Κριτήριο Αξιολόγησης Μαθηματικά Γ' Λυκείου Διδακτική ενότητα: Όριο- Συνέχεια συνάρτησης

Επώνυμο:

Όνομα:

Ημερομηνία:

Θέμα 1° (25 μονάδες)

- Α. Να διατυπώσετε και να αποδείξετε το θεώρημα ενδιαμέσων τιμών
- Β. Να διατυπώσετε το κριτήριο παρεμβολής
- Γ. Σε καθεμία από τις παρακάτω ερωτήσεις να σημειώσετε Σ (Σωστό), Λ(Λάθος).
 - i. Μια συνάρτηση f έχει όριο στο σημείο x_o , έναν πραγματικό αριθμό λ . Αναγκαστικά το x_o ανήκει στο πεδίο ορισμού της.
 - ii. Αν $\lim_{x \to x_0} (f(x) + g(x)) = \lambda$, τότε οι συναρτήσεις f, g έχουν πάντοτε όριο στο x_0 .

iii. Ισχύει ότι:
$$\lim_{x\to +\infty} x \cdot \frac{\eta \mu x}{x} = 1$$

iv. Ισχύει ότι:
$$\lim_{x\to +\infty} \frac{\eta \mu x}{x} = 1$$

v. Av
$$\lim_{x \to +\infty} \frac{f(x+1)}{f(x)} = 2$$
 $\tau \circ \tau \in \lim_{x \to +\infty} \frac{f(x+2)}{f(x)} = 4$

- νι. Αν η συνάρτηση f είναι συνεχής στο x_0 και η συνάρτηση g δεν είναι συνεχής στο x_0 , τότε η συνάρτηση f+g δεν είναι συνεχής στο x_0
- vii. Αν μια συνάρτηση $f: R \to R$ είναι συνεχής στο διάστημα $[\alpha, \beta]$ τότε είναι συνεχής και στο διάστημα (α, β)
- viii. Αν μια συνάρτηση $f: R \to R$ είναι συνεχής στο διάστημα $[\alpha, \beta]$ τότε είναι συνεχής στο $x_0 = \alpha$

Θέμα 2° (25 μονάδες)

Να υπολογίσετε τα παρακάτω όρια για τις διάφορες τιμές των πραγματικών αριθμών α,λ,κ,μ.

A.
$$\lim_{x \to +\infty} \frac{(k-2)x^2 + (k+1)x + 1}{kx^2 + 1}$$

B.
$$\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 1} - \lambda x - \mu \right)$$

Γ.
$$\lim_{x\to+\infty} \frac{\alpha^x + 2^{x+1}}{\alpha^{x+1} + 2^x}, \alpha v \alpha > 0$$

Θέμα 3° (25 μονάδες)

Έστω οι συναρτήσεις f,g: R \rightarrow R για τις οποίες ισχύει: $f(g(x))=x^3+x+1+g(x)$ για κάθε $x\in\mathbb{R}$.

- α. Να αποδείξετε ότι η εξίσωση $x^3 + x + 1 = 0$ έχει μοναδική λύση.
- β. Να αποδείξετε ότι η συνάρτηση g αντιστρέφεται.
- γ. Να αποδείξετε ότι υπάρχει τουλάχιστον ένα $x_0 \in \mathbb{R}$, τέτοιο ώστε: $f(x_0) = x_0$.

Θέμα 4° (25 μονάδες)

Έστω η συνάρτηση $f(x)=x+e^x+1$.

- 1. Να αποδείξετε ότι η f αντιστρέφεται
- 2. Να λύσετε την εξίσωση $e^x = 1 x$
- 3. Να λύσετε την ανίσωση $f^{-1}(f(x)-x+1)>1$
- 4. Θεωρούμε τη συνεχή και γνησίως μονότονη συνάρτηση $g:\mathbb{R} \to \mathbb{R}$ η οποία για κάθε $x \in \mathbb{R}$ ικανοποιεί τη σχέση $g(x)+e^{g(x)}=2x+1$. Να αποδείξετε ότι:
 - α) γ g είναι γνησίως αύξουσα
 - β) η $C_{\rm g}$ διέρχεται από την αρχή των αξόνων.
- 5. Να αποδείξετε ότι η εξίσωση $(gog)(x)-g(1-x^{2012})=0$, έχει μία τουλάχιστον λύση στο διάστημα (0,1).