Problem 1:

Let $f, g \in \mathcal{O}(D_r(c)), g(c) = 0$, and $g'(c) \neq 0$.

Without loss of generality, c=0. Now, let $f(z)=\sum_{n=0}^{\infty}a_nz^n$ and g(z)=

 $\sum_{n=0}^{\infty} b_n z^n$. Because g(0) = 0, we have that $b_0 = 0$. So,

$$\operatorname{Res}_{0} \frac{f}{g}(c) = \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{f}{g} dz$$

$$= \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{\sum_{n=0}^{\infty} a_{n} z^{n}}{\sum_{n=0}^{\infty} b_{n} z^{n}} dz$$

$$= \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{\sum_{n=0}^{\infty} a_{n} z^{n}}{\sum_{n=1}^{\infty} b_{n} z^{n}} dz$$

$$= \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{\sum_{n=0}^{\infty} a_{n} z^{n}}{z \sum_{n=0}^{\infty} b_{n+1} z^{n}} dz$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{D_{r}(0)} \frac{a_{n} z^{n}}{z \sum_{n=0}^{\infty} b_{m+1} z^{m}} dz$$

All but the first of those terms vanish; $\frac{z^n a_n}{z b_1 + z^2 b_2 \dots} = \frac{z^n a_n}{z h(z)} = \frac{z^{n-1} a_n}{h(z)}$ is holomorphic on a sufficiently small disk around 0 (h(z) is nonzero on a small enough disk, else g is identically zero...and so g' = 0).

So,

$$\operatorname{Res}_{0} \frac{f}{g}(c) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{D_{r}(0)} \frac{a_{n}z^{n}}{z \sum_{m=0}^{\infty} b_{m+1}z^{m}} dz$$

$$= \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{a_{1}}{\sum_{m=0}^{\infty} b_{m+1}z^{m}} dz$$

$$= a_{1}/b_{0}$$

$$= f'(c)/q(c)$$

Yielding our result.

Problem 2:

Let $f \in \mathcal{O}(\dot{D}_r(c))$ with c not an essential singularity. Without loss of generality, c = 0.

Consider $\operatorname{Res}_0 \frac{f'}{f}$. Now, let $f(z) = \sum_{n=k}^{\infty} a_n z^n$ with a_k nonzero, so that $f'(z) = \sum_{n=k}^{\infty} n a_n z^{n-1}$; k will be the order of zero if positive, and the order of pole if negative, and this is clear. So,

$$\operatorname{Res}_{0} \frac{f'}{f}(c) = \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{f'}{f} dz$$

$$= \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{\sum_{n=k}^{\infty} n a_{n} z^{n-1}}{\sum_{n=k}^{\infty} a_{n} z^{n}} dz$$

$$= \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{\sum_{n=k}^{\infty} n a_{n} z^{n-1}}{z \sum_{n=0}^{\infty} a_{n} z^{n-1}} dz$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{D_{r}(0)} \frac{n a_{n} z^{n-1}}{z \sum_{m=0}^{\infty} a_{m} z^{m-1}} dz$$

All but the first of those terms vanish; $\frac{nz^na_n}{zb_1+z^2b_2...} = \frac{z^na_n}{zh(z)} = \frac{z^{n-1}a_n}{h(z)}$ is holomorphic on a sufficiently small disk around 0 (h(z)) is nonzero on a small enough disk, else a_k was zero...).

So,

$$\operatorname{Res}_{0} \frac{f'}{f}(c) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{D_{r}(0)} \frac{n a_{n} z^{n-1}}{z \sum_{m=0}^{\infty} a_{m} z^{m-1}} dz$$
$$= \frac{1}{2\pi i} \int_{D_{r}(0)} \frac{k a_{k} z^{n-1}}{z \sum_{m=0}^{\infty} a_{m} z^{m-1}} dz$$
$$= k$$

Yielding our result.

Problem 3:

A real-variable analogue of Rouche's Theorem would be:

"Let I be an open interval (a, b), f, g be differentiable on I, and let J be an open interval containing the closure of I.

If |f(a)| < |g(a)| and |f(b)| < |g(b)|, then g, g - f have the same number of zeroes in I."

The obvious counterexample is f(x) = 0 if x = 0, $f(x) = \sin(1/x)$ otherwise, and q(x) = 1 on the interval $(0, 1/2\pi)$. Now, f(x) = 0 at $0, 1/2\pi$, and g(x) = 1, so |f| < |g| on the boundary of the interval. But g has no zeroes, and g - f has infinitely many zeroes. So this breaks.

Problem 4: Consider $\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + a^2} dx$, with $a \in \mathbb{R}$ and a > 0.

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + a^2} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{iz} + e^{-iz}}{z^2 + a^2} dz$$

$$= \int_{0}^{\infty} \frac{e^{iz} + e^{-iz}}{z^2 + a^2} dz \text{ (because the function is even...)}$$

$$= \int_{0}^{\infty} \frac{e^{iz}}{z^2 + a^2} dz + \int_{0}^{\infty} \frac{e^{-iz}}{z^2 + a^2} dz$$

$$= \int_{0}^{\infty} \frac{e^{iz}}{z^2 + a^2} dz - \int_{0}^{-\infty} \frac{e^{iz}}{z^2 + a^2} dz \text{ (u-substitute -z)}$$

$$= \int_{-\infty}^{\infty} \frac{e^{iz}}{z^2 + a^2} dz$$

$$= \int_{-\infty}^{\infty} \frac{\sum_{n=0}^{\infty} \frac{(iz)^n}{n!}}{z^2 + a^2} dz$$

$$= \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} \frac{\sum_{n=0}^{\infty} \frac{(iz)^n}{n!}}{z^2 + a^2} dz$$

$$= \sum_{n=0}^{\infty} \frac{i^n}{n!} \int_{-\infty}^{\infty} \frac{z^n}{z^2 + a^2} dz$$

$$= \sum_{n=0}^{\infty} \frac{i^n}{n!} 2\pi i \sum_{x \in C} \operatorname{Res}_c \frac{z^n}{z^2 + a^2} \text{ (As discussed in class)}$$

Problem 5:

Consider $\int_{\Gamma_T} z^{\alpha} R(z) dz$ (with R a rational function, and Γ_T as pictured below.)

Problem 6:

Consider $e^z = 6z^2 + 1$. This is equivalent to $0 = 6z^2 + 1 - e^z$.

Define $g(z) = 6z^2 + 1$ and $f(z) = e^z$. When |z| = 2, $|g| \ge |6z^2| - 1 = 23$ and $|f| \le e^2 \le 9$. So g > f when |z| = 2.

So Rouche's Theorem applies: $e^z = 6z^2 + 1$ has the same number of solutions as $0 = 6z^2 + 1$ on the disk bounded by |z| = 2.

Now, $6z^2+1$ has two solutions, by the fundamental theorem of algebra. Moreover, $\frac{i}{\sqrt{6}}$ are solutions, as is readily checked. These solutions are both in that disk. So $6z^2-1$ has two zeroes on the disk bounded by |z|=2.

So $e^z = 6z^2 + 1$ has 2 solutions on the disk bounded by |z| = 2.

Problem 7:

Problem 8: