

Gromov-Wasserstein distances

Second Approach:

GW: Generalizes OT to the non-registered case

Main idea: compare relations instead of absolute positions

$$GW(\mathbf{C}, \mathbf{C}', \mathbf{p}, \mathbf{q}) = \min_{\Gamma \in \Pi(\mathbf{a}, \mathbf{b})} \sum_{i,j,k,l} \mathcal{L}(\mathbf{C}_{ik}, \mathbf{C}'_{jl}) \Gamma_{ij} \Gamma_{kl}$$

= cost of transporting one unit of mass											
from	$\mathbf{x}^{(i)}$	to y	(j)	and	from	$\mathbf{x}^{(k)}$	to	$\mathbf{y}^{(l)}$			

 $\mathcal{L}(\mathbf{C}_{ik},\mathbf{C}'_{jl})$

.

-----**>**

·-----

