

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ДОМАШНЕЙ РАБОТЫ

Студент	Никифорова Ирина	Андреевна
Группа	РК6-71б	
Тип задания	домашняя работа	
Тема работы	расчет потенциала в	электрической схеме
Вариант	72	
Студент	подпись, дата	Никифорова И. А. фамилия, и.о.
Преподаватель	подпись, дата	Трудоношин В. А. фамилия, и.о.
Оценка		

Оглавление

Задание на домашнюю работу	2
Теоретическое решение	3
Алгоритм решения и динамический расчет шага	7
Описание и текст программы	9
Результаты работы программы	17
Сравнение решения с решением в программе ПА9	18
Список использованных источников	19

Задание на домашнюю работу

Рис. 1. Заданная схема №2.

Необходимо рассчитать потенциал в заданной точке на схеме (рис. 1) в течение времени T=1e-3c. Для расчета необходимо использовать расширенный узловой метод формирования математической модели.

Теоретическое решение

Для использования выбранного метода диод необходимо разложить в следующую эквивалентную схему:

Рис. 2. Схема диода.

На рис.2 ток через диод выражается по формуле: $I_d = I_t(e^{\frac{Ucb}{m\phi T}} - 1)$.

Данные о диоде были взяты в программе ПА9:

Рис. 3. Параметры диода в ПА9.

Схема с замененным диодом выглядит следующим образом:

Рис. 4. Схема с заменой диода.

После того, как итоговая схема (рис. 4) получена, необходимо применить расширенный узловой метод формирования математической модели. В базис этого метода входят:

- 1) Производные переменных состояния: \mathring{U}_{C1} , \mathring{U}_{C2} , \mathring{U}_{Cb} , \mathring{I}_{L1} .
- 2) Переменные состояния: U_{C1} , U_{C2} , U_{Cb} , I_{L1} .
- 3) Узловые потенциалы: ϕ_1 ϕ_5 . Нумерация узлов и направления токов в схеме имеют следующий вид (искомый потенциал ϕ_5):

Рис. 5. Нумерация узлов и направления токов в схеме.

4) Токи идеальных источников ЭДС: I_{E1} .

Исходя из этого, вектор неизвестных состоит из 14 элементов и имеет следующий вид (транспонирован):

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
4	$\Delta \mathring{\mathrm{U}}_{\mathrm{C1}}$	$\Delta \mathring{\mathrm{U}}_{\mathrm{C2}}$	$\Delta \mathring{\mathrm{U}}_{\mathrm{Cb}}$	$\Delta\dot{I}_{L1}$	ΔU_{C1}	ΔU_{C2}	ΔU_{Cb}	ΔI_{L1}	$\Delta \phi_1$	$\Delta \phi_2$	$\Delta \phi_3$	$\Delta \phi_4$	$\Delta \phi_5$	ΔI_{E1}

Вектор невязок составляется, исходя из компонентных уравнений элементов цепи, метода интегрирования и балансовых уравнений для токов в узлах. Он имеет следующий вид:

1	$\mathring{U}_{CI} - \frac{U_{C1} - U_{C1}^{n-1}}{\Delta t}$	Из метода Эйлера
2	$\mathring{U}_{C2} - \frac{U_{C2} - U_{C2}^{n-1}}{\Delta t}$	аналогично
3	$\mathring{U}_{Cb} - \frac{U_{Cb} - U_{Cb}^{n-1}}{\Delta t}$	аналогично
4	$\dot{I}_{L1} - \frac{I_{L1} - I_{L1}^{n-1}}{\Delta t}$	аналогично
5	$U_{CI} + \varphi_I$	т.к. $U_{CI}=0$ - φ_I
6	U_{C2} - φ_3	т.к. $U_{C2} = \varphi_3$ - 0
7	U_{Cb} - φ_4 + φ_5	T.K. $U_{Cb} = \varphi_4$ - φ_5
8	$L_1 \cdot \dot{I}_{L1} - \varphi_2 + \varphi_3$	т.к. $U_{LI} = \varphi_2 - \varphi_3$ и из компонентного уравнения индуктивности: $U_L = L\dot{I}_L$
9	$-C_I\mathring{U}_{CI}$ - I_{EI}	из I закона Кирхгофа и компонентного уравнения емкости: $I_C = C\mathring{U}_C$
10	$I_{EI} + I_{LI}$	аналогично
11	$-I_{L1} + C_2 \mathring{U}_{C2} + \frac{(\varphi_3 - \varphi_4)}{R_B}$	аналогично и $I_{R}=U_{R}/R$
12	$-\frac{(\phi_3 - \phi_4)}{R_B} + C_b \mathring{U}_{Cb} + \frac{(\phi_4 - \phi_5)}{Ru} + I_t (e^{\frac{Ucb}{m\phi T}} - 1)$	аналогично и $I_d = I_t(e^{\frac{Ucb}{m\phi T}} - 1)$
13	$-C_b\mathring{U}_{Cb} - \frac{(\varphi_4 - \varphi_5)}{Ru} - I_t(e^{\frac{Ucb}{m\varphi T}} - 1) + \frac{\varphi_5}{R_1}$	аналогично
14	$E - \varphi_2 + \varphi_I$	т.к. $E=arphi_2$ - $arphi_I$

Матрица Якоби для метода Ньютона составляется посредством взятия частных производных. Она будет выглядеть так (нули опущены):

1				-1/Δt									
	1				-1/Δt								
		1				-1/∆t							
			1				-1/Δt						
				1				1					
					1					-1			
						1					-1	1	
			L_{I}						-1	1			
-C ₁													-1
							1						1
	C_2						-1			$1/R_B$	$-1/R_B$		
		C_b								$-1/R_B$	$-1/R_B+1/R_u$	$-1/R_u$	
		-C _b				$\frac{I_t}{m\varphi T}e^{\frac{Ucb}{m\varphi T}}$					$-1/R_u$	$1/R_u + 1/R_I$	
						$\frac{-I_{t}}{m\varphi T}e^{\frac{Ucb}{m\varphi T}}$		1	-1				

Алгоритм решения и динамический расчет шага

Алгоритм решения представлен на рисунке может быть описан с помощью следующей блок-схемы:

Рис. 6. Блок-схема программы.

На рисунке 6 светло-серым фоном отмечены блоки, относящиеся к итерациям метода Ньютона, красным - начало и конец общего цикла интегрирования.

Задание начального приближения для метода Ньютона выполняется в конце вычислений для текущего шага по времени с помощью линейной

аппроксимации на основании значений для предыдущего и текущего шага по следующей формуле:

$$\phi_{\text{предск}} = \left[\phi_i + (\phi_i - \phi_{i-1})\right] \frac{\Delta t}{\Delta t_{\text{прошл}}}$$

Локальная точность интегрирования определяется как:

$$\delta = \frac{d^2 \varphi}{dt^2} \frac{\Delta t^2}{2}$$

Аппроксимируя эту формулу с помощью разностной схемы для второй производной, можно получить:

$$\delta = \left[\frac{\varphi_i - \varphi_{i-1}}{\Delta t} + \frac{\varphi_{i-1} - \varphi_{i-2}}{\Delta t_{\text{прошл}}} \right] \frac{\Delta t}{2}$$

На рисунке 6 под ξ_1 - подразумевается размер минимально допустимого шага, а под ξ_2 - максимально допустимого.

Описание и текст программы

Идея программной реализации алгоритма заключается в том, чтобы заранее задав константы, начальные условия и первое приближение, с помощью метода Ньютона найти решение на каждом временном шаге. Алгоритм программы почти полностью описан блок-схемой на рисунке 6. Кроме того, добавляются разгоночные шаги в начале программы.

В программе были использованы написанные ранее функция csv_parser и класс Matrix (включающий реализацию метода Гаусса).

Листинг файла main.cpp:

```
#include "csv parser.hpp"
    #include "matrix.hpp"
    #include <cmath>
    #define RESULT FILENAME "res/result.dat"
    #define NUMBER CAUSE 0
    #define NORM CAUSE 1
    #define GO NEWTON 10
    #define GO FORWARD 11
    // сложение для словарей
    map<string, double> operator+ (map<string, double> a, map<string,</pre>
double> b) {
       map<string, double> c = a;
       for (auto e : c) {
           c[e.first] += b[e.first];
       return c;
    }
    // вычитание для словарей
    map<string, double> operator- (map<string, double> a, map<string,</pre>
double> b) {
       map<string, double> c = a;
       for (auto e : c) {
           c[e.first] -= b[e.first];
       return c;
    // деление словаря на число
    map<string, double> operator/ (map<string, double> a, double b) {
```

```
map<string, double> c = a;
       for (auto e : c) {
          c[e.first] /= b;
       return c;
    }
    // создание вектора невязок
    Matrix<double> create residual vector(map<string, double>&
                                                                       С,
map<string, double>& S, map<string, double>& pS, double dt) {
       Matrix<double> V(14, 1);
       V.set(0, 0, S["dUc1 dt"] - (S["Uc1"] - pS["Uc1"]) / dt);
       V.set(1, 0, S["duc2 dt"] - (S["uc2"] - pS["uc2"]) / dt);
       V.set(2, 0, S["dUcb dt"] - (S["Ucb"] - pS["Ucb"]) / dt);
       V.set(4, 0, S["Uc1"] + S["phi_1"]);
       V.set(5, 0, S["Uc2"] - S["phi 3"]);
       V.set(6, 0, S["Ucb"] - S["phi 4"] + S["phi_5"]);
       V.set(7, 0, C["L1"] * S["dIl1_dt"] - S["phi_2"] + S["phi_3"]);
       V.set(8, 0, -C["C1"] * S["dUc1 dt"] - S["Ie1"]);
       V.set(9, 0, S["Ie1"] + S["I11"]);
        V.set(10, 0, -S["Il1"] + C["C2"] * S["dUc2 dt"] + (S["phi 3"] -
S["phi 4"]) / C["Rb"]);
       V.set(11, 0, -(S["phi 3"] - S["phi 4"]) / C["Rb"] +
                  C["Cb"] * S["dUcb dt"] +
                   (S["phi_4"] - S["phi 5"]) / C["Ru"] +
                  C["It"] * (exp(S["Ucb"] / C["MFt"]) - 1)
       V.set(12, 0, -C["Cb"] * S["dUcb dt"] +
                   -(S["phi 4"] - S["phi 5"]) / C["Ru"] +
                   -C["It"] * (exp(S["Ucb"] / C["MFt"]) - 1) +
                  S["phi 5"] / C["R1"]
       V.set(13, 0, C["E"] - S["phi_2"] + S["phi_1"]);
      return V;
    }
    // создание матрицы Якоби
    Matrix<double> create Jacobi matrix(map<string, double>& C, map<string,
double>& S, double dt) {
       Matrix<double> J(14, 14);
       // единицы
       for (int i = 0; i < 7; i++) {</pre>
           J.set(i, i, 1);
       }
       J.set(4, 8, 1);
       J.set(6, 12, 1);
       J.set(7, 10, 1);
       J.set(9, 7, 1);
       J.set(9, 13, 1);
       J.set(13, 8, 1);
```

```
// - единицы
       J.set(5, 10, -1);
       J.set(6, 11, -1);
       J.set(7, 9, -1);
       J.set(8, 13, -1);
       J.set(10, 7, -1);
       J.set(13, 9, -1);
        // -1 / dt
       for (int i = 0; i < 4; i++) {
           J.set(i, i + 4, -1 / dt);
       // R
       J.set(10, 10, 1 / C["Rb"]);
       J.set(10, 11, -1 / C["Rb"]);
       J.set(11, 10, -1 / C["Rb"]);
       J.set(11, 11, 1 / C["Rb"] + 1 / C["Ru"]);
       J.set(11, 12, -1 / C["Ru"]);
       J.set(12, 11, -1 / C["Ru"]);
       J.set(12, 12, 1 / C["Ru"] + 1 / C["R1"]);
       // Diod
       const double dId dt = C["It"] * exp(S["Ucb"] / C["MFt"]) / C["MFt"];
       J.set(11, 6, dId dt);
       J.set(12, 6, -dId_dt);
       // L & C
       J.set(7, 3, C["L1"]);
       J.set(8, 0, -C["C1"]);
       J.set(10, 1, C["C2"]);
       J.set(11, 2, C["Cb"]);
       J.set(12, 2, -C["Cb"]);
       return J;
    }
    // расчет равномерной нормы вектора
    double Inf norm(Matrix<double>& v) {
       if (v.get cols() != 1) {
            cout << "ОШИБКА: вектор имеет более одного столбца, а именно: "
<< v.get_cols() << endl;
           return -1;
        }
       double max el = 0;
       for (int i = 0; i < v.get rows(); i++) {</pre>
           if(v.get(i, 0) > max el) {
               \max el = v.get(i, 0);
           }
        }
```

```
return max el;
    }
    // расчет равномерной нормы для словаря состояния
    double Inf norm(map<string, double>& v) {
       double max el = 0;
       for (auto el : v) {
           if (el.first[0] != 'd') {
                if (el.second > max el) {
                   max el = el.second;
                };
           }
       }
       return max el;
    }
    // добавляет рассчитанные приращения к состоянию
                   double>
                            append d to state(map<string,
    map<string,
                                                               double>&
                                                                            S,
Matrix<double>& d) {
       map<string, double> S new = S;
       S new["dUc1 dt"] += d.get(0, 0);
       S new["dUc2 dt"] += d.get(1, 0);
       S new["dUcb dt"] += d.get(2, 0);
       S new["dIl1 dt"] += d.get(3, 0);
       S new["Uc1"] += d.get(4, 0);
       S new["Uc2"] += d.get(5, 0);
       S new["Ucb"] += d.get(6, 0);
       S new["Il1"] += d.get(7, 0);
       S new["phi 1"] += d.get(8, 0);
       S_new["phi_2"] += d.get(9, 0);
       S new["phi 3"] += d.get(10, 0);
       S new["phi 4"] += d.get(11, 0);
       S new["phi 5"] += d.get(12, 0);
       S_{new}["Ie1"] += d.get(13, 0);
       return S_new;
    }
    // расчет локальной точности
    double calc local acc(
       map<string, double>& ppS,
       map<string, double>& pS,
       map<string, double>& S,
       double pdt,
       double dt
    ) {
       // создание матрицы с теми же полями,
       // обнуляем значения; погрешности для каждого элемента
       map<string, double> acr = S;
       for (auto e : acr) {
           acr[e.first] = 0;
       // расчет погрешностей
```

```
for (auto e : S) {
       if (e.first[0] == 'd') {
           continue;
       string key = e.first;
       acr[key] = (S[key] - pS[key]) / dt;
       acr[key] += (pS[key] - ppS[key]) / pdt;
       acr[key] /= dt;
       acr[key] *= dt * dt / 2;
   }
   // выбор максимальной погрешности
  return Inf_norm(acr);
// реализация метода Ньютона
map<string, double> Newton(
  map<string, double>& C,
  map<string, double>& pS,
  map<string, double>& S,
  double dt,
  bool* stop cause
  double norm = C["eps"] + 1;
  map<string, double> S new = S;
  int n = 0;
               // счетчик на случай зацикливания метода
  while (norm > C["eps"] && n <= C["max_steps"]) {</pre>
       n++;
       Matrix<double> J = create Jacobi matrix(C, S new, dt);
       Matrix<double> R = create residual vector(C, S new, pS, dt);
       R.mul num (-1);
       J.Gauss(&R);
       norm = Inf norm(R);
       S_new = append_d_to_state(S_new, R);
   };
   if (norm <= C["eps"]) {</pre>
       *stop cause = NORM CAUSE;
   } else {
       *stop cause = NUMBER CAUSE;
  return S new;
}
int main() {
  // задание начального состояния
```

```
map<string, double> C = create map from file("input/constants.dat");
                              map<string,
                                                 double>
create map from file("input/initial state.dat");
        map<string, double> ppS = S, pS = S, nS; // предпред-, пред- и
следующий шаги
       double t = 0, dt = C["dt start"], pdt = dt;
       bool stop cause = NORM CAUSE;
       // открытие файла и запись в этот файл начального состояния
       std::ofstream result file;
       result file.open(RESULT FILENAME);
       if (!result file) {
            cout << "ОШИБКА: Невозможно открыть файл для записи результатов:
" << RESULT FILENAME << endl;
           return -1;
       }
       // расчет на каждом временном шаге
       int step num = 0; // заход в цикл
       int where_to_go = GO_NEWTON;
       while (t <= C["T"]) {</pre>
           // записываем в файл только на нулевой итерации
           // или когда переходим к следующему шагу по времени
           result file << t << "\t" << nS["phi 5"] << endl;
           // на разгонных шагах цикла выполняем только
           // метод Ньютона
           if (step num < C["racing steps"]) {</pre>
               do {
                      // метод Ньютона, пока итераций не слишком много, либо
до нормы
                   nS = Newton(C, pS, S, dt, &stop cause);
                    // выясняем, почему метод Ньютона остановился и изменяем
шаг и время в зависимости от этого
                   if (stop cause == NUMBER CAUSE) {
                       pdt = dt;
                       dt /= 2;
                       // предсказание метода Ньютона
                       S = nS + (nS - pS) / (pdt / dt);
               } while (stop_cause != NORM CAUSE);
               // предсказание метода Ньютона
               S = nS + (nS - pS) / (pdt / dt);
               // переходим к следующему шагу по времени
               ppS = pS;
               pS = nS;
               t += dt;
               step num++;
```

```
} else {
                // когда разгонные шаги прекращаются, начинаем анализировать
                // длину шага по времени и менять ее
                do {
                      // метод Ньютона, пока итераций не слишком много, либо
до нормы
                    nS = Newton(C, pS, S, dt, &stop cause);
                    pdt = dt;
                     // выясняем, почему метод Ньютона остановился и изменяем
шаг и время в зависимости от этого
                    if (stop cause == NORM CAUSE) {
                        double acr = calc local acc(ppS, pS, nS, pdt, dt);
                        if (acr < C["xi_1"]) {</pre>
                            t += dt;
                             dt *= 2;
                            where_to_go = GO_FORWARD;
                         } else if (acr < C["xi_2"]) {</pre>
                             t += dt;
                            where to go = GO FORWARD;
                        } else {
                             dt /= 2;
                             // предсказание метода Ньютона
                            S = nS + (nS - pS) / (pdt / dt);
                    } else if (stop cause == NUMBER CAUSE) {
                       dt /= 2;
                } while (where_to_go != GO_FORWARD);
                // Проверка: не стал ли шаг слишком маленьким
                if (dt < C["dt_min"]) {</pre>
                        cout << "ОШИБКА: Шаг сократился слишком сильно: " <<
endl;
                    cout << "dt = " << dt << endl;</pre>
                    cout << "dt min = " << C["dt min"] << endl;</pre>
                    return -1;
                }
                // предсказание метода Ньютона
                S = nS + (nS - pS) / (pdt / dt);
                // переход к следующему шагу
                ppS = pS;
                pS = nS;
                step num++;
        }
        result file.close();
       return 0;
    }
```

Листинг скрипта для отрисовки графика результата plot.gnu:

```
set terminal png
set output 'res/result.png'

# Set linestyle 1 to blue (#0060ad)
set style line 1 \
    linecolor rgb '#0060ad' \
    linetype 1 linewidth 2 \
    pointtype 7 pointsize 0.1

plot 'res/result.dat' with linespoints linestyle 1
```

Исходные данные программы в файле constants.dat:

```
C1 = 0.01e-6
C2 = 0.1e-6
E = 10
L1 = 0.001
R1 = 1000
It = 1e-12
Cb = 2e-12
MFt = 0.026
Ru = 1e6
Rb = 20
T = 1e-3
dt start = 1e-15
dt min = 1e-15
eps = 1e-6
max\_steps = 7
xi_1 = 1e-2
xi 2 = 2e-2
racing_steps = 3
```

Результаты работы программы

В результате работы программы был получен файл *result.dat*, который был визуализирован с помощью *gnuplot*. В результате был получен следующий график:

Рис.7. График потенциала в точке 5 в зависимости от времени.

Сравнение решения с решением в программе ПА9

Рис. 8. Схема, реализованная в ПА9.

В программе ПА9 была реализована схема, показанная на рисунке 8.

В результате динамического анализа был получен график потенциала ϕ_5 во времени до момента T=1e-3 с, аналогичный полученному в своей программе:

Рис. 8. График потенциала в точке 5 в зависимости от времени, полученный в ПА9.

Список использованных источников

- 1. Трудоношин В.А. Лекции по курсу "Модели и методы проектных решений".
- 2. А.О. Ильницкий, В.Б.Маничев, М.Ю.Уваров, В.А. Трудоношин "Моделирование динамики технических систем с использованием программного комплекса ПА9" Методические указания к циклу лабораторных работ по курсу "Основы автоматизированного проектирования", Москва, 2004