7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
- Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

7: Optimal FIR filters

• FIR Filter Design by "windowing" is straight-forward.

- FIR Filter Design by "windowing" is straight-forward.
- 4 However, it has limitations. "Poor Approximation" at discontinuities.

- FIR Filter Design by "windowing" is straight-forward.
- 4 However, it has limitations. "Poor Approximation" at discontinuities.
- For a given filter order "M" can we design better?

- FIR Filter Design by "windowing" is straight-forward.
- One of the second of the se
- For a given filter order "M" can we design better?
- This question is meaningless unless we introduce an approximation criterion!
 Why? From the basic theory of Fourier series, we have seen that the rectangular window gives the best least-squares approximation to a desired frequency response for a given value of M, because,

$$h[n] = \begin{cases} h_d[n] & m \in [0, M] \\ 0 & m \notin [0, M] \end{cases} \quad \text{minimizes} \quad \varepsilon^2 = \int_{-\pi}^{\pi} |H_d\left(e^{\jmath\omega}\right) - H\left(e^{\jmath\omega}\right)|^2 d\omega.$$

Problems with this strategy:

- FIR Filter Design by "windowing" is straight-forward.
- One of the second of the se
- For a given filter order "M" can we design better?
- This question is meaningless unless we introduce an approximation criterion!
 Why? From the basic theory of Fourier series, we have seen that the rectangular window gives the best least-squares approximation to a desired frequency response for a given value of M, because,

$$h[n] = \begin{cases} h_d[n] & m \in [0, M] \\ 0 & m \notin [0, M] \end{cases} \quad \text{minimizes} \quad \varepsilon^2 = \int_{-\pi}^{\pi} |H_d\left(e^{j\omega}\right) - H\left(e^{j\omega}\right)|^2 d\omega.$$

Problems with this strategy:

• Due to the approximation criterion $\arg\min_{h[n]} \varepsilon^2$, the resulting design leads to problems at discontinuities.

- FIR Filter Design by "windowing" is straight-forward.
- One of the second of the se
- For a given filter order "M" can we design better?
- This question is meaningless unless we introduce an approximation criterion!
 Why? From the basic theory of Fourier series, we have seen that the rectangular window gives the best least-squares approximation to a desired frequency response for a given value of M, because,

$$h[n] = \begin{cases} h_d[n] & m \in [0, M] \\ 0 & m \notin [0, M] \end{cases} \quad \text{minimizes} \quad \varepsilon^2 = \int_{-\pi}^{\pi} |H_d\left(e^{j\omega}\right) - H\left(e^{j\omega}\right)|^2 d\omega.$$

Problems with this strategy:

- Due to the approximation criterion $\arg\min_{h[n]} \varepsilon^2$, the resulting design leads to problems at discontinuities.
- No way to "control" errors in the different bands, namely, pass band, transition band and the stop band.

- FIR Filter Design by "windowing" is straight-forward.
- One of the second of the se
- For a given filter order "M" can we design better?
- This question is meaningless unless we introduce an approximation criterion!
 Why? From the basic theory of Fourier series, we have seen that the rectangular window gives the best least-squares approximation to a desired frequency response for a given value of M, because,

$$h[n] = \begin{cases} h_d[n] & m \in [0, M] \\ 0 & m \notin [0, M] \end{cases} \quad \text{minimizes} \quad \varepsilon^2 = \int_{-\pi}^{\pi} |H_d(e^{j\omega}) - H(e^{j\omega})|^2 d\omega.$$

Problems with this strategy:

- Due to the approximation criterion $\arg\min_{h[n]} \varepsilon^2$, the resulting design leads to problems at discontinuities.
- No way to "control" errors in the different bands, namely, pass band, transition band and the stop band.
- Our goal here is to study algorithmic procedures that overcome the above disadvantages.

In our design, we will considering even-symmetric, causal filters. These boil down to polynomials of the form,

$$H(e^{j\omega}) = h[0] + 2\sum_{m=1}^{M/2} h[m]\cos(m\omega).$$

To make it causal, multiply it with $\exp(-\jmath\omega M/2)$. Shift by M/2② The goal is to satisfy the design constraints based on $M, \delta, \delta_s, \omega_p, \omega_s$.

- Stopband Passhand Transition
- Several algorithms have been proposed since the 70s. Namely, Herrmann (1970) and Hofstetter, Oppenheim and Siegel (1971) (M, δ, δ_s fixed but ω_p, ω_s are variable).
- Parks and McClellan (1972 onward) Minimax Criterion. Developed the most flexible design: $M, \delta, \delta_s \omega_p, \omega_s$ are all variable.

Overall idea!

① Write higher order cosine frequencies in terms of "Chebyshev polynomial" or $\cos{(m\omega)} = T_m(\cos{\omega})$.

Example:
$$\cos(2\omega) = 2\cos^2(\omega) - 1 \Leftrightarrow T_2(x) = 2x^2 - 1$$
.

Can be obtained recursively.

$$\underbrace{T_{0}\left(x\right)=1 \quad T_{1}\left(x\right)=x}_{\text{Initialize}} \longleftrightarrow T_{n+1}\left(x\right)=2xT_{n}\left(x\right)-T_{n-1}\left(x\right)$$

Overall idea!

① Write higher order cosine frequencies in terms of "Chebyshev polynomial" or $\cos{(m\omega)} = T_m(\cos{\omega})$.

Example:
$$\cos\left(2\omega\right) = 2\cos^2\left(\omega\right) - 1 \Leftrightarrow T_2\left(x\right) = 2x^2 - 1$$
.

Can be obtained recursively.

$$\underbrace{T_{0}(x) = 1 \quad T_{1}(x) = x}_{\text{Initialize}} \longleftrightarrow T_{n+1}(x) = \underbrace{2xT_{n}(x) - T_{n-1}(x)}_{\text{Initialize}}$$

This transformation allows us to write:

$$H(e^{j\omega}) = h[0] + 2\sum_{m=1}^{M/2} h[m] \cos(m\omega) \leftrightarrow \sum_{m=0}^{M/2} h_m (\cos(\omega))^m \leftrightarrow \underbrace{\sum_{m=0}^{M/2} h_m x^m}_{Polynomial}$$

or, in explicit polynomial form,

$$H(e^{j\omega}) = P(x)|_{x=\cos\omega}.$$

• Write higher order cosine frequencies in terms of "Chebyshev polynomial" or $\cos{(m\omega)} = T_m(\cos{\omega})$. Example: $\cos{(2\omega)} = 2\cos^2{(\omega)} - 1 \Leftrightarrow T_2(x) = 2x^2 - 1$.

Can be obtained recursively.

$$\underbrace{T_{0}\left(x\right)=1 \quad T_{1}\left(x\right)=x}_{\text{Initialize}} \longleftrightarrow T_{n+1}\left(x\right)=2xT_{n}\left(x\right)-T_{n-1}\left(x\right)$$

This transformation allows us to write:

$$H\left(e^{j\omega}\right) = h\left[0\right] + 2\sum\nolimits_{m=1}^{M/2} h\left[m\right]\cos\left(m\omega\right) \leftrightarrow \sum\nolimits_{m=0}^{M/2} h_m\left(\cos\left(\omega\right)\right)^m \leftrightarrow \underbrace{\sum\nolimits_{m=0}^{M/2} h_m x^m}_{\text{Polynomial}}$$

or, in explicit polynomial form,

$$H(e^{j\omega}) = P(x)|_{x=\cos\omega}.$$

1 Then, the problem boils down to,

$$E\left(\omega\right)=\operatorname*{arg\,min}_{h\left[n\right]}\underline{W}\left(\omega\right)\left(H_{d}\left(e^{\jmath\omega}\right)-H\left(e^{\jmath\omega}\right)\right)\equiv\underset{h\left[m\right],0\leqslant m\leqslant M/2}{\min}\left(\operatorname*{max}_{\omega}\left|E\left(\omega\right)\right|\right).$$

This is a well studied problem in approximation theory (alteration theorem!).

• Write higher order cosine frequencies in terms of "Chebyshev polynomial" or $\cos{(m\omega)} = T_m(\cos{\omega})$. Example: $\cos{(2\omega)} = 2\cos^2{(\omega)} - 1 \Leftrightarrow T_2(x) = 2x^2 - 1$.

Can be obtained recursively.

$$\underbrace{T_{0}\left(x\right)=1 \quad T_{1}\left(x\right)=x}_{\text{Initialize}} \longleftrightarrow T_{n+1}\left(x\right)=2xT_{n}\left(x\right)-T_{n-1}\left(x\right)$$

This transformation allows us to write:

$$H(e^{j\omega}) = h[0] + 2\sum_{m=1}^{M/2} h[m] \cos(m\omega) \leftrightarrow \sum_{m=0}^{M/2} h_m (\cos(\omega))^m \leftrightarrow \underbrace{\sum_{m=0}^{M/2} h_m x^m}_{\text{Polynomial}}$$

or, in explicit polynomial form,

$$H(e^{j\omega}) = P(x)|_{x=\cos\omega}.$$

Then, the problem boils down to,

$$E\left(\omega\right)=\operatorname*{arg\,min}_{h\left[n\right]}\underline{W}\left(\omega\right)\left(H_{d}\left(\mathrm{e}^{\jmath\omega}\right)-H\left(\mathrm{e}^{\jmath\omega}\right)\right)\equiv\underset{h\left[m\right],0\leqslant m\leqslant M/2}{\min}\left(\max_{\omega}\left|E\left(\omega\right)\right|\right).$$

This is a well studied problem in approximation theory (alteration theorem!).

3 Turns out that we do not have to know the relationship between polynomial coefficients h_m and the filter impulse response h[m].

Basic statement of the alteration theorem.

- Suppose that X_p is a closed subset consisting of the disjoint union of closed subsets of the real axis x.
- Let P(x) be a polynomial of degree r, namely,

$$P(x) = \sum_{m=0}^{r} p_m x^m.$$

• Let us define the weighted error on each interval/subset X_p as,

$$E_{p}(x) = W_{p}(x) \left(D_{p}(x) - P(x)\right)$$

where D_p is the desired function to be approximated.

Basic statement of the alteration theorem.

- Suppose that X_p is a closed subset consisting of the disjoint union of closed subsets of the real axis x.
- Let P(x) be a polynomial of degree r, namely,

$$P(x) = \sum_{m=0}^{r} p_m x^m.$$

• Let us define the weighted error on each interval/subset X_p as,

$$E_{p}(x) = W_{p}(x) (D_{p}(x) - P(x))$$

where D_p is the desired function to be approximated.

The sufficient and necessary condition that P(x) is a unique minimizer of error $||E|| = \max_{x \in X_p} |E(x)|$ is that there are at least r + 2 sign alterations or,

$$x_k \in X_p, \qquad x_1 < x_2 < \dots < x_{r+2} \text{ such that } E_p\left(x_k\right) = -E_p\left(x_{k+1}\right) = \pm \left\|E\right\| = \max_{x \in X_p} \left|E\left(x\right)\right|$$

Example. Consider r = 5. $X_1 = [-1, -0.1]$ and $X_2 = [0.1, 1]$. Let D_p be defined by,

$$D_p(x)\begin{cases} 1 & x \in X_1 \\ 0 & x \in X_2. \end{cases}$$

From "Alteration Theorem" at least r + 2 = 7 sign changes! $P_1(x)$ and $P_2(x)$ do not satisfy this condition. $P_3(x)$ is the correct 5th order polynomial.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n]\cos n\omega$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n]e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n]\cos n\omega$$

 $\overline{H}(\omega)$ is real but not necessarily positive (unlike $|H(e^{j\omega})|$).

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$$\overline{H}(\omega) \text{ is real but not necessarily positive (unlike } |H(e^{j\omega})|).$$

Weighted error: $e(\omega)=s(\omega)\left(\overline{H}(\omega)-d(\omega)\right)$ where $d(\omega)$ is the target.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$$\overline{H}(\omega) \text{ is real but not necessarily positive (unlike } |H(e^{j\omega})|).$$

Weighted error: $e(\omega) = s(\omega) \left(\overline{H}(\omega) - d(\omega) \right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω .

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$$\overline{H}(\omega) \text{ is real but not necessarily positive (unlike } |H(e^{j\omega})|).$$

Weighted error: $e(\omega)=s(\omega)\left(\overline{H}(\omega)-d(\omega)\right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω .

Example: lowpass filter

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2 \sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$$\overline{H}(\omega) \text{ is real but not necessarily positive (unlike } |H(e^{j\omega})|).$$

Weighted error: $e(\omega)=s(\omega)\left(\overline{H}(\omega)-d(\omega)\right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω .

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \le \omega \le \omega_1 \\ 0 & \omega_2 \le \omega \le \pi \end{cases}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$$\overline{H}(\omega) \text{ is real but not necessarily positive (unlike } |H(e^{j\omega})|).$$

Weighted error: $e(\omega)=s(\omega)\left(\overline{H}(\omega)-d(\omega)\right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω .

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \le \omega \le \omega_1 \\ 0 & \omega_2 \le \omega \le \pi \end{cases}$$

$$s(\omega) = \begin{cases} \delta^{-1} & 0 \le \omega \le \omega_1 \\ \epsilon^{-1} & \omega_2 \le \omega \le \pi \end{cases}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$$\overline{H}(\omega) \text{ is real but not necessarily positive (unlike } |H(e^{j\omega})|).$$

Weighted error: $e(\omega)=s(\omega)\left(\overline{H}(\omega)-d(\omega)\right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω .

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \le \omega \le \omega_1 \\ 0 & \omega_2 \le \omega \le \pi \end{cases}$$

$$s(\omega) = \begin{cases} \delta^{-1} & 0 \le \omega \le \omega_1 \\ \epsilon^{-1} & \omega_2 \le \omega \le \pi \end{cases}$$

 $e(\omega)=\pm 1$ when $\overline{H}(\omega)$ lies at the edge of the specification.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

We restrict ourselves to zero-phase filters of odd length M+1, symmetric around h[0], i.e. h[-n]=h[n].

$$\overline{H}(\omega) = H(e^{j\omega}) = \sum_{-\frac{M}{2}}^{\frac{M}{2}} h[n] e^{-jn\omega} = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

$$\overline{H}(\omega) \text{ is real but not necessarily positive (unlike } |H(e^{j\omega})|).$$

Weighted error: $e(\omega)=s(\omega)\left(\overline{H}(\omega)-d(\omega)\right)$ where $d(\omega)$ is the target. Choose $s(\omega)$ to control the error variation with ω .

Example: lowpass filter

$$d(\omega) = \begin{cases} 1 & 0 \le \omega \le \omega_1 \\ 0 & \omega_2 \le \omega \le \pi \end{cases}$$

$$s(\omega) = \begin{cases} \delta^{-1} & 0 \le \omega \le \omega_1 \\ \epsilon^{-1} & \omega_2 \le \omega \le \pi \end{cases}$$

 $e(\omega)=\pm 1$ when $\overline{H}(\omega)$ lies at the edge of the specification.

Minimax criterion: $h[n] = \arg\min_{h[n]} \max_{\omega} |e(\omega)|$: minimize max error

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:

Assume the first maximal deviation from the line is negative as shown.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:

Assume the first maximal deviation from the line is negative as shown.

There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:

Assume the first maximal deviation from the line is negative as shown.

There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.

This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:

Assume the first maximal deviation from the line is negative as shown.

There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.

This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:

A polynomial fit of degree n to a set of bounded points is minimax if and only if it attains its maximal error at n+2 points with alternating signs.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:

Assume the first maximal deviation from the line is negative as shown.

There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.

This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:

A polynomial fit of degree n to a set of bounded points is minimax if and only if it attains its maximal error at n+2 points with alternating signs. There may be additional maximal error points.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Want to find the best fit line: with the smallest maximal error.

Best fit line always attains the maximal error three times with alternate signs

Proof:

Assume the first maximal deviation from the line is negative as shown.

There must be an equally large positive deviation; or else just move the line downwards to reduce the maximal deviation.

This must be followed by another maximal negative deviation; or else you can rotate the line and reduce the deviations.

Alternation Theorem:

A polynomial fit of degree n to a set of bounded points is minimax if and only if it attains its maximal error at n+2 points with alternating signs.

There may be additional maximal error points.

Fitting to a continuous function is the same as to an infinite number of points.

Chebyshev Polynomials

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But

$$\cos 2\omega = 2\cos^2 \omega - 1$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But

$$\cos 2\omega = 2\cos^2 \omega - 1$$
$$\cos 3\omega = 4\cos^3 \omega - 3\cos \omega$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2\cos^2 \omega - 1 = T_2(\cos \omega)$$
 $T_2(x) = 2x^2 - 1$
 $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega = T_3(\cos \omega)$ $T_3(x) = 4x^3 - 3x$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2\cos^2 \omega - 1 = T_2(\cos \omega)$$
 $T_2(x) = 2x^2 - 1$
 $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega = T_3(\cos \omega)$ $T_3(x) = 4x^3 - 3x$

Recurrence Relation:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 with $T_0(x) = 1$, $T_1(x) = x$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2\cos^2 \omega - 1 = T_2(\cos \omega)$$
 $T_2(x) = 2x^2 - 1$
 $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega = T_3(\cos \omega)$ $T_3(x) = 4x^3 - 3x$

Recurrence Relation:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 with $T_0(x) = 1$, $T_1(x) = x$

Proof: $\cos(n\omega + \omega) + \cos(n\omega - \omega) = 2\cos\omega\cos n\omega$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2\cos^2 \omega - 1 = T_2(\cos \omega)$$
 $T_2(x) = 2x^2 - 1$
 $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega = T_3(\cos \omega)$ $T_3(x) = 4x^3 - 3x$

Recurrence Relation:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 with $T_0(x) = 1$, $T_1(x) = x$

Proof:
$$\cos(n\omega + \omega) + \cos(n\omega - \omega) = 2\cos\omega\cos n\omega$$

So $\overline{H}(\omega)$ is an $\frac{M}{2}$ order polynomial in $\cos \omega$: alternation theorem applies.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2\cos^2 \omega - 1 = T_2(\cos \omega)$$
 $T_2(x) = 2x^2 - 1$
 $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega = T_3(\cos \omega)$ $T_3(x) = 4x^3 - 3x$

Recurrence Relation:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 with $T_0(x) = 1$, $T_1(x) = x$

Proof: $\cos(n\omega + \omega) + \cos(n\omega - \omega) = 2\cos\omega\cos n\omega$

So $\overline{H}(\omega)$ is an $\frac{M}{2}$ order polynomial in $\cos \omega$: alternation theorem applies.

Example: Symmetric lowpass filter of orderM=4

$$H(z) = 0.1766z^{2} + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2\cos^2 \omega - 1 = T_2(\cos \omega)$$
 $T_2(x) = 2x^2 - 1$
 $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega = T_3(\cos \omega)$ $T_3(x) = 4x^3 - 3x$

Recurrence Relation:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 with $T_0(x) = 1$, $T_1(x) = x$

Proof: $\cos(n\omega + \omega) + \cos(n\omega - \omega) = 2\cos\omega\cos n\omega$

So $\overline{H}(\omega)$ is an $\frac{M}{2}$ order polynomial in $\cos \omega$: alternation theorem applies.

Example: Symmetric lowpass filter of orderM=4

$$H(z) = 0.1766z^{2} + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

$$\overline{H}(\omega) = H(e^{j\omega}) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

But $\cos n\omega = T_n(\cos \omega)$: Chebyshev polynomial of 1st kind

$$\cos 2\omega = 2\cos^2 \omega - 1 = T_2(\cos \omega)$$
 $T_2(x) = 2x^2 - 1$
 $\cos 3\omega = 4\cos^3 \omega - 3\cos \omega = T_3(\cos \omega)$ $T_3(x) = 4x^3 - 3x$

Recurrence Relation:

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 with $T_0(x) = 1$, $T_1(x) = x$

Proof: $\cos(n\omega + \omega) + \cos(n\omega - \omega) = 2\cos\omega\cos n\omega$

So $\overline{H}(\omega)$ is an $\frac{M}{2}$ order polynomial in $\cos \omega$: alternation theorem applies.

Example: Symmetric lowpass filter of orderM=4

$$H(z) = 0.1766z^{2} + 0.4015z + 0.2124 + 0.4015z^{-1} + 0.1766z^{-2}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
$$= P(\cos \omega)$$

where P(x) is a polynomial of order $\frac{M}{2}$.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
$$= P(\cos \omega)$$

where P(x) is a polynomial of order $\frac{M}{2}$.

$$\frac{d\overline{H}}{d\omega} = -P'(\cos\omega)\sin\omega$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
$$= P(\cos \omega)$$

where P(x) is a polynomial of order $\frac{M}{2}$.

$$\frac{d\overline{H}}{d\omega} = -P'(\cos\omega)\sin\omega$$

$$= 0 \text{ at } \omega = 0, \ \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
$$= P(\cos \omega)$$

where P(x) is a polynomial of order $\frac{M}{2}$.

$$\frac{d\overline{H}}{d\omega} = -P'(\cos\omega)\sin\omega$$

$$= 0 \text{ at } \omega = 0, \ \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).$$

 \therefore With two bands, we have at most $\frac{M}{2}+3$ maximal error frequencies.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
$$= P(\cos \omega)$$

where P(x) is a polynomial of order $\frac{M}{2}$.

$$\frac{d\overline{H}}{d\omega} = -P'(\cos\omega)\sin\omega$$

$$= 0 \text{ at } \omega = 0, \ \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).$$

... With two bands, we have at most $\frac{M}{2}+3$ maximal error frequencies. We require $\frac{M}{2}+2$ of alternating signs for the optimal fit.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
$$= P(\cos \omega)$$

where P(x) is a polynomial of order $\frac{M}{2}$.

$$\frac{d\overline{H}}{d\omega} = -P'(\cos\omega)\sin\omega$$

$$= 0 \text{ at } \omega = 0, \ \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).$$

... With two bands, we have at most $\frac{M}{2}+3$ maximal error frequencies. We require $\frac{M}{2}+2$ of alternating signs for the optimal fit.

Only three possibilities exist (try them all):

(a)
$$\omega=0$$
 + two band edges + $\operatorname{all}\left(\frac{M}{2}-1\right)$ zeros of $P'(x)$.

(b)
$$\omega = \pi$$
 + two band edges + $\operatorname{all}\left(\frac{M}{2}-1\right)$ zeros of $P'(x)$.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Maximal error locations occur either at band edges or when $\frac{d\overline{H}}{d\omega}=0$

$$\overline{H}(\omega) = h[0] + 2\sum_{1}^{\frac{M}{2}} h[n] \cos n\omega$$
$$= P(\cos \omega)$$

where P(x) is a polynomial of order $\frac{M}{2}$.

$$\frac{d\overline{H}}{d\omega} = -P'(\cos\omega)\sin\omega$$

$$= 0 \text{ at } \omega = 0, \ \pi \text{ and at most } \frac{M}{2} - 1 \text{ zeros of polynomial } P'(x).$$

... With two bands, we have at most $\frac{M}{2}+3$ maximal error frequencies. We require $\frac{M}{2}+2$ of alternating signs for the optimal fit.

Only three possibilities exist (try them all):

(a)
$$\omega=0$$
 + two band edges + $\operatorname{all}\left(\frac{M}{2}-1\right)$ zeros of $P'(x)$.

(b)
$$\omega=\pi$$
 + two band edges + $\operatorname{all}\left(\frac{M}{2}-1\right)$ zeros of $P'(x)$.

(c)
$$\omega = \{0 \text{ and } \pi\}$$
 + two band edges + $\left(\frac{M}{2} - 2\right)$ zeros of $P'(x)$.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) d(\omega) \right)$ on a dense set of ω .

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) d(\omega) \right)$ on a dense set of ω .
- 4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) d(\omega) \right)$ on a dense set of ω .
- 4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

 If maximum error is $> \epsilon$, go back to step 2.

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) d(\omega) \right)$ on a dense set of ω .
- 4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

 If maximum error is $> \epsilon$, go back to step 2.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) d(\omega) \right)$ on a dense set of ω .
- 4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) d(\omega) \right)$ on a dense set of ω .
- 4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega) = s(\omega) \left(\overline{H}(\omega) d(\omega) \right)$ on a dense set of ω .
- 4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- 1. Guess the positions of the $\frac{M}{2}+2$ maximal error frequencies and give alternating signs to the errors (e.g. choose evenly spaced ω).
- 2. Determine the error magnitude, ϵ , and the $\frac{M}{2}+1$ coefficients of the polynomial that passes through the maximal error locations.
- 3. Find the local maxima of the error function by evaluating $e(\omega)=s(\omega)\left(\overline{H}(\omega)-d(\omega)\right)$ on a dense set of ω .
- 4. Update the maximal error frequencies to be an alternating subset of the local maxima + band edges + $\{0 \text{ and/or } \pi\}$.

If maximum error is $> \epsilon$, go back to step 2. (typically 15 iterations)

5. Evaluate $\overline{H}(\omega)$ on M+1 evenly spaced ω and do an IDFT to get h[n].

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1:

Solve
$$\frac{M}{2}+2$$
 equations in $\frac{M}{2}+2$ unknowns for $h[n]+\epsilon$.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1:

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Lagrange Interpolation.

$$\underbrace{\begin{bmatrix}
x_0 & y_0 \\
\vdots & \vdots \\
x_K & y_K
\end{bmatrix}}_{\text{Set of Points in } \mathbb{R}^2} \xrightarrow{\text{Lagrange Interpolation}} L_K(x) = \sum_{k=0}^K y_k \ell_k(x)$$

where,

$$\ell_k(x) = \prod_{m \in [0,K], m \neq n} \frac{x - x_m}{x_n - x_m}.$$

Lagrange Interpolation.

$$\begin{bmatrix}
x_0 & y_0 \\
\vdots & \vdots \\
x_K & y_K
\end{bmatrix}$$
Set of Points in \mathbb{R}^2

$$\xrightarrow{\text{Lagrange Interpolation}} L_K(x) = \sum_{k=0}^K y_k \ell_k(x)$$

where,

$$\ell_k(x) = \prod_{m \in [0,K], m \neq n} \frac{x - x_m}{x_n - x_m}.$$

For the filter design problem, we have,

$$\overline{H}(e^{j\omega}) = \sum_{m=0}^{M/2} h_m(\cos(\omega))^m \equiv \sum_{m=0}^{M/2} h_m x^m$$
 (Polynomial).

Lagrange Interpolation.

$$\begin{bmatrix}
x_0 & y_0 \\
\vdots & \vdots \\
x_K & y_K
\end{bmatrix}$$
Set of Points in \mathbb{R}^2

$$\xrightarrow{\text{Lagrange Interpolation}} L_K(x) = \sum_{k=0}^K y_k \ell_k(x)$$

where,

$$\ell_k(x) = \prod_{m \in [0,K], m \neq n} \frac{x - x_m}{x_n - x_m}.$$

For the filter design problem, we have,

$$\overline{H}(e^{j\omega}) = \sum_{m=0}^{M/2} h_m(\cos(\omega))^m \equiv \sum_{m=0}^{M/2} h_m x^m$$
 (Polynomial).

Hence, we can write,

$$\begin{bmatrix} \omega_{0} & \overline{H}\left(e^{\jmath\omega_{0}}\right) \\ \vdots & \vdots \\ \omega_{K} & \overline{H}\left(e^{\jmath\omega_{K}}\right) \end{bmatrix} \xrightarrow{\text{Lagrange Interpolation}} \begin{matrix} L_{K}\left(\omega\right) = \sum\limits_{k=0}^{K} \overline{H}\left(e^{\jmath\omega_{k}}\right)\ell_{k}\left(\omega\right) \\ & \downarrow \\ \ell_{k}\left(\omega\right) = \prod\limits_{m \in [0,K]} \frac{\cos(\omega) - \cos(\omega_{m})}{\cos(\omega_{m}) - \cos(\omega_{m})} \end{matrix}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2}+2$ equations in $\frac{M}{2}+2$ unknowns for h[n] + ϵ .

In step 3, evaluate
$$\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$$

Method 2: Don't calculate h[n] explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate
$$\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$$

Method 2: Don't calculate h[n] explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving h[n] sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^{i} c_{i}}{s(\omega_{i})} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_{i} d(\omega_{i})$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don't calculate h[n] explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving h[n] sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^{i} c_{i}}{s(\omega_{i})} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_{i} d(\omega_{i})$$

Solve for ϵ

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate
$$\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$$

Method 2: Don't calculate h[n] explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving h[n] sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^{i} c_{i}}{s(\omega_{i})} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_{i} d(\omega_{i})$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate
$$\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$$

Method 2: Don't calculate h[n] explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving h[n] sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^{i} c_{i}}{s(\omega_{i})} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_{i} d(\omega_{i})$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2}+2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate
$$\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$$

Method 2: Don't calculate h[n] explicitly

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving h[n] sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^{i} c_{i}}{s(\omega_{i})} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_{i} d(\omega_{i})$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2}+2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$

$$\left(\frac{M}{2}+1\right) \text{-polynomial going through all the } \overline{H}(\omega_i) \text{ [actually order } \frac{M}{2}\text{]}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

For each extremal frequency, ω_i for $1 \leq i \leq \frac{M}{2} + 2$

$$d(\omega_i) = \overline{H}(\omega_i) + \frac{(-1)^i \epsilon}{s(\omega_i)} = h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i + \frac{(-1)^i \epsilon}{s(\omega_i)}$$

Method 1: (Computation time $\propto M^3$)

Solve $\frac{M}{2} + 2$ equations in $\frac{M}{2} + 2$ unknowns for $h[n] + \epsilon$.

In step 3, evaluate $\overline{H}(\omega) = h[0] + 2\sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega_i$

Method 2: Don't calculate h[n] explicitly (Computation time $\propto M^2$)

Multiply the ω_i equation by $c_i = \prod_{j \neq i} \frac{1}{\cos \omega_i - \cos \omega_j}$ and add them:

$$\sum_{i=1}^{\frac{M}{2}+2} c_i \left(h[0] + 2 \sum_{n=1}^{\frac{M}{2}} h[n] \cos n\omega + \frac{(-1)^i \epsilon}{s(\omega_i)} \right) = \sum_{i=1}^{\frac{M}{2}+2} c_i d(\omega_i)$$

All terms involving h[n] sum to zero leaving

$$\sum_{i=1}^{\frac{M}{2}+2} \frac{(-1)^{i} c_{i}}{s(\omega_{i})} \epsilon = \sum_{i=1}^{\frac{M}{2}+2} c_{i} d(\omega_{i})$$

Solve for ϵ then calculate the $\overline{H}(\omega_i)$ then use Lagrange interpolation:

$$\overline{H}(\omega) = P(\cos \omega) = \sum_{i=1}^{\frac{M}{2}+2} \overline{H}(\omega_i) \prod_{j \neq i} \frac{\cos \omega - \cos \omega_j}{\cos \omega_i - \cos \omega_j}$$
$$\left(\frac{M}{2}+1\right) \text{-polynomial going through all the } \overline{H}(\omega_i) \text{ [actually order } \frac{M}{2}\text{]}$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass
$$\omega = [0.5, 1]$$
,

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega = [0.5,~1]$, Transition widths: $\Delta \omega = 0.2$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega=[0.5,~1]$, Transition widths: $\Delta\omega=0.2$

Stopband Attenuation: $-25~\mathrm{dB}$ and $-15~\mathrm{dB}$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega=[0.5,~1]$, Transition widths: $\Delta\omega=0.2$

Stopband Attenuation: $-25~\mathrm{dB}$ and $-15~\mathrm{dB}$

Passband Ripple: ± 0.3 dB

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega = [0.5,~1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: $-25~\mathrm{dB}$ and $-15~\mathrm{dB}$

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

$$-25 \text{ dB} = 0.056, -0.3 \text{ dB} = 1 - 0.034, -15 \text{ dB} = 0.178$$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega = [0.5,~1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: $-25~\mathrm{dB}$ and $-15~\mathrm{dB}$

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

$$-25 \text{ dB} = 0.056, -0.3 \text{ dB} = 1 - 0.034, -15 \text{ dB} = 0.178$$

Predicted order: M=36

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega = [0.5, \ 1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB

Passband Ripple: $\pm 0.3~\mathrm{dB}$

Determine gain tolerances for each band:

$$-25 \text{ dB} = 0.056, -0.3 \text{ dB} = 1 - 0.034, -15 \text{ dB} = 0.178$$

Predicted order: M=36

 $\frac{M}{2}+2$ extremal frequencies are distributed between the bands

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega=[0.5,~1]$, Transition widths: $\Delta\omega=0.2$

Stopband Attenuation: -25 dB and -15 dB

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

$$-25 \text{ dB} = 0.056, -0.3 \text{ dB} = 1 - 0.034, -15 \text{ dB} = 0.178$$

Predicted order: M=36

 $\frac{M}{2}+2$ extremal frequencies are distributed between the bands

Filter meets specs ©

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega = [0.5,~1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

$$-25 \text{ dB} = 0.056, -0.3 \text{ dB} = 1 - 0.034, -15 \text{ dB} = 0.178$$

Predicted order: M=36

 $\frac{M}{2}+2$ extremal frequencies are distributed between the bands

Filter meets specs ©; clearer on a decibel scale

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

$$-25 \text{ dB} = 0.056, -0.3 \text{ dB} = 1 - 0.034, -15 \text{ dB} = 0.178$$

Predicted order: M=36

 $\frac{M}{2}+2$ extremal frequencies are distributed between the bands

Filter meets specs ©; clearer on a decibel scale

Most zeros are on the unit circle + three reciprocal pairs

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Filter Specifications:

Bandpass $\omega = [0.5, 1]$, Transition widths: $\Delta \omega = 0.2$

Stopband Attenuation: -25 dB and -15 dB

Passband Ripple: ± 0.3 dB

Determine gain tolerances for each band:

$$-25 \text{ dB} = 0.056, -0.3 \text{ dB} = 1 - 0.034, -15 \text{ dB} = 0.178$$

Predicted order: M=36

 $\frac{M}{2}+2$ extremal frequencies are distributed between the bands

Filter meets specs ©; clearer on a decibel scale

Most zeros are on the unit circle + three reciprocal pairs

Reciprocal pairs give a linear phase shift

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- Can have linear phase
 - o no envelope distortion, all frequencies have the same delay ©
 - \circ symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - $\quad \text{antisymmetric filters have } H(e^{j0}) = H(e^{j\pi}) = 0 \\$
 - \circ symmetry means you only need $\frac{M}{2}+1$ multiplications to implement the filter.

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- Can have linear phase
 - o no envelope distortion, all frequencies have the same delay ©
 - \circ symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - $\quad \text{antisymmetric filters have } H(e^{j0}) = H(e^{j\pi}) = 0 \\$
 - o symmetry means you only need $\frac{M}{2}+1$ multiplications to implement the filter.
- Always stable ©

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- Can have linear phase
 - o no envelope distortion, all frequencies have the same delay ©
 - \circ symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - o antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - o symmetry means you only need $\frac{M}{2}+1$ multiplications to implement the filter.
- Always stable ©
- Low coefficient sensitivity ©

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- Can have linear phase
 - o no envelope distortion, all frequencies have the same delay ©
 - symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - o antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - o symmetry means you only need $\frac{M}{2}+1$ multiplications to implement the filter.
- Always stable ©
- Low coefficient sensitivity ©
- Optimal design method fast and robust ©

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- Can have linear phase
 - o no envelope distortion, all frequencies have the same delay ©
 - \circ symmetric or antisymmetric: $h[n] = h[-n] \forall n$ or $-h[-n] \forall n$
 - $\quad \text{antisymmetric filters have } H(e^{j0}) = H(e^{j\pi}) = 0$
 - o symmetry means you only need $\frac{M}{2}+1$ multiplications to implement the filter.
- Always stable ©
- Low coefficient sensitivity ©
- Optimal design method fast and robust ©
- Normally needs higher order than an IIR filter ©
 - \circ Filter order $Mpprox rac{{
 m dB_{atten}}}{3.5\Delta\omega}$ where $\Delta\omega$ is the most rapid transition

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- Can have linear phase
 - o no envelope distortion, all frequencies have the same delay ©
 - $\circ \quad \text{symmetric or antisymmetric: } h[n] = h[-n] \forall n \text{ or } -h[-n] \forall n$
 - o antisymmetric filters have $H(e^{j0}) = H(e^{j\pi}) = 0$
 - \circ symmetry means you only need $rac{M}{2}+1$ multiplications to implement the filter.
- Always stable ©
- Low coefficient sensitivity ©
- Optimal design method fast and robust ©
- Normally needs higher order than an IIR filter ©
 - \circ Filter order $Mpprox rac{{
 m dB_{atten}}}{3.5\Delta\omega}$ where $\Delta\omega$ is the most rapid transition
 - \circ Filtering complexity $\propto M \times f_s \approx rac{\mathrm{dB_{atten}}}{3.5\Delta\omega} f_s = rac{\mathrm{dB_{atten}}}{3.5\Delta\Omega} f_s^2 \propto f_s^2$ for a given specification in unscaled Ω units.

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange

Algorithm

- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

• use weight function, $s(\omega)$, to allow different errors in different frequency bands

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- ullet Response of symmetric filter is a polynomial in $\cos\omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

multiple constant-gain bands separated by transition regions

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

- multiple constant-gain bands separated by transition regions
- ullet very robust, works for filters with M>1000

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

- multiple constant-gain bands separated by transition regions
- \bullet very robust, works for filters with M>1000
- Efficient: computation $\propto M^2$

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez ExchangeAlgorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

- multiple constant-gain bands separated by transition regions
- very robust, works for filters with $M>1000\,$
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- ullet very robust, works for filters with M>1000
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

Modified version works on arbitrary gain function

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- ullet very robust, works for filters with M>1000
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

Modified version works on arbitrary gain function

Does not always converge

7: Optimal FIR filters

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange
 Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

Optimal Filters: minimax error criterion

- use weight function, $s(\omega)$, to allow different errors in different frequency bands
- symmetric filter has zeros on unit circle or in reciprocal pairs
- Response of symmetric filter is a polynomial in $\cos \omega$
- Alternation Theorem: $\frac{M}{2}+2$ maximal errors with alternating signs

Remez Exchange Algorithm (also known as Parks-McLellan Algorithm)

- multiple constant-gain bands separated by transition regions
- ullet very robust, works for filters with M>1000
- Efficient: computation $\propto M^2$
- can go mad in the transition regions

Modified version works on arbitrary gain function

Does not always converge

For further details see Mitra: 10.

MATLAB routines

- Optimal Filters
- Alternation Theorem
- Chebyshev Polynomials
- Maximal Error Locations
- Remez Exchange Algorithm
- Determine Polynomial
- Example Design
- FIR Pros and Cons
- Summary
- MATLAB routines

firpm	optimal FIR filter design
firpmord	estimate require order for firpm
cfirpm	arbitrary-response filter design
remez	[obsolete] optimal FIR filter design