NOIP 2018

Day 1

dy0607

October 5, 2018

题目名称	Merchant	Equation	Rectangle
源文件名	merchant	equation	rectangle
输入文件名	merchant.in	equation.in	rectangle.in
输出文件名	merchant.out	equation.out	rectangle.out
题目类型	传统型	传统型	传统型
每个测试点时限	1.0s	1.5s	2.0s
空间限制	512MB	512MB	512MB
编译命令	-lm - O2 - std = c + +11		

Notes:

- 1. 评测在Ubuntu16.04(64bit)上进行,评测时开启无限栈;
- 2. 评测机配置为Intel® Pentium(R) CPU G2030 @ 3.00GHz × 2, 内存4GB;
- 3. 遇到原题请不要大喊"这不是xx上的xx题吗",可以AK后提前离场;
- 4. 输入量较大,建议使用较快的读入方式。
- 5. 题目难度可能与顺序无关。

1 Merchant

1.1 Description

有n个物品,第i个物品有两个属性 k_i, b_i ,表示它在时刻x的价值为 $k_i \times x + b_i$.

当前处于时刻0,你可以选择不超过m个物品,使得存在某个整数时刻 $t,t \geq 0$,你选择的所有物品的总价值大于等于S.

给出S, 求t的最小值。

1.2 Input

从文件merchant.in中读入数据.

第一行三个整数n, m, S.

接下来n行, 第i行两个整数 k_i, b_i .

1.3 Output

输出到文件merchant.out中.

一行一个整数表示答案.

1.4 Sample1

1.4.1 Input

3 2 100

3 9

-2 50

4 1

1.4.2 Output

13

1.4.3 Explanation

选择1,3号物品。

1.5 Sample2

1.5.1 Input

- 3 2 100
- -149
- -2 50
- 1 -998244353

1.5.2 Output

998244453

1.5.3 Explanation

选择3号物品。

1.6 Sample3

见选手目录下的merchant/merchant3.in与merchant/merchant3.ans.

1.7 Sample4

见选手目录下的merchant/merchant4.in与merchant/merchant4.ans.

1.8 Subtasks

对于所有数据,有 $1 \le m \le n \le 10^6, -10^9 \le b_i \le 10^9, -10^6 \le k_i \le 10^6, 0 \le S \le 10^{18}.$ 数据保证有解,且答案不超过 10^9 。

- Subtask1(22%), $n \le 20$.
- Subtask2(36%), $n \le 10^5, 0 \le k_i \le 10^4$.
- Subtask3(8%), $k_i \leq 0$.
- Subtask4(12%), $n \le 10^5$.
- Subtask5(22%), 没有特殊的约束。

NOIP 2018 Simulation 2 EQUATION

2 Equation

2.1 Description

有一棵n个点的以1为根的树,以及n个整数变量 x_i 。树上i的父亲是 f_i ,每条边 (i,f_i) 有一个权值 w_i ,表示一个方程 $x_i+x_{f_i}=w_i$,这n-1个方程构成了一个方程组。

现在给出q个操作,有两种类型:

- 1uvs,表示询问加上 $x_u + x_v = s$ 这个方程后,整个方程组的解的情况。具体来说,如果方程有唯一解,输出此时 x_1 的值;如果有无限多个解,输出 \inf ;如果无解,输出none. 注意每个询问是独立的.
- 2uw,表示将 w_u 修改为w.

2.2 Input

从文件equation.in中读入数据.

第一行两个整数n,q。

接下来n-1行,第i行有两个整数 f_{i+1} 和 w_{i+1} 。

接下来q行,每行表示一个操作,格式见问题描述。

2.3 Output

输出到文件equation.out中.

对于每个询问输出一行表示答案。

2.4 Sample1

2.4.1 Input

2 7

1 4

1 1 2 5

1 1 2 4

1 1 1 3

1 2 2 6

2 2 3

1 2 2 10

1 2 2 -10

2.4.2 Output

none

inf

none

1

-2

8

2.5 Subtasks

对于所有数据,有 $1 \le n, q \le 10^6, 1 \le f_i \le i-1, 1 \le u, v \le n, -10^3 \le w, w_i \le 10^3, -10^9 \le s \le 10^9.$

- Subtask1(3%), $n \le 10, q = 0$.
- Subtask2(18%), n = 2.
- Subtask3(32%), $n, q \le 10^3$.
- Subtask4(33%), $n, q \le 10^5$.
- Subtask5(14%), 没有特殊的约束.

3 Rectangle

3.1 Description

平面上有n个点,第i个点的坐标为 X_i,Y_i 。对于其中的一个非空点集S,定义f(S)为一个最小矩形,满足:

- 覆盖S中所有的点(在边界上也算覆盖);
- 边与坐标轴平行。

求所有不同的f(S)的面积和对 10^9+7 取模的结果。两个矩形被认为是不同的,当且仅当它们顶点坐标不同。

3.2 Input

```
从文件rectangle.in中读入数据. 第一行一个整数n。
```

接下来n行,每行两个整数 X_i, Y_i 。

3.3 Output

输出到文件rectangle.out中. 一行一个整数表示答案。

3.4 Sample1

3.4.1 Input

4

1 2

3 1

451

3.4.2 Output

45

3 RECTANGLE

3.4.3 Explanation

有8个面积大于0的不同矩形,以下是它们左下角和右上角的坐标:

- (1, 1), (3, 2); (1, 1), (4, 4); (1, 1), (5, 2); (1, 1), (5, 4)
- (1, 2), (4, 4); (3, 1), (4, 4); (3, 1), (5, 4); (4, 1), (5, 4)

3.5 Sample2

见选手目录下的rectangle/rectangle2.in与rectangle/rectangle2.ans.

3.6 Sample3

见选手目录下的rectangle/rectangle3.in与rectangle/rectangle3.ans.

3.7 Subtasks

对于所有数据,满足 $2 \le n \le 10^4, 1 \le X_i, Y_i \le 2500$,没有重复的点。

- Subtask1(13%), $n \le 18$.
- Subtask2(9%), $n \le 50$.
- Subtask3(25%), $n \le 300$.
- Subtask4(21%), $n \le 2500, X_i \ne X_j, Y_i \ne Y_j$.
- Subtask5(19%), $n \le 2500$.
- Subtask6(13%), 没有特殊的约束。