ΥΣ02 Τεχνητή Νοημοσύνη - Χειμερινό Εξάμηνο 2023-2024 - Εργασία 3 ΚΑΓΙΑΤΣΚΑ ΕΡΙΚ – 1115202100043

ΠΡΟΒΛΗΜΑ_1:

ΤΡΟΠΟΣ ΕΚΤΕΛΕΣΗΣ:

Δίνουμε ως όρισμα το όνομα του στιγμιότυπου για το οποίο θέλουμε να εκτελέσουμε τους αλγορίθμους.

Για παράδειγμα:

python main.py 11

python main.py 7-w1-f4

ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΚΤΕΛΕΣΕΩΝ:

	FC			MAC			FC-CBJ			MIN-CONFLICTS		
	time	nodes	checks	time	nodes	checks	time	nodes	checks	time	nodes	checks
11	4.371s	6316	1203335	5.922s	2956	6401738	7.638s	6316	1203335	720.738s	100680	0
2-f24	0.179s	937	100754	0.140s	200	158995	0.078s	265	21577	205.088s	100200	0
2-f25	35.665s	135607	22428615	61.096s	28322	66044241	1.391s	3525	555494	201.787s	100200	0
3-f10	9.754s	68841	5904239	1.087s	776	1167548	7.584s	25262	3320694	435.848s	100400	0
3-f11	109.178s	563197	95850540	83.245s	22089	107331420	106.191s	378954	59137092	431.467s	100400	0
8-f10	-	-	-	31.202s	17487	33106552	140.991s	141041	14780817	-	-	-
8-f11	127.368s	506070	61216543	66.530s	30663	73692412	64.806s	135444	27170626	-	-	-
14-	-	-	-	7.208s	14185	4103679	114.694s	30728	1661822	-	-	-
f27												
14-	51.269s	103387	5805381	18.881s	22043	13098591	7.590s	5563	337953	-	-	-
f28												
6-w2	0.082s	683	72182	0.216s	42	397482	0.113s	642	72220	120.859s	100200	0
7-	3.836s	46395	1721153	0.250s	479	342291	7.702s	10745	427492	121.783s	100400	0
w1-												
f4												

ΠΡΑΣΙΝΟ: Συμβολίζει την επιστροφή αποτελέσματος.

ΚΟΚΚΙΝΟ: Συμβολίζει την επιστροφή τιμής "None".

Σημείωση: Τα πεδία με " – " συμβολίζουν τον τερματισμό της εκτέλεσης του προγράμματος καθώς δεν υπήρξε αποτέλεσμα για χρονικό διάστημα μικρότερο των 15 λεπτών.

ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΑΛΓΟΡΙΘΜΩΝ:

Για την αξιολόγηση χρησιμοποιήθηκε ο χρόνος εκτέλεσης του αλγορίθμου, ο αριθμός των κόμβων στους οποίους έγινε επίσκεψη και ο αριθμός ελέγχων συνέπειας που έγιναν για κάθε στιγμιότυπο.

ΣΧΟΛΙΑΣΜΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ:

Αρχικά, τα αποτελέσματα του αλγορίθμου MIN-CONFLICTS επέστρεψε για κάθε στιγμιότυπο τιμή "None" και ο χρόνος εκτέλεσης είναι κατά πολύ μεγαλύτερος των υπολοίπων αλγόριθμων.

Στην συνέχεια, ο αριθμός κόμβων στους οποίους έγινε επίσκεψη στον αλγόριθμο FC-CBJ και στον MAC είναι μικρότερος ή ίσος του αλγορίθμου FC.

Επιπλέον, ο αριθμός ελέγχων συνέπειας του αλγόριθμου FC-CBJ είναι μικρότερος ή ίσος του αλγορίθμου FC.

ΣΤΟ APXEIO "csp.py":

Βρίσκονται οι έτοιμοι αλγόριθμοι **FC**, **MAC**, **MIN-CONFLICTS**. Έχουν γίνει κάποιες μικρές αλλαγές στην συνάρτηση __init__ της κλάσης *CSP*, καθώς οι αλλαγές αυτές χρησιμοποιούνται στον αλγόριθμο **FC-CBJ**. Αλλαγή έχει γίνει επίσης στην συνάρτηση *revise* και *forward_checking*, αυξάνοντας το βάρος του συγκεκριμένου περιορισμού κάθε φορά που έχουμε αποτυχία. Τα βάρη αυτά χρησιμοποιούνται στην ευρετική *dom/wdeg*. Επιπλέον, στο αρχείο αυτό υλοποιείται η ευρετική *dom/wdeg* και ο αλγόριθμος **FC-CBJ**. Η υλοποίηση του συγκεκριμένου αλγορίθμου βασίζεται στον ήδη υπάρχων αλγόριθμο *backtrack*, απλά έχουν γίνει κάποιες προσαρμογές κατάλληλα. Περισσότερες αναλυτικές πληροφορίες υπάρχουν στα αρχεία κώδικα με την μορφή σχολίων.

ΣΤΟ APXEIO "extra.py":

Γίνεται η υλοποίηση των συναρτήσεων που θα διαχειριστούν το κάθε στιγμιότυπο/αρχείο, και θα το φορτώσουν στις κατάλληλες δομές.

def rlfap_var(string):

def rlfap_dom(string, variables, var_domain): def rlfap ctr(string):

Επιπλέον, υπάρχει η συνάρτηση:

def parsing(instance):

Η οποία καλεί τις παραπάνω συναρτήσεις, για να γίνει η τελική διαχείριση κάθε αρχείου, το οποίο δίνεται ως όρισμα κατά την εκτέλεση, και επιστρέφει:

return variables, var_domain, domains, constraints, neighbors

ΣΤΟ APXEIO "main.py":

Σε αυτό το αρχείο γίνεται η εκτέλεση του κάθε αλγορίθμου, δηλαδή των FC, MAC, FC-CBJ και MIN-CONFLICTS.

Εκτυπώνεται για τον καθένα ο χρόνος εκτέλεσης, το πλήθος κόμβων και το πλήθος ελέγχων συνέπειας.

Επίσης, υλοποιείται η συνάρτηση:

def check con(A, a, B, b):

Υπεύθυνη για τον έλεγχο των περιορισμών ανάμεσα σε δύο μεταβλητές.

ΠΡΟΒΛΗΜΑ_2:

1)

Έχουμε 3 ύποπτους:

- 1. Γιάννης
- 2. Μαρία
- 3. Όλγα

```
Μεταβλητές:
Χρόνος Ανάγνωσης, i=1,2,3
Χρόνος Αποχώρησης, i=1,2,3
ΧρόνοςΜετάβασηςΣεΔωμάτιο, i=1,2,3
ΧρόνοςΜετάβασηςΣεΧρηματοκιβώτιο,, i=1,2,3
Χρόνος Παραβίασης, i=1,2,3
Περιορισμοί:
ΧρόνοςΑνάγνωσης = 30 λεπτά, i=1,2,3
0 < ΧρόνοςΑποχώρησης,, i=1,2,3
5 λεπτά <= ΧρόνοςΜετάβασηςΣεΔωμάτιο; <= 10 λεπτά, i=1,2,3
20 λεπτά <= ΧρόνοςΜετάβασηςΣεΧρηματοκιβώτιο; <= 30 λεπτά, i=1,2,3
45 λεπτά <= ΧρόνοςΠαραβίασης; <= 90 λεπτά, i=1,2,3
Επίσης αφού η ανάγνωση ξεκινάει στις 9:00 και τελειώνει στις 11:00 θα ισχύει:
(Χρονός Αποχώρησης; + Χρόνος Μετάβασης Σεχρηματοκιβώτιο; + Χρόνος Παραβίασης;) <= 120 λεπτά
2)
Χρόνος από τις 9:00 έως 11:00 = 120 λεπτά
Χρόνος Παραβίασης<sub>min</sub> = 45 λεπτά
ΧρόνοςΜετάβασηςΣεΧρηματοκιβώτιο<sub>min</sub> = 20 λεπτά
Ισχύει:
(Χρονός Αποχώρησης; + Χρόνος Μετάβασης Σεχρηματοκιβώτιο; + Χρόνος Παραβίασης;) <= 120 λεπτά
```

⇔ ΧρόνοςΑποχώρησης_i + 20 λεπτά + 45 λεπτά <= 120 λεπτά ⇔ ΧρόνοςΑποχώρησης_i <= 55 λεπτά

Σειρά παρουσίασης: Γιάννης, Μαρία, Όλγα

Κάθε ανάγνωση έχει διάρκεια 30 λεπτά

Επομένως προκύπτει:

Χρόνος Αποχώρησης 1 = 30 λεπτά

Χρόνος Αποχώρησης 2 = 60 λεπτά

ΧρόνοςΑποχώρησης₃ = 90 λεπτά

Τελικά, κλέφτης είναι ο Γιάννης, καθώς ικανοποιεί όλους τους περιορισμούς.

Συνεπές (consistent) CSP αφού έχει μια τουλάχιστον λύση.

3)

Η μέθοδος FC-CBJ.

Το πρόβλημα μας περιλαμβάνει πολλούς χρονικούς περιορισμούς και συγκρούσεις, επομένως με την χρήση της FC-CBJ μπορούμε να αποφύγουμε την αδράνεια σε ένα μεγάλο χώρο αναζήτησης. Αφού συνδυάζει την FC μέθοδο, θα αποφύγει μη εφικτές τιμές για πιο γρήγορη αναζήτηση της λύσης.

ΠΡΟΒΛΗΜΑ 3:

1)

Μεταβλητές και Πεδία:

A1 -> {9,10,11}

A2 -> {9,10,11}

A3 -> {9,10,11}

A4 -> {9,11}

A5 -> {9,10,11}

Περιορισμοί:

 $\{A1 > A3\}$

 $\{A5 < A3 < A4\}$

{A2 <> A1 KAI A2 <> A4}

{A4 <> 10}

2)

3)

A1 = 9 => Πεδία Γειτόνων: {10,11} και {} => Συνεχίζουμε A1: {10,11}

 $A1 = 10 => {9,11} \kappa \alpha \iota {9}$

Εξετάζουμε:

(Α2,Α4): Συνεπής, (Α3,Α4): Συνεπής, (Α3,Α5): Μη Συνεπής => Συνεχίζουμε Α1: {11}

Εξετάζουμε:

(Α2,Α4): Συνεπής, (Α3,Α4): Συνεπής, (Α3,Α5): Συνεπής

Εξετάζουμε:

(Α4, Α3): Συνεπής

 $A3 = 9 \Rightarrow \{11\}$ και $\{\} \Rightarrow Συνεχίζουμε A3: \{10\}$

Α3 = 10 => {11} και {9}

Επομένως, η λύση είναι:

A1 = 11, A2 = 9, A3 = 10, A4 = 11, A5 = 9.