T Erlandsson

SVAR OCH ANVISNINGAR

FRÅGOR

$$1. \ln 2$$

4.
$$-\frac{1}{3}$$

5.
$$x = 1$$

6.
$$y = -\sin x + 2x + 1$$

7.
$$y = \sin x + \cos x$$

8.
$$y = e^{-x} + 2e^x - 2$$

9.
$$y = 1$$

10.
$$y = \sqrt{1 + x^2}$$

11.
$$\frac{1}{1-x_0}$$

12.
$$0 \le x < 2$$

14.
$$a_2 = 3$$

15.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{n! \ (2n+1)} \quad \text{(Variabeln } t \text{ istället för } x \text{ i svaret ger också rätt)}$$

SVAR OCH ANVISNINGAR

Två problem till vilka fullständiga lösningar ska redovisas

- 1. Definitionsmängden är x>0. Nollställe är x=1/e. Vertikal asymptot är y-axeln där $\lim_{x\to 0+}y=-\infty$. Horisontell asymptot är y=0 där $\lim_{x\to \infty}y=0+$. Derivatan $y'=-\frac{1}{x^2}\ln x$ som har det enda nollstället x=1. Detta tillsammans med asymtoterna ger att f(1)=1 är funktionens största värde enligt Adams gåva. Andra derivatan $y''=\frac{2\ln x-1}{x^3}=\frac{\ln x^2-1}{x^3}=0$ för $x=\sqrt{e}$ som ger en inflexionspunkt då y'' har teckenväxling här.
- 2. Volymen är

$$V(k) = -2\pi \int_0^1 x^{k+1} \ln x \, dx.$$

Vi beräknar $\int_0^1 x^{k+1} \ln x \, dx$.

Om k = -2 blir $\int_0^1 x^{k+1} \ln x \, dx = \int_0^1 \frac{\ln x}{x} \, dx = \frac{1}{2} \ln^2 x \Big|_0^1 = -\infty$. Då $k \neq -2$ använder vi partiell integration och får

$$\int_0^1 x^{k+1} \ln x \, dx = \left. \frac{x^{k+2}}{k+2} \ln x \right|_0^1 - \int_0^1 \frac{x^{k+2}}{k+2} \cdot \frac{1}{x} \, dx = \left. \frac{x^{k+2}}{k+2} \ln x \right|_0^1 - \int_0^1 \frac{x^{k+1}}{k+2} \, dx = \left. \frac{x^{k+2}}{k+2} \ln x \right|_0^1 - \left. \frac{x^{k+2}}{k+2} \ln x \right|_0^1 -$$

$$= \frac{x^{k+2}}{k+2} \ln x \Big|_0^1 - \left. \frac{x^{k+2}}{(k+2)^2} \right|_0^1 dx = -\frac{1}{(k+2)^2}, \ k > -2.$$

Vi har speciellt utnyttjat att $\lim_{x\to 0+} x^{k+2} \ln x$ existerar ändligt (= 0) om och endast om k>-2. Hela utredningen visar att volymen är ändlig endast för k>-2 och att

$$V(k) = \frac{2\pi}{(k+2)^2}.$$

Uppsala Universitet Matematiska Institutionen H Avelin, H Uscka-Wehlou

Tenta del 2 - lösningarna ANALYS MN1 2004-12-15

1. Taylorpolynomet av grad n för en funktion f(x) kring punkten x = c är:

$$p(f, n, c, x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n = \sum_{i=0}^n \frac{f^{(i)}(c)}{i!}(x - c)^i.$$

Vi kan beräkna med hjälp av den formeln Taylorpolynomet av grad 4 för $f(x) = e^x$ och c = 0 på följande sätt:

Om $f(x) = e^x$, då gäller $f^{(n)}(x) = e^x$ för alla n = 1, 2, ..., alltså $f^{(n)}(0) = e^0 = 1$ för n = 1, 2, ... Eftersom vi också har $f(0) = e^0 = 1$, kan vi substituera c = 0 och $f(x) = e^x$ i den allmänna formeln och få:

$$p(e^{x}, 4, 0, x) = f(0) + f'(0)(x - 0) + \frac{f''(0)}{2!}(x - 0)^{2} + \frac{f'''(0)}{3!}(x - 0)^{3} + \frac{f^{(4)}(0)}{4!}(x - 0)^{4} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!}.$$

2. Om (a_n) är en talföljd och $a_n \in \mathbf{R}$ för alla n = 0, 1, 2, ..., då är

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + a_3 + \dots,$$

en formell summa av oändligt många termer.

Låt $S_n = \sum_{i=0}^n a_i$. Då kallas S_n den n:te delsumman av serien.

Man säger att serien $\sum_{n=0}^{\infty} a_n$ konvergerar om $\lim_{n\to\infty} S_n = S$, alltså om talföljden av delsum-

morna konvergerar mot $S \in \mathbf{R}$. Då skriver man $\sum_{n=0}^{\infty} a_n = S$.

Om $\lim_{n\to\infty} S_n$ inte är ett reellt tal, då säger man att serien $\sum_{n=0}^{\infty} a_n$ är divergent.

Om $\lim_{n\to\infty} S_n = \infty$, då kan man säga att serien divergerar mot oändligheten.

Här är lösningen klar, men vi ger också några exempel:

- serie $\sum_{n=0}^{\infty} (\frac{1}{2})^n$ är konvergent. Detta är en geometrisk serie och det gäller för delsummorna att $S_n = 1 + \frac{1}{2} + (\frac{1}{2})^2 + \dots + (\frac{1}{2})^n = \frac{1 - (\frac{1}{2})^{n+1}}{1 - \frac{1}{2}} \xrightarrow{n \to \infty} 2$, alltså $\sum_{n=0}^{\infty} (\frac{1}{2})^n = 2$.
- $\bullet \,$ serie $\sum n$ är divergent mot o
ändligheten, eftersom $S_n = 0 + 1 + 2 + \dots + n = \frac{n(n+1)}{2} \stackrel{n \to \infty}{\longrightarrow} \infty$, alltså $\sum_{n=0}^{\infty} n = \infty$.
- serie $\sum_{n=0}^{\infty} (-1)^n$ är **divergent** (men alltså inte "mot oändligheten"), eftersom (S_n) är divergent (har två delföljder med olika gränsvärden: $S_{2n+1}=0$ och $S_{2n}=1$ för $n = 0, 1, 2, \dots$).

3.

$$\int \frac{\arctan(e^x)}{e^x} dx = 0$$

Först utför vi partiell integration med $f(x) = \arctan(e^x)$ och $g'(x) = e^{-x}$ (alltså $f'(x) = \frac{e^x}{1 + e^{2x}}$ och $g(x) = -e^{-x}$). Då får vi:

$$(=-e^{-x} \cdot \arctan(e^x) + \int \frac{1}{1+e^{2x}} dx =)$$

För att beräkna den sista integralen, utför vi substitution $1 + e^{2x} = t$, alltså $e^{2x} = t - 1$ (vilket implicerar att både t och t-1 är positiva och vi slipper absolutbelopp när vi tar logaritmen), $x = \frac{1}{2} \ln(t-1)$, $dx = \frac{1}{2} \cdot \frac{1}{t-1} dt$:

$$(= -e^{-x} \cdot \arctan(e^x) + \frac{1}{2} \int \frac{1}{t(t-1)} dt =)$$

Nu utför vi partialbråksuppdelning av $\frac{1}{t(t-1)}$. Vi använder sats 1 på sidan 371 i Adams.

Vi letar efter konstanter A och B så att för alla $t \in \mathbf{R} \setminus \{0,1\}$ gäller $\frac{1}{t(t-1)} = \frac{A}{t} + \frac{B}{t-1}$.

Vi beräknar $A=\lim_{t\to 0}\frac{1}{t-1}=-1$ och $B=\lim_{t\to 1}\frac{1}{t}=1.$ OBS. Man kan också beräkna A och B från ekvationssystemet $A+B=0,\ -A=1,$ vilket man får då man jämför koefficienterna i polynomen p(t)=1 och q(t)=t(A+B)-A efter additionen av $\frac{A}{t}$ och $\frac{B}{t-1}$.

Nu kan vi använda $-\frac{1}{t}+\frac{1}{t-1}=\frac{1}{t(t-1)}$ i integralen:

$$\begin{split} &(=-e^{-x}\cdot\arctan(e^x)-\frac{1}{2}\int\frac{1}{t}dt+\frac{1}{2}\int\frac{1}{t-1}dt = -e^{-x}\cdot\arctan(e^x)-\frac{1}{2}\ln t+\frac{1}{2}\ln(t-1)+C = \\ &=-e^{-x}\cdot\arctan(e^x)-\frac{1}{2}\ln(1+e^{2x})+\frac{1}{2}\cdot2x+C = -e^{-x}\cdot\arctan(e^x)-\frac{1}{2}\ln(1+e^{2x})+x+C. \end{split}$$

4. Från existensen av andraderivatan i alla $x \in I$ följer att både f och f' är deriverbara (derivatans definition) och kontinuerliga (sats 1 på sidan 112 i Adams) i I.

Vi väljer tre skilda nollställen till f i I (vi vet att det finns minst tre) och kallar dem för x_1, x_2, x_3 i växande ordning, alltså $x_1 < x_2 < x_3$.

Eftersom f är kontinuerlig och deriverbar i I, är den också kontinuerlig och deriverbar i de slutna ändliga, intervallen $[x_1, x_2] \subset I$ och $[x_2, x_3] \subset I$. Eftersom alla nödvändiga villkor är uppfyllda, kan vi använda medelvärdessatsen (sats 11 på sidan 133 i Adams) för f. Enligt satsen finns det $c_1 \in (x_1, x_2)$ och $c_2 \in (x_2, x_3)$ så att:

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c_1), \quad \frac{f(x_3) - f(x_2)}{x_3 - x_2} = f'(c_2),$$

vilket implicerar, (eftersom x_1 , x_2 , x_3 är nollställen till f, alltså $f(x_1) = 0$, $f(x_2) = 0$, $f(x_3) = 0$) att:

$$f'(c_1) = 0, \quad f'(c_2) = 0.$$

Eftersom $c_1 \in (x_1, x_2)$ och $c_2 \in (x_2, x_3)$ (alltså $x_1 < c_1 < x_2 < c_2 < x_3$) så gäller $c_1 \neq c_2$. Eftersom andraderivatan är derivatan till förstaderivatan och förstaderivatan är kontinuerlig och deriverbar i I, kan vi tillämpa samma sats igen, den här gången för f' på det slutna, ändliga intervallet $[c_1, c_2] \subset I$ och få att det finns $c \in (c_1, c_2)$ så att

$$\frac{f'(c_2) - f'(c_1)}{c_2 - c_1} = f''(c)$$

och eftersom $f'(c_1) = 0$ och $f'(c_2) = 0$ så gäller f''(c) = 0. Eftersom $c \in (c_1, c_2) \subset I$, har vi då bevisat att f'' har minst ett nollställe i I.