DM₃ Mathématiques

— Exercice —

- 1. (a) Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe vérifiant (P_1) . Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe. On suppose que la série $\sum u_n$ est convergente. Ainsi, u_n tend vers 0 (quand $n\to\infty$), et donc la suite $(u_n)_{n\in\mathbb{N}}$ est bornée. D'où, d'après (P_1) , la série $\sum a_n u_n$ converge.
 - (b) Soit $(a_n)_{n\in\mathbb{N}}$ une suite complexe telle que la série $\sum |a_n|$ converge. Montrons que la suite vérifie la propriété (P_1) . Soit $(u_n)_{n\in\mathbb{N}}$ une suite complexe bornée. Soit $M\in\mathbb{R}^+$ tel que, pour tout $n\in\mathbb{N},\,|u_n|\leqslant M$. On a donc $\forall n\in\mathbb{N},\,0\leqslant|a_n\,u_n|\leqslant M\,|a_n|$. Comme la série $\sum M\,|a_n|=M\cdot\sum|a_n|$ converge, alors la série $\sum |a_n\,u_n|$ converge. On en déduit que la série $\sum a_n\,u_n$ converge.
- 2. (a) Non. On pose, pour $n \in \mathbb{N}$, $u_n = (-1)^n$. La suite $(u_n)_{n \in \mathbb{N}}$ est bornée (par -1 et 1). Mais, la série $\sum a_n u_n$ ne converge pas. En effet, pour $n \in \mathbb{N}$, $a_n v_n = (-1)^{2n} \cdot \frac{1}{n} = \frac{1}{n}$, et la série $\sum \frac{1}{n}$ diverge par critère de RIEMANN.
 - (b) La fonction $x\mapsto x\ln x$ est croissante, d'où, par composition avec la fonction inverse, la fonction $\frac{1}{x\ln x}$ est décroissante. On compare série et intégrale :

$$\int_{2}^{N+1} \frac{1}{x \ln x} \, \mathrm{d}x \leqslant \sum_{k=2}^{N} \frac{1}{k \ln k}.$$

Or, à l'aide du changement de variable $u=\ln x$, on a

$$\int_{2}^{N+1} \frac{1}{x \ln x} dx = \int_{\ln 2}^{\ln(N+1)} \frac{1}{u} du = \ln(\ln(N+1)) - \ln(\ln 2),$$

qui diverge vers $+\infty$ quand $N\to\infty$. On en déduit que la série $\sum \frac{1}{n \ln n}$ diverge.

- (c) Non. On pose, pour $n \in \mathbb{N}$, $u_n = \frac{(-1)^n}{\ln n}$. La série alternée $\sum u_n$ converge; en effet, la fonction $x \mapsto \frac{1}{\ln x}$ est positive et décroissante. On a, pour $n \in \mathbb{N}$, $u_n \, a_n = \frac{1}{n \ln n}$. Et, on a vu dans la question précédente que la série $\sum \frac{1}{n \ln n} = \sum a_n \, u_n$ diverge.
- 3. (a) La série $\sum (a_{n+1}-a_n)$ converge absolument, donc elle converge simplement. On pose, pour $n\in\mathbb{N},$ $S_n=\sum_{k=1}^{n-1}(a_{k+1}-a_k)$. Or, comme la somme est télescopique, on a, pour tout $n\in\mathbb{N}$,

$$S_n = \sum_{k=1}^{n-1} (a_{k+1} - a_k) = a_n - a_0.$$

Or, comme $\sum (a_{n+1}-a_n)$ converge, S_n admet une limite finie ℓ . Ainsi, on a $a_n=S_n+a_0 \xrightarrow[n \to +\infty]{} \ell+a_0 \in \mathbb{C}$. La suite $(a_n)_{n \in \mathbb{N}}$ admet donc une limite finie.

- (b) On procède par récurrence.
 - On a d'une part $\sum_{n=0}^1 a_n u_n = a_0 u_0 + a_1 u_1$, et d'autre part

$$\sum_{n=0}^{0} (a_n - a_{n+1})U_n + a_1U_1 = (a_0 - a_1)U_0 + a_1U_1$$

$$= a_0 u_0 - a_1 u_0 + a_1 u_1 + a_2 u_0$$

$$= a_0 u_0 + a_1 u_1$$

— Soit $N \in \mathbb{N}$. On suppose que

$$\sum_{n=0}^{N} a_n u_n = \sum_{n=0}^{N-1} (a_n - a_{n+1}) U_n + a_N U_N.$$

Ainsi,

$$\sum_{n=0}^{N+1} a_n u_n = \sum_{n=0}^{N} a_n u_n + a_{N+1} u_{N+1}$$

$$= \sum_{n=0}^{N-1} (a_n - a_{n+1}) U_n + a_N U_N + a_{N+1} (U_{N+1} - U_N)$$

$$= \sum_{n=0}^{N-1} (a_n - a_{n+1}) U_n + (a_N - a_{N+1}) U_N + a_{N+1} U_{N+1}$$

$$= \sum_{n=0}^{N} (a_n - a_{n+1}) U_n + a_{N+1} U_{N+1}$$

Si $\sum u_n$ converge, alors $(U_n)_{n\in\mathbb{N}}$ converge, et donc la série $\sum a_n u_n$ converge.

- 4. (a) On pose, pour tout $n \in \mathbb{N}$, $r_n = |a_n|$ et $\theta_n = \arg(a_n)$. Ainsi, $\forall n \in \mathbb{N}$, $a_n = r_n e^{i\theta_n}$. On pose, pour tout $n \in \mathbb{N}$, $u_n = e^{-i\theta_n}$. La suite $(u_n)_{n \in \mathbb{N}}$ est composée de complexes de module 1. On a, pour tout $n \in \mathbb{N}$, $a_n u_n = r_n e^{i\theta_n} e^{-i\theta_n} = r_n$. Or, comme la série $\sum |a_n| = \sum r_n$ diverge, alors la série $\sum a_n u_n$ diverge également.
 - (b) On a montré dans la question (1b) que si la série $\sum |a_n|$ converge, alors elle vérifie (P_1) . Puis, on a montré en question (4a) que si la série $\sum |a_n|$ diverge, alors elle ne vérifie pas (P_2) . On en déduit que la suite $(a_n)_{n\in\mathbb{N}}$ vérifie (P_1) si, et seulement si la série $\sum |a_n|$ converge (*i.e.* la série $\sum a_n$ est absolument convergente).

— Problème —

1. (a) On trouve $\chi_{M(\alpha)}(X)=(X-2)(X-1)(X+\alpha-2)$. En effet, soit $\lambda\in\mathbb{R}$. On calcule

$$\det (\lambda I_3 - M(\alpha)) = \begin{vmatrix} \lambda - 1 & 1 & -\alpha \\ 0 & \lambda - 2 & \alpha \\ -1 & -1 & \lambda - 2 + \alpha \end{vmatrix}$$

$$= \begin{vmatrix} \lambda - 1 & 1 & -\alpha \\ \lambda - 1 & \lambda - 1 & 0 \\ -1 & -1 & \lambda - 2 + \alpha \end{vmatrix} \text{ avec } L_2 \leftarrow L_1 + L_2$$

$$= \begin{vmatrix} \lambda - 2 & 1 & -\alpha \\ 0 & \lambda - 1 & 0 \\ 0 & -1 & \lambda - 2 + \alpha \end{vmatrix} \text{ avec } C_1 \leftarrow C_1 - C_2$$

$$= (\lambda - 2) \begin{vmatrix} \lambda - 1 & 0 \\ -1 & \lambda - 2 + \alpha \end{vmatrix}$$

$$= (\lambda - 2)(\lambda - 1)(\lambda - 2 + \alpha).$$

- (b) On a bien $\prod_{i=1}^3 (X-a_{i,i})=(X-1)(X-2)(X+\alpha-2)=\chi_{M(\alpha)}(X)$, donc $M(\alpha)$ est bien une matrice à diagonale propre.
- (c) Comme $\chi_{M(\alpha)}$ est scindé, on voit que ses racines sont 1, 2 et $2-\alpha$. Donc

$$M(\alpha)$$
 est diagonalisable $\iff \chi_{M(\alpha)}$ est scindé à racines simples $\iff 2-\alpha \neq 1$ et $2-\alpha \neq 2$ $\iff \alpha \neq 1$ et $\alpha \neq 0$ $\iff \alpha \not\in \{0,1\}.$

2. Soit $\lambda \in \mathbb{R}$. On a

$$\det(\lambda I_3 - A) = \begin{vmatrix} \lambda & 0 & 1 \\ 0 & \lambda & 0 \\ -1 & 0 & \lambda \end{vmatrix}$$
$$= -\lambda \begin{vmatrix} \lambda & 1 \\ -1 & \lambda \end{vmatrix}$$
$$= -\lambda(\lambda^2 + 1)$$

Son polynôme caractéristique est $\chi_A(X) = -X(X^2 + 1)$. Il n'est pas scindé sur \mathbb{R} , la matrice A n'est donc pas à diagonale propre.

3. Soit $A=\binom{a\ b}{c\ d}\in\mathcal{M}_2(\mathbb{R}).$ On a $\chi_A(X)=\det\binom{X-a\ -b}{-c\ X-d}=(X-a)(X-d)-bc.$ Ainsi,

A est à diagonale propre $\iff \chi_A(X) = (X-a)(X-b) \iff b=0$ ou c=0.

On en déduit que $\mathscr{C}_2=\left\{\left(\begin{smallmatrix} a&b\\0&d\end{smallmatrix}\right)\mid(a,b,d)\in\mathbb{R}^3\right\}\cup\left\{\left(\begin{smallmatrix} a&0\\c&d\end{smallmatrix}\right)\mid(a,c,d)\in\mathbb{R}^3\right\}.$ Autrement dit, \mathscr{C}_2 est l'ensemble des matrices 2×2 triangulaires.

4. Une matrice est inversible si, et seulement si elle ne possède aucun '0' sur sa diagonale. En effet, une matrice A est inversible A si, et seulement si $\det A \neq 0$. Or, $\det A = \prod_{\lambda \in \operatorname{Sp}(A)} \lambda^{m_\lambda}$ (où m_λ correspond à la multiplicité de la racine λ du polynôme caractéristique). On en déduit que A est inversible si et seulement s'il exist pas $\lambda \in \operatorname{Sp}(A)$ avec $\lambda^{m_\lambda} = 0$, donc $\lambda = 0$.

Par exemple, on pose

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix},$$

une matrice non diagonale. On a $\chi_A(X)=(X-1)^3$, car c'est un déterminant triangulaire. C'est donc bien une matrice à diagonale propre. Et, comme '0' n'est pas racine du polynôme caractéristique, on en déduit que A est inversible. On a, par méthode du pivot de Gauss,

$$A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

qui est aussi une matrice à diagonale propre. En effet, on a $\chi_{A^{-1}}(X)=(X-1)^3$, comme c'est un déterminant triangulaire.

5. On pose

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$$

On calcule le polynôme caractéristique : soit $\lambda \in \mathbb{R}$, on a

$$\det(\lambda I_3 - A) = \begin{vmatrix} \lambda - a_{11} & -a_{12} & -a_{13} \\ -a_{21} & \lambda - a_{22} & -a_{23} \\ -a_{31} & -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= (\lambda - a_{11}) \begin{vmatrix} \lambda - a_{22} & -a_{23} \\ -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$+ a_{21} \begin{vmatrix} -a_{12} & -a_{13} \\ -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$- a_{31} \begin{vmatrix} -a_{12} & -a_{13} \\ -a_{32} & \lambda - a_{33} \end{vmatrix}$$

$$= (\lambda - a_{11})((\lambda - a_{22})(\lambda - a_{33}) - a_{23}a_{32})$$

$$+ a_{21}(a_{12}(a_{33} - \lambda) - a_{13}a_{32})$$

$$- a_{31}(a_{12}a_{23} + a_{13}(\lambda - a_{22}))$$

$$= (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33}) - a_{23}a_{32}(\lambda - a_{11})$$

$$+ a_{21}a_{12}(a_{33} - \lambda) - a_{13}a_{32}a_{21} - a_{31}a_{12}a_{23}$$

$$- a_{31}a_{13}(\lambda - a_{22})$$

$$= \lambda^3 - \lambda^2(a_{11} + a_{22} + a_{33})$$

$$+ \lambda(a_{22}a_{33} + a_{11}a_{22} + a_{11}a_{33} - a_{23}a_{32} - a_{21}a_{12} - a_{31}a_{13})$$

$$- a_{11}a_{22}a_{33} + a_{23}a_{32}a_{11} + a_{21}a_{12}a_{33}$$

$$- a_{13}a_{32}a_{21} - a_{31}a_{12}a_{23} - a_{31}a_{13}a_{22}$$

Or, $\prod_{i=1}^3 (\lambda - a_{i,i}) = (\lambda - a_{11})(\lambda - a_{22})(\lambda - a_{33}) = \lambda^3 - \lambda^2 (a_{11} + a_{22} + a_{33}) + \lambda (a_{11}a_{22} + a_{22}a_{33} + a_{11}a_{33}) - a_{11}a_{22}a_{33}$. Or, deux polynômes (ici d'inconnue λ) sont égaux si et seulement si leurs coefficients sont égaux. On en déduit que A est à diagonale propre si et seulement si $a_{23}a_{32} + a_{21}a_{12} + a_{31}a_{13} = 0$, et $\det A = a_{11}a_{22}a_{33}$ (car le coefficient constant vaut $(-1)^3 \det A = -\det A$).

- 6. On utilise le résultat trouvé à la question précédente : on a $\det A'=3+4-1=6$ en développant selon la première ligne, ce qui correspond à $1\times 1\times 6$. De plus, on a 3-1-2=0. On en déduit que A' est une matrice à diagonale propre.
- 7. On pose p la largeur de la matrice A, et q la largeur de la matrice C. On a

$$\chi_M(\lambda) = \det(\lambda I_n - M) = \begin{vmatrix} \lambda I_p - A & -B \\ 0 & \lambda I_q - C \end{vmatrix}$$
$$= \det(\lambda I_p - A) \times \det(\lambda I_q - C) = \chi_A(\lambda) - \chi_C(\lambda)$$

car le déterminant est triangulaire par blocs. On en déduit que $\chi_M=\chi_A\times\chi_C$.

8. (a) On pose

$$M = \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & 1 & 1 \\ -2 & 3 & 6 & 1 \\ \hline 0 & 0 & 0 & 1 \end{pmatrix}.$$

D'après les questions précédentes, cette matrice (qui a bien treize coefficients nonnuls) est bien à diagonale propre.

(b) On a

$$M$$
 est à diagonale propre
$$\iff \chi_M(X) = (X-a)(X-c)(X-e)(X-h)$$

$$\iff \chi_A(X) \times \chi_C(X) = (X-a)(X-c)(X-e)(X-h)$$

$$\iff \begin{cases} \chi_A(X) = (X-e)(X-h) \\ \chi_C(X) = (X-a)(X-c) \end{cases}$$

En effet, s'il y avait un facteur $(X-\beta)$ dans la forme factorisée du polynôme caractéristique de A (ou respectivement C), alors la matrice A (ou respectivement C) serait diagonale, ce qui est impossible car les coefficients de A (respectivement C) sont tous non-nuls.

On pose

$$M = \left(\begin{array}{c|cccc} 3 & -1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \hline 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{array} \right).$$

En effet, $\chi_{\binom{2\ 1}{1\ 2}}(X)=(X-2)^2-1=X^2-4X+3=(X-3)(X-1),$ et $\chi_{\binom{3\ -1}{1\ 1}}(X)=(X-3)(X-1)-1=X^2-4X+2=(X-2)^2.$ La matrice M est donc à diagonale propre.

- 9. Soient $a,b \in \mathbb{R}$. On sait que, si C est à diagonale propre, alors tC l'est aussi. (En effet, les coefficients diagonaux sont invariants par transposée, et le polynôme caractéristique aussi.) Or, ${}^tC = {}^t(aA) + {}^t(bI_n) = a{}^tA + bI_n = C'$. Montrons à présent que C est à diagonale propre.
 - Si A est une matrice à diagonale propre, alors aA l'est aussi. En effet, soit $\lambda \in \mathbb{R}$, on a $\chi_{aA}(X) = \det(XI_n aA) = \det\left(a(\frac{X}{a}I_n A)\right) = a^n \det(\frac{X}{a} A) = a^n \chi_A(\frac{X}{a})$, et $\prod_{i=1}^n (X aa_{i,i}) = \prod_{i=1}^n \left(a(\frac{X}{a} a_{i,i})\right) = a^n \prod_{i=1}^n (\frac{X}{a} a_{i,i}) = a^n \chi_A(\frac{X}{a})$. Ainsi, aA est une matrice à diagonale propre.
 - Si A est une matrice à diagonale propre, alors $A+I_n$ l'est aussi. En effet, $\chi_{A+I_n}(X)=\det(XI_n-A-I_n)=\det\left((X-1)I_n-A\right)$, et $\prod_{i=1}^n\left(X-(a_{i,i}+1)\right)=\prod_{i=1}^n\left((X-1)I_n-A\right)$. Ainsi, $A+I_n$ est une matrice à diagonale propre.

On suppose $b \neq 0$. (On a déjà procédé au cas b=0 au premier tiret.) On sait que $C=b\left(\left(\frac{a}{b}A\right)+I_n\right)$. Si A est à diagonale propre, alors $\frac{a}{b}A$ l'est aussi, et donc $\frac{a}{b}A+I_n$ est aussi une matrice à diagonale propre. On en déduit que $C=b\left(\frac{a}{b}A+I_n\right)$ est une matrice à diagonale propre.

- 10. Soit $A \in \mathcal{E}_n$. Soit $p \in \mathbb{N}$. On pose $C_p = A + \frac{1}{p}I_n$. C'est une matrice à diagonale propre d'après la question (9). La matrice C_p est inversible si et seulement si $\det C_p = \det(A (-\frac{1}{p})I_n \neq 0$, donc si et seulement si $-\frac{1}{p}$ n'est pas une valeur propre de A. Or, toute matrice à un nombre de valeurs propres fini. Si, pour $p \in \mathbb{N}^*$, $-\frac{1}{p} \not\in \operatorname{Sp}(A)$, alors on pose $p_0 = 1$. Sinon, on pose l'ensemble $P = \{p \in \mathbb{N}^* \mid -\frac{1}{p} \in \operatorname{Sp}(A)\}$; c'est une partie de \mathbb{N} non vide, elle admet un maximum. On pose $p_0 = \max(p) + 1$. Par construction, on a bien $p \geqslant p_0 \implies \det C_p \neq 0$ i.e. $C_p \in G_n$.
- 11. (a) Non. D'après le théorème spectral, la matrice $M=\binom{0}{2}\binom{2}{0}\in \mathbb{S}_2$ est diagonalisable, donc trigonalisable. Mais, $\chi_M(X)=X^2-4\neq (X-0)(X-0)$.
 - (b) Toute matrice à diagonale propre admet un polynôme caractéristique scindé sur \mathbb{R} , elle est donc trigonalisable.
 - (c) Soit $A \in \mathcal{M}_n(\mathbb{R})$. On sait que le polynôme caractéristique est un invariant de similitude. Ainsi, si A est semblable à une matrice B à diagonale propre, alors $\chi_B = \chi_A$, qui est un polynôme scindé par définition de matrice à diagonale propre.
 - Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice dont le polynôme caractéristique est scindé. Ainsi, elle est trigonalisable : soit $B \in \mathcal{M}_n(\mathbb{R})$ une matrice triangulaire semblable à A. Or, une matrice triangulaire est à diagonale propre. En effet, le déterminant $\det(XI_n B)$ est triangulaire, donc égale aux produit des coefficients diagonaux $X b_{i,i}$.

On en déduit de cette Analyse-Synthèse qu'une matrice A est semblable à une matrice à diagonale propre si et seulement si le polynôme caractéristique de A est scindé.

12. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On pose

$$U = \begin{pmatrix} \frac{a_{11}}{2} & 0 & \dots & 0 \\ a_{21} & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \dots & a_{n,n-1} & \frac{a_{nn}}{2} \end{pmatrix} \quad \text{et} \quad V = \begin{pmatrix} \frac{a_{11}}{2} & a_{12} & \dots & a_{1n} \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \dots & 0 & \frac{a_{nn}}{2} \end{pmatrix}$$

Par construction, on a bien A=U+V, et les matrices U et V sont triangulaires, donc à diagonales propres (c.f. question précédente). Ainsi, toute matrice est la somme de deux matrices à diagonales propres.

Non, \mathscr{C}_n n'est pas un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{R})$. En effet, on a prouvé que toute matrice de $\mathscr{M}_n(\mathbb{R})$ peut être décomposée en somme de deux matrices U et V de \mathscr{C}_n . Or, si \mathscr{C}_n est un sous-espace vectoriel, alors $U+V\in\mathscr{C}_n$. Mais, ce n'est pas le cas : il existe des matrices qui ne sont pas à diagonale propre (par exemple $\binom{0\ 2}{2\ 0} \not\in \mathscr{C}_2$).

13. Soit $A = (a_{i,j})_{i,j \in [\![1,n]\!]} \in \mathcal{M}_n(\mathbb{R})$. On pose ${}^tA = (b_{j,k})_{j,k \in [\![1,n]\!]}$, et ${}^tAA = (c_{i,k})_{i,k \in [\![1,n]\!]}$. On a, pour $i,k \in [\![1n]\!]$, $c_{i,k} = \sum_{j=1}^n a_{i,j}b_{j,k} = \sum_{j=1}^n a_{i,j}a_{k,j}$. Ainsi,

$$\operatorname{tr}({}^{t}AA) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2}.$$

14. (a) La matrice A est semblable à $\operatorname{diag}(\lambda_1,\dots,\lambda_n)$. De même, la matrice tA est aussi semblable à $\operatorname{diag}(\lambda_1,\dots,\lambda_n)$ (comme c'est sa propre transposée). En effet, soit $P\in\operatorname{GL}_n(\mathbb{R})$ telle que $P^{-1}\cdot A\cdot P=D$ où $D=\operatorname{diag}(\lambda_1,\dots,\lambda_n)$, alors ${}^tA={}^t(P^{-1}\cdot D\cdot P)=({}^tP)\cdot {}^tD\cdot ({}^tP)^{-1}$, donc tA est aussi semblable à D. Ainsi, par produit $(P^{-1}\cdot A\cdot P\cdot ({}^tP)\cdot {}^tA\cdot ({}^tP)^{-1}=P^{-1}\cdot A^tA\cdot P=D^2)$, la matrice tAA est semblable à D^2 . D'où, comme la transposée est un invariant de similitude,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^{2} = \operatorname{tr}({}^{t}AA) = \operatorname{tr}(D^{2}) = \sum_{i=1}^{n} \lambda_{i}^{2}.$$

(b) Si A est à diagonale propre, alors, pour $i \in [\![1,n]\!], \lambda_i = a_{i,i}$. D'où

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}^2 = \sum_{i=1}^{n} a_{i,i}^2 \text{ donc } \sum_{i=1}^{n} \sum_{\substack{j=1\\j\neq i}}^{n} a_{i,j}^2 = 0.$$

Or, il s'agit d'une somme de termes positifs ou nuls, qui est nulle. On en déduit que tous les termes de la sommes sont nuls, *i.e.* $\forall i, \forall j \neq i, a_{i,j} = 0$. La matrice A est donc diagonale. L'inclusion réciproque est vraie comme toute matrice diagonale est une matrice à diagonale propre.

- 15. (a) Comme la matrice A est anti-symétrique, sa diagonale est nulle. On en déduit que toutes ses valeurs propres sont nulles. Ainsi, $\chi_A(X) = X^n$. Or, d'après le théorème de Cayley & Hamilton, le polynôme caractéristique est annulateur de la matrice A. D'où $\chi_A(A) = 0$. On en déduit que $A^n = 0$. Comme A est anti-symétrique, $A^n = A$ 0, et donc $A^n = A^n = A^n$ 1.
 - (b) La matrice tAA est symétrique. En effet, ${}^t({}^tAA) = {}^tA \cdot {}^t({}^tA) = {}^tAA$. Ainsi, d'après le théorème spectral, elle est diagonalisable en $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Or, $({}^tAA)^n = 0$, donc les valeurs propres sont toutes nulles. On en déduit que tAA est semblable à la matrice nulle, $i.e.\ {}^tAA = 0$.
 - (c) On applique la trace : $\operatorname{tr}({}^t\!AA) = \sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2 = 0$. Or, comme c'est une somme de termes positifs ou nuls, ils sont tous nuls, la matrice A est donc la matrice nulle.
- 16. On a dim $A_n = \frac{n(n-1)}{2}$
- 17. D'après les questions (15abc), $\mathscr{E}_n\cap\mathscr{A}_n=\{0\}$, donc $F\cap\mathscr{A}_n=\{0\}$ (car $0\in F$, car c'est un espace vectoriel). La somme est donc directe. Ainsi, $\dim F+\dim\mathscr{A}_n=\dim(F\oplus\mathscr{A}_n)\leqslant \dim\mathscr{M}_n(\mathbb{R})=n^2$. Ainsi, $\dim F\leqslant n^2-\frac{n(n-1)}{2}=\frac{n(n+1)}{2}$. L'espace des matrices triangulaires inférieures (\mathscr{T}_n^I) est un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{R})$. On a bien $\mathscr{T}_n^I\subset\mathscr{E}_n$. En effet, toute matrice triangulaire inférieure est à diagonale propre. Et, on a $\dim\mathscr{T}_n^I=\frac{n(n+1)}{2}$.
- 18. Soit m < n. On considère l'ensemble \mathcal{Z}_m des matrices de la forme $M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ où A et D sont triangulaires inférieures de tailles respectives $m \times m$ et $(n-m) \times (n-m)$. Ainsi, A et D sont à diagonale propre, donc M aussi. L'ensemble \mathcal{Z}_m est bien un sousespace vectoriel, car l'ensemble des matrices triangulaires en forme un. On a dim $\mathcal{Z}_m = \mathbb{Z}_m$

 $\dim \mathcal{T}_m^I+\dim \mathcal{T}_{n-m}^I+\dim \mathcal{M}_{m,n-m}(\mathbb{R}),$ car la somme est directe. Ainsi,

$$2\dim \mathfrak{X}_m = 2\dim \mathfrak{T}_m^I + 2\dim \mathfrak{T}_{n-m}^I + 2\dim \mathcal{M}_{m,n-m}(\mathbb{R})$$

$$= m(m+1) + (n-m)(n-m+1) + 2m(n-m)$$

$$= \mathfrak{M}^2 + \mathfrak{M} + n^2 - 2mm + \mathfrak{M}^2 + n - \mathfrak{M} + 2mm - 2m^2$$

$$= n^2 + n$$

$$= n(n+1)$$

On en déduit que, pour tout $m\in [\![1,n-1]\!]$, l'espace \mathcal{Z}_m est de dimension $\frac{n(n+1)}{2}$, est composé de matrices à diagonales propres, mais n'est pas composé uniquement de matrices triangulaires : la matrice M, ci-dessous, n'est pas triangulaire mais

$$M = \begin{pmatrix} 0 & \cdots & \cdots & 0 & 1 \\ \vdots & \ddots & & \vdots & 0 \\ \vdots & & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & 0 & 0 \end{pmatrix} \in \mathcal{Z}_1.$$