JEE MAIN 2024 Paper with Solution

MATHS | 27th January 2024 _ Shift-1

Motion

JEE (Main+Advanced)

PRE-MEDICAL | FOUNDATION (Class 6th to 10th) Olympiads/Boards

CORPORATE OFFICE

"Motion Education" 394, Rajeev Gandhi Nagar, Kota 324005 (Raj.) Toll Free: 18002121799 | www.motion.ac.in | Mail: info@motion.ac.in

MOTION **LEARNING APP**

Scan Code for Demo Class

SECTION - A

- If (a,b) be the orthocentre of the triangle whose vertices are (1,2),(2,3) and (3,1), and $I_1 = \int_a^b x \sin(4x x^2) dx, I_2 = \int_a^b \sin(4x x^2) dx$, then $36 \frac{I_1}{I_2}$ is equal to:
 - (1) 80
- (2)66
- (3)72
- (4) 88

Sol. (3)

BC:
$$y-3=\frac{2-3}{1-2}(x-2)$$

$$BC: y - x = 1$$

$$AM: y + x = 4$$

 $BN: y - 2x = -1$ $x: \left(\frac{5}{3}, \frac{7}{3}\right)$

$$I_1 = \int_a^b x \sin(4x - x^2) dx$$

$$2I_1 = 4 \int_a^b \sin\left(4x - x^2\right) dx$$

$$2I_1 = 4I_2$$

$$36\frac{I_1}{I_2} = 36.2 = 72$$

- 2. Let $a_1, a_2, \dots a_{10}$ be 10 observations such that $\sum_{k=1}^{10} a_k = 50$ and $\sum_{\forall k < j} a_k \cdot a_j = 1100$. Then the standard deviation of
 - $a_1, a_2, ..., a_{10}$ is equal to:
 - $(1)\ 10$
- (2) $\sqrt{5}$
- (3) $\sqrt{115}$
- (4) 5

Sol. (2

$$\sum_{k=1}^{10} a_k = 50 \qquad \Rightarrow \mu = 5$$

variance =
$$\frac{\sum (a_i)^2}{n} - (\mu)^2$$
 ...(1)

$$(a_1 + a_2 + ... + a_{10})^2 = \sum_{\substack{i \neq j \\ i, j=1, 2..., 10}} (a_i^2 + 2(a_i a_j))$$

$$\Rightarrow (50)^2 - 2(1100) = \Sigma a_i^2$$

$$\Rightarrow \Sigma a_i^2 = 2500 - 2200$$

$$\Rightarrow \Sigma a_i^2 = 300$$

variance =
$$\frac{300}{10} - 25$$

variance =
$$\frac{50}{10}$$
 = 5

S.D. =
$$\sqrt{5}$$

- 3. The distance, of the point (7,-2,11) from the line $\frac{x-6}{1} = \frac{y-4}{0} = \frac{z-8}{3}$ along the line $\frac{x-5}{2} = \frac{y-1}{-3} = \frac{z-5}{6}$, is
 - (1) 12
- (2) 18
- (3) 21
- (4) 14

Sol. (4)

$$L_{PQ}: \frac{x-7}{2} = \frac{y+2}{-3} = \frac{z-11}{6} = \lambda$$

Q:
$$(2\lambda + 7, -2 - 3\lambda, 11 + 6\lambda)$$

lies on L₁

$$\frac{2\lambda + 7 - 6}{1} = \frac{-2 - 3\lambda - 4}{0} = \frac{11 + 6\lambda - 8}{3}$$

$$\Rightarrow 3\lambda + 6 = 0 \Rightarrow \lambda = -2$$

Hence

$$Q = (3, 4, -1)$$

$$d(PQ) = \sqrt{16 + 36 + 144} = \sqrt{196} = 14$$

JEE MAIN 2024

Let x = x(t) and y = y(t) be solutions of the differential equations $\frac{dx}{dt} + ax = 0$ and $\frac{dy}{dt} + by = 0$ respectively, 4.

 $a,b \in \mathbf{R}$. Given that x(0) = 2; y(0) = 1 and 3y(1) = 2x(1), the value of t, for which x(t) = y(t), is:

(1)
$$\log_{\frac{2}{3}} 2$$

$$(2) \log_4 3$$

(3)
$$\log_{\frac{4}{3}} 2$$

$$(4) \log_3 4$$

Sol.

$$\frac{dx}{dt} + ax = 0 \quad \& \quad \frac{dy}{dt} + by = 0$$

$$lnx = -at + \lambda$$

$$lny = -bt + m$$

$$x = k_1 e^{-at}$$

$$x = k_1 e^{-at}$$
 $y = K_2 e^{-bt}$ $y(0) = 1$

$$x(0) = 2$$

$$y(0) = 1$$

$$\Rightarrow K_1 = 2$$

$$\Rightarrow K_2 = 1$$

$$3y(1) = 2x(1)$$

$$3e^{-b} = 2.2e^{-a}$$

$$e^{a-b} = \frac{4}{3}$$

$$x(t) = y(t)$$

$$2e^{-at}=e^{-bt}$$

$$e^{(a-b)t} = 2$$

$$\left(\frac{4}{3}\right)^{t} = 2$$

$$t = \log_{\frac{4}{3}} 2$$

- Four distinct points (2k,3k),(1,0),(0,1) and (0,0) lie on a circle for k equal to : Options 5.
 - $(1) \frac{1}{13}$
- (2) $\frac{2}{13}$ (3) $\frac{5}{13}$ (4) $\frac{3}{13}$

Sol. **(3)**

$$(x-1)x + y(y-1) = 0$$

$$x^2 + y^2 - x - y = 0$$

Now (2K, 3K) lies

$$4k^2 + 9k^2 - 2k - 3k = 0$$

$$13k^2 - 5k = 0$$

$$k = 0 \mid k = \frac{5}{13}$$

6. The portion of the line 4x + 5y = 20 in the first quadrant is trisected by the lines L_1 and L_2 passing through the origin. The tangent of an angle between the lines L_1 and L_2 is:

(1)
$$\frac{8}{5}$$

(2)
$$\frac{25}{41}$$

(3)
$$\frac{2}{5}$$

$$(4) \frac{30}{41}$$

Sol. (4)

$$Q: \left(\frac{10}{3}, \frac{4}{3}\right)$$

$$P:\left(\frac{5}{3},\frac{8}{3}\right)$$

$$m_{OP} = \frac{8}{5}, M_{OQ} = \frac{2}{5}$$

$$\tan \alpha = \frac{\frac{8}{5} - \frac{2}{5}}{1 + \frac{16}{25}}$$

$$= \left| \frac{6.5}{41} \right|$$

$$\tan\alpha = \frac{30}{41}$$

- 7. If $a = \lim_{x \to 0} \frac{\sqrt{1 + \sqrt{1 + x^4}} \sqrt{2}}{x^4}$ and $b = \lim_{x \to 0} \frac{\sin^2 x}{\sqrt{2} \sqrt{1 + \cos x}}$, then the value of ab^3 is:
 - (1) 30
- (2) 36
- (3) 25
- (4) 32

Sol. (4

$$a = \lim_{x \to 0} \frac{1 + \sqrt{1 + x^4} - 2}{x^4} \cdot \frac{1}{\sqrt{1 + \sqrt{1 + x_4}} + \sqrt{2}}$$

$$a = \lim_{x \to 0} \frac{x^4}{x^4} \cdot \frac{1}{\sqrt{1 + x^4 + 1}} \cdot \frac{1}{\sqrt{1 + \sqrt{1 + x^4}} + \sqrt{2}} = \frac{1}{2} \cdot \frac{1}{2\sqrt{2}} \Rightarrow a = \frac{1}{4\sqrt{2}}$$

$$b = \lim_{x \to 0} \frac{\left(\frac{S^2 x}{x^2}\right) \cdot x^2}{\frac{(2 - 1 - cx) \cdot x^2}{x^2}} \cdot (\sqrt{2} + \sqrt{1 + cos x})$$

$$b = \frac{1}{\frac{1}{2}} \cdot 2\sqrt{2} \Longrightarrow b = 4\sqrt{2}$$

Now
$$ab^3 = \frac{1}{(4\sqrt{2})^4} (4\sqrt{2})^3 = 32$$

8. If the shortest distance between the lines
$$\frac{x-4}{1} = \frac{y+1}{2} = \frac{z}{-3}$$
 and $\frac{x-\lambda}{2} = \frac{y+1}{4} = \frac{z-2}{-5}$ is $\frac{6}{\sqrt{5}}$, then the sum of

all possible values of
$$\lambda$$
 is :

$$(1)\ 10$$

$$SD = \left| \frac{(\overline{b} - \overline{a}) \cdot (\overline{p} \times \overline{q})}{|\overline{p} \times \overline{q}|} \right| = \frac{6}{\sqrt{5}}$$

$$\Rightarrow \left| \frac{((\lambda - 4)\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + 2\hat{\mathbf{k}}) \cdot (2\hat{\mathbf{i}} - \hat{\mathbf{j}} + 0\hat{\mathbf{k}})}{\sqrt{4 + 1}} \right| = \frac{6}{\sqrt{5}}$$

$$\bar{p} \times \bar{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix} = \langle 2, -1, 0 \rangle$$

$$\left| \frac{2\lambda - 8}{5^2} \right| = \frac{6}{88} \implies \left| \frac{2\lambda - 8}{\sqrt{5}} \right| = \frac{6}{\sqrt{5}}$$

$$|\lambda - 4| = 1$$
 $\Rightarrow 1 = 7 \text{ or } 1$

sum of
$$\lambda = 7 + 1 = 8$$

9. If
$$S = \{z \in C : |z - i| = |z + i| = |z - 1|\}$$
, then, $n(S)$ is:

10. Consider the function.

$$f(x) = \begin{cases} \frac{a(7x - 12 - x^2)}{b|x^2 - 7x + 12|}, & x < 3 \\ \frac{\sin(x-3)}{2^{x-[x]}}, & x > 3 \\ b, & x = 3 \end{cases}$$

where [x] denotes the greatest integer less than or equal to x. If S denotes the set of all ordered pairs (a,b)such that f(x) is continuous at x = 3, then the number of elements in S is:

- (3)2
- (4) Infinitely many

Sol. **(1)**

$$f(3^+) = \lim_{x \to 3^+} 2 \frac{\sin(x-3)}{x - (3^+)} = 2^1 = 2$$

$$f(3) = b$$

$$f(3^{-}) = \lim_{x \to 3^{-}} \frac{-a(x-3)(x-4)}{b | (x-3)(x-4)|}$$

$$= \lim_{x \to 3^{-}} -\frac{a}{b} \frac{(x-5)(x-4)}{(x-1)(x-4)} = \frac{-a}{b}$$

f(x) is can't at x = 3

$$f(3^-) = f(3) = f(3^+)$$

$$2 = b = \frac{-a}{b} \implies b = 2, a = -4$$

only one ordered pair

- The length of the chord of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to : 11.
 - $(1) \frac{\sqrt{1541}}{5}$

- (2) $\frac{\sqrt{1691}}{5}$ (3) $\frac{\sqrt{1741}}{5}$ (4) $\frac{\sqrt{2009}}{5}$

Sol.

 \therefore Mid point of chord is given as $\left(1, \frac{2}{5}\right)$

 \Rightarrow equation of chord is

$$T = S_1$$

$$\Rightarrow \frac{x.1}{25} + \frac{y.\frac{2}{5}}{16} = \frac{1}{25} + \frac{4}{16 \times 25}$$

$$\Rightarrow \frac{x}{5} + \frac{y}{4} = \frac{1}{4}$$
 (equation of chord)

Now solving this with equation of ellipse

$$\Rightarrow$$
 Coordinate of point $P = \left(x_1, 2 - \frac{8x_1}{5}\right)$

and Coordinate of point $\frac{x^2}{25} + \frac{1}{16} \left(2 - \frac{8x}{5}\right)^2 = 1$

$$PQ = \sqrt{(x_1 - x_2)^2 + \frac{64}{25}(x_1 - x_2)^2} = |x_1 - x_2| \sqrt{\frac{89}{25}}$$

Now for $|x_1 - x_2|$

$$\frac{x^2}{25} + \frac{1}{16} \left(2 - \frac{8x}{5} \right)^2 = 1$$

$$\Rightarrow 4x^2 - 8x - 15 = 0$$

$$\Rightarrow |x_1 - x_2| = \sqrt{19}$$

There fore, PQ =
$$\sqrt{19} \times \sqrt{\frac{89}{25}} = \frac{\sqrt{1691}}{5}$$

If A denotes the sum of all the coefficients in the expansion of $(1-3x+10x^2)^n$ and B denotes the sum of all 12. the coefficients in the expansion of $(1+x^2)^n$, then :

(1)
$$A = B^3$$

(2)
$$3 A = B$$

(3)
$$A = 3 B$$
 (4) $B = A^3$

$$(4) B = A^3$$

$$y = (1 - 3x + 10x^2)^n$$

$$A = (1 - 3 + 10)^n = 8^n$$

$$S"y\;B=2^n$$

then
$$A = B^3$$

JEE MAIN 2024

- 13. The number of common terms in the progressions $4,9,14,19,\ldots$, up to 25^{th} term and $3,6,9,12,\ldots$, up to 37^{th} term is:
 - (1)5
- (2) 8
- (3)7
- (4)9

- **Sol.** (3)
 - 4, 9, 14, 19, ..., 124
- $\rightarrow CD = 5$ $\rightarrow CD = 3$ LCM = 15
- 3, 6, 9, 12,..., 111,
- 9, 24,,
- $9(n-1).15 \le 111$
- $(n-1)15 \le 102$
- (n-1)15 = 90
- $n-1 \implies n=7$
- 14. If the shortest distance of the parabola $y^2 = 4x$ from the centre of the circle $x^2 + y^2 4x 16y + 64 = 0$ is d, then d^2 is equal to:
 - (1) 16
- (2) 20
- (3)24
- (4) 36

Sol. (2)

(minimum distance will be along the common normal)

N and to parabola

$$y = mx - 2am - am^3$$

$$y = mx - 2am - m^3$$

$$\implies 8 = 2m - 2m - m^3$$

$$\Rightarrow$$
 m = -2

$$\Rightarrow$$
 N: y = $-2x + 4 + 8$

$$\Rightarrow$$
 y = $-2x + 12$

for 'p' Solve 'N' with parabola

$$y = 2x + 12$$

$$4x = (-2x + 12)^2$$

$$\implies 4x = 4x^2 + 144 - 48x$$

$$\Rightarrow 4x = 52x + 144 = 0$$

$$\Rightarrow$$
 x² - 13x + 36 = 0

$$\Rightarrow x = \frac{13 \pm \sqrt{169 - 144}}{2}$$

$$\Rightarrow$$
 x = $\frac{13\pm5}{2}$, 9

$$x = 9, 4$$

$$y = -6, 4$$

x = 9, 4 y = -6, 4 in Ist quadrant P(4, 4) C(2, 8)

$$d = |PC| = \sqrt{4 + 16} = \sqrt{20}$$

$$d^2 = 20$$

15. Consider the matrix
$$f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Given below are two statements:

Statement I: f(-x) is the inverse of the matrix f(x).

Statement II:
$$f(x)f(y) = f(x+y)$$
.

In the light of the above statements, choose the correct answer from the options given below

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Both Statement I and Statement II are true
- (4) Statement I is false but Statement II is true
- Sol.

$$f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

S-I
$$f(-x) = \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$f^{-1}(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$f^{-1}(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}^{T}$$

$$f^{-1}(x) = \begin{bmatrix} \cos x & \sin x & 0 \\ -\sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} = f(-x)$$

S-I is True

S-II
$$f(x)f(y) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(x+y) & -\sin(x+y) & 0 \\ \sin(x+y) & \cos(x+y) & 0 \\ 0 & 0 & 1 \end{bmatrix} = f(x+y)$$

S-II is True

16. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = 3(\hat{i} - \hat{j} + \hat{k})$. Let \vec{c} be the vector such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$ Then $\vec{a} \cdot ((\vec{c} \times \vec{b}) - \vec{b} - \vec{c})$

is equal to:

- (1) 20
- (2)24
- (3) 36
- (4) 32

Sol. (2)

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$

$$\vec{b} = 3(\hat{i} - \hat{j} + \hat{k})$$

then
$$= \vec{a} \cdot (\vec{c} \times \vec{b}) - \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{c}$$
$$= \left[\vec{a} \ \vec{c} \ \vec{b} \right] - 0 - 3 = \vec{b} \cdot \vec{b} - 3$$
$$= \left(\vec{b} \right)^2 - 3 = 27 - 3 = 24$$

- 17. The function $f: \mathbf{N} \{1\} \to \mathbf{N}$; defined by f(n) = the highest prime factor of n, is:
 - (1) neither one-one nor onto

(2) one-one only

(3) both one-one and onto

(4) onto only

Sol. (1)

$$f: N-\{1\} \rightarrow N$$

- f(n) = the highest prime factor of n
- f(2) = 2
- $f(2) = f(4) (2 \neq 4)$
- f(3) = 3
- ⇒ Not one-one
- f(4) = 2
- and a $\not\exists$ any $n \in \text{co-domain}$
- such that f(n) = 1 (not onto)
- \Rightarrow Not onto
- \Rightarrow Neither one one nor onto
- 18. Let $S = \{1, 2, 3, ..., 10\}$. Suppose M is the set of all the subsets of S, then the relation $R = \{(A, B): A \cap B \neq \varphi; A, B \in M\}$ is:
 - (1) reflexive only

- (2) symmetric and reflexive only
- (3) symmetric and transitive only
- (4) symmetric only

- **Sol.** (4)
 - $S = \{ 1, 2, 3, \dots 10 \}$

$$M = P(S)$$

$$A, B \in M$$

$$R = \{(A,B): A \cap B \neq \emptyset \ A, B \in M\}$$

if
$$A = \phi = B$$
 then $A \cap B = \phi$

$$\phi R \phi \Rightarrow$$
 not Reflexive

Symmetric Yes

Not Transitive

$$A = \{1, 2\}$$
 $B = \{2, 3, 4\}$ $C = \{4, 5, 6\}$

$$\Rightarrow$$
 ARB, BRC

But ARC

19. If
$$\int_0^1 \frac{1}{\sqrt{3+x} + \sqrt{1+x}} dx = a + b\sqrt{2} + c\sqrt{3}$$
, where a,b,c are rational numbers, then $2a + 3b - 4c$ is equal to:

$$(3)\ 10$$

$$\int_{0}^{1} \frac{1}{\sqrt{3+x} + \sqrt{1+x}} dx = a + b\sqrt{x} + c\sqrt{3}$$

Rationalize

$$\int_0^1\!\!\left(\frac{\sqrt{3+x}-\sqrt{1+x}}{2}\right)\!\!dx$$

$$= \frac{1}{2} \left[\frac{2}{3} (3+x)^{\frac{3}{2}} - \frac{2}{3} (1+x)^{3/2} \right]^{1}$$

$$=\frac{1}{3}\left[(8-2\sqrt{2})-(3\sqrt{3}-1)\right]$$

$$=\frac{1}{3}[8-2\sqrt{2}-3\sqrt{2}+1]$$

$$=\frac{1}{3}[9-2\sqrt{2}-3\sqrt{3}]$$

$$=3-\frac{2}{3}\sqrt{2}-\sqrt{3}$$

$$= a + b\sqrt{2} + c\sqrt{3}$$

$$a = 3$$
 $b = -\frac{2}{3}c = -1$

$$2(3)+3\left(-\frac{2}{3}\right)-4(-1)$$

$$\Rightarrow$$
 6-2+4

$$\Rightarrow$$
 8

20.
$${}^{n-1}C_r = (k^2 - 8)^n C_{r+1}$$
 if and only if :

(1)
$$2\sqrt{3} < k \le 3\sqrt{2}$$

(2)
$$2\sqrt{2} < k \le 3$$

(3)
$$2\sqrt{3} < k < 3\sqrt{3}$$

(1)
$$2\sqrt{3} < k \le 3\sqrt{2}$$
 (2) $2\sqrt{2} < k \le 3$ (3) $2\sqrt{3} < k < 3\sqrt{3}$ (4) $2\sqrt{2} < k < 2\sqrt{3}$

$$^{n-1}C_{r} = (k^{2} - 8)^{n}C_{r+1}$$

$$\Rightarrow$$
 $^{n-1}C_r = (k^2 - 8) \cdot \frac{n}{r+1} \cdot C_r$

$$\Rightarrow$$
 k² -8 = $\frac{r+1}{n}$

$$0<\frac{r+1}{n}\leq 1$$

$$0 < k^2 - 8 \le 1$$

$$\Rightarrow 8 < k^2 \le 9$$

$$\Rightarrow \left[-3,-2\sqrt{2}\right) \cup \left(2\sqrt{2},3\right]$$

$$\Rightarrow 2\sqrt{2} < k \le 3$$

SECTION - B

- The least positive integral value of α , for which the angle between the vectors $\alpha i 2j + 2k$ and $\alpha i + 2\alpha j 2k$ 21. is acute, is
- Sol.

$$\vec{a} = \alpha \hat{i} - 2\hat{j} + 2k$$

$$\vec{b} = \alpha \hat{i} + 2\alpha \hat{j} - 2k$$

 $\cos \theta$ should positive for acute

$$\cos\theta = \left| \frac{\alpha^2 - 4\alpha - 4}{\sqrt{\alpha^2 + 8\sqrt{5\alpha^2 + 4}}} \right| \ge 0$$

$$=\left|\alpha^2-4\alpha-4\right|\geq 0$$

$$\Rightarrow (\alpha - 2)^2 - 8 \ge 0$$

$$\Rightarrow (\alpha - 2)^2 \ge 8$$

$$\Rightarrow |(\alpha - 2)| \ge 2\sqrt{2}$$

$$(\alpha-2) \in (-\infty-2\sqrt{2}] \cup [2\sqrt{2},\infty]$$

$$\Rightarrow$$
 $(-\infty, -2\sqrt{2} + 2] \cup [2 + 2\sqrt{2}, \infty)$

$$2(1+\sqrt{2})$$

$$\alpha = 2(1 + 1.141) = 2(2.414)$$

$$=4.828$$

 \Rightarrow least positive α is = 5

JEE MAIN 2024

A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required and let $a = P(X = 3), b = P(X \ge 3)$ and $c = P(X \ge 6, X > 3)$. Then $\frac{b+c}{a}$ is equal to

$$P(A) = 1/6$$

$$P(x=3) = 5/6 \times 5/6 \times 1/6 \Rightarrow \frac{25}{216} = a$$

$$P(x \ge 3) = \left(\frac{5}{6}\right)^2 \frac{1}{6} + \left(\frac{5}{6}\right)^3 (1/6) + \cdots$$

$$= \frac{\frac{25}{216}}{1 - 5/6} \Rightarrow 25/36 = b$$

$$P(x \ge 6 / x > 3) = \frac{P(x \ge 6)}{P(x > 3)}$$

$$= \frac{\left(\frac{5}{6}\right)^{5} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{6} \cdot \left(\frac{1}{6}\right) + \cdots}{\left(\frac{5}{6}\right)^{3} \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^{4} \left(\frac{1}{6}\right) + \cdots}$$

$$= \frac{\left(\frac{5}{6}\right)^{5} \left(\frac{1}{6}\right)}{\left(1 - \frac{5}{6}\right)} \times \frac{\left(1 - \frac{5}{6}\right)}{\left(\frac{5}{6}\right)^{3} \left(\frac{1}{6}\right)}$$

$$=(5/6)^2=\frac{25}{36}=C$$

$$\frac{\left(\frac{50}{36}\right)}{25/216} = 12$$

23. If the solution of the differential equation (2x+3y-2)dx+(4x+6y-7)dy=0, y(0)=3, is $\alpha x+\beta y+3log_e |2x+3y-\gamma|=6$, then $\alpha+2\beta+3\gamma$ is equal to

$$(2x + 3y - 2)dx + (4x + 6y - 7)dy = 0$$

$$\frac{dy}{dx} = -\frac{(2x+3y-2)}{(4x+6y-7)}$$

$$\frac{dy}{dx} = \frac{-(2x+3y-2)}{(2)(2x+3y)-7}$$

$$2x + 3y = v$$
$$2 + 3 \cdot \frac{dy}{dx} = \frac{dv}{dx}$$

$$\Rightarrow \left(\frac{dv}{dx} - 2\right)\frac{1}{3} = \frac{-(v-2)}{2v-7}$$

$$\Rightarrow \frac{dv}{dx} - 2 = \frac{-3v + 6}{2v - 7}$$

$$\Rightarrow \frac{dv}{dx} = \frac{-3v+6}{2v-7} + 2 = \frac{-3v+6+4v-14}{2v-7}$$

$$\Rightarrow \frac{dv}{dx} = \frac{v-8}{2v-7}$$

$$\Rightarrow \left(\frac{2v-7}{v-8}\right) dv = dx$$

$$\Rightarrow \left(\frac{(v-8)+v+1}{(v-8)}\right) dv = dx$$

$$\Rightarrow \left(1 + \frac{v+1}{v-8}\right) dv = dx$$

$$\Rightarrow dv + \left(\frac{v-8+9}{v-8}\right) dv = dx$$

$$\Rightarrow dv + dv + \left(\frac{9}{v-8}\right) dv = dx$$

$$\Rightarrow \int 2dx + \int \frac{9}{v - 8} dx = \int dx$$

$$\Rightarrow$$
 2v + 9log |v - 8| = x + c

$$\Rightarrow 2(2x + 3y) + 9\log|2x + 3y - 8| = x + c$$

$$y(0) = 3$$

$$2(0+9) + 9\log|9-8| = 0 + C \Rightarrow C = 18$$

$$\Rightarrow$$
 9(2x + 3y) + 9log |2x - 3y - 8| = x + 18

$$\Rightarrow$$
 4x +6 y + 9log |2x + 3y -8| = x + 18

$$\Rightarrow$$
 3x + 6y + 9log |2x + 3y - 8| = 18

$$\Rightarrow x + 2y + 3\log|2x + 3y - 8| = 6$$

$$\Rightarrow \alpha x + \beta y + 3\log |2x + 3y - \gamma| = 6$$

$$\alpha = 1, \beta = 2, \gamma = 8$$

$$1 + 4 + 24 = 29$$

24. If
$$\alpha$$
 satisfies the equation $x^2 + x + 1 = 0$ and $(1 + \alpha)^7 = A + B\alpha + C\alpha^2$, A, B, C ≥ 0 , then $5(3A - 2B - C)$ is equal to _____.

$$\alpha^2 + \alpha + 1 = 0 \langle {\stackrel{\omega}{\omega}} | \ \omega^3 = 1 \ (x^2 + x + 1 = 0) \ 0 \langle {\stackrel{\omega}{\omega}}^2 | \ \omega^3 = 1 \ let \ \alpha = \omega$$

$$(1+\alpha)^7 = 1 + {^7}c_1\alpha + {^7}c_2\alpha^2 + {^7}c_3\alpha^3 + {^7}c_4\alpha^4 + {^7}c_5\alpha^5 + {^7}c_6\alpha^6 + {^7}c_7\alpha^7$$

$$= 1 + 7\alpha + 21\alpha^2 + 35\alpha^3 + 35\alpha^4 + 24\alpha^5 + 7\alpha^6 + \alpha^9$$

$$\alpha = \omega$$

$$= 1 + 7\omega + 21\omega^2 + 35\omega^3 + 35\omega^4 + 21\omega^5 + 7\omega^6 + \omega^7$$

$$(:: \omega^3 = 1)$$

$$= 1 + 7\omega + 21\omega^2 + 35 + 35\omega + 21\omega + 7 + \omega$$

$$=43+43\omega+42\omega^{2}$$

$$= 43 + 43\alpha + 42\alpha^2 = A + B\alpha + C\alpha^2$$

$$\Rightarrow$$
 A = 43 | B = 43 | C = 42

$$5(129 - 86 - 42)$$

$$=5(129-128)=5$$

25. If
$$8 = 3 + \frac{1}{4}(3+p) + \frac{1}{4^2}(3+2p) + \frac{1}{4^3}(3+3p) + \cdots \infty$$
, then the value of p is

$$\left(3 + \frac{3}{4} + \frac{3}{4^2} + \frac{3}{4^3} + \dots\right)$$

$$+\left(\frac{P}{4} + \frac{2P}{4^2} + \frac{3P}{4^3} + \dots \infty\right) = 8$$

$$\Rightarrow \frac{3}{1-\frac{1}{4}} + \frac{p}{4} + \frac{2p}{4^2} + \dots = 8$$

$$\Rightarrow \frac{p}{4} + \frac{2p}{4^2} + \frac{3P}{4^3} + \dots = 4 \qquad \dots (1)$$

Let
$$\Rightarrow$$
 S = $\frac{p}{4} + \frac{2p}{4^2} + \frac{3p}{4^3} ... \infty$

$$\frac{S}{4} = \frac{p}{4^2} + \frac{2p}{4^3} + \dots \infty$$

on Substraction

$$\frac{3S}{4} = \frac{p}{4} + \frac{p}{4^2} + \frac{p}{4^3} + \dots \infty$$

$$\frac{3S}{4} = P\left(\frac{\frac{1}{4}}{1 - \frac{1}{4}}\right) = \frac{p}{3}$$

Now from (1)

$$\frac{4p}{9} = 4 \Rightarrow P = 9$$

26. Let
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
, $B = [B_1, B_2, B_3]$, where B_1, B_2, B_3 are column matrics, and

$$AB_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, AB_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, AB_3 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$$

If $\alpha = |B|$ and β is the sum of all the diagonal elements of B, then $\alpha^3 + \beta^3$ is equal to

Sol. 28

$$\begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} B = \begin{bmatrix} B_1 & B_2 & B_3 \\ a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

$$AB_{1} = \begin{bmatrix} 2a+c \\ a+b \\ a+c \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \begin{cases} a=-b \\ a=-c \end{cases}$$
 $a=1, b=-1, c=-1$

$$AB_2 = \begin{bmatrix} 2d + f \\ d + e \\ d + f \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

$$d = -f$$

$$d = 2, f = -2$$

$$e = 1$$

$$AB_3 = \begin{bmatrix} 2g+i \\ g+h \\ g+i \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \Rightarrow g = 1-i$$

$$2 - 2i + i = 3$$

$$i = -1$$

$$g = 2, h = 0$$

$$B = \begin{bmatrix} 1 & 2 & 2 \\ -1 & 1 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

$$\alpha = |B| = 1(-1)-2(1) + 2(2+1) = 3$$

$$\alpha = 3$$
, $\beta = \text{trace}(B) = 1$

$$\alpha^3 + \beta^3 = 3^3 + 1^3 = 28$$

27. Let
$$f(x) = x^3 + x^2 f'(1) + x f''(2) + f'''(3), x \in \mathbb{R}$$
. Then $f'(10)$ is equal to

Sol. 202

$$f(x) = x^3 + x^2 f'(1) + x f''(2) + f''(3)$$

$$f'(x) = 3x^2 + 2xf'(1) + f''(2)$$

Put
$$x = 1$$

$$f'(1) = 3 + 2f'(1) + f''(2)$$

$$\Rightarrow f'(1) + f''(2) + 3 = 0$$

again differentiation (1)

$$f''(x) = 6x + 2f'(1)$$

Put
$$x = 2$$

$$f''(2) = 12 + 2f'(1)$$

Solving (2) & (3)

$$2f'(1) - f''(2) + 12 = 0$$

$$2f'(1) + 2f''(2) + 6 = 0$$

$$3f''(2) - 6 = 0$$

$$f''(2) = 2$$

$$f'(1) = -5$$

$$f'(10) = 300 + 20(-5) + 2$$

$$=300-100+2$$

$$= 202$$

- 28. Let the area of the region $\{(x,y): x-2y+4 \ge 0, x+2y^2 \ge 0, x+4y^2 \le 8, y \ge 0\}$ be $\frac{m}{n}$, where m and n are coprime numbers. Then m+n is equal to
- Sol. 119

$$x - 2y + 4 \ge 0$$

$$x + 2y^2 \ge 0$$

$$x + 4y^2 \le 8, y \ge 0$$

$$2\mathbf{v}^2 = -\mathbf{x}$$

$$y = \frac{\sqrt{-x}}{\sqrt{2}}$$

$$\int_{-2}^{-1} \left(\frac{x+4}{2} \right) + \int_{-1}^{8} \frac{\sqrt{8-x}}{2} - \frac{1}{\sqrt{2}} \int_{-2}^{0} \sqrt{-x}$$

$$\Rightarrow \frac{1}{2} \left[\frac{x^2}{2} + 4x \right]_{-2}^{-1} + \frac{1}{2} \left[\left(-\frac{2}{3} \right) (8 - x)^{3/2} \right]_{-1}^{8} + \frac{1}{\sqrt{2}} \times \frac{2}{3} \left[\left(-x \right)^{\frac{3}{2}} \right]_{-2}^{0}$$

$$\Rightarrow \frac{1}{2} \left[\frac{1}{2} - 4 - (2 - 8) \right] - \frac{1}{3} [0 - 27] + \frac{\sqrt{2}}{3} [-2\sqrt{2}]$$

$$\frac{5}{4} + 9 - \frac{4}{3} = \frac{321}{36} = \frac{107}{12}$$

$$\frac{45+324-48}{36} = \frac{107}{12} = \frac{m}{n} \implies m + n = 107+12 = 119$$

29. Let for a differentiable function
$$f:(0,\infty) \to \mathbf{R}, f(x) - f(y) \ge \log_e\left(\frac{x}{y}\right) + x - y, \forall x, y \in (0,\infty).$$

Then
$$\sum_{n=1}^{20} f' \left(\frac{1}{n^2} \right)$$
 is equal to

Sol. 2890

$$f$$
; $(0, \infty) \to R$

$$f(x)-f(y) \ge \log(x) - \log y + x - y$$

$$f(x) - \log x - x \ge f(y) - \ln y - y$$

$$x \leftrightarrow y$$

$$f(y) - \log y - y \ge f(x) - \ln x - x$$

$$\Rightarrow$$
 f(x) = lnx + x + λ

$$f'(x) = \frac{1}{x} + 1$$

$$\sum_{n=1}^{20} \left(n^2 + 1 \right)$$

$$20 + \frac{20 \times 21 \times 41}{6} = 20 + 2870 = 2890$$

30. Let the set of all $a \in \mathbb{R}$ such that the equation $\cos 2x + a \sin x = 2a - 7$ has a solution be [p,q] and $r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ} + \tan 81^\circ$, then pqr is equal to _____.

$$\cos 2x + a\sin x = 2a - 7$$

$$\Rightarrow 1 - 2\sin^2 x + 7 = a(2 - \sin x)$$

$$\Rightarrow \frac{2(4-\sin^2 x)}{2-\sin x} = a$$

$$\Rightarrow \frac{2(2-\sin x)(2+\sin x)}{2-\sin x} = a$$

$$\Rightarrow$$
 a = 4 + 2sinx

$$\Rightarrow$$
 a \in [2, 6] \cong [p, q]

$$\tan 9^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 81^{\circ}$$

$$= \tan 9^{\circ} - \tan 27^{\circ} - \cot 27^{\circ} + \cot 9^{\circ}$$

$$= \frac{\sin 9^{\circ}}{\cos 9^{\circ}} + \frac{\cos 9^{\circ}}{\sin 9^{\circ}} - \left(\frac{\cos 27^{\circ}}{\sin 27^{\circ}} + \frac{\sin 27^{\circ}}{\cos 27^{\circ}}\right)$$

$$= \frac{2}{2} \times \frac{1}{\sin 9^{\circ} \cos 9^{\circ}} - \frac{2}{2} \frac{1}{\sin 27^{\circ} \cos 27^{\circ}}$$

$$=\frac{2}{\sin 18^{\circ}}-\frac{2}{\sin 54^{\circ}}$$

$$\frac{2}{\sqrt{5}-1} \times 4 - \frac{2}{\sqrt{5}+1} \times 4 = 8 \left[\frac{\sqrt{5}+1}{4} - \frac{\sqrt{5}-1}{4} \right]$$

$$= 2[2] = 4 \Rightarrow pqr = 48$$

JEE MAIN 2024

JEE Main + Advanced 2024

की तैयारी में रह रही है कमी?

STARTING FROM

7th Feb'24

OFFLINE Rs. 9999

ONLINE Rs. 4999

JEE Main 2024 Session 1

की तैयारी में रह रही है कमी?

7th Feb'24

OFFLINE Rs. 6999 ONLINE Rs. 3499

Continuing to keep the pledge of imparting education for the last 17 Years

SELECTIONS SINCE 2007

JEE (Advanced) 12142

JEE (Main)

NEET/AIIMS (Under 50000 Rank) NTSE/OLYMPIADS

Most Promising RANKS Produced by MOTION Faculties

Nation's Best SELECTION Percentage (%) Ratio

NEET / AIIMS

AIR-1 to 10 25 Times

AIR-11 to 50 84 Times

AIR-51 to 100 84 Times

JEE MAIN+ADVANCED

AIR-1 to 10 8 Times

AIR-11 to 50 37 Times

AIR-51 to 100 41 Times

Student Qualified in **NEET**

(2023)

6492/7084 = **91.64%**

(2022)

4837/5356 = **90.31%**

Student Qualified in JEE ADVANCED

(2023)

2747/5182 = **53.01%** (2022)

1756/4818 = **36.45%**

Student Qualified in JEE MAIN

(2023)

5993/8497 = **70.53%**

(2022)

4818/6653 = **72.41%**

Founder & CEO