QCM 1 : Nombres complexes

Ce QCM est à traiter en début d'année à titre de révision sur le programme de 3A.

Pour chacune des 14 questions suivantes une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée.

Compléter par Vrai ou Faux dans la colonne de droite.

		A	2	
1	La partie réelle du nombre complexe	В	4	
	$z = (2 + i)^2 \text{ est}$	С	3	
		A	-2i	
	La partie imaginaire du nombre	В	0	
2	complexe $z = (1 - i)^2$ est	C	-2	
	Le module du nombre complexe	A	7	
3		В	$\sqrt{7}$	
	z = 4 + 3i est égal à :	С	5	
		A	<u>π</u>	
4	Un argument du nombre complexe	D	2	
	z = 2 - 2i est égal à	В	$-\frac{\pi}{4}$	
	2 2 20 000 0 000 W	С		
			$\frac{3\pi}{4}$	
		A	$\overline{z} = 2 + 5i$	
5	Si $z = 2 - 5i$ alors	В	z = -2 + 5i	
		С	$\bar{z} = -2 - 5i$	
	0 % 1 1 1 1 1 1 2	A	$z = \sqrt{3} + i$	
6	Soit z le nombre complexe de module 2 et d'argument $\frac{\pi}{3}$ alors	В	$z = 1 + i\sqrt{3}$	
		C	$z=2+i\frac{\pi}{2}$	
		A	3	
	La forme exponentielle de $z = -2 - 2i$ est	A	$z = -2\sqrt{2}e^{i\frac{\pi}{4}}$	
7		В	$z = 2\sqrt{2}e^{-i\frac{\pi}{4}}$	
		C	$z = -2\sqrt{2}e^{i\frac{\pi}{4}}$ $z = 2\sqrt{2}e^{-i\frac{\pi}{4}}$ $z = 2\sqrt{2}e^{-i\frac{3\pi}{4}}$	

Mr ABIDI Farid 4 A

QCM 1 : Nombres complexes

	$\frac{-3\pi}{40}$ i	A	La forme exponentielle de	
	$z = -e^{\frac{-3\pi}{40}i}$ $z = e^{\frac{37\pi}{40}i}$	В	$z = \frac{-\cos\frac{\pi}{8} - \sin\frac{\pi}{8}}{\cos\frac{\pi}{5} + \sin\frac{\pi}{5}} \text{ est :}$	
	$z = \frac{\cos\frac{\pi}{8} + \sin\frac{\pi}{8}}{\cos\frac{\pi}{5} + \sin\frac{\pi}{5}} e^{i\pi}$	С	$\cos\frac{\pi}{5} + \sin\frac{\pi}{5}$	8
	AB = 2	A	Soient A et B deux points du plan complexe muni du repère orthonormé	
	$z_{I} = 2$	В	$ \left(\begin{array}{c} (O, \vec{u}, \vec{v}) \text{ d'affixes respectives : } z_A = 1 + i \\ \text{et } z_B = 3 - i \text{ .} \end{array} \right) $	9
	$z_{I} = \frac{z_{A} - z_{B}}{2}$	С	Soit I le milieu de [AB] d'affixe z_I alors :	9
	$\arg\left(\frac{z_{B}-z_{A}}{z_{D}-z_{C}}\right)$	A	Soient A, B, C et D quatre points distincts deux à deux du plan complexe muni du repère orthonormé direct	
	$\frac{\arg(z_{\rm B} - z_{\rm A})}{\arg(z_{\rm D} - z_{\rm C})}$	В	$10 \left(\mathbf{O}, \mathbf{u}, \mathbf{v} \right).$	10
	$\arg\left(\frac{z_{D} - z_{C}}{z_{B} - z_{A}}\right)$	С	Une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{CD})$ est :	
	A, B et C sont alignés	A	Soient A, B et C trois points distincts deux à deux du plan complexe muni du	
n	ABC est un triangle rectangle en A	В	repère orthonormé direct (O, \vec{u}, \vec{v}) .	11
le	A, B et C appartiennent au cercle de diamètre [AB].	C	Si $\frac{z_C - z_A}{z_B - z_A} = 3i$ alors	
	le cercle de diamètre [AB]	A	Le plan complexe est rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) . Soit A et B	
	le cercle de diamètre AB	В	les points d'affixe respectives (1 + i)	12
	la médiatrice du segment [AB].	C	et 2i. L'ensemble des points M dont l'affixe z	
	le cercle de diamètre AB	В	repère orthonormé (O, u, v) . Soit A et B les points d'affixe respectives $(1 + i)$ et $2i$.	12

Mr ABIDI Farid 4 A

mme
1
[AB].

		A	2	Faux
$\begin{vmatrix} 1 \end{vmatrix}^1$	La partie réelle du nombre complexe	В	4	Faux
	$z = (2+i)^2 \text{ est}$	C	3	
				Vrai
	La partie imaginaire du nombre	A	-2i	Faux
2	complexe $z = (1 - i)^2$ est	В	0	Faux
		C	-2	Vrai
		A	7	Faux
	Le module du nombre complexe	В	$\sqrt{7}$	
$\begin{vmatrix} 3 \end{vmatrix}_{z}$	z = 4 + 3i est égal à:	C	5	Faux
		C	3	Vrai
		A	$\frac{\pi}{2}$	F
4	In argument du nombre complexe	n		Faux
	z = 2 - 2i est égal à	В	$-\frac{\pi}{4}$	Vrai
	i = 2 - 2i est egai a	C	$\frac{3\pi}{2}$	
			4	Faux
		A	$\overline{z} = 2 + 5i$	Vrai
$ _{5} $ $ _{5}$	Si $z = 2 - 5i$ alors	В	$\overline{z} = -2 + 5i$	Faux
		С	$\overline{z} = -2 - 5i$	Faux
		A	$z = \sqrt{3} + i$	Faux
	Soit z le nombre complexe de module 2	В	$z = 1 + i\sqrt{3}$	Vrai
6 e	et d'argument $\frac{\pi}{3}$ alors	C		Vrai
	3	C	$z = 2 + i\frac{\pi}{3}$	Faux
	La forme exponentielle de $z = -2 - 2i$ est	A	$z = -2\sqrt{2}e^{i\frac{\pi}{4}}$	Faux
7 L		В	$z = 2\sqrt{2}e^{-i\frac{\pi}{4}}$	Faux
		C	$z = -2\sqrt{2}e^{i\frac{\pi}{4}}$ $z = 2\sqrt{2}e^{-i\frac{\pi}{4}}$ $z = 2\sqrt{2}e^{-i\frac{3\pi}{4}}$	Vrai

Mr ABIDI Farid 4 A

	La forme exponentielle de	A	$\frac{-3\pi}{1}$	ID
	$z = \frac{-\cos\frac{\pi}{8} - \sin\frac{\pi}{8}}{\cos\frac{\pi}{5} + \sin\frac{\pi}{5}} \text{ est :}$	В	$z = -e^{\frac{-3\pi}{40}i}$ $z = e^{\frac{37\pi}{40}i}$	Faux Faux
8	$\cos\frac{\pi}{5} + \sin\frac{\pi}{5}$	C	$z = \frac{\cos\frac{\pi}{8} + \sin\frac{\pi}{8}}{\cos\frac{\pi}{5} + \sin\frac{\pi}{5}} e^{i\pi}$	Vrai
	Soient A et B deux points du plan	A	AB = 2	Faux
	complexe muni du repère orthonormé (O, \vec{u}, \vec{v}) d'affixes respectives : $z_A = 1 + i$	В	$z_{I} = 2$	Vrai
9	et $z_{\rm B} = 3 - i$.	С	$z_{\rm I} = \frac{z_{\rm A} - z_{\rm B}}{2}$	Т.
	Soit I le milieu de [AB] d'affixe z_I alors :			Faux
	Soient A, B , C et D quatre points distincts deux à deux du plan complexe muni du repère orthonormé direct $\left(O,\vec{u},\vec{v}\right)$.	A	$\arg\left(\frac{z_{B}-z_{A}}{z_{D}-z_{C}}\right)$	Faux
10		В	$\frac{\arg(z_{\scriptscriptstyle B} - z_{\scriptscriptstyle A})}{\arg(z_{\scriptscriptstyle D} - z_{\scriptscriptstyle C})}$	Faux
	Une mesure de l'angle $(\overrightarrow{AB}, \overrightarrow{CD})$ est :	С	$\arg\left(\frac{z_{D} - z_{C}}{z_{B} - z_{A}}\right)$	Vrai
	Soient A, B et C trois points distincts	A	A, B et C sont alignés	Faux
	deux à deux du plan complexe muni du repère orthonormé direct (O, \vec{u}, \vec{v}) .	В	ABC est un triangle rectangle en A	
11	Si $\frac{z_C - z_A}{z_B - z_A} = 3i$ alors	C	A, B et C appartiennent au cercle de diamètre [AB].	Faux
	Le plan complexe est rapporté à un	A	le cercle de diamètre [AB]	Faux
	repère orthonormé (O, \vec{u}, \vec{v}) . Soit A et B	В	le cercle de diamètre AB	Vrai
	les points d'affixe respectives (1 + 2i)	C	la médiatrice du segment [AB].	V 1 611
12	et 2i.		-	Faux
	L'ensemble des points M dont l'affixe z vérifie $ z-1-i =1$ est			

	Soient A, B et C trois points distincts deux à deux du plan complexe muni du	A	OACB est un parallélogramme	
13	repère orthonormé (O, \vec{u}, \vec{v}) .	В	C est le mileu de [AB]	Faux
	Si $z_C = z_A + z_B$ alors:	С	$\overrightarrow{OC} = \overrightarrow{BA}$	Faux
	Le plan complexe est rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) . Soit A et B	A	le cercle de diamètre [AB]	Faux
14	les points d'affixe respectives (1 + i)	В	le cercle de diamètre AB	Faux
14	et 2i . L'ensemble des points M dont l'affixe z vérifie $ z-1-i = z+2i $ est	C	la médiatrice du segment [AB].	