Precalculus

Me. I am Him.

11/28/2022

Contents

Chapter 1		Page 1
Chapter 2		Page 2
Chapter 3		Page 3
3.1	Properties of functions and Complex Zeros 3.1 - Completing the square — 3	3
Chapter 4	4	Page 5
4.1	4: Composite Functions $-5 \cdot -5$ • Exponential Functions -5	5
4.2		8
4.3		8
4.4	Logarithmic Functions Natural Logarithm — 9	8
4.5	4.5: Properties of Logarithms	11
4.6	4.5	13

List of Figures

4.1	$fx = 2^x$	6
4.2	$fx = \left(\frac{1}{2}\right)^2$	6
4.3	$fx = 2^{-x} - 3$	7
4.4	$\log_{10} x$	10
4.5	$\log_2 x$	13

3.1 Properties of functions and Complex Zeros

3.1.1 3.1 - Completing the square

Standard: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, otherwise known as the quadratic formula. If the inside of the quadratic is < 0, there are no x-intercepts. If the inside of the quadratic is = 0, there is exactly one x-intercept. If the inside of the quadratic is > 0, there are exactly two x-intercepts. Vertex: Plug in 0 for y and solve

4

4.1 4: Composite Functions

4.1.1

Note:-

11/28/2022 - Didn't really do much. Just reviewed what $f \cdot g$ or f(g(x)) was.

4.1.2

4.1.3 Exponential Functions

Are You Prepared? 4.1.1

- $4^3 = 8$
- $8^{\frac{2}{3}} = 4$
- $3^{-2} = \frac{1}{9}$

Note:-

In a^n , a is known as the base whereas n is known as the exponent, index, or power.

Note:-

Law of Exponents:

- (1) $a^m \cdot a^n = a^{mn}$ Example: $3^2 \cdot 3^5 = 3^{25} = 3^7 = 2187$
- (2) $a^{mn} = a^{mn}$ Example: $2^{32} = 2^{3 \cdot 2} = 2^6 = 64$
- (3) $ab^m = a^m b^m$ Example: $5x^3$
- (4) $1^n = 1$ Example: $1^{1001} = 1$
- (5) $a^{-n} = \frac{1}{a^n}$ Example: $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$
- (6) $a^0 = 1$ Example: $7^0 = 1$
- (7) $a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$ Example: $8^{\frac{2}{3}} = \sqrt[3]{8^2} = \left(\sqrt[3]{8}\right)^2 = 2^2 = 4$

Definition 4.1.1: Exponential Function

A function of the form $f(x) = a^x$ where x is a positive real number (a>0) and $a \neq 1$. The domain of f is \mathbb{R}

Example 4.1.1 (2: Graph the exponential function: $fx = 2^x$)

Note:-

Properties of the Exponential Function: $fx = a^x$, where a > 1

- 1. The *domain* is the set of all real numbers. The *range* is the set of all positive real numbers.
- 2. There are no *x-intercepts*. The *y-intercept* is 1.
- 3. The x-axis (y=0) is a horizontal asymptote as $x \to -\infty$
- 4. The function is an increasing function and is one-to-one.
- 5. The graph of f contains the points (0,1),(1,a), and (-1,1/a).
- 6. The graph of f is smooth and continuous, with no corners or gaps.

Example 4.1.2 (3: Graph the exponential function: $fx = \left(\frac{1}{2}\right)^2$)

Note:-

Properties of Exponential Function: $fx = a^x$, where 0 < x < 1.

- 1. The domain is the set of all real numbers; the range is the set of positive real numbers.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to \infty$.

4. The function is a decreasing function and is one-to-one.

5. The graph of f contains the points (0, 1), (1, a), and (-1, 1/a).

6. The graph of f is smooth and continuous, with no corners or gaps.

Example 4.1.3 (Graph $fx = 2^{-x} - 3$ and determine the domain, range, and horizontal asymptote of f.)

- Domain: $x|x \in \mathbb{R}$ or $-\infty, \infty$

- Range: $y|y>-3 \text{ or } -3, \infty$

- Horizontal Asymptote: y = -3

Example 4.1.4 (Explain the transformation of g(x) from $fx = e^x$)

$$gx = -e^{x-3}$$

$$\bullet \ gx = 3e^{-x} - 5$$

Example 4.1.5 (6: Solve $3^{x1} = 81$)

- $3^{x1} = 3^4$
- x 1 = 4
- x = 3

Example 4.1.6 (7: Solve $e^{-x^2} = \left(e^{x^2} \cdot \frac{1}{e^3}\right)$)

$$\bullet \ e^{-x^2} = e^{2x} \cdot e^{-3}$$

$$\bullet e^{-x^2} = e^{2x-3}$$

$$-x^2 = 2x - 3$$

•
$$x^2 2x - 3$$

•
$$x \ 3x - 1 = 0$$

•
$$x = -3, 1$$

Example 4.1.7 (8: Between 9 AM and 10 PM cars arrive at burger king's drive-thru at the rate of 12 cars per hour (0.2 cars per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 9 PM)

$$Ft = 1 - e^{-2t}$$

- (a) 63%
- (b) 99.7%
- (c) graph
- (d) other thing
- 4.2
- 4.3

4.4 Logarithmic Functions

Definition 4.4.1: Logarithmic Function:

The opposite to an exponential function. The logarithmic function to the base a, where a>0 and $a\neq 0$, is denoted and defined by $y=\log_x x$ if and only if $x=a^y$

Note:-

You can remember the format by thinking log-base-answer-exponent.

Example 4.4.1 (2: Change each exponential expression to an equivalent expression involving a logarithm.)

 $1. 1.2^3 \rightarrow$

Example 4.4.2 (3: Change each logarithmic expression to an equivalent expression involving an exponent.)

- 1. $\log_a 4 = 5 \to a^5 = 4$
- 2. $\log_b e = -3 \to b^{-3} = e$
- 3. $\log_3 5 = c \to 3^c = 5$

Theorem 4.4.1

Get that exponential theorem from slides

Example 4.4.3 (4: Find he exact value of:)

- 1. $\log_2 16 = x \to x = 4$
- 2. $\log_3 \frac{1}{27} = x \rightarrow x = -3$ Convert to exponential then use the rules of exponents.
- 3. $\log_4 2 = x \to x = \frac{1}{2}$

Theorem 4.4.2 Determine the Domain of a logarithmic function:

- Domain of the logarithmic function = range of the exponential function = $0, \infty$

- Range of the logarithmic function = domain of the exponential function = $-\infty, \infty$

Example 4.4.4 (5: Find the domain of each logarithmic function:)

- 1. $f(x) = \log_2 x \ 3 \to x \ 3 > 0$
 - x > -3 or $-3, \infty$
- 2. $g(x) = \log_b \left(\frac{1x}{1-x} \right) \to \frac{1x}{1-x} > 0$
 - $x \neq 1, -1$. Now use a number line to find out where it applies. In this case it is -1 < x < 1 or -1, 1 or $x \mid x \neq 1, -1$
- 3. $h(x) = \log_{\frac{1}{2}}|x| \to |x| > 0$
 - **Domain** = \mathbb{R} where $x \neq 0$, or All Real Numbers where $x \neq 0$, or $x \mid x \neq 0$

4.4.1 Natural Logarithm

Theorem 4.4.3 If the base of a logarithmic function is the number e, then we have the natural logarithm function. That is,

- 1. $y = \ln x$ if and only if x = ey
- 2. $y = \ln x$ and $y = \exp x$ are inverse functions

Theorem 4.4.4 Common Logarithm Function

If the base of a logarithmic function is the number 10, then we have the common logarithm function. If the base a of the logarithmic function is not indicated, it is understood to be 10. That is,

• $y = log_x$ if and only if $x = 10^y$

Example 4.4.5 (6 & 7: Determine the domain, range, and vertical asymptote of each logarithmic function. List any transformations.)

- a. $fx = \ln x \rightarrow gx = -\ln x$ 2
 - Domain: x > -2
 - Range: $-\infty, \infty$
 - Vertical Asymptote: $x \neq -2$

Note:-

The negtive applied to the natural log, seen in the equation $-\ln x$ 2, is causing it to reflect over the x-axis.

b. $fx = \log x \rightarrow gx = 3\log - x - 1$

Theorem 4.4.5 Equations that contain logarithms are called logarithmic equations. Be sure to check each solution in the original equation and discard any extraneous solutions. Remember in logaM, a and M are positive and $a \neq 1$.

1. Change the logarithmic equation to an exponential equation and solve for x

Figure 4.4: $\log_{10} x$

- 2. If the exponential equation has base e, change it to the natural logarithm function
- 3. If the exponential equation has base 10, change it to the common logarithm function

Example 4.4.6 (8: Solve for x)

- 1. $\log_3 4x 7 = 2$
 - $3^2 = 4x 7$
 - 9 = 4x 7
 - x = 4
- $2. \log_x 64 = 2$
 - $x^2 = 64$
 - $x = \sqrt[2]{64}$
 - x = 8 Note: -8 does not work as a solution as base values for a logarithm must be greater than 1.

Example 4.4.7 (8.5: Solve for x. Give the exact solution then use your calculator to give the approximate solution.)

- 1. $e^{2x} = 5$
 - $\log_e 5 = 2x$
 - $\ln 5 = 2x$
 - $\bullet \quad \frac{\ln 5}{2} = x$

Example 4.4.8 (Additional Example:)

- 1. $10^{x^2 2x 1} = 50$
 - $\log 50 = x^2 \ 2x \ 1$
 - $\pm\sqrt{\log 50} = \sqrt{x} \ 1^2$
 - $\pm \sqrt{\log 50} = x \cdot 1$
 - $x = \pm \sqrt{\log 50} \ 1$

- **Example 4.4.9** (10: The concentration of alcohol in a person's blood is measurable. Recent medical research suggests that the risk R (given as a percent) of having an accident while driving a car can be modeled by the equation $6e^{kx}$ where x is the variable concentration of alcohol n the blood and k is a constant.
 - 1. Suppose that a concentration in the blood of 0.04 results in a 10% risk (R=10) of an accident. Find the constant k in the equation. Graph $R = 6e^{kx}$ using the k value.
 - do stuff so that k=20.62. She literally used her calc
 - 2. Using the value of k, what is the risk if the concentration is 0.17?
 - uhhhh she didn't do this.
 - 3. Using the same value of k, what concentration of alcohol corresponds to a risk of 100%?
 - didn't do this one either. apparently D is the most important.
 - 4. If the law asserts that anyone with a risk of having an accident of 20% or more should not have driving privileges, at what concentration of alcohol in the blood should a driver be arrested and charged with a DUI?
 - $20 = 6e^{12.77x}$
 - $\frac{10}{3} = e^{12.77x}$
 - $\ln\left(\frac{10}{3}\right) = 12.77x$
 - x = 0.94

)

4.5 4.5: Properties of Logarithms

Note:-

Properties of logarithms:

- 1. Identity $\rightarrow \log_a 1 = 0$ or $\log_a a = 1$
- 2. Inverse $\rightarrow \log_b b^x = x$ or $b^{\log_b x} x$
- 3. Product $\rightarrow \log_a xy = \log = \log_a x \log_a y$
- 4. Quotient $\rightarrow \log_a \frac{x}{y} = \log_a \log_a y$
- 5. Equality $\rightarrow \log_b a = \log_b c \Rightarrow a = c$
- 6. Change of Base Formula $\rightarrow \log_a b = \frac{\log_a b}{\log_a b}$

Example 4.5.1 (1: Use properties of logarithms to find the exact value of each expression. Do not use a calculator.)

- 1. $\ln e^{\sqrt{2}}$
 - $\log_e e^{\sqrt{2}}$
 - $\sqrt{2} \times \log_e e$
 - $\sqrt{2} \times \ln e$
- 2. $\log_8 16 \log_8 2$

•
$$\log_8 \frac{16}{2}$$

Example 4.5.2 (3:Write the expression as a sum of logarithms. Express all powers as factors.)

1.
$$\log_a \left(x\sqrt{x^2 \ 1} \right)$$

•
$$\log_a x \log_a \sqrt{x^2 \ 1}$$

•
$$\log_a x \log_a x^2 1^{\frac{1}{2}}$$

•
$$\log_a x \frac{1}{2} \log_a x^2$$
 1

Example 4.5.3 (4: Write the expression as a difference in logarithms. Express all powrs as factors.)

1.
$$\ln\left(\frac{x^2}{x-1^3}\right)$$

•
$$\ln x^2 - \ln x - 1^3$$

•
$$2 \ln x - 3 \ln x - 1$$

Example 4.5.4 (6: Write each of the following as a single logarithm.)

1.
$$\log_a 7 4 \log_a 3$$

•
$$\log_a 7 \log_a 3^4$$

•
$$\log_a 7 \times 3^4$$

•
$$\log_a 567$$

2.
$$\frac{2}{3} \ln 8 - \ln 3^4 - 8$$

•
$$\ln 8^{\frac{2}{3}} - \ln 3^4 - 8$$

•
$$\ln\left(\frac{8^{\frac{2}{3}}}{3^4-8}\right)$$

•
$$\ln\left(\frac{4}{7^3}\right)$$

3.
$$\log_a x \log_a 9 \log_a (x^2 1) - \log_a 5$$

Example 4.5.5 (7: Approximate the following. Round answers to four decimal places.)

1.
$$\log_2 27$$

- $\frac{\log_{10}27}{\log_{10}2}$ Note: 10 is the common base, thus it can be omitted.
- Another answer could be, $\frac{\ln 27}{\ln 2}$

Example 4.5.6 (9: Use a graphing utility to graph the following)

$$1. \ y = \log_2 x$$

Figure 4.5: $\log_2 x$

4.6 4.5

Example 4.6.1 (1: Solve.)

- 1. $2\log_5 x = \log_5 9$
 - $x^2 = 9$
 - Ergo, $x = \pm 3$

Example 4.6.2 (2: Solve.)

- 1. $\log_4 x$ 3 $\log_4 2 x = 1$
 - $\log_4 x \ 32 x = 1$
 - $4^1 = x \ 32 x$
 - $4 = x^2 x = 6$
 - $x^2 x 2$
 - x 2x 1
 - x = -2, 1

Thanks for reading

