

Tartalom

- > Programtranszformációk
- Másolással összeépítés
- Kiválogatás + összegzés
- Kiválogatás + maximum-kiválasztás
- ➤ Maximum-kiválasztás + kiválogatás
- ► Eldöntés + megszámolás
- Keresés + megszámolás
- ➤ Keresés + másolás
- ► <u>Eldöntés + eldöntés</u>

Programtranszformáció: Az algoritmus ekvivalens átalakítása, melynek célja

- hatékonyabbra írás
- egyszerűsítés
- megvalósíthatóság

Egyszerűsítés, hatékonyabbra írás:

Az origótól legmesszebb levő p_{Max} pont (p_{1..N}∈Pont^N, Pont=X×Y)

A négyzetgyök monoton függvény, emiatt a maximum meghatározásához nem szükséges.

Egyszerűsítés, hatékonyabbra írás:

Az origótól legmesszebb levő p_{Max} pont (p_{1..N}∈Pont^N, Pont=X×Y)

		v amozo
Max:=1; $\max \text{Ért}:=p[1].x^2+p[1].y^2$		i: Egész maxÉrt: Valós
i=2N		
$p[i].x^2+p[i].y^2>m$	axÉrt /n	
Max:=i		
$\max \acute{E}rt:=p[i].x^2+p[i].y^2$		

Itt még ugyanazt a képletet többször számítjuk ki (a ciklusban).

i:Egész

maxÉrt,

táv:Valós

Többszörös kiszámítás elkerülése:

Az origótól legmesszebb levő p_{Max} pont (p_{1..N}∈Pont^N, Pont=X×Y)

Változó Max:=1; $\max \text{ \'Ert:=p[1].x^2+p[1].y^2}$ i=2..N $t\acute{a}v:=p[i].x^2+p[i].y^2$ táv>maxÉrt Max = imaxÉrt:=táv

Párhuzamos értékadás kifejtése:

$$a,b,c:=f(x),g(x),h(x)$$

Egymás utáni kiszámításra bontható, ha az összefüggés körmentes:

$$a := f(x); b := g(x); c := h(x)$$

Párhuzamos értékadás kifejtése:

segédváltozóval egymás utáni kiszámításra bontható, ha az összefüggés kört tartalmaz:

segéd:=a; a:=b; b:=c; c:=segéd

Változó segéd:TH

Ciklusok összevonása:

Azonos lépésszámú ciklusok összevonhatóak, ha függetlenek

egymástól.

S:=	=0
	i=1N
	S:=S+X[i]
P:=1	
	i=1N
	P:=P*X[i]

Elágazások összevonása:

Azonos feltételű elágazások összevonhatóak, ha függetlenek egymástól.

a>b		
Max:=a	Max:=b	
a>b		
Min:=b	Min:=a	

∖ a>b		N
Max:=a	Max:=b	
Min:=b	Min:=a	

Függetlenek, ha az 1. feltétel egyik ágán sem változik meg sem az ,a', sem a ,b' változó (kifejezés). Gondolja meg: mikor nem független a két elágazás, ha "feltétel(a,b)" függvény a közös feltétel?

2022.10.20. 9:25

Elágazások összevonása:

Kizáró feltételű, teljes (egyágú) elágazások is összevonhatók, ha függetlenek egymástól.

a>b		/N
Max:=a	Max:=b	

Ciklusok és elágazások összevonása:

Azonos lépésszámú ciklusok, bennük kizáró feltételű elágazásokkal is összevonhatók, ha függetlenek egymástól.

		Válto
max:=1; min:=1		i:E
i=21	N	
X[max] < X[i]	X[min]>X[i]	
max:=i	min:=i	

	max:=1			
	i=2N			
'álto	X[max] < X[i]			
i:E	max:=i —			
	min:=1			
	i=2N			
	X[min]>X[i]	N		
	min:=i —			

Függvény behelyettesítése:

Függvényhívás helyére egy (egyszerű) függvény képlete (a függvény törzse) behelyettesíthető.

Utasítás kiemelése ciklusból:

A ciklus magjából a ciklustól független utasítások kiemelhetők. (A fordítók ilyen optimalizálást többnyire el tudnak végezni.)

"Keresés, eldöntés → kiválasztás" transzformáció:

A vizsgálandó sorozat végére helyezzünk egy T tulajdonságú elemet (=Telem) → biztosan találunk ilyet!

i:Egész

Változó i:=1 i≤N és nem T(X[i]) i:=i+1Van:=i<N

Változó i:=1; X[N+1]:=Telem nem T(X[i]) i = i + 1Van:=i≤N

i:Egész

Másolással összeépítés

Specifikáció:

▶ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$

≻ Kimenet: Y_{1..N}∈H₂^N

> Előfeltétel: -

> Utófeltétel: ∀i(1≤i≤N): Y_i=f(X_i)

A **másolás** programozási tétellel összeépítés minden programozási tételre működik.

Csupán annyi a teendő, hogy a bemenetben szereplő $X_{1..N} \in H^N$ sorozat X_i elemei helyett i-edik feldolgozandó elemként az $f(X_i)$ -t kell írni, pl.

$$\sum_{i=1}^{N} X_{i} \rightarrow \sum_{i=1}^{N} f(X_{i}) \text{ vagy } \max_{i=1}^{N} X_{i} \rightarrow \max_{i=1}^{N} f(X_{i})$$

... a kimenetben:

$$\begin{array}{ccc} \underset{i=1}{\overset{N}{\text{Kiv\'alogat}}} X_i & \rightarrow & \underset{T(X_i)}{\overset{N}{\text{Kiv\'alogat}}} f(X_i) \\ & \underset{T(X_i)}{\overset{i=1}{\text{Kiv\'alogat}}} & \underset{T(X_i)}{\overset{i=1}{\text{Kiv\'alogat}}} \end{array}$$

Másolással összeépítés

A másolás programozási tételnek volt azonban egy változata, ami új lehetőségeket teremt:

Utófeltétel:
$$\forall i (1 \le i \le N): Y_{p(i)} = X_i$$
,

ahol p(i) lehet pl. N-i+1, ami éppen a sorozat elemei sorrendje megfordítását jelenti.

Specifikáció:

➤ Bemenet: N∈N

 $X_{1..N} \in H_1^N$

 $f:H_1 \rightarrow H_2$ ➤ Kimenet: Y_{1 N}∈H₂^N

Előfeltétel: –

➤ Utófeltétel: $\forall i(1 \le i \le N)$: $Y_{p(i)} = f(X_i)$

Több programozási tétel megoldása kihasználta az elemek sorrendjét, pl. a lehetséges megoldások közül az elsőt adta meg, vagy az összes várt elemet a bemenet sorrendjében adta meg.

Ez az összeépítés lehetőséget teremt a hátulról feldolgozásra.

Másolás + keresés

Feladat:

Adott tulajdonságú utolsó elem keresése.

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}$, $X_{1.N} \in \mathbb{H}^N$, $T: \mathbb{H} \to \mathbb{L}$
- \triangleright Kimenet: Van \in L, Ind \in N
- ➤ Előfeltétel: –
- ► Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$ és Van $\rightarrow 1 \le Ind \le N$ és $T(X_{Ind})$ és $\forall i(Ind < i \le N)$: nem $T(X_i)$

Specifikáció:

- > Bemenet: N∈N, $X_{1..N}$ ∈H^N, T:H→L
- ≻ Kimenet: Van∈L, Ind∈N, Ért∈H
- > Előfeltétel: -
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Van→1≤Ind≤N és T(X_{Ind}) és Ért=X_{Ind}

Másolás + keresés

Feladat:

Adott tulajdonságú utolsó elem keresése.

Másolás + keresés

Vezessük be a j=N-i+1 jelölést! Így i=1 esetén j=N, i növelése esetén j csökken, $i\leq N$ helyett $N-j+1\leq N$, azaz $1\leq j$ lesz. Ezzel iről j-re áttérve a megoldás a hátulról keresésre:

Feladat:

Adott tulajdonságú elemek összege – feltételes összegzés.

Specifikáció:

- ► Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{Z}^N, T: \mathbb{Z} \to \mathbb{L}$
- \gt Kimenet: $S \in \mathbb{Z}$
- ➤ Előfeltétel: –
- $Utófeltétel: S = \sum_{i=1}^{N} X_{i}$

Specifikáció (összegzés):

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: S∈H

Előfeltétel: –

> Utófeltétel: S=∑X;

Specifikáció_a:

$$\leftrightarrow$$
 $S = \sum_{i=1}^{Db} X_{p(i)}$, ahol $p(i) := Y_i$

Specifikáció:

Bemenet: N∈N, X∈Z^N, T:Z→L

- ≻ Kimenet: S∈Z
- > Előfeltétel: -
- > Utófeltétel:S=∑X;

> Utófeltétel_b: (Db,Y)= Kiválogat
$$X_i$$

p megfelelő, hiszen

- 1. $\Re_p = [1..N]$ és 2. $p(i) < p(i+1) \rightarrow injektív$

$$S = \sum_{i=1}^{Db} Y_i$$

1. megoldási ötlet_a:

Válogassuk ki az adott tulajdonságúakat, majd utána adjuk

össze őket! Változó

1. megoldási ötlet_b:

Válogassuk ki az adott tulajdonságúakat, majd utána adjuk

össze őket! Változó

2. megoldási ötlet:

Kiválogatás helyett azonnal adjuk össze a megfelelő elemeket!

→ nincs érték-/index-feljegyzés (Y-ban) + nincs számlálás (Db-ben)

Feladat:

Adott tulajdonságú elemek maximuma – **feltételes**

maximumkeresés.

Specifikáció:

 \triangleright Bemenet: $N \in \mathbb{N}, X_{1...N} \in \mathbb{H}^{\mathbb{N}},$

 $T:H\rightarrow L$

 \gt Kimenet: $Van \in L$, $MaxI \in \mathbb{N}$

➤ Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

 $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$

 $\forall i(1 \le i \le N): T(X_i) \longrightarrow X_{MaxI} \ge X_i$)

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i \text{ \'es}$

Maxért=X_{Max}

Specifikáció:

> Bemenet: $N \in \mathbb{N}$, $X_{1...N} \in H^{\mathbb{N}}$, $T:H \to L$

> Kimenet: Van∈L, Ind∈N, Ért∈H

> Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X¡) és

Van→1≤Ind≤N és T(X_{Ind}) és Ért=X_{Ind}

Specifikáció₂:

► Utófeltétel₂: (Van,MaxI)= $\underset{T(X_i)}{\text{MaxInd }} X_i$

Specifikáció:

▶ Bemenet: N∈N, X_{1.N}∈H^N,

T:H→L

➤ Kimenet: MaxI∈N, Van∈L

Előfeltétel: –

> Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

Van→($1 \le \text{MaxI} \le \text{N}$ és $T(X_{\text{MaxI}})$ és

 $\forall i (1 \le i \le N): T(X_i) \rightarrow X_{MaxI} \ge X_i)$

Specifikáció₃:

> Kimenet₃: $Van \in L$, $MaxI \in \mathbb{N}$, $Max\acute{E}rt \in H$

► Utófeltétel₃: (Van, MaxI, MaxÉrt) = $\underset{T(X_i)}{\text{Max}} X_i$

A megoldás felé:

Specifikáció':

N

> Utófeltétel': (Db,Y)=Kiválogat i és

$$T(X_i)$$

Van=Db>0 és

 $Van \rightarrow (1 \le MaxI \le N \text{ és } T(X_{MaxI}) \text{ és}$

$$MaxI=MaxInd X_{Y_i}$$
)

Specifikáció:

➤ Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

> Kimenet: Db∈N, Y_{1..N}∈N^N

Előfeltétel: –

> Utófeltétel: Db= $\sum_{i=1}^{\infty} 1$ és

 \forall i(1 \leq i \leq Db): T(X_{Y_i}) és $Y\subseteq$ (1,2,...,N)

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N}{\in}H^N$

> Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

∀i (1≤i≤N): X_{Max}≥X_i és

Maxért=X_{Max}

Kiolvasható az algoritmikus ötlet:

Válogassuk ki az adott tulajdonságúakat, majd válasszuk ki a maximumot, ha van értelme!

1. megoldás algoritmusa:

Válogassuk ki az adott tulajdonságúakat, majd ...!

1. megoldása algoritmusa:

..., majd válasszuk ki a maximumot, ha van értelme!

2. megoldási ötlet (és algoritmusa):
Induljunk ki a specifikációban észrevett tételekből: a kiválogatás helyett keressük meg az első T-tulajdonságút, ...

2. megoldási ötlet (és algoritmusa):

... majd válasszuk ki az ilyenek maximumát!

2. megoldási ötlet (és algoritmusa):

... majd válasszuk ki az ilyenek maximumát!

3. megoldási ötlet (és algoritmusa):

Kiválogatás, ill. keresés helyett azonnal válasszuk ki a maximumot!

Kell egy fiktív **0. elem** a maximum-kiválasztáshoz, amely **kisebb minden** "normál" elemnél.

Változó i:Egész

Maximum-kiválasztás + kiválogatás

Feladat:

Összes maximális elem kiválogatása.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1 N} \in \mathbb{H}^{N}$

 \triangleright Kimenet: $Db \in \mathbb{N}$, $MaxI_{1,N} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: N>0

> Utófeltétel₁:Db = $\sum_{i=1}^{N} 1$ és

 $\forall i (1 \le i \le Db): \forall j (1 \le j \le N): X_{MaxI_i} \ge X_j$ és $MaxI_{\subseteq}(1,2,...,N)$

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

> Kimenet: Db∈N, $Y_{1,N}$ ∈N^N

Előfeltétel: –

ightarrow Utófeltétel: Db= $\sum_{i=1 \atop T(X_i)}^{\infty} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

Y⊆(1,2,...,N)

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N} \in H^N$

> Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

∀i (1≤i≤N): X_{Max}≥X_i és

Maxért=X_{Max}

Maximum-kiválasztás + kiválogatás

Feladat:

Összes maximális elem kiválogatása.

Specifikáció:

► Bemenet: $N \in \mathbb{N}, X_{1,N} \in \mathbb{H}^N$

 \triangleright Kimenet: $Db \in \mathbb{N}$, $MaxI_{1..N} \in \mathbb{N}^{\mathbb{N}}$

➤ Előfeltétel: N>0

➤ Utófeltétel₂:MaxÉ=MaxÉrt X_i és

(Db,MaxI)=Kiválogat i

i=1

X_i=MaxÉ

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max ∈ N, MaxÉrt ∈ H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

 $\forall i \ (1 \le i \le N): X_{Max} \ge X_i \text{ \'es}$

Maxért=X_{Max}

Specifikáció:

> Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$

T:H→L

► Kimenet: $Db \in \mathbb{N}, Y_{1,N} \in \mathbb{N}^{\mathbb{N}}$

Előfeltétel: –

> Utófeltétel: $Db = \sum_{i=1 \atop T(X_i)}^{N} 1$ és

 $\forall i (1 \le i \le Db): T(X_{Y_i}) \text{ és}$

 $Y\subseteq(1,2,...,N)$

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumértéket, majd válogassuk ki a vele

egyenlőeket!

```
Specifikáció:

> Bemenet: N \in \mathbb{N}, X_{1.N} \in \mathbb{H}^{\mathbb{N}}

> Kimenet: Db \in \mathbb{N},
MaxI_{1.N} \in \mathbb{N}^{\mathbb{N}}

> Előfeltétel: N > 0
N

> Utófeltétel: MaxÉ = MaxÉrt X_i
i = 1

(Db, MaxI) = Kiválogat i
i = 1
X_i = MaxÉ
```

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N} \in H^N$

➤ Kimenet: Max∈N, MaxÉrt∈H

> Előfeltétel: N>0

> Utófeltétel: 1≤Max≤N és

∀i (1≤i≤N): X_{Max}≥X_i és

Maxért=X_{Max}

Maximum-kiválasztás + kiválogatás

1. megoldási ötlet:

Határozzuk meg a maximumértéket, majd válogassuk ki a vele

egyenlőeket!

Specifikáció:

- > Bemenet: $N \in \mathbb{N}, X_{1..N} \in H^{\mathbb{N}},$ $T:H \rightarrow L$
- \succ Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in \mathbb{N}^{\mathbb{N}}$
- > Előfeltétel: –
- > Utófeltétel: $Db = \sum_{i=1 \atop T(X_i)}^{N} 1$ és $\forall i (1 \le i \le Db) : T(X_{Y_i})$ és $Y \subseteq (1,2,\ldots,N)$

Maximum-kiválasztás + kiválogatás

Változó

MaxÉ:TH

i:Egész

2. megoldási ötlet:

A pillanatnyi maximálissal egyenlőeket azonnal válogassuk ki! Ha "feleslegeset" válogattunk ki, azt a következő maximumnál felülírjuk.

$\label{eq:specifikació:} \begin{aligned} & \text{Specifikació:} \\ & \text{Semenet:} \quad N \in \mathbb{N}, X_{1.N} \in H^{\mathbb{N}} \\ & \text{Skimenet:} \quad Db \in \mathbb{N}, \\ & \quad MaxI_{1.N} \in \mathbb{N}^{\mathbb{N}} \\ & \text{Selőfeltétel:} \quad N > 0 \\ & \text{Notifeltétel:} \quad MaxÉ = MaxÉrt \ X_i & \text{és} \\ & \quad i = 1 \\ & \quad (Db, MaxI) = Kiválogat \ i \\ & \quad X_i = MaxÉ \end{aligned}$

Db:=1; MaxI[1]:=1; MaxÉ:=X[1]		
i=2N		
	X[i]>MaxÉ	X[i]=MaxÉ
	Db:=1	Db:=Db+1
	MaxI[1]:=i	MaxI[Db]:=i
	MaxÉ:=X[i]	

Eldöntés + megszámolás

Feladat:

Van-e egy sorozatban legalább K darab adott tulajdonságú

elem?

Specifikáció:

► Bemenet: $N,K \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N$,

 $T:H \rightarrow L$

➤ Kimenet: Van∈L

► Előfeltétel: K>0

➤ Utófeltétel: $db = \sum_{i=1}^{N} 1$ és $Van = db \ge K$

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$, $T:H \rightarrow L$

T:H→L

➤ Kimenet: Van∈L

> Előfeltétel: -

> Utófeltétel: Van=∃i(1≤i≤N): T(X;)

Specifikáció:

▶ Bemenet: N∈N,

 $X_{1..N} \in H^N$,

T:H→L

≻ Kimenet: Db∈N

> Előfeltétel: –

> Utófeltétel: Db=∑i=1

 $T(X_i)$

Eldöntés + megszámolás

Változó

db,

1. megoldási ötlet:

Számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e! (Azaz valójában nincs:

eldöntés tétel!)

Specifikáció:

▶ Bemenet: N,K∈N, X_{1..N}∈H^N,

 $T:H\rightarrow L$

➤ Kimenet: Van∈L

> Előfeltétel: K>0

≻Utófeltétel:db=∑1 és Van=db≥K

Specifikáció:

▶ Bemenet: N∈N,

 $X_1 \in H^N$ T:H→L

➤ Kimenet: Db∈N

Előfeltétel: –

> Utófeltétel: Db=∑1

Db:=0i=1..NT(X[i])Db:=Db+1

Eldöntés + megszámolás

Változó

db,

i:Egész

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább!

Keresés + megszámolás

Feladat:

Egy sorozatban melyik a K. adott tulajdonságú elem (ha van

egyáltalán)?

Specifikáció:

► Bemenet: $N,K \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, T:H \to \mathbb{L}$

 \triangleright Kimenet: Van \in L, KI \in N

➤ Előfeltétel: K>0

➤ Utófeltétel: Van= $\exists i(1 \le i \le N): \sum_{j=1}^{1} 1 = K$ és

$$Van \rightarrow 1 \le KI \le N$$
 és $\sum_{j=1}^{KI} 1 = K$ és $T(X_{KI})$

Specifikáció:

- ➤ Bemenet: $N \in \mathbb{N}, X_{1..N} \in \mathbb{H}^{\mathbb{N}}, T: \mathbb{H} \rightarrow \mathbb{L}$
- > Kimenet: Van∈L, Ind∈N, Ért∈H
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X_i) és

 $Van \rightarrow 1 \le Ind \le N$ és $T(X_{Ind})$ és $Ert = X_{Ind}$

Specifikáció:

- ▶ Bemenet: N∈N,
 - $X_{1..N} \in H^N$
 - T:H→L
- ➤ Kimenet: Db∈N
- Előfeltétel: –
- > Utófeltétel: Db= $\sum_{i=1}^{N} 1$

T(X_i)

Keresés + megszámolás

1. megoldási ötlet(ek):

Az előbbi ötlet: "számoljuk meg, hogy hány adott tulajdonságú van, majd nézzük meg, hogy ez legalább K-e..." kevés, még hátra van a K. újbóli megkeresése...

A működőnek látszó ötlet: a megszámolás helyett kiválogatás

kell... és a keresésre nincs szükség...

... de helypazarló és túl hosszadalmas!

Specifikáció:

- > Bemenet: N,K∈N, X∈ H^N
- > Kimenet: Van∈L, KI∈N
- > Előfeltétel: K>0
- ▶ Utófeltétel: Van=∃i(1≤i≤N): $\sum_{j=1}^{i} 1 = K$ és Van→1≤KI≤N és $\sum_{i=1}^{KI} 1 = K$ és T(X_{KI})

Specifikáció: > Bemenet: $N,K \in N, X_{1..N} \in H^N, T:H \rightarrow L$ > Kimenet: $Van \in L, KI \in N$ > Előfeltétel: K > 0> Utófeltétel: $Van = \exists i (1 \le i \le N): \sum_{j=1}^{i} 1 = K$ és $Van \rightarrow 1 \le KI \le N$ és $\sum_{T(X_j)}^{NI} 1 = K$ és $T(X_{KI})$ Specifikáció: > Bemenet: $N \in N, X_{1..N} \in H^N, T:H \rightarrow L$ > Kimenet: $Van \in L, Ind \in N, Ért \in H$ > Előfeltétel: -> Utófeltétel: $Van = \exists i (1 \le i \le N): T(X_i)$ és $Van \rightarrow 1 \le Ind \le N$ és $T(X_{Ind})$ és $T(X_{Ind})$ és $T(X_{Ind})$ és $T(X_{Ind})$ és $T(X_{Ind})$ Specifikáció: > Bemenet: $T(X_{Ind})$

 $X_{1..N} \in H^N$

T:H→L

≻ Kimenet: Db∈N> Előfeltétel: –

> Utófeltétel: Db=∑1

i=1..N

Db:=Db+1

T(X[i])

i≤N és nem T(X[i])

Van

Db:=0

i = i + 1

2022.10.20. 9:25

Van:=i≤N

Ind:=i

i:=1

Keresés + megszámolás

2. megoldási ötlet:

Ha már találtunk K darab adott tulajdonságút, akkor ne nézzük tovább: keresés a K.-ig. Változó

Keresés + megszámolás

2. megoldási ötlet:

Ha megtaláltuk a K.-at, akkor jegyezzük föl az indexét!

Keresés + másolás

Feladat:

Egy sorozat első T tulajdonságú eleme előtti elemei kiválogatása (az összes, ha nincs T tulajdonságú).

Specifikáció:

- > Bemenet: $N \in \mathbb{N}, X_1 \in \mathbb{H}^N, T: \mathbb{H} \to \mathbb{L}$
- \triangleright Kimenet: $Db \in \mathbb{N}, Y_1 \in \mathbb{N}$
- ➤ Előfeltétel: –
- ➤ Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$ és $Van \rightarrow (0 \le Db < N$ és $T(X_{Db+1})$) és $nem\ Van \rightarrow Db = N$ és $\forall i(1 \le i \le Db)$: ($nem\ T(X_i)$ és $Y_i = X_i$)

Specifikáció:

- > Bemenet: N∈N, $X_{1..N}$ ∈H^N, T:H→L
- ≻ Kimenet: Van∈L, Ind∈N, Ért∈H
- Előfeltétel: –
- > Utófeltétel: Van=∃i (1≤i≤N): T(X;) és

Van→1≤Ind≤N és T(X_{Ind}) és Ért=X_{In}

Specifikáció:

➤ Bemenet: $N,K \in \mathbb{N}, X_{1..N} \in \mathbb{H}^{\mathbb{N}}, T: \mathbb{H} \rightarrow \mathbb{L}$ ➤ Kimenet: Db∈N, Y_{1 N}∈H^N

Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i) és Van→(0≤Db<N és $T(X_{Db+1})$) és

nem Van→Db=N és $\forall i (1 \le i \le Db)$: (nem $T(X_i)$ és $Y_i = X_i$) Keresés + másolás

1. megoldási ötlet:

Az első ötlet: "keressük meg az első adott tulajdonságú elemet, majd az előtte levőket másoljuk le..."

... hosszadalmas!

Specifikáció: > Bemenet: $N,K \in N, X_{1:N} \in H^N, T:H \rightarrow L$

➤ Bemenet: $N,K \in \mathbb{N}, X_{1..N} \in H^N, 1:H \rightarrow \mathbb{N}$ ➤ Kimenet: $Db \in \mathbb{N}, Y_{1..N} \in H^N$

Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i) és Van→(0≤Db<N és T(X_{Db+1})) és

nem Van \rightarrow Db=N és

 $\forall i (1 \le i \le Db)$: (nem $T(X_i)$ és $Y_i = X_i$)

Keresés + másolás

2. megoldási ötlet:

Keresés közben másoljuk le a szükséges elemeket:


```
i:=1
i \leq N \text{ \'es nem } T(X[i])
Y[i]:=X[i]
i:=i+1
Db:=i-1
```


Eldöntés + eldöntés

Feladat:

Van-e két sorozatnak közös eleme?

Specifikáció:

► Bemenet: $N,M \in \mathbb{N}, X_{1..N} \in \mathbb{H}^N, Y_{1..M} \in \mathbb{H}^M$

➤ Kimenet: Van ∈ L

➤ Előfeltétel: –

 \gt Utófeltétel: Van= $\exists i(1 \le i \le N)$: ($\exists j(1 \le j \le M)$: $X_i = Y_j$)

➤ Utófeltétel': Van= $\exists X_i = Y_j$

Specifikáció:

> Bemenet: N∈N,

 $X_{1..N} \in H^N$, $T: H \rightarrow I$.

1.11-7L

➤ Kimenet: Van∈L

Előfeltétel: –

> Utófeltétel: Van=∃i(1≤i≤N): T(X_i)

Eldöntés + eldöntés

Megoldási ötlet:

Ha már találtunk 1 darab közös elemet, akkor ne nézzük

tovább!

> Utófeltétel': Van =
$$\prod_{i=1}^{N} \left(\prod_{j=1}^{M} X_i = Y_j \right)$$

Specifikáció:

> Bemenet: $N \in \mathbb{N}$,

 $X_{1..N} \in H^N$, T: $H \rightarrow L$

> Kimenet: Van∈L

> Előfeltétel: –

> Utófeltétel: Van= $\exists i(1 \le i \le N)$: $T(X_i)$


```
i:=0; Van:=Hamis
i<N \text{ és nem Van}
i:=i+1; j:=1
j\leq M \text{ és } X[i]\neq Y[j]
j:=j+1
Van:=j\leq M
```


Áttekintés

- ➤ Másolással összeépítés
- Kiválogatás + összegzés
- ➤ Kiválogatás + maximum-kiválasztás
- ➤ Maximum-kiválasztás + kiválogatás
- ► Eldöntés + megszámolás
- Keresés + megszámolás
- ► Keresés + másolás
- ► Eldöntés + eldöntés

