Introducción a la Lógica y la Computación — Autómatas y Lenguajes Práctico 1: Lenguajes y autómatas finitos

- 1. Sea $\Sigma_1 := \{a, b\}$ y $\Sigma_2 := \{c\}$ dos alfabetos.
 - a) Determinar $\Sigma_1^* \cap \Sigma_2^*$.
 - b) Dar una familia infinita de cadenas que estén en $(\Sigma_1 \cup \Sigma_2)^*$ pero que no estén en $\Sigma_1^* \cup \Sigma_2^*$.
- 2. Sean $L_1 := \{a, bb\}$ y $L_2 := \{ab, b\}$ lenguajes sobre el alfabeto Σ_1 . Determinar $\{\alpha\beta \mid \alpha \in L_1, \ \beta \in L_2\}$ y $\{\beta\alpha \mid \alpha \in L_1, \ \beta \in L_2\}$. ¿Son iguales?
- 3. Considere el DFA definido por el diagrama.

- a) Determine estados q y q' tales que $q_0 \xrightarrow{abbaa} q$ y $q_0 \xrightarrow{abb} q'$, dando las correspondientes trazas de ejecución.
- b) Concluir cuáles de esas dos cadenas son aceptadas por el DFA.
- 4. Considere el autómata del ejercicio anterior. Justifique las siguientes afirmaciones:
 - a) Si ω es aceptada, entonces termina en a.
 - b) Si ω termina en a, entonces es aceptada. (Ayuda: si $\omega = \alpha a$, pensar en cada estado donde podría terminar la computación tras consumir α).
- 5. Describa en castellano el lenguaje aceptado por el autómata. Luego demuestre su afirmación.

- 6. Construir tres DFAs con alfabeto $\Sigma = \{a, b\}$ cuyos lenguajes aceptados consistan de:
 - a) las cadenas que empiezan con aa;
 - b) las cadenas de longitud múltiplo de 3;
 - c) (*) las cadenas de longitud múltiplo de 3 que empiezan con aa.
- 7. Dado el lenguaje $L := L_1 \cup L_2$ (ver Ejercicio 2), construir:
 - a) un DFA \mathbb{A} tal que $L(\mathbb{A}) = L$.
 - b) un NFA \mathbb{B} tal que $L(\mathbb{B}) = L$.