9-5. В плотно закрытой кастрюле (скороварке) воду нагрели до температуры $t_1 = 120^{\circ} C$. Какая доля воды испарится при вскипании воды, если резко открыть крышку скороварки? Теплоемкость воды $c = 4.18 \kappa \iint \kappa / (\kappa z \cdot K)$, удельная теплота парообразования $L = 2.25 M \iint \kappa / \kappa z$.

10 класс

10-1. Однородный диск, вращающийся вокруг собственной оси, аккуратно

кладут на горизонтальную поверхность. Поверхность разделена на две полуплоскости, такие, что коэффициент трения диска об одну из них равен μ_1 , а о другую — μ_2 . Центр диска находится на границе раздела. Определите ускорение центра диска в начальный момент времени.

10-2. Пластилиновый шарик радиусом R равномерно в один слой покрыт соприкасающимися маленькими металлическими пластинками. Поверхности шарика сообщают электрический заряд Q. При этом одна из пластинок отрывается от шарика. Найдите ее ускорение в момент отрыва. Масса пластинки m, ее площадь S, диэлектрическая проницаемость пластилина ε .

10-3. Узкий параллельный пучок света падает нормально на экран. Радиус светового "пятна" на экране $r = 0.50 \, \text{см}$. В луч света вносят прозрачный шар радиусом $R = 20 \, \text{см}$, изготовленный из материала с

показателем преломления равным n=2,0. Центр шара находится на оси пучка на расстоянии l=1,0м от экрана. Найдите размер светового пятна на экране после внесения шара.

10-4. Предохранитель в цепи электрического тока составлен из двух параллельно соединенных плавких предохранителей. Один из них имеет сопротивление R_I и рассчитан на максимальное значение тока I_I , а второй – сопротивление R_2 и рассчитан на ток I_2 . Какое максимальное значение силы тока может выдержать составной предохранитель?

10-5. Один моль идеального одноатомного газа находится в левой половине цилиндра. Справа от поршня вакуум. В отсутствие газа поршень находится

