Matemática Discreta l Clase 20 - Isomorfismo / Caminatas, caminos y ciclos

FAMAF / UNC

6 de junio de 2023

Una aplicación importante de la noción de valencia es en el problema de determinar si dos grafos son o no isomorfos.

Si $\alpha: V_1 \to V_2$ es un isomorfismo entre G_1 y G_2 , y $\alpha(v) = w$, entonces cada arista que contiene a v se transforma en una arista que contiene a w.

En consecuencia $\delta(v)=\delta(w)$. Por otro lado, si G_1 tiene un vértice x, con valencia $\delta(x)=\delta_0$, y G_2 no tiene vértices con valencia δ_0 , entonces G_1 y G_2 no pueden ser isomorfos.

Esto nos da otra manera de ver que no son isomorfos los siguientes grafos:

Puesto que el primer grafo tiene un vértice de valencia 1 y el segundo no.

Una extensión de esta idea se da en la siguiente proposición.

Proposición

Sean G_1 y G_2 grafos isomorfos. Para cada $k \ge 0$ sea $n_i(k)$ el número de vértices de G_i que tienen valencia k (i = 1, 2). Entonces $n_1(k) = n_2(k)$.

Demostración

Hemos visto más arriba que si $\alpha: V_1 \to V_2$ es un isomorfismo entre G_1 y G_2 y $v \in V_1$, entonces $\delta(v) = \delta(\alpha(v))$. Luego la cantidad de vértices con valencia k en G_1 es igual a la cantidad de vértices con valencia k en G_2 .

No hay ningún criterio general eficiente para determinar si dos grafos son isomorfos o no. En el siguiente ejemplo, no se aplica el criterio anterior.

Ejemplo

Probar que los siguientes grafos no son isomorfos.

Solución

Ambos tienen 6 vértices, 9 aristas y todos los vértices son de valencia 3.

Por lo tanto no podemos utilizar los criterios anteriores para decir que no son isomorfos.

Sin embargo, observar que G_1 tiene un subgrafo K_3 :

Mientras que G_2 no lo tiene. Por lo tanto, G_1 y G_2 no son isomorfos.

Caminatas, caminos y ciclos

Definición

Una caminata en un grafo G es una secuencia de vértices

$$v_1, v_2, \ldots, v_k,$$

tal que v_i y v_{i+1} son advacentes $(1 \le i \le k-1)$.

Si todos los vértices son distintos, una caminata es llamada un camino.

Un recorrido es una caminata donde todas las aristas $\{v_i, v_{i+1}\}$ con $1 \le i \le k-1$ son distintas.

Un *ciclo* a una caminata $v_1, v_2, \ldots, v_k, v_1$ con v_1, v_2, \ldots, v_k camino y $k \geq 3$. A menudo diremos que es un k-ciclo, o un ciclo de longitud k en G.

Observación

- o Por definición de caminata $k \ge 2$, es decir una caminata tiene al menos una arista $(\{v_1, v_2\})$.
- o Por definición de ciclo $v_1, v_2, \ldots, v_k, v_1, k \ge 3$; un ciclo tiene al menos 3 aristas (claramente, no hay 2-ciclos.).

Ejemplo

Dibujemos caminatas, caminos, recorridos y ciclos en el siguiente grafo:

Caminata: p,q,t,s,q,r,u,r

$Recorrido\colon\thinspace p,q,t,s,q,r,u$

Camino: p,q,s,r,u,t

$Ciclo\colon p,q,s,r,u,t,p$

Lema

Sea G un grafo. Entonces, x e y pueden ser unidos por una caminata si y sólo si x e y pueden ser unidos por un camino.

Idea de la demostración

- (\Leftarrow) es trivial (un camino es una caminata).
- (\Rightarrow) Eliminar "bucles".

Escribamos $x \sim y$ siempre y cuando los vértices x e y de G puedan ser unidos por un camino en G o x = y: hablando en forma rigurosa, esto significa que si $x \neq y$ hay un camino v_1, v_2, \ldots, v_k en G con $x = v_1$ e $y = v_k$.

Definición

Sea G grafo, diremos que es conexo si para $x \sim y$ para cualesquiera x, y vértices en G.

El lema de la página anterior implica que \sim es una relación de equivalencia.

Proposición

Sea G grafo y x, y, z vértices de G. Entonces,

- (1) $x \sim x$ (reflexividad de \sim).
- (2) $x \sim y$, entonces $y \sim x$ (simetría de \sim).
- (3) $x \sim y$, $y \sim z$, entonces $x \sim z$ (transitividad de \sim).

Demostración

- (1) Por definición $x \sim x$.
- (2) Si $x = x_1, x_2, \dots, x_k = y$ es un camino de x a y, entonces $y = x_k, \dots, x_2, x_1 = x$ es un camino de y a x.
- (3)

 $x \sim y \Rightarrow$ un camino de x a y.

 $y \sim z \Rightarrow$ un camino de y a z.

Pegando los caminos en y, obtenemos una caminata de x a z (que se reduce a un camino por el lema).