



Lars Quentin

### **Evaluation of Time-Series Databases**

Elasticsearch and InfluxDB

### **Table of Contents**

## Why do we care about Time Series Metrics Data?

- Usage Overview
- Find Bottlenecks
- Help with Workload Balancing
- Demand Analysis and Forecasting
- Optimize Energy Efficiency

But why do we care about performance?



## Monitoring System Architecture



Figure: Monitoring System Architecture

# But actually...



Figure: Emmy's 1422 nodes located in Göttingen

# The Need for Speed: From Lucene to Grafana

- We Evaluate Two Time-Series Databases:
  - ► Elasticsearch, a distributed search engine.
  - InfluxDB, a time-series database.
- In order to understand why, one has to look at their shared history.

#### Lucene

- Java-based Search Engine Library
- Developed in 1999 for Apache Nutch
- Fuzzy Full-Text Search

#### Elasticsearch

- Distributed Search Engine
- Based on Lucene
- Developed in 2010
- Used at Wikipedia, Netflix, Stackoverflow, LinkedIn



Figure: Lucene Logo



Figure: Elasticsearch Logo

## Money, Money, Money

- Elasticsearch rose to popularity amongst the DevOps community.
- Thus, it grew beyond the scope of a hobby project and needed funding.
- And a database alone is not enough for business applications.
- Thus, the ELK stack was born.

# ELK(B) stack



Figure: ELK Stack

& Processing

### Grafana

- System Monitoring Solution
- Forked from Kibana
- Specialized for time-series data
- Supports multiple data sources
  - No Elasticsearch vendor lock-in
  - Allows for more specialized database technologies



### **InfluxDB**

- Time-Series Database
- Built for technology applications
- Highly specialized for time-series data
- Also used at the GWDG as a data source for Grafana



Figure: InfluxDB Logo

## Looking in the Rear-View-Mirror: Related Work

- Only a single exhaustive performance comparison of Elasticsearch and InfluxDB.
- Conducted by InfluxData, the company behind InfluxDB.
- Publically available on GitHub.
- In this section, we will deep dive into their methodology and findings.



### Overview

- Measured across 3 vectors
  - Data ingest performance
  - On-disk storage requirements
  - 3 Mean query response time
- Split into 5 disconnected steps
  - Data Generation
  - 2 Data Loading
  - Query Generation
  - 4 Query Execution
  - 5 Query Validation

#### 1. Data Generation

- Random and Deterministic (pinned PRNG seed)
- Shared generation logic
- Generated beforehand
- Modelled realistically
  - DevOps related metrics, same structure as telegraf
    - cpu, diskio, kernel, mem, redis...
  - clamped random walk
    - important for optimizations such as delta compression

#### 2. Data Loading

- KISS
- Batched into bulk queries (default 5000 documents)
- parallelized (default 5 workers)
- sent as fast as possible

#### 2. Data Loading

- KISS
- Batched into bulk queries (default 5000 documents)
- parallelized (default 5 workers)
- sent as fast as possible

### 3. Query Generation

- Random and Deterministic (pinned PRNG seed)
- Shared generation logic
- Generated beforehand

- 4. Query Execution
  - KISS
  - Sends parallelized range queries

- 4. Query Execution
  - KISS
  - Sends parallelized range queries
- 5. Query Validation
  - Done via manual verification
  - Ensuring that both aggregation results are approximately the same

#### According to the White paper

- InfluxDB outperformed Elasticsearch by **3.8x** when it came to data ingestion
- InfluxDB outperformed Elasticsearch by up to **7.7x** when measuring query performance
- InfluxDB outperformed Elasticsearch by delivering **9x** better compression

#### According to the White paper

- InfluxDB outperformed Elasticsearch by **3.8x** when it came to data ingestion
- InfluxDB outperformed Elasticsearch by up to **7.7x** when measuring query performance
- InfluxDB outperformed Elasticsearch by delivering **9x** better compression

#### **Problems**

- Bad incentive structure
- Done with Influx version 1
- Not oriented for HPC workloads and topologies
- Data was ingested in bulk

# Under the Hood: Our Methodology

- Extending InfluxData paper's methodology
- Everything not mentioned is the same.
- Adapted to our use case
  - ▶ This is a huge feat; Emmy is big
  - ▶ We run the recommended production configuration
  - We mainly focus on write, not query read
    - · Since this is the bulk of the work
- Split into distinct phases as well.
  - ► KISS! KISS! KISS!

### 1. Data Generation

- Also random and deterministic, pinned PRNG seeds
- Only generating hardware / kernel measurements, no application metrics
- We use clamped 1D perlin noise
- One file per ingest worker!
  - Less error prone!
  - ► KISS!

# 2. Data Ingestion

- We don't use bulk ingestion
  - ▶ instead, data of one node per request
- Sending as fast as possible
- Flushing at the end
- Faster is better

# 3. Check Index Compression

- We do not trust their analytics
- Multi-Step process
  - Get size of data directory
  - 2 Fill the data
  - 3 Flush and Compress
    - InfluxDB: Tree Compaction
    - · Elasticsearch: Force Merge API
  - 4 After that, we measure again
- $\blacksquare$  Smaller  $\triangle$  is better

### 4. Design Queries

### Methodology

- Get a real world Grafana dashboard
- Extract the queries through the networking tab
- Port them to the Query Languages
- Make them parameterized



Figure: Extracting through Networking Tab

### 5. Benchmark Queries

- We test querying while ingesting data
- Linear step increment of index size
  - correllate the response time
- Faster is better

The Podium: Results and Conclusion

Stay tuned ;-)