Analytic Geometry

1. Linear Equation

1) Point-slope form

Given a point in the line (x_1, y_1) , and the slope of the line, m, an equation of the line may be expressed as $y - y_1 = m(x - x_1)$

Example: Determine an equation of a line through point (3, 2) with slope m = 2.

Solution:

$$(x_1, y_1) = (3, 2)$$
 and $m = 2$, so $y - 2 = 2$ $(x - 3)$, this equation can be expressed in standard form: $2x - y - 4 = 0$

2) Slope Y-intercept form

Given a slope and the y-intercept of the line, b, an equation of the line may be expressed in the form: y = mx + b.

Example: Determine an equation of the line with m=3 and y-intercept 2.

Solution: b = 2 and m = 3, the y = 3x + 2

3) Two point solution

Given two points (x_1, y_1) and (x_2, y_2) , then the equation of the line can be expressed as

$$(y - y_1) = \frac{(y_1 - y_2)}{(x_1 - x_2)} (x - x_1)$$
 or $y - y_1 = m (x - x_1)$, here $m = \frac{(y_1 - y_2)}{(x_1 - x_2)}$

Example: given two points $P_1(2, 3)$ and $P_2(-1, 2)$, determine the equation of the line.

Solution: $m = \frac{(y_1 - y_2)}{(x_1 - x_2)} = \frac{(3 - 2)}{(2 - (-1))} = \frac{1}{3}$, so $y - 3 = \frac{1}{3}(x - 2)$, this equation can be expressed in standard

form:
$$x - 3y + 7 = 0$$

2. Length of segment

The length of a line segment can be found by Pythagorean Theorem given two points P_1 (x_1 , y_1) and P_2 (x_2 , y_2), then the segment joining P_1 and P_2 may be expressed by following formula:

1

$$L = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Example: Find the length of the line segment joining points (3, 2) and (-1, 4)

Solution: L=
$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{4^2 + 2^2} = \sqrt{20} = 4\sqrt{5}$$

3. Midpoint of a line segment

We can calculate the coordinates of the midpoint of a line segment if the coordinates of the endpoints are given.

The coordinates of the midpoint M of the segment with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$ are:

$$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$

- \blacktriangleright The relations between two lines with slope m_1 and m_2 :
 - if $m_1=m_2$, then two lines are parallel;
 - if $m_1 \cdot m_2 = -1$, then two lines are perpendicular;
 - if $m_1 \neq m_2$, the two lines have one intersection.

In-class questions

1. The vertices of the quadrilateral ABCD in counter-clockwise order are A(0, 0), B(k, 0),

C(k+m, n), and D(m, n), where k > 0, m > 0. What is the area of the quadrilateral ABCD?

2. A square in the coordinate plane has vertices whose *y*-coordinates are 1, 3, 6, and 8. What is the area of the square?

3. Two perpendicular lines L_1 and L_2 intersect at the point Q(p, 2p) in the first quadrant. If

S(p-6, p) is on L_1 and T(p+6, -p) is on L_2 , which of the following is true?

- a) Q may be any point on the line y = 2x
- b) there is no such point Q
- c) there is exactly one possible position for the point Q
- d) there are exactly two possible positions for the point Q
- e) the number of possible positions for the point Q is greater than two, but finite

4. A bug following the line 4x+3y=60 wants to move to the line 4x+3y=120. What is the shortest distance that she can travel to get from one line to the other?

- 5. The line L_1 has equation $y = -\frac{4}{3}x$ and passes through the origin, O. The line L_2 has equation $y = -\frac{1}{2}x + 5$ and crosses the x-axis at P. Lines L_1 and L_2 intersect at Q.
 - a) What are the coordinates of points P and Q? (No justification is required.)
 - b) Find the area of $\triangle OPQ$.
 - c) Point R is on the positive x-axis so that the area of $\triangle OQR$ is three times the area of $\triangle OPQ$. Determine the coordinates of R.