基于知识驱动的对话聊天机器人

背景

- •知识驱动对话---当前的聊天机器人聊天<mark>不够主动</mark>(更多仅仅 是回复),且回复信息**不够丰富**
- •目标:对话系统为机器设定了一个对话目标,goal为 "START->TOPIC_A->TOPIC_B",表示从冷启动状态主动聊到 话题A,然后进一步聊到话题B;
- 提供的相关知识信息包括: 话题A的知识信息, 话题B的知识信息, 话题A和话题B的关联信息。

一个例子

• 话题A: 托马斯·桑斯特

• 话题B: 陈思宇

• 话题间的关联: 两者的出生日期都

是1990-5-16

-个例子 地生日期一

机器人

知道外国有个明星长得很萌吗?

这个还真不知道呢,请问是谁啊?

机器人

机器人

是托马斯·桑斯特, 颜值太高了。

哦,没听说过呢,你能给大体说说么?

给你大体说说,他口碑很好的,也很有才华,我们国家有个小哥哥跟他一样都是1990年5月16日出生的。

是谁啊?

机器人

陈思宇 , 金牛座 的 , 毕业于 北京电影学院 。

有时间了解一下。

-个例子

机器人

知道 外国 有 个 明星 长 得 很 萌吗?

这个还真不知道呢,请问 是谁啊?

机器人

是 托马斯·桑斯特 , 颜值 太 高了。

哦,没听说过呢,你能 给大体说说么?

机器人

给你大体说说,他口碑很 好的,也很有才华,我 们国家有个小哥哥跟他 一样 都是 1990年5月16日 出 生的。

机器人

陈思宇 , 金牛座 的 , 毕业 于北京电影学院。

有时间了解一下。

相关工作

 A Knowledge-Grounded Neural Conversation Model. (Marjan Ghazvininejad et al.2017)

- 1.使用命名实体为key生成facts的倒排表2.通过命名实体识别出History的中命名实体,以此作为查询条件,选出相关facts3.将选出的facts和History进行attention操作,得到每个facts的权重,最后得到facts的weighted sum
- 4.将History和处理之后的facts一起送进 decoder,得到输出

模型

- 1.通过IR SYSTEM得到可能的Response
- 2.将History和Response拼接后经过一个Transformer 编码得到Context
- 3.将话题和知识库经过双向GRU编码后得到一个知识库矩阵Input
- 4.将Context和Input的每一列做内积运算
- 5.将内积运算经过一个softmax层,得到权重Weights
- 6.将Input和Weights做乘积后加和,得到Output
- 7.将Context和Output拼接
- 8.将7中的拼接结果经过一个全连接层(实验有多个全连接层),输出为2个神经单元-0或者1
- 9.做损失计算

IR SYSTEM

◎以单个中文字或者英文字为key的倒排表

- 1.以Topic为key的倒排表没有画出 2.分别以Topic和对话历史倒数两句话为 检索条件,各得到7个候选回答 3.第一步通过倒排表得到所有可能相似历 史Candidate
- 4.计算最后一句话(如果是倒数第二句话则使用倒数第二句话)和Candidate的tf-idf相似度,取前7位
- ◎TD-IDF矩阵, 任意相邻的两句话是一组对话

结果

	是否是最佳回答	precision	recall	F1-score
训练集	0	0.97	0.97	0.97
	1	0.05	0.05	0.05
验证集	0	0.94	1.00	0.97
	1	0.00	0.00	0.00

- 错误分析
 - 正负样本比例差距太大, 训练集正负样本比例为30:1

引入Focal Loss

$$L_{fl} = \begin{cases} -\alpha (1 - y')^{\gamma} log y' &, & y = 1 \\ -(1 - \alpha) y'^{\gamma} log (1 - y'), & y = 0 \end{cases}$$

• 设置α=0.96, γ=4

	是否是最佳回答	precision	recall	F1-score
训练集	0	0.98	0.58	0.73
	1	0.05	0.64	0.09
验证集	0	0.96	0.33	0.49
	1	0.07	0.79	0.12

重采样

• 增加正样本的数量, 使其比例为1:1, α=0.5, γ=2

	是否是最佳回答	precision	recall	F1-score
训练集	0	0.82	0.67	0.74
	1	0.72	0.85	0.78
验证集	0	0.84	0.37	0.51
	1	0.60	0.93	0.73

• 错误分析

- 增加正样本错误分类的惩罚导致大量负样本被错误分类
- 提高正样本比例,准确率和召回率都有一定地提升,但是还是有大量的负样本被错误分类
- 考虑在该维度空间正负样本不可分

映射到高位空间

• 使用RBF神经网络—随机选取RBF中心

	是否是最佳回答	precision	recall	F1-score
训练集	0	0.97	0.98	0.97
	1	0.05	0.05	0.05

- 错误分析
 - 经过高维映射后反而效果更差,原因可能是:
 - I. 因为是随机选取RBF中心,选取的中心不合适

测试集效果

话题: "偶然 与 巧合", "克劳德·勒鲁什"

错误的回答,且尝 试引导到其他方向 上去