

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift ® DE 19955605 A 1

(f) Int. CI.⁷: C 12 N 9/02 C 12 N 15/53

DEUTSCHES PATENT- UND MARKENAMT

199 55 605.9 Aktenzeichen: Anmeldetag: 18. 11. 1999 23. 5. 2001 Offenlegungstag:

55 605

(7) Anmelder: BASF AG, 67063 Ludwigshafen, DE

(74) Vertreter: Kinzebach und Kollegen, 81679 München (72) Erfinder:

Hauer, Bernhard, Dr., 67136 Fußgönheim, DE; Pleiss, Juergen, Dr., 71679 Asperg, DE; Schwaneberg, Ulrich, 71336 Waiblingen, DE; Schmitt, Jutta, Dr., 70563 Stuttgart, DE; Fischer, Markus, 71638 Ludwigsburg, DE; Schmid, Rolf, Prof. Dr., 70329 Stuttgart, DE; Li, Quing-Shan, Dr., Kyoto, JP

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Neue Cytochrom P450-Monoxygenasen und deren Verwendung zur Oxidation N-heterocyclischer Aromaten

Die Erfindung betrifft neue Cytochrom P450-Monoxygenasen, welche zur Oxidation N-heterocyclischer aromatischer Verbindungen befähigt sind, dafür kodierende Nukleotidsequenzen, diese Sequenzen enthaltende Expressionskonstrukte und Vektoren, damit transformierte Mikroorganismen, Verfahren zur mikrobiologischen Oxidation N-heterocyclischer aromatischer Verbindungen und insbesondere Verfahren zur Herstellung von Indigo und Indirubin.

Beschreibung

Die vorliegende Erfindung betrifft neue Cytochrom P450-Monoxygenasen, welche zur Oxidation N-heterocyclischer aromatischer Verbindungen befähigt sind, dafür kodierende Nukleotidsequenzen, diese Sequenzen enthaltende Expressionskonstrukte und Vektoren, damit transformierte Mikroorganismen, Verfahren zur mikrobiologischen Oxidation N-heterocyclischer aromatischer Verbindungen und insbesondere Verfahren zur Herstellung von Indigo und Indirubin.

Enzyme mit neuartigen Funktionen und Eigenschaften können entweder durch Screening natürlicher Proben oder durch Protein Engineering bekannter Enzyme bereitgestellt werden. Die letztgenannte Methode kann unter Umständen die geeignetere sein, um Eigenschaften zu induzieren, deren Generierung auf dem Wege natürlicher Selektion unwahrscheinlich ist. Trotz zahlreicher Anstrengungen zum Engineering von Enzymen gibt es bisher nur wenige erfolgreiche Studien zur Förderung der katalytischen Aktivität von Enzymmutanten bezüglich eines bestimmten Substrates (1–10). In diesen bekannten Fällen sind die Substrate strukturell eng verwandt mit dem nativen Substrat des jeweiligen Enzyms. Bisher gibt es keine Berichte über ein erfolgreiches Engineering von Enzymen, welche nach der Modifikation die Umsetzung einer Verbindung katalysieren, welche strukturell völlig verschieden vom nativen Substrat des Enzyms ist.

Die aus dem Bakterium Bacillus megaterium isolierbare Cytochrom P450-Monoxygenase katalysiert gewöhnlich die subterminale Hydroxylierung langkettiger, gesättigter Säuren und der entsprechenden Amide und Alkohole davon oder die Epoxydation ungesättigter langkettiger Fettsäuren oder gesättigter Fettsäuren mit mittlerer Kettenlänge (11–13). Die optimale Kettenlänge gesättigter Fettsäuren beträgt 14 bis 16 Kohlenstoffatome. Fettsäuren mit einer Kettenlänge von

weniger als 12 werden nicht hydroxyliert (11).

Die Struktur der Häm-Domäne von P450 BM-3 wurde durch Röntgenstrukturanalyse bestimmt (14–16). Die Substratbindungsstelle liegt in Form einer langen tunnelartigen Öffnung vor, welche von der Moleküloberfläche bis hin zum Häm-Molekül reicht und wird fast ausschließlich von hydrophoben Aminosäureresten begrenzt. Die einzigen geladenen Reste an der Oberfläche der Häm-Domäne sind die Reste Arg47 und Tyr51. Man nimmt an, daß diese an der Bindung der Carboxylatgruppe des Substrates durch Bildung einer Wasserstoffbrückenbindung beteiligt sind (14). Die Mutation von Arg47 zu Glu bewirkt eine Inaktivierung des Enzyms für Arachidonsäure (13), erhöht jedoch dessen Aktivität gegenüber C₁₂-C₁₄-Alkyltrimethylammonium-Verbindungen (17). Eine Substratnutzung für aromatische Verbindungen, insbesondere zwei- oder mehrkernige N-heterocyclische Aromaten, wurde für dieses Enzym nicht beschrieben. Es wurde deshalb bisher in der Fachwelt angenommen, daß Indol aufgrund der deutlichen strukturellen Unterschiede zu den nativen Substraten von P450 BM-3, insbesondere aufgrund des Fehlens funktioneller Gruppen, welche an die oben erwähnten Reste in der Substrattasche binden könnten, kein Substrat darstellen.

Es ist deshalb Aufgabe der vorliegenden Erfindung neue Cytochrom P450 Monoxygenasen mit veränderter Substratspezifität bereit zu stellen. Insbesondere sollten Monoxygenase-Mutanten bereitgestellt werden, welche im Vergleich zu dem nichtmutierten Enzym mit strukturell deutlich anderen Substraten enzymatisch aktiv sind.

Diese Aufgabe konnte überraschenderweise gelöst werden durch Cytochrom P450 Monoxygenasen, welche zur Oxidation N-heterocyclischer zwei- oder mehrkerniger aromatischer Verbindungen befähigt ist.

Insbesondere sind Gegenstand der Erfindung solche Monoxygenasen, deren Substrat-bindender Bereich durch ortsspezifische Mutagenese zur funktionalen Aufnahme des N-heterocyclischen Substrats befähigt ist.

In einer bevorzugten Ausführungsform der Erfindung sind die neuen Monoxygenase löslich, d. h. in nicht-membran-

gebundener Form existent, und in dieser Form enzymatisch aktiv.

Die erfindungsgemäßen Monoxygenasen sind vorzugsweise abgeleitet von Cytochrom P450 Monoxygenasen bakteriellen Ursprungs, wie insbesondere abgeleitet von Cytochrom P450 Monoxygenase BM-3 aus Bacillus megaterium mit einer Aminosäuresequenz gemäß SEQ ID NO: 2, welche wenigstens eine funktionelle, d. h. die Oxidation N-heterocyclischer zwei- oder mehrkerniger armotischer Verbindungen fördernde Mutation, in einem der Aminosäuresequenzbereiche 172–224 (F/G-loop-Bereich), 39–43 (β-strand 1), 48–52 (β-strand 2), 67–70 (β-strand 3), 330–335 (β-strand 5), 352–356 (β-strand 8), 73–82 (helix 5) und 86–88 (helix 6) aufweist.

Besonders bevorzugten Monoxygenase-Mutanten dieses Typs sind, dadurch gekennzeichnet, daß sie wenigstens eine der folgenden ein- oder mehrfachen Aminosäuresubstitutionen aufweist:

a) Phe87Val;

50

b) Phe87Val, Leu188Gln; oder

c) Phe87Val, Leu188Gln, Ala74Gly;

sowie funktionale Äquivalente davon. Funktionale Analoga sind in diesem Zusammenhang davon verschiedene Mutanten, welche weiterhin die gewünschte Substratspezifität gegenüber heterozyklischen Aromaten besitzen und insbesondere Indol hydroxylieren.

Erfindungsgemäß oxidierbare, insbesondere hydroxylierbare N-heterocyclische zwei- oder mehrkernige aromatische Verbindungen umfassen vorzugweise zwei oder drei, insbesondere zwei, vier- bis siebengliedrigen, insbesondere sechsoder fünfgliedrige, kondensierte Ringe, wobei wenigstens einer, vorzugsweise alle Ringe aromatischen Charakter besitzen und wobei wenigstens einer der Ringe ein bis drei, vorzugsweise ein N-Heteroatom trägt. In der Ringstruktur können gegebenenfalls ein oder zwei weitere Heteroatome, wie O und S, enthalten sein. Die aromatischen Verbindungen können weiterhin 1 bis 5 Substituenten an den Ring-Kohlenstoff- oder an den Heteroatomen tragen. Beispiele für geeignete Substituenten sind Methyl, Hydroxyl und Halogen, wie F, C1, und Br. Nichtlimitierende Beispiele für geeignete Substrate sind Indol, N-Methyl-indol und die mit ein bis drei Substituenten an Kohlenstoffatomen substituierten Analoga davon.

Gegenstand der Erfindung sind auch Nukleinsäuresequenzen, kodierend für eine der obigen Monoxygenasen. Bevorzugte Nukleinsäuresequenzen sind abgeleitet von SEQ ID NO: 1, welche wenigstens eine Nukleotidsubstitution aufweist, die zu einer der oben beschriebenen funktionellen Aminosäuremutationen führt. Außerdem sind die davon abgeleiteten, an die Kodonnutzung verschiedener Wirtsorganismen angepaßten Sequenzen Gegenstand der Erfindung. Gegenstand der Erfindung sich außerdem durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nu-

kleotide erhaltenen funktionalen Analoga der Nukleinsäuren, welche weiterhin für eine Monoxygenase mit der gewünschten Substratspezifität, insbesondere mit Indol-oxidierender Aktivität, kodieren.

Gegenstand der Erfindung sind außerdem Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen, wie einem 5'-stromaufwärts gelegenen konstitutiven oder nicht-konstitutiven Promotor und 3'-stromabwärts gelegenen Terminator, eine kodierende Sequenz, welche eine Nukleinsäuresequenz gemäß obiger Definition umfasst. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z. B. licht- und insbesondere temperaturinduztierbarer Promotoren, wie der PrP1-Promotor. Weitere regulative Elemente umfassen Enhancer, selektierbare Marker, Amplifikationssignale, Replikationsursprünge, Polyadenylierungssignale und dergleichen.

Gegenstand der Erfindung sind außerdem Vektoren, wie z. B. Viren und Plasmide, umfassend wenigstens eines der erfindungsgemäßen Expressionskonstrukte. Gegenstand der Erfindung sind weiterhin rekombinante Mikroorganismen, 10 transformiert mit wenigstens einem solchen Vektor. Bevorzugte Mikroorganismen sind ausgewählt unter Bakterien der Gattung Escherichia, wie z. B. E. coli.

Die Erfindung betrifft außerdem ein Verfahren zur mikrobiologischen Oxidation N-heterocyclischer zwei- oder mehrkerniger armotischer Verbindungen gemäß obiger Definition, das dadurch gekennzeichnet ist, daß man

- a1) einen rekombinanten Mikroorganismus gemäß obiger Definition in einem Kulturmedium, gegebenenfalls in Gegenwart eines Substrats, kultiviert; oder
- a2) ein Substrat-haltiges Reaktionsmedium mit einem erfindungsgemäßen Enzym inkubiert; und
- b) das gebildete Oxidationsprodukt oder ein Folgeprodukt davon aus dem Medium isoliert.

Eine bevorzugte Verfahrensvariante ist auf die Bildung von Indol/Indirubin gerichtet und dadurch gekennzeichnet, daß man aus dem Medium das gebildete Indol und/oder Indirubin isoliert.

Wird die Umsetzung mit einem rekombinanten Mikroorganismus durchgeführt, so erfolgt vorzugsweise zunächst die Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff und in einem Komplexmedium, wie z. B. TB- oder LB-Medium bei einer Kultivierungstemperatur von etwa 30 bis 40°C und einem pH-Wert von etwa 6 bis 9 kultiviert, bis eine ausreichende Zelldichte erreicht ist. Die Zugabe von Indol ist gewöhnlich nicht erforderlich, da dieses vom Mikroorganismus intermediär gebildet wird. Im die Oxidationsreaktion besser steuern zu können, bevorzugt man die Verwendung eines induzierbaren, insbesondere temperaturinduzierbaren, Promotors. Man erhöht dabei die Temperatur auf die erforderliche Induktionstemperatur, z. B. 42°C beim P_rP_l-Promotor, behält dies über einen ausreichenden Zeitraum, z. B. 1 bis 10 oder 5 bis 6 Stunden, zur Expression der Monoxygenase-Aktivität bei und verringert anschließend der Temperatur wieder einer Wert von etwa 30 bis 40°C. Die Kultivierung wird dann in Gegenwart von Sauerstoff 12 Stunden bis 3 Tage fortgesetzt. Der pH-Wert kann dabei durch Zugabe von NaOH, z. B. auf 9 bis 10, erhöht werden, wodurch die Indigobildung bzw. Indirubinbildung durch Luftoxidation der enzymatisch gebildeten Oxidationsprodukte 2- und 3-Hydroxyindol zusätzlich gefördert wird.

Wird die Umsetzung dagegen mit gereinigtem oder angereichertem Enzym durchgeführt so löst man das erfindungsgemäße Enzym in einem Indol-haltigen Medium (etwa 0,01 bis 10 mM, oder 0,05 bis 5 mM), und führt die Umsetzung bei einer Temperatur von etwa 10 bis 50°C, wie z. B. 30 bis 40°C, und einem pH-Wert von etwa 6 bis 9 (wie z. B. eingestellt mit 100 bis 200 mM Phosphat- oder Tris-Puffer), sowie in Gegenwart eines Reduktionsmittels durch, wobei das Indol-haltige Medium außerdem bezogen auf Indol einen etwa 10- bis 100fachen molaren Überschuß an Reduktionsäquivalenten enthält. Bevorzugtes Reduktionsmittel ist NADPH.

Das gebildete Oxidationsprodukt kann dann in herkömmlicher Weise, wie z. B. durch Extraktion oder Chromatographie, vom Medium abgetrennt und gereinigt werden.

Weitere Gegenständer der Erfindung betreffen Bioreaktoren, umfassend ein erfindungsgemäßes Enzym oder einen erfindungsgemäßen rekombinanten Mikroorganismus in immobilisierter Form.

Ein letzter Gegenstand der Erfindung betrifft die Verwendung einer erfindungsgemäßen Cytochrom P450 Monoxygenase oder eines erfindungsgemäßen Vektors oder Mikroorganismus zur mikrobiologischen Oxidation N-heterocyclischer zwei- oder mehrkerniger armotischer Verbindungen, insbesondere im Rahmen der Bildung von Indigo und/oder Indiru-

Die vorliegende Erfindung wird nunmehr unter Bezugnahme auf die folgenden Beispiele näher beschrieben.

Beispiel 1

Randomisierung spezieller Codons von P450 BM-3

Die Versuche wurden im wesentlichen wie beschrieben in (19) durchgeführt. Drei Positionen (Phe87, Leu188 und Ala74) wurden mit Hilfe von ortsspezifischer Mutagenese unter Verwendung des Stratagene QuikChange kit (La Jolla, CA, USA) randomisiert. Folgende PCR-Primer wurden für die einzelnen Positionen verwendet: Phe87: 5'-gcaggagacgggttgnnnacaagctggacg-3' (SEQ ID NO: 3), 5'-cgtccagcttgtnnncaacccgtctcctgc-3', (SEQ ID NO: 4) Leu188: 5'-gaagcaatgaacaagnnncagcgagcaaatccag-3' (SEQ ID NO: 5), 5'-ctggatttgctcgctgnnncttgttcattgcttc-3' (SEQ ID NO: 6); Ala74: 5'-gctttgataaaaacttaaagtcaannncttaaatttgtacg-3' (SEQ ID: NO: 7), 5'-cgtacaaatttaagnnnttgacttaagtttttatcaaagc-3' (SEQ ID NO: 6).

Die Bedingungen für die PCR waren für alle drei Positionen identisch. Insbesondere wurden je 50 µl Reaktionsvolumen 17,5 pmol eines jeden Primers, 20 pmol Template-Plasmid-DNA, 3 U der Pfu Polymerase und 3,25 nmol von jedem dNTP verwendet. Die PCR Reaktion wurde bei 94°C/I min gestartet und dann wurde folgender Temperaturzyklus 20 mal durchgeführt: 94°C, 1 min. 46°C, 2,5 min. 72°C, 17 min. Nach 20 Zyklen wurde die Reaktion 15 min bei 72°C fortgesetzt. Nach der PCR wurde die Template DNA mit 20 U DpnI bei 37°C 3 h verdaut. Anschließend wurde E. coli DH5a transformiert. Die transformierten E. coli DH5α-Zellen wurden auf LB-Agarplatten ausplattiert, welche 150 μg/ml Ampicillin enthielten. Anschließend wurde 18 h bei 37°C inkubiert.

50

Beispiel 2

Expression und Reinigung der P450 BM-3 und dessen Mutanten und Produktion eines blauen Pigmentes

Das P450 BM-3-Gen und die Mutanten davon wurden unter der Kontrolle des starken, Temperatur-induzierbaren P_RP_L-Promotors des Plasmids pCYTEXP1 in E. coli DH5α wie bereits beschrieben (20), exprimiert. Kolonien wurden mit sterilen Zahnstochern aufgenommen und in Mikrotiterplatten mit 96 Vertiefungen, enthaltend je Vertiefung 200 μl TB-Medium und 100 μg/ml Ampicillin transferiert. Anschließend wurde über Nacht bei 37°C inkubiert. 40 μl der Zell-kultur einer jeden Vertiefung wurden anschließend in ein Kulturröhrchen überführt, das 2 ml TB-Medium mit 100 μg/ml Ampicillin enthält. Anschließend wurde 2 h bei 37°C kultiviert. Dann wurde die Temperatur zur Induktion 6 h auf 42°C erhöht. Dann wurde die Kultivierung über Nacht bei 37°C fortgesetzt, wobei ein blaues Pigment produziert wurde.

Die präparative Herstellung von Enzym oder blauem Pigment wurde ausgehend von einer 300 ml Zellkultur (OD_{578 nm} = 0,8 bis 1,0) durchgeführt. Zur Isolierung des Enzymes wurden die Zellen 10 min bei 4000 Upm abzentrifugiert, in 0,1 M K_xPO₄-Puffer, pH 7,4 resuspendiert. Die eisgekühlten Zellen wurden mit Hilfe eines Branson Sonifiers W25 (Dietzenbach, Deutschland) bei einer Energieoutput von 80 W durch dreimalige Beschallung von 2 min vorsichtig aufgeschlossen. Die Suspensionen wurden 20 min bei 32 570 × g zentrifugiert. Der Rohextrakt wurde zur Aktivitätsbestimmung bzw. zur Enzymreinigung eingesetzt. Die Enzymreinigung erfolgte wie in (21) bereits beschrieben, worauf hiermit ausdrücklich Bezug genommen wird. Die Konzentration an gereinigtem Enzym wurde über die Extinktionsdifferenz bei 450 und 490 nm, wie in (11) bereits beschrieben, unter Verwendung eines Extinktionskoeffizienten ∈ von 91 mM⁻¹ cm⁻¹ bestimmt.

Beispiel 3

Isolierung von Mutanten, welche große Mengen an blauem Pigment produzieren

Jeweils 100 Kolonien wurden von den Mutanten einer jeden Position isoliert, welche durch randomisierte Mutagenese des Codons der entsprechenden Position erzeugt wurden. Diese Kolonien wurden in Kulturröhrchen zur Produktion von blauem Pigment kultiviert. Nach dem Waschen der Zellen mit Wasser und mehreren langsamen Zentrifugationsschritten (500 Upm) wurde das blaue Pigment mit Dimethylsulfoxid (DMSO) extrahiert. Die Löslichkeit des blauen Pigmentes war in DMSO am größten. Die Absorption des Extraktes wurde bei 677 nm bestimmt. Diejenige Mutante, welche die größte Menge an blauem Pigment von allen Mutanten einer bestimmten Position produzierte, wurde für eine DNA-Sequenzierung (ABI DNA Sequenzierungs-Kit; ABI PrismaTM 377 DNA Sequencer) verwendet und außerdem als Template für ortsspezifische randomisierte Mutagenese verwendet.

----Beispiel 4

25

55

Aktivitätstest für die Indol-Hydroxylierung

Die Indol-Hydroxylierungsaktivität wurde in einer Lösung getestet, die 8 µl einer 10–500 mM Indollösung in DMSO, 850 µl Tris/HCl-Puffer (0,1 M, pH 8,2) und 0,6 nmol P450 BM-3 Wildtyp oder Mutante in einem Endvolumen von 1 ml enthielt. Das Gemisch wurde 9 min vorinkubiert, bevor man die Reaktion durch Zugabe von 50 µl einer wässrigen 1 mM Lösung von NADPH startete. Die Reaktion wurde nach 20 sec durch Zugabe von 60 µl 1,2 M KOH gestoppt. Innerhalb von 5 bis 30 sec (unter aeroben Bedingungen) wurden die Enzymprodukte vollständig in Indigo ([Δ²-²-Biindolin]-3,3'-dion) und Indirubin ([Δ²-³-Biindolin]-2',3-dion) überführt. Die Indigoproduktion wurde über dessen Absorption bei 670 nm bestimmt. Eine Eichkurve mit reinem Indigo zeigte einen Extinktionskoeffizienten von 3,9 mM⁻¹ cm⁻¹ bei dieser Wellenlänge. Ein linearer Kurvenverlauf wurde für die Indigoproduktion in einer Reaktionszeit von 40 sec unter Verwendung von 0,6 nmol Wildtyp bzw. P450 BM-3-Mutante und 0,05 bis 5,0 mM Indol erhalten. Indirubin zeigt eine sehr schwache Absorption bei 670 nm und die gebildete Indirubinmenge war sehr viel geringer als die gebildete Indigomenge. Die Bildung von Indirubin wurde bei der Bestimmung der kinetischen Parameter vernachlässigt. Der NADPH-Verbrauch wurde bei 340 nm bestimmt und unter Verwendung eines Extinktionskoeffizienten von 6,2 mM⁻¹ cm⁻¹ wie beschrieben (17) berechnet.

Beispiel 5

Reinigung von Indigo und Indirubin

Nach Waschen der Zellen mit Wasser und wiederholter Zentrifugation bei 500 g wurde das gebildete blaue Pellet mit Tetrahydrofuran (THF) extrahiert. Der Extrakt wurde bis fast zur Trockene eingedampft und das rote Pigment wurde mehrmals mit 50 ml absolutem Ethanol extrahiert. Der verbleibende blaue Feststoff wurde in THF gelöst und durch Dünnschichtchromatographie (TLC) analysiert. Die Ethanollösung wurde eingedampft und durch Silicagelchromatographie (DC 60, Merck, Darmstadt, Deutschland; 2 cm × 30 cm) gereinigt, bevor sie mit THF und Petrolether in einem Verhältnis von 1: 2 gewaschen wurde. Die erhaltene rote Lösung wurde eingedampft und deren Reinheit wurde durch TLC bestimmt. Die Absorptionsspektren des blauen und des roten Pigmentes wurden mit Hilfe eines Ultraspec 3000 Spektrophotometers (Pharmacia, Uppsala, Sweden) in einem Bereich von 400 bis 800 nm bestimmt. Außerdem wurde der blaue und der rote Farbstoff durch Massenspektrometrie und ¹H-NMR Spektroskopie analysiert.

Versuchsergebnisse

1. Erhöhung der Produktivität für blaues Pigment durch P450 BM-3-Mutagenese

Natives P450 BM-3 besitzt nicht die Fähigkeit zur Produktion des blauen Indigo-enthaltenden Pigments, bzw. der Vorläufersubstanten 2- bzw 3-Hydroxyindol. Um eine ausreichende Menge an blauem Pigment herstellen zu können, wurde P450 BM3 einer gezielten Evolution ausgesetzt. Sämtliche Mutanten, welche das blaue Pigment produzierten, wurden sequenziert. Es wurde festgestellt, daß wenigstens eine der folgenden drei Positionen mutiert waren: Phe87, Leu 188 und Ala74. Es wurde deshalb angenommen, daß diese drei Positionen eine entscheidende Rolle für die Aktivität von P450 BM-3 bei der Produktion von blauem Pigment spielen. Aus der Struktur der Häm-Domäne von Cytochrom-P450-BM-3, komplexiert mit Palmitoleinsäure sieht man, daß Phe87 das Substrat an einem näheren Heranrücken an die Häm-Gruppe hindert (14). Die Mutante Phe87Val zeigt eine hohe Regio- und Stereoselektität bei der Epoxidation von (14S, 15R)-Arachidonsäure (13) und die Mutante Phe87Ala verschiebt die Hydroxylierungsposition von ω-1, ω-2 und ω-3 zu ω (22). Die Position 87 wurde deshalb als erste für die ortspezifische randomisierte Mutanese mit Hilfe von PCR ausgewählt. In Röhrchenkulturen wurden 7 Kolonien erhalten, welche eine geringe Menge an blauem Pigment nach Induktion produzierten. Die Kolonie, welche die größte Menge des blauen Pigments produzierte, wurde für die DNA-Sequenzierung ausgewählt. Die Sequenzdaten ergaben eine Substitution von Phe87 durch Val. Die Mutante Phe87Val wurde anschließend als Template für die zweite Runde der ortsspezifischen randomisierte Mutagenese an Position Leu188 verwendet. Die Struktur der Häm-Domäne, komplexiert mit Palmitoleinsäure zeigt, daß die Repositionierung der F- und G-Helices den Rest Leu 188 in direkten Kontakt mit dem Substrat bringt (14). Diese Position könnte deshalb eine wichtige Rolle bei der 20 Substratbindung oder -orientierung spielen. Nach dem zweiten Screeningdurchgang wurden 31 Kolonien beobachtet, welche das blaue Pigment produzierten. Die Mutante, welche die größte Pigmentmenge produzierte, enthielt die Substitutionen Phe87Val und Leu188Gln. Diese Mutante wurde anschließend in Position Ala74 im dritten Durchgang der ortspezifischen randomisierten Mutagenese mutiert. Man erhielt dabei die Dreifachmutante F87L188A74 (Phe887Val, Leu188Gln und Ala76Gly), welche mehrere mg blaues Pigment in einem 2-Liter-Kolben, enthaltend 300 ml TB-Medium, produzierte. Diese Menge reichte zur Isolierung und Charakterisierung des blauen Pigmentes aus.

-2. Isolierung und Identifizierung des blauen Pigments

Nach dem Auswaschen der Zellen wurde das verbleibende blaue Pellet mit THF extrahiert und TLC analysiert. Das 30 blaue Pigment wurde in eine schneller wandernde blaue Komponente und in eine langsamer wandernde rote Komponente aufgetrennt. Beide Komponenten zeigten exakt die gleichen Mobilitätsparameter wie die Komponenten einer kommerziellen Indigo-Probe.

Nach der Reinigung wurden die Absorptionsspektra beider Komponenten in DMSO bestimmt. Die blaue Komponente zeigte das gleiche Spektrum wie eine kommerzielle Indigoprobe. Die gereinigte blaue und rote Komponente wurden jeweils durch Massenspektrometrie analysiert. Die Massenspektra beider Pigmente zeigten einen starken Molekülionenpeak bei m/z = 262 und zwei Fragmentionenpeaks bei m/z = 234 und 205 (relative Intensität jeweils 10%). Dieses Muster ist typisch für indigoide Verbindungen. Die Elementarzusammensetzung dieser Ionen wurde durch hochauflösende Massenspektrometrie bestimmt als $C_{16}H_{10}N_2O_2$, $C_{15}H_{10}N_2O$ bzw. $C_{14}H_9N_2$. Dies ist ebenfalls charakteristisch für Strukturen vom Indigotyp. Das blaue Pigment wurde somit als Indigo und das rote Pigment als Indirubin bestimmt. Zur Bestätigung der Struktur wurden 500 MHz ¹H-NMR-Spektren beider Pigmente in DMSO-D₆-Lösung durchgeführt. Die Ergebnisse stimmten mit den Literaturangaben (23) überein.

3. Produktion von Indigo mit isolierten Enzymen

Es ist bekannt, daß Indigo aus Indol durch mikrobielle Transformation zugänglich ist (24–26). Keines dieser mikrobiellen Systeme enthielt jedoch eine P450 Monoxygenase. Erfindungsgemäß wurde zunächst die katalytische Aktivität des reinen Enzyms für Indol bestimmt. Die Mutante F87L188A74 wurde mit Indol vermischt. Keine Farbreaktion war zu beobachten. Erst nach Zugabe von NADPH zum Reaktionsgemisch bildete sich das blaue Pigment nach etwa 20 min. Durch Einstellung des pH-Werts der Reaktionsmischung auf einen Wert von etwa 11, 30 sec nach Zugabe von NADPH, wurde die blaue Färbung innerhalb von wenigen Sekunden sichtbar. Kontrollversuche unter Verwendung von nativem P450 BM-3 waren immer negativ, selbst unter Verwendung erhöhter Konzentrationen an Enzym, Indol und NADPH. Das blaue Pigment wurde mit Ethylacetat extrahiert und durch TLC analysiert. Das blaue Pigment trennte sich wieder in eine schneller laufende blaue Komponente und in eine langsamer laufende rote Komponente auf. Die Re-Werte und die Absorptionsspektren waren identisch mit denjenigen Werten der Extrakte aus der Fermentationsbrühe. Die F87L188A74-Mutante von P450 BM-3 stellt somit eine Indolhydroxylase dar.

Es sind bisher zwei Wege für die enzymatische Transformation von Indol zu Indigo beschrieben worden. Ein Weg wird durch eine Dioxygenase, der andere durch eine Styrolmonoxygenase katalysiert (24, 25). Die NADPH-Stöchiometrie beträgt in beiden Fällen 2. Es wurde deshalb angenommen, daß im Gegensatz zu den Dioxygenasen die erfindungsgemäße Mutante F87L188A74 Indol in nur einer Position hydroxyliert, um Oxindol (2-Hydroxyindol) oder Indoxyl (3-Hydroxyindol) zu bilden.

4. Kinetische Parameter der Indolhydroxylierung

Reine Proben des Wildtyp-Enzyms P450 BM-3 und der Mutanten Leu188Gln, Phe87Val, F87L188 und F87L188A74 wurden zur Bestimmung der kinetischen Parameter der Indolhydroxylierung verwendet. Die Ergebnisse sind in folgender Tabelle 1 zusammengefaßt.

Tabelle 1

Kinetische Parameter der P450 BM-3 Mutanten für Indolhydroxylierung

_Mutanten	K _{cat} (S ⁻¹)	K _m (mM)	$K_{cat}/K_m (M^{-1}s^{-1})$
- WT	_a)	-	-
Leu188Gln	n.d.b)	n.d	n.d.
Phe87Val	2,03 (0,14)	17,0 (1,0)	119
F87L188	2,28 (0,16)	4,2 (0,4)	543
F87L188A74	2,73 (0,16)	2,0 (0,2)	1365

a) keine Aktivität wurde beobachtet;

25

b) nicht bestimmt (Aktivität war zu gering um gemessen zu werden

Selbst beim Überschuß an gereinigtem Enzym und hoher Indolkonzentration ist das Wildtyp-Enzym nicht in der Lage, Indol zu oxidieren. Die Mutante Leu188Gln zeigt eine geringe Aktivität. Die Mutante Phe87Val zeigt eine katalytische Wirksamkeit von 119 M⁻¹s⁻¹ für die Indolhydroxylierung. Die katalytische Effizienz der Doppelmutante F87L188 (Phe87Val, Leu188Gln) erhöhte sich auf 543 M⁻¹s⁻¹ und wurde durch Einführung der weiteren Substitution Ala74Gly auf 1365 M⁻¹s⁻¹ erhöht. Die K_{car}-Werte erhöhten sich von Phe87Val zur Dreifachmutante hin um insgesamt 35%, während die K_m-Werte etwa um das Siebenfache abnahmen. Dies weist darauf hin, daß Ala74Gly und Leu188Gln vorwiegend an der Substatbindung beteiligt sind.

Die Indol-Turnover-Rate ($K_{cat} = 2,73 \text{ s}^{-1}$) war für die Dreifachmutante F87L188A74 mehr als zehnfach höher als für die meisten P450-Enzyme (18).

LITERATUR

- 1. Yano, T., Oue, S., and Kagamiyama, H. (1998) Proc. Natl. Acad Sci. USA 95, 5511-5515.
- 2. Zhang, J.-H., Dawes, G., and Stemmer, W. P. C. (1997) Proc. Natl. Acad Sci. USA 94, 4504-4509.
- 3. Wan, L., Twitchett, M. B., Eltis, L. D., Mauk, A. G., and Smith, M. (1998) Proc. Natl. Acad Sci USA 95, 12825-12831.
 - 4. Cronin, C. N. (1998) J. Biol. Chem 273, 24465-24469.
 - 5. Wilks, H. M., Hart, K. W., Feeney, R., Dunn, C. R., Muirhead, H., Chia, W. N., Barstow, D. A., Atkinson, T., Clarke, A. R., Holbrook, I. J. (1988) Science 242, 1541–1544.
- 45 6. Hedstrom, L., Szilagyi, L., Rutter, W. J. (1992) Science 255, 1249–1253.
 - 7. Tucker, C. L., Hurley, J. H., Miller, T. R., and Hurley, I. B. (1998) Proc. Natl. Acad Sci. USA 95, 5993-5997.
 - 8. Quemeneur, E., Moutiez, J.-B. C., and Menez, A. (1998) Nature (London) 391, 301-303.
 - 9. Marsden, A- F. A., Wilkinson, B., Cortes, J., Dunster, N. J., Staunton, I. Leadlay, P. F. (1998) Science 279, 199-201.
- 10. Chen, R., Greer, A., and Dean, A. M. (1998) Proc. Natl. Acad Sci. USA 95, 11666-11670.
- 50 11. Boddupalli, S. S., Estabrook, R. W, and Peterson, J. A. (1990) J Biol. Chem 265, 4233–4239.
 - 12. Capdevila, J. H., Wie, S., Helvig, C., Falck, J. R., Belosludtsev, Y., Truan, G., Graham-Lorence, S. E., and Peterson, J. A. (1996) J. Biol. Chem 271, 22663-22671.
 - 13. Graham-Lorence, S., Truan, G., Peterson, J. A., Flack, J. R., WeL S., Helvig, C., Capdevilla, J. H. (1997) J. Biol. Chem 272, 1127-1135.
- 55 14. Li, H., Poulos, T. L. (1997) Nat. Structural Biol., 4, 140-146.
 - 15. Ravichandran, K.G., Sekhar, S., Boddupalli, S., Hasemann, C. A., Peterson, J. A., Deisenhofer, 1 (1993) Science 261, 731-736.
 - 16. Modi S., Sutcliffe, M. J., Primrose, W. U., Lian, L.-Y., Roberts, G. C. K (1996) Nat. Structural Biol. 3, 414-417.
 - 17. Oliver, C. F., ModL S., Primrose, W. U., Lian, L. Y. and Roberts, G. C. K (1997) Biochem. J 327, 537-544.
- 60 18. Guengerich, F. G. (1991) J. Biol. Chem 266, 10019–10022.
 - 19. Cherry, J. R., Lamsa, M. H., Schneider, P., Vind, J., Svendsen, A., Jones, A., and Pedersen, A. H. (1999) Nature Biotechnology 17, 379–384.
 - 20. Schwaneberg, U., Schmidt-Dannert, C., Schmitt, J., and Schmid, R. D. (1999) Anal Biochem. 269, 359-366.
 - 21. Schwaneberg, U, Sprauer, AL, Schmidt-Dannert, C., and Schmid, R. D. J of Chromatogr. A, in press.
- 22. Oliver, C. F., Modi, S., Sutcliffe, M. J., Primrose, W. U., Lian, L. Y. and Roberts, G. C. K (1997) Biochemistry 36, 1567–1572.
 - 23. Hart, S., Koch, KR., and Woods, D. R. (1992) J Gen. Microbiol. 138, 211-216.
 - 24. Murdock, D., Ensley, B. D., Serdar, C. and Thalen, M. (1993) Bio/Technology 11, 381-385.

25. O'Connor, ICE., Dobson, A-W. and Hartmans, S. (1997) Appl. Environ. Microbiol. 63, 4287–4291.26. Eaton, R. W. and Chapman, P. J. (1995) J Bacteriol. 177, 6983–6988.

.

. **3**.

SEQUENZPROTOKOLL

	<110	> BA	SF A	ktie	nges	ells	chaf	t [.]		,						•	
.5	<120	> In	digo	-pro	duzi	eren	de C	ytoc	hrom	P45	0 Mo	noxy	gena	sen-			
•	<130	> M/	4024	1.			•		•				•				
10	<140 <141			·									•		•	•	
	<160	> 9															:
15	<170	> Pa	tent	In V	er.	2.1			, ,	٠				•.			
	<210 <211	> 31						•									
20	<212 <213			us m	egat	eriu	m		·.			•	•			·	
		> CD		2150													·
25	<400	>· (4 > 1	7 • • ١	2120	•		•				•					,	
	atg	aca Thr			_	_		_			_						48
30		tta															96
•	Asn	Leu	Pro	Leu	Leu 20	neA	Thr	Asp	Lys	Pro 25	Val	Gln.	Ala	Leu	Met 30	Lys	
35	att Ile	gcg Ala	_	_			_										144
. 40	gta Val	acg _. Thr	_				_	_	_				_	_	_	_	192
45	_	tca Ser 65	_														240
50	_	ttt Phe	_		-					_							288
55		aaa Lys									· ·						336
60		aaa Lys															384
		aag Lys							Asp							gaa Glu	432
65																aac Asn	480

												•							
		145					150			٠.		155							
;		_			-			_	_	_		cat His			Ile		528		5
	_	_		-	_	. –	_	_	_	_		aag Lys	_			-	576		. 10
			_	_		_	•	_	_		_	cgc Arg	_			_	624		15
	_			-	_		-		-			att Ile					672		20
												acg Thr 235					720	·	
							_					gac Asp	_				768		25
												gaa Glu		_	_	ggt Gly	816		30
						_			•			aat Asn		_	Val		864	•	35
						_	_		_	_		gta Val			_		912		40
	_				_		_				-	ggc Gly 315	_			aac Asn	960		45
	_			_		_			_		-	ttt Phe					1008		50
		_	_	_	_	Leu			_		Pro	tta Leu	_			Asp	1056		
	_		_	-	Leu			_		His	-	gat Asp		_	Ile	tgg Trp	1104		55
				Val					Pro					Asn		agt Ser	1152		60
			Pro	_				Lys			-		Gly			gcg	1200		65

tgt atc ggt cag cag ttc gct ctt cat gaa gca acg ctg gta ctt ggt 1248

	Cys 400	Ile	Gly	Gln	Gln	Phe 405	Ala	Leu	His	Glu	Ala 410	Thr	Leu	Val	Leu	Gly 415	
5	_		cta Leu				_		Glu	_							1296
10	gat Asp				Thr												1344
15			tcg Ser 450						Gly								1392
20			tct Ser							_	_	-		_			1440
25			ctg Leu														1488
			cgt Arg	•			_		_		_	•			-	_	1536
30			gca Ala														. 1584
35	gct Ala	_			_	_	•						_		•		1632
. 40	_	-	caa Gln		_	_			_				_	_	_		1680
45			gtt Val													gct Ala 575	1728
50		_	tat Tyr					_			_	_	_		_	gct Ala	1776
55										Gly		_	_	_	_	gac Asp	1824
	-		-	Gly			•	_	Trp	_	_		_		_	gac Asp	1872
60		_	Ala													aaa Lys	1920
65		Thr					Phe	_	_	_	_	Ala	_	_	_	ctt Leu 655	1968

gcg. Ala		_			-	ttt Phe		_							_	2016	
						gca Ala						Leu			•	2064	
						tat Tyr									att Ile	2112	10
	_			_		ata Ile 710	_		_	_		-			ggc Gly	2160	15
	_	_		_		atc Ile	_	_	_	_	_	_	- •			2208	20
45		_			_	aaa Lys		•		•	_			_		2256	25
				Gln			-		=					Ala	atg Met	2304	30
_	_		_	_		_	_			_			_	_	ttg Leu	2352	35
•	_	_		_			_	-		-			_		aca Thr	2400	
Met 800	Leu	Glu	Leu	Leu	Glu 805	Lys	Tyr	Pro	Ala	Cys 810	Glu	Met	Lys	Phe	agc Ser 815	2448	40
Glu	Phe	Tle	Ala	Leu 820	Leu	Pro	Ser	Ile	Arg 825	Pro	Arg	Tyr	Tyr	Ser 830			45
Ser	Ser	Ser	Pro 835	Arg	Val	Asp	Glu	Lys 840	Gln	Ala	Ser	Ile	Thr 845	Val	agc Ser	2544	50
Val	Val	Ser 850	Gly	Glu	Ala	Trp	Ser 855	Gly	Tyr	Gly	Glu	Tyr 860	Lys	Gly	att	2592	55
	tcg														tgc Cys	2640	
	865		-			870	1				875					0.000	60
Phe 880	865 att	tcc Ser	aca Thr	ccg Pro	cag Gln 885	870 tca Ser	gaa Glu	Phe	Thr	890	cca Pro	aaa Lys	Asp	Pro	gaa Glu 895	2688 2736	60

			_	_		cgc Arg		_			_			_			2784
5 .		_	-			tac Tyr			-	_		Pro			- •	tat Tyr	2832
10	_			_		ctt Leu	_		•		_	_				_	2880
15						tct Ser 965		_			_	•				•	2928
20	_		_	_	_	caa Gln	-		_		_		•			•	2976
25				_		tat Tyr	_	Cys	_				Gln				3024
30	-	Val	_	_	-	ctt Leu	Met		_		_	Asp		_			3072
	Ser	•	_	_	_	cgc Arg				_	Gln		Glu	_		_	3120
35	_	Tyr	_		Asp	gtg Val 1045				taa							3150
40	<213 <213)> 2 l> 1(2> Pi	048 RT	lue r	nega:	teri			•							:	
45				ras 1	iie ga	Ferti	LAAUS	•									
)> 2 .Ile	Lys	Glu	Met 5	Pro	Gln	Pro	Lys	Thr 10	Phe	Gly	Glu	Leu	Lys 15	Asn	
50	Leu	Pro	Leu	Leu 20	Asn	Thr	Asp	Lys	Pro 25	Val	Gln	Ala	Leu	Met 30	_	Ile	
55	Ala	Asp	G1u 35		Gly	Glu	Ile	Phe 40	_	Phe	Glu	Ala	Pro 45	-	Arg	Val	
	Thr	Arg 50	-	Leu	Ser	Ser	Gln 55	•	Leu	.Ile	Lys	Glu 60		Cys	Asp	Glu	
60	65			-		70					75	_	٠,			Asp 80	
65			-	_	85	ı				90					95		
	Lys	Lys	Ala	His	Asn	Ile	Leu	Let	Pro	Ser	Phe	Se	Glr	ı Glr	Ala	a Met	

			100					105					110							
Lys	-	Tyr 115		Ala	Met	Met	Val 120	Asp	Ile	Ala	Val	Gln 125	Leu	Val	Gln	· · · · · · · · · · · · · · · · · · ·				5
Lys	Trp 130	Glu	Arg	Leu	Asn	Ala 135	Asp	Glü	His	Ile	Glu 140	Val	Pro.	Glu .	Asp					•
Met 145	Thr	Arg.	Leu	Thr	Leu 150	Asp	Thr	Ile	Gly	Leu 155	Cys	Gly	Phe-	Asn	Tyr 160					10
Arg	Phe	Asn	Ser	Phe 165	Tyr	Arg	Asp	Gln	Pro 170	His	Pro	Phe	Ile	Thr 175	Ser					15
Met	Val	Arg	Ala 180	Leu	Asp	Glu	Ala	Met 185	Asn	Lys	Leu	Gln	Arg 190	.Ala	Asn ·	· •			•	
Pro	Asp	Asp 195	Pro	Ala	Tyr	Asp	Glu 200	Asn	Lys	Arg	Gln	Phe 205	Gln	Glu	Asp					20
Ile	Lys 210	Val	Met	Asn	Asp	Leu 215	Val	Asp	Lys	Ile	Ile 220	Ala	Asp	Arg	Lys				•	25
Ala 225	Ser	Gly	Glu	Gln	Ser 230	Asp	Asp	Leu		Thr 235	•	Met	Leu	Asn	Gly 240					
Lys	Asp	Pro	Glu	Thr 245	Gly	Glu	Pro	Leu	Asp 250	Asp	Glu	Asn		Arg 255	Tyr		•			30
Gln	Ile	Ile	Thr 260	Phe	Leu	Ile	Ala	Gly 265	His	Glu	Thr		Ser 270	Gly	Leu					35
Leu	Ser	Phe 275	Ala	Leu	Tyr	Phe	Leu 280	Val	Lys	Asn	Pro	His 285		Leu	Gln					
Lys	Ala 290	Ala	Glu	Ģlu	Ala	Ala 295	Arg	Val	Leu	Val	Asp 300		Val	Pro	Ser				•	40
Tyr 305	_	Gln	Val	Lys	Gln 310		Lys	Tyr	Val	Gly 315	Met	Val	Leu	Asn	Glu 320					45
Ala	Leu	Arg	Leu	Trp 325		Thr	Ala	Pro	Ala 330		Ser	Leu	Tyr	Ala 335	Lys	•		-		
Glu	Asp	Thr	Val 340		Gly	Gly	Glu	Tyr 345		Leu	Glu	Lys	350		Glu		-		•	50
Lev	Met	Val 355		Ile	Pro	Gln	Leu 360		Arg	Asp	Lys	365		Trp	Gly					66
Asp	370		Glu	Glu	Phe	Arg 375		Glu	Arg	Phe	Glu 380		Pro	Ser	Ala					
11e 385		Gln	His	Ala	390		Pro) Phe	: Gly	Asn 395		, Glr	n Arg	Ala	400		· .	٠	·	60
110	e Gly	/ Gln	Gln	405		Lev	. His	s Glu	1 Ala 410		Let	ı Val	l Lev	415	Met			•		
Me	t Lei	ı Lys	420		e Asp	Ph€	e Glu	425	_	Thr	: Asi	ту:	r Glv 430	_	ı Asp	•				65
11	e Lys	s Glu	ı Thr	: Lei	a Thi	c Lei	ı Lys	s Pro	Glu	ı Gly	/ Pho	e Va	l Val	L Lys	s Ala					

			435				. •	440		•			445			
5	Lys	Ser 450	Lys	Lys	Ile	Pro	Leu 455	Gly	Gly	Ile	Pro	Ser 460	Pro	Ser	Thr	Glu
	Gln 465	Ser	Ala	Lys	Lys	Val 470	Arg	Lys	Lys	Ala	Glu 475	Asn	Ala	His	Asn	Thr 480
10	Pro	Leu	Leu		Leu 485	Tyr	Gly	Ser	Asn	Met 490	Gly	Thr	Ala	Glu	Gly 495	Thr
15	Ala	Arg	Asp	Leu 500	Ala	Asp	Ile	Ala	Met 505		Lys	G1y	Phe	Ala 510	Pro	Gln
	Val	Ala	Thr 515	Leu	Asp	Ser	His	Ala 520	Gly	Asn	Leu	Pro	Arg 525	Glu	Gly	Ala
20 .	Val	Leu 530	Ile	Val	Thr	Ala	Ser 535	Tyr	Asn	Gly	His	Pro 540	Pro	Asp	Asn	Ala
25	Lys 545	Gln	Phe	Val	Asp	Trp 550	Leu	Asp	Gln	Ala	Ser 555	Ala	Asp	Glu	Val	Lys 560
	Gly	Val	Arg	Tyr	Ser 565	Val	Phe	Gly	Cys	Gly 570	Asp	Lys _.	Asn	Trp	Ala 575	Thr
30	Thr	Tyr	Gln	Lys 580	Val	Pro	Ala	Phe	11e 585	Asp	Glu	Thr	Leu	Ala 590	Ala	Lys
35	_		595					600			Ala		605			
	Phe	Glu 610	Gjy	Thr	Tyr	Glu	Glu 615	Trp	Arg	Glu	His	Met 620	Trp	Ser	Asp	Val
40	Ala 625	Ala	Tyr	Phe	Asn	Leu 630	Asp	Ile	Glu	Asn	Ser 635	Glu	Asp	Asn	Lys	Ser 640
ΔĖ	•.			,	645			_	,	650		,			655	Ala
45				660					665			•		670		Leu
50			675					680			•		685			Leu
		690		•			695	•	_			700				Pro
55	705			•		710					715					120
60	•	. *			725					730					735	
				740					745					750	·	Tyr
65			755					760	1				765			Ala
	WT9	LVS	LUL	val	UV5	rIO	LIO	nlS	, LYS	val	ULU	したら	CIL	. mld	שבו	ı Leu

	770		·			775	. •				780		-						
Glu 785	Lys	Gln	Ala	Tyr	Lys 790	Glu	Gln	Val	Leu	Ala 795	Lys	Arg	Leu	Thr	Met 800	· · · · · · · · · · · · · · · · · · ·			5
Leu	Glu	Leu	Leu	Glu 805	Lys	Tyr	Pro		Cys 810	Glu	Met	Lys	Phe	Ser 815			· · · ·	•	
Phe	Ile	Ala	Leu 820	Leu	Pro	Ser	Ile	Arg 825	Pro	Arg	Tyr	Tyr	Ser 830	Ile	Ser				.10
Ser	Ser	Pro 835	Arg	Val	Asp	Glu	Lys 840	Gln	Ala	Ser	Ile	Thr 845		Ser	Val				15
Val	Ser 850	Gly	Glu	Ala	Trp	Ser 855	Gly	Tyr	Gly	Glu	Tyr 860	_	Gly	Ile	Ala			•	
Ser . 865	Asn	Tyr	Leu	Ala	Glu 870	Leu	Gln	Glu	Gly	Asp 875	Thr	Ile	Thr	Cys	Phe 880				20
Ile	Ser	Thr	Pro	Gln 885		Glu	Phe	Thr	Leu 890		Lys	Asp	•	Glu 895					25
Pro	Leu	Ile	Met 900		Gly	Pro	Gly	Thr 905	Gly	Val	Ala	Pro	Phe 910	_	Gly				
Phe	Val	Gln 915		Arg	Lys	Gln	Leu 920	ГÀЗ	Glu	Gln	Gly	Gln 925		Leu	Gly			•	30
Glu	Ala 930		Leu	Tyr	Phe	Gly 935	Суз	Arg	Ser	Pro	His 940		Asp	Tyr	Leu				
Tyr 945	Gln	Glu	Glu	Leu	Glu 950	Asn	Ala	Gln	Ser	Glu 955	Gly	Ile	Ile	Thr	Leu 960	٠.			. 35
His	Thr	Ala	Ь́ре	Ser 965	Arg	Met	Pro	neA	Gln 970		Lys	Thr	Tyr	Val 975	Gln				40
His	.Val	Met	Glu 980		Asp	Gly	Lys	Lys 985		Ile	Glu	Leu	Leu 990	_	Gln				
Gly	Ala	His 995		Tyr	Ile	-	Gly 1000	•	Gly	Ser		Met 1005	-	Pro	Ala				45
Va]	. Glu 1010		Thr	Leu		Lys 1015		Tyr	Ala	Asp	Val 1020		Gln	Val	. Ser				50
G1:		Asp	Ala		Leu 1030		Leu	Gln	Gln	Leu 1035		Glu	Lys	Gly	Arg 1040				
Tyı	: Ala	Lys	• -	Val 1045	_	Ala	Gly	•			٠				,	·	· · · · · · · · · · · · · · · · · · ·	·	. 55
	10> 3				-	·	-					•						•	60
<2	11> 3 12> C 13> K	AN	lich	ie Se	quen	ız													٠
_	20> 23> E	Besch	nreik	oung	der	küns	stlic	chen	Sequ	ienz:	PCF	R-Pri	imer						65

	<400> 3 gcaggagacg ggttgnnnac aagctggacg	30
5	<210> 4	•
. ,	<211> 30	
	<212> DNA	•
	<213> Künstliche Sequenz	
0		
	<220>	
	<223> Beschreibung der künstlichen Sequenz: PCR-Primer	
	<400> 4	
15	cgtccagctt gtnnncaacc cgtctcctgc	30.
	<210> 5	•
20	<211> 34	
	<212> DNA	.•
•	<213> Künstliche Sequenz	·
25	<220>	•
25	<223> Beschreibung der künstlichen Sequenz: PCR-Primer	
	<400> 5	
	gaagcaatga acaagnnnca gcgagcaaat ccag	34
	gaagaaaga aaaagiiiiida gagagaaaac aaag	; ;
30		
	<210> 6	
	<211> 30	
•	<212> DNA	
35	<213> Künstliche Sequenz	
•	4000	
	<220>	
	<223> Beschreibung der künstlichen Sequenz: PCR-Primer	
40	<400> 6.	
	ctggatttgc tcgctgnnnc ttgttcattg	30
	<210> 7	
45	<211> 41	
	<212> DNA	
	<213> Künstliche Sequenz	
	<220>	
50	<223> Beschreibung der künstlichen Sequenz: PCR-Primer	
	12237 Descritething det kunstittien bequenz. For-filmet	
	<400> 7	•
	gctttgataa aaacttaaag tcaannnctt aaatttgtac g	41
55		
	<210> 8	
	<211> 40	
	<212> DNA	
60	<213> Künstliche Sequenz	•
	<220>	
	<223> Beschreibung der künstlichen Sequenz: PCR-Primer	
65	400 8	
	<400> 8 cgtacaaatt taagnnnttg acttaagttt ttatcaaagc	40
	cycacaaace caayiiiiicey acceaayeee ecateaaaye	40

	<212	> 10 > PR	T	us n	negat	eriu	m		·								· · · · · ·			5
	<400 Met		Ile	Lys _.	Glu	Met	Pro	Gln	Pro-		Thr	Phe	Gly	Glu	Leu	Lys				
	1 Asn	Leu	Pro	Leu 20	Leu	Asn _.	Thr	Asp	Lys 25	Pro	Val	Gln	Ala	Leu 30	Met	Lys			•	10
	Ile	Ala	Asp 35		Leu	Gly	Glu	Ile 40		Lys	Phe	Glu _.	Ala 45		Gly	Arg				. 15
•	Val	Thr 50	Arg	Tyr	Leu	Ser	Ser 55	Gln	Arg	Leu	Ile	Lys 60	Glu	Ala	Cys	Asp				
•	Glu 65	Ser	Arg	Phe	Asp	Lys 70	Asn	Leu	Ser	Gln	Ala 75	Leu	Lys	Phe	Val	Arg 80				20
	Asp	Phe	Ala	Gly	Asp 85	Gly	Leu	Phe	Thr	Ser 90	Trp	Thr	His	Glu	Lys 95	Asn				25
	Trp	Lys	Lys	Ala 100	His	Asn	Ile	Leu	Leu 105	Pro	Ser	Phe	Ser	Gln 110	Gln	Ala	·.		· · .	
	Met	Lys	Gly 115	Tyr	His	Ala	Met	Met 120	Val	Asp	Ile	Ala	Val 125	Gln	Leu	Val				30
	Gln	Lys 130	Trp	Glu	Arg	Leu	Asn 135	Ala	Asp	Glu	His	Ile 140	Glu	Val	Pro	Glu		٠		3:
	145	·				Thr 150					155					160				•
	•		·		165					170			•		175				. •	
				180		Leu	-		185					190		_ . .				4:
•			195	_		Ala Asn	· · ·	200				·	205	.:						
	_	210	,			Gln	215	•		-	_	220			•				·	5
	225	•		· -		230 Thr					235					240	•			5
	_		_		245					250			•	٠,	255					
	Leu	Leu				Leu	Tyr	_				. Asn				Lev	1 .			
	Gln	_			a Glu	ı Glu				Val	Leu				val	l Pro	.			6
		290	•				295	١.				300	,							

	Ser 305	Tyr	Lys	Gln	Val	Lys 310	Gln-	Leu	Lys	Tyr	Val 315	Gly	Met [.]	Val	Leu	Asn 320
5	Glu	Ala	Leu	Arg	Leu 325	Trp	Pro	Thr	Ala	Pro 330	Ala	Phe	Ser	Leu	Tyr 335	Ala
	Lys	Glu	Asp	Thr 340	Val	Leu	Gly	Gly	Glu 345	Tyr	Pro	Leu	Glu	Lys 350	Gly	Asp
	Glu	Leu	Met 355	Val	Leu	Ile	Pro	Gln 360	Leu	His	Arg	Asp	Lys 365	Thr	Ile	Trp
15	Gly	Asp 370	Asp	Val	Glu	Glu	Phe 375	Arg	Pro	Glu	Arg	Phe 380	Glu	Asn	Pro	Ser
20	Ala 385	Ile	Pro	Gln	His	Ala 390	Phe	Lys	Pro	Phe	Gly 395	Asn	Gly	Gln	Arg	Ala 400
	Cys	Ile	Gly	Gln	Gln 405	Phe	Ala	Leu	His	Glu 410	Ala	Thr	Leu	Val	Leu 415	Gly
25	Met	Met	Leu	Lys 420	His	Phe	Asp	Phe	Glu 425	Asp	His	Thr	Asn	Tyr 430	Glu	Leu
30	Asp	Ile	Lys 435	Glu	Thr	Leu	Thr	Leu 440	Lys	Pro	Glu	Gly	Phe 445	Val	Val	Lys
		450	Ser				455		٠.		• .	460			٠	
35	465		Ser			470		-			475					480
٠.			Leu	•	485					490	•		•		495	. "
40			Arg	500					505	-	•	_		510		
45 ⁻	••		Ala 515		•			520		_	·		525		•	-
		530	Leu				535	•				540			_	
50	545		Gln Val			550					555			_		560
55			Tyr		565					570					575	
			Ala	580	_				585		_			590		
60	-		595 Glu					600		_			605			•
65	•	610	Ala		٠	_	615		_			620			·	_
	625		WT 0	* A T	- 11G	630		nap	~ + 5	JAU	· 635		010	. nap	11011	640

Ser	Thr	Leu	Ser	Leu 645	Gln	Phe	Val	Asp	Ser 650	Ala	Ala	Asp	Met	Pro 655	Leu					
Ala	Lys	Met.	His 660	Gly	Ala	Phe	Ser	Thr 665	Asn	Val	Val	Ala	Ser 670	Lys	Glu	· 		•		5
Leu	Gln	Gln 675	Pro	Gly	Ser	Ala	Arg 680	Ser	Thr	Arg	His	Leu 685	Glu	Ile	Glu					. 10
Leu	Pro 690	Lys	Glu	Ala	Ser	Tyr 695	Gln	Glu	Gly	Asp	His 700		Gly	Val	Ile			-		•
Pro 705	Arg	Asn	Tyr	Glu	Gly 710	Ile	Val	Asn	Arg	Val 715	Thr	Ala	Arg	Phe	Gly 720					15
Leu	Asp	Ala	Ser	Gln 725	Gln	Ile	Arg	Leu	Glu 730	Ala	Glu	.Glu	Glu	Lys 735	Leu					20
Ala	His	Leu	Pro 740	Leu	Ala	Lys	Thr	Val 745	Ser	Val	Glu	Glu	Leu 750	Leu	Gln					
		755			Asp		760			٠		765						-		25
•	770	• •	•		Cys	775	•	•			780					· .	•	f 1		30
785			÷	•	Tyr 790					795		-			800					-
				805	Glu		•		810	٠		•		815						35
	•		820		Leu			825					830							
		835			Val		840		-			845						. *		40
	850		•		Ala	855					860		-	_			•	•		4:
865					870 Gln		·			875					Cys 880					
				885	Val		•		890					895						5(
			900		Arg			905		_			910							5.
		915			Tyr		920					925		•			1	•	٠	
	930	•				935					940				Thr					6
945					950					955					960 Val			,		6
يها ټاسد	.,40	* 65.4	~ 4.A. CA	965	~~_	4	يا ناده		Dav Dau	9411	210	nya		7 17	ADT	•				

Gln His Val Met Glu Gln Asp Gly Lys Lys Leu Ile Glu Leu Leu Asp 980 985 990

5 Gln Gly Ala His Phe Tyr Ile Cys Gly Asp Gly Ser Gln Met Ala Pro 995 1000 1005

Ala Val Glu Ala Thr Leu Met Lys Ser Tyr Ala Asp Val His Gln Val 1010 1015 1020

Ser Glu Ala Asp Ala Arg Leu Trp Leu Gln Gln Leu Glu Glu Lys Gly 1025 1030 1035 1040

Arg Tyr Ala Lys Asp Val Trp Ala Gly
1045

Patentansprüche

- 1. Cytochrom P450 Monoxygenase, welche zur Oxidation N-heterocyclischer zwei- oder mehrkemiger aromatischer Verbindungen befähigt ist. (LÖSLICH)
 - 2. Monoxygenase nach Anspruch 1, deren Substrat-bindender Bereich durch ortsspezifische Mutagenese zur funktionalen Aufnahme des N-heterocyclischen Substrats befähigt ist.
 - 3. Monoxygenase nach Anspruch 1 oder 2, abgeleitet von Cytochrom P450 Monoxygenasen bakteriellen Ursprungs.
 - 4. Monoxygenase nach Anspruch 3, abgeleitet von Cytochrom P450 Monoxygenase BM-3 aus Bacillus megaterium mit einer Aminosäuresequenz gemäß SEQ ID NO: 2, welche wenigstens eine funktionelle Mutation in einem der Aminosäuresequenzbereiche 172–224, 39–43, 48–52, 67–70, 330–335, 352–356, 73–82 und 86–88 aufweist.
 - 5. Monoxygenase nach Anspruch 4, dadurch gekennzeichnet, daß sie wenigstens eine der folgenden ein- oder mehrfachen Aminosäuresubstitutionen aufweist:
 - a) Phe87Val;
 - b) Phe87Val, Leu188Gln; oder
 - c) Phe87Val, Leu188Gln, Ala74Gly;

sowie funktionale Äquivalente davon.

- 6. Nukleinsäuresequenz, kodierend für eine Monoxygenase nach einem der vorherigen Ansprüche.
- 7. Expressionskonstrukt, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine kodierende Sequenz, welche eine Nukleinsäuresequenz nach Anspruch 6 umfasst.
- 8. Vektor, umfassend wenigstens ein Expressionskonstrukt nach Anspruch 7.
- 9. Rekombinanter Mikroorganismus, transformiert mit wenigstens einem Vektor nach Anspruch 8.
- 10. Mikroorganismus nach Anspruch 9, ausgewählt unter Bakterien der Gattung Escherichia.
- 11. Verfahren zur mikrobiologischen Oxidation N-heterocyclischer zwei- oder mehrkerniger aromatischer Verbindungen, dadurch gekennzeichnet, daß man
 - a1) einen rekombinanten Mikroorganismus nach Anspruch 9 oder 10 in einem Kulturmedium, gegebenenfalls in Gegenwart eines Substrats, kultiviert; oder
 - a2) ein Substrat-haltiges Reaktionsmedium mit einem Enzym nach einem der Ansprüche 1 bis 5 inkubiert; und
 - b) das gebildete Oxidationsprodukt oder ein Folgeprodukt davon aus dem Medium isoliert.
- 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß man aus dem Medium das gebildete Indol und und/oder Indirubin isoliert.
- 13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß man die Indoloxidation durch Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff bei einer Kultivierungstemperatur von etwa 30 bis 40°C und einem pH-Wert von etwa 6 bis 9 kultiviert.
 - 14. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß man die Indoloxidation durch enzymatische Umsetzung eines Indol-haltiges Mediums bei einer Temperatur von etwa 30 bis 40°C und einem pH-Wert von etwa 6 bis 9 durchführt, wobei das Indol-haltige Medium außerdem bezogen auf Indol einen etwa 10- bis 100fachen molaren Überschuß an Reduktionsäquivalenten enthält.
 - 15. Bioreaktor, umfassend ein Enzym nach einem der Ansprüche 1 bis 5 oder einen rekombinanten Mikroorganismus nach einem der Ansprüche 9 oder 10 in immobilisierter Form.
- 16. Verwendung einer Cytochrom P450 Monoxygenase nach einem der Ansprüche 1 bis 5, eines Vektors nach Ansprüch 8, oder eines Mikroorganismus nach Ansprüch 9 oder 10 zur mikrobiologischen Oxidation N-heterocyclischer zwei- oder mehrkerniger aromatischer Verbindungen.
 - 17. Verwendung nach Anspruch 16 zur Herstellung von Indigo und/oder Indirubin.

65

10

20

25

30

35

40

45

50

55