Predicting Fetal Macrosomia

Andrea Everett, PhD 12.13.2016

Can we build a model to predict which babies will be born large?

Definition

• Weight > 4000g (8 lb 13 oz) at birth

Prevalence

• 8% of U.S. births

Motivation (I)

Current estimation methods are inaccurate

- Ultrasound, clinical exam
- Contemporary U.S. practice*:
 - o 80% of predicted large babies weigh < 4000 g
 - About 62% of actual large babies correctly predicted

^{*}Cheng et al (2015)

Motivation (II)

Costs of inaccuracy

- Failing to predict large babies
 - Risks missing high-risk births⁺
 - Could make needed medical care less likely
- Incorrectly predicting large babies
 - Encourages unnecessary medical interventions*

⁺Jolly et al (2003) * Cheng et al (2015)

Data

U.S. National Vital Statistics

- 5.2 million live births, 2014-15
 - Single births at term
 - No major fetal anomalies
 - No major maternal risk factors
- Birthweight
 - Avg: 3403 g (Min: 750, Max: 8165)
 - o Std Dev: 449 g
 - o 9% > 4000 g

Features

- Delivery weight
- Pre-pregnancy BMI
- Weight gain
- Pregnancy length (weeks)
- Race
- Number of previous births
- Age
- Education level
- Sex of infant

These data have some limitations...

Gestation vs. Birthweight

Model Results

KDE plot of birthweight vs. prediction

Gradient Boosted Regression

Mean Absolute Error: 300.7 g

Mean Percentage Error: 9.0%

• Within + or - 10%: **64%**

Within + or - 15%: 83%

Predicting Large Babies

	True Positive Rate	False Positive Rate
U.S. Providers	.62	.28
Model	.62	.23

Takeaways

- 1. Results improve on U.S. medical system today
- 2. Greater improvement likely with more precise data
- 3. Potential to improve developing country birth outcomes

Thank you!

Andrea L. Everett, PhD

andreaeverett@

/andrea-everett

/andrea-everett

SELECTED SOURCES

- 1. CDC/National Center for Health Statistics (US). 2014 & 2015 Natality Detail Data Sets (2015, 2016).
- Chauhan, S. P., Hendrix, N. W., Magann, E. F., Morrison, J. C., Scardo, J. A., & Berghella, V. (2005). A review of sonographic estimate of fetal weight: vagaries of accuracy. *The Journal of Maternal-Fetal & Neonatal Medicine*, 18(4), 211-220.
- 3. Cheng, E. R., Declercq, E. R., Belanoff, C., Stotland, N. E., & Iverson, R. E. (2015). Labor and Delivery Experiences of Mothers with Suspected Large Babies. Maternal and child health journal, 19(12), 2578-2586.
- Herrero, R. L., & Fitzsimmons, J. (1999). Estimated fetal weight.
 Maternal vs. physician estimate. *The Journal of reproductive medicine*, 44(8), 674-678.
- Jolly, M. C., Sebire, N. J., Harris, J. P., Regan, L., & Robinson, S. (2003).
 Risk factors for macrosomia and its clinical consequences: a study of
 350,311 pregnancies. European Journal of Obstetrics & Gynecology and
 Reproductive Biology, 111(1), 9-14.
- 6. Nahum, G. G., & Stanislaw, H. (2002). Validation of a birth weight prediction equation based on maternal characteristics. The Journal of reproductive medicine, 47(9), 752-760.