Protein Bioinformatics (260.655)

Lecture 9: Quantitative Proteomics Tuesday, April 27, 2010

Robert N. Cole, Ph.D.

Mass Spectrometry and Proteomics Facility
Johns Hopkins School of Medicine
371 Broadway Research Bldg
733 N. Broadway St.
Baltimore, MD 21205 Ph: (410) 614-6968

email: rcole@jhmi.edu

Topics

Protein identification by mass spectrometry Relative quantification of proteins

Applications

How a Mass Spectrometers Measure Mass Ion Sorting **Detection** Ionization Ion Ion Mass Analyzer Source Detector Form Ions Sort by mass-to-charge ratio (m/z) Spectrum Solid, Liquid, Counts Inlet or Vapor m/z

Identifying Proteins by Mass Spectrometry

Three Methods

Bottom Up: Proteins identified from a few peptides Know cleavage site, peptide mass and sequence Do not know proteins actual size and modifications Problems: Sequence homology, seeing all peptides

Top Down: Proteins identified from the intact protein

Know protein's size and whether it is modified Sequence usually from ends of protein Problems: Size limitations, Internal sequences

Middle Down: Proteins identified from large sections of protein

Sequencing Peptides by Fragmentation
P₁ R₂ R₃H⁺ †H₃N-CH-CO—NH-CH-COOH
P₁ b-ion (b1) +H₃N-CH-CO
y-ion (y²) R₂ R₃H⁺ NH-CH-CO—NH-CH-COOH

Tandem MS (MS/MS) Uses Peptide Mass and Sequence Tag Need Only One Peptide Mass with >3 Amino Acids Masses in Sequence (at least two preferred) High Sample Complexity Tolerated Protein modifications identified and mapped to an amino acid High mass accuracy nice, but not required **Search Engines for Protein Identification from MS Data Summary of Programs** Proteome Software ExPASy www.proteomesoftware.com/ expasy.proteome.org.au Free Programs ProteinProspector XProteo prospector.ucsf.edu xproteo.com:2698 prowl.rockefeller.edu Prowl www.matrixscience.com (Free < 300 ions) **Open Source Programs** OMSSA X! Tandem pubchem.ncbi.nlm.nih.gov/omssa/ www.thegpm.org/ **Commerical Programs** www.matrixscience.com Mascot Sequest Spectrum Mill fields.scripps.edu/sequest/ www.chem.agilent.com/ Proteolynx www.waters.com/WatersDivision/ **Quantitative Proteomics** Quantifying Individual Proteins in Complex Mixtures (Functional Proteomics) Quantifying a Proteome Reveals Changes in protein levels . (biomarkers, pathways, binding partners) Changes in protein modifications (structure/function) Changes in subcellular localization (trafficking) **Kinetics** (protein turnover, modification dynamics)

	1
Quantitative Proteomics Methods	
Approach Methods (Gel or MS based)	-
Non-Labeling Gel matching, Densitometry, Spectral Counting, Peak Intensity, Multiple Reaction Monitoring (MRM)	
Labeling Chemical Difference Gel Electrophoresis (DIGE)	
Isobaric Tags for Relative and Absolute Quantitation	
(iTRAQ) Isotope-Coded Affinity Tags (ICAT)	
Metabolic Radiolabeling	
Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC)	
Enzymatic ¹⁸ O-Labeling	
Spiking Absolute Quantification (AQUA)	
Multiple Reaction Monitoring (MRM) Quantification Concatamers (QconCAT)	
Doot Approach?	
Best Approach?	
There is <u>NO</u> one best approach.	
All approaches are:	-
Complementary different separation techniques	
different sets of proteins identified	
Technically challenging	
sample preparation	
data acquisition	
data analysis	
Require fractionation to dig deeper into proteome	
limited by dynamic range	
	,
Best Quantitative Proteomic Experiments	
Defined question (i.e. hypothesis driven)	
Defined system	
Independently measurable phenotype	
Sample preparation	
Reproducible	
Scalable	
Compatible buffer system	

Sample Preparation (Most Important Step!)

Reproducibility

Protein Amount and Complexity

Buffer Composition Compatibility

Quantitative Proteomics Methods

Non-Labeling Methods

No additions to analysis

Separate analysis of *Each* sample

Biological Variability

Technical Variability (Sample Prep and MS analysis)

Quantitative Proteomics Methods

Non-Labeling Methods

No additions to analysis

Separate analysis of Each sample

Biological and Technical Variability

Labeling Methods

Typically adds steps to analysis

Simultaneous analysis of Many samples (Multiplexing)

Biological Variability, Reduces Technical Variability

Cuts instrument time (data collection) by 50-75%

Difference Gel	Electro	ohoresis	(DIGE)
Control Protein Extract Label with fluor 1			otein Extract ith fluor 2
Mix labeled p	roteins from	both sampl	es
Separate ¡	proteins on c	ne 2-D gel	
Excitation wavelength 1	Image gel		Excitation wavelength 2
`			
Protein comparison in a single gel!		ELE MAN THE	Oracle South Con

Three Fluorescent Cy Dyes

Cy2, Cy3, Cy5

ε-amino group of lysine

Matched for Charge and MW

Third Cy Dye used as an Internal Standard

All possible protein spots overlaid on every gel.

Simplifies gel to gel matching.

Each spot has it's own internal standard spot for normalizing across gels.

Reduces experimental variations.

Accounts for differences in sample load.

Changes in Protein Levels (biomarkers and pathways)

Can more than 8 samples be analyzed using 8-plex iTRAQ?

Yes!

Experimental Design

Pool of all samples: Standard in all iTRAQ experiments

Repeat labeling of at least 1 sample in all iTRAQ experiments

Completely randomize labeling

Expected Result

 $\frac{\text{iTRAQ 1 - Sample 1}}{\text{iTRAQ 1 - Pool}} = \frac{\text{iTRAQ 2 - Sample 1}}{\text{iTRAQ 2 - Pool}}$

 $\frac{\mathsf{iTRAQ}\ 1\,\mathsf{-}\,\mathsf{Sample}\ 2}{\mathsf{iTRAQ}\ 1\,\mathsf{-}\,\mathsf{Pool}} \ = \ \frac{\mathsf{iTRAQ}\ 2\,\mathsf{-}\,\mathsf{Sample}\ 2}{\mathsf{iTRAQ}\ 2\,\mathsf{-}\,\mathsf{Pool}}$

Changes in Protein **M**odifications (structure/function)

Using iTRAQ to Quantify Site Specific Auto-Phosphorylation of the EGF Receptor Kinase 1 MRPSGTAGAALLALLAALCPASRALEEKKYCQGTSNKLTQLGTFEDHFLS 51 LQBMENNCEVYLGNLEITTYQRINYDLSFLKTTQEVAGYYLLALATVERIP 101 LENIQLIRGNBYYENSYALAYLSHYDANKYGLIKELHBRUNGEILHGAVBF 151 SINNPALAKVISSTQHROITYSSTEDSHLANSBURGHLISCKQKDESCPNSGCW 201 GAGEBNQKLIFKI ICAQQCSGKCHGKSPSDCCHWQCAAGCTGFRESDCLV 251 CRRFEDEACKONCPEPHLINPTYTQBOVPBGKYSTSGACVUKCRBVYV 301 YTDHGSCYBACGADSYBMEBGOVPRCKKCEBCCKNVCNGTG GEFROSLS 311 INATNITHERNOTSI SGOLHLIFVAFTRGGBYGTSTGATVACKCRBVYV 401 ITOFFLLQAWFENRTDLHAFENLEI ITRGRTKQBGPESLAVVSLAVITSLGL 451 RSLREI SIGDUTI ISGNNICIVATNITHKKLFFFSGCKYNTSIGNBCKK 501 ATGQVCHALCSPEGCWSPEPRCVSCRNVSRGBCVUKKILLEGEPREFV 551 ENSEC (CHEPECLEQAMITTCTGRGPENCIC CANTITOGRGPCCCAPVM 601 GENNTLWNKYADAGHVCHLGFBNCTYCGTGFGLSCCPTNOFRITSTGATM 615 VGALLLILVAVALGIGLIRBRRHIVEKRITALIGLERELVEPLTSGGAPM 701 QALLRILKETEFKIKVLGSGAFGTVYKGLM FEGEKVKIPVALKELBEA 751 TSFKANGET LDBRAYMASKOMPHOVCHLGICITSTTVQLTTQHFFGCLLD 801 YVEREKONIGSGYLLINKCVQTAKGMYLEDRRILVBRUXHTTQB 801 YVEREKONIGSGYLLINKCVQTAKGMYLEDRRILVBRUXHTTQB 801 YVEREKONIGSGYLLINKCVQTAKGMYLEDRRILVBRUXHTTQB 801 VYEREKONIGSGYLLINKCVQTAKGMYLEDRRILVBRUXHTTQB 801 WITGDFGLAKLLGABEREY X HAEGGKVPTINMALES LIHRIYTHGSDVWSY 901 GVVTWELMFTGSKPYTGTFASSISTLEKRGEKLTGPPICTIVOTVMIMVKC 951 WMIDADSRPKFRELITEFSKMARDPGRYLVTQGDERMHLESPTDSNF¥R Tyf 986 GÜLE tal. 2009 Biochemistry 48: 6624-6632

Experimental Design Expressed EGFR Kinase Incubated +/- ATP and +/- kinase inhibitors Isolated EGFR Kinase Resolved EGFR Kinase by SDS-PAGE In gel digest, iTRAQ label, SCX, LCMS/MS +EGFR +SRC -ATP +ATP Inhibitor Inhibitor -120 kDa EGFR Kinase--100 kDa - 75 kDa Qiu et al. 2009 Biochemistry 48: 6624-6632

Sam	e amo	ount of	with at least 95% confi f EGRF in all gel bands lo ATP sample labeled with	;	+ATP	+EGFR kinase nhibitor l	+SRC kinase Inhibitor
Rank	Score	%Cov	Name	Species	115:113	117:113	121:113
1	70	65	Epidermal growth factor receptor precursor - Homo sapiens (Human)	HUMAN	1.10	1.15	1.32
2	9	49	Keratin, type II cytoskeletal 1 - Homo sapiens (Human)	HUMAN	0.76	1.00	1.20
3	8	43	Exportin-2 - Homo sapiens (Human)	HUMAN	0.98	0.89	1.31
4	5	36	Exportin-4 - Homo sapiens (Human)	HUMAN	0.98	0.98	1.25
5	4	39	Exportin-1 - Homo sapiens (Human)	HUMAN	0.94	1.00	1.29
6	2	46	Exportin-T - Homo sapiens (Human)	HUMAN	1.07	1.19	1.56
7	2	34	Keratin, type I cytoskeletal 10 - Homo sapiens (Human)	HUMAN	0.70	0.75	1.21
8	2	71	Uncharacterized protein C14orf139 - Homo sapiens (Human)	HUMAN	1.15	0.87	1.12
				Qiu et al.	2009 Bioch	emistry 48:	6624-6632

EGFR Top Hit

hosphot	hwaainaa. Ima				
		crease with ATP or In t <i>NOT</i> with an Inhibito			ase,
	threonines: No	change	2011		
Phosphos	serines: No	change	+ATP	+EGFR Kinase	+Scr Kinase
			Alone	Inhibitor	
Confidence	Sequence	Phosphate Modification	115:113	117:113	121:113
	ELVEPL <u>T</u> PSGEAPNQALLF	Phospho(T)@7	1.14	1.01	1.52
	LLGAEEKE <u>Y</u> HAEGGK	Phospho(Y)@9	16.98	1.71	14.62
99	LLGAEEKE <u>Y</u> HAEGGKVPIK		5.18	1.27	3.99
	LLGAEEKE <u>Y</u> HAEGGKVPIK	1	6.33	1.27	4.89
	MHLPSPTDSNF <u>Y</u> R MHLPSPTDSNF <u>Y</u> R	Phospho(Y)@12 Phospho(Y)@12	2.71	1.63 1.15	2.88
	MHLPSPTDSNF <u>Y</u> R	Phospho(Y)@12	2.24	0.78	1.75
	MHLPSPTDSNFYR	Phospho(S)@5	0.77	0.80	0.98
	MHLPSPTDSNFYR	Phospho(S)@5	1.10	1.21	1.74
			Diverson 2009	Biochemistry	48- 6624-663:
		Kinetics			
1	-4-1- 4		-4:-·-	al = :	-:\
(pro	otein turno	ver, modific	ation	aynan	IICS)
	Which pep	tide is a bett	er sub	estrate	?
<u>E</u> 2	xpermental Design	:		estrate Wade Gibso	
<u>Ex</u> Tv	xpermental Design	: ne for each peptide)	,		
<u>Ex</u> Tv	xpermental Design	:	,		
<u>E:</u> Tv	xpermental Design wo time courses (o wo iTRAQ experime	: ne for each peptide) ents (one for each time ects labeled with <i>same</i>	e course)	Wade Gibso	
<u>E:</u> Tv Tv S:	xpermental Design wo time courses (o wo iTRAQ experime ubstrate and produ at each time	: ne for each peptide) ents (one for each tim icts labeled with s <i>ame</i> point reagent	e course) iTRAQ tag	Wade Gibso	
<u>E:</u> Tv Tv S:	xpermental Design wo time courses (o wo iTRAQ experime ubstrate and produ at each time	: ne for each peptide) ents (one for each time ects labeled with <i>same</i>	e course) iTRAQ tag	Wade Gibso	
<u>E:</u> Tv Tv S:	xpermental Design wo time courses (o wo iTRAQ experime ubstrate and produ at each time	: ne for each peptide) ents (one for each tim icts labeled with s <i>ame</i> point reagent	e course) iTRAQ tag	Wade Gibso	
E: TV TV Si	xpermental Design wo time courses (o wo iTRAQ experim ubstrate and produ at each time	: ne for each peptide) ents (one for each tim icts labeled with s <i>ame</i> point reagent	e course) iTRAQ tag	Wade Gibso	
E: TV TV Si	xpermental Design we time courses (o we iTRAQ experim ubstrate and produ at each time ifferent iTRAQ labe ime (hr) iTF	: ne for each peptide) ents (one for each time cts labeled with same point reagent of or different time point RAQ Label 113 Mix all ITR	e course) iTRAQ taq nts	Wade Gibso	
E: TV TV Si	xpermental Design we time courses (o we iTRAQ experime ubstrate and producat each time ifferent iTRAQ labe ime (hr) 0 0.5	ne for each peptide) ents (one for each time cts labeled with same point reagent of or different time point RAQ Label 113 114 Nix all iTR. su	e course) iTRAQ tag ints AQ labelec bstrates a	Wade Gibso	on
E: TV TV Si	xpermental Design wo time courses (o wo iTRAQ experim ubstrate and produ at each time ifferent iTRAQ labe time (hr) 0 0.5 1	: ne for each peptide) ents (one for each time icts labeled with same o point reagent al for different time poi RAQ Label 113 114 su 115 from	e course) iTRAQ taq nts	Wade Gibso	on
E: TV TV Si	xpermental Design we time courses (o we iTRAQ experime ubstrate and producat each time ifferent iTRAQ labe ime (hr) 0 0.5	: ne for each peptide) ents (one for each time icts labeled with same is point reagent of for different time point RAQ Label 113 Mix all iTR. 114 su 115 fro 116 117 Run one M	e course) iTRAQ tag nts AQ labelec bstrates a m all time S analysis	Wade Gibso	on
E: TV TV Si	xpermental Design wo time courses (o wo iTRAQ experim ubstrate and produ at each time ifferent iTRAQ labe ime (hr) iTF 0 0.5 1 2 3 4.5	ents (one for each time costs labeled with same point reagent of for different time point reagent of the costs of the cost	e course) iTRAQ tag ints AQ labelectionstrates a im all time	Wade Gibso	on
E: TV TV Si	xpermental Design we time courses (o we iTRAQ experim ubstrate and produ at each time ifferent iTRAQ labe ime (hr) iTF 0 0.5 1 2 3	ne for each peptide) ents (one for each time cts labeled with same point reagent of condifferent time point CAQ Label 113	e course) iTRAQ tag nts AQ labelec bstrates a m all time S analysis	Wade Gibso	on

Software for Identifying and Quantifying Proteins

Label Free

Sieve www.thermo.com MSQuant msquant.alwaysdata.net

Labeling

ProteinPilot www.absciex.com
Mascot www.matrixscience.com
Scaffold Q+ www.proteomesoftware.com
Protein Discoverer www.thermo.com