

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

IV Year – I Semester		L	T	P	C	
		0	0	4	2	
PYTHON: DEEP LEARNING						
(Skill Oriented Course)						

Course Outcomes:

At the end of the Course, Student will be able to:

- Demonstrate the basic concepts fundamental learning techniques and layers.
- Discuss the Neural Network training, various random models.
- Apply various optimization algorithms to comprehend different activation
- functions to understand hyper parameter tuning
- Build a convolutional neural network, and understand its application to build a
- recurrent neural network, and understand its usage to comprehend auto encoders to briefly explain transfer learning

Pre-requisite knowledge:

- Exploratory data analysis: Collecting, importing, pre-processing, organizing, exploring, analyzing data and deriving insights from data
 https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012666909428129792728_shared
 /overview
- Data visualization using Python: Data visualization functions and plots
 https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 0126051913436938241455 share d/overview
- Regression analysis: Regression, types, linear, polynomial, multiple linear, Generalized linear regression models
 https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_01320408013336576065_shared/overview
- Clustering using Python: Clustering, techniques, Assessment and evaluation https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 0130441799423426561190 share d/overview
- Machine learning using Python: Machine learning fundamentals, Regression, classification, clustering, introduction to artificial neural networks
 https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012600400790749184237_shared/overview
- Time series analysis: Patterns, decomposition models, smoothing time, forecasting data https://infyspringboard.onwingspan.com/web/en/app/toc/lex auth 0126051804744253441280 share d/overview

List of Exercises:

Note: There are online courses indicated in the reference links section. Learners need to go through the contents in order to perform the given exercises

Exercise 1:

Course name: .Build a Convolution Neural Network for Image Recognition.

Go through the modules of the course mentioned and answer the self-assessment questions given in the link below at the end of the course.

Self Assessment - Deep Learning - Viewer Page | Infosys Springboard (onwingspan.com)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Exercise 2:

Module name: Understanding and Using ANN: Identifying age group of an actor

Exercise: Design Artificial Neural Networks for Identifying and Classifying an actor using Kaggle Dataset.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

 $\underline{module/lex_auth_012776492416663552259_shared?collectionId=\underline{lex_auth_01274814254931148859_shared\&collectionType=Course}$

Exercise 3:

Module name: Understanding and Using CNN: Image recognition

Exercise: Design a CNN for Image Recognition which includes hyperparameter tuning.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

 $\frac{module/lex_auth_012785694443167744910_shared?collectionId=lex_auth_01274814254931148859_shared\&collectionType=Course$

Exercise 4:

Module name: Predicting Sequential Data

Exercise: Implement a Recurrence Neural Network for Predicting Sequential Data.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

 $\underline{module/lex_auth_01279144948849868822_shared?collectionId=lex_auth_01274814254931148859_share_d\&collectionType=Course}$

Exercise 5:

Module Name: Removing noise from the images

Exercise: Implement Multi-Layer Perceptron algorithm for Image denoising hyperparameter tuning.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_auth_012792058258817024272_shared?collectionId=lex_auth_01274814254931148859_shared&collectionType=Course

Exercise 6:

Module Name: Advanced Deep Learning Architectures

Exercise: Implement Object Detection Using YOLO.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

red&collectionType=Course

Exercise 7:

Module Name: Optimization of Training in Deep Learning

Exercise Name: Design a Deep learning Network for Robust Bi-Tempered Logistic Loss.

https://infvspringboard.onwingspan.com/web/en/viewer/web-

 $\underline{module/lex_auth_013107917226680320184_shared?collectionId=lex_auth_01274814254931148859_shared\&collectionType=Course}$

Exercise 8:

Module name: Advanced CNN

Exercise: Build AlexNet using Advanced CNN.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_auth_013111844422541312984_shared?collectionId=lex_auth_01274814254931148859_sha

red&collectionType=Course

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Exercise 9:

Module name: Autoencoders Advanced

Exercise: Demonstration of Application of Autoencoders.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex_auth_0131164551289896962081_shared?collectionId=lex_auth_01274814254931148859_sh

ared&collectionType=Course

Exercise 10:

Module name: Advanced GANs

Exercise: Demonstration of GAN.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

 $\underline{module/lex_auth_0131155456664289281901_shared?collectionId=\underline{lex_auth_01274814254931148859_sh}$

ared&collectionType=Course

Exercise 11:

Module name: Capstone project

Exercise: Complete the requirements given in capstone project

Description: In this capstone, learners will apply their deep learning knowledge and expertise to a real world challenge.

https://infyspringboard.onwingspan.com/web/en/viewer/web-

red&collectionType=Course

Exercise 12:

Module name: Capstone project

Exercise: Complete the requirements given in capstone project

https://infyspringboard.onwingspan.com/web/en/viewer/web-

module/lex auth 013119291805696000651 shared?collectionId=lex auth 01274814254931148859 sha

red&collectionType=Course

Reference Books:

- 1. Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.
- 2. Bishop, C., M., Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018.

Hardware and software configuration:

mara ware and sort ware comigaration.					
Experimental	Configuration Instructions				
Environment					
Hardware Environment	CPU	Intel® Core TM i7-6700 CPU 4GHz			
	GPU	Nvidia GTX 750, 4GB			
	Memory	8 GB			
Software Environment	Operating System	Ubuntu 14.04, 64 bit			
	Programming	Tensorflow deep learning framework and			
	Environment	Python language			

Web Links: [Courses mapped to Infosys Springboard platform]

- 1. https://infyspringboard.onwingspan.com/en/app/toc/lex_auth_012782105116811264219_shared/contents [Introduction to Deep Learning]
- 2. https://infyspringboard.onwingspan.com/web/en/viewer/web-module/lex_auth_013119291805696000651_shared [Deep learning for Developers]