МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Методы оптимизации»

Тема: Методы безусловной минимизации функций

Студент гр. 8382	Мирончик П.Д
Преподаватель	Мальцева Н.В

Санкт-Петербург

Цель работы

- 1. Решение задачи безусловной минимизации функций с помощью стандартной программы.
 - 2. Исследование и объяснение полученных результатов.

Постановка задачи

13. Минимизировать функцию

 $F(x_1,x_2,a) = (x_2 - x_1^2)^2 + a(x_1 - 1)^2$ с точностью до 10^{-5} (abs ($F(x_{1k},x_{2k},a) - F(x_1^*,x_2^*,a)$) $< 10^{-5}$) градиентными методами - методом с постоянным шагом и методом наискорейшего спуска.

Оценить скорость и порядок сходимости обоих методов. Исследовать эффективность метода с постоянным шагом в зависимости от начальной точки и величины шага и сравнить его с методом наискорейшего спуска.

Параметр а положить равным a = 10.

Теоретические сведения

Пусть дана функция $\varphi(x), x \in R^n$ и точка начального приближения x_0 . Необходимо минимизировать функцию φ , т.е. найти $x^* = argmin \ \varphi(x)$. Сущность методов спуска заключается в построении релаксационной последовательности $\{x_i\}$, т.е. последовательности, удовлетворяющей условию $\varphi(x_i) \ge \varphi(x_{i+1})$.

Введем величину $\Delta_k = |x_k - x^*|$ и основные определения:

- 1. Предел $\lim_{k \to \infty} \frac{\ln \Delta_{k+1}}{\ln \Delta_k}$ называется порядком сходимости метода.
- 2. Последовательность $\varphi(x_k)$ сходится к $\varphi(x^*)$ линейно, если $\exists k_0, q \in (0,1): |\varphi(x_{k+1}) \varphi(x^*)| \le q |\varphi(x_k) \varphi(x^*)|$ при $k > k_0$.
- 3. Последовательность $\varphi(x_k)$ сходится к $\varphi(x^*)$ сверхлинейно, если $\exists q_k : |\varphi(x_{k+1}) \varphi(x^*)| \leq q_{k+1} |\varphi(x_k) \varphi(x^*)|, \, \text{где } q_k \underset{k \to \infty}{\longrightarrow} o^+ \; .$
- 4. Последовательность $\varphi(x_k)$ сходится к $\varphi(x^*)$ с квадратичной скоростью, если $\exists k_0, c \geq 0$: $|\varphi(x_{k+1}) \varphi(x^*)| \leq c |\varphi(x_k) \varphi(x^*)|^2$ при $k > k_0$.

- 5. Функция φ на $X \subset R^n$ удовлетворяет условиям Липшица, если $\exists L>0 \colon \forall u,v \in X \ |\varphi(u)-\varphi(v)| \le L|u-v|.$
- 6. Если функция φ удовлетворяет условиям Липшица и существует непрерывный градиент φ' , удовлетворяющий условиям Липшица, то $\varphi \in C^{1,1}$.
- 7. Функция φ называется сильно выпуклой с параметром $\tau > 0$, если $\forall u,v \in X: \varphi(u) \geq \varphi(v) + (\varphi'(v),u-v) + \tau |u-v|^2$
- 8. Функция вида $\varphi = \frac{1}{2}(Ax, x) (b, x)$, где A симметричная положительно определенная матрица, называется квадратичной.
- 9. Рассмотрим поверхность $L_b = \{x : \varphi(x) = \varphi(x^*) * b\}$. Обозначим $m_b = min|x-x^*|, M_b = \max|x-x^*|, x \in L_b$. Тогда величина $r = \lim_{b\to 0} \frac{M_b}{m_b}$ называется числом обусловленности точки локального минимума. Функции, для которых $r\gg 1$, называют овражными.

Градиентные методы оптимизации основаны на построении последовательности $\{x_i\}$ по следующему правилу:

$$x_{k+1} = x_k - a_k \varphi'(x_k)$$
, $a_k > 0$, $k = 0,1, \dots (\varphi'(x)$ - градиент функции $\varphi(x)$).

Если $\varphi'(x_k) \neq 0$, то a_k можно выбрать так, чтобы $\varphi(x(k+1) < \varphi(k_k))$.

Если $\varphi'(x_k) = 0$, то x_k - стационарная точка, которая должна быть исследована на глобальный минимум.

Все градиентные методы отличаются друг от друга способом выбора a_k .

Метод наискорейшего спуска.

На луче $\{x \in R^n : x = x_k - a\varphi'(x_k), a \ge 0\}$ вводится функция $\psi(a) = \varphi(x_k - a\varphi'(x_k)), a \ge 0$. Величина шага выбирается как $a_k = argmin \ \varphi(x_k - a\varphi'(x_k)), a \ge 0$.

Для квадратичной функции метод наискорейшего спуска сходится с линейной скоростью; порядок сходимости равен 1. В общем случае верна следующая теорема:

Теорема 1. Рассмотрим задачу $\varphi(x) \to min, x \in \mathbb{R}^n$. Пусть $\varphi \in \mathbb{C}^{1,1}$ и φ сильно выпукла с параметром τ . Тогда при любом начальном приближении для $\{x_k\}$, построенной по методу наискорейшего спуска справедливо:

1.
$$x_k \to x^* = argmin \varphi(x)$$

2.
$$\varphi(x_{k+1}-\varphi(x^*)\leq const\ q^k$$
, где $q=1-\frac{2\tau}{L}\in[0,1),$ L - постоянная Липшица.

Метод с постоянным шагом.

В этом методе полагается $a_k = const.$ Метод является простым в реализации, однако имеет проблемы со сходимостью

Экспериментальные исследования методов

Точкой глобального минимума функции F является точка (1,1) и F(1,1)=0. Построим при помощи Matlab изолинии функции F в окрестности точки (1,1):

Видно, что изолинии по своему виду близки к эллипсам. Таким образом, в качестве начальных приближений можно выбрать три точки, равноудалённые от х*: $x_a = (-8,1)$, $x_b = (1,10)$, $x_c = (-5.36,7.36)$.

Метод наискорейшего спуска.

Начальное приближение $x_a = (-8, 1)$

Шаг	<i>x</i> ₁	x_2	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка $cкорости$ $cxодимости$ $(\frac{F(x_k)}{F(x_{k-1})})$
1	1.107419	1.522557	0.203111	9		
10	1.023722	1.225147	0.037006	11		
20	1.008847	1.085324	0.005346	14		
30	1.003311	1.032135	0.00076	13		
40	1.001243	1.012076	0.000107	12	1.021829	0.822186
41	1.002181	1.010747	8.8e-05	11	1.023051	0.822098
42	1.001021	1.009927	7.3e-05	13	1.020892	0.822142
43	1.001793	1.008835	6,00E-05	11	1.022056	0.822083
44	1.000839	1.008161	4.9e-05	12	1.020021	0.82212
45	1.001474	1.007263	4,00E-05	11	1.021163	0.822055
46	1.00069	1.006709	3.3e-05	12	1.019219	0.822085
47	1.001212	1.00597	2.7e-05	11	1.020358	0.822032
48	1.000567	1.005515	2.2e-05	12	1.01847	0.822065
49	1.000996	1.004908	1.8e-05	11	1.019573	0.82202
50	1.000466	1.004533	1.5e-05	12	1.017823	0.822045
51	1.000819	1.004034	1.2e-05	11	1.018862	0.822013
52	1.000383	1.003726	1,00E-05	12	1.01718	0.822032
53	1.000673	1.003316	8,00E-06	11	1.018193	0.822

вычислено 643 значения F

Начальное приближение $x_b = (1, 10)$

Шаг	<i>x</i> ₁	<i>x</i> ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $\left(\frac{F(x_k)}{F(x_{k-1})}\right)$
1	2.54247	9.228765	31.435213	11		
10	0.998139	1.434334	0.191924	16		
18	0.999779	1.056321	0.003223	15	1.179745	0.604224
19	1.008665	1.051962	0.001945	12	1.023238	0.603559
20	0.999861	1.034	0.001175	15	1.148753	0.604159
21	1.005225	1.03137	0.00071	12	1.019765	0.603815
22	0.99992	1.020557	0.000429	14	1.126536	0.604937
23	1.003155	1.01897	0.00026	11	1.017173	0.604721
24	0.99994	1.012384	0.000156	15	1.111378	0.60253
25	1.0019	1.011427	9.4e-05	12	1.015212	0.602416
26	0.999967	1.007476	5.7e-05	14	1.098226	0.603839
27	1.001147	1.006899	3.4e-05	12	1.013623	0.6038
28	0.99998	1.004514	2.1e-05	15	1.088221	0.603903
29	1.000693	1.004166	1.3e-05	12	1.01233	0.603836
30	0.999989	1.00273	8,00E-06	17	1.079803	0.604729

вычислено 412 значения F.

Начальное приближение $x_c = (-5.36, 7.36)$

Шаг	<i>x</i> ₁	<i>x</i> ₂	$F(x_1,x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(\frac{F(x_k)}{F(x_{k-1})})$
1	2.249932	7.915624	23.765363	10		
10	1.491357	2.654283	2.599333	16		
20	1.037571	1.112745	0.015426	15	1.319786	0.559362
21	1.015189	1.110051	0.008618	10	1.031644	0.558683
22	1.02087	1.062083	0.004752	16	1.240457	0.551393
23	1.008333	1.060597	0.002618	10	1.025091	0.550989
24	1.011458	1.033885	0.00143	16	1.192012	0.54625
25	1.004537	1.033076	0.000781	11	1.020709	0.546022
26	1.006248	1.018454	0.000425	16	1.158425	0.544808
27	1.002466	1.018012	0.000232	11	1.017576	0.544658
28	1.003405	1.010079	0.000127	16	1.13371	0.546164
29	1.001346	1.009835	6.9e-05	11	1.015246	0.546093
30	1.001858	1.005495	3.8e-05	17	1.116479	0.545305
31	1.000734	1.005362	2.1e-05	11	1.013466	0.545228
32	1.001012	1.002988	1.1e-05	15	1.103411	0.543871
33	1.000399	1.002916	6,00E-06	11	1.012053	0.543871

всего вычислено 434 значения F.

Метод с постоянным шагом.

При использовании метода с постоянным шагом для заданной функции F в рассматриваемых точках были замечены проблемы в работе программы - ошибка переполнения. Сложно говорить о причинах этих проблем не зная особенностей реализации программы, но вероятно при слишком больших размерах шага начинают возникать проблемы со сходимостью: следующая точка, получаемая в результате вычитания производной функции умноженной на размер шага, оказывается дальше от центра (искомой точки (1;1)). На следующем шаге происходит умножение на еще большую производную, и точка отскакивает еще дальше, как бы перепрыгивая каждый раз через центр.

Величина шага: 0.005Начальное приближение $x_a = (-8, 1)$

Шаг	<i>x</i> ₁	x_2	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости сходимости $(\frac{F(x_k)}{F(x_{k-1})})$
1	2.98	1.63	91.7723	1		
51	1.101757	1.641401	0.286329	1		

101	1.071401	1.457771	0.147001	1		
151	1.050236	1.325397	0.074699	1		
201	1.035342	1.230654	0.037683	1		
251	1.024867	1.163172	0.018912	1		
301	1.017499	1.115272	0.009457	1		
351	1.012315	1.081352	0.004717	1		
401	1.008668	1.057374	0.002348	1		
451	1.006102	1.040443	0.001168	1		
501	1.004295	1.028499	0.00058	1		
551	1.003024	1.020077	0.000288	1		
601	1.002129	1.014142	0.000143	1		
651	1.001499	1.00996	7.1e-05	1		
701	1.001055	1.007014	3.5e-05	1		
751	1.000743	1.004939	1.7e-05	1		
780	1.000606	1.00403	1.2e-05	1		
781	1.000602	1.004002	1.1e-05	1	1.001266	0.986065
782	1.000598	1.003974	1.1e-05	1	1.001273	0.986069
783	1.000594	1.003946	1.1e-05	1	1.00128	0.986067
784	1.000589	1.003918	1.1e-05	1	1.001294	0.986068
785	1.000585	1.003891	1.1e-05	1	1.00125	0.986071
786	1.000581	1.003864	1.1e-05	1	1.001257	0.986069
787	1.000577	1.003837	1.1e-05	1	1.001264	0.986068
788	1.000573	1.00381	1,00E-05	1	1.001272	0.986071
789	1.000569	1.003783	1,00E-05	1	1.001279	0.986067
790	1.000565	1.003757	1,00E-05	1	1.00124	0.986066
791	1.000561	1.003731	1,00E-05	1	1.001247	0.986067

Начальное приближение $x_b = (1, 10)$

Шаг	<i>x</i> ₁	<i>x</i> ₂	$F(x_1, x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости $(\frac{F(x_k)}{F(x_{k-1})})$
1	1.18	9.91	72.87351	1		
51	2.326965	8.160794	25.149029	1		
101	2.087054	6.848271	18.029304	1		
151	1.862875	5.671869	12.292423	1		
201	1.663093	апр.84	7.940812	1		
251	1.494671	3.787765	4.86105	1		
301	1.360402	3.089178	2.832739	1		
351	1.258339	2.54059	1.58357	1		
401	1.183379	2.121775	0.856682	1		
451	1.129498	1.809091	0.452133	1		
501	1.091225	1.579522	0.234346	1		
551	1.064199	1.413019	0.119895	1		
601	1.045167	1.293307	0.060775	1		
651	1.031777	1.207767	0.030605	1		
701	1.022359	1.146911	0.015341	1		
751	1.015735	1.103749	0.007664	1		

	ı	1	1			
801	1.011074	1.073203	0.00382	1		
851	1.007795	1.051618	0.001901	1		
901	1.005487	1.036382	0.000945	1		
951	1.003863	1.025635	0.000469	1		
1001	1.002719	1.018058	0.000233	1		
1051	1.001915	1.012719	0.000116	1		
1101	1.001348	1.008958	5.7e-05	1		
1151	1.000949	1.006308	2.8e-05	1		
1201	1.000668	1.004442	1.4e-05	1		
1214	1.00061	1.004055	1.2e-05	1		
1215	1.000606	1.004026	1.2e-05	1	1.001303	0.986074
1216	1.000601	1.003998	1.1e-05	1	1.001273	0.986067
1217	1.000597	1.00397	1.1e-05	1	1.001274	0.986071
1218	1.000593	1.003943	1.1e-05	1	1.001236	0.986061
1219	1.000589	1.003915	1.1e-05	1	1.001289	0.986071
1220	1.000585	1.003888	1.1e-05	1	1.001251	0.986075
1221	1.000581	1.00386	1.1e-05	1	1.001303	0.986063
1222	1.000577	1.003833	1.1e-05	1	1.001265	0.986073
1223	1.000573	1.003807	1,00E-05	1	1.001226	0.986066
1224	1.000569	1.00378	1,00E-05	1	1.00128	0.986062
1225	1.000565	1.003754	1,00E-05	1	1.00124	0.986071
1226	1.000561	1.003727	1,00E-05	1	1.001295	0.986073

Начальное приближение $x_c = (-5.36, 7.36)$

Шаг	<i>x</i> ₁	x_2	$F(x_1,x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости $(\frac{F(x_k)}{F(x_{k-1})})$
1	-	7.573696	120.6006939	1		
	2.433179					
51	1.731721	5.207377	10.2317159	1		
101	1.584466	4.247518	6.4331249	1		
151	1.431101	3.459338	3.8502146	1		
201	1.311554	2.829155	2.2004979	1		
251	1.222207	2.340761	1.2111189	1		
301	1.1573	1.971831	0.6474738	1		
351	1.110934	1.698597	0.3387516	1		
401	1.078103	1.49917	0.1744781	1		
451	1.054955	1.355139	0.0888658	1		
501	1.038663	1.251894	0.0449027	1		
551	1.027202	1.178277	0.0225613	1		
601	1.019141	1.125982	0.0112909	1		
651	1.013471	1.088931	0.0056348	1		
701	1.009481	1.062728	0.0028065	1		
751	1.006674	1.044222	0.0013959	1		
801	1.004698	1.031164	0.0006936	1		
851	1.003308	1.021956	0.0003444	1		
901	1.002329	1.015466	0.0001709	1		

951	1.001639	1.010893	8.48e-05	1		
1001	1.001154	1.007671	4.21e-05	1		
1051	1.000813	1.005402	2.09e-05	1		
1101	1.000572	1.003804	1.03e-05	1		
1091	1.000614	1.00408	1.19e-05	1		
1092	1.000609	1.004052	1.17e-05	1	1.0012594	0.9860702
1093	1.000605	1.004023	1.16e-05	1	1.0013042	0.9860693
1094	1.000601	1.003995	1.14e-05	1	1.0012674	0.9860713
1095	1.000597	1.003967	1.13e-05	1	1.0012747	0.9860673
1096	1.000593	1.00394	1.11e-05	1	1.0012371	0.9860659
1097	1.000588	1.003912	1.09e-05	1	1.0012961	0.9860673
1098	1.000584	1.003885	1.08e-05	1	1.0012514	0.9860715
1099	1.00058	1.003857	1.06e-05	1	1.0013043	0.9860694
1100	1.000576	1.003831	1.05e-05	1	1.0012201	0.98607
1101	1.000572	1.003804	1.03e-05	1	1.0012732	0.9860638
1102	1.000568	1.003777	1.02e-05	1	1.0012806	0.9860699
1103	1.000564	1.003751	1.01e-05	1	1.0012413	0.9860692
1104	1.00056	1.003725	9.9e-06	1	1.0012484	0.9860613
1105	1.000556	1.003698	9.8e-06	1	1.0013029	0.986076

Величина шага: 0.001

Начальное приближение $x_a = (-8, 1)$

Шаг	<i>x</i> ₁	x_2	$F(x_1,x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости $(\frac{F(x_k)}{F(x_{k-1})})$
1	-5.804	1.126	1523.1248501	1		
51	- 0.459721	1.434678	22.8044145	1		
101	0.489133	1.305693	3.7471443	1		
151	0.877195	1.231502	0.3642841	1		
201	0.991289	1.199654	0.0478472	1		
251	1.018483	1.182205	0.0244114	1		
301	1.02358	1.169052	0.0202825	1		
351	1.023479	1.15752	0.0176149	1		
401	1.022241	1.146927	0.0153406	1		
451	1.020818	1.137079	0.0133606	1		
501	1.019428	1.127893	0.011635	1		
551	1.018118	1.11932	0.0101311	1		
601	1.016893	1.111317	0.0088206	1		
651	1.01575	1.103848	0.007679	1		
701	1.014684	1.096876	0.0066845	1		
751	1.013691	1.090369	0.0058183	1		
801	1.012764	1.084297	0.0050639	1		
851	1.011901	1.078631	0.004407	1		
901	1.011096	1.073343	0.0038351	1		
951	1.010345	1.06841	0.0033372	1		
1001	1.009645	1.063807	0.0029037	1		

	T	T	T =	Τ.	T	
1051	1.008993	1.059512	0.0025264	1		
1101	1.008385	1.055505	0.0021981	1		
1151	1.007818	1.051767	0.0019123	1		
1201	1.007289	1.04828	0.0016636	1		
1251	1.006796	1.045027	0.0014471	1		
1301	1.006336	1.041993	0.0012588	1		
1351	1.005908	1.039163	0.001095	1		
1401	1.005508	1.036523	0.0009524	1		
1451	1.005136	1.03406	0.0008284	1		
1501	1.004789	1.031763	0.0007205	1		
1551	1.004465	1.029621	0.0006266	1		
1601	1.004163	1.027623	0.000545	1		
1651	1.003882	1.025759	0.000474	1		
1701	1.003619	1.024021	0.0004122	1		
1751	1.003375	1.0224	0.0003585	1		
1801	1.003146	1.020888	0.0003117	1		
1851	1.002934	1.019479	0.0002711	1		
1901	1.002735	1.018164	0.0002357	1		
1951	1.00255	1.016938	0.000205	1		
2001	1.002378	1.015794	0.0001783	1		
2051	1.002217	1.014728	0.000155	1		
2101	1.002067	1.013733	0.0001348	1		
2151	1.001928	1.012806	0.0001172	1		
2201	1.001797	1.011941	0.0001019	1		
2251	1.001676	1.011135	8.86e-05	1		
2301	1.001563	1.010383	7.71e-05	1		
2351	1.001457	1.009682	6.7e-05	1		
2401	1.001359	1.009028	5.83e-05	1		
2451	1.001267	1.008418	5.07e-05	1		
2501	1.001181	1.007849	4.4e-05	1		
2551	1.001101	1.007319	3.83e-05	1		
2601	1.001027	1.006825	3.33e-05	1		
2651	1.000957	1.006364	2.9e-05	1		
2701	1.000893	1.005934	2.52e-05	1		
2751	1.000832	1.005533	2.19e-05	1		
2801	1.000776	1.005159	1.9e-05	1		
2851	1.000770	1.004811	1.65e-05	1		
2901	1.000675	1.004486	1.44e-05	1		
2951	1.000629	1.004182	1.25e-05	1		
3001	1.000587	1.0039	1.09e-05	1		
3018	1.000573	1.0033	1.04e-05	1		
3019	1.000573	1.003808	1.03e-05	1	1.0002381	0.9972032
3020	1.000572	1.003803	1.03e-05	1	1.0002381	0.997205
3020	1.000571	1.003798	1.03e-05	1	1.0002383	0.9972069
3021	1.00057	1.003792	1.03e-05	1	1.0002849	0.9972088
3022	1.00057	1.003787	1.03e-05 1.02e-05	1	1.0002319	0.9972088
3023			1.02e-05 1.02e-05	1		0.9972029
	1.000568	1.003776			1.0002859	
3025	1.000567	1.003771	1.02e-05	1	1.0002397	0.9972048

3026	1.000566	1.003766	1.01e-05	1	1.00024	0.9972068
3027	1.000566	1.003761	1.01e-05	1	1.0002332	0.9972089
3028	1.000565	1.003755	1.01e-05	1	1.0002872	0.9972011
3029	1.000564	1.00375	1.01e-05	1	1.0002408	0.997213
3030	1.000563	1.003745	1e-05	1	1.0002411	0.9972053
3031	1.000562	1.00374	1e-05	1	1.0002413	0.9972074

Начальное приближение $x_b = (1, 10)$

				Число	Оценка	Оценка скорости
Шаг	x_1	x_2	$F(x_1,x_2)$	вычислений	порядка	сходимости $\left(\frac{F(x_k)}{F(x_{k-1})}\right)$
				F	сходимости	$(\overline{F(x_{k-1})})$
1	1.036	9.982	79.377967	1		
101	2.471816	9.040068	30.248458	1		
201	2.381755	8.470165	26.9179615	1		
301	2.283794	7.919825	23.7934787	1		
401	2.187248	7.388741	20.8799728	1		
501	2.092638	6.87816	18.183712	1		
601	2.000505	6.389318	15.7092917	1		
701	1.911416	5.923392	13.4591522	1		
801	1.82594	5.481463	11.4331236	1		
901	1.744619	5.064459	9.6280588	1		
1001	1.667939	4.673104	8.0376227	1		
1101	1.596298	4.307877	6.6522929	1		
1201	1.529982	3.968972	5.4596064	1		
1301	1.469147	3.656276	4.4446421	1		
1401	1.413815	3.36937	3.5906908	1		
1501	1.363884	3.107542	2.8800298	1		
1601	1.319146	2.869821	2.294706	1		
1701	1.279307	2.655016	1.8172415	1		
1801	1.244016	2.461776	1.4311994	1		
1901	1.212892	2.288634	1.12158	1		
2001	1.185539	2.134065	0.8750495	1		
2101	1.161568	1.996525	0.6800204	1		
2201	1.140609	1.874495	0.5266183	1		
2301	1.122314	1.766503	0.4065691	1		
2401	1.106365	1.67115	0.3130395	1		
2501	1.092475	1.587125	0.2404556	1		
2601	1.080386	1.51321	0.1843189	1		
2701	1.069872	1.448289	0.1410321	1		
2801	1.060729	1.391342	0.1077405	1		
2901	1.05278	1.341448	0.0821941	1		
3001	1.045872	1.297778	0.0626297	1		
3101	1.039868	1.259588	0.0476721	1		
3201	1.03465	1.226217	0.0362537	1		
3301	1.030116	1.197075	0.0275484	1		
3401	1.026176	1.171642	0.0209189	1		
3501	1.022752	1.149457	0.0158753	1		

3701 1.0 3801 1.0 3901 1.0 4001 1.0 4101 1.0 4201 1.0 4301 1.0	017189 014942 012988 01129 009814 008532	1.130112 1.113252 1.098562 1.085765 1.074622 1.06492 1.056474	0.0120414 0.0091292 0.0069186 0.0052415 0.0039697 0.0030058	1 1 1 1		
3801 1.0 3901 1.0 4001 1.0 4101 1.0 4201 1.0 4301 1.0	014942 012988 01129 009814 008532	1.098562 1.085765 1.074622 1.06492	0.0069186 0.0052415 0.0039697	1		
3901 1.0 4001 1.0 4101 1.0 4201 1.0 4301 1.0	012988 01129 009814 008532	1.085765 1.074622 1.06492	0.0052415 0.0039697	1		
4001 1.0 4101 1.0 4201 1.0 4301 1.0	01129 009814 008532	1.074622 1.06492	0.0039697			
4101 1.0 4201 1.0 4301 1.0	009814 008532	1.06492				
4201 1.0 4301 1.0	008532			1		
4301 1.0			0.0022754	1		
-		1.049123	0.0017221	1		
4401 1.0	006448	1.042727	0.0013032	1		
		1.037161	0.000986	1		
-		1.032318	0.0007459	1		
-		1.028106	0.0005642	1		
		1.024441	0.0004267	1		
		1.021254	0.0003227	1		
-		1.018482	0.0002441	1		
5101 1.0	00242	1.016071	0.0001846	1		
5201 1.0	002104	1.013974	0.0001396	1		
5301 1.0	001829	1.01215	0.0001055	1		
5401 1.0	00159	1.010565	7.98e-05	1		
5501 1.0	001382	1.009186	6.03e-05	1		
5601 1.0	001202	1.007987	4.56e-05	1		
5701 1.0	001045	1.006944	3.45e-05	1		
5801 1.0	000908	1.006038	2.61e-05	1		
5901 1.0	00079	1.005249	1.97e-05	1		
6001 1.0	000687	1.004564	1.49e-05	1		
6101 1.0	000597	1.003968	1.13e-05	1		
6132 1.0	000572	1.0038	1.03e-05	1		
6133 1.0	000571	1.003794	1.03e-05	1	1.0002848	0.9972101
6134 1.0	00057	1.003789	1.03e-05	1	1.0002388	0.9972023
6135 1.0	000569	1.003784	1.02e-05	1	1.000239	0.9972041
6136 1.0	000568	1.003779	1.02e-05	1	1.0002393	0.9972061
6137 1.0	000568	1.003773	1.02e-05	1	1.0002791	0.997208
6138 1.0	000567	1.003768	1.02e-05	1	1.0002399	0.9972101
6139 1.0	000566	1.003763	1.01e-05	1	1.0002401	0.9972022
6140 1.0	000565	1.003757	1.01e-05	1	1.0002871	0.9972043
6141 1.0	000564	1.003752	1.01e-05	1	1.0002407	0.9972063
6142 1.0	000564	1.003747	1e-05	1	1.0002339	0.9972085
6143 1.0	000563	1.003742	1e-05	1	1.0002412	0.9972006
6144 1.0	000562	1.003737	1e-05	1	1.0002415	0.9972128

Начальное приближение $x_c = (-5.36, 7.36)$

Шаг	<i>x</i> ₁	x_2	$F(x_1,x_2)$	Число вычислений F	Оценка порядка сходимости	Оценка скорости $(\frac{F(x_k)}{F(x_{k-1})})$
1	-	7.402739	570.4519686	1		
	4.774636					
101	-	6.668023	65.3387762	1		
	0.596894					

	I	I	T	1	1	T
201	1.317855	5.546029	15.5209801	1		
301	1.723209	5.028043	9.4681218	1		
401	1.660428	4.63657	7.8943569	1		
501	1.589616	4.273831	6.5283127	1		
601	1.523836	3.937478	5.3535638	1		
701	1.463536	3.627308	4.3549818	1		
801	1.408734	3.342872	3.5157242	1		
901	1.359319	3.083431	2.8180124	1		
1001	1.31507	2.847988	2.2439103	1		
1101	1.275688	2.635338	1.7760189	1		
1201	1.240819	2.444114	1.398026	1		
1301	1.210078	2.272842	1.0950865	1		
1401	1.18307	2.119994	0.8540344	1		
1501	1.159408	1.984026	0.6634516	1		
1601	1.138722	1.863421	0.5136249	1		
1701	1.120668	1.756716	0.3964275	1		
1801	1.104931	1.662519	0.3051565	1		
1901	1.091226	1.579527	0.2343503	1		
2001	1.0793	1.506532	0.1796054	1		
2101	1.068927	1.442428	0.1374031	1		
2201	1.059907	1.386204	0.1049532	1		
2301	1.052067	1.336949	0.0800578	1		
2401	1.045252	1.293842	0.0609953	1		
2501	1.039329	1.256148	0.0464237	1		
2601	1.034182	1.223212	0.0353014	1		
2701	1.029709	1.194452	0.0268228	1		
2801	1.025822	1.169353	0.0203667	1		
2901	1.022444	1.147461	0.0154554	1		
3001	1.019508	1.128372	0.0117223	1		
3101	1.016957	1.111736	0.008887	1		
3201	1.01474	1.097241	0.0067348	1		
3301	1.012813	1.084615	0.0051021	1		
3401	1.011138	1.07362	0.003864	1		
3501	1.009682	1.064048	0.0029257	1		
3601	1.008417	1.055715	0.0022147	1		
3701	1.007317	1.048463	0.0016761	1		
3801	1.006361	1.042152	0.0012684	1		
3901	1.005529	1.036661	0.0009596	1		
4001	1.004807	1.031883	0.000726	1		
4101	1.004179	1.027727	0.0005491	1		
4201	1.003633	1.024112	0.0004153	1		
4301	1.003158	1.020968	0.0003141	1		
4401	1.002746	1.018233	0.0002375	1		
4501	1.002387	1.015854	0.0001796	1		
4601	1.002075	1.013785	0.0001358	1		
4701	1.001804	1.011987	0.0001027	1		
4801	1.001569	1.010422	7.76e-05	1		
4901	1.001364	1.009062	5.87e-05	1		
				l .	1	

5001	1.001186	1.007879	4.44e-05	1		
5101	1.001031	1.006851	3.35e-05	1		
5201	1.000896	1.005956	2.54e-05	1		
5301	1.000779	1.005179	1.92e-05	1		
5401	1.000677	1.004503	1.45e-05	1		
5501	1.000589	1.003915	1.1e-05	1		
5513	1.000579	1.003849	1.06e-05	1		
5514	1.000578	1.003844	1.06e-05	1	1.000236	0.9972062
5515	1.000577	1.003839	1.05e-05	1	1.0002362	0.9972078
5516	1.000577	1.003833	1.05e-05	1	1.0002755	0.9972
5517	1.000576	1.003828	1.05e-05	1	1.0002368	0.9972112
5518	1.000575	1.003823	1.04e-05	1	1.000237	0.9972034
5519	1.000574	1.003817	1.04e-05	1	1.0002834	0.9972051
5520	1.000573	1.003812	1.04e-05	1	1.0002376	0.9972069
5521	1.000573	1.003807	1.04e-05	1	1.0002309	0.9972087
5522	1.000572	1.003801	1.03e-05	1	1.0002844	0.9972009
5523	1.000571	1.003796	1.03e-05	1	1.0002384	0.9972124
5524	1.00057	1.003791	1.03e-05	1	1.0002387	0.9972046
5525	1.000569	1.003785	1.02e-05	1	1.0002854	0.9972065
5526	1.000569	1.00378	1.02e-05	1	1.0002323	0.9971986
5527	1.000568	1.003775	1.02e-05	1	1.0002395	0.9972103
5528	1.000567	1.00377	1.02e-05	1	1.0002398	0.9972025
5529	1.000566	1.003764	1.01e-05	1	1.0002867	0.9972045
5530	1.000565	1.003759	1.01e-05	1	1.0002403	0.9972066
5531	1.000565	1.003754	1.01e-05	1	1.0002336	0.9972086
5532	1.000564	1.003749	1,00E-05	1	1.0002409	0.9972008
5533	1.000563	1.003743	1e-05	1	1.000288	0.9972129
5534	1.000562	1.003738	1,00E-05	1	1.0002414	0.9972051

Оценка скорости и порядка сходимости методов

При любых начальных точках оценочное значение порядка сходимости метода наискорейшего спуска близки к единице, что подтверждает теоретические сведения. Таким образом, порядок сходимости метода наискорейшего спуска – единица.

Во всех случаях запуска метода наискорейшего спуска выполняется соотношение $|\varphi(x_{k+1}) - \varphi(x^*)| \le 0.83 |\varphi(x_k) - \varphi(x^*)|$. Таким образом, метод наискорейшего спуска сходится с линейной скоростью.

При всех использованных исходных данных исследование метода с постоянным шагом показало, что порядок его сходимости равен единице.

Во всех случаях запуска метода с постоянным шагом выполнилось соотношение $|\varphi(x_{k+1}) - \varphi(x^*)| \le 0.998 |\varphi(x_k) - \varphi(x^*)|$. Это говорит о том, что метод сходится с линейной скоростью.

Ниже приведена сводная таблица по проведенным исследованиям. Для метода наискорейшего спуска показаны количество шагов и количество вычислений F. Для метода с постоянным шагом эти значения одинаковы, поэтому приведено только одно число.

Начальное		Метод скорейшего спуска	Метод с постоянным	Метод с постоянным	
приближение	Шагов	Вычислений F	шагом (0.005)	шагом (0.001)	
-8; 1	53	643	791	3031	
1; 10	30	412	1226	6144	
-5.36; 7.36	33	434	1105	5534	

Выводы

Количество шагов метода с постоянным шагом значительно зависит от точки начального приближения. В нашем случае точки расположены на одинаковом расстоянии от точки минимума, однако наблюдается почти двукратная разница в количестве шагов для разных точек. При этом можно заметить (глядя на изолинии функции F), что методу с постоянным шагом требуется тем меньше шагов, чем больше норма градиента минимизируемой функции.

Также наблюдается сильная зависимость метода с постоянным шагом от длины шага. Чем больше длина шага, тем быстрее сходится метод, однако есть вероятность того, что метод не сойдется при слишком большом размере шага (в рассматриваемом случае это ~0.01).

Сравнение метода с постоянным шагом и метода наискорейшего спуска.

Отметим основные различия:

- 1. В общем случае метод наискорейшего спуска сходится за значительно меньшее число шагов, чем метод с постоянным. Собственно, в проводимых исследованиях не удалось получить случай, когда метод с постоянным шагом оказался бы эффективнее.
- 2. На каждом шаге (и в целом) метод наискорейшего спуска требует меньшее количество вычислений, чем метод с постоянным шагом.

Таким образом метод наискорейшего спуска показывает в большинстве случаем большую эффективность в сравнении с методом с постоянным шагом, хотя второй более предсказуем.