Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia - Departamento de Química

Fenómenos de Transferência II

1ºteste - 19 de Abril de 2022

I

Considere um tanque cilíndrico com 1 m de diâmetro e 2m de altura contendo água à temperatura de 20°C e à pressão atmosférica. O nível da água está situado a metade da altura. A pressão parcial de vapor de água no ar que circula por cima da abertura do tanque é nula. A pressão de vapor da água a 20°C é 2300 Pa e o coeficiente de difusão de vapor de água no ar é 0.3 cm²/s.

R=8.314 J mol⁻¹K⁻¹

 $1 \text{ atm} = 10^5 \text{ Pa}$

- a) Obtenha a equação e calcule a velocidade de evaporação da água.
- b) Discuta o efeito da humidade do ar, que circula por cima do tanque, e da temperatura do sistema, na velocidade de evaporação da água.
- c) Como seria afetada a velocidade de evaporação da água se o tanque tivesse o dobro do diâmetro.

II

Uma partícula de carbono com 1.5 cm de diâmetro é queimada a 1475 K sendo a velocidade de queima limitada pela difusão do oxigénio em sentido oposto ao do CO₂ formado na superfície da partícula. A massa específica da partícula é 1280 kg/m³ e a massa molar 12 g/mol. O coeficiente de difusão do oxigénio no ar é 10⁻⁴ m²/s.

- a) Calcule o tempo necessário para a partícula reduzir o seu diâmetro a metade.
- b) Calcule também o tempo necessário para desaparecer a outra metade.
- c) Compare os resultados e comente.

III

Num processo de fabrico de um semicondutor, lâminas de silício são expostas a uma atmosfera gasosa com átomos de fósforo. A concentração de átomos de fósforo na superfície da lâmina é mantida constante e igual a 7.5x10²⁰ átomos/cm³. Após 5h, a concentração de fósforo para a posição z=1 μm é igual a 6.3 x 10¹⁹ átomos/cm³.

- a) Determine o coeficiente de difusão do fósforo no silício.
- b) Determine a concentração de átomos de fósforo para a mesma distância após 10h do início do ensaio.

$$\frac{c_{As} - c_{A}}{c_{As} - c_{A0}} = erf\left(\frac{z}{\sqrt{4Dt}}\right)$$

$$\xi = \frac{z}{\sqrt{4Dt}}$$

Table 7-1. Error function values. For negative a, erf(a) is negative

a	erf(a)	a	erf(a)	a	erf(a)
0.0	0.0	0.48	0.50275	0.96	0.82542
0.04	0.04511	0.52	0.53790	1.00	0.84270
0.08	0.09008	0.56	0.57162	1.10	0.88021
0.12	0.13476	0.60	0.60386	1.20	0.91031
0.16	0.17901	0.64	0.63459	1.30	0.93401
0.20	0.22270	0.68	0.66378	1.40	0.95229
0.24	0.26570	0.72	0.69143	1.50	0.96611
0.28	6.30788	0.76	0.71754	1.60	0.97635
0.32	0.34913	0.80	0.7421	1.70	0.98379
0.36	0.38933	0.84	0.76514	1.80	0.98909
0.40	0.42839	0.88	0.78669	2.00	0.99532
0.44	0.46622	0.92	0.80677	3.24	0.99999

exf(|a|) = [1-(1+0.2784|a|+0.2314|a|+6.0781|a|4)]