Boolean Functions (Expressions)

It is useful to know how many different Boolean functions can be constructed on a set of Boolean variables.

When there are no variables, there are two expressions

$${\tt False} = 0 \qquad {\tt and} \qquad {\tt True} = 1$$

Boolean Functions of One Variable

For one variable p, four functions can be constructed.

Recall, a function maps each input value of a variable to one and only one output value.

- I. The False(P) function maps each value of P to 0 (False).
- 2. The identity(p) function maps each value of p to the identical value.
- 3. The flip(P) function maps False to True and True to False.
- 4. The True(p) function maps each value of p to 1 (True).

Boolean Functions of One Variable

For one variable p, $4 = 2^{2^1}$ functions can be constructed.

This information can be collected into a table.

Input	Fu	net	cions	•
Р	False	Р	$\neg P$	True
0	0	0	1	1
1	0	1	0	1

Boolean Functions of Two Variables

For two variables p and Q, 16 Boolean functions can be constructed.

One way to see there are 16 two variables Boolean functions $f(\mathbf{p},\mathbf{Q})$ is to list the 4 truth assignments for \mathbf{p} and \mathbf{Q} .

Р	Q	$ f(\mathbf{p}, \mathbf{Q}) $
0	0	а
0	1	b
1	0	С
1	1	d

The values $a,\,b,\,c,\,d$ of the function f can be either a 0 or a 1. Since there are 2 choices for 4 values, there are a total of $16=2^4=2^{2^2}$ different functions.

Boolean Functions of Two Variables

Several of the two variable functions are important. The table below describes the AND, NAND, OR, and NOR functions.

In	Put		Functions				
		AND	NAND	OR	NOR		
Р	Q	PAQ	$\neg (P \land Q)$	$P \vee Q$	$\neg(P\veeQ)$		
0	0	0	1	0	1		
0	1	0	1	1	0		
1	0	0	1	1	0		
1	1	1	0	1	0		
		1	14	7	8		

Boolean Functions of Two Variables

The table below describes the EQUIVALENT, EXCLUSIVE OR, P IMPLIES Q, and NOT (P IMPLIES Q) functions.

In	put		Functions		
		EQUIV	YOR	PIMPLIESQ	NOT (PIMPLIES Q)
Р	Q	P ≡ Q	$\mathbf{P}\oplus\mathbf{Q}$	${\tt P} \to {\tt Q}$	$\neg(\mathtt{P} o \mathtt{Q})$
0	0	1	0	1	0
0	1	0	1	1	0
1	0	0	1	0	1
1	1	1	0	1	0
		9	6	13	2

Boolean Functions of Two Variables

The table below describes the False, $\mbox{True},\mbox{IDENTITY}(p),$ and $\mbox{FLIP}(p)$ functions.

In	put		F	unctions	
		False	True	IDENTITY(P)	FLIP(p)
Р	Q	$P \wedge \neg P$	$b \wedge \neg b$	Р	$\neg P$
0	0	0	1	0	1
0	1	0	1	0	1
1	0	0	1	1	0
1	1	0	1	1	0
		0	15	3	12

Boolean Functions of Two Variables

The table below describes the IDENTITY(Q), FLIP(Q) functions, Q IMPLIES p, and NOT(Q IMPLIES p)

In	put		Functions		
		D(Q)	FLIP(Q)	QIMPLIESP	NOT (a IMPLIES p)
Р	Q	Q	¬Q	$\mathbf{Q} \to \mathbf{P}$	$\neg(Q\toP)$
0	0	0	1	1	0
0	1	1	0	0	1
1	0	0	1	1	0
1	1	1	0	1	0
		5	10	11	4

Boolean Functions of n **Variables**

Given n Boolean variables, how many different Boolean functions can be made?

Number of	Number of
Boolean Functions	Variables
$2 = 2^1 = 2^{2^0}$	0
$4=2^2=2^{2^1}$	1
$16 = 2^4 = 2^{2^2}$	2
$256 = 2^8 = 2^{2^3}$	3
$65,536 = 2^{16} = 2^{2^4}$	4
2^{2^n}	11.

Theorem 1. There are 2^{2^n} different Boolean functions on n Boolean variables.