PREDSTAVITVE PREDMETOV

Kako predstavimo 3D predmete v RG?

- Ploskve
 - poligonske mreže
 - deljene ploskve
 - parametrične
 - implicitne

- Neposredno z zajetimi podatki
 - voksli
 - oblaki točk
 - globinske slike

- Polna telesa
 - osmiška drevesa
 - CSG (constructive solid geometry)
 - B-rep (boundary representations)

Želimo predstavitev, ki bo čimbolj:

- natančna
- zgoščena
- intuitivna
- podpirala poljubno topologijo
- zvezna oz. gladka
- učinkovita za prikaz
- učinkovita za operacije kot je računanje presekov

Zakaj različne predstavitve

Poligonske mreže in povpraševanja

3D predmet predstavimo z množico poligonov

- navadno trikotnikov (planarni, konveksni)
- Vprašanje: kako predstaviti množico poligonov? Želimo:
 - učinkovita povpraševanja (npr. kateri so sosednji poligoni)
 - učinkovito porabo pomnilnika

Poligoni

St. Matthew (>370 milijonov trikotnikov) The Digital Michelangelo Project

- Povpraševanja so sestavni del operacij pri izrisovanju, interakciji in spreminjanju 3D modelov
- Vprašanja, na katere pogosto odgovarjamo so iskanje sosedov, npr. najdi:
 - oglišča poligona (V-F)
 - oglišča roba (V-E)
 - ploskve okoli oglišča (F-V)
 - ploskve okoli roba (F-E)
 - robove okoli ploskve (E-F)
 - robove oglišča (E-V)
 - ploskve okoli ploskve (F-F)

···

Povpraševanja

- Privzeto v OpenGL/WebGPU poligone definiramo z indeksi oglišč
 - posebej imamo shranjena oglišča, posebej poligone
- Topologija (povezanost) in geometrija (koordinate oglišč) sta ločeni
- Povprečna poraba prostora?
 - v povprečju
 - št. poligonov (#F) ~ 2*št. oglišč (#V)
 - št. robov (#E) ~ 3*št. oglišč (#V)
 - (3+2*3) * #V = 9 * #V
- Omejena povpraševanja
 - le V-F, V-E, E-F so učinkovita

Indeksirani poligoni

Lahko bi imeli

- seznam poligonov z robovi in oglišči
- seznam oglišč z robovi in poligoni
- seznam robov z oglišči in poligoni

Potratno!

iščemo bolj učinkovite predstavitve

- Face-vertex mesh
- Vsakemu oglišču dodamo še seznam ploskev, katerih del je
- Povpraševanja:
 - V-F, V-E, E-F že takoalitako
 - Poenostavi se F-V (imamo tabelo)
 - E-V lahko dobimo s sprehodom po sosednjih ploskvah (preko F-V)
- Poraba prostora:
 - cca (9 + ~4) * #V

Predstavitev ploskev-oglišče

Face-Vertex Meshes

Vir: wiki

Vsak usmerjen rob kaže na:

- levi in desni prednji rob
- levi in desni zadnji rob
- prednje in zadnje oglišče
- levi in desni poligon

- Enostavno iskanje vseh osnovnih povpraševanj
 - npr. F-V: V->E0,E1,E2...->F0,F1,F2...
- Porabi več prostora, vendar je bolj splošna

Winged-edge predstavitev

e ₀	v _o	V ₁	e ₁	e ₄	e ₂	e ₃	f ₀	f ₁
$\boldsymbol{e_1}$	$\mathbf{v_1}$	$\mathbf{v_2}$	$\mathbf{e_2}$	e ₁₆	$\mathbf{e_0}$	e ₁₈	f_0	f_2
e_2	V ₂	$\mathbf{v_0}$	e _o	e ₃	e ₁	e ₁₂	f_0	f_1

f_0	e_o	v _o	É
f_1	e ₃	$\mathbf{v_1}$	6
f ₂	e_1	V ₂	6

- Primer: želimo najti vse sosede ploskve f_0
 - najdemo rob e_0 , ki pripada ploskvi f_0
 - preberemo iz tabele
 - iz roba e_0 se sprehodimo po vseh robovih ploskve e_i preko kazalcev na sosednje robove
 - v isti smeri
 - za vsak e_i dobimo sosednjo ploskev f_i
 - preberemo iz tabele

Winged-edge predstavitev

e ₀	V ₀	V ₁	e ₁	e ₄	e ₂	e ₃	f ₀	f ₁
$\boldsymbol{e_1}$	$\mathbf{v_1}$	$\mathbf{v_2}$	e_2	e ₁₆	\mathbf{e}_{0}	e ₁₈	f_0	f ₂
e ₂	V ₂	V ₀	e ₀	e ₃	e ₁	e ₁₂	f_0	f ₁

f ₀	e_0	v	e_0	
f_1	e_3	V ₁	e ₁	
f ₂	e ₁	V ₂	e_2	

```
class Edge {
   Edge headleft, headright,
        tailleft, tailright;
  Face faceleft,faceright;
  Vertex verhead, vertail;
};
class Face {
   Edge edge;
  // face data
class Vertex {
   Edge edge;
   // vertex data
};
```

Winged-edge primer

```
// sprehod preko robov poligona
FaceEdges(Face f) {
  e0 = f.edge;
  e = e0;
  do {
    if(e.faceleft== f)
        e = edge.headleft;
    else
        e = edge.tailright;
} while (e != e0);
```


- en rob kaže naprej, en nazaj
- dodamo še kazalec na drug pol-rob,
 lahko izpustimo kazalec nazaj

Pohitritev

- ni if stavka pri iskanju robov poligona ali robov oglišča
- prostor enako cca. 27 dodatnih kazalcev (če ni kazalca nazaj)
- Uporablja Maya in podobna orodja

Half-edge predstavitev


```
struct HalfEdge {
  HalfEdge* head, *tail;
  HalfEdge* opposite;
  Face* face;
  Vertex* verthead;
};
struct Face {
  Edge* edge;
  // face data
};
struct Vertex {
  Edge* edge;
  // vertex data
};
```

Half-edge primer

```
FaceEdges(Face *f) {
 e0 = f->halfedge;
 e0 = e;
  do {
    e = e->head;
  while (e != e0);
 Half-edge data structure
```

Deljene ploskve

Deljene ploskve (subdivision surfaces)

- Problem poligonskih mrež je grobost oz. nezveznost
- Osnovna ideja: kako lahko iz grobega približka naredimo gladko/zvezno krivuljo?
 - z delitvijo posameznih odsekov

Deljene ploskve

- Grobo poligonsko mrežo iterativno razdeljujemo
 - limitira k zvezni ploskvi (deljenje ustavimo, ko dobimo želeno zveznost)

- Se veliko uporabljajo v animaciji/filmih
 npr. večina Pixarjevih karakterjev je
 narejena z deljenimi ploskvami
 - enostaven opis kompleksnih ploskev
 - poljubna topologija
 - podpirajo lokalne spremembe
 - zagotovljena zveznost
 - podpirajo več nivojev ločljivosti lahko nadziramo deljenje

Deljene ploskve

	Poligonske mreže	Deljene ploskve
natančne	Ne	Da
zgoščene	Ne	Da
lokalne	Da	Da
poljubna topologija	Da	Da
zvezne	Ne	Da
učinkovit prikaz	Da	Da
učinkoviti preseki	Ne	Ne

Kako delimo?

- Algoritmov je več, prvi nastali že v 70. letih, delijo se po različnih kriterijiih:
 - delitev poligonov

vs. delitev oglišč

tip mreže: trikotniki vs. štirikotniki

- zveznost limite zvezen prvi odvod C1 ali zvezen drugi odvod C2
- aproksimacija (premakne orig. oglišča) vs. interpolacija (jih ne premakne)

- Deli štirikotnike z aproksimacijo in zagotavlja C2 zveznost v notranjosti
- Algoritem dodaja/spreminja oglišča kot uteženo vsoto obstoječih oglišč
- Algoritem:
 - 1. Dodaj nova oglišča v_f v središče vseh štirikotnikov
 - 2. Dodaj novo oglišče v_e za vsak rob kot središče (starih) oglišč roba in (novih) oglišč sosednjih štirikotnikov

Deljenje Catmull-Clark (1978)

(1) novo oglišče v sredini štirikotnika

(2) novo oglišče glede na rob (obe varianti sta ekvivalentni)

•
$$v' = (1 - \beta - \gamma)v + \frac{\beta}{k} \sum_{i} v_{e,i} + \frac{\gamma}{k} \sum_{i} v_{f,i}$$

•
$$\beta = \frac{3}{2k}$$
, $\gamma = \frac{1}{4k}$

- k je število robov v oglišču v
- 4. naredi nove štirikotnike iz izračunanih oglišč

 Vse štiri korake ponovimo do želene globine, vsakič dobimo bolj zvezen predmet

Deljenje Catmull-Clark

- 1. dodaj novo oglišče za vsak rob
- 2. premakni originalna oglišča kot uteženo vsoto novih oglišč

Različne variante obstajajo za izbor uteži β , npr.

$$\beta = \frac{1}{k} \left(\frac{5}{8} - \left(\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{k} \right)^2 \right)$$

Deljenje Loop (1987)

REFERENCE

- wiki: <u>Polygon meshes</u>
- Pixar: <u>OpenSubDiv Library</u>
- N. Guid: Računalniška grafika, FERI Maribor
- J.D. Foley, A. Van Dam et al.: Computer Graphics: Principles and Practice in C, Addison Wesley
- P. Shirley, S. Marschner: Fundamentals of Computer Graphics, A.K. Peters