AN INDUCTIVE METHOD FOR CONSTRUCTING MINIMAL BALANCED COLLECTIONS OF FINITE SETS*

Bezalel Peleg

Department of Mathematics The Hebrew University of Jerusalem Jerusalem, Israel

and

The University of Michigan Department of Mathematics Ann Arbor, Michigan

INTRODUCTION

In this paper we give a method for obtaining the minimal balanced collections of order n+1 from those of order n. Balanced and minimal balanced collections of finite sets were defined by L. S. Shapley. Shapley also found important applications of these concepts to game theory; in particular he found, using the theory of balanced sets, a necessary and a sufficient condition for the non-emptiness of the core† of a characteristic function n-person game [3]. The theory of balanced sets plays an important role in the works of H. Scarf [1,2] and is one of the subjects of Thompson's work [4].

1. DEFINITIONS

Let N be the set of the first n natural numbers. If $b = \{B_1, \ldots, B_k\}$ is a set[‡] of subsets of N, the incidence matrix that corresponds to b is the matrix

$$Y = (y_{ij}), i = 1, ..., k, j = 1, ..., n,$$

where

$$y_{ij} = \begin{cases} 1, & j \in B_i \\ 0, & j \notin B_i \end{cases}$$

A balancing vector for b is a vector $c = (c_1, \dots, c_k)$ that satisfies:

$$\sum_{i=1}^{k} c_i y_{ij} = 1, \quad j = 1, ..., n,$$

and

$$c_i > 0$$
, $i = 1, ..., k$.

We denote by C(b) the set of the balancing vectors of b. b is balanced, if it has a balancing vector. b is a minimal balanced collection if it does not contain a proper subset b* which is

We shall deal only with indexed sets of subsets of N.

^{*}The research described in this paper was partially supported by the U.S. Office of Naval Research under Contract Number N62558-3586.

[†]This problem was also solved by Bondareva, Vestnik Leningrad Univ. 17, (1962) No. 13, 141-142. Shapley's result is more complete; it enables us, when we know the minimal balanced collections of order n, to decide whether the core of a given n-person game is empty or not.

156 PELEG

balanced. We remark that if b is balanced then a necessary and a sufficient condition that it will be a minimal balanced collection, is that the rows of the incidence matrix are independent. So, b is a minimal balanced collection if, and only if, it has a unique balancing vector.

An extension vector for b is a vector $x = (x_1, x_2, \dots x_{2k+1})$ that satisfies:

$$x_i = 0$$
 or 1,

and

$$x_{2i-1} \ge x_{2i}, i = 1, ..., k.$$

With the pair (b,x) we associate a list $\overline{B}_1,\ldots,\overline{B}_{2k+1}$ of subsets of $\overline{N}=\{1,\ldots,n+1\}$, defined as follows:

$$\overline{B}_{j} = \begin{cases} B\left[\frac{j+1}{2}\right] \cup \{n+1\}, & x_{j} = 1 \\ \\ B\left[\frac{j+1}{2}\right] & , & x_{j} = 0 \end{cases}$$

$$j = 1, \dots, 2k,$$

and

$$\overline{B}_{2k+1} = \begin{cases} \{n+1\}, & x_{2k+1} = 1 \\ \phi, & x_{2k+1} = 0 \end{cases}.$$

The extension of the pair (b,x) is the set \overline{b} of the non-empty subsets that appear in the above list.* We remark that to a set \overline{b} of subsets of \overline{N} there corresponds no more than one pair (b,x) where b is a set of subsets of N and x is an extension vector for b, such that \overline{b} is the extension of (b,x).

For a pair (b,x), where $b=\{B_1,\ldots,B_k\}$ is a set of subsets of N and x is an extension for b, we define the sets: $S=\{i:x_{2i-1}=x_{2i},\ 1\leq i\leq k\}$, $T=\{1,\ldots,k\}$ - S, and the vector $\mathbf{z}=(\mathbf{z_i})_{i\in S}$, $\mathbf{z_i}=x_{2i-1}$. In what follows we always assume that the members of b are indexed such that if $i\in S$ and $j\in T$ then j>i. We denote by s the number of members of S.

2. BALANCED COLLECTIONS

In this section we describe the connections between the balanced collections of $N=\{1,2,\ldots,n\}$ and those of $\overline{N}=\{1,2,\ldots,n,n+1\}$.

THEOREM 1: Let $b = \{B_1, \ldots, B_k\}$ be a set of subsets of N and x an extension vector for b. \overline{b} , the extension of the pair (b, x) is balanced if, and only if, b is balanced and one of the following conditions is satisfied:

- 1.1. $x_{2k+1} = 0$, $T = \phi$ and there is a $c \in C(b)$ such that $\Sigma_S c_i z_i = 1$.
- 1.2. $x_{2k+1} = 0$, $T \neq \phi$, $S = \phi$ and there is a $c \in C(b)$ such that $\Sigma_T c_i > 1$.

^{*}We assume, say, that the members of b are indexed according to their order in the list.

1.3. $x_{2k+1} = 0$, $T \neq \phi$, $S \neq \phi$ and there is a $c \in C(b)$ such that $1 > \sum_{S} c_i z_i > 1 - \sum_{T} c_i$.

1.4. $x_{2k+1} = 1$, $T = \phi$ and there is a $c \in C(b)$ such that $\Sigma_S c_i z_i < 1$.

1.5. $x_{2k+1} = 1$, $T \neq \phi$, $S = \phi$.

1.6. $x_{2k+1} = 1$, $T \neq \phi$, $S \neq \phi$ and there is a $c \in C(b)$ such that $1 > \sum_{S} c_i z_i$.

PROOF:

<u>NECESSITY:</u> Suppose \overline{b} is balanced. Let $d \in C(\overline{b})$. Define a vector $c = (c_1, \ldots, c_k)$ by $c_i = d_i$, $i \in S$, and $c_i = d_{2i-s-1} + d_{2i-s}$, for $i \in T$. Let \overline{Y} be the incidence matrix that corresponds to \overline{b} , and Y the incidence matrix that corresponds to b.

$$\sum_{i=1}^{k} c_{i} y_{ij} = \sum_{i=1}^{2k-s} d_{i} \overline{y}_{ij} = 1, \quad j = 1, ..., n,$$

so $c \in C(b)$ and b is balanced. If $x_{2k+1} = 0$ and $T = \phi$ then

$$\sum_{\mathbf{S}} \mathbf{c}_{i} \mathbf{z}_{i} = \sum_{i=1}^{k} \mathbf{d}_{i} \overline{\mathbf{y}}_{i,n+1} = 1.$$

If $x_{2k+1} = 0$, $T \neq \phi$, and $S = \phi$, then

$$\sum_{\mathbf{T}} c_i > \sum_{i=1}^{2k} d_i \overline{y}_{i,n+1} = 1.$$

If $x_{2k+1} = 0$, $T \neq \phi$ and $S \neq \phi$, then

$$1 = \sum_{i=1}^{2k-s} d_i \overline{y}_{i,n+1} = \sum_{S} c_i z_i + \sum_{i=s+1}^{2k-s} d_i \overline{y}_{i,n+1}.$$

Since

$$0 < \sum_{i=s+1}^{2k-s} d_i \overline{y}_{i,n+1} < \sum_{T} c_i,$$

we have that $1 > \Sigma_S c_i z_i > 1 - \Sigma_T c_i$. If $x_{2k+1} = 1$ and $T = \phi$, then

$$\sum_{\mathbf{S}} c_i z_i < \sum_{i=1}^{k+1} d_i \overline{y}_{i,n+1} = 1.$$

If $x_{2k+1} = 1$, $T \neq \phi$, and $S \neq \phi$, then

158 PE LEG

$$\sum_{S} \ c_{i} \, z_{i} \, < \, \sum_{i=1}^{2k-s} \ d_{i} \, \overline{y}_{i,n+1} < 1 \, .$$

So we proved that if \bar{b} is balanced then b is balanced and one of the conditions 1.1 - 1.6 is satisfied.

SUFFICIENCY: Let b be balanced. If $c \in C(b)$ denote by D(c) the set of the vectors $d = (d_1, \ldots, d_{2k-s})$ that satisfy $d_i = c_i$, $i \in S$, and $d_{2i-s-1} + d_{2i-s} = c_i$, $i \in T$. We remark that if $d \in D(c)$ then

$$\sum_{i=1}^{2k-s} d_i \overline{y}_{ij} = 1,$$

for j = 1, . . . , n. Suppose that 1.1 is satisfied. There is a $c \in C(b)$ such that $\Sigma_S c_i z_i = 1$. Since

$$\sum_{\mathbf{S}} c_{\mathbf{i}} z_{\mathbf{i}} = \sum_{i=1}^{k} c_{i} \overline{y}_{i,n+1},$$

c is a balancing vector for \overline{b} . If 1.2 is satisfied then $x_{2k+1}=0$, $T\neq \phi$, $S=\phi$, and there is a $c\in C(b)$ such that Σ_T $c_i>1$. Define $d\in D(c)$ by

$$d_{2i-1} = \frac{c_i}{\Sigma_T c_j}$$

and $d_{2i} = c_i - d_{2i-1}$, $i \in T$. Since

$$\sum_{i=1}^{2k} d_i \overline{y}_{i,n+1} = \sum_{i=1}^{k} d_{2i-1} = \sum_{T} \frac{c_j}{\Sigma_T c_i} = 1,$$

d is a balancing vector for \overline{b} . If $x_{2k+1} = 0$, $T \neq \phi$, $S \neq \phi$ and there is a $c \in C(b)$ such that $1 > \sum_{S} c_i z_i > 1 - \sum_{T} c_i$, define $d \in D(c)$ by $d_i = c_i$, $i \in S$, $d_{2i-s-1} = \overline{k} c_i$, and $d_{2i-s} = (1 - \overline{k}) c_i$ for $i \in T$, where

$$\bar{k} = \frac{1 - \Sigma_{S} c_{i} z_{i}}{\Sigma_{T} c_{i}}.$$

Since

$$\sum_{i=1}^{2k-s} d_i \overline{y}_{i,n+1} = \sum_{S} c_i z_i + \sum_{i=s+1}^{k} d_{2i-s-1} = \sum_{S} c_i z_i + \overline{k} \sum_{T} c_i = 1,$$

d is a balancing vector for \overline{b} . If $x_{2k+1} = 1$, $T = \phi$, and there is a $c \in C(b)$ such that $\sum_{S} c_i z_i < 1$, define $d = (d_1, \ldots, d_{k+1})$ by $d_i = c_i$, $i \in S$, and $d_{k+1} = 1 - \sum_{S} c_i z_i$. Since

$$\sum_{i=1}^{k+1} d_i \overline{y}_{i,n+1} = \sum_{S} c_i z_i + d_{k+1} = 1,$$

d is a balancing vector for \overline{b} . If $x_{2k+1} = 1$, $T \neq \phi$, and $S = \phi$, let $c \in C(b)$. Define $d \in D(c)$ by

$$d_{2i-1} = \frac{c_i}{2 \sum_{\mathbf{T}} c_i}$$

and $d_{2i} = c_i - d_{2i-1}$, $i \in T$. Define also $d_{2k+1} = 1/2$ and $d^* = (d_1, \ldots, d_{2k}, d_{2k+1})$. Since

$$\sum_{i=1}^{2k+1} d_i \overline{y}_{i,n+1} = \sum_{i=1}^{k} d_{2i-1} + d_{2k+1} = 1,$$

d* is a balancing vector for \overline{b} . If $x_{2k+1} = 1$, $T \neq \phi$, $S \neq \phi$ and there is a $c \in C(b)$ such that $1 > \Sigma_S c_i z_i$, define $d \in D(c)$ by $d_i = c_i$, $i \in S$, $d_{2i-s-1} = \overline{k} c_i$, and $d_{2i-s} = (1-\overline{k}) c_i$ for $i \in T$, where

$$\overline{k} = \frac{1 - \sum_{S} c_{i} z_{i}}{t \sum_{T} c_{i}}$$

and t is chosen such that $0 < \overline{k} < 1$.

Define also $d_{2k-s+1} = \frac{t-1}{t} (1 - \sum_{s=0}^{s} c_i z_i)$, and $d^* = (d_1, \dots, d_{2k-s}, d_{2k-s+1})$. Since

$$\sum_{i=1}^{2k-s+1} d_i \overline{y}_{i,n+1} = \sum_{S} c_i z_i + \sum_{i=s+1}^{k} d_{2i-s-1} + d_{2k-s+1} = 1,$$

 d^* is a balancing vector for \overline{b} . This completes the proof of Theorem 1.

3. MINIMAL BALANCED COLLECTIONS

In this section we describe the connections between the minimal balanced collections of $N = \{1, \ldots, n\}$ and those of $\overline{N} = \{1, \ldots, n, n+1\}$. Let $b = \{B_1, \ldots, B_k\}$ be a set of subsets of N, x an extension vector for b, and \overline{b} the extension of (b, x).

<u>LEMMA</u> 1: If \overline{b} is a minimal balanced collection then $s \ge k-1$. If also $x_{2k+1} = 1$ then s = k.

The proof follows from the uniqueness of the balancing vector of $\overline{\mathbf{b}}$.

<u>LEMMA</u> 2: The union of two balanced collections is a balanced collection. The proof is straightforward.

160 PE LEG

THEOREM 2: \vec{b} is a minimal balanced collection if, and only if, one of the following conditions is satisfied:

- 2.1. $x_{2k+1} = 1$, $T = \phi$, b is a minimal balanced collection, and c, the balancing vector of b, satisfies $\Sigma_S c_i z_i < 1$.
- 2.2. $x_{2k+1} = 0$, $T \neq \phi$, $s \approx k-1$, b is a minimal balanced collection, and c, the balancing vector of b, satisfies $1 > \Sigma_S c_i z_i > 1 \Sigma_T c_i$.
- 2.3. $x_{2k+1} = 0$, $T = \phi$, b is a minimal balanced collection, and c, the balancing vector of b, satisfies $\Sigma_{S} c_{i} z_{i} = 1$.
- 2.4. $x_{2k+1} = 0$, $T = \phi$, b is a union of two minimal balanced collections, the rank of Y, the incidence matrix that corresponds to b, is k-1, and there is a unique $c \in C(b)$ such that $\Sigma_S c_i z_i = 1$.

PROOF:

NECESSITY: Inspecting Theorem 1 and Lemma 1, we see that if \overline{b} is a minimal balanced collection then b is balanced and one of the conditions 1.1, 1.3, or 1.4 is satisfied. If 1.4 is satisfied then, since \overline{b} has a unique balancing vector, b also has only one balancing vector, and so it is a minimal balanced collection and 2.1 is satisfied. If 1.3 is satisfied then, again, the minimality of \overline{b} implies the minimality of b, and 2.2 is satisfied. If 1.1 is satisfied and b is a minimal balanced collection, then 2.3 is satisfied. If b is not a minimal balanced collection then, since the rank of \overline{Y} , the incidence matrix that corresponds to \overline{b} , is k, the rank of Y is k-1. The solutions of the following system of inequalities

(I)
$$\begin{cases} \sum_{i=1}^{k} c_i y_{ij} = 1 & j = 1, \dots, n \\ c_i \ge 0 & i = 1, \dots, k \end{cases}$$

are all of the form $c = c_0 + tc_1$, where c_0 is a balancing vector for b, t a real number and c_1 is a solution of the homogeneous system

$$\sum_{i=1}^{k} c_{i} y_{ij} = 0, \quad j = 1, \dots, n.$$

So there is a non-degenerate interval $[\alpha\beta]$ that consists of all the solutions of the above system. Let $U_{\alpha}=\{i:\alpha_i>0\}$ and $U_{\beta}=\{i:\beta_i>0\}$. Clearly U_{α} and U_{β} are proper subsets of $\{1,\ldots,k\}$ and $U_{\alpha}\cup U_{\beta}=\{1,\ldots,k\}$. Denote $b_1=\{B_i:i\in U_{\alpha}\}$ and $b_2=\{B_i:i\in U_{\beta}\}$. Clearly $\alpha*$, the restriction of α to U_{α} , belongs to $C(b_1)$, and $\beta*$, the restriction of β to U_{β} , belongs to $C(b_2)$. Since α and β are the extremal solutions of (I), b_1 and b_2 must be minimal balanced collections. $b=b_1\cup b_2$. Since every $c\in C(b)$ that satisfies Σ_S c_i $z_i=1$ belongs to $C(\overline{b})$, there is only one such a vector; so we proved that 2.4 is satisfied.

SUFFICIENCY: If one of the conditions 2.1 – 2.4 is satisfied then it follows from Theorem 1 that \overline{b} is balanced. If 2.1, 2.2, or 2.3 is satisfied then the minimality of \overline{b} . If 2.4 is satisfied then there is a unique $c \in C(b)$ such that $\sum_{S} c_i z_i = 1$.

Since every $c \in C(\overline{b})$ satisfies $c \in C(\overline{b})$ and $\Sigma_S c_i z_i = 1$, \overline{b} has only one balancing vector, and therefore it is a minimal balanced collection. This completes the proof of Theorem 2.

4. A METHOD FOR CONSTRUCTING THE MINIMAL

BALANCED COLLECTIONS OF $\{1, ..., n, n+1\}$ FROM THOSE OF $\{1, ..., n\}$

In this section we describe a procedure for obtaining the minimal balanced collections, and their balancing vectors, of $\overline{N} = \{1, \ldots, n, n+1\}$ from those of $N = \{1, \ldots, n\}$. The procedure consists of two steps. The first step is:

For each minimal balanced collection $b = \{B_1, \ldots, B_k\}$ of N, with the balancing vector $c = (c_1, \ldots, c_k)$, do the following checks:

- 1. For each extension vector x that satisfies $\mathbf{x}_{2k+1} = 1$ and $\mathbf{T} = \phi$, check if $\Sigma_S \mathbf{c}_i \mathbf{z}_i < 1$. If the inequality holds then $\overline{\mathbf{b}}$, the extension of (b, x), is a minimal balanced collection and $\overline{\mathbf{c}} = (\overline{\mathbf{c}}_1, \ldots, \overline{\mathbf{c}}_{k+1})$, where $\overline{\mathbf{c}}_i = \mathbf{c}_i$, $1 \le i \le k$, and $\overline{\mathbf{c}}_{k+1} = 1 \Sigma_S \mathbf{c}_i \mathbf{z}_i$, is the balancing vector of it.
- 2. For each extension vector x that satisfies $x_{2k+1} = 0$, $T \neq \phi$, and s = k-1, check if $1 > \Sigma_S c_i z_i > 1 \Sigma_T c_i$. If the inequalities hold then \overline{b} , the extension of (b,x), is a minimal balanced collection and $\overline{c} = (\overline{c}, \ldots, \overline{c}_S, \overline{c}_{S+1}, \overline{c}_{S+2})$, where $\overline{c}_i = c_i$, $1 \le i \le s$, $\overline{c}_{S+1} = 1 \Sigma_S c_i z_i$, and $\overline{c}_{S+2} = c_k \overline{c}_{S+1}$, is the balancing vector of it.
- 3. For each extension vector x that satisfies $x_{2k+1} = 0$ and $T = \phi$ check if $\Sigma_S c_i z_i = 1$. If the equality holds then \overline{b} , the extension of (b,x), is a minimal balanced collection and c is the balancing vector of it.

In the second step, for each pair b_1 and b_2 of minimal balanced collections of N, with the balancing vectors c' and c'', respectively, we form the union $b = b_1 \cup b_2$. If $b = \{B_1, ..., B_k\}$ we denote $P = \{i : B_i \in b_1\}$ and $Q = \{i : B_i \in b_2\}$. After forming b we check if the rank of Y, the incidence matrix that corresponds to b, is k-1. If the result of the check is positive, then for each vector x for b, that satisfies $x_{2k+1} = 0$ and $T = \phi$, we check if

$$t = \frac{1 - \sum_{\mathbf{p}} \mathbf{c}_{i}^{\mathsf{T}} \mathbf{z}_{i}}{\sum_{\mathbf{Q}} \mathbf{c}_{i}^{\mathsf{T}} \mathbf{z}_{i} - \sum_{\mathbf{p}} \mathbf{c}_{i}^{\mathsf{T}} \mathbf{z}_{i}}$$

is well defined and if 0 < t < 1. If 0 < t < 1 then \overline{b} , the extension of (b,x), is a minimal balanced collection and $\overline{c} = (\overline{c}_1, \ldots, \overline{c}_k)$, where $\overline{c}_i = (1-t)c_i'$, $i \in P - Q$, $\overline{c}_i = tc_i''$, $i \in Q - P$, and $\overline{c}_i = tc_i'' + (1-t)c_i'$, $i \in P \cap Q$, is the balancing vector of it.

Theorem 2 shows that by using the above procedure we find all the minimal balanced collections of \overline{N} .

Shapley found all the minimal balanced collections for * n \leq 6. It should be possible to program this method for an electronic computer and continue the enumeration.

ACKNOWLEDGMENT

The author is indebted to Dr. M. Maschler, who introduced him to the subject.

^{*}A list is to appear in a forthcoming Rand Memorandum by Shapley.

162 PELEG

REFERENCES

- [1] Scarf, H., "An Elementary Proof of a Theorem on the Core of an N-Person Game" (to appear).
- [2] Scarf, H., "The Core of an N-Person Game," Cowls Foundation Discussion Paper, No. 182.
- [3] Shapley, L. S., "On Balanced Sets and Cores," RM-4601-PR, The Rand Corporation, Santa Monica, California (June 1965).
- [4] Thompson, G. L., "Integer Programming and Game Theory," Notes of The Conference on Game Theory, held in Princeton (5-7 April 1965).

* * *