Simulated examples for the survival ensemble methods

W500		
me point for event prediction:		
5		
andom seed for calibration and	validation	
42		
_Outer loop CV (for validation)		
3		
inner CV folds (model tuning)		
3		
	O' Interded to the control of th	
	Simulated data: random seed (generation):	
	4242	
Sample size:	Observation time	
150	5	
Expected event prevalence by	Expected drop out rate	
study end	0.3	
0.5		
	Custom data: path to data file	
	~/Desktop/Study_KCL/PhD P	
Predictors to use in the model	Time variable name	
"baseline_age_", "genderdun	time	
Event indicator variable name		
event		

Ens3: extended CoxPH Summary Conclusions

Internally cross-validated results:

Show 10 → entries Search:

	AUCROC \$	BS 🕏	BS_scaled ‡	C_score ‡	Calib_slope ‡	Calib_alpha 🕴	Τ ‡
test	0.8139	0.2351	0.1682	0.7591	0.5093	0.0974	5
train	0.878	0.1651	0.4211	0.8084	0.9769	0.0848	5
Showing 1 to 2 of 2 entries					Pı	revious 1	Next

Internally cross-validated Test results for each CV fold:

Show 10 v entries Search:

	AUCROC ‡	BS 🕏	BS_scaled ‡	C_score ‡	Calib_slope ‡	Calib_alpha 🕯	T 🕏
test.1	0.8375	0.2913	0.0091	0.7673	0.3728	-0.0296	5
test.2	0.7834	0.224	0.1961	0.7693	0.389	0.1464	5
test.3	0.8209	0.1899	0.2995	0.7407	0.766	0.1755	5

Showing 1 to 3 of 3 entries Previous 1 Next

127.0.0.1:6523 3/10

```
[[1]]
Call:
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
   x = TRUE
           coef exp(coef) se(coef)
                                       Z
age
       0.028928 1.029350 0.012415 2.330 0.019806
gender -0.457675   0.632753   0.163197 -2.804   0.005040
       0.005741 1.005758 0.003591 1.599 0.109874
sysbp -0.001188 0.998813 0.003308 -0.359 0.719496
diasbp -0.006670 0.993352 0.005810 -1.148 0.250952
bmi
      -0.068455 0.933835 0.020126 -3.401 0.000670
cvd
      -0.216775   0.805111   0.208808   -1.038   0.299196
afb
      -0.045571 0.955451 0.203171 -0.224 0.822523
       1.563340 4.774741 0.332497 4.702 2.58e-06
sho
chf
       0.640928 1.898242 0.174975 3.663 0.000249
       0.362507 1.436928 0.496151 0.731 0.464999
av3
miord -0.177376 0.837465 0.171818 -1.032 0.301907
mitype -0.381762  0.682658  0.241241 -1.582  0.113538
los
      -0.014750 0.985358 0.020548 -0.718 0.472850
y1997 -0.546643 0.578890 0.231503 -2.361 0.018212
y1999 -0.343942 0.708970 0.210792 -1.632 0.102749
Likelihood ratio test=88.62 on 16 df, p=4.495e-12
n= 256, number of events= 168
[[2]]
Call:
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
   x = TRUE
           coef exp(coef) se(coef)
                                       Z
       0.023175 1.023445 0.020769 1.116 0.264506
age
       0.408663 1.504804 0.365636 1.118 0.263706
gender
hr
       0.027240 1.027614 0.008104 3.361 0.000776
       0.001163 1.001164 0.006431 0.181 0.856441
sysbp
diasbp -0.028494 0.971908 0.009184 -3.103 0.001918
      -0.013318   0.986770   0.031095   -0.428   0.668434
bmi
       0.241430 1.273069 0.434382 0.556 0.578347
cvd
      afb
       1.580730 4.858501 1.021891 1.547 0.121895
sho
       1.044437 2.841797 0.389864 2.679 0.007385
chf
av3
      -0.487595   0.614102   1.319368   -0.370   0.711705
miord
       0.860084 2.363360 0.376648 2.284 0.022400
mitype 0.437793 1.549284 0.385540 1.136 0.256152
los
      -0.022224 0.978022 0.034116 -0.651 0.514784
y1997
      y1999
      -0.298567   0.741880   0.444337   -0.672   0.501623
Likelihood ratio test=67.38 on 16 df, p=2.854e-08
n= 244, number of events= 47
```

127.0.0.1:6523 4/10

```
$test
 Т
      AUCROC
                    BS
                         BS_scaled
                                    C_score
1 5 0.8374792 0.2913315 0.009146407 0.7672572
2 5 0.7834346 0.2239705 0.196061484 0.7693175
3 5 0.8209124 0.1898875 0.299458805 0.7407323
 Calib_slope Calib_alpha test cv_n
  0.3728322 -0.02961608
   0.3889984 0.14640679
3 0.7660380 0.17551161 1 3
$train
 Т
                    BS BS_scaled C_score Calib_slope
      AUCROC
1 5 0.8587692 0.1825040 0.3712892 0.8028312 0.9789669
2 5 0.9020335 0.1481189 0.4759745 0.8109569
                                            0.9527392
3 5 0.8730626 0.1646268 0.4160248 0.8115070 0.9990690
 Calib_alpha test cv_n
1 0.07614262
2 0.08831713
                     2
3 0.08999548
                     3
                0
$testaverage
         Т
                AUCROC
                                BS BS scaled
5.00000000 0.81394206 0.23506316 0.16822223
   C_score Calib_slope Calib_alpha
                                          test
 0.75910232 0.50928955 0.09743411 1.00000000
$trainaverage
         Τ
                AUCROC
                                BS
                                   BS_scaled
5.00000000 0.87795509 0.16508326 0.42109616
   C_score Calib_slope Calib_alpha
                                          test
 0.80843168 0.97692506 0.08481841 0.00000000
$model list
$model_list[[1]]
$model_list[[1]]$vimp10
                       chf
                                    los
                                                   hr
         age
6.724164e-02 1.020074e-02 5.888476e-03 4.639405e-03
                    gender
         bmi
                                  y1999
                                               mitype
 2.810409e-03 5.650558e-04 2.825279e-04 0.000000e+00
                       cvd
                                 diasbp
                                                  av3
-8.921933e-05 -3.122677e-04 -3.271375e-04 -4.312268e-04
       y1997
                       afb
                                   sysbp
-5.650558e-04 -7.286245e-04 -1.784387e-03
$model list[[1]]$treemodel
n = 333
node), split, n, deviance, yval
     * denotes terminal node
1) root 333 465.2627 1.0000000
 2) age< 69.5 148 128.6917 0.3342506 *
 3) age>=69.5 185 258.2622 1.7171170 *
$model_list[[1]]$coxmodels
```

127.0.0.1:6523 5/10

```
$model_list[[1]]$coxmodels[[1]]
Call:
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
   x = TRUE
           coef exp(coef) se(coef)
       0.019100 1.019283 0.015232 1.254 0.20988
age
hr
       0.003987 1.003995 0.004338 0.919 0.35810
sysbp -0.001136 0.998864 0.004258 -0.267 0.78959
diasbp -0.006559 0.993463 0.007795 -0.841 0.40014
      -0.066325 0.935827 0.022436 -2.956 0.00311
bmi
cvd
      -0.111167 0.894789 0.250479 -0.444 0.65717
afb
      -0.108625   0.897067   0.241406   -0.450   0.65273
sho
      1.382773 3.985938 0.416114 3.323 0.00089
chf
       0.454712 1.575720 0.209216 2.173 0.02975
av3
       0.231414 1.260382 0.518270 0.447 0.65523
miord -0.266290 0.766217 0.213427 -1.248 0.21214
mitype -0.350075 0.704635 0.288441 -1.214 0.22487
los
      -0.038491 0.962240 0.030170 -1.276 0.20202
y1997 -0.508341 0.601493 0.266103 -1.910 0.05609
y1999 -0.504708 0.603682 0.252673 -1.997 0.04577
Likelihood ratio test=53.55 on 16 df, p=6.142e-06
n= 185, number of events= 123
$model_list[[1]]$coxmodels[[2]]
Call:
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
   x = TRUE
            coef exp(coef)
                            se(coef)
                                           z
       3.073e-03 1.003e+00 2.705e-02 0.114 0.9096
age
gender 5.453e-01 1.725e+00 5.155e-01 1.058 0.2901
       5.806e-02 1.060e+00 1.561e-02 3.719 0.0002
hr
       1.799e-02 1.018e+00 9.702e-03 1.855 0.0637
sysbp
diasbp -3.005e-02 9.704e-01 1.301e-02 -2.310 0.0209
      -6.798e-02 9.343e-01 4.784e-02 -1.421 0.1554
hmi
cvd
       5.115e-02 1.052e+00 5.377e-01 0.095 0.9242
afb
      -7.029e-01 4.952e-01 7.776e-01 -0.904 0.3661
      -1.497e+01 3.153e-07 7.537e+03 -0.002 0.9984
sho
chf
       9.690e-01 2.635e+00 5.656e-01 1.713 0.0867
av3
      -1.540e+01 2.060e-07 1.724e+04 -0.001 0.9993
miord
       1.152e+00 3.163e+00 5.508e-01 2.091 0.0366
mitype 6.295e-01 1.877e+00 5.723e-01 1.100 0.2714
      -9.467e-02 9.097e-01 6.870e-02 -1.378 0.1682
los
y1997
       7.556e-01 2.129e+00 8.875e-01 0.851 0.3946
v1999
       7.383e-01 2.092e+00 8.831e-01 0.836 0.4032
Likelihood ratio test=45.69 on 16 df, p=0.0001087
n= 148, number of events= 25
$model_list[[1]]$clusters
```

127.0.0.1:6523 6/10

```
[1] 1.717117 0.334251
$model_list[[2]]
$model_list[[2]]$vimp10
                                                  hmi
         age
                       chf
                                    sho
 3.591597e-02 1.862364e-02 9.553208e-03 7.227083e-03
          hr
                     y1999
                                    afb
                                                sysbp
 2.823536e-03 1.609269e-03 1.448342e-03 1.170378e-03
       y1997
                                                  cvd
                     miord
                                 diasbp
9.509319e-04 6.290780e-04 5.266700e-04 2.925944e-05
      gender
                      los
                                    av3
 0.000000e+00 -4.388917e-05 -2.925944e-04
$model_list[[2]]$treemodel
n = 334
node), split, n, deviance, yval
      * denotes terminal node
1) root 334 468.1744 1.0000000
 2) age< 71.5 160 151.2419 0.3840971 *
 3) age>=71.5 174 241.5789 1.7932300 *
$model_list[[2]]$coxmodels
$model_list[[2]]$coxmodels[[1]]
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
   x = TRUE
           coef exp(coef) se(coef)
                                        Z
       0.019451 1.019641 0.014655 1.327 0.184428
age
gender -0.551852 0.575882 0.205310 -2.688 0.007190
       0.006641 1.006663 0.004513 1.472 0.141150
sysbp -0.001663 0.998338 0.004125 -0.403 0.686794
diasbp -0.007878 0.992153 0.007261 -1.085 0.277995
bmi
      -0.074172 0.928512 0.026634 -2.785 0.005354
cvd
      -0.089418   0.914463   0.251176   -0.356   0.721843
afb
      1.670552 5.315102 0.393463 4.246 2.18e-05
sho
chf
       0.865101 2.375245 0.233317 3.708 0.000209
       1.279578 3.595123 0.683815 1.871 0.061312
av3
miord -0.243116 0.784180 0.211536 -1.149 0.250436
mitype -0.638307  0.528186  0.314379 -2.030  0.042318
los
      -0.006952 0.993072 0.022613 -0.307 0.758515
v1997 -0.580034 0.559880 0.287382 -2.018 0.043556
y1999 -0.229472 0.794953 0.258250 -0.889 0.374237
Likelihood ratio test=73.45 on 16 df, p=2.463e-09
n= 174, number of events= 115
$model_list[[2]]$coxmodels[[2]]
Call:
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
```

127.0.0.1:6523 7/10

```
x = TRUE
```

```
coef exp(coef)
                          se(coef)
                                      Z
                          0.030876 1.228 0.219506
age
       0.037911
                1.038639
       0.460461 1.584804
                          0.519774 0.886 0.375679
gender
hr
       0.023285 1.023558 0.010932 2.130 0.033176
sysbp
      -0.001590 0.998411 0.008387 -0.190 0.849606
diasbp -0.036256 0.964394 0.012897 -2.811 0.004938
bmi
      -0.008697 0.991341 0.043307 -0.201 0.840845
cvd
       0.198426 1.219481 0.620040 0.320 0.748953
afb
      -0.371857    0.689453    0.573676    -0.648    0.516855
sho
       chf
       1.592411 4.915584 0.536183 2.970 0.002979
av3
      -6.046317 0.002367 1.820690 -3.321 0.000897
miord
       0.716404 2.047059 0.523015 1.370 0.170762
mitype
       los
       -0.466781 0.627017 0.578149 -0.807 0.419452
y1997
      -0.374509
                y1999
Likelihood ratio test=61.27 on 16 df, p=3.199e-07
n= 160, number of events= 31
$model_list[[2]]$clusters
[1] 1.793230 0.384097
$model_list[[3]]
$model_list[[3]]$vimp10
                                            bmi
        age
                    chf
                                 hr
0.0432633070 0.0195601281 0.0043894776 0.0042046575
        sho
                  miord
                                los
                                         mitype
afb
                              y1997
                                         gender
        av3
-0.0004312469 -0.0005852637 -0.0005852637 -0.0006006654
      y1999
                    cvd
                              sysbp
-0.0006160670 -0.0006776737 -0.0007084771
$model_list[[3]]$treemodel
n = 333
node), split, n, deviance, yval
     * denotes terminal node
1) root 333 454.9301 1.0000000
 2) age< 73.5 187 174.1279 0.4548238 *
 3) age>=73.5 146 207.2122 2.0269480 *
$model list[[3]]$coxmodels
$model_list[[3]]$coxmodels[[1]]
Call:
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
   x = TRUE
```

```
se(coef)
            coef exp(coef)
                                          Z
       0.0250934 1.0254109 0.0211165 1.188 0.23470
age
       0.2901066 1.3365700 0.3999416 0.725 0.46822
gender
hr
       0.0145886 1.0146955 0.0068322 2.135 0.03274
sysbp -0.0028485 0.9971555 0.0088030 -0.324 0.74625
diasbp -0.0238292  0.9764525  0.0134098 -1.777  0.07557
bmi
       0.0125542 1.0126333 0.0380716 0.330 0.74159
cvd
      afb
       0.1131474 1.1197969 0.5083636 0.223 0.82387
sho
       0.3993737 1.4908907 1.0494594 0.381 0.70354
chf
       1.2016030 3.3254433 0.4147898 2.897 0.00377
av3
       0.6739841 1.9620387 1.0447573 0.645 0.51886
       0.7631286 2.1449765 0.4097126 1.863 0.06252
miord
mitype -0.0007882 0.9992121 0.4667957 -0.002 0.99865
los
       0.0072370 1.0072632 0.0357690 0.202 0.83966
y1997 -1.1391495 0.3200911 0.4944073 -2.304 0.02122
y1999 -1.1028080 0.3319377 0.4842273 -2.277 0.02276
Likelihood ratio test=56.96 on 16 df, p=1.686e-06
n= 187, number of events= 40
$model_list[[3]]$coxmodels[[2]]
Call:
coxph(formula = as.formula(paste("Surv(df_train$time, df_train$event) ~",
   paste(predict.factors, collapse = "+"))), data = df_train,
   x = TRUE)
           coef exp(coef) se(coef)
       0.039913 1.040720 0.023030 1.733 0.08308
age
gender -0.455704 0.634002 0.228382 -1.995 0.04600
hr
       0.008159 1.008192 0.004865 1.677 0.09354
       0.001582 1.001584 0.004132 0.383 0.70172
sysbp
diasbp -0.010274 0.989779 0.006907 -1.487 0.13692
bmi
      -0.067032 0.935165 0.026399 -2.539 0.01111
cvd
      -0.462528 0.629690 0.286320 -1.615 0.10622
       0.292751 1.340109 0.278809 1.050 0.29372
afb
       2.353602 10.523412 0.497257 4.733 2.21e-06
sho
chf
       0.692808 1.999322 0.222847 3.109 0.00188
      -0.160939 0.851344 0.784570 -0.205 0.83747
av3
miord -0.092528 0.911624 0.224916 -0.411 0.68079
mitype -0.558160 0.572261 0.340284 -1.640 0.10095
los
      -0.017612  0.982542  0.025792  -0.683  0.49470
y1997 -0.366634 0.693064 0.302920 -1.210 0.22615
     -0.464261 0.628599 0.289418 -1.604 0.10869
y1999
Likelihood ratio test=58.93 on 16 df, p=7.909e-07
n= 146, number of events= 96
```

\$model_list[[3]]\$clusters
[1] 0.454824 2.026948

127.0.0.1:6523 9/10

\$time

Time difference of 15.38528 secs