Протокол STP

Сети и системы телекоммуникаций

Кольцевое соединение коммутаторов

Протокол STP

Протокол связующего (остовного) дерева (Spanning Tree Protocol, STP)

- Автоматическое отключение дублирующий соединений в Ethernet
- Связующее дерево подграф без циклов, содержащий все вершины исходного графа

Стандарт IEEE 802.1D

Преимущества

- Надежность соединений между коммутаторами
- Защита от ошибок конфигурации

Mecto в модели OSI

Прикладной

Представления

Сеансовый

Транспортный

Сетевой

Канальный

Физический

Отключение соединений

Разрыв соединения

Автоматическое включение соединения

Этапы работы протокола

Выбор корневого коммутатора

Определение кратчайших путей до корневого коммутатора

Отключение всех остальных соединений

Radia Perlman

I think that I shall never see A graph more lovely than a tree. A tree whose crucial property Is loop-free connectivity. A tree that must be sure to span So packets can reach every LAN. First, the root must be selected. By ID, it is elected. Least-cost paths from root are traced. In the tree, these paths are placed. A mesh is made by folks like me, Then bridges find a spanning tree.

https://en.wikipedia.org/wiki/Radia_Perlman

Сообщения протокола STP

Bridge Protocol Data Units (BPDU)

Отправляются каждые 2 секунды

Рассылаются на групповой адрес STP

• 01:80:C2:00:00:00

Выбор корневого коммутатора

Выбор корневого коммутатора

Выбор корневого коммутатора

После выбора корневого коммутатор все остальные рассчитывают кратчайшие пути до него

Путь между коммутаторами

- Количество промежуточных коммутаторов
- Скорость соединений

Коммутаторы рассылают на все порты BPDU с минимальным расстоянием до корневого коммутатора

Скорость соединения	Стоимость соединения в STP IEEE 802.1D
4 Mbit/s	250
10 Mbit/s	100
16 Mbit/s	62
100 Mbit/s	19
1 Gbit/s	4
2 Gbit/s	3
10 Gbit/s	2

Разрыв соединения

Разрыв соединения

Состояние портов в STP

Listening – порт обрабатывает BPDU, но не передает данные

Learning – порт не передает кадры, но изучает МАСадреса в поступающих кадрах и формирует таблицу коммутации

Forwarding – порт принимает и передает кадры данных и BPDU

Blocking – порт заблокирован чтобы избежать кольцевого соединения

Disabled – порт выключен администратором

Развитие STP

Переход от состояния Listening до Forwarding занимает 30 секунд

• Достаточно долго для современных крупных и часто меняющихся сетей

RSTP (Rapid Spanning Tree Protocol)

- Улучшенная версия STP
- Срабатывает быстрее при подключении оборудования и изменении конфигурации сети
- Стандарт IEEE 802.1w

STP и VLAN

- Multiple Spanning Tree Protocol (MSTP), 802.1s
- Отдельное связующее дерево для каждого VLAN

Итоги

Протокол связующего дерева (Spanning Tree Protocol, STP)

• Автоматическое отключение дублирующий путей в Ethernet

Обеспечивает надежность соединений в Ethernet

Этапы работы протокола

- Выбор корневого коммутатора
- Определение кратчайших путей до корневого коммутатора
- Отключение всех остальных соединений