Contents

1	実数と複素数	2
2	ノルム空間	4

1 実数と複素数

Def 1. $S \subset \mathbb{R}$ ≥ 3

$$S^* = \{x \in \mathbb{R} : S \subset (-\infty, x]\}, S_* = \{x \in \mathbb{R} : S \subset [x, \infty)\}$$

- $x \in S^*$ のとき、x は S の上界である
- $x \in S_*$ のとき、x は S の下界である
- $\cdot S^* \neq \emptyset$ のとき、S は上に有界である
- $\cdot S_* \neq \emptyset$ のとき、S は下に有界である
- $\cdot S$ は上にも下にも有界であるとき、S は有界である

- $x \in S \cap S^*$ のとき、x は S の最大数である、 $\max S$ で書く
- $x \in S \cap S_*$ のとき、x は S の最小数である、 $\min S$ で書く

Thm 1. $S \subset \mathbb{R}$ かつ $S \neq \emptyset$ とする

- $\cdot S^* \neq \emptyset$ のとき、 S^* の最小数 $\min S^*$ が存在する
- $S_* \neq \emptyset$ のとき、 S_* の最大数 $\max S_*$ が存在する

Def 3. $S \subset \mathbb{R}$ かつ $S \neq \emptyset$ とする

- $S^* \neq \emptyset$, sup $S = \min S^*$. $\sharp \not \sim S^* = \emptyset$, sup $S = \infty$
- $S_* \neq \emptyset$, inf $S = \max S_*$. $\sharp \not \subset S_* = \emptyset$, inf $S = -\infty$

Def 4. $\{x_n\}$ は実数列とする

- $x_n \leq x_{n+1} \ (n \in \mathbb{N})$ のとき、 $\{x_n\}$ は非減少である
- · $x_{n+1} \le x_n (n \in \mathbb{N})$ のとき、 $\{x_n\}$ は非増加である

Def 5. $\{x_n\}$ は実数列とし、 $a \in \mathbb{R}$ とする

任意の $\epsilon>0$ に対して、 $n_0\in\mathbb{N}$ が存在し、 $n\geq n_0$ ならば $|x_n-a|<\epsilon$ が成り立つとき、 $\{x_n\}$ は a に収束するといい、 $\lim_{n\to\infty}x_n=a$ または $x_n\to a$ と表す

なお、 $x_n \to a$ をみたす $a \in \mathbb{R}$ が存在するとき、 $\{x_n\}$ は収束する、または $\{x_n\}$ は収束列であるという

Thm 2. $\{x_n\}$ は実数列とする

- $\{x_n\}$ が非減少かつ上に有界ならば、 $\{x_n\}$ は収束する
- $\{x_n\}$ が非増加かつ下に有界ならば、 $\{x_n\}$ は収束する

Def 6. $\{x_n\}$ は有界な実数列とする $n \in \mathbb{N}$ に対して

$$\alpha_n = \inf \{x_k : k \ge n\}, \beta_n = \sup \{x_k : k \ge n\}$$

と定めると、 $\alpha_1 \leq \alpha_n \leq \alpha_{n+1} \leq \beta_{n+1} \leq \beta_n \leq \beta_1$ である

 $\{\alpha_n\}$ は非減少かつ上に有界だから収束する. この極限値 $\lim_{n \to \infty}\inf x_n$ を $\{x_n\}$ の下極限という

 \cdot $\{\beta_n\}$ は非増加かつ下に有界だから収束する. この極限値 $\lim_{n \to \infty} \sup x_n$ を $\{x_n\}$ の上極限という

Thm 3. $\{x_n\}$ は有界な実数列とする. 以下同値:

- $\cdot \{x_n\}$ は収束列
- $\cdot \lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} \sup x_n$

Def 7. $\{x_n\}$ は実数列とする.

任意の $\epsilon > 0$ に対して、 $n_0 \in \mathbb{N}$ が存在し、 $m, n \geq n_0$ ならば $|x_m - x_n| < \epsilon$ が成り立つとき、 $\{x_n\}$ は *Cauchy* 列である

Cor 1. Cauchy 列は有界である

Thm 4. $\{x_n\}$ は実数列とする. 以下同値:

- $\cdot \{x_n\}$ は収束列である
- · $\{x_n\}$ は Cauchy 列である

Def 8.

$$\mathbb{C} = \left\{ x + yi : (x, y) \in \mathbb{R}^2 \right\}$$

 $z = x + yi(x, y \in \mathbb{R})$ に対して

- xを z の実部といい、Rez で表す
- yをzの虚部といい、Imzで表す
- x yi を z の共役複素数といい、 \overline{z} で表す
- $\sqrt{x^2+y^2}$ を z の絶対値といい、|z| で表す

2 ノルム空間

Def 9. X を \mathbb{K} 上の線形空間とする. 写像 $\|\cdot\|: X \to \mathbb{R}$ がノルムであるとは、以下の条件が成り立つことである:

- $\forall x \in X, \|x\| \ge 0. \ \ \sharp \nearrow, \ \|x\| = 0 \Longleftrightarrow x = 0$
- $\forall \alpha \in \mathbb{K}, \|\alpha x\| = |\alpha| \|x\|$
- $\cdot \ \forall x,y \in X, \|x+y\| \leq \|x\| + \|y\|$

ノルム空間とは、線形空間とノルムの組 $(X, \|\cdot\|)$ である

Def 10. $x, y \in \mathbb{K}^N$ に対して、内積は

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$$

参考文献