function defined on the measurable set E and that $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions so that $|f_n| \leq g$. If f is a function so that $f_n \to f$ almost everywhere then $\lim_{n\to\infty}\int f_n=\int f.$

Theorem 1 (Dominated convergence of Lebesgue) Assume that g is an integrable

Proof: The function
$$g - f_n$$
 is non-negative and thus from Fatou lemma we have that $\int (g - f) \le \liminf \int (g - f_n)$. Since $|f| \le g$ and $|f_n| \le g$ the functions f and f_n are integrable and we have

$$\int g - \int f \le \int g - \limsup \int f_n,$$
 so
$$\int f \ge \limsup \int f_n.$$

Θεώρημα 2 (Κυριαρχημένης σύγκλισης του Lebesgue) Έστω ότι η
$$g$$
 είναι μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο E και η $(f_n)_{n\in\mathbb{N}}$ είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n| \leq g$. Υποθέτουμε ότι υπάρχει

μια συνάρτηση
$$f$$
 ώστε η $(f_n)_{n\in\mathbb{N}}$ να τείνει στην f σχεδόν παντού. Τότε
$$\lim \int f_n = \int f.$$
 Απόδειξη: Η συνάρτηση $g-f_n$ είναι μη αρνητική και άρα από το Λήμμα του Fatou

$$A\pi \delta \delta \epsilon \iota \xi \eta$$
: Η συνάρτηση $g-f_n$ είναι μη αρνητική και άρα από το Λήμμα του Fatou ισχύει $\int (f-g) \leq \liminf \int (g-f_n)$. Επειδή $|f| \leq g$ και $|f_n| \leq g$ οι f και f_n είναι ολοκληρώσιμες, έχουμε

$$\int g - \int f \le \int g - \limsup \int f_n,$$

άρα $\int f \ge \limsup \int f_n.$

$$\int f_n$$
.