

EXAME NACIONAL DO ENSINO SECUNDÁRIO - MATEMÁTICA A

12.º ANO DE ESCOLARIDADE

Sites: http://www.sinalmaismat.com/ | http://recursos-para-matematica.webnode.pt/

Facebook: https://www.facebook.com/sinalmaismat/ | https://www.facebook.com/recursos.para.matematica

PROVA MODELO N.º 10

JUNHO DE 2018

CADERNO 1

Neste grupo a utilização de calculadora gráfica é permitida.

Na resposta aos itens de escolha múltipla, seleccione a opção correcta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos itens de resposta aberta apresente todos os cálculos que tiver de efectuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exacto.

1. Sejam $(E, \mathcal{P}(E), P)$ um espaço de probabilidade e $A, B \in \mathcal{P}(E)$ dois acontecimentos possíveis e incompatíveis.

Sabe-se que:

•
$$P(A \cup B) = 0.9$$

•
$$P(\bar{A}) = 0.3$$

Qual é o valor de $P(A|\overline{B})$?

$$\boxed{\mathbf{A}} \quad \frac{1}{4}$$

$$\boxed{\mathbf{B}} \quad \frac{3}{8}$$

$$c$$
 $\frac{1}{2}$

$$\frac{7}{8}$$

2.1.	2.2.
P2001/2002	PMC2015

2.1. A tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte:

x_i	-1	0	1	2
$P(X=x_i)$	а	b	с	d

Sabe-se que:

•
$$P(X = -1) = P(X = 2)$$

•
$$\mu = \frac{5}{12}$$

Qual é o valor de $P(-1 \le X \le 0)$?

$$\boxed{\mathbf{A}} \ \frac{1}{12}$$

$$\frac{5}{12}$$

$$\frac{7}{12}$$

$$\frac{11}{12}$$

2.2. Um ponto *P* desloca-se sobre uma recta numérica durante um intervalo de tempo *I* de tal forma que a sua abcissa é dada por:

$$x(t) = \sqrt{3} \operatorname{sen}\left(\frac{\pi t}{6}\right) - \cos\left(\frac{\pi t}{6}\right), \ t \in I$$

Qual é o valor da fase deste oscilador harmónico?

$$\boxed{\mathbf{A}} \quad \frac{\pi}{6}$$

$$\mathbf{B} \ \frac{2\pi}{3}$$

$$\frac{4\pi}{3}$$

3. O número de girafas, G, em centenas, numa reserva natural em África, relaciona-se com o tempo, t, em anos, através da igualdade:

$$t = \ln \left(\frac{G}{A - G} \right)^3$$
, com $t \in \mathbb{R}$ ee $0 < G < A$

onde A é uma constante real positiva e t = 0 corresponde ao início do ano de 2010.

3.1. Com o passar do tempo o número de girafas na reserva tende para 800.

Mostre que A = 8.

3.2. Nessa reserva o número de hipopótamos, H, em centenas, relaciona-se com o tempo, t, em anos pela igualdade:

$$t = \ln\left(\frac{H}{6-2H}\right)^{11}$$
, com $t \in \mathbb{R}$ e $0 < H < 3$

onde t = 0 corresponde ao início do ano de 2010.

Recorrendo às capacidades gráficas da calculadora, determine os instantes (ano e o mês) em que o número de girafas na reserva é o triplo do número de hipopótamos.

Na sua resposta deve:

- equacionar o problema
- reproduzir o(s) gráfico(s) que considerar necessário(s) para a resolução do problema bem como a(s) coordenada(s) de algum (ou alguns) ponto(s) relevante(s)
- apresentar os instantes pedidos (ano e mês)

- **4.** Seja (u_n) uma progressão geométrica tal que:
 - $u_1 = 2$
 - a soma de todos os termos da progressão (u_n) é $\frac{8}{5}$

Considera as seguintes afirmações:

- **I.** (u_n) é monótona
- II. $u_5 = \frac{1}{128}$

Em relação às afirmações anteriores, qual das seguintes opções é a correcta?

A Nenhuma é verdadeira

- B Apenas I é verdadeira
- Apenas II é verdadeira
 - D Ambas são verdadeiras

5. Sejam a e b dois números reais tais que a > 1 e 0 < b < 1.

Na figura estão representados em referencial o.n. xOy, parte do gráfico da função f, de domínio \mathbb{R}^+ , definida por $f(x) = \log_4(ax)$, o triângulo ABC e o rectângulo ODEF.

Sabe-se que:

• os pontos A e B pertencem ao gráfico de f e têm, respectivamente, abcissa b e $\frac{1}{b}$

• os pontos A e D pertencem ao eixo Ox e o ponto D tem a mesma abcissa que o ponto B

• os pontos C e F pertencem ao eixo Oy, o ponto C tem a mesma ordenada que o ponto B e a ordenada do ponto F é -3

Quais são os valores de a e de b de modo que a área do triângulo ABC seja igual à área do rectângulo ODEF?

A
$$a = 64 \text{ e } b = \frac{1}{16}$$

B
$$a = 64 \text{ e } b = \frac{1}{64}$$

$$a = 16 \text{ e } b = \frac{1}{16}$$

$$\Box$$
 $a = 16 \text{ e } b = \frac{1}{4}$

- 6. Num saco estão dez bolas numeradas de 1 a 10, três brancas, três pretas e quatro azuis.
 - **6.1.** As dez bolas são colocadas numa só fila de modo que:
 - as bolas brancas figuem em posições consecutivas
 - as bolas pretas figuem em posições consecutivas
 - não haja bolas brancas e bolas pretas em posições consecutivas

Nestas condições, quantas disposições distintas se podem fazer?

6.2. Considere a seguinte experiência aleatória:

Retira-se, ao acaso, uma bola do saco. Volta-se a colocar essa bola no saco e acrescentam-se com n bolas, com $n \in \mathbb{N}$, da cor da bola retirada.

Em seguida retiram-se, simultaneamente e ao acaso, duas bolas do saco.

Sejam X, $Y \in Z$ os acontecimentos:

- X: «a primeira bola retira é azul»
- Y: «na segunda extracção é retirada uma bola branca»
- Z: «na segunda extracção é retirada uma bola preta»

Sabendo que $P(Y \cap Z | X) = 0,075$, determine o número de bolas que foram introduzidas no saco após a primeira extracção.

Não utilize a fórmula da probabilidade condicionada, começando por interpretar o significado de $P(Y \cap Z|X)$ no contexto do problema.

7. Sejam f e h as funções de domínios \mathbb{R} e $\left[0,+\infty\right[$, respectivamente, definidas por $f\left(x\right)=e^{2x-2}+6$ e

$$h(x) = \begin{cases} \frac{x^2 + 3x - 4}{\sin(1 - x)} & \text{se } 0 \le x < 1 \\ -5 & \text{se } x = 1 \\ \frac{f(x) - 7x}{x - 1} & \text{se } x > 1 \end{cases}$$
Intinuidade no ponto de abcissa 1.

da inequação $f(x) < \frac{7}{e^{1 - x}}$.

FIM DO CADERNO 1

- **7.1.** Estude a função h quanto à continuidade no ponto de abcissa 1.
- **7.2.** Determine o conjunto solução da inequação $f(x) < \frac{7}{e^{1-x}}$.

FIM DO CADERNO 1

CADERNO 2

Neste grupo a utilização de calculadora gráfica não é permitida.

Na resposta aos itens de escolha múltipla, seleccione a opção correcta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos itens de resposta aberta apresente todos os cálculos que tiver de efectuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exacto.

8. Na figura está representado, em referencial o.n. xOy, parte do gráfico da função g', de domínio $\mathbb R$, função derivada de uma função g também de domínio $\mathbb R$.

Sabe-se que:

- para $x \le 1$ o gráfico de g' é uma parábola e para x > 1 o gráfico de g' é uma recta
- a função g' tem um máximo relativo em x=-2 e um mínimo relativo em x=1 e os seus zeros são -4, 0 e 3

Em qual das opções está uma expressão que designa um número real positivo?

A
$$(g(1)-g(2))\times g''(0)$$

B
$$(g'(-4)-g''(0))\times g''(-2)$$

$$(g(-3)-g(-2))\times g''(-1)$$

9.1.	9.2.
P2001/2002	PMC2015

9.1. Na figura está representado a sombreado a região D, região admissível de um problema de Programação Linear do qual se pretende maximizar função objectivo z = 5kx + ky, com k > 0

Sabe-se que:

- a recta *BC* é definida por $y = \frac{x}{2} + 1$
- o lado [BC] é perpendicular ao lado [CE] e os lados [AB] e [EF] são paralelos ao eixo Ox
- o ponto P pertence ao lado CE e tem coordenadas (5,6)
- os pontos A e F pertencem ao eixo Oy e as suas coordenadas são, respectivamente, (0,2) e (0,8)

Qual é a solução óptima deste problema de Programação Linear?

- $\boxed{\mathbf{A}} (2,2)$
- **B** (6,4)
- **C** (5,6)
- **D** (4,8)

9.2. Na figura está representado parte do gráfico da função f , racional de domínio $\mathbb{R}\setminus\{0\}$.

Tal como a figura sugere:

- as rectas de equação x = 0 e y = -1 são as duas únicas assimptotas do gráfico de f
- o ponto de coordenadas $\left(\frac{1}{2},1\right)$ pertence ao gráfico de f

Considere a função g, real de variável real, definida por $g(x) = 2\arccos(f(x-1)) - \pi$.

Qual são, respectivamente, o domínio e o contradomínio da função g?

$$\boxed{\mathbf{A}} \left[\frac{1}{2}, +\infty \right[\ \mathbf{e} \ \left[-\pi, \pi \right[\right] \right]$$

$$\boxed{\mathbf{C}} \left[\frac{3}{2}, +\infty \right[\ \mathbf{e} \ \left[-\pi, \pi \right] \right]$$

$$\boxed{\mathbf{C}}$$
 $\left[\frac{3}{2}, +\infty\right]$ e $\left[-\pi, \pi\right]$

$$\boxed{\mathbf{D}} \ \left[\frac{1}{2}, +\infty\right[\ \mathbf{e} \ \left[-\pi, \pi\right] \right]$$

- **10.** Num referencial o.n. *Oxyz*, considere:
 - o plano α , definido por x+2y-z=2
 - o plano β , perpendicular a α , definido por $4a^2x + 2ax = ay a^4z$, com $a \in \mathbb{R} \setminus \{0\}$
 - a superfície esférica centrada no ponto A(2,2,-2) e que é tangente ao plano α num ponto B
 - **10.1.** Determine todos os valores de a.
 - **10.2.** A superfície esférica está inscrita num cubo em que uma das suas faces está contida no plano α .

Qual é o volume do cubo?

11. Considere a função g , de domínio \mathbb{R}^+ , tal que $\lim_{x\to +\infty} (g(x)-2x+4)=0$.

Qual é o valor de $\lim_{x\to +\infty} \frac{xe^{g(x)}}{g(x)e^{2x}}$?

- $\boxed{\mathbf{A}} \quad \frac{1}{2e^4}$
- $\mathbf{B} \frac{2}{a^4}$

 $\frac{\mathbf{c}}{2}$

- **D** $2e^4$
- 12. Em \mathbb{C} , conjuntos dos números complexos, considere $w = -\sqrt{2} + \sqrt{6}i$ e a equação $z + 2\overline{z} 2\operatorname{Re}(z) = w$.

Em qual das seguintes opções está representado um argumento da solução da equação dada?

- $\mathbf{A} \quad \frac{\pi}{3}$
- $\mathbf{B} \ \frac{2\pi}{3}$

 $\frac{4\pi}{3}$

13. Na figura está representado no plano complexo uma circunferência centrada na origem que contém os pontos A, B e C.

Sabe-se que A, B e C são os afixos de três raízes sextas consecutivas do número complexo $8i^{27}$, sendo que A é o afixo de z_1 e C é o afixo de z_2 .

Seja
$$z_3 = \cos \alpha + i \sin \alpha$$
, com $\alpha \in \left[\pi, \frac{3\pi}{2}\right[$.

Determine α de modo que $\frac{z_1 \times z_2}{\left(z_3\right)^3} = -2$.

14. Considere a função f, de domínio \mathbb{R} , tal que a sua derivada, também de domínio \mathbb{R} , é dada por:

$$f'(x) = \ln\left(e^{x-1} + e^{1-x}\right)$$

Sabe-se que
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x^2 - 3x + 2} = \frac{1}{2} \ln \left(\frac{f(1)}{4} \right)$$

- **14.1.** Escreva a equação reduzida da recta tangente ao gráfico de *f* no ponto de abcissa 1.
- **14.2.** Estude a função f quanto ao sentido das concavidades e à existência de pontos de inflexão do seu gráfico.

Na sua resposta deve:

- indicar os intervalos onde o gráfico da função g tem a concavidade voltada para cima
- indicar os intervalos onde o gráfico da função g tem a concavidade voltada para baixo
- indicar as abcissas dos pontos de inflexão

15. Considere a função g, de domínio \mathbb{R} , definida por $g(x) = \cos(2x) - \sin x$.

Sejam a e b dois números reais tais que a < b < 0.

Mostre que a equação $b^2g(x) = a^2 \operatorname{sen}\left(\frac{x}{2}\right)$ tem pelo menos uma solução em $\left]0,\pi\right[$. NING CHERTER LOSS CARDS SINGLE SINGLE

	Cotações	
	Caderno 1	
1.		5 pontos
2.		5 pontos
3.		
	3.1.	10 pontos
	3.2.	15 pontos
4.		5 pontos
5.		5 pontos
6.		
	6.1.	15 pontos
	6.2.	15 pontos
7.		
	7.1.	15 pontos
	7.2.	10 pontos
	Total Caderno 1	100 pontos
	Caderno 2	
8.		5 pontos
9.	<u> </u>	5 pontos
10.		
	10.1.	10 pontos
	10.2.	15 pontos
11.		5 pontos
12.		5 pontos
13.		15 pontos
14.		
	14.1.	15 pontos
	14.2.	15 pontos
15.		10 pontos
	Total Caderno 2	100 pontos

Total Caderno 1 + Caderno 2 200 pontos

Solucionário

Caderno 1

1.

2.1. C

2.2. C

3.2. Setembro de 2012

3.2. Julho de 2015 e Julho de 2024.

4. C

5. E

6.1. 17280

6.2. n = 6

7.1. $h \in \text{continua em } x = 1$

Caderno 2

8. C

9.1.

9.2.

10.1. $a = -2 \lor a = 2$

10.2. $V_{cubo} = 48\sqrt{6}$

11. A

12.

13.
$$\alpha = \frac{25\pi}{18}$$

$$14.1. y = x \ln 2 + \ln \left(\frac{e}{2}\right)$$

14.2. O gráfico de f tem a concavidade voltada para baixo em $]-\infty,1]$, tem a concavidade voltada para cima em $[1,+\infty[$ e tem ponto de inflexão em x=1.