

535, 764

PCT/PCT/2004/048571 20 MAY 2005

(12)特許協力条約に基づいて公開された国出願

(19)世界知的所有権機関
国際事務局(43)国際公開日
2004年6月10日 (10.06.2004)

PCT

(10)国際公開番号
WO 2004/048571 A1

- (51) 国際特許分類⁷: C12N 15/12,
15/09, C07K 16/32, 16/18, G01N 33/53
- (21) 国際出願番号: PCT/JP2003/014919
- (22) 国際出願日: 2003年11月21日 (21.11.2003)
- (25) 国際出願の言語: 日本語
- (26) 国際公開の言語: 日本語
- (30) 優先権データ:
特願 2002-339241
2002年11月22日 (22.11.2002) JP
- (71) 出願人(米国を除く全ての指定国について): 中外製薬株式会社 (CHUGAI SEIYAKU KABUSHIKI KAISHA) [JP/JP]; 〒115-8543 東京都 北区 浮間5丁目5番1号 Tokyo (JP). フーマロジカルズ・リサーチ プライベート リミテッド (PHARMALOGICALS RESEARCH PTE. LTD.) [SG/SG]; 258500 シンガポール ネイピア ロード 6 エイ アネックス ブロック # 3-32 グレンイーグル ホスピタル Singapore (SG).
- (72) 発明者; および
- (75) 発明者/出願人(米国についてのみ): 土屋 政幸 (TSUCHIYA,Masayuki) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門1丁目135番地 中外製薬株式会社内 Shizuoka (JP). 鈴木 雅実 (SUZUKI,Masami) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門1丁目135番地 中外製薬株式会社内 Shizuoka (JP). 吉田 賢二 (YOSHIDA,Kenji) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門1丁目135番地 中外製薬株式会社内 Shizuoka (JP). 藤井 悅子 (FUJII,Etsuko) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門1丁目135番地 中外製薬株式会社内 Shizuoka (JP).

地 中外製薬株式会社内 Shizuoka (JP). 松原 亨一 (MATSUBARA,Kouichi) [SG/SG]; 258500 シンガポール ネイピア ロード 6 エイ アネックス ブロック # 3-32 グレンイーグル ホスピタル フーマロジカルズ・リサーチ プライベート リミテッド 内 Singapore (SG). 角田 浩行 (TSUNODA,Hiroyuki) [JP/JP]; 〒412-8513 静岡県 御殿場市 駒門1丁目135番地 中外製薬株式会社内 Shizuoka (JP).

(74) 代理人: 清水 初志, 外 (SHIMIZU,Hatsushi et al.); 〒300-0847 茨城県 土浦市 卸町 1-1-1 関鉄つくばビル 6階 Ibaraki (JP).

(81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国(広域): ARIPO 特許 (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイドスノート」を参照。

(54) Title: ANTIBODY AGAINST LESION TISSUE

A1

(54) 発明の名称: 痘瘍組織に対する抗体

(57) Abstract: It is intended to provide a method of isolating a polynucleotide encoding an antibody against a lesion which involves the following steps: (a) the step of isolating B cells infiltrating into the target lesion; and (b) the step of obtaining a polynucleotide encoding an antibody from the thus isolated B cells. As examples of the lesion, cancer tissues and so on can be cited. Thus, an antibody gene can be obtained without resort to cloning B cells. As a result, it also becomes possible to obtain a gene encoding a human-origin antibody wherein cloning can be hardly effected. By using a cancer tissue as the lesion, a gene of an antibody against cancer can be obtained.

(57) 要約: 次の工程を含む、病瘍に対する抗体をコードするポリヌクレオチドの単離方法が提供された。 (a) 目的とする病瘍に浸潤したB細胞を単離する工程、および (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを得る工程 痘瘍としては、癌組織などを示すことができる。B細胞のクローニングに頼ることなく抗体遺伝子を取得できる。その結果、クローニングが難しいヒト由来の抗体をコードする遺伝子を取得することもできる。病瘍として癌組織を用い、癌に対する抗体の遺伝子を取得することができる。

WO 2004/048571

BEST AVAILABLE COPY

- 1 -

明細書

病巣組織に対する抗体

技術分野

本発明は、病巣組織に対する抗体、並びにその製造方法に関する。

背景技術

癌組織におけるリンパ球の浸潤は広く知られている(文献1/Hurliamnn et al. (1985) Int J Cancer 35:753; 文献2/Whiteside et al. (1986) Cancer Immunol Immunother 23:169; 文献3/Wolf et al. (1986) Otolaryngol Head Neck Surg 95:142; 文献4/Husby et al (1976) J Clin Invest 57:1471; 文献5/Vose et al. (1979) Int J Cancer 24:579)。実験的および臨床的なデータは、癌組織におけるリンパ球の浸潤が癌に対する宿主の免疫反応の関与を示唆している(文献5/Rosenberg et al. (1988) New Engl J Med 319:1676; 文献6/Van Pel et al. (1995) Immunol Reviews 145:229; 文献7/Kreider et al. (1984) Cancer Metastasis Rev 3:53)。

癌に対する宿主の免疫防御システムにおいて、細胞傷害性T細胞(CTL)は直接癌細胞を殺すエフェクター細胞である(文献8/Nobholz and MacDonald (1983) Ann u Rev Immunol 1:273)。また、B細胞の最終分化形態であるプラズマ細胞の產生する抗体のうち、いくつかのものは癌細胞と結合する能力を有するのではないかと推察されている(文献9/Roitt et al. (1969) Lancet 2: 367; 文献10/Borsig (1971) Progress in Immunology: p841. New York, Academic Press; 文献11/Kodera and Bean (1975) Int J Cancer 16:579)。

たとえば癌組織に浸潤するB細胞は抗体を発現し、その抗体は癌細胞上の抗原に選択的に結合することが示されている(文献12/Punt et al. (1994) Cancer Im

- 2 -

munol Immunother 38:225; 文献 13 /Zhang et al. (1995) Cancer Res 55:358 4)。このことは、浸潤B細胞が発現する抗体による癌抗原の同定が可能であることを示している。もしもこのような反応性を有する抗体を得ることができれば、癌の治療および診断に有用である。

癌細胞に結合した抗体は、補体系もしくは抗体依存的な細胞傷害機能を作動することにより癌細胞を破壊する。しかし実際には、癌組織に浸潤したB細胞によって産生された抗体がどのような特異性を有するのか、どのような可変領域のレパートリーを持つのかに関しての報告は少ない。

癌組織に浸潤するB細胞が発現する抗体についての解析が難しい理由の一つとして、浸潤B細胞によって産生される抗体の単離が困難なことを示すことができる。一般に抗体の解析には、抗体産生細胞のクローニングが必要である。抗体産生細胞のクローニングのための手法として、Epstein-Barr ウィルス(EBV)によるヒトB細胞の不死化法が知られている。しかしEBV感染によってヒト抗体産生細胞を株化できる確率は非常に低い(文献 14 /Henderson et al (1977) Virology 76:152; 文献 15 /Aman et al (1984) J Exp Med 159:208)。

マウス抗体の産生細胞株を樹立するために確立されたハイブリドーマ法も、抗体産生細胞のクローン化のための手法の一つである。ハイブリドーマ法は、抗原特異的なB細胞を不死化したミエローマ細胞と融合し、抗体発現細胞を株化する方法である。しかしながら、いまのところヒトB細胞に関しては効率のよい融合パートナー細胞が見つかっていない。マウスのハイブリドーマ細胞の場合に有効なマウスミエローマ細胞をヒトB細胞の融合パートナーとして用いた場合、ヒト染色体の欠落が優先的に起こるためヒトハイブリドーマ細胞の形質は不安定であり、抗体産生株の株化にはつながらない(文献 16 /Winter and Milstein (1991) Nature 349:293)。このように、現在のところ、ヒト由来の抗体産生細胞を株化することは、技術的に困難である。

更にクローン化された抗体産生細胞と同様の抗原結合活性を持つ抗体を作り出

すための組換えDNA技術、すなわち抗体遺伝子のクローニングと組換え抗体蛋白質の調製法が確立されつつある(文献17/Marks et al. (1991) J Mol Biol 222:581; 文献18/Larrick et al. (1992) Immunol Reviews 130:69)。抗体遺伝子の可変領域をコードする遺伝子をクローニングすることにより、Fv、scFv、Fab、IgG、あるいはIgMなどの抗体遺伝子を作成することができる(文献19/Skerra et al. (1988) Science 240:293; 文献20/Bird et al. (1988) Science 242:423; 文献21/Better et al. (1988) Science 240:1041)。最も小さい組換え抗体分子であるscFvは、重鎖可変領域、軽鎖可変領域をリンカーで連結した構造を持っている。

クローン化されたB細胞は、言うまでもなく単一の抗体遺伝子を発現している。したがって、この細胞から軽鎖可変領域および重鎖可変領域をクローニングすれば、B細胞が产生している抗体と同様の活性を有する抗体を再構成することができる。しかし末梢血に存在するB細胞や癌組織に浸潤しているB細胞は、多様な抗体を产生する細胞集団(ポリクローナル)である(文献22/Kotlan et al. (1999) Immunol Lett 65:143; 文献23/Hansen et al. (2001) Proc Natl Acad Sci USA 98:12659)。したがって、このような細胞集団から抗体遺伝子をクローニングしヒト抗体として再構成することは容易ではない。

発明の開示

本発明はポリクローナルな細胞集団に含まれる抗体産生細胞から、特定の反応性を有する抗体をコードするポリヌクレオチドを取得するための方法の提供を課題とする。

一般に、遺伝子組み換え技術を利用して抗体遺伝子をクローニングするためには、何らかの手法によってクローン化されたB細胞が必要であった。この制約が、たとえば癌組織に浸潤したB細胞が产生する抗体の取得を困難とする原因となっていた。本発明者らは、B細胞のクローン化に頼らず、抗体遺伝子の取得を可能とす

る方法を探索した。そして、細胞集団から単離された細胞のmRNAが、クローニングソースとして利用できるのではないかと考えた。一般にヒト抗体遺伝子のクローニングに用いられるのは末梢血に含まれるB細胞である。しかし末梢血のB細胞群は多様な反応性を有する抗体を産生するポリクローナルな集団であるため、特定の反応性を有する抗体を選択的に単離する目的には不向きであると考えられた。

マイクロダイセクションとは、組織切片のような不均一な細胞集団で構成された試料から、特定の細胞を切り出して単離するための手法である。たとえば紫外線レーザーで目的とする細胞の周囲を切り取り、細胞を単離するためのシステムが実用化されている。このシステムはレーザーマイクロダイセクション(Laser Microdissection;LMD)システムと呼ばれ、既に市販されている。LMDは、細胞に与える損傷が小さく、しかも目的とする細胞を高い精度で取得することができる技術として普及した。LMDを用いれば、特定の細胞の遺伝子を取得し、その遺伝子をPCRによって増幅することができる。

本発明者らは、癌組織中に浸潤したB細胞であれば、高い確率で癌細胞に対して反応性を有する抗体を産生すること、そして浸潤B細胞をLMDシステムなどを利用して単離することにより、癌細胞に結合する抗体をコードするポリヌクレオチドを効率的に単離することが可能になるのではないかと考えた。そして実際に病巣組織に浸潤したB細胞をクローニングソースとして利用し、抗体をコードするポリヌクレオチドが得られることを明らかにして本発明を完成した。すなわち本発明は、以下の抗体遺伝子の単離方法、この遺伝子によってコードされる抗体の作製方法、該方法により得られた抗体に関する。

[1] 以下の工程を含む病巣組織に対する抗体をコードするポリヌクレオチドの
単離方法

- (a) 病巣組織に浸潤しているB細胞を単離する工程、および
- (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを取得する
工程

- [2] 病巣組織が癌組織である [1] に記載の方法。
 - [3] (a) 病巣組織に浸潤しているB細胞を単離する工程が、病巣組織の切片からB細胞を含む領域を切り出す工程を含む、[1] に記載の方法。
 - [4] (b) 抗体をコードするポリヌクレオチドを取得する工程が、抗体可変領域をコードする遺伝子を增幅する工程を含む [1] に記載の方法。
 - [5] [1] に記載の方法によって単離された、抗体をコードするポリヌクレオチド。
 - [6] 抗体をコードするポリヌクレオチドが、抗体の可変領域をコードするポリヌクレオチドを含むことを特徴とする [5] に記載のポリヌクレオチド。
 - [7] [5] に記載のポリヌクレオチドを含む発現ベクター。
 - [8] [5] に記載のポリヌクレオチド、または [7] に記載の発現ベクターを含む宿主細胞。
 - [9] [8] に記載の宿主細胞を培養し、発現産物である抗体を回収する工程を含む抗体の製造方法。
 - [10] [9] に記載の方法により製造された抗体。
 - [11] [5] に記載のポリヌクレオチドによってコードされる抗体。
 - [12] 更に次の工程を含む [9] に記載の抗体の製造方法。
 - (1) [9] に記載の方法によって得られた抗体を病巣組織に接触させる工程、
 - (2) 前記病巣組織と抗体との結合を検出する工程、および
 - (3) 前記病巣組織に結合する抗体を選択する工程
- 本発明は、次の工程を含む、病巣に対する抗体をコードするポリヌクレオチドの単離方法に関する。
- (a) 病巣に浸潤したB細胞を単離する工程、および
 - (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを得る工程
- 病巣に浸潤したB細胞は、その病巣に対する抗体を產生している可能性が高い。

つまり病巣部分は、その病巣を認識する抗体を産生するB細胞を集積していると言うことができる。したがって、病巣に浸潤した細胞集団から単離されたB細胞に由来する抗体遺伝子は、病巣に対する抗体の産生に有用である。本発明において、病巣に対する抗体とは、病巣を構成する抗原、あるいは病巣が産生する抗原性物質を認識する抗体を言う。このような抗体は、病巣の診断や治療に有用である。また、病巣が自己免疫疾患に起因する場合には、自己免疫疾患のエピトープの解析において重要な情報を与える。

本発明の方法においては、免疫システムによって異物として認識されるあらゆる病巣を利用することができる。たとえば、次のような病巣は、本発明におけるB細胞の取得のための病巣として好ましい。これらの病巣は、自然発生的に生じた病巣と言うことができる。自然発生的に生じた病巣は、当該病巣の治療を目的としてヒトからも得ることができる。

固形癌の病巣

動脈硬化の病巣

炎症性疾患の病巣

感染性病原体によって形成された病巣

自己免疫疾患の病巣

一方本発明においては、人為的に構成された病巣を利用することができる。たとえば、次のような病巣は、人為的にもたらされた病巣である。人為的にもたらされた病巣は、たとえば免疫動物から得ることができる。人為的な病巣を利用することによって、任意の抗原に対する抗体のポリヌクレオチドを得ることができる。

免疫動物に人為的に移植された異種の細胞や組織

免疫動物に人為的に移植された外来遺伝子を発現する細胞や組織

本発明における好ましい病巣として、癌組織を示すことができる。すなわち本発明は、以下の工程を含む癌細胞に対する抗体をコードするポリヌクレオチドの

単離方法に関する。

(a) 癌組織に浸潤しているB細胞を単離する工程、および

(b) 単離したB細胞から、抗体をコードするポリヌクレオチドを得る工程

本発明における癌組織は、限定されない。具体的には、乳癌組織、肺癌組織、肝臓癌組織、大腸癌組織、胰臓癌組織、あるいは前立腺癌組織などを示すことができる。中でもB細胞の浸潤が多く見られる癌は、本発明における望ましい癌組織である。B細胞の浸潤が多く見られる癌として、乳癌、肺癌、およびメラノーマを示すことができる。癌組織は、外科的な切除により採取される。たとえばバイオプシーによって採取された癌組織を本発明における癌組織として用いることができる。また、外科的な摘出術によって患者から摘出された組織も、癌組織として有用である。これらの組織は、抗体遺伝子の取得のために摘出されたものであっても良いし、あるいは組織病理学的な検査や、外科的な治療を目的として摘出された組織を利用することもできる。

本発明において、癌組織に浸潤しているB細胞を単離する方法は任意である。B細胞の好ましい単離方法として、マイクロダイセクションを示すことができる。マイクロダイセクションは、組織切片から特定の細胞を切り取るための技術である。たとえば、凍結組織切片からLaser Microdissection (LMD) システムを使って、目的の細胞を単離することができる。紫外線レーザーによって組織切片を切り取ることができるシステムが既に市販されている。このシステムを利用すれば、顕微鏡観察下でコンピューターを使って画像中で切り取る領域を指定することにより、組織切片から任意の領域を切り取ることができる。

このとき、標本を顕微鏡で観察し、B細胞が密集している部分を選択すれば、多くのB細胞を単離することができる。あるいはB細胞の密度の低い領域を切り出せば、少ないB細胞を容易に取得できる。実施例に示すように、単一の細胞を取得することさえ可能である。

本発明においては、任意の病理標本からB細胞を単離することができる。たとえ

ば、凍結薄切標本は、本発明における望ましい病理標本である。病理標本として、新鮮な組織のみならず、パラホルムアルデヒド(PFA)等で固定された標本を用いることもできる。したがって、たとえば保存された病理標本から、本発明の方法によって抗体の遺伝子を取得することも可能である。このように、本発明の方法は、幅広いクローニングソースを選択できる。すなわち本発明は、多様な抗体遺伝子を容易に取得できる方法である。

マイクロダイセクションは、PCR法等を利用した、組織中の特定の細胞の遺伝子解析のために利用されているシステムである。しかし、抗体遺伝子の取得のためにマイクロダイセクションを利用した報告は無い。本発明者らは、病巣に浸潤したB細胞の集団が、目的とする反応性を有する抗体を產生している可能性が高い細胞集団として利用できることに着目した。そして更に、このような細胞集団の中から抗体產生細胞を取得してクローニングソースとして利用することにより、抗体遺伝子の取得を可能とした。

より具体的には、顕微鏡観察下での病理解析に基づいて、癌組織に浸潤し抗体を產生するB細胞、あるいはプラズマ細胞を取り出すことができる。B細胞、あるいはプラズマ細胞は、トルイジンブルー等で染色することによって識別することができる。この方法によって、従来の末梢血や癌部・非癌部の混じった組織分画よりB細胞やプラズマ細胞を取り出してくる方法に比べて、はるかに高い確率で癌細胞を認識する抗体の遺伝子を単離することができる。

本発明において、細胞の単離とは、異質な細胞が混在している細胞集団から、B細胞を分離することを言う。本発明における細胞の単離は、抗体遺伝子を有する細胞が抗体遺伝子の混入を伴わない他の細胞と共存する場合を含む。たとえば実施例に示すように、抗体を產生しないことが明らかなキャリア細胞を、抗体產生細胞に加えることができる。キャリア細胞は、目的とするmRNAの抽出を助けるために混合される。つまり、他の細胞が混在している場合であっても、限られた数の抗体產生細胞のみが含まれている場合には、当該抗体產生細胞は単離された状

態にあると言うことができる。

本発明において単離するB細胞の数は任意である。具体的には、たとえば1～1000、通常1～50、好ましくは20以下、より好ましくは5以下、更に好ましくは1個の細胞を単離する。

1個の細胞を単離すれば、重鎖と軽鎖の組み合せを維持した状態で抗体遺伝子を取得できる可能性が高まる。機能的な抗体分子を再構成するには、重鎖と軽鎖の組み合せを維持した状態でその遺伝子を取得することは重要な条件である。抗体遺伝子のクローニングにおいて、モノクローナルな抗体産生細胞をクローニングソースに用いることは、重鎖と軽鎖の組み合せを確実に再構成するために必要な条件であった。しかし1個の細胞から取得した抗体遺伝子を使って、反応性の異なる複数の抗体を比較するためには、遺伝子のクローニングを繰り返す必要がある。複数の抗体の比較は、より目的に合った特性を有する抗体を取得するため有効である。

逆に、複数の細胞を単離してクローニングソースとした場合には、取得された抗体遺伝子の重鎖と軽鎖の組み合せを特定することはできない。しかし複数の細胞に由来する抗体遺伝子を同時に取得することができる。つまり、抗体遺伝子のライブラリーを得ることができる。このようなライブラリーから、抗体活性を指標とするスクリーニングによって、目的とする反応性を有する抗体の遺伝子を取得することができる。スクリーニングによって選択された抗体遺伝子の重鎖と軽鎖の組み合せが同一の細胞に由来しているかどうかを確認することはできない。しかし、遺伝子が同一の細胞に由来するかどうかに関わらず、必要な反応性を有する抗体を得ることができれば目的は達成される。

本発明の方法においては、病巣に浸潤している任意の抗体産生細胞をクローニングソースとして利用することができる。通常、末梢血を循環しているB細胞の分化レベルは多様である。分化の初期には、B細胞は μ 鎖を抗原受容体として細胞表面に有する。抗原刺激に基づく分化と活性化を経ることにより、B細胞は成熟しIg

- 1 0 -

G分泌細胞へと分化する。B細胞の分化の最終段階にある細胞はプラズマ細胞 (plasma cell; 形質細胞) と呼ばれる。プラズマ細胞は、毎秒 2000 分子の IgG を產生している。したがって、プラズマ細胞を単離すれば、より多くの mRNA が取得できることになる。

病巣に浸潤した B 細胞は、一般に分化が進んだ状態にあるものが多く見出される。しかも浸潤 B 細胞は、病巣に対する抗体を产生している可能性が高い。したがって、病巣から単離される B 細胞をクローニングソースとして利用することによって、抗体の特異性は必然的に病巣に集中する。更に、分化が進んだ B 細胞、あるいはプラズマ細胞は、抗体遺伝子の発現レベルがきわめて高い状態にある。したがって、このような細胞をクローニングソースとして利用することは、抗体遺伝子を取得できる可能性を高めることにつながる。このように病巣に浸潤した B 細胞を利用することによって、比較的少數の細胞を用いながら、高い確率で目的とする抗体遺伝子を取得することが可能となる。

分離された B 細胞から抗体遺伝子を単離するために、抗体遺伝子を増幅することができる。遺伝子の増幅方法は、公知である。たとえば、PCR 法は抗体遺伝子の増幅方法として好ましい。以下に、PCR 法を利用した抗体遺伝子の単離方法について説明する。

まず単離された B 細胞から mRNA を抽出する。抽出された mRNA を鑄型として cDNA を合成し、cDNA ライブライマーを得る。mRNA の抽出や cDNA ライブライマーの合成には市販のキットを用いるのが便利である。本発明においては、少數の B 細胞に由来する mRNA が利用される。実際には、少數の細胞のみから得られる mRNA は極めて微量なので、それを直接精製すると収率が低い。したがって通常は、抗体遺伝子を含まないことが明らかなキャリア RNA を添加した後に精製される。あるいは一定量の RNA を抽出できる場合には、抗体産生細胞の RNA のみでも効率よく抽出することができる。たとえば 10 以上、あるいは 30 以上、好ましくは 50 以上の抗体産生細胞からの RNA 抽出には、キャリア RNA の添加は必要でない場合がある。

- 11 -

得られたcDNAライブラリーを鑄型として、PCR法によって抗体遺伝子が増幅される。抗体遺伝子をPCR法によって増幅するためのプライマーが公知である。たとえば、論文(J. Mol. Biol. (1991) 222, 581-597)やWebサイト(<http://www.mrc-cpe.cam.ac.uk/vbase-ok.php?menu=901>)の開示に基づいて、ヒト抗体遺伝子増幅用のプライマーをデザインすることができる。これらのプライマーは、イムノグロブリンのサブクラスごとに異なる塩基配列となる。したがって、サブクラスが不明のcDNAライブラリーを鑄型とするときには、あらゆる可能性を考慮してPCR法を行う。

具体的には、たとえばヒトIgGをコードする遺伝子の取得を目的とするときには、重鎖として γ 1～ γ 5、軽鎖として κ 鎖と λ 鎖をコードする遺伝子の増幅が可能なプライマーを利用することができる。IgGの可変領域遺伝子を増幅するためには、一般に3'側のプライマーにはヒンジ領域に相当する部分にアニールするプライマーが利用される。一方5'側のプライマーには、各サブクラスに応じたプライマーを用いることができる。

重鎖と軽鎖の各サブクラスの遺伝子増幅用プライマーによるPCR産物は、それぞれ独立したライブラリーとする。こうして合成されたライブラリーを利用して、重鎖と軽鎖の組み合せからなるイムノグロブリンを再構成することができる。再構成されたイムノグロブリンの、病巣に対する結合活性を指標として、目的とする抗体をスクリーニングすることができる。

たとえば癌組織に対する抗体の取得を目的とするとき、本発明の抗体は癌細胞に結合することが好ましい。抗体の癌細胞への結合は、特異的であることがさらに好ましい。癌に結合する抗体は、たとえば次のようにしてスクリーニングすることができる。

- (1) 本発明の方法によって得られた抗体を癌細胞に接触させる工程、
- (2) 前記癌細胞と抗体との結合を検出する工程、および
- (3) 前記癌細胞に結合する抗体を選択する工程

- 1 2 -

抗体と癌細胞との結合を検出する方法は公知である。具体的には、癌の固定標本に対して被験抗体を反応させ、次に抗体を認識する標識抗体を反応させる。洗浄後に固定標本上の標識抗体が検出されたときには、当該被験抗体の癌への結合を証明できる。標識には、ペルオキシダーゼや β -ガラクトシダーゼ等の酵素活性蛋白質、あるいはFITC等の蛍光物質を利用することができる。抗体の結合活性を評価するための癌組織としては、B細胞を取得した病巣を構成する癌組織そのものであっても良いし、あるいは異なる個体から採取された同じ臓器の癌組織や癌由来の細胞株を用いることもできる。更に、異なる臓器に由来する癌組織や癌由来の細胞株を利用することによって、異なる種類の癌に共通して反応する抗体をスクリーニングすることもできる。

本発明において、抗体の癌組織に対する反応性が、正常組織との反応性と比較して、有意に高いとき、その抗体は癌に特異的に結合する抗体であると言う。本発明の抗体の反応性を比較するには、一般に、同種の組織が用いられる。すなわち、癌組織と当該癌組織が由来する臓器の正常組織との間で、抗体の反応性が比較される。癌組織に対する反応性が確認できる条件下で、正常組織に対する結合活性が検出できないとき、この抗体は、癌組織に対して特異的な反応性を有すると言うことができる。

結合活性を指標とする抗体のスクリーニング方法として、ファージベクターを利用したパニング法を用いることもできる。上記のように抗体遺伝子を重鎖と軽鎖のサブクラスのライブラリーとして取得した場合には、ファージベクターを利用したスクリーニング方法が有利である。実施例に記載するように、重鎖と軽鎖の可変領域をコードする遺伝子は、適当なリンカー配列で連結することによってシングルチェインFv(scFv)とすることができます。scFvをコードする遺伝子をファージベクターに挿入すれば、scFvを表面に発現するファージを得ることができる。このファージを目的とする抗原と接触させて、抗原に結合したファージを回収すれば、目的の結合活性を有するscFvをコードするDNAを回収することができる。こ

の操作を必要に応じて繰り返すことにより、目的とする結合活性を有するscFvを濃縮することができる。

本発明において抗体をコードするポリヌクレオチドは、抗体の全長をコードしていてもよいし、あるいは抗体の一部をコードしていてもよい。抗体の一部とは、抗体分子の任意の部分を言う。以下、抗体の一部を示す用語として、抗体断片を用いる場合がある。本発明における好ましい抗体断片は、抗体の相補鎖決定領域 (complementarity determination region; CDR) を含む。更に好ましくは、本発明の抗体断片は、可変領域を構成する3つのCDRの全てを含む。

たとえば、抗体の可変領域をコードするポリヌクレオチドは、本発明の抗体断片として好ましい。可変領域をコードするポリヌクレオチドを取得することができれば、定常領域をコードするポリヌクレオチドと連結することによって、完全なイムノグロブリン分子を再構成することができる。抗体の定常領域は、同じクラスの抗体であればほぼ同じ構造を有している。つまり定常領域の構造は抗原結合活性には影響しない。したがって、可変領域の構造を明らかにすれば、既に取得されている定常領域との接合によって、その抗体と同様の活性を有する抗体を再構成することができる。

本発明の抗体は、人為的に構造を改変した遺伝子組換え型抗体を含む。たとえばヒトではなくマウスのような異種動物から本発明の方法によって取得された抗体遺伝子は、ヒトの定常領域遺伝子との接合によって、マウス-ヒトキメラ (Chimeric) 抗体とすることができる。あるいはマウスのような異種動物の可変領域を構成するCDRを、ヒト可変領域に移植することによって、マウスの可変領域をヒト化するための方法も公知である。

本発明における抗体をコードするポリヌクレオチドは、DNA、RNA、あるいは両者のキメラ分子であることができる。更に、その塩基配列が維持されていれば、RNA等の人工的な構造を含むこともできる。B細胞から単離された抗体をコードする遺伝子の塩基配列に基づいて、同じ塩基配列を有するポリヌクレオチドを合成す

る方法は公知である。

本発明のポリヌクレオチドは、B細胞から単離された抗体をコードする遺伝子と同一の配列若しくは相同性の高い配列を有することができる。ここで相同性が高いとは、通常70%以上の相同性を有し、好ましくは80%以上の相同性を有し、さらに好ましくは90%以上の相同性を有し、特に好ましくは95%以上の相同性を有することを示す。

本発明は、上記の方法によって得られた抗体をコードするポリヌクレオチドに関する。本発明のポリヌクレオチドは、任意の発現ベクターに組み込むことができる。発現ベクターで適当な宿主を形質転換し、抗体発現細胞とすることができる。抗体発現細胞を培養し発現産物を回収すれば、当該遺伝子によってコードされる抗体を取得することができる。以下に、上記の方法によって単離された抗体遺伝子の発現について説明する。

抗体遺伝子を一旦単離した後、適当な宿主に導入して抗体を作製する場合には、適当な宿主と発現ベクターの組み合わせを使用することができる。真核細胞を宿主として使用する場合、動物細胞、植物細胞、真菌細胞を用いることができる。動物細胞としては、(1) 哺乳類細胞、例えば、CHO, COS, ミエローマ、BHK(baby hamster kidney), HeLa, Vero, (2) 両生類細胞、例えば、アフリカツメガエル卵母細胞、あるいは(3) 昆虫細胞、例えば、sf9, sf21, Tn5などが知られている。植物細胞としては、ニコティアナ (*Nicotiana*) 属、例えばニコティアナ・タバカム (*Nicotiana tabacum*) 由来の細胞が知られており、これをカルス培養すればよい。真菌細胞としては、酵母、例えば、サッカロミセス (*Saccharomyces*) 属、例えばサッカロミセス・セレビシエ (*Saccharomyces cerevisiae*)、糸状菌、例えば、アスペルギルス (*Aspergillus*) 属、例えばアスペルギルス・ニガー (*Aspergillus niger*) などが知られている。原核細胞を使用する場合、細菌細胞を用いる產生系がある。細菌細胞としては、大腸菌 (*E. coli*)、枯草菌が知られている。これらの細胞に、目的とする抗体遺伝子を形質転換により導入し、形質転換された細胞を *in vi*

troで培養することにより抗体が得られる。

また、本発明の方法により得られた抗体は、その抗体断片や抗体修飾物であつてよい。例えば、抗体断片としては、Fab、F(ab')2、Fv、またはH鎖若しくはL鎖のFvを適当なリンカーで連結させたシングルチェインFv(scFv)が挙げられる。具体的には、抗体を酵素、例えば、パパイン、ペプシンで処理し、抗体断片を生成させることによって、抗体断片を得ることができる。または、これら抗体断片をコードする遺伝子を構築し、これを発現ベクターに導入した後、適当な宿主細胞で発現させる(例えば、Co, M. S. et al., J. Immunol., 1994, 152, 2968-2976.、Better, M. & Horwitz, A. H., Methods in Enzymology, 1989, 178, 476-496, Academic Press, Inc.、Plueckthun, A. & Skerra, A., Methods in Enzymology, 1989, 178, 476-496, Academic Press, Inc.、Lamoyi, E., Methods in Enzymology, 1989, 121, 663-669.、Bird, R. E. et al., TIBTECH, 1991, 9, 132-137. 参照)。

scFvは、抗体のH鎖V領域とL鎖V領域とを連結することにより得られる。このscFvにおいて、H鎖V領域とL鎖V領域は、リンカー、好ましくはペプチドリンカーを介して連結される(Huston, J. S. et al., Proc. Natl. Acad. Sci. U.S.A, 1988, 85, 5879-5883.)。scFvにおけるH鎖V領域およびL鎖V領域は、本明細書に抗体として記載されたいずれの抗体由来であってもよい。

V領域を連結するペプチドリンカーとしては、例えば12-19残基からなる任意の一本鎖ペプチドが用いられる。scFvをコードするDNAは、前記抗体のH鎖またはH鎖V領域をコードするDNA、およびL鎖またはL鎖V領域をコードするDNAのうち、それらの配列のうちの全部又は所望のアミノ酸配列をコードするDNA部分を錠型とし、その両端を規定するプライマー対を用いてPCR法により増幅し、次いで、さらにペプチドリンカーパートをコードするDNA、およびその両端が各々H鎖、L鎖と連結されるように規定するプライマー対を組み合わせて増幅することにより得られる。また、一旦scFvをコードするDNAが作製されると、それらを含有する発現ベクター、

および該発現ベクターにより形質転換された宿主を常法に従って得ることができ。また、その宿主を用いることにより、常法に従ってscFvを得ることができる。

これらの抗体断片は、前記と同様にして遺伝子を取得し、宿主により產生させることができる。抗体修飾物として、ポリエチレングリコール (PEG) 等の各種分子と結合した抗体を使用することもできる。また抗体に放射性同位元素、化学療法剤、細菌由来トキシン等の細胞傷害性物質、あるいは標識物質などを結合することも可能である。このような抗体修飾物は、得られた抗体に化学的な修飾を施すことによって得ることができる。抗体の修飾方法はこの分野においてすでに確立されている。本発明における「抗体」にはこれらの抗体修飾物も包含される。

さらに、本発明における抗体は二重特異性抗体(bispecific antibody)であってもよい。二重特異性抗体は抗原分子上の異なるエピトープを認識する抗原結合部位を有する二重特性抗体であってもよいし、一方の抗原結合部位が抗原を認識し、他方の抗原結合部位が放射性物質、化学療法剤、細菌由来トキシン等の細胞障害性物質を認識してもよい。この場合、抗原を発現している細胞に直接細胞障害性物質を作らせ癌細胞に特異的に障害を与え、癌細胞の増殖を抑制することができる。二重特異性抗体は2種類の抗体のHL対を結合させて作製することもできるし、異なるモノクローナル抗体を産生するハイブリドーマを融合させて、二重特異性抗体産生融合細胞を作製し、得ることもできる。さらに、遺伝子工学的手法により二重特異性抗体を作製することも可能である。

前記のように発現、產生された抗体は、通常のタンパク質の精製で使用されている公知の方法により精製することができる。例えば、プロテインAカラムなどのアフィニティーカラム、クロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等を適宜選択、組み合わせることにより、抗体を分離、精製することができる(Antibodies A Laboratory Manual. Ed Harlow, David Lane, Cold Spring Harbor Laboratory, 1988)。

抗体の抗原結合活性(Antibodies A Laboratory Manual. Ed Harlow, David Lan

- 1 7 -

e, Cold Spring Harbor Laboratory, 1988)の測定には公知の手段を使用することができる。例えば、ELISA(酵素結合免疫吸着検定法)、EIA(酵素免疫測定法)、RIA(放射免疫測定法)あるいは蛍光免疫法などを用いることができる。

本発明の抗体を製造するための発現系を構築するための手順および宿主に適合した組換えベクターの構築は遺伝子工学の分野において慣用の技術を用いて行うことができる(例えば、Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratories (1989)等参照)。宿主細胞としては、細菌等の原核生物、並びに、酵母、動物細胞、昆虫細胞及び植物細胞等の真核細胞等、本発明の軽鎖又は軽鎖を含む抗体を発現できる細胞であればいずれも用いることができる。特に、グリコシル化の点から考えると哺乳動物細胞が好ましい。

発現ベクターは、遺伝情報の転写及び翻訳を制御するプロモーター、ターミネーター等のユニットを含む必要がある。例えば、大腸菌等のエシェリシア属の微生物を宿主細胞とする場合、プラスミドベクターとしてpBR、pUC系プラスミドを利用することができlac、trp、tac、trc、λファージPL、PR等に由来するプロモーターが利用可能である。また、ターミネーターとしてはtrpA由来、ファージ由来、rrnBリボソームRNA由来のものを用いることができる。

枯草菌等のバチルス属の微生物を宿主とする場合については、pUB110系、pC194系等のプラスミドが知られており、場合により遺伝子を染色体にインテグレートすることもできる。プロモーター・ターミネーターとしてapr、npr、amy等由来のものが利用できる。

その他、原核細胞としてはショードモナス属(例えば、*Pseudomonas putida*, *P. cepacia*等；pKT240等のベクター)、ブレビバクテリウム属(例えば、*Brevibacterium lactofermentum* ; pAJ43等)、コリネバクテリウム属(例えば、*Corynebacterium glutamicum*等；pCS11、pCB101等)、ストレプトコッカス属(pHV1301、pGK1等)、ラクトバチルス属(pAMβ1等)、ロドコッカス属(*Rhodococcus rhodochrous*等より単離されたプラスミド(J. Gen. Microbiol. 138: 1003 (1992))等)、ストレプトマ

- 18 -

イセス属(例えば、*Streptomyces lividans*, *S. virginiae*等; pIJ486, pKC1064, pUWL-KS等)、エンテロバクター属、エルウィニア属、クレビシェラ属、プロテウス属、サルモネラ属(*Salmonella typhimurium*等)、セラチア属(*Serratia marcescans*)、シグレラ属に属する微生物が挙げられる。

真核微生物の発現系としては、*Saccharomyces cerevisiae*を宿主とし、YRp系、YEp系、YCp系、YIp系のプラスミドを用いた系が知られている。また、ADH、GAPDH、PHO、GAL、PGK、ENO等のプロモーター・ターミネーターが利用可能である。その他、クライベロマイセス属(例えば、*Kluyveromyces lactis*等; 2μm系、pKD1系、pGKI1系、KARS系等のプラスミド)、シゾサッカロマイセス属(例えば、*Schizosaccharomyces pombe*等; pAUR224等)、チゴサッカロマイセス属(例えば、*Zygosaccharomyces rouxii*等; pSB3、及び、*S. cerevisiae*由来PH05プロモーター等)、ハンゼヌラ属(例えば、*Hansenula polymorpha*等)、ピキア属(例えば、*Pichia pastoris*等)、カンディダ属(例えば、*Candida maltosa*, *Candida tropicalis*, *Candida utilis*, *Candida albicans*等)、アスペルギルス属(例えば、*Aspergillus oryzae*, *Aspergillus niger*等)、及びトリコデルマ属(例えば、*Trichoderma reesei*等)等を本発明の発現ベクター系において用いることができる。

その他、植物細胞を宿主として用いることもできる。例えば、綿、トウモロコシ、ジャガイモ、トマト、ダイズ、ペチュニア、及びタバコ等由来の植物細胞を宿主とすることができる。特に良く知られた系として*Nicotina tabacum*由来の細胞を用いたものが知られており、これをカルス培養すればよい。植物を形質転換する際には、例えば、pMON530等の発現ベクターを用い、該ベクターを*Agrobacterium tumefaciens*等の細菌に導入する。この細菌をタバコ(例えば、*Nicotina tabacum*)に感染させると、所望のポリペプチドをタバコの葉等から得ることができる。

カイコ(*Bombyx mori*)、カ(*Aede aegypti*, *Aedes albopictus*)、ショウジョウバエ(*Drosophila melanogaster*)等の昆虫細胞を宿主として用いることも可能である。例えば、カイコを用いる場合、抗体をコードするDNAをバキュロウイルスベクター

等に挿入し、該ウイルスをカイコに感染させることによりカイコの体液から目的のポリペプチドを得ることができる(Nature 315: 592-594 (1985))。

動物細胞を宿主として用いる場合には、例えば、pME18S(Med. immunol. 20: 27-32 (1990))、pEF-BOS(Nucleic Acids Res. 18: 5322 (1990))、pCDM8(Nature 32: 840-842 (1987)、pRSVneo、pSV2-neo、pcDNAI/Amp(Invitrogen)、pcDNAI、pAMoERC3Sc、pCDM8(Nature 329: 840 (1987))、pAGE107(Cytotechnology 3: 133 (1990))、pREP4(Invitrogen)、pAGE103(J. Biochem. 101: 1307 (1987))、pAMoA、pAS3-3、pCAGGS(Gene 108: 193-200 (1991))、pBK-CMV、pcDNA3.1(Invirtogen)、pZeoSV(Stratagene)等が発現ベクターとして挙げられる。

プロモーターとしては、サイトメガロウイルスのIE遺伝子のプロモーター及びエンハンサー、SV40の初期プロモーター、RSV、HIV及びMMLV等のレトロウイルスのLTR、メタロチオネインβ-アクチン、伸長因子1、HSP等の動物細胞由来の遺伝子のプロモーター等を挙げることができる。その他、上述のようにウイルスベクターを用いることもできる。ウイルスベクターとしては、レトロウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、シンビスウイルス、センダイウイルス、SV40、HIV等のDNA及びRNAウイルスが挙げられる。

動物細胞宿主としては、マウス・ミエローマ細胞(例えば、SP2/0、NSO等)、ラット・ミエローマ細胞(例えば、YB2/0等)、マウス・ハイブリドーマ細胞、Nmalwa細胞(KJM-1細胞等も含む)、ヒト胎児腎臓細胞(293細胞等)、ヒト白血病細胞(BAL-L-1等)、CHO細胞、COS細胞(COS-1、COS-7等)、ハムスター胎児腎臓細胞(BHK等)、マウスセルトリ細胞(TM4等)、アフリカミドリザル腎臓細胞(VERO-76等)、HBT637細胞、HeLa細胞、ウサギ腎臓細胞(MDCK等)、ヒト肝臓細胞(HepG2等)、マウス乳癌細胞(MMT060562細胞)、TRI細胞、MRC細胞、FS3細胞等がある。

発現ベクターの導入方法としては、宿主及びベクターの種類に依存するが、細胞に抗体をコードするDNAを導入できる方法であれば、いずれも用いることができ

- 20 -

る。原核細胞へベクターを導入する方法としては、カルシウムイオンを用いる方法(Proc. Natl. Acad. Sci. USA 69: 2110 (1972))、プロトプラスト法(特開昭63-24829号公報)、エレクトポーレーション法(Gene 17: 107 (1982); Molecular&General Genetics 168: 111 (1979))等がある。酵母への導入方法としては、エレクトポーレーション法(Methods in Enzymology, 194: 182 (1990))、スフェロプラスト法(Proc. Natl. Acad. Sci. USA 81: 4889 (1984))、酢酸リチウム法(J. Bacteriol. 153: 163 (1983))等がある。植物細胞についてはAgrobacterium法(Gene 23: 315 (1983); WO89/05859等)や、超音波処理による方法(WO91/00358)等が知られている。動物細胞へベクターを導入する方法としてはエレクトポーレーション(Cytotechnology 3:133 (1990))、リン酸カルシウム法(特開平2-227075号公報)、リポフェクション法(Proc. Natl. Acad. Sci. USA 84: 7413 (1987); Virology 52: 456 (1973))、リン酸-カルシウム共沈法、DEAE-デキストラン法、微小ガラス管を用いたDNAの直接注入法等が挙げられる。

上述のようにして取得された形質転換体は、例えば、以下の方法で培養することができる。

形質転換体が原核生物や真核微生物である場合は、培地は該生物が資化し得る炭素源、窒素源、無機塩類等の生育に必要な物質を含有し、形質転換体の効率的な培養を可能にするものであれば天然培地、合成培地のいずれでもよい。培養は好気的条件、嫌気的条件のいずれで行ってもよく、生育温度、培地のpH、生育時間等の条件は、用いる形質転換体の種類に応じ適宜当業者により決定され得るものである。また、誘導性のプロモーターを用いた発現ベクターについては、必要に応じてインデューサーを培地に添加すればよい。例えばlacプロモーターを有するベクターは、IPTGの添加によって発現が誘導される。あるいはtrpプロモーターであれば、IAAがインデューサーとして用いられる。

昆虫細胞を宿主細胞として用いる場合には、培地としてはTNM-FH培地(Pharmingen)、Sf-900 II SFM培地(Life Technologies)、ExCell400及びExCell405(JRH Bio

- 21 -

sciences)、Grace's Insect Medium(Nature 195: 788 (1962))等を用いることができ、必要に応じゲンタマイシン等の抗生物質を添加してもよい。

形質転換体が動物細胞である場合には、一般に使用されているRPMI1640培地(The Journal of American Medical Association 199: 519 (1967))、EagleのMEM培地(Science 122: 501 (1952))、DMEM培地(Virology 8: 396 (1959))、199培地(Proceeding of the Society for the Biological Medicine 73: 1 (1950))、または、これらの培地にBSA等を添加した培地を使用することができる。培養は通常の条件、例えば、pH6~8、30~40°C、5%CO₂存在下で行うことができる。この際、必要に応じカナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

このようにして得られた本発明の抗体は、宿主細胞内、または、シグナル配列を用いて細胞外に分泌させた場合には培地等から単離し、実質的に純粋なポリペプチドとして精製することもできる。本発明の抗体は、一般的にポリペプチドの分離や精製に使用される方法を適宜選択し、必要に応じて組み合せることによって、分離あるいは精製することができる。このような手法としては、クロマトグラフィー、フィルター、限外濾過、塩析、溶媒沈澱、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動、透析、再結晶等を示すことができる。クロマトグラフィーとしては、アフィニティーコロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Charcterization: A Laboratory Course Manual, Daniel R. Marshak et al. eds., Cold Spring Harbor Laboratory Press (1996); Antibodies: A Laboratory Course Manual, Harlow and David Lane eds., Cold Spring Harbor Laboratory Press (1988))。これらのクロマトグラフィーは、HPLCやFPLC等の液相クロマトグラフィーを用いて行うことができる。また、抗原への結合性を利用して精製することも可能である。

- 2 2 -

図面の簡単な説明

図1は、凍結薄切標本より約200個のプラズマ細胞またはB細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。右の写真において白く抜けている部分が切り出された部分を示す。

図2は、凍結薄切標本より切り出した約200個のプラズマ細胞またはB細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す写真および図である。図左の電気泳動の結果は、左側から順に分子量マーカー、重鎖可変領域(VH6/7-JHmix)、および軽鎖可変領域(Vκ2-Jκmix)の増幅産物の電気泳動結果である。右のグラフはAgilent2100による泳動時間の測定結果を示す。縦軸が蛍光強度、横軸が泳動時間(秒)である。

図3は、凍結薄切標本より切り出した約200個のプラズマ細胞またはB細胞に発現していた抗体遺伝子重鎖可変領域の塩基配列決定し、そのコードするアミノ酸配列に関してClustalXによる多重アライメントを行った結果を示す図である。図中、アライメントの上の行に、保存性の高い位置を示した。保存性の高さを示すために以下の3つの文字'*', ':', '..'を用いた。

'*' 全配列に同一のアミノ酸残基が保存されていた位置

':' 全配列に以下に示すいずれかの保存性の高いグループのアミノ酸残基が保存されていた位置

STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW

'..' 全配列に以下に示すいずれかの保存性の低いグループのアミノ酸残基が保存されていた位置

CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK,

NDEQHK, NEQHRK, FVLIM, HFY

図4は、凍結薄切標本より切り出した約200個のプラズマ細胞またはB細胞に発現していた抗体遺伝子κ鎖可変領域の塩基配列決定し、そのコードするアミノ酸

- 23 -

配列に関してClustalXによる多重アライメントを行った結果を示す図である。

図5は、凍結薄切標本より5個のプラズマ細胞またはB細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。右の写真において白く抜けている部分が切り出された部分を示す。

図6は、凍結薄切標本より切り出した5個のプラズマ細胞またはB細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す写真および図である。図左の電気泳動の結果は、左側から順に、それぞれ以下のプライマーセットによる増幅結果を示している。

分子量マーカー、

重鎖可変領域(VH6/7-JHmix)、

軽鎖可変領域(V κ 1-J κ mix)、

軽鎖可変領域(V κ 2-J κ mix)、

軽鎖可変領域(V κ 3-J κ mix)、

軽鎖可変領域(V κ 4/5-J κ mix)、および

軽鎖可変領域(V κ 6-J κ mix)、

右のグラフはAgilent2100による泳動時間の測定結果を示す。縦軸が蛍光強度、横軸が泳動時間(秒)である。

図7は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。右の写真において白く抜けている部分が切り出された部分を示す。

図8は、凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時間(秒)である。

図9は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真で

- 24 -

ある。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。左の写真で矢印で示したのが切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

図10は、凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時間(秒)である。

図11は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。左の写真で矢印で示したのが切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

図12は、凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す写真および図である。図左の電気泳動の結果は、左側から順に、それぞれ以下のプライマーセットによる増幅結果を示している。
分子量マーカー、

重鎖可変領域(VH6/7-JHmix)、

軽鎖可変領域(V κ 1-J κ mix)、

軽鎖可変領域(V κ 2-J κ mix)、

軽鎖可変領域(V κ 3-J κ mix)、

軽鎖可変領域(V κ 4/5-J κ mix)、および

軽鎖可変領域(V κ 6-J κ mix)、

右のグラフはAgilent2100による泳動時間の測定結果を示す。縦軸が蛍光強度、横軸が泳動時間(秒)である。

図13は、凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。

左の写真で矢印で示したのが切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

図14は、凍結薄切標本より切り出した単一のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時間（秒）である。

図15は、PFA固定後の凍結薄切標本より1個のプラズマ細胞を切り出した様子を示す写真である。左側が切り出し前(before cut)、右側が切り出し後(after cut)である。左の写真で丸で囲まれた細胞が切り取られる細胞である。右の写真において白く抜けている部分が切り出された部分を示す。

図16は、PFA固定後凍結薄切標本より切り出した1個のプラズマ細胞に発現していた抗体遺伝子をRT-PCR法により増幅し、この増幅産物の一部をAgilent2100を用いた電気泳動により解析した結果を示す図である。図中、縦軸が蛍光強度、横軸が泳動時間（秒）である。

発明を実施するための最良の形態

以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に制限されるものではない。

[実施例1] LMDによる癌組織に浸潤する単一B細胞の単離

ヒト新鮮組織（乳癌組織）を適当な大きさに細切後、OCT compound (Tissue-tek) を用いて凍結プロックを作製した。必要に応じて凍結前にparaformaldehyde-lysine-periodate等の固定液にて固定した。次に各凍結プロックより薄切標本を作製し、LMD用スライド（松浪硝子株式会社）上に貼り付けた。凍結薄切標本は風乾後acetone等の固定液を用いて固定し、トルイジンブルー(武藤化学薬品株式会社)等の染色を施した。染色後Laser microdissection system (Leica AS-LMD) にて形質細胞を切り出し、回収バッファー (QIAGEN RNeasy Mini Kit添付RLT溶液) に

回収した。切り出し前、切り出し後の形質細胞像を図に示した（図1、図5、図7、図9、図11、図13、および図15）。いずれの図においても図の左に切りだし前、右に切りだし後の状態を示した。更に、切り出し前の写真（左）において細胞を特定できる場合には、切り出される細胞を矢印等で示した。

[実施例2] RNA調製およびcDNA合成

LMDにより薄切標本より切り取られた1から約5個のB細胞の懸濁液と抗体遺伝子を発現していない約300細胞のキャリア細胞懸濁液と混合し、この混合液よりRNeasy Mini Kit (QIAGEN) を用いて製造者の指示に従いトータルRNAを調製した。薄切標本より切り取られた細胞数が50以上の場合には、キャリア細胞を添加せずにトータルRNAの調製を行った。RNA溶出画分35 μLすべてを鑄型にSensiscript Reverse Transcriptase (QIAGEN) を用いて製造者の指示に従いcDNAを合成した。cDNA合成反応は80 μLスケールで、40ng のオリゴdTプライマー (Promega) 、0.8 μgのランダムヘキサマー (Invitrogen) を逆転写反応プライマーに用い、37°Cで1時間反応させた。合成されたcDNAをすぐにPCR反応に移さない場合には、-80°Cにて保存した。

[実施例3] ヒト抗体可変領域のクローニング

ヒト抗体遺伝子可変領域をクローニングするPCRプライマーを文献J. Mol. Biol. (1991) 222, 581-597およびMedical Research Council (MRC) のWEBサイト "V BASE" (<http://www.mrc-cpe.cam.ac.uk/vbase-ok.php?menu=901>) を参考にデザインした。その塩基配列を以下（配列番号：97～配列番号：150）に示した。VHおよびJHの頭文字で始まるプライマーは重鎖可変領域をクローニングするプライマーに相当し、VKとJK、VLとJLの頭文字で始まるプライマーはそれぞれ軽鎖κ鎖、軽鎖λ鎖を増幅するためのプライマーに相当する。

VH1a 5'-CAGGT(GT)CAGCTGGTGCAGTCTGG-3'

VH1b 5'-CAGGTCCAGCTTGTGCAGTCTGG-3'

VH1c 5'-(GC)AGGTCCAGCTGGTACAGTCTGG-3'

- 2 7 -

VH1d 5' -CA (AG) ATGCAGCTGGTGCAGTCTGG-3'
VH2a 5' -CAGATCACCTTGAAGGAGTCTGGT-3'
VH2b 5' -CAGGTCACCTTGA (AG) GGAGTCTGGT-3'
VH3a 5' -GA (AG) GTGCAGCTGGTGGAGTCTGG-3'
VH3b 5' -CAGGTGCAGCTGGTGGAGTCTGG-3'
VH3c 5' -GAGGTGCAGCTGTTGGAGTCTGG-3'
VH4a 5' -CAG (CG) TGCAGCTGCAGGAGTCGGC-3'
VH4b 5' -CAGGTGCAGCTACAGCAGTGGGC-3'
VH5a 5' -GA (AG) GTGCAGCTGGTGCAGTCTGGA-3'
VH6a 5' -CAGGTACAGCTGCAGCAGTCAGGT-3'
VH7a 5' -CAGGT (CG) CAGCTGGTGCAATCTGG-3'
JH1245 5' -TGAGGAGACGGTGACCAGGGT (GT) CC-3'
JH3 5' -TGAAGAGACGGTGACCATTGTCCC-3'
JH6 5' -TGAGGAGACGGTGACCGTGGTCCC-3'
VK1a 5' -(AG) ACATCCAGATGACCCAGTCTCCA-3'
VK1b 5' -G (AC) CATCCAGTTGACCCAGTCTCCA-3'
VK1c 5' -GCCATCC (AG) GATGACCCAGTCTCCA-3'
VK1d 5' -GTCATCTGGATGACCCAGTCTCCA-3'
VK2a 5' -GATATTGTGATGACCCAGACTCCA-3'
VK2b 5' -GAT (AG) TTGTGATGACTCAGTCTCCA-3'
VK3a 5' -GAAATTGTGTTGAC (AG) CAGTCTCCA-3'
VK3b 5' -GAAATAGTGATGACGCAGTCTCCA-3'
VK3c 5' -GAAATTGTAATGACACAGTCTCCA-3'
VK4a 5' -GACATCGTGATGACCCAGTCTCCA-3'
VK5a 5' -GAAACGACACTCACGCAGTCTCCA-3'
VK6a 5' -GAAATTGTGCTGACTCAGTCTCCA-3'

- 28 -

VK6b 5' -GATGTTGTGATGACACAGTCTCCA-3'
JK1 5' -ACGTTTGATTCCACCTGGTCCC-3'
JK24 5' -ACGTTTGATCTCCA(CG)CTTGGTCCC-3'
JK3 5' -ACGTTGATATCCACTTGGTCCC-3'
JK5 5' -ACGTTTAATCTCCAGTCGTGTCCC-3'
VL1a 5' -CAGTCTGTGCTGACTCAGCCACCC-3'
VL1b 5' -CAGTCTGTG(CT)TGACGCCAGCCGCC-3'
VL2 5' -CAGTCTGCCCTGACTCAGCCT(CG)-3'
VL3a 5' -TCCTATG(AT)GCTGACTCAGCCACCC-3'
VL3b 5' -TCCTATGAGCTGACACAGC(CT)ACCC-3'
VL3c 5' -TCTTCTGAGCTGACTCAGGACCCT-3'
VL3d 5' -TCCTATGAGCTGATGCAGCCACCC-3'
VL4a 5' -CAGCCTGTGCTGACTCAATCATCC-3'
VL4b 5' -CAGCTTGTGCTGACTCAATGCC-3'
VL4c 5' -CTGCCTGTGCTGACTCAGCCCCG-3'
VL5a 5' -CAGCCTGTGCTGACTCAGCCA(CT)CT-3'
VL5c 5' -CAGGCTGTGCTGACTCAGCCGGCT-3'
VL6 5' -AATTTTATGCTGACTCAGCCCCAC-3'
VL7 5' -CAG(AG)CTGTGGTGACTCAGGAGCCC-3'
VL8 5' -CAGACTGTGGTGACCCAGGAGCCA-3'
VL4_9 5' -C(AT)GCCTGTGCTGACTCAGCCACCT-3'
VL10 5' -CAGGCAGGGCTGACTCAGCCACCC-3'
JL1 5' -ACCTAGGACGGTGACCTTGGTCCC-3'
JL23 5' -ACCTAGGACGGTCAGCTTGGTCCC-3'
JL7 5' -ACCGAGGACGGTCAGCTGGTGCC-3'

重鎖可変領域、 κ 鎖可変領域、 λ 鎖可変領域のクローニングを行う目的で、

- 2 9 -

別々にそれぞれの遺伝子サブセットに対するプライマー混合液とTaq DNA polymerase Core Kit (QIAGEN) の組み合わせでPCR増幅を行った。重鎖、κ鎖を増幅するためにそれぞれ5つのプライマー混合液をつくり、このプライマー混合液を用いて10種類の反応液を調製した。混合液におけるプライマーの組み合せを表1に示した。4 μLの錆型cDNAを含む終濃度1x反応緩衝液、1xQ solution (QIAGEN)、0.4mM dNTP、0.4 μMのforwardおよびreverse-wardプライマー、2U Taq DNAポリメラーゼを含む反応混合液20 μLを調製した。反応混合液をアプライドバイオシステムズ PE9700にセットし40サイクルの増幅反応を行った。増幅サイクルは、94 °C 10秒の変性のあと50 °C 30秒のアニーリング、72 °C 30秒の伸長反応からなる。

表1

プライマーセット	forward				reverse			
VH1-JH MIX	VH1a	VH1b	VH1c	VH1d	JH1245	JH3	JH6	
VH2-JH MIX	VH2a	VH2b			JH1245	JH3	JH6	
VH3/5-JH MIX	VH3a	VH3b	VH3c	VH3d	JH1245	JH3	JH6	
VH4-JH MIX	VH4a	VH4b			JH1245	JH3	JH6	
VH6/7-JH MIX	VH6a	VH7a			JH1245	JH3	JH6	
VK1-JK MIX	VK1a	VK1b	VK1c	VK1d	JK1	JK24	JK3	JK5
VK2-JK MIX	VK2a	VK2b			JK1	JK24	JK3	JK5
VK3-JK MIX	VK3a	VK3b	VK3c		JK1	JK24	JK3	JK5
VK4/5-JK MIX	VK4a	VK5a			JK1	JK24	JK3	JK5
VK6-JK MIX	VK6a	VK6b			JK1	JK24	JK3	JK5

反応後の生成産物をラボチップDNA7500 /Agilent2100を用いて解析した。増幅結果を図に示した（図2、図6、図8、図10、図12、図14、および図16）。増幅産物は、QIAGEN PCR Purification Kitを用いて精製した。PCR反応産物量が少ない場合には、アガロース電気泳動を行い、抗体遺伝子可変領域に相当する分子量領域を切り出し、再増幅した。得られたDNA断片をpGEM-T Easy (Promega)にクローニングし、大腸菌DH5 α を形質転換した。組換えプラスミドの挿入配

- 30 -

列の塩基配列を決定し、抗体遺伝子が増幅されていることを確認した。決定された塩基配列は配列番号：1～配列番号：54（重鎖）、および配列番号：55～配列番号：84（軽鎖）に示した。更に決定されたアミノ酸配列をアライメントした結果を図3および図4に示した。アライメントの結果、本発明の方法によって複数クローンの抗体遺伝子が取得されていることが確認できた。しかし単離された可変領域のアミノ酸配列の種類が多様でないことから、存在していたB細胞は特定の抗原刺激を受けて増殖した細胞群である可能性が高いことが示された。

[実施例4] 一本鎖抗体分子の調製

一本鎖抗体遺伝子作成のためのリンカー配列をMarksらの方法(J. Mol. Biol. (1991) 222, 581-597)に従って作成した。作成に用いた錆型DNA配列およびプライマーの塩基配列を以下に示した。PCR増幅によって合成されたリンカー断片をアガロースゲル電気泳動により確認し、この断片を含むバンドを切り出して精製した。

錆型DNA配列(template linker)／配列番号：151

5' -GGACAATGGTCACCGTCTTCAGGTGGTGGTGGTGGTGGTGGTGGTGGTGGCAGATCGGA
CATCCAGATGACCCAGTCTCC-3'

プライマーの塩基配列：

Reverse JH for linker／配列番号：152～155

- 1 LJH1_2 5' -GCACCCCTGGTCACCGTCTCCTCAGGTGG-3'
- 2 LJH3 5' -GGACAATGGTCACCGTCTTCAGGTGG-3'
- 3 LJH4_5 5' -GAACCCCTGGTCACCGTCTCCTCAGGTGG-3'
- 4 LJH6 5' -GGACCACGGTCACCGTCTCCTCAGGTGG-3'

Reverse VK for linker／配列番号：156～161

- 5 LVK1 5' -GGAGACTGGGTCACTGGATGTCCGATCCGCC-3'
- 6 LVK2 5' -GGAGACTGAGTCATCACAAACATCCGATCCGCC-3'
- 7 LVK3 5' -GGAGACTGCGTCAACACAATTCCGATCCGCC-3'
- 8 LVK4 5' -GGAGACTGGGTCACTACGATGTCCGATCCGCC-3'

- 3 1 -

9 LVK5 5' -GGAGACTGCGTGAGTGTGTTCCGATCCGCC-3'

10 LVK6 5' -GGAGACTGAGTCAGCACAAATTCCGATCCGCC-3'

Reverse VL for linker／配列番号：162～168

11 LVL1 5' -GGCGGCTGCGTCAACACAGACTGCGATCCGCCACCGCCAGAG-3'

12 LVL2 5' -GCAGGCTGAGTCAGAGCAGACTGCGATCCGCCACCGCCAGAG-3'

13 LVL3a 5' -GGTGGCTGAGTCAGCACATAGGACCGATCCGCCACCGCCAGAG-3'

14 LVL3b 5' -GGGTCTGAGTCAGCTCAGAACAGACCGATCCGCCACCGCCAGAG-3'

15 LVL4 5' -GGCGGTTGAGTCAGTATAACGTGCGATCCGCCACCGCCAGAG-3'

16 LVL5 5' -GACGGCTGAGTCAGCACAGACTGCGATCCGCCACCGCCAGAG-3'

17 LVL6 5' -TGGGGCTGAGTCAGCATAAAATTGATCCGCCACCGCCAGAG-3'

単一のB細胞のmRNAから合成したcDNAを鑄型としてPCR増幅した重鎖可変領域、 κ 鎖可変領域もしくは λ 鎖可変領域、リンカー配列を混ぜ、以下（配列番号：169～182）に示したプライマーセットを用いてPCRを行った。軽鎖が κ 鎖の場合にはVHプライマーとJKプライマーの組み合わせ、軽鎖が λ 鎖の場合にはVHプライマーとJLプライマーの組み合わせの反応液を調製した。KOD plus DNA polymerase (TOYOB0) を用いて製造者の指示に従い反応液を調製した。プライマー添加前の7サイクルの94°C15秒の変性および68°C 1分の伸長反応を行い、その後プライマーを添加し20サイクルの94°C15秒の変性および68°C 1分の伸長反応を行った。

VH1BACKNco 5' -AGTATTGACCATGGCCCAGGTGCAGCTGGTGCAGTCTGG-3'

VH2BACKNco 5' -AGTATTGACCATGGCCCAGGTCAAACCTAACGGAGTCTGG-3'

VH3BACKNco 5' -AGTATTGACCATGGCCGAGGTGCAGCTGGTGGAGTCTGG-3'

VH4BACKNco 5' -AGTATTGACCATGGCCCAGGTGCAGCTGCAGGAGTCGGG-3'

VH5BACKNco 5' -AGTATTGACCATGGCCCAGGTGCAGCTGTTGCAGTCTGC-3'

VH6BACKNco 5' -AGTATTGACCATGGCCCAGGTACAGCTGCAGCAGTCAGG-3'

JK1FOREco 5' -TAATGAATTCACGTTGATTTCCACCTTGGTCCC-3'

JK2FOREco 5' -TAATGAATTCACGTTGATCTCCAGCTTGGTCCC-3'

- 3 2 -

JK3FOREco 5' -TAATGAATTCACGTTGATATCCACTTGGTCCC-3'

JK4FOREco 5' -TAATGAATTCACGTTGATCTCACCTTGGTCCC-3'

JK5FOREco 5' -TAATGAATTCACGTTAACCTCCAGTCGTGGTCCC-3'

JL1FOREco 5' -TAATGAATTCACCTAGGACGGTGACCTTGGTCCC-3'

JL2_3FOREco 5' -TAATGAATTCACCTAGGACGGTCAGCTTGGTCCC-3'

JL4_5FOREco 5' -TAATGAATTCACCTAAACGGTGAGCTGGTCCC-3'

増幅産物をアガロースゲル電気泳動により確認した後、相当する遺伝子断片を含むバンドを切り出して精製した。切り出した断片を制限酵素で切断し、発現ベクターへに挿入した。発現ベクターは、挿入された断片をT7プロモーターの制御下で発現し、かつ組み換え体のC末端にFLAGタグを付加できるようデザインした。得られた発現ベクターで、大腸菌DH5 α を形質転換した。発現プラスミドの挿入配列をDNAシーケンシングにより確認し、続いてこの発現プラスミドにより大腸菌BL21(DE3)株を形質転換した。

本実施例において構築した一本鎖抗体の塩基配列とその翻訳アミノ酸配列を配列番号：183～配列番号：188に示した。70-6scFv（配列番号187～188）は単一のB細胞より単離した重鎖（配列番号：93～94）および軽鎖（配列番号：95～96）から作成した一本鎖抗体である。一方、70-5AscFv（配列番号：183～184）、および70-5BscFv（配列番号：185～186）は、5個のB細胞より得られた重鎖と軽鎖を組み合せて作成した一本鎖抗体である。70-5AscFvと70-5BscFvを構成する重鎖の塩基配列およびアミノ酸配列は配列番号：91～92に、また軽鎖が由来する塩基配列およびアミノ酸配列は配列番号：85～88に示した。

組換え一本鎖抗体を、大腸菌培養上清より調製した。対数増殖期にある形質転換細胞に対して30°C、0.5mM isopropyl- β -thiogalactopyranoside添加により組換え抗体の発現を誘導した。終夜培養後、培養液を遠心し培養上清と細胞とを分離した。上清を濾過後、Anti-FLAG M2アフィニティーカラム（Sigma）に供し、組換

え蛋白質をカラムに吸着させた。カラムを洗浄後、0.1M Glycine (pH3.5)で組換え蛋白質を溶出した。溶出液をPD10カラム(アマシャムバイオテク)へと供し0.01% Tween20を含むPBSへとすぐに緩衝液を置換した。蛋白質の存在をSDS-PAGE後のクマシ一染色もしくは抗FLAG抗体によるウェスタンプロッティングにより確認した。

[実施例3] 免疫染色

癌組織瞬間凍結組織切片を1%パラフォルムアルデヒド・PBS溶液で10分間固定した。内在性のペルオキシダーゼ活性を0.3%過酸化水素水でブロックした。組換え抗体の非特異的な結合が起こらないようにするために、組換え抗体を含む溶液とインキュベーションする前に10%胎児ウシ血清でブロッキングした。1%BSA, 0.1% tween-20を含むPBS中に組換え抗体を含む溶液を希釈し、この溶液を組織切片とインキュベーションした。結合した組換え抗体をペルオキシダーゼ共役抗FLAG抗体 (FLAG) による過酸化水素水存在下での3,3-diamino-benzidine-tetra hydrochlorideのブラウン色沈殿物変換により検出した。抗体添加前後に、0.1% tween-20を含むPBSを用いて室温5分で3度洗浄した。組織切片はヘマトキシリソでカウンター染色し、マウンティングを行う前にエタノールおよびキシレンを用いて脱水した。抗体染色の陰性対照として組換え抗体添加段階を除いて同様の作業を行った。

産業上の利用の可能性

本発明によって、B細胞のクローニングに頼ることなく、病巣に対する抗体をコードするポリヌクレオチドを単離することができる。本発明の方法は、B細胞のクローニングに依存しないため、クローニングが難しいヒトの抗体産生細胞由来の遺伝子も容易に取得できる。

本発明に基づいて、癌組織に浸潤したB細胞から、癌組織を認識する抗体をコードする遺伝子を単離することができる。癌細胞を認識する抗体は、癌の診断や治療において有用である。本発明を利用すれば、ヒトの抗体産生細胞からも容易に

- 34 -

抗体遺伝子を取得できる。癌の診断や治療において、癌組織を認識するヒトの抗体遺伝子が取得された意義は大きい。

抗体を利用した癌の診断や治療においては、ヒトへ抗体が投与される。たとえば抗体を用いた癌の診断においては、追跡可能な標識を有する抗体分子が投与され、抗体の局在部分に癌が存在することが示される。癌の治療においては、標的治療(target therapy)に抗体が利用される。すなわち抗がん剤を結合した抗体が、患者に投与される。ヒト抗体はヒトに投与したときに高い安全性を期待できる。また異種蛋白質として認識されにくいため、血中濃度を長期間に渡って安定に維持することができる。

なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。

請求の範囲

1. 以下の工程を含む病巣組織に対する抗体をコードするポリヌクレオチドの単離方法。
 - (a) 病巣組織に浸潤しているB細胞を単離する工程、および
 - (b) 単離したB細胞から、抗体をコードするポリヌクレオチドを取得する工程
2. 病巣組織が癌組織である請求項1に記載の方法。
3. (a) 病巣組織に浸潤しているB細胞を単離する工程が、病巣組織の切片からB細胞を含む領域を切り出す工程を含む、請求項1に記載の方法。
4. (b) 抗体をコードするポリヌクレオチドを取得する工程が、抗体可変領域をコードする遺伝子を増幅する工程を含む請求項1に記載の方法。
5. 請求項1に記載の方法によって単離された、抗体をコードするポリヌクレオチド。
6. 抗体をコードするポリヌクレオチドが、抗体の可変領域をコードするポリヌクレオチドを含むことを特徴とする請求項5に記載のポリヌクレオチド。
7. 請求項5に記載のポリヌクレオチドを含む発現ベクター。
8. 請求項5に記載のポリヌクレオチド、または請求項7に記載の発現ベクターを含む宿主細胞。
9. 請求項8に記載の宿主細胞を培養し、発現産物である抗体を回収する工程を含む抗体の製造方法。
10. 請求項9に記載の方法により製造された抗体。
 11. 請求項5に記載のポリヌクレオチドによってコードされる抗体。
 12. 更に次の工程を含む請求項9に記載の抗体の製造方法。
 - (1) 請求項9に記載の方法によって得られた抗体を病巣組織に接触させる工程、

- 3 6 -

- (2) 前記病巣組織と抗体との結合を検出する工程、および
- (3) 前記病巣組織に結合する抗体を選択する工程

1 / 1 6

図 1

2 / 1 6

図 2

図 3

VH1	QVQLYQSGGTVQPESSLRLSCAASGTTSSN--GHEVTRQAPCKGLETAIVITD--GSKKTYADSVKGFTISDNISKTLQOMSLRAETTAVTCAR--...DGCL-GDQASWDFPKQGTLYTSS
VE18	QVQLYQSGGTVQPESSLRLSCAASGTTSSN--GHEVTRQAPCKGLETAIVITD--GSKKTYADSVKGFTISDNISKTLQOMSLRAETTAVTCAR--...DGCL-GDQASWDFPKQGTLYTSS
VH12	QVQLYQSGGTVQPESSLRLSCAASGTTSSN--GHEVTRQAPCKGLETAIVITD--GSKKTYADSVKGFTISDNISKTLQOMSLRAETTAVTCAR--...DGCL-GDQASWDFPKQGTLYTSS
VH14	QVQLYQSGGTVQPESSLRLSCAASGTTSSN--GHEVTRQAPCKGLETAIVITD--GSKKTYADSVKGFTISDNISKTLQOMSLRAETTAVTCAR--...DGCL-GDQASWDFPKQGTLYTSS
VH28	QVQLYQSGGTVQPESSLRLSCAASGTTSSN--GHEVTRQAPCKGLETAIVITD--GSKKTYADSVKGFTISDNISKTLQOMSLRAETTAVTCAR--...DGCL-GDQASWDFPKQGTLYTSS
VH7	QVQLYQSGGTVQPESSLRLSCAASGTTSSN--GHEVTRQAPCKGLETAIVITD--GSKKTYADSVKGFTISDNISKTLQOMSLRAETTAVTCAR--...DGCL-GDQASWDFPKQGTLYTSS
VH21	QVQLYQSGGTVQPESSLRLSCAASGTTSSN--GHEVTRQAPCKGLETAIVITD--GSKKTYAESVKGPISDNISKTLQOMSLRAETTAVTCAR--...DRGS-VERATADWYQGTLYTSS
VH22	QVQLYQSGGTVQPESSLRLSCAASGTTSSS--GHEVTRQAPCKGLETAIVITD--GSKKTYAESVKGPISDNISKTLQOMSLRAETTAVTCAR--...DRGS-VERATADWYQGTLYTSS
VH20	QVQLYQSGGTVQPESSLRLSCAASGTTSSS--GHEVTRQAPCKGLETAIVITD--GSKKTYAESVKGPISDNISKTLQOMSLRAETTAVTCAR--...DRGS-VERATADWYQGTLYTSS
VH6	QVQLYQSGGELVQPESSLRLSCAASGTTSSY--ALSTVROAPCRGLTFCIMKIGCTDIAASVKGFTISDDSKSAYLQMSLKTEDSAVYCTR--...DSC-VTAAYWDWQGTLYTSS
VH30	QVQLYQSGCANTWKEPQGSLRLSCAASGTPAA--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH34	-QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH2	--QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH9	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH3	-QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH15	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH25	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH7	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH16	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH4	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH10	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH5	-QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH29	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH16	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH13	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH27	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH15	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
VH24	QVQLYQSGAEVKKPQASVTKVSCASGTTG--YEAHVROAPCGLETFGRITSKPSGATEAAPVGRFISIUDSRATDLOQMSLRTDTAVYCTT--...DNGSETYHAKLWDWQGTLYTSS
目盛り	1.....10.....20.....30.....40.....50.....60.....70.....80.....90.....100.....110.....120.....130.

四 4

5 / 16

図 5

5 / 16

図 5

6 / 16

図 6

7 / 16

図 7

8 / 16

図 8

9 / 16

图 9

10 / 16

図 10

11 / 16

図 11

12 / 16

図 1 2

13 / 16

図 13

14 / 16

図 14

15 / 16

図 15

16 / 16

図 16

1 / 1 4 1

SEQUENCE LISTING

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA
PharmaLogicals Research Pte., Ltd.

<120> Antibody against focus tissue

<130> C1-A0230P

<150> JP 2002-339241

<151> 2002-11-22

<160> 188

<170> PatentIn version 3.1

<210> 1

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(360)

<223>

<400> 1

cag gtg cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144

2 / 1 4 1

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192
Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240
Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288
Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336
Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

ggg cca atg gtc acc gtc tct tca 360
Gly Pro Met Val Thr Val Ser Ser
115 120

<210> 2
<211> 120
<212> PRT
<213> Homo sapiens

<400> 2
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

3 / 1 4 1

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Pro Met Val Thr Val Ser Ser
115 120

<210> 3

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

<223>

<400> 3

cag gtc cag ctg gtg caa tct gga gga ggc gtg gtc cag cct ggg agg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc agt agc aat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn

4 / 1 4 1

20

25

30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg 192
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

aag ggc cga ttc acc atc tcc aga gac aat tcc aag aac aca ctg tat 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt 288
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cac ggc ctt ggt gat caa gcc tcc tgg ttc gac ccc tgg 336
Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tca 366
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 4

<211> 122

<212> PRT

<213> Homo sapiens

<400> 4

Gln Val Gln Leu Val Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

5 / 1 4 1

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 5

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

<223>

<400> 5

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

6 / 1 4 1

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc agt agc aat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg 192
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

aag ggc cga ttc acc atc tcc aga gac aat tcc aag aac aca ctg tat 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt 288
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cac ggc ctt ggt gat caa gcc tcc tgg ttc gac ccc tgg 336
Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tca 366
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 6

<211> 122

<212> PRT

<213> Homo sapiens

<400> 6

7 / 1 4 1

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 7
<211> 340
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(339)
<223>

<400> 7

8 / 1 4 1

cag gtg cag ctg gtg caa tct ggg gct gag gtg agg aag cct ggg acg 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro Gly Thr
1 5 10 15

aca gtg aca atc tcc tgc aag gtt tct gga cac aac ttc atc gac cac 96
Thr Val Thr Ile Ser Cys Lys Val Ser Gly His Asn Phe Ile Asp His
20 25 30

tac atg cat tgg gta caa cag gcc cct gga aaa ggg ctt gac tgg atg 144
Tyr Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Asp Trp Met
35 40 45

gga cta att gac cct gaa gat ggt cag acg aaa tat tca gag agg ttt 192
Gly Leu Ile Asp Pro Glu Asp Gly Gln Thr Lys Tyr Ser Glu Arg Phe
50 55 60

gag ggc aga gtc aca att acc gcg gac aag tca aca gac aca acc tac 240
Glu Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Asp Thr Thr Tyr
65 70 75 80

ttg gag gtg agc ggc ctg aga tcg gaa gac acg gcc gtt tat ttc tgt 288
Leu Glu Val Ser Gly Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

aca acg gac ttg ggt gac ttg aat tat tgg aac cct ggt cac cgt ctc 336
Thr Thr Asp Leu Gly Asp Leu Asn Tyr Trp Asn Pro Gly His Arg Leu
100 105 110

ctc a 340
Leu

<210> 8
<211> 113
<212> PRT

9 / 1 4 1

<213> Homo sapiens

<400> 8

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro Gly Thr
1 5 10 15

Thr Val Thr Ile Ser Cys Lys Val Ser Gly His Asn Phe Ile Asp His
20 25 30

Tyr Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Asp Trp Met
35 40 45

Gly Leu Ile Asp Pro Glu Asp Gly Gln Thr Lys Tyr Ser Glu Arg Phe
50 55 60

Glu Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Asp Thr Thr Tyr
65 70 75 80

Leu Glu Val Ser Gly Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Thr Thr Asp Leu Gly Asp Leu Asn Tyr Trp Asn Pro Gly His Arg Leu
100 105 110

Leu

<210> 9

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

10 / 141

<223>

<400> 9

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc agt agc aat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg 192
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

aag ggc cga ttc acc atc tcc aga gac aat tcc aag aac aca ctg tat 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt 288
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cac ggc ctt ggt gat caa gcc tcc tgg ttc gac ccc tgg 336
Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tca 366
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

1 1 / 1 4 1

<210> 10

<211> 122

<212> PRT

<213> Homo sapiens

<400> 10

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 11

<211> 381

<212> DNA

<213> Homo sapiens

1 2 / 1 4 1

<220>

<221> CDS

<222> (1)..(381)

<223>

<400> 11

cag gtc cag ctg gtg caa tct gga gct gag ggg aaa aag ccg gga gag 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Gly Lys Lys Pro Gly Glu
1 5 10 15

tct ctg aag atc tcc tgt cag ggt tct gga tac aca ttt agc aat tac 96
Ser Leu Lys Ile Ser Cys Gln Gly Ser Gly Tyr Thr Phe Ser Asn Tyr
20 25 30

tgg atc gcc tgg gtg cgc cag agg ccc ggg aaa ggc ctg gag tgg atg 144
Trp Ile Ala Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Met
35 40 45

ggg atc atc tat cct ggt gac tct gat atc aaa tac agt ccg tcc ttc 192
Gly Ile Ile Tyr Pro Gly Asp Ser Asp Ile Lys Tyr Ser Pro Ser Phe
50 55 60

caa ggc cat gtc acc atc tca gcc gac acg tcc atg aac acc gcc tac 240
Gln Gly His Val Thr Ile Ser Ala Asp Thr Ser Met Asn Thr Ala Tyr
65 70 75 80

ctg cag tgg aac acc ctg aag gcc tcg gac acc gcc atg tac tac tgt 288
Leu Gln Trp Asn Thr Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95

gcg aga cat aaa ggg acc agg ttc ggg gag gtt ttg gcg gtt ggc aac 336
Ala Arg His Lys Gly Thr Arg Phe Gly Glu Val Leu Ala Val Gly Asn
100 105 110

tgg ttc gac ccc tgg ggc cag gga acc ctg gtc acc gtc tcc tca 381
Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

1 3 / 1 4 1

115 120 125

<210> 12
<211> 127
<212> PRT
<213> Homo sapiens

<400> 12
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Gly Lys Lys Pro Gly Glu
1 5 10 15

Ser Leu Lys Ile Ser Cys Gln Gly Ser Gly Tyr Thr Phe Ser Asn Tyr
20 25 30

Trp Ile Ala Trp Val Arg Gln Arg Pro Gly Lys Gly Leu Glu Trp Met
35 40 45

Gly Ile Ile Tyr Pro Gly Asp Ser Asp Ile Lys Tyr Ser Pro Ser Phe
50 55 60

Gln Gly His Val Thr Ile Ser Ala Asp Thr Ser Met Asn Thr Ala Tyr
65 70 75 80

Leu Gln Trp Asn Thr Leu Lys Ala Ser Asp Thr Ala Met Tyr Tyr Cys
85 90 95

Ala Arg His Lys Gly Thr Arg Phe Gly Glu Val Leu Ala Val Gly Asn
100 105 110

Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120 125

<210> 13
<211> 368

1 4 / 1 4 1

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

<223>

<400> 13

cag gtc cag ctg gtg caa tct ggg gct gag ttg aag acg cct ggg tcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Leu Lys Thr Pro Gly Ser
1 5 10 15

tcg gtg aaa ttc tcc tgc aag gct tcc gga ggc agc ttc agc aac tat 96
Ser Val Lys Phe Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Asn Tyr
20 25 30

gct atc acc tgg gtg cga cag gcc cct gga caa ggt ctt gag tgg atg 144
Ala Ile Thr Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

gga agg atc atc cct atc ttt ggt ata cca aac tac gca cag gaa ttc 192
Gly Arg Ile Ile Pro Ile Phe Gly Ile Pro Asn Tyr Ala Gln Glu Phe
50 55 60

cag ggc aga gtc acg att acc gcc gac gat tcc acg acc aca gtc tac 240
Gln Gly Arg Val Thr Ile Thr Ala Asp Asp Ser Thr Thr Val Tyr
65 70 75 80

atg gaa ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt 288
Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat aat tca ata gga gca cct gat act tgg tgg ttc gac ccc 336
Ala Arg Asp Asn Ser Ile Gly Ala Pro Asp Thr Trp Trp Phe Asp Pro
100 105 110

1 5 / 1 4 1

tgg ggc cag gga cca cgg tca ccg tct cct ca 368
Trp Gly Gln Gly Pro Arg Ser Pro Ser Pro
115 120

<210> 14
<211> 122
<212> PRT
<213> Homo sapiens

<400> 14
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Leu Lys Thr Pro Gly Ser
1 5 10 15

Ser Val Lys Phe Ser Cys Lys Ala Ser Gly Gly Ser Phe Ser Asn Tyr
20 25 30

Ala Ile Thr Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Arg Ile Ile Pro Ile Phe Gly Ile Pro Asn Tyr Ala Gln Glu Phe
50 55 60

Gln Gly Arg Val Thr Ile Thr Ala Asp Asp Ser Thr Thr Thr Val Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Asn Ser Ile Gly Ala Pro Asp Thr Trp Trp Phe Asp Pro
100 105 110

Trp Gly Gln Gly Pro Arg Ser Pro Ser Pro
115 120

1 6 / 1 4 1

<210> 15

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(360)

<223>

<400> 15

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192
Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240
Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288
Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

17 / 141

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336
 Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
 100 105 110

ggg aca atg gtc acc gtc tct tca 360
Gly Thr Met Val Thr Val Ser Ser
115 120

<210> 16

〈211〉 120

<212> PRT

<213> Homo sapiens

<400> 16

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
 35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
 100 105 110

1 8 / 1 4 1

Gly Thr Met Val Thr Val Ser Ser
115 120

<210> 17
<211> 365
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(363)
<223>

<400> 17
cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc agt agc aat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg 192
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

aag ggc cga ttc acc atc tcc aga gac aat tcc aag aac aca ctg tat 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

ctg caa atg aac agc ctg agg gcc gag gac acg gct gtg tat tac tgt 288

19 / 141

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cac ggc ctt ggt gat caa gcc tcc tgg ttc gac ccc tgg 336
Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tc 365
Gly Gln Gly Thr Leu Val Thr Val Ser
115 120

<210> 18
<211> 121
<212> PRT
<213> Homo sapiens

<400> 18
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

20 / 141

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser
115 120

<210> 19

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

<223>

<400> 19

cag gtc cag ctg gcg caa tct gga gga ggc gtg gtc cag cct ggg agg 48
Gln Val Gln Leu Ala Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc agc ttc agt agc tat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

gca gtt ata tgg tat gat gga agc tat aaa tac tat gca gaa tcc gtg 192
Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val
50 55 60

aag ggc cga ttc atc atc tcc aga gac aat tcc aag aac acc ctg tat 240
Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr

21 / 141

65 70 75 80
ctg caa atg aac agc ctg aga gcc gag gac acg gct gtc tat tac tgt 288
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cgg ggg tcg gtg gag atg gct aca atc gcg gac tac tgg 336
Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp
100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tca 366
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 20
<211> 122
<212> PRT
<213> Homo sapiens

<400> 20
Gln Val Gln Leu Ala Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val
50 55 60

Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

22 / 141

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp
 100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 21

<211> 366

<212> DNA

213 Homo sapiens

220

〈221〉 CDS

<222> (1)..(366)

223

<400> 21

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

48

tcc	ctg	aga	ctc	tcc	tgt	gca	gcc	tct	gga	ttc	agc	ttc	agt	agc	tat
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Ser	Phe	Ser	Ser	Tyr
20										25					30

06

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg
 Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
 35 40 45

144

gca gtt ata tgg tat gat gga agt tat aaa tac tat gca gaa tcc gtg
 Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val
 50 55 60

23 / 141

aag ggc cga ttc atc atc tcc aga gac aat tcc aag aac acc ctg tat 240
Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt 288
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cgg ggg tcg gta gag atg gct aca atc gcg gac tac tgg 336
Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp
100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tca 366
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 22
<211> 122
<212> PRT
<213> Homo sapiens

<400> 22
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val
50 55 60

2 4 / 1 4 1

Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 23

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

<223>

<400> 23

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc agc ttc agt agc tat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

25 / 141

gca gtt ata tgg tat gat gga agt tat aaa tac tat gca gaa tcc gtg 192
Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Ala Glu Ser Val

50 55 60

aag ggc cga ttc atc atc tcc aga gac aat tcc aag aac acc ctg tat 240
Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

ctg caa atg aac agc ctg aga gcc gag gac acg gct gtc tat tac tgt 288
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cgg ggg tcg gta gag atg gct aca atc gcg gac tac tgg 336
Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp
100 105 110

ggc cag gga acc ctg gtc acc gtc tcc tca 366
Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 24

<211> 122

<212> PRT

<213> Homo sapiens

<400> 24

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Phe Ser Ser Tyr
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

2 6 / 1 4 1

Ala Val Ile Trp Tyr Asp Gly Ser Tyr Lys Tyr Tyr Ala Glu Ser Val
50 55 60

Lys Gly Arg Phe Ile Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Gly Ser Val Glu Met Ala Thr Ile Ala Asp Tyr Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 25

<211> 370

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(369)

<223>

<400> 25

cag gta cag ctg cag cag tca ggt cca gga ctg gtg aag ccc tcg cag 48
Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15

acc ctc tca ctc acc tgt gcc atc tcc ggg gac agt gtc tct agc aac 96
Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
20 25 30

agt gct gct tgg cac tgg atc agg cag tcc cca tcg aga ggc ctt gag 144

27 / 141

Ser Ala Ala Trp His Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu
35 40 45

tgg ctg gga agg aca tac tac agg tcc aag tgg tat aat gat tat aca 192
Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Thr
50 55 60

gtg tct gtg aaa agt cga ata acc atc aag cca gac aca tcc aag aac 240
Val Ser Val Lys Ser Arg Ile Thr Ile Lys Pro Asp Thr Ser Lys Asn
65 70 75 80

cag ttc tcc ctg cag ctg aac tct gtg act ccc gag gac acg gct gtg 288
Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
85 90 95

tat tac tgt gca aga tca cag gaa gag cac cgg tcg ttg gat gat gct 336
Tyr Tyr Cys Ala Arg Ser Gln Glu Glu His Arg Ser Leu Asp Asp Ala
100 105 110

ttt gat atc tgg gac cac ggt cac cgt ctc ctc a 370
Phe Asp Ile Trp Asp His Gly His Arg Leu Leu
115 120

<210> 26
<211> 123
<212> PRT
<213> Homo sapiens

<400> 26
Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln
1 5 10 15

Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn
20 25 30

2 8 / 1 4 1

Ser Ala Ala Trp His Trp Ile Arg Gln Ser Pro Ser Arg Gly Leu Glu
35 40 45

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Thr
50 55 60

Val Ser Val Lys Ser Arg Ile Thr Ile Lys Pro Asp Thr Ser Lys Asn
65 70 75 80

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val
85 90 95

Tyr Tyr Cys Ala Arg Ser Gln Glu Glu His Arg Ser Leu Asp Asp Ala
100 105 110

Phe Asp Ile Trp Asp His Gly His Arg Leu Leu
115 120

<210> 27

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(360)

<223>

<400> 27

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe

2 9 / 1 4 1

20

25

30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192
Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240
Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288
Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336
Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

ggg aca atg gtc acc gtc tct tca 360
Gly Thr Met Val Thr Val Ser Ser
115 120

<210> 28

<211> 120

<212> PRT

<213> Homo sapiens

<400> 28

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

3 0 / 1 4 1

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Met Val Thr Val Ser Ser
115 120

<210> 29

<211> 348

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(348)

<223>

<400> 29

cag gtc cag ctg gtg caa tct ggg gct gag gtg agg aag ccc ggg acg 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro Gly Thr
1 5 10 15

3 1 / 1 4 1

aca gtg aca atc tcc tgc aag gtt tct gga cac aac ttc atc gac cac 96
Thr Val Thr Ile Ser Cys Lys Val Ser Gly His Asn Phe Ile Asp His
20 25 30

tac atg cat tgg gta caa cag gcc cct gga aaa ggg ctt gac tgg atg 144
Tyr Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Asp Trp Met
35 40 45

gga cta att gac cct gaa gat ggt cag acg aaa tat tca gag agg ttt 192
Gly Leu Ile Asp Pro Glu Asp Gly Gln Thr Lys Tyr Ser Glu Arg Phe
50 55 60

gag ggc aga gtc aca att acc gcg gac aag tca aca gac aca acc tac 240
Glu Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Asp Thr Thr Tyr
65 70 75 80

ttg gag gtg agc ggc ctg aga tcg gaa gac acg gcc gtt tat ttc tgt 288
Leu Glu Val Ser Gly Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

aca acg gac ttg ggt gac ttg aat tat tgg ggc cag gga acc acc ctg gtc 336
Thr Thr Asp Leu Gly Asp Leu Asn Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110

acc gtc tcc tca 348
Thr Val Ser Ser
115

<210> 30
<211> 116
<212> PRT
<213> Homo sapiens

<400> 30

3 2 / 1 4 1

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Arg Lys Pro Gly Thr
1 5 10 15

Thr Val Thr Ile Ser Cys Lys Val Ser Gly His Asn Phe Ile Asp His
20 25 30

Tyr Met His Trp Val Gln Gln Ala Pro Gly Lys Gly Leu Asp Trp Met
35 40 45

Gly Leu Ile Asp Pro Glu Asp Gly Gln Thr Lys Tyr Ser Glu Arg Phe
50 55 60

Glu Gly Arg Val Thr Ile Thr Ala Asp Lys Ser Thr Asp Thr Thr Tyr
65 70 75 80

Leu Glu Val Ser Gly Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys
85 90 95

Thr Thr Asp Leu Gly Asp Leu Asn Tyr Trp Gly Gln Gly Thr Leu Val
100 105 110

Thr Val Ser Ser
115

<210> 31
<211> 366
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(366)
<223>

<400> 31

33 / 141

cag	gtc	cag	ctg	gtg	caa	tct	ggg	gga	ggc	gtg	gtc	cag	cct	ggg	agg	48
Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Gly	Gly	Val	Val	Gln	Pro	Gly	Arg	
1		5					10					15				
tcc	ctg	aga	ctc	tcc	tgt	gca	gcc	tct	gga	ttc	acc	ttc	agt	agc	aat	96
Ser	Leu	Arg	Leu	Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Ser	Asn	
	20					25						30				
ggc	atg	cac	tgg	gtc	cgc	cag	gct	cca	ggc	aag	ggg	ctg	gag	tgg	gtg	144
Gly	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val	
	35					40					45					
gca	gtt	ata	tgg	tat	gat	gga	agt	aat	aaa	tac	tat	gca	gac	tcc	gtg	192
Ala	Val	Ile	Trp	Tyr	Asp	Gly	Ser	Asn	Lys	Tyr	Tyr	Ala	Asp	Ser	Val	
	50					55				60						
aag	ggc	cga	ttc	acc	atc	tcc	aga	gac	aat	tcc	aag	aac	aca	ctg	tat	240
Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr	
	65					70				75		80				
ctg	caa	atg	aac	agc	ctg	aga	gcc	gag	gac	acg	gct	gtg	tat	tac	tgt	288
Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Asn	Ser	Lys	Asn	Thr	Tyr	Cys
	85					90				95						
gcg	aga	gat	cac	ggc	ctt	ggt	gat	caa	gcc	tcc	tgg	ttc	gac	ccc	tgg	336
Ala	Arg	Asp	His	Gly	Leu	Gly	Asp	Gln	Ala	Ser	Trp	Phe	Asp	Pro	Trp	
	100					105				110						
ggc	cag	ggc	acc	ctg	gtc	acc	gtc	tcc	tca							366
Gly	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser							
	115					120										

<210> 32

<211> 122

<212> PRT

3 4 / 1 4 1

<213> Homo sapiens

<400> 32

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 33

<211> 368

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

3 5 / 1 4 1

<223>

<400> 33

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag tct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Ser Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgc aag gct tct gga tac acc ttc acc ggc cac 96
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly His
20 25 30

ttt atc cac tgg gtg cgg cag gcc cct gga caa ggg ctt gag tgg atg 144
Phe Ile His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

gga tgg atc aac cct aac gtt ggt gtc aca aat tat gca cag aag ttt 192
Gly Trp Ile Asn Pro Asn Val Gly Val Thr Asn Tyr Ala Gln Lys Phe
50 55 60

cag ggc agg gtc acc atg acc agg gac acg tcc ata agc aca gcc tac 240
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80

ata gaa ctg agg agg ctg aga tct gac gac acg gcc gtg tat tac tgt 288
Ile Glu Leu Arg Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gtg aga gaa tcc gac aca gct gcg gtg gcc tac tac tac cac ggt atg 336
Val Arg Glu Ser Asp Thr Ala Ala Val Ala Tyr Tyr Tyr His Gly Met
100 105 110

gac gtc tgg gga caa tgg tca ccg tct ctt ca 368
Asp Val Trp Gly Gln Trp Ser Pro Ser Leu
115 120

3 6 / 1 4 1

<210> 34

<211> 122

<212> PRT

<213> Homo sapiens

<400> 34

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Ser Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly His
20 25 30

Phe Ile His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Ile Asn Pro Asn Val Gly Val Thr Asn Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80

Ile Glu Leu Arg Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Val Arg Glu Ser Asp Thr Ala Ala Val Ala Tyr Tyr Tyr His Gly Met
100 105 110

Asp Val Trp Gly Gln Trp Ser Pro Ser Leu
115 120

<210> 35

<211> 375

<212> DNA

<213> Homo sapiens

3 7 / 1 4 1

<220>

<221> CDS

<222> (1)..(375)

<223>

<400> 35

cag gtc cag ctg gtg caa tct ggg gga gac tgg gta aag cct ggg ggg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Asp Trp Val Lys Pro Gly Gly
1 5 10 15

tcc ctt aga ctc tcc tgt gca gcg tct gga ttc cct ttc gct aat gcc 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Phe Ala Asn Ala
20 25 30

tgg atg tat tgg ttc cgc cag gct cca ggg aag ggg ctg gag tgg gtt 144
Trp Met Tyr Trp Phe Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

ggc cgt att aaa agc aaa cca agt ggt ggg gct aca gag ttc gct gca 192
Gly Arg Ile Lys Ser Lys Pro Ser Gly Gly Ala Thr Glu Phe Ala Ala
50 55 60

ccc gtg gaa ggt aga ttc agc atc tcc aga gac gat tcg aaa aac acg 240
Pro Val Glu Gly Arg Phe Ser Ile Ser Arg Asp Asp Ser Lys Asn Thr
65 70 75 80

atg gat ctg caa atg aat agc ctg aga acc gac gac aca gcc gta tat 288
Met Asp Leu Gln Met Asn Ser Leu Arg Thr Asp Asp Thr Ala Val Tyr
85 90 95

tat tgt acc aca gat tgg ggt tcg ggg acc tat cat aag ttt gct tta 336
Tyr Cys Thr Thr Asp Trp Gly Ser Gly Thr Tyr His Lys Phe Ala Leu
100 105 110

gat gtc tgg ggc caa ggg aca atg gtc acc gtc tct tca 375
Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser

3 8 / 1 4 1

115 120 125

<210> 36

<211> 125

<212> PRT

<213> Homo sapiens

<400> 36

Gln Val Gln Leu Val Gln Ser Gly Gly Asp Trp Val Lys Pro Gly Gly
1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Pro Phe Ala Asn Ala
20 25 30Trp Met Tyr Trp Phe Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45Gly Arg Ile Lys Ser Lys Pro Ser Gly Gly Ala Thr Glu Phe Ala Ala
50 55 60Pro Val Glu Gly Arg Phe Ser Ile Ser Arg Asp Asp Ser Lys Asn Thr
65 70 75 80Met Asp Leu Gln Met Asn Ser Leu Arg Thr Asp Asp Thr Ala Val Tyr
85 90 95Tyr Cys Thr Thr Asp Trp Gly Ser Gly Thr Tyr His Lys Phe Ala Leu
100 105 110Asp Val Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser
115 120 125

<210> 37

<211> 357

3 9 / 1 4 1

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(357)

<223>

<400> 37

gtg cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc tca 48
Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser
1 5 10 15

gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc tat 96
Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr
20 25 30

atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg gga 144
Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly
35 40 45

tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt cag 192
Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln
50 55 60

gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac atg 240
Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met
65 70 75 80

gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt gcg 288
Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa ggg 336
Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln Gly
100 105 110

40 / 141

aca atg gtc acc gtc tct tca
Thr Met Val Thr Val Ser Ser
115

<210> 38
<211> 119
<212> PRT
<213> *Homo sapiens*

<400> 38
Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser
1 5 10 15

Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr
 20 25 30

Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly
35 40 45

Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln
 50 55 60

Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met
65 70 75 80

Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala
 85 90 95

Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln Gly
100 105 110

Thr Met Val Thr Val Ser Ser
115

4 1 / 1 4 1

<210> 39
<211> 360
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(360)
<223>

<400> 39

cag	gtg	cag	ctg	gtg	caa	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	48
Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	Pro	Gly	Ala	
1		5			10				15							

tca

gtg	aag	gtc	tcc	tgt	cag	gct	tct	gga	tac	atg	ttc	acc	ggc	ttc	96	
Ser	Val	Lys	Val	Ser	Cys	Gln	Ala	Ser	Gly	Tyr	Met	Phe	Thr	Gly	Phe	
20			25							30						

tat

atg	cac	tgg	gtg	cga	cag	gcc	cct	gga	caa	ggg	ctt	gag	tgg	atg	144	
Tyr	Met	His	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	Glu	Trp	Met	
35			40							45						

gga

tgg	atg	aac	act	aac	agt	ggt	gcc	aca	ggc	tat	gca	cac	aag	ttt	192	
Gly	Trp	Met	Asn	Thr	Asn	Ser	Gly	Ala	Thr	Gly	Tyr	Ala	His	Lys	Phe	
50			55						60							

cag

gac	agg	gtc	acc	ctg	acc	agg	gac	acg	tcc	atc	agc	aca	ggc	tac	240	
Gln	Asp	Arg	Val	Thr	Leu	Thr	Arg	Asp	Thr	Ser	Ile	Ser	Thr	Gly	Tyr	
65			70				75			80						

atg

gag	ctg	ggc	ggc	ctg	aca	tct	gac	gac	acg	gcc	gtg	tat	tat	tgt	288	
Met	Glu	Leu	Gly	Gly	Leu	Thr	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	
85				90						95						

42 / 141

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336
 Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
 100 105 110

ggg aca atg gtc acc gtc tct tca
Gly Thr Met Val Thr Val Ser Ser
115 120

<210> 40
<211> 120
<212> PRT
<213> *Homo sapiens*

<400> 40
 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
 1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
 65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
 85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Tyr Ala Met Asp Val Trp Gly Gln
 100 105 110

4 3 / 1 4 1

Gly Thr Met Val Thr Val Ser Ser

115

120

<210> 41

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(360)

<223>

<400> 41

cag gtc cag ctg gtg caa tct ggg gct gag gcg aag aag cct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Ala Lys Lys Pro Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192
Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

cag gac agg gtc acc ctg acc agg gac acg tcc atc acg aca ggc tac 240
Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288

4 4 / 1 4 1

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga acc cag gag gtt tac tac gct atg gac gtc tgg ggc caa 336
Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

ggg acc acg gtc acc gtc tcc tca 360
Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 42
<211> 120
<212> PRT
<213> Homo sapiens

<400> 42
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Ala Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

45 / 141

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 43

<211> 369

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(369)

<223>

<400> 43

cag gtc cag ctg gtg caa tct ggg gga ggc ttg gta cag cca ggg cgg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro Gly Arg
1 5 10 15

tcc ctg aga ctc tcc tgt aca act tct gga ttc acc ttt agt gat tat 96
Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asp Tyr
20 25 30

gct ttg agc tgg gtc cgc cag gct cca ggg agg ggg ctg gag tgg gta 144
Ala Leu Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val
35 40 45

ggt ttc att aga aat aaa att tat ggt ggg aca aca gat tac gcc gca 192
Gly Phe Ile Arg Asn Lys Ile Tyr Gly Thr Thr Asp Tyr Ala Ala
50 55 60

tct gtg aaa ggc aga ttc acc atc tca aga gat gat tcc aaa agt atc 240
Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ile

4 6 / 1 4 1

65 70 75 80
gcc tat ctg caa atg aac agc ctg aaa acc gag gac tca gcc gtc tat 288
Ala Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Ser Ala Val Tyr
 85 90 95

tac tgt act aga gat tcg ggt gtg act gct gcc tac ttt gac tac 336
Tyr Cys Thr Arg Asp Ser Gly Val Val Thr Ala Ala Tyr Phe Asp Tyr
 100 105 110

tgg ggc cag ggc acc ctg gtc acc gtc tcc tca 369
Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
 115 120

<210> 44
<211> 123
<212> PRT
<213> Homo sapiens

<400> 44
Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Thr Thr Ser Gly Phe Thr Phe Ser Asp Tyr
 20 25 30

Ala Leu Ser Trp Val Arg Gln Ala Pro Gly Arg Gly Leu Glu Trp Val
 35 40 45

Gly Phe Ile Arg Asn Lys Ile Tyr Gly Gly Thr Thr Asp Tyr Ala Ala
 50 55 60

Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ile
 65 70 75 80

4 7 / 1 4 1

Ala Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Ser Ala Val Tyr
85 90 95

Tyr Cys Thr Arg Asp Ser Gly Val Val Thr Ala Ala Tyr Phe Asp Tyr
100 105 110

Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 45

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

<223>

<400> 45

cag gtc cag ctg gtg caa tct ggg gga ggc gtg gtc cag cct ggg agg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttc agt agc aat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

ggc atg cac tgg gtc cgc cag gct cca ggc aag ggg ctg gag tgg gtg 144
Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

gca gtt ata tgg tat gat gga agt aat aaa tac tat gca gac tcc gtg 192
Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

4 8 / 1 4 1

aag ggc cga ttc acc atc tcc aga gac aat tcc aag aac aca ctg tat 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt 288
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cac ggc ctt ggt gat caa gcc tcc tgg ttc gac ccc tgg 336
Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

ggc cag ggg acc acg gtc acc gtc tcc tca 366
Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 46

<211> 122

<212> PRT

<213> Homo sapiens

<400> 46

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Val Val Gln Pro Gly Arg
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Asn
20 25 30

Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys Tyr Tyr Ala Asp Ser Val
50 55 60

4 9 / 1 4 1

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr
65 70 75 80

Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp His Gly Leu Gly Asp Gln Ala Ser Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Thr Val Thr Val Ser Ser
115 120

<210> 47

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(360)

<223>

<400> 47

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

50 / 141

gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192
Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240
Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288
Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336
Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

ggg aca atg gtc acc gtc tct tca 360
Gly Thr Met Val Thr Val Ser Ser
115 120

<210> 48
<211> 120
<212> PRT
<213> Homo sapiens

<400> 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

5 1 / 1 4 1

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Met Val Thr Val Ser Ser
115 120

<210> 49

<211> 353

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(351)

<223>

<400> 49

cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc tca gtg 48
Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val
1 5 10 15

aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc tat atg 96
Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr Met
20 25 30

cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg gga tgg 144

52 / 141

His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Trp
35 40 45

atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt cag gac 192
 Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln Asp
 50 55 60 .

agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac atg gag 240
 Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met Glu
 65 70 75 80

ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt gcg aga 288
 Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg
 85 90 95

acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa ggg aca 336
 Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln Gly Thr
 100 105 110

atg gtc acc gtc tct tc 353
Met Val Thr Val Ser
115

<210> 50
<211> 117
<212> PRT
<213> *Homo sapiens*

<400> 50
Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser Val
1 5 10 15

Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr Met
 20 25 30

53 / 141

His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly Trp
35 40 45

Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln Asp
50 55 60

Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met Glu
65 70 75 80

Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg
85 90 95

Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln Gly Thr
100 105 110

Met Val Thr Val Ser
115

<210> 51

<211> 360

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(360)

<223>

<400> 51

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

tca gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc 96
Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe

5 4 / 1 4 1

20

25

30

tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg 144
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

gga tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt 192
Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

cag gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac 240
Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

atg gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt 288
Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga acc cag gag gtt tac tac tac gct atg gac gtc tgg ggc caa 336
Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

gga acc ctg gtc acc gtc tct tca 360
Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 52

<211> 120

<212> PRT

<213> Homo sapiens

<400> 52

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

5 5 / 1 4 1

Ser Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe
50 55 60

Gln Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr
65 70 75 80

Met Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 53

<211> 357

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(357)

<223>

<400> 53

gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc tca
Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser
1 5 10 15

48

5 6 / 1 4 1

gtg aag gtc tcc tgt cag gct tct gga tac atg ttc acc ggc ttc tat 96
Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr
 20 25 30

atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg gga 144
Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly
 35 40 45

tgg atg aac act aac agt ggt gcc aca ggc tat gca cac aag ttt cag 192
Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln
 50 55 60

gac agg gtc acc ctg acc agg gac acg tcc atc agc aca ggc tac atg 240
Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met
 65 70 75 80

gag ctg ggc ggc ctg aca tct gac gac acg gcc gtg tat tat tgt gcg 288
Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala
 85 90 95

aga acc cag gag gtt tac tac tac gct atg gac gta ctg ggg cca agg 336
Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Leu Gly Pro Arg
 100 105 110

gac aat ggt cac cgt ctc ttc 357
Asp Asn Gly His Arg Leu Phe
 115

<210> 54

<211> 119

<212> PRT

<213> Homo sapiens

<400> 54

5 7 / 1 4 1

Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala Ser
1 5 10 15

Val Lys Val Ser Cys Gln Ala Ser Gly Tyr Met Phe Thr Gly Phe Tyr
20 25 30

Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Gly
35 40 45

Trp Met Asn Thr Asn Ser Gly Ala Thr Gly Tyr Ala His Lys Phe Gln
50 55 60

Asp Arg Val Thr Leu Thr Arg Asp Thr Ser Ile Ser Thr Gly Tyr Met
65 70 75 80

Glu Leu Gly Gly Leu Thr Ser Asp Asp Thr Ala Val Tyr Tyr Cys Ala
85 90 95

Arg Thr Gln Glu Val Tyr Tyr Ala Met Asp Val Leu Gly Pro Arg
100 105 110

Asp Asn Gly His Arg Leu Phe
115

<210> 55
<211> 342
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(342)
<223>

<400> 55

5 8 / 1 4 1

gat att gtg atg acc cag act cca gac tcc ctg gct gtg tct ctg ggc	48
Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly	
1 5 10 15	
gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc	96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser	
20 25 30	
tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag	144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln	
35 40 45	
cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc	192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val	
50 55 60	
cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc	240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr	
65 70 75 80	
atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa	288
Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln	
85 90 95	
tat tat agt act cct ccg acg ttc ggc caa ggg acc aag gtg gaa atc	336
Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile	
100 105 110	
aaa cgt	342
Lys Arg	

<210> 56

<211> 114

<212> PRT

5 9 / 1 4 1

<213> Homo sapiens

<400> 56

Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys Arg

<210> 57

<211> 337

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(336)

60 / 141

<223>

<400> 57

gat ctt gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Leu Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg cac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp His Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat agt act cct ccg acg ttc ggc caa ggg acc aaa gtg gat atc a 337
Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Asp Ile
100 105 110

<210> 58

<211> 112

<212> PRT

<213> Homo sapiens

6 1 / 1 4 1

<400> 58

Asp Leu Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp His Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Asp Ile
100 105 110

<210> 59

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 59

gat att gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc

48

6 2 / 1 4 1

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat agt act cct ccg acg ttc ggc caa ggg acc aag gtg gaa atc 336
Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

aaa cgt 342
Lys Arg

<210> 60
<211> 114
<212> PRT
<213> Homo sapiens

6 3 / 1 4 1

<400> 60

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys Arg

<210> 61

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

6 4 / 1 4 1

<400> 61

gat att gtg atg act cag tct cca ctc tcc ctg ccc gtc acc cct gga 48
Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

gag ccg gcc tcc atc tcc tgc agg tct agt cag agc ctc ttg gat agt 96
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser
20 25 30

gat gat gga aac acc tat ttg gac tgg tac ctg cag aag cca ggg cag 144
Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln
35 40 45

tct cca cag ctc cta atc tat acg ctt tcc tat cgg gcc tct gga gtc 192
Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val
50 55 60

cca gac agg ttc agt ggc agt ggg tca ggc act gat ttc aca ctg aaa 240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys
65 70 75 80

atc agc agg gtg gag gct gag gat gtt gga gtt tat tac tgc atg caa 288
Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln
85 90 95

cgt ata gag ttt cct tac act ttt ggc cag ggg acc aaa gtg gat atc 336
Arg Ile Glu Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Asp Ile
100 105 110

aaa cgt
Lys Arg 342

<210> 62

6 5 / 1 4 1

<211> 114

<212> PRT

<213> Homo sapiens

<400> 62

Asp Ile Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser
20 25 30

Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln
35 40 45

Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys
65 70 75 80

Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln
85 90 95

Arg Ile Glu Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Asp Ile
100 105 110

Lys Arg

<210> 63

<211> 342

<212> DNA

<213> Homo sapiens

<220>

6 6 / 1 4 1

<221> CDS

<222> (1)..(342)

<223>

<400> 63

gat gtt gtg atg act cag tct cca ctc tcc ctg ccc gtc acc cct gga 48
Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

gag ccg gcc tcc atc tcc tgc agg tct agt cag agc ctc ttg gat agt 96
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser
20 25 30

gat gat gga aac acc tat ttg gac tgg tac ctg cag aag cca ggg cag 144
Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln
35 40 45

tct cca cag ctc cta atc tat acg ctt tcc tat cgg gcc tct gga gtc 192
Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val
50 55 60

cca gac agg ttc agt ggc agt ggg tca ggc act gat ttc aca ctg aaa 240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys
65 70 75 80

atc agc agg gtg gag gct gag gat gtt gga gtt tat tac tgc atg caa 288
Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln
85 90 95

cgt ata gag ttt cct tac act ttt ggc cag ggg acc aag gtg gaa atc 336
Arg Ile Glu Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

aaa cgt 342
Lys Arg

67 / 141

<210> 64
<211> 114
<212> PRT
<213> *Homo sapiens*

<400> 64
Asp Val Val Met Thr Gln Ser Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 . 10 15

Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser
20 25 30

Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln
35 40 45

Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys
65 70 75 80

Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln
85 90 95

Arg Ile Glu Phe Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
 100 105 110

Lys Arg

<210> 65
<211> 339
<212> DNA

6 8 / 1 4 1

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(339)

<223>

<400> 65

gat att gtg atg acc cag act cca ctc tcc ctg ccc gtc acc cct gga 48
Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly
1 5 10 15

gag ccg gcc tcc atc tcc tgc agg tct agt cag agc ctc ttg gat agt 96
Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser
20 25 30

gat gat gga aac acc tat ttg gac tgg tac ctg cag aag cca ggg cag 144
Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln
35 40 45

tct cca cag ctc cta atc tat acg ctt tcc tat cgg gcc tct gga gtc 192
Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val
50 55 60

cca gac agg ttc agt ggc agt ggg tca ggc act gat ttc aca ctg aaa 240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys
65 70 75 80

atc agc agg gtg gag gct gag gat gtt gga gtt tat tac tgc atg caa 288
Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln
85 90 95

gct aca caa ttg tac act ttt ggc cag ggg acc aag gtg gag atc aaa 336
Ala Thr Gln Leu Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
100 105 110

6 9 / 1 4 1

cgt

339

Arg

<210> 66

<211> 113

<212> PRT

<213> Homo sapiens

<400> 66

Asp	Ile	Val	Met	Thr	Gln	Thr	Pro	Leu	Ser	Leu	Pro	Val	Thr	Pro	Gly
1			5					10					15		

Glu	Pro	Ala	Ser	Ile	Ser	Cys	Arg	Ser	Ser	Gln	Ser	Leu	Leu	Asp	Ser
								25					30		

Asp	Asp	Gly	Asn	Thr	Tyr	Leu	Asp	Trp	Tyr	Leu	Gln	Lys	Pro	Gly	Gln
							35					40			45

Ser	Pro	Gln	Leu	Leu	Ile	Tyr	Thr	Leu	Ser	Tyr	Arg	Ala	Ser	Gly	Val
								55				60			

Pro	Asp	Arg	Phe	Ser	Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Lys
								65			70		75		80

Ile	Ser	Arg	Val	Glu	Ala	Glu	Asp	Val	Gly	Val	Tyr	Tyr	Cys	Met	Gln
								85			90			95	

Ala	Thr	Gln	Leu	Tyr	Thr	Phe	Gly	Gln	Gly	Thr	Lys	Val	Glu	Ile	Lys
								100			105			110	

Arg

70 / 141

<210> 67
<211> 342
<212> DNA
<213> *Homo sapiens*

<220>
<221> CDS
<222> (1)..(342)
<223>

<400> 67
gat att gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
 Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
 20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
 Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cg_g gaa tcc ggg gtc
 Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
 50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa
 Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

tat tat agt act cct ccg acg ttc ggc caa ggg acc aag ctg gag atc 336

71 / 141

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
100 105 110

aaa cgt 342
Lys Arg

<210> 68
<211> 114
<212> PRT
<213> Homo sapiens

<400> 68
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
100 105 110
Lys Arg

72 / 141

<210> 69
<211> 342
<212> DNA
<213> *Homo sapiens*

<220>
<221> CDS
<222> (1)..(342)
<223>

```

<400> 69
gat gtt gtg atg act cag act cca gac tcc ctg gct gtg tct ctg ggc      48
Asp Val Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1           5           10          15

```

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta cac aag 96
 Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu His Lys
 20 25 30

tcc aac aat aag aac tat tta gct tgg tac cag cag aaa cca gga cag 144
 Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

cct cct aaa ttg ctc att cac tgg gct tct acc cg_g gaa ttc ggg gtc 192
 Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val
 50 55 60

cct gac cga ctc agt ggc agc ggg tct gcg aca gat ttc act ctc acc 240
 Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr
 65 70 75 80

atc agc agc ctg cag gct gaa gac gtg gca gtc tat tac tgt cag caa 288
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln

73 / 141

85

90

95

tat tat gct gtt cct ctc acc ttc ggc caa ggg aca cga ctg gag att 336
 Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile
 100 105 110

aaa cgt 342
Lys Arg

<210> 70
<211> 114
<212> PRT
<213> *Homo sapiens*

<400> 70
Asp Val Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu His Lys
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val
50 55 60

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile

7 4 / 1 4 1

100

105

110

Lys Arg

<210> 71

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 71

gat att gtg atg acc cag acg cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

7 5 / 1 4 1

atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

tat tat agt act cct ccg acg ttc agc caa ggg acc aag gtg gaa atc 336
Tyr Tyr Ser Thr Pro Pro Thr Phe Ser Gln Gly Thr Lys Val Glu Ile
 100 105 110

aaa cgt 342
Lys Arg

<210> 72
<211> 114
<212> PRT
<213> Homo sapiens

<400> 72
Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln

7 6 / 1 4 1

85

90

95

Tyr Tyr Ser Thr Pro Pro Thr Phe Ser Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys Arg

<210> 73

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 73

gat gtt gtg atg act cag tct cca gac tcc ctg act gtg tct ctg ggc 48
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Thr Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aag ctg ctc att tac tgg gca cct acc cgg gaa tcc ggg gtc 192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Pro Thr Arg Glu Ser Gly Val
50 55 60

77 / 141

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc agc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat agt act cct ccg acg ttc ggc cag ggg acc aag gtg gaa atc 336
Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

aaa cgt 342
Lys Arg

<210> 74
<211> 114
<212> PRT
<213> Homo sapiens

<400> 74
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Thr Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Pro Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr

7 8 / 1 4 1

65

70

75

80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys Arg

<210> 75

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 75

gat gtt gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag ggt gtt tta cac aag 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Gly Val Leu His Lys
20 25 30

tcc aac aat aag aac tat tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aaa ttg ctc att cac tgg gct tct acc cgg gaa ttc ggg gtc 192

7 9 / 1 4 1

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val
50 55 60

cct gac cga ctc agt ggc agc ggg tct gcg aca gat ttc act ctc acc 240
Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc agc ctg cag gct gaa gac gtg gca gtc tat tac tgt cag caa 288
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat gct gtt cct ctc acc ttc ggc caa ggg aca cga ctg gag att 336
Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile
100 105 110

aaa cgt 342
Lys Arg

<210> 76
<211> 114
<212> PRT
<213> Homo sapiens

<400> 76
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Gly Val Leu His Lys
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val

80 / 141

50

55

60

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile
100 105 110

Lys Arg

<210> 77

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 77

gat att gtg atg acc cag acg cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

81 / 141

35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cg^g gaa tcc ggg gtc 192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat agt act cct ccg acg ttc ggc caa ggg acc aag gtg gaa atc 336
Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

aaa cgt 342
Lys Arg

<210> 78
<211> 114
<212> PRT
<213> Homo sapiens

<400> 78
Asp Ile Val Met Thr Gln Thr Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

8 2 / 1 4 1

35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys Arg

<210> 79

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 79

gat gtt gtg atg act cag tct cca gac tcc ctg gct gtg cct ctg ggc 48
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Pro Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta cac aag 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu His Lys
20 25 30

83 / 141

tcc aac aat aag aac cat tta gct tgg tac cag cag aaa cca gga cag	144		
Ser Asn Asn Lys Asn His Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln			
35	40	45	
cct cct aaa ttg ctc att cac tgg gct tct acc cgg gaa ttc ggg gtc	192		
Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val			
50	55	60	
cct gac cga ctc agt ggc agc ggg tct gcg aca gat ttc act ctc acc	240		
Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr			
65	70	75	80
atc aac agc ctg cag gct gaa gac gcg gca gtc tat tac tgt cag caa	288		
Ile Asn Ser Leu Gln Ala Glu Asp Ala Ala Val Tyr Tyr Cys Gln Gln			
85	90	95	
tat tat gct gtt cct ctc acc ttc ggc caa ggg aca cga ctg gag att	336		
Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile			
100	105	110	
aaa cgt	342		
Lys Arg			

<210> 80
<211> 114
<212> PRT
<213> Homo sapiens

<400> 80
Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Pro Leu Gly
1 5 10 15
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu His Lys

8 4 / 1 4 1

20

25

30

Ser Asn Asn Lys Asn His Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val
50 55 60

Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Asn Ser Leu Gln Ala Glu Asp Ala Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile
100 105 110

Lys Arg

<210> 81

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 81

gat att gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

85 / 141

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser

20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
 Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
 35 40 45

35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cg^g gaa tcc ggg gtc 192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val

50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
 65 70 75 80

atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
 Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
 85 90 95

85 90 95

tat tat agt act cct ccg acg ttc ggc caa ggg acc aaa gtg gat atc 336
Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Asp Ile
 100 105 110

100 105 110

aaa cgt 342
Lys Arg

<210> 82

<211> 114

<212> PRT

<213> Homo sapiens

<400> 82

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly

8 6 / 1 4 1

1 5 10 15
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Asp Ile
100 105 110

Lys Arg

<210> 83

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

<400> 83

gat gtt gtg atg act cag tct cca gac tcc ctg gct gtg tct ctg ggc

48

87 / 141

Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aaa ttg ctc att cac tgg gct tct acc cgg gaa ttc ggg gtc 192
Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val
50 55 60

cct gac cga ctc agt ggc agc ggg tct gcg aca gat ttc act ctc acc 240
Pro Asp Arg Leu Ser Gly Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc agc ctg cag gct gaa gac gtg gca gtc tat tac tgt cag caa 288
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat gct gtt cct ctc acc ttc ggc caa ggg aca cga ctg gag att 336
Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile
100 105 110

aaa cgt 342
Lys Arg

<210> 84

<211> 114

<212> PRT

<213> Homo sapiens

88 / 141

<400> 84

Asp Val Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Lys Leu Leu Ile His Trp Ala Ser Thr Arg Glu Phe Gly Val
50 55 60

Pro Asp Arg Leu Ser Gly Ser Ala Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Ala Val Pro Leu Thr Phe Gly Gln Gly Thr Arg Leu Glu Ile
100 105 110

Lys Arg

<210> 85

<211> 342

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(342)

<223>

89 / 141

<400> 85

gac atc gtg atg acc cag tct cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192
Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat agt act cct ccg acg ttc ggc caa ggg acc aag gtg gaa atc 336
Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

aaa cgt 342
Lys Arg

90 / 141

<211> 114

<212> PRT

<213> Homo sapiens

<400> 86

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly

1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser

20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

35 40 45

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val

50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr

65 70 75 80

Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln

85 90 95

Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu Ile

100 105 110

Lys Arg

<210> 87

<211> 327

<212> DNA

<213> Homo sapiens

<220>

91 / 141

<221> CDS

<222> (1)..(327)

<223>

<400> 87

gaa att gtg ctg act cag tct cca ggc acc ctg tct ttg tct cca ggg 48

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly

1

5

10

15

gaa aga gcc acc ctc tcc tgc aag gcc agt cag agt ttt agc agc aac 96

Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Gln Ser Phe Ser Ser Asn

20

25

30

tac tta gcc tgg tac cag cag aaa cct ggc cag gct ccc agg ctg ctc 144

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu

35

40

45

atc tat ggt gca tcc agc agg gcc act ggc atc cca gac agg ttc agt 192

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser

50

55

60

ggc agt aaa tct ggg aca gac ttc act ctc acc atc agc aga ctg gag 240

Gly Ser Lys Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu

65

70

75

80

cct gaa gat ttt gca gtg tat tac tgt cag cag tat gtt acc tca ccg 288

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Val Thr Ser Pro

85

90

95

tat act ttt ggc ctg ggg acc aag gtg gag atc aaa cgt 327

Tyr Thr Phe Gly Leu Gly Thr Lys Val Glu Ile Lys Arg

100

105

<210> 88

<211> 109

9 2 / 1 4 1

<212> PRT

<213> Homo sapiens

<400> 88

Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Gln Ser Phe Ser Ser Asn
20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu
35 40 45

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe Ser
50 55 60

Gly Ser Lys Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu
65 70 75 80

Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Val Thr Ser Pro
85 90 95

Tyr Thr Phe Gly Leu Gly Thr Lys Val Glu Ile Lys Arg
100 105

<210> 89

<211> 325

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)...(324)

<223>

9 3 / 1 4 1

<400> 89

gat gtt ggg atg aca cag tct tca gcc acc cta tct ttg tct cca ggg 48

Asp Val Gly Met Thr Gln Ser Ser Ala Thr Leu Ser Leu Ser Pro Gly

1

5

10

15

gaa aga gcc acc ctc tcc tgc agg gcc agt cag agg att agc agt tat 96

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Arg Ile Ser Ser Tyr

20

25

30

tta gcc tgg tac caa cag aaa cct ggc cag gct ccc aga ctc ctc atc 144

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile

35

40

45

tat gag gca gtc aaa agg gcc act ggc atc cca gcc agg ttc agt ggc 192

Tyr Glu Ala Val Lys Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly

50

55

60

agt ggg tct ggg aca gag ttc acc ctc acc atc aac agc cta gag cct 240

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Asn Ser Leu Glu Pro

65

70

75

80

gaa gat ttt gca gtt tat ttc tgt cag cag cgt ggc agc tgt cct ggg 288

Glu Asp Phe Ala Val Tyr Phe Cys Gln Gln Arg Gly Ser Cys Pro Gly

85

90

95

acg ttc ggc cag ggg acc aag ctg gag atc aaa cgt t 325

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg

100

105

<210> 90

<211> 108

<212> PRT

<213> Homo sapiens

<400> 90

9 4 / 1 4 1

Asp Val Gly Met Thr Gln Ser Ser Ala Thr Leu Ser Leu Ser Pro Gly
1 5 10 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Arg Ile Ser Ser Tyr
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile
35 40 45

Tyr Glu Ala Val Lys Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly
50 55 60

Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Asn Ser Leu Glu Pro
65 70 75 80

Glu Asp Phe Ala Val Tyr Phe Cys Gln Gln Arg Gly Ser Cys Pro Gly
85 90 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg
100 105

<210> 91

<211> 366

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(366)

<223>

<400> 91

cag gtc cag ctg gtg caa tct ggg gct gag gtg aag aag cct ggg gcc . 48
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

95 / 141

tca gtg aag gtc tcc tgc aag gct tct gga tac acc ttc acc ggc tac			96
Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr			
20	25	30	
tat atg cac tgg gtg cga cag gcc cct gga caa ggg ctt gag tgg atg			144
Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met			
35	40	45	
gga tgg atc aac cct aac agt ggt ggc aca aag tat gca cag aag ttt			192
Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Lys Tyr Ala Gln Lys Phe			
50	55	60	
cag ggc agg gtc acc atg acc agg gac acg tcc atc agc aca gcc tac			240
Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr			
65	70	75	80
atg gag ctg agc agg ctg aga tct gac gac acg gcc gtg tat tac tgt			288
Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys			
85	90	95	
gcg aga gga tac gat att ttg act ggt tat ggc tgg ttc gac ccc tgg			336
Ala Arg Gly Tyr Asp Ile Leu Thr Gly Tyr Gly Trp Phe Asp Pro Trp			
100	105	110	
ggc cag gga acc ctg gtc acc gtc tcc tca			366
Gly Gln Gly Thr Leu Val Thr Val Ser Ser			
115	120		
<210> 92			
<211> 122			
<212> PRT			
<213> Homo sapiens			
<400> 92			

9 6 / 1 4 1

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Gly Tyr
20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Lys Tyr Ala Gln Lys Phe
50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Arg Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Gly Tyr Asp Ile Leu Thr Gly Tyr Gly Trp Phe Asp Pro Trp
100 105 110

Gly Gln Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 93
<211> 360
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(360)
<223>

<400> 93

9 7 / 1 4 1

cag gtc cag ctg gtg caa tct ggg gga ggc ttg gtc cag cct ggg ggg 48
Gln Val Gln Leu Val Gln Ser Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

tcc ctg aga ctc tcc tgt gca gcc tct gga ttc acc ttt agt agc tat 96
Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

tgg atg agt tgg gtc cgc cag gct cca ggg aag ggg ctg gag tgg gtg 144
Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

gcc aac ata aag caa gat gga agt gag aaa tac tat gtg gac tct gtg 192
Ala Asn Ile Lys Gln Asp Gly Ser Glu Lys Tyr Tyr Val Asp Ser Val
50 55 60

aag ggc cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat 240
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80

ctg caa atg aac acc ctg aga gcc gag gac acg gct gtg tat tac tgt 288
Leu Gln Met Asn Thr Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

gcg aga gat cgt ttg tgg acc cag ggg ttt ttt gac tac tgg ggc cag 336
Ala Arg Asp Arg Leu Trp Thr Gln Gly Phe Phe Asp Tyr Trp Gly Gln
100 105 110

gga acc ctg gtc acc gtc tcc tca 360
Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 94

<211> 120

<212> PRT

9 8 / 1 4 1

<213> Homo sapiens

<400> 94

Gln Val Gln Leu Val Gln Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1 5 10 15

Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr
20 25 30

Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45

Ala Asn Ile Lys Gln Asp Gly Ser Glu Lys Tyr Tyr Val Asp Ser Val
50 55 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr
65 70 75 80

Leu Gln Met Asn Thr Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95

Ala Arg Asp Arg Leu Trp Thr Gln Gly Phe Phe Asp Tyr Trp Gly Gln
100 105 110

Gly Thr Leu Val Thr Val Ser Ser
115 120

<210> 95

<211> 339

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(339)

99/141

<223>

<400> 95

gac atc gtg atg acc cag tct cca gac tcc ctg gct gtg tct ctg ggc 48
Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc 96
Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag 144
Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

cct cct aac ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc 192
Pro Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc 240
Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

atc agc agc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa 288
Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

tat tat act act ccg tgg acg ttc ggc caa ggg acc aag gtg gaa atc 336
Tyr Tyr Thr Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

aaa 339
Lys

1 0 0 / 1 4 1

<210> 96

<211> 113

<212> PRT

<213> Homo sapiens

<400> 96

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly
1 5 10 15

Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser
20 25 30

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln
35 40 45

Pro Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val
50 55 60

Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
65 70 75 80

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln
85 90 95

Tyr Tyr Thr Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile
100 105 110

Lys

<210> 97

<211> 23

<212> DNA

<213> Artificial

1 0 1 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 97

caggtk~~c~~agc tgg~~tgc~~agtc tgg

23

<210> 98

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 98

cagg~~tcc~~agc tt~~tg~~gcagtc tgg

23

<210> 99

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 99

sagg~~tcc~~agc tgg~~tac~~agtc tgg

23

<210> 100

<211> 23

<212> DNA

<213> Artificial

1 0 2 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 100

caratgcagc tggcagtc tgg

23

<210> 101

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 101

cagatcacct tgaaggagtc tggt

24

<210> 102

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 102

caggtcacct tgarggagtc tggt

24

<210> 103

<211> 23

<212> DNA

<213> Artificial

1 0 3 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 103

gargtgcagc tggtggagtc tgg

23

<210> 104

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 104

caggtgcagc tggtggagtc tgg

23

<210> 105

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 105

gaggtgcagc tgggtggagtc tgg

23

<210> 106

<211> 24

<212> DNA

<213> Artificial

1 0 4 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 106

cagstgcagc tgcaggagtc gggc

24

<210> 107

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 107

caggtgcagc tacagcagtg gggc

24

<210> 108

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 108

gargtgcagc tggtgcatgc tgga

24

<210> 109

<211> 24

<212> DNA

<213> Artificial

1 0 5 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 109

caggtacagc tgcagcagtc aggt

24

<210> 110

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 110

caggtscagc tggtgcaatc tgg

23

<210> 111

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 111

tgaggagacg gtgaccaggg tkcc

24

<210> 112

<211> 24

<212> DNA

<213> Artificial

1 0 6 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 112

tgaagagacg gtgaccattg tccc

24

<210> 113

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 113

tgaggagacg gtgaccgtgg tccc

24

<210> 114

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 114

racatccaga tgacctcagtc tcca

24

<210> 115

<211> 24

<212> DNA

<213> Artificial

1 0 7 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 115

gmcatccagt tgacccagtc tcca

24

<210> 116

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 116

gccatccrga tgacccagtc tcca

24

<210> 117

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 117

gtcatctgga tgacccagtc tcca

24

<210> 118

<211> 24

<212> DNA

<213> Artificial

1 0 8 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 118

gatattgtga tgacccagac tcca

24

<210> 119

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 119

gatrttgtga tgactcagtc tcca

24

<210> 120

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 120

gaaatttgtt tgacrcagtc tcca

24

<210> 121

<211> 24

<212> DNA

<213> Artificial

1 0 9 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 121

gaaatagtga tgacgcagtc tcca

24

<210> 122

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 122

gaaattgtaa tgacacagtc tcca

24

<210> 123

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 123

gacatcgtga tgacctcagtc tcca

24

<210> 124

<211> 24

<212> DNA

<213> Artificial

1 1 0 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 124

gaaacgacac tcacgcagtc tcca

24

<210> 125

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 125

gaaatttgtc tgactcagtc tcca

24

<210> 126

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 126

gatgttgta tgacacagtc tcca

24

<210> 127

<211> 24

<212> DNA

<213> Artificial

1 1 1 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 127

acgtttgatt tccacaccttgg tccc

24

<210> 128

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 128

acgtttgatc tccasacttgg tccc

24

<210> 129

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 129

acgtttgata tccactttgg tccc

24

<210> 130

<211> 24

<212> DNA

<213> Artificial

1 1 2 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 130

acgtttaatc tccagtcgtg tc

24

<210> 131

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 131

cagtctgtgc tgactcagcc accc

24

<210> 132

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 132

cagtctgtgy tgacgcagcc gccc

24

<210> 133

<211> 22

<212> DNA

<213> Artificial

1 1 3 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 133

cagtctgcc t gactcagcc ts

22

<210> 134

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 134

tcctatgwgc t gactcagcc accc

24

<210> 135

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 135

tcctatgaggc t gacacagc accc

24

<210> 136

<211> 24

<212> DNA

<213> Artificial

1 1 4 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 136

tcttctgagc tgactcagga ccct

24

<210> 137

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 137

tcctatgagc tgatgcagcc accc

24

<210> 138

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 138

cagcctgtgc tgactcaatc atcc

24

<210> 139

<211> 24

<212> DNA

<213> Artificial

1 1 5 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 139

cagcttgtgc tgactcaatc gccc

24

<210> 140

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 140

ctgcctgtgc tgactcagcc cccg

24

<210> 141

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 141

cagcctgtgc tgactcagcc ayct

24

<210> 142

<211> 24

<212> DNA

<213> Artificial

1 1 6 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 142

caggctgtgc tgactcagcc ggct

24

<210> 143

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 143

aattttatgc tgactcagcc ccac

24

<210> 144

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 144

cagrctgtgg tgactcagga gccc

24

<210> 145

<211> 24

<212> DNA

<213> Artificial

1 1 7 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 145

cagactgtgg tgacccagga gcca

24

<210> 146

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 146

cwgccctgtgc tgactcagcc acct

24

<210> 147

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 147

caggcagggc tgactcagcc accc

24

<210> 148

<211> 24

<212> DNA

<213> Artificial

1 1 8 / 1 4 1

<220>

<223> Artificially Synthesized Primer Sequence

<400> 148

acctaggacg gtgacaccttgg tccc

24

<210> 149

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 149

acctaggacg gtcagcttgg tccc

24

<210> 150

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 150

accgaggacg gtcagctggg tgcc

24

<210> 151

<211> 91

<212> DNA

<213> Artificial

1 1 9 / 1 4 1

<220>

<223> Template Linker Sequence

<400> 151

ggacaatggt caccgtctct tcaggtggtg gtggttcggg tggtggtggt tcgggtggtg 60

gcggatcgga catccagatg acccagtctc c

91

<210> 152

<211> 28

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 152

gcaccctgggt caccgtctcc tcaggtgg

28

<210> 153

<211> 28

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 153

ggacaatggt caccgtctct tcaggtgg

28

<210> 154

<211> 28

<212> DNA

1 2 0 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 154

gaaccctggc caccgtctcc tcaggtgg

28

<210> 155

<211> 28

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 155

ggaccacggc caccgtctcc tcaggtgg

28

<210> 156

<211> 32

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 156

ggagactggg tcatctggat gtccgatccg cc

32

<210> 157

<211> 32

<212> DNA

1 2 1 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 157

ggagactgag tcatcacaac atccgatccg cc

32

<210> 158

<211> 32

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 158

ggagactgcg tcaacacaat ttccgatccg cc

32

<210> 159

<211> 32

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 159

ggagactggg tcatcacgat gtccgatccg cc

32

<210> 160

<211> 32

<212> DNA

1 2 2 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 160

ggagactgcg tgagtgtcgt ttccgatccg cc

32

<210> 161

<211> 32

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 161

ggagactgag tcagcacaaat ttccgatccg cc

32

<210> 162

<211> 42

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 162

ggcggctgcg tcaacacaga ctgcgatccg ccaccgccag ag

42

<210> 163

<211> 42

<212> DNA

1 2 3 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 163

gcaggctgag tcagagcaga ctgcgatccg ccaccgccag ag 42

<210> 164

<211> 42

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 164

ggtgtgctgag tcagcacata ggacgatccg ccaccgccag ag 42

<210> 165

<211> 42

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 165

gggtcctgag tcagctcaga agacgatccg ccaccgccag ag 42

<210> 166

<211> 42

<212> DNA

1 2 4 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 166

ggcggtttag tcagtataac gtgcgatccg ccaccgccag ag

42

<210> 167

<211> 42

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 167

gacggctgag tcagcacaga ctgcgatccg ccaccgccag ag

42

<210> 168

<211> 42

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 168

tggggctgag tcagcataaa attcgatccg ccaccgccag ag

42

<210> 169

<211> 39

<212> DNA

1 2 5 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 169

agtattgacc atggcccagg tgcagctgg gcagtctgg

39

<210> 170

<211> 39

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 170

agtattgacc atggcccagg tcaacttaag ggagtctgg

39

<210> 171

<211> 39

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 171

agtattgacc atggccgagg tgcagctgg ggagtctgg

39

<210> 172

<211> 39

<212> DNA

1 2 6 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 172

agtattgacc atggcccagg tgcagctgca ggagtcggg

39

<210> 173

<211> 39

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 173

agtattgacc atggcccagg tgcagctgtt gcagtctgc

39

<210> 174

<211> 39

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 174

agtattgacc atggcccagg tacagctgca gcagtcagg

39

<210> 175

<211> 34

<212> DNA

1 2 7 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 175

taatgaattc acgtttgatt tccacaccttgg tccc

34

<210> 176

<211> 34

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 176

taatgaattc acgtttgatc tccagcttgg tccc

34

<210> 177

<211> 34

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 177

taatgaattc acgtttgata tccactttgg tccc

34

<210> 178

<211> 34

<212> DNA

1 2 8 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 178

taatgaattc acgtttgatc tccacaccttgg tccc

34

<210> 179

<211> 34

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 179

taatgaattc acgtttaatc tccagtcgtg tccc

34

<210> 180

<211> 34

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 180

taatgaattc acctaggacg gtgacccttgg tccc

34

<210> 181

<211> 34

<212> DNA

1 2 9 / 1 4 1

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 181

taatgaattc acctaggacg gtcagcttgg tccc

34

<210> 182

<211> 34

<212> DNA

<213> Artificial

<220>

<223> Artificially Synthesized Primer Sequence

<400> 182

taatgaattc acctaataacg gtgagctggg tccc

34

<210> 183

<211> 861

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(861)

<223>

<400> 183

atg aaa tac ctg ctg ccg acc gct gct gct ggt ctg ctg ctc ctc gct
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala

1

5

10

15

48

130 / 141

gcc cag ccg gcg atg gcc atg cag gtg cag ctg gtg cag tct ggg Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly	20	25	30	96
gct gag gtg aag aag cct ggg gcc tca gtg aag gtc tcc tgc aag gct Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala	35	40	45	144
tct gga tac acc ttc acc ggc tac tat atg cac tgg gtg cga cag gcc Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala	50	55	60	192
cct gga caa ggg ctt gag tgg atg gga tgg atc aac cct aac agt ggt Pro Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly	65	70	75	240
ggc aca aag tat gca cag aag ttt cag ggc agg gtc acc atg acc agg Gly Thr Lys Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Met Thr Arg	85	90	95	288
gac acg tcc atc agc aca gcc tac atg gag ctg agc agg ctg aga tct Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser	100	105	110	336
gac gac acg gcc gtg tat tac tgt gcg aga gga tac gat att ttg act Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Ile Leu Thr	115	120	125	384
ggt tat ggc tgg ttc gac ccc tgg ggc cag gga acc ctg gtc acc gtc Gly Tyr Gly Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val	130	135	140	432
tcc tca ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt ggc gga Ser Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Gly	145	150	155	480

1 3 1 / 1 4 1

tcg gac atc gtg atg acc cag tct cca gac tcc ctg gct gtg tct ctg	165	170	175	528
Ser Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu				
ggc gag agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac	180	185	190	576
Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr				
agc tcc aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga	195	200	205	624
Ser Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly				
cag cct cct aaa ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg	210	215	220	672
Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly				
gtc cct gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc	225	230	235	720
Val Pro Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu				
acc atc agc acc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag	245	250	255	768
Thr Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln				
caa tat tat agt act cct ccg acg ttc ggc caa ggg acc aag gtg gaa	260	265	270	816
Gln Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu				
atc aaa cgt cgt gaa ttc gac tac aag gat gac gac gat aag tga	275	280	285	861
Ile Lys Arg Arg Glu Phe Asp Tyr Lys Asp Asp Asp Lys				
<210> 184				
<211> 286				
<212> PRT				

1 3 2 / 1 4 1

<213> Homo sapiens

<400> 184

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly
20 25 30

Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala
35 40 45

Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala
50 55 60

Pro Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly
65 70 75 80

Gly Thr Lys Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Met Thr Arg
85 90 95

Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser
100 105 110

Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Ile Leu Thr
115 120 125

Gly Tyr Gly Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val
130 135 140

Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
145 150 155 160

Ser Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu
165 170 175

1 3 3 / 1 4 1

Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr
180 185 190

Ser Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly
195 200 205

Gln Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly
210 215 220

Val Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu
225 230 235 240

Thr Ile Ser Thr Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln
245 250 255

Gln Tyr Tyr Ser Thr Pro Pro Thr Phe Gly Gln Gly Thr Lys Val Glu
260 265 270

Ile Lys Arg Arg Glu Phe Asp Tyr Lys Asp Asp Asp Lys
275 280 285

<210> 185

<211> 846

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(846)

<223>

<400> 185

atg aaa tac ctg ctg ccg acc gct gct gct ggt ctg ctg ctc ctc gct 48
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

1 3 4 / 1 4 1

gcc cag ccg gcg atg gcc atg gcc cag gtg cag ctg gtg cag tct ggg Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly	20	25	30	96
gct gag gtg aag aag cct ggg gcc tca gtg aag gtc tcc tgc aag gct Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala	35	40	45	144
tct gga tac acc ttc acc ggc tac tat atg cac tgg gtg cga cag gcc Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala	50	55	60	192
cct gga caa ggg ctt gag tgg atg gga tgg atc aac cct aac agt ggt Pro Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly	65	70	75	240
ggc aca aag tat gca cag aag ttt cag ggc agg gtc acc atg acc agg Gly Thr Lys Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Met Thr Arg	85	90	95	288
gac acg tcc atc agc aca gcc tac atg gag ctg agc agg ctg aga tct Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser	100	105	110	336
gac gac acg gcc gtg tat tac tgt gcg aga gga tac gat att ttg act Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Ile Leu Thr	115	120	125	384
ggt tat ggc tgg ttc gac ccc tgg ggc cag gga acc ctg gtc acc gtc Gly Tyr Gly Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val	130	135	140	432
tcc tca ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt ggc gga Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly	145	150	155	480

135 / 141

tcg gaa att gtg ctg act cag tct cca ggc acc ctg tct ttg tct cca			528
Ser Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro			
165	170	175	
ggg gaa aga gcc acc ctc tcc tgc aag gcc agt cag agt ttt agc agc			576
Gly Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Gln Ser Phe Ser Ser			
180	185	190	
aac tac tta gcc tgg tac cag cag aaa cct ggc cag gct ccc agg ctg			624
Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu			
195	200	205	
ctc atc tat ggt gca tcc agc agg gcc act ggc atc cca gac agg ttc			672
Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe			
210	215	220	
agt ggc agt aaa tct ggg aca gac ttc act ctc acc atc agc aga ctg			720
Ser Gly Ser Lys Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu			
225	230	235	240
gag cct gaa gat ttt gca gtg tat tac tgt cag cag tat gtt acc tca			768
Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Val Thr Ser			
245	250	255	
ccg tac act ttt ggc cag ggg acc aag gtg gag atc aaa cgt cgt gaa			816
Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Arg Glu			
260	265	270	
ttc gac tac aag gat gac gac gat aag tga			846
Phe Asp Tyr Lys Asp Asp Asp Lys			
275	280		
<210> 186			
<211> 281			

1 3 6 / 1 4 1

<212> PRT

<213> Homo sapiens

<400> 186

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly
20 25 30

Ala Glu Val Lys Lys Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala
35 40 45

Ser Gly Tyr Thr Phe Thr Gly Tyr Tyr Met His Trp Val Arg Gln Ala
50 55 60

Pro Gly Gln Gly Leu Glu Trp Met Gly Trp Ile Asn Pro Asn Ser Gly
65 70 75 80

Gly Thr Lys Tyr Ala Gln Lys Phe Gln Gly Arg Val Thr Met Thr Arg
85 90 95

Asp Thr Ser Ile Ser Thr Ala Tyr Met Glu Leu Ser Arg Leu Arg Ser
100 105 110

Asp Asp Thr Ala Val Tyr Tyr Cys Ala Arg Gly Tyr Asp Ile Leu Thr
115 120 125

Gly Tyr Gly Trp Phe Asp Pro Trp Gly Gln Gly Thr Leu Val Thr Val
130 135 140

Ser Ser Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
145 150 155 160

Ser Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro
165 170 175

1 3 7 / 1 4 1

Gly Glu Arg Ala Thr Leu Ser Cys Lys Ala Ser Gln Ser Phe Ser Ser

180

185

190

Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu

195

200

205

Leu Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Ile Pro Asp Arg Phe

210

215

220

Ser Gly Ser Lys Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu

225

230

235

240

Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Tyr Val Thr Ser

245

250

255

Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Arg Glu

260

265

270

Phe Asp Tyr Lys Asp Asp Asp Asp Lys

275

280

<210> 187

<211> 852

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(852)

<223>

<400> 187

atg aaa tac ctg ctg ccg acc gct gct gct ggt ctg ctg ctc ctc gct
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala

1 3 8 / 1 4 1

1	5	10	15	
gcc cag ccg gcg atg gcc atg gcc cag gtc cag ctg gtg caa tct ggg Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly				96
20	25	30		
gga ggc ttg gtc cag cct ggg ggg tcc ctg aga ctc tcc tgt gca gcc Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala				144
35	40	45		
tct gga ttc acc ttt agt agc tat tgg atg agt tgg gtc cgc cag gct Ser Gly Phe Thr Phe Ser Ser Tyr Trp Met Ser Trp Val Arg Gln Ala				192
50	55	60		
cca ggg aag ggg ctg gag tgg gtg gcc aac ata aag caa gat gga agt Pro Gly Lys Gly Leu Glu Trp Val Ala Asn Ile Lys Gln Asp Gly Ser				240
65	70	75	80	
gag aaa tac tat gtg gac tct gtg aag ggc cga ttc acc atc tcc aga Glu Lys Tyr Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg				288
85	90	95		
gac aac gcc aag aac tca ctg tat ctg caa atg aac acc ctg aga gcc Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Thr Leu Arg Ala				336
100	105	110		
gag gac acg gct gtg tat tac tgt gcg aga gat cgt ttg tgg acc cag Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Arg Leu Trp Thr Gln				384
115	120	125		
ggg ttt ttt gac tac tgg ggc cag gga acc ctg gtc acc gtc tcc tca Gly Phe Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser				432
130	135	140		
ggt ggt ggt tcg ggt ggt ggt tcg ggt ggt ggc gga tcg gac Gly Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Ser Asp				480

1 3 9 / 1 4 1

145

150

155

160

atc gtg atg acc cag tct cca gac tcc ctg gct gtg tct ctg ggc gag 528
Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly Glu
165 170 175

agg gcc acc atc aac tgc aag tcc agc cag agt gtt tta tac agc tcc 576
Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser Ser
180 185 190

aac aat aag aac tac tta gct tgg tac cag cag aaa cca gga cag cct 624
Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro
195 200 205

cct aac ctg ctc att tac tgg gca tct acc cgg gaa tcc ggg gtc cct 672
Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val Pro
210 215 220

gac cga ttc agt ggc agc ggg tct ggg aca gat ttc act ctc acc atc 720
Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
225 230 235 240

agc agc ctg cag gct gaa gat gtg gca gtt tat tac tgt cag caa tat 768
Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln Tyr
245 250 255

tat act act ccg tgg acg ttc ggc caa ggg acc aag gtg gaa atc aaa 816
Tyr Thr Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
260 265 270

cgt gaa ttc gac tac aag gat gac gac gat aag tga 852
Arg Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys
275 280

1 4 0 / 1 4 1

<211> 283

<212> PRT

<213> Homo sapiens

<400> 188

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala
1 5 10 15

Ala Gln Pro Ala Met Ala Met Ala Gln Val Gln Leu Val Gln Ser Gly
20 25 30

Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala
35 40 45

Ser Gly Phe Thr Phe Ser Ser Tyr Trp Met Ser Trp Val Arg Gln Ala
50 55 60

Pro Gly Lys Gly Leu Glu Trp Val Ala Asn Ile Lys Gln Asp Gly Ser
65 70 75 80

Glu Lys Tyr Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg
85 90 95

Asp Asn Ala Lys Asn Ser Leu Tyr Leu Gln Met Asn Thr Leu Arg Ala
100 105 110

Glu Asp Thr Ala Val Tyr Tyr Cys Ala Arg Asp Arg Leu Trp Thr Gln
115 120 125

Gly Phe Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser
130 135 140

Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Asp
145 150 155 160

Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly Glu

1 4 1 / 1 4 1

165

170

175

Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Val Leu Tyr Ser Ser
180 185 190

Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Pro
195 200 205

Pro Asn Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val Pro
210 215 220

Asp Arg Phe Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile
225 230 235 240

Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln Tyr
245 250 255

Tyr Thr Thr Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys
260 265 270

Arg Glu Phe Asp Tyr Lys Asp Asp Asp Asp Lys
275 280

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/14919

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ C12N15/12, C12N15/09, C07K16/32, C07K16/18, G01N33/53

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ C12N15/12, C12N15/09, C07K16/32, C07K16/18, G01N33/53

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JSTPlus (STN), BIOSIS/WPI (DIALOG)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Akihiro ABE, "DNA o Mochiita Shuyo Tokuiteki Kogen ni Taisuru Men'eki Yudo B Saibosei Akusei Shuyo o Model ni", Sankyo Seimeい Kagaku Kenkyu Shinko Zaidan Kenkyu Hokokushu (1998), Vol.11, pages 213 to 219	1-12
X Y	VARSHA PATKI et al., Evidence for B cell oligo-clonality in the blood and joints of patients with rheumatoid arthritis., Ann.N.Y.Acad.Sci. (1997), Vol.815, pages 472 to 474	1,3-6 2,7-12
Y	Howard Ratech, Rapid cloning of rearranged Immuno-globulin heavy chain genes from human B-cell Lines using anchored polymerase chain reaction., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS (1992), Vol.182, No.3, pages 1260 to 1263	1-12

 Further documents are listed in the continuation of Box C. See patent family annex.

- * Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
15 December, 2003 (15.12.03)Date of mailing of the international search report
13 January, 2004 (13.01.04)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/14919

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 06-141884 A (Yoshihide HAGIWARA), 24 May, 1994 (24.05.94), (Family: none)	1-12
Y	Shingo ICHINOMIYA et al., "VII. Men'eki Saibo 2. Laser Microdissection o Riyo shita Men'eki Soshiki no Atarashii Kaisekiho", Annual Review Men'eki 2002(2001), pages 147 to 179	1-12
Y	Lin LUO et al., Gene expression profiles of laser-captured adjacent neuroal subtypes., Nature Medicine (1999), Vol.5, No.1, pages 117 to 122	1-12
Y	Tetsuhiko TACHIKAWA et al., "Laser Microdissection-ho no Gan Chiryo eno Oyo", Hematology & Oncology (2001), Vol.42, No.6, pages 565 to 571	1-12

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl' C12N15/12, C12N15/09, C07K16/32, C07K16/18, G01N33/53

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl' C12N15/12, C12N15/09, C07K16/32, C07K16/18, G01N33/53

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

JSTPlus(STN), BIOSIS/WPI(DIALOG)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	安部明弘, DNAを用いた腫よう特異的抗原に対する免疫誘導 B細胞性悪性腫ようをモデルに, 三共生命科学研究振興財団研究報告集(1998), Vol. 11, p. 213-219	1-12
X Y	VARSHA PATKI, et. al., Evidence for B cell oligoclonality in the blood and joints of patients with rheumatoid arthritis., Ann N Y Acad Sci(1997), Vol. 815, p. 472-474	1, 3-6 2, 7-12

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

15. 12. 03

国際調査報告の発送日

13.01.04

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)
郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

鈴木 美葉子

4N 9839

(印)

電話番号 03-3581-1101 内線 3488

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Howard Ratech, Rapid cloning of rearranged Immunoglobulin heavy chain genes from human B-cell lines using anchored polymerase chain reaction., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS(1992), Vol. 182, No. 3, p. 1260-1263	1-12
Y	JP 06-141884 A(萩原義秀)1994.05.24 (ファミリーなし)	1-12
Y	一宮慎吾, et.al., VII. 免疫細胞 2. レーザーマイクロダイセクションを利用した免疫組織の新しい解析法, Annual Review 免疫2002(2001), p. 147-179	1-12
Y	Lin LUO, et.al., Gene expression profiles of laser-captured adjacent neuroal subtypes., Nature Medicine(1999), Vol. 5, No. 1, p. 117-122	1-12
Y	立川哲彦, et.al., Laser Microdissection法の癌治療への応用, 血液・腫瘍科(2001), Vol. 42, No. 6, p. 565-571	1-12

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.