Pengenalan Citra Digital

Chapter 1

Pengolahan Citra

Pengolahan Citra adalah kegiatan memperbaiki kualitas citra agar mudah diinterpretasikan oleh manusia/mesin (komputer). Input adalah citra dan keluarannya adalah citra dengan kualitas lebih baik

Tiga Bidang Berkaitan dengan Citra

1950 Image Processing

Tiga Bidang...(lanjutan)

Computer Graphics

- *Data Visualization
- *CGI
- *Pattern Generator

GRAPHICS IN COMPUTER

Computer Vision

*Feature Detection
Feature Extraction
*Pattern Recognition
(Native and AI)

Digital Image Processing

- *Image Manipulation
- *Image Effects
- *Image Preprocessing

Hal yang dilakukan di PCD

Image Processing/ Manipulation

Digital Image Processing

Image Analysis/ Interpretation Image Coding/ Communication

Terdapat 2 jenis citra:

- Citra Kontinu yang diperoleh dari sistem optik yg menerima sinyal analog, seperti mata manusia dan kamera analog
- Citra Diskrit (disebut kemudian dengan citra digital) adalah dihasilkan melalui proses digitalisasi terhadap citra kontinu

Citra digital diperoleh dari proses digitalisasi. Ada 2 proses digitalisasi yakni:

- 1.sampling merupakan proses pengambilan nilai diskrit koordinat ruang (x,y) dengan melewatkan citra melalui grid (celah)
- 2.kuantisasi merupakan proses pengelompokkan nilai tingkat keabuan citra kontinu ke dalam beberapa level atau merupakan proses membagi skala keabuan (0,L) menjadi G buah level yg dinyatakan dengan suatu harga bilangan bulat (integer), dinyatakan sebagai

G = 2m

G: derajat keabuan,

m: bil bulat positif

Pengertian Citra Digital

Citra Digital

- Citra digital merupakan fungsi intensitas cahaya f(x,y), dimana harga x dan y merupakan koordinat spasial dan nilai fungsi pada setiap titik (x,y) tersebut merupakan tingkat keabuan citra pada titik yang bersangkutan;
- Citra digital adalah citra f(x,y) dimana dilakukan diskritisasi koordinat spasial (sampling) dan diskritisasi tingkat keabuan (kuantisasi);
- Citra digital merupakan suatu matriks dimana indeks baris dan kolomnya menyatakan suatu titik pada citra tersebut dan elemen matriksnya (yang disebut sebagai elemen gambar / piksel / pixel / picture element / pels) menyatakan tingkat keabuan pada titik tersebut.

Citra digital dinyatakan dengan matriks NXM

N = jumlah baris

 $0 \le x \le N - 1$

M = jumlah kolom

 $0 \le y \le M - 1$

L = maksimal warna intensitas (derajat keabuan/gray level)

$$0 \le f(x,y) \le L - 1$$

$$f(x,y) \approx \begin{bmatrix} f(0,0) & f(0,1) & \dots & f(0,M-1) \\ f(1,0) & f(1,1) & \dots & f(1,M-1) \\ \vdots & \vdots & \vdots & \vdots \\ f(N-1,0) & f(N-1,1) & \dots & f(N-1,M-1) \end{bmatrix}$$

Citra kontinue

Citra digital

Resolusi spasial: Tinggi (16 x 16)

Rendah (8 x 8)

Matriks citra dengan obyek angka 5

Resolusi keabuan: Tinggi (4)

Rendah (2)

Citra Digital

• Citra Digital: sampel diskret f [x,y] yang merepresentasikan citra kontinu f (x,y)

200x200

100x100

50x50

25x25

Image Acquisition / Formation

- Kamera, scanner, sensor (obtained)
- Bitmap drawing software (created)
- Mainstream formats:

BMP, JPG, PNG, GIF, TIFF, RAZ

a c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image Acquisition / Formation

Image Acquisition / Formation

Representasi Citra

FIGURE 2.18

Coordinate convention used in this book to represent digital images.

Representasi Matriks

Nilai matriks pada bagian citra yang ditandai

99	71	61	51	49	40	35	53	86	99
83	74	53	56	48	46	48	72	85	102
101	69	57	53	54	52	64	82	88	101
107	82	64	53	59	50	81	90	93	100
114	93	76	69	72	85	94	99	95	99
117	108	94	92	97	101	100	108	105	98
116	114	109	106	105	108	108	102	107	110
115	113	109	114	111	111	113	108	111	115
110	113	111	108	106	108	110	115	120	122
103	107	106	108	109	114	120	124	124	132

Representasi Matriks

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

183	160	94	153	194	163	132	165
183	153	116	176	187	166	130	169
179	168	171	182	179	170	131	167
177	177	179	177	179	165	131	167
178	178	179	176	182	164	130	171
179	180	180	179	183	169	132	169
179	179	180	182	183	170	129	173
180	179	181	179	181	170	130	169
-							_

H=256

Divide into 8x8 blocks

W=256

Resolusi Citra

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Resolusi Citra

abc def

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Komponen Warna

Monochrome image

R[x,y] = G[x,y] = B[x,y]

Red R[x,y]

Green G[x,y]

Blue B[x,y]

PENGOLAHAN CITRA

Operasi-operasi pada pengolahan citra diterapkan pada citra bila :

 Perbaikan atau memodifikasi citra dilakukan untuk meningkatkan kualitas penampakan citra/ menonjolkan beberapa aspek informasi yang terkandung dalam citra (image enhancement).
 Contoh: perbaikan kontras gelap/terang, perbaikan tepian obyek, penajaman, pemberian warna semu, dll.

- Adanya cacat pada citra sehingga perlu dihilangkan/diminimumkan (image restoration).
 Contoh: penghilangan kesamaran (deblurring); citra tampak kabur karena pengaturan fokus lensa tidak tepat/kamera goyang, penghilangan noise.
- Elemen dalam citra perlu dikelompokkan, dicocokkan atau diukur (image segmentation).
 Operasi ini berkaitan erat dengan pengenalan pola.

- Diperlukan ekstraksi ciri-ciri tertentu yang dimiliki citra untuk membantu dalam pengidentifikasian obyek (image analysis). Proses segmentasi kadangkala diperlukan untuk melokalisasi obyek yang diinginkan dari sekelilingnya. Contoh: pendeteksian tepi obyek.
- Sebagian citra perlu digabung dengan bagian citra yang lain (image reconstruction). Contoh: beberapa foto rontgen digunakan untuk membentuk ulang gambar organ tubuh

- Citra perlu dimampatkan (image compression).
 Contoh: suatu file citra berbentuk bmp berukuran
 258 kb dimampatkan dengan metode JPEG menjadi berukuran 49 kb.
- Menyembunyikan data rahasia (berupa teks/citra) pada citra sehingga keberadaan data rahasia tersebut tidak diketahui orang (steganografi & watermarking)

Alur Diagram PCD

Intermediate Level Processing

Pengolahan Citra Digital

- Perbaikan kualitas citra (Image Enhancement)
- Pemugaran citra (Image Restoration)
- Segmentasi citra (Image Segmentation)
- Rekonstruksi citra (Image Reconstruction)
- Penambahan efek citra (Image Stylization)
- Pemampatan citra (Image Compression)
- Analisis citra (Image Analysis)

Peningkatan Kontras

Penajaman (Sharpening)

Pengkaburan (Bluring)

Menghilangkan Noise

Pemugaran Citra

Segmentasi Citra

Rekonstruksi Citra

Kompresi Citra

original image 262144 Bytes

compression ratio (CR) = 108:1

image encoder compressed bitstream 00111000001001101... (2428 Bytes)

image decoder

Image Analysis: Edge Detection

From [Gonzalez & Woods]

Image Analysis: Face Detection

From Prof. Xin Li

Image Analysis: Skin Detection

Image Analysis: Image Matching

From Prof. Xin Li

Thank You!