Las matrices i) y ii) tienen tres pivotes; las otras tres matrices tienen dos pivotes.

Definición 1.2.3

Forma escalonada por renglones

Una matriz está en la forma escalonada por renglones si se cumplen las condiciones i), ii) y iii) de la definición 1.2.2.

EJEMPLO 1.2.5 Cinco matrices en la forma escalonada por renglones

Las siguientes matrices se encuentran en la forma escalonada por renglones:

i)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}$$
 ii) $\begin{pmatrix} 1 & -1 & 6 & 4 \\ 0 & 1 & 2 & -8 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

iii)
$$\begin{pmatrix} 1 & 0 & 2 & 5 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$
 iv) $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ v) $\begin{pmatrix} 1 & 3 & 2 & 5 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

En el siguiente ejemplo se muestra cómo dos matrices en forma escalonada por renglones son equivalentes entre sí. Sean

$$A = \begin{pmatrix} 1 & 3 & 2 & 5 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 2 & -1 & -1 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B.$$

Esto significa que cualquier matriz que sea equivalente por renglones a la matriz A también lo es a la matriz B.

Como se vio en los ejemplos 1.2.1, 1.2.2 y 1.2.3, existe una fuerte relación entre la forma escalonada reducida por renglones y la existencia de la solución única para el sistema. En el ejemplo 1.2.1 dicha forma para la matriz de coeficientes (es decir, en las primeras tres columnas de la matriz aumentada) tenían un 1 en cada renglón y existía una solución única. En los ejemplos 1.2.2 y 1.2.3 la forma escalonada reducida por renglones de la matriz de coeficientes tenía un renglón de ceros y el sistema no tenía solución o tenía un número infinito de soluciones. Esto siempre es cierto en cualquier sistema de ecuaciones con el mismo número de ecuaciones e incógnitas. Pero antes de estudiar el caso general se analizará la utilidad de la forma escalonada por renglones de una matriz. Es posible resolver el sistema en el ejemplo 1.2.1 reduciendo la matriz de coeficientes a esta forma.

EJEMPLO 1.2.6 Solución de un sistema mediante eliminación gaussiana

Resuelva el sistema del ejemplo 1.2.1 reduciendo la matriz de coeficientes a la forma escalonada por renglones.

SOLUCIÓN ►

Se comienza como antes:

$$\begin{pmatrix} 2 & 4 & 6 & | & 18 \\ 4 & 5 & 6 & | & 24 \\ 3 & 1 & -2 & | & 4 \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{2}R_2} \begin{pmatrix} 1 & 2 & 3 & | & 9 \\ 4 & 5 & 6 & | & 24 \\ 3 & 1 & -2 & | & 4 \end{pmatrix}$$

Nota

Por lo general, la forma escalonada por renglones de una matriz no es única. Es decir, una matriz puede ser equivalente, en sus renglones, a más de una matriz en forma escalonada por renglones.

Observación 1

La diferencia entre estas dos formas debe ser evidente a partir de los ejemplos. En la forma escalonada por renglones, todos los números abajo del primer 1 en un renglón son cero. En la forma escalonada reducida por renglones, todos los números abajo y arriba del primer 1 de un renglón son cero. Así, la forma escalonada reducida por renglones es más exclusiva. Esto es, en toda matriz en forma escalonada reducida por renglones se encuentra también la forma escalonada por renglones, pero el inverso no es cierto.

Observación 2

Siempre se puede reducir una matriz a la forma escalonada reducida por renglones o a la forma escalonada por renglones realizando operaciones elementales por renglones. Esta reducción se vio al obtener la forma escalonada reducida por renglones en los ejemplos 1.2.1, 1.2.2 y 1.2.3.