TrenchT2[™] HiperFET Power MOSFET

IXFH110N15T2

N-Channel Enhancement Mode Avalanche Rated

V _{DSS}	=	150V
D25	=	110A
R _{DS(on)}	≤	$13 \mathrm{m}\Omega$

Symbol Test Conditions (T _J = 25°C unless otherwise specified)		Cha Min.	racteri: Typ.		
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250\mu A$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$			25	μΑ
	$V_{GS} = 0V$ $T_{J} = 150^{\circ}C$			500	μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Notes 1, 2$			13	mΩ

G = Gate	D	= Drain
S = Source	TAB	= Drain

Features

- International standard package
- 175°C Operating Temperature
- High current handling capability
- Fast intrinsic Rectifier
- Dynamic dV/dt rated
- Low R_{DS(on)}

Advantages

- Easy to mount
- Space savings
- High power density

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor drives
- Uninterruptible power supplies
- High speed power switching applications

Symbol	Test Conditions			Values
$(1_{J} = 25^{\circ}C_{I}$, unless otherwise specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$	75	115	S
C _{iss}			8600	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		685	pF
C _{rss})		77	pF
t _{d(on)}	Desiration Control in a Times		33	ns
t _r	Resistive Switching Times $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		16	ns
t _{d(off)}	$v_{GS} = 10V$, $v_{DS} = 0.3 V_{DSS}$, v_{DSS} , v_{DSS} , v_{DSS}		33	ns
t _f) ''a ==== (======,		18	ns
Q _{g(on)}			150	nC
\mathbf{Q}_{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		42	nC
\mathbf{Q}_{gd})		46	nC
R _{thJC}				0.31 °C/W
R _{thCH}			0.21	°C/W

Source-Drain Diode

SymbolTest ConditionsChara $(T_J = 25^{\circ}C, \text{ unless otherwise specified})$ Min.			stic Values	5
I _s	$V_{GS} = 0V$		110	Α
I _{SM}	Repetitive, Pulse width limited by $T_{_{\rm JM}}$		440	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$		1.3	V
t _{rr}	$I_{\rm F} = 55A, V_{\rm GS} = 0V$	85	5	ns
I _{RM}	$-di/dt = 100A/\mu s$	6.8	;	Α
$Q_{_{RM}}$	V _R = 75V	290)	nC

Terminals: 1 - Gate 2 - Drain

וטן.	ivillimeter		inches	
	Min.	Max.	Min.	Max.
Α	4.7	5.3	.185	.209
A,	2.2	2.54	.087	.102
A ₂	2.2	2.6	.059	.098
b	1.0	1.4	.040	.055
b,	1.65	2.13	.065	.084
b ₂	2.87	3.12	.113	.123
С	.4	.8	.016	.031
D	20.80	21.46	.819	.845
Е	15.75	16.26	.610	.640
е	5.20	5.72	0.205	0.225
L	19.81	20.32	.780	.800
L1		4.50		.177
ØP	3.55	3.65	.140	.144
Q	5.89	6.40	0.232	0.252
R	4.32	5.49	.170	.216

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 55A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 55A$ Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

IXFH110N15T2

Fig. 9. Forward Voltage Drop of **Intrinsic Diode** 350 300 250 200 150 $T_{,J} = 150^{\circ}C$ 100 $T_J = 25^{\circ}C$ 50 0.5 0.3 0.6 0.7 0.9 1.1 1.2 1.0 V_{SD} - Volts

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions, $% \ensuremath{\mathsf{IXYS}}$ and $% \ensuremath{\mathsf{dimensions}}$.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off
Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off
Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance

