CPSC 340: Machine Learning and Data Mining

Ensemble Methods Fall 2017

Admin

- Welcome to the course!
- Assignment 0:
 - 2 late days to hand it in tonight, 0 after that.
- Assignment 1 is due next Friday.

Last Time: K-Nearest Neighbours (KNN)

- K-nearest neighbours algorithm for classifying 'x':
 - Find 'k' values of x_i that are most similar to x.
 - Use mode of corresponding y_i.
- Lazy learning:
 - To "train" you just store X and y.
- Non-parametric:
 - Size of model grows with 'n' (number of examples)
 - Nearly-optimal test error with infinite data.
- But high prediction cost and may need large 'n' if 'd' is large.

Decision Trees vs. Naïve Bayes vs. KNN

$$(milk = 0.6, egg = 2, lactase = 0, ?)$$
 is close to $(milk = 0.7, egg = 2, lactase = 0, sick)$ so predict sick.

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

```
(6,6)(3,3)(7,7)(5,5)(8,8)(0,0)
(3,1)(0,0)(3,3)(4,6)(2,2)(8,8)(3,3)(3,3)
    (4,4)(7,7)(2,2)(0,0)(6.
(9,9)(8,8)(9,9)(2,2)(2,2)
         ([6,6)([4,4)([3,3)([1,1]
    (3,3)(9,9)(0,0)(5,5)(9,9)
         (1,1)(3,3)(4,4)(4,4)
                     (|5|, 5)
```

Application: Optical Character Recognition

- To scan documents, we want to turn images into characters:
 - "Optical character recognition" (OCR).

- Turning this into a supervised learning problem (with 28 by 28 images):

	1,1)	(2,1)	(3,1)	 (28,1)	(1,2)	(2,2)	 (14,14)	 (28,28)			C
	0	0	0	0	0	0	1	0			
	0	0	0	0	0	0	1	0		-	
	0	0	0	0	0	0	0	0	7		
L	_0	0	0	0	0	0	1	0		L	

Human vs. Machine Perception

There is huge difference between what we see and what KNN sees:

What we see:

What the computer "sees":

Actually, it's worse:

What the Computer Sees

Are these two images "similar"?

What the Computer Sees

Are these two images "similar"?

KNN does not know that labels should be translation invariant.

Encouraging Invariance

- May want classifier to be invariant to certain feature transforms.
 - Images: translations, small rotations, changes in size, mild warping,...
- The hard/slow way is to modify your distance function:
 - Find neighbours that require the 'smallest' transformation of image.
- The easy/fast way is to just add transformed data during training:
 - Add translated/rotate/resized/warped versions of training images.

- Crucial part of many successful vision systems.
- Bonus slides discuss invariant features for language data.

Application: Body-Part Recognition

- Microsoft Kinect:
 - Real-time recognition of 31 body parts from laser depth data.

How could we write a program to do this?

Some Ingredients of Kinect

- 1. Collect hundreds of thousands of labeled images (motion capture).
 - Variety of pose, age, shape, clothing, and crop.
- 2. Build a simulator that fills space of images by making even more images.

- 3. Extract features of each location, that are cheap enough for real-time calculation (depth differences between pixel and pixels nearby.)
- 4. Treat classifying body part of a pixel as a supervised learning problem.
- 5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

Supervised Learning Step

ALL steps are important, but we'll focus on the learning step.

- Do we have any classifiers that are accurate and run in real time?
 - Decision trees and naïve Bayes are fast, but often not very accurate.
 - KNN is often accurate, but not very fast.

Deployed system uses an ensemble method called random forests.

Ensemble Methods

- Ensemble methods are classifiers that have classifiers as input.
 - Also called "meta-learning".
- They have the best names:
 - Averaging.
 - Boosting.
 - Bootstrapping.
 - Bagging.
 - Cascading.
 - Random Forests.
 - Stacking.
- Ensemble methods often have higher accuracy than input classifiers.

Ensemble Methods

- Remember the fundamental trade-off:
 - 1. E_{train}: How small you can make the training error. vs.
 - 2. E_{approx}: How well training error approximates the test error.
- Goal of ensemble methods is that meta-classifier:
 - Does much better on one of these than individual classifiers.
 - Doesn't do too much worse on the other.
- This suggests two types of ensemble methods:
 - 1. Boosting: improves training error of classifiers with high E_{train} .
 - 2. Averaging: improves approximation error of classifiers with high E_{approx} .

- Consider a set of classifiers that make these predictions:
 - Classifier 1: "spam".
 - Classifier 2: "spam".
 - Classifier 3: "spam".
 - Classifier 4: "not spam".
 - Classifier 5: "spam".
 - Classifier 6: "not spam".
 - Classifier 7: "spam".
 - Classifier 8: "spam".
 - Classifier 9: "spam".
 - Classifier 10: "spam".
- If all of these are 80% accurate, what should we predict?

- Input to averaging is the predictions of a set of models:
 - Decision trees make one prediction.
 - Naïve Bayes makes another prediction.
 - KNN makes another prediction.
- Simple model averaging:
 - Take the mode of the predictions (or average if probabilistic).

- Input to averaging is the predictions of a set of models:
 - Decision trees make one prediction.
 - Naïve Bayes makes another prediction.
 - KNN makes another prediction.
- Stacking:

Fit another classifier that uses the predictions as features.

- Averaging often performs better than individual models:
 - Averaging typically used by Kaggle winners.
 - E.g., Netflix \$1M user-rating competition winner was stacked classifier.

- Why does this work?
- Consider classifiers that tend to overfit (like deep decision trees):
 - If they all overfit in exactly the same way, averaging does nothing.
- But if they make independent errors:
 - Probability of error of average can be lower than individual classifiers.
 - Less attention to specific overfitting of each classifier.

Random Forests

- Random forests average a set of deep decision trees.
 - Tend to be one of the best "out of the box" classifiers.
 - Often close to the best performance of any method on the first run.
 - And predictions are very fast.
- Do deep decision trees make independent errors?
 - No: with the same training data you'll get the same decision tree.
- Two key ingredients in random forests:
 - Bootstrapping.
 - Random trees.

Random Forest Ingredient 1: Boostrap

- Bootstrap sample of a list of 'n' objects:
 - Another set of 'n' objects, chosen independently with replacement.

- Gives new dataset of 'n' objects, with some duplicated and some missing.
 - Approximately 63% of original objects will be included for large 'n'.
- Very common in statistics to estimate sensitivity of statistic to data.
- Bagging: using bootstrap samples for ensemble learning.
 - Generate several bootstrap samples of the objects (x_i, y_i) .
 - Fit a classifier to each bootstrap sample.
 - At test time, average the predictions.

Decision trees will make different splits.

Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features.
 - Only consider these random features when searching for the optimal rule.

Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features.
 - Only consider these random features when searching for the optimal rule.

Random Forest Ingredient 2: Random Trees

- For each split in a random tree model:
 - Randomly sample a small number of possible features.
 - Only consider these random features when searching for the optimal rule.
- Splits will tend to use different features in different trees.
 - They will still overfit, but hopefully make *independent* errors.
- So the average tends to have a much lower test error.
- Empirically, random forests are one of the "best" classifiers.
- Fernandez-Delgado et al. [2014]:
 - Compared 179 classifiers on 121 datasets.
 - Random forests are most likely to be the best classifier.

Summary

- Encouraging invariance:
 - Add transformed data to be insensitive to the transformation.
- Ensemble methods take classifiers as inputs.
 - Try to reduce either E_{train} or E_{approx} without increasing the other much.
- Averaging:
 - Improves predictions of multiple classifiers if errors are independent.
- Random forests:
 - Averaging of deep randomized decision trees.
 - One of the best "out of the box" classifiers.
- Next time:
 - We start unsupervised learning.

Text Example 1: Language Identification

Consider data that doesn't look like this:

$$X = \begin{bmatrix} 0.5377 & 0.3188 & 3.5784 \\ 1.8339 & -1.3077 & 2.7694 \\ -2.2588 & -0.4336 & -1.3499 \\ 0.8622 & 0.3426 & 3.0349 \end{bmatrix}, \quad y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix},$$

But instead looks like this:

$$X = \begin{bmatrix} \text{Do you want to go for a drink sometime?} \\ \text{J'achète du pain tous les jours.} \\ \text{Fais ce que tu veux.} \\ \text{There are inner products between sentences?} \end{bmatrix}, y = \begin{bmatrix} +1 \\ -1 \\ -1 \\ +1 \end{bmatrix}.$$

How should we represent sentences using features?

A (Bad) Universal Representation

- Treat character in position 'j' of the sentence as a categorical feature.
 - "fais ce que tu veux" => x_i = [fais "ce" que" tu" veux.]
- "Pad" end of the sentence up to maximum #characters:
 - "fais ce que tu veux" => x_i = [f a i s " c e " q u e " t u " v e u x . γγγγγγγ ...]
- Advantage:
 - No information is lost, KNN can eventually solve the problem.
- Disadvantage: throws out everything we know about language.
 - Needs to learn that "veux" starting from any position indicates "French".
 - Doesn't even use that sentences are made of words (this must be learned).
 - High overfitting risk, you will need a lot of examples for this easy task.

Bag of Words Representation

Bag of words represents sentences/documents by word counts:

The **International Conference on Machine Learning** (ICML) is the leading international <u>academic conference</u> in <u>machine learning</u>

ICML	International	Conference	Machine	Learning	Leading	Academic
1	2	2	2	2	1	1

- Bag of words loses a ton of information/meaning:
 - But it easily solves language identification problem

Universal Representation vs. Bag of Words

Why is bag of words better than "string of characters" here?

- It needs less data because it captures invariances for the task:
 - Most features give strong indication of one language or the other.
 - It doesn't matter where the French words appear.
- It overfits less because it throws away irrelevant information.
 - Exact sequence of words isn't particularly relevant here.

Text Example 2: Word Sense Disambiguation

- Consider the following two sentences:
 - "The cat ran after the mouse."
 - "Move the mouse cursor to the File menu."
- Word sense disambiguation (WSD): classify "meaning" of a word:
 - A surprisingly difficult task.
- You can do ok with bag of words, but it will have problems:
 - "Her mouse clicked on one cat video after another."
 - "We saw the mouse run out from behind the computer."
 - "The mouse was gray." (ambiguous without more context)

Bigrams and Trigrams

- A bigram is an ordered set of two words:
 - Like "computer mouse" or "mouse ran".
- A trigram is an ordered set of three words:
 - Like "cat and mouse" or "clicked mouse on".

- These give more context/meaning than bag of words:
 - Includes neighbouring words as well as order of words.
 - Trigrams are widely-used for various language tasks.
- General case is called n-gram.
 - Unfortunately, coupon collecting becomes a problem with larger 'n'.

Bonus Slide: Why does Bootstrapping give 63%?

• Probability of an arbitrary x_i being selected in a bootstrap sample:

$$p(selected at least once in 'n' trials)$$

$$= | - p(not selected in any of 'n' trials)$$

$$= | - (p(not selected in one trial))^n \qquad (trials are independent)$$

$$= | - (1 - 1/n)^n \qquad (prob = \frac{n-1}{n} for choosing any of the n-1 other sample)$$

$$\approx | - 1/e$$

$$\approx 0.63$$

Why can Averaging Work?

- Consider having '3' binary classifiers, that are each independently right with probability 0.80:
 - P(all 3 right) = $0.8^3 = 0.512$.
 - $P(2 \text{ rights}, 1 \text{ wrong}) = 3*0.8^2(1-0.8) = 0.384.$
 - $P(1 \text{ right, } 2 \text{ wrongs}) = 3*(1-0.8)^20.8 = 0.096.$
 - $P(all 3 wrong) = (1-0.8)^3 = 0.008.$
- So ensemble is right with probability 0.896.
 - Note that it's important that classifiers are at least somewhat independent, have probability of being right > 0.5, and that the probabilities aren't too different (otherwise, you may be better off just picking the best one).

Bonus Slide: Why Random Forests Work

- Consider 'k' independent classifiers, whose errors have a variance of σ^2 .
- If the errors are IID, the variance of the average is σ^2/k .
 - So the more classifiers you average, the more you decrease error variance.
 (And the more the training error approximates the test error.)
- Generalization to case where classifiers are not independent is:

$$co^2 + \underbrace{(1-c)o^2}_{k}$$

- Where 'c' is the correlation.
- So the less correlation you have the closer you get to independent case.
- Randomization in random forests decreases correlation between trees.
 - See also "Sensitivity of Independence Assumptions".

Boosting: Key Ideas

- Input to boosting is classifier that:
 - Is simple enough that it doesn't overfit much.
 - Can obtain >50% weighted training accuracy.
- Example: decision stumps or low-depth decision trees.

Boosting: Key Ideas

- Basic steps:
 - 1. Fit a classifier on the training data.
 - 2. Give a higher weight to examples that the classifier got wrong.
 - 3. Fit a classifier on the weighted training data.
 - 4. Go back to 2.
- Final prediction: weighted vote of individual classifier predictions.
- Boosted decision trees are very fast/accurate classifiers.
 - "AdaBoost": classic boosting method.
 - "XGBoost": recent method that has been winning Kaggle competitions.

How these concepts often show up in practice

- Here is a recent e-mail related to many ideas we've recently covered:
 - "However, the performance did not improve while the model goes deeper and with augmentation. The best result I got on validation set was 80% with LeNet-5 and NO augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 50 layer structures both got 70%~75% accuracy.

In addition, there was a software that can use mathematical equations to extract numerical information for me, so I trained the same dataset with nearly 100 features on random forest with 500 trees. The accuracy was 90% on validation set.

I really don't understand that how could deep learning perform worse as the number of hidden layers increases, in addition to that I have changed from VGG to ResNet, which are theoretically trained differently. Moreover, why deep learning algorithm cannot surpass machine learning algorithm?"

• Above there is data augmentation, validation error, effect of the fundamental trade-off, the no free lunch theorem, and the effectiveness of random forests.

Bonus Slide: Bayesian Model Averaging

- Recall the key observation regarding ensemble methods:
 - If models overfit in "different" ways, averaging gives better performance.
- But should all models get equal weight?
 - E.g., decision trees of different depths, when lower depths have low training error.
 - E.g., a random forest where one tree does very well (on validation error) and others do horribly.
 - In science, research may be fraudulent or not based on evidence.
- In these cases, naïve averaging may do worse.

Bonus Slide: Bayesian Model Averaging

- Suppose we have a set of 'm' probabilistic binary classifiers w_i.
- If each one gets equal weight, then we predict using:

$$p(y_i|x_i) = \frac{1}{m} p(y_i|w_i) + \frac{1}{m} p(y_i|w_2,x_i) + \dots + (\frac{1}{m}) p(y_i|w_m,x_i)$$

• Bayesian model averaging treats model 'w_j' as a random variable: "J' xi

$$P(y_{i}|x_{i}) = \underbrace{\tilde{\mathcal{E}}}_{j=1} P(y_{i}, w_{j}|x_{i}) = \underbrace{\tilde{\mathcal{E}}}_{j=1} P(y_{i}|w_{j}, x_{j}) P(w_{j}|x_{j}) = \underbrace{\tilde{\mathcal{E}}}_{j=1} P(y_{i}|w$$

- So we should weight by probability that w_j is the correct model:
 - Equal weights assume all models are equally probable.

Bonus Slide: Bayesian Model Averaging

• Can get better weights by conditioning on training set:

$$p(w_j|X,y) \propto p(y|w_j,X)p(w_j|X) = p(y|w_j,X)p(w_j)$$

- The 'likelihood' p(y | w_i, X) makes sense:
 - We should give more weight to models that predict 'y' well.
 - Note that hidden denominator penalizes complex models.
- The 'prior' $p(w_j)$ is our 'belief' that w_j is the correct model.
- This is how rules of probability say we should weigh models.
 - The 'correct' way to predict given what we know.
 - But it makes some people unhappy because it is subjective.