SOLUZIONI

1. Calcolare per quali valori di $\alpha \in \mathbf{Z}/13\mathbf{Z}$ la congruenza

$$X^2 + X + \alpha \equiv 0 \bmod 13$$

è risolubile.

Soluzione: La congruenza è risolubile se e solo se il discriminante $1-4\alpha$ è un residuo quadratico modulo 13. Inoltre

$$\left(\frac{1-4\alpha}{13}\right) = \begin{cases} 1 & \textit{se } \alpha \in \{0,1,6,7,9,11\} \\ 0 & \textit{se } \alpha = 10 \\ -1 & \textit{altrimenti} \end{cases}.$$

Pertanto l'equazione ammette due soluzione se $\alpha \in \{0, 1, 6, 7, 9, 11\}$, una se $\alpha = 10$ e nessuna altrimenti.

2. Enunciare e dimostrare il criterio di Eulero per il calcolo del simbolo di Legendre.

Soluzione: Vedi la Proposizione 6.5 a pagina 86 del secondo capitolo delle note.

3. Si calcoli il simbolo di Legendre $\left(\frac{1755}{3001}\right)$.

Soluzione: Usiamo il metodo del simbolo di Jacobi e dalla reciprocità quadratica otteniamo visto che 3001 ≡ 1 mod 4

$$\left(\frac{1755}{3001}\right) = \left(\frac{3001}{1755}\right) = \left(\frac{1246}{1755}\right) = \left(\frac{2}{1755}\right) \left(\frac{623}{1755}\right)$$

 $e \ siccome \ 1755 \equiv 3 \ mod \ 8, \ 1755 \equiv 632 \equiv 3 \ mod \ 4, \ si \ ha$

$$\left(\frac{2}{1755}\right)\left(\frac{623}{1755}\right) = \left(\frac{1755}{623}\right) = \left(\frac{509}{623}\right)$$

e siccome $509 \equiv 1 \mod 4$,

$$\left(\frac{509}{623}\right) = \left(\frac{623}{509}\right) = \left(\frac{114}{509}\right) = \left(\frac{2}{509}\right)\left(\frac{57}{509}\right)$$

e siccome $509 \equiv 5 \mod 8$,

$$\left(\frac{2}{509}\right)\left(\frac{57}{509}\right) = -\left(\frac{509}{57}\right) = -\left(\frac{53}{57}\right) = -\left(\frac{57}{53}\right) = -\left(\frac{4}{53}\right) = -1$$

4. Dopo aver definito la nozione di residuo quadratico, dimostrare che il numero di residui quadratici in $\mathbf{Z}/p\mathbf{Z}^*$ è (p-1)/2.

Soluzione: Vedi Proposizione 6.3 a pagine 85 del secondo capitolo delle note.

5. Mostrare che se $p \equiv 9 \mod 28$, allora $\left(\frac{7}{p}\right) = 1$.

Soluzione: Il fatto che $p \equiv 9 \mod 28$ implica che $p \equiv 1 \mod 4$ e $p \equiv 2 \mod 7$. Quindi, per la legge di reciprocità quadratica, otteniamo

$$\left(\frac{7}{p}\right) = \left(\frac{p}{7}\right) = \left(\frac{2}{7}\right) = 1$$

6. Sia $\omega(n)$ il numero di divisori primi distinti dell'intero n. Mostrare che per ogni numero complesso z, la funzione $f_z(n) := z^{\omega(n)}$ è moltiplicativa. Nel caso in cui z = i, calcolare $(f_z * \mu)(60)$.

Soluzione: Osservare che se (m,n)=1, allora $\omega(mn)=\omega(m)+\omega(n)$ (ω è additiva) e quindi $f_z(mn)=z^{\omega(mn)}=z^{\omega(m)+\omega(n)}=f_z(m)\cdot f_z(n)$.

Per la moltiplicatività, abbiamo che

$$(f_z * \mu)(60) = (f_z * \mu)(3)(f_z * \mu)(5)(f_z * \mu)(4) = (i-1)^3(-i+i) = 0.$$

7. Enunciare e dimostrare la formula di inversione di Möbius.

Soluzione: Vedi Teorema 3.2 a pagina 24 del terzo capitolo delle dispense.

8. Elencare tutte le terne pitagoriche primitive e positive (x, y, z) con $x, y, z \le 85$.

Soluzione: Usando il Teorema di classificazione sappiamo che tutte le tpp positive sono della forma

$$(x, y, z) = (2st, s^2 - t^2, s^2 + t^2)$$

dove $s, t \in \mathbb{N}$, s > t > 0, (s, t) = 1 e $s \not\equiv t \mod 2$. Osservando che $z = s^2 + t^2 \leq 85$ da luogo alle sequenti possibilità,

$$(s,t) \in \Big\{(2,1),(3,2),(4,1),(4,3),(5,2),(5,4),(6,1),(6,5),(7,2),(7,4),(7,6),(8,1),(8,3),(9,2)\Big\}.$$

Otteniamo le seguenti 14 terne:

$$(4,3,5), (12,5,13), (8,15,17), (24,7,25), (20,21,29), (40,9,41), (12,35,37), (60,11,41), (28,45,53), (56,33,65), (84,13,85), (16,63,65), (48,55,73), (36,79,85).$$

9. Enunciare il teorema di caratterizzazione per i numeri che si possono esprimere come somma di due quadrati.

Soluzione: vedi Teorema 3.7 nel capitolo rilevante nelle note.

10. Esprimere 5^s13^t per ogni $s, t \in \mathbb{N}$ come somma di due quadrati.

Soluzione: Osservare che

$$5^{s} = \begin{cases} (5^{k})^{2} + 0^{2} & \text{se } s = 2k \\ (5^{k})^{2} + (2 \cdot 5^{k})^{2} & \text{se } s = 2k + 1 \end{cases} \quad e \quad 13^{t} = \begin{cases} (13^{m})^{2} + 0^{2} & \text{se } t = 2m \\ (2 \cdot 13^{m})^{2} + (3 \cdot 13^{m})^{2} & \text{se } t = 2m + 1 \end{cases}$$

Quindi

$$5^{s} \cdot 13^{t} = \begin{cases} (5^{k} \cdot 13^{m})^{2} + 0^{2} & \text{se } s = 2k, t = 2m \\ (5^{k} \cdot 13^{m})^{2} + (2 \cdot 5^{k} \cdot 13^{m})^{2} & \text{se } s = 2k + 1, t = 2m \\ (2 \cdot 13^{m}5^{k})^{2} + (3 \cdot 5^{k} \cdot 13^{m})^{2} & \text{se } s = 2k, t = 2m + 1 \\ (8 \cdot 13^{m}5^{k})^{2} + (5^{k} \cdot 13^{m})^{2} & \text{se } s = 2k + 1, t = 2m + 1 \end{cases}$$

11. Dopo aver espresso 3 e 5 come somma di tre quadrati, mostrare che non è detto che se due interi si esprimono come somma di tre quadrati, allora anche il loro prodotto si esprime come somma di tre quadrati. Fornire più di un contro esempio.

Soluzione: $3 = 1^2 + 1^2 + 1^2$, $5 = 1^2 + 2^2 + 0^2$. I due contro esempi sono $15 = 3 \cdot 5 = 7 + 8$ e $60 = 6 \cdot 10 = 4 \cdot (7 + 8)$. Infatti $6 = 2^2 + 1^2 + 1^2$ e $10 = 1^2 + 3^2 + 0^2$.

12. Scrivere 47 come somma del minor numero possibile di quadrati.

Soluzione: $47 = 1^2 + 1^2 + 3^2 + 6^2$. Siccome $47 = 7 + 5 \cdot 8$, non si può scrivere come somma di due quadrati e quindi nemmeno di due.