### Untitled1

### April 4, 2023

```
[1]: !pip install pandas
    Requirement already satisfied: pandas in /Users/h4/anaconda3/lib/python3.9/site-
    packages (1.4.2)
    Requirement already satisfied: python-dateutil>=2.8.1 in
    /Users/h4/anaconda3/lib/python3.9/site-packages (from pandas) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in
    /Users/h4/anaconda3/lib/python3.9/site-packages (from pandas) (2021.3)
    Requirement already satisfied: numpy>=1.20.0 in
    /Users/h4/anaconda3/lib/python3.9/site-packages (from pandas) (1.23.2)
    Requirement already satisfied: six>=1.5 in
    /Users/h4/anaconda3/lib/python3.9/site-packages (from python-
    dateutil>=2.8.1->pandas) (1.16.0)
[2]: import pandas as pd
[3]: # wie definieren eine Variable, welche die Daten enthält in Form eines
      \hookrightarrow Dataframes
     df = pd.read_csv('/Users/h4/desktop/test.csv')
[4]: df.head()
[4]:
       Spalte Kategorische; Spalte Numerisch; Spalte Numerisch 2;;;
     0
                                        Klasse A;12;120;;;
     1
                                        Klasse A;23;130;;;
     2
                                         Klasse B;31;89;;;
     3
                                         Klasse B;34;90;;;
     4
                                           Klasse C;1;7;;;
[5]: df = pd.read_csv('/Users/h4/desktop/test.csv', sep=';')
[6]: df.head()
       Spalte Kategorische
[6]:
                            Spalte Numerisch
                                               Spalte Numerisch 2 Unnamed: 3
     0
                  Klasse A
                                                               120
                                                                           NaN
                                           12
                  Klasse A
                                           23
     1
                                                               130
                                                                           NaN
     2
                  Klasse B
                                           31
                                                                89
                                                                           NaN
```

```
Klasse B
                                                                           90
     3
                                                   34
                                                                                         {\tt NaN}
      4
                     Klasse C
                                                    1
                                                                            7
                                                                                         NaN
         Unnamed: 4
                        Unnamed: 5
      0
                  NaN
                                NaN
      1
                  NaN
                                NaN
      2
                  NaN
                                {\tt NaN}
      3
                  NaN
                                NaN
      4
                  NaN
                                {\tt NaN}
[8]: import seaborn as sns
```

[8]: <seaborn.axisgrid.FacetGrid at 0x2953a6070>



```
[9]: # Dateien JSON = Wörterbuch
import pandas as pd

df = pd.read_json('/Users/h4/desktop/20230404_data.json')
print(df.to_string())
```

|    | Duration | Pulse | Maxpulse | Calories |
|----|----------|-------|----------|----------|
| 0  | 60       | 110   | 130      | 409.1    |
| 1  | 60       | 117   | 145      | 479.0    |
| 2  | 60       | 103   | 135      | 340.0    |
| 3  | 45       | 109   | 175      | 282.4    |
| 4  | 45       | 117   | 148      | 406.0    |
| 5  | 60       | 102   | 127      | 300.5    |
| 6  | 60       | 110   | 136      | 374.0    |
| 7  | 45       | 104   | 134      | 253.3    |
| 8  | 30       | 109   | 133      | 195.1    |
| 9  | 60       | 98    | 124      | 269.0    |
| 10 | 60       | 103   | 147      | 329.3    |
| 11 | 60       | 100   | 120      | 250.7    |
| 12 | 60       | 106   | 128      | 345.3    |
| 13 | 60       | 104   | 132      | 379.3    |
| 14 | 60       | 98    | 123      | 275.0    |
| 15 | 60       | 98    | 120      | 215.2    |
| 16 | 60       | 100   | 120      | 300.0    |
| 17 | 45       | 90    | 112      | NaN      |
| 18 | 60       | 103   | 123      | 323.0    |
| 19 | 45       | 97    | 125      | 243.0    |
| 20 | 60       | 108   | 131      | 364.2    |
| 21 | 45       | 100   | 119      | 282.0    |
| 22 | 60       | 130   | 101      | 300.0    |
| 23 | 45       | 105   | 132      | 246.0    |
| 24 | 60       | 102   | 126      | 334.5    |
| 25 | 60       | 100   | 120      | 250.0    |
| 26 | 60       | 92    | 118      | 241.0    |
| 27 | 60       | 103   | 132      | NaN      |
| 28 | 60       | 100   | 132      | 280.0    |
| 29 | 60       | 102   | 129      | 380.3    |
| 30 | 60       | 92    | 115      | 243.0    |
| 31 | 45       | 90    | 112      | 180.1    |
| 32 | 60       | 101   | 124      | 299.0    |
| 33 | 60       | 93    | 113      | 223.0    |
| 34 | 60       | 107   | 136      | 361.0    |
| 35 | 60       | 114   | 140      | 415.0    |
| 36 | 60       | 102   | 127      | 300.5    |
| 37 | 60       | 100   | 120      | 300.1    |

| 20       | 60       | 100 | 100        | 200 0          |
|----------|----------|-----|------------|----------------|
| 38<br>39 | 60<br>45 | 100 | 120<br>129 | 300.0<br>266.0 |
| 40       | 45       | 90  | 112        | 180.1          |
|          |          |     |            |                |
| 41       | 60<br>60 | 98  | 126        | 286.0          |
| 42       |          | 100 | 122        | 329.4          |
| 43       | 60       | 111 | 138        | 400.0          |
| 44       | 60       | 111 | 131        | 397.0          |
| 45       | 60       | 99  | 119        | 273.0          |
| 46       | 60       | 109 | 153        | 387.6          |
| 47       | 45       | 111 | 136        | 300.0          |
| 48       | 45       | 108 | 129        | 298.0          |
| 49       | 60       | 111 | 139        | 397.6          |
| 50       | 60       | 107 | 136        | 380.2          |
| 51       | 80       | 123 | 146        | 643.1          |
| 52       | 60       | 106 | 130        | 263.0          |
| 53       | 60       | 118 | 151        | 486.0          |
| 54       | 30       | 136 | 175        | 238.0          |
| 55       | 60       | 121 | 146        | 450.7          |
| 56       | 60       | 118 | 121        | 413.0          |
| 57       | 45       | 115 | 144        | 305.0          |
| 58       | 20       | 153 | 172        | 226.4          |
| 59       | 45       | 123 | 152        | 321.0          |
| 60       | 210      | 108 | 160        | 1376.0         |
| 61       | 160      | 110 | 137        | 1034.4         |
| 62       | 160      | 109 | 135        | 853.0          |
| 63       | 45       | 118 | 141        | 341.0          |
| 64       | 20       | 110 | 130        | 131.4          |
| 65       | 180      | 90  | 130        | 800.4          |
| 66       | 150      | 105 | 135        | 873.4          |
| 67       | 150      | 107 | 130        | 816.0          |
| 68       | 20       | 106 | 136        | 110.4          |
| 69       | 300      | 108 | 143        | 1500.2         |
| 70       | 150      | 97  | 129        | 1115.0         |
| 71       | 60       | 109 | 153        | 387.6          |
| 72       | 90       | 100 | 127        | 700.0          |
| 73       | 150      | 97  | 127        | 953.2          |
| 74       | 45       | 114 | 146        | 304.0          |
| 75       | 90       | 98  | 125        | 563.2          |
| 76       | 45       | 105 | 134        | 251.0          |
| 77       | 45       | 110 | 141        | 300.0          |
| 78       | 120      | 100 | 130        | 500.4          |
| 79       | 270      | 100 | 131        | 1729.0         |
| 80       | 30       | 159 | 182        | 319.2          |
| 81       | 45       | 149 | 169        | 344.0          |
| 82       | 30       | 103 | 139        | 151.1          |
| 83       | 120      | 100 | 130        | 500.0          |
| 84       | 45       | 100 | 120        | 225.3          |
| 85       | 30       | 151 | 170        | 300.1          |
|          |          |     |            |                |

| 86         | 45  | 102 | 136        | 234.0          |
|------------|-----|-----|------------|----------------|
| 87         | 120 | 100 | 157        | 1000.1         |
| 88         | 45  | 129 | 103        | 242.0          |
| 89         | 20  | 83  | 107        | 50.3           |
| 90         | 180 | 101 | 127        | 600.1          |
| 91         | 45  | 107 | 137        | NaN            |
| 92         | 30  | 90  | 107        | 105.3          |
| 93         | 15  | 80  | 100        | 50.5           |
| 94         | 20  | 150 | 171        | 127.4          |
| 95         | 20  | 151 | 168        | 229.4          |
| 96         | 30  | 95  | 128        | 128.2          |
| 97         | 25  | 152 | 168        | 244.2          |
| 98         | 30  | 109 | 131        | 188.2          |
| 99         | 90  | 93  | 124        | 604.1          |
| 100        | 20  | 95  | 112        | 77.7           |
| 101        | 90  | 90  | 110        | 500.0          |
| 102        | 90  | 90  | 100        | 500.0          |
| 103        | 90  | 90  | 100        | 500.4          |
| 103        | 30  | 92  | 108        | 92.7           |
| 105        | 30  | 93  | 128        | 124.0          |
| 106        | 180 | 90  | 120        | 800.3          |
| 107        | 30  | 90  | 120        | 86.2           |
| 108        | 90  | 90  | 120        | 500.3          |
| 100        | 210 | 137 | 184        | 1860.4         |
| 110        | 60  | 102 | 124        | 325.2          |
| 111        | 45  | 107 | 124        | 275.0          |
| 112        | 15  | 124 | 139        | 124.2          |
| 113        | 45  | 100 | 120        | 225.3          |
| 114        | 60  | 100 | 131        | 367.6          |
| 115        | 60  | 108 | 151        | 351.7          |
| 116        | 60  | 116 | 141        | 443.0          |
| 117        | 60  | 97  | 122        | 277.4          |
| 118        | 60  | 105 | 125        | NaN            |
| 119        | 60  | 103 | 124        | 332.7          |
| 120        | 30  | 112 | 137        | 193.9          |
| 121        | 45  | 100 | 120        | 193.9          |
| 122        | 60  | 119 | 169        | 336.7          |
| 123        | 60  | 107 | 103        | 344.9          |
| 124        | 60  | 111 | 151        | 368.5          |
| 125        | 60  | 98  | 122        | 271.0          |
| 126        | 60  | 97  | 124        | 271.0          |
| 127        | 60  | 109 | 124        | 382.0          |
| 128        | 90  | 99  | 127        | 466.4          |
| 129        | 60  | 114 | 151        | 384.0          |
| 130        | 60  | 104 | 134        | 342.5          |
| 131        | 60  | 104 | 134        | 342.5          |
|            | 60  | 107 |            |                |
| 132<br>133 | 60  | 103 | 133<br>132 | 335.0<br>327.5 |
| 199        | 00  | 100 | 132        | 321.5          |

| 404 | 60 | 400 | 400 | 222   |
|-----|----|-----|-----|-------|
| 134 | 60 | 103 | 136 | 339.0 |
| 135 | 20 | 136 | 156 | 189.0 |
| 136 | 45 | 117 | 143 | 317.7 |
| 137 | 45 | 115 | 137 | 318.0 |
| 138 | 45 | 113 | 138 | 308.0 |
| 139 | 20 | 141 | 162 | 222.4 |
| 140 | 60 | 108 | 135 | 390.0 |
| 141 | 60 | 97  | 127 | NaN   |
| 142 | 45 | 100 | 120 | 250.4 |
| 143 | 45 | 122 | 149 | 335.4 |
| 144 | 60 | 136 | 170 | 470.2 |
| 145 | 45 | 106 | 126 | 270.8 |
| 146 | 60 | 107 | 136 | 400.0 |
| 147 | 60 | 112 | 146 | 361.9 |
| 148 | 30 | 103 | 127 | 185.0 |
| 149 | 60 | 110 | 150 | 409.4 |
| 150 | 60 | 106 | 134 | 343.0 |
| 151 | 60 | 109 | 129 | 353.2 |
| 152 | 60 | 109 | 138 | 374.0 |
| 153 | 30 | 150 | 167 | 275.8 |
| 154 | 60 | 105 | 128 | 328.0 |
| 155 | 60 | 111 | 151 | 368.5 |
| 156 | 60 | 97  | 131 | 270.4 |
| 157 | 60 | 100 | 120 | 270.4 |
| 158 | 60 | 114 | 150 | 382.8 |
| 159 | 30 | 80  | 120 | 240.9 |
| 160 | 30 | 85  | 120 | 250.4 |
| 161 | 45 | 90  | 130 | 260.4 |
| 162 | 45 | 95  | 130 | 270.0 |
| 163 | 45 | 100 | 140 | 280.9 |
| 164 | 60 | 105 | 140 | 290.8 |
| 165 | 60 | 110 | 145 | 300.4 |
| 166 | 60 | 115 | 145 | 310.2 |
| 167 | 75 | 120 | 150 | 320.4 |
| 168 | 75 | 125 | 150 | 330.4 |
|     |    |     | =   |       |

[10]: sns.boxplot(data=df)
plt.show()







# [13]: df

| [13]: |     | Duration | Pulse | Maxpulse | Calories |
|-------|-----|----------|-------|----------|----------|
|       | 0   | 60       | 110   | 130      | 409.1    |
|       | 1   | 60       | 117   | 145      | 479.0    |
|       | 2   | 60       | 103   | 135      | 340.0    |
|       | 3   | 45       | 109   | 175      | 282.4    |
|       | 4   | 45       | 117   | 148      | 406.0    |
|       |     | •••      | •••   | •••      |          |
|       | 164 | 60       | 105   | 140      | 290.8    |
|       | 165 | 60       | 110   | 145      | 300.4    |
|       | 166 | 60       | 115   | 145      | 310.2    |
|       | 167 | 75       | 120   | 150      | 320.4    |
|       | 168 | 75       | 125   | 150      | 330.4    |

[169 rows x 4 columns]

# [14]: print(df.head(10)) # es werden die ersten 10 Zeilen dargestellt

|   | Duration | Pulse | Maxpulse | Calories |
|---|----------|-------|----------|----------|
| 0 | 60       | 110   | 130      | 409.1    |
| 1 | 60       | 117   | 145      | 479.0    |
| 2 | 60       | 103   | 135      | 340.0    |
| 3 | 45       | 109   | 175      | 282.4    |
| 4 | 45       | 117   | 148      | 406.0    |
| 5 | 60       | 102   | 127      | 300.5    |
| 6 | 60       | 110   | 136      | 374.0    |
| 7 | 45       | 104   | 134      | 253.3    |
| 8 | 30       | 109   | 133      | 195.1    |
| 9 | 60       | 98    | 124      | 269.0    |

# [15]: print(df.tail(10)) # es werden die letzten 10 Zeilen dargestellt

|     | Duration | Pulse | Maxpulse | Calories |
|-----|----------|-------|----------|----------|
| 159 | 30       | 80    | 120      | 240.9    |
| 160 | 30       | 85    | 120      | 250.4    |
| 161 | 45       | 90    | 130      | 260.4    |
| 162 | 45       | 95    | 130      | 270.0    |
| 163 | 45       | 100   | 140      | 280.9    |
| 164 | 60       | 105   | 140      | 290.8    |
| 165 | 60       | 110   | 145      | 300.4    |
| 166 | 60       | 115   | 145      | 310.2    |
| 167 | 75       | 120   | 150      | 320.4    |
| 168 | 75       | 125   | 150      | 330.4    |

[17]: # um bestimmte Zeilen oder Spalten Positionen zu zeigen, nutzen die Funktion $_{\sqcup}$   $_{\hookrightarrow}von$  Pandas "iloc"

```
# df.iloc[row, column]
      df.iloc[8:14, :] # zeigt Zeile 9 bis 15 und Alle Spalten
[17]:
         Duration Pulse Maxpulse Calories
                      109
               30
                               133
                                       195.1
     9
               60
                      98
                               124
                                       269.0
      10
               60
                      103
                               147
                                       329.3
      11
               60
                      100
                               120
                                       250.7
      12
               60
                      106
                               128
                                       345.3
      13
               60
                     104
                               132
                                       379.3
[19]: # Zeile 12 bis 23 und Spalte 2 bis 3
      df.iloc[11:22, 1:3]
[19]:
         Pulse Maxpulse
            100
                      120
      11
      12
           106
                      128
      13
           104
                      132
      14
           98
                      123
      15
           98
                      120
          100
                     120
      16
      17
           90
                     112
      18
          103
                      123
           97
      19
                      125
      20
           108
                      131
      21
           100
                      119
[21]: # ein Element vom Dataframe
      df.iloc[12, 2]
[21]: 128
[22]: # Informationen vom Dataframe darstellen lassen
      print(df.info())
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 169 entries, 0 to 168
     Data columns (total 4 columns):
                   Non-Null Count Dtype
         Column
                    _____
          Duration 169 non-null
      0
                                    int64
                  169 non-null
                                    int64
          Pulse
```

2 Maxpulse 169 non-null int64 3 Calories 164 non-null float64

dtypes: float64(1), int64(3)

memory usage: 6.6 KB

None

[23]: df.corr() # Korrelationsmatrix

[23]: Duration Pulse Maxpulse Calories
Duration 1.000000 -0.155408 0.009403 0.922721
Pulse -0.155408 1.000000 0.786535 0.025120
Maxpulse 0.009403 0.786535 1.000000 0.203814
Calories 0.922721 0.025120 0.203814 1.000000

[26]: sns.heatmap(df.corr(), annot=True) # korrelationsmatrix graphisch als "heatmap" plt.show()



[27]: df.plot() #dataframe plot in Linien plt.show()



```
[]:
      # netwerken
[28]:
[30]:
      !pip install networkx
     Requirement already satisfied: networkx in
     /Users/h4/anaconda3/lib/python3.9/site-packages (2.7.1)
[31]:
     import networkx
[32]: import networkx as nx
      import matplotlib.pyplot as plt
      G = nx.Graph()
      G.add_edge(1,2)
      G.add_edge(1,3)
      G.add_edge(1,5)
      G.add_edge(2,3)
      G.add_edge(3,4)
      G.add_edge(4,5)
      nx.draw_networkx(G)
      plt.show()
```





[]: