Lecture 19: IPsec and VPN

COSC362 Data and Network Security

Book 1: Chapter 20 - Book 2: Chapters 9 and 22

Spring Semester, 2021

Motivation

- ▶ IP security (IPsec) is a framework for ensuring secure communications over IP (internet protocol) networks.
- Security services similar as TLS, but at a lower layer in the communication protocol stack.
- Security added to IPv4 and IPv6.
- Virtual private networks (VPNs) extend a private network across a public network and enable secure communication over the latter.

Outline

IP Layer Security
Architectures
Protocols
Modes

Virtual Private Networks
IPsec Virtual Private Networks

Outline

IP Layer Security Architectures Protocols Modes

Virtual Private Networks

IPsec Virtual Private Networks

Cryptography in the TCP/IP Stack

- Application layer security: SSH, S-MIME, PGP, etc.
- Transport layer security: SSL, TLS.
- Network layer security: IPsec.
- Data-link layer security: WEP, WPA, WPA2. etc.

Introduction

- ► Standard: RFCs 4301-4305 (2005) with cryptographic algorithms updated in subsequent RFCs.
- Providing protection for any higher layer protocol, including arbitrary TCP and UDP sessions.
- Using encryption, authentication and key management algorithms.
- Commonly used to provide virtual private networks (VPNs).
- Providing a security architecture for both:
 - ► IPv4: RFC 791 (1981)
 - ▶ IPv6: RFC 8200 (2017)

Security Services

- Message confidentiality: Protecting against unauthorized data disclosure:
 - By using encryption mechanisms.
- Message integrity: Determining if data has been changed (either intentionally or unintentionally):
 - ▶ By using message authentication codes (MACs).
- ▶ Limited traffic analysis protection: Possibly difficult to know which parties are communicating, how often, or how much data is being sent when monitoring network traffic:
 - By concealing IP datagram details such as source and destination addresses.

Security Services

- ► Message replay protection: Data not delivered multiple times, and not delivered badly out of order.
- Peer authentication: Ensuring network traffic to be sent from the expected host:
 - ► Each IPsec endpoint confirms its identity of the other IPsec endpoint with which it wishes to communicate.

Gateway-to-Gateway Architecture

- ▶ Providing secure communications between 2 networks.
- Network traffic routed through IPsec connection, protecting it appropriately.
- Only protecting data between the 2 gateways.
- Often used when connecting 2 secured networks:
 - Example: Linking a branch office to headquarters over the Internet.
- Less costly than private wide area network (WAN) circuits.

Host-to-Gateway Architecture

- Commonly used to provide secure remote access:
 - Example: An organization deploys a VPN gateway onto its network.
- ► Each remote access user establishes a VPN connection between the local computer (host) and the gateway.
- ► The VPN gateway may be either a dedicated device or part of another network device.
- Often used when connecting hosts on unsecured networks to resources on secured networks.

Host-to-Host Architecture

- Typically used for special purpose needs:
 - Example: System administrators performing remote management of a single server.
- Providing protection for data throughout its transit (end-to-end).
- Resource-intensive to implement and maintain in terms of user and host management.
- All user systems and servers participating in VPNs need to have VPN software installed and/or configured.
- Key management through a manual process.

Types

- Encapsulating security payload (ESP): Providing confidentiality, authentication, integrity and replay protection.
- Authentication header (AH): Providing authentication, integrity and replay protection, but NOT confidentiality:
 - ► AH is now deprecated.
- Internet key exchange (IKE): Negotiating, creating and managing session keys in security associations (SAs).

IPsec Connection Setup

- Key exchange using IKEv2 protocol:
 - ► Standard: RFC 7296 (2014).
- ► IKEv2 uses a Diffie-Hellman protocol authenticated using signatures with public keys in X.509 certificates.
- Including cookies to mitigate denial-of-service (DoS) attacks:
 - ▶ Providing *Proof of Reachability* before any expensive cryptographic processing is completed.

Using cookies

RFC 7296 Section 2.6:

- Mechanism to mitigate the DoS attack called stateless cookie.
- ▶ When the server is under load, the initial request is responded with a calculated stateless cookie:
 - ▶ a value that can be re-calculated based on values in the initial request without storing responder-side state.
- ➤ The initial request is then expected to repeat, this time including the stateless cookie.

RFC 7296 Section 3:

- Addition of a Proof of Work:
 - by calculating a pre-image for a partial hash value.
- ▶ Setting an upper bound determined by the attacker's CPU to the number of negotiations it can initiate in a unit of time.

Security Associations

- Containing information needed by an IPsec endpoint to support an IPsec connection.
- Possibly including cryptographic keys and algorithms, key lifetimes, security parameter index (SPI), security protocol identifier (ESP and/or AH).
- ▶ SPI included in IPsec header to associate a packet with the appropriate SA.
- ► Telling the endpoint how to process inbound IPsec packets and/or how to generate outbound packets.
- Unidirectional: One SA for each direction of connection.
- ► IKEv2 to establish keys used in SAs.

Cryptographic Suites

- ► Similar to TLS cipher suites:
 - Several standardised cryptographic suites, incorporating both public key and symmetric key algorithms.
- Specific groups are available for Diffie-Hellman (in finite fields and on elliptic curves).
- 3DES and AES used for encryption, either in CBC or GCM mode.
- HMAC or CMAC (variant) used for integrity if GCM mode is not used.

└ Modes

Modes of Operation

- ► Each protocol (either ESH or AH) can operate in either *transport* or *tunnel* mode.
- ► Transport mode: Maintaining IP header of the original packet and protecting the payload:
 - Generally used in host-to-host architectures.
- ► Tunnel mode: Encapsulating the original packet into a new one, and letting the payload be the original packet:
 - Generally used in gateway-to-gateway and host-to-gateway architectures.

∟ Modes

Mode Overiew

└ Modes

Example

└ Modes

Components

- ► ESP header: Containing the SPI identifying the SA and sequence numbers.
- ESP trailer: Containing padding and its length, and possibly including extra padding to enhance traffic flow confidentiality.
- ESP auth: Containing MAC of the encrypted data and ESP header:
 - Possibly not required if an authenticated encryption mode is used.

Transport Mode ESP

▶ Original IP packet:

▶ IP packet protected by transport mode ESP:

Pictures for IPv4 (slight differences for IPv6)

└─Modes

Transport Mode ESP

Outbound packet processing:

- Data after original IP header:
 - Padded by adding an ESP trailer.
 - Encrypted using symmetric cipher and key agreed in the SA.
- ESP header prepended.
- ▶ If SA uses the authentication service, then:
 - ► ESP MAC calculated over the data prepared so far and appended.
- Original IP header prepended BUT some fields must be changed:
 - Protocol field changed from TCP to ESP.
 - Total length field changed to reflect the addition of ESP header.
 - Checksums recalculated.

∟_{Modes}

Tunnel Mode ESP

Original IP packet:

IP packet protected by tunnel mode ESP:

Pictures for IPv4 (slight differences for IPv6)

└ Modes

Tunnel Mode ESP

Outbound packet processing:

- Entire original packet:
 - Padded by adding an ESP trailer.
 - ► Encrypted using symmetric cipher and key agreed in the SA.
- ESP header prepended.
- ▶ If SA uses the authentication service, then:
 - ► ESP MAC calculated over the data prepared so far and appended.
- A new outer IP header prepended:
 - ► Inner IP header of original IP packet carrying the *ultimate* source and destination addresses.
 - Outer IP header may contain distinct IP addresses (e.g. addresses of security gateways).
 - Outer IP header protocol field set to ESP.

Modes

Security

- Active attacks exist for encryption-only mode of ESP protocol:
 - Providing encryption without integrity is known to be insecure.
 - ▶ Unlike earlier IPsec versions, the 2005 version does not require implementations to support encryption-only modes, but still allows it.
- Attacks due to MAC-then-encrypt configurations:
 - ▶ AH applies encryption after MAC (MAC-then-encrypt).
 - ► ESP applies encryption *before* MAC (*encrypt-then-MAC*).

Outline

IP Layer Security
Architectures
Protocols
Modes

Virtual Private Networks
IPsec Virtual Private Networks

Introduction

- Providing a secure distributed network.
- Creating secure channels over the insecure Internet.
- ► Types:
 - Branch office interconnect (Intranet VPN)
 - Supplier/business partner access (Extranet VPN)
 - Remote access

Branch Office Interconnect

- Establishing a VPN tunnel between router/firewall 1 and router/firewall 2:
 - Using AH to authenticate data from tunnel endpoints (routers/firewalls).
 - Using ESP to encrypt data over the Internet.
- ▶ Only routers/firewalls need to support IPsec:
 - No change to Intranet resources.

Supplier Network

- Supplier may not be part of the entreprise:
 - ▶ VPN extended to operate between router/firewall 1 and individual parts of supplier network.

Remote Access

► Internet service providers (ISPs) can provide VPN services across the untrusted Internet.

☐ IPsec Virtual Private Networks

IKEv2 VPN

- Most recent and now very common in commercial equipment.
- Simple configuration and use with modern Windows and Linux systems, as well as mobile phones.