Embeddings: The Basics

Hinrich Schütze

Center for Information and Language Processing, LMU Munich

2017-07-17

Overview

Distributional semantics

- WordSpace
- Norms & scores

Outline

Distributional semantics

- WordSpace
- Norms & scores

 Two words are semantically similar if they have similar meanings.

 Two words are semantically similar if they have similar meanings.

• Examples of similar words:

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - $\bullet \quad \text{``furze''} \leftrightarrow \text{``gorse''}$

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"
 - "banana" ↔ "apple" (these two are less similar)

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"
 - "banana" ↔ "apple" (these two are less similar)
- Examples of not similar words:

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"
 - "banana" ↔ "apple" (these two are less similar)
- Examples of not similar words:
 - "car" ↔ "flower"

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"
 - "banana" ↔ "apple" (these two are less similar)
- Examples of not similar words:
 - "car" ↔ "flower"
 - "car" ↔ "pope"

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"
 - "banana" ↔ "apple" (these two are less similar)
- Examples of not similar words:
 - "car" ↔ "flower"
 - "car" ↔ "pope"
- Examples of similar words that are not nouns:

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"
 - "banana" ↔ "apple" (these two are less similar)
- Examples of not similar words:
 - "car" ↔ "flower"
 - "car" ↔ "pope"
- Examples of similar words that are not nouns:
 - "huge" ↔ "large"

- Two words are semantically similar if they have similar meanings.
- Examples of similar words:
 - "furze" ↔ "gorse"
 - "astronaut" ↔ "cosmonaut"
 - "car" ↔ "automobile"
 - "banana" ↔ "apple" (these two are less similar)
- Examples of not similar words:
 - "car" ↔ "flower"
 - "car" ↔ "pope"
- Examples of similar words that are not nouns:
 - "huge" ↔ "large"
 - "eat" ↔ "devour"

• Two words are semantically related if their meanings are related.

 Two words are semantically related if their meanings are related.

 $\bullet \ \ \mathsf{Example:} \ \ ``\mathsf{car}" \leftrightarrow \mathsf{``autobahn"}"$

- Two words are semantically related if their meanings are related.
- Example: "car" \leftrightarrow "autobahn"
- A car is not similar to an autobahn, but there is an obvious relationship between them.

- Two words are semantically related if their meanings are related.
- Example: "car" ↔ "autobahn"
- A car is not similar to an autobahn, but there is an obvious relationship between them.
- Linguistically / ontologically well defined relations: synonymy, antonymy, hypernymy, meronymy, troponymy, . . .

- Two words are semantically related if their meanings are related.
- Example: "car" ↔ "autobahn"
- A car is not similar to an autobahn, but there is an obvious relationship between them.
- Linguistically / ontologically well defined relations: synonymy, antonymy, hypernymy, meronymy, troponymy, . . .
- Note that car-autobahn is not an instance of any of these!

- Two words are semantically related if their meanings are related.
- Example: "car" ↔ "autobahn"
- A car is not similar to an autobahn, but there is an obvious relationship between them.
- Linguistically / ontologically well defined relations: synonymy, antonymy, hypernymy, meronymy, troponymy, . . .
- Note that car-autobahn is not an instance of any of these!
- More generally: Two words are semantically related if their meanings are related in the real world. For example, if one word describes a given situation ("I'm on the autobahn"), then it is very likely that the other word also describes this situation ("I'm in a car").

- Two words are semantically related if their meanings are related.
- Example: "car" ↔ "autobahn"
- A car is not similar to an autobahn, but there is an obvious relationship between them.
- Linguistically / ontologically well defined relations: synonymy, antonymy, hypernymy, meronymy, troponymy, . . .
- Note that car-autobahn is not an instance of any of these!
- More generally: Two words are semantically related if their meanings are related in the real world. For example, if one word describes a given situation ("I'm on the autobahn"), then it is very likely that the other word also describes this situation ("I'm in a car").
- There is a spectrum here: synonymous, very similar, less similar, related, unrelated

Distributional semantics

Distributional semantics

 Distributional semantics is an approach to semantics that is based on the contexts of words and linguistic expressions in large corpora.

Distributional semantics

- Distributional semantics is an approach to semantics that is based on the contexts of words and linguistic expressions in large corpora.
- The basic notions formalized in distributional semantics are semantic similarity and semantic relatedness.

• It's a solvable problem (see below).

- It's a solvable problem (see below).
 - Many other things we want to do with language are more interesting, but nobody has been able to solve them so far.

- It's a solvable problem (see below).
 - Many other things we want to do with language are more interesting, but nobody has been able to solve them so far.
- There are many applications for distributional semantic similarity/relatedness.

- It's a solvable problem (see below).
 - Many other things we want to do with language are more interesting, but nobody has been able to solve them so far.
- There are many applications for distributional semantic similarity/relatedness.
 - E.g., query expansion in information retrieval

- It's a solvable problem (see below).
 - Many other things we want to do with language are more interesting, but nobody has been able to solve them so far.
- There are many applications for distributional semantic similarity/relatedness.
 - E.g., query expansion in information retrieval
 - User types in query [automobile]

- It's a solvable problem (see below).
 - Many other things we want to do with language are more interesting, but nobody has been able to solve them so far.
- There are many applications for distributional semantic similarity/relatedness.
 - E.g., query expansion in information retrieval
 - User types in query [automobile]
 - Search engine expands with semantically similar word [car]

- It's a solvable problem (see below).
 - Many other things we want to do with language are more interesting, but nobody has been able to solve them so far.
- There are many applications for distributional semantic similarity/relatedness.
 - E.g., query expansion in information retrieval
 - User types in query [automobile]
 - Search engine expands with semantically similar word [car]
 - The search engine then uses the query [car OR automobile]

- It's a solvable problem (see below).
 - Many other things we want to do with language are more interesting, but nobody has been able to solve them so far.
- There are many applications for distributional semantic similarity/relatedness.
 - E.g., query expansion in information retrieval
 - User types in query [automobile]
 - Search engine expands with semantically similar word [car]
 - The search engine then uses the query [car OR automobile]
 - Better results for the user

Google: Internal model of semantic similarity

Distributional Semantics: History

Distributional Semantics: History

- Leibniz
- Harris
- Firth
- Miller

Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz

Eadem sunt quorum unum potest substitui alteri salva veritate. (17th century) — Those things are identical of which one can be substituted for the other without loss of truth.

Gottfried Wilhelm Leibniz

Eadem sunt quorum unum potest substitui alteri salva veritate. (17th century) — Those things are identical of which one can be substituted for the other without loss of truth. This is a definition of synonymy.

Zellig Harris

Zellig Harris

... difference in meaning correlates with difference of distribution. (1954)

John Rupert Firth

John Rupert Firth

You shall know a word by the company it keeps. (1957)

George A. Miller

George A. Miller

Those things are similar of which one can be substituted for the other without loss of plausibility. (1991)

Starting point: Leibniz

- Starting point: Leibniz
- It is doubtful there are any true synonyms if this is our definition.

- Starting point: Leibniz
- It is doubtful there are any true synonyms if this is our definition.
- Replace "loss of truth" with "loss of plausibility": Those things are similar of which one can be substituted for the other without loss of plausibility.

- Starting point: Leibniz
- It is doubtful there are any true synonyms if this is our definition.
- Replace "loss of truth" with "loss of plausibility": Those things are similar of which one can be substituted for the other without loss of plausibility.
- Hence: The semantic similarity [between words] is a function of the contexts in which they are used. (Miller and Charles 1991)

• Given: a large text corpus (e.g., of English)

- Given: a large text corpus (e.g., of English)
- Come up with an algorithm that computes a rough measure of semantic similarity between two words

- Given: a large text corpus (e.g., of English)
- Come up with an algorithm that computes a rough measure of semantic similarity between two words
 - For example, the algorithm should tell us that "car" and "automobile" are similar, but "car" and "flower" are not.

Distributional semantics

- WordSpace
- Norms & scores

• Assume the equivalence of:

- Assume the equivalence of:
 - Two words are semantically similar.

- Assume the equivalence of:
 - Two words are semantically similar.
 - Two words occur in similar contexts (Miller & Charles, roughly).

- Assume the equivalence of:
 - Two words are semantically similar.
 - Two words occur in similar contexts (Miller & Charles, roughly).
 - Two words have similar word neighbors in the corpus.

- Assume the equivalence of:
 - Two words are semantically similar.
 - Two words occur in similar contexts (Miller & Charles, roughly).
 - Two words have similar word neighbors in the corpus.
- Elements of this are from Leibniz, Harris, Firth, and Miller.

- Assume the equivalence of:
 - Two words are semantically similar.
 - Two words occur in similar contexts (Miller & Charles, roughly).
 - Two words have similar word neighbors in the corpus.
- Elements of this are from Leibniz, Harris, Firth, and Miller.
- Strictly speaking, similarity of neighbors is neither necessary nor sufficient for semantic similarity.

- Assume the equivalence of:
 - Two words are semantically similar.
 - Two words occur in similar contexts (Miller & Charles, roughly).
 - Two words have similar word neighbors in the corpus.
- Elements of this are from Leibniz, Harris, Firth, and Miller.
- Strictly speaking, similarity of neighbors is neither necessary nor sufficient for semantic similarity.
- But perhaps this is good enough.

• Two words are neighbors if they cooccur.

- Two words are neighbors if they cooccur.
- The cooccurrence count of words w_1 and w_2 in corpus G is the number of times that w_1 and w_2 cooccur

- Two words are neighbors if they cooccur.
- The cooccurrence count of words w_1 and w_2 in corpus G is the number of times that w_1 and w_2 cooccur
 - in a linguistic relationship with each other (e.g., w_1 is a modifier of w_2) or

- Two words are neighbors if they cooccur.
- The cooccurrence count of words w_1 and w_2 in corpus G is the number of times that w_1 and w_2 cooccur
 - in a linguistic relationship with each other (e.g., w_1 is a modifier of w_2) or
 - in the same sentence or

- Two words are neighbors if they cooccur.
- The cooccurrence count of words w_1 and w_2 in corpus G is the number of times that w_1 and w_2 cooccur
 - in a linguistic relationship with each other (e.g., w_1 is a modifier of w_2) or
 - in the same sentence or
 - in the same document or

Variants of neighbors / cooccurrence

- Two words are neighbors if they cooccur.
- The cooccurrence count of words w_1 and w_2 in corpus G is the number of times that w_1 and w_2 cooccur
 - in a linguistic relationship with each other (e.g., w_1 is a modifier of w_2) or
 - in the same sentence or
 - in the same document or
 - within a distance of at most k words (where k is a parameter)

corpus = English Wikipedia

- corpus = English Wikipedia
- ullet cooccurrence defined as occurrence within k=10 words of each other

- corpus = English Wikipedia
- ullet cooccurrence defined as occurrence within k=10 words of each other
 - cooc.(rich,silver) = 186

- corpus = English Wikipedia
- cooccurrence defined as occurrence within k = 10 words of each other
 - cooc.(rich,silver) = 186
 - cooc.(poor,silver) = 34

- corpus = English Wikipedia
- cooccurrence defined as occurrence within k = 10 words of each other
 - cooc.(rich,silver) = 186
 - cooc.(poor,silver) = 34
 - cooc.(rich,disease) = 17

- corpus = English Wikipedia
- cooccurrence defined as occurrence within k = 10 words of each other
 - cooc.(rich,silver) = 186
 - cooc.(poor,silver) = 34
 - cooc.(rich,disease) = 17
 - cooc.(poor,disease) = 162

- corpus = English Wikipedia
- ullet cooccurrence defined as occurrence within k=10 words of each other
 - cooc.(rich,silver) = 186
 - cooc.(poor,silver) = 34
 - cooc.(rich,disease) = 17
 - cooc.(poor,disease) = 162
 - cooc.(rich,society) = 143

- corpus = English Wikipedia
- cooccurrence defined as occurrence within k = 10 words of each other
 - cooc.(rich,silver) = 186
 - cooc.(poor,silver) = 34
 - cooc.(rich,disease) = 17
 - cooc.(poor,disease) = 162
 - cooc.(rich,society) = 143
 - cooc.(poor,society) = 228

cooc.(poor,silver)=34, cooc.(rich,silver)=186,

cooc.(poor,silver)=34, cooc.(rich,silver)=186,

cooc.(poor,silver)=34, cooc.(rich,silver)=186,

cooc.(poor,silver)=34, cooc.(rich,silver)=186,

cooc.(poor,silver)=34, cooc.(rich,silver)=186, cooc.(poor,disease)=162, cooc.(rich,disease)=17,

cooc.(poor,silver)=34, cooc.(rich,silver)=186, cooc.(poor,disease)=162, cooc.(rich,disease)=17, cooc.(poor,society)=228, cooc.(rich,society)=143

Exercise

Add "society" to the graph.

21 / 62 Schütze: Embeddings

cooc.(poor,silver)=34, cooc.(rich,silver)=186, cooc.(poor,disease)=162, cooc.(rich,disease)=17, cooc.(poor,society)=228, cooc.(rich,society)=143

cooc.(poor,silver)=34, cooc.(rich,silver)=186, cooc.(poor,disease)=162, cooc.(rich,disease)=17, cooc.(poor,society)=228, cooc.(rich,society)=143

cooc.(poor,silver)=34, cooc.(rich,silver)=186, cooc.(poor,disease)=162, cooc.(rich,disease)=17, cooc.(poor,society)=228, cooc.(rich,society)=143

The similarity between two words is the cosine of the angle between them.

The similarity between two words is the cosine of the angle between them.

Small angle: silver and gold are similar.

The similarity between two words is the cosine of the angle between them.

Medium-size angle: silver and society are not very similar.

23 / 62 Schütze: Embeddings

The similarity between two words is the cosine of the angle between them.

Large angle: silver and disease are even less similar.

23 / 62 Schütze: Embeddings

Up to now we've only used two dimension words: rich and poor

- Up to now we've only used two dimension words:
 rich and poor
- Now do this for a very large number of dimension words: hundreds, thousands, or even millions of dimension words.

- Up to now we've only used two dimension words: rich and poor
- Now do this for a very large number of dimension words: hundreds, thousands, or even millions of dimension words.
- This is now a very high-dimensional space with a large number of vectors represented in it.

- Up to now we've only used two dimension words: rich and poor
- Now do this for a very large number of dimension words: hundreds, thousands, or even millions of dimension words.
- This is now a very high-dimensional space with a large number of vectors represented in it.
- But formally, there is no difference to a two-dimensional space with three vectors.

- Up to now we've only used two dimension words: rich and poor
- Now do this for a very large number of dimension words: hundreds, thousands, or even millions of dimension words.
- This is now a very high-dimensional space with a large number of vectors represented in it.
- But formally, there is no difference to a two-dimensional space with three vectors.
- Note: a word has dual role in WordSpace.

- Up to now we've only used two dimension words: rich and poor
- Now do this for a very large number of dimension words: hundreds, thousands, or even millions of dimension words.
- This is now a very high-dimensional space with a large number of vectors represented in it.
- But formally, there is no difference to a two-dimensional space with three vectors.
- Note: a word has dual role in WordSpace.
 - Each word is a dimension word, an axis of the space.

- Up to now we've only used two dimension words: rich and poor
- Now do this for a very large number of dimension words: hundreds, thousands, or even millions of dimension words.
- This is now a very high-dimensional space with a large number of vectors represented in it.
- But formally, there is no difference to a two-dimensional space with three vectors.
- Note: a word has dual role in WordSpace.
 - Each word is a dimension word, an axis of the space.
 - But each word is also a vector in that space.

1.000 silver

1.000 silver / 0.865 bronze

1.000 silver / 0.865 bronze / 0.842 gold

26 / 62 Schütze: Embeddings

 $1.000 \; \text{silver} \; / \; 0.865 \; \text{bronze} \; / \; 0.842 \; \text{gold} \; / \; 0.836 \; \text{medal}$

1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826 medals

26 / 62 Schütze: Embeddings

1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826 medals / 0.761 relay

1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826 medals / 0.761 relay / 0.740 medalist

 $1.000 \; \text{silver} \; / \; 0.865 \; \text{bronze} \; / \; 0.842 \; \text{gold} \; / \; 0.836 \; \text{medal} \; / \; 0.826 \; \text{medals} \; / \; 0.761 \; \text{relay} \; / \; 0.740 \; \text{medalist} \; / \; 0.737 \; \text{coins}$

 $1.000~\rm silver$ / $0.865~\rm bronze$ / $0.842~\rm gold$ / $0.836~\rm medal$ / $0.826~\rm medals$ / $0.761~\rm relay$ / $0.740~\rm medalist$ / $0.737~\rm coins$ / $0.724~\rm freestyle$

 $1.000~\rm silver$ / $0.865~\rm bronze$ / $0.842~\rm gold$ / $0.836~\rm medal$ / $0.761~\rm relay$ / $0.740~\rm medalist$ / $0.737~\rm coins$ / $0.724~\rm freestyle$ / $0.720~\rm metre$

 $1.000 \; \text{silver} \; / \; 0.865 \; \text{bronze} \; / \; 0.842 \; \text{gold} \; / \; 0.836 \; \text{medal} \; / \; 0.826 \; \text{medals} \; / \; 0.761 \; \text{relay} \; / \; 0.740 \; \text{medalist} \; / \; 0.737 \; \text{coins} \; / \; 0.724 \; \text{freestyle} \; / \; 0.720 \; \text{metre} \; / \; 0.716 \; \text{coin}$

1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826 medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724 freestyle / 0.720 metre / 0.716 coin / 0.714 copper

```
1.000 \; \text{silver} \; / \; 0.865 \; \text{bronze} \; / \; 0.842 \; \text{gold} \; / \; 0.836 \; \text{medal} \; / \; 0.826 \; \text{medals} \; / \; 0.761 \; \text{relay} \; / \; 0.740 \; \text{medalist} \; / \; 0.737 \; \text{coins} \; / \; 0.724 \; \text{freestyle} \; / \; 0.720 \; \text{metre} \; / \; 0.716 \; \text{coin} \; / \; 0.714 \; \text{copper} \; / \; 0.712 \; \text{golden}
```

```
1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826
medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724
freestyle / 0.720 metre / 0.716 coin / 0.714 copper / 0.712 golden
/ 0.706 event
```

```
1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826
medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724
freestyle / 0.720 metre / 0.716 coin / 0.714 copper / 0.712 golden
/ 0.706 event / 0.701 won
```

```
1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826
medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724
freestyle / 0.720 metre / 0.716 coin / 0.714 copper / 0.712 golden
/ 0.706 event / 0.701 won / 0.700 foil
```

```
1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826
medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724
freestyle / 0.720 metre / 0.716 coin / 0.714 copper / 0.712 golden
/ 0.706 event / 0.701 won / 0.700 foil / 0.698 Winter
```

```
1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826
medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724
freestyle / 0.720 metre / 0.716 coin / 0.714 copper / 0.712 golden
/ 0.706 event / 0.701 won / 0.700 foil / 0.698 Winter / 0.684 Pan
```

```
1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826
medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724
freestyle / 0.720 metre / 0.716 coin / 0.714 copper / 0.712 golden
/ 0.706 event / 0.701 won / 0.700 foil / 0.698 Winter / 0.684 Pan
/ 0.680 vault
```

```
1.000 silver / 0.865 bronze / 0.842 gold / 0.836 medal / 0.826
medals / 0.761 relay / 0.740 medalist / 0.737 coins / 0.724
freestyle / 0.720 metre / 0.716 coin / 0.714 copper / 0.712 golden
/ 0.706 event / 0.701 won / 0.700 foil / 0.698 Winter / 0.684 Pan
/ 0.680 vault / 0.675 jump
```

1.000 disease

1.000 disease / 0.858 Alzheimer

WordSpace

1.000 disease / 0.858 Alzheimer / 0.852 chronic

1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious

27 / 62 Schütze: Embeddings

 $1.000\ disease\ /\ 0.858\ Alzheimer\ /\ 0.852\ chronic\ /\ 0.846\ infectious\ /\ 0.843\ diseases$

```
1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious / 0.843 diseases / 0.823 diabetes
```

```
1.000\ disease\ /\ 0.858\ Alzheimer\ /\ 0.852\ chronic\ /\ 0.846\ infectious\ /\ 0.843\ diseases\ /\ 0.823\ diabetes\ /\ 0.814\ cardiovascular
```

```
1.000~\rm disease~/~0.858~\rm Alzheimer~/~0.852~chronic~/~0.846~infectious~/~0.843~\rm diseases~/~0.823~\rm diabetes~/~0.814~cardiovascular~/~0.810~infection
```

```
1.000~\rm disease~/~0.858~\rm Alzheimer~/~0.852~chronic~/~0.846~infectious~/~0.843~\rm diseases~/~0.823~\rm diabetes~/~0.814~cardiovascular~/~0.810~infection~/~0.807~\rm symptoms
```

```
1.000~\rm disease / 0.858~\rm Alzheimer / 0.852~\rm chronic / 0.846~infectious / 0.843~\rm diseases / 0.823~\rm diabetes / 0.814~\rm cardiovascular / 0.810~infection / 0.807~\rm symptoms / 0.805~\rm syndrome
```

```
1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious
/ 0.843 diseases / 0.823 diabetes / 0.814 cardiovascular / 0.810
infection / 0.807 symptoms / 0.805 syndrome / 0.801 kidney
```

```
1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious
/ 0.843 diseases / 0.823 diabetes / 0.814 cardiovascular / 0.810
infection / 0.807 symptoms / 0.805 syndrome / 0.801 kidney /
0.796 liver
```

```
1.000~\rm disease~/~0.858~\rm Alzheimer~/~0.852~chronic~/~0.846~infectious~/~0.843~\rm diseases~/~0.823~\rm diabetes~/~0.814~cardiovascular~/~0.810~infection~/~0.807~\rm symptoms~/~0.805~\rm syndrome~/~0.801~kidney~/~0.796~liver~/~0.788~Parkinson~
```

```
1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious
/ 0.843 diseases / 0.823 diabetes / 0.814 cardiovascular / 0.810
infection / 0.807 symptoms / 0.805 syndrome / 0.801 kidney /
0.796 liver / 0.788 Parkinson / 0.787 disorders
```

```
1.000~\rm disease /~0.858~\rm Alzheimer /~0.852~\rm chronic /~0.846~infectious /~0.843~\rm diseases /~0.823~\rm diabetes /~0.814~\rm cardiovascular /~0.810~\rm infection /~0.807~\rm symptoms /~0.805~\rm syndrome /~0.801~\rm kidney /~0.796~\rm liver /~0.788~\rm Parkinson /~0.787~\rm disorders /~0.787~\rm coronary
```

```
1.000~{\rm disease}~/~0.858~{\rm Alzheimer}~/~0.852~{\rm chronic}~/~0.846~{\rm infectious}~/~0.843~{\rm diseases}~/~0.823~{\rm diabetes}~/~0.814~{\rm cardiovascular}~/~0.810~{\rm infection}~/~0.807~{\rm symptoms}~/~0.805~{\rm syndrome}~/~0.801~{\rm kidney}~/~0.796~{\rm liver}~/~0.788~{\rm Parkinson}~/~0.787~{\rm disorders}~/~0.787~{\rm coronary}~/~0.779~{\rm complications}~
```

```
1.000~{\rm disease}~/~0.858~{\rm Alzheimer}~/~0.852~{\rm chronic}~/~0.846~{\rm infectious}~/~0.843~{\rm diseases}~/~0.823~{\rm diabetes}~/~0.814~{\rm cardiovascular}~/~0.810~{\rm infection}~/~0.807~{\rm symptoms}~/~0.805~{\rm syndrome}~/~0.801~{\rm kidney}~/~0.796~{\rm liver}~/~0.788~{\rm Parkinson}~/~0.787~{\rm disorders}~/~0.787~{\rm coronary}~/~0.779~{\rm complications}~/~0.778~{\rm cure}~
```

```
1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious
/ 0.843 diseases / 0.823 diabetes / 0.814 cardiovascular / 0.810
infection / 0.807 symptoms / 0.805 syndrome / 0.801 kidney /
0.796 liver / 0.788 Parkinson / 0.787 disorders / 0.787 coronary /
0.779 complications / 0.778 cure / 0.778 disorder
```

```
1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious
/ 0.843 diseases / 0.823 diabetes / 0.814 cardiovascular / 0.810
infection / 0.807 symptoms / 0.805 syndrome / 0.801 kidney /
0.796 liver / 0.788 Parkinson / 0.787 disorders / 0.787 coronary /
0.779 complications / 0.778 cure / 0.778 disorder / 0.778 Crohn
```

```
1.000 disease / 0.858 Alzheimer / 0.852 chronic / 0.846 infectious
/ 0.843 diseases / 0.823 diabetes / 0.814 cardiovascular / 0.810
infection / 0.807 symptoms / 0.805 syndrome / 0.801 kidney /
0.796 liver / 0.788 Parkinson / 0.787 disorders / 0.787 coronary /
0.779 complications / 0.778 cure / 0.778 disorder / 0.778 Crohn /
0.773 bowel
```

Distributional semantics

Wikipedia WordSpace demonstration

• Find an example word w where WordSpace fails

- Find an example word w where WordSpace fails
- That is: the list of words you get from a person when asking them to give you "similar words to w" ...

- Find an example word w where WordSpace fails
- That is: the list of words you get from a person when asking them to give you "similar words to w" ...
- ... is very different from what the WordSpace gives you.

- Find an example word w where WordSpace fails
- That is: the list of words you get from a person when asking them to give you "similar words to w" ...
- ... is very different from what the WordSpace gives you.
- Two subtasks (i) find the word (ii) explain why it fails

• Antonyms are judged to be similar: "disease" and "cure"

- Antonyms are judged to be similar: "disease" and "cure"
- Ambiguity: "Cambridge"

- Antonyms are judged to be similar: "disease" and "cure"
- Ambiguity: "Cambridge"
- Non-specificity (occurs in a large variety of different contexts and has few/no specific semantic associations): "person"

- Antonyms are judged to be similar: "disease" and "cure"
- Ambiguity: "Cambridge"
- Non-specificity (occurs in a large variety of different contexts and has few/no specific semantic associations): "person"
- The Wikipedia meaning is different from the meaning that comes to mind when the word is encountered without context: "umbrella"

- Antonyms are judged to be similar: "disease" and "cure"
- Ambiguity: "Cambridge"
- Non-specificity (occurs in a large variety of different contexts and has few/no specific semantic associations): "person"
- The Wikipedia meaning is different from the meaning that comes to mind when the word is encountered without context: "umbrella"
- Tokenization issues: "metal"

Up to this point: Formalization of WordSpace

Words have two roles: (i) objects located in the space (each gets a vector/embedding) (ii) dimensions of the space

Up to this point: Formalization of WordSpace

Words have two roles: (i) objects located in the space (each gets a vector/embedding) (ii) dimensions of the space

More general: Dual formalization

We have two different types of objects: (i) primary objects located in the space (usually words, each gets a vector/embedding) (ii) secondary objects (often: contexts, documents, but can also be words, see above)

Up to this point: Formalization of WordSpace

Words have two roles: (i) objects located in the space (each gets a vector/embedding) (ii) dimensions of the space

More general: Dual formalization

We have two different types of objects: (i) primary objects located in the space (usually words, each gets a vector/embedding) (ii) secondary objects (often: contexts, documents, but can also be words, see above)

Dual formalization:

The roles of primary and secondary objects can be flipped.

Up to this point: Formalization of WordSpace

Words have two roles: (i) objects located in the space (each gets a vector/embedding) (ii) dimensions of the space

More general: Dual formalization

We have two different types of objects: (i) primary objects located in the space (usually words, each gets a vector/embedding) (ii) secondary objects (often: contexts, documents, but can also be words, see above)

Dual formalization:

The roles of primary and secondary objects can be flipped. (This is just a first overview.)

• In these examples: primary object = word

- In these examples: primary object = word
- For WordSpace: secondary object = word
 - Match score: cosine, correlation of neighbors

- In these examples: primary object = word
- For WordSpace: secondary object = word
 - Match score: cosine, correlation of neighbors
- For LSI (information retrieval): secondary object = document
 - Match score: weighted occurrence count

- In these examples: primary object = word
- For WordSpace: secondary object = word
 - Match score: cosine, correlation of neighbors
- For LSI (information retrieval): secondary object = document
 - Match score: weighted occurrence count
- For word2vec skipgram: secondary object = context word
 - Match score: PPMI (see below)

- In these examples: primary object = word
- For WordSpace: secondary object = word
 - Match score: cosine, correlation of neighbors
- For LSI (information retrieval): secondary object = document
 - Match score: weighted occurrence count
- For word2vec skipgram: secondary object = context word
 - Match score: PPMI (see below)
- For word2vec cbow: secondary object = sum of context word
 - Match score: cosine

- In these examples: primary object = word
- For WordSpace: secondary object = word
 - Match score: cosine, correlation of neighbors
- For LSI (information retrieval): secondary object = document
 - Match score: weighted occurrence count
- For word2vec skipgram: secondary object = context word
 - Match score: PPMI (see below)
- For word2vec cbow: secondary object = sum of context word
 - Match score: cosine

(This is just a first overview.)

Training objective

Minimize $\sum_{(w,c)} |\vec{w}\vec{c} - \text{match-score}(w,c)|$

Training objective

 $\mathsf{Minimize} \ \textstyle \sum_{(w,c)} |\vec{w} \, \vec{c} - \mathsf{match\text{-}score}(w,c)|$

(This is just a first overview.)

Dot product / Skalarprodukt

$$\vec{w}\,\vec{c} = \sum_{i} w_{i}c_{i}$$

Example:

$$\begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = w_1c_1 + w_2c_2 + w_3c_3$$

Outline

Distributional semantics

- WordSpace
- 3 Norms & scores

How to make WordSpace work well: Two important details

How to make WordSpace work well: Two important details

Norms:

When comparing vectors, we often want to normalize them first.

How to make WordSpace work well: Two important details

- Norms:
 When comparing vectors,
 we often want to normalize them first.
- Scores:
 Designing the right matching score can be critical.

• How do we formalize semantic similarity in the vector space?

- How do we formalize semantic similarity in the vector space?
- First cut: (negative) distance between two points

- How do we formalize semantic similarity in the vector space?
- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)

- How do we formalize semantic similarity in the vector space?
- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?

- How do we formalize semantic similarity in the vector space?
- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea

- How do we formalize semantic similarity in the vector space?
- First cut: (negative) distance between two points
- (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea
- ... because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

Why distance is a bad idea

The Euclidean distance of "sick" and "disease" is large although the types of neighbors they occur with are very similar. "sick" is just a lot more frequent that "disease".

Distance is bad as a similarity measure: How do we fix this?

- There are two equivalent ways of doing this.
- Use distance of length-normalized vectors as similarity measure
- Use angle/cosine of (unnormalized) vectors as similarity measure

• Measure similarity as the angle between word vectors.

- Measure similarity as the angle between word vectors.
- Thought experiment: Suppose that for a particular corpus we have vector \vec{w} for word w.

- Measure similarity as the angle between word vectors.
- Thought experiment: Suppose that for a particular corpus we have vector \vec{w} for word w.
- Double the size of the corpus by appending it to itself. Compute vector \vec{w}' for word w on new corpus.

- Measure similarity as the angle between word vectors.
- Thought experiment: Suppose that for a particular corpus we have vector \vec{w} for word w.
- Double the size of the corpus by appending it to itself. Compute vector \vec{w}' for word w on new corpus.
- \vec{w} and \vec{w}' are semantically identical.

- Measure similarity as the angle between word vectors.
- Thought experiment: Suppose that for a particular corpus we have vector \vec{w} for word w.
- Double the size of the corpus by appending it to itself. Compute vector \vec{w}' for word w on new corpus.
- \vec{w} and \vec{w}' are semantically identical.
- The angle between the two vectors is close to 0, corresponding to maximal similarity . . .

- Measure similarity as the angle between word vectors.
- Thought experiment: Suppose that for a particular corpus we have vector \vec{w} for word w.
- Double the size of the corpus by appending it to itself. Compute vector \vec{w}' for word w on new corpus.
- \vec{w} and \vec{w}' are semantically identical.
- The angle between the two vectors is close to 0, corresponding to maximal similarity . . .
- ... even though the Euclidean distance between the two vectors is large.

• The following two notions are equivalent.

- The following two notions are equivalent.
 - Rank words w_i according to the angle between w_i and a target word v in decreasing order.

- The following two notions are equivalent.
 - Rank words w_i according to the angle between w_i and a target word v in decreasing order.
 - Rank words w_i according to $cosine(w_i, v)$ in increasing order

- The following two notions are equivalent.
 - Rank words w_i according to the angle between w_i and a target word v in decreasing order.
 - Rank words w_i according to $cosine(w_i, v)$ in increasing order
- Cosine is a monotonically decreasing function of the angle for the interval $[0^{\circ}, 180^{\circ}]$

Cosine

Cosine

Cosine similarity illustrated

Cosine similarity illustrated

Cosine similarity between two words

Cosine similarity between two words

$$\cos(\vec{c}, \vec{d}) = \text{SIM}(\vec{c}, \vec{d}) = \frac{\vec{c} \cdot \vec{d}}{|\vec{c}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} c_i d_i}{\sqrt{\sum_{i=1}^{|V|} c_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

• $|\vec{c}|$ and $|\vec{d}|$ are the lengths of \vec{c} and \vec{d} .

Cosine similarity between two words

$$\cos(\vec{c}, \vec{d}) = \text{SIM}(\vec{c}, \vec{d}) = \frac{\vec{c} \cdot \vec{d}}{|\vec{c}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} c_i d_i}{\sqrt{\sum_{i=1}^{|V|} c_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

- $|\vec{c}|$ and $|\vec{d}|$ are the lengths of \vec{c} and \vec{d} .
- This is the cosine similarity of \vec{c} and \vec{d} or, equivalently, the cosine of the angle between \vec{c} and \vec{d} .

Distance is bad as a similarity measure: How do we fix this?

- There are two equivalent ways of doing this.
- Use distance of length-normalized vectors as similarity measure
- Use angle/cosine of (unnormalized) vectors as similarity measure

• How do we compute the cosine?

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length – here we use the L₂ norm:

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

This maps vectors onto the unit sphere . . .

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere ...
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$

Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere ...
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, less frequent words and more frequent words have weights of the same order of magnitude.

Length normalization

- How do we compute the cosine?
- A vector can be (length-) normalized by dividing each of its components by its length here we use the L_2 norm: $||x||_2 = \sqrt{\sum_i x_i^2}$
- This maps vectors onto the unit sphere . . .
- ... since after normalization: $||x||_2 = \sqrt{\sum_i x_i^2} = 1.0$
- As a result, less frequent words and more frequent words have weights of the same order of magnitude.
- Effect on the two word vectors \vec{w} and $\vec{w'}$ (based on a simple corpus and a second twice the size of the original) from earlier slide: they have almost identical vectors after length-normalization.

Cosine for normalized vectors

- For normalized vectors, the cosine is equivalent to the dot product or scalar product.
- $\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$
 - (if \vec{q} and \vec{d} are length-normalized).

Cosine similarity: Summary and example

$$\cos(\vec{c}, \vec{d}) = \text{SIM}(\vec{c}, \vec{d}) = \frac{\vec{c} \cdot \vec{d}}{|\vec{c}||\vec{d}|} = \frac{\sum_{i=1}^{|V|} c_i d_i}{\sqrt{\sum_{i=1}^{|V|} c_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

	cosines		
	rhodium	gold	disease
rhodium	1.0	1.0	0.3497
gold	1.0	1.0	0.3497
disease	0.3497	0.3497	1.0

Distance is bad as a similarity measure: How do we fix this?

- There are two equivalent ways of doing this.
- Use distance of length-normalized vectors as similarity measure
- Use angle/cosine of (unnormalized) vectors as similarity measure

How to make WordSpace work well: Two important details

Norms:
 When comparing vectors,
 we often want to normalize them first.

Scores:
 Designing the right matching score can be critical.

PMI: Main matching score we will use here

- PMI: pointwise mutual information
- $PMI(w, c) = log \frac{P(wc)}{P(w)P(c)}$
- If w, c independent: PMI(w, c) = 0
- If w, c perfectly correlated: PMI(w, c) = log 1/P(c)
- If w, c positively correlated: PMI(w, c) is large and positive.
- If w, c negatively correlated: PMI(w, c) is large and negative.

PMI: Main matching score we will use here

- PMI: pointwise mutual information
- $PMI(w, c) = log \frac{P(wc)}{P(w)P(c)}$
- If w, c independent: PMI(w, c) = 0
- If w, c perfectly correlated: PMI(w, c) = log 1/P(c)
- If w, c positively correlated: PMI(w, c) is large and positive.
- If w, c negatively correlated: PMI(w, c) is large and negative.
- We are replacing cooccurrence (raw counts) with a measure of surprise (PMI).

PPMI

- PPMI = positive pointwise mutual information
- PPMI(w, c) = max(0, PMI(w, c))
- More generally (with offset k): $PPMI(w, c) = \max(0, PMI(w, c) - k)$

PPMI: Motivation

- Most interesting correlations of the sort we're interested in are positive.
- For example, it is very hard to find negative correlations among words that are meaningful.
- (give example)
- Motivation for offset:
 Small correlations may be due to noise, so discard them as well

Cooccurrence count matrix

		vectors		
		rhodium	gold	disease
on:	take	100	10000	10000
nsi	rich	4	400	100
limensions	poor	1	100	400

Cooccurrence count matrix: Cosine, no PPMI

		vectors		
		rhodium	gold	disease
- (0				
ons	take	100	10000	10000
nsi	rich	4	400	100
imensions	poor	1	100	400
_				

		cosines	
	rhodium	gold	disease
rhodium	1.0	1.0	0.9991
gold	1.0	1.0	0.9991
disease	0.9991	0.9991	1.0

Cooccurrence count matrix: Cosine, PPMI weighting

		vectors		
		rhodium	gold	disease
- (0				
ons	take	100	10000	10000
nsi	rich	4	400	100
imensions	poor	1	100	400
_				

		cosines	
	rhodium	gold	disease
rhodium	1.0	1.0	0.3497
gold	1.0	1.0	0.3497
disease	0.3497	0.3497	1.0

Exercise

$$\left(\begin{array}{c} 0.5\\0\\1\end{array}\right)\cdot \left(\begin{array}{c} 2\\4\\2\end{array}\right)=?$$

$$C(w)$$
 $C(c)$ $C(wc)$ PMI (use \log_{10})
 100 100 1 ?
 100 100 00 ?
 5000 5000 00 250 ?
 $(total = 10000)$

• We do not consider the order of words in a context.

- We do not consider the order of words in a context.
- John is quicker than Mary and Mary is quicker than John give rise to same cooccurrence counts for k = 10.

- We do not consider the order of words in a context.
- John is quicker than Mary and Mary is quicker than John give rise to same cooccurrence counts for k = 10.
- This is called a bag of words model.

- We do not consider the order of words in a context.
- John is quicker than Mary and Mary is quicker than John give rise to same cooccurrence counts for k = 10.
- This is called a bag of words model.
- More sophisticated models: compute dimension features based on the parse of a sentence – the feature "is object of the verb cook" would be recovered from both "John cooked the ham" and "the ham was cooked".

- Taxonomies
 - fruit reproductive structure plant organ plant part natural object - whole/unit
 - seafood food nutrient substance matter

- Taxonomies
 - fruit reproductive structure plant organ plant part natural object - whole/unit
 - seafood food nutrient substance matter
- Distributional semantics has a hard time with traditional semantic notions like negation, scope and quantification although there is currently a lot of research on these topics.

- Taxonomies
 - fruit reproductive structure plant organ plant part natural object - whole/unit
 - seafood food nutrient substance matter
- Distributional semantics has a hard time with traditional semantic notions like negation, scope and quantification although there is currently a lot of research on these topics.
- Ambiguity?

• The meaning of a word is learned from its contexts in a large corpus.

- The meaning of a word is learned from its contexts in a large corpus.
- The main analysis method of contexts is co-occurrence.

- The meaning of a word is learned from its contexts in a large corpus.
- The main analysis method of contexts is co-occurrence.
- Distributional semantics is a good model of semantic similarity/relatedness.

- The meaning of a word is learned from its contexts in a large corpus.
- The main analysis method of contexts is co-occurrence.
- Distributional semantics is a good model of semantic similarity/relatedness.
- There is a lot more in semantics that distributional semantics is not a good model for.

• The representation/embedding of a word is a vector of cooccurrence counts.

- The representation/embedding of a word is a vector of cooccurrence counts.
- Semantic similarity/relatedness is measured as cosine of cooccurrence vectors.

- The representation/embedding of a word is a vector of cooccurrence counts.
- Semantic similarity/relatedness is measured as cosine of cooccurrence vectors.
- The representations are specific to the training corpus. ("umbrella", "gold")

• Euclidean distance is not a good measure of semantic relatedness in WordSpace.

- Euclidean distance is not a good measure of semantic relatedness in WordSpace.
- Cosine is appropriate because it implicitly normalizes for length and (global) frequency.

- Euclidean distance is not a good measure of semantic relatedness in WordSpace.
- Cosine is appropriate because it implicitly normalizes for length and (global) frequency.
- PPMI is a good weighting to use for cooccurrence counts because it removes noise and measures "increase compared to expected count" instead of raw cooccurrence.