Graphs & Trees (Lecture – 3)

Dr. Nirnay Ghosh

Graph Representation (Contd...)

- Adjacency matrix for directed graph:
 - The matrix for a directed graph G = (V, E) has a 1 in its (i, j)th position if there is an edge from v_i to v_j , where v_1, v_2, \ldots, v_n is an arbitrary listing of the vertices of the directed graph.
 - The adjacency matrix for a directed graph does not have to be symmetric, because there may not be an edge from v_i to v_i when there is an edge from v_i to v_j
 - If **A** = [aij] is the adjacency matrix for the directed graph with respect to this listing of the vertices, then

$$a_{ij} = \begin{cases} 1 & \text{if } (v_i, v_j) \text{ is an edge of } G, \\ 0 & \text{otherwise.} \end{cases}$$

- Trade-off between Adjacency lists and Adjacency matrices:
 - Sparse graph: adjacency list
 - Dense graph: adjacency matrix
- Incidence matrix: Let G = (V, E) be an undirected graph. Suppose that v_1, v_2, \ldots , v_n are the vertices and e_1, e_2, \ldots, e_m are the edges of G. Then the incidence matrix with respect to this ordering of V and E is the $n \times m$ matrix $M = [m_{ij}]$, where

$$m_{ij} = \begin{cases} 1 & \text{when edge } e_j \text{ is incident with } v_i, \\ 0 & \text{otherwise.} \end{cases}$$

Isomorphism of Graphs

The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if f(a) and f(b) are adjacent in G_2 , for all a and b in V_1 . Such a function f is called an isomorphism.* Two simple graphs that are not isomorphic are called nonisomorphic.

- *-The word isomorphism comes from the Greek roots *isos* for "equal" and *morphe* for "form".
- If two simple graphs are isomorphic, there is a one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.
 - Determining whether two simple graphs are isomorphic?
 - Hard problem, as there can be n! possible one-to-one correspondence between two simple graphs with n vertices
 - Easier to show if the graphs are *not* isomorphic by checking the following attributes of the *graph invariant* property:
 - Same number of vertices
 - Same number of edges
 - Degrees of the vertices must be the same

Connectivity

• Path:

Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v in G is a sequence of n edges e_1, \ldots, e_n of G for which there exists a sequence $x_0 = u, x_1, \ldots, x_{n-1}, x_n = v$ of vertices such that e_i has, for $i = 1, \ldots, n$, the endpoints x_{i-1} and x_i . When the graph is simple, we denote this path by its vertex sequence x_0, x_1, \ldots, x_n (because listing these vertices uniquely determines the path). The path is a circuit if it begins and ends at the same vertex, that is, if u = v, and has length greater than zero. The path or circuit is said to $pass\ through$ the vertices $x_1, x_2, \ldots, x_{n-1}$ or traverse the edges e_1, e_2, \ldots, e_n . A path or circuit is simple if it does not contain the same edge more than once.

- Informally, a path is a sequence of edges that begins at a vertex of a graph and travels from vertex to vertex along edges of the graph.
- As the path travels along its edges, it visits the vertices along this path, that is, the endpoints of these edges.

Connectivity (Contd...)

Connectedness in Undirected Graphs

An undirected graph is called *connected* if there is a path between every pair of distinct vertices of the graph. An undirected graph that is not *connected* is called *disconnected*. We say that we *disconnect* a graph when we remove vertices or edges, or both, to produce a disconnected subgraph.

Connected and Disconnected Graph

• Theorem:

There is a simple path between every pair of distinct vertices of a connected undirected graph.

Connectivity (Contd...)

- Connected component
 - A connected component of a graph *G* is a connected subgraph of *G* that is not a proper subgraph of another connected subgraph of *G*.
 - It is a maximal connected subgraph of *G*.
 - A graph *G* that is not connected has two or more connected components that are disjoint and have *G* as their union.

FIGURE 3 The Graph H and Its Connected Components H₁, H₂, and H₃.

Connectivity (Contd...)

- How connected in a graph?
 - <u>Cut vertex</u>: removal of a cut vertex from a connected graph produces a subgraph that is not connected.
 - <u>Cut edge or bridge</u>: an edge whose removal produces a graph with more connected components than in the original graph.
 - Example: In a computer network, a cut vertex is an essential router and cut edge is an essential link that cannot fail for a computer network to be operational.
- **Vertex cut**: A subset V' of the vertex set V of G = (V, E) is a vertex cut, or separating set, if G V' is disconnected.
 - For complete graph, no minimum vertex cut exist.
 - *Vertex connectivity* of a noncomplete graph G, denoted by K(G), is the minimum number of vertices in a *vertex cut*