

PAMUKKALE ÜNİVERSİTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ

CENG 305 – İşletim Sistemleri 2018-2019 EĞİTİM ÖĞRETİM YILI GÜZ DÖNEMİ DÖNEM SONU SINAVI Süre:75dk

Öğrenci No:	Ad:	Soyad:

İmza: 09.01.2019

PAÜ CENG 305 İşletim Sistemleri Dönem Sonu Sınavı

Soru	1 (20p)	2 (20p)	3 (20p)	4 (20p)	5(25p)	Toplam
Puan						
	·					
a) Aşağıdaki	ifadeleri do	oğru yanlış	olarak ni	telendirini	iz ((D) ya	da (Y) olaral
()İşletim siste	emleri genel	l olarak de	adlock ile	ilgili önler	n almayıp,	deadlock ile
ilgili önlemle	_					
()Page size b	üyüklüğünd	eki artma	daha az T	LB miss o	luşumuna :	neden olur.
, ,					,	
()Critical sec	tion (Kritik	bölge) pro	gramın da	ha serileşn	nesine ned	en olur
()Page fault a	ıranılan değ	işkenin ca	che bellek	te bulunam	namasıdır.	
() Belady ano	maly disk o	kuması sır	asında yaş	anılan bir	sıkıntıdır.	
						•
()Semaphore	Kullanımı 1	şietim sist	eminin niz	ini dogrud	an yukseit	ır.
()Virtual men kullanılmasın	-	in sahip o	lduğu belle	ekten daha	fazla belle	eği varmış gil
()Temporal legecikmeler aza	•		stifade edil	erek bellel	c erişimind	len kaynakla
()Processler	arası iletişin	n her zama	ın tek yönl	üdür.		

() Hyperthreading ile işlemcilerin daha yüksek performansta çalışmaları sağlanmaktadır.

2.	a. 32 sayfadan oluşan ve her sayfada 1024 word (hücre) bulunan bir sanal belleğin 16
	frame'den oluşan bir fiziksel belleğe map edildiğini varsayalım. Mantıksal adres kaç
	bit olmalıdır? Fiziksel adreste kaç bit olmalıdır?

b. Bir processin ulaşmak istediği bir adresin main memoryde olmadığını varsayalım (Belki de demand paging yüzünden). İşletim sisteminin page faultu gidermek için gerçekleştirmesi gerektiği adımları listeleyiniz.

3. (Virtual Memory) Bir processin 4 tane frame'den oluşan bir main memory'de çalıştığını düşünelim. Verilen referans string'ine göre aşağıdaki algoritmalar çalıştırıldığında her sayfa referansında main memorynin durumunu ve page fault (sayfalama hatalarını) sayılarını belirtiniz. (Demand paging kullanıldığı varsayılmaktadır.)

a. FIFO

c. Optimal Algoritma

4. Bir sistemin t anındaki durumu aşağıda verilmiştir.

	Allocation	Max	A vailable
	ABCD	A B C D	ABCD
P_{o}	0012	0012	1520
P_1	1000	1750	
$\mathbf{P_2}$	1354	2356	
P_3	0632	0652	
P_4	0014	0656	

a. Sistem bu durumda safe durumda mıdır?

b. P1'in (0,4,2,0) isteği yerine getirilmeli midir?

5. (Process Syncronization) Doğadaki su oluşumunu simüle eden bir sistem oluşturmanız istenmektedir. Su oluşturma tepkimesi için iki adet H atomu bir adet de O atomu gerekmektedir. Sistemimizde atomlar threadler ile temsil edilecektir. Bir alanda iki adet H ve bir adet O olduğu anda alana son giren thread suOlustur() metodunu çağıracak ve alana yeni gelen atomlar su tepkimesini tekrardan oluşturabilecektirler. Bu sistemi gerçekleştiren yapıyı semaforlar kullanarak gerçekleştiriniz (sözde kodunu aşağıda veriniz). Oluşturduğunuz sistemde deadlock oluşabilir mi tartışınız. Başarılar