

计算机图像处理

COMPUTER IMAGE PROCESSING

基本技术

- 游程长编码
 - 有效表征重复数据
- 量化技术
 - 标量量化
- DCT
 - 正交变换
 - 准最佳变换
 - 能量集中
 - 快速算法(8*8、4*4等)

- 差分编码
 - 去相关简单有效
- 熵编码
 - Huffman
 - 算术
 - Shannon—Fano
- 基于词典
 - LZW

基于DCT的静态图像编码 JPEG基础

准备工作

- 颜色空间转换
 - RGB VS YCbCr

$$R = 1.164*(Y-16)+1.596*(Cr-128)$$

 $G = 1.164*(Y-16)-0.392*(Cb-128)-0.813*(Cr-128)$
 $B = 1.164*(Y-16)+2.017*(Cb-128)$

8*8分块DCT变换

二维DCT变换

$$F(u,v) = \alpha_0 c(u,v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

$$u, v = 0, 1, \dots, N-1$$

$$f(x,y) = \alpha_1 \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} c(u,v) F(u,v) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

$$x, y = 0, 1, \cdots, N-1$$

$$c(u,v) = \begin{cases} 1/2 & u = v = 0 \\ 1/\sqrt{2} & uv = 0 \\ 1 & uv > 0 \end{cases}$$

$$\alpha_0 \alpha_1 = \frac{4}{N^2}$$

由于二维离散余弦变换的可分离性,二维DCT可以用一维DCT来实现

 -76
 -73
 -67
 -62
 -58
 -67
 -64
 -55

 -65
 -69
 -62
 -38
 -19
 -43
 -59
 -56

 -66
 -69
 -60
 -15
 16
 -24
 -62
 -55

 -65
 -70
 -57
 -6
 26
 -22
 -58
 -59

 -61
 -67
 -60
 -24
 -2
 -40
 -60
 -58

 -49
 -63
 -68
 -58
 -51
 -65
 -70
 -53

 -43
 -57
 -64
 -69
 -73
 -67
 -63
 -45

 -41
 -49
 -59
 -60
 -63
 -52
 -50
 -34

 -76
 -73
 -67
 -62
 -58
 -67
 -64
 -55

 -65
 -69
 -62
 -38
 -19
 -43
 -59
 -56

 -66
 -69
 -60
 -15
 16
 -24
 -62
 -55

 -65
 -70
 -57
 -6
 26
 -22
 -58
 -59

 -61
 -67
 -60
 -24
 -2
 -40
 -60
 -58

 -49
 -63
 -68
 -58
 -51
 -65
 -70
 -53

 -43
 -57
 -64
 -69
 -73
 -67
 -63
 -45

 -41
 -49
 -59
 -60
 -63
 -52
 -50
 -34

-415	-29	-62	25	55	-20	-1	3
7	-21	-62	9	11	-7	-6	6
-46	8	77	-25	-30	10	7	-5
-50	13	35	-15	-9	6	0	3
- 11	-8	-13	-2	-1	1	-4	1
-10	1	3	-3	-1	0	2	-1
-4	-1	2	-1	2	-3	1	-2
-1	-1	-1	-2	-1	-1	0	-1

标量量化

						_	_			_				
• -41	5 -2	9 -	-62		25	5	5	-20		-1		3		
• 7	-2	1 .	-62		9	- 1	1	-7		-6		6		
• -46	8		77	-2	25	-30		10	0	7		-5		
• -50	13	3	35	-1	5	-9		6		0		3		
• 1	1 -8		-13	-2		-1		-1		-4		1		
• -10	1		3	-3		-1		0		2		-1		
• -4	-1		2	-1		2		-3		-1		-2		
• -1	-1		-1	-2		-1		-1		0		-1		
	16 12	11	10 14	16	24		10		51	6				
	Y	/大	一	豊	的	星	里里	1		系	米女	文	表	
		35 64 92	78		81 103 112	1	04 21 00	1	13 20 03	9 10 9	2)1		(

Y的量化结果

DC系数: -26

AC系数: RLE编码

- 零游程的编码结果
- (0,-3),(0,1),(0,-3),(0,-2),(0,-6),(0,2),(0,-4),(0,1), (0,-4),(0,1),(0,1),(0,5),(1,2),(2,-1), (0,2),(5,-1), (0,-1),EOB
- (零游程长, AC值)

AC系数: 熵编码

- AC系数
 - (零游程长, AC值)
 - 零游程长0-F
 - AC值位数: 0 10位
- AC系数的另一种表示
 - (零游程长度,AC值的位数)+AC值尾数
 - $(0, 3) \rightarrow (0, 2) + 11B$
- Huffman码
 - (零游程长度, AC值的位数)
 - 码表长度 16*10+1(EOB)+1

游程长,位数	码字		(0,3),(0,1),(0,3),(0,-2),(0,-6),(0,2),
0,0	1010(EOB)		(0,4),(0,1),(0,-4),(0,1),(0,1),(0,5),
0,1	00	•	(1,2),(2,-1),(0,2),(5,-1),(0,-1),EoB
0,2	01	AC	• (0,3)->(游程长,位数)+尾数 = (0,2)+3
		系	•Huffman码: 01
0,A	101	数工	•尾数3: 11
1,1	1100	AC系数Huffman	•编码: 0111
1,2	11011	nan	• (2,-1)->(游程长,位数)+尾数 = (2,1)+ -1
1,3	1111001	码声	•H: 11100
	•••	码表(Y	•尾数-1: 1 -> 0
1,A	1001	分量)	•编码: 111000
2,1	11100	量)	
			• EOB: 1010
F,A	111111111111111	0	

DC系数	AC系数
-26	
	

DC系数	AC系数
-26	
-24	
·····	
	0/

DC系数	AC系数
-26	
-24	
-25	
······	

DC系数	AC系数
-26	
-24	
-25	
-27	

DC系数	-26	-24	-25	-27
差分		2	-1	-2

DC系数: 熵编码

- DC系数
 位数的范围0-11位
 位数 + 尾数
 - 位数 -> HUFFMAN码
 - HUFFMAN码 + 尾数
- DC = -26
 - 位数5位: 11010 (26)
 - HUFFMAN码:
 - 尾数:11010 求反:00101
- 最终编码
 - 110 + 00101 -> 11000101
- 同理
 - 2: 10010
 - -1:0110
 - -2: 10001

Huffmar	问表
DC位数	码字
0	010
1	011
2	100
3	00
4	101
5	110
6	1110
7	11110
8	111110
9	1111110

11111110

A

B

- Y分量
 - •所有8*8块的DC系数
 - •一个块的AC系数
- · 继续处理其他块的AC系数

- •与Y分量的处理过程相同
- •量化表、huffman表不同

