P. Maurer

ENS Rennes

Recasages: 209, 223.

Référence : Stein & Shakarchi, Fourier Analysis.

Critère d'équirépartition de Weyl

Dans ce qui suit, on note $\mathcal{E}([0,1[,\mathbb{R})$ l'ensemble des fonctions en escalier sur [0,1[à valeurs réelles. On rappelle que $\mathcal{E}([0,1[,\mathbb{R})$ est dense dans $\mathcal{C}^0([0,1[,\mathbb{R})$.

Définition 1. On dit qu'une suite $(x_n)_{n\in\mathbb{N}^*}$ d'éléments de [0,1[est équirépartie si pour tout intervalle ouvert $]a,b[\subset [0,1[$, on a

$$\lim_{N \to +\infty} \frac{\operatorname{Card}\{1 \leq n \leq N \ : \ x_n \in \,]a,b[\}}{N} \ = \ b-a.$$

Cela signifie que pour N assez grand, la proportion d'éléments x_n dans]a,b[pour $1 \le n \le N$, s'approche du quotient de la longueur de l'intervalle]a,b[par la longueur de l'intervalle [0,1[.

Proposition 2.

Une suite $(x_n)_{n \in \mathbb{N}} \in [0, 1]^{\mathbb{N}^*}$ est équirépartie si et seulement si pour tout $(a, b) \in [0, 1]^2$ tels que a < b, on a

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{[a,b[}(x_n) \underset{N \to +\infty}{\longrightarrow} \int_0^1 \mathbf{1}_{[a,b[}(x) dx.$$

Démonstration. On a les inégalités suivantes :

$$\operatorname{Card}\{1 \leq n \leq N : x_n \in]a,b[\} \leq \operatorname{Card}\{1 \leq n \leq N : x_n \in [a,b[\}] \leq \operatorname{Card}\{1 \leq n \leq N : x_n \in [a,b[\}]\} + 1,$$

et

$$\operatorname{Card}\{1 \le n \le N : x_n \in [a, b]\} - 1 \le \operatorname{Card}\{1 \le n \le N : x_n \in [a, b]\} \le \operatorname{Card}\{1 \le n \le N : x_n \in [a, b]\}.$$

Le théorème d'encradrement justifie alors que

$$\lim_{N \to +\infty} \frac{\operatorname{Card}\{1 \le n \le N : x_n \in]a, b[\}}{N} = \lim_{N \to +\infty} \frac{\operatorname{Card}\{1 \le n \le N : x_n \in [a, b[\}]\}}{N}.$$

La proposition résulte alors de la reformulation immédiate $\operatorname{Card}\{1 \leq n \leq N : x_n \in [a,b[\} = \sum_{n=1}^{N} \mathbf{1}_{[a,b[}(x_n) \text{ et } \int_0^1 \mathbf{1}_{[a,b[}(x) \, dx = \int_a^b dx = b - a. \Box$

Théorème 3. (Critère de Weyl)

On se donne une suite $(x_n)_{n\in\mathbb{N}^*}$ d'éléments de [0,1[. Alors $(x_n)_{n\in\mathbb{N}}$ est équirépartie si et seulement si pour tout $k\in\mathbb{Z}^*$, on a

$$\frac{1}{N} \sum_{n=1}^{N} e^{2i\pi k x_n} \underset{N \to +\infty}{\longrightarrow} 0.$$

Démonstration.

On suppose que $(x_n)_{n\in\mathbb{N}^*}$ est équirépartie. On va démontrer que pour toute fonction continue $f:[0,1]\to\mathbb{C}$, on a $\lim_{N\to+\infty}\frac{1}{N}\sum_{n=1}^N f(x_n)=\int_0^1 f(x)\,dx$. Ceci implique le résultat souhaité puisque les fonctions $x\mapsto e^{2i\pi kx}$ sont continues pour tout $k\neq 0$ et vérifient $\int_0^1 e^{2i\pi kx}\,dx=\left[\frac{e^{2i\pi kx}}{2i\pi k}\right]_0^1=0$.

Pour ce faire, montrons que le résultat est vrai pour une fonction en escalier. Soit $f \in \mathcal{E}([0,1[,\mathbb{R})$ et $\sigma = (s_0 = 0 < s_1 < \dots < s_{m-1} < s_m = 1)$ une subdivision adaptée de [0,1[, de sorte que f s'écrive :

$$f(x) = \sum_{k=0}^{m-1} f(s_k) \mathbf{1}_{[s_k, s_{k+1}]}(x).$$

D'après la proposition 2, pour tout $k \in [0, m-1]$, on a :

$$\frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{[s_k, s_{k+1}[}(x_n) \underset{N \to +\infty}{\to} \int_0^1 \mathbf{1}_{[s_k, s_{k+1}[}(x) \, dx.$$

Par linéarité de la somme et de l'intégrale, on en déduit que

$$\frac{1}{N} \sum_{n=1}^{N} \sum_{k=0}^{m-1} f(s_k) \mathbf{1}_{[s_k, s_{k+1}]}(x_n) \xrightarrow[N \to +\infty]{} \int_0^1 \sum_{k=0}^{m-1} f(s_k) \mathbf{1}_{[s_k, s_{k+1}]}(x) dx.$$

Ce résultat est valable pour toute fonction $f \in \mathcal{E}([0,1],\mathbb{R})$.

On se donne une fonction $f \in \mathcal{C}^0([0,1[,\mathbb{R}),\text{ et }\varepsilon > 0.$ Comme $\mathcal{E}([0,1[,\mathbb{R}),\text{ est dense dans }\mathcal{C}^0([0,1[,\mathbb{R}),\text{ il existe }\varphi \in \mathcal{E}([0,1[,\mathbb{R}),\text{ telle que }\|f-\varphi\|_{\infty} \leq \varepsilon/3.$

Posons, pour
$$N \ge 1$$
, $\mathcal{M}_N(f) = \frac{1}{N} \sum_{n=1}^{N} f(x_n) - \int_0^1 f(x) \, dx$.

L'objectif est donc de montrer que pour N assez grand, on a $|\mathcal{M}_N(f)| \leq \varepsilon$. On calcule alors

$$\mathcal{M}_{N}(f) = \frac{1}{N} \sum_{n=1}^{N} \varphi(x_{n}) - \int_{0}^{1} \varphi(x) \, dx + \frac{1}{N} \sum_{n=1}^{N} (f - \varphi)(x_{n}) - \int_{0}^{1} (f - \varphi)(x) \, dx$$

On en déduit, par inégalité triangulaire, que

$$|\mathcal{M}_{N}(f)| \leq |\mathcal{M}_{N}(\varphi)| + \frac{1}{N} \sum_{n=1}^{N} |f - \varphi|(x_{n}) + \int_{0}^{1} |f - \varphi|(x) dx$$

$$\leq |\mathcal{M}_{N}(\varphi)| + \frac{2}{3} \varepsilon.$$

D'après ce que l'on a montré, comme $\varphi \in \mathcal{E}([0,1[,\mathbb{R}), \text{ on a } |\mathcal{M}_N(\varphi)|_{\substack{N \to +\infty}} 0$. Donc il existe $N_0 \in \mathbb{N}^*$ tel que pour tout $N \geq N_0$, on ait $|\mathcal{M}_N(\varphi)| \leq \varepsilon/3$. On en déduit que pour tout $N \geq N_0$,

$$|\mathcal{M}_N(f)| \leq \varepsilon.$$

Ceci conclut la preuve pour $f \in \mathcal{C}^0([0,1],\mathbb{R})$. Par ailleurs, si $f \in \mathcal{C}^0([0,1[,\mathbb{C}),$ on peut écrire f = Re f + i Im(f) avec Re(f) et Im(f) continues à valeurs réelles, donc la linéarité de l'intégrale assure que la propriété est encore vraie pour $f \in \mathcal{C}^0([0,1[,\mathbb{C}).$

$$\longleftarrow$$
 Réciproquement, on suppose que pour tout $k \in \mathbb{Z}^*$, on a $\frac{1}{N} \sum_{n=1}^N e^{2i\pi kx_n} \underset{N \to +\infty}{\longrightarrow} 0$.

On va d'abord chercher également à montrer que $|\mathcal{M}_N(f)|_{N\to+\infty}^{}$ 0 pour tout $f\in\mathcal{C}^0([0,1[,\mathbb{C}).$ Par linéarité de la somme et de l'intégrale, on a $|\mathcal{M}_N(P)|_{N\to+\infty}^{}$ 0 pour tout polynôme trigonométrique P de la forme

$$P(x) := \sum_{k=-m}^{m} a_k e^{2ik\pi x}$$
 avec $(a_{-m}, \dots, a_m) \in \mathbb{C}^{2m+1}$.

Le théorème de Féjer affirme que si $f \in \mathcal{C}^0([0,1[,\mathbb{C}), \text{ alors } f \text{ est limite uniforme d'une suite de polynômes trigonométriques (autrement dit, les polynômes trigonométriques sont denses dans <math>\mathcal{C}^0([0,1[,\mathbb{C}))$.

On en déduit donc comme dans le sens direct que $|\mathcal{M}_N(f)|_{N\to+\infty}$ 0 pour tout $f\in\mathcal{C}^0([0,1],\mathbb{C})$.

Soit $(a, b) \in [0, 1]^2$, avec a < b. On note $\chi := \mathbf{1}_{[a, b[}$, et on se donne un réel $\varepsilon > 0$.

Alors il existe $\varphi, \psi \in \mathcal{C}^0([0,1[,\mathbb{R}) \text{ telles que } 0 \leq \varphi \leq \chi \leq \psi \leq 1 \text{ sur } [0,1[,\text{ et}$

$$\int_0^1 (\chi - \varphi)(x) \, dx \le \varepsilon \quad \text{et} \quad \int_0^1 (\psi - \chi)(x) \, dx \le \varepsilon, \quad (\star)$$

en choisissant par exemple φ et ψ comme dans le dessin ci-dessous.

On a alors, pour $N \ge 1$, l'encadrement suivant :

$$0 \le \varphi(x) \le \chi(x) \le \psi(x) \le 1$$
 donc $\frac{1}{N} \sum_{n=1}^{N} \varphi(x_n) \le \frac{1}{N} \sum_{n=1}^{N} \chi(x_n) \le \frac{1}{N} \sum_{n=1}^{N} \psi(x_n)$

Par passage à la limite lorsque $N \to +\infty$, il vient

$$\int_0^1 \varphi(x) \, dx \leq \liminf_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{N} \sum_{n=1}^N \chi(x_n) \quad \text{et} \quad \limsup_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{N} \sum_{n=1}^N \chi(x_n) \leq \int_0^1 \psi(x) \, dx.$$

D'après (\star) , ceci implique donc :

$$\int_0^1 \chi(x) dx - \varepsilon \le \liminf_{n \to +\infty} \frac{1}{N} \sum_{n=1}^N \chi(x_n) \quad \text{et} \quad \limsup_{n \to +\infty} \frac{1}{N} \sum_{n=1}^N \chi(x_n) \le \int_0^1 \chi(x) \, dx + \varepsilon.$$

Ceci est vrai pour tout $\varepsilon > 0$, d'où :

$$\int_0^1 \chi(x) \, dx \le \liminf_{n \to +\infty} \frac{1}{N} \sum_{n=1}^N \chi(x_n) \le \limsup_{n \to +\infty} \frac{1}{N} \sum_{n=1}^N \chi(x_n) \le \int_0^1 \chi(x) \, dx.$$

Donc toutes les inégalités ci-dessus sont des égalités. On en déduit que la suite $\left(\frac{1}{N}\sum_{n=1}^{N}\chi(x_n)\right)_{N\geq 1}$ converge, et sa limite vaut bien $\int_0^1 \chi(x)\,dx = \int_0^1 \mathbf{1}_{[a,b[}(x)\,dx$ comme souhaité.

Exemple 4. On dit qu'une suite $(x_n)_{n\in\mathbb{N}^*}$ de réels est équirépartie modulo 1 lorsque la suite $(x_n-\lfloor x_n\rfloor)_{n\in\mathbb{N}^*}$ est équirépartie.

Le théorème de Weyl permet alors de montrer très facilement que pour $\gamma > 0$, la suite $(n\gamma)_{n \ge 1}$ est équirépartie si et seulement si γ est irrationnel.