Polynomials Associated with Equilibria of Affine Toda-Sutherland Systems

S. Odake a and R. Sasaki b

^a Department of Physics, Shinshu University,
 Matsumoto 390-8621, Japan
 ^b Yukawa Institute for Theoretical Physics,
 Kyoto University, Kyoto 606-8502, Japan

Abstract

An affine Toda-Sutherland system is a *quasi-exactly solvable* multi-particle dynamics based on an affine simple root system. It is a 'cross' between two well-known integrable multi-particle dynamics, an affine Toda molecule and a Sutherland system. Polynomials describing the equilibrium positions of affine Toda-Sutherland systems are determined for all affine simple root systems.

1 Introduction

Given a multi-particle dynamical system, to find and describe its equilibrium position has practical as well as theoretical significance. As is well-known, near the equilibrium the system is reduced to a collection of harmonic oscillators and that their spectra give the exact order \hbar part of the full quantum spectra [1]. Naively, one could describe the equilibrium position by zeros of a certain polynomial. In this way one obtains the celebrated classical orthogonal polynomials for exactly solvable multi-particle dynamics. For the Calogero systems [2] based on the A and B (C, BC and D) root systems, the equilibrium positions correspond to the

zeros of the Hermite and Laguerre polynomials [3, 4, 5, 6]. For the Sutherland systems [7] based on the A and B (C, BC and D) root systems, the equilibrium positions correspond to the zeros of the Chebyshev and Jacobi polynomials [6]. Polynomials describing the equilibria of the Calogero and Sutherland systems based on the exceptional root systems are also determined [8]. In all these cases the frequencies of small oscillations at the equilibrium are "quantised" [6, 9]. For another family of multi-particle dynamics based on root systems, the Ruijsenaars-Schneider systems [10], which are deformation of the Calogero and Sutherland systems, the corresponding polynomials are determined [11, 12]. They turn out to be deformation of the Hermite, Laguerre and Jacobi polynomials which inherit the orthogonality [12]. The frequencies of small oscillations at the equilibrium are also "quantised" [11]. Another interesting feature is that the equations determining the equilibrium look like Bethe ansatz equations.

One is naturally led to a similar investigation for partially solvable or quasi-exactly solvable [13] multi-particle dynamics. From a not-so-long list of known quasi-exactly solvable multi-particle dynamical systems [14], we pick up the so-called affine Toda-Sutherland systems [15] and determine polynomials describing the equilibrium positions. These polynomials, as well as all the polynomials mentioned above, are characterised as having integer coefficients only.

2 affine Toda-Sutherland systems

The affine Toda-Sutherland systems are quasi-exactly solvable [13] multi-particle dynamics based on any crystallographic root system. Roughly speaking, they are obtained by 'crossing' two well-known integrable dynamics, the affine-Toda molecule and the Sutherland system. Given a set of affine simple roots $\Pi_0 = \{\alpha_0, \alpha_1, \dots, \alpha_r\}, \alpha_j \in \mathbb{R}^r$, let us introduce a prepotential W [16]

$$W(q) = g \sum_{j=0}^{r} n_j \log |\sin(\alpha_j \cdot q)|, \quad q = {}^t(q_1, \dots, q_r) \in \mathbb{R}^r,$$
(1)

in which g is a positive coupling constant and $\{n_j\}$ are the Dynkin-Kac labels for Π_0 . That is, they are the integer coefficients of the affine simple root α_0 ; $-\alpha_0 = \sum_{j=1}^r n_j \alpha_j$, $n_0 \equiv 1$. For simply-laced and un-twisted non-simply laced affine root systems α_0 is the lowest long root, whereas for twisted non-simply laced affine root systems, α_0 is the lowest short root.

In either case $h \stackrel{\text{def}}{=} \sum_{j=0}^{r} n_j$ is the Coxeter number. This leads to the classical Hamiltonian

$$H_C = \frac{1}{2} \sum_{j=1}^{r} p_j^2 + \frac{1}{2} \sum_{j=1}^{r} \left(\frac{\partial W(q)}{\partial q_j} \right)^2.$$
 (2)

It is shown [15] that the equilibrium position \bar{q} is given by a *universal* formula in terms of the dual Weyl vector ρ^{\vee} :

$$\frac{\partial W(\bar{q})}{\partial q_j} = 0 \quad \Leftrightarrow \quad \bar{q} = \frac{\pi}{h} \varrho^{\vee}, \qquad \varrho^{\vee} \stackrel{\text{def}}{=} \sum_{j=1}^r \lambda_j^{\vee}. \tag{3}$$

The dual fundamental weight λ_j^{\vee} is defined in terms of the fundamental weight λ_j by $\lambda_j^{\vee} \stackrel{\text{def}}{=} (2/\alpha_j^2)\lambda_j$, which satisfies $\alpha_j \cdot \lambda_k^{\vee} = \delta_{jk}$. At the equilibrium, the classical multi-particle dynamical system (2) is reduced to a set of harmonic oscillators. The frequencies (not frequencies squared) of small oscillations at the equilibrium of the affine Toda-Sutherland model are given up to the coupling constant g by [15]

$$\frac{1}{\sin^2 \frac{\pi}{h}} \left\{ m_1^2, m_2^2, \dots, m_r^2 \right\},\,$$

in which m_j^2 are the so-called affine Toda masses [17]. Namely, they are the eigenvalues of a symmetric $r \times r$ matrix M, $M_{kl} = \sum_{j=0}^r n_j (\alpha_j)_k (\alpha_j)_l$, or $M = \sum_{j=0}^r n_j \alpha_j \otimes \alpha_j$, which encode the integrability of affine Toda field theory. In [17] it is shown for the non-twisted cases that the vector $\mathbf{m} = {}^t(m_1, \ldots, m_r)$, if ordered properly, is the *Perron-Frobenius* eigenvector of the incidence matrix (the Cartan matrix) of the corresponding root system.

The corresponding quantum Hamiltonian [1, 16] is

$$H_Q = \frac{1}{2} \sum_{j=1}^r p_j^2 + \frac{1}{2} \sum_{j=1}^r \left[\left(\frac{\partial W(q)}{\partial q_j} \right)^2 + \frac{\partial^2 W(q)}{\partial q_j^2} \right], \tag{4}$$

which is partially solvable or *quasi-exactly solvable* for some affine simple root systems. Namely for $A_{r-1}^{(1)}$, $D_3^{(1)}$, $D_{r+1}^{(2)}$, $C_r^{(1)}$ and $A_{2r}^{(2)}$, the above Hamiltonian (4) is known to have a few exact eigenvalues and corresponding exact eigenfunctions [15].

The polynomials related to the equilibrium position \bar{q} are easy to define for the classical root systems, A, B, C and D. As in the Sutherland cases, we introduce a polynomial having zeros at $\{\sin \bar{q}_j\}$ or $\{\cos 2\bar{q}_j\}$:

$$P_r(q) \propto \prod_{j=1}^r (x - \sin \bar{q}_j), \quad \prod_{j=1}^r (x - \cos 2\bar{q}_j).$$
 (5)

For the exceptional root systems, let us choose a set of D vectors \mathcal{R}

$$\mathcal{R} = \{ \mu^{(1)}, \dots, \mu^{(D)} \, | \, \mu^{(a)} \in \mathbb{R}^r \},\,$$

which form a single orbit of the corresponding Weyl group. For example, they are the set of roots Δ itself for simply laced root systems, the set of long (short, middle) roots Δ_L (Δ_S , Δ_M) for non-simply laced root systems and the so-called sets of *minimal weights*. The latter is better specified by the corresponding fundamental representations, which are all the fundamental representations of A_r , the vector (\mathbf{V}), spinor (\mathbf{S}) and conjugate spinor ($\mathbf{\bar{S}}$) representations of D_r and 27 ($\mathbf{\bar{Z}7}$) of E_6 and 56 of E_7 . By generalising the above examples (5), we define polynomials

$$P_{\Delta}^{\mathcal{R}}(x) \propto \prod_{\mu \in \mathcal{R}} \left(x - \sin(\mu \cdot \bar{q}) \right), \quad \prod_{\mu \in \mathcal{R}} \left(x - \cos(2\mu \cdot \bar{q}) \right).$$
 (6)

For more general treatment we refer to our previous article [8].

The resulting polynomials for various affine root systems Π_0 are (we follow the affine Lie algebra notation used in [15, 17]):

 $A_{r-1}^{(1)}$: In this case the equilibrium position is exactly the same as that of the A_{r-1} Sutherland [7] and A_{r-1} Ruijsenaars-Sutherland system [12], $\bar{q} = (\pi/2h)^t(r-1, r-3, \ldots, -(r-1))$ with h = r. Thus the polynomial is also the same, the Chebyshev polynomial of the first kind: $2^{r-1} \prod_{j=1}^r \left(x - \sin \bar{q}_j\right) = T_r(x) = \cos r\varphi$, $x = \cos \varphi$.

 $B_r^{(1)}$ & $D_{r+1}^{(2)}$ & $A_{2r}^{(2)}$: The Coxeter number is h=2r for $B_r^{(1)}$, h=r+1 for $D_{r+1}^{(2)}$ and h=2r+1 for $A_{2r}^{(2)}$. The equilibrium position is equally spaced $\bar{q}=(\pi/h)^t(r,r-1,\ldots,1)$. We obtain the Chebyshev polynomial of the second kind, $U_n(x)=\sin(n+1)\varphi/\sin\varphi$, $x=\cos\varphi$, for $B_r^{(1)}$ and a product of them for $D_{r+1}^{(2)}$ and a sum of them for $A_{2r}^{(2)}$,

$$2^{r-1} \prod_{j=1}^{r} (x - \cos 2\bar{q}_j) = \begin{cases} (x+1)U_{r-1}(x), & B_r^{(1)}, \\ (x+1)U_{r/2}(x)U_{(r-2)/2}(x) + 1/2, & D_{r+1}^{(2)}, & r : \text{ even,} \\ (x+1)U_{(r-1)/2}(x)^2, & D_{r+1}^{(2)}, & r : \text{ odd,} \\ (U_r(x) + U_{r-1}(x))/2, & A_{2r}^{(2)}. \end{cases}$$
(7)

 $C_r^{(1)}$ & $A_{2r-1}^{(2)}$: The Coxeter number is h=2r for $C_r^{(1)}$ and h=2r-1 for $A_{2r-1}^{(2)}$. The equilibrium position is equally spaced $\bar{q}=(\pi/2h)^t(2r-1,2r-3,\ldots,3,1)$. We obtain the Chebyshev polynomial of the first kind $T_r(x)$ for $C_r^{(1)}$ and a sum of them for $A_{2r-1}^{(2)}$,

$$2^{r-1} \prod_{j=1}^{r} (x - \cos 2\bar{q}_j) = \begin{cases} T_r(x), & C_r^{(1)}, \\ T_r(x) + T_{r-1}(x), & A_{2r-1}^{(2)}. \end{cases}$$
(8)

 $D_r^{(1)}$: The Coxeter number is h=2(r-1) and the equilibrium position is equally spaced $\bar{q}=(\pi/h)^t(r-1,r-2,\ldots,1,0)$. We obtain the Chebyshev polynomial of the second kind

$$2^{r-2} \prod_{j=1}^{r} (x - \cos 2\bar{q}_j) = (x^2 - 1)U_{r-2}(x).$$
(9)

 $E_6^{(1)}$: The Coxeter number is h=12 and the equilibrium position is not equally spaced $\bar{q}=(\pi/h)^t(4\sqrt{3},4,3,2,1,0)$. We consider the set of minimal weights **27** and the set of positive roots Δ_+ , which consists of 36 roots. The polynomials are

$$2^{20} \prod_{\mu \in \mathbf{27}} \left(x - \sin(\mu \cdot \bar{q}) \right) = (-1 + x) x^3 (1 + x) (-1 + 2x)^2 (1 + 2x)^2 (-1 + 2x^2)^2 \times (-3 + 4x^2)^3 (1 - 16x^2 + 16x^4)^2, \tag{10}$$

$$2^{27} \prod_{\mu \in \Delta_{+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^{6} (1+x)^{3} (-1+2x)^{6} (1+2x)^{7} (-3+4x^{2})^{7}.$$
 (11)

 $E_7^{(1)}$: The Coxeter number is h=18 and the equilibrium position is not equally spaced $\bar{q}=(\pi/2h)^t(17\sqrt{2},10,8,6,4,2,0)$. We consider the set of minimal weights **56** and the set of positive roots Δ_+ , which consists of 63 roots. The **56** is even, ie if $\mu \in \mathbf{56}$ then $-\mu \in \mathbf{56}$. The positive part of **56** is denoted as **56**₊. The polynomials are

$$2^{24} \prod_{\mu \in \mathbf{56}_{+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^4 \left(-3 + 4x^2 \right)^3 \left(-3 + 36x^2 - 96x^4 + 64x^6 \right)^3, \tag{12}$$

$$2^{59} \prod_{\mu \in \Delta_{+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = (1+x)^{4} (-1+2x)^{7} (1+2x)^{7} \times (-1+6x+8x^{3})^{8} (1-6x+8x^{3})^{7}.$$
(13)

 $E_8^{(1)}$: The Coxeter number is h=30 and the equilibrium position is not equally spaced $\bar{q}=(\pi/h)^t(23,6,5,4,3,2,1,0)$. We consider the set of positive roots Δ_+ , which consists of

120 roots. The polynomial is

$$2^{116} \prod_{\mu \in \Delta_{+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = (1+x)^{4} (-1+2x)^{8} (1+2x)^{8} (-1-2x+4x^{2})^{8} (-1+2x+4x^{2})^{8} \times (1+8x-16x^{2}-8x^{3}+16x^{4})^{8} (1-8x-16x^{2}+8x^{3}+16x^{4})^{9}.$$
 (14)

 $F_4^{(1)}$ & $E_6^{(2)}$: The Coxeter number is h=12 for $F_4^{(1)}$ and h=9 for $E_6^{(2)}$ and the equilibrium position is not equally spaced $\bar{q}=(\pi/h)^t(8,3,2,1)$. We consider the set of long positive roots Δ_{L+} and short positive roots Δ_{S+} , both of which consist of 12 roots reflecting the self-duality of F_4 Dynkin diagram. The polynomials for $F_4^{(1)}$ are

$$2^{9} \prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^{2} (1+x) (-1+2x)^{2} (1+2x)^{3} (-3+4x^{2})^{2}, \tag{15}$$

$$2^{9} \prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^{2} (1+x) (-1+2x)^{2} (1+2x) (-3+4x^{2})^{3}.$$
 (16)

The polynomials associated with the twisted affine root system $E_6^{(2)}$ are

$$2^{12} \prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = (1 + 2x)^3 (1 - 6x + 8x^3)^3, \tag{17}$$

$$2^{12} \prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = 2 \left(-1 + x \right) (1 + 2x)^2 (1 - 6x + 8x^3)^3.$$
 (18)

 $G_2^{(1)}$ & $D_4^{(3)}$: The Coxeter number is h=6 for $G_2^{(1)}$ and h=4 for $D_4^{(3)}$ and the equilibrium position is $\bar{q}=(\pi/2h)^t(3\sqrt{6},\sqrt{2})$. We consider the set of long positive roots Δ_{L+} and short positive roots Δ_{S+} , both of which consists of 3 roots reflecting the self-duality of G_2 Dynkin diagram. The polynomials for the untwisted $G_2^{(1)}$ are

$$2^{3} \prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = 2 (1+x) (-1+2x) (1+2x), \tag{19}$$

$$2^{3} \prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = (-1 + 2x)^{2} (1 + 2x). \tag{20}$$

The polynomials for the twisted $D_4^{(3)}$ are

$$\prod_{\mu \in \Delta_{S+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^2 (1+x), \tag{21}$$

$$\prod_{\mu \in \Delta_{L+}} \left(x - \cos(2\mu \cdot \bar{q}) \right) = x^2 \left(-1 + x \right). \tag{22}$$

Before closing this paper, let us briefly remark on the identities arising from *foldings* of root systems. Among them those relating two un-twisted root systems, *ie* with superscript (1) are quite simple.

Folding $A_{2r-1}^{(1)} \to C_r^{(1)}$: The vector weights of A_{2r-1} (2r dim.) become those of C_r (2r dim.). This relates T_{2r} to T_r in (8) as

$$A_{2r-1}: T_{2r}(x) = (-1)^r T_r (1 - 2x^2), C_r^{(1)}.$$
 (23)

Folding $D_{r+1}^{(1)} \to B_r^{(1)}$: This gives a quite obvious relation as seen from (9) and (7).

Folding $E_6^{(1)} \to F_4^{(1)}$: In this folding the minimal weights 27 of E_6 become Δ_S (24 dim.) of F_4 plus three zero weights. Thus we obtain

$$E_6^{(1)}: 2(10)/x^3 = (15)_{x\to 1-2x^2}, \quad F_4^{(1)}.$$
 (24)

We also obtain

$$E_6^{(1)}: (11) = (15)^2 \times (16), F_4^{(1)}, (25)$$

since the 72 roots of E_6 are decomposed into $2\Delta_S + \Delta_L$ (24 dim.) of F_4 .

Folding $D_4^{(1)} \to G_2^{(1)}$: The vector weights of D_4 (8 dim.) decompose into Δ_S (6 dim.) plus two zero weights of G_2 leading to the identity

$$D_4^{(1)}: 2(9)_{r=4}/(x-1) = (19), G_2^{(1)}. (26)$$

Acknowledgements

S. O. and R. S. are supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, No.13135205 and No. 14540259, respectively.

References

[1] I. Loris and R. Sasaki, "Quantum vs Classical Mechanics, role of elementary excitations," Phys. Lett. A327 (2004) 152-157.

- [2] F. Calogero, "Solution of the one-dimensional N-body problem with quadratic and/or inversely quadratic pair potentials", J. Math. Phys. **12** (1971) 419-436.
- [3] T. Stieltjes, "Sur quelques théorèmes d'Algèbre", Compt. Rend. 100 (1885) 439-440;
 "Sur les polynômes de Jacobi", Compt. Rend. 100 (1885) 620-622.
- [4] G. Szegö, "Orthogonal polynomials", Amer. Math. Soc. New York (1939).
- [5] F. Calogero, "On the zeros of the classical polynomials", Lett. Nuovo Cim. **19** (1977) 505-507; "Equilibrium configuration of one-dimensional many-body problems with quadratic and inverse quadratic pair potentials", Lett. Nuovo Cim. **22** (1977) 251-253.
- [6] E. Corrigan and R. Sasaki, "Quantum vs Classical Integrability in Calogero-Moser Systems", J. Phys. A35 (2002) 7017-7062.
- [7] B. Sutherland, "Exact results for a quantum many-body problem in one-dimension. II", Phys. Rev. A5 (1972) 1372-1376.
- [8] S. Odake and R. Sasaki, "Polynomials Associated with Equilibrium Positions in Calogero-Moser Systems," J. Phys. **A35** (2002) 8283-8314.
- [9] I. Loris and R. Sasaki, "Quantum & Classical Eigenfunctions in Calogero & Sutherland Systems," J. Phys. A37 (2004) 211-237.
- [10] S. N. Ruijsenaars and H. Schneider, "A New Class Of Integrable Systems And Its Relation To Solitons," Annals Phys. 170 (1986) 370-405; S. N. Ruijsenaars, "Complete Integrability of Relativistic Calogero-Moser Systems And Elliptic Function Identities," Comm. Math. Phys. 110 (1987) 191-213.
- [11] O. Ragnisco and R. Sasaki, "Quantum vs Classical Integrability in Ruijsenaars-Schneider Systems," J. Phys. A37 (2004) 469-479.
- [12] S. Odake and R. Sasaki, "Equilibria of 'Discrete' Integrable Systems and Deformations of Classical Polynomials", hep-th/0407155.
- [13] See for example: A. V. Turbiner, "Quasi-exactly-soluble problems and sl(2,R) algebra", Comm. Math. Phys. 118 (1988) 467-474; A. G. Ushveridze, "Quasi-exactly solvable models in quantum mechanics", IoP Publishing, Bristol (1994).

- [14] R. Sasaki and K. Takasaki, "Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry", J. Phys. A34 (2001) 9533-9554.
- [15] A. Khare, I. Loris and R. Sasaki, "Affine Toda-Sutherland systems," J. Phys. A37 (2004) 1665-1680.
- [16] A. J. Bordner, N. S. Manton and R. Sasaki, "Calogero-Moser models V: Supersymmetry and Quantum Lax Pair", Prog. Theor. Phys. 103 (2000) 463-487; S. P. Khastgir, A. J. Pocklington and R. Sasaki, "Quantum Calogero-Moser Models: Integrability for all Root Systems", J. Phys. A33 (2000) 9033-9064.
- [17] H. W. Braden, E. Corrigan, P. E. Dorey and R. Sasaki, "Affine Toda Field Theory and Exact S-Matrices," Nucl. Phys. B338 (1990) 689-746.