Report for Lab 3

Task 1 - ERT

a) 3 levels of cache is available in the machine.

lscpu | grep -i cache

L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 6144K

b) Memory Bandwith: L1: 441.2 GiB/s, L2: 55.81 GiB/s, L3: 41.94 GiB/s, DRAM: 31.21 GiB/s Machine Performance: 64.8 GFLOPs/sec

Task 2 – Calculating Al using SDE

a) According to the INTEL SDE tool, the total number of FLOPS for different numbers of threads and problem sizes is given in Table 1.

	Problem Sizes			
Threads	$0.5\mathrm{M}$	$1\mathrm{M}$	$10\mathrm{M}$	$100\mathrm{M}$
1	9 000 942 FLOP	18 000 974 FLOP	180 000 950 FLOP	1800000934FLOP
2	$9000926\mathrm{FLOP}$	$18000974\mathrm{FLOP}$	$180000918\mathrm{FLOP}$	$1800000914\mathrm{FLOP}$
4	$9000906\mathrm{FLOP}$	$18000942\mathrm{FLOP}$	$180000926{\rm FLOP}$	$1800000918\mathrm{FLOP}$

Table 1: FLOP numbers for different configurations.

b) Furthermore, the total number of bytes (read and write) is given in Table 2.

	Problem Sizes			
Threads	$0.5\mathrm{M}$	$1\mathrm{M}$	$10\mathrm{M}$	$100\mathrm{M}$
1	$120896483\mathrm{B}$	$240897640\mathrm{B}$	2 400 901 149 B	24 000 894 174 B
2	$126182868\mathrm{B}$	$246130313{\rm B}$	$2408254332\mathrm{B}$	$24012186264\mathrm{B}$
4	$145309375{\rm B}$	$260864133\mathrm{B}$	$2426388194\mathrm{B}$	$24034106726\mathrm{B}$

Table 2: Number of Bytes for different configurations.

- c) According to the INTEL SDE tool, the running times of the **stream** benchmark for different configurations is given in Table 3.
- d) The arithmetic intensity (AI) can then calculated by

$$AI = \frac{FLOP}{Bytes} . (1)$$

The arithmetic intensities for different configurations are given in Table 4.

	Problem Sizes			
Threads	$0.5\mathrm{M}$	$1\mathrm{M}$	$10\mathrm{M}$	$100\mathrm{M}$
1	$0.051645\mathrm{s}$	$0.101378\mathrm{s}$	$0.878443\mathrm{s}$	$8.699119\mathrm{s}$
2	$0.040350\mathrm{s}$	$0.060514{\rm s}$	$0.467490\mathrm{s}$	$4.452410\mathrm{s}$
4	$0.045516{\rm s}$	$0.057817\mathrm{s}$	$0.275754\mathrm{s}$	$2.329622{\rm s}$

Table 3: Running times for different configurations.

	Problem Sizes			
Threads	$0.5\mathrm{M}$	$1\mathrm{M}$	$10\mathrm{M}$	$100\mathrm{M}$
1	$0.074451\mathrm{FLOP/B}$	$0.074724\mathrm{FLOP/B}$	$0.074972\mathrm{FLOP/B}$	$0.074997\mathrm{FLOP/B}$
2	$0.071332\mathrm{FLOP/B}$	$0.073136\mathrm{FLOP/B}$	$0.074743\mathrm{FLOP/B}$	$0.074962\mathrm{FLOP/B}$
4	$0.061943\mathrm{FLOP/B}$	$0.069005\mathrm{FLOP/B}$	$0.074185\mathrm{FLOP/B}$	$0.0748936\mathrm{FLOP/B}$

Table 4: Arithmetic Intensities for different configurations.

e) The performance is then

$$Perf = \frac{FLOP}{s} . (2)$$

The performances for different configurations are given Table 5.

	Problem Sizes			
Threads	$0.5\mathrm{M}$	$1\mathrm{M}$	$10\mathrm{M}$	$100\mathrm{M}$
1	$0.174285\mathrm{GFLOP/s}$	$0.177563\mathrm{GFLOP/s}$	$0.204909\mathrm{GFLOP/s}$	$0.206918\mathrm{GFLOP/s}$
2	$0.223071\mathrm{GFLOP/s}$	$0.297468\mathrm{GFLOP/s}$	$0.385037\mathrm{GFLOP/s}$	$0.404276\mathrm{GFLOP/s}$
4	$0.197753\mathrm{GFLOP/s}$	$0.311343\mathrm{GFLOP/s}$	$0.652759\mathrm{GFLOP/s}$	$0.772658\mathrm{GFLOP/s}$

Table 5: Performances for different configurations.

Task 3 – Performance Analysis Results

a) The figure below shows the roofline model and the obtained measurements. We observed that the GFLOP/s increased with an increasing number of threads and also increased with an increasing size of the stream file. The GFLOP/s obtained shows the application is memory bound, however, it did not reach the maximum performance, i.e. the algorithm can still be improved.

