Greining Rása

Tengdar spólur

Ólafur Bjarki Bogason

1. mars 2021

Lögmál Faradays

Lögmál Faradays (ein af Maxwells jöfnunum)

$$v = n \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

segir aðeins til um stærð en ekki formerki spennunnar.

Til að finna formerkið þurfum við mynd

Inngangur

Hugsum okkur tvær spólur sem eru nægilega nálægt hvor annarri til að hluti af segulflæði hvorrar spólu fari einnig í gegnum hina.

Köllum ϕ_{jk} flæði í vafi j vegna straums i_k í vafi k og skilgreinum

$$L_{jk} = \frac{n_j \phi_{jk}}{i_k}$$

Margföldum í gegn með i_k og diffrum með tilliti til tíma

$$L_{jk}\frac{\mathrm{d}i_k}{\mathrm{d}t} = n_j \frac{\mathrm{d}\phi_{jk}}{\mathrm{d}t}$$

Nú er

$$v(t) = n \frac{\mathrm{d}\phi}{\mathrm{d}t}$$

svo að fyrir spólu (vaf) 1 fæst

$$v_1(t) = n \frac{\mathrm{d(heildarsegulflæði í vafi 1)}}{\mathrm{d}t}$$

eða

$$v_1(t) = n \frac{d(\phi_{11} \pm \phi_{12})}{dt} = n_1 \frac{d\phi_{11}}{dt} \pm n_2 \frac{d\phi_{12}}{dt}$$

sem rita má

$$v_1(t) = L_{11} \frac{\mathrm{d}i_1}{\mathrm{d}t} \pm L_{12} \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

Á sama hátt fæst fyrir spólu 2

$$v_2(t) = \pm L_{21} \frac{\mathrm{d}i_1}{\mathrm{d}t} + L_{22} \frac{\mathrm{d}i_2}{\mathrm{d}t}$$

Gagnspan

Það má sýna fram á að

$$L_{12} = L_{21} \equiv M$$

og að

$$0 \le M \le \sqrt{L_1 L_2}$$

 \bullet Stærðin M er nefnd **gagnspan** (e. mutual inductance)

Kúplingsstuðull

Nú má rita

$$v_1(t) = L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt}$$
$$v_2(t) = \pm M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$

og L_1 og L_2 eru alltaf jákvæðar stærðir.

Kúplingsstuðullinn k er skilgreindur sem

$$k \equiv \frac{M}{\sqrt{L_1 L_2}}$$

Við sjáum að $k \leq 1$, og þegar k = 1 fer allt segulflæðið í gegnum báðar spólurnar og við segjum að þær séu fullkomlega kúplaðar.

Lögmál Faradays

 Þegar viðmiðunarstefna straumsins stefnir inní merktan pól spólu þá er + viðmiðunarspennu sem spanast í hinni spólunni þar sem punkturinn er

Viðmiðunarpunktar

• KVL gefur

$$-v_g + i_1 R_1 + L_1 \frac{di_1}{dt} - M \frac{di_2}{dt} = 0$$
$$i_2 R_2 + L_2 \frac{di_2}{dt} - M \frac{di_1}{dt} = 0$$

Viðmiðunarpunktar

• KVL gefur

$$-v_g + i_1 R_1 + L_1 \frac{di_1}{dt} + M \frac{di_2}{dt} = 0$$
$$i_2 R_2 + L_2 \frac{di_2}{dt} + M \frac{di_1}{dt} = 0$$

Kjörspennir er líkan af raunverulegum spenni. Hann er fullkominn (og óraunverulegur) að tvennu leyti

- 1. Í honum tapast engin orka
- 2. Kúplingin er fullkomin, þ.e. k=1

• Þá má rita

$$v_1 = n_1 \frac{\mathrm{d}\phi_1}{\mathrm{d}t}$$
 og $v_2 = n_2 \frac{\mathrm{d}\phi_2}{\mathrm{d}t}$

• Par sem k = 1 þá er

$$\phi_1 = \phi_2$$

og

$$\frac{v_1}{v_2} = \frac{n_1}{n_2}$$

Fyrir kjörspenni þá gildir einnig

$$\frac{i_1}{i_2} = -\frac{n_2}{n_1}$$

Nytsamlegt líkan fyrir kjörspenni

Ritum

$$v_1 n_2 = v_2 n_1$$
 og $\frac{i_1}{n_2} = -\frac{i_2}{n_1}$

Margföldum jöfnurnar saman og fáum

$$v_1 n_2 \frac{i_1}{n_2} = v_2 n_1 \left(-\frac{i_2}{n_1} \right)$$

eða

$$v_1 i_1 = -v_2 i_2$$

sem jafngildir

$$p_1 = -p_2$$

sem þýðir að allt afl sem fer inn á vaf 1 fer út úr vafi 2, þ.e. ekkert afl tapast

- Í kjörspenni má líta á annað vafið sem háspennuvaf með marga vindinga og lágan straum og hitt vafið sem lágspennuvaf með fáa vindinga en háan straum
- Gildi viðnáms sem tengt er yfir **bakvaf** spennis virðist séð frá **forvafinu** vera $(n_1/n_2)^2$ stærra en það er

• Hér gildir

$$-i_2 = \frac{v_2}{R}$$

en

$$i_1 = -\frac{n_2}{n_1} i_2 = \frac{n_2}{n_1} \frac{v_2}{R}$$

og

$$v_2 = v_1 \frac{n_2}{n_1}$$

eða

$$i_1 = \frac{n_2}{n_1} \frac{n_2}{n_1} \frac{v_1}{R} = \frac{v_1}{R} \left(\frac{n_2}{n_1}\right)^2$$

 $\bullet\,$ Viðnámið sem lind sem tengd er inn á forvafið sér er

$$\frac{v_1}{i_1} = \left(\frac{n_1}{n_2}\right)^2 R$$

- Formerkin á formúlunum hér að framan er vegna þess hvernig spennan og straumur var skilgreindur.
- Í fyrirlestrinum höfum við gert ráð fyrir að punktarnir séu báðir uppi, en mismunandi hvernig straumurinn er skilgreindur (liður a og c):
 - Ef straumarnir i₁ og i₂ í spenninum eru báðir beindir inn eða út úr merkta punktinum, þá skal nota -, annars skal nota +.

