专题 多

植物的组织培养技术

利用植物的一块组织,甚至一个细胞,就能培养出完整的植株,靠的就是植物组织培养技术。运用这种技术,可以实现优良品种的快速繁殖,保持遗传性状的一致;可以培育出大量不含病毒的幼苗,提高作物的产量;可以实现花卉的连续生产,不受开花季节的限制……然而这一技术从设想到成熟,却经历了半个世纪。这项富有挑战性的工作,不仅会使你学到新的技术,还会带给你丰富的体验,宝贵的启迪。

课题

菊花的组织培养

课题背景

科学研究表明, 当植物细胞脱离了原来所在 植物体的器官或组织而处于离体状态时、在一 定的营养物质、激素和其他外界条件的作用下, 就可能表现出全能性,发育成完整的植株。科学 家用植物组织培养的方法, 已经把许多种植物的离体 的组织或细胞,培养成了完整的植物体。在本课题中,我 们将通过菊花组织培养的实验来学习这一技术。

基础知识

(一) 植物组织培养的基本过程

植物组织

形成愈伤组织

移栽成活

生根

长出丛芽

图 3-1 植物组织培养的流程图

在植物的个体发育过程中,细胞在形 态、结构和生理功能上都会出现稳定性的差 异,形成这些差异的过程叫做细胞分化。已 经分化了的细胞在结构和功能上都比较专 一,要在离体条件下发育成完整的植株,并 不容易。

离体的植物组织或 细胞,在培养了一段时间 以后, 会通过细胞分裂, 形成愈伤组织(图3-1)。 愈伤组织的细胞排列疏 松而无规则,是一种高度 液泡化的呈无定形状态 的薄壁细胞。由高度分化 的植物组织或细胞产生愈 伤组织的过程, 称为植物 细胞的脱分化,或者叫做 去分化。脱分化产生的愈 伤组织继续进行培养,又 可以重新分化成根或芽等 器官,这个过程叫做再分 化。再分化形成的试管苗,移栽到地里,可以发育成完整的植物体。图 3-1 简要地归纳了植物组织培养的过程。在这个过程中,往往需要使用植物激素,人为地控制细胞的脱分化与再分化。

(二) 影响植物组织培养的因素

不同的植物组织,培养的难易程度差别很大。例如,烟草和胡萝卜的组织培养较为容易,而枸杞愈伤组织的芽诱导就比较难。因此,植物材料的选择直接关系到实验的成败。对于同一种植物材料,材料的年龄、保存时间的长短等也会影响实验结果。菊花的组织培养,一般选择未开花植株的茎上部新萌生的侧枝(图 3-2)。

离体的植物组织和细胞,对营养、环境等条件的要求相对特殊,需要配制适宜的培养基。常用的一种培养基是MS培养基,其主要成分包括:大量元素,如N、P、K、Ca、Mg、S;微量元素,如B、Mn、Cu、Zn、Fe、Mo、I、Co;有机物,如甘氨酸、烟酸、肌醇、维生素,以及蔗糖等。在配制好的MS培养基中,常常需要添加植物激素。

植物激素中生长素和细胞分裂素是启动细胞分裂、脱分化和再分化的关键性激素。在生长素存在的情况下,细胞分裂素的作用呈现加强的趋势。按照不同的顺序使用这两类激素,会得到不同的实验结果。

使用顺序	实验结果
先使用生长素,后使用细胞 分裂素	有利于细胞分裂,但细胞不分化
先使用细胞分裂素,后使用 生长素	细胞既分裂也分化
同时使用	分化频率提高

当同时使用这两类激素时,两者用量的比例影响植物细胞的发育方向(参见旁栏)。可见,植物激素的浓度、使用的先后顺序以及用量的比例等,都会影响实验结果。植物激素的应用要做到得心应手,还得靠大量实践。

除了上述因素外,pH、温度、光照等条件也很重要。不同的植物对各种条件的要求往往不同。进行菊花的组织培养,一般将pH控制在5.8左右,温度控制在18~22℃,并且每日用日光灯照射12h。

图 3-2 未开花的菊花植株

- 你能说出各种营养物质的作用吗? 同专题2中微生物培养基的配方相 比, MS培养基的配方有哪些明显 的不同?
- 常用的植物激素有: 生长素、细胞分裂素和赤霉素等。生长素类有: 2,4-二氯苯氧乙酸(2,4-D)、吲哚乙酸(IAA)、萘乙酸(NAA)、吲哚丁酸(IBA)等。细胞分裂素类有: 激动素 (KT)、6-苄基嘌呤(6-BA)、玉米素(ZT)等。赤霉素类有赤霉酸(GA₃)等。
- 生长素用量比细胞分裂素用量, 比值高时,有利于根的分化、抑制芽的形成,比值低时,有利于 芽的分化、抑制根的形成。比值 适中时,促进愈伤组织的形成。

为了避免每次配制培养基时都要称量几十种成分,可以将各种成分按比例配制成浓缩液,即培养基母液,使用时,根据浓缩比例计算用量,加水稀释。

- 用于离体培养的植物器官或组织片段,叫做外植体。
- 对外植体进行表面消毒时,既要考虑药剂的消毒效果,又要考虑植物的耐受能力。

实验操作

(一) 制备 MS 固体培养基

MS培养基含有20多种营养成分,实验室一般使用4℃保存的配制好的培养基母液来制备。具体操作如下。

- 1. 配制各种母液 配制母液时,无机物中大量元素浓缩10倍,微量元素浓缩100倍(MS培养基的配方参见附录3),常温保存。激素类、维生素类以及用量较小的有机物一般可按1 mg/mL的质量浓度单独配制成母液。用母液配制培养基时,需要根据各种母液的浓缩倍数,计算用量。
- 2. 配制培养基 配制 1 L MS 培养基时, 先将称好的琼脂加入800 mL蒸馏水, 加热使琼脂熔化, 然后加入蔗糖 30 g, 取配制好的大量元素、微量元素、有机物和植物激素的母液, 依次加入, 加蒸馏水定容至 1 000 mL, 调节 pH, 最后分装到锥形瓶中, 每瓶分装 50 mL或 100 mL。由于菊花茎段的组织培养比较容易,因此不必添加植物激素。如果有兴趣, 你也可以试着添加一些激素。
- 3. 灭菌 将分装好的培养基连同其他器械一起进行 高压蒸汽灭菌。

(二) 外植体消毒

选取菊花茎段时,要取生长旺盛的嫩枝。菊花茎段用流水冲洗后可加少许洗衣粉,用软刷轻轻刷洗,刷洗后在流水下冲洗20 min 左右。用无菌吸水纸吸干外植体表面的水分,放入体积分数为 70% 的酒精中摇动 2~3 次,持续6~7 s,立即将外植体取出,在无菌水中清洗。取出后仍用无菌吸水纸吸干外植体表面水分,放入质量分数为 0.1%的氯化汞溶液中1~2 min。取出后,在无菌水中至少清洗3次,漂净消毒液。

(三)接种

接种前用体积分数为70%的酒精将工作台擦拭一遍。工作台消毒后,首先点燃酒精灯。此后,所有的接种操作都必须在酒精灯旁进行,并且每次使用器械后,都需要用火焰灼烧灭菌。

将装有培养基的锥形瓶整齐地排列在酒精灯左侧。将 消过毒的菊花茎段在无菌培养皿中切成小段(长约0.5~1 cm)。左手持锥形瓶,右手拉开捆扎锥形瓶的绳子,并将 封口膜攥于右手手心,以避免封口膜接触瓶口的一面被污染。左手持瓶,使瓶口旋转通过火焰,右手用镊子夹取菊 花茎段,插入培养基中(图3-3)。插入时应注意方向,不要倒插。每瓶接种6~8块外植体。接种后,将封口膜重新扎好。

图 3-3 接种操作

(四) 培养

接种后的锥形瓶最好放在无菌箱中培养,培养期间 应定期消毒。培养温度控制在18~22℃,并且每日用日 光灯光照12h。

(五) 移栽

在移栽生根的菊花试管苗之前,应先打开培养瓶的封口膜,让试管苗在培养间生长几日。然后用流水清洗根部的培养基,将幼苗移植到消过毒的蛭石或珍珠岩等环境下生活一段时间,等幼苗长壮后再移栽到土壤中(图3-4)。

(六) 栽培

将幼苗移栽后,每天观察并记录幼苗生长情况(图3-5), 适时浇水、施肥,直至开花。

结果分析与评价

- 1. 接种 3~4 d 后,观察外植体的生长情况,统计有 多少外植体被污染,有多少能正常生长。分析外植体被污染的原因。
- 2. 你培养出愈伤组织了吗? 从接种到长出愈伤组织经历了多少天? 你培养出的愈伤组织进一步分化出根和芽了吗?
- 3. 两周后观察茎段的分化情况,填好结果记录表,并及时分析结果。
 - 4. 幼苗移栽到露地后,能够正常生长吗?

你打算做几个重复组?你打算设置 对照实验吗?

图 3-4 幼苗的移栽

图 3-5 移栽后的幼苗

以下配方可供你参考。 诱导菊花愈伤组织: 在MS培养基中加入BA和NAA. 质量浓度均为 0.5mg/L。

诱导菊花丛芽。

在MS培养基中加入BA和NAA, 质量浓度分别为2~3 mg/L和 $0.02 \sim 0.3 \text{ mg/L}_{\odot}$

诱导菊花生根。

MS培养基各成分用量减半,并 添加 NAA 或 IAA, 质量浓度均 为 0.1 mg/L。

课题延伸

一般来说,容易进行无性繁殖的植物,也容易进行组 织培养, 如芦荟、豆瓣绿、秋海棠、月季等。你可以从中 挑选一种你喜欢的植物,进行组织培养。

如果你对植物激素的作用感兴趣的话,可以在查阅资 料的基础上,探究生长素与细胞分裂素的使用比例对植 物组织培养的影响。例如,你可以设计一组对照实验,分 别探究不加任何植物激素、生长素用量与细胞分裂素用 量的比值为1、比值大于1以及比值小于1时,对实验结 果的影响。

1. 在植物组织培养的过程中,为什么要进行 一系列的消毒、灭菌,并且要求无菌操作?

2. 在选取菊花茎段的时候,为什么要选取生 长旺盛的嫩枝?

课题2

月季的花药培养

课题背景

1964年,印度科学家在培养毛叶曼陀罗的花药时, 首次获得了由花药中的花粉粒发育而来的单倍体植株。 这个实验说明生殖细胞和体细胞一样,在离体条件下 也具有发育成完整植株的潜能。自20世纪60年代以来, 花药培养的研究发展迅速。据记载,世界上已有250多种高 等植物的花药培养获得成功,其中小麦、玉米、大豆、甘蔗和 橡胶等近50种植物的花粉再生植株已由我国科技人员首先培育成功。

植物的花药培养在育种上有特殊的意义。育种工作者可以采用花药培养的方法,使花粉粒发育为单倍体植株,再经过人工诱导使染色体数目加倍,重新恢复到正常植株的染色体数目。这样的植株不仅能够正常生殖,而且每对染色体上的成对的基因都是纯合的,自交产生的后代不会产生性状分离。单倍体育种不仅缩短了育种周期,也为新品种的培育开辟了新途径。在本课题中,我们将尝试月季的花药培养。

基础知识

(一) 被子植物的花粉发育

被子植物的雄蕊通常包含花丝、花药两部分。花药为囊状结构,内部含有许多花粉。花粉是由花粉母细胞经过减数分裂而形成的,因此,花粉是单倍体的生殖细胞。被子植物花粉的发育要经历小孢子四分体时期、单核期和双核期等阶段(图3-6)。在小孢子四分体时期,4个单倍体

图 3-6 被子植物花粉的发育过程

细胞连在一起,进入单核期时,四分体的4个单倍体细胞 彼此分离,形成4个具有单细胞核的花粉粒。这时的细胞 含浓厚的原生质,核位于细胞的中央(单核居中期)。随 着细胞不断长大,细胞核由中央移向细胞一侧(单核靠边 期),并分裂成1个生殖细胞核和1个花粉管细胞核,进而 形成两个细胞,一个是生殖细胞,一个是营养细胞。生殖 细胞将再分裂一次,形成两个精子。

(二)产生花粉植株的两种涂径

通过花药培养产生花粉植株(即单倍体植株)一般有 两种途径(图3-7),一种是花粉通过胚状体阶段发育为植 株,另一种是花粉在诱导培养基上先形成愈伤组织,再将 其诱导分化成植株。这两种途径之间并没有绝对的界限, 主要取决于培养基中激素的种类及其浓度配比。

图 3-7 花药培养产生花粉植株的两种途径

人们一直以为,植物细胞的离体培养只能通过分别诱 导芽和根等器官再发育成植株。20世纪50年代末,科学家 在胡萝卜根组织的单细胞悬浮培养液中发现、某些体细胞 在形态上转变为与合子发育成的胚非常相似的结构,它的 发育过程也与合子胚类似, 胚芽、胚根、胚轴等结构完整, 就像一颗种子。科学家将这种结构称做体细胞胚(somatic embryo) 或胚状体 (embryoid)。除了植物的体细胞外,由 单倍体性细胞产生的花粉胚, 也可发育成为单倍体植株。

(三) 影响花药培养的因素

诱导花粉植株能否成功及诱导成功率的高低,受多种 因素影响, 其中材料的选择与培养基的组成是主要的影响 因素。

不同植物的诱导成功率很不相同。就同一种植物来 说,亲本植株的生理状况对诱导成功率也有直接影响。花 期早期时的花药比后期的更容易产生花粉植株。一般月季 的花药培养时间选在五月初到五月中旬,即月季的初花期。 选择合适的花粉发育时期也是提高诱导成功率的重要因素。 这是因为并不是任何时期的花粉都可以经过培养产生愈伤

花期一般指在一个生长季内植株 开花的时间段。比如某些种类的 月季,从5月初一直到11月都连续 开花。那么5月初就叫做该种月季 的初花期或花期早期。花期早期 的花蕾营养状态及生理状态会比 较好,能提高花粉诱导成功率。

组织或胚状体,在花粉发育的过程中,只有某一个时期对 离体刺激敏感。一般来说,在单核期,细胞核由中央移向 细胞一侧的时期,花药培养成功率最高。选择单核期以前 的花药接种,质地幼嫩,极易破碎,选择单核期以后的花药 接种,花瓣已有些松动,又给材料的消毒带来困难。为了挑 选到单核期的花药,通常选择完全未开放的花蕾(图3-8)。 盛开的或略微开放的花(图3-9),都不宜选作实验材料。 此外,亲本植株的生长条件、材料的低温预处理以及接种 密度等对诱导成功率都有一定影响。

实验操作

(一) 材料的选取

选择花药时,一般要通过镜检来确定其中的花粉是否处于适宜的发育期。确定花粉发育时期的最常用的方法有醋酸洋红法。但是,某些植物的花粉细胞核不易着色,需采用焙花青-铬矾法,这种方法能将花粉细胞核染成蓝黑色。

醋酸洋红法 将花药放在载玻片上,加一滴质量分数为1%的醋酸洋红,用镊柄将花药捣碎,盖上盖玻片后在显微镜下检查。醋酸洋红的配制方法是:将体积分数为45%的醋酸100 mL煮沸,缓缓加入1g洋红,再加热回流(回流装置参见专题6课题2)8h,冷却至50℃,过滤即可。

焙花青-铬矾法 花药应先在卡诺氏固定液中固定 20 min, 然后取出放在载玻片上, 加焙花青-铬矾溶液染色,盖上盖玻片后在显微镜下检查。卡诺氏固定液的配制方法是: 将无水酒精与冰醋酸按体积比为3:1的比例混匀。焙花青-铬矾溶液的配制方法是: 将5 g铬钾矾 [$K_2SO_4Cr_2$ (SO_4) $_3\cdot 24H_2O$] 加入90 mL 蒸馏水中,溶解后加入0.1 g焙花青,混匀并加热至沸腾,煮沸5 min后冷却至室温,过滤,加蒸馏水定容至100 mL。

(二) 材料的消毒

通常先将花蕾用体积分数为70%的酒精浸泡大约30 s,立即取出,在无菌水中清洗。取出后再用无菌吸水纸吸干花蕾表面的水分,放入质量分数为0.1%的氯化汞溶液中2~4 min(也可用质量分数为1%的次氯酸钙溶液或饱和漂白粉溶液),取出后再用无菌水冲洗3~5次。

(三)接种和培养

消毒后的花蕾,要在无菌条件下除去萼片和花瓣,并立即将花药接种到培养基上。在剥离花药时,要尽量不损

为什么花瓣松动会给材料的消毒带来困难?

图 3-8 完全未开放的月季花蕾

图 3-9 略微开放的月季花蕾

🕖 月季花药培养基配方

在1000 mL MS 培养基配方中添加

2.4-D

0.4 mg

KT

0.2 mg

IAA

4 mg

调节pH至5.8。

诱导丛芽或胚状体的培养基 配方

MS 培养基中添加 GA、IBA 和 BA, 质量浓度分别为0.1 mg/L、 0.5 mg/L 和 1 mg/L。

诱导生根的培养基配方 MS培养基各成分用量减半,添 加 IAA, 质量浓度为 1.5 mg/L。 伤花药(否则接种后容易从受伤部位产生愈伤组织),同时 还要彻底去除花丝,因为与花丝相连的花药不利于愈伤组 织或胚状体的形成。

通常每瓶接种花药7~10个,培养温度控制在25℃左 右,不需要光照。幼小植株形成后才需要光照。

一般经过20~30 d培养后, 会发现花药开裂, 长出愈 伤组织或形成胚状体。将愈伤组织及时转移到分化培养基 上,以便进一步分化出再生植株。如果花药开裂释放出胚 状体,则一个花药内就会产生大量幼小植株,必须在花药 开裂后尽快将幼小植株分开,分别移植到新的培养基上, 否则这些植株将很难分开。

在花药培养中,特别是通过愈伤组织形成的花粉植 株,染色体组的数目常常会发生变化。因此还需要对培养 出来的植株作进一步的鉴定和筛选。

结果分析与评价

- 1. 你能够通过镜检找到处于适宜的发育期的花粉 吗?
- 2. 你的花药培养出现了被污染的现象吗? 如果有, 请分析产生污染的原因。
 - 3. 你接种的花药是否长出了花粉愈伤组织或胚状体?

1. 紫色、不甜的玉米(基因型为AASuSu)和 白色、甜玉米 (基因型为aasusu) 杂交 (Su和su代 表一对等位基因),得到的F,(AaSusu)再进行自 交, F, 会有紫色甜玉米的表现型产生。如果运用常 规育种方法,应该如何筛选出纯合的紫色甜玉米?

如果利用花药培养的技术,又应该怎样做呢?

2. 学完这个专题后, 你能说出植物组织培养 技术与花药培养技术的异同吗? 你能举例说明组织 培养技术在生产中的实际应用吗?