Speech Dereverberation

Bo Wen, Haiqin Yin & Meiying Chen

Outline

- Introduction
- Timeline
- Methods
- Summary
- Future work

Introduction - Reverberation

- What's Reverberation
 - Reverberation is the process of multi-path propagation of a sound from its source to one or more receivers
 - Effects on direct speech signal
 - Increase perceived distance
 - Reduce Intelligibility
 - Spectral distortion due to early reflection
- Reverberant signal x(n)
 - Anechoic speech signal s(n)
 - Acoustic Room Impulse Response (RIR) h(n)
 - \circ Additive ambient noise component v(n)

$$x_m(n) = \mathbf{h}_m^T(n)\mathbf{s}(n) + \nu_m(n)$$

Introduction

- Problem identification
 - Sound quality & Intelligibility can degrade in reverberant environment
 - Enhance recordings in reverberant environment
- Application
 - Telecommunication
 - Hands -free phone
 - Desktop conference terminal
 - Reverb removal for recording
 - Automatic Speech Recognition

Introduction - Dereverberation

- What's Dereverberation
 - Dereverberation is the process by which the effects of reverberation are removed from sound
 - Most commonly apply to speech

Timeline - History of Speech Dereverberation

GAUBITH

Spectral Processing HAN DNN

SANTOS

RNN

ZHENG

Spectrogram Filtering

ZHAO

RNN

KILIS

Spectral Subtraction HAN

DNN

2008 2014 2017 2018 2018 2019 2019

2001 2008 2014 2017 2018 2018

LEBART

Spectral Subtraction NAKATANI

Muti-channel Linear Prediction

WENINGER

Deep **BLSTM** RNN

WILLIAMSON

MOHANAN DNN

Non-convolutive NMF Model

ESCUDERO

DNN

DNN

ZHAO

Introduction - Goals

- Ultimate Goal Complete Dereverberation:
 - Estimation of the anechoic speech signal s(n)
- Sufficient Goal Partial Dereverberation:
 - Estimation of a filter of the anechoic speech signal s(n)

Method

- Three main approaches:
 - Reverberation Cancellation
 - Reverberation Suppression
 - Direct Signal Estimation

Method - Reverberation Cancellation

- The microphone signal is regarded as a delayed or filtered version of the source signal
 - Estimate of the acoustic impulse response (AIR) is known
 - Ultimate output signal is unknown
- To obtain an estimate of the desired signal:
 - Blindly identify the model parameters of the acoustic system
 - Apply a multichannel equalizer

Method - Reverberation Cancellation

- Techniques
 - Inverse Filtering
 - Spatial Filtering
 - DOA (Direction-of-arrival) differ from direct path
 - Spatial filter is used to remove
- Problems:
 - Cause undesired signal coloration
 - High and unknown channel order
 - Hard to adapt to moving sources

Method - Reverberation Suppression

- Model the reverberation as an additive process based on the assumption that reverberant signal is uncorrelated with direct signal
- Techniques
 - Spatial filtering techniques
 - Spectral enhancement/subtraction techniques

Method - Reverberation Suppression

- Advantages:
 - Effective for light reverberant speech signal
- Problems:
 - Only partial dereverberation is possibl
 - Require prior knowledge of source and channel
 - Introduce speech distortion

Method - Direct Signal Estimation

- Directly estimate the source signal from the microphone signals by regarding the acoustic system as unknown
- Techniques
 - Linear Prediction/LP residual processing
 - Temporal Envelope Processing
 - NMF Non-negative Matrix Factorization
 - Deep Learning Ideal Binary Mask (IBM)
 - CNN
 - RNN

Method - Direct Signal Estimation

- Problems:
 - Hard to train and generalize
 - Missing contextual information

Spatiotemporal & spectral processing

Nikolay Gaubitch, Emanuel Habets & Patrick Naylor IEEE 2018

Reverberation:

$$x_m(n) = \mathbf{h}_m^T \mathbf{s}(n) + \nu_m(n)$$

- Two-stage multi-microphone method
 - Stage I: Spatio-temporal Averaging Method
 - Early reflection
 - Stage II: Spectral subtraction
 - Late reverberation

Stage I - Spatio-temporal Averaging (SMERSH)

- Spatially averaged speech
- Compensate for the propagation time

$$\bar{x}(n) = \frac{1}{M} \sum_{m=1}^{M} x_m (n - \tau_m),$$

Stage I - Spatio-temporal Averaging (SMERSH)

What is GCIs

Glottal closure instants (GCIs) (also marks or epochs) refer to peaks in the speech signal that correspond glottal closure, a significant excitat tract

Stage I - Spatio-temporal Averaging (SMERSH)

- Apply a weight function to excluded the GCIs
- Averaging process
- Add an L-tap FIR filter to address unvoiced speech

Stage II - Spectral Subtraction

- Spectral subtraction assumes a statistical model of Room Impulse response (RIR), which is given by:
 - b(n) is a stationary zero mean white
 Gaussian noise sequence
 - \circ δ is the room damping constant
 - T60 is the reverberation time
 - Fs is the sampling rate

$$h_n = \begin{cases} b(n)e^{-\delta n} & \text{for } n \ge 0\\ 0 & \text{otherwise,} \end{cases}$$

$$\delta = 3\ln(10)/(T_{60}f_{\rm s})$$

Stage II - Spectral Subtraction

- Power spectral density(PSD) has additive property
- The direct component can be obtained by estimating and subtracting the late reverberant short-term power spectral density (PSD)

$$h_n = \begin{cases} b(n)e^{-\delta n} & \text{for } n \ge 0\\ 0 & \text{otherwise,} \end{cases}$$

Evaluation

- (a) reverberant (unprocessed) speech,
- (b) speech processed with SMERSH, (c) speech processed with spectral subtraction (using only one microphone)
- (d) the combination of SMERSH and spectral subtraction.

CNN - Learning Spectral Mapping

Kun Han, Yuxuan Wang, Deliang Wang ICASSP 2014

- The magnitude relationship between anechoic and reverberant signal is consistent, especially within the same room
- Learning a spectral mapping from the reverberant speech to regenerate the anechoic speech
- Methodology:
 - Ideal binary mask:
 - target -> direct sound + early reflections
 - mask -> the late reflection

Model Design

- Spectral features
 - o Input:
 - Gammatone filterbank + framing
 - Neighboring frames are also considered
 - $\tilde{x}(m) = [x(m-d),...,x(m),...,x(m+d)]T$
 - Output: 64d vector y(m)
- CNN based spectral mapping
 - Training: Pre-train with RBM + fine tuning (+ two regularizations)

Evaluation

- Traditional Models
 - Inverse filter must be estimated, which is not a trivial problem
 - Assumes that the RIR function is a minimum-phase function that is often not satisfied in practice
- CNN
 - Simple and efficiency, became new SOTA
 - With good generalization ability

Evaluation

- Use synthetic signals to train and test, and the dataset is small (200)
- Neighboring frames issue
 - Previous or succeeding frames
 - Number of neighboring frames chosen
 - Importance of neighboring frames varies at different evaluation location

Summary

- Reverberation Cancellation
- Reverberation Suppression
- Direct Signal Estimation
 - Linear Prediction (by wikipedia)

Evaluation Methods

- o DRR Direct to Reverberation Ratio
- SRMR Speech to Reverberation Modulation Energy Ratio
- o STOI Short-Time Objective Intelligibility
- BSD Bark Spectral Distortion (incorporate psychoacoustic response)
- LP Residual Kurtosis
- PESQ Perceptual Evaluation of Speech Quality

Futurework

- Performance Evaluation Metrics
- Reduce early reflection
- Lower DRR & SNRs
- Binaural dereverberation

Reference

Gaubitch, N. D., Habets, E. A. P., & Naylor, P. A. (2008). Multimicrophone speech dereverberation using spatiotemporal and spectral processing. 2008 IEEE International Symposium on Circuits and Systems. doi: 10.1109/iscas.2008.4542144

Han, K., Wang, Y., & Wang, D. (2014). Learning spectral mapping for speech dereverberation. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). doi: 10.1109/icassp.2014.6854479

M, N., Velmurugan, R., & Rao, P. (2018). A Non-convolutive NMF Model for Speech Dereverberation. Interspeech 2018. doi: 10.21437/interspeech.2018-1834

Nakatani, T., Yoshioka, T., Kinoshita, K., Miyoshi, M., & Juang, B.-H. (2008). Blind speech dereverberation with multi-channel linear prediction based on short time fourier transform representation. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. doi: 10.1109/icassp.2008.4517552

Thank you!