A Needle in a Haystack:

An Analysis of High-Agreement Workers on MTurk for Summarization

Lining Zhang¹, Simon Mille², Yufang Hou³, Daniel Deutsch⁴, Elizabeth Clark⁵, Yixin Liu⁶, Saad Mahamood⁷, Sebastian Gehrmann⁵, Miruna Clinciu⁸, Khyathi Chandu⁹, João Sedoc¹

New York University, ²ADAPT Centre, DCU, ³IBM Research, ⁴Google, ⁵Google Research, ⁶Yale University, ⁷trivago N.V., ⁸University of Edinburgh, ⁹Allen Institute for Al

Overview

Motivation: design two-step recruitment pipeline of high-quality <u>Amazon Mechanical Turk (MTurk)</u> workers for text summarization through <u>Human</u> <u>Intelligence Task (HITs)</u> given:

- Automatic metrics: **problematic** sometimes
- Best practices for recruitment on MTurk for human evaluations: poorly understood

Contribution:

- establish a recruitment pipeline to build a pool of annotators with high agreement
- successfully recruit 12 out of 200 (6%) superior annotators with lower costs for large scale tasks
- match or surpass the <u>inter-annotator agreement</u>
 (IAA) of experts and statistical techniques
 (further calibration required for correctness)

Pipeline Design

The pipeline comprises a qualification task and an endurance task, followed by a reference-based task.

- Qualification Task
- 3 documents, I summary, 6 dimensions
- evaluate multiple dimensions correctly
- Endurance Task
- 10 HITs, I document and 4 summaries, saliency
- capacity for handling heavy workload
- Reference -based Task
- 30 HITs, I reference and 4 candidate summaries, information coverage
- tests the general performance
- * For the qualification task, we conduct 4 rounds each with 50 MTurk workers with **statistical test** for stability.

Experiments and Results

Stage 0: MTurk Qualification Settings

Pre-task qualifications on workers can be set:

- Location
- Number of HITs Approved
- HIT Approval Rate (%) for all Requesters' HITs, etc

Stage 1: Qualification Task

Definition of Each Evaluation Dimension

Combined Examples of All Dimensions

Summary Write-up of Instructions

Combined Examples of All Write-up of Instructions

Check

Qualification Questions with Attention Check

Qualification Part

Components of Qualification Task.

Workers Categorization (4 types):

- GOLD: all correct + attention check passed
- SILVER: all but 1 correct + attention check passed
- BROZE: attention check passed

BLOCK: attention check not passed

26 (8 GOLD, 18 SILVER) qualified workers (13% of 200 participants).

Pre-defined Qualification Settings Qualification Task Qualification GOLD SILVER BBBBBBBBBCZE BBBCZE BBLOCK Endurance Task Maintained Worker List

Figure 1: Two-step pipeline for finding high-agreement MTurk workers.

Stage 2: Endurance Task

- 12 (4 GOLD, 8 SILVER) MTurk workers passed
 (6% of 200 participants)
- Best Cohen's Kappa: 0.55 (Across Groups)
- Best Krippendorff's Alpha: 0.443 (GOLD)
- Comparison with experts: Higher IAA
- Detection of abnormal worker: assign scores before the time for reading the document

Stage 3: Reference-based Task

Qualified Pipeline Workers:

- 8 (out of 12) MTurk workers finished all HITs
- Best Cohen's Kappa: 0.68 (GOLD)
- Krippendorff's Alpha: 0.534 (all scores)

Baseline MTurk Workers:

- Krippendorff's Alpha (statistical filter-MACE): 0.380
- Incomplete HIT coverage & fewer workers per HIT
 CloudResearch MTurk Workers:
- Krippendorff's Alpha (high-quality platform): 0.513
- lower task acceptance rate

	Pipeline	MACE(0.5)	CloudResearch	
Num. of initial workers	200	276	45	
% of workers kept	4%	19.2%	17.8%	
HIT coverage	30/30	30/30	30/30	
Avg. num. workers per HIT	8	2.4	8	(
Krippendorff's Alpha	0.534	0.380	0.513	
Cost per worker (for Avg. num. workers per HIT)	\$27	\$175	\$31	

Discussion:

Pre-task filtering of our pipeline:

- avoid the waste of time and resources
- achieve high agreement at a lower cost and a full coverage of HITs
- similar quality (Spearman's correlation) to CloudResearch

Table 1: Comparison between approaches of crowd annotators for the reference-based task.

Correctness Analysis

We perform analysis of correctness across annotation sources on 50 random annotation questions from the reference-based task.

- Pipeline and CloudResearch workers had a significant Spearman's correlation
- Pipeline may not guarantee the training of the correctness
- GPT models correlated well with expert judgments

Figure 2: Spearman's coefficient with 95% confidence interval on 50 samples.

Conclusion and Limitations

Conclusion:

Serves as the **best practice** to:

- high-agreement annotations at large scale and lower cost
- avoid resource waste on discarded annotations

Limitations:

- English summarization on MTurk platform
- designed questions not "panacea" solutions
- no guarantee for the training of correctness

Reference:

The Perils of Using Mechanical Turk to Evaluate Open-Ended Text Generation (Karpinska et al., EMNLP 2021)
Learning Whom to Trust with MACE (Hovy et al., NAACL 2013)