Taking GeoSPARQL to the 3D dimension!

Charles F. Vardeman II

cvardema@nd.edu

GeoVocamp DC 2015 Nov 30, 2015

"What's Chuck Thinking About?"

Mass of 1 paver (kg)	Vo	0.00588923	d^3) Pa	ivers in 1 cubic y	ard	mass of 1 yd^3 (kg) 1315.961499				aggrega	gate/polymer in paver (kg) 7.61			mass of ag	g./polymer is	n functional	unit	
7.75				169.8014838				21.7151	6					1292.18				
							17000				0.07			11.8861				
	_								_								_	+
Aggregate Shipping	Distance	Miles/Gallon	Gallons	Co2 emissions/	Co2 emissions/t	kg Co2 per functional unit	Round Trip		70 T									
Wausau to South Bend	375	6	62.5	10.15	634.375	14.34286468	28.6857294		60	-								
Prairie du Chein to South Bend	348	6	58	10.15	588.7	13.31017843	26.6203569		90									
Dupont to Vancouver	120	6	20	10.15	203	9.179433397	18.3588668		50 +	-	_							
Battle Ground to Vancouver	20	6	3.333333333	10.15	33.83333333	1.529905566	3.05981113		40	•	-				■ Gallons			
Polyal Shipping	Distance	Miles/Gallon	Gallons	Co2 emissions/	Co2 emissions/	kg Co2 per functional unit	Round Trip		30	٠.	-	_			= kg Co2 per	functional us		+
Houston, TX to South Bend	1140	6	190	10.15	1928.5	1.348373606	2.69674721		20	-	_	-			- kg Co2 per	runcoonal ur	10,	\neg
Virginia to South Bend	660	6	110			0.780637351									Round Trip			
Houston, TX to Vancouver	2400	6				2.838681276			10 +									
Virginia to Vancouver	2800	6	466.6666667	10.15		3.311794822			0 +		_							
Paver Shipping	Distance	Miles/Gallon	Gallons	Co2 emissions/	Co2 emissions/s	Co2 per functional unit	Round Trip			Wausau South Be			couver to V					+
Vancouver to South Bend	2200	Miles/Gallon 6									South	Bend						+
varicouver to south being	2200		300.0000007	20.23	3721.000007	171-363010	344.771441											+
				180														_
Resource Consumption MJ	Dupont	Northwest	Local Scenario								_ 7 T							
Crude Oil	105	101									6 +				_	-		
Hard Coal	5.23	5.18		2.40														
Lignite	8.82	8.81	8.64	120 1				_	Natura	16.0	5							
Natural Gas	34.3	34.1							Hatur	ii Gas	4				_	-		
Total	153.35	149.09	79.92	100 -					Lignite	.	3 -					— ■ke Co	2 per func	ctional
	_			80 -				_	Hard (lani	_ ′							
Solid Waste (kg)	Dupont	Northwest	Local Scenario	60 -			_				2 +					Roun	nd Trip	
Overburden	150.9	150.6						'	Crude	Oil	1							
Slag	0.3	0.3																
Spoil	3.9	3.9									0 +					_		
Tailings	14.2	13.6									,	louston, TX		Houston, TX				
Other Waste	1	1	919	_	Dupont	Northwest	Local Scenari	0				to South Bend	South Bend	to Vancouve	r Vancouver			
Total	170.3	169.4	149.9									DETIU						_
Water Consumption (kg)	Dupont	Northwest	Local Scenario	_														\pm
Waste Ground Water	0.6	0.6	0.5	175														
Cooling Water	1618.7	1605	1342.6															
Turbined Water	55625.6	55428.4	51644.3															
Waste Sea Water	174	173	111	165	14.2	13.6												\top
Waste River Water	677.3	676.3	657.1	160		17.0			Other	Waste								
Total	58096.2	57883.3	53755.5	155				_	Tailing									
				150														
GWP	Dupont	Northwest	Local Scenario	145			2.2		Spoil									\top
kg CO2 (GaBi)	328								Slag									+
kg CO2 (manual)	218.9	208.5			150.9	150.6				ndar.								+
kg CO2 eq. (GaBi)	348	339		135			143.3		Overbu	roen								+
kg CO2 eq. (manual)	783.2	752.4		130														
CHID	North	Markhauri	ables det	125	Dupont	Northwest	Local Scenario											
GWP kg CO2 (GaBi)		Northwest w/ cru			Supuni		cover poendin	-	_					-				+
RECORD (CASIS	319	337.2	I															
kg CO2 (GaBi)	339								-									

CENTER for RESEARCH COMPUTING

"A Green Resilience Framework to Support the Design of Sustainable Buildings Under Multiple Hazards"

"Connect GreenScale (BIM), Computational Resilience Models, Sensor, ..., **City Data**"

DisConBB - NFIE Workshop, Spring 2015

Share this page

EarthCube Building Block on Discrete & Continuous Data (DisConBB)

Spring 2015 Workshop on the National Flood Interoperability Experiment (NFIE): Summer Institute Planning

March 17-19, 2015 at the new National Water Center on the campus of the University of Alabama in Tuscaloosa

Project of the NOAA/National Weather Service, US Geological Survey, US Army Corps of Engineers, Federal Emergency Management Agency, and NSF

Led by the University of Texas at Austin, University of Alabama, University of Illinois, University of North Carolina, Brigham Young University, CUAHSI, NCAR

- Venue
- Participants List
- Supporting Files
- Fall 2014 NFIE Kickoff Workshop, Nov 5-7, Tysons Corner, Virginia

City Geography Markup Language (CityGML)

- Open Geospatial Consortium Standard based on GML3.
- Provides thematic semantics for city objects (buildings, vegetation, water, terrain, traffic, tunnels, bridges etc.)
- Data model is **UML** based.
- Provides representations for 3D geometry, topology and appearance in 5 discrete Levels of Detail (LOD) <urn:Chuck:CityGML:LOD>

LOD **<urn:Chuck:CityGML:LOD>**Definitions

- LOD 0: Regional Model (2.5D Digital Terrain Model)
- LOD 1: City/Site Model (block model w/o roof structures.
- LOD 2: City/Site Model (textured roofs)
- LOD 3: City /Site Model (detailed architecture model)
- LOD 4: Interior Model ("walkable" interior space)

"Chuck is thinking that the ETL for CityGML looks like a lot of work and that it's a data silo and that the semantics will be difficult to extend since they are not explicit"

"Question: What Would CityGML look like in Linked Open Data (LOD)

CityGML using OGC GeoSPARQL?

- Provides geometry descriptions in GML and WKT
- Would need to support 3D descriptions for LOD 1-4
- Would need support for 3D operations
- Would need to borrow "thematic patterns", a LOD "pattern" (relative relationship as a basis?)
- "Formalization" of CityGML Schema?

Starting Points?

An Ontology Design Pattern for Dynamic Relative Relationships

Holly Ferguson¹, Adila A. Krisnadhi^{2,3}, and Charles F. Vardeman II¹

University of Notre Dame {hfergus2,cvardema}@nd.edu Wright State University University of Indonesia {krisnadhi}@gmail.com

Abstract. This research describes an ontology design pattern for dynamically conceptualizing, establishing, tracking, and updating relative relationships and dependencies between entities (real or representational) of a physical, temporal, and/or importance scope. We present a Relative Relationship (RR) Pattern, associated axioms, an implementation of current geometric scale translation research, a detailed example, and suggestions for other potential use cases. It provides data hooks that allow dynamic updating of linked data as changes occur in preference systems, scaling systems, or time expiration parameters; additionally, it separates the false notion that level of detail is always synonymous with scope. Furthermore, we discuss how this design pattern potentially acts as an intermediate step to assist the transition between open linked-data and decision support frameworks that need to readily update changes within the accurate data over modern, distributed data access points.

14.7. PostGIS Functions that support 3D

The functions given below are PostGIS functions that do not throw away the Z-Index.

- AddGeometryColumn Adds a geometry column to an existing table of attributes. By default uses type modifier to define rather than
 constraints. Pass in false for use_typmod to get old check constraint based behavior
- Box3D Returns a BOX3D representing the maximum extents of the geometry.
- DropGeometryColumn Removes a geometry column from a spatial table.
- . GeometryType Returns the type of the geometry as a string. Eg: 'LINESTRING', 'POLYGON', 'MULTIPOINT', etc.
- ST_3DArea Computes area of 3D surface geometries. Will return 0 for solids.
- ST_3DClosestPoint Returns the 3-dimensional point on g1 that is closest to g2. This is the first point of the 3D shortest line.
- ST_3DDFullyWithin Returns true if all of the 3D geometries are within the specified distance of one another.
- ST_3DDWithin For 3d (z) geometry type Returns true if two geometries 3d distance is within number of units.
- ST_3DDifference Perform 3D difference
- ST_3DDistance For geometry type Returns the 3-dimensional cartesian minimum distance (based on spatial ref) between two geometries in projected units.
- ST_3DExtent an aggregate function that returns the box3D bounding box that bounds rows of geometries.
- ST_3DIntersection Perform 3D intersection
- ST_3DIntersects Returns TRUE if the Geometries "spatially intersect" in 3d only for points, linestrings, polygons, polyhedral surface (area). With SFCGAL backend enabled also supports TINS
- ST_3DLength Returns the 3-dimensional or 2-dimensional length of the geometry if it is a linestring or multi-linestring.
- ST_3DLongestLine Returns the 3-dimensional longest line between two geometries
- ST_3DMakeBox Creates a BOX3D defined by the given 3d point geometries.
- ST_3DMaxDistance For geometry type Returns the 3-dimensional cartesian maximum distance (based on spatial ref) between two
 geometries in projected units.
- ST_3DPerimeter Returns the 3-dimensional perimeter of the geometry, if it is a polygon or multi-polygon.
- ST 3DShortestLine Returns the 3-dimensional shortest line between two geometries
- ST 3DUnion Perform 3D union
- ST_Accum Aggregate. Constructs an array of geometries.
- ST_AddMeasure Return a derived geometry with measure elements linearly interpolated between the start and end points.
- ST_AddPoint Adds a point to a LineString before point <position> (0-based index).
- ST_Affine Applies a 3d affine transformation to the geometry to do things like translate, rotate, scale in one step.
- ST_ApproximateMedialAxis Compute the approximate medial axis of an areal geometry.
- . ST_AsBinary Return the Well-Known Binary (WKB) representation of the geometry/geography without SRID meta data.
- . ST_AsEWKB Return the Well-Known Binary (WKB) representation of the geometry with SRID meta data.
- ST_AsEWKT Return the Well–Known Text (WKT) representation of the geometry with SRID meta data.
- ST_AsGML Return the geometry as a GML version 2 or 3 element.
- ST_AsGeoJSON Return the geometry as a GeoJSON element.
- ST_AsHEXEWKB Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian (XDR) encoding.
- ST_AsKML Return the geometry as a KML element. Several variants. Default version=2, default precision=15
- ST_AsX3D Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML
- . ST Boundary Returns the closure of the combinatorial boundary of this Geometry.
- ST_BoundingDiagonal Returns the diagonal of the supplied geometry's bounding box.

Formalisation of the level of detail in 3D city modelling

Filip Biljecki *

Section GIS Technology, Delft University of Technology, The Netherlands

Hugo Ledoux

Section GIS Technology, Delft University of Technology, The Netherlands

Jantien Stoter

Section GIS Technology, Delft University of Technology, The Netherlands Kadaster, Product and Process Innovation, Apeldoorn, The Netherlands Geonovum, Amersfoort, The Netherlands

Junqiao Zhao

Section GIS Technology, Delft University of Technology, The Netherlands

Department of Computer Science and Technology, Tongji University, P. R. China

ORCID

FB: http://orcid.org/0000-0002-6229-7749 HL: http://orcid.org/0000-0002-1251-8654

JS: http://orcid.org/0000-0002-1393-7279

Filip Biljecki, Hugo Ledoux, Jantien Stoter, and Junqiao Zhao. "Formalisation of the Level of Detail in 3D City Modelling." Computers, Environment and Urban Systems 48 (November 2014): 1–15. doi:10.1016/j.compenvurbsys. 2014.05.004.

^{*} Corresponding author at f.biljecki@tudelft.nl

Figure 3: The UML diagram of our LOD specification.

A Naïve Theory of Dimension for Qualitative Spatial Relations

Torsten Hahmann

Department of Computer Science University of Toronto torsten@cs.toronto.edu

Michael Grüninger

Department of Mechanical and Industrial Engineering University of Toronto gruninger@mie.utoronto.ca

Torsten Hahmann and Michael Gruninger. "A Naive Theory of Dimension for Qualitative Spatial Relations." In AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning, 2011. http://www.cs.utoronto.ca/~torsten/publications/THahmann_Commonsense-2011.pdf.

- CityGML and Linked Data: http://video.esri.com/ watch/897/citygml-and-linked-data-technologiesfor-geodesign
- PostGIS: http://postgis.net/docs/
 PostGIS Special Functions Index.html
- http://www.opengeospatial.org/standards/citygml