UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO

CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA

Modelagem dos dados de 2013 referentes às notificações de dengue no estado do Espírito Santo

Segundo trabalho da disciplina de MLG ministrado pelo Prof. Dr. Saulo Morellato.

Alunos:

Orientador: Prof. Dr. Saulo Morellato

Sumário

1	\mathbf{D}_{0}	escr	ição dos dados	2		
2	Análise exploratória					
3	$\mathbf{C}_{\mathbf{C}}$	\mathbf{onst}	rução do modelo	5		
	3.1	Mode	elo Poisson	5		
		3.1.1	Definição do modelo	5		
		3.1.2	Modelo considerando todas as covariáveis	5		
		3.1.3	Modelo com seleção de covariáveis	8		
		3.1.4	$Modelo\ com\ _Offset_\ \dots\dots\dots\dots\dots\dots$	12		
		3.1.5	Interpretação e conclusões	15		
	3.2	Mode	elo Binomial Negativo	15		
		3.2.1	Definição do modelo	15		
		3.2.2	Modelo considerando todas covariáveis	15		
		3.2.3	Modelo com seleção de covariáveis	17		
		3.2.4	$Modelo\ com\ _Offset_\ \dots\dots\dots\dots\dots\dots$	19		
		3.2.5	Sobre a remoção de pontos influentes	21		
		3.2.6	Interpretação e conclusões	31		

1 Descrição dos dados

IntCdAtBca - Proporção de internações por condições sensíveis à Atenção Basica;

CobCondSaud - Cobertura de acompanhamento das condicionalidades de saúde do Programa Bolsa Família;

CobAtBas - Cobertura das equipes atenção básica municipal expresso em percentual da cobertura populacional alcançada pela Atenção Básica;

temp - temperatura média anual;

temp_p10 - percentil 10 das temperaturas durante o ano;

temp_p90 - percentil 90 das temperaturas durante o ano;

precip - precipitação pluviométrica acumulada anual;

umid - média anual da umidade relativa do ar;

umid_p10 - percentil 10 da umidade relativa do ar durante o ano;

umid_p90 - percentil 90 da umidade relativa do ar durante o ano;

alt - altitude da sede municipal;

ifdm_saude - Índice Firjan de Desenvolvimento Municipal-IFDM para saúde;

ifdm_edu - Indice Firjan de Desenvolvimento Municipal-IFDM para educação;

ifdm_emprend - Índice Firjan de Desenvolvimento Municipal-IFDM de emprego e renda;

cobveg - índice de cobertura vegetal;

expcosteira - ídice de exposição costeira;

ivc - índice de vulnerabilidade climática;

pobr - proporção de pobres;

ExpAnosEstud - expectativa de anos de estudo;

urb - proporção da população que reside em zona urbana;

menor15 - proporção da população com menos de 15 anos;

maior65 - proporção da população com mais de 65 anos;

adultos - proporção da população entre 15 e 65 anos;

pop - população do município;

area - área do município;

dens - densidade populacional (poparea);

id - identificação;

ano - ano referente às informações; e

dengue - número de notificações municipais de dengue.

2 Análise exploratória

Figura 1: Notificações de dengue por municípios do estado do Espírito Santo.

Figura 2: Gráfico de correlação entre as covariáveis.

3 Construção do modelo

A primeira coisa a se fazer para termos um modelo de regressão é verificar se é possível utilizar a regressão linear, sendo que, nesse modelo a nossa variável resposta tem de apresentar uma distribuição aproximadamente normal.

Como temos a nossa variável de interesse como um dado de contagem, sendo esses dados com valores baixos, não é correto que ajustemos um modelo linear simples, sendo então necessário um modelo específico, no caso temos duas distribuições principais que podem ser melhores ajustes:

- Poisson
- Binomial Negativa

3.1 Modelo Poisson

Como vimos, a variável independente do modelo possui um formato que condiz com o de uma distribuição Poisson, temos, também que Y_i são independentes $\forall i \leq n$, onde cada unidade experimental é o município.

3.1.1 Definição do modelo

Utilizando uma função de ligação logarítmica temos um modelo inicial utilizando todas as variáveis na forma sistemática abaixo

$$log(\lambda_i) = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_{26} x_{26i}$$

3.1.2 Modelo considerando todas as covariáveis

Ajustando um modelo com todas as 26 covariáveis e realizando a seleção de variáveis pelo método __AIC__ temos suas informações abaixo:

```
Call:
glm(formula = dengue ~ IntCdAtBca + CobCondSaud + CobAtencBsca +
    temp_p10 + temp + temp_p90 + precip + umid_p10 + umid + umid_p90 +
    alt + ifdm_saude + ifdm_edu + ifdm_emprend + cobveg + expcosteira +
    ivc + Pobr + ExpAnosEstud + urb + menor15 + maior65 + pop +
    area + dens, family = poisson, data = data)
Deviance Residuals:
              1Q
                   Median
                                30
                                        Max
-76.799
                   -3.737
          -8.593
                             2.188
                                     80.479
```

```
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
              5.625e+00 5.033e-01 11.177
                                            < 2e-16 ***
IntCdAtBca
             -1.841e-02 7.551e-04 -24.376
                                            < 2e-16 ***
CobCondSaud -1.122e-02 2.981e-04 -37.640
                                            < 2e-16 ***
CobAtencBsca -8.239e-04 2.413e-04 -3.415 0.000637 ***
                                  52.764
temp_p10
              1.541e+00
                        2.921e-02
                                            < 2e-16 ***
             -1.732e+00
                        4.962e-02 -34.911
                                            < 2e-16 ***
temp
temp_p90
             4.375e-01
                        2.323e-02 18.835
                                            < 2e-16 ***
precip
              1.020e-03 2.390e-05 42.688
                                           < 2e-16 ***
             -3.788e-02 7.191e-03 -5.267 1.39e-07 ***
umid_p10
             -2.660e-01
                         1.490e-02 -17.858
umid
                                            < 2e-16 ***
              3.570e-01 9.558e-03 37.357
umid_p90
                                            < 2e-16 ***
alt
             -1.478e-03
                        6.399e-05 -23.103
                                            < 2e-16 ***
             -4.640e-02 1.012e-03 -45.845
                                            < 2e-16 ***
ifdm_saude
ifdm_edu
             1.186e-02 1.532e-03
                                     7.738 1.01e-14 ***
ifdm_emprend -1.883e-02 4.796e-04 -39.255
                                            < 2e-16 ***
                        2.213e-04 -22.522
             -4.985e-03
                                            < 2e-16 ***
cobveg
                        2.070e-04 -88.190
expcosteira
            -1.826e-02
                                            < 2e-16 ***
             -2.312e-02 3.151e-04 -73.368
ivc
                                            < 2e-16 ***
                        2.277e-03 47.591
Pobr
              1.084e-01
                                            < 2e-16 ***
ExpAnosEstud 1.625e-01 1.060e-02 15.325
                                            < 2e-16 ***
urb
             4.995e-02 5.676e-04
                                   87.989
                                            < 2e-16 ***
             -3.528e-01 5.361e-03 -65.821
menor15
                                            < 2e-16 ***
             -3.859e-01 6.691e-03 -57.672
maior65
                                            < 2e-16 ***
              4.913e-06 5.292e-08 92.841
                                            < 2e-16 ***
pop
              2.482e-04
                        7.988e-06 31.069
                                            < 2e-16 ***
area
              2.018e-04
                        7.718e-06 26.147
                                            < 2e-16 ***
dens
Signif. codes:
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
                                   degrees of freedom
    Null deviance: 630804
                           on 389
Residual deviance: 76437
                           on 364
                                   degrees of freedom
AIC: 78440
Number of Fisher Scoring iterations: 6
```

Vemos que o desvio do resíduo é muito maior que seus graus de liberdade, o que indica um ajuste ruim. Para melhorar nosso modelo vamos reduzir sua dimensão, onde, pela análise descritiva, observamos que algumas covariáveis possuem baixa correlação com a variável resposta _dengue_,

por esse motivo, as retiramos do modelo, são essas variáveis _ifdm_edu_ e _area_.

Para impedir multicolinearidade observamos altas correlações entre pares de covariáveis, sendo as mais altas descritas a seguir:

Tabela 1: Pares de covariáveis com as correlações mais altas identificadas:

Variável 1	Variável 2	Correlação
IntCdAtBca	$ifdm_saude$	-0.77960350
$temp_p10$	alt	-0.821314067
$temp_p10$	$_{ m temp}$	0.993364738
$temp_p10$	$ ext{temp}_{ ext{-}} ext{p}90$	0.946850236
temp	$ ext{temp_p90}$	0.976276719
temp	alt	-0.852298080
$\rm temp_p90$	alt	-0.884910605
precip	umid_p90	0.79257030
$umid_p10$	umid	0.86471582
\mathbf{umid}	umid_p90	0.890202356
$umid_p90$	ivc	-0.63608509
$ifdm_{-}emprend$	Pobr	-0.62697421
Pobr	adultos	-0.708001527
menor15	maior65	-0.690958203
menor15	adultos	-0.715345068
pop	dens	0.78260681

Para nosso modelo escolhemos, então, seguir com a variávei mais correlata com a variável resposta entre os pares da tabela acima, o que nos deixou com um modelo com as 15 variáveis abaixo:

- CobCondSaud
- CobAtencBsca
- $temp_p90$
- precip
- umid
- ifdm_saude
- \bullet ifdm_emprend
- cobveg

- expcosteira
- ivc
- ExpAnosEstud
- urb
- maior65
- adultos
- dens

3.1.3 Modelo com seleção de covariáveis

Com o modelo descrito acima obtivemos, também com a seleção de variáveis pelo _AIC_, os seguintes resultados:

```
Call:
glm(formula = dengue ~ CobCondSaud + CobAtencBsca + temp_p90 +
   precip + umid + ifdm_saude + ifdm_emprend + cobveg + expcosteira +
   ivc + ExpAnosEstud + urb + maior65 + adultos + dens, family = poisson,
   data = data)
Deviance Residuals:
   Min
              1Q
                  Median
                               3Q
                                       Max
-79.650
                  -3.851
         -9.002
                            2.948
                                    89.358
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.780e+01 3.944e-01 -45.134
                                             <2e-16 ***
CobCondSaud -2.518e-02 2.579e-04 -97.636
                                             <2e-16 ***
CobAtencBsca -1.032e-02 1.740e-04
                                  -59.317
                                             <2e-16 ***
temp_p90
             4.684e-01 5.163e-03
                                    90.728
                                             <2e-16 ***
             1.003e-03 1.466e-05
                                    68.392
                                             <2e-16 ***
precip
umid
             2.474e-02 2.743e-03
                                     9.022
                                             <2e-16 ***
ifdm_saude
            -2.334e-02 7.268e-04 -32.113
                                             <2e-16 ***
ifdm_emprend -1.566e-02 4.009e-04 -39.069
                                             <2e-16 ***
            -4.818e-03 1.943e-04 -24.799
cobveg
                                             <2e-16 ***
expcosteira -2.103e-02 1.750e-04 -120.217
                                             <2e-16 ***
            -2.860e-02 2.502e-04 -114.313
                                             <2e-16 ***
ExpAnosEstud 2.863e-01 8.079e-03
                                    35.436
                                             <2e-16 ***
urb
              3.204e-02 4.126e-04
                                    77.669
                                             <2e-16 ***
maior65
            -1.330e-01 3.252e-03 -40.898
                                             <2e-16 ***
```

```
1.517e-01 3.737e-03
                                     40.599
adultos
                                              <2e-16 ***
dens
              5.926e-04 6.096e-06
                                     97.212
                                              <2e-16 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
(Dispersion parameter for poisson family taken to be 1)
   Null deviance: 630804
                                   degrees of freedom
                           on 389
Residual deviance: 101739
                          on 374 degrees of freedom
AIC: 103722
Number of Fisher Scoring iterations: 6
```

Note que em comparação com o modelo completo, em teoria, pioramos a qualidade do ajuste, porém, tiramos as multicolinearidades, que podem ser observadas na tabela com os VIFs de cada variável por modelo abaixo:

 ${\bf Tabela}$ 2: Modelo com variáveis correlatas

	VIF
IntCdAtBca	3.340568
CobCondSaud	4.516761
CobAtencBsca	4.193826
temp_p10	113.647345
temp	301.402079
temp_p90	59.161914
precip	17.075523
umid_p10	90.809074
umid	227.462163
umid_p90	52.120415
alt	3.903644
ifdm_saude	6.531280
ifdm_edu	9.642008
ifdm_emprend	4.907702
cobveg	7.685869
expcosteira	9.610107
ivc	8.212447
Pobr	15.043009
ExpAnosEstud	3.831969
urb	7.619431
menor15	27.804045
maior65	17.626240
pop	11.892503
area	4.290132
dens	17.308483

Tabela 3: Modelo sem variáveis correlatas

	VIF
CobCondSaud	3.380583
CobAtencBsca	2.412786
temp_p90	2.934455
precip	6.425093
umid	7.753469
ifdm_saude	3.234629
$ifdm_{-}emprend$	3.295120
cobveg	6.045962
expcosteira	7.002723
ivc	4.899843
ExpAnosEstud	2.546300
urb	3.872085
maior65	4.019939
adultos	5.614155
dens	10.987268

Seguimos, agora, para a análise do nosso modelo sem as variáveis correlatas, que nos dá os gráficos abaixo:

Figura : Gráficos de diagnóstico para o modelo sem _offset_. Como é possível observar pelos gráficos da *Figura*, principalmente pelo gráfico de envelope dos resíduos, temos um modelo superdisperso, o que tentaremos resolver acrescentando um _offset_.

3.1.4 Modelo com _Offset_

Para adicionarmos um dado _offset_ no modelo vemos que ele pode ser a variável _pop_, que indica uma alta variabilidade do tamanho das populações nos municípios. Segue o modelo:

```
Call:
glm(formula = dengue ~ CobCondSaud + CobAtencBsca + temp_p90 +
    precip + umid + ifdm_saude + ifdm_emprend + cobveg + expcosteira +
    ivc + ExpAnosEstud + urb + maior65 + adultos + dens + offset(log(pop)),
    family = poisson, data = data)
```

```
Deviance Residuals:
   Min
             1Q
                 Median
                              3Q
                                      Max
-76.558
         -8.836
                  -4.680
                           0.753
                                   71.536
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.457e+01 3.948e-01 -87.546
                                           <2e-16 ***
CobCondSaud -9.838e-03 2.650e-04 -37.124
                                           <2e-16 ***
CobAtencBsca 5.798e-03 1.979e-04 29.294 <2e-16 ***
temp_p90
             4.254e-01 5.316e-03 80.033 <2e-16 ***
precip
             9.829e-04 1.445e-05 68.036 <2e-16 ***
             1.046e-01 2.729e-03 38.321 <2e-16 ***
umid
ifdm_saude
            -3.633e-02 7.469e-04 -48.638 <2e-16 ***
ifdm_emprend -4.018e-02 4.172e-04 -96.307 <2e-16 ***
            -3.371e-03 2.019e-04 -16.694 <2e-16 ***
cobveg
expcosteira -1.374e-02 1.734e-04 -79.256 <2e-16 ***
            -1.743e-02 2.494e-04 -69.905 <2e-16 ***
ivc
ExpAnosEstud 1.261e-01 8.573e-03 14.714 <2e-16 ***
urb
             1.829e-02 4.362e-04 41.940 <2e-16 ***
maior65
             2.850e-02 3.273e-03 8.708 <2e-16 ***
             1.820e-01 4.011e-03 45.363
                                          <2e-16 ***
adultos
dens
             6.176e-05 6.065e-06 10.183
                                           <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
                                 degrees of freedom
   Null deviance: 180512 on 389
Residual deviance: 81585
                        on 374 degrees of freedom
AIC: 83568
Number of Fisher Scoring iterations: 6
```

Vemos que, ainda que tenhamos adicionado o dado _offset_, continuamos com um desvio do resíduo super alto, o que significa que o ajuste segue impróprio para o modelo, o que vamos confirmar com a análise dos gráficos do modelo:

Figura: Gráficos de diagnóstico para o modelo com _offset_.

3.1.5 Interpretação e conclusões

Pudemos observar que, mesmo manipulando nosso modelo, continuamos com um ajuste ruim, visto que temos um desvio residual muito maior que os graus de liberdade. Outro indício disso é a sobredispersão observada no gráfico de envelope, o que podemos imaginar que ocorreria, uma vez que temos a média da nossa variável resposta dengue consideravelmente diferente da sua variância, o que não deveria ocorrer, uma vez que a distribuição de Poisson teórica possui média e variância iguais.

Tais constatações nos levam a descartar o modelo Poisson e tentar o ajuste por um modelo Binomial Negativo.

3.2 Modelo Binomial Negativo

O modelo Binomial Negativo por definição não é MLG, entretanto, possui características muito semelhantes e possui uma boa capacidade de capturar um efeito $E(Y_i) < Var(Y_i)$. Que é exatamente o problema encontrado acima.

3.2.1 Definição do modelo

(Intercept)

Utilizando uma função de ligação logarítmica temos um modelo inicial utilizando todas as variáveis na forma sistemática abaixo

$$log(\lambda_i) = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_{26} x_{26i}$$

3.2.2 Modelo considerando todas covariáveis

Ajustando um modelo com todas as 26 covariáveis e realizando a seleção de variáveis pelo método AIC temos suas informações abaixo:

```
Call:
glm.nb(formula = dengue ~ CobAtencBsca + temp_p10 + temp + temp_p90 +
    umid_p10 + umid + alt + ifdm_edu + ifdm_emprend + ivc + urb +
    menor15 + maior65 + pop + area, data = dados, control = glm.control(maxit =
    init.theta = 0.6787461656, link = log)

Deviance Residuals:
    Min    1Q    Median    3Q    Max
-2.4329 -1.1783 -0.5526   0.1411   2.7976

Coefficients:
    Estimate Std. Error z value Pr(>|z|)
```

0.841 0.400165

5.133e+00 6.101e+00

```
CobAtencBsca -1.062e-02 3.778e-03 -2.811 0.004932 **
             2.490e+00
                        3.730e-01
                                     6.677 2.44e-11 ***
temp_p10
temp
             -2.995e+00 6.341e-01
                                   -4.723 2.33e-06 ***
              5.525e-01 3.284e-01
                                    1.682 0.092510 .
temp_p90
umid_p10
                       7.104e-02
                                   -7.126 1.03e-12 ***
            -5.062e-01
                                     5.176 2.26e-07 ***
umid
              5.038e-01
                        9.732e-02
                                   -3.881 0.000104 ***
alt
             -2.248e-03
                        5.793e-04
ifdm_edu
             4.220e-02 1.823e-02
                                     2.315 0.020639 *
ifdm_emprend -1.557e-02 7.711e-03 -2.019 0.043449 *
ivc
            -7.831e-03 4.752e-03 -1.648 0.099358 .
             4.974e-02 4.531e-03 10.978 < 2e-16 ***
urb
            -1.197e-01 6.162e-02
                                   -1.943 0.052063 .
menor15
            -1.768e-01 8.322e-02 -2.125 0.033580 *
maior65
                                     6.179 6.47e-10 ***
             6.195e-06 1.003e-06
pop
              5.633e-04 1.368e-04
                                     4.118 3.82e-05 ***
area
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(0.6787) family taken to be 1)
    Null deviance: 1482.16
                            on 389
                                    degrees of freedom
Residual deviance: 457.31
                            on 374
                                   degrees of freedom
AIC: 3971.4
Number of Fisher Scoring iterations: 1
              Theta:
                     0.6787
          Std. Err.:
                     0.0460
2 x log-likelihood:
                     -3937.3930
```

Como aconteceu com o Modelo Poisson, é possivel perceber, com base no desvio residual que o ajuste é ruim. Para corrir isso, faremos o mesmo que foi feito com o Modelo Poisson, ou seja, usaremos as 15 variáveis mais correlatadas com a variável resposta, sendo elas:

- CobCondSaud
- CobAtencBsca
- temp_p90
- precip

- umid
- ifdm_saude
- ifdm_emprend
- cobveg
- expcosteira
- ivc
- ExpAnosEstud
- urb
- maior65
- adultos
- dens

3.2.3 Modelo com seleção de covariáveis

Com o modelo descrito acima obtivemos, também com a seleção de variáveis pelo _AIC_, os seguintes resultados:

```
Call:
glm.nb(formula = dengue ~ CobAtencBsca + temp_p90 + ifdm_saude +
    ifdm_emprend + cobveg + urb + maior65 + pop, data = dados_2013,
    control = glm.control(maxit = 50), init.theta = 0.9549042419,
   link = log)
Deviance Residuals:
           1Q Median
                                      Max
                              3Q
-2.2211 -1.1597 -0.5190 0.5277
                                   1.7196
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.909e+00 2.488e+00 -3.983 6.8e-05 ***
CobAtencBsca -1.731e-02 6.116e-03 -2.830 0.00466 **
             2.597e-01 1.003e-01
                                  2.590 0.00960 **
temp_p90
ifdm_saude
             3.859e-02 1.628e-02
                                   2.371 0.01773 *
ifdm_emprend 1.990e-02 1.385e-02
                                  1.436 0.15091
            -1.410e-02 4.493e-03 -3.139 0.00170 **
cobveg
             5.752e-02 8.886e-03 6.473 9.6e-11 ***
urb
```

```
2.543e-01 8.215e-02
                                   3.095 0.00197 **
maior65
             4.355e-06 1.837e-06 2.371 0.01776 *
pop
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(0.9549) family taken to be 1)
   Null deviance: 387.550 on 77
                                 degrees of freedom
Residual deviance: 89.209
                          on 69
                                 degrees of freedom
AIC: 912.9
Number of Fisher Scoring iterations: 1
             Theta: 0.955
         Std. Err.: 0.142
 2 x log-likelihood: -892.899
```

Perceba que, com a escolha de variáveis acima, melhoramos bastante o ajuste do modelo. Gerando os gráficos para o modelo acima, obtemos:

3.2.4 Modelo com _Offset_

Agora, colocando a variável _pop_ como _Offset_

```
Call:
glm.nb(formula = dengue ~ temp_p90 + umid + cobveg + urb + maior65 +
    adultos + offset(log(pop)), data = dados_2013, control = glm.control(maxit =
    init.theta = 1.108820464, link = log)
Deviance Residuals:
              1Q
                   Median
                                3Q
                                        Max
                  -0.4003
-2.4896
         -1.0525
                            0.4286
                                      1.8971
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -22.743600
                         6.472959 -3.514 0.000442 ***
```

```
temp_p90
          umid
          -0.131944
                   0.085253 -1.548 0.121702
          cobveg
urb
          0.071226 4.261 2.03e-05 ***
          0.303516
maior65
adultos
          0.205808
                   0.080866 2.545 0.010926 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(1.1088) family taken to be 1)
   Null deviance: 185.528 on 77 degrees of freedom
Residual deviance: 87.661 on 71 degrees of freedom
AIC: 895.02
Number of Fisher Scoring iterations: 1
          Theta: 1.109
       Std. Err.: 0.168
2 x log-likelihood: -879.015
```

A escolha de deixar a variável _pop_ como _Offset_ melhorou o ajuste do modelo, visto que o desvio residual se aproximou um pouco mais dos graus de liberdade, abaixo, temos os gráficos do modelo com _Offset_:

3.2.5 Sobre a remoção de pontos influentes

Usando a funçao identify, identificamos pontos influentes, entretanto, preferimos por não remove-los no modelo final, já que em nosso subset temos apenas 78 linhas. Abaixo, alguns resultados que obtivemos na remoção de alguns pontos influentes:

```
Call:
glm.nb(formula = dengue ~ CobAtencBsca + temp_p90 + cobveg +
    urb + maior65 + adultos + offset(log(pop)), data = dados_2013_1,
    control = glm.control(maxit = 50), init.theta = 1.198029355,
    link = log)
Deviance Residuals:
    Min
              1Q
                   Median
                                3Q
                                         Max
-2.5633
        -1.1437
                 -0.4232
                            0.3603
                                      2.2826
```

```
Coefficients:
          Estimate Std. Error z value Pr(>|z|)
(Intercept) -34.285911 4.970307 -6.898 5.27e-12 ***
CobAtencBsca -0.008437 0.005242 -1.609 0.10753
      temp_p90
        cobveg
urb
         maior65
         adultos
         Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(1.198) family taken to be 1)
  Null deviance: 196.137 on 76 degrees of freedom
Residual deviance: 85.601 on 70 degrees of freedom
AIC: 872.8
Number of Fisher Scoring iterations: 1
         Theta: 1.198
      Std. Err.: 0.184
```


Figura: Gráficos de diagnóstico para uma remoção.

```
Call:
glm.nb(formula = dengue ~ CobAtencBsca + temp_p90 + cobveg +
    urb + maior65 + adultos + offset(log(pop)), data = dados_2013_1,
    control = glm.control(maxit = 50), init.theta = 1.253312012,
    link = log)
Deviance Residuals:
   Min
              1Q
                   Median
                                3Q
                                        Max
-2.5909
         -1.1703
                 -0.4457
                            0.3656
                                     2.4699
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
            -31.113766
                                    -6.367 1.92e-10 ***
(Intercept)
                          4.886489
CobAtencBsca -0.009940
                          0.005143 -1.933 0.05326
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.2533) family taken to be 1)

Null deviance: 191.231 on 75 degrees of freedom Residual deviance: 84.312 on 69 degrees of freedom

AIC: 849.46

Number of Fisher Scoring iterations: 1

Theta: 1.253 Std. Err.: 0.196

2 x log-likelihood: -833.462

Figura: Gráficos de diagnóstico para duas remoção.

```
Call:
glm.nb(formula = dengue ~ temp_p90 + ifdm_emprend + urb + maior65 +
    offset(log(pop)), data = dados_2013_1, control = glm.control(maxit = 50),
    init.theta = 1.325796543, link = log)
Deviance Residuals:
    Min
                   Median
                                 3Q
                                         Max
              1Q
-2.4953
         -1.0957
                  -0.4375
                             0.4739
                                      2.1774
Coefficients:
               Estimate Std. Error z value Pr(>|z|)
(Intercept)
             -20.622947
                           2.066536
                                     -9.979
                                             < 2e-16 ***
               0.306737
temp_p90
                           0.078022
                                      3.931 8.44e-05 ***
ifdm_emprend
               0.029342
                           0.010969
                                      2.675
                                             0.00748 **
```

urb 0.034786 0.006468 5.378 7.53e-08 *** maior65 0.360962 0.070642 5.110 3.23e-07 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.3258) family taken to be 1)

Null deviance: 198.864 on 74 degrees of freedom Residual deviance: 82.865 on 70 degrees of freedom

AIC: 826.49

Number of Fisher Scoring iterations: 1

Theta: 1.326 Std. Err.: 0.210

2 x log-likelihood: -814.486

Figura: Gráficos de diagnóstico para tres remoções.

```
Call:
glm.nb(formula = dengue ~ temp_p90 + ifdm_emprend + urb + maior65 +
    offset(log(pop)), data = dados_2013_1, control = glm.control(maxit = 50),
    init.theta = 1.392919725, link = log)
Deviance Residuals:
    Min
                   Median
                                 3Q
                                         Max
              1Q
-2.4316
         -1.1139
                  -0.2938
                             0.4929
                                      2.4241
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept)
             -19.31992
                           2.03987
                                    -9.471
                                             < 2e-16 ***
temp_p90
               0.26653
                           0.07660
                                     3.479 0.000503 ***
ifdm_emprend
               0.02567
                           0.01081
                                     2.374 0.017616 *
```

urb 0.04005 0.00651 6.152 7.65e-10 ***
maior65 0.31144 0.07106 4.383 1.17e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for Negative Binomial(1.3929) family taken to be 1)

Null deviance: 207.600 on 73 degrees of freedom Residual deviance: 81.419 on 69 degrees of freedom

AIC: 809.81

Number of Fisher Scoring iterations: 1

Theta: 1.393 Std. Err.: 0.224

2 x log-likelihood: -797.807

Figura : Gráficos de diagnóstico para quatro remoções. Como optamos por manter os pontos influentes o modelo e os gráficos de analise ficaram da seguinte forma:

```
Call:
glm.nb(formula = dengue ~ temp_p90 + umid + cobveg + urb + maior65 +
    adultos + offset(log(pop)), data = dados_2013, control = glm.control(maxit =
    init.theta = 1.108820464, link = log)
Deviance Residuals:
    Min
              1Q
                   Median
                                 3Q
                                         Max
-2.4896
         -1.0525
                  -0.4003
                             0.4286
                                      1.8971
Coefficients:
              Estimate Std. Error z value Pr(>|z|)
(Intercept) -22.743600
                          6.472959
                                    -3.514 0.000442 ***
```

```
-0.131944 0.085253 -1.548 0.121702
umid
       cobveg
        urb
        maior65
        adultos
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for Negative Binomial(1.1088) family taken to be 1)
  Null deviance: 185.528 on 77 degrees of freedom
Residual deviance: 87.661 on 71 degrees of freedom
AIC: 895.02
Number of Fisher Scoring iterations: 1
        Theta: 1.109
      Std. Err.: 0.168
2 x log-likelihood: -879.015
```


Podemos percerber pelos gráficos que o ajuste foi bem feito, muito diferente de quando utilizamos a Poisson.

3.2.6 Interpretação e conclusões

Pelo ajuste do modelo final, podemos verificar que de fato, o Modelo Binomial Negativo, se adequou aos dados, já que os dados tinham alta variabilidade em relação média, motivo, que levou o descarte do modelo Poisson.