Module 1.3 Basic Concepts in TSA

S. Lakshmivarahan

School of Computer Science University of Oklahoma Norman, OK, 73071 USA

Topics Covered

- Introduces the basic concepts related to
 - Time Series
 - 2 Ensembles
 - 3 Stationarity strong, weak
 - 4 Ergodicity
 - Properties of auto-covariance / auto correlation functions

Stochastic Process

- Let $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ denote the set of natural integers
- A <u>time series</u> $x_t, t \in \mathbb{Z}$ is a sequence of scalar, real valued <u>random variables</u> defined on an appropriate <u>Probability Space</u> (Ω, \mathcal{F}, P)
- $X: \Omega \times \mathbb{Z} \to \mathbb{R}$ and $x_t(\omega, t)$ is denoted as $x_t(\omega), t \in \mathbb{Z}$ and $\omega \in \Omega$

Stochastic Process

- For each $t, x_t(\cdot) : \Omega \to \mathbb{R}$ is a random variable
- For each $\omega \in \Omega, x_t(\omega)$ as a function from $\mathbb{Z} \to \mathbb{R}$ defines a sequence of random variables called a <u>realization</u> of the stochastic process
- The collection of $x_t(\omega)$ for all $\omega \in \Omega$ and $t \in \mathbb{Z}$ is the discrete time stochastic process of interest to us
- For a fixed t, the collection of random variables $x_t(\omega)$ are called the ensembles of realization of the process

Example: Ensemble and Time Series

• Let $\{x_1, x_2, \dots, x_N\}$ be a finite sequence of independent, identically distributed random variables x_i where:

$$x_i = \left\{ egin{array}{ll} +1 & ext{with probability } p = 1/2 \\ -1 & ext{with probability } p = 1/2 \end{array} \right.$$

• Clearly there are 2^N distinct sequences whose members are either +1 or -1

Ensemble and Time Series

Ensembles $x_{k}^{(2)}$ $m = 2^{N}$ $x_k^{(j)}$ m t = Nt = k $time \rightarrow$

- The collection $x_k^{(j)}(\omega)$ of random variables for a fixed k and $1 \le j \le m$ is the ensemble of realization at time k
- $x_k^{(1)}(\omega)$ as k varies from 1 to N is a particular realization of the underlying stochastic process

Characterization of Time Series

• Complete characterization of $x_t(\omega)$ is given by joint distribution of

$$(x_{j_1},x_{j_2},\ldots,x_{j_k})$$

for
$$j_1 < j_2 < \ldots < j_k$$
 and $1 \le k \le N < \infty$

- If the joint probability distributions are invariant in time, then $x_t(\omega)$ is called a strictly stationary process
- Otherwise, it is called a non-stationary process

Characterization of Time Series

- In practice, we only have access to a single realization of the time series and may not learn much about the underlying probability space and information about joint distribution
- Hence, we need to settle down for a less ambitious program dealing only with sample <u>statistical moments</u>

First two moments of time series

- Let $\mu_t = \mathbf{E}(x_t)$ denote the <u>mean</u> of x_t
- Let $\gamma(t,s) = \mathbf{Cov}(x_t(\omega), x_s(\omega)) = \mathbf{E}[(x_t \mathbf{E}(x_t))(x_s \mathbf{E}(x_s))]$ denote the <u>covariance</u> between $x_t(\omega)$ and $x_s(\omega)$ for a fixed pair of times t and s
- In here, $\mathbf{E}(\cdot)$, the expectation operator is w.r. to the joint probability distribution of $x_t(\omega)$ and $x_s(\omega)$.

Second-Order Stationary Process

 The given TS x_t is said to be second-order /weakly/ covariance stationary if

$$\mathbf{E}(x_t^2) < \infty$$
 $\mathbf{E}(x_t) = \mu$ a constant, and

• $\gamma(t,s) = \gamma(t+k,s+k)$ for any integer $k \ge 0$, that is, $\gamma(t,s)$ does not depend on t and s but only on the difference |t-s|

Weakly Stationary Process

- For a weakly stationary process with t s = k, $\gamma(t,s) = \gamma(t+k,t) = \gamma(k,0) \equiv \gamma(k)$
- $\gamma(k)$ is <u>auto-covariance</u> at lag $k \ge 0$
- $\gamma(0) = \mathbf{Cov}(x_t, x_t) = \mathbf{Var}(x_t)$
- $\rho(k) = \frac{\gamma(k)}{\gamma(0)}$ is called <u>auto-correlation function</u> of x_t
- ullet Clearly, $\gamma(k)$ and ho(k) can be positive or negative

Properties of $\gamma(k)$ and $\rho(k)$

• Let $\gamma: \mathbb{Z} \to \mathbb{R}$ and $\rho: \mathbb{Z} \to \mathbb{R}$ be the auto-covariance and auto-correlation functions of a time series x_t

•

$$egin{aligned} \gamma(k) &= \mathsf{Cov}(x_{t+k}, x_t) \ &= \mathsf{Cov}(x_t, x_{t+k}) \ &= \mathsf{Cov}(x_{t-k}, x_t) = \gamma(-k) \end{aligned}$$

- That is, $\gamma(k)$ is an <u>even</u> function
- Similarly $\rho(k) = \rho(-k)$ and auto-correlation is also an even function

Properties of $\rho(k)$

- $\rho(0) = 1$ by definition
- $|\rho(k)| \leq 1$
- To verify this claim: Let x_i , i=1,2 be two correlated random variables with ρ as their correlation coefficient
- Let μ_i and σ_i^2 be the mean and variance of x_i , for i=1,2
- Define $z_i = \frac{x_i \mu_i}{\sigma_i}$ and $\rho = \mathbf{E}(z_1 z_2)$
- Clearly $\mathbf{E}(z_i) = 0$ and $\mathbf{Var}(z_i) = 1, i = 1, 2$.

Properties of $\rho(k)$

- Let $z = z_1 z_2$. Then $0 \le \text{Var}(z) = \text{E}(z^2) = \text{E}(z_1^2) 2\text{E}(z_1, z_2) + \text{E}(z_1^2) = 2 2\rho$
- Hence $\rho \leq 1$
- Similarly, if $z=z_1+z_2$, by a similar arguments, it can be verified $\rho \geq -1$
- Hence, $|\rho| \leq 1$

Example 1 - Gaussian White Noise

- Let $\epsilon_t \sim \text{IIDN}(0, \sigma^2)$ and $x_t = \mu + \epsilon_t$
- $\mathbf{E}(\mathbf{x}_t) = \mu$
- $Var(x_t) = E(x_t \mu)^2 = \sigma^2$

•

$$\gamma(k) = \mathbf{Cov}(x_{t+k}, x_t)$$

$$= \mathbf{E}[(x_{t+k} - \mu)(x_t - \mu)] = \mathbf{E}[\epsilon_{t+k}\epsilon_t] = 0 \text{ for } k \ge 1$$

•

$$\rho(k) = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{for } k \neq 0 \end{cases}$$

x_t is a weakly stationary process

Example 2 - Gaussian Random Walk

- Let $x_t \sim \text{IID } N(0, \sigma^2)$
- Define $S_t = \sum_{k=1}^t x_k$ with $S_0 = 0$
- $(S_0, S_1, S_2, ...)$ is known as the <u>Gaussian Random Walk</u>

•
$$\mathbf{E}(S_t) = \mathbf{E}(\sum_{k=1}^t x_k) = \sum_{k=1}^t \mathbf{E}(x_k) = 0$$

•
$$\operatorname{Var}(S_t) = \operatorname{Var}(\sum_{k=1}^t x_k) = \sum_{k=1}^t \operatorname{Var}(x_k) = \sigma^2 t$$

•

$$\begin{split} \gamma(t+k,t) &= \mathbf{Cov}\left(S_{t+k}, S_{t}\right) \\ &= \mathbf{Cov}\left(\sum_{i=1}^{t+k} x_{i}, \sum_{i=1}^{t} x_{i}\right) \\ &= \mathbf{Cov}\left(\sum_{i=1}^{t} x_{i}, \sum_{i=1}^{t} x_{i}\right) = \sigma^{2}t \end{split}$$

 \bullet S_t is a non-stationary process

Example 3

- Let $x_t = a\cos(\theta t) + b\sin(\theta t)$, where a, b are two uncorrelated Gaussian random variables with zero mean and unit variance. That is: $a, b \sim N(0, 1)$ uncorrelated
- $\mathbf{E}(x_t) = 0$

•

$$\begin{split} \gamma(k) &= \mathbf{Cov}(x_{t+k}, x_t) \\ &= \mathbf{E} \big\{ \left[a \cos \left(\theta(t+k) \right) + b \sin \left(\theta(t+k) \right) \right] \\ & \left[a \cos \left(\theta(t) \right) + b \sin \left(\theta(t) \right) \right] \big\} \\ &= \cos \theta(t+k) \cos \theta t + \sin \theta(t+k) \sin \theta t = \cos \theta k \end{split}$$

• x_t is a second-order stationary process

Relation between Ensemble and Time Series Statistics

- In TSA, we are given only one realization of a discrete time stochastic process with no access to the underlying probability space (Ω, \mathcal{F}, P) over which the observed process is defined
- Accordingly, we don't have access to the probability measure and so the population moments - mean, variance, auto-covariance etc., can not be calculated as described.
- This <u>limits us</u> to computing all the required <u>sample moments</u> exclusively from the observed series as a function of time

Time Averages from the Data

- Let $\{x_t\}$ be a weakly stationary process
- Define $\overline{x}_n = \frac{1}{n} \sum_{t=1}^n x_t$ time average
- $\overline{\gamma}(k) = \frac{1}{n} \sum_{t=k+1}^{n} (x_t \overline{x}_n)(x_{t-k} \overline{x}_n)$ time average
- The quality of these estimates are better when n is large and k is smaller
- A guidline is: $n \ge 50$ and $0 \le k \le \frac{n}{4}$

Ergodicity in the Mean

• A weakly stationary process $\{x_t\}$ is said to be <u>ergodic</u> in the mean, if

$$\lim_{n\to\infty} \overline{x}_n = \mathbf{E}(x_t) = \mu$$

that is, \overline{x}_n converges to μ in probability as $n \to \infty$:

$$\lim_{n\to\infty} \operatorname{Prob}\left[|\overline{x}_n - \mu| > \delta\right] < \epsilon,$$

where δ and ϵ are arbitrary positive real numbers. That is, \overline{x}_n is a <u>consistent</u> estimate of μ

• Stated in words: the time average converges to the ensemble average if the process is ergodic in the mean

Ergodicity in the Second Moment

• A weakly stationary process $\{x_t\}$ is said to be ergodic in the second moment if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{t=k+1}^n(x_t-\mu)(x_{t-k}-\mu)=\gamma(k)$$

- That is, the sample auto-covariance on the l.h.s converges in probability to $\gamma(k)$ as $n \to \infty$. That is, l.h.s is a consistent estimate if $\gamma(k)$:
- Again, the time average on the l.h.s converges to the ensemble statistics

Absolute Summability

• Let $\{a_n\}$ be a real sequence. This sequence is said to be absolutely summable if

$$\sum_{n=1}^{\infty} |a_n| < \infty$$

- $a_n = \frac{1}{n}$. Then, $\sum_{n=1}^k \frac{1}{n} \approx \int_1^k \frac{1}{x} \, dx = \log k \to \infty$ as $k \to \infty$. Hence, 1/n is not absolutely summable
- $a_n=\frac{1}{n^2}$. Then $\sum_{n=1}^k\frac{1}{n^2}\approx \int_1^kx^{-2}\,\mathrm{d}\,x=1-\frac{1}{k}<1$. Hence $a_n=\frac{1}{n^2}$ is absolutely summable

A Sufficient Condition for Ergodicity

• A sufficient condition for $\{x_t\}$ to be ergodic in the first two moments is that the auto-covariance function must be absolutely summable

$$\sum_{k=0}^{\infty} |\gamma(k)| < \infty \tag{1}$$

• In the following, we will tacitly assume that $\gamma(k)$ is absolutely summable which will allow us to perform analysis based on sample moments with reasonably large samples

Stationarity does not imply Ergodicity

- Let $a \sim N(0, \sigma_1^2)$, $\epsilon_t \sim \text{IID} N(0, \sigma_2^2)$ and let a and $\{\epsilon_t\}$ are also mutually uncorrelated, with $\sigma_i^2 > 0$ for i = 1, 2.
- Let $x_t^{(i)} = a^{(i)} + \epsilon_t$ to be a time series for a fixed i when $1 \le i \le n$, $a^{(i)}$ are $IIDN(0, \sigma_1^2)$, and $t \ge 1$.
- $\mathbf{E}(x_t^{(i)}) = \mathbf{E}(a^{(i)}) + \mathbf{E}(\epsilon_t) = 0$

Stationarity does not imply Ergodicity

•
$$\gamma(0) = \text{Var}(x_t) = \text{E}(a^{(i)} + \epsilon_t)^2 = \sigma_1^2 + \sigma_2^2$$

•

$$\gamma(k) = \mathbf{E} \left[x_t^{(i)} x_{t-k}^{(i)} \right]$$

$$= \mathbf{E} \left[\left(a^{(i)} + \epsilon_t^{(i)} \right) \left(a^{(i)} + \epsilon_{t-k}^{(i)} \right) \right]$$

$$= \mathbf{E} \left[\left(a^{(i)} \right)^2 \right] = \sigma_1^2$$

• Since $\sum_{k=0}^{\infty} |\gamma(k)| = \infty$, $\{x_t^{(i)}\}$ is not ergodic

Stationarity does not imply Ergodicity

- But $\frac{1}{n} \sum_{t=1}^{n} x_t^{(i)} = \frac{1}{n} \sum_{t=1}^{n} (a^{(i)} + \epsilon_t) = a^{(i)} + \frac{1}{n} \sum_{t=1}^{n} \epsilon_t$
- By Central limit theorem, $\lim_{n\to\infty}\frac{1}{n}\sum_{t=1}^n\epsilon_t=0$
- Hence the time average of any realization $x_t^{(i)}$ in the limit as $n \to \infty$ is $a^{(i)}$. Hence, $\{x_t^{(i)}\}$ is stationary

Positive/Non-Negative Definite Functions

- Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ be a real valued function in two variables with f(i,j) defined for $1 \le i,j \le n$
- This function f is said to be non-negative definite if

$$\sum_{i,j=1}^n a_i f(i,j) a_j \ge 0$$

for all <u>real vectors</u> $\mathbf{a} = (a_1, a_2, \dots, a_n)^T \in \mathbb{R}^n$ and for all $n \geq 1$

- If the inequality ≥ is replaced by >, then f is called a positive definite function
- If the inequality \geq is replaced by \leq , then f is said to be non-positive definite

Auto-Covariance Function is Non-Negative Definite

- Let $\{x_t\}$ be a weakly stationary process with $\gamma(k)$ as its auto-correlation function
- Let $\mathbf{a} = (a_1, a_2, \dots a_n)^T \in \mathbb{R}^n$
- Let $z_i = x_i \mathbf{E}(x_t), 1 \leq i \leq n$ and $\mathbf{z} = (z_1, z_2, \dots z_n)^T \in \mathbb{R}^n$
- Then

$$0 \leq \mathbf{Var}(a^t z) = \mathbf{E}(a^t z)^2 = \mathbf{E}\left[a^t z z^t a\right] = a^T \Gamma a = \sum_{i,j=1}^n a_i \Gamma(i,j) a_j,$$

where $\Gamma = \Gamma(i,j) = \mathbf{E}(z_i z_j)$ is the $n \times n$ covariance matrix

• Since $\Gamma(i,j) = \gamma(|i-j|)$ by definition the auto-covariance function is non-negative definite