Optimization and Computational Linear Algebra – Brett Bernstein

Recitation 5

It may be helpful if after recitation you try to re-solve these problems by yourself, and use them as additional study problems for the class.

1. Compute ||ax|| for $a \in \mathbb{R}$ and $x \in \mathbb{R}^n$.

Solution. Below we show that ||ax|| = |a|||x||.

$$||ax|| = \sqrt{\langle ax, ax \rangle} = \sqrt{a^2 \langle x, x \rangle} = |a| ||x||.$$

2. When does ||x + y|| = ||x|| + ||y|| for $x, y \in \mathbb{R}^n$?

Solution. This requires $(||x|| + ||y||)^2 = ||x + y||^2$ which occurs exactly when $||x|| ||y|| = x^T y$. This happens when when y = 0 or when x = ay for some $a \ge 0$. To see this, either check when equality occurs in Cauchy-Schwarz, or note that we need $\theta = 0$. For the Cauchy-Schwarz method, we showed that for $x \ne 0$ and $y \ne 0$ we have

$$0 \le \left\| \frac{x}{\|x\|} - \frac{y}{\|y\|} \right\|^2 = 2 - 2 \frac{\langle x, y \rangle}{\|x\| \|y\|} \iff \langle x, y \rangle \le \|x\| \|y\|.$$

But the first inequality is an equality whenever x is a positive multiple of y.

3. Prove the parallelogram identity holds for any $x, y \in \mathbb{R}^n$:

$$2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x - y||^2.$$

Solution. Note that

$$||x+y||^2 + ||x-y||^2 = (||x||^2 + ||y||^2 + 2\langle x, y \rangle) + (||x||^2 + ||y||^2 - 2\langle x, y \rangle) = 2||x||^2 + 2||y||^2.$$

4. (\star) For any $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$ show that

$$||Ax|| \le ||x|| \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^2}.$$

Solution. Letting a_i^T denote the *i*th row of A we have

$$||Ax||^{2} = (a_{1}^{T}x)^{2} + \dots + (a_{m}^{T}x)^{2} \qquad (a_{i}^{T}x = (Ax)_{i})$$

$$\leq ||a_{1}||^{2}||x||^{2} + \dots + ||a_{m}||^{2}||x||^{2} \qquad \text{(Cauchy-Schwarz)}$$

$$= ||x||^{2}(||a_{1}||^{2} + \dots + ||a_{m}||^{2})$$

$$= ||x||^{2} \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}.$$

5. Let $v_1, \ldots, v_m \in \mathbb{R}^n$ be linearly independent. Show there is an orthonormal basis for $\operatorname{Span}(v_1, \ldots, v_m)$.

Solution. We will outline an algorithm known as Gram-Schmidt.

- (a) Set $w_1 = v_1$ and $u_1 = w_1/||w_1||$.
- (b) For i = 2, ..., m:
 - i. Define w_i by

$$w_i = v_i - \langle v_i, u_1 \rangle u_1 - \dots - \langle v_i, u_{i-1} \rangle u_{i-1}$$

ii. Let $u_i = w_i / ||w_i||$.

We claim that u_1, \ldots, u_m are orthonormal and that $u_i \in \text{Span}(v_1, \ldots, v_i)$ for all i. The claim implies $\text{Span}(u_1, \ldots, u_i) \subseteq \text{Span}(v_1, \ldots, v_i)$ with both spans having dimension i for all $i = 1, \ldots, m$. This shows the spans are equal and completes the proof.

Proof of claim. Proof by induction. More precisely, we show that for all $i \geq 1$ we have $\langle u_i, u_j \rangle = 0$ for any j < i, $\langle u_i, u_i \rangle = 1$, and $u_i \in \operatorname{Span}(v_1, \dots, v_i)$. For the base case i = 1 we only need that $v_1 \neq 0$ (so that u_1 is well-defined), but this is immediate from linear independence. For the induction case, assume the statement holds up to $i \geq 1$. By the definition of w_{i+1} and the induction hypothesis we have

$$w_{i+1} \in \text{Span}(v_{i+1}, u_1, \dots, u_i) \subseteq \text{Span}(v_{i+1}, v_1, \dots, v_i).$$

If $w_{i+1} = 0$ then $v_{i+1} \in \text{Span}(v_1, \dots, v_i)$ contradicting linear independence. Thus $w_{i+1} \neq 0$, u_{i+1} is well-defined, and $||u_{i+1}|| = 1$. Since $u_{i+1} = w_{i+1}/||w_{i+1}||$ we also have

$$u_{i+1} \in \text{Span}(v_{i+1}, v_1, \dots, v_i).$$

Furthermore, for any j < i + 1 we have

$$\begin{split} \|w_{i+1}\|\langle u_{i+1}, u_j\rangle &= \langle w_{i+1}, u_j\rangle \\ &= \langle v_{i+1} - \sum_{k=1}^i \langle v_{i+1}, u_k\rangle u_k, u_j\rangle \\ &= \langle v_{i+1}, u_j\rangle - \sum_{k=1}^i \langle v_{i+1}, u_k\rangle \langle u_k, u_j\rangle \\ &= \langle v_{i+1}, u_j\rangle - \langle v_{i+1}, u_j\rangle \quad \text{(Induction Hypothesis)} \\ &= 0. \end{split}$$

6. What is the output of Gram-Schmidt if the input vectors v_1, \ldots, v_m are already orthonormal?

Solution. It simply sets $u_i = v_i$.

7. Let $v_1, \ldots, v_m \in \mathbb{R}^n$ be orthonormal. Prove that v_1, \ldots, v_m can be extended (if necessary) to form an orthonormal basis for \mathbb{R}^n .

Solution. Since v_1, \ldots, v_m are linearly independent, we can extend them to form a basis for \mathbb{R}^n . Running Gram-Schmidt on the new basis leaves v_1, \ldots, v_m unchanged, and modifies the remaining vectors to form an orthonormal basis.

8. Let $A \in \mathbb{R}^{m \times n}$ have linearly independent columns. Show there is a matrix $Q \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{n \times n}$ such that A = QR, Q has orthonormal columns, and R is upper triangular.

Solution. Run Gram-Schmidt on the columns of A to obtain orthonormal vectors $u_1, \ldots, u_n \in \mathbb{R}^m$. Note that the Gram-Schmidt algorithm ensures that $v_k \in \text{Span}(u_1, \ldots, u_k)$, where in this case v_i denotes the ith column of A (to see this, note that above we proved that $\text{Span}(u_1, \ldots, u_i) = \text{Span}(v_1, \ldots, v_i)$ for $i = 1, \ldots, m$). But saying $v_k \in \text{Span}(u_1, \ldots, u_k)$ is exactly the statement that A = QR for some upper triangular R (think about column method of multiplication).

9. Let U be a subspace of \mathbb{R}^n with orthonormal basis u_1, \ldots, u_k which we extend to an orthonormal basis $u_1, \ldots, u_k, u_{k+1}, \ldots, u_n$. Show how to compute $P_U(v)$ for any $v \in \mathbb{R}^n$ using this basis.

Solution. Recall that $P_U(v) = \arg\min_{x \in U} ||v - x||$. Writing v and x in terms of the orthonormal basis we have

$$v = \alpha_1 u_1 + \dots + \alpha_k u_k + \alpha_{k+1} u_{k+1} + \dots + \alpha_n u_n$$

and

$$x = \beta_1 u_1 + \dots + \beta_k u_k.$$

Thus, by the homework 5 question 2, ||v-x|| is minimized when $\beta_i = \alpha_i$ for $i = 1, \ldots, k$. Thus we have

$$P_U(v) = \alpha_1 u_1 + \cdots + \alpha_k u_k.$$

Stated simply, we only keep the terms from the subspace basis and omit the remaining ones.

10. Let U be a subspace of \mathbb{R}^n and let $v \in \mathbb{R}^n$. Prove that $\langle v - P_U(v), x \rangle = 0$ for any $x \in U$.

Solution. Choose an orthonormal basis u_1, \ldots, u_k for U as in the previous problem, and extend it to form an orthonormal basis $u_1, \ldots, u_k, u_{k+1}, \ldots, u_n$ for \mathbb{R}^n . Then if v is given by

$$v = \alpha_1 u_1 + \cdots + \alpha_n u_n$$

then

$$v - P_U(v) = \alpha_{k+1}u_{k+1} + \dots + \alpha_n u_n.$$

Writing $x \in U$ as

$$x = \beta_1 u_1 + \dots + \beta_k u_k$$

we have

$$\langle v - P_U(v), x \rangle = \langle \alpha_{k+1} u_{k+1} + \dots + \alpha_n u_n, \beta_1 u_1 + \dots + \beta_k u_k \rangle = 0.$$

11. Let U be a subspace of \mathbb{R}^n with orthonormal basis u_1, \ldots, u_k . Give the matrix corresponding to the projection P_U in terms of u_1, \ldots, u_k .

Solution. Let Q denote the matrix with u_1, \ldots, u_k as columns. Extend the basis u_1, \ldots, u_k to an orthonormal basis u_1, \ldots, u_n for \mathbb{R}^n . Then QQ^T satisfies $QQ^Tu_i = u_i$ for $i = 1, \ldots, k$ and $QQ^Tu_j = 0$ for $j = k+1, \ldots, n$. To see this note that $Q^Tu_i = e_i$ for $i = 1, \ldots, k$ and $Q^Tu_j = 0$ for j > k. Thus if $v \in \mathbb{R}^n$ is given by

$$v = \alpha_1 u_1 + \dots + \alpha_n u_n$$

then

$$QQ^Tv = \alpha_1 u_1 + \dots + \alpha_k u_k = P_U(v)$$

as required.