Tensor norms

$$X$$
 vector space over C $||\cdot||:X\longrightarrow 12_{+}$

Examples (vectors)

$$\mathcal{L}_{2}^{m} \cdot \left(\mathbb{C}^{m}, \| \|_{2}\right) \|x\|_{2} = \sqrt{\sum |x_{i}|^{2}}$$

euclidean norm
$$\mathcal{L}_{1}^{m} \cdot \left(C_{1}^{m} \parallel \parallel_{1} \right) \parallel \chi \parallel_{1} = \sum |\chi_{i}|$$

$$l_{\infty}^{m} \cdot \left(C_{i}^{m} \parallel l_{\infty}\right) \quad |z|_{\alpha} = \max_{i} |x_{i}|$$

$$B_{\ell_1} \subseteq$$

Examples (motrices)
$$A \in \mathcal{M}_{men}(\mathbb{C})$$

Findmile \mathbb{C}^{mn} $\|A\|_2 = \|\mathbb{E}_{A_1}\|^2 = \|\mathbb{E}_{V(A)}\|_2$

Singular of \mathbb{C}^{mn} $\|A\|_1 = \|\mathbb{E}_{V(A)}\|_1 = \mathbb{E}_{V(A)}\|_1 = \mathbb{E}_{V(A)}\|_1$

Tensor norms

(X, ||
$$||_{X}$$
) (Y, || $||_{Y}$)

Goal: Define a norm on $X \otimes Y$,

"compatible" with $|| ||_{X}$, $|| ||_{Y}$,

Def A norm $|| \cdot ||$ on $X \otimes Y$ is colled

a tensor horm if

 $|| ||_{X} \otimes y ||_{Y} = ||_{X}||_{X} \cdot ||_{Y}||_{Y} + ||_{Y} \in Y$
 $|| ||_{X} \otimes y ||_{X} = ||_{X}||_{X} \cdot ||_{Y}||_{Y} + ||_{Y} \in Y$

dual norm of $|| \cdot ||$

Example (IR", II II₂) (IR", II II₂)

On IR"
$$\otimes$$
 IR" \cong IR "", the euclidean norm is a tensor norm

If $x \otimes y |_{2} = \sqrt{\sum_{k} (x \otimes y)_{k}^{2}}$
 $= \sqrt{\sum_{k} (x_{k} y_{k}^{2})^{2}} = \sqrt{\sum_{k} (x_{k} y_{k}^{2})^{2}}$
 $= ||x||_{2} \cdot ||y||_{2}$

It injective and projective tensor norms

 $(x, ||x|)$ $(y, ||x|)$

On $x \otimes y$, we define $z \in x \otimes y$

If $||z||_{E} := \sup_{k} |(x \otimes y)_{k}^{2}|$

injective $||x||_{2} = ||x||_{2} =$

•
$$||2||_{\pi} := \inf \left\{ \sum_{i=1}^{n} ||x_{i}||_{X} ||y_{i}||_{Y} : \right\}$$

projective
$$2 = \sum_{i=1}^{n} x_{i} \otimes y_{i}$$

tensor norm

Examples
$$2 \in (\mathbb{R}^m, \mathbb{H}^1/2) \otimes (\mathbb{R}^n, \mathbb{H}^1/2)$$
 $\|2\|_{\mathcal{E}} = \sup \left| (\alpha \otimes \beta)(2) \right|$
 $\|\alpha\|_{\mathcal{E}_{2}^{*}} \leq 1$
 $\|\beta\|_{\mathcal{E}_{2}^{*}} \leq 1$
 $\|\beta\|_$

Conclusion
$$(M_{m\times n}, \| \|_{\infty}) = (|R^m, \| \|_2) \otimes (|R^n, \| \|_2)$$

```
For example: AE Mmxn
  [|A||<sub>T</sub> = inf { ∑ || xi || (|yi|| : A=∑xi⊗yi)

    \[
    \frac{1}{7} = \frac{1}{3} \left| \quad \text{siai} \left| \left| \left| \left| = \frac{1}{5} \quad \text{siai} \left|
  \]

        use A = Z silai><bi)
Important fact 2 (X, II IIx), (Y, II IIy) and
        II I a tensor norm. Then
            ||2||2 = ||2|| = ||2|| # # 2
    Proof of -
        let 2∈ X⊗y and let 2= ∑ 2; ⊗j; be
         the optimal decomp for TI:
                     ||z||_{\pi} = \sum ||x|| ||x||
          ||2|| = ||\sum_{\alpha \in \mathcal{Y}} ||\alpha \in \mathcal{Y}_{\alpha}|| \leq ||\alpha \in \mathcal{Y}_{\alpha}||
       st paint et sor norm \\ \alpha ineq for || ||
            < = [ | aillx | ]illy = | 21/m
 Injective norm for tensors
   \left(\mathbb{C}^{m}, \parallel \parallel_{2}\right) \otimes \left(\mathbb{C}^{n}, \parallel \parallel_{2}\right) \cong \left(\mathcal{M}_{m \times n}, \parallel \parallel_{\infty}\right)
```

How about $\left(C^{d_1}, \| \|_2 \right) \otimes \left(C^{d_2}, \| \|_2 \right) \otimes \cdots \otimes \left(C^{d_k}, \| \|_2 \right) \stackrel{?}{\otimes} \cdots \otimes \left(C^{d_k}, \|$ Z E C^d & C^d & ... & C^d & a tensor separable pure q. state $\|2\|_{s} = \sup \left\langle a_{1} \otimes a_{1} \otimes \cdots \otimes a_{n} \right|$ [|a_1|| \(\) \(\ $a \in \mathbb{C}^{d_i}$ So 1/21/2 = max overlap with separable states - log 121/2 is called the geometric measure of entanglement Remarks · 4 9. state (multipartite, pure) 114/15 = 114/12 = 1 · 4 is separable (=> 1411g = 1 • if $\psi = \frac{1}{100} (100) + (11) = 12$ $\| \mathbf{y} \|_{\mathcal{L}} = \max_{\|\mathbf{a}\|, \|\mathbf{b}\| \leq 1} \langle \mathbf{a} \otimes \mathbf{b} | \mathbf{y} \rangle$ $= \left\| \frac{1}{\sqrt{5}} \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) \right\|_{\infty} = \frac{1}{\sqrt{5}} < 1$ but - log (12/2= 1

Conclusion 1/2/1/2 lie le le les a measure of entanglement for multipartite pure q. states (2 E Cd1 & Cd & ... & Cdk)

Impostant open question . 2 is sep => 11211=1

min 1/21/2 corresponds to the 1/21/2=1 state 2 which is pure 9. state the farthest from separable states i.e. the most entargled

h=2 min $||2||_2=\sqrt{d_1}$ $d_1\leq d_2$ achieved by $\sqrt{2}$ $|ii\rangle$

fact It is NP-hard to compute 1121/2 $(k \ge 3)$

Projective norm and mixed state entanglement

g density matrix pe Ma (C) sa 920 positive semidefinite Trp=1 trace 1.

Important observation
$$g = g^*$$
 s.a.

 $g \ge 0$ (=>) $Tr g = || g ||_{q}$

nuclear norm

 $|| g ||_{q} = \sum s_{i}(g) = \sum (a_{i}(g))|$
 $g = g = [a_{i}(g)] = [a_{i}(g)]$
 $g = [a_{i}(g)] = [a_$

Remark computing $\left(\mathcal{M}_{d_1}, \| \|_1 \right) \underset{\overline{\Pi}}{\otimes} \left(\mathcal{M}_{d_2}, \| \|_1 \right)$ is NP- nard