ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ»

МИКРОПРОЦЕССОРЫ И МИКРО-ЭВМ Часть 1

Методические указания к лабораторным работам Составители: доц. Н.Г. Крикун

доц. Р.Н. Гайнуллин

доц. М.Ю. Валеев

Микропроцессоры и микро-ЭВМ. Часть1: Методические указания / Казан. гос. технол. ун-т; Сост.: Н.Г. Крикун, Р.Н. Гайнуллин, Валеев М.Ю. Казань, 2007, 31с.

Методические указания знакомят студентов с работой микропроцессорного учебно-отладочного устройства "Электроника-580" и пульта управления.

Предназначены для выполнения лабораторных работ студентами специальностей 220301 — "Автоматизация технологических процессов и производств", 230102 — "Автоматизированные системы обработки информации и управления", 140604 — "Электропривод и автоматика промышленных установок и технологических комплексов", изучающих дисциплины "Микропроцессорные средства", "Организация ЭВМ и систем", «Микропроцессоры и микро-ЭВМ» и «Микропроцессорные средства в электроприводе и технологических комплексах».

Подготовлены на кафедре "Автоматизированных систем сбора и обработки информации".

Печатается по решению методической комиссии специальностей механического профиля и электротехнического профиля.

Рецензенты: д.ф.-м.н., проф. каф. «Радиофизики и электроники» КГУ В.В. Сидоров д.х.н., проф. каф. «Неорганической химии» КГТУ Р.Р. Назмутдинов

1. НАЗНАЧЕНИЕ И СТРУКТУРА УЧЕБНО-ОТЛАДОЧНОГО УСТРОЙСТВА

"Электроника-580"

В устройстве "Электроника-580" учебно-отладочном (9580)применен Функции восьмиразрядный микропроцессор К580ИК80А. памяти выполняет оперативное запоминающее устройство (ОЗУ) емкостью 2 Кбайт с адресным полем 8000_{16} -87FF₁₆ (индекс 16 указывает на шестнадцатеричную систему счисления). Упрощенная структурная схема Э580 представлена на рис. 1, а расширенная структурная схема - в Приложении 1.

Для осуществления диалога пользователя с 3580 предусмотрен пульт управления с клавиатурой и индикатором, функционирование которых поддерживается программой "монитор", записанной в постоянное запоминающее устройство (ПЗУ) емкостью 1 килобайт с адресным полем $0000_{16} \div 03FF_{16}$.

На рис. 2 представлено изображение полей памяти 3580. Поля с адресами $03F0_{16} \div 03FF_{16}$ становятся доступными только после расширения $\Pi 3 \text{У}$ дополнительными модулями памяти. Поле с адресами в диапазоне $83E0_{16} \div 83FF_{16}$ - это служебная область, используемая программой "монитор" 3580.

Как видно из структурной схемы (см. рис. 1), в составе Э580 имеются средства, обеспечивающие ввод и вывод содержимого ОЗУ во внешнюю память (кассетный бытовой магнитофон). Эта возможность обеспечивается модемом (модуляторомдемодулятором). Кроме того, через разъем к Э580 могут быть подключены различные периферийные устройства. В Приложении 2 представлен перечень сигналов и соответствующих контактов разъема.

Конструкция Э580 позволяет наращивать емкость ПЗУ до 4 Кбайт и емкость ОЗУ до 2 Кбайт путем установки необходимых БИС в панельки на плате ЗУ Э580.

Модернизированный вариант Э580 предполагает включение в установку программатора, что позволит осуществить запись программ в микросхемы памяти разрабатываемых MC.

Как отмечалось ранее, устройство предназначено для изучения и отладки программ МП К580.

На рис. 3 представлена структурная схема МП К580ИК80A, на рис. 4 изображена его архитектура с точки зрения программиста.

2. ПУЛЬТ УПРАВЛЕНИЯ Э580

На пульте управления Э580 (рис. 5) расположены:

- 1. Клавиатура, включающая 9 командных клавиш и 16 клавиш данных;
- 2. Индикатор адреса и данных, содержащий восемь разрядов (нумерация разрядов слева направо);
 - 3. Индикаторы состояния признаков (флажков) переноса (С) и нуля (Z);
- 4. Тумблеры включения выключения ("вкл-выкл"), установки задания режима работы ("прогон-отладка") Э580;
 - 5. Индикаторы работы с магнитофоном (ввод и вывод).

На левой боковой стенке корпуса Э580 находится гнездо для подключения магнитофона, на задней стенке - разъем для подключения других внешних устройств.

КЛАВИАТУРА ПУЛЬТА УПРАВЛЕНИЯ

Клавиатура пульта управления Э580 включает 25 клавиш (см. рис. 5). Верхний и правый ряды содержат командные клавиши. Их нажатие инициирует выполнение соответствующих действий Э580. Остальные 16 клавиш служат для ввода в Э580 шестнадцатеричных цифр (от 0 до F).

Назначение командных клавиш приведено в табл. 1.

Особенности использования клавиш в различных режимах работы Э580 отражены в разд. 3÷5. Клавиши данных используются также для задания имен регистров и регистровых пар МП К580ИК80А:

- клавиши **A**, **B**, **C**, **D**, **E**, **8/H**, **9/L**, **F** для обозначения регистра-аккумулятора A, регистров общего назначения (РОН) В÷L, регистра признаков F;
 - клавиша **1/Р** для содержимого указателя стека (SP);
 - клавиша 2/T для содержимого вершины стека (SR);

Старшие разряды вершины стека хранятся по адресу SP+1, младшие разряды - по адресу SP.

Рис. 2 Поля памяти Э580

Рис.3 Структурная схема МП К580ИК80;

А - аккумулятор (8 разрядов); **РА** - регистр адреса (16);

БР1, БР2, W, Z - буферные регистры (8); **РК** - регистр команд (8);

F-регистр признаков (флагов); **СВР** - схема выбора регистра;

СИД - схема инкремента/декремента; **УС (SP)** - указатель стека (16);

АЛУ - арифметико-логическое устройство;

СДК - схема десятичной коррекции;

В, С, D, E, H, L - регистры общего назначения (РОН) (8);

СК - счетчик команд (16) (PC);

УУ - устройство управления;

ДШК и СУМЦ - дешифратор команд и схема управления машинным циклом.

Внутренние регистры

Рис.4 Программно-доступные регистры и память МП К580ИК80

Примечание: **М** — условный регистр, обеспечивающий косвенную адресацию через HL. Содержимое регистров A и F образует пару ССП. Регистр признаков **F** содержит признаки: 1) **S** - знак (седьмой разряд A);

2) С - перенос;

- **4) Р** четность результата;
- 3) С' вспомогательный перенос;
- **5) Z** нуль результата;

T

P

Рис. 5 Лицевая панель (пульт управления) отладочного устройства Э580:

NEXT

1 - индикатор адреса и данных, разряды 1÷8;

0

- 2 клавиатура;
- 3 индикаторы состояния флажков переноса (С) и нуля (Z);
- 4 тумблер режима работы Э580 и тумблер включения-выключения;
- 5 индикатор работы с магнитофоном.

Таблица 1

Название клавиши	Обозначение клавиши	Назначение клавиш	
Сброс	RST	Формирование сигнала сброса Э580	
Адрес	ADDR	Перевод Э580 в режим задания адреса ячейки памяти	
Память	MEM	Перевод Э580 в режим записи данных в ячейку памяти	
Следующий	NEXT	Увеличение на единицу адреса индицируемой ячейки памяти или регистра МП	
Восстановление	CLR	Восстановление начального значения адреса или данных, если после их ввода не нажимались другие командные клавиши	
Регистр	REG	Отображение содержимого восьмиразрядного регистра МП	
Шаг	STEP	Выполнение очередной команды МП в пошаговом режиме	
Прогон	RUN	Запуск на выполнение программы в автоматическом режиме	
Контрольная точка	BRK	Задание адреса контрольной точки в программе	

Индикатор адреса и данных

Индикатор адреса и данных состоит из восьми разрядов. Каждый разряд является семи сегментной ячейкой на светодиодах. Для отображения алфавитно-цифровой информации (цифр $0\div 9$, букв $A\div F$, R) недостаточно семи сегментов, поэтому для букв B, D, R, используют стилизованные обозначения:

При отображении ячейки памяти в разрядах $1\div 4$ индикатора в шестнадцатеричной системе счисления высвечивается адрес, в разрядах $7\div 8$ -данные, хранящиеся по этому адресу. В других случаях в адресных разрядах $(1\div 4)$ отображается, например, содержимое счетчика команд, а в разрядах данных $(7\div 8)$ - очередная команда, либо содержимое микропроцессора. В последнем случае в пятом разряде индикатора появляется наименование регистра. Например, при чтении содержимого ячейки памяти с адресом $817A_{16}$, если там хранится значение $F3_{16}$, мы увидим на индикаторе:

При чтении содержимого регистра A, если там хранится значение 13_{16} :

3. ДЕЙСТВИЯ НА ПУЛЬТЕ Э580 ПРИ ВВОДЕ ПРОГРАММЫ В ПАМЯТЬ

Монитор, записанный в ПЗУ, позволяет, пользователю загрузить в ОЗУ Э580 программу и выполнить ее в режиме отладки (в пошаговом режиме или с остановом по заданным значениям - контрольным точкам) либо осуществить непрерывное выполнение программы (режим прогона). Режимы работы Э580 приведены в Приложении 5.

Включение Э580.

- 1. Перевести тумблер "вкл-выкл" Э580 в положение "вкл", при этом на индикаторе появится значение 8200 **??.
 - 2. Установить тумблер режимов в положение "отладка".
- 3. Нажать клавишу RST, формирующую сигнал сброса. При этом на счетчике команд МП и в разрядах 1-4 индикатора устанавливается значение 8200_{16} .

Чтение содержимого ячеек памяти.

1. Для чтения содержимого ячейки памяти с адресом **NNNN** следует нажать клавиши:

ADDR NNNN

После этого в разрядах 1÷4 индикатора отобразится заданный адрес ячейки памяти, а в разрядах 7÷8 - ее содержимое.

<u>Пример 1.</u> Прочитать содержимое ячейки памяти с адресом 82FF₁₆. Последовательность действий представлена в табл.2.

Примечание.

- 1. Здесь и далее знаком * обозначается пробел. Знаком ? обозначается какая-то ранее записанная в ОЗУ или случайная информация. Буквой **N** обозначается код, соответствующий нажатой шестнадцатеричной клавише данных.
 - 2. Подчеркнуты названия нажимаемых клавиш.

Таблица 2 Порядок чтения содержимого ячейки памяти

Клавиши	Информация на индикаторе		Примечание
	1234	5678	
ADDR	8 2 0 0	* * ? ?	Исходное состояние
<u>8</u>	0008	* * * *	Установка
2	0082	* * * *	заданного
<u>F</u>	082F	* * * *	адреса 82FF
<u>F</u>	8 2 F F	**??	

2. Нажатие на клавишу **NEXT** выведет на индикатор информацию об адресе и значении следующей ячейки памяти. Повторное нажатие на клавишу **MEM** выведет на индикатор информацию из предыдущей ячейки памяти (табл.3).

Таблица 3 Порядок обращения к следующим и предыдущим ячейкам памяти

Клавиши	Информация на индикаторе		Примечание
	1234	5678	
<u>ADDR</u>	8 2 0 0	* * ? ?	Исходное состояние

Таблица 3 (продолжение)

8	0008	* * * *	Установка
<u>2</u>	0082	* * * *	заданного
<u>0</u>	0820	* * * *	адреса 82FF
0	8 2 00	* * ? ?	
<u>NEXT</u>	8 2 0 1	**??	Переход к следующей ячейке
<u>MEM</u>	8 2 0 0	* *,? ?	Обращение к предыдущей ячейке

Чтение содержимого регистров МП.

1. Для чтения содержимого одного из регистров ${\bf X}$ надо нажать следующие клавиши:

$\underline{\mathbf{REG}}$ $\underline{\mathbf{X}}$

где \underline{X} - клавиша данных с наименованием соответствующего регистра (A, B, C, D, E, H, L, F).

После нажатия клавиш в разряде 5 индикатора отобразится имя регистра, в разрядах 7÷8 - его содержимое.

Пример 2.

Прочитать содержимое регистра А (табл. 4).

Таблица 4 **Порядок обращения к содержимому регистра-аккумулятора (A)**

Клавиши	Информация на индикаторе		Примечание
	1234	5678	
<u>REG</u>	8200	* * * *	Исходное состояние
<u>A</u>	8 2 0 0	A - ? ?	Содержимое регистра А в разрядах
			7÷8

2. Нажатие на клавишу <u>NEXT</u> выведет на индикатор содержимое следующего регистра МП в последовательности A, B, C, D, E, F, H, L и т.д. (табл. 5).

Таблица 5 Порядок обращения к содержимому регистров общего назначения

Клавиши	Информация на индикаторе		Примечание
	1234	5678	
<u>REG</u> A	8200	A - ? ?	Исходное состояние
<u>NEXT</u>	8 2 0 0	B - ? ?	Индикация регистра В
<u>NEXT</u>	8 2 0 0	C - ? ?	Индикация регистра С

3. Для отображения на индикаторе информации, хранящейся в регистровых парах RP микропроцессора, надо нажать следующие клавиши:

ADDR RP MEM

где RP - обозначение одной из клавиш, приведенных в таблице 6.

Таблица 6 Порядок обращения к содержимому специальных регистров

Клавиша	Регистровая пара (RP)
<u>1/P</u>	Указатель стека
<u>8/H</u>	H L
<u>B</u>	ВС
<u>D</u>	DE
<u>2/T</u>	Вершина стека

После нажатия клавиши в разрядах $5 \div 6$ индикатора отобразится имя регистровой пары, в разрядах $1 \div 4$ – ее содержимое.

<u>Пример 3.</u> Прочитать содержимое регистровой пары HL и указателя стека (табл. 7).

Таблица 7

Таблица 8

TC.	Информация на индикаторе		П
Клавиши	1234	5678	Примечание
<u>ADDR</u>	8 2 0 0	**??	Исходное состояние
<u>8/H</u>	0008	* * * *	Соответствующая клавиша рег. пары
<u>MEM</u>	8 2 2 0	H L? ?	Содержимое HL в разрядах 1÷4
<u>RST</u>	8200	* * ? ?	
<u>ADDR</u>	8200	**??	Исходное состояние
<u>1/P</u>	0001	* * * *	
<u>MEM</u>	8 2 0 0	S P ? ?	Содержимое указателя стека в
			разрядах 1÷4.

Запись программы в память Э580.

1. Для установки адреса нужной ячейки памяти NNNN необходимо нажать следующие клавиши:

ADDR NNNN MEM

После этого на индикаторе в разрядах 1÷4 отобразится адрес ячейки памяти, в разрядах 7÷8 - ее содержимое и запятая в шестом разряде индикатора, означающая доступ для записи информации в данную ячейку памяти.

2. Для ввода данных в эту ячейку памяти следует соответственно нажать одну или две шестнадцатеричные клавиши данных.

Пример 4. Записать число $1A_{16}$ в ячейку памяти с адресом 8210_{16} (табл.8)

Запись числа 1A₁₆ в ячейку памяти с адресом 8210₁₆

Клавиши	Информация	на индикаторе	Примечание
	1234	5678	
<u>ADDR</u>	8200	**??	Исходное состояние
<u>8210</u>	8210	**??	Установка адреса
<u>MEM</u>	8210	* ,??	8210

Таблица 8 (продолжение)

<u>1</u>	8210	*,01	Запись числа 1А
<u>A</u>	8210	* , 1 A	

3. Для перехода к адресу следующей (+1) ячейки памяти нажать клавишу **NEXT** (табл. 9).

Таблица 9 Обращение к следующей, от исходной, ячейке памяти

Клавиши	Информация на индикаторе		Примечание
	1234	5678	
	8210	* , 1 A	Исходный адрес
<u>NEXT</u>	8 2 1 1	*,??	Следующий адрес
<u>NEXT</u>	8 2 1 2	*,??	Следующий адрес

4. Для перехода к адресу предыдущей ячейки (-1) памяти повторно нажать клавишу **МЕМ** (табл. 10).

Таблица 10 Обращение к предыдущей, от исходной, ячейке памяти

Клавиши	Информация на индикаторе		Примечание
	1234	5678	
	8210	**??	Исходный адрес
<u>MEM</u>	8210	*,??	Исходный адрес
<u>MEM</u>	8 2 0 F	*,??	Предыдущий адрес

Запись информации в регистры МП К580ИК80

1. Для выбора нужного регистра микропроцессора необходимо нажать следующие клавиши:

REG X,

где X - клавиша с наименованием регистра.

После нажатия клавиши в разряде 5 индикатора отобразится имя регистра, в разрядах 7-8 - его содержимое.

2. Для ввода данных в регистр нажать одну или две шестнадцатеричные клавиши данных.

Пример 5. В регистр С записать код A1₁₆ (161₁₀) (табл. 11)

Таблица 11 **Запись числа А1₁₆ в регистр С**

<u>Клавиши</u>	Информация на индикаторе		Примечание
	1 2 3 4	5678	
REG	8 2 0 0	* * * *	Исходное состояние
<u>C</u>	8 2 0 0	C - ? ?	Установка регистра С
<u>A</u>	8 2 0 0	C - 0 A	Запись кода А1
<u>1</u>	8 2 0 0	C - A 1	

Ввод контрольных точек

Программа «монитор» Э580 предоставляет возможность выполнения программы пользователя с введением контрольных точек, т.е. адресов, на которых необходимо прервать выполнение программы для проверки промежуточных результатов.

Если введены контрольные точки, то при выполнении программы в режиме с остановом по контрольным точкам проверяются следующие условия:

- а) изменилось ли содержимое ячейки памяти, адресуемое любой контрольной точкой;
 - б) соответствует ли содержимое счетчика команд какой-либо контрольной точке.

Если ни одно из этих условий не выполняется, то продолжается выполнение программы, иначе «монитор» уменьшает на единицу содержимое числа проходов данной контрольной точки; если равно нулю, то происходит останов в контрольной точке.

<u>Примечание.</u> Наибольшее число проходов контрольной точки до останова равно ${\rm FF}_{16} = 256_{10}$.

1. Ввод контрольной точки по адресу **NNNN** с числом проходов **NN** осуществляется нажатием следующих клавиш:

ADDR NNNN BRK NN

После этого в разрядах 5-6 индикатора отображается символ контрольной точки, в разрядах 1-4 - ее адрес, в разрядах 7-8 - число проходов.

<u>Пример 6.</u> Ввести контрольную точку по адресу 8220_{16} с числом проходов 5 (табл. 12).

Таблица 12 **Порядок ввода контрольных точек**

Клавиши	Информация	на индикаторе	Примечание
	1 2 3 4	5678	
<u>ADDR</u>	8 2 0 0	**??	
8220	8220	* * ? ?	Ввод контрольной точки по адресу
<u>BRK</u>	8220	B P, * *	8220.
<u>5</u>	8 2 2 0	B P, 0 5	

При запуске программы клавишей RUN во время пятого прохода адреса 8220_{16} произойдет останов и на индикаторе появится:

<u>Примечание.</u> Перед запуском программы необходимо сначала её загрузить в ОЗУ.

2. Нажатие на клавишу BRK выведет на индикатор информацию об этой контрольной точке (число проходов уменьшилось до нуля):

- 3. Число проходов можно оставить нулевым, либо ввести новое значение, например, 10_{16} (табл.13).
- 4. Клавиша <u>CLR</u> исключает данную контрольную точку (см. табл. 13). Пробелы означают, что контрольных точек больше нет. Если они есть, будет показан адрес следующей контрольной точки.
- 5. Последовательным нажатием на клавишу <u>NEXT</u> можно просмотреть все контрольные точки. Появление на индикаторе информации о контрольной точке позволяет ее изменить или исключить.

6. Нажатие на клавишу <u>RST</u> исключает все контрольные точки.

Таблица 13 **Порядок изменения числа контрольных точек**

Клавиши	1 1	на индикаторе	Примечание
	1234	5 6 7 8	-
	8 2 2 0	B P, 0 0	Исходное состояние
<u>10</u>	8 2 2 0	BP, 10	Установка нового числа проходов
			10 ₁₆
CLR	8 2 3 0	B P, 0 1	Исключение контрольной точки по
			адресу 8220, индикация следующей
			контрольной точки
CLR	* * * *	B P, * *	Исключение контрольной точки по
			адресу 8230; других контрольных
			точек нет

Имеется возможность прекратить выполнение программы не только по адресу заданной команды, но и после выполнения заданного их количества. Для этого необходимо в ячейку памяти с адресом $83E6_{16}$ записать число команд NN, которое надо выполнить, которое надо выполнить, нажимая следующие клавиши:

ADDR 83E6 BRK NN

Исправление ошибок

- 1. Ввод данных в память Э580 разрешен только в том случае, если в разряде 6 индикатора высвечивается запятая (после нажатия клавиши <u>MEM</u>). Если она не светится, данные вводиться не будут.
- 2. Если при вводе данных допущена ошибка, ее можно исправить нажатием клавиши <u>CLR</u>, которая восстанавливает первоначальное содержимое ячейки памяти (при условии, что другие командные клавиши после цифровых не нажимались).
 - 3. При неверных действиях на индикаторе появится код ошибки:

который высвечивается в следующих случаях:

- а) при попытке записи в несуществующую ячейку ОЗУ или в ПЗУ (см. рис.3), а также, если была блокирована возможность ввода данных в память (не нажата клавиша **MEM**);
 - б) при попытке установить несуществующее наименование регистра;
- в) при попытке установить на место **RP** символа, отличного от символов регистровых пар **B**, **D**, **H**, 1/**P**, 2/**T** для операции ADDR RP MEM;
- г) при операции <u>ADDR RP BRK,</u> если на месте <u>RP</u> не символ регистровой пары (как в предыдущем случае) или не нуль;
- д) при попытке ввести данные в счетчики проходов несуществующей контрольной точки;
- е) если перед нажатием цифровой клавиши, не была нажата одна из клавиш: **ADDR**, **MEM**, **REG**, **BRK**;
- ж) при попытке запустить программу на выполнение клавишами <u>STEP</u> или <u>RUN</u>, если введено меньше четырех цифр адреса (после клавиш <u>ADDR</u>).

Если появится символ **Err**, нажатием клавиши <u>CLR</u> или <u>ADDR</u> можно восстановить предыдущее состояние счетчика команд и саму команду. Нажатием клавиши <u>MEM</u> восстанавливается предыдущее значение ячейки памяти и ее адрес.

При нажатии клавиши **RST** происходит сброс системы к ячейке с адресом 8200.

4. ВЫПОЛНЕНИЕ ПРОГРАММЫ В ПОШАГОВОМ РЕЖИМЕ

При выполнении программы в пошаговом режиме происходит останов после выполнения каждой команды.

Для выполнения программы в пошаговом режиме (**STEP**) необходимо:

- 1) установить тумблер режима в положение "отладка"
- 2) задать начальный адрес программы N N N N, нажав клавиши ADDR N N N.
- 3) нажать клавишу **STEP** (после выполнения очередной команды произойдет останов, на индикаторе отобразится новое значение счетчика команд в разрядах 1÷4 и содержимое ячейки памяти по этому адресу в разрядах 7÷8).
 - 4) повторить **п.3** для всех команд программы;
- 5) после выполнения последней команды программы следует просмотреть содержимое регистров или ячеек памяти, в которых хранится результат.

<u>Примечание</u>. На передней панели Э580 приведена таблица, в которой представлена система команд микропроцессора МП К580ИК80А. Для определения машинного кода команды необходимо:

- 1. Найти в таблице мнемокод требуемой команды.
- 2. Определить номер столбца у выбранной команды.
- 3. Определить номер строки у выбранной команды.
- 4. Определить машинный код команды, в котором первой цифрой будет номер столбца, а второй цифрой номер строки.

<u>Пример 7.</u> Определить машинный код команды **SUB C**.

По таблице находим мнемокод команды **SUB C**. Он расположен на пересечении 9 столбца и 1 строки. Следовательно, машинный код команды - 91.

Пример 8. Программа сложения двух чисел **57** и **B5** приведена в табл. 16.

Таблица 14 **Программа сложения двух чисе**л

Адрес	Код	Мнемоника	Примечание
8200	3E	MVI A	Запись в регистр-аккумулятор А числа 57
8201	57	57	
8202	06	MVI B	Запись в регистр В числа В5
8203	B5	B5	
8204	80	ADD B	Сложение чисел 57 ₁₆ (A) и В5 ₁₆ (B)
8205	00	NOP	

Сначала необходимо записать программу в память Э580 (табл.15):

Таблица 15 **Порядок записи в память программы сложения двух чисел 57 и В5**

Клавиши	Информация на индикаторе		Примечание
	1234	5678	
<u>ADDR</u>	8 2 0 0	* * ? ?	Установка адреса 8200
<u>8200</u>			
<u>MEM</u>	8200	*,??	Начало записи программы в память с
			адреса 820016
<u>3</u>	8 2 0 0	*,03	Запись кода ЗЕ
<u>E</u>	8 2 0 0	*,3E	
<u>NEXT</u>	8 2 0 1	*,??	
<u>5</u>	8 2 0 1	*,05	Запись кода 57
7	8 2 0 1	*,57	
<u>NEXT</u>	8 2 0 2	*,??	
<u>0</u>	8 2 0 2	*,00	Запись кода 06
<u>6</u>	8 2 0 2	*,06	
<u>NEXT</u>	8 2 0 3	*,??	
<u>B</u>	8 2 0 3	*,0B	Запись кода В5
<u>5</u>	8 2 0 3	* , B 5	
NEXT	8 2 0 4	*,??	
8	8 2 0 4	*,08	Запись кода 80
0	8 2 0 4	*,80	
<u>NEXT</u>	8 2 0 5	*,??	
<u>0</u>	8 2 0 5	*,00	Запись кода 00

После того, как программа введена в память, можно начать ее выполнение, например, в пошаговом режиме (табл. 16):

Таблица 16

	Информация на индикаторе	
Клавиши	1234 5678	Примечание
<u>ADDR</u>	8 2 0 0 ** 3 E	Установка начального адреса
<u>8200</u>		программы
<u>STEP</u>	8 2 0 2 ** 0 6	Последовательное выполнение
<u>STEP</u>	8 2 0 4 ** 8 0	команд до адреса 8205 ₁₆ , где
STEP	8 2 0 5 ** 0 0	заканчивается программа
REG A	8 2 0 6 A - 0 C	Просмотр значения регистра А в разрядах 7-8 индикатора
		в разрядах 7-о индикатора

Результат сложения чисел $\mathbf{57}_{16}$ и $\mathbf{B5}_{16}$ равен $\mathbf{10C}_{16}$, следовательно, кроме значения $\mathbf{0C}_{16}$ в аккумуляторе, будет включен индикатор признака переноса на передней панели $\mathbf{9580}$.

При выполнении программы, записанной в память с адреса 8200_{16} , в пошаговом режиме, можно наблюдать за изменениями содержимого какого-либо регистра МП. Например, в рассмотренной ранее программе сложения двух чисел, результат формируется в аккумуляторе (регистр A).

Для запуска программы сложения надо задать начальный адрес:

- ADDR 8200;
- указать регистр А: **REG A**;
 - выполнить программу в режиме <u>STEP</u> с индикацией содержимого **A** (табл. 17).

Таблица 17 Порядок выполнения программы сложения с индикацией содержимого аккумулятора

	Информация	на индикаторе	
Клавиши	1234	5678	Примечание
<u>RST</u>	8 2 0 0	* * 3 E	
REG	8200	* * * *	После ввода начального адреса
<u>A</u>	8 2 0 0	A - ? ?	программы 8200 задаем режим чтения
<u>STEP</u>	8202	A - 5 7	регистра А и следим за его значением
<u>STEP</u>	8 2 0 4	A - 5 7	при выполнении программы
<u>STEP</u>	8 2 0 5	A - 0 C	

5. ВЫПОЛНЕНИЕ ПРОГРАММЫ В РЕЖИМЕ С ОСТАНОВОМ ПО КОНТРОЛЬНЫМ ТОЧКАМ

В отличие от пошагового режима, когда производится останов после выполнения каждой команды программы, режим выполнения программы с остановом по контрольным точкам позволяет останавливаться только при достижении заданного адреса.

Для выполнения программы в режиме с остановом по заданным условиям (контрольным точкам) необходимо:

- 1) установить тумблер режима в положение "отладка";
- 2) ввести контрольные точки последовательность адресов, в которых вы хотите останавливаться (см. раздел .3);
 - 3) задать начальный адрес программы NNNN, нажав клавиши ADDR NNNN;
 - 4) запустить программу на выполнение.

После выполнения части программы на индикаторе отобразится адрес контрольной точки, на которой произошел останов.

В этом режиме программа автоматически прерывается монитором после выполнения каждой команды для контроля точек останова. Клавиатура и индикатор будут блокированы до момента, пока текущий адрес программы не сравняется с адресом контрольной точки и число проходов данной контрольной точки не будет равно нулю.

После этого будет вызвана программа-монитор и на индикаторе появится значение счетчика команд, соответствующее контрольной точке, и содержимое памяти по этому адресу.

Пример 9. Выполнить программу примера 8 в режиме с остановом по контрольным точкам. Допустим, нам необходимо ввести контрольную точку по команде программы, имеющей адрес 8205₁₆ (табл.18)

Таблица 18 Порядок выполнения программы сложения с остановом по контрольным точкам

	Информация н	а индикаторе	
Клавиши	1234	5678	Примечание
<u>ADDR</u>	8 2 0 0	* * 3 E	Ввод контрольной точки по адресу
			8205
<u>8205</u>	8 2 0 5	* * 0 0	
<u>BRK</u>	8 2 0 5	B P. * *	
<u>0</u>	8 2 0 5	B P. 0 0	
ADDR 8200	8 2 0 0	* * 3 E	Установка начального адреса
			программы
<u>RUN</u>	8 2 0 5	0 0	Выполнение программы
<u>BRK</u>	8 2 0 5	B P. 0 0	Просмотр контрольной точки: число
			проходов равно 0
REG A	8 2 0 5	A - 0 C	Проверка результата в регистре А

6. ВЫПОЛНЕНИЕ ПРОГРАММЫ В НЕПРЕРЫВНОМ РЕЖИМЕ

В этом режиме Э580 работает без подключения монитора. Для того, чтобы после выполнения программы произошло прерывание и обращение к монитору, который включает индикатор, необходимо в качестве команды останова использовать не **HLT**, а команду **RST 32** (ее код $E7_{16}$). Иначе, например, при останове по команде **HLT** (76_{16}) монитор не будет вызван, и мы не сможем вывести на индикатор интересующую нас информацию.

Для выполнения программы в непрерывном режиме необходимо:

1) установить тумблер режима в положение "прогон";

- 2) задать начальный адрес программы;
- 3) запустить программу клавишей **RUN**.

После выполнения программы на индикаторе отобразятся значение адреса команды, на которой произошел останов, и данные по этому адресу.

Пример 10. Выполнить программу примера 9 в непрерывном режиме. Для этого последней командой программы записываем команду **RST 32** (Е7₁₆) (табл.19):

Таблица 19

Клавиши	Информация на индикаторе		Пруглачания
Клавиши	1234	5678	Примечание
ADDR	8205	* * 0 0	
8205			Запись в ячейку 8205
<u>MEM</u>	8 2 0 5	*,00	кода Е7 ₁₆
<u>E7</u>	8 2 0 5	*,E7	
<u>ADDR</u>	8200	* * 3 E	Установка начального адреса
<u>8200</u>			программы 8200
RUN	8 2 0 5	* * ? ?	Выполнение программы
REG A	8206	A - 0 C	Просмотр значения регистра A в разрядах 7-8 индикатора

- 27 -

Приложение 2

Спецификация внешних разъемов Э580 Разъем XI

Таблица 20

Контакт	Сигнал	Пояснение
A1÷A15	A1÷A15	Шина адреса
A16	RESET	Сброс МП
A17	ВК ОЗУ1(8000 ₁₆ ÷ 83 ₁₆)	
A18	ВК ОЗУЗ(8800 ₁₆ ÷ 88 ₁₆)	Сигналы выборки
A19	ВК ОЗУ2(8400 ₁₆ ÷ 87 ₁₆)	блоков ОЗУ
A20	BK O3Y4(8COO ₁₆ ÷8 ₁₆)	
A21	Корпус	
A22	+5B	Питание +5B
Б1	A0	Шина адреса
Б2	MEM W	Запись в память
Б3	MEM R	Чтение из памяти
Б4 ÷Б11	DO÷D7	Шина данных
Б12	I/O	Запись во внешние устройства
Б13	I/OR	Чтение из внешних устройств
Б15	ВК ПЗУ1(0000 ₁₆ - 03 ₁₆)	
Б16	ВК ПЗУ2(0800 ₁₆ - 0В ₁₆)	Сигналы выборки
Б17	ВК ПЗУЗ(0400 ₁₆ - 07 ₁₆)	блоков ПЗУ
Б18	ВК ПЗУ4(ОСОО ₁₆ - 0 ₁₆)	
Б19	-5B	Сигналы питания
Б20	+12B	
Б21	Корпус	
Б22	Корпус	
Б23	+5B	

Спецификация внешних разъемов Э580 Разъем X2

Таблица 21

АН	DBIN	
A12	DMAEN	Сигналы МП
A9	HOLD	
A10	HLDA	
Б1	ВК предв. 1(2-2-16)	
Б2	ВК предв. 2(3-3-16)	Выборка
Б3	ВК предв. 3(А-А-16)	ИФ
Б4	ВК предв. 4(В-В-16)	
Б5	INT (внешний)	Сигнал в МП
Б6	PCI	
Б7	ВК И/Ф	Выборка внешнего устройства
Б8	Ф2ТТЛ	Сигнал синхронизации МП
Б10	КН	

Библиографический список

- 1. Нарышкин А.К. Цифровые устройства и микропроцессоры. М.: Academia, 2006.
- 2. Пухальский Г.Х. Проектирование микропроцессорных систем. Учебное пособие для вузов. СПб: Политехника, 2001, 544 с.
- 3. Костров Б.В. Ручкин В.Н. Микропроцессорные системы и микроконтроллеры: Учебное пособие для вузов. М: ТЕХБУК, 2007.
- 4. Микропроцессоры. / Под ред. Л.Н. Преснухина. М.: Высш. школа, 1986. Т. 1. 347 с.
- 5. Микропроцессоры: Справочное пособие / Под ред. Ю.А. Овечкина. М.: Судостроение, 1987. 519 с.

МИКРОПРОЦЕССОРЫ И МИКРО-ЭВМ Часть 1

Составители: Н.Г. Крикун Р.Н. Гайнуллин М.Ю. Валеев

Редактор В.С. Дука Корректор Ю.Е. Стрыхарь

Лицензия № 020404 от 6.03.97 г.

 Подписано в печать
 . 2007.
 Формат 60х84 1/16.

 Бумага писчая.
 Печать офсетная.
 усл. печ. л.

 уч.-изд. л.
 Тираж экз.
 Заказ . «С»

Издательство Казанского государственного технологического университета

Офсетная лаборатория Казанского государственного технологического университета

420015, Казань, К. Маркса, 68.