

-AB 1, PART 1: INTRODUCTION AND MOTIVATION

COURSE OVERVIEW

- Lab 1: Gradient Descent vs Stochastic Gradient Descent, and the Effects of Bato
- Lab 2: Multi-GPU DL Training Implemental using DistributedDataParallel (DDP)
- Lab 3: Algorithmic Concerns for Training a Scale

LAB 1 OVERVIEW

- Part 1: Gradient Descent
- Part 2: Stochastic Gradient Descent
- Part 3: Optimizing training with batch size

CONTEXT: WHY USE MULTIPLE GPUS?

TRENDS IN COMPUTATIONAL POWER

Historically we never had large datasets or compute

TRENDS IN COMPUTATIONAL POWER 2 PF/s in November 2009

TRENDS IN COMPUTATIONAL POWER

32 PF/s today

8x NVIDIA H100 GPUs With 640 Gigabytes of Total GPU Memory

18x NVIDIA NVLink connections per GPU

900 gigabytes per second of bidirectional GPU-to-GPU bandwidth

24 TB/s memory bandwidth

4x NVIDIA NVSwitches

7.2 terabytes per second of bidirectional GPU-to-GPU bandwidth

10x NVIDIA ConnectX-7 400 Gigabits-Per-Second Network Interface

1 terabyte per second of peak bidirectional network bandwidth

Dual x86 CPUs and 2 Terabytes of System Memory

Powerful CPUs and massive system memory for the most intensive AI jobs

NVIDIA DGX H100

32 petaFLOPS AI performance

NEURAL NETWORK COMPLEXITY IS EXPLODING

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute (Log Scale)

1000 PETAFLOP/S-DAYS

O(100 YEARS) ON A DUAL CPU SERVER 0(30 DAYS) DGX H100 OR

EXPLODING DATASETS

Power-law relationship between dataset size and accuracy

Training Data Set Size (Log-scale)

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

EXPLODING DATASETS

Power-law relationship between dataset size and accuracy

Translation

Character Language Models Attention Speech Models Image Classification Language Models

--- Xentropy Trend --- Top-1 Trend --- Top-5 Trend

 $\varepsilon_{xentropy}(m) = 14.0 \text{ m}^{-0.35}$

 $\varepsilon_{\text{top-1}}(m) = 2.24 \text{ m}^{-0.31}$

 $\varepsilon_{\text{top-5}}(m) = 3.29 \text{ m}^{-0.52}$

2¹ 2³ Laining Data Set Size, Images per Class (Log-scale)

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. <u>arXiv: 1712.00409</u>

EXPLODING MODEL COMPLEXITY

Though model size scales sublinearly

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. <u>arXiv: 1712.00409</u>

EXPLODING MODEL COMPLEXITY

Though model size scales sublinearly

Zoph, Barret, et al. (2017). "Learning transferable architectures for scalable image recognition." arXiv: 1707.07012

IMPLICATIONS

IMPLICATIONS

Good and bad news

- The good news: Requirements are predictable.
- We can predict how much data we will need.
- We can predict how much computing power we will need.
- ► The bad news: The values can be significant.
- The silver lining is that deep learning has taken impossible problems and ma them merely expensive.

IMPLICATIONS

Deep learning is experimental; we need to train quickly to iterate

ITERATION TIME

INTRO TO THE LAB

STARTING WITH A LINEAR MODEL

Our goal is to find best model parameters (combination of w and b) to fit the data

