

Generated by s1412595 on 08 July 2019, 15:54:22

This report has been generated automatically by Madanalysis 5.

Please cite:

E. Conte, B. Fuks and G. Serret,

MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. **184** (2013) 222-256, arXiv:1206.1599 [hep-ph].

To contact us:

 ${\bf http://madanalysis.irmp.ucl.ac.be} \\ {\bf ma5team@iphc.cnrs.fr} \\$

Contents Setup 2 1.1 Command history 2 3 1.2 ${\bf Configuration}$ 2 Datasets 4 $unweighted_events$ 2.1 4 Histos and cuts **5** ${\bf Histogram}\ 1$ 5 3.2 Histogram 2 6 3.3 ${\bf Histogram}~3$ 7 3.4 ${\bf Histogram}~4$ 8 9 3.5 ${\bf Histogram}~5$ Histogram 6 10 3.6 3.7 Histogram 7 11

1 Setup

1.1 Command history

```
ma5>import /home/s1412595/Desktop/SummerProject2019/MG5_aMC_v2_6_6/BP2_080719/bin/-
internal/ufomodel
ma5>import /home/s1412595/Desktop/SummerProject2019/MG5_aMC_v2_6_6/BP2_080719/Events/-
run_01/unweighted_events.lhe.gz as unweighted_events
ma5>define vl = 12 14 16
ma5>define vl = -16 -14 -12
ma5>define invisible = ve ve vm vm vt vt vl vl
ma5>set main.graphic_render = root
ma5>plot THT 40 0 500 [logY]
ma5>plot MET 40 0 500 [logY]
ma5>plot SQRTS 40 0 500 [logY]
ma5>plot PT( chi+[1]) 40 0 500 [logY interstate]
ma5>plot ETA( chi+[1]) 40 -10 10 [logY interstate]
ma5>plot PT( chi-[1]) 40 0 500 [logY]
ma5>plot ETA( chi-[1]) 40 -10 10 [logY]
ma5>plot M(chi+[1] chi-[1]) 40 0 500 [logY allstate]
ma5>plot DELTAR(chi+[1], chi-[1]) 40 0 10 [logY allstate]
ma5>plot PT( chi-[1]) 40 0 500 [logY]
ma5>plot ETA( chi-[1]) 40 -10 10 [logY]
ma5>plot PT( psi[1]) 40 0 500 [logY]
ma5>plot ETA( psi[1]) 40 -10 10 [logY]
ma5>plot PT(1+[1]) 40 0 500 [logY]
ma5>plot ETA(1+[1]) 40 -10 10 [logY]
ma5>plot PT(nn[1]) 40 0 500 [logY]
ma5>plot ETA(nn[1]) 40 -10 10 [logY]
ma5>plot M(l+[1] nn[1]) 40 0 500 [logY]
ma5>plot M( chi-[1] l+[1]) 40 0 500 [logY]
ma5>plot M( chi-[1] l+[1] nn[1]) 40 0 500 [logY ]
ma5>plot M( chi-[1] nn[1]) 40 0 500 [logY]
ma5>plot M( chi-[1] psi[1]) 40 0 500 [logY ]
ma5>plot M( chi-[1] psi[1] l+[1]) 40 0 500 [logY]
ma5>plot M( chi-[1] psi[1] l+[1] nn[1]) 40 0 500 [logY]
ma5>plot M( chi-[1] psi[1] nn[1]) 40 0 500 [logY]
ma5>plot M( psi[1] l+[1]) 40 0 500 [logY]
ma5>plot M( psi[1] l+[1] nn[1]) 40 0 500 [logY]
ma5>plot M( psi[1] nn[1]) 40 0 500 [logY]
ma5>plot DELTAR(1+[1],nn[1]) 40 0 10 [logY]
ma5>plot DELTAR( chi-[1],1+[1]) 40 0 10 [logY]
ma5>plot DELTAR( chi-[1],nn[1]) 40 0 10 [logY]
ma5>plot DELTAR( chi-[1], psi[1]) 40 0 10 [logY ]
ma5>plot DELTAR( psi[1],1+[1]) 40 0 10 [logY]
ma5>plot DELTAR( psi[1],nn[1]) 40 0 10 [logY ]
ma5>plot PT( chi-[1]) 40 0 500 [logY interstate]
ma5>plot ETA( chi-[1]) 40 -10 10 [logY interstate]
ma5>plot PT( chi+[1]) 40 0 500 [logY]
ma5>plot ETA( chi+[1]) 40 -10 10 [logY]
```

```
ma5>plot M( chi-[1] chi+[1]) 40 0 500 [logY allstate]
ma5>plot DELTAR(chi-[1], chi+[1]) 40 0 10 [logY allstate]
ma5>plot PT( psi [1]) 40 0 500 [logY]
ma5>plot ETA( psi [1]) 40 -10 10 [logY]
ma5>plot PT(1-[1]) 40 0 500 [logY]
ma5>plot ETA(1-[1]) 40 -10 10 [logY]
ma5>plot PT( chi+[1]) 40 0 500 [logY]
ma5>plot ETA( chi+[1]) 40 -10 10 [logY]
ma5>plot PT(nn [1]) 40 0 500 [logY]
ma5>plot ETA(nn [1]) 40 -10 10 [logY]
ma5>plot M(l-[1] nn [1]) 40 0 500 [logY]
ma5>plot M(l-[1] chi+[1]) 40 0 500 [logY]
ma5>plot M(1-[1] chi+[1] nn [1]) 40 0 500 [logY]
ma5>plot M( chi+[1] nn [1]) 40 0 500 [logY]
ma5>plot M( psi [1] 1-[1]) 40 0 500 [logY]
ma5>plot M( psi [1] 1-[1] nn [1]) 40 0 500 [logY]
ma5>plot M( psi [1] l-[1] chi+[1]) 40 0 500 [logY]
ma5>plot M( psi [1] l-[1] chi+[1] nn [1]) 40 0 500 [logY]
ma5>plot M( psi [1] nn [1]) 40 0 500 [logY]
ma5>plot M( psi [1] chi+[1]) 40 0 500 [logY]
ma5>plot M( psi [1] chi+[1] nn [1]) 40 0 500 [logY]
ma5>plot DELTAR(1-[1],nn [1]) 40 0 10 [logY]
ma5>plot DELTAR(1-[1], chi+[1]) 40 0 10 [logY ]
ma5>plot DELTAR( chi+[1],nn [1]) 40 0 10 [logY ]
ma5>plot DELTAR( psi [1],1-[1]) 40 0 10 [logY]
ma5>plot DELTAR( psi [1],nn [1]) 40 0 10 [logY ]
ma5>plot DELTAR( psi [1], chi+[1]) 40 0 10 [logY ]
ma5>submit /home/s1412595/Desktop/SummerProject2019/MG5_aMC_v2_6_6/BP2_080719/MA5_PARTON_ANALYSIS_
```

1.2 Configuration

- MadAnalysis version 1.8.5 (2019/04/04).
- Histograms given for an integrated luminosity of 10fb⁻¹.

2 Datasets

2.1 unweighted_events

 \bullet Sample consisting of: signal events.

• Generated events: 1000 events.

 \bullet Normalization to the luminosity: 0+/- 1 $\,$ events.

• Ratio (event weight): 0.0 .

Path to the event file	Nr. of events	Cross section (pb)	Negative wgts (%)
Events/run_01/- unweighted_events.lhe.gz	1000	4.93e-49 @ 0.73%	0.0

3 Histos and cuts

3.1 Histogram 1

* Plot: THT

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 1.

3.2 Histogram 2

* Plot: MET

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 2.

3.3 Histogram 3

* Plot: SQRTS

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

Figure 3.

3.4 Histogram 4

* Plot: PT (l+[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 4.

Histogram 5 3.5

* Plot: ETA (l+[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

Figure 5.

3.6 Histogram 6

* Plot: PT (l-[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	0.0 +/- 0.0	1.0	0.0	0.0	0.0	0.0

Figure 6.

3.7 Histogram 7

* Plot: ETA (l-[1])

Dataset	Integral	Entries per event	Mean	RMS	% underflow	% overflow
unweighted_eve	0.0 + / - 0.0	1.0	0.0	0.0	0.0	0.0

Figure 7.