V_{ZCR} vs. Ta

 V_{OE} vs. Ta Sens error vs. Ta

ICC vs. Ta V_{OUT} error vs. Ta

外形尺寸

SOP8 封装

注意:

1. 尺寸单位为英寸(毫米)。

打标:

第一行: CC6920BSO- 产品名称

第二行: ELC-XXA

XX: 检测电流范围

第三行: XXYYWW

- XX 代码
- YY 年度后两位数字
- WW 星期数

封装参考

参考一: PCB 开槽增加爬电距离

参考二:缩短焊盘长度增加爬电距离

包装&编带

卷盘尺寸信息

User Direction of Feed

注意:每盘载带前后空 50±2 格

关于芯进

成都芯进电子有限公司(CrossChip Microsystems Inc.)成立于 2013 年,是一家国家高新技术企业,从事集成电路设计与销售。公司技术 实力雄厚,拥有四十余项各类专利,主要应用于霍尔传感器信号处理,拥有下列产品线:

- 高精度线性霍尔传感器
- 各类霍尔开关
- 单相电机驱动器
- 单芯片电流传感器
- AMR 磁阻传感器

联系我们

成都

地址: 四川省成都市高新西区天辰路88号3号楼2单元4楼

电话: +86 - 28 - 87787685

邮箱: support@crosschipmicro.com

网址: http://www.crosschipmicro.com

深圳

地址:深圳市南山区高新南一道创维大厦 A1001

上海

地址:上海市嘉定区沪宜公路 4476 号魔方社区 3 楼创客工场