Topics: Derivatives of trigonometric functions, chain rule

Trig identities

$$\sin^2 x + \cos^2 x = 1$$

$$\csc x = \frac{1}{\sin x}$$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\cot x = \frac{\cos x}{\sin x}$$

Example 1. Find all x in $[0, 2\pi)$ solving

$$3\sin^2 x - 3 = 0$$

Derivatives of Trigonometric Functions.

Example 2. Using the graph of $\sin x$, graph $\frac{d}{dx}\sin x$.

Theorem.

$$\frac{\mathrm{d}}{\mathrm{dx}}\sin x =$$

$$\frac{\mathrm{d}}{\mathrm{dx}}\cos x =$$

These two rules are enough to compute the derivatives of the remaining trigonometric functions!

Example 3. Use the quotient rule to calculate

$$\frac{d}{dx}\cot x.$$

Table of Trigonometric Derivatives.

$$\frac{d}{dx}\sin x = \frac{d}{dx}\cos x =$$

$$\frac{d}{dx}\sec x = \frac{d}{dx}\csc x =$$

$$\frac{d}{dx}\cot x =$$

$$\frac{d}{dx}\cot x =$$

Example 4. Differentiate

$$f(x) = \frac{\sin x - x}{e^x \tan x}.$$

Example 5. Find the equation of the tangent line to $y = e^x \cos(x)$ at (0,1). At which values of x does it have a horizontal tangent?

The Chain Rule

Example 6. Let y = f(x) be a function so that f'(0) = 2. What is the derivative of y = f(3x) at x = 0? Hint: Draw a sketch!

Take-away: Derivatives of *compositions*

The Chain Rule. If f and g are differentiable functions then

$$(f \circ g)'(x) =$$

Example 7. Compute the derivative of $F(x) = \sqrt{\sin x}$.

Example 8. Compute f'(x) when

$$f(x) = (2x+1)^2$$

both by using the chain rule and by expanding.

Example 9. Differentiate $f(x) = \sin(\cos(\tan x))$.

Chain rule boot camp

Example 10. Find the derivative of

$$g(x) = (x^3 + 2x^2 - 1)^5.$$

Example 11. Find the derivative of

$$k(r) = \sqrt{1 - 2r}.$$

Example 12. Find the derivative of

$$f(x) = \sin^2(e^{\tan(x)})$$

Example 13. Find the derivative of

$$f(x) = \frac{1}{(1 + \sec x)^2}.$$

Example 14. Find the derivative of

$$f(t) = \frac{\sin t}{\sqrt{t^2 + 1}}.$$

Example 15. Find the derivative of

$$y = \cos\left(\frac{1 - e^{2x}}{1 + e^x}\right).$$