Exercice 1. Voici la capture d'écran d'un fichier ouvert avec le logiciel libre Audacity. Il s'agit d'un fichier WAV destiné au stockage de l'audio numérique mis au point par Microsoft et IBM. Le format WAV est un format conteneur capable de recevoir des flux audio variés (MP3, AC-3, etc.). L'un d'entre eux est le flux audio PCM (Pulse Code Modulation). Le signal est d'abord échantillonné, puis chaque échantillon est quantifié indépendamment des autres échantillons, et chacune des valeurs quantifiées est convertie en un code numérique. Le traitement indépendant de chaque échantillon implique qu'il n'y a ni chiffrement, ni compression de données. Le code numérique peut être de type Entier Signé ou de type Flottant. Ici nous avons la capture écran d'un signal mono à 1Hz et d'amplitude -0.8 à 0.8.

Sachant que le signal dure 30 secondes quelle est la taille minimum du fichier?

Exercice 2. En fait le fichier a une taille un peu plus grande car il faut ajouter son entête. Voici les caractéristiques de son entête.

```
[Bloc de déclaration d'un fichier au format WAVE]
                                                  (0x52, 0x49, 0x46, 0x46)
  FileTypeBlocID (4 octets) : Constante «RIFF»
                   (4 octets) : Taille du fichier moins 8 octets
  FileSize
                                                 (0x57, 0x41, 0x56, 0x45)
  FileFormatID
                   (4 octets) : Format = «WAVE»
[Bloc décrivant le format audio]
                   (4 octets): Identifiant «fmt »
  FormatBlocID
                                                    (0x66,0x6D, 0x74,0x20)
  BlocSize
                   (4 octets): Nombre d'octets du bloc - 16 (0x10)
  AudioFormat
                   (2 octets): Format du stockage dans le fichier (1: PCM, ...)
                   (2 octets): Nombre de canaux (de 1 à 6, cf. ci-dessous)
  NbrCanaux
                   (4 octets) : Fréquence d'échantillonnage (en hertz) [Valeurs standardisées : 11
  Frequence
025, 22 050, 44 100 et éventuellement 48 000 et 96 000]
                   (4 octets): Nombre d'octets à lire par seconde (c.-à-d., Frequence *
  BytePerSec
BytePerBloc).
  BytePerBloc
                   (2 octets): Nombre d'octets par bloc d'échantillonnage (c.-à-d., tous canaux
confondus : NbrCanaux * BitsPerSample/8).
                  (2 octets): Nombre de bits utilisés pour le codage de chaque échantillon (8, 16,
  BitsPerSample
[Bloc des données]
  DataBlocID
                   (4 octets): Constante «data» (0x64,0x61,0x74,0x61)
                   (4 octets): Nombre d'octets des données (c.-à-d. "Data[]", c.-à-d.
  DataSize
```

```
taille_du_fichier - taille_de_l'entête (qui fait 44 octets normalement).
   DATAS[] : [Octets du Sample 1 du Canal 1] [Octets du Sample 1 du Canal 2] [Octets du Sample 2 du Canal 1] [Octets du Sample 2 du Canal 2]

* Les Canaux :
        1 pour mono,
        2 pour stéréo
        3 pour gauche, droit et centre
        4 pour face gauche, face droit, arrière gauche, arrière droit
        5 pour gauche, centre, droit, surround (ambiant)
        6 pour centre gauche, gauche, centre, centre droit, droit, surround (ambiant)

NOTES IMPORTANTES :
        Les octets des mots sont stockés sous la forme (c.-à-d., en "little endian")
[87654321][16..9][24..17] [8..1][16..9][24..17] [...
```

Par ailleurs, voici une capture d'écran du fichier lu avec un éditeur hexadécimal.

- a. En ajoutant à votre réponse de l'exercice précédent, donnez la taille du fichier.
- b. Trouvez cette taille là où elle est encodée dans la fichier. Comparez avec la valeur précédemment trouvée. Correspondent-t-elles?

Exercice 3. Voici des zooms sur le signal autour de 1 seconde

- a. Quelle est la valeur sur cette courbe à 1 seconde?
- b. Quelle est la valeur théorique à 1 seconde?
- c. Dans quel format sont encodées les valeurs?
- d. Voici une capture d'écran du fichier lu avec un éditeur hexadécimal à une autre position.

Pourquoi avoir choisi cette capture?

e. Trouvez dans cet hexadécimal les valeurs visibles sur le graphique suivant obtenu avec un lecteur Python capable de lire les valeurs brutes du fichier.

f. A présent retrouvez les valeurs qui correspondent dans la fenêtre Audacity. Calculez ces valeurs exactes.

Exercice 4. En fait le fichier précédent à été généré à partir d'un fichier WAV PCM dont les valeurs ne sont pas en Int16. (Ici l'entête fait 80 octets car Audacity ajoute des informations supplémentaires lorsque le fichier est encodé dans ce format non PCM). En voici des captures d'écran:

Exercice 5.

- a. Dans quel format sont encodées les valeurs?
- b. Expliquez pourquoi ici les valeurs approchent des valeurs théoriques?
- c. Voici la capture correspondant à ce nouveau fichier.

0176325	Α9	91	BB	1E	ED	8D	BB	FE	30	88	BB	DD	74	86	BB
0176340	BD	B8	82	BB	38	F9	7D	BB	F7	80	76	BB	В3	08	6F
0176355	BB	72	90	67	BB	2F	18	60	BB	EB	9F	58	BB	Α8	27
0176370	51	BB	65	AF	49	BB	21	37	42	BB	DD	BE	3A	BB	99
0176385	46	33	BB	54	CE	2B	BB	0F	56	24	BB	CB	DD	10	BB
0176400	85	65	15	BB	40	ED	ØD	BB	FB	74	06	BB	68	F9	FD
0176415	BA	DD	08	EF	BA	50	18	EØ	BA	C3	27	D1	BA	37	37
0176430	C2	BA	AA	46	В3	BA	1D	56	A4	BA	8F	65	95	BA	02
0176445	75	86	BA	E7	08	6F	BA	CB	27	51	BA	AF	46	33	BA
0176460	92	65	15	BA	EΑ	08	EF	В9	AF	46	В3	В9	EΑ	08	6F
0176475	В9	EΑ	08	EF	B8	50	E8	61	A5	EΑ	08	EF	38	EΑ	08
0176490	6F	39	AF	46	В3	39	EΑ	08	EF	39	92	65	15	3A	AF
0176505	46	33	3A	CB	27	51	3A	E7	08	6F	3A	02	75	86	3A
0176520	8F	65	95	3A	1D	56	A4	3A	AA	46	В3	3A	37	37	C2
0176535	3A	C3	27	D1	3A	50	18	EØ	3A	DD	08	EF	3A	68	F9
0176550	FD	3A	FB	74	06	3B	40	ED	ØD	3B	85	65	15	3B	CB
0176565	DD	10	3B	0F	56	24	3B	54	CE	2B	3B	99	46	33	3B

- d. Pourquoi avoir choisi cette capture?
- e. Trouvez dans cet hexadécimal les valeurs visibles sur le graphique d'Audacity.