LUNARIS Technical Appendix

Economic Models and Calculations

Version: 1.0

Date: October 30, 2025

Companion to: LUNARIS Technical Whitepaper v1.0

Table of Contents

1. Token Supply Mathematical Models

2. Equilibrium Stability Analysis

3. Rarity Probability Calculations

4. Mining Reward Simulations

5. DAO Treasury Projections

6. Gas Cost Estimations

1. Token Supply Mathematical Models

1.1 MOONX Supply Dynamics

Differential Equation:

$$\frac{dS}{dt} = E(t) - B(t)$$

Where:

• S(t) = Circulating supply at time t

• E(t) = Total emission rate

• B(t) = Total burn rate

Emission Function:

$$E(t) = \sum_{i=1}^N \min(E_i(t), C_i)$$

Where:

- N = Total active users
- $E_i(t)$ = User i's potential earnings
- C_i = User i's tier-based daily cap

• $C_i \in \{100, 300, 800, 2000, 5000\}$ moonx

Burn Function:

$$B(t) = B_{market}(t) + B_{craft}(t) + B_{upgrade}(t) + B_{storage}(t)$$
 $B_{market}(t) = 0.5 imes 0.02 imes V_{market}(t)$

(50% of 2% marketplace fee)

Example Calculation (Month 1):

Assumptions:

- 1,000 active users
- Average tier: 2 (cap = 300 MOONX/day)
- Activity rate: 70% of users active daily
- · Average actual earning: 60% of cap

Daily Emission:

$$E = 1000 \times 0.7 \times (300 \times 0.6) = 126,000 \text{ MOONX/day}$$

Daily Burns:

- Marketplace (volume \$50K/day): $50,000 \times 0.02 \times 0.5/0.10 = 5,000$ MOONX
- Crafting (50 items/day): $50 \times 100 = 5,000$ MOONX
- Upgrades (10 upgrades/day): $10 \times 500 = 5,000$ MOONX
- Storage: 1,000 MOONX

Total Burn = 16,000 MOONX/day

Net Daily Change: 126,000 - 16,000 = **110,000 MOONX/day** (87% net inflation)

Mitigation: DAO buyback activates at 50,000 MOONX/day target

1.2 LUNAR Token Distribution Schedule

Total Supply: 100,000,000 LUNAR (immutable)

Vesting Schedule (Linear):

Community Rewards (40M):

- Month 0: 0 LUNAR
- Month 12: 10M LUNAR (25% released)
- Month 24: 20M LUNAR (50% released)
- Month 36: 30M LUNAR (75% released)
- Month 48: 40M LUNAR (100% released)

Team (20M):

- Months 0-12: 0 LUNAR (cliff)
- Month 13: 416,667 LUNAR
- Month 24: 5M LUNAR
- Month 48: 20M LUNAR (full unlock)

Circulating Supply Projection:

- Month 1: 20M (Treasury + Liquidity)
- Month 6: 25M (+5M community rewards)
- Month 12: 30M (+10M community, no team yet)
- Month 18: 37.5M (+7.5M community, +2.5M team starting)
- Month 24: 45M (+20M community, +5M team)
- Year 5: 100M (all vested)

1.3 MOON-3 Deflationary Model

Fixed Supply: 10,000,000 MOON-3

Emission Rate (100K active users):

- Tier 4-5 Mining: 500 users × 0.01 MOON-3/day = 5 MOON-3/day
- Eclipse Events (3/year): 1,500 MOON-3/year = 4.1 MOON-3/day avg
- Legendary Staking: 100 Legendary × 0.5 = 50 MOON-3/day

Total Emission: ~60 MOON-3/day = 21,900/year

Burn Rate:

- Fusion Crafts: 20 crafts/day × 100 = 2,000 MOON-3/day
- Tier Skips: 1 skip/day × 200 = 200 MOON-3/day

Total Burn: ~2,200 MOON-3/day = 803,000/year

Net Supply Change:

$$rac{dS}{dt} = 21,900 - 803,000 = -781,100 \, ext{MOON-3/year}$$

Supply Depletion Timeline:

- Year 1: 9,218,900 remaining (7.8% burned)
- Year 5: 6,094,500 remaining (39.1% burned)
- Year 10: 2,189,000 remaining (78.1% burned)

Extreme scarcity creates long-term value appreciation.

2. Equilibrium Stability Analysis

2.1 Price Stability Theorem

Theorem: If MOONX price drops below equilibrium P_{eq} , and DAO buyback $B(t)=\alpha \times P(t)$ where , then P(t) converges to P_{eq} asymptotically.

Proof:

Let P(t) = MOONX price at time t

Let S(t) = Supply at time t

Let D(t) = Demand at time t

Market clearing: P(t) = D(t)/S(t)

If, buyback activates:

$$B(t) = lpha imes (P_{eq} - P(t))$$

(proportional controller)

New supply: S(t+1) = S(t) - B(t)

New price:

$$P(t+1) = rac{D(t+1)}{S(t) - lpha(P_{eq} - P(t))}$$

Assume D(t) roughly constant short-term, $D(t+1) \approx D(t)$:

$$egin{split} P(t+1) &pprox rac{D(t)}{D(t)/P(t) - lpha(P_{eq} - P(t))} \ &= rac{P(t) imes D(t)}{D(t) - lpha imes P(t) imes (P_{eq} - P(t))} \end{split}$$

Linearize around P_{eq} :

$$\Delta P = P(t) - P_{eq}$$

$$P(t+1) - P_{eq} pprox (1 - lpha imes P_{eq}) imes \Delta P$$

If , then , so $\Delta P
ightarrow 0$ exponentially.

Thus $P(t) o P_{eq}$. **QED.**

Practical Implication: Setting $lpha=0.3/P_{eq}$ ensures convergence.

2.2 Emission-Burn Balance

Target Steady State:

$$E_{\infty} = 1.1 \times B_{\infty}$$

(10% net inflation)

Feedback Loop:

If (inflation too high):

- DAO votes to reduce emission caps by 10%
- E decreases
- · Ratio normalizes

If (deflation):

- DAO votes to increase caps by 10%
- ullet increases
- Ratio normalizes

Simulation (conceptual):

```
Initial: E = 100,000, B = 80,000

Month 0: E/B = 1.25 \rightarrow Reduce E by 10%

Month 1: E = 90,000, B = 84,000 (volume grows)

Month 2: E/B = 1.07 \rightarrow Close to target

...

Converges to E/B \approx 1.1
```

3. Rarity Probability Calculations

3.1 Phase-Dependent Rarity Matrix

Weight Matrix W:

Phase	Common	Uncommon	Rare	Epic	Legendary
New Moon	0.80	0.20	0	0	0
Waxing Crescent	0.70	0.25	0.05	0	0
First Quarter	0.60	0.30	0.10	0	0
Waxing Gibbous	0.50	0.35	0.12	0.03	0
Full Moon	0.40	0.40	0.15	0.04	0.01

(Waning phases mirror waxing)

Probability Function:

$$P(r|\phi) = rac{W_{\phi,r}}{\sum_{r'} W_{\phi,r'}}$$

Example (Full Moon):

$$P(ext{Common}) = rac{0.40}{0.40 + 0.40 + 0.15 + 0.04 + 0.01} = 0.40$$
 $P(ext{Legendary}) = rac{0.01}{1.00} = 0.01 \ (1\% \ ext{chance})$

Expected Value Calculation:

If prices are:

Common: \$10

• Uncommon: \$25

• Rare: \$50

• Epic: \$150

• Legendary: \$500

Expected mint value at Full Moon:

$$E = 0.40 \times 10 + 0.40 \times 25 + 0.15 \times 50 + 0.04 \times 150 + 0.01 \times 500$$

= $4 + 10 + 7.5 + 6 + 5 = \$32.50$

But mint cost = \$50 (set above expected value to prevent arbitrage)

3.2 VRF Randomness Verification

Chainlink VRF Implementation:

Request:

- User calls mint() → contract requests VRF
- Gas limit: 200,000
- · Callback: 6 blocks later

Callback:

- Receive random number R (256-bit)
- Compute rarity index: $i = R \mod 100$
- Map i to rarity based on cumulative weights

Cumulative Weight Mapping (Full Moon):

```
 [0, 40) \rightarrow Common 
 [40, 80) \rightarrow Uncommon 
 [80, 95) \rightarrow Rare
```

$$[95, 99) \rightarrow \text{Epic}$$

 $[99, 100) \rightarrow \text{Legendary}$

If $R \mod 100 = 99 \rightarrow$ Legendary mint

Verification: Anyone can check VRF proof on-chain to confirm fairness.

4. Mining Reward Simulations

4.1 Individual Session Calculation

Formula:

$$R = R_{base} imes M_{rover} imes M_{phase} imes M_{region} imes T_{session}$$

Example Scenario:

User:

- Uncommon Plot (Titanium specialist, Mare Tranquillitatis)
- Rare Rover (2.5× efficiency, Titanium-spec)
- Phase: Full Moon (2.0× multiplier)
- Region: Ti weight 1.0 → +30% bonus
- Session: 4 hours

Calculation:

- R_{base} = 40 MOONX/hour
- $M_{rover} = 2.5$
- M_{phase} = 2.0
- M_{region} = 1.3 (1 + 0.3×1.0)
- $T_{session} = 4$

$$R=40 imes 2.5 imes 2.0 imes 1.3 imes 4$$

$$=40\times26=1,040~\mathrm{MOONX}$$

At \$0.10/MOONX = **\$104** per **4-hour session**

Daily Earnings (2 sessions): \$208

Monthly (30 days): \$6,240

ROI: If total NFT cost = \$150 (Uncommon Plot \$25 + Rare Rover \$99), breakeven in <1 day.

4.2 Population-Level Simulation

Assumptions:

- 10,000 users
- Distribution: 60% Tier 1-2, 30% Tier 3-4, 10% Tier 5
- Average daily activity: 50% of users
- · Average session length: 3 hours

Expected Daily Emission: ~150,000 MOONX/day

5. DAO Treasury Projections

5.1 Revenue Sources

Month 1 (1,000 users):

- NFT mints: 1,000 × \$30 avg = \$30,000
- Marketplace fees (2%): \$50K volume × 0.02 = \$1,000
- Partnership: \$0 (too early)
- Total: \$31,000

Month 6 (5,000 users):

- Mints: 4,000 × \$30 = \$120,000
- Marketplace: \$500K × 0.02 = \$10,000
- Partnership: \$5,000
- Total: \$135,000

Month 12 (10,000 users):

- Mints: 5,000 × \$30 = \$150,000
- Marketplace: \$2M × 0.02 = \$40,000
- Partnership: \$20,000
- Total: \$210,000

5-Year Projection: ~\$15M cumulative

5.2 Treasury Allocation

DAO-Voted Split:

- 30% → Buyback & burn MOONX
- 30% → Community rewards/airdrops
- 20% → Development/audits

- 15% → Marketing/partnerships
- 5% → Emergency reserve

Month 12 Treasury Use:

- $\$210,000 \times 0.30 = \$63,000 \rightarrow Buyback 630,000 MOONX at \$0.10 \rightarrow Burn 315,000$
- \$210,000 × 0.30 = \$63,000 → Airdrop to active users
- \$210,000 × 0.20 = \$42,000 → Development
- \$210,000 × 0.15 = \$31,500 → Marketing
- \$210,000 × 0.05 = \$10,500 → Reserve

6. Gas Cost Estimations

6.1 Polygon PoS Costs (October 2025)

Current Gas Price: ~30 Gwei average

MATIC/POL Price: ~\$0.50

Transaction Types:

Mint Plot NFT:

- Gas used: 150,000
- Cost: $150,000 \times 30 \times 10^{-9} \times 0.50 = \$0.00225 \approx \$0.002$

Stake NFT:

- Gas: 80,000
- Cost: \$0.0012

Mining Session (claim):

- Gas: 100,000
- Cost: \$0.0015

Marketplace Trade:

- Gas: 120,000
- Cost: \$0.0018

Daily Cost (active user, 2 sessions):

 $0.002 + 0.0015 \times 2 = 0.005/day = 0.15/month$

Negligible compared to earnings (\$100+/month).

6.2 Gas Optimization Techniques

Batch Minting:

- Single mint: 150K gas
- Batch 3 mints: 250K gas (83K per mint, 44% savings)

Storage Packing:

```
struct PlotMetadata {
   int32 latitude;    // 4 bytes
   int32 longitude;    // 4 bytes
   uint8 region;    // 1 byte
   uint8 rarity;    // 1 byte
   // Total: 10 bytes in single uint256 slot (32 bytes)
   // Saves 1 SSTORE (~20K gas)
}
```

ERC-721A Optimization:

Consecutive token IDs minted in batch share storage, reducing mint cost from 150K → 90K per NFT.

Conclusion

This appendix provides mathematical foundations for LUNARIS economic claims. All models are subject to real-world validation and DAO governance adjustments.

Key Takeaways:

- 1. Token supply reaches equilibrium via DAO buyback controller
- 2. MOON-3 is structurally deflationary (78% burned in 10 years)
- 3. Mining ROI positive within days for active users
- 4. Gas costs negligible (<1% of earnings)
- 5. Treasury sustainable for 5+ years of operations

Document Version: 1.0 **Date:** October 30, 2025

Companion to: LUNARIS Technical Whitepaper v1.0

License: CC BY-NC 4.0