Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrices

Applications linéaires

Définition, composition Image, novau

Analyse des données et algèbre linéaire

Machine-Learning: Une donnée $x_i = un$ ensemble de 'features' (caractères) d'un individu i

$$\mathbf{x}_i = (x_{i,1}, \dots, x_{i,p})$$

ex: $x_i = (\hat{a}ge_i, taille_i, poids_i, revenu_i, loyer_i)$

« les données » = une (grande) matrice.

Rôle clé de l'algèbre linéaire.

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrice:

Applications linéaires

Définition, composition Image, novau

Objectifs du cours d'algèbre

- ▶ **Vérifier** que que les notions de bases abordées sont connues.
- ▶ Si certains points posent problème, servez vous du cours comme guide de lecture pour travailler, par exemple avec

Plan du cours d'algèbre

Espaces Vectoriels

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrices

Applications linéaires

Définition, compositio Image, noyau

Semaine 1

- ► Espaces vectoriels réels
- Applications linéaires
- Matrices

Semaine 2

- Produit scalaire, projections, interprétations géométriques
- Réductions de matrices

Espaces vectoriels réels

Espaces et sous-espaces vectoriels

Applications linéaires

Espace vectoriel réel

Un espace vectoriel est une famille E d'objets (vecteurs, matrices, fonctions, ...) que l'on peut additionner entre eux et multiplier par un scalaire (= un nombre réel ou complexe). La famille doit contenir un « **vecteur nul** » noté 0_E ou 0.

Par exemple, le plan : $E = \{(x, y), x \in \mathbb{R}, y \in \mathbb{R}\} = \mathbb{R}^2$.

Mines-Télécom

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrices

Applications linéaires

Définition, composition Image, noyau

Espace vectoriel réel

Un espace vectoriel est une famille E d'objets (vecteurs, matrices, fonctions, ...) que l'on peut **additionner** entre eux et **multiplier** par un scalaire (= un nombre réel ou complexe). La famille doit contenir un « **vecteur nul** » noté 0_E ou 0.

- Le **vecteur nul** '0' vérifie, pour tout $x \in E$, x + 0 = 0 + x = x.
- ► Tout élément x a un opposé noté -x, tel que x + (-x) = (-x) + x = 0.
- ► ex :
 - ▶ Dans ce cours, $E = \mathbb{R}^p$, « dimension finie ». (ex : espace de caractéristiques d' individus).
 - ► Hors programme : Espaces de dimension infinie (ex : RKHS)

Espace vectoriel engendré par une famille finie $(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K) \subset E$

Ensemble V des combinaisons linéaires des \mathbf{u}_i :

$$V = \mathsf{Vect}(\mathbf{u}_1, \dots, \mathbf{u}_K) = \left\{ \sum_{i=1}^K \lambda_i \mathbf{u}_i : \lambda_1, \dots, \lambda_K \in \mathbb{R} \right\}$$

V est un sous-espace vectoriel de E, i.e. $V \subset E$ et V est stable par combinaisons linéaires :

$$\forall x, y \in F, \forall \lambda \in \mathbb{R}, \quad x + \lambda y \in F.$$
 (exo : vérifiez-le!)

Espaces Vectoriels

Espaces vectoriels réels

Espaces et sous-espaces vectoriels

Applications linéaires

Espaces vectoriels réels

Espaces et sous-espaces vectoriels

Dimension, familles libres et génératrices

Applications linéaires

Définition, composition

Sous-espaces: exemples

- ▶ Le sous-espace engendré par **0** est {**0**}. Un vecteur engendre une droite, deux vecteurs engendrent un plan.
- ▶ Une intersection de sous-espaces vectoriels est un sous espace vectoriel (exercice).
- **Exercice** : Si $E = \mathbb{R}^n$, vérifiez que

$$F = \left\{ \mathbf{x} = (x_1, \dots, x_n) : \sum_{i=1}^n x_i = 0 \right\}$$

est un sous espace vectoriel de E.

Vérifiez également que

$$G = \left\{ \mathbf{x} = (x_1, \dots, x_n) : \sum_{i=1}^n x_i = 1 \right\}$$

n'en est pas un.

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrices

Applications linéaires

Définition, compositio Image, noyau

Dimension, rang

- ▶ E est de **dimension finie** s'il existe une famille finie $\mathcal{U} = (\mathbf{u_1}, \dots, \mathbf{u_k})$ qui engendre E.
- La dimension dim(F) d'un SEV F ⊂ E est le nombre minimal de vecteurs requis pour engendrer F.
 ex : pour F = E = ℝ^p, dim(ℝ^p) = p.
- Rang d'une famille de vecteurs :

$$\operatorname{rang}(\mathbf{u}_1,\ldots,\mathbf{u}_K) := \operatorname{dim}\operatorname{Vect}(\mathbf{u}_1,\ldots,\mathbf{u}_K) \le K$$
.

▶ si $F \subset E$ est un sous espace de E, $\dim(F) \leq \dim(E)$.

Familles libres ou liées

famille liée

 $\mathcal{U} = (\mathbf{u}_1, \dots, \mathbf{u}_K)$ de E est liée ou linéairement dépendante s'il existe une combinaison linéaire nulle avec au moins un coefficient non nul:

$$\exists (\lambda_1, \dots, \lambda_K) \neq (0, \dots, 0) \text{ tels que } \lambda_1 \mathbf{u}_1 + \dots + \lambda_K \mathbf{u}_K = 0.$$

▶ Une famille est **libre** ou **linéairement indépendante** si . . . elle n'est pas liée.

ex: dans \mathbb{R}^3 :

- ((1,0,0),(0,1,0),(0,0,1)) est libre
- (1,0,0),(0,1,0),(4,5,0) est liée.

rang et dépendance linéaire

Si \mathcal{U} est libre, rang(\mathcal{U}) = K, sinon rang(\mathcal{U}) < K

Espaces Vectoriels

Espaces vectoriels réels

Dimension, familles libres et génératrices

Applications linéaires

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrices

Applications linéaires

Définition, composition Image, noyau

Bases

 $\mathcal{U} = (\mathbf{u}_1, \dots, \mathbf{u}_K) \subset E$ est appelée **base** de E si elle est **libre** et si elle **engendre** E (*i.e.*, si $\mathsf{Vect}(\mathcal{U}) = E$).

- ▶ Si dim(E) = p, les bases de E ont toutes p éléments.
- ▶ Dans une base \mathcal{U} donnée, pour $x \in E$, il existe une **unique** combinaison linéaire des $\mathbf{u_i}$ telle que

$$\mathbf{x} = \sum_{i=1}^{p} x_i \mathbf{u}_i.$$

 x_i est la i^{eme} coordonnée de **x dans la base** \mathcal{U} .

$$\wedge \mathbf{x} = \sum_i x_i \mathbf{u}_i$$
, ne veut pas dire $\mathbf{x} = (x_1, \dots, x_p)$.

Les coordonnées x_i dépendent de la base choisie.

• **ex** : dans la base $\mathcal{U} = ((0,1),(1,1))$ de \mathbb{R}^2 , que vaut $1 \mathbf{u}_1 + 2 \mathbf{u}_2$? comparer avec le vecteur (1,2).

Applications linéaires

déf : $E = \mathbb{R}^p$, $F = \mathbb{R}^n$. Une fonction

$$f: E \longrightarrow F$$

 $x \mapsto f(x)$

est une application linéaire si

$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

$$f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$$

- ▶ Si $\mathcal{U} = (\mathbf{u}_1, \dots, \mathbf{u}_p)$ est une base de $E = \mathbb{R}^p$, f est déterminée par l'image de $\mathcal{U} : \{f(\mathbf{u}_1), \dots, f(\mathbf{u}_p)\}$.
- ► En effet, si $\mathbf{x} = \sum x_i \mathbf{u}_i$,

$$f(\mathbf{x}) = f(x_1\mathbf{u}_1 + \cdots x_p\mathbf{u}_p)$$

= $x_1f(\mathbf{u}_1) + \cdots x_pf(\mathbf{u}_p)$ par linéarité.

Espaces Vectoriels

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératri

Applications linéaires

Définition, composition

lmage, noyau

Mines-Télécom

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrices

Applications linéaires

Définition, composition

Composition d'applications linéaires

- ▶ Soient $f: E \rightarrow F$ et $g: F \rightarrow G$, linéaires.
- on définit la composée de f par g

$$g \circ f : E \longrightarrow G$$

 $x \mapsto g[f(x)]$

Exo : vérifier que la composée $g \circ f$ est encore une application linéaire, cette fois de E dans G.

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et générat

Applications linéaires

Définition, composition

Image, novau

Image, surjectivité

Soit $g: E \to F$, linéaire.

Image de g

$$\operatorname{Im} g = \{ y \in F : \exists x \in E, y = g(x) \}$$

 $\operatorname{Im} g$ est un SEV de F (vérification : exercice).

Rang de g: dimension de l'image

$$rang(g) = dim(Im g)$$

déf : g est surjective si

$$\operatorname{Im} g = F$$
.

prop: rang $g = \dim F \Rightarrow \operatorname{Im} g = F$, *i.e.* g surjective.

Noyau, injectivité

Espaces Vectoriels

Espaces vectoriels réels

=spaces et sous-espaces vectoriels Dimension, familles libres et génératrice:

Applications linéaires

Définition, composition

Image, noyau

$g: E \rightarrow F$ linéaire

Noyau de g

$$Ker g = \{x \in E : g(x) = 0\}$$

 $\operatorname{Ker} g$ est aussi un SEV de E (exercice).

déf : g est injective si

$$\{g(x) = g(x')\} \Rightarrow x = x'.$$

prop: g injective $\Leftrightarrow \operatorname{Ker} g = \{0\}$

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et générat

Applications linéaires

Définition, composition

Image, noyau

Bijections, Inverse

déf : g est **bijective** si

g est injective et surjective.

On a alors : $\forall y \in F$, $\exists ! x \in E$ tel que y = g(x).

 $g: E \to F$ bijective, linéaire.

▶ g envoie toute base de E sur une base de F, donc E et F ont la même dimension

inverse de g (si g bijective) : l'application

$$g^{-1}: F \mapsto E$$

 $y \mapsto x \text{ tel que } g(x) = y$

- $ightharpoonup g^{-1}$ est bien définie car x existe et est unique.
- $ightharpoonup g^{-1}$ est linéaire, bijective.
- ▶ $g \circ g^{-1} = I_F$ (application identité de $F, y \mapsto y$)
- ▶ $g^{-1} \circ g = I_E$ (application identité de $E, x \mapsto x$)

Anne Sabourin

Théorème du rang

Dimension de l'espace de départ = dimension de l'image + dimension du noyau

$$\dim(E)=\dim(\operatorname{Im} g)+\dim(\operatorname{Ker} g)$$

conséquence : si dim $E = \dim F$ (par exemple si E = F)

g injective \Leftrightarrow g surjective \Leftrightarrow g bijective.

Espaces Vectoriels

Espaces vectoriels réels

Espaces et sous-espaces vectoriels Dimension, familles libres et génératrices

Applications linéaires

Définition, composition

Image, noyau

Anne Sabourin

