A rapid machine-learning approach for detecting fish species and body parts

using rapid evaporative ionisation mass spectrometry

Jesse Wood 1 Bach Hoai Nguyen 1 Bing Xue 1 Mengjie Zhang 1 Daniel Killeen 2

¹School of Engineering and Computer Science — Te Kura Mātai Pūkaha, Pūrorohiko Victoria University of Wellington — Te Herenga Waka
²New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand

Island Bay, Wellington, New Zealand

GP [1, 2, 3] inspired by reproductive behaviour of animals

ECRG, VUW, New Zealand

Topics

- Catfishing
- 2 Fish Oil
- Mass Spectrometry
- 4 Classification
- Transformer
- 6 Intepretable

Have you been catfished? [4]

Popular restaurant accused of serving cheap Vietnamese catfish to customers who thought they were getting Australian dory

- · A Melbourne restaurant has been accused of serving catfish to customers
- · Hunky Dory has allegedly been selling frozen fillets of basa as dory
- · Owner Greg Robotis has denied allegations he is misleading customers
- The City of Port Phillip is investigating Hunky Dory's Port Melbourne store

By HARRY PEARL FOR DAILY MAIL AUSTRALIA PUBLISHED: 14:31 AEDT, 27 May 2016 | UPDATED: 16:08 AEDT, 27 May 2016

A Melbourne restaurant has been accused of serving a Vietnamese catfish to customers who believe they are ordering Dory.

A whistleblower has alleged that Hunky Dory outlets have been selling frozen fillets of basa, a species of catfish native to the Mekong basin, as fish-of-the-day dory, The Age reports.

Owner Greg Robotis has denied the claims and said inexperienced staff may have been calling the fish the wrong name.

Catfishing [4], Mislabelling [5], and Quality Assurance [6]

Nutrition F	acts
6 servings per container Serving size 4-5 ound	ces(187g
Amount per serving Calories	200
% !	Daily Value
Total Fat 5g	69
Saturated Fat 0.5g	39
Trans Fat 0g	
Cholesterol 80mg	279
Sodium 610mg	279
Total Carbohydrate 10g	49
Dietary Fiber 0g	09
Total Sugars 3g	
Includes 0g Added Sugars	09
Protein 27g	
Vitamin D 2mcg	109
Calcium 79mg	69
Iron 3mg	159
Potassium 519mg	109

^{*}The % Daily Value tells you how much a nutrient in a serving of food contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.

Fish oil is brain food! [7, 8]

Fish oil analyzed with Mass Spectrometry! [6]

Fish oil analysis can't be blackbox! [9, 10]

Mass Spectrometry [11, 6, 12] \approx Chemical Fingerprint

- Laser Pen
- 2 Vacuum
- Selectromagnetic Field (EMF)
- Operation
 Operation

- Laser Pen
- Vacuum
- Selectromagnetic Field (EMF)
- 4 Detector

- Laser Pen
- 2 Vacuum
- Electromagnetic Field (EMF)
- 4 Detector

- Laser Pen
- 2 Vacuum
- Selectromagnetic Field (EMF)
- Oetector

- Laser Pen
- Vacuum
- Electromagnetic Field (EMF)
- Operation

Fish Species

Fish Body Parts

fillets, heads, livers, skins, guts and frames

Classification: Datasets

Classification: Methods

Dataset	Method
Species Parts	RF [13] KNN [14] DT [15] NB [16] LR [17] SVM [18] LDA [19] Ensemble [20] Transformer [21, 22]
	MCIFC [2, 3]

Classification: Fish Species

Dataset	Method	Train	Test
Species <	RF [13]	$100.0\% \pm 0.00\%$	95.88% ± 4.47%
	KNN [14]	$93.24\% \pm 2.43\%$	$83.69\% \pm 6.91\%$
	DT [15]	$100.0\% \pm 0.00\%$	$99.13\% \pm 1.72\%$
	NB [16]	$100.0\% \pm 0.00\%$	$87.97\% \pm 9.57\%$
	LR [17]	$100.0\% \pm 0.00\%$	$96.72\% \pm 4.75\%$
	SVM [18]	$100.0\% \pm 0.00\%$	$95.97\% \pm 5.06\%$
	LDA [19]	$98.67\% \pm 0.77\%$	96.47% ± 3.67%
	Ensemble [20]	$100.0\% \pm 0.00\%$	$98.16\% \pm 3.00\%$
	Transformer [21, 22]	$100.0\%\pm0.00\%$	99.58% ± 1.31%
	MCIFC [2, 3]	$99.97\% \pm 0.15\%$	$94.72\% \pm 10.25\%$

Classification: Fish Body Parts

Dataset	Method	Train	Test
Parts 🗪	RF [13]	$100.0\% \pm 0.00\%$	$40.00\% \pm 15.27\%$
	KNN [14]	$42.88\% \pm 5.37\%$	$31.66\% \pm 14.49\%$
	DT [15]	$100.0\% \pm 0.00\%$	$27.22\% \pm 13.25\%$
	NB [16]	$100.0\% \pm 0.00\%$	$45.00\% \pm 15.60\%$
	LR [17]	$100.0\% \pm 0.00\%$	$56.66\% \pm 15.27\%$
	SVM [18]	$100.0\% \pm 0.00\%$	$56.11\% \pm 14.58\%$
	LDA [19]	$75.61\% \pm 3.20\%$	$45.55\% \pm 16.06\%$
	Ensemble [20]	$100.0\% \pm 0.00\%$	$51.66\% \pm 15.72\%$
	Transformer [21, 22]	$100.0\%\pm0.00\%$	63.33% ± 24.59%
	MCIFC [2, 3]	$97.93\% \pm 1.59\%$	$55.83\% \pm 18.97\%$

Classification: Avoid Catfishing [4] & Mislabelling [5]

Transformer Architecture [21]

Pre-Training: Masked Spectra Modelling [22]

Pre-Training: Masked Spectra Modelling [22]

Pre-Training: Next Spectra Prediction [22]

Sentence 1 Sentence 2 Next Sentence?

The quick brown fox jumped over the lazy dog.

The quick brown fox You know nothing Jon Snow.

Pre-Training: Next Spectra Prediction [22]

Decision Tree

```
110 122786584657 <= 19 426
                 qini = 0.496
                samples = 187
               value = [85, 102]
                 class = Hoki
                        439.163087160249 <= 300.837
  qini = 0.0
                                  qini = 0.023
samples = 101
                                 samples = 86
value = [0, 101]
                                value = [85, 1]
 class = Hoki
                               class = Mackerel
                   qini = 0.0
                                                   gini = 0.0
                 samples = 1
                                                 samples = 85
                                                value = [85, 0]
                 value = [0, 1]
                 class = Hoki
                                                class = Mackerel
```


Genetic Programming Tree - Hoki

Genetic Programming Tree - Fish Species Hoki

Genetic Programming Tree - Mackerel

Genetic Programming Tree - Fish Species Hoki

TLDR;

Transformer can predict fish species with near-perfect accuracy, **DT** and **GP** provide **accurate**, **interpretable** and **efficient** models for **Rapid Evaporative Ionisation Mass Spectrometry**.

Download the slides & paper.

- [1] J. R. Koza *et al.*, *Genetic programming II*. MIT press Cambridge, 1994, vol. 17.
- [2] B. Tran, B. Xue, and M. Zhang, "Genetic programming for feature construction and selection in classification on high-dimensional data," *Memetic Computing*, vol. 8, no. 1, pp. 3–15, 2016.
- [3] —, "Genetic programming for multiple-feature construction on high-dimensional classification," *Pattern Recognition*, vol. 93, pp. 404–417, 2019.
- [4] H. P. F. D. M. Australia, "Melbourne restaurant hunky dory accused of serving catfish to customers instead of dory," May 2016. [Online]. Available: https://www.dailymail.co.uk/news/article-3611999/Melbourne-restaurant-Hunky-Dory-accused-serving-catfish-customers-in html
- [5] M. Á. Pardo, E. Jiménez, and B. Pérez-Villarreal, "Misdescription incidents in seafood sector," Food Control, vol. 62, pp. 277–283, 2016.

- [6] C. Black, O. P. Chevallier, S. A. Haughey, J. Balog, S. Stead, S. D. Pringle, M. V. Riina, F. Martucci, P. L. Acutis, M. Morris et al., "A real time metabolomic profiling approach to detecting fish fraud using rapid evaporative ionisation mass spectrometry," *Metabolomics*, vol. 13, no. 12, pp. 1–13, 2017.
- [7] A. P. Simopoulos, "Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain," *Molecular neurobiology*, vol. 44, no. 2, pp. 203–215, 2011.
- [8] M. L. Panse and S. D. Phalke, "World market of omega-3 fatty acids," *Omega-3 Fatty Acids*, pp. 79–88, 2016.
- [9] K. Bi, D. Zhang, T. Qiu, and Y. Huang, "Gc-ms fingerprints profiling using machine learning models for food flavor prediction," *Processes*, vol. 8, no. 1, p. 23, 2020.
- [10] D. D. Matyushin and A. K. Buryak, "Gas chromatographic retention index prediction using multimodal machine learning," *Ieee Access*, vol. 8, pp. 223140–223155, 2020.

- [11] S. N. Jha, Rapid detection of food adulterants and contaminants: theory and practice. Academic Press, 2015.
- [12] C. Black, O. P. Chevallier, K. M. Cooper, S. A. Haughey, J. Balog, Z. Takats, C. T. Elliott, and C. Cavin, "Rapid detection and specific identification of offals within minced beef samples utilising ambient mass spectrometry," *Scientific reports*, vol. 9, no. 1, pp. 1–9, 2019.
- [13] T. K. Ho, "Random decision forests," in *Proceedings of 3rd international conference on document analysis and recognition*, vol. 1. IEEE, 1995, pp. 278–282.
- [14] E. Fix and J. L. Hodges, "Discriminatory analysis. nonparametric discrimination: Consistency properties," *International Statistical Review/Revue Internationale de Statistique*, vol. 57, no. 3, pp. 238–247, 1989.
- [15] W.-Y. Loh, "Classification and regression trees," Wiley interdisciplinary reviews: data mining and knowledge discovery, vol. 1, no. 1, pp. 14–23, 2011.

- [16] D. J. Hand and K. Yu, "Idiot's bayes—not so stupid after all?" *International statistical review*, vol. 69, no. 3, pp. 385–398, 2001.
- [17] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, *Logistic regression*. Springer, 2002.
- [18] C. Cortes and V. Vapnik, "Support-vector networks," *Machine learning*, vol. 20, no. 3, pp. 273–297, 1995.
- [19] S. Balakrishnama and A. Ganapathiraju, "Linear discriminant analysis-a brief tutorial," *Institute for Signal and information Processing*, vol. 18, no. 1998, pp. 1–8, 1998.
- [20] H. M. Gomes, J. Montiel, S. M. Mastelini, B. Pfahringer, and A. Bifet, "On ensemble techniques for data stream regression," in 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp. 1–8.
- [21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," *Advances in neural information processing systems*, vol. 30, 2017.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional transformers for language understanding," *arXiv preprint arXiv:1810.04805*, 2018.

