Imperial College

London

[E1.10 (Maths 1) 2011]

B.ENG. and M.ENG. EXAMINATIONS 2011

PART I: MATHEMATICS 1 (ELECTRICAL ENGINEERING)

Date Wednesday 8th June 2011 10.00 - 12.00

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.

Answer Question 1 and THREE of the remaining five

Question 1 carries twice the marks of each of the other questions.

CALCULATORS MAY NOT BE USED.

A mathematical formulae sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 5 pages, with a total of SIX questions. Ask the invigilator for a replacement if your copy is faulty.]

© 2011 Imperial College London

1. (i) Express in polar form:

$$i$$
, $1-i$, $(2+2i)^2$, $(2+i)(2-i)$, $1/2-\sqrt{3/4}i$.

(ii) Determine real and imaginary parts in the form x+iy where $x,\,y\in\mathbb{R}$ and $z\in\mathcal{C}$:

$$(1+i)^3$$
, $\exp(z)$, $\exp(iz)$, $\sinh(iz)$, $\cos(iz)$.

Note: $\sinh(x) = \frac{1}{2}(e^x - e^{-x}).$

(iii) Find the limits:

$$\lim_{x\to\infty} \ \frac{(x+1)^3-x(x+1)^2}{x^2} \ ; \qquad [\textit{do not use L'H\^opital's rule}]$$

$$\lim_{x \to \infty} y^{1/x} \qquad \text{for} \qquad y > 0 \; ;$$

$$\lim_{x\to 1} \ \frac{x^{1/3}-x^{1/2}}{x-1} \ ; \qquad [\textit{do not use L'Hôpital's rule}]$$

$$\lim_{x\to 1} \ \frac{x^{1/3}-x^{1/2}}{x-1} \ . \qquad [\textit{use L'Hôpital's rule}]$$

(iv) Differentiate the following functions with respect to x:

$$f(x) = (1 + \cos(x))^4$$
;

$$f(x) = \ln(\ln(x));$$

$$f(x) = x \ln(x/a) ;$$

$$f(x) = x^{\exp(x)}.$$

PLEASE TURN OVER

(v) Determine the following definite integrals:

$$\int_0^{2\pi} \frac{dx}{\sin^2 x + \cos^2 x} \; ;$$

$$\int_1^2 \frac{dx}{\sqrt{x-1}} \; ;$$

$$\int_{1}^{2} \frac{x+x^{5}}{2x^{2}+x^{6}} dx .$$

(vi) Determine the indefinite integral

$$\int \frac{dx}{\cos^2 x - \sin^2 x} \ .$$

- (vii) Find the Taylor expansion of $\tan(x)$ about $x = \pi/4$ to first order (up to and including the term linear in x) and state the remainder term $R_2(x)$.
- (viii) Determine the radius of convergence of the following two series :

$$\sum_{n=1}^{\infty} \frac{x^n}{n} ;$$

$$\sum_{n=1}^{\infty} \frac{x^{2n}}{n!} .$$

(ix) Find the general solutions of the following ODEs :

$$y''(x) = 0;$$

$$y'(x) = \frac{y^2(x)}{x^2};$$

$$x y'(x) = \frac{y(x)}{x} + \frac{1}{x}$$
.

(x) Find the general solutions of the following second order ODEs:

$$y''(x) + 2y'(x) + y(x) = 0;$$

$$3y''(x) - 2y'(x) + 2y(x) = 0$$
.

2. Find $\frac{dy}{dx}$ as a function of x in each of the following cases :

(i)
$$y = e^{x+x^2}$$
;

(ii)
$$y = \frac{x \sin x}{x+1};$$

(iii)
$$y = \sin(\ln x)$$
;

(iv)
$$y = x^{\sin x}$$
;

(v)
$$e^x + e^y = e^{x+y}$$
;

(vi)
$$e^x = \ln(x+y)$$
.

(vii) Show by induction that

$$\frac{d^n}{dx^n} \ \left(\frac{1}{1-x}\right) \ = \ \frac{n\,!}{(1-x)^{n+1}} \qquad \forall n \ \geq \ 1 \ .$$

3. Evaluate the following limits:

(i)
$$\lim_{x \to 1} \frac{(x-2)(x+2)}{(x-3)(x+1)};$$

(ii)
$$\lim_{x \to \infty} \frac{\sin(\sinh x)}{x} ;$$

(iii)
$$\lim_{x \to 0} x^x;$$

(iv)
$$\lim_{x \to -2} \frac{\sqrt{-2x} - 2}{x + 2}$$
;

(v)
$$\lim_{x \to \infty} \left(\frac{x}{2}\right)^{1/2} \left[(2x+1)^{1/2} - (2x-3)^{1/2} \right].$$

Note: You can assume $\lim_{x\to 0} x \ln x = 0$.

[E1.10 (Maths 1) 2011]

- 4. (i) State whether the improper integral $\int_0^1 \frac{\ln x}{x} dx$ is finite and calculate its value if so.
 - (ii) Integrate $\int 5^{6x+7} dx$.
 - (iii) Integrate $\int \frac{dx}{\sqrt{3+2x-x^2}}$.
- 5. (i) Find all complex number solutions of the equation

$$z^4 - z^2 + 1 = 0.$$

(ii) Sketch the subset of the complex plane described by the equation

$$|z-i-1| = \text{Im}(z+2i)$$
,

where, for z = x + iy a complex number, Im z = y is the imaginary part.

6. (i) Find the solution y(x) of the differential equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 2e^x,$$

that satisfies y(0) = 0, $\frac{dy}{dx}(0) = 1$.

(ii) Find the general solution for the following ODE using the $x = e^t$ substitution (or any other method).

$$x^2 \frac{d^2 y}{dx^2} + 3x \frac{dy}{dx} + y = 0.$$

END OF PAPER

MATHEMATICS DEPARTMENT

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = (a_1, a_2, a_3)$$

Scalar (dot) product:

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Vector (cross) product:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product:

$$[\mathbf{a}, \mathbf{b}, \mathbf{c}] = \mathbf{a} \cdot \mathbf{b} \times \mathbf{c} = \mathbf{b} \cdot \mathbf{c} \times \mathbf{a} = \mathbf{c} \cdot \mathbf{a} \times \mathbf{b} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

Vector triple product:

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$$

2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots$$
 (\$\alpha\$ arbitrary, \$|x| < 1\$)

$$e^x = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + \ldots$$
,

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots + (-1)^n \frac{x^{2n}}{(2n)!} + \ldots,$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \ldots$$
 ,

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots + (-1)^n \frac{x^{n+1}}{(n+1)} + \ldots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b ;$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b.$$

 $\cos iz = \cosh z$; $\cosh iz = \cos z$; $\sin iz = i \sinh z$; $\sinh iz = i \sin z$.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} D f D^{n-1} g + \ldots + \binom{n}{r} D^{r} f D^{n-r} g + \ldots + D^{n} f g.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2 f''(a)/2! + \ldots + h^n f^{(n)}(a)/n! + \epsilon_n(h),$$

where
$$\epsilon_n(h) = h^{n+1} f^{(n+1)}(a+\theta h)/(n+1)!, \quad 0 < \theta < 1.$$

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h, b+k) = f(a, b) + [hf_x + kf_y]_{a.b} + 1/2! \left[h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right]_{a.b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y = y(x)$$
, then $f = F(x)$, and $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$

iii. If
$$x = x(u, v)$$
, $y = y(u, v)$, then $f = F(u, v)$, and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial v} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial v}.$$

(e) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously.

Let (a, b) be a stationary point: examine $D = [f_{xx}f_{yy} - (f_{xy})^2]_{a.b}$.

If D > 0 and $f_{xx}(a, b) < 0$, then (a, b) is a maximum;

If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a minimum;

If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

- i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx]$, so that $\frac{d}{dx}(Iy) = IQ$.
- ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- (a) An important substitution: $\tan(\theta/2) = t$: $\sin \theta = 2t/(1+t^2)$, $\cos \theta = (1-t^2)/(1+t^2)$, $d\theta = 2dt/(1+t^2)$.
- (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), \quad |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a}\right) = \ln \left\{\frac{x}{a} + \left(1 + \frac{x^2}{a^2}\right)^{1/2}\right\}.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a}\right) = \ln \left|\frac{x}{a} + \left(\frac{x^2}{a^2} - 1\right)^{1/2}\right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of
$$f(x) = 0$$
 occurs near $x = a$, take $x_0 = a$ and $x_{n+1} = x_n - [f(x_n)/f'(x_n)], \quad n = 0, 1, 2 \dots$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
 - i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/2) [y_0 + y_1]$.
 - ii. Simpson's rule (2-strip): $\int_{x_0}^{x_2} y(x) dx \approx (h/3) [y_0 + 4y_1 + y_2]$.
- (c) Richardson's extrapolation method: Let $I = \int_a^b f(x) dx$ and let I_1 , I_2 be two estimates of I obtained by using Simpson's rule with intervals h and h/2. Then, provided h is small enough,

$$I_2 + (I_2 - I_1)/15$$
,

is a better estimate of I.

7. LAPLACE TRANSFORMS

Function	Transform	Function	Transform
f(t)	$F(s) = \int_0^\infty e^{-st} f(t) dt$	af(t)+bg(t)	aF(s) + bG(s)
df/dt	sF(s)-f(0)	d^2f/dt^2	$s^2F(s) - sf(0) - f'(0)$
$e^{at}f(t)$	F(s-a)	tf(t)	-dF(s)/ds
$(\partial/\partial lpha)f(t,lpha)$	$(\partial/\partial lpha)F(s,lpha)$	$\int_0^t f(t)dt$	F(s)/s
$\int_0^t f(u)g(t-u)du$	F(s)G(s)		
1 .	1/s	$t^n (n=1, 2\ldots)$	$n!/s^{n+1}$, $(s>0)$
e^{at}	$1/(s-a), \ (s>a)$	$\sin \omega t$	$\omega/(s^2+\omega^2),\;(s>0)$
$\cos \omega t$	$s/(s^2+\omega^2), \ (s>0)$	$H(t-T) = \left\{ egin{array}{ll} 0, & t < T \ 1, & t > T \end{array} ight.$	e^{-sT}/s , $(s, T>0)$

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L) = f(x), and

$$f(x) = rac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos rac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin rac{n\pi x}{L}$$
 , where

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} dx$$
, $n = 0, 1, 2, ...$, and

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \ldots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) .$$

EE 1.10 (haths1)

Question Q1 $2 = e^{2\frac{\pi}{L}}$ $1 - 2 = \sqrt{2} = e^{2\frac{\pi}{L}}$ $(2+2^{2})^{2} = 8^{2} = 8e^{2\frac{\pi}{L}}$ $(2+2^{2})^{2} = 8^{2} = 8e^{2\frac{\pi}{L}}$ $(2+2^{2})^{2} = 8^{2} = 8e^{2\frac{\pi}{L}}$ $(2+2^{2})^{2} = 8^{2} = e^{2\frac{\pi}{L}}$ $(2+2^{2})^{2} = 8^{2} = e^{2\frac{\pi}{L}}$ $(2+2^{2})^{2} = 8^{2} = 8e^{2\frac{\pi}{L}}$ $(2+2^{2})^{2} = e^{2\frac{\pi}{L}}$ $(2+$			
Question Q1 Parts $ \hat{Q} = \frac{e^{2\frac{\pi}{2}}}{1-2} = \frac{e^{2\frac{\pi}{2}}}$		EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
Parts i) $ \hat{z} = e^{2\pi i \frac{\pi}{2}} $ $ 1 - 2 = f z e^{-2\pi i \frac{\pi}{2}} = \frac{1z e^{2\pi i \frac{\pi}{2}}}{1 - 2e^{2\pi i \frac{\pi}{2}}} $ $ (2+2i)^2 = 8i = 8e^{2\pi i \frac{\pi}{2}} $ $ (2+2i)(2-i) = 5i $ $ \frac{1}{2} - f_{3}^2 i = e^{-2\pi i \frac{\pi}{3}} = e^{i\frac{\pi}{3}} $ ii) $ (1+2i)^2 = -2 + 2i $ $ z = x + 2iy $			EEI(1)
Parts i) $ \hat{z} = e^{2\pi i \frac{\pi}{2}} $ $ 1 - 2 = f z e^{-2\pi i \frac{\pi}{2}} = \frac{1z e^{2\pi i \frac{\pi}{2}}}{1 - 2e^{2\pi i \frac{\pi}{2}}} $ $ (2+2i)^2 = 8i = 8e^{2\pi i \frac{\pi}{2}} $ $ (2+2i)(2-i) = 5i $ $ \frac{1}{2} - f_{3}^2 i = e^{-2\pi i \frac{\pi}{3}} = e^{i\frac{\pi}{3}} $ ii) $ (1+2i)^2 = -2 + 2i $ $ z = x + 2iy $			
Parts i) $2 = e^{2\pi i}$ $1 - 2 = 12e^{-2\pi i} = \frac{12e^{2\pi i}}{2e^{2\pi i}}$ $(2+2i)^2 = 8i = 8e^{2\pi i}$ Seen Similar ii) $(1+2i)^2 = -2 + i2$ $2 = x + 2iy$ $3 = x + 2iy$	Question		
i) $2 = \frac{e^{2\pi}}{1 - 2} = \frac{12}{12} e^{-2\pi} = \frac{12}{12} e^{2\pi} = 1$	Parts		seen/unseen
$(2+2i)^2 = 8i^2 = 8e^{ii}$ $(2+i)(2-i) = 5$ $\frac{1}{2} - \sqrt{3}i^2 = e^{-ii}$ $\frac{1}{2} - 2 + i^2$ $\frac{1}{2} = \frac{e^{ii}}{\cos x} + i^2 e^{-ii}$ $\frac{1}{2} = \frac{e^{-ii}}{\cos x} + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \sin x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii}$	2	$0 \qquad 2\frac{\pi}{2}$ $2 = P \qquad 0 2\pi$	
$(2+2i)^2 = 8i^2 = 8e^{ii}$ $(2+i)(2-i) = 5$ $\frac{1}{2} - \sqrt{3}i^2 = e^{-ii}$ $\frac{1}{2} - 2 + i^2$ $\frac{1}{2} = \frac{e^{ii}}{\cos x} + i^2 e^{-ii}$ $\frac{1}{2} = \frac{e^{-ii}}{\cos x} + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x + i^2 e^{-ii}$ $\frac{1}{2} = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \sin x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii} - e^{-ii} \right) \cos x$ $\cos ii = \frac{1}{2} \left(e^{-ii}$,	1-2=12e=12e=4	
$(2+2)(2-2) = \frac{1}{2}$ $\frac{1}{2} - \sqrt{3}^2 = e^{-2\frac{\pi}{3}} = e^{-2\frac{\pi}{3}}$ $2 = x + 2^2y$ $3 = x + 2^2y$ $4 = x + 2^2y$ $5 = x + 2^2y$ $5 = x + 2^2y$ $5 = x + 2^2y$ $6 = x + 2^2y$ $7 = x + 2^2y$ $8 = x$,
$\frac{1}{2} - \frac{1}{3}e^{2} = e^{-\frac{2}{5}} = e^{-\frac{2}{5}}$ $\frac{1}{2} - \frac{1}{3}e^{2} = e^{-\frac{2}{5}} = e^{-\frac{2}{5}}$ $\frac{1}{2} - \frac{1}{3}e^{2} = e^{-\frac{2}{5}} = e^{-\frac{2}{5}}$ $\frac{1}{2} = \frac{2 + 2}{2}$ $\frac{2}{2} = x + 2^{2}y$ $\frac{2}{2} = e^{-x}\cos y + e^{x}e^{-x}\sin y$ $e^{e^{x}} = e^{-x}\cos y + e^{x}e^{-x}\sin y$ $\frac{2}{2} = e^{-x}\cos y + e^{x}e^{-x}\sin y$ $\frac{2}{2} = e^{-x}\cos y + e^{x}e^{-x}\sin y$ $\frac{2}{2} = e^{-x}\cos y + e^{x}e^{-x}\sin y$ $e^{x}e^{x} = e^{-x}e^{x}e^{x}$ $\frac{2}{2} = e^{-x}e^{x}e^{x}e^{x}$ $\frac{2}{2} = e^{-x}e^{x}e^{x}e^{x}e^{x}e^{x}e^{x}e^{x}e^{$			4
$ \frac{2}{2} = \frac{e^{x} \cos y + e^{x} e^{x} \sin y}{e^{e^{x}} e^{x}} $ $ \frac{e^{e^{x}} e^{x} e^{x} e^{x} e^{x} \sin x}{e^{e^{x}} e^{x}} $ $ \frac{e^{e^{x}} e^{x} e^{x}}{e^{x}} = \frac{e^{x} \cos x + e^{x} e^{x} \sin x}{e^{x}} $ $ = \frac{1}{2} \left\{ (e^{-3} - e^{3}) \cos x + e^{x} (e^{-3} e^{3}) \sin x \right\} $ $ e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} e^{x} $ $ e$			Seen Similar
$ \frac{2}{2} = \frac{e^{x} \cos y + e^{x} e^{x} \sin y}{e^{e^{x}} e^{x}} $ $ \frac{e^{e^{x}} e^{x} e^{x} e^{x} e^{x} \sin x}{e^{e^{x}} e^{x}} $ $ \frac{e^{e^{x}} e^{x} e^{x}}{e^{x}} = \frac{e^{x} \cos x + e^{x} e^{x} \sin x}{e^{x}} $ $ = \frac{1}{2} \left\{ (e^{-3} - e^{3}) \cos x + e^{x} (e^{-3} e^{3}) \sin x \right\} $ $ e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} \sin x $ $ e^{x} $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} e^{x} e^{x} $ $ e^{x} e^{x} e^{x} e^{x} $ $ e$	ii)	$(1+2^2)^3 = -2 + 2^2$	
$e^{2} = e^{x} \cos y + e^{x} e^{x} \sin y$ $e^{2} = e^{x} \cos x + e^{x} e^{x} \sin x$ $sinh(e^{2}) = \frac{1}{2} \left\{ e^{-3} \cos x + e^{x} e^{-3} \sin x - e^{3} \cos x + e^{2} e^{-3} \sin x \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{3}) \cos x + e^{x} (e^{-3} e^{3}) \sin x \right\}$ $os = -sinhy \cos x + e^{x} \cos y \sin x$ $cos e^{2} = \frac{1}{2} (e^{-2} + e^{2}) = \frac{1}{2} (e^{x} + e^{-x}) \cos y + e^{x} \cos y + e^{$,		2
$e^{\frac{2\pi}{2}} = \frac{e^{-3}\cos x}{\cos x} + \frac{2e^{-3}\sin x}{2e^{-3}\sin x} - e^{-3}\cos x + \frac{2e^{-3}\sin x}{2e^{-3}\cos x}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$ $= \frac{1}{2} \left\{ (e^{-3} - e^{-3})\cos x + \frac{2e^{-3}\cos x}{2e^{-3}\cos x} \right\}$			4
$Sinh(e^{2}) = \frac{1}{2} \left\{ e^{-9}\cos x + e^{-9}\sin x - e^{9}\cos x \right\}$ $= \frac{1}{2} \left\{ (e^{-9} - e^{9})\cos x + e^{9} (e^{-9}e^{9})\sin x \right\}$ $os = -\sinh y \cos x + e^{9} \cosh x$ $\cos e^{2} = \frac{1}{2} \left(e^{-2} + e^{2} \right) = \frac{1}{2} \left(e^{x} + e^{-x} \right) \cos y + \frac{1}{2} \left(e^{x} - e^{-x} \right) \sin y$ $os = -\sinh y \cos x + e^{9} \cosh x$ $\cos e^{2} = \frac{1}{2} \left(e^{-2} + e^{2} \right) = \frac{1}{2} \left(e^{x} + e^{-x} \right) \cos y + \frac{1}{2} \left(e^{x} - e^{-x} \right) \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \cos y + e^{3} \sin x \cos y + e^{3} \sin x \cos y$ $os = -\sinh x \cos x + e^{3} \cos x + e^{3} \cos x \cos y + e^{3} \sin x \cos y + e^{3} \cos x \cos $		e = e cosy + re sing	Seen
$Sinh(e^{2}) = \frac{1}{2} \left\{ e^{-9}\cos x + e^{-9}\sin x - e^{9}\cos x \right\}$ $= \frac{1}{2} \left\{ (e^{-9} - e^{9})\cos x + e^{9} (e^{-9}e^{9})\sin x \right\}$ $os = -\sinh y \cos x + e^{9} \cosh x$ $\cos e^{2} = \frac{1}{2} \left(e^{-2} + e^{2} \right) = \frac{1}{2} \left(e^{x} + e^{-x} \right) \cos y + \frac{1}{2} \left(e^{x} - e^{-x} \right) \sin y$ $os = -\sinh y \cos x + e^{9} \cosh x$ $\cos e^{2} = \frac{1}{2} \left(e^{-2} + e^{2} \right) = \frac{1}{2} \left(e^{x} + e^{-x} \right) \cos y + \frac{1}{2} \left(e^{x} - e^{-x} \right) \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \sin y$ $os = -\sinh x \cos y + e^{3} \sin x \cos y + e^{3} \sin x \cos y + e^{3} \sin x \cos y$ $os = -\sinh x \cos x + e^{3} \cos x + e^{3} \cos x \cos y + e^{3} \sin x \cos y + e^{3} \cos x \cos $		e = e corx +2e sinx	VIII.
$= \frac{1}{2} \left\{ (e^{-3} - e^{3}) \cos x + e^{3} (e^{-3} e^{9}) \sin x \right\}$ $os = -\sinh y \cos x + e^{3} \cosh y \sin x$ $\cos e^{2} = \frac{1}{2} (e^{-2} + e^{-2}) = \frac{1}{2} (e^{x} + e^{-x}) \cos y + \frac{1}{2} (e^{x} - e^{-x}) \sin y$ $os = \cosh x \cos y + e^{3} \sinh x \sin y$ Setter's initials $Checker's initials$ $Checker's initials$ $Page number$		Sinh(ê)= [(cox + 2 e sinx - Cox+2 e mx)	
$\cos i = \frac{1}{2} (e^{-2} + e^{-2}) = \frac{1}{2} (e^{+} + e^{-}) \cos y + \frac{1}{2} (e^{-} + e^{-}) \sin y$ $\partial r = \cosh \times \cos y + 2 \sinh \times \sin y$ Setter's initials $Checker's initials$ Page number			
$\frac{2^{2} \frac{1}{2} (e^{x} - e^{x}) \sin y}{2 \sin x \cos y} + 2^{2} \sin x \sin y}$ Setter's initials Checker's initials Checker's initials Page number		or = - sinhy cosx + 2° coshy sinx	
Setter's initials Checker's initials Page number	7 00.		
		Or = cosh x cosy +2 s.hhx siny	
GD KM SI		The state of the s	Page number
		612 KM	[2

 $(\exists \vdots \ ,$

i .

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
		EF (1)
Question		Marks & seen/unseen
Parts	$\lim_{x\to\infty} \frac{(x+1)^3 - x(x+1)^2}{x^2} = \lim_{x\to\infty} \frac{3x^2 - 2x^2 + \dots}{x^2} = 1$	4
	$\lim_{x \to \infty} y^{\frac{1}{x}} = y^{\circ} = 1$ $\lim_{x \to \infty} \frac{x^{y_3} - x^{y_2}}{x - 1} = -\frac{1}{6}$	Seen Similar
	$\lim_{x \to 1} \frac{x^{y_3} - x^{y_2}}{x - 1} = -\frac{1}{6}$	
	using $\frac{x^{1/3}-x^{1/2}}{x-1}=-x^{\frac{1}{3}}\frac{1-x^{\frac{1}{6}}}{1-x}$	
	$= - \times \frac{1 - 9}{1 - 9^6} = - \times \frac{1 - 9}{(1 + 9 + 9^2 + 9^3 + 9^4 + 9^5)(1 - 9)}$	
	=- x 1/3 1+9+y2+y3+y4+y5 where y = x 1/6 and lim y =1 x->1	
	Using L'Hopital gives	
	$\lim_{x \to 1} \frac{\frac{1}{3}x^{-\frac{2}{3}} - \frac{1}{2}x^{-\frac{1}{2}}}{1} = -\frac{1}{6}$	
	Setter's initials Checker's initials	Page number

()

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
		EEI(I)
Question		Marks & seen/unseen
Parts	$\frac{d}{dx}\left(1+\cos(x)\right)^{4}=-4\sinh(x)\left(1+\cos(x)\right)^{3}$	4 Scen
	$\frac{d}{dx} ln(ln(x)) = \frac{1}{x} \frac{1}{ln(x)}$	Sihniler
	$\frac{d}{dx} \ln(\frac{x}{a}) = \ln(\frac{x}{a}) + 1$	
	$\frac{d}{dx} \times \exp(k) = \frac{d}{dx} \exp(\ln(x) \exp(x))$	
	$= \left(\frac{1}{x} e^{(x)} + \ln(x) e^{(x)}\right) \times e^{(x)}$	
	$= \times \frac{\exp(x)}{e^{x}} \left(\frac{1}{x} + \ln x\right)$	
v)	$\int \frac{dx}{s_1 h^2 r \cos^2 x} = 2\pi$	
	$\int_{1}^{2} \frac{dx}{\sqrt{x-1}} = \lim_{\epsilon \to 0} \left[2\sqrt{x-1} \right]_{1+\epsilon}^{2} = \frac{2}{\epsilon}$	
	$\int_{1}^{2} \frac{x + x^{5}}{2x^{2} + x^{6}} dx = \frac{1}{8} \int_{1}^{2} \frac{8x^{3} + 8x^{7}}{2x^{4} + x^{8}} dx = \frac{1}{8} \left[\ln(2x^{4} + x^{8}) \right]_{1}^{2}$	Scen
	$=\frac{1}{8}\ln\left(\frac{288}{3}\right)=\frac{1}{8}\ln\left(96\right)$	3/1000
	or $\int_{1}^{2} \frac{x+x^{5}}{2x^{2}+x^{6}} dx = \int_{1}^{2} \frac{1+x^{4}}{2x+x^{5}} dx = \frac{1}{2} \int_{1}^{2} \frac{2+5x^{4}-3x^{4}}{2x+x^{5}}$	0
	Setter's initials Checker's initials RLJ	Page numbe

(::]

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
		EEK
Question		Marks & seen/unseer
Parts	$= \frac{1}{2} \left[\ln (2x + x^{5}) \right]_{1}^{2} - \frac{3}{2} \int_{2}^{2} \frac{x^{3}}{2 + x^{4}}$ $= \frac{1}{2} \ln (12) - \frac{3}{8} \left[\ln (2 + x^{4}) \right]_{1}^{2}$	
and the control	= \frac{1}{2} ln (12) - \frac{3}{8} [ln (2+x4)]	
	= $\frac{1}{2}$ ln (12) - $\frac{3}{8}$ ln (6) = $\frac{1}{8}$ ln (124/63)	
	= \frac{1}{8} ln 96	
vi)	$\int \frac{dx}{\cos^2 x - \sin^2 x} = \int \frac{dt}{1 + t^2} \frac{1 + t^2}{1 - t^2}$	
	= 1 1+t + -t dt = 1 ln (++1) + 4	
	$=\frac{1}{2}\ln\left(\frac{s_{\lambda n}\times+cos(x)}{s_{\lambda n}\times-cos(x)}\right)+C$	4.
	using $t = tan \times \frac{db}{dx} = \frac{1}{cos^2x} = 1 + t^2$	Seen
	$Sih^2 x = \frac{t^2}{1+t^2}$ $cos^2 x = \frac{1}{1+t^2}$	
	Ans an also be written:	
	2 lu (sec2x +tan2x) + c	
	Setter's initials Checker's initials	Page numb
	GP RCJ	54

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
		EEI(i)
Question		Marks & seen/unseen
Parts		,
ण्टं)	Lan (=)=1	
	$\frac{d}{dx} \left \frac{\tan(x)}{\tan(x)} \right = \frac{1}{\cos^2(\frac{\pi}{4})} = 2$ $\frac{d^2}{dx^2} \frac{d^2}{\tan x} = \frac{2\sin(x)}{\cos^3(x)}$	4 scen smilar
	$\frac{1}{R_2(x)} = \frac{1 + 2(x - \frac{\pi}{4}) + R_2(x)}{(x - \frac{\pi}{4})^2 \frac{2\sin(5)}{\cos^3(5)}}$ $\frac{1}{S \in [\frac{\pi}{4}, x]}$	
	$R_2(x) = \frac{1}{2} \left(x - \frac{\pi}{4} \right) \frac{2 \sin(\xi)}{\cos^3(\xi)} \xi \in [\xi, x]$	
viii)	$a_n = \frac{x^q}{n}$ \Rightarrow $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = x \lim_{n \to \infty} \frac{n}{n+1} = x $	
	=) radius of convergence [
	$a_n = \frac{x^{2n}}{n!}$ => $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = X ^2 \lim_{n \to \infty} \frac{1}{n+1} = 0$	4
	=> radius of convergence of	Scen Similar
	Setter's initials Checker's initials RLJ	Page number \$5

		T
	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
		EEI(I)
Question		Marks &
		seen/unseen
Parts $\hat{c} \times \hat{J}$	y"=0 => y(x) = Ax + B	
	$g'(x) = \frac{g^2}{x^2}$ Separation of variables:	
	$-\frac{1}{9} = -\frac{1}{x} + A \implies y = \frac{x}{1-Ax}$	
	or via homogeneous ODE:	
	$\ln x = \int \frac{dv}{v^2 - v}$ with $v = \frac{9}{x}$	
	$=\int -\frac{1}{v} + \frac{1}{1-v} dv = \ln\left(\frac{1-v}{v}\right) + \zeta'$	
	$=> \times = \widetilde{A} \times \frac{X-Y}{Y} \implies Y = \frac{\widetilde{A} \times}{\widetilde{A} + \times} = \frac{\times}{1 + \frac{1}{A} \times}$ $= -A$ $= A$ $=$	
	$y' \times = \frac{g}{x} + x^{-1}$	
	$y' - \frac{y}{x^2} = x^{-2}$	
	lukgraphy factor - R 1/x2 = R' => R = e1x	
	=> Ry = fdx x 2 e x = - e x + 6	
	=> y=-1+Ge-1/x	geen Sihilar
	Setter's initials Checker's initials RLJ	Page number 56

(:::

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	
		EE I(II)
Question		Marks &
QI		seen/unseen
Parts	" 12 1	
×)	y'' + 2y' + y = 0	
	ay" + by ' + cy = 0	
	a=1, b=2, c=1 => 4ac=62	
	Critical case $_1$ -b/2a = -1	
	y(x)= Ae-x + Bxe-x	
	3y'' - 2y' + 2y = 0 $4ac = 24a = 3 b = -2 c = 2 b^2 = 4Oscillatory cax S2 = \frac{\sqrt{4ac - 6^2}}{2a} = \frac{\sqrt{5}}{3}$	
	$-\frac{b}{2a} = \frac{1}{3}$	
	9(x)= e = (A sih([= x) + B cos([= x]))	
		4
		Sien
		Sinvar
UK 1-7-2	Setter's initials Checker's initials	Page numbe
	Setter's initials RU	SZ

 (\cdot,\cdot)

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course PEI(1) 2
Question		Marks & seen/unseen
Parts	(i) dy = (1+2x)ex+x2 Chair Rule	(2)
	(i) $\frac{dy}{dx} = \frac{5nx}{x+1} + \frac{x}{x} \frac{x + 1}{(x+1)^2}$ Product Ph	3
	$= \frac{\operatorname{Sn}x + (x+1) \supset C \operatorname{Cos}x}{(x+1)^{2}}$ $= \frac{\operatorname{Sn}x + (x+1) \supset C \operatorname{Cos}x}{(x+1)^{2}}$ $= \frac{\operatorname{Sn}x + (x+1) \supset C \operatorname{Cos}x}{x}$	(2)
	$\frac{dy}{dx} = e^{(\ln x) \sin x} \left(\frac{\sin x}{x} + \cos x \ln x \right)$ $= x^{\sin x} \left[\frac{\sin x}{x} + (\ln x) \cos x \right]$ $e^{x} + e^{y} = e^{x+y} \Rightarrow e^{y} = \frac{e^{x}}{e^{x}-1} = \frac{1}{1-e^{-x}}$ $\frac{dy}{dx} = \frac{e^{y}}{e^{x}-1} = \frac{e^{-x}}{1-e^{-x}}$	3
	$= \frac{dy}{dx} \left(\frac{1}{1 - e^{-x}} \right)^{-1} = \frac{e^{-x}}{(1 - e^{-x})^2} = \frac{dy}{dx} = \frac{e^{-x}}{1 + e^{-x}} = \frac{1}{1 + e^{-x}}$	
	i) e = ln(x+y) = x+y = ex : 1+ dy = e = e = dy = e = 1	3
	$\frac{1+dy}{dx} = e^{x}e^{x} = \frac{1}{2} dy = e^{x} - 1$ $V(1) \text{True for } n = 1 \text{Assum } \frac{d^{n}}{dx^{n}} \left(\frac{1}{1-x}\right) = \frac{n!}{(1-x)^{n}}$ $\frac{d^{n+1}}{dx^{n+1}} \frac{1}{1-x} = \frac{d}{dx} \left(\frac{n!}{1-x^{n}}\right) = \frac{(n+1)!}{(1-x)!} \frac{n}{n+2}$ Setter's initials $Checker's initials$	3
	Setter's initials Setter's initials Setter's initials Setter's initials	Page numbe

		Core 2
	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course EEI(1)
Question		Marks & seen/unseen
Parts	(i) $\lim_{x\to 1} \frac{(x-2)(x+2)}{(x-3)(x+1)} = \frac{-1\cdot 3}{-2\cdot 2} = \frac{3}{4}$	2
	11) $L = \lim_{x \to \infty} \frac{\operatorname{Sn}(\operatorname{Sul}x)}{x}$ $ L < \lim_{x \to \infty} \frac{1}{x} = 0$	3
	iii) Let $y=x^{x}$ the lay= $x \ln x$ as $x \to 0 \Rightarrow \ln y \to 1$ to $x^{x} = 1$	(5)
	(11) $\lim_{x\to -2} \frac{\sqrt{-2x}-2}{x+2} = \lim_{x\to -2} \frac{(\sqrt{-2x}-2)(\sqrt{-2x}+2)}{(x+2)(\sqrt{-2x}+2)}$	
	$= \lim_{x \to -2} \frac{-2x-4}{(x+2)(\sqrt{-2x+2})}$ $= \lim_{x \to -2} \frac{-2}{\sqrt{-2x+2}} = -\frac{1}{2}$	(5)
	V) lim (2) 1/2 [(2x+1) 1/2 - (2x-3) 1/2]	
	$= \lim_{x \to \infty} \left(\frac{x}{2}\right)^{h} (2x)^{l} \left[\left(1 - \frac{1}{2x}\right)^{h} - \left(1 - \frac{3}{2x}\right)^{lh} \right]$	
	$= \lim_{x \to \infty} \left[\left(1 + \frac{1}{ux} + \cdots \right) - \left(1 - 3l_{ux} + \cdots \right) \right]$ $= \lim_{x \to \infty} \left[\left(1 + \frac{1}{ux} + \cdots \right) - \left(1 - 3l_{ux} + \cdots \right) \right]$	5
	$= \frac{1}{2} \lim_{x \to \infty} \left(\frac{x}{x}\right)^{1/2} = \left[(2x+1)^{1/2} - (2x-3)^{1/2} \right] \left[\frac{(2x+1)^{1/2} + (2x-3)^{1/2}}{(2x+1)^{1/2} + (2x-3)^{1/2}} \right]$ etc	
	Setter's initials Checker's initials MWL	Page numbe

Core 3 EEI(1) 7 (4)

	INTEGRAL CORE EXAM SOLUTION 2010-2011	Course
Core 3		Marks & seen/unseen
Part A	Consider $\int_c^1 \frac{\ln x}{x} dx = \frac{1}{2} (\ln x)^2 _c^1 = -\frac{1}{2} (\ln c)^2$. Taking the limit as $c \to 0^+$ yields $-\infty$. Therefore the integral diverges.	4 3
В	Let $u=6x+7$, so $du=6dx$. Then the integral becomes $\frac{1}{6}\int 5^u\ du=\frac{1}{6}*\frac{5^u}{\ln 5}+c=\frac{5^{6x+7}}{6\ln 5}+c$	2 4
C	$I(x) = \int \frac{dx}{\sqrt{3+2x-x^2}} = \int \frac{dx}{\sqrt{4-(x-1)^2}}.$ Now let $u = x - 1$, giving $du = dx$ and hence $I(x) = \int du/\sqrt{4-u^2}.$ Let $u = 2\sin\theta \Rightarrow du = 2\cos\theta d\theta.$ $I(x) = \int \frac{2\cos\theta d\theta}{\sqrt{4-4\sin^2\theta}} = \int \frac{2\cos\theta d\theta}{2\cos\theta} = \theta + c = \sin^{-1}\left(\frac{u}{2}\right) + c = \sin^{-1}\left(\frac{x-1}{2}\right) + c$	1 1 2 1 1 1
	Setter's initials: DB Checker's initials &C	Page number

Question C4 Parts	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course EEI (1) Solution Marks & seen/unseen
(9)	I first selve $Z^{2} - Z + 1 = 0$ $Z_{1,2} = \frac{1 \pm i\sqrt{3}}{2} = e^{\frac{\pi}{3}i} e^{-\frac{\pi}{3}i}$	4 warks
	te = -\frac{1}{2} - \frac{1}{2}'	3 warks
	$x^{2} = \frac{7}{2}$ $x^{3},4=\begin{cases} e^{-\frac{17}{6}i} = \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ -e^{-\frac{17}{6}i} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i \end{cases}$ (In success $x = \pm \frac{\sqrt{3}}{2} \pm \frac{1}{2}i$)	Zmarks
	Setter's initials Checker's initials	Page number 2/3

HETCH)
(5)

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course
Question C4		Marks & seen/unseen
Parts		unseen
(b)	Z-i-1 = Im (Z+2i)	(I hope) 10 werk
	z = x + iy :	10 wark
	$ x-1+i(y-1) = y+2 (\text{noto}: y7-2)$ square both sides: $(x-1)^2 + (y-1)^2 = (y+2)^2$ $x^2-2x+1+y^2-2y+1 = y^2+4y+4$	
	$69 = x^{2} - 2x - 2$ $\frac{y}{y} = \frac{(x+1)(x-3)}{6} \frac{y-\frac{1}{6}(x^{2}-2x-2)}{x^{2}-2x-2}$ greaton:	
	-1 0 1 2 3 -1 (note: indeed 47-2)	
	Setter's initials Checker's initials 9x(Page number

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course EEI(1)
Question	Second Order ODE (solution)	Marks & seen/unseen
Parts		, , , , , , , , , , , , , , , , , , , ,
(1)	Finding the complementary function of the	
	ODE by solving the auxiliary equantor	
	$\lambda^2 + \lambda - 2 = 0 = 0$	2
	$\lambda = -2, +1$	
	$CF: Y(x) = A_1 e^{-2x} + A_2 e^{-x}$	2
	This is a degenerate case, therefore for	
	the particular integral (PI) we try	
	$y = C \times e^{X}$	2
	dy-cxe+ce	
	$\frac{d^2y}{dx^2} = Cx \in \pm 2ce^{2}$	
	$c \times e + 2ce + c \times e + ce - 2c \times e = 2e$	
	$3C = 2 \implies C = \frac{2}{3}$	
	General solution: $y(x) = A_1 e^{2x} + A_2 e + \frac{2}{3}xe$	2
	$J(0) = A_1 + A_2 = 0$	1
	$y'(c) = -2A_1 + A_2 + \frac{2}{3} = 1$ $y(x) = -\frac{1}{9}e^{-2x} + \frac{1}{9}e^{-x} + \frac{2}{3}xe^{x}$ $A_2 = \frac{1}{9}$	1
	Setter's initials Checker's initials	Page numbe

...

	EXAMINATION QUESTIONS/SOLUTIONS 2010-2011	Course EEI(1)
Question C 10	Second order ODE (solution)	Marks & seen/unseen
Parts (iì)	$x = e^{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dt} = \frac{dy}{dt} = \frac{dy}{dt} = e^{t}$	2
	$\frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dt} e^{-t} \right) e^{-t} = e^{-2t} \frac{d^2y}{dt^2} - \frac{dy}{dt} e^{-2t}$	2
	Substitution gives:	
	$e^{2t} \left(e^{2t} \frac{d^2y}{dt^2} - \frac{dy}{dt} e^{2t} \right) + 3 e^{t} e^{t} \frac{dy}{dt} + y =$	٥
	$\frac{d^2y}{dt} + 2\frac{dy}{dt} + y = 0$ Now an equation with constant coefficients, we	2
	solve the auxiliary equation.	
	$\lambda^2 + 2\lambda + 1 = 0 = 0 \qquad \lambda = -1.$	_1
	Repeated root! therefore CF is	_
	$y(t) = (a + bt)e^{-t}$	2
	$t = \log x \implies y(x) = \frac{(a + b \log x)}{x}$	1
	Note: [f students used y = Ax substitution	
	and guessed the log x solution should get fall	
	Mark. If they only find a solution 5 mark only.	
	Setter's initials Checker's initials	Page number