Task 5

Analyze traffic accident data to identify patterns related to road conditions, weather, and time of day. Visualize accident hotspots and contributing factors.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

df = pd.read_csv("/content/RTA Dataset.csv")

df.head()

		Time	Day_of_week	Age_band_of_driver	Sex_of_driver	Educational_level	Vehicle_driver_relation	Driving_ex
	0	17:02:00	Monday	18-30	Male	Above high school	Employee	
	1	17:02:00	Monday	31-50	Male	Junior high school	Employee	А
	2	17:02:00	Monday	18-30	Male	Junior high school	Employee	
	3	1:06:00	Sunday	18-30	Male	Junior high school	Employee	
	4	1:06:00	Sunday	18-30	Male	Junior high school	Employee	

5 rows × 32 columns

df.tail()

		Time	Day_of_week	Age_band_of_driver	Sex_of_driver	Educational_level	Vehicle_driver_relation	Driving
	8993	16:12:00	Wednesday	31-50	Male	Junior high school	Employee	
	8994	16:12:00	Wednesday	Over 51	Male	Junior high school	Employee	
	8995	16:35:00	Friday	18-30	Male	Elementary school	Owner	
	8996	16:35:00	Friday	18-30	Male	Junior high school	Employee	
	8997	16:35:00	Friday	18-30	Male	Junior high school	Employee	

5 rows × 32 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 8998 entries, 0 to 8997

Data	columns (total 32 columns):		
#	Column	Non-Null Count	Dtype
0	Time	8998 non-null	object
1	Day_of_week	8998 non-null	object
2	Age_band_of_driver	8998 non-null	object
3	Sex_of_driver	8998 non-null	object
4	Educational_level	8477 non-null	object
5	Vehicle_driver_relation	8621 non-null	object
6	Driving_experience	8400 non-null	object
7	Type_of_vehicle	8283 non-null	object
8	Owner_of_vehicle	8647 non-null	object
9	Service_year_of_vehicle	6041 non-null	object
10	Defect_of_vehicle	5710 non-null	object
11	Area_accident_occured	8822 non-null	object
12	Lanes_or_Medians	8702 non-null	object
13	Road_allignment	8884 non-null	object

14	Types_of_Junction	8997	non-null	object
15	Road_surface_type	8871	non-null	object
16	Road_surface_conditions	8997	non-null	object
17	Light_conditions	8997	non-null	object
18	Weather_conditions	8997	non-null	object
19	Type_of_collision	8892	non-null	object
20	Number_of_vehicles_involved	8997	non-null	float64
21	Number_of_casualties	8997	non-null	float64
22	Vehicle_movement	8787	non-null	object
23	Casualty_class	8997	non-null	object
24	Sex_of_casualty	8997	non-null	object
25	Age_band_of_casualty	8997	non-null	object
26	Casualty_severity	8997	non-null	object
27	Work_of_casuality	6646	non-null	object
28	Fitness_of_casuality	7055	non-null	object
29	Pedestrian_movement	8997	non-null	object
30	Cause_of_accident	8997	non-null	object
31	Accident_severity	8997	non-null	object
d+vn	es: float64(2) object(30)			

dtypes: float64(2), object(30)

memory usage: 2.2+ MB

df.describe()

Number_c count mean std	of_vehicles_involved 8997.000000	Number_of_casualties
mean	8997.000000	0007.00000
		8997.000000
etd	2.018673	1.522952
รเน	0.641743	1.004022
min	1.000000	1.000000
25%	2.000000	1.000000
50%	2.000000	1.000000
75%	2.000000	2.000000
max	7.000000	8.000000
4		

Visualize accident hotspots
plt.figure(figsize=(12, 6))
sns.scatterplot(x='Number_of_vehicles_involved', y='Number_of_casualties', hue='Accident_severity', data=df)
plt.title('Accident Hotspots and Severity')
plt.show()


```
# Visualize contributing factors
plt.figure(figsize=(16, 6))
sns.countplot(x='Weather_conditions', hue='Accident_severity', data=df)
plt.title('Contributing Factors: Weather Conditions')
plt.show()
```



```
# Visualize Age distribution of drivers
plt.figure(figsize=(12, 6))
sns.histplot(x='Age_band_of_driver', data=df, bins=20, kde=True)
plt.title('Age Distribution of Drivers')
plt.show()
```



```
# Visualize Time of day vs. Accident count
plt.figure(figsize=(12, 6))
sns.countplot(x='Time', data=df, order=df['Time'].value_counts().index)
plt.title('Accident Count by Time of Day')
plt.xticks(rotation=45, ha='right')
plt.show()
```



```
# Visualize Type of Collision vs. Accident severity
plt.figure(figsize=(12, 6))
sns.countplot(x='Type_of_collision', hue='Accident_severity', data=df)
plt.title('Type of Collision vs. Accident Severity')
plt.xticks(rotation=45, ha='right')
plt.show()
```



```
# Visualize Light conditions vs. Accident severity
plt.figure(figsize=(12, 6))
sns.countplot(x='Light_conditions', hue='Accident_severity', data=df)
plt.title('Light Conditions vs. Accident Severity')
plt.show()
```

→

Light Conditions vs. Accident Severity

