Solutions to Logic Tutorial 4

Q1a.

1. A∧B	Given
2. A	1, ∧E
3. B	1, ∧E
4. B∧A	2, 3, ∧I

Q1b.

1. A∧B	Given
2. A	1, ∧E
3. A∨B	2. VI

Q1c.

1.

$$P \wedge Q$$
 Given

 2.
 $P \rightarrow R$
 Given

 3.
 $Q \rightarrow S$
 Given

 4.
 P
 $1, \wedge E$

 5.
 Q
 $1, \wedge E$

 6.
 R
 $2, 4, \rightarrow E$

 7.
 S
 $3, 5, \rightarrow E$

 8.
 $R \wedge S$
 $6, 7, \wedge I$

Q1d.

1.
$$P \rightarrow (Q \rightarrow R)$$
 Given

2.	P∧Q	Assume
3.	P	2, ∧E
4.	Q	2, ∧E
5.	$Q \rightarrow R$	$1, 3, \rightarrow E$
6.	R	4, 5, →E
$P \wedge$	Q→R	$2,6,\rightarrow I$

Q1e.

7.

You have to show

$$(P \rightarrow Q) \rightarrow (\neg Q \rightarrow \neg P)$$
 and $(\neg Q \rightarrow \neg P) \rightarrow (P \rightarrow Q)$.

I will just do the first here. The second is similar.

- Q2. Using L for "PM loses next vote", C for "PM's leadership is challenged", E for "PM will call a general election":
 - i) $L \rightarrow (\neg C \rightarrow E)$
 - ii) $(L \land \neg C) \rightarrow E$

```
1. L\rightarrow (\neg C\rightarrow E) Given
             \frac{2}{L}
                                        assume
             3. L
                                        2, ∧E
             4. ¬C→E
                                        1, 3, \rightarrow E
             5. ¬C
                                        2, ∧E
                                        4, 5, →E
             6. E
7. (L \land \neg C) \rightarrow E
                                        2, 6, \rightarrow I
Showing ii |- i:
1. (L \land \neg C) \rightarrow E
                           Given
             <del>2.</del> L
                           assume
                           <del>3.</del> ¬C
                                                     assume
                           4.\ L \land \neg C
                                                     2,3, ∧I
                                                     1, 4, \rightarrow E
             6. ¬C→E
                                        3, 5, \rightarrow I
7. L\rightarrow(\negC\rightarrowE) 2, 6, \rightarrowI
```

.....

Q3.

a. Murderer

Showing i |- ii:

- b. Formalising the information:
- 1. MurderervBlackmailer
- 2. Murderer→Violent
- 3. Blackmailer→Rich
- 4. Rich→Spends∨Account
- 5. ¬Account
- 6. ¬Spends

Abbreviate to:

1. $M \lor B$ Given2. $M \rightarrow V$ Given3. $B \rightarrow R$ Given4. $R \rightarrow S \lor A$ Given5. $\neg A$ Given6. $\neg S$ Given

Deriving M:

7. B assume 8. R 3, 7, \rightarrow E 9. S \vee A 4, 8, \rightarrow E 10. S 9, 5, \vee E 11. \neg B 7, 10, 6, RAA 1, 11, \vee E

.....

a) Showing
$$\neg(p \rightarrow q) \equiv p \land \neg q$$

 $\neg(p \rightarrow q) \equiv \neg(\neg p \lor q) \equiv \neg \neg p \land \neg q \equiv p \land \neg q$

b)

I will use (a) and also lemma 1 (I leave the proof of lemma 1 to you.): A, $A \land \neg B \rightarrow C \vdash \neg B \rightarrow C$

$$A, A \land \neg B \rightarrow C \vdash \neg B \rightarrow C$$

1. A∧¬B→	· C	Given
2. B→C		Given
3. C→¬(B	→A)	Given
4. A∨B∨C		Given
5.	A	Assume
6.	$\neg B \rightarrow C$	1, 5, lemma1
7.	C	2, 6, dilemma
8.	$\neg(B\rightarrow A)$	$3, 7, \rightarrow E$
9.	$B \wedge \neg A$	8, (a)
10). ¬A	9, ∧E
11. ¬A		5, 10, RAA
12. B∨C		4, 11, ∨E
13	8. B	assume
14	ł. C	2, 13, →E
15	$S. B \wedge C$	13, 14, ∧I
16. B \rightarrow B	\wedge C	13, 15, →I
17	'. C	assume
18	8. ¬(B→A)	17, 3, →E
19). B	18, (a), ∧E
20). B ∧ C	17, 19, ∧I
21. $C \rightarrow B$	\wedge C	17, 20, →I
22. B ∧ C		12, 16, 21, proof by cases