主管領核空

哈尔滨工业大学

学年 秋 季学期

2023

计算机系统(A) 试 题

题号	_	П	Ш	四	五	六	七	八	九	+	总分
得分											
阅卷人											

Ī		片组	氏鉴心证	及信不败	
受课教师	1.	·、 单项选择是 下列软件哪一个不 A. cc1 long 类型在 64 位	「用于可执行程序的 B.as	的生成(C) C.gdb	D.cpp
 数	密	A. 8 指令 movsbl \$0x A. 0xfffe	B.16 xfe,%eax 执行后 e	C.32 ax 结果为(B	D.64
		下列最快的存储器 A.L1 Cache	器是(A)。 B.L2 Cache	C.固态硬盘	D.光盘
在名		计算机的存储管理 A. 虚拟地址 fork 后父进程与于	B.物理地址	C. 逻辑地址	,
		A. 地址空间 模块 m.c 中 exteri	n int x;语句说明	程序中的 x 是(A)符号
學品	A		与 stride 反映程序 stride 空间局部性	序局部性,正确的 B.size 空间局部	J是(A) 性,stride 时间局部性
	44	 SIZE 时间局部性, 关于异常与信号, A. 信号是一种异位 C. 按键产生硬件 D. 异常处理子程 	描述正确的是(常类型。 B. 信号 的异步异常,不会	D) 号类型比异常多。 产生信号。	性,stride 空间局部性 运行在用户态
聚然	10	. 下列那些不属于面A. 减少数据相关	可向 CPU 的优化(B) 指令简化	

	抽 內	(10Δ)	(伝究)仏)	١
<u> </u>	央工	(10分)	每空2分	Į

- 12. 函数调用 c=f (a, b, c); 64 位环境下, c 采用 rdx 寄存器传递参数。
- 13. 反汇编后 Intel x64 指令如下,400800: e8 ff ff fd fb callq 400600
- 15. 调用一次可返回两次的函数是_____fork_____

三、 判断对错(共 10 分, 每题 2 分, 正确打 √、错误打×)

- 16. (×) 机器中浮点数的阶码,是有符号整数,采用补码表示。
- 17. (×) switch 多分支都采用跳转表机制来进行机器级实现
- 18. (✓) 相对于程序的代码与数据区, 堆栈在内存的高地址。
- 19. (×)对一个固定内存地址引用,编译器在循环体中使用寄存器实现以加快访问
- 20. (✓) CTRL-Z 向前台进程组发送停止信号

四、简答分析题(共40分,每题10分)

21. 简述浮点数的机器级表示方法,分析其在数轴上的分布规律,并说明为什么不建议直接进行两个浮点数的比较。

答: 浮点数在机器内采用 IEEE754 编码,以 float 类型为例: 共 32 bits, 1 个符号位, 8 位指数(127 移码), 23 位尾数(先导为 1 的规格化)

浮点数在数轴上越靠近原点 0, 密度越高,精度越高, 越远离原点 0 则密度越低, 精度也越低。以 float 为例, 其分布如下。

由于浮点数存在精度问题,所以即使两个数不等,但由于精度问题,其机器内表示可能相同,所以不能直接进行两个浮点数比较。可以用其差小于某精度范围的数来判断。

22. 下列函数 f 的机器级表示,请阅读分析每一条语句。

0x4011d8	mov	(%rsi),%ebx	
0x4011da	neg	%ebx	ebx 内容取反
0x4011dc	mov	(%rdi),%edx	
0x4011de	neg	%edx	
0x4011e0	mov	%edx, (%rsi)	将 edx 值 => 参数 y 地址指向的内存
0x4011e2	mov	%ebx, (%rdi)	将 ebx 值 => 参数 x 地址指向的内存
0x4011e4	retq		

请分析此函数的各参数及返回值类型,在空格处说明每条语句的功能。

答:此函数有两个参数 x、y, 无返回值。

两个参数类型为 int *x; int *y

两个参数都采用传地址方式。

:22. 请给出此子程序的 C 语言实现形式,包括函数声明。

```
void swapn(int *x, int *y)
{
    int t1, t2;
    t1=*y;
    t1=-t1;
    t2=*x;
    t2=-t2;
    (*y)=t2;
    (*x)=t1;
}
```

24. Intel I7 CPU, 虚拟地址 48 位, 物理地址 52 位, 每页 4KB, 每块 64B。

请分析此 CPU 的体系结构,填写如下数据: 虚拟地址中的 VPN 占__36__位; 其一级页表为__512___项。 L1 指令 TLB 的组索引位数 TLBI 为___6 __位。 L1 指令 Cache 共___128___组。用物理地址访问 L1 数据 Cache 时, Cache 标记 CT 占___39__位。

简述 CPU 对多级 Cache 及 TLB 的访问流程。

答:指令中的逻辑地址经段式存储管理变换成虚拟地址,访问 TLB1、TLB2、 页表 1、页表 2、页表 3、页表 4(若命中则获得物理页号,返回),获得物理 地址。 如果 TLB 或页表中的 PTE 未缓存,则发生缺页中断,cpu 执行缺页中断处理子程序完成磁盘到物理内存的加载(可能替换),更新页表与 TLB 等。 CPU 通过物理地址访问 L1、L2、L3、RAM(若命中则获得指令或数据,返回),取得指令或数据返回 CPU。

本

封

学号

完然|

五、 综合设计题(20分)

```
25. 一个计算两个向量内积的函数 inner 如下:
      void inner(vec *u,vec *v,double *dest){
          for(long i=0,*dest=0;i<vec length(u);i++)
            *dest=*dest+get vec element(u,i)* get vec element(v,i);
      }
      typedef struct{
        long len;
                 //向量的元素个数
        double *data;
      }vec;
      long
             vec length(vec *v) 函数返回向量 v 的元素个数;
      double get vec element(vec *u,long i) 函数返回向量 u 的第 i 个元素值;
      1. 请对 inner 程序面向现代计算机系统进行优化,以提高程序性能。
         写出优化后的程序(至少两种方法)(10 分)
      2. 请给出你所采用的优化理由(至少两个理由),以及进一步优化的方法(10分)
 答:
     (1) 采用一般有用的方法,代码移动,共享公用子表达式 get vec start 等。
     (2) 采用面向编译器的优化方法,把函数 vec length 移到循环外。把函数
         get vec element 用数组元素或指针访问替代。
     (3) 采用面向编译器的优化方法,用临时/局部变量累积结果,编译器会将其编译
   成寄存器,大大提高运行速度。
     void inner (vec *u, vec *v, double *dest)
     {
      long
                i;
      long
              length = vec length(u);
               *ud = get vec start(u);
      data t
      data t
               *vd = get vec start(v);
      data t
              t=1;
      for (i = 0; i < length; i++)
          t = t + ud[i] * vd[i];
      *dest = t;
     (4) 面向超标量 CPU 的优化方法:
       采用带分离的累加器的循环展开。通过比较不同展开因子 L 时的最小 CPE, 从而确定最优的
       L展开因子。
       for(i=0;i<length;i+=L)
       {
        t0=t0+ud[i]*vd[i];
        t1=t1+ud[i+1]*vd[i+1];
        ············共 L 级········
       }
     (5) 面向向量 CPU 的优化方法:
       面向向量 CPU 优化: 采用向量乘法指令及 YMM/ZMM 等寄存器编程
     (6)面向 Cache 优化:
```

空间局部性: 重新排列(局部变量、循环变量顺序重排)提高空间局部性 时间局部性: 分块,考虑到 Cache 大小 B,使得内循环的所有数据都能够放在 Cache 内。。

注意:根据学生回答,针对性给分。任选2种即可满分,不扣分。