Table 6. Carbon Intensity Lookup Table for Gasoline and Fuels that Substitute for Gasoline.

Fuel	Pathway Description	Carbon Intensity Values (gCO₂e/MJ)		
		Direct Emissions	Land Use or Other Indirect Effect	Total
Gasoline	CARBOB – based on the average crude oil delivered to California refineries and average California refinery efficiencies	95.86	0	95.86
	Midwest average; 80% Dry Mill; 20% Wet Mill; Dry DGS	69.40	30	99.40
	California average; 80% Midwest Average; 20% California; Dry Mill; Wet DGS; NG	65.66	30	95.66
	California; Dry Mill; Wet DGS; NG	50.70	30	80.70
	Midwest; Dry Mill; Dry DGS, NG	68.40	30	98.40
	Midwest; Wet Mill, 60% NG, 40% coal	75.10	30	105.10
Ethanol	Midwest; Wet Mill, 100% NG	64.52	30	94.52
from Corn	Midwest; Wet Mill, 100% coal	90.99	30	120.99
	Midwest; Dry Mill; Wet, DGS	60.10	30	90.10
	California; Dry Mill; Dry DGS, NG	58.90	30	88.90
	Midwest; Dry Mill; Dry DGS; 80% NG; 20% Biomass	63.60	30	93.60
	Midwest; Dry Mill; Wet DGS; 80% NG; 20% Biomass	56.80	30	86.80
	California; Dry Mill; Dry DGS; 80% NG; 20% Biomass	54.20	30	84.20
	California; Dry Mill; Wet DGS; 80% NG; 20% Biomass	47.44	30	77.44
	Brazilian sugarcane using average production processes	27.40	46	73.40
Ethanol from Sugarcane	Brazilian sugarcane with average production process, mechanized harvesting and electricity co-product credit	12.40	46	58.40
- Cagarcano	Brazilian sugarcane with average production process and electricity co-product credit	20.40	46	66.40
	California NG via pipeline; compressed in CA	67.70	0	67.70
Compressed Natural Gas	North American NG delivered via pipeline; compressed in CA	68.00	0	68.00
	Landfill gas (bio-methane) cleaned up to pipeline quality NG; compressed in CA	11.26	0	11.26
	Dairy Digester Biogas to CNG	13.45	0	13.45

Liquefied Natural Gas	North American NG delivered via pipeline; liquefied in CA using liquefaction with 80% efficiency	83.13	0	83.13
	North American NG delivered via pipeline; liquefied in CA using liquefaction with 90% efficiency	72.38	0	72.38
	Overseas-sourced LNG delivered as LNG to Baja; re-gasified then re-liquefied in CA using liquefaction with 80% efficiency	93.37	0	93.37
	Overseas-sourced LNG delivered as LNG to CA; re-gasified then re-liquefied in CA using liquefaction with 90% efficiency	82.62	0	82.62
	Overseas-sourced LNG delivered as LNG to CA; no re-gasification or re-liquefaction in CA	77.50	0	77.50
	Landfill Gas (bio-methane) to LNG liquefied in CA using liquefaction with 80% efficiency	26.31	0	26.31
	Landfill Gas (bio-methane) to LNG liquefied in CA using liquefaction with 90% efficiency	15.56	0	15.56
	Dairy Digester Biogas to LNG liquefied in CA using liquefaction with 80% efficiency	28.53	0	28.53
	Dairy Digester Biogas to LNG liquefied in CA using liquefaction with 90% efficiency	17.78	0	17.78
Electricity	California average electricity mix	124.10	0	124.10
	California marginal electricity mix of natural gas and renewable energy sources	104.71	0	104.71
Hydrogen	Compressed H ₂ from central reforming of NG (includes liquefaction and re-gasification steps)	142.20	0	142.20
	Liquid H ₂ from central reforming of NG	133.00	0	133.00
	Compressed H ₂ from central reforming of NG (no liquefaction and re-gasification steps)	98.80	0	98.80
	Compressed H ₂ from on-site reforming of NG	98.30	0	98.30
	Compressed H ₂ from on-site reforming with renewable feedstocks	76.10	0	76.10

Table 7. Carbon Intensity Lookup Table for Diesel and Fuels that Substitute for Diesel.

Fuel	Pathway Description	Carbon Intensity Values (gCO₂e/MJ)		
		Direct Emissions	Land Use or Other Indirect Effect	Total
Diesel	ULSD – based on the average crude oil delivered to California refineries and average California refinery efficiencies	94.71	0	94.71
Biodiesel	Conversion of waste oils (Used Cooking Oil) to biodiesel (fatty acid methyl esters -FAME) where "cooking" is required	15.84	0	15.84
	Conversion of waste oils (Used Cooking Oil) to biodiesel (fatty acid methyl esters -FAME) where "cooking" is not required	11.76	0	11.76
	Conversion of Midwest soybeans to biodiesel (fatty acid methyl esters –FAME)	<u>21.25</u>	<u>62</u>	<u>83.25</u>
	Conversion of tallow to renewable diesel using higher energy use for rendering	39.33	0	39.33
Renewable Diesel	Conversion of tallow to renewable diesel using lower energy use for rendering	19.65	0	19.65
	Conversion of Midwest soybeans to renewable diesel	<u>20.16</u>	<u>62</u>	<u>82.16</u>
	California NG via pipeline; compressed in CA	67.70	0	67.70
Compressed	North American NG delivered via pipeline; compressed in CA	68.00	0	68.00
Natural Gas	Landfill gas (bio-methane) cleaned up to pipeline quality NG; compressed in CA	11.26	0	11.26
	Dairy Digester Biogas to CNG	13.45	0	13.45
Liquefied Natural Gas	North American NG delivered via pipeline; liquefied in CA using liquefaction with 80% efficiency	83.13	0	83.13
	North American NG delivered via pipeline; liquefied in CA using liquefaction with 90% efficiency	72.38	0	72.38
	Overseas-sourced LNG delivered as LNG to Baja; re-gasified then re-liquefied in CA using liquefaction with 80% efficiency	93.37	0	93.37
	Overseas-sourced LNG delivered as LNG to CA; re-gasified then re-liquefied in CA using liquefaction with 90% efficiency	82.62	0	82.62
	Overseas-sourced LNG delivered as LNG to CA; no re-gasification or re-liquefaction in CA	77.50	0	77.50

	Landfill Gas (bio-methane) to LNG liquefied in CA using liquefaction with 80% efficiency	26.31	0	26.31
	Landfill Gas (bio-methane) to LNG liquefied in CA using liquefaction with 90% efficiency	15.56	0	15.56
	Dairy Digester Biogas to LNG liquefied in CA using liquefaction with 80% efficiency	28.53	0	28.53
	Dairy Digester Biogas to LNG liquefied in CA using liquefaction with 90% efficiency	17.78	0	17.78
	California average electricity mix	124.10	0	124.10
Electricity	California marginal electricity mix of natural gas and renewable energy sources	104.71	0	104. 71
Hydrogen	Compressed H ₂ from central reforming of NG (includes liquefaction and re-gasification steps)	142.20	0	142.20
	Liquid H ₂ from central reforming of NG	133.00	0	133.00
	Compressed H ₂ from central reforming of NG (no liquefaction and re-gasification steps)	98.80	0	98.80
	Compressed H₂ from on-site reforming of NG	98.30	0	98.30
	Compressed H ₂ from on-site reforming with renewable feedstocks	76.10	0	76.10

* * * * *

NOTE: Authority cited: Sections 38510, 38560, 38560.5, 38571, 38580, 39600, 39601, 41510, 41511, Health and Safety Code; and *Western Oil and Gas Ass'n v. Orange County Air Pollution Control District*, 14 Cal.3rd 411, 121 Cal.Rptr. 249 (1975). Reference cited: Sections 38501, 38510, 38560, 38560.5, 38571, 38580, 39000, 39001, 39002, 39003, 39515, 39516, 41510, 41511, Health and Safety Code; and *Western Oil and Gas Ass'n v. Orange County Air Pollution Control District*, 14 Cal.3rd 411, 121 Cal.Rptr. 249 (1975).

* * * * *