

LA BIOMÉTRIE DES VEINES PALMAIRES

Contexte

La biométrie est devenue une partie prenante de la sécurité technologique. Il s'agit d'une veritable alternative aux mots de passe et aux identifiants.

Et la reconnaissance des veines palmaires est une nouvelle biométrie peu présente en Europe. Elle pourrait présenter de nombreux avantages (hygiène) dans les domaines tels que la santé, les services financiers, les systèmes de paiement et d'autres encore.

Objectif

À partir d'une base de données, notre projet consiste à identifier les empruntes palmaires des utilisateurs à travers une application web que l'on nommera **B-Hand**.

500 utilisateurs enregistrent et

scannent leurs empruntes palmaire

Réception de la NIR

Database: 6000 images

Classification des images avec CNN

Modèles CNN

Modèles Simples

Transfer Learning ResNet-50 Inception GoogleNet • Loss = 2.36%

1 Couche 2 Couches

• Loss = 0.13%

provenant de Keras.

Accuracy = 99.61%
Accuracy = 97.78%

Afin d'assurer le bon fonctionnement de

l'application B-Hand : nous avons entraîné la

NIR Database avec le modèle CNN Xception

Sans Transfer Learning

ResNet-50 InceptionResNet

• Loss = 0.06%

Xception

• Accuracy = 99.59

WWW

Conception de

<u>l'application B-Hand</u>

APPLICATION B-HAND

ACCUEIL

<u>IDENTIFICATION</u>

