MÉTODO VORTEX LATTICE 2D para Perfis Aerodinâmicos

Condição de contorno $V_{Normal} = 0$:

$$V_{\infty} \left[\alpha - \frac{dz}{dx} \right] + w(x) = 0$$
 (Equação 1)

onde w(x) é a velocidade induzida resultante devido à distribuição de vórtices:

$$w(x) = -\frac{1}{2\pi} \int_{0}^{1} \frac{\gamma(x')}{x - x'} dx'$$
 (Equação 2)

e $V_{\infty}[\alpha-dz/dx]$ é a projeção da velocidade no infinito na direção normal ao camber em cada ponto x, sendo que α é pequeno (em radianos)

OBSERVAÇÕES: i) Circulação positiva em sentido horário;

ii) Lembrando que as hipóteses aqui são as mesmas da Teoria de Perfis de Pequena Espessura, ou seja, pequena espessura e pequeno camber (ou curvatura de perfil). Assim, considera-se que a direção normal ao camber é aproximadamente a direção z (SUGESTÃO: teste isto! Desenhe um camber de perfil grande e outro bem pequeno. Introduza no desenho os eixos x e z. Em diversos pontos trace linhas normais ao camber. Note que no caso do desenho do perfil de pequeno camber estas linhas normais são quase paralelas ao eixo z.)

ARRANJO VORTEX LATTICE PARA CÁLCULO DAS VELOCIDADES INDUZIDAS w(x)

Exemplo com 5 vórtices discretos. No procedimento geral fazemos para um número N de vórtices discretos

Na Figura (a) temos o exemplo em que a corda do perfil (de o a c) foi dividida em 5 segmentos de reta. Em cada segmento de reta – Figura (b) tem-se um ponto de aplicação do vórtice (.) e um ponto de controle (x). Chamamos isto de Regra 1/4 x 3/4

Os pontos de controle são pontos onde as condições de contorno $(V_N=0)$ no caso aqui) são exatamente satisfeitas.

Como o arranjo é de vórtices discretos, o segundo termo da Equação 2 se torna:

$$\int_{x_j}^{x_j+1} \gamma(x') dx' = \Gamma_j$$

Assim,

$$w(x) = -\frac{1}{2\pi} \int_{0}^{1} \frac{\gamma(x')}{x - x'} dx' \cong -\frac{1}{2\pi} \sum_{\substack{k=1,5 \\ j=1,5}}^{5} \frac{\Gamma_{j}}{x_{k} - x_{j}},$$

onde x_k é o ponto de controle, x_j é o ponto de aplicação do vórtice e Γ_j a circulação.

Forma geral para determinação da velocidade induzida por Γ_j no ponto de controle x_k :

$$-\frac{1}{2 \cdot \pi} \cdot \frac{\Gamma_j}{x_k - x_j}$$

Definindo o Coeficiente de influência como:

$$a_{kj} = -\frac{1}{2 \cdot \pi \left(x_k - x_j\right)}$$

Para cada um dos 5 pontos de controle (x_k) monta-se uma equação a partir da Equação 1:

$$a_{11} \cdot \Gamma_1 + a_{12} \cdot \Gamma_2 + \dots + a_{15} \cdot \Gamma_5 - z_1' \cdot V_\infty + V_\infty \cdot \alpha = 0$$

$$\vdots$$

$$a_{51} \cdot \Gamma_{1} + a_{52} \cdot \Gamma_{2} + \dots + a_{55} \cdot \Gamma_{5} - z_{5}' \cdot V_{\infty} + V_{\infty} \cdot \alpha = 0$$

 a_{kj} , $z_k^{'} \cdot V_{\infty}$ e α são conhecidos. O que não conhecemos são os valores das intensidades dos 5 vórtices, ou seja, as circulações nos 5 elementos.

OBSERVAÇÃO: $z'_{k} = \frac{dz}{dx}$ no ponto de controle (k)

Assim:

$$\begin{pmatrix} a_{11} & \dots & a_{15} \\ \vdots & \ddots & \vdots \\ a_{15} & \dots & a_{55} \end{pmatrix} \begin{pmatrix} \Gamma_1 \\ \vdots \\ \Gamma_5 \end{pmatrix} = \begin{pmatrix} V_{\infty} \cdot z_1' - V_{\infty} \cdot \alpha \\ \vdots \\ V_{\infty} \cdot z_5' - V_{\infty} \cdot \alpha \end{pmatrix} = V_{\infty} \cdot \begin{pmatrix} z_1' - \alpha \\ \vdots \\ z_5' - \alpha \end{pmatrix}$$

$$[\Gamma] = [A]^{-1} \cdot [B]$$

No presente exemplo temos um sistema de equações lineares 5x5.

OBSERVAÇÃO: Cálculo de sistemas de equações lineares

- Até 300 x 300 iterativo ou direto (indiferente)
- Acima método iterativo é preferível

No caso de Vortex Lattice processo converge rapidamente com 10 – 16 elementos.

A partir das circulações aplica-se o Teorema de Kutta-Joukowski para se determinar a sustentação e, em seguida, o coeficiente de sustentação - Cl

No caso do momento de arfagem num determinado ponto, somamos os momentos produzidos por cada vórtice separadamente. Lembrando que como o vórtice está a ½ de corda em cada seguimento a força está concentrada neste ponto (lembre-se de que a Teoria de Perfis de Pequena Espessura tem como um dos resultados para uma placa plana o Centro de Pressão neste ponto)

Condição de Kutta e Teorema de Pistolesi

$$\Rightarrow$$
 regra $\frac{1}{4}x\frac{3}{4}$

Esta regra, de acordo com o Teorema de Pistolesi, quando aplicada a uma placa plana resulta numa satisfação exata da Condição de kutta.

Exemplo: placa plana – caso unitário

$$a_{11} = -\frac{1}{2 \cdot \pi} \cdot \frac{1}{2}$$
$$\frac{dz}{dx} = 0$$
$$a_{11} = -\frac{1}{\pi}$$

Sistema

$$\begin{bmatrix} -\frac{1}{\pi} \end{bmatrix} [\Gamma] = V_{\infty} [-\alpha] \Rightarrow$$

$$\Gamma = \pi \cdot \alpha \cdot V_{\infty}$$

$$L = \rho \cdot \Gamma \cdot V_{\infty}$$

$$C_{L} = \frac{L}{\frac{1}{2} \cdot \rho \cdot V_{\infty}^{2} \cdot c} = \frac{\rho \cdot \Gamma \cdot V_{\infty}}{\frac{1}{2} \cdot \rho \cdot V_{\infty}^{2}} \Rightarrow \begin{cases} C_{L} = \frac{2 \cdot \Gamma}{V_{\infty}} \\ C_{l} = 2 \cdot \pi \cdot \alpha \\ C_{l\alpha} = \frac{dC_{L}}{d\alpha} = 2 \cdot \pi \end{cases}$$

Momento em relação ao bordo de ataque:

$$\begin{split} M_{le} &= -L \cdot \frac{1}{4} \Longrightarrow \\ M_{le} &= -\frac{\rho \cdot V_{\infty}^{2}}{2} \cdot \frac{\pi \cdot \alpha}{2} \\ C_{m,le} &= -\frac{\pi \cdot \alpha}{2} \Longrightarrow C_{m,le} = -\frac{C_{l}}{4} \Longrightarrow C_{m,\alpha} = -\frac{\pi}{2} \end{split}$$

ALGORITMO VORTEX LATTICE 2D

PASSO 1: entrar com dados (velocidade no infinito, ângulo de ataque, corda do perfil, curva do camber z=f(x) ou tabela de pontos "z" e "x", etc.)

PASSO 2: dividir a corda do perfil em N seguimentos de reta

PASSO 3: calcular os pontos de aplicação dos vórtices x_j e os pontos de controle x_k

PASSO 4: montar a matriz dos coeficientes de influência [a_{ki}]

PASSO 5: calcular as derivadas dz/dx nos pontos de controle e montar a matriz [b]

PASSO 6: resolver o sistema de equações lineares [a] $x [\Gamma] = [b]$

PASSO 7: com os valores de Γ calcular a sustentação L e, em seguida, o Cl

PASSO 8: com os valores de Γ calcular o momento de arfagem num determinado ponto (1/4 corda, por exemplo)

PASSO 9: plotar curvas Cl x α , fazer tabelas, etc.

OBSERVAÇÃO: os passos de 2 a 6 são os passos do método em si. Os passos 7 e 8 são passos do pós-processamento e os passos 1 e 9 são de entrada e saída de dados, respectivamente. Dependendo do algoritmo pode ser que tenhamos alguns passos de pré-processamento.

> O FOCO PRINCIPAL NO PROCESSO TODO É MONTAR O SISTEMA DE EQUAÇÕES LINEARES: [a] $x [\Gamma] = [b]$