第4章作业简答

习题 4.1

- 3. 有定义直接可证。
- 6. 有正项级数的比较判别法直接可证。
- 11. 对任意 $z = x + iy \in \mathbb{C} \setminus N$, 第n 项的实部和虚部分别为,

$$a_n = \frac{n-x}{(n-x)^2 + y^2}, \ b_n = \frac{-y}{(n-x)^2 + y^2}$$

他们都从某一项开始单调趋于0, 有交错级数判别法得结论。

13. 这与级数的情形完全一样。只需将记住中的 Sn 换成 fn 进行论证。也可以将写成级数的形式 $f_n = f_1 + \sum_{k=2}^n (f_k - f_{k-1})$. 而 $\sum_{k=2}^n (f_k - f_{k-1})$ 内闭一致收敛相当于 f_n 一致收敛。 f_n 内闭一致收敛于 f 的定义是:对 \forall 紧集 $\mathbf{K} \subset \mathbf{D}$, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$,当 n > N 时,对任意 $z \in K$ 都有 $|f_n(z) - f(z)| < \varepsilon$.

习题 4.2

1 . (i) 任 取 $r < \min\{R_1, R_2\}$, $\sum_{n=1}^{\infty} a_n z^n$, $\sum_{n=1}^{\infty} b_n z^n$ 都在 $|z| \le r$ 收 敛 , 因 而 $\sum_{n=1}^{\infty} (a_n \pm b_n) z^n \triangle |z| \le r$ 收 敛 , 因 此 $\sum_{n=1}^{\infty} (a_n \pm b_n) z^n$ 的 收 敛 半 径 不 小 于 r. 因 此 $\sum_{n=1}^{\infty} (a_n \pm b_n) z^n$ 的 收敛半径至少是 $\min\{R_1, R_2\}$

(ii) 任取 $r < R_1 R_2$,存在 $r_1 < R_1, r_2 < R_2$ 使得 $r < r_1 r_2 < R_1 R_2$ 由 $\sum_{n=1}^{\infty} a_n z^n, \sum_{n=1}^{\infty} b_n z^n$ 的收敛性 我们有 $\lim_{n \to \infty} a_n r_1^n = \lim_{n \to \infty} b_n r_1^n = 0$. 因此有对充分大的 n, $|a_n r_1^n| < 1, |b_n r_2^n| < 1$ 进而 $|a_n b_n r_1^n r_2^n| < 1$,因此 $|a_n b_n r_1^n r_2^n| \left(\frac{r}{r_1 r_2}\right)^n < \left(\frac{r}{r_1 r_2}\right)^n$. 所以级数 $\sum_{n=1}^{\infty} |a_n b_n r_1^n| \log n$, $|a_n b_n r_1^n| \log n$, $|a_n b_n r_1^n| \log$

由 Abel 判别法(或由 Weierstrass 判别法: 定理 4.1.3), $\sum_{n=1}^{\infty} a_n b_n \mathbf{z}^n$ 在 $|\mathbf{z}| \leq r$ 收敛。由 r 的任意性,(ii)得证。

以上两个题目都可以由收敛半径的定义(定理 4.4.2)证明。

- 2 (i) 1, (ii) $+\infty$ (iii) 1/4, (iv) 1/e
- 3 显然, 只需注意到 $|a_n z^n| \le |a_n z_0^n|$, 再 Weierstrass 判别法: 定理 4.1.3

7. 由于 f有界,存在 M>0, $\int_0^{2\pi} f(re^{i\theta}) \overline{f(re^{i\theta})} d\theta < M$ 进而由于 $\sum_{n=1}^{\infty} a_n z^n$ 在 $|z| \le r (r < 1)$ 上一直收敛于 f(z). $\sum_{n=1}^{\infty} \overline{a_n} \overline{z}^n$ 在 $|z| \le r (r < 1)$ 上一直收敛于 $\overline{f(z)}$. $\sum_{n=1}^{\infty} f(z) \overline{a_n} \overline{z}^n$ 在 $|z| \le r (r < 1)$ 上一直收敛于 $f(z) \overline{f(z)}$ 我们有

$$\begin{split} &\int_{0}^{2\pi} f(re^{i\theta}) \overline{f(re^{i\theta})} d\theta = \int_{0}^{2\pi} \sum_{n=1}^{\infty} a_{n} r^{n} e^{in\theta} \sum_{m=1}^{\infty} \overline{a}_{m} \rho^{m} e^{-im\theta} d\theta \\ &= \int_{0}^{2\pi} \sum_{m=1}^{\infty} \left(\sum_{n=1}^{\infty} a_{n} r^{n} e^{in\theta} \right) \overline{a}_{m} r^{m} e^{-im\theta} d\theta \\ &= \sum_{m=1}^{\infty} \int_{0}^{2\pi} \left(\sum_{n=1}^{\infty} a_{n} r^{n} e^{in\theta} \right) \overline{a}_{m} r^{m} e^{-im\theta} d\theta \\ &= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{0}^{2\pi} a_{n} r^{n} e^{in\theta} \overline{a}_{m} r^{m} e^{-im\theta} d\theta \\ &= 2\pi \sum_{m=1}^{\infty} |a_{m}|^{2} r^{2m} < M. \end{split}$$

对任意 r<1, 任意 N, $2\pi\sum_{m=1}^{N}|a_{m}|^{2}r^{2m}\leq 2\pi\sum_{m=1}^{\infty}|a_{m}|^{2}r^{2m}< M$. 因而

$$2\pi \sum_{m=1}^{N} |a_m|^2 < M \Rightarrow 2\pi \sum_{m=1}^{\infty} |a_m|^2 < M.$$

- 8. (i) 有多种证法。例如 $\overline{\lim}_{n\to\infty}\sqrt[n]{\frac{|a_n|}{n!}} \le \overline{\lim}_{n\to\infty}\sqrt[n]{\frac{|a_n|}{n!}} \overline{\lim}_{n\to\infty}\sqrt[n]{\frac{1}{n!}} = \frac{1}{R} \bullet 0 = 0.$
 - (ii)似乎应该假设原级数收敛半径大于 R 才对。
- 10 G 的面积等于

$$\int_{G}^{R} du dv = \iint_{D} \left| u_{x} - u_{y} \right| dx dy = \iint_{D} |f'|^{2} dx dy = \iint_{D} |f'|^{2} dx dy$$
由于 $\sum_{n=1}^{\infty} n a_{n} z^{n-1}$ 在 $|z| \le r (r < 1)$ 上一直收敛于 $f'(z)$. $\sum_{n=1}^{\infty} n \overline{a_{n}} \overline{z}^{n-1}$ 在 $|z| \le r (r < 1)$ 上一直收敛于 $f'(z)$. $\sum_{n=1}^{\infty} n \overline{a_{n}} \overline{z}^{n-1}$ 在 $|z| \le r (r < 1)$ 上一直收敛于 $f'(z)$ 我们有
$$\iint_{D} |f'|^{2} dx dy$$

$$\int_{0}^{R} r dr \int_{0}^{2\pi} f'(re^{i\theta}) \overline{f'(re^{i\theta})} d\theta = \int_{0}^{R} r dr \int_{0}^{2\pi} \sum_{n=1}^{\infty} n a_{n} r^{n-1} e^{i(n-1)\theta} \sum_{m=1}^{\infty} m \overline{a_{m}} r^{m-1} e^{-i(m-1)\theta} d\theta$$

$$= \int_{0}^{R} r dr \sum_{m=1}^{\infty} \int_{0}^{2\pi} \left(\sum_{n=1}^{\infty} n a_{n} r^{n-1} e^{i(n-1)\theta} \right) m \overline{a_{m}} r^{m-1} e^{-i(m-1)\theta} d\theta$$

$$= \int_{0}^{R} r dr \sum_{m=1}^{\infty} \int_{0}^{2\pi} \left(\sum_{n=1}^{\infty} n a_{n} r^{n-1} e^{i(n-1)\theta} \right) m \overline{a_{m}} r^{m-1} e^{-i(m-1)\theta} d\theta$$

$$= \int_{0}^{R} r dr \sum_{m=1}^{\infty} \sum_{n=1}^{2\pi} \int_{0}^{2\pi} m n a_{n} r^{n-1} e^{i(n-1)\theta} \overline{a_{m}} r^{m-1} e^{-i(m-1)\theta} d\theta$$

$$= 2\pi \int_{0}^{R} \sum_{m=1}^{\infty} m^{2} |a_{m}|^{2} r^{2m-1} dr = \pi \sum_{m=1}^{\infty} m |a_{m}|^{2} R^{2m} .$$

$$\Rightarrow \lim_{n \to \infty} 4.3$$

1. 课堂上讲过的。这个题意应该理解为:证明在适当规定f在a的值以后,f全纯。

$$F(z) = \begin{cases} (z-a)f(z), z \in D \setminus \{a\} \\ 0 \end{cases}$$

在 D 上连续,在 $D\setminus\{a\}$ 上全纯。因而由 Morera 定理, F 在 D 上全纯。因而有 Taylor 展式 $F(z)=a_1(z-a)+a_2(z-a)^2+...$ 。进而在某个 $B^*(a,\delta)$ 上有

$$F(z) = (z-a)f(z) = a_1(z-a) + a_2(z-a)^2 + ...,$$

即在 $B^*(a,\delta)$ 上有 $f(z) = a_1 + a_2(z-a) + a_3(z-a)^2 + ...$,只要规定 $f(a) = a_1$,f 便在 D 全 纯。

- 5. (i) (iii) 存在, (ii) (iv) 不存在。
- 8. 恒等式有很多。可按这个思路理解就可以了: 三角恒等式可理解为等式 $f(\sin\theta,\cos\theta) \equiv 0$. 一般来说 f 是一个解析函数。这就是说 $f(\sin z,\cos z)$ 在 实轴上很等于零。由解析函数的唯一性, $f(\sin z,\cos z)$ 在 \mathbb{C} 上恒等于零
- 13. 假如 f 的零点有无穷多个,则由定理 1.5.7,这些零点有聚极限点 a. 也就是说,在 a 的任何邻域中都有无穷多 f 的零点。由非常值解析函数在定义域内部零点的孤立性,这个极限点 a 必然在 ∂D 上。由于 f 在 \overline{D} 连续, 必有 f(a) = 0,与题设矛盾。

习题 4.4

2. 设

$$f(z) = a_0 z^n + a_1 z^{n-1} + ... + a_{n-1} z + a_0$$

是 n 次多项式 ($a_0 \neq 0$)。显然 $\frac{1}{2\pi} \Delta_{|z|=R} Arg(az^n) = n$. 而对充分大的 R,

 $|f(z)/(az^n)-1|<1/2$, 因而对充分大的 R,

$$\frac{1}{2\pi}\Delta_{|z|=R}Arg(f(z)) - \frac{1}{2\pi}\Delta_{|z|=R}Arg(az^n) = \frac{1}{2\pi}\Delta_{|z|=R}Arg(\frac{f(z)}{az^n}) = 0.$$

所以 $\frac{1}{2\pi}\Delta_{|z|=R}Arg(f(z))=n$. 由辐角原理,f 有n 个零点。

3. 显然 $z - \lambda$ 在由半平面仅有一单根 λ (重数为 1 的根)。任取 $R > \lambda + 1$, 有

$$|e^{-z}| < 1 < |z - \lambda|, \forall z = ir, r \in [-R, R], \exists \forall z = \text{Re}^{i\theta}, \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}].$$

由 Rouche 定理, $z-\lambda$ 和 $z-\lambda+e^{-z}$ 在半圆盘 $\{z\in\mathbb{C}\,|\,|z|< R, \operatorname{Re} z>0\}$ 有相同的零点个数。由此得出结论。

5. 设

$$f(z) = a_0 z^n + a_1 z^{n-1} + ... + a_{n-1} z + a_0$$

是 n 次多项式 ($a_0 \neq 0$)。用 Rouche 定理比较 $a_0 z^n$ 和 $f(z) = a_0 z^n + a_1 z^{n-1} + ... + a_{n-1} z + a_0$ 。

7. 对充分大的
$$n$$
, $|1+z+\frac{z^2}{2}+...+\frac{z^n}{n!}-e^z| < e^{-1} < |e^z| = e^{r\cos\theta}, z = re^{i\theta}, \theta \in [0,1]$. 即 $|1+z+\frac{z^2}{2}+...+\frac{z^n}{n!}-e^z| < |e^z|, z \in \partial B(0,r)$ 。

由 Rouche 定理, $1+z+\frac{z^2}{2}+...+\frac{z^n}{n!}$ 和 e^z 在 B(0,r) 有相同零点个数。但是 e^z 没有零点,由此得到结论。

8. 假设 f(D)不是单点集 $\{0\}$ 。则 f 只能在 D 有孤立零点 (f 是全纯的)。我们来证 f 在 D 没

有零点。如果 $a \in D$ 是 f 的一个零点,则存在 $\delta > 0$ 使得 $\overline{B(a,\delta)} \subset D$ 且 a 是 f 在 $\overline{B(a,\delta)}$ 的 唯一零点。由于 $f_n(z)$ 在 $\overline{B(a,\delta)} \subset D$ 且 a 是 f 在 $\overline{B(a,\delta)}$ 上一致收敛到 f,有 Hurwitz 定理, f 与 f g 在 g 有 g 有 g 。所以 f g 在 g 有零点,矛盾。

- 11. (i) 1个 (ii) 2个 (iii) 4个 (iv) n个
- 12. 利用在单位圆周上有|-z-(f(z)-z)|<|z|和 Rouche 定理。
- 16. 任取 $a \in \mathbb{C} \setminus \mathbb{R}$, 易见 $\Delta_{\partial D} Arg(f(z) a) = 0$. 因而有辐角原理, $f(z) \neq a$. 这就有 f(D) $\subset \mathbb{R}$,因而 f(D)不能是开集。所以由开映射定理, f 是常数。
- 17. 由题目条件,对 Γ 所围区域 Ω 中的任意一点a, $\Delta_{\partial D}Arg(f(z)-a)=1$.而对 $\overline{\Omega}$ 之外任意一点b, $\Delta_{\partial D}Arg(f(z)-b)=0$.所以辐角原理有 $f(D)=\Omega$,而且f是单叶的。

1. 这道题目的 D 应为 \mathbb{C} 中的域, \overline{D} 要理解成 $\overline{\mathbb{C}}$ 中的闭包,而 ∂D 应理解为 $\overline{\mathbb{C}}$ 中的边界(否则结论不成立。例如取 $D=\mathbb{C}$,如将 \overline{D} 理解成 \mathbb{C} 中的闭包,而 ∂D 应理解为 \mathbb{C} 中的边界的话, $\overline{D}=\mathbb{C}$ 而 $\partial D=\emptyset$ 。这时 $\sum_{n=1}^{\infty} f_n(z)$ 在 ∂D 上一致收 就没有意义)。这样 $f\in C(\overline{D})$ 就应该理解成:对任意 $a\in \overline{D}$, $\lim_{z\to a\atop z\in \overline{D}} f(z)=f(a)\in\mathbb{C}$.

任取 $f \in C(\bar{D}) \cap H(D)$,

先证明对任意 $f \in C(\bar{D}) \cap H(D)$,

$$\sup_{z \in \overline{D}} |f(z)| = \sup_{z \in \partial D} |f(z)|. \tag{1}$$

如果 D 有界,则由最大模原理,(1)显然。

现在设D无界。则 $\infty \in \partial D$,且

$$\lim_{\substack{z \to \infty \\ z \in \overline{D}}} f(z) = f(\infty) \in \mathbb{C}$$
 (2)

如果 $|f(\infty)|=\sup_{z\in\overline{D}}|f(z)|$,则(1)自然成立。如果 $|f(\infty)|<\sup_{z\in\overline{D}}|f(z)|$,则由(2),存在R>0使得

$$|f(z)| < \sup_{z \in \overline{D}} |f(z)|, \forall z \in B(\infty, R) \cup \{\infty\}$$

这样我们有

$$\sup_{z \in \overline{B(0,R)} \cap \overline{D}} |f(z)| = \sup_{z \in \overline{D}} |f(z)|.$$

而 $\overline{B(0,R)} \cap \overline{D}$ 是一个紧集,因而存在 $a \in \overline{B(0,R)} \cap \overline{D}$ 使得

$$|f(a)| = \sup_{z \in \overline{B(0,R)} \cap \overline{D}} |f(z)| = \sup_{z \in \overline{D}} |f(z)|.$$

由最大模原理, $a \in \partial D$. 这就证明了(1)。

由假设, $\sum_{n=1}^{\infty} f_n(z)$ 在 ∂D 上一致收敛,对 $\forall \varepsilon > 0$, $\exists N$, 使得 $\forall n > N$, $\forall p \in \mathbb{N}^*$ 有

$$|f_n(z) + f_{n+1}(z) + \dots + f_{n+p}(z)| < \varepsilon, \forall z \in \partial D.$$

由(1)我们有

$$|f_n(z) + f_{n+1}(z) + \dots + f_{n+p}(z)| < \varepsilon, \forall z \in \overline{D}.$$

这就证明了一致收敛性。

- 4. 这是最大模原理的直接推论
- 5. 如果 \mathbf{n} (≥ 1) 次多项式 f 没有零点,则1/f(z) 在 \mathbb{C} 全纯且 $\lim_{z\to\infty}1/|f(z)|=0$,因此1/|f(z)|在 \mathbb{C} 取得最大值,由最大模原理, f(z) 为常数,矛盾。
 - 7. 考虑 1/f(z).
 - 8. 由 f(0) = 0, 可知在 $B(0, \delta)$ 上有

$$f(z) = a_1 z + a_2 z^2 + \dots + a_n z^n + \dots = zg(z),$$

$$g(z) = a_1 + a_2 z^1 + \dots + a_n z^{n-1} + \dots \in H(B(0,1)).$$

令 $M = \max\{|g(z)|; |z| \le 1/2\}, \text{则}|f(z)| < M|z|, \forall z \in B(0,1/2).$ 对任意 $r \in (0,1)$, 存

在 N, 使得 n > N 时 $r^n < 1/2$. | 因而对任意 n > N 有

$$|f(z^n)| < M |z^n| \le Mr^n$$
, $\forall z \text{ with } |z| \le r$.

由此结论显然。

10. 对 f(z)/M 应用 Schwarz 引理。

11. 考虑 $F(z) = \frac{f(z)}{f(z) - 2A}$ 。 易见 $F(B(0,1)) \subset B(0,1)$,F(0) = 0. 由 Schwarz 引理我们有

$$|F(z)| = \frac{f(z)}{f(z) - 2A} | \le |z|, \forall z \in B(0,1).$$

进而 $\frac{|f(z)|}{|f(z)|+2A} \le |z|, \forall z \in B(0,1)$. 由此推的结论。