Instituto Superior Técnico

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Controlo

2018/2019 – Primeiro Semestre

Laboratório n.º 2

Grupo n.º 4

1.	N.º: 86976	Nome: Diogo Guilherme Moura	Rúbrica:
2.	N.º: 86980	Nome: Diogo Martins Alves	Rúbrica:
3.	N.º: 86989	Nome: Francisco da Graça Gonçalves	Rúbrica:

Bancada:

Dia da semana: Terça-Feira

Turno: Cont7L07

Docente do laboratório: Bruno Guerreiro

3.3.

i)

Resposta x(t) do sistema G1(s), quando r(t) = 0.1u(t):

ii)

Resposta x(t) do sistema G1(s), quando r(t) = u(t):

Para ambas as situações verifica-se que a resposta x(t) quando r(t) é um escalão unitário é do tipo:

$$x(t) = A(1 - e^{-\frac{t}{\tau}})u(t) ,$$

em que $A = \lim_{t \to \infty} x(t)$ e $\tau = x^{-1} \left(A \left(1 - \frac{1}{e} \right) \right)$.

(i)
$$A = -0.2$$
 e $\tau = x^{-1}(-0.124) = 101$

(ii)
$$A = -2$$
 e $\tau = x^{-1}(-1.2642) = 101$

Desta forma, o sistema de 1ª ordem G1(s) é caraterizado por:

$$G1(s) = K_1 \times \frac{s}{s + \frac{1}{\tau}} ,$$

em que $K_1 = \lim_{t \to \infty} \frac{x(t)}{r(t)}$, que é -2 nas duas situações e $\tau = 101$.

O valor de K_1 obtido, analisando a resposta é exatamente igual ao valor real e o valor de τ é bastante próximo do real (100).

3.4.

i)

Resposta x(t) do sistema G2(s), quando d(t) = 0.1u(t):

ii)

Resposta x(t) do sistema G2(s), quando d(t) = u(t):

Para ambas as situações verifica-se que a resposta x(t) quando d(t) é um escalão unitário é do tipo:

$$x(t) = A(1 - e^{-\frac{t}{\tau}})u(t) \quad ,$$

em que $A = \lim_{t \to \infty} x(t)$ e $\tau = x^{-1} (A(1 - \frac{1}{e}))$.

(i)
$$A = 1$$
 e $\tau = x^{-1}(0.6321) = 101$

(ii)
$$A = 1$$
 e $\tau = x^{-1}(6.321) = 101$

Desta forma, o sistema de 1ª ordem G2(s) é caraterizado por:

$$G2(s) = K_2 \times \frac{s}{s + \frac{1}{\tau}} ,$$

em que $K_2 = \lim_{t \to \infty} \frac{x(t)}{r(t)}$, que é -2 nas duas situações e $\tau = 101$.

O valor de K_2 obtido, analisando a resposta, é exatamente igual ao valor real e o valor de τ é bastante próximo do real (100).

3.5.

Respostas h(t) dos sistemas não linear e linearizado quando p(t) = Peq + 0.1u(t) e m(t) = Meq:

Respostas h(t) dos sistemas não linear e linearizado quando p(t) = Peq + u(t) e m(t) = Meq:

Respostas h(t) dos sistemas não linear e linearizado quando p(t)=Peq e m(t)=Meq+0.1u(t):

Respostas h(t) dos sistemas não linear e linearizado quando p(t)=Peq e m(t)=Meq+u(t):

Sisitema não linear:

Sistema linearizado:

Com d(t) = 0 e $r(t) = a \times u(t)$, verificamos que a resposta x(t) do sistema linearizado tem exatamente ganho igual a -2, como seria de esperar, e a resposta x(t) do sistema não linear é semelhante à anterior, mas com ganho diferente:

(i) para
$$r(t) = 0.1u(t)$$
, o ganho é de -1.95

(ii) para
$$r(t) = u(t)$$
, o ganho de $x(t)$ é de -1.585

, de onde se conclui que à medida que a variação de p(t) (que corresponde a r(t)) aumenta, o valor absoluto do ganho do sistema não linear aumenta, o que significa que o sistema não linear é apróximável pelo sistema linearizado apenas para r(t) pequeno.

Com r(t) = 0 e $d(t) = a \times u(t)$, verificamos que a resposta x(t) do sistema linearizado tem examente ganho igual a 10, como seria de esperar, e a resposta x(t) do sistema não linear é semelhante à anterior mas com ganho diferente:

(i) para
$$d(t) = 0.1u(t)$$
, o ganho é de 10.5

(ii) para
$$d(t) = u(t)$$
, o ganho de é de 14.92

, de onde se conclui que à medida que a variação de m(t) (que corresponde a d(t)) aumenta, o valor absoluto do ganho do sistema não linear aumenta, o que significa que o sistema não linear é apróximável pelo sistema linearizado apenas para d(t) pequeno.

4.6.

Resposta x(t) do sistema, quando r(t)=u(t) e d(t)=0, para $Kp=0.5, Kp=5\ e\ Kp=50$:

Da questão 4.3, o ganho estático é dado por:

$$G_{clr}(0) = -\frac{K_p K_1}{1 - K_p K_1}$$

Na simulação, o ganho estático é dado por $G_{clr}(0)=\lim_{t\to\infty}x(t)$, uma vez que r(t)=u(t) e d(t)=0.

Assim:

$$G_{clr}(0) = 0.5$$
 para $k_p = 0.5$

$$G_{clr}(0) = 0.9091 \text{ para } k_p = 5$$

$$G_{clr}(0) = 0.9882$$
 para $k_p = 50$

Calculando agora os valores teóricos:

$$G_{clr}(0)=0.5$$
 para $k_p=0.5$

$$G_{clr}(0) = \frac{10}{11} \approx 0.9091 \text{ para } k_p = 5$$

$$G_{clr}(0) = \frac{100}{101} = 0.9901$$
 para $k_p = 50$

4.7.

Resposta x(t) do sistema, quando r(t)=0 e d(t)=u(t), para $Kp=0.5, Kp=5\ e\ Kp=50$:

Da questão 4.5, o ganho estático é dado por:

$$G_{cld}(0) = \frac{K_2}{1 - K_p K_1}$$

Nas simulações o ganho estático é dado por:

$$G_{cld}(0) = \lim_{t \to \infty} x(t)$$
, uma vez que $d(t) = u(t)$ e $r(t) = 0$

Assim:

$$G_{cld}(0) = 5 \text{ para } k_p = 0.5$$

$$G_{cld}(0) = 0.9091$$
 para $k_p = 5$

$$G_{cld}(0)=0.09845$$
 para $k_p=50\,$

Calculando agora os valores teóricos:

$$G_{cld}(0) = 5$$
 para $k_p = 0.5$

$$G_{cld}(0) = \frac{10}{11} \approx 0.9091 \text{ para } k_p = 5$$

$$G_{cld}(0) = \frac{10}{101} = 0.0990$$
 para $k_p = 50$

Neste sistema podemos verificar que, quanto maior for o ganho, a resposta do sistema (x(t)) à perturbação (d(t)) é atenuada, no entanto, o erro estático de posição só é nulo se o ganho for infinito, o que é impossível num sistema físico.

5.5.

Resposta x(t) do sistema, quando r(t)=u(t) e d(t)=0, para $K_I=0.05, K_I=0.5$ e $K_I=5$:

Sendo o sistema

$$G_{clr}(s) = \frac{-K_l K_1 p}{s^2 + p \times s - K_l K_1 p}$$

verifica-se, tal como calculado em 5.2 , que o ganho estático é $G_{clr}(0)=1$, o que é confirmado pelos gráficos, um vez que sendo r(t)=u(t) e d(t)=0, $\lim_{t\to\infty}x(t)=1$, qualquer que seja o valor de K_I .

Como é um sistema de segunda ordem, a frequência natural das oscilações é dada por

$$w_n = \sqrt{-K_I * K_1 * p} \approx 0.1414\sqrt{K_I}$$

,ou seja, quanto maior o valor de k_I , maior é a frequência das oscilações, o que também é comprovado nos gráficos.

5.6.

Sistema $G_{clr}(s)$ em malha aberta:

$$G_{clrMA}(s) = G_1(s) \times K(s) = K_1 \frac{p}{s+p} \frac{-K_I}{s} = k_I \frac{-K_1 p}{s^2 + sp}$$

O sistema ao qual se irá aplicar o root locus é

$$H(s) = \frac{-K_1 p}{s^2 + sp}$$

O root locus obtido é o seguinte:

Na questão anterior, como as respostas obtidas para os três valores de K_I foram subamortecidas, conclui-se que para cada uma das três situações, $G_{clr}(s)$ tem dois pólos complexos conjugados situados no troço vertical do *root locus*.

Quanto maior o valor de K_I , maior o módulo da parte imaginária dos pólos.

5.7.

Resposta x(t) do sistema, quando r(t)=0 e d(t)=u(t), para $K_I=0.05, K_I=0.5$ e $K_I=5$:

Sendo o sistema

$$G_{cld}(s) = \frac{s \times K_2 p}{s^2 + s \times p - K_I K_1 p}$$

, verifica-se que o ganho estático é $G_{cld}(0)=0$, o que é confirmado pelos gráficos uma vez que r(t)=0 e d(t)=u(t) e $\lim_{t\to\infty}x(t)=0$ para todos os valores de K_I .

Tal como na questão 5.5, a frequência natural é dada por $w_n \approx 0.1414 \sqrt{K_I}$, o que também é confirmado pelos gráficos.

A diferença mais notável entre o sistema com integrador para o sem integrador é que no sistema com integrador a resposta do sistema (x(t)), a uma perturbação (d(t)), tende para zero qualquer que seja o ganho (erro estático de posição é nulo). Ao aumentarmos o ganho, estamos apenas a fazer com que os valores iniciais desta resposta sejam mais atenuados.

6.1.

Sistema $G_{clr}(s)$ em malha aberta:

$$G_{clrMA}(s) = G_1(s) \times K(s) \times V(s) = K_1 \frac{p}{s+p} \frac{-K_I}{s} \frac{0.1}{s+0.1}$$
$$= K_I \frac{-0.1K_1p}{s^3 + s^2(p+0.1) + s(0.1p)}$$

O sistema ao qual se irá aplicar o root locus é

$$H(s) = \frac{-0.1K_1p}{s^3 + s^2(p+0.1) + s(0.1p)}$$

O root locus obtido é o seguinte:

Verifica-se que, à medida que se aumenta o ganho, existe um valor critico do ganho a partir do qual o sistema fica instável, uma vez que os polos complexos conjugados passam para o semi plano complexo direito. Este valor corresponde aproximadamente a $K_I = 0.055$.

6.3.

Resposta x(t) do sistema, quando r(t)=u(t) e d(t)=0, para $K_I=0.0055$ (estável):

Resposta x(t) do sistema, quando r(t)=u(t) e d(t)=0, para $K_I=0.055$ (marginalmente estável):

Resposta x(t) do sistema, quando r(t) = u(t) e d(t) = 0, para $K_I = 5.5$ (estável):

No primeiro gráfico verificamos que a resposta x(t) se vai aproximando de um valor constante, pelo que é estável. No segundo gráfico, a resposta x(t) do sistema não tende para nenhum valor constante mas mantém-se entre dois valores constantes, pelo que é marginalmente estável. Já no ultimo gráfico verificamos que a resposta x(t) explode para valores muito grandes, pelo que é instável.

7.2.

Resposta x(t) do sistema, quando r(t) = u(t) e d(t) = 0, para z = 0.03945 e $K_{PI} = 2.91156$:

Pelo gráfico, observamos que a sobreelevação é cerca de 40.5% e o tempo de estabelecimento a 5% é cerca de 125 s, em contraste com os valores para os quais os parâmetros foram dimensionados: sobreelevação de 25% e tempo de estabelecimento de 120 s. O facto de os valores do tempo de estabelecimento e sobreelevação não corresponderem ao esperado deve-se ao facto de que os parâmetros foram dimensionados para um sistema de 2ª ordem, sem zeros, no entanto estamos na presença de um sistema de 3ª ordem (com 3 pólos), e com um zero. O aumento da sobreelevação e do tempo de estabelecimento devem-se potanto aos efeitos deste pólo e zero adicional.

7.3.

Sistema $G_{clr}(s)$ em malha aberta:

$$G_{clrMA}(s) = G_1(s) \times K(s) \times V(s) = K_1 \frac{p}{s+p} \frac{-K_{PI}(s+z)}{s} \frac{0.1}{s+0.1}$$
$$= K_{PI} \frac{-0.1K_1ps - 0.1K_1pz}{s^3 + s^2(p+0.1) + s(0.1p)}$$

O sistema ao qual se irá aplicar o root locus é

$$H(s) = \frac{-0.1K_1ps - 0.1K_1pz}{s^3 + s^2(p + 0.1) + s(0.1p)}$$

Na figura acima podemos ver a azul o root locus para o sistema original e a laranja para o sistema com o zero alterado. A forma como chegámos a este novo valor para o zero foi a seguinte:

A sobreelevação do sistema depende apenas do ângulo entre os pólos complexos conjugados e o eixo real (θ) , cujo seno é ξ . Uma diminuição da sobreelevação corresponde a um aumento de ξ , e consequentemente a um aumento de θ , então precisamos de aumentar o valor de θ para diminuir a sobreelevação. Para tal, precisamos de aproximar o zero dos polos complexos conjugados para que a atração entre eles e o zero seja mais forte e assim a curva do *root locus* se aproximar mais da posição horizontal. Assim, o novo valor de z terá um valor inferior ao original: 0.024.

O tempo de estabelecimento depende de $\xi\omega_n$ em sentido inverso. $\xi\omega_n$ corresponde ao módulo da parte real dos polos complexos conjugados. Se queremos um tempo de estabelecimento menor, temos que aumentar o valor de $\xi\omega_n$, que equivale a escolher um ponto mais à esquerda, mas mantendo praticamente constante o valor do ângulo ξ conseguido no passo anterior. Assim, ficamos com $\xi\omega_n=0.0343$, que corresponde a um ganho $K_{PI}=2.19$.

Com estes valores de K_{PI} e z alterados, a resposta do sistema a r(t) = u(t) e d(t) = 0 é a seguinte:

Como podemos observar, o valor da sobreelevação é cerca de 22% e o tempo de estabelecimento de cerca de 113 s, valores que estão na gama de valores pretendidos.