

TD 1 – Optimisation, rappels et généralités

▷ Exercice 1. Étudier le problème d'optimisation :

$$(P) \left\{ \begin{array}{l} \min \ f(x) \\ x \in \mathbb{R}^n. \end{array} \right.$$

pour les application suivantes :

1.1.

$$f_1: \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $(x_1, x_2, x_3) \longmapsto 2(x_1 + x_2 + x_3 - 3)^2 + (x_1 - x_2)^2 + (x_2 - x_3)^2.$

1.2.

$$f_2 \colon \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x_1, x_2) \longmapsto 100 (x_2 - x_1^2)^2 + (1 - x_1)^2.$

ightharpoonup Exercice 2. Soit \mathbb{R}^n muni de son produit scalaire usuel $<\cdot,\cdot>$, et de la norme euclidienne associée. Soit $a\in\mathbb{R}^n$. On considère alors l'application

$$f_a: \ \Omega = \{x \in \mathbb{R}^n, \ \|x\| < 1\} \longrightarrow \mathbb{R}$$

 $x \longmapsto f_a(x) = -\ln(1 - \|x\|^2) + \langle a, x \rangle.$

- **2.1.** Montrer que f_a est deux fois dérivable sur Ω .
- **2.2.** Exprimer $\nabla f_a(x)$ et $\nabla^2 f_a(x)$ en tout point de Ω .
- **2.3.** Montrer que f_a est strictement convexe sur Ω .
- 2.4. Discuter en fonction de a des solutions du problème d'optimisation :

$$(P) \left\{ \begin{array}{l} \min \ f_a(x) \\ x \in \Omega. \end{array} \right.$$

- **2.5.** Même question en imposant ||x|| < 1/2.

Lemme 1. Soit q la forme quadratique $q(s) = g^{\top}s + \frac{1}{2}s^{\top}Hs$, H symétrique, alors les assertions suivantes sont vraies :

- 1. q atteint un minimum si et seulement si H est semi-définie positive et $g \in \text{Im } H$ et dans ce cas tout point solution de Hs = -g est un minimum global de q.
- 2. q a un unique minimum si et seulement si H est définie positive.