FIG. 1

MLV-based transduction using Cre/loxP system as previously described

FIG. 2
EIAV-based transduction Cre/loxP system

SUBSTITUTE SHEET (RULE 26)

FIG. 3
MLV SIN vector approach, with EIAV components in blue

FIG. 4
MLV-based transduction with HRE 3' LTR using Cre/loxP system

FIG. 5

MLV-based transduction for SIN vector production using Cre/loxP system

FIG. 6

MLV SIN-vector based transduction system. This general approach can be used with EIAV, HIV or MLV genomes

FIG. 9 Overall summary of recombinase method pTrap2 (MLV) loxP **EGFP ▶** R U5 Transduce EV1 and EV2 at MOI 0.3 **| X→** ► R U5 lacZ. 是定義成立 **IGFR ▶** R U5 Excise cassette using Cre recombinase (pBS185) ► R U5 Recombine in EIAV genome using Cre recombinase and pONY8z-IoxP **-X**→ nls lacZ U3 R U5

FIG. 10a

FACS analysis of EV1 packaging cells prior to transduction with Trap2 vector

FIG. 10b

FACS analysis of EV1 packaging cell line transduced with Trap2 at an MOI of 0.3. A 5% top-slice of the highest expressers was carried out

FIG. 11

Validation of the $\Delta\Delta$ Ct method for quantitation of GFP mRNA, relative to β -actin. A titration of total RNA from EV1 clone A was used. The difference in Ct values between the two assays is shown on the y-axis. The magnitude of the gradient must be <0.1 for the method to be valid. The gradient is 0.077, so the method is suitable.

FIG. 12

Quantitation of GFP mRNA relative to control β -actin mRNA. EV2 TD cells are transduced with Trap2 at an MOI of 0.3 and are the calibrator sample with the ratio designated 1.0.

FIG. 15

FIG. 16

Alignment of leader and gag regions present in vectors pONY4Z, 8Z and ATG mutated 8Z vector. The later is referred to as pONY8ZA. The sequence aligned are from the Narl site in the leader to the Xbal site between the EIAV gag sequence and the CMV promoter. Sequences in the leader are shown in italic and a space is present upstream of the position of the gag ATG.

4Z	1 cgcccgaacagggacctgagagggggggagaccctacctgttgaacctgg
8Z	1 cgcccgaacagggacctgagaggggggcagaccctacctgttgaacctgg
mutated 8Z	1 cgcccgaacagggacctgagaggggggcagaccctacctgttgaacctgg
4Z	51 ctgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct
8Z	51 ctgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct
mutated 8Z	51 ctgatcgtaggatccccgggacagcagaggagaacttacagaagtcttct
4Z	101 ggaggtgttcctggccagaacacaggaggacaggtaag.at-gggagaccc
8Z	101 ggaggtgttcctggccagaacacaggaggacaggtaag.attgggagaccc
mutated 8Z	101 ggaggtgttcctggccagaacacaggaggacaggtaag.attgggagaccc
4Z	150 tttgacat-ggagcaaggcgctcaagaagttagagaaggtgacggtacaa
8Z	151 tttgacattggagcaaggcgctcaagaagttagagaaggtgacggtacaa
mutated 8Z	151 tttgacattggagcaaggcgctcaagaagttagagaaggtgacggtacaa
4Z	199 gggtctcagaaattaactactggtaactgtaattgggcgctaagtctagt
8Z	201 gggtctcagaaattaactactggtaactgtaattgggcgctaagtctagt
mutated 8Z	201 gggtctcagaaattaactactggtaactgtaattgggcgctaagtctagt
4Z	249 agacttatttcat-gataccaactttgtaaaagaaaaggactggcagctg
8Z	251 agacttatttcat-gataccaactttgtaaaagaaaaggactggcagctg
mutated 8Z	251 agacttatttcattgataccaactttgtaaaagaaaaggactggcagctg

4Z	298 agggat-gtcattccattgctggaagat-gtaactcagacgctgtcagga
8Z	300 agggat-gtcattccattgctggaagat-gtaactcagacgctgtcagga
mutated 8Z	301 agggattgtcattccattgctggaagattgtaactcagacgctgtcagga
4Z	346 caagaaagagggcctttgaaagaacat-ggtgggcaatttctgctgtaa
8Z	348 caagaaagagggcctttgaaagaacat-ggtgggcaatttctgctgtaa
mutated 8Z	351 caagaaagagggcctttgaaagaacattggtgggcaatttctgctgtaa
	·
4Z	395 agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcattc
8Z	397 agat-gggcctccagattaataat-gtagtagat-ggaaaggcatcattc
mutated 8Z	401 agattgggcctccagattaataattgtagtagattggaaaggcatcattc
4Z	442 cagctcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
8Z	444 cagctcctaagagcgaaatat-gaaaagaagactgctaataaaaagcagt
mutated 8Z	451 cagetectaagagegaaatattgaaaagaagaetgetaataaaaageagt
4Z	491 ctgagccctctgaagaatatct
8Z	493 ctgagccctctgaagaatatct
mutated 8Z	501 ctgagccctctgaagaatatct

FIG. 16 CONT'D

No.

a striphic and pro-

Lox P $FIG.~17 \\ Schematic representation of the structure of pONY 8.3G +/- vector genome plasmids$