Exam Prep Discussion 10

Markov Chain

 Represents a special relationship between variables in which the value of the current state depends only on the value of the previous state

- Markov Property: value of an S_t is independent of all previous timesteps, given S_{t-1}
- Probability distribution at a given time t:

$$P(S_t) = \sum_{s_{t-1}} P(S_t, s_{t-1}) = \sum_{s_{t-1}} P(S_t | s_{t-1}) P(s_{t-1})$$

Hidden Markov Model

- Markov chain with hidden states and evidence states at each timestep
- Purpose: find the probability distribution of the hidden state, given what we observe in the evidence states

re synonymous with probabilities!

Time Elapse Update

 Finding belief distribution of next hidden state given the belief distribution of the current hidden state

•
$$B'(S_{t+1}) = \sum_{s_t} P(S_{t+1}|s_t)B(s_t)$$

• Represents the probability that S_{t+1} takes on some value S_{t+1} , given the evidence up until just before this time (time t)

Wait, where does the "evidence" come in? This is because $\mathbf{B(s_t)}$ already incorporates the distribution of $\mathbf{s_t}$ given $\mathbf{e_{1:t}}$ Since we are summing $\mathbf{s_t}$ out, we get $\mathbf{P(S_{t+1} \mid e_{1:t})}$

Observation Update

- Incorporating evidence; finding belief distribution of next hidden state given the evidence we've observed at that timestep
- Must factor in the probability of observing that evidence (given the value of the state)
- $B(S_{t+1}) \propto P(e_{t+1}|S_{t+1})B'(S_{t+1})$
- Represents the probability that S_{t+1} is this value s_{t+1} , given the evidence up to AND INCLUDING this time (time t+1)

Why the ∞ instead of = ? We're leaving out a normalization factor of $P(e_{t+1} | e_{1:t})$; we don't care about our evidence distribution at this point in time

Particle Filtering

• Sampling an HMM via particles to obtain the belief distribution—like Bayes' net likelihood weighting sampling

