Proportional Control

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Process Dynamics and Control

Basic components in a control loop

- Process being controlled <
 - System of interest
- Sensor-transmitter combination

- o Composition analyzer-transmitter (AT) measure composition and transmits electrical signal
- Feedback controller

- Current-to-pressure transducer
 - Current-to-pressure transducer (I/P) converts electrical signal to pneumatic (air) signal
- Final control element adjusts manipulated variable
 - Control valve takes in electrical or pneumatic signal and changes flow rate
- Transmission lines between instruments
 - Electrical cables

Proportional controller has output proportional to the error signal

- Objective: deviation (error) from set point is 0
 - Error signal = Set point Measured controlled variable

Proportional control

$$e(t) = y_{sp}(t) - y_m(t)$$

Set pt. - preset

· bias
$$\bar{p}$$
 - determined by manual reset $p($
· when $e(t)=0$, (electrical) controller output

when
$$e(t)=0$$
,
sys. at s,s
 $= p(t) = \overline{p}$

· Kc - sign -
$$\oplus$$
 or \ominus value - \uparrow sensitive to elt)

$$e(t)=y_{sp}(t)-y_{m}(t)$$
 set pt. - preset

$$p(t)=\overline{p}+K_c e(t)$$

y = y, Teltil Jeltz) t-300

Controller gain could be positive or negative <- sign

• Want to maintain constant flow rate $w_{\rm s}$ to tank

p(t)=P+Kcett)

C>0

Kc>0 is positive

• Want to maintain constant composition x in tank

Transfer function for proportional controller is the controller gain

Ex. Show that the proportional controller transfer function is

$$rac{P'(s)}{E(s)} - K_s$$

Proportional controller:

$$p(t) = \overline{p} + K_c e(t) \qquad \text{original}$$

$$p'(t) = p(t) - \overline{p}$$

$$= \overline{p}' + K_c e(t) - \overline{p}$$

$$= \overline{p}' + K_c e(t) - \overline{p}$$

$$demation$$

$$\mathcal{L} \left[p'(t) = K_c e(t) \right]$$

$$P'(s) = K_c E(s)$$

$$F'(s) = K_c E(s)$$

$$E(s) = \frac{p'(s)}{in} = \frac{p'(s)}{E(s)} = K_c = \text{controller gain}$$

Proportional band can be used instead of controller gain

Proportional band

$${
m PB}\equiv rac{1}{K_c} imes 100\%$$
 prop, band $angle$ controller gain

Advantages and disadvantages of proportional controllers

- Advantage
 - ∘ Simple *↓*/
 - Great if exact value of controlled value is not important: prevent overflow/empty

crude estimate

- Disadvantage
 - Offset steady-state error

