

Experimental Bifurcation Analysis In Neurons Using Control-Based Continuation

Mark Blyth

About me

- First year PhD student (started in September)
- Supervised by Lucia and Ludovic
- Studied EngMaths for my undergrad
- Research interests are in dynamical systems theory and applied nonlinear mathematics

Presentation plan

- ★ How do neurons work?
- Why should mathematicians get excited by neurons?
- What is my research topic? Why am I doing what I'm doing?
- What challenges am I trying to solve, and how?

The interplay of slow potassium and fast sodium currents causes neurons to spike, rather than settling to a steady state

Ke Sodium currents switch on and off fast

- Sodium currents switch on and off fast
- ✓ Potassium currents switch on and off slowly

- Sodium currents switch on and off fast
- Potassium currents switch on and off slowly
- Slow potassium activation allows the membrane potential to increase fast

- Sodium currents switch on and off fast
- Potassium currents switch on and off slowly
- ₭ Slow potassium activation allows the membrane potential to increase fast
- Once it activates, the potassium current pulls the membrane potential back down

- Sodium currents switch on and off fast
- Potassium currents switch on and off slowly
- ✓ Slow potassium activation allows the membrane potential to increase fast
- ✓ Once it activates, the potassium current pulls the membrane potential back down
- Potassium current takes a while to switch off again, so membrane potential gets pulled down to below the turn-on threshold for the two currents

Currents flow through different ion channels; let's consider each one separately. Using current laws,

$$C\dot{V} = I_{Na} + I_{Ca} + I_K + I_{Cl}$$
 (1)

The Hodgkin-Huxley model gives each ionic current as a function of membrane potential. This is exciting, as we now have a mathematical model of a neuron, to which we can apply a rigorous analysis.

Presentation plan

- ₭ How do neurons work?
- Why should mathematicians get excited by neurons?
- What is my research topic? Why am I doing what I'm doing?
- What challenges am I trying to solve, and how?

Neurons exhibit a wide range of complex dynamics. Mathematical models of these dynamics can be easily tested on physical neurons. Interesting features include...

All neuron models are highly nonlinear

- K All neuron models are highly nonlinear
- Biophysically accurate models are high-dimensional

- K All neuron models are highly nonlinear
- Biophysically accurate models are high-dimensional
- The dynamics operate over multiple timescale dynamics

- All neuron models are highly nonlinear
- Biophysically accurate models are high-dimensional
- The dynamics operate over multiple timescale dynamics
- Neurons are a stochastic system

- K All neuron models are highly nonlinear
- Biophysically accurate models are high-dimensional
- The dynamics operate over multiple timescale dynamics
- ₭ Neurons are a stochastic system
- ★ The Hogkin-Huxley model has a chaotic threshold set

Presentation plan

- ₭ How do neurons work?
- Why should mathematicians get excited by neurons?
- What is my research topic? Why am I doing what I'm doing?
- What challenges am I trying to solve, and how?

✓ All results from neuroscience can be explained in terms of dynamical systems theory

- All results from neuroscience can be explained in terms of dynamical systems theory
- The current approach is to use numerical continuation to study bifurcations in models of neurons

- Keep All results from neuroscience can be explained in terms of dynamical systems theory
- ★ The current approach is to use numerical continuation to study bifurcations in models of neurons
- My goal: develop a control-based continuation method, to produce a model-free analysis of neuron bifurcations, on living cells

Class 1 excitability

Class 2 excitability

Goal: develop a method of observing bifurcations in the dynamics of living neurons.

George Box

All models are wrong, but some are useful

Numerical continuation

Consider $f(x, \lambda) = 0$. Numerical continuation seeks to track x, as λ varies. For ODEs of form

$$\dot{x} = f(x, \lambda) ,$$

this can be used to find bifurcations.

Control-based continuation

CBC allows us to apply continuation methods on black-box numerical or physical systems, no model needed.

- Use control theory to steer the system onto a (possibly unstable) natural invariant set
- Track that invariant set as the bifurcation parameter changes

This tracking step can be a classical psuedo-arclength continuation, or something more problem-specific.

Presentation plan

- ₭ How do neurons work?
- Why should mathematicians get excited by neurons?
- What is my research topic? Why am I doing what I'm doing?
- What challenges am I trying to solve, and how?

We Neurons are inherently stochastic; how do we deal with controlling and analysing this?

- № Neurons are inherently stochastic; how do we deal with controlling and analysing this?
- We The system has poor observability (eg. can't easily see population ion channel conductance); how do we control a system that we can't observe?

- № Neurons are inherently stochastic; how do we deal with controlling and analysing this?
- We The system has poor observability (eg. can't easily see population ion channel conductance); how do we control a system that we can't observe?
- We have limited control inputs; how can we use them to steer the dynamics effectively?

- № Neurons are inherently stochastic; how do we deal with controlling and analysing this?
- We The system has poor observability (eg. can't easily see population ion channel conductance); how do we control a system that we can't observe?
- We have limited control inputs; how can we use them to steer the dynamics effectively?
- ₭ How do we control a highly nonlinear black-box system?

- № Neurons are inherently stochastic; how do we deal with controlling and analysing this?
- We The system has poor observability (eg. can't easily see population ion channel conductance); how do we control a system that we can't observe?
- We have limited control inputs; how can we use them to steer the dynamics effectively?
- ₭ How do we control a highly nonlinear black-box system?
- ₭ How can CBC be extended to study global bifurcations?