

Determination of the beam asymmetry Σ in η - and η' -photoproduction off the proton using Bayesian statistics

Master thesis for the CBELSA/TAPS collaboration

September 8/9 2022

Setting the scene

The Standard Model of Particle Physics

- ▶ matter consists of 12 (anti-)fermions
- ightharpoonup quarks interact via $strong\ interaction$
- ▶ form bound states: mesons $(q\bar{q})$ and baryons (qqq)

baryon spectroscopy (photoproduction) gives insight in strong interaction

Setting the scene

Observe resonances N^*/Δ^* in the cross sections $\sigma(\gamma p \to pM)$

Total cross section $\sigma(\gamma p \to p \pi^0)$ [Wunderlich et al. 2017]

→goal: (help to) identify contributing resonances as strong bound states!

- 1. Theoretical basics
- 2. Experimental Setup
- 3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

1. Theoretical basics

2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

- ► resonances are broad, overlapping, require complicated partial-wave-analysis (PWA)
- ▶ constraints for the analysis can be derived from polarization observables
- ▶ ultimate goal: "complete experiment"; unambiguous, model-independent PWA solution → several single and double polarization observables needed

Beam-target polarization observables

	target polarization			
photon		x	y	z
unpolarized	σ_0	-	T	-
linearly polarized	$-\Sigma$	H	-P	-G
circularly polarized	-	F	-	-E

[san]

Beam asymmetry Σ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E_{\gamma},\cos\theta,\varphi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_0}(E_{\gamma},\cos\theta) \cdot \left[1 - p_{\gamma}^{\mathrm{lin}}\Sigma\cos(2\varphi)\right]$$

polarization angle φ , polarization degree $p_{\gamma}^{\mathrm{lin}}$

[san]

Definition of the polarization angle

- ▶ Polarization observables are input for further analysis
- ► Idea: increase amount of information gained from results using Bayesian inference

Bayes' theorem

$$p(\theta|y) \propto p(y|\theta) \cdot p(\theta)$$
$$posterior \propto likelihood \cdot prior$$

parameters θ and data y.

[bayes]

- ▶ Polarization observables are input for further analysis
- ► Idea: increase amount of information gained from results using BAYESIAN inference

$$p(\theta|y) \propto p(y|\theta) \cdot p(\theta)$$

▶ prior $p(\theta)$ and likelihood $p(y|\theta)$ can easily be specified → gain distributions $p(\theta|y)$ instead of point estimates with error bars

Bayesian parameter inference

For each parameter $\theta_n \in \theta$ we gain marginal posteriors

$$p(\theta_n|y) = \int d\theta_1 \cdots \int d\theta_{n-1} \int d\theta_{n-1} \cdots \int d\theta_N p(\theta_1 \dots \theta_N|y).$$

usually approximated using Markov-Chain Monte Carlo (MCMC) draws $\theta^{(s)}$

[sivia]

$$p(\theta|y) \propto p(y|\theta)$$
:

▶ prior $p(\theta)$ and likelihood $p(y|\theta)$ y specified → gain distributions $p(\theta|y)$ instead of the estimates with error bars

BAYESIAN parameter inference

For each parameter $\theta_n \in$

usually approximated using M

onte Carlo (MCMC) draws $\theta^{(s)}$

[sivia]

1. Theoretical basics

2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

CBELSA/TAPS experiment

- $\begin{tabular}{l} \blacksquare & \text{generate photon beam} \\ & \text{from accelerated} \\ & \text{electrons via} \\ & \text{bremsstrahlung, with} \\ & E_{\gamma} \leq 3.2 \, \text{GeV} \\ \end{tabular}$
- ▶ photon beam impinges on liquid hydrogen target: $\gamma p \rightarrow pM \rightarrow pX$
- ► measure decay products X of different final states: $M = \pi^0/\eta/\eta'/\ldots$
- ► data set: July-October 2013, 1065 h beam time

Overview of the experimental area, adapted from [cb]

- 1. Theoretical basics
- 2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics

Determination of $\Sigma_{\eta'}$

4. Conclusion

- ▶ Polarization observables are needed for different final states $(\pi^0, \eta, \eta', ...)$
- ▶ high precision measurement of beam asymmetry for η production recently published [eta]
- ▶ goal: confirm results using Bayesian fitting methods

Event selection (η)

analysis performed in 11x12 bins of $(E_{\gamma}, \cos \theta)$ by [eta]

Method

- ▶ fit to event yield asymmetries using BAYESIAN inference
- ▶ Bayes' theorem: $p(\theta|y) \propto \mathcal{L}(y|\theta) \cdot \pi(\theta)$
 - marginal posteriors: $p(\theta_j|y) = \prod_{i \neq j} \int d\theta_i p(\theta|y)$
 - b obtained using Markov-chain-Monte-Carlo (MCMC)

sampling algorithms: STAN

Beam asymmetry Σ for all energy and angle bins

Beam asymmetry Σ for one energy and all angle bins

Additional advantage: sample only in physically allowed parameter space

- 1. Theoretical basics
- 2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

Event selection of the $\eta' \to \gamma \gamma$ final state

Analysis performed in 3x6 bins of $(E_{\gamma}, \cos \theta_{\eta'}^{\text{CMS}}), E_{\gamma} \in [1500, 1800] \text{ MeV}$

- ➤ 3 detector hits, 2 uncharged, 1 charged
- ▶ coincident detector hits
- kinematic cuts derived from energy-momentum conservation $p_{\gamma} + p_{p} = p'_{p} + p_{p'}$
- ► additional cuts to reduce background contributions

total: $\sim 8000 \ \eta' \rightarrow \gamma \gamma$ events

Extraction method for $\Sigma_{\eta'}$

- \blacktriangleright measure in 2 distinct orthogonal polarization settings \bot , \parallel
- \blacktriangleright χ^2 -fit to event yield asymmetries

$$A(E_{\gamma}, \theta, \phi) = \frac{N^{\perp}(E_{\gamma}, \theta, \phi) - N^{\parallel}(E_{\gamma}, \theta, \phi)}{p_{\gamma}^{\parallel} N^{\perp}(E_{\gamma}, \theta, \phi) + p_{\gamma}^{\perp} N^{\parallel}(E_{\gamma}, \theta, \phi)} = \Sigma(E_{\gamma}, \theta) \cos\left(2\left(\alpha^{\parallel} - \phi\right)\right)$$

▶ fit from $\sim 800 \ \eta' \rightarrow \gamma \gamma$ events

Preliminary results for $\Sigma_{\eta'}$

Beam asymmetry $\Sigma_{\eta'}$ for all energy and angle bins, compared with results of [clas]

1. Theoretical basics

- 2. Experimental Setup
- 3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

Conclusion

Summary

- $ightharpoonup \Sigma$ extracted for η and η' final state
- \blacktriangleright η results obtained with BAYESIAN fit agree with previous results
- $\blacktriangleright \eta'$ results agree with previous results

Outlook

- extract Σ using unbinned maximum likelihood fit for η/η'
- ► apply BAYESIAN approach to above method
- \blacktriangleright consider bkg contaminations in results of $\Sigma_{n'}$

BACKUP & REFERENCES

Additional theoretical basics

Unpolarized differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{4}\rho \sum_{\mathrm{spins}} |\langle f|\mathcal{F}|i\rangle|^2,$$

where

$$\mathcal{F} = i(\vec{\sigma} \cdot \vec{\epsilon})F_1 + (\vec{\sigma} \cdot \hat{q})(\vec{\sigma} \cdot (\hat{k} \times \vec{\epsilon}))F_2 + i(\vec{\sigma} \cdot \hat{k})(\hat{q} \cdot \vec{\epsilon})F_3 + i(\vec{\sigma} \cdot \hat{q})(\hat{q} \cdot \vec{\epsilon})F_4$$

 F_i : complex CGLN Amplitudes

 $[\mathbf{cgln}]$

 $\frac{d\sigma}{d\Omega} \in \mathbb{R}$, not sufficient do determine \mathcal{F} unambiguously

 \rightarrow Polarization Observables can be related to F_i

Background estimation using Monte-Carlo simulations

Background estimation using Monte-Carlo simulations

 $2\pi^0/\pi^0\eta$ events pass event selection, because $E_{\gamma_i} \lesssim 20$ MeV, or $\theta_{\gamma_i} \approx \theta_{\gamma_j}$

Background reducing cuts

- ▶ p in MT for $E_{\gamma} < 1500$ MeV
- ▶ $E_{\gamma_i} < 1500 \text{ MeV}$
- ▶ 1 PED/Cluster for γ_i
- ightharpoonup Clustersize(p) < 6
- ightharpoonup Clustersize(γ_i) in FW

bkg contamination $\sim 13\%$

Diagnostics of a BAYESIAN fit

- \blacktriangleright \hat{R} : measure of convergence for chains
- ▶ Monte-Carlo-Standard-Error: measure for adequate sample size
- ▶ posterior predictive checks: "goodness of fit"

References I

Wunderlich, Y. et al. (May 2017). 'Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction'. In: *The European Physical Journal A* 53.5. ISSN: 1434-601X. DOI: 10.1140/epja/i2017-12255-0. URL: http://dx.doi.org/10.1140/epja/i2017-12255-0.