CONSTRUCTING AN ACTION POTENTIAL MODEL: EASY AS ABC?

Charles Houston (cph211@ic.ac.uk)
MRes Biomedical Research

4 Sep 2017

IN-SILICO MODELLING OF CARDIAC ELECTROPHYSIOLOGY

TOWARDS A DISCRETE-CELL APPROACH

MODELLING AN ACTION POTENTIAL

$$I_{K} = G_{K} \cdot a \cdot i \cdot (V - E_{K})$$

$$\frac{da}{dt} = \frac{a_{ss} - a}{\tau_{a}} \qquad \tau_{a} = 0.493e^{-0.0629V} + 2.058$$

- Parameters fit to experimental patch clamp data.
- Traditional fitting methods do not account for uncertainty in estimates.
- Approximate Bayesian Computation (ABC) produces posterior distribution for each parameter.

HYPOTHESIS

The ABC approach can be used to construct a validated mathematical model of the action potential of a HL1-6 cell while taking into account uncertainties in parameter estimates arising from insufficient fitting data, biological variability and/or parameter redundancy.

AIMS

- Develop an ABC implementation to estimate parameter posterior distributions for individual ion currents.
- Investigate the sources of any uncertainty and unidentifiability in parameter estimates.
- Construct the full action potential model and validate with action potential recordings from biological experiments.

AIM 1: PARAMETERISING ION CURRENTS USING ABC

 ABC outperformed traditional maximum likelihood estimation, and provides uncertainty in simulation output.

ABC vs Maximum Likelihood fitting of T-type Calcium current: A = activation, B = inactivation, C = recovery.

AIM 2: INVESTIGATING UNIDENTIFIABILITIES

 Time constant curves could not be constrained by standard protocol patch clamp data.

Underlying variables in ion current equations with ABC parameter posteriors: A = steady-state, B = activation time constant.

AIM 3: VALIDATING THE FULL CELL MODEL

variable	HL1-6 model	HL1-6 experiment	HL-1 experiment
APD ₉₀ (ms)	$\textbf{32.4} \pm \textbf{0.5}$	42 ± 9	
V_{rp} (mV)	-77.5 ± 0.3	-67 ± 2	-68.8 ± 1.6
AP amplitude (mV)	96.8 ± 0.5	105 ± 2	
V _{overshoot} (mV)	19.3 ± 0.5		15.3 ± 1.9

CONCLUSIONS

- ABC is an effective approach to infer model parameters while accounting for uncertainties and/or unidentifiabilities.
- Standard protocol voltage patch clamp data is not sufficient to completely constrain time constant parameters.
- The full action potential model reproduces qualitative and quantitative characteristics of the HL1-6 myocyte.

ACKNOWLEDGEMENTS

- Dr Chris Cantwell
- All members of ElectroCardioMaths Programme
- British Heart Foundation

Presentation created using reveal.js. Source for ABC implementation and slides available on Github.

© 2017 Charles Houston.

APPROXIMATE BAYESIAN COMPUTATION (ABC)

MODEL OVERVIEW

Simulate by solving 35 ODEs at each time step.

AIM 3: SIMULATIONS WITHOUT PACING

- Automaticity in 56% of runs with mean firing rate 4.9±2.0 Hz.
- Comparable qualitative action potential and Calcium transients between simulations and experiments.

