PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-244440

(43)Date of publication of application: 21.09.1993

(51)Int.CI.

HO4N 1/417 GO6F 15/66 HO3M 7/30 HO4N 1/415

(21)Application number: 04-044221

(71)Applicant:

NEC COMMUN SYST LTD

(22)Date of filing:

02.03.1992

(72)Inventor:

ОКАМОТО КОЈІ

(54) CODING DECODING SYSTEM

(57)Abstract:

PURPOSE: To reduce the memory capacity by coding image data divided into blocks in the unit of blocks, dividing the coded data in the unit of bytes and latching fraction bits in the case of the division as compression data. CONSTITUTION: An image 104 inputted by a scanner 100 is stored in a memory 101 as binary image data 105 in the unit of predetermined blocks. The data 105 stored in the memory 101 are coded by a coder 102. The coder 102 encodes the data in such a way that image data 107 in a head line of the data 105 correspond to coded data 110 in a head line of coded data 106 in the unit of blocks and image data 108 in a 2nd line of the data 105 correspond to coded data 111 in a 2nd line of the coded data 105 in the unit of blocks sequentially and so on, and image data 109 in a final line of the data 105 correspond to coded data 112 in a final line of the coded data 106 in the unit of blocks. Then, fraction bits 114 are obtained from fraction bits 113 and the coded data 106 in the unit of blocks are stored on a disk 103.

LEGAL STATUS

[Date of request for examination]

29.02.1996

[Date of sending the examiner's decision of rejection]

28.04.1998

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-244440

(43)公開日 平成5年(1993)9月21日

(51)Int.Cl. ⁵ H 0 4 N G 0 6 F H 0 3 M H 0 4 N	15/66 7/30	識別記号 330 C	庁内整理番号 8839-5C 8420-5L 8836-5J 8839-5C	FI	技術表示箇所
H 0 4 N	1/415		8839-5C		

審査請求 未請求 請求項の数1(全 5 頁)

(21)出願番号	特願平4-44221	(71)出願人	000232254
(22)出願日	平成 4 年(1992) 3 月 2 日	(72)発明者	日本電気通信システム株式会社 東京都港区三田1丁目4番28号 岡本 光司
			東京都港区三田一丁目 4 番28号日本電気通
		(74)代理人	信システム株式会社内 弁理士 京本 直樹 (外2名)

(54)【発明の名称】 符号化復号化方式

(57)【要約】

【目的】イメージデータの符号化復号化方式において、 符号化データのメモリの容量を少なくする。

【構成】1ページ分のイメージ104をいくつかのブロックに分割し、各ブロックに対して符号化を行なう。これをバイト単位に分割し、残った端数ビット数もデータとして出力する。復号化のときは、上記端数ビットを考慮し、ブロック間のデータを連結するときにデータをシフトして正しい復号化出力を得る。

1

【特許請求の範囲】

【請求項 1 】 イメージデータの符号化復号化において、

符号化時に、1ページ分のイメージデータをあらかじめ 定められたブロック単位に分割し、このブロック単位に 分割したイメージデータを符号化し、この符号化したデ ータをバイト単位に分割し、この符号化データとこの符 号化データをバイト単位に分割したときの端数ピット数 とを符号化出力とし、

かつ、復号化時に、前記符号化データ、端数ビット数お 10 よび次ブロックの先頭からあらかじめ定められたバイト 数の符号化データを入力し、前記次ブロックの符号化デ ータを端数ビット数分シフトすることにより前記符号化 データに連結し、前記符号化データを復号化して復号化 出力を得ることを特徴とする符号化復号化方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、2値のイメージデータの符号化復号化方式に関し、特にMの2乗・R符号化復号化方式を用いた符号化復号化方式に関する。

[0002]

【従来の技術】従来、MH/MR符号化復号化方式では、1ライン毎に符号化が行なわれ、これを繰り返すことにより1ページ分の符号化データを得ている。その結果得られた1ライン分の符号化データは、ラインの先頭を表わす符号化データとそのイメージデータの符号化データ、そして最後にファイルビットが付加され、これによりバイト単位の符号化データを構成する。そして復号化するときも符号化と同様に、1ライン毎に復号化を行なうことができる。

【0003】 これに対してMの2乗・R符号化復号化方式では、1ページ毎に符号化が行なわれ、その結果得られた1ページ分の符号化データは、その1ページ分のイメージデータの符号化データと1ページの終わりを表わす符号化データ、そして最後にファイルピットが付加され、これによりバイト単位の符号化データを構成する。そして復号化するときも符号化と同様1ページ毎に復号化を行なっている。

【0004】従来の技術について、図面を参照してさら に説明する。

【0005】図3は従来技術による符号化方式のフローダイアグラムである。符号化回路は、イメージ304を入力するスキャナ300と、スキャナ300で入力したイメージ304をイメージデータ305として格納するメモリ301と、メモリ301に格納したイメージデータ305を符号化する符号器302と、符号器302で符号化した符号化データ306を格納するディスク303とで構成されている。

【0006】次に符号化時の動作について説明する。1 ページ分のイメージ304をスキャナ300で入力し、 この入力したイメージ304を1ページ分の2値のイメージデータ305としてメモリ301に格納する。この格納したイメージデータ305を符号器302で符号化する。このとき、1ページ分のイメージデータ305の先頭ラインであるイメージデータ307を1ページ分の符号化データ306の先頭ラインである符号化データ310に符号化し、イメージデータ305の二番目のラインである符号化データ311に符号化し、以下同じ様に符号化していき、最後に1ページ分のイメージデータ305の最終ラインであるイメージデータ305の最終ラインであるイメージデータ309を1ページ分の符号化データ306の最終ラインである符号化データ312に符号化する。そして、フィルビット313をバイト単位にするように付加して1

2

【0007】図4は従来の技術による復号化方式のフローダイアグラムである。復号化回路は、符号化データ404を格納するディスク400と、ディスク400に格20納した符号化データ404を復号化する復号器401と、符号化データ404を復号器401で復号化したイメージデータ405を格納するメモリ402と、このイメージデータ405をイメージ406として出力するプリンタ403とで構成されている。

ペーィ分の符号化データ306として、この符号化デー

タ306をディスク303に格納する。

【0008】次に復号化時の動作について説明する。ディスク400に格納している1ページ分の符号化データ404を復号器401で復号化する。このとき復号器401は、1ページ分の符号化データ404の先頭ラインである符号化データ407を1ページ分のイメージデータ405の先頭ラインであるイメージデータ410に、符号化データ404の二番目のラインである符号化データ408をイメージデータ405の二番目のラインである行号化データ408をイメージデータ405の上番目のラインである行号化データ409を同じく最終ラインであるイメージデータ412に復号化していき、1ページ分のイメージデータ405とする。このイメージデータ405をメモリ402に格納し、格納したイメージデータ405を1ページ分のイメージイ06としてプリンタ403に出力する。

40 [0009]

【発明が解決しようとする課題】上述した従来のMの2 乗・R符号化復号化方式では、1ページ単位で符号化お よび復号化をするので1ページ分のイメージデータを格 納するための大容量のメモリが必要になるという問題が ある。

[0010]

【課題を解決するための手段】本発明によれば、イメージデータのMの2乗・R符号化復号化において、符号化時に、1ページ分のイメージデータをあらかじめ定められたブロック単位に分割し、このブロック単位に分割し

たイメージデータを符号化し、この符号化したデータをバイト単位に分割し、この符号化データとこの符号化データをバイト単位に分割したときの端数ビット数とを符号化出力とし、かつ、復号化時に、前記符号化データ、端数ビット数および次ブロックの先頭からあらかじめ定められたバイト数の符号化データを入力し、前記次ブロックの符号化データを端数ビット数分シフトすることにより前記符号化データに連結し、前記符号化データを復号化して復号化出力を得ることを特徴とする。

[0011]

【実施例】次に、本発明について図面を参照して説明す ろ...

【0012】図1は本発明の一実施例における符号化方式のフローダイアグラムである。符号化回路は、イメージ104を入力するスキャナ100と、スキャナ100によって入力したイメージ104をイメージデータ105として格納するメモリ101と、メモリ101に格納したイメージデータ105を符号化する符号器102と、符号器102で符号化した符号化データ106を格納するディスク103とで構成されている。

【0013】次に符号化時の動作について説明する。あ らかじめ定めたブロック単位に分割したイメージ104 をスキャナ100で入力する。次にスキャナ100で入 力したイメージ104を、あらかじめ定めたブロック単 位の2値のイメージデータ105として、メモリ101 に格納する。そして、メモリ101に格納したイメージ データ105を符号器102で符号化する。次に符号器 102はブロック単位のイメージデータ105の先頭ラ インであるイメージデータ107をブロック単位の符号 化データ106の先頭ラインである符号化データ110 に、イメージデータ105の二番目のラインであるイメ ージデータ108を符号化データ106の二番目のライ ンである符号化データ111へと順次同じように符号化 し、ブロック単位のイメージデータ105の最終ライン であるイメージデータ109をブロック単位の符号化デ ータ106の最終ラインである符号化データ112へと 符号化する。その後、端数ビット113から端数ビット 数114を得て、ブロック単位の符号化データ106を ディスク103に格納する。

【0014】図2は本発明の一実施例における復号化方 40式のフローダイアグラムである。復号化回路は、第nブロックの符号化データ204 および第n+1ブロックの符号化データ205 を格納するディスク200と、このディスク200に格納した第nブロックの符号化データ200に格納した第nブロックの符号化データ200を表がイトの符号化データ206を付加した符号化データ207を復号化する復号器201と、第nブロックの符号化データ204 および第n+1ブロックの先頭からあらかじめ定めたkバイトの符号化データ206を付加した符号化データ207を復号器201で復号したイ 50

メージデータ208を格納するメモリ202と、メモリ202に格納しているイメージデータ208をイメージ209として出力するブリンタ203とで構成されている。

【0015】次に復号化時の動作について説明する。デ ィスク200に格納している第nプロックの符号化デー タ204と、次の第n+1ブロックの先頭からkバイト の符号化データ206を付加した符号化データ207を 復号器201で復号化する。すなわち、復号器201は 符号化データ207の先頭ラインである符号化データ2 10をブロック単位のイメージデータ208の先頭ライ ンであるイメージデータ213に復号化し、符号化デー タ207の二番目のラインである符号化データ211を ブロック単位のイメージデータ208の二番目のライン であるイメージデータ214に復号化し、以下同様に復 号化し、最後に第nブロックの最終ラインの符号化デー タ212をブロック単位の最終ラインのイメージデータ 215に復号化し、これによりブロック単位のイメージ データ208を得る。このブロック単位のイメージデー 20 タ208をメモリ202に格納し、メモリ202に格納 されているブロック単位のイメージデータ208をブロ ック単位のイメージ209としてプリンタ203に出力 する。

[0016]

【発明の効果】以上説明したように本発明はMの2乗・ R符号化復号化方式において、1ページのイメージデー タをあらかじめ定められたブロック単位に分割し、その ブロック単位のイメージデータを符号化し、その結果得 られた符号化データをバイト単位に分割し、符号化デー タおよび符号化データをバイト単位に分割したときの端 数ピット数を圧縮データとして保持することによりブロック単位で符号化および復号化することができ、このこ とによりメモリの容量を少なくできるという効果があ る。

【図面の簡単な説明】

【図1】(a)は本発明の一実施例における符号化時のフローを示すブロック図、(b)はデータの処理を説明する図である。

【図2】(a)は上記実施例における復号化時のフロー40 を示すブロック図、(b)はデータの処理を説明する図である。

【図3】(a)は従来技術による符号化時のフローを示すブロック図、(b)はデータの処理を説明する図である。

【図4】(a)は従来技術による復号化時のフローを示すブロック図、(b)はデータの処理を説明する図である。

【符号の説明】

100 スキャナ

50 101,202 メモリ

102 符号器103,200 ディスク

5

* 201 復号器 * 203 プリンタ

[図1]

【図2】

【図3】

【図4】

