

Figure 1: Diagram sieci neuronowej

Sieć Neuronowa

Cezary Rasiński

June 2025

1 Warstwa wejściowa

Na załaczonym obrazie jest przedstawiony prosty schemat sieci neuronowej klasyfikującej obraz 2x2 pixele jako jeden z czterech wzorów. X_1 – X_4 przedstawiaja wejścia odpowiadające pikselom obrazu, które sa w formie wektora z wartościami w zakresie [0,1]. Przykładowe wzory:

- $[1,1,0,0] \rightarrow$ wzór poziomy
- $[1,0,1,0] \rightarrow$ wzór pionowy
- $[1,0,0,1] \rightarrow$ wzór skośny
- $[1,1,1,1] \rightarrow \text{wz\'or jednolity}$

2 Warstwa ukryta

W naszej sieci warstwa ukryta składa sie z 7 neuronów H_1 - H_7 , z których każdy pełni określona funkcje detekcji wzorców w obrazie 2×2 :

Neuron i	$w_i^{(h)}$	$b_i^{(h)}$
h_1	[1, 1, -1, -1]	0
h_2	[-1, -1, 1, 1]	0
h_3	[1, -1, 1, -1]	0
h_4	[-1, 1, -1, 1]	0
h_5	[1, -1, -1, 1]	0
h_6	[-1, 1, 1, -1]	0
h_7	[1, 1, 1, 1]	-1

Table 1: Przykładowe wagi wejścia oraz biasy neuronów w ukrytej warstwie

- H_1 , H_2 poziome wzory H_1 wykrywa: górny wiersz jaśniejszy od dolnego, H_2 wykrywa: dolny wiersz jaśniejszy od górnego.
- H_3 , H_4 pionowe wzory H_3 wykrywa: lewa kolumna jaśniejsza od prawej, H_4 wykrywa: prawa kolumna jaśniejsza od lewej.
- H_5 , H_6 skośne wzory H_5 wykrywa: wzór przekatnej góra–dół $(x_{11} \& x_{22})$, H_6 wykrywa: wzór odwrotnej przekatnej $(x_{12} \& x_{21})$.
- \bullet H_7 jednolite wypełnienie $\ H_7$ wykrywa: gdy wszystkie cztery piksele maja zbliżona wartość.

Podwojenie detektorów dla pasm i przekatnych pozwala sieci rozpoznać wzór niezależnie od orientacji wzoru;

Dla każdego z 7 ukrytych neuronów obliczamy najpierw ważona sume wejść z biasem, a nastepnie stosujemy funkcje sigmoidalna:

$$z_i^{(h)} = \sum_{j=1}^4 w_{ij}^{(h)} x_j + b_i^{(h)}, \quad i = 1, \dots, 7,$$
 (1)

$$h_i = \sigma(z_i^{(h)}), \tag{2}$$

gdzie

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

to funkcja sigmoidalna.

3 Warstwa wyjściowa

Wagi warstwy wyjściowej zostały ustawione nastepujaco:

Neuron j	$oldsymbol{w_j^{(o)}} \in R^7$	$b_j^{(o)}$
o_1 (poziomy)	[1, 1, 0, 0, 0, 0, 0]	0
o_2 (pionowy)	[0, 0, 1, 1, 0, 0, 0]	0
o_3 (skośny)	[0, 0, 0, 0, 1, 1, 0]	0
o_4 (jednolity)	[0, 0, 0, 0, 0, 0, 1]	0

Table 2: Przykładowe wagi wyjścia oraz biasy neuronów w warstwie wyjściowej

- Neuron o1 sumuje sygnały od H_1 i H_2 .
- Neuron o2 sumuje sygnały od H_3 i H_4 .
- Neuron o3 sumuje sygnały od H_5 i H_6 .
- Neuron o4 korzysta wyłacznie z sygnału H_7 .

Wynikiem przejścia jest wybór tej kategorii, której detektory daja najsilniejszy sygnał, co pozwala na rozpoznanie wzoru obrazu.

Każdy z 4 neuronów wyjściowych pobiera sygnały z 7 neuronów ukrytych, dodaje własny bias i przekształca wyniki funkcja softmax, aby otrzymać rozkład prawdopodobieństwa:

$$z_j^{(o)} = \sum_{i=1}^7 w_{ji}^{(o)} h_i + b_j^{(o)}, \quad j = 1, \dots, 4,$$
 (3)

$$\hat{y}_j = \text{softmax}(z^{(o)})_j = \frac{\exp(z_j^{(o)})}{\sum_{k=1}^4 \exp(z_k^{(o)})}.$$
 (4)

gdzie

$$\operatorname{softmax}(\mathbf{z})_j = \frac{e^{z_j}}{\sum_k e^{z_k}}$$

zapewnia, że $\hat{y}_j \in (0,1)$