ALGEBRA LINIOWA I GEOMETRIA gr. 11 -- kolokwium nr 1 --

Nr indeksu	Nr strony
464921	2
426092	3
464922	4
464909	5
464969	6
464906	7
464851	8
464966	9
464929	10
464967	11
464957	12
464912	13
464918	14
425077	15
463045	16
464915	17
464913	18
450737	19
464883	20
464835	21
469272	22
464981	23
464980	24

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 61^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464921 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- \circ przedstawić permutację σ w postaci iloczynu transpozycji;
- o określić parzystość permutacji σ .

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464921 \\ -1 & m + 464921 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 426092

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 62^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 426092 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 426092 \\ -1 & m + 426092 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 63^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464922 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464922 \\ -1 & m + 464922 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464909

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 64^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464909 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464909 \\ -1 & m + 464909 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464969

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 65^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464969 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464969 \\ -1 & m + 464969 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464906

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 66^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464906 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464906 \\ -1 & m + 464906 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464851

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 67^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464851 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464851 \\ -1 & m + 464851 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464966

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 68^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464966 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464966 \\ -1 & m + 464966 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 69^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464929 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464929 \\ -1 & m + 464929 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 70^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464967 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

 \circ znaleźć postać zredukowaną macierzy A;

- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464967 \\ -1 & m + 464967 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464957

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 71^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464957 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464957 \\ -1 & m + 464957 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 72^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464912 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464912 \\ -1 & m + 464912 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 73^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464918 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464918 \\ -1 & m + 464918 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 74^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 425077 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 425077 \\ -1 & m + 425077 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 75^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 463045 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 463045 \\ -1 & m + 463045 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 76^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464915 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464915 \\ -1 & m + 464915 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 77^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464913 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464913 \\ -1 & m + 464913 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 78^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 450737 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 450737 \\ -1 & m + 450737 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 79^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464883 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464883 \\ -1 & m + 464883 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 80^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464835 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464835 \\ -1 & m + 464835 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 469272

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 81^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 469272 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 469272 \\ -1 & m + 469272 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464981

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 82^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464981 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464981 \\ -1 & m + 464981 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$

Numer indeksu: 464980

Algebra liniowa i geometria, semestr letni 2021, kolokwium nr 1

Zadanie 1 (15 pkt.). Za pomocą rozszerzonego algorytmu Euklidesa wyznaczyć 83^{-1} w pierścieniu $\mathbb{Z}/997$.

Zadanie 2 (15 pkt.). Dana jest macierz

$$A = \begin{bmatrix} 0 & 2 & 0 & -400000 \\ 1 & -1 & 7 & 464980 \\ 0 & 3 & 0 & -600000 \end{bmatrix} \in M_{3\times 4}(\mathbb{R}).$$

- \circ znaleźć postać zredukowaną macierzy A;
- \circ podać rząd macierzy A;
- \circ znaleźć postać całkowicie zredukowaną macierzy A.

Zadanie 3 (15 pkt.). Dana jest permutacja

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 5 & 4 & 1 & 6 & 7 & 2 & 9 \end{pmatrix} \in S_9.$$

- \circ przedstawić permutację σ w postaci iloczynu cykli rozłącznych;
- o przedstawić permutację σ w postaci iloczynu transpozycji;
- \circ określić parzystość permutacji $\sigma.$

Zadanie 4 (10 pkt.). Rozwiązać następujące równanie w S_3

$$(1,2)x(2,3) = (1,2,3).$$

Zadanie 5 (15 pkt.). Zbadać rząd macierzy

$$M = \begin{bmatrix} 1 & m - 464980 \\ -1 & m + 464980 \end{bmatrix} \in M_{2 \times 2}(\mathbb{Q})$$

w zależności od parametru $m \in \mathbb{Q}$.

Zadanie 6 (15 pkt.). Za pomocą operacji elementarnych znaleźć macierz odwrotną do macierzy (pamiętać o sprawdzeniu wyniku!)

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 4 \\ 0 & 3 & 7 \end{bmatrix} \in M_3(\mathbb{Q}).$$