電気2重層キャパシタの基礎及び応用事 例と次世代キャパシタの動向

- ①電気二重層キャパシタとは
- ②特徴と蓄電デバイスの選び方
- 4。応用事例
- ⑤次世代キャパシタの動向

2018年11月26日東京農工大学 次世代キャパシタ技術センター 佐久間 一浩

車種別販売台数(世界)の将来予測

蓄電デバイスの選ぶ基準

キャパシタ(コンデンサ)の 種類と容量範囲

キャパシタの構造と動作原理

パッケージの種類と特徴

AL電解 コンテ・ンサ パ・ッケーシ・	リード タイプ	SNAP-in タイプ	SCREW タイプ (巻回円筒型)	SCREW タイプ (積層角型)	Axial タイプ	ラミネー ト タイプ
概略図	5 7					
小型化	©	0	Δ	Δ	Δ	0
低抵抗化	×	Δ	0	0	0	0
耐震性	0	0	0	0	0	Δ
信頼性 (液漏れ)	Δ	Δ	0	0	Δ	×

EDLCの製品形状

形状	超小型(コイン)	小型 (コイン、円筒型、 ラミネート)	中型 (円筒型)	大型 (円筒型、角型)	
容量(F/Cell)	数F.	以下	数F~500F	500F以上	
		(Hermetically sealed)	BOOSTCAP		
外観			UMOND		

EDLCの構成材料と作動原理

構成材料

- ①分極性電極*
- ②電解液(水系、非水系)
 分極性電極との界面に電気二重層を形成する。
- ③AI集電体 電気二重層に蓄積された電荷を出し入れする。
- 4セパレータ 分極性電極どうしの電子的な絶縁を保持する。

図 EDLCの模式図

*電位を印加したときに、ファラデー電流の流れない電位範囲が極めて広い電極のこと。

電気2重層キャパシタの原理

【電気二重層キャパシタの原理

電解液に活性炭電極を浸し、その電極表面から距離を置いて(内部ヘルムホルツ層)イオンの層がプラス極とマイナス極に、同時に作られます。(外部ヘルムホルツ層)

この電気二重層と呼ばれる原理 を応用したキャパシタを 電気二重層キャパシタと呼びま す。

電気2重増千ヤバンダ 【允覧

電気2重増千ヤハンタ 【放電

キャパシタの材料

ヤシがら外観

活性炭の細孔生成原理

木くず

椰子がら

フェノール樹脂

炭化物(カーボン結晶体の生 成) 活性炭(炭化物を多孔 化)

電極に要求される特性

- 比表面積の大きな材料であること。
- 電気伝導性の高い材料であること。
- 電解液に対して電気化学的に安定な材料であること。
- 安価で大量に入手できる材料であること。

活性炭

2nm)

≪特徴≫

- 1. 微細孔を持つ炭素 (直径10~200Å)
- 2. 大きい表面積(500~2500 m²/g)
- 3. 不純物が少ない (Na, Si, K, Ca, Fe等)

【複写機への応用事例】

リコー株式会社提供

【自動車への採用事例】 マツダ株式会社HPより転載

HENDERS PS- P-F-CORDONIC SHARKS CROSS-CO ALCOHOLDS

Ularity Prin-

BROKENSKA POPTOREK BOTERSKA PODENSKA bear badd

ELOCPHORN (NO. (LOCALINA DE LA SERI. (LOCAL

- # 100 F-100 B
- FWG-1-88
- \$10.00 Att (2007) (\$10.00 (\$10.00))

DC DCSUNT-FT-BCS DCSUNT-FT-BCS DC BCS DEBUG DD PT

【アクセル・オフ斯】

【アクセル・オン時】

i-ELOOP"は、消費電流が大きく加減速の比較的多い実走行時に実力を発揮する。

仮の目標を決定するため、実際の走行シーンの加減速頻度の一般的代表として日本の燃費測定モードJC08(Fig.10)を使用した。

JC08での加減速では、10秒以上の車速ゼロおよびアクセルONが20回で最長80秒であり、平均すると38.7秒となる。

いろいろな走行シーンから、燃費モード測定時の消費電流値約15~20Aに対し実走行時を考え40Aの消費電流時でのエネルギ計算とした。40Aの消費電流で、45秒電力供給できる13.5V×40A×45秒=24.3kJを仮の目標とした。実際の仕様ではEDLCの規格やオルタネータの仕様から25.7kJの設計となっている。

キャパシタの必要容量Cを求める。1回当たりの充電必要エネルギEは24.3kJ。

電荷をQとするとEはQの電圧Vでの積分値となる。よって関係は次式となる。これにより静電容量Cを求める。

以上からC=113F(実際は実用燃費優先で劣化も考慮し120Fとした。)

1回あたり充電時間検証

充電時間tは1回あたりの充電電流を200Aとすると、 Q=CVから200t=120× (25-14) ⇒ t=6.6sec

ただし本計算では内部抵抗値は無視している。

(マツダ技法2012年No30より転載)

■リコーにおけるキャパシタの取り組み

・ 高速複写機へキャパシタを標準搭載

"使いやすさ"と"省エネ"の両立

• ウォームアップ: 10秒 (前身機5分)

省エネ : 約60%削減

電気二重層キャパシタ(EDLC)と商用電源でトナーを加熱

"HYBRID-QSU" (Quick Start Up)

■複写機へのEDLC搭載、これまでと今後

•2003年から機種展開. 2009年から新シス

次世代蓄電池への期待:

カラー機,プリンター搭載には,「小型化・低コスト化」が必須 「安全性,エネルギー密度,サイクル寿命,低コスト」

上海バス車両総数

2015年5月時点

車両総数;16,000台くらい 運行会社11社

大手2社で75%(上海バス、浦東バス) 上記2社で12,539台 新エネルギー車両の種類;2,022台 PHEV;1231台(DIESEL+LIB+EDLC及びDIESEL+LIB)

LIB; 190台 トロリーバス(LIB仕様)275台 LIB+EDLC; 258台

上記2社以外9社で3,461台

EDLCの容量計算は

```
キャパシタのエネルギー量は、
E=(1/2)*C*V2
1本のセルの仕様が2.5V1200Fの場合
↓
E=(1/2)*1200*2.5*2.5
=3750[J]
↓ J⇒W
```

J(ジュール)=W(ワット)*sec、 ですので、3600秒で割れば、Wh(ワットアワー)になります。

```
E = 3750 [J] = 3750 / 3600 [Wh]
= 1.04 [Wh]
```

※基準として1200F品1本が、大体1Whというのは覚えてくださし

次世代のキャパシタ

LIB=キャパシタのハイブリッド化

将来のキャパシタに求められる特性

Non-Ragone representation

Safety
Reliability
Maintenance free

LICの構成

LICの特徴 (負極に炭素電極を使用)

負極材料に $Li_4Ti_5O_{12}$ (LTO) を利用することで安全性がより一層高ま

まとめ

①蓄電デバイスはアプリにより適正なデバイスを選択する。

選択基準は

- 1.パワー密度orエネルギー密度
- 2.期待寿命;5年以下or10年以上
- 3. 使用環境温度; -30度以下or+60度以上
- 4. システムコスト;デバイス以外の周辺システムも考慮する

費用対効果の考え方は?

- ②デバイスのコストは材料と製造工程により決まる。
- 1.希少金属は使用しない
- 2. 環境親和性があること
- 3. 地球環境に優しいこと

この講演に際して各資料の提供に感謝します。

資料提供者

- ①東京農工大次世代キャパシタセンター
- **2**k&W
- ③日本ケミコン株式会社
- 4サンケン電気株式会社
- ⑤マツダ株式会社
- ⑥株式会社リコー