Lista 9 - Entropia e Segunda Lei da Termodinâmica

- 1) Em um experimento, 200 g de alumínio (com calor específico de $900 J/kg \cdot K$) a $100 \,^{\circ}C$ são misturados com 50 g de água a $20 \,^{\circ}C$, com a mistura isolada termicamente.
 - a) Qual a temperatura de equilíbrio?
 - Qual a variação de entropia
 - b) do alumínio?
 - c) da água?
 - d) do sistema alumínio-água?
- 2) Um cubo de gelo de 8, 0 g a -10 °C é colocado em uma garrafa térmica com 100 cm^3 água a 20 °C. De quanto varia a entropia do sistema cubo-água até o equilíbrio ser alcançado? O calor específico do gelo é 2200 J/kg K.
- 3) Uma amostra de 2 mols de um gás monoatômico ideal é submetida ao processo reversível da figura abaixo. A escala do eixo vertical é definida por $T_s = 400$, 0 K e a escala do eixo horizontal é definida por $S_s = 20$, 0 J/K.
 - a) Qual é a energia absorvida pelo gás na forma de calor?
 - b) Qual a variação de energia interna do gás?
 - c) Qual o trabalho realizado pelo gás?

- 4) Uma máquina de Carnot de 500 W opera entre fontes de calor a temperaturas constantes de 100 °C e 60 °C. Qual é a taxa com a qual a energia é
 - a) absorvida pela máquina na forma de calor e
 - b) rejeitada pela máquina na forma de calor?
- 5) Uma máquina de Carnot é projetada para realizar um certo trabalho W por ciclo. Em cada ciclo, uma energia Q_Q na forma de calor é transferida para a substância de trabalho da máquina a partir da fonte quente, que está a uma temperatura ajustável T_Q . A fonte fria é mantida à temperatura $T_F = 250\,K$. A figura abaixo mostra o valor de Q_Q em função de T_Q . A escala do eixo vertical é definida como $Q_{Qs} = 6$, $0\,kJ$. Se T_Q é ajustada para $550\,K$, qual o valor de Q_Q ?

- 6) Um condicionador de ar operando entre 93 °F e 70 °F é especificado como tendo uma capacidade de refrigeração de 4000 *Btu/h*. O coeficiente de desempenho é 27 % do coeficiente de desempenho de um refrigerador de Carnot operando entre as mesmas temperaturas. Qual a potência do motor do condicionador de ar em horsepower?
- 7) O motor de um refrigerador tem uma potência de 200 W. Se o compartimento do congelador está a 270 K e o ar externo está a 300 K, e supondo que o refrigerador tem a mesma eficiência que um refrigerador de Carnot, qual é a quantidade máxima de energia que pode ser extraída na forma de calor do compartimento do congelador em 10,0 minutos?
 - 8) Uma caixa contém N moléculas iguais de um gás, igualmente divididas nos dois lados da caixa. Qual é, para N=50:
 - a) a multiplicidade W da configuração central?
 - b) o número total de microestados e,
 - c) a porcentagem do tempo que o sistema passa na configuração central?

Qual é, para N = 100:

- d) a multiplicidade W da configuração central?
- e) o número total de microestados e,
- f) a porcentagem do tempo que o sistema passa na configuração central?

Qual é, para N = 200:

- g) a multiplicidade W da configuração central?
- h) o número total de microestados e,
- i) a porcentagem do tempo que o sistema passa na configuração central?
- j) o tempo que o sistema passa na configuração central aumenta ou diminui quando N aumenta?
- 9) No primeiro estágio da máquina de Carnot de dois estágios, uma energia Q_1 é absorvida na forma de calor à temperatura T_1 , um trabalho W_1 é realizado e uma energia Q_2 é liberada na forma de calor à temperatura T_2 . O segundo estágio absorve essa energia Q_2 , realiza um trabalho W_2 e libera energia na forma de calor Q_3 a uma temperatura ainda menor T_3 . Mostre que a eficiência da máquina é: $(T_1 T_3)/T_1$.
 - 10) O sistema A de três partículas e o sistema B de cinco partículas estão dentro de caixas isoladas. Calcule a menor multiplicidade W:
 - a) do sistema A e
 - b) do sistema B

Calcule a maior multiplicidade:

- c) do sistema A e
- d) do sistema B

Calcule a maior entropia:

- e) do sistema A e
- f) do sistema B

Respostas:

- 1) a) 57, $0^{\circ}C$; b) -22, 1J/K; c) +24, 9J/K; d) +2.8J/K
- 2) 0,64*J/K*
- 3) a) $Q = 4.5 \times 10^3 J$; b) $\Delta E_{int} = -5.0 \times 10^3 J$; c) $W = Q \Delta E_{int} = 9.5 kJ$
- 4) a) 4, $67 \, kJ/s$; b) 4, $17 \, kJ/s$
- 5) $Q_Q = 1,7 kJ$
- 6) 0, 25 hp
- 7) $1.08 \times 10^6 J$
- 8) (a) $W(25;50) = 1,26 \times 10^{14}$; (b) $N_{tot} = 2^{50} = 1,13 \times 10^{15}$; (c) p(25;50) = 11,1%; (d) $W(N/2;N) = 1,01 \times 10^{29}$; (e) $N_{tot} = 2^N = 1,27 \times 10^{30}$; (f) p(N/2;N) = 8,0%; (g) $W(N/2;N) = 9,25 \times 10^{58}$; (h) $N_{tot} = 1,61 \times 10^{60}$; (i) p(N/2;N) = 5,7%.
- 10) a) 1; b) 1; c) 3; d) 10 e) $S = 1.5 \times 10^{-23} J/K$ f) $S = 3.2 \times 10^{-23} J/K$