Function field $\mathfrak{F}_H = \mathfrak{F} = K(x)[y]/(y^2 - C(x))$.

Construction of the field-homomorphism $\lambda_{\mathbb{Q}}: \mathcal{F} \to \overline{K}((t))$. Three cases as in EK1. (write this out, the only relevant difference is $\lambda_{\infty}(y) \mapsto t^{-5}\sqrt{\tau}$).

The Lemmas 1 through 7 from EK1 remain valid. (write these out and prove where necessary)

So given that $(f) = \frac{**}{2\infty}$ implies $f = \alpha + \beta x$ (Lemma 7) we consider the next two higher cases. (I will use the sum notation for the divisors next time).

Minilemma 1: If f is such that $\lambda_{\infty}(f) = \gamma t^e + \dots$ then $\lambda_{\infty}(\overline{f}) = -\gamma t^e + \dots$

Proof. Let $\lambda_{\infty}(\overline{f}) = \widetilde{\gamma}t^e + \dots$ Since $f + \overline{f} = 2p$ and $\operatorname{ord}_{\infty}(p)$ is always even for $p \in K(x)$, we must have $(\gamma + \widetilde{\gamma})t^{-3} + \dots = \sigma t^{-2} + \dots$ so $\gamma = -\widetilde{\gamma}$.

Lemma 2: Let $f \in \mathcal{F}^*$ with $(f) = \frac{***}{3\infty}$. Then $f = \alpha + \beta x$.

Proof. Let f = p + qy with $p, q \in K(t)$. We have $\lambda_{\infty}(f + \overline{f}) = \sigma t^{-2} + \dots$ so $p = \frac{1}{2}(f + \overline{f}) = \alpha + \beta x$.

Now, consider $f - \overline{f} = 2qy$. We get $\lambda_{\infty}(f - \overline{f}) = 2\lambda_{\infty}(q)t^{-5}\sqrt{\tau} = 2\gamma t^{-3} + \dots$ and since $\sqrt{\tau}$ is a a series of the form $1 + \dots$ we must have $\lambda_{\infty}(q) = \gamma t^2 + \dots$

Suppose $q \neq 0$, this implies $\frac{1}{q} = \widetilde{\delta} + \widetilde{\epsilon}x$. Rewriting to accommodate for q = 0 gives $q = \frac{\epsilon}{x - \delta}$ with $\delta, \epsilon \in K$ as well so

$$f = \alpha + \beta x + \frac{\epsilon}{x - \delta} y$$

However, now $\lambda_{\Omega}(f) = \alpha + \beta(t^2 + \delta) + \epsilon \sqrt{\mu} \frac{t\sqrt{\tau}}{t^2}$ for $\Omega = (\delta, 0)$ which is equal to $\epsilon \sqrt{\mu}t^{-1} + \ldots$ If $\epsilon \neq 0$ (μ is non zero anyway) this means that Ω is a new (true) pole for f which contradicts $(f) = \frac{***}{3\infty}$, so q must be 0.

Lemma 3: Let $f \in \mathcal{F}^*$ with $(f) = \frac{****}{4\infty}$. Then $f = \alpha + \beta x + \gamma x^2$.

Proof. (different function f): With $\lambda_{\infty}(f) = \gamma t^{-4} + \dots$ so $\lambda_{\infty}(f - \gamma x^2)$ being of the form $\sigma t^{-3} + \dots$ we fall into the case above and the claim follows. \square

Now, suppose we have the equivalent of the Haupthilfssatz from EK1 (This has yet to be proven and of course and could turn out to be quite the behemoth):

Theorem For any $\mathbf{P}_1 = \{\Omega_1, \Omega_2\}, \mathbf{P}_2 = \{\Omega_3, \Omega_4\}$ such that $\mathbf{P}_1 + \mathbf{P}_2 = \mathbf{P}_3 = \{\Omega_5, \Omega_6\}$ we have a function f in \mathcal{F} such that $(f) = \frac{\Omega_1 \Omega_2 \Omega_3 \Omega_4}{\Omega_5 \Omega_6 \infty}$.

Here's the main result in hopefully legible notation:

Theorem (Associativity): Given

$$\underbrace{\frac{(\mathbf{P} + \mathbf{Q})}_{=\mathbf{T}} + \mathbf{R} = \mathbf{S}}_{=\mathbf{W}}$$
 and
$$\mathbf{P} + \underbrace{(\mathbf{Q} + \mathbf{R})}_{=\mathbf{W}} = \mathbf{S}'$$

with

$$\begin{split} \mathbf{P} &= \{\mathcal{P}_1, \mathcal{P}_2\}, \mathbf{Q} = \{\mathcal{Q}_1, \mathcal{Q}_2\}, \mathbf{R} = \{\mathcal{R}_1, \mathcal{R}_2\}, \mathbf{T} = \{\mathcal{T}_1, \mathcal{T}_2\}, \mathbf{W} = \{\mathcal{W}_1, \mathcal{W}_2\}, \\ \mathbf{S} &= \{\mathcal{A}, \mathcal{B}\}, \mathbf{S}' = \{\mathcal{U}, \mathcal{V}\}, \\ \mathcal{A} &= (a, *), \mathcal{B} = (b, *) \end{split}$$

we have a function f with the following divisor:

$$(f) = \frac{\mathcal{P}_1 \mathcal{P}_2 \mathcal{Q}_1 \mathcal{Q}_2}{\mathcal{T}_1 \mathcal{T}_2 \infty \infty} \frac{\mathcal{T}_1 \mathcal{T}_2 \mathcal{R}_1 \mathcal{R}_2}{\mathcal{A} \mathcal{B} \infty \infty} \frac{\mathcal{U} \mathcal{V} \infty \infty}{\mathcal{P}_1 \mathcal{P}_2 \mathcal{W}_1 \mathcal{W}_2} \frac{\mathcal{W}_1 \mathcal{W}_2 \infty \infty}{\mathcal{Q}_1 \mathcal{Q}_2 \mathcal{R}_1 \mathcal{R}_2} = \frac{\mathcal{U} \mathcal{V}}{\mathcal{A} \mathcal{B}}.$$

This means that $\widetilde{f} = f(x-a)(x-b)$ has divisor $(\widetilde{f}) = \frac{\overline{A} \, \overline{B} \, \underline{u} \, \underline{v}}{4\infty}$. By the last Lemma \widetilde{f} must be of the form $\kappa(x-\alpha_1)(x-\alpha_2) \in \overline{K}[x]$ and so

$$f = \frac{\kappa(x - \alpha_1)(x - \alpha_2)}{(x - a)(x - b)}.$$

But this has divisor

$$(f) = \frac{\mathcal{M}\overline{\mathcal{M}}\mathcal{N}\overline{\mathcal{N}}}{A\overline{A}\overline{\mathcal{R}}\overline{\mathcal{B}}}.$$

So either $\mathcal{A} = \mathcal{M}$ and $\mathcal{B} = \overline{\mathcal{M}}$ or $\mathcal{A} = \mathcal{M}$ and $\mathcal{B} = \mathcal{N}$. First case implies \mathbf{S} and \mathbf{S}' equivalent to 0, second case implies $(f) = \frac{\mathcal{A}\mathcal{B}}{\mathcal{A}\mathcal{B}}$ and in both cases we're done.