Def. (Limit). A sequence a_n converges to a limit L if, for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$, such that if n > N, then $|a_n - L| < \varepsilon$

Proof Template:

Claim.
$$\lim ($$
 $) =$

Proof. Let $\varepsilon > 0$ be arbitrary.

Choose N =

Then, for any n > N, we have

$$|a_n - L| =$$

Example Proof:

Claim.
$$\lim \left(\frac{1}{n}\right) = \underline{0}$$

Proof. Let $\varepsilon > 0$ be arbitrary.

Choose $N = \frac{1}{\underline{\varepsilon}}$ (this is well-defined since $\varepsilon \neq 0$)

Then, for any n > N, we have

$$|a_n - L| = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < \frac{1}{N} = \varepsilon$$