I. QU'EST-CE QUE LA CHIMIE ORGANIQUE ?

I. <u>1- Bref historique :</u>

A l'origine, la chimie organique étudiait les substances issues des êtres vivants appartenant au monde végétal ou animal. Elle s'opposait à la chimie minérale (étude des substances provenant des roches, des eaux naturelles ou de l'atmosphère).

I. 2. Quelque dates importantes : voir tableau

Avant le début du 19^{ème} siècle, il semblait impossible de synthétiser en laboratoire des substances organiques à partir des substances minérales. Les chimistes pensaient que l'intervention d'une « force vitale » propre aux organismes vivants était nécessaire à ces synthèses.

<u>Dates</u>	Nom du scientifique	<u>découverte</u>
1828	Friedrich Wöhler (1800-1882)	Synthèse de l'urée
1856	William Perkin (1838-1907) et Adolf von Baeyer(1837-1917)	Synthèse de colorants (mauvéine, alizarine, indigo)
1863	Marcelin Berthelot (1827-1907)	Synthèse de l'acéthylène
1902	Emile Fischer (1852-1919)	Synthèse des glucides et polypeptides
1973	Rober Woodward (1917-1979)	Synthèse de la cortisone et de la vitamine B12
1985	Harold Kroto	Découverte des fullerènes, molécules en forme de sphères, comportant 60 atomes de carbone

I. 3- Domaine d'étude de la chimie organique :

- → La chimie organique est la chimie des composés du carbone. Ces composés chimiques peuvent être indifféremment d'origine naturelle ou synthétique.
- → Les espèces organiques sont constituées d'un nombre limité d'éléments chimiques . Outres que le carbone C , on rencontre généralement l'élément hydrogène H
- → Les espèces ne contenant que du carbone et de l'hydrogène sont appelées hydrocarbures.
- Toutes les espèces chimiques organiques contiennent donc l'élément carbone. (à l'exception des composés tels que CO, CO₂, CO₃²-Sont toutefois exclus de la chimie organique).

II. <u>Les ressources organiques naturelles :</u>

II. <u>1- La photosynthèse</u>: Sous l'action de la lumière, les végétaux transforment le "carbone minéral" en "carbone organique" (glucides).

exemple: synthèse du glucose $6 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(l) \rightarrow \text{C}_6\text{H}_{12}\text{O}_6(aq) + 6 \text{ O}_2(g)$

II. 2.- Les synthèses biochimiques

Il s'agit de transformations chimiques effectuées par les cellules des êtres vivants à partir des "aliments". Les composés organiques sont transformés en d'autres composés organiques.

II. 3- Les hydrocarbures fossiles

Les hydrocarbures fossiles (pétrole et gaz naturel) proviennent de la décomposition de matières organiques.

<u>Remarque</u>: les hydrocarbures sont constitués uniquement d'atomes de carbone et d'hydrogène.

II. 4- L'Abondance des Composés Organiques

Les espèces chimiques organiques utilisées par l'homme proviennent toutes, par diverses voies de la photosynthèse.

- Les espèces naturelles sont extraites de végétaux et animaux.
- Les **espèces synthétiques** sont des molécules naturelles modifiées ou des dérivés du pétrole.
- Nous modifions et utilisons les produits pétroliers (carburants, huiles),
- les plantes (coton, papier, bois), et les produits animaliers (cuir, viande, laine).
- Nous créons également une grande variété de composés comme les produits pharmaceutiques, plastiques, peintures, colorants, fibres synthétiques, engrais, parfums, cosmétiques, détergents, saveurs, et produits sucrants.

III. <u>L'élément fondamental de la chimie organique : le carbone</u>

III. <u>1- Nombre de liaisons covalentes formées par un atome de</u> carbone

Le carbone est l'élément de base de la chimie organique. Les composés organiques renferment du carbone et un nombre très limité d'éléments autres que le carbone.

En particulier : hydrogène, oxygène, azote, phosphore, soufre et halogènes.

La répartition électronique de l'atome de carbone (Z=6) est : $(K)^2(L)^4$

Afin de respecter la règle de l'octet, un atome de carbone doit établir quatre liaisons, et posséder ainsi quatre doublets liants.

Le carbone est dit tétravalent.

III. 2- La géométrie des molécules organiques

Liaisons autour de l'atome de carbone	Formule de Lewis autour de l'atome de carbone	Géométrie en utilisant la représentation de Cram	Géométrie autour de l'atome de carbone	exemple
---	---	---	---	---------

4 liaisons simples	- c-	I Mary C	Tétraédrique	méthane CH4
2 liaisons simples et 1 liaison double	`c=)c=	Plane	${ m \acute{e}th\grave{e}ne}$ ${ m C}_{2}{ m H}_{4}$
1 liaison simple et 1 liaison triple	– c≡	– c≡	Linéaire	éthyne C2H2
2 liaisons doubles	=c=	=c=	Linéaire	

IV. L'importance de la chimie organique dans notre vie quotidienne.

Voici les secteurs industriels les plus dépendants de la chimie organique :

- La chimie lourde, qui assure la fabrication des matières plastiques et du caoutchouc. Cette production en gros tonnages s'effectue en peu d'étapes et à partir de matières premières facilement accessibles.
- La chimie fine, qui élabore des molécules plus complexes et en volume de production plus restreint.
- La parachimie, dont les produits possèdent des propriétés bien connues du grand public (détergents, savons, encres, produits de beauté, colles...)
- La pharmacie, qui élabore les principes actifs des médicaments (analgésiques, antibiotiques, etc)
 La synthèse de certains de ces composés s'accompagne aussi de la production d'une quantité importante de déchets (bouteilles, sacs, emballages...) qu'il convient d'éliminer ou de recycler. Aujourd'hui, de nombreux partenaires de l'industrie et de la recherche se mobilisent pour développer les activités de recyclage et de retraitement des déchets.