

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE TELEINFORMÁTICA TRABALHO DE CONCLUSÃO DE CURSO EM ENGENHARIA DE COMPUTAÇÃO

EXTRAÇÃO DE ATRIBUTOS DE FACES EM NUVENS DE PONTOS USANDO MOMENTOS INVARIANTES ADAPTADOS

•••

Aluno: Artur Rodrigues Rocha Neto

Orientador: Prof. Dr. José Marques Soares

ROTEIRO DE APRESENTAÇÃO

- 1. Introdução
- 2. Fundamentação Teórica
- 3. Metodologia
- 4. Resultados
- 5. Conclusões e Trabalhos Futuros
- 6. Referências

INTRODUÇÃO

INTRODUÇÃO

- A identificação de indivíduos é um mecanismo de grande importância na interação do ser humano com o ambiente
- A Inteligência Artificial e o
 Reconhecimento de Padrões já permitem
 modelar sistemas de identificação
 robustos baseados em imagens digitais 2D
- Novas formas de armazenamento de imagens necessitam de novas técnicas de identificação

INTRODUÇÃO

FUNDAMENTAÇÃO TEÓRICA

- IMAGENS TRIDIMENSIONAIS
- MOMENTOS INVARIANTES
- CLASSIFICADORES

FUNDAMENTAÇÃO TEÓRICA: Imagens Tridimensionais

- Imagens Digitais 2D
 - $\circ f(x, y) = I_{xy}$
 - o Formadas por *pixels*
 - Diversos formatos de cor
 - Capturadas via câmeras digitais
 - o Dependentes de iluminação e de pose

FUNDAMENTAÇÃO TEÓRICA: Imagens Tridimensionais

- Nuvens de Pontos
 - \circ f(x, y, z) = [0, 1]
 - Agrupamentos de pontos
 - Geralmente n\u00e3o carregam cor
 - Capturadas via sensores de profundidade
 - Independentes de iluminação
 - Conservam características geométricas

- Imagens 2D e Nuvens Pontos armazenam grandes quantidades de informação
- Altamente custoso executar operações em conjuntos densos
- Solução: reduzir a quantidade de informação
- Condição: pouca (ou nenhuma) perda de descritibilidade

- 736 x 736 pixels
- 1 byte/pixel
- Total: 541696 *bytes*

EXTRAÇÃO DE ATRIBUTOS

[0.0014676051633846885, 1.703080875606487e-08, 9.267976321675225e-11, 5.3555006565614645e-11]

- Técnicas matemáticas utilizadas em reconhecimento de padrões
- Invariância significa independência das transformações básicas:
 - Rotação
 - Translação
 - o Escalamento
- A teoria dos Momentos Invariantes é bem fundamentada para Imagens 2D
- Quatro Momentos Invariantes foram escolhidos para este trabalho:
 - o Momentos de Hu (Hu, 1962)
 - Momentos de Legendre (Teague, 1980)
 - Momentos de Zernike (Teague, 1980)
 - o Momentos de Tchebichef (Mukundan, 2001)

Momentos de Hu

- o O conceito de momento foi proposto por Hu (1962)
- Técnica mais utilizada em visão computacional
- Conjunto de 7 escalares cada um responsável por representar uma invariância
- Momentos centrais (1) e normalizados (2) são a base para os 7 Momentos de Hu

$$\mu_{pq} = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} (x - \overline{x})^p (y - \overline{y})^q I_{xy} \quad (1)$$

$$\eta_{pq} = \frac{\mu_{pq}}{(\mu_{00})^{\gamma}} \quad (2)$$

- Momentos de Legendre
 - Propostos por Teague (1980)
 - O Baseados nos Polinômios Recursivos de Legendre $P_{D}(x)$ (3)
 - Os polinômios $P_p(x)$ são definidos no intervalo [-1,1], fazendo necessária uma normalização das coordenadas da imagem (4, 5)
 - \circ Os Momentos de Legendre de ordem (p + q) está mostrado em (6)

$$P_p(x) = \frac{(2p-1)xP_{p-1}(x) - (p-1)P_{p-2}(x)}{p} \quad (3) \qquad \qquad \lambda_{pq} = \frac{(2p+1)(2q+1)}{MN} \quad (4)$$

$$x_i = \frac{2i}{M-1} - 1 \quad y_j = \frac{2j}{N-1} - 1 \quad (5) \qquad L_{pq} = \lambda_{pq} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} P_p(x_i) P_q(y_j) I_{ij} \quad (6)$$

- Momentos de Zernike
 - o Propostos por Teague (1980)
 - Baseados nos Polinômios Complexos de Zernike
 - O espaço dos Polinômios Complexos é o Plano Complexo. Logo, as coordenadas da imagem devem ser normalizadas para esse novo espaço

$$R_{nm}(\rho_{xy}) = \sum_{s=0}^{\frac{n-|m|}{2}} c(n,m,s)\rho^{n-2s} \quad (7) \qquad c(n,m,s) = (-1)^s \frac{(n-s)!}{s!(\frac{n+|m|}{2}-s)!(\frac{n-|m|}{2}-s)!} \quad (8)$$

$$V_{nm}(x,y) = R_{nm}(\rho_{xy})exp(jm\theta) \quad (9) \qquad Z_{nm} = \frac{n+1}{\phi} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} V_{nm}(\rho_{xy},\theta)I_{xy} \quad (10)$$

- Momentos de Tchebichef
 - o Introduzidos por Mukundan (2001)
 - Baseados nos Polinômios de Tchebichef
 - Foram propostos como uma melhoria sobre os Momentos de Legendre e Zernike
 - Os Momentos de Tchebichef não requerem transformações de espaço

$$t_p(x) = \frac{(2p-1)t_1(x)t_{p-1}(x) - (p-1)(1 - \frac{(p-1)^2}{N^2})t_{p-2}(x)}{p}$$
 (11)

$$\tau(p,N) = N\left[\frac{\prod_{k=1}^{p} (1 - \frac{k^2}{N^2})}{2p+1}\right] \quad (12) \qquad T_{pq} = \frac{1}{\tau(p,N)\tau(q,N)} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} t_p(x)t_q(y)I_{xy} \quad (13)$$

FUNDAMENTAÇÃO TEÓRICA: Classificadores

- A classificação é a etapa final de todo processo de reconhecimento de padrões
- Responsável por atribuir categorias (*classes*) a entidades desconhecidas
 (*conjunto de teste*) com base nos atributos extraídos de entidades conhecidas
 (*conjunto de treinamento*)
- Elemento principal: classificador

FUNDAMENTAÇÃO TEÓRICA: Classificadores

k-Vizinhos mais Próximos (KNN)

- PATRICK; FISHER, 1970
- Baseado em métricas de distância
 - Euclidiana (KNN-E)
 - Manhattan (KNN-M)

Máquina de Vetor de Suporte (SVM)

- BOSER et al., 1992
- Baseado em separação espacial
 - o Radial (SVM-R)
 - o Polinomial (SVM-P)

METODOLOGIA

- BASE DE DADOS ADAPTAÇÃO DOS MOMENTOS SECCIONAMENTO CENTRAL
- **PIPELINE**

METODOLOGIA: Base de Dados

- Bosphorus (SAVRAN et al., 2008)
- 4666 amostras
- 105 indivíduos
- Várias poses, expressões e emoções

CONJUNTO	AMOSTRAS	FUNÇÃO
Neutras	299	Treinamento/Teste
Não-neutras	2603	Teste
Completo	2902	Teste

METODOLOGIA: Adaptação dos Momentos

 Λ : número de pontos da nuvem

 $c = (\overline{x}, \overline{y}, \overline{z})$: centro geométrico da nuvem de pontos

 $d(x_i, y_i, z_i)$: distância euclidiana do ponto (x_i, y_i, z_i) ao centro geométrico

METODOLOGIA: Adaptação dos Momentos

Hu 3D

$$\mu_{pqr} = \sum_{i=1}^{\Lambda} (x_i - \overline{x})^p (y_i - \overline{y})^q (z_i - \overline{z})^r d(x_i, y_i, z_i) \quad (14)$$

$$\eta_{pqr} = \frac{\mu_{pqr}}{(\mu_{pqr})^{\gamma}} \quad (15)$$

$$\mu_{pqr} = \sum_{i=1}^{\Lambda} (x_i - \overline{x})^p (y_i - \overline{y})^q (z_i - \overline{z})^r d(x_i, y_i, z_i) \quad (14) \qquad \rho_{xyz} = \frac{\sqrt{(x - \overline{x})^2 + (y - \overline{y})^2 + (z - \overline{z})^2}}{r} \quad (18)$$

$$Z_{nm} = \frac{n+1}{\phi} \sum_{i=1}^{\Lambda} V_{nm}(\rho_{xyz}, \theta) \quad (19)$$

Legendre 3D

$$\lambda_{pqr} = \frac{(3p+1)(3q+1)(3r+1)}{\Lambda} \quad (16)$$

$$L_{pqr} = \lambda_{pqr} \sum_{i=1}^{\Lambda} P_p(x_i - \overline{x}) P_q(y_i - \overline{y}) P_p(z_i - \overline{z}) \quad (17)$$

Tchebichef 3D

$$\tau(p,\Lambda) = \Lambda \left[\frac{\prod_{k=1}^{p} (1 - \frac{k^2}{\Lambda^2})}{p+1} \right] \quad (20)$$

$$L_{pqr} = \lambda_{pqr} \sum_{i=1}^{\Lambda} P_p(x_i - \overline{x}) P_q(y_i - \overline{y}) P_p(z_i - \overline{z}) \quad (17) \qquad T_{pqr} = \frac{1}{\tau(p,\Lambda)\tau(q,\Lambda)\tau(r,\Lambda)} \sum_{i=1}^{\Lambda} t_p(x_i - \overline{x}) t_q(y_i - \overline{x}) t_r(z_i - \overline{x}) d(x_i, y_i, z_i) \quad (21)$$

METODOLOGIA: Seccionamento Central

- Regiões mais internas carregam atributos mais significativos
- Corte a partir do centro da nuvem
- 6 configurações:
 - 50mm
 - o 60mm
 - o 70mm
 - o 80mm
 - o 90mm
 - Nuvem completa

METODOLOGIA: Pipeline

1 ESCOLHA DO CONJUNTO DE EXTRAÇÃO

ESCOLHA DO TAMANHO DO CORTE

- Neutro
- Não-neutro
- Conjunto Completo
- 4 CLASSIFICAÇÃO

- k-NN Manhattan
- k-NN Euclidiano
- SVM Radial
- SVM Polinomial

- 50, 60, 70
- 80, 90
- Nuvem completa

EXTRAÇÃO DE ATRIBUTOS

- Hu
- Legendre
- Zernike
- Tchebichef

RESULTADOS

- Tempo de ExtraçãoClassificação

RESULTADOS: Tempo de Extração

EXTRATOR	ATRIBUTOS
Hu	21
Legendre	27
Zernike	16
Tchebichef	36

RESULTADOS: Classificação Neutra

NEUTRA				
CORTE (mm)	EXTRATOR	CLASSIFICADOR	TAXA (%)	
50	Hu 3D	KNN-M	56.86	
60	Hu 3D	KNN-M	57.86	
70	Hu 3D	KNN-M	53.18	
80	Zernike 3D	KNN-E	50.5	
90	Hu 3D	KNN-M	55.52	
Nuvem Completa	Hu 3D	KNN-M	58.53	

RESULTADOS: Classificação Não-Neutra

NÃO-NEUTRA				
CORTE (mm)	EXTRATOR	CLASSIFICADOR	TAXA (%)	
50	Hu 3D	KNN-M	19.13	
60	Hu 3D	KNN-M	17.33	
70	Hu 3D	KNN-M	15.48	
80	Hu 3D	KNN-E	19.44	
90	Hu 3D	KNN-M	23.05	
Nuvem Completa	Hu 3D	KNN-M	22.63	

RESULTADOS: Classificação Neutro + Não-Neutro

NEUTRO + NÃO-NEUTRO				
CORTE (mm)	EXTRATOR	CLASSIFICADOR	TAXA (%)	
50	Hu 3D	KNN-M	23.02	
60	Hu 3D	KNN-M	21.5	
70	Hu 3D	KNN-M	19.37	
80	Hu 3D	KNN-E	22.47	
90	Hu 3D	KNN-M	26.4	
Nuvem Completa	Hu 3D	KNN-M	26.33	

CONCLUSÕES E TRABALHOS FUTUROS

CONCLUSÕES E TRABALHOS FUTUROS

- As melhores taxas de classificação são obtidas com a classificação indivíduos em Pose Neutra.
- Os Momentos de Hu 3D superaram os demais em todas as configurações, com exceção de uma.
- O classificador **k-NN com distância Manhattan** foi a melhor escolha de técnica de classificação, superando o SVM em todas as configurações.
- Cada Momento 3D se comportou de uma forma diferente em vista de cada escolha de corte central.
- A taxa mais alta de classificação foi de 58.53% com Hu 3D, kNN com distância
 Manhattan e Nuvem Completa.

CONCLUSÕES E TRABALHOS FUTUROS

- Ainda é cedo para abandonar o corte central.
- Uma análise das ordens dos momentos pode revelar uma escolha melhor.
- Combinar os momentos entre si pode resultar em maiores taxas de classificação.

REFERÊNCIAS

REFERÊNCIAS

BOSER, B. E.; GUYON, I. M.; VAPNIK, V. N. A training algorithm for optimal margin classifiers. In: ACM. **Proceedings of the fifth annual workshop on Computational learning theory**. [S.l.], 1992. p. 144–152.

HU, M.-K. Visual pattern recognition by moment invariants. **IRE transactions on information theory**, IEEE, v. 8, n. 2, p. 179–187, 1962.

MUKUNDAN, R.; ONG, S.; LEE, P. A. Image analysis by tchebichef moments. **IEEE Transactions on image Processing**, IEEE, v. 10, n. 9, p. 1357–1364, 2001.

PATRICK, E. A.; FISCHER, F. P. A generalized k-nearest neighbor rule. **Information and control**, Elsevier, v. 16, n. 2, p. 128–152, 1970.

SAVRAN, A.; ALYÜZ, N.; DIBEKLIOG LU, H.; ÇELIKTUTAN, O.; GÖKBERK, B.; SANKUR, B.; AKARUN, L. Bosphorus database for 3d face analysis. **Biometrics and identity management**, Springer, p. 47–56, 2008.

TEAGUE, M. R. Image analysis via the general theory of moments. **JOSA**, Optical Society of America, v. 70, n. 8, p. 920–930, 1980.

OBRIGADO! (-:

