DATA.STAT.770

Exercise set 3

1.

Solution for the first principal component:

$$Var(w_1^T X) = w_1^T Cov(X) w_1 = w_1^T C w_1 =$$

Consider an optimization problem

$$max w_1^T C w_1$$

$$s.t$$

$$w_1^T w_1 = 1$$

This can be solved by introducing Lagrange function $L(w_1, \lambda)$ and solving it's critical points.

$$L(w_1, \lambda) = w_1^T C w_1 - \lambda (w_1^T w_1 - 1)$$

$$\nabla L = \begin{pmatrix} \nabla_{w_1} L \\ \nabla_{\lambda} L \end{pmatrix}$$

$$= \begin{pmatrix} 2w_1^T C - 2\lambda w_1^T \\ w_1^T w_1 - 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

This reduces to

$$2w_1^T C - 2\lambda w_1^T = 0$$
$$Cw_1 = \lambda w_1$$

Thus w_1 is the eigenvector of C with eigenvalue λ . Because we want to maximize the $w_1^T C w_1 = w_1^T \lambda w_1 = \lambda w_1^T w_1$, we want to select the eigenvector with the largest eigenvalue.

Projection of red wine data into two first principal components

Projection of white wine data into two first principal components

White wine data using variable ranking.

4.

Time series of the first five seconds of audio

Reconstructed

