

Kontest 2 - 29.09.2022

Rozwiązania Pierwszaki

Zadanie 1. Dany jest trapez ABCD o podstawach AB i CD. Okręgi o średnicach BC i DA przecinają się w punktach P i Q. Przekątne trapezu przecinają się w punkcie S. Wykaż, że punkty P,Q i S leżą na jednej prostej.

Rozwiązanie: Oznaczmy okrąg o średnicy AD przez ω_1 , a o średnicy BC przez ω_2 . Niech przecięcie ω_2 z prostą AC oznaczone będzie przez K, a przecięcie ω_1 z prostą BD przez L. Przez $\wp(X,\omega)$ rozumieć będziemy potęgę punktu X względem okręgu ω .

Widzimy, że prosta PQ jest osią potęgową okręgów ω_1 i ω_2 . Zatem będziemy chcieli wykazać, że S również leży na tej osi, czyli: $\wp(S,\omega_1)=\wp(S,\omega_2)$. Zatemszimy, że: $\angle ALD=\frac{\pi}{2}$, zatem również $\angle ALB=\frac{\pi}{2}$. Analogicznie $\angle AKB=\frac{\pi}{2}$. Zatem czworokąt ABLK jest cykliczny. Stąd $\angle SKL=\pi-\angle AKL=\angle ABS=\angle SDC$. Analogicznie $\angle SLK=\angle SCD$. Zatem trójkąty SKL i SDC są podobne, co oznacza, że $\frac{|SK|}{|SL|}=\frac{|SD|}{|SC|}\iff |SK||SC|=|SL||SD|\iff \wp(S,\omega_1)=\wp(S,\omega_2)$.

Zadanie 2. Dany jest nieskończony ciąg liczb całkowitych $0 < a_1 < a_2 < \dots$ Liczby pierwsze p_1, p_2, \dots spełniają podzielność $p_n \mid a_n$ dla wszystkich $n \ge 1$. Ponadto zachodzi $a_n - a_k = p_n - p_k$ dla wszystkich $n, k \ge 1$.

Wykaż, że każdy element ciągu (a_n) jest liczbą pierwszą.

Rozwiązanie: Załóżmy, że w ciągu (p_n) jakieś dwie liczby pierwsze się powtarzają tj. $p_i = p_j$ dla pewnych i < j. Wtedy $a_j - a_i = p_j - p_i \Rightarrow a_i = a_j$. Jednak $a_j > a_i$, więc wszystkie liczby pierwsze w ciągu (p_n) są różne.

Skoro dla każdego n zachodzi: $p_n|a_n$, to znaczy, że dla każdego n istnieje b_n takie, że $a_n=p_n\cdot b_n$. Równość z treści zadania przybiera wtedy postać:

$$b_n p_n - b_k p_k = p_n - p_k \Rightarrow p_n (b_n - 1) = p_k (b_k - 1)$$

dla wszystkich $n, k \ge 1$. Załóżmy teraz, że dla pewnego i zachodzi $b_i \ne 1$. Wtedy dla każdego $j \ne i$ mamy: $p_j(b_j - 1) = p_i(b_i - 1)$, czyli $p_j|p_i(b_i - 1) \Rightarrow p_j|b_i - 1$. Zatem liczba $b_i - 1$ dzieli się przez nieskończenie wiele różnych liczb pierwszych, co stoi w sprzeczności z założeniem $b_i - 1 \ne 0$.

Rudki 29.09.2022 Kontest 2

Zadanie 3. Niech w trójkącie ABC liczby h_a, h_b, h_c oznaczają długości wysokości opuszczonych na boki długości a, b, c odpowiednio. Uzasadnij, że

$$(a+b+c)(h_a+h_b+h_c) \geqslant 18P_{ABC}$$

Rozwiązanie: Rozważmy dwa ciągi: $(\sqrt{a}, \sqrt{b}, \sqrt{c})$ i $(\sqrt{h_a}, \sqrt{h_b}, \sqrt{h_c})$. Z nierówności Cauchy'ego-Schwarza:

$$(a+b+c)(h_a+h_b+h_c) \ge (\sqrt{ah_a} + \sqrt{bh_b} + \sqrt{ch_c})^2 = (3\sqrt{2P_{ABC}})^2 = 18P_{ABC}.$$

Zadanie 4. Skończony zbiór liczb rzeczywistych M ma przynajmniej 4 elementy. Istnieje funkcja $f: M \mapsto M$ o następujących własnościach.

- Istnieje przynajmniej jedno $a \in M$ takie, że $f(a) \neq a$.
- Dla każdego $b \in M$ istnieje dokładnie jedno $a \in M$ takie, że f(a) = b.
- Dla wszystkich $a \neq b \in M$ zachodzi nierówność $ab \leq f(a)f(b)$.

Wykaż, że suma elementów w tym zbiorze wynosi 0.

Rozwiązanie: Oznaczmy liczby w zbiorze M przez $a_1, a_2, ..., a_n$, gdzie n to rozmiar zbioru M. Będziemy oznaczać $b_i = f(a_i)$ dla $1 \le i \le n$. Sumując nierówność z treści zadania po wszystkich parach elementów z M otrzymujemy:

$$\sum_{1 \leqslant i < j \leqslant n} a_i a_j \leqslant \sum_{1 \leqslant i < j \leqslant n} b_i b_j.$$

Zauważmy jednak, że:

$$\sum_{1 \leqslant i < j \leqslant n} b_i b_j = \sum_{1 \leqslant i < j \leqslant n} a_i a_j,$$

ponieważ, dzięki bijektywności funkcji f, w sumie po lewej stronie równania iloczyn każdej pary elementów z M znajdzie się dokładnie raz. Zatem wszystkie zsumowane nierówności muszą być równościami, czyli $a_ia_j=b_ib_j$ dla wszyskich $1 \le i < j \le n$.

Rozpatrzmy, co się dzieje, gdy któryś element M jest równy zero (B.S.O. przyjmijmy $a_1 = 0$). Z własności funkji f wiemy, że w tej sytuacji jest dokładnie jedno i, takie że $b_i = 0$. Gdyby $i \neq 1$, to biorąc $j \neq 1 \land j \neq i$ (zbiór M ma

co najmniej cztery elementy) otrzymalibyśmy $a_1a_j = b_1b_j$. Jednak lewa strona równania byłaby równa zeru, a prawa niezerowa, czyli jeśli w zbiorze M występuje element zerowy, to funkcja f musi przyporządkowywać mu zero.

Rudki 29.09.2022

Rozpatrzmy teraz wszystkie trójki $(a_i, a_j a_k)$ niezerowych elementów M. Wiemy, że:

$$\begin{aligned}
a_i a_j &= b_i b_j \\
a_i a_k &= b_i b_k \\
a_j a_k &= b_j b_k.
\end{aligned}$$

Mnożąc pierwsze dwie równości i dzieląc przez trzecią (zagwarantowaliśmy wcześniej, że unikniemy dzielenia przez zero) otrzymujemy:

$$a_i^2 = b_i^2,$$

dla wszystkich i, takich że $a_i \neq 0$. Wiemy, że dla co najmniej jednego i zachodzi $a_i \neq b_i$, więc $b_i = -a_i$. Gdyby teraz dla niezerewego a_j zachodziło $b_j = a_j$, to otrzymalibyśmy, że $a_i a_j = b_i b_j = -a_i a_j$, co jest niemożliwe. Zatem dla wszystkich niezerowych a_i mamy $b_i = -a_i$. Stąd:

$$\sum_{1 \leqslant i \leqslant n} a_i = \sum_{1 \leqslant i \leqslant n} b_i = -\sum_{1 \leqslant i \leqslant n} a_i.$$

Co oczywiście oznacza, że suma wszyskich elementów M wynosi zero.