Image Classification

Anna Lindahl LT2318 Artificial Intelligence: cognitive systems Gothenburg University

(Adapted from Wafia Adouane HT18)

Introduction

- Simple definition: grouping images into semantic classes based on some features.
- (Also: identifying patterns in images)
- Usage:
 - Robotics, together with NLP, information retrieval etc.
- Challenges:
 - Image quality
 - Definitions (What is a chair?)
 - Bias in data/annotations

Image features

- NLP vs CV features
- Visual features
 - Color, size, center, orientation etc.
 - Invariant to transformations
- Lexical features/Semantic classes
 - Labels, context
- Learned vs. pre-engineered features
 - We need to choose how to represent an image

Representing images & extracting features

- Color
 - RGB
 - CMYK
 - HSV (Hue, saturation, value)
- Structure based on image gradients
 - SIFT(Scale invariant image features)
 - SURF (Speeded up robust features)
 - HOG (Histogram of oriented gradients)

SIFT

- SIFT: scale invariant image transformation
- Applied to grayscale images
- Used for feature matching
- Keypoints points of interest, each keypoint has a descriptor, needed to match keypoints between images.
- Each keypoint has a 128-dimensional feature vector.

Clustering features

- "Visual bag of words"
- Clustering over all descriptors in images to build a "dictionary" of visual words, features.
- For example: k-nearest neighbours cluster similar features in n clusters.
 Input vector in classification/comparison is vector with integer counts of the number of each clusters present in the image.
- Slides with description of bag of visual words

Feature extraction

Notebook

Pre-trained image models

- Used for both extracting features and classifying images
- Most models trained on ImageNet http://www.image-net.org/
- Some models:
 - Vgg16 (image)
 - Vgg19
 - Resnet (50) Example in Keras
- All models available in Keras: https://keras.io/applications/
- What do the models learn?
 - Adversarial images

Examples of misclassifications

- http://www.evolvingai.org/files/DNNsEasilyFooled_cvpr15.pdf
- <a href="https://spectrum.ieee.org/cars-that-think/transportation/sensors/slight-street-sign-modification-sensors/slight-street-sensors/slight-street-sensors/slight
- https://www.theverge.com/2019/4/23/18512472/fool-ai-surveillance-adversarial-example-yolov
 2-person-detection
- https://algorithm.data61.csiro.au/why-were-vaccinating-algorithms-against-adversarial-attacks/

Image classification with Keras

Notebook

Guess who?

- In the game "Guess who?" players describe a face for the other player to guess.
- Idea: Ground visual features of faces in language.
 - Classify facial attributes and use them for the game.
- Dataset: Labeled faces in the wild (Huang et al.)
 - 13233 images of faces of 5749 persons
 - Faces annotated/classified with 73 different attributes from Kumar et al.

OpenFace

- Pretrained models originally for facial recognition.
- Uses dlib and OpenCV to preprocess images.

Demos and more:

http://cmusatyalab.github.io/openface/

OpenFace 2:

https://github.com/TadasBaltrusaitis/OpenFace

Image from https://cmusatyalab.github.io/openface/

OpenFace

Game demo

Guess what?

- Choose one object in the image,
 the other person guesses which one it is.
- Training data: image, identified object and accompanying dialogue.

Questioner	Oracle
s it the baby animal?	Yes
s it the smallest animal in icture?	No
s it covered by an another nimal ?	No

Guess what?

Resources

OpenCv tutorials: https://docs.opencv.org/master/d9/df8/tutorial_root.html

Hog explanation: https://www.learnopencv.com/histogram-of-oriented-gradients/

Keras image classification:

https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html

References

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2007). Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49, University of Massachusetts, Amherst.

<u>Link</u>

Kumar, N., Berg, A. C., Belhumeur, P. N., & Nayar, S. K. (2009). Attribute and simile classifiers for face verification. In 2009 IEEE 12th International Conference on Computer Vision (pp.365–372).: IEEE. <u>Link</u>

Amos, B., Ludwiczuk, B., & Satyanarayanan, M. (2016). OpenFace: A general-purpose face recognition library with mobile applications. Technical report, CMU-CS-16-118, CMU School of Computer Science Link