TP Conception : ECAM3 A&M Année 2019/2020

Dossier de Conception : Bobineuse

Groupe H1:

REYNAUD Antoine - VERMOREL Antoine - SARDA Benjamin - PAULIN Dorian - DELBREILH Gautier - GARNIER Vincent - NZEUSSEU Noémie - RONAT Margot

Enseignant tuteur :

André ERNESTO

Sommaire:

I-	Présentation de l'appel d'offre	4
1)	Contexte	4
2)	Réponse à l'appel d'offre	4
II-	Enoncé fonctionnel du besoin	5
1)	Enoncé et caractérisation des fonctions de service et des contraintes	5
2)	Cycle d'utilisation du produit et identification de son environnement	10
3)	Analyse de l'existant :	10
a)	Bobineuse Bricolage TSF	10
b)	Bobineuse molle de bobine de fil à coudre	11
c)	TwinTAPE 200XL de Starlinger company	11
d)	Machine de bobinage de fils textiles	12
e)	Bobinoir croisé	13
f)	Chariot manipulateur de bobine	13
III-	Choix techniques et technologiques	15
1)	Système de découpe du fil	15
2)	Système de transport du fil	16
3)	Système de rotation de la bobine et répartition du fil	17
a)	Vis de trancannage :	19
b)	Came cylindrique :	19
4)	Support de bobine	21
5)	Stockage des bobines	21
IV-	Notice de dimensionnement	22
1)	Système de transport	22
a)	Choix du moteur	22
b)	Dimensionnement du système poulies/courroie	22
3)	Dimensionnement des réducteurs	28
6)	Système de découpe : dimensionnement des roulements	29
7)	Calcul de la tension du fil	29
8)	Calcul de glissements des galets	30
9)	Dimensionnement des goupilles	31
10)	Dimensionnement de la clavette	32

V-	Tableau des coûts prévisionnels	34
a)	Liste des composants standard	34
b)	Tableau des coûts	34
VI-	Annexe	35
1)	Analyser le besoin	35
2) Organisation des fonctions		35
3) Fiche technique ABS		36
4)	4) Fiche technique PLA	
5) Fiche techniques poulies et courroie		41
6) Tableau des coefficients de frottements		41
7) Schéma cinématique		44
a)	Système de découpe	44
b)	Système de came cylindrique	44

I- Présentation de l'appel d'offre

1) Contexte

L'équipe de projet H1 a reçu une appel d'offres de la fondation ECAM de Lyon, au travers de son commanditaire M. ERNESTO, afin de concevoir et fabriquer une bobineuse capable d'enrouler un fil polymère autour de bobines. Cette bobineuse devra fonctionner en complément d'une extrudeuse (qui produira un fil à partir de granulés en polymère) réalisée précédemment.

Le groupe H1 est composée de 8 étudiants d'ECAM 3 A&M de l'Entreprise H: Groupe H1 Motors, travaillant ensemble dans le cadre de la matière conception. Cette entreprise est spécialisée dans la conception mécanique et l'automatisation de process. Elle s'inscrit dans la lignée d'ingénieurs formée depuis plus de 100 ans à L'ECAM Lyon. L'établissement bénéficie d'une grande expérience et renommée auprès des entreprises Lyonnaise.

De la réponse d'appels d'offres à la livraison des produits, tout est traité par le Groupe H1. Innovant par leur jeunesse, performant par leurs valeurs, savoir être et connaissances générales et techniques, par leur formation professionnelle, les membres du groupe H1 s'adaptent à tous vos besoins pour trouver la solution qui vous convient. Forts de la confiance qui leur est accordé par les entreprises, ils représentent le futur. En les choisissant les entreprises choisissent la sécurité, l'économie, l'écologie et la technologie.

2) Réponse à l'appel d'offre

Pour répondre à l'appel d'offres de la fondation ECAM Lyon, nous concevrons une machine automatisée pouvant enrouler du fil polymère (PLA) autour de bobines existantes de différentes tailles. Nous nous assurerons que cette machine puisse non seulement fonctionner en complément d'une extrudeuse, mais aussi indépendamment de cette dernière. Elle sera évidemment facile à transporter et à utiliser, et devra fonctionner dans un environnement extérieur afin de servir de support pédagogique auprès des différents publics auxquels l'établissement peut s'adresser.

Dans le cadre du développement de travaux pratiques s'articulant autour de projets de mécanique et de CAO, ainsi que l'augmentation de l'utilisation des imprimantes 3D de l'ECAM, il est nécessaire que la bobineuse puisse stocker un certain nombre de bobines afin d'alimenter leurs différentes imprimantes. Plusieurs personnes doivent pouvoir accéder à cette machine. En effet, que ce soit le personnel de la fondation, les étudiants ou chercheurs dans les pôles de l'ECAM, ils doivent tous pouvoir avoir accès à la bobineuse. Elle devra alors être facile d'accès et d'utilisation. Des notices seront fournies pour soutenir et aider les personnes devant utiliser la bobineuse. Enfin l'aspect sécuritaire étant un des critères primordiaux de l'entreprise, nous veillerons à cartériser la bobineuse, pour le bien de ses utilisateurs.

- II- Enoncé fonctionnel du besoin
 - 1) Enoncé et caractérisation des fonctions de service et des contraintes

Le système doit :

Fonctions principales et contraintes	Désignation de la fonction	Critères	Niveau	Flexibilité	Commentaires
FP1	Enrouler le fil				
FP1.1	Gérer la Vitesse d'enroulement	Vitesse linéaire constante	15mm/s Max (±1 mm/s)	1	La vitesse d'enroulement va dépendre du rayon du fil et de la vitesse de sortie de fil de l'extrudeuse
FP1.2	Tendre le fil	Tension constante	Oui	2	Adapter la vitesse de bobinage correspondant à la valeur de tension du fil
FP1.3	Maintenir la tension du fil	Gestion de la force et des angles d'enroulement	xx N	2	Assurer la conservation du diamètre du fil et sa continuité
FP1.4	Répartir de façon ordonnée le fil sur la bobine	Gestion du déplacement de la bobine	xx mm/s	3	Eviter l'emmêlement du fil pour faciliter son déroulement
FP1.5	Assurer l'enroulement du fil	Adhérence du fil		2	Choix de matériaux adapter pour éviter le risque de glissement
FP2	Couper le fil				
FP2.1	Couper à une longueur prédéfinie	Tolérance de longueur	± 5mm	1	Permet d'assurer le poids maximum de la bobine
FP2.2	Détecter une bobine remplie	Capteur de détection du diamètre de la bobine	750g	1	Valeur connue dépendant du diamètre du fil et de son type
FP2.2	Couper différents type de fil	Force de cisaillement de l'ABS et PLA et adhérence du système de coupe	110/293N	2	Eviter que le fil ne colle au système de coupe
FP2.4	Être peu encombrant	Dimension maximum	40x40 mm	4	
FC1	Résister à son environnement				
FC1.1	Être étanche	Système de protection (parois)	IP1	3	Résister au risque de projection d'eau ou de pluie faible

FC1.2	Résister à la température du fil	Choix des matériaux (adhérence et température de fusion)	Tf=190°C PLA Tf=240°C ABS	3	Les températures de fusion des matériaux devront être inférieur à 120°C (le fil aura déjà refroidit)
FC1.3	Être utilisable dehors	Système de protection au vent et aux corps extérieur	IP1	5	Protection à la poussière et autres type d'impureté
FC2	Être transportable				
FC2.1	Être facilement déplaçable	Poids maximum	40 Kg maximum	2	
FC2.2	Être facile de préhension	Géométrie simple	Oui	3	Forme cubique
FC2.3	Ne pas dépasser un volume maximum	Encombrement	1000x100x900m m	2	Correspond aux dimensions des portes de l'ECAM
FC2.4	Être démontable	Démontable	5 min	3	
FC2.5	Résister aux chocs et vibration	Résistant au vibrations et chocs liés aux transport	Oui	4	
FC3	Être facile de maintenance				
FC3.1	Être facilement démontable	Démontable	5 min	2	Montage du système réversible
FC3.2	Permettre une réparation manuelle en cas de panne	Choix de composant standard	Oui	2	
FC4	Avoir plusieurs mode de fonctionnement				
FC4.1	S'adapter à l'extrude	Système de fixation à l'extrudeuse démontable	Oui	1	
FC4.2	Fonctionner seul	Embobiner du fil seul	Oui	2	Châssis différent de celui de l'extrudeuse
FC5	Respecter le budget				
FC5.1	Respecter le budget	Coût	750€ max	1	

FC6	Communiquer avec l'opérateur				
FC6.1	Informer l'opérateur de couper le fil	Présence de voyants	Voyant	1	
FC6.2	Indiquer des disfonctionnement (pannes)	Présence de capteurs	Voyants et alarmes	1	
FC6.3	Pouvoir régler l'épaisseur du fil	Automate commun avec l'extrudeuse	IHM/clavier	3	Permet de savoir à quelle longueur couper le fil
FC6.4	Pouvoir régler le diamètre de bobine	Automate commun avec l'extrudeuse	IHM/clavier	3	Permet de savoir à quelle hauteur la bobine est remplie
FC7	Être facile d'utilisation				
FC7.1	Être facilement arrêtable	Présence de bouton d'arrêt d'urgence et stop	Boutons stop et d'arrêt d'urgence	2	
FC7.2	Nécessiter un seul opérateur	Nécessite un seul opérateur	Oui	2	
FC7.3	Permettre de resouder le fil en cas de coupe	Température de fusion	Tf=190°C PLA Tf=240°C ABS	1	
FC8	Respecter les normes de sécurités				
FC8.1	Être cartérisé	Cartériser tous les moteurs et autres zones à risque	Oui	1	Choisir des matériaux transparent afin de répondre à FC9
FC8.2	Avoir un géométrie simple	Limiter les angles vifs, et surfaces coupantes	Oui	1	
FC8.3	Indiquer les dysfonctionnements	Présence de voyants	Oui	1	
FC8.4	S'arrêter en cas de panne	Boutons d'arrêt d'urgence et sécurités	Oui	1	
FC8.5	Respecter l'environnement	Matériaux recyclable	Oui	2	Choisir des matériaux respectant les normes d'usage et environnemental

FC9	Être pédagogique				
FC9.1	Pouvoir être utilisé comme support de cours	Être pédagogique	Matériaux transparent	2	
FC9.2	Être simple d'utilisation	Emploie de notices de fonctionnement	Notice de fonctionnement , étiquettes	2	
FC9.3	Avoir un bon design	Être attrayant	Couleurs, formes, matériaux	2	
FC10	Être alimenté				
FC10.1	Pouvoir convertir l'énergie électrique	Convertir AC/DC	De 230V en 12V	1	Correspondant à la tension du Fablab
FC10.2	Minimiser les pertes	Limiter les frottements, les chocs	Choix des matériaux, lubrification	2	
FC11	Être automatisable				
FC11.1	Vérifier le bon fonctionnement du système	Contrôle du processus	Capteurs	4	
FC11.2	Pouvoir avoir un automate commun avec l'extrudeuse	• • • • • • • • • • • • • • • • • • •	Oui	4	

2) Cycle d'utilisation du produit et identification de son environnement

	Utilisateur du produit	Equipements	Matière
Fabrication	Elève ECAM 3 A&M	Machine de production du Fablab	-
Livraison	M. ERNESTO	•	-
Utilisation	Fondation ECAM de Lyon/ Professeurs	-	Fils de PLA / ABS
Recyclage	-	Adapté aux matériaux et technologies utilisés aujourd'hui	Adapté aux matériaux et technologies utilisés

3) Analyse de l'existant :

a) Bobineuse Bricolage TSF

Description:

Cette machine est conçue pour embobiner des fils allant d'un diamètre de 0,5/10 à 1mm. Un potentiomètre est utilisé pour faire varier la vitesse de rotation de la bobine. La répartition du fil sur la bobine s'effectue grâce à un levier qui assure la fonction de débrayage. La tension du fil se fait à l'aide de pince réglable et/ou de galets caoutchoutés suivant le diamètre du fil.

Projet de Conception ECAM3 : Bobineuse

<u>Lien:</u> http://hubert.frappier.free.fr/radio/brico/bobineuse/P-bobineuse.html

Prix: inconnu?

b) Bobineuse molle de bobine de fil à coudre

Description:

Cette machine est conçue pour embobiner du fil de coton sur des bobines molle de diamètre 250 mm maximum. Un système de came cylindrique est utilisé pour la répartition du fil sur la bobine afin d'éviter l'emmêlement de ce dernier. Le process est entièrement automatisé et fonctionne avec 12 bobine chacune motorisée en même temps.

 $\underline{\textbf{Liens:}} \ https://french.alibaba.com/product-detail/sewing-thread-bobbin-soft-winding-machine-before-yarn-dyeing-60521346507.html$

Prix: 28 000\$

c) TwinTAPE 200XL de Starlinger company

Description:

Cette machine est conçue pour embobiner des fils de PP/HDPE de 1.8 à 6mm de diamètre. Chaque axe accueillant une bobine de diamètre allant jusqu'à 35mm de diamètre est motoriser, est la vitesse de rotation est gérée par un variateur de fréquence. Un système de galet pouvant se déplacer, permet de gérer le glissement du fil et les à-coups lors de l'enroulement. Le fil est guidé tout au long du processus à travers des orifices pour éviter tout emmêlement.

Liens: https://www.starlinger.com/en/packaging/extrusion-winding/twintape/

Prix: Non indiqué

d) Machine de bobinage de fils textiles

Description:

Cette machine embobine du fil textile rigide ou élastique de grande largeur (60mm). Un variateur de fréquence de fréquence est utilisé pour faire varier la vitesse de rotation de la bobine et un guide fil standard se déplace transversalement et en hauteur pour répartir le fil sur la bobine. Le comptage des mètres ainsi que tous les autres systèmes sont automatisés.

<u>Liens:</u>

https://www.rius-comatex.com/pages/fr/machines/enroulage/enrouleuses.php?id=367&lang=FR

Prix: Non indiqué

e) Bobinoir croisé

Description:

Cette machine est conçue pour bobiner du fil de laine de façon croisée. Un système de came cylindrique assure la répartition du fil sur la bobine ainsi que le motif croisé. Un mécanisme de va est vient est unique suivant la largeur du ruban et la largeur de la bobine. De plus un dispositif de tension du fil assure le maintien de ce dernier sur la bobine et limite les risques de glissement.

<u>Liens:</u> https://www.rius-comatex.com/pages/fr/machines/enroulage/bobinoir-croise.php?id=358&lang=FR

Prix: Non indiqué

f) Chariot manipulateur de bobine

Description:

Cette machine permet de déplacer et retourner à 90° des bobines. Son mandrin extensible lui permet de s'adapter aux différents alésages de bobines à manipuler. Il assure le maintien en position d'une bobine afin que celle-ci puisse être débobinée. Un vérin hydraulique lui permet de soulever des charges jusqu'à 600Kg.

<u>Liens: http://www.zoneindustrie.com/Produit/Chariot-manipulateur-de-bobines-19704.html</u>

Prix: Non indiqué

III- Choix techniques et technologiques

<u>Système de notation :</u>

+++ : Très bon	: Très mauvais
++: Bon	: Mauvais
+: Correct	- : Moyen

1) Système de découpe du fil

Une fois que la bobine a atteint son poids maximum, le fil doit être coupé afin de pouvoir commencer à bobiner une nouvelle bobine.

Voici les différents systèmes auxquels nous avons pensé :

- **Système de type guillotine**: Une lame est actionnée en translation et viens couper le fil sur une plaque sur lequel est en appui.
- <u>Système de balayage circulaire</u>: Une lame circulaire est fixée en sortie de l'extrudeuse et tourne pour couper le fil.
- **Système à lame excentrée :** Une lame est en liaison pivot avec la plaque sur laquelle le fil glisse. L'opérateur n'a alors qu'à faire descendre la lame pour couper le fil.
- **Système de fil chaud :** un fil est chauffé avec le courant électrique et un mouvement de translation est réalisé pour couper le fil.

	Guillotine	Balayage circulaire	Lame excentrée	Fil chaud
Efficacité	+++	++	+++	+++
Adaptabilité	+++		+++	
Coût	+++	++	+++	-
Encombrement	++	+++	+++	+++
Sécurité	++	++	++	-

Le système de <u>lame excentrée est choisi</u> car il nécessite un encombrement inférieur au système de guillotine. De plus il nécessite moins de pièce est facile à mettre en œuvre. Afin d'améliorer la découpe du fil et sont maintient en position une fois coupé et assurer le maintien en tension du fil enroulé dans la bobine, un système de sauterelle de serrage sera fixé sur le bâti.

Page **15** sur **44**

2) Système de transport du fil

Le fil doit être récupéré en sortie de l'extrudeuse et être transporté jusqu'à la bobine afin d'y être enroulé. De plus le système de transport doit prendre en compte la mise en place du système de coupe du fil, choisi précédemment.

Voici les différents systèmes auxquels nous avons pensé :

- Système de convoyeur: par gravité, le fil tombe sur un convoyeur situé à une hauteur inférieure de la sortie de l'extrudeuse. La phase de découpe s'effectuerai sur le convoyeur (risque d'usure et de détérioration). Deux types de convoyeurs sont alors possible, un convoyeur à courroie ou un convoyeur à rouleaux.
- Système de galets: des galets seraient positionnés de la sortie de l'extrudeuse jusqu'à la bobine, avec un passage sur une planche afin de procéder à la coupe du fil. Afin de pourvoir s'adapter aux différents diamètres de fils, des galets en caoutchouc seront utilisé pour ne pas déformer le fil.

	Convoyeur	Galets
Efficacité	++	++
Adaptabilité	+	++
Coût		++
Encombrement	-	++
Déformation du fil	++	+
Frottement	-	+
Glissement	+	

La solution des galets est choisie puisqu'elle permet de limiter l'encombrement du système et est plus facilement adaptable avec le système de coupe du fil. Deux galets seront positionnés en sortie de l'extrudeuse afin d'exercer une pression sur le fil et ainsi de limiter tout risque de glissement du fil sur le galet inférieur. De plus la vitesse de rotation devant être constante, chaque galet sera relié à un unique moteur dans le mouvement de rotation sera transmis par un système de poulies/courroies qui est plus avantageux (prix, bruit, rendement, poids...) qu'un système de chaine/pignons et que nous dimensionnerons par la suite:

Solution des pignons et chaînes :

Avantages	Inconvénients
Résistant à des milieux difficiles (température)	Bruit
Longévité	Nécessite beaucoup d'énergie d'entrainement (frottement/inertie)
Rendement élevé	Poids
Puissance de transmission importante	Nécessite du graissage
	S'utilise pour des vitesses réduite
	Prix

Solution des poulies et courroie :

Avantages	Inconvénients
Adapté pour réduire les vibrations	Rapport de réduction limité sur la transmission de puissance
Coût faible	Durée de vie plus faible
Rendement élevé (98%)	Résiste moins à la température
Nécessite peu d'entretien	
Nécessite une faible puissance pour entraîner les éléments	
Léger	

3) Système de rotation de la bobine et répartition du fil

Pour être correctement utilisé et être la plus rentable possible, le fil être disposé de façon ordonnée sur la bobine. Pour cela un chariot ou un mouvement de translation de la bobine tout entière est nécessaire. Ainsi le fil sera disposé de façon repartie horizontalement.

Cette partie a été travaillée de façon conjointe avec la partie de répartition du fil, puisque la deuxième partie sont dépendante l'une de l'autre.

Nous avions plusieurs choix:

- Augmenter la vitesse du fil de façon linéaire avec la bobine (à cause de la relation : $v = \omega \times r$, avec r augmentant au fur et à mesure qu'une rangée de fil est déposée)
- Garder la vitesse constante. Cela étant une question importante pour garder le fil dans un état optimale.

Voici les différents systèmes auxquels nous avons pensé :

Système de bielle et pivot glissant : Pour cette solution la bobine entière se déplace, cela évite l'utilisation de chariot et au fil de se tordre. Ainsi, le système de bielle est directement relié au pivot glissant de la bobine qui lui octroie la translation, le moteur étant placé sur la partie de la pivot ne tournant pas et relié par un réducteur au système pivotant.

Schéma du système pivot glissant

Pour l'incrémentation de la vitesse, un système de poussoir relié à un potentiomètre par le biais d'une roue à dent rétractable viendrait augmenter la vitesse du moteur grâce aux relation électrique liant la vitesse et le courant. Ainsi à chaque fois que la bobine serait en position extrême, le poussoir solidaire de la bobine viendrait tirer la roue et donc changer la valeur de résistance.

Schéma du mécanisme de dents rétractables

- Système de motorisation sur cylindre avec glissement :

(Les deux systèmes utilisent la même méthode de motorisation de la bobine et un chariot pour répartir le fil, car la bobine cette fois-ci n'est animée que par une rotation). Ces solutions privilégient le fait de garder la vitesse de la bobine constante, pour ce faire la bobine est placé sur deux cylindres (un motorisé l'autre libre). La vitesse de ce galet est la même que celui situé en sortie d'extrudeuse puisqu'ils sont entraînés par un système de poulies/courroie comme expliqué précédemment. La bobine est donc entraînée à la vitesse constante (celle du fil), mais cette dernière aura tendance à accélérer à cause de l'effet indiqué plus tôt. Pour que la vitesse du système reste constante il suffit de faire glisser la bobine sur le cylindre.

a) Vis de trancannage :

Une fois cette motorisation réalisée il faut guider le fil, pour cela il est possible de relier un chariot avec une vis de trancannage, qui permet de mettre en œuvre la translation nécessaire sur la largeur de la bobine.

Figure 1 Vis de trancannage (www.pinterest.com)

b) Came cylindrique:

Il s'agit du même principe que la vis de trancannage cependant avec une seule rainure guide, il faut simplement faire attention aux frottements et à la durabilité de la pièce (cela fera partie d'une étude ultérieurement).

Figure 2 Came cylindrique (http://jeanclaude.deponte.free.fr)

<u>Transmission du mouvement de rotation :</u>

	Transmission par cylindre	Transmission par dent
Efficacité	++	+++
Adaptabilité	+++	+
Coût	+++	+++
Changement de vitesse	+++	
Facilité de mise en œuvre	++	

Sur un grand nombre de point, la transmission par contact direct est plus intéressante, mais son avantage le plus grand est le changement de vitesse. En effet en partant sur cette solution nous n'avons plus ce caractère à prendre en compte grâce au glissement. Effectivement devoir changer de vitesse de façon mécanique et non informatique est très dur à mettre en œuvre (Cf. > roue denté), ainsi éviter ce désagréments est grandement préférable, c'est donc l'argument principal de son choix.

Répartition du fil

	Translation de la	Bobine « fixe »		
	bobine	Vis de trancannage	Came cylindrique	
Facilité de mise en œuvre		++	++	
Détérioration du fil	+++	+	+	
Coût	+		+++	
Encombrement		+++	+++	
Frottement	-	-		
Nombre de pièces utilisées		++	++	

Pour ce système là nous avons préféré un système à bobine fixe car la mise en place du procédé est bien plus simple, en effet réalisé une pivot glissant s'avère assez complexe et venir faire translater la bobine prends bien plus de place que simplement un chariot.

Quant à la vis de trancannage nous nous sommes rendu compte que bien que son fonctionnement soit très intéressant, elle est assez difficile à réaliser avec nos moyens comparés à une came cylindrique qui est principalement utilisée dans l'industrie. Ainsi il aurait fallu acheter cet élément technologique qui peut être assez onéreux, ainsi cela nous a

conduit à privilégier la came. L'un des seuls défauts de la came cylindrique étant les frottements présents lors de son fonctionnement, ainsi chercher à les réduire au maximum est un des objectifs à atteindre.

Cette solution sera donc logiquement animée par un second moteur et donc un réducteur de taille conforme et la came n'aura qu'une rainure.

Combinaison des solutions

De ces deux systèmes nous pouvons en conclure que la combinaison la plus intéressante est :

- Transmission par cylindre
- Répartition du fil grâce à un chariot guidé par came cylindrique

Ainsi cette combinaison, outre les avantages déjà cités nous permet de réaliser les fonctions demandées avec premièrement moins de pièces, des pièces plus simples à fabriqués et une utilisation très simple car il suffit de simplement de poser la bobine et de placé le fil dessus.

4) Support de bobine

La bobineuse devant également pouvoir servir à réembobiner du fil ou à souder plusieurs bobines de fils, une partie totalement autonome du système peut y est rajouté afin d'y remplir ce rôle. Ce système reprend le principe du bras manipulateur de robot. Un éperon qui servira à fixer la bobine, peut translater verticalement grâce à un trou oblong dans le bâti afin d'être compatible avec des bobines de différents diamètres. Un système d'écrou contre écrou assura le maintien à une certaine hauteur de l'éperon correspondant à son utilisation. Une fois la bobine en place, l'utilisateur n'aura qu'à dérouler le fil pour le faire passer entre les galets normalement situés en sortie d'extrudeuse, et la sauterelle assurera le rôle de maintien en place du fil lors des opération de soudage entre deux bobines. (cf dessin)

5) Stockage des bobines

Notre système sera mis en place sur un chariot à roulette à 2 plateaux, afin de pouvoir y stocker des bobines vides et des bobines à souder. Cet élément n'étant pas réalisable au fablab (nécessité d'une structure soudée), il sera acheté. Cependant, le système sera utilisable sur d'autres support (tables...) puisqu'il ne sera pas fixe sur le chariot. Cela permettra un emploie plus facile de la bobineuse et une non obligation d'achat du chariot.

IV- Notice de dimensionnement

1) Système de transport

a) Choix du moteur

Pour le transport du fil, nous avons choisis le système des galets. Afin de limiter le nombre de moteur un système de poulies/courroie transmettra le mouvement de rotation au second galet qui assure la rotation de la bobine pour enrouler le fil. Le système possède donc deux moteurs (un pour le galet moteur et le second pour la came cylindrique). Nous avons cherché sur le site RS un moteur à courant continu ayant une vitesse de rotation la plus faible possible, un diamètre d'arbre suffisant afin de pouvoir clavetter ou faire un méplat dessus, une tension d'alimentation de 24V et enfin le prix le plus faible possible pour respecter le budget. Nous avons finalement opté pour le moteur suivant dont voici les caractéristiques techniques :

Tension d'alimentation	24 V c.c.
Type de moteur V c.c.	Brossé
Gamme de puissance	9,2 W
Vitesse de sortie	3 600 tr/mn
Diamètre d'arbre	5mm
Couple de sortie maximum	24,5 mNm
Longueur	81.2mm
Largeur	38.4mm
Dimensions	Ø 38,4 x 81,2 mm

Afin de faciliter le système et les calculs, nous choisirons le même moteur pour la came cylindrique mais avec un réducteur adapté à la vitesse nécessaire au niveau de la came.

b) Dimensionnement du système poulies/courroie

Une fois le moteur choisi nous cherché à déterminer le rapport de réduction nécessaire afin de s'adapter à la vitesse linéaire de sortie du fil de l'extrudeuse qui est de 15mm/s. Nous avons cherché sur le site RS des galets en caoutchouc, pour ne pas déformer le fil avec un alésage proche du diamètre de l'axe du moteur

Voici le galet que nous avons choisi pour le système, il a un diamètre extérieur de 48mm et un alésage de 6,5mm et est recouvert de 2mm de caoutchouc :

A partir de son diamètre extérieur nous pouvons calculer la vitesse linéaire du galet :

$$Vgalet = \omega * R = 3600 * \pi/30 * 24 = 9048 mm/s$$

On en déduit le rapport de réduction au niveau du galet :

$$Rgalet = \frac{Vfil}{Vgalet} = \frac{15}{9048} = 1,657 * 10e - 3$$

Cela équivaut à diminuer par 603 la vitesse de rotation du moteur.

Afin de sélectionner notre courroie, nous avions besoin du facteur de service de l'emploie de cette dernière. Nous l'avons déterminée à l'aide <u>du Manuel de détermination Courroies</u> <u>synchrones industrielles de l'entreprise GATES</u>. Nous avons un moteur à courant continu utilisé dans le cadre d'un convoyeur, cela nous donne un <u>facteur de service de 1,2</u>:

FACTEURS DE SERVICE						
MACHINE ENTRAINEE			ENTRA	INEMENT		
Les machines entraînées citées ci-dessous ne donnent qu'un échantillon représentatif. Choisissez un entraînement qui corresponde à vos besoins par ses caractéristiques de puissance.	Moteurs à courant alternatif/triphasé: couple normal, moteurs à cage d'écureuil, moteurs synchrones, moteurs à courant monophasé, moteurs commandés par fréquence. Moteurs à courant continu: circuit dérivé, moteurs pas a pas. Moteurs à combustion multicylindres.			Moteurs à courant alternatif/triphasé: couple élevé, monophasé, couplage en série, rotor bobine monophasé. Moteurs à courant continu: couplage en série, excitation compound. Servo-moteurs. Moteurs à combustion monocyclindres. Lignes d'arbres. Accouplements.		
	Service intermittent	Service normal	Service continu	Service intermittent	Service normal	Service continu
	jusqu'à 8 h/jour ou service saisonnier	8-16 h/jour	16-24 h/jour	jusqu'à 8 h/jour ou service saisonnier	8-16 h/jour	16-24 h/jox
Installations de remplissage. Instrumentation. Appareils de mesure. Appareils médicaux. Machines de bureau. Installations de projections.	1,0	1,2	1,4	1,2	1,4	1,6
Appareils de nettoyage des sols. Machines à coudre. Sérigraphie: four, tambour, conique. Machines à bois (légères): scies à ruban, tours.	1,1	1,3	1,5	1,3	1,5	1,7
Agitateurs pour liquides. <u>Convoyeurs:</u> courroles, charges moyennes. Perceuses. Tours. Scies. Machines de blanchisserie. Machines à bois (lourdes): scies circulaires, déca ceuses. raboteuses.	1,2	1,4	1,6	1,6	1,8	2,0

En rentrant toutes les informations dans le logiciel DesignFlexPro et en sélectionnant uniquement les courroies de type trapézoïdales, nous avons obtenu les résultats suivants :

Nous avons sélectionné des courroies de type trapézoïdale et plus particulière de type Poly-V, car elles présentent de nombreux avantages :

> Courroie trapézoïdale

Bonne adhérence, convient pour transmettre de fortes puissances.

Courroie poly « V »

Excellente adhérence, permet la transmission de puissances importantes

A cause de l'entraxe important entre les deux galets qui est nécessaire pour le système de coupe et de répartition du fil, le site RS de propose aucune courroie aux dimensions nécessaire ou même proche des courroies dimensionnées. Cependant la première courroie est disponible sur le site 123Courroies :

Nous optons donc pour une courroie trapézoïdale de type Poly-V à 9 stries et de longueur 558mm et dont les données techniques et dimensions des poulies sont données en annexe 5.

2) Système de came cylindrique

 Dans un premier temps nous cherchons à déterminer la vitesse linéaire du chariot (dispositif qui guide le fil sur la came) :

Le périmètre intérieur de la bobine est : $P_{bobine} = 2\pi R_{bobine} = 2 * \pi * \frac{55}{2} = 172,78 \text{ mm}.$

Le temps nécessaire pour enrouler une largeur de fil: $t_{1 \text{ tour bobine}} = P_{bobine} / V \text{ fil} = 172,78/15 = 11,52 \text{ s.}$

Sur une rangée il y a : $Nb_{fil} = 41/2.85 = 14$

Il faut donc $t_{1 \text{ rangée}}$ pour remplir une rangée : $t_{1 \text{ rangée}}$ = $t_{1 \text{ tour}} \times 14$ = 161,26 s.

Donc V déplacement chariot = Largeur bobine / t_1 rangée = 41 / 161,62 = 0,25 mm/s.

De plus on sait que la came fait ½ en 161,26s, il lui faut donc 322,52s pour faire un tour complet, on en déduit donc la vitesse de rotation de la came (qui est calculé sur le diamètre le plus petit de la bobine) : $\omega = \frac{1}{322.52} * 60 = 0,186 \ tr/min$

Le rapport de réduction entre le moteur et la came est: Rcame = 0,186/3600 = 5,17x10-5

Il faut donc réduire la vitesse de 19354 fois. Ce résultat est tout à fait cohérent puisqu'il correspond environ à 28 fois le rapport de réduction du galet, or sur la came nous répartissons 28 diamètre de fils. Ainsi pour facilité le dimensionnement des réducteurs, nous réutiliserons le réducteur du galet, auxquels on ajoutera en série un réducteur de 28.

Nous allons maintenant calculer la longueur et l'angle de la rainure.

D'après le "théorème de Pythagore ", on obtient la longueur de la rainure sur 1 demicylindre qui est = $\sqrt{41^2 + 62.8^2}$ = 75 mm

L'angle ϕ est d'alors : $\tan(\phi) = 41 / 62.8$. Soit $\phi = \arctan(41/62.8) = 33.14^{\circ}$.

On a alors, une longueur de rainure sur tout le cylindre de 75 mm et de largeur 11 mm.

Forme de la rainure sur la came cylindrique

Cas de la bille :

On a des appuis ponctuels entre la bille et la rainure. On trace alors les cônes de frottement en A et B. On sait que la force tangentielle est égale au produit du coefficient de frottement et de la force normale. Or la force tangentielle s'oppose à la vitesse de déplacement. De plus, on a glissement en A et B; on en déduit alors que la force résultante à B est dans la partie droite et tangent au cône de frottement (cf schéma).

De plus, on a le poids de la bille qui est de 0,001kg soit une action P=9,8*10⁻³ N. On réalise donc un produit en croix pour connaître les forces en A et B.

On a $T_A = 0.00612$ N et $N_A = 0.03$ N.

Et
$$T_B = 0.0049 \text{ N}$$
 et $N_B = 0.0196 \text{ N}$.

Or
$$\mu_A = T_A / N_A$$
 et $\mu_B = T_B / N_B$.

On a donc $\mu_A = 0.20$ et $\mu_B = 0.25$.

Cas d'un roulement à aiguilles

On a le poids de l'aiguille qui est de 0,003kg soit une action P=0,0294 N. On réalise donc un produit en croix pour connaître les forces en A et B.

On a $T_{A'} = 0.0294$ N et $N_{A'} = 0.124$ N.

Et $T_{B'} = 0.02205 \text{ N}$ et $N_{B'} = 0.06615 \text{ N}$.

Or $\mu_{A'} = T_A / N_A$ et $\mu_{B'} = T_B / N_B$.

On a donc $\mu_{A'} = 0.23$ et $\mu_{B'} = 0.33$.

On obtient donc : $\mu_A < \mu_A'$ et $\mu_B < \mu_B'$

Conclusion : On a un coefficient de frottement plus élevé sur le roulement à aiguilles, de par sa surface de contact avec la rainure qui est plus grande que la bille (contact ponctuel). De plus, le prix est plus élevé pour le roulement à aiguilles que pour celui à bille. On choisit donc la bille pour notre système.

	Roulement à aiguilles	Bille
Prix	-	+
Frottement horizontal	-	++
Frottement vertical	++	+
Usure de la pièce	+	-

3) Dimensionnement des réducteurs

Comme expliqué précédemment, nous dimensionnerons deux blocs réducteurs. Un premiers de rapport 603 entre le moteur et le galet, et un second qui sera positionné en série avec un second de rapport 30 (en prenant en compte les erreurs dû aux arrondis des calculs).

• <u>1er cas</u>: Pour obtenir le premier rapport k=1/603 nous faisons une combinaison de trains épicycloïdaux comme sur le schéma suivant de rapport k1, k2 et k3:

On a également $k_1k_2k_3=\frac{1}{603}$ et $k_1=k_2=k_3=\frac{1}{8,44}$ afin de faciliter les calculs et l'usinages des trains

Nous avons la formule suivante :

$$k = \frac{\eta_{S}}{\eta_{E}} = \frac{\eta_{PS^{"}}}{1} = \left(\frac{Z_{1}}{Z_{1} + Z_{3}}\right) \cdot \left(\frac{Z_{1}^{'}}{Z_{1}^{'} + Z_{3}^{'}}\right) \cdot \left(\frac{Z_{1}^{"}}{Z_{1}^{"} + Z_{3}^{"}}\right) = k_{1}k_{2}k_{3}$$

Comme les trois trains ont le même rapport de réduction, on obtient :

$$Z_1 = Z_1' = Z_1''$$
 et $Z_3 = Z_3' = Z_3''$

Finalement,
$$\left(\frac{Z_1}{Z_1 + Z_3}\right) = \frac{1}{8.4}$$

On fixe $Z_1 = 10$ dents, on obtient alors $Z_3 = 75$ dents

• $2^{{
m è}me}$ Cas: on veut un rapport de réduction de 30, on note k=1/30

Nous utiliserons le même système que précédemment mais avec seulement 2 trains.

On a la formule suivante :

$$k = \frac{\Pi_S}{\Pi_E} = \left(\frac{Z_1}{Z_1 + Z_3}\right) \cdot \left(\frac{Z_1'}{Z_1' + Z_3'}\right) = k_1 k_2$$

On impose au deux trains le même rapport de réduction : $k_1 = k_2 = \frac{1}{5.5}$

On a alors
$$Z_1=Z_1'$$
 et $Z_3=Z_3'$ et finalement, $\left(\frac{Z_1}{Z_1+Z_3}\right)=\frac{1}{5.5}$

On fixe $Z_1 = 10$ dents et on a $Z_3 = 45$ dents.

6) Système de découpe : dimensionnement des roulements

Le système de découpe utilise deux roulements, au niveau de la lame. Ces roulements ne sont pas constamment en rotation et ne tournent à une vitesse faible. De plus nous n'avons pas de contraintes concernant les dimensions des roulements (encombrement).

Nous choisissons des roulements à billes qui supportent les efforts radiaux, tolèrent les efforts axiaux, contrairement aux roulements à aiguilles. Ils seront montés en X.

7) Calcul de la tension du fil

Figure 1.2:

Bilan des forces sur N : - Poids P=mg.

-R réaction du plan perpendre du plan perpendre de la réaction de la réacti -R réaction du plan perpendiculaire au plan.

- -Pas de frottement

On applique le principe fondamental de la dynamique : mg+R+T=ma

On projette l'expression vectorielle sur la base polaire cylindrique.

$$ml\phi'^2=-T sur up$$

$$ml\phi''=0$$
 sur $u\overline{\phi}$

or ϕ'' =0 donc ϕ =constante= ω (vitesse angulaire)

donc on obtient
$$T=ml\omega^2$$

Application numérique : T=3.58 N

8) Calcul de glissements des galets

On applique le modèle de Coulomb sur les galets :

On sait que
$$V=r*\omega bobine$$
 et que $\omega bobine=rac{Vini}{r+(n-1)dfil}$

La loi de frottement de Coulomb relie localement les composantes normales et tangentielles de vecteur densité de force soit : $f(M, 1 \rightarrow 2) = FNn + Ft$

Deux cas sont à envisager :

-si glissement
$$\begin{cases} T \ oppos\'e \ et \ de \ m\^eme \ direction \ que \ V(M,S1|S2) \\ ||\overrightarrow{ft}|| = f \ ||fN|| \end{cases}$$

Avec fc, le coefficient de frottement dont la valeur dépend des caractéristiques de contact (couple de matériaux, lubrifiant, état de surface) ; valeurs communément comprises entre 0,1 et 0,6. Le vecteur densité de force ne peut pas sortir d'un cône de demi-angle au sommet ϕ tel que f = tan ϕ . Pour un contact ponctuel en M, le torseur des actions mécaniques s'écrit

$${T(S1 \rightarrow S2)} \Longrightarrow \begin{cases} \overrightarrow{Nn} + \overrightarrow{T} \\ \overrightarrow{0} \end{cases} M$$

-si adhérence
$$\begin{cases} V(M, S1|S2) = 0 \\ |\overrightarrow{|T|}| \le f |N| \end{cases}$$

Projet de Conception ECAM3 : Bobineuse

-si glissement
$$\begin{cases} T \ oppos\'e \ et \ de \ m\`eme \ direction \ que \ V(M,S1|S2) \\ ||T|| = f \ |N| \end{cases}$$

$$\overrightarrow{df}(M,1 \to 2) = \overrightarrow{f}(M,1 \to 2) ds$$

Dans notre cas il faut du glissement entre le galet et la bobine.

Pour le coefficient de frottement on choisit de prendre fc= 0,3.

$$f=N(1+0.3)$$
 et $\phi=\arctan(f)$

Le tableau des coefficients de frottement est donné en annexe 6.

9) Dimensionnement des goupilles

Pour réaliser la liaison complète des poulies avec les axes, nous avons opté pour du goupillage. Ces goupilles seront en en acier et nous souhaitons savoir le diamètre minimum des goupilles que nous pouvons utiliser.

On suppose que la distribution des forces extérieures et que la distribution des fores tangentielles dans la section soient réparties uniformément dans l'aire de la section de cisaillement.

<u>Dimensionnement au cisaillement :</u>

La détermination du diamètre d'une goupille s'effectue d'après la condition de résistance au cisaillement :

$$T=rac{V}{Acis} \leq Tadmcis \; ext{Et avec} \; A$$
 $cis=rac{\pi*db^2}{4} ext{On obtient} \; db \geq \sqrt{rac{4V}{\pi*Tadmcis}}$

Matière du rivet	τ _{adm rivet} N/mm²
Acier A48	150200
Z 12 N 05f	320
Cuivre rouge	150
Laiton	100
Aluminium	100

V : effort tranchant

Acis : section de la goupille au

cisaillement

Db : diamètre de la goupille

Tadmcis : contrainte admissible du matériau de la goupille

Application numérique : db≥0.9 mm Nous prenons un coefficient de sécurité de 2 ce qui nous donne un diamètre de goupille de 1,8mm qui est bien inférieur au 1/3 du diamètre de l'arbre qui est de 6,5mm.

10) Dimensionnement de la clavette

L'axe du moteur étant de 5mm et le diamètre d'une goupille ne pouvant dépasser le tiers du diamètre de l'arbre, nous optons pour le choix d'une clavette afin de réaliser la liaison entre l'axe du moteur et le reste du système. Nous la dimensionnerons au cisaillement :

<u>Hypothèses</u>:

- -La clavette est encastrée dans l'arbre.
- -La clavette exerce une action de contact uniformément répartie sur le moyeu.

d=5 mm	a=2 mm	b=2 mm
s=0.16	j=d-1.2	k=d+1

d	a	b	S	j	k	d	a	b	S	j	k
de 6 à 8 inclus	2	2	0,16	d - 1,2	d + 1	58 à 65	18	11	0,6	d - 7	d + 4,4
8 à 10	3	3	0,16	d - 1,8	d + 1,4	65 à 75	20	12	0,6	d - 7,5	d + 4,9
10 à 12	4	4	0,16	d - 2,5	d + 1,8	75 à 85	22	14	1	d - 9	d + 5,4
12 à 17	5	5	0,25	d – 3	d + 2,3	85 à 95	25	14	1	d - 9	d + 5,4
17 à 22	6	6	0,25	d - 3,5	d + 2,8	95 à 110	28	16	1	d - 10	d + 6,4
22 à 30	8	7	0,25	d - 4	d + 3,3	110 à 130	32	18	1	d - 11	d + 7,4
30 à 38	10	8	0,4	d – 5	d + 3,3	130 à 150	36	20	1,6	d - 12	d + 8,4
38 à 44	12	8	0,4	d – 5	d + 3,3	150 à 170	40	22	1,6	d - 13	d + 9,4
44 à 50	14	9	0,4	d - 5,5	d + 3,8	170 à 200	45	25	1,6	d - 15	d + 10,4
50 à 58	16	10	0,6	d - 6	d + 4,3	200 à 230	50	28	1,6	d - 17	d + 11,4

Extrait du guide du dessinateur industriel

On a la surface cisaillée Acis de la clavette qui est égale à Acis= a*I

$$\tau moyen = \frac{V}{Acis} = \frac{V}{a*l}$$

$$V = \frac{2Mt}{d}$$

$$Donc: \tau moyen = \frac{2Mt}{a*l*d} \le \tau admcis$$

D'où
$$l \ge \frac{2Mt}{a*a*\tau admcis}$$

$$\tau admcis = 0.58 * \frac{Re}{S}$$

Application numérique : $l \ge$

 $l \ge 0.18 \, mm$

I : longueur de la clavette

V : effort tranchant s'exerçant sur la clavette

Mt : moment de torsion

τadm : dans le cas d'un matériau ductile la contrainte tangentielle admissible en cisaillement est obtenue en tenant compte d'un coefficient de sécurité S par rapport à la limite élastique en cisaillement

S: coefficient de sécurité

Re : limite élastique.

V- Tableau des coûts prévisionnels

a) Liste des composants standard

- Moteur : https://fr.rs-online.com/web/p/moteurs-a-courant-continu/8814488/
- Galet: https://fr.rs-online.com/web/p/galets-de-guidage/2352230/
- Courroie: https://www.123courroies.com/courroie-flexonic/80292-courroie-betonniere-558j9.html
- Roulements rigides à billes : https://fr.rs-online.com/web/p/roulements-a-billes/6190086/
- Vis H M5-15 : https://fr.rs-online.com/web/p/vis-sans-tete-et-vis-de-reglage/4827786/
- rondelle plate M10 : https://fr.rs-online.com/web/p/rondelles-plates/0189670/
- écrou hexagonal M10 : https://fr.rs-online.com/web/p/ecrous-hexagonaux/0189614/
- Vis à bois F3 : https://fr.rs-online.com/web/p/vis-a-bois/2631808/
- Vis à six pans : https://fr.rs-online.com/web/p/vis-a-six-pans/1838597/
- Roulement à bille : https://fr.rs-online.com/web/p/roulements-a-billes/6189957/
- Rondelles plates : https://fr.rs-online.com/web/p/rondelles-plates/0189620/
- Circlips : https://fr.rs-online.com/web/p/circlips/2096621/

Les différents arbres, la lames de découpes qui nécessite des dimensions précises, le bâti, la came... seront usiné et fabriqué au Fablab.

b) Tableau des coûts

Composant	Quantité	Prix (€)	Prix total (€)
Moteur	2	26,97	53,94
Galets	4	21,07	21,07 (sachet de 10)
Courroie	1	41,91	41,91
Roulement rigide à bille	2	2,81	5,62
Rondelle plate M10	2	11,70	11,70 (sachet de 50)
Ecrou hexagonal M10	2	28,18	28,18 (sachet de 50)
Vis H M5-15	4	27,07	27,07 (sachet de 100)
Vis à bois F3	1	2,52	2,52 (sachet de 100)
Vis à six pans	16	17,46	17,46 (sachet de 100)
Roulement à bille	4	2,81	11,24
Rondelle plate	1	5,75	5,75 (sachet de 100)
Circlips	8	13,24	13,24 (sachet de 50)
		Total	239,70€

NB: Ce prix ne tiens pas compte des coûts des bruts nécessaire à l'usinage des pièces que nous réaliserons.

VI- Annexe

1) Analyser le besoin

La bobineuse doit acheminer le fil en sortie de l'extrudeuse jusqu'à la bobine afin d'y déposer le fil de manière ordonnée sur la bobine.

2) Organisation des fonctions

3) Fiche technique ABS

Fiche technique

ABS par Innofil3D BV

Ce filament convient à toutes les grandes marques d'imprimantes 3D FDM/FFF disponibles sur le marché.

IDENTIFICATION DU MATÉRIAU	
Nom commercial	Innofil3D ABS
Nom chimique	Acrylonitrile butadiène styrène
Famille chimique	Copolymères thermoplastiques
Utilisation	Impression 3D
Origine	Innofil3D BV

GUIDE POUR LES PARAMÈTRES D'IMPRESSION				
Température de la buse	240 ± 10 °C.			
Température de lit	80 - 100 °C.			
Modification de lit	Ruban adhésif			
Ventilateur de refroidissement actif	Non/Oui (jusqu'à 25 %)			
Hauteur de couche	0,08 - 0,2 mm			
Épaisseur de coque	0,4 - 0,8 mm			
Vitesse d'impression	40 - 80 mm/s			

Les réglages sont basés sur une buse de 0,4 mm

PROPRIÉTÉS DU MATÉRIAU		Méthodes d'essai
Température de fusion	Sans objet	ASTM D3418
Température de transition vitreuse	~ 105 °C	ASTM D3418
Indice de fluidité ¹	43,1 g/10 min.	ISO 1133
Indice de fluidité en volume ¹	45,9 cm3/10 min.	ISO 1133
Densité	1,04 g/cm3	ASTM D1505
Odeur	Faible odeur	/
Solubilité	Insoluble dans l'eau	/

¹ Conditions d'essai : T = 210 °C ; m = 2,16 kg

PROPRIÉTÉS MÉCANIQUES ES	PROPRIÉTÉS MÉCANIQUES ESSAI DE TRACTION			ssai ISO 527
Tous les échantillons d'essai ont été imprimés à l'aide d'un Ultimaker 2+ dans les conditions suivantes : Température d'impression : 210 °C Température de lit chauffant : 60 °C Vitesse d'impression : 40 mm/s Nombre de coques : 2 Remplissage sous 45 °				
	Imprimé ve	rtical (axe Z)	Imprimé horiz	ontal (axe X,Y)
Remplissage	50 %	100 %	50 %	100 %
Résistance à la traction (MPa)	$4,4 \pm 0,6$	6,5 ± 1,8	17,0 ± 0,8	$29,3 \pm 0,8$
Force à la rupture (MPa)	2,7 ± 1,8	7,8 ± 1,3	13,6 ± 0,8	26,4 ± 1,8
Allongement à la force maximale (%)	0,5 ± 0,1	0,7 ± 0,1	2,3 ± 0,1	2,4 ± 0,1
Allongement à la rupture (%)	0,5 ± 0,2	0.7 ± 0.1	4,8 ± 0,9	$3,7 \pm 0,9$
Résistance à la traction relative (MPa/g)	0,7 ± 0,1	0,8 ± 0,2	2,5 ± 0,1	3,0 ± 0,1
Emodulus (MPa)	1031 ± 53	1358 ± 139	1072 ± 38	2030 ± 45

PROPRIÉTÉS MÉCANIQUES ES	Méthode d'essai ISO 179	
Tous les échantillons d'essai ont été imprimés à l'aide d'un Ultimaker 2+ dans les conditions suivantes : Température d'impression : 210 °C Température de lit chauffant : 60 °C Vitesse d'impression : 40 mm/s Nombre de coques : 2 Remplissage sous 45 ° 1→: direction d'impact	Charpy (en)	Charpy (ep)
· ·	1 2 2	
Remplissage	100 %	100 %
Résistance au choc (kJ/m²)	39,3 ± 3,3	$35,4 \pm 3,4$
Énergie de l'impact (mJ)	1500,0 ± 134,4	1371,6 ± 125,9

PROPRIÉTÉS MÉCANIQUES ES	Méthode d'essai ISO 178	
Tous les échantillons d'essai ont été imprimés à l'aide d'un Ultimaker 2+ dans les conditions suivantes : Température d'impression : 210 °C Température de lit chauffant : 60 °C Vitesse d'impression : 40 mm/s Nombre de coques : 2 Remplissage sous 45 ° 1 → : direction de flexion	Normal	Parallèle
	Normai	Parallele
Remplissage	100 %	100 %
Module de flexion (MPa)	1965,3 ± 115,5	1680,8 ± 127,9
Force	67,3 ± 2,3	72,6 ± 1,0
Déformation (%)	4,3 ± 0,1	4,4 ± 0,1

SPÉCIFICATIONS DU FILAMENT		Méthodes d'essai
Diamètre 1,75	1,75 ± 0,05 mm	Innofil3D
Diamètre 2,85	2,85 ± 0,10 mm	Innofil3D
Déviation de rondeur max. 1,75	0,05 mm	Innofil3D
Déviation de rondeur max. 2,85	0,10 mm	Innofil3D
Poids net sur bobine	750 g ± 2 %	Innofil3D

4) Fiche technique PLA

Fiche technique

PLA par Innofil3D BV

Ce filament convient à toutes les grandes marques d'imprimantes 3D FDM/FFF disponibles sur le marché.

IDENTIFICATION DU MA	TÉRIAU
Nom commercial	Innofil3D PLA
Nom chimique	Acide polylactique
Famille chimique	Acide polylactique thermoplastique
Utilisation	Impression 3D
Origine	Innofil3D BV

GUIDE POUR LES PARAMÈTRES [JIVII KESSION
Température de la buse	220 ± 10 °C.
Température de lit	Env. 60 °C
Modification de lit	Ruban adhésif ou colle en dessous de 60 °C
Ventilateur de refroidissement actif	OUI; 100 %
Hauteur de couche	0,08 - 0,2 mm
Épaisseur de coque	0,4 - 0,8 mm
Vitesse d'impression	40 - 80 mm/s

Les réglages sont basés sur une buse de 0,4 mm

PROPRIÉTÉS DU MATÉRIAU		Méthodes d'essai
Température de fusion	145 - 160 °C.	ASTM D3418
Température de transition vitreuse	~ 60 °C	ASTM D3418
Indice de fluidité ¹	6,09 g/10 min.	ISO 1133
Indice de fluidité en volume ¹	6,73 cm3/10 min.	ISO 1133
Densité	1,26 g/cm3	ASTM D1505
Odeur	Inodore	/

PROPRIÉTÉS MÉCANIQUES ESSAI DE TRACTION			Méthode d'e	essai ISO 527
Tous les échantillons d'essai ont été imprimés à l'aide d'un Ultimaker 2+ dans les conditions suivantes : Température d'impression : 210 °C Température de lit chauffant : 60 °C Vitesse d'impression : 40 mm/s Nombre de coques : 2 Remplissage sous 45 °				
	Imprimé ve	rtical (axe Z)	Imprimé horiz	ontal (axe X,Y)
Remplissage	50 %	100 %	50 %	100 %
Résistance à la traction (MPa)	13,6 ± 2,6	28.8 ± 4.2	24,1 ± 0,6	$38,1 \pm 0,9$
Force à la rupture (MPa)	13,4 ± 2,5	28,6 ± 4,1	23,9 ± 0,7	36,3 ± 1,2
Allongement à la force maximale (%)	0,7 ± 0,2	1,1 ± 0,3	2,2 ± 0,1	2,1 ± 0,0
Allongement à la rupture (%)	0,7 ± 0,2	1,1 ± 0,3	2,4 ± 0,1	2,8 ± 0,2
Résistance à la traction relative (MPa/g)	1,5 ± 0,3	2,4 ± 0,4	2,7 ± 0,1	3,3 ± 0,1
Emodulus (MPa)	2028 ± 59	3150 ± 54	1760 ± 38	2852 ± 88

PROPRIÉTÉS MÉCANIQUES ES	ROPRIÉTÉS MÉCANIQUES ESSAI D'IMPACT		ISO 179
Tous les échantillons d'essai ont été imprimés à l'aide d'un Ultimaker 2+ dans les conditions suivantes : Température d'impression : 210 °C Température de lit chauffant : 60 °C Vitesse d'impression : 40 mm/s Nombre de coques : 2 Remplissage sous 45 °			
1→: direction d'impact	Charpy (en)	Charpy (ep)	
Remplissage	100 %	100 %	
Résistance au choc (kJ/m²)	14,2 ± 0,7	13,1 ± 0,7	
Énergie de l'impact (mJ)	521,5 ± 26,8	501,7 ± 31,1	

PROPRIÉTÉS MÉCANIQUES	ESSAI DE FLEXION	Méthode d'essai ISO 178
Tous les échantillons d'essai ont été imprimés à l'aide d'un Ultimaker 2+ dans les conditions suivantes : Température d'impression : 210 °C Température de lit chauffant : 60 °C Vitesse d'impression : 40 mm/s Nombre de coques : 2 Remplissage sous 45 °		
1→: direction de flexion	Normal	Parallèle
Remplissage	100 %	100 %
Module de flexion (MPa)	2409,5 ± 206,3	2551,4 ± 100,8
Force	65,7 ± 5,3	86,2 ± 3,2

SPÉCIFICATIONS DU FILAMENT		Méthodes d'essai
Diamètre 1,75	1,75 ± 0,05 mm	Innofil3D
Diamètre 2,85	2,85 ± 0,10 mm	Innofil3D
Déviation de rondeur max. 1,75	0,05 mm	Innofil3D
Déviation de rondeur max. 2,85	0,10 mm	Innofil3D
Poids net sur bobine	750 g ± 2 %	Innofil3D

5) Fiche techniques poulies et courroie

Courroies Industrielles - Rapport détaillé de la transmission Design Flex® Pro de Gates Corporation

Dest. projet: Fourni par: vincent garnier

ECAM

vincent.garnier@ecam.fr 0629080735 Tél.

Application: Projet n°1

ENTREE Info transmission

Motrice Réceptrice

Rapport de vitesse: 1,00 Moteur: 3600,0 Réducteur: 603,00 tours/min: 6,0 6,0 +/-4% Puiss. moteur: 9,2 W, Rendement: 92,00 % Vitesse tangentielle maxi: 20 m/s 20 m/s

Réducteur: 8,10 W, Rendement: 88,00 %

Facteur de service : 1,2 Puiss. prévue: 10 W

Moyeux vérifiés : TL, Pré-alésage minimal Entraxe: 189 à 231 mm

Normes moteur : Moteur électrique Courroles vérifiées : Polyflex, Micro-V

Courroles simples, PowerBand

TRANSM. SELECT.

Type courrole: Micro-V - PJ Courroie Motrice Réceptrice Nombre de brins/stries: PowerBand Rapport de vitesse: 1.0 Réf. pièce : 1-PJ559/9 50 PJ 12 50 PJ 12 9465-21438 tours/min réceptrice: 6,0 Code produit : Puiss. nominale: 10 W 32,05 mm 32,05 mm Largeur: Poids: 57 g

Charge sur palier: 826 N 0,0 m/s $0.0 \, \text{m/s}$ Entraxe: 201,0 mm Vitesse tangentielle/courroie : 0.0 m/s Plage installation/rattrapage 186,0 mm à 221,0 mm tours/min: 1,8 6,0 6,0 Designation moyeu: Alés. mini Alés. mini

> Alésage Diamètre primitif: 52,50 mm 52,50 mm

TENSION Courroie neuve Courroie usagée

Tension statique (par strie/brin) 50 à 54 N 58 à 63 N 1051 à 1126 N 901 à 976 N Force statique courroie (traction totale): Distance de déflex. par strie/brin 4,00 mm 4.00 mm Effort de déflex, par strie/brin 0,51 à 0,54 kg 0,44 à 0,48 kg

Tensiomètre Sonic: 525 à 563 N 450 à 488 N Données Sonic 507C/508C 190 à 196 Hz Fréquence de la courroie : 176 à 183 Hz Masse: 10,03g / m,Largeur: 9 mm/#R, Longueur: 201

NOTES

6) Tableau des coefficients de frottements

Matériaux	Matériaux	Contact	Coefficient de frottement	Facteur d'adhérence
Acier	Acier	-	0,1	0,2
Acier	Acier	graisse	0,05	0,1
Acier trempé	Acier trempé	huile	0,1 / 0,07	0,11
Acier trempé	Acier trempé	huile sous pression	0,05	0,11
Acier	XC35	eau	0,25	
XC35	XC35	huile	0,09	
Acier 16NC6	Acier	eau	0,065	
Acier cémenté	fonte trempée	-	0,15	
Acier cémenté	fonte trempée	lubrifié	0,08	
Acier	fonte	lubrifié	0,08 / 0,05	0,08
Acier	fonte	-	0,1	0,12

Acier Z30C13	Fonte grise alliée	huile	0,23	
Acier 16NC6	AU4G	eau	0,45	
Acier 16NC6	AU4G	vaseline	0,075	
Acier trempé	Bronze trempé	-	0,25 /0,15	0,2
Acier trempé	Bronze trempé	lubrifié	0,12	0,2
Acier trempé	Bronze trempé	huile sous pression	0,05	0,11 / 0,12
Acier 16NC6	CuSn12Zn1P	eau/vaseline	0,17	
Acier inoxydable chromé	Aluminium	-	0,4	
Acier inoxydable chromé	Aluminium	lubrifié	0,1	
Acier	Cuivre étamé	-	0,12	
Acier	Cuivre étamé	lubrifié	0,09	
Acier	Métal Fritté	-	0,1/0,12	
Acier	Métal Fritté	lubrifié	0,03/0,06	
Acier	Ferrodo	-	0,25/0,35	
Acier	Graphite	lubrifié	0,09	
Acier graphité	Téflon	-	0,1	
Acier graphité	Téflon (PTFE)	lubrifié	0,05/0,08	
Acier	Téflon (PTFE)	-	0,1	0,15
Acier inoxydable	Téflon graphité	eau	0,06	
Acier	Palier PTFE	-	0,02/0,08	
Acier	Palier PTFE	lubrifié	0,003! /0,05	
Acier	Polyéthylène	-	0,3/0,8	
Acier	Nylon	-	0,15	0,2
Acier	Nylon	eau	0,5	
Acier	Nylon	huile	0,1	0,15
Acier	Acétal	huile	0,2	
Acier	Polyamide 6.6	huile	0,12	
Fonte grise alliée	Fonte GS rectifiée	huile	0,13	
Fonte grise alliée	Fonte blanche	huile	0,11	
Fonte	Bronze	-	0,21	0,43
Fonte	Caoutchouc	-	0,20	0,80
Fonte polie	Cuir	-	0,10	0,43
Fonte polie	Cuir	gras	0,20	0,43
Fonte polie	Corde neuve	-	0,075	0,79
Bronze	Bronze	-	0,20	0,43
Caoutchouc	Fonte polie	-	0,20	0,80
Caoutchouc	Sol moyen	-	0,65	0,80
Caoutchouc	Sol moyen	humide	0,30	0,80
Caoutchouc	Sol moyen	boueux	0,10	0,80
Caoutchouc	Sol moyen	très mouillé	0,25	0,80
Pneu	Route	-	0,5/0,6	

Pneu	Route	mouillé	0,3/0,5	
Pneu	Asphalte à 25km/h	-	0,02/0,03	
Roues en fer	Asphalte bon état	-	0,010	
Roues en fer	Dalles en pierre	-	0,006	
Roues en fer	Rail sec	-	0,35	
Roues en fer	Pavé bois	-	0,018	
Roues en fer	Pavé pierre	-	0,02	
Roues en fer	Pavé pierre mauvaise état	-	0,033	
Roues en fer	Route empierré bon état	-	0,023	
Roues en fer	Route empierré avec poussière	-	0,028	
Roues en fer	Route empierré défoncée, boue	-	0,035	
Roues en fer	Chemin terre bon état	-	0,08	
Roues en fer	Chemin terre mauvais état	-	0,16	
Roues en fer	sable	-	0,15 /0,30	
Chêne	Chêne	-	0,34	0,54
Chêne	Chêne	savonné	0,16	0,44
Chêne	Chêne	humide	0,25	0,71
Chêne	Corde neuve	-	0,52	0,80
Chêne	Cuir	-	0,33	0,43
Chêne(sens des fibres)	Fer	humide	0,26	0,65
Billes	Plan	-	0,05	
Galets	Plan	-	0,005	
Roulements	rail	-	0,003	
Douilles à billes	Axes	-	0,002	

Sources: Formulaire technique de Mécanique Générale par Jacques Muller Systèmes mécaniques - Théorie et dimensionnement / DUNOD Construction mécanique - 1ére et Terminale / DUNOD Précis de construction mécanique - Tome 3 / AFNOR-NATHAN

7) Schéma cinématique

a) Système de découpe

b) Système de came cylindrique

