lan Piper CSCI203

Algorithms and Data Structures

Week 9 - Lecture A

Weighted Graphs

- Frequently, we find that travelling along an edge in a graph has some associated cost (or profit) associated with it:
 - ► The distance along the edge;
 - The cost of petrol;
 - ► The time of travel;
 - Etc.
- ▶ We call these *Weighted Graphs*.
- ▶ We call the edge values *weights*.

Representation

- ► We extend our previous graph definition as follows:
 - A weighted graph, G, consists of the ordered sequence, (V, E, W) where V and E are the vertices and edges and W are the edge weights.
- Consider the weighted graph shown to the right:
- V={a, b, c, d, e}
- E={(a, b), (a, c), (a, d), (a, e), (c, b), (d, b), (d, c), (e, d)}
- Wis a function that maps edges to weights:► E.g. W((a, b))=50.

Representation

We can extend our adjacency matrix representation of a graph by replacing the zero-one existence value with the edge weight.

► Thus the graph:

► Is written:

_	50	30	100	10
_	_	_	_	_
_	5	_	_	_
_	20	50	_	_
_	_	_	10	_

Representation

- ▶ In this example, "—" indicates that no edge exists.
- The actual value used to indicate this fact will depend on the nature of the weights:
 - E.g. if all weights are non-zero use 0.
 - We often use ∞ to represent missing edges.
- We can also use the adjacency list representation:
 - ► We just need to pair each edge with its corresponding weight.

Shortest Path

- ➤ A common problem associated with weighted graphs is finding the shortest path between vertices.
- ► There are several versions of this problem:
 - Single Source—All destinations;
 - ➤ Single Source—Single Destination;
 - ► All Sources—All Destinations;
 - ► All Sources—Single Destination.
- ► Each has applications in the real world.
- We will start by looking at the first of these types.

Single Source—All Destinations

- ➤ This problem is stated as follows:
 - Starting at some source vertex, s, find the shortest path from s to each other reachable vertex in the graph.
- As we shall see later, the solution to this problem can be used as a basis for solving all of the other shortest path formulations.
- ▶ We will examine two algorithms for solving this problem:
 - Dijkstra.
 - ► Bellman Ford.
- Each has advantages in certain cases.

Negative Weights

- There is no a priori reason why the edge weights in a graph must be positive, but negative edge weights can cause problems.
- ➤ Consider the following graph:
 - Clearly the length of the shortest path from a to d is 3.
- ▶ But what if we change the weights?
 - Now what is the shortest path?
- ► The problem is that we now have a negative cost cycle.

What is a Path?

- ► While it is obvious what a path is, we should define it formally.
- A path p from vertex v_0 to vertex v_k is an ordered sequence $(v_0, v_1, ..., v_{k-1}, v_k)$ where each pair of vertices $(v_i, v_{i+1}) \in E$.
- ▶ The weight of path p, W(p) is the sum of the edge weights:
 - $W(p) = \sum_{i=0}^{k-1} W((v_i, v_{i+1}))$

What doesn't Work?

- We might be tempted to try using a technique we already know for traversing a graph, breadth first search, in our search for shortest paths.
- ▶ Unfortunately, this does not always work.
- ▶ The two definitions of shortest path:
 - Fewest edges;
 - Smallest weight;
- ► May not always coincide.

BFS: an Example

Consider the following graph:

- If we conduct a BFS traversal we get the following path weights:
- ▶ Is this the best we can do?
- ► No!
- ▶ We need a different approach.

Dijkstra's Algorithm

- ► This algorithm works by dividing the vertices into two sets, *S* and *C*.
- At each iteration; S contains the set of nodes that have already been chosen.
 - ▶ This is the *selected* set.
- At each iteration; C contains the set of nodes that have not yet been chosen:
 - This is the *candidate* set.
- ➤ At each step we move the node which is cheapest to reach from C to S.

Dijkstra's Algorithm

- We also need a function D such that $D(c_i)$ is the shortest distance we have so far found from vertex s to vertex c_i in the candidate set C.
- ► Initially:
 - ► The selected set, S, just contains the start vertex;
 - ► The candidate set, C, contains all the other vertices;
 - The distance function, D() has value 0 for vertex s and is infinite for all other vertices.
- ► We start by re-evaluating *D* for each vertex directly reachable from vertex *s*.

- ► Step 0:
- **▶** *S*={a}
- ► C={b, c, d, e}
- $\triangleright D() = 50, 30, 100, 10$
- We now select the minimum value of D, D(e)=10.

- ▶ Step 1: move vertex e from C to S.
- ► *S*={a, e}
- $\triangleright C = \{b, c, d\}$
- ► We now update *D* by looking at vertices we can reach from vertex e.
- D() = 50, 30, 20
- We now select the minimum value of D, D(d)=20.

- ▶ Step 2: move vertex d from C to S.
- ► *S*={a, e, d}
- *C*={b, c}
- ► We now update *D* by looking at vertices we can reach from vertex d.
- D()=40,30
- We now select the minimum value of D, D(c)=30.

- ▶ Step 3: move vertex c from C to S.
- ► *S*={a, e, d, c}
- $ightharpoonup C=\{b\}$
- ► We now update *D* by looking at vertices we can reach from vertex c.
- D()=35
- We now select the minimum value of D, D(b)=35.

- ▶ Step 4: move vertex b from C to S.
- ► S={a, e, d, c, b}
- **▶** C={}
- We now have no remaining candidate vertices; we have finished.
- V(a)=0, W(e)=10, W(d)=20, W(c)=30, W(b)=35.

Dijkstra's Algorithm: Pseudocode

```
Procedure Dijkstra(G: array[1..n, 1..n]): array [2..n]
     D: array[2..n]
     C: set = \{2, 3, ..., n\}
      for i = 2 to n do
        D[i] = G[1, i]
      rof
     repeat
          v = the index of the minimum D[v] not yet selected
          remove v from C // and implicitly add v to S
          for each u ∈ C do
              if D[u] > D[v] + G[v, u] then
                  D[u] = D[v] + G[v, u]
              fi
          rof
     until C contains no reachable nodes
     return D
 end Dijkstra
```

Recording Paths

- Like the basic DFS, Dijkstra's algorithm does not record the shortest path to each vertex, just its total weight.
- Also, like DFS, we can use a parent record, p, to keep track of how we reach each vertex.
- ▶ This entails a couple of minor changes to the algorithm...

Dijkstra's Algorithm: Path Recording

```
Procedure Dijkstra_Path(G: array[1..n, 1..n]): array [2..n]
      D: array[2..n], P: array[2..n]
      C: set = \{2, 3, ..., n\}
      for i = 2 to n do
          D[i] = G[1, i]
          P[i] = 1
      rof
      repeat
          v = the index of the minimum D[v] not yet selected
          remove v from C // and implicitly add v to S
          for each u ∈ C do
              if D[u] > D[v] + G[v, u] then
                  D[u] = D[v] + G[v, u]
                  P[u] = v
              fi
          rof
      until C contains no reachable nodes
      return D
  end Dijkstra_Path
```

A Larger Example

from

0	∞	4	∞	∞	∞	∞
2	0	∞	∞	∞	∞	∞
∞	∞	0	2	∞	∞	∞
1	3	∞	0	∞	∞	∞
∞	10	∞	2	0	∞	∞
∞	∞	5	8	∞	0	1
∞	∞	∞	4	6	∞	0

► At start:

	0	∞	4	∞	∞	∞	∞	Р	=_	. [) =
	2	0	∞	∞ -	<u> </u>		- ∞-		- 1 -		2
AND THE	∞	∞	0	2 -		<u>-∞-</u>	- ∞-		4		3
	1	3	∞	0	∞	∞	∞		1		1
	∞	10	∞	2 -	- G		- ∞-		4		3
1	∞	∞	5	8 -	<u> </u>	-0-	- 4 -		4		9
	∞	∞	∞	4 -	-6-		- 0 -	<u> </u>	4		5

$$C = \{2, 3, 4, 5, 6, 7\}$$

$$S = \{1\}$$

$$V = 4$$

$$D(v) = 1$$

➤ After step 1:

	0	∞	4	∞	∞	∞	∞	. Р	=) =
	2	0	∞	∞	∞	∞	∞		1		21
	∞	·	0-	- 2 -	_∞ -	∞			- 4 -		3
	1	3	∞	0	∞	∞	∞		1		1
	∞	10-	- ∞ -	-2-	-0-	<u>-</u> ∞-	- ∞ -		-4-	→	3
1	∞	∞_	<u>-5-</u>	-8-		- Q -	_ 1 _		_4_	· →	9
	∞	∞ −	- ∞ -	-4-	-6-	- ∞-	- e -	<u></u>	-4-	· -	5

$$C = \{2, 3, 5, 6, 7\}$$

$$S = \{1, 4\}$$

$$V = 2$$

$$D(v) = 2$$

After step 2:

	0	∞	4	∞	∞	∞	∞	P) =
	2	0	∞	∞	∞	∞	∞		1	2
2400 - No.	∞	∞	0	2	∞	∞	∞		4	3,
	1	3	∞	0	∞	∞	∞		1	1
	∞	10	∞-	- 2 -	-6	-∞-	- ∞-		- 4 -	 3
1	∞	∞	5 -	- 8-		-0-	-1-		3	 8
	∞	∞	∞ −	-4-	-6-		- 0 -	<u> </u>	- 4 -	 5

$$C = \{3, 5, 6, 7\}$$

$$S = \{1, 4, 2\}$$

$$V = 3$$

$$D(v) = 3$$

► After step 3:

0	∞	4	∞	∞	∞	∞	P	=_	
2	0	∞	∞	∞	∞	∞		1	
∞	∞	0	2	∞	∞	∞		4	
1	3	∞	0	∞	∞	∞		1	
∞	10	∞	2	0	∞	∞		4	
∞	∞	5	8	∞ -	-0-	- 4 -		- 3 -	
∞	∞	∞	4	6 -		- 0 -	<u> </u>	- 4 -	

D =

$$C = \{5, 6, 7\}$$

 $S = \{1, 4, 2, 3\}$
 $V = 5$
 $D(V) = 3$

► After step 4:

	0	∞	4	∞	∞	∞	∞
ENTINGENOUS	2	0	∞	∞	∞	∞	∞
	∞	∞	0	2	∞	∞	∞
	1	3	∞	0	∞	∞	∞
	∞	10	∞	2	0	∞	∞
	∞	∞	5	8	∞	0	1=
	∞	∞	∞	4	6	∞	0

D =

$$C = \{6, 7\}$$

 $S = \{1, 4, 2, 3, 5\}$
 $V = 7$
 $D(V) = 5$

After step 5:

C)	∞	4	∞	∞	∞	∞
2	2	0	∞	∞	∞	∞	∞
α	0	∞	0	2	∞	∞	∞
1		3	∞	0	∞	∞	∞
α	0	10	∞	2	0	∞	∞
α	0	∞	5	8	∞	0	1
α	0	∞	∞	4	6	∞	0

$$C = \{6\}$$

 $S = \{1, 4, 2, 3, 5, 7\}$
 $V = 6$
 $D(V) = 6$

> After step 6:

- ► Paths from vertex 1:
 - ➤ To vertex 2
 - ightharpoonup Path = (1, 2); W = 2
 - ➤ To vertex 3
 - \triangleright Path = (1, 4, 3); W=3
 - ▶ To vertex 4
 - ► Path = (1, 4); W=1
 - ➤ To vertex 5
 - ► Path = (1, 4, 5); W=3
 - ▶ To vertex 6
 - ► Path = (1, 4, 7, 6); W = 6
 - ➤ To vertex 7
 - \triangleright Path = (1, 4, 7); W = 5

Analysis

- ▶ The complexity of Dijkstra's Algorithm is $\Theta(V \times \log V + E)$
 - How?
- ▶ Usually, E > V, in fact, in the worst case...
 - $\blacktriangleright \dots E \in \Theta(V^2)$ —for a complete graph.
- ▶ This is about as good as you will get.
- ► There is one disadvantage:
 - ► The algorithm only works if all edge weights are non-negative.
- If we have negative edge weights, and especially negative edge cycles, we need a different algorithm.

Bellman-Ford

- ▶ Independently invented by both Bellman and Ford.
- Works with graphs that have negative edge weights.
- Identifies negative cycles and vertices with a negative cycle on their path.
- Finds correct path and path length for all other vertices.
- Let us look at an example graph...

A Graph with a negative cycle.

- Consider the graph shown:
- Because the edges between vertices 4, 7 and 6 form a cycle whose total weight is -3, we can reduce the cost of any vertex with a path through any of these vertices as much as we like.

- Note that some vertices, namely 2 and 3, still have welldefined minimum costs of 2 and -4 respectively.
- ► All other vertices have undefined minimum costs.

The Algorithm

```
Procedure Bellman_Ford(G: graph(V, E), W(): weight, s:vertex):
                                                    distances()
     for all v in V
          D(v) = \infty
          P(v) = nil
     rof
     D(s) = 0
     repeat
          for each edge (u,v) in E
              D(v)=min(D(v), D(u)+W(u,v))
          rof
      |V|-1 times
      for each edge (u,v) in E
          if D(v)>D(u)+W(u,v) then
              D(v)=undefined
     rof
     return D
 end Bellman ford
```

Different from Dijkstra

- Unlike Dijkstra's algorithm, in which we update only the most promising (next lowest cost) vertex at each iteration,
 Bellman Ford updates every vertex at each iteration.
- ► This means that each iteration of Bellman-Ford involves more work than the corresponding iteration of Dijkstra.

An Example

- Consider the following graph:
- It has 6 vertices so we will run through the main loop 5 times.
- ▶ Let's do it...

Initialization

- ► We set our initial values for D:
- ► We then set D(s) to zero.

- ▶ Vertex s. We can reach a and e. Update.
- ► Vertex a. We can reach c. Update.
- ➤ Vertex b. We can't reach it yet. Skip.
- ▶ Vertex c. We can reach b. Update.
- ▶ Vertex d. We can't reach it yet. Skip.
- ➤ Vertex e. We can reach d. Update.

- ▶ Vertex s. We can reach a and e. No change.
- ➤ Vertex a. We can reach c. No change
- ➤ Vertex b. We can reach a. Update.
- ▶ Vertex c. We can reach b. No change.
- ▶ Vertex d. We can reach a and c. Update.
- ➤ Vertex e. We can reach d. No change.

- ▶ Vertex s. We can reach a and e. No change.
- ► Vertex a. We can reach c. Update.
- ➤ Vertex b. We can reach a. No change.
- ▶ Vertex c. We can reach b. Update.
- ▶ Vertex d. We can reach a and c. No change.
- ► Vertex e. We can reach d. No change.

- ▶ Vertex s. We can reach a and e. No change.
- ► Vertex a. We can reach c. No change.
- ➤ Vertex b. We can reach a. Update.
- ▶ Vertex c. We can reach b. No change.
- ▶ Vertex d. We can reach a and c. No change.
- ➤ Vertex e. We can reach d. No change.

- ▶ Vertex s. We can reach a and e. No change.
- ► Vertex a. We can reach c. Update.
- ➤ Vertex b. We can reach a. No change.
- ▶ Vertex c. We can reach b. Update.
- ▶ Vertex d. We can reach a and c. No change.
- ► Vertex e. We can reach d. No change.

Check

- ▶ Vertex s. We can reach a and e. No change.
- ► Vertex a. We can reach c. No change.
- Vertex b. We can reach a. Mark a as bad.
- ➤ Vertex c. We can reach b. No change.
- ▶ Vertex d. We can reach a and c. No change.
- ➤ Vertex e. We can reach d. No change.

Finishing Up

- At this point we can conclude that the graph contains a negative cost cycle that involves vertex a.
- If we conduct a DFS (or BFS) starting at vertex a, marking all visited vertices as bad, we get the following result:

At Last

- Now we have all the information about the graph:
 - Vertex a is reachable via a cycle;
 - Vertex b is reachable via a cycle;
 - Vertex c is reachable via a cycle;
 - Vertex d is reachable at a cost of 3;
 - Vertex e is reachable at a cost of 8.

Analysis

- ▶ Bellman-Ford performs the major loop | *V*-1 | times.
- Inside this loop it checks every edge; |E| operations.
- ▶ Finally, it does another |E| checks for potential cycles.
- ▶ Overall, Bellman-Ford has $\Theta(/V/\times/E/)$ complexity.