In [1]:

```
print("Name: Jas")
print("We will be cleaning heart disease data, and conclude which age group has high risk o
print("We will also find which gender has the most not normal platelets count in blood, and
```

Name: Jas

We will be cleaning heart disease data, and conclude which age group has hig h risk of heart stroke as per diabetes and hight blood pressure level We will also find which gender has the most not normal platelets count in bl ood, and plot a pie chart around it

Task 1 - Find the diabetic and hight blood pressure patients across all age groups, and conclude the risk heart stroke is higher in which age group

In [2]:

```
#Import libraries
import pandas as pd
import matplotlib.pyplot as plt

#read the csv
df = pd.read_csv('heart_disease.csv')
df
```

Out[2]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure
0	75.0	0	582	0	20	1
1	55.0	0	7861	0	38	0
2	65.0	0	146	0	20	0
3	50.0	1	111	0	20	0
4	65.0	1	160	1	20	0
294	62.0	0	61	1	38	1
295	55.0	0	1820	0	38	0
296	45.0	0	2060	1	60	0
297	45.0	0	2413	0	38	0
298	50.0	0	196	0	45	0

299 rows × 13 columns

In [4]:

#Filter by diabetes(condition will be who has diabetes) and create new dataframe
diabetic_patient=df.loc[df['diabetes']==1]
diabetic_patient

Out[4]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure
4	65.0	1	160	1	20	0
7	60.0	1	315	1	60	0
19	48.0	1	582	1	55	0
21	65.0	1	128	1	30	1
23	53.0	0	63	1	60	0
290	45.0	0	615	1	55	0
292	52.0	0	190	1	38	0
293	63.0	1	103	1	35	0
294	62.0	0	61	1	38	1
296	45.0	0	2060	1	60	0

125 rows × 13 columns

In [5]:

#On this new data frame perform group operation as per age and create new dataframe

groupby_age_diabetes=diabetic_patient.groupby('age')['diabetes'].count().reset_index()
groupby_age_diabetes

Out[5]:

		diabatas
	age	diabetes
	40.000	2
1	42.000	2
2	44.000	2
3	45.000	11
4		1
5	48.000	2
6	49.000	1
7	50.000	12
8	51.000	2
9	52.000	2
10	53.000	3
11	54.000	1
12	55.000	4
13	56.000	1
14	58.000	5
15	59.000	3
16	60.000	19
17	60.667	2
18	61.000	2
19	62.000	3
20	63.000	4
21	65.000	15
22	66.000	1
23	68.000	2
24	69.000	1
25	70.000	9
26	72.000	2
27	73.000	1
28	75.000	3
29	80.000	3
30	82.000	2
31	90.000	1

	age	diabetes
32	94.000	1

In [7]:

#Filter by high_blood_pressure(condition will be who has high_blood_pressure) and create ne
patient_high_bp=df.loc[df['high_blood_pressure']==1]
patient_high_bp

Out[7]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure
0	75.0	0	582	0	20	1
5	90.0	1	47	0	40	1
9	80.0	1	123	0	35	1
10	75.0	1	81	0	38	1
11	62.0	0	231	0	25	1
255	52.0	1	191	1	30	1
257	58.0	0	132	1	38	1
270	44.0	0	582	1	30	1
275	45.0	0	582	0	38	1
294	62.0	0	61	1	38	1
105 rows v 12 salumns						

105 rows × 13 columns

localhost:8888/notebooks/ADV-C195 HEART DISEASE GRAPH/C195-project-student.ipynb

In [8]:

#On this new data frame perform group operation as per age and create new dataframe
groupby_age_bp=patient_high_bp.groupby('age')['high_blood_pressure'].count().reset_index()
groupby_age_bp

Out[8]:

		high blood wassers
	age 40.000	high_blood_pressure
1	44.000	2
2	45.000	5
3	46.000	2
	48.000	
4		1
5	49.000	3
6	50.000	10
7	51.000	1
8	52.000	1
9	53.000	3
10	54.000	1
11	55.000	4
12	57.000	1
13	58.000	3
14	59.000	2
15	60.000	9
16	60.667	1
17	61.000	2
18	62.000	3
19	63.000	2
20	65.000	8
21	66.000	2
22	68.000	2
23	70.000	13
24	72.000	5
25	73.000	2
26	75.000	7
27	77.000	1
28	79.000	1
29	80.000	3
30	82.000	1
31	90.000	1
JΊ	90.000	1

	age	high_blood_pressure
32	94.000	1
33	95.000	1

In [20]:

```
#plot the scatter graph to show which age group is more prone to diabetes
plt.figure(figsize=(25,25))
diabetes=groupby_age_diabetes['diabetes']
age=groupby_age_diabetes['age']
plt.scatter(age,diabetes,label="Patients with Diabetes")
bp=groupby_age_bp['high_blood_pressure']
age2=groupby_age_bp['age']
plt.scatter(age2,bp,label="Patients with High Blood Pressure")
plt.xlabel("Age",size=30)
plt.ylabel("Diabetes / High Blood Pressure",size=30)
plt.legend()
plt.show()
```


Conclusion - When you are 60 years old you are most prone to diabetes and when you are 70 years old you are most prone to High Blood Pressure.

Task 2 - Find as per gender who has not normal platelets level in blood

In [22]:

#Filter by platelets(condition lesser then 150000 OR greater then 450000) and create new da platelets=df.loc[(df['platelets']<150000.00)|(df['platelets']>450000.00)] platelets

Out[22]:

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure
6	75.0	1	246	0	15	0
7	60.0	1	315	1	60	0
12	45.0	1	981	0	30	0
15	82.0	1	379	0	50	0
19	48.0	1	582	1	55	0
25	80.0	0	148	1	38	0
47	60.0	0	582	1	38	1
48	80.0	1	553	0	20	1
55	95.0	1	371	0	30	0
65	60.0	0	68	0	20	0
69	65.0	0	113	1	25	0
71	58.0	0	582	1	35	0
73	65.0	0	224	1	50	0
102	80.0	0	898	0	25	0
105	72.0	1	328	0	30	1
109	45.0	0	292	1	35	0
117	85.0	1	102	0	60	0
123	60.0	1	582	0	30	1
163	50.0	1	2334	1	35	0
167	59.0	0	66	1	20	0
176	69.0	0	1419	0	40	0
177	49.0	1	69	0	50	0
194	45.0	0	582	0	20	1
200	63.0	1	1767	0	45	0
211	50.0	0	582	0	62	1
212	78.0	0	224	0	50	0
223	47.0	0	582	0	25	0
224	58.0	0	582	1	25	0
227	55.0	1	2794	0	35	1
230	60.0	0	166	0	30	0
240	70.0	0	81	1	35	1
264	61.0	0	582	1	38	0

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure
267	56.0	1	135	1	38	0
277	70.0	0	582	1	38	0
279	55.0	0	84	1	38	0
281	70.0	0	582	0	40	0
287	45.0	0	582	1	55	0
291	60.0	0	320	0	35	0
296	45.0	0	2060	1	60	0
297	45.0	0	2413	0	38	0
4						>

In [23]:

#On this new dataframe perform group operation as per gender and create new dataframe

groupby_gender=platelets.groupby('gender')['platelets'].count().reset_index()
groupby_gender

Out[23]:

	gender	platelets
0	0	11
1	1	29

In [24]:

```
#Plot a pie chart as per the gender to show the percentage of male and female who has not n
value=groupby_gender['platelets']
label=groupby_gender['gender']

plt.pie(value,labels=label,autopct='%0.2f%%',radius=2)
plt.show()
```


Conclusion - The gender 1 has more not normal platelets than gender 0.

In []: