Solid Abelian Groups

Def Given profinite S=lim Si, define 7[S]=lim 7[Si] Note: natural map 7[S] - 7[S] A cond. ab. grp. A is solid if for all profinite S and $f: S \rightarrow A$ A complex C & D(Cond(Ab)) is solid if $RHom(Z[S], C) \stackrel{\sim}{\longrightarrow} RHom(Z[S], C)$ · A[0] solid \Rightarrow A solid Rem Spoiler: also

 ←, more generally (requires
 C solid

 ⇒ all Hi(C) solid proof) · Spailer: also "~ for RHam · Suffices to take S extremally disconnected (by taking hypercarers) Goals (I) Show Z[S] is solid (free solid (II) Show Solid & Cond(Ab) is abelian subcategory, and i has left adjoint (-) (solidification)

Note Z[S] = lin Z[Si] = lin Hom (C(Si, Z), Z) = Hom (lin C(S, Z), Z) = Hom (C(S, Z), Z) In porticular, Z[S] (*) = Hom (C(S,Z), Z) $\{Z\text{-valued measures on }S\}=\text{eM}(S,Z)$ Example S= NU(0) = lin {1,2,..., n} C(5,7) = eventually constant sequences = T Z μ(f) = Σ μ: (f(i) - f(∞)) + μω· f(ω).
= ffμ iein > A Jfm

- · Non-orchimedean!

Fact For S profinite, $C(S, \mathbb{Z}) \cong \bigoplus \mathbb{Z}$. (proven in notes)

Cor $\mathbb{Z}[S]^{2} \cong \text{Hom}(C(S, \mathbb{Z}) \otimes \mathbb{Z}) \cong \mathbb{Z}$ any condensed math $\underline{\mathsf{Cor}} \ \mathbb{Z}[\mathsf{S}]^{\text{\tiny{\mathbb{Z}}}} \cong \underline{\mathsf{Hom}} (\mathsf{C}(\mathsf{S}, \mathbb{Z}), \mathbb{Z}) \cong \underline{\mathsf{Hom}} (\underline{\mathfrak{G}} \mathbb{Z}, \mathbb{Z})$ $\cong \prod Hom(Z, Z) \cong \prod Z$ Let's prove Z[S] is solid. Prop For any set I, IIZ is solid as a complex, so also as abelian group.

(Some for $Z[S]^{3}$.) Proof To show: IT RHom (Z[T], ITZ) = IT RHom (Z[T], ITZ) • RHS: $Ext^{2}(\mathbb{Z}[T], \mathbb{Z}) = H^{2}(T, \mathbb{Z}) = \begin{cases} 0 & \text{if } i > 0 \text{ (T profinite)} \\ \text{Hom}(\mathbb{Z}[T], \mathbb{Z}) & \text{if } i = 0 \end{cases}$ => RHS = @ Z $C(T,Z) \cong \bigoplus Z$ • LHS: Use O → TT Z → TR → TT R/Z → O DITTE • RHom $(\Pi R, Z) \cong RHom_R(\Pi R, RHom(R, Z)) = 0$ 0 by Lisanne ·RHom(JR/Z) ≅ ⊕Z[-1] Remy (If follow the maps, => LHS = DZ is identity.) Used by Dion.

Thm (i) · Solid & Cond(Ab) is abelian subcategory stable under all limits, colinits, extensions · {IIZ} form family of comp. proj. generators in Solid. · Left adjant (-) - if A = colim Z[Si] (ii) · D(Solid) ← D(Cond(Ab)) is fully faithful with essential image all solid complexes. · C solid \Leftrightarrow all $H^i(C)$ solid · (-) - i (Left derived solidification) Strategy 1 PT7 are solid (as complex) (2) Complexes ---> ⊕TTZ ---- are solid 3 ker $(DTZ \rightarrow DTZ)$ are solid (G) Solved = Cond (Ab) is abelian subcategory a Con prove 2 Truncation arguments 3) and 4) follow from derived category arguments

4
Goal Show M = PITZ is solid
i.e. RHom(Z[S], DTZ) = RHom(Z[S], DTZ) (want to pull out D) • RHS: take S extremally disconnected, then Z[S] projective => RHom(Z[S], -) = Ham(Z[S], -) Z[S] compact => PHam(Z[S], -) commutes with filtered colimits.
=> RHS = @ RHOM (Z(ST, @ITZ).
Lemma RHom (∏R/Z, ⊕∏Z) = ⊕RHom(∏R/Z, ∏Z). Proof Suffices to find resolution extremally discernected.
$ \rightarrow \mathbf{Z}[S,] \rightarrow \mathbf{Z}[S_0] \rightarrow \top \rightarrow 0.$
Take Breen-Deligne:
The Z[T] \leftarrow Z[T] \leftarrow Take total Z[So,] \leftarrow Z[S ₁ , o] Z[S ₀ ,] \leftarrow Z[S ₁ , o] Lemma RHom (R, \oplus TZ) = O (= \oplus RHom (R, \oplus TZ))
,
Proof Use $O \rightarrow Z \rightarrow R \rightarrow R/Z \rightarrow O$. • RHom $(Z,M) = M$ • RHom $(R/Z, BTTZ)$ power $BRHom(R/Z, TTZ)$ Remy $BTZ[-1] = M[-1]$ Lemma $RHom(TR, M) = O$
previous terma
Froof RHom R (TIR, RHom (R, M)) = 0

(3
Pr	00

I Take f: Y -> Z with kernel K. Pick resolution -> # Z[S;]>#Z[S:]-> K -> 0 Let C = (···→ DZ[S;] → DZ[S;]) Now, RHom (B, Y) = RHom (C, Y) and RHom (B, Z) = RHom (C, Z) > K so B is a Hence, retract of C. Finally, RHom(Z[T], K) = RHom(Z[T], K)

follows from = of C and B is a retract of C.