Reinforcement Learning for Business, Economics, and Social Sciences

Unit 4-2: Deep Neural Networks

Davud Rostam-Afschar (Uni Mannheim)

How to improve flexibility of

approximation?

Deep Neural Networks

Deep Neural Networks

- ▶ Definition: neural network with many hidden layers
- ► Advantage: high expressivity
- ► Challenges:
 - How should we train a deep neural network?
 - ► How can we avoid overfitting?

(Goodfellow, 2016)

Mixture of Gaussians

Shallow neural network (flat mixture)

Mixture of Gaussians

Shallow neural network (flat mixture)

Deep neural network (hierarchical mixture)

Mixture of Gaussians

Shallow neural network (flat mixture)

Deep neural network (hierarchical mixture)

Sum-Product Network (Exponentially large mixture of Gaussians but linear hierachy)

Image Classification

► ImageNet Large Scale Visual Recognition Challenge

Vanishing Gradients

Vanishing Gradients

► Deep neural networks of sigmoid and hyperbolic units often suffer from vanishing gradients

Sigmoid and hyperbolic units

▶ Derivative is always less than 1

Simple Example

$$y = \sigma \left(w_4 \sigma \left(w_3 \sigma \left(w_2 \sigma \left(w_1 x \right) \right) \right) \right)$$

$$x \xrightarrow{w_1 \xrightarrow{h_1} \xrightarrow{w_2} \xrightarrow{h_2} \xrightarrow{w_3} \xrightarrow{k_3} \xrightarrow{w_4} y$$

- ► Common weight initialization in (-1,1)
- Sigmoid function and its derivative always less than 1
- ► This leads to vanishing gradients:

$$\frac{\partial y}{\partial w_4} = \sigma'(a_4) \sigma(a_3)
\frac{\partial y}{\partial w_3} = \sigma'(a_4) w_4 \sigma'(a_3) \sigma(a_2) \le \frac{\partial y}{\partial w_4}
\frac{\partial y}{\partial w_2} = \sigma'(a_4) w_4 \sigma'(a_3) w_3 \sigma'(a_2) \sigma(a_1) \le \frac{\partial y}{\partial w_3}
\frac{\partial y}{\partial w_1} = \sigma'(a_4) w_4 \sigma'(a_3) w_3 \sigma'(a_2) w_2 \sigma'(a_1) \times \le \frac{\partial y}{\partial w_2}$$

Mitigating Vanishing Gradients

- ► Some popular solutions:
 - ► Pre-training
 - Rectified linear units
 - ► Batch normalization
 - Skip connections

Rectified Linear Units

- ▶ Rectified linear: $h(a) = \max(0, a)$
 - ► Gradient is 0 or 1
 - Sparse computation

Rectified Linear Units

- ▶ Rectified linear: $h(a) = \max(0, a)$
 - ► Gradient is 0 or 1
 - ► Sparse computation
- Soft version ("Softplus"): $h(a) = \log(1 + e^a)$

Rectified Linear Units

- ▶ Rectified linear: $h(a) = \max(0, a)$
 - Gradient is 0 or 1
 - ► Sparse computation
- Soft version
 ("Softplus"): $h(a) = \log(1 + e^{a})$

► Warning: softplus does not prevent gradient vanishing (gradient < 1)

References I

GOODFELLOW, I. (2016): *Deep learning*, vol. 196. MIT press, Available at http://deeplearningbook.org/.

Takeaways

How do Deep Neural Networks Help Modeling Complex Data?

- Use multiple hidden layers
- ► They enable complex function approximation
- ► A key challenge is the vanishing gradient problem
- ► Solutions include ReLU activation functions, batch normalization, skip connections, and pre-training
- ► Rectified Linear Units (ReLU) help mitigate vanishing gradients