MP5k

Summary

General

fastp version:	0.19.4 (https://github.com/OpenGene/fastp)
sequencing:	paired end (151 cycles + 151 cycles)
mean length before filtering:	151bp, 151bp
mean length after filtering:	150bp, 150bp
duplication rate:	74.374237%
Insert size peak:	271

Before filtering

total reads:	453.384920 M
total bases:	68.461123 G
Q20 bases:	63.744042 G (93.109840%)
Q30 bases:	58.425170 G (85.340653%)
GC content:	42.911627%

After filtering

total reads:	415.355490 M				
total bases:	62.423641 G				
Q20 bases:	59.455335 G (95.244901%)				
Q30 bases:	54.991011 G (88.093244%)				
GC content:	42.537040%				

Filtering result

reads passed filters:	415.355490 M (91.612110%)
reads with low quality:	35.699870 M (7.874075%)
reads with too many N:	5.306000 K (0.001170%)
reads too short:	2.205046 M (0.486352%)
reads with low complexity:	119.208000 K (0.026293%)

Adapters

Adapter or bad ligation of read1

The input has little adapter percentage (~0.393032%), probably it's trimmed before.

The impact that the contrage (crossed t, , promain t, in a contract the contract the contract that the contract the contract the contract the contract that the contract the								
Sequence	Occurrences							
A	60887							
AG	56336							
AGA	59625							
AGAT	56373							
AGATC								

	56219
AGATCG	54965
AGATCGG	51945
AGATCGGA	53063
AGATCGGAA	50675
AGATCGGAAG	49447
AGATCGGAAGA	48934
AGATCGGAAGAG	48205
AGATCGGAAGAGC	46728
AGATCGGAAGAGCA	47147
AGATCGGAAGAGCAC	45483
AGATCGGAAGAGCACA	45498
AGATCGGAAGAGCACAC	44146
AGATCGGAAGAGCACACG	43424
AGATCGGAAGAGCACACGT	40655
AGATCGGAAGAGCACACGTC	40963
AGATCGGAAGAGCACACGTCT	39442
AGATCGGAAGAGCACACGTCTG	38767
AGATCGGAAGAGCACACGTCTGA	38513
AGATCGGAAGAGCACACGTCTGAA	38629
AGATCGGAAGAGCACACGTCTGAAC	37091
AGATCGGAAGAGCACACGTCTGAACT	35971
AGATCGGAAGAGCACACGTCTGAACTC	36226
AGATCGGAAGAGCACACGTCTGAACTCC	35999
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTT	81903
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTGAAAA	106573
other adapter sequences	2028375

Adapter or bad ligation of read2

The input has little adapter percentage (~0.341958%), probably it's trimmed before.

Sequence	Occurrences
A	60884
AG	56287
AGA	59531
AGAT	56798
AGATC	56596
AGATCG	55683
AGATCGG	53215
AGATCGGA	53461
AGATCGGAA	50654
AGATCGGAAG	49945
AGATCGGAAGA	49061

AGATCGGAAGAG	49041
AGATCGGAAGAGC	47886
AGATCGGAAGAGCG	47714
AGATCGGAAGAGCGT	43710
AGATCGGAAGAGCGTC	46224
AGATCGGAAGAGCGTCG	44456
AGATCGGAAGAGCGTCGT	42069
AGATCGGAAGAGCGTCGTG	42407
AGATCGGAAGAGCGTCGTGT	40406
AGATCGGAAGAGCGTCGTGTA	41118
AGATCGGAAGAGCGTCGTGTAG	38803
AGATCGGAAGAGCGTCGTGTAGG	47177
AGATCGGAAGAGCGTCGTGTAGGG	39973
AGATCGGAAGAGCGTCGTGTAGGGA	39555
AGATCGGAAGAGCGTCGTGTAGGGAA	35862
AGATCGGAAGAGCGTCGTGTAGGGAAA	58680
AGATCGGAAGAGCGTCGTGTAGGGAAAGA	35813
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGT	49913
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTG	59818
other adapter sequences	2071632

Duplication

duplication rate (74.374237%)

Insert size estimation

Insert size distribution (87.323919% reads are with unknown length)

This estimation is based on paired—end overlap analysis, and there are 87.323919% reads found not overlapped.

The nonoverlapped read pairs may have insert size <30 or >272, or contain too much sequencing errors to be detected as overlapped.

Before filtering

Before filtering: read1: quality

Before filtering: read1: base contents

Value of each position will be shown on mouse over.

Before filtering: read1: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

	AA	AT	AC	AG	TA	TT	TC	TG	CA	CT	CC	CG	GA	GT	GC	GG
AAA	AAAAA	AAAAT	AAAAC	AAAAG	AAATA	AAATT	AAATC	AAATG	AAACA	AAACT	AAACC	AAACG	AAAGA	AAAGT	AAAGC	AAAGG
AAT	AATAA	AATAT	AATAC	AATAG	AATTA	AATTT	AATTC	AATTG	AATCA	AATCT	AATCC	AATCG	AATGA	AATGT	AATGC	AATGG
AAC	AACAA	AACAT	AACAC	AACAG	AACTA	AACTT	AACTC	AACTG	AACCA	AACCT	AACCC	AACCG	AACGA	AACGT	AACGC	AACGG
AAG	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AAGGG
ATA	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	ATAGG
ATT	ATTAA	ATTAT	ATTAC	ATTAG	ATTTA	ATTTT	ATTTC	ATTTG	ATTCA	ATTCT	ATTCC	ATTCG	ATTGA	ATTGT	ATTGC	ATTGG
ATC	ATCAA	ATCAT	ATCAC	ATCAG	ATCTA	ATCTT	ATCTC	ATCTG	ATCCA	ATCCT	ATCCC	ATCCG	ATCGA	ATCGT	ATCGC	ATCGG
ATG	ATGAA	ATGAT	ATGAC	ATGAG	ATGTA	ATGTT	ATGTC	ATGTG	ATGCA	ATGCT	ATGCC	ATGCG	ATGGA	ATGGT	ATGGC	ATGGG
ACA	ACAAA	ACAAT	ACAAC	ACAAG	ACATA	ACATT	ACATC	ACATG	ACACA	ACACT	ACACC	ACACG	ACAGA	ACAGT	ACAGC	ACAGG
ACT	ACTAA	ACTAT	ACTAC	ACTAG	ACTTA	ACTTT	ACTTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG	ACTGA	ACTGT	ACTGC	ACTGG
ACC	ACCAA	ACCAT	ACCAC	ACCAG	ACCTA	ACCTT	ACCTC	ACCTG	ACCCA	ACCCT	ACCCC	ACCCG	ACCGA	ACCGT	ACCGC	ACCGG
ACG	ACGAA	ACGAT	ACGAC	ACGAG	ACGTA	ACGTT	ACGTC	ACGTG	ACGCA	ACGCT	ACGCC	ACGCG	ACGGA	ACGGT	ACGGC	ACGGG
AGA	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AGAGG
AGT	AGTAA	AGTAT	AGTAC	AGTAG	AGTTA	AGTTT	AGTTC	AGTTG	AGTCA	AGTCT	AGTCC	AGTCG	AGTGA	AGTGT	AGTGC	AGTGG
AGC	AGCAA	AGCAT	AGCAC	AGCAG	AGCTA	AGCTT	AGCTC	AGCTG	AGCCA	AGCCT	AGCCC	AGCCG	AGCGA	AGCGT	AGCGC	AGCGG
AGG	AGGAA	AGGAT	AGGAC	AGGAG	AGGTA	AGGTT	AGGTC	AGGTG	AGGCA	AGGCT	AGGCC	AGGCG	AGGGA	AGGGT	AGGGC	AGGGG
TAA	TAAAA	TAAAT	TAAAC	TAAAG	TAATA	TAATT	TAATC	TAATG	TAACA	TAACT	TAACC	TAACG	TAAGA	TAAGT	TAAGC	TAAGG
TAT	TATAA	TATAT	TATAC	TATAG	TATTA	TATTT	TATTC	TATTG	TATCA	TATCT	TATCC	TATCG	TATGA	TATGT	TATGC	TATGG
TAC	TACAA	TACAT	TACAC	TACAG	TACTA	TACTT	TACTC	TACTG	TACCA	TACCT	TACCC	TACCG	TACGA	TACGT	TACGC	TACGG
TAG	TAGAA	TAGAT	TAGAC	TAGAG	TAGTA	TAGTT	TAGTC	TAGTG	TAGCA	TAGCT	TAGCC	TAGCG	TAGGA	TAGGT	TAGGC	TAGGG
TTA	TTAAA	TTAAT	TTAAC	TTAAG	TTATA	TTATT	TTATC	TTATG	TTACA	TTACT	TTACC	TTACG	TTAGA	TTAGT	TTAGC	TTAGG
TTT	TTTAA	TTTAT	TTTAC	TTTAG	TTTTA	TTTTT	TTTTC	TTTTG	TTTCA	TTTCT	TTTCC	TTTCG	TTTGA	TTTGT	TTTGC	TTTGG
TTC	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA	TTCTT	TTCTC	TTCTG	TTCCA	TTCCT	TTCCC	TTCCG	TTCGA	TTCGT	TTCGC	TTCGG
TTG	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG	TTGGA	TTGGT	TTGGC	TTGGG
TCA	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG	TCAGA	TCAGT	TCAGC	TCAGG
TCT	TCTAA	TCTAT	TCTAC	TCTAG	TCTTA	TCTTT	TCTTC	TCTTG	TCTCA	TCTCT	TCTCC	TCTCG	TCTGA	TCTGT	TCTGC	TCTGG
TCC	TCCAA	TCCAT	TCCAC	TCCAG	TCCTA	TCCTT	TCCTC	TCCTG	TCCCA	TCCCT	TCCCC	TCCCG	TCCGA	TCCGT	TCCGC	TCCGG
TCG	TCGAA	TCGAT	TCGAC	TCGAG	TCGTA	TCGTT	TCGTC	TCGTG	TCGCA	TCGCT	TCGCC	TCGCG	TCGGA	TCGGT	TCGGC	TCGGG
TGA	TGAAA	TGAAT	TGAAC	TGAAG	TGATA	TGATT	TGATC	TGATG	TGACA	TGACT	TGACC	TGACG	TGAGA	TGAGT	TGAGC	TGAGG
TGT	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG	TGTGA	TGTGT	TGTGC	TGTGG

TGC	TGCAA	TGCAT	TGCAC	TGCAG	TGCTA	TGCTT	TGCTC	TGCTG	TGCCA	TGCCT	TGCCC	TGCCG	TGCGA	TGCGT	TGCGC	TGCGG
TGG	TGGAA	TGGAT	TGGAC	TGGAG	TGGTA	TGGTT	TGGTC	TGGTG	TGGCA	TGGCT	TGGCC	TGGCG	TGGGA	TGGGT	TGGGC	TGGGG
CAA	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	CAAGG
CAT	CATAA	CATAT	CATAC	CATAG	CATTA	CATTT	CATTC	CATTG	CATCA	CATCT	CATCC	CATCG	CATGA	CATGT	CATGC	CATGG
CAC	CACAA	CACAT	CACAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA	CACCT	CACCC	CACCG	CACGA	CACGT	CACGC	CACGG
CAG	CAGAA	CAGAT	CAGAC	CAGAG	CAGTA	CAGTT	CAGTC	CAGTG	CAGCA	CAGCT	CAGCC	CAGCG	CAGGA	CAGGT	CAGGC	CAGGG
CTA	CTAAA	CTAAT	CTAAC	CTAAG	CTATA	CTATT	CTATC	CTATG	CTACA	CTACT	CTACC	CTACG	CTAGA	CTAGT	CTAGC	CTAGG
CTT	CTTAA	CTTAT	CTTAC	CTTAG	CTTTA	CTTTT	CTTTC	CTTTG	CTTCA	СТТСТ	CTTCC	CTTCG	CTTGA	CTTGT	CTTGC	CTTGG
CTC	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	CTCTT	CTCTC	CTCTG	CTCCA	СТССТ	СТССС	CTCCG	CTCGA	CTCGT	CTCGC	CTCGG
CTG	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CTGGG
CCA	CCAAA	CCAAT	CCAAC	CCAAG	CCATA	CCATT	CCATC	CCATG	CCACA	CCACT	CCACC	CCACG	CCAGA	CCAGT	CCAGC	CCAGG
CCT	CCTAA	CCTAT	CCTAC	CCTAG	CCTTA	CCTTT	CCTTC	CCTTG	CCTCA	ССТСТ	ССТСС	CCTCG	CCTGA	CCTGT	CCTGC	CCTGG
CCC	CCCAA	CCCAT	CCCAC	CCCAG	CCCTA	CCCTT	CCCTC	CCCTG	CCCCA	CCCCT	ccccc	CCCCG	CCCGA	CCCGT	CCCGC	CCCGG
CCG	CCGAA	CCGAT	CCGAC	CCGAG	CCGTA	CCGTT	CCGTC	CCGTG	CCGCA	CCGCT	CCGCC	CCGCG	CCGGA	CCGGT	CCGGC	CCGGG
CGA	CGAAA	CGAAT	CGAAC	CGAAG	CGATA	CGATT	CGATC	CGATG	CGACA	CGACT	CGACC	CGACG	CGAGA	CGAGT	CGAGC	CGAGG
CGT	CGTAA	CGTAT	CGTAC	CGTAG	CGTTA	CGTTT	CGTTC	CGTTG	CGTCA	CGTCT	CGTCC	CGTCG	CGTGA	CGTGT	CGTGC	CGTGG
CGC	CGCAA	CGCAT	CGCAC	CGCAG	CGCTA	CGCTT	CGCTC	CGCTG	CGCCA	CGCCT	CGCCC	CGCCG	CGCGA	CGCGT	CGCGC	CGCGG
CGG	CGGAA	CGGAT	CGGAC	CGGAG	CGGTA	CGGTT	CGGTC	CGGTG	CGGCA	CGGCT	CGGCC	CGGCG	CGGGA	CGGGT	CGGGC	CGGGG
GAA	GAAAA	GAAAT	GAAAC	GAAAG	GAATA	GAATT	GAATC	GAATG	GAACA	GAACT	GAACC	GAACG	GAAGA	GAAGT	GAAGC	GAAGG
GAT	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG	GATGA	GATGT	GATGC	GATGG
GAC	GACAA	GACAT	GACAC	GACAG	GACTA	GACTT	GACTC	GACTG	GACCA	GACCT	GACCC	GACCG	GACGA	GACGT	GACGC	GACGG
GAG	GAGAA	GAGAT	GAGAC	GAGAG	GAGTA	GAGTT	GAGTC	GAGTG	GAGCA	GAGCT	GAGCC	GAGCG	GAGGA	GAGGT	GAGGC	GAGGG
GTA	GTAAA	GTAAT	GTAAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GTACT	GTACC	GTACG	GTAGA	GTAGT	GTAGC	GTAGG
GTT	GTTAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC	GTTTG	GTTCA	GTTCT	GTTCC	GTTCG	GTTGA	GTTGT	GTTGC	GTTGG
GTC	GTCAA	GTCAT	GTCAC	GTCAG	GTCTA	GTCTT	GTCTC	GTCTG	GTCCA	GTCCT	GTCCC	GTCCG	GTCGA	GTCGT	GTCGC	GTCGG
GTG	GTGAA	GTGAT	GTGAC	GTGAG	GTGTA	GTGTT	GTGTC	GTGTG	GTGCA	GTGCT	GTGCC	GTGCG	GTGGA	GTGGT	GTGGC	GTGGG
GCA	GCAAA	GCAAT	GCAAC	GCAAG	GCATA	GCATT	GCATC	GCATG	GCACA	GCACT	GCACC	GCACG	GCAGA	GCAGT	GCAGC	GCAGG
GCT	GCTAA	GCTAT	GCTAC	GCTAG	GCTTA	GCTTT	GCTTC	GCTTG	GCTCA	GCTCT	GCTCC	GCTCG	GCTGA	GCTGT	GCTGC	GCTGG
GCC	GCCAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG	GCCGA	GCCGT	GCCGC	GCCGG
GCG	GCGAA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC	GCGTG	GCGCA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GCGGG
GGA	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT	GGATC	GGATG	GGACA	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GGAGG
GGT	GGTAA	GGTAT	GGTAC	GGTAG	GGTTA	GGTTT	GGTTC	GGTTG	GGTCA	GGTCT	GGTCC	GGTCG	GGTGA	GGTGT	GGTGC	GGTGG
GGC	GGCAA	GGCAT	GGCAC	GGCAG	GGCTA	GGCTT	GGCTC	GGCTG	GGCCA	GGCCT	GGCCC	GGCCG	GGCGA	GGCGT	GGCGC	GGCGG
GGG	GGGAA	GGGAT	GGGAC	GGGAG	GGGTA	GGGTT	GGGTC	GGGTG	GGGCA	GGGCT	GGGCC	GGGCG	GGGGA	GGGGT	GGGGC	GGGGG

Before filtering: read1: overrepresented sequences Sampling rate: 1 / 20

overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
AACACACACACACACACACACACACACACACACA	21376 (0.049958%)	
AACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	28377 (0.066320%)	
AAGATGTGTATAAGAGACAG	241994 (0.282781%)	
ACACACACACACACACACACACACACACACACACA	983 (0.002297%)	
AC	21907 (0.051199%)	
ACACACACACACACACACACACACACACACACACAG	651 (0.001521%)	
ACACACACACACACACACACACACACACACACACAT	383 (0.000895%)	
ACACACACCTGTCTCTTATACACATCTAGATGTGTATAAG	1651 (0.003859%)	
ACACACCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3413 (0.007976%)	
ACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTG	135 (0.000316%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	20557 (0.048044%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24986 (0.058395%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	1808 (0.004225%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	13171 (0.030782%)	
AG	15406 (0.036005%)	
AGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	413 (0.002413%)	
AGATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTGAAAAAGGGGGGGG	4708 (0.040986%)	
AGATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTG	16458 (0.038464%)	
AGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	26719 (0.062445%)	
AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	29387 (0.068680%)	

AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25505 (0.059608%)	
ATACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTG	148 (0.000346%)	
ATCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	18596 (0.043461%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCGCGTATGCCGTCTTCTGCTTGAAAAAGGGGGGGG	13 (0.000113%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTGAAAAGGGGG GGGGGGGGGG	50 (0.000435%)	
ATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTGAAAATGGGG GGGGGGGGGG	25 (0.000218%)	
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	48415 (0.113150%)	
ATGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25870 (0.060461%)	
ATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	138 (0.000323%)	
ATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	20007 (0.046758%)	
CAAGATGTGTATAAGAGACA	127182 (0.148618%)	
CACACACACACACACACACACACACACACACAAA	1813 (0.004237%)	
CACACACACACACACACACACACACACACACACACA	19935 (0.046590%)	
CACACACACACACACACACACACACACACACACAC	532 (0.001243%)	
CACACACACACACACACACACACACACACACACAGA	1188 (0.002776%)	
CACACACACACACACACCTGTCTCTTATACACATCT	16825 (0.039322%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAA	14100 (0.032953%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAAGA	2587 (0.006046%)	
CACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	6106 (0.014270%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	20075 (0.046917%)	
CACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	16073 (0.037564%)	
CAGATGTGTATAAGAGACAG	229749 (0.268472%)	
CAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	14102 (0.032958%)	
CCAGATGTGTATAAGAGACA	127860 (0.149410%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	60090 (0.140436%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	808 (0.001888%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1738 (0.004062%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	2391 (0.005588%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	404 (0.000944%)	
CTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	26103 (0.061005%)	
стстстстстстстстстстстстстстст	7787 (0.018199%)	
CTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	20801 (0.048614%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	104 (0.000243%)	

CTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGT	80 (0.000187%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	1573 (0.003676%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAG	746 (0.001743%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	1746 (0.004081%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	4792 (0.011199%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	2514 (0.005875%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	2779 (0.006495%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	378 (0.000883%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	383 (0.000895%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	445 (0.001040%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	775 (0.001811%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGTA	777 (0.001816%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGTC	1239 (0.002896%)	
CTGTCTCTTATACACATCTC	341346 (0.398879%)	
CTGTCTCTTATACACATCTG	366012 (0.427702%)	
CTGTCTCTTATACACATCTT	365226 (0.426784%)	
CTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	19812 (0.046302%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	82 (0.000192%)	
CTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGT	37 (0.000086%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25585 (0.059795%)	
GACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	22219 (0.051928%)	
GA	14804 (0.034598%)	
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	417 (0.002436%)	
GAGATGTGTATAAGAGACAG	199049 (0.232598%)	
GAGCTGTCTTATACACATCTAGATGTGTATAAGAGACA	22669 (0.052980%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCGCGTATGCCGTCTTCTGCTTGAAAAGGGG GGGGGGGGGG	7060 (0.061462%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTGAAAAGGGG GGGGGGGGGG	17832 (0.155240%)	
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTCTTCTGCTTGAAAATGGG GGGGGGGGGG	3617 (0.031488%)	
GATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGT	209 (0.000488%)	
GCACACACACACACACACACACACACACACACACACACA	29522 (0.068996%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	29617 (0.069218%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2427 (0.005672%)	

GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	5375 (0.012562%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	7705 (0.018007%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	1224 (0.002861%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	41191 (0.096267%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	112595 (0.263145%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1892 (0.011054%)	
GGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	11255 (0.026304%)	
GTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTG	83 (0.000194%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	195 (0.000456%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	156 (0.000365%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	39727 (0.092846%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	15481 (0.036181%)	
GTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTG	166 (0.000388%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2710 (0.006334%)	
GTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGA	2182 (0.005100%)	
GTGTGTGTGTCTCTTATACACATCTAGATGTGTATAA	3256 (0.007610%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGA	1121 (0.002620%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	27971 (0.065371%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTTTT	713 (0.001666%)	
TACACACACACACACACACACACACACACACACACACA	21176 (0.049490%)	
TACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGT	141 (0.000330%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	33723 (0.078814%)	
TAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAA	17350 (0.040549%)	
TATACACATCTAGATGTGTATAAGAGACAGGTGTGTGT	89 (0.000208%)	
TCACACACACACACACACACACACACACACACACACACA	19954 (0.046634%)	
TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	31714 (0.074119%)	
тстстстстстстстстстстстстстстс	10155 (0.023733%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	87 (0.000203%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	75 (0.000175%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2534 (0.005922%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	5687 (0.013291%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	8181 (0.019120%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACACC	51 (0.000119%)	

TCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTG	24 (0.000056%)	
TGAGATGTGTATAAGAGACA	142130 (0.166086%)	
TGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	23231 (0.054293%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	29391 (0.068689%)	
TGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTGT	64 (0.000150%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGACA	48 (0.000112%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	258 (0.000603%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCC	102 (0.000238%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	82 (0.000192%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	85 (0.000199%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAG	104 (0.000243%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCC	73 (0.000171%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCT	93 (0.000217%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	85 (0.000199%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	91 (0.000213%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	91 (0.000213%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	93 (0.000217%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	265 (0.000619%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	87 (0.000203%)	
TGTCTCTTATACACATCTCA	900 (0.001052%)	
TGTCTCTTATACACATCTGA	605 (0.000707%)	
TGTCTCTTATACACATCTGG	709 (0.000828%)	
TGTCTCTTATACACATCTTG	694 (0.000811%)	
TGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	11941 (0.027907%)	
TGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGT	78 (0.000182%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	4653 (0.010874%)	
TGTGTGTGTCTCTTATACACATCTAGATGTGTATAAG	2220 (0.005188%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTATA	24584 (0.057455%)	
TGTGTGTGTGTGTGTGTGTGTGTGTGTGAG	1564 (0.003655%)	
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	9022 (0.021085%)	
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTT	305 (0.000713%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACACAC	51 (0.000119%)	
TTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGTG	51 (0.000119%)	
TTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT		

Before filtering: read2: quality

Value of each position will be shown on mouse over.

Before filtering: read2: base contents

Before filtering: read2: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

AA	AA AAAAA	AT AAAAT	AC AAAAC	AG AAAAG	TA AAATA	AAATT	TC AAATC	TG AAATG	CA AAACA	CT AAACT	CC AAACC	CG AAACG	GA AAAGA	GT AAAGT	GC AAAGC	G AA/
AT	AATAA	AATAT	AATAC	AATAG	AATTA	AATTT	AATTC	AATTG	AATCA	AATCT	AATCC	AATCG	AATGA	AATGT	AATGC	AAT
AC	AACAA	AACAT	AACAC	AACAG	AACTA	AACTT	AACTC	AACTG	AACCA	AACCT	AACCC	AACCG	AACGA	AACGT	AACGC	AA
٩G	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AA
Α	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	AT
Т	ATTAA	ATTAT	ATTAC	ATTAG	ATTTA	ATTTT	ATTTC	ATTTG	ATTCA	ATTCT	ATTCC	ATTCG	ATTGA	ATTGT	ATTGC	AT
ГС	ATCAA	ATCAT	ATCAC	ATCAG	ATCTA	ATCTT	ATCTC	ATCTG	ATCCA	ATCCT	ATCCC	ATCCG	ATCGA	ATCGT	ATCGC	AT
G	ATGAA	ATGAT	ATGAC	ATGAG	ATGTA	ATGTT	ATGTC	ATGTG	ATGCA	ATGCT	ATGCC	ATGCG	ATGGA	ATGGT	ATGGC	AT
A.	ACAAA	ACAAT	ACAAC	ACAAG	ACATA	ACATT	ACATC	ACATG	ACACA	ACACT	ACACC	ACACG	ACAGA	ACAGT	ACAGC	AC
T	ACTAA	ACTAT	ACTAC	ACTAG	ACTTA	ACTTT	ACTTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG	ACTGA	ACTGT	ACTGC	AC
C	ACCAA	ACCAT	ACCAC	ACCAG	ACCTA	ACCTT	ACCTC	ACCTG	ACCCA	ACCCT	ACCCC	ACCCG	ACCGA	ACCGT	ACCGC	AC
G	ACGAA	ACGAT	ACGAC	ACGAG	ACGTA	ACGTT	ACGTC	ACGTG	ACGCA	ACGCT	ACGCC	ACGCG	ACGGA	ACGGT	ACGGC	AC
iΑ	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AC
T	AGTAA	AGTAT	AGTAC	AGTAG	AGTTA	AGTTT	AGTTC	AGTTG	AGTCA	AGTCT	AGTCC	AGTCG	AGTGA	AGTGT	AGTGC	AC
C	AGCAA	AGCAT	AGCAC	AGCAG AGGAG	AGCTA	AGCTT	AGCTC	AGCTG	AGCCA	AGCCT	AGCCC	AGCCG	AGCGA	AGCGT	AGCGC AGGGC	AC
G	AGGAA	AGGAT	AGGAC		AGGTA	AGGTT	AGGTC	AGGTG	AGGCA	AGGCT	AGGCC	AGGCG	AGGGA	AGGGT		AC
A	TAAAA TATAA	TAAAT TATAT	TAAAC	TAAAG TATAG	TAATA TATTA	TAATT TATTT	TAATC	TAATG	TAACA TATCA	TAACT TATCT	TAACC TATCC	TAACG	TAAGA TATGA	TAAGT TATGT	TAAGC TATGC	TA TA
VC	TATAA		TATAC TACAC	TACAG	TACTA	TACTT	TATTC TACTC	TATTG	TACCA	TACCT	TACCC	TATCG TACCG	TACGA	TACGT	TATGC	TA
G	TAGAA	TACAT TAGAT	TAGAC	TAGAG	TAGTA	TAGTT	TAGTC	TACTG TAGTG	TAGCA	TAGCT	TAGCC	TAGCG	TAGGA	TAGGT	TAGGC	TA
A	TTAGAA	TTAGAT	TTAGAC	TTAGAG	TTATA	TTATT	TTATC	TTATG	TTAGCA	TTACT	TTACC	TTAGCG	TTAGGA	TAGGT	TAGGC	
Ť	TTTAA	TTTAT	TTTAC	TTTAG	TTTTA	TTTTT	TITIC	TTTTG	TTTCA	TTTCT	TTTCC	TTTCG	TTTGA	TTTGT	TTTGC	
c	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA	TTCTT	TTCTC	TTCTG	TTCCA	ТТССТ	TTCCC	TTCCG	TTCGA	TTCGT	TTCGC	<u>†</u>
G	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG	TTGGA	TTGGT	TTGGC	
Ά	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG	TCAGA	TCAGT	TCAGC	TO
T	TCTAA	TCTAT	TCTAC	TCTAG	TCTTA	TCTTT	TCTTC	TCTTG	TCTCA	TCTCT	TCTCC	TCTCG	TCTGA	TCTGT	TCTGC	TO
C	TCCAA	TCCAT	TCCAC	TCCAG	TCCTA	TCCTT	TCCTC	TCCTG	TCCCA	TCCCT	TCCCC	TCCCG	TCCGA	TCCGT	TCCGC	TO
G	TCGAA	TCGAT	TCGAC	TCGAG	TCGTA	TCGTT	TCGTC	TCGTG	TCGCA	TCGCT	TCGCC	TCGCG	TCGGA	TCGGT	TCGGC	TO
Α	TGAAA	TGAAT	TGAAC	TGAAG	TGATA	TGATT	TGATC	TGATG	TGACA	TGACT	TGACC	TGACG	TGAGA	TGAGT	TGAGC	TO
Т	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG	TGTGA	TGTGT	TGTGC	TO
C	TGCAA	TGCAT	TGCAC	TGCAG	TGCTA	TGCTT	TGCTC	TGCTG	TGCCA	TGCCT	TGCCC	TGCCG	TGCGA	TGCGT	TGCGC	TO
iG	TGGAA	TGGAT	TGGAC	TGGAG	TGGTA	TGGTT	TGGTC	TGGTG	TGGCA	TGGCT	TGGCC	TGGCG	TGGGA	TGGGT	TGGGC	TO
ΙA	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	C.A
ıΤ	CATAA	CATAT	CATAC	CATAG	CATTA	CATTT	CATTC	CATTG	CATCA	CATCT	CATCC	CATCG	CATGA	CATGT	CATGC	C.F
۱C	CACAA	CACAT	CACAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA	CACCT	CACCC	CACCG	CACGA	CACGT	CACGC	C.F
١G	CAGAA	CAGAT	CAGAC	CAGAG	CAGTA	CAGTT	CAGTC	CAGTG	CAGCA	CAGCT	CAGCC	CAGCG	CAGGA	CAGGT	CAGGC	C.F
Α	CTAAA	CTAAT	CTAAC	CTAAG	CTATA	CTATT	CTATC	CTATG	CTACA	CTACT	CTACC	CTACG	CTAGA	CTAGT	CTAGC	СТ
Т	CTTAA	CTTAT	CTTAC	CTTAG	CTTTA	CTTTT	CTTTC	CTTTG	CTTCA	CTTCT	CTTCC	CTTCG	CTTGA	CTTGT	CTTGC	CT
C	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	CTCTT	CTCTC	CTCTG	CTCCA	CTCCT	CTCCC	CTCCG	CTCGA	CTCGT	CTCGC	CT
G	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CT
A	CCAAA	CCAAT	CCAAC	CCTAG	CCATA	CCATT	CCATC	CCATG	CCACA	CCACT	CCACC	CCACG	CCAGA	CCAGT	CCAGC	CC
T C	CCTAA CCCAA	CCCAT	CCTAC CCCAC	CCTAG CCCAG	CCTTA CCCTA	CCTTT CCCTT	CCTTC	CCTTG	CCTCA	CCTCT	CCTCC	CCTCG	CCTGA CCCGA	CCTGT	CCTGC	CC
G	CCGAA	CCCAT CCGAT	CCGAC	CCGAG	CCGTA		CCCTC					CCCCG	CCGGA		CCGGC	CC
iA	CGAAA	CGAAT	CGAAC	CGAAG	CGATA	CGATT	CGATC	CGATG	CGACA	CGACT	CGACC	CGACG	CGAGA	CGAGT	CGAGC	CC
T	CGTAA	CGTAT	CGTAC	CGTAG	CGTTA	CGTTT	CGTTC	CGTTG	CGTCA	CGTCT	CGTCC	CGTCG	CGTGA	CGTGT	CGTGC	CC
C	CGCAA	CGCAT	CGCAC	CGCAG	CGCTA	CGCTT	CGCTC	CGCTG	CGCCA	CGCCT	CGCCC	CGCCG	CGCGA	CGCGT	CGCGC	CC
G	CGGAA	CGGAT	CGGAC	CGGAG	CGGTA	CGGTT	CGGTC	CGGTG	CGGCA	CGGCT	CGGCC	CGGCG	CGGGA	CGGGT	CGGGC	cc
Α	GAAAA	GAAAT	GAAAC	GAAAG	GAATA	GAATT	GAATC	GAATG	GAACA	GAACT	GAACC	GAACG	GAAGA	GAAGT	GAAGC	GA
T	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG	GATGA	GATGT	GATGC	G/
C	GACAA	GACAT	GACAC	GACAG	GACTA	GACTT	GACTC	GACTG	GACCA	GACCT	GACCC	GACCG	GACGA	GACGT	GACGC	G/
G	GAGAA	GAGAT	GAGAC	GAGAG	GAGTA	GAGTT	GAGTC	GAGTG	GAGCA	GAGCT	GAGCC	GAGCG	GAGGA	GAGGT	GAGGC	G/
Α	GTAAA	GTAAT	GTAAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GTACT	GTACC	GTACG	GTAGA	GTAGT	GTAGC	G1
Т	GTTAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC	GTTTG	GTTCA	GTTCT	GTTCC	GTTCG	GTTGA	GTTGT	GTTGC	GT
C	GTCAA	GTCAT	GTCAC	GTCAG	GTCTA	GTCTT	GTCTC	GTCTG	GTCCA	GTCCT	GTCCC	GTCCG	GTCGA	GTCGT	GTCGC	GT
G	GTGAA	GTGAT	GTGAC	GTGAG	GTGTA	GTGTT	GTGTC		GTGCA	GTGCT	GTGCC	GTGCG	GTGGA	GTGGT	GTGGC	GT
Α	GCAAA	GCAAT	GCAAC	GCAAG	GCATA	GCATT	GCATC	GCATG	GCACA	GCACT	GCACC	GCACG	GCAGA	GCAGT	GCAGC	GC
T	GCTAA	GCTAT	GCTAC	GCTAG	GCTTA	GCTTT	GCTTC	GCTTG	GCTCA	GCTCT	GCTCC	GCTCG	GCTGA	GCTGT	GCTGC	GC
CC	GCCAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG	GCCGA	GCCGT	GCCGC	GC
CG	GCGAA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC	GCGTG	GCGCA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GC
iΑ	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT	GGATC	GGATG	GGACA	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GG
T	GGTAA	GGTAT	GGTAC	GGTAG	GGTTA	GGTTT	GGTTC	GGTTG	GGTCA	GGTCT	GGTCC	GGTCG	GGTGA	GGTGT	GGTGC	GG
SC	GGCAA	GGCAT	GGCAC	GGCAG	GGCTA	GGCTT	GGCTC	GGCTG	GGCCA	GGCCT	GGCCC	GGCCG	GGCGA	GGCGT	GGCGC	GG
iG	GGGAA	GGGAT	GGGAC	GGGAG	GGGTA	GGGTT	GGGTC	GGGTG	GGGCA	GGGCT	GGGCC	GGGCG	GGGGA	GGGGT	GGGGC	GG

Before filtering: read2: overrepresented sequences

Sampling rate: 1 / 20		
overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	6998 (0.016355%)	
AACCCTAACCCTAACCCTAACCCTAACCCTAACC	154 (0.000360%)	
AACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	23768 (0.055548%)	
AAGATGTGTATAAGAGACAG	242845 (0.283776%)	
ACACACACACACACACACACACACACACACACACACA	2341 (0.005471%)	
AC	54905 (0.128318%)	
AC	1712 (0.004001%)	
ACACACCTGTCTCTTATACACATCTAGATGTGTATAAGAG	2882 (0.006736%)	
ACACATCTAGATGTGTATAAGAGACAGCACACACACAC	182 (0.000425%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	16832 (0.039338%)	
ACATCTAGATGTGTATAAGAGACAGCACACACACACAC	225 (0.000526%)	
ACCCTAACCCTAACCCTAACCCTAACCCTAACCC	220 (0.000514%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21464 (0.050163%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	1402 (0.003277%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	26456 (0.061830%)	
AG	14183 (0.033147%)	
AGATCGGAAGAGCGTCGTGT	108057 (0.126270%)	
AGATGTGTATAAGAGACACACACACACACACACACACAC	18162 (0.042446%)	
AGATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	16426 (0.038389%)	
AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	37495 (0.087629%)	
AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22064 (0.051566%)	
ATACACATCTAGATGTGTATAAGAGACAGCACACACAC	169 (0.000395%)	
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	40213 (0.093982%)	
ATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTG	135 (0.000316%)	
ATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	17452 (0.040787%)	
CAAGATGTGTATAAGAGACA	126163 (0.147427%)	
CACACACACACACACACACACACACACACACACAA	1526 (0.003566%)	
CACACACACACACACACACACACACACACACACACA	35294 (0.082485%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAAGA	19397 (0.045333%)	
CACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	5126 (0.011980%)	
CACATCTAGATGTGTATAAGAGACAGCACACACACACACA	185 (0.000432%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	16768 (0.039188%)	

CAGATGTGTATAAGAGACAG	232707 (0.271929%)	
CCAGATGTGTATAAGAGACA	130369 (0.152342%)	
CCCTAACCCTAACCCTAACCCTAACCCTAACCCT	341 (0.000797%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	52671 (0.123097%)	
CCTAACCCTAACCCTAACCCTAACCCTA	333 (0.000778%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	617 (0.001442%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1335 (0.003120%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	1798 (0.004202%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	319 (0.000746%)	
СТААСССТААСССТААСССТААСССТААСССТАА	187 (0.000437%)	
CTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22633 (0.052895%)	
стстстстстстстстстстстстстстстстст	9629 (0.022504%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	96 (0.000224%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGT	74 (0.000173%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	4291 (0.010028%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	5154 (0.012045%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	8837 (0.020653%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	4578 (0.010699%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	4856 (0.011349%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	270 (0.000631%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	275 (0.000643%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	321 (0.000750%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	590 (0.001379%)	
CTGTCTCTTATACACATCTC	315409 (0.368570%)	
CTGTCTCTTATACACATCTG	330654 (0.386385%)	
CTGTCTCTTATACACATCTT	332587 (0.388643%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	71 (0.000166%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21725 (0.050773%)	
GA	13380 (0.031270%)	
GAGATGTGTATAAGAGACAG	197777 (0.231112%)	
GAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22080 (0.051603%)	
GATGTGTATAAGAGACAGCACACACACACACACACACA	178 (0.000416%)	
GATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGT	193 (0.000451%)	
GCACACACACACACACACACACACACACACACACACAC		

	22226 (0.051944%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	47171 (0.110243%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2019 (0.004719%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	4502 (0.010522%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	6556 (0.015322%)	
GGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	19784 (0.046237%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	36434 (0.085150%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	105635 (0.246879%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	8759 (0.051176%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	6787 (0.059085%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	13238 (0.030938%)	
GGGGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	1112 (0.002599%)	
GGGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	4185 (0.009781%)	
GGGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	3905 (0.009126%)	
GGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	4350 (0.010166%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	158 (0.000369%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	122 (0.000285%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	33757 (0.078893%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	13967 (0.032642%)	
GTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	10379 (0.024257%)	
GTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	200 (0.000467%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2406 (0.005623%)	
GTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGA	1823 (0.004261%)	
GTGTGTGTGTCTCTTATACACATCTAGATGTGTATAA	2728 (0.006376%)	
GTGTGTGTGTGTCTCTTATACACATCTAGATGTGTAT	1860 (0.004347%)	
GTGTGTGTGTGTCTCTTATACACATCTAGATGTGT	1667 (0.003896%)	
GTGTGTGTGTGTGTGTGTCTCTTATACACATCT	13390 (0.031294%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGA	1542 (0.003604%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	34421 (0.080445%)	
TAACCCTAACCCTAACCCTAACCCTAACCCTAAC	131 (0.000306%)	
TACACATCTAGATGTGTATAAGAGACAGCACACACACA	169 (0.000395%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	28425 (0.066432%)	
TATACACATCTAGATGTGTATAAGAGACAGCACACACA	127 (0.000297%)	

TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	43752 (0.102252%)	
тстстстстстстстстстстстстстстстс	12741 (0.029777%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	57 (0.000133%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	65 (0.000152%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	10350 (0.024189%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	14937 (0.034909%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	44 (0.000103%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTG	30 (0.000070%)	
TGAGATGTGTATAAGAGACA	142585 (0.166617%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	46655 (0.109037%)	
TGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	5333 (0.031159%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	277 (0.000647%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	74 (0.000173%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	107 (0.000250%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCT	104 (0.000243%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	90 (0.000210%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	75 (0.000175%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	118 (0.000276%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	122 (0.000285%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	304 (0.000710%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	108 (0.000252%)	
TGTCTCTTATACACATCTCA	1069 (0.001249%)	
TGTCTCTTATACACATCTGG	950 (0.001110%)	
TGTCTCTTATACACATCTTG	871 (0.001018%)	
TGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	10397 (0.024299%)	
TGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGT	73 (0.000171%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3780 (0.008834%)	
TGTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAG	1689 (0.003947%)	
TGTGTGTGTGCTGTCTCTTATACACATCTAGATGTGTATA	3226 (0.007539%)	
TGTGTGTGTGTGTCTCTTATACACATCTAGATGTGTA	2019 (0.004719%)	
TGTGTGTGTGTGCTGTCTCTTATACACATCTAGATGTG	2378 (0.005558%)	
TGTGTGTGTGTGTGCTGTCTCTTATACACATCTAGATG	4587 (0.010720%)	
тстстстстстстстстстстстстстстс	37902 (0.088580%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACAC	57 (0.000133%)	

After filtering

After filtering: read1: quality

Value of each position will be shown on mouse over.

After filtering: read1: base contents

After filtering: read1: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

Darl	ker bac	kground	means	larger	counts	. The c	ount wi	.ll be s	shown o	n mouse	over.					
	AA	AT	AC	AG	TA	TT	TC	TG	CA	CT	CC	CG	GA	GT	GC	GG
AAA	AAAAA	AAAAT AATAT	AAAAC	AAAAG AATAG	AAATA AATTA	AAATT AATTT	AAATC AATTC	AAATG	AAACA	AAACT	AAACC AATCC	AAACG	AAAGA	AAAGT AATGT	AAAGC	AAAGG AATGG
AAT	AATAA AACAA	AACAT	AATAC AACAC	AACAG	AACTA	AACTT	AACTC	AATTG AACTG	AATCA AACCA	AATCT AACCT	AACCC	AATCG AACCG	AATGA AACGA	AACGT	AATGC AACGC	AATGG
AAG	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AAGGG
ATA	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	ATAGG
ATT	ATTAA	ATTAT	ATTAC	ATTAG	ATTTA	ATTTT	ATTTC	ATTTG	ATTCA	ATTCT	ATTCC	ATTCG	ATTGA	ATTGT	ATTGC	ATTGG
ATC	ATCAA	ATCAT	ATCAC	ATCAG	ATCTA	ATCTT	ATCTC	ATCTG	ATCCA	ATCCT	ATCCC	ATCCG		ATCGT ATGGT	ATCGC	ATCGG
ATG	ATGAA ACAAA	ATGAT ACAAT	ATGAC ACAAC	ATGAG ACAAG	ATGTA ACATA	ATGTT ACATT	ATGTC ACATC	ATGTG ACATG	ATGCA ACACA	ATGCT ACACT	ATGCC ACACC	ATGCG ACACG	ATGGA ACAGA	ACAGT	ATGGC ACAGC	ATGGG ACAGG
ACT	ACTAA	ACTAT	ACTAC	ACTAG	ACTTA	ACTTT	ACTTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG		ACTGT	ACTGC	ACTGG
ACC	ACCAA	ACCAT	ACCAC	ACCAG	ACCTA	ACCTT	ACCTC	ACCTG	ACCCA	ACCCT	ACCCC	ACCCG	ACCGA	ACCGT	ACCGC	ACCGG
ACG	ACGAA	ACGAT	ACGAC	ACGAG	ACGTA	ACGTT	ACGTC	ACGTG	ACGCA	ACGCT	ACGCC	ACGCG	ACGGA	ACGGT	ACGGC	ACGGG
AGA	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AGAGG
AGT	AGTAA AGCAA	AGTAT AGCAT	AGTAC AGCAC	AGTAG AGCAG	AGTTA AGCTA	AGTTT AGCTT	AGTTC AGCTC	AGTTG AGCTG	AGTCA AGCCA	AGTCT AGCCT	AGTCC AGCCC	AGTCG AGCCG	AGTGA AGCGA	AGTGT AGCGT	AGTGC AGCGC	AGTGG AGCGG
AGG	AGGAA	AGGAT	AGGAC	AGGAG	AGGTA	AGGTT	AGGTC	AGGTG	AGGCA	AGGCT	AGGCC	AGGCG	AGGGA	AGGGT	AGGGC	AGGGG
TAA	TAAAA	TAAAT	TAAAC	TAAAG	TAATA	TAATT	TAATC	TAATG	TAACA	TAACT	TAACC	TAACG		TAAGT	TAAGC	TAAGG
TAT	TATAA	TATAT	TATAC	TATAG	TATTA	TATTT	TATTC	TATTG	TATCA	TATCT	TATCC	TATCG		TATGT	TATGC	TATGG
TAC	TACAA	TACAT	TACAC		TACTA	TACTT	TACTC	TACTG	TACCA	TACCT	TACCC	TACCG		TACGT	TACGC	TACGG
TAG	TAGAA	TAGAT	TAGAC	TAGAG	TAGTA TTATA	TAGTT	TAGTC	TAGTG	TAGCA TTACA	TAGCT TTACT	TAGCC	TAGCG TTACG		TAGGT TTAGT	TAGGC	TAGGG TTAGG
TTT	TTAAA TTTAA	TTAAT TTTAT	TTAAC TTTAC	TTAAG TTTAG	TTTTA	TTATT TTTTT	TTATC TTTTC	TTATG TTTTG	TTTCA	TTTCT	TTACC TTTCC	TTTCG		TTTGT	TTAGC TTTGC	TTTGG
TTC	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA	TTCTT	TTCTC	TTCTG	TTCCA	TTCCT	TTCCC	TTCCG		TTCGT	TTCGC	TTCGG
TTG	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG		TTGGT	TTGGC	TTGGG
TCA	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG		TCAGT	TCAGC	TCAGG
TCT	TCTAA	TCTAT	TCTAC	•	TCTTA	TCTTT	TCTTC		TCTCA	TCTCT			TCTGA	TCTGT	TCTGC	TCTGG
TCC	TCCAA	TCCAT TCGAT	TCCAC	TCCAG	TCCTA	TCCTT	TCCTC	TCCTG	TCCCA	TCCCT	TCCCC	TCCCG		TCCGT	TCCGC	TCCGG
TCG	TCGAA TGAAA	TGAAT	TCGAC TGAAC	TCGAG TGAAG	TCGTA TGATA	TCGTT TGATT	TCGTC TGATC	TCGTG TGATG	TCGCA TGACA	TCGCT TGACT	TCGCC TGACC	TCGCG TGACG	TCGGA TGAGA	TCGGT TGAGT	TCGGC TGAGC	TCGGG TGAGG
TGT	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG		TGTGT	TGTGC	TGTGG
TGC	TGCAA	TGCAT	TGCAC	TGCAG	TGCTA	TGCTT	TGCTC	TGCTG	TGCCA	TGCCT	TGCCC	TGCCG		TGCGT	TGCGC	TGCGG
TGG	TGGAA	TGGAT	TGGAC	TGGAG	TGGTA	TGGTT	TGGTC	TGGTG	TGGCA	TGGCT	TGGCC	TGGCG		TGGGT	TGGGC	TGGGG
CAA	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	CAAGG
CAT	CATAA CACAA	CATAT CACAT	CATAC CACAC	CATAG CACAG	CATTA CACTA	CATTT CACTT	CATTC CACTC	CATTG CACTG	CATCA CACCA	CATCT CACCT	CATCC CACCC	CATCG CACCG	CATGA CACGA	CATGT CACGT	CATGC CACGC	CATGG CACGG
CAG	CAGAA	CACAT	CAGAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA	CACCT	CACCC	CACCG	CACGA	CACGT	CACGC	CACGG
CTA	CTAAA	CTAAT	CTAAC	CTAAG	CTATA	CTATT	CTATC	CTATG	CTACA	CTACT	CTACC	CTACG	CTAGA	CTAGT	CTAGC	CTAGG
CTT	CTTAA	CTTAT	CTTAC	CTTAG	CTTTA	СТТТТ	СТТТС	CTTTG	CTTCA	CTTCT	CTTCC	CTTCG		CTTGT	CTTGC	CTTGG
CTC	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	СТСТТ	СТСТС	CTCTG	CTCCA	СТССТ	СТССС	CTCCG		CTCGT	CTCGC	CTCGG
CTG	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CTGGG
CCA	CCAAA CCTAA	CCAAT CCTAT	CCAAC CCTAC	CCAAG CCTAG	CCATA CCTTA	CCATT CCTTT	CCATC CCTTC	CCATG CCTTG	CCACA CCTCA	CCACT CCTCT	CCACC CCTCC	CCACG CCTCG		CCAGT CCTGT	CCAGC CCTGC	CCAGG CCTGG
	CCCAA			CCCAG												
CCG	CCGAA	CCGAT	CCGAC		CCGTA		CCGTC			CCGCT			CCGGA	CCGGT	CCGGC	
CGA	CGAAA	CGAAT	CGAAC	CGAAG	CGATA	CGATT	CGATC	CGATG	CGACA	CGACT	CGACC	CGACG	CGAGA	CGAGT	CGAGC	CGAGG
CGT	CGTAA	CGTAT	CGTAC	CGTAG	CGTTA	CGTTT	CGTTC	CGTTG	CGTCA	CGTCT	CGTCC		CGTGA	CGTGT	CGTGC	CGTGG
CGC	CGCAA	CGCAT	CGCAC	CGCAG	CGCTA	CGCTT	CGCTC	CGCTG	CGCCA	CGCCT	CGCCC	CGCCG		CGCGT	CGCGC	CGCGG
GAA	CGGAA GAAAA	CGGAT GAAAT	CGGAC GAAAC	CGGAG GAAAG	CGGTA GAATA	CGGTT GAATT	CGGTC GAATC	CGGTG GAATG	CGGCA GAACA	CGGCT GAACT	CGGCC GAACC	CGGCG GAACG	CGGGA GAAGA	CGGGT GAAGT	CGGGC GAAGC	CGGGG GAAGG
GAT	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG		GATGT	GATGC	GATGG
GAC	GACAA	GACAT	GACAC	GACAG	GACTA	GACTT	GACTC	GACTG	GACCA	GACCT	GACCC	GACCG		GACGT	GACGC	GACGG
GAG	GAGAA	GAGAT	GAGAC	GAGAG	GAGTA	GAGTT	GAGTC	GAGTG	GAGCA	GAGCT	GAGCC	GAGCG	GAGGA	GAGGT	GAGGC	GAGGG
GTA	GTAAA	GTAAT	GTAAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GTACT	GTACC	GTACG		GTAGT	GTAGC	GTAGG
GTT	GTTAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC	GTTTG	GTTCA	GTTCT	GTTCC	GTTCG		GTTGT	GTTGC	GTTGG
GTC GTG	GTCAA GTGAA	GTCAT GTGAT	GTCAC GTGAC	GTCAG GTGAG	GTCTA GTGTA	GTCTT GTGTT	GTCTC	GTCTG GTGTG	GTCCA GTGCA	GTCCT GTGCT	GTCCC GTGCC	GTCCG GTGCG		GTCGT GTGGT	GTCGC GTGGC	GTCGG GTGGG
GCA	GCAAA	GCAAT	GCAAC	GCAAG	GCATA	GCATT	GCATC	GCATG	GCACA	GCACT	GCACC	GCACG		GCAGT	GCAGC	GCAGG
GCT	GCTAA	GCTAT	GCTAC	GCTAG	GCTTA	GCTTT	GCTTC	GCTTG	GCTCA	GCTCT	GCTCC	GCTCG		GCTGT	GCTGC	GCTGG
GCC	GCCAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG	GCCGA	GCCGT	GCCGC	GCCGG
GCG	GCGAA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC	GCGTG	GCGCA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GCGGG
GGA	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT	GGATC	GGATG	GGACA	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GGAGG GGTGG
GGT	GGTAA GGCAA	GGTAT GGCAT	GGTAC GGCAC	GGTAG GGCAG	GGTTA GGCTA	GGTTT GGCTT	GGTTC GGCTC	GGTTG GGCTG	GGTCA GGCCA	GGTCT GGCCT	GGTCC GGCCC	GGTCG GGCCG	GGTGA GGCGA	GGTGT GGCGT	GGTGC GGCGC	GGCGG
GGG	GGGAA	GGGAT	GGGAC	GGGAG	GGGTA	GGGTT	GGGTC	GGGTG	GGGCA	GGGCT	GGGCC	GGGCG	GGGGA	GGGGT	GGGGC	GGGGG
556													-000011			

After filtering: read1: overrepresented sequences

Sampling rate: 1 / 20 overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
AACACACACACACACACACACACACACACACACACACA	17586 (0.045069%)	3,313 2 3,313 232
AACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	27073 (0.069381%)	
AAGATGTGTATAAGAGACAG	230913 (0.295886%)	
ACACACACACACACACACACACACACACACACACACA	596 (0.001527%)	
AC	17558 (0.044997%)	
ACACACACACACACACACACACACACACACACACACACA	524 (0.001343%)	
ACACACACACACACACACACACACACACACACACACACA	348 (0.000892%)	
ACACACACCTGTCTCTTATACACATCTAGATGTGTATAAG	1453 (0.003724%)	
ACACACCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3299 (0.008455%)	
ACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGTG	114 (0.000292%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	19314 (0.049497%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24105 (0.061775%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	1678 (0.004300%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	13149 (0.033698%)	
AG	13162 (0.033731%)	
AG	370 (0.002371%)	
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	13919 (0.035671%)	
AGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	25284 (0.064797%)	
AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	28643 (0.073405%)	
AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24635 (0.063133%)	
ATACACATCTAGATGTGTATAAGAGACA	118 (0.000302%)	
ATCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA		
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	18023 (0.046188%)	
	46865 (0.120103%)	
ATGCTGTATAACACACACGTGTGTGTGTGTGTGTGTGTGT	24928 (0.063884%)	
ATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	105 (0.000269%)	
ATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	17426 (0.044658%)	
CAAGATGTGTATAAGAGAGAGAGAGAGAGAGAGAGAGAGA	120136 (0.153939%)	
CACACACACACACACACACACACACACACACACAAA	1287 (0.003298%)	
CACACACACACACACACACACACACACACACACACACA	15104 (0.038708%)	
CA	399 (0.001023%)	
CACACACACACACACACACACACACACACACACAGA	901 (0.002309%)	

CACACACACACACACACCTGTCTCTTATACACATCT	15854 (0.040630%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAA	13100 (0.033572%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAAGA	2487 (0.006374%)	
CACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	5717 (0.014651%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	19560 (0.050127%)	
CACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	15239 (0.039054%)	
CAGATGTGTATAAGAGACAG	217461 (0.278649%)	
CAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	13450 (0.034469%)	
CCAGATGTGTATAAGAGACA	121400 (0.155559%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	58177 (0.149093%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	749 (0.001919%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1575 (0.004036%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	2247 (0.005758%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	403 (0.001033%)	
CTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24814 (0.063592%)	
стстстстстстстстстстстстстстст	5871 (0.015046%)	
CTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	19934 (0.051086%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	85 (0.000218%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGT	68 (0.000174%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	1543 (0.003954%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAG	744 (0.001907%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	1765 (0.004523%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	4421 (0.011330%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	2420 (0.006202%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	2642 (0.006771%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	329 (0.000843%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	376 (0.000964%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	432 (0.001107%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	770 (0.001973%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGTA	828 (0.002122%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGTC	1173 (0.003006%)	
CTGTCTCTTATACACATCTC	324099 (0.415292%)	
CTGTCTCTTATACACATCTG	349910 (0.448366%)	

CTGTCTCTTATACACATCTT	351544 (0.450460%)	
CTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	17384 (0.044551%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	59 (0.000151%)	
CTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGT	39 (0.000100%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	24824 (0.063618%)	
GACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	21452 (0.054976%)	
GA	12722 (0.032603%)	
GAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA	387 (0.002479%)	
GAGATGTGTATAAGAGACAG	189410 (0.242705%)	
GAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22105 (0.056650%)	
GATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGT	183 (0.000469%)	
GCACACACACACACACACACACACACACACACACACACA	24407 (0.062549%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	28457 (0.072928%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2335 (0.005984%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	4903 (0.012565%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	7586 (0.019441%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	1179 (0.003021%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	39498 (0.101223%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	102 (0.000261%)	
GGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	9563 (0.024508%)	
GTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGTG	50 (0.000128%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	175 (0.000448%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	145 (0.000372%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	38625 (0.098986%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	14932 (0.038267%)	
GTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	147 (0.000377%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2517 (0.006450%)	
GTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGA	2028 (0.005197%)	
GTGTGTGTGCTCTCTTATACACATCTAGATGTGTATAA	3115 (0.007983%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTG	863 (0.002212%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	24010 (0.061532%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTTTT	576 (0.001476%)	
TACACACACACACACACACACACACACACACACACA	18161 (0.046542%)	

TACACATCTAGATGTGTATAAGAGACAGGTGTGTGTGTGT	101 (0.000259%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	32922 (0.084371%)	
TAGATCGGAAGAGCACACGTCTGAACTCCAGTCACGCCAA	365 (0.000935%)	
TATACACATCTAGATGTGTATAAGAGACAGGTGTGTGT	83 (0.000213%)	
TCACACACACACACACACACACACACACACACACACACA	17187 (0.044046%)	
TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	30526 (0.078230%)	
тстстстстстстстстстстстстстстстс	7980 (0.020451%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	56 (0.000144%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	64 (0.000164%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2499 (0.006404%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	5395 (0.013826%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	7965 (0.020412%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACACAC	32 (0.000082%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTG	16 (0.000041%)	
TGAGATGTGTATAAGAGACA	135878 (0.174111%)	
TGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22457 (0.057552%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	28453 (0.072918%)	
TGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTGT	41 (0.000105%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGACA	64 (0.000164%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	218 (0.000559%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCC	75 (0.000192%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	74 (0.000190%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	89 (0.000228%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGAG	100 (0.000256%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCC	74 (0.000190%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCT	91 (0.000233%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	86 (0.000220%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	92 (0.000236%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	99 (0.000254%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	119 (0.000305%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	226 (0.000579%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	74 (0.000190%)	
TGTCTCTTATACACATCTCA	784 (0.001005%)	
TGTCTCTTATACACATCTGA	568 (0.000728%)	

TGTCTCTTATACACATCTGG	644 (0.000825%)	
TGTCTCTTATACACATCTTG	722 (0.000925%)	
TGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	11646 (0.029846%)	
TGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGT	45 (0.000115%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	4344 (0.011133%)	
TGTGTGTGCTCTCTTATACACATCTAGATGTGTATAAG	2047 (0.005246%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTATA	23328 (0.059784%)	
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTGAG	1113 (0.002852%)	
тдтдтдтдтдтдтдтдтдтдтдтдтдтдтдтд	6970 (0.017862%)	
TGTGTGTGTGTGTGTGTGTGTGTGTGTGTT	205 (0.000525%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACAC	35 (0.000090%)	
TTATACACATCTAGATGTGTATAAGAGACAGGTGTGTGTG	50 (0.000128%)	
TTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	14444 (0.037016%)	

After filtering: read2: quality

After filtering: read2: base contents

Value of each position will be shown on mouse over.

After filtering: read2: KMER counting

Darker background means larger counts. The count will be shown on mouse over.

	AA	AT	AC	AG	TA	TT	TC	TG	CA	CT	CC	CG	GA	GT	GC	GG
AAA	AAAA	AAAAT	AAAAC	AAAAG	AAATA	AAATT	AAATC	AAATG	AAACA	AAACT	AAACC	AAACG	AAAGA	AAAGT	AAAGC	AAAGG
AAT	AATAA	AATAT	AATAC	AATAG	AATTA	AATTT	AATTC	AATTG	AATCA	AATCT	AATCC	AATCG	AATGA	AATGT	AATGC	AATGG
AAC	AACAA	AACAT	AACAC	AACAG	AACTA	AACTT	AACTC	AACTG	AACCA	AACCT	AACCC	AACCG	AACGA	AACGT	AACGC	AACGG
AAG	AAGAA	AAGAT	AAGAC	AAGAG	AAGTA	AAGTT	AAGTC	AAGTG	AAGCA	AAGCT	AAGCC	AAGCG	AAGGA	AAGGT	AAGGC	AAGGG
ATA	ATAAA	ATAAT	ATAAC	ATAAG	ATATA	ATATT	ATATC	ATATG	ATACA	ATACT	ATACC	ATACG	ATAGA	ATAGT	ATAGC	ATAGG
ATT	ATTAA	ATTAT	ATTAC	ATTAG	ATTTA	ATTTT	ATTTC	ATTTG	ATTCA	ATTCT	ATTCC	ATTCG	ATTGA	ATTGT	ATTGC	ATTGG
ATC	ATCAA	ATCAT	ATCAC	ATCAG	ATCTA	ATCTT	ATCTC	ATCTG	ATCCA	ATCCT	ATCCC	ATCCG	ATCGA	ATCGT	ATCGC	ATCGG
ATG	ATGAA	ATGAT	ATGAC	ATGAG	ATGTA	ATGTT	ATGTC	ATGTG	ATGCA	ATGCT	ATGCC	ATGCG	ATGGA	ATGGT	ATGGC	ATGGG
ACA	ACAAA	ACAAT	ACAAC	ACAAG	ACATA	ACATT	ACATC	ACATG	ACACA	ACACT	ACACC	ACACG	ACAGA	ACAGT	ACAGC	ACAGG
ACT	ACTAA	ACTAT	ACTAC	ACTAG	ACTTA	ACTTT	ACTTC	ACTTG	ACTCA	ACTCT	ACTCC	ACTCG	ACTGA	ACTGT	ACTGC	ACTGG
ACC	ACCAA	ACCAT	ACCAC	ACCAG	ACCTA	ACCTT	ACCTC	ACCTG	ACCCA	ACCCT	ACCCC	ACCCG	ACCGA	ACCGT	ACCGC	ACCGG
ACG	ACGAA	ACGAT	ACGAC	ACGAG	ACGTA	ACGTT	ACGTC	ACGTG	ACGCA	ACGCT	ACGCC	ACGCG	ACGGA	ACGGT	ACGGC	ACGGG
AGA	AGAAA	AGAAT	AGAAC	AGAAG	AGATA	AGATT	AGATC	AGATG	AGACA	AGACT	AGACC	AGACG	AGAGA	AGAGT	AGAGC	AGAGG
AGT	AGTAA	AGTAT	AGTAC	AGTAG	AGTTA	AGTTT	AGTTC	AGTTG	AGTCA	AGTCT	AGTCC	AGTCG	AGTGA	AGTGT	AGTGC	AGTGG
AGC	AGCAA	AGCAT	AGCAC	AGCAG	AGCTA	AGCTT	AGCTC	AGCTG	AGCCA	AGCCT	AGCCC	AGCCG	AGCGA	AGCGT	AGCGC	AGCGG
AGG	AGGAA	AGGAT	AGGAC	AGGAG	AGGTA	AGGTT	AGGTC	AGGTG	AGGCA	AGGCT	AGGCC	AGGCG	AGGGA	AGGGT	AGGGC	AGGGG
TAA	TAAAA	TAAAT	TAAAC	TAAAG	TAATA	TAATT	TAATC	TAATG	TAACA	TAACT	TAACC	TAACG	TAAGA	TAAGT	TAAGC	TAAGG
TAT	TATAA	TATAT	TATAC	TATAG	TATTA	TATTT	TATTC	TATTG	TATCA	TATCT	TATCC	TATCG	TATGA	TATGT	TATGC	TATGG
TAC	TACAA	TACAT	TACAC	TACAG	TACTA	TACTT	TACTC	TACTG	TACCA	TACCT	TACCC	TACCG	TACGA	TACGT	TACGC	TACGG
TAG	TAGAA	TAGAT	TAGAC	TAGAG	TAGTA	TAGTT	TAGTC	TAGTG	TAGCA	TAGCT	TAGCC	TAGCG	TAGGA	TAGGT	TAGGC	TAGGG
TTA	TTAAA	TTAAT	TTAAC	TTAAG	TTATA	TTATT	TTATC	TTATG	TTACA	TTACT	TTACC	TTACG	TTAGA	TTAGT	TTAGC	TTAGG
TTT	TTTAA	TTTAT	TTTAC	TTTAG	TTTTA	TTTTT	TTTTC	TTTTG	TTTCA	TTTCT	TTTCC	TTTCG	TTTGA	TTTGT	TTTGC	TTTGG
TTC	TTCAA	TTCAT	TTCAC	TTCAG	TTCTA	TTCTT	TTCTC	TTCTG	TTCCA	TTCCT	TTCCC	TTCCG	TTCGA	TTCGT	TTCGC	TTCGG
TTG	TTGAA	TTGAT	TTGAC	TTGAG	TTGTA	TTGTT	TTGTC	TTGTG	TTGCA	TTGCT	TTGCC	TTGCG	TTGGA	TTGGT	TTGGC	TTGGG
TCA	TCAAA	TCAAT	TCAAC	TCAAG	TCATA	TCATT	TCATC	TCATG	TCACA	TCACT	TCACC	TCACG	TCAGA	TCAGT	TCAGC	TCAGG
TCT	TCTAA	TCTAT	TCTAC	TCTAG	TCTTA	TCTTT	TCTTC	TCTTG	TCTCA	TCTCT	TCTCC	TCTCG	TCTGA	TCTGT	TCTGC	TCTGG
TCC	TCCAA	TCCAT	TCCAC	TCCAG	TCCTA	TCCTT	TCCTC	TCCTG	TCCCA	TCCCT	TCCCC	TCCCG	TCCGA	TCCGT	TCCGC	TCCGG
TCG	TCGAA	TCGAT	TCGAC	TCGAG	TCGTA	TCGTT	TCGTC	TCGTG	TCGCA	TCGCT	TCGCC	TCGCG	TCGGA	TCGGT	TCGGC	TCGGG

TGA	TGAAA	TGAAT	TGAAC	TGAAG	TGATA	TGATT	TGATC	TGATG	TGACA	TGACT	TGACC	TGACG	TGAGA	TGAGT	TGAGC	TGAGG
TGT	TGTAA	TGTAT	TGTAC	TGTAG	TGTTA	TGTTT	TGTTC	TGTTG	TGTCA	TGTCT	TGTCC	TGTCG	TGTGA	TGTGT	TGTGC	TGTGG
TGC	TGCAA	TGCAT	TGCAC	TGCAG	TGCTA	TGCTT	TGCTC	TGCTG	TGCCA	TGCCT	TGCCC	TGCCG	TGCGA	TGCGT	TGCGC	TGCGG
TGG	TGGAA	TGGAT	TGGAC	TGGAG	TGGTA	TGGTT	TGGTC	TGGTG	TGGCA	TGGCT	TGGCC	TGGCG	TGGGA	TGGGT	TGGGC	TGGGG
CAA	CAAAA	CAAAT	CAAAC	CAAAG	CAATA	CAATT	CAATC	CAATG	CAACA	CAACT	CAACC	CAACG	CAAGA	CAAGT	CAAGC	CAAGG
CAT	CATAA	CATAT	CATAC	CATAG	CATTA	CATTT	CATTC	CATTG	CATCA	CATCT	CATCC	CATCG	CATGA	CATGT	CATGC	CATGG
CAC	CACAA	CACAT	CACAC	CACAG	CACTA	CACTT	CACTC	CACTG	CACCA	CACCT	CACCC	CACCG	CACGA	CACGT	CACGC	CACGG
CAG	CAGAA	CAGAT	CAGAC	CAGAG	CAGTA	CAGTT	CAGTC	CAGTG	CAGCA	CAGCT	CAGCC	CAGCG	CAGGA	CAGGT	CAGGC	CAGGG
CTA	CTAAA	CTAAT	CTAAC	CTAAG	CTATA	CTATT	CTATC	CTATG	CTACA	CTACT	CTACC	CTACG	CTAGA	CTAGT	CTAGC	CTAGG
CTT	CTTAA	CTTAT	CTTAC	CTTAG	CTTTA	CTTTT	CTTTC	CTTTG	CTTCA	CTTCT	CTTCC	CTTCG	CTTGA	CTTGT	CTTGC	CTTGG
CTC	CTCAA	CTCAT	CTCAC	CTCAG	CTCTA	CTCTT	CTCTC	CTCTG	CTCCA	CTCCT	CTCCC	CTCCG	CTCGA	CTCGT	CTCGC	CTCGG
CTG	CTGAA	CTGAT	CTGAC	CTGAG	CTGTA	CTGTT	CTGTC	CTGTG	CTGCA	CTGCT	CTGCC	CTGCG	CTGGA	CTGGT	CTGGC	CTGGG
CCA	CCAAA	CCAAT	CCAAC	CCAAG	CCATA	CCATT	CCATC	CCATG	CCACA	CCACT	CCACC	CCACG	CCAGA	CCAGT	CCAGC	CCAGG
CCT	CCTAA	CCTAT	CCTAC	CCTAG	CCTTA	CCTTT	CCTTC	CCTTG	CCTCA	ССТСТ	ССТСС	CCTCG	CCTGA	CCTGT	CCTGC	CCTGG
CCC	CCCAA	CCCAT	CCCAC	CCCAG	CCCTA	CCCTT	CCCTC	CCCTG	CCCCA	CCCCT	ccccc	CCCCG	CCCGA	CCCGT	CCCGC	CCCGG
CCG	CCGAA	CCGAT	CCGAC	CCGAG	CCGTA	CCGTT	CCGTC	CCGTG	CCGCA	CCGCT	CCGCC	CCGCG	CCGGA	CCGGT	CCGGC	CCGGG
CGA	CGAAA	CGAAT	CGAAC	CGAAG	CGATA	CGATT	CGATC	CGATG	CGACA	CGACT	CGACC	CGACG	CGAGA	CGAGT	CGAGC	CGAGG
CGT	CGTAA	CGTAT	CGTAC	CGTAG	CGTTA	CGTTT	CGTTC	CGTTG	CGTCA	CGTCT	CGTCC	CGTCG	CGTGA	CGTGT	CGTGC	CGTGG
CGC	CGCAA	CGCAT	CGCAC	CGCAG	CGCTA	CGCTT	CGCTC	CGCTG	CGCCA	CGCCT	CGCCC	CGCCG	CGCGA	CGCGT	CGCGC	CGCGG
CGG	CGGAA	CGGAT	CGGAC	CGGAG	CGGTA	CGGTT	CGGTC	CGGTG	CGGCA	CGGCT	CGGCC	CGGCG	CGGGA	CGGGT	CGGGC	CGGGG
GAA	GAAAA	GAAAT	GAAAC	GAAAG	GAATA	GAATT	GAATC	GAATG	GAACA	GAACT	GAACC	GAACG	GAAGA	GAAGT	GAAGC	GAAGG
GAT	GATAA	GATAT	GATAC	GATAG	GATTA	GATTT	GATTC	GATTG	GATCA	GATCT	GATCC	GATCG	GATGA	GATGT	GATGC	GATGG
GAC	GACAA	GACAT	GACAC	GACAG	GACTA	GACTT	GACTC	GACTG	GACCA	GACCT	GACCC	GACCG	GACGA	GACGT	GACGC	GACGG
GAG	GAGAA	GAGAT	GAGAC	GAGAG	GAGTA	GAGTT	GAGTC	GAGTG	GAGCA	GAGCT	GAGCC	GAGCG	GAGGA	GAGGT	GAGGC	GAGGG
GTA	GTAAA	GTAAT	GTAAC	GTAAG	GTATA	GTATT	GTATC	GTATG	GTACA	GTACT	GTACC	GTACG	GTAGA	GTAGT	GTAGC	GTAGG
GTT	GTTAA	GTTAT	GTTAC	GTTAG	GTTTA	GTTTT	GTTTC	GTTTG	GTTCA	GTTCT	GTTCC	GTTCG	GTTGA	GTTGT	GTTGC	GTTGG
GTC	GTCAA	GTCAT	GTCAC	GTCAG	GTCTA	GTCTT	GTCTC	GTCTG	GTCCA	GTCCT	GTCCC	GTCCG	GTCGA	GTCGT	GTCGC	GTCGG
GTG	GTGAA	GTGAT	GTGAC	GTGAG	GTGTA	GTGTT	GTGTC	GTGTG	GTGCA	GTGCT	GTGCC	GTGCG	GTGGA	GTGGT	GTGGC	GTGGG
GCA	GCAAA	GCAAT	GCAAC	GCAAG	GCATA	GCATT	GCATC	GCATG	GCACA	GCACT	GCACC	GCACG	GCAGA	GCAGT	GCAGC	GCAGG
GCT	GCTAA	GCTAT	GCTAC	GCTAG	GCTTA	GCTTT	GCTTC	GCTTG	GCTCA	GCTCT	GCTCC	GCTCG	GCTGA	GCTGT	GCTGC	GCTGG
GCC	GCCAA	GCCAT	GCCAC	GCCAG	GCCTA	GCCTT	GCCTC	GCCTG	GCCCA	GCCCT	GCCCC	GCCCG	GCCGA	GCCGT	GCCGC	GCCGG
GCG	GCGAA	GCGAT	GCGAC	GCGAG	GCGTA	GCGTT	GCGTC	GCGTG	GCGCA	GCGCT	GCGCC	GCGCG	GCGGA	GCGGT	GCGGC	GCGGG
GGA	GGAAA	GGAAT	GGAAC	GGAAG	GGATA	GGATT	GGATC	GGATG	GGACA	GGACT	GGACC	GGACG	GGAGA	GGAGT	GGAGC	GGAGG
GGT	GGTAA	GGTAT	GGTAC	GGTAG	GGTTA	GGTTT	GGTTC	GGTTG	GGTCA	GGTCT	GGTCC	GGTCG	GGTGA	GGTGT	GGTGC	GGTGG
GGC	GGCAA	GGCAT	GGCAC	GGCAG	GGCTA	GGCTT	GGCTC	GGCTG	GGCCA	GGCCT	GGCCC	GGCCG	GGCGA	GGCGT	GGCGC	GGCGG
GGG	GGGAA	GGGAT	GGGAC	l GGGAG l	GGGTA	l GGGTT	GGGTC	GGGTG	GGGCA	l GGGCT	GGGCC	GGGCG	GGGGA	GGGGT	GGGGC	GGGGG

After filtering: read2: overrepresented sequences Sampling rate: 1 / 20

Sampling rate: 1 / 20		
overrepresented sequence	count (% of bases)	distribution: cycle 1 ~ cycle 151
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	205 (0.000526%)	
AACCCTAACCCTAACCCTAACCCTAACCCTAACC	84 (0.000215%)	
AACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	22991 (0.058938%)	
AAGATGTGTATAAGAGACAG	235781 (0.302214%)	
ACACACACACACACACACACACACACACACACACA	1782 (0.004568%)	
ACACACACACACACACACACACACACACACACACACAC	47217 (0.121041%)	
AC	1368 (0.003507%)	
ACACACCTGTCTCTTATACACATCTAGATGTGTATAAGAG	2811 (0.007206%)	
ACACATCTAGATGTGTATAAGAGACAGCACACACACACAC	140 (0.000359%)	
ACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	16714 (0.042847%)	
ACATCTAGATGTGTATAAGAGACAGCACACACACACACAC	201 (0.000515%)	
ACCCTAACCCTAACCCTAACCCTAACCCTAACCC	120 (0.000308%)	
ACCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	20948 (0.053700%)	
ACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	1307 (0.003351%)	
ACTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	25837 (0.066233%)	
AG	11935 (0.030596%)	
AGATCGGAAGAGCGTCGTGT	2420 (0.003102%)	
AGATGTGTATAAGAGACAGCACACACACACACACACAC	16688 (0.042780%)	
AGATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTG	14597 (0.037420%)	

AGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	36972 (0.094778%)	
AGGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21160 (0.054244%)	
ATACACATCTAGATGTGTATAAGAGACAGCACACACACAC	134 (0.000344%)	
ATCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	39212 (0.100520%)	
ATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTG	77 (0.000197%)	
ATGTGTGTGTGTGTGTGTGTGTGTGTGTGT	14944 (0.038309%)	
CAAGATGTGTATAAGAGACA	122437 (0.156934%)	
CACACACACACACACACACACACACACACACAAA	1158 (0.002969%)	
CACACACACACACACACACACACACACACACACA	30179 (0.077364%)	
CACACACCTGTCTCTTATACACATCTAGATGTGTATAAGA	18652 (0.047815%)	
CACACCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	4839 (0.012405%)	
CACATCTAGATGTGTATAAGAGACAGCACACACACACACA	203 (0.000520%)	
CACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	16530 (0.042375%)	
CAGATGTGTATAAGAGACAG	225381 (0.288884%)	
CCAGATGTGTATAAGAGACA	125440 (0.160784%)	
CCCTAACCCTAACCCTAACCCTAACCCT	236 (0.000605%)	
CCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	50996 (0.130729%)	
CCTAACCCTAACCCTAACCCTAACCCTA	290 (0.000743%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	560 (0.001436%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	1248 (0.003199%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	1755 (0.004499%)	
CCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGT	312 (0.000800%)	
CTAACCCTAACCCTAACCCTAACCCTAA	123 (0.000315%)	
CTCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21831 (0.055964%)	
стстстстстстстстстстстстстстстстст	8091 (0.020741%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGCACACA	78 (0.000200%)	
CTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGT	53 (0.000136%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAC	4166 (0.010680%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGAT	5107 (0.013092%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCA	8234 (0.021108%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCC	4389 (0.011251%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCT	4619 (0.011841%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGA	269 (0.000690%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGC	296 (0.000759%)	

CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGG	277 (0.000710%)	
CTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGT	547 (0.001402%)	
CTGTCTCTTATACACATCTC	306892 (0.393361%)	
CTGTCTCTTATACACATCTG	322386 (0.413220%)	
CTGTCTCTTATACACATCTT	324030 (0.415328%)	
CTTATACACATCTAGATGTGTATAAGAGACAGCACACACA	64 (0.000164%)	
GACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21260 (0.054500%)	
GA	11121 (0.028509%)	
GAGATGTGTATAAGAGACAG	192150 (0.246290%)	
GAGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	21242 (0.054454%)	
GATGTGTATAAGAGACACACACACACACACACACACACAC	171 (0.000438%)	
GATGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGT	155 (0.000397%)	
GCACACACACACACACACACACACACACACACACAC	19319 (0.049525%)	
GCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	45773 (0.117340%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGA	2046 (0.005245%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	4306 (0.011038%)	
GCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	6431 (0.016486%)	
GGCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	19187 (0.049186%)	
GGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	35605 (0.091274%)	
GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	46 (0.000118%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGCACA	132 (0.000338%)	
GTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGT	152 (0.000390%)	
GTCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	33333 (0.085450%)	
GTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	13408 (0.034372%)	
GTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	7 (0.000018%)	
GTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGTG	144 (0.000369%)	
GTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGA	2268 (0.005814%)	
GTGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGA	1797 (0.004607%)	
GTGTGTGTGTCTCTTATACACATCTAGATGTGTATAA	2654 (0.006804%)	
GTGTGTGTGTGTCTCTTATACACATCTAGATGTGTAT	1653 (0.004237%)	
GTGTGTGTGTGTCTCTTATACACATCTAGATGTGT	1586 (0.004066%)	
GTGTGTGTGTGTGTGTGTCTCTTATACACATCT	13100 (0.033582%)	
GTGTGTGTGTGTGTGTGTGTGTGTGTGTGA	1136 (0.002912%)	

GT	29261 (0.075011%)	
TAACCCTAACCCTAACCCTAACCCTAACCCTAAC	80 (0.000205%)	
TACACATCTAGATGTGTATAAGAGACAGCACACACACACA	135 (0.000346%)	
TACCTGTCTCTTATACACATCTAGATGTGTATAAGAGACA	27647 (0.070873%)	
TATACACATCTAGATGTGTATAAGAGACAGCACACACACA	87 (0.000223%)	
TCCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	43029 (0.110305%)	
тстстстстстстстстстстстстстстстстс	11010 (0.028224%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGCACAC	61 (0.000156%)	
TCTCTTATACACATCTAGATGTGTATAAGAGACAGGTGTG	43 (0.000110%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGC	10010 (0.025661%)	
TCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAGG	14577 (0.037368%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGCACACAC	42 (0.000108%)	
TCTTATACACATCTAGATGTGTATAAGAGACAGGTGTGTG	15 (0.000038%)	
TGAGATGTGTATAAGAGACA	138226 (0.177172%)	
TGCTGTCTCTTATACACATCTAGATGTGTATAAGAGACAG	45810 (0.117435%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCAC	266 (0.000682%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCCT	96 (0.000246%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGCTC	104 (0.000267%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGCT	81 (0.000208%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGG	79 (0.000203%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGGT	91 (0.000233%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTA	107 (0.000274%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTC	113 (0.000290%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTG	249 (0.000638%)	
TGTCTCTTATACACATCTAGATGTGTATAAGAGACAGGTT	92 (0.000236%)	
TGTCTCTTATACACATCTCA	1030 (0.001320%)	
TGTCTCTTATACACATCTGG	858 (0.001100%)	
TGTCTCTTATACACATCTTG	828 (0.001061%)	
TGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAGAC	9947 (0.025499%)	
TGTGTATAAGAGACAGGTGTGTGTGTGTGTGTGTGT	47 (0.000120%)	
TGTGTGCTGTCTCTTATACACATCTAGATGTGTATAAGAG	3615 (0.009267%)	
TGTGTGTGCTCTCTTATACACATCTAGATGTGTATAAG	1628 (0.004173%)	
TGTGTGTGTGTCTCTTATACACATCTAGATGTGTATA	3092 (0.007926%)	

TGTGTGTGTGTCTCTTATACACATCTAGATGTGTA	2013 (0.005160%)	
TGTGTGTGTGTGTCTCTTATACACATCTAGATGTG	2238 (0.005737%)	
TGTGTGTGTGTGTGTCTCTTATACACATCTAGATG	4450 (0.011408%)	
TG	31211 (0.080010%)	
TTATACACATCTAGATGTGTATAAGAGACAGCACACAC	45 (0.000115%)	

fastp -i ../RAW_READS/5-7kb_S16_L002_R1_001.fastq.gz -I ../RAW_READS/5-7kb_S16_L002_R2_001.fastq.gz -o MP5k_F.trimmed.fq.gz -0 MP5k_R.trimmed.fq.gz -n 5 -q 20 -u 30 --length_required=70 --low_complexity_filter --complexity_threshold=20 --cut_by_quality3 --cut_by_quality5 --cut_window_size=4 --cut_mean_quality=20 --trim_poly_g --poly_g_min_len=10 --overrepresentation_analysis --json=MP5k.json --html=MP5k.html --report_title=MP5k --thread=8

fastp 0.19.4, at 2018-12-19 16:20:34