Math 174 Homework 2

Aniruddh V.

September 2023

1 Exercise 1.2.ii

Solution

i. Suppose $f: x \to y$ is split epic in C. Then there is an arrow $g: y \to x$ such that $fg = id_y$. Given $h: c \to y \in Mor(c, y)$, one can construct an arrow $hg: c \to x \in Mor(c, x)$ such that this diagram commutes:

So for any $h \in Mor(c,y)$, the map $\tau: Mor(c,x) \to Mor(c,y)$, $k \mapsto f \circ k$ is surjective, since if we are given $h \in Mor(c,y)$, we can always find a map k such that h = fk. On the other hand, suppose $\tau: Mor(c,x) \to Mor(c,y)$ is surjective. Then for every $c \in C$ and every $h \in Mor(c,y)$, there is $k \in Mor(c,x)$ such that fk = h. Since this holds for every $c \in C$, taking c = y gives $b = id_y: y \to y$ and $b = id_y: y \to x$ such that $b = id_y: y \to x$ such that b = id

$$x \rightleftharpoons y \xrightarrow{id_y} y$$

Thus f is split epic, and f is split epic if and only if the post composition map $Mor(c, x) \to Mor(c, y)$ is surjective.

ii. Flipping the arrows in the two diagrams above gives two new diagrams:

and

$$x \longleftarrow_{id_x} x \longleftarrow_g y$$

The first diagram shows how a given a left inverse to f or the fact that f is split monic, every arrow $k \in Mor(x,c)$ can be written as the pre-composition $f \circ gk$. On the other hand, if the pre-composition map is surjective, taking c = x gives the second diagram and a left inverse for f, thus showing that f is split monic.

2 Exercise 1.2.iii

Solution

- i. Suppose $f: x \to y$ and $g: y \to z$ are monic. And consider $gf: x \to z$ with $h_1, h_2: x \to z$ as well. If $h_1gf = h_2gf$, then by associativity and and the monicity of f $h_1g = h_2g$. Then again by the monicity of g, $h_1 = h_2$, so gf is monic as well.
- ii. Suppose $f: x \to y$ and $g: y \to z$ exist such that gf is monic. Then, if $h_1gf = h_2gf$, $h_1 = h_2$. But clearly if $h_1 = h_2$, then $h_1g = h_2g$, and so f must be monic as well.

- i'. Applying the argument of i in the opposite category, and using the fact that a split monic morphism in C is split epic in C^{op} gives the desired result.
- ii'. Applying the argument of ii in the opposite category, and using the fact that a split monic morphism in C is split epic in C^{op} gives the desired result.

3 Exercise 1.3.i

Solution A functor $F: BG \to BH$ is just a group homomorphism $\phi: G \to H$. Both BG and BH both only have one object, so they trivially must be mapped to eachother. The morphisms of BG and BH are the elements of G and H respectively, and by functoriality we have for $a, b \in Mor(BG)$, F(ab) = F(a)F(b), which is the same as the homomorphism requirement $\phi(ab) = \phi(a)\phi(b)$. Similarly, since homomorphism map identities to identities, $F(e_G) = e_H$, so thus a functor between two delooping groups is just a group homomorphism between the two groups.