Q1(a)(i) Differences between TensorFlow and PyTorch

Community and Ecosystem

While *TensorFlow* has a strong ecosystem backed by Google, *PyTorch* is loved by the research community, is widely used in academia and cutting-edge AI research, and is backed by Meta.

Deployment

PyTorch initially focused on research, but with TorchServe and ONNX support, deployment has become much easier while *TensorFlow* is better suited for production and deployment, especially with TensorFlow Serving, TensorFlow Lite and TensorFlow.js.

Computation Graphs

PyTorch uses dynamic computation graphs (define-and-run), you create the graph on the fly as operations are executed while *TensorFlow* uses static computation graphs (define-before-run), you define the model graph first then run it.

Debugging

While *PyTorch* is easier to debug, intuitive and flexible – making it ideal for research *TensorFlow* is less flexible for debugging and experimentation.

Q1(a)(i)-(b) When to choose TensorFlow and PyTorch

- ❖ When focusing on **deployment and scalability**, go with *TensorFlow*.
- When the focus is on research, flexibility, debugging ease, and fast experimentation, choose PyTorch.

Q1(a)(ii) Use cases for Jupyter Notebooks in Al Development

Prototyping and Testing AI Models

With Jupyter Notebooks, developers can quickly build, test and iterate on models as it is:

- Ideal for experimentation with different neural hyperparameters
- Combine code, outputs and documentation in one place for reproducibility.

Data Exploration and Processing

Data Scientists use Jupyter Notebooks to load, explore, and clean data before training Ai Models.

With Jupyter Notebooks one can:

- > Visualize data using libraries like Seaborn or Matplotlib.
- > Perform data wrangling, feature selection and do analysis step by step.
- > Tweak code as needed to get the desired output.

Q1(a)(iii) How spaCy enhances NLP tasks compared to basic Python string operations.

Advanced NLP Features.

Unlike basic Python string operations, spaCy has advanced Natural Language Processing features that allow:

- Tokenization While basic Python allows manual splitting spaCy has smart tokenization that handles abbreviations, punctuations, etc.
- > Lemmatization Converts words to their base.
- Named Entity Recognition (NER) Detects people, dates, locations, etc.
- > Dependency Parsing Understands grammatical relationships.
- Part of Speech Tagging Identifies verbs, adjectives, nouns, etc.

Linguistic Understanding

Basic Python works at the character or word level, but it does not understand language structure while spaCy performs linguistic analysis, recognizing parts of speech, the syntax and entities.

Example:

"A tasty burger."

Basic python will analyze it as "A", "tasty", "burger. "(no grammar or meaning while spaCy will identify "A" as article a, "tasty" as adjective, "burger" as a noun and their grammatical relationship.

Speed and Efficiency

While in Python string methods one would have to manually loop over text, spaCy is highly optimized in Cython, making it faster and more memory efficient.

Q1(b) In terms of Target applications, Ease of use for beginners and community support, compare Scikit-learn and TensorFlow.

Indicator	Scikit-learn	TensorFlow
Target Applications	Designed for classical	Built for deep learning and
	machine learning algos	neural networks,
	like linear regression,	supporting large scale
	random forests, clustering,	models like RNNs, CNNs
	decision trees, and SVMS.	and Transformers.
Ease of Use for Beginners	Very beginner friendly. It	Moderate learning curve -
	has simple, consistent API	more complex concepts
	and models can be trained	(tensors, graphs, sessions),
	in just a few lines of code.	though Keras (now part of
		TensorFlow) simplifies it
		significantly.
Community Support	It has a <i>large and active</i>	Massive global
	data science community	community backed by
	making it excellent for	Google therefore making it
	documentation and	an extensive ecosystem for
	tutorials for traditional	deep learning, deployment,
	machine learning.	and production use.

Q2(a)

Classical ML with Scikit-learn visualization output:

Q2(b)

Training CNN model accuracy results:

Deep Learning with TensorFlow output:

Q2(c)

NLP with spaCy output:

Q3(a) Potential biases in MNIST or Amazon Review model and how TensorFlow or SpaCy can mitigate these biases.

Ethical Considerations

Potential Biases.

Amazon Reviews (spaCy NLP)

Bias Source: Rule-based sentiment models depend on specific keywording.

Example

"hate" = negative, "love" = positive.

- Risk: This may misclassify sarcasm, gendered languages, or cultural phrases.
- Impact: This could, in addition, unfairly flag or recommend products if reviews use mixed sentiment or dialect-specific language.

Mitigation Tool

spaCy Rule-based Systems

One can use custom lexicons, dependency rules, or contextual filters to avoid one-size-fits-all sentiment scoring.

Example

Adjust sentiment weights based on negations ("not good") or sarcasm cues ("yeah right").

Q3(b) Buggy Code: A provided TensorFlow script has errors (e.g., dimension mismatches, incorrect loss functions). Debug and fix the code.

Troubleshooting challenge:

```
model = tf.keras.Sequential([

tf.keras.layers.Dense(64, input_shape=(28, 28), activation='relu'),

tf.keras.layers.Dense(10, activation='softmax')

])

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
```

Issues:

- Input shape mismatch- The input should be (28,28,1) or (784) flattened, not (28,28)
- Loss mismatch- Using categorical_crossentropy but y-train likely contains integer labels instead of one-hot vectors.

```
import tensorflow as tf
from tensorflow.keras import layers, models
# Fix: Flatten input properly for Dense layers
model = models.Sequential([
   layers.Flatten(input_shape=(28, 28)), # Correct input shape
   layers.Dense(64, activation='relu'),
   layers.Dense(10, activation='softmax')
1)
# Fix: Use correct loss for integer labels
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
             metrics=['accuracy'])
# Example dataset
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
# Normalize
x_train, x_test = x_train / 255.0, x_test / 255.0
# Train
model.fit(x_train, y_train, epochs=5, validation_split=0.1)
```

Fixed Version

- Flattened input (Flatten() layer)
- Correct loss function (sparse_categorical_crossentropy)
- Normalized data for stable training.