Package 'esreg'

May 13, 2023

Type Package

Title Joint Quantile and Expected Shortfall Regression

Version 0.6.2
Date 2023-05-12
Description Simultaneous modeling of the quantile and the expected shortfall of a response variable given a set of covariates, see Dimitriadis and Bayer (2019) <doi:10.1214 19-ejs1560="">.</doi:10.1214>
License GPL-3
Encoding UTF-8
Imports quantreg, Rcpp, stats, Formula
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.2.3
NeedsCompilation yes
Author Sebastian Bayer [aut, cre], Timo Dimitriadis [aut]
Maintainer Sebastian Bayer <sebastian.bayer@uni-konstanz.de></sebastian.bayer@uni-konstanz.de>
Repository CRAN
Date/Publication 2023-05-13 08:30:02 UTC
R topics documented:
esreg
IIIUCA

2 esreg

esreg

Joint Quantile and Expected Shortfall Regression

Description

Estimates a joint linear regression model for the pair (VaR, ES):

$$Q_{\alpha}(Y|Xq) = Xq'\beta_q$$

$$ES_{\alpha}(Y|Xe) = Xe'\beta_e$$

Usage

```
esreg(...)
## S3 method for class 'formula'
esreg(
  formula,
  data = parent.frame(),
  alpha,
  g1 = 2L,
  g2 = 1L,
  early_stopping = 10,
  ...
)

## Default S3 method:
esreg(xq, xe, y, alpha, g1 = 2L, g2 = 1L, early_stopping = 10, ...)
```

Arguments

	Further arguments (does not apply here)
formula	Formula: $y \sim x1 + x2 \dots \mid x1 + x2 \dots$ where the first part after the response variable specifies the quantile equation and the second the expected shortfall part. If only one set of regressors is provided it is used for both model specifications.
data	data.frame that holds the variables
alpha	Probability level
g1	1, 2 (see G1_fun, G1_prime_fun), defaults to 1
g2	1, 2, 3, 4, 5 (see G2_curly_fun, G2_fun, G2_prime_fun). defaults to 2
early_stopping	Stop the iterated local search if there is no improvement in early_stopping steps.
xq	Explanatory variables for the quantile regression equation
xe	Explanatory variables for the expected shortfall regression equation
у	Response vector

esreg 3

Value

An esreg object

References

A Joint Quantile and Expected Shortfall Regression Framework

See Also

vcov.esreg for covariance estimation

Examples

```
# Simulate data (DGP-(2) in the linked paper)
set.seed(0)
x < - rchisq(1000, df=1)
y < -x + (1 + 0.5 * x) * rnorm(1000)
# True quantile and expected shortfall regression parameters (for alpha=0.025)
alpha=0.025
true_pars <- c(-1.959964, -1.979982, -2.337803, -2.168901)
# Estimate the model using the standard settings
fit <- esreg(y \sim x, alpha=alpha)
# Compare the different variance-covariance estimators
cov1 <- vcov(object=fit, sparsity="iid", sigma_est="ind")</pre>
cov2 <- vcov(object=fit, sparsity="nid", sigma_est="scl_N")</pre>
cov3 <- vcov(object=fit, sparsity="nid", sigma_est="scl_sp")</pre>
print("Comparison of the variance-covariance estimators")
print(cbind(Truth=true_pars,
            Estimate=coef(fit),
            SE_iid_ind=sqrt(diag(cov1)),
            SE_nid_N=sqrt(diag(cov2)),
            SE_nid_sp=sqrt(diag(cov3))))
# Compares estimates using different G2 functions
fit1 <- esreg(y \sim x, alpha=alpha, g2=1)
fit2 <- esreg(y ~ x, alpha=alpha, g2=2)
fit3 <- esreg(y ~ x, alpha=alpha, g2=3)
fit4 <- esreg(y \sim x, alpha=alpha, g2=4)
fit5 <- esreg(y \sim x, alpha=alpha, g2=5)
fits <- sapply(list(fit1, fit2, fit3, fit4, fit5), coef)</pre>
colnames(fits) <- sapply(1:5, function(i) esreg:::.G_function_names(1, i)[2])</pre>
print("Comparison of the five G2 functions")
print(rbind(Truth=true_pars, t(fits)))
# Usage of different covariates
x <- rchisq(1000, df=1)
noise <- rnorm(1000)</pre>
y < -x + (1 + 0.5 * x) * rnorm(1000)
```

4 estfun.esreg

```
fit <- esreg(y \sim x | x + noise, alpha=0.025) print("Using different covariates for VaR and ES") print(summary(fit))
```

esr_loss

Joint Loss Function

Description

Computes the joint (VaR, ES) loss

Usage

```
esr_loss(r, q, e, alpha, g1 = 2L, g2 = 1L, return_mean = TRUE)
```

Arguments

q Vector of quantiles e Vector of expected shortfalls alpha Probability level g1 1, 2, see G1_fun g2 1, 2, 3, 4, 5, see G2_curly_fun, G2_fun return_mean If TRUE returns the average tick loss, else the individual values	r	Vector of returns
alpha Probability level g1 1, 2, see G1_fun g2 1, 2, 3, 4, 5, see G2_curly_fun, G2_fun	q	Vector of quantiles
g1 1, 2, see G1_fun g2 1, 2, 3, 4, 5, see G2_curly_fun, G2_fun	е	Vector of expected shortfalls
g2 1, 2, 3, 4, 5, see G2_curly_fun, G2_fun	alpha	Probability level
	g1	1, 2, see G1_fun
return_mean If TRUE returns the average tick loss, else the individual values	g2	1, 2, 3, 4, 5, see G2_curly_fun, G2_fun
	return_mean	If TRUE returns the average tick loss, else the individual values

References

Fissler and Ziegel (2016)

estfun.esreg

Estimating function

Description

This function matches the estfun function of the sandwich package and returns the estimating functions for the fitted model. It can for instance be used for an OPG estimator of the sigma matrix. For esreg, the dimension of the estimating functions is $n \times (kq + ke)$.

Usage

```
estfun.esreg(x, ...)
```

Arguments

```
x An esreg object
```

... Further arguments (does not apply here)

lambda_matrix 5

lambda_matrix

Lambda Matrix

Description

Estimate the lambda matrix.

Usage

lambda_matrix(object, sparsity, bandwidth_estimator, misspec)

Arguments

object

An esreg object

sparsity

The estimator to be used for the sparsity in Λ , see density_quantile_function

• iid - Piecewise linear interpolation of the distribution

• nid - Hendricks and Koenker sandwich

bandwidth_estimator

The bandwidth estimator to be used for the iid and nid sparsity estimator, see

 $density_quantile_function$

• Bofinger

• Chamberlain

· Hall-Sheather

misspec

if TRUE, the estimator accounts for potential misspecification in the model

sigma_matrix

Sigma Matrix

Description

Estimate the sigma matrix.

Usage

```
sigma_matrix(object, sigma_est, misspec)
```

Arguments

object

An esreg object

sigma_est

The estimator to be used for Σ , see conditional_truncated_variance

• ind - Variance over all negative residuals

• scl_N - Scaling with the normal distribution

• scl_sp - Scaling with the kernel density function

misspec

if TRUE, the estimator accounts for potential misspecification in the model

6 vcovA

vcov.esreg

Covariance Estimation

Description

Estimate the variance-covariance matrix of the joint (VaR, ES) estimator

Usage

```
## S3 method for class 'esreg'
vcov(object, method = "asymptotic", ...)
```

Arguments

object An esreg object

method For asymptotic use vcovA, for boot use vcovB

... All possible values which can be passed to vcovA and vcovB

vcovA

Asymptotic Covariance Estimation

Description

Estimate the variance-covariance matrix of the joint (VaR, ES) estimator by the sandwich formula:

$$\lambda^{-1}\Sigma\lambda^{-1}$$

Several estimators are available for both matrices and the default options are selected to take into account possible misspecifications in the underlying data.

Usage

```
vcovA(
  object,
  sigma_est = "scl_sp",
  sparsity = "nid",
  misspec = TRUE,
  bandwidth_estimator = "Hall-Sheather"
)
```

vcovB 7

Arguments

object An esreg object

sigma_est The estimator to be used for Σ , see conditional_truncated_variance

- ind Variance over all negative residuals
- scl_N Scaling with the normal distribution
- scl_sp Scaling with the kernel density function

sparsity The estimator to be used for the sparsity in Λ , see density_quantile_function

- iid Piecewise linear interpolation of the distribution
- nid Hendricks and Koenker sandwich

misspec if TRUE, the estimator accounts for potential misspecification in the model bandwidth_estimator

The bandwidth estimator to be used for the iid and nid sparsity estimator, see density_quantile_function

- Bofinger
- Chamberlain
- · Hall-Sheather

vcovB

Bootstrap Covariance Estimation

Description

Estimate the variance-covariance matrix of the joint (VaR, ES) estimator using the bootstrap.

Usage

```
vcovB(object, bootstrap_method = "iid", B = 1000)
```

Arguments

object An esreg object

 ${\tt bootstrap_method}$

The bootstrap sampling scheme to be used

• iid - The iid bootstrap of Efron (1979)

B The number of bootstrap iterations

Index

```
conditional_truncated_variance, 5, 7
density_quantile_function, 5, 7
esr_loss, 4
esreg, 2, 4, 6
estfun.esreg, 4

G1_fun, 2, 4
G1_prime_fun, 2
G2_curly_fun, 2, 4
G2_fun, 2, 4
G2_prime_fun, 2
lambda_matrix, 5

sigma_matrix, 5

vcov.esreg, 3, 6
vcovA, 6, 6
vcovB, 6, 7
```