

Denoising E-Textile Sensors for Real-World Kinematics Monitoring

Yuxuan Han, Vigyanshu Mishra, and Asimina Kiourti

han.1454@osu.edu, mishra.186@osu.edu, kiourti.1@osu.edu

ElectroScience Laboratory, Dept. of Electrical and Computer Engineering
The Ohio State University

URSI NSRM 2022 - 01/07/2021

- Motivation and state-of-the-art
- Operating Principle of E-Textile Kinematics Sensors
- Measuring the Fabric Drift Error
 - Experimental setup
 - Measurement observations
 - Model analysis
- Correcting the Fabric Drift Error
 - STEP 1: Initial condition calibration
 - STEP 2: Machine learning aided calibration
- Conclusion and Future Work

Operating Principle of E-Textile Kinematics Sensors

Measuring the Fabric Drift Error

Correcting the Fabric Drift Error

Motivation for Motion Capture "In-The-Wild"

Healthcare

- ➤ Detection and Rehabilitation
- ➢ Parkinson's, TBI, Concussion, Falls etc.

Sports

- Optimize fitness and prevent injuries
- Rehabilitate in real-time, faster recovery.

Healthy Individuals

- Maintain fitness and create baseline data.
- Pre-onset detection and relevant measures.

Widespread and significant impact

Biomedical Research

State-of-the-art Motion Capture Technologies

Motion Capture Labs

Restricted to contrived settings

Electromagnetics-Based

Restricted and limited to activity classification

- [1] PC: Takeuchi et al., "Web-based avatar represented lecture viewer toward interactive e-lecture performed by 3d avatar," in 2015 IEEE Global Engineering Education Conference (EDUCON), Mar. 2015, pp. 283–286
- [2] PC: Gonz'alez-Villanueva et al., "Design of a wearable sensing system for human motion monitoring in physical rehabilitation," Sensors, vol. 13, no. 6, pp. 7735–7755, Jun. 2013.
- [3] PC: Wang et al.,, "Wi-fi CSI-based behavior recognition: From signals and actions to activities," IEEE Communications Magazine, vol. 56, no. 5, pp. 109–115, May 2018.
- [4] PC: Amendola et al., "Movement detection of human body segments: Passive radio-frequency identification and machine-learning technologies." IEEE Antennas and Propagation Magazine, vol. 57, no. 3, pp. 23–37, Jun. 2015.
- [5] Y. Qi, C. B. Soh, E. Gunawan, K.-S. Low, and A. Maskooki, "A novel approach to joint flexion/extension angles measurement based on wearable UWB radios," IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 1, pp. 300–308, Jan. 2014.

Loop-Based Textile Kinematics Sensors Developed in our Group

Advantages

- Real-time
- Non-contrived settings
- Seamless
- Unobtrusive
- Unrestricted natural movement
- Robust
- Reliable
- Injury Safe

ESRL: Electrically Small Resonant Loop (ESRL)

V. Mishra and A. Kiourti, "Wrap-Around Wearable Coils for Seamless Monitoring of Joint Flexion," *IEEE Transactions on Biomedical Engineering*, vol. 66, no. 10, pp. 2753–2760, Oct. 2019

V. Mishra and A. Kiourti, "Wearable Electrically Small Loop Antennas for Monitoring Joint Flexion and Rotation," *IEEE Transactions on Antennas and Propagation*, vol. 68, no. 1, pp. 134-141, Jan. 2020

Operating Principle of E-Textile Kinematics Sensors

Measuring the Fabric Drift Error

Correcting the Fabric Drift Error

Operating Principle of E-Textile Kinematic Sensors

Mishra et al., "Wrap-Around Wearable Coils for Seamless Monitoring of Joint Flexion," *IEEE Trans. on Biomed. Eng.*, vol. 66, no. 10, pp. 2753-2760, Oct. 2019.

Experimental Setup

- Rotatable Styrofoam leg with loops on stretchy fit sleeve
- ArUco markers & computer vision for "gold standard" joint angle measurements
- Network analyzer for |S₂₁| readings

Operating Principle of E-Textile Kinematics Sensors

Measuring the Fabric Drift Error

Correcting the Fabric Drift Error

Fabric Drift Error: Measurement Observations

|S₂₁| VS Angle WITHOUT considering sleeve stretches

- Predictable
- Curvature hardly changes under different conditions
- Can shift left/right based on |S₂₁| at 0°

|S₂₁| VS Angle WITH considering sleeve stretches

- Hard to predict
- Curvature changes significantly under different condition
- Cannot just shift left/right

Fabric stretches unevenly with joint flexion, causing the loops' relative position to change over time.

How can we calibrate out this error?

Operating Principle of E-Textile Kinematics Sensors

Measuring the Fabric Drift Error

Correcting the Fabric Drift Error

STEP 1: Initial Condition Calibration

Collect |S₂₁| VS Angle w/o considering sleeve stretches → convert into logarithmic equation

Generate |S₂₁| VS Angle curves w/o considering sleeve stretches based on their |S₂₁| value @ 0° (initial condition)

$$\hat{y} = a \cdot log_{10}x + b \cdot x + d$$

STEP 2: Machine Learning Aided Calibration

10 nodes for input and output (10 data points of $|S_{21}|$ VS Flexion Angle curve), 48 nodes for hidden layer

Test loss after 300 epochs (2000 data samples), lr=0.005

Using trained network to get calibrated $|S_{21}|$ VS Flexion Angle curve at a specific initial condition (-36dB @ 0°).

Error after calibration ≤ 0.3°

Input = $|S_{21}|$ VS Flexion Angle w/o sleeve Predicted = $|S_{21}|$ VS Flexion Angle w/ sleeve

Operating Principle of E-Textile Kinematics Sensors

Measuring the Fabric Drift Error

Correcting the Fabric Drift Error

Conclusion

- Fabric drift can be detrimental in the operation of loopbased textile kinematics sensors
- Proposed 2-step methodology can calibrate out this error
- Preliminary results show errors below 0.5°

Future Work

- Adapt to dynamic motion measurements (i.e., joint flexing during sensor sampling)
- Improve accuracy

Thank you!

Questions?

Yuxuan Han, Vigyanshu Mishra, and Asimina Kiourti

han.1454@osu.edu, mishra.186@osu.edu, kiourti.1@osu.edu