Исследование явления осмоса на базе лабораторного стенда и расчёт зависимостей

Нестеров И.Д.

Содержание

Введение	2
Осмос	2
Осмотическое давление	
Осмотический поток	3
Ход работы	4
Растворы	4
Наблюдения	6
Обработка данных	8
Вычисление осмотического давления и его временной зависимости	8
Вычисление осмотического потока	10
Результаты и Выводы	11

Введение

Цель работы: Ознакомиться и научиться проводить исследования осмотических процессов в частности провести расчёты осмотического давления и осмотического потока, используя законы Фика.

Осмос

Осмос — частный случай диффузии. Другими словами, это диффузия воды через полупроницаемую мембрану вниз по градиенту концентрации, когда растворенное вещество не может диффундировать через мембрану, а вода может, если мембрана проницаема для воды, но не для растворенного вещества. Вода будет выравнивать свою собственную концентрацию путем диффундирования в сторону с более низкой концентрацией воды.

- Вода считается универсальным растворителем она связывает и растворяет полярные или заряженные молекулы (растворённые вещества)
- Поскольку растворённые вещества не могут проникнуть через клеточную мембрану без посторонней помощи, вода будет перемещаться, чтобы уравнять оба раствора
- При более высокой концентрации растворённого вещества в растворе меньше свободных молекул воды, поскольку вода связана с растворённым веществом

Осмотическое давление

Осмотическое давление можно определить как минимальное давление, которое необходимо приложить к раствору, чтобы остановить поток молекул растворителя через полупроницаемую мембрану (осмос). Это коллигативное свойство, которое зависит от концентрации частиц растворенного вещества в растворе. Для вычисления осмотического давления можно воспользоваться уравнением Вант-Гоффа:

$$\pi = iCRT \tag{1}$$

где π – осмотическое давление, i - изотонический коэффициент, C - концентрация растворённого вещества, R – универсальная газовая постоянная, T – температура вещества.

Для воды i = 1.015

Осмотический поток

Для расчёта потока используем стандартную формулу для диффузного потока, однако с учетом того, что осмос является односторонним процессом диффузии, где движущая жидкость является вода, интерпретируя закон Фика под эту цель.

Первый закон Фика:

$$J = -D\frac{dC}{dx} \tag{2}$$

где D - коэффициент диффузии, $\frac{dC}{dx}$ - градиент концентрации вещества.

Ход работы

Растворы

Было приготовлено два раствора ${\rm CuSO_4\cdot 5\,H_2O}$ с разными концентрациями. Концентрация первого раствора составляла 10%, второго - 20%.

Установка

Для наблюдения и демонстрации осмотических процессов идеально подходит камера для осмоса и электрохимии. В обычной форме устройство имеет две стеклянные концевые камеры и двух резиновых уплотнительных колец, соединенных с помощью фланцевого держателя. Все камеры располагают стеклянную короткую трубку с резьбой GL25, на которую можно накрутить винтообразную крышку с кольцом уплотнения (25/8 мм). Экспериментируя с осмосом, стеклянные капиллярные трубки вставляют в эти соединительные крышки.

Чтобы собрать двухкамерное устройство, Необходимо расположить подходящую полупроницаемую мембрану, изготовленную из целлофана, между двумя уплотнительными кольцами, а затем скрепить вместе две камеры прямоугольный зажимом, вместе с уплотнительными кольцами.

Характеристики компонентов:

- \bullet Внутренний диаметр камеры: $D_i \approx 3$ см
- Диаметр фланца: $D_o=4.7~{\rm cm}$
- Толщина фланца: $d_o=1$ мм
- Длина сегмента: $L \approx 90$ мм
- Высота: $H \approx 85$ мм
- ullet Объём одного сегмента: $V \approx 65$ мл

Наблюдения

После сбора установки и начала эксперимента каждые 5 минут производились измерения высоты столбцов с растворами.

Динамика высоты жидкости в первом сосуде, в котором концентрация составляла 10%:

Динамика высоты жидкости во втором сосуде, в котором концентрация составляла 20%:

Обработка данных

Вычисление осмотического давления и его временной зависимости

В соответствии с формулой (1) могут быть вычислены значения осмотического давления в сосудах:

$$\pi = i \frac{m}{M} \frac{RT}{V_0 \pm \Delta V} \tag{3}$$

Где ΔV - объём жидкости, которая перетекла из сосуда в сосуд.

Зависимость осмотического давления от времени отражена на графиках ниже.

Для первого сосуда:

Для второго сосуда:

Вычисление осмотического потока

В соответствии с формулой (2) величина осмотического потока может быть приблизительно вычислена следующим образом:

$$J = -D\frac{|\Delta C|}{\Delta x} = -D\frac{|C_1 - C_2|}{\Delta x} \tag{4}$$

Значение коэффициента диффузии для воды: $D \approx 10^{-9}$

Была установлена зависимость осмотического потока с течением времени:

Результаты и Выводы

В результате проведённых опытов по изучению осмотических процессов с медным купоросом были вычислены экспериментально осмотические давления для обоих сосудов, а также осмотический поток через полупроницаемую мембрану.