APM 3F007 Convex Optimization and Optimal Control

Summary of Definitions, Propositions, and Theorems

Real Analysis Prerequisites

0.1 Real Numbers

Definition

Definition 0.1 (Supremum and infimum). Let $A \subset \mathbb{R}$. A number $S \in \mathbb{R}$ is the supremum (least upper bound) of A if

$$S = \min\{ M \in \mathbb{R} \text{ s.t. } x < M \ \forall x \in A \}.$$

A number $I \in \mathbb{R}$ is the infimum (greatest lower bound) of A if

$$I = \max\{ m \in \mathbb{R} \text{ s.t. } x \ge m \ \forall x \in A \}.$$

We write $\sup A = S$ and $\inf A = I$. By convention, $\sup A = +\infty$ if A is not bounded above and $\inf A = -\infty$ if A is not bounded below.

If $A \subset B$, then $\sup A \leq \sup B$ and $\inf A \geq \inf B$. For a map $f: A \to \mathbb{R}$ we set

$$\sup_A f := \sup\{f(x) : x \in A\} \in \mathbb{R} \cup \{+\infty\}, \qquad \inf_A f := \inf\{f(x) : x \in A\} \in \mathbb{R} \cup \{-\infty\},$$

and

$$\arg\max_{x\in A}f:=\{x\in A:f(x)=\sup_{A}f\},\qquad \arg\min_{x\in A}f:=\{x\in A:f(x)=\inf_{A}f\}.$$

Theorem

Theorem 0.1 (Bolzano–Weierstrass). Every bounded sequence of real numbers admits a convergent subsequence.

Definition

Definition 0.2 (Minimizing / maximizing sequence). Let $A \subset \mathbb{R}$ be nonempty. A sequence $(x_n) \subset A$ is minimizing if $\lim_{n\to\infty} x_n = \inf A$. Similarly, for $B \subset \mathbb{R}$, $(y_n) \subset B$ is maximizing if $\lim_{n\to\infty} y_n = \sup B$. If $f: U \to \mathbb{R}$, a minimizing sequence for f is $(x_n) \subset U$ with $\lim_{n\to\infty} f(x_n) = \inf_U f$.

0.2 Normed and Inner Product Spaces

Definition

Definition 0.3 (Norm). Let X be a real vector space. A map $\|\cdot\|: X \to \mathbb{R}_+$ is a norm if for all $x, y \in X$ and $\alpha \in \mathbb{R}$:

- (i) $||x|| = 0 \iff x = 0;$
- (ii) $\|\alpha x\| = |\alpha| \|x\|$;
- (iii) **Triangle inequality** $||x + y|| \le ||x|| + ||y||$.

It follows that $|||x|| - ||y||| \le ||x - y||$.

Definition

Definition 0.4 (Balls and neighborhoods). For $z \in X$ and $\rho > 0$ define the open ball $B_{\rho}(z) := \{x \in X : \|x - z\| < \rho\}$ and the closed ball $\overline{B}_{\rho}(z) := \{x \in X : \|x - z\| \le \rho\}$. A set $U \subset X$ is a neighborhood of z if $B_{\rho}(z) \subset U$ for some $\rho > 0$.

Definition

Definition 0.5 (Open/closed sets; closure and interior). A set $A \subset X$ is open if it is a neighborhood of each of its points, and closed if $X \setminus A$ is open. The closure \overline{A} is $\{x \in X : \forall \rho > 0, \ B_{\rho}(x) \cap A \neq \emptyset\}$, the smallest closed set containing A. The interior int A is $\{x \in X : \exists \rho > 0, \ B_{\rho}(x) \subset A\}$, the largest open set contained in A.

Definition

Definition 0.6 (Equivalent norms). Two norms $\|\cdot\|_1, \|\cdot\|_2$ on X are equivalent if $\exists \alpha, \beta > 0$ such that $\alpha \|x\|_1 \leq \|x\|_2 \leq \beta \|x\|_1$ for all $x \in X$.

Theorem

Theorem 0.2 (Equivalence in finite dimension). If dim $X < \infty$, then all norms on X are equivalent.

Definition

Definition 0.7 (Inner product). An inner product on X is a map $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}$ that is symmetric, linear in each argument, and positive definite: $\langle x, x \rangle > 0$ for all $x \neq 0$. It induces the canonical norm $||x|| := \sqrt{\langle x, x \rangle}$ and satisfies Cauchy–Schwarz $|\langle x, y \rangle| \leq ||x|| \, ||y||$.

Useful identities (all x, y in an inner product space):

$$\|x+y\|^2 = \|x\|^2 + \|y\|^2 + 2\langle x,y\rangle, \quad \|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2), \quad \langle x,y\rangle = \tfrac{1}{4}(\|x+y\|^2 - \|x-y\|^2).$$

For $A \subset X$ define $A^{\perp} := \{x \in X : \langle x, y \rangle = 0 \ \forall y \in A\}$, a closed linear subspace.

Definition

Definition 0.8 (Product spaces). If X_1, X_2 are normed (resp. inner product) spaces, then $X_1 \times X_2$ is normed by $\|(x_1, x_2)\| := \sqrt{\|x_1\|^2 + \|x_2\|^2}$ (resp. $\langle (x_1, x_2), (y_1, y_2) \rangle := \langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle$).

0.3 Sequences and Compactness

Definition

Definition 0.9 (Convergence). A sequence $(x_n) \subset X$ converges to $x \in X$ if $\forall \varepsilon > 0 \ \exists N$ such that $n \geq N \Rightarrow ||x_n - x|| \leq \varepsilon$.

Proposition

Proposition 0.1 (Closed-set characterization). Let $A \subset E \subset X$. Then A is closed in E iff: for every sequence $(x_n) \subset A$ and every $x \in E$, $x_n \to x$ implies $x \in A$.

Definition

Definition 0.10 (Compactness). $A \subset X$ is compact if every sequence in A admits a subsequence converging to a point of A.

Theorem

Theorem 0.3 (Heine–Borel). If dim $X < \infty$, then $C \subset X$ is compact iff it is closed and bounded.

Proposition

Proposition 0.2 (Closedness of Minkowski sums). If A is closed and B is compact in a normed space X, then $A + B := \{a + b : a \in A, b \in B\}$ is closed.

Definition

Definition 0.11 (Cauchy, Banach, Hilbert). A sequence (x_n) is Cauchy if $\forall \varepsilon > 0 \exists N \ s.t.$ $n, m \geq N \Rightarrow ||x_n - x_m|| \leq \varepsilon$. A normed space in which every Cauchy sequence converges is complete (a Banach space). A complete inner product space is a Hilbert space.

Theorem

Theorem 0.4 (Banach fixed point). Let X be Banach, $U \subset X$ closed, and $f: U \to U$ a contraction: $\exists 0 \leq \lambda < 1$ s.t. $||f(x) - f(y)|| \leq \lambda ||x - y||$. Then f admits a unique fixed point $\bar{x} \in U$.

0.4 Continuity

Definition

Definition 0.12 (Limit and continuity). Let $f: U \subset X \to Y$ between normed spaces, $z \in \overline{U}$, $\ell \in Y$. We write $\lim_{x\to z} f(x) = \ell$ if for all $\varepsilon > 0$ there exists $\eta > 0$ such that $x \in U \cap B_{\eta}(z) \Rightarrow f(x) \in B_{\varepsilon}(\ell)$. The sequential characterization holds: $\lim_{x\to z} f(x) = \ell$ iff for every $x_n \to z$ with $x_n \in U$, we have $f(x_n) \to \ell$. A map f is continuous at $x_0 \in U$ if $\lim_{x\to x_0} f(x) = f(x_0)$; it is continuous if so at every $x_0 \in U$.

Proposition

Proposition 0.3 (Open/closed preimages). For $f:U\subset X\to Y$, the following are equivalent:

- (i) f is continuous;
- (ii) For every open $A \subset Y$, $f^{-1}(A)$ is open in U;
- (iii) For every closed $A \subset Y$, $f^{-1}(A)$ is closed in U.

Theorem

Theorem 0.5 (Continuity preserves compactness). If $A \subset U$ is compact and $f: U \to Y$ is continuous, then f(A) is compact.

Definition

Definition 0.13 (Lipschitz continuity). $f: U \to Y$ is L-Lipschitz if $||f(x) - f(y)|| \le L||x - y||$ for all $x, y \in U$.

Proposition

Proposition 0.4 (Continuous linear maps and operator norm). For a linear $T: X \to Y$ between normed spaces, the following are equivalent:

 $T \ \textit{is continuous;} \ T \ \textit{is continuous at 0;} \ T \ \textit{is Lipschitz;} \sup_{x \neq 0} \frac{\|Tx\|}{\|x\|} < \infty.$

Write $\mathcal{L}(X,Y)$ for the space of continuous linear maps with norm

$$||T||_{\mathcal{L}(X,Y)} := \sup_{x \neq 0} \frac{||Tx||}{||x||}.$$

If Y is Banach, then $\mathcal{L}(X,Y)$ is Banach.

0.5 Differentiability

Definition

Definition 0.14 (Fréchet derivative). Let $U \subset X$ be open, $f: U \to Y$. We say that f is Fréchet differentiable at $x_0 \in U$ if there exists a continuous linear map $L \in \mathcal{L}(X,Y)$ such that

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - L(h)\|}{\|h\|} = 0.$$

The map L is unique and is denoted $df(x_0)$. If $x \mapsto df(x)$ is continuous, then f is continuously Fréchet differentiable.

Proposition

Proposition 0.5 (Jacobian in finite dimension). If $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ is Fréchet differentiable at x, then df(x) is represented in canonical bases by the Jacobian

$$Df(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1}(x) & \cdots & \frac{\partial f_m}{\partial x_n}(x) \end{pmatrix}.$$

Theorem

Theorem 0.6 (Mean value inequality in normed spaces). Let $U \subset X$ be open and convex, $f: U \to Y$ Fréchet differentiable, and $x, y \in U$ with the segment $[x, y] \subset U$. Then

$$||f(x) - f(y)|| \le ||x - y|| \sup_{0 \le \theta \le 1} ||df(\theta x + (1 - \theta)y)||_{\mathcal{L}(X,Y)}.$$

Theorem

Theorem 0.7 (Chain rule). Let $f: U \subset X \to Y$ and $g: V \subset Y \to Z$ with $f(x_0) \in V$. If f is Fréchet differentiable at x_0 and g at $f(x_0)$, then $g \circ f$ is Fréchet differentiable at x_0 with

$$d(g \circ f)(x_0) h = dg(f(x_0)) (df(x_0) h).$$

Theorem

Theorem 0.8 (Implicit function theorem (Fréchet)). Let X,Y,Z be Banach spaces and $F: X \times Y \to Z$ be continuously Fréchet differentiable. Let $(x_0,y_0) \in X \times Y$ with $F(x_0,y_0) = 0$ and suppose $h \mapsto dF(x_0,y_0)(0,h)$ is a linear isomorphism $Y \to Z$. Then there exist neighborhoods U of x_0 and V of y_0 , and a Fréchet differentiable map $\varphi: U \to V$ such that

$$F(x,y) = 0 \iff y = \varphi(x) \quad \text{for all } (x,y) \in U \times V.$$

Chapter 1

Convex Sets and Convex Hulls

1.1 Convex Sets

Definition

Definition 1.1 (Convex set). Let X be a real vector space. A set $A \subset X$ is said to be convex if for all $x, y \in A$ and for all $t \in [0, 1]$, we have

$$tx + (1-t)y \in A$$
.

We always assume that the underlying field is \mathbb{R} .

From this definition, several properties follow immediately.

Proposition

Proposition 1.1 (Intersection of convex sets). The intersection of any family of convex sets is convex:

 $\bigcap_{i \in I} A_i \text{ is convex if each } A_i \text{ is convex.}$

Definition

Definition 1.2 (Minkowski sum and scalar multiplication). Let $A, B \subset X$ and $\alpha \in \mathbb{R}$. Their Minkowski sum and scalar multiple are defined by

$$A + B = \{a + b : a \in A, b \in B\}, \qquad \alpha A = \{\alpha a : a \in A\}.$$

Proposition

Proposition 1.3 (Operations preserving convexity). *If* A, B *are convex subsets of* X *and* $\alpha, \beta \in \mathbb{R}$, *then:*

A + B is convex, αA is convex.

1.2 Topological Properties

Let $(X, \|\cdot\|)$ be a normed vector space.

Proposition

Proposition 1.4 (Balls are convex). For any norm $\|\cdot\|$, both the open ball $B_r(a) = \{x \in X : \|x - a\| < r\}$ and the closed ball $\overline{B}_r(a) = \{x \in X : \|x - a\| \le r\}$ are convex.

Proposition

Proposition 1.5 (Closure and interior). If $A \subset X$ is convex, then its closure \overline{A} and its interior int A are also convex.

1.3 Convex Combinations

Definition

Definition 1.3 (Convex combination). Let X be a vector space. A convex combination of m points $x_1, \ldots, x_m \in X$ is a point

$$x = \sum_{i=1}^{m} \theta_i x_i$$
, where $\theta_i \ge 0$, $\sum_{i=1}^{m} \theta_i = 1$.

Proposition

Proposition 1.6. If A is convex and $x_1, \ldots, x_m \in A$, then every convex combination of the x_i belongs to A.

Proof (by induction). For m = 1 or m = 2, the result follows directly from the definition of convexity. Assume it holds for m - 1 elements. Write

$$x = \theta_1 x_1 + (1 - \theta_1) \sum_{i=2}^{m} \frac{\theta_i}{1 - \theta_1} x_i,$$

and note that the second term is a convex combination of x_2, \ldots, x_m . By the induction hypothesis, it belongs to A, and hence so does x.

1.4 Convex Hull and Carathéodory Theorem

Definition

Definition 1.4 (Convex hull). Let $A \subset X$. The convex hull of A, denoted conv(A), is

the smallest convex set containing A:

$$\operatorname{conv}(A) = \bigcap_{\substack{C \supset A \\ C \ convex}} C.$$

Equivalently, it is the set of all convex combinations of finitely many points of A.

Proposition

Proposition 1.7. If A is convex, then conv(A) = A.

Theorem

Theorem 1.1 (Carathéodory). Let X be a real vector space of dimension n. Every point of $conv(A) \subset X$ can be expressed as a convex combination of at most n+1 points of A.

Consequences.

- In \mathbb{R}^2 , any convex combination of more than three points can be written as a convex combination of at most three points.
- Therefore, any convex set in the plane can be represented using at most three generating points (triangles are the basic convex polygons in \mathbb{R}^2).

1.5 Exercise Results and Applications

Proposition

Proposition 1.8 (Convexity of intersections and unions). Let $S = \{x \in \mathbb{R}^2 : 0 \le x_i \le 1, i = 1, 2\}$ and $D = \{x \in \mathbb{R}^2 : ||x||_2 \le 1\}$. Then:

 $S \cap D$ is convex, $S \cup D$ is convex.

Proposition

Proposition 1.9 (Convex hull of two segments). Let $A = [0, 1] \times \{0\}$ and $B = [1, 2] \times \{1\}$. Then the convex hull of $A \cup B$ is a parallelogram.

Proposition

Proposition 1.10 (Closure of a convex set). If A is convex, then its closure \overline{A} is convex. However, if A is only closed, $\overline{A} = A$ need not be convex.

Theorem

Theorem 1.2 (Carathéodory in \mathbb{R}^2). In dimension 2, every convex combination of 5 elements can be expressed as a convex combination of at most 3 elements.

Key facts summary:

- Intersection of convex sets \Rightarrow convex.
- Sum or scalar multiple of convex sets \Rightarrow convex.
- Closure and interior of convex sets \Rightarrow convex.
- Convex hull of any set = all its convex combinations.
- In \mathbb{R}^n , Carathéodory $\Rightarrow n+1$ points suffice.
- In \mathbb{R}^2 , convex combinations \Rightarrow at most 3 points.

Chapter 2

Projections, Cones, and the Riesz Theorem

2.1 Projection onto a Closed Convex Set

Theorem

Theorem 2.1 (Projection theorem). Let $(X, \langle \cdot, \cdot \rangle)$ be a Hilbert space. Let $A \subset X$ be nonempty, closed, and convex. Then for every $x \in X$, there exists a unique $y \in A$ such that

$$||x - y|| = \min_{z \in A} ||x - z||.$$

The point y is called the orthogonal projection of x onto A and is denoted $P_A(x)$. It is characterized by

$$\langle x - y, z - y \rangle \le 0, \quad \forall z \in A.$$

Proposition

Proposition 2.1 (Uniqueness and geometric characterization). The minimizing point $y = P_A(x)$ is unique. Geometrically, the vector x - y is orthogonal to the supporting half-space of A at y:

$$\langle x - y, z - y \rangle \le 0 \quad \forall z \in A.$$

Proposition

Proposition 2.2 (Lipschitz continuity of the projection). Under the assumptions of the theorem, the projection operator $P_A: X \to A$ is 1-Lipschitz:

$$||P_A(x) - P_A(y)|| \le ||x - y||, \quad \forall x, y \in X.$$

Proposition

Proposition 2.3 (Linearity on a subspace). If $M \subset X$ is a closed linear subspace, then

 P_M is linear and called the orthogonal projection on M. It satisfies

$$\langle x - P_M(x), v \rangle = 0, \quad \forall v \in M.$$

Moreover $X = M \oplus M^{\perp}$.

Idea. Let $x, y \in X$ and use the characterization above for both x and y. By linearity of the inner product, adding the equalities shows $P_M(x+y) = P_M(x) + P_M(y)$. A similar argument gives $P_M(\alpha x) = \alpha P_M(x)$ for any $\alpha \in \mathbb{R}$.

2.2 Cones

Definition

Definition 2.1 (Cone). A subset C of a vector space X is called a cone if for all $(\alpha, x) \in \mathbb{R}_+ \times C$, we have $\alpha x \in C$. Equivalently:

$$x \in C, \ \alpha \ge 0 \quad \Rightarrow \quad \alpha x \in C.$$

The zero vector always belongs to a cone (take $\alpha = 0$).

Proposition

Proposition 2.4 (Examples). (i) $\{(x,t) \in \mathbb{R}^n \times \mathbb{R} : ||x|| \le t\}$ is a convex cone (second-order or Lorentz cone).

(ii) $\{x \in \mathbb{R}^n : Ax \geq 0\}$, for $A \in \mathbb{R}^{m \times n}$, is a closed convex cone (intersection of half-spaces).

Proposition

Proposition 2.5 (Operations preserving conicity). If $(C_i)_{i \in I}$ are cones of X, then

$$\bigcap_{i \in I} C_i \text{ is a cone.}$$

If C_1, C_2 are cones, then $C_1 + C_2$ is also a cone. If C is a cone, then its closure \overline{C} is a cone.

Proposition

Proposition 2.6 (Convex cones). A cone C is said to be convex if for any $x, y \in C$ and $t \in [0, 1]$, $tx + (1 - t)y \in C$. Intersections and closures of convex cones are convex cones.

2.3 Application: Riesz Representation Theorem

Theorem

Theorem 2.2 (Riesz representation theorem). Let X be a Hilbert space and $\varphi: X \to \mathbb{R}$ a continuous linear functional. Then there exists a unique $w \in X$ such that

$$\langle w, x \rangle = \varphi(x), \quad \forall x \in X.$$

The vector w is called the Riesz representative of φ .

Sketch of proof using the projection theorem. 1) Let $H = \ker(\varphi) = \{x : \varphi(x) = 0\}$; it is a closed linear subspace (by linearity and continuity of φ).

- 2) If H = X, then $\varphi \equiv 0$ and w = 0.
- 3) Otherwise, pick $u \in X \setminus H$ and let $v = \frac{P_H(u) u}{\|P_H(u) u\|}$. Then $\varphi(v) \neq 0$.
- 4) For arbitrary $x \in X$, choose $\lambda = \varphi(x)/\varphi(v)$ so that $y = x \lambda v \in H$.
- 5) Using orthogonality, $\langle y, v \rangle = 0$ and $\lambda = \langle x, v \rangle$.
- 6) Set $w = \varphi(v)v$; then $\langle w, x \rangle = \varphi(v)\langle v, x \rangle = \varphi(x)$ for all x.
- 7) Uniqueness follows: if w_1, w_2 satisfy the identity, $\langle w_1 w_2, x \rangle = 0$ for all x, hence $w_1 = w_2$.

2.4 Adjoint Operator — Application of Riesz

Theorem

Theorem 2.3 (Adjoint operator). Let $(X, \langle \cdot, \cdot \rangle_X)$ and $(Y, \langle \cdot, \cdot \rangle_Y)$ be Hilbert spaces, and let $L \in \mathcal{L}(X,Y)$ be a continuous linear map. Then there exists a unique $L^* \in \mathcal{L}(Y,X)$ such that

$$\langle Lx, y \rangle_Y = \langle x, L^*y \rangle_X, \quad \forall (x, y) \in X \times Y.$$

The operator L^* is called the adjoint of L.

Construction. 1) For fixed $y \in Y$, define $\varphi_y : X \to \mathbb{R}$ by $\varphi_y(x) = \langle Lx, y \rangle_Y$. This map is linear and continuous because

$$|\varphi_y(x)| \le ||L|| ||x||_X ||y||_Y.$$

2) By Riesz, there exists a unique $w_y \in X$ such that

$$\langle w_u, x \rangle_X = \langle Lx, y \rangle_Y, \quad \forall x \in X.$$

- 3) Define $L^*: Y \to X$ by $L^*(y) = w_y$. Then $\langle Lx, y \rangle_Y = \langle x, L^*y \rangle_X$ for all x, y.
- 4) Linearity: for $\alpha, \beta \in \mathbb{R}$ and $y_1, y_2 \in Y$, one checks

$$L^*(\alpha y_1 + \beta y_2) = \alpha L^* y_1 + \beta L^* y_2.$$

5) Continuity: for any $y \in Y$,

$$||L^*y||_X^2 = \langle L^*y, L^*y \rangle_X = \langle L(L^*y), y \rangle_Y \le ||L|| ||L^*y||_X ||y||_Y,$$

hence $||L^*y||_X \le ||L|| ||y||_Y$. Thus L^* is continuous and $||L^*|| \le ||L||$. Uniqueness follows from Riesz representation uniqueness.

2.5 Summary of Key Results

- Projection theorem \Rightarrow existence and uniqueness of $P_A(x)$ for closed convex A in Hilbert spaces.
- P_A is 1-Lipschitz.
- For a closed subspace M, P_M is linear and orthogonal: $\langle x P_M(x), v \rangle = 0$.
- Cones: closed under nonnegative scaling; intersections, sums, and closures of cones remain cones.
- Riesz theorem: every continuous linear functional on a Hilbert space has a unique vector representative.
- Adjoint operator: for $L \in \mathcal{L}(X,Y)$, there exists a unique $L^* \in \mathcal{L}(Y,X)$ such that $\langle Lx,y\rangle_Y = \langle x,L^*y\rangle_X$.

Chapter 3

Convex Functions and Polar/Normal/-Tangent Cones

3.1 Convex functions: epigraph, domain, strictness

Definition

Definition 3.1 (Effective domain and properness). Let X be a real vector space and $f: X \to \mathbb{R} \cup \{+\infty\}$. The effective domain is dom $f:=\{x \in X: f(x)<+\infty\}$. We say f is proper if $f \not\equiv +\infty$ and $f(x) > -\infty$ for all x.

Definition

Definition 3.2 (Epigraph and convexity). The epigraph of f is epi $f := \{(x, u) \in X \times \mathbb{R} : f(x) \leq u\}$. A function f is convex iff epi f is a convex subset of $X \times \mathbb{R}$.

Proposition

Proposition 3.1 (Pointwise characterization). A function $f: X \to \mathbb{R} \cup \{+\infty\}$ is convex iff for all $x, y \in \text{dom } f$ and $t \in [0, 1]$,

$$f(tx + (1-t)y) \le t f(x) + (1-t) f(y).$$

Definition

Definition 3.3 (Strict convexity). A function f is strictly convex if for all $x \neq y$ in dom f and $t \in (0,1)$,

$$f(tx + (1-t)y) < t f(x) + (1-t) f(y).$$

Proposition

Proposition 3.2 (Canonical examples). (i) Any norm $\|\cdot\|$ is convex, but not strictly convex in general.

(ii) In an inner-product space, $x \mapsto ||x||^2$ is strictly convex.

Hints. (i) Use the triangle inequality $||tx+(1-t)y|| \le t||x||+(1-t)||y||$, and show equality can hold with $x \ne y$ when y is a positive multiple of x. (ii) Expand $||tx+(1-t)y||^2$ with polarization to get $t||x||^2+(1-t)||y||^2-t(1-t)||x-y||^2$.

Proposition

Proposition 3.3 (A discontinuous convex function). The function $f : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ given by

$$f(x) = \begin{cases} 0, & x > 0, \\ 1, & x = 0, \\ +\infty, & x < 0 \end{cases}$$

is convex, dom $f = [0, +\infty)$, and f is not continuous at 0.

Proposition

Proposition 3.4 (Distance to a convex set is convex). Let $(X, \| \cdot \|)$ be a normed space and $\Omega \subset X$ be nonempty and convex. Then $d(\cdot, \Omega) : x \mapsto \inf_{y \in \Omega} \|x - y\|$ is convex on X.

Proposition

Proposition 3.5 (Subspace minimization (partial infimum preserves convexity)). Let X, Y be vector spaces and $f: X \times Y \to \mathbb{R} \cup \{+\infty\}$ be convex. Define $g(x) := \inf_{y \in Y} f(x, y)$. Then g is convex.

3.2 Cones: positive/polar cones and orthants

Definition

Definition 3.4 (Cones). A set $C \subset X$ is a cone if $\alpha x \in C$ for all $x \in C$ and $\alpha \geq 0$. Intersections, sums, and closures of cones are cones.

Definition

Definition 3.5 (Positive and polar (negative) cones). Let X be a Hilbert space and $C \subset X$. Define

$$C^+:=\{x\in X:\ \langle x,y\rangle\geq 0,\ \forall y\in C\},\qquad C^\ominus:=\{x\in X:\ \langle x,y\rangle\leq 0,\ \forall y\in C\}=-C^+.$$

Proposition

Proposition 3.6. C^+ and C^\ominus are always closed convex cones (even if C is neither convex nor a cone).

Proposition

Proposition 3.7 (Orthants). For the positive orthant $\mathbb{R}^n_+ = \{x : x_i \geq 0\}$ and the negative orthant $\mathbb{R}^n_- = -\mathbb{R}^n_+$,

$$(\mathbb{R}^n_+)^+ = \mathbb{R}^n_+, \qquad (\mathbb{R}^n_+)^\ominus = \mathbb{R}^n_-.$$

3.3 Normal and tangent cones to a convex set

Definition

Definition 3.6 (Normal cone). Let $A \subset X$ be convex and $a \in A$. The normal cone of A at a is

$$N_A(a) := \{x \in X : \langle x, y - a \rangle \le 0, \ \forall y \in A\} = (A - a)^{\ominus}.$$

Definition

Definition 3.7 (Tangent cone). Let $A \subset X$ be convex and $a \in A$. The tangent cone at a is the smallest closed convex cone containing A - a:

$$T_A(a) := \bigcap \{ C : C \text{ closed convex cone and } A - a \subset C \}.$$

Equivalently, $T_A(a)$ is the closure of the radial cone

$$T^{\circ}_{A}(a) := \{ \alpha(x-a) : \alpha > 0, x \in A \}.$$

Proposition

Proposition 3.8 (Radial cone is convex and $\overline{T_A^{\circ}(a)} = T_A(a)$). $T_A^{\circ}(a)$ is a convex cone and $\overline{T_A^{\circ}(a)} = T_A(a)$.

Idea. If $x' = \alpha(x - a)$ and $y' = \beta(y - a)$ with $\alpha, \beta \ge 0$, then for any $\theta \in [0, 1]$,

$$\theta x' + (1 - \theta)y' = (\alpha \theta + \beta(1 - \theta)) \left(\frac{\alpha \theta}{\alpha \theta + \beta(1 - \theta)} x + \frac{\beta(1 - \theta)}{\alpha \theta + \beta(1 - \theta)} y - a \right),$$

and the bracket is in A by convexity. Minimality of $T_A(a)$ among closed convex cones containing A-a implies $\overline{T_A^{\circ}(a)} = T_A(a)$.

Theorem

Theorem 3.1 (Normal-tangent polarity). For a convex set $A \subset X$ and $a \in A$,

$$N_A(a) = (T_A(a))^{\ominus}$$
.

Sketch. By definition $A - a \subset T_A(a)$, hence $(T_A(a))^{\ominus} \subset (A - a)^{\ominus} = N_A(a)$. Conversely, if $x \in N_A(a)$ then $\langle x, z \rangle \leq 0$ for all $z \in A - a$, and by closedness/convexity this extends to $z \in T_A(a)$, so $x \in (T_A(a))^{\ominus}$.

3.4 Quick checklist for quizzes / problem sets

- **Epigraph test:** f convex \Leftrightarrow epi f convex; strict convexity \Rightarrow uniqueness of minimizers on convex sets.
- Norm lore: $\|\cdot\|$ convex, not strictly (in general); $\|\cdot\|^2$ strictly convex in inner-product spaces.
- Distance and partial infimum: $d(\cdot,\Omega)$ convex for convex Ω ; if f convex then $x\mapsto \inf_y f(x,y)$ is convex.
- Cones: intersections/sums/closures preserve conicity; $C^{\ominus} = -C^+$; orthant polarity $(\mathbb{R}^n_+)^+ = \mathbb{R}^n_+$ and $(\mathbb{R}^n_+)^{\ominus} = \mathbb{R}^n_-$.
- Normal & tangent: $T_A^{\circ}(a)$ convex cone, $\overline{T_A^{\circ}(a)} = T_A(a)$, and $N_A(a) = (T_A(a))^{\ominus}$.

Chapter 4

Operations Preserving Convexity and Strong Convexity

4.1 Concavity and Convexity

Definition

Definition 4.1 (Concavity). A function $f: X \to \mathbb{R}$ is said to be concave if -f is convex. It is strictly concave if -f is strictly convex.

Linear functions are both convex and concave. A maximization problem $\max f(x)$ is called *convex* when f is concave.

Proposition

Proposition 4.1 (Examples). • f(x) = x and $f(x) = \ln x$ are concave functions on $(0, \infty)$.

• $f(x) = x^2$ is convex and not concave.

4.2 Level and Sublevel Sets

Definition

Definition 4.2 (Level and sublevel sets). Let $f: X \to \mathbb{R}$. For $\alpha \in \mathbb{R}$, the sublevel set and level set of f are defined by

$$\mathrm{Lev}_{\leq \alpha}(f) := \{x \in X: \ f(x) \leq \alpha\}, \qquad \mathrm{Lev}_{=\alpha}(f) := \{x \in X: \ f(x) = \alpha\}.$$

Proposition

Proposition 4.2 (Convexity of sublevel sets). If $f: X \to \mathbb{R}$ is convex, then for every $\alpha \in \mathbb{R}$, the set Lev $_{\alpha}(f)$ is convex.

Idea. Let $x_1, x_2 \in \text{Lev}_{\leq \alpha}(f)$ and $\theta \in [0, 1]$. Convexity gives

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2) \le \alpha.$$

Hence the point lies in $Lev_{<\alpha}(f)$.

Definition

Definition 4.3 (Quasi-convex function). A function $f: X \to \mathbb{R}$ is quasi-convex if all its sublevel sets are convex.

Every convex function is quasi-convex, but the converse is false.

4.3 Operations Preserving Convexity

Proposition

Proposition 4.3 (Affine combinations and sums). If f_1, \ldots, f_m are convex functions and $\alpha_1, \ldots, \alpha_m \geq 0$, then

$$f = \sum_{i=1}^{m} \alpha_i f_i$$

is convex. In particular, the sum of convex functions is convex.

Proposition

Proposition 4.4 (Affine composition). If $f: X \to \mathbb{R}$ is convex and $A: Y \to X$ is linear (affine map Ay + b), then

$$g(y) := f(Ay + b)$$

is convex on Y.

Example. If $f(x_1, x_2) = x_1^2 + x_2^2$ and $A(y_1, y_2) = (y_1 - 8y_2 - 3)$, then $g(y) = f(Ay + b) = 2e^{5y_1 - 8y_2 - 3}$ is convex as a composition of convex and affine maps.

Proposition

Proposition 4.5 (Composition with monotone convex maps). Let $f: X \to \mathbb{R}$ be convex and $g: \operatorname{range}(f) \to \mathbb{R}$ be convex and nondecreasing. Then $g \circ f$ is convex.

Counterexample when monotonicity is missing. Take $f(x) = x^2$ (convex) and $g(t) = t^{1/4}$, which is not convex for t > 0. Then $g \circ f(x) = |x|^{1/2}$ is not convex near 0.

Proposition

Proposition 4.6 (Pointwise supremum). If $\{f_i : X \to \mathbb{R}\}_{i \in I}$ are convex, then the pointwise supremum

$$f(x) := \sup_{i \in I} f_i(x)$$

is convex, with

$$\operatorname{epi}(f) = \bigcap_{i \in I} \operatorname{epi}(f_i).$$

Remark. The hinge loss $g(x) = \max(0, 1 - x)$, used in machine learning, is convex as the maximum of two convex functions.

Proposition

Proposition 4.7 (Restriction to subspaces). Let $f: X \times Y \to \mathbb{R}$ be convex, and fix $y \in Y$. Define $g_y(x) := f(x,y)$. Then g_y is convex on X.

Counterexample for the converse. f(x,y) = xy has all affine (hence convex) restrictions $g_y(x) = xy$, but f itself is not convex on \mathbb{R}^2 .

4.4 Indicator Functions and Convex Sets

Definition

Definition 4.4 (Indicator function). Given $C \subset X$, define its indicator function

$$I_C(x) = \begin{cases} 0, & x \in C, \\ +\infty, & x \notin C. \end{cases}$$

Theorem

Theorem 4.1 (Convexity criterion). A set $C \subset X$ is convex \iff its indicator function I_C is convex.

Sketch. (\Rightarrow) If C is convex, take $x, y \in C$ and $\theta \in [0,1]$; then $\theta x + (1-\theta)y \in C$, hence $I_C(\theta x + (1-\theta)y) = 0 \le \theta I_C(x) + (1-\theta)I_C(y)$. If either x or y is outside C, the RHS is $+\infty$, inequality holds trivially. (\Leftarrow) If I_C is convex and $x, y \in C$, then the convexity inequality forces $\theta x + (1-\theta)y \in C$.

4.5 First-Order Characterization of Convexity

Theorem

Theorem 4.2 (First-order condition). Let $f: X \to \mathbb{R}$ be Fréchet differentiable on an open convex domain in a Hilbert space X. Then f is convex iff

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \text{dom } f.$$

Geometrically, the graph of f lies above all its tangent hyperplanes. This is the foundation of first-order optimality conditions.

4.6 Strong Convexity

Definition

Definition 4.5 (Strong convexity). A differentiable function $f: X \to \mathbb{R}$ is μ -strongly convex if there exists $\mu > 0$ such that

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2, \quad \forall x, y \in \text{dom } f.$$

Theorem

Theorem 4.3 (Equivalent characterizations). Let f be differentiable and $\mu > 0$. The following are equivalent:

- (i) f satisfies the strong convexity inequality above.
- (ii) $g(x) := f(x) \frac{\mu}{2} ||x||^2$ is convex.
- (iii) $\langle \nabla f(x) \nabla f(y), x y \rangle \ge \mu ||x y||^2$ for all x, y.
- (iv) $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y) \alpha(1 \alpha)\frac{\mu}{2}||x y||^2$.

The constant μ measures the *curvature* or *strongness* of convexity. For $\mu = 0$, we recover standard convexity.

Proposition

Proposition 4.8 (Gradient monotonicity). For a μ -strongly convex differentiable function,

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||^2,$$

which means the gradient mapping is strongly monotone.

4.7 Midpoint Convexity

Definition

Definition 4.6 (Midpoint convexity). A set C is midpoint convex if $x, y \in C \implies \frac{x+y}{2} \in C$.

Proposition

Proposition 4.9. Every convex set is midpoint convex, but the converse need not hold.

Proposition

Proposition 4.10 (Counterexample). The set $\mathbb{Q} \subset \mathbb{R}$ of rational numbers is midpoint convex but not convex, since for x = 0, y = 1, we have $(x+y)/2 = 1/2 \in \mathbb{Q}$, but irrational points between 0 and $\sqrt{2}$ are missing.

Theorem

Theorem 4.4 (Closed midpoint convex sets are convex). If C is closed and midpoint convex, then C is convex.

Sketch. Given $x, y \in C$ and $\alpha \in [0, 1]$, repeatedly take midpoints between x and y to approximate $\alpha x + (1 - \alpha)y$. All these points stay in C by midpoint convexity. Closedness ensures that the limit point also lies in C.

4.8 Summary for Quizzes and Problem Sets

- f convex \Rightarrow sublevel sets convex \Rightarrow quasi-convex.
- Operations preserving convexity: affine maps, nonnegative sums, positive scalar multiples, pointwise supremum, and monotone convex compositions.
- Indicator I_C convex $\iff C$ convex.
- Differentiable convex $\iff f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$.
- Strong convexity \iff quadratic lower bound; equivalent to convexity of $f \frac{\mu}{2} ||x||^2$.
- Closed midpoint convex ⇒ convex (important geometric result).

Chapter 5

Continuity, Lower Semicontinuity, and the Role of Convexity in Optimization

5.1 Continuity of Convex Functions

Proposition

Proposition 5.1 (Continuity criterion). Let $f: X \to \mathbb{R}$ be convex, and $a \in X$ such that f is upper-bounded in a neighborhood of a. Then f is continuous at a.

Theorem

Theorem 5.1 (Continuity on the interior of the domain). Let $f: X \to \mathbb{R}$ be convex on a finite-dimensional normed space. Then f is continuous at every $x_0 \in (\text{dom } f)^{\circ}$ where $f(x_0) \in \mathbb{R}$.

Idea. Choose the max norm $||x||_{\infty} = \max_i |x_i|$ in \mathbb{R}^n . Let $x_0 \in (\text{dom } f)^{\circ}$ and pick $\omega > 0$ such that $B_{\omega}(x_0) \subset \text{dom } f$. Define C as the convex hull of the 2^n vertices of the cube centered at x_0 with edge 2ω . By convexity, f is upper-bounded on C, and Proposition 1 implies continuity at x_0 .

Hence convex functions are automatically continuous in the interior of their effective domain, though they may diverge to $+\infty$ at the boundary.

5.2 Lower Semicontinuity and Closed Epigraphs

Definition

Definition 5.1 (Lower semicontinuity). A function $f: X \to \mathbb{R}$ is lower semicontinuous (l.s.c.) at x if for every sequence $x_n \to x$,

$$f(x) \le \liminf_{n \to \infty} f(x_n).$$

Equivalently, f does not jump downward at x.

Theorem

Theorem 5.2 (Equivalent characterizations). For any function $f: X \to \mathbb{R}$, the following are equivalent:

- (i) f is lower semicontinuous,
- (ii) epi f is closed in $X \times \mathbb{R}$,
- (iii) for every $\gamma \in \mathbb{R}$, the sublevel set $\{x: f(x) \leq \gamma\}$ is closed.

Sketch. (i) \Rightarrow (ii): if $(x_n, \mu_n) \in \text{epi}(f)$ and $(x_n, \mu_n) \to (x, \mu)$, then $f(x_n) \leq \mu_n$ and by l.s.c. $f(x) \leq \liminf f(x_n) \leq \lim \mu_n = \mu$. (ii) \Rightarrow (iii): closedness of epi(f) implies closedness of each horizontal slice at height γ . (iii) \Rightarrow (i): if $x_n \to x$ and $f(x_n) \to y$, then x lies in every closed sublevel $\{f \leq y + \varepsilon\}$, hence $f(x) \leq y$.

5.3 Directional Derivatives and Differentiability

Definition

Definition 5.2 (Directional derivative). Let $f:(X,\|\cdot\|)\to\mathbb{R}$ and $x,d\in X$. The directional derivative of f at x along d is

$$f'(x;d) = \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t},$$

if the limit exists.

Proposition

Proposition 5.2 (Existence for convex functions). If f is convex, then for every $x, d \in X$ the right-hand limit defining f'(x;d) exists (possibly $+\infty$). Moreover, $d \mapsto f'(x;d)$ is convex.

Idea. For convex f, the quotient $\frac{f(x+td)-f(x)}{t}$ is nondecreasing in t>0; hence its limit as $t\downarrow 0$ exists. The convexity of $f'(x;\cdot)$ follows from convexity of f in the direction variable.

Definition

Definition 5.3 (Gateaux and Fréchet differentiability). • f is Gateaux differentiable at x if f'(x;d) exists for all d and the map $d \mapsto f'(x;d)$ is linear and continuous. We then denote df(x)(d) = f'(x;d).

• f is Fréchet differentiable at x if there exists $Df(x) \in \mathcal{L}(X,\mathbb{R})$ such that

$$\lim_{h \to 0} \frac{|f(x+h) - f(x) - Df(x)(h)|}{\|h\|} = 0.$$

 $Fr\'{e}chet\ differentiability \Rightarrow Gateaux\ differentiability.$

Proposition

Proposition 5.3 (Example of Gateaux but not Fréchet). Define

$$f(x,y) = \begin{cases} 1, & y = x^2, \ x \neq 0, \\ 0, & otherwise. \end{cases}$$

Then f is Gateaux differentiable at (0,0) but not Fréchet differentiable.

5.4 Differentiability and Convexity

Theorem

Theorem 5.3 (First-order condition for convexity). Let $f: X \to \mathbb{R}$ be Fréchet differentiable on an open convex domain. Then f is convex \iff

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y.$$

Theorem

Theorem 5.4 (Gradient monotonicity criterion). A Fréchet differentiable function f is $convex \iff$

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0, \quad \forall x, y \in X.$$

Idea. Add the inequalities $f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle$ and $f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle$ to deduce $\langle \nabla f(y) - \nabla f(x), y - x \rangle \geq 0$. Conversely, integrating this inequality along the line segment between x and y recovers convexity.

Proposition

Proposition 5.4 (Quadratic form criterion). Let $A \in \mathbb{R}^{n \times n}$ be symmetric and define $f(x) = \langle Ax, x \rangle$. Then $\nabla f(x) = 2Ax$, and f is convex \iff A is positive semidefinite.

5.5 Optimization and the Role of Convexity

Definition

Definition 5.4 (Local and global minimizers). For $f: X \to \mathbb{R}$:

- x^* is a global minimizer if $f(x^*) \leq f(x)$ for all $x \in X$.
- x^* is a local minimizer if $\exists \varepsilon > 0$ such that $f(x^*) \leq f(x)$ for all $x \in B(x^*, \varepsilon)$.

Theorem

Theorem 5.5 (Convexity and optimality). If f is convex, every local minimizer is a global minimizer. If f is strictly convex and dom $f \neq \emptyset$, then the global minimizer—if it exists—is unique.

Sketch. For convex f, suppose x^* is local. For any y and $t \in (0,1)$ small enough, $x_t = (1-t)x^* + ty$ remains in the local neighborhood, and

$$f(x^*) \le f(x_t) \le (1-t)f(x^*) + tf(y) \implies f(x^*) \le f(y).$$

Uniqueness for strictly convex f follows since equality in the convexity inequality implies x = y.

Proposition

Proposition 5.5 (Examples). • $f(x) = x^2$ is convex and has a unique minimizer x = 0.

• f(x) = 0 for $x \in [0,2]$ and $f(x) = x^2$ otherwise is convex, with infinitely many global minimizers in [0,2].

5.6 Summary for Quizzes and Problem Sets

- Convex \Rightarrow continuous on $(\text{dom } f)^{\circ}$.
- Lower semicontinuous \iff closed epigraph \iff closed sublevel sets.
- Convex functions admit directional derivatives; $d \mapsto f'(x;d)$ is convex.
- Fréchet differentiability ⇒ convexity via tangent-plane inequality.
- Gradient monotonicity: $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0$.
- Quadratic form convex \iff symmetric matrix $A \succeq 0$.
- Local minima of convex f are global; strict convexity \Rightarrow uniqueness.

Chapter 6

Revision: Problem-Solving Tools for Convex Analysis and Optimization

6.1 Core Definitions and Quick Tests

Definition

Definition 6.1 (Convex set test). A set C is convex \iff

$$x, y \in C, \ t \in [0, 1] \implies tx + (1 - t)y \in C.$$

Equivalent formulations:

- C = conv(C) (closed under convex combinations);
- C midpoint convex and closed;
- I_C (indicator function) is convex.

Definition

Definition 6.2 (Convex function test). For $f: X \to \mathbb{R} \cup \{+\infty\}$:

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y), \quad \forall x, y, \ t \in [0,1].$$

Equivalent characterizations:

- epi(f) convex.
- f satisfies the first-order inequality $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$.
- $\langle \nabla f(y) \nabla f(x), y x \rangle \ge 0.$

Definition

Definition 6.3 (Strong convexity test). f is μ -strongly convex \iff any of the following

hold:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2,$$
$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \mu ||y - x||^2,$$
$$f(x) - \frac{\mu}{2} ||x||^2 \text{ is convex.}$$

Definition

Definition 6.4 (Lower semicontinuity tests). f is lower semicontinuous (l.s.c.) \iff

$$f(x) \leq \liminf_{n \to \infty} f(x_n)$$
 whenever $x_n \to x$.

 $Equivalent\ to:$

- epi(f) is closed;
- Lev $<_{\alpha}(f)$ is closed $\forall \alpha$.

6.2 Geometric Tools and Cones

Definition

Definition 6.5 (Cones). C is a cone $\iff \lambda x \in C$ for all $\lambda \geq 0$, $x \in C$.

Proposition

Proposition 6.1 (Operations). Intersections, sums, closures \Rightarrow cones. If C_1, C_2 are convex cones, so are $C_1 + C_2$, $C_1 \cap C_2$, $\overline{C_1}$.

Definition

Definition 6.6 (Polar and positive cones).

$$C^+ = \{x: \ \langle x,y \rangle \ge 0, \ \forall y \in C\}, \qquad C^\ominus = \{x: \ \langle x,y \rangle \le 0, \ \forall y \in C\}.$$

Definition

Definition 6.7 (Tangent and normal cones to convex sets). For $A \subset X$ convex and $a \in A$:

$$T_A(a) = \overline{\{\alpha(x-a) : \alpha \ge 0, \ x \in A\}},$$

 $N_A(a) = \{z : \langle z, y-a \rangle \le 0, \ \forall y \in A\} = (T_A(a))^{\ominus}.$

Quick polarity table:

Object	\longleftrightarrow	Polar relation
Convex cone C	\leftrightarrow	C^{\ominus}
$T_A(a)$	\leftrightarrow	$N_A(a)$
\mathbb{R}^n_+	\leftrightarrow	\mathbb{R}^n
Subspace M	\leftrightarrow	M^{\perp}

6.3 Projection and Riesz Tools

Theorem

Theorem 6.1 (Projection theorem). If A is closed and convex in a Hilbert space, then for all x there exists a unique

$$P_A(x) = \arg\min_{y \in A} ||x - y||,$$

characterized by $\langle x - P_A(x), z - P_A(x) \rangle \leq 0$ for all $z \in A$.

Proposition

Proposition 6.2 (Projection properties). • P_A is 1-Lipschitz: $||P_A(x) - P_A(y)|| \le ||x - y||$.

- If A = M is a closed subspace: P_M is linear, $X = M \oplus M^{\perp}$.
- Orthogonality: $\langle x P_M(x), v \rangle = 0$ for all $v \in M$.

Theorem

Theorem 6.2 (Riesz representation). For every continuous linear $\varphi: X \to \mathbb{R}$ on a Hilbert space, there exists a unique $w \in X$ such that

$$\varphi(x) = \langle w, x \rangle, \quad \forall x \in X.$$

Theorem

Theorem 6.3 (Adjoint operator). For $L \in \mathcal{L}(X,Y)$ between Hilbert spaces, there exists a unique $L^* \in \mathcal{L}(Y,X)$ such that

$$\langle Lx, y \rangle_Y = \langle x, L^*y \rangle_X.$$

6.4 Functional Tools and Continuity

- Convex \Rightarrow continuous on int(dom f).
- L.s.c. \iff closed epigraph \iff closed sublevel sets.

- Directional derivative f'(x;d) exists for convex f (as a finite or infinite limit).
- f Gateaux differentiable \Rightarrow directional derivative linear in d.
- f Fréchet differentiable $\Rightarrow f(y) = f(x) + \langle \nabla f(x), y x \rangle + o(||y x||)$.

Theorem

Theorem 6.4 (Gradient monotonicity). For convex differentiable f:

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge 0.$$

For μ -strongly convex f:

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \mu \|y - x\|^2.$$

Proposition

Proposition 6.3 (Quadratic form test). If $f(x) = x^{\top}Ax$ with $A = A^{\top}$, then $\nabla f(x) = 2Ax$. f convex $\iff A \succeq 0$ (positive semidefinite).

6.5 Optimization Patterns and Midterm Problem Strategies

- Checking convexity:
 - 1. Verify convexity of epi(f) or use the first-order inequality.
 - 2. For quadratic forms: check $A \succeq 0$ via eigenvalues $\lambda_i \geq 0$.
 - 3. For norms or distance functions: use triangle inequality.
- Continuity + convexity combo:
 - To prove continuity at x_0 : find a local upper bound \Rightarrow convex \Rightarrow continuous.
 - For finite-dimensional X: convex \Rightarrow continuous on int(dom f).
- Optimization questions:
 - For convex f, local minima \Rightarrow global.
 - For strictly convex f, minimizer (if exists) is unique.
 - First-order optimality condition:

$$\nabla f(x^*) = 0$$
 if f differentiable and convex.

- Strong convexity:
 - Add $\frac{\mu}{2}||x||^2$ to make f strictly convex.
 - Gives quadratic lower bound on growth around the minimizer.
- Geometric intuition:
 - Convex sets \Rightarrow one supporting hyperplane per boundary point.
 - Tangent and normal cones: orthogonal geometry governs constraint qualification.

6.6 Quick Formula Library

- Convex combination: $\sum_{i} \theta_{i} x_{i}$, with $\theta_{i} \geq 0$, $\sum_{i} \theta_{i} = 1$.
- Convex hull: $conv(A) = \{finite convex combinations of points in A\}.$
- Distance: $d(x, A) = \inf_{y \in A} ||x y||$ (convex if A convex).
- Projection: $P_A(x) = \arg\min_{y \in A} ||x y||$.
- Sublevel set: $\{f \leq \alpha\}$ convex $\iff f$ convex.
- **Epigraph:** $epi(f) = \{(x, u) : f(x) \le u\}.$
- Strong convexity gradient test: $\langle \nabla f(x) \nabla f(y), x y \rangle \ge \mu \|x y\|^2$.
- Monotone gradient: ∇f monotone $\iff f$ convex.

6.7 Checklist for the Midterm

- 1. Identify if the object is a **set** or a **function**.
- 2. For sets: test convexity via combinations, intersections, closure, or support lines.
- 3. For functions: use epigraph, first-order test, or matrix positivity.
- 4. When proving continuity: look for boundedness around the point.
- 5. Always mention domain and properness (avoid $f \equiv +\infty$).
- 6. If f is convex and differentiable, minimize by solving $\nabla f(x) = 0$.
- 7. For geometric problems, recall:

$$N_A(a) = (T_A(a))^{\ominus}, \quad P_A(x) : \langle x - P_A(x), z - P_A(x) \rangle \le 0.$$

8. Remember: convex + closed \Rightarrow well-behaved projections and continuity.