Lab-Assignment - 1

Measurements of electric power consumption in one household with a one-minute sampling rate over a period of almost 4 years. Different electrical quantities and some sub-metering values are available. Dataset: https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip (https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip) Perform the following:

Exercise 1:

- 1. Load the data
- 2. Read first 5 rows to get headers
- 3. Read 2900 rows that contain information on 2007-02-01 and 2007-02-02
- 4. Converting Date and Time variables to Date/Time format

Exercise 2: Subset the loaded data for 2007-02-01 and 2007-02-02

Exercise 3:

- 1. Histogram of global active power consumption
- 2. Global active consumption over time
- 3. Energy sub metering

Exercise 1:

1. Load the data: First, download the dataset from the provided link and extract it. We'll find a file named "household_power_consumption.txt."

2. Read first 5 rows to get headers

```
In [2]: # Display the first few rows of the DataFrame
data.head()
```

Out[2]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1 {
0	16/12/2006	17:24:00	4.216	0.418	234.84	18.4	0.0
1	16/12/2006	17:25:00	5.360	0.436	233.63	23.0	0.0
2	16/12/2006	17:26:00	5.374	0.498	233.29	23.0	0.0
3	16/12/2006	17:27:00	5.388	0.502	233.74	23.0	0.0
4	16/12/2006	17:28:00	3.666	0.528	235.68	15.8	0.0
4							>

- 3. Read 2900 rows for 2007-02-01 and 2007-02-02
- 4. Converting Date and Time variables to Date/Time format

```
In [3]: # Read 2900 rows for 2007-02-01 and 2007-02-02
         # Convert the 'Date' column to datetime
         data['Date'] = pd.to_datetime(data['Date'])
         data.head()
         C:\Users\raval\AppData\Local\Temp\ipykernel_9732\1974775207.py:4: UserWarning: Parsing dat
         es in DD/MM/YYYY format when dayfirst=False (the default) was specified. This may lead to
         inconsistently parsed dates! Specify a format to ensure consistent parsing.
            data['Date'] = pd.to_datetime(data['Date'])
Out[3]:
              Date
                      Time Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_1 Sub_i
             2006-
          0
                    17:24:00
                                          4.216
                                                                0.418
                                                                       234.84
                                                                                         18.4
                                                                                                          0.0
             12-16
             2006-
                    17:25:00
                                          5.360
                                                                0.436
                                                                       233.63
                                                                                         23.0
                                                                                                          0.0
             12-16
             2006-
          2
                    17:26:00
                                          5.374
                                                                0.498
                                                                       233.29
                                                                                         23.0
                                                                                                          0.0
             12-16
             2006-
          3
                                          5.388
                                                                       233.74
                                                                                         23.0
                                                                                                          0.0
                    17:27:00
                                                                0.502
             12-16
             2006-
                                                                                                          0.0
                    17:28:00
                                          3.666
                                                                0.528
                                                                       235.68
                                                                                         15.8
             12-16
         data1=data[(data["Date"]=="2007-02-01") | (data["Date"]=="2007-02-02")]
Out[4]:
                               Global_active_power Global_reactive_power Voltage Global_intensity Sub_metering_
                  Date
                          Time
                 2007-
          23436
                       00:00:00
                                              0.442
                                                                    0.122
                                                                           241.06
                                                                                              1.8
                                                                                                              0.
                 02-01
                 2007-
          23437
                       00:01:00
                                              0.370
                                                                    0.000
                                                                           241.22
                                                                                              1.6
                                                                                                              0.
                 02-01
                 2007-
          23438
                       00:02:00
                                              0.368
                                                                    0.000
                                                                           241.03
                                                                                              1.6
                                                                                                              0.
                 02-01
                 2007-
          23439
                       00:03:00
                                              0.370
                                                                    0.000
                                                                                                              0.
                                                                           241.41
                                                                                              1.6
                 02-01
                 2007-
                                                                    0.000
          23440
                       00:04:00
                                              0.370
                                                                           241 22
                                                                                              16
                                                                                                              0
                 02-01
                 2007-
          69511
                       23:55:00
                                              3.696
                                                                    0.226
                                                                           240.90
                                                                                             152
                 02-02
```

Exercise 2:

Subset the loaded data for 2007-02-01 and 2007-02-02

```
In [5]: # Subset the data based on the given dates
subset_data = data[(data["Date"]=="2007-02-01") | (data["Date"]=="2007-02-02")]
# Display the subsetted data
subset_data.head()
```

Out[5]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	٤
23436	2007- 02-01	00:00:00	0.442	0.122	241.06	1.8	0.0	
23437	2007- 02-01	00:01:00	0.370	0.000	241.22	1.6	0.0	
23438	2007- 02-01	00:02:00	0.368	0.000	241.03	1.6	0.0	
23439	2007- 02-01	00:03:00	0.370	0.000	241.41	1.6	0.0	
23440	2007- 02-01	00:04:00	0.370	0.000	241.22	1.6	0.0	
4							l	•

Exercise 3:

1. Histogram of global active power consumption

Create a histogram: To create a histogram of the electric power consumption, we can plot the "Global_active_power" column using matplotlib or any other plotting library:

```
In [6]: import matplotlib.pyplot as plt
# Plot a histogram of global active power consumption
plt.hist(data['Global_active_power'])
plt.xlabel('Global Active Power (kW)')
plt.ylabel('Frequency')
plt.title('Histogram of Global Active Power Consumption')
plt.show()
```


Create a time series: To create a time series plot of the electric power consumption over time, we can plot the "Global_active_power" column against the "Date" column:

```
In [7]: # Create a time series plot of global active power consumption
plt.plot(data['Date'], data['Global_active_power'])
plt.xlabel('Date')
plt.ylabel('Global Active Power (kW)')
plt.title('Time Series of Global Active Power Consumption')
plt.rcParams['figure.figsize'] = [15,15]
plt.show()
```


3. Energy sub metering

Create a plot for sub-metering: To create a plot for sub-metering values, we can plot the relevant columns from the dataset.

```
In [8]: # Create a plot for sub-metering
plt.plot(data['Date'], data['Sub_metering_1'], label='Sub_metering_1')
plt.plot(data['Date'], data['Sub_metering_2'], label='Sub_metering_2')
plt.plot(data['Date'], data['Sub_metering_3'], label='Sub_metering_3')
plt.xlabel('Date')
plt.ylabel('Sub-metering Values')
plt.title('Sub-metering Values Over Time')
plt.legend()
plt.rcParams['figure.figsize'] = [15, 14]
plt.show()
```



```
In [9]: # 2nd way of subploting
        plt.subplot(3, 1, 1)
        plt.plot(data['Date'], data['Sub_metering_1'], label='Sub_metering_1')
        plt.title('Sub-metering Values Over Time')
        plt.xlabel('Date')
        plt.ylabel('Sub-metering Values')
        plt.legend()
        plt.subplot(3, 1, 2)
plt.plot(data['Date'], data['Sub_metering_2'], label='Sub_metering_2')
        plt.xlabel('Date')
        plt.ylabel('Sub-metering Values')
        plt.legend()
        plt.subplot(3, 1, 3)
        plt.plot(data['Date'], data['Sub_metering_3'], label='Sub_metering_3')
        plt.xlabel('Date')
        plt.ylabel('Sub-metering Values')
        plt.legend()
        # plt.rcParams['figure.figsize'] = [12, 11]
        plt.tight_layout()
        plt.show()
        C:\Users\raval\AppData\Local\Temp\ipykernel 9732\237813748.py:23: UserWarning: Creating le
        gend with loc="best" can be slow with large amounts of data.
          plt.tight_layout()
        C:\python311\Lib\site-packages\IPython\core\pylabtools.py:152: UserWarning: Creating legen
```

d with loc="best" can be slow with large amounts of data.

