LAZOS DE CONTROL-NOMENCLATURA

Elementos de un lazo de control

La terminología empleada para identificar en un plano los elementos de un lazo de control se ha unificado con el fin de que los fabricantes, los usuarios y los organismos o entidades que intervienen directa o indirectamente en el campo de la instrumentación industrial empleen el mismo lenguaje. Las definiciones de los términos empleados se relacionan con las sugerencias hechas por ANSI/ ISA-S51.1- 1979 aprobadas el 26 de mayo de 1995.

Representacion de los distintos términos empleados:

Zona muerta: es el campo de valores de la variable que no hace variar la indicación o salida del instrumento

Sensibilidad: es la razón entre el incremento porcentual de la señal de salida o de la lectura y el incremento de la variable que lo ocasiona $\frac{(12-11)/(20-4)}{(5,5-5)/10}$

Clases de instrumentos:

En función del instrumento: ciegos, indicadores, registradores, sensores, transmisores, transductores, convertidores, receptores, controladores, elementos de acción final

Manometro de Bourdon

Medidor de caudal por Coriolis

Clases de instrumentos:

En función del instrumento: ciegos, indicadores, registradores, sensores, transmisores, transductores, convertidores, receptores, controladores, elementos de acción final

Globo con Actuador neumatico

Globo con Actuador a piston

Clases de instrumentos:

En función del instrumento: ciegos, indicadores, registradores, sensores, transmisores, transductores, convertidores, receptores, controladores, elementos de acción final

Controladores PID

Sensores primarios y transmisores

Sensor de nivel por radar

Sensores de temperatura

NORMAS ISA (Instruments Society of America)

Figura 13.1: Regla para la identificación de instrumentos en los sistemas de control según normas ISA.

PREFIJO		SUFIJO		
	Primera Letra	Segunda Letra y Posteriores	Número del Lazo de Control	
10	F	$_{ m T}$	219	A

Tabla 13.2: Significado de las letras usadas en la documentación de sistemas de control según normas ISA.

	Primera(s) Letra(s)		Segunda Letra y Posteriores				
	Variable	Modificador	Función Lectura de salida	Función de Salida	Modificador		
A	Análisis		Alarma				
В	Quemador de llama				Louis Mal		
С	A elección del Usuario		Controlador				
D D	A elección del Usuario	Diferencial			Table 1		
Е	Voltaje		Elemento Primario				
F	Flujo (caudal)	Relación (fracción)					
G	A elección del Usuario		Elemento Visual de Vidrio				
Н	Actuador Manual				Alto		
Ι	Intensidad de Corriente		Indicador				
J	Potencia	Scan					
K	Tiempo			Estación de Control			
L	Nivel		Lampara o Luz indicadora		Bajo		
M	A elección	Momentaneo			Medio		
M	del Usuario	100000000000000000000000000000000000000					
N	A elección del Usuario						
0	A elección del Usuario		Orificio Restricción				
Р	Presión		Punto de Prueba				
Q	Cantidad	Integrador, Totalizador					
R	Radiación, Radiactividad		Registro, Registrador				
S	Velocidad	Seguridad		Interruptor, Switch			
T	Temperatura		- 27- 1129	Transmisor			
U	Multivariable	guina hadii aa	Multifunción	Multifunción	Multifunción		
V	Vibración	Julies Record III		Válvula			
W	Fuerza, Peso		Pozo				
X	No clasificado	Eje X					
Y	Evento, estado o presencia	Eje Y	Relé, Calculador, Convertidor				
Z	Posición	Eje Z		Actuador, Elemento de Control Final			

En función de la variable de proceso: instrumentos de medición de caudal, nivel, presión, conductividad, pH. Corresponde específicamente al tipo de las señales medidas, siendo independiente del sistema empleado en la conversión de la señal de proceso. Los instrumentos de campo incluyen a los instrumentos locales situados en el proceso o en sus proximidades (tanques, tuberías, secadores, etc), mientras que los instrumentos montados en panel, armarios están situados en zonas aisladas al proceso.

Figura 1.18 Instrumentos de campo y de panel

Simbolos en P&ID (Piping and Instrument Drawings)

	Accesibler al Operador	No Accesible al Operador	Montado en Campo	Accesible en Panel Auxiliar
Instrumento Discreto Analógico	\bigcirc			\ominus
Control Distribuido				
Función de Cálculo				
Controlador Lógico				
Programable (PLC)				

Figura 13.2: Ejemplo de como usar simbología ISA para documentar la instrumentación de un intercambiador de calor.

Nomenclatura-Norma ISA-S5.1-84 (R-1992)

Tabla 1.15 Ejemplo de combinaciones complejas

Figura 13.3: Control feedback mediante el caudal del líquido refrigerante.

Figura 13.4: a) Control mediante bifurcación usando válvula bifurcadora. b) Control mediante bifurcación usando válvula mezcladora.

Figura 13.5: Estrategia con conservación de caudal de fluido refrigerante.

Figura 13.6: Control con by pass de un intercambiador usando válvulas de dos vías.

Figura 13.8: Esquema de control de temperatura de proceso que incluye un control de nivel de condensado.

Figura 13.9: a) Esquema de control de temperatura de proceso utilizando control de una válvula bifurcadora e incluye un control de presión de vapor. b) Esquema de control de temperatura de proceso utilizando control de una válvula mezcladora e incluye un control de presión de vapor.

 ${\bf Figura~13.10:}~Control~de~temperatura~de~proceso~utilizando~un~esquema~combinado~feed forward-feedback.$

Figura 13.17: Esquema de control más simple para columnas de destilación.

Figura 13.18: Esquema de control de columnas de destilación para cuando el caudal de destilado ha sido fijado con anterioridad (Harriott, [29]).

Figura 13.19: Esquema de control de columnas de destilación para cuando el caudal de fondo ha sido fijado con anterioridad (Harriott, [29]).

Figura 13.20: Esquema de control de destilado manipulando el caudal de reflujo y el nivel del condensador (Harriott, [29]).

Figura 13.21: Esquema de control de destilado manipulando el caudal de destilado (Harriott, [29]).

Figura 13.22: Control de composición de tope manipulando caudal de vapor. Usualmente designado como control de composición cruzado (Harriott, [29]).

Calderas de vapor

Las calderas de vapor se utilizan en la mayoría de industrias debido a que muchos procesos emplean grandes cantidades de vapor. La caldera se caracteriza por una capacidad nominal de producción de vapor en t/h a una presión especificada y con una capacidad adicional de caudal en puntas de consumo de la fábrica.

A la caldera se le exige, pues, mantener una presión de trabajo constante para la gran diversidad de caudales de consumo en la factoría, por lo cual debe ser capaz de:

- a) aportar una energía calorífica suficiente en la combustión del fuel-oil o del gas con el aire;
- b) desde el punto de vista de seguridad, el nivel debe estar controlado y mantenido dentro de unos límites;
- c) es necesario garantizar una llama segura en la combustión.
- d) el sistema de control debe ser seguro en la puesta en marcha, en la operación y en el paro de la caldera.
- e) el funcionamiento de la caldera debe ser optimizado para lograr una rentabilidad y economía adecuadas, lo cual es posible con un control digital y/o distribuido que permite optimizar la combustión (ahorros de 2 a 10 % en combustible) y ganar en seguridad.

a) Caudal fuel – caudal aire serie

Fig. 11.4 Secadero rotativo.

