Paulo C. Marques F. (Insper)

aMostra de Estatística 2024 - IME / USP

Insper

Insper

Variáveis aleatórias (U_1, \ldots, U_n) permutáveis (**Definição formal?**)

Permutabilidade é uma condição mais fraca que IID

 $IID \Rightarrow Permutável, mas a recíproca é falsa (Exemplo?)$

Insper

Realizações de n=6 variáveis aleatórias, que suporemos serem permutáveis:

Estatísticas de ordem:

Quantas das U_i 's são menores ou iguais a $U_{(k)}$?

Resultado: pelo menos kdas U_i 's são menores ou iguais a $U_{(k)}$ (Verifique!)

O resultado anterior pode ser expresso por (Por quê?):

$$\sum_{i=1}^{n} I_{\{U_i \le U_{(k)}\}} \ge k$$

Tomando esperanças e observando que, por permutabilidade, $P(U_i \leq U_{(k)})$ tem o mesmo valor para todo $i, k = 1, \ldots, n$, temos que: $P(U_i \leq U_{(k)}) \geq k/n$ (**Por quê?**)

Corolário: se há probabilidade zero de termos empates entre as U_i 's (**Exemplo em que isto ocorreria?**), então $P(U_i \leq U_{(k)}) = k/n$ (**Por quê?**)

Um problema de regressão: $X_i \in \mathbb{R}^d$ e $Y_i \in \mathbb{R}$

Exemplo: California Housing

https://github.com/paulocmarquesf

Temos uma sequência de pares permutáveis (**Definição?**):

$$(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1}), \ldots$$

Fomos a uma Big Tech e compramos uma função determinística $\hat{\mu}: \mathbb{R}^d \to \mathbb{R}$, que prevê Y_i a partir de X_i , para os nossos dados

Defina os escores de conformidade: $R_i = |Y_i - \hat{\mu}(X_i)|$, para $i \ge 1$

Resultado: a sequência R_1, R_2, \dots é permutável (**Por quê?**)

Dados de calibração: $(X_1, Y_1), \dots, (X_n, Y_n)$

Escores de calibração ordenados: $R_{(1)}, R_{(2)}, \dots, R_{(n)}$

Observável futuro: (X_{n+1}, Y_{n+1})

Resultado: $P(R_{n+1} \le R_{(k)}) \ge k/(n+1)$, para k = 1, ..., n (Por quê?)

Lembrando: $P(R_{n+1} \leq R_{(k)}) \geq k/(n+1)$, para $k = 1, \ldots, n$

Escolha um nível de "descobertura" nominal $0 < \alpha < 1$

Defina o teto de um número real t por $\lceil t \rceil = \min\{z \in \mathbb{Z} : t \leq z\}$

Fato aritmético: $t \leq \lceil t \rceil < t + 1$ (Verifique!)

Escolha $k = \lceil (1 - \alpha)(n+1) \rceil$

Resultado: $P(R_{n+1} \le R_{(\lceil (1-\alpha)(n+1)\rceil)}) \ge 1 - \alpha$ (Verifique!)

Se não tivermos empates entre os escores de conformidade, também teremos uma quota superior:

$$P(R_{n+1} \leq R_{(\lceil (1-\alpha)(n+1)\rceil)}) \leq 1 - \alpha + \frac{1}{n+1} \qquad \textbf{(Verifique!)}$$

Defina $\hat{r} = R_{(\lceil (1-\alpha)(n+1)\rceil)}$

$$R_{n+1} \le \hat{r} \iff \hat{\mu}(X_{n+1}) - \hat{r} \le Y_{n+1} \le \hat{\mu}(X_{n+1}) + \hat{r}$$
 (Por quê?)

Propriedade universal do intervalo de predição conformal:

$$1 - \alpha \le P(\hat{\mu}(X_{n+1}) - \hat{r} \le Y_{n+1} \le \hat{\mu}(X_{n+1}) + \hat{r}) < 1 - \alpha + \frac{1}{n+1}$$

Lembrete: a quota superior só vale se houver probabilidade zero de termos empates entre os escores de conformidade

Predição conformal na prática:

https://github.com/paulocmarquesf

Insper

