

Maria C. Torres

Ing. Electrónica (UNAL)

M.E. Ing. Eléctrica (UPRM)

Ph.D. Ciencias e Ingeniería de la Computación y la

Información (UPRM)

Profesora asociada

Dpto. Ciencias de la Computación y la Decisión

mctorresm@unal.edu.co

HORARIO DE ATENCIÓN: Martes 10:00 am a

12:00 m - Oficina 313 M8A

- ☐ Introducción: revisión fundamentos y POO
- Análisis de complejidad
- Arreglos
- ☐ Listas enlazadas
- ☐ Pilas y colas
- ☐ Heap
- Arboles binarios
- ☐ Tablas hash
- ☐ Grafos

- Un grafo G = (V, E) se define por:
 - Un conjunto de n vértices V, a los cuales se hace referencia por sus índices
 - Un conjunto de m aristas E, que conectan vértices entre sí.
 - Una arista es un par de vértices, indicados de la forma < i, j >, que indica que el vértice i está conectado al vértice j.
- Dependiendo de si el orden de los vértices en las aristas importa o no tenemos dos clases de grafos:
 - Grafo dirigido: El orden importa, es decir $\langle i,j \rangle \neq \langle j,i \rangle$. Si el vértice i está conectado al vértice j, no implica que el vértice j está conectado al vértice i.
 - Grafo no dirigido: El orden no importa, < i,j>=< j,i>.

Representación

- Listas de adyacencia: proporciona un camino compacto para representar grafos esparcidos, es decir grafos con pocas aristas.
 - Esta representación consiste en un arreglo Adj con |V| listas, una para cada vértice.
 - Para cada $u \in V$, la lista de adyacencia Adj[u] contiene todos los vértices v tal que exista la arista < u, v >.
 - Si G es un grafo dirigido, la suma de las longitudes de todas las listas de adyacencia es |E|.
 - Si G es un grafo no dirigido, la suma de las longitudes de todas las listas de adyacencia es 2|E|.

Representación

- Matriz de adyacencia: Cuando el grafo es denso, es decir tiene muchas aristas, o deseamos saber rápidamente si dos nodos están conectados, la representación más apropiada es la matriz de adyacencia.
- Para esta representación de un grafo G = (V, E) asumimos que los vértices están enumerados de $1 \dots |V|$
- entonces la matriz de adyacencia es una matriz |V| * |V| tal que:

$$a_{ij} = \begin{cases} 1 & si < i, j > \in E \\ 0 & en otro & caso \end{cases}$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1 0 1 1	0	1	0

Algunas aplicaciones: Camino más corto

Ciclo

• Un camino simple donde el vértice inicial y el final son el mismo.

Costo de un camino

• suma de los costos o pesos de las aristas que recorre el camino, si el grafo no es ponderado cada arista tiene un peso igual a 1.

Ruta optima

• Camino de costo mínimo

Descripción del problema

- Dado un grafo dirigido pesado encuentre
 - El camino más corto desde un vértice s a todos los demás vértices del grado (Single source shortest paths)
 - El camino más corto entre todos los pares del vértice del grafo (*All pairs shortest paths*)
- La longitud del camino corresponde a la suma de los pesos

Descripción del problema

- El camino más corto desde un vértice s a todos los demás vértices del grado:
 - Bellman-Ford
 - Dijkstra
- El camino más corto entre todos los pares del vértice del grafo
 - Floyd-Warshall
 - Johnson

Single source shortest paths

- $\delta(u,v)$: longitud del camino más corto entre los vértices u y v
- Para cada vértice se mantiene d[u] que es la estimación de $\delta(s,u)$
- d[u] se actualiza cuando se descubre un camino más corto, por tanto:

$$d[u] \ge \delta(u, v)$$

• $\pi(u)$ mantiene el predecesor de u en el camino más corto, permitiendo reconstruir toda la trayectoria

Single source shortest paths - Inicialización

- Los dos algoritmos que vamos a estudiar emplean una técnica denomina relajación, encarga de actualizar d[u] y $\pi(u)$ cuando se descubre un camino más corto
- Para hacer uso de esta operación, debemos inicializar d[u] y $\pi(u)$ para todos los nodos u de nuestro grafo de la siguiente forma:

INITIALIZE_SINGLE_SOURCE(G,s)

1. FOR each $u \in G$

$$2. d[u] = \infty$$

3.
$$\pi(u) = null$$

4.
$$d[u] = 0$$

Single source shortest paths - Relajación

• Relajar una arista (u,v) consiste en probar si podemos mejorar el camino mas cortos hasta v pasando a través de u

RELAX(u,v,W)

1. IF
$$d[v] > d[u] + W(u, v)$$

2.
$$d[v] = d[u] + W(u,$$

$$3. \qquad \pi(v) = v$$

Single source shortest paths - Bellman-Ford

- Soluciona el problema SSSP considerando pesos negativos
- Este algoritmo permite determinar si hay un ciclo negativo en el grafo, en cuyo caso el problema del SSSP no tiene solución

2024

Single source shortest paths - Bellman-Ford

• Considere el grafo pesado G=(V,E), donde los pesos están representados en una matriz W y un vértice para iniciar el camino s

```
BELLMAN-FORD(G, W, s)

1. FOR i = 1 TO |V|-1

2. FOR each (u,v)

3. RELAX(u,v,W)

4. FOR each (u,v)

5. IF d[v] > d[u] + W(u,v)

6. RETURN false
```

2024

RETURN true

Single source shortest paths - Bellman-Ford

	S	t	у	X	Z
d[]	0	∞	∞	∞	∞
$\pi[\]$	NULL	NULL	NULL	NULL	NULL

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	Х	Z
d[]	0	∞	∞	∞	∞
$\pi[\]$	NULL	NULL	NULL	NULL	NULL

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	X	Z
d[]	0	6	∞	∞	∞
$\pi[\]$	NULL	S	NULL	NULL	NULL

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	Х	Z
d[]	0	6	∞	11	∞
$\pi[\]$	NULL	S	NULL	t	NULL

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	х	z
d[]	0	6	∞	11	∞
$\pi[\]$	NULL	S	NULL	t	NULL

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	х	Z
d[]	0	6	7	11	∞
$\pi[\]$	NULL	S	S	t	NULL

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	Х	Z
d[]	0	6	7	11	16
$\pi[\]$	NULL	S	S	t	У

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	Х	Z
d[]	0	6	7	11	16
$\pi[\]$	NULL	S	S	t	у

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	Х	Z
d[]	0	6	7	4	16
$\pi[\]$	NULL	S	S	У	у

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	Х	Z
d[]	0	6	7	4	16
$\pi[\]$	NULL	S	S	У	у

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	х	Z
d[]	0	6	7	4	2
$\pi[\]$	NULL	S	S	у	t

Single source shortest paths - Bellman-Ford

i = 1

Relajar todos

	S	t	у	X	Z
d[]	0	6	7	4	2
$\pi[\]$	NULL	S	S	У	t

Single source shortest paths - Bellman-Ford

i = 2

Relajar todos

	S	t	у	X	Z
d[]	0	6	7	4	2
$\pi[\]$	NULL	S	S	У	t

Single source shortest paths - Bellman-Ford

i = 2

Relajar todos

	S	t	у	Х	Z
d[]	0	6	7	4	2
$\pi[\]$	NULL	S	S	У	t

Single source shortest paths - Bellman-Ford

i = 2

Relajar todos

	S	t	у	X	Z
d[]	0	2	7	4	2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

i = 2

Relajar todos

	S	t	у	X	Z
d[]	0	2	7	4	2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

i = 2

Relajar todos

	S	t	у	Х	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

i = 2

Relajar todos

	S	t	у	X	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

i = 3

Relajar todos

	S	t	у	Х	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

i = 3

Relajar todos

	S	t	у	Х	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

i = 4

Relajar todos

los vértices

	S	t	у	Х	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

	S	t	у	Х	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

Reconstruir el camino mas corto (s,t)

	S	t	у	х	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

Reconstruir el camino mas corto (s,x)

	S	t	у	Х	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Bellman-Ford

Reconstruir el camino mas corto (s, z)

	S	t	у	X	Z
d[]	0	2	7	4	-2
$\pi[\]$	NULL	X	S	У	t

Single source shortest paths - Dijkstra

- Soluciona el problema SSSP para grafos sin pesos negativo
- Llega a ser más eficiente computacionalmente que el algoritmo de Bellman-Ford
- Emplea una cola de prioridad mínima, fácilmente implementada con un MIN-HEAP
- En la cola de prioridad mínima se mantienen los vértices cuyo camino más corto aún no ha sido determinado
- El algoritmo, iterativamente selecciona un vértice en la cola, y relaja todas las artistas que salen de este vértice
- La clave para organizar la cola de prioridad mínima es d[]

```
Single source shortest paths - Dijkstra
DIJKSTRA(G,W,s)
1. Sv = []
2. Q = new MinPriorityQueue(V)
3. WHILE !Q.isEmpty()
       u = Q.EXTRACT_MIN()
4.
                                        O(V+E log V)
5.
      Sv = Sv \cup u
        FOR each v adjunct to u
6.
             RELAX(u,v,W)
7.
```

GrafosSingle source shortest paths - Dijkstra

S	t	у	Х	Z
0	∞	∞	∞	∞

	S	t	у	X	Z
d[]	0	∞	∞	∞	∞
$\pi[\]$	NULL	NULL	NULL	NULL	NULL

у	t	X	Z
5	10	∞	∞

	S	t	у	X	Z
d[]	0	10	5	∞	∞
$\pi[\]$	NULL	S	S	NULL	NULL

у	t	X	Z
5	10	∞	∞

	S	t	у	Х	Z
d[]	0	10	5	∞	∞
$\pi[\]$	NULL	S	S	NULL	NULL

t	X	Z
8	∞	∞

	S	t	у	Х	Z
d[]	0	8	5	∞	∞
$\pi[\]$	NULL	У	S	NULL	NULL

t	Х	Z
8	14	∞

	S	t	у	Х	Z
d[]	0	8	5	14	∞
$\pi[\]$	NULL	У	S	У	NULL

Z	t	X
7	8	14

	S	t	у	Х	Z
d[]	0	8	5	14	7
$\pi[\]$	NULL	У	S	У	У

Z	t	X
7	8	14

	S	t	у	Х	Z
d[]	0	8	5	14	7
$\pi[\]$	NULL	у	S	У	У

t	X
8	14

	S	t	у	Х	Z
d[]	0	8	5	14	7
$\pi[\]$	NULL	у	S	У	У

t	X
8	14

	S	t	у	х	Z
d[]	0	8	5	14	7
$\pi[\]$	NULL	У	S	У	У

t	X
8	13

	S	t	у	х	Z
d[]	0	8	5	13	7
$\pi[\]$	NULL	У	S	Z	У

t	X
8	13

	S	t	у	Х	Z
d[]	0	8	5	13	7
$\pi[\]$	NULL	У	S	Z	У

	S	t	у	Х	Z
d[]	0	8	5	13	7
$\pi[\]$	NULL	У	S	Z	У

	S	t	у	Х	Z
d[]	0	8	5	13	7
$\pi[\]$	NULL	у	S	Z	У

	S	t	у	Х	Z
d[]	0	8	5	9	7
$\pi[\]$	NULL	у	S	t	У

	S	t	у	х	Z
d[]	0	8	5	9	7
$\pi[\]$	NULL	У	S	t	У

	S	t	у	х	Z
d[]	0	8	5	9	7
$\pi[\]$	NULL	у	S	t	у

Reconstrucción del camino

mas corto

(s,t)

	S	t	у	x	Z
d[]	0	8	5	9	7
$\pi[\]$	NULL	у	S	t	у

Reconstrucción del camino

mas corto

(s, y)

	S	t	у	x	Z
d[]	0	8	5	9	7
$\pi[\]$	NULL	у	S	t	у

Reconstrucción del camino

mas corto

(s,x)

	S	t	у	x	Z
d[]	0	8	5	9	7
$\pi[\]$	NULL	у	S	t	У

Reconstrucción del camino

mas corto

(S,Z)

	S	t	у	x	Z
d[]	0	8	5	9	7
$\pi[\]$	NULL	у	S	t	у

Descripción del problema

- El camino más corto desde un vértice s a todos los demás vértices del grado:
 - Bellman-Ford O(VE)
 - Dijkstra O(V + E log V)
- El camino más corto entre todos los pares del vértice del grafo
 - Floyd-Warshall
 - Johnson

All pairs shortest paths- Floyd-Warshall

• Considera todos los vértices intermedios para determinar el camino más corto, donde un vértice intermedio en un camino:

$$p = \langle v_1, v_2, v_3 \dots v_l \rangle$$

son todos los vértices diferentes a $v_1\,$ y $\,v_l\,$

• Si p_1 es el camino mas corto entre i y k, y p_2 es el camino mas corto entre k y j, entonces, el camino mas corto entre i y j es p_1 U p_2

All pairs shortest paths- Floyd-Warshall

- Vamos a usar una representación matricial para el camino mas corto
- La matriz D mantendrá las estimaciones de los caminos mas cortos en cada iteración y la matriz π los respectivos predecesores
- Inicialmente, la matriz D será igual a la matriz de pesos
- Para la matriz π :

$$\pi_{ij}^{(0)} = \begin{cases} \text{NIL} & \text{if } i = j \text{ or } w_{ij} = \infty, \\ i & \text{if } i \neq j \text{ and } w_{ij} < \infty. \end{cases}$$

• En cada iteración del algoritmo, se compara los caminos intermedios de i hasta j, y se actualiza D y π :

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

```
FLOYD-WARSHALL(W)
1.n = W.rows
2.D = W
3. FOR k=1 to n
      FOR i = 1 to n
          FOR j = 1 to n
5.
               D(i,j) = min(D(i,j), D(i,k)+D(k,j))
6.
```


D	1	2	3	4	5
1	0	3	8		-4
2		0		1	7
3		4	0		
4	2		-5	0	
5				6	0

D	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	Ν	1
2	N	Ν	Ν	2	2
3	N	3	Ν	N	N
4	4	Ν	4	Ν	Ν
5	N	N	Ν	5	N

All pairs shortest paths- Floyd-Warshall

$$k = 1, i = 1, j = 1...5$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

d11 = min(d11, d11+d11)

$$d12 = min(d12, d11+d12)=min(3,0+3)$$

$$d13 = min(d13,d11+d13)=min(8,0+8)$$

$$d14 = min(d14, d11 + d14) = min(\infty, 0 + \infty)$$

$$d15 = min(d15, d11+d15) = min(-4, 0-4)$$

π	1	2	3	4	5
1	Ν	1	1	Ν	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	N
4	4	Ν	4	N	Ν
5	Ν	Ν	Ν	5	Ν

$$k = 1$$
, $i = 2$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d21 = min(d21, d21+d11) = min(\infty, \infty+0)$$

$$d22 = min(d22, d21+d12)=min(0, \infty+3)$$

$$d23 = min(d23, d21+d13)=min(\infty, \infty+8)$$

$$d24 = min(d24, d21+d14) = min(1, \infty+7)$$

$$d25 = min(d25, d21+d15)=min(7, \infty-4)$$

D	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	1	Ν	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	N
4	4	Ν	4	Ν	Ν
5	N	N	N	5	N

$$k = 1, i = 3, j = 1...5$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d31 = min(d31, d31+d11) = min(\infty, \infty+0)$$

$$d32 = min(d32, d31+d12)=min(4, \infty+3)$$

$$d33 = min(d33, d31+d13)=min(0, \infty+8)$$

$$d34 = min(d34, d31 + d14) = min(\infty, \infty + 7)$$

$$d35 = min(d35, d31 + d15) = min(\infty, \infty-4)$$

D	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	∞	-5	0	∞
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	1	Ν	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	Ν
4	4	Ν	4	Ν	Ν
5	Ν	Ν	Ν	5	Ν

$$k = 1$$
, $i = 4$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d41 = min(d41, d41+d11)=min(2, 2+0)$$

$$d42 = min(d42, d41+d12)=min(\infty, 2+3)=5$$

$$d43 = min(d43, d41+d13)=min(-5, 2+8)$$

$$d44 = min(d44, d41 + d14) = min(0, 2+7)$$

$$d45 = min(d45, d41+d15) = min(\infty, 2-4) = -2$$

π	1	2	3	4	5
1	N	1	1	Ν	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	N
4	4	Ν	4	Ν	Ν
5	N	Ν	N	5	Ν

All pairs shortest paths- Floyd-Warshall

$$k = 1, i = 4, j = 1...5$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

 $d42 = min(d42, d41+d12)=min(\infty, 2+3)=5$ $d45 = min(d45, d41+d15)=min(\infty, 2-4)=-2$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)} ,\\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . \end{cases}$$

D	1	2	3	4	5
1	0	3	8	∞	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	1	Ν	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	N
4	4	1	4	Ν	1
5	Ν	Ν	Ν	5	Ν

$$k = 1, i = 5, j = 1...5$$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d51 = min(d51, d51+d11)=min(\infty, \infty +0)$$

$$d52 = min(d52, d51+d12)=min(\infty, \infty +3)$$

$$d53 = min(d53, d51 + d13) = min(\infty, \infty + 8)$$

$$d54 = min(d54, d51 + d14) = min(6, \infty + 7)$$

$$d55 = min(d55, d51 + d15) = min(0, \infty - 4)$$

π	1	2	3	4	5
1	N	1	1	Ν	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	Ν
4	4	1	4	Ν	1
5	N	Ν	N	5	Ν

$$k = 2$$
, $i = 1$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d11 = min(d11, d12+d21) = min(0, 3 + \infty)$$

$$d12 = min(d12, d12+d22)=min(3, 3+0)$$

$$d13 = min(d13,d12+d23)=min(8, 3 + \infty)$$

$$d14 = min(d14, d12 + d24) = min(\infty, 3 + 1) = 4$$

$$d15 = min(d15,d12+d25)=min(-4, 3+7)$$

Œ	1	2	3	4	5
π	•		3	4	3
1	Ν	1	1	Ν	1
2	Ν	Ν	Ν	2	2
3	Ν	3	Ν	Ν	Ν
4	4	1	4	Ν	1
5	Ν	Ν	Ν	5	N

All pairs shortest paths- Floyd-Warshall

$$k = 2$$
, $i = 1$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

 $d14 = min(d14, d12 + d24) = min(\infty, 3 + 1) = 4$

$\pi^{(k)}$	$\int \pi_{ij}^{(k-1)}$	$ \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} , \\ \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . $
n_{ij} —	$\pi_{kj}^{(k-1)}$	if $d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	N
4	4	1	4	Ν	1
5	Ν	Ν	N	5	N

$$k = 2$$
, $i = 2$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d21 = min(d21, d22+d21) = min(\infty, 0+\infty)$$

$$d22 = min(d22, d22+d22)=min(0, 0+0)$$

$$d23 = min(d23, d22+d23) = min(\infty, 0 + \infty)$$

$$d24 = min(d24, d22+d24) = min(1, 0 + 1)$$

$$d25 = min(d25, d22+d25)=min(7, 0+7)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	N	N
4	4	1	4	Ν	1
5	N	Ν	N	5	N

$$k = 2$$
, $i = 3$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d31 = min(d31, d32+d21) = min(\infty, 4+\infty)$$

$$d32 = min(d32, d32+d22)=min(4, 4+0)$$

$$d33 = min(d33, d32+d23) = min(0, 4 + \infty)$$

$$d34 = min(d34, d32+d24) = min(\infty, 4 + 1) = 5$$

$$d35 = min(d35, d32+d25) = min(\infty, 4+7) = 11$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	∞	∞
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	Ν	3	Ν	N	Ν
4	4	1	4	N	1
5	N	N	N	5	N

All pairs shortest paths- Floyd-Warshall

$$k = 2$$
, $i = 3$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

 $d34 = min(d34,d32+d24) = min(\infty, 4 + 1) = 5$ $d35 = min(d35,d32+d25) = min(\infty, 4 + 7) = 11$

$\pi^{(k)}$	$\int \pi_{ij}^{(k-1)}$	if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$,
$\pi_{ij} =$	$\pi_{kj}^{(k-1)}$	if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$, if $d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

	_	_	_	_	
π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	Ν	3	N	2	2
4	4	1	4	N	1
5	Ν	Ν	Ν	5	Ν

$$k = 2$$
, $i = 4$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d41 = min(d41, d42+d21) = min(2, 5+ \infty)$$

$$d42 = min(d42, d42+d22)=min(5, 5+0)$$

$$d43 = min(d43, d42+d23) = min(-5, 5 + \infty)$$

$$d44 = min(d44, d42+d24) = min(0, 5 + 1)$$

$$d45 = min(d45, d42+d25) = min(-2, 5 + 7)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	Ν	2	2
3	Ν	3	N	2	2
4	4	1	4	N	1
5	Ν	Ν	Ν	5	N

$$k = 2$$
, $i = 5$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d51 = \min(d51, d52+d21) = \min(\infty, \infty + \infty)$$

$$d52 = min(d52, d52+d22) = min(\infty, \infty + 0)$$

$$d53 = \min(d53, d52 + d23) = \min(\infty, \infty + \infty)$$

$$d54 = min(d54, d52+d24) = min(6, \infty + 1)$$

$$d55 = min(d55, d52+d25) = min(0, \infty +7)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	1	4	Ν	1
5	N	Ν	N	5	Ν

$$k = 3$$
, $i = 1$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d11 = min(d11, d13+d31) = min(0, 8 + \infty)$$

$$d12 = min(d12, d13+d32)=min(3, 8 + 4)$$

$$d13 = min(d13,d13+d33)=min(8, 8 + 0)$$

$$d14 = min(d14, d13 + d34) = min(4, 8 + 5)$$

$$d15 = min(d15,d13+d35)=min(-4, 8 + 11)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	1	4	Ν	1
5	N	Ν	N	5	Ν

$$k = 3$$
, $i = 2$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d21 = min(d21, d23+d31) = min(\infty, \infty + \infty)$$

$$d22 = min(d22, d23+d32)=min(0, \infty +4)$$

$$d23 = min(d23, d23+d33) = min(\infty, \infty + 0)$$

$$d24 = min(d24, d23 + d34) = min(1, \infty + 5)$$

$$d25 = min(d25, d23+d35)=min(7, \infty +11)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	Ν	N	5	Ν

$$k = 3$$
, $i = 3$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d31 = min(d31, d33+d31) = min(\infty, 0 + \infty)$$

$$d32 = min(d32, d33+d32)=min(4, 0 + 4)$$

$$d33 = min(d33,d33+d33)=min(0, 0 + 0)$$

$$d34 = min(d34, d33+d34) = min(5, 0 + 5)$$

$$d35 = min(d35,d33+d35)=min(11, 0 + 11)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	1	4	Ν	1
5	N	Ν	Ν	5	N

$$k = 3$$
, $i = 4$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d41 = min(d41, d43+d31) = min(2, -5 + \infty)$$

$$d42 = min(d42, d43+d32)=min(5, -5 + 4)=-1$$

$$d43 = min(d43, d43+d33) = min(-5, -5 + 0)$$

$$d44 = min(d44, d43+d34) = min(0, -5 + 5)$$

$$d45 = min(d45, d43+d35) = min(-2, -5 + 11)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	5	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	1	4	N	1
5	N	N	N	5	N

All pairs shortest paths- Floyd-Warshall

$$k = 3$$
, $i = 4$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

d42 = min(d42, d43+d32)=min(5, -5 + 4)=-1

		•	-
$\pi_{ij}^{(k)} = $	$\begin{cases} \pi_{ij}^{(k-1)} \\ \pi_{kj}^{(k-1)} \end{cases}$	if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$ if $d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$,

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	3	4	N	1
5	N	N	N	5	N

$$k = 3$$
, $i = 5$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d51 = \min(d51, d53+d31) = \min(\infty, \infty + \infty)$$

$$d52 = min(d52, d53+d32)=min(\infty, \infty +4)$$

$$d53 = min(d53, d53+d33) = min(\infty, \infty + 0)$$

$$d54 = min(d54, d53 + d34) = min(6, \infty + 5)$$

$$d55 = min(d55, d53+d35) = min(0, \infty + 11)$$

D	1	2	3	4	5
1	0	3	8	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	3	4	Ν	1
5	N	Ν	N	5	N

$$k = 4$$
, $i = 1$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d11 = min(d11, d14+d41) = min(0, 4 + 2)$$

$$d12 = min(d12, d14+d42)=min(3, 4-1)$$

$$d13 = min(d13, d14+d43) = min(8, 4-5) = -1$$

$$d14 = min(d14, d14 + d44) = min(4, 4 + 0)$$

$$d15 = min(d15, d14+d45) = min(-4, 4-2)$$

π	1	2	3	4	5
1	N	1	1	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	3	4	Ν	1
5	N	Ν	N	5	N

All pairs shortest paths- Floyd-Warshall

$$k = 4$$
, $i = 1$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

d13 = min(d13, d14+d43) = min(8, 4-5) = -1

$\pi^{(k)}$	$\int \pi_{ij}^{(k-1)}$	$ \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} , \\ \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . $
$n_{ij} = 0$	$\pi_{kj}^{(k-1)}$	if $d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

D	1	2	3	4	5
1	0	3	-1	4	-4
2	∞	0	∞	1	7
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	4	2	1
2	Ν	Ν	Ν	2	2
3	Ν	3	N	2	2
4	4	3	4	Ν	1
5	Ν	Ν	Ν	5	N

$$k = 4$$
, $i = 2$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d21 = min(d21, d24+d41) = min(\infty, 1 + 2) = 3$$

$$d22 = min(d22, d24+d42)=min(0, 1-1)$$

$$d23 = min(d23, d24+d43)=min(\infty, 1-5)=-4$$

$$d24 = min(d24, d24 + d44) = min(1, 1+0)$$

$$d25 = min(d25, d24+d45)=min(7, 1-2)=-1$$

π	1	2	3	4	5
1	Ν	1	4	2	1
2	Ν	Ν	Ν	2	2
3	N	3	N	2	2
4	4	3	4	N	1
5	N	Ν	N	5	N

All pairs shortest paths- Floyd-Warshall

$$k = 4$$
, $i = 2$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

 $d21 = min(d21, d24+d41) = min(\infty, 1 + 2) = 3$ $d23 = min(d23, d24+d43) = min(\infty, 1 - 5) = -4$ d25 = min(d25, d24+d45) = min(7, 1 - 2) = -1

-(k)	$\int \pi_{ij}^{(k-1)}$	if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$,
$n_{ij} =$	$\pi_{kj}^{(k-1)}$	if $d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$, if $d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$.

D	1	2	3	4	5
1	0	3	-1	4	-4
2	3	0	-4	1	-1
3	∞	4	0	5	11
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Ν	4	2	1
3	N	3	N	2	2
4	4	3	4	Ν	1
5	N	Ν	Ν	5	Ν

$$k = 4$$
, $i = 3$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d31 = min(d31, d34+d41) = min(\infty, 5 + 2) = 7$$

$$d32 = min(d32, d34+d42)=min(4, 5-1)$$

$$d33 = min(d33, d34+d43)=min(0, 5-5)$$

$$d34 = min(d34, d34 + d44) = min(5, 5+0)$$

$$d35 = min(d35, d34+d45) = min(11, 5 - 2) = 3$$

π	1	2	3	4	5
1	N	1	4	2	1
2	4	Ν	4	2	1
3	N	3	N	2	2
4	4	3	4	Ν	1
5	Ν	Ν	Ν	5	Ν

All pairs shortest paths- Floyd-Warshall

$$k = 4$$
, $i = 3$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

 $d31 = min(d31, d34+d41)=min(\infty, 5 + 2)=7$ d35 = min(d35, d34+d45)=min(11, 5 - 2)=3

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} ,\\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} . \end{cases}$$

D	1	2	3	4	5
1	0	3	-1	4	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	N	1	4	2	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	Ν	Ν	Ν	5	Ν

$$k = 4$$
, $i = 4$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d41 = min(d41, d44+d41) = min(2, 0 + 2)$$

$$d42 = min(d42, d44+d42)=min(-1, 0 - 1)$$

$$d43 = min(d43, d44+d43) = min(-5, 0 -5)$$

$$d44 = min(d44, d44+d44) = min(0, 0+0)$$

$$d45 = min(d45, d44+d45) = min(-2, 0 - 2)$$

D	1	2	3	4	5
1	0	3	-1	4	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	∞	∞	∞	6	0

π	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	N	Ν	N	5	Ν

All pairs shortest paths- Floyd-Warshall

$$k = 4$$
, $i = 5$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

 $d51 = min(d51, d54+d41) = min(\infty, 6 + 2) = 8$

 $d52 = min(d52, d54+d42)=min(\infty, 6-1)=5$

 $d53 = min(d53, d54+d43) = min(\infty, 6-5)=1$

d54 = min(d54, d54 + d44) = min(6, 6+0)

d55 = min(d55, d54+d45)=min(0, 6-2)

π	1	2	3	4	5
1	N	1	4	2	1
2	4	N	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	Ν	Ν	Ν	5	Ν

All pairs shortest paths- Floyd-Warshall

$$k = 4$$
, $i = 5$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

 $d51 = min(d51, d54+d41)=min(\infty, 6 + 2)=8$ $d52 = min(d52, d54+d42)=min(\infty, 6 - 1)=5$ $d53 = min(d53, d54+d43)=min(\infty, 6 - 5)=1$

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

D	1	2	3	4	5
1	0	3	-1	4	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	N	1
5	4	3	4	5	Ν

2024

$$k = 5$$
, $i = 1$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

d11 = min(d11, d15+d51)=min(0, -4 + 8)
d12 = min(d12, d15+d52)=min(3, -4 + 5) = 1
d13 = min(d13,d15+d53)=min(-1,-4+1)=-3
d14 = min(d14,d15+d54)=min(4,-4+6)=2
d15 = min(d15,d15+d55)=min(-4, -4 + 0)

D	1	2	3	4	5
1	0	3	-1	4	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	1	4	2	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	N	1
5	4	3	4	5	Ν

All pairs shortest paths- Floyd-Warshall

$$k = 5$$
, $i = 1$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

d12 = min(d12, d15+d52)=min(3, -4 + 5) = 1 d13 = min(d13, d15+d53)=min(-1, -4 + 1)=-3 d14 = min(d14, d15+d54)=min(4, -4 + 6)=2

$$\pi_{ij}^{(k)} = \begin{cases} \pi_{ij}^{(k-1)} & \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}, \\ \pi_{kj}^{(k-1)} & \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}. \end{cases}$$

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

2024

$$k = 5$$
, $i = 2$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d21 = min(d21, d25+d51)=min(3, -1 + 8)$$

$$d22 = min(d22, d25+d52)=min(0, -1 + 5)$$

$$d23 = min(d23, d25+d53)=min(-4, -1 + 1)$$

$$d24 = min(d24, d25 + d54) = min(1, -1 + 6)$$

$$d25 = min(d25, d25+d55) = min(-1, -1 + 0)$$

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

All pairs shortest paths- Floyd-Warshall

$$k = 5$$
, $i = 3$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d31 = min(d31, d35+d51)=min(7, 3 + 8)$$

$$d32 = min(d32, d35+d52)=min(4, 3 + 5)$$

$$d33 = min(d33, d35+d53)=min(0, 3 + 1)$$

$$d34 = min(d34, d35+d54) = min(5, 3+6)$$

$$d35 = min(d35, d35 + d55) = min(3, 3 + 0)$$

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	Ν	2	1
4	4	3	4	N	1
5	4	3	4	5	N

2024

$$k = 5$$
, $i = 4$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d41 = min(d41, d45+d51)=min(2, -2 + 8)$$

$$d42 = min(d42, d45+d52)=min(-1, -2+5)$$

$$d43 = min(d43, d45+d53) = min(-5, -2 + 1)$$

$$d44 = min(d44, d45 + d54) = min(0, -2 + 6)$$

$$d45 = min(d45, d45+d55) = min(-2, -2 + 0)$$

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	N	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

$$k = 5$$
, $i = 5$, $j = 1...5$

$$d_{ij}^{(k)} = \begin{cases} w_{ij} & \text{if } k = 0, \\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right) & \text{if } k \ge 1. \end{cases}$$

$$d51 = min(d51, d55+d51)=min(8, 0 + 8)$$

$$d52 = min(d52, d55+d52)=min(5, 0 + 5)$$

$$d53 = min(d53,d55+d53)=min(1, 0 + 1)$$

$$d54 = min(d54, d55+d54) = min(6, 0+6)$$

$$d55 = min(d55, d55+d55)=min(0, 0 + 0)$$

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	N	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

All pairs shortest paths- Floyd-Warshall

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

Estructura de Datos

All pairs shortest paths- Floyd-Warshall

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	N	1
5	4	3	4	5	N

2024

All pairs shortest paths- Floyd-Warshall

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	N	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	N

2024

All pairs shortest paths- Floyd-Warshall

D	1	2	3	4	5
1	0	1	-3	2	-4
2	3	0	-4	1	-1
3	7	4	0	5	3
4	2	-1	-5	0	-2
5	8	5	1	6	0

π	1	2	3	4	5
1	Ν	3	4	5	1
2	4	Ν	4	2	1
3	4	3	N	2	1
4	4	3	4	Ν	1
5	4	3	4	5	Ν

2024

Estructura de Datos

Descripción del problema

- El camino más corto desde un vértice s a todos los demás vértices del grado:
 - Bellman-Ford O(VE)
 - Dijkstra O(V + E log V)
- El camino más corto entre todos los pares del vértice del grafo
 - Floyd-Warshall
 - Johnson

All pairs shortest paths- Jhonson

- Hace uso de los algoritmos Bellman-Ford y Dijkstra
- Recomendado solo para grafos espacidos
- El algoritmo inserta un nuevo vertice s conectado a todos los vértices del grafo con pesos idual a 0

All pairs shortest paths- Jhonson

 Una vez inicializado, llama el algoritmo de Bellman-Ford para calcular el peso de cada vértice (equivalente a la solución del algoritmo de Bellman-Ford)

2024

All pairs shortest paths- Jhonson

- Aplica una función para actualizar pesos eliminando el nodo s insertado
- Se aplica el método de Dijkstra para cada nodo

112

All pairs shortest paths- Jhonson

```
JOHNSON(G, w)
    compute G', where G' \cdot V = G \cdot V \cup \{s\},
          G'.E = G.E \cup \{(s, v) : v \in G.V\}, \text{ and }
          w(s, \nu) = 0 for all \nu \in G.V
     if Bellman-Ford(G', w, s) == FALSE
          print "the input graph contains a negative-weight cycle"
     else for each vertex v \in G'. V
 5
               set h(v) to the value of \delta(s, v)
                    computed by the Bellman-Ford algorithm
          for each edge (u, v) \in G'.E
 6
               \widehat{w}(u,v) = w(u,v) + h(u) - h(v)
          let D = (d_{uv}) be a new n \times n matrix
 8
          for each vertex u \in G.V
 9
               run DIJKSTRA(G, \hat{w}, u) to compute \hat{\delta}(u, v) for all v \in G.V
10
               for each vertex v \in G.V
11
                    d_{uv} = \hat{\delta}(u, v) + h(v) - h(u)
12
13
          return D
```