COMMUNICATION SATELLITE TECHNOLOGY TRENDS

Louis Cuccia NASA Headquarters

A CHRONOLOGY OF SPACE-EARTH INTERCONNECTIVITY

- o THE 1960's- INTERNATIONAL COMMUNICATIONS
- o THE 1970's- INTERNATIONAL AND NATIONAL DOMESTIC COMMUNICATIONS
- o THE 1980's- INTERNATIONAL, NATIONAL, AND REGIONAL SATELLITE COMMUNICATIONS
- o THE 1990's- GLOBAL INTERCONNECTIVITY BY LASER LINKS INTER-CONNECTING SATELLITES IN THE ORBITAL ARC
- o 2000+ SPACE NETWORK INTERCONNECTIVITY FOR EARTH, LOW EARTH ORBIT, AND GEOSTATIONARY ORBIT COMMUNICATION SYSTEMS

PERSPECTIVE ON THE 1960'S- INTERNATIONAL COMMUNICATIONS

	INTELSAT I	INTELSAT II	INTELSAT III
YEAR OF FIRST LAUNCH	1965	1967	1968
HEIGHT (CM)	60	67	104
WEIGHT IN ORBIT (KG)	38	86	152
ELECTRICAL POWER (KW)	0.04	0.075	0.1,20
CAPACITY (TELEPHONE CIRCUITS)	240	240	1,200
DESIGN LIFETIME (YEARS)	1.5	3	5
INVESTMENT COST PER CIRCUIT YEAR	\$32,500	\$11,400	\$2,000
COST PER S/C ON ORBIT (MILLIONS OF \$)	11.7	8.2	12.2

30 METER STANDARD A

PERSPECTIVE ON THE 1970'S

INTERNATIONAL SYSTEMS

MITELSAT V Index Come Course

10-13 METER STANDARD B

NATIONAL SYSTEMS

anow of frequencies fy revers

9-10 METER CA-TV

4.5 METER CA-TV

PERSPECTIVE ON THE 1980'S

INTERNATIONAL SYSTEMS

30 METER STANDARD A

10-13 METER STANDARD B

NATIONAL SYSTEMS

9-10 METER CA-TV

4.5 METER CA-TV

REGIONAL SYSTEMS

3 METER MEDIA DISTRIBUTION

ORIGINAL PAGE IS OF POOR QUALITY

NO. AMERICAN DOMSATS IN GEOSTATIONARY ORBIT

COMMUNICATIONS SATELLITE TRENDS AND OPPORTUNITIES

FUTURE ROLES OF COMMUNICATIONS SATELLITES

- SATCOMS ARE A NATURAL MEDIUM FOR BROADCAST OR INFORMATION/ENTERTAINMENT
- SATCOMS PROVIDE AN OPTIMUM SOLUTION FOR MANY TYPES OF MOBILE COMMUNICATIONS
- SATCOMS PROVIDE FOR EFFICIENT POINT-TO-MULTIPOINT COMMUNCIATIONS
- SATCOMS CAN EFFECTIVELY REACH THIN ROUTE LOW POPULATION DENSITY AREAS NOT ECONOMICALLY SERVED BY TERRESTRIAL NETWORKS
- SATCOMS CAN EFFECTIVELY SERVE ISDN AND LOW DATA RATE/CAPACITY USERS IN THE 50 KBPS TO T1 (1.544 MBPS) RANGE

PERSPECTIVE ON THE INCREASE IN SATCOM BANDWIDTH IN THE GEOSTATIONARY ARC

NASA PROGRAMS IN ADVANCED TECHNOLOGY AND SPACE SYSTEM DEVELOPMENT

- o ADVANCED COMMUNICATIONS TECHNOLOGY SATELLITE (ACTS)
- o MOBILE SATELLITE SYSTEM MSAT
- o SHUTTLE-ACTS LASER LINK
- o space station communications/antenna test range
- o GEOSTATIONARY COMMUNICATIONS PLATFORM

THE ENABLING TECHNOLOGIES FOR SPACE SWITCHING CENTERS AND GEOSTATIONARY INTERCONNECTION

TECHNOLOGY	WHERE IN DEVELOPMENT	TIME FRAME
NARROW BAND (≈5 KBPS) SUBSCRIBER COMMUNICATION	MOBILE SATELLITE	1988 ON
WIDE BAND (56 KBPS) TRUNK SWITCHING	ACTS SATELLITE	1990
INTERSATELLITE LINK	ACTS - SHUTTLE EXPERIMENT	1990
SUPER COMPUTER FOR SPACE	IN DEVELOPMENT IN PRESENT MARKET PLACE	1995

ACTS SYSTEM

ORIGINAL PAGE IS OF POOR QUALITY

PRIMARY OBJECTIVES:

TO PROVE THE FEASIBILITY OF ADVANCED COMMUNICATIONS SATELLITE TECHNOLOGIES IN THE ENVIRONMENT OF SPACE AND REPRESENTATIVE EARTH ATMOSPHERIC CONDITIONS:

- FIXED AND SCANNING SPOT BEAMS
- FREQUENCY REUSE
- BEAM INTERCONNECTING VIA SATELLITE SWITCHING
- SYSTEM NETWORKING
- RAIN COMPENSATION TECHNIQUES

SECONDARY OBJECTIVE:

OPTICAL INTER-SATELLITE LINK RESEARCH FACILITY

MAX. BURST RATE CAPABILITY: 550 MB/S FLIGHT EXP. BURST RATES: 110 OR 220 MB/S

NASA HQ E82-1112(1) REV. 7-21-82

ACTS SYSTEM COVERAGE

ACTS 30/20 GHz Experimental System (CPS Mode)

ORIGINAL PAGE LO OF POOR QUALITY

OPTICAL INTER-SATELLITE LINK

SHUTTLE TO ACTS LASER LINK -220 MBPS 0.86 MICROMETERS

TYPICAL AT&T FTX TERRESTRIAL FIBER OPTIC 430 MBPS LINK

CANDIDATE VEHICLE ANTENNAS FOR MOBILE SATELLITE COMMUNICATIONS

LATER GENERATION SYSTEMS

EVOLUTION OF CRAY COMPUTER*

- SUPER COMPUTER GENERATION IS 3 YEARS
- IN 1987 CRAY 3 WILL HAVE
 - 16 PROCESSORS
 - EACH 1/2 BILLION 64 BIT WORDS
 - 12" × 8" × 4"
- BY THE TIME WE GET TO CRAY-6,-- 1995---, CRAY-3 WILL BE HAND HELD
- PROCESSING POWER WILL BE IN GREATER DEMAND
 THAN BANDWIDTH AS IT BECOMES AVAILABLE IN SPACE APPLICATIONS

^{*}MR. BRETT BERLIN, 1985

EVOLUTION OF TERRESTRIAL SWITCH TECHNOLOGY

TO SIZE AND POWER COMPATIBLE WITH SPACECRAFT

	YEAR					
ITEM	65	71	77	78	81	89
RELATIVE VOLUME	3840	320	80	20	2	1
POWER µWATT/BIT	2800	175	70	20	4	1
SPEED µSEC	5.5	5.5	1.4	.7	.55	.55
MEMORY IN MEGABYTES	1.18	1.18	1.18	.79	1.05	1.0
	SHEET	CORE	SEMICON-	SEMICON-	SEMICON-	SEMICON-
	FARRITE		DUCTOR	DUCTOR	DUCTOR	DUCTOR
	104 FT.		4K RAM	16K RAM	64K RAM	256K RAM
	LONG				;	

NASA HQ EC86-200(1)

IMPACT OF CHALLENGER DISASTER

THE PATHS OF INTERCONNECTIVITY SPACE-EARTH ANTENNA BEAMS

CONVENTIONAL
SATELLITE DESIGN

FUTURE SATELLITE DESIGN USING SPACE STATION
AS ASSEMBLY BASE

WILL NOW CONTINUE

WILL BE DELAYED

EUROPEAN SATELLITES WITH CENTER FED SPOT BEAM ANTENNAS - OTS

O.T.S. GROUNDPRINT-SPOT BEAM OTS 2.4 MTR AREA 3.0 MTR AREA 3.7 MTR AREA 3.7 MTR AREA

ORIGINAL PAGE IS OF POOR QUALITY

EUROPEAN SATELLITES WITH CENTER FED SPOT BEAM ANTENNAS-ECS

The TV and telecommunications beams of ECS

INVESTMENT IN ECS		
Country	ECS Share	
Austria	1.97	
Belgium	4,92	
Cyprus	0.97	
Denmark	3,28	
Finland	2.73	
France	16,40	
West Germany	10.82	
Greece	3,19	
Ireland	0.22	
italy	11.48	
Luxembourg	0.22	
Netherlands	5.47	
Norway	2.51	
Portugal	3.06	
Spain	4.64	
Sweden	5.47	
Switzerland	4,36	
Turkey	0.93	
United Kingdom	16.40	
Yugoslavia	0.96	
	100.00**	

WARC-77 ANTENNA PATTERN

CONTOURED ANTENNA PATTERN

MULTI-BEAM ANTENNA CONTOURING A COUNTRY

Computed shaped beam pattern at 11.379 GHz for a 21-horn offset-fed parabolic reflector system

ORIGINAD PARK NO OF POOR CONTRACT

MULTIPLE-FEED OFFSET FED SATELLITE ANTENNA AND SUPERIMPOSED BEAM PATTERNS FOR SHAPED AREA COVERAGE ON EARTH

MULTIPLE AREA COVERAGE INTELSATS IV IVA V VA VI

HAZARDS OF APRIORI PLANNING

WARC-77 COVERAGE WITH1977 LNA TECHNOLOGY IN EARTH STATION

CONTOURED ANTENNA BEAM EXAMPLES

COMSAT STC DBS

EFFECTIVE ISOTROPIC RADIATED POWER CONTOURS - (ABM) 1 = 60.00 2 = 59.00 3 = 58.00 4 = 57.00 9 = 56.00

ARABSAT

SATELLITES WITH CONTOURED BEAM ANTENNAS

RCA SATCOMS

JAPAN CS-2A 30/20 GHZ ANTENNA PATTERN

USSR STATSIONAR T2 CONTOURED 716 MHZ BEAM USING 96 HELICAL ANTENNA ARRAY

ORIGINAL PAGE IS OF POOR OUSETTY

MULTIPLE BEAM AUSSAT

IMPACT OF ANTENNA SIZE ON U S COVERAGE AT 860 MHZ

THE POLITICS OF ANTENNA COVERAGE AND SPILLOVER

ĭ,

PRIMARY COVERAGE AREA ADJACENT COUNTRY SPILLOVER

SATCOM F4 SPILLOVER TO EUROPE

FRENCH TELCOM 1 SPILLOVER TO WARSAW PACT NATIONS

ORIGINAL PAGE IS OF POOR QUALITY

CANADIAN SPILLOVER TO U S

Anik D 6 GHz Receive Pattern (G/T) (Typical)

ANIK C3 12GHz TRANSMIT PATTERN (EIRP) (TYPICAL)

WARC-77 DBS SPILLOVER
IN EUROPE

FRENCH "SPILLOVER"
TO CENTRAL AFRICA

ATHOS 6/4 GHz coverage zones

TRANSITION TO GIANT ANTENNAS IN THE SPACE STATION ERA NOW DELAYED

GROWTH IN ANTENNA SIZE

GIANT SPACE-STATION-ENABLED

90 91 92 93 94 95 96 97 98 99 2000

TYPES OF GIANT ANTENNAS FOR UNFURLING

CANDIDATE GEOSTATIONARY PLATFORMS

PERSPECTIVE OF THE 2000'S INTERCONNECTIVITY OF REGIONAL PLATFORMS BY INTERSATELLITE LINKS

MILICONNECTIVITY OF REGIONNE FEBRUARY STREET, CO.

PERSPECTIVE OF THE 1990'S- INTERCONNECTIVITY OF REGIONAL PLATFORMS BY INTERSATELLITE LINKS

SPACE TERRESTRIAL COMMUNICATION SYSTEM 1990'S

SPACE STATION COMMUNICATIONS OS S A TECHNOLOGY EC

NORTH SOUTH REGIONAL SATELLITE NETWORK FOR GLOBAL INTERCONNECTIVITY

GLOBAL INTERCONNECTIVITY IN THE EARLY 21ST CENTURY

GLOBAL INTERSATELLITE (ISL)

GEOPLATFORM CLUSTER 2000's

SATELLITE EQUIVALENT DIGITAL SWITCH HIERARCHY

CLASS	USERS	SIGNAL TYPE	EARTH STATION
3	HEAVY TRUNK INTERCONNECTS WITH CLASS 4 SATELLITES OR WITH GLASS 3/4 STATIONS ON GROUND	T3 (43 Mbps) 565 Mbps 1.8 Gbps (COMPATIBLE) WITH EARTH FIBER TRUNK NETWORKS	EXPENSIVE 13 METER HEAVY ROUTE STATIONS <01M
4	PBX-TO-PBX OR EQUIVALENT	5b Kbps TO T1 (1.54 Mbps) T2 (6.2 Mbps)	VSAT TERMINALS <\$10K
5	SUBSCRIBER TO SUBSCRIBER MOBILE USERB PC-TO-PC WRIST-RADIO PAGING	75 Bps TO 9.6 Kbps 	VERY LOW COST EARTH TRANSCIEVERS

ISL=INTERSATELLITE LINK

ORIGINAL PAGE IS OF POOR QUALITY

OPTICAL FREQUENCY COMMERCIAL GEOSTATIONARY RELAY SATELLITE

1.

ORIGINAL PAGE IS OF POOR QUALITY