2.2. Signal Model. carrier frequen Base Bandpass signal: S(t) = S1(b) · WS2 2 fet - Sout) · sin rafet. Equivalent baseboard. / Low pass signal: Complex envelope U(t): S2(t)+)Sa(t) => S(t) = Re { U(t) e) = nfct } = Ref Sz(t). e) infet + j Sa(t). e) infet } = S2(t). cos 2xfct - Sa(t). Sinzafet Let hit) be the channel impulse respon Y(t) = S(t) * h(t) Let R(f). S(f). H(f) be F. T. of st Y(t), S(t), h(t), respective. R(f) = S(f) · H(f)

Kemark. SUSTech	
Let Pt, Pu be the power of set. 4th),	
Pt = = Sos(t) dt, Pu = = So [4(t)] d+	
=> Pt = Pu/2	
Actual Signal Power = Basebanel power /	15
	-
Equivalent LP Channel Impulse Response: h(t) Adpass: Y(t) = S(t) * h(t) Seband: V(t) = U(t) * h(t) Seband: V(t) = U(t) * h(t)	
$rdpass: Y(t) = s(t) \times h(t)$	
seband: $V(t) = u(t) + h(t)^2$	
2 C ; ZA fet Z	SEP
Y(t)= Re { V(t) e ; 2x fet } S(t) = Re { uxt : e ; 2x fet } * h(t) = 2Re { hut : e ; 2x fet } * h(t) = 1Re { hut : e ; 2x fet }	
Sit) = Ke Wit) es info + ?	
* h(t) =2:Re \h(t) · e	
A factor of 2 for channel.	
If hilt)= hilt) + shielt)	
Then hit)=2hi, zit) coszifit-2his(t) sin	wf-
MITI LNC, ZICI COS ONJOS - L'ACCIOS	10

Let VCf). UCf). Hcf) be the F.T. of vct). uct, hct),

Vcf) = Ucf) · Hcf)

Moreover,

S(f) = = {(u(f-fe)+u*ef-fe)

H.(f)= H. (f - fo)+ H. (-f-fe)

 $R(f) = \frac{1}{2} \left(V(f - f_c) + V^*(-f - f_c) \right)$

Linear Path Loss PL = Pt/Pr.

Path loss (in decibel)

PL B = 10 log Pt dB

Path gain (in decibel)
PG = -PL

2.3 Free-Space Path Loss V(t) = 1 Jac e-jrad/n. u(t) phase shift $\frac{Pr}{Pt} = \frac{1}{1} \int_{0}^{\infty} |V(t)|^{2} dt = \left[\frac{1}{4\pi d}\right]^{2}$ Pr dBm = 10.6g Pr - 30 = 10 leg 10 (1 Jau) + 10 leg Pt - 30 = Pt dBm + 20leg A + 10leg GZ - 20 leg (4T) - 20 leg d PG dB = 10 lag 10 Pr = Pr dBm - Pt dBm
= 20 leg 17+10 log G1 - 20 leg (47) - 20 log d 2.4 Ray Tracing Use finite # of rays to approximate the signal propagation from Tx to Rx > The received singual is the summation of the signals along the rays => Scenario - dependent 2.4. [Two - Ray Model. Open space: LoS + single reflation off the ground.