Формула полной вероятности. Формула Байеса. (ДЗ на 29.02.20) Задача 1.

Игровой автомат имеет 3 режима игры:

Режим	Вероятность	Вероятность
1 ежим	выигрыша	выбора режима
I	0.5	0.3
II	0.45	0.5
III	0.4	0.2

Играем 2 игры. 1-ый вариант - автомат включают заново перед каждой игрой. 2-ой вариант - играем две игры подряд, при этом знает, что режим работы автомата меняется циклически: $1 \to 2 \to 3 \to 1$. Что выгоднее, если цель - два выигрыша? Старт автомата мы не контролируем.

Решение:

1. Рассмотрим 1-ый вариант игры. Построим таблицу, где 1-ый шаг - выбор режима, 2-ой - получение / не получение приза. Перемножаем по колонкам и складываем по столбцам, согласно

i	I	II	III
$P(H_i)$	0.3	0.5	0.2
$P(A H_i) = P(B H_i)$	0.5	0.45	0.4

ΦΠΒ:
$$P(A) = \sum_{i=1}^{n} P(A|H_i)P(H_i)$$
.

$$P(A) = P(B) = 0.3 \cdot 0.5 + 0.5 \cdot 0.45 + 0.2 \cdot 0.4 = 0.455$$

Учитывая факт перезапуска автомата для каждой игры, события каждой новой игры можно считать независимыми. Таким образом:

$$P(AB) = P(A) \cdot P(B) = 0.207025$$

2. Рассмотрим 2-ой вариант игры.

Событие A - первая игра была выигрышной. Таблица вероятностей будет аналогична 1-ому пункту: P(A) = 0.455.

Рассмотрим с какой вероятностью выбирается последующий режим игры автомата, если событие A произошло. Вероятности данных событий в сумме дают единицу (4-ого режима или альтернативного выбора \nexists), а сами события не пересекаются (не может быть 2 состояния одновременно) \Rightarrow это полная группа событий (ПГС).

$$P(H_1|A) = \frac{P(A|H_1)P(H_1)}{\sum_{i=1}^{3} P(A|H_i)P(H_i)} = \frac{0.3 \cdot 0.5}{0.3 \cdot 0.5 + 0.5 \cdot 0.45 + 0.2 \cdot 0.4} = 0.3297$$

Аналогично получаем:

$$P(H_2|A) = 0.4945$$

$$P(H_3|A) = 0.1758$$

Событие B - вторая игра также оказалась выигрышной. Учитывая кольцевую смену режимов аппарата, построим таблицу, по структуре аналогичную предыдущим.

i	I	II	III
$P(H_i A)$	0.3297	0.4945	0.1758
$P(B (H_i A))$	0.45	0.4	0.5

Выбор следующего режима зависит от предыдущего \Rightarrow все вероятности условные:

$$P(B|A) = 0.3297 \cdot 0.45 + 0.4945 \cdot 0.4 + 0.1758 \cdot 0.5 = 0.434$$

$$P(AB) = P(A) \cdot P(B|A) = 0.455 \cdot 0.434 = 0.19747$$

Ответ: выгоднее каждый раз запускать автомат заново.

Задача 2.

Белые и чёрные шары распределены по ящикам следующим образом:

- 1. Определить вероятность, что шар R белый.
- 2. Определить вероятность, что в первом ящике осталось 50 белых шаров (т.е. ни одного белого не вытащили), если шар R белый.

Решение:

1. Посчитаем вероятности $P(A_i)$ достать i белых шаров из 1-ого ящика. Всего 8 шаров из ящика с 80 шарами можно достать:

$$\#\Omega = C_{80}^8 = 28987537150$$

способами.

Необходимо рассмотреть все варианты достать шары из ящика. Одним из таких, например, является вариант - 4 белых и 4 чёрных: $\#A_4 = C_{50}^4 \cdot C_{30}^4$.

$$A_0 = C_{50}^0 \cdot C_{30}^8 = 1 \cdot 5852925 = 5852925$$

$$A_1 = C_{50}^1 \cdot C_{30}^7 = 50 \cdot 2035800 = 101790000$$

$$A_2 = C_{50}^2 \cdot C_{30}^6 = 1225 \cdot 593775 = 727374375$$

$$A_3 = C_{50}^3 \cdot C_{30}^5 = 19600 \cdot 142506 = 2793117600$$

$$A_4 = C_{50}^4 \cdot C_{30}^4 = 230300 \cdot 27405 = 6311371500$$

$$A_5 = C_{50}^5 \cdot C_{30}^3 = 2118760 \cdot 4060 = 8602165600$$

$$A_6 = C_{50}^6 \cdot C_{30}^2 = 15890700 \cdot 435 = 6912454500$$

$$A_7 = C_{50}^7 \cdot C_{30}^1 = 99884400 \cdot 30 = 2996532000$$

 $A_8 = C_{50}^8 \cdot C_{30}^0 = 536878650 \cdot 1 = 536878650$ Соответствующие вероятности событий для 1-ого ящика:

$$P(A_0) = \frac{A_0}{\#\Omega} = \frac{5852925}{28987537150} = 0.000201911772280385$$

$$P(A_1) = \frac{A_1}{\#\Omega} = \frac{101790000}{28987537150} = 0.0035115090831371303$$

$$P(A_2) = \frac{A_2}{\#\Omega} = \frac{727374375}{28987537150} = 0.025092658656584076$$

$$P(A_3) = \frac{A_3}{\#\Omega} = \frac{2793117600}{28987537150} = 0.09635580924128286$$

$$P(A_4) = \frac{A_4}{\#\Omega} = \frac{6311371500}{28987537150} = 0.21772706895866797$$

$$P(A_5) = \frac{A_5}{\#\Omega} = \frac{8602165600}{28987537150} = 0.29675393102514747$$

$$P(A_6) = \frac{A_6}{\#\Omega} = \frac{6912454500}{28987537150} = 0.23846298028806492$$

$$P(A_7) = \frac{A_7}{\#\Omega} = \frac{2996532000}{28987537150} = 0.10337311460763406$$

$$P(A_8) = \frac{A_8}{\#\Omega} = \frac{536878650}{28987537150} = 0.018521016367201104$$

Произведём аналогичные расчёты для 2-ого ящика.

Всего 7 шаров из ящика с 60 шарами можно достать: 386206920 способами

Все варианты достать шары из 2-ого ящика:

$$B_0 = C_{40}^0 \cdot C_{20}^7 = 1 \cdot 77520 = 77520$$

$$B_1 = C_{40}^1 \cdot C_{20}^6 = 40 \cdot 38760 = 1550400$$

$$B_2 = C_{40}^2 \cdot C_{20}^5 = 780 \cdot 15504 = 12093120$$

$$B_3 = C_{40}^3 \cdot C_{20}^4 = 9880 \cdot 4845 = 47868600$$

$$B_4 = C_{40}^4 \cdot C_{20}^3 = 91390 \cdot 1140 = 104184600$$

$$B_5 = C_{40}^5 \cdot C_{20}^2 = 658008 \cdot 190 = 125021520$$

$$B_6 = C_{40}^6 \cdot C_{20}^1 = 3838380 \cdot 20 = 76767600$$

$$B_7 = C_{40}^7 \cdot C_{20}^0 = 18643560 \cdot 1 = 18643560$$

Соответствующие вероятности событий для 2-ого ящика:

$$P(B_0) = \frac{B_0}{\#\Omega} = \frac{77520}{386206920} = 0.00020072141638477115$$

$$P(B_1) = \frac{B_1}{\#\Omega} = \frac{1550400}{386206920} = 0.004014428327695423$$

$$P(B_2) = \frac{B_2}{\#\Omega} = \frac{12093120}{386206920} = 0.0313125409560243$$

$$P(B_3) = \frac{B_3}{\#\Omega} = \frac{47868600}{386206920} = 0.12394547461759618$$

$$P(B_4) = \frac{B_4}{\#\Omega} = \frac{104184600}{386206920} = 0.2697636800500623$$

$$P(B_5) = \frac{B_5}{\#\Omega} = \frac{125021520}{386206920} = 0.32371641606007473$$

$$P(B_6) = \frac{B_6}{\#\Omega} = \frac{76767600}{386206920} = 0.19877323793162485$$

$$P(B_7) = \frac{B_7}{\#\Omega} = \frac{18643560}{386206920} = 0.04827350064053746$$

В ящике №3 может оказаться от 0 до 15 белых шаров. События вытаскивания из него белого шара R зависит от данного факта. Очевидно, что случае с 0 не рассматривается.

Пусть $\{H_i\}_1^n$ - полная группа события, где H_i - событие, при котором в 3-ем ящике i белых шаров.

Составим всевозможные комбинации того, как i шаров могут оказаться в 3-ем ящике.

$\mathbf{H_{i}}$	Комбинация событий	H_4	(A_0, B_4) (A_1, B_3) (A_2, B_2) (A_3, B_1) (A_4, B_0)	H_8	(A_1, B_7) (A_2, B_6) (A_3, B_5) (A_4, B_4) (A_5, B_3) (A_6, B_2) (A_7, B_1) (A_8, B_0)	H_{12}	(A_5, B_7) (A_6, B_6) (A_7, B_5) (A_8, B_4)
H_1	(A_0, B_1) (A_1, B_0)	H_5	(A_0, B_5) (A_1, B_4) (A_2, B_3) (A_3, B_2) (A_4, B_1) (A_5, B_0)	H_9	(A_{8}, B_{0}) (A_{2}, B_{7}) (A_{3}, B_{6}) (A_{4}, B_{5}) (A_{5}, B_{4}) (A_{6}, B_{3}) (A_{7}, B_{2}) (A_{8}, B_{1})	H_{13}	(A_6, B_7) (A_7, B_6) (A_8, B_5)
H_2	(A_0, B_2) (A_1, B_1) (A_2, B_0)	H_6	(A_0, B_6) (A_1, B_5) (A_2, B_4) (A_3, B_3) (A_4, B_2) (A_5, B_1) (A_6, B_0)	H_{10}	(A_3, B_7) (A_4, B_6) (A_5, B_5) (A_6, B_4) (A_7, B_3) (A_8, B_2)	H_{14}	(A_7, B_7) (A_8, B_6)

H_3	(A_0, B_3) (A_1, B_2) (A_2, B_1) (A_3, B_0)	H_7	(A_0, B_7) (A_1, B_6) (A_2, B_5) (A_3, B_4) (A_4, B_3) (A_5, B_2)	H_{11}	(A_4, B_7) (A_5, B_6) (A_6, B_5) (A_7, B_4)	H_{15}	(A_8,B_7)
	(A_3, B_0)		(A_4, B_3) (A_5, B_2) (A_6, B_1) (A_7, B_0)		(A_7, B_4) (A_8, B_3)		

Тогда вероятность каждого события H_i есть сумма вероятностей комбинаций событий, потому что эти комбинации не пересекаются (не могут произойти одновременно):

$$P(H_1) = P(A_0) \cdot P(B_1) + P(A_1) \cdot P(B_0) = 8.105603383375651e - 07 + 7.04835076815274e - 07 = 1.515395415152839e - 06$$

$$P(H_2) = P(A_0) \cdot P(B_2) + P(A_1) \cdot P(B_1) + P(A_2) \cdot P(B_0) = 6.322370639033008e - 06 + 1.409670153630548e - 05 + 5.0366339864091445e - 06 = 2.5455706161747633e - 05$$

 $P(H_3) = 0.00025505367666534906$

 $P(H_4) = 0.001705935000371956$

 $P(H_5) = 0.008073521060592307$

 $P(H_6) = 0.02794557202034627$

 $P(H_7) = 0.07208039050283002$

 $P(H_8) = 0.1397509646349726$

 $P(H_9) = 0.2037671590635703$

 $P(H_{10}) = 0.22171508665910591$

 $P(H_{11}) = 0.17687347686232707$

 $P(H_{12}) = 0.10018528150934262$

 $P(H_{13}) = 0.03805480857749707$

 $P(H_{14}) = 0.008671664507319158$

 $P(H_{15}) = 0.0008940742954654873$

Складывая данные вероятности, получаем 0.999999959471983, учитывая погрешность округления, данная величина равна единица, что подтверждает верность расчётов и факт того, что данные события являются ПГС.

Событие P(C) - достали белый шар. Составим таблицу с ПГС:

$ m C H_i$	i
$\frac{1}{15} = 0.06666666666$	1
$\frac{2}{15} = 0.1333333333333333333333333333333333333$	2
$\frac{3}{15} = 0.200000000000$	3

$\frac{4}{15} = 0.26666666666$	4
$\frac{5}{15} = 0.33333333333333333333333333333333333$	5
$\frac{6}{15} = 0.400000000000$	6
$\frac{7}{15} = 0.46666666666$	7

$\frac{8}{15} = 0.5333333333333$	8
$\frac{9}{15} = 0.600000000000$	8
$\frac{10}{15} = 0.66666666666666666666666666666666666$	10
$\frac{11}{15} = 0.733333333333$	11
·	

$\frac{12}{15} = 0.800000000000$	12
$\frac{13}{15} = 0.86666666666$	13
$\frac{14}{15} = 0.9333333333333$	14
$\frac{15}{15} = 1.000000000000$	15

2-ой вариант решения (КРАТКИЙ)

Пусть событие A - в итоге вытащен белый шар.

Пусть события H_i - вытащенный шар был в i-ом ящике. Тогда они образуют ПГС.

i	1	2
$P(H_i)$	$\frac{8}{15}$	$\frac{7}{15}$
$P(A H_i)$	$\frac{50}{80}$	$\frac{40}{60}$

$$P(A) = \frac{8}{15} \cdot \frac{50}{80} + \frac{7}{15} \cdot \frac{40}{60} = 0.6444444$$

2. Если в 1-м ящике осталось 50 белых шаров, то из него не взяли ни одного белого. Тогда белых в третьем ящике может быть от от 1 до 7 (не 0, потому что из него достали белый шар), так как они все из второго ящика.

Таким образом, надо посчитать:

$$P(H_1|C) = \frac{P(H_1) \cdot P(C|H_1)}{P(C)} = \frac{1.515395415152839e - 06 \cdot 0.0666666666}{0.6444444} = 2.633348913284238e - 06$$

$$P(H_2|C) = 5.276972620662395e - 05$$

$$P(H_3|C) = 0.0005294281035637105$$

$$P(H_4|C) = 0.0033407673354175073$$

$$P(H_5|C) = 0.014454606217420484$$

$$P(H_6|C) = 0.044739552725894506$$

$$P(H_7|C) = 0.10119897439084223$$

В таблице комбинаций, составленной в предыдущем пункте теперь нас интересуют лишь пункты $H_1 - H_7$ (в них содержится A_0 - благоприятное для нас событие).

Учитывая способ вычисления при помощи таблицы для ПГС, получаем вывод, что $A_0 - A_7$ образуют ПГС: чтобы выполнилось H_1 при A_0 нужен B_1 , а при A_1 нужен B_0 . Если пары нет, то вероятность $P(H_1|A_i) = 0$. На основе этого получаем таблицу:

i	0	1	2	3	4	5	6	7
$P(A_i)$	0.000201911772280385	0.0035115090831371303						
$P(H_1 A_i)$	$= P(B_1) = 0.004014428$	$= P(B_0) = 0.00020072141$	0	0	0	0	0	0

Выражаем:

$$P(A_0|H_1) = \frac{P(H_1|A_0) \cdot P(A_0)}{\sum_{i=0}^{7} P(H_1|A_i)P(A_i)} = \frac{P(H_1|A_0) \cdot P(A_0)}{P(H_1)} = 0.5348837209302326$$

Таким образом, получаем:

$$P(A_0|(H_1|C)) = P(A_0|H_1) \cdot P(H_1|C) = 0.5348837209302326 \cdot 2.633348913284238e - 06 =$$

$$= 1.4085354652450578e - 06$$

Пользуясь аналогичными рассуждениям для $H_2 - H_7$ получаем:

$$P(A_0|H_2) = \frac{P(H_1|A_0) \cdot P(A_0)}{P(H_2)} = \frac{P(B_2) \cdot P(A_0)}{P(H_2)} = 0.2483675211703085$$

$$P(A_0|(H_2|C)) = P(A_0|H_2) \cdot P(H_2|C) = 1.3106286090775058e - 05$$

$$P(A_0|H_3) = 0.09812072020827407$$

$$P(A_0|(H_3|C)) = 5.194786682017199e - 05$$

$$P(A_0|H_4) = 0.031928803104403575$$

$$P(A_0|(H_4|C)) = 0.00010666670247016857$$

$$P(A_0|H_5) = 0.008095867316428222$$

$$P(A_0|(H_5|C)) = 0.00011702257404745466$$

$$P(A_0|H_6) = 0.0014361723110718318$$

 $P(A_0|(H_6|C)) = 6.425370683466798e - 05$

$$P(A_0|H_7) = 0.00013522385215333335$$
$$P(A_0|(H_7|C)) = 1.3684515151096217e - 05$$

$$P(A_0|C) = P(A_0|(H_1|C)) + \dots + P(A_0|(H_7|C)) = 0.00036809018687957953(????)$$

2-ой вариант решения (КРАТКИЙ)

Обратимся к таблице из 1-ого пункт: H_2 - событие, при котором белый шар, вытащенный из 3-его ящика изначально находился во 2-ом. Тогда:

$$P(H_2|A) = \frac{P(A|H_2)P(H_2)}{P(A)} = \frac{\frac{40}{60} \cdot \frac{7}{15}}{\frac{29}{45}} = \frac{14}{29} \approx 0.482759$$

Событие B - из 1-ого ящика вынули 8 чёрных шаров (т.е. ни одного белого).

$$P(B) = \frac{C_{30}^8}{C_{80}^8} = \frac{5852925}{28987537150} \approx 0.000202$$

Тогда вероятность, что в 1-м ящике осталось 50 белых, при условии, что из 3-го ящика вытащили белый шар, который изначально был во 2-ом:

$$P(B|(H_2|A)) = 0.000202 \cdot 0.482759 \approx 0.000098$$

Задача 3.

Белые и чёрные шары распределены по ящикам следующим образом:

- 1. Определить вероятность, что вытащенный шар R белый
- 2. Если вытащенный шар белый, определить вероятность, что в 3-м ящике осталось 2 белых
- 3. Если вытащенный шар белый, определить вероятность, что из 2-го ящика в 3-й переложены все белые

Решение:

1. События $A_i, 0 \leqslant i \leqslant 2$ - из 1-ого ящика в 3-ий переложили i белых шаров образуют ПГС. Всего возможных вариантов данного действия: $C_{15}^2 = 105$.

События B_j , $0 \le j \le 2$ - из 1-го ящика во 2-й переложили j белых шаров.

Построим таблицу условных вероятностей для каждого B_j -ого. Всего вариантов данного события (учитывая, что два уже вытащены из 1-го ящика): $C_{13}^2 = 78$. Если, например, из 1-го ящика в 3-й переложили 1 белый, то в 1-м ящике осталось 4 белых и 9 черных.

По формуле ПГС найдём вероятности $P(B_0), P(B_1), P(B_2)$:

i	0	1	2
$P(A_i)$	$\frac{C_5^0 \cdot C_{10}^2}{C_{15}^2} = \frac{3}{7}$	$\frac{C_5^1 \cdot C_{10}^1}{C_{15}^2} = \frac{10}{21}$	$\frac{C_5^2 \cdot C_{10}^0}{C_{15}^2} = \frac{2}{21}$
$P(B_0 A_i)$	$\frac{C_5^0 \cdot C_8^2}{C_{13}^2} = \frac{14}{39}$	$\frac{C_4^0 \cdot C_9^2}{C_{13}^2} = \frac{6}{13}$	$\frac{C_3^0 \cdot C_{10}^2}{C_{13}^2} = \frac{15}{26}$
$P(B_1 A_i)$	$\frac{C_5^1 \cdot C_8^1}{C_{13}^2} = \frac{20}{39}$	$\frac{C_4^1 \cdot C_9^1}{C_{13}^2} = \frac{6}{13}$	$\frac{C_3^1 \cdot C_{10}^1}{C_{13}^2} = \frac{5}{13}$
$P(B_2 A_i)$	$\frac{C_5^2 \cdot C_8^0}{C_{13}^2} = \frac{5}{39}$	$\frac{C_4^2 \cdot C_9^0}{C_{13}^2} = \frac{1}{13}$	$\frac{C_3^2 \cdot C_{10}^0}{C_{13}^2} = \frac{1}{26}$

$$P(B_0) = \sum_{i=0}^{2} P(B_0|A_i) \cdot P(A_i) = \frac{3}{7}$$

$$P(B_1) = \sum_{i=0}^{2} P(B_1|A_i) \cdot P(A_i) = \frac{10}{21}$$

$$P(B_2) = \sum_{i=0}^{2} P(B_2|A_i) \cdot P(A_i) = \frac{2}{21}$$

Видно, что вероятности B_0, B_1, B_2 также образуют ПГС. События C_k - из 2-го ящика в 3-й переложили k белых шаров.

B_i	B_0	B_1	B_2	
$P(B_i)$	$\frac{3}{7}$	$\frac{10}{21}$	$\frac{2}{21}$	
$P(C_0 B_i)$	$\frac{C_4^0 \cdot C_5^3}{C_9^3} = \frac{5}{42}$	$\frac{C_5^0 \cdot C_4^3}{C_9^3} = \frac{1}{21}$	$\frac{C_6^0 \cdot C_3^3}{C_9^3} = \frac{1}{84}$	
$P(C_1 B_i)$	$\frac{C_4^1 \cdot C_5^2}{C_9^3} = \frac{10}{21}$	$\frac{C_5^1 \cdot C_4^2}{C_9^3} = \frac{5}{14}$	$\frac{C_6^1 \cdot C_3^2}{C_9^3} = \frac{3}{14}$	
$P(C_2 B_i)$	$\frac{C_4^2 \cdot C_5^1}{C_9^3} = \frac{5}{14}$	$\frac{C_5^2 \cdot C_4^1}{C_9^3} = \frac{10}{21}$	$\frac{C_6^2 \cdot C_3^1}{C_9^3} = \frac{15}{28}$	
$P(C_3 B_i)$	$\frac{C_4^3 \cdot C_5^0}{C_9^3} = \frac{1}{21}$	$\frac{C_5^3 \cdot C_4^0}{C_9^3} = \frac{5}{42}$	$\frac{C_6^3 \cdot C_3^0}{C_9^3} = \frac{5}{21}$	

По формуле ПГС найдём вероятности $P(C_0), P(C_1), P(C_2), P(C_3)$:

$$P(C_0) = \sum_{i=0}^2 P(C_0|B_i) \cdot P(B_i) = \frac{11}{147}$$

$$P(C_1) = \sum_{i=0}^2 P(C_1|B_i) \cdot P(B_i) = \frac{58}{147}$$

$$P(C_2) = \sum_{i=0}^2 P(C_2|B_i) \cdot P(B_i) = \frac{190}{441}$$

$$P(C_3) = \sum_{i=0}^2 P(C_3|B_i) \cdot P(B_i) = \frac{44}{441}$$

$$\sum_{i=0}^3 P(C_i) = 1 \Rightarrow \text{ события образуют ПГС}$$

Событие D_l – в 3-й ящик попало l белых (из 1-го и 2-го ящика).

l	0	1	2	3	4	5
Комбинация событий	(C_0, A_0)	(C_1, A_0) (C_0, A_1)		(C_3, A_0) (C_2, A_1) (C_1, A_2)	(C_2, A_2)	(C_3, A_2)

$$P(D_0) = P(C_0) \cdot P(A_0) = 0.032$$

$$P(D_1) = P(C_1) \cdot P(A_0) + P(C_0) \cdot P(A_1) = 0.204$$

$$P(D_2) = P(C_2) \cdot P(A_0) + P(C_1) \cdot P(A_1) + P(C_0) \cdot P(A_2) = 0.379$$

$$P(D_3) = P(C_3) \cdot P(A_0) + P(C_2) \cdot P(A_1) + P(C_1) \cdot P(A_2) = 0.2855$$

$$P(D_4) = P(C_3) \cdot P(A_1) + P(C_2) \cdot P(A_2) = 0.0885$$

$$P(D_5) = P(C_3) \cdot P(A_2) = 0.0095$$

$$\sum_{i=0}^{5} P(D_i) \approx 1 \Rightarrow \text{ события образуют ПГС}$$

В результате в 3-ем ящике 10 шаров.

Событие E - из 3-го ящика достали белый шар.

	i	0	1	2	3	4	5
	$P(D_i)$	0.032	0.204	0.379	0.2855	0.0885	0.0095
F	$P(E D_i)$	$\frac{2}{10}$	$\frac{3}{10}$	$\frac{4}{10}$	$\frac{5}{10}$	$\frac{6}{10}$	$\frac{7}{10}$

$$P(E) = \sum_{i=0}^{5} P(D_i)P(E|D_i) = 0.4217$$

2. Если в 3-м ящике 2 белых, то в него не добавилось ни одного белого, что соответствует событию D_0 :

$$P(D_0|E) = \frac{P(E|D_0) \cdot P(D_0)}{P(E)} = 0.01517$$

3. То, что в 3-й ящик из 2-го переложены все белые, соответствует событию C_3 . Это может возникнуть при D_3, D_4, D_5 .

$$P(D_3|E) = \frac{P(E|D_3) \cdot P(D_3)}{P(E)} = 0.3385$$

$$P(D_4|E) = \frac{P(E|D_4) \cdot P(D_4)}{P(E)} = 0.1259$$

$$P(D_5|E) = \frac{P(E|D_5) \cdot P(D_5)}{P(E)} = 0.01577$$

i	0	1	2	3
$P(C_i)$	$\frac{11}{147}$	$\frac{58}{147}$	$\frac{190}{441}$	$\frac{44}{441}$
$P(D_3 C_i)$	0	$P(A_2)$	$P(A_1)$	$P(A_0)$
$P(D_4 C_i)$	0	0	$P(A_2)$	$P(A_1)$
$P(D_5 C_i)$	0	0	0	$P(A_2)$

Запишем таблицу комбинаций, аналогичную таблице из 2-ого пункта 2-ой задачи (D_i в ПГС C_i).

$$P(C_3|D_3) = \frac{P(C_3) \cdot P(D_3|C_3)}{P(D_3)} = \frac{P(C_3) \cdot P(A_0)}{P(D_3)} = 0.14977$$

$$P(C_3|D_4) = \frac{P(C_3) \cdot P(A_1)}{P(D_4)} = 0.5368$$

$$P(C_3|D_5) = 1$$

$$P(C_3|E) = P(C_3|D_3) \cdot P(D_3|E) + P(C_3|D_4) \cdot P(D_4|E) + P(C_3|D_5) \cdot P(D_5|E) =$$

$$= 0.14977 \cdot 0.3385 + 0.5368 \cdot 0.1259 + 1 \cdot 0.01577 = 0.134$$

Задача 3. (Решение от Малова)

Белые и чёрные шары распределены по ящикам следующим образом:

- 1. Определить вероятность, что вытащенный шар R белый
- 2. Если вытащенный шар белый, определить вероятность, что в 3-м ящике осталось 2 белых
- 3. Если вытащенный шар белый, определить вероятность, что из 2-го ящика в 3-й переложены все белые

Решение:

Отслеживаем, как белые шары двигались по ящикам.

- \bullet Событие A вытащен белый шар.
- Событие H_i вытащенный шар изначально был в i-ом ящике, i=1,2,3.
- B_j вытащенный шар пришёл в 3-ий из j-ого, j=1,2,3.

Считаем вероятности B_j :

i	1	2	3
$P(B_j)$	2/10	3/10	5/10
$P(A B_j)$?	?	2/5
	1/3	4/7	

Если белый шар пришёл из 1-ого ящика, то он однозначно изначально был в нём. Значит, из $B_1 \Rightarrow H_1.$

Дозаполняем таблицу:

1. Необходимо вычислить вероятность $P(A|B_j) = \frac{P(AB_j)}{P(B_i)}$

$$P(AB_1) = P(AB_1H_1) = P(A|B_1H_1) \cdot P(H_1|B_1) \cdot P(B_1)$$

$$= \frac{5}{15} = \frac{1}{3}$$
=1

 $P(A|B_1H_1)=\frac{5}{15}$, т.к. по сути это события, что вытащен один из 2-х шаров, что мы перекладывали из 1-ого ящика во 2-ой.

2. $P(AB_2) = ...$

Построим иную таблицу с более удобным (хронологически) порядком:

i	1	2	3
$P(H_i)$?	?	$\frac{5}{10}$
$P(A H_i)$	$\frac{1}{3}$	$\frac{4}{7}$	$\frac{2}{5}$

$$P(H_1) = P(BH_1) + P(B_2H_1) = P(H_1|B_1)P(B_1) + P(H_1|B_2)P(B_2)$$

$$= \frac{2}{9} = \frac{3}{10}$$

$$P(H_2) = P(H_2|B_2)P(B_2) = \frac{7}{9} \cdot \frac{3}{10} = \frac{7}{30}$$

$$P(H_1) = \frac{2}{10} + \frac{2}{3} \cdot \frac{3}{10} = \frac{8}{30}$$

В результате для первой строки нашей последней таблицы получаем:

$$\frac{8}{30} + \frac{7}{30} + \frac{15}{30} = 1$$

Т.е. всё верно и вычисления 3-ей величины мы производили для проверки.