作者: 张陈成

学号: 023071910029

三角范畴抄书笔记

三角范畴简介

目录

1	预三角范畴 	1
2	同调核与同调余核	3
3	好三角的可裂性	5
4	三角范畴	7
5	基变换	8
6	· 第一音 习题	a

1 预三角范畴

原旨 1. 以下谈论的范畴都是本质小的. 换言之, Ob 在同构下的等价类构成集合.

定义 1 (加法范畴的自等价). 称 $T: \mathbb{C} \to \mathbb{C}$ 为范畴 \mathbb{C} 到自身的范畴等价, 当且仅当

- 1. (全) $T: \operatorname{Hom}_{\mathfrak{C}}(X,Y) \to \operatorname{Hom}_{\mathfrak{C}}(TX,TY)$ 对一切 $X,Y \in \mathsf{Ob}(\mathfrak{C})$ 满.
- 2. (忠实) $T: \operatorname{Hom}_{\mathcal{C}}(X,Y) \to \operatorname{Hom}_{\mathcal{C}}(TX,TY)$ 对一切 $X,Y \in \mathsf{Ob}(\mathcal{C})$ 单.
- 3. (稠密/本质满) 对任意 $X' \in Ob(C)$, 总存在 $X \in Ob(C)$ 使得 $TX \simeq X'$.
- 注 1. 等价地, 存在函子 $S: \mathcal{C} \to \mathcal{C}$ 与函子的自然同构 $TS \simeq \mathrm{id}_{\mathcal{C}} \simeq ST$. 不妨直接假定 $S^{-1} = T^1$.

定义 2 (三角与三角射). 称 (\mathcal{C},T) 中的三角为六元组 (X,Y,Z,u,v,w), 即如下态射序列

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$
.

三角间的态射 (下称"三角射") 对应态射范畴的三角. 即, 使得下图交换的三元组 (f,g,h).

¹待补充???

定义 3 (三角同构). 若三角间的某态射有左逆及右逆 (从而左右逆相等), 则称两三角同构.

例 1. 三角 (X,Y,Z,u,v,w) 与 $(X,Y,Z,\varepsilon_1u,\varepsilon_2v,\varepsilon_3w)$ 同构. 其中 $\varepsilon_i \in \{\pm 1\}, \varepsilon_1\varepsilon_2\varepsilon_3 = 1$.

定义 4 (预三角范畴). 给定范畴 C, 范畴自同构函子 $T: C \to C$, 以及某些三角组成的类 E. 称 (C, T, E) 为预三角范畴, 若满足以下命题.

- 1. 8 中存在形如以下的三角.
 - (a) $X \xrightarrow{\mathrm{id}_X} X \xrightarrow{0} 0 \xrightarrow{0} TX$ 为三角.
 - (b) 任意 $X \xrightarrow{f} Y$ 可嵌入形如 $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h'} TX$ 的三角.
 - (c) 对任意 $(X,Y,Z,u,v,w) \in \mathcal{E}$, 若 \mathcal{C} 中存在同构的三角 $(X,Y,Z,u,v,w) \simeq (X',Y',Z',u',v',w')$, 则后者也在 \mathcal{E} 中.
- 2. 8 中三角的顺时针旋转也在 8 中. 此处顺时针旋转是指

$$\left[X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \stackrel{w}{\longrightarrow} TX\right] \Longrightarrow \left[Y \stackrel{v}{\longrightarrow} Z \stackrel{w}{\longrightarrow} TX \stackrel{-Tu}{\longrightarrow} TY\right] \; .$$

 $X \xrightarrow{u} Y$ 3. 态射范畴的态射也可补全作三角. 换言之, 交换图 $f \downarrow \qquad \qquad \downarrow_g$ 总能被补全作交换图 $X' \xrightarrow{u'} Y'$

$$\begin{array}{cccc} X & \xrightarrow{u} & Y & \xrightarrow{v} & Z & \xrightarrow{w} & TX \\ f \downarrow & & \downarrow g & & \downarrow h & & \downarrow Tf \\ X' & \xrightarrow{u'} & Y' & \xrightarrow{v} & Z' & \xrightarrow{w'} & TX' \end{array}$$

称 ε 中的三角为 "好三角", 也可想象之为 "正合列".

- 注 2. 以上定义中条件可改进如下
 - 1. 1-(b) 中嵌入位置是任意的,
 - 2. 1-(b) 中嵌入的三角在同构意义下唯一.
 - 3. 2 是充要的, 可定义"顺时针旋转"的逆变换为"逆时针旋转".
 - 4. $3 + \{f, g, h\}$ 中任意两者的存在性推出第三者的存在性 (不必唯一)².

往后依次证明之.

命题 1. 注 2 中的第三条成立.

证明. 任意三角在 T^{-1} 作用下得到同构的三角, 此处 T^{-2} 的逆变换为六次顺时针旋转. 因此, 好三角的六次逆时针旋转仍为好三角. 验证知逆时针旋转为 T^{-2} 与五次顺时针旋转之/复合. 反之, 若逆时针变换定义, 则定义顺时针变换为 T^2 与五次逆时针旋转之复合.

命题 2. 注 2 中的第一条成立.

²该条结论位置不妥, 往后调整之.

证明. 依定义, 存在三角

$$T^{-1}X \xrightarrow{-T^{-1}u} T^{-1}Y \xrightarrow{-T^{-1}v} T^{-1}Z \xrightarrow{-T^{-1}w} X$$
.

考虑顺时针旋转,得

$$T^{-1}Y \xrightarrow{-T^{-1}v} T^{-1}Z \xrightarrow{-T^{-1}w} X \xrightarrow{u} Y .$$

再次顺时针旋转,遂有

$$T^{-1}Z \xrightarrow{-T^{-1}w} X \xrightarrow{u} Y \xrightarrow{v} Z$$
.

命题 3. "好三角"中相继映射之复合为 0.

证明. 不妨取好三角

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$
.

将原三角补全作以下态射范畴的三角

$$X = X \longrightarrow 0 \longrightarrow TX$$

$$\parallel \qquad \qquad \downarrow \qquad \qquad \downarrow_{Tu}.$$

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

从而 vu=0. 考虑一次顺时针旋转, 则 wv=0.

2 同调核与同调余核

定义 5 (同调核, 同调余核). 预三角范畴中, 对好三角导出的映射链、

$$\cdots \longrightarrow T^{-1}Z \xrightarrow{-T^{-1}w} X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX \xrightarrow{-Tu} TY \longrightarrow \cdots$$

定义前一态射是后一态射的同调核, 后一态射是前一态射的同调余核.

- 注 3. 依照预三角范畴之定义及若干推论, 不难有以下结论.
 - 1. 恒等映射的同调核与同调余核均为 0;
 - 2. 任意态射均有同调核与同调余核, 且在同构意义下唯一;
 - 3. 同调核的同调余核即同调余核的同调核, 亦即映射本身.

命题 4 (同调余核的分解原理). 给定好三角 $(X,Y,Z,u,v,w),Y\stackrel{\alpha}{\longrightarrow} M$ 被 v 分解当且仅当 $\alpha u=0$.

证明. 若存在 φ 使得 $\varphi v = \alpha$, 考虑交换图

根据"二推三"补全左侧正方形, 得 $\alpha u = 0$. 反之, 若 $\alpha u = 0$, 则有正合列间的交换图

依照 "二推三" 补全的 φ 给出分解 $\varphi v = \alpha$.

注 4. 等价地, 好三角的交换图 $\psi \downarrow \\ X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$ 中, ψ 被 u 分解当且仅当 $v\psi = 0$.

定义 6 (上同调函子). 称预三角范畴 \mathcal{C} 到 Abel 范畴 \mathcal{A} 上的加法函子 \mathcal{H} 是上同调函子, 当且仅当 \mathcal{H} 在好三角上的作用导出长正合列

$$\cdots \xrightarrow{H(-T^{-1}v)} H(T^{-1}Z) \xrightarrow{H(-T^{-1}w)} H(X) \xrightarrow{H(u)} H(Y) \xrightarrow{H(v)} H(Z) \xrightarrow{H(w)} H(TX) \xrightarrow{H(-Tu)} \cdots$$

C 到 A 的反变上同调函子等价于 Cop 到 A 的上同调函子.

例 2. 对任意 $M \in Ob(\mathcal{C})$, 函子 $Hom_{\mathcal{C}}(M,-)$ 与 $Hom_{\mathcal{C}}(-,M)$ 均是上同调函子. 对前者, 好三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$ 给出链复形 (任意 $d \in \mathbb{Z}$)

$$\operatorname{Hom}_{\operatorname{\mathcal C}}(M,T^dX) \xrightarrow{\operatorname{Hom}_{\operatorname{\mathcal C}}(M,T^du)} \operatorname{Hom}_{\operatorname{\mathcal C}}(M,T^dY) \xrightarrow{\operatorname{Hom}_{\operatorname{\mathcal C}}(M,T^dv)} \operatorname{Hom}_{\operatorname{\mathcal C}}(M,T^dZ) \ .$$

下证明 T^dY 处正合性. 对任意 $g \in \ker \operatorname{Hom}_{\mathfrak{C}}(M, T^dv)$, 总存在 f 使得下图交换

此时 $T^{1-d}g = -(Tu)f$. 故 $g = T^{d-1}(-(Tu)f) \in \operatorname{im} \operatorname{Hom}_{\mathfrak{C}}(M, T^d u)$. 同理, $\operatorname{Hom}_{\mathfrak{C}}(-, M)$ 是反变正合的.

命题 5. 若好三角的态射中有两处映射为同构,则第三处亦然. 这也直接证明了注 2 中的第二条.

证明. 考虑三角旋转, 不失一般性地设以下交换图中 f 与 g 是同构.

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

$$f \downarrow \qquad \downarrow g \qquad \downarrow h \qquad \downarrow Tf.$$

$$X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} TX'$$

记 $h^M: \mathcal{C} \to \mathrm{Ab}, X \mapsto \mathrm{Hom}_{\mathcal{C}}(M,X)$, 则有正合列间的交换图

$$h_{Z}(X) \xleftarrow{h_{Z}(u)} h_{Z}(Y) \xleftarrow{h^{Z}(v)} h_{Z}(Z) \xleftarrow{h^{Z}(w)} h_{Z}(TX) \xleftarrow{h_{Z}(-Tu)} h_{Z}(TY)$$

$$\downarrow h_{Z}(f) \uparrow \qquad \qquad \uparrow h_{Z}(g) \qquad \qquad \uparrow h_{Z}(h) \qquad \qquad \uparrow h_{Z}(Tf) \qquad \qquad \uparrow h_{Z}(Tg) \cdot h_{Z}(X') \xleftarrow{h_{Z}(u')} h_{Z}(Y') \xleftarrow{h_{Z}(v')} h_{Z}(Z') \xleftarrow{h_{Z}(w')} h_{Z}(TX') \xleftarrow{h_{Z}(-Tu')} h_{Z}(TY')$$

此处 $\{h_Z(f), h_Z(g), h_Z(Tf), h_Z(Tg)\}$ 均为同构. 根据五引理, 中间处 $h_Z(h)$ 为同构. 显然存在 $h' \in \operatorname{Hom}_{\mathfrak{C}}(Z', Z)$ 使得 $h' \circ h = \operatorname{id}_Z \in \operatorname{End}_{\mathfrak{C}}(Z)$. 同理地, 将 h_Z 换作 $h^{Z'}$ 可知 h 有左逆与右逆, 从而 h 与 h' 为互逆的同构. \square

注 5. 仿照以上证明, 有"二推三"推论. 即, 若 $\{f,g,h\}$ 中任意两者为同构, 则第三者亦然.

原旨 2. 若无特殊说明, 默认范畴中的决出极限 (余极限) 的定向系统是小的.

定义 7 (下降). 记 \mathcal{A} 是容许极限的 Abel 范畴. 称预三角范畴到 Abel 范畴的同调函子 $\mathcal{H}: \mathcal{C} \to \mathcal{A}$ 为下降, 若其保持积.

例 3. 对任意 $M \in Ob(\mathcal{C})$, 形如 h^M 的同调函子均为下降.

定义 8 (预三角). 预三角即在一切同调函子下正合的三角. 预三角包括好三角.

命题 6. 预三角之积仍为预三角. 考虑任意下降即可.

3 好三角的可裂性

命题 7 (直和保持好三角). 给定预三角范畴 C,则好三角的有限直和仍是好三角. 若范畴允许某种无穷直和,则无穷个好三角的该种无穷直和仍是好三角.

证明. 考虑以下交换图

$$\begin{array}{c|c} X & \xrightarrow{u} & Y & \xrightarrow{v} Z & \xrightarrow{w} TX \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \downarrow & & \downarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix} & & \downarrow i & \downarrow T(\frac{1}{0}) \\ X \oplus X' & \xrightarrow{u \oplus u'} & Y \oplus Y' & \xrightarrow{g} & W & \xrightarrow{h} & T(X \oplus X') \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \uparrow & & \uparrow \begin{pmatrix} 0 \\ 1 \end{pmatrix} & & \uparrow f(\frac{0}{1}) \\ X' & \xrightarrow{u'} & Y' & \xrightarrow{v'} & Z' & \xrightarrow{w'} & TZ' \end{array}$$

其中, g 与 h 为 $u \oplus u'$ 嵌入的某个好三角中的映射. 连接映射 i 与 j 由好三角间的同态给出. 依照 "二推三" 推论, 只需证明下交换图中 $(T\binom{1}{0}, T\binom{0}{1})$ 为同构:

这是显然的:根据熟知结论,加法范畴间的函子为加法函子当且仅当其保持有限余积.对无穷情形,由于 T 是自同构,从而与极限交换.

例 4. 对预三角范畴 \mathcal{C} 与任意 $X,Y \in \mathsf{Ob}(\mathcal{C})$, 总有直和 $X \xrightarrow{\binom{1}{0}} X \oplus Y \xrightarrow{(0,1)} Y \xrightarrow{0} TX$.

定义 9 (可裂单/满). 可裂单态射即存在左逆的态射, 可裂满态射即存在右逆的态射.

命题 8. 给定好三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$,则 u 可裂单等价于 v 可裂满,亦等价于 w = 0.

证明. w = 0 时有以下交换图 (三角同构)

$$X \xrightarrow{\binom{1}{0}} X \oplus Z \xrightarrow{(0,1)} Z \xrightarrow{0} TX$$

$$\parallel \qquad \downarrow^{(\varphi,\psi)} \qquad \parallel \qquad \parallel \qquad \vdots$$

$$X \xrightarrow{y} Y \xrightarrow{y} Z \xrightarrow{y} TX$$

依照交换图, $\varphi = u$, 且 ψ 是 v 的右逆. 反之, 有交换图 (三角同构)

其中 v_r^{-1} 为 v 的右逆, 从而只能有 w=0. 这表明 w=0 与 v 可裂满是等价的. w=0 时亦有如下交换图 (三角同构)

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

$$\parallel \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \parallel \qquad \qquad \parallel \qquad \qquad \qquad \parallel$$

$$X \xrightarrow{\binom{1}{0}} X \oplus Z \xrightarrow{(0,1)} Z \xrightarrow{0} TX$$

显然 $\beta = v$, α 是 u 的左逆. 反之, 有交换图 (三角同构)

从而只能有 w=0. 这表明 w=0 与 u 可裂单是等价的.

注 6. 特别地, 若 $X \stackrel{u}{\longrightarrow} Y$ 是同构, 则有好三角的同构 $(X,Y,Z,u,v,w) \simeq (X,Y,0,u,0,0)$.

命题 9. 给定好三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$,则 u 可裂单等价于 u 是单态射.

证明. 仅证明单态射可裂. 若 u 单,则根据好三角中相邻态射复合为零知 w=0. 此时存在 φ 使得下图交换

$$\begin{array}{ccccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{0}{\longrightarrow} TX \\ \parallel & & \downarrow^{\varphi} & \downarrow & \parallel \\ X & & \longrightarrow X & \longrightarrow TX \end{array}.$$

此时 φ 为 u 的左逆, 因此 u 可裂单.

注 7. 同理, 好三角中的满态射与可裂满等价, 从而好三角中以下条件等价:

$$u$$
 单 \iff u 可裂单 \iff $w = 0 \iff$ v 满 \iff v 可裂满.

命题 10 ("二推三"的唯一性条件). 给定好三角的交换图 (实线处)

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

$$f \downarrow \qquad \qquad \downarrow h \qquad \downarrow Tf$$

$$X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} TX'$$

依定义知存在 h 使得上图交换. 若 $\operatorname{Hom}_{\mathfrak{C}}(TX, Z') = 0$ 或 $\operatorname{Hom}_{\mathfrak{C}}(Z, Y') = 0$, 则 h 唯一.

证明. 若存在 $h, h' \in \operatorname{Hom}_{\mathbb{C}}(Z, Z')$ 使得上图交换, 则 (h - h')v = 0 = w'(h - h'). 若 $\operatorname{Hom}_{\mathbb{C}}(TX, Z') = 0$ 或 $\operatorname{Hom}_{\mathbb{C}}(Z, Y') = 0$,依分解定理知 h - h' = 0.

4 三角范畴

定义 10 (三角范畴). 称预三角范畴为三角范畴, 若满足以下命题.

• 将 $X \xrightarrow{u} Y \xrightarrow{v} Z$ 中映射 $\{u, v, uv\}$ 分别嵌入三个好三角,则存在虚线处的好三角使得下图交换

定义 11 (三角子范畴). 称三角范畴的子范畴 $C' \subset C$ 为三角子范畴, 若满足以下命题

- 1. 任取 C 中同构的好三角, 若一者为 C' 中的好三角, 则另一者亦然.
- 2. T 也是范畴 C' 的自同构. 换言之, C' 是 C 的 T-不变子空间.
- 3. 给定 \mathfrak{C} 中好三角 (X,Y,Z,u,v,w), 若 $X,Z \in \mathsf{Ob}(\mathfrak{C})$, 则 $Y \in \mathsf{Ob}(\mathfrak{C})$.

定义 12 (三角函子). 称三角范畴间的加法函子 $F: \mathcal{C} \to \mathcal{C}'$ 为三角函子, 若存在自然同构 $\varphi: FT \simeq T'F$.

- 注 8. 依照范畴等价/同构, 定义三角函子 (或三角范畴间) 的同构/等价为三角同构/三角等价.
- 注 9. 也称好三角为正合列. 相应地, 三角函子也称作正合函子.
- 例 5. 三角函子的核给出三角子范畴.

命题 11. 三角函子 $F: \mathcal{C} \to \mathcal{C}'$ 对 Ob 保持单, 对 Mor 保持满, 则对 Mor 保持单 (忠实).

证明. 任取 v 使得 Fv=0, 下证明 v=0 即可. 考虑如下好三角的交换图

由题设知 Fv=0, 故 Fu 可裂满. 由于 F 对 Mor 保持满, 则存在 u' 使得 $(Fu)(Fu')=F(uu')=\mathrm{id}_{FY}$. 此时考虑如下好三角的同态

$$Y \xrightarrow{uu'} Y \longrightarrow W \longrightarrow TY$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$FY \xrightarrow{F(uu')} FY \longrightarrow 0 \longrightarrow T'FY$$

由于 F 对 Ob 保持单, 且 FW = 0, 故 W = 0. 此时 uu' 为 Y 的自同构, 遂 v = 0.

命题 12. 对三角范畴间的伴随对,一者为三角函子当且仅当另一者为三角函子.

证明. 待补充.

注 10. 一般地, Abel 范畴间的正合函子仅有"左伴随右正合-右伴随左正合"一对应; 对三角范畴而言, 有"左伴随正合-右伴随正合"一对应.

5 基变换

定义 13 (八面体公理). 将定义 10 中的命题改写如下: 对任意映射链 $X \xrightarrow{u_1} Y \xrightarrow{u_2} Z$,存在如下交换图 使得前两行与中间两列为好三角.

$$X \xrightarrow{u_1} Y \xrightarrow{v_1} Z' \xrightarrow{w_1} TX$$

$$\downarrow u_2 \downarrow \qquad \downarrow \alpha \qquad \qquad \downarrow \downarrow$$

$$X \xrightarrow{u_3} Z \xrightarrow{v_3} Y' \xrightarrow{w_3} TX$$

$$\downarrow v_2 \downarrow \qquad \downarrow \beta \qquad \downarrow Tu_1 \cdot$$

$$X' = X' \xrightarrow{w_2} TY$$

$$\downarrow \gamma \qquad \qquad \downarrow \gamma$$

$$TY \xrightarrow{Tv_1} TZ'$$

称该命题为"八面体公理".

命题 13 (基变换). 八面体公理等价于如下命题: 对好三角 (X,Y,Z,u_1,v_1,w_1) 与态射 $Z' \stackrel{\varepsilon}{\longrightarrow} Z$, 有交换图

$$E = E \xrightarrow{\alpha \downarrow} \qquad \downarrow \delta \xrightarrow{\downarrow} \delta \qquad \downarrow \delta \qquad$$

 $Z' \stackrel{\varepsilon}{\longrightarrow} Z \\ \parallel \qquad \qquad \downarrow_{w_1} \mathbb{D} \Pi; 反之, 任意映射链 \ X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \\ Z' \longrightarrow TX$

总能嵌入好三角

$$X$$

$$\downarrow u$$
 ,而后应用基变换定理即得八面体公理.
$$T^{-1}Z \xrightarrow{T^{-1}w'} X' \xrightarrow{u'} Y \xrightarrow{v} Z$$

定义 14 (余基变换). 八面体公理等价于如下命题: 对好三角 (X,Y,Z,u_1,v_1,w_1) 与态射 $X \stackrel{\delta}{\longrightarrow} X'$, 有交换图

注 11. 余基变换, 基变换, 以及八面体公理彼此等价.

 $X_1 \xrightarrow{\alpha_1} X_2$ 命**题 14** (4×4 引理). 交换图 $\downarrow u_1 \qquad \downarrow u_2$ 总能补全作如下四行四列的好三角 $Y_1 \xrightarrow{\alpha_2} Y_2$

其中, 右下角方块反交换, 其余方块交换.

证明. 注意到如下交换图

未完待续.

6 第一章习题

问题 1. 设 $u: X \longrightarrow Y$ 是预三角范畴 \mathcal{C} 的态射. 则 u 是同构当且仅当 $X \stackrel{u}{\longrightarrow} Y \longrightarrow 0 \longrightarrow TX$ 是好三角.

证明. u 是同构当且仅当以下两条同时成立

- u 可裂单, 即, 任意好三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$ 中 w = 0;
- u 可裂满, 即, 任意好三角 $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$ 中 v = 0.

从而 u 是同构当且仅当 $X \xrightarrow{u} Y \longrightarrow 0 \longrightarrow TX$ 是好三角.

问题 2. 设 C 是预三角范畴. 若 (X,Y,Z,0,v,w) 是好三角,则 $Z \simeq T(X) \oplus Y$. 反之, $(X,Y,T(X) \oplus Y,0,\binom{0}{1},(-1,0))$ 是好三角.

证明. 前一问依照"三推二"法则, 遂有同构 φ 使得下图交换

$$Y \xrightarrow{v} Z \xrightarrow{w} TX \xrightarrow{-Tu} TY$$

$$\downarrow^{\varphi} \qquad \qquad \parallel \qquad \qquad \parallel$$

$$Y \xrightarrow{\binom{0}{1}} T(X) \oplus Y \xrightarrow{(-1,0)} TX \xrightarrow{0} TY$$

其中,第二行是两个基本好三角的直和.后一问显然.

问题 3. 设 (\mathfrak{C},T) 是预三角范畴, \mathcal{A} 是 Abel 范畴. 设 $H:\mathfrak{C}\longrightarrow\mathcal{A}$ 是上同调函子. 则对于 \mathfrak{C} 中的好三角之间的三角射

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} TX$$

$$f \downarrow \qquad g \downarrow \qquad h \downarrow \qquad Tf \downarrow$$

$$X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} TX'$$

有 A 中长正合列的交换图

$$\cdots \longrightarrow \mathrm{H}^{n}(X) \xrightarrow{\mathrm{H}^{n}(u)} \mathrm{H}^{n}(Y) \xrightarrow{\mathrm{H}^{n}(v)} \mathrm{H}^{n}(Z) \xrightarrow{\mathrm{H}^{n}(w)} \mathrm{H}^{n+1}(X) \longrightarrow \cdots$$

$$\downarrow^{\mathrm{H}^{n}(f)} \qquad \downarrow^{\mathrm{H}^{n}(g)} \qquad \downarrow^{\mathrm{H}^{n}(h)} \qquad \downarrow^{\mathrm{H}^{n+1}(f)}$$

$$\cdots \longrightarrow \mathrm{H}^{n}(X') \xrightarrow{\mathrm{H}^{n}(u')} \mathrm{H}^{n}(Y') \xrightarrow{\mathrm{H}^{n}(v')} \mathrm{H}^{n}(Z') \xrightarrow{\mathrm{H}^{n}(w')} \mathrm{H}^{n+1}(X') \longrightarrow \cdots$$

这里 $H^i(X) := H(T^iX)$, $H^i(u) := H(T^iu)$. 换言之, 预三角范畴的上同调函子的连接态射是自然的.

 $P-1 \rightarrow Q$ 好三角. 换言之, 存在交换图 $\stackrel{|}{\stackrel{}{\underset{}}{\stackrel{}{\underset{}}{\stackrel{}}{\underset{}}{\stackrel{}{\underset{}}{\underset{}}{\stackrel{}{\underset{}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}}{\underset{}{$

实际上, 可通过上, 下, 左, 右侧构造态射 $\{1,2,3,4\}$. 依照对角面 (波浪线处) 构造态射 $P \curvearrowright Q'$, 从而检验 $3 \circ 1 = 4 \circ 2$.

问题 4. 设 \mathfrak{D} 是三角范畴 $\mathfrak{C}=(\mathfrak{C},T,\mathcal{E})$ 的全子加法范畴. 设 \mathfrak{D} 对于同构封闭, 并且 T 是 \mathfrak{D} 的自同构. 则 \mathfrak{D} 是 \mathfrak{C} 的三角子范畴当且仅当

若好三角 $X \longrightarrow Y \longrightarrow Z \longrightarrow TX$ 中 X 和 Y 属于 D, 则 $Z \in D$;

也当且仅当

若好三角 $X \longrightarrow Y \longrightarrow Z \longrightarrow TX$ 中 Y 和 Z 属于 \mathcal{D} , 则 $X \in \mathcal{D}$.

证明. 考虑顺时针旋转与逆时针旋转即可转化之为等价命题.

问题 5. 三角范畴 $\mathcal{C} = (\mathcal{C}, T, \mathcal{E})$ 的一个全子范畴 \mathcal{D} 是 \mathcal{C} 的三角子范畴当且仅当 \mathcal{D} 对于同构封闭, 并且 $(\mathcal{D}, T, \mathcal{E} \cap \mathcal{D})$ 是三角范畴, 其中 $\mathcal{E} \cap \mathcal{D}$ 是指三项均在 \mathcal{D} 中的 \mathcal{E} 中的三角作成的类.

证明. 显然.

问题 6. 设 C 是预三角范畴, $X \stackrel{u}{\longrightarrow} Y \stackrel{v}{\longrightarrow} Z \stackrel{w}{\longrightarrow} TX$ 是好三角, $f:W \longrightarrow Z$. 则 wf=0 当且仅当存在 $f':W \longrightarrow Y$ 使得 vf'=f.

证明. 若 wf = 0, 则补全好三角间的同态

其中 $\{e_i, p_i\}_{i=1,2}$ 是结构态射. 根据满态射的右消去性, 有 $v\varphi e_2 = f$. 取 $f' = \varphi e_2$ 即可. 若存在 f' 使得 vf' = f, 则 wf = (wv)f' = 0.

问题 7. 设 C 是预三角范畴, (X,Y,Z,u,v,w), (X',Y',Z',u',v',w') 是好三角, $g:Y\longrightarrow Y'$. 则 v'gu=0 当且仅当存在丛第一个三角到第二个三角的三角射 (f,g,h).

此时若 $\operatorname{Hom}_{\mathfrak{C}}(X, T^{-1}Z') = 0$, 则 f, h 由 g 唯一确定.

证明. 一方面, v'gv=0 表明 v'g 通过 X' 分解, 从而构造 f. 依照 "二推三" 得三角射. 反之显然. 唯一性间10.

问题 8. 设 C 是预三角范畴, (X,Y,Z,u,v,w) 是好三角. 若 $\operatorname{Hom}_{\mathfrak{C}}(TX,Z)=0$, 则 w 是唯一的态射使得 (X,Y,Z,u,v,w) 是好三角.

证明. 依照 10, 下图虚线处的态射 φ 是唯一的

$$\begin{array}{c|cccc} X & \xrightarrow{u} & Y & \xrightarrow{v} & Z & \xrightarrow{w} & TX \\ \varphi & & & & & & & & | & & & |_{T\varphi} \\ \downarrow & & & & & & & | & & & |_{T\varphi} \\ X & \xrightarrow{u} & Y & \xrightarrow{v} & Z & \xrightarrow{w'} & TX \end{array}$$

显然 $\varphi = \mathrm{id}_X$, 从而 w = w'.

例 6. 例子 $\sqrt{2}$.