Section 4.3 – LU-Decompositions

The goal is to describe Gaussian elimination in the most useful way by looking at them closely, which are factorizations of a matrix.

The factors are triangular matrices.

The factorization that comes from elimination is A = LU.

The Method of *LU*–Decomposition

Step 1: Rewrite the system Ax = b as LUx = b

Step 2: Define a new $n \times 1$ matrix y by Ux = y

Step 3: Use Ux = y to rewrite LUx = b as Ly = b and solve this system for y.

Step 4: Substitute y in Ux = y and solve for x.

Example

Given 2 by 2 matrix $A = \begin{pmatrix} 2 & 1 \\ 6 & 8 \end{pmatrix}$

To make row 2 column 1 is zero then we need to subtract 3 times row 2 from row 2

$$\begin{pmatrix} 2 & 1 \\ 6 & 8 \end{pmatrix} R_2 - 3R_1$$

24

That step is $E_{21} = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix}$ in the forward direction such that:

$$E_{21}A = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 6 & 8 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix} = U$$

The return step from U to A is $L = E_{21}^{-1}$

Back from
$$U$$
 to A : $\begin{bmatrix} E^{-1}U \\ 21 \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 6 & 8 \end{pmatrix} = A$

Therefore; A = LU

Example

What matrix L and U puts A into triangular form A = LU where

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

Solution

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} R_2 - \frac{1}{2}R_1 : \ell_{21} \rightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 1 & 2 \end{pmatrix} R_3 - \frac{2}{3} R_2 : \begin{matrix} \ell_{32} \end{matrix} \longrightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix} = U$$

The lower triangular L has all 1's on its diagonal. The multipliers ℓ_{ij} are below the diagonal of L

$$L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

 \Leftrightarrow (A = LU) This is *elimination without row exchanges*. The *upper triangular U* has the pivots on its diagonal. The *lower triangular L* has all 1's on its diagonal. *The multipliers* ℓ_{ij} *are below the diagonal of L*.

One Square System = *Two* Triangular Systems

Factor: into L and U, by forward elimination on A.

Solve: forward on b using L, then back substitution using U.

Solve Lc = b and then solve Ux = c

Example

Forward elimination on Ax = b ends at Ux = c

$$x+2y=5$$

 $4x+9y=21$ becomes $x+2y=5$
 $y=1$

Solution

The multiplier was 4. $\left(R_2 - \frac{4}{4}R_1\right)$

The lower triangular system: Lc = b

$$\begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} 5 \\ 21 \end{bmatrix} \quad \Rightarrow \quad c = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

The upper triangular system: Ux = c

$$\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} [x] = \begin{bmatrix} 5 \\ 1 \end{bmatrix} \quad \Rightarrow \quad x = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$

26

To solve 1000 equations on a PC

- \clubsuit Elimination on A requires about $\frac{1}{3}n^3$ multiplications and $\frac{1}{3}n^3$ subtractions.
- Each right side needs n^2 multiplications and n^2 subtractions.

Exercises s

Section 4.3 – LU-Decompositions

1. What matrix E puts A into triangular form EA = U? Multiply by $E^{-1} = L$ to factor A into LU:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5 \end{bmatrix}$$

2. Solve Lc = b to find c. Then solve Ux = c to find x. What was A?

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

3. Find L and U for the symmetric matrix

$$A = \begin{bmatrix} a & a & a & a \\ a & b & b & b \\ a & b & c & c \\ a & b & c & d \end{bmatrix}$$

Find four conditions on a, b, c, d to get A = LU with four pivots

4. For which c is A = LU impossible – with three pivots?

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & c & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

5. Find an LU-decomposition of the coefficient matrix, and then use to solve the system

$$a) \quad \begin{bmatrix} 2 & 8 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$$

$$b) \quad \begin{bmatrix} -5 & -10 \\ 6 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -10 \\ 19 \end{bmatrix}$$

c)
$$\begin{bmatrix} 2 & -2 & -2 \\ 0 & -2 & 2 \\ -1 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -2 \\ 6 \end{bmatrix}$$

$$d) \begin{bmatrix} -3 & 12 & -6 \\ 1 & -2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -33 \\ 7 \\ -1 \end{bmatrix}$$

e)
$$\begin{bmatrix} -1 & 0 & 1 & 0 \\ 2 & 3 & -2 & 6 \\ 0 & -1 & 2 & 0 \\ 0 & 0 & 1 & 5 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{vmatrix} = \begin{bmatrix} 5 \\ -1 \\ 3 \\ 7 \end{bmatrix}$$