1 Formal Reasoning

1.1 Truth tables

- 1. If I have money, then I can but a ticket and if I can buy a ticket, then I arrive on time.
- 2. $D \land \neg B \rightarrow \neg A$

1.2 Automata

- 1. No
- 2. No
- 3. Yes
- 4. No
- 5. Yes

2 Probability theory

$$p(ill) = 0.01$$

$$p(\text{not ill}) = 1 - p(\text{ill}) = 1 - 0.01 = 0.99$$

$$p(+|\mathrm{ill}) = 0.90$$

$$p(+ | \text{not ill}) = 0.05$$

$$p(+) = p(+ | ill)p(ill) + p(+ | not ill)p(not ill)$$

$$p(+) = 0.90 \cdot 0.01 + 0.05 \cdot 0.99 = 0.0585$$

$$p(\text{ill} \mid +) = \frac{0.90 \cdot 0.01}{0.0585} \approx 0.154$$

3 Programming

3.1 PC

- 1. 3
- 2. 8

3.2 PC2

- 1. 0 1 4 9 16 25
- 2. 10

4 Machine Learning

b	k_0	k_1	w_0	w_1	x	output
1	0	0	1	1	0	1
0.5	1	0	0.80	0.25	1.4	1
-0.5	1	1	0.90	0.50	0.90	1
-1	1	0	0.60	0.40	0.40	0
-1	1	1	0.70	0.25	-0.05	0

1.

- 2. This is not possible. Because a single layer perceptron, as the one used here, can only separate the inputs linearly. And this combination of inputs cannot be separated linearly. This becomes clear when drawing a graph with all inputs on their.
- 3. Such a perceptron would have at least two layers. Then the weights and bias need to be adjusted accordingly such that the perceptron resembles an NXOR-gate.