Probability Final

You may use your sheet from the midterm and a new sheet of notes. No calculators, cell phones, PDA's, laptops, or HAL 9000's. Show your reasoning. Don't just give the answer.

- 1. A box contains two gold balls and two clay balls. You are allowed to choose successively balls from the box at random. You win 1 dollar each time you draw a gold ball and lose 1 dollar each time you draw a clay ball. After a draw, the ball is not replaced.
 - (a) If you draw exactly one ball, what is your expected earnings? {answer: 2/4 2/4 = 0.}
 - (b) What is the moment generating function for the value of the first draw? {answer: $(1/2)e^t + (1/2)e^{-t}$ }
 - (c) If you draw exactly k balls (for k = 1, 2, 3, 4) what is your expected earnings? {answer: 0}
 - (d) If you draw until you are ahead by 1 dollar or until there are no more gold balls, what is your expected earnings? {answer: GGcc = 1, GccG = 1, GccG = 1, cGcG = 1, cGcG = 0, ccGG = 0. Grand total is 4, each equally likely, so 4/6, or 2/3.}
- 2. Suppose you win 1 dollars when an black card is drawn from a deck of cards but you lose 1 dollar when a red card is drawn. (So out of the 52 cars, you win with 26 of them and lose with 26 of them.)
 - (a) Let X_1 be the amount you win on the first draw, and X_2 be the amount you win on the second draw. (Assume you don't put the card back.) What is $Cov(X_1, X_2)$?

```
{answer: (26/52)(25/51) - (26/52)(26/51) - (26/52)(26/51) + (26/52)(25/51) = (1/2)(1/52)(25 - 26 - 26 + 25) = (1/2)(1/51)(-2) = 1/51}
```

- (b) What is the mean and variance of $X_1 + X_2$?{answer: .25 2/51}
- (c) What is the mean and variance of $\sum_{i=1}^{52} X_i$? (Hint: think before you compute.){answer: 0}
- 3. Consider a non-negative random varible: $X \geq 0$.
 - (a) If E(X) = 1, what is a good bound on $P(X \ge 100)$?
 - (b) If E(X) = 1, and V(X) = 1 what is a good bound for $P(X \ge 100)$?
 - (c) If the generating function $h_X(2) = 4$, (I.e. $E(2^X) = 4$ then what is a good bound for $P(X \ge 100)$?
- 4. Suppose the moment generating function for X is g(t) = 1 + t. In other words, $E(e^{tX}) = e^t$. What can you tell me about X? {answer: E(X) = 1, $E(X^2) = 1$, so var(X) = 0 so P(X = 1) = 1.}
- 5. The law of large numbers tells us alot about a sum of random variables. The CLT tells us even more about sums. But what about products? Let X_i be a random variable that takes on either +1 or -1 with equal probability. Let $P_n = \prod_{i=1}^n X_i$. Will P_n converge to some fixed value? (I.e. law of large numbers?) If it converges, what is this value, if it doesn't converge, what does P_n look like?{answer: Does not converge. $P(P_n = 1) = P(P_n = -1) = .5.$ }

- 6. Statistics is often driven by two things, a prediction and a residual. Define the random variable Z = E(Y|X) and the random variable W = Y Z. Then Z is the prediction and W is the residual of the "regression" of Y on X.
 - (a) What is E(Z)?{answer: E(Z) = E(E(Y|X)) = E(Y)}
 - (b) What is E(XZ){answer: E(XZ) = E(XE(Y|X)) = E(E(XY|X)) = E(XY)}
 - (c) Let h() be an arbitary function, show E(h(X)Z) = E(h(X)Y). {answer: E(g(X)Z) = E(g(X)E(Y|X)) = E(E(g(X)Y|X)) = E(g(X)Y)}
 - (d) What is E(WZ)?{answer: $E(WZ) = E(E(WZ|X)) = E(ZE(W|X)) = E(ZE(Y-Z|X)) = E(ZE(Y|X) ZE(Z|X)) = E(Z^2 Z^2) = 0$ }
- 7. Let X_i be a random variable with mean 1.01 and standard deviation .2. (For example, X = 1.21 or X = .81 with equal probability, but that is such an ugly statement, lets pretend I didn't mention it.) Let $W = \prod_{i=1}^{n} X_i$. Suppose all the X_i 's are independent, so the whole series is IID.
 - (a) What is E(W)?{answer: $E(W) = 1.01^n$ }
 - (b) What is the long run growth rate (i.e. $\lim_{n\to\infty} (\log W_n)/n$)?{answer: $\log W_n$)/ $n \approx E(\log(X)) \approx E(X-1) V(X)/2 = .01 .2^2/2 = -.01$ }
 - (c) What will W_{1000} look like? {answer: $.99^{1000} = e^{-.01*1000} = e^{-10} \approx .0001$ }
- 8. Suppose you put 100 mice on a calorie restriction diet. Normal mice on a normal diet live 1000 days with a standard deviation of 150 days.
 - (a) If this diet doesn't change the length of life for these mice, what will be the mean, variance and distribution of \overline{T} ? (Where \overline{T} is the average number of days a mouse in the experiment lives.){answer: $E(\overline{T}) = 1000, V(\overline{T}) = (15)^2, it is normal.}$
 - (b) Find a good estimate the probability that \overline{T} is bigger than 1300.{answer: $(\overline{T}-1000)/15=20$. So via Chebeshev, the probability is less than $1/20^2$, or 1/400.}
 - (c) If your experiment actually yielded an average of 1300, would you believe that these mice have the same mean as typical mice? {answer: Nope! Low feed mice live longer.}
 - (d) (bonus) Using generating functions, provide a better bound. {answer: If you have a really big table for normals, it might go out to twenty, and so you know the answer is about 1/googol. (I mentioned this fact in class-but this is just an asside.) Here are your steps: (1) compute the moment generating function to be g(t) = e^{t²/2}. (2) Now use Markov for P(e^{tZ} > e^{t20}) < e^{t²/2}/e^{t20}.
 (3) Now optimize this over t to see that t = 20 gets the best bound. (4) the bound is now e⁻²⁰⁰.}