單一母體平均值檢定

Notes-Tests-no-means-and-variances

- 2 單一母體平均值檢定
- 理論基礎簡述
 - \triangleright 虚無假設為 \rightarrow H_0 : $\mu = 10$ (對立假設按單雙尾有不同寫法)
 - D 檢定統計量為 $\rightarrow t = \frac{\bar{X} 10}{\frac{S}{\sqrt{n}}} \sim t_{(n-1)}$,它遵循一個自由度為 n-1 的 t 分配

EX_1:銀行客戶的等候時間

例題 1:銀行客戶的等候時間

銀行經理懷疑客戶平均等候時間大於 10 分鐘,因而設立虛無假設和對立假設為:

 $H_0: \mu = 10 \text{ (or } \mu \le 10)$

 $H_1: \mu > 10$

銀行經理設定顯著水準 $\alpha = 0.05$ 。(傳統法才需先決定 α , p-value 法則不用)

EX_1:銀行客戶的等候時間

根據 $\alpha = 0.05$,此次假設檢定的拒絕域為 t > 1.860。(此為單尾檢定,此處 1.860 就是臨界值,可由查表得知 \rightarrow 聯想:法官選的 5 億為臨界值。)

銀行經理隨機抽取 9 位客戶,並記錄客戶的等候時間如下:

(注意: 現在才完成抽樣,決定是那 9 個客戶被抽到,這時 t 統計量就針對這組樣本的是一個數值了 \rightarrow 聯想: Y 統計量是針對某甲的數值為 7 億)

經計算 $\bar{X} = 11.1889$,S = 2.4441,可得 (針對這組樣本的)t 統計量的值為

$$t = \frac{\bar{X} - 10}{\frac{S}{\sqrt{9}}} \sim t_{(8)} \qquad t = \frac{11.1889 - 10}{\frac{2.4441}{\sqrt{9}}} = 1.4593$$

因 1.4593 < 1.860, 檢定統計量的值並未落在拒絕域內,所以,在 0.05 的顯著水準下,不拒絕虛無假設,也就是說,在 0.05 的顯著水準下,根據此 9 位客戶的等候時間,並沒有充分證據顯示銀行客戶(指母體,所有銀行客戶)平均等候時間大於 10 分鐘。

EX_1:銀行客戶的等候時間_Python

例題1.銀行客戶的等候時間

```
In [34]: #呼叫統計套件
#scipy.stats版本 1.6.0
from scipy import stats

#輸入資料
dat = [ 9.8, 7.4, 8.3, 12.5, 10.2, 13.2, 15.0, 12.0, 12.3]

#檢定是否平均數為10
scipy.stats.ttest_1samp(dat, 10, alternative="greater")
```

Out[34]: Ttest_1sampResult(statistic=1.459298210492694, pvalue=0.09130152865589224)

結論:

(1)statistic=1.459298210492694 < 1.860,檢定統計量的值並未落於拒絕域內

(2)pvalue=0.09130152865589224 > 0.05,在0.05顯著水準下,不拒絕虛無假設

在0.05顯著水準下,根據此9位客戶的等候時間,並沒有充分證據顯示銀行客戶(指母體,所有銀行客戶)平均等候時間大於10分鐘

EX_1 :銀行客戶的等候時間_Excel $t = \frac{\bar{X} - 10}{\frac{S}{\sqrt{9}}} \sim t_{(8)}$

$$t = \frac{\bar{X} - 10}{\frac{S}{\sqrt{9}}} \sim t_{(8)}$$

	Α	В	С	D	E
1	9.8		Mean	11.18889	=AVERAGE(A1:A9)
2	7.4		Standard deviation	2.444097	=STDEV(A1:A9)
3	8.3		Count(n)	9	=COUNT(A1:A9)
4	12.5		Standard error of mean (SEM)	0.814699	=D2/SQRT(D3)
5	10.2		Degree of freedom (df)	8	=D3-1
6	13.2		Hypothesized mean (µ)	10	
7	15				
8	12		t-statistic	1.459298	=(D1-D6)/D4
9	12.3		p-value	0.091302	1:單尾檢定 =TDIST(D8,D5,1) 2:雙尾檢定
10				不拒絕原	显無假設

EX_2:我國境內基金現金股息的檢定

例題 2: 我國境內基金現金股息的檢定

國外財務規劃專業人員認為,我國境內基金因全球金融海嘯影響到其績效表現, 而懷疑整體基金(指母體)過去5年累計現金股息發放金額的平均數是低於2.2 元,因此設立虛無假設與對立假設為:

$$H_0: \mu = 2.2 \text{ (or } \mu \ge 2.2)$$

 $H_1: \mu < 2.2$

該專員設定顯著水準 $\alpha = 0.1 (10\%)$ 。

該專員決定抽取 6 家基金 (小樣本),故在母體為常態分配的假設下,檢定統計量 (test statistic)選擇為:

$$t = \frac{\bar{X} - 2.2}{\frac{S}{\sqrt{6}}} \sim t_{(5)}$$

此次假設檢定的拒絕域為 t < -1.476 (查表練習)。

EX_2:我國境內基金現金股息的檢定

該專員隨機抽取 6 家基金,並分別查詢其過去 5 年現金股息累積金額如下:

配息期間	日盛基金				寶來 台灣金融	元大 多元
2007~2011 年	1.48	1.12	2.35	0.96	0.7	2.66

經計算 $\bar{X} = 1.5450$,S = 0.7915,t 統計量的值為

$$t = \frac{\bar{X} - 2.2}{\frac{S}{\sqrt{6}}} \sim t_{(5)} \qquad t = \frac{1.5450 - 2.2}{\frac{0.7915}{\sqrt{6}}} = -2.0271$$

因 -2.0271 < -1.476, 檢定統計量的值落在拒絕域內,所以,在 0.1 的顯著水準下,拒絕虛無假設。也就是說,在 0.1 的顯著水準下,由此 6 家基金過去 5 年發放現金股息的情形,有充分證據顯示我國境內基金 (指母體) 過去 5 年現金股息發放總金額的平均數是低於 2.2 元。

EX_2:我國境內基金現金股息的檢定_Python

例題2:我國境內基金現金股息的檢定

```
In [35]: #呼叫統計套件
#scipy.stats版本 1.6.0
from scipy import stats

#輸入資料
dat = [1.48, 1.12, 2.35, 0.96, 0.7, 2.66]

#檢定是否平均數為10
stats.ttest_1samp(dat, 2.2,alternative="less")
```

Out[35]: Ttest_1sampResult(statistic=-2.0270608498954967, pvalue=0.04923975317006294)

結論:

(1)statistic=-2.0270608498954967 < -1.476,檢定統計量的值落於拒絕域中

(2)pvalue=0.04923975317006294 < 0.1, 在0.1顯著水準下, 拒絕虛無假設

在0.1的顯著水準下,由此6家基金過去5年發放現金股利的情形,有充分證據顯示我國境內基金(指母體)過去5年現金股息發放總金額的平均數是低於2.2元

EX_2:我國境內基金現金股息的檢定_Excel

	Α	В	С	D	Е	F
1	1.48		Mean	1.545	=AVERAC	GE(A1:A6)
2	1.12		Standard deviation	0.791499	=STDEV(A1:A6)
3	2.35		Count(n)	6	=COUNT	(A1:A6)
4	0.96		Standard error of mean (SEM)	0.323128	=D2/SQF	RT(D3)
5	0.7		Degree of freedom (df)	5	=D3-1	
6	2.66		Hypothesized mean (µ)	2.2		
7						
8			t-statistic	-2.02706	=(D1-D6)/D4
^	$\bar{X}-2.2$		p-value	0.04924	=TDIST(A	ABS(D8),D5,1)

1:單尾檢定

2:雙尾檢定

EX_3:白氏雞精標示焦糖比重的檢定

例題 3: 白氏雞精標示焦糖比重的檢定

白氏雞精標示焦糖比重是 0.32%,公司品保人員定期抽樣檢驗白氏雞精的焦糖比重,以確保出廠的雞精有最佳的口感,在抽樣檢驗時,品保人員設立虛無假設和對立假設為: (太大太小都不好→雙尾檢定)

$$H_0: \mu = 0.32$$

 $H_1: \mu \neq 0.32$

品保人員設定顯著水準 $\alpha = 0.01$ 。

由於檢驗一瓶就耗損一瓶,為節省成本,品保人員決定抽取 10 瓶 (小樣本),故 在母體為常態分配的條件下,檢定統計量選擇為:

$$t = \frac{\bar{X} - 0.32}{\frac{S}{\sqrt{10}}} \sim t_{(9)}$$

此次假設檢定的拒絕域為 |t| > 3.250。(注意: 雙尾檢定的拒絕域寫法不同)

EX 3:白氏雞精標示焦糖比重的檢定

品保人員隨機抽取 10 瓶,經測量焦糖比重紀錄如下:

0.312 0.314 0.309 0.318 0.321 0.310 0.312 0.318 0.321 0.315

經計算: $\bar{X} = 0.3150$, S = 0.0043, t 統計量的值為

$$t = \frac{\bar{X} - 0.32}{\frac{S}{\sqrt{10}}} \sim t_{(9)}$$

$$t = \frac{\bar{X} - 0.32}{\frac{S}{\sqrt{10}}} \sim t_{(9)} \qquad t = \frac{0.3150 - 0.32}{\frac{0.0043}{\sqrt{10}}} = -3.6771$$

因 |t| = 3.6771 > 3.250,檢定統計量之值落入拒絕域內,所以,在 0.01 的顯著 水準下,拒絕虛無假設。也就是說,在0.01的顯著水準下,此10瓶的焦糖比重 有充分證據顯示白氏雞精的平均焦糖比重不是 0.32%。

EX_3:白氏雞精標示焦糖比重的檢定_Python

例題3:白氏雞精標示焦糖比重的檢定

In [36]: # 呼叫統計套件

```
#scipy.stats版本 1.6.0
        from scipy import stats
        #輸入資料
        dat = [0.312, 0.314, 0.309, 0.318, 0.321, 0.310, 0.312, 0.318, 0.321, 0.315]
        #檢定是否平均數為0.32
        stats.ttest 1samp(dat, 0.32,alternative="two-sided")
Out[36]: Ttest 1sampResult(statistic=-3.6380343755449545, pvalue=0.005417433388261108)
        結論:
        (1)statistic=-3.6380343755449545
           abs(-3.6380343755449545)=3.6380343755449545 > 0.3250,檢定統計量的值落於拒絕域中
        (2)pvalue=0.005417433388261108<0.01,在0.01顯著水準下,拒絕虛無假設
        在0.01的顯著水準下,此10瓶的焦糖比重有充分證據顯示白氏雞精的平均焦糖比重不是0.32%
        #文件t統計量算出-3.6771, 而程式算出-3.638, 取決於文件取S=0.0043, 而程式取S=0.004346
```

EX_3:白氏雞精標示焦糖比重的檢定_Excel

	Α	В	С	D	Е	F	
1	0.312		Mean	0.315	=AVERAG	E(A1:A10)	
2	0.314		Standard deviation	0.004346	=STDEV(A1:A10)	
3	0.309		Count(n)	10	=COUNT	(A1:A10)	
4	0.318		Standard error of mean (SEM)	0.001374	=D2/SQR	T(D3)	
5	0.321		Degree of freedom (df)	9	=D3-1		
6	0.31		Hypothesized mean (µ)	0.32			
7	0.312						
8	0.318		t-statistic	-3.63803	=(D1-D6)		
9	0.321		p-value	0.005417	=TDIST(A	BS(D8),D5,2))1:單尾檢定 2:雙尾檢定
10	0.315	_			建無假設		2. 支托饭处
		t = -	$\frac{\bar{X} - 0.32}{g} \sim t_{(9)}$	コールロオ	em ilxox		

· Step1:利用資料分析,跑出敘述統計

檔系	案 常用	插入	版面配置	公式 資料 校	₹閱 檢視	開發人	員 增益集	ŧ	兒明 ♀) 告訴我!	您想做什麼								24	共用
取得資料・	□ 從文字/C □ 從 Web □ 從表格/氟	□ II	最近使用的來源 見有連線	全部重新整理	詢與連線 容 輯連結		節選 遊車新 進降	套用	資料剖析	₽■移隊	除重複項 🚅	っ合併彙算 開聯圖 管理資料模型	模擬分析		→[世皇 組成群組耳		小計	■ 資料分析 ?		
		轉換資 制	4	查詢與連線		排	序與篩選				資料工具		預	測		大綱	L2			-13
																		資料分析工具		
	А	В		С	D	E	F	(G	Н	1	J	K	L	М	N	I	財務和科學資	料分析的)	
1	9.8		Mean		11.18889													→共		
2	7.4		Standard dev	viation	2.444097															
3	8.3		Count(n)		9															
4	12.5		Standard erro	or of mean (SEM	0.814699															
5	10.2		Degree of fro	eedom (df)	8															
6	13.2		Hypothesized	d mean (µ)	10															
7	15																			
8	12		t-statistic		1.459298															
9	12.3		p-value		0.091302															

· Step2:敘述統計

· Step3:選取資料範圍,並選出輸出摘要統計

					 敘述統計	? ×
А	В	С	D	E	輸入 輸入範圍(<u>l</u>): \$A\$1:\$A\$9	確定
9.8 7.4 8.3 12.5		Mean Standard deviation Count(n) Standard error of mean (SEM)			分組方式:	取消 說明(<u>H</u>)
10.2 13.2 15 12		Degree of freedom (df) Hypothesized mean (µ) t-statistic	8 10 1.459298		輸出選項 輸出範圍(<u>O</u>): <u>↑</u> 新工作表(<u>P</u>): 	
12.3		p-value	0.091302		○ 新活頁簿(W)☑ 摘要統計(S)□ 平均數信賴度(N):□ 第 K 個最大值(A):	
					□ 第 K 個最小值(<u>M</u>):	

• Step4:輸出結果

	Α	В
1		欄1
2		
3	平均數	11.1888889
4	標準誤	0.81469907
5	中間值	12
6	眾數	#N/A
7	標準差	2.4440972
8	變異數	5.97361111
9	峰度	-0.72331716
10	偏態	-0.15961283
11	範圍	7.6
12	最小值	7.4
13	最大值	15
14	總和	100.7
15	個數	9
16		