Session 9

Session 9-1 도구변수

• 도구변수는 연구디자인이 어려울 때의 대안

•

Three Perspectives on Causation

- Potential Outcomes Framework : 인과추론을 방해하는 요인은 selection bias. 이는 treatment와 control 그룹이 서로 비교가능하지 않아서 생기는 차이.
- Structural Causal Model : 인과추론을 방해하는 요인은 backdoor path. do(X)를 통해 해결함.
- Statistics(: Regression) : 인과추론은 통계적 비편향성으로 정의하게 되고 이를 방해 하는 것은 내생성(Endogeneity). independent 변수가 error와 correlation이 있는 것이 내생성.

Endogeneity in Regression

- Exogenous : 원인변수와 에러와 상관관계가 없는 것.
- regression 하에서 추정 결과를 인과관계로 해석하기 위해서는 원인변수와 에러와 상관 관계가 없어야 한다.
- 에러는 우리가 관찰할 수 없는 모든 요인이 포함되는 개념.
- 현실적으로 모든것은 engodenous. 즉, 단순회귀로는 이 문제를 해결할 수 없다.
- 이를 위한 도구가 도구변수.

Taking the Selection Bias Out: Instrumental Variable(IV)

Session 9

• 원인변수 중에 error term과 상관관계를 갖는 부분을 인위적으로 도려내자는 것이 도구 변수의 기본 아이디어.

First Approach: Two-Stage Least Squares

- 1. 도구변수를 사용해서 원인변수를 예측한다. ($X=a_0+a_1Z+\epsilon'$)
- 2. 도구변수가 외생성 부분을 잘 예측한다는 가정하에서 그 부분만 따로 떼서 분석하면 비편향 추정이 되고 인과관계를 해석할 수 있다. ($Y=b_0+b_1X+\epsilon o Y=b_0+b_1\hat{X}+\epsilon''$)

Second Approach: Control Function

- 원인변수를 그대로 사용하되 인과추론에 문제가 되는 내생성 부분만 control하자.
- $X = a_0 + a_1 Z + \epsilon'$ 에서 residual을 control그룹으로 추가한다.

Identification Assumptions for IV

- 도구변수가 예측하는 부분이 외생성 이여야한다. 즉, 에러텀과 상관관계가 없어야한다.
- 도구변수는 원인변수에 대해 충분히 설명할 수 있어야한다.

Local Average Treatment Effect (LATE)

- 부분적 인과관계는 도구변수의 한계점으로 볼 수 있다.
- 이러한 부분적 인과관계의 효과를 LATE라고 한다.
- 도구변수에 의해서만 treatment가 변하는 것을 Compliers라고 한다.
- LATE는 monotonicity가정이 필요하다. 즉 도구변수가 없을 때 treatment가 변하는 Defiers그룹이 없어야 한다.

Session 9-2 도구 변수의 활용 사례

Ex1. Institution and Economic Growth

- 전세계를 봤을 때 쌍둥이 도시를 찾기 어렵기 때문에 준실험방법을 하기 어렵고 도구변수가 그 대안이 될 수 있다.
- 위 그림은 사유제산제도와 계약제도가 경제성장에 미치는 영향에 대한 그림.
 - 。 경제성장에 미치는 요인은 굉장히 많고 관찰할 수 없다. 즉, 위 원인변수들은 내생적이다.
 - 사유제산제도에 대한 도구변수로는 제국주의시절 식민지의 사망률, 인구밀도를 활용, 계약제도에는 식민 지배여부를 도구변수로 사용한다.

Ex2. Noncompliance in Randomized Experiments

- assign된 treatment그룹과 control 그룹의 차이를 비교하므로서 추정하고자 의도한 효과를 Intention to treat(ITT)라고 한다.
- 하지만 경우에 따라 treatment를 받았다고 해서 참가자들이 준수하지 않을 수도 있다. 이를 Noncompliance문제라고 한다.
- Noncompliance 문제를 해결하기 위한 방법은 treatment assignment를 도구변수로 활용하는 것.

재택근무가 근로자의 생산성에 미치는 영향에 대한 실험

- 랜덤으로 뽑기를 통해 재택 여부를 결정. 여기서 뽑힌 사람과 안뽑힌 사람을 비교하는 것이 ITT.
- 하지만 재택이 가능하다해도 재택을 안할수도 있다. 따라서 random assignment만으로 비교하는 것은 무리가 있다. 이를 Noncompliance.
- 이럴경우 treatment assignment를 도구변수로 두면 실제 재택근무만의 효과만을 분석 할 수 있다.

Session 9-3 도구 변수의 활용 팁

How to Report IV Analysis

step1. 도구변수에 대해 통계적 테스트를 진행

step2. 도구변수에 대한 이론적 타당성을 정당화

step3. 도구변수에 대한 민감도 테스트를 진행

step4. LATE인지 ATE인지 명확한 분석

통계적 테스트는 필요조건이지만 충분조건은 아니다

- relevance에 대한 가정은 통계적으로 검증할 수 있다.
- 하지만, exclusion restriction, exogeneity assumption은 검증할 수 없다. 말그대로 가 정이기 때문
 - 존재하는 test들은 굉장히 불안정함. 도구변수의 적절성을 검증하기 위해 도구변수의 적절성을 가정하기 때문
 - Hausman test: endogeneity test, H0: OLS와 IV 의 추정치의 차이가 유의하지않다. 이는 도구변수가 완전하다고 가정하에서만 성립하는 test.
 - Sargan-Hansen J test: exclusion restriction, exogeneity assumption에 대한 test. H0: k-1개의 도구변수를 사용하는 오차항과 다른 도구변수의 상관

관계가 없다.