

Calcolo differenziale — Scheda di esercizi n. 1 2 Ottobre 2023 — Compito n. 00109

Istruzioni: le prime due caselle (V / F) permettono di selezionare la risposta vero/falso. La casella "C" serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes 0 \bigcirc).

Nome:				
Cognome:				
Matricola:				

1 A	1B	1C	1D	2A	2B	2C	2D	3A	3B	3C	3D	4A	4 B	4 C	4D

1) Sia

 $E = \{ \text{multipli interi di 5} \}.$

1A) Il numero x = 16 appartiene ad E.

V F C

- **1B)** Se x appartiene ad E, allora x + 15 non appartiene ad E.
- 1C) Esiste il minimo di E.
- **1D)** L'insieme $\mathbb{N} \setminus E$ è limitato superiormente.
- **2)** Sia

$$E = \{x \in \mathbb{R} : |x - 4| \le 4\} \setminus \{0\}.$$

- **2A)** L'insieme E non è un intervallo.
- **2B**) Il numero reale x = 5 non appartiene ad E.
- **2C)** L'insieme E non è limitato superiormente.
- **2D)** L'insieme E ha minimo.

3) Sia

$$E = \{x \in \mathbb{R} : x^2 - 14x + 45 \le 0\}.$$

- **3A)** L'insieme E non è vuoto.
- **3B)** L'insieme E è un intervallo.
- **3C)** L'insieme $E \setminus \{7\}$ è un intervallo.
- **3D)** L'insieme E ha massimo.
- **4)** Sia

$$E = \{x \in \mathbb{Q} : |x| \le \sqrt{11}\}.$$

- **4A)** Il numero $x = \sqrt{11}$ non appartiene ad E.
- **4B)** Il numero x = -1 non appartiene ad E.
- **4C)** L'insieme E è limitato.
- **4D)** Non esiste il minimo di E.

Docente
Garroni [A, F
Orsina [G, Z]

Cognome	Nome	Matricola	Compito 00109
---------	------	-----------	---------------

$$E = \left\{x \in \mathbb{R} : -10 \le x \le 11\right\} \setminus \left\{0\right\}.$$

- a) Dimostrare che l'insieme E non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E. c) Dimostrare che non esiste il minimo di $E \cap [0,9]$.
- \mathbf{d}) Dimostrare che non esiste il minimo dell'insieme

$$F = \{x^2, \ x \in E\}.$$

Cognome	Nome	Matricola	Compito 00109
---------	------	-----------	---------------

$$E = \{x \in \mathbb{R} : (x - 3)(x - 4)(x - 5) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli. c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E\cap \mathbb{Q}$ ha massimo, e che l'insieme $E\cap \mathbb{N}$ ha minimo.

Soluzioni del compito 00109

1) Sia

$$E = \{ \text{multipli interi di 5} \}.$$

1A) Il numero x = 16 appartiene ad E.

Falso: Il numero x = 16 non appartiene ad E dato che non è un multiplo di 5; infatti, dividendo x per 5 si ottiene come resto 1 (e non 0).

1B) Se x appartiene ad E, allora x + 15 non appartiene ad E.

Falso: Se x appartiene ad E, x è un multiplo intero di 5; esiste quindi un intero k tale che x = 5k. Dato che $15 = 3 \cdot 5$, si ha quindi

$$x + 15 = 5k + 3 \cdot 5 = (k+3) \cdot 5$$
,

e quindi x+15 appartiene ad E perché è un multiplo intero di 5.

1C) Esiste il minimo di E.

Vero: Dato che E è un sottoinsieme non vuoto di \mathbb{N} , E ammette minimo per il principio di buon ordinamento. Un altro modo per dimostrare che E ha minimo è osservare che

$$E = \{0, 5, 10, 15, 20, \ldots\},\$$

e quindi il minimo di E esiste ed è 0.

1D) L'insieme $\mathbb{N} \setminus E$ è limitato superiormente.

Falso: Se $\mathbb{N} \setminus E$ fosse limitato superiormente, esisterebbe N in \mathbb{N} tale che se x appartiene a $\mathbb{N} \setminus E$, allora x < N. Pertanto, x = N appartiene ad E. Ma se N appartiene ad E, allora N + 1 non vi appartiene (perché dividendo N per 5 si ottiene come resto 1, e quindi N + 1 non è divisibile per 5). Abbiamo dunque un assurdo: tutti i numeri di $\mathbb{N} \setminus E$ sono strettamente minori di N, ma N + 1 > N appartiene a $\mathbb{N} \setminus E$. Ne segue quindi che $\mathbb{N} \setminus E$ non è limitato.

$$E = \{x \in \mathbb{R} : |x - 4| \le 4\} \setminus \{0\}.$$

Si ha

$$|x-4| \le 4 \quad \iff \quad -4 \le x-4 \le 4 \quad \iff \quad 0 \le x \le 8$$

cosicché

(1)
$$E = [0,8] \setminus \{0\} = (0,8].$$

2A) L'insieme E non è un intervallo.

Falso: Per la (1), si ha che E = (0, 8] è un intervallo.

2B) Il numero reale x = 5 non appartiene ad E.

Falso: Dalla (1) segue che x = 5 appartiene ad E.

2C) L'insieme E non è limitato superiormente.

Falso: Per la (1), l'insieme E è limitato superiormente.

2D) L'insieme E ha minimo.

Falso: Per la (1), l'insieme E non ha minimo, dato che 0 non appartiene ad E.

$$E = \{x \in \mathbb{R} : x^2 - 14x + 45 \le 0\}.$$

Si ha

$$x^2 - 14x + 45 = 0 \iff x = 5, 9.$$

Pertanto,

$$x^2 - 14x + 45 \le 0$$
 \iff $5 \le x \le 9$ \iff $x \in [5, 9]$.

Si ha quindi

$$(1) E = [5, 9].$$

3A) L'insieme E non è vuoto.

Vero: Per la (1), l'insieme E non è vuoto.

3B) L'insieme E è un intervallo.

Vero: Per la (1), l'insieme E è un intervallo.

3C) L'insieme $E \setminus \{7\}$ è un intervallo.

Falso: Per la (1) si ha

$$E \setminus \{7\} = [5,7) \cup (7,9],$$

che non è un intervallo.

3D) L'insieme E ha massimo.

Vero: Per la (1), l'insieme E ha M=9 come massimo.

$$E=\left\{ x\in\mathbb{Q}:\left|x\right|\leq\sqrt{11}\right\} .$$

Sia ha

$$|x| \le \sqrt{11}$$

$$\iff$$

$$-\sqrt{11} \le x \le \sqrt{11}$$

$$\iff$$

$$x \in \left[-\sqrt{11}, \sqrt{11}\right],$$

da cui segue che

$$E = [-\sqrt{11}, \sqrt{11}] \cap \mathbb{Q}.$$

4A) Il numero $x = \sqrt{11}$ non appartiene ad E.

Vero: Dato che $x = \sqrt{11}$ non è un numero razionale, x non appartiene ad E.

4B) Il numero x = -1 non appartiene ad E.

Falso: Dato che x = -1 è un numero razionale, e che si ha

$$-\sqrt{11} \le -1 \le \sqrt{11}$$

il numero x = 1 appartiene ad E.

4C) L'insieme E è limitato.

Vero: Dalla (1) segue che

$$E \subset [-\sqrt{11}, \sqrt{11}],$$

e quindi E è un insieme limitato dato che è contenuto in un insieme limitato.

4D) Non esiste il minimo di E.

Vero: Il "candidato minimo" di E è $x=-\sqrt{11}$, che però non appartiene ad E dato che non è un numero razionale. Ne segue che non esiste il minimo di E.

$$E = \{x \in \mathbb{R} : -10 \le x \le 11\} \setminus \{0\}.$$

- a) Dimostrare che l'insieme E non è un intervallo.
- b) Dimostrare che l'insieme E è limitato superiormente ed inferiormente, esibendo un maggiorante ed un minorante di E.
- c) Dimostrare che non esiste il minimo di $E \cap [0, 9]$.
- d) Dimostrare che non esiste il minimo dell'insieme

$$F = \{x^2, x \in E\}.$$

Soluzione:

a) Si ha

(1)
$$E = [-10, 11] \setminus \{0\} = [-10, 0) \cup (0, 11],$$

che non è un intervallo.

b) Dalla (1) segue che (ad esempio) x = 11 è un maggiorante di E, e che (ad esempio) x = -10 è un minorante di E. Si ha infatti che

$$\overline{M}(E) = \{x \in \mathbb{R} : x \ge 11\} = [11, +\infty), \qquad \underline{m}(E) = \{x \in \mathbb{R} : x \le -10\} = (-\infty, -10].$$

c) Si ha, per la (1),

$$E \cap [0,9] = ([-10,0) \cup (0,11]) \cap [0,9] = (0,9],$$

che è un insieme che non ha minimo.

d) Se x appartiene ad E, allora

$$-10 \le x \le 11, \qquad x \ne 0.$$

Se x > 0, si ha

$$0 < x \le 11 \qquad \Longrightarrow \qquad 0 < x^2 \le 121 \,,$$

mentre se x < 0, si ha

$$-10 \le x < 0 \qquad \Longrightarrow \qquad 0 < x^2 \le 100.$$

Si ha quindi che se x appartiene ad E, allora

$$0 < x \le \max(100, 121) = 121$$
,

e quindi

$$F = \{ y \in \mathbb{R} : 0 < y \le 121 \} = (0, 121],$$

che è un insieme che non ha minimo.

$$E = \{x \in \mathbb{R} : (x - 3)(x - 4)(x - 5) \le 0\}.$$

- a) Dimostrare che x = 0 appartiene ad E.
- b) Risolvendo la disequazione che definisce E, scrivere E come unione di intervalli.
- c) Dimostrare che $E \cap [0, +\infty)$ è un insieme limitato.
- d) Dimostrare che l'insieme $E \cap \mathbb{Q}$ ha massimo, e che l'insieme $E \cap \mathbb{N}$ ha minimo.

Soluzione:

a) Se x=0, si ha

$$(x-3)(x-4)(x-5) = (0-3)(0-4)(0-5) = -60 \le 0$$

e quindi (per definizione) x = 0 appartiene ad E.

b) Consideriamo i segni dei tre fattori che determinano la disequazione che definisce E; si ha

$$x-3 \ge 0 \quad \Longleftrightarrow \quad x \ge 3, \qquad x-4 \ge 0 \quad \Longleftrightarrow \quad x \ge 4,$$

e

$$x - 5 \ge 0 \iff x \ge 5$$
.

Graficamente, quindi, si ha

;	3	1 .	5	
 	+	+	+	
 	_	+	+	
 	_	_	+	
 	+	_	+	

e quindi

$$E=(-\infty,3]\cup [4,5]\,.$$

c) Dalla (1) si ha che

$$E \cap [0, +\infty) = [0, 3] \cup [4, 5],$$

che è un insieme limitato (superiormente da 5 e inferiormente da 0).

d) Dato che dalla (1) segue che il massimo di E è M=5, che è anche un numero razionale, allora il massimo di $E \cap \mathbb{Q}$ è M=5. Sempre dalla (1) segue che

$$E \cap \mathbb{N} = \{0, 1, \dots, 3, 4, 5\},\$$

che ha come minimo m=0.