Divide and Conquer: Linear-Time Median

Median Problem

- 1. Given an unsorted list $A = [a_1, \ldots, a_n]$ of n numbers
 - Goal: Find the median of A
 - Median: ceil(n/2)th smallest
 - For odd n = 2l + 1
 - Median is the (l+1)st smallest
- 2. More general problem
 - Given an unsorted list A and integer k where $1 \le k \le n$, find the k^{th} smallest element of A
 - $\bullet\,$ Easy algorithm: Sort A and then output the $k^{\rm th}$ element
 - MergeSort takes O(nlogn) time
- 3. Now: O(n) time algorithm
 - Blum, Floyd, Pratt, Rivest, Tarjan from 1973

QuickSort

- 1. Divide and conquer: QuickSort style
 - QuickSort(A):
 - Choose a pivot P
 - Partition A into $A_{< p}, A_{=p}, A_{> p}$
 - Recursively sort $A_{\leq p}$ and $A_{\geq p}$
 - Challenge of QuickSort is choosing a good pivot
 - If we choose the largest or smallest element, one of the lists is of size n-1 and then the running time is $O(n^2)$
 - Good pivot is median, or something close to it
 - To find median, we only have to examine one of the sublists

Search Example

- 1. Example: A = [5, 2, 20, 17, 11, 13, 8, 9, 11]
 - Say p = 11
 - Less than p: [5, 2, 8, 9]
 - Equal to p: [11, 11,]
 - Greater than p: [20, 17, 13]
 - If $k \le 4$ then we want k^{th} smallest in $A_{\le p}$
 - If 4 < k <= 6 then we output 11
 - If k > 6 then we want $(k-6)^{th}$ smallest in $A_{>p}$

QuickSelect

- 1. Choose a pivot p How?
- 2. Partition A into $A_{< p}$, $A_{=p}$, $A_{> p}$
- 3. If $k \le |A_{\le p}|$ then $\operatorname{return}(\operatorname{Select}(A_{\le p}, k))$
- 4. If $|A_{< p}| < k <= |A_{< p}| + |A_{= p}|$ then return(p)
- 5. If $k > |A_{< p}| + |A_{=p}|$ then return(Select($A_{> p}$, $k |A_{< p}| |A_{=p}|$))

Simple Recurrence

- 1. What does the recurrence T(n) = T(n/2) + O(n) sovle to?
 - $T(n) = O(\log(n))$
 - T(n) = O(n)
 - Correct
 - $T(n) = O(n\log(n))$

D&C: High-level Idea

- 1. Aim: O(n) running time
 - T(n) = T(n/2) + O(n) is O(n)
 - Need: p = median(A)
 - Approximate median: Close to the median, but not exactly
 - Suppose we can find a pivot that lies between n/4 and 3n/4
 - * Not on either extreme
 - T(n) = T(3n/4) + O(n), which is still O(n)
 - T(n) = T(0.99n) + O(n), which is still O(n)
 - * Require any constant less than 1

Goal: Good Pivot

- 1. Pivot p is **good** if $|A_{< p}| \le 3n/4$ and $|A_{> p}| \le 3n/4$
- 2. Goal: Find good pivot p in O(n) time
 - T(n) = T(3n/4) + O(n) = O(n)

Random Pivot

- 1. When in doubt, just act randomly
 - Let p be a random element of A
 - What's the probability that p is good?
 - * Using the range n/4 to 3n/4 as before, P = 0.5
 - \bullet We can spend O(n) time breaking the array into segments and determining if p is a good pivot
 - We expect to be able to find a pivot in O(n) time
 - \bullet We want an algorithm with guaranteed $\mathrm{O}(\mathrm{n})$ runtime

D&C: Recursive Pivot

- 1. Aim: Find a good pivot in O(n) time
 - T(n) = T(3n/4) + O(n) = O(n)
 - Slack: T(0.24n)
 - T(n) = T(3n/4) + T(n/5) + O(n)
 - -3/4 + 1/5 < 1 = O(n)
 - Choose a subset S of A where |S| < n/5
 - Set P = Median(S)

Representative Sample

- 1. Naive selection of S
 - Let $S = [a_1, \ldots, a_{n/5}] = First n/5$ elements of A
 - Set p = Median(S)
 - Is p_a a good pivot? No!
 - Suppose A is sorted
 - S = n/5 smallest elements of A
 - $p = n/10^{th}$ smallest element
 - $|A_{>p}| \le 9n/10$
 - * This indicates that the subsets resulting from this pivot will be too large

Recursive Representative Sample

- 1. Choose S that is "representative" of A
 - Want: median(S) approximate median(A)
 - For each x in S, a few elements of A are \leq x and a few are > = x

- 2. Break A into n/5 groups of 5 elements each
 - $G = \{x_1, x_2, x_3, x_4, x\sim 5\}$
 - Sort $x_1 \le x_2 \le x_3 \le x_4 \le x_5$
 - * \mathbf{x}_3 is the median of G
 - Sorting G takes O(1) time
 - * This is because G is always 5 elements; time to sort it does not scale with n

Median: Pseudocode

- 1. FastSelect(A,k):
 - Input: unsorted A and integer k where $1 \le k \le n$
 - Output: kth smallest of A
- 2. Pseudocode
 - Break A into n/5 groups, $G_1, G_2, \ldots, G_{n/5}$
 - For i = 1 -> n/5:
 - $\operatorname{sort}(G_i)$ and let $m_i = \operatorname{median}(G_i)$
 - Let $S = \{m_1, m_2, \dots, m_{n/5}\}$
 - p = FastSelect(S,n/10)

 - If $k \le |A_{\le p}|$ then return(FastSelect($A_{\le p}$, k))
 - If $k > |A_{< p}| + |A_{= p}|$ then return (FastSelect(A_{>p}, k - |A_{<p}| - |A_{=p}|))
 - Else output p

Median: Running Time

- 1. Claim: p is a good pivot
 - T(n) = T(3n/4) + T(n/5) + O(n) = O(n)- Key: 3/4 + 1/5 < 1

0(n) 8(1)/group T(75) T(3/n)

Fast Select Running Time

Linear-Time Median Correctness

- 1. p is a good pivot:
 - Sort $G_1, \ldots, G_{n/5}$ by their medians

$$- m_1 <= m_2 <= \dots <= m_{n/5}$$

- Which elements are \neq p?
 - Guaranteed that 3 * n/10 elements are <= p
 - $|A_{>p}| <= 7n/10$
 - * We needed to guarantee that $|{\rm A}_{>p}|$ <= 3n/4
- Which elements are >= p?
 - Guaranteed that 3 * n/10 elements are >= p
 - Same logic as above

Fast Select Pivot Selection

HW: Groups of 3? 7?

- 1. Running time for groups of 3 or 7 elements
 - What is the recurrence in these cases?
 - For 3, this does not reduce the subproblem enough, so running time is O(nlogn)
 - For $n = 7, 9, \ldots$, the algorithm works in O(n) times, but increases a constant factor
 - Makes sense to use odd sizes because it simplifies the median