Proposta de atividade 1:

o teorema fundamental do Cálculo

R. S. Morais, S. N. Dezidério, I. R. Pagnossin 18 de dezembro de 2013

Este trabalho apresenta uma proposta de atividade de aprendizagem que utiliza o recurso educacional interativo "Integral de Riemann" (disponível aqui) para abordar o teorema fundamental do Cálculo: utilizamos o software para construir uma soma de Riemann arbitrária, com o intuito de aproximar a área sob o gráfico de uma função afim f no intervalo $[\mathfrak{a},\mathfrak{b}]$ e comparamos o resultado com a área exata, que pode ser obtida geometricamente. Finalmente, utilizamos a anti-derivada F para evidenciar a equivalência desses resultados com $F(\mathfrak{b}) - F(\mathfrak{a})$.

Como o software oferece bastante flexibilidade na construção das somas de Riemann, podemos aproximar a área sob f utilizando uma quantidade finita de elementos de área, fundamentado no *teorema do valor médio* para integrais (que não é abordado explicitamente). Por isso, propomos uma atividade com foco na participação dos alunos, baseando todo o processo em conhecimentos prévios deles.

Para mais instruções sobre como utilizar o recurso educacional, veja este tutorial.

Objetivos específicos

Ao final desta atividade, espera-se que os alunos saibam:

- explicar o significado o termo soma de Riemann.
- explicar a importância do teorema fundamental do Cálculo.
- explicar a relação entre os dois conceitos acima.

Figura 1: selecione a função f(x) = 2x + 1 na tela 1 (à esquerda) e avance para a tela 2, onde seu gráfico será automaticamente desenhado (à direita).

Desenvolvimento da aula

Nesta proposta de atividade, construiremos uma soma de Riemann da função afim f(x) = 2x + 1, cuja área sob ela pode ser calculada com base em argumentos geométricos (áreas do triângulo, do retângulo e do trapézio), conhecidos do aluno. Deste modo e utilizando implicitamente o teorema do valor médio para integrais, poderemos construir uma soma de Riemann com poucos elementos de área e mostrar como o resultado da soma equiparase ao cálculo analítico da integral definida, evidenciando assim o teorema fundamental do Cálculo.

Neste processo, é importante que os alunos sejam estimulados a participar, propondo o próximo passo na solução do problema que queremos resolver, a saber: encontrar o valor da área entre f e o eixo 0x (a "área sob f"), no intervalo [a,b].

Vejamos como fazer isso, passo-a-passo:

- 1. Utilize o recurso educacional para desenhar o gráfico da *função afim* f(x) = 2x + 1. Para isso, escolha esta função na tela 1 do software, no grupo "funções polinomiais", e avance para a tela 2 (figura 1).
- 2. Escolha o intervalo de integração [a,b] = [0,3]: na tela 2, arraste o ponto a para a abscissa x = 0 e o ponto b, para x = 3. Feito isso, avance para a tela 3.
- 3. Escolha a opção "soma personalizada" na tela 3, o que lhe dará mais flexibilidade para construir a soma de Riemann. Avance para a tela 4.
- 4. Na tela 4 haverá, inicialmente, apenas os limites inferior (a) e superior (b) de integração. Questione os alunos sobre como calcular a área sob o gráfico de f(x) = 2x + 1 no intervalo escolhido. Espera-se que eles proponham utilizar

a fórmula da área do trapézio de altura b-a=3 e bases f(a)=1 e f(b)=7. Neste caso a área será

Área sob
$$f = \frac{1}{2} [f(a) + f(b)] (b - a)$$
.

Alternativamente, os alunos podem sugerir somar a área do retângulo de lados b-a e f(a) com a área do triângulo de base b-a e altura f(b)-f(a). Neste caso, a área será dada por

Área sob
$$f = (b - a)f(a) + \frac{1}{2}(b - a)[f(b) - f(a)]$$
.

Obviamente as duas expressões resultam no mesmo valor: 12.

5. Após determinar a área sob f no intervalo [a,b], questionar os alunos sobre como obter um valor *aproximado* dessa área utilizando apenas retângulos. Espera-se que eles sugiram a inserção de vários retângulos abaixo do gráfico de f (soma inferior) ou acima dele (soma superior), no intervalo de integração.

Provavelmente os alunos questionarão o porquê dessa necessidade, haja vista que as fórmulas da Geometria Euclidiana Plana resolvem o problema, como visto no passo anterior. Se isso ocorrer, questione-os sobre como calcular áreas de regiões curvas, já direcionando a discussão para o objetivo da aula: somas de Riemann e o teorema fundamental do Cálculo.

6. Após a discussão acima, ainda na tela 4, crie uma partição do intervalo [a,b]. Ou seja, escolha um conjunto de pontos sobre o eixo das abscissas que, juntamente com os pontos a e b, dividem o intervalo de integração em n=5 (ou mais) subintervalos.

Para criar um ponto da partição, clique com o mouse sobre o eixo das abscissas, na posição $x_i \in]a,b[$ em que se quer criar o ponto. Em seguida, pressione o botão + (mais), na barra de ferramentas, à esquerda da tela. Alternativamente, *posicione* o mouse sobre o ponto desejado e pressione a tecla p. Para remover este ponto, clique com o mouse sobre ele para selecioná-lo e pressione o botão - (menos), ou pressione "delete" no teclado.

Repita esse procedimento mais algumas vezes, procurando escolher os pontos x_i de modo que a distância entre eles (Δx_i) varie, como ilustrado na figura 2. Feito isso, avance para a tela 5.

7. Na tela 5, construa os elementos de área, isto é, os retângulos de base $\Delta x_i = x_{i+1} - x_i$ e altura $f(\xi_i)$, onde ξ_i é um número *arbitrário* do subintervalo

Figura 2: exemplo de partição do intervalo [a,b] = [0,3]. Note como os pontos x_i da partição foram escolhidos de modo que a distância entre eles varia. Isso é importante para mostrar a arbitrariedade inerente à construção de uma soma de Riemann.

 $[x_i,x_{i+1}]$ e $i=0,1,\ldots,n-1$. Note que a área do i-ésimo elemento de área é igual a $f(\xi_i)\Delta x_i$.

Para criar um elemento de área no software, clique no gráfico de f em algum $\xi_i \in [x_i, x_{i+1}]$. Ao fazer isso, aparecerá o símbolo \times sobre o gráfico de f, destacando o ponto $(\xi_i, f(\xi_i))$. Neste momento, pressione o botão + (mais) ou a tecla p para que o elemento de área (um retângulo) seja automaticamente desenhado na tela. Se você repetir esse procedimento para um ξ_i diferente do mesmo subintervalo, um novo elemento de área será criado no lugar do anterior. Para remover um elemento de área, clique sobre ele e pressione o botão - (menos) ou a tecla "delete".

Repita o procedimento acima para cada subintervalo, sem se preocupar com o critério de escolha de ξ_i , pois um dos objetivos desta atividade é que esse ajuste seja feito manualmente.

- 8. Ainda na tela 5, com todos os elementos de área presentes, questione os alunos sobre se a área encontrada, por meio dos retângulos, é uma boa aproximação. Note que você pode comparar a área exata (= 12), calculada no passo 4, com a soma das áreas dos elementos de área, que é exibida no canto superior direito da tela.
- 9. Motive os alunos a melhorar a aproximação. Para isso, chame a atenção para o fato de que em cada subintervalo há áreas "sobrando" (à esquerda de ξ_i) e "faltando" (à direita), e que a escolha de ξ_i é arbitrária. Espera-se que os alunos proponham escolher ξ_i de modo que, em cada subintervalo, o excesso de área à esquerda compense a falta dela à direita.

Para fazer isso com o software, mova o mouse pelo subintervalo enquanto pressiona a tecla *p* várias vezes, reconstruindo assim o elemento de área para

vários ξ_i . Faça isso até que, **visualmente**, o excesso de área à esquerda de ξ_i compense a falta à direita.¹ Neste caso, $f(\xi_i)$ será o *valor médio* de f no subintervalo $[x_i, x_{i+1}]$.

Observação: quando escolhemos os ξ_i de modo que $f(\xi_i)$ seja mínimo em cada subintervalo $[x_i,x_{i+1}]$, ao somar os elementos de área obtemos a chamada "soma inferior", que subestima a área sob f. Por outro lado, quando escolhemos ξ_i de modo $f(\xi_i)$ seja máximo, obtemos a "soma superior", na qual a área é superestimada.

10. Ajuste cada um dos ξ_i conforme o critério do passo anterior. No final, compare novamente a soma das áreas dos elementos de área, no canto superior direito da tela, com a área obtida com argumentos geométricos (passo 4).

Avance para a tela 6, tomando o cuidado de verificar se a quantidade de elementos de área desenhados é igual à quantidade n de subintervalos: apenas nesta condição o software permitirá avançar.

- 11. Na tela 6 o software exibirá o gráfico da primitiva (ou anti-derivada) de f, a função F, sobreposta à construção realizada até aqui. Se quiser ver a expressão analítica dela, clique sobre F para selecioná-la e pressione o botão ? (ajuda), no canto inferior esquerdo da tela. Nessa proposta, $F(x) = x^2/2 + x + C$, onde C é a *constante de integração*.
- 12. Arraste F para cima e para baixo, o que corresponde a variar C (note que o valor da constante de integração varia conforme você faz isso: consulte o valor pressionando novamente o botão de ajuda, com a função F selecionada). Argumente que essa ação não afeta a relação entre f e F, isto é, f = dF/dx, pois a derivada de uma constante é nula.

Essa etapa da atividade mostra que, ao integrar uma função, sua primitiva será, na verdade, uma família de funções, pois para cada valor de C, tem-se uma nova função.

- 13. Arraste F para baixo, até que seu vértice aproxime-se de y=-5 (neste caso, $C \approx -4.7$). O intuito desse passo é apenas facilitar o passo seguinte.
- 14. Obtenha o valor de F(a): clique próximo do ponto (a,F(a)) para destacálo no plano cartesiano, como ilustrado na figura 3. Em seguida, pressione o botão ? (ajuda) para ler o valor de F(a) na janela de ajuda.

¹Dica: ao clicar sobre um elemento de área, aparecem duas retas verticais, uma à esquerda e outra à direita dele, que podem servir de guias para avaliar as áreas que faltam e que sobram.

Figura 3: selecione o ponto (a,F(a)) e Figura 4: utilize as linhas-guia verticais acesse a janela de ajuda para conhecer o para selecionar o ponto (b,F(b)). valor de F(a).

15. Obtenha o valor de F(b), como no passo anterior.

Em alguns casos pode ser difícil acertar o clique sobre (b,F(b)).² Para simplificar essa tarefa, selecione o elemento de área mais à direita para que o software desenhe as linhas-guia verticais nas laterais dele (fig 4). Deste modo, basta clicar sobre a intersecção da linha vertical mais à direita com F para obter F(b).

16. Calcule F(b) - F(a) e compare o resultado com os valores da soma de Riemann, no canto superior direito, e da área obtida com argumentos geométricos (passo 4). O resultado desses três procedimentos deve ser o mesmo, igual a (ou aproximadamente) 12. Esta é uma evidência do teorema fundamental do Cálculo, a saber:

Área sob f em
$$[a,b] = \int_a^b f(x) dx = F(b) - F(a)$$
.

É fundamental chamar a atenção dos alunos para os dois últimos procedimentos: no primeiro, aproximamos a área sob f pela soma da área de n retângulos ($matemática\ discreta$); no segundo, utilizamos a anti-derivada F para calcular F(b)-F(a) ($matemática\ contínua$). A equivalência entre esses dois resultados é o teorema fundamental do Cálculo, que nos permite obter a $integral\ definida\ de\ f\ em\ [a,b]$ (a área sob f) sem efetuar a laboriosa soma de Riemann.

 $^{^2}$ Especialmente se você não fez $C \approx 4.7$, como instruido no passo 13.

Nomenclatura

- Uma partição P do intervalo de integração é um conjunto de pontos x_i sobre o eixo das abscissas que dividem o intervalo de integração em n subintervalos, com i = 0, 1, ..., n. Os limites inferior (representado por a) e superior (b) compõem o primeiro e último desses pontos, respectivamente. Ou seja, $P = \{x_0 = a, x_1, ..., x_n = b\}$.
- x_i é o i-ésimo ponto da partição do interalo [a,b].
- $\Delta x_i = x_{i+1} x_i$ é a amplitude do i-ésimo subintervalo de integração.
- $\Delta a_i = f(\xi_i) \Delta x_i$ é a área do i-ésimo *elemento de área*, um retângulo de base Δx_i e altura $f(\xi_i)$, onde ξ_i é um ponto qualquer do subintervalo de integração $[x_i, x_{i+1}]$.
- Teorema do valor médio para integrais (TVM): se f for uma função contínua em [a,b], então existirá ao menos um $\xi \in [a,b]$ tal que $\int_a^b f(x) dx = (b-a)f(\xi)$, onde $f(\xi)$ é o valor médio de f em [a,b].
- A soma de Riemann S_n é a soma de todos os elementos de área. Ou seja, $S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i$.
- A integral de Riemann é o limite da soma de Riemann quando n tende ao infinito. Ou seja, $I = \lim_{n \to \infty} S_n$. Neste limite, o critério de escolha de ξ_i (soma superior, soma inferior ou personalizada, como usamos nesta proposta) é irrelevante para o resultado: $I = \int_a^b f(x) \, dx$.
- O teorema fundamental do Cálculo diz que, se f for contínua em [a,b], então $\int_a^b f(x) dx = F(b) F(a)$, onde F é qualquer anti-derivada de f.

Créditos

O recurso educacional interativo utilizado nesta proposta foi inicialmente desenvolvido para a disciplina "Fundamentos de Matemática" (PLC0001) do curso de graduação semi-presencial em Licenciatura em Ciências do convênio USP/Univesp (Universidade Virtual do Estado de São Paulo), numa parceria dos autores com o Centro de Ensino e Pesquisa Aplicada (CEPA) da USP.