NON-REPEATING NIM

SINAN CEPEL (SCEPEL@ANDREW.CMU.EDU)

This paper deals with a variation of Nim where if any player took k stones from a pile, k stones may not be taken by either player until a different move is made on that pile. The rest of the rules are identical to that of Nim.

We analyze the nimbers for a single pile of stones in this variation of Nim. By Sprague-Grundy, the analysis of one pile is sufficient to understand the complete game.

Definition For any n and $k \in \mathbb{N} \cup \{0\}$, e define (n, k) to be the Nim pile with n stones remaining, where the last move removed k stones from the pile. Let $U = \mathbb{N} \times \mathbb{N}$ denote the universe of Nim piles.

Definition Define $N:U\to\mathbb{N}:(n,k)\mapsto \mathrm{nimber}(n,k)$ be the function that maps a Nim pile to it's nimber.

Theorem If n odd, N(n, n) = 0.

Proof. Since the first player cannot remove all stones, he must make a move m < n, reducing the pile to (n - m, m). Since n odd, $n - m \neq m$, and the second player can make the move n - m, reducing the pile to 0. Hence the game is a second-player min, implying that N(n, n) = 0.

Fact 1 If $k \ge 12$, N(22, k) = 12.

Fact 2 If n < 22, for all k, $N(n, k) \neq 12$.

Fact 3 If $n \ge 39$, and $k \ne n$, N(n, k) > 11.

Fact 4 The only n < 39 that satisfy N(n, k) = 12 and $k \neq n - 22$ are n = 24, k = 1 and n = 32, k = 5.

Claim If $n \ge 39$, N(n, k) = 12 only if k = n - 22.

Proof. Suppose $k \neq n-22$. Then, by Fact 3, $N(n,k) \geq 12$. Since $n \geq 39$, $n-22 \geq 17$, so we can use Fact 1, implying that N(22, n-22) = 12. Since $k \neq n-22$, we can make this move, implying that N(n,k) > 12, proving the claim.

Claim If $n \ge 39$, n odd, and k = n - 22, N(n, k) = 12.

Proof. By Fact 3, $N(n,k) \ge 12$, so we need to show we cannot achieve a pile of nimber 12.

Since $n \ge 39$, by Fact 4, we cannot reach the states (32, 5) or (24, 1), and k = n-22, so we cannot reach (22, n-22). Hence, to reach a pile of

nimber 12, we have to make a move $m \neq k$ such that N(n-m, m) = 12, but by the previous claim, m = n - m - 22.

But look, n-m+n-m-22=2(n-m-11) is even, while n is odd, so such a move does not exist. Hence, N(n,k)=12.

Claim Let a be an arbitrary odd number. All Nim piles of the form $(2^b a, 2^b a)$ are N-positions if and only if b is odd. Hence, if b is even, $(2^b a, 2^b a)$ is a P-position.

Proof. By induction on b.

The base case, where b = 0, holds by our first theorem.

For the inductive step, suppose the proposition holds for some b, and consider b + 1.

Our initial position is $(2^{b+1}a, 2^{b+1}a)$.

If b+1 odd, then b was even, so $(2^ba, 2^ba)$ is a P-position, and the removing 2^ba stones from the pile reduces the state to $(2^{b+1}a - 2^ba, 2^ba) = (2^ba, 2^ba)$. We have a move that takes the game to a P-position, so $(2^{b+1}a, 2^{b+1}a)$ is an N-position in this case.

Otherwise, b+1 even. The current player cannot take all stones. If the current player makes any move $m \neq 2^b a$, then the other player can make the move $2^{b+1}a - m \neq m$, reducing the pile to 0 stones. If the current player makes the move $2^b a$, the game is reduced to a state $(2^b a, 2^b a)$, but since b odd, this is an N-position for the next player.

Hence, no matter how the current player moves, this pile is a P-position, and the claim holds. \Box