## VPI University Program

Photonics Curriculum Version 7.0

Lecture Series



Introduction to Optical Receivers

Rx1

Copyright VPIsystems. All rights reserved.



### **Module Prerequisites**

- Introduction to Fiber-Optic Communications I & II
- Recommended Transmitters I, Optical Amplifiers I

### Module Objectives

- Introduction and basic requirements
- How a photodetector works
  - Basic structure: a PN junction photodetector
  - Optical Absorption Process
  - Reverse Bias, Dark Current, Quantum Efficiency, Responsivity
- PIN and APD photodetectors
- Noise sources



#### **Photodetectors**

A photo detector (optical receiver) converts an optical signal into an electrical signal

### Basic requirements

- Sensitivity at the required wavelength
- Efficient conversion of photons to electrons
- Small area for low capacitance and a fast response
- Low noise
- Sufficient area for efficient coupling to optical fiber
- High reliability
- Low cost



## Basic Structure:





# The Probability of Photon Absorption

#### Depends on

- Thickness of intrinsic region, d
- The material's absorption coefficient,  $\alpha$
- The wavelength of the incident light,  $\lambda$
- No. of photons lost on their way to the intrinsic region
- Surface reflection



Absorbed photons/s  $A(1-exp(-\alpha d))$ 



## Reverse Bias and Photocurrent

#### Reverse biasing the photodetector

- Increases the electric field in the depletion region
- Decreases its capacitance (increase speed)
- Increases its sensitivity and frequency response





### **Absorption**

Absorption coefficient depends on wavelength, and the material (bandgaps again)





#### **Dark Current**

- Dark current (flows even when there is no light)
- As the incident light increases...
   the photocurrent increases linearly





## **Quantum Efficiency**

The quantum efficiency  $(\eta)$  is the probability that an incident photon will produce an electron-hole pair

```
\eta = electron flux / photon flux
```



### Responsivity

The responsivity,  $R_0$  (A/W), is the photocurrent produced per unit of incident optical power

$$R_0 = I_p/P_i = q\eta/hf$$
 [A/W]  
with  $I_p =$  (electron flux) •  $q$  [A]  
 $P_i =$  (photon flux) •  $hf$  [W]

The responsivity of a device relates to its design:

$$R = (1 - r) \exp(-D\alpha_c) [1 - \exp(-d\alpha)] (q\lambda/hc)$$
  
Facet Contact Intrinsic Wavelength factor absorption absorption factor



# Responsivity & Wavelength Dependence

Different materials suit different wavelengths





#### PIN Photodetector

#### Adding an "intrinsic" region between P and N

- increases depletion region width
- increases absorption of incident light
- increases the quantum efficiency of the photo detector





## **Speed of PIN Photodetector**

#### Speed - maximum detectable modulation rate

• i.e. the electrical frequency response

#### Speed is limited by the:

- Carrier velocity in depletion region
- Diffusion time of carriers outside the depletion region
- Time constant of the p-n junction capacitance
- Photodetector load resistance





## Avalanche Photodetector (APD)

#### Avalanche region - higher internal electric field

- Accelerates carriers more kinetic energy
- High energy collision frees bound electrons
- Freed electrons can collide free more bound electrons
- Results in current gain (avalanche multiplication)





## Comparison between APD & PIN

#### An APD:

- has gain, while a PIN does not
- can detect a weaker signal than a PIN
- requires a higher bias voltage than a PIN
- is noisier than a PIN
- is more sensitive to variations in temperature and bias voltage than a PIN
- is more expensive than a PIN



#### **Electronic Shot Noise**

- associated with the quantum nature of the light
- each incident photon produces an electron's worth of current.

The total shot noise associated with a photocurrent current *I* flowing through a potential barrier is:





#### Thermal Noise

- is the result of thermally induced random fluctuations in the charge carriers in a resistance
- occurs even when no voltage is applied across the resistance

Mean square thermal noise current is given by:





#### Dark Current Noise I<sub>d</sub>

- flows in the photo detector even in the absence of light.
- caused by current leakage paths in the photo detector
- and thermal excitation of carriers across the p-n junction

 $I_d$  gives rise to an additional shot noise current with a mean-square value of:

$$\langle i^2_{dark} \rangle = 2qI_dB$$



#### **APD Excess Noise**

 is present in avalanche photodiodes because the avalanche multiplication is essentially a random process

This causes the shot noise of the photodiode to be multiplied by:

Noise Multiplication factor = 
$$M^{2+x}$$
  
(0.1 <  $x$  < 1.0)

where M is the avalanche gain



#### **Optical Excess Noise**

 can be broadly defined as any noise that appears along with the received signal, other than quantum shot-noise

#### Most common types:

- Laser Intensity Noise
- Modal Noise
- Mode Partition Noise
- Amplified Spontaneous Emission (ASE) Noise in optical amplifiers



## Signal-to-Noise Ratio (SNR)

Electrical SNR (assuming shot noise dominates)

$$P_{in}$$
  $i_{signal} + i_{shot}$ 

$$\langle i^2_{shot} \rangle = 2qIB = 2qR_0P_{in}B$$

$$i^2_{signal} = (R_o P_{in})^2$$

SNR = 
$$\frac{(R_o P_{in})^2}{2qR_o P_{in}B} = \frac{P_{in}}{2hfB}$$

 $R_0 = \frac{q}{hf}$ , Responsivity of the photodetector



## **SNR** in Optical Systems

Mixing products in the detected photocurrent:





## **Total SNR of Optical Systems**

The SNR at receiver with responsivity  $R_o$ , and electrical bandwidth B

$$SNR = \frac{i_s^2}{(i^2_{s-sp} + i^2_{sp-sp} + i^2_{shot}) + i^2_{ther})B}$$

includes contributions from  $i_d$ ,  $i_{ASE}$ , optical excess noise induced shot noise



### Summary

- How a basic PN junction photodetector works
  - Optical Absorption Process
  - Reverse Biasing, Photocurrent, Dark Current
  - Quantum Efficiency, Responsivity
- How PIN photodetectors and APDs work
- Overview of noise sources in photodetectors
- Signal to Noise Ratio

Proceed with the Interactive Learning Module