Chapter 2 - Insertion-Sort

Problem Statement

Input: A sequence of *n* numbers $\langle a_1, a_2, ..., a_n \rangle$

Output: A permutation (reordering) $< a'_{1}, a'_{2}, ..., a'_{n} >$ of the input sequence such that $a'_{1} \le a'_{2} \le ... \le a'_{n}$

This is a good algorithm for sorting small number of elements.

For example:

- Start with an empty left hand.
- Add one card at a time in the correct position.
- Find the correct position for a card; compare it with each of the cards already in the hand from left to right.
- The cards are sorted at all times, the initial cards are not sorted as they are added one at a time.

Pseudocode:

- The input parameter is an array A[1..n] with a length of n
- The ".." denotes a range within an array
- When using an array A[1..n] allocate the array to be one entry longer, i.e., A[0..n]
- The array A is sorted in place.

Insertion-Sort(A)		cost	times
1	for $j \leftarrow 2$ to length[A]	c_1	n
2	$\mathbf{do} \text{ key} \leftarrow A[j]$	c_2	<i>n</i> -1
3	//Insert $A[j]$ into the sorted sequen	nce	
	//A[1.j-1]	0	<i>n</i> -1
4	$i \leftarrow j - 1$	c_4	<i>n</i> -1
5	while $i > 0$ and $A[i] > \text{key}$	c_5	$\sum_{j=2}^{n} t_j$
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	c_7	$\sum_{j=2}^{n} (t_j-1)$
8	$A[i+1] \leftarrow \text{key}$	c_8	<i>n</i> -1

Correctness: Often a loop invariant is used to help understand why an algorithm gives the correct answer.

Loop Invariant: At the start of each iteration of the outer loop, the subarray A[1...j-1] consists of the original elements from position 1,2,...,j-1, but in sorted order.

To prove loop invariance is correct three things must be shown:

- 1. Initialization: true before the 1^{st} time. j = 2, everything to the left is just element 5 so 1 item is trivially sorted.
- 2. Maintenance: if true before a particular iteration then it is true after. Note, that inner loop does A[j+1], A[j+1], ... until key is in proper position.
- 3. Termination: true when loop terminates, e.g., when loops $j > n \Rightarrow j = n + 1$ so j 1 = n

The loop invariant for Insertion-Sort starts each iteration of the "outer" for loop indexed by j. The sub array A[1...j-1] consists of the elements originally in A[1...j-1] but in sorted order.

Analysis of Insertion Sort:

- Assume that the *i*th line takes c_i which is a constant. Note: line 3 is a comment so no time is taken.
- For j = 2,3,...,n, let t_i be the number of times the while loop test is executed for j.
- Note: that when a **for** or **while** loop exists in the usual way the test is executed one time more than the loop body.

The running time of the algorithm is

 $\sum_{\text{over all statements}} (\text{cost of statement}) \cdot (\text{number of times statement is executed})$

Let T(n) = running time of Insertion-Sort

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_{j-1}) + c_7 \sum_{j=2}^{n} (t_{j-1}) + c_8(n-1)$$

The run time is dependent on the values of t_i .

Best Case: The array is already sorted.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8)$

Worst Case: The array is sorted in reverse order.

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n(n-1)/2 - 1) + c_6(n(n-1)/2) + c_7(n(n-1)/2) + c_8(n-1)$$

$$= (c_5/2 + c_6/2 + c_7/2)n^2 + (c_1 + c_2 + c_4 + c_5/2 - c_6/2 - c_7/2 + c_8)n - (c_2 + c_4 + c_5 + c_8)$$

Average Case: Typically the worse case is calculated instead of the average case due to the following three reasons:

- 1. The worst case run time provides an upper bound on the run time for an input.
- 2. The worst case often occurs, e.g., when searching the worst case often occurs when an item being searched for is not present.
- 3. The average case is not analyzed because it is often as bad as the worst case.