STEPHANIE OLINGER

Seattle, Washington

(804) 972-4348 stepholinger@fas.harvard.edu ORCiD: orcid.org/0000-0001-9061-3019

EDUCATION AND POSITIONS

Ph.D Candidate in Geophysics

2018 - Present

Harvard University

Department of Earth and Planetary Sciences

Affiliate 2021 - Present

University of Washington

Department of Earth and Space Sciences

B.A. in Geophysics 2014 - 2018

Washington University in St. Louis

Department of Earth and Planetary Sciences

RESEARCH INTERESTS

Seismology	Seismicity generated	by ice	fracture and	l iceberg	$\mathfrak g$ calving, $\mathfrak g$	flexura	l gravity
------------	----------------------	--------	--------------	-----------	--------------------------------------	---------	-----------

wave propagation and resonance on ice shelves, ambient noise methods for interrogating near-surface structure, seismic detection and location methods

Ice Mechanics Fracture and rifting dynamics, ice shelf flexure generated by fracture and

ocean waves, ocean-ice interaction at marine terminating glaciers and ice

shelves, altimetry and glacier surface morphology

Planetary Science Fracture and deformation in shells of icy moons, influence of ice-ocean

coupling on ice fracture and ocean mixing moons, cryogeysering, ice shell

formation and evolution

ML & Data Science Clustering, signal detection, automated feature detection in images,

optimizing physical models using machine learning

SKILLS

Languages Matlab, Python, Julia

Software & Tools ObsPy, SpecFEM2D, ISSM, SAC, Antelope, ArcGIS

Instruments & Data Distributed acoustic sensing (DAS), active & passive seismic,

synthetic aperture radar, laser altimetry

PUBLICATIONS

[1] S. D. Olinger et al. "Tracking the Cracking: A Holistic Analysis of Rapid Ice Shelf Fracture Using Seismology, Geodesy, and Satellite Imagery on the Pine Island Glacier Ice Shelf, West Antarctica". In: Geophysical Research Letters 49.10 (May 2022), pp. 6644–6652. DOI: 10.1029/2021GL097604.

- [2] S. D. Olinger et al. "Tidal and Thermal Stresses Drive Seismicity Along a Major Ross Ice Shelf Rift". In: *Geophysical Research Letters* 46.12 (June 2019), pp. 6644–6652. DOI: 10.1029/2019g1082842.
- [3] Z. Chen et al. "Ross Ice Shelf Icequakes Associated With Ocean Gravity Wave Activity". In: Geophysical Research Letters 46.15 (Aug. 2019), pp. 8893–8902. DOI: 10.1029/2019gl084123.

TEACHING

Harvard Gen Ed 1098	Natural Disasters	Fall 2020	
Harvard Gen Ed 1158	Water and the Environment	Spring 2021	
ADVISING			
Aidan Dealy	Spring 2022 onward		
AWARDS			
AGU Outstanding Stud	2018		
INVITED TALKS AND P	RESENTATIONS		
Ice+Climate Seminar	Dartmouth College	2022	
SeismoTea Seminar	University of Utah	2022	
West Antarctic Ice Shee	2021		
European Geophysical U	2021		
American Geophysical U	2017-2022		