Práctica 2

ESTUDIO DE EFICIENCIA: DIVIDE Y VENCERÁS

CONTENIDO

- >TRANSPONER MATRIZ
 - > EFICIENCIA TEÓRICA
 - > SIN DIVIDE Y VENCERÁS
 - DIVIDE Y VENCERÁS
 - > EFICIENCIA EMPÍRICA
 - > EFICIENCIA HÍBRIDA
- ELIMINAR REPETIDOS DE UN VECTOR
 - > EFICIENCIA TEÓRICA
 - > SIN DIVIDE Y VENCERÁS
 - DIVIDE Y VENCERÁS
 - > EFICIENCIA EMPÍRICA
 - > EFICIENCIA HÍBRIDA

≻CONCLUSIÓN

TRASPUESTA DE UNA MATRIZ

Explicación

- Algoritmos
- Datos
- Eficiencias

Α

1 2

3 4

5 6

Sin usar divide y vencerás

Eficiencia teórica:

 $O(n^2)$

Usando divide y vencerás

Eficiencia teórica:

O(n²)


```
void intercambiar(int **m, int iniciofa, int inicioca, int iniciofb, int iniciocb, int dimension){
    for(int i = 0; i < dimension - 1; i++){
        for(int j = 0; j ≤ dimension-1; j++){
            int aux = m[iniciofa+i][inicioca+j];
            m[iniciofa+i][inicioca+j] = m[iniciofb+i][iniciocb+j];
            m[iniciofb+i][iniciocb+j] = aux;
        }
    }
}</pre>
```

TRASPUESTA DE UNA MATRIZ

¿MEJORA LA EFICIENCIA CON "DIVIDE Y VENCERÁS"?

TRASPUESTA DE UNA MATRIZ

¿MEJORA LA EFICIENCIA CON "DIVIDE Y VENCERÁS" USANDO ÚNICAMENTE POTENCIAS DE 2?

SIN DIVIDE Y VENCERÁS

Parámetros		Error estándar	
a1	= 0.0158198	+/- 0.0005024 (3.176%)	
a2	= -22.8006	+/- 7.198 (31.57%)	
a3	= 5067.03	+/- 1.246e+04 (245.9%)	

CON DIVIDE Y VENCERÁS

Parámetros		Error estándar	
a1	= 0.0207494	+/- 0.000165	59 (0.799%)
a2	= -20.8997	+/- 2.376	(11.37%)
a3	= 7037.15	+/- 4114	(58.46%)

ELIMINAR REPETIDOS DE UN VECTOR

Explicación

- Algoritmos
- Eficiencias

EFICIENCIA TEÓRICA

ELIMINAR REPETIDOS DE UN VECTOR

EFICIENCIA TEÓRICA

ELIMINAR REPETIDOS DE UN VECTOR → DIVIDE Y VENCERÁS

$$T(^{n}/_{2}) + T(^{n}/_{2}) = 2 T(^{n}/_{2})$$

Como luego se tiene que fusionar es O(n).

$$2T\binom{n}{2} + n \rightarrow 2T\binom{n}{2} + n \text{ si } n \ge umbral$$
$$umbral = 2$$

Realizamos cambio de variable

Renombramos $T(2^m)$ y Ec. Característica Deshago el cambio

$$n=2^m$$
 $T(2^n)=2T(2^n/2)\cdot 2^m$

$$t_m - 2t_{m-1} = 2^m \rightarrow t_m = C_1 2^m + C_2 m 2^m$$

ELIMINAR REPETIDOS DE UN VECTOR

¿MEJORA LA EFICIENCIA CON "DIVIDE Y VENCERÁS"?

Tiempo en microsegundos

Componentes del vector

SIN DIVIDE Y VENCERÁS

Parámetros		Error estándar	
a1	= 0.0207494	+/- 0.0001659 (0.7994%)	
a2	= -20.8997	+/- 2.376	(11.37%)
a3	= 7037.15	+/- 4114	(58.46%)

CON DIVIDE Y VENCERÁS

Parámetros		Error estándar	
a0	= 0.789599	+/- 0.01275	(1.615%)

CONCLUSIÓN

- Utilidad del algoritmo divide y vencerás

- Casos en los que mejora la eficiencia

Gracias