- 1 xy 平面の原点を O として,2 点 $P(\cos\theta,\sin\theta)$,Q(1,0) をとる.ただし, $0<\theta<\pi$ とする.点 A は線分 PQ 上を,また点 B は線分 OQ 上を動き,線分 AB は $\triangle OPQ$ の面積を二等分しているとする.このような線分 AB で最も短いものの長さを l とおき,これを θ の関数と考えて $l^2=f(\theta)$ と表す.
- (1) 線分 AQ の長さを a , BQ の長さを b とすると , $ab=\sin\frac{\theta}{2}$ が成立することを示せ .
- (2) $PQ \geqq rac{1}{2}$, $PQ < rac{1}{2}$ それぞれの場合について , f(heta) を heta を用いて表せ .
- (3) 関数 $f(\theta)$ は $0<\theta<\pi$ で微分可能であることを示し,そのグラフの概形を描け. また, $f(\theta)$ の最大値を求めよ.