

Computer Engineering Design

CSE 308 – California State University, San Bernardino – CSUSB , Dr. Fadi Muheidat

Photoresistor (LDR/Photocell) Interfacing to Raspberry Pi

Lab Schedule

Activities

- **7** This Week
 - Interfacing Sensor to Raspberry Pi
 - Python data manipulation and visualization

Assignments Due

- 7 Lab 2
 - Demo: Tueday 18th11:00am
 - Report: Monday 24th 11:50 pm

Photoresistor

- **→ LDR:** Light Dependent Resistors
 - Photocells are sensors that allow you to detect light.
 - measure the light intensity
 - They are basically a resistor that changes its resistive value (in ohms Ω) depending on how much light is shining onto the squiggly face.
 - High resistance in the dark (M Ω), low resistance when exposed to light (Ω)
 - Sensitivity varies with the wavelength of the light

Photoresistor: eBoot Model GM5539 source: Amazon.com

Model	5539	
Maximum voltage VDC	150	
Maximum power consumption mw	100	
Ambient temperature °C	-30°C- +70°C	
Spectral peak nm	540	
Bright resistance(10Lux) ΚΩ	50-100	
Dark resistance MΩ	5	
100 γ10	0.8	
Performances and Features	Coated with epoxy Good reliability Small volume High sensitivity Quick response Good spectrum characteristic	
Range of application	Camera auto metering Photoelectric control Indoor light control Alarm industrial control Light control switch Light control lights electronic toy	

What is LUX

- to indicate the resistance at certain light levels. But whatis lux?
- The **lux** (symbol: **lx**) is the <u>SI derived unit</u> of <u>illuminance</u>, measuring <u>luminous flux</u> per unit area. [1][2] It is equal to one <u>lumen</u> per square metre. In <u>photometry</u>, this is used as a measure of the intensity, as perceived by the human eye, of <u>light</u> that hits or passes through a surface.

Illuminance	Example		
0.002 lux	Moonless clear night sky		
0.2 lux	Design minimum for emergency lighting (AS2293).		
0.27 - 1 lux	Full moon on a clear night		
3.4 lux	Dark limit of civil twilight under a clear sky		
50 lux	Family living room		
80 lux	Hallway/toilet		
100 lux	Very dark overcast day		
300 - 500 lux	Sunrise or sunset on a clear day. Well-lit office area.		
1,000 lux	Overcast day; typical TV studio lighting		
10,000 - 25,000 lux	Full daylight (not direct sun)		
32,000 -130,000 lux	Direct sunlight		

Measuring Light

Resistance vs. Illumination

a photocell's resistance changes as the face is exposed to more light. When its dark, the sensor looks like an large resistor up to $10M\Omega$, as the light level increases, the resistance goes down.

Measuring Light

Relative Spectral Response

Photocells, particularly the common CdS cells that you're likely to find, are not sensitive to all light. In particular they tend to be sensitive to light between 700nm (red) and 500nm (green) light.

Using the Photocell/Photoresistor/LDR

- How to determine that the LDR works ?
- Analog Voltage Reading Method
 - Pulldown Resistor: R=10 KΩ

Ambient Light (Lux)	LDR(Ω)	Current through both Resistors	Voltage V _{out}
Dim hallway (0.1 LUX)	600ΚΩ	0.008 mA . Why?	0.08V, why?
Dark room (10 LUX)	10 ΚΩ		
Dark overcast day / Bright room (100 LUX)	1.5 ΚΩ		
Overcast day (1000 lux)	300 Ω		

Using the Photocell/Photoresistor/LDR

- How to determine that the LDR works ?
- Analog Voltage Reading Method
 - \nearrow Pulldown Resistor: R=1 K Ω

Ambient Light (Lux)	LDR(Ω)	Current through both Resistors	Voltage V _{out}
Moonlit night(1 LUX)	70ΚΩ	0.07 mA	0.1 V
Dark room (10 LUX)	10 ΚΩ	0.45 mA	0.5 V
Dark overcast day / Bright room (100 LUX)	1.5 ΚΩ	2 mA	2.0 V
Overcast day (1000 lux)	300 Ω	3.8 mA	0.8 V
Full daylight(10,000 lux)	100 Ω	4.5 mA	4.5 V

- You can also use the "Axel Benz" formula by first measuring the minimum and maximum resistance value with the multimeter and then finding the resistor value with: **Pull-Down-Resistor = squareroot(Rmin * Rmax)**, this will give you slightly better range calculations.
- Vo = Vcc (R / (R + Photocell))

Ambient light like	Ambient light (lux)	Photocell resistance (?)	LDR + R (?)	Current thru LDR+R	Voltage across R
Moonlit night	1 lux	70 ΚΩ	71 KΩ	0.07 mA	0.1 V
Dark room	10 lux	10 ΚΩ	11 KΩ	0.45 mA	0.5 V
Dark overcast day / Bright room	100 lux	1.5 ΚΩ	2.5 ΚΩ	2 mA	2.0 V
Overcast day	1000 lux	300 Ω	1.3 KΩ	3.8 mA	3.8 V
Full daylight	10,000 lux	100 Ω	1.1 ΚΩ	4.5 mA	4.5 V

Extra

Pull-up, Pull-down

LDR

