# Section 1 (Cont'd) Functions

We previously defined a function to be a relationship establishing a correspondence between two sets of numbers. We can think of a function in terms of a recipe; the ingredients being the variables and constants, the method being the use of mathematical operators to combine the variables and constants to form the final result.

### What is a mathematical operator?

A mathematical operator takes variables, constants, functions, etc. as its inputs and outputs a predetermined combination of these inputs if appropriate. The basic operators are +, -, \*, /, ^. We will illustrate with examples below:

# Example 1

Consider the addition operation. Its operator is +. Thus 2+2 is a mathematical operation using +. The resulting equation would then be 2+2=4.

# Example 2

Consider a succession of operations (composite operation). Take the operators +, \*, /. A composite operation using these could be 5\*6+2/8 which yields the equation

$$5*6+2/8=30^{1/4}$$
.

not

$$5*6+2/8=5$$

The second equation is incorrect because 6 is not added to 2 first before the division by 8 or multiplication by 5. There is a hierarchy of precedence among mathematical operations and the ordering is as follows:

| Order of Precedence | Operator                          |
|---------------------|-----------------------------------|
| Highest             | () Parentheses                    |
|                     | ^ Power Indices                   |
|                     | * or / Multiplication or Division |
| V                   | + or - Addition or Subtraction    |
| Lowest              | ∧, ∨, ¬ Logical AND, OR, NOT      |

## **Examples of Precedence**

Determine whether each of the following expressions is true or false if x=1, y=2, and z=3:

- (i)  $3x^2-2y+5 \ge z+1$
- (ii) 3-y/4+5/z < 2x+1
- (iii) 2y-1/(4+z)-2x>z-1

We'll leave it as an exercise for you to work out the particulars but the answers are (i) True, (ii) False, and (iii) False.

A function takes such operations, generalises it with appropriate positioning of variables/constants and, possibly, specifies a valid set of values that can be input (domain) and output (range):

$$f: U \subseteq \mathbb{R} \to V \subseteq R: x \to \underbrace{\qquad}_{\text{Explicit Defn of } f(x)}$$

or shorthand

$$f(x) = .....$$

N.B.

The letters f, g, and h are typically used for generic functions. The letters x, y, and z are typically used for variables.

Using this notation, some examples of functions are

(i) f(x) = 2x - 7

Domain: ℝ Range: ℝ

The graph of 2x - 7 in the interval [-3,11] is shown below:



Figure: Graph of f(x) = 2 x-7 on [-3,11]

This type of function is called a *Linear Function* because its graph is a straight line; i.e. The domain and range are related by a linear correspondence.

We'll consider the concepts behind graphing a function soon, but for now we'll mention two properties of this function:

- (a) It crosses the horizontal axis at  $(3\frac{1}{2}, 0)$ .
- (b) It has a constant slope of 2.

How we arrived at these will become apparent later.

The generic form of such a linear function is

$$f(x)=ax+b \quad \forall a,b \in \mathbb{R}; a \neq 0$$

(ii) 
$$f(x)=2x^2-4x+1$$

Domain: ℝ

Range:  $[-1,\infty)$ 

The graph of  $2x^2-4x+1$  in the interval  $[-2,4\frac{1}{2}]$  is shown below:



Figure: The graph of  $f(x) = 2x^2 - 4x + 1$  on [-2, 4½]

The graph of this function is a curve that intersects the horizontal axis in two places determined by setting f(x)=0.

Why? More on this later.

One other important fact about this function is that its graph has a turning point. Estimate where this is from the graph above.

More on such points later.

The generic form of such a function, termed *Quadratic Function*, is  $f(x)=ax^2+bx+c \quad \forall a,b,c \in \mathbb{R}; a \neq 0$ 

(iii) 
$$f(x) = \frac{x}{x^2 + 1}$$

Domain: R

Range: [-1/2, 1/2]

The graph of  $x/(x^2+1)$  in the interval [-5,5] is shown below:



Figure: The  $f(x)=x/(x^2+1)$  graph of on [-5, 5]

The graph of this function is a non-trivial curve that intersects the horizontal axis at the origin (0,0) determined by setting f(x)=0.

As before, more on this later.

One other important fact about this function is that its graph has two turning points both of which are extrema: one is the global minimum, the other the global maximum. Estimate where this is from the graph above.

More on extrema later.

## **Composite functions**

For relatively uncomplicated functions, such as those above, the analysis of their behaviour is fairly straightforward:

e.g. analyse the behaviour of f(x)=ax+b in order to answer questions about specific functions such as f(x)=2x-7, etc.

However more complicated functions (composite functions) may be considered to be made up or composed of less complex functions. To illustrate this consider the function:

$$f(x) = \sqrt{x^2 + 1}$$

As it stands it is too complex to determine its domain and range without exhaustive calculation. However we could decompose the function into two "constituent" functions:

Let 
$$h(x)=x^2+1$$
 and  $g(x)=\sqrt{x}$   
 $\Rightarrow g \circ h(x)=f(x)=\sqrt{x^2+1}$ 

The latter equation declares that the function g(x) is implemented *after* h(x) and the inputs to g(x) are the outputs of h(x). The symbol  $\circ$  indicates *after*.

Then

- (i)  $g \circ h(x) \Rightarrow$  the operations of g(x) are performed *after* those of h(x).
- (ii) the domain of h(x) is the same as f(x): i.e U.
- (iii) the range of h(x), W, becomes the domain of g(x).
- (iv) the range of g(x) is the range of f(x): i.e V.

$$U \xrightarrow{f(x)} V$$

$$U \xrightarrow{h(x)} W \xrightarrow{g(x)} V$$

For our example above, we determine the domain and range of f(x) as follows:

Domain of f(x): U

The domain of h(x) is  $\mathbb{R}$  because any real number can be squared and have 1 added to it. Therefore as the domain of f(x) is the same as h(x) it follows  $U = \mathbb{R}$ 

Range of f(x): V

The range of g(x) is  $[1,\infty)$ . This is because its domain, which is the range (W) of h(x), is restricted to all real numbers greater than or equal to one:  $W = [1,\infty)$ . The square root without the  $\pm$  indicates only positive roots and thus the range of g(x) is lower bounded by 1 and has no finite upper bound: i.e.  $[1,\infty)$ . As the range of f(x) is the same as h(x) it follows  $V = [1,\infty)$ .

#### **Exercise:**

Determine the domain and range of each of the following functions:

(i) 
$$f(x)=1/(x^2+1)$$

(ii) 
$$f(x) = 3x/\sqrt{x^2 + 1}$$

Occasionally you may be required to operate on the range of a given function with a second function. If the former is denoted by h(x) and the latter by g(x) then the composite operation is

$$f(x) = g \circ h(x) = g(h(x))$$

Note the notation g(h(x)). This states explicitly that the argument (or input) to g(x) is h(x) (or the output from h(x)): i.e. You evaluate h(x) fro a given value of x and then pass this result as the argument to g(x).

For example consider the functions

$$h(x)=x^2-2x-3$$
  
 $g(x)=2x+1$ 

then

$$f(x) = g \circ h(x) = g(h(x)) = 2h(x) + 1 = 2(x^2 - 2x - 3) + 1$$
  
$$\Rightarrow f(x) = 2x^2 - 4x - 5$$

#### **Exercise:**

Express  $f(x)=g\circ h(x)$  explicitly as a function of x for each of the following:

(iii) 
$$g(x)=x^3+2x^2-3$$
  $h(x)=3x-5$ 

(iv) 
$$g(x)=3x-x^2$$
  $h(x)=4x^2-2x+5$ 

## One to One (1-1)

Consider some interval of the domain of a given function, f. Let x, the variable associated with f, be in this interval. Then f is said to be 1-1 (one to one) in this interval if for all x in this interval there exists an associated unique f(x), called the image of x under f. Conversely, it can be said that for every f(x) there is an associated unique x if x is in the interval.

#### **Exercise**

- (i) All linear functions are 1-1. Why?
- (ii) What about the other graphed functions given above? If the function is not 1-1 on its entire domain then find closed intervals for which the functions are 1-1.

#### N.B

A function that is not 1-1 is many to one. Can you think of any such functions?

Why is 1-1 important?

We stated in our defintion of 1-1 that a converse definition existed for 1-1 functions; i.e. For every value of the function there is a corresponding unique value of the variable.

Then if f(x) is 1-1 then  $\exists g(x)$  such that  $g \circ f(x) = x$ ; i.e. We can construct for every 1-1 function f(x) a corresponding function g(x) that returns the x we originally input to f(x). We'll illustrate this by example:

# **Example**

Let 
$$f(x) = x^2 \quad \forall x \in \mathbb{R}^+$$
 then 
$$g \circ f(x) = x \Leftrightarrow g(x) = \sqrt{x}.$$
 Thus 
$$g \circ f(x) = g(f(x)) = \sqrt{f(x)} = \sqrt{x^2} = x \Leftrightarrow x \in \mathbb{R}^+$$

In such cases as that of the example above, the function g(x) is given a special name; one that links it explicitly to f(x). We call g(x) the inverse function of f(x) and denote it  $f^{-1}(x)$ .

#### N.B.

A function that is 1-1 is also said to be monotonic. A monotonic function can be monotonically increasing or monotonically decreasing. Such a function has no turning points and has a non-zero finite slope. What constitutes a turning point and how slope is measued will be examined in the next section entitled *The graph of a function*.

