Lajkó Károly

Kalkulus I. példatár

mobiDIÁK könyvtár

Lajkó Károly Kalkulus I. példatár

mobiDIÁK könyvtár

SOROZATSZERKESZTŐ

Fazekas István

Lajkó Károly

Kalkulus I. példatár

programozó és programtervező matematikus hallgatóknak

mobiDIÁK könyvtár

Copyright © Lajkó Károly

Copyright © elektronikus közlés mobiDIÁK könyvtár

mobiDIÁK könyvtár Debreceni Egyetem Informatikai Intézet 4010 Debrecen, Pf. 12 http://mobidiak.unideb.hu

A mű egyéni tanulmányozás céljára szabadon letölthető. Minden egyéb felhasználás csak a szerző előzetes írásbeli engedélyével történhet. A mű a A mobi $DI\acute{A}K$ önszervező mobil portál (IKTA, OMFB-00373/2003) és a GNU Iterátor, a legújabb generációs portál szoftver (ITEM, 50/2003) projektek keretében készült.

Tartalomjegyzék

I. Halmazok, relációk, függvények	9
Halmazok	9
Relációk (leképezések)	12
Függvények	
Gyakorló feladatok	
II. Számok	19
A valós számtest	19
Rendezés (egyenlőtlenségek) \mathbb{R} -ben	25
$\mathbb R$ teljessége	29
$\mathbb R$ topológiája	31
Gyakorló feladatok	34
III. Sorozatok	37
Alapfogalmak és kapcsolatuk	37
Sorozatok és műveletek, illetve rendezés	
Részsorozatok, Cauchy-sorozatok	
Nevezetes sorozatok	50
Gyakorló feladatok	57
IV. Sorok	59
Alapfogalmak és alaptételek	59
Konvergenciakritériumok	65
Műveletek sorokkal	68
Tizedes törtek	69
Gyakorló feladatok	70
V. Függvények folytonossága	73
Alapfogalmak	
Folytonosság, egyenletes folytonosság	79
Gyakorló feladatok	83

VI. Függvények határértéke 85	5
Alapfogalmak és tételek 85	5
Határérték és műveletek, illetve egyenlőtlenségek 90)
Szakadási helyek, monoton függvények	7
Gyakorló feladatok)
VII. Függvénysorozatok, függvénysorok, elemi függvények 113	3
Gyakorló feladatok	7
VIII. Differenciálszámítás 129	9
Differenciahányados, differenciálhatóság, differenciálhányados,	
érintő	9
Differenciálhatóság és műveletek	1
Differenciálhatóság, differenciálhatóság és műveletek (további elemi	
függvényekkel)	2
Magasabbrendű deriváltak	2
Középértéktételek, Taylor-polinom, Taylor-sor	3
A L'Hospital-szabály 167	7
Differenciálható függvények vizsgálata	
Gyakorló feladatok	3
Irodalomiegyzék 203	3

I. fejezet

Halmazok, relációk, függvények

Halmazok

1.1. feladat. Bizonyítsa be, hogy ha A, B tetszőleges halmazok, úgy

$$A = B \iff A \subset B \text{ és } B \subset A.$$

Megoldás.

- Ha A=B, akkor A és B elemei megegyeznek, ami adja, hogy $\forall \ x \in A$ esetén $x \in B$ és $\forall \ y \in B$ esetén $y \in A$ következik, melyekből definíció szerint következik, hogy $A \subset B$ és $B \subset A$ teljesül.
- Ha $A \subset B$ és $B \subset A$ teljesül és feltesszük, hogy $A \neq B$ (az A és B elemi nem azonosak), akkor

vagy $\exists x \in A$, hogy $x \notin B$, így $A \not\subset B$,

vagy $\exists y \in B$, hogy $y \notin A$, ezért $B \not\subset A$

következne, ellentétben a feltevéssel. Tehát A = B.

1.2. feladat. Bizonyítsa be, hogy ha A, B, C tetszőleges halmazok, akkor

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

(kommutativitás),

$$(A \cup B) \cup C = A \cup (B \cup C), \qquad (A \cap B) \cap C = A \cap (B \cap C)$$

(asszociativitás),

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C), \qquad A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

(disztributivitás),

$$A \backslash B = A \backslash (A \cap B), \qquad (A \backslash B) \cap C = (A \cap C) \backslash B,$$

$$A \backslash (B \cap C) = (A \backslash B) \cup (A \backslash C), \qquad A \backslash (B \cup C) = (A \backslash B) \cap (A \backslash C),$$

$$A \cup B = B \iff A \subset B, \qquad A \cap B = B \iff A \supset B,$$

$$A \backslash B = \emptyset \iff A \subset B.$$

Megoldás.

- $-x \in A \cup B \iff x \in A$ vagy $x \in B \iff x \in B$ vagy $x \in A \iff x \in B \cup A$, ezért az $A \cup B$ és $B \cup A$ halmazok elemi azonosak, így definíció szerint $A \cup B = B \cup A$.
- $-x \in A \cap B \iff x \in A \text{ és } x \in B \iff x \in B \text{ és } x \in A \iff x \in B \cap A,$ azaz az $A \cap B$ és $B \cap A$ halmazok elemei megegyeznek, így $A \cap B = B \cap A$.
- $-x \in (A \cup B) \cup C \iff x \in A \cup B \text{ vagy } x \in C \iff (x \in A \text{ vagy } x \in B)$ $\text{vagy } x \in C \iff x \in A \text{ vagy } (x \in B \text{ vagy } x \in C) \iff x \in A \text{ vagy }$ $x \in B \cup C \iff x \in A \cup (B \cup C), \text{ fgy az } (A \cup B) \cup C \text{ és } A \cup (B \cup C)$ $\text{halmazok elemei megegyeznek, tehát } (A \cup B) \cup C = A \cup (B \cup C).$
- $\begin{array}{l} -x \in (A \cap B) \cap C \iff x \in A \cap B \text{ és } x \in C \iff (x \in A \text{ és } x \in B) \text{ és} \\ x \in C \iff x \in A \text{ és } (x \in B \text{ és } x \in C) \iff x \in A \text{ és } x \in B \cap C \iff x \in A \cap (B \cap C), \text{ fgy az } (A \cap B) \cap C \text{ és } A \cap (B \cap C) \text{ halmazok elemei} \\ \text{megegyeznek, ezért } (A \cap B) \cap C = A \cap (B \cap C). \end{array}$
- $\begin{array}{lll} -x \in A \cup (B \cap C) \iff x \in A \text{ vagy } x \in B \cap C \iff x \in A \text{ vagy } (x \in B \text{ és } x \in C) \iff (x \in A \text{ vagy } x \in B) \text{ és } (x \in A \text{ vagy } x \in C) \iff x \in A \cup B \\ \text{ és } x \in A \cup C \iff x \in (A \cup B) \cap (A \cup C), \text{ tehát az } A \cup (B \cap C) \text{ és } \\ (A \cup B) \cap (A \cup C) \text{ halmazok elemei megegyeznek, figy } A \cup (B \cap C) = \\ (A \cup B) \cap (A \cup C). \end{array}$
- $\begin{array}{lll} -x\in A\cap (B\cup C) &\iff x\in A \text{ \'es } x\in B\cup C \iff x\in A \text{ \'es } (x\in B \text{ vagy} \\ x\in C) &\iff (x\in A \text{ \'es } x\in B) \text{ vagy } (x\in A \text{ \'es } x\in C) \iff x\in A\cap B \\ \text{vagy } x\in A\cap C \iff x\in (A\cap B)\cup (A\cap C), \text{ \'es } x\in A\cap (B\cup C) \text{ \'es} \\ (A\cap B)\cup (A\cap C) \text{ halmazok elemei megegyeznek, ez\'ert } A\cap (B\cup C) = \\ (A\cap B)\cup (A\cap C). \end{array}$
- $\begin{array}{lll} -x \in A \setminus B & \Longrightarrow x \in A \text{ \'es } x \notin B & \Longrightarrow x \in A \text{ \'es } x \notin A \cap B & \Longrightarrow x \in A \setminus A \cap B, \text{ ami adja, hogy } A \setminus B \subset A \setminus A \cap B; \\ y \in A \setminus A \cap B & \Longrightarrow y \in A \text{ \'es } y \notin A \cap B & \Longrightarrow y \in A \text{ \'es } y \notin B & \Longrightarrow y \in A \setminus B, \\ \text{\'es } y \wedge A \wedge A \cap B \subset A \setminus B. \end{array}$
 - A két tartalmazás teljesülése pedig ekvivalens azzal, hogy $A \setminus B = A \setminus A \cap B$.
- $\begin{array}{l} -x \in (A \setminus B) \cap C \iff x \in A \setminus B \text{ \'es } x \in C \iff (x \in A \text{ \'es } x \notin B) \\ \text{\'es } x \in C \iff (x \in A \text{ \'es } x \in C) \text{ \'es } x \notin B \iff x \in A \cap C \text{ \'es } \\ x \notin B \iff x \in (A \cap C) \setminus B \text{, \'igy az } (A \setminus B) \cap C \text{ \'es } (A \cap C \setminus B) \text{ halmazok elemei azonosak, ez\'ert } (A \setminus B) \cap C = (A \cap C) \setminus B. \end{array}$
- $\begin{array}{l} -x \in A \setminus (B \cap C) \iff x \in A \text{ \'es } x \notin B \cap C \iff x \in A \text{ \'es } (x \notin B \text{ vagy} \\ x \notin C) \iff (x \in A \text{ \'es } x \notin B) \text{ vagy } (x \in A \text{ \'es } x \notin C) \iff x \in A \setminus B \\ \text{vagy } x \in A \setminus C \iff x \in (A \setminus B) \cup (A \setminus C), \text{ ami azonnal adja, hogy} \\ A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C). \end{array}$

HALMAZOK

11

- $\begin{array}{lll} \ x \in A \setminus (B \cup C) & \Longleftrightarrow \ x \in A \ \text{\'es} \ x \notin B \cup C & \Longleftrightarrow \ x \in A \ \text{\'es} \ (x \notin B \ \text{\'es} \\ x \notin C) & \Longleftrightarrow \ (x \in A \ \text{\'es} \ x \notin B) \ \text{\'es} \ (x \in A \ \text{\'es} \ x \notin C) & \Longleftrightarrow \ x \in A \setminus B \ \text{\'es} \\ x \in A \setminus C & \Longleftrightarrow \ x \in (A \setminus B) \cap (A \setminus C) & \Longrightarrow \ A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C). \end{array}$
- Ha $A \cup B = B$, akkor $\nexists x \in A$, hogy $x \notin B$ (mert akkor $x \in A \cup B$ és $x \notin B$ miatt $A \cup B \neq B$ lenne) $\implies \forall x \in A$ esetén $x \in B$, azaz $A \subset B$. Ha $A \subset B$ és $x \in A \cup B$, akkor $x \in B \implies A \cup B \subset B$, másrészt $x \in B$ nyilván adja, hogy $x \in A \cup B \implies B \subset A \cup B$, melyek adják, hogy $A \cup B = B$.
- Az utolsó két állítás bizonyítását az olvasóra bízzuk.
- **1.3. feladat.** Bizonyítsa be, hogy ha $A, B \subset X$, akkor

$$A \cup \overline{A} = X, \quad A \cap \overline{A} = \emptyset, \quad \overline{\emptyset} = X, \quad \overline{X} = \emptyset, \quad \overline{\overline{A}} = A,$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}, \quad \overline{A \cap B} = \overline{A} \cup \overline{B}.$$

Megoldás.

- $-x \in X \iff x \in A \text{ vagy } x \notin A \text{ (és persze } x \in X) \iff x \in A \text{ vagy } x \in \overline{A} \iff x \in A \cup \overline{A}, \text{ ezért } A \cup \overline{A} \text{ és } X \text{ elemei azonosak, így } A \cup \overline{A} = X.$
- Tegyük fel, hogy $\exists x \in X$, hogy $x \in A \cap \overline{A} \implies x \in A$ és $x \in X \setminus A \implies x \in A$ és $x \notin A$, ami ellentmondás, így az $A \cap \overline{A}$ halmaznak nincs eleme, így $A \cap \overline{A} = \emptyset$.
- $-\ \overline{\emptyset}=X\ ,\ \overline{\overline{X}}=\emptyset\ ,\ \overline{\overline{\overline{A}}}=A$ állítások nyilvánvalóak.
- $-x \in \overline{A \cup B} \iff x \in X \text{ és } x \notin A \cup B \iff x \in X \text{ és } (x \notin A \text{ és } x \notin B) \iff (x \in X \text{ és } x \notin A) \text{ és } (x \in X \text{ és } x \notin B) \iff x \in \overline{A} \text{ és } x \notin \overline{B} \iff x \in \overline{A} \cap \overline{B}, \text{ s ez adja, hogy } \overline{A \cup B} = \overline{A} \cap \overline{B}.$
- $\begin{array}{lll} -x \in \overline{A \cap B} & \Longleftrightarrow & x \in X \text{ \'es } x \notin A \cap B & \Longleftrightarrow & x \in X \text{ \'es } (x \notin A \text{ vagy} \\ x \notin B) & \Longleftrightarrow & (x \in X \text{ \'es } x \notin A) \text{ vagy} \\ x \in \overline{B} & \Longleftrightarrow & x \in \overline{A} \cup \overline{B}, \text{ \'igy } \overline{A \cap B} = \overline{A} \cup \overline{B}. \end{array}$
- **1.4. feladat.** Mutassa meg, hogy ha $\{A_i \mid i \in I\}$ egy X halmaz részhalmazaiból álló halmazrendszer, úgy teljesülnek a

$$C_X \left(\bigcup_{i \in I} A_i \right) = \bigcap_{i \in I} C_X A_i \; ; \qquad C_X \left(\bigcap_{i \in I} A_i \right) = \bigcup_{i \in I} C_X A_i$$

De Morgan-féle azonosságok.

Megoldás.

- $-x \in C_X(\bigcup_{i \in I} A_i) \iff x \in X \text{ és } x \notin \bigcup_{i \in I} A_i \iff x \in X \text{ és } (x \notin A_i \text{ bármely } i \in I) \iff (x \in X \text{ és } x \in A_i) \ \forall \ i \in I \iff x \in C_X A_i \text{ bármely } i \in I \iff x \in \bigcap_{i \in I} C_X A_i, \text{ ami adja az első halmazegyenlőséget.}$
- $-x \in C_X(\bigcap_{i \in I} A_i) \iff x \in X \text{ \'es } x \notin \bigcap_{i \in I} A_i \iff x \in X \text{ \'es } \exists i,$ $x \notin A_i \iff \exists i \in I, x \in C_X A_i \iff x \in \bigcup_{i \in I} C_X A_i, \text{ ami adja a m\'asodik}$ De Morgan-féle azonosságot.

Relációk (leképezések)

- 1.5. feladat. Mutassa meg, hogy ha A, B és C tetszőleges halmazok, akkor
 - a) $A \times B = \emptyset \iff A = \emptyset \text{ vagy } B = \emptyset$,
 - b) $(A \cup B) \times C = (A \times C) \cup (B \times C)$,
 - c) $A \times (B \cup C) = (A \times B) \cup (A \times C)$,
 - d) $(A \cap B) \times C = (A \times C) \cap (B \times C)$,
 - e) $A \times (B \cap C) = (A \times B) \cap (A \times C)$,
 - f) $(A \backslash B) \times C = (A \times C) \backslash (B \times C)$,
 - g) $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$,
 - h) $B \subset C \implies A \times B \subset A \times C$.

Megoldás.

- a) $A \times B = \emptyset \iff \nexists (x, y) \in A \times B \iff \nexists x \in A \text{ vagy } \nexists y \in B \iff A = \emptyset \text{ vagy } B = \emptyset.$
- b) $(x,y) \in (A \cup B) \times C \iff x \in A \cup B \text{ és } y \in C \iff (x \in A \text{ vagy } x \in B) \text{ és } y \in C \iff (x \in A \text{ és } y \in C) \text{ vagy } (x \in B \text{ és } y \in C) \iff (x,y) \in A \times C \text{ vagy } (x,y) \in B \times C \iff (x,y) \in (A \times C) \cup (B \times C), \text{ ami adja az állítást.}$
- c) $(x,y) \in A \times (B \cup C) \iff x \in A \text{ \'es } y \in B \cup C \iff x \in A \text{ \'es } (y \in B \text{ vagy} y \in C) \iff (x \in A \text{ \'es } y \in B) \text{ vagy } (x \in A \text{ \'es } y \in C) \iff (x,y) \in A \times B \text{ vagy } (x,y) \in A \times C \iff (x,y) \in (A \times B) \cup (A \times C), \text{ s ez adja az \'all\'at\'ast.}$
- d) $(x,y) \in (A \cap B) \times C \iff x \in A \cap B \text{ és } y \in C \iff (x \in A \text{ és } x \in B) \text{ és } y \in C \iff (x \in A \text{ és } y \in C) \text{ és } (x,y) \in A \times C \text{ és } (x,y) \in B \times C \iff (x,y) \in (A \times C) \cap (B \times C), \text{ ez pedig adja az állítást.}$
- e) A bizonyítás az előbbivel analóg.

- f) $(x,y) \in (A \setminus B) \times C \iff x \in A \setminus B \text{ és } y \in C \iff (x \in A \text{ és } x \notin B) \text{ és } y \in C \iff (x \in A \text{ és } y \in C) \text{ és } (x,y) \in A \times C \text{ és } (x,y) \notin B \times C \iff (x,y) \in (A \times C) \setminus (B \times C), \text{ ami adja az állítást.}$
- g) A bizonyítás az előbbivel "azonos".
- h) A feltétel miatt $y \in B$ adja, hogy $y \in C$. Másrészt: $(x,y) \in A \times B \iff x \in A$ és $y \in B \implies x \in A$ és $y \in C \iff (x,y) \in A \times C$, ami adja az állítást.
- 1.6. feladat. Bizonyítsa be, hogy ha $F \subset A \times B$ egy reláció, akkor

$$D_{F^{-1}}=R_F\;, \qquad R_{F^{-1}}=D_F\;, \qquad (F^{-1})^{-1}=F\;, \qquad F^{-1}(B)=D_F\;.$$
 Megoldás.

- F, F^{-1} , $D_{F^{-1}}$ és R_F definíciója miatt $y \in B$ -re: $y \in D_{F^{-1}} \iff \exists \ x \in A, \ (y,x) \in F^{-1} \iff \exists \ x \in A, \ (x,y) \in F \iff y \in R_F$, ami adja, hogy a $D_{F^{-1}}$ és R_F halmazok elemei azonosak, tehát $D_{F^{-1}} = R_F$.
- A második egyenlőség bizonyítása teljesen hasonló.
- F^{-1} és $(F^{-1})^{-1}$ definíciója szerint: $(x,y) \in (F^{-1})^{-1}$ ⇔ $(y,x) \in F^{-1}$ ⇔ $(x,y) \in F$, ami adja a harmadik halmazegyenlőséget.
- $F^{-1}(B)$, F^{-1} és D_F definíciója miatt:

$$F^{-1}(B) = \{ x \in A \mid \exists \ y \in B, (y, x) \in F^{-1} \} = \{ x \in A \mid \exists \ y \in B, (x, y) \in F \} = D_F,$$

amit bizonyítani kellett.

1.7. feladat. Legyenek A, B, C adott halmazok, $F \subset A \times B$ és $G \subset B \times C$ relációk. Bizonyítsa be, hogy $(G \circ F)^{-1} = F^{-1} \circ G^{-1}$.

Megoldás. $G \circ F$ és az inverz relációk definíciói miatt: $(z,x) \in (G \circ F)^{-1} \iff (x,z) \in F \circ G \iff \exists y \in B, (x,y) \in F, (y,z) \in G \iff \exists y \in B, (y,x) \in F^{-1}, (z,y) \in G^{-1} \iff (z,x) \in F^{-1} \circ G^{-1}$, ami adja az állítást.

1.8. feladat. Legyenek x, y, z különböző elemek, $A = \{x, y, z\}$. Adjuk meg az összes parciális rendezést az A halmazon, majd válasszuk ki ezek közül a rendezési relációkat.

Megoldás. Az A parciális rendezési, illetve rendezési relációi $A \times A$ bizonyos R részhalmazai. $A \times A$ -t a következő táblázat elempárjai alkotják:

Definíció szerint $\forall R \subset A \times A$ parciális rendezési (ill. rendezési) relációra $(x,x),(y,y),(z,z) \in R$ teljesül (ld. Kalkulus I. I/2. fejezet 9. definíció a)) és $R_0 = \{(x,x),(y,y),(z,z)\}$ parciális rendezés A-n. Ha e három rendezett párhoz a táblázat fennmaradó elempárjai közül bármelyiket hozzávesszük, úgy az

$$R_1 = \{(x,x), (y,y), (z,z), (x,y)\}, \qquad R_2 = \{(x,x), (y,y), (z,z), (y,x)\},$$

$$R_3 = \{(x,x), (y,y), (z,z), (x,z)\}, \qquad R_4 = \{(x,x), (y,y), (z,z), (z,x)\},$$

$$R_5 = \{(x,x), (y,y), (z,z), (y,z)\}, \qquad R_6 = \{(x,x), (y,y), (z,z), (z,y)\}$$

relációk nyilvánvalóan parciális rendezést adnak A-n.

Ha az $R_i(i=1,\ldots,6)$ relációk mindegyikét kiegészítjük az utolsó elempárjukkal egy sorban vagy oszlopban lévő még "hiányzó" elempárral a táblázatból és a kapott 12 relációból elhagyjuk az egyenlők egyikét, úgy az

$$R_7 = R_1 \cup (x, z);$$
 $R_8 = R_2 \cup (y, z);$ $R_9 = R_3 \cup (y, z);$ $R_{10} = R_1 \cup (z, y);$ $R_{11} = R_2 \cup (z, x);$ $R_{12} = R_3 \cup (y, z)$

relációk is parciális rendezést adnak A-n.

Végül, ha az $R_k(k=7,...,12)$ relációkat úgy egészítjük ki a táblázat egy elempárjával, hogy ügyelünk arra, hogy a tranzitív tulajdonság teljesüljön (és a kapott 12 relációból most is elhagyjuk az egyenlők egyikét), úgy az

$$R_{13} = R_7 \cup (y, z);$$
 $R_{14} = R_8 \cup (x, z);$ $R_{15} = R_7 \cup (z, y);$ $R_{16} = R_9 \cup (x, y);$ $R_{17} = R_9 \cup (y, x);$ $R_{18} = R_{14} \cup (z, x)$

relációk is parciális rendezést adnak A-n. Az utolsó hat reláció rendezés is A-n.

Függvények

1.9. feladat. Bizonyítsa be, hogy az $f: A \to B$ függvény akkor és csak akkor invertálható, ha minden $x, y \in A$, $x \neq y$ esetén $f(x) \neq f(y)$ (vagy $\forall x, y \in A$ esetén $f(x) = f(y) \implies x = y$).

Megoldás.

- a) Legyen f invertálható. Az állítással ellentétben tegyük fel, hogy $\exists x, y \in A, x \neq y$, hogy f(x) = f(y), úgy a $z \doteq f(x) = f(y) \in B$ esetén $(z, x) \in f^{-1}$ és $(z, y) \in f^{-1}$, ami ellentmond annak, hogy f^{-1} függvény.
- b) Tegyük fel, hogy $\forall x, y \in A, x \neq y$ esetén $f(x) \neq f(y)$. Ha $(z, x_1) \in f^{-1}$ és $(z, x_2) \in f^{-1}$, akkor $(x_1, z) \in f$ és $(x_2, z) \in f$, azaz $f(x_1) = f(x_2)$, így a feltétel miatt $x_1 = x_2$, tehát f^{-1} is függvény, tehát f invertálható.
- **1.10. feladat.** Legyenek $f \subset A \times B$ és $g \subset B \times C$ függvények. Ekkor $g \circ f$ is függvény, és $\forall x \in D_{g \circ f}$ -re $(g \circ f)(x) = g(f(x))$.

 $Megold\acute{a}s$. Ha $(x,z_1) \in g \circ f$ és $(x,z_2) \in g \circ f$, akkor $\exists y_1,y_2 \in B \cap C$, hogy $(x,y_1) \in f$, $(y_1,z_1) \in g$ és $(x,y_2) \in f$, $(y_2,z_2) \in g$. f függvény, így $y_1 = y_2$, de g is függvény, így $z_1 = z_2$ következik, tehát $g \circ f$ függvény.

Ha $z = (g \circ f)(x)$, úgy $(x, z) \in g \circ f \implies \exists y, (x, y) \in f$ és $(y, z) \in g \implies \exists y, y = f(x), z = g(y) \implies z = g(f(x))$, ami adja a feladat állításának második részét.

1.11. feladat. Igazolja, hogy ha $f:A\to B,\ g:B\to C$ invertálható függvények és $R_f=B,\ R_g=C,$ akkor $g\circ f$ invertálható és $(g\circ f)^{-1}=f^{-1}\circ g^{-1}.$

Megoldás. A feltételek mellett $D_{g \circ f} = D_f$, $R_{g \circ f} = C$. Ha $x, y \in A$ és $(g \circ f)(x) = (g \circ f)(y)$, akkor az 1.10. feladat miatt g(f(x)) = g(f(y)), ami – g invertálhatósága miatt (ld. 1.8. feladat) – adja, hogy f(x) = f(y), s ebből – f invertálhatósága miatt – következik, hogy x = y, így – az 1.8. feladat miatt – a $g \circ f$ függvény invertálható.

A feladat második része következik az 1.7. feladatból, hiszen $f\subset A\times B,$ $g\subset B\times C$ relációk.

1.12. feladat. Legyen $f:A\to B$ függvény, $C,\ D\subset A.$ Bizonyítsa be, hogy

$$f(C \cup D) = f(C) \cup f(D), \ f(C \cap D) \subset f(C) \cap f(D).$$

Adjon meg olyan f függvényt és $C, D \subset D_f$ halmazokat, hogy $f(C \cap D)$ valódi része $f(C) \cap f(D)$ -nek.

Megoldás. A képhalmaz az \cup és \cap definíciója alapján:

- $-y \in f(C \cup D) \iff \exists x \in (C \cup D), \ y = f(x) \iff (\exists x \in C, \ y = f(x))$ vagy $(\exists x \in D, \ y = f(x)) \iff y \in f(C)$ vagy $y \in f(D) \iff y \in f(C) \cup f(D)$, s ez adja az első halmazegyenlőséget.
- $\begin{array}{ll} -\ y\in f(C\cap D) \implies \exists\ x\in (C\cap D),\ y=f(x) \implies (\exists\ x\in C,\ y=f(x)) \ \text{\'es} \\ (\exists\ x\in D,\ y=f(x)) \implies y\in f(C) \ \text{\'es} \ y\in f(D) \implies y\in f(C)\cap f(D), \\ \text{amib\'ol k\"ovetkezik a m\'asodik egyenl\"otlens\'eg}. \end{array}$

- Legyen $C = \{a_1, a_2\}$, $D = \{a_2, a_3\}$, $B = \{b_1, b_2\}$, $f = \{(a_1, b_1), (a_2, b_2), (a_3, b_1)\}$ $(f : A = C \cup D \to B)$, akkor $f(C) = \{b_1, b_2\}$, $f(D) = \{b_1, b_2\} \implies f(C) \cap f(D) = \{b_1, b_2\}$, ugyanakkor $C \cap D = \{a_2\}$ miatt $f(C \cap D) = \{b_2\}$. Ekkor $f(C \cap D) \subset f(C) \cap f(D)$, de $f(C \cap D) \neq f(C) \cap f(D)$.
- **1.13. feladat.** Legyen $f:A\to B$ függvény és $C,D\subset B$. Bizonyítsa be, hogy

$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D) \ ; \ f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D).$$

Megoldás.

- $-x \in f^{-1}(C \cup D) \iff f(x) \in (C \cup D) \iff f(x) \in C \text{ vagy } f(x) \in D \iff x \in f^{-1}(C) \text{ vagy } x \in f^{-1}(D) \iff x \in f^{-1}(C) \cup f^{-1}(D), \text{ ami adja az első egyenlőséget.}$
- $-x \in f^{-1}(C \cap D) \iff f(x) \in (C \cap D) \iff f(x) \in C \text{ és } f(x) \in D \iff x \in f^{-1}(C) \text{ és } x \in f^{-1}(D) \iff x \in f^{-1}(C) \cap f^{-1}(D), \text{ ami definíció szerint adja a második egyenlőséget.}$
- **1.14. feladat.** Bizonyítsa be, hogy ha $f:A\to B$ egy függvény, akkor

$$f \circ id_A = f$$
, $id_B \circ f = f$.

 $Megoldás.\ f,\ id_A,\ id_B,\ \circ$ definíciója és az 1.10. feladat miatt:

- $R_{id_A} = A = D_f$, ezért $D_{f \circ id_A} = D_f$, másrészt $(f \circ id_A)(x) = f(id_A(x)) = f(x)$, vagyis az $f \circ id_A$ és f függvényeket meghatározó rendezett elempárok halmaza egyenlő, így igaz az első egyenlőség.
- A második egyenlőség hasonlóan bizonyítható.
- **1.15. feladat.** Bizonyítsa be, hogy ha $f:A\to B$ invertálható függvény, akkor
 - a) $f^{-1} \circ f = id_A$;
 - b) $(f \circ f^{-1})(y) = y$ $\forall y \in R_f$ (azaz ha $R_f = B$, úgy $f \circ f^{-1} = id_B$);
 - c) f^{-1} invertálható és inverze f.

Megoldás. Az ismert definíciókat és az 1.10. feladatot felhasználva:

- a) $R_f = D_{f^{-1}}$ miatt $D_{f^{-1} \circ f} = A = D_{id_A}$. Legyen $x \in A$ és $y \doteq f(x)$, ekkor $x = f^{-1}(y)$, így $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x = id_A(x)$. Ezek adják az egyenlőséget.
- b) Legyen $y \in R_f$ és $x \doteq f^{-1}(y)$. f invertálható, így f(x) = y. Ekkor $(f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y$, amiből nyilván következik a b) állítás másik része is.
- c) Az 1.6 feladat harmadik egyenlősége miatt $(f^{-1})^{-1} = f$, ami adja, hogy egyrészt f^{-1} invertálható (mert inverze az f függvény), másrészt f^{-1} inverze f.

Gyakorló feladatok

- 1. Legyen X egy adott halmaz és $A, B, C \subset X$. Bizonyítsa be, hogy
 - a) $A \cup A = A$, $A \cap A = A$ (idempotencia);
 - b) $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$;
 - c) $A \cup \emptyset = A \text{ és } A \cap \emptyset = \emptyset$;
 - d) $A = B \iff C_X A = C_X B$;
 - e) $A \subset A \cup B$ és $A \cap B \subset A$;
 - f) $A \subset B \iff C_X B \subset C_X A$;
 - g) $A \setminus B = A \cap C_X B$;
 - h) $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$;
 - i) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$;
 - j) $(A \setminus B) \cup C = (A \cup C) \setminus (B \cup C) \iff C = \emptyset$.
- 2. Legyenek A és B nemüres halmazok. Mutassa meg, hogy $A \times B = B \times A \iff A = B.$
- 3. Legyenek A, B, C, D adott halmazok, $F \subset A \times B, G \subset B \times C$ és $H \subset C \times D$. Bizonyítsa be, hogy $H \circ (G \circ F) = (H \circ G) \circ F$.
- 4. Legyen A egy halmaz, $f \subset A \times A$ reláció. Bizonyítsa be, hogy $f = f^{-1} \iff f \subset f^{-1}$.
- 5. Legyenek $f \subset A \times B$ és $g \subset B \times C$ függvények. Bizonyítsa be, hogy
 - a) $D_{q \circ f} \subset D_f$,

 - b) $D_{g \circ f} = D_f \iff R_f \subset D_g$, c) $g \circ f = \emptyset \iff R_f \cap D_g = \emptyset$.
- 6. Legyen $f: A \to B$ függvény és $C, D \subset A$. Igazolja, hogy $f(C) \setminus f(D) \subset f(C \setminus D)$.

- 7. Legyen $f: A \to B$ függvény és $C, D \subset B$. Bizonyítsa be, hogy $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D).$
- 8. Legyen $f: X \to Y$ függvény, $A, B \subset X$ és $C, D \subset Y$. Bizonyítsa be, hogy
 - a) $A \subset B \implies f(A) \subset f(B)$,
 - b) $C \subset D \implies f^{-1}(C) \subset f^{-1}(D)$.
- 9. Legyen $f: X \to Y$ függvény, $A \subset X$ és $B \subset Y$. Bizonyítsa be, hogy
 - a) $A \subset f^{-1}(f(A)),$
 - b) $f(f^{-1}(B)) \subset B$.

Adjunk szükséges és elegendő feltételt arra, hogy egyenlőség teljesüljön $\forall A \subset X$, illetve $B \subset Y$ halmazra.

- 10. Legyen $f: X \to Y$ függvény, $\{A_{\gamma} \subset X | \gamma \in \Gamma\}$ nemüres halmazrendszer. Igazolja, hogy

 - a) $f(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} f(A_{\gamma}),$ b) $f(\bigcap_{\gamma \in \Gamma} A_{\gamma}) \subset \bigcap_{\gamma \in \Gamma} f(A_{\gamma}).$
- 11. Legyen $f: X \to Y$ függvény, $\{A_{\gamma} \subset Y \mid \gamma \in \Gamma\}$ nemüres halmazrendszer. Mutassa meg, hogy

 - a) $f^{-1}(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} f^{-1}(A_{\gamma}),$ b) $f^{-1}(\bigcap_{\gamma \in \Gamma} A_{\gamma}) = \bigcap_{\gamma \in \Gamma} f^{-1}(A_{\gamma}).$

II. fejezet

Számok

A valós számtest

2.1. feladat. Legyen $x, y \in \mathbb{R}$. Mutassa meg, hogy:

$$xy = 0 \iff x = 0 \text{ vagy } y = 0.$$

Megoldás.

a) Hax=0,akkor a testaxiómákat és az egyszerűsítési szabályt felhasználva:

$$0 \cdot y + 0 = 0 \cdot y = (0+0)y = 0 \cdot y + 0 \cdot y \implies 0 \cdot y = 0$$
.

y = 0-ra hasonlóan kapjuk, hogy $x \cdot 0 = 0$.

Tehát xy = 0, ha x = 0 vagy y = 0.

b) Tegyük fel, hogy $x \neq 0$, $y \neq 0$ -ra xy = 0, akkor a testaxiómák és a most bizonyítottak szerint

$$0 = x^{-1}(xy) = (x^{-1}x)y = 1 \cdot y = y$$

következne, ami ellentmondás.

Így $xy \neq 0$, ha $x \neq 0$ és $y \neq 0$ teljesül.

2.2. feladat. Bizonyítsa be, hogy $\forall x \in \mathbb{R}$ esetén -x = (-1)x.

Megoldás. A testaxiómák és a 2.1. feladat miatt:

$$x + (-x) = 0$$
 és $x + (-1)x = 1x + (-1)x = (1 + (-1))x = 0 \cdot x = 0$, ami adja, hogy

$$x + (-x) = x + (-1)x$$
,

s ebből az egyszerűsítési szabály miatt következik a feladat állítása.

2.3. feladat. Legyen $x, y \in \mathbb{R}$. Bizonyítsa be, hogy

$$-(x + y) = (-x) + (-y) = -x - y,$$

$$-(xy) = (-x)y = x(-y),$$

$$(-x)(-y) = xy$$

20 II. SZÁMOK

(speciálisan (-1)(-1) = 1).

Megoldás. A testaxiómákat, a kivonás definícióját és az előző két feladatot felhasználva:

- -(x+y) = (-1)(x+y) = (-1)x + (-1)y = (-x) + (-y) = -x y, ami adja az első egyenlőséget.
- $-(-x)y+xy=(-x+x)y=0\cdot y=0$ mutatja (felhasználva az inverz egyértelműségét is), hogy

xy additív inverzére -(xy) = (-x)y következik.

A - (xy) = x(-y) egyenlőség ugyanígy bizonyítható.

– Az előbbiek és a -(-x) = x egyenlőség miatt:

$$(-x)(-y) = -(x(-y)) = -(-(xy)) = xy ,$$

ami adja a harmadik egyenlőséget, melyből x = -1, y = -1 esetén kapjuk, hogy (-1)(-1) = 1.

2.4. feladat. Legyen $x, y, u, v \in \mathbb{R}$. Bizonyítsa be, hogy

$$(x + y) + (u + v) = (x + u) + (y + v) = (x + v) + (y + u)$$
.

Megoldás. A + művelet asszociativitását és kommutativitását felhasználva

$$(x+y) + (u+v) = ((x+y)+u) + v = (x+(y+u)) + v =$$

$$= (x+(u+y)) + v = ((x+u)+y) + v = (x+u) + (y+v) =$$

$$= (x+u) + (v+y) = ((x+u)+v) + y = (x+(u+v)) + y =$$

$$= (x+(v+u)) + y = ((x+v)+u) + y = (x+v) + (u+y) =$$

$$= (x+v) + (y+u),$$

ami adja az állítást.

2.5. feladat. Legyen $x, y, u, v \in \mathbb{R}$. Bizonyítsa be, hogy

$$(xy)(uv) = (xu)(yv) = (xv)(yu) .$$

Megoldás. A szorzás asszociativitását és kommutativitását felhasználva

$$(xy)(uv) = ((xy)u)v = (x(yu))v = (x(uy))v = = ((xu)y)v = (xu)(yv), (xy)(uv) = (xy)(vu) = ((xy)v)u = (x(yv))u = (x(vy))u = = ((xv)y)u = (xv)(yu),$$

s ezek adják az állítást.

2.6. feladat. Bizonyítsa be, hogy ha $x, y, u, v \in \mathbb{R}$, akkor

$$(x - y) + (u - v) = (x + u) - (y + v) = (x - v) + (u - y).$$

Megoldás. Ha a 2.4. feladatban elvégezzük az $y\to -y,\ v\to -v$ helyettesítéseket, s használjuk a kivonás tulajdonságát, valamint a 2.3. feladatot, akkor például

$$(x-y) + (u-v) = (x + (-y)) + (u + (-v)) = (x + u) + ((-y) + (-v)) =$$
$$= (x + u) + (-(y + v)) = (x + u) - (y + v)$$

következik. A másik egyenlőség hasonlóan bizonyítható.

2.7. feladat. Ha $x,y\in\mathbb{R},\ x\neq 0,y\neq 0$, akkor bizonyítsa be, hogy

$$(xy)^{-1} = (x^{-1})(y^{-1})$$
, azaz $\frac{1}{x} \cdot \frac{1}{y} = \frac{1}{xy}$.

Megoldás. A feltételek miatt $\exists (xy)^{-1}$. A testaxiómákat és a 2.5. feladatot felhasználva kapjuk, hogy

$$(xy)(xy)^{-1} = 1 = 1 \cdot 1 = (x \cdot x^{-1})(y \cdot y^{-1}) = (xy)(x^{-1}y^{-1})$$

ami az egyszerűsítési szabály miatt adja az állítást. A második egyenlőség az inverz és a reciprok egyenlőségéből jön.

2.8. feladat. Ha $x,y,u,v\in\mathbb{R}$ és $u\neq 0,v\neq 0$, úgy lássa be a törtet törttel szorzás szabályát, hogy $\frac{x}{u}\cdot\frac{y}{v}=\frac{xy}{uv}$.

Megoldás. A hányados tulajdonságát, a 2.5. és 2.7. feladtokat felhasználva

$$\frac{x}{u} \cdot \frac{y}{v} = (xu^{-1})(yv^{-1}) = (xy)(u^{-1}v^{-1}) = (xy)(uv)^{-1} = \frac{xy}{uv} ,$$

ami adia az állítást.

2.9. feladat. Legyen $x,y,u,v\in\mathbb{R},\ y\neq 0,v\neq 0$. Bizonyítsa be a törtek összeadásának szabályát, hogy

$$\frac{x}{y} + \frac{u}{v} = \frac{xv + yu}{yv} \ .$$

Megoldás. Az axiómákat, a 2.5. és 2.7. feladatokat és a hányados definícióját használva

$$\frac{xv + yu}{yv} = (xv + yu)(yv)^{-1} = (xv + yu)(y^{-1}v^{-1}) =$$

$$= (xv)(y^{-1}v^{-1}) + (yu)(y^{-1}v^{-1}) =$$

$$= (xy^{-1})(vv^{-1}) + (yy^{-1})(uv^{-1}) =$$

$$= \frac{x}{y} \cdot 1 + 1 \cdot \frac{u}{v} = \frac{x}{y} + \frac{u}{v},$$

22 II. SZÁMOK

ami adja az állítást.

2.10. feladat. Bizonyítsa be, hogy $\forall n, m \in \mathbb{N}$ esetén $n+m \in \mathbb{N}$ és $nm \in \mathbb{N}$.

Megoldás. m-re vonatkozó teljes indukció, a testaxiómák és $\mathbb N$ definíciója segítségével bizonyítjuk a két állítást.

- \forall $n \in \mathbb{N}$ esetén, ha m = 1, úgy $n + 1 \in \mathbb{N}$. Tegyük fel, hogy $n \in \mathbb{N}$ esetén $n + m \in \mathbb{N}$, akkor $n + (m + 1) = (n + m) + 1 \in \mathbb{N}$. Így a teljes indukció elve alapján \forall rögzített $n \in \mathbb{N}$ esetén \forall $m \in \mathbb{N}$ -re $n + m \in \mathbb{N}$.
- A most bizonyított állítást is felhasználva, hasonlóan mint előbb: $\forall n \in \mathbb{N}$ -re, ha m=1, akkor $n\cdot 1=n\in \mathbb{N}$. Tegyük fel, hogy $m\in \mathbb{N}$ -re $nm\in \mathbb{N}$, akkor $n(m+1)=nm+n\in \mathbb{N}$ teljesül, ami adja a feladat másik állítását.
- **2.11. feladat.** Mutassa meg, hogy $\forall x, y \in \mathbb{Z}$ esetén $x + y, x y, xy \in \mathbb{Z}$.

Megoldás. \mathbb{Z} definícióját, a 2.3., 2.6., 2.10. feladat állításait és a testaxiómákat felhasználva bizonyítunk. Ha $x,y\in\mathbb{Z}$, akkor $\exists m_1,n_1\in\mathbb{N}$ és $m_2,n_2\in\mathbb{N}$, hogy $x=m_1-n_1,\ y=m_2-n_2$, akkor

- $-x+y=(m_1-n_1)+(m_2-n_2)=(m_1+m_2)-(n_1+n_2)\in\mathbb{Z};$
- $-x-y=(m_1-n_1)-(m_2-n_2)=(m_1+n_2)-(m_2+n_1)\in\mathbb{Z};$
- $-xy = (m_1 n_1)(m_2 n_2) = [m_1 + (-n_1)] \cdot [m_2 + (-n_2)] =$
 - $= [m_1(m_2 + (-n_2))] + [(-n_1)(m_2 + (-n_2))] =$
 - $= [m_1 m_2 + m_1 (-n_2)] + [(-n_1) m_2 + (-n_1) (-n_2)] =$
 - $= [m_1m_2 + n_1n_2] + [-(m_1n_2 + n_1m_2)] =$
 - $=(m_1m_2+n_1n_2)-(m_1n_2+n_1m_2)\in\mathbb{Z}$, melyek adják a feladat állításait.
- **2.12. feladat.** Legyen $x,y\in\mathbb{Q}$. Bizonyítsa be, hogy $x+y,\ x-y,\ xy\in\mathbb{Q}$ és ha $y\neq 0$, akkor $\frac{x}{y}\in\mathbb{Q}$ teljesül.

Megoldás. $\mathbb Q$ definícióját, korábbi feladatokat és a testaxiómákat használjuk a bizonyításban.

Ha $x,y\in\mathbb{Q}$, akkor (definíció szerint) $\exists p_1,p_2,q_1,q_2\in\mathbb{Z},\ q_1\neq 0,q_2\neq 0,$ hogy $x=\frac{p_1}{q_1},\ y=\frac{p_2}{q_2}$, így

- $-x+y=\frac{p_1}{q_1}+\frac{p_2}{q_2}=\frac{p_1q_2+p_2q_1}{q_1q_2}\in\mathbb{Q} \text{ (hiszen } p_1q_2+p_2q_1\in\mathbb{Z},\ q_1q_2\in\mathbb{Z},\ q_1q_2\neq0) ;}$
- a további állítások hasonlóan bizonyíthatók.

2.13. feladat. Legyen $x, y \in \mathbb{R}$; $n, m \in \mathbb{N}$. Bizonyítsa be, hogy

$$(xy)^n = x^n y^n,$$

$$\left(\frac{x^n}{y}\right) = \frac{x^n}{y^n} \quad \text{(ha } y \neq 0),$$

$$x^n x^m = x^{n+m},$$

$$(x^n)^m = x^{nm}.$$

 $Megold\acute{a}s.$ Teljes indukcióval bizonyítunk, x^n definícióját és a 2.5. feladatot is felhasználva:

-n = 1-re $(xy)^1 \doteq xy \doteq x^1y^1$ miatt igaz az első egyenlőség. Tegyük fel, hogy $(xy)^n = x^ny^n$, akkor

$$(xy)^{n+1} \doteq (xy)^n (xy) = (x^n y^n)(xy) = (x^n x)(y^n y) = x^{n+1} y^{n+1} ,$$

s ezek a teljes indukció elve alapján adják az első azonosságot $\forall \ n \in \mathbb{N}$ esetén.

- A második azonosság hasonlóan bizonyítható.
- A harmadik azonosság bizonyításához legyen $n \in \mathbb{N}$ tetszőlegesen rögzített. Akkor m=1 esetén $x^nx^1=x^nx=x^{n+1}$ adja az állítást. Ha $x^nx^m=x^{n+m}$, akkor $x^nx^{m+1}=x^n(x^mx)=(x^nx^m)x=x^{n+m}x=x^{(n+m)+1}=x^{n+(m+1)}$. Ezek pedig, a teljes indukció elve szerint adják a harmadik azonosságot $\forall n,m \in \mathbb{N}$ esetén.
- A negyedik azonosság bizonyítása az előbbihez hasonló.
- **2.14. feladat.** Legyen $k, n \in \mathbb{N}, k \leq n$. Bizonyítsa be, hogy

$$\binom{n}{0} = \binom{n}{n} = 1, \quad \binom{n}{k} = \binom{n}{n-k}, \quad \binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}.$$

Megoldás.

- $\binom{n}{k}$ definícióját felhasználva az első két állítás nyilvánvaló.
- _ A

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-(k-1))!} + \frac{n!}{k!(n-k)!} =$$

$$= \frac{n!k+n!(n-k+1)}{k!(n-(k-1))!} = \frac{n!(n+1)}{k!((n+1)-k)!} =$$

$$= \frac{(n+1)!}{k!((n+1)-k)!} = \binom{n+1}{k}$$

egyenlőségsor adja a harmadik azonosságot.

2.15. feladat. Legyen $x, y \in \mathbb{R}, n \in \mathbb{N}$. Bizonyítsa be, hogy

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$
 (binomiális tétel).

Megoldás. Teljes indukcióval bizonyítunk, a testaxiómákat, az azokból származtatott "számolási szabályokat" és a 2.14. feladatot felhasználva. n=1-re az $(x+y)^1=x+y$ és $\sum_{i=0}^1 \binom{1}{i} x^i y^{n-i}=x^1+y^1=x+y$ egyenlőségek összehasonlítása adja az állítást. Ha az állítás igaz valamilyen $n\in\mathbb{N}$ -re, úgy

$$(x+y)^{n+1} = (x+y)^n (x+y) = \left[\sum_{i=0}^n \binom{n}{i} x^i y^{n-i} \right] (x+y) =$$

$$= \sum_{i=0}^n \binom{n}{i} x^{i+1} y^{n-i} + \sum_{i=0}^n \binom{n}{i} x^i y^{n+1-i} =$$

$$= \binom{n}{n} x^{n+1} + \sum_{i=0}^{n-1} \binom{n}{i} x^{i+1} y^{n-i} + \sum_{i=1}^n \binom{n}{i} x^i y^{(n+1)-i} + \binom{n}{0} y^{n+1} =$$

$$= \binom{n+1}{n+1} x^{n+1} + \sum_{k=1}^n \binom{n}{k-1} x^k y^{(n+1)-k} +$$

$$+ \sum_{k=1}^n \binom{n}{k} x^k y^{(n+1)-k} + \binom{n+1}{0} y^{n+1} =$$

$$= \binom{n+1}{n+1} x^{n+1} + \sum_{k=1}^n \left[\binom{n}{k-1} + \binom{n}{k} \right] x^k y^{(n+1)-k} + \binom{n+1}{0} y^{n+1} =$$

$$= \binom{n+1}{0} y^{n+1} + \sum_{k=1}^n \binom{n+1}{k} x^k y^{(n+1)-k} + \binom{n+1}{0} x^{n+1} =$$

az állítás tehát n+1-re is igaz, s akkor minden $n \in \mathbb{N}$ esetén is igaz.

 $= \sum_{i=1}^{n+1} {n+1 \choose i} x^i y^{(n+1)-i},$

Rendezés (egyenlőtlenségek) \mathbb{R} -ben

2.16. feladat. Bizonyítsa be, hogy ha $x, y, z, u, v \in \mathbb{R}$, akkor

```
a) x < y \implies x + z < y + z;
```

b)
$$0 < x \implies -x < 0$$
; $x < 0 \implies 0 < -x$;

c)
$$0 < x \land 0 < y \implies 0 < xy$$
;

d)
$$0 < x^2 \lor x^2 = 0$$
; $0 < 1$;

e)
$$0 < x \land y < 0 \implies xy < 0$$
; $x < 0 \land y < 0 \implies 0 < xy$;

f)
$$0 < xy \land 0 < x \implies 0 < y ; 0 < \frac{1}{x} ;$$

g)
$$x \le y \land z \le u \implies x + z \le y + u$$
;
 $x < y \land z \le u \implies x + z < y + u$;
 $(0 \le x \land 0 \le y \implies 0 \le x + y; 0 < x \land 0 \le y \implies 0 < x + y)$;

h)
$$x < y \land 0 < z \implies xz < yz; \ x < y \land z < 0 \implies yz < xz;$$

i)
$$0 < y < x \land 0 < z < v \implies yz < xv$$
;

j)
$$0 < x < y \land n \in \mathbb{N} \implies 0 < x^n < y^n$$
;

k)
$$0 < x < y \implies 0 < \frac{1}{y} < \frac{1}{x}$$
;

$$1) \quad n \in \mathbb{N} \implies n \ge 1 ;$$

m)
$$\forall k \in \mathbb{Z}$$
 esetén $\not\exists l \in \mathbb{Z}$, hogy $k < l < k + 1$.

Megoldás.

- a) $x < y \implies x \le y \implies x + z \le y + z$. Hax + z = y + z volna, úgy x = y adódna, ami ellentmondás, így x + z < y + z.
- b) a)-t felhasználva pl. $0 < x \implies 0 + (-x) < x + (-x) \implies -x < 0$.
- c) $0 < x \land 0 < y \implies 0 \le x \land 0 \le y \implies 0 \le xy$. Ha 0 = xy, akkor $0 = x \lor 0 = y$, ami ellentmondás, így 0 < xy.
- d) Ha $x = 0 \implies x^2 = 0$; ha 0 < x, akkor $0 \cdot 0 < x \cdot x$, azaz 0 < x + 2; $x < 0 \implies 0 < -x \implies 0 \cdot 0 < (-x) \cdot (-x) = x^2$, azaz $0 < x^2$. Ha $x = 1 \implies 0 < 1^2 = 1$.
- e) $0 < x \land y < 0 \implies 0 < x \land 0 < -y \implies 0 < -(xy) \implies xy < 0$; a másik állítás hasonlóan igazolható.
- f) Ha $y \le 0$ lenne, úgy $xy = 0 \lor xy < 0$ jönne, ami ellentmondás. Ha $y = \frac{1}{x}$, úgy $0 < x \cdot \frac{1}{x} \land 0 < x$ adja, hogy $0 < \frac{1}{x}$.
- g) Ha z=u, akkor az (i) axióma, illetve az a) állítás adaja a bizonyítandó állítást. Ha z < u, akkor $x+z < y+z \wedge y+z < y+u$ adja az állítást. (A speciális esetek ebből nyilvánvalóak.)

- h) Ha x < y, akkor 0 = -x + x < -x + y, így 0 < z miatt $0 < (-x + y)z = -xz + yz \implies xz < (xz + (-xz)) + yz \implies xz < yz$. Az állítás másik része is hasonló, hiszen $z < 0 \iff 0 < -z$.
- i) $y < x \land 0 < z \implies yz < xz$ és $z < v \land 0 < x \implies xz < xv$ -ből következik, hogy yz < xv.
- j) n=2-re (az előző állítás miatt) $x^2=x\cdot x < y\cdot y=y^2$, ha $n\in\mathbb{N}$ -re $x^n< y^n$, úgy x< y miatt pedig $x^{n+1}=x\cdot x^n< y\cdot y^n=y^{n+1}$, ami adja az állítást.
- k) $0 < x < y \implies 0 < \frac{1}{x}$, $0 < \frac{1}{y}$. Tegyük fel, hogy $0 < \frac{1}{x} \le \frac{1}{y}$, akkor (0 < x < y miatt) $1 = x \cdot \frac{1}{x} < y \cdot \frac{1}{y} = 1$, ami ellentmondás, így $0 < \frac{1}{y} < \frac{1}{x}$ igaz.
- l) Ha n=1, akkor $1\geq 1$ igaz. Tegyük fel, hogy n=k-ra $k\geq 1$, akkor 1>0 miatt $k+1\geq 1$ is igaz, ami az indukciós axióma miatt adja az állítást.
- m) Ha létezne $k, l \in \mathbb{Z}$, k < l < k+1, akkor $l-k \in \mathbb{Z} \land 0 < l-k \implies l-k \in \mathbb{N} \implies l-k \ge 1 \implies l \ge 1+k$, ami ellentmondás.
- **2.17. feladat.** Legyen $x, y \in \mathbb{R}$. Bizonyítsa be, hogy
 - a) $|x| \le y \iff -y \le x \le y$,
 - b) $|x| < y \iff -y < x < y$.

Megoldás. Az abszolútérték definícióját és az egyenlőtlenségek eddig megismert tulajdonságait felhasználva:

- a) Ha $|x| \leq y$, akkor $x \leq |x|$ és $-x \leq |x|$ adja, hogy $x \leq y$ és $-x \leq y$, azaz $-y \leq x$, a ezekből $-y \leq x \leq y$ következik. Ha $-y \leq x \leq y$, akkor $0 \leq x$ -re: $x \leq y$ és $|x| = x \implies |x| \leq y$, x < 0-ra: a $-y \leq x$ -ből kapott $-x \leq y$ egyenlőtlenség és az |x| = -x adja, hogy $|x| \leq y$, így $\forall x \in \mathbb{R}$ esetén $|x| \leq y$.
- b) Hasonlóan bizonyítható (\leq helyett \leq-et irunk).
- **2.18. feladat.** Bizonyítsa be, hogy az \mathbb{R} -beli $d(x,y) \doteq |x-y| \ (x,y \in \mathbb{R})$ távolságra $d(x,y) \geq 0$, d(x,y) = d(y,x), $d(x,y) \leq d(x,z) + d(y,z)$ teljesül.

Megoldás. Az abszolútérték tulajdonságait és a testaxiómákkal kapcsolatos feladatokat felhasználva:

- $-d(x,y) = |x-y| \ge 0,$
- -d(x,y) = |x-y| = |-(y-x)| = |y-x| = d(y,x),
- $-d(x,y) = |x-y| = |(x-z) + (z-y)| \le |x-z| + |z-y| = |x-z| + |y-z| = d(x,z) + d(y,z)$

adják állításainkat.

- **2.19. feladat.** Bizonyítsa be, hogy az \mathbb{R} -beli $K(x_0, r)$ környezetre teljesülnek a következők:
 - a) ha $x_0 \in \mathbb{R}$ és r > 0, akkor $x_0 \in K(x_0, r)$,
 - b) ha $x_0 \in \mathbb{R}$, r > 0 és $x \in K(x_0, r)$, akkor $\exists \varepsilon > 0$, hogy $K(x, \varepsilon) \subset K(x_0, r)$,
 - c) ha $x, y \in \mathbb{R}$, $x \neq y$, akkor $\exists r > 0$, hogy $K(x, r) \cap K(y, r) = \emptyset$,
 - d) ha $x_0 \in \mathbb{R}$, r > 0, akkor $K(x_0, r) = |x_0 r, x_0 + r|$.

Megoldás.

- a) $d(x_0, x_0) = |x_0 x_0| = |0| = 0 < r$ adja az állítást.
- b) Legyen $\varepsilon = r d(x, x_0)$. Ha $y \in K(x, \varepsilon)$, azaz $d(y, x) < \varepsilon$, akkor a 2.18. feladat harmadik állítása miatt (háromszög egyenlőtlenség): $d(y, x_0) \le d(y, x) + d(x, x_0) < \varepsilon + d(x, x_0) = r$, tehát $y \in K(x_0, r)$, így $K(x, \varepsilon) \subset K(x_0, r)$.
- c) Legyen $r = \frac{1}{2}d(x,y)$. Ha létezne $y \in K(x,r) \cap K(y,r)$, úgy (a háromszögegyenlőtlenséget felhasználva) $d(x,y) \leq d(x,z) + d(z,y) < r = d(x,y)$ következne, ami ellentmondás, ezért $K(x,r) \cap K(y,r) = \emptyset$.
- d) A környezet definíciója, a 2.16. és 2.17. feladatok alapján: $x \in K(x_0, r)$ $\iff |x x_0| < r \iff -r < x x_0 < r \iff x_0 r < x < x_0 + r \iff x \in |x_0 r, x_0 + r|$ adja az állítást.
- **2.20. feladat (Bernoulli-egyenlőtlenség).** Bizonyítsa be, hogy ha $n \in \mathbb{N}$, $x \in \mathbb{R}$ és $x \ge -1$, akkor

$$(1+x)^n \ge 1 + nx .$$

Egyenlőség \iff teljesül, ha n=1 vagy x=0.

Megoldás. Teljes indukcióval.

n=1-re az állítás nyilván igaz. Ha n-re igaz, akkor $1+x\geq 0$ miatt

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x) = 1+nx+x+nx^2 \ge 1+(n+1)x$$
,

így az állítás minden természetes számra igaz.

Az egyenlőségre vonatkozó állítás egyszerű.

2.21. feladat (Cauchy-egyenlőtlenség). Bizonyítsa be, hogy ha $n \in \mathbb{N}$ és $a_1, \ldots, a_n \in \mathbb{R}_+$, akkor

$$G_n \doteq \sqrt[n]{a_1 \cdot \ldots \cdot a_n} \leq \frac{a_1 + \ldots + a_n}{n} \doteq A_n$$
,

egyenlőség \iff teljesül, ha $a_1 = a_2 = \cdots = a_n$.

II. SZÁMOK

Megoldás. Teljes indukcióval.

28

n=1 esetén az állítás nyilván igaz.

Tegyük fel, hogy $G_{n-1} \leq A_{n-1}$ és = \iff , ha $a_1 = a_2 = \cdots = a_{n-1}$. Mivel

$$A_n = \frac{1}{n}[(n-1)A_{n-1} + a_n] = A_{n-1}\left[\frac{n-1}{n} + \frac{a_n}{n \cdot A_{n-1}}\right] =$$

$$= A_{n-1}\left[1 + \left(\frac{a_n}{n \cdot A_{n-1}} - \frac{1}{n}\right)\right]$$

és $\frac{a_n}{n \cdot A_{n-1}} - \frac{1}{n} > -1$ így a Bernoulli-egyenlőtlenség felhasználásával

$$(A_n)^n = (A_{n-1})^n \left[1 + \left(\frac{a_n}{n \cdot A_{n-1}} - \frac{1}{n} \right) \right]^n \ge$$

$$\ge (A_{n-1})^n \left(1 + \frac{a_n}{A_{n-1}} - 1 \right) = (A_{n-1})^{n-1} \cdot a_n \ge$$

$$\ge (G_{n-1})^{n-1} \cdot a_n = a_1 \cdot \ldots \cdot a_{n-1} \cdot a_n = (G_n)^n ,$$

ami adja, hogy $G_n \leq A_n$ és egyenlőség \iff van, ha $\frac{a_n}{A_{n-1}} - 1 = 0$. $a_1 = \cdots = a_{n-1}$ -et felhasználva ez azt jelenti, hogy $a_n = a_1$ (= $a_2 = \cdots = a_{n-1}$). Az indukciós axióma miatt az állítás igaz.

2.22. feladat (Chauchy-Bunyakovszkij-Schwarz-egyenlőtlenség). Legyenek $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$, akkor bizonyítsa be, hogy

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right).$$

Megoldás. Legyen $f: \mathbb{R} \to \mathbb{R}, \ f(t) = \sum_{i=1}^{n} (x_i t + y_i)^2$, akkor $f(t) \ge 0 \ \forall \ t \in \mathbb{R}$ és

$$f(t) = \left(\sum_{i=1}^n x_i^2\right) t^2 + 2\left(\sum_{i=1}^n x_i y_i\right) t + \left(\sum_{i=1}^n y_i^2\right). \text{ Ha } \sum_{i=1}^n x_i^2 = 0 \text{ (azaz } \forall x_i = 0),$$
akkor az állítás nyilván igaz

Legyen $\sum_{i=1}^{n} x_i^2 > 0$. Ha $\sum_{i=1}^{n} x_i^2 = a$, $2 \sum_{i=1}^{n} x_i y_i = b$ és $\sum_{i=1}^{n} y_i^2 = c$, akkor

$$f(t) = at^2 + bt + c = a\left(t + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}.$$
 $f(t) \ge 0 \ \forall \ t \in \mathbb{R}$ esetén \iff

ha $b^2 - 4ac \le 0$, ami az előbbi jelölések felhasználásával adja az állítást.

\mathbb{R} teljessége

2.23. feladat. Bizonyítsa be, hogy \forall $A \subset \mathbb{R}$ nemüres, felülről korlátos halmazra sup A egyértelmű.

 $Megold\acute{a}s$. Ha $\exists \alpha, \beta \in \mathbb{R}$, hogy $\alpha = supA$, $\beta = supA$, akkor supA definíciója miatt $\alpha \leq \beta$ és $\beta \leq \alpha$ is teljesül, ami csak $\alpha = \beta$ esetén teljesülhet (hiszen pl. $\alpha < \beta$ esetén $\alpha < \alpha$ következne).

2.24. feladat. Bizonyítsa be, hogy $\forall A (\neq \emptyset) \subset \mathbb{R}$ felülről korlátos halmaznak β akkor és csak akkor pontos felső korlátja, ha felső korlát és $\forall \varepsilon > 0$ -ra $\exists x \in A$, hogy $x > \beta - \varepsilon$ (azaz $\forall \varepsilon > 0$ -ra $\beta - \varepsilon$ nem felső korlát).

Megoldás. A pontos felső korlát definícióját felhasználva.

- Legyen $\beta = \sup A$, akkor β felső korlátja A-nak és $\forall \varepsilon > 0$ -ra $\beta \varepsilon (< \beta)$ nem felső korlát, ami adja, hogy $\exists x \in A$, hogy $x > \beta \varepsilon$.
- Ha β felső korlátja A-nak és $\forall \ \varepsilon > 0$ esetén $\exists \ x \in A, \ x > \beta \varepsilon,$ akkor tegyük fel, hogy $\exists \gamma \in \mathbb{R},$ hogy γ felső korlátja A-nak és $\gamma < \beta.$ Ha $\varepsilon \doteq \beta \gamma > 0,$ úgy a feltétel miatt $\exists \ x \in A,$ hogy $x > \beta \varepsilon = \gamma,$ ellentmondásban azzal, hogy γ felső korlát. Így Abármely γ felső korlátjára $\gamma \geq \beta$ kell, hogy teljesüljön. Tehát β pontos felső korlátja A-nak.
- **2.25. feladat.** Legyen $A, B \subset \mathbb{R}$ olyan, hogy $A \subset B$. Bizonyítsa be, hogy ha $\exists \sup A$ és $\exists \sup B$, akkor $\sup A \leq \sup B$.

Megoldlpha s. Ha $\alpha=\sup A,\ \beta=\sup B$ és az állítással ellentétben feltesszük, hogy $\beta<\alpha,$ akkor $\varepsilon\doteq\alpha-\beta>0$ mellett az előző feladat miatt ($\exists\ \alpha=\sup A$) $\exists\ x\in A,$ hogy $x>\alpha-\varepsilon=\beta.$ Ugyanakkor $A\subset B$ miatt $x\in B$ is teljesül, ezért $x>\beta,$ ami ellentmond annak, hogy $\beta=\sup B.$ Tehát $\alpha\leq\beta$ kell, hogy teljesüljön, amit bizonyítani kellett.

2.26. feladat. Ha az $A \subset \mathbb{R}$ halmazra $\exists \sup A$, akkor a $-A \doteq \{x \mid -x \in A\}$ halmaznak létezik pontos alsó korlátja és $\inf(-A) = -\sup A$.

 $Megold\acute{a}s$. Ha $\beta=\sup A$, akkor $\forall \ x\in A$ -ra $x\leq \beta$. Ha $x\in -A$, akkor $-x\in A$, így $-x\leq \beta$, azaz $-\beta\leq x$ teljesül, tehát $-\beta$ alsó korlátja -A-nak. Ha α tetszőleges alsó korlátja -A-nak, akkor nyilván $-\alpha$ felső korlátja A-nak és rá $-\alpha\geq \beta$, azaz $\alpha\leq -\beta$ teljesül. Ezek (definíció szerint) adják, hogy $\exists \inf(-A)=-\beta=-\sup A$.

2.27. feladat. Ha $A, B \subset \mathbb{R}$ és $A + B = \{x + y \mid x \in A, y \in B\}$, akkor bizonyítsa be, hogy ha $\exists \sup A$ és $\sup B$, akkor $\exists \sup (A + B)$ és $\sup (A + B) = \sup A + \sup B$.

0 II. SZÁMOK

 $Megold\acute{a}s.$ sup Aés sup B definíciója miatt $\forall~x\in A,~y\in B$ esetén $x\leq\sup A,~y\leq\sup B,$ így $x+y\leq\sup A+\sup B,$ tehát sup $A+\sup B$ felső korlátja A+B-nek, ami ($\mathbb R$ teljessége miatt) adja, hogy $\exists~\sup(A+B).$ Ha $\varepsilon>0$ adott a 2.24. feladatot is felhasználva $\exists~x_0\in A,~y_0\in B,$ hogy $x_0>\sup A-\frac{\varepsilon}{2},~y_0>\sup B-\frac{\varepsilon}{2},$ azaz $x_0+y_0>\sup A+\sup B-\varepsilon,$ amiből (újra használva a 2.24. feladat állítását) kapjuk, hogy $\sup A+\sup B$ pontos felső korlátja A+B-nek.

2.28. feladat. Határozza meg a $H_1 = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$ és $H_2 =]0, 1[\cap \{2\}$ halmazok supremumát és infimumát.

Megoldás. A definíciókat és az egyenlőtlenségek tulajdonságait használva:

- Ha $n \in \mathbb{N}$, úgy $0 < \frac{1}{n}$, így 0 alsó korlátja H_1 -nek. Ha $\varepsilon > 0$ tetszőleges valós szám, úgy mivel N felülről nem korlátos $\exists n \in \mathbb{N}$, hogy $0 < \frac{1}{\varepsilon} < n$, azaz $\frac{1}{n} < \varepsilon = \varepsilon 0$. Ezek (a 2.24. feladat miatt) adják, hogy inf $H_1 = 0$.
- Ha $n \in \mathbb{N}$, akkor $n \geq 1$, azaz $\frac{1}{n} \leq 1$, így 1 felső korlátja H_1 -nek. Ha $\varepsilon > 0$ tetszőleges, akkor $x = 1 \in H_1$ -re $1 > 1 \varepsilon$ (hiszen ez ekvivalens a $0 > -\varepsilon$, illetve $\varepsilon > 0$ egyenlőtlenséggel). S ezek együtt (a 2.24. feladat szerint) adják, hogy sup $H_1 = 1$.
- 0 alsó korlátja H_2 -nek, mert $x \in]0,1[$ -re 0 < x teljesül és 0 < 2 is igaz (hiszen 0 < 1 ismert, amiből jön 1 < 1 + 1 = 2, majd ezekből, hogy 0 < 2). Ha $\varepsilon > 0$ valós szám, úgy mivel $]0,\varepsilon[\cap]0,1[$ nemüres $∃x ∈ H_2$, hogy $x < \varepsilon$, azaz ε nem alsó korlát, így H_2 bármely alsó korlátja kisebb, vagy egyenlő 0-val. Tehát 0 pontos alsó korlát.
- Nyilván $\forall x \in H_2$ -re $x \leq 2$, ezért 2 felső korlátja H_2 -nek. Ha $\varepsilon > 0$ tetszőleges, akkor $2 \in H_2$ és $2 \varepsilon < 2$ (ami igaz, mert $2 \varepsilon < 2 \iff -\varepsilon < 0 \iff \varepsilon > 0$) miatt felhasználva a 2.24. feladatot, kapjuk, hogy sup $H_2 = 2$.
- **2.29. feladat.** Igazolja, hogy $x, y \in \mathbb{R}_+$; $n, m \in \mathbb{N}$ és $k \in \mathbb{Z}$ -re $\sqrt[n]{xy} = \sqrt[n]{x} \sqrt[n]{y}$, $\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}$, $\sqrt[m]{\sqrt[n]{x}} = \sqrt[mn]{x}$, $\sqrt[n]{x^k} = (\sqrt[n]{x})^k$ és $x \leq y \iff \sqrt[n]{x} \leq \sqrt[n]{y}$ teljesül.

Megoldás. Az n-edik gyök definícióját és a hatványozás azonosságait felhasználva:

 $-\sqrt[n]{x} \doteq a, \sqrt[n]{y} \doteq b \iff x = a^n, \ y = b^n \implies xy = a^nb^n = (ab)^n \iff ab = \sqrt[n]{xy}$, s ezek adják az első azonosságot.

- A további azonosságok hasonlóan bizonyíthatók.
- Ha $\sqrt[n]{x} \le \sqrt[n]{y}$, akkor az egyenlőtlenségek (2.16. feladatban) bizonyított tulajdonsága miatt $(\sqrt[n]{x})^n \le (\sqrt[n]{y})^n \iff x \le y$. Ha $x \le y$, akkor az állítással ellentétben tegyük fel, hogy $\sqrt[n]{x} > \sqrt[n]{y}$. Ebből pedig $(\sqrt[n]{x})^n > (\sqrt[n]{y})^n \iff x > y$ következik, ami ellentmondás, így csak $\sqrt[n]{x} \le \sqrt[n]{y}$ teljesülhet.

Ezzel bizonyítottuk a feladat utolsó állítását is.

R topológiája

- **2.30. feladat.** Legyen $a, b \in \mathbb{R}$, a < b. Bizonyítsa be, hogy
 - a) $[a, b[, a, +\infty[$ és $]-\infty, a[$ nyílt és nem zárt,
 - b) [a,b], $[a,+\infty[$ és $]-\infty,a]$ zárt és nem nyílt,
 - c)]a, b] és [a, b[nem nyílt és nem zárt.

Megoldás.

- a) Megmutatjuk, hogy $\forall x_0 \in]a,b[$ esetén $\exists r>0,\ K(x_0,r) \subset]a,b[$. Legyen $r=\inf\{x_0-a,b-x_0\},$ akkor a 2.19. feladat d) része miatt $\forall \ x \in K(x_0,r)$ esetén $x < x_0+r \le x_0+(b-x_0)=b$ és $x>x_0-r \ge x_0-(x_0-a)=a,$ azaz $x \in]a,b[,$ így $K(x_0,r) \subset]a,b[.$ Ha $x_0 \in]a,+\infty[$ vagy $x_0 \in]-\infty,a[,$ akkor $r \doteq |a-x_0|$ esetén $K(x_0,r) \subset]a,+\infty[,$ illetve $K(x_0,r) \subset]-\infty,a[,$ ami adja, hogy ezen intervallumok is nyíltak. Az $a \in \mathbb{R}$ valós szám nyilván torlódási pontja mindegyik intervallumnak (hiszen pl. $\forall \ r>0$ -ra $K(a,r)\cap]a,b[=K(a,r)\neq \emptyset,$ ha $r \le b,$ illetve $K(a,r)\cap]a,b[=]a,b[\neq \emptyset,$ ha a < r), de a nem eleme egyik intervallumnak sem, így van olyan torlódási pontja, mely nem eleme a halmaznak, ezért nem zártak.
- b) $C_{\mathbb{R}}[a,b[=]-\infty,a[\cup]b,+\infty[$, $C_{\mathbb{R}}[a,+\infty[=]-\infty,a[$ és $C_{\mathbb{R}}]-\infty,a]=[a,+\infty[$, így a zárt halmaz definíciója és a feladat a) része miatt az itt szereplő intervallumok zárt halmazok. Egyik intervallum sem nyílt halmaz, mert a nem belső pontjuk (mert pl. $\forall \ r>0\ K(a,r)$ -ből]a-r,a[vagy]a,a+r[nem része a megfelelő intervallumnak).
- c)]a,b] nem nyílt, mert b nem belső pontja és nem is zárt, mert az a torlódási pontja, de nem pontja a halmaznak. Hasonlóan bizonyíthatjuk az [a,b[-re vonatkozó állítást is.
- **2.31. feladat.** Határozza meg a $H =]-1,1] \cup \{3\} \cup]4,5[\cup [7,8]$ halmaz belső, határ, külső, torlódási és izolált pontjainak halmazát.

32 II. SZÁMOK

Megoldás.

- H belső pontjainak halmaza a $H^0 =]$ 1,1[∪]4,5[∪]7,8[halmaz. $\forall x \in H^0$ -ra $x \in]$ 1,1[vagy $x \in]$ 4,5[vagy $x \in]$ 7,8[teljesül, de ezen intervallumok nyílt halmazok, így $\exists r$, K(x,r) része valamelyiknek, és így $K(x,r) \subset H$. Más belső pont nem lehet: az {1,7,8} halmaz elemei, ahogy ezt a korábbiakban bizonyított módon beláthatjuk, nem belső pontjai H-nak.
- H határpontjainak halmaza a $\partial H = \{-1, 1, 3, 4, 5, 7, 8\}$ halmaz. Például $1 \in \partial H$, mert $\forall K(1,r)$ esetén $K(1,r) \cap]-1, 1[\neq \emptyset$ és $K(1,r) \cap CH \neq \emptyset$. A ∂H többi elemére hasonló a bizonyítás.
- H külső pontjainak halmaza a $H^* =]-\infty, -1[\cup]1, 3[\cup]3, 4[\cup]5, 7[\cup]8, +∞[$ halmaz. H^* elemei valóban külső pontok, mert belső pontjai CH-nak (hiszen $\forall x \in H^*$ a H^* -ot definiáló valamelyik nyílt halmaz eleme). $\mathbb{R} \setminus H^*$ elemei pedig a már vizsgált H^0 és ∂H elemei.
- H torlódási pontjainak halmaza a $H' = [-1,1] \cup [4,5] \cup [7,8]$ halmaz. H' elemei valóban torlódási pontok (mert belső, vagy határpontjai H-nak). Egyszerűen belátható, hogy $\mathbb{R} \setminus H'$ elemei nem torlódási pontjai H-nak.
- H-nak egyetlen izolált pontja van: a 3 valós szám. 3 izolált pont, ugyanis 3 ∈ H és 3 ∉ H', mert $K(3,1) \cap H = \{3\}$, így K(3,1)-ben nincs a 3-tól különböző pontja H-nak. H más eleme nem lehet izolált pont, mert azok torlódási pontok.

2.32. feladat. Határozza meg $\mathbb{Q} \subset \mathbb{R}$ belső, határ, külső, torlódási és izolált pontjait.

Megoldás.

- Q-nak nincs belső pontja, mert $\forall x_0 \in \mathbb{Q}$ és $\forall r > 0$ -ra $K(x_0, r)$ -ben van irracionális szám, így $K(x_0, r) \not\subset \mathbb{Q}$.
- $\partial \mathbb{Q} = \mathbb{R}$, mert $\forall x \in \mathbb{R}$ és r > 0-ra K(x, r)-ben van \mathbb{Q} -beli, illetve $C\mathbb{Q}$ -beli (irracionális) szám is.
- Q-nak nincs külső pontja, mert $\forall K(x_0, r)$ -ben van Q-nak eleme.
- $-\mathbb{Q}'=\mathbb{R}$, mert $\forall x_0 \in \mathbb{R}$ és r>0 esetén $K(x_0,r)$ -ben van \mathbb{Q} -beli elem.
- Q-nak nincs izolált pontja, mert az előbbiek szerint $\forall x_0 \in \mathbb{Q}$ torlódási pontja Q-nak.

2.33. feladat. Bizonyítsa be, hogy $\mathbb Z$ zárt és nem nyílt, $\mathbb Q$ nem nyílt és nem zárt.

Megoldás.

- Ha $x_0 \in \mathbb{R} \setminus \mathbb{Z}$, akkor $\exists z \in \mathbb{Z}$, hogy $x_0 \in]z, z+1[$, ami nyílt halmaz, így $\exists K(x_0,r) \subset]z, z+1[\subset \mathbb{R} \setminus \mathbb{Z}$, azaz x_0 belső pontja $\mathbb{R} \setminus \mathbb{Z}$ -nek, ezért $\mathbb{R} \setminus \mathbb{Z} = C_{\mathbb{R}}\mathbb{Z}$ nyílt és akkor definíció szerint \mathbb{Z} zárt halmaz. \mathbb{Z} nem nyílt, mert $\forall K(z,r)$ -ben van irracionális szám, így $\forall K(z,r) \not\subset \mathbb{Z}$.
- Ha $x_0 \in \mathbb{Q}$ és r > 0 tetszőleges, úgy $K(x_0, r)$ -ben van irracionális szám, ezért $K(x_0, r) \not\subset \mathbb{Q}$, így x_0 nem belső pontja \mathbb{Q} -nak. $\mathbb{Q}' = \mathbb{R}$ miatt \mathbb{Q} nem tartalmazza az irracionális torlódási pontjait, így nem zárt.
- **2.34. feladat.** Bizonyítsa be, hogy a $H = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ halmaz kompakt.

 $Megold\acute{as}.$ Egy $H\subset\mathbb{R}$ halmaz \iff kompakt, ha korlátos és zárt (Heine-Borel tétel).

- H korlátos, mert $0 < \frac{1}{n}$ és $n \ge 1$ miatt $\frac{1}{n} \le 1$ (tehát alulról és felülről is korlátos).
- $-\ H$ zárt, ha minden torlódási pontját tartalmazza.

0 torlódási pontja H-nak, mert ha r>0, úgy $\exists n_0 \in \mathbb{N}$, hogy $n_0>\frac{1}{r}$

(hiszen N felülről nem korlátos halmaz), ezért $0 < \frac{1}{n_0} < r$ miatt

 $\frac{1}{n_0} \in K(0,r)$. H-nak nincs más torlódási pontja. Ha ugyanis $x_0 \in \mathbb{R}, \ x_0 < 0,$ illetve $x_0 > 1,$ akkor $r \doteq |x_0|,$ illetve $r \doteq x_0 - 1$ választással $K(x_0,r) \cap H = \emptyset.$

Ha pedig $x_0 \notin H$, $0 < x_0 < 1$, akkor $\exists n \in \mathbb{N}$, $\frac{1}{n+1} < x_0 < \frac{1}{n}$, azaz $x_0 \in]\frac{1}{n+1}, \frac{1}{n}[$ nyílt intervallum és így $\exists K(x_0, r) \subset]\frac{1}{n+1}, \frac{1}{n}[$, melyben nincs H-beli elem, így x_0 nem torlódási pont.

Végül az $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \subset H$ halmaz elemei izolált pontjai H-nak, mert

egyszerűen belátható, hogy $\exists r_n > 0$, hogy $K(\frac{1}{n}, r_n) \cap H = \left\{\frac{1}{n}\right\}$, azaz $K(\frac{1}{n}, r_n)$ nem tartalmaz $\frac{1}{n}$ -től különböző H-beli elemet.

Gyakorló feladatok

- 1. Legyen $x, y \in \mathbb{R}, y \neq 0$. Bizonyítsa be, hogy $-\frac{x}{y} = \frac{-x}{y} = \frac{x}{-y}$.
- 2. Legyen $x, y, u, v \in \mathbb{R}, y \neq 0, v \neq 0$. Igazolja, hogy $\frac{x}{y} \frac{u}{v} = \frac{xv yu}{yv}$.
- 3. Bizonyítsa be, hogy ha $n \in \mathbb{N}$, akkor $-n \notin \mathbb{N}$, továbbá $n, m \in \mathbb{N}$, $n \neq m$ esetén $n m \in \mathbb{N}$, vagy $m n \in \mathbb{N}$.
- 4. Bizonyítsa be, hogy $x, y \in \mathbb{R}$ és $n, m \in \mathbb{Z}$ esetén $(xy)^n = x^n y^n$, $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$ ha $y \neq 0$; $x^n x^m = x^{n+m}$; $(x^n)^m = x^{nm}$.
- 5. Legyenek $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathbb{R}$. Bizonyítsa be, a

$$\sqrt{\sum_{i=1}^{n} (x_i + y_i)^2} \le \sqrt{\sum_{i=1}^{n} x_i^2} + \sqrt{\sum_{i=1}^{n} y_i^2}$$

Minkovszki-egyenlőtlenséget.

- 6. Bizonyítsa be, hogy ha az $A \subset \mathbb{R}$ halmaznak létezik pontos alsó és pontos felső korlátja, akkor inf $A \leq \sup A$.
- 7. Legyen $A, B \subset \mathbb{R}$, hogy $A \subset B$. Bizonyítsa be, hogy ha \exists inf A és \exists inf B, akkor inf $A \leq$ inf B.
- 8. Ha az $A \subset \mathbb{R}$ halmazra \exists inf A, akkor a $-A = \{x \mid -x \in A\}$ halmaznak létezik pontos felső korlátja és $\sup(-A) = -\inf A$.
- 9. Ha $A, B \subset \mathbb{R}$ és elemeik nemnegatív számok, hogy $\exists \sup A$ és $\sup B$, akkor az $AB = \{xy \mid x \in A, y \in B\}$ halmazra $\exists \sup(AB) = (\sup A)(\sup B)$.
- 10. Határozza meg a

34

$$H = \left\{ (-1)^n \left(1 - \frac{1}{n} \right) \mid n \in \mathbb{N} \right\}$$

halmaz pontos felső és pontos alsó korlátját.

- 11. Ha $A, B \subset \mathbb{R}$ és $\exists \sup A$, $\sup B$, $\inf A$, $\inf B$, akkor $A \cup B$ -nek is létezik pontos felső és pontos alsó korlátja és $\sup(A \cup B) = \max \{\sup A, \sup B\}$; $\inf(A \cup B) = \min \{\inf A, \inf B\}$.
- 12. Igazolja, hogy $x, y \in \mathbb{R}_+$ és $r, s \in \mathbb{Q}$ esetén

$$(xy)^r = x^r y^r \; ; \quad \left(\frac{x}{y}\right)^r = \frac{x^r}{y^r} \; ; \quad x^{r+s} = x^r x^s \; ; \quad (x^r)^s = x^{rs} \; .$$

- 13. Határozza meg $\mathbb N$ (a természetes számok halmaza) belső, határ, külső, torlódási és izolált pontjainak halmazát.
- 14. Adjon meg \mathbb{R} -ben végtelen sok olyan nyílt halmazt, melyek metszete nem nyílt, illetve végtelen sok olyan zárt halmazt, melyek egyesítése nem zárt.
- 15. Bizonyítsa be, hogy minden $H\subset\mathbb{R}$ véges halmaz kompakt.
- 16. Bizonyítsa be, hogy $]0,1[\subset \mathbb{R}$ nem kompakt.

III. fejezet

Sorozatok

Alapfogalmak és kapcsolatuk

3.1. feladat. Bizonyítsa be, hogy az $\left\langle \frac{n}{n+1} \right\rangle$ sorozat korlátos, szigorúan monoton növekedő és konvergens.

Megoldás.

- A korlátossághoz azt kell megmutatni, hogy $\exists~K\in\mathbb{R}_+,~\text{hogy}~\left|\frac{n}{n+1}\right|<$
 - $K \ (\forall \ n \in \mathbb{N}).$ $\left| \frac{n}{n+1} \right| = \frac{n}{n+1} < 1 \iff n < n+1 \iff 0 < 1 \text{ ami igaz, tehát } K = 1$ lasztással definíció szerint kapjuk a sorozat korlátosságát.
- $-\frac{n}{n+1} < \frac{n+1}{n+2} \iff n^2+2n < n^2+2n+1 \iff 0 < 1 \text{ miatt, definíció}$ szerint következik a sorozat szigorú monoton növekedése.
- Megmutatjuk, hogy a sorozat konvergál az 1 valós számhoz. Legyen $\varepsilon > 0 \text{ tetszőleges valós szám, akkor } \frac{1}{\varepsilon} - 1 \in \mathbb{R}\text{-hez (mivel } N \text{ felülről nem korlátos)} \exists n(\varepsilon) \in \mathbb{N}, \text{ hogy } n(\varepsilon) > \frac{1}{\varepsilon} - 1, \text{ fgy } \forall n \geq n(\varepsilon)\text{-ra } n > \frac{1}{\varepsilon} - 1 \iff n+1 > \frac{1}{\varepsilon} \iff \frac{1}{n+1} < \varepsilon \iff \left|\frac{n}{n+1} - 1\right| = \left|\frac{n-(n+1)}{n+1}\right| = \frac{1}{n+1} < \varepsilon$ ε , azaz $\forall \ \varepsilon > 0 \ \exists \ n(\varepsilon), \ \forall n \ge n(\varepsilon) \ \left| \frac{n}{n+1} - 1 \right| < \varepsilon$, ami definíció szerint azt jelenti, hogy az $\left\langle \frac{n}{n+1} \right\rangle$ sorozat konvergens és határértéke 1.
- A konvergencia abból is adódik, hogy a sorozat monoton növekedő és felülről korlátos.

3.2. feladat. Bizonyítsa be, hogy a $\left\langle \frac{(-1)^{n+1}}{n+1} \right\rangle$ sorozat korlátos, nem monoton és konvergens.

Megoldás

- $-\left|\frac{(-1)^{n+1}}{n+1}\right| = \frac{1}{n+1} < 1 \iff 1 < n+1 \iff 0 < n \text{ (ami igaz) adja, hogy}$ K = 1 mellett sorozatunk teljesíti a sorozat korlátosságának definícióját.
- $a_1=\frac{1}{2},\ a_2=-\frac{1}{3},\ a_3=\frac{1}{4},$ ezért sem $a_n\leq a_{n+1},$ sem $a_n\geq a_{n+1}$ nem teljesül $\forall\ n\in\mathbb{N}$ esetén, így a sorozat nem monoton.
- Megmutatjuk, hogy a sorozat konvergens és határértéke 0. $\left|\frac{(-1)^{n+1}}{n+1} 0\right| = \frac{1}{n+1} \text{ miatt, mivel } \forall \ \varepsilon > 0 \text{-ra (az előbbi feladattal azonos gondolat szerint)} \ \frac{1}{\varepsilon} 1 \text{-hez} \ \exists \ n(\varepsilon) \in \mathbb{N}, \ \text{hogy } n(\varepsilon) > \frac{1}{\varepsilon} 1, \ \text{így} \ \forall \ n \geq n(\varepsilon) \text{-ra} \ n > \frac{1}{\varepsilon} 1 \iff n+1 > \frac{1}{\varepsilon} \iff \frac{1}{n+1} < \varepsilon, \ \text{kapjuk, hogy} \ \left|\frac{(-1)^{n+1}}{n+1} 0\right| < \varepsilon, \ \text{ami adja az állítást a konvergencia definíciója szerint.}$
- **3.3. feladat.** Bizonyítsa be, hogy az $\left\langle \frac{1}{n!} \right\rangle$ sorozat korlátos, szigorúan monoton csökkenő és konvergens.

Megoldás.

- Az $\frac{1}{n!} = \frac{1}{1 \cdot 2 \cdot \ldots \cdot n} \le \frac{1}{n} \le 1$ egyenlőtlenségsor adja, hogy $\left| \frac{1}{n!} \right| \le 1 \ \forall \ n \in \mathbb{N}$ -re, ez pedig definíció szerint a sorozat korlátosságát jelenti.
- $-\frac{1}{n!}>\frac{1}{(n+1)!}\iff n!< n!(n+1)\iff 1< n+1\iff 0< n$ (ami nyilván igaz \forall $n\in\mathbb{N}$ -re) adja, hogy a sorozat szigorúan monoton csökkenő.
- Megmutatjuk, hogy a sorozat határértéke 0. Ha $\varepsilon>0$ tetszőleges, úgy az $\left|\frac{1}{n!}-0\right|=\frac{1}{n!}<\frac{1}{n}$ egyenlőtlenséget és azt felhasználva, hogy $\mathbb N$ felülről nem korlátos, $\exists~n(\varepsilon)\in\mathbb N,~n(\varepsilon)>\frac{1}{\varepsilon},$ ezért

$$\forall n \geq n(\varepsilon)$$
-ra $n > \frac{1}{\varepsilon} \iff \frac{1}{n} < \varepsilon \implies \left| \frac{1}{n!} - 0 \right| < \varepsilon$, ami éppen azt jelenti, hogy $\frac{1}{n!} \to 0$.

- A konvergencia abból is következik, hogy a sorozat monoton csökkenő és alulról korlátos.
- **3.4. feladat.** Bizonyítsa be, hogy a $\langle (-1)^n n \rangle$ sorozat nem korlátos, nem monoton és nem konvergens.

Megoldás.

- Ha létezne $K \in \mathbb{R}$, hogy $|(-1)^n n| = n < K \,\forall n \in \mathbb{N}$ -re, akkor \mathbb{N} felülről korlátos lenne, ami ellentmondás, így a sorozat nem korlátos.
- $-a_1=-1,\ a_2=2,\ a_3=-3$ adja, hogy nem teljesülhet $\forall\ n\in\mathbb{N}$ -re $a_n\leq a_{n+1}$ és $a_n\geq a_{n+1}$ sem, így a sorozat nem monoton.
- Ha a sorozat konvergens lenne, úgy az ismert tétel miatt korlátos lenne, ami ellentmondás, így a sorozat nem konvergens.
- **3.5. feladat.** Bizonyítsa be, hogy az $\left\langle \frac{1}{\sqrt{n}} \right\rangle$ sorozat korlátos, monoton csökkenő és konvergens.

Megold'as

- $-\left|\frac{1}{\sqrt{n}}\right| = \frac{1}{\sqrt{n}} \le 1 \iff 1 \le \sqrt{n} \iff 1 \le n \text{ (ami igaz) miatt a korlátosság definíciója adja az első állítást.}$
- $\forall n \in \mathbb{N}$ -re $\frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n+1}} > 0 \iff 0 < \sqrt{n} < \sqrt{n+1} \iff n < n+1 \iff 0 < 1$ (ami igaz) adja, hogy a sorozat szigorúan monoton csökkenő.
- Az első két állítás igaz volta adja a sorozat konvergenciáját. Ha megmutatjuk, hogy inf $\left\{\frac{1}{\sqrt{n}}\right\} = 0$, azt is kapjuk, hogy $\frac{1}{\sqrt{n}} \to 0$. $\forall n \in \mathbb{N}$ -re $0 < \frac{1}{\sqrt{n}} \iff 0 < 1$ (hiszen $\sqrt{n} > 0$), ami igaz, adja, hogy 0 alsó korlátja az $\left\{\frac{1}{\sqrt{n}}\right\}$ halmaznak. Ha $\varepsilon > 0$ alsó korlát lenne, úgy $\forall n$ -re $0 < \varepsilon < \frac{1}{\sqrt{n}}$ teljesülne, ami ekvivalens a $0 < \sqrt{n} < \frac{1}{\varepsilon}$ illetve az

 $n<\frac{1}{\varepsilon^2}$ egyenlőtlenséggel $\forall~n\in\mathbb{N}$ esetén, ellentmondásban azzal, hogy \mathbb{N} felülről nem korlátos.

3.6. feladat. Bizonyítsa be, hogy $\forall \ K \in \mathbb{N}$ rögzített számra $\lim_{n \to \infty} n^k = +\infty, \lim_{n \to \infty} -n^k = -\infty.$

 $Megold\acute{a}s$. Be kell látni, hogy $\forall \ K \in \mathbb{R}_+$ -ra $\exists \ n(K), \ \forall \ n \geq n(K)$ -ra $n^k > K$. Utóbbi egyenlőtlenség ekvivalens az $n > \sqrt[k]{K}$ egyenlőtlenséggel. \mathbb{N} felülről nem korlátos, így $\forall \ K \in \mathbb{R}_+$ -ra $\exists \ n(K) \in \mathbb{N}$, hogy $n(K) > \sqrt[k]{K}$, így $\forall \ n \geq n(K)$ -ra $n > \sqrt[k]{K}$, azaz $n^k > K$, s ezt kellett bizonyítani. A másik állítás teljesen hasonlóan bizonyítható.

3.7. feladat. Bizonyítsa be, hogy $\forall k \in \mathbb{N}$ rögzített számra $\lim_{n \to \infty} \sqrt[k]{n} = +\infty$.

Megoldás. Azt kell most belátni, hogy $\forall K \in \mathbb{R}_+$ -ra $\exists n(K)$, hogy $\forall n \geq n(K)$ -ra $\sqrt[k]{n} > K$.

Az utóbbi egyenlőtlenség ekvivalens az $n>K^k$ egyenlőtlenséggel. Az, hogy $\mathbb N$ felülről nem korlátos adja, hogy $\forall \ K\in \mathbb R_+$ -ra $\exists \ n(K)$, hogy $n(K)>K^k$, így $\forall \ n\geq n(K)$ -ra $n>K^k\iff \sqrt[k]{n}>K$, s ez adja az állítást.

Sorozatok és műveletek, illetve rendezés

3.8. feladat. Bizonyítsa be, hogy $\lim_{n\to\infty}\frac{3n+1}{-2n+3}=-\frac{3}{2}$.

Megoldás. A

$$\frac{3n+1}{-2n+3} = \frac{3+\frac{1}{n}}{-2+\frac{3}{n}}$$

egyenlőséget, azt, hogy $\lim_{n\to\infty}3=3$, $\lim_{n\to\infty}(-2)=-2$, $\lim_{n\to\infty}\frac1n=0$ és a műveleti tulajdonságokat felhasználva:

$$\lim_{n \to \infty} \frac{3n+1}{-2n+3} = \lim_{n \to \infty} \frac{3+\frac{1}{n}}{-2+\frac{3}{n}} = \frac{\lim_{n \to \infty} \left(3+\frac{1}{n}\right)}{\lim_{n \to \infty} \left(-2+\frac{3}{n}\right)} = \frac{3+0}{-2+0} = -\frac{3}{2}.$$

3.9. feladat. Bizonyítsa be, hogy $\lim_{n\to\infty} \frac{100n}{n^2+1} = 0$.

Megoldás. A

$$\frac{100n}{n^2 + 1} = \frac{\frac{100}{n}}{1 + \frac{1}{n^2}}$$

egyenlőséget, azt, hogy $\lim_{n\to\infty}\frac{1}{n}=0$, $\lim_{n\to\infty}1=1$ és a műveleti tulajdonságokat felhasználva:

$$\lim_{n \to \infty} \frac{100n}{n^2 + 1} = \lim_{n \to \infty} \frac{\frac{100}{n}}{1 + \frac{1}{n^2}} = \frac{\lim_{n \to \infty} \frac{100}{n}}{\lim_{n \to \infty} \left(1 + \frac{1}{n^2}\right)} = \frac{0}{1} = 0.$$

3.10. feladat. Számítsa ki az $\left\langle \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} \right\rangle$ sorozat határértékét.

Megoldás. Ismeretes, hogy $1 + 2 + \dots + n - 1 = \frac{(n-1)n}{2}$, így az

$$\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} = \frac{1+2+\dots+n-1}{n^2} = \frac{(n-1)n}{2n^2} = \frac{n-1}{2n} = \frac{1-\frac{1}{n}}{2n}$$

egyenlőségsor, az ismert határértékek és a műveleti tulajdonságok miatt:

$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n-1}{n^2} \right) = \lim_{n \to \infty} \frac{1 - \frac{1}{n}}{2} = \frac{1}{2} .$$

3.11. feladat. Számítsa ki az $\left\langle \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} \right\rangle$ sorozat határértékét.

Megoldás. Az

$$\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$$

egyenlőség miatt

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} =$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) = 1 - \frac{1}{n},$$

ami adja, hogy

$$\lim_{n\to\infty} \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} \right) = \lim_{n\to\infty} \left(1 - \frac{1}{n} \right) = 1.$$

3.12. feladat. Bizonyítsa be, hogy ha $k \in \mathbb{N}$ tetszőlegesen rögzített és $\exists \lim_{n \to \infty} a_{1n} = a_1, \dots, \lim_{n \to \infty} a_{kn} = a_k$, akkor $\exists \lim_{n \to \infty} (a_{1n} + \dots + a_{kn}) = a_1 + \dots + a_k, \lim_{n \to \infty} (a_{1n} \dots a_{kn}) = a_1 \dots a_k$.

Megoldás. A bizonyítást k-ra vonatkozó teljes indukcióval végezzük. Az összeadásra: k=2-re az állítás igaz (ahogy ezt az elméletben tanultuk). Tegyük fel, hogy k-1-re igaz, hogy

$$\lim_{n \to \infty} (a_{1n} + \dots + a_{(k-1)n}) = a_1 + \dots + a_k$$

akkor

$$\lim_{n \to \infty} (a_{1n} + \dots + a_{kn}) = \lim_{n \to \infty} [(a_{1n} + \dots + a_{(k-1)n}) + a_{kn}] =$$

$$= \lim_{n \to \infty} (a_{1n} + \dots + a_{(k-1)n}) + \lim_{n \to \infty} a_{kn} =$$

$$= (a_1 + \dots + a_{k-1}) + a_k = a_1 + \dots + a_k.$$

A szorzásra a bizonyítás hasonló.

3.13. feladat. Legyen $k \in \mathbb{N}$ rögzített, $\langle a_n \rangle$ olyan sorozat, hogy $a_n \to a$, akkor bizonyítsa be, hogy $a_n^k \to a^k$.

Ha $a_n \ge 0$ és $a_n \to a \ge 0$, akkor bizonyítsa be, hogy $\sqrt[k]{a_n} \to \sqrt[k]{a}$.

Ha $k \in \mathbb{Z}$ rögzített, $\langle a_n \rangle$ olyan sorozat, hogy $a_n > 0$ és $a_n \to a > 0$, akkor bizonyítsa be, hogy $a_n^k \to a^k$.

Ha $r \in \mathbb{Q}$ tetszőleges, $\langle a_n \rangle$ olyan sorozat, hogy $a_n > 0$ és $a_n \to a > 0$, akkor bizonyítsa be, hogy $a_n^r \to a^r$.

Megoldás.

– Ha $k \in \mathbb{N}$, úgy $a_n^k = a_n \cdots a_n$, így felhasználva, hogy $a_n \to a$ és a 3.12. feladatot $a_{1n} = \cdots = a_{kn} = a_n$ mellett kapjuk a feladat első állítását: $\lim_{n \to \infty} a_n^k = \lim_{n \to \infty} (a_n \cdots a_n) = a^k$.

– Ha $a_n \geq 0$ és $a_n \to 0$, akkor $\sqrt[k]{a_n} \to 0$. Ehhez megmutatjuk, hogy $\forall \varepsilon > 0 \exists n(\varepsilon), \ \forall n \geq n(\varepsilon)$ -ra $\left|\sqrt[k]{a_n} - 0\right| = \sqrt[k]{a_n} < \varepsilon$.

Ha $\varepsilon > 0$ adott, úgy $\sqrt[k]{a_n} < \varepsilon \iff a_n < \varepsilon^k$. $a_n \to 0$ miatt ε^k -hoz $\exists n(\varepsilon)$, hogy $\forall n \ge n(\varepsilon)$ -ra $a_n < \varepsilon^k \iff \sqrt[k]{a_n} < \varepsilon \iff \left|\sqrt[k]{a_n} - 0\right| < \varepsilon$, s ezt kellett bizonyítani.

Ha $a_n \geq 0$ és $a_n \to a > 0$, akkor $\sqrt[k]{a_n} \to \sqrt[k]{a}$. Hogy ez teljesüljön, azt kell megmutatni, hogy $\forall \ \varepsilon > 0 \ \exists \ n(\varepsilon), \ \forall \ n \geq n(\varepsilon)$ -ra $\left|\sqrt[k]{a_n} - \sqrt[k]{a}\right| < \varepsilon$. $a_n \to a > 0$ miatt $\varepsilon = \frac{a}{2} > 0$ -hoz $\exists \ n_1\left(\frac{a}{2}\right), \ \forall \ n \geq n_1\left(\frac{a}{2}\right)$ -ra $a_n > \frac{a}{2}$, így

$$\begin{aligned} \left| \sqrt[k]{a_n} - \sqrt[k]{a} \right| &= \\ &= \left| \frac{(\sqrt[k]{a_n} - \sqrt[k]{a})((\sqrt[k]{a_n})^{k-1} + (\sqrt[k]{a_n})^{k-2}\sqrt[k]{a} + \dots + (\sqrt[k]{a})^{k-1})}{(\sqrt[k]{a_n})^{k-1} + \dots + (\sqrt[k]{a})^{k-1}} \right| &= \\ &= \frac{|a_n - a|}{(\sqrt[k]{a_n})^{k-1} + (\sqrt[k]{a_n})^{k-2}\sqrt[k]{a} + \dots + (\sqrt[k]{a})^{k-1}} < \frac{|a_n - a|}{k(\sqrt[k]{\frac{a}{2}})^{k-1}} \end{aligned}$$

Ugyancsak $a_n \to a > 0$ miatt $\forall \varepsilon > 0$ -ra $\varepsilon(\sqrt[k]{\frac{a}{2}})^{k-1} > 0$ -hoz $\exists n_2(\varepsilon(\sqrt[k]{\frac{a}{2}})^{k-1})$, hogy $\forall n \ge n_2(\varepsilon(\sqrt[k]{\frac{a}{2}})^{k-1})$ -re $|a_n - a| < \varepsilon(\sqrt[k]{\frac{a}{2}})^{k-1}$. Ha $n(\varepsilon) \doteq \sup\{n_1, n_2\}$, akkor a két egyenlőtlenséget összevetve kapjuk, hogy $\forall n \ge n(\varepsilon)$ -ra $|\sqrt[k]{a_n} - \sqrt[k]{a}| < \varepsilon$, tehát $\sqrt[k]{a_n} \to \sqrt[k]{a}$.

- Ha $a_n > 0$, $a_n \to a > 0$ és $k \in \mathbb{Z}$, úgy $a_n^k \to a^k$. Ha $k \in \mathbb{N}$, úgy ez jön a feladat első részéből. Ha k = 0, akkor $a_n^0 = 1 \to 1 = a^0$ miatt igaz. Ha $k \in \mathbb{Z}$ és $-k \in \mathbb{N}$, akkor $a_n^k = \frac{1}{a_n^{-k}} \to \frac{1}{a^{-k}} = a^k$ adja az állítást.
- A negyedik rész feltételei miatt $\exists p \in \mathbb{Z}$ és $q \in \mathbb{N}$, hogy $r = \frac{p}{q}$, így $a_n^r = a_n^{\frac{p}{q}} = (\sqrt[q]{a_n})^p \to (\sqrt[q]{a})^p = a^{\frac{p}{q}} = a^r$ miatt igaz az állítás.

3.14. feladat. Bizonyítsa be, hogy
$$\lim_{n\to\infty} \left(2 + \frac{3}{n}\right)^{\frac{5}{2}} = 2^{\frac{5}{2}} = \sqrt{32} = 4\sqrt{2}$$
.

Megoldás. Az $a_n=2+\frac{3}{n}$ sorozatra $a_n>0$ és $a_n\to 2$ teljesül, így az előző feladat 4. állításában $r=\frac{5}{2}$ -et véve kapjuk az állítást.

3.15. feladat. Ha $\langle a_n \rangle$ és $\langle b_n \rangle$ olyan sorozatok, hogy $a_n \to +\infty$ (illetve $a_n \to -\infty$) és $b_n \to b$, akkor $a_n + b_n \to +\infty$ (illetve $-\infty$).

Megoldás.

– Az $a_n + b_n \to +\infty$ bizonyításához az kell belátnunk, hogy $\forall K \in \mathbb{R}$ -re $\exists n(K) \in \mathbb{N}$, hogy $\forall n \in \mathbb{N}, n \geq n(K)$ esetén $a_n + b_n > K$.

 $b_n \to b$ miatt $\langle b_n \rangle$ korlátos, így alulról is korlátos, ezért $\exists \ k \in \mathbb{R}$, hogy $b_n > k \ \forall \ n \in \mathbb{N}$.

 $\forall K \in \mathbb{R}$ -re K - k-hoz $-a_n \to +\infty$ miatt $-\exists n_1(K - k) \in \mathbb{N}$, hogy $\forall n \in \mathbb{N}, n \geq n_1(K - k)$ -ra $a_n > K - k$.

Ezeket felhasználva $\forall K \in \mathbb{R}$ -ra legyen $n(K) = n_1(K - k)$, úgy $\forall n \ge n(K)$ esetén $a_n + b_n > (K - k) + k = K$, amit bizonyítani kellett.

- A másik állítás hasonlóan bizonyítható.
- **3.16. feladat.** Ha $\langle a_n \rangle$ és $\langle b_n \rangle$ olyan sorozatok, hogy $a_n \to +\infty$ (illetve $a_n \to -\infty$) és $b_n \to +\infty$ (illetve $b_n \to -\infty$), akkor bizonyítsa be, hogy
 - a) $a_n + b_n \to +\infty$ (illetve $a_n + b_n \to -\infty$),
 - b) $a_n \cdot b_n \to +\infty$,
 - c) $c \cdot a_n \to +\infty$ (illetve $c \cdot a_n \to -\infty$), ha c > 0,
 - d) $c \cdot a_n \to -\infty$ (illetve $c \cdot a_n \to +\infty$), ha c < 0.

Megoldás.

a) Azt kell belátni, hogy $\forall K \in \mathbb{R}$ -hez $\exists n(K), \ \forall n \geq n(K)$ esetén $a_n + b_n > K$ (ill. $a_n + b_n < K$).

Adott $K \in \mathbb{R}$ esetén, a feltételek miatt

- $\exists n_1(K), \text{ hogy } \forall n \geq n_1(K)\text{-ra } a_n > \frac{K}{2} \text{ (ill. } a_n < \frac{K}{2}),$
- $\exists n_2(K)$, hogy $\forall n \geq n_2(K)$ -ra $b_n > \frac{K}{2}$ (ill. $b_n < \frac{K}{2}$), így ha $n(K) = \sup\{n_1, n_2\}$, akkor $\forall n \geq n(K)$ -ra $a_n + b_n > K$ (ill. $a_n + b_n < K$) teljesül, amit bizonyítani kellett.
- b) és c) és d) hasonlóan bizonyítható.
- 1. megjegyzés. A tétel a) és b) állítása többtagú (véges) összegre, illetve több (véges) tényezős szorzatra is igaz. Ez teljes indukcióval bizonyítható.
- **3.17. feladat.** Bizonvítsa be, hogy $n^2 + 5n + 1 \rightarrow +\infty$.

Megoldás. Egyszerűen bizonyítható, hogy $n^2 \to +\infty$ és $5n+1 \to +\infty$, így az előző példa adja feladatunk állítását.

- **3.18. feladat.** Legyenek $\langle a_n \rangle$, $\langle b_n \rangle$ adott sorozatok.
- a) Ha $\exists c \in \mathbb{R}_+$, hogy $b_n \geq c$ véges sok $n \in \mathbb{N}$ kivételével és $a_n \to +\infty$ (illetve $a_n \to -\infty$), akkor bizonyítsa be, hogy $a_n b_n \to +\infty$ (ill. $a_n b_n \to -\infty$).
- b) Ha $\exists c \in \mathbb{R}, c < 0$, hogy $b_n \leq c$ véges sok $n \in \mathbb{N}$ kivételével és $a_n \to +\infty$ (ill. $a_n \to -\infty$), akkor $a_n b_n \to -\infty$ (ill. $a_n b_n \to +\infty$).

Megoldás.

- a) Legyen $K \in \mathbb{R}$ adott és $a_n \to +\infty$. $a_n \to +\infty$ miatt $\exists n_1(\frac{K}{c})$, hogy $\forall n > n_1(\frac{K}{c})$ -re $a_n > \frac{K}{c}$, továbbá (a másik feltétel miatt) $\exists n_0 \in \mathbb{N}$, hogy $b_n \geq c \ \forall n \geq n_0$ esetén. Ezeket felhasználva, ha $n(K) = \sup\{n_1, n_0\}$, úgy $\forall n \in \mathbb{N}, n \geq n(K)$ -ra $a_n b_n > \frac{K}{c} b_n > K$, ami adja, hogy $a_n b_n \to +\infty$. Az állítás második része hasonlóan bizonyítható.
- b) Bizonyítása hasonló.

2. megjegyzés. A feladatból speciális esetként adódik a 3.15. feladat b), c) és d) állítása.

3.19. feladat. Bizonyítsa be, hogy
$$\lim_{n\to\infty} n^3 \left(2 + \sqrt{n} + \frac{5}{n}\right) = +\infty$$
, és $\lim_{n\to\infty} n^2 \left(\frac{1}{n^3} - \sqrt{n^3} - 2\right) = -\infty$.

 $Megold\acute{a}s$. Legyen $a_n=n$, úgy $n^3\to +\infty$ $(n^k\to +\infty$ miatt), ha $b_n=2+\sqrt{n}+\frac{5}{n}$, úgy egyszerűen belátható, hogy $b_n>2$, így az előző feladat miatt kapjuk az első állítást.

Ha $a_n=n^2\to +\infty$ és $b_n=\frac{1}{n^3}-\sqrt{n^3}-2\le -2$, úgy az előző feladat adja a másik állítást is.

3.20. feladat. Legyen $P, Q: \mathbb{R} \to \mathbb{R}$ olyan, hogy

$$P(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0,$$

$$Q(x) = b_l x^l + b_{l-1} x^{l-1} + \dots + b_0$$

(ahol $a_j,b_j\in\mathbb{R}$ és $a_kb_l\neq 0$), tehát P k-ad fokú, Q l-ed fokú polinom, továbbá $Q(n)\neq 0$ \forall $n\in\mathbb{N}$ -re.

Határozza meg az

$$\langle R_n \rangle = \left\langle \frac{P(n)}{Q(n)} \right\rangle = \left\langle \frac{a_k n^k + \dots + a_0}{b_l n^l + \dots + b_0} \right\rangle$$

sorozat határértékét.

 $Megoldás. \ \forall \ n \in \mathbb{N}$ -re

$$R_n = \frac{n^k (a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_0}{n^k})}{n^l (b_l + \frac{b_{l-1}}{n} + \dots + \frac{b_0}{n^l})} = n^{k-l} \frac{a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_0}{n^k}}{b_l + \frac{b_{l-1}}{n} + \dots + \frac{b_0}{n^l}}$$

Legyen

$$c_n = n^{k-l}, d_n = \frac{a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_0}{n^k}}{b_l + \frac{b_{l-1}}{n} + \dots + \frac{b_0}{n^l}} (n \in \mathbb{N}).$$

A határérték és a műveletek, illetve rendezés kapcsolatára vonatkozó tételek, a 3.6. és 3.12. feladatok felhasználásával kapjuk, hogy

$$\lim_{n \to \infty} d_n = \frac{a_k}{b_l} \quad \text{és} \quad \lim_{n \to \infty} c_n = \begin{cases} 1 &, & \text{ha } k = l, \\ 0 &, & \text{ha } k < l, \\ +\infty &, & \text{ha } k > l. \end{cases}$$

Így a korábbi feladatokat és elméleti tételeket felhasználva a következőket kapjuk:

$$-\exists \lim_{n\to\infty} R_n = \frac{a_k}{b_l}, \text{ ha } k=l$$

$$- \exists \lim_{n \to \infty} R_n = 0$$
, ha $k < l$

$$-\lim_{n\to\infty}^{n\to\infty} R_n = +\infty, \text{ ha } k>l \text{ és sign } a_k = \text{sign } b_k$$

$$-\lim_{n\to\infty} R_n = -\infty, \text{ ha } k>l \text{ és sign } a_k \neq \text{sign } b_k.$$

3.21. feladat. Számítsa ki a

$$\lim_{n \to \infty} \frac{5n^2 + 3n + 2}{-n^2 - n - 1} , \qquad \lim_{n \to \infty} \frac{3n^3 + 5n^2 + 3n}{7n^4 + 8} ,$$

$$\lim_{n \to \infty} \frac{2n^2 + 3n + 2}{-n - 1} , \qquad \lim_{n \to \infty} \frac{-5n^3 + 7n + 1}{-n^2 - n + 1} ,$$

$$\lim_{n \to \infty} \frac{-5n^2 + 3n + 1}{n + 1}$$

határértékeket.

$$\begin{split} & \textit{Megold\'{a}s.} \; \; \text{Az előz\'{o}} \; \; \text{t\'{e}telt alkalmazva} \\ & - \lim_{n \to \infty} \frac{5n^2 + 3n + 2}{-n^2 - n - 1} = -5, \; \text{hiszen} \; k = l = 2, \; \frac{a_k}{b_l} = \frac{5}{-1} = -5, \\ & - \lim_{n \to \infty} \frac{3n^3 + 5n^2 + 3n}{7n^4 + 8} = 0, \; \text{mert} \; k = 3 < l = 4, \\ & - \lim_{n \to \infty} \frac{2n^2 + 3n + 2}{-n - 1} = -\infty, \; \text{mert} \; k = 2 > l = 1, \; \text{sign} \; \; 2 \neq \text{sign} \; (-1), \\ & - \lim_{n \to \infty} \frac{-5n^3 + 7n + 1}{-n^2 - n + 1} = +\infty, \; \text{mert} \; k = 3 > l = 2, \; \text{sign} \; (-5) = \text{sign} \; (-1), \end{split}$$

$$-\lim_{n\to\infty} \frac{-5n^2 + 3n + 1}{n+1} = -\infty, \text{ mert } k = 2 > l = 1, \text{ sign } (-5) \neq \text{sign } 1.$$

3.22. feladat. Bizonyítsa be, hogy $\lim_{n\to\infty} \frac{3}{n+\sqrt{n}} = 0$.

 $\begin{array}{lll} \textit{Megold\'{a}s.} & \lim_{n \to \infty} n = +\infty, & \lim_{n \to \infty} \sqrt{n} = +\infty \text{ miatt } \lim_{n \to \infty} (n + \sqrt{n}) = +\infty, \\ \text{s akkor az ismert t\'{e}telek miatt } \lim_{n \to \infty} \frac{1}{n + \sqrt{n}} = 0, \text{ ill. } \lim_{n \to \infty} \frac{3}{n + \sqrt{n}} = 0 \\ \text{k\"{o}vetkezik.} \end{array}$

3.23. feladat. Bizonyítsa be, hogy $\lim_{n\to\infty}\frac{1}{\frac{1}{n}+\frac{1}{\sqrt{n}}}=+\infty$.

 $Megold\acute{a}s.$ $\lim_{n\to\infty}\frac{1}{n}=0,$ $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0,$ így $\lim_{n\to\infty}\left(\frac{1}{n}+\frac{1}{\sqrt{n}}\right)=0,$ s ez az elméletben tanult tétel alapján adja, hogy

$$\lim_{n \to \infty} \frac{1}{\frac{1}{n} + \frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \left| \frac{1}{\frac{1}{n} + \frac{1}{\sqrt{n}}} \right| = +\infty.$$

3.24. feladat. Bizonyítsa be, hogy $\lim_{n\to\infty}\frac{n+10}{2n^2+n+3}=0.$

1. megoldás. A feladat szerint $k=1,\ l=2,$ így a 3.20. feladat miatt az állítás igaz.

2. megoldás. Egyszerűen belátható, az egyenlőtlenségek ismert tulajdonságait felhasználva, hogy $n \ge 10$ esetén igaz a következő egyenlőtlenségsor:

$$0 < \frac{n+10}{2n^2+n+3} < \frac{n+10}{2n^2} < \frac{2n}{2n^2} = \frac{1}{n},$$

azaz $n \ge 10$ esetén $0 < \frac{n+10}{2n^2+n+3} < \frac{1}{n}$, így az $\langle a_n \rangle = \langle 0 \rangle$, $\langle b_n \rangle = \left\langle \frac{1}{n} \right\rangle$

és $\langle c_n \rangle = \left\langle \frac{n+10}{2n^2+n+3} \right\rangle$ sorozatok teljesítik a rendőr-tétel feltételeit, tehát

$$a_n < c_n < b_n \quad (n \ge 10), \qquad a_n \to 0, \qquad b_n \to 0,$$

ami adja a feladat állítását.

3.25. feladat. Bizonyítsa be, hogy $\lim_{n\to\infty}\frac{3}{2n+\sqrt{n}}=0.$

$$\begin{array}{ll} \text{1. megold\'{a}s. } \lim_{n \to \infty} 2n = +\infty, \ \lim_{n \to \infty} \sqrt{n} = +\infty, \text{ fgy } \lim_{n \to \infty} (2n + \sqrt{n}) = +\infty \implies \\ \frac{1}{2n + \sqrt{n}} \to 0 \implies \frac{3}{2n + \sqrt{n}} \to 0. \end{array}$$

2. megoldás. Egyszerűen belátható, hogy

$$\frac{1}{n} \le \frac{3}{2n + \sqrt{n}} \le \frac{1}{\sqrt{n}} \qquad \forall \ n \in \mathbb{N} \ ,$$

s ez $\frac{1}{n} \to 0$, $\frac{1}{\sqrt{n}} \to 0$ miatt adja, hogy az $\left\langle \frac{1}{n} \right\rangle$, $\left\langle \frac{1}{\sqrt{n}} \right\rangle$, $\left\langle \frac{3}{2n + \sqrt{n}} \right\rangle$ sorozatok teljesítik a rendőr-tétel feltételeit, s ebből következik a feladat állítása.

Részsorozatok, Cauchy-sorozatok

3.26. feladat. Vizsgálja az

$$\left\langle \frac{1}{n+3} \right\rangle, \quad \left\langle \frac{1}{n!} \right\rangle, \quad \left\langle \frac{1}{n^2+1} \right\rangle, \quad \left\langle \frac{1}{\sqrt{n+2}} \right\rangle, \quad \left\langle \frac{1}{\sqrt{n^2+3}} \right\rangle$$

sorozatok konvergenciáját.

 $Megold\acute{a}s$. Az $\left\langle \frac{1}{n+3} \right\rangle$, $\left\langle \frac{1}{n!} \right\rangle$, $\left\langle \frac{1}{n^2+1} \right\rangle$ sorozatok az $\langle a_n \rangle = \left\langle \frac{1}{n} \right\rangle$ konvergens sorozat részsorozatai, és pedig:

$$\left\langle \frac{1}{n+3} \right\rangle = \left\langle a_{n+3} \right\rangle, \qquad \left\langle \frac{1}{n!} \right\rangle = \left\langle a_{n!} \right\rangle, \qquad \left\langle \frac{1}{n^2+1} \right\rangle = \left\langle a_{n^2+1} \right\rangle$$

(A $\varphi(n)=n+3,\ \varphi(n)=n!,\ \varphi(n)=n^2+1\ (n\in\mathbb{N})$ függvények szigorúan monoton növekedőek és $\varphi\colon\mathbb{N}\to\mathbb{N}$.).

Az első három sorozat tehát konvergens és határértékük 0, hiszen $\frac{1}{n} \to 0$.

Az
$$\left\langle \frac{1}{\sqrt{n+2}} \right\rangle$$
 és $\left\langle \frac{1}{\sqrt{n^2+3}} \right\rangle$ sorozatok az $\langle a_n \rangle = \left\langle \frac{1}{\sqrt{n}} \right\rangle$ konvergens sorozat részsorozatai (most $\varphi \colon \mathbb{N} \to \mathbb{N}$ a $\varphi(n) = n+2$, illetve $\varphi(n) = n^2 + 3$ szerint definiált szigorúan monoton növekedő függvény): $\left\langle \frac{1}{\sqrt{n+2}} \right\rangle = \langle a_{n+2} \rangle$, $\left\langle \frac{1}{\sqrt{n^2+3}} \right\rangle = \langle a_{n^2+3} \rangle$, ezért konvergensek. Továbbá $\frac{1}{\sqrt{n}} \to 0$ miatt a határértékük 0 .

3.27. feladat. Vizsgálja meg, hogy konvergens-e az

$$\langle a_n \rangle = \left\langle 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right\rangle$$

sorozat.

Megoldás. A Cauchy-féle konvergencia kritérium segítségével bizonyítunk. Egy $\langle a_n \rangle$ sorozat Cauchy-tulajdonságú, ha: $\forall \ \varepsilon > 0$ -hoz $\exists \ n(\varepsilon) \in \mathbb{N}$,

 $\forall n, m \geq n(\varepsilon) \ (n, m \in \mathbb{N}) \text{ esetén } |a_n - a_m| < \varepsilon.$

Egy sorozat pedig \iff konvergens, ha Cauchy-tulajdonságú.

Belátjuk, hogy sorozatunk nem Cauchy-tulajdonságú.

Legven m = 2n, akkor

$$|a_n - a_m| = \left| \frac{1}{n+1} + \dots + \frac{1}{2n} \right| =$$

$$= \frac{1}{n+1} + \dots + \frac{1}{2n} > \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2},$$

így $\exists \ \varepsilon = \frac{1}{2}$, hogy $\forall \ n(\varepsilon)$ -ra $\exists \ n \text{ és } m = 2n, \text{ hogy } |a_n - a_{2n}| > \frac{1}{2}$, azaz sorozatunk nem Cauchy-sorozat. S ez adja (a kritérium miatt), hogy nem konvergens.

3.28. feladat. Cauchy-sorozat-e az
$$\langle a_n \rangle = \left\langle \frac{3n}{n^2+1} \right\rangle$$
 sorozat?

Megoldás. A korábbiak szerint (lásd például 3.20. feladat) kapjuk, hogy a $\left\langle \frac{3n}{n^2+1} \right\rangle$ sorozat konvergens (határértéke 0), így a Cauchy-féle konvergencia kritérium szerint Cauchy-sorozat.

3.29. feladat. Bizonyítsa be, hogy ha $\langle a_n \rangle$ olyan sorozat, hogy $a_n \to +\infty$ (illetve $a_n \to -\infty$), akkor $\forall \langle b_n \rangle$ részsorozatára $b_n \to +\infty$ (illetve $b_n \to -\infty$) teljesül.

 $Megold\acute{a}s$. Ha $\langle b_n \rangle = \langle a_{\varphi(n)} \rangle$, $\varphi \colon \mathbb{N} \to \mathbb{N}$ szigorúan monoton növekedő, akkor $\varphi(n) \geq n \ (n \in \mathbb{N})$.

Ha $a_n \to +\infty$, akkor $\forall K \in \mathbb{R}$ -hez $\exists n(K) \in \mathbb{N}$, hogy $\forall n \in \mathbb{N}$, $n \geq n(K)$ -ra $a_n > K$, ami $\varphi(n) \geq n$ $(n \in \mathbb{N})$ miatt adja, hogy $n \geq n(K)$ esetén $\varphi(n) \geq n(K)$ miatt $b_n = a_{\varphi(n)} > K$ teljesül, s ez definíció szerint azt jelenti, hogy $b_n \to +\infty$.

A tétel másik állítása hasonlóan bizonyítható.

3.30. feladat. Vizsgálja az $\langle (n+2)^5 \rangle$, $\langle -(n^2+n+3)^{10} \rangle$, $\langle \sqrt{n+1} \rangle$ és $\langle \sqrt{n^2+1} \rangle$ sorozatok konvergenciáját.

Megoldás.

- Az első két sorozat az $\langle n^5 \rangle$, illetve a $\langle -n^{10} \rangle$ sorozatok részsorozata $(\varphi(n) = n+2)$, illetve $\varphi(n) = n^2 + n + 3$ $(n \in \mathbb{N})$, $\varphi \colon \mathbb{N} \to \mathbb{N}$ szigorúan monoton növekvő), továbbá ismeretes, hogy $n^5 \to +\infty$, illetve $-n^{10} \to -\infty$, így az előző feladat miatt $(n+2)^5 \to +\infty$, $-(n^2+n+3)^{10} \to -\infty$.
- A másik két sorozat a $\langle \sqrt{n} \rangle$ sorozat részsorozata $(\varphi(n) = n + 1$, illetve $\varphi(n) = n^2 + 1 \ (n \in \mathbb{N}), \ \varphi \colon \mathbb{N} \to \mathbb{N}$ szigorúan monoton növekvő), továbbá $\sqrt{n} \to +\infty$, így hasonlóan mint előbb kapjuk, hogy $\sqrt{n+1} \to +\infty$, $\sqrt{n^2+1} \to +\infty$.
- **3.31. feladat.** Vizsgálja a $\langle \sqrt{n+1} \sqrt{n} \rangle$ sorozat határértékét.

 $\mathit{Megold\'{a}s}. \ \lim_{n \to \infty} \sqrt{n} = +\infty$ és $\lim_{n \to \infty} \sqrt{n+1} = +\infty,$ továbbá

$$\sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

és $\lim_{n\to\infty}(\sqrt{n+1}+\sqrt{n})=+\infty$ miatt (felhasználva az ismert tételt) kapjuk, hogy sorozatunk konvergens és $\sqrt{n+1}-\sqrt{n}\to 0$.

Nevezetes sorozatok

- **3.32. feladat.** Legyen $a \in \mathbb{R}$, $\langle a_n \rangle = \langle a^n \rangle$. Bizonyítsa be, hogy
 - 1) |a| < 1 esetén $a^n \to 0$;
 - 2) |a| > 1 esetén $\langle a^n \rangle$ divergens, a > 1-re $a^n \to +\infty$;
 - 3) a=1 esetén $a^n \to 1$, a=-1 esetén $\langle a^n \rangle$ divergens.

Megoldás.

- 3) Nyilvánvaló.
- 2) Ha a > 1, akkor a Cauchy-egyenlőtlenség miatt $\forall n \in \mathbb{N}$ -re

$$\sqrt[n]{(a-1)n \cdot 1 \cdot 1 \cdot \dots \cdot 1} \le \frac{(a-1)n + n - 1}{n} = \frac{na-1}{n} < a,$$

így $(a-1)n < a^n$. Ebből jön, hogy \forall M-re, ha $n \ge n(M) > \frac{M}{a-1} \implies a^n > (a-1)n > M$, azaz $a^n \to +\infty$.

Ha a < -1, akkor az $\langle a^n \rangle$ sorozat $\langle a^{2n} \rangle$ és $\langle a^{2n+1} \rangle$ részsorozatai két különböző értékhez tartanak, így $\langle a^n \rangle$ nem konvergens.

1) Ha
$$|a| < 1 \implies \frac{1}{|a|} > 1 \implies$$

$$\left| \left(\frac{1}{a} \right)^n \right| = \left(\frac{1}{|a|} \right)^n \to +\infty \implies a^n = \frac{1}{\left(\frac{1}{a} \right)^n} \to 0$$

3.33. feladat. Legyen $a \in \mathbb{R}_+$, akkor bizonyítsuk be, hogy $\sqrt[n]{a} \to 1$.

Megoldás. A Cauchy-egyenlőtlenség miatt, ha $a \ge 1$,

$$1 \le \sqrt[n]{a} = \sqrt[n]{a \cdot 1 \cdot \dots \cdot 1} \le \frac{a+n-1}{n} = 1 + \frac{a-1}{n}$$

ami $1 + \frac{a-1}{n} \to 1$ és a rendőr-tétel miatt adja, hogy $\sqrt[n]{a} \to 1$.

Ha
$$0 < a < 1$$
, akkor $\frac{1}{a} > 1$ és így $\frac{1}{\sqrt[n]{a}} = \sqrt[n]{\frac{1}{a}} \to 1$ adja, hogy $\sqrt[n]{a} \to 1$.

3.34. feladat. Bizonyítsa be, hogy $\sqrt[n]{n} \to 1$.

Megoldás.

$$1 \le \sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdot \dots \cdot 1} \le \frac{2\sqrt{n} + n - 2}{n} = 1 - \frac{2}{n} + \frac{2}{\sqrt{n}}$$

ami $1 - \frac{2}{n} + \frac{2}{\sqrt{n}} \to 1$ és a rendőr-tétel miatt adja, hogy $\sqrt[n]{n} \to 1$.

3.35. feladat. Ha $a \in \mathbb{R}, \ a > 1$, akkor bizonyítsa be, hogy $a_n = \frac{a^n}{n!} \to 0$.

Megoldás. Ha $n \ge a^2$, akkor

$$0 < a_{2n} = \frac{a^{2n}}{(2n)!} = \frac{(a^2)^n}{2n \cdot (2n-1) \cdot \dots \cdot (n+1) \cdot n!} = \frac{a^2}{2n} \cdot \frac{a^2}{2n-1} \cdot \dots \cdot \frac{a^2}{n+1} \cdot \frac{1}{n!} < \frac{1}{n!} < \frac{1}{n}$$

és a rendőr-tétel adja, hogy $a_{2n} \to 0$.

Másrészt

$$0 < a_{2n+1} = \frac{a}{2n+1} \frac{a^{2n}}{2n!} = \frac{a}{2n+1} a_{2n}$$

és a rendőr-tétel miatt $a_{2n+1} \to 0$ is igaz, így $a_n = \frac{a^n}{n!} \to 0$ teljesül.

3.36. feladat. Bizonyítsa be, hogy $\sqrt[n]{n!} \to +\infty$.

Megoldás.

 $-\sqrt[n]{n!}$ monoton növekvő, mert

$$\sqrt[n]{n!} < \sqrt[n+1]{(n+1)!} \iff n! < \left(\frac{(n+1)!}{n!}\right)^n = (n+1)^n,$$

ami igaz.

- $\sqrt[n]{n!} \text{ felülről nem korlátos, mert ha létezne } K ∈ \mathbb{R}, \text{ hogy } \sqrt[n]{n!} < K$ (∀ n ∈ N) \iff n! < Kⁿ (∀ n ∈ N) \iff 1 < $\frac{K^n}{n!}$ ami ellentmond annak, hogy $\frac{K^n}{n!} \to 0$.
- $\sqrt[n]{n!}$ monoton növekedése, és hogy felülről nem korlátos adja, hogy $\sqrt[n]{n!}$ → +∞, mert \forall M \exists n(M) ∈ \mathbb{N} , hogy \forall $n \ge n(M)$ -re $\sqrt[n]{n!} \ge \sqrt[n(M)]! > M$.
- **3.37. feladat.** Ha $a \in \mathbb{R}, \ a > 1$, akkor bizonyítsa be, hogy $\frac{n^k}{a^n} \to 0 \ \forall \ k \in \mathbb{N}$ rögzített számra.

 $Megold\acute{a}s$. A 3.32. feladat 2. részében beláttuk, hogy $\forall a > 1$ -re $a^n > n(a-1)$ igaz $\forall n \in \mathbb{N}$ -re, így – mivel a > 1-re ${}^{k+1}\sqrt{a} > 1$ is teljesül –, az is igaz, hogy ${}^{(k+1)}\sqrt{a})^n > n \left({}^{k+1}\sqrt{a} - 1 \right)$, ami ekvivalens az

$$(0 <) \frac{n^k}{a^n} < \frac{n}{\left(\frac{k+\sqrt[4]{a}-1}{a^n}\right)^{k+1}}$$

egyenlőtlenséggel, így a rendőr-tétel miatt jön az állítás.

3.38. feladat. Bizonyítsa be, hogy az $\left\langle \left(1+\frac{1}{n}\right)^n\right\rangle$ sorozat konvergens. (Határértékét e-vel jelöljük.)

Megoldás.

- Az
$$\langle a_n \rangle \doteq \left\langle \left(1 + \frac{1}{n}\right)^n \right\rangle$$
 és $\langle b_n \rangle \doteq \left\langle \left(1 + \frac{1}{n}\right)^{n+1} \right\rangle$ sorozatokra $a_n < b_n \ (n \in \mathbb{N})$ teljesül, mert $1 < \left(1 + \frac{1}{n}\right)$ és $\left(1 + \frac{1}{n}\right)^n > 0$ adja, hogy

$$\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n}\right)^n \cdot \left(1+\frac{1}{n}\right) = \left(1+\frac{1}{n}\right)^{n+1} \quad (\forall \ n \in \mathbb{N})$$

 $-\langle a_n \rangle$ monoton növekvő, mert a Cauchy-egyenlőtlenség miatt

$$\sqrt[n+1]{1 \cdot \left(1 + \frac{1}{n}\right)^n} < \frac{1 + n\left(1 + \frac{1}{n}\right)}{n+1} = 1 + \frac{1}{n+1} \quad (\forall \ n \in \mathbb{N}) ,$$

ami ekvivalens az

$$\left(1 + \frac{1}{n}\right)^n < \left(1 + \frac{1}{n+1}\right)^{n+1} \quad (\forall \ n \in \mathbb{N})$$

egyenlőtlenséggel, ami adja, hogy $a_n < a_{n+1} \ (\forall \ n \in \mathbb{N}).$

 $-\langle b_n \rangle$ monoton csökkenő, mert

$$\sqrt[n+2]{1 \cdot \left(\frac{n}{n+1}\right)^{n+1}} < \frac{1 + (n+1)\left(\frac{n}{n+1}\right)}{n+2} = \frac{n+1}{n+2} \quad (\forall \ n \in \mathbb{N}) ,$$

ami ekvivalens az

$$\left(\frac{n}{n+1}\right)^{n+1} < \left(\frac{n+1}{n+2}\right)^{n+2} \iff \left(\frac{n+1}{n}\right)^{n+1} > \left(\frac{n+2}{n+1}\right)^{n+2} \iff b_n = \left(1 + \frac{1}{n}\right)^{n+1} > \left(1 + \frac{1}{n+1}\right)^{n+2} = b_{n+1}.$$

– Így $a_n < b_1 = 4 \ (\forall \ n \in \mathbb{N})$, azaz $\langle a_n \rangle$ monoton növekvő és felülről korlátos, így konvergens.

3.39. feladat. Legyen $\langle a_n \rangle$ olyan sorozat, hogy $a_n \geq 0$ $(n \in \mathbb{N})$ és $\exists \lim_{n \to \infty} a_n = a > 0$. Bizonyítsa be, hogy $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$.

Megoldás.

– Ha $a_n \to a>1$, akkor $\exists n_0$, hogy $a_n \ge 1$, ha $n \ge n_0$. Ekkor nyilván $1 \le \sqrt[n]{a_n} \ (n \ge n_0)$ és a Cauchy-egyenlőtlenség miatt

$$1 \le \sqrt[n]{a_n} = \sqrt[n]{a_n \cdot 1 \cdot \dots \cdot 1} \le \frac{a_n + n - 1}{n} = 1 + \frac{a_n - 1}{n} \quad (n \ge n_0)$$

következik, melyből $\lim_{n\to\infty}1=1,\ \lim_{n\to\infty}\left(1+\frac{a_n-1}{n}\right)=1$ és a rendőr-tétel miatt kapjuk a feladat állítását, ebben az esetben.

– Ha $a_n \to a < 1$, akkor $\exists n_0$, hogy $a_n \le 1$, ha $n \ge n_0$, azaz $\frac{1}{a_n} \ge 1$ $(n \ge n_0)$ teljesül, ami adja, hogy $\frac{1}{a_n} \to \frac{1}{a} > 1$, s ebből a feladat bizonyításának

első része miatt következik, hogy
$$\frac{1}{\sqrt[n]{a_n}} = \sqrt[n]{\frac{1}{a_n}} \to \sqrt[n]{\frac{1}{a}} = \frac{1}{\sqrt[n]{a}}$$
. Ezután $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\frac{1}{a_n}}} = \frac{1}{\frac{1}{a}} = a$ ebben az esetben is.

- Ha $a_n \to 1$, akkor a következők lehetnek

 - $\diamond a_n \geq 1$ végtelen sok n-re és $a_n < 1$ végtelen sok n-re, ekkor az előbbiek miatt – a két diszjunkt részsorozat határértéke $\sqrt[n]{a}$, de akkor $\lim_{n \to \infty} \sqrt[n]{a_n} = 1 \text{ most is következik.}$
- **3.40. feladat.** Bizonyítsa be, hogy $\sqrt[n]{2 + \frac{3}{n^2}} \to 1$.

$$Megoldás.$$
 $a_n=2+\frac{3}{n^2}>0$ és $a_n\to 2$, így az előző feladat miatt $\sqrt[n]{a_n}=\sqrt[n]{2+\frac{3}{n^2}}\to 1$, amit bizonyítani kellett.

3.41. feladat. Legyen $\langle p_n \rangle$ olyan sorozat, hogy $p_n \to +\infty$ és $\langle q_n \rangle$ olyan sorozat, hogy $q_n \to -\infty$. Bizonyítsa be, hogy

$$\lim_{n\to\infty} \left(1+\frac{1}{p_n}\right)^{p_n} = \lim_{n\to\infty} \left(1+\frac{1}{q_n}\right)^{q_n} = e \ .$$

Megoldás.

- Ha $\langle p_n \rangle = \langle n \rangle$, úgy ezt a 3.38. feladat adja.
- Legyen $\langle n_k \rangle$ az $\langle n \rangle$ egy részsorozata, hogy $n_k \to +\infty$, akkor $\left\langle \left(1 + \frac{1}{n_k}\right)^{n_k} \right\rangle$ az $\left\langle \left(1+\frac{1}{n}\right)^n\right\rangle$ sorozat egy részsorozata, így $\left(1+\frac{1}{n_k}\right)^{n_k}\to e$.
- Ha $\langle p_k \rangle$ olyan sorozat, hogy $p_k > 1$ és $p_k \to +\infty$, akkor \exists a természetes számoknak egy $\langle n_k \rangle$ részsorozata, hogy $n_k \to +\infty$ és $n_k \le p_k < n_k + 1$ (hiszen $\forall x > 1$ valós számra $\exists n \in \mathbb{N}$, hogy $n \leq x < n+1$).

Ugyanakkor az egyenlőtlenségek ismert tulajdonságai miatt

$$n_k \le p_k < n_k + 1 \iff \frac{1}{n_k + 1} < \frac{1}{p_k} \le \frac{1}{n_k} \iff$$

$$\iff 1 + \frac{1}{n_k + 1} < 1 + \frac{1}{p_k} \le 1 + \frac{1}{n_k} \iff$$

$$\iff \left(1 + \frac{1}{n_k + 1}\right)^{n_k} < \left(1 + \frac{1}{p_k}\right)^{p_k} \le \left(1 + \frac{1}{n_k}\right)^{n_k + 1} \iff$$

$$\iff \left(1 + \frac{1}{n_k + 1}\right)^{n_k + 1} \cdot \left(1 + \frac{1}{n_k + 1}\right)^{-1} < \left(1 + \frac{1}{p_k}\right)^{p_k} <$$

$$< \left(1 + \frac{1}{n_k}\right)^{n_k} \cdot \left(1 + \frac{1}{n_k}\right).$$

Az utóbbi egyenlőtlenségsor, $\left(1+\frac{1}{n_k}\right)^{n_k} \to e$, $\left(1+\frac{1}{n_k+1}\right)^{n_k+1} \to e$, $1+\frac{1}{n_k}\to 1, 1+\frac{1}{n_k+1}\to 1$ és a rendőr-tétel adja az állítás első részét. (A $p_k>1$ feltétel csak technikai jellegű, mert $p_k\to +\infty$ adja, hogy $\exists n_0$, hogy $n\geq n_0$ -ra $p_k>1$.)

– Ha $\langle q_k \rangle$ olyan sorozat, hogy $q_k < -1$ (azaz $-q_k > 1$) és $q_k \to -\infty$, akkor $q_n = -|q_n|$ ($|q_n| > 1$ és $|q_n| \to +\infty$) és így

$$\left(1 + \frac{1}{q_n}\right)^{q_n} = \left(1 - \frac{1}{|q_n|}\right)^{-|q_n|} =
= \left(1 + \frac{1}{|q_n| - 1}\right)^{|q_n| - 1} \left(1 + \frac{1}{|q_n| - 1}\right) \to e,$$

tehát a feladat másik állítása is igaz.

3.42. feladat. Vizsgálja az

$$\left\langle \left(1 + \frac{2}{n}\right)^n \right\rangle, \quad \left\langle \left(1 + \frac{1}{2n}\right)^n \right\rangle, \quad \left\langle \left(1 - \frac{1}{2n}\right)^n \right\rangle,$$

$$\left\langle \left(1 + \frac{1}{n}\right)^{n^2} \right\rangle, \quad \left\langle \left(\frac{2n+3}{2n+5}\right)^{n+1} \right\rangle$$

sorozatok konvergenciáját.

Megoldás

- Az
$$\left(1+\frac{2}{n}\right)^n = \left(1+\frac{1}{\frac{n}{2}}\right)^{\frac{n}{2}} \left(1+\frac{1}{\frac{n}{2}}\right)^{\frac{n}{2}}$$
 egyenlőség és az előző feladat
$$p_n = \frac{n}{2} \to +\infty \text{ mellett adja, hogy } \left(1+\frac{1}{2n}\right)^n \to e^2.$$

Ennek egy másik bizonyítása: az

$$\left(1+\frac{2}{n}\right)^n = \left(\frac{n+2}{n}\right)^n = \left(\frac{n+2}{n+1} \cdot \frac{n+1}{n}\right)^n =$$

$$= \left(1+\frac{1}{n+1}\right)^n \left(1+\frac{1}{n}\right)^n =$$

$$= \left(1+\frac{1}{n+1}\right)^{n+1} \left(1+\frac{1}{n}\right)^{-1} \cdot \left(1+\frac{1}{n}\right)^n$$

egyenlőség, s az a tény, hogy

$$\left(1+\frac{1}{n}\right)^n \to e, \qquad \left(1+\frac{1}{n+1}\right)^{n+1} \to e, \qquad \left(1+\frac{1}{n}\right)^{-1} \to 1$$

adja, hogy a sorozat konvergens és határértéke e^2 .

– Az
$$\left(1+\frac{1}{2n}\right)^n = \sqrt{\left(1+\frac{1}{2n}\right)^{2n}}$$
 egyenlőség és hogy $\left(1+\frac{1}{2n}\right)^{2n} \to e$, a 3.13. feladat felhasználásával adja, hogy

$$\lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^n = \lim_{n\to\infty} \sqrt{\left(1+\frac{1}{2n}\right)^{2n}} = \sqrt{\lim_{n\to\infty} \left(1+\frac{1}{2n}\right)^{2n}} = \sqrt{e} \ .$$

- Az

$$\left(1 - \frac{1}{2n}\right)^n = \left(\frac{2n-1}{2n}\right)^n = \frac{1}{\left(\frac{2n}{2n-1}\right)^n} = \frac{1}{\left(1 + \frac{1}{2n-1}\right)^n} = \frac{1}{\sqrt{\left(1 + \frac{1}{2n-1}\right)^{2n}}} = \frac{1}{\sqrt{\left(1 + \frac{1}{2n-1}\right)^{2n-1}\left(1 + \frac{1}{2n-1}\right)}}$$

egyenlőség, s az, hogy
$$\left(1+\frac{1}{2n-1}\right)^{2n-1}\cdot\left(1+\frac{1}{2n-1}\right)\to e$$
 adja, hogy
$$\lim_{n\to\infty}\left(1-\frac{1}{2n}\right)^n=\frac{1}{\sqrt{e}}.$$

– A Bernoulli-egyenlőtlenség miatt
$$\left(1+\frac{1}{n}\right)^{n^2} \geq 1+n^2\frac{1}{n}=1+n$$
, másrészt $n+1\to +\infty$, így egyszerűen kapjuk, hogy $\left(1+\frac{1}{n}\right)^{n^2}\to +\infty$.

- Az
$$\left(1 + \frac{1}{n^2}\right)^n = \left(\left(1 + \frac{1}{n^2}\right)^{n^2}\right)^{\frac{1}{n}} = \sqrt[n]{\left(1 + \frac{1}{n^2}\right)^{n^2}}$$
 egyenlőség, hogy
$$a_n = \left(1 + \frac{1}{n^2}\right)^{n^2} \to e \text{ és } \sqrt[n]{a_n} \to 1 \text{ adja, hogy } \left(1 + \frac{1}{n^2}\right)^n \to 1.$$

$$\left(\frac{2n+3}{2n+5}\right)^{n+1} = \frac{1}{\left(\frac{2n+5}{2n+3}\right)^{n+1}} = \frac{1}{\left(1+\frac{2}{2n+3}\right)^{n+1}} = \frac{1}{\left(1+\frac{1}{n+\frac{3}{2}}\right)^{n+1}} = \frac{1}{\left(1+\frac{1}{n+\frac{3}}\right)^{n+1}} = \frac{1}{\left(1+\frac{1}{n+\frac{3}}\right)^{n+1}} = \frac{1}{\left(1+\frac{1}{n+\frac$$

egyenlőség, hogy
$$\left(1+\frac{1}{n+\frac{3}{2}}\right)^{n+\frac{3}{2}} \to e$$
 és $\left(1+\frac{1}{n+\frac{3}{2}}\right)^{-\frac{1}{2}} \to 1$ adja, hogy $\lim_{n\to\infty} \left(\frac{2n+3}{2n+5}\right)^{n+1} \to \frac{1}{e}$.

Gyakorló feladatok

- 1. Vizsgálja a $\langle (-1)^n \cdot n \rangle$, $\left\langle \frac{2n+1}{2n+3} \right\rangle$, $\left\langle (-1)^n \cdot 0, 999^n \right\rangle$ sorozatok monotonitását, korlátosságát, konvergenciáját.
- 2. Bizonyítsa be, hogy ha $a_n \to +\infty$, akkor $\langle a_n \rangle$ alulról korlátos, de felülről nem; illetve ha $b_n \to -\infty$, akkor $\langle b_n \rangle$ felülről korlátos, de alulról nem.
- 3. Bizonyítsa be, hogy ha $a_n \to +\infty$ és $\exists n_0 \in \mathbb{N}$, hogy $\forall n \in \mathbb{N}, n \geq n_0$ -ra $b_n \geq a_n$, akkor $b_n \to +\infty$; illetve hogy ha $c_n \to -\infty$ és $\exists n_0, \forall n \geq n_0$ -ra $d_n \leq c_n$, akkor $d_n \to -\infty$.

- 4. Vizsgálja meg, hogy az $\left\langle 1 + \frac{1}{2^2} + \ldots + \frac{1}{n^2} \right\rangle$, $\left\langle (-1)^n + \frac{1}{n} \right\rangle$ sorozatok Cauchy-szorzatok-e.
- 5. Határozza meg az alábbi sorozatok határértékét:

$$\left\langle \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)} \right\rangle, \quad \left\langle \frac{n+2003}{n^2} \right\rangle,$$

$$\left\langle \left(1 + \frac{2}{n}\right)^{10} \right\rangle, \quad \left\langle \frac{2n^2 + 3n + 2}{5n^2 + 2n + 1} \right\rangle, \quad \left\langle \frac{-2n^2 + 5n + 1}{3n^3 + n^2 + 4n + 4} \right\rangle,$$

$$\left\langle \frac{-6n^4 + 3n^2 + 1}{4n^2 + n + 1} \right\rangle, \quad \left\langle \frac{n^2 + 1}{2n + 1} - \frac{3n^2 + 1}{6n + 1} \right\rangle, \quad \left\langle \frac{1 + 2 + \dots + n}{n + 2} - \frac{n}{2} \right\rangle,$$

$$\left\langle \frac{1 + 3 + 5 + \dots + (2n - 1)}{n^2 + n} \right\rangle, \quad \left\langle \frac{2^{n+1} + 3^n}{2^n + 3^{n+1}} \right\rangle, \quad \left\langle \frac{2^n + 3^{n+1}}{2^{n+1} + 3^n} \right\rangle,$$

$$\left\langle \frac{2n}{\sqrt{n^2 + 3}} \right\rangle, \quad \left\langle \frac{\sqrt{2 + 3n}}{1 + \sqrt{2}} \right\rangle, \quad \left\langle \sqrt{n} \left(\sqrt{n + 1} - \sqrt{n}\right) \right\rangle,$$

$$\left\langle \sqrt{n + 2} - \sqrt{n} \right\rangle, \quad \left\langle \sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right\rangle, \quad \left\langle \sqrt[3]{n + 1} - \sqrt[3]{n} \right\rangle,$$

$$\left\langle \left(0, 9 + \frac{1}{n}\right)^n \right\rangle, \quad \left\langle \left(1, 1 + \frac{1}{n}\right)^n \right\rangle, \quad \left\langle \left(1 + \frac{1}{n + 3}\right)^{n} \right\rangle,$$

$$\left\langle \left(1 + \frac{4}{n}\right)^n \right\rangle, \quad \left\langle \left(\frac{3n - 2}{3n + 5}\right)^{n - 4} \right\rangle, \quad \left\langle \left(1 - \frac{1}{n}\right)^{n^2} \right\rangle,$$

$$\left\langle \sqrt[n]{3^n + 2^n} \right\rangle, \quad \left\langle \sqrt[2n]{n^2 - 16} \right\rangle.$$

IV. fejezet Sorok

Alapfogalmak és alaptételek

4.1. feladat. Számítsa ki az alábbi sorok összegét:

$$\sum_{n=0}^{\infty} 100 \cdot (0,9)^n \; ; \qquad \sum_{n=0}^{\infty} (-1)^n \frac{1}{3^n} \; ; \qquad \sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{1}{5^n}\right) \; ;$$

$$\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)} \; ; \qquad \sum_{n=2}^{\infty} \frac{n-1}{n!} \; ;$$

$$\sum_{n=1}^{\infty} \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}\right) \; ; \qquad \sum_{n=0}^{\infty} \frac{1}{n!} \; .$$

Megoldás. A $\sum a_n$ sort konvergensnek mondjuk, ha az $\langle S_n \rangle = \left\langle \sum_{k=1}^n a_k \right\rangle$ úgynevezett részletösszeg sorozata konvergens és a $\lim_{n \to \infty} S_n = S$ számot a sor összegének nevezzük.

– A $\sum_{n=0}^{\infty}$ 100 · $(0,9)^n$ geometriai sorra (a középiskolából ismert módon)

$$S_n = \sum_{k=0}^n 100 \cdot (0,9)^k = 100 + 100 \cdot 0, 9 + \dots + 100 \cdot 0, 9^n = 100 \cdot \frac{0,9^{n+1} - 1}{0,9 - 1}.$$

Ismeretes (lásd 3.32. feladat), hogy $\lim_{n\to\infty}0,9^{n+1}=0$, így $\exists \lim_{n\to\infty}S_n=1000$, ami a sor összege.

– A
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{3^n} = \sum_{n=0}^{\infty} \left(-\frac{1}{3}\right)^n$$
 is egy geometriai sor, melyre

$$S_n = \sum_{k=0}^n \left(-\frac{1}{3}\right)^k = 1 - \frac{1}{3} + \frac{1}{3^2} + \dots + (-1)^n \frac{1}{3^n} = \frac{\left(-\frac{1}{3}\right)^n - 1}{-\frac{1}{3} - 1} ,$$

melyből –
$$\lim_{n\to\infty} \left(-\frac{1}{3}\right)^n = 0$$
 miatt – kapjuk, hogy $S = \lim_{n\to\infty} S_n = \frac{3}{4}$.

– A $\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{1}{5^n} \right)$ sor esetén (felhasználva a valós számok összeadásának tulajdonságait)

$$S_n = \sum_{k=0}^n \left(\frac{1}{2^k} + \frac{1}{5^k}\right) =$$

$$= \left(\frac{1}{2} + \frac{1}{5}\right) + \left(\frac{1}{2^2} + \frac{1}{5^2}\right) + \dots + \left(\frac{1}{2^n} + \frac{1}{5^n}\right) =$$

$$= \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n}\right) + \left(\frac{1}{5} + \frac{1}{5^2} + \dots + \frac{1}{5^n}\right) =$$

$$= \frac{1}{2} \frac{\left(\frac{1}{2}\right)^n - 1}{\frac{1}{2} - 1} + \frac{1}{5} \frac{\left(\frac{1}{5}\right)^n - 1}{\frac{1}{5} - 1},$$

ami
$$\lim_{n\to\infty} \left(\frac{1}{2}\right)^n = 0$$
 és $\lim_{n\to\infty} \left(\frac{1}{5}\right)^n = 0$ miatt adja, hogy $\exists S = \lim_{n\to\infty} S_n = 1 + \frac{1}{4} = \frac{5}{4}$.

- A $\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$ sornál,

$$\frac{1}{(3k-2)(3k+1)} = \frac{1}{3} \left[\frac{1}{3k-2} - \frac{1}{3k+1} \right] \qquad (\forall \ k \in \mathbb{N})$$

miatt

$$S_n = \frac{1}{1 \cdot 4} + \frac{1}{4 \cdot 7} + \frac{1}{7 \cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)} =$$

$$= \frac{1}{3} \left[\left(\frac{1}{1} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{7} \right) + \left(\frac{1}{7} - \frac{1}{10} \right) + \dots + \left(\frac{1}{3n-2} - \frac{1}{3n+1} \right) \right] =$$

$$= \frac{1}{3} \left(1 - \frac{1}{3n+1} \right),$$

s ebből $\lim_{n\to\infty} \frac{1}{3n+1} = 0$ miatt kapjuk, hogy $\exists S = \lim_{n\to\infty} S_n = \frac{1}{3}$.

– A
$$\sum_{n=2}^{\infty} \frac{n-1}{n!}$$
 sorra a $\frac{k-1}{k!} = \frac{1}{(k-1)!} - \frac{1}{k!}$ azonosság miatt

$$S_n = \sum_{k=2}^n \frac{k-1}{k!} = \frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n-1}{n!} =$$

$$= \left(\frac{1}{1!} - \frac{1}{2!}\right) + \left(\frac{1}{2!} - \frac{1}{3!}\right) + \dots + \left(\frac{1}{(n-1)!} - \frac{1}{n!}\right) =$$

$$= 1 - \frac{1}{n!},$$

ami $\lim_{n\to\infty} \frac{1}{n!} = 0$ miatt adja, hogy $\exists S = \lim_{n\to\infty} S_n = 1$.

– A
$$\sum\limits_{n=1}^{\infty}\left(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n}\right)$$
sornál egyszerű számolással kapjuk, hogy

$$S_n = \left(\sqrt{3} - 2\sqrt{2} + \sqrt{1}\right) + \left(\sqrt{4} - 2\sqrt{3} + \sqrt{2}\right) + \left(\sqrt{5} - 2\sqrt{4} + \sqrt{3}\right) + \dots + \left(\sqrt{n+2} - 2\sqrt{n+1} + \sqrt{n}\right) = 1 - \sqrt{2} + \sqrt{n+2} - \sqrt{n+1}$$

Ebből

$$\begin{split} &\lim_{n \to \infty} (\sqrt{n+2} - \sqrt{n+1}) = \\ &= \lim_{n \to \infty} \frac{(\sqrt{n+2} - \sqrt{n+1})(\sqrt{n+2} + \sqrt{n+1})}{\sqrt{n+2} + \sqrt{n+1}} = \\ &= \lim_{n \to \infty} \frac{(n+2) - (n+1)}{\sqrt{n+2} + \sqrt{n+2}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+2} + \sqrt{n+2}} = 0 \end{split}$$

miatt adódik, hogy $\exists \lim_{n\to\infty} S_n = 1 - \sqrt{2}$, s ez a sor összege.

62 IV. SOROK

- Megmutajuk, hogy a $\sum_{n=0}^{\infty} \frac{1}{n!}$ sor összege megegyezik az $\langle a_n \rangle = \left\langle \left(1 + \frac{1}{n}\right)^n \right\rangle$ sorozat határértékével, amit e-vel jelöltünk. A binomiális tételt felhasználva:

$$\begin{split} a_n &= \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \\ &= 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2} \frac{1}{n^2} + \dots + \frac{n(n-1) \cdots (n-(n-1))}{n!} \frac{1}{n^n} = \\ &= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \\ &\quad + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right) \le 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} = S_n, \end{split}$$

így $\lim_{n\to\infty}a_n\leq\lim_{n\to\infty}S_n$. Ha $m\in\mathbb{N}$ rögzített, $n\in\mathbb{N}$ olyan, hogy $n\geq m$, akkor az előbbiekből

$$a_n = \left(1 + \frac{1}{n}\right)^n \ge$$

$$\ge 1 + \frac{1}{1!} + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{m!} \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{m-1}{n}\right)$$

amiből $n \to \infty$ esetén kapjuk, hogy

$$\lim_{n \to \infty} a_n \ge 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{m!} = S_m .$$

Ez pedig azonnal adja, hogy

$$\lim_{n\to\infty} a_n \ge \lim_{n\to\infty} S_n .$$

Ezt a korábbi egyenlőtlenséggel összevetve kapjuk, hogy

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} a_n = e.$$

4.2. feladat. Bizonyítsa be, hogy az alábbi sorok divergensek:

$$\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n}) ; \qquad \sum_{n=1}^{\infty} \sqrt[n]{0,2} ; \qquad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} ;$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n-1} + \sqrt{2n+1}} ; \qquad \sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}} \right)$$

Megoldás. A $\sum a_n$ sor divergens, ha nem konvergens, azaz az $\langle S_n \rangle$ részletösszeg sorozata nem konvergens (nem létezik véges határértéke)

– A
$$\sum\limits_{n=1}^{\infty}\left(\sqrt{n+1}-\sqrt{n}\right)$$
sor n-edik részletösszegére

$$S_n = \sum_{k=1}^n \left(\sqrt{k+1} - \sqrt{k}\right) =$$

$$= \left(\sqrt{2} - \sqrt{1}\right) + \left(\sqrt{3} - \sqrt{2}\right) + \dots + \left(\sqrt{n+1} - \sqrt{n}\right) =$$

$$= \sqrt{n+1} - 1$$

teljesül, ami $\lim_{n\to\infty}\sqrt{n+1}-1=+\infty$ miatt adja, hogy a sor nem konvergens, azaz divergens.

- A $\sum_{n=1}^{\infty} \sqrt[n]{0,2}$ sornál $a_n = \sqrt[n]{0,2}$ és a korábban tanultak szerint $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \sqrt[n]{0,2} = 1$, azaz a sor általános tagja nem tart 0-hoz, ezért a Cauchyféle konvergencia kritérium 2. következménye miatt nem konvergens.
- A $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ sorra

$$S_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
.

A Kalkulus I. jegyzetben is szereplő $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ divergens sorra

$$S_n^* = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
,

így – felhasználva, hogy $\frac{1}{\sqrt{n}} \ge \frac{1}{n} \ (n \in \mathbb{N})$ teljesül – kapjuk az $S_n \ge S_n^*$ egyenlőtlenséget $\forall n \in \mathbb{N}$ esetén, ami $\lim_{n \to \infty} S_n^* = +\infty$ miatt adja, hogy $\lim_{n \to \infty} S_n = +\infty$, tehát a $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ sor divergens.

IV. SOROK

- A
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n-1} + \sqrt{2n+1}}$$
 sorra

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{2k-1} + \sqrt{2k+1}} =$$

$$= \frac{1}{\sqrt{1} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{5}} + \dots + \frac{1}{\sqrt{2n-1} + \sqrt{2n+1}} =$$

$$= \frac{\sqrt{1} - \sqrt{3}}{1 - 3} + \frac{\sqrt{3} - \sqrt{5}}{3 - 5} + \dots + \frac{\sqrt{2n-1} - \sqrt{2n+1}}{(2n-1) - (2n+1)} =$$

$$= \frac{\sqrt{2n+1} - 1}{2},$$

ami $\lim_{n\to\infty} \frac{\sqrt{2n+1}-1}{2} = +\infty$ miatt adja a sor divergenciáját.

– A
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n}} \right)$$
 sor esetében, a

$$\frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}} = \frac{\left(\sqrt{k+1} - \sqrt{k}\right)\left(\sqrt{k+1} + \sqrt{k}\right)}{\sqrt{k}\left(\sqrt{k+1} + \sqrt{k}\right)} =$$

$$= \frac{1}{\sqrt{k}\left(\sqrt{k+1} + \sqrt{k}\right)} = \frac{1}{\sqrt{k(k+1)} + k} >$$

$$> \frac{1}{\sqrt{(k+1)(k+1)} + k + 1} = \frac{1}{2(k+1)} \ge \frac{1}{4k} \quad (k \in \mathbb{N})$$

egyenlőtlenség felhasználásával kapjuk, hogy

$$S_n = \sum_{k=1}^n \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}} \ge \sum_{k=1}^n \frac{1}{4k} = \frac{1}{4} \sum_{k=1}^n \frac{1}{k} = \frac{1}{4} S_n^*,$$

ahol S_n^* a $\sum_{n=1}^{\infty} \frac{1}{n}$ divergens sor n-edik részletösszege.

 $\lim_{n\to\infty}\frac{1}{4}{S_n}^*=+\infty \text{ \'es az } S_n\geq \frac{1}{4}{S_n}^* \text{ egyenlőtlens\'eg adja, hogy } \lim_{n\to\infty}S_n=+\infty, \text{ tehát a tekintett sor divergens.}$

Konvergenciakritériumok

4.3. feladat. Vizsgálja meg, hogy az alábbi sorok közül melyek konvergensek (divergensek):

$$\sum_{n=1}^{\infty} \frac{1}{10n+3}; \qquad \sum_{n=1}^{\infty} \frac{1}{3n-1}; \qquad \sum_{n=1}^{\infty} \frac{n}{(n+1)^3}; \qquad \sum_{n=1}^{\infty} \frac{n}{(n+1)^2};$$

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}}; \qquad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}; \qquad \sum_{n=1}^{\infty} \frac{1}{n^n}; \qquad \sum_{n=1}^{\infty} \frac{100^n}{n!};$$

$$\sum_{n=1}^{\infty} \frac{n!}{5^n}; \qquad \sum_{n=1}^{\infty} \frac{x^n}{n}; \qquad \sum_{n=1}^{\infty} \frac{x^n}{n^2}; \qquad \sum_{n=1}^{\infty} \frac{2^n n!}{n^n}; \qquad \sum_{n=1}^{\infty} \frac{3^n n!}{n^n}; .$$

Megoldás

– A $\sum_{n=1}^{\infty} \frac{1}{10n+3}$ sor pozitív tagú, így \iff konvergens, ha $\langle S_n \rangle$ részletösszeg sorozata korlátos.

A nyilvánvaló $\frac{1}{10k+3} \geq \frac{1}{10k+k} = \frac{1}{11k} \; (k \geq 3)$ egyenlőtlenség miatt

$$S_n = \sum_{k=1}^n \frac{1}{10k+1} \ge \sum_{k=1}^n \frac{1}{11k} = \frac{1}{11} \sum_{k=1}^n \frac{1}{k} = \frac{1}{11} S_n^*$$

ahonnan ${S_n}^*\to +\infty$ miatt kapjuk, hogy $S_n\to +\infty$, azaz $\langle S_n\rangle$ nem konvergens, következésképpen a sor divergens.

– A
$$\sum\limits_{n=1}^{\infty}\frac{1}{3n-1}~$$
sor is pozitív tagú és $\frac{1}{3k-1}\geq\frac{1}{3k}~(k\geq1)$ miatt

$$S_n = \sum_{k=1}^n \frac{1}{3k-1} \ge \sum_{k=1}^n \frac{1}{3k} = \frac{1}{3} \sum_{k=1}^n \frac{1}{k} = \frac{1}{3} S_n^*$$

így ${S_n}^* \to +\infty$ miatt $S_n \to +\infty$, tehát a sor divergens.

- A
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)^3}$$
 sor olyan, hogy $0 < \frac{n}{(n+1)^3} < \frac{n+1}{(n+1)^3} = \frac{1}{(n+1)^2}$

miatt a $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$ pozitív tagú konvergens sorral teljesíti az összehasonlító kritérium első állítását (majoráns kritérium), így konvergens.

- A $\sum_{n=1}^{\infty} \frac{n}{(n+1)^2}$ olyan sor, hogy $\frac{n}{(n+1)^2} \ge \frac{n}{(n+n)^2} = \frac{1}{4n}$ ($\forall n \in \mathbb{N}$) miatt a $\sum_{n=1}^{\infty} \frac{1}{4n}$ pozitív tagú divergens sorral teljesíti az összehasonlító kritérium második állítását (minoráns kritérium), így divergens.
- $\begin{array}{ll} \ \mathrm{A} \ \sum \limits_{n=1}^{\infty} \frac{1}{(n+1)\sqrt{n}} \ \ \mathrm{sor}, \ \frac{1}{(n+1)\sqrt{n}} < \frac{1}{n\sqrt{n}} = \frac{1}{n^{\frac{3}{2}}} \ (\forall \ n \in \mathbb{N}) \ \mathrm{miatt} \\ \mathrm{a} \ \sum \limits_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}} \ \ (\mathrm{a} \ \mathrm{korábbiakban} \ \mathrm{bizonyítottan}) \ \mathrm{konvergens} \ \mathrm{pozitív} \ \mathrm{tagú} \ \mathrm{sorral} \\ \mathrm{teljesíti} \ \mathrm{a} \ \mathrm{majoráns} \ \mathrm{krit\acute{e}riumot}, \ \mathrm{\acute{i}gy} \ \mathrm{konvergens}. \end{array}$
- A $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{1}{\sqrt{n}}\,$ jelváltó sor és (ahogy ezt már korábban beláttuk) az $\left\langle \frac{1}{\sqrt{n}}\right\rangle$ sorozat monoton csökkenő és $\frac{1}{\sqrt{n}}\rightarrow 0$ is teljesül, így a jelváltó sorok konvergencia kritériuma miatt sorunk konvergens.
- A $\sum_{n=1}^{\infty} \frac{1}{n^n}$ sorra, $\sqrt[n]{\left|\frac{1}{n^n}\right|} = \frac{1}{n}$ és $\frac{1}{n} \to 0$ miatt $\forall q \in]0,1[$ esetén $\exists n_0, \sqrt[n]{\left|\frac{1}{n^n}\right|} < q$ ha $n \ge n_0$, így a Cauchy-féle gyökkritérium miatt konvergens.
- $\text{ A } \sum_{n=1}^{\infty} \frac{100^n}{n!} \quad \text{sorra, } \left| \frac{\frac{100^{n+1}}{n+1}}{\frac{100^n}{n}} \right| = \frac{100}{n+1} \text{ és } \frac{100}{n+1} \to 0 \text{ miatt } \forall \ q \in]0,1[\\ \text{esetén } \exists \ n_0 \in \mathbb{N}, \ \text{hogy} \ \forall \ n \geq n_0\text{-ra} \left| \frac{\frac{100^{n+1}}{n+1}}{\frac{100^n}{n}} \right| < q, \ \text{fgy a D'Alambert-féle} \\ \text{hányados kritérium miatt a sor abszolút konvergens és fgy konvergens.}$
- $-\text{ A}\sum_{n=1}^{\infty}\frac{n!}{5^n} \text{ sorra, } \left|\frac{\frac{(n+1)!}{5^{n+1}}}{\frac{n!}{5^n}}\right| = \frac{n+1}{5} \text{ \'es } \frac{n+1}{5} \to +\infty \text{ miatt } \left|\frac{\frac{(n+1)!}{5^{n+1}}}{\frac{n!}{5^n}}\right| > 1,$ így a sor divergens a D'Alambert kritérium miatt.
- A $\sum\limits_{n=1}^{\infty}\frac{x^n}{n}$ sornál, $\sqrt[n]{n}\to 1$ miatt $\overline{\lim}\sqrt[n]{\left|\frac{x^n}{n}\right|}=\lim_{n\to\infty}\frac{|x|}{\sqrt[n]{n}}=|x|$, így ha |x|<1, akkor a Cauchy-féle gyökkritérium átfogalmazása miatt a sor abszolút konvergens, míg ha |x|>1, akkor divergens.
 - x=1 esetén a sor a $\sum_{n=1}^{\infty} \frac{1}{n}$ divergens sor, x=-1 esetén a sor a $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ konvergens sor.

Sorunk tehát konvergens, ha $x \in [-1, 1[$.

- A $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ esetén $\lim_{n\to\infty} \sqrt[n]{n} = 0$ miatt $\overline{\lim} \sqrt[n]{\left|\frac{x^n}{n^2}\right|} = \lim_{n\to\infty} \frac{|x|}{\left(\sqrt[n]{n}\right)^2} = |x|$, így |x| < 1 esetén (hasonlóan mint előbb) jön, hogy a sor abszolút konvergens, míg |x| > 1 esetén divergens.

Ha x=1, illetve x=-1, úgy a $\sum_{n=1}^{\infty} \frac{1}{n^2}$ és $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ abszolút konvergens sorokat kapjuk.

Sorunk tehát $x \in [-1,1]$ esetén abszolút konvergens (és így konvergens is), míg |x|>1-re divergens.

– A $\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$ sor (abszolút) konvergenciája

$$\overline{\lim} \left| \frac{\frac{2^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{2^n n!}{n^n}} \right| = \lim_{n \to \infty} \frac{2}{\left(\frac{n+1}{n}\right)^n} = \lim_{n \to \infty} \frac{2}{\left(1 + \frac{1}{n}\right)^n} = \frac{2}{e} < 1$$

miatt jön a D'Alambert-féle hányadoskritérium átfogalmazásából.

- A $\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$ sor divergenciáját

$$\overline{\lim} \left| \frac{\frac{3^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{3^n n!}{n^n}} \right| = \lim_{n \to \infty} \frac{3}{\left(\frac{n+1}{n}\right)^n} = \lim_{n \to \infty} \frac{3}{\left(1 + \frac{1}{n}\right)^n} = \frac{3}{e} > 1$$

miatt ugyancsak a D'Alambert-féle hányadoskritérium átfogalmazása adja.

4.4. feladat. Vizsgálja meg, hogy az alábbi sorok divergensek, feltételesen konvergensek, vagy abszolút konvergensek-e?

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n^2} ; \qquad \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{3^n} ;$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}} ; \qquad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt[n]{3}} .$$

Megoldás.

- A
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n}{n^2}$$
 sor divergens, mert

$$\overline{\lim} \left| \frac{(-1)^{n+2} \frac{2^{n+1}}{(n+1)^2}}{(-1)^{n+1} \frac{2^n}{n^2}} \right| = \lim_{n \to \infty} 2 \left(\frac{n}{n+1} \right)^2 = 2 > 1$$

IV. SOROK

(a D'Alambert-féle hányadoskritérium átfogalmazását felhasználva).

– A $\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{3^n}~$ sor a D'Alambert-kritérium átfogalmazása miatt abszolút konvergens, mert

$$\overline{\lim} \left| \frac{(-1)^{n+1} \frac{n+2}{3^{n+1}}}{(-1)^n \frac{n+1}{3^n}} \right| = \lim_{n \to \infty} \frac{1}{3} \cdot \frac{n+2}{n+1} = \frac{1}{3} < 1.$$

– A $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ sor (az előzőekben bizonyítottan) konvergens, de nem abszolút konvergens, mert a

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

(a 4.2. feladatban bizonyítottan) divergens.

Ez a sor tehát feltételesen konvergens.

- A $\sum\limits_{n=1}^{\infty}(-1)^{n+1}\frac{1}{\sqrt[n]{3}}$ sor divergens, mert $\sqrt[n]{3}\to 1$ miatt $\lim\limits_{n\to\infty}(-1)^{n+1}\frac{1}{\sqrt[n]{3}}\neq 0$ (sốt nem is létezik a határérték).

Műveletek sorokkal

4.5. feladat. Bizonyítsa be, hogy ha a $\sum_{n=1}^{\infty} a_n$ pozitív tagú sor konvergens, akkor a $\sum_{n=1}^{\infty} a_n^2$ sor is konvergens. Igaz-e a tétel megfordítása?

Megoldás. Egy pozitív tagú sor akkor és csak akkor konvergens, ha az $\langle S_n \rangle$ részletösszegsorozata korlátos.

 $\sum_{n=1}^{\infty} a_n \text{ konvergens, igy } \exists \ K \in \mathbb{R}, \text{ hogy } \forall \ n \in \mathbb{N}\text{-re } S_n = a_1 + \dots + a_n < K.$ Ekkor $S_n^* = a_1^2 + \dots + a_n^2 \leq (a_1 + \dots + a_n)^2 < K^2 \ \forall \ n \in \mathbb{N}\text{-re,}$ azaz $\langle S_n^* \rangle$ is korlátos, igy a $\sum_{n=1}^{\infty} a_n^2$ sor konvergens.

A tétel megfordítása nem igaz, mert pl. a $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ sor konvergens, de a $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ sor divergens.

4.6. feladat. Bizonyítsa be, hogy ha $\sum_{n=1}^{\infty} a_n^2$ és $\sum_{n=1}^{\infty} b_n^2$ konvergensek, akkor a

$$\sum_{n=1}^{\infty} |a_n b_n| \; ; \qquad \sum_{n=1}^{\infty} (a_n + b_n)^2 \; ; \qquad \sum_{n=1}^{\infty} \frac{|a_n|}{n}$$

sorok is konvergensek.

Megold'as.

- Az $\frac{a_n^2 + b_n^2}{2} \ge \sqrt{a_n^2 b_n^2} = |a_n b_n| \ (n \in \mathbb{N})$ (ismert) egyenlőtlenség teljesül. Ugyanakkor $\sum a_n^2$ és $\sum b_n^2$ konvergenciája (a konvergens sorok lineáris kombinációjára vonatkozó tétel miatt) adja, hogy a $\sum_{n=1}^{\infty} \frac{a_n^2 + b_n^2}{2}$ sor is konvergens, mely az előbbi egyenlőtlenség miatt majorálja a $\sum_{n=1}^{\infty} |a_n b_n|$ sort, így az összehasonlító kritérium első állítása szerint kapjuk, hogy az is konvergens, azaz $\sum a_n b_n$ abszolút konvergens, de akkor konvergens is.
- Az $(a_n+b_n)^2=a_n^2+b_n^2+2a_nb_n$ $(n\in\mathbb{R})$ egyenlőség, $\sum a_n^2$, $\sum b_n^2$ és $\sum 2a_nb_n$ konvergenciája és az előbb is használt tétel adja, hogy a $\sum (a_n+b_n)^2$ sor konvergens.
- A $\sum_{n=1}^{\infty} a_n^2$ és $\sum_{n=1}^{\infty} \frac{1}{n^2}$ sorok konvergenciája és a feladat első állítása adja, hogy a $\sum_{n=1}^{\infty} \left| a_n \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{|a_n|}{n}$ sor konvergens.
- **4.7. feladat.** Bizonyítsa be, hogy egy konvergens és egy divergens sor összege divergens.

Megoldás. Ha a $\sum a_n$ konvergens és a $\sum b_n$ divergens sorok $\sum (a_n + b_n)$ összege konvergens lenne, úgy $\sum b_n = \sum [(a_n + b_n) - a_n]$ adná, hogy $\sum b_n$ is konvergens, ami ellentmondás.

Tizedes törtek

4.8. feladat. Írja fel két egész szám hányadosaként az alábbi végtelen szakaszos tizedes törteket:

$$0.\overline{3}$$
; $0.\overline{25}$; $20.7\overline{25}$; $0.2\overline{321}$.

70 IV. SOROK

 $Megold\acute{a}s.$ Ismeretes, hogy $\forall~x\in]0,1[$ valós szám egyértelműen felírható $x=\sum_{n=1}^{\infty}\frac{a_n}{10^n}$ alakban, ahol $a_n\in\{0,1,\ldots,9\}$ és nem létezik $m\in\mathbb{N},$ hogy $a_m<9$ és $a_k=9~\forall~k\in\mathbb{N},~k>m$ esetén.

Az itt szereplő végtelen sor összegét $0, a_1 a_2 \dots a_n \dots$ módon jelöljük. Továbbá, ha $\exists \ k, l \in \mathbb{N}, \ a_{k+n} = a_{k+l+n} \ (n=0,1,\dots)$, akkor a $0, a_1 \dots a_{k-1} \overline{a_k \dots a_{k+l-1}}$ módon jelölt szakaszos tizedes törtről beszélünk. Ha pedig $y \in \mathbb{R}, \ y \notin \mathbb{Z}$, akkor $\exists \ x \in]0,1[$ és $l \in \mathbb{Z}$, hogy y = l+x, így az $y = l, a_1 a_2 \dots a_n \dots$ jelölést használjuk. Ezért:

$$0.\overline{3} = \sum_{n=1}^{\infty} \frac{3}{10^n} = \sum_{n=1}^{\infty} 3 \left(\frac{1}{10}\right)^n = \frac{\frac{3}{10}}{1 - \frac{1}{10}} = \frac{\frac{3}{10}}{\frac{10-1}{10}} = \frac{1}{3}$$

$$0.\overline{25} = \sum_{n=1}^{\infty} \frac{25}{100^n} = \sum_{n=1}^{\infty} 25 \left(\frac{1}{100}\right)^n = \frac{\frac{25}{100}}{1 - \frac{1}{100}} = \frac{\frac{25}{100}}{\frac{100-1}{100}} = \frac{25}{99}$$

$$20.7\overline{25} = 20 + \frac{7}{10} + \sum_{n=1}^{\infty} \frac{25}{10} \left(\frac{1}{100}\right)^n = 20 + \frac{7}{10} + \frac{\frac{25}{1000}}{1 - \frac{1}{100}} =$$

$$= 20 + \frac{7}{10} + \frac{25}{990} = \frac{20 \cdot 990 + 7 \cdot 99 + 25}{99} = \frac{19518}{990}$$

$$0.2\overline{321} = \frac{2}{10} + \sum_{n=1}^{\infty} \frac{321}{10} \left(\frac{1}{1000}\right)^n = \frac{2}{10} + \frac{\frac{321}{10000}}{1 - \frac{1}{1000}} =$$

$$= \frac{2}{10} + \frac{321}{9990} = \frac{1998 + 321}{9990} = \frac{2319}{9990}$$

Gyakorló feladatok

1. Számítsa ki az alábbi sorok összegét.

$$\sum_{n=0}^{\infty} (-1)^n 3(0,8)^n \; ; \qquad \sum_{n=0}^{\infty} \left(\frac{2}{3^n} + (-1)^n \frac{1}{4^n}\right) \; ; \qquad \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} \; ;$$
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2} \; ; \qquad \sum_{n=1}^{\infty} \frac{1}{9n^2 - 3n - 2} \; .$$

2. Bizonyítsa be, hogy az alábbi sorok divergensek.

$$\sum_{n=1}^{\infty} \sqrt[n]{0,5} \; ; \qquad \sum_{n=1}^{\infty} \frac{1}{3n+1} \; ; \qquad \sum_{n=1}^{\infty} (\sqrt{n+3} - \sqrt{n+2} \; ;$$

3. A konvergenciakritériumokkal vizsgálja meg, hogy az alábbi sorok közül melyek konvergensek (divergensek).

$$\sum_{n=1}^{\infty} \frac{1}{2n^2 + 3} ; \qquad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt[3]{n}} ; \qquad \sum_{n=1}^{\infty} \frac{2n}{3n + 4} ;$$

$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n+1}} ; \qquad \sum_{n=1}^{\infty} \frac{2n}{3^n} ; \qquad \sum_{n=1}^{\infty} \frac{1}{2n(\sqrt{n+1} + \sqrt{n})} ;$$

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n} ; \qquad \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} ; \qquad \sum_{n=1}^{\infty} \frac{(n!)a^n}{n^n} ;$$

$$\sum_{n=1}^{\infty} a^n n ; \qquad \sum_{n=1}^{\infty} \frac{n^3(3 + (-1)^n)^n}{5^n} ; \qquad \sum_{n=1}^{\infty} \frac{n^5}{2^n + 3^n} .$$

4. Vizsgálja meg, hogy az alábbi sorok divergensek, feltételesen konvergensek, vagy abszolút konvergensek-e.

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2 \cdot 3^n}{n^3} \; ; \qquad \sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}} \; ; \qquad \sum_{n=1}^{\infty} (-1)^{n+1} \frac{5}{\sqrt[2n]{6}} \; .$$

- 5. Bizonyítsa be, hogy ha a $\sum_{n=1}^{\infty} a_n$ nemnegatív tagú sor konvergens, akkor a $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n}$ sor is az.
- 6. Adjunk meg olyan divergens sorokat, amelyeknek van konvergens csoportosított sora.
- 7. Bizonyítsa be, hogy a $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ feltételesen konvergens sor önmagával vett Cauchy-szorzata divergens.
- 8. Bizonyítsa be, hogy az alábbi tizedes törtek racionális számok.

$$0.\overline{37}$$
; $-4.\overline{352}$; $6.\overline{3441}$; $-12.\overline{2335}$.

V. fejezet

Függvények folytonossága

Alapfogalmak

5.1. feladat. Vizsgálja meg, hogy korlátosak-e az alábbi függvények:

$$f_1: \mathbb{R} \to \mathbb{R}, \qquad f_1(x) = ax + b \qquad (a, b \in \mathbb{R}, a \neq 0);$$

 $f_2: [0, +\infty) \to \mathbb{R}, \quad f_2(x) = 5 - x^2;$
 $f_3:]0, 100] \to \mathbb{R}, \qquad f_3(x) = \frac{1}{x};$
 $f_4:]1, 100[\to \mathbb{R}, \qquad f_4(x) = -\frac{2x + 3}{x - 1};$
 $f_5: \mathbb{R} \to \mathbb{R}, \qquad f_5(x) = ax^2 + bx + c \quad (a, b, c \in \mathbb{R}, a \neq 0);$
 $f_6: \mathbb{R} \to \mathbb{R}, \qquad f_6(x) = x^2 - 4x + 6.$

Határozza meg supremumukat, infimumukat, maximumukat, minimumukat (ha léteznek). Ábrázolja a függvényeket.

Megoldás.

 $f : E \subseteq \mathbb{R} \to \mathbb{R}$ korlátos E-n, ha $\exists K \in \mathbb{R}$, hogy $|f(x)| < K \ \forall x \in E$.

 $f \colon E \subseteq \mathbb{R} \to \mathbb{R}$ felülről (alulról) korlátos E-n, ha $\exists K_1 (K_2) \in \mathbb{R}$, hogy $f(x) \le K_1 (f(x) \ge K_2) \ \forall \ x \in E$.

Ismeretes, hogy $f \iff$ korlátos E-n, ha ha alulról és felülről is korlátos.

Az, hogy f például felülről nem korlátos E-n azt jelenti, hogy $\forall K \in \mathbb{R}$ esetén $\exists x \in E$, hogy f(x) > K.

– Az f_1 függvény sem felülről, sem alulról nem korlátos (így nem korlátos) \mathbb{R} -en, mert:

$$\forall K$$
-ra $\exists x \in \mathbb{R}$, hogy $ax + b > K \iff \exists x > \frac{K - b}{a}$, ha $a > 0$, illetve

 $\exists x < \frac{K-b}{a}$, ha a < 0, ezek pedig igazak, mert \mathbb{R} sem felülről, sem alulról nem korlátos. Így f_1 felülről nem korlátos.

Annak bizonyítása, hogy f_1 alulról nem korlátos, hasonló.

Az előbbiek adják, hogy f_1 nem korlátos.

 $\inf f_1 = -\infty$, $\sup f_1 = +\infty$, továbbá $\nexists \max f_1$ és $\min f_1$.

 \dot{x}

 – Az f_2 függvény felülről korlátos, mert K=5-re például $5-x^2 \leq 5 \iff$ $0 \le x^2$, ami $\forall x \in [0, +\infty[$ -re teljesül.

Megmutatjuk, hogy sup $f_2 = 5$.

Ehhez már csak azt kell megmutatni, hogy $f_2 \ \forall \ K$ felső korlátjára $K \geq 5$

teljesül, azaz $\forall \varepsilon > 0$ -ra $5 - \varepsilon < 5$ nem felső korlát, ami igaz, mert $\exists x \in [0, +\infty[$, hogy $5 - x^2 > 5 - \varepsilon \iff x^2 < \varepsilon \iff 0 \le x < \sqrt{\varepsilon},$ hiszen $\frac{1}{n} \to 0$ miatt $\exists n_0(\sqrt{\varepsilon}), \ \forall n \in \mathbb{N} \ n \ge n_0(\sqrt{\varepsilon})$ -ra $x = \frac{1}{n} < \sqrt{\varepsilon}$. x = 0 esetén $f(0) = 5 \implies \max f = 5$.

Az f_2 függvény alulról nem korlátos. Ehhez belátjuk, hogy \forall K-ra \exists $x \in$ $[0, +\infty[, 5-x^2 < K]]$

Ha K>5, akkor az előbbiek miatt $\forall \ x\in [0,+\infty[\text{-re }5-x^2< K.$ Ha $K\le 5$, akkor $5-x^2< K\iff 5-K< x^2\iff \sqrt{5-K}< x,$ s ilyen x a $[0, +\infty[$ felülről nem korlátossága miatt létezik.

Így inf $f_2 = -\infty \implies \nexists \min f_2$. f_2 nem korlátos.

– Az f_3 függvény alulról korlátos, mert $\forall x \in]0, 100[-\text{ra } \frac{1}{x} > 0.$

Megmutatjuk, hogy inf $f_3 = \frac{1}{100} = \min f_3$.

 $\frac{1}{x} \ge \frac{1}{100} \iff 0 < x \le 100 \text{ ami igaz, tehát } \frac{1}{100} \text{ alsó korlátja } f_3\text{-nak.}$

Ugyanakkor
$$\forall \varepsilon > 0$$
-ra $\frac{1}{100} + \varepsilon$ nem alsó korlát, mert $\exists x \in]0, 100[$, hogy $\frac{1}{x} < \frac{1}{100} + \varepsilon = \frac{1 + 100\varepsilon}{100} \iff x > \frac{100}{1 + 100\varepsilon} < 100$, utóbbi pedig a $\left[\frac{100}{1 + 100\varepsilon}, 100\right[$ nemüres nyílt intervallum minden elemére igaz.

Tehát f_3 minden K alsó korlátjára $K \leq \frac{1}{100}$ igaz, ez adja, hogy

$$\inf f_3 = \frac{1}{100}.$$

Másrészt
$$f_3(100) = \frac{1}{100}$$
, így min $f_3 = \frac{1}{100}$.

 f_3 felülről nem korlátos, mert $\forall K$ -ra $\exists x \in]0, 100[$, hogy $\frac{1}{x} > K$.

Ez nyilvánvaló, ha $K \leq \frac{1}{100}$ (hiszen $\frac{1}{x} \geq \frac{1}{100} \geq K$).

Ha
$$K > \frac{1}{100}$$
, úgy $\frac{1}{x} < K \iff 0 < x < \frac{1}{K} < 100$, ami a $\left] 0, \frac{1}{K} \right[\subset$

]0,100[nyílt intervallum minden elemére igaz.

Tehát $\sup f_3 = +\infty \implies \nexists \max f_3$.

- Nyilván
$$f_4(x) = -\frac{2x+3}{x-1} = -\frac{(2x-2)+5}{x-1} = -2 - \frac{5}{x-1}$$
 $(x \in]1, +\infty[)$.
Ha $x > 1$, akkor $x - 1 > 0$, így

$$\frac{5}{x-1} > 0 \iff -\frac{5}{x-1} < 0 \iff -2 - \frac{5}{x-1} < -2 \;,$$

ha $x \in]1, +\infty[$, tehát -2 felső korlátja f_4 -nek.

A korábbiakhoz hasonlóan belátható, hogy sup $f_4 = -2$.

$\max f_4$, mert ha $-2 - \frac{5}{x-1} = -2$ lenne, úgy $\frac{5}{x-1} = 0$, azaz 5 = 0teljesülne, ami lehetetlen

 f_4 alulról nem korlátos, mert $\forall K$ -ra $\exists x \in]1, +\infty[$, hogy $-2 - \frac{5}{x-1} < K$. Ez nyilván igaz, ha $K \ge -2$ (az előbbiek miatt) Ha K < -2, úgy

$$-2 - \frac{5}{x-1} < K \iff -\frac{5}{x-1} < K+2 \iff \frac{5}{x-1} > -K-2$$
$$\iff \frac{x-1}{5} < \frac{1}{-K-2} \iff 1 < x < 1 + \frac{5}{-(K+2)},$$

s ezt teljesíti az $\left[1, 1 - \frac{5}{K+2}\right]$ nyílt intervallum minden eleme.

 $\text{fgy inf } f_4 = -\infty \implies \# \min f_4$

$$-f_5(x) = ax^2 + bx + c = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$
, így $a > 0$ esetén

$$a\left(x+\frac{b}{2a}\right)^2 \geq 0 \implies a\left(x+\frac{b}{2a}\right)^2 + \frac{4ac-b^2}{4a} \geq \frac{4ac-b^2}{4a} \ (x \in \mathbb{R})$$

és
$$f_5\left(\frac{-b}{2a}\right) = \frac{4ac - b^2}{4a}$$
, így inf $f_5 = \frac{4ac - b^2}{4a} = \min f_5$;

$$a\left(x + \frac{b}{2a}\right)^2 \le 0 \implies a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a} \le \frac{4ac - b^2}{4a} \quad (x \in \mathbb{R})$$

és
$$f_5\left(\frac{-b}{2a}\right) = \frac{4ac - b^2}{4a}$$
, ezért sup $f_5 = \frac{4ac - b^2}{4a} = \max f_5$.

$$f_5$$
 $a > 0$ esetén felülről nem korlátos, mert $\forall K \in \mathbb{R}$ -re $\exists x \in \mathbb{R}$, hogy $a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a} > K$, ami $K < \frac{4ac - b^2}{4a}$ esetén nyilvánvaló, míg

 $K \geq \frac{4ac - b^2}{4a}$ esetén az egyenlőtlenség ekvivalens az

$$\left| x + \frac{b}{2a} \right| > \sqrt{\frac{K}{a} - \frac{4ac - b^2}{4a^2}}$$

egyenlőtlenséggel, ami például teljesül azon $x \in \mathbb{R}$ esetén, melyre

$$x > \frac{-b}{2a} + \sqrt{\frac{K}{a} - \frac{4ac - b^2}{4a^2}}$$
,

ilyen pedig létezik, hiszen \mathbb{R} felülről nem korlátos.

Hasonlóan látható be, hogy f_5 a < 0 esetén alulról nem korlátos. Tehát

a > 0-ra sup $f_5 = +\infty$, $\nexists \max f_5$,

a < 0-ra inf $f_5 = -\infty$, $\nexists \min f_5$.

– Az $f_6(x)=x^2-4x+6=(x-2)^2+2$ $(x\in\mathbb{R})$ függvénynél, használva az előző példára bizonyítottakat:

$$a = 1 > 0$$
, $b = -4$, $c = 6$, $\frac{b}{2a} = -2$, $\frac{4ac - b^2}{4a} = 2$

miatt inf $f_6 = 2 = \min f_6$, sup $f_6 = +\infty$ és $\nexists \max f_6$.

5.2. feladat. Vizsgálja az alábbi függvények monotonitását:

$$f_1: \mathbb{R} \to \mathbb{R}, \quad f_1(x) = ax^2 + bx + c \quad (a, b, c \in \mathbb{R}, \ a \neq 0) ;$$

 $f_2: \mathbb{R} \to \mathbb{R}, \quad f_2(x) = x^3 ;$
 $f_3: \mathbb{R} \to \mathbb{R}, \quad f_3(x) = x^n \qquad (n \in \mathbb{N}) .$

Megoldás. $f: E \subset \mathbb{R} \to \mathbb{R}$ monoton növekvő (csökkenő) E-n, ha $\forall x_1, x_2 \in E, x_1 < x_2$ esetén $f(x_1) \leq f(x_2) \quad (f(x_1) \geq f(x_2)).$ f szigorúan monoton növekvő (csökkenő) E-n, ha $\forall x_1, x_2 \in E, x_1 < x_2$ esetén $f(x_1) < f(x_2) \quad (f(x_1) > f(x_2)).$

$$- f_1(x) = a \left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a} \quad (x \in \mathbb{R}).$$

$$\text{Ha } a > 0 \text{ \'es } x_1, \ x_2 < -\frac{b}{2a}, \ x_1 < x_2 \implies$$

$$x_1 + \frac{b}{2a} < x_2 + \frac{b}{2a} \implies \left(x_1 + \frac{b}{2a} \right)^2 > \left(x_2 + \frac{b}{2a} \right)^2 \implies$$

$$\implies a \left(x_1 + \frac{b}{2a} \right)^2 > a \left(x_2 + \frac{b}{2a} \right)^2 \implies$$

$$\implies a \left(x_1 + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a} > a \left(x_2 + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a} \implies$$

$$\implies f_1(x_1) > f_1(x_2)$$

 $\implies f_1$ szigorúan monoton csökkenő a $\left]-\infty,-\frac{b}{2a}\right]$ intervallumon.

Hasonlóan látható be, hogy ekkor (a > 0) f_1 szigorúan monoton növekvő a $\left[-\frac{b}{2a}, +\infty\right[$ intervallumon.

Ha pedig a < 0, akkor

 f_1 szigorúan monoton növekvő a $]-\infty, -\frac{b}{2a}],$

 f_1 szigorúan monoton csökkenő a $\left[-\frac{b}{2a}, +\infty\right[$ intervallumon.

- $\forall x_1, x_2 \in \mathbb{R}, x_1 < x_2$ -re $x_1^3 < x_2^3 \Longrightarrow f_2(x_1) < f_2(x_2)$, így az f_2 függvény szigorúan monoton növekvő \mathbb{R} -en.
- Ha n páratlan és $x_1, x_2 \in \mathbb{R}$, $x_1 < x_2$, úgy $x_1^n < x_2^n \implies f_3(x_1) < f_3(x_2) \implies f_3$ szigorúan monoton növekvő \mathbb{R} -en.

Ha n páros, úgy $x_1, x_2 \le 0$, $x_1 < x_2$ esetén $x_1^n > x_2^n \implies f_3(x_1) > f_3(x_2) \implies f_3$ szigorúan monoton csökkenő a $]-\infty,0]$ intervallumon.

Míg $x_1, x_2 \ge 0$, $x_1 < x_2$ esetén $x_1^n < x_2^n \implies f_3(x_1) < f_3(x_2)$

 $\implies f_3$ szigorúan monoton növekvő a $[0,+\infty[$ intervallumon.

Folytonosság, egyenletes folytonosság

5.3. feladat. Vizsgálja az alábbi függvények folytonosságát:

$$f_{1}(x) = |x| \qquad (x \in \mathbb{R});$$

$$f_{2}(x) = \begin{cases} \frac{x^{2} - 4}{x + 2} &, \text{ ha } x \neq -2 \\ 0 &, \text{ ha } x = -2 \end{cases};$$

$$f_{3}(x) = [x] \qquad (x \in \mathbb{R});$$

$$f_{4}(x) = ax^{2} + bx + c \qquad (x \in \mathbb{R}; \ a, b, c \in \mathbb{R});$$

$$f_{5}(x) = |x^{2} - 4| \qquad (x \in \mathbb{R});$$

$$f_{6}(x) = x^{r} \qquad (x \in D_{f_{6}}, \ r \in \mathbb{Q}).$$

Megoldás. Az $f: E \subset \mathbb{R} \to \mathbb{R}$ függvény folytonos $x_0 \in E$ -ben, ha $\forall \ \varepsilon > 0 \quad \exists \ \delta(\varepsilon) > 0, \ \forall \ x \in E, \ |x - x_0| < \delta(\varepsilon) \implies |f(x) - f(x_0)| < \varepsilon.$ f nem folytonos x_0 -ban, ha $x_0 \notin E$, vagy $\exists \ \varepsilon > 0, \ \forall \ \delta(\varepsilon) > 0, \ \exists \ x \in E, \ |x - x_0| < \delta(\varepsilon) \implies |f(x) - f(x_0)| \ge \varepsilon.$

- Az $f_1(x) = |x|$ $(x \in \mathbb{R})$ függvény $\forall x_0 \in \mathbb{R}$ -ben folytonos. Ha $x_0 = 0$, akkor $\forall \varepsilon > 0$ -ra $\delta(\varepsilon) = \varepsilon$ esetén $\forall x \in \mathbb{R}$, $|x - 0| < \delta(\varepsilon) = \varepsilon$ $\Longrightarrow |f(x) - f(0)| = ||x| - |0|| = |x| = |x - 0| < \varepsilon$. Ha $x_0 \neq 0$, akkor $\forall \varepsilon > 0$ -ra $\delta(\varepsilon) = \min \{\varepsilon, |x_0|\}$ esetén $\forall x \in \mathbb{R}$ $|x - x_0| < \delta(\varepsilon)$ (sign $x = \text{sign } x_0 \text{ miatt}$) $\Longrightarrow |f(x) - f(x_0)| = ||x| - |x_0|| = |x - x_0| < \varepsilon$.
- Az f_2 függvényre nyilván teljesül, hogy

$$f_2(x) = \begin{cases} x - 2 & \text{, ha } x \neq -2 \\ 0 & \text{, ha } x = -2 \end{cases}$$

 f_2 nem folytonos $x_0=-2$ -ben, mert $\varepsilon=1$ -re \forall $\delta(\varepsilon)>0$ esetén \exists $n, \frac{1}{n}<\delta(\varepsilon)$ és akkor $x=-2+\frac{1}{n}\in\mathbb{R}$ esetén

$$|x - x_0| = \left| -2 + \frac{1}{n} - (-2) \right| = \frac{1}{n} < \delta(\varepsilon)$$

$$\implies |f(x) - f(x_0)| = \left| -2 + \frac{1}{n} - 2 - 0 \right| \ge 3 > 1 = \varepsilon.$$

Ha $x_0 \neq -2$ tetszőleges, úgy f_2 folytonos x_0 -ban, mert $\forall \varepsilon > 0$ -ra, ha $\delta(\varepsilon) = \min \{ \varepsilon, |x_0 - (-2)| \}$ és $x \in \mathbb{R} |x - x_0| < \delta(\varepsilon)$, akkor

$$|f(x) - f(x_0)| = |x + 2 - (x_0 + 2)| = |x - x_0| < \varepsilon$$

következik.

 $-f_3$ nem folytonos, ha $x_0 \in \mathbb{Z}$.

Ekkor
$$f_3(x_0) = x_0$$
, $f_3(x) = x_0 - 1$, ha $x \in]x_0 - 1, x_0[$.

Így
$$\varepsilon = \frac{1}{2}$$
-re $\forall \delta(\varepsilon)$ -ra, ha $x \in K(x_0, \delta(\varepsilon)) \cap]x_0 - 1, x_0[$, akkor

$$|f(x) - f(x_0)| = |x_0 - 1 - x_0| = 1 > \frac{1}{2} = \varepsilon$$

következik.

Ha $x_0 \notin \mathbb{Z}$, akkor $\exists z_0 \in \mathbb{Z}$, $z_0 < x_0 < z_0 + 1$ és így $\forall \varepsilon > 0$ -ra, ha $\delta(\varepsilon) = \min\{x_0 - z, z_0 + 1 - x_0\}$, akkor $\forall x \in K(x_0, \delta(\varepsilon))$ -ra

$$|f(x) - f(x_0)| = |z_0 - z_0| = 0 < \varepsilon$$
.

Így f_3 folytonos $\forall x_0 \notin \mathbb{Z}$ -ben.

Egyszerűen belátható, hogy $\forall x_0 \in \mathbb{Z}$ -ben f_3 jobbról folytonos, balról nem.

- Ismeretes, hogy az $x \to x^2$, $x \to x$, $x \to c$ ($x \in \mathbb{R}$) függvények folytonosak $\forall x_0 \in \mathbb{R}$ -re. Ezt és a folytonosság és műveletek kapcsolatára vonatkozó első tételt felhasználva kapjuk, hogy ezek lineáris kombinációja, tehát az f_4 függvény is folytonos $\forall x_0 \in \mathbb{R}$ -ben.
- Az $f_5(x) = |x^2 4|$ $(x \in \mathbb{R})$ függvény az $f(x) = x^2 4$ $(x \in \mathbb{R})$ és g(x) = |x| $(x \in \mathbb{R})$ mindenütt folytonos függvényekből $g \circ f = f_5$ módon adódó összetett függvény, így az összetett függvény folytonosságára vonatkozó tétel miatt $f_5 \forall x_0 \in \mathbb{R}$ -ben folytonos.
- Ha r=0, akkor $f_6(x)=1$ $(x\in\mathbb{R})$, ami a korábbiak miatt $\forall x_0\in\mathbb{R}$ esetén folytonos.

Ha r > 0 tetszőleges racionális szám, akkor $f_6 \, \forall \, x \in [0, +\infty[$ -on értelmezett (ha $x \in]-\infty, 0[$, úgy csak bizonyos r-ekre).

Ha $x_0 > 0$, úgy az átviteli elv és a sorozatokra az előbbiekben jelzett tétel alapján kapjuk f_6 folytonosságát x_0 -ban.

Ha $x_0 = 0$, akkor $\forall \varepsilon > 0$ -ra $\delta(\varepsilon) = \varepsilon^{\frac{1}{r}}$ választással, ha x > 0 és $|x-0| = |x| < \delta(\varepsilon) = \varepsilon^{\frac{1}{r}}$, akkor $|f_6(x) - f_6(0)| = |x^r| = |x|^r < \left(\varepsilon^{\frac{1}{r}}\right)^r = \varepsilon$ következik, s ez adja f_6 folytonosságát $x_0 = 0$ -ban.

Összegezve: ha r > 0 $(r \in \mathbb{Q})$, úgy f_6 folytonos a $[0, +\infty[$ intervallumon.

Ha r < 0 $(r \in \mathbb{Q})$, akkor $x^r = \frac{1}{x^{-r}}$ $(x \in]0, +\infty[)$ és -r > 0 miatt a fentiek adják, hogy x^{-r} folytonos $\forall x_0 \in]0, +\infty[$ esetén, továbbá $x^{-r} \neq 0$ $(x \in]0, +\infty[)$, így a folytonosság és műveletek kapcsolatára vonatkozó 2. tétel miatt f_6 ebben az esetben is folytonos $\forall x_0 \in]0, +\infty[$ -re. Megjegyezzük, hogy ha például $r = \frac{1}{n}$ és n = 2k - 1 $(k \in \mathbb{N})$ rögzített, akkor $f_6(x) = \sqrt[n]{x} \ \forall \ x \in \mathbb{R}$ -re értelmezett és $f_6(-x) = -\sqrt[n]{x}$ $(x \in \mathbb{R})$, valamint az előbbiek miatt $f_6 \ \forall \ x_0 \in \mathbb{R}$ -ben folytonos.

Ha például $f_6(x) = \frac{1}{x^n}$ $(x \neq 0)$, úgy $f_6 \ \forall \ x_0 \neq 0$ -ban folytonos.

5.4. feladat. Bizonyítsa be, hogy a racionális függvények értelmezési tartományuk minden pontjában folytonosak.

Megoldás. A racionális függvények általános alakja:

$$R(x) = \frac{P_n(x)}{Q_k(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_k x^k + b_{k-1} x^{k-1} + \dots + b_0} \qquad (x \in D_R)$$

és olyan $x \in \mathbb{R}$ esetén értelmezettek, ahol $Q_k(x) \neq 0$ (legfeljebb k különböző $x \in \mathbb{R}$ esetén lehetséges, hogy $Q_k(x) = 0$).

A korábbiak szerint a $P_n(x)$ és $Q_k(x)$ függvények folytonosak $Q_k(x) \neq 0$ ($x \in D_R$), így a folytonosság és műveletek kapcsolatára vonatkozó 2. tétel adja R folytonosságát.

5.5. feladat. Egyenletesen folytonosak-e az alábbi függvények:

$$f_1(x) = x^2 - 2x + 2$$
 $(x \in \mathbb{R})$ a $[0, 2[$, illetve a $[0, +\infty[$ intervallumokon, $f_2(x) = x^3 + 3x^2 - 4$ $(x \in \mathbb{R})$ a $[-1, 1]$ intervallumon.

Megoldás.

- f_1 egyenletesen folytonos a [0,2[intervallumon, mert $f_1(x) = (x-1)^2 + 1 \ (x \in \mathbb{R})$ miatt $\forall x,y \in [0,2[$ -re $|f_1(x) - f_1(y)| = |(x-1)^2 - (y-1)^2| = |x-y||x+y-2| < 2|x-y|$, így $\forall \varepsilon > 0$ -ra $\delta(\varepsilon) = \frac{1}{2}\varepsilon$ választással, ha $x,y \in [0,2[$ és $|x-y| < \delta(\varepsilon) = \frac{1}{2}\varepsilon \implies |f_1(x) - f_1(y)| < \varepsilon$, ami az egyenletes folytonosság definíciója miatt adja állításunkat.

 $\begin{array}{ll} -f_1 \text{ nem egyenletesen folytonos } [0,+\infty[\text{-on.} \\ \text{Ehhez azt kell belátni, hogy } \exists \ \varepsilon > 0, \ \forall \ \delta(\varepsilon) > 0 \text{-ra} \ \exists \ x,y \in [0,+\infty[, \\ \text{hogy } |x-y| < \delta(\varepsilon) \implies |f_1(x)-f_1(y)| \geq \varepsilon. \\ \text{Legyen } \varepsilon = \frac{1}{2}, \ \delta(\varepsilon) > 0 \text{ tetszőleges. } \frac{1}{n} \to 0 \text{ miatt } \exists \ n, \ \frac{1}{n} < \delta(\varepsilon). \text{ Legyen} \end{array}$

$$x = n, \ y = n + \frac{1}{n}$$
, akkor $|x - y| = \frac{1}{n} < \delta(\varepsilon) \implies$

$$\left| f_1(n) - f_1\left(n + \frac{1}{n}\right) \right| = \left| (n-1)^2 - \left(n + \frac{1}{n} - 1\right)^2 \right| =$$

$$= \left| \frac{1}{n} \left(2n + \frac{1}{n} - 2 \right) \right| = \left| 2 + \frac{1}{n^2} - \frac{2}{n} \right| \ge 1$$

(hiszen $2 + \frac{1}{n^2} - \frac{2}{n} \ge 1 \iff n^2 - 2n + 1 \ge 0 \iff (n-1)^2 \ge 0$, ami nyilván igaz).

- Az f_2 függvény az $x \to x^3$, $x \to x^2$ és $x \to 1$ folytonos függvények lineáris kombinációja, így folytonos a [-1,1] kompakt halmazon. Ez pedig mivel kompakt halmazon folytonos függvény egyenletesen folytonos adja, hogy f_2 egyenletesen folytonos a [-1,1] intervallumon.
- **5.6. feladat.** Legyen $f(x) = \frac{1}{x^2}$ $(x \in]0, +\infty[)$. $E_1 =]0, 1]$, $E_2 = [1, 2]$, $E_3 =]2, 3[$. Kompaktak-e az $f(E_1)$, $f(E_2)$, $f(E_3)$ halmazok?

 $Megold\'{a}s.$

- f nem korlátos felülről]0,1]-en, mert $\forall K \in \mathbb{R} \exists x \in]0,1]$, hogy $\frac{1}{x^2} > K$. Ha $K \leq 0$, akkor $\forall x \in]0,1]$ -re $\frac{1}{x^2} > 0 \geq K$ miatt igaz. Ha K > 0, úgy $\frac{1}{x^2} > K > 0 \iff x^2 < \frac{1}{K} \iff 0 < x < \frac{1}{K}$, ami a $\left]0,\frac{1}{K}\right[$ bármely elemére teljesül. Így f(]0,1]) nem korlátos, ezért nem kompakt, hiszen $A \subset \mathbb{R} \iff$ kompakt, ha korlátos és zárt.
- f([1,2]) kompakt, mert f folytonos [1,2]-n, [1,2] kompakt halmaz, kompakt halmaz folytonos képe pedig kompakt.
- $-f \text{ folytonosságát és monotonitását felhasználva belátható, hogy } f(]2,3[) = \left]\frac{1}{9},\frac{1}{4}\right[, \text{ ami korlátos, de nem zárt halmaz (nem tartalmazza pl. az } \frac{1}{9} \text{ torlódási pontját), így } f(]2,3[) = \left]\frac{1}{9},\frac{1}{4}\right[\text{ nem kompakt.}$

Gyakorló feladatok

1. Vizsgálja az alábbi függvények korlátosságát, határozza meg a sup f_i , inf f_i , max f_i , min f_i számokat (ha léteznek):

$$f_1(x) = \sqrt{4 - x^2} \qquad (x \in [-2, 2]);$$

$$f_2(x) = -3\sqrt{x} \qquad (x \ge 0);$$

$$f_3(x) = |x - 1| \qquad (x \in \mathbb{R});$$

$$f_4(x) = -x^2 + 4x + 6 \quad (x \in]-1, 2]);$$

$$f_5(x) = \frac{3}{x - 1} - 1 \qquad (x \in \mathbb{R} \setminus \{1\}).$$

2. Vizsgálja az

$$f_1(x) = \sqrt{x} \qquad (x \in [0, +\infty[) ;$$

$$f_2(x) = \sqrt[3]{x} \qquad (x \in \mathbb{R}) ;$$

$$f_3(x) = \frac{2x}{1+x^2} \quad (x \in \mathbb{R})$$

függvények monotonitását.

3. Vizsgálja az

$$f_{1}(x) = -3x + 4 \qquad (x \in \mathbb{R});$$

$$f_{2}(x) = [2x] \qquad (x \in \mathbb{R});$$

$$f_{3}(x) = \begin{cases} \frac{x^{2} - 9}{x - 3} &, x \neq 3 \\ 2 &, x = 3 \end{cases};$$

$$f_{4}(x) = \begin{cases} 2x + 1 &, x \leq 0 \\ x^{2} - 2x &, x > 0 \end{cases};$$

$$f_{5}(x) = \lim_{n \to \infty} \frac{3}{2 + x^{n}} \qquad (x \in \mathbb{R})$$

függvények folytonosságát.

4. Egyenletesen folytonos-e az $f(x)=\frac{1}{x^2}$ $(x\in\mathbb{R}\setminus\{0\})$ függvény az $E_1=]0,1],\ E_2=[2,3]$ és $E_3=[1,+\infty[$ halmazokon?

VI. fejezet

Függvények határértéke

Alapfogalmak és tételek

6.1. feladat. Léteznek-e az alábbi határértékek:

a)
$$\lim_{x \to 4} (3x - 5)$$
; b) $\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$; c) $\lim_{x \to 2} [x]$.

Megoldás.

- a) $x_0=4$ torlódási pontja az $f\colon\mathbb{R}\to\mathbb{R},\ f(x)=3x-5$ függvény értelmezési tartományának. $\lim_{x\to 4}(3x-5)=7$. Ehhez azt kell belátnunk, hogy $\forall\ \varepsilon>0\ \exists\ \delta(\varepsilon)>0,\ \forall\ x\in\mathbb{R},\ 0<|x-4|<\delta(\varepsilon)\implies|3x-5-7|<\varepsilon.$ Mivel az utóbbi egyenlőtlenség ekvivalens az $|x-4|<\frac{\varepsilon}{3}$ egyenlőtlenséggel, s ez teljesül, ha $\delta(\varepsilon)=\frac{\varepsilon}{3}$, kapjuk az állítást.
- b) $\lim_{x\to 3} \frac{x^2-9}{x-3} = 6$. $x_0 = 3$ eleme az $f: \mathbb{R} \setminus \{3\} \to \mathbb{R}$, $f(x) = \frac{x^2-9}{x-3}$ függvény értelmezési tartományának. $f(x) = \frac{x^2-9}{x-3} = x+3$, ha $x \in \mathbb{R} \setminus \{3\}$ miatt nyilvánvaló, hogy $\forall \varepsilon > 0$ esetén $\delta(\varepsilon) = \varepsilon$ választással, ha $x \in \mathbb{R}$, $0 < |x-3| < \delta(\varepsilon) = \varepsilon$, akkor $|(x+3)-6| = |x-3| < \varepsilon$, s ez adja az állítást.
- c) A $\lim_{x\to 2}[x]$ határérték nem létezik. $x_0=2$ torlódási pontja az $f:\mathbb{R}\to\mathbb{R},\ f(x)=[x]$ függvény értelmezési tartományának. A=1 nem határérték. Ehhez azt kell belátni, hogy $\exists\ \varepsilon>0,\ \forall\ \delta(\varepsilon)>0$ -ra $\exists\ x\in\mathbb{R},\ 0<|x-2|<\delta(\varepsilon)$ -ra $|[x]-1|>\varepsilon$. Legyen $\varepsilon=\frac{1}{2}\quad\forall\ \delta(\varepsilon)$ -ra $\exists\ x\in K(2,\delta(\varepsilon))\ \cap\]2,3],$ melyre [x]=2, így $|[x]-1|=1>\frac{1}{2}$.

A=2sem lehet határérték, mert $\varepsilon=\frac{1}{2}\text{-re}\ \forall\ \delta(\varepsilon)>0$ esetén
 $\exists\ x\in$

 $K(2,\delta(\varepsilon)) \cap [1,2[$, melyre [x]=1, melyből $|[x]-2|=1>\frac{1}{2}$ következik. $A \notin \{1,2\}$ valós szám sem lehet határérték, mert ha $\varepsilon = \min\{|A-1|,|A-2|\}$, úgy $\forall \ \delta(\varepsilon) > 0$ -ra $\forall \ x \in K(2,\delta(\varepsilon)) \cap [1,2[$ -re $[x]=1 \implies |[x]-A|=|A-1| \ge \varepsilon$.

1. megjegyzés. $\exists \lim_{x \to 2+0} [x] = 2$ és $\lim_{x \to 2-0} [x] = 1$.

[x]=2, ha $x\in]2,3[$, így $\forall \ arepsilon >0$ -ra $\delta(arepsilon)=1$ választással, ha $0<|x-2|<1\Longrightarrow |[x]-2|=|2-2|=0<arepsilon$, ami adja az első állítást. [x]=1, ha $x\in [1,2[$, így $\forall \ arepsilon >0$ -ra $\delta(arepsilon)=1$ -et választva, ha $x\in [1,2[\Longrightarrow |[x]-1|=|1-1|=0<arepsilon ,$ s ez pedig definíció szerint a második állítást

 $x_0 = 2$ -ben tehát létezik a függvény jobb-és baloldali határértéke.

6.2. feladat. Bizonyítsa be, hogy

a)
$$\lim_{x \to 2} \frac{1}{(x-2)^2} = +\infty$$
; b) $\lim_{x \to 3} \left(1 - \frac{2}{(x-3)^2} \right) = -\infty$;
c) $\nexists \lim_{x \to 1} \frac{2}{x-1}$.

Megoldás.

adja.

- a) Az állításhoz azt kell belátnunk, hogy
 - $x_0 = 2$ torlódási pontja az $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$, $f(x) = \frac{1}{(x-2)^2}$ függvény értelmezési tartományának, ami nyilvánvaló.
 - $\forall K \in \mathbb{R}$ -re $\exists \delta(K), \ \forall \ x \in \mathbb{R} \setminus \{2\}$ és $|x-2| < \delta(K)$ esetén $\frac{1}{(x-2)^2} > K.$

Ha $K \leq 0$, úgy \forall $\delta(K)$ jó, hiszen $\frac{1}{(x-2)^2} > 0 \geq K \ \forall \ x \in K(2, \delta(K)) \setminus \{2\}$ esetén.

HaK>0, úgy $\frac{1}{(x-2)^2}>K\iff (x-2)^2<\frac{1}{K}\iff |x-2|<\frac{1}{\sqrt{K}}$, amiből következik, hogy adott K-ra $\delta(K)=\frac{1}{\sqrt{K}}$ választás adja a definíció teljesülését, s így az állítást.

b) Az $f(x)=1-\frac{2}{(x-3)^2}$ függvény értelmezési tartománya az $E=\mathbb{R}\setminus\{3\}$ halmaz, melyre nyilván $3\in E'.$

Be kell látni, hogy

$$\forall K \in \mathbb{R}\text{-re } \exists \ \delta(K) > 0, \ \forall \ x \in E, \ |x - 3| < \delta(\varepsilon) \implies 1 - \frac{2}{(x - 3)^2} < K.$$

Ha
$$K\geq 1,$$
akkor $-\frac{2}{(x-3)^2}<0\leq K-1$ miatt
 $\forall~\delta(K)>0$ jó. Ha $K<1,$ akkor

$$1-\frac{3}{(x-2)^2} < K \iff \frac{3}{(x-2)^2} > 1-K \iff$$

$$\iff (x-2)^2 < \frac{3}{1-K} > 0 \iff \iff 0 < |x-2| < \sqrt{\frac{3}{1-K}}$$
 miatt, ha $\delta(K) = \sqrt{\frac{3}{1-K}}$, úgy
$$0 < |x-2| < \delta(K) \implies 1-\frac{3}{(x-2)^2} < K.$$

Tehát a b) állítás igaz.

c) Az $x_0=1$ nyilván torlódási pontja az $f(x)=\frac{2}{x-1}$ $(x\in\mathbb{R}\setminus\{1\})$ függvény értelmezési tartományának.

Az a) és b) részhez hasonlóan beláthatjuk, hogy

$$\lim_{x \to 1+0} \frac{2}{x-1} = +\infty, \qquad \lim_{x \to 1-0} \frac{2}{x-1} = -\infty \ .$$

A jobb-és baloldali határérték különböző, így az állítás igaz.

6.3. feladat. Bizonyítsa be, hogy

a)
$$\lim_{x \to +\infty} \frac{x^2}{1+x^2} = 1$$
;

b)
$$\lim_{x \to +\infty} \frac{1}{x^k} = 0$$
 és $\lim_{x \to -\infty} \frac{1}{x^k} = 0$ ha $k \in \mathbb{N}$ rögzített.

Megoldás.

a) Az $f(x) = \frac{x^2}{1+x^2}$ $(x \in \mathbb{R})$ függvény értelmezési tartománya felülről nem korlátos.

Be kell látnunk, hogy

$$\forall \varepsilon > 0 \; \exists \; M(\varepsilon), \; \forall \; x \in \mathbb{R} \; x > M(\varepsilon) \implies \left| \frac{x^2}{1+x^2} - 1 \right| < \varepsilon.$$

$$\text{Ha } \varepsilon > 1, \; \text{úgy } 0 < \frac{x^2}{1+x^2} < 1 \; \text{miatt} \; \left| \frac{x^2}{1+x^2} - 1 \right| < 1 < \varepsilon, \; \text{így } \forall \; x \in \mathbb{R},$$

$$\text{így } \forall \; M(\varepsilon) \; \text{jó.}$$

$$\text{Ha } \varepsilon < 1, \; \text{akkor} \; \left| \frac{x^2}{1+x^2} - 1 \right| < \varepsilon \iff \frac{1}{1+x^2} < \varepsilon \iff 1+x^2 > \frac{1}{\varepsilon}$$

$$\iff x^2 > \frac{1}{\varepsilon} - 1 \iff x > \sqrt{\frac{1 - \varepsilon}{\varepsilon}} \text{ miatt, ha } M(\varepsilon) = \sqrt{\frac{1 - \varepsilon}{\varepsilon}}, \text{ akkor}$$
$$x > M(\varepsilon) \implies \left| \frac{x^2}{1 + x^2} - 1 \right| < \varepsilon, \text{ s ez definíció szerint adja az állítást.}$$

b) Definíció szerint például $\lim_{x\to +\infty} \frac{1}{r^k} = 0$, ha

$$\forall \ \varepsilon > 0 \ \exists \ M(\varepsilon), \ \forall \ x \in \mathbb{R} \setminus \{0\} \ \ x > M(\varepsilon) \implies \left|\frac{1}{x^k} - 0\right| < \varepsilon.$$

$$\forall \ \varepsilon > 0 \text{-ra} \ \left|\frac{1}{x^k}\right| < \varepsilon \iff \frac{1}{x^k} < \varepsilon \iff x^k > \frac{1}{\varepsilon} \iff x > \frac{1}{\sqrt{\varepsilon}}, \ \text{ha}$$

$$x > 0, \ \text{figy} \ M(\varepsilon) = \frac{1}{\sqrt{\varepsilon}} > 0 \ \text{választással kapjuk, hogy} \ x > \frac{1}{\sqrt{\varepsilon}} \ \text{esetén}$$

$$\left|\frac{1}{x^k} - 0\right| < \varepsilon, \ \text{azaz teljesül a definíció}.$$
 A másik állítás hasonlóan bizonyítható.

6.4. feladat. Bizonyítsa be, hogy bármely rögzített $k \in \mathbb{N}$ -re

a)
$$\lim_{x \to +\infty} x^k = +\infty$$
;

a)
$$\lim_{x \to +\infty} x^k = +\infty$$
;
b) $\lim_{x \to +\infty} -x^k = -\infty$;

c)
$$\lim_{x \to -\infty} x^k = +\infty$$
, ha k páros és $\lim_{x \to -\infty} x^k = -\infty$, ha k páratlan;

d)
$$\lim_{x \to +\infty} \sqrt[k]{x} = +\infty$$
;

e)
$$\lim_{x \to -\infty} \sqrt[k]{x} = -\infty$$
, ha k páratlan.

Megoldás. A tekintett függvények értelmezési tartománya $E = \mathbb{R}$, mely felülről és alulról sem korlátos.

a) Belátjuk, hogy $\forall K \in \mathbb{R} \exists M(K) \in \mathbb{R}, \ \forall x > M(K) \implies x^k > K$. Ha $K \leq 0$, úgy $\forall M(K) > 0$ jó, hiszen $x > M(K) > 0 \implies x^k \geq 0 \geq K$. Ha K > 0, úgy $M(K) = \sqrt[k]{K}$ esetén $x > \sqrt[k]{K} \iff x^k > K$, így $\forall x > \sqrt[k]{K} \implies x^k > K.$

A $+\infty$ -ben vett $+\infty$ határérték definíciója teljesül, így az a) állítás igaz.

b) Definíció szerint $\lim_{x\to +\infty} -x^k = -\infty$, ha

$$\begin{array}{l} \forall \ K \in \mathbb{R} \ \exists \ M(K) \in \mathbb{R}, \ \forall \ x > M(K) \implies -x^k < K. \\ \text{Ha} \ K \geq 0, \ \text{akkor} \ \forall \ M(K) \geq 0 \ \text{j\'o}, \ \text{hiszen} \ x > M(K) \geq 0 \implies -x^k \leq 0 \leq K. \end{array}$$

$$0 \le K$$
.
Ha $K < 0$, akkor $M(K) = \sqrt[k]{-K}$ esetén $x > \sqrt[k]{-K} \iff x^k > -K \iff$

$$-x^k < K, \, \mathrm{igy} \,\, \forall \,\, x > \sqrt[k]{-K} \implies -x^k < K.$$

Így a definíció $\forall K \in \mathbb{R}$ -re teljesül.

c) Ha k páros, úgy $x^k \ge 0 \ \forall \ x \in \mathbb{R}$. Belátjuk, hogy

 $\forall K \in \mathbb{R} \exists M(K) \in \mathbb{R}, \ \forall x < M(K) \implies x^k > K$, ami definíció szerint adja az állítást.

Ha K < 0, akkor $\forall M(K) \le 0$ -ra $x < M(K) \le 0 \implies x^k \ge 0 > K$.

Ha $K \ge 0$, akkor $M(K) = -\sqrt[k]{K}$ esetén $x < -\sqrt[k]{K} \le 0 \iff x^k > K$, ezért $\forall x < -\sqrt[k]{K} \implies x^k > K$.

Így a definíció $\forall K \in \mathbb{R}$ -re teljesül.

Ha k páratlan, úgy sign $x^k = \text{sign } x$.

Definíció szerint $\lim_{x\to-\infty} x^k = -\infty$, ha

 $\forall K \in \mathbb{R} \exists M(K) \in \mathbb{R}, \ \forall \ x < M(K) \implies x^k < K.$

Ha $K \ge 0$, akkor $\forall M(K) \le 0$ jó, mert $x < M(K) \le 0 \implies x^k < 0 \le K$. Ha K < 0, úgy $M(K) = -\sqrt[k]{-K} = \sqrt[k]{K}$ választással $\forall x < -\sqrt[k]{-K} < 0 \implies x^k < K$.

Így $\forall~K\in\mathbb{R}\text{-re teljesül a definíció.}$

d) $\lim_{x \to +\infty} \sqrt[k]{x} = +\infty \ (x \ge 0) \iff$

 $\forall K \in \mathbb{R} \exists M(K) \in \mathbb{R}, \ \forall x > M(K) \implies \sqrt[k]{x} > K.$

Ha $K \le 0$, úgy $\forall M(K) \ge 0$ jó, mert $x > M(K) \ge 0 \implies \sqrt[k]{x} > 0 \ge K$.

Ha K > 0, legyen $M(K) = K^k$, úgy $\forall x > K^k > 0 \implies \sqrt[k]{x} > K$.

Így $\forall K \in \mathbb{R}$ -re teljesül a definíció.

e) Páratlan $k \in \mathbb{N}$ esetén $\sqrt[k]{x} \doteq -\sqrt[k]{x}$, ha x < 0, s ezután d)-hez hasonlóan kapjuk az állítást.

6.5. feladat.

- a) $\lim_{x \to x_0} x^k = x_0^k$, ha $k \in \mathbb{N}$ rögzített, $x_0 \in \mathbb{R}$;
- b) $\lim_{x\to x_0} \sqrt[k]{x} = \sqrt[k]{x_0}$, ha $k\in\mathbb{N}$ rögzített, $x_0\geq 0$;
- c) $\lim_{x \to x_0} x^k = x_0^k$, ha $k \in \mathbb{Z}$ és $x_0 > 0$;
- d) $\lim_{x \to x_0} x^r = x_0^r$, ha $r \in \mathbb{Q}$ és $x_0 > 0$.

Megoldás. Az átviteli elv szerint az $f: E \subset \mathbb{R} \to \mathbb{R}$ függvénynek az $x_0 \in E'$ ben $\iff \exists$ határértéke, ha $\forall \langle x_n \rangle \colon \mathbb{N} \to E \setminus \{x_0\}$ x_0 -hoz konvergáló sorozatra $\exists \lim_{x \to x_0} f(x_n) = A$.

 x_0 torlódási pontja a vizsgált függvények értelmezési tartományának, így a határértékek vizsgálhatók.

A bizonyításban felhasználjuk a sorozatoknál bizonyított 3.13. feladatot.

- a) Az előbbiek szerint $\lim_{x\to x_0} x^k = x_0^k \iff \text{ha} \ \forall \ \langle x_n \rangle, \ (x_n \neq x_0), \ x_n \to x_0 \text{ so-}$ rozatra $x_n^k \to x_0^k$ teljesül, amit viszont bizonyítottunk a 3.13. feladatban, így az állítás igaz.
- b) Hasonlóan $\lim_{x\to x_0} \sqrt[k]{x} = \sqrt[k]{x_0} \iff \text{ha } \forall \ \langle x_n \rangle, \ (x_n \geq 0, \ x_n \neq x_0 \geq 0)$ 0), $x_n \to x_0$ sorozatra $\sqrt[k]{x_n} \to \sqrt[k]{x_0}$, amit szintén bizonyítottunk a 3.13. feladatban.
- c) és d) Az átviteli elv és a 3.13. feladatban bizonvított további két állítás ugyanígy adja a c) és d)-beli állításokat.

Határérték és műveletek, illetve egyenlőtlenségek

- **6.6. feladat.** Legyen $f,g: E \subseteq \mathbb{R} \to \mathbb{R}$ adott, $x_0 \in E'$, vagy E felülről (alulról) nem korlátos. Bizonyítsa be, hogy
 - $\begin{array}{ll} \text{a)} & \text{ha} \lim_{x \to x_0} f(x) = +\infty \quad (\text{vagy} \infty) \text{ \'es } \lim_{x \to x_0} g(x) = A, \\ & \text{akkor} \lim_{x \to x_0} (f(x) + g(x)) = +\infty \quad (\text{vagy} \infty); \\ \\ \text{b)} & \text{ha} \lim_{x \to +\infty} f(x) = +\infty \quad (\text{vagy} \infty) \text{ \'es } \lim_{x \to +\infty} g(x) = A, \end{array}$
 - akkor $\lim_{x \to +\infty} (f(x) + g(x)) = +\infty \text{ (vagy } -\infty);$
 - c) ha $\lim_{x \to -\infty} f(x) = +\infty$ (vagy $-\infty$) és $\lim_{x \to -\infty} g(x) = A$, akkor $\lim_{x \to \infty} (f(x) + g(x)) = +\infty \text{ (vagy } -\infty).$

Megoldás. Az átviteli elv a végesben vett végtelen és végtelenben vett végtelen tipusú határértékeknél is igaz, így a 3.15. feladat bizonyított állításait felhasználva feladatunk állításai egyszerűen bizonyíthatók.

- $\lim_{x \to \infty} (f(x) + g(x)) = +\infty \iff \forall x_n \to x_0 \ (x_0 \neq x_n \in E) \text{ esetén}$ $\lim_{n \to \infty} (f(x_n) + g(x_n)) = +\infty.$ Ha $x_n \to x_0 \ (x_0 \neq x_n \in E)$, akkor a feltételek és az átviteli elv miatt $\lim_{n\to\infty} f(x_n) = +\infty \ (-\infty) \text{ és } \lim_{n\to\infty} g(x_n) = A, \text{ így a } 3.15. \text{ feladat adja, hogy}$ $\lim_{n\to\infty} (f(x_n) + g(x_n)) = +\infty (-\infty), \text{ ezért az átviteli elv adja az állítást.}$
- b) és c) hasonlóan bizonyítható.
- **6.7. feladat.** Legyen adott $f,g: E \subset \mathbb{R} \to \mathbb{R}, x_0 \in E'$. Bizonyítsa be,
- a) ha $\exists c \in \mathbb{R}_+$ és $K(x_0, \delta)$, hogy $g(x) \geq c$, ha $x \in K(x_0, \delta)$ és $\lim_{x \to x_0} f(x) = +\infty \text{ (vagy } -\infty), \text{ akkor } \lim_{x \to x_0} f(x)g(x) = +\infty \text{ (ill. } -\infty);$

b) ha $\exists c \in \mathbb{R}, c < 0$ és $K(x_0, \delta)$, hogy $g(x) \leq c$, ha $x \in K(x_0, \delta)$ és $\lim_{x \to x_0} f(x) = +\infty$ (vagy $-\infty$), akkor $\lim_{x \to x_0} f(x)g(x) = -\infty$ (ill. $+\infty$). Az állítások egyoldali határértékre is teljesülnek.

Az állítások a $+\infty$ -ben, illetve $-\infty$ -ben vett határértékre is igazak a feltételek megfelelő módosításával $(K(x_0, \delta)$ helyett $M \in \mathbb{R}$ -t használunk, hogy pl. $g(x) \geq c > 0$, ha x > M (vagy x < M), illetve $g(x) \leq c < 0$, ha x > M (vagy x < M) teljesül).

Ha $\lim_{x \to x_0} g(x) = +\infty$ (ill. $-\infty$), úgy g teljesíti a korábbi feltételeket.

Megoldás. A korábban már használt átviteli elv végesben vett végtelen és végtelenben vett végtelen határértékekre is igaz, így használhatjuk a 3.17. feladat bizonyított állításait.

a) például $\lim_{x \to x_0} f(x)g(x) = +\infty \iff \forall x_n \to x_0 \ (x_n \in E, \ x_n \neq x_0)$ esetén $\lim_{n \to \infty} f(x_n)g(x_n) = +\infty.$ $\forall x_n \to x_0 \ (x_n \in E, \ x_n \neq x_0) \implies \lim_{n \to \infty} f(x_n) = +\infty \text{ és } g(x_n) \geq c \ (x_n \in K(x_0, \delta)), \text{ így a } 3.17. \text{ feladat miatt } \lim_{n \to \infty} f(x_n)g(x_n) = +\infty \implies \text{igaz, hogy } \lim_{x \to x_0} f(x)g(x) = +\infty.$

A másik állítás ugyanígy bizonyítható.

- b) Az átviteli elv és a 3.17. feladat b) állítása az a) rész bizonyításával egyező módon adja állításunkat.
- **6.8. feladat.** Legyen $f,g\colon E\subset\mathbb{R}\to\mathbb{R}$ adott, $x_0\in E'$, vagy E felülről (illetve alulról) nem korlátos és $\lim_{x\to x_0}f(x)=+\infty$, $\lim_{x\to x_0}g(x)=+\infty$ (ill. $-\infty$), vagy $\lim_{x\to +\infty}f(x)=+\infty$, $\lim_{x\to x_0}g(x)=+\infty$ (ill. $-\infty$), vagy $\lim_{x\to -\infty}f(x)=+\infty$ és $\lim_{x\to -\infty}g(x)=+\infty$ (ill. $-\infty$), akkor
 - a) $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$ (illetve $-\infty$);
 - b) $\lim_{x \to +\infty} (f(x) + g(x)) = +\infty$ (illetve $-\infty$);
 - c) $\lim_{x \to -\infty} (f(x) + g(x)) = +\infty$ (illetve $-\infty$);
 - d) $\lim_{x\to x_0} cf(x) = +\infty$ (illetve $-\infty$), ha c>0, $\lim_{x\to x_0} cf(x) = -\infty$ (illetve $+\infty$), ha c<0;
 - e) $\lim_{x \to +\infty} cf(x) = +\infty$ (illetve $-\infty$), ha c > 0, $\lim_{x \to +\infty} cf(x) = -\infty$ (illetve $+\infty$), ha c < 0;
 - f) $\lim_{x \to -\infty} cf(x) = +\infty$ (illetve $-\infty$), ha c > 0, $\lim_{x \to -\infty} cf(x) = -\infty$ (illetve $+\infty$), ha c < 0.

Megoldás. A bizonyításokban az átviteli elv(eket), valamint a 3.15. feladatot használjuk.

a) $\lim_{x \to x_0} (f(x) + g(x)) = +\infty$ (illetve $-\infty$) \iff ha $\forall x_n \to x_0 \ (x_0 \in E', x_n \in E, x_n \neq x_0)$ esetén $\lim_{n \to +\infty} (f(x_n) + g(x_n)) = +\infty$ (illetve $-\infty$). Legyen $x_n \to x_0$ (az adott tulajdonságokkal is rendelkező) tetszőleges sorozat, úgy a feltételek és az átviteli elv adja, hogy $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} g(x_n) = +\infty$ (illetve $-\infty$), így a 3.15. feladat miatt $\lim_{n \to +\infty} (f(x_n) + g(x_n)) = +\infty$ (illetve $-\infty$).

Újra alkalmazva az átviteli elvet kapjuk az a) állítást.

- b) és c) az a)-val egyező módon bizonyítható.
- d) e) és f) bizonyításához az átviteli elv(eket) és a 3.15. feladat c) és d) állításait használjuk.

6.9. feladat. Legyen adott az

$$R(x) = \frac{P_k(x)}{Q_l(x)} = \frac{a_k x^k + \dots + a_0}{b_l x^l + \dots + b_0} \qquad (k, l \in \mathbb{N} \text{ r\"{o}gz\'{i}tett}; a_k, b_l \neq 0)$$

racionális függvény (mely Q_l zérushelyeitől eltekintve minden valós számra értelmezett).

Bizonyítsa be, hogy

a)
$$\lim_{x \to +\infty} R(x) = \lim_{x \to -\infty} R(x) = 0$$
, ha $k < l$;

b)
$$\lim_{x \to +\infty} R(x) = \lim_{x \to -\infty} R(x) = \frac{a_k}{b_l}$$
, ha $k = l$;

c)
$$\lim_{x \to +\infty} R(x) = \begin{cases} +\infty, & \text{ha sign } a_k = \text{sign } b_l \\ -\infty, & \text{ha sign } a_k \neq \text{sign } b_l \end{cases}$$
, ha $k > l$;

d)
$$\lim_{x \to -\infty} R(x) = \begin{cases} +\infty, & \text{ha sign } a_k = \text{sign } b_l \\ -\infty, & \text{ha sign } a_k \neq \text{sign } b_l \end{cases}, & \text{ha } k-l > 0 \text{ páros};$$

$$\lim_{x \to -\infty} R(x) = \begin{cases} -\infty, & \text{ha sign } a_k = \text{sign } b_l \\ +\infty, & \text{ha sign } a_k \neq \text{sign } b_l \end{cases}, & \text{ha } k-l > 0 \text{ páratlan}.$$

Megoldás. Nyilván

$$R(x) = x^{k-l} \frac{a_k + \frac{a_{k-1}}{x} + \dots + a_0}{b_l + \frac{b_{l-1}}{x} + \dots + b_0} \doteq x^{k-l} g(x)$$

a) Ha k < l, úgy $R(x) = \frac{1}{x^{l-k}} \cdot g(x)$, ahol $l - k \in \mathbb{N}$.

A 6.3. feladat b) része miatt $\lim_{x\to\infty}\frac{1}{x^{l-k}}=0$ és $\lim_{x\to\infty}\frac{a_i}{x^i}=\lim_{x\to+\infty}\frac{b_j}{x^j}=0$ $(i,j\in\mathbb{N})$ is teljesül. Ekkor – a határérték és műveletek kapcsolatára vonatkozó tételek miatt – $\lim_{x\to+\infty}g(x)=\frac{a_k}{b_l}$, ami $\lim_{x\to\infty}\frac{1}{x^{l-k}}=0$ -val együtt adja, hogy $\lim_{x\to+\infty}R(x)=0$.

A $\lim_{x \to -\infty} R(x) = 0$ ugyanígy bizonyítható.

b) Ha k = l, úgy R(x) = g(x) és – ahogy láttuk –

$$\lim_{x \to +\infty} g(x) = \lim_{x \to -\infty} g(x) = \frac{a_k}{b_l} ,$$

így kapjuk a b) állítást

c) Ha k > l, úgy $R(x) = x^{k-l}g(x)$ és $k - l \in \mathbb{N}$. Ekkor $\lim_{x \to \infty} x^{k-l} = +\infty$ (lásd 6.3. feladat) és

$$\lim_{x \to +\infty} g(x) = \frac{a_k}{b_l} \begin{cases} > 0, \text{ ha sign } a_k = \text{sign } b_l \\ < 0, \text{ ha sign } a_k \neq \text{sign } b_l \end{cases}$$

ami a határérték definíciója miatt adja, hogy $\exists~M\in\mathbb{R},$ hogy

$$g(x) \begin{cases} \geq \frac{1}{2} \frac{a_k}{b_l}, \text{ ha } \frac{a_k}{b_l} > 0, \text{ ha } x > M \\ \leq -\frac{1}{2} \left| \frac{a_k}{b_l} \right|, \text{ ha } \frac{a_k}{b_l} < 0, \text{ ha } x < M. \end{cases}$$

S ezek a 6.7. feladat miatt adják a c) állítást.

d) Itt a fentieken túl azt használjuk fel, hogy

$$\lim_{x \to -\infty} x^{k-l} = +\infty, \text{ ha } k-l \text{ páros és}$$

$$\lim_{x \to -\infty} x^{k-l} = -\infty, \text{ ha } k - l \text{ páratlan.}$$

(lásd 6.4. feladat c) része).

Természetesen most is igaz, hogy $\lim_{x\to-\infty} g(x) = \frac{a_k}{b_l}$, így újra alkalmazható a 6.7. feladat, amivel kapjuk az állításokat.

6.10. feladat. Határozza meg az alábbi függvények határértékét (egyoldali határértékét) az adott x_0 pontban (pontokban):

6.10.1.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = 5x^3 + x^2 + 2x - 5, \ x_0 = 1.$$

 $Megoldás.\ x_0=1$ torlódási pontja $\mathbb{R}\text{-}\mathrm{nek}.$

A 6.5. feladat szerint $\exists \lim_{x \to x_0} x^k = x_0^k \ (k \in \mathbb{N})$, így az ilyen függvények lineáris kombinációjának is (ahogy ezt egyszerűen bizonyíthatjuk) létezik határértéke és $\lim_{x \to 1} (5x^3 + x^2 + 2x - 5) = 3$.

6.10.2.
$$f: E = \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ f(x) = \frac{x^3 - 1}{x - 1}, \ x_0 = 1.$$

Megoldás. $x_0 = 1 \in E'$

$$f(x) = \frac{x^3 - 1}{x - 1} = \frac{(x - 1)(x^2 + x + 1)}{x - 1} = x^2 + x + 1 \qquad (x \in E)$$

és az előbbiek miatt $\exists \lim_{x \to 1} (x^2 + x + 1) = 3$, így

$$\exists \lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} (x^2 + x + 1) = 3.$$

6.10.3.
$$f: E = \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ f(x) = \frac{x^m - 1}{x^n - 1} \ (m, n \in \mathbb{N}), \ x_0 = 1.$$

Megoldás. $x_0 = 1 \in E'$.

$$f(x) = \frac{x^m - 1}{x^n - 1} = \frac{(x - 1)(x^{m-1} + \dots + 1)}{(x - 1)(x^{n-1} + \dots + 1)} = \frac{x^{m-1} + \dots + 1}{x^{n-1} + \dots + 1} \qquad (x \in E)$$

így az előbbiek és a hányados határértékére vonatkozó tétel miatt

$$\exists \lim_{x \to 1} \frac{x^m - 1}{x^n - 1} = \lim_{x \to 1} \frac{x^{m-1} + \dots + 1}{x^{n-1} + \dots + 1} = \frac{m}{n}.$$

6.10.4.
$$f: E = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\} \to \mathbb{R}, \ f(x) = \frac{3x^2 + x - 1}{2x + 1}, \ x_0 = 2.$$

 $Megold \acute{a}s.\ x_0=2\in E'.$ $\lim_{x\to 2}(3x^2+x-1)=12,\ \lim_{x\to 2}(2x+1)=5,$ ezért hasonlóan mint előbb

$$\exists \lim_{x \to 2} \frac{3x^2 + x - 1}{2x + 1} = \frac{12}{5} .$$

6.10.5.
$$f: E = [0, +\infty[\setminus \{1\}]] \to \mathbb{R}, \ f(x) = \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1}, \ x_0 = 1.$$

Megoldás. $x_0 = 1 \in E'$.

 $\forall x \in E$ esetén

$$\frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} = \frac{\sqrt{x}((\sqrt{x})^3 - 1)}{\sqrt{x} - 1} = \frac{\sqrt{x}(\sqrt{x} - 1)(x + \sqrt{x} + 1)}{\sqrt{x} - 1} = \sqrt{x}(x + \sqrt{x} + 1) ,$$

így a 6.5. feladat és a műveletei tulajdonságok felhasználásával kapjuk, hogy

$$\exists \lim_{x \to 1} \frac{x^2 - \sqrt{x}}{\sqrt{x} - 1} = \lim_{x \to 1} \sqrt{x}(x + \sqrt{x} + 1) = 3.$$

6.10.6.
$$f: E = \mathbb{R} \setminus \{3, 5\} \to \mathbb{R}, \ f(x) = \frac{x^2 - 5x + 6}{x^2 - 8x + 15}, \ x_0 = 3.$$

Megoldás. $x_0 = 3 \in E'$.

$$\frac{x^2 - 5x + 6}{x^2 - 8x + 15} = \frac{(x - 2)(x - 3)}{(x - 3)(x - 5)} = \frac{x - 2}{x - 5} \qquad (x \in E)$$

és $\lim_{x \to 3} x - 2 = 1$, $\lim_{x \to 3} x - 5 = -2$ miatt kapjuk, hogy $\lim_{x \to 3} f(x) = -\frac{1}{2}$.

6.10.7.
$$f: E = \mathbb{R} \setminus \{-1, 0, 1\} \to \mathbb{R}, \ f(x) = \frac{x^3 - x^2 + x - 1}{x^3 - x}, \ x_0 = 1, x_0 = 0.$$

Megoldás. $1, 0 \in E'$.

$$\frac{x^3 - x^2 + x - 1}{x^3 - x} = \frac{x^2(x - 1) + (x - 1)}{x(x^2 - 1)} = \frac{(x - 1)(x^2 + 1)}{x(x - 1)(x + 1)} = \frac{x^2 + 1}{x(x + 1)} = \frac{(x^2 - 1) + 2}{x(x + 1)} = \frac{x - 1}{x} + \frac{2}{x(x + 1)} = 1 - \frac{1}{x} + 2\left(\frac{1}{x} - \frac{1}{x + 1}\right) = 1 + \frac{1}{x} - \frac{2}{x + 1} \quad (\forall x \in E) ,$$

így

$$\exists \lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^3 - x} = \lim_{x \to 1} \left(1 + \frac{1}{x} - \frac{2}{x+1} \right) = 1.$$

$$\lim_{x\to 0} \left(1 - \frac{2}{x+1}\right) = -1, \lim_{x\to 0+0} \frac{1}{x} = +\infty, \text{ fgy a 6.7. feladat miatt}$$

$$\lim_{x \to 0+0} \frac{x^3 - x^2 + x - 1}{x^3 - x} = +\infty .$$

 $\lim_{x\to 0-0}\frac{1}{x}=-\infty \text{ \'es a 6.7. feladat adja azt is, hogy}$

$$\lim_{x \to 0-0} \frac{x^3 - x^2 + x - 1}{x^3 - x} = -\infty .$$

Ezek pedig adják, hogy $\nexists \lim_{x\to 0} \frac{x^3-x^2+x-1}{x^3-x}$.

6.10.8.
$$f: E = \mathbb{R} \setminus \{3\} \to \mathbb{R}, \ f(x) = \frac{x+2}{x-3}, \ x_0 = 3.$$

$$Megoldás.$$
 $f(x) = \frac{x+2}{x-3} = \frac{x-3+5}{x-3} = 1 + \frac{5}{x-3}$, így felhasználva, hogy

$$\lim_{x \to 3+0} \frac{5}{x-3} = +\infty \text{ és } \lim_{x \to 3-0} \frac{5}{x-3} = -\infty, \text{ a 6.7. feladat adja, hogy}$$

$$\exists \lim_{x \to 3+0} \frac{x+2}{x-3} = \lim_{x \to 3+0} \left(1 + \frac{5}{x-3} \right) = +\infty$$

jobboldali és

$$\exists \lim_{x \to 3-0} \frac{x+2}{x-3} = \lim_{x \to 3-0} \left(1 + \frac{5}{x-3} \right) = -\infty$$

baloldali határérték, melyek különbözőek, így $\nexists \lim_{x\to 3} \frac{x+2}{x-3}$.

6.10.9.
$$f: E = \mathbb{R} \setminus \{-2, 2\} \to \mathbb{R}, \ f(x) = \frac{1}{x-2} - \frac{4}{x^2 - 4}, \ x_0 = 2, \ x_0 = -2.$$
 Megoldás. $-2, 2 \in E'$.

$$\frac{1}{x-2} - \frac{4}{x^2 - 4} = \frac{x+2-4}{(x-2)(x+2)} = \frac{x-2}{(x-2)(x+2)} = \frac{1}{x+2} \qquad (x \in E) \ ,$$
 figy

$$\exists \ \lim_{x \to 2} \left(\frac{1}{x-2} - \frac{4}{x^2 - 4} \right) = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{2} \ .$$

Továbbá $\lim_{x\to -2+0} \frac{1}{x+2} = +\infty$, illetve $\lim_{x\to -2-0} \frac{1}{x+2} = -\infty$ miatt

$$\lim_{x \to -2+0} \left(\frac{1}{x-2} - \frac{4}{x^2 - 4} \right) = +\infty, \quad \lim_{x \to -2-0} \left(\frac{1}{x-2} - \frac{4}{x^2 - 4} \right) = -\infty ,$$

melyek adják, hogy $existsign \lim_{x \to -2} \left(\frac{1}{x-2} - \frac{4}{x^2-4} \right).$

6.10.10.
$$f: E = \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{x^2 + 1}{x^4}, \ x_0 = 0.$$

Megoldás. $x_0 = 0 \in E'$.

A korábbiak szerint $\lim_{x\to 0} = (x^2 + 1) = 1$.

 $\lim_{x\to 0} x^4 = 0$, így a Kalkulus I. jegyzet VI/2. fejezet 2. tétele szerint

$$\lim_{x \to 0} \frac{1}{x^4} = \lim_{x \to 0} \frac{1}{|x^4|} = +\infty .$$

Ezekből – felhasználva a 6.7. feladat eredményét – kapjuk, hogy

$$\lim_{x \to 0} f(x) = (x^2 + 1) \frac{1}{x^4} = +\infty .$$

6.10.11.
$$f: E = \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{1}{x^n} \ (n \in N), \ x_0 = 0.$$

Megoldás. $x_0 = 0 \in E'$.

Hanpáros, úgy $\lim_{x\to 0}x^n=0,$ illetve az előző feladatban említett tétel miatt

$$\lim_{x \to 0} \frac{1}{x^n} = \lim_{x \to 0} \frac{1}{|x^n|} = +\infty .$$

Han páratlan, úgy $\lim_{x\to 0} x^n = 0$ miatt

$$\lim_{x \to 0+0} \frac{1}{x^n} = \lim_{x \to 0+0} \frac{1}{|x^n|} = +\infty ,$$

míg

$$\lim_{x \to 0-0} \frac{1}{x^n} = \lim_{x \to 0-0} \frac{1}{-|x|^n} = \lim_{x \to 0-0} (-1) \frac{1}{|x|^n} = -\infty \ .$$

6.10.12.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = 3x^5 - x^2 + 2x + 6, +\infty$$
-ben.

Megoldás. f $E=\mathbb{R}$ értelmezési tartománya felülről nem korlátos. Az $f(x)=\frac{3x^5-x^2+2x+6}{1}=R(x)$ racionális törtfüggvény, melyben a

6.9. feladat jelölései szerint $a_5 = 3$, $b_0 = 1$, k = 5, l = 0,

így k > l, sign $a_5 = \text{sign } b_0$, ezért $\lim_{x \to \infty} f(x) = +\infty$.

6.10.13.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0, +\infty$$
-ben.

Megoldás. Az előző feladathoz hasonlóan, a 6.8. feladat felhasználásával:

$$k = n, l = 0, a_n = a_n, b_0 = 1, k = n > 0 = l.$$

sign
$$a_n = \text{sign } b_0$$
, ha $a_n > 0 \implies \lim_{x \to +\infty} f(x) = +\infty$.

$$sign a_n = sign b_0, \text{ ha } a_n > 0 \Longrightarrow \lim_{x \to +\infty} f(x) = +\infty.$$

$$sign a_n \neq sign b_0, \text{ ha } a_n < 0 \Longrightarrow \lim_{x \to +\infty} f(x) = -\infty.$$

6.10.14.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0, \ -\infty$$
-ben.

Megoldás. \mathbb{R} alulról nem korlátos.

Az előbbi feladat meggondolásait követve és a 6.9. feladat d) állítását felhasználva kapjuk, hogy

- ha n páros és

$$a_n > 0 \implies \lim_{x \to -\infty} f(x) = +\infty ,$$

 $a_n < 0 \implies \lim_{x \to -\infty} f(x) = -\infty .$

- ha n páratlan és

$$a_n > 0 \implies \lim_{x \to -\infty} f(x) = -\infty ,$$

 $a_n < 0 \implies \lim_{x \to -\infty} f(x) = +\infty .$

6.10.15.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = (-2x^4 + 3x^3 - 1), \ -\infty$$
-ben.

Megoldás. \mathbb{R} alulról nem korlátos.

A feladat az előző feladat speciális esete:

$$n = 4, \ a_4 = -4 < 0, \text{ fgy } \lim_{x \to -\infty} f(x) = -\infty.$$

6.10.16.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{2x^3 - 3x + 6}{x^2 + x + 1}, +\infty$$
-ben, illetve $-\infty$ -ben.

Megoldás. \mathbb{R} sem felülről, sem alulról nem korlátos.

A feladat a 6.9. feladat speciális esete:

 $k=3>2=l,\ a_3=2,\ b_2=1,\ {\rm sign}\ a_3={\rm sign}\ b_2,$ így a c) rész miatt $\lim_{x\to\infty}f(x)=+\infty,$ míg a d) rész miatt $\lim_{x\to-\infty}f(x)=-\infty$ (hisz k-l=1 páratlan).

6.10.17.
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x^4 - 3x^2 + 2}{4x^4 + 3x^2 + 6}, \ x_0 = +\infty, \ x_0 = -\infty.$$

Megoldás. \mathbb{R} sem alulról, sem felülről nem korlátos, így vizsgálható a határérték $x_0 = +\infty$ és $x_0 = -\infty$ -ben is.

A feladat a 6.9.feladat speciális esete. Ezen feladat b) részét használhatjuk:

$$k = l = 4$$
, fgy $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = \frac{1}{4}$.

A feladat közvetlenül is vizsgálható. Az

$$f(x) = \frac{x^4 - 3x^2 + 2}{4x^4 + 3x^2 + 6} = \frac{1 - \frac{3}{x^2} + \frac{2}{x^4}}{4 + \frac{3}{x^2} + \frac{6}{x^4}}$$

egyenlőség és

$$\lim_{x \to +\infty} \frac{1}{x^2} = \lim_{x \to -\infty} \frac{1}{x^2} = 0 ,$$

illetve

$$\lim_{x \to +\infty} \frac{1}{x^4} = \lim_{x \to -\infty} \frac{1}{x^4} = 0 ,$$

 $\lim_{x\to +\infty}\frac{1}{x^4}=\lim_{x\to -\infty}\frac{1}{x^4}=0\ ,$ valamint a határérték és a műveletek kapcsolatára vonatkozó tételek miatt kapjuk, hogy $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \frac{1}{4}$.

6.10.18.
$$f: E = \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{3x^2 - x + 2}{2x^3 + x^2 + x}, \ x_0 = +\infty, x_0 = -\infty.$$

Megoldás. $E = \mathbb{R} \setminus \{0\}$ nem korlátos alulról és felülről, így vizsgálható a határérték az adott x_0 -ban.

E feladat is a 6.9. feladat speciális esete (k = 2 < 3 = l), így annak a) része miatt $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$ A közvetlen megoldás az

$$f(x) = \frac{3x^2 - x + 2}{2x^3 + x^2 + x} = \frac{1}{x} \frac{3 - \frac{1}{x} + \frac{2}{x^2}}{2 + \frac{1}{x} + \frac{1}{x^2}}$$

egyenlőségből, illetve abból, hogy

$$\lim_{x\to +\infty}\frac{1}{x}=\lim_{x\to -\infty}\frac{1}{x}=0, \qquad \lim_{x\to +\infty}\frac{1}{x^2}=\lim_{x\to -\infty}\frac{1}{x^2}=0\ ,$$

a műveleti tulajdonságok felhasználásával azonnal adódik.

6.11. feladat. Vizsgálja az alábbi határértékeket:

a)
$$\lim_{x\to 0} \frac{\sqrt[3]{x+1}-1}{x}$$
;
b) $\lim_{x\to 2} \sqrt{x^2+2x+8}$;

b)
$$\lim_{x\to 2} \sqrt{x^2 + 2x + 8}$$

c)
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - x \right).$$

Megoldás.

a) Az $x \to \frac{\sqrt[3]{x+1}-1}{x}$ függvény $E = \mathbb{R} \setminus \{0\}$ -on értelmezett és $0 \in E'$. Az $(a-b)(a^2+ab+b^2) = a^3-b^3$ azonosság felhasználásával:

$$\frac{\sqrt[3]{x+1}-1}{x} = \frac{(\sqrt[3]{x+1}-1)((\sqrt[3]{x+1})^2 + \sqrt[3]{x+1}+1)}{(\sqrt[3]{x+1})^2 + \sqrt[3]{x+1}+1} = \frac{1}{(\sqrt[3]{x+1})^2 + \sqrt[3]{x+1}+1}.$$

A $h(x) = \sqrt[3]{x+1}$ $(x \in \mathbb{R})$ függvény a g(x) = x+1 $(x \in \mathbb{R})$ és $f(y) = \sqrt[3]{y}$ $(y \in \mathbb{R})$ függvények h(x) = f(g(x)) $(x \in \mathbb{R})$ szerint definiált összetett függvénye, továbbá a korábbiak szerint

$$\lim_{x \to 0} (x+1) = 1, \lim_{y \to 1} \sqrt[3]{y} = \sqrt[3]{1} = 1,$$

ezért az összetett függvény határértékére vonatkozó tétel feltételei teljesülnek, ami adja, hogy $\lim_{x\to 0} \sqrt[3]{x+1} = 1$, így a műveleti tulajdonságokat is használva:

$$\lim_{x \to 0} \frac{\sqrt[3]{x+1} - 1}{x} = \lim_{x \to 0} \frac{1}{(\sqrt[3]{x+1})^2 + \sqrt[3]{x+1} + 1} = \frac{1}{3}$$

következik.

b) A $h(x) = \sqrt{x^2 + 2x + 8}$ $(x \in \mathbb{R})$ függvény értelmezési tartománya \mathbb{R} , melynek $x_0 = 2$ torlódási pontja, továbbá h a $g(x) = x^2 + 2x + 8$ $(x \in \mathbb{R})$ és $f(y) = \sqrt{y}$ $(y \ge 0)$ függvények $h(x) \doteq f(g(x))$ $(x \in \mathbb{R})$ szerint definiált összetett függvénye.

A korábbiak miatt $\exists \lim_{x \to 2} x^2 + 2x + 8 = 16$ és $\lim_{y \to 16} \sqrt{y} = 4$, így az összetett

függvény határértékére vonatkozó tétel miatt $\exists \lim_{x \to 2} \sqrt{x^2 + 2x + 8} = 4.$

Ez belátható a következő gondolatmenettel is:

- g folytonos $x_0=2$ -ben, f folytonos $y_0=g(2)=16$ -ban, így h folytonos $x_0=2$ -ben. $x_0=2\in\mathbb{R}$ pontja és torlódási pontja is h értelmezési tartományának, így a határérték és folytonosság kapcsolatára vonatkozó tétel miatt h határértéke $x_0=2$ -ben megegyezik a h(2)=4 értékkel.
- c) Az $x \to \sqrt{x^2 + x} x$ függvény $\forall x \in \mathbb{R}$ esetén értelmezett, így a határérték vizsgálható.

Nyilvánvaló a

$$\sqrt{x^2 + x} - x = \frac{(\sqrt{x^2 + x} - x)(\sqrt{x^2 + x} + x)}{\sqrt{x^2 + x} + x} = \frac{x}{\sqrt{x^2 + x} + x} = \frac{1}{\sqrt{1 + \frac{1}{x} + 1}}$$

egyenlőség, ha $x \neq 0$. Továbbá $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)=1$ és $\lim_{y\to 1} \sqrt{y}=\sqrt{1}=1$, így az összetett függvény határértékére vonatkozó tétel kiterjesztését ($x_0=+\infty$ esetén) használva $\lim_{x\to+\infty}\sqrt{1+\frac{1}{x}}=1$ következik.

Ezeket és a műveleti tulajdonságokat felhasználva:

$$\exists \lim_{x \to +\infty} (\sqrt{x^2 + x} - x) = \lim_{x \to +\infty} \frac{1}{\sqrt{1 + \frac{1}{x}} + 1} = \frac{1}{2}.$$

6.12. feladat. Határozza meg az

$$f_1(x) = \frac{4x - 5}{3x + 2}$$
 $\left(x \in \mathbb{R} \setminus \left\{ -\frac{2}{3} \right\} \right)$ és $f_2(x) = \sqrt{x + 1} - \sqrt{x}$ $(x \ge 0)$

függvények függőleges és vízszintes aszimptótáit (ha léteznek).

Megoldás. Az $x = x_0$ egyenletű egyenes az f függvény függőleges aszimptótája, ha f határértéke (vagy egyoldali határértéke) x_0 -ban $+\infty$, vagy $-\infty$. Az $f_1(x)=\frac{4x-5}{3x+2}$ függvény értelmezési tartománya az $E=\mathbb{R}\setminus\left\{-\frac{2}{3}\right\}$ halmaz, melynek $x_0 = -\frac{2}{3}$ torlódási pontja, továbbá

$$f_1(x) = \frac{4x-5}{3x+2} = \frac{4}{3} \frac{x-\frac{5}{4}}{x+\frac{2}{3}} = \frac{4}{3} - \frac{\frac{23}{9}}{x+\frac{2}{3}}$$

ami a 6.2. feladat c) részével, illetve a 6.10.8. feladattal egyező módon adja, hogy

$$\lim_{x \to -\frac{2}{3} + 0} f_1(x) = -\infty , \qquad \lim_{x \to -\frac{2}{3} - 0} f_1(x) = +\infty ,$$

azaz f_1 jobboldali határértéke $x_0=-\frac{2}{3}$ -ban $-\infty$, míg a baloldali határértéke $-\infty$. Így az $x_0=-\frac{2}{3}$ egyenletű egyenes függőleges aszimptótája f_1 -nek. Minden más helyen a függvény folytonos, így határértéke a véges helyettesítési érték, ezért más függőleges aszimptótája nincs f_1 -nek. Mivel

$$\lim_{x \to +\infty} \frac{4x - 5}{3x + 2} = \lim_{x \to +\infty} \frac{4 - \frac{5}{x}}{3 + \frac{2}{x}} = \frac{4}{3}$$

és

$$\lim_{x \to -\infty} \frac{4x - 5}{3x + 2} = \lim_{x \to -\infty} \frac{4 - \frac{5}{x}}{3 + \frac{2}{x}} = \frac{4}{3}$$

(a 6.9. feladat a) része szerint), így az $y = \frac{4}{3}$ egyenletű egyenes vízszintes aszimptótája f_1 -nek.

Más típusú aszimptótája f_1 -nek nincs.

Az f_2 függvény $\forall x_0 \in E = [0, \infty[$ -ben folytonos, így nem lehet függőleges aszimptótája. Ugyanakkor

$$f_2(x) = \sqrt{x+1} - \sqrt{x} = \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

és mivel f_2 értelmezési tartománya felülről nem korlátos (alulról igen), vizsgálható f_2 határértéke $+\infty$ -ben.

Mivel a 6.4. feladat d) része szerint $\lim_{x\to +\infty} \sqrt{x} = +\infty$ és $\lim_{x\to +\infty} \sqrt{x+1} = +\infty$, így a 6.8. feladat b) része miatt $\lim_{x\to +\infty} (\sqrt{x}+\sqrt{x+1}) = +\infty$, végül pedig ekkor a reciprokára $\lim_{x\to +\infty} \frac{1}{\sqrt{x}+\sqrt{x+1}} = 0$, következik, tehát

$$\lim_{x \to +\infty} f_2(x) = \lim_{x \to +\infty} (\sqrt{x} - \sqrt{x+1}) = \lim_{x \to +\infty} \frac{1}{\sqrt{x} + \sqrt{x+1}} = 0.$$

Ez pedig adja, hogy az y=0 egyenletű egyenes (az x tengely) vízszintes aszimptótája f_2 -nek.

6.13. feladat. Határozza meg az $f(x) = x + \frac{1}{x}$ $(x \in \mathbb{R} \setminus \{0\})$ függvény aszimptótáit.

Megoldás. f értelmezési tartománya az $E = \mathbb{R} \setminus \{0\}$ halmaz, mely sem alulról, sem felülről nem korlátos és $x_0 = 0 \in E'$. Így vizsgálható

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left(x + \frac{1}{x} \right), \text{ ami nem létezik, de } \lim_{x \to 0} x = 0 \text{ és } \lim_{x \to 0+0} \frac{1}{x} = +\infty,$$

illetve
$$\lim_{x\to 0-0}\frac{1}{x}=-\infty$$
 miatt $\lim_{x\to 0+0}\left(x+\frac{1}{x}\right)=+\infty$ és $\lim_{x\to 0-0}\left(x+\frac{1}{x}\right)=-\infty$, így f -nek az $x_0=0$ egyenletű egyenes (az y tengely) függőleges aszimptótája.

Más függőleges aszimptóta nincs.

$$\lim_{x\to +\infty} \left(x+\frac{1}{x}\right) = +\infty \text{ és } \lim_{x\to -\infty} \left(x+\frac{1}{x}\right) = -\infty \text{ miatt vízszintes aszimptóta nincs.}$$

Az l(x) = x egyenletű egyenest tekintve,

$$\lim_{x \to +\infty} (f(x) - l(x)) = \lim_{x \to +\infty} \left(x + \frac{1}{x} - x \right) = \lim_{x \to +\infty} \frac{1}{x} = 0$$

és

$$\lim_{x \to -\infty} (f(x) - l(x)) = \lim_{x \to -\infty} \frac{1}{x} = 0$$

miatt kapjuk, hogy az y = x egyenletű egyenes aszimptótája f-nek.

6.14. feladat. Bizonyítsa be, hogy egy l(x) = ax + b $(x \in \mathbb{R})$ függvény gráfja (az y = ax + b egyenletű egyenes) \iff aszimptótája egy $f \colon E \to \mathbb{R}$ függvénynek (melynél E alulról vagy felülről nem korlátos), ha

$$\lim_{x \to +\infty} \frac{f(x)}{x} = a, \qquad \lim_{x \to +\infty} (f(x) - x) = b ;$$

vagy

$$\lim_{x \to -\infty} \frac{f(x)}{x} = a , \qquad \lim_{x \to -\infty} (f(x) - x) = b .$$

Megoldás.

– az l(x)=ax+b $(x\in\mathbb{R})$ egyenes definíció szerint akkor aszimptóta, ha $\lim_{x\to+\infty}(f(x)-(ax+b))=0 \qquad \text{vagy} \qquad \lim_{x\to-\infty}(f(x)-(ax+b))=0$

teljesül.

Mivel
$$f(x) - ax - b = x\left(\frac{f(x)}{x} - a - \frac{b}{x}\right)$$
, ha $x \neq 0$, ezért ekkor

$$\lim_{x \to +\infty} x \left(\frac{f(x)}{x} - a - \frac{b}{x} \right) = 0 \quad \text{vagy} \quad \lim_{x \to -\infty} x \left(\frac{f(x)}{x} - a - \frac{b}{x} \right) = 0$$

kell, hogy teljesüljön, ami $\lim_{x\to +\infty}x=+\infty$, illetve $\lim_{x\to -\infty}x=-\infty$ miatt csak akkor igaz, ha

$$\lim_{x \to +\infty} \left(\frac{f(x)}{x} - a - \frac{b}{x} \right) = 0 \quad \text{vagy} \quad \lim_{x \to -\infty} \left(\frac{f(x)}{x} - a - \frac{b}{x} \right) = 0$$
s ez
$$\lim_{x \to +\infty} \left(a + \frac{b}{x} \right) = \lim_{x \to -\infty} \left(a + \frac{b}{x} \right) = a \text{ miatt adja, hogy}$$
$$\lim_{x \to +\infty} \frac{f(x)}{x} = a \quad \text{vagy} \quad \lim_{x \to -\infty} \frac{f(x)}{x} = a$$

teljesül.

Ha a már adott, akkor nyilván

$$\lim_{x \to +\infty} (f(x) - x) = b \quad \text{vagy} \quad \lim_{x \to -\infty} (f(x) - x) = b$$

teljesül.

– Nyilván az előbbi módon meghatározott a és b által adott l(x) = ax + b $(x \in \mathbb{R})$ egyenes aszimptóta.

6.15. feladat. Határozza meg az $f(x)=\frac{x^2+2x-1}{x} \ (x\in\mathbb{R}\setminus\{0\})$ függvény aszimptótáit.

Megoldás. f $E=\mathbb{R}\setminus\{0\}$ értelmezési tartománya sem alulról, sem felülről nem korlátos, továbbá $0\in E'$ teljesül.

- $-x_0=0$ -ban $\exists \lim_{x\to 0+0}\frac{x^2+2x-1}{x}=+\infty$ és $\lim_{x\to 0-0}\frac{x^2+2x-1}{x}=-\infty$ (lásd 6.9. feladat). Így az x=0 egyenes (az y tengely) függőleges aszimptótája f-nek.
- $-\lim_{\substack{x\to +\infty\\\text{aszimpt\'ota nincs.}}}\frac{x^2+2x-1}{x}=+\infty,\ \lim_{x\to -\infty}\frac{x^2+2x-1}{x}=-\infty\ \text{miatt v\'izszintes}$
- $-\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\frac{x^2+2x-1}{x^2}=1=\lim_{x\to -\infty}\frac{f(x)}{x}=\lim_{x\to -\infty}\frac{x^2+2x-1}{x^2}$ (ami következik a 6.9. feladatból). Továbbá

$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \left(\frac{x^2 + 2x - 1}{x} - x \right) = \lim_{x \to +\infty} \frac{2x - 1}{x} = 2$$

és

$$\lim_{x \to -\infty} (f(x) - x) = \lim_{x \to -\infty} \left(\frac{x^2 + 2x - 1}{x} - x \right) = \lim_{x \to -\infty} \frac{2x - 1}{x} = 2.$$

Így az előző feladat miatt az l(x) = x + 2 $(x \in \mathbb{R})$ függvény gráfja, az y = x + 2 egyenletű egyenes aszimptótája f-nek. Más aszimptóta nincs.

6.16. feladat. Határozza meg az $f(x) = \sqrt[3]{6x^2 - x^3}$ $(x \in \mathbb{R})$ függvénv aszimptótáit.

Megoldás.

- f folytonos, hiszen az $x \to 6x^2 - x^3$ $(x \in \mathbb{R})$ és $y \to \sqrt[3]{y}$ folytonos függvények összetett függvénye, így függőleges aszimptótája nincs.

$$-\lim_{x\to\infty}\sqrt[3]{6x^2-x^3}=-\infty \text{ és }\lim_{x\to-\infty}\sqrt[3]{6x^2-x^3}=+\infty$$
 (melynek belátását az olvasóra bízzuk) miatt vízszintes aszimptóta sincs.

$$-\lim_{x\to\pm\infty}\frac{f(x)}{x}=\lim_{x\to\pm\infty}\frac{\sqrt[3]{6x^2-x^3}}{x}=\lim_{x\to\pm\infty}\sqrt[3]{\frac{6}{x}-1}=-1$$
 (hiszen $\lim_{x\to\pm\infty}\frac{6}{x}-1=-1$, $\lim_{y\to-1}\sqrt[3]{y}=-1$, s ez az összetett függvény

határértékére vonatkozó tétel miatt adja, hogy $\lim_{x \to +\infty} \frac{f(x)}{x} = -1$.

$$\lim_{x \to \pm \infty} \left(\sqrt[3]{6x^2 - x^3} + x \right) =$$

$$= \lim_{x \to \pm \infty} \frac{(\sqrt[3]{6x^2 - x^3} + x)((\sqrt[3]{6x^2 - x^3})^2 - x\sqrt[3]{6x^2 - x^3} + x^2)}{(\sqrt[3]{6x^2 - x^3})^2 - x\sqrt[3]{6x^2 - x^3} + x^2} =$$

$$= \lim_{x \to \pm \infty} \frac{6x^2}{(\sqrt[3]{6x^2 - x^3})^2 - x\sqrt[3]{6x^2 - x^3} + x^2} =$$

$$= \lim_{x \to \pm \infty} \frac{6}{(\sqrt[3]{\frac{6}{x^2} - 1})^2 - \sqrt[3]{\frac{6}{x^2} - 1} + 1} = 2$$

(hiszen
$$\lim_{x\to\pm\infty}\sqrt[3]{\frac{6}{x}-1}=-1$$
, $\lim_{x\to\pm\infty}\left(\sqrt[3]{\frac{6}{x}-1}\right)^2=1$). Ebből pedig a 6.14. feladat miatt kapjuk, hogy az $l(x)=-x+2$ $(x\in\mathbb{R})$

függvény gráfja, az y = -x + 2 egyenletű egyenes aszimptótája f-nek. Más aszimptóta nincs.

6.17. feladat.
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 1} - x \right) = ?$$
, $\lim_{x \to -\infty} \left(\sqrt{x^2 + 1} - x \right) = ?$.

Megoldás. Mindkét függvény értelmezési tartománya \mathbb{R} , így a határértékek létezése vizsgálható.

– Egyszerűen belátható, hogy $\sqrt{x^2+1}-x>0 \ \forall \ x\in\mathbb{R}$, így $\forall \ x>0$ -ra

$$0 < \sqrt{x^2 + 1} - x = \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{\sqrt{x^2 + 1} + x} = \frac{1}{\sqrt{x^2 + 1} + x} < \frac{1}{2x}.$$

 $\lim_{x\to +\infty}0=0$, $\lim_{x\to +\infty}\frac{1}{2x}=0$ miatt, felhasználva a határérték és az egyenlőtlenségek kapcsolatára tanult egyik tételt kapjuk, hogy

$$\lim_{x \to +\infty} (\sqrt{x^2 + 1} - x) = 0.$$

– A $\sqrt{x^2+1}+x>0$ egyenlőtlenség $x\geq 0$ -ra nyilvánvaló, ha x<0,akkor-x>0és

$$\sqrt{x^2 + 1} + x > 0 \iff \sqrt{x^2 + 1} > -x \iff x^2 + 1 > x^2 \iff 1 > 0$$

ami igaz.

Ha x < 0, akkor igaz továbbá, hogy

$$0 < \sqrt{x^2 + 1} + x = \frac{(\sqrt{x^2 + 1} + x)(\sqrt{x^2 + 1} - x)}{\sqrt{x^2 + 1} - x} = \frac{1}{\sqrt{x^2 + 1} - x} < \frac{1}{|x|}$$

$$\begin{array}{lll} \text{(hiszen } \frac{1}{\sqrt{x^2+1}-x} < \frac{1}{\sqrt{x^2+1}} & \Longleftrightarrow & \sqrt{x^2+1} < \sqrt{x^2+1}-x & \Longleftrightarrow \\ 0 < -x, \text{ ami igaz, míg } \frac{1}{\sqrt{x^2+1}} < \frac{1}{|x|} & \Longleftrightarrow & |x| < \sqrt{x^2+1} & \Longleftrightarrow & x^2 < \\ x^2+1 & \Longleftrightarrow & 0 < 1, \text{ s ez is igaz)}. \end{array}$$

Ekkor $\lim_{x\to -\infty}0=0$ és $\lim_{x\to -\infty}\frac{1}{|x|}=0$ és az előbb jelzett tétel miatt kapjuk, hogy

$$\lim_{x \to -\infty} \left(\sqrt{x^2 + 1} + x \right) = 0.$$

Szakadási helyek, monoton függvények

6.18. feladat. Határozza meg az alábbi függvények szakadási helyeit és azok típusait.

$$f_{1}(x) = \frac{x^{2} - 9}{x - 3} \qquad (x \in \mathbb{R} \setminus \{3\});$$

$$f_{2}(x) = \frac{x^{3} - 1}{x - 1} \qquad (x \in \mathbb{R} \setminus \{1\});$$

$$f_{3}(x) = [x] \qquad (x \in \mathbb{R});$$

$$f_{4}(x) = \text{sign}(x) \qquad (x \in \mathbb{R} \setminus \{0\});$$

$$f_{5}(x) = \frac{x + 2}{x - 3} \qquad (x \in \mathbb{R} \setminus \{3\});$$

$$f_{6}(x) = \frac{1}{(x - 2)^{2}} \qquad (x \in \mathbb{R} \setminus \{2\}).$$

Megold'as.

– Az f_1 függvény folytonos, ha $x \neq 3$ (mert folytonos függvények hányadosa és $x-3 \neq 0$, ha $x \neq 3$), de x=3-ban nem folytonos, mert nem értelmezett, így itt szakadása van.

Ugyanakkor a 6.1. feladat b) része miatt $\exists \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} (x + 3) = 6,$

így $\exists \lim_{x \to 3+0} \frac{x^2-9}{x-3} = \lim_{x \to 3-0} \frac{x^2-9}{x-3}$, azaz $x_0 = 3$ -ban f_1 jobb és baloldali határértéke megegyezik, ezért definíció szerint a szakadás egyrészt elsőfajú, másrészt megszüntethető (az $f_1(3) \doteq 6$ választással).

– Az f_2 függvény nyilván folytonos, ha $x \neq 1$, de nem folytonos $x_0 = 1$ -ben (mert itt nem értelmezett), ezért itt szakadása van.

A 6.10.2. feladatban mondottak szerint

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{x - 1} = \lim_{x \to 1} (x^2 + x + 1) = 3,$$

így az előbbiekhez hasonlóan kapjuk , hogy f_2 -nek $x_0=1$ -ben meg elsőfajú és emellett megszüntethető szakadása van.

– Az f_3 függvényről a 6.1. feladat c) részében megmutattuk, hogy $x_0 = 2$ -ben létezik a jobb- és baloldali határértéke, s azok különbözők, így $x_0 = 2$ -ben f_3 -nak elsőfajú szakadása van.

Azonos módon belátható, hogy $\forall x_0 = n \ (n \in \mathbb{N})$ is elsőfajú szakadási hely.

 f_3 (ahogy azt már beláttuk) $\forall x_0 \neq n \ (n \in \mathbb{N})$ esetén folytonos, így más szakadási helye nincs.

- Az
$$f_4(x) = \operatorname{sign}(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$
 függvénynek

 $x_0 = 0$ szakadási helye (hiszen itt nem értelmezett, így nem is folytonos), ugyanakkor az elméletben vizsgált egyik feladathoz hasonlóan belátható, hogy

$$\exists \lim_{x \to 0+0} \operatorname{sign}(x) = 1 \quad \text{és} \quad \lim_{x \to 0-0} \operatorname{sign}(x) = -1 ,$$

így $1 \neq -1$ miatt a szakadás elsőfajú.

 $\forall x_0 \neq 0$ -ban a függvény folytonos, ezért más szakadási helye nincs.

– Az f_5 függvény $x \neq 3$ esetén folytonos, x = 3-ban nem, továbbá, ahogy azt a 6.10.8. feladatban beláttuk

$$\lim_{x \to 3+0} \frac{x+2}{x-3} = \infty \qquad \text{és} \qquad \lim_{x \to 3-0} \frac{x+2}{x-3} = \infty \ ,$$

azaz az egyoldali határértékek nem végesek, így a szakadás $x_0=3$ -ban másodfajú.

- Az f_6 függvény $x \neq 2$ esetén folytonos, x = 2-ben nem és a 6.2. feladat a) része miatt $\lim_{x\to 2} \frac{1}{(x-2)^2} = +\infty$, ami adja, hogy $x_0 = 2$ -ben a szakadás másodfajú.
- **6.19. feladat.** Vizsgálja az alábbi függvények invertálhatóságát és (ha létezik) inverzük folytonosságát:

$$f_1(x) = x^n$$
 $(x \in [0, +\infty[, n \in \mathbb{N} \text{ r\"{o}gz\'{i}tett});$
 $f_2(x) = x^n$ $(x \in \mathbb{R}, n \in \mathbb{N} \text{ p\'{a}ratlan}).$

Megoldás.

- Az 5.2. feladat szerint f_1 szigorúan monoton növekedő, így a monoton függvényekre vonatkozó 1. és 3. tétel miatt egyrészt létezik inverze, ami az inverz definícióját felhasználva az $f_1^{-1}(x) = \sqrt[n]{x} \quad (x \ge 0)$ függvény, másrészt f_1^{-1} folytonos és szigorúan monoton növekedő.
- Hasonló meggondolások adják az f_2 függvény $f_2^{-1}(x) = \sqrt[n]{x} \quad (x \in \mathbb{R})$ inverzének létezését, folytonosságát és szigorú monotonitását.

Gyakorló feladatok

1. Definíció alapján vizsgálja meg, hogy léteznek-e a

$$\lim_{x \to 1} (5x + 7) \qquad \text{és} \qquad \lim_{x \to 3} [2x]$$

határértékek (vagy egyoldali határértékek).

2. A definíció felhasználásával bizonyítsa be, hogy

$$\lim_{x \to 1} \left(2 + \frac{1}{(x-1)^4} \right) = +\infty \; ; \quad \lim_{x \to -1} \left(1 - \frac{3}{(x+1)^2} \right) = -\infty \; ;$$

$$\nexists \lim_{x \to 2} \frac{3}{(x-2)^3}$$

3. Definíció alapján bizonyítsa be, hogy

$$\lim_{x \to +\infty} \frac{1 - x^2}{1 + x^2} = -1 \; ; \quad \lim_{x \to -\infty} \frac{2x^2}{1 + x^2} = 2 \; .$$

4. Határozza meg az alábbi függvények határértékét (egyoldali határértékét) az adott x_0 pontban (pontokban):

a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = 3x^4 + 2x^2 - 3x - 2, \ x_0 = -1$$
;

b)
$$f: E = \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{x^5 - 32}{x - 2}, \ x_0 = 2 \ ;$$

c)
$$f: E = \mathbb{R} \setminus \left\{-\frac{2}{3}\right\} \to \mathbb{R}, \ f(x) = \frac{x^3 + x^2 + x + 1}{3x + 2}, \ x_0 = 2;$$

d)
$$f: E = \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ f(x) = \frac{1-x}{\sqrt{x}-1}, \ x_0 = 1 \ ;$$

e)
$$f: E = \mathbb{R} \setminus \{-2\} \to \mathbb{R}, \ f(x) = \frac{x^3 + 8}{x + 2}, \ x_0 = -2;$$

f)
$$f: E = \mathbb{R} \setminus \{-1, 0, 1\} \to \mathbb{R}, \ f(x) = \frac{x^3 - x^2 + x - 1}{x^3 - x}, \ x_0 = -1;$$

g)
$$f: E = \mathbb{R} \setminus \{-3\} \to \mathbb{R}, \ f(x) = \frac{x-1}{x+3}, \ x_0 = -3 \ ;$$

g)
$$f \colon E = \mathbb{R} \setminus \{-3\} \to \mathbb{R}, \ f(x) = \frac{x-1}{x+3}, \ x_0 = -3 \ ;$$

h) $f \colon E = \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ f(x) = \frac{1}{1-x} - \frac{3}{1-x^3}, \ x_0 = 1 \ ;$

i)
$$f: E = \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ f(x) = \frac{1}{(x-1)^4}, \ x_0 = 1;$$

j)
$$f: E = \mathbb{R} \setminus \{-2\} \to \mathbb{R}, \ f(x) = 1 - \frac{3}{(x+2)^3}, \ x_0 = -2 \ ;$$

k)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = -2x^4 + 3x^2 - 1, \ x_0 = +\infty, \ x_0 = -\infty$$
;

1)
$$f: E = \mathbb{R} \setminus \{1, 2\} \to \mathbb{R}, \ f(x) = \frac{4x^3 + 3x^2 + 2}{-x^2 + 3x - 2}, \ x_0 = -\infty, \ x_0 = +\infty;$$

m) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{-x^2 - 2x + 2}{3x^2 + x + 1}, \ x_0 = -\infty, \ x_0 = +\infty;$

n) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{2x + 3}{x^2 + x + 2}, \ x_0 = -\infty, \ x_0 = +\infty;$

o) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{2x + 1}{\sqrt{x^2 + 3}}, \ x_0 = +\infty, \ x_0 = -\infty;$

p) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{\sqrt{1 + x^2} - 1}{2x}, \ x_0 = 0;$

r) $f: E = [-3, +\infty[\setminus\{0\} \to \mathbb{R}, \ f(x) = \frac{\sqrt{x + 3} - \sqrt{3}}{x}, \ x_0 = 0.$

5. Határozza meg az alábbi függvények aszimptótáit:

$$f_{1}(x) = \frac{x+3}{-2x+4} \qquad (x \in \mathbb{R} \setminus \{2\});$$

$$f_{2}(x) = \frac{x^{2}+3x+4}{2x} \qquad (x \in \mathbb{R} \setminus \{0\});$$

$$f_{3}(x) = \frac{x^{2}-5x+6}{x-3} \qquad (x \in \mathbb{R} \setminus \{3\});$$

$$f_{4}(x) = \frac{2x+3}{\sqrt{x^{2}-2x-3}} \qquad (x \in \mathbb{R} \setminus [-1,3]);$$

$$f_{5}(x) = x + \frac{9}{x} \qquad (x \in \mathbb{R} \setminus \{0\});$$

$$f_{6}(x) = \frac{(x-1)^{3}}{x^{2}} \qquad (x \in \mathbb{R} \setminus \{0\}).$$

6. Határozza meg az alábbi függvények szakadási helyeit és azok típusait:

$$f_{1}(x) = \frac{x^{4} - 16}{x - 2} \qquad (x \in \mathbb{R} \setminus \{2\});$$

$$f_{2}(x) = [2x] \qquad (x \in \mathbb{R});$$

$$f_{3}(x) = \frac{x - 1}{x + 4} \qquad (x \in \mathbb{R} \setminus \{-4\});$$

$$f_{4}(x) = \frac{5}{(x + 2)^{4}} \qquad (x \in \mathbb{R} \setminus \{-2\});$$

$$f_{5}(x) = [x] + [-x] \qquad (x \in \mathbb{R});$$

$$f_{6}(x) = x - [x] \qquad (x \in \mathbb{R}).$$

7. Vizsgálja az alábbi függvények invertálhatóságát és (ha létezik) inverzük folytonosságát:

$$f_1(x) = (x-3)^4$$
 $(x \in \mathbb{R})$;
 $f_2(x) = (x+2)^2$ $(x \ge -2)$;
 $f_3(x) = (2x+3)^3$ $(x \in \mathbb{R})$;
 $f_4(x) = (x+1)^n$ $(x \in \mathbb{R}, n \in \mathbb{N} \text{ páratlan})$.

VII. fejezet

Függvénysorozatok, függvénysorok, elemi függvények

7.1. feladat. Határozza meg az alábbi függvénysorozatok konvergenciatartományát:

a)
$$f_n : [0, +\infty[\to \mathbb{R}, \ f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right) \ (n \in \mathbb{N}) ;$$

b) $f_n : \mathbb{R} \setminus \{-1\} \to \mathbb{R}, \ f_n(x) = \frac{x^n}{1 + x^n} \ (n \in \mathbb{N}) .$

Megoldás. Azon x-ek összességét kell meghatározni, melyekre az $\langle f_n(x) \rangle$ számsorozat konvergens.

a) Ha
$$x=0$$
, úgy $f_n(0)=n\left(\sqrt{\frac{1}{n}}-\sqrt{0}\right)=\sqrt{n}\to +\infty$, így az $\langle f_n(0)\rangle$ számsorozat divergens.

Ha x > 0, akkor

$$f_n(x) = n\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right) =$$

$$= n\frac{\left(\sqrt{x + \frac{1}{n}} - \sqrt{x}\right)\left(\sqrt{x + \frac{1}{n}} + \sqrt{x}\right)}{\sqrt{x + \frac{1}{n}} + \sqrt{x}} = \frac{1}{\sqrt{x + \frac{1}{n}} + \sqrt{x}},$$

ami $\lim_{n\to\infty}\sqrt{x+\frac{1}{n}}=\sqrt{x},\ \lim_{n\to\infty}\sqrt{x}=\sqrt{x}$ (és a sorozatok és műveletek kapcsolatára vonatkozó tételek) miatt adja, hogy

$$\lim_{n \to \infty} f_n(x) = \frac{1}{2\sqrt{x}} \ \forall \ x > 0 \text{ esetén.}$$

Így $\langle f_n \rangle$ a pozitív valós számok halmazán pontonként konvergál az $f(x) = \frac{1}{2\sqrt{x}} \ (x \in \mathbb{R}_+)$ függvényhez.

b) Ha |x| < 1, akkor (ahogy ezt már beláttuk) $\lim_{n \to \infty} x^n = 0$, ezért

$$\lim_{n \to \infty} \frac{x^n}{1 + x^n} = 0 \ .$$

Ha
$$x=1$$
, úgy $f_n(1)=\frac{1}{2}\to\frac{1}{2}$.
Ha $|x|>1$, akkor $f_n(x)=\frac{1}{\frac{1}{x^n}+1}=\frac{1}{\left(\frac{1}{x}\right)^n+1}$ és $\left|\frac{1}{x}\right|<1$ miatt $\lim_{n\to\infty}\left(\frac{1}{x}\right)^n=0$, ezért $\lim_{n\to\infty}f_n(x)=1$.
Ez mutatja, hogy a függvénysorozat $\mathbb{R}\setminus\{-1\}$ -en pontonként konvergens

és határfüggvénye

$$f(x) = \begin{cases} 0 \ , \ \text{ha} \ x \in]-1,1[\ , \\ \frac{1}{2} \ , \ \text{ha} \ x = 1 \ , \\ 1 \ , \ \text{egyébként.} \end{cases}$$

7.2. feladat. Bizonyítsa be, hogy az alábbi függvénysorozatok egyenletesen konvergensek:

a)
$$f_n : \mathbb{R}_+ \to \mathbb{R}$$
, $f_n(x) = \frac{1}{x+n} (n \in \mathbb{N})$;
b) $f_n : \mathbb{R} \to \mathbb{R}$, $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}} (n \in \mathbb{N})$.

 $\mathit{Megold\'{a}s}.$ Azt kell belátnunk, hogy $\exists~f\colon\mathbb{R}_+\to\mathbb{R}$ (ill. $f\colon\mathbb{R}\to\mathbb{R})$ függvény, hogy $\forall \varepsilon > 0$ -ra $\exists n(\varepsilon) \in \mathbb{N}$, hogy $\forall n \geq n(\varepsilon)$ esetén $|f_n(x) - f(x)| < \varepsilon$ $\forall x \in \mathbb{R}_+ \text{ (ill. } x \in \mathbb{R}) \text{ számra.}$

a) Legyen $\varepsilon > 0$ tetszőlegesen adott. Ha $f: \mathbb{R}_+ \to \mathbb{R}$, f(x) = 0, akkor

$$|f_n(x) - f(x)| = \left| \frac{1}{x+n} - 0 \right| = \frac{1}{x+n} < \frac{1}{n} \quad \text{és} \quad \frac{1}{n} \to 0$$

miatt $\exists n(\varepsilon), \ \forall n \ge n(\varepsilon) \text{ és } \forall x \in \mathbb{R}_+\text{-ra } |f_n(x) - f(x)| < \frac{1}{n} < \varepsilon,$ tehát $\langle f_n \rangle$ egyenletesen konvergál az f(x) = 0 (x > 0) függvényhez. b) Ha $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|, akkor $\forall x \in \mathbb{R}$ -re

$$|f_n(x) - f(x)| = \left| \sqrt{x^2 + \frac{1}{n^2}} - |x| \right| =$$

$$= \frac{\left(\sqrt{x^2 + \frac{1}{n^2}} - |x| \right) \left(\sqrt{x^2 + \frac{1}{n^2}} + |x| \right)}{\sqrt{x^2 + \frac{1}{n^2}} + |x|} =$$

$$= \frac{\frac{1}{n^2}}{\sqrt{x^2 + \frac{1}{n^2}} + |x|} = \frac{1}{n \left(\sqrt{n^2 x^2 + 1} + n|x| \right)} \le \frac{1}{n}$$

(hiszen $\sqrt{n^2x^2+1}+n|x| \geq \sqrt{n^2x^2+1} \geq \sqrt{1}=1$), ezért $\frac{1}{n} \to 0$ miatt $\forall \ \varepsilon > 0$ -hoz $\exists \ n(\varepsilon), \ \forall \ n \geq n(\varepsilon)$ -ra

$$|f_n(x) - f(x)| \le \frac{1}{n} < \varepsilon \quad \forall \ x \in \mathbb{R},$$

ami definíció szerint adja, hogy az $\langle f_n \rangle$ függvénysorozat egyenletesen konvergál \mathbb{R} -en az $f(x) = |x| \ (x \in \mathbb{R})$ függvényhez.

7.3. feladat. Bizonyítsa be, hogy a $\sum f_n$ függvénysor egyenletesen konvergens, ha $f_n \colon \mathbb{R} \to \mathbb{R}, \ f_n(x) = \frac{1}{x^2 + n^2} \ (n \in \mathbb{N}).$

 $Megoldás. |f_n(x)| = \frac{1}{x^2 + n^2} \le \frac{1}{n^2} \ \forall \ x \in \mathbb{R} \ \text{\'es a} \ \sum \frac{1}{n^2} \ \text{sor konvergens, \'igy a}$ Weierstrass kritérium adja a $\sum \frac{1}{x^2 + n^2}$ függvénysor egyenletes konvergenciáját \mathbb{R} -en.

7.4. feladat. Határozza meg a $\sum f_n$ függvénysor konvergencia
tartományát, ha

$$f_n : \mathbb{R} \setminus \{-1\} \to \mathbb{R}, \quad f_n(x) = \frac{x}{(1+x)^n} \quad (n \in \mathbb{N}) .$$

Megoldlpha s. Ha x=0, úgy $f_n(0)=0$, így a $\sum f_n(0)$ sor konvergens. Ha $x\in\mathbb{R}\setminus\{0,-1\}$, úgy $\sum_{n=1}^\infty f_n(x)=\sum_{n=1}^\infty x\left(\frac{1}{1+x}\right)^n$ miatt a $\sum f_n$ függvénysor egy $\frac{1}{1+x}$ kvóciensű mértani sor, ami – a korábbiakban tanultak szerint

– akkor és csak akkor konvergens, ha $\left|\frac{1}{1+x}\right| < 1$, azaz ha |1+x| > 1, illetve $x\in]-\infty,-2[\ \cup\]0,+\infty[\ .$

Így a sor konvergenciatartománya az $E =]-\infty, -2[\cup [0, +\infty[$ halmaz.

7.5. feladat. Határozza meg az alábbi hatványsorok konvergencia-intervallumait:

$$\sum_{n=1}^{\infty} \frac{x^n}{n} \quad ; \quad \sum_{n=1}^{\infty} \frac{x^n}{n^2} \quad ; \quad \sum_{n=1}^{\infty} \frac{n}{x^n} \quad ; \quad \sum_{n=1}^{\infty} n! x^n \quad ;$$

$$\sum_{n=0}^{\infty} \frac{x^n}{2^n} \quad ; \quad \sum_{n=1}^{\infty} n x^n \quad ; \quad \sum_{n=1}^{\infty} n (x-1)^n \ .$$

Megoldás.

- A $\sum_{n=1}^{\infty} \frac{x^n}{n}$ hatványsor esetén

$$\exists \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{n+1}}{\frac{x^n}{n}} \right| = \lim_{n \to \infty} |x| \frac{n}{n+1} = |x|,$$

így a D'Alambert-féle kritérium következménye miatt a hatványsor konvergens, ha |x| < 1 és divergens, ha |x| > 1.

Ha x=1, úgy a $\sum_{n=1}^{\infty} \frac{1}{n}$ sor divergens, ha pedig x=-1, akkor a $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$

Így a hatványsor konvergencia-intervalluma: [-1,1].

- A $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ hatványsorra

$$\exists \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{(n+1)^2}}{\frac{x^n}{n^2}} \right| = \lim_{n \to \infty} |x| \left(\frac{n+1}{n}\right)^2 = |x| ,$$

így a hatványsor konvergens, ha |x|<1, divergens, ha |x|>1. Ha x=1, úgy a $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ sor, míg ha x=-1, úgy a $\sum\limits_{n=1}^{\infty}(-1)^n\frac{1}{n^2}$ sor

gens.

– A $\sum_{n=1}^{\infty} \frac{n}{x^n}$ hatványsorra

$$\exists \lim_{n \to \infty} \sqrt[n]{\left|\frac{n}{x^n}\right|} = \lim_{n \to \infty} \frac{\sqrt[n]{n}}{|x|} = \frac{1}{|x|} \ ,$$

így az (a Cauchy-féle gyökkritérium következménye miatt) konvergens, ha $\frac{1}{|x|} < 1$, azaz |x| > 1, míg divergens, ha |x| < 1.

Ha x=1, úgy a $\sum_{n=1}^{\infty} n$, míg ha x=-1, úgy a $\sum_{n=1}^{\infty} (-1)^n n$ sor divergens. Ezért a hatványsor konvergencia tartománya a $]-\infty,-1[$ és $]1,+\infty[$ intervallumok egyesítése.

– A $\sum\limits_{n=1}^{\infty} n! x^n$ hatványsor esetén $\forall \ x \in \mathbb{R} \setminus \{0\}\text{-ra}$

$$\lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = \lim_{n \to \infty} (n+1) |x| = +\infty ,$$

így a hatványsor csak x=0 esetén konvergens.

– Mivel $\sum_{n=0}^{\infty} \frac{x^n}{2^n} = \sum_{n=0}^{\infty} \left(\frac{x}{2}\right)^n$ egy mértani sor, így konvergens, ha $\left|\frac{x}{2}\right| < 1$, azaz |x| < 2; divergens, ha |x| > 2.

x=2-re a $\sum\limits_{n=0}^{\infty}1,$ míg x=-2-re a $\sum\limits_{n=0}^{\infty}(-1)^n$ sor divergens, ezért a konvergencia-intervallum:] -2,2[.

– A $\sum\limits_{n=1}^{\infty} nx^n$ hatványsorra $\exists \lim\limits_{n \to \infty} \sqrt[n]{n} = 1$, így a Cauchy-Hadamard tétel miatt konvergens a] – 1, 1[intervallumon (hiszen a konvergencia sugara: $\varrho = \frac{1}{\lim \sqrt[n]{n}} = 1$).

Nyilván igaz, hogy x=1-re a $\sum_{n=1}^{\infty}n$, míg x=-1-re a $\sum_{n=1}^{\infty}(-1)^n n$ sorok divergensek.

A konvergenciatartomány tehát a] -1,1[intervallum.

– A $\sum_{n=1}^{\infty} n(x-1)^n$ $x_0=1$ középpontú hatványsor, melyre (az előbbivel azonos módon) kapjuk, hogy $\varrho=1$, így konvergens, ha 0 < x < 2. x=0 és x=2 esetén a sor divergens, ezért a konvergenciatartomány a]0,2[intervallum.

7.6. feladat. Határozza meg az alábbi hatványsorok konvergenciasugarát:

$$\sum_{n=1}^{\infty} n^n x^n ; \qquad \sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right)^{n^2} x^n ;$$

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} ; \qquad \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} .$$

Megold'as.

– Mivel $\overline{\lim} \sqrt[n]{n^n} = \lim_{n \to \infty} n = +\infty$, így a Cauchy-Hadamard tétel miatt a $\sum_{n=1}^{\infty} n^n x^n \text{ hatványsor konvergenciasugara } \varrho = 0.$

$$-\overline{\lim} \sqrt[n]{\left(1+\frac{1}{n}\right)^{n^2}} = \overline{\lim} \left(1+\frac{1}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e \text{ miatt a}$$

$$\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)^n x^n \text{ hatványsor konvergenciasugara } \varrho = \frac{1}{e} \ .$$

– Legyen $x \in \mathbb{R} \setminus \{0\}$ tetszőlegesen rögzített és $a_n = \frac{x^{2n+1}}{(2n+1)!}$ $(n=0,1,2,\ldots)$, ekkor

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{|x|^2}{(2n+2)(2n+3)} \to 0 ,$$

így a D'Alambert-féle hányadoskritérium alapján a hatványsor minden $x \neq 0$ -ra konvergens, ami nyilván igaz x = 0 esetén is. Ezért a hatványsor konvergencia sugara $\varrho = +\infty$.

– Hasonlóan mint előbb az $a_n = (-1)^n \frac{x^{2n}}{(2n)!}$ (n = 0, 1, ...) jelöléssel élve $(\forall x \neq 0 \text{ rögzített valós számra})$

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{|x|^2}{(2n+1)(2n+2)} \to 0 ,$$

ami azonos módon adja a hatványsor konvergenciáját $\forall \ x \neq 0$ és x = 0 esetén is.

A konvergenciasugár tehát most is $\varrho = +\infty$.

7.7. feladat. Bizonyítsa be, hogy $\forall x \in \mathbb{R}$ esetén

$$sh(x) = \frac{\exp(x) - \exp(-x)}{2}$$
; $ch(x) = \frac{\exp(x) + \exp(-x)}{2}$; $\exp(x) = sh(x) + ch(x)$.

Megoldás

– Az
$$\exp(x) \doteq \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, $\exp(-x) \doteq \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$ és a sorok konvergensek

 $\forall x \in \mathbb{R}$ esetén, így a soroknál tanultak szerint a $\lambda = \frac{1}{2}, \ \mu = -\frac{1}{2}$ számokkal képzett lineáris kombinációjukra:

$$\frac{\exp(x) - \exp(-x)}{2} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^n}{n!} - \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!} =$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{2} - \frac{1}{2} (-1)^n \right] \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \doteq \operatorname{sh}(x),$$

amit bizonyítani kellett.

– Hasonló gondolatmenettel:

$$\frac{\exp(x) + \exp(-x)}{2} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{x^n}{n!} + \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!} =$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{2} + (-1)^n \frac{1}{2} \right] \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = \operatorname{ch}(x)$$

 $\forall x \in \mathbb{R}$ -re.

- Végül pedig

$$\operatorname{sh}(x) + \operatorname{ch}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} + \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = \exp(x)$$

következik $\forall x \in \mathbb{R}$ esetén.

7.8. feladat. Bizonyítsa be, hogy $\forall x, y \in \mathbb{R}$ esetén

- a) $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$ $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
- b) $\operatorname{ch}(x+y) = \operatorname{ch}(x)\operatorname{ch}(y) + \operatorname{sh}(x)\operatorname{sh}(y)$ $\operatorname{sh}(x+y) = \operatorname{sh}(x)\operatorname{ch}(y) + \operatorname{ch}(x)\operatorname{sh}(y)$
- c) $\exp(x) \exp(-x) = 1$; $\cos(-x) = \cos(x)$; $\sin(-x) = -\sin(x)$; $\cosh(-x) = \cosh(x)$; $\sinh(-x) = -\sinh(x)$; $\sin^2(x) + \cos^2(x) = 1$; $\cosh^2(x) \sinh^2(x) = 1$.

Megoldás.

a) Nyilvánvaló, hogy a $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$, $\sum_{n=0}^{\infty} (-1)^k \frac{y^{2n}}{(2n)!}$, $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ és $\sum_{n=0}^{\infty} (-1)^n \frac{y^{2n+1}}{(2n+1)!}$ sorok abszolút konvergensek, így a sorok Cauchyszorzatára, a sorok különbségére (illetve összegére) vonatkozó tételek, valamint a binomiális tétel miatt

$$\cos(x)\cos(y) - \sin(x)\sin(y) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{(-1)^k x^{2k}}{(2k)!} \frac{(-1)^{n-k} y^{2n-2k}}{(2n-2k)!} \right) - \frac{1}{n-k} \left(\sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \frac{(-1)^{n-k} y^{2n-2k+1}}{(2n-2k+1)!} \right) = \frac{1}{n-k} \left(\sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \frac{(-1)^{n-k} y^{2n-2k+1}}{(2n-2k+1)!} \right) + \frac{1}{n-k} \left(\sum_{k=0}^{n-k} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \frac{(-1)^{n-k} y^{2n-2k}}{(2n-2k)!} \right) - \frac{1}{n-k} \left(\sum_{k=0}^{n-k} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \frac{(-1)^{n-k} y^{2n-2k+1}}{(2n-2k)!} \right) - \frac{1}{n-k} \left(\sum_{k=0}^{n-k} \frac{(-1)^k x^{2k+1} y^{2n-2k}}{(2k)!(2n-2k)!} \right) - \frac{1}{n-k} \left(\sum_{k=0}^{n-k} \frac{(-1)^n x^{2k+1} y^{2n-2k}}{(2k)!(2n-2k)!} \right) - \frac{1}{n-k} \left(\sum_{k=0}^{n-k} \frac{(-1)^n x^{2k+1} y^{2n-2k+1}}{(2n-2k)!} \right) - \frac{1}{n-k} \left(\sum_{k=0}^{n-k} \frac{(-1)^n x^{2k+1} y^{2n-2k+1}}{(2n-2k+1)!} \right) - \frac{1}{n-k} \left(\sum_{k=0}^{n-k} \frac{(-1)^n x^{2k+1} y^{2n-2k+1}}{(2n-2k)!} \right) - \frac{1}{n-k}$$

s ez éppen az első addíciós tétel.

A második addíciós tétel bizonyítása ehhez hasonló számolás.

b) Itt a $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$, $\sum_{n=0}^{\infty} \frac{y^{2n}}{(2n)!}$; $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$ és $\sum_{n=0}^{\infty} \frac{y^{2n+1}}{(2n+1)!}$ sorok abszolút konvergenciája, a sorok Cauchy-szorzatára és a konvergens sorok összegére vonatkozó tételek, továbbá a binomiális tétel alkalmazása, az előbbihez hasonló számolással adja az állításokat.

- c) Korábban bizonyítottuk, hogy
 - $\exp(x)\exp(y) = \exp(x+y) \ \forall \ x,y \in \mathbb{R} \text{ eset\'en},$

másrészt $\exp(0) = 1$ nyilvánvaló,

igy
$$\exp(x) \exp(-x) = \exp(x - x) = \exp(0) = 1$$
.

$$-\cos(-x) \doteq \sum_{n=0}^{\infty} (-1)^n \frac{(-x)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \doteq \cos(x) ;$$

$$\sin(-x) \doteq \sum_{n=0}^{\infty} (-1)^n \frac{(-x)^{2n+1}}{(2n+1)!} = -\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \doteq -\sin(x) ;$$

$$\sin(-x) \doteq \sum_{n=0}^{\infty} (-1)^n \frac{(-x)^{2n+1}}{(2n+1)!} = -\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \doteq -\sin(x)$$

$$\cosh(-x) \doteq \sum_{n=0}^{\infty} \frac{(-x)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \doteq \cosh(x) ;$$

$$\cosh(-x) \doteq \sum_{n=0}^{\infty} \frac{(-x)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \doteq \cosh(x) ;$$

$$\sinh(-x) \doteq \sum_{n=0}^{\infty} \frac{(-x)^{2n+1}}{(2n+1)!} = -\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \doteq -\sinh(x)$$
nyilyányaláan jagz a hatványazásra tanultak ás a ke

műveleti tulajdonságai alapján.

–
$$\cos(0) = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{0^{2n+1}}{(2n+1)!} = 1$$
, így az előbbieket felhasználva $\forall x \in \mathbb{R}$ esetén

$$1 = \cos(0) = \cos(x + (-x)) = \cos(x)\cos(-x) - \sin(x)\sin(-x) =$$
$$= \sin^2 x + \cos^2 x.$$

– ch(0) = 1 +
$$\sum\limits_{n=1}^{\infty} \frac{0^{2n}}{(2n)!}$$
 = 1, így az előbbieket felhasználva

$$1 = \operatorname{ch}(0) = \operatorname{ch}(x + (-x)) = \operatorname{ch}(x)\operatorname{ch}(-x) + \operatorname{sh}(x)\operatorname{sh}(-x) =$$
$$= \operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x) \quad \forall \ x \in \mathbb{R} .$$

- **7.9.** feladat. Bizonyítsa be, hogy az exp: $\mathbb{R} \to \mathbb{R}$ függvényre igazak a következők:
 - a) $\exp(x) \neq 0 \ (x \in \mathbb{R})$;
 - b) $\exp(x) \ge 1$ $(x \ge 0)$, $0 < \exp(x) < 1$ (x < 0);
 - c) $\lim_{x \to \infty} \exp(x) = +\infty$, $\lim_{x \to -\infty} \exp(x) = 0$;
 - d) szigorúan monoton növekedő;
 - e) $\exp(\mathbb{R}) = \mathbb{R}_+ (\mathbb{R}_{\exp} = \mathbb{R}_+)$; f) $\exp(r) = e^r \ \forall \ r \in \mathbb{Q}$.

Megoldás.

- a) $1 = \exp(0) = \exp(x + (-x)) = \exp(x) \exp(-x)$ adja az állítást.
- b) $\exp(x) \ge 1$, ha $x \ge 0$ jön a definícióból. Ha $x < 0 \implies -x > 0 \implies$ $\exp(-x) > 1 \implies \exp(x) = [\exp(-x)]^{-1} < 1$, de $\exp(x) < 0$ nem

lehetséges, mert akkor a folytonosság miatt $\exists x_0$, hogy $\exp(x_0) = 0$, ami lehetetlen a) miatt.

- c) $\exp(x) > x \implies \lim_{x \to +\infty} \exp(x) = +\infty,$ $\min \lim_{x \to -\infty} \exp(x) = \lim_{x \to +\infty} \exp(-x) = \lim_{x \to +\infty} \frac{1}{\exp(x)} = 0;$
- d) ha $x_1 < x_2 \implies x_2 x_1 > 0 \implies \exp(x_2 x_1) > 1 \implies \exp(x_2) = \exp((x_2 x_1) + x_1) = \exp(x_2 x_1) \exp(x_1) > \exp(x_1)$, ami adja az állítást;
- e) c)-ből és az exp függvény folytonosságából jön az állítás;

f)
$$\exp(1) = \sum_{n=0}^{\infty} \frac{1}{n!} = e \implies \forall p \in \mathbb{N} \text{-re } \exp(p) = \exp(1 + \dots + 1) = \exp(1) \dots \exp(1) = e^{p}.$$

$$\operatorname{Ha} - p \in \mathbb{N} \vee p = 0 \implies \exp(p) = \frac{1}{\exp(-p)} = \begin{cases} \frac{1}{e^{-p}} \\ 1 = e^{0} \end{cases}$$

$$\operatorname{Ha} p \in \mathbb{Z} \wedge q \in \mathbb{N} \implies e^{p} = \exp\left(\frac{p}{q} + \ldots + \frac{p}{q}\right) = \left[\exp\left(\frac{p}{q}\right)\right]^{q} \implies e^{\frac{p}{q}} = \exp\left(\frac{p}{q}\right).$$

7.10. feladat. Bizonyítsa be, hogy az ln függvényre teljesül:

- a) $D_{\ln} = \mathbb{R}_+$, $\mathbb{R}_{\ln} = \ln(\mathbb{R}_+) = \mathbb{R}$;
- b) folytonos és szigorúan monoton növekedő ;
- c) $\ln(1) = 0$, $\ln(x) < 0$ (0 < x < 1), $\ln(x) > 0$ (x > 1);
- d) $\exp(\ln(x)) = x \ (x \in \mathbb{R}_+), \ \ln(\exp(x)) = x \ (x \in \mathbb{R}) \ ;$
- e) $\ln(xy) = \ln(x) + \ln(y) \ (x, y \in \mathbb{R}_+) \ ;$

f)
$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y) \ (x, y \in \mathbb{R}_+)$$
.

Megoldás. $\ln \doteq \exp^{-1}$

- a) Az ln definíciója és az a tény, hogy $D_{\exp} = \mathbb{R}$ és $\mathbb{R}_{\exp} = \mathbb{R}_+$, valamint a reláció (függvény) inverzének értelmezési tartományáról és értékkészletéről (Kalkulus I. I.2.-ben) tanultak azonnal adják az állítást.
- b) Az l
n függvény a folytonos és szigorúan monoton növekedő exp függvény
 inverze, így a monoton függvényekre tanultak szerint folytonos és szigorúan monoton növekedő.
- c) $\exp(0) = 1$ adja, hogy $\ln 1 = 0$ ($\ln \doteq \exp^{-1}$ miatt). ln szigorúan monoton növekedő, így

$$ln(x) < ln(1) = 0$$
, ha $0 < x < 1$ és $0 = ln(1) < ln(x)$, ha $x > 1$.

- d) Az ln definíciója és az 1.15. feladat a) és b) része adja az állítást.
- e) A d)-ben bizonyítottak, illetve az exp függvényre vonatkozó addíciós tétel miatt $\forall x, y \in \mathbb{R}_+$ -ra

$$\ln(xy) = \ln[\exp(\ln(x)) \exp(\ln(y))]$$
$$= \ln[\exp[\ln(x) + \ln(y)]] = \ln(x) + \ln(y).$$

f)
$$\ln\left(\frac{1}{y}\right) = \ln\frac{1}{\exp(\ln(y))} = \ln(\exp(-\ln(y)) = -\ln(y))$$
 felhasználásával $\ln\left(\frac{x}{y}\right) = \ln\left(x\frac{1}{y}\right) = \ln(x) + \ln\left(\frac{1}{y}\right) = \ln(x) - \ln(y).$

7.11. feladat. Bizonyítsa be, hogy az $\exp_a : \mathbb{R} \to \mathbb{R}$, $\exp_a(x) \doteq \exp(x \ln a)$ $(a \in \mathbb{R}_+ \text{ adott})$ függvényre teljesülnek:

- a) $\exp_e = \exp$;
- b) $D_{\exp_a} = \mathbb{R}, \ R_{\exp_a} = \mathbb{R}_+ \ (a \neq 1) \ ;$ c) $\exp_a(x+y) = \exp_a(x) \exp_a(y) \ \ (x,y \in \mathbb{R}),$ $\exp_a(-x) = [\exp_a(x)]^{-1} \ \ (x \in \mathbb{R}) \ ;$
- d) szigorúan monoton növekvő (csökkenő), ha a > 1 (0 < a < 1);
- e) folytonos;
- f) $\exp_a(r) = a^r \ (r \in \mathbb{Q}).$

Megoldás.

- a) $\ln(e) = 1$ miatt $\exp_e(x) = \exp(x \ln(e)) = \exp(x)$ $(x \in \mathbb{R})$, ami adja az állítást;
- b) Az $x \to x \ln a$ és az $y \to \exp(y)$ függvény $\forall x \in \mathbb{R}$ és $y \in \mathbb{R}$ esetén értelmezett, így az $x \to \exp(x \ln a) = \exp_a(x)$ függvény is. Ha $a \neq 1$, akkor a $g(x) = x \ln a$ $(x \in \mathbb{R})$ lineáris függvény értékkészlete \mathbb{R} , melyet az exp függvény (a bizonyítottak szerint) \mathbb{R}_+ -ra képezi le, így $\mathbb{R}_{\exp_a} = \mathbb{R}_+ \ (a \neq 1)$ következik.
- c) Az exp függvény addíciós tulajdonságát felhasználva (exp $_a$ definíciója mellett) $\forall x, y \in \mathbb{R}$ esetén

$$\begin{split} \exp_a(x+y) &= \exp((x+y)\ln a) = \exp(x\ln a + y\ln a) = \\ &= \exp(x\ln a) \cdot \exp(y\ln a) = \exp_a(x)\exp_a(y) \;, \end{split}$$

amit bizonyítani kellett.

$$\exp_a(-x) = \exp(-x \ln a) = \frac{1}{\exp(x \ln a)} = \frac{1}{\exp_a(x)} = [\exp_a(x)]^{-1}$$
nyilványalóan igaz.

d) Ha a > 1, akkor $\ln a > 0$, így $x_1 < x_2$ esetén $x_1 \ln a < x_2 \ln a$ teljesül, melyből az exp függvény szigorú monoton növekedése miatt

$$\exp_a(x_1) = \exp(x_1 \ln a) < \exp(x_2 \ln a) = \exp_a(x_2)$$

következik, s ez definíció szerint adja az \exp_a függvény szigorú monoton növekedését, ha a>1.

Ha 0 < a < 1, akkor $\ln a < 0$, így – az előbbivel azonos gondolatmenettel – kapjuk:

$$\forall x_1 < x_2 \implies x_1 \ln a > x_2 \ln a$$

$$\implies \exp_a(x_1) = \exp(x_1 \ln a) > \exp(x_2 \ln a) = \exp_a x_2$$

$$\implies \exp_a$$
monoton csökkenő, ha $0 < a < 1.$

- e) Az $x \to x \ln a \ (x \in \mathbb{R})$ és $y \to \exp(y) \ (y \in \mathbb{R})$ függvények folytonosak, így a belőlük képzett $x \to \exp_a(x) = \exp(x \ln a)$ összetett függvény is folytonos.
- f) Ha $a \in \mathbb{R}_+$, úgy

$$\exp_a(0) = \exp(0 \cdot \ln a) = \exp(0) = 1 = a^0$$
,

és

$$\exp_a(1) = \exp(1 \cdot \ln a) = \exp(\ln a) = a = a^1$$
.

Tegyük fel, hogy $\exp_a(n) = a^n$, akkor

$$\exp_a(n+1) = \exp_a(n) \exp_a(1) = a^n \cdot a = a^{n+1}$$
.

Az indukciós axióma miatt így $\exp_a(n)=a^n \ \forall \ n \in \mathbb{N}$ esetén.

A c) rész és az előbbiek miatt

$$\exp_a(-n) = \frac{1}{\exp_a(n)} = \frac{1}{a^n} = a^{-n}$$

 $\forall~n\in\mathbb{N}$ esetén, ami az előbbiekkel együtt adja, hogy $\exp_a(z)=a^z~\forall~z\in\mathbb{Z}$ esetén.

Ha $n \in \mathbb{N}$, akkor

$$\left[\exp_a\left(\frac{1}{n}\right)\right]^n = \exp_a\left(n \cdot \frac{1}{n}\right) = \exp_a(1) = a \quad \text{\'es} \quad \exp_a\frac{1}{n} > 0$$

miatt (az n-edik gyök definíciója miatt)

$$\exp_a \frac{1}{n} = \sqrt[n]{a} = a^{\frac{1}{n}}$$

következik.

Legyen végül $m \in \mathbb{Z}$ és $n \in \mathbb{N}$, akkor

$$\left[\exp_a\left(\frac{m}{n}\right)\right]^n = \exp_a\left(n \cdot \frac{m}{n}\right) = \exp_a m = a^m \quad \text{és} \quad \exp_a \frac{m}{n} > 0$$

miatt

$$\exp_a\left(\frac{m}{n}\right) \doteq \sqrt[n]{a^m} \doteq a^{\frac{m}{n}},$$

amiből következik az állítás, mert $\forall \ r \in \mathbb{Q}$ esetén

 $\exists n \in \mathbb{N} \text{ és } m \in \mathbb{Z}, \text{ hogy } r = \frac{m}{n}, \text{ így}$

$$\exp_a(r) = \exp_a\left(\frac{m}{n}\right) = a^{\frac{m}{n}} = a^r.$$

7.12. feladat. Bizonyítsa be, hogy az $\log_a \doteq \exp_a^{-1} \colon \mathbb{R}_+ \to \mathbb{R} \ (a \in \mathbb{R}_+)$ szerint definiált *a*-alapú logaritmus függvényre teljesülnek:

a)
$$\log_e = \ln$$
, $\log_a(x) = \frac{\ln(x)}{\ln(a)}$ $(x \in \mathbb{R}_+, 1 \neq a \in \mathbb{R})$;

b)
$$D_{\log_a} = \mathbb{R}_+, \quad R_{\log_a} = \mathbb{R}, \\ \log_a(a) = 1, \quad \log_a(1) = 0 ;$$

- c) szigorúan monoton növekvő (csökkenő), ha a > 1 (0 < a < 1);
- d) $\exp_a[\log_a(x)] = x \ (x \in \mathbb{R}_+), \quad \log_a[\exp_a(x)] = x \ (x \in \mathbb{R});$
- e) $\log_a(xy) = \log_a(x) + \log_a(y) \quad (x, y \in \mathbb{R}_+);$

f)
$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$
 $(x \in \mathbb{R}_+, 1 \neq a, b \in \mathbb{R}_+);$

g)
$$\log_a(x^r) = r \log_a(x) \quad (1 \neq x \in \mathbb{R}_+, \ r \in \mathbb{Q}).$$

Megoldás.

a) $\log_e(x) \doteq \exp_e^{-1}(x) = \exp^{-1}(x) \doteq \ln(x) \ (x \in \mathbb{R})$ adja az első állítást. Másrészt $\forall x \in \mathbb{R}_+$ -ra

$$\log_a x = \log_a (\exp(\ln x)) = \log_a \left(\exp \frac{\ln x}{\ln a} \ln a \right) =$$
$$= \log_a \left(\exp_a \left(\frac{\ln x}{\ln a} \right) \right) = \frac{\ln x}{\ln a}$$

adja a másik állítást is.

b) A \log_a definíciója, az a tény, hogy $D_{\exp_a} = \mathbb{R}$, $R_{\exp_a} = \mathbb{R}_+$ adja, hogy $D_{\log_a} = R_{\exp_a} = \mathbb{R}_+$ és $R_{\log_a} = D_{\exp_a} = \mathbb{R}$. $\exp_a(1) = a$ adja, hogy $\log_a(a) = 1$, míg $\exp_a(0) = 1$ azt, hogy $\log_a(1) = 0$.

- c) Az \exp_a függvény szigorúan monoton növekvő (csökkenő), ha a>1 (0 < a<1), így inverze a \log_a is ilyen.
- d) A definíció és az 1.15. feladat nyilvánvalóan adja az állítást.

e)
$$\log_a(xy) \doteq \frac{\ln(xy)}{\ln a} = \frac{\ln(x) + \ln(y)}{\ln a} \doteq \log_a(x) + \log_a(y) \ (x, y \in \mathbb{R})$$
nyilvánvalóan igaz.

f) $\forall x \in \mathbb{R}_+$ esetén

$$\log_a(x) = \frac{\ln x}{\ln a} = \frac{\frac{\ln x}{\ln b}}{\frac{\ln a}{\ln b}} = \frac{\log_b x}{\log_b a}$$

(felhasználva az a) rész második állítását).

7.13. feladat. Bizonyítsa be, hogy adott $\mu \in \mathbb{R}$ esetén az

$$f: \mathbb{R}_+ \to \mathbb{R}, \ f(x) = x^{\mu} \doteq \exp(\mu \ln x)$$

szerint definiált μ -kitevőjű valós hatványfüggvényre teljesülnek:

- a) folytonos függvény;
- b) $R_f = \mathbb{R}_+$, ha $\mu \neq 0$; $R_f = \{1\}$, ha $\mu = 0$;
- c) szigorúan monoton növekedő (csökkenő), ha $\mu > 0 \ (\mu < 0)$;
- d) $\lim_{x\to 0} f(x) = 0$, $\lim_{x\to +\infty} f(x) = +\infty$, ha $\mu > 0$, $\lim_{x\to 0} f(x) = +\infty$, $\lim_{x\to +\infty} f(x) = 0$, ha $\mu < 0$; e) $x^{\mu}x^{\nu} = x^{\mu+\nu}$, $\frac{x^{\mu}}{x^{\nu}} = x^{\mu-\nu}$, $(xy)^{\mu} = x^{\mu}y^{\mu}$,

e)
$$x^{\mu}x^{\nu} = x^{\mu+\nu}$$
, $\frac{x^{\mu}}{x^{\nu}} = x^{\mu-\nu}$, $(xy)^{\mu} = x^{\mu}y^{\mu}$, $\left(\frac{x}{y}\right)^{\mu} = \frac{x^{\mu}}{y^{\mu}}$, $(x^{\mu})^{\nu} = x^{\mu\nu}$ $(x, y \in \mathbb{R}_{+}, \mu, \nu \in \mathbb{R})$.

Megoldás.

- a) Az $x \to \mu \ln x$ $(x \in \mathbb{R}_+)$ és $y \to \exp(y)$ $(y \in \mathbb{R})$ folytonos függvények összetételeként definiált f folytonos függvény;
- b) Ha $\mu \neq 0$, akkor az $x \to \mu \ln x$ $(x \in \mathbb{R}_+)$ függvény értékkészlete \mathbb{R} és akkor $\exp(\mathbb{R}) = \mathbb{R}_+$ adja, hogy $R_f = \mathbb{R}_+$. Ha $\mu = 0$, akkor $\mu \ln x = 0$ $(x \in \mathbb{R})$, így $f(x) = x^{\mu} = \exp(0) = 1$ $(x \in \mathbb{R}_+)$.
- c) Ha $\mu > 0$ és $x_1 < x_2$, akkor az ln függvény szigorú monoton növekedését is felhasználva $\mu \ln x_1 < \mu \ln x_2$, melyből az exp függvény szigorú monoton növekedése miatt kapjuk, hogy

$$f(x_1) = x_1^{\mu} = \exp(\mu \ln(x_1)) < \exp(\mu \ln(x_2)) = x_2^{\mu} = f(x_2)$$

adja f szigorú monoton növekedését. $\mu < 0$ esetén a bizonyítás hasonló.

d) Ha $\mu>0$, akkor $\lim_{x\to 0}\mu\ln x=-\infty$, továbbá $\lim_{y\to -\infty}\exp(y)=0$, melyek (az összetett függvény határértékére vonatkozó tétel miatt) adják, hogy $\lim_{x\to 0}f(x)=0$.

Másrészt $\lim_{x\to +\infty} \mu \ln x = +\infty$ és $\lim_{y\to +\infty} \exp(y) = +\infty$ -ből (hasonló okok miatt) kapjuk, hogy $\lim_{x\to +\infty} f(x) = +\infty$.

 $\mu < 0$ esetén az állítások hasonlóan bizonyíthatók

e)
$$x^{\mu}x^{\nu} \doteq \exp(\mu \ln x) \exp(\nu \ln x) = \exp((\mu + \nu) \ln x) \doteq x^{\mu + \nu}$$

$$\frac{x^{\mu}}{x^{\nu}} \doteq \frac{\exp(\mu \ln x)}{\exp(\nu \ln x)} = \exp(\mu \ln x) \exp(-\nu \ln x) =$$
$$= \exp((\mu - \nu) \ln x) \doteq x^{\mu - \nu},$$

$$(xy)^{\nu} \doteq \exp(\nu \ln(xy)) = \exp(\nu(\ln x + \ln y)) =$$
$$= \exp(\nu \ln x) \exp(\nu \ln y) \doteq x^{\nu} y^{\nu},$$

$$\left(\frac{x}{y}\right)^{\nu} = \exp\left(\nu \ln \frac{x}{y}\right) = \exp(\nu(\ln x - \ln y)) =$$

$$= \exp(\nu \ln x) \exp(-\nu \ln y) = \frac{\exp(\nu \ln x)}{\exp(\nu \ln y)} = \frac{x^{\nu}}{y^{\nu}},$$

$$(x^{\mu})^{\nu} \doteq \exp(\nu \ln x^{\mu}) = \exp(\mu \nu \ln x) \doteq x^{\mu \nu}$$

adják az állításokat.

Gyakorló feladatok

- 1. Határozza meg az $f_n \colon \mathbb{R} \to \mathbb{R}$, $f_n(x) = \frac{2nx}{1 + n^2x^n}$ $(n \in \mathbb{N})$ által adott $\langle f_n \rangle$ függvénysorozat konvergenciatartományát.
- 2. Bizonyítsa be, hogy az $f_n: [0, +\infty[\to \mathbb{R}, f_n(x)] = \frac{2nx}{1 + n^2x^n} \ (n \in \mathbb{N})$ függvénysorozat egyenletesen konvergens.
- 3. Bizonyítsa be, hogy a $\sum f_n$ függvénysor egyenletesen konvergens, ha $f_n \colon \mathbb{R}_+ \to \mathbb{R}, \ f_n(x) = \frac{(-1)^n}{x+n} \ (n \in \mathbb{N}).$

4. Határozza meg a $\sum f_n$ függvénysor konvergencia
tartományát, ha

a)
$$f_n : \mathbb{R} \setminus \left\{-\frac{1}{2}\right\} \to \mathbb{R}, \ f_n(x) = \frac{n}{n+1} \frac{x^n}{(2x+1)^n} \ (n \in \mathbb{N})$$

b) $f_n : \mathbb{R} \to \mathbb{R}, \ f_n(x) = \left(\frac{x(n+x)}{n}\right)^n \ (n = 1, 2, \cdots).$

5. Határozza meg az alábbi hatványsorok konvergenciasugarát (ha lehet konvergenciaintervallumát):

$$\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n \; ; \qquad \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \; ; \qquad \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \; ;$$

$$\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n} x^n \; ; \qquad \sum_{n=1}^{\infty} \frac{x^n}{a^n + b^n} \quad (a, b \in \mathbb{R}_+).$$

6. Bizonyítsa be, hogy a > 1 esetén

$$\begin{split} \lim_{x \to 0} \log_a x &= -\infty \ , \qquad \lim_{x \to +\infty} \log_a x = +\infty \ , \\ \text{míg } 0 &< a < 1 \text{ esetén} \\ \lim_{x \to 0} \log_a x &= +\infty \ , \qquad \lim_{x \to +\infty} \log_a x = -\infty. \end{split}$$

7. Bizonyítsa be, hogy $\forall x, y \in \mathbb{R}$ esetén

$$\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y) ;$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y) ;$$

$$\sin(2x) = 2\sin(x)\cos(x) ; \cos(2x) = \cos^{2}(x) - \sin^{2}(x) ;$$

$$\sin(x) + \sin(y) = 2\sin\frac{x + y}{2}\cos\frac{x - y}{2} ;$$

$$\cos(x) + \cos(y) = 2\cos\frac{x + y}{2}\cos\frac{x - y}{2} ;$$

$$\cos(x) - \cos(y) = -2\sin\frac{x + y}{2}\sin\frac{x - y}{2} ;$$

$$\sin(x)\cos(y) = \frac{1}{2}\left[\sin(x + y) + \sin(x - y)\right] ;$$

$$\cos(x)\cos(y) = \frac{1}{2}\left[\cos(x + y) + \cos(x - y)\right] ;$$

$$\sin(x)\sin(y) = \frac{1}{2}\left[\cos(x - y) - \cos(x + y)\right] .$$

8. Bizonyítsa be, hogy az sh függvény szigorúan monoton növekvő; a ch függvény szigorúan monoton csökkenő] $-\infty,0$]-on, szigorúan monoton növekedő $[0,+\infty[$ -on.

VIII. fejezet

Differenciálszámítás

Differenciahányados, differencialhatóság, differencialhányados, érintő

8.1. feladat. Határozza meg az $f\colon \mathbb{R}\to\mathbb{R},\ f(x)=x^2$ függvény $x_0,\ x$ értékekhez tartozó differenciahányadosát, ha

a)
$$x_0 = 1$$
, $x = 1, 1$; b) $x_0 = -5$, $x = -5, 1$.

Megoldás. Az x, x_0 -hoz tartozó differenciahányados:

$$\varphi(x,x_0) \doteq \frac{f(x) - f(x_0)}{x - x_0} \qquad (x \neq x_0).$$

a) A definíció alapján:

$$\varphi(1,1,1) = \frac{f(1,1) - f(1)}{1,1-1} = \frac{1,1^2 - 1^2}{1,1-1} = \frac{0,21}{0,1} = 2,1$$
.

b) Hasonlóan:

$$\varphi(-5,1,-5) = \frac{f(-5,1) - f(-5)}{-5,1 - (-5)} = \frac{(-5,1)^2 - (-5)^2}{-0,1} = \frac{0,1 \cdot 10,1}{-0,1} = -10,1.$$

8.2. feladat. Az egyenesvonalú mozgást végző pont mozgásegyenlete $s=10t+5t^2$. Határozza meg átlagsebességét a $20 \le t \le 20 + \Delta t$ időintervallumban, ha $\Delta t=1$ vagy $\Delta t=0,1$ vagy $\Delta t=0,01$. Adja meg a t=20-hoz tartozó pillanatnyi sebességet.

Megoldás. A $[t_0, t_0 + \Delta t]$ időintervallumban az átlagsebesség:

$$\overline{v}_{[t_0,t_0+\Delta t]} = \frac{s(t_0+\Delta t) - s(t_0)}{\Delta t} = \frac{10(t_0+\Delta t) + 5(t_0+\Delta t)^2 - 10t_0 - 5t_0^2}{\Delta t} =
= \frac{10t_0 + 10\Delta t + 5t_0^2 + 5(\Delta t)^2 + 10t_0\Delta t - 10t_0 - 5t_0^2}{\Delta t} =
= \frac{10\Delta t + 10t_0\Delta t + 5(\Delta t)^2}{\Delta t} = 10 + 10t_0 + 5\Delta t .$$

Így

$$\overline{v}_{[20,20+\Delta t]} = 10 + 10 \cdot 20 + 5\Delta t = 210 + 5\Delta t ,$$

illetve

$$\overline{v}_{[20,21]} = 215, \qquad \overline{v}_{[20,20,1]} = 210,5, \qquad \overline{v}_{[20,20,01]} = 210,05.$$

A pillanatnyi sebesség:

$$v(t_0) = \lim_{\Delta t \to 0} \frac{s(t_0 + \Delta t) - s(t_0)}{\Delta t} = \lim_{\Delta t \to 0} (10 + 10t_0 + 5\Delta t) = 10 + 10t_0$$

$$\implies v(20) = 210.$$

8.3. feladat. Vizsgálja az alábbi függvények differenciálhatóságát értelmezési tartományuk minden pontjában, határozza meg a differenciálhányados függvényüket:

$$f_{1}(x) = \frac{1}{x} \qquad (x \in \mathbb{R}_{+}); \qquad f_{2}(x) = \sqrt{x} \qquad (x \ge 0);$$

$$f_{3}(x) = \sqrt[3]{x} \qquad (x \in \mathbb{R}); \qquad f_{4}(x) = 3x + 5 \qquad (x \in \mathbb{R});$$

$$f_{5}(x) = x^{2} - 5x + 6 \qquad (x \in \mathbb{R}); \qquad f_{6}(x) = |x - 2| \qquad (x \in \mathbb{R});$$

$$f_{7}(x) = |x^{2} + 2x| \qquad (x \in \mathbb{R}).$$

Megold'as. Az $f\colon \langle a,b\rangle\to \mathbb{R}$ függvény akkor differenciálható az $x_0\in \langle a,b\rangle$ ben, ha létezik a

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \doteq f'(x_0)$$

véges határérték .

 $f'(x_0)$ -t az $f(x_0)$ -beli differenciálhányadosának nevezzük.

– Az f_1 függvény esetén $\forall x_0 \in \mathbb{R}_+$ -ra

$$\exists \lim_{x \to x_0} \frac{\frac{1}{x} - \frac{1}{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\frac{x_0 - x}{x x_0}}{x - x_0} = \lim_{x \to x_0} -\frac{1}{x x_0} = -\frac{1}{x_0^2} ,$$

így f_1 differenciálható értelmezési tartománya minden pontjában és $f_1'(x_0) = -\frac{1}{x_0^2}$, ezért differenciálhányados függvénye az

$$f_1'(x) = -\frac{1}{x^2} \ (x \in \mathbb{R}_+)$$

függvény.

– Az f_2 függvény esetén

$$\exists \lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\sqrt{x} - \sqrt{x_0}}{(\sqrt{x} - \sqrt{x_0})(\sqrt{x} + \sqrt{x_0})} = \lim_{x \to x_0} \frac{1}{\sqrt{x} + \sqrt{x_0}} = \frac{1}{2\sqrt{x_0}}, \text{ ha } x_0 \neq 0 \text{ } (x_0 > 0),$$

így f_2 differenciálható, ha $x_0 > 0$.

$$\lim_{x \to 0} \frac{\sqrt{x} - \sqrt{0}}{x - 0} = \lim_{x \to 0} \frac{1}{\sqrt{x}} = +\infty ,$$

ezért f_2 nem differenciálható $x_0 = 0$ -ban.

A differenciálhányados függvény:

$$f_2'(x) = \frac{1}{2\sqrt{x}}$$
 $(x > 0).$

 $-f_3$ esetén

$$\exists \lim_{x \to x_0} \frac{\sqrt[3]{x} - \sqrt[3]{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{\sqrt[3]{x} - \sqrt[3]{x_0}}{(\sqrt[3]{x} - \sqrt[3]{x_0})(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{x_0} + \sqrt[3]{x_0^2})} = \lim_{x \to x_0} \frac{1}{\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{x_0} + \sqrt[3]{x_0^2}} = \frac{1}{3\sqrt[3]{x_0^2}}, \text{ ha } x_0 \neq 0,$$

de

$$\lim_{x \to 0} \frac{\sqrt[3]{x} - \sqrt[3]{0}}{x - 0} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x^2}} = +\infty.$$

Ezért f_3 differenciálható, ha $x_0 \neq 0$, de $x_0 = 0$ -ban nem.

A differenciálhányados függvény:

$$f_3'(x) = \frac{1}{3\sqrt[3]{x^2}} = \frac{1}{3}x^{-\frac{2}{3}} \ (x \neq 0).$$

 $-f_4$ esetén $\forall x_0 \in \mathbb{R}$ -re

$$\exists \lim_{x \to x_0} \frac{3x + 5 - (3x_0 + 5)}{x - x_0} = \lim_{x \to x_0} \frac{3(x - x_0)}{x - x_0} = \lim_{x \to x_0} 3 = 3 = f_4'(x_0) ,$$

így f_4 differenciálható függvény az értelmezési tartománya minden pontjában és $f_4'(x) = 3$ $(x \in \mathbb{R})$.

$$- \exists \lim_{x \to x_0} \frac{x^2 - 5x + 6 - (x_0^2 - 5x_0 + 6)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{x^2 - x_0^2 - 5(x - x_0)}{x - x_0} = \lim_{x \to x_0} \frac{(x - x_0)(x + x_0 - 5)}{x - x_0} =$$

$$= \lim_{x \to x_0} (x + x_0 - 5) = 2x_0 - 5 = f_5'(x_0) \quad \forall \ x_0 \in \mathbb{R}\text{-re},$$

így f_5 mindenütt differenciálható és

$$f_5'(x) = 2x - 5 \qquad (x \in \mathbb{R}).$$

- Ha $x_0 \neq 2$, akkor

$$\exists \lim_{x \to x_0} \frac{|x-2| - |x_0 - 2|}{x - x_0} = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = 1, \text{ ha } x_0 > 2,$$

illetve

$$\exists \lim_{x \to x_0} \frac{|x-2| - |x_0 - 2|}{x - x_0} = \lim_{x \to x_0} \frac{-x - (-x_0)}{x - x_0} = -1, \text{ ha } x_0 < 2.$$

Ha $x_0 = 2$, akkor

$$\lim_{x \to 2+0} \frac{|x-2| - |2-2|}{x-2} = \lim_{x \to 2+0} \frac{x-2}{x-2} = 1,$$

illetve

$$\lim_{x \to 2-0} \frac{|x-2| - |2-2|}{x-2} = \lim_{x \to 2-0} \frac{-(x-2)}{x-2} = -1,$$

így

$$\nexists \lim_{x \to 2} \frac{|x-2| - |2-2|}{x-2} \ .$$

Ezért f_6 nem differenciálható $x_0=2$ -ben, de $x_0\neq 2$ esetén igen, és

$$f_6'(x) = \begin{cases} 1 , \text{ ha } x > 2 \\ -1 , \text{ ha } x < 2 . \end{cases}$$

– Az f_7 függvény az x-tengelyt a 0 és -2 pontokban metszi, így

$$f_7(x) = \begin{cases} x^2 + 2x , \text{ ha } x \in]-\infty, -2] \cup [0, +\infty[\\ -(x^2 + 2x), \text{ ha } x \in]-2, 0[. \end{cases}$$

Ha $x_0 \in]-\infty, -2[\cup]0, +\infty[$, akkor

$$\lim_{x \to x_0} \frac{|x^2 + 2x| - |x_0^2 + 2x_0|}{x - x_0} = \lim_{x \to x_0} \frac{x^2 - x_0^2 + 2x - 2x_0}{x - x_0} = 2x_0 + 2.$$

Ha $x_0 \in]-2,0[$, akkor

$$\lim_{x \to x_0} \frac{|x^2 + 2x| - |x_0^2 + 2x_0|}{x - x_0} = \lim_{x \to x_0} -\frac{x^2 - x_0^2 + 2x - 2x_0}{x - x_0} = -2x_0 - 2.$$

Így $\exists f_7'(x_0)$, ha $x_0 \neq -2, 0$.

Ugyanakkor egyszerűen belátható, hogy $\nexists f_7'(-2)$ és $\nexists f_7'(0)$.

A differenciálhányados függvény:

$$f_7'(x) = \begin{cases} 2x+2 , \text{ ha } x \in D\\ -2x-2 , \text{ ha } x \in]-2,0[. \end{cases}$$

- 8.4. feladat. Határozza meg
 - a) az $f_1(x) = 3x x^2$ $(x \in \mathbb{R})$ függvény képét az $(1, f_1(1))$ pontban,
 - b) az $f_2(x) = x^2 4$ $(x \in \mathbb{R})$ függvény képét a $(2, f_2(2))$ pontban érintő egyenest.

Megoldás. Az $f:\langle a,b\rangle\to\mathbb{R}$ x_0 -ban diffferenciálható függvény x_0 -beli érintője az

$$y = f'(x_0)(x - x_0) + f(x_0) \ (x \in \mathbb{R})$$

egyenletű egyenes.

a) Az előző feladat f_5 függvényéhez hasonlóan (de a műveleti tulajdonságok felhasználásával is) belátható, hogy

$$\exists f_1'(x) = 3 - 2x \ (x \in \mathbb{R}).$$

Ugyanakkor most $x_0=1,\ f_1(x_0)=f_1(1)=2$ és $f_1'(1)=1,$ ezért a kívánt érintő az

$$y = 1(x-1) + 2 = x + 1$$

egyenes.

b) $\exists f_2'(x) = 2x, x_0 = 2, f(x_0) = f(2) = 0, f'(x_0) = f'(2) = 4 \implies az$ érintő az

$$y = 4(x-2)$$

egyenes.

8.5. feladat. Határozza meg az $f(x) = x^2$ $(x \in \mathbb{R})$ függvény gráfjának azon pontját, melyben az érintő párhuzamos az y = 6x - 1 egyenletű egyenessel.

Megoldás. f differenciálható és f'(x) = 2x $(x \in \mathbb{R})$, így bármely $(x_0, f(x_0)) = (x_0, x_0^2)$ pontban van érintője, melynek egyenlete

$$y = f'(x_0)(x - x_0) + f(x_0) = 2x_0(x - x_0) + x_0^2$$
.

Ez akkor párhuzamos az y = 6x - 1 egyenessel, ha $2x_0 = 6$, azaz $x_0 = 3$ és akkor $f(x_0) = x_0^2 = 9$.

Így a (3,9) pontban "húzott" érintő lesz párhuzamos az adott egyenesel.

Differenciálhatóság és műveletek

8.6. feladat. Ha f + g vagy $f \cdot g$ differenciálható x_0 -ban, akkor f az-e x_0 -ban? Ha $f \circ g$ differenciálható x_0 -ban, akkor létezik-e $g'(x_0)$?

Megoldás.

- Ha f(x)=|x| és g(x)=-|x| $(x\in\mathbb{R})$, akkor (f+g)(x)=0, ami differenciálható $\forall x_0\in\mathbb{R}$ -ben, de f nem differenciálható $x_0=0$ -ban.
- Ha f(x) = |x| és g(x) = 2|x|, úgy $(f \cdot g)(x) = 2|x|^2 = 2x^2$, mely $\forall x_0 \in \mathbb{R}$ -ben differenciálható, de $\nexists f'(0)$.
- Legyen $g(x)=|x|\ (x\in\mathbb{R}),\ f(y)=y^2\ (y\in\mathbb{R}),$ akkor $(f\circ g)(x)=|x|^2=x^2\ (x\in\mathbb{R})$ differenciálható $\forall\ x_0\in\mathbb{R}$ esetén, de $\nexists\ g'(0)$.

8.7. feladat. Bizonyítsa be, hogy

1. Ha $f:\langle a,b\rangle\to\mathbb{R}$ differenciálható x_0 -ban, $c\in\mathbb{R}$, akkor $c\cdot f$ is differenciálható, és

$$(cf)'(x_0) = c \cdot f'(x_0).$$

2. Ha $f, g: \langle a, b \rangle \to \mathbb{R}$ differenciálhatók x_0 -ban, akkor f-g is, és

$$(f-g)'(x_0) = f'(x_0) - g'(x_0).$$

3. Ha $f:\langle a,b\rangle\to\mathbb{R}$ olyan, hogy $f(x_0)\neq 0,$ és $\exists~f'(x_0),$ akkor

$$\exists \left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{f^2(x_0)}.$$

4. Ha az $f_i:\langle a,b\rangle\to\mathbb{R}$ $(i=1,\ldots,n)$ függvények differenciálhatók $x_0\in\langle a,b\rangle$ -ben, $\lambda_i\in\mathbb{R}$ $(i=1,\ldots,n)$, akkor $\sum\limits_{i=1}^n\lambda_i\cdot f_i$ is differenciálható x_0 -ban, és

$$\left(\sum_{i=1}^{n} \lambda_i \cdot f_i\right)'(x_0) = \sum_{i=1}^{n} \lambda_i \cdot f_i'(x_0).$$

5. Az $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sum_{k=0}^{n} a_k \cdot x^k \ (a_k \in \mathbb{R})$ függvény differenciálható, és

$$f'(x) = \sum_{k=1}^{n} k \cdot a_k \cdot x^{k-1}.$$

6. Az $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{P_n(x)}{Q_m(x)}$ $(P_n(x), Q_m(x))$ polinom függvények és $Q_m(x) \neq 0$) differenciálható függvény.

Megoldás.

1.

$$\lim_{x \to x_0} \frac{(cf)(x) - (cf)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{cf(x) - cf(x_0)}{x - x_0} =$$

$$= c \cdot \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = cf'(x_0)$$

adja az állítást.

2. Az f - g = f + (-g) egyenlőség, az összeg differenciálására vonatkozó tétel és az előző feladat c = -1 melletti felhasználásával:

$$\exists (f-g)'(x_0) = (f+(-g))'(x_0) = f'(x_0) + (-g)'(x_0) = f'(x_0) - g'(x_0).$$

3. A hányados differenciálására vonatkozó tételben f és g szerepét felcserélve, $g \equiv 1$ mellett, (1)' = 0 miatt kapjuk, hogy

$$\exists \left(\frac{1}{f}\right)'(x_0) = \frac{(1)'(x_0)f(x_0) - 1 \cdot f'(x_0)}{f^2(x_0)} = -\frac{f'(x_0)}{f^2(x_0)}.$$

4. A bizonyítást teljes indukcióval végezzük.

n=1-re jelen feladat 1. része adja az állítást.

Tegyük fel, hogy $k \geq 2$ -re igaz az állítás a 4. alatti formulával, akkor k+1-re

$$\left(\sum_{i=1}^{k+1} \lambda_i f_i\right)'(x_0) = \left(\sum_{i=1}^k \lambda_i f_i\right)'(x_0) + (\lambda_{k+1} f_{k+1})'(x_0) =$$

$$= \sum_{i=1}^k \lambda_i f_i' + \lambda_{k+1} f_{k+1}'(x_0) = \sum_{i=1}^{k+1} \lambda_i f_i'(x_0)$$

teljesül, így $\forall n \in \mathbb{N}$ rögzített értékre igaz az állítás.

5. Az előbbi állítást az $f_k(x) = x^{k-1}$ $(x \in \mathbb{R})$ differenciálható függvényekkel és a $\lambda_k = a_{k-1}$ konstansokkal alkalmazva, $f'_k(x) = (k-1)x^{k-2}$ miatt kapjuk az állítást.

- 6. Az előző állítás miatt $P_n(x)$ és $Q_m(x)$ differenciálhatók, $Q_m(x) \neq 0$, így a hányados függvény differenciálhatóságára vonatkozó tétel adja az állítást.
- **8.8. feladat.** Határozza meg az alábbi függvények differenciálhányados függvényeit:

a)
$$f_{1}(x) = 6x^{5} + 4x^{4} - 3x^{2} + 2x + 1 \qquad (x \in \mathbb{R}),$$

$$f_{2}(x) = 4x^{4} + \sqrt[3]{3}x^{3} - \sqrt{5}x + \sqrt{7} \qquad (x \in \mathbb{R}),$$

$$f_{3}(x) = 2x + \sqrt{x} + \sqrt[3]{x} \qquad (x \ge 0);$$
b)
$$f_{4}(x) = x(x^{2} + 3x - 2) \qquad (x \in \mathbb{R}),$$

$$f_{5}(x) = (x^{2} + 1)\sqrt{x} \qquad (x \ge 0),$$

$$f_{6}(x) = (2x^{2} + 3x + 2)(5x^{4} + 3x^{2} - 1) \qquad (x \in \mathbb{R}),$$

$$f_{7}(x) = 2x(3x + 2)(4x - 3) \qquad (x \in \mathbb{R});$$
c)
$$f_{8}(x) = \frac{2x + 3}{x + 7} \qquad (x \ne -7),$$

$$f_{9}(x) = \frac{5x + 3}{2x^{2} + 8} \qquad (x \in \mathbb{R}),$$

$$f_{10}(x) = \frac{2x}{1 - x^{2}} \qquad (x \ne \pm 1),$$

$$f_{11}(x) = -x^{7} + 2x^{5} - \frac{3}{2x^{2}} - \frac{1}{x + 1} \qquad (x \ne 0, -1).$$

Megoldás.

a) Felhasználva a 8.7. feladat 4. állítását, továbbá azt, hogy

$$\exists (c)' = 0, \qquad (x^n)' = nx^{n-1}, \qquad (\sqrt{x})' = \frac{1}{2\sqrt{x}} \quad (x > 0),$$
$$(\sqrt[3]{x})' = \frac{1}{3}x^{-\frac{2}{3}} \quad (x \neq 0),$$

$$-\exists f_1'(x) = 30x^4 + 16x^3 - 6x + 2 \quad (x \in \mathbb{R}),
-\exists f_2'(x) = 16x^3 + 3\sqrt[3]{3}x^2 - \sqrt{5} \quad (x \in \mathbb{R}),
-\exists f_3'(x) = 2 + \frac{1}{2\sqrt{x}} + \frac{1}{3}x^{-\frac{2}{3}} \quad (x > 0), \text{ de } \not\equiv f_3'(0).$$

b) A szorzat differenciálási szabálya, illetve az előbb használt differenciálási szabályok adják, hogy

- ∃
$$f'_4(x) = (x)'(x^2 + 3x - 2) + x(x^2 + 3x - 2)' =$$

= $x^2 + 3x - 2 + x(2x + 3) = 3x^2 + 6x - 2$ $(x \in \mathbb{R})$,
- ∃ $f'_5(x) = (x^2 + 1)'\sqrt{x} + (x^2 + 1)(\sqrt{x})' = 2x\sqrt{x} + (x^2 + 1)\frac{1}{2\sqrt{x}}$,
ha $x > 0$, de $\nexists f'_5(0)$.
- ∃ $f'_6(x) = (2x^2 + 3x + 2)'(5x^4 + 3x^2 - 1) +$
+ $(2x^2 + 3x + 2)(5x^4 + 3x^2 - 1)' =$
= $(4x + 3)(5x^4 + 3x^2 - 1) +$
+ $(2x^2 + 3x + 2)(20x^3 + 6x)$ $(x \in \mathbb{R})$.
- ∃ $f'_7(x) = [2x(3x + 2)]'(4x - 3) - [2x(3x + 2)](4x - 3)' =$
= $[(2x)'(3x + 2) + 2x(3x + 2)'](4x - 3) +$
+ $2x(3x + 2)(4x - 3)' =$
= $[2(3x + 2) + 2x \cdot 3](4x - 3) + 2x(3x + 2) \cdot 4$ $(x \in \mathbb{R})$.

c) A hányados differenciálási szábályának, illetve a korábban is alkalmazott ismert derivált függvények felhasználásával:

$$\exists f'_{11}(x) = -(x^7)' + 2(x^5)' - 3\left(\frac{1}{2x^2}\right)' - \left(\frac{1}{x+1}\right)' =
= -7x^6 + 10x^4 - 3\left(-\frac{(2x^2)'}{(2x^2)^2}\right) - \left(-\frac{(x+1)'}{(x+1)^2}\right) =
= -7x^6 + 10x^4 - 3\frac{4x}{4x^4} + \frac{1}{(x+1)^2} =
= -7x^6 + 10x^4 + \frac{3}{x^3} + \frac{1}{(x+1)^2} \qquad (x \in \mathbb{R}, \ x \neq 0, -1).$$

8.9. feladat. Határozza meg az alábbi függvények differenciálhányados függvényeit:

$$f_1(x) = (2x+5)^{20} \quad (x \in \mathbb{R}); \qquad f_2(x) = (x^3 + 4x - 3)^{10} \quad (x \in \mathbb{R});$$

$$f_3(x) = \sqrt{x + \sqrt{x}} \quad (x > 0); \qquad f_4(x) = \sqrt{\frac{1 + x^2}{1 + x^4}} \quad (x \in \mathbb{R});$$

$$f_5(x) = (1 + 2\sqrt{x})^4 \quad (x \in \mathbb{R}_+); \qquad f_6(x) = \frac{1}{(5x^2 + 7)^3} \quad (x \in \mathbb{R});$$

$$f_7(x) = \frac{x}{\sqrt{x^2 + 2}} \quad (x \in \mathbb{R}); \qquad f_8(x) = (5x^2 + 2)^2 \cdot (2x + 7)^3 \quad (x \in \mathbb{R});$$

$$f_9(x) = \sqrt{\frac{5}{x}} + \sqrt{(6x + 1)^3} \quad (x \in \mathbb{R}_+);$$

$$f_{10}(x) = x^2 \sqrt[3]{(2x^2 + 3)^2} \quad (x \in \mathbb{R});$$

Megoldás. Az itt szereplő függvények összetett függvények, vagy ilyenekből (különböző műveletekkel) képzett függvények, ezért használni fogjuk az összetett függvény differenciálására vonatkozó ismert tételt:

Legyenek $g: \langle c, d \rangle \to \mathbb{R}$, $f: \langle a, b \rangle = g(\langle c, d \rangle) \to \mathbb{R}$ olyan függvények, hogy g differenciálható az $x_0 \in \langle c, d \rangle$ -ben, f differenciálható az $y_0 = g(x_0) \in \langle a, b \rangle$ -ben. Akkor az $F = f \circ g$ függvény is differenciálható x_0 -ban, és

$$F'(x_0) = (f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

(Ezt láncszabálynak is nevezzük.)

– Az $f_1: \mathbb{R} \to \mathbb{R}$ függvény a g(x) = 2x + 5 $(x \in \mathbb{R})$ és $f(y) = y^{20}$ $(y \in \mathbb{R})$ differenciálható függvények összetett függvénye $(\langle c, d \rangle = \mathbb{R}, \langle a, b \rangle = g(\langle c, d \rangle) = \mathbb{R})$ és $\forall x \in \mathbb{R}$ esetén $\exists g'(x) = 2$, illetve $\forall y \in \mathbb{R}$ esetén $\exists f'(y) = 20y^{19}$. Teljesülnek tehát az összetett függvény differenciálására

vonatkozó tétel feltételei $\forall x_0 \in \mathbb{R}$ és $y_0 = g(x_0) \in \mathbb{R}$ esetén, ezért

$$\exists f_1'(x) = f'(g(x))g'(x) = = 20(2x+5)^{19} \cdot 2 = 40(2x+5)^{19} (\forall x \in \mathbb{R}).$$

 $-f_2: \mathbb{R} \to \mathbb{R}$ a $g(x) = x^3 + 4x - 3 \quad (x \in \mathbb{R})$ és $f(y) = y^{10} \quad (y \in \mathbb{R})$ differenciálható függvényekből képzett összetett függvény, ahol $\langle c, d \rangle = \mathbb{R}, \ \langle a, b \rangle = g(\langle c, d \rangle) = \mathbb{R},$ továbbá

$$g'(x) = 3x^2 + 4$$
 $(x \in \mathbb{R}),$ $f'(y) = 10y^9$ $(y \in \mathbb{R}),$

így a láncszabály miatt $\forall \ x \in \mathbb{R}$ esetén

$$\exists f_2'(x) = f'(g(x))g'(x) = 10(x^3 + 4x - 3)^9 \cdot (3x^2 + 4).$$

– $f_3: \mathbb{R}_+ \to \mathbb{R}$ a $g(x) = x + \sqrt{x}$ $(x \ge 0)$ és $f(y) = \sqrt{y}$ $(y \ge 0)$ függvényekből képzett összetett függvény, ahol $\langle c, d \rangle = [0, +\infty[, \langle a, b \rangle = g[[0, +\infty[] = [0, +\infty[$ (ahogy ez egyszerűen belátható), továbbá

$$\exists g'(x) = 1 + \frac{1}{2\sqrt{x}}, \text{ ha } x > 0$$

és

$$\exists f'(y) = \frac{1}{2\sqrt{y}}, \text{ ha } y > 0,$$

ezért a láncszabály miatt $\forall x > 0$ esetén

$$\exists f_3'(x) = f'(g(x))g'(x) = \frac{1}{2\sqrt{x+\sqrt{x}}} \left(1 + \frac{1}{2\sqrt{x}}\right).$$

x = 0-ban a függvény nem differenciálható.

– f_4 a $g(x) = \frac{1+x^2}{1+x^4}$ $(x \in \mathbb{R})$ és $f(y) = \sqrt{y}$ $(y \ge 0)$ függvények összetétele, hogy $f_4(x) = f(g(x))$ $(x \in \mathbb{R})$, és $\langle c, d \rangle = \mathbb{R}, \ g[\langle c, d \rangle] = g(\mathbb{R}) =]0, +\infty[=\mathbb{R}_+ \text{ (miért?)}.$ Továbbá

$$\exists g'(x) = \frac{(1+x^2)'(1+x^4) - (1+x^2)(1+x^4)'}{(1+x^4)^2} = \frac{2x(1+x^4) - (1+x^2)4x^3}{(1+x^4)^2} = \frac{6x^5 - 4x^3 + 2x}{(1+x^4)^2} \quad (x \in \mathbb{R})$$

és

$$\exists \quad f'(y) = \frac{1}{2\sqrt{y}} \quad (y \in \mathbb{R}_+),$$

ezért a láncszabály miatt

$$\exists f_4'(x) = f'(g(x))g'(x) = \frac{1}{2\sqrt{\frac{1+x^2}{1+x^4}}} \cdot \frac{6x^5 - 4x^3 + 2x}{(1+x^4)^2} \quad (x \in \mathbb{R}).$$

- f_5 a $g(x)=1+2\sqrt{x}$ $(x\geq 0)$ és $f(y)=y^4$ $(y\in\mathbb{R})$ függvények összetétele, ahol $\langle c,d\rangle=[0,+\infty[,\ \langle a,b\rangle=g\left([0,+\infty[)=[1,+\infty[.$

$$\exists g'(x) = \frac{1}{\sqrt{x}}, \text{ ha } x > 0$$

és

$$\exists f'(y) = 4y^3, \text{ ha } y \ge 1,$$

ezért a láncszabály miatt $\forall~x>0$ esetén

$$\exists f_5'(x) = f'(g(x))g'(x) = 4(1+2\sqrt{x})^3 \cdot \frac{1}{\sqrt{x}}, \text{ ha } x > 0.$$

x = 0-ban a függvény nem differenciálható.

$$-g(x) = 5x^2 + 7 \quad (x \in \mathbb{R}) \text{ és } f(y) = y^3 \quad (y \in \mathbb{R}) \text{ mellett}$$
$$f_6(x) = \frac{1}{f(g(x))} \quad (x \in \mathbb{R}).$$

$$F(x) = f(g(x)) \quad (x \in \mathbb{R} = \langle c, d \rangle) \quad (\langle a, b \rangle = g(\mathbb{R}) = [7, +\infty[),$$

Létezik
$$g'(x) = 10x \ (x \in \mathbb{R})$$
 és $f'(y) = 3y^2 \ (y \ge 7)$, így

$$\exists F'(x) = f'(g(x))g'(x) = 3(5x^2 + 7)^2 \cdot 10x \quad (x \in \mathbb{R}).$$

Mivel $f_6(x) = \frac{1}{F(x)}$ $(x \in \mathbb{R})$, ezért (a 8.7. feladat szerint) $\forall x \in \mathbb{R}$ esetén

$$\exists f_6'(x) = -\frac{F'(x)}{F^2(x)} = -\frac{30x(5x^2 + 7)^2}{(5x^2 + 7)^6} = -\frac{30x}{(5x^2 + 7)^4}.$$

– Ha $g(x)=x^2+2 \quad (x\in\mathbb{R}) \ \text{ és } \ f(y)=\sqrt{y} \quad (y\geq\sqrt{2}), \text{ akkor}$

$$g'(x) = 2x \quad (x \in \mathbb{R}), \qquad f'(y) = \frac{1}{2\sqrt{y}} \quad (y \ge \sqrt{2}).$$

$$F(x) = f(g(x)) = \sqrt{x^2 + 2} > 0 \ (x \in \mathbb{R}) \text{ mellett } f_7(x) = \frac{x}{F(x)} \ (x \in \mathbb{R}).$$

Mivel

$$\exists F'(x) = f'(g(x))g'(x) = \frac{1}{2\sqrt{x^2 + 2}} \cdot 2x = \frac{x}{\sqrt{x^2 + 2}} \quad (x \in \mathbb{R}),$$

ezért (a korábbiak miatt)

$$\exists f_7'(x) = \frac{(x)'F(x) - xF'(x)}{F^2(x)} = \frac{\sqrt{x^2 + 2} - \frac{x^2}{\sqrt{x^2 + 2}}}{x^2 + 2} = \frac{x^2 + 1 - x^2}{\sqrt{(x^2 + 2)^3}} = \frac{1}{\sqrt{(x^2 + 2)^3}} \quad (\forall x \in \mathbb{R}).$$

– Ha $F(x)=(5x^2+2)^2 \quad (x\in\mathbb{R})$ és $G(x)=(2x+7)^3 \quad (x\in\mathbb{R})$, akkor $f_8(x)=F(x)G(x) \quad (x\in\mathbb{R})$, ahol F és G összetett függvények, differenciálható függvényekből, így a korábbi gondolatmenettel (melyet most nem részletezünk) kapjuk, hogy

$$\exists F'(x) = 2(5x^2 + 2)10x \quad (x \in \mathbb{R})$$

és

$$\exists G'(x) = 3(2x+7)^2 \cdot 2 \quad (x \in \mathbb{R}).$$

Végül (a szorzat differenciálási szabálya szerint) $\forall x \in \mathbb{R}$ esetén

$$\exists f_8'(x) = F'(x)G(x) + F(x)G'(x) = = 20x(5x^2 + 2)(2x + 7)^3 + (5x^2 + 2)^26(2x + 7)^2.$$

-
$$f_9$$
 az $F(x) = \sqrt{\frac{5}{x}}$ $(x \in \mathbb{R}_+)$ és $G(x) = \sqrt{(6x+1)^3}$ $(x \in \mathbb{R}_+)$ összetett függvények összege, azaz $f_9(x) = F(x) + G(x)$ $(x \in \mathbb{R}_+)$.

$$\exists F'(x) = \frac{1}{2\sqrt{\frac{5}{x}}} \cdot \left(-\frac{5}{x^2}\right) \qquad (x \in \mathbb{R}_+)$$

és

$$\exists G'(x) = \frac{1}{2\sqrt{(6x+1)^3}} \cdot 3(6x+1)^2 \cdot 6 \qquad (x \in \mathbb{R}_+),$$

ezért

$$\exists f_9'(x) = F'(x) + G'(x) = -\frac{5}{2} \frac{1}{x^2 \sqrt{\frac{5}{x}}} + 9 \frac{(6x+1)^2}{\sqrt{(6x+1)^3}} =$$
$$= -\frac{5}{2} \frac{1}{\sqrt{5x^3}} + 9\sqrt{6x+1} \qquad (x \in \mathbb{R}_+).$$

-
$$f_{10}(x) = F(x)G(x)$$
 $(x \in \mathbb{R})$, ahol $F(x) = x^2$, $G(x) = \sqrt[3]{(2x^2 + 3)^2}$.
 $\exists F'(x) = 2x$

és

$$\exists G'(x) = \frac{1}{3} \left[(2x^2 + 3)^2 \right]^{-\frac{2}{3}} \cdot 2(2x^2 + 3) \cdot 4x \qquad (x \in \mathbb{R}),$$

ami adja, hogy

$$\exists f'_{10}(x) = F'(x)G(x) + F(x)G'(x) =$$

$$= 2x\sqrt[3]{(2x^2+3)^2} + \frac{8}{3}x^3(2x^2+3)^{-\frac{1}{3}} \qquad (x \in \mathbb{R}).$$

Differenciálhatóság, differenciálhatóság és műveletek (további elemi függvényekkel)

8.10. feladat. Adjuk meg és bizonyítsuk be a minden valós számra értelmezett sin, cos, sh, ch függvények differenciálási szabályát.

Megoldás. Definíció szerint $\forall x \in \mathbb{R}$ -re

$$\sin(x) \doteq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} ; \qquad \cos(x) \doteq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} ;$$
$$\operatorname{sh}(x) \doteq \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} ; \qquad \operatorname{ch}(x) \doteq \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} .$$

Ha a $\sum_{n=0}^{\infty} a_n x^n$ hatványsor konvergencia sugara ϱ , úgy az

$$f(x) \doteq \sum_{n=0}^{\infty} a_n x^n \qquad (x \in]-\varrho,\varrho[)$$

függvény differenciálható és

$$f'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} \quad (x \in]-\varrho, \varrho[).$$

A fenti hatványsorokra $\varrho = +\infty$, így $\forall x \in \mathbb{R}$ esetén

$$\exists \sin'(x) = \sum_{n=0}^{\infty} (2n+1)(-1)^n \frac{x^{2n}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \doteq \cos(x);$$

$$- \exists \cos'(x) = \sum_{n=0}^{\infty} 2n(-1)^n \frac{x^{2n-1}}{(2n)!} = (-1) \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} =$$

$$= (-1) \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \doteq -\sin(x);$$

$$- \exists \sinh'(x) = \sum_{n=0}^{\infty} (2n+1) \frac{x^{2n}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \doteq \cosh(x);$$

$$- \exists \cosh'(x) = \sum_{n=0}^{\infty} 2n \frac{x^{2n-1}}{(2n)!} = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \doteq \sinh(x).$$

8.11. feladat. Adja meg és bizonyítsa be az előadáson definiált tg, ctg, arcsin, arccos, arctg és arcctg függvények differenciálási szabályát.

 $Megold\'{a}s$

-
$$\operatorname{tg}(x) \doteq \frac{\sin(x)}{\cos(x)}$$
 $(x \in D_1 = \mathbb{R} \setminus \{(k + \frac{1}{2})\pi, k \in \mathbb{Z}\})$ és $\cos(x) \neq 0$, ha $x \in D_1$, így (a hányados differenciálási szabálya és a 8.10. feladat miatt) $\forall x \in D_1$ -re

$$\exists \ \text{tg}'(x) = \frac{\sin'(x)\cos(x) - \sin(x)\cos'(x)}{\cos^2(x)} = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)};$$

$$-\operatorname{ctg}(x) \doteq \frac{\cos(x)}{\sin(x)} \quad (x \in D_2 = \mathbb{R} \setminus \{k\pi, \ k \in \mathbb{Z}\}), \ \sin(x) \neq 0, \text{ ha } x \in D_2,$$
ezért $\forall \ x \in D_2$ -re

$$\exists \cot'(x) = \frac{\cos'(x)\sin(x) - \cos(x)\sin'(x)}{\sin^2(x)} = \frac{-\sin^2(x) - \cos^2(x)}{\sin^2(x)} = \frac{-\sin^2(x)}{\sin^2(x)} = \frac{-\sin^2(x)}{\sin^2(x$$

– Az arcsin: $[-1,1] \rightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ függvény a $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ -re leszűkített folytonos és szigorúan monoton sin $\left|_{\left[-\frac{\pi}{2},\frac{\pi}{2}\right]}\right|$ függvény inverze, melyre

 $\sin'(x) = \cos(x) \neq 0, \text{ ha } x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[, \text{ így az inverzfüggvény differenciálisára vonatkozó tétel miatt} \ \forall \ y \in \left] - 1, 1\right[\quad \left(y = \sin(x) \ x \in \right] - \frac{\pi}{2}, \frac{\pi}{2} \right[\right)$ esetén

$$\exists \arcsin'(y) = \frac{1}{\sin'(\arcsin(y))} = \frac{1}{\cos(\arcsin(y))} = \frac{1}{\sqrt{1 - \sin^2(\arcsin(y))}} = \frac{1}{\sqrt{1 - y^2}}.$$

Ha $y = \pm 1$, úgy \nexists arcsin'(y) (miért?). Ezért

$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}} \quad (x \in]-1,1[).$$

– Az arccos: $[-1,1] \rightarrow [0,\pi]$ függvény a cos $|_{[0,\pi]}$ folytonos és szigorúan monoton függvény inverze, melyre $\cos'(x) = -\sin(x) \neq 0$, ha $x \in]0,\pi[$, ezért hasonlóan mint előbb kapjuk, hogy

$$\exists \arccos'(y) = \frac{1}{\cos'(\arccos(y))} = -\frac{1}{\sin(\arccos(y))} = \frac{-1}{\sqrt{1 - \cos^2(\arccos(y))}} = -\frac{1}{\sqrt{1 - y^2}}$$

ha $y \in]-1,1[$, míg \nexists arccos'(-1) és arccos'(1). Ezért

$$\arccos'(x) = -\frac{1}{\sqrt{1-x^2}} \quad (x \in]-1,1[).$$

– Az arctg : $\mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ függvény a tg $|_{]-\frac{\pi}{2},\frac{\pi}{2}[}$ folytonos és szigorúan monoton növekedő függvény inverze, hogy tg $'(x) = \frac{1}{\cos^2(x)} \neq 0$, ha $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, így

$$\exists \ \operatorname{arctg}'(x) = \frac{1}{\cos^2(\operatorname{arctg}(x))} = \frac{1}{1 + \operatorname{tg}^2(\operatorname{arctg}(x))} = \frac{1}{1 + x^2},$$

ha
$$x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$$
.

– Ugyanígy belátható, hogy $\operatorname{arcctg}'(x) = -\frac{1}{1+x^2}$, ha $x \in]0,\pi[$.

8.12. feladat. Adja meg a th (tangens hiperbolikusz), cth (kotangens hiperbolikusz), az arsh (area szinusz hiperbolikusz), arch (area koszinusz hiperbolikusz), arth (area tangens hiperbolikusz) és arcth (area kotangens hiperbolikusz) függvények definícióját és vizsgálja differenciálhatóságukat.

Megoldás.

– A sh függvényre igaz, hogy $\operatorname{sh}(x) = \frac{\exp(x) - \exp(-x)}{2}$, melyből következik, hogy $\operatorname{sh}(x) = 0 \iff x = 0$.

A ch függvény definíciója, de a ch $(x)=\frac{\exp(x)+\exp(-x)}{2}$ tulajdonság is adja, hogy ch $(x)\neq 0\ \forall\ x\in\mathbb{R}.$ Továbbá

$$x_1 < x_2 \implies \operatorname{sh}(x_1) = \frac{\exp(x_1) - \exp(-x_1)}{2} < \frac{\exp(x_2) - \exp(-x_2)}{2} = = \operatorname{sh}(x_2),$$

azaz sh szigorúan monoton növekedő. Ugyanakkor

$$\lim_{x \to +\infty} \operatorname{sh}(x) = \lim_{x \to +\infty} \frac{\exp(x) - \exp(-x)}{2} =$$

$$= \frac{1}{2} \lim_{x \to +\infty} \exp(x) - \frac{1}{2} \lim_{x \to +\infty} \exp(-x) = +\infty - 0 = +\infty,$$

$$\lim_{x \to -\infty} \operatorname{sh}(x) = \lim_{x \to -\infty} \frac{\exp(x) - \exp(-x)}{2} =$$

$$= \frac{1}{2} \lim_{x \to -\infty} \exp(x) - \frac{1}{2} \lim_{x \to -\infty} \exp(-x) = 0 - \infty = -\infty.$$

sh folytonos, így az előbbiek adják (miért?), hogy $R_{\rm sh}=\mathbb{R}$. ch szigorúan monoton csökkenő $]-\infty,0]$ -n, szigorúan monoton növekedő $[0,+\infty[$ -en (mert ch' $(x)={\rm sh}(x)$ miatt ch'(x)<0, ha x<0; ch'(x)>0, ha x>0).

$$\lim_{x \to +\infty} \operatorname{ch}(x) = \lim_{x \to -\infty} \operatorname{ch}(x) = +\infty.$$

Ezek, ch folytonossága és ch(0) = 1 adják, hogy $R_{\rm ch} = [1, +\infty[$.

– Legyen $\operatorname{th}(x) \doteq \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} \quad (x \in \mathbb{R})$, akkor sh és ch differenciálhatósága, illetve $\operatorname{ch}(x) \neq 0 \ (x \in \mathbb{R})$ adják, hogy $\forall \ x \in \mathbb{R}$ esetén

$$\exists \operatorname{th}'(x) = \frac{\operatorname{sh}'(x)\operatorname{ch}(x) - \operatorname{sh}(x)\operatorname{ch}'(x)}{\operatorname{ch}^{2}(x)} = \frac{\operatorname{ch}^{2}(x) - \operatorname{sh}^{2}(x)}{\operatorname{ch}^{2}(x)} = \frac{1}{\operatorname{ch}^{2}(x)}.$$

Nyilván th
 folytonos és th'(x)>0 miatt szigorúan monoton növekedő, th
 $(0)=0,\ \text{th}(x)<0,\ \text{ha}\ x<0$; th $(x)>0,\ \text{ha}\ x>0.$ Továbbá

$$th(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)} \ (x \in \mathbb{R}),$$

ami (az exp függvény tulajdonságai miatt) adja, hogy

$$\lim_{x \to +\infty} \operatorname{th}(x) = \lim_{x \to +\infty} \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)} =$$

$$= \lim_{x \to +\infty} \frac{1 - \frac{\exp(-x)}{\exp(x)}}{1 + \frac{\exp(-x)}{\exp(x)}} = \frac{1 - 0}{1 + 0} = 1,$$

$$\lim_{x \to -\infty} \operatorname{th}(x) = \lim_{x \to -\infty} \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)} =$$

$$= \lim_{x \to -\infty} \frac{\frac{\exp(x)}{\exp(-x)} - 1}{\frac{\exp(x)}{\exp(-x)} + 1} = \frac{0 - 1}{0 + 1} = -1.$$

Ezekből kapjuk, hogy $R_{\rm th} =]-1,1[$.

– Legyen $\operatorname{cth}(x) \doteq \frac{\operatorname{ch}(x)}{\operatorname{sh}(x)} \quad (x \in \mathbb{R} \setminus \{0\})$, akkor az előbbi gondolatmenettel kapjuk, hogy $\forall x \in \mathbb{R} \setminus \{0\}$ esetén

$$\exists \ \operatorname{cth}'(x) = \frac{\operatorname{ch}'(x)\operatorname{sh}(x) - \operatorname{ch}(x)\operatorname{sh}'(x)}{\operatorname{sh}^2(x)} = \frac{\operatorname{sh}^2(x) - \operatorname{ch}^2(x)}{\operatorname{sh}^2(x)} = -\frac{1}{\operatorname{sh}^2(x)}.$$

cth folytonos az értelmezési tarzományán és cth'(x) < 0 miatt szigorúan monoton csökkenő a] $-\infty$, 0[és]0, $+\infty$ [intervallumokon.

Egyszerűen belátható, hogy

$$\lim_{x \to +\infty} \operatorname{cth}(x) = \lim_{x \to +\infty} \frac{1}{\operatorname{th}(x)} = 1,$$

$$\lim_{x \to -\infty} \operatorname{cth}(x) = \lim_{x \to -\infty} \frac{1}{\operatorname{th}(x)} = -1,$$

$$\lim_{x \to 0+0} \operatorname{cth}(x) = \lim_{x \to 0+0} \frac{1}{\operatorname{th}(x)} = +\infty,$$

$$\lim_{x \to 0-0} \operatorname{cth}(x) = \lim_{x \to 0-0} \frac{1}{\operatorname{th}(x)} = -\infty.$$

Ezek adják, hogy $R_{\rm cth} =]-\infty, -1[\cup]1, +\infty[$.

– A sh : $\mathbb{R} \to \mathbb{R}$ folytonos és szigorúan monoton növekedő függvény létező inverzét area szinusz hiperbolikusz függvénynek nevezzük: $\operatorname{arsh} \doteq \operatorname{sh}^{-1} : \mathbb{R} \to \mathbb{R}$.

Az arsh függvény (a monoton függvényeknél tanultak szerint) szintén folytonos és szigorúan monoton növekedő.

Mivel $\exists \operatorname{sh}'(x) = \operatorname{ch}(x) \neq 0 \ \forall \ x \in \mathbb{R}$, így az inverzfüggvény differenciálására vonatkozó tétel miatt ($\operatorname{ch}^2 - \operatorname{sh}^2 = 1$ -et is felhasználva)

$$\exists \operatorname{arsh}'(x) = \frac{1}{\operatorname{sh}'(\operatorname{arsh}(x))} = \frac{1}{\operatorname{ch}(\operatorname{arsh}(x))} = \frac{1}{\sqrt{1 + \operatorname{sh}^2(\operatorname{arsh}(x))}} = \frac{1}{\sqrt{1 + x^2}} \quad \forall x \in \mathbb{R} \text{ esetén.}$$

– A ch $|_{[0,+\infty[} \to \mathbb{R}$ folytonos és szigorúan monoton növekedő függvény létező inverzét area koszinusz hiperbolikusz függvénynek nevezzük: arch \doteq ch $|_{[0,+\infty[}^{-1}:[1,+\infty[\to\mathbb{R}.$

Az arch függvény folytonos és szigorúan monoton növekedő.

 $\exists \ \mathrm{ch}'(x) = \mathrm{sh}(x) > 0$, ha x > 0, így az inverz függvény differenciálására vonatkozó tétel miatt

$$\exists \operatorname{arch}'(x) = \frac{1}{\operatorname{ch}'(\operatorname{arch}(x))} = \frac{1}{\operatorname{sh}(\operatorname{arch}(x))} = \frac{1}{\sqrt{\operatorname{ch}^2(\operatorname{arch}(x)) - 1}} = \frac{1}{\sqrt{x^2 - 1}}, \quad \text{ha } x > 1.$$

 $\not\equiv \operatorname{arch}'(1).$

– A th: \mathbb{R} →] – 1,1[folytonos és szigorúan monoton növekedő függvény inverzét area tangens hiperbolikusz függvénynek nevezzük.

Az arth $\doteq \, {\rm th}^{-1} \colon] - 1, 1 [\to \mathbb{R}$ függvény folytonos és szigorúan monoton növekedő.

 $\exists \operatorname{th}'(x) = \frac{1}{\operatorname{ch}^2(x)} > 0 \ \forall \ x \in \mathbb{R}, \text{ így az inverzfüggvény differenciálá-}$ sára vonatkozó tétel miatt $\forall x \in]-1,1[$ esetén

$$\exists \operatorname{arth}'(x) = \frac{1}{\frac{1}{\operatorname{ch}^{2}(\operatorname{arth}(x))}} = \frac{1}{\frac{\operatorname{ch}^{2}(\operatorname{arth}(x)) - \operatorname{sh}^{2}(\operatorname{arth}(x))}{\operatorname{ch}^{2}(\operatorname{arth}(x))}} = \frac{1}{1 - \operatorname{th}^{2}(\operatorname{arth}(x))} = \frac{1}{1 - x^{2}}.$$

– A cth folytonos és szigorúan monoton csökkenő függvénynek a $]-\infty,0[$ és $[0, +\infty[$ intervallumokon létezik inverze, melyet area kotangens hiperbolikusz függvénynek nevezünk.

arcth \doteq cth⁻¹: $]1, +\infty[\ \cup\]-\infty, -1[\to \mathbb{R}\setminus\{0\}$ folytonos és szigorúan monoton csökkenő a $]-\infty, -1[$ és $]1, +\infty[$ -on. $\exists \ \mathrm{cth}'(x) = -\frac{1}{\mathrm{sh}^2(x)} < 0 \ \forall \ x \in \mathbb{R}\setminus\{0\}$, így az inverz függvény

differenciálására vonatkozó tétel miatt

$$\exists \operatorname{arcth}'(x) = \frac{1}{-\frac{1}{\operatorname{sh}^{2}(\operatorname{arcth}(x))}} = \frac{1}{-\frac{\operatorname{ch}^{2}(\operatorname{arcth}(x)) - \operatorname{sh}^{2}(\operatorname{arcth}(x))}{\operatorname{sh}^{2}(\operatorname{arcth}(x))}} = \frac{1}{1 - \operatorname{cth}^{2}(\operatorname{arcth}(x))} = \frac{1}{1 - x^{2}},$$

ha $x \in]-\infty, -1[\cup]1, +\infty[\text{ (azaz ha } |x| > 1).$

8.13. feladat. Határozza meg az alábbi függvények differenciálhányados függvényeit:

$$f_{0}(x) = \sqrt{x\sqrt{x\sqrt{x}}} \qquad (x > 0);$$

$$f_{1}(x) = 3 \operatorname{sh}(x) + 2 \sin(x) + \cos(x) \qquad (x \in \mathbb{R});$$

$$f_{2}(x) = 2 \operatorname{tg}(x) - 3 \operatorname{ctg}(x) \qquad (x \in]1, 1[);$$

$$f_{3}(x) = x + 2 \operatorname{arcsin}(x) \qquad (x \in]1, +\infty[);$$

$$f_{4}(x) = 3 \operatorname{arctg}(x) - 2 \operatorname{arch}(x) \qquad (x \in]1, +\infty[);$$

$$f_{5}(x) = x \sin(x) + x^{2} \cos(x) \qquad (x \in \mathbb{R});$$

$$f_{6}(x) = \frac{\operatorname{tg}(x)}{x^{2} + 1} \qquad (x \in]-\frac{\pi}{2}, \frac{\pi}{2}[];$$

$$f_{7}(x) = \frac{e^{x} + \sin(x)}{xe^{x}} \qquad (x \neq 0);$$

$$f_{8}(x) = \sin^{3}(5x + 4) \qquad (x \in \mathbb{R});$$

$$f_{9}(x) = 5x + 2 \operatorname{tg} \frac{x}{2} \qquad (x \in]-\pi, \pi[];$$

$$f_{10}(x) = \ln(\sqrt{3x^{2} + 2} + 2e^{x} + 1) \qquad (x \in \mathbb{R});$$

$$f_{11}(x) = \exp_{a}(\cos(x^{2})) \qquad (x \in \mathbb{R});$$

$$f_{12}(x) = \log_{a}(x^{2} + 1) \qquad (x \in \mathbb{R});$$

$$f_{13}(x) = \operatorname{arcsin} \frac{2x}{1 + x^{2}} \qquad (x \in \mathbb{R});$$

$$f_{14}(x) = \operatorname{sh}(2x + 1) \operatorname{ch}(3x - 1) \qquad (x \in \mathbb{R});$$

$$f_{15}(x) = \operatorname{arctg} \left(\frac{x}{x^{2} + 1}\right) \qquad (x \in \mathbb{R});$$

$$f_{16}(x) = x^{x} \qquad (x > 0);$$

$$f_{17}(x) = x^{\sqrt{x}} \qquad (x > 0);$$

$$f_{18}(x) = x^{\sin(x)} \qquad (x > 0);$$

$$f_{19}(x) = (\operatorname{arctg}(x))^{x} \qquad (x > 0).$$

Megoldás. A differenciálás műveleti tulajdonságait, az összetett függvény differenciálására vonatkozó láncszabályt és az itt szereplő függvények differenciálási szabályait használjuk.

$$- f_{0}(x) = \sqrt{x\sqrt{x}\sqrt{x}} = \left(x\left(x \cdot x^{\frac{1}{2}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} = \left(x\left(x^{\frac{3}{2}}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} = \left(x \cdot x^{\frac{3}{4}}\right)^{\frac{1}{2}} = x^{\frac{7}{8}},$$

$$igy \quad f'_{0}(x) = \frac{7}{8}x^{-\frac{1}{8}} \quad (x > 0).$$

$$- f'_{1}(x) = 3 \operatorname{sh}'(x) + 2 \operatorname{sin}'(x) + \cos'(x) = 2 \operatorname{cos}^{2}(x) + \frac{3}{\sin^{2}(x)} \quad \left(x \in \mathbb{R}\right).$$

$$- f'_{2}(x) = 2 \operatorname{tg}'(x) - 3 \operatorname{ctg}'(x) = \frac{2}{\cos^{2}(x)} + \frac{3}{\sin^{2}(x)} \quad \left(x \in \left]0, \frac{\pi}{2}\right].$$

$$- f'_{3}(x) = (x)' + 2 \operatorname{arcsin}'(x) = 1 + \frac{2}{\sqrt{1 - x^{2}}} \quad (x \in \left]-1, 1\right].$$

$$- f'_{4}(x) = 3 \operatorname{arctg}'(x) - 2 \operatorname{arch}'(x) = \frac{3}{1 + x^{2}} - \frac{2}{\sqrt{x^{2} - 1}} \quad (x > 1),$$

$$- f'_{5}(x) = (x \sin(x))' + (x^{2} \cos(x))' = 2 \operatorname{arch}'(x) = \frac{3}{1 + x^{2}} - \frac{2}{\sqrt{x^{2} - 1}} \quad (x \in \mathbb{R}).$$

$$- f'_{5}(x) = \frac{\operatorname{tg}'(x)(x^{2} + 1) - \operatorname{tg}(x)(x^{2} + 1)'}{(x^{2} + 1)^{2}} = \frac{x^{2} + 1}{(x^{2} + 1)^{2}} \left(x \in \left] - \frac{\pi}{2}, \frac{\pi}{2}\right[.$$

$$- f'_{6}(x) = \frac{\operatorname{tg}'(x)(x^{2} + 1) - \operatorname{tg}(x)(x^{2} + 1)'}{(x^{2} + 1)^{2}} = \frac{\left[e^{x} + \sin(x)\right]'xe^{x} + \left(e^{x} + \sin(x)\right)(xe^{x})'}{(xe^{x})^{2}} = \frac{\left[e^{x} + \cos(x)\right]xe^{x} + \left(e^{x} + \sin(x)\right)(1 \cdot e^{x} + xe^{x})}{x^{2}e^{2x}} \quad (x \neq 0).$$

$$- f'_{8}(x) = 3(\sin^{2}(5x + 4))(\cos(5x + 4)) \cdot 5 \quad (x \neq 0).$$

$$- f'_{9}(x) = (5x)' + 2\left(\operatorname{tg}\left(\frac{x}{2}\right)\right)' = 5 + 2\frac{1}{\cos^{2}\frac{x}{2}} \cdot \frac{1}{2} \quad (x \in \mathbb{R}).$$

$$- f'_{10}(x) = \frac{1}{\sqrt{3x^{2} + 2} + 2 + 2e^{x} + 1} \left[\frac{1}{2\sqrt{3x^{2} + 2}} \cdot 6x + 2e^{x}\right] \quad (x \in \mathbb{R}).$$

$$-f'_{11}(x) = \exp'_{a}(\cos(x^{2})) \cdot \cos'(x^{2}) \cdot (x^{2})' = \\ = \exp_{a}(\cos(x^{2})) \ln a(-\sin(x^{2}))(2x) \qquad (x \in \mathbb{R}).$$

$$-f'_{12}(x) = \left[\log'_{a}(x^{2}+1)\right] \cdot (x^{2}+1)' = \frac{1}{(x^{2}+1)\ln a} 2x \qquad (x \in \mathbb{R}).$$

$$-f'_{13}(x) = \arcsin'\left(\frac{2x}{1+x^{2}}\right) \cdot \left(\frac{2x}{1+x^{2}}\right)' = \\ = \frac{1}{\sqrt{1-\left(\frac{2x}{1+x^{2}}\right)^{2}}} \cdot \frac{2(1+x^{2})-(2x)^{2}}{(1+x^{2})^{2}} \qquad (x \in \mathbb{R}).$$

$$-f'_{14}(x) = (\sinh(2x+1))'\cosh(3x-1) + (\sinh(2x+1))(\cosh(3x-1))' = \\ = 2\cosh(2x+1)\cosh(3x-1) + 3 \cdot \sinh(2x+1)\sinh(3x-1) \qquad (x \in \mathbb{R}).$$

$$-f'_{15}(x) = \arctan''_{2}\left(\frac{x}{x^{2}+1}\right) \cdot \left(\frac{x}{x^{2}+1}\right)' = \\ = \frac{1}{1+\left(\frac{x}{x^{2}+1}\right)^{2}} \cdot \frac{1(x^{2}+1)-x \cdot 2x}{(x^{2}+1)^{2}} \qquad (x \in \mathbb{R}).$$

$$-f_{16}(x) = x^{x} \doteq \exp(x \ln x) \implies f'_{16}(x) = \exp'(x \ln x)(x \ln x)' = \\ = x^{x}\left(1 \cdot \ln x + x \cdot \frac{1}{x}\right) \qquad (x > 0).$$

$$-f_{17}(x) = x^{\sqrt{x}} = \exp(\sqrt{x} \ln x) \qquad (x > 0) \implies f'_{17}(x) = \exp'(\sqrt{x} \ln x) \cdot (\sqrt{x} \ln x)' = \\ = x^{\sqrt{x}}\left(\frac{1}{2\sqrt{x}} \ln x + \sqrt{x} \cdot \frac{1}{x}\right) \qquad (x > 0).$$

$$-f_{18}(x) = x^{\sin(x)} = \exp(\sin(x) \ln x) \qquad (x > 0) \implies f'_{18}(x) = \exp'(\sin(x) \ln(x))[\sin(x) \ln x]' = \\ = x^{\sin(x)}\left[\cos(x) \ln x + \frac{\sin(x)}{x}\right] \qquad (x > 0).$$

$$-f_{19}(x) = \exp'(x \ln(\arctan(x))) \cdot (x \ln(\arctan(x))) \qquad (x > 0) \implies f'_{19}(x) = \exp'(x \ln(\arctan(x))) \cdot (x \ln(\arctan(x)))' = \\ = (\arctan(x))^{x}\left[1 \cdot \ln(\arctan(x)) + x \cdot \frac{1}{\arctan(x)} \cdot \frac{1}{1+x^{2}}\right] \qquad (x > 0).$$

Magasabbrendű deriváltak

8.14. feladat. Adja meg az alábbi függvények "előírt" magasabbrendű deriváltjait:

$$f_{1}(x) = \frac{3}{x^{4}} \qquad (x \neq 0), \qquad f_{1}'''(x) = ?;$$

$$f_{2}(x) = \sqrt{x} \qquad (x > 0), \qquad f_{2}^{(n)}(x) = ?;$$

$$f_{3}(x) = \sqrt{x+1} \qquad (x > -1), \qquad f_{3}^{(n)}(x) = ?;$$

$$f_{4}(x) = \frac{1}{x} \qquad (x \neq 0), \qquad f_{4}^{(n)}(x) = ?;$$

$$f_{5}(x) = \frac{3}{2+4x}, \qquad \left(x \neq -\frac{1}{2}\right), \qquad f_{5}^{(n)}(x) = ?;$$

$$f_{6}(x) = \ln(x) \qquad (x > 0), \qquad f_{6}^{(n)}(x) = ?;$$

$$f_{7}(x) = \sinh(x) \qquad (x \in \mathbb{R}), \qquad f_{7}^{(n)}(x) = ?;$$

$$f_{8}(x) = \sin(x) \qquad (x \in \mathbb{R}), \qquad f_{8}^{(n)}(x) = ?;$$

$$f_{9}(x) = \sin^{2}(x) \qquad (x \in \mathbb{R}), \qquad f_{9}^{(n)}(x) = ?;$$

$$f_{10}(x) = (x^{2} + 2x + 1) \ln(x) \qquad (x \in \mathbb{R}_{+}), \qquad f_{10}^{(10)}(x) = ?;$$

$$f_{11}(x) = x \sinh(2x) \qquad (x \in \mathbb{R}), \qquad f_{11}^{(100)}(x) = ?;$$

$$f_{12}(x) = x^{3} \sin(3x) \qquad (x \in \mathbb{R}), \qquad f_{12}^{(100)}(x) = ?;$$

$$f_{13}(x) = \frac{1}{x(1-x)} \qquad (x \neq 0, 1) \qquad f_{13}^{(10)}(x) = ?;$$

$$f_{14}(x) = 2x^{2} + x - 1 + \frac{1}{x} \qquad (x \neq 0),$$

$$f_{14}^{(4)}(x) = ?; \qquad f_{14}^{(n)}(x) = ?, \qquad \text{ha } n > 4.$$

Megoldás.

– Az
$$f_1(x)=\frac{3}{x^4}=3x^{-4}$$
 $(x\neq 0)$ függvény differenciálható és
$$f_1'(x)=3(-4)x^{-5} \qquad (x\neq 0),$$

ami szintén differenciálható és

$$f_1''(x) = [f_1'(x)]' = 3(-4)(-5)x^{-6}$$
 $(x \neq 0),$

ezt folytatva

$$f_1'''(x) = [f_1''(x)]' = 3(-4)(-5)(-6)x^{-7} \qquad (x \neq 0)$$

következik.

Teljes indukcióval egyszerűen belátható, hogy $\forall n \in \mathbb{N}$ esetén

$$f_1^{(n)}(x) = 3(-4)(-5)(-6)\cdots(-(n+3))x^{-(n+4)} \quad (x \neq 0).$$

– Az $f_2(x) = \sqrt{x} = x^{\frac{1}{2}}$ (x > 0) függvény differenciálható és

$$f_2'(x) = \frac{1}{2}x^{-\frac{1}{2}} \qquad (x > 0)$$

$$\implies \qquad \exists \ f_2''(x) = \left[f_2'(x)\right]' = \frac{1}{2}\left(-\frac{1}{2}\right)x^{-\frac{3}{2}} \qquad (x \neq 0)$$

$$\implies \exists f_2'''(x) = \left[f_2''(x) \right]' = \frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) x^{-\frac{5}{2}} \qquad (x \neq 0).$$

Megmutatjuk, hogy $\forall n \in \mathbb{N} \ n > 1$ -re

$$\exists f_2^{(n)}(x) = (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n} x^{-\frac{2n-1}{2}} \qquad (x > 0).$$

A bizonyítást n-re vonatkozó teljes indukcióval végezzük. n=2-re

$$f_2'(x) = \frac{1}{2^2}x^{-\frac{3}{2}}$$

adódik, amit már beláttunk.

Tegyük fel, hogy n-re igaz az állítás, akkor n+1-re

$$\exists f_2^{(n+1)}(x) = \left[f_2^{(n)}\right]'(x) =$$

$$= (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n} \cdot \left(-\frac{2n-1}{2}\right) x^{-\frac{2n-1}{2}-1} =$$

$$= (-1)^n \frac{1 \cdot 3 \cdot (2n-1)}{2^{n+1}} x^{-\frac{2(n+1)-1}{2}} \quad (x \neq 0),$$

ami a teljes indukció elve alapján adja, hogy

$$f_2^{(n)}(x) = (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n} x^{-\frac{2n-1}{2}} \quad (x > 0)$$

teljesül $\forall n \in \mathbb{N}, n > 1$ természetes számra.

- Ugyanígy eljárva bizonyíthatjuk, hogy

$$f_3'(x) = \frac{1}{2}(x+1)^{-\frac{1}{2}}$$

és

$$\exists f_3^{(n)}(x) = (\sqrt{x+1})^{(n)} = (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n} (x+1)^{-\frac{2n-1}{2}}$$

 $(x > -1) \ \forall \ n \in \mathbb{N}$ természetes számra.

– Az $f_4(x) = \frac{1}{x} = x^{-1}$ $(x \neq 0)$ függvény differenciálható és

$$\exists f_4'(x) = (-1)x^{-2} \qquad (x \neq 0)$$

$$\implies \exists f_4''(x) = [f_4'(x)]' = (-1)(-2)x^{-3} \qquad (x \neq 0)$$

$$\implies \exists f_4'''(x) = [f_4''(x)]' = (-1)(-2)(-3)x^{-4} \qquad (x \neq 0).$$

Teljes indukcióval megmutatjuk, hogy $\forall n \in \mathbb{N}$ -re

$$\exists f_4^{(n)}(x) = (-1)^n \, n! \, x^{-(n+1)} \qquad (x \neq 0).$$

n=1-re ebből $f_4'(x)=-x^{-2}\ (x\neq 0)$ következik, amit már beláttunk. Ha $n\in\mathbb{N}$ -re igaz a formulánk, akkor

teljesül.

Így a teljes indukció elve alapján $\forall n \in \mathbb{N}$ -re igaz az állítás.

– Az $f_5(x) = \frac{3}{2+4x} = 3(2+4x)^{-1} \quad (x \neq -\frac{1}{2})$ függvényre az előbbivel azonos eljárással bizonyíthatjuk, hogy

$$\exists f_5^{(n)}(x) = 3 \cdot n! \cdot 4^n (2+4x)^{-(n+1)} \qquad \left(x \neq -\frac{1}{2}\right)$$

 $\forall n \in \mathbb{N}$ -re.

– Az $f_6(x) = \ln(x)$ (x > 0) függvény differenciálható és

$$f_6'(x) = \frac{1}{x}$$
 $(x > 0)$

teljesül.

Az f_4 függvényre meghatároztuk $f_4^{(n)}$ -t.

Ezek adják, hogy

$$\exists f_6^{(n)}(x) = \left(\frac{1}{x}\right)^{(n-1)} = (-1)^{n-1}(n-1)! \cdot x^{-n} \qquad (x > 0)$$

 $\forall n \in \mathbb{N} \text{ természetes számra.}$

– Az
$$f_7(x) = \operatorname{sh}(x)$$
 $(x \in \mathbb{R})$ függvény differenciálható és $f_7'(x) = \operatorname{sh}'(x) = \operatorname{ch}(x)$ $(x \in \mathbb{R})$,

amiből

$$\Rightarrow$$
 $\exists f_7''(x) = \text{sh}''(x) = \text{ch}'(x) = \text{sh}(x) \quad (x \in \mathbb{R}).$

Ez nyilvánvalóan adja, hogy

$$\exists \ \mathrm{sh}^{(n)}(x) = \begin{cases} \mathrm{ch}(x) &, \ \mathrm{ha} \ n \ \mathrm{p\'aratlan} \\ \mathrm{sh}(x) &, \ \mathrm{ha} \ n \ \mathrm{p\'aros} \end{cases}$$

 $\forall x \in \mathbb{R}$ esetén.

– Az $f_8(x) = \sin(x)$ $(x \in \mathbb{R})$ függvény differenciálható és

$$f'_8(x) = \cos(x) \qquad (x \in \mathbb{R})$$

$$\implies \exists f''_8(x) = [f'_8(x)]' = -\sin(x) \qquad (x \in \mathbb{R})$$

$$\implies \exists f'''_8(x) = [f''_8(x)]' = -\cos(x) \qquad (x \in \mathbb{R})$$

$$\implies \exists f_8^{(4)}(x) = [f'''_8(x)]' = \sin(x) \qquad (x \in \mathbb{R}),$$

és ez a négy függvény ismétlődik ciklikusan, azaz

$$\sin^{(n)}(x) = \begin{cases} \cos(x) & \text{, ha } n = 4k - 3, \\ -\sin(x) & \text{, ha } n = 4k - 2, \\ -\cos(x) & \text{, ha } n = 4k - 1, \\ \sin(x) & \text{, ha } n = 4k, \end{cases}$$
 $(k = 1, 2, \cdots)$

– Az $f_9(x) = \sin^2(x)$ $(x \in \mathbb{R})$ függvény differenciálható és

$$f_9'(x) = 2\sin(x)\cos(x) = \sin(2x) \qquad (x \in \mathbb{R})$$

$$\implies \exists f_9''(x) = [f_9'(x)]' = 2\cos(2x) \qquad (x \in \mathbb{R})$$

$$\implies \exists f_9'''(x) = [f_9''(x)]' = -2^2\sin(2x) \qquad (x \in \mathbb{R})$$

$$\implies \exists f_9^{(4)}(x) = [f_9'''(x)]' = -2^3\cos(2x) \qquad (x \in \mathbb{R})$$

$$\implies \exists f_9^{(5)}(x) = [f_9^{(4)}(x)]' = 2^4\sin(2x) \qquad (x \in \mathbb{R}),$$

amiből azt sejtjük, hogy

$$\left[\sin^2(x)\right]^{(n)} = \begin{cases} 2^{n-1}\sin(2x) & \text{, ha } n = 4k+1, \\ 2^{n-1}\cos(2x) & \text{, ha } n = 4k+2, \\ -2^{n-1}\sin(2x) & \text{, ha } n = 4k+3, \\ -2^{n-1}\cos(2x) & \text{, ha } n = 4k+4, \end{cases}$$
 $(k = 0, 1, 2, \cdots)$

 $\forall x \in \mathbb{R}$, amit teljes indukcióval egyszerűen bizonyíthatunk. A Leibniz-szabály szerint, ha $f,g\colon \langle a,b\rangle \to \mathbb{R}$ n-szer differenciálható függvények, úgy

$$\exists (f \cdot g)^{(n)}(x) = \sum_{i=0}^{n} \binom{n}{i} f^{i}(x) g^{(n-i)}(x) \qquad (x \in \langle a, b \rangle),$$

ezt használjuk a következő három függvénynél.

– Az $f_{10}(x) = (x^2 + 2x + 1) \ln(x)$ $(x \in \mathbb{R}_+)$ függvény az $f(x) = x^2 + 2x + 1$ $(x \in \mathbb{R}_+)$ és $g(x) = \ln(x)$ $(x \in \mathbb{R}_+)$ akárhányszor differenciálható függvények szorzata, melyekre $\forall x \in \mathbb{R}_+$ esetén

$$f^{(0)}(x) = f(x) = x^2 + 2x + 1,$$
 $f'(x) = 2x + 2,$ $f''(x) = 2,$ $f'''(x) = 0$ és $f^{(n)}(x) = 0$ ha $n \ge 3$,

míg a korábbiak miatt (lásd f_6 függvény)

$$g^{(n)}(x) = \ln^{(n)}(x) = (-1)^{n-1}(n-1)!x^{-n} \qquad (\forall \ x \in \mathbb{R}_+)$$
és
$$g^{(0)}(x) = \ln^{(0)}(x) = \ln(x) \qquad (x \in \mathbb{R}_+).$$

A Leibniz-szabályt n=10 mellett alkalmazva, felhasaználva, hogy $f^{(n)}(x)=0$, ha $n\geq 3$, kapjuk $\forall \ x\in \mathbb{R}_+$ -ra:

$$f_{10}^{(10)}(x) = {10 \choose 0} (x^2 + 2x + 1)(-1)^9 \cdot 9! \cdot x^{-10} +$$

$$+ {10 \choose 1} (2x + 2)(-1)^8 \cdot 8! \cdot x^{-9} + {10 \choose 2} 2(-1)^7 \cdot 7! \cdot x^{-8}.$$

– Az $f_{11}(x)=x\operatorname{sh}(2x)$ $(x\in\mathbb{R})$ függvény az f(x)=x $(x\in\mathbb{R})$ és $g(x)=\operatorname{sh}(2x)$ $(x\in\mathbb{R})$ akárhányszor differenciálható függvények szorzata és

$$f^{(0)} = f(x) = x$$
, $f'(x) = 1$, $f^{(n)}(x) = 0$ ha $n \ge 2$ $(\forall x \in \mathbb{R})$,

illetve az f_7 függvény vizsgálatánál követettek szerint, $\forall x \in \mathbb{R}$ -re:

$$\operatorname{sh}^{(n)}(2x) = \begin{cases} 2^n \operatorname{ch}(2x) &, \text{ ha } n \text{ páratlan,} \\ 2^n \operatorname{sh}(2x) &, \text{ ha } n \text{ páros .} \end{cases}$$

Így a Leibniz-szabály szerint $\forall x \in \mathbb{R}$ esetén

$$f_{11}^{(100)}(x) = {100 \choose 0} \cdot x \cdot \sinh^{(100)}(x) + {100 \choose 1} \cdot 1 \cdot \sinh^{(99)}(x) =$$
$$= 2^{100} \cdot x \cdot \cosh(2x) + 100 \cdot 2^{99} \cdot \sinh(2x).$$

– $f_{12}(x) = x^3 \sin(3x)$ $(x \in \mathbb{R})$ az $f(x) = x^3$ $(x \in \mathbb{R})$ és $g(x) = \sin(3x)$ $(x \in \mathbb{R})$ akárhányszor differenciálható függvények szorzata, melyekre $\forall x \in \mathbb{R}$ esetén

$$f^{(0)}(x) = f(x) = x^3$$
, $f'(x) = 3x^2$, $f''(x) = 6x$, $f'''(x) = 6$
és $f^{(n)}(x) = 0$ ha $n \ge 4$,

továbbá az f_8 függvényhez hasonló módon kapjuk, hogy $\forall x \in \mathbb{R}$ -re

$$g^{(n)}(x) = \sin^{(n)}(3x) = \begin{cases} 3^n \cos(3x) & , \text{ ha } n = 4k - 3, \\ -3^n \sin(3x) & , \text{ ha } n = 4k - 2, \\ -3^n \cos(3x) & , \text{ ha } n = 4k - 1, \\ 3^n \sin(3x) & , \text{ ha } n = 4k. \end{cases}$$

Ezért a Leibniz-szabály szerint $\forall x \in \mathbb{R}$ esetén

$$f_{12}^{(50)}(x) = {50 \choose 0} x^3 \sin^{(50)}(3x) + {50 \choose 1} 3x^2 \sin^{(49)}(x) +$$

$$+ {50 \choose 2} 6x \sin^{(48)}(x) + {50 \choose 3} 6\sin^{(47)}(x) =$$

$$= x^3 (-3^{50}) \sin(3x) + 50 \cdot 3x^2 \cdot 3^{49} \cos(3x) +$$

$$+ {50 \choose 2} 6x \cdot 3^{48} \sin(3x) + {50 \choose 3} 6(-3^{47}) \cos(3x).$$

- $f_{13}(x) = \frac{1}{x(1-x)} = \frac{1}{x} + \frac{1}{1-x} = \frac{1}{x} - \frac{1}{x-1} \ (x \neq 0, 1)$ miatt, az n-edik derivált műveleti tulajdonságait és

$$\left(\frac{1}{x}\right)^{(10)} = (-1)^{10} 10! \cdot x^{-11} \qquad (x \neq 0)$$

és

$$\left(\frac{1}{x-1}\right)^{(10)} = (-1)^{10} 10! \cdot (x-1)^{-11} \qquad (x \neq 1)$$

(melyek az f_4 feladatból, illetve annak $\frac{1}{x-1}$ -re való megfogalmazásából adódnak) kapjuk, hogy

$$f_{13}^{(10)}(x) = \left[\frac{1}{x(1-x)}\right]^{(10)} = \left(\frac{1}{x}\right)^{(10)} - \left(\frac{1}{x-1}\right)^{(10)} = \frac{10!}{x^{11}} - \frac{10!}{(x-1)^{11}} \qquad (x \neq 0, 1).$$

– Az $f_{14}=2x^2+x-1+\frac{1}{x}$ $(x\neq 0)$ függvényre (a műveleti és deriválási szabályokat használva) \forall $x\in\mathbb{R}\setminus\{0\}$ -ra

$$f'_{14}(x) = 4x + 1 - \frac{1}{x^2},$$
 $f''_{14}(x) = 4 + \frac{2}{x^3},$ $f'''_{14}(x) = -\frac{2 \cdot 3}{x^4}$ és $f_{14}^{(n)} = (-1)^n \frac{n!}{x^{n+1}},$ ha $n \ge 4.$

Középértéktételek, Taylor-polinom, Taylor-sor

8.15. feladat. Vizsgálja meg, hogy alkalmazható-e a Rolle-tétel az alábbi függvényekre az adott intervallumon:

$$f_1(x) = x^2 - 2x - 3, \text{ ha } x \in [-1, 3];$$

$$f_2(x) = x^3 - x, \text{ ha } x \in [0, 1];$$

$$f_3(x) = \sqrt[3]{x^2}, \text{ ha } x \in [-1, 1];$$

$$f_4(x) = \begin{cases} x^2, & \text{ha } 0 \le x \le 1\\ 2 - x, & \text{ha } 1 < x \le 2 \end{cases} [0, 2] - n.$$

Megoldás. Rolle-tétel: Ha $f:[a,b] \to \mathbb{R}$ folytonos [a,b]-n, differenciálható $[a,b[-n, f(a)=f(b), \text{ akkor } \exists \ x \in]a,b[, \text{ hogy } f'(x)=0.$

- f_1 differenciálható [-1,3]-on és így folytonos is, továbbá f(-1) = f(3) = 0, ezért a Rolle-tétel alkalmazható, így $\exists x \in]-1,3[$, hogy

$$f_1'(x) = 2x - 2 = 0 \iff x = 1$$
.

 $-f_2(x) = x^3 - x$ differenciálható [-1,1]-en, ami adja, hogy f_2 folytonos [-1,1]-en, továbbá f(-1) = f(1) = 0, így teljesülnek a Rolle-tétel feltételei, ezért $\exists x \in]-1,1[$, hogy

$$f_2'(x) = 3x^2 - 1 = 0 \iff x^2 = \frac{1}{3} \iff x = \pm \frac{\sqrt{3}}{3}$$
.

– Az $f_3(x)=\sqrt[3]{x^2}$, $x\in[-1,1]$ függvény (az összetett függvény folytonosságára vonatkozó tétel miatt) folytonos [-1,1]-en, de x=0-ban nem differenciálható, mert

$$\lim_{x \to 0+0} \frac{\sqrt[3]{x^2} - \sqrt[3]{0}}{x - 0} = \lim_{x \to 0} \frac{\sqrt[3]{x^2}}{x} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x}} = +\infty,$$

így
$$\nexists \lim_{x\to 0} \frac{\sqrt[3]{x^2} - \sqrt[3]{0}}{x-0}$$
 véges határérték.

Így nem teljesülnek a Rolle-tétel feltételei.

Megmutatjuk, hogy $\nexists x \in]-1,1[$, hogy f'(x)=0.

Ha $x \neq 0$, akkor

$$\exists f'(x) = \left(x^{\frac{2}{3}}\right)' = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3}\frac{1}{\sqrt[3]{x}} \neq 0 ,$$

hiszen

$$\frac{2}{3}\frac{1}{\sqrt[3]{x}} = 0 \qquad \Longleftrightarrow \qquad 1 = 0 \;,$$

ami lehetetlen.

x = 0-ban pedig nem is differenciálható f_3 .

– Az
$$f_4(x) = \begin{cases} x^2 & \text{, ha } 0 \le x \le 1 \\ 2 - x & \text{, ha } 1 < x \le 2 \end{cases}$$
 függvény folytonos [0, 2]-n, de

$$\lim_{x \to 1-0} \frac{f_4(x) - f_4(1)}{x - 1} = \lim_{x \to 1-0} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1-0} (x + 1) = 2,$$

$$\lim_{x \to 1+0} \frac{f_4(x) - f_4(1)}{x - 1} = \lim_{x \to 1+0} \frac{2 - x - 1}{x - 1} = \lim_{x \to 1+0} (-1) = -1$$

miatt $\nexists f_4'(1)$ (hiszen 1-ben a jobb-és baloldali differenciálhányados különböző). Ezért f_4 nem teljesíti a Rolle-tétel feltételeit.

Megmutatjuk, hogy $\nexists x \in]0,2[$, hogy $f'_4(x)=0$.

Ha $x \in]0,1[$, úgy

$$f_4'(x) = 2x = 0 \iff x = 0 \notin]0,1[$$
.

Ha $x \in]1, 2[$, úgy

$$f_4'(x) = -1 \neq 0 \quad \forall \ x \in]1, 2[$$
.

x = 1-ben pedig nem differenciálható f_4 , azaz $\nexists f_4'(1)$.

8.16. feladat. Legyen f:]a, b[olyan differenciálható függvény, hogy $f'(x) \neq 0 \ (x \in]a, b[$). Bizonyítsa be, hogy az f(x) = 0 egyenletnek legfeljebb egy gyöke van]a, b[-ben.

Megoldás. Tegyük fel, hogy $\exists u, v \in]a, b[$, u < v, hogy f(u) = f(v) = 0. Ekkor f teljesíti a Rolle-tétel feltételeit az [u, v] intervallumon, ezért $\exists x \in]u, v[\subset]a, b[$, hogy f'(x) = 0, ami ellentmondás. Így az állítás igaz.

8.17. feladat. Bizonyítsa be, hogy a sin: $\mathbb{R} \to \mathbb{R}$ függvény bármely két zérushelye között van zérushelye a cos: $\mathbb{R} \to \mathbb{R}$ függvénynek és fordítva.

 $Megold\acute{a}s$. Ha $a,b\in\mathbb{R},\ a< b$ és $\sin(a)=\sin(b)=0$, akkor – a sin differenciálhatósága miatt – teljesülnek [a,b]-n a Rolle-tétel feltételei, ezért $\exists\ x\in]a,b[$, hogy $\sin'(x)=\cos(x)=0$, ami adja az állítás első felét.

Ha most $u, v \in \mathbb{R}$, u < v olyan, hogy $\cos(u) = \cos(v) = 0$, akkor a Rolletétel szerint $\exists x \in]u, v[$, hogy $\cos'(x) = -\sin(x) = 0 \iff \sin(x) = 0$, a második állításnak megfelelően.

8.18. feladat. Vizsgálja meg, hogy alkalmazható-e a Lagrange-tétel az alábbi függvényekre az adott intervallumon:

$$f_1(x) = \frac{x+3}{x-4}, \quad x \in [1,3] ;$$

$$f_2(x) = \begin{cases} 0 & \text{ha } x \in [-1,1[\\ 1 & \text{ha } x = 1 \end{cases} \quad [-1,1]\text{-en.}$$

 $Megold\'{a}s$

 $-f_1(x) = \frac{x+3}{x-4} \ (x \neq 4)$ differenciálható értelmezési tartományában, így $4 \notin [1,3]$ miatt f_1 differenciálható [1,3]-on és ezért folytonos is. Teljesülnek tehát a Lagrange-tétel feltételei $\implies \exists \ x \in]1,3[$, hogy

$$f'(x) = \frac{x-4-(x+3)}{(x-4)^2} = -\frac{7}{(x-4)^2} = -\frac{7}{3} = \frac{f(3)-f(1)}{3-1}$$

ami \iff teljesül, ha $(x-4)^2=3 \iff x-4=\pm\sqrt{3} \iff x=4\pm\sqrt{3},$ és $x=4-\sqrt{3}\in]1,3[$.

- Az
$$f_2(x) = \begin{cases} 0 & \text{, ha } x \in [-1,1[\\ 1 & \text{, ha } x = 1 \end{cases}$$
 függvény a $]-1,1[$ -en az $f(x) = 0$

függvénnyel egyenlő, ami differenciálható, így f_2 is a] -1,1[-en, de nem folytonos x=1-ben, mert itt a határértéke 0, a helyettesítési értéke pedig 1. Így nem teljesülnek a Lagrange-tétel feltételei.

Az állítása sem, mert $f_2'(x)=(0)'=0,$ ha $x\in]-1,1[$, míg

$$\frac{f(1) - f(-1)}{2} = \frac{1 - 0}{2} = \frac{1}{2}$$

$$\implies \quad \nexists \ x \in]-1, 1[, \text{ hogy } f'_2(x) = \frac{f(1) - f(-1)}{2} .$$

8.19. feladat. Legyen $f: [a, +\infty[\to \mathbb{R} \text{ differenciálható függvény, hogy } \lim_{x \to +\infty} f'(x) = 0$. Bizonyítsa be, hogy $\lim_{x \to +\infty} [f(x+1) - f(x)] = 0$.

 $Megoldás. \ \forall \ x \in [a, +\infty[$ esetén az f függvény az [x, x+1] intervallumon teljesíti a Lagrange-tétel feltételeit (hiszen differenciálható és így folytonos is [x, x+1]-en), így $\exists \ y \in]x, x+1[$, hogy

$$\frac{f(x+1) - f(x)}{x+1-x} = f(x+1) - f(x) = f'(y).$$

Ha $x\to +\infty$, akkor $y\to +\infty \implies f'(y)\to 0$, ezért az előbbi egyenlőség miatt $f(x+1)-f(x)\to 0$, ha $x\to +\infty$, amit bizonyítani kellett.

8.20. feladat. Bizonyítsa be, hogy $\operatorname{tg}(x) > x$ ha $x \in \left[0, \frac{\pi}{2}\right[$.

Megoldás. Legyen $x \in \left]0, \frac{\pi}{2}\right[$ tetszőleges. A [0, x] intervallumon a tg függvény differenciálható, így teljesíti a Lagrange-tétel feltételeit, ezért $\exists y \in]0, x[$, hogy

$$tg'(y) = \frac{1}{\cos^2(y)} = \frac{tg(x) - tg(0)}{x - 0} = \frac{tg(x)}{x}.$$

 $0 < y < \frac{\pi}{2}$ miatt

$$0 < \cos(y) < 1 \implies \frac{1}{\cos(y)} > 1 \implies \frac{1}{\cos^2(y)} > 1$$

$$\implies \frac{\operatorname{tg}(x)}{x} > 1 \implies \operatorname{tg}(x) > x, \text{ ha } x \in \left] 0, \frac{\pi}{2} \right[.$$

8.21. feladat. A Cauchy-féle középértéktétel felhasználásával bizonyítsa be, hogy $\lim_{x\to 0}\frac{\sin(x)}{x}=1$.

Megoldás. Az $f(x) = \sin(x)$ és g(x) = x függvények $\forall x \in \mathbb{R}$ esetén differenciálhatók, $f'(x) = \cos(x)$, $g'(x) = 1 \neq 0$, így $\forall [x, 0]$ vagy [0, x] intervallumon teljesítik a Cauchy-féle középértéktétel feltételeit, ezért

 $\exists \ y \in]0, x[\ \mathrm{vagy} \ y \in]x, 0[\ , \ \mathrm{hogy}$

$$\left(\frac{f'(y)}{g'(y)}\right) = \frac{\cos(y)}{1} = \frac{\sin(x) - \sin(0)}{x - 0} = \frac{\sin(x)}{x} = \left(\frac{f(x) - f(0)}{g(x) - g(0)}\right),$$

illetve

$$\left(\frac{f'(y)}{g'(y)}\right) = \frac{\cos(y)}{1} = \frac{\sin(0) - \sin(x)}{0 - x} = \frac{\sin(x)}{x} = \left(\frac{f(0) - f(x)}{g(0) - g(x)}\right).$$

Ha $x \to 0+0$, illetve $x \to 0-0$, akkor $y \to 0+0$, illetve $y \to 0-0$, így

$$\lim_{y \to 0+0} \cos(y) = \lim_{y \to 0-0} \cos(y) = 1 \implies \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

(az egyenlőség miatt).

8.22. feladat. Határozza meg az alábbi függvények 0 pont körüli Taylorsorát:

$$f_1(x) = \exp(x) \quad (x \in \mathbb{R}); \qquad f_2(x) = \sin(x) \quad (x \in \mathbb{R});$$

$$f_3(x) = \frac{1}{1-x} \quad (x \in]-1,1[).$$

Megoldás. Egy $f:(p,q)\to\mathbb{R}$ akárhányszor differenciálható függvény a-hoz tartozó Taylor-sora $\sum\limits_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k$

- $-f_1(x) = \exp(x) \stackrel{\cdot}{=} \sum_{n=0}^{\infty} \frac{x^n}{n!}$ egy konvergens hatványsor, ami éppen az exp függvény 0-pont körüli Taylor-sora.
 - Más módon: az exp függvény akárhányszor differenciálható és $\forall x \in \mathbb{R}$ re $\exp^{(n)}(x) = \exp(x) \ \forall \ n \in \mathbb{N}$, továbbá $\exp(0) = 1$, így $\exp^{(n)}(0) = 1$,
 ezért definíció szerint az exp függvény 0-pont körüli Taylor-sora valóban
 a $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ sor.
- Hasonlóan belátható, hogy a sin függvény 0-pont körüli Taylor-sora az őt definiáló $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ konvergens hatványsor.
- A $\sum\limits_{n=0}^{\infty}x^n$ geometriai sor konvergens, ha |x|<1 és összege $\frac{1}{1-x}$, így az előbbiek szerint a 0-ponthoz tartozó Taylor-sor: $\sum\limits_{n=0}^{\infty}x^n$.
- **8.23. feladat.** Adja meg az $f(x) = \sin(x)$ $(x \in \mathbb{R})$ függvény $a = \frac{\pi}{4}$ körüli Taylor-sorát, vizsgálja annak konvergenciáját f-hez.

Megoldás.
$$f(x) = \sin(x) \implies f\left(\frac{\pi}{4}\right) = \sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}$$
. Mivel $\forall x \in \mathbb{R}$ -re

$$f^{(n)}(x) = \sin^{(n)}(x) = \begin{cases} \cos(x) &, \text{ha } n = 4k - 3, \\ -\sin(x) &, \text{ha } n = 4k - 2, \\ -\cos(x) &, \text{ha } n = 4k - 1, \end{cases},$$
$$\sin(x) &, \text{ha } n = 4k,$$

ezért

$$f^{(n)}\left(\frac{\pi}{4}\right) = \sin^{(n)}\left(\frac{\pi}{4}\right) = \begin{cases} \frac{\sqrt{2}}{2} &, \text{ha } n = 4k - 3, \\ -\frac{\sqrt{2}}{2} &, \text{ha } n = 4k - 2, \\ -\frac{\sqrt{2}}{2} &, \text{ha } n = 4k - 1, \\ \frac{\sqrt{2}}{2} &, \text{ha } n = 4k, \end{cases}$$

így a Taylor-sor

$$\sum_{k=0}^{\infty} \frac{f^{(k)}\left(\frac{\pi}{4}\right)}{k!} \left(x - \frac{\pi}{4}\right)^k =$$

$$= \frac{\sqrt{2}}{2} \left[1 + \frac{x - \frac{\pi}{4}}{1!} - \frac{\left(x - \frac{\pi}{4}\right)^2}{2!} - \frac{\left(x - \frac{\pi}{4}\right)^3}{3!} + \frac{\left(x - \frac{\pi}{4}\right)^2}{2!} - \frac{\left(x - \frac{\pi}{4}\right)^4}{4!} + \cdots \right]$$

A Taylor-tétel szerint, ha $f: K(a,r) \to \mathbb{R}, n \in \mathbb{N}$ és $\exists f^{(n)}$, akkor $\forall x \in K(a,r)$ -re $\exists \xi(x) \in K(a,r) \setminus \{a\}$, hogy

$$f(x) = T_{n-1}(x) + \frac{f^{(n)}(\xi(x))}{n!}(x-a)^n \qquad (x \in K(a,r)),$$

ahol $R_n(x) \doteq \frac{f^{(n)}(\xi(x))}{n!}(x-a)^n$ a Taylor-formula maradék tagja. Ha $\lim_{n\to\infty} R_n(x)=0$, úgy $T_{n-1}(x)\to f(x)$, azaz

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k \qquad (x \in K(a, r)),$$

tehát akkor f előállítható Taylor-sorával.

Példánkban

$$R_n(x) = \frac{\sin^{(n)}(\xi(x))}{n!} \left(x - \frac{\pi}{4}\right)^n ,$$

így

$$0 \le |R_n(x)| = \left| \frac{\sin^{(n)}(\xi(x))}{n!} \left(x - \frac{\pi}{4} \right)^n \right| < \frac{\left| x - \frac{\pi}{4} \right|^n}{n!} \to 0$$

$$\implies |R_n(x)| \to 0 \implies R_n(x) \to 0,$$

ezért

$$\sin(x) = \sum_{k=0}^{\infty} \frac{\sin^{(k)}\left(\frac{\pi}{4}\right)}{k!} \left(x - \frac{\pi}{4}\right)^k =$$

$$= \frac{\sqrt{2}}{2} \left[1 + \frac{x - \frac{\pi}{4}}{1!} - \frac{\left(x - \frac{\pi}{4}\right)^2}{2!} - \frac{\left(x - \frac{\pi}{4}\right)^3}{3!} + \frac{\left(x - \frac{\pi}{4}\right)^2}{2!} - \frac{\left(x - \frac{\pi}{4}\right)^4}{4!} + \cdots \right].$$

8.24. feladat. Írja fel az $f(x)=\operatorname{tg}(x)$ $\left(x\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right)$ függvény Taylorpolinomját n=5-re az a=0 pont körül.

Megoldás. f akárhányszor differenciálható.

$$f(0) = \operatorname{tg}(0) = 0,$$

$$f'(x) = \cos^{-2}(x) \implies f'(0) = 1,$$

$$f''(x) = -2\cos^{-3}(x)(-\sin(x)) = 2\sin(x)\cos^{-3}(x) \implies f''(0) = 0,$$

$$f'''(x) = 2\cos(x)\cos^{-3}(x) + 2\sin(x)(-3)\cos^{-4}(x)(-\sin(x)) =$$

$$= 2\cos^{-2}(x) + 6\sin^{2}(x)\cos^{-4}(x) \implies f'''(0) = 2$$

$$f^{(4)}(x) = -4\cos^{-3}(x)(-\sin(x)) + 12\sin(x)\cos(x)\cos^{-4}(x) -$$

$$+ 24\sin^{2}(x)\cos^{-5}(x)(-\sin(x)) \implies f^{(4)}(0) = 0,$$

$$f^{(5)}(x) = 16\cos^{-3}(x) + 16\sin(x)(-3)\cos^{-4}(x)(-\sin(x)) +$$

$$+ 72\sin^{2}(x)\cos(x)\cos^{-5}(x) + 24\sin^{3}(x)(-5)\cos^{-5}(x)(-\sin(x)) =$$

$$= 16\cos^{-3}(x) + 120\sin^{2}(x)\cos^{-4}(x) + 120\sin^{4}(x)\cos^{-5}(x) \implies$$

$$\implies f^{(5)}(0) = 16.$$

Ezért $T_5(x) = x + \frac{1}{3}x^2 + \frac{2}{15}x^5$.

8.25. feladat. Írja fel az $\frac{1}{1+x}$ függvény 0-pont körüli Taylor-sorát. Vizsgálja konvergenciáját.

 $Megold\acute{a}s$. A $\sum_{n=0}^{\infty}(-x)^n$ geometriai sor konvergens, ha |x|<1 és összege (mivel kvóciense -x): $\frac{1}{1+x}$, ezért az $\frac{1}{1+x}$ 0-pont körüli Taylor-sora

$$\sum_{n=0}^{\infty} (-1)^n x^n$$
, s erre

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \text{ ha } |x| < 1.$$

8.26. feladat. Határozza meg az $f(x) = \ln(1+x)$ (x > -1) függvény 0-pont körüli Taylor-sorát.

Megoldás. f(0) = 0, $f^{(n)}(x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$ $(n \in \mathbb{N})$ (lásd 8.14. feladat f_6 függvénynét $x \to x+1$ helyettesítéssel) $\implies f^{(n)}(0) = (-1)^{n-1}(n-1)!$. Ezért f Taylor-sora:

$$\sum_{k=0}^{\infty} \frac{f^{(k)}}{k!} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \cdots$$

Mivel

$$R_n(x) = \frac{f^{(n)}(\xi(x))}{n!} x^n = (-1)^{n-1} \frac{1}{n} \cdot \frac{x^n}{(1+\xi(x))^n}$$

és

$$0 < |R_n(x)| < \frac{1}{n}|x|^n \to 0$$
, ha $0 \le x \le 1$,

ezért $R_n(x) \to 0$, ha $0 \le x \le 1$, így

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots \qquad x \in [0,1].$$

Ez x = 1-re adja, hogy

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} ,$$

s ezzel meghatároztuk a $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ konvergens sor összegét.

8.27. feladat. Számítsa ki ln(1,1) értékét 10^{-4} pontossággal.

Megoldás. Az előbbi feladat szerint (a Taylor-tételt használva):

$$f(x) = \ln(1+x) =$$

$$= x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-2} \frac{x^{n-1}}{n-1} + (-1)^{n-1} \frac{1}{n} \frac{x^n}{(1+\xi(x))^n}.$$

Ezt $x = \frac{1}{10}$ mellett tekintve kapjuk, hogy $\exists \ \xi \in \left(0, \frac{1}{10}\right)$, hogy

$$\ln(1,1) = \frac{1}{10} - \frac{1}{2} \left(\frac{1}{10}\right)^2 + \frac{1}{3} \left(\frac{1}{10}\right)^3 - \dots + (-1)^{n-2} \frac{1}{n-1} \left(\frac{1}{10}\right)^{n-1} + (-1)^{n-1} \frac{1}{n} \frac{1}{(1+\xi)^n} \left(\frac{1}{10}\right)^n.$$

Mivel

$$\left| \frac{1}{n(1+\xi)^n} \left(\frac{1}{10} \right)^n \right| < \left(\frac{1}{10} \right)^n = 10^{-n},$$

ezért ha 10^{-4} pontossággal akarjuk $\ln(1,1)\text{-et}$ meghatározni elég az

$$\frac{1}{10} - \frac{1}{2} \left(\frac{1}{10}\right)^2 + \frac{1}{3} \left(\frac{1}{10}\right)^3$$
értékét meghatározni, ami 0,0953, így $\ln(1,1) \approx 0,0953$ 10^{-4} pontossággal.

8.28. feladat. Írja fel az $f(x) = \sqrt{1+x}$ $(x \ge 0)$ függvény Taylor-sorát az a=0 pontra.

 $Megold\acute{a}s.$ A 8.14. feladat f_3 függvénye éppen az $f(x)=\sqrt{1+x}$ $(x\geq 0)$ függvény, melyre $f'(x)=\frac{1}{2}(1+x)^{-\frac{1}{2}}$ és n>1-re

$$\exists \ f^{(n)}(x) = (\sqrt{x+1})^{(n)} = (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n} (x+1)^{-\frac{2n-1}{2}} \quad (x \ge 0),$$

ami adja, hogy $\exists f^{(n)}(0) = (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n}$, ha $n \in \mathbb{N}$ és f(0) = 1. Így f Taylor-sora a = 0 pontra az

$$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \dots + (-1)^{n-1} \frac{1 \cdot 3 \dots (2n-3)}{2^n n!} x^n + \dots$$

sor.

Ez használható $\sqrt{2}$ közelítésére, de elég "lassú" a konvergencia.

A L'Hospital-szabály

a) A nulla-per-nulla eset

Bizonyos egyszerű feltételek mellett, ha

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \qquad \text{ és } \qquad \lim_{x \to a} \frac{f'(x)}{g'(x)} = A \ ,$$

akkor

$$\lim_{x \to a} \frac{f(x)}{g(x)} = A .$$

 $(A \text{ lehet } +\infty \text{ vagy } -\infty \text{ is.})$

Itt $x \to a$ helyettesíthető a következők bármelyikével:

$$x \to a + 0$$
, $x \to a - 0$, $x \to +\infty$ vagy $x \to -\infty$.

A feltételek pedig a következők:

- a) f,g differenciálhatók a egy K(a,r) nyílt, vagy $K(a,r)\setminus\{0\}$ "lyukas" környezetében, $g(x)g'(x)\neq 0$ $(K(a,r))\setminus\{a\}$ -n.
- b) Jobb vagy baloldali határértéknél ezek az a jobb vagy baloldali környezetében igazak.
- c) Az $x\to +\infty$ vagy $x\to -\infty$ esetben pedig elég nagy, illetve elég kicsi x értékekre teljesülnek az a)-ban mondottak.

8.29. feladat. Számítsa ki az alábbi határértékeket:

$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x} ; \quad \lim_{x \to 0} \frac{e^x - 1}{x} ; \quad \lim_{x \to 0} \frac{\ln(1 + x)}{x} ;$$

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x + \ln x - 1} ; \quad \lim_{x \to 0} \frac{\operatorname{tg} x}{x} ; \quad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} ;$$

$$\lim_{x \to 0+0} \frac{\sin x}{\sqrt{x}} ; \quad \lim_{x \to \frac{\pi}{2} - 0} \frac{x \cos(x)}{1 - \sin(x)} .$$

Megoldás.

– Az
$$f(x) = \sin 3x$$
 és $g(x) = \sin 5x$ függvények differenciálhatók $K\left(0, \frac{\pi}{2}\right)$ -ben; $\lim_{x \to 0} \sin 3x = \lim_{x \to 0} \sin 5x = 0$; $g(x)g'(x) = \sin(5x) \cdot 5\cos(5x) \neq 0$, ha $x \in K\left(0, \frac{\pi}{2}\right) \setminus \{0\}$,
$$\exists \lim_{x \to 0} \frac{[\sin 3x]'}{[\sin 5x]'} = \lim_{x \to 0} \frac{3\cos 3x}{5\cos 5x} = \frac{3}{5}$$
,

így a L'Hospital-szabály alkalmazható, azaz

$$\exists \lim_{x \to 0} \frac{\sin 3x}{\sin 5x} = \frac{3}{5} .$$

– Az $f(x) = e^x - 1$, g(x) = x $(x \in \mathbb{R})$ teljesítik a L'Hospital-szabály feltételeit $\mathbb{R} \setminus \{0\} = K(0, +\infty) \setminus \{0\}$ -n, mert differenciálhatók,

$$\lim_{x \to 0} (e^x - 1) = \lim_{x \to 0} x = 0; \ g(x)g'(x) = x \cdot 1 \neq 0, \quad \text{ha } x \neq 0$$

és

$$\exists \lim_{x \to 0} \frac{(e^x - 1)'}{(x)'} = \lim_{x \to 0} \frac{e^x}{1} = 1,$$

így

$$\exists \lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

– Az $f(x) = \ln(1+x)$, g(x) = x $(x \in]-1,1[$) függvények (ahogy az könnyen belátható) teljesítik a L'Hospital-szabály feltételeit K(0,1)-en, így

$$\lim_{x \to 0} \frac{[\ln(1+x)]'}{(x)'} = \lim_{x \to 0} \frac{\frac{1}{1+x}}{1} = 1$$

miatt

$$\exists \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1.$$

 – $f(x) = x^3 - x^2 + x - 1$, $g(x) = x + \ln x - 1$ ($x \in \mathbb{R}_+$) függvények teljesítik a L'Hospital-szabály feltételeit K(1,1)-en (ellenőrízzük!), így

$$\lim_{x \to 0} \frac{[x^3 - x^2 + x - 1]'}{[x + \ln x - 1]'} = \lim_{x \to 0} \frac{3x^2 - 2x + 1}{1 + \frac{1}{x}} = 1$$

miatt

$$\exists \lim_{x \to 0} \frac{x^3 - x^2 + x - 1}{x + \ln x - 1} = 1.$$

 $\exists\lim_{x\to 0}\frac{x^3-x^2+x-1}{x+\ln x-1}=1.$ – $f(x)=\lg(x),\ g(x)=x$ függvények teljesítik a L'Hospital-szabály feltételeit $K\left(0,\frac{\pi}{2}\right)$ -n (ami ellenőrízhető) és

$$\lim_{x \to 0} \frac{[\lg(x)]'}{(x)'} = \lim_{x \to 0} \frac{\frac{1}{\cos^2 x}}{1} = 1,$$

így

$$\exists \lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = 1.$$

– Az $f(x)=1-\cos(x),\ g(x)=x^2\ (x\in\mathbb{R})$ függvények differenciálhatók, $\lim_{x\to 0}(1-\cos(x))=\lim_{x\to 0}x^2=0,\ g(x)g'(x)=x^2\cdot 2x\neq 0,\ \mathrm{ha}\ x\neq 0.$

$$\exists \lim_{x \to 0} \frac{(1 - \cos(x))'}{(x^2)'} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = 1$$

(lásd 8.21. feladat), ezért

$$\exists \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2} .$$

– Az $f(x) = \sin(x)$ és $g(x) = \sqrt{x}$ függvények differenciálhatók, ha $x \in]0, +\infty[$;

$$\lim_{x \to 0+0} \sin(x) = \lim_{x \to 0+0} \sqrt{x} = 0; \quad g(x)g'(x) = \sqrt{x} \frac{1}{2\sqrt{x}} \neq 0, \text{ ha } x > 0,$$

$$\exists \lim_{x \to 0+0} \frac{(\sin(x))'}{(\sqrt{x})'} = \lim_{x \to 0+0} \frac{\cos(x)}{\frac{1}{2\sqrt{x}}} = \lim_{x \to 0+0} 2\sqrt{x}\cos(x) = 0,$$

ezért teljesülnek a jobboldali határértékre vonatkozó L'Hospital-szabály feltételei, így

$$\exists \lim_{x \to 0+0} \frac{\sin x}{\sqrt{x}} = 0.$$

– Az $f(x) = x\cos(x), \ g(x) = 1 - \sin(x)$ függvények $\left]0, \frac{\pi}{2}\right[$ -n differenciálhatók

$$\lim_{x \to \frac{\pi}{2} - 0} x \cos(x) = \lim_{x \to \frac{\pi}{2} - 0} (1 - \sin(x)) = 0;$$

$$g(x)g'(x) = (1 - \sin x)(-\cos x) \neq 0, \text{ ha } x \in \left]0, \frac{\pi}{2}\right[$$

és

$$\lim_{x \to \frac{\pi}{2} - 0} \frac{[x \cos(x)]'}{[1 - \sin(x)]'} = \lim_{x \to \frac{\pi}{2} - 0} \frac{\cos(x) - x \sin(x)}{-\cos(x)} =$$
$$= \lim_{x \to \frac{\pi}{2} - 0} (x \operatorname{tg}(x) - 1) = +\infty$$

(mert $\lim_{x \to \frac{\pi}{2} - 0} \operatorname{tg}(x) = +\infty)$, így a L'Hospital-szabály miatt

$$\lim_{x \to \frac{\pi}{2} - 0} \frac{x \cos x}{1 - \sin x} = +\infty.$$

b) A végtelen-per-végtelen eset

Bizonyos feltételekkel, ha

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty \qquad \text{és} \qquad \lim_{x \to a} \frac{f'(x)}{g'(x)} = A ,$$

akkor

$$\lim_{x \to a} \frac{f(x)}{g(x)} = A .$$

A feltételek pedig az előbbi a) vagy b) vagy c) alattiak. Itt is lehet egyoldali, illetve $\pm\infty$ -beli a határérték.

8.30. feladat. Számítsa ki az alábbi határértékeket:

$$\lim_{x \to 0} \frac{\ln(x)}{-\frac{1}{x^2}}; \qquad \lim_{x \to 0+0} \frac{-\ln(x)}{\frac{1}{x}}; \qquad \lim_{x \to +\infty} \frac{\ln(x)}{x};$$

$$\lim_{x \to +\infty} \frac{5x^3 - 4x^2 + 3}{2x^2 - 1}; \qquad \lim_{x \to +\infty} \frac{x}{e^{2x}}; \qquad \lim_{x \to +\infty} \frac{x}{(\ln(x))^2}.$$

Megoldás.

– Az
$$f(x) = \ln(x), \ g(x) = -\frac{1}{x^2}$$
 függvények differenciálhatók $\mathbb{R} \setminus \{0\}$ -n,

$$\lim_{x \to 0} \ln(x) = -\infty, \qquad \lim_{x \to 0} -\frac{1}{x^2} = -\infty;$$

$$g(x)g'(x) = \left(-\frac{1}{x^2}\right) \left(\frac{2}{x^3}\right) \neq 0, \quad \text{ha } x \neq 0,$$

$$\lim_{x \to 0} \frac{[\ln(x)]'}{\left(-\frac{1}{x^2}\right)'} = \lim_{x \to 0} \frac{\frac{1}{|x|}}{\frac{2}{x^3}} = \lim_{x \to 0} \frac{x^3}{2|x|} = 0,$$

ezért (L'Hospital-szabály)

$$\lim_{x \to 0} \frac{\ln(x)}{-\frac{1}{x^2}} = 0.$$

- Az
$$f(x) = -\ln(x)$$
 és $g(x) = \frac{1}{x}$ differenciálhatók $]0, +\infty[$ -ben;
$$\lim_{x \to 0+0} [-\ln(x)] = +\infty, \qquad \lim_{x \to 0+0} \frac{1}{x} = +\infty;$$

$$g(x)g'(x) = \frac{1}{x} \left(-\frac{1}{x^2} \right) \neq 0, \quad \text{ha } x > 0,$$

és

$$\lim_{x \to 0+0} \frac{[-\ln(x)]'}{\left(\frac{1}{x}\right)'} = \lim_{x \to 0+0} \frac{-\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0+0} x = 0,$$

így a L'Hospital-szabály miatt

$$\lim_{x \to 0+0} \frac{-\ln(x)}{\frac{1}{x}} = 0.$$

 $-f(x) = \ln(x)$ és g(x) = x differenciálhatók $]0, +\infty[-ben;$

$$\lim_{x \to +\infty} \ln(x) = \lim_{x \to +\infty} x = +\infty; \qquad g(x)g'(x) = x \cdot 1 \neq 0, \quad \text{ha } x > 0,$$

és

$$\lim_{x \to +\infty} \frac{[\ln(x)]'}{(x)'} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\frac{1}{x}} = \lim_{x \to +\infty} \frac{1}{x} = 0,$$

így

$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0.$$

– $f(x) = 5x^3 - 4x + 3$, $g(x) = 2x^2 - 1$ differenciálhatók \mathbb{R} -en

$$\lim_{x \to +\infty} (5x^3 - 4x + 3) = \lim_{x \to +\infty} (2x^2 - 1) = +\infty;$$

$$g(x)g'(x) = (2x^2 - 1)(4x) \neq 0$$
, ha $x > \frac{\sqrt{2}}{2}$

és

$$\lim_{x \to +\infty} \frac{[5x^3 - 4x^2 + 3]'}{[2x^2 - 1]'} = \lim_{x \to +\infty} \frac{15x^2 - 8x}{4x} = \lim_{x \to +\infty} \left(\frac{5}{4}x - 2\right) = +\infty,$$

így teljesülnek a L'Hospital-szabály feltételei $\left]\frac{\sqrt{2}}{2},+\infty\right[\text{-en, ezért}$

$$\lim_{x \to +\infty} \frac{5x^3 - 4x^2 + 3}{2x^2 - 1} = +\infty$$

(amit más módszerrel korábban már bizonyíthattunk).

 $-f(x)=x,\ g(x)=e^{2x}$ teljesítik $\mathbb R$ -en a L'Hospital-szabály feltételeit a végtelen-per-végtelen esetre és

$$\lim_{x \to +\infty} \frac{(x)'}{(e^{2x})'} = \lim_{x \to +\infty} \frac{1}{2e^{2x}} = 0,$$

így

$$\lim_{x \to +\infty} \frac{x}{e^{2x}} = 0.$$

-f(x)=xés $g(x)=[\ln(x)]^2$ teljesítik a L'Hospital-szabály végtelen-pervégtelen esetének feltételeit és

$$\lim_{x \to +\infty} \frac{(x)'}{([\ln(x)]^2)'} = \lim_{x \to +\infty} \frac{1}{2\frac{\ln(x)}{x}} = +\infty$$

$$(\text{mert } \lim_{x \to +\infty} \frac{\ln(x)}{x} = 0),$$
így

$$\lim_{x \to +\infty} \frac{x}{(\ln(x))^2} = +\infty.$$

c) Egyéb feladatok

8.31. feladat. Számítsa ki az alábbi határértékeket:

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right) \; ; \qquad \lim_{x \to 0} \left[\frac{1}{\sin x} - \operatorname{ctg}(x) \right] \; ; \qquad \lim_{x \to 0+0} x^{\sin x} \; .$$

Megoldás.

– Az első feladat végtelen-mínusz-végtelen típusú, de

$$\frac{1}{x} - \frac{1}{\sin x} = \frac{\sin x - x}{x \sin x}$$

átírással a nulla-per-nulla típusra vezethető vissza, ugyanis $f(x) = \sin(x) - x$, $g(x) = x\sin(x)$ differenciálhatók,

$$\lim_{x \to 0} [\sin(x) - x] = \lim_{x \to 0} [x \sin(x)] = 0,$$

$$g(x)g'(x) = (x \sin(x))(\sin x + x \cos x) \neq 0$$

a 0 egy "alkalmas" környezetében, továbbá

$$\lim_{x \to 0} \frac{[\sin(x) - x]'}{[x\sin(x)]'} = \lim_{x \to 0} \frac{\cos x - 1}{\sin x + x\cos x} = \lim_{x \to 0} \frac{-\sin(x)}{-x\sin(x) + 2\cos(x)} = 0$$

(ahol a $\lim_{x\to 0}\frac{\cos x-1}{\sin x+x\cos x}$ -nél is alkalmaztuk a L'Hospital-szabály nullaper-nulla változatát), így a L'Hospital-szabály miatt

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right) = \lim_{x \to 0} \frac{\sin(x) - x}{x \sin(x)} = 0.$$

-Az

$$\frac{1}{\sin(x)} - \operatorname{ctg}(x) = \frac{1}{\sin(x)} - \frac{\cos(x)}{\sin(x)} = \frac{1 - \cos(x)}{\sin(x)} \qquad (x \neq 0)$$

egyenlőség és a L'Hospital-szabály adja, hogy

$$\lim_{x \to 0} \left[\frac{1}{\sin(x)} - \cot(x) \right] = \lim_{x \to 0} \frac{1 - \cos(x)}{\sin(x)} = \lim_{x \to 0} \frac{\sin(x)}{\cos(x)} = 0$$

- Az

$$x^{\sin(x)} = \exp(\sin(x)\ln(x)) = \exp\left(\frac{\ln(x)}{\frac{1}{\sin(x)}}\right)$$
 $(x \neq 0)$

egyenlőséget és azt felhasználva, hogy a

$$\lim_{x \to 0+0} \frac{\ln(x)}{\frac{1}{\sin(x)}}$$

határérték a L'Hospital-szabály végtelen-per-végtelen esetével

$$\lim_{x \to 0+0} \frac{\ln(x)}{\frac{1}{\sin(x)}} = \lim_{x \to 0+0} \frac{\frac{1}{x}}{-\sin^{-2}(x)\cos(x)} =$$

$$= -\lim_{x \to 0+0} \frac{\sin(x)}{x} \cdot \frac{1}{\cos(x)} \cdot \sin(x) = 0$$

(mert $\lim_{x\to 0}\frac{\sin(x)}{x}=0$, $\lim_{x\to 0}\frac{1}{\cos(x)}=1$, $\lim_{x\to 0}\sin(x)=0$) módon kiszámítható, felhasználva azt is, hogy $\lim_{y\to 0}\exp(y)=1$, az összetett függvény határértékére vonatkozó tétel adja, hogy

$$\lim_{x \to 0+0} x^{\sin(x)} = \lim_{x \to 0} \exp\left(\frac{\ln(x)}{\frac{1}{\sin(x)}}\right) = 1.$$

Differenciálható függvények vizsgálata

a) Monotonitás

Az $f:\langle a,b\rangle$ differenciálható függvény

- akkor és csak akkor monoton növekedő (csökkenő) $\langle a,b\rangle$ -n, ha $f'(x)\geq 0$ ($f'(x)\leq 0$) ($x\in\langle a,b\rangle$),
- akkor és csak akkor szigorúan monoton növekedő (csökkenő) $\langle a, b \rangle$ -n, ha $f'(x) \geq 0$, $(f'(x) \leq 0)$ $(x \in \langle a, b \rangle)$ és $\nexists \langle c, d \rangle \subset \langle a, b \rangle$, hogy f'(x) = 0 $(x \in \langle c, d \rangle)$.
- **8.32.** feladat. Határozza meg, hogy a következő függvények hol monoton növekedőek, hol monoton csökkenőek:

$$f_{1}(x) = 5x + 2 \qquad (x \in \mathbb{R});$$

$$f_{2}(x) = -3x + 2 \qquad (x \in \mathbb{R});$$

$$f_{3}(x) = ax + b \qquad (x \in \mathbb{R});$$

$$f_{4}(x) = x^{2} - 4x + 7 \qquad (x \in \mathbb{R});$$

$$f_{5}(x) = 1 - 4x - x^{2} \qquad (x \in \mathbb{R});$$

$$f_{6}(x) = ax^{2} + bx + c \qquad (x \in \mathbb{R});$$

$$f_{7}(x) = x + \frac{1}{x} \qquad (x \neq 0);$$

$$f_{8}(x) = \frac{2x}{1 + x^{2}} \qquad (x \in \mathbb{R});$$

$$f_{9}(x) = x^{3} - 12x + 20 \qquad (x \in \mathbb{R});$$

$$f_{10}(x) = \sqrt{1 - x^{2}} \qquad (|x| \le 1);$$

$$f_{11}(x) = x + \sin(x) \qquad (x \in \mathbb{R});$$

$$f_{12}(x) = \arctan(x) \qquad (x \in \mathbb{R}).$$

Megoldás.

- ∃ $f_1'(x) = (5x+2)' = 5 > 0 \ \forall \ x \in \mathbb{R}$, így f_1 szigorúan monoton növekedő \mathbb{R} -en.
- $\exists f_2'(x) = (-3x+2)' = -3 < 0 \ \forall \ x \in \mathbb{R},$ így f_2 szigorúan monoton csökkenő $\mathbb{R}\text{-en}.$
- $-\exists f_3'(x) = (ax+b)' = a(x \in \mathbb{R}).$

Ha $a > 0 \implies f_3$ szigorúan monoton növekedő \mathbb{R} -en.

Ha $a < 0 \implies f_3$ szigorúan monoton csökkenő \mathbb{R} -en.

(Ha
$$a=0$$
, úgy nyilván konstans: $f_3(x)=b$.)
- $\exists f_4'(x)=(x^2-4x+7)'=2x-4\ (x\in\mathbb{R})$.
 $f_4'(x)=2x-4=0\iff x=2\ ;$
 $f_4'(x)=2x-4>0\iff x>2\ ;$
 $f_4'(x)=2x-4<0\iff x<2\ .$

Így f_4 szigorúan monoton csökkenő a $]-\infty,2]$, szigorúan monoton növekedő a $[2,+\infty[$ intervallumban.

$$-\exists f_5'(x) = (1 - 4x - x^2)' = -4 - 2x \ x \in \mathbb{R}.$$

$$f_5'(x) = -4 - 2x = 0 \iff x = -2;$$

$$f_5'(x) = -4 - 2x > 0 \iff x < -2;$$

$$f_5'(x) = -4 - 2x < 0 \iff x > -2.$$

Így f_5 szigorúan monoton növekedő a $]-\infty,-2]$ és szigorúan monoton csökkenő a $[2,+\infty[$ intervallumon.

-
$$\exists f_6'(x) = (ax^2 + bx + c)' = 2ax + b \ (x \in \mathbb{R}).$$

Ha $a > 0$, úgy

$$f_6'(x) = 2ax + b = 0 \iff x = -\frac{b}{2a};$$

$$f_6'(x) = 2ax + b < 0 \iff x < -\frac{b}{2a};$$

$$f_6'(x) = 2ax + b > 0 \iff x > -\frac{b}{2a}.$$

Ezért f_6 szigorúan monoton csökkenő a $\left]-\infty, -\frac{b}{2a}\right]$, szigorúan monoton növekedő a $\left[-\frac{b}{2a}, +\infty\right[$ intervallumon.

Ha a<0, úgy hasonló számolás adja, hogy f_6 szigorúan monoton növekedő a $\left]-\infty,-\frac{b}{2a}\right]$, szigorúan monoton csökkenő a $\left[-\frac{b}{2a},+\infty\right[$ intervallumban.

$$- \exists f_7'(x) = 1 - \frac{1}{x^2} (x \neq 0).$$

$$f_7'(x) = 1 - \frac{1}{x^2} = 0 \iff x^2 = 1 \iff x = -1, \text{ vagy } x = 1;$$

$$f_7'(x) = 1 - \frac{1}{x^2} > 0 \iff 1 > \frac{1}{x^2} \iff x^2 > 1 \iff |x| > 1, \text{ azaz }$$

$$x < -1, \text{ vagy } x > 1;$$

$$f_7'(x) = 1 - \frac{1}{x^2} < 0 \iff |x| < 1, \text{ azaz } -1 < x < 1.$$

Ezért f_7 szigorúan monoton növekedő a $]-\infty,-1]$ és $[1,+\infty[$ intervallumokon, szigorúan monoton csökkenő a [-1,0[és]0,1] intervallumokon.

$$- \exists f_8'(x) = \left(\frac{2x}{1+x^2}\right)' = \frac{2(1+x^2)-2x\cdot 2x}{(1+x^2)^2} = \frac{2-2x^2}{(1+x^2)^2} \quad (x \in \mathbb{R}).$$

$$f_8'(x) = \frac{2 - 2x^2}{(1 + x^2)^2} = 0 \iff 2 - 2x^2 = 0 \iff x^2 = 1$$

 $\iff x = -1 \text{ vagy } x = 1;$

$$f_8'(x) = \frac{2 - 2x^2}{(1 + x^2)^2} > 0 \iff 2 - 2x^2 > 0 \iff 1 > x^2 \iff 1 > |x|$$

$$\iff x \in]-1,1[;$$

$$f_8'(x) = \frac{2 - 2x^2}{(1 + x^2)^2} < 0 \iff 2 - 2x^2 < 0 \iff 1 < x^2 \iff 1 < |x|$$

$$\iff x \in]-\infty, -1[\cup]1, +\infty[.$$

Ezért f_8 szigorúan monoton növekedő a [-1,1], míg szigorúan monoton csökkenő a $]-\infty,-1]$ és $[1,+\infty[$ intervallumokon.

$$\iff |x| < 2 \iff x \in]-2,2[.$$

Így f_9 szigorúan monoton növekedő a $]-\infty,-2]$ és $[2,+\infty[$, míg szigorúan monoton csökkenő a [-2,2] intervallumon.

$$-\exists f'_{10}(x) = (\sqrt{1-x^2})' = \frac{-2x}{2\sqrt{1-x^2}} = -\frac{x}{\sqrt{1-x^2}}, \text{ ha } |x| < 1$$
 $(x = \pm 1\text{-ben } f_{10} \text{ nem differenciálható}).$

$$f'_{10}(x) = -\frac{x}{\sqrt{1-x^2}} = 0 \iff x = 0;$$

 $f'_{10}(x) = -\frac{x}{\sqrt{1-x^2}} > 0 \iff x < 0;$

$$f'_{10}(x) = -\frac{x}{\sqrt{1-x^2}} < 0 \iff x > 0.$$

Így f_{10} szigorúan monoton növekedő a]-1,0], szigorúan monoton csökkenő a [0,1[intervallumon.

De $f_{10}(-1) = 0 \le \sqrt{1-x^2}$ és $f_{10}(1) = 0 \le \sqrt{1-x^2}$ miatt f_{10} szigorúan monoton növekedő a [-1,0], szigorúan monoton csökkenő a [0,1] intervallumokon is.

- $\begin{array}{l} \ \exists \ f_{11}'(x) = 1 + \cos(x) \ (x \in \mathbb{R}). \\ f_{11}'(x) = 1 + \cos(x) \geq 0 \ (x \in \mathbb{R}), \ \text{hiszen} \ -1 \leq \cos(x) \leq 1 \ \forall \ x \in \mathbb{R} \ \text{eset\'en}, \\ \text{m\'asr\'eszt} \ f_{11}'(x) = 1 + \cos(x) = 0 \iff \cos(x) = -1 \iff \\ x = (2k+1)\pi \ (k=0,\pm 1,\ldots). \end{array}$
 - Így $f_{11}''(x) \ge 0$ és $\nexists \langle c, d \rangle \subset \mathbb{R}$, hogy $f_{11}'(x) = 0$ $(x \in \langle c, d \rangle)$, ezért f_{11} szigorúan monoton növekedő \mathbb{R} -en.
- ∃ $f'_{12}(x) = \operatorname{arctg}'(x) = \frac{1}{1+x^2} > 0 \ (\forall x \in \mathbb{R})$, így f_{12} szigorúan monoton növekedő \mathbb{R} -en.

b) Szélsőérték

Az elméletből ismerjük a következőket:

- Ha az $f: \langle a, b \rangle \to \mathbb{R}$ függvénynek az $x_0 \in]a, b[$ -ben lokális maximuma (minimuma) van és $\exists f'(x_0)$, akkor $f'(x_0) = 0$.
 - Ez a lokális szélsőérték létezésének szükséges feltétele. Ez azt jelenti, hogy lokális szélsőértéke csak ott lehet, ahol f'(x) = 0, de nem biztos, hogy egy ilyen helyen van is lokális szélsőértéke f-nek.
 - (Egy ilyen helyet tehát, ahol $f'(x_0) = 0$ stacionárius vagy kritikus helynek (pontnak) is neveznek.)
- Ha az $f\colon]x_0-r,x_0+r[\to \mathbb{R}$ függvény differenciálható, $f'(x_0)=0$ és
 - 1. $f'(x) \ge 0$ $(x \in]x_0 r, x_0]$, $f'(x) \le 0$ $(x \in [x_0, x_0 + r])$, akkor f-nek x_0 -ban lokális maximuma van (vagyis ha f' előjelet vált x_0 -ban +-ról --ra).
 - 2. $f'(x) \leq 0$ $(x \in]x_0 r, x_0]$), $f'(x) \geq 0$ $(x \in [x_0, x_0 + r])$, akkor f-nek x_0 -ban lokális maximuma van (vagyis ha f' előjelet vált x_0 -ban --ról +-ra).

Ez egy elegendő feltétel.

- Ha $f: K(a,r) \to \mathbb{R}$ (k-1)-szer differenciálható $(k \ge 2)$, $f'(a) = \cdots = f^{(k-1)}(a) = 0$ és $\exists f^{(k)}(a) \ne 0$, akkor
 - 1. ha k páratlan, úgy f(a) nem lokális szélsőérték;
 - 2. ha k páros, úgy f(a) lokális szélsőérték, hogy
 - $-f^{(k)}(a) > 0$ -ra szigorú lokális minimum,
 - $-f^{(k)}(a) < 0$ -ra szigorú lokális maximum.

Ez az általános (k-adrendű) elegendő feltétel.

8.33. feladat. Keresse meg az alábbi függvények lokális maximum-, illetve minimumhelyeit és értékeit:

$$f_{1}(x) = ax + b \qquad (x \in \mathbb{R});$$

$$f_{2}(x) = ax^{2} + bx + c \qquad (x \in \mathbb{R}, \ a \neq 0);$$

$$f_{3}(x) = \frac{ax + b}{cx + d} \qquad \left(x \neq -\frac{d}{c}\right);$$

$$f_{4}(x) = (x - 1)^{2} \qquad (x \in \mathbb{R});$$

$$f_{5}(x) = (x - 1)^{4} \qquad (x \in \mathbb{R});$$

$$f_{6}(x) = x^{3} - 5x^{2} - 8x + 3 \qquad (x \in \mathbb{R});$$

$$f_{7}(x) = \frac{2x}{1 + x^{2}} \qquad (x \in \mathbb{R});$$

$$f_{8}(x) = x + \frac{1}{x} \qquad (x \neq 0);$$

$$f_{9}(x) = (x + 1)^{10}e^{-x} \qquad (x \in \mathbb{R});$$

$$f_{10}(x) = x\sqrt[3]{x - 1} \qquad (x \in \mathbb{R});$$

$$f_{11}(x) = \frac{x^{2} + 1}{x^{2} + x + 1} \qquad (x \in \mathbb{R});$$

$$f_{12}(x) = x + \sin(x) \qquad (x \in \mathbb{R});$$

$$f_{13}(x) = |x^{2} - 3x + 2| \qquad (x \in \mathbb{R});$$

$$f_{14}(x) = \frac{4\sqrt{x}}{x + 2} \qquad (x \geq 0).$$

Megoldás.

- $-\exists f_1'(x)=a$, ami nem lehet 0, ha $a\neq 0$, így ekkor f_1 -nek nincs lokális szélsőértéke. Ha a=0, akkor $f_1(x)=b$ konstans függvény.
- Az f_2 függvény esetén

$$\exists f_2'(x) = 2ax + b = 0 \iff x = -\frac{b}{2a}.$$

 f_2 -nek így $x_0=-\frac{b}{2a}$ -ban lehet lokális szélsőértéke. Az előző feladat 6. függvényének vizsgálatánál láttuk, hogy

$$a>0$$
 esetén $f_2'(x)<0$, ha $x<-\frac{b}{2a}$ és $f_2'(x)>0$, ha $x>-\frac{b}{2a}$, azaz f_2' előjelet vált $x_0=-\frac{b}{2a}$ -ban –-ról +-ra, tehát ekkor f_2 -nek szigorú lokális

minimuma van $x_0=-\frac{b}{2a}$ -ban, melynek értéke: $\frac{4ac-b^2}{4a}$ a<0 esetén az előjelváltás ellentétes, ezért ekkor f_2 -nek szigorú lokális maximuma van $x_0=-\frac{b}{2a}$ -ban, melynek értéke: $\frac{4ac-b^2}{4a}$. Ezt egyszerűbben is megkapjuk, mivel $\exists \ f_2''(x)=2a$, ami adja, hogy

a > 0 esetén

$$f_2''\left(-\frac{b}{2a}\right) = 2a > 0 ,$$

amiből kapjuk, hogy f_2 -nek $x_0 = -\frac{b}{2a}$ -ban lokális minimuma van, ugyanakkor a < 0-ra

$$f_2''\left(-\frac{b}{2a}\right) = 2a < 0 ,$$

vagyis f_2 -nek lokális maximuma van $x_0 = -\frac{b}{2a}$ -ban.

 $-f_3$ esetén

$$\exists f_3'(x) = \left(\frac{ax+b}{cx+d}\right)' = \frac{a(cx+d) - (ax+b)c}{(cx+d)^2} = \frac{ad-bc}{(cx+d)^2} \qquad \left(x \neq -\frac{d}{c}\right),$$

ami csak akkor lehetne 0, ha ad-bc=0 ez pedig azt adná, hogy f_3 konstans függvény (ezt lássuk be).

Így f_3 -nak nem lehet szigorú lokális maximuma vagy minimuma.

 $-f_4$ esetén

$$\exists f_4'(x) = [(x-1)^2]' = 2(x-1) \qquad (x \in \mathbb{R}),$$

ami adja, hogy $f'_4(x) = 0 \iff x = 1.$

Itt lehet tehát f_4 -nek lokális szélsőértéke.

 $\exists f_4''(x)=2 \implies f_4''(1)=2>0 \implies f_4$ -nek $x_0=1$ -ben lokális minimuma van, melynek értéke: f(1)=0.

 $-f_5$ esetén

$$\exists f_5'(x) = [(x-1)^4]' = 4(x-1)^3 = 0 \iff x = 1,$$

ugyanakkor

$$f_5'(x) = 4(x-1)^3 > 0$$
, ha $x > 1$,
 $f_5'(x) = 4(x-1)^3 < 0$, ha $x < 1$,

azaz f_5' előjelet vált x=1-ben --ról +-ra, ezért f_5 -nek x=1-ben lokális minimuma van, aminek értéke: f(1)=0. Másképpen:

$$\exists f_5''(x) = 12(x-1)^2 \implies f_5''(1) = 0;$$

$$\exists f_5'''(x) = 24(x-1) \implies f_5'''(1) = 0;$$

$$\exists f_5^{(4)}(x) = 24 \implies f_5^{(4)}(1) = 24 > 0.$$

Az első el nem tűnő derivált 1-ben negyedrendű, azaz páros és $f_5^{(4)}(1) > 0$, így f_5 -nek x = 1-ben lokális minimuma van.

 $-f_6$ esetén

$$\exists f_6'(x) = (x^3 - 5x^2 - 8x + 3)' =$$

$$= 3x^2 - 10x - 8 = 0 \iff x = -\frac{2}{3}, \ x = 4;$$

$$\exists f_6''(x) = 6x - 10,$$

így $f_6''\left(-\frac{2}{3}\right)=-14<0 \implies -\frac{2}{3}$ -ban f_6 -nak lokális maximuma van, $f_6''(4)=14>0 \implies$ 4-ben f_6 -nak lokális minimuma van.

$$-\exists f_7'(x) = \left(\frac{2x}{1+x^2}\right)' = \frac{2-2x^2}{(1+x^2)^2} = 0 \iff x = \pm 1 \text{ (ahogy azt az előző feladat 8. függvényénél már beláttuk). Tehát } x = -1 és x = 1-ben lehet f7-nek lokális szélsőértéke.$$

$$\exists f_7''(x) = \frac{-4x(1+x^2)^2 - (2-2x^2)2(1+x^2)2x}{(1+x^2)^4} = \frac{4x^3 - 12x}{(1+x^2)^2}$$

és így

$$\begin{split} f_7''(-1) &= \frac{8}{4} = 2 > 0 \\ &\implies f_7\text{-nek } x = -1\text{-ben lokális minimuma van,} \\ f_7''(1) &= -\frac{8}{4} = -2 < 0 \\ &\implies f_7\text{-nek } x = 1\text{-ben lokális maximuma van.} \end{split}$$

Az értékek: f(-1) = -1, f(1) = 1.

-
$$\exists f_8'(x) = \left(x + \frac{1}{x}\right)' = 1 - \frac{1}{x^2} = 0 \iff x = \pm 1,$$
így f_8 -nak $x = -1$ vagy $x = 1$ -ben lehet lokális szélsőértéke.

$$\exists \ f_8''(x)=\frac{2}{x^3} \quad (x\neq 0), \ \text{ez\'ert}$$

$$f_8''(-1)=-2<0$$

$$\Longrightarrow \quad x=-1\text{-ben } f_8\text{-nak lok\'alis maximuma van,}$$

$$f_8''(1)=2>0$$

$$\Longrightarrow \quad x=1\text{-ben } f_8\text{-nak lok\'alis minimuma van.}$$

Az értékek: f(-1) = -2, f(1) = 2.

 $-f_9$ esetén

$$\exists f_9'(x) = [(x+1)^{10}e^{-x}]' = 10(x+1)^9e^{-x} - (x+1)^{10}e^{-x} = (x+1)^9(9-x)e^{-x} = 0$$

 $\iff x=-1$, vagy x=9 ($e^{-x}>0 \ \forall \ x\in\mathbb{R}$), ezért f_9 -nek x=-1, vagy x=9 esetén lehet lokális szélsőértéke.

K(-1,1)-ben $(9-x)e^{-x}>0$, míg $(x+1)^9$ és így f_9 is előjelet vált x=-1-ben -ról +-ra, így x=-1-ben lokális minimuma van f_9 -nek. K(9,1)-ben $(x+1)^9e^{-x}>0$, míg 9-x és így f_9 is előjelet vált x=9-ben +-ról -ra, így x=9-ben lokális maximuma van f_9 -nek.

Az értékek:
$$f_9(-1) = 0$$
, $f_9(9) = 10^{10}e^{-10} = \left(\frac{10}{e}\right)^{10}$.

 $-x \neq 1$ esetén

$$\exists f'_{10}(x) = (x\sqrt[3]{x-1})' = \left(x(x-1)^{\frac{1}{3}}\right)' = (x-1)^{\frac{1}{3}} + \frac{1}{3}x(x-1)^{-\frac{2}{3}} =$$

$$= \sqrt[3]{x-1} + \frac{x}{3\sqrt[3]{(x-1)^2}} = \frac{3(x-1) + x}{3\sqrt[3]{(x-1)^2}} = \frac{4x-3}{3\sqrt[3]{(x-1)^2}} = 0$$

 $\iff x = \frac{3}{4}$, ezért itt lehet lokális szélsőértéke f_{10} -nek.

4x-3 és így $f'_{10}(x)$ előjelet vált $x=\frac{3}{4}$ -ben --ról +-ra, így itt f_{10} -nek lokális minimuma van, melynek értéke:

$$f_{10}\left(\frac{3}{4}\right) = \frac{3}{4}\sqrt[3]{-\frac{1}{4}} = -\frac{3}{4}\sqrt[3]{\frac{2}{8}} = -\frac{3\sqrt[3]{2}}{8} \ .$$

 f_{10} nem differenciálható x=1-ben, így esetleg itt is lehet lokális szélső-értéke (ahogy például az f(x)=|x| ($x\in\mathbb{R}$)-nek 0-ban), de f(1)=0 és $f_{10}(x)>0$, ha x>0, illetve $f_{10}(x)<0$, ha $x\in]0,1[$, ezért f(1)=0 nem lokális szélsőérték.

 $-f_{11}$ esetén

$$\exists f'_{11}(x) = \left(\frac{x^2 + 1}{x^2 + x + 1}\right)' = \frac{2x(x^2 + x + 1) - (x^2 + 1)(2x + 1)}{(x^2 + x + 1)^2} = \frac{x^2 - 1}{(x^2 + x + 1)^2} = 0 \iff x = \pm 1,$$

így f_{11} -nek x=-1 vagy x=1-ben lehet lokális szélsőértéke.

$$\exists f_{11}''(x) = \frac{2x(x^2 + x + 1)^2 - (x^2 - 1)2(x^2 + x + 1)(2x + 1)}{(x^2 + x + 1)^4} = \frac{2x(x^2 + x + 1) - 2(x^2 - 1)(2x + 1)}{(x^2 + x + 1)^3} = \frac{x^2 + 4x + 1}{(x^2 + x + 1)^3}.$$

Ezért $f_{11}''(-1) = \frac{-2}{1} < 0 \implies f_{11}$ -nek x = -1-ben lokális maximuma van.

Másrészt $f_{11}''(1) = \frac{6}{3^3} > 0 \implies f_{11}$ -nek x = 1-ben lokális minimuma van.

Az értékek:
$$f(-1) = 2$$
, $f(1) = \frac{2}{3}$.

- $-\exists f'_{12}(x) = (x+\sin(x))' = 1+\cos(x) = 0 \iff \cos(x) = -1 \iff x = (2k+1)\pi \ (k=0,\pm 1,\pm 2,\ldots)$, ezért itt lehet lokális szélsőértéke f_{12} nek, de korábban már beláttuk, hogy ez a függvény szigorúan monoton növekedő, így nincs lokális szélsőértéke.
- Az $f_{13}(x)=|x^2-3x+2|$ függvényről belátható, hogy nem differenciálható az $x^2-3x+2=0$ egyenlet nullhelyein, azaz x=1 és x=2 esetén, továbbá mivel $x^2-3x+2<0$, ha $x\in]1,2[$ és $x^2-3x+2>0$ egyébként kapjuk, hogy

$$f_{13}(x) = \begin{cases} -x^2 + 3x - 2 &, \text{ha } x \in]1, 2[\\ x^2 - 3x + 2 &, \text{ha } x \in]-\infty, 1[\cup]1, +\infty[, \infty] \end{cases}$$

így

$$\exists f'_{13}(x) = \begin{cases} -2x + 3 &, \text{ha } x \in]1, 2[\\ 2x - 3 &, \text{ha } x \in]-\infty, 1[\cup]1, +\infty[=D. \end{cases}$$

 $-2x+3=0 \iff x=\frac{3}{2}\in]1,2[\implies f'_{13}(x)=0, \text{ ha } x=\frac{3}{2}, \text{ így itt lehet lokális szélsőértéke } f_{13}$ -nak.

$$2x - 3 = 0 \iff x = \frac{3}{2} \notin D.$$

$$\exists f_{13}''(x) = \begin{cases} -2 & \text{, ha } x \in]1, 2[\\ 2 & \text{, ha } x \in D \end{cases},$$

$$\implies f_{13}''\left(\frac{3}{2}\right) = -2 < 0 \implies f_{13}$$
-nak $x = \frac{3}{2}$ -ben lokális maximuma

x=1 és x=2-ben (ahol f_{13} nem differenciálható) is lehet lokális szélső-érték és van is, mert $f_{13}(x)>0$, ha $x\neq 1$ illetve $x\neq 2$, így x=1-ben és x=2-ben is lokális minimuma van f_{13} -nak.

 $- \forall x > 0$ -ra

$$\exists f'_{14}(x) = \left(\frac{4\sqrt{x}}{x+2}\right)' = \frac{\frac{4}{2\sqrt{x}}(x+2) - 4\sqrt{x}}{(x+2)^2} =$$

$$= \frac{2(x+2) - 4x}{\sqrt{x}(x+2)^2} = \frac{4 - 2x}{\sqrt{x}(x+2)^2} = 0 \iff x = 2,$$

így itt lehet lokális szélsőértéke f_{14} -nek

$$\exists f_{14}''(x) = \frac{-2\sqrt{x}(x+2)^2 - (4-2x)\left[\frac{1}{2\sqrt{x}}(x+2)^2 + 2\sqrt{x}(x+2)\right]}{x(x+2)^4} = \frac{3x^2 - 8x - 8}{x\sqrt{x}(x+2)^2}$$

$$\implies f_{14}''(2) = -\frac{3}{8\sqrt{2}} < 0 \implies f_{14}$$
-nek $x = 2$ -ben lokális maximuma

van, értéke: $f_{14}(2) = \sqrt{2}$.

Ugyanakkor $f_{14}(0)=0$ és $f_{14}(x)>0$, ha x>0, így x=0-ban f_{14} -nek lokális minimuma van az f(0)=0 értékkel.

c) Konvexitás

Ismeretesek a következők:

- Egy $f: \langle a, b \rangle \to \mathbb{R}$ differenciálható függvény \iff konvex (konkáv), ha az $f': \langle a, b \rangle \to \mathbb{R}$ függvény monoton növekedő (csökkenő). ($f \iff$ szigorúan konvex (konkáv), ha f' szigorúan monoton növekedő (csökkenő).)
- Egy $f:\langle a,b\rangle\to\mathbb{R}$ kétszer differenciálható függvény \iff konvex (konkáv), ha $f''\geq 0$ ($f''\leq 0$).

- $-x \in]a, b[$ inflexiós hely, (x, f(x)) inflexiós pont, ha $\exists r > 0$, hogy f konvex (konkáv)]x r, x]-en és konkáv (konvex) [x, x + r]-en.
- **8.34. feladat.** Határozza meg, hogy a következő függvények hol konvexek, konkávok, illetve hol van inflexiós helyük (inflexiós pontjuk):

$$f_{1}(x) = -x^{2} + 3x - 7 \qquad (x \in \mathbb{R});$$

$$f_{2}(x) = x^{2} - x + 12 \qquad (x \in \mathbb{R});$$

$$f_{3}(x) = ax^{2} + bx + c \qquad (x \in \mathbb{R});$$

$$f_{4}(x) = x^{3} + 15x^{2} + 6x + 1 \qquad (x \in \mathbb{R});$$

$$f_{5}(x) = x + \frac{1}{x} \qquad (x \neq 0);$$

$$f_{6}(x) = \frac{2x}{1 + x^{2}} \qquad (x \in \mathbb{R});$$

$$f_{7}(x) = x + \sin(x) \qquad (x \in \mathbb{R});$$

$$f_{8}(x) = \ln(1 + x^{2}) \qquad (x \in \mathbb{R});$$

$$f_{9}(x) = e^{-x^{2}} \qquad (x \in \mathbb{R}).$$

Megoldás.

 $-f_1$ esetén

$$\exists f_1'(x) = -2x + 3 \quad (x \in \mathbb{R}) \quad \Longrightarrow \quad \exists f_1''(x) = -2 < 0 \quad (x \in \mathbb{R})$$

 $\implies f_1$ konkáv \mathbb{R} -en \implies inflexiós hely (pont) nincs.

– Az f_2 függvény esetében

$$\exists f_2'(x) = 2x - 1 \quad (x \in \mathbb{R}) \quad \Longrightarrow \quad \exists f_2''(x) = 2 > 0 \quad (x \in \mathbb{R})$$

 $\implies f_2$ konvex \mathbb{R} -en \implies nincs inflexiós hely (pont).

 $-f_3$ esetén

$$\exists f_3'(x) = 2ax + b \quad (x \in \mathbb{R}) \quad \Longrightarrow \quad \exists f_3''(x) = 2a \quad (x \in \mathbb{R}).$$

Így a>0 esetén $f_3''(x)=a>0 \implies f_3$ konvex $\mathbb R$ -en, míg a<0 esetén $f_3''(x)=a<0 \implies f_3$ konkáv $\mathbb R$ -en.

Inflexiós pont (hely) nincs egyik esetben sem.

$$- \exists f_4'(x) = (x^3 + 15x^2 + 6x + 1)' = 3x^2 + 30x + 6 \quad (x \in \mathbb{R})$$

$$\implies \exists f_4''(x) = 6x + 30 \quad (x \in \mathbb{R}) \implies$$

$$f_4''(x) = 6x + 30 \geq 0 \iff x \geq -5 \implies f_4 \text{ konvex } [-5, +\infty[-\text{en},$$

$$f_4''(x) = 6x + 30 \le 0 \iff x \le -5 \implies f_4 \text{ konkáv }] - \infty, -5[-"on.$$

Így a gráf x = -5-höz tartozó pontjában konkáv és konvex ív csatlakozik, ezért x = -5 inflexiós hely, illetve (-5, 221) inflexiós pont.

 $-f_5$ esetén

$$\exists f_5'(x) = \left(x + \frac{1}{x}\right)' = 1 - \frac{1}{x^2} \quad (x \neq 0)$$

$$\implies \exists f_5''(x) = \frac{2}{x^3} \quad (x \neq 0),$$

ezért

$$f_5''(x) = \frac{2}{x^3} > 0$$
, ha $x > 0$, $f_5''(x) = \frac{2}{x^3} < 0$, ha $x < 0$

 $\implies f_5 \text{ konvex } [0, +\infty[-\text{en, konkáv }] - \infty, 0[-\text{n.}]$

x = 0-ban a függvény nincs értelmezve, így nincs inflexiós hely (pont).

 $-f_6$ esetén

$$\exists f_6'(x) = \left(\frac{2x}{1+x^2}\right)' = \frac{2-2x^2}{(1+x^2)^2} \quad (x \in \mathbb{R})$$

$$\implies \exists f_6''(x) = \frac{4x^3 - 12x}{(1+x^2)^3} \quad (x \in \mathbb{R})$$

(lásd előző feladat 7. függvénye), ezért

$$f_6''(x) \ge 0 \iff 4x^3 - 12x = 4x(x^2 - 3) \ge 0,$$

 $f_6''(x) \le 0 \iff 4x^3 - 12x = 4x(x^3 - 3) \le 0.$

Mivel $4x(x^2-3)=0 \iff x=0$ vagy $x=-\sqrt{3}$ vagy $x=\sqrt{3}$. Egyszerűen következik ezekből, hogy $f_6''(x)\geq 0$, ha $x\in [-\sqrt{3},0]$, illetve $x\in [\sqrt{3},+\infty[$,

így f_6 konvex a $[-\sqrt{3}, 0]$ és $[\sqrt{3}, +\infty[$ intervallumokon.

 $f_6''(x) \leq 0 \iff \text{ha } x \in]-\infty, -\sqrt{3}], \text{ illetve } x \in [0, \sqrt{3}],$ így f_6 konkáv a $]-\infty, -\sqrt{3}]$ és $[0, \sqrt{3}]$ intervallumokon.

Ez mutatja, hogy az inflexiós helyek: $-\sqrt{3}$, 0, $\sqrt{3}$.

 $-f_7$ esetén

$$\exists f_7'(x) = (x + \sin(x))' = 1 + \cos(x) \quad (x \in \mathbb{R})$$

$$\implies \exists f_7''(x) = -\sin(x) \quad (x \in \mathbb{R}).$$

Ebből kapjuk, hogy

$$f_7''(x) = -\sin(x) \ge 0 \iff \sin(x) \le 0$$

$$\iff x \in [(2k+1)\pi, (2k+2)\pi] \quad (k = 0, \pm 1, \ldots)$$

$$\implies f_7 \text{ konvex a } [(2k+1)\pi, (2k+2)\pi] \ (k=0,\pm 1,\ldots) \text{ intervallumokon.}$$

$$f_7''(x) = -\sin(x) \le 0 \iff \sin(x) \ge 0$$

$$\iff x \in [2k\pi, (2k+1)\pi] \ (k=0,\pm 1,\ldots)$$

 $\implies f_7$ konkáv a $[2k\pi,(2k+1)\pi]$ $(k=0,\pm 1,\ldots)$ intervallumokon. Az inflexiós helyek: $x=k\pi$ $(k=0,\pm 1,\pm 2,\ldots)$.

 $-f_8$ esetén

$$\exists f_8'(x) = \left[\ln(1+x^2)\right]' = \frac{2x}{1+x^2} \quad (x \in \mathbb{R})$$

$$\implies \exists f_8''(x) = \frac{2-2x^2}{(1+x^2)^2} \quad (x \in \mathbb{R}).$$

Így

$$f_8''(x) \ge 0 \iff 2 - 2x^2 \ge 0 \iff 1 - x^2 \ge 0$$

 $\iff 1 \ge x^2 \iff |x| < 1 \iff x \in [-1, 1]$

 $\implies f_8$ konvex a [-1,1] intervallumon.

$$f_8''(x) \le 0 \iff 2 - 2x^2 \le 0 \iff 1 - x^2 \le 0 \iff 1 \le x^2$$

 $\iff 1 < |x| \iff x \in]-\infty, -1] \text{ vagy } x \in [1, +\infty[$

 $\implies f_8$ konkáv a $]-\infty,-1]$ és $[1,+\infty[$ intervallumokon. Ez adja, hogy az inflexiós helyek x=-1 és x=1.

– Az f_9 függvény esetében

$$\exists f_9'(x) = \left(e^{-x^2}\right)' = -2xe^{-x^2} \quad (x \in \mathbb{R})$$

$$\implies \exists f_9''(x) = -2e^{-x^2} + (-2x)(-2x)e^{-x^2} =$$

$$= 2e^{-x^2}(x^2 - 2) \quad (x \in \mathbb{R}).$$

Mivel $2e^{-x^2} > 0$, így

$$f_9''(x) \ge 0 \iff x^2 - 2 \ge 0 \iff x^2 \ge 2 \iff |x| > \sqrt{2}$$

 $\iff x \in]-\infty, -\sqrt{2}] \text{ vagy } x \in [\sqrt{2}, +\infty[$

$$\implies f_9 \text{ konvex a }]-\infty, -\sqrt{2}] \text{ \'es } [\sqrt{2}, +\infty[\text{ intervallumon};$$

$$f_9''(x) \le 0 \iff x^2 - 2 \le 0 \iff x^2 \le 2$$

$$\iff |x| \le \sqrt{2} \iff x \in [-\sqrt{2}, \sqrt{2}]$$

 $\implies f_9$ konkáv a $[-\sqrt{2}, \sqrt{2}]$ intervallumon. Ez adja, hogy az inflexiós helyek $x = -\sqrt{2}$ és $x = \sqrt{2}$.

d) Teljes függvényvizsgálat

Az elméletben tanultak szerint:

Egy f függvény teljes vizsgálatánál meghatározzuk:

- 1. a D_f értelmezési tartományt;
- 2. hogy f páros, páratlan, periódikus függvény-e;
- 3. f zérushelyeit, D_f azon részhalmazait, ahol f előjele állandó;
- 4. f határértékeit D_f határpontjaiban;
- 5. f szakadási helyeit, folytonossági intervallumait;
- 6. f derivált függvényét (függvényeit): f', f'';
- 7. D_f azon részintervallumait, ahol f monoton növekedő (csökkenő);
- 8. f szélsőérték helyeit és szélsőértékeit;
- 9. D_f azon részintervallumait, ahol f konvex (konkáv), az inflexiós helyeket (pontokat);
- 10. az esetleges aszimptótákat (olyan $l(x) = ax + b \ (x \in \mathbb{R})$ egyenletű

egyeneseket, melyekre
$$\lim_{x \to +\infty} (f(x) - ax - b) = 0$$
, illetve $\lim_{x \to -\infty} (f(x) - ax - b) = 0$; $a = \lim_{\substack{x \to \infty \\ \forall x \to -\infty}} \frac{f(x)}{x}$; $b = \lim_{\substack{x \to \infty \\ \forall x \to -\infty}} (f(x) - ax)$;

- 11. ábrázoljuk az f függvényt (megrajzoljuk a gráfját);
- 12. f R_f értékkészletét.

8.35. feladat. Végezze el a teljes függvényvizsgálatot az alábbi függvényeknél:

a)
$$f_1(x) = x^3 - 4x^2 + 4x$$
 $(x \in \mathbb{R});$

b)
$$f_2(x) = \frac{2x}{1+x^2}$$
 $(x \in \mathbb{R});$

c)
$$f_3(x) = x + \frac{1}{x}$$
 $(x \in \mathbb{R} \setminus \{0\});$

d)
$$f_4(x) = \frac{9x + x^3}{x - x^3}$$
 $(x \in \mathbb{R} \setminus \{-1, 0, 1\});$

e)
$$f_5(x) = x \arctan(x)$$
 $(x \in \mathbb{R});$

f)
$$f_6(x) = \exp(-x^2)$$
 $(x \in \mathbb{R});$

g)
$$f_7(x) = \sin(x) + \frac{1}{2}\sin(2x)$$
 $(x \in \mathbb{R}).$

Megoldás.

- a) Az $f_1(x) = x^3 4x^2 + 4x$ $(x \in \mathbb{R})$ függvényre:
 - 1. A függvény nyilván $\forall x \in \mathbb{R}$ esetén értelmezett, így $D_{f_1} = \mathbb{R}$.

2. Egyszerűen belátható, hogy f_1 nem páros, nem páratlan és nem periódikus. Például:

$$f_1(-x) = (-x^3) - 4(-x^2) + 4(-x) = -x^3 - 4x^2 - 4x$$

ami nem egyenlő sem $f_1(x)$ -szel $(-x^3 - 4x^2 - 4x = x^3 - 4x^2 + 4x \iff x^3 + 4x = 0 \ \forall \ x \in \mathbb{R}$, ami nem igaz csak x = 0-ra), sem $-f_1(x)$ -szel $(-x^3 - 4x^2 - 4x = -x^3 + 4x^2 - 4x \iff 4x^2 = 0 \ \forall \ x \in \mathbb{R}$, ami nem igaz).

- 3. $f_1(x) = x^3 4x^2 + 4x = x(x^2 4x + 4) = x(x 2)^2 = 0 \iff x = 0, \ x = 2. \ (x 2)^2 \ge 0 \ \forall \ x \in \mathbb{R}, \ \text{fgy } f_1(x) > 0 \iff x > 0, \ f_1(x) < 0 \iff x < 0, \ \text{tehát } f \ \text{pozitív az } \mathbb{R}_+\text{-on, } f \ \text{negatív } \mathbb{R}_- =] \infty, 0[\text{-n.}$
- 4. $D_{f_1} = \mathbb{R}$ határpontjai: $+\infty$ és $-\infty$. A korábban tanultak szerint:

$$\lim_{x \to -\infty} f_1(x) = \lim_{x \to -\infty} (x^3 - 4x^2 + 4x) = -\infty,$$

$$\lim_{x \to +\infty} f_1(x) = \lim_{x \to +\infty} (x^3 - 4x^2 + 4x) = +\infty.$$

- 5. f_1 folytonos függvények lineáris kombinációja, így folytonos \mathbb{R} -en, ezért nincs szakadási helye.
- 6. f_1 egy harmadfokú polinom, így differenciálható és

$$f_1'(x) = 3x^2 - 8x + 4 \ (x \in \mathbb{R}) \implies \exists f_1''(x) = 6x - 8 \ (x \in \mathbb{R}).$$

7. $f_1 \iff \text{monoton növekedő, ha } f_1'(x) = 3x^2 - 8x + 4 \ge 0,$ $f_1 \iff \text{monoton csökkenő, ha } f_1'(x) = 3x^2 - 8x + 4 \le 0.$ Mivel $f_1'(x) = 3x^2 - 8x + 4 = 0 \iff x = \frac{2}{3} \text{ vagy } x = 2, \text{ kapjuk,}$ hogy f_1 monoton növekedő a $\left] - \infty, \frac{2}{3} \right]$ és $\left[2, + \infty \right[$ intervallumokon és f_1 monoton csökkenő $\left[\frac{2}{3}, 2 \right]$ -ben.

8. Az előbbiek szerint $f_1'(x)=0\iff x=\frac23,\ x=2$, így ezen helyeken lehet lokális szélsőértéke f_1 -nek. $f_1''(x)=6x-8\implies$

$$f_1''(2)=4>0 \implies x=2$$
-ben f_1 -nek lokális minimuma van, az $f_1(2)=0$ értékkel,

$$f_1''\left(\frac{2}{3}\right)=-4<0 \implies x=\frac{2}{3}\text{-ban }f_1\text{-nek lokális maximuma van,}$$
 az $f_1\left(\frac{2}{3}\right)=\frac{32}{27}$ értékkel.

(Globális maximuma, illetve minimuma a 4. pont miatt nincs.)

9. $f_1 \iff \text{konvex}$, ha $f_1''(x) = 6x - 8 \ge 0 \iff x \ge \frac{4}{3}$, azaz a $\left[\frac{4}{3}, +\infty\right[$ intervallumon.

 $f_1 \iff \operatorname{konk\acute{a}v}$, ha $f_1''(x) = 6x - 8 \le 0 \iff x \le \frac{4}{3}$, azaz a $\left] - \infty, \frac{4}{3} \right]$ intervallumon.

Ez adja, hogy $x = \frac{4}{3}$ inflexiós hely.

10. Aszimptótája nincs.

11.

12. $R_{f_1} = \mathbb{R}$ (felhasználva 4.-et és f folytonosságát).

- b) Az $f_2(x) = \frac{2x}{1+x^2}$ $(x \in \mathbb{R})$ függvénynél:
 - 1. Nyilván $D_{f_2}^{1-x^-} = \mathbb{R}$ (hiszen a számláló és nevező is $\forall x \in \mathbb{R}$ -re értelmezett és $1+x^2 \neq 0 \ \forall \ x \in \mathbb{R}$).

- 2. $f_2(-x) = \frac{-2x}{1+x^2} = -f_2(x)$, így f_2 páratlan, de nem páros és nem periódikus.
- 3. $f_2(x)=0 \iff x=0, \ f_2(x)>0, \ \text{ha}\ x>0; \ f_2(x)<0, \ \text{ha}\ x<0,$ így f_2 pozitív \mathbb{R}_+ -on, negatív \mathbb{R}_- -on.
- 4. $D_{f_2} = \mathbb{R}$ határpontjai: $+\infty$, $-\infty$ és (a korábbiak szerint)

$$\lim_{x \to +\infty} \frac{2x}{1+x^2} = \lim_{x \to -\infty} \frac{2x}{1+x^2} = 0 .$$

- 5. f_2 két folytonos függvény hányadosa, hogy $1+x^2\neq 0$, így $\forall~x\in\mathbb{R}$ esetén folytonos, ezért szakadása nincs.
- 6. Hasonló okok miatt f_2 differenciálható \mathbb{R} -en és

$$f_2'(x) = \frac{2 - 2x^2}{(1 + x^2)^2} \implies \exists f_2''(x) = \frac{4x^3 - 12x}{(1 + x^2)^3}$$

(lásd előbb).

- 7. A 8.32. 8. feladatában megmutattuk, hogy f_2 szigorúan monoton növekedő [-1,1]-en, csökkenő $]-\infty,-1]$ -en és $[1,+\infty[$ -en.
- 8. A 8.33. 7. feladatában megmutattuk, hogy x=-1-ben lokális minimuma, x=1-ben lokális maximuma van, az $f_2(-1)=-1$, illetve $f_2(1)=1$ értékkel.

 $\left|\frac{2x}{1+x^2}\right| \le 1$ miatt (ezt lássák be) kapjuk, hogy $f_2(-1) = -1$ globális minimuma, $f_2(1) = 1$ globális maximuma f_2 -nek.

- 9. A 8.34. 6. feladatában megmutattuk, hogy: f_2 konvex a $[-\sqrt{3},0]$ és $[\sqrt{3},+\infty[$ intervallumon, f_2 konkáv a $]-\infty,-\sqrt{3}]$ és $[0,\sqrt{3}]$ intervallumon, így $-\sqrt{2},\ 0,\ \sqrt{3}$ inflexiós helyek.
- 10. A 4. pont szerint (a vízszintes aszimptóta definícióját is felhasználva) kapjuk, hogy az y=0 egyenes (az x-tengely) vízszintes aszimptótája f_2 -nek.

12. f_2 folytonossága és a 8. pont adja, hogy $\mathbb{R}_{f_2} = [-1, 1]$.

c)
$$f_3(x) = x + \frac{1}{x} (x \neq 0)$$
.

1.
$$D_{f_3} = \mathbb{R} \setminus^{x} \{0\}.$$

2.
$$f_3(-x) = -x + \frac{1}{-x} = -\left(x + \frac{1}{x}\right) = -f_3(x) \quad (x \neq 0) \implies f_3$$
 páratlan.

Nem páros és nem periódikus.

3.
$$f_3$$
-nak nincs zérushelye, mert $x + \frac{1}{x} \neq 0 \ \forall \ x \in \mathbb{R} \setminus \{0\}.$

4.
$$D_{f_3}$$
 határpontjai: $-\infty$, 0 , $+\infty$.

$$\lim_{x \to -\infty} \left(x + \frac{1}{x} \right) = -\infty \text{ (hiszen } x \to -\infty, \ \frac{1}{x} \to 0);$$

$$\lim_{x \to 0} \left(x + \frac{1}{x} \right) \text{ nem létezik, de } \lim_{x \to 0-0} \left(x + \frac{1}{x} \right) = -\infty,$$

$$\lim_{x \to 0+0} \left(x + \frac{1}{x} \right) = +\infty$$

(a határértékre tanultakat alkalmazva).

$$\lim_{x \to +\infty} \left(x + \frac{1}{x} \right) = +\infty.$$

5. f_3 folytonos, ha $x \neq 0$ (hiszen akkor folytonos függvények összege). x=0-ban nem értelmezett, így nem folytonos, itt szakadása van, mely másodfajú.

6.
$$\exists f_3'(x) = 1 - \frac{1}{x^2}$$
 és $f_3''(x) = \frac{2}{x^3}$, ha $x \neq 0$.

7. A 8.32. 7. feladata szerint:

 f_3 szigorúan monoton növekedő] $-\infty$, -1]-en és $[1, +\infty[$ -en, f_3 szigorúan monoton csökkenő [-1, 0[-án és]0, 1]-en.

8. A 8.33. 8. feladata szerint:

 f_3 -nak x=1-ben lokális minimuma, x=-1-ben lokális maximuma van az $f_3(1)=2$, illetve $f_3(-1)=-2$ értékkel, globális szélsőértékei nincsenek.

9. A 8.34. 5. feladata szerint:

 f_3 konvex $]0, +\infty[-en, konkáv] - \infty, 0[-n, inflexiós helye nincs.$

10. x = 0-ban szakadása van, így az x = 0 egyenletű egyenes (az ytengely) f_3 függőleges aszimptótája.

A 6.13. feladatban megmutattuk, hogy az y=x egyenletű egyenes is aszimptótája.

11.

12. A korábbiakból jön, hogy $R_{f_3} =]-\infty, -2] \cup [2, +\infty[$.

d)
$$f_4(x) = \frac{9x + x^3}{x - x^3} \ (x \in \mathbb{R} \setminus \{-1, 0, 1\}).$$

1. $D_{f_4} = \mathbb{R} \setminus \{-1, 0, 1\}.$

1.
$$D_{f_A} = \mathbb{R} \setminus \{-1, 0, 1\}.$$

2.
$$f_4(x) = \frac{9x + x^3}{x - x^3} = \frac{9 + x^2}{1 - x^2}$$
, ha $x \in D_{f_4}$, ami mutatja, hogy f_4 páros függvény $((-x)^2 = x^2 \text{ miatt})$, de nem páratlan és ellenőrízhető, hogy nem periódikus.

3. f_4 -nek nincs zérushelye és $\frac{9+x^2}{1-x^2}$ vizsgálata mutatja, hogy $f_4(x) > 0$, ha $x \in]-\infty, -1[\cup]1, +\infty[$ és $f_4(x) < 0$, ha $x \in [-1, 1] \setminus \{0\}$. D_{f_4} határpontjai: $-\infty, -1, 0, 1, +\infty$. A korábbiakat felhasználva:

$$\lim_{x \to \pm \infty} \frac{9 + x^2}{1 - x^2} = -1 \quad \text{miatt} \quad \lim_{x \to \pm \infty} f_4(x) = -1,$$

$$\lim_{x \to \pm \infty} \frac{9 + x^2}{1 - x^2} = -1 \quad \text{miatt} \quad \lim_{x \to \pm \infty} f_4(x) = -1,$$

$$\lim_{x \to 0} \frac{9 + x^2}{1 - x^2} = 9 \quad \text{miatt} \quad \lim_{x \to 0} f_4(x) = 9,$$

$$\lim_{x \to -1-0} f_4(x) = \lim_{x \to 1+0} f_4(x) = +\infty,$$
$$\lim_{x \to -1+0} f_4(x) = \lim_{x \to 1-0} f_4(x) = -\infty.$$

- 4. f_4 folytonos, ha $x \in D_{f_4}$, mert racionális törtfüggvény. Szakadási helyei: -1,0,1. 0 megszüntethető, -1 és 1 másodfajú szakadási helye.
- 5. $\exists f_4'(x) = \frac{20x}{(1-x^2)^2} \quad (x \in D_{f_4}) \text{ és } f_4''(x) = \frac{100}{(1-x^2)^2} \quad (x \in D_{f_4})$ (számítással ellenőrízzék).
- 6. $f'_4(x) = \frac{20x}{(1-x^2)^2} > 0$, ha $x \in D_{f_4} \cap \mathbb{R}_+$, azaz]0,1[és $]1,+\infty[$ -en. $f'_4(x) = \frac{20x}{(1-x^2)^2} < 0$, ha $x \in D_{f_4} \cap \mathbb{R}_-$, azaz $]-\infty,-1[$ -en és]-1,0[-n.

Így f_4 szigorúan monoton növekedő a]0,1[és $]1,+\infty[$, f_4 szigorúan monoton csökkenő a $]-\infty,-1[$ és]-1,0[intervallumokon.

- 7. $f'_4(x) = \frac{20x}{(1-x^2)^2} = 0 \iff x = 0$, de $0 \in D_{f_4}$, így nem lehet f_4 -nek lokális szélsőértéke.
- 8. $f_4''(x) = \frac{100}{(1-x^2)^2} > 0 \ \forall \ x \in D_{f_4}$, így f_4 konvex a $]-\infty, -1[\ ,\]-1, 0[\ ,\]0, 1[\ ,\]1, +\infty[$ intervallumokon.
- 9. Az x=-1 és x=1 egyenes függőleges, míg az y=-1 egyenes vízszintes aszimptóta (miért?).

11. A fentiekből leolvasható, hogy $R_{f_4} = \mathbb{R} \setminus [-1, 9]$.

e)
$$f_5(x) = x \arctan(x) \ (x \in \mathbb{R}).$$

1.
$$D_{f_5} = \mathbb{R}$$

2.
$$f_5(-x) = -x \arctan(-x) = x \arctan(x) = f_5(x) \implies f_5$$
 páros, de nem páratlan és nem periódikus.

3.
$$f_5(x) = 0 \iff x = 0$$
.
 $f_5(x) > 0$, ha $x \neq 0$ (mert $x > 0 \implies \operatorname{arctg}(x) > 0$, $x < 0 \implies \operatorname{arctg}(x) < 0$).

4.
$$D_{f_5}$$
 határpontjai: $-\infty, +\infty$.

$$\lim_{x \to \pm \infty} x \operatorname{arctg}(x) = +\infty \text{ (mert } \lim_{x \to +\infty} x = 0, \text{ } \lim_{x \to +\infty} \operatorname{arctg}(x) = 1, \text{ illetve } \lim_{x \to -\infty} x = -\infty, \text{ } \lim_{x \to -\infty} \operatorname{arctg}(x) = -1).$$

5. $f_5 \ \forall \ x \in \mathbb{R}$ esetén folytonos (folytonos függvények szorzata).

6.
$$\exists f_5'(x) = \operatorname{arctg}(x) + \frac{x}{1+x^2} \ (x \in \mathbb{R}) \text{ és } f_5''(x) = \frac{2}{(1+x^2)^2} \ (x \in \mathbb{R}).$$

7.
$$f_5'(x) = 0 \iff x = 0 \text{ és } f_5'(x) > 0 \iff x > 0, f_5'(x) < 0 \iff x < 0,$$

így f_5 szigorúan monoton növekedő $[0,+\infty[$ -en, míg f_5 szigorúan monoton csökkenő $]-\infty,0]$ -án.

8. $f_5'(x) = 0 \iff x = 0$ miatt csak itt lehet lokális szélsőértéke. $f_5''(0) = 2 > 0$ miatt x = 0-ban lokális minimuma van f_5 -nek az $f_5(0) = 0$ értékkel, ami globális minimum is, globális maximum (4. miatt) nincs.

9.
$$f_5''(x) = \frac{2}{(1+x^2)^2} > 0 \ \forall \ x \in \mathbb{R}$$
, így f_5 konvex \mathbb{R} -en.

10. Aszimptóta nincs.

11.

12. $R_{f_5} = [0, +\infty[$.

f)
$$f_6(x) = \exp(-x^2) = e^{-x^2} \ (x \in \mathbb{R}).$$

- 1. $D_{f_6} = \mathbb{R}$
- 2. $f_6(-x) = \exp(-(-x)^2) = \exp(-x^2) = f_6(x) \implies f_6$ páros, de nem páratlan és nem periódikus.
- 3. $f_6(x) = e^{-x^2} > 0 \ \forall \ x \in \mathbb{R}$, így zérushelye nincs.

4.
$$D_{f_c} = \mathbb{R}$$
 határpontjai: $-\infty, +\infty$.

4.
$$D_{f_6} = \mathbb{R}$$
 határpontjai: $-\infty, +\infty$.
$$\lim_{x \to \pm \infty} \exp(-x^2) = \frac{1}{\exp(x^2)} = 0 \text{ (hiszen } \lim_{x \to \pm \infty} x^2 \to +\infty,$$

 $\lim \exp(y) = +\infty$ és alkalmazható az összetett függvény határértékére vonatkozó tétel).

- 5. f_6 -nak nincs szakadási helye, mert az exp és $x \to -x^2$ $(x \in \mathbb{R})$ függvények folytonossága miatt folytonos R-en.
- 6. $\exists f_6'(x) = -2x \exp(-x^2)$ és $f_6''(x) = (4x^2 2) \exp(-x^2)$ $(\forall x \in \mathbb{R})$.
- 7. $f_6'(x) = -2x \exp(-x^2) > 0$, ha x < 0 (hiszen $\exp(-x^2) > 0$) és $f_6'(x) = -2x \exp(-x^2) < 0$, ha x > 0, így $f_6 \mid -\infty, 0 \mid$ -on szigorúan monoton növekedő, míg $[0, +\infty[$ -en szigorúan monoton csökkenő.
- 8. $f_6'(x) = -2x \exp(-x^2) = 0 \iff x = 0$, ezért itt lehet lokális szélsőértéke f_6 -nak.

 $f_6''(0) = -2 < 0$ miatt x = 0-ban f_6 -nak lokális maximuma van, (mely globális maximum is) az $f_6(0) = 1$ értékkel. (Globális minimum nincs.)

9. $f_6''(x) = (4x^2 - 2) \exp(-x^2) \ge 0 \iff 4x^2 - 2 \ge 0 \iff |x| \ge \frac{\sqrt{2}}{2}$ $f_6''(x) \le 0 \iff |x| \le \frac{\sqrt{2}}{2}$, így

 $f_6 \text{ konvex a } \left] - \infty, -\frac{\sqrt{2}}{2} \right] \text{ \'es } \left[\frac{\sqrt{2}}{2}, + \infty \right[, \text{ konk\'av a } \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right] - \text{n.}$

Az inflexiós helyek: $-\frac{\sqrt{2}}{2}$, $\frac{\sqrt{2}}{2}$.

10. f_6 -nak az y=0 egyenes (x-tengely) vízszintes aszimptótája.

11.

12.
$$R_{f_6} =]0, 1].$$

g)
$$f_7(x) = \sin(x) + \frac{1}{2}\sin 2x \ (x \in \mathbb{R}).$$

2. f_7 páratlan (mert $\sin(x)$ és $\frac{1}{2}\sin 2x$ is az), de nem páros. A sin függvénynek 2π periódusa, így annak többszörösei, például 4π is, ezért

$$f_7(x+2\pi) = \sin(x+2\pi) + \frac{1}{2}\sin(2(x+2\pi)) =$$

$$= \sin(x+2\pi) + \frac{1}{2}\sin(2x+4\pi) =$$

$$= \sin(x) + \frac{1}{2}\sin(2x) = f_7(x) \quad \forall \ x \in \mathbb{R}$$

esetén, tehát f_7 2π szerint periódikus függvény (2π egyébként a legkisebb periódusa). Ez adja azt is, hogy vizsgálatánál elég a $[0,2\pi]$ intervallumra szorítkozni.

3. Az f_7 zérushelyeit $[0, 2\pi]$ -ben határozzuk meg először:

$$\sin(x) + \frac{1}{2}\sin(2x) = \sin(x) + \sin(x)\cos(x) =$$
$$= \sin(x)[1 + \cos(x)] = 0$$

 $\iff \text{ha } \sin(x) = 0 \text{ vagy } 1 + \cos(x) = 0 \iff x = 0, \ x = \pi, \ x = 2\pi.$ Ebből következik, hogy $f_7(x) = 0 \iff x = k\pi \ (k = 0, \pm 1, \pm 2, \ldots).$ Egyszerűen belátható, hogy $f_7(x) > 0$, ha $x \in [2k\pi, (2k+1)\pi]$ és $f_7(x) < 0$, ha $x \in [(2k+1)\pi, (2k+2)\pi] \ (k \in \mathbb{Z}).$

4. D_{f7} határpontjai: $-\infty$ és $+\infty$. Belátható, hogy $\nexists \lim_{x \to \pm \infty} f_7(x)$. Ez azon alapszik, hogy meg tudunk választani olyan $\langle x_n \rangle$ és $\langle y_n \rangle$ $+\infty$ -hez meg $-\infty$ -hez tartó sorozatokat, hogy $\lim_{n \to \infty} f_7(x_n) \neq \lim_{n \to \infty} f_7(y_n)$. Legyen például $x_n = n\pi$ $(n \in \mathbb{N})$, akkor az előbbiek miatt $f_7(x_n) = 0 \to 0$. Másrészt legyen $y_n = \frac{\pi}{3} + 2n\pi$ $(n \in \mathbb{N})$, akkor

$$\sin(\frac{\pi}{3}) + \frac{1}{2}\sin(2\frac{\pi}{3}) = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{4} = \frac{3\sqrt{3}}{4}$$

miatt
$$f_7(y_n) = \frac{3\sqrt{3}}{4} \to \frac{3\sqrt{3}}{4} \neq 0.$$

A $\lim_{x\to-\infty} f_7(x)$ vizsgálata az $x_n=-n\pi,\ y_n=\frac{\pi}{3}-2n\pi\ (n\in\mathbb{N})$ szerint definiált $\langle x_n\rangle$ és $\langle y_n\rangle$ sorozatokkal történhet.

- 5. f_7 mindenütt folytonos, mert az $x \to \sin(x)$ függvény, illetve az $x \to 2x$ függvény folytonossága miatt az $x \to \sin(2x)$ függvény is az. Ezért f_7 -nek nincs szakadása.
- 6. $\exists f_7'(x) = \cos(x) + \cos(2x) \Longrightarrow$ $\Longrightarrow \exists f_7''(x) = -\sin(x) - 2\sin(2x) \qquad (x \in \mathbb{R}).$
- 7. $f_7'(x) = \cos(x) + \cos(2x) \doteq \cos(x) + \cos^2(x) \sin^2(x) = \\ = \cos(x) + \cos^2(x) (1 \cos^2(x)) = 2\cos^2(x) + \cos(x) 1 = 0.$ Ha a $2\cos^2(x) + \cos(x) 1 = 0$, $\cos(x)$ -ben másodfokú egyenletet megoldjuk $[0, 2\pi]$ -n, úgy $x = \pi$, $x = \frac{\pi}{3}$, $x = \frac{5\pi}{3}$ adódik.

Belátható, hogy $f_7'(x) \ge 0$, ha $x \in \left[0, \frac{\pi}{3}\right]$ vagy $x \in \left[\frac{5\pi}{3}, 2\pi\right]$ és $f_7'(x) \le 0$, ha $x \in \left[\frac{\pi}{3}, \frac{5\pi}{3}\right]$ ([0, 2π]-ben).

Ez és a periodicitás adja, hogy f_7 monoton növekedő a $\left[-\frac{\pi}{3}+2k\pi,\frac{\pi}{3}+2k\right]$, csökkenő a $\left[\frac{\pi}{3}+2k\pi,\frac{5\pi}{3}+2k\right]$ $(k\in\mathbb{Z})$ intervallumokon.

8. Az előbb beláttuk, hogy $f_7'(x)=0$ $[0,2\pi]$ -ben, ha $x=\frac{\pi}{3}$ vagy $x=\pi$ vagy $x=\frac{5\pi}{3}$.

 $f_7''(x) = -\sin(x) - 2\sin(2x)$ viszont rövid számolással adja, hogy

$$f_7''(\pi) = 0$$
, $f_7''\left(\frac{\pi}{3}\right) < 0$, $f_7''\left(\frac{5\pi}{3}\right) > 0$, ezért f_7 -nek $[0, 2\pi]$ -n az $x = \frac{\pi}{3}$

helyen lokális maximuma, az $\frac{5\pi}{3}$ helyen pedig lokális minimuma van.

 $f_7''(\pi)=0$ miatt szükségünk van magasabbrendű deriváltra is.

 $\exists f_7'''(x) = -\cos(x) - 4\cos(2x) \implies f_7'''(\pi) = -3 \neq 0$, így (a lokális szélsőértékre vonatkozó általános tétel miatt) $x = \pi$ -ben nincs lokális szélsőértéke f_7 -nek.

Összegezve: f_7 -nek az $x = \frac{\pi}{3} + 2k\pi$ $(k \in \mathbb{Z})$ helyeken lokális maximuma,

míg az $\frac{5\pi}{3} + 2k\pi \ (k \in \mathbb{Z})$ helyeken lokális minimuma van.

Ezek értéke:
$$f_7\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{4}$$
 és $f_7\left(\frac{5\pi}{3}\right) = -\frac{3\sqrt{3}}{4}$.

9. $f_7''(x) = -\sin(x) - 2\sin(2x) = -\sin(x) - 4\sin(x)\cos(x) = -\sin(x)(1 + 4\cos(x))$, így $1 + 4\cos(x) \ge 0$ miatt

$$f_7''(x) \ge 0 \iff -\sin(x) \ge 0 \iff \sin(x) \le 0$$

 $f_7''(x) < 0 \iff -\sin(x) < 0 \iff \sin(x) > 0.$

ami (sin függvény előjelviszonyainak ismeretében) adja, hogy f_7 konvex a $[(2k+1)\pi, 2k\pi]$ $(k \in \mathbb{Z})$, konkáv a $[2k\pi, (2k+1)\pi]$ $(k \in \mathbb{Z})$ intervallumokon.

Az inflexiós helyek így: $x = k\pi \ (k \in \mathbb{Z}).$

10. Aszimptóták nincsenek.

11.

12. Az előbbiek adják, hogy $R_{f_7} = \left[-\frac{3\sqrt{3}}{4}, \frac{3\sqrt{3}}{4} \right].$

Gyakorló feladatok

- 1. Határozza meg az $f: \mathbb{R}_+ \to \mathbb{R}$, $f(x) = \sqrt{x}$ függvény $x_0 = 1$, x = 1, 21 értékekhez tartozó differenciahányadosát.
- 2. Definíció alapján vizsgálja meg az alábbi függvények differenciálhatóságát, határozza meg a derivált függvényüket:

$$f_1(x) = \frac{1}{x^2} \quad (x \neq 0); \qquad f_2(x) = -2x + 3 \quad (x \in \mathbb{R});$$

 $f_3(x) = -x^2 + 3x - 2 \quad (x \in \mathbb{R}); \qquad f_4(x) = |2x + 3| \quad (x \in \mathbb{R}).$

3. Határozza meg az $f(x) = x^3 - 3x + 1$ $(x \in \mathbb{R})$ függvény érintőjét a (2,3) pontban.

4. Határozza meg az alábbi függvények differenciálhányados függvényét.

$$f_{1}(x) = -3x^{4} + 2x^{2} - 3x + 1 \qquad (x \in \mathbb{R});$$

$$f_{2}(x) = -3x - \sqrt[4]{x} \qquad (x > 0);$$

$$f_{3}(x) = x(x+1)(x+2)(x+3) \qquad (x \in \mathbb{R});$$

$$f_{4}(x) = \frac{5x^{3} - 7x + 3}{x^{4} + x^{2} + 1} \qquad (x \in \mathbb{R});$$

$$f_{5}(x) = (-2x^{2} + 3x)^{100} \qquad (x \in \mathbb{R});$$

$$f_{6}(x) = \sqrt{x + \sqrt{x + \sqrt{x}}} \qquad (x \in \mathbb{R});$$

$$f_{7}(x) = (3x + x^{2}) \sqrt[5]{(2x + 3)^{4}} \qquad (x \in \mathbb{R});$$

$$f_{8}(x) = 3\sin(2x) - 4\sin(x^{2}) \qquad (x \in \mathbb{R});$$

$$f_{9}(x) = e^{2x+1} + \arccos(x^{2}) \qquad (x \in \mathbb{R});$$

$$f_{10}(x) = 3x^{2}e^{x} + \operatorname{ctg}\left(\frac{x^{2}}{2}\right) \qquad (x \in \mathbb{R});$$

$$f_{11}(x) = 2^{\sin(x^{2} + 1)} \qquad (x \in \mathbb{R});$$

$$f_{12}(x) = x^{5} \operatorname{arcctg}\left(\frac{2x^{2}}{x^{4} + 3}\right) \qquad (x \in \mathbb{R});$$

$$f_{13}(x) = x^{x} \qquad (x > 0);$$

$$f_{14}(x) = (\sin(x))^{\cos(x)} \qquad (x \in \mathbb{R});$$

5. Adja meg az alábbi függvények "előírt" magasabbrendű deriváltjait.

$$f_1(x) = \frac{2}{x^2} + \operatorname{tg} x \qquad (x \in]0, \frac{\pi}{2}[), \qquad f_1'''(x) = ?;$$

$$f_2(x) = \sqrt{3x + 2} \qquad (x > -\frac{2}{3}), \qquad f_2^{(n)}(x) = ?;$$

$$f_3(x) = \ln(x^2) \qquad (x \neq 0), \qquad f_3^{(n)}(x) = ?;$$

$$f_4(x) = (x^3 + 3x^2 + 2)\cos(3x), \qquad f_4^{10}(x) = ?;$$

$$f_5(x) = (x^2 - 2x)e^{-4x} \qquad (x \in \mathbb{R}), \qquad f_5^{(n)}(x) = ?;$$

$$f_6(x) = e^{2x} \cdot \operatorname{ch}(2x) \qquad (x \in \mathbb{R}), \qquad f_6^{(100)}(x) = ?;$$

- 6. Vizsgálja meg, hogy alkalmazható-e a Rolle-tétel az $f_1(x) = \sqrt[3]{x^2} 2\sqrt[3]{x}$ függvényre a [0,8] intervallumon.
- 7. Vizsgálja meg, hogy alkalmazható-e a Lagrange-tétel az $f_1(x) = |x|$ függvényre a [-1, 1], illetve az $f_2(x) = x^{\frac{3}{4}}$ függvényre a [0, 16] intervallumon.
- 8. Bizonyítsa be a Lagrange-tétel felhasználásával, hogy

$$\frac{x-y}{x} < \ln \frac{x}{y} < \frac{x-y}{y} , \quad \text{ha } 0 < y < x .$$

- 9. Határozza meg az $f_1(x) = \operatorname{ch}(x)$ $(x \in \mathbb{R})$ és az $f_2(x) = \sqrt[3]{1+x}$ $(x \ge -1)$ függvények 0 ponthoz tartozó Taylor-sorát.
- 10. Adja meg az $f(x) = \cos(x)$ $(x \in \mathbb{R})$ függvény $a = \frac{\pi}{2}$ -höz tartozó Taylorsorát, vizsgálja meg annak konvergenciáját a függvényhez.
- 11. A Taylor-tétel segítségével számítsa ki arct
g0,8és $1,1^{1,01}$ közelítő értékét
 10^{-4} pontossággal.
- 12. A L'Hospital-szabállyal számítsa ki az alábbi határértékeket.

$$\lim_{x \to 0} \frac{a^x - 1}{x} \quad (a > 0); \quad \lim_{x \to 0} \frac{\operatorname{tg}(x) - \sin(x)}{x^2}; \quad \lim_{x \to 0} \frac{1 - \cos 2x}{\sin 3x};$$

$$\lim_{x \to 0} \frac{\operatorname{ch}(x) - \cos(x)}{x^2}; \quad \lim_{x \to 1} \frac{x^2 - \sqrt[3]{x}}{\sqrt[3]{x} - 1}; \quad \lim_{x \to +\infty} \frac{\ln(x)}{x^{\mu}}; \quad (\mu \neq 0);$$

$$\lim_{x \to +\infty} \frac{x^n}{e^{ax}}; \quad (n \in \mathbb{N}, \ a \neq 0); \quad \lim_{x \to +\infty} \frac{a^x}{x^n}; \quad (n \in \mathbb{N}, \ a \neq 0);$$

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right); \quad \lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{1}{x - 1}\right); \quad \lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\operatorname{th}(x)} - \frac{1}{\operatorname{tg}(x)}\right);$$

13. Határozza meg a következő függvények monoton szakaszait:

$$f_1(x) = 5x^2 - 7x + 2 (x \in \mathbb{R});$$

$$f_2(x) = ax^3 + bx^2 + cx + d (x \in \mathbb{R});$$

$$f_3(x) = x^2 \arctan(x) (x \in \mathbb{R});$$

$$f_4(x) = \frac{4\sqrt{x}}{x+2} (x \ge 0).$$

14. Keresse meg az alábbi függvények lokális és globális szélsőértékeit:

$$f_1(x) = ax^3 + bx^2 + cx + d (x \in \mathbb{R});$$

$$f_2(x) = \cos(x) + \frac{1}{2}\cos(2x) (x \in \mathbb{R});$$

$$f_3(x) = e^x \sin(x) (x \in \mathbb{R});$$

$$f_4(x) = |x^2 - 3x + 2| (x \in [-3, 10]);$$

$$f_5(x) = \sqrt{5 - 4x} (x \in [-1, 1]);$$

$$f_6(x) = \sin(x + 1)\cos(x + 2) (x \in [0, 10]).$$

15. Határozza meg a következő függvények konvex és konkáv szakaszait, inflexiós helyeit:

$$f_1(x) = ax^3 + bx^2 + cx + d (x \in \mathbb{R});$$

$$f_2(x) = \sqrt{1 + x^2} (x \in \mathbb{R});$$

$$f_3(x) = \frac{x^4}{(1+x)^3} (x \neq -1);$$

$$f_4(x) = |x|e^{-|x-1|} (x \in \mathbb{R}).$$

16. Végezze el a teljes függvényvuzsgálatot az alábbi függvényeknél:

$$f_1(x) = ax^3 + bx^2 + cx + d \qquad (x \in \mathbb{R});$$

$$f_2(x) = \frac{x^4}{(1+x)^3} \qquad (x \neq -1);$$

$$f_3(x) = \cos x + \frac{1}{2}\cos 2x \qquad (x \in \mathbb{R});$$

$$f_4(x) = \frac{x(x^2+1)}{x^2-1} \qquad (x \neq \pm 1);$$

$$f_5(x) = x^2 e^x \qquad (x \in \mathbb{R});$$

$$f_6(x) = e^x \sin(x) \qquad (x \in \mathbb{R});$$

$$f_7(x) = \frac{1-x}{(1+x)^2} \qquad (x \neq -1).$$

Irodalomjegyzék

- [1] GYEMIDOVICS, B. P., Matematikai analízis feladatgyűjtemény, Tankönyvkiadó, Budapest, 1974.
- [2] LAJKÓ K., Analízis I-II., Egyetemi jegyzet, DE Matematikai és Informatikai Intézet, Debrecen, 2002-2003.
- [3] Lajkó K., Kalkulus I., Egyetemi jegyzet, DE Matematikai és Informatikai Intézet, Debrecen, 2002.
- [4] Lajkó K., Kalkulus I., Egyetemi jegyzet, mobiDIÁK könyvtár, Debrecen, 2003.
- [5] LEINDLER L. SCHIPP F., Analízis I., Egyetemi jegyzet, Tankönyvkiadó, Budapest, 1976.
- [6] LJASKO, I. I. BOJASCSUK, A. K. GOJ, JA. H., Szpranocsnaja poszobüje po matematicseszkomu analizu, Vüso Skolo, Kiev, 1978.
- [7] Makai I., Bevezetés az analízisbe, Egyetemi jegyzet, Tankönyvkiadó, Budapest, 1989.
- [8] Makai I., Differenciál- és integrálszámítás I., Egyetemi jegyzet, Tankönyvkiadó, Budapest, 1992.
- [9] MONDELSON, E., Matematikai példatár, Panem-McGraw-Hill, Budapest, 1995.
- [10] RIMÁN J., Matematikai analízis feladatgyűjtemény I-II., Egyetemi jegyzet, Tankönyvkiadó, Budapest, 1992.
- [11] Rimán J., Matematikai analízis I., EKTF, Liceum Kiadó, Eger, 1998.
- [12] Szabó T., Kalkulus példatár és feladatok, Polygon jegyzettár, Szeged, 2000.