

Systèmes robotisés intelligents Smart Robotic Systems

Trajectory planning

Gilles TAGNE

Global planning — Overall itinerary (Trajectory planning)
Local planning — Path planning

Path planning methods:

- Potential fields method
- Methods based on the connectivity of the navigable space of the road and the cellular decomposition
- Constant turning field method
- Dynamic window
- Model Predictive based Methods
- Tentacles method
- Fuzzy logic planning

Potential fields method

Attractive fields (a) Repellents fieds (b)

Methods based on the connectivity of the navigable space of the road and the cellular decomposition

Visibility graphs (a) Voronoï diagrams (b)

Constant turning field method

Unstructured environment (a) Structured environment (b)

Dynamic window

Find the navigable space

Choose the command entries that maximize the objective function (optimization)

Apply the command to the robot

Model Predictive based Methods

Tentacles method

Tentacles method

- Clearing of the tentacle - Change of steering - proximity to the overall trajectory

In conclusion:

It can be beneficial to use and merge different planning techniques to achieve better results