# **Analysis of Tumor Types**

Rosebella Capio

University of Idaho

November 27, 2018

# Outline

- Introduction
  - Background on Tumors
  - Data Source
  - Objectives
- Supervised Learning Methods and Analysis
- Clustering

## Introduction

# Background on Tumors

A tumor, also known as neoplasm, is an abnormal mass of tissue that can be solid or fluid-like. That is, a tumor is a kind of lump or swelling that does not necessarily pose a health threat. A tumor is NOT the same as CANCER although some can develop into one.

# General Types of Tumors

- Benign: These are not cancerous, do not spread, remain in its current form and do not return after being removed
- Premalignant: These are not yet cancerous but appear to be developing the properties of cancer
- Malignant: They are cancerous, grow, spread and get worse

# Introduction Cont'd

# Tumors Types Considered

The tumors considered in this work are;

• BRCA: Breast Invasive Carcinoma

• KIRC: Kidney Renal Clear Cell Carcinoma

• COAD: Colon Adenocarcinoma

LAUD: Lung Adenocarcinoma

#### Introduction Cont'd

#### Data Source

- The dataset was obtained from the UCI Repository
- It consists of random extraction of gene extractions of patients having different tumor types

#### Introduction Cont'd

# Objectives

- Perform Classification Analysis
- Perform Clustering Analysis

# Outline

- Introduction
  - Background on Tumors
  - Data Source
  - Objectives
- 2 Supervised Learning Methods and Analysis
- Clustering

# **Analysis**

## Exploratory Data Analysis

- It has 801 observations and 20, 532 features
- The feature names are gene1 to gene20, 532 and the observations are patients with response variable labelled as different tumor types: BRA, KIRC, COAD, LUAD, PRAD.
- The features are numerical
- There are no missing values in this data set

# **Analysis**

# **Dimensionality Reduction**

PCA was used in reducing the dimension of the data. The graph below shows that about 700 components can explain all the variation in the data.



# Logistic Regression

Logistic regression performed poorly on the training data set with accuracy of .29 with very low precision values for each class as seen in the output below;

Accuracy of Logistic regression classifier on training set: 1.00 Accuracy of Logistic regression classifier on test set: 0.29

# Logistic Regression

|   | precision | recall | f1-score | support |
|---|-----------|--------|----------|---------|
| 0 | 0.31      | 0.30   | 0.31     | 1007    |
| 1 | 0.28      | 0.27   | 0.28     | 1002    |
| 2 | 0.32      | 0.30   | 0.31     | 998     |
| 3 | 0.27      | 0.30   | 0.29     | 1005    |
| 4 | 0.26      | 0.25   | 0.25     | 988     |

# K Nearest Neighbor

The accuracy score from using KNN on the data was .99379 implying that the KNN classifies the data very well. Precision for each class was almost 1 or 1. The output can be seen below;

Accuracy Score: 0.99379

# K Nearest Neighbor

|      | precision | recall | f1-score | support |
|------|-----------|--------|----------|---------|
| BRCA | 0.98      | 1.00   | 0.99     | 55      |
| COAD | 1.00      | 1.00   | 1.00     | 17      |
| KIRC | 1.00      | 1.00   | 1.00     | 25      |
| LUAD | 1.00      | 0.97   | 0.98     | 32      |
| PRAD | 1.00      | 1.00   | 1.00     | 32      |

#### Random Forest

Random Forest classification also did a poor job at classifying the tumor types and had the following values for precision;

|   | precision | recall   | f1-score | support |  |
|---|-----------|----------|----------|---------|--|
| 0 | 0.258893  | 0.548117 | 0.351678 | 239     |  |
| 1 | 0.328947  | 0.187970 | 0.239234 | 266     |  |
| 2 | 0.377309  | 0.600840 | 0.463533 | 238     |  |
| 3 | 0.128492  | 0.090551 | 0.106236 | 254     |  |
| 4 | 0.323529  | 0.043478 | 0.076655 | 253     |  |
|   |           |          |          |         |  |

## **Decision Trees**

Decision Trees gave a training set accuracy of 1 and a little over 0.5 for the test set; The plot of the graph is shown;

Accuracy on training set: 1.000 Accuracy on test set: 0.583

# Decision Trees



#### Naive Bayes

Naive Bayes produced a test accuracy score of .25 implying that it is a poor classifier for this data set;

Accuracy of Naive Bayes classifier on training set: 1.00 Accuracy of Naive Bayes classifier on test set: 0.25

#### **Neural Networks**

Neural Networks also produced a test accuracy score of .27 but 1 for the training set implying that it is a poor classifier for this data set;

```
Accuracy of NN classifier on training set: 1.00 Accuracy of NN classifier on test set: 0.27
```

# Support Vector Machine

Support Vector Machine produced similar scores as those produced by Naive Naive Bayes and Neural Networks hence a poor classifier for this data set;

Accuracy of SVC classifier on training set: 1.00 Accuracy of SVC classifier on test set: 0.26

# Comparison of Test Accuracy Scores for Classification Models

Logistic Regression: 0.29

KNN: 0.99379

Decision Trees: 0.583

• Naive Bayes: 0.25

Neural Networks: 0.27

• SVM: **0.26** 

# Outline

- Introduction
  - Background on Tumors
  - Data Source
  - Objectives
- Supervised Learning Methods and Analysis
- Clustering

# Plot of tumor clusters from PCA



# Crosstab of tumor types against PCA clusters

| Cross   | tab  |      |      |      |      |     |
|---------|------|------|------|------|------|-----|
| group   | BRCA | COAD | KIRC | LUAD | PRAD | All |
| cluster |      |      |      |      |      |     |
| 0       | 0    | 1    | 1    | 138  | 0    | 140 |
| 1       | 0    | 0    | 0    | 0    | 136  | 136 |
| 2       | 0    | 0    | 145  | 0    | 0    | 145 |
| 3       | 50   | 0    | 0    | 3    | 0    | 53  |
| 4       | 250  | 0    | 0    | 0    | 0    | 250 |
| 5       | 0    | 77   | 0    | 0    | 0    | 77  |
| All     | 300  | 78   | 146  | 141  | 136  | 801 |
| _       |      |      |      |      |      | _   |

# Clustering

#### K-Means

K-Means clustering was tested on this classification problem and produced a low sihouette score and produced an optimal number of clusters for PCA and non-PCA data to be 6;

0.2287493724969654

#### K Means



## Conclusion

#### Conclusion

- Of all the classification models looked at, K Nearest Neighbor provided the highest accuracy with a score of .99 followed by Decision Trees with .583. The rest did not perform so well as classifiers.
- Association could not be performed on this data set but will be addressed in final report

# THANK YOU