Reg. No.	:	************************	

SECOND YEAR HIGHER SECONDARY EXAMINATION, MARCH 2023

Part - III

Time: 2 Hours

PHYSICS

Cool-off time: 15 Minutes

Maximum: 60 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

വിദ്യാർത്ഥികൾക്കുള്ള പൊതുനിർദ്ദേശ**ങ്ങൾ** :

- നിർദ്ദിഷ്യ സമയത്തിന് പുറമെ 15 മിനിറ്റ് 'കൂൾ ഓഫ് ടൈം' ഉണ്ടായിരിക്കും.
- 'കൂൾ ഓഫ് ടൈം' ചോദൃങ്ങൾ പരിചയപ്പെടാനും ഉത്തരങ്ങൾ ആസൂത്രണം ചെയ്യാനും ഉപയോഗിക്കുക.
- ഉത്തരങ്ങൾ എഴുതുന്നതിന് മുമ്പ് ചോദൃങ്ങൾ ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- നിർദ്ദേശങ്ങൾ മുഴുവനും ശ്രദ്ധാപൂർവ്വം വായിക്കണം.
- കണക്ക് കൂട്ടലൂകൾ, ചിത്രങ്ങൾ, ഗ്രാഫുകൾ, എന്നിവ ഉത്തരപേപ്പറിൽ തന്നെ ഉണ്ടായിരിക്കണം.
- ചോദൃങ്ങൾ മലയാളത്തിലും നല്ലിയിട്ടുണ്ട്.
- ആവശൃമുള്ള സ്ഥലത്ത് സമവാകൃങ്ങൾ കൊടുക്കണം.
- പ്രോഗ്രാമുകൾ ചെയ്യാനാകാത്ത കാൽക്കുലേറ്ററുകൾ ഒഴികെയുള്ള ഒരു ഇലക്ട്രോണിക് ഉപകരണവും പരിക്ഷാഹാളിൽ ഉപയോഗിക്കുവാൻ പാടില്ല.

SECTION - A

	Ans	(5 × 1 ≈ 5)					
1.	Stat	e true or false :					
	Two	o field lines never inter	scct.				
: 2.	The	SI unit of resistance is	·				
3.	Cun	rent loop behaves as a (Magnetic dipole/Ele					
4.	An a	accelerating charge pro	duces	wa	ves.		
	(a)	electric	,	(b)	magnetic		
	(c)	electromagnetic*		(d)	None of these	•	
5.	Whe	n the speed of light is	independent	of dire	ection, the seconda	ry waves are	·
	(a)	Spherical		(b)	Cylindrical	,	
	(c)	Plane	7 17	(d)	Rectangular	•	
6.	X-ra	ys were discovered by	in	1895.			
	(a)	Roentgen		(b)	J.J. Thompson		
	(c)	William Crookes		(d)	Rutherford		
7.	Ator	ns of same element dif	fering in ma	ss are	called		
	(a)	Isotones		(b)	Isobars		
	(c)	Isotopes		(d)	Isomers		
			SECT	10N -	В	•	
	Ans	wer any 5 questions f	rom 8 to 14.	Each	carries 2 scores.		$(5\times 2=10)$
8.,	Defi	ne magnetisation. Give	its dimension	оп., .	•		.*.
9,	State	laws of electromagne	tic induction	•			
10.		in the expression for t	he current fl	owing	through a resistor	when an a.c.	voltage is

SECTION - A

	1 മുത്തി 7 വരെ	ചോദ്യങ്ങളി	റർ ഏതെ	ടിലും 5 എണ്ണത്തിന് ഉത്ത	രമെഴുതുക.			
	1 സ്കോർ വിതം.				$(5\times1=5)$			
1	ശരിയോ തെറ്റോ എന്നെഴുതുക. ബൈദ്യൂത ബലരേഖകൾ കുട്ടിമുട്ടുന്നില്ല.							
2	പ്രതിരോധത്തിന്റെ	എസ്ഐ. യൂ	ກາງຊັ	ആകൂന്നു.				
3.	ബെദ്യുത ലുപ്പ് (ബെദ്യുത ഒ	ആയി പ്ര ഡെപോൾ / കാ						
4	ത്വമണാവസഥയില	ുള്ള ചാർജ്	തരംഗ	തരംഗങ്ങൾ പുറപ്പെടുവിക്കുന്നു.				
	(a) ബെദ്യുതം		(b)	കാന്തികം				
	(c) ബെദ്യുതക	ാന്തികം	(d)	ഇവയൊന്നുമല്ല				
5	പ്രകാശത്തിന്റെ നേ ആയിരിക്കും.	ധാഗത ദീശ രാ യ ദ	രുയിക്കു	ന്നില്ലെങ്കിൽ, ദ്വിതീയ തരംഗഒ	Sven			
	(a) ഗോളാകൃതി		(b)	സിലിണ്ടർ ആകൃതി				
	(c) പ്ലേൻ ആകൃ	Ros	(d)	ദീൻലചതുരാകൃതി				
6	1895-ൽ എക്സ്ക്	ിരണം കണ്ടുപിട	ടിച്ചത്	ആണ്.				
	(a) റോണ്ട്ജൻ		(b)	ജെ.ജെ. തോംസൺ				
	(c) വിലൃംകുക്	ั พั	(d)	റുഥർഹോർഡ്				
7	ഒരേയിനം മൂലകത	തിന്റെവൃതൃസ്ത	മാസ്സുള്ള അ	<mark>രറ്റങ്ങളെ</mark> എന്ന്പറ	മൂന്നു.			
	(a) ഐസോടോ	ണൂകൾ	(b)	ഐസോബാറൂകൾ				
	(c) ഐസേടോ	പ്പുകൾ	(d)	ഐസോമറുകൾ				
			ECTION -					
		മ ചോദ്യങ്ങളി	ിൾ ഏതെ	കിലും 5 എണ്ണത്തിന് ഉത്ത				
	2 സ്കോർ വിതം.				$(5 \times 2 = 10)$			
8.	മാഗ്നെറ്റൈസേഷ	ൻ നിർവചിക്കും	ക. അതിന്	ു ഡയമെൻഷൻ എഴുതൂക.				
9	ബെദ്യൂത കാന്തിക പ്രേരണത്തിലെ നിയമങ്ങൾ പ്രസ്താവിക്കൂക.							
10	ഒരു പ്രതിരോധകം സമവാകൃം രുപിക		മീട്ടിൽ ഘട്	ിപ്പിക്കുമ്പോൾ ഒഴുകുന്ന നൈ	പദ്യൂതിയുടെ			

. Но	ow Maxwell modified Ampere's law?	,	
. w	hat is total internal reflection?		
. Ex	plain work function.		
. Dif	Terentiate between nuclear fission and nuclear fusion.		
	SECTION - C		
An	swer any 6 questions from 15 to 21. Each carries 3 scores	16 v 3	= 181
		(0 × 3	- 10,
(a)	Derive the expression for the capacitance of a parallel plate cap	pacitor.	(2)
(b)			is (1)
(a)	State Biot-Savart law.		(1)
(b)	Obtain the expression for the magnetic field on the axis of a ci	rcular current loop	o. (2)
Diff	erentiate between paramagnetic, diamagnetic and ferromagnetic	substancės.	
(a)	State the principle of a.c. generator.		(1)
(b)	Obtain the expression for the emf generated by an a.c. generate	or.	(2)
'Deri	ve the expression for the refractive index of a prism with the he	lp of a diagram.	
Exp	ain Rutherford's alpha particle scattering experiment.		
	$\mathcal{O}_{\mathcal{O}}(x)$		
	SECTION - D		
Ans	ver any 3 questions from 22 to 25. Each carries 4 scores.		= 12
(a)	What is an electric dipole?	A MARIE CONTRACT	(1
(b)``	Obtain the expression for the electric field intensity at a point an electric dipole.	on the axial line	of (3
	Explored Answers (a) Answers (a) Answers (a) Answers (a)	Explain work function. Differentiate between nuclear fission and nuclear fusion. SECTION - C Answer any 6 questions from 15 to 21. Each carries 3 scores. Explain the basic properties of electric charge. (a) Derive the expression for the capacitance of a parallel plate ca (b) What happens to the capacitance if a medium of dielectintroduced between the plates? (a) State Biot-Savart law. (b) Obtain the expression for the magnetic field on the axis of a ci Differentiate between paramagnetic, diamagnetic and ferromagnetic (a) State the principle of a.c. generator. (b) Obtain the expression for the emf generated by an a.c. generator. (b) Obtain the expression for the refractive index of a prism with the he Explain Rutherford's alpha particle scattering experiment. SECTION - D Answer any 3 questions from 22 to 25. Each carries 4 scores. (a) What is an electric dipole? (b) Obtain the expression for the electric field intensity at a point	Explain work function. Differentiate between nuclear fission and nuclear fusion. SECTION - C Answer any 6 questions from 15 to 21. Each carries 3 scores. (6 × 3 Explain the basic properties of electric charge. (a) Derive the expression for the capacitance of a parallel plate capacitor. (b) What happens to the capacitance if a medium of dielectric constant K introduced between the plates? (a) State Biot-Savart law. (b) Obtain the expression for the magnetic field on the axis of a circular current loop Differentiate between paramagnetic, diamagnetic and ferromagnetic substances. (a) State the principle of a.c. generator. (b) Obtain the expression for the emf generated by an a.c. generator. Derive the expression for the refractive index of a prism with the help of a diagram. Explain Rutherford's alpha particle scattering experiment. SECTION - D Answer any 3 questions from 22 to 25. Each carries 4 scores. (3 × 4 a) What is an electric dipole? (b) Obtain the expression for the electric field intensity at a point on the axial line.

12 പൂർണ്ണ ആന്തരിക പ്രതിഫലനം എന്നാലെന്ത് ? 13 വർക് ഫംങ്ഷൻ വിശദീകരിക്കുക. 14 ന്യൂക്ലിയർ ഫിഷനും ന്യൂക്ലിയർ ഫ്യൂഷനും തമ്മിലുള്ള വ്യത്യാസം എഴുതുക. SECTION - C 15 മുതൾ 21 വരെ ചോദ്യങ്ങളിൾ ഏതെങ്കിലും 6 എണ്ണത്തിന് ഉത്തരമെഴുതുക. $(6 \times 3 = 18)$ 3 സ്കോർ വിതം. 15 ബെദ്യുത ചാർജിന്റെ അടിസ്ഥാന സവിശേഷതകൾ വിവരിക്കുക. (a) ഒരു പാരലൽ പ്ലേറ്റ് കപ്പാസിറ്ററിന്റെ കപ്പാസിറ്റൻസിന്റെ സമവാക്യം രൂപീകരിക്കുക. (2) 16 (b) ഒരു പാരലൽ പ്ലേറ്റ് കപ്പാസിറ്ററിന്റെ പ്ലേറ്റുകൾക്കിടയിൽ ഡെഇലക്ട്രിക് കോൺസ്റ്റന്റ് K ഉള്ള മാധ്യമം ബച്ചാൻ കപ്പാസിറ്റൻസിന്എന്ത് സംഭവിക്കും ? **(1)** 17 (a) ബയോട്-സവർട്നിയമം പ്രസ്കാവിക്കൂക. (1) (b) വൃത്താകൃതിയിലുള്ള കറണ്ട് ലുപ്പിന്റെ അക്ഷത്തിലൂടെയുള്ള കാന്തിക മണ്ഡല തീവതയുടെ സമവാകൃം രുപീകരിക്കുക. (2) പാരാമാഗ്നറ്റിക്, 18 ഡയാമാഗ്നറ്റിക്, ഫെറോമാഗ്നറ്റിക് വസ്തുക്കളെ തരം തിരിക്കുന്നതെങ്ങനെ ? (1) 19 (a) എ.സി. ജനറേറ്ററിന്റെ തത്വംപ്രസ്താവിക്കുക. (b) എ.സി. ജനറേറ്റർ ഉത്പാദിപ്പിക്കുന്ന ഇ.എം. എഫിന്റെ സമവാക്യം രൂപീകരിക്കുക. (2) 20 പ്രിസത്തിന്റെ റിഫ്രാക്ടീവ് ഇൻഡക്സിന്റെ സമവാകൃം ചിത്രത്തിന്റെ സഹായത്തോടെ രൂപീകരിക്കുക. 21 വുഥർഫോർഡിന്റെ ആൽഫാ പാർട്ടിക്കിൾ സ്കാറ്ററിംഗ് പരീക്ഷണം വിവരിക്കൂക. SECTION - D 22 മുതൾ 25 വരെ ചോദൃങ്ങളിൾ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക. 4 സ്കോർ വീതം. $(3 \times 4 = 12)$ 22. (a) ബെദ്യുത ഡൈപോൾ എന്നാലെന്ത്? **(1)** (b) ബെദ്യുത ഡൈപോളിന്റെ അക്ഷത്തിലുള്ള ബിന്ദുവിലെ ബെദ്യുത മണ്ഡല തീവതയുടെ സമവാകൃം രുപീകരിക്കുക. (3) P.T.O. SY-524 5

ആമ്പിയറിന്റെ നിയമം മാക്സ്ബൽ മാറ്റംവരുത്തിയത്എങ്ങനെ ?

11

23	. (a)	Derive the expression for the torque on a rectangular current loop in a uniform magnetic field with the help of a diagram.	(2)
	(b)	A 100 turn closely wound circular coil of radius 10 cm carries a current of 3.2 A. What is the magnetic moment of this coil ?	(2)
24.	(a)	With a neat diagram, derive lens makers formula.	(2)
	(ь)	The radii of curvature of the faces of a double convex lens are 10 cm and 15 cm. Its focal length is 12 cm. What is the refractive index of glass?	(2)
25.	(a)	Give the classification of materials based on energy band diagram.	(3)
	(ь)	Differentiate between intrinsic and extrinsic semiconductors.	(1)
		SECTION - E	•
	Ans	wer any 3 questions from 26 to 29. Each carries 5 scores. $(3 \times 5 =$	15)
26.	(a)	Give the relation between electric field and potential.	(1)
	(b)	Derive the expression for the potential due to an electric dipole.	(2)
	(c)	Calculate the potential at a point due to a charge of 4×10^{-7} C located 9 cm away.	(2)
27.	(a)	State Kirchhoff's law.	(2)
	(b)	Obtain the balancing condition of Wheatstone's bridge with the help of a diagram.	
28.	(a)	State the principle of a transformer.	(1)
	(b)	Explain the working of a transformer.	(1)
	(c)	Differentiate between step up transformer and step down transformer.	(2) (2)
29.	(a)	State Huygens principle.	(3)
	(b)	Explain the refraction of plane wave using Huygens principle.	(2)

25.	(a)	ഒരു ഏകികൃത കാന്തിക മണ്ഡലത്തിലെ ദിരഘ ചതുരാകൃതിയിലുള്ള കറണ്ട ലുപ്പിന് അനുഭവപ്പെടുന്ന ടോർക്കിന്റെ സമവാകൃം ചിത്രത്തിന്റെ സഹായത്തോടെ രുപീകരിക്കുക.	
	(b)	100 ചൂറ്റുകളും, 10 cm ആരവുമുള്ള വൃത്താകൃതിയിലുള്ള കോയിലിൽ കൂടി 3.2 A ബൈദ്യൂതി ഒഴുകുന്നു. ഈ കോയിലിന്റെകാന്തിക മൊമെന്റ് കണ്ടുപിടിക്കുക.	(2)
24.	(a)	ചിത്രത്തിന്റെ സഹായത്തോടെ ലെൻസ് മേക്കേർസ് സമവാകൃം രൂപീകരിക്കുക.	(2)
	(b)	ഒരു ഡബിൾ കോൺബക്സ് ലെൻസിന്റെ ഗോളീയ ആരങ്ങൾ യഥാക്രമം 10 cm ഉം 15 cm ഉം ആണ്. ഇതിന്റെ ഫോക്കൽ ദുരം 12 cm ആണെങ്കിൽ ഗ്ലാസ്സിന്റെ റിഫ്രാക്ടീവ് ഇൻഡക്സ്കണ്ടുപിടിക്കുക.	
25	(a)	എനർജി ബാൻഡ് ചിത്രത്തിന്റെ സഹായത്തോടെ വസ്തുക്കളെ തരംതിരിക്കുക.	(3)
	(b)	ഇൻട്രിൻസിക്, എക്സ്ട്രിൻസിക് സെമികണ്ടക്ടറുകളെ വേർതിരിക്കുക.	(1)
		SECTION – E	
	26	മുതൽ 29 വരെ ചോദ്യങ്ങളിൽ ഏതെങ്കിലും 3 എണ്ണത്തിന് ഉത്തരമെഴുതുക.	
	5 ac	സ്കാർ വീതം. (3 × 5 =	15)
26	(a)	ബെദ്യുത മണ്ഡല തീവ്രതയും പൊട്ടൻഷൃലും തമ്മിലുള്ള ബന്ധം എഴുതൂക.	(1)
	(b)	ബൈദ്യൂത ഡൈപോൾ മുലമുള്ള ഇലക്ട്രിക് പൊട്ടൻഷൃലിന്റെ സമവാകൃം രൂപീകരിക്കുക.	(2)
	(c)	4 × 10 ⁻⁷ C ചാർജ് മൂലം 9 cm അകലെയുള്ള ബിന്ദുവിലെ പൊട്ടൻഷ്യൾ	
	(0)	കണക്കാക്കുക.	(2)
27	(a)	കിർച്ചോഫിന്റെ നിയമങ്ങൾ പ്രസ്താവിക്കൂക.	(2)
	(b)	വിറ്റ്സ്റ്റൺസ്ബ്രിഡ്ജിന്റെ ബാലൻസിംഗ് അവസ്ഥയുടെ സമവാകൃം ചിത്രത്തിന്റെ സഹായത്തോടെ രൂപീകരിക്കുക.	(3)
		•	
28.	(a)	ട്രാൻസ്ഫോർമറിന്റെ തത്വം പ്രസ്താവിക്കൂക.	(1)
	(b)	ട്രാൻസ്ഫോർമറിന്റെപ്രവർത്തനം വിശദീകരിക്കൂക.	(2)
	(c)	സ്റ്റെപ് അപ് ട്രാൻസ്ഫോർമറിനെയും സ്റ്റെപ് ഡൗൺ ട്രാൻസ്ഫോർമറിനെയും വേർതിരിക്കുക.	(2)
29.	(a)	ഹൈഗൻസ് തത്വം പ്രസ്താവിക്കുക.	(2)
	(b)	ഹൈഗൻസ് തത്വത്തിന്റെ സഹായത്തോടെ ഒരു പ്ലെയിൻ തരംഗത്തിന്റെ	
		അപവർത്തനം വിശദീകരിക്കുക.	(3)
SY-	524	7	