Probability and Statistics Overview

Lecture-3

Standardization

Random variable X with mean μ and standard deviation σ .

Standardization:
$$Y = \frac{X - \mu}{\sigma}$$
.

- Y has mean 0 and standard deviation 1.
- Standardizing any normal random variable produces the standard normal.
- If $X \approx$ normal then standardized $X \approx$ stand. normal.
- We use reserve Z to mean a standard normal random variable.

Concept Question: Standard Normal

- **1**. P(-1 < Z < 1) is (a) 0.025 (b) 0.16 (c) 0.68 (d) 0.84 (e) 0.95
- **2.** P(Z > 2) (a) 0.025 (b) 0.16 (c) 0.68 (d) 0.84 (e) 0.95

answer: 1c, 2a

Central Limit Theorem

Setting: X_1, X_2, \ldots i.i.d. with mean μ and standard dev. σ .

For each *n*:

$$\overline{X}_n = \frac{1}{n}(X_1 + X_2 + \ldots + X_n)$$
 average $S_n = X_1 + X_2 + \ldots + X_n$ sum.

Conclusion: For large *n*:

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 $S_n \approx N\left(n\mu, n\sigma^2\right)$

Standardized S_n or $\overline{X}_n \approx N(0,1)$

That is,
$$\frac{S_n - n\mu}{\sqrt{n}\sigma} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \approx N(0, 1).$$

http://onlinestatbook.com/2/sampling_distributions/clt_demo.html

Standardized average of n i.i.d. uniform random variables with n = 1, 2, 4, 12.

The standardized average of n i.i.d. exponential random variables with n = 1, 2, 8, 64.

The standardized average of n i.i.d. Bernoulli(0.5) random variables with n = 1, 2, 12, 64.

The (non-standardized) average of n Bernoulli(0.5) random variables, with n = 4, 12, 64. (Spikier.)

Table Question: Sampling from the standard normal distribution

As a table, produce a single random sample from (an approximate) standard normal distribution.

The table is allowed nine rolls of the 10-sided die.

Note: $\mu = 5.5$ and $\sigma^2 = 8.25$ for a single 10-sided die.

Hint: CLT is about averages.

<u>answer:</u> The average of 9 rolls is a sample from the average of 9 independent random variables. The CLT says this average is approximately normal with $\mu=5.5$ and $\sigma=8.25/\sqrt{9}=2.75$ If \overline{x} is the average of 9 rolls then standardizing we get

$$z = \frac{\overline{x} - 5.5}{2.75}$$

is (approximately) a sample from N(0,1).

Hypothesis testing

Understand this figure

- x = test statistic
- $f(x|H_0) = pdf$ of null distribution = green curve
- Rejection region is a portion of the x-axis.
- Significance = probability over the rejection region = red area.

Simple and composite hypotheses

Simple hypothesis: the sampling distribution is fully specified. Usually the parameter of interest has a specific value.

Composite hypotheses: the sampling distribution is not fully specified. Usually the parameter of interest has a range of values.

Example. A coin has probability θ of heads. Toss it 30 times and let x be the number of heads.

- (i) *H*: $\theta = 0.4$ is simple. $x \sim \text{binomial}(30, 0.4)$.
- (ii) $H: \theta > 0.4$ is composite. $x \sim \text{binomial}(30, \theta)$ depends on which value of θ is chosen.

Extreme data and *p*-values

Hypotheses: H_0 , H_A .

Test statistic: value: x, random variable X.

Null distribution: $f(x|H_0)$ (assumes the null hypothesis is true)

Sides: H_A determines if the rejection region is one or two-sided.

Rejection region/Significance: $P(x \text{ in rejection region } | H_0) = \alpha$.

The p-value is a computational tool to check if the test statistic is in the rejection region. It is also a measure of the evidence for rejecting H_0 .

p-value: $P(\text{data at least as extreme as } x \mid H_0)$

Data at least as extreme: Determined by the sided-ness of the rejection region.

Extreme data and *p*-values

Example. Suppose we have the right-sided rejection region shown below. Also suppose we see data with test statistic x = 4.2. Should we reject H_0 ?

answer: The test statistic is in the rejection region, so reject H_0 .

Alternatively: blue area < red area

Significance: $\alpha = P(x \text{ in rejection region } | H_0) = \text{red area}.$

p-value: $p = P(\text{data at least as extreme as } x \mid H_0) = \text{blue area.}$

Since, $p < \alpha$ we reject H_0 .

Extreme data and *p*-values

Example. Now suppose x = 2.1 as shown. Should we reject H_0 ?

<u>answer:</u> The test statistic is not in the rejection region, so don't reject H_0 .

Alternatively: blue area > red area

Significance: $\alpha = P(x \text{ in rejection region } | H_0) = \text{red area}.$

p-value: $p = P(\text{data at least as extreme as } x \mid H_0) = \text{blue area.}$

Since, $p > \alpha$ we don't reject H_0 .

Critical values

Critical values:

- The boundary of the rejection region are called critical values.
- Critical values are labeled by the probability to their right.
- They are complementary to quantiles: $c_{0.1} = q_{0.9}$

Two-sided *p*-values

These are trickier: what does 'at least as extreme' mean in this case?

Remember the p-value is a trick for deciding if the test statistic is in the region.

If the significance (rejection) probability is split evenly between the left and right tails then

 $p = 2\min(\text{left tail prob. of } x, \text{ right tail prob. of } x)$

x is outside the rejection region, so $p > \alpha$: do not reject H_0

Student's T-Test

One-sample *t*-test

• Data: we assume normal data with both μ and σ unknown:

$$x_1, x_2, \ldots, x_n \sim N(\mu, \sigma^2).$$

- Null hypothesis: $\mu = \mu_0$ for some specific value μ_0 .
- Test statistic:

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

where

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}.$$

Here t is the Studentized mean and s^2 is the sample variance.

• Null distribution: $f(t | H_0)$ is the pdf of $T \sim t(n-1)$, the t distribution with n-1 degrees of freedom.

Two-sample *t*-test: equal variances

Data: we assume normal data with μ_x , μ_y and (same) σ unknown:

$$x_1, \ldots, x_n \sim N(\mu_x, \sigma^2), \quad y_1, \ldots, y_m \sim N(\mu_y, \sigma^2)$$

Null hypothesis H_0 : $\mu_x = \mu_y$.

Pooled variance:
$$s_p^2 = \frac{(n-1)s_x^2 + (m-1)s_y^2}{n+m-2} \left(\frac{1}{n} + \frac{1}{m}\right).$$

Test statistic:
$$t = \frac{\bar{x} - \bar{y}}{s_p}$$

Null distribution: $f(t | H_0)$ is the pdf of $T \sim t(n + m - 2)$

In general (so we can compute power) we have

$$\frac{(\bar{x}-\bar{y})-(\mu_x-\mu_y)}{s_p}\sim t(n+m-2)$$

Note: there are more general formulas for unequal variances.

Example

$$t = \frac{\frac{(\sum D)/N}{\sum D^2 - \left(\frac{(\sum D)^2}{N}\right)}}{\frac{(N-1)(N)}{}}$$

$$t = \frac{\frac{-73/11}{1131 - \left(\frac{(-73)^2}{11}\right)}}{\frac{(11-1)(11)}{}}$$

$$t = \sqrt{\frac{\frac{-73/11}{1131 - \left(\frac{5329}{11}\right)}}{\frac{110}{110}}}$$

Subject#	Score 1	Score 2	X-Y	(X-Y) ²
1	3	20	-17	289
1 2 3 4 5 6 7	3	13	-10	100
3	3	13	-10	100
4	12	20	-8	64
5	15	29	-14	196
6	16	32	-16	256
7	17	23	-6	36
8	19	20	-1	1
9	23	25	-2	4
10	24	15	9	81
11	32	30	2	4
		SUM:	-73	1131

$$t = -2.74$$