算法作业1

孟妍廷 2015202009

3.1.7

证明: 假设 $f_1(x) = o(g(n)), f_2(x) = \omega(g(n)),$ 则由定义可得:

对任意正常量 c > 0, 存在常量 $n_1 > 0$, 使得对所有 $n \ge n_0$, 有 $0 \le f_1(n) < cg(n)$; 同理, 对于同一常 量 c, 存在常量 $n_1 > 0$, 使得对所有 $n \ge n_1$, 有 $f_2(n) > cg(n)$.

取 $N = max(n_0, n_1)$, 则对所有 $n \ge N$, 有 $f_1(n) < cg(n)$ 且 $f_2(n) > cg(n)$, 即 o(n) < cg(n) 且 $\omega(n) > cg(n)$.

故 $o(n) \cap \omega(n) = \emptyset$ 得证。

3-3

a. 解:按照渐进增长率和界限函数可得自上而下排序为 (同一行的为等价类): $2^{2^{n+1}}$ 2^{2^n}

(n+1)!

n!

 e^n

 $n \cdot 2^n$

 2^n

 $\left(\frac{3}{2}\right)^n$

 $n^{\tilde{\lg}\lg n}$ $(\lg n)^{\lg n}$

 $(\lg n)!$

 n^3

 $n^2 \quad 4^{\lg n}$

 $n \lg n - \lg(n!)$ 由夹逼定理 $n^n 与 n!$ 同阶

 $n 2^{\lg n} (\sqrt{2}^{\lg n})$

 $2^{\sqrt{2 \lg n}}$

 $\log^2 n$

 $\ln n$

 $\sqrt{\lg n}$

 $\ln \ln n$

 2^{lg^*n}

 lq^*n

 $\lg^*(\lg n)$

 $\lg(\lg^* n)$

 $n^{\frac{1}{\lg n}}$ 1

b. 解:

依题意可得: 当该非负函数 f(n) 的极限不存在时,不存在 g(n),使 f(n) 是 O(g(n)) 或 $\Omega(g(n))$ 的. 故 f(n) 的一个例子是:

$$f(x) = \begin{cases} 0, & x=2k+1\\ 1, & x=2k \end{cases}$$

其中, $k \in \mathbb{Z}$.

3-4

a. 错误。反例: $n=O(n^2)$ 但是 $n^2\neq O(n)$ b. 错误。反例: $n^2+n=\Theta(n^2)\neq \Theta(n)$

c. 正确。证明: 由 f(n) = O(g(n)) 表明对任意正常数 c, 存在常量 n_0 , 对所有 $n \ge n_0$ 都有 $f(n) \le cg(n)$, 所以也有 $\lg f(n) \leq \lg(cg(n))$, 故 $\lg(f(n)) = O(\lg(g(n)))$ 成立.

d. 正确。证明: 由 f(n) = O(g(n)) 表明对任意正常数 c, 存在常量 n_0 , 对所有 $n \ge n_0$ 都有 $f(n) \le cg(n)$, 由于 f(n) 和 g(n) 是正函数,所以也有 $2^{f(n)} \le 2^{eg(n)}$,故 $2^{f(n)} = O(2^{g(n)})$ 成立。 e. 错误。反例: $f(n) = \frac{1}{n}$,则 $f(n)^2 = \frac{1}{n^2}$,故 $\frac{1}{n} \ne O(\frac{1}{n^2})$ f. 正确。证明: 由 f(n) = O(g(n)) 可得

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} \le c_1$$

因此

$$\lim_{n \to +\infty} \frac{g(n)}{f(n)} \ge c_2$$

其中 c_1,c_2 为常数, 故 $g(n)=\Omega(f(n))$ 。 g. 错误。反例: $n^n\neq \frac{n}{2}^{\frac{n}{2}}$ h. 错误。反例: $n+n^2\neq\Theta(n)$