Universidade Estadual Paulista-"Júlio de Mesquita Filho" Departamento de Matemática-FEIS-UNESP Lista de Álgebra Linear - 2017 Prof. Edson Donizete de Carvalho

- 1) Sejam V e W espaços vetorias, onde 0_V e 0_W denotam os vetores nulos dos espaços vetorias V e W, respectivamente.
 - (i) Mostre que se $T: V \to W$ uma transformação linear então $T(0_V) = 0_W$.
 - (ii) Mostre que se $T:V\to W$ é uma função tal que $T(0_V)\neq 0_W$ então T não é uma transformação linear.
 - (iii) Se $T: V \to W$ é uma função tal que $T(0_V) = 0_W$, podemos afirmar que T é uma transformação linear? Justifique sua resposta.
- 2) Sejam V um espaço vetorial.
 - (i) Mostre que a aplicação $T:V\to V$ dada por $T(v)=0,\ \forall v\in V$ é uma transformação linear.
 - (ii) Mostre que a aplicação $T:V\to V$ dada por $T(v)=v,\ \forall v\in V$ é uma transformação linear.
- 3) Seja $T: V \to V$ um operador linear e seja $\{v_1, \ldots, v_n\}$ uma base de V.
 - (i) Se $T(v_i) = v_i$ para todo i, mostre que T = I é o operador identidade, isto é, $I(v) = v \ \forall v \in V$.
 - (ii) Se $T(v_i) = 0$ para todo i, mostre que T = 0 é a transformação nula.
- **4)** Seja $T: V \to W$ uma tranformação linear. Dê uma demostração cuidadosa do fato $T(v-v_1) = T(v) T(v_1)$ para todo v, v_1 em V.
- 5) Seja \mathbb{P}_n (o espaço vetorial formado pelos polinômios de grau $\leq n$) e $D: \mathbb{P}_n \to \mathbb{P}_n$ a aplicação derivada dada por D(f) = f', onde f' denota a derivada do polinômio f. Mostre que D é uma aplicação linear.
- 6) Uma tranformação linear $T: V \to \mathbb{R}$ é chamada de funcional linear. Se V é o espaço vetorial formado pelas funções integráveis em $\mathbb{F}[0,1]$, mostre que $T(f) = \int_0^1 f(t)dt$ define um funcional linear.
- 7) Suponha que $T: V \to W$ seja uma tranformação linear. Se $T(v_1 + 2v_2) = w_1$ e $T(3v_1 5v_2) = w_2$, ache $T(v_1)$ e $T(v_2)$ em termos de w_1 e w_2 .
- 8) (i) Mostre o polinômio $6-11x-3x^2$ é escrito como combinação linear dos polinômios 3-5x e $1-x+2x^2$.
 - (ii) Sabendo que T(3-5x)=2 e que $T(1-x+2x^2)=1+x$ e que $T:\mathbb{P}_2\to\mathbb{P}_2$ é uma transformação linear. Então, encontre $T(6-11x-3x^2)$.

9) Seja $V = \mathbb{R}^n$ e $W = \mathbb{R}^m$ e A uma matriz real qualquer de ordem $m \times n$. Definamos a transformação $T_A : \mathbb{R}^n \to \mathbb{R}^m$ dada por $T_A(v) = A.v$ onde v denota o vetor coluna dada por v

$$v = \left[\begin{array}{c} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n \end{array} \right]$$

Mostre que T_A é uma tranformação linear.

Observação 1: O importante resultado que o Exercício anterior estabelece é de que toda matriz real de ordem $m \times n$ está associado a uma transformação linear de \mathbb{R}^n em \mathbb{R}^m .

- 10) A implicação inversa do último Exercício e da Observação 1 é verdadeira? Isto é, uma transformação linear de \mathbb{R}^n em \mathbb{R}^m pode ser representada por uma matriz de ordem $m \times n$. Justifique sua resposta.
- 11) Dada a matriz

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{array} \right].$$

Considere a transformação dada por $T_A: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] \to \left[\begin{array}{cc} 2 & 0 \\ 0 & 0 \\ 1 & 1 \end{array}\right] \cdot \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]$$

Mostre T_A é uma transformação linear.

- 12) Considere as transformações no plano dadas por expansão, rotação, translação, reflexação, translação. Nos próximos itens encontre a matriz de 2×2 assoaciada a T, determine em cada caso se T é uma transformações linear e represente geometricamente.
 - (i) $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $T(v) = \alpha . v \ \forall v \in \mathbb{R}^2$, onde α é um número real positivo.
 - (ii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (x,-y).
 - (iii) $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (-x, -y).
 - $(iv)T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $T(x,y) = (x + \alpha y, y) \ \alpha \in \mathbb{R}$.
 - $(iv)T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x,y) = (x+a,y+b), onde $a,b \in \mathbb{R}$.
- 13) Sejam V e W espaços vetorias e $T:V\to W$ uma transformação linear.
 - (i) Mostre que $\operatorname{Ker}(T)$ é um subespaço vetorial de V .
 - (ii) Mostre Im(T) é um subespaço vetorial de W.
- 14) Sejam V e W espaços vetorias e $T:V\to W$ uma transformação linear. Pelo Exercício anterior, sabemos que Ker(T) é um subespaços vetorial de V. Então a partir de uma base dada pelo conjunto v_1,\ldots,v_n do Ker(T), podemos complementar este conjunto de modo a obter uma base de V dada por $\{v_1,\ldots,v_n,w_1,\ldots w_m\}$. Nestas condições resolva os seguintes itens:

2

- (i) Mostre que $\{T(w_1), \dots T(w_m)\}$ é uma base da Im(T).
- (ii) Mostre que $dim \ Ker(T) + dim \ Im(T) = dim V$.
- (iii) Mostre que se $\{v_1, \ldots, v_n\}$ é uma base de V e se T é injetora e a dimV = dimW então $\{T(v_1), \ldots, T(v_n)\}$ é uma base de W. ("T leva base em base").
- **15)** Considerando a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x,y,z) = (x-2y,z,x+y), mostre que conjunto $\{(1,0,1),(-2,0,1),(0,1,0)\}$ é uma base de \mathbb{R}^3 , sabendo que (1,0,1) = T(1,0,0),(-2,0,1) = T(0,1,0) e (0,1,0) = T(0,0,1).
- 16) Dada uma transformação linear $T:V\to W$, dizemos que T é um isomorfismo caso T seja ao mesmo tempo injetora e sobrejetora. Neste caso, também dizemos que os espaços vetorias V e W são isomorfos e denotamos por $V\cong W$.
 - (i) Seja V um espaço vetorial mostre $V \cong V$.
 - (ii) Mostre $\mathbb{R}^2 \cong \mathbb{C}$.
 - (iii) Mostre que a transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x 2y, z, x + y) é um isomorfismo.
 - (iv) Calcule a inversa T^{-1} do item (iii) e mostre que T^{-1} é um isomorfismo.
 - (v) Se $T:V\to W$ é um isomorfismo, sempre podemos afirmar que existe T^{-1} e que ela também é um isomorfismo? Justifique sua resposta.
- 17) Seja A a matriz associada a transformação linear T dada por $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$. Podemos afirmar que T é um isomorfismo? Justifique a resposta.
- 18) Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$ uma reflexão, através da reta y = 3x.
 - (i) Encontre T(x, y).
 - (ii) Encontre a base β de \mathbb{R}^2 tal que $[T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
- **19)** Encontre a matriz de $T: \mathbb{R}^3 \to \mathbb{R}^2$ dada por T(x, y, z) = (x + y, x z) com relação às bases conônicas de \mathbb{R}^3 .
- **20)** Sejam V e W espaços vetorias de dimensão finita com bases α e β , respectivamente. Se $T:V\to W$ é a transformação nula então $[T]^{\beta}_{\alpha}=0$.
- 21) (Aplicação em Teoria de Códigos)
 - (i) A partir de um corpo finito \mathbb{F}_q (corpo com q elementos), defini-se um código linear \mathcal{C} como sendo um subespaço vetorial de \mathbb{F}_q^n . Os elementos de \mathcal{C} são formados por n-uplas, e são chamados de palavras-códigos.
 - (ii) Dada a transformação linear $T: \mathbb{F}_2^6 \to \mathbb{F}_2^3$ dada por $T(x_1, \dots, x_6) = (x_1 + x_4, x_1 + x_2 + x_3 + x_5, x_1 + x_2 + x_6)$ defina \mathcal{C} como sendo o núcleo de T. Decida se os vetores (1, 0, 0, 1, 1, 1) e (0, 1, 0, 1, 0, 1) pertencem ou não a \mathcal{C} .