Shortest Path

- Generalize distance to weighted setting
- Digraph G = (V,E) with weight function W: E →
 R (assigning real values to edges)
- Weight of path $p = v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_k$ is

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1})$$

- Shortest path = a path of the minimum weight
- Applications
 - static/dynamic network routing
 - robot motion planning
 - map/route generation in traffic

Shortest-Path Problems

- Shortest-Path problems
 - Single-source (single-destination). Find a shortest path from a given source (vertex s) to each of the vertices. The topic of this lecture.
 - Single-pair. Given two vertices, find a shortest path between them. Solution to single-source problem solves this problem efficiently, too.
 - All-pairs. Find shortest-paths for every pair of vertices. Dynamic programming algorithm.
 - Unweighted shortest-paths BFS.

Optimal Substructure

- Theorem: subpaths of shortest paths are shortest paths
- Proof (cut and paste)
 - if some subpath were not the shortest path, one could substitute the shorter subpath and create a shorter total path

Triangle Inequality

- Definition
 - $-\delta(u,v)$ = weight of a shortest path from u to v
- Theorem
 - $-\delta(u,v) \leq \delta(u,x) + \delta(x,v)$ for any x
- Proof
 - shortest path u Î v is no longer than any other path u Î v in particular, the path concatenating the shortest path u Î x with the shortest path x Î v

u v

Negative Weights and Cycles?

- Negative edges are OK, as long as there are no negative weight cycles (otherwise paths with arbitrary small "lengths" would be possible)
- Shortest-paths can have no cycles (otherwise we could improve them by removing cycles)
 - Any shortest-path in graph G can be no longer than n-1 edges, where n is the number of vertices

Relaxation

- For each vertex in the graph, we maintain d[v], the estimate of the shortest path from s, initialized to ∞ at start
- Relaxing an edge (u,v) means testing whether we can improve the shortest path to v found so far by going through u


```
Relax (u, v, w)

if d[v] > d[u]+w(u, v)then

d[v] \leftarrow d[u]+w(u, v)

\pi[v] \leftarrow u
```

February 8, 2003 6

Dijkstra's Algorithm

- Non-negative edge weights
- Greedy, similar to Prim's algorithm for MST
- Like breadth-first search (if all weights = 1, one can simply use BFS)
- Use Q, priority queue keyed by d[v] (BFS used FIFO queue, here we use a PQ, which is re-organized whenever some d decreases)
- Basic idea
 - maintain a set S of solved vertices
 - at each step select "closest" vertex u, add it to S, and relax all edges from u

Dijkstra's Pseudo Code

Graph G, weight function w, root s

```
DIJKSTRA(G, w, s)
   1 for each v \in V
  2 \operatorname{do} d[v] \leftarrow \infty
  3 \ d[s] \leftarrow 0
  4 S \leftarrow \emptyset > \text{Set of discovered nodes}
   5 \ Q \leftarrow V
  6 while Q \neq \emptyset
              \mathbf{do} \ u \leftarrow \text{Extract-Min}(Q)
                  S \leftarrow S \cup \{u\}
                   for each v \in Adj[u]
                          do if d[v] > d[u] + w(u, v)
                                  then d[v] \leftarrow d[u] + w(u, v)
```

relaxin g edges

Dijkstra's Example

Dijkstra's Example (2)

Observe

- relaxation step (lines 10-11)
- setting d[v] updates Q (needs Decrease-Key)

similar to Prim's MST algorithm

Dijkstra's Correctness

- We will prove that **whenever** u is added to S, $d[u] = \delta(s,u)$, i.e., that d is minimum, and that equality is maintained thereafter
- Proof
 - − Note that $\forall v$, $d[v] \ge \delta(s,v)$
 - Let u be the first **vertex picked** such that there is a shorter path than d[u], i.e., that $\Rightarrow d[u] > \delta(s,u)$
 - We will show that this assumption leads to a contradiction

Dijkstra Correctness (2)

- Let y be the first vertex $\in V S$ on the actual shortest path from s to u, then it must be that $d[y] = \delta(s,y)$ because
 - -d[x] is set correctly for y's predecessor x ∈ S on the shortest path (by choice of u as the first vertex for which d is set incorrectly)
 - when the algorithm inserted x into S, it relaxed the edge (x,y), assigning d[y] the correct value

Dijkstra Correctness (3)

```
d[u] > \delta(s,u) (initial assumption)

= \delta(s,y) + \delta(y,u) (optimal substructure)

= d[y] + \delta(y,u) (correctness of d[y])

\geq d[y] (no negative weights)
```

- But $d[u] > d[y] \Rightarrow$ algorithm would have chosen y (from the PQ) to process next, not $u \Rightarrow$ Contradiction
- Thus $d[u] = \delta(s,u)$ at time of insertion of u into S, and Dijkstra's algorithm is correct

February 8, 2003 13

Dijkstra's Running Time

- Extract-Min executed |V| time
- Decrease-Key executed |E| time
- Time = $|V| T_{\text{Extract-Min}} + |E| T_{\text{Decrease-Key}}$
- T depends on different Q implementations

Q	T(Extrac t-Min)	T(Decrease- Key)	Total
array	<i>O</i> (<i>V</i>)	<i>O</i> (1)	O(V 2)
binary heap	<i>O</i> (lg <i>V</i>)	<i>O</i> (lg <i>V</i>)	<i>O</i> (<i>E</i> lg <i>V</i>)
Fibonacci heap	<i>O</i> (lg <i>V</i>)	<i>O</i> (1)	<i>O</i> (<i>V</i> lg <i>V</i> +
		(amort.)	E)

February 8, 2003 14