Last time

Sign-implementation

- The Boolean function $F\colon\{0,1\}^n\to\{0,1\}$ is sign-implemented by Q_F^\pm if it maps $|x\rangle|00...0\rangle$ to $(-1)^{F(x)}|x\rangle|0...0\rangle$ for every $x\in\{0,1\}^n$
- Denote $f: \{0,1\}^n \to \{\pm 1\}$ by $f(x) = (-1)^{F(x)}$
- "Rotate": Initialize n qubits $|0\rangle$'s. Put them through $H^{\otimes n}$. Obtain

$$|+\rangle \otimes ... \otimes |+\rangle = \frac{1}{\sqrt{N}} \sum_{x \in \{0,1\}^n} |x\rangle$$
, where $N = 2^n$

• Definition: Uniform superposition.

Rotate, compute, rotate

- Compute: Plug uniform superposition into Q_F^\pm and obtain ...
- Rotate: Apply Boolean Fourier Transform $H^{\otimes n}$ again, and obtain ...
- What is $H^{\otimes n}|x\rangle$ for $x \in \{0,1\}^n$?
- Example

•
$$x = 00...0$$

•
$$x = 011$$

•
$$H^{\otimes n}|x\rangle = \frac{1}{\sqrt{N}} \sum_{s \in \{0,1\}^n} \pm |s\rangle$$
. What is the sign on $|s\rangle$?

What is the sign on $|s\rangle$?

- In general, the sign on $|s\rangle$ is a product of n signs
 - If $s_i = 0$, the *i*-th sign is always +
 - If $s_i = 1$, the i-th sign is $(-1)^{x_i}$
 - Upshot: the *i*-th sign is $(-1)^{S_i X_i}$
 - Overall, the sign is $(-1)^{\sum_i x_i S_i} = (-1)^{x \cdot s}$
- Theorem: For every $x \in \{0,1\}^n$,

$$H^{\otimes n}|x\rangle = \frac{1}{\sqrt{N}} \sum_{s \in \{0,1\}^n} (-1)^{x \cdot s} |s\rangle$$

• Theorem: For every $x \in \{0,1\}^n$,

$$H^{\otimes n}|x\rangle = \frac{1}{\sqrt{N}} \sum_{s \in \{0,1\}^n} (-1)^{x \cdot s} |s\rangle$$

Corollary

$$H^{\otimes n}\left(\frac{1}{\sqrt{N}}\sum_{x\in\{0,1\}^n}(-1)^{x\cdot s}|x\rangle\right)=|s\rangle$$

• Application: Someone hands you a sign-implementation of XOR_s, defined by $XOR_s(x) = x \cdot s \mod 2$ without telling you s. Only need to feed in 1 input to learn s with 100% accuracy!

Comparison

Classical inputs only

•
$$x \mapsto XOR_s(x) = x \cdot s \mod 2$$

• How many applications of XOR_s are needed?

The general framework

to find patterns in implicitly-represented data

- Data vector $|g\rangle \in \mathbb{C}^N$ of length N
- Apply Fourier transform with "pattern vectors" $|\chi_0\rangle,\ldots,|\chi_{N-1}\rangle$
- Obtain another vector of length N, where s-th entry is "strength of $|\chi_s\rangle$ pattern in the data vector".
- Quantum:
 - $N = 2^n \text{ (say } n = 1000)$
 - Vectors implicitly represented by *n*-qubit state

- Pattern vectors $|\chi_0\rangle, \ldots, |\chi_{N-1}\rangle$ can be any orthonormal basis of \mathbb{C}^N
- "Strength of patterns $|\chi_0\rangle, ..., |\chi_{N-1}\rangle$ in $|g\rangle$ " is just the coefficients when $|g\rangle$ is represented in $|\chi_0\rangle, ..., |\chi_{N-1}\rangle$ basis, that is, $\langle \chi_s \mid g \rangle$.
- Let $U \in \mathbb{C}^{N \times N}$ be the matrix with columns $|\chi_0\rangle, \dots, |\chi_{N-1}\rangle$
 - ullet U is unitary
 - U maps the standard basis to the χ -basis
 - U^{-1} or U^{\dagger} maps the χ -basis to the standard basis
 - U^{\dagger} maps $|g\rangle$ to ...
- Want:
 - Interesting / useful" pattern vectors
 - ullet Associated change of basis U easy to implement by quantum gates

XOR pattern revisited

•
$$F: \{0,1\}^n \to \{0,1\}$$

• The state at (1) is

- What are the pattern vectors $|\chi_s\rangle$?
 - χ_s : $\{0,1\}^n \to \{\pm 1\}$ defined by $\chi_s(x) = (-1)^{s \cdot x}$
 - $H^{\otimes n}|s\rangle = |\chi_s\rangle$

- $H^{\otimes n}$ maps the standard basis to the χ -basis
- $H^{\otimes n}$ maps the χ -basis to the standard basis (why?)
- At (1), the just state can be written as

$$|f\rangle = \sum_{S} \langle \chi_{S} | f \rangle | \chi_{S} \rangle$$

• At (2)

$$H^{\otimes n}|f\rangle = \sum_{S} \langle \chi_{S} | f \rangle | S \rangle$$

- Interpretation of the "strength" $\langle \chi_{S} \mid f \rangle$
 - Note $\chi_s, f: \{0,1\}^n \to \{\pm 1\}$
 - $\langle \chi_{S} \mid f \rangle = \dots$
- Another application [Deutsch-Jozsa '92]
 - Given Q_F implementing $F: \{0,1\}^n \to \{0,1\}$
 - Promised: either F(x) = 0 for all x or F is "balanced"
 - Find a way to decide which?