Section 16.1, Problem 4

(5 Pts)

We can create a table with five values for x and five values for y along the sides of a square $[-3,3] \times [-3,3]$.

y, x	-3	-1.5	0	1.5	3
$\overline{-3}$	$\langle -3, -6 \rangle$	$\langle -1.5, -4.5 \rangle$	$\langle 0, -3 \rangle$	$\langle 1.5, -1.5 \rangle$	$\langle 3, 0 \rangle$
-1.5	$\langle -3, -4.5 \rangle$	$\langle -1.5, -3.0 \rangle$	$\langle 0, -1.5 \rangle$	$\langle 1.5, 0.0 \rangle$	$\langle 3, 1.5 \rangle$
0	$\langle -3, -3 \rangle$	$\langle -1.5, -1.5 \rangle$	$\langle 0, 0 \rangle$	$\langle 1.5, 1.5 \rangle$	$\langle 3, 3 \rangle$
1.5	$\langle -3, -1.5 \rangle$	$\langle -1.5, 0.0 \rangle$	$\langle 0, 1.5 \rangle$	$\langle 1.5, 3.0 \rangle$	$\langle 3, 4.5 \rangle$
3	$\langle -3, 0 \rangle$	$\langle -1.5, 1.5 \rangle$	$\langle 0, 3 \rangle$	$\langle 1.5, 4.5 \rangle$	$\langle 3, 6 \rangle$

Here is a picture of the vector field:

Section 16.1, Problem 6

(5 Pts)

We can create a table with five values for x and five values for y along the sides of a square $[-3,3] \times [-3,3]$.

y, x	-3	-1.5	0	1.5	3
-3	$\langle -0.71, 0.71 \rangle$	$\langle -0.45, 0.89 \rangle$	$\langle 0.00, 1.00 \rangle$	$\langle 0.45, 0.89 \rangle$	$\langle 0.71, 0.71 \rangle$
-1.5	$\langle -0.89, 0.45 \rangle$	$\langle -0.71, 0.71 \rangle$	$\langle 0.00, 1.00 \rangle$	$\langle 0.71, 0.71 \rangle$	$\langle 0.89, 0.45 \rangle$
0	$\langle -1.00, 0.00 \rangle$	$\langle -1.00, 0.00 \rangle$	∄	$\langle 1.00, 0.00 \rangle$	$\langle 1.00, 0.00 \rangle$
1.5	$\langle -0.89, -0.45 \rangle$	$\langle -0.71, -0.71 \rangle$	(0.00, -1.00)	$\langle 0.71, -0.71 \rangle$	(0.89, -0.45)
3	$\langle -0.71, -0.71 \rangle$	$\langle -0.45, -0.89 \rangle$	(0.00, -1.00)	(0.45, -0.89)	(0.71, -0.71)

Here is a picture of the vector field:

Section 16.1, Problem 8

_(5 Pts)

This vector field is simple to visualize. It consists of parallel vectors to the x-axis point in the same direction as the x-axis if z > 0 and in the opposite direction as the x-axis if z < 0. Here is a picture of the vector field:

Section 16.1, Problem 12

(5 Pts)

We see that, when y = x, $\vec{F}(x, y) = \langle x, 0 \rangle$. Therefore, along the line y = x, we should see vectors pointing only in the direction (or the opposite direction) of the x-axis. We can see this property in the plot label III.

Section 16.1, Problem 14

(5 Pts)

Fixing $x = x_0$ to be constant, we see that $\vec{F}(x_0, y) = \langle \cos(x_0 + y), x_0 \rangle$. Therefore, when moving along the vectical line $x = x_0$, the x-component oscillates like the function $\cos(x_0 + y)$. We observe this in the plot labeled II.

Section 16.1, Problem 16

(5 Pts)

When z = 0, we see that $\vec{F}(x, y, 0) = \langle 1, 2, 0 \rangle$. In other words, the is no z-component and this is observed in the plot labeled I.

Section 16.1, Problem 24

(10 Pts)

We have $f_x = 2xye^{y/z}$, $f_z = -\frac{x^2y^2}{z^2}e^{y/z}$, and

$$f_y = x^2 e^{y/z} + \frac{x^2 y}{z} e^{y/z}.$$

Therefore,

$$\vec{\nabla} f = \left\langle 2xye^{y/z}, \left(x^2 + \frac{x^2y}{z}\right)e^{y/z}, -\frac{x^2y^2}{z^2}e^{y/z} \right\rangle.$$

Section 16.1, Problem 26

(5 Pts)

The gradient is given by $\vec{\nabla} f = \langle f_x, f_y \rangle$. We have

$$f_x = \frac{\partial}{\partial x} \left(\frac{1}{2} (x^2 - y^2) \right) = x$$

and

$$f_y = \frac{\partial}{\partial y} \left(\frac{1}{2} (x^2 - y^2) \right) = -y.$$

Therefore, $\vec{\nabla} f = \langle x, -y \rangle$.

Here is a sketch of the gradient of f and some level curves of f:

Section 16.1, Problem 32

(5 Pts)

We will restrict the points (x, y) to be on certain curves. If we assume that $x^2 + y^2 = c$ is constant, so that (x, y) lies on a circle of radius \sqrt{c} , then

$$\vec{\nabla} f = \left\langle \frac{\cos\sqrt{c}}{\sqrt{c}} x, \frac{\cos\sqrt{c}}{\sqrt{c}} y \right\rangle = \frac{\cos\sqrt{c}}{\sqrt{c}} \left\langle x, y \right\rangle.$$

Therefore, the gradient points in the same direction as the vector $\langle x,y\rangle$, scaled by the fact $\cos\sqrt{x}/\sqrt{x}$. If $c=\pi^2/4$, then $\cos\sqrt{c}=0$ and therefore $\vec{F}(x,y)=\langle 0,0\rangle$ on the circle $x^2+y^2=c$. Now the radius of the circle is approximately 1.57 and we can see that this feature is present in the plot I.