

Fundamentação teórica dos modelos multinível

Modelagem multinível com dados agrupados e com medidas repetidas

Estimação de modelos multinível no R

Prof. Dr. Luiz Paulo Fávero

"Diferentes pesquisadores, a partir de uma mesma base de dados, podem estimar diferentes modelos e, consequentemente, obter diferentes valores previstos do fenômeno em estudo. O objetivo é estimar modelos que, embora simplificações da realidade, apresentem a melhor aderência possível entre os valores reais e os valores previstos".

Silberzahn, R.; Uhlmann, E. L. Many hands make tight work. **Nature**, v. 526, p. 189-191, Out 2015.

ANÁLISE DE DADOS

Técnicas Exploratórias

Análise de Conglomerados

Componentes Principais

Análise de Correspondência

Análise de Dados

Técnicas Confirmatórias

Modelos Lineares Generalizados (*GLM*)

Modelos Lineares Generalizados Multinível (*GLLAMM*)

ANÁLISE DE DADOS

O QUE SÃO MODELOS MULTIÍVEL?

São modelos que reconhecem a existência de estrutura multinível ou agrupada nos dados.

Hierarchical linear models: applications and data analysis methods. 2. ed. Thousand Oaks: Sage Publications, 2002.

Stephen W. Raudenbush *University of Chicago*

Anthony S. Bryk Stanford University

ESTRUTURA MULTINÍVEL

$$Y_{i1} = \beta_{01} + \beta_{11}.X_{i1} + r_{i1}$$

$$Y_{i2} = \beta_{02} + \beta_{12}.X_{i2} + r_{i2}$$

$$Y_{i3} = \beta_{03} + \beta_{13}.X_{i3} + r_{i3}$$

$$Y_{i4} = \beta_{04} + \beta_{14}.X_{i4} + r_{i4}$$

Nível 1
$$Y_{ij} = \beta_{0\,j} + \beta_{1\,j}.X_{ij} + r_{ij}$$
 Nível 2
$$\beta_{0\,j} = \gamma_{00} + \gamma_{01}.W_j + u_{0\,j} \qquad \beta_{1\,j} = \gamma_{10} + \gamma_{11}.W_j + u_{1\,j}$$

$$Y_{ij} = \underbrace{\left(\gamma_{00} + \gamma_{01}.W_j + u_{0\,j}\right)}_{\text{intercepto com efeitos aleatórios}} + \underbrace{\left(\gamma_{10} + \gamma_{11}.W_j + u_{1\,j}\right)}_{\text{inclinação com efeitos aleatórios}}.X_{ij} + r_{ij}$$

inclinação com efeitos aleatórios

$$Y_{ij} = \underbrace{\gamma_{00} + \gamma_{10}.X_{ij} + \gamma_{01}.W_j + \gamma_1}_{\textbf{Efeitos Fixos}} + \underbrace{u_{0j} + u_{1j}.X_{ij} + r_{ij}}_{\textbf{Efeitos Aleatorios}}$$

 Os modelos tradicionais de regressão ignoram as interações entre variáveis no componente de efeitos fixos e as interações entre termos de erro e variáveis no componente de efeitos aleatórios.

Multilevel statistical models. 4. ed. Chichester: John Wiley & Sons, 2011.

Harvey Goldstein Centre for Multilevel Modelling University of Bristol

VARIÂNCIA DOS TERMOS ALEATÓRIOS

- Se as variâncias dos termos aleatórios u_{0j} e u_{1j} forem estatisticamente diferentes de zero, procedimentos tradicionais de estimação dos parâmetros do modelo, como mínimos quadrados ordinários, não serão adequados.

Using multivariate statistics. 6. ed. Boston: Pearson, 2013.

Barbara G. Tabachnick California State University

PRINCIPAIS VANTAGENS DOS MODELOS MULTINÍVEL SOBRE OS MODELOS TRADICIONAIS

- Apenas a inserção de *dummies* de grupo não capturaria os efeitos contextuais, visto que não permitiria que se separassem os efeitos observáveis dos não observáveis sobre a variável de desempenho.

Multilevel and longitudinal modeling using Stata. 3. ed. College Station: Stata Press, 2012.

Sophia Rabe-Hesketh U. C. Berkeley

Anders Skrondal Norwegian Institute of Public Health University of Oslo U. C. Berkeley

POR QUE UTILIZAR MODELAGEM MULTINÍVEL?

Os modelos multinível permitem, portanto, o desenvolvimento de novos e mais complexos constructos de pesquisa.

"Dentro de uma estrutura de modelo com equação única, parece não haver uma conexão entre indivíduos e a sociedade em que vivem. Neste sentido, o uso de equações em níveis permite que o pesquisador 'pule' de uma ciência a outra: alunos e escolas, famílias e bairros, firmas e países. Ignorar esta relação significa elaborar análises incorretas sobre o comportamento dos indivíduos e, igualmente, sobre os comportamentos dos grupos. Somente o reconhecimento destas recíprocas influências permite a análise correta dos fenômenos."

Methodology and epistemology of multilevel analysis. London: Kluwer Academic Publishers, 2003. Daniel Courgeau Institut National D´Études Démographiques

APLICAÇÕES DE MODELAGEM MULTINÍVEL

Strategic Management

Periódico	Ranking Google Scholar (Índice h5)	GLLAMM	% / Modelos Confirmatórios
Academy of Management Journal	1	22	10,78%
Journal of Management	2	15	12,71%
Strategic Management Journal	3	33	14,04%
Organization Science	4	22	12,15%
Management Science	5	20	11,83%
Journal of Management Studies	6	6	3,75%
Journal of Business Research	7	13	6,88%
Journal of Business Venturing	8	10	4,59%
Academy of Management Review	9	22	8,15%
Journal of Marketing	10	18	8,57%
		Média	9,26%

APLICAÇÕES DE MODELAGEM MULTINÍVEL

Finance

Periódico	Ranking Google Scholar (Índice h5)	GLLAMM	% / Modelos Confirmatórios
Journal of Financial Economics	1	15	4,78%
The Journal of Finance	2	12	3,56%
Review of Financial Studies	3	13	6,22%
Journal of Banking & Finance	4	10	4,83%
Journal of Accounting and Economics	5	8	3,42%
European Central Bank Working Paper Series	6	5	2,53%
Journal of Financial and Quantitative Analysis	7	15	8,24%
Finance Research Letters	8	7	3,54%
Journal of Corporate Finance	9	7	2,89%
Journal of International Money and Finance	10	7	3,38%
		Média	4,28%

APLICAÇÕES DE MODELAGEM MULTINÍVEL

Accounting & Taxation

Periódico	Ranking Google Scholar (Índice h5)	GLLAMM	% Total / Modelos Confirmatórios
The Accounting Review	1	8	1,97%
Journal of Accounting and Economics	2	9	2,34%
Journal of Accounting Research	3	9	2,41%
Contemporary Accounting Research	4	8	2,75%
Accounting, Organizations and Society	5	3	0,98%
Review of Accounting Studies	6	6	1,75%
Accounting, Auditing & Accountability Journal	7	2	0,73%
AUDITING: A Journal of Practice & Theory	8	1	0,45%
Journal of Accounting and Public Policy	9	1	0,43%
Management Accounting Research	10	5	2,34%
		Média	1,70%

MAS QUAL A RAZÃO?

- Estrutura dos dados.
- Não consideração de natureza multinível nos dados.
- Capacidade computacional por vezes insuficiente,
 principalmente quando da existência de interações profundas.

Multilevel network analysis for the social sciences: theory, methods and applications. New York: Springer, 2016.

Emmanuel Lazega Institut d'Études Politiques de Paris

Tom Snijders University of Oxford

Short, J. C., Ketchen, D. J., Bennett, N., du Toit, M.

An examination of firm, industry, and time effects on performance using random coefficients modeling. **Organizational Research Methods**, v. 9, n. 3, p. 259-284, 2006.

- Compustat Global;
- 2.802 empresas;
- 348 setores;
- período: 1995-2001;
- -15.958 observações.

H₁: Existe variância significativa no desempenho (ROA) de firmas provenientes de um mesmo setor e provenientes de setores distintos.

H₂: A liquidez corrente das firmas é estatisticamente significante para explicar a variação no desempenho, e existem diferenças entre firmas provenientes de setores distintos.

H₁: Existe variância significativa no desempenho (ROA) de firmas provenientes de um mesmo setor e provenientes de setores distintos.

Modelo Nulo

Nível 1
$$ROA_{ij} = \beta_{0j} + r_{ij}$$
 Nível 2
$$\beta_{0j} = \gamma_{00} + u_{0j}$$

$$ROA_{ij} = \gamma_{00} + u_{0j} + r_{ij}$$

H₁: Existe variância significativa no desempenho (ROA) de firmas provenientes de um mesmo setor e provenientes de setores distintos.

Fixed Effect	Coefficient	SE	t
Average ROA (γ_{00})	-19.20*	2.35	-8.18
Random Effect	Variance	d٤	2,2
Kandom Enect	Component	df	χ^2
Firm variation (r_{ij})	4,015.07*	2,454	9,671.99
Industry variation (u_{0j})	741.94*	347	838.63
Variance Decomposition	% by Level		
Level 1 (firm)	84.40		
Level 2 (industry)	15.60		
* : 0.04		_	

^{*} sig. < 0.01.

H₂: A liquidez corrente das firmas é estatisticamente significante para explicar a variação no desempenho, e existem diferenças entre firmas provenientes de setores distintos.

Modelo com Interceptos e Inclinações Aleatórias

Nível 1
$$\left\{ \begin{array}{c} ROA_{ij} = \beta_{0\,j} + \beta_{1\,j}. \text{(Current Ratio)}_{ij} + r_{ij} \\ \\ \beta_{0\,j} = \gamma_{00} + u_{0\,j} \\ \\ \beta_{1\,j} = \gamma_{10} + u_{1\,j} \end{array} \right.$$

Fixed Effect	Coefficient	SE	t
Average ROA (γ_{00})	-21.79*	3.43	-6.36
Current ratio main effect (γ_{10})	1.43*	0.40	3.56
Random Effect	Variance	df	χ.²
Mandom Enect	Component	иј	λ
Level 1			
Firm variation ($r_{ m ij}$)	6,532.42*	2.406	8,248.07
Level 2			
Industry variation - intercept (u_{0j})	873.88*	346	646.04
Industry variation - slope (u_{1j})	7.79*	346	356.73

^{*} sig. < 0.01.

Rajan, R.G.; Zingales, L.

What do we know about capital structure? Some evidence from international data.

Journal of Finance, v. 50-5, p. 1421-1460, 1995.

- Compustat Global e MSCI;

- 4.557 empresas;

- 7 países;

- período: 1987-1991.

Country	Local Market Index	Number of Firms
United States	S&P 500	2.583
Japan	Nikkei 500	514
Germany	FAZ Share Index	191
France	CAC General Index	225
Italy	MIB Current Index	118
United Kingdom	FT 500	608
Canada	TSE 300	318

Leverage_i =
$$\beta_0 + \beta_1$$
. (Tangible Assets)_i + β_2 . (Market to Book)_i
+ β_3 . (Log Sales)_i + β_4 . (ROA)_i + r_i

Rajan, R.G.; Zingales, L.

What do we know about capital structure? Some evidence from international data.

Journal of Finance, v. 50-5, p. 1421-1460, 1995.

leverage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval
: :ang_assets	.371405	. 0525896	7.06	0.000	.2683046	.474505
narket_book	1081544	.0155978	-6.93	0.000	1387335	077575
logsale	.0383391	.0105106	3.65	0.000	.0177333	.058944
roa	8269376	.2249839	-3.68	0.000	-1.268012	385862
cons	-1.728685	.265876	-6.50	0.000	-2.249927	-1.20744

Leverage_i =
$$\beta_0 + \beta_1$$
. (Tangible Assets)_i + β_2 . (Market to Book)_i
+ β_3 . (Log Sales)_i + β_4 . (ROA)_i + r_i

Nível 1
$$\begin{cases} Leverage_{ij} = \beta_{0j} + \beta_{1j}. (Tangible \ Assets)_{ij} + \beta_{2j}. (Market \ to \ Book)_{ij} \\ + \beta_{3j}. (Log \ Sales)_{ij} + \beta_{4j}. (ROA)_{ij} + r_{ij} \end{cases}$$
Nível 2
$$\begin{cases} \beta_{0j} = \gamma_{00} + u_{0j} & \beta_{1j} = \gamma_{10} + u_{1j} \\ \beta_{3j} = \gamma_{30} + u_{3j} & \beta_{4j} = \gamma_{40} + u_{4j} \end{cases}$$

Std.	Err.	Z	P> z	[95% Conf.	Interval]
.04	 9087	7.05	0.000	.2500589	.4424765
.014	3289	-4.48	0.000	0922322	036064
.009	8784	3.58	0.000	.0160185	.0547413
.207	1899	-3.73	0.000	-1.179085	366915
.79	5045	-0.77	0.439	-2.173594	.9429252
+					
1					
 	4.33e-	13 7	.82e-14	1.83e-28	1021.785
 	4.33e-3	13 7. 04 .(.82e-14 0030879	1.83e-28 .002262	1021.785 .0341598
	4.33e-	13 7 04 .0	.82e-14 0030879 .33e-09	1.83e-28	1021.785 .0341598 .00003
	4.33e-3 .008796	13 7 04 .0 06 5 24 4	.82e-14 0030879 .33e-09	1.83e-28 .002262 1.96e-06 3.37015	1021.78 .034159 .0000 34.8745
	.04 .014 .009 .207 .79	.049087 .0143289 .0098784 .2071899 .795045	.049087 7.05 .0143289 -4.48 .0098784 3.58 .2071899 -3.73 .795045 -0.77	.049087 7.05 0.000 .0143289 -4.48 0.000 .0098784 3.58 0.000 .2071899 -3.73 0.000 .795045 -0.77 0.439	.0143289 -4.48 0.0000922322 .0098784 3.58 0.000 .0160185 .2071899 -3.73 0.000 -1.179085 .795045 -0.77 0.439 -2.173594

CONTRIBUIÇÃO PARA O ESTUDO DO DESEMPENHO DE FIRMAS

Rajan, R.G.; Zingales, L. What do we know about capital structure? Some evidence from international data. **Journal of Finance**, v. 50-5, p. 1421-1460, 1995.

ESTRUTURA ANINHADA DE DADOS COM MEDIDAS REPETIDAS EM TRÊS NÍVEIS

ESTRUTURA DO BANCO DE DADOS (HLM3)

•	country [‡]	pais [‡]	firma [‡]	roa ‡	ano [‡]	capital [‡]	educpesq [‡]
1	Argentina	2	1	3.540000	1	1	2
2	Argentina	2	1	4.440000	2	1	2
3	Argentina	2	1	4.640000	3	1	2
4	Argentina	2	1	5.240000	4	1	2
5	Argentina	2	2	7.490000	1	1	2
6	Argentina	2	2	7.590000	2	1	2
7	Argentina	2	2	7.790000	3	1	2
8	Argentina	2	2	7.990000	4	1	2
9	Argentina	2	3	8.670000	1	0	2
10	Argentina	2	3	9.170000	2	0	2
11	Argentina	2	3	9.770000	3	0	2
12	Argentina	2	3	10.000000	4	0	2
13	Argentina	2	4	5.370000	1	0	2
14	Argentina	2	4	5.470000	2	0	2
15	Argentina	2	4	5.470000	3	0	2
16	Argentina	2	4	5.670000	4	0	2
17	Argentina	2	5	7.970000	1	0	2
18	Argentina	2	5	8.670000	2	0	2
19	Argentina	2	5	9.170000	3	0	2
20	Argentina	2	5	9.969999	4	0	2

MODELAGEM HLM3 EM


```
Base de dados: desempenho.rdata
attach(desempenho)
prop.table(table(ano))
tapply(roa,ano,mean)
plot(ano, roa)
library(lattice)
xyplot(roa ~ ano, data = desempenho,
type=c("p","q","r"),col="black",col.line="darkgray",
       xlab="Período de Monitoramento (1 a 4)",
                                                                               Período de Monitoramento (1 a 4)
       ylab="ROA")
xyplot(roa ~ ano|as.factor(country),data =
desempenho[1:2440.].
       type=c("p","g","r"),col="dark
blue", col.line="black",
       main="Evolução Anual do ROA por País",
       xlab="Período",
       ylab="ROA")
```

MODELAGEM HLM3 EM 😱

Base de dados: desempenho.rdata

```
library(ggplot2)
ggplot(desempenho, aes(x = ano, y = roa, color = as.factor(country))) +
  geom_point() + geom_smooth(method = "lm")
newdata <- desempenho[ which(desempenho$firma <=50), ]</pre>
p <- ggplot(newdata, aes(ano, roa, group=firma, colour=firma)) +</pre>
  geom_line(size=1)
p <- p + geom_point()</pre>
p <- ggplotly(p)</pre>
```

MODELAGEM HLM3 EM 😱

Modelo Nulo

$$ROA_{tjk} = \pi_{0jk} + e_{tjk}$$

$$\pi_{0jk} = b_{00k} + r_{0jk}$$

$$b_{00k} = \gamma_{000} + u_{00k}$$

$$ROA_{tjk} = \gamma_{000} + u_{00k} + r_{0jk} + e_{tjk}$$

MODELAGEM HLM3 EM ()

Modelo de Tendência Linear com Interceptos Aleatórios

$$ROA_{tjk} = \pi_{0jk} + \pi_{1jk}.ano_{jk} + e_{tjk}$$

$$\pi_{0jk} = b_{00k} + r_{0jk}$$

$$\pi_{1jk} = b_{10k}$$

$$b_{00k} = \gamma_{000} + u_{00k}$$

$$b_{10k} = \gamma_{100}$$

$$ROA_{tjk} = \gamma_{000} + \gamma_{100}.ano_{jk} + u_{00k} + r_{0jk} + e_{tjk}$$
 modelointerceptaleat <- lmer(roa ~ ano + (1 | country) + (1 | firma), data = desempenho, REML = T)

MODELAGEM HLM3 EM (R)

Modelo de Tendência Linear com Interceptos e Inclinações Aleatórias

$$ROA_{tjk} = \pi_{0jk} + \pi_{1jk}.ano_{jk} + e_{tjk}$$

$$\pi_{0jk} = b_{00k} + r_{0jk}$$

$$\pi_{1jk} = b_{10k} + r_{1jk}$$

$$b_{00k} = \gamma_{000} + u_{00k}$$

$$b_{10k} = \gamma_{100} + u_{10k}$$

$$ROA_{tjk} = \gamma_{000} + \gamma_{100}.ano_{jk} + u_{00k} + u_{10k}.ano_{jk} + r_{0jk} + r_{1jk}.ano_{jk} + e_{tjk}$$

MODELAGEM HLM3 EM ()

Modelo de Tendência Linear com Interceptos e Inclinações Aleatórias e as Variáveis *capital* de Nível 2 e *educpesq* de Nível 3 (Modelo Completo)

$$ROA_{tjk} = \pi_{0jk} + \pi_{1jk}.ano_{jk} + e_{tjk}$$

 $\pi_{0jk} = b_{00k} + b_{01k}.capital_{jk} + r_{0jk}$
 $\pi_{1jk} = b_{10k} + b_{11k}.capital_{jk} + r_{1jk}$
 $b_{00k} = \gamma_{000} + \gamma_{001}.educpesq_k + u_{00k}$
 $b_{01k} = \gamma_{010}$
 $b_{10k} = \gamma_{100} + \gamma_{101}.educpesq_k + u_{10k}$
 $b_{11k} = \gamma_{110}$

$$ROA_{tjk} = \gamma_{000} + \gamma_{100}.ano_{jk} + \gamma_{010}.capital_{jk} + \gamma_{001}.educpesq_k + \gamma_{110}.capital_{jk}.ano_{jk} + \gamma_{101}.educpesq_k.ano_{jk} + u_{00k} + u_{10k}.ano_{jk} + r_{0jk} + r_{1jk}.ano_{jk} + e_{tjk}$$

MODELAGEM HLM3 EM ()

Modelo de Tendência Linear com Interceptos e Inclinações Aleatórias e as Variáveis *capital* de Nível 2 e *educpesq* de Nível 3 (Modelo Completo)

u0 <- ranef(modelocompleto_lme4)</pre>

u0

MODELAGEM HLM3 EM 😱

```
# GRÁFICO PARA COMPARAR FITTED VALUES DOS MODELOS HLM E GLM COM A RETA A 45°
desempenho$fitmodelocompleto <- modelocompleto$fitted</pre>
desempenho$fitqlm <- modelocompleto_qlm$fitted</pre>
plot(roa ~ fitted(modelocompleto), xlim=c(0,10), ylim=c(0,10), col = "darkblue")
points(desempenho$fitglm, roa, col = "magenta3", pch = 1)
lines(roa, roa, col="gray90")
legend("topleft",
       horiz = TRUE.
       legend = c("OLS", "HLM3"),
       col = c("magenta3", "darkblue"),
       pch = c(16, 16)
```

MODELAGEM HLM3 EM

DESAFIOS ATUAIS EM MODELAGEM MULTINÍVEL

REFERÊNCIAS BIBLIOGRÁFICAS PRINCIPAIS

CAMERON, A. C.; TRIVEDI, P. K. **Microeconometrics using Stata.** Revised edition. College Station: Stata Press, 2010.

COURGEAU, D. **Methodology and epistemology of multilevel analysis.** London: Kluwer Academic Publishers, 2003.

FÁVERO, L. P.; BELFIORE, P. Manual de análise de dados. Rio de Janeiro: Elsevier, 2017.

FÁVERO, L. P.; BELFIORE, P. **Data science for business and decision making.** Cambridge: Academic Press Elsevier, 2019.

LAZEGA, E.; SNIJDERS, T. **Multilevel network analysis for the social sciences:** theory, methods and applications. New York: Springer, 2016.

RABE-HESKETH, S.; SKRONDAL, A. Multilevel and longitudinal modeling using Stata. College Station: Stata Press, 2012.

MENSAGEM MULTINÍVEL

