$T_D n^o 4$

Langages et expressions régulières (2)

1 Déterminisation de taille exponentielle

1. En notant n le nombre d'états de \mathcal{A} , alors le nombre d'états de $\det(\mathcal{A})$ est, au plus, 2^n . En effet, les états sont des éléments de $\wp(Q)$ et $|\wp(Q)| = 2^n$.

- 5. Soit $i_0 = \max\{k \in [\![1,n]\!] \mid u_k \neq v_k\}$. Soit $m \in \Sigma^{i_0}$ tel que $u \cdot m \in L_n$ mais $v \cdot m \not\in L_n$. Or, $\delta^*(i,u \cdot m) = \delta^*(\delta^*(i,u),m)$ et $\delta^*(i,v \cdot m) = \delta^*(\delta^*(i,v),m)$. D'où $\delta^*(i,u \cdot m) \in F$ et $\delta^*(i,v \cdot m) \not\in F$. Ce qui est absurde.
- 6. Ainsi, l'application

$$f: \Sigma^* \longrightarrow Q$$
$$u \longmapsto \delta^*(i, u)$$

est injective. D'où, $\mathfrak{D}_n = |Q| \geqslant |\Sigma^*| = 2^n$.

7. D'où, d'après les questions 1 et 6, on en déduit que le nombre d'états utilisés pour la déterminisation de \mathcal{A}_n est de $\mathfrak{D}_n\geqslant 2^n$.

2 Suppression des ε -transitions

3 Déterminisation d'automates avec ε -transitions

Pour les deux automates, on commence par supprimer les ε -transitions, puis on le déterminise

1. L'automate équivalent sans ε -transitions est le suivant.

Une fois déterminisé, on obtient l'automate ci-dessous.

2. L'automate équivalent, sans $\varepsilon\text{-transitions},$ est le suivant.

Une fois déterminisé, on obtient l'automate ci-dessous.

4 Automates pour le calcul de l'addition en binaire

4.1 Nombres de même tailles

Q. 1

Q. 2 Pour $r \in \{0,1\}$, il existe une exécution dans $\mathcal A$ étiquetée par

$$(u_0, v_0, w_0)(u_1, v_1, w_1) \dots (u_{n-1}, v_{n-1}, w_{n-1})$$

menant à r si et seulement si

$$\overline{u_0 \dots u_{n-1}}^2 + \overline{v_0 \dots v_{n-1}}^2 = \overline{w_0 \dots w_{n-1}}^2 + r \, 2^n,$$

ce qui est équivalent à si et seulement si

$$\overline{u_0 \dots u_{n-1} 0}^2 + \overline{v_0 \dots v_{n-1} 0}^2 = \overline{w_0 \dots w_{n-1} r^2}.$$

Q. 3 Prouvons-le par récurrence.

— Pour n=0, il existe une exécution dans ${\mathscr A}$ étiquetée par ${\varepsilon}$ menant à r=0 si et seulement si ${\overline \varepsilon}^2+{\overline \varepsilon}^2=0={\overline \varepsilon}^2+0\times 2^0$. De même, il existe une exécution dans ${\mathscr A}$ étiquetée par ${\varepsilon}$ menant à r=1 si et seulement si ${\overline \varepsilon}^2+{\overline \varepsilon}^2=0=1={\overline \varepsilon}^2+1\times 2^0$.