Part III Local Fields

Based on lectures by Dr C. Johansson

Michaelmas 2016 University of Cambridge

Contents

1	Basic Theory	1
2	The p-adic Numbers	3
3	Valued Fields	4

1 Basic Theory

Definition (Absolute value). Let K be a field. An **absolute value** on K is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ s.t.

$$i. \ |x| = 0 \iff x = 0$$

$$ii. \ |xy| = |x| \, |y| \quad \forall x, y \in K$$

$$iii. \ |x+y| \le |x| + |y|$$

Definition (Valued field). A valued field is a field with an absolute value.

Definition (Equivalence of absolute values). Let K be a field and let $|\cdot|$, $|\cdot|^{'}$ be absolute values on K. We say that $|\cdot|$ and $|\cdot|^{'}$ are **equivalent** if the associated metrics induce the same topology.

Definition (Non-archimedean absolute value). An absolute value $|\cdot|$ on a field K is called **non-archimedean** if $|x+y| \leq \max(|x|,|y|)$ (the **strong triangle inequality**).

Metrics s.t. $d(x, z) \le \max(d(x, y), d(y, z))$ are called **ultrametrics**.

Assumption: unless otherwise mentioned, all absolute values will be non-archimedean. These metrics are weird!

Proposition 1. Let K be a valued field. Then $\mathcal{O} = \{x \mid |x| \leq 1\}$ is an open subring of K, called the **valuation ring** of K. $\forall r \in (0,1], \{x \mid x < r\}$ and $\{x \mid x \leq r\}$ are open ideals of \mathcal{O} .

Moreover, $\mathcal{O}^x = \{x \mid |x| = 1\}.$

Proposition 2. Let K be a valued field.

i. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) is Cauchy Assume that K is complete

ii. Let (x_n) be a sequence in K. If $x_n - x_{n+1} \to 0$ then (x_n) converges

iii. Let $\sum_{n=0}^{\infty} y_n$ be a series in K. If $y_n \to 0$, then $\sum_{n=0}^{\infty} y_n$ converges

Definition. Let $R \subseteq S$ be rings. Then $s \in S$ is **integral over** R if \exists monic $f(x) \in R[x]$ s.t. f(s) = 0.

Proposition 3. Let $R \subseteq S$ be rings. Then $s_1, \ldots, s_n \in S$ are all integral over $R \iff R[s_1, \ldots, s_n] \subseteq S$ is a finitely generated R-module.

Corollary 4. let $R \subseteq S$ be rings. If $s_1, s_2 \in S$ are integral over R, then $s_1 + s_2$ and s_1s_2 are integral over R. In particular, the set $\tilde{R} \subseteq S$ of all elements in S integral over R is a ring, called the **integral closure** of R in S.

Definition. Let R be a ring. A topology on R is called a **ring topology** on R if addition and multiplication are continuous maps $R \times R \to R$. A ring with a ring topology is called a **topological ring**.

Definition. Let R be a ring, $I \subseteq R$ an ideal. A subset $U \subseteq R$ is called *I-adically open* if $\forall x \in U \exists n \geq 1 \text{ s.t. } x + I^n \subseteq U$.

Proposition 5. The set of all I-adically open sets form a topology on R, called the I-adic topology.

Definition. Let $R_1, R_2, ...$ be topological rings with continuous homomorphisms $f_n: R_{n+1} \to R_n \ \forall n \geq 1$. The **inverse limit** of the R_i is the ring

$$\lim_{n \to \infty} R_n = \left\{ (x_n) \in \prod_n R_n \mid f_n(x_{n+1}) = x_n \forall n \ge 1 \right\}$$

$$\subseteq \prod_n R_n$$

Proposition 6. The inverse limit topology is a ring topology.

Definition. Let R be a ring, I an ideal. The **I-adic completion** of R is the topological ring $\varprojlim_n R/I^n$ (R/I^n has the discrete topology, and $R/I^{n+1} \to R/I^n$ is the natural map).

There exists a map $\nu: R \to \varprojlim R/I^n$, $r \mapsto (r \mod I^n)_n$ This map is a continuous ring homomorphism when R is given the I-adic topology. We say that R is I-adically complete if ν is a bijection.

If I = xR then we often call the I-adic topology the **x-adic topology**.

2 The p-adic Numbers

Let p be a prime number throughout.

If $x \in \mathbb{Q} \setminus \{0\}$ then $\exists !$ representation $x = p^n \frac{a}{b}$, where $n \in \mathbb{Z}$, $a \in \mathbb{Z}$, $b \in \mathbb{Z}_{>0}$ and (a, p) = (b, p) = (a, b) = 1.

We define the **p-adic absolute value** on $\mathbb Q$ to be the function $|\cdot|_p:\mathbb Q\to\mathbb R_{\geq 0}$ given by

$$|x|_p = \begin{cases} 0 & \text{if } x = 0\\ p^{-n} & \text{if } x = p^n \frac{a}{b} \ (\neq 0) \text{ as before} \end{cases}$$

Then $|\cdot|_p$ is an absolute value.

Definition. The **p-adic numbers** \mathbb{Q}_p are the completion of \mathbb{Q} w.r.t. $|\cdot|_p$. The valuation ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p \mid |x|_p \leq 1\}$ is called the **p-adic integers**.

Proposition 7. \mathbb{Z}_p is the closure of \mathbb{Z} inside \mathbb{Q}_p .

Proposition 8. The non-zero ideals of \mathbb{Z}_p are $p_n\mathbb{Z}_p$ for $n \geq 0$. Moreover, $\mathbb{Z}/p^n\mathbb{Z} \cong \mathbb{Z}_p/p^n\mathbb{Z}_p$

Corollary 9. \mathbb{Z}_p is a PID with a unique prime element p (up to units).

Proposition 10. The topology on \mathbb{Z} induced by $|\cdot|_p$ is the p-adic topology.

Proposition 11. \mathbb{Z}_p is p-adically complete and is (isomorphic to) the p-adic completion of \mathbb{Z} .

Corollary 12. Every $a \in \mathbb{Z}_p$ has a unique expansion

$$a = \sum_{i=0}^{\infty} a_i p^i$$

with $a_i \in \{0, 1, \dots, p-1\}$

Every $a \in \mathbb{Q}_p^{\times}$ has a unique expansion

$$a = \sum_{i=n} \infty a_i p^i$$

 $n \in \mathbb{Z}$, $n = -\log_p |a|_p$, $a_n \neq 0$.

3 Valued Fields

Definition. Let K be a field. A valuation on K is a function $v: K \to \mathbb{R} \cup \{\infty\}$ s.t.

$$i. \ v(x) = \infty \iff x = 0$$

ii.
$$v(xy) = v(x) + v(y)$$

iii.
$$v(x+y) \ge \min(v(x), v(y))$$

 $\forall x,y \in K$.

Here we use the conventions $r + \infty = \infty$, $r \leq \infty \ \forall r \in \mathbb{R} \cup \{\infty\}$. v a valuation \implies if $|x| = c^{-v(x)}$, $c \in \mathbb{R}_{>1}$, then $|\cdot|$ is an absolute value. Conversely, if $|\cdot|$ is an absolute value then $v(x) = -\log_c |x|$.

Let K be a valued field.

- $\mathcal{O} = \mathcal{O}_K = \{x \in K \mid |x| \le 1\}$ is the valuation ring
- $\mathfrak{m} = \mathfrak{m}_K = \{x \in K \mid |x| < 1\}$ is the **maximal ideal**
- $k = k_K = \mathcal{O}/\mathfrak{m}$ is the **residue field**

Definition. If K is a valued field and $F(x) = a_0 + a_1x + \cdots + a_nx^n \in K[x]$ is a polynomial, we say that F is **primitive** if $\max_i |a_i| = 1 \ (\Longrightarrow F \in \mathcal{O}[x])$.

Theorem 13 (Hensel's Lemma). Assume that K is complete and that $F \in K[x]$ is primitive. Put $f = F \mod \mathfrak{m} \in k[x]$. If \exists factorisation f(x) = g(x)h(x) with (g,h) = 1, then \exists factorisation F(x) = G(x)H(x) in $\mathcal{O}[x]$ with $g \equiv G$, $h \equiv H \mod \mathfrak{m}$ and $\deg g = \deg G$.

Proof. Put $d = \deg F$, $m = \deg g$, so $\deg h \leq d - m$. Pick lifts $G_0, H_0 \in \mathcal{O}[x]$ of g, h with $\deg G_0 = \deg g$, $\deg H_0 \leq d - m$.

$$(g,h) = 1 \implies \exists A, B \in \mathcal{O}[x] \text{ s.t. } AG_0 + BH_0 \equiv 1 \mod \mathfrak{m}.$$

Pick
$$\pi \in \mathfrak{m}$$
 s.t. $F - G_0 H_0 \equiv AG_0 + BH_0 - 1 \mod \pi$.

Want to find $G = G_0 + \pi P_1 + \pi^2 P_2 + \dots$, $H = H_0 + \pi Q_1 + \pi^2 Q_2 + \dots \in \mathcal{O}[x]$ with $P_i, Q_i \in \mathcal{O}[x]$, $\deg P_i < m$, $\deg Q_i \le d - m$.

Define

$$G_{n-1} = G_0 + \pi P_1 + \dots + \pi^{n-1} P_{n-1}$$

$$H_{n-1} = H_0 + \pi Q_1 + \dots + \pi^{n-1} Q_{n-1}$$

We want $F \equiv G_{n-1}H_{n-1} \mod \pi^n$, then take the limit.

Induction on n: n = 1

Assume we have $G_{n-1}, H_{n-1}, G_n = G_{n-1} + \pi^n P_n, H_n = H_{n-1} + \pi^n Q_n$. Expanding $F - H_n G_n$, we want

$$F - G_{n-1}H_{n-1} \equiv \pi^n (G_{n-1}Q_n + H_{n-1}P_n) \mod \pi^{n+1}$$

and divide by π^n

$$G_{n-1}Q_n + H_{n-1}P_n = \frac{1}{\pi^n} (F - G_{n-1}H_{n-1}) \mod \pi$$

Let $F_n := F - G_{n-1}H_{n-1}$. $AG_o + BH_0 \equiv 1 \mod \pi \implies F_n \equiv AG_0F_n + BH_0F_n \mod \pi$.

Write $BF_n = QG_0 + P_n$ with $\deg P_n < \deg G_0, P_n \in \mathcal{O}[x]$

$$\implies G_0(AF_n + H_0Q) + H_0P_n \equiv F_n \mod \pi$$

Now omit all coefficients from $AF_n + H_0Q$ divisible by π to get Q_n .

Corollary 14. Let $F(x) = a_0 + a_1 x + \dots + a_n x^n \in K[x]$, K complete, $a_0 a_n \neq 0$. If F is irreducible, then $|a_i| \leq \max(|a_0|, |a_n|) \ \forall i$.

Corollary 15. $F \in \mathcal{O}[x]$ monic, K complete. If F mod \mathfrak{m} has a simple root $\bar{\alpha} \in k$, then F has a (unique) simple root $\alpha \in \mathcal{O}$ lifting $\bar{\alpha}$.

Useful fact: let K be a valued field, $x, y \in K$. $|x| > |y| \implies |x + y| = |x|$. More generally, if we have a convergent series $\sum_{i=0}^{\infty} x_i$ and the non-zero $|x_i|$ are distinct, then $|x| = \max |x_i|$.

Theorem 16. Let K be a complete valued field and let L/K be a finite extension. Then the absolute value $|\cdot|$ on K has a unique extension to an absolute value $|\cdot|_L$ on L, given by

$$|\alpha|_L = \sqrt[n]{|N_{L/K}(\alpha)|}, \ n = [L:K]$$

and L is complete w.r.t. $|\cdot|_L$.

Corollary 17. Let K be a complete valued field. If M/K is an algebraic extension of K, then $|\cdot|$ extends uniquely to an absolute value on M.

Corollary 18. In the setting of Theorem 16, if $\sigma \in \operatorname{Aut}(L/K)$ then $|\sigma(\alpha)|_L = |\alpha|_L \ \forall \alpha \in L$

Definition. Let K be a valued field and V a vector space over K. A **norm** on V is a function $||\cdot||: V \to \mathbb{R}_{\geq 0}$ such that

i.
$$||x|| = 0 \iff x = 0$$

ii. $||\lambda x|| = |\lambda| \, ||x|| \, \forall \lambda \in K, x \in V$

iii. $||x + y|| \le \max(||x||, ||y||) \ \forall x, y, \in V$

Two norms $||\cdot||, ||\cdot||'$ are **equivalent** if they induce the same topology on $V \iff \exists C, D > 0 \text{ s.t. } C ||x|| \le ||x||' \le D ||x|| \ \forall x \in V.$

Proposition 19. Let K be a complete valued field and V a finite dimensional K-vector sapee. Let x_1, \ldots, x_n be a basis of V, then if $x = \sum a_i x_i \in V$,

$$||x||_{\max} = \max_{i} |a_i|$$

defines a norm on V, and V is complete w.r.t $\left|\left|\cdot\right|\right|_{\max}$.

Moreover, if $||\cdot||$ is any norm on V, then $||\cdot||$ is equivalent to $||\cdot||_{\max}$ and hence V is complete w.r.t $||\cdot||$.

Lemma 20. Let K be a valued field. Then \mathcal{O}_K is integrally closed in K.