Math 453 Spring 2019, Midterm 1

Work the problems below. Write clearly and in complete sentences. Justify your work. Believe that you are amazing and capable of anything, and remember, it is not a lie if you believe it!

Problem 1. (10 Points) State the following definitions:

- (a) Given a group G, for a subset $S \subset G$ to be a subgroup.
- (b) Given groups G, H, for a function $\varphi \colon G \to H$ to be a homomorphism.

Problem 2. (10 points) State whether the following statement is "false" or "true". You do not need to justify your answer.

- (a) If $K \triangleleft H$ and $H \triangleleft G$, then $K \triangleleft G$.
- (b) If $\varphi : G \to H$ is a homomorphism, then $\varphi(1_G) = 1_H$.
- (c) If $\varphi \colon G \to H$ and $\psi \colon H \to K$ are homomorphisms, then $\psi \circ \varphi \colon G \to K$ is a homomorphism.
- (d) If $H, K \leq G$ are subgroups, then $H \cup K$ is a subgroup.

Problem 3. (10 points) Let G, H be group and let $\varphi \colon G \to H$ be a homomorphism. Prove that the following are equivalent:

- (a) φ is one-to-one (or injective).
- (b) $\ker(\varphi) = \{1\}.$

Problem 4. (10 points) Let G be a finite group and let $S \subset G$ be a non-empty subset. We say that S is **closed under multiplication** if for every $s, t \in S$, we have $st \in S$. Prove that if S is closed under multiplication, then S is a subgroup of G.

Problem 5. (10 points) Let G be a group, $H \triangleleft G$ a normal subgroup, and $K \leq G$ a subgroup.

(a) Prove that

$$HK = \{hk : h \in H, k \in K\}$$

is a subgroup of *G*.

(b) Prove that if K is also normal in G, then HK is normal in G.

Problem 6. (10 points) Let G be a group and let $H, K \leq G$ be subgroups. Define

$$HK = \{hk : h \in H, k \in K\}, KH = \{kh : k \in K, h \in H\}.$$

Prove the following are equivalent:

- (a) HK is a subgroup of G.
- (b) HK = KH.