Nombre de la asignatura: Sistemas de climatización y refrigeración

Línea de trabajo: Básica

Tiempo de dedicación del estudiante a las actividades de:

DOC (48) - TIS (20) - TPS (100) - 168 horas totales - 6 Créditos

DOC: Docencia; **TIS**: Trabajo independiente significativo; **TPS**: Trabajo profesional supervisado

16. Historial de la asignatura.

Fechas revisión	Participantes	Observaciones, cambios o
/actualización		justificación
Marzo de 2017	Dr. Guillermo Efrén Ovando Chacón	Análisis y conformación del
Instituto Tecnológico	MC. Jorge Arturo Mendoza Sosa	programa. Metodología del
de Veracruz		desarrollo del curso,
		prácticas propuestas

17. Pre-requisitos y correquisitos.

Pre-requisito:

Haber cursado las materias de Termodinámica y Procesos y uso eficiente de la energía

18. Objetivo de la asignatura.

Proporcionar al alumno las capacidades básicas para el análisis, diseño energético y de instalación de sistemas de refrigeración y climatización en edificios de uso residencial y terciario. Aprender una metodología de caracterización de este tipo de sistemas y sus componentes con el fin de realizar un análisis energético. Adquirir conocimientos acerca de los sistemas de climatización típicamente usados y las propuestas actuales para la reducción del consumo energético y emisión de gases de efecto invernadero.

19. Aportación al perfil del graduado.

El curso proporciona al estudiante la capacidad de utilizar e integrar sus conocimientos y comprensión en diferentes campos para aportar soluciones a problemas en nuevas áreas

emergentes relacionadas con las tecnologías energéticas.

20. Contenido temático.

Unidad	Temas	Subtemas
I	Introducción	1.1. Ciclo básico de refrigeración
		1.2. Bombas de calor
		1.3. Eficiencia de los ciclos
		1.4. Modificaciones a los ciclos
II	Componentes de los Sistemas de	2.1. Equipos Generadores
	Climatización	2.2. Unidades De Tratamiento de Aire
		2.3. Elementos de Distribución
		2.4. Elementos de Seguridad y Control
III	Sistemas de Climatización	3.1. Sistemas Todo Aire
		3.2. Sistemas Todo Agua
		3.3. Sistemas Mixtos
		3.4. Sistemas de Expansión Directa
IV	Diseño de cámaras frigoríficas	4.1. Cálculo de la carga térmica
		4.2. Cálculo del aislamiento de la cámara
		4.3. Selección del compresor
		4.4. Selección del evaporador
		4.5. Selección del condensador
		4.6. Válvulas de expansión y
		regulación
V	Refrigerantes	5.1. Introducción y definición de Refrigerantes

Unidad	Temas	Subtemas
		5.2. Características y propiedades
		termodinámicas de los refrigerantes
		5.3. Clasificación de los refrigerantes
		(por presiones, por seguridad, por
		composición química, Fluidos
		refrigerantes puros y mezclas (blends))
		5.4. Nomenclatura de los Refrigerantes
		5.5. Problemática de los Refrigerantes
		(destrucción capa de ozono,
		contribución al calentamiento global)
		5.6. Comparativa de Refrigerantes (en
		propiedades, en el ciclo de
		compresión, en aplicaciones, en
		operación y mantenimiento)
		5.7. El Amoniaco, características
VI	Componentes reales del ciclo de	6.1. Selección de componentes
	compresión de vapor	6.2. Elementos de control y regulación
		6.3. Parámetros energéticos
VII	Sistemas de refrigeración comercial	7.1. Fluidos secundarios
		7.2. Sistemas CO2
VIII	Sistemas de refrigeracion industrial: amoniaco	7.3. Sistemas de absorción

21. Metodología de desarrollo del curso.

- El profesor analizará y discutirá con los alumnos los conceptos fundamentales del curso, reforzándolos con ejercicios propuestos y dinámicas de grupo.
- El contenido del curso será teórico.

 Fuera de clase, el afianzamiento de los temas puede ser abordado por medio de tutorías con el profesor.

22. Sugerencias de evaluación.

- Constará de tres evaluaciones parciales y una evaluación final.
- Los alumnos reforzarán el aprendizaje con exposiciones y ejercicios teóricos de los temas vistos en clase.
- A través de la participación en clase con la discusión de artículos relacionados con el tema.
 Informe y análisis de la visita industrial.

8. Bibliografía y Software de apoyo.

- Shan K, Wang. Handbook of air conditioning and refrigeration, Second edition. McGraw-Hill, 2000
- Stoecker, Wilbert F. Industrial refrigeration handbook, McGraw-Hill, New York, 1998.
- American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2002 ASHRAE handbook: refrigeration.
- Granryd, Eric. Refrigerating engineering: part II. Stockholm: Department of energy technology, 2005.

9. Actividades propuestas.

Se deberán desarrollar las actividades que se consideren necesarias para cada tema.

10. Nombre y firma de los catedráticos responsables.

Dr. Guillermo Efrén Ovando Chacón	
MC. Jorge Arturo Mendoza Sosa	