Optimización de viajes compartidos en taxis utilizando algoritmos evolutivos

Gabriel Fagúndez de los Reyes Renzo Massobrio

Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay

Contenido

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Motivación

Los viajes compartidos (Car Pooling)

- Beneficios ecológicos y económicos, individuales y colectivos.
- Iniciativas:
 - carriles exclusivos
 - campañas para compartir los viajes al trabajo
 - aplicaciones para encontrar compañeros de viaje

Los viajes compartidos en taxis (Taxi Pooling)

- Medio de transporte rápido y confiable.
- Raramente viajan a capacidad completa.
- Tarifas altas desalientan a los usuarios.
- Impactan en la congestión del tráfico y en la contaminación.

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Descripción del problema

Problema de viajes compartidos en taxis (PVCT)

Un grupo de personas en un **mismo lugar de origen**, desean viajar hacia **diferentes destinos** utilizando taxis de forma compartida. Hallar la cantidad de taxis y la asignación de pasajeros para minimizar el costo total.

Consideraciones

- Cada taxi puede trasladar a un número limitado de pasajeros.
- El número máximo de taxis para N pasajeros es N.
- Costo de un taxi = **costo inicial** + **costo por trayectos**.
- No se consideran otros costos (e.g. esperas, propinas, peajes).

Formulación del problema

- Un conjunto de pasajeros P que viajan desde un origen O a un conjunto de destinos D.
- Un conjunto de taxis T y una función $C: T \rightarrow \{0, 1, \dots, C_{MAX}\}$ con C_{MAX} máxima capacidad de un taxi.
- Una constante B: costo inicial del taxi ("bajada de bandera").
- Una función de distancia, dist : $\{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- Una función de costo asociado a la distancia, $cost : \mathbb{R}_0^+ \to \mathbb{R}_0^+$.

Se busca una planificación $f: P \to T \times \{1, \dots, C_{MAX}\}$ que minimice

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destines consecutives en el recorrido del taxifity}} \right) \right]$$

Formulación del problema

- Un conjunto de pasajeros P que viajan desde un origen O a un conjunto de destinos D.
- Un conjunto de taxis T y una función $C: T \to \{0, 1, \dots, C_{MAX}\}$ con C_{MAX} máxima capacidad de un taxi.
- Una constante B: costo inicial del taxi ("bajada de bandera").
- Una función de distancia, $dist: \{\{O\} \cup D\} \times D \to \mathbb{R}_0^+$.
- ullet Una función de costo asociado a la distancia, $cost:\mathbb{R}^+_0 o\mathbb{R}^+_0.$

Se busca una planificación $f: P \to T \times \{1, ..., C_{MAX}\}$ que minimice la función de costo total (CT).

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \underbrace{\left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{destinos consecutivos en el recorrido del taxi } t_i} \right) \right]$$

- Se busca minimizar el costo total y la demora total.
- Cada pasajero tiene un nivel de apuro asociado.
- Se consideran vehículos con diferentes capacidades.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \left(\underbrace{tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right)}_{\text{tiempo tolerado por el pasajero en la posición } j \text{ del taxi } t_i \right]$$

- Se busca minimizar el costo total y la demora total.
- Cada pasajero tiene un nivel de apuro asociado.
- Se consideran vehículos con diferentes capacidades.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h - 1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \left(tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right) \right] \right]$$

- Se busca minimizar el costo total y la demora total.
- Cada pasajero tiene un nivel de apuro asociado.
- Se consideran vehículos con diferentes capacidades.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t_i

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \left(dest \left(f^{-1}(t_i, h-1) \right), dest \left(f^{-1}(t_i, h) \right) \right) - \left(tol \left(f^{-1}(t_i, j) \right) + time \left(O, dest \left(f^{-1}(t_i, j) \right) \right) \right] \right]$$

- Se busca minimizar el costo total y la demora total.
- Cada pasajero tiene un nivel de apuro asociado.
- Se consideran vehículos con diferentes capacidades.

$$CT = \sum_{t_i, C(t_i) \neq 0} \left[B + \sum_{j=1}^{C(t_i)} cost \left(dist \left(dest \left(f^{-1}(t_i, j-1) \right), dest \left(f^{-1}(t_i, j) \right) \right) \right) \right]$$

tiempo efectivo de traslado del pasajero en la posición j del taxi t_i

$$DT = \sum_{t_i} \left[\sum_{j=1}^{C(t_i)} \left[\sum_{h=1}^{j} time \Big(dest \big(f^{-1}(t_i, h-1) \big), dest \big(f^{-1}(t_i, h) \big) \Big) \right. \\ \left. - \left(\underbrace{tol \big(f^{-1}(t_i, j) \big) + time \Big(O, dest \big(f^{-1}(t_i, j) \big) \Big)}_{\text{tiempo tolerado por el pasajero en la posición } j \text{ del taxi } t_i \right] \right]$$

Complejidad del PVCT

Complejidad

- Baldacci et al. (2004):
 - Variante del Car Pooling Problem (CPP).
 - Solución al problema de compartir vehículos en el trabajo.
- Caso especial del Vehicle Routing Problem (VRP) con demanda unitaria: NP-difícil [Letcheford et al. (2002)].
- El PVCT tiene grandes similitudes con el CPP.

Estrategias de resolución

- Con instancias de tamaños realistas los algoritmos exactos tradicionales no resultan útiles para una planificación eficiente.
- Heurísticas y metaheurísticas son necesarias para calcular soluciones de calidad aceptable en tiempos razonables.

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Car pooling problem (CPP)

Yan et al. (2011): CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003): **DARP estático con ventanas de tiempo**Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007): heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013): TPP dinámico con pedidos en tiempo real.

13 % de ahorro en distancia con un algoritmo ávido en instancias realistas.

Resumer

Car pooling problem (CPP)

Yan et al. (2011): CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003): **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007): heurísticas ávidas para **one—to—many** y many—to—one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013): TPP dinámico con pedidos en tiempo real.

Resumer

Car pooling problem (CPP)

Yan et al. (2011): CPP con histórico de viajes (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003): **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007): heurísticas ávidas para **one—to—many** y many—to—one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013): TPP dinámico con pedidos en tiempo real.

 $13\,\%$ de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumer

Car pooling problem (CPP)

Yan et al. (2011): **CPP con histórico de viajes** (relajación lagrangeana).

Dial-a-ride problem (DARP)

Cordeau et al. (2003): **DARP estático con ventanas de tiempo**. Búsqueda tabú con tiempos de ejecución de hasta 90 minutos.

Taxi pooling problem (TPP)

Tao et al. (2007): heurísticas ávidas para **one-to-many** y many-to-one. Las mejoras se reportan en términos absolutos.

Ma et al. (2013): TPP dinámico con pedidos en tiempo real.

 $13\,\%$ de ahorro en distancia con un algoritmo ávido en **instancias realistas**.

Resumen

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (**generación**) que aplica operadores estocásticos sobre un conjunto de individuos (**población**).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de **operadores evolutivos**.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de operadores evolutivos.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Técnicas estocásticas que emulan el proceso de evolución natural de las especies.
- Aplicadas a problemas de optimización, búsqueda y aprendizaje.
- Técnica iterativa (generación) que aplica operadores estocásticos sobre un conjunto de individuos (población).
- Cada individuo codifica una solución tentativa al problema y tiene un valor de fitness.
- El propósito es mejorar el fitness de los individuos en la población mediante la aplicación de operadores evolutivos.
- Los operadores guian al algoritmo evolutivo hacia soluciones tentativas de mayor calidad.

- Individuos de largo 2N 1N = #pasajeros.
- Inicialización:
 aleatoria y ávida
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Individuos de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Individuos de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Individuos de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

- Individuos de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva: desplaza ceros para romper secuencias de dígitos inválidas.
- Implementados en Malva.

- Individuos de largo 2N 1N = #pasajeros.
- Inicialización: aleatoria y ávida.
- Cruzamiento basado en posición (PBX).
- Mutación por intercambio (EM).
- Función correctiva:
 desplaza ceros para
 romper secuencias de
 dígitos inválidas.
- Implementados en Malva.

AE secuencial (seqEA)

Selección proporcional.

Micro AE paralelo $(p\mu EA)$

- Se busca **mejorar el desempeño** mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

AE secuencial (seqEA)

Selección proporcional.

Micro AE paralelo $(p\mu EA)$

- Se busca **mejorar el desempeño** mediante el paralelismo.
- Modelo de subpoblaciones distribuidas: divide la población en islas que intercambian individuos mediante migración.

- Poblaciones pequeñas.
- Selección por torneo (m, k).
- Migración asíncrona, con topología de anillo unidireccional.

AE para el PVCT multiobjetivo

Aspectos comunes

- MOEA: acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización ávida y selección por torneo.

Micro MOEA paralelo con descomposición de dominio $(p\mu MOEA/D)$

Agregación lineal de los objetivos: $E = w_C \times CT + w_D \times DT$

$$w_C \times CT + w_D \times DT$$
,
 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C$.

MOEA explícito (NSGA-II)

Ordenamiento no-dominado (elitista), crowding para preservar diversidad.

AE para el PVCT multiobjetivo

Aspectos comunes

- MOEA: acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización ávida y selección por torneo.

Micro MOEA paralelo con descomposición de dominio $(p\mu MOEA/D)$

Agregación lineal de los objetivos:

$$F = w_C \times CT + w_D \times DT$$
,
 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C$.

MOEA explícito (NSGA-II)

Ordenamiento no-dominado (elitista), crowding para preservar diversidad.

AE para el PVCT multiobjetivo

Aspectos comunes

- MOEA: acercarse al frente de Pareto del problema (convergencia) y muestrear adecuadamente el frente de soluciones (diversidad).
- Función correctiva considera vehículos de distintas capacidades.
- Inicialización ávida y selección por torneo.

Micro MOEA paralelo con descomposición de dominio $(p\mu MOEA/D)$

Agregación lineal de los objetivos:

$$F = w_C \times CT + w_D \times DT$$
,
 $w_C = [0: \frac{1}{\# islas}: 1], w_D = 1 - w_C$.

MOEA explícito (NSGA-II)

Ordenamiento no-dominado (elitista), crowding para preservar diversidad.

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimental
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing)
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing)
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing)
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Generación de puntos realistas en el mapa

- Generador de Pedidos de Taxis (TQG) con datos de GPS de taxis de Beijing (Ma et al., 2013).
- Script para obtener instancias de un origen a muchos destinos.
- API para obtener tarifas TaxiFareFinder (TFF).
- Instancias en Montevideo generadas manualmente.

- 6 chicas: 10 y 15 pasajeros (Beijing).
- 6 medianas: 15 y 25 pasajeros (Beijing).
- 6 grandes: 25 y 45 pasajeros (Beijing).
- 4 en Montevideo: 8 y 17 pasajeros (Montevideo).
- 22 instancias para el PVCT monoobjetivo y 88 instancias para el PVCT multiobjetivo, variando capacidades y tolerancias.

Metodología

Entorno de ejecución

- Evaluación experimental realizada en el Cluster FING.
- Sin compartir recursos para evitar interferencias.

Ejecuciones

- 30 ejecuciones independientes de cada algoritmo sobre cada instancia.
- Criterio de parada: **10.000 generaciones** (planificación en línea).

Comparación de resultados

- Tests estadísticos sobre las distribuciones de resultados:
 - Shapiro-Wilk sobre cada muestra para contrastar normalidad.
 - Kruskal–Wallis para comparar las muestras entre sí.
- En ambos tests se utiliza un nivel de confianza del 95 % ($\alpha = 0.05$).

Metodología

Entorno de ejecución

- Evaluación experimental realizada en el Cluster FING.
- Sin compartir recursos para evitar interferencias.

Ejecuciones

- 30 ejecuciones independientes de cada algoritmo sobre cada instancia.
- Criterio de parada: 10.000 generaciones (planificación en línea).

Comparación de resultados

- Tests estadísticos sobre las distribuciones de resultados:
 - Shapiro-Wilk sobre cada muestra para contrastar normalidad.
 - Kruskal-Wallis para comparar las muestras entre sí.
- En ambos tests se utiliza un nivel de confianza del 95 % ($\alpha = 0.05$).

Metodología

Entorno de ejecución

- Evaluación experimental realizada en el Cluster FING.
- Sin compartir recursos para evitar interferencias.

Ejecuciones

- 30 ejecuciones independientes de cada algoritmo sobre cada instancia.
- Criterio de parada: 10.000 generaciones (planificación en línea).

Comparación de resultados

- Tests estadísticos sobre las distribuciones de resultados:
 - Shapiro-Wilk sobre cada muestra para contrastar normalidad.
 - Kruskal-Wallis para comparar las muestras entre sí.
- En ambos tests se utiliza un nivel de confianza del 95 % ($\alpha = 0.05$).

PVCT monoobjetivo

Configuración paramétrica

- **seqEA**: $\#P \in \{150; 200; 250\}; p_C \in \{0,6; 0,75; 0,95\}; p_M \in \{0,001; 0,01; 0,1\}.$
- $p\mu$ EA: micro-población de 15 individuos, torneo (m=2, k=1), migración cada 500 generaciones.

```
p_C \in \{0,6; 0,75; 0,95\}; p_M \in \{0,001; 0,01; 0,1\}
```

PVCT monoobjetivo

Configuración paramétrica

- **seqEA**: $\#P \in \{150; 200; 250\}; p_C \in \{0,6; 0,75; 0,95\}; p_M \in \{0,001; 0,01; 0,1\}.$
- $\mathbf{p}\mu\mathbf{E}\mathbf{A}$: micro-población de 15 individuos, torneo ($m=2,\ k=1$), migración cada 500 generaciones.

```
p_C \in \{0,6; \frac{0,75}{0,95}; p_M \in \{0,001; 0,01; \frac{0,1}{0,1}\}.
```


Comparativa de métodos de inicialización

Resultados seqEA

- Inicialización ávida supera a inicialización aleatoria en 10 instancias.
- Inicialización aleatoria supera a inicialización ávida en 2 instancias.
- No hay diferencias estadísticamente significativas en 10 instancias.

Resultados pµEA

- Inicialización ávida supera a inicialización aleatoria en 11 instancias.
- No hay instancias en las que la inicialización aleatoria supere a la inicialización ávida.
- No hay diferencias estadísticamente significativas en 11 instancias.

Conclusión

Se utiliza la inicialización ávida para el resto de la evaluación experimental.

Comparativa de métodos de inicialización

Resultados seqEA

- Inicialización ávida supera a inicialización aleatoria en 10 instancias.
- Inicialización aleatoria supera a inicialización ávida en 2 instancias.
- No hay diferencias estadísticamente significativas en 10 instancias.

Resultados $p\mu EA$

- Inicialización ávida supera a inicialización aleatoria en 11 instancias.
- No hay instancias en las que la inicialización aleatoria supere a la inicialización ávida.
- No hay diferencias estadísticamente significativas en 11 instancias.

Conclusión

Se utiliza la inicialización ávida para el resto de la evaluación experimental.

Comparativa de métodos de inicialización

Resultados seqEA

- Inicialización ávida supera a inicialización aleatoria en 10 instancias.
- Inicialización aleatoria supera a inicialización ávida en 2 instancias.
- No hay diferencias estadísticamente significativas en 10 instancias.

Resultados $p\mu EA$

- Inicialización ávida supera a inicialización aleatoria en 11 instancias.
- No hay instancias en las que la inicialización aleatoria supere a la inicialización ávida.
- No hay diferencias estadísticamente significativas en 11 instancias.

Conclusión

Se utiliza la inicialización ávida para el resto de la evaluación experimental.

Mejoras seqEA sobre algoritmo ávido

Mejoras en **todas** las instancias sobre el algoritmo ávido (hasta 35.9 %). "Online taxi sharing optimization using evolutionary algorithms" (CLEI)

Mejoras $p\mu EA$ sobre algoritmo ávido

Mejoras en **todas** las instancias sobre el algoritmo ávido (hasta 41.0 %). "A parallel micro evolutionary algorithm for taxi sharing optimization" (ALIO)

Comparativa seqEA vs. $p\mu EA$

instancia		seqEA		ρμΕΑ		pvK-W
		min(c)	$\overline{c} \pm std$	min(c)	$\overline{c} \pm std$	
	#1	164.4	165.6±2.0	164.4	164.4±0.0	0.2×10^{-3}
	#2	220.7	225.7±5.0	220.7	220.7±0.0	9.7×10^{-6}
chicas	#3	160.4	160.4 ± 0.0	160.4	160.4 ± 0.0	1.0
cnicas	#4	181.3	181.3 ± 0.1	181.3	182.4 ± 1.9	0.5×10^{-1}
	#5	152.1	155.6 ± 4.5	152.1	152.1 ± 0.0	5.1×10^{-6}
	#6	118.4	119.6 ± 2.5	118.4	118.4 ± 0.0	0.1×10^{-1}
	#1	211.9	216.0±4.2	211.9	211.9±0.0	5.2×10 ⁻¹¹
	#2	428.6	444.1±11.7	427.9	429.4±1.6	7.0×10^{-10}
medianas	#3	361.7	378.7 ± 6.5	364.5	370.4±4.5	1.6×10^{-6}
medianas	#4	267.5	279.8 ± 5.5	266.8	266.8 ± 0.0	7.6×10^{-12}
	#5	479.3	487.1 ± 6.5	479.6	479.8±0.2	5.1×10^{-7}
	#6	306.0	321.2±7.7	306.0	307.7±3.4	2.0×10^{-9}
	#1	421.9	435.1±5.0	425.9	437.7±3.2	0.1×10^{-1}
	#2	479.3	489.9±4.3	477.0	481.1±2.3	1.9×10^{-9}
grandes	#3	332.8	349.7 ± 7.7	326.3	331.7±4.0	2.6×10^{-10}
grandes	#4	351.1	390.7±26.3	338.4	344.8 ± 6.1	5.1×10^{-11}
	#5	395.9	429.6±16.2	370.2	380.0±4.4	2.7×10^{-11}
	#6	360.8	382.4 ± 8.1	343.8	350.6 ± 3.8	2.6×10^{-11}
	#1	168.4	168.4±0.0	168.4	168.4±0.0	1.0
Montevideo	#2	319.3	331.2 ± 3.8	324.9	328.6 ± 3.2	5.6×10^{-6}
iviontevideo	#3	266.7	269.1 ± 2.3	266.7	266.7 ± 0.0	3.1×10^{-7}
	#4	303.2	304.7 ± 0.5	304.1	$304.5 {\pm} 0.4$	0.1

 $p\mu EA$ supera a seqEA en 17 de 22 instancas. Únicamente en 1 instancia seqEA supera a $p\mu EA$.

Evolución del costo a lo largo de una ejecución

 $p\mu EA$ alcanza mejores soluciones que seqEA en menos tiempo. En el mejor caso alcanza una aceleración de 7,5x (4,6x en promedio).

PVCT multiobjetivo

Configuración paramétrica

- **p** μ **MOEA/D**: #P = 15; selección por torneo (m = 2, k = 1); migración cada 1000 generaciones reemplazando a los peores individuos $p_C \in \{0.6; 0.75; 0.95\}$; $p_M \in \{0.001; 0.01; 0.1\}$
- **NSGA-II**: #P = 80; selección por torneo (m = 2, k = 1); $p_C \in \{0.6; 0.75; 0.95\}$; $p_M \in \{0.001; 0.01; 0.1\}$.

PVCT multiobjetivo

Configuración paramétrica

- **p** μ **MOEA/D**: #P = 15; selección por torneo (m = 2, k = 1); migración cada 1000 generaciones reemplazando a los peores individuos $p_C \in \{0.6; 0.75; 0.95\}$; $p_M \in \{0.001; 0.01; 0.1\}$
- **NSGA-II**: #P = 80; selección por torneo (m = 2, k = 1); $p_C \in \{0,6; \frac{0}{75}; 0,95\}$; $p_M \in \{0,001; 0,01; \frac{0}{1}\}$.

Algoritmo ávido para minimizar el costo

Similar al de la variante monoobjetivo pero considerando las distintas capacidades de los vehículos.

Algoritmo ávido para minimizar la demora

- Se crea un taxi vacío para cada pasajero con nivel máximo de apuro y se los ubica en la primera posición.
- Luego, se recorre la lista de pasajeros no asignados en orden de apuro, colocándolos en el taxi que minimice su demora.
- Si el taxi alcanza la máxima capacidad disponible, se lo considera completo y no acepta más pasajeros.

Algoritmo ávido para minimizar el costo

Similar al de la variante monoobjetivo pero considerando las distintas capacidades de los vehículos.

Algoritmo ávido para minimizar la demora

- Se crea un taxi vacío para cada pasajero con nivel máximo de apuro y se los ubica en la primera posición.
- Luego, se recorre la lista de pasajeros no asignados en orden de apuro, colocándolos en el taxi que minimice su demora.
- Si el taxi alcanza la máxima capacidad disponible, se lo considera completo y no acepta más pasajeros.

pμMOEA/D: "Planificación multiobjetivo de viajes compartidos en taxis utilizando un micro algoritmo evolutivo paralelo" (MAEB)

Hasta 101.2 % de mejora en demora y 72.8 % en costo sobre ávidos.

$7.9\pm3.4(2.0)$			
	663.5±542.4 (61.5)		
	8.5±2.1 (16.0) 3.1±2.5 (0.0) 9.1±2.2 (19.0) 5.7±2.5 (0.0) 8.5±2.2 (17.0) 7.9±3.4 (2.0)	8.5±2.1 (16.0) 3.1±2.5 (0.0) 740.2±746.3 (58.1) 9.1±2.2 (19.0) 5.7±2.5 (0.0) 1448.5±1064.1 (141.6) 8.5±2.2 (17.0) 7.9±3.4 (2.0) 2917.2±2041.5 (175.3)	

Buena convergencia y diversidad. Pocas soluciones no dominadas

$NSGA{ extstyle-II}$: "Multiobjective taxi sharing optimization using the NSGA-II evolutionary algorithm" (MIC)

Hasta 105.2 % de mejora en demora y 75.1 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	32.6±9.5 (55.0)	0.3±0.6 (0.0)	236.2±222.7 (43.2)	0.9±0.1 (0.7)	1.0±0.0 (1.0)
medianas	54.5±4.2 (67.0)	$1.0\pm0.7(0.0)$	193.6±202.4 (26.2)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
grandes	55.2±3.5 (67.0)	$1.8\pm1.1\ (0.4)$	243.6±229.8 (26.4)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
Montevideo	43.9±16.4 (61.0)	0.4±0.5 (0.0)	142.3±143.2 (20.8)	$0.8\pm0.1\ (0.5)$	1.0±0.0 (1.0)

Mayor cantidad de puntos no dominados (hasta 67/80).

Buena convergencia y diversidad en las soluciones encontradas.

$p\mu MOEA/D$: "Planificación multiobjetivo de viajes compartidos en taxis utilizando un micro algoritmo evolutivo paralelo" (MAEB)

Hasta 101.2% de mejora en demora y 72.8% en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	8.5±2.1 (16.0)	3.1±2.5 (0.0)	740.2±746.3 (58.1)	0.6±0.2 (0.1)	0.9±0.1 (1.0)
medianas	9.1±2.2 (19.0)	5.7±2.5 (0.0)	1448.5±1064.1 (141.6)	$0.6\pm0.1\ (0.1)$	$0.9\pm0.1\ (1.0)$
grandes	8.5±2.2 (17.0)	7.9 ± 3.4 (2.0)	2917.2±2041.5 (175.3)	$0.6\pm0.1\ (0.0)$	$0.8\pm0.1\ (1.0)$
Montevideo	8.0±2.1 (14.0)	3.0±2.0 (0.0)	663.5±542.4 (61.5)	0.6±0.2 (0.0)	0.9±0.0 (1.0)

Buena convergencia y diversidad. Pocas soluciones no dominadas.

NSGA-II: "Multiobjective taxi sharing optimization using the NSGA-II evolutionary algorithm" (MIC

Hasta $105.2\,\%$ de mejora en demora y $75.1\,\%$ en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	32.6±9.5 (55.0)	0.3±0.6 (0.0)	236.2±222.7 (43.2)	0.9±0.1 (0.7)	1.0±0.0 (1.0)
medianas	54.5±4.2 (67.0)	$1.0\pm0.7\ (0.0)$	193.6±202.4 (26.2)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
grandes	55.2±3.5 (67.0)	$1.8\pm1.1\ (0.4)$	243.6±229.8 (26.4)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
Montevideo	43.9±16.4 (61.0)	$0.4\pm0.5~(0.0)$	142.3±143.2 (20.8)	$0.8\pm0.1\ (0.5)$	$1.0\pm0.0\ (1.0)$

Mayor cantidad de puntos no dominados (hasta 67/80).

Buena convergencia y diversidad en las soluciones encontradas.

pμMOEA/D: "Planificación multiobjetivo de viajes compartidos en taxis utilizando un micro algoritmo evolutivo paralelo" (MAEB)

Hasta 101.2 % de mejora en demora y 72.8 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	8.5±2.1 (16.0)	3.1±2.5 (0.0)	740.2±746.3 (58.1)	0.6±0.2 (0.1)	0.9±0.1 (1.0)
medianas	$9.1\pm2.2\ (19.0)$	$5.7\pm2.5~(0.0)$	1448.5±1064.1 (141.6)	$0.6\pm0.1\ (0.1)$	$0.9\pm0.1\ (1.0)$
grandes	8.5±2.2 (17.0)	7.9 ± 3.4 (2.0)	2917.2±2041.5 (175.3)	$0.6\pm0.1\ (0.0)$	$0.8\pm0.1\ (1.0)$
Montevideo	8.0±2.1 (14.0)	3.0±2.0 (0.0)	663.5±542.4 (61.5)	0.6±0.2 (0.0)	0.9±0.0 (1.0)

Buena convergencia y diversidad. Pocas soluciones no dominadas.

NSGA-II: "Multiobjective taxi sharing optimization using the NSGA-II evolutionary algorithm" (MIC)

Hasta 105.2 % de mejora en demora y 75.1 % en costo sobre ávidos.

			RHV
			1.0±0.0 (1.0)
		193.6±202.4 (26.2)	
	$1.8\pm1.1\ (0.4)$		$1.0\pm0.0\ (1.0)$
Montevideo			$1.0\pm0.0\ (1.0)$

Mayor cantidad de puntos no dominados (hasta 67/80).

pμMOEA/D: "Planificación multiobjetivo de viajes compartidos en taxis utilizando un micro algoritmo evolutivo paralelo" (MAEB)

Hasta 101.2 % de mejora en demora y 72.8 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	8.5±2.1 (16.0)	3.1±2.5 (0.0)	740.2±746.3 (58.1)	0.6±0.2 (0.1)	0.9±0.1 (1.0)
medianas	9.1±2.2 (19.0)	5.7±2.5 (0.0)	1448.5±1064.1 (141.6)	$0.6\pm0.1\ (0.1)$	$0.9\pm0.1\ (1.0)$
grandes	8.5±2.2 (17.0)	7.9 ± 3.4 (2.0)	2917.2±2041.5 (175.3)	$0.6\pm0.1\ (0.0)$	$0.8\pm0.1\ (1.0)$
Montevideo	8.0±2.1 (14.0)	3.0±2.0 (0.0)	663.5±542.4 (61.5)	0.6±0.2 (0.0)	0.9±0.0 (1.0)

Buena convergencia y diversidad. Pocas soluciones no dominadas.

NSGA-II: "Multiobjective taxi sharing optimization using the NSGA-II evolutionary algorithm" (MIC)

Hasta 105.2 % de mejora en demora y 75.1 % en costo sobre ávidos.

	#ND	DG	spacing	spread	RHV
chicas	32.6±9.5 (55.0)	0.3±0.6 (0.0)	236.2±222.7 (43.2)	0.9±0.1 (0.7)	1.0±0.0 (1.0)
medianas	54.5±4.2 (67.0)	$1.0\pm0.7~(0.0)$	193.6±202.4 (26.2)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
grandes	55.2±3.5 (67.0)	$1.8\pm1.1\ (0.4)$	243.6±229.8 (26.4)	$0.7\pm0.2\ (0.4)$	$1.0\pm0.0\ (1.0)$
Montevideo	43.9±16.4 (61.0)	$0.4\pm0.5\ (0.0)$	142.3±143.2 (20.8)	$0.8\pm0.1\ (0.5)$	$1.0\pm0.0\ (1.0)$

Mayor cantidad de puntos no dominados (hasta 67/80).

Buena convergencia y diversidad en las soluciones encontradas.

Frentes de Pareto: $p\mu MOEA/D$ vs. NSGA-II

NSGA–II alcanza mejores soluciones: mayor cantidad de puntos no dominados distribuidos homogéneamente a lo largo del frente.

Mejora frente a algoritmos ávidos vs. tiempo de ejecución

NSGA-II alcanza mejores soluciones pero requiere de un mayor tiempo de ejecución que $p\mu MOEA/D$.

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

Planificador de viajes compartidos en línea

 Se ejecuta el AE y se muestra la planificación calculada.

 Se ingresa el origen, los destinos y la tarifa (diurna/nocturna).

Planificador de viajes compartidos en línea

 Se ingresa el origen, los destinos y la tarifa (diurna/nocturna).

 Se ejecuta el AE y se muestra la planificación calculada.

Arquitectura del planificador de viajes compartidos en línea

- Servidor implementado en Ruby on Rails siguiendo MVC.
- Las aplicaciones móviles consumen la API del servidor.
- Aplicaciones móviles: desarrollo híbrido vs. desarrollo nativo.

- Introducción
- 2 Definición del problema
- Trabajos relacionados
- 4 Implementación
- 5 Evaluación experimenta
- 6 Planificador de viajes compartidos en línea
- Conclusiones y trabajo futuro

- Se relevó la literatura relacionada, se presentaron dos variantes del problema y se implementaron cuatro AE.
- El análisis experimental se realizó sobre instancias realistas comparando contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0 % (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis (www.mepaseaste.uy).
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada, se presentaron dos variantes del problema y se implementaron cuatro AE.
- El análisis experimental se realizó sobre instancias realistas comparando contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9 % (seqEA) y 41.0 % (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA-II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis (www.mepaseaste.uy).
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada, se presentaron dos variantes del problema y se implementaron cuatro AE.
- El análisis experimental se realizó sobre instancias realistas comparando contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9% (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA-II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis (www.mepaseaste.uy).
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada, se presentaron dos variantes del problema y se implementaron cuatro AE.
- El análisis experimental se realizó sobre instancias realistas comparando contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9% (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis (www.mepaseaste.uy).
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada, se presentaron dos variantes del problema y se implementaron cuatro AE.
- El análisis experimental se realizó sobre instancias realistas comparando contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9% (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis (www.mepaseaste.uy).
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada, se presentaron dos variantes del problema y se implementaron cuatro AE.
- El análisis experimental se realizó sobre instancias realistas comparando contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9% (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis (www.mepaseaste.uy).
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

- Se relevó la literatura relacionada, se presentaron dos variantes del problema y se implementaron cuatro AE.
- El análisis experimental se realizó sobre instancias realistas comparando contra algoritmos ávidos.
- Variante monoobjetivo: mejoras en costo de hasta 35.9% (seqEA) y 41.0% (p μ EA) sobre algoritmo ávido.
- Variante multiobjetivo: mejoras de hasta 72.8 % y 101.2 % (p μ MOEA/D); 75.1 % y 105.2 % (NSGA–II) en costo y demora sobre algoritmos ávidos.
- Planificador de viajes compartidos en taxis (www.mepaseaste.uy).
- Cuatro artículos en conferencias internacionales.
- Primer premio del jurado en "Ingeniería deMuestra 2014" .

Trabajo futuro

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de usuario.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

Problemas relacionados

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Trabajo futuro

Mejoras en los AE

- Implementar NSGA-II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de usuario.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

Problemas relacionados

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Trabajo futuro

Mejoras en los AE

- Implementar NSGA–II con subpoblaciones distribuidas.
- Incorporar datos realistas del tráfico.
- Incorporar datos de la disponibilidad de los taxis en tiempo real.

Mejoras en el planificador de viajes compartidos

- Mejorar la experiencia de usuario.
- Desarrollar versiones para Android y Windows Phone.
- Soportar la variante multiobjetivo.

Problemas relacionados

- Estudiar otras variantes del problema (many-to-one, many-to-many).
- Estudiar la aplicabilidad de los AE a otros escenarios.

Gracias

Sitio web del proyecto: www.fing.edu.uy/inco/grupos/cecal/hpc/AG-Taxi/