Energy levels of calcium, Ca I through Ca XX

Jack Sugar, and Charles Corliss

Citation: Journal of Physical and Chemical Reference Data 8, 865 (1979); doi: 10.1063/1.555609

View online: https://doi.org/10.1063/1.555609

View Table of Contents: http://aip.scitation.org/toc/jpr/8/3

Published by the American Institute of Physics

Articles you may be interested in

Minimization of ion micromotion in a Paul trap Journal of Applied Physics **83**, 5025 (1998); 10.1063/1.367318

Energy levels of magnesium, Mg I through Mg XII

Journal of Physical and Chemical Reference Data 9, 1 (1980); 10.1063/1.555617

Wavelengths, Transition Probabilities, and Energy Levels for the Spectrum of Neutral Strontium (SrI) Journal of Physical and Chemical Reference Data **39**, 033103 (2010); 10.1063/1.3449176

Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Rubidium (RbI through Rb XXXVII)

Journal of Physical and Chemical Reference Data 35, 301 (2006); 10.1063/1.2035727

An introduction to Pound–Drever–Hall laser frequency stabilization

American Journal of Physics 69, 79 (2001); 10.1119/1.1286663

Development of a linear-type double reflectron for focused imaging of photofragment ions from massselected complex ions

Review of Scientific Instruments 88, 053105 (2017); 10.1063/1.4982706

Energy Levels of Calcium, Cal through Caxx

Jack Sugar and Charles Corliss

National Measurement Laboratory, National Bureau of Standards, Washington, D.C. 20234

The energy levels of the calcium atom in all of its stages of ionization, as derived from the analyses of atomic spectra, have been critically compiled. In cases where only line classifications are reported in the literature, level values have been derived. Electron configurations, term designations, J-values, experimental g-values, and ionization energies are included. Calculated percentages of the two leading components of the eigenvectors of the levels are given.

Key words: Atomic energy levels; atomic spectra; calcium energy levels.

Contents

	Page		Page
Introduction	865	Ca x	903
Energy Level Tables	868	Ca xı	905
Ca t	868	Ca XII	906
Са и	888	Ca XIII	907
Са п	890	Ca xiv	908
Ca iv	895	Ca xv	910
Ca v	897	Ca xvi	912
Ca vi	898	Ca xvii	913
Ca vii	899	Ca xviii	914
Ca viii	900	Ca XIX	915
Calv	001	Cavy	016

Introduction

At the time of the first compilation of atomic energy levels by Bacher and Goudsmit in 1932, only the first 5 of the 20 spectra of calcium had been studied. By 1949, Moore was able to compile the first 12 spectra of calcium. At that time, oxygen was the heaviest atom for which some levels of all stages of ionization were known.

A great amount of new experimental work has been carried out since then, particularly in the higher stages of ionization. Today, experimental results are available for every stage of ionization of calcium. This is the result of the development of more energetic light sources, which was stimulated by the need to interpret new spectroscopic observations of the sun at short wavelengths from rocket-and satellite-borne spectrographs. A new impetus for the interpretation of spectra of highly ionized atoms has arisen from the investigation of hot laboratory plasmas generated to achieve nuclear fusion.

These activities have produced a substantial increase in spectroscopic information, particularly for elements of the iron period, making the earlier compilations of energy

© 1979 by the U.S. Secretary of Commerce on behalf of the United States, This copyright is assigned to the American Institute of Physics and the American Chemical Society.

levels inadequate. The NBS Atomic Energy Levels Data Center has undertaken to provide new compilations of energy levels, including the elements of the iron period. The material on each atom and its ions is being published as a separate paper. A collection of these compilations, with revisions, is planned as one volume for the iron period. Already completed are the compilation for iron by Reader and Sugar (1975), chromium and vanadium by Sugar and Corliss (1977, 1978), and manganese and titanium by Corliss and Sugar (1977, 1979). The present work on calcium will be followed by a compilation of the energy levels of potassium.

The present compilation comprises the energy levels of the calcium atom and all of its ions, as derived from analyses of atomic spectra. For many of the ions the original papers do not give energy level values, but only classifications of observed lines. In these cases we have derived the level values. Although generally we used only published papers as sources of data, unpublished data have been included when they constituted a substantial improvement over material in the literature.

Ionization energies found in the literature are usually given in their equivalence in cm⁻¹. The conversion factor 8065.479 ± 0.021 cm⁻¹/eV, as given by Cohen and Taylor

(1973), was used to obtain values in eV. In a few cases where adequate data were available but the ionization energy was not derived, we carried out the calculation. For a large number of ions, no suitable series are known. In these cases we have quoted values obtained by extrapolation along isoelectronic sequences. Although uncertainties are not usually provided with these extrapolated values, they are probably accurate to a few units of the last significant figure given.

Nearly all of the data are the result of observations of various types of laboratory light sources. However, they are sometimes supplemented by data obtained from solar observations. This is particularly true where spin-forbidden lines are required to establish the absolute energy of a system of excited levels and also where parity-forbidden transitions between levels of a ground configuration are used to obtain accurate relative energies for the low levels. Whenever both solar data and equivalent laboratory data are available preference is generally given to the laboratory measurements in order to avoid the problem of blended lines of various elements in the solar spectrum.

For a convenient source of wavelengths of calcium lines below 2000 Å we refer the reader to the compilation by Kelly and Palumbo (1973).

We sometimes assign a calculated value to a level of a term in a system not connected to the ground state. The error in the calculated value is indicated by the letter x following the level values of that system. For Ca XIX and XX, which are isoelectronic with He I and H I we give only theoretical level values. They are much more accurate than experimental x-ray wavelengths from which level values may be obtained.

For a given configuration a certain number of terms of various types are theoretically expected, and spectroscopists have given names on the basis of J-values, g-values, intensities, arrangement of the levels, and, more recently, theoretical calculations. We have included the results of calculations, under the heading "Leading percentages", that express the percentage composition of levels in terms of the basis states of a single configuration, or more than one configuration where configuration interaction has been included. Where these results contradict an author's designation, we have accepted the theoretical term and configuration labeling of a level to conform with its calculated leading percentages. In some cases these are low and the labeling has less physical meaning.

The percentage compositions have the following meaning. Suppose that for a given configuration there is a set of n basis states, written symbolically as $\psi_1, \psi_2, ..., \psi_n$. Usually these basis states are taken to be the LS-states for a configuration, but other coupling schemes are often used. (See Martin, Zalubas, and Hagan (1978) for coupling notation.) Then the eigenvector ψ_A of an actual energy level A can be expressed as

$$\psi_A = \alpha_1 \psi_1 + \alpha_2 \psi_2 + \dots + \alpha_n \psi_n,$$

where $\alpha_1^2 + \alpha_2^2 + ... \alpha_n^2 = 1$. The squared quantities α_1^2 , α_2^2 , etc., multiplied by 100, represent the percentage composi-

tion of a given level. Levels are given names corresponding to the basis state having the largest percentage.

In the columns of the present tables headed "Leading percentages" we give first the percentage of the basis state corresponding to the level's name; next the second largest percentage together with the related basis state. We have not listed any second component representing less than 4 percent.

Of course, the percentage compositions cannot be considered to be as reliable as experimental quantities inasmuch as a new calculation using a different approximation, such as the introduction of configuration interaction where none had been used before, might yield a different set of percentages. For some levels the percentages may change drastically in a new calculation. In the present tables, the percentages are taken mostly from published least-squares level fitting calculations. When only *ab initio* calculations are found in the literature, we have used them if there appears to be a reasonable correspondence with the experimental data. For higher ionization stages there have been fewer publications relating quantitatively the theoretical results to the observations by means of least-squares calculations.

In assembling the data for each spectrum, we referred to the following bibliographies:

- i. papers cited by Moore (1949)
- ii. C. E. Moore (1968)
- iii. L. Hagan and W. C. Martin (1972).
- iv. L. Hagan (1977)
- v. card file of publications since June 1975 maintained by the NBS Atomic Energy Levels Data Center.

A selection of data was made that, in our judgment, represents the most accurate and reliable available. The text for each ion is not always a complete review of the literature but is intended to credit the major contributions. A final check for new data was made on September 1, 1978, at which time the compilations were considered completed.

Acknowledgements

Throughout this work we have made extensive use of the bibliographical files and reprint collection maintained in the Atomic Energy Level Data Center by Dr. Romuald Zalubas. Our thanks are extended to him for generous cooperation. The compilation has also benefited greatly from the preprints that were provided by many of our colleagues.

We thank Dr. W. C. Martin for a critical reading of the manuscript.

This work was supported by the U.S. Department of Energy, Division of Magnetic Fusion Energy, the Office of Standard Reference Data of the National Bureau of Standards, and by the National Aeronautics and Space Administration, Astrophysics Division.

References for Introduction

Bacher, R. F., and Goudsmit, S. (1932), Atomic Energy States, (McGraw-Hill Book Co., New York).

- Cohen, E. R., and Taylor, B. N. (1973), J. Phys. Chem. Ref. Data 2, 663.
- Corliss, C., and Sugar, J. (1977), Energy Levels of Manganese, Mn r through Mn xxv, J. Phys. Chem. Ref. Data, 6, 1253.
- Corliss, C., and Sugar, J. (1979), Energy Levels of Titanium, Tithrough TixxII, J. Phys. Chem. Ref. Data 8, 1.
- Hagan, L. (1977), Bibliography on Atomic Energy Levels and Spectra, July 1971 through June 1975, Nat. Bur. Stand. (U.S.) Spec. Publ. 363, Suppl. 1 (U.S. Gov't Printing Office, Washington, D.C.).
- Hagan, L., and Martin, W. C. (1972), Bibliography on Atomic Energy Levels and Spectra, July 1968 through June 1971, Nat. Bur. Stand. (U.S.) Spec. Publ. 363 (U.S. Gov't Printing Office, Washington, D.C.)
- Kelly, R. L., and Palumbo, L. J. (1973), Atomic and Ionic Emission Lines Below 2000 Angstroms—Hydrogen Through Krypton, NRL Report 7599 (U.S. Gov't Printing Office, Washington, D.C.).

- Martin, W. C., Zalubas, R., and Hagan, L. (1978), Atomic Energy Levels—The Rare Earth Elements, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 60.
- Moore, C. E. (1949), Atomic Energy Levels, Nat. Bur. Stand. (U.S.) Circ. 467, Vol. I (reissued as Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35.)
- Moore, C. E. (1968), Bibliography on the Analyses of Optical Atomic Spectra, Section 1, Nat. Bur. Stand. (U.S.), Spec. Publ. 306 (U.S. Gov't Printing Office, Washington, D.C.).
- Nielson, C. W., and Koster, G. F. (1963), Spectroscopic Coefficients for the pⁿ, dⁿ, and fⁿ Configurations (The M.I.T. Press, Cambridge).
- Reader, J., and Sugar, J. (1975), Energy Levels of Iron, Ferthrough Fe xxvi, J. Phys. Chem. Ref. Data 4, 353.
- Sugar, J., and Corliss, C. (1977), Energy Levels of Chromium, Crithrough Crxxiv, J. Phys. Chem. Ref. Data 6, 317.
- Sugar, J., and Corliss, C. (1978), Energy Levels of Vanadium, Vi through VXXIII, J. Phys. Chem. Ref. Data 7, 1191.

Energy Level Tables

Cai

Z = 20

Ground state: $1s^22s^22p^63s^23p^64s^2$ ¹S₀

Ionization energy = $49\ 305.96 \pm 0.08\ cm^{-1}\ (6.11321 \pm 0.00002\ eV)$

Early History

The observation and analysis of the first spectrum of calcium have played an important role in the development of experimental methods and theoretical ideas in the field of atomic spectra. Saunders (1920) summarized the considerable early work on this spectrum which included observations of the 4snp, 4pns, 4pnd, and 3dnf series of triplets and singlets. The longest was 4snp 1Po, reaching n=11. Shortly thereafter Russell and Saunders (1925), and independently Bohr (1923), recognized the excitation of two electrons to form terms above the ionization energy. In the same paper Russell and Saunders proposed the now universally accepted designations for levels in LS-coupling. They also introduced the concept of ordering level values from zero for the level of highest binding energy. The paper reports an extension of the analysis of Cat which classified the remaining strong lines of this spectrum. The ³P terms of $4p^2$, $3d^2$, and 3dnd (n=4-6) are given, the latter occurring entirely above the principal ionization limit. For the configuration 3d4p the terms 3P°, 3D°, and ³F° were found, and for 3d5p the ³D° was observed above the limit. Several undesignated levels are included whose interpretation was provided by later workers. In a later paper Russell (1927) identified the 4s5s ³S₁ and ¹S₀, the $4p^2$ ¹D, and the 3d4d ³S₁ and ³D₁.

Measurements of the Zeeman effect are due to Back (1925), who observed the 3d4s-3d4p transition array in a field of 39 000 gauss (3.9 T) and derived the following g-values for Ca 1:

Config.	Term	J	g
3d4s	³D	1	0.502
		2	1.162
		3	1.328
	$^{1}\mathrm{D}$	2	1.007
3d4p	3 F °	2	0.754
		3	1.076
		4	1.245
	¹ D°	2	0.893

An additional term of the $3d^2$ configuration, the 3F , was discovered by Humphreys (1951) from observations in the infrared of the $3d4p-3d^2$ ${}^3F^\circ-{}^3F$ and ${}^3D^\circ-{}^3F$ multiplets.

Absorption measurements in the range of 1590–2400 Å by Garton and Codling (1965) produced 82 newly observed lines of calcium. Their classifications extended the knows series as follows: 4snp $^{1}P^{\circ}$, to n=33, 3dnp $^{1}P^{\circ}$, to n=29, 3dnp $^{3}P^{\circ}$, to n=25, 3dnp $^{3}D^{\circ}$, to n=19, 3dnf $^{1}P^{\circ}$, to n=15, 3dnf $^{3}P^{\circ}$, to n=10, and 3dnf $^{3}D^{\circ}$, to n=15. A single line at 1740.32 Å was classified as $4s^{2}$ $^{1}S_{0}$ —4s5p $^{1}P^{\circ}$,. Their classification of the level at 43 933 cm⁻¹ as mainly 3d4p $^{1}P^{\circ}$, was accepted in several subsequent papers by other authors but was abandoned in the light of recent theoretical work cited below. It is now apparent that no level is preponderantly of this nature.

Sources of Level Values

The emission spectrum was completely reobserved by Risberg (1968) from 195 Å to 30 000 Å by means of a hollow cathode discharge. In this range 275 lines were measured, about 100 of which were observed for the first time. Autoionization and the low pressure of this light source prevented the detection of all but four levels above the ionization limit, 3P_1 and $^3D_{1,2,3}$ of the 3d4d configuration. The other members of the 3d4d and 3d5d configurations are derived from the classified lines of Russell and Saunders (1925) combined with the lower level values given by Risberg.

Several revisions and extensions are proposed in Risberg's paper. The earlier assignments of 4s6s 1S_0 and $4p^2$ 1S_0 to 41 786 cm $^{-1}$ and 40 690 cm $^{-1}$ respectively are interchanged. The J=0 level of 4s7p $^3P^\circ$ and the J=1,2 levels of 4s8p $^3P^\circ$ were found. The 1D_2 terms of 3d5s and $3d^2$ were also discovered, and in the 4snf series the $^1F^\circ$ of 4s12f was added.

Risberg has incorporated the interferometric measurements of the strong lines by Wagman (1937) and the accurate measurements of Grafenberger (1937) with her own extensive measurements to redetermine all the energy level values. Risberg's results are quoted here.

The data available for Ca I are particularly rich in long series. Those series for which the maximum observed value of n is 10 or more are listed below.

Brown, Tilford, and Ginter (1973) observed absorption spectra of calcium series in the range of 1500–1770 Å and 2020–2090 Å at high dispersion. They recorded the 4snp ¹P°, series for n=11-79 and deduced from these data an ionization energy of 49305.99 ± 0.12 cm⁻¹.

Series in Ca 1

Config.	Term	n_{\max}	References
1. 4snp	3p°	60	Armstrong et al. (1979)
2. 4snp	¹ P°	79	Brown et al. (1973)
3. 4snd	³ D	17	Risberg (1968), Camus (1974)
4. 4snd	¹D	62	Borgström and Rubbmark (1977) Armstrong et al. (1977)
5. 4sns	3S	18	Risberg (1968), Camus (1974)
6. 4sns	1S	32	Borgström and Rubbmark (1977) Armstrong et al. (1977)
7. $3dnp$	3D°	58	Brown et al. (1973)
8. $3dnp$	3P°	33	Brown et al. (1973)
9. $3dnp$	¹P°	61	Brown et al. (1973)
10. 4snf	³F°	13	Risberg (1968), Camus (1974)
11. 4snf	¹F°	28	Borgström and Rubbmark (1977)
12. 3dnf	3Do	30	Brown et al. (1973)
13. 3dnf	³P°	38	Brown et al. (1973)
14. 3dnf	¹P°	39	Brown et al. (1973)
15. $3p^5(^{2}P^{\circ}_{3/2})$			
$4s^2nd$	² [3/2]°	16	Mansfield and Newsom (1977)
16. $3p^{6}(^{2}P^{\circ}_{1/2})$			
$4s^2nd$	² [3/2]°	17	Mansfield and Newsom (1977)
17. $3p^5(^2P^{\circ}_{3/2})$			
$4s^2ns$	² [3/2]°	10	Mansfield and Newsom (1977)
18. $3p^{5}(^{2}P^{\circ}_{1/2})$			
$4s^2ns$	²[1/2]°	14	Mansfield and Newsom (1977)

Series of doubly excited configurations converging to the $3d^2$ D limit were extended. The $3dnp^3$ D°₁ series was measured through n=58, the $3dnp^4$ P°₁ through n=61, the $3dnp^4$ P°₁ through n=33, the $3dnf^4$ P°₁ through n=39, the $3dnf^4$ P°₁ through n=39. They note that "the $3dnp^4$ P°₁ series lines are the strongest and most diffuse of the six observed series." Two levels that perturb this series at n=6 and n=7 were measured. They have been identified as $5s4p^4$ P°₁ and p^4 P°₁ by Newsom (1966). The results of Brown, Tilford, and Ginter are quoted here for series members beyond the observations of Risberg.

In a paper by Armstrong, Esherick, and Wynne (1979) they report observations by means of multiphoton absorption experiments of the 4snp $^3P^{\circ}_{0}$ series to n=60. This was previously given to n=7 by Risberg (1968).

Armstrong, Esherick, and Wynne (1977) greatly extended the observations of the 4sns $^{1}S_{0}$ series from n=12 to 32 and the 4snd $^{1}D_{2}$ series from n=8 to 62. In the latter series they substituted the level 46 199.23 cm $^{-1}$ for 4s7d, rejecting the level 46 308.257 given by Risberg. The level 47 449.083 cm $^{-1}$ assigned by Risberg to $3d^{2}$ $^{1}D_{2}$ is renamed 3d5s $^{1}D_{2}$. This designation was used by Risberg for the level 48 083.383 cm $^{-1}$, which is now named 4s10d $^{1}D_{2}$ by Armstrong et al. These changes are confirmed by additional observations by Palenius and Risberg (1977). No level was found to replace the $3d^{2}$ $^{1}D_{2}$.

Borgström and Rubbmark (1977) observed absorption series from the 4s4p $^{1}P^{\circ}$, level. They report values for 4sns $^{1}S_{0}$ from n=12 to 28 and 4snd $^{1}D_{2}$ from n=7 to 59. These two series have been extended to n=32 and n=62, respectively, by Armstrong, Esherick, and

Wynne (1977). Borgström and Rubbmark observed the $4snf \, ^1F^{\circ}_{3}$ series from n=13 to 28.

Mansfield and Newsom (1977) have observed absorption from the 3p shell between 320 and 500 Å. We have given the $3p^54s^2ns$ and $3p^54s^2nd$ series from their paper.

Ionization Potential

Borgström and Rubbmark have determined a value of the ionization energy from the 4snf 1F $^\circ$ $_3$ series equal to $49\ 305.92\pm0.10\ cm^{-1}$ which is within the error limits of the value of Brown et al., $49\ 305.99\pm0.12\ cm^{-1}$. We have adopted the mean of the two values, $49\ 305.96\pm0.08\ cm^{-1}$ as the best value. The uncertainty in the conversion factor, $8065.479\pm0.021\ cm^{-1}/eV$, determines the uncertainty in the value given in eV.

Perturbed Series

The identification of $3d4p \, ^1\mathrm{P}^{\circ}{}_{\scriptscriptstyle 1}$, which perturbs the 4snp 1Po, series, has been the subject of much discussion in the literature. Russell and Shenstone (1932) decided from intensity and energy considerations that it must be the level at 36 731 cm⁻¹. Roth (1969) attributes to Racah his identification of this term with the level at 41 679 cm⁻¹. Friedrich and Trefftz (1969), on the basis of multiconfiguration calculations, retained it at 36 731 cm⁻¹. Garton and Codling (1965), from intensity considerations, placed it at 43 933 cm⁻¹. This assignment has been adopted by Risberg in her analysis of Ca I and by Moores (1966) in his multichannel quantum defect theory (MQDT) calculation of the 4snp Po, series. The investigation of the 4snp ¹P^o₁ series by Armstrong et al. (unpublished) using MQDT has shown that all of the above levels contain less than 30% 3dnp $^{1}P^{\circ}_{1}$ composition (summed over all n). The 3d4p ¹P°₁ state is diluted beyond recognition by mixing into the 4snp series. Among these levels the largest percentage of 3dnp ¹P°₁ (27%) is present in the level at 43 933 cm⁻¹. Since this level is identified in the modern literature with 3d4p $^{1}P^{\circ}_{1}$ and the rest of the quantum numbers are assigned accordingly, we retain this nominal labeling. In the light of this mixing, Roth's calculation of the (3d+4s)4p interaction is inappropriate and his results are not included here.

Another well-known perturbed series in Ca I is the 4snd ³D series, strongly perturbed by 3d5s ³D between n=8 and 9. This has been studied by Seaton (1966) using his MODT method.

Some parity-forbidden series have been observed in Ca I. In Saunders' (1920) paper the first four members of $4s^2$ 'S₀–4snd 'D₂ series are reported. Transitions to the ground state from $4p^2$ 'S₀ and from 4s7s and 4s8s 'S₀ are also given. McIlrath (1974) has observed lines in absorption between 2048 and 2091 Å which Palenius and Risberg have identified as transitions to 4s9d-14d 'D₂ and 4s13s-17s 'S₀ from the $4s^2$ 'S₀ ground state.

Arrangement of Tables

The first table of energy levels presented here for neutral calcium is arranged in the usual way; the terms are listed in order of increasing energy without regard to configuration assignments. Because many long Rydberg series have been observed in Ca I, we present a second table for this spectrum in which the series are listed separately, followed by their series limits. This table reveals more clearly the character of the observed spectrum. The series are listed in order of increasing first series member. The series member with the largest value of n for each term type is followed by the limit or limits of that series in Ca II. The assignment of the limits is discussed by Brown et al. and graphically displayed in their figure 10.

References

Armstrong, J. A., Esherick, P., and Wynne, J. J. (1977), Phys. Rev. A 15, 180.

Armstrong, J. A., Esherick, P., and Wynne, J. J. (1979), J. Opt. Soc. Am. 69, 211

Back, E. (1925), Zeits. f. Phys. 33, 579.

Bohr, N. This discovery was noted by Wentzel, G. (1923), Phys. Zeits. 24, 106.

Borgström, S. A., and Rubbmark, J. R. (1977), J. Phys. B 10, 3607.
Brown, C. M., Tilford, S. G., and Ginter, M. L. (1973), J. Opt. Soc. Am. 63, 1454.

Camus, P. (1974), J. Phys. B 7, 1154, and unpublished data.

Friedrich, H., and Trefftz, E. (1969), J. Quant. Spectrosc. Radiat. Transfer 9, 333.

Garton, W. R. S., and Codling, K. (1965), Proc. Phys. Soc. 86, 1067.

Grafenberger, H. (1937), Ann. d. Phys. [5] 30, 267.

Humphreys, C. J. (1951), J. Res. Nat. Bur. Stand. 47, 262.

Mansfield, M. W. D., and Newsom, G. H. (1977), Proc. R. Soc. London A 357, 77.

McIlrath, T. J. (1974), J. Phys. B 7, 393.

Moores, D. L. (1966), Proc. Phys. Soc. 88, 843.

Newsom, G. H. (1966), Proc. Phys. Soc. 87, 975.

Palenius, H. P., and Risberg, G. (1977), J. Phys. B 10, L435.

Risberg, G. (1968), Ark. Fys. 37, 231.

Roth, C. (1969), J. Res. Nat. Bur. Stand. 73A, 497.

Russell, H. N. (1927), Astrophys. J. 66, 184.

Russell, H. N., and Saunders, F. A. (1925), Astrophys. J. 61, 38. Russell, H. N., and Shenstone, A. G. (1932), Phys. Rev. 39, 415.

Saunders, F. A. (1920), Astrophys. J. 52, 256.

Seaton, M. J. (1966), Proc. Phys. Soc. 88, 815.

Wagman, N. E. (1937), Univ. Pittsburgh Bull. 34, 325.

Ca I: Ordered by term values

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$4s^2$	¹ S	0	0.000	3d 4p	3D°	1	38 192.392
						2	38 219.118
4s4p	3 P $^{\circ}$	0	15 157.901			3	38 259.124
		1	15 210.063				
		2	15 315.943	$ 4p^2 $	³ P	0	38 417.543
						1	38 464.808
d d 4s	^{3}D	1	20 335.360			2	38 551.558
		2	20 349.260				
		3	20 371.000	3d 4p	³ P°	0	39 333.382
3d $4s$	^{1}D	2	21 849.634			1	39 335.322
0U 48			21 049.034			2	39 340.080
4s4p	lP°	1	23 652.304	4s6s	³S	1	40 474.241
ls5s	³S	1	31 539.495	3d4p	¹F°	3	40 537.893
ls5s	1 S	0	33 317.264	ow ip	1		40 0000
			00 011.204	4s6s	^{1}S	0	40 690.435
3d 4p	³ F°	2	35 730.454				
		3	35 818.713	$ 4p^2 $	1 D	2	40 719.847
		4	35 896.889				
3d 4p	¹D°	2	35 835.413	4s6p	¹ P°	1	41 679.008
	2			$ 4p^2 $	¹ S	0	41 786.276
4s5p	³ P°	0	36 547.688				_
		1	36 554.749	4s4f	³F°	2	42 170.214
		2	36 575.119	,		3	42 170.558
4s5p	$^{1}P^{\circ}$	1	36 731.615			4	42 171.026
	l in			4s4f	$^{1}\mathbf{F}^{\circ}$	3	42 343.587
s4d	^{1}D	2	37 298.287	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4s4d	^{3}D	1	37 748.197	4s6p	$^{3}P^{\circ}$	0	42 514.845
			37 751.867			1	42 518.708
		2 3	37 757.449	N .		2	42 526.591

Ca I: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm^{-1})
4s5d	3D	1	42 743.002	4s7f	³F°	2	47 006.194
		2 3	42 744.716 42 747.387			3 4	47 006.280 47 006.400
4s5d	¹D	2	42 919.053	4s7f	¹F°	3	47 015.141
$3d^2$	$^{3}\mathbf{F}$	2	43 474.827	\parallel_{4s8d}	$^{3}\mathrm{D}$	1	47 036.225
<i>5</i> u		3	43 489.119	1000		2	47 040.007
		4	43 508.088			3	47 045.241
3d 4p	¹ P°	1	43 933.477	4s9p	³P°	1	47 085.38 47 086.99
4s7s	3 S	1	43 980.767	$\begin{vmatrix} 4s9p \end{vmatrix}$	¹ P°	2 1	47 086.99
4s7s	^{1}S	0	44 276.538	48 <i>9p</i>		1	
	3770		11 800 000	4s10s	³ S	1	47 382.048
4s5f	³F°	2 3	44 762.620 44 762.839	4s10s	¹S	0	47 437.471
		4	44 763.118	$\parallel 3d 5s$	\mathbf{l} \mathbf{l} \mathbf{D}	2	47 449.083
4s5f	$^{1}\mathrm{F}^{\circ}$	3	44 804.878	3d 5s	$_{3}$ D	1	47 456.452
407 n	3 p °	0	44 955.67			2	47 466.014
$s7p$ $^{3}P^{\circ}$	1	44 957.655			3	47 475.915	
		2	44 961.757	488f	³ F°	2	47 550.214
4s6d	^{1}D	2	44 989.830			3	47 550.271
4s6d	$^{3}\mathrm{D}$	1	45 049.073		l Tro	4	47 550.371
2000		2	45 050.419	488f	lF°	3	47 555.23
		3	45 052.374	4s10p	³ P°	1	47 604.75
4s7p	$^{1}\mathbf{P}^{\circ}$	1	45 425.358		1	2	47 605.77
4s8s	3 S	1	45 738.684	4s10p	¹ P°	1	47 662.10
4s8s		0	45 887.200	4s9d	^{3}D	1	47 752.655
4505			40 001.200	-		$\frac{2}{3}$	47 757.286 47 765.697
1s6f	³ F°	2	46 164.644			υ	41 100.001
		3 4	46 164.785 46 164.971	4s11s	3 S	1	47 806.17
4s6f	¹ F °	3	46 182.399	4s9d	1 D	2	47 812.39
4s7d	1 D	2	46 200.13	4s11s	¹S	0	47 843.76
4s8p	³ P°	0	46 284.12	$ _{4s9f}$	³F°	2	47 921.87
		1	46 285.23	,		3	47 921.981
		2	46 287.63		1	4	47 922.033
4s7d	^{3}D	1	46 301.973	489f	¹ F°	3	47 924.947
		2 3	46 303.649 46 306.059	4s11p	³P°	1	47 960.87
					,	2	47 961.53
4s8p	lP°	1	46 479.813	4s11p	lP°	1	47 997.49
1s9s	³S	1	46 748.283	4s10d	3D	1	48 031.58 48 033.23
4s9s	¹S	0	46 835.055			$\frac{2}{3}$	48 036.212
4s8d	^{1}D	2	46 948.98	4s10d	1 D	2	48 083.41

Ca I: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4s12s	$^3\mathrm{S}$	1	48 103.93	4s15s	³S	1	48 609.75
ls12s	1 S	0	48 130.75	4s15s	¹S	0	48 621.53
s10f	${}^3\mathbf{F}^{\circ}$	2	48 187.045	4s13f	³F°	4	48 646.38
		3 4	48 187.075 48 187.118	4s13f	¹ F °	3	48 647.30
s10f	$^{1}\mathrm{F}^{\circ}$	3	48 188.990	4s15p	³ P °	2	48 660.23
s12p	${}^3\mathbf{p}_{\circ}$	1	48 215.81	4s15p	¹ P°	1	48 669.83
31 <i>L</i> p	1	2	48 216.36	4s14d	^{3}D	1	48 675.68
s12p	$^{1}\mathbf{P}^{\circ}$	1	48 240.53			2 3	48 675.87 48 676.13
s11d	$^3\mathrm{D}$	1 2	48 258.30 48 258.98	4s $14d$	¹ D	2	48 678.97
		3	48 260.25	4s16s	3 S	1	48 708.67
4s11d	$^{1}\mathbf{D}$	2	48 290.85	4s16s	¹S	0	48 718.02
4s13s	3 S	1	48 321.00	4s14f	¹ F °	3	48 738.54
ls13s	1 S	0	48 340.75	4s16p	³P°	2	48 749.04
s11f	${}^3\mathrm{F}^\circ$	2	48 382.70 48 382.781	4s16p	¹ P°	1	48 756.45
		3 4	48 382.801	4s15d	^{1}D	2	48 760.14
s11 <i>f</i>	$^{1}\mathbf{F}^{\circ}$	3	48 384.039	4s15d	3D	1	48 761.11 48 761.21
s13p	3 P $^{\circ}$	1 2	48 404.57 48 404.95			2 3	48 761.31
s13p	$^{\mathrm{I}}\mathbf{P}^{ullet}$	1	48 422.09	4s17s	³S	1	48 787.89
s12d	$^3\mathrm{D}$	1	48 433.23	4s17s	¹ S	0	48 795.46
		2 3	48 433.65 48 434.36	4s15f	¹ F°	3	48 812.09
s12d	$^{1}\mathbf{D}$	2	48 451.73	4s17p	³P°	2	48 820.60
s14s	$^3\mathbf{S}$	1	48 484.12	4s17p	¹P°	1	48 826.54
s14s	$^{1}\mathrm{S}$	0	48 499.14	4s16d	^{1}D	2	48 827.05
d^2	$^3\mathrm{P}$	0	48 524.093	4s16d	^{3}D	2 1	48 830.41 48 830.44
	~	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	48 537.623 48 563.522			3	48 830.64
101	2_			4s18s	3 S	1	48 852.18
s12f	³F°	3,4	48 531.04	4s18s	¹S	0	48 858.59
s12f	¹F°	3	48 532.139	4s16f	$^{1}\mathbf{F}^{\circ}$	3	48 872.20
s14p	${}^3\mathrm{P}^{\circ}$	1 2	48 548.30 48 548.51	4s18p	³P°	2	48 879.31
s14p	$^{1}\mathrm{P}^{\circ}$	1	48 561.10	4s17d	^{1}D	2	48 882.37
s13d	$^{3}\mathrm{D}$	1	48 568.95	4s18p	lP°	1	48 884.06
		3	48 569.16 48 569.59		$^{3}\mathrm{D}$		
s13d	$^{1}\mathbf{D}$	2	48 578.32	4s17d	ע" ו	$\frac{3}{2}$	48 887.58 48 887.68

Ca 1: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4s19s	¹S	0	48 910.65	4s23f	¹ F°	3	49 096.74
4s17f	¹ F°	3	48 921.95	4s25p	³ P °	2	49 099.25
4s19p	³ P°	2	48 927.93	4s25p	$^{1}\mathbf{P}^{\circ}$	1	49 100.72
4s18d	^{1}D	2	48 928.79	4s26s	¹s	0	49 109.85
4s19p	lP°	1	48 931.82	4s25d	1 D	2	49 113.41
4s20s	¹S	0	48 954.13	4s24f	lF°	3	49 113.85
4s18f	$^{1}\mathbf{F}^{\circ}$	3	48 963.67	4s26p	3 p •	2	49 116.07
4s19d	^{1}D	2	48 968.10	4s26p	$^{1}\mathbf{P}^{\circ}$	1	49 117.38
4s20p	³ P°	2	48 968.67	4s27s	$^{1}\mathrm{S}$	0	49 125.44
4s20p	$^{1}\mathbf{P}^{\circ}$	1	48 971.93	4s26d	^{1}D	2	49 128.34
ls21s	¹S	0	48 990.83		1 _{F°}		
4s19f	lF°	3	48 998.89	4s25f		3	49 129.00
4s20d	1 D	2	49 001.66	4s27p $4s27p$	³ P°	2	49 130.94
	³ P₀						49 132.09
s21p $s21p$	¹ P°	2	49 003.21	4s28s	l'S	0	49 139.31
-	$^{1}\mathrm{S}$	0	49 022.02	4s27d	1 D	2	49 141.63
ls22s		- Constant		4s26f	lF°	3	49 142.38
s20f	¹F°	3	49 028.93	4s28p	³ P°	2	49 144.19
ss21d	¹ D	2	49 030.55	4s28p	¹ P°	1	49 145.15
4s22p	³ P°	2	49 032.70	4s29s	1S	0	49 151.59
4s22p	¹ P°	1	49 034.98	4s28d	¹D	2	49 153.49
ls23s	¹S	0	49 048.85	4s27f	$^{1}\mathbf{F}^{\circ}$	3	49 154.29
l s21 <i>f</i>	¹ F °	3	49 054.80	4s29p	³ P°	2	49 155.90
4s22d	1 D	2	49 055.62	4s29p	¹ P°	1	49 156.78
4s23p	³ P°	2	49 058.02	4s30s	¹S	0	49 162.47
4s23p	¹P°	1	49 060.02	4s29d	$^{-1}\mathbf{D}$	2	49 164.12
s24s	¹ S	0	49 071.99	4s28f	¹ F °	3	49 164.99
4s22f	¹F°	3	49 077.20	4s30p	3P°	2	49 166.43
s23d	¹ D	2	49 077.48	4s30p	lP°	1	49 167.20
s24p	3 P °	2	49 080.04	4s31s	^{1}S	0	49 172.43
s24p	¹ P°	1	49 081.75	4s30d	1 D	2	49 173.70
s25s	1 S	0	49 092.19	4s31p	3P°		
s24d	1 D	2	49 096.52	4s31p 4s31p	¹ P°	2 1	49 175.87 49 176.58

Ca I: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4s32s	¹s	0	49 181.49	4s41d	¹ D	2	49 236.45
4s31d	1D	2	49 182.36	4s42p	³ P°	2	49 237.55
4s32p	³ P°	2	49 184.37	4s42p	lP°	1	49 237.82
4s32p	¹ P°	1	49 185.02	4s42d	¹ D	2	49 239.80
4s32d	¹ D	2	49 190.17	4s43p	⁸ P°	2	49.240.81
4s33p	³P°	2	49 192.08	4s43p	¹P°	1	49 241.09
4s33p	$^{1}\mathbf{P}^{\circ}$	1	49 192.68	4s43d	¹D	2	49 242.93
4s33d	\mathbf{q}_{1}	2	49 197.30	4s44p	3 P °	2	49 243.87
4s34p	3 P °	2	49 199.09	4s44p	¹ P°	1	49 244.13
4s34p	¹ P°	1	49 199.62	4s44d .	$^{1}\mathbf{D}$	2	49 245.80
4s34d	^{1}D	2	49 203.78	4s45p	³ P°	2	49 246.74
4s35p	³ P°	2	49 205.47	4s45p	¹ P°	1	49 246.98
4s35p	¹ P°	1	49 205.95	4s45d	¹ D	2	49 248.52
4s35d	^{-1}D	2	49 209.68	4s46p	³ P°	2	49 249.37
4s36p	³ P°	2	49 211.34	4s46p	¹ P °	1	49 249.61
4s36p	¹ P°	1	49 211.72	4s46d	^{1}D	2	49 251.05
4s36d	$^{1}\mathbf{D}$	2	49 215.11	4s47p	³ P °	2	49 251.87
4s37p	³ P °	2	49 216.61	4s47p	¹ P°	1	49 252.08
4s37p	lP°	1	49 217.02	4s47d	^{1}D	2	49 253.40
4s37d	$^{1}\mathbf{D}$	2	49 220.10	4s48p	³ P °	2	49 254.22
	3p°			4s48p	¹ P°	1	49 254.41
4s38p	l _{P°}	2	49 221.51	4s48d	^{1}D	2	49 255.64
4s38p		1	49 221.87	4s49p	³P°	2	49 256.42
4s38d	¹ D	2	49 224.70	4s49p	¹ P °	1	49 256.56
4s39p	³ P°	2	49 226.02	4s49d	1 D	2	49 257.74
4s39p	lP°	1	49 226.35	4s50p	³P°	2	49 258.45
4s39d	¹D	2	49 228.92	4s50p	lP°	1	49 258.60
4s40p	³ P°	2	49 230.13	4s50d	¹ D	2	49 259.68
4s40p	¹ P°	1	49 230.45	4s51p	³ P°	2	49 260.36
4s40d	¹ D	2	49 232.81	4s51p	¹P°	1	49 260.51
4s41p	³ P°	2	49 234.00	4s51d	1 D	2	49 261.51
4s41p	¹ P°	1	49 234.28	4s52p	3 P °	2	49 262.15

Ca 1: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4s52p	1 P °	1	49 262.30	4s66p	lP°	1	49 279.30
•		-		4s67p	¹ P°	1	49 280.10
4s52d	,D	2	49 263.31	4s68p	$^{1}P^{\circ}$	1	49 280.88
				4s69p	¹ P°	1	49 281.62
4s53p	³ P°	2	49 263.85	4s70p 4s71p	lP°	1	49 282.34
4s53p	$^{1}P^{\circ}$	1	49 263.99	4s72p	¹ P°	1	49 283.01
-				4s73p	$^{1}P^{\circ}$	1	49 283.67
4s53d	^{1}D	2	49 264.77	4s74p	$^{1}P^{\circ}$	1 1	49 284.30 49 284.88
				4s75p	$^{1}\mathbf{P}^{\circ}$	1	49 285.46
ls54p	3P°	2	49 265.44	4s76p	$^{1}\mathbf{P}^{\circ}$	1	49 286.00
4s54p	¹ P°	1	49 265.59	4s77p	¹ P°	1	49 286.54
-			·	4s78p	lP°	1	49 287.05
4s54d	^{1}D	2	49 266.36	4s79p	$^{1}P^{\circ}$	1	49 287.57
4s55p	³P°	2	49 266.99	Ca II $({}^{2}S_{1/2})$	Limit		49 305.96
4s55p	¹ P°	1	49 267.10	3d $4d$	^{3}D	1	51 351.74
				ou iu		2	51 369.38
4s55d	1 D	2	49 267.84			3	51 396.32
4 <i>s</i> 56 <i>p</i>	³ P°	2	49 268.40	3d 4d	^{3}S	1	51 571.7
-	lP°						02 01211
4s56p	P	1	49 268.52	3d 5p	3D°	1	51 709.5
4s56d	^{1}D	2	49 269.33			2	51 734.6
13000		2	40 200.00			3	51 767.0
4s57p	³ P°	2	49 269.77	3d 5p	³ P°	1	<i>51 908</i> .
4s57p	¹ P°	1	49 269.88	3d 5p	$^{1}\mathrm{P}^{\circ}$	1	53 100.
4s57d	$^{1}\mathbf{D}$	2	49 270.40	3d 4d	$^{3}\mathbf{P}$	0	54 282.3
		£d	10 210.10	•		1	54 288.74
4s58p	³ P°	2	49 271.01			2	$54\ 304.6$
4s58p	$^{1}\mathbf{P}^{\circ}$	1	49 271.14	3d4f	3D°	1	55 902.8
	1				³ P°		
4s58d	1 D	2	49 271.79	3d4f		1	55 946.6
4s59p	³ P°	2	49 272.24	3d4f	¹ P °	1	55 982.3
-				2.10-	3700		
4s59p	$^{1}\mathbf{P}^{\circ}$	1	49 272.35	3d 6p	3D°	1	56 254.
4s59d	$^{1}\mathbf{D}$	2	49 273.09	3d 5d	^{3}D	2	56 469.0
4s60p	3 p °	2	49 273.37	3d 6p	³ P °	1	56 532.63
4s60p	¹ P°	1	49 273.50	3d 5d	^{3}S	1	
4s60d	^{1}D	2	49 274.29				56 558.9
				3d 6p	¹ P°	1	<i>56 651.</i>
4s61p	lP°	1	49 274.60	4p5s	³P°	1	<i>57 462</i> .
4s61d	1 D	2	49 275.58	3d 5d	^{3}P	0	57 611.2
4s62p	lP°	1	49 275.62			1	$57\ 617.9$
	1-					2	57 638.4
4s62d	¹ D	2	49 275.87	4p5s	¹ P°	1	<i>57 960.</i>
s63p	$^{1}\mathbf{P}^{\circ}$	1	49 276.61	3d5f	3D°	1	58 431.31
s64p	$^{1}P^{\circ}$	1	49 277.55		1		
s65p	$^{1}\mathbf{P}^{\circ}$	1	49 278.44	3d5f	³ P°	1	58 491.91

Ca I: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3d5f	¹ P°	1	58 505.89	3d 11f	3 D °	1	62 009.17
3d7p	3D°	1	58 798.92	3d 11f	³ P°	1	62 052.49
3d7p	³ P°	1	59 010.87	3d13p	$^3\mathrm{D}_\circ$	1	62 084.92
3d7p	¹ P°	1	59 197.	•			
3d 6d	3 P	1	59 368.	3d 11f	¹ P°	1	62 084.92
		2	59 391.	$3d\ 13p$	³ P°	1	62 097.08
3d6f	3 D °	1	59 802.21	3d 13p	lP°	1	62 154.62
3d6f	³ P °	1	59 862.26	$3d\ 12f$	3D°	1	62 161.61
3d6f	¹ P°	1	59 878.52	$3d\ 12f$	³ P°	1	62 198.92
3d8p	3D°	1	60 046.13	3d 14p	3D°	1	62 223.68
3d 8p	³ P°	1	60 150.26	3d 12f	lp°	1	62 234.47
3d8p	¹ P°	1	60 300.		³ p °		
3d7f	3D.	1	60 632.18	$3d\ 14p$		1	62 237.12
3d7f	³P°	1	60 690.27	3d 13f	3D°	1	62 279.33
3d7f	¹ P °	1	60 709.54	$3d\ 14p$	¹ P°	1	62 288.02
3d, $9p$	³ D°	1	60 807.28	3d 13f	³ P °	1	62 312.63
3d 9p	³ P°	1	60 869.28	$3d\ 15p$	3D.	1	62 331.04
3d 9p	$^{1}\mathbf{P}^{\circ}$	1	60 973.6		l P °		-
3d8f	3D.	1	61 172.54	$3d\ 13f$		1	62 346.47
3d8f	³ P°	1	61 228.65	$3d\ 15p$	³P°	1	62 351.93
3d8f	¹ P°	1	61 251.39	$3d\ 14f$	3 D °	1	62 375.29
$3d\ 10p$	3D°	1	61 306.65	$3d\ 15p$	¹P°	1	62 392.01
$3d\ 10p$	3P°	1	61 345.74	3d 14f	3 P °	1	62 403.22
$3d\ 10p$	¹ P°	1	61 428.1		3D.		
3d9f	3 D °	1	61 543.95	$3d\ 16p$		1	62 416.47
3d9f	³ P °	-1	61 596.69	3d 14f	lP°	1	62 433.38
3d9f	¹ P°	1	61 622.60	$3d \ 16p$	³ P°	1	62 443.64
3d11p	3D°	1	61 652.25	3d 15f	3 D °	1	62 453.85
3d11p	³ P°	1	61 676.62	3d 15f	³ P°	1	62 472.14
$3d\ 11p$	¹ P°	1	61 747.2	3d 16p	¹P°	1	62 478.26
$3d\ 10f$	3D°	1	61 810.68	3d 17p	3D°		
$3d\ 10f$	3 P °	1	61 859.22			1	62 486.45
$3d\ 10f$	¹ P°	1	61 888.22	$3d\ 15f$	¹ P°	1	62 506.62
$3d\ 12p$	3D.	1	61 901.04	3d 17p	³P°	1	62 511.97
$3d\ 12p$	³P°	1	61 916.38	3d 16f	3 D °	1	62 520.06
$3d\ 12p$	¹ P°	1	61 980.49	3d 16f	³ p ⁰	1	62 533.90

Ca 1: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3d\ 18p$	3 D °	1	62 539.39	3d 22f	3 D °	1	62 720.41
3d 17p	lP°	1	62 548.16	3d 21p	¹ P°	1	62 721.80
4p4d	³ D°?	1	62 552.97	3d 22f	³ P°	1	62 729.19
4p4d	³ P °?	1	62 557.45	$3d \ 24p$	3D°	1	ea voi as
4p4d	¹ P°?	1	62 561.72	5a 24p		1	62 734.25
3d 17f	3D°	1	62 565.68	3d $22p$	³ P°	1	62 736.10
$3d\ 16f$	¹P°	1	62 572.66	$3d \ 20f$	J.P.	1	62 736.10
3d 17f	3 p °	1	62 578.91	$3d \ 23f$	3D°	1	62 743.11
	3			3d 23f	3 P °	1	62 748.53
$3d \ 18p$	³ P°	1	62 584.50	$3d \ 22p$	¹ P°	1	62 750.58
$3d\ 19p$	³ D°	1	62 587.83	$3d \ 25p$	3D°	1	62 753.60
$3d\ 18p$	¹ P°	1	62 602.72				
3d 18f	3D°	1	62 610.75	$3d \ 23p$	³ P°	1	62 762.86
3d 18f	3 P °	1	62 617.02	3d 21f	¹ P°	1	62 762.86
3d 17f	$^{1}\mathbf{P}^{\circ}$	1	62 625.37	3d 24f	³ P °	1	62 764.10
3d20p	3D°	1	62 626.03	3d 24f	3D°	1	62 768.10
3d 19p	3 P °	1	62 628.76	3d 26p	3D°	1	62 769.47
3d 19f	3D.	1	62 641.52	$3d \ 23p$	¹ P°	1	62 774.75
				3d 25f	³P°	1	62 780.30
$3d\ 19p$	¹ P°	1	62 648.37	3d 27p	3D°	1	62 783.86
$3d\ 19f$	³ P°	1	62 653.99		lP°		
3d 21p	3D.	1	62 660.15	3d 22f		1	62 785.02
$3d\ 20p$	³P°	1	62 671.51	3d 24p	3P°	1	62 787.31
$3d\ 18f$	$^{1}P^{\circ}$	1	62 671.51	3d 26f	3D°	1	62 790.08
3 <i>d</i> 20 <i>f</i>	3D°		62 675.56	3d 26f	³ P°	1	62 794.19
3d 20f	³ P°	1 1	62 683.89	$3d \ 24p$	¹ P°	1	62 795.55
$3d \ 22p$	3D°	1	62 686.88	3d 28p	3D°	1	62 797.46
$3d\ 20p$	1 p °	1	62 690.32	3d 23f	¹ P°	1	62 804.38
$3d\ 19f$	1 p °		62 704.43	3d 27f	3 P °	1	62 806.02
•		1		3d 25p	³ P°	1	62 807.90
3d 21f	³ D°	1	62 704.43				
3d21f		1	62 707.25	$3d \ 29p$	3D°	1	62 808.51
3d 21p	³P°	1	62 711.37	$3d \ 28f$	3 D °	1	62 812.00
$3d \ 23p$	$^{3}D^{\circ}$	1	62 713.24	3d 25p	lP°	1	62 814.13

Ca I: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3d \ 28f$	³ P°	1	62 816.51	3d30p	³ P°	1	62 875.40
3d30p	3 D °	1	62 818.76	3d 37f	³ P°	1	62 875.40
3d 24f	¹ P°	1	62 820.31	3d 39p	3 D °	1	62 876.98
$3d \ 26p$	³ P°	1	62 824.17			1	62 878.40
$3d \ 29f$	³ P °	1	62 824.17	3d30p	¹ P°	1	62 879.48
3d31p	3 D °	1	62 827.75	$\begin{vmatrix} 3d \ 38f \end{vmatrix}$	³ P°	1	62 880.04
$3d\ 26p$	¹ P°	1	62 830.67	3d 40p	3 D °	1	62 881.24
3d30f	3D°	1	62 832.31	3d 31p	3 p °	1	62 884.77
$3d\ 30f$	3 P °	1	62 834.11	3d 41p	3D.	1	62 884.77
3d $32p$	3D°	1	62 836.22	341p			62 886.45
$3d\ 25f$	¹ P°	1	62 836.85		Inc	1	
$3d\ 27p$	³ P°	1	62 838.45	3d 31p	¹ P°	1	62 889.00
3d31f	3 P °	1	62 840.23	3d 42p	3D°	1	62 889.00
$3d\ 33p$	3D°	1	62 843.72	3d $43p$	3D°	1	62 891.65
$3d\ 27p$	¹ P° .	1	62 845.27	$3d\ 32p$	3P°	1	62 893.66
$3d\ 32f$	3 P °	1	62 848.77	3d $44p$	3D°	1	62 894.65
$3d\ 34p$	3 D °	1	62 850.62	3d 32p	l p °	1	62 897.57
$3d \ 26f$	¹ P°	1	62 852.33	3d 45p	3D°	1	62 897.57
3d 28p	³ P °	1	62 853.79	3d 46p	3 D °	1	62 900.09
3d 33f	3p°	1	62 853.79	3d 33p	$_3\mathbf{b}_o$	1	62 901.85
·	3D°	1	62 856.56	3d 47p	3D°	1	62 902.75
3d 35p	l _{P°}			3d33p	¹ P °	1	62 904.95
3d 28p	_	1	62 858.11	3d48p	3D°	1	62 904.95
$3d\ 34f$	³ P°	1	62 861.06	$\begin{array}{c} 3d\ 49p \\ 3d\ 50p \end{array}$	3D°	1 1	62 906.98 62 908.88
$3d\ 36p$	³ D°	1	62 862.60	3d51p	3D°	1	62 910.88
$3d\ 29p$	³ P°	1	62 863.99	$3d\ 34p$	¹ P°	1	62 911.51
$3d\ 35f$	3P°	1	62 865.39	3d 52p $3d 53p$	$^3\mathrm{D}^\circ$	1 1	62 912.67 62 914.47
$3d\ 37p$	3D°	1	62 867.87	3d $54p$	3D°	1	62 915.91
$3d\ 29p$	$^{\mathrm{l}}\mathbf{P}^{\circ}$	1	62 869.38	$3d\ 35p$	¹P°	1	62 917.83
3d 36f	³ P°	1	62 871.46	3d 55p	3D°	1	62 917.83
$3d\ 38p$	3 D °	1	62 872.69	$ \begin{array}{c c} 3d \ 56p \\ 3d \ 57p \end{array} $	3D°	1 1	62 918.80 62 920.32

Ca I: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)	
3d 58p	3D°	1	62 921.43	$3p^5 4s^2 4d$	3D°	1	267 956	
$3d\ 36p$	¹ P°	1	62 923.62	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^26s$	2[1/2]°	1	269 706	
3d35f	¹ P°	1	62 926.36	$3p^5 4s^2 4d$	¹P°	1	270 640	
3d 37p	¹ P°	1	62 928.81	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^25d$	2[3/2]°	1	270 889	
3d 36f	1 P °	1	62 931.29	$3p^5(^2\mathrm{P}^{\bullet}_{3/2})4s^27s$	2[3/2]°	1	271 245	
$3d\ 38p$	lP°	1	62 933.61	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^26d$	2[3/2]°	1	273 134	
3d 37f	¹ P°	1	62 935.88	$3p^5(^2 ext{P}_{1/2}^{\circ})4s^27s$	2[1/2]°	1	273 598	
3d $39p$	$^{1}P^{\circ}$	1	62 938.02	$3p^5(^2\mathrm{P}^{\bullet}_{3/2})4s^27d$	2[3/2]°	1	273 959	
3d 38f	$^{1}\mathrm{P}^{\circ}$	1	62 939.79	$3p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4s^{2}5d$	2[3/2]°	1	274 040	
dd 40p	¹ P °	1	62 942.10	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^29s$	2[3/2]°	1	274 276	
39f	lP°	1	62 943.85		2[3/2]°	1	274 652	
$3d\ 41p$ $3d\ 42p$	¹ P° ¹ P°	1 1	62 945.88 62 949.34	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^210s$	2[3/2]°	1	274 777	
$d\ 43p$ $d\ 44p$	¹ P°	1	62 952.58 62 955.57	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^29d$	2[3/2]°	1	275 272	
Za II (² D _{3/2})	Limit	_	62 956.15	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^210d$	2[3/2]°	1	275 503	
3d $45p$	¹P°	1	62 958.38		²[¾]°	1	275 726	
3d 46p 3d 47p	¹ P°	1	62 961.01 62 963.43	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^212d$	2[3/2]°	1	275 898	
3d 48p 3d 49p	¹ P°	1 1	62 965.72 62 967.84	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^213d$	2[3/2]°	1	276 038	
3d 50p 3d 51p	lP°	1 1	62 969.89 62 971.78	$3p^5(^2\mathbf{P}_{3/2}^{\circ})4s^2 14d$	2[3/2]°	1	276 138	
3d 52p 3d 53p	¹ P°	1 1	62 973.55 62 975.23	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^215d$	2[3/2]°	1	276 214	
3d 54p 3d 55p	¹ P° ¹ P° ¹ P°	1	62 976.81	$3p^5(^2\mathbf{P}_{3/2}^{\bullet})4s^2 16d$	2[3/2]°	1	276 283	
3d 56p 3d 57p 3d 58p	¹ P°	1 1	62 979.72	$3p^5(^2\mathrm{P}_{1/2}^{ullet})4s^27d$	2[3/2]°	1	276 631	
3d 59p 3d 60p	¹ P° ¹ P°	1 1	62 982.35 62 983.48	Ca II $3p^54s^2^2\mathrm{P}^{\circ}_{3/2}$	Limit		276 750	
8d 61p	¹ P°	1 1	62 984.63 62 985.70	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^28d$	2[3/2]°	1	277 430	
${ m Ca~II~(^2D_{5/2})}$	Limit		63 016.84	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^29d$	2[3/2]°	1	277 917	
$3p^5 4s^2 3d$	³ P°	1	200 096	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^211s$	²[½]°	1	277 991	
$3p^5 4s^2 3d$	³ D°	1	218 991	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^210d$	2[3/2]°	1	278 228	
$p^5 4s^2 3d$	¹ P°	1	253 310	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^212s$	2[1/2]°	1	278 302	
$4p^5 4s^2 4d$	³ P°	1	255 022	$\begin{vmatrix} 3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}11d \end{vmatrix}$	2[3/2]°	1	278 469	
$8p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4s^{2}5s$	² [³ / ₂]°	1	257 737	$ \begin{vmatrix} 3p^{5}(^{2}P_{1/2}^{\circ})4s^{2} 13s \end{vmatrix} $	2[½]°	1	278 534	
$8p^5(^2\mathrm{P}^{\circ}_{1/2})4s^25s$	2[1/2]°	1	260 193	$ \begin{vmatrix} 3p & (P_{1/2})4s & 13s \\ 3p^5 & (^2P_{1/2}^{\circ})4s^2 & 12d \end{vmatrix} $	² [³ / ₂]°	1	278 534	

Ca I: Ordered by term values—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3p^5(^2\mathrm{P}^{\circ}_{1/2})4s^214s$	2[1/2]°	1	278 702	$3p^5(^2\mathrm{P}^{\circ}_{1/2})4s^216d$	² [³ / ₂]°	1	279 050
$3p^5(^2\mathrm{P}_{1/2}^{\circ})4s^213d$	² [³ / ₂]°	1	278 796	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^217d$	² [¾ ₂]°	1	279 117
$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^214d$	² [³ / ₂]°	1	278 900	Ca II $3p^54s^2 {}^2P_{1/2}^{\circ}$	Limit		279 530
$3p^5(^2\mathrm{P}^{\circ}_{1/2})4s^215d$	² [¾]°	1	278 983				

Ca 1: Ordered by series

Configuration	Term	J	Level (cm ⁻¹)	Configuration	· Term	J	Level (cm ⁻¹)
4s ²	¹S	0	0.000	4s33p	³P°	2	49 192.08
48			0.000	4s34p	3 P $^{\circ}$	2	49 199.09
****	***	*	*****	4s35p	3P°	2	49 205.47
				4s36p	³P°	2	49 211.34
4s4p	³ p ∘	0	15 157.901	4s37p	³ P°	2	49 216.61
10 Ip		1	15 210.063	4s38p	³P°	2	49 221.51
		2	15 315.943	4s39p	³P°	2	49 226.02
				4s40p	³ P°	2	49 230.13
4s5p	³P°	0	36 547.688	4s41p	³ P°	2	49 234.00
-1		1	36 554.749	4s42p	³ P°	2	49 237.55
		2	36 575.119	4s43p	³ P°	2	49 240.81
				4s44p	³ P°	2	49 243.87
4s6p	³ P°	0	42 514.845	4s45p	³ P°	2	49 246.74
-		1	42 518.708	4s46p	³ p°	. 2	49 249.37
		2	42 526.591	4s47p	³ P°	2	49 251.87
	-			4s48p	³ P°	2	49 254.22
4s7p	³P°	0	44 955.67	4s49p	³ P°	2	49 256.42
		1	44 957.655	4s50p	³ P°	2	49 258.45 49 260.36
		2	44 961.757	4s51p	³ P°	$\frac{2}{2}$	49 262.15
				$\begin{array}{c} 4s52p \\ 4s53p \end{array}$	³ P°	2	49 263.85
4s8p	³P°	0	46 284.12	4s54p	$^{3}P^{\circ}$	2	49 265.44
		1	46 285.23	$\begin{vmatrix} 4854p \\ 4855p \end{vmatrix}$	³P°	2	49 266.99
		2	46 287.63	4856p	³ P °	$\frac{2}{2}$	49 268.40
	3			4s57p	³ P°	2	49 269.77
4s9p	³ P°	1	47 085.38	4s58p	3 P °	$\frac{2}{2}$	49 271.01
		2	47 086.99	4s59p	³ P°	2	49 272.24
4 4 4	³ p ∘	1	10, 001, 05	4s60p	³ P°	2	49 273.37
4s10p	P	$\begin{vmatrix} 1\\2 \end{vmatrix}$	47 604.75 47 605.77	Ca II (² S _{1/2})	Limit		49 305.96
	³ p °		1000000		Dimet		10 000.00
4s11p	"P°	$\frac{1}{2}$	47 960.87	4s4p	¹ P°	1	23 652.304
		2	47 961.53	4s5p	$^{1}\mathrm{P}^{\circ}$	1	36 731.615
4.10	³ P°	1	1001501	4s6p	¹ P°	1	41 679.008
4s12p	P	$\begin{vmatrix} 1\\2 \end{vmatrix}$	48 215.81 48 216.36	4s7p	$^{1}\mathbf{P}^{\circ}$	1	45 425.358
		4	40 210.30	4s8p	$^{1}\mathbf{P}^{\circ}$	1	46 479.813
4s13p	³ P °	1	48 404.57	4s9p	1 P °	1	47 184.370
4810 <i>p</i>	1	2	48 404.95	4s10p	$^{1}P^{\circ}$	1	47 662.10
			40 404.00	4s11p .	¹ P°	1	47 997.49
4s14p	³ p∘	1	48 548.30	4s12p	lP°	1	48 240.53
101 1p	-	2	48 548.51	4s13p	¹ P°	1	48 422.09
			, , , , , , , ,	4s14p	lP°	1	48 561.10
4s15p	$^{3}P^{\circ}$	2	48 660.23	4s15p	¹ P°	1	48 669.83
4s16p	³ P°	2	48 749.04	4s16p	1p°	1	48 756.45
4s17p	³ P°	2	48 820.60	4s17p	¹ P°	1	48 826.54
4s18p	³ P°	2	48 879.31	4s18p	¹ P°	1	48 884.06
4s19p	³P°	2	48 927.93	4s19p	lP°	1	48 931.82
4s20p	3P°	2	48 968.67	4s20p	1P°	1	48 971.93
4s21p	3P°	2	49 003.21	4s21p	¹ P°	1	49 005.92
4s22p	3 P °	2	49 032.70	4s22p	lP°	1	49 034.98
4s23p	³ P°	2	49 058.02	4s23p	l P°	1	49 060.02
4s24p	3 P °	2	49 080.04	4s24p	lp°	1	49 081.75
4s25p	³ P°	2	49 099.25	$\begin{array}{c} 4s25p \\ 4s26p \end{array}$	lP°	1	49 100.72
4s26p	³P°	2	49 116.07	4s27p	¹ P°	1	49 117.38
4s27p	³ P°	2	49 130.94	4s21p 4s28p	1P°	1	49 132.09
4s28p	³ P°	2	49 144.19	4s20p $4s29p$	$ {}^{1}\mathbf{p}^{\circ} $	1	49 145.15
4s29p	³ P°	2	49 155.90	4s25p 4s30p	l _{P°}	1	49 156.78 49 167.20
4s30p	³ P°	2	49 166.43	4s31p	¹ P°	1 1	49 167.20 49 176.58
4s31 <i>p</i> 4s32 <i>p</i>	³ P°	2	49 175.87	4s32p	$^{\mathrm{l}}\mathrm{P}^{\circ}$	1	49 176.38 49 185.02
0.0111	. 0100	2	49 184.37	11	1 1		40 100,00

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4s33p	¹p°	1	49 192.68	4s5d	3D	1	42 743.002
4s34p	lp°	1	49 199.62	480a	D	2	42 744.716
4s35p	lP°	1	49 205.95			3	42 747.387
4s36p	¹ P°	1	49 211.72				
4s37p	¹ P°	1	49 217.02	4s6d	3D	1	45 049.073
4s38p	lP°	1	49 221.87	4300	D	2	45 050.419
4s39p	l p °	$\overline{1}$	49 226.35			3	45 052.374
4s40p	¹P°	1	49 230.45				
4s41p	lP°	1	49 234.28	4s7d	^{3}D	1	46 301.973
4s42p	¹p°	1	49 237.82	4514		$\frac{1}{2}$	46 303.649
4s43p	¹ P °	1	49 241.09			3	46 306.059
4s44p	¹ P°	1	49 244.13				
4s45p	¹ P°	1	49 246.98	4s8d	$^{3}\mathrm{D}$	1	47 036.225
4s46p	lp°	1	49 249.61	4300	D	2	47 040.007
4s47p	¹ P°	1	49 252.08			3	47 045.241
4s48p	¹ P°	1	49 254.41				
4s49p	¹ P°	1	49 256.56	4s9d	^{3}D	1	47 752.655
4s50p	lP°	1	49 258.60	1000		2	47 757.286
4s51p	$^{1}\mathbf{P}^{\circ}$	1	49 260.51			3	47 765.697
4s52p	¹ P°	1 .	49 262.30				1,
4s53p	lP°	1	49 263.99	4s10d	³ D	1	48 031.58
4s54p	lP°	1	49 265.59	43104		2	48 033.23
4s55p	$^{1}\mathbf{P}^{\circ}$	1	49 267.10			3	48 036.212
4s56p	l P °	1	49 268.52			0	10 000121
4s57p	¹ P°	1	49 269.88	4s11d	3D	1	48 258.30
4s58p	l P°	1	49 271.14	43114		2	48 258.98
4s59p	$^{1}\mathbf{P}^{\circ}$	1	49 272.35			3	48 260.25
4s60p	¹P°	1	49 273.50				1000,220
4s61p	$^{1}\mathbf{p}^{\circ}$	1	49 274.60	4s12d	3D	1	48 433.23
4s62p	¹ P°	1	49 275.62	13120		2	48 433.65
4s63p	$^{1}\mathbf{P}^{\circ}$	1	49 276.61			3	48 434.36
4s64p	$^{1}\mathrm{P}^{\circ}$	1	49 277.55				
4s65p	^I P°	1	49 278.44	4s13d	^{3}D	1	48 568.95
4s66p	¹ P°	1	49 279.30			2	48 569.16
4s67p	$^{1}\mathbf{P}^{\circ}$	1	49 280.10			3	$48\ 569.59$
4s68p	¹ P°	1	49 280.88				
4s69p	$^{1}\mathbf{P}^{\circ}$	1	49 281.62	4s14d	$_{3}D$	1	48 675.68
4s70p	¹ P°	1	49 282.34			2	48 675.87
4s71p	lP°	1	49 283.01			3	$48\ 676.13$
4s72p	¹ P°	1	49 283.67				
4s73p	¹ P°	1	49 284.30	4s15d	$_{3}$ D	1	48 761.11
4s74p	¹ p ∘	1	49 284.88			2	$48\ 761.21$
4s75p	$^{1}\mathbf{p}^{\circ}$	1	49 285.46			3	$48\ 761.31$
4s76p	$^{1}\mathbf{P}^{\circ}$	1	49 286.00				
4s77p	$^{1}P^{\circ}$	1	49 286.54	4s16d	3 D	2	$48\ 830.41$
4s78p	lP°	1	49 287.05	·		1	$48\ 830.44$
4s79p	1p°	1	49 287.57			3	$48\ 830.64$
F	1	-		4s17d	$_3D$	3	48 887.58
90			40.00" 00			2	48 887.68
Ca II $({}^{2}S_{1/2})$	Limit		49 305.96	O- 11 (2C)	7		
		.=	90 99" 900	Ca II $({}^{2}S_{1/2})$	Limit		49 305.96
4s3d	3D	1	20 335.360	1-2-1	1		04 0 10
		2	20 349.260	4s3d	\int_{D}^{1}	2	21 849.634
		3	20 371.000	4s4d	$\frac{1}{2}$	2	37 298.287
				4s5d	1D	2	42 919.053
4s4d	\mathbf{q}_{g}	1	37 748.197	4s6d	^{1}D	2	44 989.830
		2	37 751.867	4s7d	¹ D	2	46 200.13
		3	37 757.449	4s8d	1 D	2	46 948.98

4-9d	Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4a 10d	4s9d	¹ D	2	47 812 39	4s8s	3 S	1	45 738 684
4311d D D 2 48 290.55 4s 10s S 1 47 382.08 44 12d D 2 48 561.73 4s 11s S 1 47 382.08 45 14d 47 26 D 2 48 578.32 4s 12s S 1 48 103.33 45 14d 47 26 D 2 48 878.37 4s 13s S 1 48 823.10 45 14d 47 2 D 2 48 878.37 4s 14s S 1 48 823.10 45 17d D D 2 48 892.57 4s 15s S 1 48 690.75 44 17d D D 2 48 892.57 4s 15s S 1 48 787.39 44 18d D D 2 48 893.71 4s 15s S 1 48 787.39 44 18d D D 2 48 985.70 4s 15s S 1 48 787.39 44 18d D D 2 49 908.65 Ca H S_{1/2} Limit 49 90.96 422d D D 2 49 908.52 4s6s S 0 33 317.264 422d D D 2 49 908.52 4s6s S 0 40 909.96 422d D D 2 49 908.52 4s6s S 0 40 909.96 422d D D 2 49 908.52 4s6s S 0 40 909.96 422d D D 2 49 153.49 4s 10s S S 0 47 87.31 425d D D 2 49 153.49 4s 10s S S 0 47 87.31 4380d D D 2 49 173.70 4s 13s S S 0 47 83.761 4380d D D 2 49 197.30 4s 10s S S 0 47 83.761 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4380d D D 2 49 197.70 4s 14s S S 0 48 890.75 4880d D D 2 49 197.70 4s 14s S S 0 48 890.75 4890d D D 2 49 293.78 4s 15s S 0 48 890.75 4890d D D 2 49 293.78 4s 15s S 0 48 890.75 4890d D D 2 49 293.83 4s 15s S 0 49 993.83 4857d D 2 49 283.81 4s 15s S 0 49 993.83 4857d D 2 49 283.81 4s 1							1	
4s12d							1	
4818d					11			
4816d		^{1}D					1	
4216d	4s14d	1 D	2	48 678.97	4s13s		1	48 321.00
4817d	4s15d		2	48 760.14	4s14s		1	48 484.12
4s18d	4s16d				II .		1	$48\ 609.75$
4819d							!	
As20d			2				i	
4821d					4s18s	°S	1	$48\ 852.18$
4822d					2~			
4823d					Ca II (${}^{2}S_{1/2}$)	Limit		49 305.96
4824d					4 ~	10		00.04#.004
4s25d ¹D 2 49 113.41 4s7s 'S 0 44 276,538 4s26d ¹D 2 49 128.34 4s8s 'S 0 45 887,200 4s27d ¹D 2 49 163.49 4s10s 'S 0 46 835,055 4s28d ¹D 2 49 163.49 4s10s 'S 0 47 437,471 4s28d ¹D 2 49 163.49 4s10s 'S 0 47 437,471 4s30d ¹D 2 49 182.36 4s1s 'S 0 48 130.75 4s31d 'D 2 49 197.30 4s14s 'S 0 48 130.75 4s32d 'D 2 49 197.30 4s14s 'S 0 48 691.63 4s36d 'D 2 49 20.68 4si7s 'S 0 48 718.02 4s36d 'D 2 49 20.68 4si7s 'S 0 48 795.46 4s36d 'D 2								
4s2Ed ¹D 2 49 128.34 4s8s 'S 0 45 887.206 4s27d ¹D 2 49 141.63 ¹s9s 'S 0 46 835.055 4s28d ¹D 2 49 164.12 4s10s 'S 0 47 837.471 4s29d ¹D 2 49 164.12 4s11s 'S 0 47 837.471 4s30d ¹D 2 49 182.36 4s13s 'S 0 48 190.75 4s31d ¹D 2 49 190.17 4s14s 'S 0 48 340.75 4s33d 'D 2 49 190.17 4s14s 'S 0 48 621.53 4s33d 'D 2 49 190.17 4s15s 'S 0 48 71s.02 4s33d 'D 2 49 203.78 4s16s 'S 0 48 71s.02 4s36d 'D 2 49 21.11 4s18s 'S 0 48 795.46 4s36d 'D 2								
4827d								
Second S								
4829d					11	lg		
4890d					11			
483Id								
4832d								
4838d								
4834d 1D 2 49 203.78 4816s 1S 0 48 718.02 4836d 1D 2 49 209.68 4817s 1S 0 48 795.46 4836d 1D 2 49 220.10 4818s 1S 0 48 858.59 4837d 1D 2 49 220.10 4819s 1S 0 48 910.65 4838d 1D 2 49 224.70 4820s 1S 0 48 910.65 4838d 1D 2 49 224.29 4821s 1S 0 48 910.65 4838d 1D 2 49 228.21 4820s 1S 0 48 906.83 4840d 1D 2 49 228.21 4822s 1S 0 49 022.02 4841d 1D 2 49 236.85 4822s 1S 0 49 048.85 4842d 1D 2 49 245.80 4826s 1S 0 49 071.99 4845d 1D 2								
4835d 1D 2 49 209.68 4s17s 1S 0 48 795.46 4836d 1D 2 49 215.11 4s18s 1S 0 48 795.46 4837d 1D 2 49 220.10 4s19s S 0 48 858.59 4838d 1D 2 49 224.70 4s20s 1S 0 48 954.13 4839d 1D 2 49 228.92 4s21s 1S 0 48 954.13 4840d 1D 2 49 228.81 4s22s 1S 0 48 990.83 4841d 1D 2 49 238.81 4s22s 1S 0 49 022.02 4841d 1D 2 49 238.64 4s22s 1S 0 49 022.02 4841d 1D 2 49 236.45 4s22s 1S 0 49 022.02 4842d 1D 2 49 242.93 4s24s 1S 0 49 071.99 4843d 1D 2								
4s36d 1D 2 49 215.11 4s18s 1S 0 48 858.59 4s37d 1D 2 49 220.10 4s19s 1S 0 48 910.65 4s38d 1D 2 49 224.70 4s20s 1S 0 48 901.65 4s40d 1D 2 49 228.92 4s21s 1S 0 48 990.83 4s41d 1D 2 49 228.81 4s22s 1S 0 49 908.83 4s42d 1D 2 49 238.80 4s24s 1S 0 49 048.85 4s42d 1D 2 49 245.80 4s28s 1S 0 49 071.99 4s43d 1D 2 49 245.80 4s26s 1S 0 49 071.99 4s44d 1D 2 49 245.80 4s26s 1S 0 49 071.99 4s45d 1D 2 49 245.80 4s26s 1S 0 49 109.85 4s45d 1D 2 49 245.80 4s26s 1S 0 49 109.85 4s46d 1D 2 49 253.40 4s28s 1S 0 49 139.31 4s47d 1D 2 49 257.74 4s31s 1S <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
4837d ¹D 2 49 220.10 4s19s ¹S 0 48 910.65 4838d ¹D 2 49 224.70 4s20s ¹S 0 48 956.13 4839d ¹D 2 49 228.92 4s21s ¹S 0 48 990.83 4840d ¹D 2 49 235.81 4s22s ¹S 0 49 022.02 4841d ¹D 2 49 239.80 4s24s ¹S 0 49 071.99 4843d ¹D 2 49 239.80 4s24s ¹S 0 49 071.99 4844d ¹D 2 49 245.80 4s26s ¹S 0 49 109.85 4846d ¹D 2 49 248.52 4s27s ¹S 0 49 109.85 4847d ¹D 2 49 251.05 4s28s ¹S 0 49 109.85 4848d ¹D 2 49 255.64 4s29s ¹S 0 49 151.59 4848d ¹D 2 49 257.74 4s31s ¹S 0 49 181.49 4850d ¹D 2 49 256.64 4s30s ¹S 0 49 181.49 4851d ¹D 2 49 257.68 4s32s ¹S <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td>0</td> <td></td>				1	1		0	
4s38d ¹D 2 49 224.70 4s20s ¹S 0 48 954.13 4s39d ¹D 2 49 228.92 4s21s ¹S 0 48 990.83 4s40d ¹D 2 49 238.45 4s22s ¹S 0 49 022.02 4s41d ¹D 2 49 236.45 4s23s ¹S 0 49 048.85 4s42d ¹D 2 49 234.93 4s24s ¹S 0 49 071.99 4s43d ¹D 2 49 245.80 4s26s ¹S 0 49 092.19 4s44d ¹D 2 49 245.80 4s26s ¹S 0 49 092.19 4s45d ¹D 2 49 245.80 4s26s ¹S 0 49 109.85 4s46d ¹D 2 49 245.80 4s26s ¹S 0 49 125.44 4s46d ¹D 2 49 253.40 4s28s ¹S 0 49 151.59 4s47d ¹D 2 49 255.64 4s30s ¹S 0 49 151.59 4s50d ¹D<							0	
S		^{1}D	2		4s20s		0	
4841d 1D 2 49 236.45 4823s 1S 0 49 048.85 4842d 1D 2 49 239.80 4824s 1S 0 49 071.99 4843d 1D 2 49 242.93 4825s 1S 0 49 092.19 4844d 1D 2 49 245.80 4826s 1S 0 49 109.85 4845d 1D 2 49 248.52 4827s 1S 0 49 125.44 4846d 1D 2 49 251.05 4828s 1S 0 49 125.44 4846d 1D 2 49 253.40 4829s 1S 0 49 151.59 4848d 1D 2 49 253.60 4829s 1S 0 49 151.59 4849d 1D 2 49 257.74 4831s 1S 0 49 162.47 4849d 1D 2 49 263.31 Ca II (2812) Limit 49 305.96 4851d 1D 2 49 263.31 Ca II (2812) Limit 49 305.96 4855d 1D 2 49 263.36 3d 4p 3F** 2 35 818.713 4856d 1D 2 49 263.33 4 4 3	4s39d	^{1}D			4s21s		0	
4s42d ¹D 2 49 239.80 4s24s ¹S 0 49 071.99 4s43d ¹D 2 49 242.93 4s25s ¹S 0 49 092.19 4s44d ¹D 2 49 245.80 4s26s ¹S 0 49 109.85 4s45d ¹D 2 49 245.80 4s26s ¹S 0 49 109.85 4s46d ¹D 2 49 251.05 4s28s ¹S 0 49 125.44 4s46d ¹D 2 49 253.40 4s28s ¹S 0 49 139.31 4s47d ¹D 2 49 253.40 4s28s ¹S 0 49 151.59 4s48d ¹D 2 49 255.64 4s30s ¹S 0 49 162.47 4s49d ¹D 2 49 259.68 4s31s ¹S 0 49 162.47 4s51d ¹D 2 49 261.51 Ca II (²S _{1/2}) Limit 49 305.96 4s54d ¹D 2 <	4s40d		2	49 232.81			0	49 022.02
4843d 1D 2 49 242.93 4825s 1S 0 49 092.19 4844d 1D 2 49 245.80 4826s 1S 0 49 109.85 4846d 1D 2 49 248.52 4827s 1S 0 49 109.85 4846d 1D 2 49 251.05 4828s 1S 0 49 125.49 4847d 1D 2 49 253.40 4829s 1S 0 49 151.59 4848d 1D 2 49 255.64 4830s 1S 0 49 151.59 4850d 1D 2 49 255.64 4830s 1S 0 49 162.47 4851d 1D 2 49 259.68 4831s 1S 0 49 162.47 4851d 1D 2 49 259.68 4831s 1S 0 49 172.43 4851d 1D 2 49 263.31 Ca II (2S1/2) Limit 49 305.96 4854d 1D 2 49 267.84 4856d 4856d 1D 2 49 267.84 4856d 1D 2 49 267.84 4856d 4856d 1D 2 49 271.99 3d 4p 1D° 2 35 818.713 <								
4844d 1D 2 49 245.80 4s26s 1S 0 49 109.85 4s45d 1D 2 49 248.52 4s27s 1S 0 49 125.44 4s46d 1D 2 49 251.05 4s28s 1S 0 49 125.44 4s47d 1D 2 49 253.40 4s29s 1S 0 49 151.59 4s48d 1D 2 49 255.64 4s30s 1S 0 49 151.59 4s49d 1D 2 49 255.64 4s30s 1S 0 49 152.47 4s49d 1D 2 49 255.64 4s30s 1S 0 49 162.47 4s49d 1D 2 49 255.68 4s31s 1S 0 49 162.47 4s49d 1D 2 49 259.68 4s32s 1S 0 49 172.43 4s51d 1D 2 49 263.31 Ca II (281.2) Limit 49 305.96 4s55d 1D 2 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>¹S</td><td></td><td></td></td<>						¹S		
4845d 1D 2 49 248.52 4827s 1S 0 49 125.44 4846d 1D 2 49 251.05 4828s 1S 0 49 139.31 4847d 1D 2 49 253.40 4829s 1S 0 49 151.59 4848d 1D 2 49 255.64 4830s 1S 0 49 162.47 4849d 1D 2 49 257.74 4831s 1S 0 49 172.43 4850d 1D 2 49 259.68 4832s 1S 0 49 181.49 4851d 1D 2 49 263.31 Ca II (2S1/2) Limit 49 305.96 4853d 1D 2 49 267.84 3d 4p 3F* 2 35 730.454 4854d 1D 2 49 267.84 3d 4p 3F* 2 35 896.889 4856d 1D 2 49 267.84 3d 4p 3F* 2 35 896.889 4857d 1D 2 49 271.79 3d 4p 3D* 1D* 2 35 895.413 4859d 1D 2 49 271.79 3d 4p 3D* 1 38 192.392 4860d 1D 2 49 275.58 2								
4846d 1D 2 49 251.05 4828s 1S 0 49 139.31 4847d 1D 2 49 253.40 4829s 1S 0 49 151.59 4848d 1D 2 49 255.64 4830s 1S 0 49 151.59 4849d 1D 2 49 257.74 4831s 1S 0 49 162.47 4850d 1D 2 49 259.68 4832s 1S 0 49 172.43 4851d 1D 2 49 261.51 1S 0 49 181.49 4852d 1D 2 49 263.31 Ca II (2S _{1/2}) Limit 49 305.96 4853d 1D 2 49 266.36 3d 4p 3F° 2 35 730.454 4856d 1D 2 49 267.84 3 35 818.713 4857d 1D 2 49 269.33 4 35 896.889 4857d 1D 2 49 271.79 3d 4p 1D° 2 35 896.889 4859d 1D 2 49 271.79 3d 4p 1D° 2 38 259.124 Ca II (2S _{1/2}) Limit 49 305.96 3d 4p 3D° 1 38 192.392 4s6d 1								
4s47d ¹D 2 49 253.40 4s29s ¹S 0 49 151.59 4s48d ¹D 2 49 255.64 4s30s ¹S 0 49 162.47 4s49d ¹D 2 49 257.74 4s31s ¹S 0 49 162.47 4s50d ¹D 2 49 259.68 4s32s ¹S 0 49 181.49 4s51d ¹D 2 49 261.51 Ca II (²S _{1/2}) Limit 49 305.96 4s53d ¹D 2 49 266.36 3d 4p ³F° 2 35 730.454 4s54d ¹D 2 49 267.84 4 35 896.889 4s57d ¹D 2 49 269.33 4 35 896.889 4s57d ¹D 2 49 270.40 49 270.40 49 270.40 458d 1D 2 35 895.413 4s59d ¹D 2 49 273.09 3d 4p ³D° 1 38 192.392 4s61d ¹D 2 49 275.58 2 38 219.118 4s62d ¹D 2 49 275.87 3d 4p ³P° 0 39 333.382 Ca II (²S _{1/2}) Limit 49 305.96 3d 4p ³P° 0 39 333.382 <					15			
4s48d 1D 2 49 255.64 4s30s 1S 0 49 162.47 4s49d 1D 2 49 257.74 4s31s 1S 0 49 172.43 4s50d 1D 2 49 259.68 4s32s 1S 0 49 181.49 4s51d 1D 2 49 261.51 Ca II (2S _{1/2}) Limit 49 305.96 4s52d 1D 2 49 266.36 3d 4p 3F° 2 35 730.454 4s54d 1D 2 49 266.36 3d 4p 3F° 2 35 730.454 4s55d 1D 2 49 267.84 3 35 818.713 4s58d 1D 2 49 270.40 49 271.79 3d 4p 1D° 2 35 896.889 4s60d 1D 2 49 273.09 3d 4p 1D° 2 38 219.118 4s61d 1D 2 49 275.58 2 38 219.118 4s62d 1D 2 49 275.87 3d 4p 3P° 0 39 333.382 Ca II (2S _{1/2}) Limit 49 305.96 3d 4p 3P° 0 39 333.382 4s5s 3S 1 31 539.495 2 39 340.080 4s6s <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td>					11			
4s49d 1D 2 49 257.74 4s31s 1S 0 49 172.43 4s50d 1D 2 49 259.68 4s32s 1S 0 49 181.49 4s51d 1D 2 49 261.51 49 263.31 Ca II (2S1/2) Limit 49 305.96 4s52d 1D 2 49 266.36 3d 4p 3F° 2 35 730.454 4s55d 1D 2 49 267.84 3 35 818.713 4s56d 1D 2 49 269.33 4 35 896.889 4s57d 1D 2 49 271.79 3d 4p 1D° 2 35 835.413 4s58d 1D 2 49 271.79 3d 4p 1D° 2 35 835.413 4s60d 1D 2 49 273.09 3d 4p 3D° 1 38 192.392 4s61d 1D 2 49 275.58 2 38 219.118 4s62d 1D 2 49 275.87 3 38 259.124 Ca II (2S1/2) Limit 49 305.96 3d 4p 3P° 0 39 333.382 4s5s 3S 1 31 539.495 2 39 340.080 4s6s 3S 1 40 474.241 244								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2			le le	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	i			1	
4852d 1D 2 49 263.31 Ca II (2S _{1/2}) Limit 49 305.96 4853d 1D 2 49 264.77 3d 4p 3F° 2 35 730.454 4855d 1D 2 49 267.84 3 35 818.713 4856d 1D 2 49 269.33 4 35 896.889 4857d 1D 2 49 270.40 4858d 4 35 896.889 4859d 1D 2 49 271.79 3d 4p 1D° 2 35 835.413 4860d 1D 2 49 273.09 3d 4p 3D° 1 38 192.392 4861d 1D 2 49 275.58 2 38 219.118 4862d 1D 2 49 275.87 3d 4p 3P° 0 39 333.382 485s 3S 1 31 539.495 3 39 340.080 486s 3S 1 40 474.241 24 474.241 24 474.241					10020		١	49 101.49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$Ca \coprod (^2S_{1/6})$	Limit		49 205 96
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Jun (51/2)	Dimit		40 000.00
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					3d4p	3 F °	2	35 730 454
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					Tan -P	1		·
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							^	00 000.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\parallel 3d 4p$	$^{1}\mathrm{D}^{\circ}$	2	35 835.413
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							İ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					3d 4p	3D°	1	38 192.392
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		^{1}D	2	i e e e e e e e e e e e e e e e e e e e			2	
4s5s 3S 1 31 539.495 2 39 340.080 4s6s 3S 1 40 474.241 2 45 45 45 45 45 45 45	4s62d		2		-		3	38 259.124
4s5s 3S 1 31 539.495 2 39 340.080 4s6s 3S 1 40 474.241 2 4 4 4 4 4 4 4 4 4	Ca II $(^{2}S_{1/2})$	Limit		49 305.96	3d 4p	3 P °		
4s6s 3S 1 40 474.241	A ~	3~		04 = 27				
							2	39 340.080
$4s7s$ ^{9}S 1 $43.980.767$ $3d.4p$ $^{9}F^{\circ}$ 3 $40.537.893$	4s6s 4s7s	3S	1 1	40 474.241 43 980.767	3d 4p	1 F 7°	3	40 537.893

		T			-T		
Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3d4p	l p °	1	43 933.477	3d55p	3D°	1	62 917.83
ou 4p	1	1	40 000.41	3d56p	3D°	1	62 918.80
3d5p	3 D $^{\circ}$	1	51 709.5	3d57p	3D°	1	$62\ 920.32$
ou op		2	51 734.6	3d58p	$_3\mathrm{D}_\circ$	1	62 921.43
		3	51 767.0	C = (2D)	7 ::4		60 OF 6 1 F
	9			Ca II $(^{2}D_{3/2})$	Limit		62 956.15
3d 5p	3 P °	1	<i>51 908</i> .	276-	³p∘	4	56 500 60
	,			3d 6p	$^{3}P^{\circ}$	1	56 532.63
3d 5p	¹ P°	1 .	<i>53 100</i> .	3d7p	$^{3}\mathbf{P}^{\circ}$	1	59 010.87
	3			3d 8p	³ P°	1	60 150.26
3d 6p	³ D°	1	56 254.	$\begin{array}{c} 3d \ 9p \\ 3d \ 10p \end{array}$	³ P°	. 1	60 869.28
3d7p	³ D°	1	58 798.92	3d 10p	³ P°		61 345.74 61 676.62
3d 8p	³ D°	1	60 046.13	3d 12p	$^{3}P^{\circ}$	1	
3d 9p	³ D°	1.	60 807.28	3d 13p	3p°	1	61 916.38
$3d\ 10p$	³ D°	1	61 306.65	3d 14p	3p°	1	62 097.08
3d 11p	³ D°	1	61 652.25	3d 14p $3d 15p$	³ P°	1 1	62 237.12
$3d\ 12p$	³ D°	1	61 901.04	3d 16p	$^{3}\mathrm{P}^{\circ}$	1	62 351.93
$3d \ 13p$	³ D°	1	62 084.92	3d 17p	3p.		62 443.64
$3d\ 14p$	3D°	. 1	62 223.68	3d 18p	3P°	1	62 511.97
$3d\ 15p$	³ D°	1	62 331.04	3d 19p	$^{3}P^{\circ}$	$\begin{array}{c c} 1 \\ 1 \end{array}$	62 584.50
$3d\ 16p$	³ D°	1	62 416.47	$3d \ 20p$	$^{3}\mathrm{P}^{\circ}$		62 628.76
$3d\ 17p$	³ D°	1	62 486.45	3d 20p $3d 21p$	$^{3}P^{\circ}$	1	62 671.51
$3d\ 18p$	³ D°	1	62 539.39	3d 22p	³ P°	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	62 711.37
$3d\ 19p$	³ D°	1	62 587.83	3d 23p	$^{3}P^{\circ}$		62 736.10
$3d\ 20p$	$^{3}D^{\circ}$	1	62 626.03	$3d \ 24p$	$^{3}P^{\circ}$	1	62 762.86
$3d\ 21p$	³ D°	1	62 660.15	3d 25p	$^{3}P^{\circ}$	1	62 787.31
$3d \ 22p$	³ D°	1	62 686.88	3d 26p	³ P°	1	62 807.90
$3d \ 23p$	³ D°	1	62 713.24	11:	3P°	1	62 824.17
$3d \ 24p$	³ D°	1	62 734.25	3d 27p	3P°	1	62 838.45
$3d\ 25p$	3D°	1	62 753.60	$\begin{array}{c c} 3d \ 28p \\ 3d \ 29p \end{array}$	³ P°	1	62 853.79
3d 26p	$\frac{{}_{3}\mathbf{D}_{s}}{{}_{2}\mathbf{D}_{s}}$	1	62 769.47	3d 30p	P°	1	62 863.99
$3d\ 27p$	3D.	1	62 783.86	3d 31p	$^{3}P^{\circ}$	1	62 875.40
3d 28p	3D°	1	62 797.46	$3d\ 32p$	$^{3}\mathbf{P}^{\circ}$	1	62 884.77
3d 29p	l .	1	62 808.51	$3d \ 33p$	³ P°	1	62 893.66
$3d\ 30p$	³ D°	1	62 818.76	ou sop	r	1	62 901.85
3d31p	$^{3}D^{\circ}$	1	62 827.75	G- 11 (2D)	F 2 24		00.010.01
$3d\ 32p$	³ D°	1	62 836.22	Ca II $(^2D_{5/2})$	Limit		63 016.84
3d 33p	³ D°	1	62 843.72	0.10	1770	_	
3d 34p	³ D°	1	62 850.62	3d 6p	lp°	1	56 651.
3d 35p	3D°	1	62 856.56	3d7p	¹ P°	1	59 197.
$3d\ 36p$	3D°	1	62 862.60	3d8p	¹ P° ¹ P°	1	60 300.
3d37p	3D.	1	62 867.87	3d9p		1	60 973.6
3d38p	3D°	1	62 872.69	$\begin{vmatrix} 3d \ 10p \end{vmatrix}$	¹P°	1	61 428.1
$3d\ 39p$	$^{3}D_{\circ}$	1	62 876.98	3d 11p	lP°	1	61 747.2
$3d\ 40p$		1	62 881.24	3d 12p	lp°	1	61 980.49
3d41p	³ D°	1	62 884.77	3d 13p	lP°	1	62 154.62
$3d\ 42p$	³ D°	1	62 889.00	3d 14p	¹ P°	1	62 288.02
3d 43p	³ D°	1	62 891.65	3d 15p	¹ P°	1	62 392.01
3d $44p$	3D°	1	62 894.65	3d 16p	¹P°	1	62 478.26
$3d\ 45p$	³ D°	1	62 897.57	3d 17p	lp°	1	62 548.16
$3d\ 46p$	³ D°	1	62 900.09	3d 18p	lp°	1	62 602.72
3d 47p	³ D°	1	62 902.75	3d 19p	¹ P°	1	62 648.37
3d 48p	³ D°	1	62 904.95	3d 20p	¹ P°	1	62 690.32
3d 49p	³ D°	1	62 906.98	3d 21p	¹ P°	1	62 721.80
$3d\ 50p$	³ D°	1	62 908.88	3d 22p	¹ P°	1	62 750.58
3d51p	³ D°	1	62 910.88	3d 23p	¹ P°	1	62 774.75
3d 52p	$^{3}D^{\circ}$	1	62 912.67	3d 24p	lP°	1	62 795.55
$3d \ 53p$	3D. 3D.	1	62 914.47	$\begin{array}{c} 3d\ 25p \\ 3d\ 26p \end{array}$	¹ P° ¹ P°	1 1	62 814.13
$3d\ 54p$		1	62 915.91				62 830.67

Ca 1: Ordered by series—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
3d 27p	¹P°	1	62 845.27	4s7f	3F.º	2	47 006.194
$3d \ 28p$	$^{1}\mathbf{P}^{\circ}$	1	62 858.11	1317		$\frac{2}{3}$	47 006.280
$3d \ 29p$	$^{1}P^{\circ}$	1	62 869.38			4	47 006.400
$3d\ 30p$	1 p °	1	62 879.48			-x	47 000.400
3d 31p	lP°	1	62 889.00	4s8f	3k°	2	47 550.214
3d 32p	¹P°	1	62 897.57		1 1	3	47 550.271
3d 33p	1 P °	1	62 904.95			4	47 550.371
3d 34p	$^{1}\mathbf{p}^{\circ}$	1	62 911.51			*	47 000.071
3d 35p	lp°	1	62 917.83	4s9f	³F°	2	47 921.87
$3d\ 36p$	$^{1}\mathbf{\hat{P}}^{\circ}$	1	62 923.62		_	3	47 921.981
3d37p	$^{1}\mathbf{P}^{\circ}$	1	62 928.81			4	47 922.033
3d38p	¹ P°	$\frac{1}{1}$	62 933.61			•	.,,, 0,000.000
3d 39p	1 P °	1	62 938.02	$\parallel 4s10f$	³F°	2	48 187.045
$3d\ 40p$	$^{1}P^{\circ}$	1	62 942.10	,		3	48 187.075
3d41p	$^{1}\mathbf{P}^{\circ}$	1	62 945.88			4	48 187.118
3d $42p$	$^{1}\mathrm{P}^{\circ}$	1	62 949.34				,
$3d \ 43p$	¹ p ∘	1	62 952.58	4s11f	3 F $^{\circ}$	2	48 382.70
3d $44p$	$^{1}P^{\circ}$	1	62 955.57	,		3	48 382.781
$3d \ 45p$	¹ P°	1	62 958.38			4	48 382.801
$3d\ 46p$	$^{1}\mathbf{P}^{\circ}$	1	62 961.01				·
$3d\ 47p$	$^{1}\mathbf{P}^{\circ}$	1	62 963.43	4s12f	³ F°	3,4	48 531.04
$3d\ 48p$	lP°	1	62 965.72	·			
$3d\ 49p$	$^{1}\mathbf{P}^{\circ}$	1	62 967.84	4s13f	³F°	4	48 646.38
3d50p	l P °	1	62 969.89				
3d51p	lp°	1	62 971.78	$G = (^2G)$			40.00*.00
$3d\ 52p$	¹ P°	1	62 973.55	Ca II $(^2S_{1/2})$	Limit		49 305.96
3d 53p	$^{1}P^{\circ}$	1	62 975.23				
$3d\ 54p$	¹ P°	1	62 976.81	4s4f	$^{1}\mathbf{F}^{\circ}$	3	42 343.587
$3d\ 55p$	¹ P°	1	62 978.26	4s5f	lF°	3	44 804.878
$3d\ 56p$	$^{1}\mathbf{P}^{\circ}$	1	62 979.72	4s6f	${}^1\mathbf{F}^{\circ}$	3	46 182.399
$3d\ 57p$	$^{1}P^{\circ}$	1	62 981.03	4s7f	1 F $^{\circ}$	3	47 015.141
$3d\ 58p$	$^{1}\mathbf{P}^{\circ}$	1	62 982.35	4s8f	$^{1}\mathbf{F}^{\circ}$	3	47 555.23
$3d\ 59p$	¹ P°	1	62 983.48	4s9f	¹F°	3	47 924.947
3d 60p	lP°	1	62 984.63	4s10f	F°	3	48 188.990
3d $61p$	$^{1}\mathrm{P}^{\circ}$	1	62 985.70	4s11f	¹F°	3	48 384.039
				4s12f	lF°	3	48 <i>532.139</i>
Ca II ($^2\mathrm{D}_{5/2}$)	Limit		63 016.84	4s13f	¹F°	3	48 647.30
0	9			4s14f	¹F°	3	48 738.54
$4p^2$	³ P	0	38 417.543	4s15f	¹F°	3	48 812.09
		1	38 464.808	4s16f	1 F °	3	48 872.20
		2	38 551.558	4s17f	lF°	3	48 921.95
. 9	100			4s18f	¹F°	3	48 963.67
$4p^2$	1 D	2	40 719.847	4s19f	¹ F°	3	48 998.89
. 9	la		17 #000 0=0	4s20f	¹ F°	3	49 028.93
$4p^2$	¹S	0	41 786.276	4s21f	¹ F°	3	49 054.80
		The state of the s		4s22f	$^{1}\mathbf{F}^{\circ}$	3	49 077.20
****	***	*	*****	4s23f	l F °	3	49 096.74
4.46	3 F °		12 470 241	4s24f	$^{1}\mathbf{F}^{\circ}$	3	49 113.85
4s4f	· F	2	42 170.214	4s25f	lF°	3	49 129.00
		3	42 170.558	4s26f	1F°	3 3	49 142.38
		4	42 171.026	4s27f	¹ F°	3	49 154.29
405£	³F°	9	11 000 000	4s28f	r	0	49 164.99
4s5f	r	2 3	44 762.620	_			
		4	44 762.839 44 763.118	Ca II (² S _{1/2})	Limit		49 305.96
4s6f	³F°	2	46 164.644	$3d^2$	3 F	2	43 474.827
•		3	46 164.785			3	43 489.119
		4	46 164.971			4	43 508.088

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
0. *2	3-		40 504 000	3d 26f	³ D°	1	62 790.08
$3d^2$	^{3}P	0	48 524.093	$3d \ 28f$	3D°	1	62 812.00
		1	48 537.623	3d 30f	3D°	1	62 832.31
		2	48 563.522				
			*****	Са н (² D _{3/2})	Limit		62 956.15
****	***	*	******	9.44.6	3р°	1	55 946.6
3d 5s	$^{1}\mathbf{D}$	2	47 449.083	3d4f	3 p °	1	58 491.91
3a 38		2	41 440.000	3d5f 3d6f	³ P°	1	59 862.26
3d $5s$	$^{3}\mathrm{D}$	1	47 456.452	3d7f	³ P°	1	60 690.27
0a 0s		2	47 466.014	3d8f	³ P °	1	61 228.65
		3	47 475.915	3d9f	³ P °	1	61 596.69
				3d 10f	3 P °	1	61 859.22
	***	*	*****	3d 11f	3 p °	1	62 052.49
****	***	*	******	3d 12f	³ P°	1	62 198.92
3d 4d	$_{3}$ D	1	51 351.74	3d 13f	³ P°	1	62 312.63
· · · · · · ·	_	2	51 369.38	3d 14f	$^{3}P^{\circ}$	1	62 403.22
		3	51 396.32	3d 15f	³ P°	1	62 472.14
				3d 16f	³ P°	1	62 533.90
3d $4d$	^{3}S	1	51 571.7	3d17f	$^{3}P^{\circ}$	1	62 578.91
				3d 18f	3 P °	1	62 617.02
3d 4d	^{3}P	0	54 282.3	$3d\ 19f$	³ P°	1	62 653.99
		1	54 288.74	$3d\ 20f$	³ P°	1	62 683.89
		2	54 304.6	3d 21f	³P°	1	62 707.25
				$3d \ 22f$	³ P°	1	62 729.19
3d 5d	3D	2	56 469.0	$3d \ 23f$	³ P°	1	62 748.53
				3d 24f	³P°	1	62 764.10
3d 5d	3 S	1	56 558.9	$3d \ 25f$	³P°	1	62 780.30
			Į	$3d\ 26f$	3 P $^{\circ}$	1	62 794.19
3d 5d	³ P	0	57 611.2	$\parallel 3d \ 27f$	³ P°	1	62 806.02
		1	57 617.9	$\parallel 3d \ 28f$	³ P°	1	62 816.51
		2	57 638.4	$3d \ 29f$	³ P°	1	62 824.17
	350	_	50.000	3d 30f	³ P°	1	62 834.11
3d 6d	³ P	1	59 368.	3d 31f	³ P°	1	62 840.23
	1	2	59 391.	$3d \ 32f$	³ P°	1	62 848.77
				3d 33f	³ P°	1	62 853.79
****	***	*	*****	3d 34f	3P°	1	62 861.06
3d4f	3D°	1	55 902.8	3d 35f	3 P °	1	62 865.39
3d5f	3D.	1 1	1	3d 36f	³ P°	1	62 871.46
3d6f	3D°	1	58 431.31 59 802.21	3d 37f	³ P°	1	62 875.40
3d7f	$^{3}D^{\circ}$	1	60 632.18	3d 38f	³ P°	1	62 880.04
3d8f	D°	1	61 172.54	0 (20)			00 DF0 4=
3d9f	3D°	1	61 543.95	Ca II (² D _{3/2})	Limit		62 956.15
3d 10f	3D.	1	61 810.68	0.446	1P°	1	KE 000 0
3d 11f	3D°		62 009.17	3d4f	¹ P°	1	55 982.3 50 505 00
3d 12f	3D°	1	62 161.61	3d5f	$^{1}P^{\circ}$	1	58 505.89
3d 13f	$^{3}D^{\circ}$	1	62 279.33	3d6f	lP°	1	59 878.52
8d 14f	3D°	1	62 375.29	3d7f	lP°	1	60 709.54
3d 15f	3D°	1	62 453.85	3d8f	¹ P°	1 1	61 251.39
8d 16f	$^{3}D^{\circ}$	1	62 520.06	3d9f	¹ P°	1	61 622.60
$3d\ 17f$	$^{3}\mathrm{D}^{\circ}$		62 565.68	3d 10f	¹ P°	1	61 888.22
3d 18f	$^{3}D_{\circ}$	1	62 610.75	3d 11f	lp°	1	62 084.92
3d 19f	3D°	1 1	62 641.52	3d 12f	lp°	1	62 234.47
3d 20f	3D°	1	62 675.56	3d 13f	¹ P°	1	62 346.47
3 <i>d 201</i> 3 <i>d 21f</i>	3D°	1	62 704.43	3d 14f	¹ P°	1	62 433.38 69 506 69
	3D°		62 720.41	3d 15f	$^{1}\mathrm{p}^{\circ}$		62 506.62
3d 22f	3D.	1		3d 16f		1	62 572.66
3d 23f	$ {}^{3}D_{\circ} $	1	62 743.11	3d 17f	¹ P°	1	62 625.37
3d 24f	י "ט"	1	62 768.10	H 3d 18f	$^{1}P^{\circ}$	1	62 671.51

Ca I: Ordered by series—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3d\ 19f$	lp•	1	62 704.43	$3p^5(^2 ext{P}^{ullet}_{3/2})4s^25s$	2[3/2]°	1	257 737
$3d\ 20f$	lp°	1	62 736.10	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}6s$	2[3/2]°	1	267 417
3d 21f	1p°	1	62 762.86	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}7s$	2[3/2]	1	271 245
$3d \ 22f$	1p.	1	62 785.02				
$3d \ 23f$	¹ P°	1	62 804.38	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}9s$	² [³ / ₂]°	1	274 276
3d 24f	¹ P °	1	62 820.31	$3p^5(^2\mathbf{P}_{3/2}^{\circ})4s^210s$	2[3/2]°	1	274 777
$3d\ 25f$	¹ p ∘	1	62 836.85	5 00			
Bd 26f	¹ P°	1	62 852.33	Ca II $3p^54s^2 {}^2P_{3/2}^{\circ}$	Limit		276 750
3d 35f	¹ P °	1	62 926.36	$3p_{1/2}^{5}(^{2}\mathbf{P}_{1/2}^{\circ})4s_{2}^{2}5s$	2[1/2]°	1	260 193
$3d\ 36f$	¹ P°	1	62 931.29	$3p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4s^{2}6s$	² [½]°	1	269 706
$3d\ 37f$	$^{1}\mathbf{P}^{\circ}$	1	62 935.88	$3p^5(^2\mathrm{P}_{1/2}^{\circ})4s^27s$	2[1/2]°	1	273 598
$3d\ 38f$	¹ P °	1	62 939.79	$3p^5(^2\mathrm{P}^{\circ}_{1/2})4s^211s$	² [½]°	1	277 991
3d 39f	¹ P°	1	62 943.85	$\begin{array}{c c} 3p^5(^2\mathrm{P}_{1/2}^{\circ})4s^2 12s \\ \end{array}$	2 1/2 10	1	278 302
				$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}13s$	² [½]° ² [½]°	1	278 534
Ca II ($^2\mathrm{D}_{5/2}$)	Limit		63 016.84	$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}14s$	2[1/2]°	1	278 702
4p5s	³ P°	1	57 462.	Ca II $3p^54s^2{}^2P_{1/2}^{\circ}$	Limit		279 530
4p5s	¹ p∘	1	<i>57 960.</i>				
1 p05	1	1	07 000.	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}5d$	² [³ / ₂]°	1	270 889
****	* * *	*	*****	$3p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})4s^{2}6d$	2[3/2]°	1	273 134
7777	7.77	*	,,,,,,,	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}7d$	2[3/2]°	1	273 959
4 4 7	37000		93.550.00	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}8d$	² [³ / ₂]°	. 1	274 652
4p4d	³D°?	1	62 552.97	$3p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})4s^{2}9d$	2[3/2]°	1	275 272
4 4 7	Smeo	,	00 550 15	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}10d$	² [³ / ₂]°	1	275 503
4p4d	³ P °?	1	62 557.45	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}11d$	² [³ / ₂]°	1	275 726
	1p°?	,	00 501 00	$3p^{5}(^{2}P_{3/2}^{\circ})4s^{2}12d$	² [³ / ₂]°	1	275 898
4p4d	P-7	1	62 561.72	$3p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})4s^{2}13d$	² [³ / ₂]°	1	276 038
				$3p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})4s^{2}14d$	2[3/2]°	1	276 138
***	***	*	*****	$3p^{5}(^{2}\mathbf{P}_{3/2}^{\circ})4s^{2}15d$	² [³ / ₂]°	1	276 214
		1	62 878.40	$3p^5(^2\mathrm{P}^{\circ}_{3/2})4s^216d$	2[3/2]°	1	276 283
		_		Ca II $3p^54s^2 {}^2P_{3/2}^{\circ}$	Limit		276 750
		1	62 886.45	$3p^5(^2\mathbf{P}_{1/2}^{\circ})4s^25d$	²[¾]°	1	274 040
			*****	$\begin{array}{c c} 3p^{5}({}^{2}\mathrm{P}_{1/2}^{\circ})4s^{2}7d \\ 3p^{5}({}^{2}\mathrm{P}_{1/2}^{\circ})4s^{2}7d \end{array}$	² [³ / ₂]°	1	276 631
****	* * *	*	*****	$3p^{5}({}^{2}\mathrm{P}_{1/2}^{\circ})4s^{2}8d$	² [³ / ₂]°	1	277 430
$3p^5 4s^2 3d$	³ P °	1	200 096	$3p^{5}({}^{2}P_{1/2}^{\circ})4s^{2}9d$	2[3/]	1	277 917
op 10 0u		1	200 000	$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}10d$	² [³ / ₂]° ² [³ / ₂]°	1	278 228
$3p^5 4s^2 3d$	3D°	1	218 991	$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}11d$	² [³ / ₂]°	1	278 469
-p 20 00		•	210001	$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}12d$	² [³ / ₂]°	1	278 647
$3p^5 4s^2 3d$	¹ p °	1	253 310	$3p^{5}({}^{2}P_{1/2}^{\circ})4s^{2}13d$	2[3/2]°	1	278 796
-p0 0w		_	200 010	$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}14d$	² [³ / ₂]°	1	278 900
$8p^5 4s^2 4d$	³P°	1	255 022	$3p^{5}({}^{2}\mathrm{P}_{1/2}^{\circ})4s^{2}15d$	² [³ / ₂]°	1	278 983
-TTT	1	1	200 022	$3p^{5}(^{2}P_{1/2}^{\circ})4s^{2}16d$	² [³ / ₂]°	1	279 050
$8p^5 4s^2 4d$	3D°	1	267 956	$3p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4s^{2}17d$	2[3/2]°	1	279 117
$3p^5 4s^2 4d$	¹ p∘	1	270 640	Ca II $3p^54s^2 {}^2P_{1/2}^{\circ}$	Limit		279 530

Call

Z = 20

K I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 S_{1/2}$

Ionization energy = $95751.87 \pm 0.03 (11.87181 \pm .000004 \text{ eV})$

The strong resonance doublet of this spectrum, the Fraunhofer H and K lines, is used to measure the velocity of recession of galaxies in the farthest reaches of space and thereby provides us with the dimensions and age of the universe.

The analysis in its present state was nearly completed by Saunders and Russell (1925). The spectrum was reobserved between 3000 and 12 000 Å by Edlén and Risberg (1956), who recalculated the level values from their new grating measurements and the interferometric measurements of Wagman (1937) and found the 5g, 9s, and 10s terms. G. Risberg (1968) added 10d, 8f, 8h, and 10hand revised the 6p 2 P $^{\circ}_{1/2}$ level.

The 9-10f and 11-16d terms are derived from unpub-

lished observations of Shenstone (1930) in the region 2890 to 3220 Å.

Edlén and Risberg derived the quoted ionization energy from the ng series.

The $3p^54s^2 {}^2P^{\circ}$ term was obtained from the limit of the $3p^54s^2ns$ and nd series in Ca_I by Mansfield and Newsom (1977).

References

Edlén, B. and Risberg, P. (1956), Ark. Fys. 10, 553.
Mansfield, M. W. D., and Newsom, G. H. (1977), Proc. R. Soc. London, Ser. A 357, 77.
Risberg, G. (1968), Ark. Fys. 37, 231.

Saunders, F. A., and Russell, H. N. (1925), Astrophys. J. **62**, 1. Wagman, N. E. (1937), Univ. Pitts. Bull. **34**, 325.

Ca 11

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3p^6(^1S_0)4s$	² S	1/2	0.00	$3p^6(^1S_0)7s$	² S	1/2	79 448.28
$3p^6(^1S_0)3d$	² D	3/ ₂ 5/ ₂	13 650.19 13 710.88	$3p^6(^1\mathrm{S}_0)6d$	$^{2}\mathrm{D}$	3/ ₂ 5/ ₂	80 521.53 80 526.16
$3p^6(^1S_0)4p$	² P °	1/ ₂ 3/ ₂	25 191.51 25 414.40	$3p^6(^1S_0)6f$	² F °	5/2,7/2	83 458.08
$3p^6(^1{ m S}_0)5s$	$^2\mathrm{S}$	1/2	52 166.93	$3p^6(^1S_0)6g$	² G	7/2,9/2	83 540.00
$3p^6(^1S_0)4d$	$^{2}\mathbf{D}$	_	56 839.25	$3p^6(^1S_0)8s$	² S	1/2	84 300.89
op (50/4u		³ / ₂ ⁵ / ₂	56 858.46	$3p^6(^1S_0)7d$	2 D	3/ ₂ 5/ ₂	84 933.65
$3p^6(^1S_0)5p$	² P°	1/ ₂ 3/ ₂	60 533.02 60 611.28	$3p^6(^1{ m S}_0)7f$	² F°	7 ₂ 5/ ₂ ,7/ ₂	84 936.41 86 727.06
$3p^6(^1S_0)4f$	² F°	5/2,7/2	68 056.91	$3p^6(^1S_0)7g$	² G	7/2,9/2	86 781.14
$3p^6(^1S_0)6s$	² S	1/2	70 677.62	$3p^6(^1{ m S}_0)9s$	² S	l _{/2}	87 267.86
$3p^6(^1S_0)5d$	2 D	3/ ₂ 5/ ₂	72 722.23 72 730.93	$3p^6(^1\mathrm{S}_0)8d$	² D	³ / ₂ ⁵ / ₂	87 671.93 87 673.72
$3p^6(^1S_0)6p$	² P°	1/ ₂ 3/ ₂	74 484.92 74 521.75	$3p^6({}^1S_0)8f$	² F°	5/2,7/2	88 847.31
$3p^6(^1S_0)5f$	$^2\mathbf{F}^{\circ}$	5/2,7/2	78 034.39	$3p^6(^1S_0)8g$	^{2}G	7/2,9/2	88 884.54
$3p^6(^1S_0)5g$	^{2}G	7/2,9/2	78 164.72	$3p^6({}^1S_0)8h$	² H°	9/2,11/2	88 890.64

Ca 11—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3p^6(^1S_0)10s$	2 S	1/2	89 214.13	$3p^6(^1S_0)11d$	2 D	3/2,5/2	91 672.0
$3p^6({}^1S_0)9d$	² D	3/ ₂ 5/ ₂	89 487.93 89 489.13	$3p^6(^1S_0)12d$	2 D	3/2,5/2	92 359.0
e fulgace	² F°	5/2,7/2	90 300.0	$3p^6(^1S_0)13d$	$^{2}\mathrm{D}$	3/2,5/2	92 883.0
$3p^6(^1S_0)9f$	² G		90 326.45	$3p^6(^1S_0)14d$	$^2\mathbf{D}$	3/2,5/2	93 297.6
$3p^{6}(^{1}S_{0})9g$	$^{2}\mathrm{D}$	7/ ₂ , 9/ ₂	90 320.43	$3p^6(^1S_0)15d$	$^2\mathrm{D}$	3/2,5/2	93 626.9
$3p^6(^1S_0)10d$	-D	3/ ₂ 5/ ₂	90 754.80	$3p^6(^1S_0)16d$	$^{2}\mathrm{D}$	3/2,5/2	93 894.5
$3p^6(^1S_0)10f$	² F°	5/2,7/2	91 338.0	Ca III (¹ S ₀)	Limit		95 751.87
$3p^6(^1S_0)10h$	² H°	9/2,11/2	91 361.00	$3p^5 4s^2$	² P°	3/ ₂ 1/ ₂	227 444 23 0 224

Ca III

Z = 20

Ar 1 isoelectronic sequence

Ground state: 1s22s2p63s23p61S0

Ionization energy = $410642 \pm 2 \text{ cm}^{-1} (50.9135 \pm .0002 \text{ eV})$

The first observations and analysis of Ca III were carried out by Bowen (1928). He measured the spectrum in the range 400–4000 Å and determined levels in the configurations $3p^53d$, 4d, 4s, 4p, and 5s. A much more extensive analysis has since been completed by Borgström (1968, 1971), who has remeasured the spectrum from 440 to 9640 Å. His designations and level values are given here. He has also determined the ionization energy from the ng series.

Hansen, Persson, and Borgström (1975) found the $3s3p^63d$ configuration, which strongly interacts with the $3p^5nf$ series, and added two levels to $3p^56p$. They reported the percentage compositions given here for the $3s^23p^55p$, 6p, 4f, 5f, 6f and $3s3p^63d$ configurations. The percentages for $3p^54p$ in LS coupling are from Borgström (1971).

The two ¹P°, levels from $3s3p^64p$ and 5p were determined by Kastner, Crooker, Behring, and Cohen (1977).

Schmitz, Breuckmann, and Mehlhorn (1976) reported the discovery of $3p^44s^2$ but their identification has been shown by Pejcev, Ottley, Rassi and Ross (1978) to be incorrect.

References

Borgström, A. (1968), Ark. Fys. 38, 243.

Borgström, A. (1971), Physica Scripta 3, 157.

Bowen, I. S. (1928), Phys. Rev. 31, 497.

Hansen, J. E., Persson, W., and Borgström, A. (1975), Physica Scripta 11, 31.

Kastner, S. O., Crooker, A. M., Behring, W. E., and Cohen, L. (1977). Phys. Rev. 16A, 577.

Pejcev, Y., Ottley, T. W., Rassi, D., and Ross, K. J. (1978), J. Phys. B 11, 531.

Schmitz, W., Breuckmann, B., and Mehlhorn, W. (1976), J. Phys. B 9, L493.

Ca III

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$3s^2 3p^6$	¹S	0	0.00	
$3s^2 3p^5 3d$	³P°	0 1 2	203 373.22 203 851.95 204 842.64	
$3s^2 3p^5 3d$	³ F°	4 3 2	212 310.04 213 379.40 214 334.06	
$3s^2 3p^5 3d$	$^{1}\mathbf{D}^{\circ}$	2	225 826.22	
$3s^2 3p^5 3d$	3D°	3 2 1	226 333.56 227 388.56 227 432.11	
$3s^2 3p^5 3d$	¹F°	3	228 413.95	
$3s^2 3p^5 4s$	3 P °	2 1 0	242 547.19 243 930.44 245 611.88	•
$3s^2 3p^5 4s$	¹ p ∘	1	247 696.39	
$3s^2 3p^5 4p$	3 S	1	272 188.70	98

Ca III—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leading percentages				
$3s^2 3p^5 4p$	$^{3}\mathrm{D}$	3	277 022.40	100					
1		2	277 380.86	77					
		1	278 621.01	83					
$3s^2 3p^5 3d$	¹ P°	1	279 353.64						
$3s^2 3p^5 4p$	\mathbf{q}_1	2	279 741.80	57					
$3s^2 3p^5 4p$	¹ P	1	281 139.55	57					
$3s^2 3p^5 4p$	$^{3}\mathbf{P}$	2	281 882.24	63					
		0	$282\ 075.15$	98					
		1	282 571.43	64					
$s^2 3p^5 4p$	¹S	0	290 934.30	98					
$3s^23p^54d$	³ P°	0	322 663.28						
		1	323 003.56						
		2	323 655.06						
$3s^2 3p^5 4d$	³F°	4	324 110.24						
		3	324 660.47						
		2	325 467.67						
$s^2 3p^5 4d$	$^{1}\mathrm{F}^{\circ}$	3	326 186.32						
$(s^2 3p^5 (^2\mathrm{P}^\circ_{3/2}) 5s)$	²[¾]°	2	327 922.87						
5 Sp (1 3/2/50	L 723	1	328 582.45						
$s^2 3p^5 4d$	3D°	1	327 962.11						
F		3	328 588.76						
		2	328 606.78						
$s^2 3p^5 4d$	$^{1}D^{\circ}$	2	328 090.99						
$(s^2 3p^5 (^2P_{1/2}^{\circ})5s)$	²[½]°	0	331 048.86						
L · - 1/Z/00	r,51		331 403.20						
$s^2 3 p^5 4 d$	lP°	1	336 749.11						
$s^2 3p^5 (^2\mathbf{P}^{\bullet}_{3/2}) 5p$	2[1/2]	1	339 198.09	91	9 $({}^{2}P_{1/2}^{\circ})^{-2}[{}^{1}/_{2}]$				
5 op (1 3/2/op	[1/2]	0	343 110.24	75	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$(s^2 3p^5 (^2\mathbf{P}_{3/2}^{\circ})5p)$	² [⁵ / ₂]	3	340 580.15	100					
s θp (r _{3/2} /θp	[[/2]	$\begin{vmatrix} 3 \\ 2 \end{vmatrix}$	340 748.72	100 90	8 $({}^{2}P_{3/2}^{\circ})^{-2}[\frac{3}{2}]$				
20.5.270	2.2.	1 1			¥				
$s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2}) 5p$	2[3/2]	$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	341 349.19	96	$\begin{array}{ccc} 4 & (^2\mathbf{P}_{1/2}^{\circ}) \ ^2[\frac{3}{2}] \\ 9 & (^2\mathbf{P}_{3/2}^{\circ}) \ ^2[\frac{5}{2}] \end{array}$				
			341 601.46	90	. 0/2: 6 23				
$s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ}) 5p$	² [³ / ₂]	1	343 784.96	95	$4 (^{2}\mathbf{P}_{3/2}^{\circ})^{2}[^{3}\!/_{2}]$				
		2	344 149.81	97					
$s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ}) 5p$	2[1/2]	1	344 257.92	90	9 $({}^{2}\mathbf{P}_{3/2}^{\circ})^{2}[{}^{1}\!\!/_{2}]$				
a tre: a		0	346 692.34	75	25				
$s^2 3p^5 (^2P_{3/2}^{\circ})4f$	2[3/2]	1	346 732.19	99					
Op (= 3/2/3/	L '21	2	346 896.26	90	$8 (^2\mathrm{P}^\circ_{3/2})^{\ 2}[^5\!\!/_{\!2}]$				

Ca III—Continued

Configuration	Term	J	$\begin{array}{c} \textbf{Level} \\ (\mathbf{cm}^{-1}) \end{array}$		Leading	g percentages
$3s^2 3p^5(^2\mathrm{P}^{\circ}_{3/2})4f$	2[%]	5 4	347 344.37 347 383.51	100 100		
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2})4f$	² [⁵ / ₂]	3 2	347 417.05 347 758.22	93 88	6 9	$({}^{2}\mathbf{P}_{1/2}^{\circ}) {}^{2}[{}^{5}\!\!/_{2}] \ ({}^{2}\mathbf{P}_{3/2}^{\circ}) {}^{2}[{}^{3}\!\!/_{2}]$
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2})4f$	2[7/2]	3 4	348 028.13 348 051.86	97 97		
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{1/2})4f$	² [½]	3 2	350 741.19 350 900.04	93 96	7 4	$({}^{2}P_{3/2}^{\circ})\ {}^{2}[\frac{5}{2}]\ ({}^{2}P_{3/2}^{\circ})\ {}^{2}[\frac{5}{2}]$
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{1/2}) 4f$	2[7/2]	3 4	350 779.47 350 805.32	97 98		
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2})5d$	2[1/2]°	0	358 940.91 359 156.83			
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2})5d$	2[3/2]°	2	359 520.60 361 794.08			
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2})5d$	2[7/2]°	4 3	359 543.08 359 800.57			
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2})5d$	² [⁵ / ₂]°	2 3	360 207.16 360 388.68			
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2})6s$	² [³ / ₂]°	2 1	361 154.07 361 353.31			
$3p^5(^2\mathrm{P}^{\circ}_{1/2})5d$	² [⁵ / ₂]°	2 3	362 893.47 363 118.75			
$s^2 3p^5 (^2\mathbf{P}^{\bullet}_{1/2})5d$	² [³ / ₂]°	2	363 021.27 365 363.88			
$s^2 3p^5(^2\mathrm{P}^{\circ}_{1/2})6s$	²[½]°	0	364 229.89 364 343.85			
$3s3p^63d$	³ D	1 2 3	366 778.85 366 926.33 367 472.91	65 55 53	31 17 24	$\begin{array}{l} 3p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5f^{2}[^{3}\!\!/_{2}] \\ 3p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6p^{2}[^{5}\!\!/_{2}] \\ 3p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6p^{2}[^{5}\!\!/_{2}] \end{array}$
$s^2 3p^5 (^2\mathbf{P}_{3/2}^{\circ})6p$	2[5/2]	3	367 026.65	75	18	$3s3p^63d$ 3 D
$s^2 3p^5(^2\mathrm{P}^{\circ}_{3/2})5f$	² [⁹ / ₂]	5 4	370 141.77 370 172.43	100		
$s^2 3p^5(^2\mathbf{P}_{3/2}^{\circ})5f$	² [⁵ / ₂]	2 3	370 304.54? 371 059.95?	58 80	. 34 17	$3p^5(^2\mathrm{P}^{\circ}_{3/2})5f^2[^3\!\!/_2] \ 3s3p^63d$ $^3\mathrm{D}$
$s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ})6p$	2[3/2]	2	370 454.04	93	6	$3p^{5}(^{2}P_{3/2}^{\circ})5f^{2}[^{5}\sqrt{2}]$
$s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2}) 5f$	2[7/2]	3 4	370 515.36 370 533.07	99 99		
$s^2 3p^5 (^2 ext{P}^{\circ}_{3/2}) 5g$	2[5/2]°	2 3	370 901.88 370 903.12			

Ca 111—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leadin	ng percentages
$3s^2 3p^5 (^2P_{3/2}^{\circ})5g$	2[11/2]°	6 5	370 957.52 370 957.65			
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2})5g$	²[¾]°	3 4	371 061.30 371 061.37			
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2})5g$	² [⁹ / ₂]°	4 5	371 120.69 371 121.06			
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2})5f$	² [³ / ₂]	2 1	371 274.48? 371 447.58?	42 67	29 31	$rac{3p^5(^2 ext{P}^*_{3/2})5f^2[^5\!\!\!/_2]}{3s3p^63d^3 ext{D}}$
$3s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ}) 5f$	2[7/2]	3 4	373 401.87 373 425.51	99 99		
$3s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ}) 5f$	² [5/ ₂]	2 3	373 626.85 373 880.37	92 91	4 9	$3s3p^63d$ $^3\mathrm{D}$
$3s^2 3p^5 (^2P_{1/2}^{\circ})5g$	2[%]°	4 5	374 138.90 374 139.31			
$3s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ}) 5g$	2[7/2]°	4 3	374 143.44 374 143.84			
$3s^2 3p^5 (^2\mathbf{P}_{3/2}^{\circ})6d$	2[7/2]°	4 3	376 808.60 376 883.36			
$3s3p^6 3d$	1 D	2	377 168.1	93		
$3s^2 3p^5 (^2\mathbf{P}_{3/2}^{\circ})6d$	²[¾ ₂]°	2 3	380 152.21 380 230.50			·
$3s^2 3p^5 (^2P_{3/2}^{\circ})6g$	2[%]°	5 4	382 190.20 383 189.82			
$3s^2 3p^5 (^2P_{3/2}^{\circ})6f$	² [⁹ / ₂]	5 4	382 565.1 382 587.9	100		
$3s^2 3p^5 (^2P_{3/2}^{\circ})6f$	² [⁷ / ₂]	3 4	382 784.7 382 798.5	100 99		
$3s^2 3p^5 (^2\mathbf{P}_{3/2}^{\circ})6f$	² [⁵ / ₂]	3 2	382 791.5 382 852.3	99 79	19	$(^{2}P_{3/2}^{\circ})^{2}[^{3}\!\!/_{2}]$
$3s^2 3p^5 (^2 P_{3/2}^{\circ}) 6g$	2[5/2]°	2 3	383 061.33 383 063.78			
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2})6g$	2[11/2]°	6 5	383 094.79 383 095.10			
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{3/2})6g$	² [⁷ / ₂]°	4 3	383 156.51 383 157.11			
$3s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ})6f$	2[7/2]	3 4	385 757.6 385 775.5	100 100		
$3s^2 3p^5 (^2P_{1/2}^{\circ})6f$	² [½]	3 2	385 867.2 385 906.9	99 99		

Ca III—Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$3s^2 3p^5 (^2\mathbf{P}^{\circ}_{1/2})6g$	² [%]°	4 5	386 248.39 386 248.68	
$3s^2 3p^5 (^2P_{1/2}^{\circ})6g$	2[7/2]°	4 3	386 249.78 386 250.31	
$3s^2 3p^5 (^2\mathbf{P}_{3/2}^{\circ})7f$	² [%]	5	390 054.0	
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2})7f$	2[7/2]	4	390 207.6	
$3s^2 3p^5 (^2\mathrm{P}^{\circ}_{3/2})7g$	²[½]°	3	390 392.62	, , , , , , , , , , , , , , , , , , ,
$3s^2 3p^5 (^2P_{3/2}^{\circ})7g$	² [¹¹ / ₂]°	6 5	390 411.58 390 411.99	
$3s^2 3p^5 (^2 \mathrm{P}^{\circ}_{3/2}) 7g$	2[7/2]°	3	390 451.97	
$3s^2 3p^5 (^2\mathbf{P}_{3/2}^{\circ})7g$	2[%]°	4 5	390 471.79 390 472.32	
$3s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ})7f$	² [⁷ / ₂]	4	393 224.9	•
$3s^2 3p^5 (^2P_{1/2}^{\circ})7g$	² [%]°	5 4	393 551.86 393 561.59	
$3s^2 3p^5 (^2\mathbf{P}_{1/2}^{\circ})7g$	2[7/2]°	4 3	393 552.31 393 552.81	
Ca IV $({}^{2}P_{3/2}^{\circ})$	Limit		410 642	
$3s3p^64p$	lP°	1	431 100	
$3s3p^65p$	lP°	1	492 850	

Caiv

Z = 20

Cl i isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^{5/2}P^{\circ}_{3/2}$

Ionization energy = $542600 \text{ cm}^{-1}(67.27 \text{ eV})$

The initial work on the analysis was by Bowen (1928), who identified the ground term, the $3s3p^6$ ²S level, and the $3p^4$ (³P)4s ²P_{3/2} level. Kruger and Phillips (1937) also identified the $3p^44s$ terms from their observations below 350 Å.

Levels of $3p^43d^4D$, 2D and 2F terms and the $3p^44p$ and 5s levels were reported by Tsien (1939), who worked with the line list of Ekefors (1931). Svensson and Ekberg (1968), also using Ekefors' list, established the $3p^4(^3P)\,3d^2P$ term.

A new analysis based on a new set of observations was provided by Smitt (1978), whose work is still in progress. He estimates an accuracy of ± 2 cm⁻¹ for the levels relative to the ground term and less than ± 1 cm⁻¹ for the ground term splitting. The new analysis provides three

times the number of previously known levels as well as some changes of designation and J-values. All levels compiled here are from this work except for the $3p^45s$ ²D term retained from Tsien.

The ionization energy was obtained by extrapolation by Lotz (1967).

References

Bowen, I. S. (1928), Phys. Rev. 31, 497. Ekefors, E. (1931), Z. Phys. 71, 53. Kruger, P. G., and Phillips, L. W. (1937), Phys. Rev. 51, 1087. Lotz, W. (1967), J. Opt. Soc. Am. 57, 873. Smitt, R. (1978), Private communication. Svensson, L. A., and Ekberg, J. O. (1968), Ark. Fys. 37, 65. Tsien, W.-Z. (1939), Chinese J. Phys. 3, 117.

Ca IV

			·	Ja IV		V	
Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3s^2 3p^5$	² p °	3/ ₂ 1/ ₂	0.0 3 118.2	$3s^2 3p^4(^1\mathrm{D})3d$	² F	⁵ / ₂ ⁷ / ₂	252 286 252 903
$3s3p^{6}$	² S	1/2	152 439.6	$3s^2 3p^4(^1S)3d$	^{2}D	3/ ₂ 5/ ₂	269 974 270 532
$3s^2 3p^4 (^3P) 3d$	⁴ D	7/ ₂ 5/ ₂ 3/ ₂ 1/ ₂	201 505 201 747 202 031 202 254	$3s^2 3p^4 (^3P) 4s$	⁴ P	5/ ₂ 3/ ₂ 1/ ₂	291 456 292 864 294 292
$3s^23p^4(^3\mathrm{P})3d$	⁴ F	9/ ₂	218 383 219 467	$3s^2 3p^4(^1D)3d$	2 S	1/2	293 009
		9/ ₂ 7/ ₂ 5/ ₂ 3/ ₂	220 240 220 741	$3s^2 3p^4 (^3P)3d$	^{2}P	3/ ₂ 1/ ₂	293 872 295 133
$3s^2 3p^4(^1D)3d$	² P	1/ ₂ 3/ ₂	219 991 221 945	$3s^2 3p^4 (^3P) 3d$	$^{2}\mathrm{D}$	5/ ₂ 3/ ₂	301 218 303 850
$3s^2 3p^4 (^3P) 3d$	⁴ P	1/ ₂ 3/ ₂ 5/ ₂	227 214 227 825 228 694	$3s^2 3p^4 (^3P) 4s$	² P	3/ ₂ 1/ ₂	301 718 303 604
$3s^2 3p^4(^1D)3d$	2 D	3/ ₂ 5/ ₂	228 436 230 119	$3s^2 3p^4 (^1D) 4s$	² D	5/ ₂ 3/ ₂	312 517 312 650
$3s^2 3p^4(^3P)3d$	2 F	7/ ₂ 5/ ₂	231 288 233 851	$3s^2 3p^4 (^3P) 4p$	⁴ P°	5/2 3/2 1/2	330 693 331 173 331 969
$3s^23p^4(^1D)3d$	² G	9/ ₂ 7/ ₂	234 498 234 642				

Ca IV—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3s^2 3p^4(^3P)4p$.	. ⁴ D°	7/2 5/2 3/2 1/2	335 122 335 901	$3s^2 3p^4 (^1\mathrm{D}) 4p$	² P°	3/2 1/2	359 575 361 170
		1/ ₂	336 958 337 452	$3s3p^5(^3P^\circ)3d$	⁴ F°	9/2	367 174 367 971
$3s^2 3p^4 (^1S) 4s$	² S	1/2	337 214			9/2 7/2 5/2 3/2	368 660 369 197
$3s^2 3p^4 (^3P) 4p$	² D°	5/ ₂ 3/ ₂	338 250 340 377	$3s^2 3p^4 (^1S) 4p$	² P °	1/ ₂ 3/ ₂	379 774 380 043
$3s^2 3p^4 (^3P) 4p$	² P°	1/ ₂ 3/ ₂	338 300 338 959	$3s3p^5(^3\mathrm{P}^\circ)3d$	⁴ D°		382 641 382 974
$3s^2 3p^4 (^3P) 4p$	² S°	1/2	342 567			7/ ₂ 5/ ₂ 3/ ₂ 1/ ₂	383 125 383 176
$3s^2 3p^4 (^3P) 4p$	⁴ S°	3/2	342 915	$3s^2 3p^4(^1D)5s$	$^{2}\mathrm{D}$	5/ ₂ 3/ ₂	399 755
$3s^2 3p^4 (^1D) 4p$	² F°	5½ 7½ 7½	352 154 352 616	Ca v (³ P ₂)	Limit	3/2	400 956 542 600
$3s^2 3p^4(^1D)4p$	² D °	3/ /2 5/ ₂	357 941 358 306			·	0 3 M

Cav

Z = 20

SI isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^{4/3}P_2$

Ionization energy = $681\ 600\ cm^{-1}\ (84.50\ eV)$

Spectra of calcium from 1035-135 Å were obtained by Ekefors (1931) and were supplemented by longer exposures below 600 Å by Bowen (1934). From the combined line-lists Bowen derived levels of the configurations $3s^23p^4$, $3s3p^5$, $3s^23p^33d$, $3s^23p^34s$, and $3s^23p^35s$. By means of isoelectronic comparisons Svensson and Ekberg (1968) revised and extended the $3p^33d$ configuration.

New measurements of the transition array $3s^23p^4-3s3p^5$ by Smitt, Svensson, and Outred (1976) led to improved values for the levels of these configurations.

The ionization energy is an extrapolated value by Lotz (1967).

References

Bowen, I. S. (1934), Phys. Rev. 46, 791.

Ekefors, E. (1931), Z. Phys. 71, 53.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Smitt, R., Svensson, L. A., and Outred, M. (1976), Physica Scripta 13, 293.

Svensson, L. A., and Ekberg, J. O. (1968), Ark. Fys. 37, 65.

Ca v

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3s^2 3p^4$	^{3}P	2	0.0	$3s^2 3p^3 (^2P^{\circ}) 3d$	¹ F°	3	329 229
		1	2 404.7				
		0	3 275.6	$3s^2 3p^3 (^4S^{\circ}) 4s$	³ S°	1	350 914
$3s^2 3p^4$	\mathbf{q}_1	2	18 830.3	$3s^2 3p^3 (^2\mathbf{P}^{\circ}) 3d$	lP°	1	353 220
$3s^2 3p^4$	1S	0	43 836.5	$3s^2 3p^3 (^2D^{\circ}) 4s$	$^{3}D^{\circ}$	1	369 590
os op	3	U	45 850.5			2	369 696
$3s3p^{5}$	3 p °	2	154 670.8			3	$369\ 959$
osop	1	1			,		
		0	156 760.2	$3s^2 3p^3 (^2D^{\circ}) 4s$	¹ D°	2	374 728
		U	157 900.5				
995	1 p °	1	100 011 5	$3s^2 3p^3 (^2\mathbf{P}^{\circ}) 4s$	³ P °	0	387 039
$3s3p^5$	r	1	197 844.5			1	387 226
$3s^2 3p^3 (^2D^\circ)3d$	$^{1}\mathbf{D}^{\circ}$	2	251 121			2	387 652
as ap (D)a	ע	4	254 124	0.20.3/20014	¹ P °	1	392 283
$3s^2 3p^3 (^2D^{\circ})3d$	$^{1}\mathbf{F}^{\circ}$	3	283 955	$3s^2 3p^3 (^2\mathbf{P}^{\circ}) 4s$	P	1	392 203
əs əp (Б) за	r	3	283 933	$3s^2 3p^3 (^4S^{\circ})5s$	³S°	1	501 127
$3s^2 3p^3 (^2D^{\circ})3d$	³S°	1	293 785	38° 3p°('S') 58	5	1	301 127
эв эр (D)за	5	1	293 783	$3s^2 3p^3 (^2D^{\circ}) 5s$	³D°	1	524 651
$3s^2 3p^3 (^2P^{\circ})3d$	3 P °	2	000 011	5s 5p (D)5s		$\frac{1}{2}$	524 770
as ap(r)sa	r	1	298 214			3	525 053
		0	299 534			0	020 000
		U	300 594	$3s^2 3p^3 (^2D^{\circ}) 5s$	$^{1}\mathrm{D}^{\circ}$	2	526 523
9-29-3/2me\9.1	1p°	1	202 101	os op (D) os	0	4	020 020
$3s^2 3p^3 (^2D^\circ)3d$	F	1	302 184	$3s^2 3p^3 (^2P^{\circ}) 5s$	³P°	1	542 249
9-29-3/2pexe	3D°	9	200 100	08 op (r) 08	I	$\frac{1}{2}$	542 650
$3s^23p^3(^2P^\circ)3d$	D	$\frac{3}{2}$	308 188			4	542 000
		1	309 831	$3s^2 3p^3 (^2P^{\circ}) 5s$	¹ P°	1	544 143
		1	310 943	os op (r)os	Г	1	044 140
$3s^2 3p^3 (^2P^{\circ})3d$	$^{1}\mathrm{D}^{\circ}$	2	318 741	Ca VI (⁴ S _{3/2})	Limit		681 600

Ca vi

Z=20

P_I isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^3$ $^4S^{\circ}_{3/2}$

Ionization energy = $877400 \text{ cm}^{-1} (108.78 \text{ eV})$

The present compilation is obtained from the work of Ekberg and Svensson (1970) and Smitt, Svensson, and Outred (1976). The level values for the $3s^23p^3$ and $3s3p^4$ configurations are taken from the latter paper. They have an uncertainty of about \pm 2cm⁻¹. We have combined these values with the measurements and classifications given by Ekberg and Svensson to derive new level values for the $3p^23d$ and 4s configurations. The uncertainty of these upper levels is about \pm 10 cm⁻¹. Since no intersystem transitions have been observed, all of the doublets have an added systematic error x, relative to the ground term 4 S°. The value of x depends on the accuracy of cal-

culations by Smitt, Svensson and Outred and is expected to be less than $\pm 20 \text{ cm}^{-1}$.

Most of the wavelengths used by Ekberg and Svensson are taken from Bowen (1934) or Ekefors (1931).

The ionization energy is from an extrapolation by Lotz (1967).

References

Bowen, I. S. (1934), Phys. Rev. 46, 791. Ekberg, J. O., and Svensson, L. A. (1970), Physica Scripta 2, 283. Ekefors, E. (1931), Z. Phys. 71, 53. Lotz, W. (1967), J. Opt. Soc. Am. 57, 873. Smitt, R., Svensson, L. A., and Outred, M. (1976), Physica Scripta 13, 293.

Ca vi

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3s^2 3p^3$	⁴ S°	3/2	0.0	$3s^2 3p^2(^1\mathrm{D})3d$	² P	1/ ₂ 3/ ₂	$331\ 968+x$ $333\ 324+x$
$3s^2 3p^3$	² D °	3/ ₂ 5/ ₂	$\begin{array}{ c c c c c } 26 & 835.1 + x \\ 27 & 246.6 + x \end{array}$	$3s^2 3p^2(^1\mathrm{D})3d$	² F	5/ ₂ 7/ ₂	$336\ 219 + x$
$3s^2 3p^3$	² P °	1/ ₂ 3/ ₂	44 586.7+x 45 142.7+x	$3s^2 3p^2(^1S)3d$	$^{2}\mathbf{D}$	5/ ₂ 3/ ₂	$336\ 631 + x$ $348\ 819 + x$
$3s3p^4$	⁴ P	5/ ₂ 3/ ₂ 1/ ₂	155 786.5 157 767.5 158 830.5	$3s^2 3p^2 (^3{ m P}) 4s$	⁴ P	3/2 1/2 3/2 5/2	$349\ 645 + x$ $433\ 849$ $435\ 286$
$3s3p^4$	² D	3/ ₂ 5/ ₂	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$3s^2 3p^2 (^3P) 4s$	$^{2}\mathrm{P}$	1/ ₂ 3/ ₂	437 392 442 256+x
$3s3p^4$	² P	3/ ₂ 1/ ₂	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3s^2 3p^2(^1D)4s$	² D	7 ₂ 5/2 3/2	444724 + x $457294 + x$
$3s3p^4$	² S	1/2	233712.8+x	0.20.2.10	9		$457\ 358+x$
$3s^2 3p^2(^3P)3d$	^{2}P	3/ ₂ 1/ ₂	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$3s^2 3p^2 (^1S) 4s$ Ca VII $(^3P_0)$	² S <i>Limit</i>	1/2	483 882+x 877 400
$3s^2 3p^2(^1D)3d$	² D	5/2 3/2	$\begin{array}{c c} 320 \ 919 + x \\ 321 \ 411 + x \end{array}$				

Ca vii

Z = 20

Si i isoelectronic sequence

Ground state: 1s22s2p63s23p23P0

Ionization energy = $1.026\ 000\ cm^{-1}\ (127.2\ eV)$

The level values for $3s^23p^2$ and $3s3p^3$ are taken from Smitt, Svensson, and Outred (1976). Ekberg and Svensson (1970) revised and extended the interpretation of the $3p^2$ –3p3d, 4s arrays published by several earlier workers. We have combined these new classifications with the $3p^2$ levels given by Smitt et al. Ekberg and Svensson have

obtained the value for the ionization energy by extrapolation.

References

Ekberg, J. O., and Svensson, L. A. (1970), Physica Scripta 2, 283. Smitt, R., Svensson, L. A., and Outred, M. (1976), Physica Scripta 13, 293.

Ca vII

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3s^2 3p^2$	³ P	0	0.0 1 624.9	$3s3p^3$	$^{1}\mathrm{P}^{\circ}$	1	252 489.9
		2	4 071.4	$3s^2 3p3d$	$^3\mathrm{P}^\circ$	2 1	286 224 288 160
$3s^2 3p^2$	\mathbf{q}_{f}	2	21 864.0			0	289 004
$3s^2 3p^2$	¹S	0	48 981.4	$3s^2 3p3d$	$^3\mathrm{D}^\circ$	1	295 138
$3s3p^3$	3D°	1	160 157.5			2 3	295 772 296 132
		2 3	160 220.3 160 529.2	$3s^2 3p3d$	$^1\mathbf{F}^\circ$	3	324 885
$3s3p^3$	3 P °	0 1	185 356.6 185 392.9	$3s^2 3p3d$	$^{1}\mathbf{P}^{\circ}$	1	333 501
		2	185 412.2	$3s^2 3p4s$	$^3\mathrm{P}^{\circ}$	0 1	490 059 490 919
$3s3p^3$	1 D °	2	203 616.1			2	494 262
$3s3p^3$	³ S°	1	245 240.5	$3s^2 3p4s$	$^{1}\mathrm{P}^{\circ}$	1	498 683
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Ca VIII (² P _{1/2})	Limit		1 026 000

Ca vIII

Z = 20

Al 1 isoelectronic sequence

Ground state: $1s^22s^22p^63s^23p^{-2}P^{\circ}_{-1/2}$

Ionization energy = $1.187600 \pm 1000 \text{ cm}^{-1} (147.24 \pm 0.1 \text{ eV})$

The doublet terms of $3s^23p$ and $3s^3p^2$ are from Smitt, Svensson, and Outred (1976). The uncertainty of their measurements is about 2 cm^{-1} .

The remaining terms are derived from the measurements and classifications of Ekberg and Svensson (1970). They obtained the position of the quartets by extrapolation.

The ionization energy was determined by Ekberg and Svensson from the nf^2F° series.

References

Ekberg, J. O. and Svensson, L. A. (1970), Physica Scripta 2, 283. Smitt, R., Svensson, L. A., and Outred, M. (1976), Physica Scripta 13, 293.

Ca viii

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3s^2 3p$	² P°	1/ ₂ 3/ ₂	0.0 4 308.3	$3s^2 4s$	² S	1/2	547 322
$3s3p^2$	⁴ P	1/2 3/2 5/2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3s3p4s	⁴ P°	1/2 3/2 5/2	688 747 + x 690 128 + x 692 833 + x
$3s3p^2$	2 D	3/ ₂ 5/ ₂	171 572.2 171 830.7	$3s^24d$	2 D	³ / ₂ ⁵ / ₂	698 232 698 420
$3s3p^2$	2 S	1/2	216 584.9	$3s^2 4f$	² F °	5/ ₂ 7/ ₂	743 288 743 330
$3s3p^2$	² P	1/ ₂ 3/ ₂	231 016.3 233 592.8	$3s^2 5d$	2 D	3/ ₂ 5/ ₂	885 693 885 750
$3s^2 3d$	2 D	3/ ₂ 5/ ₂	282 356 282 577	$3s^2 5f$	² F °	5/ ₂ 7/ ₂	905 052 905 087
$3p^3$	⁴ S°	3/2	$345\ 274 + x$	$3s^2 6d$	2 D	³ / ₂ ⁵ / ₂	979 749 980 089
3s3p3d	⁴ P°	5/ ₂ 3/ ₂	408 227+x 409 291+x	$3s^2 6f$	² F°	7 ₂ 5/ ₂ 7/ ₂	991 023
3s3p3d	⁴ D°	1/ ₂ 3/ ₂ 5/ ₂ 7/ ₂	$\begin{array}{c} 411\ 816 + x \\ 412\ 388 + x \\ 412\ 772 + x \\ 412\ 881 + x \end{array}$	$3s^27f$	² F°	7/2 7/2 5/2	991 028 1 043 207 1 043 275
				Ca IX (¹ S ₀)	Limit		1 187 600

Ca ix

Z = 20

Mg I isoelectronic sequence

Ground state: 1s22s2p63s2 1S0

Ionization energy=1 519 000 \pm 1000 cm $^{-1}$ (188.3 \pm 0.1 eV)

Most of the levels for this spectrum are taken from Ekberg (1971). The identification of the two combinations with 3s5f $^1F^{\circ}_3$ has been revised by Edlén and Bodén (1976). Ekberg obtained his intersystem connection with two faint lines, but regards this as tentative.

The $3p^2$ S term and the 3p3d configuration are from Fawcett (1970). The 3p4f configuration is from Fawcett (1976).

The ionization energy was calculated by Ekberg from the first three members of the $3snf^3F^{\circ}$ series (n=4, 5, and 6).

References

Edlén, B., and Bodén, E. (1976), Physica Scripta 14, 31. Ekberg, J. O. (1971), Physica Scripta 4, 101. Fawcett, B. C. (1970), J. Phys. B3, 1732. Fawcett, B. C. (1976), J. Opt. Soc. Am. 66, 632.

Ca ix

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$3s^2$	1S	0	0	3s4p	¹ P°	1	832 314
3 <i>s</i> 3 <i>p</i>	³ p ∘	0	141 612	3s4 <i>d</i>	$^{3}\mathrm{D}$	1	915 636
жор	_	1	143 111		_	2	915 750
		2	146 348			3	915 964
3s3p	¹ P°	1	214 482	3s4d	\mathbf{D}	2	921 921
$3p^2$	1 D	2	336 245	3p4s	³P°	0	939 907
						1	941 094
p^2	^{3}P	0	338 399			2	944 814
	NAMES AND ASSESSMENT OF THE PARTY OF THE PAR	1	340 308				
		2	343 908	3s4f	³F°	2-4	953 030
Bp^2	¹S	0	398 900	3s4 <i>f</i>	$^{1}\mathbf{F}^{\circ}$	3	963 050
3s3d	3 D	1	410 514	3p4p	$ $ $_{^{3}\mathrm{D}}$	2	1 003 670
		2	$410\ 627$			3	1 007 010
		3	410 841			_	
2.9.1	^{1}D	2	467 631	3p4p	³ P	0	1 009 330
3s3d	D D	4	401.001			1	1 010 470
3p3d	³F°	2	562 150			2	1 012 820
p_{0u}		3	564 160		2_		
		4	566 630	3p4p	³ S	1	1 014 060
3p3d	¹ D°	2	571 900	3s5s	³S	1	1 067 240
	3 D °	2	599 640	3s5s	^{1}S	0	1 076 110
3p3d	ע	3	601 140				
		9	001 140	3s5p	lP°	1	1 097 570
3p3d	$^{1}P^{\circ}$	1	618 520		2~	_	
-				3p4f	^{3}G	5	1 125 440
3s4s	3 S	1	$758\ 974$		3		
				3p4f	³ F	3	1 125 620
3s4s	1 S	0	774 480	11		4	1 128 930

J. SUGAR AND C. CORLISS

Ca ıx—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	$\int J$	Level (cm ⁻¹)
3s5d	¹D	2	1 139 810	3s6d	3 D	1	1 258 080
3s5d	$^{3}\mathrm{D}$	$\frac{1}{3}$	1 143 670 1 144 290			3	1 258 260 1 258 450
3s5f	³ F °	2-4	1 158 110	3s6d	¹ D	2	1 260 390
3s5f	¹ F°	3	1 162 610	3s6f	³ F°	2-4	1 269 050
3s6s	³S	1	1 218 220	3s7p	¹ P °	1	1 315 300
3s6p	¹ P°	1	1 235 830	3s7d	^{3}D	1-3	1 329 760
				3s8d	3D	1-3	1 374 830
			<u>.</u>	Ca $\times (^2S_{1/2})$	Limit		1 519 000

Cax

Z = 20

Na i isoelectronic sequence

Ground state: 1s22s2p63s2S1/2

Ionization energy = $1.704.047 \pm 3 \text{ cm}^{-1} (211.277 \pm .001 \text{ eV})$

The recent publications by Edlén and Bodén (1976), by Fawcett (1976), and by Cohen and Behring (1976) provide considerable extensions of the early work of Kruger and Phillips (1939) on this spectrum. We have quoted level values from Edlén and Bodén and added the higher nf series members (n=10-11) from Cohen and Behring. The measurements of the high members of the nf series by Fawcett do not agree well with the Ritz formulae given by Edlén and Bodén.

The ionization energy is derived by Edlén (1978) from a polarization formula applied to the nf series.

References

Cohen, L., and Behring, W. E. (1976), J. Opt. Soc. Am. 66, 899. Edlén, B. (1978), Physica Scripta 17, 565. Edlén, B., and Bodén, E. (1976), Physica Scripta 14, 31. Fawcett, B. C. (1976), J. Opt. Soc. Am. 66, 632. Kruger, P. G., and Phillips, L. W. (1939), Phys. Rev. 55, 352.

Ca x

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$2p^6(^{1}S)3s$	² S	1/2	0	$2p^6(^1\mathrm{S})6d$	$^{2}\mathrm{D}$	3/ ₂ 5/ ₂	1 389 840
$2p^6(^1S)3p$	² P °	1/2 3/2	174 213 179 287	$2p^6(^1\mathrm{S})6f$	2 F °	5/ ₂ 7/ ₂	1 389 870 1 398 330
$2p^6(^1S)3d$	² D	3/ ₂ 5/ ₂	417 112 417 522	$2p^6(^1\mathrm{S})7s$	² S	1/2	1 398 440 1 448 710
$2p^6(^1\mathrm{S})4s$	2 S	1/2	832 790	$2p^6(^1\mathbf{S})7p$	² P °	1/2,3/2	1 459 920
$2p^6(^1S)4p$	2 p °	1/ ₂ 3/ ₂	899 290 901 200	$2p^6(^1S)7d$	² D	3/ ₂ 5/ ₂	1 474 040 1 474 090
$2p^6(^1S)4d$	² D	3/ ₂ 5/ ₂	987 300 987 490	$2p^6(^1S)7f$	² F°	⁵ / ₂ ⁷ / ₂	1 479 470 1 479 540
$2p^6(^1S)4f$	² F°	5/ ₂ 7/ ₂	1 016 100 1 016 150	$2p^6(^1\mathrm{S})8s$	2 S	1/2	1 511 780
$2p^6(^1\mathrm{S})5s$	2 S	1/2	1 174 710	$2p^6(^1\mathrm{S})8p$	² P °	1/2,3/2	1 519 200
$2p^6(^1\mathrm{S})5p$	² P °	1/ ₂ 3/ ₂	1 206 850 1 207 760	$2p^6(^1S)8d$	² D	3/ ₂ 5/ ₂	1 528 490 1 528 510
$2p^6(^1\mathrm{S})5d$	² D	3/ ₂ 5/ ₂	1 248 920 1 249 030	$2p^6({}^1S)8f$	² F °	5/ ₂ 7/ ₂	1 532 290 1 532 390
$2p^6(^1S)5f$	² F°	5/ ₂ 7/ ₂	1 263 690 1 263 720	$2p^6(^1\mathrm{S})9p$	² P°	1,3,	1 559 260
$2p^6(^1{ m S})6s$	2 S	1/2	1 348 380	$2p^6(^1S)9d$	2 D	3/2,5/2	1 565 730
$2p^6(^1S)6p$	² P°	1/ ₂ 3/ ₂	1 366 360 1 366 890	$2p^6(^1S)9f$	$^2\mathrm{F}^\circ$	5/ ₂ 7/ ₂	1 568 390 1 568 420

J. SUGAR AND C. CORLISS

Ca x—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$2p^6(^1S)10d$	2 D	5/2	1 592 260	$2p^6(^1S)11f$	² F°	7/ ₂ 5/ ₂	1 613 480 1 613 600
$2p^6$ (1 S) $10f$	² F°	7/ ₂ 5/ ₂	1 594 230 1 594 330	Ca XI (¹ S ₀)	Limit	2	1 704 047

Ca xi

Z = 20

Ne i isoelectronic sequence

Ground state: 1s22s2p6 1S0

Ionization energy = $4774000 \text{ cm}^{-1} (591.9 \text{ eV})$

Only resonance lines between 25 and 36 Å are classified by this rare-gas-type system of energy levels. Edlén and Tyrén (1936) identified 11 transitions and extrapolated to obtain an ionization potential which agrees well with the present value.

We use jj-coupling designations for the $2p^5ns$ levels and jl-coupling designations for the $2p^5nd$ levels.

Kastner, Behring, and Cohen (1975) identified transitions between $2p^{\circ}3p$ and $2p^{\circ}4d$, but there is no connection with the levels given here.

We derived the ionization energy from the $2s^22p^5$ ($^2P^{\circ}_{3/2}$) $nd^{-2}[3/2]^{\circ}$ series for n=3 and 4 with the change in quantum defect Δn^* taken from Ti XIII. Our value agrees exactly with Lotz's (1967) value.

References

Edlén, B., and Tyrén, F. (1936), Z. Phys. 101, 206.
Kastner, S. O., Behring, W. E., and Cohen, L. (1975), Astrophys. J. 199, 777.
Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Ca xı

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p^6$	¹S	0	0	$2s2p^6 3p$	³ P °	1	3 692 900
$2s^2 2p^5(^2\mathbf{P}_{3/2}^{\circ})3s$	(3/2,1/2)°	1	2 810 880	$2s2p^6 3p$	¹ P°	1	3 708 900
$2s^2 2p^5(^2\mathbf{P}_{1/2}^{\circ})3s$	(1/2,1/2)°	1	2 839 940	$2s^2 2p^5(^2\mathbf{P}_{3/2}^{\circ})4s$	(3/2,1/2)	° 1	3 753 900
$2s^2 2p^5(^2\mathbf{P}_{3/2}^{\circ})3d$	2[1/2]°	1	3 199 300	$2s^2 2p^5(^2\mathbf{P}_{1/2}^{\circ})4s$	(1/2,1/2)	° 1	3 781 900
$2s^2 2p^5(^2\mathbf{P}_{3/2}^{\circ})3d$	²[¾]°	1	3 239 700	$2s^2 2p^5(^2\mathbf{P}_{3/2}^{\circ})4d$	²[¾]°	1	3 919 000
$2s^2 2p^5(^2\mathbf{P}_{1/2}^{\circ})3d$	²[¾]°	1	3 284 300	$2s^2 2p^5(^2\mathbf{P}_{1/2}^{\circ})4d$	²[¾]°	1	3 948 400
				Ca XII (² P _{3/2})	Limit		4 774 000

Ca XII

Z = 20

F I isoelectronic sequence

Ground state: 1s22s2p5 2P03/2

Ionization energy = $5\,301\,000\,\mathrm{cm^{-1}}$ (657.2 eV)

The first work on this spectrum was by Edlén and Tyrén (1936), who classified 10 lines of the $2s^22p^5-2s^22p^43s$ and 3d transition arrays between 27 and 33 Å. This work was extended by Feldman, Doschek, Cowan, and Cohen (1973), from whose wavelengths the 3s and 3d levels are determined. Fawcett, Burgess, and Peacock (1967) identified the $2s^22p^5-2s2p^6$ doublet at ~ 140 Å. The $2s^22p^5$ 2 P° term interval is obtained from the solar flare line at 3327.5 Å (in air) identified by Edlén (1942, 1976).

The $2s2p^53s$ ²P° term is from Feldman et al. (1973).

The ionization energy was obtained by extrapolation by Lotz (1967).

References

Edlén, B. (1942), Z. Astrophys. 22, 30.

Edlén, B. (1976), Mem. Soc. Roy. Sc. Liege 9, 235.

Edlén, B., and Tyrén, F. (1936), Z. Phys. 101, 206.

Fawcett, B. C., Burgess, D. D., and Peacock, N. J. (1967), Proc. Phys. Soc. 91, 970.

Feldman, U., Doschek, G. A., Cowan, R. D., and Cohen, L. (1973), J. Opt. Soc. Am. 63, 1445.

Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Ca xii

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p^5$	² P°	3/ ₂ 1/ ₂	0 30 044	$2s^2 2p^4(^3P)3d$	$^{2}\mathrm{P}$	1/ ₂ 3/ ₂	3 486 700 3 508 200
$2s2p^6$	2 S	1/2	709 000	$2s^2 2p^4 (^3P) 3d$	2 D	3/ ₂ 5/ ₂	3 494 600 3 511 500
$2s^2 2p^4 (^3P) 3s$	⁴ P	5/ ₂ 3/ ₂ 1/ ₂	3 062 300 3 077 100 3 089 300	$2s^2 2p^4(^3P)3d$	² F	5/2	3 494 900
$2s^2 2p^4 (^3P)3s$	² P	-	3 097 800	$2s^2 2p^4(^1\mathrm{D})3d$	2 S	1/2	3 559 300
<i>■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □</i>		3/ ₂ 1/ ₂	3 114 800	$2s^2 2p^4(^1D)3d$	$^{2}\mathbf{F}$	5/2	3 562 800
$2s^2 2p^4(^1D)3s$	² D	5/ ₂ 3/ ₂	3 158 500 3 159 300	$2s^2 2p^4(^1\mathrm{D})3d$	2 P	3/ ₂	3 574 900
$2s^2 2p^4 (^1S) 3s$	² S	1/2	3 249 600	$2s^2 2p^4(^1\mathrm{D})3d$	² D	5/ ₂ 3/ ₂	3 574 900 3 584 900
$2s^2 2p^4(^3P)3d$	⁴ P	1/2 3/2 5/2	3 475 800 3 479 600 3 489 400	$2s^2 2p^4(^1S)3d$	² D	5½ 3½	3 647 900 3 652 300
$2s^2 2p^4(^3P)3d$	⁴ F	⁷² ⁵ / ₂	3 480 000	$2s2p^{5}(^{3}\mathbf{P}^{\circ})3s$	² P°	3/ ₂ 1/ ₂	3 738 000 3 755 900
				Ca XIII (³ P ₂)	Limit		5 301 000

Ca xIII

Z = 20

O i isoelectronic sequence

Ground state: $1s^22s^22p^4$ ³P₂

Ionization energy = $5.861.000 \text{ cm}^{-1}$ (726.6 eV)

The observed spectrum of Ca XIII consists of the strong transition array $2s^22p^4-2s2p^5$, which lies between 130 and 170 Å, and the arrays $2p^4-2p^33s$ at 29 Å and $2p^4-2p^33d$ at 26 Å. The $2s2p^5$ $^3P^\circ$ is taken from Fawcett, Burgess, and Peacock (1967). Two lines assigned to the $^1P^\circ$ are inconsistent so the term value cannot be determined. The transition $2p^6$ 1S_0 to $2s2p^5$ $^1P^\circ$, lies at 169.49 Å, according to Fawcett, Galanti and Peacock (1974).

The configuration $2p^33s$ is from the observations of Doschek, Feldman, and Cohen (1973). Lines of the $2p^4$ – $2p^33d$ array were classified by Fawcett and Hayes (1975). Subsequently, revisions of several line classifications were suggested by Bromage and Fawcett (1977) on the basis of new calculations. We regard these changes as tentative and therefore omit the corresponding levels.

Levels of the $2s^22p^4$ configuration are obtained from Edlén (1972). He gives a calculated value for the position of the 1D_2 , on which we base the singlet system.

The ionization energy is from Lotz's (1967) extrapolation.

References

Bromage, G. E., and Fawcett, B. C. (1977), Mon. Not. R. Astr. Soc. 178, 591.

Doschek, G. A., Feldman, U., and Cohen, L. (1973), J. Opt. Soc. Am. 63, 1463.

Edlén, B. (1972), Sol. Phys. 24, 356.

Fawcett, B. C., Burgess, D. D., and Peacock, N. J. (1967), Proc. Phys. Soc. 91, 970.

Fawcett, B. C., Galanti, M., and Peacock, N. J. (1974), J. Phys. B 7, 1149.

Fawcett, B. C., and Hayes, R. W. (1975), Mon. Not. R. Astr. Soc. 170, 185.

Lotz, W. J. (1967), J. Opt. Soc. Am. 57, 873.

Ca xm

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p^4$	$s^2 2p^4$ 3P		0 24 460	$2s^2 2p^3 (^2P^{\circ}) 3s$	¹ P °	1	3 544 600+x
		0	28 830	$2s^2 2p^3 (^4S^\circ) 3d$	³ D°	2 3	3 739 000 3 743 000
$2s^2 2p^4$	¹ D	2	$88\ 400+x$	$2s^2 2p^3 (^2\mathbf{D}^\circ) 3d$	3D°	1	3 828 000
$2s^2 2p^4$	¹S	0	$178\ 560+x$	25 2p (D) 50		2	3 839 000
$2s2p^5$	3 P °	2	618 260 638 260	$2s^2 2p^3 (^2\mathrm{D}^\circ) 3d$	3 b °	2	3 846 000
		0	650 160	$2s^2 2p^3 (^2\mathbf{D}^\circ) 3d$	³S°	1	3 864 000
$2s^2 2p^3 (^4S^{\circ})3s$	³ S°	1	3 374 600	$2s^2 2p^3 (^2\mathrm{P}^\circ) 3d$	3D°	1 3	3 909 000 3 917 000
$s^2 2p^3 (^2\mathrm{D}^\circ) 3s$	3D°	1 2	3 452 700 3 453 200			2	3 924 000
		3	3 458 300	Ca XIV (⁴ S _{3/2})	Limit		5 861 000
$2s^2 2p^3 (^2\mathbf{D}^\circ) 3s$	lD°	2	3474800+x				,

Ca xiv

Z = 20

N_I isoelectronic sequence

Ground state: $1s^2 2s^2 2p^3 {}^4S^{\circ}_{3/2}$

Ionization energy = $6.595000 \text{ cm}^{-1} (817.6 \text{ eV})$

The levels of the configurations $2s^22p^3$, $2s2p^4$, and $2p^5$ are from the measurements and classifications of Kononov, Koshelev, Podobedova, and Churilov (1976). The position of the doublets relative to the ground state is based on the estimated position of $2s^22p^{3/2}D^{\circ}_{5/2}$ by Eldén (1972).

The $2p^23d$ terms are from Fawcett and Hayes (1975); their percentage compositions were calculated by Bromage and Fawcett (1977).

The ionization energy is from Lotz's (1967) extrapolation.

References

Bromage, G. E., and Fawcett, B. C. (1977), Mon. Not. R. Astr. Soc. 179, 683.

Edlén, B. (1972), Solar Physics 24, 356.

Fawcett, B. C., and Hayes, R. W. (1975), Mon. Not. R. Astr. Soc. 170, 185.

Kononov, E. Y., Koshelev, K. N., Podobedova, L. I., and Churilov, S. S. (1976), Opt. Spectrosc. 40, 121.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Ca xiv

	_					
Configuration	Term	J	Level (cm ⁻¹)		Leadin	g percentages
$s_{\perp}^2 2p^3$	⁴ S°	3/2	0			
$s^2 2p^3$	² D °	3/ ₂ 5/ ₂	$105\ 120 + x$ $112\ 740 + x$			
$s^2 2p^3$	² P°	1/ ₂ 3/ ₂	$171\ 640 + x 182\ 570 + x$			
$s2p^4$	⁴ P	5/2 3/2 1/2	515 840 535 910 545 110			
$s2p^4$	2 D	3 _{/2} 5/ ₂	709970 + x $711760 + x$			
$s2p^4$	2 S	1/2	$824\ 360+x$			
$s2p^4$	² P	3/ ₂ 1/ ₂	$857\ 510+x$ $884\ 910+x$			
p^5	² P°	3/ ₂ 1/ ₂	$\begin{array}{c} 1\ 347\ 180 + x \\ 1\ 379\ 450 + x \end{array}$			
$s^2 2p^2(^3P)3d$	$^{2}\mathrm{P}$	3/2	$4\ 113\ 200+x$	57	28	(^3P) 4D
$s^2 2p^2(^3\mathrm{P})3d$	⁴ P	5/ ₂ 3/ ₂	4 143 700 4 151 800	76 91	19	(³ P) ⁴ D
$2s^2 2p^2(^3\mathrm{P})3d$	$^2\mathbf{F}$	7/2	$4\ 153\ 300+x$	57	20	(^{1}D) ^{2}F
$s^2 2p^2(^3\mathrm{P})3d$	2 D	5/2	$4\ 198\ 100 + x$	78	14	(^{1}D) ^{2}D
$ds^2 2p^2(^1D)3d$	$^2\mathbf{F}$	7/ ₂ 5/ ₂	$\begin{array}{c} 4\ 229\ 800 + x \\ 4\ 242\ 800 + x \end{array}$	60 48	32 21	(^3P) 2F

Ca xiv—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leading percentages
$2s^2 2p^2(^1\mathbf{D})3d$	$^2\mathrm{D}$	5/2	4 241 000+x	67	18 (¹ D) ² F
$2s^2 2p^2({}^1D)3d$	$^{2}\mathbf{P}$	³/ ₂	4 250 400+x	90	
Ca xv $(^3P_0)$	Limit	0000	6 595 000		

Ca xv

Z = 20

C I isoelectronic sequence

Ground state: 1s22s2p2 3P0

Ionization energy = $7215000 \text{ cm}^{-1} (894.5 \text{ eV})$

The levels of the $2s^22p^2$, $2s2p^3$, and $2p^4$ configurations were determined by Kononov, Koshelev, Podobedova, and Churilov (1976), from observations of a laser plasma between 130 and 270 Å. The fine-structure of the $2s^22p^2$ ³P term is determined from the solar coronal lines 5444 Å and 5693.6 Å as given by Edlén (1972).

The levels of the higher configurations are from the measurements of Fawcett and Hayes (1975) and Bromage and Fawcett (1977).

No intersystem combinations have been observed in the laboratory. Edlén (1972) has extrapolated the position of $2p^2$ 1D_2 to 108 561 cm $^{-1}$. Sandlin, Brueckner, and Tousey (1977) have identified the $^3P_2^{-1}D_2$ forbidden transition in $2s^22p^2$ at 1375.95 Å in the solar corona. This put 1D_2 at 108 600 cm $^{-1}$ above the ground state. We have used that value as the reference value for the singlet system.

The percentage compositions for the 2p3d configuration were calculated by Bromage and Fawcett.

The ionization energy is Lotz's (1967) extrapolation.

References

Bromage, G. E., and Fawcett, B. C. (1977), Mon. Not. R. Astr. Soc. 178, 605.

Edlén, B. (1972), Solar Physics 24, 356.

Fawcett, B. C., and Hayes, R. W. (1975), Mon. Not. R. Astr. Soc. 170, 185.

Kononov, E. Y., Koshelev, K. N., Podobedova, L. I., and Churilov, S. S. (1976), Opt. Spectrosc. 40, 121.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Sandlin, G. D., Brueckner, G. E., and Tousey, R. (1977), Astrophys. J. 241, 898.

Ca xv

			Ca xv	
Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$2s^2 2p^2$	3 P	0 1 2	0 17 559 35 923	
$2s^2 2p^2$	1 D	2	108 600	
$2s^2 2p^2$	¹ S	0	197 620	
$2s2p^3$	3D°	2 1 3	496 680 497 590 500 240	
$2s2p^3$	3 P .	0 1 2	.581 730 582 840 585 660	
$2s2p^3$	³S°	1	728 910	
$2s2p^3$	$^{1}\mathbf{D}^{\circ}$	2	729 720	
$2s2p^3$	¹ P°	1	814 370	
$2p^4$	³ P	2 1 0	1 107 570 1 133 870 1 140 140	
$2p^4$	¹D	2	1 195 200	
$2p^4$	1 S	0	1 354 120	

Ca xv—Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$2s^2 2p3d$	³F°	2 3	4 363 000 4 379 000	74 25 ¹ D° 88
$2s^2 2p3d$	3D°	1 2 3	4 399 000 4 412 000 4 426 000	78 15 ³ P ° 45 24 ¹ D ° 88 10 ³ F °
$2s^2 2p3d$	³ P° ·	1 2	4 435 000 4 435 000	82 17 ³ D° 61 36
$2s^2 2p3d$	lP°	1	4 473 000	92
$2s^2 2p3d$	¹ F°	3	4 475 000	95
$2s2p^2(^4\mathrm{P})3d$	³ F	4	4 727 000	
Ca xvi (² P _{1/2})	Limit		7 215 000	

Ca xvi

Z=20

B 1 isoelectronic sequence

Ground state: $1s^22s^22p$ $^2P^{\circ}_{1/2}$

Ionization energy = $7.860\ 000\ \text{cm}^{-1}\ (974\ \text{eV})$

The low lying configurations $2s^22p$, $2s2p^2$, and $2p^3$ are from the observations of Kononov, Koshelev, Podobedova and Churilov (1975). We have assigned the lowest quartet level the value calculated by them, since there are no observed connections of the quartet terms with the doublet terms.

The high levels are from Fawcett and Hayes (1975) and the ionization energy is from the extrapolation of Lotz (1967).

References

Kononov, E. Y., Koshelev, K. N., Podobedova, L. I., and Churilov, S. S. (1975), Opt. Spectrosc. 39, 458.

Fawcett, B. C., and Hayes, R. W. (1975), Mon. Not. R. Astr. Soc. 170, 185.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Ca xvi

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$2s^2 2p$	² P°	1/ ₂ 3/ ₂	0 36 600	$2s^2 3d$	² D	3/ ₂ 5/ ₂	4 662 000 4 664 000
$2s2p^2$	⁴ P	1/2 3/2 5/2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 2s2p(³ P°)3p	² P	1/2 3/2	4 773 000 4 794 000
$2s2p^2$	² D	3/ ₂ 5/ ₂	479 460 481 960	2s2p(³ P°)3d	⁴ D°	3/ ₂ 5/ ₂ 7/ ₂	4 931 000+x 4 935 000+x 4 953 000+x
$2s2p^2$	2 S	1/2	592 240	2s2p(³ P°)3d	⁴ P°	5/2	4 964 000+x
$2s2p^2$	² P	1/2 3/2	633 890 645 770	$2s2p(^3\mathrm{P}^\circ)3d$	² F°	5/ ₂ 7/ ₂	5 000 000 5 022 000
$2p^3$	⁴ S°	3/2	835 920+x	$2s2p(^{1}\mathrm{P}^{\circ})3d$	² F °	7/2	5 170 000
$2p^3$	$^2\mathrm{D}^\circ$	³ / ₂ ⁵ / ₂	940 060 944 830	$2s2p(^{1}P^{\circ})3d$	$^2\mathrm{D}^\circ$	5/2	5 198 000
$2p^3$	² P°	1/2 3/2	1 053 000 1 062 090	Ca xvii (¹ S ₀)	Limit		7 860 000

Ca xvii

Z = 20

Be I isoelectronic sequence

Ground state: $1s^22s^2$ 1S_0

Ionization energy = $8770000 \text{ cm}^{-1} (1087 \text{ eV})$

The strong singlet resonance line $2s^2$ 1S_0 –2s2p $^1P^{\circ}_1$ at 192.8 Å has been observed in the laboratory by Kononov, Koshelev, Podobedova, and Churilov (1975), by Fawcett and Hayes (1975) and in solar flares. We used the wavelength of Kononov et al. to establish the value of the $^1P^{\circ}$ term.

The intersystem transition $2s^2 \, ^1\mathrm{S}_o - 2s2p \, ^3\mathrm{P}^\circ$, has not been observed in the laboratory but has been identified in a solar flare spectrum by Sandlin, Brueckner, Scherrer, and Tousey (1976). We have adopted their value to locate the triplet system relative to the singlets. The $^3\mathrm{P}$ terms of 2s2p and $2p^2$ and the $^1\mathrm{S}$ term of $2p^2$ are from Kononov et al. The $2p^2$ $^3\mathrm{D}$ is from Goldsmith, Oren, Crooker, and Cohen (1973).

The higher configurations are from Fawcett and Hayes. The ionization energy is from Lotz's (1967) extrapolation.

References

Fawcett, B. C., and Hayes, R. W. (1975), Mon. Not. R. Astr. Soc. 170, 185.

Goldsmith, S., Oren, L., Crooker, A. M., and Cohen, L. (1973), Astrophys. J. 184, 1021.

Kononov, E. Y., Koshelev, K. N., Podobedova, L. I., and Churilov, S. S. (1975), Opt. Spectrosc. 39, 458.

Lotz, W. (1967), J. Opt. Soc. Am. 57, 873.

Sandlin, G. D., Brueckner, G. E., Scherrer, V. E., and Tousey, R. (1976), Astrophys. J. 205, L47.

Ca xvii

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$2s^2$	¹ S	0	0	2s3p	l P °	1	5 113 000
2s2p	³ p ∘	0	258 290	2s3d	^{3}D	2	5 186 000
4		1	269 460			3	5 190 000
		2	296 950				
				2s3d	^{1}D	2	5 236 000
2s2p	lP°	1	518 620		9		
D.	2_			2p3p	^{3}D	3	5 448 000
$2p^2$	^{3}P	1	706 680		9		
		2	726 450	2p3d	3D°	2	5 533 000
						3	5 546 000
$2p^2$	\mathbf{Q}_{I}	2	801 710				
•				2p3d	¹ F°	3	5 602 000
$2p^2$	¹S	0	967 330				
				Ca xviii (${}^2S_{1/2}$)	Limit		8 770 000

Ca xvIII

Z = 20

Li i isoelectronic sequence

Ground state: 1s22s 2S1/2

Ionization energy = $9.332\ 000\ cm^{-1}\ (1157.0\ eV)$

The 2s-3p, 2s-4p, 2s-5p, 2p-3s, 2p-3d, 2p-4d, 2p_5d, and 2p-6d transitions were reported by Goldsmith, Feldman, Oren, and Cohen (1972). The value of the $2p^2P^\circ$ term is from the 2s-2p transition observed at 300 Å in a solar flare by Widing and Purcell (1976).

Boiko, Faenov, and Pikuz (1978) confirmed the lines identified by Goldsmith et al. and added the 6p, 7p, 6d, and 7d terms. The doubly excited levels were obtained from lines observed by Aglitskii, Boiko, Zakharov, Pikuz, and Faenov (1974) at 3.2 Å in a laser-produced plasma.

We derived the ionization energy from the nd Rydberg series (n=4 to 6).

References

Aglitskii, E. V., Boiko, V. A., Zakharov, S. M., Pikuz, S. A., and Faenov, A. Y. (1974), Kvantovaya Elektron. (Moscow) 1, 908. Boiko, V. A., Faenov, A. Y., and Pikuz, S. A. (1978), J. Quant. Spectrosc. Radiat. Transfer 19, 11.

Goldsmith, S., Feldman, U., Oren, L., and Cohen, L. (1972), Astrophys. J. 174, 209.

Widing, K. G. and Purcell, J. D. (1976), Astrophys. J. 204, L151.

Ca xviii

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$1s^2 2s$	2S	1/2	0	$1s^2 5p$	² P °	1/2,3/2	7 914 000
$1s^2 2p$	² P °	1/ ₂ 3/ ₂	290 060 330 920	$1s^2 6p$	$^2\mathbf{P}^{\circ}$	1,3,	8 341 000
$4s^2 3s$	^{2}S	1/2	5 277 000	$1s^2 6d$	² D	5/2	8 345 000
$s^2 3p$	2 p °		5 338 000	$1s^27p$	² p ∘	1/2,3/2	8 605 000
. ор	1	1/ ₂ 3/ ₂	5 350 000	$1s^2 7d$	2 D	8/2,5/2	8 610 000
$4s^2 3d$	² D	3/ ₂ 5/ ₂	5 381 000 5 384 000	Ca xix (¹ S ₀)	Limit		9 332 000
$s^2 4p$	2 p •	1/2,3/2	7 101 000	$1s(^2S)2s2p(^1P^\circ)$	² P °	3/2	31 352 000
$s^2 4d$	2 D	3/ ₂ , /2	7 112 000 7 116 000	$1s2p^2$	² D	3/ ₂ 5/ ₂	31 484 000 31 486 000
$s^2 5d$	$^{2}\mathrm{D}$		7 912 000	$1s2p^2$	$^{2}\mathrm{P}$	3/2	31 551 000
		5/ ₂ 3/ ₂	7 913 000	1s2p3p			36 784 000

Ca xix

Z = 20

He i isoelectronic sequence

Ground state: 1s2 1S0

Ionization energy = $41\ 369\ 120\ \pm\ 40\ {\rm cm^{-1}}\ (5129.16\ \pm\ 0.01\ {\rm eV})$

The theoretical values calculated by Ermolaev and Jones (1974) for the singlet and triplet S and P terms of this two-electron ion are more accurate than the observed values, and we have quoted them up to n=4. The uncertainty in the calculation is estimated by the authors to be one part in 10^{-6} or 10^{-7} . For comparison, the $1s^2-1s2p$ transition of this ion has been observed by Aglitskii et al.

(1974) in a laser-produced plasma. They place 1s2p $^3P^{\circ}_{1}$ at $31\,322\,000$ cm $^{-1}$ and 1s2p $^1P^{\circ}_{1}$ at $31\,480\,000$ cm $^{-1}$.

References

Ermolaev, A. M. and Jones, M. (1974), J. Phys. B 7, 199. Aglitskii, E. V., Boiko, V. A., Zakharov, S. M., Pikuz, S. A., and Faenov, A. Y. (1974), Kvantovaya Elektron. (Moscow) 1, 908.

Ca xix

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
$1s^2$	¹S	0	0	1s3s	¹S	0	36 922 600
1s2s	3 S	1	31 145 160	1s3p	$^{1}\mathbf{P}^{\circ}$	1	36 965 520
1s2p	$^3\mathbf{P}^\circ$	0	31 316 020 31 323 660	1s4s	³ S	1	38 853 340
		$\frac{1}{2}$	31 358 980	1s4p	3 b .	0	38 872 900 38 873 820
1s2s	¹S	0	31 330 780			2	38 878 300
1s2p	¹ P°	1	31 477 040	1s4s	¹S	0	38 873 200
1s3s	3 S	1	36 873 600	1s4p	¹ P°	1	38 891 350
1s3p	³ P°	$\begin{bmatrix} 0\\1\\2 \end{bmatrix}$	36 920 730 36 922 920 36 933 520	Ca xx (² S _{1/2})	Limit		41 369 120

Ca xx

Z = 20

H I isoelectronic sequence

Ground state: 1s 2S1/2

Ionization energy = $44\ 117\ 200\ \pm\ 200\ cm^{-1}\ (5469.88\ \pm\ 0.02\ eV)$

The theoretical values calculated by Erikson (1977) for terms of this hydrogen-like ion are given below. No laboratory data were found. The binding energy of the 1s electron is given with an uncertainty of \pm 200 cm $^{-1}$; the levels measured from the ground state taken as zero will also have this uncertainty.

Doschek (1972) reports wavelengths of several lines of this spectrum identified in solar flares.

References

Doschek, G. A. (1972), Space Sci. Rev. 13, 765. Erikson, G. W. (1977), J. Phys. Chem. Ref. Data 6, 831.

Ca xx

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
1s	2 S	1/2	0	4 <i>p</i>	² P°	1/ ₂ 3/ ₂	41 361 800 41 369 200
2p	² P°	1/ ₂ 3/ ₂	33 069 700 33 129 100	4s	2 S	1/2	41 362 100
2s	2 S	1/2	33 071 600	4d	2 D	3/ ₂ 5/ ₂	41 369 200 41 371 700
3p	² P°	1/2 3/2	39 213 800 39 231 400	4f	² F°	5, 5, 7, 7,	41 371 700 41 372 900
3s	² S	¹ / ₂	39 214 400		T	/2	
3d	² D	3/ ₂ 5/ ₂	39 231 400 39 237 200		Limit		44 117 200