谓词逻辑

2019年4月22日

谓词逻辑定义

引入 Predicate 谓词 Constant 常量 Variable 变量 Quantifier 量词相关概念

Truth set

辨析与命题逻辑的区别

Predicates

0:02

- The statement P(x) is not a proposition since there are more objects that it can be applied to.
- But the difference is:
 - predicate logic allows us to explicitly manipulate
 and substitute for the objects
 - predicate logic permits quantified sentences where variables are substituted for statements about the group of objects
- P(x)带有变量,会因为x的选值不同真值发生改变,因此不是命题

然而: 加上全称 和 特称量词 之后 就会成为命题

- \diamond Is P(x) a proposition? No. Many possible substitutions.
- \diamond Is $\forall x \ P(x)$ a proposition?

Yes. True if for all x from the unvierse P(x) is ture.

量词

1.取值不仅依赖于量词,还依赖于Universe

- Sentence: All SUSTech students are smart.
 - v universe: SUSTech students

translation: $\forall x \; Smart(x)$

vuniverse: all students

translation: $\forall x \ (At(x, SUSTech) \rightarrow Smart(x))$

♦ universe: people

translation: $\forall x \ (Student(x) \land At(x, SUSTech) \rightarrow Smart(x))$

- 2.全称量词和 特称量词作用相当于 整体合取 和 整体析取
- Suppose that the elements in the universe can be enumerated as x_1, x_2, \ldots, x_n then:
 - $\diamond \forall x \ P(x)$ is true whenever $P(x_1) \land P(x_2) \land \ldots \land P(x_n)$ is true
 - $\Rightarrow \exists x \ P(x)$ is true whenever $P(x_1) \lor P(x_2) \lor \ldots \lor P(x_n)$ is true.
- 3. 量词的否定: 量词的德摩根定律

Conclusion: $\neg \forall x \ P(x)$ is equivalent to $\exists x \ \neg P(x)$

注意易错点

translation: $\forall x \ (At(x, SUSTech) \rightarrow Smart(x))$ translation: $\exists x \ (At(x, SUSTech) \land Smart(x))$

4. 量词 嵌套

相同量词可以交换顺序,不同量词不能交换顺序