? SUITES NUMÉRIQUES

Nom:	• • • • • • • • • • • • • • • • • • • •	Prénom:	• • • • • • • • • • • • • • • • • • • •		Classe:	
OBSERVATIONS ♥ — Il est toléré de travailler avec une perso					NOTE №	
Il est interdit d'utiliser un logiciel d'int Tout manquement à l'une de ces règles ent	elligence artificiel pour répond	re aux questions. Des explica	itions seront demandées en cas d	e doute.		20
Exercice 1 En géométrie, un polyge est composée de plusie une diagonale est une côté).	eurs sommets re	liés entre-eux j	par des segments	s appelés c	ôtés. Dans un po	olygone,
On note u_n le nombre	de diagonales d	'un polygone à	<i>n</i> côtés.			
1. Déterminer les troi	s premiers terme	es de la suite (u_n)			
	• • • • • • • • • • • • • • • • • • • •					• • • • • •
2. Exprimer u_n en for	action de n			• • • • • • • • • • • • •		
EXERCICE 2						
Le livret A est un produ de son plafond, de la c à 3 %. Le principe est a 1000€ sur le livret d'un	qualité des titulai simple : chaque	ires, etc. Le tau année, 3 % du	ıx d'intérêt annu ı capital est revei	el du livret rsé sur le li	A est actuellem vret. Par exemp	ent fixé le, avec
Un individu place 150	0€ sur son livret.	A. On note c_n l	le montant de so	n livret A a	près <i>n</i> années.	
1. Que vaut c_0 ?						
2. Que vaut c_1 ? À quo	i cela correspon	d t-il?			• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •					
3. Exprimer c_{n+1} en fo						
4. La suite (c_n) est-ell						

EXERCICE 3

La scintigraphie cardiaque est une technique d'imagerie qui permet d'examiner la qualité de l'irrigation du cœur par les artères coronaires. Lors de cet examen, on injecte au patient un échantillon d'un isotope de thallium d'activité radioactive 60 MBq (Méga Becquerel). On appelle demi-vie le temps mis par une substance radioactive pour perdre la moitié de son activité. Ainsi, après une demi-vie, l'activité radioactive de cet échantillon de thallium est de 30 MBq. Puis, après deux demi-vies, l'activité radioactive de cet échantillon est de 15 MBq.

On note u_0 l'activité radioactive de cet échantillon, exprimée en MBq, à l'injection et u_n l'activité radioactive de cet échantillon après n demi-vies, avec $n \in \mathbb{N}$.

EXERCICE 4

Leonardo Fibonacci ou « Léonard de Pise » est un mathématicien italien connu notamment par la suite de Fibonacci, notée (f_n) . On la définit comme suit :

$$f_0 = 1, f_1 = 1$$
, et pour tout $n \ge 1, f_{n+1} = f_n + f_{n-1}$

- 1. Calculer les neuf premiers termes de (f_n) .
- 2. Quel semble être le sens de variation de (f_n) ?
- 3. Donner une approximation des quotients suivants.
 - **a.** $\frac{f_1}{f_0} = \dots$ **c.** $\frac{f_3}{f_2} = \dots$ **e.** $\frac{f_5}{f_4} = \dots$ **g.** $\frac{f_7}{f_6} = \dots$ **b.** $\frac{f_2}{f_1} = \dots$ **d.** $\frac{f_4}{f_3} = \dots$ **f.** $\frac{f_6}{f_5} = \dots$ **h.** $\frac{f_8}{f_7} = \dots$