Design of Linear-phase FIR Filter using POCS

- Consider designing an *N*-length linear-phase FIR filter with N being an even number.
- One can show that:

$$H(\omega) = A(\omega)e^{j\phi(\omega)}$$

where

$$A(\omega) = \sum_{n=0}^{N/2-1} 2h[n] \cos[(n - \frac{N-1}{2})\omega]$$
$$\phi(\omega) = -\frac{N-1}{2}\omega$$

• We next define the set of constraint sets for such a problem. Our Hilbert space is \mathbb{R}^L , L>>N to insure a high-resolution Fourier transform without aliasing.

Design of Linear-phase FIR Filter using POCS

• C₁ is the set of all finite-length sequences with appropriate symmetry that imply a Fourier transform with linear phase. That is:

$$C_1 = \{ \mathbf{h} \in \mathbb{R}^L : h[n] = h[N-1-n] \text{ for } n = 0, 1, ..., N-1 \}$$

and $h[n] = 0 \text{ for } N \le n \le L-1$

• C₂ is the set of all finite-length sequences whose Fourier amplitude is appropriately constrained in the passband and whose phase is linear in that band:

$$C_2 = \{ \mathbf{h} \in \mathbb{R}^L : 1 - \delta_p \le A(\omega) \le 1 + \delta_p \}$$

and $\phi(\omega) = -\omega(N-1)/2 \text{ for } \omega \in \Omega_p \}.$

• C₃ is the set of all finite-length sequences whose Fourier amplitude is appropriately constrained in the stopband:

$$C_3 = \{\mathbf{h} \in \mathbb{R}^L : A(\omega) \le \delta_s \text{ for } \omega \in \Omega_s\}$$

$$C_1 = \{ \mathbf{h} \in \mathbb{R}^L : h[n] = h[N-1-n] \text{ for } n = 0, 1, ..., N-1 \}$$

and $h[n] = 0 \text{ for } N \le n \le L-1$

O Convexity:

Let
$$h_1(n), h_2(n) \in C_1$$

Define
$$h_3(n) = \mu h_1(n) + (1 - \mu)h_2(n)$$
 for $0 \le \mu \le 1$

Since
$$h_1(n) = h_1(N - 1 - n)$$
 and $h_2(n) = h_2(N - 1 - n)$, we have:

$$h_3(n) = \mu h_1(n) + (1 - \mu)h_2(n)$$

= $\mu h_1(N - 1 - n) + (1 - \mu)h_2(N - 1 - n)$
= $h_3(N - 1 - n)$

Hence, C_1 is convex.

$$C_1 = \{ \mathbf{h} \in \mathbb{R}^L : h[n] = h[N-1-n] \text{ for } n = 0, 1, ..., N-1 \}$$

and $h[n] = 0 \text{ for } N \le n \le L-1$

O Closeness:

Let \mathbf{h}_k , $k = 0, 1, \ldots$ be a sequence of vectors in C_1 with a limit point \mathbf{h} . Then by defintion:

$$\sum_{n=0}^{N-1} |\mathbf{h}_k(n) - h(n)|^2 \to 0$$

However, $\mathbf{h}_k(n) = \mathbf{h}_k(N-1-n)$. Hence,

$$\sum_{m=0}^{N-1} |\mathbf{h}_k(N-1-n) - h(n)|^2 \to 0$$

which implies that $\mathbf{h}_k(N-1-n) \to h(n)$. At the same time, $\mathbf{h}_k(n) \to h(n)$. Hence, h(n) = h(N-1-n). $\therefore \mathbf{h} \in C_1$ and the set C_1 is closed.

$$C_1 = \{ \mathbf{h} \in \mathbb{R}^L : h[n] = h[N-1-n] \text{ for } n = 0, 1, ..., N-1 \}$$

and $h[n] = 0 \text{ for } N \le n \le L-1$

O Projection:

Assume that all the vectors are real. Let \mathbf{g} be an arbitrary vector, \mathbf{h} be any vector in C_1 , and \mathbf{h}^* the projection of \mathbf{g} onto C_1 . Then,

$$\mathbf{h}^* = \arg\min_{\mathbf{h} \in C_1} \sum_{n=0}^{L-1} [g(n) - h(n)]^2$$

, where $h^*(n) = 0$ for $N \le n \le L - 1$. With

$$J = \sum_{n=0}^{L-1} [g(n) - h(n)]^2$$

, the projection is easily computed.

$$C_1 = \{ \mathbf{h} \in \mathbb{R}^L : h[n] = h[N-1-n] \text{ for } n = 0, 1, ..., N-1 \}$$

and $h[n] = 0 \text{ for } N \le n \le L-1$

O Projection:

Now, by taking into account that $h^*(n) = 0$ for n = N, ..., L - 1, we write (assuming N is even) the Lagrange functional as:

$$J = \sum_{n=0}^{N/2-1} \{ [g(n) - h(n)]^2 + [g(n+N/2) - h(n+N/2)]^2 \}$$

and using the fact that $[h(n+N/2)-h(N/2-1-n)]^2$. Then with $\frac{\partial J}{\partial h(l)}=0$, $l=0,1,\ldots,N/2-1$, we obtain:

$$h^*(l) = \frac{g(l) + g(N - 1 - l)}{2}$$

. This clearly shows that $h^*(l) = h^*(N-1-l)$.

$$C_1 = \{ \mathbf{h} \in \mathbb{R}^L : h[n] = h[N-1-n] \text{ for } n = 0, 1, ..., N-1 \}$$

and $h[n] = 0 \text{ for } N \le n \le L-1$

O Projection:

Thus, the projection $\mathbf{h}^* = P_1 \mathbf{g}$ of \mathbf{g} onto C_1 becomes:

$$P_{C_1}\mathbf{g} = \begin{cases} \frac{g(l) + g(N-1-l)}{2}, & \text{for } l = 0, 1, \dots, (N-1) \\ 0, & \text{elsewhere.} \end{cases}$$

$$C_2 = \{ \mathbf{h} \in \mathbb{R}^L : 1 - \delta_p \le A(\omega) \le 1 + \delta_p$$
 and $\phi(\omega) = -\omega(N-1)/2 \text{ for } \omega \in \Omega_p \}.$

- O Convexity and closeness: Exercise.
- O Projection:

The projection of an arbitrary vector $\mathbf{g} \in \mathbb{R}^L$ with $\mathcal{F}\{\mathbf{g}\} = G(\omega) = |G(\omega)|e^{j\theta_{G(\omega)}}$ can be computed using the Lagrange multiplier method (exercise). The projection will be $\mathbf{h}^* = P_{C_2}\mathbf{g} \leftrightarrow H^*(\omega)$:

$$P_{C_2}\mathbf{g} \leftrightarrow H^*(\omega) = \begin{cases} (1 + \delta_p)e^{j\phi(\omega)}, & \text{if cond. A} \\ (1 - \delta_p)e^{j\phi(\omega)}, & \text{if cond. B} \\ |G(\omega)|\cos(\theta_{G(\omega)} - \phi(\omega))e^{j\phi(\omega)}, & \text{if cond. C} \\ G(\omega), & \text{if } \omega \in \Omega_p^c. \end{cases}$$

where, cond. A is:
$$|G(\omega)|\cos(\theta_{G(\omega)} - \phi(\omega)) \ge (1 + \delta_p)$$
 and $\omega \in \Omega_p$ cond. B is: $|G(\omega)|\cos(\theta_{G(\omega)} - \phi(\omega)) \le (1 - \delta_p)$ and $\omega \in \Omega_p$ cond. C is: $(1 - \delta_p) \le |G(\omega)|\cos(\theta_{G(\omega)} - \phi(\omega)) \le (1 + \delta_p)$ and $\omega \in \Omega_p$

$$C_3 = \{\mathbf{h} \in \mathbb{R}^L : A(\omega) \leq \delta_s \text{ for } \omega \in \Omega_s\}$$

- O Convexity and closeness: Exercise.
- O Projection:

The projection of an arbitrary vector $\mathbf{g} \in \mathbb{R}^L$ with $\mathcal{F}\{\mathbf{g}\}$ can be computed using the Lagrange multiplier method (exercise). The projection will be $\mathbf{h}^* = P_{C_3}\mathbf{g} \leftrightarrow H^*(\omega)$:

$$P_{C_3}\mathbf{g} \leftrightarrow H^*(\omega) = \begin{cases} \frac{\delta_s G(\omega)}{|G(\omega)|}, & \text{for } |G(\omega)| > \delta_s, \ \omega \in \Omega_s \\ G(\omega), & \text{for } |G(\omega)| \le \delta_s, \ \omega \in \Omega_s \\ G(\omega), & \text{elsewhere.} \end{cases}$$

POCS algorithm for designing linear-phase FIR filters

• The FIR filter design algorithm can be given by:

$$\mathbf{h}_{k+1} = P_{C_1} P_{C_2} P_{C_3} \mathbf{h}_k$$

where \mathbf{h}_0 is arbitrary.

- A good choice for \mathbf{h}_0 is \mathbf{h}_0 $\leftrightarrow H_0(\omega) = H_{ideal}(\omega)$, where $H_{ideal}(\omega)$ is the ideal lowpass response characteristic of the digital filter.
- The stopping criteria is:

$$\|\mathbf{h}_{k+1} - \mathbf{h}_k\| \le \epsilon$$

where ϵ is a small positive number.

Computer Assignment 7 & 8 (due 18 April)

O Design an equiripple filter but using the POCS method with ω_p = 0.3 π rad/s , ω_s = 0.35 π rad/s, δ_p = 0.01 and δ_s = 0.001. Note that the filter order will be equal to:

$$M = \lceil \frac{-10\log(0.01 * 0.001) - 13}{14.6 * 0.05\pi/(2\pi)} \rceil = 102$$