Field kinematics

Momentum	Norm	Frame
k^{μ}	$k^2 == k_\mu k^\mu$	$n^{\mu} == \frac{k^{\mu}}{k}$

Fundamental fields

Fields	Symmetries	SO(3)	Sources
$\overline{\mathcal{A}}_{lphaeta\chi}$	StrongGenSet[{}, GenSet[]]	$ \frac{1}{2} \eta_{\alpha \chi} \eta_{\beta}^{*1} + \frac{1}{2} \eta_{\alpha \beta} \eta_{\beta}^{*1} \eta_{\beta \chi} + \frac{4}{3} \eta_{\beta \chi}^{*1} \eta_{\beta \chi}^{*2} + \frac{1}{2} \eta_{\beta \chi}^{*2} + \frac{1}{2} \eta_{\alpha \beta \chi}^{*2} + \frac{1}{3} \eta_{\beta \chi}^{*2} \eta_{\beta \chi}^{*2} + \frac{1}{3} \eta_{\beta \chi}^{*2} $	$\Delta_{\alpha\beta\chi}$
		$\frac{1}{3} \frac{^{#3}}{2} + \mathcal{A}_{\alpha\chi} n_{\beta} - \frac{1}{9} \eta_{\alpha\chi} \frac{^{#4}}{0} + \mathcal{A}_{\alpha} n_{\beta} - \frac{1}{2} \frac{^{#1}}{1} \mathcal{A}_{\chi} n_{\alpha} n_{\beta} - \frac{1}{6} \frac{^{#2}}{1} \mathcal{A}_{\chi} n_{\alpha} n_{\beta} + \frac{1}{6} \frac{^{#6}}{1} \mathcal{A}_{\chi} n_{\alpha} n_{\beta} - \frac{1}{15} \frac{^{#4}}{1} \mathcal{A}_{\chi} n_{\alpha} n_{\beta} - \frac{1}{3} \frac{^{#5}}{1} \mathcal{A}_{\chi} n_{\alpha} n_{\beta} - \frac{1}{3} \frac{^{*5}}{1} \mathcal{A}_{\chi} n_{\alpha} n_{\beta} - \frac{1}{3} \frac{^{*5}}{1} \mathcal{A}_{\chi} n_{\alpha} n_{\beta} - \frac{1}{3} \frac{^{*5}}{1} $	
		$\frac{1}{3} \frac{\#^5}{1} \mathcal{A}_\beta n_\alpha n_\chi + \frac{1}{3} \frac{\#^3}{1} \mathcal{A}_\beta n_\alpha n_\chi - \frac{1}{3} \frac{\#^6}{1} \mathcal{A}_\alpha n_\beta n_\chi - \frac{1}{15} \frac{\#^4}{1} \mathcal{A}_\alpha n_\beta n_\chi + \frac{2}{3} \frac{\#^5}{1} \mathcal{A}_\alpha n_\beta n_\chi + \frac{1}{3} \frac{\#^3}{1} \mathcal{A}_\alpha n_\beta n_\chi - \frac{1}{3} 0^+ \mathcal{A} n_\alpha n_\beta n_\chi - \frac{1}{6} \epsilon n_{\alpha\beta\chi\delta} 0^+ \mathcal{A}_\beta n_\alpha n_\beta n_\chi + \frac{1}{3} \frac{\#^3}{1} \mathcal{A}_\alpha n_\beta n_\chi + \frac{1}{3} \frac$	

SO(3) irreps

SO(3)	Symmetries	Expansion	Sources
#1	StrongGenSet[{}, GenSet[]] -	$\frac{1}{2} \mathcal{A}_{\ \alpha}^{\alpha \beta} n_{\beta} + \frac{1}{2} \mathcal{A}_{\ \alpha}^{\alpha \beta} n_{\beta}$	#1 0 ⁺ Δ
#2 0 ⁺ <i>A</i>	StrongGenSet[{},GenSet[]]	$\mathcal{A}^{lphaeta\chi}$ n_{lpha} n_{eta} n_{eta} n_{χ}	#2 0 ⁺ Δ
#3 0 ⁺ A	StrongGenSet[{},GenSet[]]	$\mathcal{A}^{\alpha\beta}_{\beta} \ n_{\alpha} + \mathcal{A}^{\alpha\beta}_{\alpha} \ n_{\beta} + \mathcal{A}^{\alpha\beta}_{\alpha} \ n_{\beta} \ -3 \ \mathcal{A}^{\alpha\beta\chi} \ n_{\alpha} \ n_{\beta} \ n_{\chi}$	#3 0 ⁺ Δ
#4 0 ⁺ A	StrongGenSet[{},GenSet[]]	$\mathcal{A}^{lphaeta}_{\beta}$ n_{lpha} $-\frac{1}{2}$ $\mathcal{A}^{lphaeta}_{\alpha}$ n_{eta} $-\frac{1}{2}$ $\mathcal{A}^{lphaeta}_{\alpha}$ n_{eta}	#4 0 ⁺ Δ
#1 0 <i>A</i>	StrongGenSet[{},GenSet[]]	$\epsilon\eta_{lphaeta\chi\delta}$ $\mathcal{A}^{lphaeta\chi}$ n^{δ}	#1 0 Δ
$\overbrace{1^{+}\mathcal{F}\!\!\!/}^{\#1}\mathcal{F}\!\!\!/\!\!\!/lphaeta$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]	$\frac{1}{4} \mathcal{A}_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \mathcal{A}_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{4} \mathcal{A}_{\beta}^{ X} n_{\chi} - \frac{1}{4} \mathcal{A}_{\beta}^{ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\beta}^{ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\alpha}^{ X} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha}^{ X} n_{\beta} n_{\chi} n_{\delta}$	$1^{+1} \Delta \alpha \beta$
^{#2} 1 ⁺ <i>Я</i> (αβ	StrongGenSet[{1, 2}, GenSet[-(1,2)]]	$\frac{1}{2} \mathcal{A}^{\chi}_{\alpha\beta} n_{\chi} - \frac{1}{2} \mathcal{A}^{\chi}_{\beta\alpha} n_{\chi} + \frac{1}{2} \mathcal{A}^{\chi}_{\beta}^{\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \mathcal{A}^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \mathcal{A}^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{A}^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$1^{+2} \Delta \alpha \beta$
#3 1 ⁺ <i>Я</i> (αβ	StrongGenSet[{1, 2}, GenSet[-(1,2)]]	$-\frac{1}{2} \mathcal{A}_{\alpha\beta}^{} n_{\chi} - \frac{1}{2} \mathcal{A}_{\alpha\beta}^{} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{\alpha} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{\alpha} n_{\chi} - \mathcal{A}_{\beta}^{\alpha} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{A}_{\beta}^{\beta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \mathcal{A}_{\beta}^{\beta} n_{\alpha} n_{\chi} n_{\delta} + \mathcal{A}_{\alpha}^{\beta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \mathcal{A}_{\alpha}^{\beta} n_{\gamma} n_{\delta} - \frac{1}{2} \mathcal{A}_{\alpha$	$1^{+3} \Delta \alpha \beta$
<u> </u>	StrongGenSet[{}, GenSet[]] -	$\frac{1}{2} \mathcal{A}^{\beta}_{\alpha\beta} + \frac{1}{2} \mathcal{A}^{\beta}_{\beta\alpha} - \frac{1}{2} \mathcal{A}^{\beta}_{\beta}^{\chi} n_{\alpha} n_{\chi} + \frac{1}{2} \mathcal{A}^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2} \mathcal{A}^{\beta\chi}_{\alpha} n_{\beta} n_{\chi} - \frac{1}{2} \mathcal{A}^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	$\overset{\#1}{1}\Delta_{lpha}$
O 1 u	StrongGenSet[{},GenSet[]]	$\frac{1}{2} \mathcal{A}_{\alpha}^{\beta \chi} n_{\beta} n_{\chi} - \frac{1}{2} \mathcal{A}_{\alpha}^{\beta \chi} n_{\beta} n_{\chi}$	$1^{2} \Delta_{\alpha}$
	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha}^{\ \beta\chi}\ n_{\beta}\ n_{\chi} + \mathcal{A}_{\ \alpha}^{\beta\chi}\ n_{\beta}\ n_{\chi} + \mathcal{A}^{\beta\chi}_{\ \alpha}\ n_{\beta}\ n_{\chi} - 3\ \mathcal{A}^{\beta\chi\delta}\ n_{\alpha}\ n_{\beta}\ n_{\chi}\ n_{\delta}$	#3 1 Δα
_ 0.0	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha\beta}^{\ \beta} + \mathcal{A}_{\alpha\beta}^{\beta} + \mathcal{A}_{\beta\alpha}^{\beta} - \mathcal{A}_{\chi}^{\beta\chi} \ n_{\alpha} \ n_{\beta} - \mathcal{A}_{\beta}^{\beta\chi} \ n_{\alpha} \ n_{\chi} - \mathcal{A}_{\beta}^{\delta\chi} \ n_{\alpha} \ n_{\chi} - \mathcal{A}_{\alpha}^{\beta\chi} \ n_{\beta} \ n_{\chi} - \mathcal{A}_{\alpha}^{\beta\chi} \ n_{\beta} \ n_{\chi} - \mathcal{A}_{\alpha}^{\beta\chi} \ n_{\beta} \ n_{\chi} + 3 \ \mathcal{A}^{\beta\chi\delta} \ n_{\alpha} \ n_{\beta} \ n_{\chi} \ n_{\delta}$	$1^{4}\Delta_{\alpha}$
	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha}^{\ \beta\chi} \ n_{\beta} \ n_{\chi} - \frac{1}{2} \ \mathcal{A}^{\beta\chi}_{\ \alpha} \ n_{\beta} \ n_{\chi} - \frac{1}{2} \ \mathcal{A}^{\beta\chi}_{\ \alpha} \ n_{\beta} \ n_{\chi}$	$1^{-5}\Delta_{\alpha}$
- 014	StrongGenSet[{},GenSet[]]	$\mathcal{A}_{\alpha\beta}^{\ \beta} \ -\frac{1}{2} \mathcal{A}_{\ \alpha\beta}^{\beta} \ -\frac{1}{2} \mathcal{A}_{\ \beta\alpha}^{\beta} \ -\frac{1}{2} \mathcal{A}_{\ \beta\alpha}^{\beta\chi} \ n_{\alpha} \ n_{\beta} + \frac{1}{2} \mathcal{A}_{\ \beta}^{\beta\chi} \ n_{\alpha} \ n_{\chi} + \frac{1}{2} \mathcal{A}_{\ \beta}^{\beta\chi} \ n_{\alpha} \ n_{\chi} - \mathcal{A}_{\alpha}^{\ \beta\chi} \ n_{\beta} \ n_{\chi} + \frac{1}{2} \mathcal{A}_{\ \alpha}^{\beta\chi} \ n_{\gamma} + \frac{1}{2} \mathcal{A}_{$	$^{#6}_{1}\Delta_{\alpha}$
$\overset{\#1}{2^+}\mathcal{F}\!\!/\!\!\!/ \alpha\beta$	StrongGenSet[{1, 2}, GenSet[(1,2)]] -		$2^{+1}\Delta \alpha \beta$
		$\frac{1}{6} \mathcal{A}_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{6} \mathcal{A}_{\chi}^{\chi \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{4} \mathcal{A}_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\beta}^{\chi \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \mathcal{A}_{\alpha}^{\chi \delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha}^{\chi \delta} n_{\gamma} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha}^{\chi \delta} n$	
#2 2 ⁺ <i>Я</i> αβ	StrongGenSet[{1,2},GenSet[(1,2)]]	$\frac{1}{2} \mathcal{A}_{\alpha\beta}^{} n_{\chi} + \frac{1}{2} \mathcal{A}_{\alpha\beta}^{} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{} n_{\chi} + \frac{1}{3} \mathcal{A}_{\alpha\beta}^{} n_{\chi$	$2^{+2}\Delta_{\alpha\beta}$
#2		$\frac{1}{3} \mathcal{A}^{\chi\delta}_{\chi} n_{\alpha} n_{\beta} n_{\delta} - \mathcal{A}^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \mathcal{A}^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \mathcal{A}^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \mathcal{A}^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} - \mathcal{A}^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} - \mathcal{A}^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \eta_{\alpha\beta} \mathcal{A}^{\chi\delta\epsilon}_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} + 2 \mathcal{A}^{\chi\delta\epsilon}_{\alpha} n_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon}$	#2
#3 2 ⁺ <i>Я</i> (αβ	StrongGenSet[{1, 2}, GenSet[(1,2)]] -	$\frac{1}{4} \mathcal{A}_{\alpha\beta}^{\chi} n_{\chi} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{\chi} n_{\chi} - \frac{1}{4} \mathcal{A}_{\beta\alpha}^{\chi} n_{\chi} + \frac{1}{2} \mathcal{A}_{\alpha\beta}^{\chi} n_{\chi} + \frac{1}{2} \mathcal{A}_{\alpha\beta}^{\chi} n_{\chi} + \frac{1}{2} \mathcal{A}_{\beta\alpha}^{\chi} n_{\chi} - \frac{1}{3} \eta_{\alpha\beta} \mathcal{A}_{\delta}^{\chi\delta} n_{\chi} + \frac{1}{3} \mathcal{A}_{\delta}^{\chi\delta} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \mathcal{A}_{\chi}^{\chi\delta} n_{\delta} + \frac{1}{6} \eta_{\alpha\beta} \mathcal{A}_{\chi}^{\chi\delta} n_{\delta} - \frac{1}{4} \mathcal{A}_{\beta\alpha}^{\chi\delta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{\chi\delta} n_{\chi} n_{\delta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{\chi\delta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{\chi\delta} n_{\chi} n_{\delta} n_{\chi} n_{\delta} n_{\chi} n_{\delta} - \frac{1}{4} \mathcal{A}_{\alpha\beta}^{\chi\delta} n_{\chi} n_{\delta} n_{\chi} n_{\chi} n_{\delta} n_{\chi} n_{$	$2^+\Delta\alpha\beta$
$\frac{\pi^{1}}{2}\mathcal{F}_{\alpha\beta\chi}$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]	$-\frac{1}{8}\mathcal{A}_{\alpha\beta\chi}+\frac{1}{8}\mathcal{A}_{\alpha\chi\beta}+\frac{1}{8}\mathcal{A}_{\beta\alpha\chi}-\frac{1}{8}\mathcal{A}_{\beta\chi\alpha}+\frac{1}{4}\mathcal{A}_{\chi\alpha\beta}-\frac{1}{4}\mathcal{A}_{\chi\beta\alpha}-\frac{3}{16}\eta_{\beta\chi}\mathcal{A}^{\delta}_{\alpha\delta}+\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\beta\delta}+\frac{3}{16}\eta_{\beta\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\beta}-\frac{3}{16}\mathcal{A}^{\delta}_{\beta\delta}\eta_{\alpha}\eta_{\chi}+\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\beta\delta}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\mathcal{A}^{\delta}_{\beta\delta}\eta_{\alpha}\eta_{\chi}+\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\delta\alpha}-\frac{3}{16}\eta_{\alpha\chi}\mathcal{A}^{\delta}_{\alpha}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha\chi}-\frac{3}{16}\eta_{\alpha$	#1 2 Δ <i>αβ</i> χ
		$\frac{3}{16} \mathcal{A}^{\delta}_{\beta} n_{\alpha} n_{\chi} + \frac{3}{16} \mathcal{A}^{\delta}_{\alpha} n_{\beta} n_{\chi} - \frac{3}{16} \mathcal{A}^{\delta}_{\alpha} n_{\beta} n_{\chi} + \frac{1}{8} \mathcal{A}^{\delta}_{\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \mathcal{A}^{\delta}_{\chi} n_{\alpha} n_{\delta} + \frac{1}{4} \mathcal{A}^{\delta}_{\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \mathcal{A}^{\delta}_{\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \mathcal{A}^{\delta}_{\chi} n_{\alpha} n_{\delta} - \frac{1}{8} \mathcal{A}^{\delta}_{\alpha} n_{\alpha} n_{\delta} - \frac{1}$	
		$\frac{1}{8}\mathcal{A}_{\alpha\chi}^{\delta}n_{\beta}n_{\delta} + \frac{1}{8}\mathcal{A}_{\alpha\chi}^{\delta}n_{\beta}n_{\delta} - \frac{1}{4}\mathcal{A}_{\chi\alpha}^{\delta}n_{\beta}n_{\delta} + \frac{1}{4}\mathcal{A}_{\chi\alpha}^{\delta}n_{\beta}n_{\delta} - \frac{1}{8}\mathcal{A}_{\alpha\chi}^{\delta}n_{\beta}n_{\delta} + \frac{1}{8}\mathcal{A}_{\chi\alpha}^{\delta}n_{\beta}n_{\delta} + \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\beta\alpha}^{\delta}n_{\chi}n_{\delta} + \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} + \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\beta\alpha}^{\delta}n_{\chi}n_{\delta} + \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\beta\alpha}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n_{\chi}n_{\delta} - \frac{1}{8}\mathcal{A}_{\alpha\beta}^{\delta}n$	
		$\frac{1}{8} \mathcal{A}_{\beta \alpha}^{\ \delta} \ n_{\chi} \ n_{\delta}^{\ -\frac{1}{4}} \mathcal{A}_{\alpha \beta}^{\ \delta} \ n_{\chi} \ n_{\delta}^{\ +\frac{1}{4}} \mathcal{A}_{\beta \alpha}^{\ \delta} \ n_{\chi} \ n_{\delta}^{\ -\frac{3}{16}} \eta_{\beta \chi} \ \mathcal{A}_{\delta}^{\ \delta} \ n_{\alpha} \ n_{\epsilon}^{\ +\frac{3}{16}} \eta_{\beta \chi} \ \mathcal{A}_{\delta}^{\ \delta\epsilon} \ n_{\alpha} \ n_{\epsilon}^{\ +\frac{3}{16}} \eta_{\alpha \chi} \ \mathcal{A}_{\delta}^{\ \delta\epsilon} \ n_{\beta} \ n_{\epsilon}^{\ -\frac{3}{16}} \eta_{\alpha \chi} \ \mathcal{A}_{\delta}^{\ \delta\epsilon} \ n_{\beta} \ n_{\epsilon}^{\ +\frac{3}{16}} \eta_{\beta \chi} \ \mathcal{A}_{\alpha}^{\ \delta\epsilon} \ n_{\delta}^{\ \epsilon} \ n_{\delta}^{\ \epsilon} \ n_{\epsilon}^{\ \epsilon} = 0$	
#2		$\frac{\frac{3}{16}}{16} \eta_{\alpha\chi} \mathcal{A}^{\delta \epsilon}_{\beta} n_{\delta} n_{\epsilon} - \frac{\frac{3}{16}}{16} \eta_{\beta\chi} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\delta} n_{\epsilon} + \frac{\frac{3}{16}}{16} \eta_{\alpha\chi} \mathcal{A}^{\delta \epsilon}_{\beta} n_{\delta} n_{\epsilon} - \frac{\frac{3}{16}}{16} \mathcal{A}^{\delta \epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} + \frac{\frac{3}{16}}{16} \mathcal{A}^{\delta \epsilon}_{\beta} n_{\alpha} n_{\chi} n_{\delta} n_{\epsilon} - \frac{\frac{3}{16}}{16} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\beta} n_{\chi} n_{\delta} n_{\epsilon} - \frac{3}{16} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\delta} n_{\delta} n_{\epsilon} - \frac{3}{16} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{3}{16} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{3}{16} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{3}{16} \mathcal{A}^{\delta \epsilon}_{\alpha} n_{\delta} n_{$	"2
$2^{\frac{\mu^2}{2}}\mathcal{A}_{\alpha\beta\chi}$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]	$\frac{1}{3} \mathcal{A}_{\alpha\beta\chi} + \frac{1}{3} \mathcal{A}_{\alpha\chi\beta} - \frac{1}{3} \mathcal{A}_{\beta\chi} \mathcal{A}_{\alpha\delta} - \frac{1}{3} \mathcal{A}_{\beta\alpha\chi} - \frac{1}{3} \mathcal{A}_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \mathcal{A}_{\beta\delta}^{\delta} + \frac{1}{6} \eta_{\beta\chi} \mathcal{A}_{\alpha\delta}^{\delta} - \frac{1}{6} \eta_{\alpha\chi} \mathcal{A}_{\delta\beta}^{\delta} + \frac{1}{6} \eta_{\beta\chi} \mathcal{A}_{\delta\alpha}^{\delta} - \frac{1}{6} \eta_{\alpha\chi} \mathcal{A}_{\delta\beta}^{\delta} - \frac{1}{3} \mathcal{A}_{\beta\delta}^{\delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{6} \mathcal{A}_{\beta\delta}^{\delta} \eta_{\alpha} \eta_{\chi} + \frac{1}{6} \mathcal{A}_{\beta\delta}^{\delta} + \frac{1}{6} \eta_{\beta\chi} \mathcal{A}_{\delta\alpha}^{\delta} - \frac{1}{6} \eta_{\alpha\chi} \mathcal{A}_{\delta\beta}^{\delta} - \frac{1}{$	$2^{\frac{\#^2}{2}}\Delta_{\alpha\beta\chi}$
		$\frac{1}{6} \mathcal{A}^{\delta}_{\delta\beta} n_{\alpha} n_{\chi} + \frac{1}{3} \mathcal{A}^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} - \frac{1}{6} \mathcal{A}^{\delta}_{\alpha\delta} n_{\beta} n_{\chi} - \frac{1}{6} \mathcal{A}^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} + \frac{1}{3} \mathcal{A}^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{3} \mathcal{A}^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} - \frac{1}{3} \mathcal{A}^{\delta}_{\gamma\chi} n_{\alpha} $	
		$\frac{1}{3} \mathcal{A}_{\alpha \chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{3} \mathcal{A}_{\alpha \chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{3} \mathcal{A}_{\chi \alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{3} \eta_{\alpha \chi} \mathcal{A}_{\epsilon}^{\delta \epsilon} n_{\beta} n_{\delta} - \frac{1}{3} \mathcal{A}_{\alpha \beta}^{\delta} n_{\chi} n_{\delta} - \frac{1}{3} \mathcal{A}_{\alpha \beta}^{\delta} n_{\chi} n_{\delta} + \frac{1}{3} \mathcal{A}_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} + \frac{1}{3} \mathcal{A}_{\beta \alpha}^{\delta} n_{\chi} n_{\delta} - \frac{1}{6} \eta_{\beta \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha} n_{\epsilon} - \frac{1}{6} \eta_{\alpha \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\alpha} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\beta} n_{\epsilon} + \frac{1}{3} \eta_{\beta \chi} \mathcal{A}_{\alpha}^{\delta \epsilon} n_{\delta} n_{\epsilon} - \frac{1}{3} \eta_{\alpha \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\epsilon} - \frac{1}{6} \eta_{\beta \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\epsilon} - \frac{1}{6} \eta_{\beta \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\epsilon} - \frac{1}{6} \eta_{\beta \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\epsilon} - \frac{1}{6} \eta_{\beta \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\epsilon} - \frac{1}{6} \eta_{\delta \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\delta} - \frac{1}{6} \eta_{\delta \chi} \mathcal{A}_{\delta}^{\delta \epsilon} n_{\delta} n_{\delta} - \frac{1}{6} \eta_{\delta \chi} \mathcal{A}_{\delta}^{\delta \epsilon}$	
		$ \frac{1}{6} \eta_{\beta \chi} \mathcal{A}^{\delta \epsilon} {}_{\delta} n_{\alpha} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \mathcal{A}^{\epsilon \epsilon} {}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \mathcal{A}^{\epsilon \epsilon} {}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{3} \eta_{\beta \chi} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\epsilon} - \frac{1}{3} \eta_{\alpha \chi} \mathcal{A}^{\delta \epsilon} {}_{\delta} n_{\delta} n_{\epsilon} + \frac{1}{6} \eta_{\alpha \chi} \mathcal{A}^{\epsilon \epsilon} {}_{\delta} n_{\delta} n_{\epsilon} + \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\delta} n_{\epsilon} + \frac{1}{3} \mathcal{A}^{\delta \epsilon} {}_{\delta} n_{\delta} n_{\epsilon} - \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\delta} n_{\epsilon} - \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\delta} n_{\epsilon} - \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{1}{6} \mathcal{A}^{\delta \epsilon} n_{\delta} n_$	
#1 3 <i>Η</i> αβγ	StrongGenSet[{1, 2, 3}, GenSet[(1, 2), (2, 3)]]	$\frac{1}{6} \mathcal{A}_{\alpha\beta} \mathcal{A}_{\beta} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} - \frac{1}{3} \mathcal{A}_{\beta} \mathcal{A}_{\alpha} \mathcal{A}_{\lambda} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} + \frac{1}{6} \mathcal{A}_{\beta} \mathcal{A}_{\alpha} \mathcal{A}_{\lambda} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} + \frac{1}{6} \mathcal{A}_{\beta} \mathcal{A}_{\alpha} \mathcal{A}_{\lambda} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} + \frac{1}{6} \mathcal{A}_{\alpha\beta} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} + \frac{1}{6} \mathcal{A}_{\beta\alpha} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} + \frac{1}{6} \mathcal{A}_{\beta\alpha} \mathcal{A}_{\delta} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} \mathcal{A}_{\delta} \mathcal{A}_{\delta} \mathcal{A}_{\epsilon} \mathcal{A}_{\delta} \mathcal$	#1 2- A
3 34αβχ		$\begin{bmatrix} 6 & 3 & \alpha \beta \beta & 15 & \beta \alpha \beta & 15 & \beta \alpha \beta & 16 & 3 & \beta \alpha \alpha \beta & 6 & 3 & \beta \alpha \alpha \beta & 15 & 3 & \alpha \beta & 6 & 3 & \beta \alpha \alpha & 15 & 3 & \alpha \beta & 15 & 3 & \alpha \beta & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$	$3^{-}\Delta_{\alpha\beta\chi}$
		15 $\mathcal{A}_{\alpha\beta}$ $\mathcal{A}_{\alpha\beta}$ \mathcal{A}_{β} $\mathcal{A}_{\alpha\beta}$ \mathcal{A}_{β} A	
		$\frac{1}{6} \mathcal{A}_{\alpha \chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{6} \mathcal{A}_{\alpha \chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{6} \mathcal{A}_{\chi \alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{6} \mathcal{A}_{\chi \alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{6} \mathcal{A}_{\chi \alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{6} \mathcal{A}_{\alpha \chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{6} \mathcal{A}_{\alpha \beta}^{\delta} n_{\chi} n_{\delta} - \frac{1}{6} \mathcal$	
		$\frac{1}{6} \mathcal{R}_{\beta}^{\delta} n_{\chi} n_{\delta} - \frac{1}{6} \mathcal{R}^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} - \frac{1}{6} \mathcal{R}^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} + \frac{1}{15} \eta_{\alpha\beta} \mathcal{R}^{\delta\epsilon}_{\epsilon} n_{\chi} n_{\delta} - \frac{1}{5} \mathcal{R}^{\delta\epsilon}_{\epsilon} n_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{15} \eta_{\beta\chi} \mathcal{R}^{\delta\epsilon}_{\delta} n_{\alpha} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \mathcal{R}^{\delta\epsilon}_{\delta} n_{\alpha} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \mathcal{R}^{\delta\epsilon}_{\delta} n_{\beta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\gamma} \mathcal{R}^{\delta\epsilon}_{\delta} n_{\gamma} n_{\gamma} + \frac{1}{15} \eta_{\alpha\gamma} \mathcal{R}^{\delta\epsilon}_{\delta} n_{\gamma} n_{\gamma}$	
		$\frac{1}{15} \eta_{\alpha\chi} \mathcal{A}^{\delta\epsilon}_{\ \ \delta} n_{\beta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \mathcal{A}^{\delta\epsilon}_{\ \ \delta} n_{\chi} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\beta} \mathcal{A}^{\delta\epsilon}_{\ \ \delta} n_{\chi} n_{\epsilon} - \frac{1}{5} \mathcal{A}^{\delta\epsilon}_{\ \ \delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} - \frac{1}{5} \mathcal{A}^{\delta\epsilon}_{\ \ \delta} n_{\alpha} n_{\beta} n_{\chi} n_{\epsilon} + \frac{1}{15} \eta_{\beta\chi} \mathcal{A}^{\delta\epsilon}_{\alpha} n_{\delta} n_{\epsilon} + \frac{1}{15} \eta_{\alpha\chi} \mathcal{A}^{\delta\epsilon}_{\beta} n_{\delta} n_{\delta} n_{\delta} n_$	
		$\frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}_{\chi}^{\delta\epsilon} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\beta\chi} \ \mathcal{A}^{\delta}_{\alpha}^{\epsilon} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\chi} \ \mathcal{A}^{\delta}_{\beta}^{\epsilon} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\chi} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\beta\chi} \ \mathcal{A}^{\delta\epsilon}_{\alpha} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\chi} \ \mathcal{A}^{\delta\epsilon}_{\beta} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\chi} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\gamma} \ \mathcal{A}^{\delta\epsilon}_{\beta} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\chi} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\gamma} \ \mathcal{A}^{\delta\epsilon}_{\beta} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\chi} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\gamma} \ \mathcal{A}^{\delta\epsilon}_{\beta} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\chi} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\gamma} \ \mathcal{A}^{\delta\epsilon}_{\beta} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\gamma} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} \ n_{\epsilon} + \frac{1}{15} \ \eta_{\alpha\beta} \ \mathcal{A}^{\delta\epsilon}_{\gamma} \ n_{\delta} $	
		$\frac{4}{15}\mathcal{R}_{\chi}^{\delta\epsilon}n_{\alpha}n_{\beta}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\beta}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\beta}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\epsilon} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\delta}n_{\delta} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\delta}n_{\delta} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\delta}n_{\delta} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\delta}n_{\delta} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}n_{\delta}n_{\delta}n_{\delta} + \frac{4}{15}\mathcal{R}_{}^{\delta\epsilon}n_{\alpha}n_{\chi}n_{\delta}$	
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	