Reliability Evaluation of Distributed Embedded Systems

Alberto Ballesteros Julián Proenza

Alberto Ballesteros

University of the Balearic Islands

Alberto Ballesteros University of the Balearic Islands

Alberto Ballesteros

University of the Balearic Islands

24 Buildings, 10 Faculties and 58 degrees

Alberto Ballesteros

University of the Balearic Islands

Srysystems, robotics & vision

Distributed Systems

Distributed Systems

Distributed Systems

Embedded Systems

Embedded Systems

Distributed Embedded Systems

Distributed Embedded Systems

Examples

- Vehicles
- Factories
- Home automation

Distributed Embedded Systems

Dependable Systems

Dependability: Ability to deliver a service that can be justifiably trusted

Dependable Systems

Reliability: Ability to deliver a correct service in a continuous manner

Dependable Systems

Reliability: Ability to deliver a correct service in a continuous manner

Dependable Systems

Reliability: Ability to deliver a correct service in a continuous manner

R(t): Probability that a system operates the time interval [0,t] without failing

Dependable Systems

Reliability: Ability to deliver a correct service in a continuous manner

R(t): Probability that a system operates the time interval [0,t] without failing

Commercial aircraft

R(2,4h): 0,999999 - 0,999999999 (6 to 9 nines)

Dependable Systems

Reliability: Ability to deliver a correct service in a continuous manner

R(t): Probability that a system operates the time interval [0,t] without failing

Commercial aircraft

R(2,4h): 0,999999 - 0,999999999 (6 to 9 nines)

There are modelling tools

- Create model of the system
- Solve the model

It is costly!

Dependable Systems

Dependability: Ability to deliver a service that can be justifiably trusted

Dependable Systems

Fault tolerance: Design the system to provide a correct service, even in the presence of faults → Redundancy

Adaptive Systems

- Status of the system
- Status of the environment
- Operational requirements

- Status of the system
- Status of the environment
- Operational requirements

Problem

Find a new configuration while the system is running

- It must be done in a short time
- It must meet the operational requirements (<u>reliability</u>)

Problem

We have a tool to determine the reliability of a system!

Problem

We have a tool to determine the reliability of a system!

For big systems it can take too much time

System description

Markov chain

Prism model checker

Tasks

1. Produce a dataset using the available tool

- 1. Generate different system descriptions (size and topology)
- 2. Calculate the reliability

2. Select the adequate ML technique

 Select the most adequate technique to carry out the estimation of the reliability based on the results obtained

3. Build, train and validate the model

- 1. Build the model
- 2. Use the dataset obtained in 1 to train the model selected in 2
- 3. Gather results and validate them

Tasks

Validation

- Accuracy of the results
- Time required

Reliability Evaluation of Distributed Embedded Systems

Alberto Ballesteros Julián Proenza

