735

(1) The eigenvalues of f are strictly positive iff

$$\langle f(u), u \rangle > 0$$
 for all $u \neq 0$.

(2) The eigenvalues of f are nonnegative iff

$$\langle f(u), u \rangle \ge 0$$
 for all $u \ne 0$.

Proof. Since f is self-adjoint, by the spectral theorem (Theorem 17.8), f has real eigenvalues $\lambda_1, \ldots, \lambda_n$, and there is some orthonormal basis (e_1, \ldots, e_n) , where e_i is an eigenvector for λ_i . With respect to this basis, every vector $u \in E$ can be written in a unique way as $u = \sum_{i=1}^n x_i u_i$ for some $x_i \in \mathbb{R}$. Since each e_i is eigenvector associated with $\lambda_i \in \mathbb{R}$, we have

$$f\left(\sum_{i=1}^{n} x_i e_i\right) = \sum_{i=1}^{n} x_i f(e_i) = \sum_{i=1}^{n} \lambda_i x_i e_i,$$

and using the bilinearity of the inner product, we have

$$\langle f(u), u \rangle = \left\langle f\left(\sum_{i=1}^{n} x_i e_i\right), \sum_{j=1}^{n} x_j e_j \right\rangle$$
$$= \left\langle \sum_{i=1}^{n} \lambda_i x_i e_i, \sum_{j=1}^{n} x_j e_j \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i x_i x_j \langle e_i, e_j \rangle,$$

and since (e_1, \ldots, e_n) , is an orthonormal basis, we obtain

$$\langle f(u), u \rangle = \sum_{i=1}^{n} \lambda_i x_i^2.$$
 (†)

(1) If $\lambda_i > 0$ for i = 1, ..., n, for any $u \neq 0$, we have $x_i \neq 0$ for some i, so $\langle f(u), u \rangle = \sum_{i=1}^n \lambda_i x_i^2 > 0$.

Conversely, if $\langle f(u), u \rangle > 0$ for all $u \neq 0$, by picking $u = e_i$, we get

$$\langle f(e_i), e_i \rangle = \langle \lambda_i e_i, e_i \rangle = \lambda_i \langle e_i, e_i \rangle = \lambda_i,$$

so $\lambda_i > 0$ for $i = 1, \ldots, n$.

(2) If $\lambda_i \geq 0$ for $i = 1, \ldots, n$, for any $u \neq 0$, then $\langle f(u), u \rangle = \sum_{i=1}^n \lambda_i x_i^2 \geq 0$.

Conversely, if $\langle f(u), u \rangle \geq 0$ for all $u \neq 0$, by picking $u = e_i$, we get

$$\langle f(e_i), e_i \rangle = \langle \lambda_i e_i, e_i \rangle = \lambda_i \langle e_i, e_i \rangle = \lambda_i,$$

so
$$\lambda_i \geq 0$$
 for $i = 1, \dots, n$.