Proof sketches

1 Lecture 1

Lemma 1.1. $|||\psi_{\vec{0}}^0\rangle - |\psi_{\vec{i}}^0\rangle|| = 0$

Proof.
$$|\psi_{\vec{0}}^0\rangle = |\psi_{\vec{i}}^0\rangle = U_0|0,0\rangle$$

Lemma 1.2. $\||\psi_{\vec{0}}^T\rangle - |\psi_{\vec{i}}^T\rangle\| \ge 1/3$ if the algorithm succeeds $wp \ge 2/3$ after T queries

Proof. Success conditions: $\|(\mathrm{Id}\otimes|0\rangle\langle0|)|\psi_{\vec{0}}^T\rangle\|^2 \geq 2/3$ and $\|(\mathrm{Id}\otimes|1\rangle\langle1|)|\psi_{\vec{i}}^T\rangle\|^2 \geq 2/3$

Lemma 1.3. $\||\psi_{\vec{0}}^{t+1}\rangle - |\psi_{\vec{i}}^{t+1}\rangle\| \le \||\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle\| + \sqrt{q_i^t}$

Proof.

$$\begin{aligned} |||\psi_{\vec{0}}^{t+1}\rangle - |\psi_{\vec{i}}^{t+1}\rangle|| &= ||U_{t+1}|\psi_{\vec{0}}^t\rangle - U_{t+1}O_{\vec{i}}|\psi_{\vec{i}}^t\rangle|| & \text{by definition and } O_{\vec{0}} &= \operatorname{Id} \\ &= |||\psi_{\vec{0}}^t\rangle - O_{\vec{i}}|\psi_{\vec{i}}^t\rangle|| & \text{unitary preserves norm} \\ &= ||O_{\vec{i}}(|\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle) + (\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle|| & \\ &\leq ||O_{\vec{i}}(|\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle)|| + ||(\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle|| & \text{by triangle inequality} \\ &= |||\psi_{\vec{0}}^t\rangle - |\psi_{\vec{i}}^t\rangle|| + ||(\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle|| & \end{aligned}$$

We have $\operatorname{Id} - O_{\vec{i}} = |i\rangle\langle i| \otimes (\operatorname{Id} - X)$ where $X = |1\rangle\langle 0| + |0\rangle\langle 1|$. Hence, $\|(\operatorname{Id} - O_{\vec{i}})|\psi_{\vec{0}}^t\rangle\| = \|(|i\rangle\langle i| \otimes (\operatorname{Id} - X))|\psi_{\vec{0}}^t\rangle\|\| \leq 2\|(|i\rangle\langle i| \otimes \operatorname{Id})|\psi_{\vec{0}}^t\rangle\|\| = \sqrt{q_i^t}$, where we used that $\|\operatorname{Id} \otimes (\operatorname{Id} - X)\| \leq 2$. \square

Theorem 1.4. $Q(OR) \ge \sqrt{n}/3$

Proof.
$$n/3 \leq \sum_{i=1}^{n} \sum_{t=0}^{T} \sqrt{q_i^t} \leq \sqrt{nT \sum_{i=1}^{n} \sum_{t=0}^{T} q_i^t} = \sqrt{nT} \Rightarrow T \geq \sqrt{n}/3.$$

2 Lecture 2

Proposition 2.1. Fix a quantum algorithm making T queries. Let $p(x) \in [0,1]$ denote the probability that it outputs 1 on input x. Then $\deg(p) \leq 2T$.

Proof. By induction on T: for all $1 \le i \le n$, $b \in \{0,1\}$, $\langle i,b|\psi_x^T\rangle$ is a polynomial in x of degree < T.

For T = 0, $|\psi_x^0\rangle = U_0|0,0\rangle$. Hence, $\langle i,b|\psi_x^0\rangle$ is independent from x. For T+1,

$$\langle i, b | \psi_x^{T+1} \rangle = \langle i, b | U_{T+1} O_x | \psi_x^T \rangle$$

$$= \sum_{j,c} \alpha_{j,c} \langle j, c | O_x | \psi_x^T \rangle \quad \text{where we define } \sum_{j,c} \alpha_{j,c}^{\dagger} | j, c \rangle = U_{T+1}^{\dagger} | i, b \rangle \text{ (indep. from } x)$$

$$= \sum_{j,c} \alpha_{j,c} ((1 - x_j) \langle j, c | \psi_x^T \rangle + x_j \langle j, c \oplus 1 | \psi_x^T \rangle)$$

$$\text{since } O_x | j, c \rangle = | j, c \oplus x_j \rangle = (1 - x_j) | j, c \rangle + x_j | j, c \oplus 1 \rangle$$

The proposition follows since $p(x) = \|(\operatorname{Id} \otimes |1\rangle\langle 1|)|\psi_x^T\rangle\|^2 = \sum_{1\leq i\leq n} |\langle i,1|\psi_x^T\rangle|^2$.

Theorem 2.2. $Q(f) = \widetilde{\deg}(f)/2$

Proof. Suppose a quantum algorithm computes f with probability $\geq 2/3$ and makes T queries. Let p(x) denote the denote the probability that it outputs 1 on input x. Then:

- 1. $deg(p) \le 2T$ by Proposition 2.1
- 2. $p(x) \ge 2/3$ when f(x) = 1 and $p(x) \le 1/3$ when f(x) = 0, by success condition

In particular, $|p(x) - f(x)| \le 1/3$ for all x. Hence, $\widetilde{\deg}(f) \le \deg(p) \le 2T$.

Lemma 2.3. P_{sym} is a polynomial in k and $\deg(P_{\text{sym}}) \leq \deg(P)$.

Proof. Let $S \subseteq \{1, \ldots, n\}$ and consider the monomial $x_S = \prod_{i \in S} x_i$.

$$\mathbb{E}_{x \sim B_k}[x_S] = \begin{cases} 0 & \text{if } k < |S| \\ \frac{\binom{n-|S|}{k-|S|}}{\binom{n}{k}} = \frac{k(k-1)\cdots(k-|S|+1)}{n(n-1)\cdots(n-|S|+1)} & \text{otherwise} \end{cases}$$

This is a polynomial in k of degree $\leq |S|$.

Lemma 2.4. $P_{\text{sym}}(0) \in [0, 1/3]$ and $P_{\text{sym}}(k) \in [2/3, 1]$ for $k \ge 1$.

Proof.
$$P(x) \in [0, 1/3]$$
 for all $x \in B_0$ hence $P_{\text{sym}}(0) = \mathbb{E}_{x \sim B_0}[P(x)] \in [0, 1/3]$. Similarly, $P(x) \in [2/3, 1]$ for all $x \in B_k$, $k \ge 1$. □

Lemma 2.5. $\sum_{x} \phi(x) \cdot P(x) = 0$, $\forall P, \deg(P) < d \Leftrightarrow \phi$ has no monomial of degree < d.

Proof. For any two subsets
$$S, T \subseteq \{1, ..., n\}$$
, $\sum_{x \in \{-1,1\}^n} x_S x_T = \sum_{x \in \{-1,1\}^n} x_{S \cap T}^2 x_{T \setminus S} x_{S \setminus T} = \sum_{x \in \{-1,1\}^n} x_{T \setminus S} x_{S \setminus T} = 2^n \cdot \mathbf{1}_{S = T}$.