

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC150436

1 of 44 Page:

FCC Radio Test Report FCC ID: 2AJ9Z-4GX9

Original Grant

Report No. TB-FCC150436

Applicant EMATIC LIMITED

Equipment Under Test (EUT)

EUT Name ROCK X9+

Model No. ROCK X9+

Serial No. N/A

EXTREM Brand Name

Receipt Date 2016-11-04

Test Date 2016-11-05 to 2016-12-09

Issue Date 2016-12-10

Standards FCC Part 15: 2016, Subpart C(15.247)

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer

Approved&

Authorized

LVAN SU fogtoi.

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Fax: +86 75526509195

Page: 2 of 44

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	6
	1.7 Measurement Uncertainty	
	1.8 Test Facility	7
2.	TEST SUMMARY	8
3.	TEST EQUIPMENT	9
4.	CONDUCTED EMISSION TEST	10
	4.1 Test Standard and Limit	
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	16
	5.1 Test Standard and Limit	16
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	19
	5.5 Test Data	19
6.	RESTRICTED BANDS REQUIREMENT	28
	6.1 Test Standard and Limit	28
	6.2 Test Setup	
	6.3 Test Procedure	28
	6.4 EUT Operating Condition	29
	6.5 Test Data	29
7.	BANDWIDTH TEST	35
	7.1 Test Standard and Limit	35
	7.2 Test Setup	35
	7.3 Test Procedure	35
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	38
	8.1 Test Standard and Limit	
	8.2 Test Setup	

Page: 3 of 44

	8.3 Test Procedure	38
	8.4 EUT Operating Condition	
	8.5 Test Data	39
9.	POWER SPECTRAL DENSITY TEST	41
	9.1 Test Standard and Limit	41
	9.2 Test Setup	41
	9.3 Test Procedure	
	9.4 EUT Operating Condition	41
	9.5 Test Data	42
10.	ANTENNA REQUIREMENT	44
	10.1 Standard Requirement	44
	10.2 Antenna Connected Construction	
	10.3 Result	

Page: 4 of 44

1. General Information about EUT

1.1 Client Information

Applicant: EMATIC LIMITED

Address : Unit 17, 9/F Tower A, New Mandarin Plaza NO, 14 Science Museum

Rd, TST, Hong Kong, China

Manufacturer : EMATIC LIMITED

Address : Unit 17, 9/F Tower A, New Mandarin Plaza NO, 14 Science Museum

Rd, TST, Hong Kong, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	1	ROCK X9+	THURS IN THE		
Models No.	:	ROCK X9+			
Model Difference	1	N/A			
		Operation Frequency:	Bluetooth 4.0(BLE): 2402MHz~2480MHz		
		Number of Channel:	Bluetooth 4.0(BLE): 40 channels see note(3)		
Product		RF Output Power:	0.673 dBm Conducted Power		
Description		Antenna Gain:	-3.16dBi PIFA Antenna		
		Modulation Type:	GFSK		
		Bit Rate of Transmitter:	1Mbps(GFSK)		
Power Supply	•		DC power supplied by AC/DC Adapter. DC Voltage supplied from Li-ion battery.		
Power Rating	:	Input: AC 100~240V 50/60Hz, 0.3A. Output: 5V/2000mA. DC 3.7V from 4200mA Li-ion battery.			
Connecting I/O Port(S)		Please refer to the User's Manual			

Note:

- (1) This Test Report is FCC Part 15.247 for BLE, the test procedure follows the FCC KDB 558074 D01 DTS Means Guidance v03r05.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458

Page: 5 of 44

		CHILL			
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Charging with TX Mode

TX Mode

1.4 Description of Support Units

The EUT had been tested as an independent unit.

Page: 6 of 44

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	Charging with TX Mode			

For Radiated Test						
Final Test Mode Description						
Mode 1	Charging with TX Mode					
Mode 2	TX Mode (Channel 00/20/39)					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	*#*#3646633#*#*		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

Page: 7 of 44

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
N. W. Const.	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 8 of 44

2. Test Summary

Standard Section		Took Itam	ludane ent		
FCC	IC	Test Item	Judgment	Remark	
15.203		Antenna Requirement	PASS	N/A	
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	PASS	N/A	

Page: 9 of 44

3. Test Equipment

Conducte	d Emission Te	st			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 22, 2016	Jul. 21, 2017
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 22, 2016	Jul. 21, 2017
LISN	Rohde & Schwarz	ENV216	101131	Jul. 22, 2016	Jul. 21, 2017
Radiation	Emission Tes	t			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 22, 2016	Jul. 21, 2017
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 20, 2016	Mar. 19, 201
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 20, 2016	Mar. 19, 201
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 19, 2016	Mar. 18, 201
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 19, 2016	Mar. 18, 201
Pre-amplifier	Sonoma	310N	185903	Mar. 20, 2016	Mar. 19, 201
Pre-amplifier	HP	8449B	3008A00849	Mar. 26, 2016	Mar. 25, 201
Loop Antenna	Laplace instrument	RF300	0701	Mar. 19, 2016	Mar. 18, 201
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 26, 2016	Mar. 25, 201
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	Conducted Em	ission			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 22, 2016	Jul. 21, 2017
Spectrum Analyzer	Rohde & Schwarz	ESCI	100321	Jul. 22, 2016	Jul. 21, 2017
Power Meter	Anritsu	ML2495A	25406005	Jul. 22, 2016	Jul. 21, 2017
Power Sensor	Anritsu	ML2411B	25406005	Jul. 22, 2016	Jul. 21, 2017

Page: 10 of 44

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

TO USE PROPERTY OF THE PARTY OF	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 11 of 44

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

Page: 12 of 44

UT:		ROCK	X9+		Model	Name :	R	OCK X9+
empe	rature:	25℃	100		Relativ	e Humi	dity: 5	5%
est Vo	oltage:	AC 12	0V/60 Hz	Aller		1 6		
ermin	nal:	Line			CILLE		- N	MA
est M	ode:	Charg	ing with TX	Mode		em)		
emar	k:	Only w	vorse case is	reported		A Property		188
90.0 d	dBu∀							
							QP: AVG:	
_								
								+
			•				- Verling of the State of the S	Holy Wy
40	Murth	A A.A.	$\mathcal{N}_{\mathcal{N}}$. kda hodest &	was year of the souther find a souther	ndyghiller Lalbanh	aguig and and an	L by
'	W . W	√ M M M	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	vQDVYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	* n'.W*	P (W)	andress	~~ <u>`</u>
4	1/1/1	$\sqrt{\sqrt{N}}$		WWWWWWWWW	14 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1	my party	market distribution of the second	pe
	Q 4. V		1 4.000	4				V _{AV}
10 0.150		0.5		(MHz)	5			30.000
			Reading	Correct	Measure-			
N I -	NAL.		_			Limit	Over	
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over	
		MHz	Level dBuV	Factor dB	ment dBuV	dBuV	dB	Detector
1	0.	MHz 2940	dBuV 29.95	Factor dB 10.02	ment dBuV 39.97	dBu∀ 60.41	dB -20.44	QP
1 2	0.	MHz	dBuV 29.95 19.25	dB 10.02 10.02	ment dBu√ 39.97 29.27	dBu√ 60.41 50.41	dB -20.44 -21.14	QP AVG
1	0.	MHz 2940	dBuV 29.95	Factor dB 10.02	ment dBuV 39.97	dBu√ 60.41 50.41 56.00	dB -20.44 -21.14 -15.36	QP
1 2	0. 0. 0.	MHz 2940 2940	dBuV 29.95 19.25	dB 10.02 10.02	ment dBu√ 39.97 29.27	dBu√ 60.41 50.41 56.00	dB -20.44 -21.14	QP AVG QP
1 2 3	0. 0. 0. * 0.	MHz 2940 2940 6460	Level dBuV 29.95 19.25 30.55	Tactor dB 10.02 10.02 10.09	ment dBuV 39.97 29.27 40.64	dBuV 60.41 50.41 56.00 46.00	dB -20.44 -21.14 -15.36	QP AVG QP
1 2 3 4	0. 0. 0. * 0.	MHz 2940 2940 6460 6460	Level dBuV 29.95 19.25 30.55 25.02	Factor dB 10.02 10.02 10.09 10.09	ment dBuV 39.97 29.27 40.64 35.11	dBuV 60.41 50.41 56.00 46.00 56.00	dB -20.44 -21.14 -15.36 -10.89	QP AVG QP AVG
1 2 3 4 5	0. 0. 0. * 0. 0.	MHz 2940 2940 6460 6460 7900	Level dBuV 29.95 19.25 30.55 25.02 27.68	Factor dB 10.02 10.02 10.09 10.09 10.10	ment dBuV 39.97 29.27 40.64 35.11 37.78	dBuV 60.41 50.41 56.00 46.00 56.00	dB -20.44 -21.14 -15.36 -10.89 -18.22	QP AVG QP AVG QP
1 2 3 4 5	0. 0. * 0. 0. 0.	MHz 2940 2940 6460 6460 7900	Level dBuV 29.95 19.25 30.55 25.02 27.68 20.20	Factor dB 10.02 10.02 10.09 10.10 10.10	ment dBuV 39.97 29.27 40.64 35.11 37.78 30.30	dBuV 60.41 50.41 56.00 46.00 56.00 56.00	dB -20.44 -21.14 -15.36 -10.89 -18.22 -15.70	QP AVG QP AVG QP AVG
1 2 3 4 5 6	0. 0. * 0. 0. 0. 3.	MHz 2940 2940 6460 6460 7900 7900 6420	Level dBuV 29.95 19.25 30.55 25.02 27.68 20.20 20.76	Factor dB 10.02 10.02 10.09 10.09 10.10 10.10 10.01	ment dBuV 39.97 29.27 40.64 35.11 37.78 30.30 30.77	dBuV 60.41 50.41 56.00 46.00 56.00 46.00 46.00	dB -20.44 -21.14 -15.36 -10.89 -18.22 -15.70 -25.23	QP AVG QP AVG QP AVG QP
1 2 3 4 5 6 7 8	0. 0. * 0. 0. 0. 3. 3.	MHz 2940 2940 6460 6460 7900 7900 6420 6420	Level dBuV 29.95 19.25 30.55 25.02 27.68 20.20 20.76 14.52	Factor dB 10.02 10.02 10.09 10.09 10.10 10.10 10.01 10.01	ment dBuV 39.97 29.27 40.64 35.11 37.78 30.30 30.77 24.53	dBuV 60.41 50.41 56.00 46.00 56.00 46.00 46.00 60.00	dB -20.44 -21.14 -15.36 -10.89 -18.22 -15.70 -25.23 -21.47	QP AVG QP AVG QP AVG QP AVG
1 2 3 4 5 6 7 8	0. 0. * 0. 0. 3. 3. 7.	MHz 2940 2940 6460 6460 7900 7900 6420 6420 3300	Level dBuV 29.95 19.25 30.55 25.02 27.68 20.20 20.76 14.52 22.23	Factor dB 10.02 10.02 10.09 10.09 10.10 10.10 10.01 10.01 10.07	ment dBuV 39.97 29.27 40.64 35.11 37.78 30.30 30.77 24.53 32.30	dBuV 60.41 50.41 56.00 46.00 56.00 46.00 46.00 60.00	dB -20.44 -21.14 -15.36 -10.89 -18.22 -15.70 -25.23 -21.47 -27.70	QP AVG QP AVG QP AVG QP AVG

Page: 13 of 44

EUT:	ROCK X9+		Model Na	ame :	ROCK X9+
Temperature:	25℃	2 13		Humidity:	55%
Test Voltage:	AC 120V/60 Hz		(IHT)		
Terminal:	Neutral		3	11170	
Test Mode:	Charging with TX	Mode			- TIN
Remark:	Only worse case	is reported	CHILL		1100
90.0 dBuV					
					QP: — AVG: —
J	XX				Annual play and the group the
40 000 000 000 000		LaM ANGLAHAMANALALA	N HANDA WALLAND	edperty/fictions/some/dperco/h	M
- 4 0	A MAINAM.	A Malus an	,		
		M. n. Momeron	de la digraca de la companya de como	and the state of the state of the state of	peak
	ALCMA.	(Mallin	W. W		VAVG
-10					
0.150	0.5	(MHz)	5		30.000
	Deeding	Courset	Magazira		
No. Mk. F	Reading req. Level	Correct Factor	Measure- ment	Limit (Over
N	MHz dBu∨	dB	dBuV	dBuV	dB Detector
1 0.3	3620 30.80	10.07	40.87	58.68 -1	7.81 QP
2 0.3	3620 19.16	10.07	29.23	48.68 -1	9.45 AVG
3 * 0.6	34.14	10.02	44.16	56.00 -1	1.84 QP
4 0.6	6540 20.59	10.02	30.61	46.00 -1	5.39 AVG
5 0.7	7940 31.54	10.06	41.60	56.00 -1	4.40 QP
6 0.7	7940 16.07	10.06	26.13	46.00 -1	9.87 AVG
-	2260 28.01	10.14	38.15	56.00 -1	
	2260 13.52	10.14	23.66	46.00 -2	
	3900 31.56	10.06	41.62	60.00 -1	
	3900 18.61	10.06	28.67	50.00 -2	
	3220 32.11	10.06	42.17	60.00 -1	
	32.11 3220 20.96	10.06	31.02	50.00 -1	
	20.90	10.00	51.02	30.00 -1	0.30 AVG
Emission Level=	Read Level+ Corr	ect Factor			

Page: 14 of 44

(10)		The same	The same	113
EUT:	ROCK X9+		Model Name :	ROCK X9+
Temperature:	25℃	THE STATE OF THE S	Relative Humidity:	55%

Test Voltage: AC 240V/60 Hz

Terminal: Line

Test Mode: Charging with TX Mode

Remark: Only worse case is reported

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1		0.1860	34.70	9.99	44.69	64.21	-19.52	QP
2		0.1860	26.84	9.99	36.83	54.21	-17.38	AVG
3		0.6700	32.94	10.10	43.04	56.00	-12.96	QP
4	*	0.6700	26.48	10.10	36.58	46.00	-9.42	AVG
5		0.7539	31.43	10.11	41.54	56.00	-14.46	QP
6		0.7539	25.71	10.11	35.82	46.00	-10.18	AVG
7		2.1780	27.21	10.05	37.26	56.00	-18.74	QP
8		2.1780	21.25	10.05	31.30	46.00	-14.70	AVG
9		17.1820	36.21	10.22	46.43	60.00	-13.57	QP
10		17.1820	20.44	10.22	30.66	50.00	-19.34	AVG
11		19.2020	34.91	10.18	45.09	60.00	-14.91	QP
12		19.2020	19.24	10.18	29.42	50.00	-20.58	AVG

Page: 15 of 44

EUT:	ROCK X9+	600	Model Na	ame :	RO	CK X9+
Temperature:	25℃	a W	Relative	Humidity	y: 55%	o o
Test Voltage:	AC 240V/60 Hz		July 1			1
Terminal:	Neutral			100	100	
Test Mode:	Charging with T	K Mode				miles in
Remark:	Only worse case	is reported	allin		a 1	
40 X		Mphlupp-Abrical Abrillan		My Marine	QP: AVG:	peak
-10 0.150	0.5 Reading	(MHz) Correct	Measure-			30.000
No. Mk. Fr	req. Level	Factor	ment	Limit	Over	
M	lHz dBuV	dB	dBu∀	dBuV	dB	Detector
1 0.18	819 37.41	10.12	47.53	64.39	-16.86	QP
2 0.18	819 22.00	10.12	32.12	54.39	-22.27	AVG
3 * 0.60	660 31.86	10.02	41.88	56.00	-14.12	QP
4 0.66	660 16.78	10.02	26.80	46.00	-19.20	AVG
5 3.3	700 26.75	10.06	36.81	56.00	-19.19	QP
6 3.3	700 12.54	10.06	22.60	46.00	-23.40	AVG
7 4.80	019 27.36	10.06	37.42	56.00	-18.58	QP
8 4.80	019 14.36	10.06	24.42	46.00	-21.58	AVG
9 8.49	938 30.51	10.11	40.62	60.00	-19.38	QP
10 8.49	938 15.57	10.11	25.68	50.00	-24.32	AVG
11 17.88	859 34.32	10.06	44.38	60.00	-15.62	QP
12 17.88	859 18.57	10.06	28.63	50.00	-21.37	AVG
mission Level= R	lead Level+ Corre	ect Factor				

Page: 16 of 44

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.247(d)

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBu	V/m)(at 3 M)	Class B (dBuV/m)(at 3 M)		
(MHz)	Peak	Average	Peak	Average	
Above 1000	80	60	74	54	

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

Page: 17 of 44

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 18 of 44

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 19 of 44

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 20 of 44

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

EUT:	ROCK	X9+		Model:		ROCI	K X9+
emperature:	25℃	Million		Relative H	lumidity:	55%	
Test Voltage:	AC 120	0V/60Hz	MUDO		MAGE		1
Ant. Pol.	Horizo	ntal					
Test Mode:	BLE T	X 2402 Mod	е				
Remark:	Only w	orse case is	reported		Million		1
80.0 dBuV/m							
30	2 X	3	*	5 6 XX	(RF)FCC 15C	3M Radiation Margin -6	dB
.20		* Manualus		7			
	50 60 70		MHz)	300	400 500	600 700	1000.00
30.000 40 5	50 60 70 Freq.						1000.00
30.000 40 5		80 Reading	(MHz) Correct	300 Measure-	400 500	600 700	1000.00
30.000 40 5 No. Mk.	Freq.	Reading Level	(MHz) Correct Factor	300 Measure- ment	400 500 Limit dBuV/m	600 700 Over	
No. Mk.	Freq.	Reading Level	(MHz) Correct Factor dB/m	Measure- ment dBuV/m	400 500 Limit dBuV/m 40.00	Over	Detecto
No. Mk. 1 30 2 58	Freq. MHz).2111	Reading Level dBuV 37.01	(MHz) Correct Factor dB/m -14.28	Measure- ment dBuV/m 22.73	400 500 Limit dBuV/m 40.00 40.00	Over dB -17.27	Detecto
No. Mk. 1 30 2 58 3 93	Freq. MHz 0.2111 3.4074	Reading Level dBuV 37.01 47.78	(MHz) Correct Factor dB/m -14.28 -24.59	Measure- ment dBuV/m 22.73 23.19	400 500 Limit dBuV/m 40.00 40.00	Over dB -17.27 -16.81	Detecto peak peak
No. Mk. 1 30 2 58 3 93 4 186	Freq. MHz 0.2111 3.4074 3.1132	Reading Level dBuV 37.01 47.78 46.97	(MHz) Correct Factor dB/m -14.28 -24.59 -22.46	300 Measure- ment dBuV/m 22.73 23.19 24.51	400 500 Limit dBuV/m 40.00 40.00 43.50	Over dB -17.27 -16.81 -18.99	Detecto peak peak peak

^{*:}Maximum data x:Over limit !:over margin

Page: 21 of 44

EUT:	ROCK X9+	Model:	ROCK X9+				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		C. C. C.				
Test Mode:	BLE TX 2402 Mode	CHILD	3 100				
Remark:	Only worse case is reported						
	•						

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	42.8998	52.90	-21.52	31.38	40.00	-8.62	peak
2	2		45.3755	53.40	-22.56	30.84	40.00	-9.16	peak
3	3		51.8430	54.52	-24.52	30.00	40.00	-10.00	peak
4	1		160.3456	51.81	-20.30	31.51	43.50	-11.99	peak
5	5		165.4866	53.64	-20.63	33.01	43.50	-10.49	peak
6	6		295.1469	52.92	-16.75	36.17	46.00	-9.83	peak

^{*:}Maximum data x:Over limit !:over margin

Page: 22 of 44

Above 1GHz

EUT:	ROCK X9+	Model:	ROCK X9+					
Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal							
Test Mode:	BLE Mode TX 2402 MHz							
Remark:	No report for the emission w	No report for the emission which more than 10 dB below the						
	prescribed limit.							

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4805.000	44.68	13.44	58.12	74.00	-15.88	peak
2	*	4807.425	31.70	13.47	45.17	54.00	-8.83	AVG

Page: 23 of 44

EUT:	ROCK X9+	Model:	ROCK X9+			
Temperature:	25℃ Relative Humidity: 55%					
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical		C. C. C.			
Test Mode:	BLE Mode TX 2402 MHz	THE PARTY OF THE P	J. File			
Remark:	No report for the emission which more than 10 dB below the					
	prescribed limit.					

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.250	31.84	13.44	45.28	54.00	-8.72	AVG
2		4806.210	42.75	13.46	56.21	74.00	-17.79	peak

Page: 24 of 44

EUT:	ROCK X9+	Model:	ROCK X9+				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal		C. C. Times				
Test Mode:	BLE Mode TX 2442 MHz	BLE Mode TX 2442 MHz					
Remark:	No report for the emission wh	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.182	42.47	13.90	56.37	74.00	-17.63	peak
2	*	4882.065	31.36	13.90	45.26	54.00	-8.74	AVG

Page: 25 of 44

EUT:	ROCK X9+	Model:	ROCK X9+				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	BLE Mode TX 2442 MHz		a William				
Remark:	No report for the emission v	No report for the emission which more than 10 dB below the					
	prescribed limit.						
i							

No	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.721	44.74	13.90	58.64	74.00	-15.36	peak
2	*	4882.576	31.37	13.90	45.27	54.00	-8.73	AVG

Page: 26 of 44

EUT:	ROCK X9+	Model:	ROCK X9+				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal		C. Comment				
Test Mode:	BLE Mode TX 2480 MHz	THE PARTY OF THE P	a true				
Remark:	No report for the emission v	No report for the emission which more than 10 dB below the					
	prescribed limit.						

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.595	44.57	14.36	58.93	74.00	-15.07	peak
2	*	4960.432	30.77	14.36	45.13	54.00	-8.87	AVG

Page: 27 of 44

EUT:	ROCK X9+	Model:	ROCK X9+				
Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		Carrier Contract				
Test Mode:	BLE Mode TX 2480 MHz		a Viva				
Remark:	No report for the emission v	No report for the emission which more than 10 dB below the					
	prescribed limit.						
i							

No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4958.893	45.35	14.35	59.70	74.00	-14.30	peak
2	*	4960.102	30.71	14.36	45.07	54.00	-8.93	AVG

Page: 28 of 44

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dBuV/m)(at 3 M)		
Band (MHz)	Peak	Average	
2310 ~2390	74	54	
2483.5 ~2500	74	54	

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked

Page: 29 of 44

and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 30 of 44

(1) Radiation Test

EUT:	ROCK X9+	Model:	ROCK X9+
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2402 MHz		0.0
Remark:	N/A	- A W	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	43.97	0.77	44.74	74.00	-29.26	peak
2		2390.000	29.94	0.77	30.71	54.00	-23.29	AVG
3	*	2402.000	77.55	0.82	78.37	Fundamenta	I Frequency	AVG
4	Χ	2402.300	82.45	0.82	83.27	Fundamenta	Frequency	peak

Page: 31 of 44

Emission Level= Read Level+ Correct Factor

peak

Fundamental Frequency

Page: 32 of 44

EUT:	ROCK X9+	Model:	ROCK X9+			
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	t. Pol. Horizontal					
Test Mode:	Mode: BLE Mode TX 2480 MHz					
Remark:	N/A					

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	76.19	1.15	77.34	Fundamental	Frequency	AVG
2	X	2480.200	82.37	1.15	83.52	Fundamental	Frequency	peak
3		2483.500	45.04	1.17	46.21	74.00	-27.79	peak
4		2483.500	38.13	1.17	39.30	54.00	-14.70	AVG

Page: 33 of 44

EUT:	ROCK X9+	Model:	ROCK X9+
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		111111
Ant. Pol.	Vertical	1	
Test Mode:	BLE Mode TX 2480 MHz	CHILD:	
Remark:	N/A	an and	
110.0 dBuV/m			

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	78.17	1.15	79.32	Fundamental I	Frequency	AVG
2	X	2480.100	84.19	1.15	85.34	Fundamental I	Frequency	peak
3		2483.500	47.09	1.17	48.26	74.00	-25.74	peak
4		2483.500	40.26	1.17	41.43	54.00	-12.57	AVG

Page: 34 of 44

(2) Conducted Test

EUT:	ROCK X9+	Model:	ROCK X9+			
Temperature:	25℃	55%				
Test Voltage:	AC 120V/60Hz					
Test Mode:	BLE Mode TX 2402MHz / TX 2480MHz					
Remark:	The EUT is programed in continuously transmitting mode					

Page: 35 of 44

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Test Item Limit					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5				

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

Page: 36 of 44

7.5 Test Data

EUT: ROCK X9+		Model:	ROCK X9+				
Temperature: 25°C		Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	THU:	1				
Test Mode:	BLE TX Mode	The same of the sa	A V				
Channel frequence	cy 6dB Bandwidth	99% Bandwidth	Limit				
(MHz)	(kHz)	(kHz)	(kHz)				
2402	725.130	1041.30					
2442	734.454	1042.00	>=500				
2480	739.320	1038.90					
BLE Mode							

2402 MHz

Page: 37 of 44

Page: 38 of 44

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)(3)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Limit	Frequency Range(MHz)				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5				

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r05.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 39 of 44

8.5 Test Data

JT:		ROCK >	(9+		Model:		ROCK X9+
mperatu	ıre:	25℃		Alle	Relative I	Humidity:	55%
st Volta	ge:	AC 120	V/60Hz		CHIL		1
st Mode	:	BLE TX	Mode				33
hannel f	requen	cy (MHz)	Tes	st Result	(dBm)	L	imit (dBm)
	2402			-1.330)		
	2442			0.673	3		30
	2480			-1.759	9		
			l	BLE Mo	ode	1	
				2402 M	Hz		
200	au 6 45.41	C.OO N 47	2040				
🔆 Agile	ent 15:45	5:28 Nov 15	, 2016			Mki	-1 2 4021950 GHz
Ref 15 dl		5:28 Nov 15	, 2016 Atten 25 d	IB		Mkı	r1 2.4021950 GHz -1.33 dBm
Ref 15 dl Peak		5:28 Nov 15		IB		Mkı	
Ref 15 dl Peak Log		5:28 Nov 15		IB	1	Mkı	
Ref 15 dl Peak Log		5:28 Nov 15		IB	1 •	Mkı	
Ref 15 dl Peak Log 10 dB/		5:28 Nov 15		IB	1 •	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1				IB	1 •	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1 dB	Marker 2.4021	95000 (Atten 25 d	IB	\$	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1 dB	Bm Marker	95000 (Atten 25 d	IB	1 •	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1 dB	Marker 2.4021	95000 (Atten 25 d	IB	•	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1 dB	Marker 2.4021	95000 (Atten 25 d	IB	1	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1 dB	Marker 2.4021	95000 (Atten 25 d	IB	1 •	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1 dB	Marker 2.4021	95000 (Atten 25 d	IB	•	Mkı	
Ref 15 dl Peak Log 10 dB/ Offst 1 dB	Marker 2.4021	95000 (Atten 25 d	IB	1	Mkı	

#Res BW 1 MHz

Report No.: TB-FCC150436

Page: 40 of 44

#VBW 3 MHz

Sweep 5 ms (401 pts)

Page: 41 of 44

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item	Limit	Frequency Range(MHz)				
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5				

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r05.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.

Page: 42 of 44

9.5 Test Data

EUT:	ROCK X9+	Model:	ROCK X9+
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		(III)
Test Mode:	BLE TX Mode	WW.	

Channel Frequency	Power Density	Limit	Result
(MHz)	(dBm)	(dBm)	Result
2402	-19.32		
2442	-14.26	8	PASS
2480	-16.77		

BLE Mode

2402 MHz

Page: 43 of 44

Page: 44 of 44

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is -3.16 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a PIFA Antenna. It complies with the standard requirement.

	Antenna Type
33	□ Permanent attached antenna
40.7	✓ Unique connector antenna
	□ Professional installation antenna

----END OF REPORT-----