Differential Privacy and Neural Networks: A Preliminary Analysis

Giuseppe Manco, Giuseppe Pirrò presented by **Ettore Ritacco**

ICAR-CNR, Italian National Research Council

PAP 2017

Outline

Differential Privacy

Outline

Differential Privacy

2 Differential Privacy and Neural Networks

Outline

Differential Privacy

- Differential Privacy and Neural Networks
- Concluding Remarks

Differential Privacy

- Releasing (Big) Data sets is fundamental toward analytics tasks (analysis and prediction)
- Releasing or letting analysts to use data raises privacy concerns

Differential Privacy

- Releasing (Big) Data sets is fundamental toward analytics tasks (analysis and prediction)
- Releasing or letting analysts to use data raises privacy concerns
- Differential privacy (DP) differs from data anonymization techniques in two main respects:
 - it does not require to modify the data
 - it does not assume any particular background knowledge
- DP ensures the outcomes of queries/calculations to be insensitive to any individual record in a database

Definition

Differential privacy provides information about a group while allowing to learn as little as possible about any individual in it.

Differential Privacy

Definition (Differential Privacy)

A randomized computation M provides ϵ -differential privacy if for any datasets A and B with symmetric difference $A\Delta B = 1$ (A and B differ in one record), and any set of possible outcomes $S \subseteq Range(M)$:

$$\Pr[\mathsf{M}(\mathsf{A}) \in \mathsf{S}] \leq \Pr[\mathsf{M}(\mathsf{B}) \in \mathsf{S}] \times e^{\epsilon} + \delta$$

- ullet ϵ allows to control the level of privacy
- ullet δ allows to introduce an error thus defining (ϵ,δ) -DP
 - ullet lower values of ϵ mean stronger privacy
- The probability that an attacker guesses an individual record is (resp., is not) in the database in at most e^{ϵ}

Differential Privacy for real-valued functions

• DP is achieved by adding noise to the outcome of a query

Definition (Sensitivity of a real-valued function)

Given a function $f:D \to R^d$ the sensitivity of f is:

$$S(f) = \max_{A,B,A\Delta B=1} ||f(A) - f(B)||_1$$

Theorem (**DP** and the Laplace mechanism)

Given a function $f:D \to R^d$ the computation $M(X)=f(X)+(Laplace(S(f)/\epsilon))^d$ provides ϵ -differential privacy.

Theorem (Approximate DP and the Gaussian Mechanism)

Given a function $f:D \to R^d$, the computation

$$M(X)=f(X)+N(0,\sigma^2)^d+\delta$$
 provides (ϵ,δ) -differential privacy

Context

- ullet A dataset ${\cal D}$
- Multi Layer Perceptron (MLP) [2].
 - A set of input variables $\mathbf{x_i}$, $i \in [1, d]$
 - A set of output variable $\mathbf{t_l}$, $l \in [1, q]$
 - A a vector w of adjustable parameters
 - **Network training**: learn the model parameters (weights and biases) that minimize the error function $E(\mathcal{D}, \mathbf{w})$ (e.g., via the back-propagation algorithm [4]).

State of the Art

• Functional Approaches [6]: Instead of perturbing the results, one can perturb the objective function and then optimize the perturbed objective function.

State of the art

• Non Functional Approaches [1] are mainly based on *line search methods* such as the (Stochastic) Gradient Descent (SGD).

Our Approach

Our algorithm to learn via Neural Network under Differential Privacy, adopts a Functional Approach. It involves the following four main phases:

- Find a polynomial representation of the objective function;
- Compute the sensitivity;
- Add noise to the polynomial representation;
- Minimize the perturbed objective function.

Preliminaries: Neural Network Representation

- For simplicity we leave out bias terms
- $w_{i,j}$ corresponds to the weight of the connection between nodes j and i such that $j \prec i$ (j is a predecessor of i).

$$z_{\mathbf{x},i} = \phi_i (a_{\mathbf{x},i})$$
$$a_{\mathbf{x},i} = \sum_{j \prec i} w_{i,j} \cdot z_{\mathbf{x},j}$$

- $z_{\mathbf{x},i}$ (resp. $a_{\mathbf{x},i}$) represents the application of a_i to \mathbf{x}
- ϕ_i represents the activation function relative to unit i.

Polynomial representation of the objective function

We consider the following 2nd-order Taylor expansion $\hat{E}(\mathcal{D}, \mathbf{w})$ of the error function $E(\mathcal{D}, \mathbf{w}) = \sum_{\mathbf{x} \in \mathcal{D}} E_{\mathbf{x}}(\mathbf{w})$.

$$\hat{E}(\mathcal{D}, \mathbf{w}) \approx E(\mathcal{D}, \hat{\mathbf{w}}) + (\mathbf{w} - \hat{\mathbf{w}})^T \nabla E(\mathcal{D}, \hat{\mathbf{w}}) + \frac{1}{2} (\mathbf{w} - \hat{\mathbf{w}})^T \nabla^2 E(\mathcal{D}, \hat{\mathbf{w}}) (\mathbf{w} - \hat{\mathbf{w}})$$

where: $\nabla E(\mathcal{D}, \hat{\mathbf{w}}) \equiv \frac{\partial E}{\partial w_{i,j}}|_{\mathbf{w} = \hat{\mathbf{w}}}$ and $(\nabla^2 E(\mathcal{D}, \hat{\mathbf{w}}))_{i,j} \equiv \frac{\partial^2 E}{\partial w_i \partial w_j}|_{\mathbf{w} = \hat{\mathbf{w}}}$ are the Jacobian and Hessian matrices, respectively. Denoting by $g_{i,j}$ (resp., $h_{i,j}$) an element of the Jacobian (resp., Hessian) matrix, we obtain:

$$g_{i,j} = \sum_{\mathbf{x} \in \mathcal{D}} \delta_{\mathbf{x},i} z_{\mathbf{x},j} \tag{1}$$

$$\delta_{\mathbf{x},i} = \mathbf{z}'_{\mathbf{x},i} \sum_{\mathbf{v}:i \prec \mathbf{v}} \delta_{\mathbf{x},\mathbf{v}} \mathbf{w}_{\mathbf{v},i} \tag{2}$$

$$h_{i,j} = \sum_{\mathbf{x} \in \mathcal{D}} b_{\mathbf{x},i} z_{\mathbf{x},j}^2 \tag{3}$$

$$b_{\mathbf{x},i} = z_{\mathbf{x},i}'' \sum_{\mathbf{y},i \in \mathcal{Y}} w_{\mathbf{y},i} \delta_{\mathbf{x},\mathbf{y}} + (z_{\mathbf{x},i}')^2 \sum_{\mathbf{y},i \in \mathcal{Y}} w_{\mathbf{y},i}^2 b_{\mathbf{x},\mathbf{y}}$$
(4)

Polynomial Represenation of the objective function

To reduce the computational cost we only consider diagonal elements of the Hessian [3]. As for the output units, their output depends from the specific loss function considered. As an example, when considering the Least Squares Error, we obtain:

$$E(\mathbf{x}, \mathbf{w}) = \frac{1}{2} \sum_{c=1}^{d} (y_{\mathbf{x},c} - t_{\mathbf{x},c})^{2}$$
$$y_{\mathbf{x},c} = y_{c}(\mathbf{x}; \mathbf{w})$$

where $y_{\mathbf{x},c}$ is the c-th component given by the network when giving as input the vector \mathbf{x} and $t_{\mathbf{x},c}$ is the c-th target value. Hence, for output units we have:

$$\delta_{\mathbf{x},i} = (\psi(\mathbf{a}_{\mathbf{x},i}) - t_{\mathbf{x},i})\psi'(\mathbf{a}_{\mathbf{x},i}) \tag{5}$$

$$b_{x,i} = (\psi'(a_{x,i}))^2 + (\psi(a_{x,i}) - t_{x,i})\psi''(a_{x,i}))$$
(6)

where ψ is the activation function for output units.

Compute the sensitivity

We need to estimate its sensitivity to add noise into the polynomial representation of the error function.

Lemma

Let \mathcal{D} , \mathcal{D}' be any two databases differing in at most one tuple, and

$$\hat{E}(\mathcal{D}, \mathbf{w}) = \left(\sum_{\mathbf{x} \in \mathcal{D}} \sum_{j \prec i} \delta_{\mathbf{x}, i} z_{\mathbf{x}, j}\right) w_{i, j} + \frac{1}{2} \left(\sum_{\mathbf{x} \in \mathcal{D}} \sum_{j \prec i} b_{\mathbf{x}, i} z_{\mathbf{x}, j}^{2}\right) w_{i, j}^{2}$$

$$\hat{E}(\mathcal{D}',\mathbf{w}) = \big(\sum_{\mathbf{x}' \in \mathcal{D}'} \sum_{j \prec i} \delta_{\mathbf{x}',i} z_{\mathbf{x}',j} \big) w_{i,j} + \frac{1}{2} \big(\sum_{\mathbf{x}' \in \mathcal{D}'} \sum_{j \prec i} b_{\mathbf{x}',i} z_{\mathbf{x}',j}^2 \big) w_{i,j}^2$$

the polynomial representation of the error function on \mathcal{D} and \mathcal{D}' , respectively. Let \mathbf{x} be an arbitrary tuple.

$$||\hat{\mathcal{E}}(\mathcal{D}, \mathbf{w}) - \hat{\mathcal{E}}(\mathcal{D}', \mathbf{w})||_{1} \leq 2 \sum_{i \neq j} \max_{\mathbf{x}} \left(|\delta_{\mathbf{x}, i} z_{\mathbf{x}, j}| + |b_{\mathbf{x}, i} z_{\mathbf{x}, j}^{2}| \right)$$

An overview of the Algorithm

Algorithm 1 FunctionalNetDP (Privacy budget ϵ)

- 1: Initialize w
- g, h ← Polynomial Representation of the loss function
- 3: Find \widetilde{g} and h via addNoise(\mathbf{w}, ϵ) /* Algorithm 2 */
- Compute w=argmin E(D, w)

5: **return** $\tilde{\mathbf{w}}$ / set of weights that minimizes $\tilde{E}(\mathcal{D}, \mathbf{w})$ /

Algorithm 2 addNoise(Weights w, privacy budget ϵ)

- 1: Let D be the dataset 2: Set $S(\widetilde{E})=2\sum_{i \prec i} \max_{\mathbf{x}} \left(|\delta_{\mathbf{x},i} z_{\mathbf{x},j}| + |b_{\mathbf{x},i} z_{\mathbf{x},j}^2| \right)$
- Find g via eq. (1) and h via eq. (3) using D
- 4: g← g/min(1, ||g||²/C) /* clip Gradient */
- 5: $h \leftarrow h/min(1, ||h||^2/C)$ /* clip Hessian */
- 6: $\widetilde{g} \leftarrow g + Lap(S(\widetilde{E}) \mid \epsilon)$
- 7: h̃ ← h+Lap(S(Ẽ) | ε)
- 8: return \tilde{q} and h

$\mathsf{Theorem}$

Algorithm 1 satisfies ϵ -differential privacy.

A fine-grained analysis of the Laplace noise (I)

Assuming that for both ϕ and ψ the logistic function $\sigma(x) = \frac{1}{1+e^{-x}}$ is used, then we have that:

- $\sigma(x) \in [0,1]$
- $\sigma'(x) \in [0, 0.25],$
- $\sigma(x)'' \in [-0.1, 0.1]$

Moreover, we assume that:

- $w_{i,i} \in [0,1]$
- for each dimension d of the input tuple $\mathbf{x}^{\mathbf{d}} \in [0,1]$

To bound the amount of Laplace noise needed, we need to bound the components $\sum_{i \prec j} |\delta_{\mathbf{x},i} z_{\mathbf{x},j}|$ and $\sum_{i \prec j} |b_{\mathbf{x},i} z_{\mathbf{x},i}^2|$ in the previous Lemma.

Let m be the depth of the network. For each layer $j \in \{1,...,m\}$ we denote by δ^j (resp., b^j) the coefficient of a generic unit in the layer j. Moreover, s_j represents the number of units at layer j. We now analyze the amount of noise as per our previous sensitivity analysis.

Lemma

The noise to be introduced by the $\sum_{j \prec i} |\delta_{\mathbf{x},i} z_{\mathbf{x},j}|$ component is $\leq 0.25^m \times \prod_{i=1}^{j=m} s_j$.

Lemma

The noise to be introduced by the $\sum_{j \prec i} |b_{\mathbf{x},i} z_{\mathbf{x},j}^2|$ component is:

$$\leq \prod_{i=1}^{j=m} s_j \Big(0.1^m + 0.001625 \times m \Big)$$

A fine-grained analysis (II)

$\mathsf{Theorem}$

For a network of m layers with s_i units in each layer, where $j \in [1, n]$, the amount of Laplacian noise to ensure differential privacy is:

$$\leq 2\Big(0.25^m\prod_{q=1}^{q=m}s_q+\prod_{j=1}^{j=m}s_j\times\Big(0.1^m+0.001625\times m\Big)\Big)$$

The above analysis shows that the amount of noise to ensure differential privacy is dominated by the number of units in the network.

Concluding Remarks

- We have reported on the usage of differential privacy in neural networks and discussed our preliminary findings in adding Laplacian noise to a low-polynomial representation of the error function.
- We want to underline the following aspects emerging from our preliminary analysis:
 - The sensitivity basically depends on the topology of the network.
 - Finding a better bound is in our research agenda
 - Algorithm 1 works by approximating the Hessian to its diagonal components as done by other approaches.
 - We are considering the usage of 2nd order methods (e.g., Hessian Free optimization [5])

References I

 Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential privacy.
 In Proc. of CCS, pages 308–318. ACM, 2016.

[2] Christopher M Bishop.

Pattern recognition.

Machine Learning, 2006.

[3] Y. Le Cun.

Modeles Connexionistes de l'Apprentissage. PhD thesis, Universite' de Paris, 1987.

FIID thesis, Oniversite de Faris, 1907.

[4] Hugo Larochelle, Yoshua Bengio, Jéröme Louradour, and Pascal Lamblin. Exploring strategies for training deep neural networks. JMLR, 10:1–40, 2009.

[5] James Martens

Deep learning via hessian-free optimization.

In Proceedings of the 27th International Conference on Machine Learning (ICML-10), pages 735–742, 2010.

[6] Jun Zhang, Zhenjie Zhang, Xiaokui Xiao, Yin Yang, and Marianne Winslett. Functional mechanism: regression analysis under differential privacy.

Proceedings of the VLDB Endowment, 5(11):1364-1375, 2012.