Nomes: Felipe Alegria Rollo Dias NUSP: 9293501 Leonardo Piccaro Rezende 9364611

1. Proposta:

Para cada uma das bases de dados apresentadas, realize experimentos usando o algoritmo de backpropagation com termo *momentum*. Divida a base de dados em conjuntos de treinamento e de teste, variando os seguintes atributos:

- -O número de camadas intermediárias (1 ou 2);
- -O número de ciclos usados no treinamento;
- -Os parâmetros momentum e velocidade de aprendizado
- -A proporção de dados usados para treinamento e testes.

2. Banco de Dados (BD):

a. Wine

Esta é uma base de dados de classificação de tamanho 178, com 13 atributos em cada variável. Então, no total, temos 178 x 13 = 2314 dados na matriz.

Este conjunto é correspondente à uma análise química de vinhos criados na mesma região da Itália, porém derivados de diferentes cultivos.

A tabela comparativa está apresentada no final do código, ao rodar ele. A acurácia obtida pelos conjuntos de teste está presente na tabela.

b. Geographical Original of Music(Music)

default_features_1059_tracks.txt

Esta é uma base de dados de regressão, com tamanho 1059 e 68 atributos em cada variável. No total, temos 1059 x 68= 72012 dados na matriz.

default_plus_chromatic_features_1059_tracks.txt

As primeiras 116 colunas são características da música, e as últimas duas a origem da music

O dataset é composto de 1059 arquivos de áudio de 33 diferentes regiões do mundo. Não há músicas ocidentais no banco de dados pois elas são de impacto mundial, enquanto o intuito do dataset é estudar os aspectos da música que mais impactam o local.

A tabela comparativa é apresentada no final do código, após rodá-lo. O erro quadrático médio é apresentado na mesma tabela.

3. Pré Processamento dos BD:

a. Wine

Os valores de entrada foram todos normalizados utilizando o método min/max. A saída foi binarizada, tornando-se uma matriz com 3 colunas onde o bit que tiver 1 na respectiva linha representa a classe daquele exemplo.

b. Music

Os valores de entrada e saída foram normalizados com o método min/max.

4. Arquitetura da Rede:

Os valores de neurônios na camada de entrada e saída dependem do banco de dados. Sendo que no wine é, respectivamente, 13 e 3. E para o Music é, respectivamente, 68 e 2 para um arquivo, e 116 e 2 para o outro.

Para a camada escondida foi adotado o padrão de 8 neurônios, pelos testes rodados foi um bom resultado para ambos BD.

Além disso temos as seguintes variáveis com os seguintes valores padrões

	Wine	Music
Velocidade de Aprendizagem	0.1	0.5
Termo Momentum	0	0.5
Número de Ciclos	500	500
Tamanho do Conjunto de Treinamento	0.7	0.7

5. Execução, Testes e Resultados:

A única entrada que o programa precisa é a escolha do BD no início, depois disso toda execução é feita de forma automática.

Foram feitos testes alterando uma variável por vez.

Ao final de cada execução do programa é impresso uma tabela com os resultados específicos daquela execução. Aqui no relatório estará apenas uma para servir como exemplo.

a. Wine

N	umber of Cycles	Learning S	Speed	Momentum	Training set size	Accuracy
1	500	 0.1	- -	0	0.7	- 0.9814814814814815
1	500	0.3		0	0.7	0.9259259259259
1	500	0.5		0	0.7	0.9814814814814815
1	250	0.1		0	0.7	0.9629629629629629
1	750	0.1		0	0.7	0.9814814814814815
1	1000	0.1		0	0.7	0.9814814814814815
1	500	0.1		0	0.5	0.9550561797752809
1	500	0.1		0	0.6	0.94444444444444
1	500	0.1		0	0.9	0.94444444444444
1	500	0.1		0.1	0.7	0.94444444444444
1	500	0.1	ĺ	0.3	0.7	0.9814814814814815
1	500	0.1	1	0.7	0.7	0.9814814814814815

b. Music

+ Number of Cycles +	Learning Speed	+ Momentum +	+ Training set size	First file Mean Square Error	+ Second file Mean Square Error
500	0.1	0.5	0.7	0.10593293507377952	0.09484287679157621
500	0.3	0.5	0.7	0.09881519274747218	0.12291005838328851
500	0.5	0.5	0.7	0.09029759773039932	0.11233615173188838
300	0.5	0.5	0.7	0.09079815770550147	0.08871426996654522
700	0.5	0.5	0.7	0.10850932137105863	0.09108335805034426
1000	0.5	0.5	0.7	0.13953384747914938	0.11100146148246978
500	0.5	0.5	0.5	0.1176996277097237	0.1060181538136512
500	0.5	0.5	0.75	0.0922534520888498	0.10769207214796474
500	0.5	0.5	0.9	0.09443318017415606	0.10063136216963381
500	0.5	0.1	0.7	0.0940906606882392	0.09758422841864113
500	0.5	0.3	0.7	0.10188969582925056	0.08694622613345894
500	0.5	0.7	0.7	0.11213769198454765	0.10573764483613152
+	+	+	+	 	+

6. Conclusão:

No problema de classificação do Wine, a MLP convergiu mais rápido e para um resultado bem melhor. Em alguns casos atingindo até uma acurácia de 100%.

Já para o problema de regressão do Music, para que a rede obtivesse um resultado melhor, seria interessante deixar treinando por muito mais ciclos, por ter uma convergência um pouco mais demorada. Porém como será executado várias vezes para mudar os valores das variáveis, decidimos deixar o valor de ciclos padrão em 500.