

概述

TM1628 是一种带键盘扫描接口的 LED(发光二极管显示器)驱动控制专用电路, 内部集成有MOU数字接口、数据锁存器、LED高压驱动、键盘扫描等电路。本产品性 能优良,质量可靠。主要应用于VCR、VCD、DMD及家庭影院等产品的显示屏驱动。采 用SOP28的封装形式。

特性说明

采用功率 CMOS 工艺 典型工作电压: 3-5V

多种显示模式(10段×7位~13段×4位)

键扫描 (10× 2 bit)

辉度调节电路(占空比 8级可调)

串行接口 (CLK, STB, DIO)

振荡方式: 内置 RC 振荡 (450KHz+5%)

内置上电复位电路

封装形式: SOP28 DIP28

三、 管脚定义:

	SOP28	_
NC 1		28 GND
DIO 2		27 GRID1
CLK 3		26 GRID2
STB 4	TM1628	25 GND
K1 5	(TOP VIEW)	24 GRID3
K2 6		23 GRID4
VDD 7		22 GND
SEG1/KS1 8		21 VDD
SEG2/KS2 9		20 SEG14/GRID5
SEG3/KS3 10		19 SEG13/GRID6
SEG4/KS4 11		18 SEG12/GRID7
SEG5/KS5 12		17 SEG10/KS10
SEG6/KS6 13		16 SEG9/KS9
SEG7/KS7 14		15 SEG8/KS8

四、管脚功能定义:

符号	管脚名称	说明
DIO	数据输入 ⁄输出	在时钟上升沿输入 输出串行数据,从低位开始。 N管开漏输出。
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。 STB 为低后的第一个字节作为指令,处理指令时,当前 其它处理被终止。当 STB 为高时, CLK 被忽略。
CLK	时钟输入	在上升沿输入串行数据,下降沿输出数据。
K1~ K2	键扫数据输入	输入该脚的数据在显示周期结束后被锁存。
SEG1/KS1~ SEG10/KS10	输出(段)	段输出(也用作键扫描),P管开漏输出。
&1101~ €1104	输出(位)	位输出,N管开漏输出。
SEG12/CRID7 ~ SEG14/CRID5	输出(段 /位)	段 /位复用输出。
VDD	逻辑电源	5V± 10% 3.3-5v
VSS	逻辑地	接系统地。
NC	空脚	内部无连线。

注意: DIQ口输出数据时为N管开漏输出,在读键的时候需要外接 1K-10K的上拉电阻 如图 (1)所示。本公司推荐 10K的上拉电阻。DIQ在时钟的下降沿控制N管的动作,此时读数不稳定,可以参考图 (6),在时钟的上升沿时读数才稳定。

五、 显示寄存器:

外部器件通过串行接口将数据传送到 TM1628的显示寄存器,地址从 00H-0DH共 14字节单元,分别与芯片 SCE和 GRID管脚所接的 LED灯对应,分配如图 (2)所示。写LED显示数据的时候,按照显示地址从低位到高位,从数据字节的低位到高位操作。

SEGI	SECZ	SECE	SEC4	SECS	SEGS	SEG7	SEG8:	SECO	0 383	х	2 2	3 3	SEC 4	х	X	
XX	HL(们	机四位)	Х	(XHU(与四位)		xx HL (f	机四位	.)	kx	-U(高	四位)	
B0	B1	B2	В3	B4	B5	B6	B7	В0	B1	B2	B 3	B4	B5	B 6	B7	
	00	HL			00)HU			01	HL			01F	IJ		ŒIDI
	02	HL			02	ZHU			03	3HL			03	IJ		GRID2
	04	#HL			04	#HU			05	HL.			05	IJ		ŒID3
	06	3HL			06	3HU			07	1HL			07l-	Ŋ		CRID4
	30	3HL			30	3HU			09)HL			09	IJ		GRID5
	0/	HL	·		0/	₩U			OE	HL.			OBI-	U	•	GRID6
	00	HL			00	H			OE	HL			0D-	IJ		ŒID7

图 (2)

六、 键扫描和键扫数据寄存器:

键扫矩阵为 10× 2bit, 如图 (3)所示:

键扫数据储存地址如图(4)所示。发读键命令后,开始依次读取按键数据BYTE1—BYTE5字节,读数据从低位开始,其中B6和B7位为无效位,此时芯片输出为0。芯片K和KS引脚对应的按键按下时,相对应的字节内的BIT为1。

B0	B1	B2	B3	B4	B5	B 6	B7	
K1	K2	Х	K1	K2	Χ			
	KS1			KS2		0	0	BYTE1
	KS3			KS4		0	0	BYTE2
	KS5			KS6		0	0	BYTE3
	KS7			KS8		0	0	BYTE4
	KS9			KS10		0	0	BYTE5

图(4)

注意: 1、TM1628最多可以读5个字节,不允许多读。

2、读数据字节只能按顺序从 BYTE1-BYTE5读取,不可跨字节读。例如:硬件上的 K2与 KS10 对应按键按下时,要读到此按键数据,必须读到第 5个字节的 B4位,才可读出数据。

TM1628

3 当有多个键按下,相对应的字节内的BIT为1。例如:K1与 KS10, K2与 KS10两个键同时 按下时, BYTES字节的 B3与 B4位为 1。

4 组合键只能是同一个 KS, 不同的 K组合。

七、 指令说明:

指令用来设置显示模式和LED驱动器的状态。

在STBF降沿后由DIO输入的第一个字节作为一条指令。经过译码,以最高两个比特位B7、B6区 别不同的指令。

B7	B6	指令
0	0	显示模式设置命令
0	1	数据读写设置命令
1	0	显示控制命令
1	1	地址设置命令

如果在指令或数据传输时 STE被置为高电平,串行通讯被初始化,并且正在传送的指令或数据 无效(之前传送的指令或数据保持有效)。

(1) 显示模式设置命令:

LSB MSB.

B7	B6	B5	B4	В3	B2	B1	В0	显示模式
0	0					0	0	4位 13段
0	0		无关项	,填0		0	1	5位 12段
0	0		儿人坝	, 填 0	P	1	0	6位 11段
0	0	A			/	1	1	7位 10段

该指令用来设置选择段和位的个数(4~7位,10~13段)。该指令执行时,显示被强制关闭, 需要送显示控制命令才能开显示,原来显示的数据内容不会被改变。但当相同模式被设置时,则上 述情况并不发生。

(2) 数据读写设置命令:

MSB. LSB

В7	B 6	B5 B4	B 3	B2	B1	B0	功能	说明
0	1				0	0	数据读写模式设	写数据到显示寄存器
0	1				1	0	置	读键扫数据
0	1	无关项,		0			地址增加模式设	地址自动增加
0	1	填 0		1			置	固定地址
0	1		0				测试模式设置	普通模式
0	1		1				(内部使用)	测试模式

该指令用来设置数据写和读, B和 B位不允许设置 0 包 11。

(3) 地址设置命令:

M	3B						LSB	
В7	B6	B 5	B4	B 3	B2	B1	В0	显示地址
1	1			0	0	0	0	00H
1	1			0	0	0	1	01H
1	1			0	0	1	0	02H
1	1			0	0	1	1	03H
1	1			0	1	0	0	04H
1	1			0	1	0	1	05H
1	1	无关项	页,填	0	1	1	0	06H
1	1		0	0	1	1	1	07H
1	1			1	0	0	0	08H
1	1			1	0	0	1	09H
1	1			1	0	1	0	0AH
1	1			1	0	_1\	1	0BH
1	1			1	1	0	0	ООН
1	1			1	1	0	1) ODH

该指令用来设置显示寄存器的地址。如果地址设为 0H 或更高,数据被忽略,直到有效地址被设定。上电时,地址默认设为 00H

(4) 显示控制命令:

MSB		0			, 10	LSB		
B7	B6	B5 B4	B3	82	B1	В0	功能	说明
1	0			0	0	0		设置占空比为 1/16
1	0	,		0	0	1		设置占空比为 2/16
1	0			0	1	0		设置占空比为 4/16
1	0			0	1	1	显示辉度设置	设置占空比为 10/16
1	0	无关项,		1	0	0	业小件及以且	设置占空比为 11/16
1	0	填 0		1	0	1		设置占空比为 12/16
1	0			1	1	0		设置占空比为 13/16
1	0			1	1	1		设置占空比为 14/16
1	0		0				显示开关设置	关显示
1	0		1				业小八大以且	开显示

该指令用来设置显示的开 /关和显示辉度。

八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

数据接收(写数据)

数据读取(读数据)

注意: 1.读取数据时,从串行时钟 CLK 的第8个上升沿开始设置指令到 CLK 下降沿读数据之间需要一个等待时间 Twait (最小 1µS)。

九、 显示和按键:

(1) 显示:

1. 驱动共阴数码管:

图 (7)

图 (7)给出共阴数码管的连接示意图,如果让该数码管显示"0",则需要在GRID协低电平时置 SEG1, SEG2, SEG3, SEG4, SEG5, SEG6为高电平,置 SEG7为低电平,查看图(2)显示地址表格,只需在00H地址单元写数据 3H就可以让数码管显示"0"。

TM1628

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	1	1	1	1	1	1	00H
B7	B 6	B5	B4	B 3	B2	B1	B0	

2 驱动共阳数码管:

图 (8)给出共阳数码管的连接示意图,如果让该数码管显示"0",则需要在 CRID1, CRID2, CRID3, CRID4, CRID5, CRID6为低电平的时置 SEG份高电平,在 CRID7为低电平的时置 SEG份低电平。要向地址单元00H,02H,04H,06H,08H,0AH里面分别写数据01H,其余的地址单元全部写数据00H。

SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1	
0	0	0	0	0	0	0	1	00H
0	0	0	0	0	0	0	1	02H
0	0	0	0	0	0	0	1	04H
0	0	0	0	0	0	0	1	06H
0	0	0	0	0	0	0	1	H80
0	0	0	0	0	0	0	1	0AH
0	0	0	0	0	0	0	0	ОСН
B7	B6	B5	B4	B 3	B2	B1	B0	

注意:SEG1-10为P管开漏输出,GRID1-4为N管开漏输出,在使用时候,SEG1-10只能接LED的阳极,GRID1-4只能接LED的阴极,不可反接。

(2) 按键:

键扫描由 TM1628自动完成,不受用户控制,用户只需要按照时序读键值。完成一次键扫需要 2个显示周期,一个显示周期大概需要 T=8× 500us,在 8ms先后按下了 2个不同的按键,两次读到的键值都是先按下的那个按键的键值。

按照图(9)用示波器观察SEG1/KS和SEG2/KS的输出键扫波形,见图(10)。

IC在键盘扫描时候 SEGN/KSN的波形:

图 (10)

Tdisp和IC工作的振荡频率有关, 500us仅供参考,以实际测量为准。

一般情况下使用图 (11), 可以满足按键设计的要求。

当 S'被按下的时候,在第 1个字节的 Bû卖到"1"。如果多个按键被按下,将会读到多个"1",当 S2, S3被按下的时候,可以在第 1个字节的 B1, B3读到"1"。

注意:复合键使用注意事项:

SEG1/KS1-SEG10/KS10是显示和按键扫描复用的。以图 (12) 为例子,显示需要 D停, D2灭,需要让 SEG伪"1",SEG2为"0"状态,如果 S1,S2同时被按下,相当于 SEG1,SEG2被短路,这时 D1,D2都被点亮。

解决方案:

1、在硬件上,可以将需要同时按下的键设置在不同的长线上面,如图(13)所示。

2、在 SEG1— SEG N上面串联电阻,如图(14) 所示,电阻的阻值应选 510欧姆,太大会造成按键的失效,太小可能不能解决显示干扰的问题。

3 串联二极管,如图(15)所示。

TM1628

十、 应用时串行数据的传输:

(1) 地址自动加一模式

使用地址自动加 模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令字发送完毕,"STB"不需要置高紧跟着传数据,最多 14BYTE, 数据传送完毕再将"STB"置高。

CLK								
DIO	Command 1	Command 2	Command 3	Data 1	Data 2	 Data N	Command 4	
STB								

Command1: 显示模式设置命令 Command2: 数据读写设置命令 Command3: 显示地址设置命令

Data1~ n: 显示数据,以Command3指定的地址为起始地址、最多14 bytes)

Command4: 显示控制命令

(2) 固定地址模式

使用固定地址模式,设置地址实际上是设置需要传送的1BYTE数据存放的地址。地址发送完毕,"STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕再将"STB"置高。然后重新设置第2个数据需要存放的地址,最多14BYTE数据传送完毕,"STB"置高。

СIК							
DIO	Command1	Command2	Command3	Datal	Command4	Data2	 Command5
STB		Л					

Command1:显示模式设置命令 Command2:数据读写设置命令

Command3:显示地址设置命令,设置显示地址1

Data1: 显示数据 1,存入 Command3指定的地址单元 Command4:显示地址设置命令,设置显示地址2

Data2: 显示数据 2, 存入 Command 指定的地址单元

Command5: 显示控制命令

(3) 读按键时序

CLK							
DIO	Command1	Data1	Data2	Data3	Data4	Data5	
STB							

Command1: 读按键命令 Data1~ 5: 读取的按键数据

9

(4)程序设计

采用地址自动加一模式的程序流程图:

参考程序如下,电路参考图(18):

```
深圳天微电子
 "版权信息:
 汝件名:
             TM1628
 *单片机型号: AT89S52
            Keil uVision3
 '开发环境:
 12M
#include<reg52.h>
#include<intrins.h>
#define uchar unsigned char
#define uint unsigned int
/ 定义控制端口
sbit DIO =P2^0;
sbit CLK =P2^1;
sbit STB =P2^2;
/ 定义数据
uchar const CODE[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0xef,0x6f}; / 供阴数码管 0-9的编码
uchar KEY[5]={0}; //为存储按键值开辟的数组
/ 向 TM1628发送 8位数据 从低位开始 ----
void send_8bit(uchar dat)
{
  uchar i:
  for(i=0;i<8;i++)
      if (dat&0x01)
        DIO=1:
     else DIO=0;
     CLK=0;
     QLK=1;
     dat=dat>>1;
}
/ 向 TM1628发送命令 ---
void command (uchar com)
    STB=1;
    STB=0;
    send_8bit(cam);
}
/ 续取按键值并存入 KEY[ 数组,从低字节开始,从低位开始 ----
void read_key()
    uchar i, j;
    command(0x42); / i读键盘命令
    DIO=1;
                 / 将 DIC置高
    for (i=0; i<8; i++)
```



```
KEY[j]=KEY[j]>>1;
           CLK=0;
           CLK=1:
           if (DIO)
             KEY[j]=KEY[j]|0X80;
   STB=1;
}
/ 显示函数 ,1- 位数码管显示数字 0-6------
void display()
{
   uchar i;
   command(0x03);
                          / 设置显示模式 , 7位 10段模式
   command(0x40);
                          / 股置数据命令 采用地址自动加 模式
   command(0xc0);
                           /份置显示地址,从001开始
    for(i=0;i<7;i++)
                           /发送显示数据
   {
      send_8bit(CODE[i]);
                           /从 00년 , 偶数地址送显示数据
                           /因为SEG9-14约未用到,所以奇数地址送全"0"
      send_8bit(0);
   }
   command(0x8F):
                           / 显示控制命令, 打开显示并设置为最亮
   //read_key();
                           //读按键值
   STB=1:
}
/按键处理函数 ----
void key_process()
{
   / 由用户编写
}
/庄函数 ----
void main()
   display();
                           /显示
   while(1)
       read_key();
                           //读按键值
       key_process();
                           /按键处理
}
```


采用固定地址模式的程序流程图

6

TITAN MICRO™ ELECTRONICS

- . 应用电路:

TM1628驱动共阴数码屏接线电路图 (18):

图 (18)

TM1628驱动共阳数码屏接线电路图 (19):

图 (19)

注意:1、VDQ GND之间滤波电容在 PCB板布线应尽量靠近 TM1628芯片放置,加强滤波效果。

2 连接在DIQ CLK STB通讯口上三个100P电容可以降低对通讯口的干扰。

3 因蓝光数码管的导通压降压约为 3V, 因此 TM1628供电应选用 5V

十三、 电气参数:

极限参数(Ta = 25 , Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ~ +7.0	V
逻辑输入电压	VI1	-0.5 ~ VDD + 0.5	٧
LED SEG 驱动输出电流	101	-50	mA
LED GRID 驱动输出电流	102	+200	mA
功率损耗	PD	400	nWV
工作温度	Topt	-40 ~ +80	
储存温度	Tstg	-65 ~ +150	

正常工作范围 (Ta = -20 ~ +70 , Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条件
逻辑电源电压	VDD	3	5	5.5	V	-
高电平输入电压	VIH	0.7 VDD	ı	\$	V	-
低电平输入电压	VIL	0	-	0.3 VDD	V	-

电气特性(Ta = -20 ~ +70 , VDD = 4.5 ~ 5.5 V, Vss = 0 V

参数	符号	最小	典型	最大	单位	测试条件
享由亚输出由海	loh1	20	25	40	mA	Seg1~Seg11, Vo = vdd-2V
高电平输出电流	loh2	20	30	50	mA	Seg1~Seg11, Vo = vdd-3V
低电平输入电流	IOL1	80	140	-	mA	Grid1~Grid6 Vo=0.3V

TM1628

低电平输出电流	Idout	4	-	-	mA	VO = 0.4V, dout
高电平输出电流容 许量	Itolsg	-	-	5	%	VO = VDD - 3V, Seg1~ Seg11
输出下拉电阻	RL		10		К	K1~K3
输入电流	П	-	-	± 1	μА	VI = VDD / VSS
高电平输入电压	VIH	0.7 VDD	-		V	CLK, DIN, STB
低电平输入电压	VIL	-	-	0.3 VDD	٧	CLK, DIN, STB
滞后电压	VH	-	0.35	-	V	CLK, DIN, STB
动态电流损耗	IDDdyn	-	-	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70 , VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件	
振荡频率	fosc	1	500	-	KHz	i	R = 16.5 K
	tPLZ	-	-	300	ns		CLK DOUT
传输延迟时间	tPZL	-		100	ns	CL =	15pF, RL = 10K
	ТТДН 1	-	<u> </u>	2	μs		SEG1~ SEG11
上升时间	TTZH 2	<u>-</u>	-	0.5	μs	CL = 300p F	Grid1~ Grid4 SEG12/Grid7~ SEG14/Grid5
下降时间	TTHZ	-	-	120	μs	CL = 300pF, Segn, Gridn	
最大时钟频率	Fmax	1	-	-	MHz	占空比 50%	
输入电容	CI	-	-	15	рF	-	

* 时序特性 (Ta = -20 ~ +70 , VDD = 4.5 ~ 5.5 V)

参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWOLK	400	-	-	ns	-
选通脉冲宽度	PWSTB	1	-	-	μs	-
数据建立时间	tSETUP	100		1	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
CLK STB时间	tCLK STB	1	-	1	μs	CLK STB
等待时间	tVAIT	1	-	-	μs	ar ar

时序波形图:

十四 IC封装示意图:

尺寸标注	最小(mm)	最 大(mm)	尺寸 标注	最 小(mm)	最 大(mm)	
A	17.83	18.03	C4	1.043TYP		
A1	0.406	54TYP	D1	0.70	0.90	
A2	1. 27	7TYP	D2	1.395TYP		
A3	0.51	LTYP	R1	0.508TYP		
В	9. 90	10.50	R2	0.508TYP		
B1	7.42	7.62	θ 1	7° TYP		
B2	8.9	TYP	θ 2	5° TYP		
C1	2.24 2.44		θ 3	4°	TYP	
C2	0.204	0.33	θ 4	10°	TYP	
C3	0. 10	0.25				

DETAIL "X"

I All specs and applications shown above subject to change without prior notice. 似上电路及规格仅供参考 如本公司进行修正,恕不另行通知。)

十四. Package Size SOP28:

Size Label	Min.(mm)	Max.(mm)	Size Label	Min.(mm)	Max.(mm)
Α	17.83	18.03	C4	1.043	3 TYP
A1	0.406	34 TYP	D1	0.70	0.90
A2	1.27	7 TYP	D2	1.395 TYP	
A3	0.51	TYP	R1	0.508 TYP	
В	9.90	10.50	R2	0.508 TYP	
B1	7.42	7.62	1	7° TYP	
B2	8.9	TYP	2	5° TYP	
C1	2.24 2.44		3	4° TYP	
C2	0.204	0.33	4	10° TYP	
C3	0.10	0.25			

DETAIL "X"

I All specs and applications shown above subject to change without prior notice.

个人点评:

TM1628 是内置动态扫描的驱动芯片IC,比起原始的,三极管驱动方式,有着节省主控内部资源,等特点,不用考虑驱动能力、 扫描刷新频率的问题;是新一代的非常好用数码管驱动芯片; 通讯方式为SPI通讯,送入数据就可以正常显示,无需快速刷新,可以数据变化时刷新; 同时具备可以检测矩阵按键,这一点是更加发挥节省IO口,让MCU的IO,资源更加轻松;

2013年6月3日修订 V 1.1 天微电子小康

直线:075561866258-6808

FAX:0755-86185093 TEL: 3590396567