LGQ. Logique, raisonnements

QCOP LGQ.1

2. Pour le sens (, raisonner par contraposée.

3. Utiliser la question précédente en faisant une disjonction de cas suivant la parité de n.

QCOP LGQ.2

3. a) Raisonner par l'absurde et utiliser que le quotient de rationnels est un rationnel.

b) Utiliser la question précédente avec a et b judicieusement choisis.

QCOP LGQ.3

 $\textbf{3. } \underline{ \text{R\'esultat.} } \ \frac{1}{\sqrt{2}} < \frac{1}{\sqrt{\ln(2)}}.$

QCOP LGQ.4

1. Pour montrer que $f(x) \leq g(x)$, on peut montrer que $\Delta(x) := g(x) - f(x) \geqslant 0$.

2. Écrire $x + \frac{1}{x} - 2$ comme un carré.

3. Remarquer $\frac{x^2+1}{x}=x+\frac{1}{x}$ et que la somme comporte n termes.

Résultat.
$$\sum_{i=1}^{n} \frac{{x_i}^2 + 1}{x_i} \geqslant 2n.$$

QCOP LGQ.5

2. Raisonner par récurrence simple.

3. Résultat. $\sum_{k=1}^{n} \frac{1}{2^k} = 1 - \frac{1}{2^n} \xrightarrow[n \to +\infty]{} 1.$

QCOP LGQ.6

- 2. A Raisonner par analyse-synthèse.
 - ♦ ANALYSE. En se donnant f_p et f_i , évaluer la relation $f = f_p + f_i$ en $x \in \mathbb{R}$ et $-x \in \mathbb{R}$ pour déterminer les expressions de f_p et f_i .
 - $\oint SYNTHÈSE.$ Vérifier que les expressions trouvées déterminent bien une fonction paire (resp. impaire) et que $f = f_p + f_i$.
- 3. Résultat. Pour $x \in \mathbb{R}$, $f_p(x) = \frac{e^x + e^{-x}}{2}$ et $f_i(x) = \frac{e^x e^{-x}}{2}$.

Il s'agit des fonctions « cosinus hyperbolique » et « sinus hyperbolique » qui seront étudiées plus tard dans l'année.

QCOP LGQ.7

- 1. On peut se donner deux éléments vérifiant la même propriété et montrer qu'ils sont égaux.
- **2.** Se donner (q, r) et (q', r') deux couples « quotient-reste » d'une même division euclidienne. Établir, avec des inégalités, que q q' = 0 et r r' = 0.
- 3. Écrire correctement « $a \equiv b \ [n]$ ».

QCOP LGQ.8

- 1. Pour montrer une assertion « $\forall x \in A, P(x)$ », on commence par introduire x : « soit $x \in A$ ». Pour utiliser une telle assertion, on choisit un x particulier dans A : « avec x = ... ».
- 2. Raisonner par double implication.

Pour l'implication \Longrightarrow , raisonner par contraposée et utiliser $\varepsilon = \frac{|a|}{2}$.

- 3. a) Résultat. $\left[\forall \varepsilon > 0, |a| \leqslant \varepsilon\right]$ et $a \neq 0$.
 - **b)** Résultat. $\left[\exists \varepsilon_a > 0: |a| > \varepsilon_a\right]$ ou a = 0

QCOP LGQ.9

- 1. Il y a principalement deux méthodes (illustrées dans les questions qui suivent) : construire l'objet ou utiliser l'existence d'un autre objet.
- 2. a) Un dessin peut aiguiller. Exprimer le milieu de]x, y[et montrer que l'on définit bien un réel distinct de x et de y, compris entre x et y.
 - b) Utiliser la question précédente.