ABSTRACT

The system is an advanced real time air quality reporting system supported with Internet Of things (IOT) architecture. Degrading air quality has been a matter of concern nowadays and real time monitoring of air quality helps us to keep a check on it. Air Quality Index (AQI) is the scale to measure how polluted the air is. Greater AQI indicates more dangerous air is for human health. The model presented here uses a combination of the Arduino Mega software and hardware along with Gas sensors - MQ135 which help in detecting gases like NO2, CO, CO2, NH3 while measuring their amount decently and display the AQI value, PMS7003 which gives the exact values of particulate matters in the atmosphere. Further the readings will be displayed, and a graph will be plotted on a dashboard. Temperature and humidity sensors will be used to display the current temperature and humidity.

Keywords: Air quality monitoring, rain gauge, Dashboard

Mapping with POs and PSOs:

PO1	PO2	PO4	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2

TABLE OF CONTENTS

Chapter		Contents	Page No.			
	ABS	STRACT	i			
	LIST OF TABLES					
	LIS	T OF FIGURES	v			
	LIS	T OF ABBREVIATIONS	vi			
1.	INTRODUCTION					
	1.1	BACKGROUND	3			
2.	LIT	CERATURE SURVEY	4			
	2.1	RELATED WORK	5			
	2.2	EXISTING SYSTEM	5			
3.	PRC	DBLEM IDENTIFICATION AND OBJECTIVES	10			
	3.1	PROBLEM STATEMENT & OBJECTIVES	11			
	3.2	SYSTEM STUDY	11			
	3.3	FEASIBILITY ANALYSIS	13			
	3.4	SCOPE AND APPLICATIONS	13			
4.	PRC	DBLEM ANALYSIS AND DESIGN	15			
	4.1	HIGH LEVEL DESIGN	16			
	4.2	MODULE DESCRIPTION	17			
	4.3	DATA FLOW DIAGRAM	31			
	4.4	DATABASE DESIGN	32			
	4.5	ALGORITHMS	33			
5.	IMP	PLEMENTATION AND RESULTS	34			
	5.1	SYSTEM REQUIREMENTS	35			
	5.2	IMPLEMENTATION DETAILS	35			
	5.3	TESTING	36			
	5.4	EXPERIMENTAL RESULTS & DISCUSSION	39			
6.	CON	NCLUSION	41			
7.	FUT	TURE WORKS SUGGESTED	43			
8.		FERENCES	45			
9.	APP	PENDIX I – CODE SNIPPETS	47			

LIST OF FIGURES

Figure	Title	Page No.
Figure 2.1	Overview of Arduino based system	6
Figure 2.2	Circuit structure of zigbee based system	7
Figure 2.3	Dustroid Pro	8
Figure 3.1	Overview of the project	12
Figure 4.1	Block diagram of air quality checking node	16
Figure 4.2	Circuit diagram of air quality checking node	17
Figure 4.3	Arduino Mega 2560	18
Figure 4.4	MQ135 pinout	19
Figure 4.5	MQ135	20
Figure 4.6	BME280	20
Figure 4.7	PMS7003	21
Figure 4.8	RFM95W	23
Figure 4.9	Indoor Gateway	24
Figure 4.10	LoRaWAN Technology	25
Figure 4.11	ChirpStack Server	28
Figure 4.12	Service Uplink	28
Figure 4.13	Dashboard	29
Figure 4.14	Map	30
Figure 4.15	Flowchart	31
Figure 4.11	Database	32
Figure 5.1	Node implemented	36
Figure 5.2	MQ135 Output	37
Figure 5.3	PMS7003 Output	37
Figure 5.4	BME280 Output	37
Figure 5.5	Integration testing	38
Figure 5.6	System testing	39
Figure 5.7	Dashboard implemented	40

LIST OF TABLES

Table	Title	Page No.
Table 3.1	Cost Analysis	13
Table 4.1	Arduino Mega Specifications	18
Table 4.2	Gateway Specification	26