# Predicting Alcohol Consumption Using BRFSS Data

Kate Mangubat March 2025

## Introduction

- The Behavioral Risk Factor Surveillance System (BRFSS) is a health related telephone survey that collects data on health behaviors

#### - Goal

- Use BRFSS to analyze factors influencing alcohol consumption (DRNK3GE5)
- Investigating the impact of the following:
  - Sleep Duration (SLEPTIM1)
  - Emotional Support (EMTSUPRT)
  - Income (INCOME3)
  - Gender (SEXVAR)

### DATA OVERVIEW

- Dataset contains 56,907 observations and 5 variables.
  - o Collected in 2023
  - All states except Kentucky and Pennsylvania due to states not meeting minimum requirements to be included
  - Current data in jeopardy of being accessible/accurate due to Trump's executive orders
- Target variable: DRNK3GE5 (alcohol consumption frequency).
- Other variables: **SLEPTIM1**, **EMTSUPRT**, **INCOME3**, **SEXVAR**.
- Missing values:
  - o EMTSUPRT: 22,433 missing values.
  - INCOME3: 1 missing value.

## PREPROCESSING

#### Handling missing data:

- EMTSUPRT: Imputed missing values using median.
- INCOME3: Dropped single missing value.

#### • Feature engineering:

- Binned SLEPTIM1 into sleep categories.
- Created an interaction term between sleep and income.
- One-hot encoding applied to SEXVAR.

### MODELING APPROACH

- Regression model: Predicting continuous alcohol consumption values.
- Train-test split: 80% training, 20% testing.
- Feature scaling: Standardized numerical variables.
- **Evaluation metrics:** Mean Squared Error (MSE), R-squared (R<sup>2</sup>).

## Linear Regression



## Random Forest Model



# Gradient Boosting



## MODEL PERFORMANCE

| Model               | MSE       | R^2     |
|---------------------|-----------|---------|
| Linear Regression   | 1356.43   | 0.014   |
| Random Forest       | 1361.41   | 0.010   |
| Gradient Boosting * | 1349.33 * | 0.019 * |

#### MODEL PERFORMANCE

- Gradient Boosting performed the best, achieving the lowest MSE and highest R<sup>2</sup>.
- The low R<sup>2</sup> values indicate that the features used do not fully explain the variability in alcohol consumption.
- Feature importance analysis:
  - Income and sleep duration were significant but weak predictors.
  - Emotional support had a limited direct impact but could interact with other variables.
- Residual analysis:
  - The models struggled with extreme values, indicating potential missing factors that influence alcohol consumption.

### RESULTS & INSIGHTS

#### Key findings:

- Higher income correlates with increased alcohol consumption.
- Sleep patterns have a nonlinear relationship with drinking frequency.
- Emotional support plays a moderating role in alcohol consumption.

#### Limitations:

- Potential biases in self-reported data.
- Limited external validity due to survey sampling.

### CONCLUSIONS

- **Best performing model:** Gradient Boosting Regressor with the lowest MSE and highest R<sup>2</sup>.
- Model improvements:
  - Additional features such as mental health status, stress levels, or social support could improve accuracy.
  - Hyperparameter tuning may enhance model performance.
  - Explore alternative machine learning techniques for better predictions.