Do both approaches yield the same dynamics?

Substitution followed by Variation

•
$$L = L_t(-A_r(q_r)\dot{q}_r) + L_r(q_r, \dot{q}_r)$$

• $L = L_t(\dot{q}_t) + L_r(q_r, \dot{q}_r)$

 $\rightarrow \left(\frac{d}{dt}\frac{\partial L_r}{\partial \dot{q}_r} - \frac{\partial L_r}{\partial q_r}\right) = A_r(q_r)^T \frac{d}{dt}\frac{\partial L_t}{\dot{q}_t}$

 ∂L_r

 $-A_r(q_r)^I$

 $\partial (A_r(q_r)\dot{q}_r) \setminus {}^{1}$

Variation followed by Substitution

 $\rightarrow \left(\frac{d}{dt}\frac{\partial L_r}{\partial \dot{q}_r} - \frac{\partial L_r}{\partial q_r}\right) = A_r(q_r)^T \frac{d}{dt}\frac{\partial L_t}{\dot{q}_t}$

 $+ \left(\dot{A}_r - \frac{\partial \left(A_r(q_r)\dot{q}_r\right)}{\partial q_r}\right)^T \frac{\partial L_t}{\partial \dot{q}_t}$

 $d \partial L$

 $dt \partial \dot{q}_r \partial q_r$

 ∂L

=0

A. Lewis and R. Murray Variational Principles for Constrained Systems: Theory and Experiment S. Ray and J. Shamanna On Virtual Displacements and Virtual Work in Lagrangian Systems

Vakonomic Dynamics

Nonholonomic Dynamics

Both are mathematically valid approaches to impose constraints However, experimentally mechanical systems have been found to obey Nonholonomic Dynamics

 $\rightarrow \left(\frac{d}{dt}\frac{\partial L_r}{\partial \dot{q}_r} - \frac{\partial L_r}{\partial q_r}\right) = A_r (q_r)^T \frac{d}{dt} \frac{\partial L_t}{\dot{q}_t}$

 $+\left(\dot{A}_{r}-\frac{\partial\left(A_{r}(q_{r})\dot{q}_{r}\right)}{\partial q_{r}}\right)^{T}\frac{\partial L_{t}}{\partial \dot{q}_{t}}$

Do both approaches yield the same dynamics?

Substitution followed by Variation

Variation followed by Substitution

•
$$L = L_t(-A_r(q_r)\dot{q}_r) + L_r(q_r,\dot{q}_r)$$

•
$$L = L_t(\dot{q}_t) + L_r(q_r, \dot{q}_r)$$

$$\rightarrow \left(\frac{d}{dt}\frac{\partial L_r}{\partial \dot{q}_r} - \frac{\partial L_r}{\partial q_r}\right) = A_r(q_r)^T \frac{d}{dt}\frac{\partial L_t}{\dot{q}_t} \qquad \rightarrow \left(\frac{d}{dt}\frac{\partial L_r}{\partial \dot{q}_r} - \frac{\partial L_r}{\partial q_r}\right) = A_r(q_r)^T \frac{d}{dt}\frac{\partial L_t}{\dot{q}_t}$$

$$+ \left(\dot{A}_r - \frac{\partial \left(A_r(q_r)\dot{q}_r\right)}{\partial q_r}\right)^T \frac{\partial L_t}{\partial \dot{q}_t}$$
 Vakonomic Dynamics

Nonholonomic Dynamics

Both are mathematically valid approaches to impose constraints However, experimentally mechanical systems have been found to obey Nonholonomic Dynamics

Rolling disk

Both satisfy conservation of energy!

