Business Statistics

MLS 3 - Common statistical tests

Session objectives

Mentored Learning Session 3: Common statistical tests

Learning Objectives

- Review and better understand the basics of hypothesis testing
- Learn about some of the standard tests used for hypothesis testing
- Hands-on case Studies
 - Titan insurance
 - Mobile Internet
 - Diest Case study

Hypothesis testing steps

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Hypothesis testing: rejection region approach

- In the **rejection region approach**, we define a region whose total area is equal to the significance level α (in red below)
- ullet The location of the rejection region depends on the alternative hypothesis H_a
- ullet Decision of the test: reject the null hypothesis H_0 when the test statistic lies in the rejection region

Hypothesis testing: p-value approach

- In the **p-value approach**, we calculate the likelihood (p-value) of the test statistic Z given the assumption of the null hypothesis H_0
- ullet Low *p-values* are obtained for *extreme* test statistics with respect to H_0
- ullet The area used to compute the p-value depends on the alternative hypothesis H_a (in blue below)
- Decision of the test: reject the H_0 when $p-value < \alpha$

Hypothesis testing: An exemple

• Null hypothesis H_0

$$\mu \geq 0$$

ullet Alternative hypothesis H_a

$$\mu < 0$$

• Observed test statistic: Z = 2

Decision:

- Rejection region: the test statistic is not in the rejection region, hence we do not reject ${\cal H}_0$
- P-value: the blue area (p-value) is larger than the red area (level of significance), hence we do not reject H_0

Standard hypothesis tests

Tests for the means

Test	Usage	Python
1-sample z-test	Compare the sample mean to the population mean when std is known or n>30	statsmodels.stats.weightstats.ztest
1-sample t-test	Compare the sample mean to the population mean when std is unknown and n<30	scipy.stats.ttest_1samp
2-sample ind. z-test	Compare the sample means for 2 independent samples when their std are known	statsmodels.stats.weightstats.ztest
2-sample ind. t-test	Compare the sample means for 2 independent samples when their std are unknown	scipy.stats.ttest_ind
Paired t-test	Compare the sample means for 2 dependent samples when their std are unknown	scipy.stats.ttest_rel
Anova test	Compare the sample means for 2 or more independent normally distributed populations with equal variances	scipy.stats.f_oneway
Tuckey'sHSD	Pairwise sample means comparison test for 2 or more independent normally distributed populations	statsmodels.stats.multicomp.pairewis e_tuckeyhsd

Standard hypothesis tests

Test for normality

Test	Usage	Python
1-sample z-test	Check the normality of the sample	scipy.stats.shapiro

Tests for variances

Test	Usage	Python
Leven's test	Asses the equality of variances of a variable for 2 or more groups	scipy.stats.levene
Chi-square test	Compare the sample variance to the known normally distributed population variance	Using the SciPy.stats.chi2 distribution with the calculated test statistics
F-test	Compare the sample variances for 2 independent and normally distributed populations	Using the SciPy.stats.F distribution with the calculated test statistics

Tests for proportions and frequencies

Test	Usage	Python
1-sample z-test	Compare the sample proportion to the population proportion in the normality approximation	statsmodels.stats.proportion.proportions_ztest
2-sample z-test	Compare the sample proportions from two populations in the normality approximation	statsmodels.stats.proportion.proportions_ztest
chi-Square test of independence	Check whether the categorical variables from a population are independent	scipy.stats.chi2_contingency

