

10247777 1 2002

<110> Beclin, Christophe
Elmayan, Taline
Vaucheret, Herve

<120> NOVEL SGS3 PLANT GENE AND USES THEREOF

<130> A34920-PCT-USA 072667.0179

<140> 10/030,829
<141> 2002-01-11

<150> PCT/FR/00/02052
<151> 2000-01-26

<150> FR 99/09,417
<151> 1999-07-16

<160> 5

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 3275
<212> DNA
<213> Arabidopsis thaliana

<220>
<221> primer_bind
<222> (693)...(715)
<223> p356AD'

<221> primer_bind
<222> (2926)...(2952)
<223> P356Y'

<400> 1
gacaaaacaaa caaaaattaa gcaagtcatg ttcgttagcaa taaaattaata gtgggaacaa 60
ttaagttaag cgaaaaaagga aaaaaaaaaagg tacaaaaatg aaaacaaaaat caaactgaat 120
gaaaatttgg agtccagaat cggaaaaacg aggccgtttt agagcttaat aagcttcctc 180
atttgtctct tcttcgtcag ttatattttct tcctccggag tcctgactca ctactctcac 240
tctccggcgc tttaaactta cgttctccgt cgtttactct gtaagtttc tgccttagag 300
cctccgatcg cctcaccgca tgcatctgt gctcgatttc tctttttctt cgctggaaaa 360
attgccctaa tggtcgtcgt ttcgaagggt tttgtgttat gggttacttt tttccctata 420
ttttatagtt cttaggtaac gatacctgcg tcttactgtt tttgttcatt ttgttgtct 480
ttcacccgtt agtcgctgtat cggagtattt gactgtgaaa aatccttcgt tttttgggtt 540
ttgtttcata taaatcgat tgatctacct tttgtgttt gatgtttgtt ttttgagcct 600
atgcgttgtt ggcttgttat aacttcacgt tcatgtgtgg attttgagat ttgttgtatg 660
actgtgggtt tctttgggtt ctataggttg taaaaatgag ttctagggct ggtccaatgt 720
ctaaggaaaa gaacgttcag ggtggttata ggcctgaggt tgaacagttg gttcaagggtt 780
tggcagggac gagactggct tcttcacaag atgatggagg agagtgggag gtcatttcca 840
agaagaacaa gaacaaacca ggaaacactt ctggaaaaac ttgggtttct cagaattcga 900
atcctccatg agcttgggtt ggtcagcagc aaggggagagg tagcaacgtt tctgggagag 960
gaaacaatgt atccgggaga ggtaacggca atggtcgggg cattcaagct aacatatctg 1020
gtcggggacg agcgttgagc agaaagtatg ataacaactt tggcaccaccc ccacacgtat 1080
ctcgccctcc tttggaaagga ggttggaaatt ggcaggcaag aggagggtct gctcagcaca 1140
cagctgtgca ggagtttccct gacgtggagg atgatgtgga taatgcttct gaggaagaga 1200

atgattccga tgctttggat gattctgatg acgaccctgc aagtgtatgat tatgactcgg 1260
atgttagtca aaagagccat ggatcacgaa agcagaataa gtggttcaaa aagttcttg 1320
gcagcttggta tagcttgcg atcgaggcaga taaatgaacc acagaggcag tggcattgtc 1380
cagcttgtca gaacggaccc ggtgccatcg attggatataa cctgcaccct ctactagctc 1440
atgcgaggac aaaaggagct aggcgagttt agctccatag agaattggct gaagttttag 1500
aaaaggatct acagatgaga ggcgcacatcg tcattcctt tggtgagatt tatggcagt 1560
ggaagggttt gggtgaggat gaaaaggatt atgaaattgt ctggcctcca atggtcata 1620
tcataatac tagactggat aaggacgata acgataaggt ggaattctt tgcctttac 1680
ttcttaatt ttctcttgc attctactga tctttagatg ttacattgtt gtcggctcggc 1740
atggcaacc aagagctgt ggaataacttc gacaaggatg agctcttag agcacccat 1800
tcctatggc cacaggccca tcgtggatg agtgcctgtt gtttgagag cagtccact 1860
ggctatttgg aggccgaacg cttccaccgg gagttactg agatggggtt agatagaatt 1920
gcctggggc agaagcgcag tatgtttctt ggaggtgtt gccaactgtt tggcttcctt 1980
gcaacgaagc aagatcttgc catattcaat caacactctc aaggttctt cccccaaaga 2040
aatttgcattt atgccttttag tttgtcattt ggaattttaa gtttgggtt tccgtgtt 2100
tgcattgtt atgtatatat ctatgattca ttaggcaaaaa caaggctgaa attcgagtt 2160
aaatcatacc aagagatgtt tgtaaaggag ctgaggcaga tctctgagga caatcagcag 2220
ctgaactact ttaagaacaa gctctcaaaa cagaacaagc acgccaagggt gcttgaggaa 2280
tctctggaaa ttatgagcga gaagctgcgt agaactgcag aggataatcg gatcgtgaga 2340
cagagaacta agatgcagca tgaacagaac agggaaagagg tatgattttt cctagaaaaat 2400
cacaacttgc acattttgtt ttacacttgc attcacattt ttgatttatg tgccttcacaa 2460
aaaacctgtg gtggtttggaa gatggatgca caccacagggt ttttcatggaa ttcaatcaaa 2520
cagatccatg aaagaagaga cgccaaaggag gagaatttgcg agatgttgcg gcaggcaggaa 2580
cgtgccaagg ttgttggccca gcagcagcag aacattaatc cctcttagcaa tgacgattgc 2640
cgaaagaggt atatgtacta actaacataa tccctcttgcg gttttttttt ttcaaaccta 2700
agagtaactg aatttattccg gttttgattt tttcgacag ctgaggaagt gtcaagctt 2760
atcgagtttca aagagaaaaga gatggaggag tttgttggaaag agagggagat gctgataaaa 2820
gatcaagaga agaagatggaa agacatgaaag aagaggcatc acgaggagat atttgcattt 2880
gagaaagaat ttgatgaggc ttggaaacag ctcatgtaca agcatggcct tcacaatgaa 2940
gatgatttag gaaaaaggctt ggtacacaag acaagactaa gtttctttgt tttgtttt 3000
gtatgtcgaa aagtaggaga tctgagagac tccattttaa tactaggaca aatctaagga 3060
gattatagat tattatcctc caatttttag tagacggatc taaggaagca ttaagttttt 3120
gtgactaaaa ccaagttcc ttatgtttt gttttttttt ggtaaaattt catatgaaag 3180
tttagacatatac tccaaacgt cagatgttca cacagaatgg caaatcaaaa tcatgtttt 3240
agaattttat atctacaaaa tatatggta caaat 3275

<210> 2
<211> 1878
<212> DNA
<213> *Arabidopsis thaliana*

<220>
<221> CDS
<222> (1)...(1878)

<400> 2
atgagttcttca gggctggcc aatgtctaaag gaaaagaacg ttcaagggtgg ttataggcct 60
gaggttgaac agttggttca aggtttggca gggacgagac tggcttcctt acaagatgtat 120
ggagagaggt gggagggtcat ttccaagaag aacaagaaca aaccaggaaa cacttcttgc 180
aaaacttgggg tttctcagaa ttcaatctt ccttagatgtt ggggtggcga gcagcaagg 240
agaggttagca acgtatctgg gagaggaaac aatgtatccg ggagaggtaa cggcaatgg 300
cggggcatttca aagctaacat atctggtcgg ggacgagcgt tgacgagaaa gtatgataac 360
aactttgtgg cacccccacc tgcatactcgc cttcccttgg aaggaggatg gaattggcag 420
gcaagaggag gttctgctca gcacacagct gtgcaggagt ttcctgcacgt ggaggatgtat 480
gtggataatg cttctgagga agagaatgtat tccgatgtt tggatgattc tgatgacgac 540
cttgcacatgtt atgattatgtt ctcggatgtt agtcaaaaaga gccatggatc acgaaaggcag 600
aataagtggatc tcaaaaagtt ctttggcagc ttggatgtt tgcacatgtca gcagataat 660

gaaccacaga ggcagtggca ttgtccagct tgtcagaacg gacctggtgc catcgattgg 720
 tataaacctgc acccctctact agctcatgcg aggacaaaag gagctaggcg agttaagctc 780
 catagagaat tggctgaagt tttagaaaaag gatctacaga tgagaggcg atctgtcatt 840
 ccttgtggtg agatttatgg gcagtggaaag ggtttgggtg agatgaaaaa ggattatgaa 900
 attgtctggc ctccaatggt catcatcatg aatactagac tggataagga cgataacgat 960
 aagtggctcg gcatggcaa ccaagagctg ctggaatact tcgacaagta tgaggcttct 1020
 agagcacgccc attcctatgg tccacagggc catcggtgg tgagtgttct gatgtttgag 1080
 agcagtgcgc ctggctattt ggaggccgaa cgcctccacc gggagttgc tgagatgggg 1140
 ttagatagaa ttgcctgggg tcagaagcgc agtatgttt ctggaggtgt tcgccaactg 1200
 tatggcttcc ttgcaacgaa gcaagatctg gacatattca atcaacactc tcaaggcaaa 1260
 acaaggctga aattcgagtt gaaatcatac caagagatgg ttgtaaagga gctgaggcag 1320
 atctctgagg acaatcagca gctgaactac tttagaaca agctctcaaa acagaacaag 1380
 cacgccaagg tgcttgagga atctctggaa attatgagcg agaagctgcg tagaactgca 1440
 gaggataatc ggatcgtag acagagaact aagatgcgc atgaacacgaa cagggaaagag 1500
 atggatgcac acgacagggtt ttcatggat tcaatcaaac agatccatga aagaagagac 1560
 gcaaaggagg agaatttcga gatgttgcag cagcaggaac gtgccaaggt tggccag 1620
 cagcagcaga acattaatcc ctctagcaat gacgattgcc gaaagagagc tgaggaagt 1680
 tcaagcttca tcgagttca agagaaagag atggaggagt ttgtggagaagag 1740
 ctgataaaag atcaagagaa gaagatggaa gacatgaaga agaggcatca cgaggagata 1800
 tttgatctgg agaaagaatt tgatgaggct ttgaaacacgc tcatgtacaa gcatggcctt 1860
 cacaatgaag atgattga 1878

<210> 3
 <211> 625
 <212> PRT
 <213> Arabidopsis thaliana

<400> 3
 Met Ser Ser Arg Ala Gly Pro Met Ser Lys Glu Lys Asn Val Gln Gly
 1 5 10 15
 Gly Tyr Arg Pro Glu Val Glu Gln Leu Val Gln Gly Leu Ala Gly Thr
 20 25 30
 Arg Leu Ala Ser Ser Gln Asp Asp Gly Gly Glu Trp Glu Val Ile Ser
 35 40 45
 Lys Lys Asn Lys Asn Lys Pro Gly Asn Thr Ser Gly Lys Thr Trp Val
 50 55 60
 Ser Gln Asn Ser Asn Pro Pro Arg Ala Trp Gly Gly Gln Gln Gln Gly
 65 70 75 80
 Arg Gly Ser Asn Val Ser Gly Arg Gly Asn Asn Val Ser Gly Arg Gly
 85 90 95
 Asn Gly Asn Gly Arg Gly Ile Gln Ala Asn Ile Ser Gly Arg Gly Arg
 100 105 110
 Ala Leu Ser Arg Lys Tyr Asp Asn Asn Phe Val Ala Pro Pro Pro Val
 115 120 125
 Ser Arg Pro Pro Leu Glu Gly Gly Trp Asn Trp Gln Ala Arg Gly Gly
 130 135 140
 Ser Ala Gln His Thr Ala Val Gln Glu Phe Pro Asp Val Glu Asp Asp
 145 150 155 160
 Val Asp Asn Ala Ser Glu Glu Glu Asn Asp Ser Asp Ala Leu Asp Asp
 165 170 175
 Ser Asp Asp Asp Leu Ala Ser Asp Asp Tyr Asp Ser Asp Val Ser Gln
 180 185 190
 Lys Ser His Gly Ser Arg Lys Gln Asn Lys Trp Phe Lys Lys Phe Phe
 195 200 205
 Gly Ser Leu Asp Ser Leu Ser Ile Glu Gln Ile Asn Glu Pro Gln Arg
 210 215 220
 Gln Trp His Cys Pro Ala Cys Gln Asn Gly Pro Gly Ala Ile Asp Trp

225	230	235	240
Tyr Asn Leu His Pro Leu Leu Ala His Ala Arg Thr Lys Gly Ala Arg			
245	250	255	
Arg Val Lys Leu His Arg Glu Leu Ala Glu Val Leu Glu Lys Asp Leu			
260	265	270	
Gln Met Arg Gly Ala Ser Val Ile Pro Cys Gly Glu Ile Tyr Gly Gln			
275	280	285	
Trp Lys Gly Leu Gly Glu Asp Glu Lys Asp Tyr Glu Ile Val Trp Pro			
290	295	300	
Pro Met Val Ile Ile Met Asn Thr Arg Leu Asp Lys Asp Asp Asn Asp			
305	310	315	320
Lys Trp Leu Gly Met Gly Asn Gln Glu Leu Leu Glu Tyr Phe Asp Lys			
325	330	335	
Tyr Glu Ala Leu Arg Ala Arg His Ser Tyr Gly Pro Gln Gly His Arg			
340	345	350	
Gly Met Ser Val Leu Met Phe Glu Ser Ser Ala Thr Gly Tyr Leu Glu			
355	360	365	
Ala Glu Arg Leu His Arg Glu Leu Ala Glu Met Gly Leu Asp Arg Ile			
370	375	380	
Ala Trp Gly Gln Lys Arg Ser Met Phe Ser Gly Gly Val Arg Gln Leu			
385	390	395	400
Tyr Gly Phe Leu Ala Thr Lys Gln Asp Leu Asp Ile Phe Asn Gln His			
405	410	415	
Ser Gln Gly Lys Thr Arg Leu Lys Phe Glu Leu Lys Ser Tyr Gln Glu			
420	425	430	
Met Val Val Lys Glu Leu Arg Gln Ile Ser Glu Asp Asn Gln Gln Leu			
435	440	445	
Asn Tyr Phe Lys Asn Lys Leu Ser Lys Gln Asn Lys His Ala Lys Val			
450	455	460	
Leu Glu Glu Ser Leu Glu Ile Met Ser Glu Lys Leu Arg Arg Thr Ala			
465	470	475	480
Glu Asp Asn Arg Ile Val Arg Gln Arg Thr Lys Met Gln His Glu Gln			
485	490	495	
Asn Arg Glu Glu Met Asp Ala His Asp Arg Phe Phe Met Asp Ser Ile			
500	505	510	
Lys Gln Ile His Glu Arg Arg Asp Ala Lys Glu Glu Asn Phe Glu Met			
515	520	525	
Leu Gln Gln Glu Arg Ala Lys Val Val Gly Gln Gln Gln Asn			
530	535	540	
Ile Asn Pro Ser Ser Asn Asp Asp Cys Arg Lys Arg Ala Glu Glu Val			
545	550	555	560
Ser Ser Phe Ile Glu Phe Gln Glu Lys Glu Met Glu Glu Phe Val Glu			
565	570	575	
Glu Arg Glu Met Leu Ile Lys Asp Gln Glu Lys Lys Met Glu Asp Met			
580	585	590	
Lys Lys Arg His His Glu Glu Ile Phe Asp Leu Glu Lys Glu Phe Asp			
595	600	605	
Glu Ala Leu Glu Gln Leu Met Tyr Lys His Gly Leu His Asn Glu Asp			
610	615	620	
Asp			
625			

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide p356AD'

<400> 4
aaaatgagtt ctagggctgg tcc

23

<210> 5
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide p356Y'

<400> 5
gtctcaatca tcttcattgt gaaggcc

27