

CALCULUS

Prof. Liang ZHENG

Spring 2025

- In this section we consider the limit of general Riemann sums as the norm of the partitions of a closed interval [a, b] approaches zero. This limiting process leads us to the definition of the *definite integral* of a function over a closed interval [a, b].
- **1** Definition of the Definite integral

DEFINITION Let f(x) be a function defined on a closed interval [a, b]. We say that a number J is the **definite integral of f over [a, b]** if

$$J = \int_{a}^{b} f(x) dx = \lim_{\Delta x_{k} \to 0} \sum_{k=1}^{n} f(c_{k}) \Delta x_{k}$$

provided that this limit exists for every partition $P = \{x_0, x_1, ..., x_n\}$ of [a, b] and any choice

of
$$c_k$$
 in $[x_{k-1}, x_k]$.

• The component parts in the integral symbol also have names:

- When the definite integral exists, we say that the Riemann sums of f on [a, b] converge to the definite integral $J = \int_a^b f(x) dx$ and that f is **integrable** over [a, b].
- The value of the definite integral of a function over any particular interval depends on the function, not on the letter we choose to represent its independent variable, meaning:

$$J = \int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(u)du$$

2 Integrable and Nonintegrable Functions

THEOREM 1— Integrability of Continuous Functions

If a function f is continuous over the interval [a, b], or if f has at most finitely many jump discontinuities there, then the definite integral $\int_a^b f(x)dx$ exists and f is integrable over [a, b].

Example 1 The function

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational;} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

has no Riemann integral over [0, 1].

• Different choices for the points c_k results in different limits for the corresponding Riemann sums (S_P) .

$$S_{P} = \sum_{k=1}^{n} f(c_{k}) \Delta x_{k}$$

$$= \begin{cases} 1, & \text{if } c_{k} \text{ is rational} \\ 0, & \text{if } c_{k} \text{ is irrational} \end{cases}$$

③ Properties of Definite Integrals (Rules satisfied by definite integrals)

1. Order of Integration:
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

A definition

2. Zero Width Interval:
$$\int_{a}^{a} f(x) dx = 0$$

A definition when f(a) exists

3. Constant Multiple:
$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

Any constant k

4. Sum and Difference:
$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

5. Additivity:
$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

6. Max-Min Inequality: If f has maximum and minimum values on [a, b], then

$$f_{min} \cdot (b-a) \le \int_a^b f(x) dx \le f_{max} \cdot (b-a)$$

7. Domination: If $f(x) \ge g(x)$ on [a, b], then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$ If $f(x) \ge 0$ on [a, b], then $\int_a^b f(x) dx \ge 0$ special case (g(x) = 0)

Example 2

Show that the value of

$$\int_0^1 \sqrt{1 + \cos x} \, \mathrm{d}x$$

is less than or equal to $\sqrt{2}$.

Geometric Interpretations of Rules 2-7

(a) Zero Width Interval:

$$\int_{a}^{a} f(x) \, dx = 0$$

(d) Additivity for Definite Integrals:

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

(b) Constant Multiple: (k = 2)

$$\int_{a}^{b} kf(x) \, dx = k \!\! \int_{a}^{b} f(x) \, dx$$

(e) Max-Min Inequality:

$$(\min f) \cdot (b - a) \le \int_{a}^{b} f(x) dx$$

 $\le (\max f) \cdot (b - a)$

(c) Sum: (areas add)

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(f) Domination:

If $f(x) \ge g(x)$ on [a, b] then

$$\int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx$$

4 Area under the Graph of a Nonnegative Function

DEFINITION If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the **area under the curve** y = f(x) **over** [a, b] is the integral of f from a to b,

$$A = \int_{a}^{b} f(x) dx$$

Example 3

Find the area under y = x over the interval [0, b], where b > 0.

Question:

$$\int_{a}^{b} x^2 \, \mathrm{d}x = ? \qquad (a < b)$$

⑤ Average Value of a Continuous Function

DEFINITION If f is integrable on [a, b], then its average value on [a, b], which is also called its **mean**, is

$$Avg(f) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

Example 4

Find the average value of $f(x) = \sqrt{4 - x^2}$ on [-2, 2].

Skill Practice 1

Evaluate the following definite integrals:

(a)
$$\int_{0}^{2} 12x dx$$

(b)
$$\int_{1}^{3} 3x^{2} dx$$

(c)
$$\int_0^{\sqrt{2}} (t - \sqrt{2}) dt$$

Skill Practice 2

Use a definite integral to find the area of the region between the curve $y = x^2/2 + 1$ and the x-axis on the interval [0, 2].