

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Code of Federal Regulations 47 Part 15 – Radio Frequency Devices

Subpart C – Intentional Radiators
Section 15.231
Periodic operation in the band 40.66 - 40.70 MHz
and above 70 MHz

Including Verification data for Subpart B - Unintentional Radiators
Sections 15.107 & 15.109 for the Receiver

THE FOLLOWING MEETS THE ABOVE TEST SPECIFICATION

Formal Name: Control Key Pad Console

Kind of Equipment: Control Key Pad with Transceiver

Frequency Range: 868.2 MHz

Test Configuration: Tabletop

Model Number(s): 9017591

Model(s) Tested: 9017591

Serial Number(s): none (Test Sample)

Date of Tests: January 23 to February 14, 2013

Test Conducted For: Andersen Corporation

100 Fourth Avenue North

Bayport, Minnesota 55003-1096, USA

NOTICE: "This test report relates only to the items tested and must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Description of Test Sample" page listed inside of this report.

© Copyright 1983 - 2013 D.L.S. Electronic Systems, Inc.

COPYRIGHT NOTICE

This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems, Inc.

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

SIGNATURE PAGE

Tested By:

Craig Brandt Test Engineer

Craig Branott

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Company: Andersen Corporation Model Tested: 9017591

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Table of Contents

i.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents	3
iv.	NVLAP Certificate of Accreditation	4
1.0	Summary of Test Report	5
2.0	Introduction	5
3.0	Test Facilities	5
4.0	Description of Test Sample	6
5.0	Test Equipment	7
6.0	Test Arrangements	7
7.0	Test Conditions	8
8.0	Modifications Made To EUT For Compliance	8
9.0	Additional Descriptions	8
10.0	Results	8
11.0	Conclusion	8
Appen	dix A – Test Photos	9
Appen	dix B – Measurement Data	16
1.0	Emission Bandwidth – 20 dB	. 16
2.0	Automatic Deactivation	. 18
3.0	Field Strength of Emissions – Fundamental and Spurious	. 20
4.0	Duty Cycle Correction	. 29
5.0	AC Line Conducted Emissions	. 31
6.0	Unintentional Radiated Emissions	. 36

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Certificate of Accreditation to ISO/IEC 17025:2005

United States Department of Commerce National Institute of Standards and Technology

NVLAP LAB CODE: 100276-0

D.L.S. Electronic Systems, Inc.

Wheeling, IL

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2012-10-01 through 2013-09-30

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2009-01-28)

Company: **Andersen Corporation**

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

1.0 **Summary of Test Report**

It was determined that the Andersen Corporation Control Key Pad Console, Model 9017591, complies with the requirements of CFR 47 Part 15 Subpart C Section 15.231.

Subpart C Section 15.231 Applicable Technical Requirements Tested:

Section	Description	Procedure	Note	Compliant?
15.231(c)	20 dB Emission Bandwidth	ANSI C63.4-2009 & ANSI C63.10-2009	1	Yes
15.231(a)(1)	Automatic Deactivation	ANSI C63.4-2009 & ANSI C63.10-2009	1	Yes
15.231(b)	Field Strength of Emissions - Fundamental and Spurious -	ANSI C63.4-2009 & ANSI C63.10-2009	1	Yes
15.35(c)	Duty Cycle Correction for Pulsed operation	ANSI C63.4-2009 & ANSI C63.10-2009	1	Yes

Note 1: Radiated emission measurement.

2.0 Introduction

In January & February of 2013, the Control Key Pad Console, Model 9017591, as provided from Andersen Corporation was tested to the requirements of CFR 47 Part 15 Subpart C Section 15.231. To meet these requirements, the procedures contained within this report were performed by personnel of D.L.S Electronic Systems, Inc.

3.0 **Test Facilities**

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

Wisconsin Test Facility:

D.L.S. Electronic Systems, Inc. 166 S. Carter Street Genoa City, Wisconsin 53128

Wheeling Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, IL 60090

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

4.0 Description of Test Sample

Description:

This is a key pad control module for awning style power windows. It receives its power from the Power Unit. This electric device controls the Power Window Driver that opens and closes the window. It consists of a key pad, circuit board and plastic housing.

Type of Equipment / Frequency Range:

Wall mount / 868.2 MHz

Physical Dimensions of Equipment Under Test:

Length: 5 in x Width: 5 in x Height: 1 in

Power Source:

90-135 V, 60 Hz / 12-13.8 VDC

Switching Power Supply Frequency / Internal Frequencies:

132 kHz / 9.6 kHz, 4 MHz, 16 MHz

Transmit / Receive Frequencies Used For Test Purpose:

868.2 MHz

Type of Modulation(s) / Antenna Type:

Digital-Gaussian Frequency Shift Keying with a data rate of 100kbps / Integral antenna

Description of Circuit Board(s) / Part Number:

Console Board	HO21010063-X8 Revision 8
---------------	--------------------------

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

5.0 Test Equipment

A list of the equipment used can be found in the table below. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

D.L.S. Wisconsin – OATS 2 Radiated 30 – 1000 MHz

		Model	Serial		Cal	Cal Due
Description	Manufacturer	Number	Number	Frequency Range	Date	Dates
Receiver	Rohde & Schwarz	ESI 26	837491/010	20 Hz – 26 GHz	1-3-13	1-3-14
Preamplifier	Rohde & Schwarz	TS-PR10	032001/004	9 kHz – 1 GHz	1-10-13	1-10-14
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	9-13-12	9-13-14
Antenna	EMCO	3146	1205	200 MHz – 1 GHz	9-19-12	9-19-14

AC LINE CONDUCTED TEST (Screen Room)

		Model	Serial		Cal	Cal Due
Description	Manufacturer	Number	Number	Frequency Range	Date	Dates
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	4-12-12	4-12-13
LISN	Solar	9252-50-R-	961019	9 kHz – 30 MHz	5-24-12	5-24-13
		24-BNC				
Filter- High-Pass	SOLAR	7930-120	090702	120 kHz – 30 MHz	1-7-13	1-11-14
Limiter	Electro-Metrics	EM-7600	706	9 kHz – 30 MHz	1-7-13	1-11-14

Radiated above 1 GHz - OATS 2

			011101			
		Model	Serial		Cal	Cal Due
Description	Manufacturer	Number	Number	Frequency Range	Date	Dates
High Pass Filter	Planar Filter Co.	HP2G-1780-CD-SS	PF1227/0728	1.5GHz-18GHz	8-13-12	8-13-13
Preamp	Ciao	CA118-4010	101	1GHz-18GHz	2-27-12	2-27-13
Horn Antenna	EMCO	3115	6204	1-18GHz	6-16-11	6-16-13

6.0 Test Arrangements

Radiated Emissions Measurement Arrangement:

All radiated emission measurements were performed at D.L.S. Electronic Systems, Inc. and set up according to ANSI C63.4-2009 and ANSI C63.10-2009, unless otherwise noted. Description of procedures and measurements can be found in Appendix B – Measurement Data. See Appendix A for additional photos of the test set up.

Unless otherwise noted, the bandwidth of the measuring receiver / analyzer used during testing is shown below.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

7.0 Test Conditions

Test Conditions recorded during test:

Temperature and Humidity:

68°F at 27% RH

Voltage:

120V, 60Hz

8.0 Modifications Made To EUT For Compliance

- 1. A ferrite (Fair-Rite 0431167281) was placed inside the transceiver unit at the Power Supply pcbrd (black & white wires, two passes) to lower broadband noise @ appx 83.5MHz.
- 2. Added Fair-Rite #0431164281 to power supply board output wires (one pass) inside unit.

9.0 Additional Descriptions

The Control Key Pad Console is wired to receive its power directly from the Power Unit, which can also run on battery power.

10.0 Results

Measurements were performed in accordance with ANSI C63.4-2009 and ANSI C63.10-2009. Graphical and tabular data can be found in Appendix B at the end of this report.

11.0 Conclusion

The Control Key Pad Console, Model 9017591, as provided from Andersen Corporation tested in January & February, 2013 **meets** the requirements of CFR 47 Part 15 Subpart C Section 15.231.

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix A – Test Photos

Photo Information and Test Setup:

Item 0: Andersen Corp. Control Key Pad Console, Model: 9017591

wired to Power Unit Model: 9017588

Item 1: Unshielded AC Power Cord, 2 meters long

Item 2: Unshielded Window Driver Cable, 1.2 meters long with plastic connector.

Item 3: Unshielded RS-485 Cable, 1.2 meters long with plastic connector.

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix A

Fundamental Radiated Emissions – Below 1 GHz, Back

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix A

Item 0: Andersen Corp. Control Key Pad Console, Model: 9017591

wired to Power Unit, Model: 9017588

Item 1: Power Window Driver, Model: 9018359

Radiated Emissions – Below 1 GHz, Front

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix A

Radiated Emissions – Above 1 GHz, Front

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix A

Item 2: Unshielded AC Power Cord, 2 meters long

Item 3: Unshielded Window Driver Cable, 1.2 meters long with plastic connector.

Item 4: Unshielded RS-485 Cable, 1.2 meters long with plastic connector.

Radiated Emissions – Back

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix A

AC Line Conducted Emissions, Front

Company: Andersen Corporation

Model Tested: 9017591 Report Number: Project Number: 18703 5738

Appendix A

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B – Measurement Data

1.0 Emission Bandwidth – 20 dB

Rule Part:

Section 15.231 (c)

Test Procedure:

ANSI C63.4-2009 and ANSI C63.10-2009

Limit:

Section 15.231 (c):

 $868.2 \text{ MHz} \times 0.25\% = 2.17 \text{ MHz}$

Results:

Compliant

20 dB bandwidth: 208.0 kHz

Sample Equation(s):

None

Notes:

This was a radiated emissions measurement. The bandwidth was measured from the points 20 dB down from the modulated carrier.

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B

Test Date: 01-24-2013

Company: Andersen Corporation EUT: Wall Console Controller

Test: 20 dB Bandwidth

Operator: Craig B

Comment: SPAN 2 to 5 times occupied bandwidth

RBW between 1% and 5% of occupied bandwidth

20 dB Bandwidth = 208.0 kHz

Date: 25.JAN.2013 14:03:57

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B

2.0

None

Automatic Deactivation
Rule Part:
15.231 (a) (1) and 15.231 (a) (2)
Test Procedure:
ANSI C63.4-2009 and ANSI C63.10-2009
Limit:
A transmitter activated manually/automatically shall cease transmission within 5 seconds after activation.
Results:
Compliant Time before deactivation: 6.613 ms
Sample Equation(s):
None
Notes:

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B

Test Date: 01-28-2013

Company: Andersen Corporation EUT: Wall Console Controller

Test: Dwell Time Operator: Craig B

Comment: A transmitter activated manually/automatically shall cease transmission within 5 seconds

after activation.

Date: 28.JAN.2013 10:35:02

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B

3.0 Field Strength of Emissions – Fundamental and Spurious

Rule Part:

15.231 (b) including 15.205

Test Procedure:

ANSI C63.4-2009 and ANSI C63.10-2009

Limit:

Fundamental (F) μ V/m at 3 meters: 12,500 μ V/m at 3 meters The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

Results:

Compliant

Sample Equation(s):

 $41.6667(F) - 7083.3333 = 10996.68 \,\mu\text{V/m}$ at 3 meters

 $20*\log (12500) = 81.93 \text{ dB } \mu\text{V/m} \text{ at 3 meters}$

Final Corrected = Total Level - Duty Cycle Correction

Margin = Limit - Final Corrected

Level = Total Level - System Loss - Antenna Factor

Notes:

The emissions were measured of the fundamental and spurious at a distance of three meters between the EUT and the measuring antenna. Compliance is determined by comparing peak data, minus duty cycle correction, to the average limit.

FCC Part 15.231/15.205/15.209

Electric Field Strength

EUT: Wall Console Controller and Window Driver

Manufacturer: Andersen Windows
Operating Condition: 68 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Jim O
Test Specification: FCC 15.231

Comment: Continuous Transmit 120Vac/60Hz

Date: 01-29-2013

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level($dB\mu V/m$) = Level($dB\mu V$) + System Loss(dB) + Antenna Factor($dB\mu V/m$)

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "Aht63_F1H_Final"

1/29/2013 3:0	5PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dВ	dBμV/m	dBμV/m	dB	m	deg		
81.240000	23.31	6.25	2.6	32.2	40.0	7.8	3.00	210	QUASI-PEAK	None
77.700000	23.16	5.90	2.6	31.6	40.0	8.4	3.00	240	QUASI-PEAK	None
80.880000	22.20	6.19	2.6	31.0	40.0	9.0	3.00	220	QUASI-PEAK	None
714.080000	8.57	21.16	6.4	36.1	46.0	9.9	3.00	0	QUASI-PEAK	NF
83.340000	18.97	6.60	2.7	28.2	40.0	11.8	3.00	200	QUASI-PEAK	None
529.760000	9.39	18.40	5.5	33.3	46.0	12.7	3.00	0	QUASI-PEAK	NF
977.120000	9.64	23.94	7.5	41.0	54.0	13.0	3.00	0	QUASI-PEAK	NF
452.240000	8.62	16.83	5.1	30.5	46.0	15.5	3.00	0	QUASI-PEAK	NF
386.240000	7.78	15.47	4.8	28.0	46.0	18.0	3.00	0	QUASI-PEAK	NF
218.960000	7.54	11.42	3.7	22.7	46.0	23.3	3.00	0	QUASI-PEAK	NF

FCC Part 15.231/15.205/15.209

Electric Field Strength

EUT: Wall Console Controller and Window Driver

Manufacturer: Andersen Windows
Operating Condition: 68 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Jim O
Test Specification: FCC 15.231

Comment: Both units Continuous Transmit 120Vac/60Hz

Date: 01-29-2013

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

Final maximized level using Peak detector

MEASUREMENT RESULT: "Aht63_F1V_Final"

1/29/2013 2:5	55PM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dВ	dBµV/m	dBµV/m	dВ	m	deg		
54.300000	19.82	11.17	2.3	33.3	40.0	6.7	1.00	210	QUASI-PEAK	None
72.120000	21.64	6.58	2.5	30.7	40.0	9.3	1.00	330	QUASI-PEAK	None
678.860000	8.57	20.88	6.2	35.7	46.0	10.3	1.00	0	QUASI-PEAK	NF
63.360000	17.86	9.26	2.4	29.6	40.0	10.4	1.00	330	QUASI-PEAK	None
495.840000	12.04	17.92	5.3	35.3	46.0	10.7	1.00	320	QUASI-PEAK	None
225.540000	17.88	11.31	3.8	33.0	46.0	13.0	1.00	30	QUASI-PEAK	None
526.220000	8.52	18.40	5.5	32.4	46.0	13.6	1.00	0	QUASI-PEAK	NF
113.460000	11.52	12.29	3.0	26.8	43.5	16.7	1.00	310	QUASI-PEAK	None
282.800000	7.60	13.61	4.1	25.3	46.0	20.7	1.00	30	QUASI-PEAK	None
		_3.01		_0.0		_ • • •	=	0 0	2	

Radiated Fundamental and Spurious Emissions – 1 GHz to 10 GHz Tested at a 3 Meter Distance

EUT: Wall Console Controller **Manufacturer:** Andersen Corporation **Operating Condition:** 66 deg F; 26% R.H.

Test Site: Site 2
Operator: Craig B

Test Specification: FCC Part 15.231(a) and 15.205 **Comment:** Transmit frequency: 868.2 MHz

Date: 02-12-13

Notes: All other emissions at least 20 dB under the limit.

11000	The other emissions at least 20 dB under the mint.											
Frequency	Measurement	Antenna	Level	Antenna	System	Duty Cycle	Total	Limit	Margin	Antenna	EUT	
(MHz)	Type	Polarization	(dBuV)	Factor	Loss	Correction	Level	(dBuV/m)	(dB)	Height	Angle	Comment
(WITIZ)	Турс	1 Olarization	(uDu v)	(dB/m)	(dB)	(dB)	(dBuV/m)	(uDu V/III)	(uD)	(m)	(deg)	
868.2	Max Peak	Vert	52.99	23.13	7.0	0	83.1	101.93	18.8	1.10	40	Fundamental
868.2	Average	Vert	52.99	23.13	7.0	-23.59	59.5	81.93	22.4	1.10	40	Fundamental
868.2	Max Peak	Horz	53.28	23.13	7.0	0	83.4	101.93	18.5	1.30	180	Fundamental
868.2	Average	Horz	53.28	23.13	7.0	-23.59	59.8	81.93	22.1	1.30	180	Fundamental
1736.4	Max Peak	Vert	92.01	26.15	-54.4	0	63.8	81.93	18.2	1.20	200	Harmonic
1736.4	Average	Vert	92.01	26.15	-54.4	-23.59	40.2	61.93	21.8	1.20	200	Harmonic
1736.4	Max Peak	Horz	88.57	26.15	-54.4	0	60.3	81.93	21.6	1.00	180	Harmonic
1736.4	Average	Horz	88.57	26.15	-54.4	-23.59	36.7	61.93	25.2	1.00	180	Harmonic
2604.6	Max Peak	Vert	77.49	29.09	-55.7	0	50.9	81.93	31.1	1.30	0	Harmonic
2604.6	Average	Vert	77.49	29.09	-55.7	-23.59	27.3	61.93	34.6	1.30	0	Harmonic
2604.6	Max Peak	Horz	76.98	29.09	-55.7	0	50.4	81.93	31.6	1.00	45	Harmonic
2604.6	Average	Horz	76.98	29.09	-55.7	-23.59	26.8	61.93	35.2	1.00	45	Harmonic
3472.8	Max Peak	Vert	77.61	31.16	-56.4	0	52.4	81.93	29.6	1.00	100	Harmonic
3472.8	Average	Vert	77.61	31.16	-56.4	-23.59	28.8	61.93	33.2	1.00	100	Harmonic
3472.8	Max Peak	Horz	77.58	31.16	-56.4	0	52.3	81.93	29.6	1.70	10	Harmonic
3472.8	Average	Horz	77.58	31.16	-56.4	-23.59	28.8	61.93	33.2	1.70	10	Harmonic

Radiated Fundamental and Spurious Emissions – 1 GHz to 10 GHz Tested at a 3 Meter Distance

EUT: Wall Console Controller **Manufacturer:** Andersen Corporation **Operating Condition:** 66 deg F; 26% R.H.

Test Site: Site 2
Operator: Craig B

Test Specification: FCC Part 15.231(a) and 15.205 **Comment:** Transmit frequency: 868.2 MHz

Date: 02-12-13

Notes: All other emissions at least 20 dB under the limit.

Frequency (GHz)	Measurement Type	Antenna Polarization	Level (dBuV)	Antenna Factor (dB/m)	System Loss (dB)	Duty Cycle Correction (dB)		Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	EUT Angle (deg)	Comment
4341.0	Max Peak	Vert	74.92	32.38	-56.6	0	50.7	74	23.3	1.70	100	Restricted Band
4341.0	Average	Vert	74.92	32.38	-56.6	-23.59	27.1	54	26.9	1.70	100	Restricted Band
4341.0	Max Peak	Horz	75.58	32.38	-56.6	0	51.4	74	22.6	1.60	30	Restricted Band
4341.0	Average	Horz	75.58	32.38	-56.6	-23.59	27.8	54	26.2	1.60	30	Restricted Band
5209.2	Max Peak	Vert	82.16	33.68	-56.4	0	59.4	81.93	22.5	1.10	170	Harmonic
5209.2	Average	Vert	82.16	33.68	-56.4	-23.59	35.9	61.93	26.1	1.10	170	Harmonic
5209.2	Max Peak	Horz	84.25	33.68	-56.4	0	61.5	81.93	20.4	1.00	180	Harmonic
5209.2	Average	Horz	84.25	33.68	-56.4	-23.59	37.9	61.93	24.0	1.00	180	Harmonic

Model Tested: 9017591 Report Number: Project Number: 18703 5738

A

endix B
Duty Cycle Correction
Rule Part:
15.35 (c)
Test Procedure:
ANSI C63.4-2009and ANSI C63.10-2009
Limit:
Informative
Results:
Informative
Sample Equation(s):
See data
Notes:
Compliance is determined by comparing peak data, minus duty cycle correction, to the

ne average limit.

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B

Test Date: 01-24-2013

Company: Andersen Corporation EUT: Wall Console Controller

Test: Duty Cycle Operator: Craig B

Comment: One pulses: 6.613 ms

Total ON time in 100 ms = 6.613 ms

Duty Cycle Correction Factor = $20 \log (6.613/100) = -23.59 dB$

Andersen Corporation Company:

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B

5.0

)	AC Line Conducted Emissions
	Rule Part:
	Section 15.207 / Section 15.107
	Test Procedure:
	ANSI C63.4-2009 and ANSI C63.10-2009
	Limit:
	Class B
	Results:
	Compliant
	Sample Equation(s):
	See data
	Notes:

AC Line Conducted Emissions tested with the EUT connected to the Power Unit (which is wired to the Power Window Driver), at 120VAC, 60Hz.

FCC Part 15.207 / 15.107 Class B

Voltage Mains Test

EUT: Wall Console Controller
Manufacturer: Hi Tech Industries
Operating Condition: 72 deg. F, 23% R.H.
Test Site: DLS O.F. Screen Room

Operator: Jim O Test Specification: 120 V 60 Hz

Comment: Line 1

Date: 01-27-2013

SCAN TABLE: "Line Cond SR Final"

Short Description: Line Conducted Emissions
Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 3.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "Hi Tech-L1_fin"

12:45PM				
cy Lev	el Tran	sd Limit	Margin	Detector
Hz dB	μV	dB dBµV	dB	
00 32.	80 11	.9 61	28.0	QP
00 35.	40 11	.9 60	25.0	QP
00 31.	50 11	.6 60	28.0	QP
00 34.	00 11	.5 59	25.1	QP
00 34.	90 10	.8 56	21.1	QP
00 24.	90 10	.6 56	31.1	QP
00 24.	00 10	.6 56	32.0	QP
00 21.	00 10	.6 56	35.0	QP
00 44.	50 11	.3 60	15.5	QP
00 41.	20 11	.3 60	18.8	QP
00 43.	20 11	.3 60	16.8	QP
00 31.	60 11	.4 60	28.4	QP
	Cy Level dB	Cy Level Trans Hz dBµV 00 32.80 11 00 35.40 11 00 31.50 11 00 34.00 11 00 24.90 10 00 24.90 10 00 24.00 10 00 21.00 10 00 44.50 11 00 43.20 11	Cy Level Transd Limit Hz dBµV dB dBµV 00 32.80 11.9 61 00 35.40 11.9 60 00 31.50 11.6 60 00 34.00 11.5 59 00 34.90 10.8 56 00 24.90 10.6 56 00 24.00 10.6 56 00 21.00 10.6 56 00 44.50 11.3 60 00 43.20 11.3 60	Cy Level dBμV Transd dB dBμV Limit dBμV Margin dB 00 32.80 11.9 61 28.0 00 35.40 11.9 60 25.0 00 31.50 11.6 60 28.0 00 34.00 11.5 59 25.1 00 34.90 10.8 56 21.1 00 24.90 10.6 56 32.0 00 24.00 10.6 56 35.0 00 44.50 11.3 60 15.5 00 41.20 11.3 60 18.8 00 43.20 11.3 60 16.8

MEASUREMENT RESULT: "Hi Tech-L1_fin2"

1/28/2013	12:45PM				
Frequenc	cy Level	Transd	Limit	Margin	Detector
MH	Iz dBμV	dB	dΒμV	dB	
0.29400	32.90	11.9	50	17.5	CAV
0.32100	32.30	11.7	50	17.4	CAV
0.34700	31.80	11.5	49	17.2	CAV
0.37200	30.40	11.4	49	18.1	CAV
0.72000	00 24.40	10.9	46	21.6	CAV
0.75000	00 24.80	10.9	46	21.2	CAV
0.77000	28.80	10.9	46	17.2	CAV
0.80000	32.80	10.8	46	13.2	CAV
15.83000	30.30	11.3	50	19.7	CAV
17.25500	37.40	11.3	50	12.6	CAV
19.35500	26.60	11.4	50	23.4	CAV
20.13500	00 23.50	11.4	50	26.5	CAV

FCC Part 15.207 / 15.107 Class B

Voltage Mains Test

EUT: Wall Console controller Manufacturer: Hi Tech Industries Operating Condition: 72 deg. F, 23% R.H. Test Site: DLS O.F. Screen Room

Operator: Jim O Test Specification: 120 V 60 Hz

Comment: Line 2

Date: 01-27-2013

SCAN TABLE: "Line Cond SR Final"

Short Description: Line Conducted Emissions
Start Stop Step Detector Meas. IF Transducer
Fragueray Fragueray Width

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 3.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "Hi Tech-L2_fin"

1/28/2013	12:50	PM				
Frequen	.су	Level	Transd	Limit	Margin	Detector
M	Hz	dΒμV	dB	dΒμV	dВ	
0.3200	00	35.30	11.7	60	24.4	QP
0.3280	00	32.20	11.6	60	27.3	QP
0.3310	00	32.00	11.6	59	27.4	QP
0.3520	00	31.30	11.5	59	27.6	QP
0.7200	00	28.90	10.9	56	27.1	QP
0.8000	00	36.60	10.8	56	19.4	QP
1.0600	00	24.20	10.6	56	31.8	QP
3.9800	00	24.60	10.7	56	31.4	QP
15.8000	00	42.40	11.3	60	17.6	QP
16.6100	00	40.30	11.3	60	19.7	QP
16.7000	00	40.70	11.3	60	19.3	QP
17.3900	00	42.90	11.3	60	17.1	QP

MEASUREMENT RESULT: "Hi Tech-L2_fin2"

0.200000 22.00 12.0 51 17.0 000	or
0.268000 33.60 12.0 51 17.6 CAV	
0.293000 33.30 11.9 50 17.1 CAV	
0.320000 32.80 11.7 50 16.9 CAV	
0.347000 32.10 11.5 49 16.9 CAV	
0.720000 25.20 10.9 46 20.8 CAV	
0.770000 29.60 10.9 46 16.4 CAV	
0.800000 33.60 10.8 46 12.4 CAV	
0.830000 27.80 10.8 46 18.2 CAV	
17.330000 37.30 11.3 50 12.7 CAV	
18.800000 30.20 11.3 50 19.8 CAV	
19.445000 29.20 11.4 50 20.8 CAV	
20.120000 26.40 11.4 50 23.6 CAV	

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

Appendix B

6.0 Unintentional Radiated Emissions

C 11111	entional Radiated Emissions
Rule 1	Part:
	Section 15.109
Test I	Procedure:
	ANSI C63.4-2009 and ANSI C63.10-2009
Limit	:
	Section 15.109 (a)
Resul	ts:
	Compliant

Sample Equation(s):

See data

Notes:

This was a radiated emissions measurement. The EUT was wired to the Power Unit and Power Window Driver to operate at 120VC, 60 Hz. The EUT & Power Window Driver were placed in continuous receive mode.

Electric Field Strength

EUT: Wall Console Controller & Window Driver

Manufacturer: Andersen Windows
Operating Condition: 68 deg. F; 26% R.H.
Test Site: DLS O.F. Site 2

Operator: Craiq B

Test Specification: Receiver radiated emissions

Comment: both units in Continuous Receive mode

Date: 02-13-2013

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A2132_F1H_Final"

2/13/2013 3:2	7PM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	Deceded	
84.355000	43.28	6.87	-22.7	27.4	40.0	12.6	2.30	135	QUASI-PEAK	broadband
48.000000	35.39	11.90	-23.1	24.2	40.0	15.8	3.00	150	QUASI-PEAK	None
139.005000	32.69	12.30	-22.3	22.7	43.5	20.8	1.60	280	QUASI-PEAK	None
212.320000	31.37	11.61	-21.9	21.1	43.5	22.4	1.00	315	QUASI-PEAK	broadband
609.080000	15.94	19.28	-19.7	15.5	46.0	30.5	2.00	180	QUASI-PEAK	noise floor
264.060000	23.79	13.16	-21.5	15.5	46.0	30.5	1.60	225	QUASI-PEAK	None

Electric Field Strength

EUT: Wall Console Controller & Window Driver

Manufacturer: Andersen Windows
Operating Condition: 68 deg. F; 26% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification: Receiver radiated emissions

Comment: both units in Continuous Receive mode

Date: 02-13-2013

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A2132_F1V_Final"

12PM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBμV/m	dB	dBμV/m	${\tt dB}\mu{\tt V/m}$	dB	m	deg		
49.92	10.87	-23.0	37.8	40.0	2.2	1.00	225	QUASI-PEAK	broadband
47.11	11.90	-23.1	35.9	40.0	4.1	1.00	135	QUASI-PEAK	None
38.39	12.30	-22.3	28.4	43.5	15.1	1.00	225	QUASI-PEAK	None
38.22	11.70	-22.4	27.5	43.5	16.0	1.00	135	QUASI-PEAK	None
31.16	13.16	-21.5	22.8	46.0	23.2	1.00	90	QUASI-PEAK	None
27.13	15.06	-21.3	20.9	46.0	25.1	1.00	45	QUASI-PEAK	None
31.20	11.48	-21.8	20.9	46.0	25.1	1.00	80	QUASI-PEAK	None
28.25	13.82	-21.4	20.7	46.0	25.3	1.00	20	QUASI-PEAK	None
15.87	21.40	-19.2	18.1	46.0	27.9	1.00	340	QUASI-PEAK	noise floor
	Level dBμV 49.92 47.11 38.39 38.22 31.16 27.13 31.20 28.25	Level Antenna Factor dBμV dBμV/m 49.92 10.87 47.11 11.90 38.39 12.30 38.22 11.70 31.16 13.16 27.13 15.06 31.20 11.48 28.25 13.82	Level Antenna Factor Hoss dBμV dBμV/m System Loss dBμV/m 49.92 10.87 -23.0 dr23.1 dr23.1 dr23.1 dr23.1 dr22.3 dr22.3 dr22.3 dr22.3 dr22.3 dr22.4 dr21.5 dr21.5 dr21.5 dr21.5 dr21.5 dr21.3 dr21.3 dr21.3 dr21.3 dr21.3 dr21.3 dr21.4 dr21.8 dr21.4	Level 	Level Antenna Factor ABμV /m System Level ABμV/m Total ABμV/m Limit ABμV/m 49.92 10.87 -23.0 37.8 40.0 47.11 11.90 -23.1 35.9 40.0 38.39 12.30 -22.3 28.4 43.5 38.22 11.70 -22.4 27.5 43.5 31.16 13.16 -21.5 22.8 46.0 27.13 15.06 -21.3 20.9 46.0 31.20 11.48 -21.8 20.9 46.0 28.25 13.82 -21.4 20.7 46.0	Level Antenna Factor ABμV System Level ABμV/m Total Limit ABμV/m Margin ABμV/m 49.92 10.87 -23.0 37.8 40.0 2.2 47.11 11.90 -23.1 35.9 40.0 4.1 38.39 12.30 -22.3 28.4 43.5 15.1 38.22 11.70 -22.4 27.5 43.5 16.0 31.16 13.16 -21.5 22.8 46.0 23.2 27.13 15.06 -21.3 20.9 46.0 25.1 31.20 11.48 -21.8 20.9 46.0 25.1 28.25 13.82 -21.4 20.7 46.0 25.3	Level Antenna Factor ABμV System Level ABμV/m Total ABμV/m Limit ABμV/m Margin Ant. Ant. Ant. Ant. Ant. ABμV/m ABμV/m <td>Level Antenna Factor dBμV metal System Factor dBμV metal dBμV/m Total Limit Margin dBμV/m Height Ant. Angle dBμV/m Ant. Angle dBμV/m 49.92 10.87 -23.0 37.8 40.0 2.2 1.00 225 47.11 11.90 -23.1 35.9 40.0 4.1 1.00 135 38.39 12.30 -22.3 28.4 43.5 15.1 1.00 225 38.22 11.70 -22.4 27.5 43.5 16.0 1.00 135 31.16 13.16 -21.5 22.8 46.0 23.2 1.00 90 27.13 15.06 -21.3 20.9 46.0 25.1 1.00 45 31.20 11.48 -21.8 20.9 46.0 25.1 1.00 80 28.25 13.82 -21.4 20.7 46.0 25.3 1.00 20</td> <td>Level Antenna Factor dBμV Level dBμV/m Ant. Angle deg Detector 49.92 10.87 -23.0 37.8 40.0 2.2 1.00 225 QUASI-PEAK 47.11 11.90 -23.1 35.9 40.0 4.1 1.00 135 QUASI-PEAK 38.39 12.30 -22.3 28.4 43.5 15.1 1.00 225 QUASI-PEAK 38.22 11.70 -22.4 27.5 43.5 16.0 1.00 135 QUASI-PEAK 31.16 13.16 -21.5 22.8 46.0 23.2 1.00 90 QUASI-PEAK 27.13 15.06 -21.3 20.9 46.0 25.1 1.00 45 QUASI-PEAK 31.20 11.48 -21.8 20.9 46.0 25.1 1.00 80 QUASI-PEAK 28.25 13.82 -21.4 20.7<!--</td--></td>	Level Antenna Factor dBμV metal System Factor dBμV metal dBμV/m Total Limit Margin dBμV/m Height Ant. Angle dBμV/m Ant. Angle dBμV/m 49.92 10.87 -23.0 37.8 40.0 2.2 1.00 225 47.11 11.90 -23.1 35.9 40.0 4.1 1.00 135 38.39 12.30 -22.3 28.4 43.5 15.1 1.00 225 38.22 11.70 -22.4 27.5 43.5 16.0 1.00 135 31.16 13.16 -21.5 22.8 46.0 23.2 1.00 90 27.13 15.06 -21.3 20.9 46.0 25.1 1.00 45 31.20 11.48 -21.8 20.9 46.0 25.1 1.00 80 28.25 13.82 -21.4 20.7 46.0 25.3 1.00 20	Level Antenna Factor dBμV Level dBμV/m Ant. Angle deg Detector 49.92 10.87 -23.0 37.8 40.0 2.2 1.00 225 QUASI-PEAK 47.11 11.90 -23.1 35.9 40.0 4.1 1.00 135 QUASI-PEAK 38.39 12.30 -22.3 28.4 43.5 15.1 1.00 225 QUASI-PEAK 38.22 11.70 -22.4 27.5 43.5 16.0 1.00 135 QUASI-PEAK 31.16 13.16 -21.5 22.8 46.0 23.2 1.00 90 QUASI-PEAK 27.13 15.06 -21.3 20.9 46.0 25.1 1.00 45 QUASI-PEAK 31.20 11.48 -21.8 20.9 46.0 25.1 1.00 80 QUASI-PEAK 28.25 13.82 -21.4 20.7 </td

Electric Field Strength

EUT: Wall Console Controller

Manufacturer: Andersen Windows
Operating Condition: 67 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification:

Comment: Continuous Receive mode

Date: 02-14-2013

TEXT: "Horz 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A2142_sh_final"

2/14/2013 12:	:50PM									
Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.		Final Detector	Comment
MHz	dΒμV	dBµV/m	dB	dBµV/m	dBμV/m	dB	m	deg		
3476.700000	44.51	31.17	-39.1	36.6	54.0	17.4	1.00	315	AVERAGE	None
1738.350000	43.09	26.16	-39.8	29.5	54.0	24.5	1.00	270	AVERAGE	None
3476.700000	52.50	31.17	-39.1	44.6	74.0	29.4	1.00	315	MAX PEAK	None
1738.350000	53.43	26.16	-39.8	39.8	74.0	34.2	1.00	270	MAX PEAK	None

Electric Field Strength

EUT: Wall Console Controller

Manufacturer: Andersen Windows
Operating Condition: 67 deg. F; 27% R.H.
Test Site: DLS O.F. Site 2

Operator: Craig B

Test Specification:

Comment: Continuous Receive mode

Date: 02-14-2013

TEXT: "Vert 3 meters"

Short Description: Test Set-up

Test Set-up: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

Sample Equations: Total Level $(dB\mu V/m)$ = Level $(dB\mu V)$ + System Loss (dB) + Antenna Factor $(dB\mu V/m)$

24.6 = 35.51 + (-22.1) + 11.20

Margin (dB) = Limit (dB μ V/m) - Total Level (dB μ V/m)

15.4 = 40 - 24.6

Graph Markers: + Frequency marker (Level of marker not related to final level)

Final maximized level using Quasi-Peak detector

X Final maximized level using Average dector

MEASUREMENT RESULT: "A2142_sv_final"

2/14/2013 12:4	40PM									
Frequency	Level	Antenna	-		Limit	Margin			Final	Comment
	_	Factor	Loss	Level	_ ,	_	Ant.	Angle	Detector	
MHz	dΒμV	dBµV/m	dB	dBμV/m	dBμV/m	dB	m	deg		
3476.700000	40.50	31.17	-39.1	32.6	54.0	21.4	1.00	180	AVERAGE	None
3476.700000	51.36	31.17	-39.1	43.5	74.0	30.5	1.00	180	MAX PEAK	None

Company: Andersen Corporation

Model Tested: 9017591 Report Number: 18703 Project Number: 5738

END OF REPORT

Revision #	Date	Comments	By
1.0	02-19-2013	Preliminary Release	JS
1.1	03-04-2013	Corrected Cover Pages 16, 18, 20 & 29	JS
1.2	03-07-2013	Removed incorrect notation on page 30	JS