Tópico 6 - Estimação por intervalos: Conceituação, interpretação e construção; Intervalo de confiança para grandes amostras

Ben Dëivide

6 de outubro de 2021

1 Conceitos iniciais

A ideia básica da estimação é observar uma amostra $X_1, X_2, ..., X_n$ de uma população com $f_X(x;\theta)$, sendo θ desconhecido, e a partir da amostra retirar informações sobre θ .

Na estimação pontual não temos a ideia da margem do erro que é cometido ao estimarmos o parâmetro. A estimação intervalar visa preencher esta lacuna criando um intervalo de possíveis valores para o parâmetro θ com margem de erro conhecido.

Definição 1 (Intervalo de Confiança). Seja uma amostra aleatória X_1, X_2, \ldots, X_n de uma população com $f_X(x;\theta)$, parametrizada por θ . Considere ainda duas estatísticas $T_1 = t_1(X_1, X_2, \ldots, X_n)$ e $T_2 = t_2(X_1, X_2, \ldots, X_n)$ satisfazendo $T_1 \leq T_2$, tal que $P_{\theta}(T_1 \leq \theta \leq T_2) = \gamma$, em que γ não depende de θ . Então o intervalo aleatório (T_1, T_2) é o estimador intervalar de confiança $100\gamma\%$ (ou o intervalo de confiança) de θ , sendo γ o coeficiente de confiança, e T_1 e T_2 são os limites inferior e superior, respectivamente.

Exemplo 1 (Estimador intervalar). Para uma amostra X_1, X_2, X_3, X_4 de uma população normal com média μ e variância 1, isto é, $X \sim N(\mu, 1)$. Um estimador intervalar possível de μ é $[\bar{X}-1,\bar{X}+1]$. Isto significa que o intervalo contém o valor do parâmetro μ com uma certa confiança.

Qual a vantagem de ter usado um estimador com menor precisão do que um estimador pontual? Pontualmente, estimamos μ por \bar{X} . E agora estimamos por $[\bar{X}-1,\bar{X}+1]$. Apesar de abrirmos mão de uma certa precisão, ganhamos alguma confiança, isto é, uma garantia de que nossa asserção está correta.

Outra importante observação é que o intervalo $[T_1, T_2]$, Definição 1, é a quantidade aleatória e não o parâmetro θ . Assim, não podemos afirmar que θ está dentro do intervalo $[T_1, T_2]$ com uma confiança $100\gamma\%$, e sim, que o intervalo $[T_1, T_2]$ contém o parâmetro θ com uma confiança $100\gamma\%$.

Diversos métodos são encontrados na literatura para obter um intervalo de confiança, tais como:

- inverter uma estatística de teste [Ver Casella (2001, port. pág. 376;)];
- intervalos bayesianos [Casela (2001, port. pág.390); Mood (1974, pág. 396)];

• método da quantidade pivotal.

Nos restringiremos ao último método.

Definição 2 (Quantidade pivotal). Seja uma amostra aleatória X_1, X_2, \ldots, X_n de uma população com $f_X(x;\theta)$, parametrizada por θ . Considere ainda uma medida $Q = q(X_1, X_2, \ldots, X_n; \theta)$ uma função de X_1, X_2, \ldots, X_n e θ . Se Q tem distribuição independente de θ , então Q é chamado de quantidade pivotal.

Exemplo 2. Seja uma amostra aleatória $X_1, X_2, ..., X_n$ de uma população $X \sim N(\theta, 9)$. Assim, podemos afirmar que $Q = \bar{X} - \theta$ é uma quantidade pivotal, pois sua distribuição é normal, tal que $Q_1 \sim N(0, 9/n)$. Agora $Q_2 = \bar{X}/\theta$ não é uma quantidade pivotal, pois $Q_2 \sim N(0, 9/(n\theta^2))$ que depende de θ .

Definição 3 (Método da quantidade pivotal). Seja uma amostra aleatória X_1, X_2, \ldots, X_n de uma população com $f_X(x;\theta)$, parametrizada por θ . Considere ainda uma quantidade pivotal $Q = q(X_1, X_2, \ldots, X_n; \theta)$ com fp ou fdp $f_Q(x)$ que não depende de θ . Fixado $0 < \gamma < 1$ existem q_1 e q_2 que dependem de γ tal que $P(q_1 < Q < q_2) = \gamma$. Se para cada amostra observada (x_1, x_2, \ldots, x_n) , $q_1 < q(x_1, x_2, \ldots, x_n; \theta) < q_2$ pode ser pivotado em $t_1(x_1, x_2, \ldots, x_n) < \tau(\theta) < t_2(x_1, x_2, \ldots, x_n)$ para t_1 e t_2 , que não dependem de θ , então (T_1, T_2) é o intervalo de confiança $100\gamma\%$ para $\tau(\theta)$, sendo τ uma função de θ , em que $T_i = t_i(X_1, X_2, \ldots, X_n)$, i = 1, 2.

Dessa definição, devemos fazer algumas observações sobre esse método:

- i) q_1 e q_2 são independentes de θ , uma vez que a distribuição de Q também é;
- ii) Para um valor fixado de γ , há muitos valores possíveis para q_1 e q_2 tal que $P(q_1 < Q < q_2) = \gamma$;
- iii) Diferentes pares de q_1 e q_2 produzem diferentes pares de t_1 e t_2 ;

Dessa forma, precisamos de algum critério para escolher q_1 e q_2 .

Definição 4 (Tamanho do intervalo). Seja uma amostra aleatória X_1, X_2, \ldots, X_n de uma população com $f_X(x;\theta)$, parametrizada por θ . Se (T_1,T_2) é o intervalo de confiança $100\gamma\%$ de θ , Definição 1, então o tamanho do intervalo, denotado por C, é definido por

$$C_{T_1,T_2} = T_2 - T_1, (1)$$

em que $T_2 > T_1$.

Dessa forma, devemos escolher o par q_1 e q_2 que resulte em menor comprimento C_{T_1,T_2} .

2 Intervalo de confiança (IC) para populações normais

2.1 IC para uma população normal

Considerando agora uma amostra aleatória X_1, X_2, \ldots, X_n de tamanho n de uma população tenha distribuição normal, tal que, $X \sim N(\mu, \sigma^2)$, então apresentamos o seguinte Teorema

Teorema 1 (Bolfarine p. 79 no pdf, com as provas). *Se* $X \sim N(\mu, \sigma^2)$, *então*

i) \bar{X} e S^2 são independentes;

ii)
$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \sim N(0,1)$$
, para σ^2 conhecido;

iii)
$$\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1};$$

iv)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$
;

sendo $\bar{X}=(\sum_{i=1}^n X_i/n)$, $S^2=\sum_{i=1}^n (X_i-\bar{X})^2/(n-1)$, χ^2_{n-1} é a variável aleatória de uma distribuição de qui-quadrado com n-1 graus de liberdade e t_{n-1} é a variável aleatória de uma distribuição de t de Student com t-1 graus de liberdade.

Observamos que os itens (ii), (iii) e (iv) são todas quantidades pivotais, já que suas distribuições não dependem dos parâmetros de interesse. Dessa forma, poderemos construir intervalo de confiança para essas quantidades.

Teorema 2 (Intervalo de confiança para μ). *Considerando o Teorema 1, o intervalo de confiança* $100(1-\alpha)\%$ *para* μ *é dado por:*

- I) $P\left[\bar{X}-z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\right]=1-\alpha$, considerando a quantidade pivotal do item (iii), Teorema 1, para σ^2 conhecido. O quantil superior $100(\alpha/2)\%$ $z_{\frac{\alpha}{2}}$ tem distribuição normal padrão;
- II) $P\left[\bar{X} t_{\frac{\alpha}{2},n-1} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + t_{\frac{\alpha}{2},n-1} \frac{\sigma}{\sqrt{n}}\right] = 1 \alpha$, considerando a quantidade pivotal do item (iv), Teorema 1, sendo S o desvio padrão amostral. O quantil superior $100(\alpha/2)\%$ $t_{\frac{\alpha}{2},n-1}$ tem distribuição t de Student com n-1 graus de liberdade.

Demonstração. Seja

$$Z = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \sim N(0, 1)$$

uma quantidade pivotal. Vamos agora pivotar, isto é,

$$q_{1} \leq \frac{\sqrt{n}(\bar{X} - \mu)}{\frac{\sigma}{\sigma}} \leq q_{2}$$

$$q_{1}\frac{\sigma}{\sigma} \leq \sqrt{n}(\bar{X} - \mu) \leq q_{2}\frac{\sigma}{\sigma}$$

$$q_{1}\frac{\sigma}{\sqrt{n}} \leq (\bar{X} - \mu) \leq q_{2}\frac{\sigma}{\sqrt{n}}$$

$$-\bar{X} + q_{1}\frac{\sigma}{\sqrt{n}} \leq -\mu \leq -\bar{X} + q_{2}\frac{\sigma}{\sqrt{n}}$$

$$\bar{X} - q_{1}\frac{\sigma}{\sqrt{n}} \geq \mu \geq \bar{X} - q_{2}\frac{\sigma}{\sqrt{n}}$$

$$T_{1} = \bar{X} - q_{2}\frac{\sigma}{\sqrt{n}} \leq \mu \leq T_{2} = \bar{X} - q_{1}\frac{\sigma}{\sqrt{n}}$$

O tamanho do intervalo é:

$$C_{T_1,T_2} = \left(\bar{X} - q_1 \frac{\sigma}{\sqrt{n}}\right) - \left(\bar{X} - q_2 \frac{\sigma}{\sqrt{n}}\right)$$
$$= (q_2 - q_1) \frac{\sigma}{\sqrt{n}},$$

que é o mesmo que

$$1 - \alpha = \int_{q_1}^{q_2} f_Z(k) dk = F_Z(q_2) - F_Z(q_1), \tag{2}$$

em que $f_Z(z)$ é a função densidade da normal padrão. Diferenciando (2) em relação a q_1 , temos

$$\frac{d}{dq_1}(F_Z(q_2) - F_Z(q_1)) = \frac{dq_2}{dq_1}f_Z(q_2) - f_Z(q_1) = 0.$$
(3)

Isto implica em

$$\frac{dq_2}{dq_1} = \frac{f_Z(q_1)}{f_Z(q_2)}. (4)$$

Para minimizar C_{T_1,T_2} , portanto fazemos $dC_{T_1,T_2}/dq_1$, isto é,

$$\frac{d}{dq_1}(q_2 - q_1)\frac{\sigma}{\sqrt{n}} = \left(\frac{dq_2}{dq_1} - 1\right)\frac{\sigma}{\sqrt{n}} = 0.$$
 (5)

Substituindo (4) em (5), temos

$$\left(\frac{f_Z(q_1)}{f_Z(q_2)} - 1\right) \frac{\sigma}{\sqrt{n}} = 0. \tag{6}$$

Isso só ocorrerá se $q_2=q_1$. Entretanto, $\int_{q_1}^{q_1} f_Z(k) dk \neq 1-\alpha$. Ou pode ser $q_1=-q_2$, já que $f_Z(q_1)=f_Z(-q_1)$ pela distribuição ser simétrica, daí poderemos obter $\int_{q_1}^{-q_1} f_Z(k) dk = 1-\alpha$. Portanto, para minimizar C_{T_1,T_2} , $q_1=-q_2$. Considerando $q_1=z_{\frac{\alpha}{2}}$, então $-q_2=-z_{\frac{\alpha}{2}}$, e segue o resultado do item (I). O resultado do item (II) segue nos mesmos moldes, substituindo apenas σ por S.

Teorema 3 (Intervalo de confiança para σ^2). *Considerando o Teorema 1, o intervalo de confiança* $100(1-\alpha)\%$ *para* σ^2 *é dado por:*

$$P\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right] = 1 - \alpha,\tag{7}$$

sendo $\chi^2_{1-\alpha/2}$ o quantil superior $100(1-\alpha/2)\%$ e $\chi^2_{\alpha/2}$ o quantil superior $100(\alpha/2)\%$ da distribuição de qui-quadrado com n-1 graus de liberdade.

Teorema 4 (Intervalo de confiança para p). Pode ser abordado em Mood (1974)[pág 394-396] caso aproximado, em Daniel (2009, p. 275); Casella(2001, port pag. 446-449). Para o intervalo exato, Daniel (2009, p. 274).

2.2 IC para mais de uma população normal

Teorema 5 (Intervalo de confiança para $\mu_1 - \mu_2$). *Material antigo escrito, com base em Daniel*(2009, pág. 380-383); Mood(1974, pág. 432-437)

Teorema 6 (Intervalo de confiança para $\sigma^2 - \sigma_2$). *Material antigo escrito, com base em Daniel*(2009, pág. 464-470); *Mood*(1974, pág. 438-442)

Teorema 7 (Intervalo de confiança para $p_1 - p_2$). *Daniel*(2009, pág. 439-440);

3 Intervalos de confiança para grandes amostras

Estudamos na estimação pontual que as vezes é possível encontrar uma sequência de estimadores $W_n(X_1, X_2, \ldots, X_n)$ que assintoticamente tem distribuição normal com média θ e variância $\sigma_n^2(\theta)$, em que $\sigma_n^2(\theta)$ indica que a variância é uma função de θ e do tamanho da amostra n. Em particular, temos os estimadores de máxima verossimilhança (EMV), denotado por $\hat{\theta}_n(X_1, X_2, \ldots, X_n)$, que apresentam essa propriedade.

Teorema 8 (Teorema de Slutsky). *Se* $X_n \stackrel{d}{\to} X$ *em distribuição e* $Y_n \stackrel{p}{\to} a$, *uma constante, em probabilidade, então*

- a) $Y_n X_n \stackrel{d}{\rightarrow} aX$, em distribuição;
- b) $X_n + Y_n \stackrel{d}{\rightarrow} X + a$, em distribuição.

Teorema 9 (Eficiência e consistência assintótica dos EMV). Seja uma amostra aleatória X_1, X_2, \ldots, X_n iid com fp ou fdp $f_X(x;\theta)$. Supondo que $\hat{\theta}$ denote o EMV de θ e que $\tau(\theta)$ seja uma função contínua de θ , sob condições de regularidade de $f_X(x;\theta)$, então

$$\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)] \to N(0, \sigma_n^2(\theta)),$$
 (8)

em que $\sigma_n^2(\theta)$ é o limite inferior da cota de Cramer-Rao, dado por:

$$\sigma_n^2(\theta) = \frac{\left(\frac{d}{d\theta}\tau(\theta)\right)^2}{E_{\theta}\left[\left(\frac{\partial}{\partial\theta}\log f_X(X;\theta)\right)^2\right]}.$$

Dizemos que $\tau(\hat{\theta})$ é um estimador consistente e assintoticamente eficiente de $\tau(\theta)$.

Demonstração. Vamos fazer a prova considerando o EMV $\hat{\theta}$ e X uma v.a. contínua. Considerando que $\ell(\theta; X_1, X_2, \ldots, X_n) = \sum_{i=1}^n \log f_X(X_i; \theta)$ é a função log de verossimilhança, denote $\ell'(\theta, \mathbf{X})$ a primeira derivada da função log verossimilhança com relação a θ . Expanda essa derivada em torno do verdadeiro valor do parâmetro θ , denotado por θ_0 , isto é,

$$\ell'(\theta, X) = \ell'(\theta_0, X) + (\theta - \theta_0)\ell''(\theta_0, X). \tag{9}$$

Agora, substitua o EMV $\hat{\theta}$ para θ . Como $\ell'(\hat{\theta}, X) = 0$, então

$$(\hat{\theta} - \theta_0) = \frac{-\ell'(\theta_0, X)}{\ell''(\theta_0, X)}.$$
(10)

Pré-multiplicando \sqrt{n} em (10), em ambos os lados, temos

$$\sqrt{n}(\hat{\theta} - \theta_0) = \sqrt{n} \frac{-\ell'(\theta_0, X)}{\ell''(\theta_0, X)}$$

$$= \frac{\sqrt{n}\sqrt{n}}{\sqrt{n}} \frac{-\ell'(\theta_0, X)}{\ell''(\theta_0, X)}$$

$$= \frac{(\sqrt{n})^2}{\sqrt{n}} \frac{-\ell'(\theta_0, X)}{\ell''(\theta_0, X)}$$

$$= \frac{n}{\sqrt{n}} \frac{-\ell'(\theta_0, X)}{\ell''(\theta_0, X)}$$

$$= \frac{-\frac{1}{\sqrt{n}}\ell'(\theta_0, X)}{\frac{1}{n}\ell''(\theta_0, X)}$$

$$= \frac{\frac{1}{\sqrt{n}}\ell'(\theta_0, X)}{-\frac{1}{n}\ell''(\theta_0, X)}$$
(11)

Usando primeiro a expressão do numerador de (11), temos que

$$E\left[\frac{1}{\sqrt{n}}\ell'(\theta_{0},X)\right] = \frac{1}{\sqrt{n}}E\left[\ell'(\theta_{0},X)\right]$$

$$= \frac{1}{\sqrt{n}}E\left[\frac{\partial}{\partial\theta_{0}}\sum_{i=1}^{n}\log f_{X}(X_{i};\theta_{0})\right]$$

$$= \frac{1}{\sqrt{n}}E\left[\sum_{i=1}^{n}\frac{\partial}{\partial\theta_{0}}\log f_{X}(X_{i};\theta_{0})\right]$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}E\left[\frac{\partial}{\partial\theta_{0}}\log f_{X}(X_{i};\theta_{0})\right]$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}E\left[\frac{\partial}{\partial\theta_{0}}\log f_{X}(X_{i};\theta_{0})\right]$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(\int_{\mathcal{X}}\frac{\partial}{\partial\theta_{0}}\log (f_{X}(t_{i};\theta_{0}))f_{X}(t_{i};\theta_{0})dx_{i}\right)$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(\int_{\mathcal{X}}\frac{\partial}{\partial\theta_{0}}f_{X}(t_{i};\theta_{0})f_{X}(t_{i};\theta_{0})dx_{i}\right)$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(\int_{\mathcal{X}}\frac{\partial}{\partial\theta_{0}}f_{X}(t_{i};\theta_{0})dx_{i}\right)$$

$$= \frac{1}{\sqrt{n}}\sum_{i=1}^{n}\left(\frac{\partial}{\partial\theta_{0}}\int_{\mathcal{X}}f_{X}(t_{i};\theta_{0})dx_{i}\right)$$

A variância pode ser expressa da seguinte forma:

$$Var\left[\frac{1}{\sqrt{n}}\ell'(\theta_{0}, X)\right] = E\left[\left(\frac{1}{\sqrt{n}}\ell'(\theta_{0}, X)\right)^{2}\right] - \left(E\left[\frac{1}{\sqrt{n}}\ell'(\theta_{0}, X)\right]\right)^{2}$$

$$= E\left[\left(\frac{1}{\sqrt{n}}\ell'(\theta_{0}, X)\right)^{2}\right]$$

$$= \frac{1}{n}E\left[\left(\ell'(\theta_{0}, X)\right)^{2}\right]$$

$$= \frac{1}{n}E\left[\left(\frac{\partial}{\partial \theta_{0}}\log L(\theta_{0}; X)\right)^{2}\right]. \tag{14}$$

Existe um resultado para amostras iid que $E\left[\left(\frac{\partial}{\partial \theta_0}\log L(\theta_0; \boldsymbol{X})\right)^2\right] = nE\left[\left(\frac{\partial}{\partial \theta_0}\log f_X(\boldsymbol{X}; \theta_0)\right)^2\right]$. Ver Casella (2001, port. p.300-301) e no material escrito de inf II. Assim,

$$Var\left[\frac{1}{\sqrt{n}}\ell'(\theta_0, X)\right] = \frac{n}{n}E\left[\left(\frac{\partial}{\partial \theta_0}\log f_X(X; \theta_0)\right)^2\right]$$

$$= E\left[\left(\frac{\partial}{\partial \theta_0}\log f_X(X; \theta_0)\right)^2\right]$$

$$= \frac{1}{\sigma_n^2(\theta_0)}.$$
(15)

Pelo Teorema Central do limite, temos que

$$\frac{\frac{1}{\sqrt{n}}\ell'(\theta_0, \mathbf{X}) - 0}{\sqrt{1/\sigma_n^2(\theta_0)}} \stackrel{\mathrm{d}}{\to} N(0, 1), \tag{17}$$

ou

$$\frac{1}{\sqrt{n}}\ell'(\theta_0, \mathbf{X}) \stackrel{\mathrm{d}}{\to} N(0, 1/\sigma_n^2(\theta_0)). \tag{18}$$

Se considerarmos o denominador de (11), temos

$$-\frac{1}{n}\ell''(\theta_0, \mathbf{X}) = -\frac{1}{n} \left(\frac{\partial^2}{\partial \theta_0^2} \sum_{i=1}^n \log f_X(X_i; \theta_0) \right)$$
$$= -\frac{1}{n} \sum_{i=1}^n \left(\frac{\partial^2}{\partial \theta_0^2} \log f_X(X_i; \theta_0) \right)$$
(19)

Observe que $\frac{\partial^2}{\partial \theta_0^2} \log f_X(X_i; \theta_0)$ pode ser encarada como uma variável aleatória. Se denotarmos $\frac{\partial^2}{\partial \theta_0^2} \log f_X(X_i; \theta_0) = Y_i$, então

$$-\frac{1}{n}\ell''(\theta_0, X) = -\frac{1}{n}\sum_{i=1}^n Y_i = -\bar{Y}.$$
 (20)

Pela Lei Fraca dos Grandes números,

$$-\bar{Y} \stackrel{p}{\to} -E \left[\frac{\partial^2}{\partial \theta_0^2} \log f_X(X_i; \theta_0) \right] = E \left[\left(\frac{\partial}{\partial \theta_0} \log L(\theta_0; X) \right)^2 \right] = \frac{1}{\sigma_n^2(\theta_0)}. \tag{21}$$

Portanto, pelo Teorema de Slutsky, item (a), como

$$-\frac{1}{n}\ell''(\theta_0, X) \xrightarrow{p} \frac{1}{\sigma_n^2(\theta_0)}$$

e

$$\frac{1}{\sqrt{n}}\ell'(\theta_0, \mathbf{X}) \stackrel{\mathrm{d}}{\to} N(0, 1/\sigma_n^2(\theta_0)),$$

então considerando que $W \sim N(0, 1/\sigma_n^2(\theta_0))$, logo

$$\frac{\frac{1}{\sqrt{n}}\ell'(\theta_0, X)}{-\frac{1}{n}\ell''(\theta_0, X)} \stackrel{d}{\to} \sigma_n^2(\theta_0)W. \tag{22}$$

Dessa forma, $\sigma_n^2(\theta_0)W$ também tem distribuição normal com parâmetros

$$E[\sigma_n^2(\theta_0)W] = \sigma_n^2(\theta_0)E[W] = 0,$$

e

$$Var[\sigma_n^2(\theta_0)W] = \sigma_n^4(\theta_0)Var[W] = \frac{\sigma_n^4(\theta_0)}{\sigma_n^2(\theta_0)} = \sigma_n^2(\theta_0),$$

isto é, $\sigma_n^2(\theta_0)W \sim N(0, \sigma_n^2(\theta_0))$. Logo,

$$\sqrt{n}(\theta-\theta_0) \stackrel{\mathrm{d}}{\to} N(0,\sigma_n^2(\theta_0)),$$

provando o Teorema.

Exemplo 3 (Normalidade e consistência assintótica). O Teorema 9 mostra que estimadores $EMV \tau(\hat{\theta})$ de $\tau(\theta)$ são assintoticamente normal, e por consequência eficientes. Ainda mais, a normalidade assintótica implica em consistência. Suponha que

$$\sqrt{n} \frac{W_n - \mu}{\sigma} \stackrel{\mathrm{d}}{\to} Z \ em \ distribuição,$$

em que $Z \sim N(0,1)$. Aplicando o Teorema de Slutsky, temos

$$W_n - \mu = \underbrace{\left(\frac{\sigma}{\sqrt{n}}\right)}_{\stackrel{p}{\to}\left(\frac{\sigma}{\sqrt{n}}\right)} \underbrace{\left(\sqrt{n}\frac{W_n - \mu}{\sigma}\right)}_{\stackrel{d}{\to}Z} \stackrel{d}{\to} \lim_{n \to \infty} \left(\frac{\sigma}{\sqrt{n}}\right) Z = 0,$$

deste modo, $W_n - \mu \to 0$ converge em distribuição. e o Teorema (Casella, port. pag. 211) mostra que a convergência em distribuição para um ponto implica em convergência em probabilidade. Logo, $W_n \stackrel{p}{\to} \mu$, isto é, W_n é um estimador consistente.

Como $\sigma_n^2(\theta)$ depende de θ , uma aproximação (Método Delta) para a variância pode ser expresso por

$$\sigma_n^2(\hat{\theta}|\theta) = \sigma_n^2(\hat{\theta}) \approx \frac{\left(\frac{d}{d\theta}\tau(\theta)\right)^2|_{\theta=\hat{\theta}}}{E_{\theta}\left[\left(\frac{\partial}{\partial\theta}\log L(\theta; X)\right)^2\right]|_{\theta=\hat{\theta}}},\tag{23}$$

em que $L(\theta; X) = L(\theta; X_1, X_2, ..., X_n) = \prod_{i=1}^n f_X(X_i; \theta)$ é a função de verossimilhança. A quantidade,

$$E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log L(\theta; \mathbf{X}) \right)^{2} \right] \tag{24}$$

é conhecida como número de informação ou informação de Fisher. Uma outra forma de apresentar (24) é

$$E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log L(\theta; \mathbf{X}) \right)^{2} \right] = -E_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log L(\theta; \mathbf{X}) \right]. \tag{25}$$

Considerando uma amostra iid, a expressão (24) pode ser dada por

$$E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log L(\theta; \mathbf{X}) \right)^{2} \right] = nE_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log f_{X}(X; \theta) \right)^{2} \right]. \tag{26}$$

A prova desses resultados está no material escrito de Inf II. Na prática,

$$\frac{\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)] \to N(0, \sigma_n^2(\theta))}{\sqrt{\sigma_n^2(\theta)}} \to N(0, 1)$$

$$\frac{\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)]}{\sqrt{\sigma_n^2(\theta)}} \to N(0, 1)$$

$$\tau(\hat{\theta}) - \tau(\theta) \to N(0, \sigma_n^2(\theta)/n)$$

$$\tau(\hat{\theta}) \to N(\tau(\theta), \sigma_n^2(\theta)/n)$$

Com essas informações, poderemos agora construir intervalos de confiança para grandes amostras. Usando a aproximação em (23), temos

$$\frac{\sqrt{n}[\tau(\hat{\theta}) - \tau(\theta)]}{\sqrt{\sigma_n^2(\hat{\theta})}} \stackrel{d}{\to} N(0,1), \tag{27}$$

pois, pelo Teorema 9 sabemos que $\sqrt{n}[\tau(\hat{\theta})-\tau(\theta)]\overset{\mathrm{d}}{\to}N(0,1)$. Pelo mesmo Teorema, sabemos que os estimadores de EMV são consistentes assintoticamente, e ainda sabendo pelo princípio da invariância (Mood, 1974, p. 284; Casela, 2001, port p. 285) que se $\hat{\theta}$ é um EMV de θ , então $\sigma_n^2(\hat{\theta})$ também é um EMV de $\sigma_n^2(\theta)$. Logo, $\sigma_n^2(\hat{\theta})\overset{p}{\to}\sigma_n^2(\theta)$. Assim, pelo Teorema de Slutsky fica provado a convergência em distribuição de (27).

Assim, um intervalo de confiança aproximado é

$$\tau(\hat{\theta}) - z_{\frac{\alpha}{2}} \sqrt{\sigma_n^2(\hat{\theta})} \le \tau(\theta) \le \tau(\hat{\theta}) + z_{\frac{\alpha}{2}} \sqrt{\sigma_n^2(\hat{\theta})},\tag{28}$$

sendo $z_{\frac{\alpha}{2}}$ o quantil superior $100(\alpha/2)\%$ com distribuição normal padrão.

Exemplo 4 (Intervalos de confiança para grandes amostras). Seja uma amostra aleatória $X_1, X_2, ..., X_n$ de uma população com distribuição de Bernoulli(p). Construa um intervalo de confiança aproximado para p. Sabemos que o estimador EMV de θ é $\hat{p} = \bar{X}$ (Casella, port. p. 283). Para calcular $\sigma_n^2(p)$, usaremos a aproximação de (23), isto é,

$$\sigma_{n}^{2}(\hat{p}) \approx \frac{\left(\frac{d}{dp}\tau(p)\right)^{2}|_{p=\hat{p}}}{E_{p}\left[\left(\frac{\partial}{\partial p}\log L(p;X)\right)^{2}\right]|_{p=\hat{p}}}$$

$$\approx \frac{1}{E_{p}\left[\left(\frac{\partial}{\partial p}\log L(p;X)\right)^{2}\right]|_{p=\hat{p}}}$$

$$\approx \frac{1}{-\frac{\partial^{2}}{\partial p^{2}}\log L(p;X)|_{p=\hat{p}}}$$

$$\approx \frac{n}{\hat{p}(1-\hat{p})}, \text{ para detalhes ver Inf II (Lucas, p. 46)}$$

Assim, um intervalo de confiança com base em (27) é

$$\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \le p \le \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$
 (29)

sendo $z_{\frac{\alpha}{2}}$ o quantil superior $100(\alpha/2)\%$ com distribuição normal padrão.

Outro método de encontrar intervalos de confiança aproximado se baseiam em encontrar pivôs aproximados (ou assintóticos). Se tivermos quaisquer estatísticas W e V e um parâmetros θ de modo que à medida que $n \to \infty$,

$$\frac{W-\theta}{V} \stackrel{d}{\to} N(0,1)$$
, Ver detalhes, Casella, port. p. 440 (30)

então podemos formar um intervalo de confiança aproximado para θ dado por

$$W - z_{\frac{\alpha}{2}}V \le \tau(\theta) \le W + z_{\frac{\alpha}{2}}V,\tag{31}$$

que é essencialmente o intervalo do Tipo Wald. A aplicação direta do Teorema do Limite Central e o Teorema de Slutsky, geralmente resultará em um intervalo de confiança aproximado.

Exemplo 5. Se $X_1, X_2, ..., X_n$ são iid com média μ e variância σ^2 , então a partir do Teorema do Limite central, temos que

$$\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma} \stackrel{\mathrm{d}}{\to} Z \sim N(0,1),$$

que implica também que

$$\sqrt{n}(\bar{X} - \mu) \stackrel{d}{\to} Z_{0,\sigma^2} \sim N(0,\sigma^2).$$
 (32)

Assim, usando o Teorema de Slutsky,

$$\frac{\sqrt{n}(\bar{X}-\mu)}{S} \stackrel{d}{\to} \frac{Z_{0,\sigma^2}}{\sigma}.$$

Isso ocorre pois, há a convergência em distribuição de (32) e a convergência em probabilidade de $S^2 \xrightarrow{p} \sigma^2$ (Ver Casella port pag. 208; material escrito de Inf II, pág. 58-61). Logo,

$$\frac{Z_{0,\sigma^2}}{\sigma} \sim Z \sim N(0,1). \tag{33}$$

Outra forma de mostra isso é:

$$\underbrace{\left(\frac{\sigma}{S}\right)}_{\stackrel{p}{\to}1}\underbrace{\left(\frac{\sqrt{n}(\bar{X}-\mu)}{\sigma}\right)}_{\stackrel{d}{\to}Z} \sim 1 \times Z \sim N(0,1), \qquad \text{(usando o Teorema de Slutsky),}$$

Dessa forma poderemos construir um intervalo de confiança aproximado $1-\alpha$, tal que

$$\bar{X} - z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \le \mu \le \bar{X} + z_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}},\tag{34}$$

sendo $z_{\frac{\alpha}{2}}$ o quantil superior $100(\alpha/2)\%$ com distribuição normal padrão. \Box