웹사이트 아이디 구조적 분석을 통한 사용자 추론 Inferring User Information from Login Name based on Structural Analysis

2015. 12. 7. 박희웅 서울대학교 산업공학과

- 웹 사용자의 인구통계적 정보나 관심사를 추론하는 문제는 꾸준한 관심의 대상이 되어 왔다.
 - 검색 쿼리, 사이트 방문 로그, 소셜 네트워크 분석, 작성한 텍스트 분석 등 이용
- 웹 아이디는 웹사이트에서 사용자가 서비스를 이용하기 위해 회원 가입할 때, 사용자가 지정하는 고유 식별자로 영어로는 username 혹은 login name 이다.
 - 웹사이트마다 다르지만 대체적으로 6~20자 길이의 문자열로 이루어지며 알파 벳, 숫자, 일부의 특수문자에 대해 혼용이 허가되지만 띄어쓰기나 한글은 불가 능. 대소문자를 구분하는 사이트도 있다.
 - 예) honggildong1443
 - 웹 아이디는 사용자별로 고유해야 하고 스스로 기억하고 있어야 하므로, 사용
 자 신상정보나 관심사에 대한 단서를 포함하고 있을 가능성이 높다.

- 웹 아이디는 웹사이트 가입과 동시에 얻을 수 있는 데이터로 사용자의 이용 내역이 존재하지 않는 콜드 스타트(cold start) 문제에 큰 도움이 된다.
 - 날이 갈수록 개인정보 유출 문제가 심각해짐에 따라 사이트 가입 시 제한된 개 인정보만을 입력 받는 추세
 - 근래에는 다수의 웹사이트가 구글이나 페이스북 계정으로도 로그인을 가능하게 하여, 로그인 계정정보 외의 초기 개인정보 획득 기회가 줄어들고 있다.
 - 모바일 어플리케이션의 경우, 기기 내 계정 수집 권한을 받으면 아이디 수집 가능하다.

- 기존 관련 연구로는 Burger et al. (2011)에서 트위터의 screen name을 보고 사용자의 성별을 예측했었다.
 - 트위터의 screen name은 로그인 아이디와는 별개로 화면에 나타나는 이름으로 아이디보다는 닉네임과 가깝다.
 - 닉네임은 사용자가 웹 서비스 이용시 반드시 기억하고 있어야 하지 않아도 되기에 웹 사이트의 분위기나 내용에 따라 작명하는 방식이 상이할 수 있다.
 - 3, 4-gram 단어의 남녀별 빈도수 차이를 이용해 성별을 구분했고, 77% 성별 정확도를 나타냈다.
- 최근에는 Jaech and Ostendorf (2015)이 유명 데이팅 사이트의 username 을 이용해 사용자의 성별과 모국어를 추론했다.
 - 데이팅 사이트의 username은 로그인 시에도 이용되지만, 가입하면 자동으로 생성되는 자신의 미니 홈페이지 프로필에 큼지막하게 게재된다.
 - 데이팅 사이트인만큼 이성에 어필하기 위해 username에 성적 특징을 표현하는 단어들을 일반 웹아이디보다 많이 포함한다.
 - 단어로부터 형태소를 분해하듯이 의미 단위로 아이디를 토큰화하고 빈도수를 집계해 성별 확률을 도출했다.

- 이번 연구에서는 기존 연구가 아이디를 토큰화하고 집단별로 토큰 수를 집계하여 집단을 구분하는 것에서 나아가, 품사 태깅과 같이 토큰화된 단 위 요소 의미를 자동화된 알고리즘으로 알아내고자 한다.
 - 예를 들어, honggildong1443은 hong + ggildong + 1443 으로 분해될 수 있으며 각각은 사용자의 성씨, 이름, 출생년도를 의미한다.
 - 이러한 구조 분석을 통해 아이디로부터 성별뿐만 아니라, 이름이나 생일 등의 다양한 정보를 얻어낼 수 있을 것으로 기대된다.
- 이 연구의 목적은 다음 세가지다.
 - 우리나라 사용자들의 웹 아이디를 수집하고 통계적인 분석을 통해 어떤 특징을 갖고 있는지 살펴본다.
 - 구조적 분석 모형을 이용해 아이디의 토큰화된 단위 요소 각각에 의미를 레이 블링할 수 있는 방법을 제안한다.
 - 제안된 방법의 타당성을 검증하고 활용 가능성을 타진하기 위해, 아이디 구조 분석 결과를 이용해 사용자의 성별과 연령을 추론했을 때 분류 성능을 확인한 다.

- 웹 아이디를 분석하여 사용자 정보를 추론하기에 앞서, 우리나라 사용자들이 쓰는 웹 아이디의 특성을 살펴본다.
 - 국내 유명 포털 사이트 아이디 3만여 개를 수집했다.
 - 국내 사용자들의 아이디와 해외 사용자들 아이디의 특성을 비교하기 위해, Jaech and Ostendorf (2015)에서 이용한 okcupid.com 아이디 3만여 개도 분석 했다.

- 먼저 아이디를 구성하는 글자의 분포를 알아본다.
 - 아이디를 수집한 국내 포털 사이트는 대문자를 허용하지 않았으나 해외 사이트 는 허용했다.
 - 우리나라 사람들이 해외 사용자보다 숫자를 더 많이 쓴다.
 - 해외 사용자들이 영어 모음인 a, e, i, o를 우리나라 사용자들보다 빈번히 쓴다.
 - 숫자 중에서는 0, 1, 2를 특히 많이 사용한다.

- 띄어쓰기를 허용하지 않는 특성 때문에, 웹 아이디는 보통 고유한 의미를 갖는 더 작은 의미의 단위들로 쪼개질 수 있다.
 - Jaech and Ostendorf (2015)은 단어에서 형태소 단위로 나누는 것처럼 웹 아이디를 작은 의미 단위로 쪼개어 의미 단위 형태소의 빈도수를 분석했었다.
 - 이때 사용된 형태소 분해기인 Morfessor (2006) 알고리즘은 Unsupervised morphology induction으로, Maximizing the likelihood of the data and the likelihood of the model라는 두 가지 상반된 목표를 minimum description length (MDL) 목적함수로 최적화시킨다.
- 수집한 국내 포털 사이트 아이디와 해외 사용자 아이디 각각에 대해 Morfessor 알고리즘을 이용해 형태소를 분리하여 빈도수를 집계했다.
 - 알고리즘 수행 이전에 숫자 부분과 문자 부분을 분리하고, '-' 와 '_' 는 구분자로 취급하여 아이디에서 삭제하고 구분자를 기준으로 아이디를 분리했다.

- 단어 구름을 이용해 분해된 형태소를 빈도수가 많을수록 크도록 나타냈다.
 - Okcupid 사용자들은 사전에 등장하는 평상시에도 자주 쓰는 단어들이 빈도수 상위 목록에 주로 포함되었다.
 - 반면 국내 사용자들은 자신의 이름을 아이디에 많이 썼는데, 소리 나는대로 영 문으로 표기하기도 하지만 자판에서 한글 위치에 있는 알파벳을 그대로 쓰기도 한다.

okcupid.com

naver.com

■ 특정 연도나 날짜를 아이디에 많이 씀.

웹 아이디 구조 분석 모형

- 아이디를 형태소 단위로 분해한 뒤 각 요소에 의미적인 태그를 달아 분류
 및 분석을 용이하게 할 수 있지 않을 것이다.
 - 우리나라 사용자들은 아이디에 자신의 이름이나 특정 날짜를 많이 쓴다는 것을 확인했으므로 이름과 날짜를 구조 분석을 통해 알고자하는 요소로 삼았다.
 - 이름자는 성, 이름 그리고 이름은 다시 상명자와 하명자로 구성된다.
 - 또한 한글 자판을 그대로 친 것인지, 영어 발음으로 쓴 것인지로 구별 지어진다.
 - 날짜는 연도, 월, 일로 나눠진다.
- 품사 태깅에 많이 쓰였던 은닉 마코프 모형(HMM)을 이용하여 아이디 의 미 요소를 태깅한다.
 - 은닉 마코프 모형의 초기 상태별 확률과 전이 행렬, 그리고 출력 확률을 적절히 제어해 줌으로써 각각의 의미 요소를 모형의 은닉 상태로 대응시킨다.
 - 웹 아이디를 문자 부분와 숫자 부분으로 분리한 뒤, 각각에 형태소 분해한 결과 에 대해 문자 부분 HMM과 숫자 부분 HMM으로 적합한다.
 - 아이디는 평균 3개의 형태소로 구성되므로, 은닉 마코프 모형에서 상태 전이 시에 직전 상태 정보만 이용하더라도 충분하다.

웹 아이디 구조 분석 모형

■ 문자 부분 HMM

parkheewoong parkwoong heewoongpark

transition matrix 초기값

					•	_		
	한글 성	한글 상명	한글 하명	영문 성	영문 상명	영문 하명	그 외	끝
한글 성	0	1	1	0	0	0	1	1
한글 상명	0	0	1	0	0	0	1	1
한글 하명	1	0	0	0	0	0	1	1
영문 성	0	0	0	0	1	1	1	1
영문 상명	0	0	0	0	0	1	1	1
영문 하명	0	0	0	1	0	0	1	1
그 외	1	1	1	1	1	1	1	1
끝	0	0	0	0	0	0	0	1
영문 하명	0 1 0	0 1 0	0 1 0	1 1 0	0 1 0	1	1 1 0	1 1 1

Start probability 초기값

한글 성	한글 상명	한글 하명	영문 성	영문 상명	영문 하명	그 외	끝
1	1	1	1	1	1	3	0

- Emission probability

- ✓ 이름자의 경우, 통계 정보 활용하여 확률 값 고정했다. 성씨는 2000년 통계청 성씨 목록을, 상명자와 하명자는 erumy.com의 이름통계를 바탕으로 확률값을 추정했다.
- ✔ 영문 이름은 네이버 한글 이름 로마자 표기 언어변환기를 이용했다.
- ✓ 그 외 state emission probability는 초기값으로 모든 형태소에 동일한 확률 부여하고, 이후에 업데이트한다.

웹 아이디 구조 분석 모형

■ 숫자 부분 HMM

20151113, 151113 112015 11132015

transition matrix 초기값

	연도	달	일자	그 외	끝
연도	0	1	0	0	1
달	1	0	1	0	1
일자	1	0	0	0	1
그 외	0	0	0	1	1
끝	0	0	0	0	1

Start probability 초기값

연도	달	일자	그 외	끝
1	1	0	3	0

- Emission probability
 - ✓ 연도 1960, 1961, ..., 2015, 60, ..., 99, 00, 01, ..., 15 에 동일 확률 부여 후 업데이트
 - ✓ 달 01, 02, ..., 12 에 동일 확률 부여하고 업데이트 없음
 - ✓ 일자 01, 02, ..., 30 에 동일 확률 부여, 31에 반값 확률 부여, 업데이트 없음
 - ✓ 그 외 state emission probability는 초기값으로 모든 숫자 형태소에 동일한 확률 부여 하고, 이후에 업데이트

- 국내 유명 포털 사이트의 특정 카페에서 연령대 또는 성별을 확인할 수 있는 아이디 39,941개를 수집했다.
 - 이 카페에서는 연령대, 성별마다 게시판이 구분되어 있고, 자신의 신분과 맞지 않는 게시판에서 활동할 경우 엄중한 제재를 가할 것임을 명시하고 있다.
 - 제안하는 구조 분석 방법 자체는 비교사 학습으로 레이블 정보를 필요로 하지 않으나, 분석 이후 사용자 정보를 추론할 때 정확성 검증에 사용했다.
 - 게시판 별로 중복되는 아이디를 제거하여 29,544개를 최종적으로 사용했다.
 - 성별 분류기에는 교사 방법이 부분적으로 사용되어, 성별 레이블이 존재하는 27,408개를 훈련용 5,408개, 테스트용 2,000개로 사용했다.

구조 분석용				테스트용		
	10대	20대	30대		10대 20	대
남자	7661	8051	2126	남자	500	500
여자	6618	3078	2136	여자	500	500

- 성별 분류기 테스트용 2,000개를 제외한 나머지 아이디로 앞 장에서 논의 한 구조적 분석 수행했다.
 - Morfessor 알고리즘으로 형태소를 분해했다.

■ 문자 HMM로 학습된 전이 행렬과 초기 확률

	한글 성	한글 상명	한글 하명	영문 성	영문 상명	영문 하명	그 외	끝
한글 성	0	0.4863	0.0574	0	0	0	0.3636	0.0927
한글 상명	0	0	0.6780	0	0	0	0.3016	0.0203
한글 하명	0.0413	0	0	0	0	0	0.1389	0.8199
영문 성	0	0	0	0	0.2166	0.0808	0.3786	0.3240
영문 상명	0	0	0	0	0	0.4715	0.4949	0.0336
영문 하명	0	0	0	0.0293	0	0	0.2318	0.7389
그 외	0.0025	0.0090	0.0173	0.0158	0.0316	0.0724	0.4182	0.4332
끝	0	0	0	0	0	0	0	1

한글 성	4.96%
한글 상명	5.97%
한글 하명	0.06%
영문 성	5.67%
영문 상명	16.28%
영문 하명	0.89%
그 외	66.17%
끝	0

■ 숫자 HMM로 학습된 전이 행렬과 초기 확률

	연도	달	일자	그 외	끝		
연도	0	0.214416	0	0	0.785584	연도	0.180333
달	0.088762	0	0.644677	0	0.266562	달	0.147644
일자	0.013316	0	0	0	0.986684	일자	0
그 외	0	0	0	0.346859	0.653141	그 외	0.672023
끝	0	0	0	0	1	끝	0

- 학습된 모형으로 저자를 포함한 7명의 아이디를 분석하고, 모형이 태깅한 의미 요소가 실제 아이디를 생성할 때 생각했던 의미와 일치하는지 비교 했다.
 - 첫 번째 사용자는 hee가 상명자인데 하명자로 태깅이 되었다.
 - 마지막 사용자는 하명자가 형태소 두 개로 분리가 되어 이름 요소로 잡히지 않 았다. 이는 구조 모형 학습 과정이 형태소 분리 알고리즘에는 영향을 주지 못하 기 때문이다.
 - 나머지 사용자들은 대부분 의미 요소를 잘 잡아낼 수 있었다.

아이디	문자 토큰	문자 의미 태깅	숫자 토큰	숫자 의미 태깅
hee188	[hee]	[eng_back]	[188]	[number]
hank	[han, k]	[eng_front, word]		
hoseong	[ho, seong]	[eng_front, eng_back]		
jinwon	[jin, won]	[eng_front, eng_back]		
misuke88	[mi, suk, e]	[eng_front, eng_back, word]	[88]	[year]
wpgur0107	[wp, gur]	[kor_front, kor_back]	[01, 07]	[month, day]
zoon	[zoo, n]	[word, word]		

- 구조 분석을 이용한 성별 분류
 - 남녀 레이블을 갖는 아이디를 각각의 셋으로 분리하여 2개의 HMM 모형을 학습했다.
 - 테스트 아이디가 주어지면 남녀 HMM 모형으로 각각 구조를 분석하고 모형을 적용했을 때 얻어지는 점수 값을 비교하여 점수가 높은 쪽으로 분류했다.
- 분류 결과를 아이디의 구조적인 분석 없이 형태소별 출현 확률만 고려한 나이브 베이즈 분류기(Jaech and Ostendorf, 2015)와 사람이 직접 레이블을 달아본 결과를 함께 비교했다.

- 성별 분류 결과 방법 간에 성능 차이가 미미했다.
 - HMM 모형을 이용한 분류에서 남자 이름으로 보이는 아이디의 수집된 레이블은 여자인 경우가 종종 있어, 아이디만으로 70%이상의 성별 분류 정확도를 얻어내기는 어려워 보인다.

나이브 베이즈

HMM 각각

사람이 직접 레이블링

Learning stage	Error rate
supervised	37.5%
semi sup iter 1	37.9%
semi sup iter 2	38.2%
semi sup iter 3	38.3%

Error rate: 38.9%

Confusion matrix

	여	남
여	619	381
남	397	603

HMM 예측 score 차이 상위 20개 중 오분류된 아이디

segmented	states	predicted real		
[chan, chan, ace]	[eng_name, eng_name, word]	M	F	
[tls, gh, cjf]	[kor_sur, kor_name, kor_name]	M	F	
[kim, chul, ho]	[eng_sur, eng_name, eng_name]	M	F	
[da, da, da]	[eng_name, eng_name, eng_name]	F	М	
[qus, ckd, tjr]	[kor_sur, kor_name, kor_name]	M	F	
[rh, tks, dnd]	[kor_sur, kor_name, kor_name]	M	F	
[gwon, il, kwang]	[eng_sur, eng_name, eng_name]	M	F	

- 구조 분석을 이용한 연령 예측
 - 숫자 부분 HMM을 이용해 연도 요소를 포함하고 있는 아이디에 대해, 해당 연 도가 출생연도일 것이라고 추측하여 사용자의 연령을 예측한다
 - 연령을 추측할 수 있는 연도 요소를 포함하고 있는 아이디의 비율과 이때 추측 한 연령대와 수집된 실제 연령대가 일치하는 비율을 평가 지표로 삼는다.
 - 웹 사용자의 연령을 예측하는 대부분의 모형이 어림 잡은 연령대로만 추측하는 반면, 아이디를 이용할 경우 정확한 출생년도를 추정이 가능할 수 있다.

■ 구조 분석을 이용한 연령 예측

Coverage 12.8%, 연령 비율 53.8%

Coverage 12.7%, 연령 비율 46.1%

Coverage 14.7%, 연령 비율 59.6%

결론

Reference

- Jaech, A., & Ostendorf, M. (2015). What Your Username Says About You. arXiv:1507.02045
 [cs]. Retrieved from http://arxiv.org/abs/1507.02045
- Burger, J. D., Henderson, J., Kim, G., & Zarrella, G. (2011). Discriminating Gender on Twitter.
 In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 1301–1309). Stroudsburg, PA, USA: Association for Computational Linguistics.
- Creutz, M., & Lagus, K. (2006). Morfessor in the morpho challenge. In *Proceedings of the PASCAL Challenge Workshop on Unsupervised Segmentation of Words into Morphemes*.