

Spatial Knowledge and Visual Memory

How do we use it?

- Cognitive maps, reference points, path integration
- Spatial iconicity and triangulation

Why use some forms over others?

- Perceptual salience/relevance
- Functional significance
- Distinctiveness

- Inability to spatially navigate environment or generate mental representations (cognitive maps) of familiar settings
- Occurs independently of neurological disorders or brain damage

- (1) Participants memorize 3 objects and positions presented, then close their eyes while the triad is removed.
- (2) Participants then asked, "Which object was closest (or farthest) from you?" and "Which object was closest (or farthest) to a target object (e.g., cylinder)?"

- (a) Egocentric disorientation
 - Inability to represent the location of objects with respect to the self
 - Can recognize and accurately name objects near them
 - Can <u>not</u> reach for objects when prompted by auditory or visual cues

- (b) Landmark agnosia
 - Inability to recognize salient environmental cues
 - Can distinguish structures (e.g., house vs. tower) but can't identify specific buildings (e.g., their own house, office, or famous landmarks)
 - Navigate by semantics, such as house number or fence type/color

- (c) Heading disorientation
 - Inability to represent direction spatially
 - Can identify familiar buildings and landscapes but unable to conclude which direction required to proceed to target destination

- (d) Anterograde disorientation
 - Inability to orient in "new(er)" environments
 - Can identify and navigate through familiar past locations (e.g., spatial knowledge of hometown) and well-learned environments
 - Largely unable to cognitively map frequently visited grocery store, current neighborhood, etc.

- Other factors
 - Semantic congruity effect
 - (a) Preference to select the larger (or smaller) of two large animals

- Other factors
 - Semantic congruity effect
 - (b) Preference to select the larger (or smaller) of two small animals

Other factors

- Learning from Exploration vs. Maps
 - Subjects asked to learn a 2-building structure (Thorndyke & Hayes-Roth, 1982)
 - More accurate and faster landmark recall for subjects allowed to explore vs. subjects who studied map

Dungeon Master

Analog (prototype) representation

• Mental representations are *analogous* to structures of represented world

Propositional (symbolic) representation

 Abstract coding, assertions, and beliefs that may not hold strong resemblance to physical representations

Analog vs. Propositional

Imagine: The can is on the box. The can is black

Analog representation

Propositional representation

Symbolic on (can, box) black (can)

???

Analog Representation

Propositional Representation

Example of Propositional Representation:

- window at top of cab
- door handle on cab below window
- wheel at lower left of cab
- wheel at lower right of cab
- overly happy dude leaning dangerously far out window...

Depictive

VS.

Descriptive

Analog (prototype) representation

- Good for configural stimuli and data
- · Accommodation not too difficult

Propositional (symbolic) representation

• Each individual has subjective/arbitrary perceptions of "X" – one thing has several interpretations

Quick Classroom Challenge

- · 2-3 students vs. Prof V.
- Draw your cognitive map of DigiPen's 3rd floor

Quick Classroom Challenge

- · 2-3 students vs. Prof V.
- Draw your cognitive map of DigiPen's 3rd floor
- Prof V's spatial knowledge (and xp) of the 3rd floor is likely different

Spatial Memory

- Large scale space ("spatial iconicity")
 - Which is farther north:
 - North Korea or Germany?
 - Which is farther south?
 - New Zealand or South Africa?

Spatial Memory

- Emerging research
 - Caglio (2012) VR games improve spatial and verbal memory after traumatic brain injury
 - Maass (2011) Increases in spatial memory recall post-VG
 - Boot (2008) Expert gamers better detect changes to objects stored in visual STM

Spiers & Maguire (2005)

Panel A shows areas of London simulated (not all minor streets included)

Panels B and C show example views

Additional research

- · Maguire et al. (2006)
 - MRI study on hippocampus structure and integrated cognitive mapping
 - Very careful comparisons with London cab vs. bus drivers
 - Matched subjects' training, age (demographics) driving experience, years employed...

Additional research

- · Maguire et al. (2006)
 - Taxi drivers show *more* posterior hippocampus grey matter (linked to spatial retrieval) compared to bus drivers
 - Taxi drivers show *less* anterior hippocampus activity (linked to encoding novel stimuli) compared to bus drivers

A: London taxi drivers were significantly better than London bus drivers at identifying London landmarks from among visually similar distractors and B, making judgments about proximal relations between London landmarks.

Making new images

- Imagine a capital letter H and a triangle
- Rotate the H 90 degrees
- Place the triangle on top of it
- What is it?

Making new images

- Construct an image of a capital letter M and an image of an inverted capital letter M
- Align the two images so that the bottom of each (3-point ends) touch
- What do you have?

Making new images

- Superimpose an image of a capital letter X with an image of a capital letter H
- What do you have?