DIRECTION GENERALE DE L'ENSEIGNEMENT SUPERIEUR ET DES ŒUVRES UNIVERSITAIRES (**DGES**)

DIRECTION DE l'ORIENTATION ET DES EXAMENS (DOREX)

Concours AMCPE session 2014

Composition: **Physique 5** (Thermodynamique)

Durée : 3 Heures

EXERCICE 1

Le tableau ci-dessous donne, avec trois chiffres significatifs exacts, le volume molaire V (en m^3 .mol⁻¹) et l'énergie interne molaire U (en $kJ.mol^{-1}$) de la vapeur d'eau à la température t = 500°C pour différentes valeurs de la pression P (en bars). On donne en outre la constante des gaz parfaits $R=8,314 \text{ J.K}^{-1}.mol^{-1}$.

Р	1	10	20	40	70	100
V	6,43.10 ⁻²	6,37.10 ⁻³	3,17.10 ⁻³	1,56.10 ⁻³	8,68.10 ⁻⁴	5,90.10 ⁻⁴
U	56,33	56,23	56,08	55,77	55,47	54,78

- 1. Justifier sans calcul que la vapeur d'eau ne se comporte pas comme un gaz parfait. (1 ligne).
- 2. On se propose d'adopter le modèle de Van der Waals pour lequel on a :

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT$$
 et $U = U_{GP} - \frac{a}{V}$ avec U_{GP} énergie interne du gaz parfait.

- **2a** Calculer le coefficient a en utilisant les énergies internes des états à P = 1 bar et à P = 100 bars. Calculer b en utilisant l'équation d'état de l'état à P = 100 bars.
- **2b** Quelle valeur obtient-on alors pour U à P = 40 bars ? Quelle température obtient-on alors en utilisant l'équation d'état avec P = 40 bars et $V = 1,56.10^{-3}$ m³.mol⁻¹ ?
- **2c** Conclure sur la validité du modèle. (1 ligne)

EXERCICE 2

NB : Pour les applications numériques on prendra les valeurs entières pour les températures uniquement et deux chiffres décimaux pour les autres.

PARTIE 1

On considère un volume V = 10 litres d'eau liquide à Ti = 303 K à 1 atm. On désire transformer toute cette quantité d'eau en glace à $T_F = 263$ K.

- 1-1. Donner la définition de
 - **1-1a**. la chaleur massique. (3 lignes).
 - **1-1b**. la chaleur latente de solidification. (3 lignes).
- **1-2** Déterminer la quantité de chaleur qu'il faut retirer à cette eau.

On donne:

chaleur latente de solidification de l'eau $L_s = 80 \text{ cal/g}$ chaleur massique de la glace $C_{pg} = 0.5 \text{ cal g}^{-1} \circ \text{C}^{-1}$ chaleur massique de l'eau $C_{pe} = 1 \text{ cal g}^{-1} \circ \text{C}^{-1}$

PARTIE 2 : Etude d'un réfrigérateur

Un réfrigérateur effectue le cycle de Joule inversé suivant :

- * L'air pris dans l'état A de température T_0 et de pression P_0 est comprimé suivant une adiabatique quasi statique (ou réversible) jusqu'au point B où il atteint la pression P_1 .
- *Le gaz se refroidit à pression constante et atteint la température finale de la source chaude, T_1 , correspondant à l'état C.
- * L'air est ensuite refroidi dans une turbine suivant une détente adiabatique quasi statique (ou réversible) pour atteindre l'état D de pression P_0 .
- * Le gaz se réchauffe enfin à pression constante au contact de la source froide et retrouve son état initial *A.*

On considère l'air comme un gaz parfait de coefficient isentropique $\gamma = 1.7$.

On posera $\beta = 1 - \gamma^{-1}$ et $a = P_1/P_0$.

Pour les applications numériques, on prendra: $T_0 = 283 \text{K}$, $T_1 = 298 \text{K}$ a = 5, R= 8,31 JK⁻¹mol⁻¹

- **2-1** Représenter le cycle parcouru par le fluide dans un diagramme de Clapeyron (P,V). Ecrire les équations des transformations et justifier brièvement la position des points.
- **2-2** Exprimer les températures T_B et T_D en fonction de T_0 , T_1 , a et β . Calculer leurs valeurs.
- **2-3a** Définir l'efficacité *e* du réfrigérateur à partir des quantités d'énergie échangées au cours du cycle.
- **2-3b** Exprimer l'efficacité en fonction seulement de a et β . Calculer sa valeur.
- **2-4a** Quelles doivent être les transformations du fluide si on envisage de faire fonctionner le réfrigérateur suivant un cycle de Carnot réversible entre les températures T_0 et T_1 ?
- **2-4b** Établir l'expression de son efficacité e_r en fonction de T_1 et T_0 . Calculer sa valeur.
- **2-5** Comparer les valeurs obtenues pour *e* et *e_r*. et interpréter la différence observée. (2 lignes).
- **2-6a** Donner l'expression de l'entropie créée, S_{i} , pour une mole d'air mise en jeu dans le parcours du cycle de Joule inversé, en fonction de $x = T_0 a^{\beta}/T_1$, R et β .
- **2-6b** Etudier le signe de cette expression pour $x \ge 0$. Calculer sa valeur.
- **2-7** Ce réfrigérateur est utilisé pour produire de la glace. En déduire le nombre de cycle que doit faire cette machine pour transformer 10 litres d'eau liquide à $T_i = 303 \text{ K}$ à 1 atm en glace à $T_f = 263 \text{ K}$.