Kapitola VII. Syntaktická analýza shora dolů

Myšlenka:

Tabulka:

Použij: $r: A \rightarrow x$

Myšlenka:

Tabulka:

Použij: $r: A \rightarrow x$

Otázka: Je možné sestrojit tuto tabulku pro **libovolnou** BKG?

Myšlenka:

Tabulka:

Použij: $r: A \rightarrow x$

Otázka: Je možné sestrojit tuto tabulku pro **libovolnou** BKG?

Odpověď: NE

Tabulka:

α	•••	a	•••
•••			
\boldsymbol{A}		$\alpha(A, a)$	
•••			

Tabulka:

_	α	•••	a	•••	Pouz		
	•••				1 002		
	\boldsymbol{A}		$\alpha(A, a)$		— (?		
	•••				Pouz		

Myšlenka: *First*(x) je množina všech terminálů, kterými může začínat řetězec derivovatelný z x

```
Definice: Necht' G = (N, T, P, S) je BKG. Pro každé x \in (N \cup T)^* je definováno First(x) jako: First(x) = \{a: a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*\}.
```

Ilustrace:
$$x = X_1 X_2 \cdots X_n$$

Myšlenka: *First*(x) je množina všech terminálů, kterými může začínat řetězec derivovatelný z x

```
Definice: Necht' G = (N, T, P, S) je BKG. Pro každé x \in (N \cup T)^* je definováno First(x) jako: First(x) = \{a: a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*\}.
```


Myšlenka: *First*(x) je množina všech terminálů, kterými může začínat řetězec derivovatelný z x

Definice: Necht'
$$G = (N, T, P, S)$$
 je BKG. Pro každé $x \in (N \cup T)^*$ je definováno $First(x)$ jako: $First(x) = \{a: a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*\}.$

Myšlenka: *First*(x) je množina všech terminálů, kterými může začínat řetězec derivovatelný z x

Definice: Necht'
$$G = (N, T, P, S)$$
 je BKG. Pro každé $x \in (N \cup T)^*$ je definováno $First(x)$ jako: $First(x) = \{a: a \in T, x \Rightarrow^* ay; y \in (N \cup T)^*\}.$

$$x = X_{1} X_{2} \cdots X_{n}$$

$$x = X_{1}X_{2} \cdots X_{n} \Rightarrow^{*} ay$$

$$a \in First(x)$$

Definice: Necht' G = (N, T, P, S) je BKG <u>bez</u> <u>\varepsilon</u>-pravidel. G je LL gramatika, pokud pro každé a $\in T$ a $A \in N$ existuje **maximálně jedno pravidlo** $A \to X_1 X_2 ... X_n \in P$ takové, že: $a \in First(X_1 X_2 ... X_n)$

Definice: Necht' G = (N, T, P, S) je BKG <u>bez</u> <u>\varepsilon</u>-pravidel. G je LL gramatika, pokud pro každé a $\in T$ a $A \in N$ existuje **maximálně jedno pravidlo** $A \to X_1 X_2 ... X_n \in P$ takové, že: $a \in First(X_1 X_2 ... X_n)$

Definice: Necht' G = (N, T, P, S) je BKG <u>bez</u> <u>\varepsilon</u>-pravidel. G je LL gramatika, pokud pro každé a $\in T$ a $A \in N$ existuje **maximálně jedno pravidlo** $A \to X_1 X_2 ... X_n \in P$ takové, že: $a \in First(X_1 X_2 ... X_n)$

Definice: Necht' G = (N, T, P, S) je BKG <u>bez</u> <u>\varepsilon</u>-pravidel. G je LL gramatika, pokud pro každé a $\in T$ a $A \in N$ existuje **maximálně jedno pravidlo** $A \to X_1 X_2 ... X_n \in P$ takové, že: $a \in First(X_1 X_2 ... X_n)$

Definice: Necht' G = (N, T, P, S) je BKG <u>bez</u> <u>\varepsilon</u>-pravidel. G je LL gramatika, pokud pro každé a $\in T$ a $A \in N$ existuje **maximálně jedno pravidlo** $A \to X_1 X_2 ... X_n \in P$ takové, že: $a \in First(X_1 X_2 ... X_n)$

Definice: Necht' G = (N, T, P, S) je BKG <u>bez</u> <u>\varepsilon</u>-pravidel. G je LL gramatika, pokud pro každé a $\in T$ a $A \in N$ existuje **maximálně jedno pravidlo** $A \to X_1 X_2 ... X_n \in P$ takové, že: $a \in First(X_1 X_2 ... X_n)$

Definice: Necht' G = (N, T, P, S) je BKG <u>bez</u> <u>\varepsilon</u>-pravidel. G je LL gramatika, pokud pro každé a $\in T$ a $A \in N$ existuje **maximálně jedno pravidlo** $A \to X_1 X_2 ... X_n \in P$ takové, že: $a \in First(X_1 X_2 ... X_n)$

Jednoduchý programovací jazyk (JPJ)

```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st\text{-list} \rangle
  2: \langle st\text{-list} \rangle \rightarrow \langle stat \rangle; \langle st\text{-list} \rangle
  3: \langle st\text{-list} \rangle \rightarrow end
  4: \langle stat \rangle \rightarrow read id
  5: \langle stat \rangle \rightarrow write \langle item \rangle
  6: \langle \text{stat} \rangle \rightarrow \text{id} := \text{add} (\langle \text{item} \rangle \langle \text{it-list} \rangle)
  7: \langle \text{it-list} \rangle \rightarrow , \langle \text{item} \rangle \langle \text{it-list} \rangle
  8: \langle \text{it-list} \rangle \rightarrow
  9: \langle \text{item} \rangle \rightarrow \text{int}
10: \langle \text{item} \rangle \rightarrow \text{id}
                                                                Pozn.: G_{IPI} je LL gramatika
```

Příklad:

```
begin
  read i;
  j := add(i, 1);
  write j;
end
```

- Vstup: G = (N, T, P, S) bez ε -pravidel
- Výstup: First(X) pro každé $X \in N \cup T$
- Metoda:
- pro každé $a \in T: First(a) := \{a\}$
- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- $\underline{\mathbf{if}} A \to X_1 X_2 ... X_n \in P$, $\underline{\mathbf{then}}$ přidej $First(X_1)$ do First(A)

- Vstup: G = (N, T, P, S) bez ε -pravidel
- Výstup: First(X) pro každé $X \in N \cup T$
- Metoda:
- pro každé $a \in T$: $First(a) := \{a\}$
- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- $\underline{\mathbf{if}} A \to X_1 X_2 ... X_n \in P$, $\underline{\mathbf{then}}$ přidej $First(X_1)$ do First(A)

Ilustrace:

1) pro každé $a \in T$: $First(a) := \{a\},$ protože $a \Rightarrow^0 a$

- Vstup: G = (N, T, P, S) bez ε -pravidel
- Výstup: First(X) pro každé $X \in N \cup T$
- Metoda:
- pro každé $a \in T$: $First(a) := \{a\}$
- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- $\underline{\mathbf{if}} A \to X_1 X_2 ... X_n \in P$, $\underline{\mathbf{then}}$ přidej $First(X_1)$ do First(A)

Ilustrace:

1) pro každé $a \in T$: 2) $First(a) := \{a\},$ protože $a \Rightarrow^0 a$

- Vstup: G = (N, T, P, S) bez ε -pravidel
- Výstup: First(X) pro každé $X \in N \cup T$
- Metoda:
- pro každé $a \in T$: $First(a) := \{a\}$
- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- $\underline{\mathbf{if}} A \to X_1 X_2 ... X_n \in P$, $\underline{\mathbf{then}}$ přidej $First(X_1)$ do First(A)

Ilustrace:

1) pro každé $a \in T$: $First(a) := \{a\},$ protože $a \Rightarrow^0 a$

- Vstup: G = (N, T, P, S) bez ε -pravidel
- Výstup: First(X) pro každé $X \in N \cup T$
- Metoda:
- pro každé $a \in T$: $First(a) := \{a\}$
- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- $\underline{\mathbf{if}} A \to X_1 X_2 ... X_n \in P$, $\underline{\mathbf{then}}$ přidej $First(X_1)$ do First(A)

Ilustrace:

1) pro každé $a \in T$: $First(a) := \{a\},$ protože $a \Rightarrow^0 a$


```
First(\underline{begin}) := \{\underline{begin}\}First(\underline{id}) := \{\underline{id}\}First(\underline{,}) := \{\underline{,}\}First(\underline{end}) := \{\underline{end}\}First(\underline{int}) := \{\underline{int}\}First(\underline{,}) := \{\underline{,}\}First(\underline{read}) := \{\underline{read}\}First(\underline{:=}) := \{\underline{:=}\}First(\underline{,}) := \{\underline{,}\}First(\underline{write}) := \{\underline{write}\}First(\underline{add}) := \{\underline{add}\}First(\underline{,}) := \{\underline{,}\}
```

```
First(\mathbf{begin}) := \{\mathbf{begin}\}
                                  First(id)
                                                              First(,) := \{
First(end)
                                  First(int)
                                                 := \{ int \}
                                                              First( ( ) := 
                 := \{end\}
First(read)
                                  First(:=)
                                                              First():=
                := {read}
First(write) := {write}
                                  First(add)
                                                              First(;) :=
                                                 := {add}
                                    přidej First(id)
\langle item \rangle \rightarrow id \in P:
                                                           do First(<item>)
                                    přidej First(<u>int</u>)
\langle item \rangle \rightarrow int \in P:
                                                           do First(<item>)
                                    = \{ id, int \}
Celkově: First(<item>)
```

```
First(\mathbf{begin}) := \{ \underline{\mathbf{begin}} \}
                                     First(id)
                                                                    First(,) := \{
                                                     := \{ int \}
First(end)
                  := {end}
                                     First(int)
                                                                    First(() :=
First(read)
                                     First(:=)
                                                                    First()) :=
                  := {read}
First(write) := {write}
                                     First(add)
                                                                    First(;) := \{;
                                                     := {add}
\langle item \rangle \rightarrow id \in P:
                                        přidej First(id)
                                                                 do First(<item>)
\langle item \rangle \rightarrow int \in P:
                                       přidej First(int)
                                                                 do First(<item>)
                                       = \{id, int\}
Celkově: First(<item>)
                                        přidej First())
                                                                 do First(<it-list>)
\langle it\text{-list} \rangle \rightarrow
                                       přidej First()
\langle \text{it-list} \rangle \rightarrow \frac{1}{2} \dots \in P:
                                                                 do First(<it-list>)
Celkově: First(<it-list>)
                                        = \{ ), , \}
```

```
First(\mathbf{begin}) := \{\mathbf{begin}\}
                                      First(id)
                                                                      First(,) := \{
                                                       := \{ int \}
First(end)
                                      First(int)
                                                                      First(() := \{
                   := \{end\}
                                                                      First() :=
First(read)
                                      First(:=)
                   := {read}
First(write) := {write}
                                      First(add) := \{add\}
                                                                      First(;) := \{;
\langle item \rangle \rightarrow id \in P:
                                         přidej First(id)
                                                                   do First(<item>)
 \langle item \rangle \rightarrow int \in P:
                                         přidej First(int)
                                                                   do First(<item>)
                                         = \{id, int\}
 Celkově: First(<item>)
                                         přidej First()
 \langle \text{it-list} \rangle \rightarrow
                                                                   do First(<it-list>)
                                         přidej First(,)
                                                                   do First(<it-list>)
 \langle \text{it-list} \rangle \rightarrow \dots \in P:
 Celkově: First(<it-list>)
                                         = \{ ), , \}
                                         přidej First(id) do First(<stat>)
 \langle \text{stat} \rangle \rightarrow \text{id} \dots
                                         přidej First(write)do First(<stat>)
 \langle \mathbf{stat} \rangle \rightarrow \overline{\mathbf{write}} \dots \in P:
                                         přidej First(read) do First(<stat>)
 \langle \text{stat} \rangle \rightarrow \text{read} \dots \in P:
                                         = \{ id, write, read \}
 Celkově: First(<stat>)
```

```
First(\mathbf{begin}) := \{\mathbf{begin}\}
                                        First(id)
                                                                          First(,) := \{
                                        First(int)
                                                          := \{ int \}
First(end)
                                                                          First(() := \{
                    := \{end\}
First(read)
                                                                          First() :=
                                        First(:=)
                    := {read}
First(\overline{\mathbf{write}}) := {\overline{\mathbf{write}}}
                                        First(add) := \{add\}
                                                                          First(;) := \{;
\langle item \rangle \rightarrow id \in P:
                                           přidej First(id)
                                                                      do First(<item>)
 \langle item \rangle \rightarrow int \in P:
                                           přidej First(int)
                                                                      do First(<item>)
                                           = \{id, int\}
 Celkově: First(<item>)
                                           přidej First()
                                                                      do First(<it-list>)
 \langle \text{it-list} \rangle \rightarrow
                                           přidej First(,)
                                                                      do First(<it-list>)
 \langle \text{it-list} \rangle \rightarrow \dots \in P:
 Celkově: First(<it-list>)
                                           = \{), , \}
 \langle \text{stat} \rangle \rightarrow \text{id} \dots
                                           přidej First(id) do First(<stat>)
                                           přidej First(write)do First(<stat>)
 \langle \mathbf{stat} \rangle \rightarrow \overline{\mathbf{write}} \dots \in P:
 \langle \text{stat} \rangle \rightarrow \text{read} \dots \in P:
                                           přidej First(read) do First(<stat>)
 Celkově: First(<stat>)
                                           = {id, write, read}
\langle \text{st-list} \rangle \rightarrow \text{end} \in P:
                                           přidej First(end) do First(<st-list>)
                                           přidej First(<stat>)do First(<st-list>)
\langle \text{st-list} \rangle \rightarrow \langle \text{stat} \rangle \dots \in P:
Celkově: First(<st-list>)
                                           = \{ id, write, read, end \}
```

First(X) pro JPJ: Příklad

```
First(\mathbf{begin}) := \{\mathbf{begin}\}\
                                        First(id)
                                                                         First(\cdot) := \{\cdot\}
First(end)
                                                         := \{ int \}
                                                                         First(()) := \{
                   := {end}
                                       First(int)
First(read)
                                       First(:=)
                                                                         First()) := {
                   := {read}
                                                                         First(:) := \{:\}
First(\overline{\mathbf{write}}) := {\overline{\mathbf{write}}}
                                        First(add) := \{add\}
 \langle item \rangle \rightarrow id \in P:
                                          přidej First(id)
                                                                     do First(<item>)
 \langle item \rangle \rightarrow int \in P:
                                          přidej First(int)
                                                                     do First(<item>)
                                          = \{id, int\}
 Celkově: First(<item>)
 \langle \text{it-list} \rangle \rightarrow
                                          přidej First()
                                                                     do First(<it-list>)
                     \in P:
 \langle \text{it-list} \rangle \rightarrow \underline{\quad} \dots \in P:
                                          přidej First(,)
                                                                     do First(<it-list>)
 Celkově: First(<it-list>)
                                          = \{ ), , \}
 \langle \text{stat} \rangle \rightarrow \text{id} \dots
                                          přidej First(id) do First(<stat>)
                                          přidej First(write)do First(<stat>)
 \langle \mathbf{stat} \rangle \rightarrow \mathbf{write} \dots \in P:
                                          přidej First(read) do First(<stat>)
 \langle \mathbf{stat} \rangle \rightarrow \mathbf{read} \dots \in P:
 Celkově: First(<stat>)
                                          = {id, write, read}
\langle st\text{-list} \rangle \rightarrow end \in P:
                                          přidej First(end) do First(<st-list>)
\langle st\text{-list} \rangle \rightarrow \langle stat \rangle \dots \in P:
                                          přidej First(<stat>)do First(<st-list>)
Celkově: First(<st-list>)
                                          = \{ id, write, read, end \}
                                          přidej First(begin) do First(cprog)
 \langle prog \rangle \rightarrow begin ... \in P:
                                          = {begin}
 Celkově: First(cprog>)
```

α	•••	a	•••
•••			
\boldsymbol{A}		$\alpha(A, a)$	
•••			

α	•••	a	•••	
•••				$\alpha(A, \boldsymbol{a}) = A \rightarrow X_1 X_2 X_n \in P$
\boldsymbol{A}		$\alpha(A, a)$		pokud $a \in First(X_1)$; jinak $\alpha(A,$
•••				a) je prázdné ⇒ CHYBA

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in First(X_1)$; jinak $\alpha(A, a)$ je prázdné \Rightarrow CHYBA

Vytvořme: LL tabulku


```
Prav. r: A \rightarrow X_1 X_2 ... X_n \mid First(X_1)
 1: \langle prog \rangle \rightarrow begin ... \{begin\}
  2: \langle st\text{-list} \rangle \rightarrow \langle stat \rangle \dots \{ \underline{id}, \underline{write}, \underline{read} \}
  3: \langle st\text{-list} \rangle \rightarrow end
                                                              {<u>end</u>}
  4: \langle \text{stat} \rangle \rightarrow \text{read} \dots \{ \frac{\text{read}}{} \}
  5: \langle \text{stat} \rangle \rightarrow \text{write } \dots \{ \frac{\text{write}}{\text{write}} \}
  6: \langle \text{stat} \rangle \rightarrow \text{id} \dots
                                                             {id}
  7: \langle \text{it-list} \rangle \rightarrow \dots
  8: \langle \text{it-list} \rangle \rightarrow
  9: \langle \text{item} \rangle \rightarrow \text{int}
                                                               {<u>int</u>}
   0: <item> \rightarrow id
                                                               \{id\}
```


 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in First(X_1)$; jinak $\alpha(A, a)$ je prázdné \Rightarrow **CHYBA**

Vytvořme: LL tabulku


```
\begin{array}{lll} \textbf{Prav.} \ r: A \rightarrow X_1 X_2 ... X_n & First(X_1) \\ 1: & & & & & & & \\ 1: & & & & & & & \\ 2: & & & & & & \\ 2: & & & & & & \\ 3: & & & & & & \\ 3: & & & & & & \\ 4: & & & & & & \\ 4: & & & & & & \\ 5: & & & & & & \\ 5: & & & & & & \\ 6: & & & & & & \\ 6: & & & & & & \\ 6: & & & & & & \\ 6: & & & & & & \\ 6: & & & & & & \\ 1: & & & & & \\ 0: & & & & & \\ 1: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & \\ 0: & & & & & \\ 0: & & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & & & & \\ 0: & &
```


 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in First(X_1)$; jinak $\alpha(A, a)$ je prázdné \Rightarrow CHYBA

Vytvořme: LL tabulku

```
\begin{array}{lll} \textbf{Prav.} \ r \colon A \to X_1 X_2 \dots X_n & \textit{First}(X_1) \\ \textbf{1} \colon & < \textbf{prog} > \to \textbf{begin} \dots \{ \frac{\textbf{begin}}{\textbf{id}} \} \\ \textbf{2} \colon & < \textbf{st-list} > \to \textbf{cstat} > \dots \{ \frac{\textbf{id}}{\textbf{id}}, \frac{\textbf{write}}{\textbf{read}} \} \\ \textbf{3} \colon & < \textbf{st-list} > \to \textbf{end} & \{ \frac{\textbf{end}}{\textbf{end}} \} \\ \textbf{4} \colon & < \textbf{stat} > \to \textbf{read} \dots & \{ \frac{\textbf{read}}{\textbf{cstat}} \} \\ \textbf{5} \colon & < \textbf{stat} > \to \textbf{write} \dots & \{ \frac{\textbf{id}}{\textbf{id}} \} \\ \textbf{6} \colon & < \textbf{stat} > \to \textbf{id} \dots & \{ \frac{\textbf{id}}{\textbf{cstat}} \} \\ \textbf{7} \colon & & < \textbf{it-list} > \to \end{pmatrix} & \{ \frac{\textbf{j}}{\textbf{cstat}} \} \\ \textbf{9} \colon & & < \textbf{item} > \to \textbf{int} & \{ \frac{\textbf{id}}{\textbf{id}} \} \\ \textbf{10} \colon & & < \textbf{item} > \to \textbf{id} & \{ \frac{\textbf{id}}{\textbf{id}} \} \\ \end{array}
```


 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in First(X_1)$; jinak $\alpha(A, a)$ je prázdné \Rightarrow **CHYBA**

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in First(X_1)$; jinak $\alpha(A, a)$ je prázdné \Rightarrow **CHYBA**


```
1: 
| 1: 
| 2: <st-list> | 3: <st-list> | 4: <stat> | 3: <st-list> | 4: <stat> | 4: <stat> | 4: <stat> | 5: <stat> | 4: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 3: <st-list> | 4: <stat> | 4: <stat> | 5: <stat> | 4: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 3: <st-list> | 3: <st-list> | 3: <st-list> | 3: <stat> | 4: <stat> | 3: <stat > | 3: <sta
```

Zdrojový program:

begin write 25; end


```
1: 
| 1: 
| 2: <st-list> | → | begin | <st-list> | → | cit-list> |
```

Zdrojový program:

<item>

begin write 25; end


```
1: 
| 1: 
| 2: <st-list> | 3: <st-list> | 4: <stat> | 3: <st-list> | 4: <stat> | 4: <stat> | 5: <stat> | 4: <stat> | 5: <st-list> | 4: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 3: <st-list> | 4: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 3: <st-list> | 4: <stat> | 5: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 3: <st-list> | 3: <st-list> | 3: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <st-list> | 5: <stat> | 6: <stat> | 7: <stat | 7: <
```

Zdrojový program:

begin write 25; end


```
1: 
| 1: 
| 2: <st-list> | 3: <st-list> | 4: <stat> | 3: <st-list> | 4: <stat> | 4: <stat> | 4: <stat> | 5: <stat> | 4: <stat> | 4: <stat> | 5: <stat> | 4: <stat> | 4: <stat> | 4: <stat> | 5: <stat> | 6: <stat> | 3: <it-list> | 3: <it-
```

Zdrojový program:

<it-list>

<item>

begin write 25; end

Lexikální analyzátor

cprog>

```
1: 
| 1: 
| 2: <st-list> | 3: <st-list> | 4: <stat> | 3: <st-list> | 4: <stat> | 4: <stat> | 3: <st-list> | 4: <stat> | 5: <stat> | 4: <stat > | 4: <
```

Zdrojový program:

<item>

begin write 25; end

Lexikální analyzátor


```
1: <prog> \rightarrow \underline{\text{begin}} <st-list> 6: <stat> \rightarrow \underline{\text{id}} := \underline{\text{add}} ( ... \\ 2: <st-list> \rightarrow <stat> : <st-list> 7: <it-list> \rightarrow : <item> <it-list> \rightarrow :
2: \langle \text{st-list} \rangle \rightarrow \overline{\langle \text{stat} \rangle}; \langle \text{st-list} \rangle
                                                                                     8: \langle \text{it-list} \rangle \rightarrow
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                                     9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                                    \rightarrow id
                                                                                                                                                           add
                                                                              id int
                             beg | end |
   cprog>
  <st-list>
  <stat>
  <it-list>
   <item>
```



```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st-list \rangle  6: \langle stat \rangle
2: \langle \text{st-list} \rangle \rightarrow \langle \text{stat} \rangle; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                        8: \langle \text{it-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                           9: \langle item \rangle \rightarrow int
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                   \rightarrow id
                                                                                                                                    add
                                                                  id int
                        beg | end |
                                                       wr
  cprog>
  <st-list>
  <stat>
  <it-list>
```



```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st-list \rangle  6: \langle stat \rangle
2: \langle \text{st-list} \rangle \rightarrow \langle \text{stat} \rangle; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                        8: \langle \text{it-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                            9: \langle item \rangle \rightarrow int
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                    \rightarrow id
                                                                                                                                     add
                                                                   id
                                                                           int
                        beg | end |
  cprog>
  <st-list>
  <stat>
  <it-list>
```



```
1: <prog> \rightarrow \underline{\text{begin}} <st-list> 6: <stat> \rightarrow \underline{\text{id}} := \underline{\text{add}} ( ... \\ 2: <st-list> \rightarrow <stat> \underline{;} <st-list> 7: <it-list> \rightarrow \underline{;} <item> <it-list> \rightarrow \underline{;} <
2: \langle \text{st-list} \rangle \rightarrow \langle \text{stat} \rangle; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                                           8: \langle \text{it-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                                           9: \langle item \rangle \rightarrow int
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                                             \rightarrow id
                                                                                                                                                                      add
                                                                                   id int
                               beg | end |
                                                                      wr
   cprog>
   <st-list>
   <stat>
   <it-list>
```



```
1: <prog> \rightarrow \underline{\text{begin}} <st-list> 6: <stat> \rightarrow \underline{\text{id}} := \underline{\text{add}} ( ... \\ 2: <st-list> \rightarrow <stat> \underline{;} <st-list> 7: <it-list> \rightarrow \underline{;} <item> <it-list> \rightarrow \underline{;} <
2: \langle \text{st-list} \rangle \rightarrow \langle \text{stat} \rangle; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                                              8: \langle \text{it-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                                              9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                                                 \rightarrow id
                                                                                                                                                                            add
                                                                                      id
                                                                                                 int
                                beg end
                                                                        wr
   cprog>
   <st-list>
   <stat>
```

<it-list>


```
1: <prog> \rightarrow \underline{\text{begin}} <st-list> 6: <stat> \rightarrow \underline{\text{id}} := \underline{\text{add}} ( ... \\ 2: <st-list> \rightarrow <stat> \underline{;} <st-list> 7: <it-list> \rightarrow \underline{;} <item> <it-list> \rightarrow \underline{;} <
2: \langle \text{st-list} \rangle \rightarrow \langle \text{stat} \rangle; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                                            8: \langle \text{it-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                                             9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                                               \rightarrow id
                                                                                                                                                                         add
                                                                                     id
                                                                                               int
                               beg end
                                                                       wr
   cprog>
   <st-list>
   <stat>
   <it-list>
```



```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st-list \rangle  6: \langle stat \rangle
2: \langle \text{st-list} \rangle \rightarrow \langle \text{stat} \rangle; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                          8: \langle \text{it-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                             9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                     \rightarrow id
                                                                                                                                       add
                                                                    id
                                                                            int
                         beg end
                                                         wr
  cprog>
  <st-list>
  <stat>
  <it-list>
```



```
1: <prog> \rightarrow \underline{\text{begin}} <st-list> 6: <stat> \rightarrow \underline{\text{id}} := \underline{\text{add}} ( ... 
2: <st-list> \rightarrow <stat> : <st-list> 7: <it-list> \rightarrow : <item> <it-list> \rightarrow :
2: \langle \text{st-list} \rangle \rightarrow \overline{\langle \text{stat} \rangle}; \langle \text{st-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                                       8: \langle \text{it-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                                         9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                                        \rightarrow id
                                                                                                                                                                add
                                                                                id
                                                                                          int
                             beg end
                                                                   wr
   cprog>
   <st-list>
   <stat>
```


begin write 25; end

Lexikální

analyzátor

Lexikální

begin write int

```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st-list \rangle  6: \langle stat \rangle
2: \langle \text{st-list} \rangle \rightarrow \overline{\langle \text{stat} \rangle}; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                           8: \langle it\text{-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                               9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                       \rightarrow id
                                                                                                                                         add
                                                                     id
                                                                             int
                         beg end
                                                          wr
  cprog>
  <st-list>
  <stat>
  <it-list>
```



```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st-list \rangle  6: \langle stat \rangle
2: \langle st\text{-list} \rangle \rightarrow \overline{\langle stat \rangle}; \langle st\text{-list} \rangle 7: \langle it\text{-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                          8: \langle it\text{-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                              9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                      \rightarrow id
                                                                                                                                        add
                                                                    id
                                                                            int
                         beg end
                                                         wr
  cprog>
  <st-list>
  <stat>
  <it-list>
```



```
1: \langle prog \rangle \rightarrow \underline{begin} \langle st-list \rangle \qquad 6: \langle stat \rangle
2: \langle \text{st-list} \rangle \rightarrow \overline{\langle \text{stat} \rangle}; \langle \text{st-list} \rangle 7: \langle \text{it-list} \rangle
3: \langle \text{st-list} \rangle \rightarrow \underline{\text{end}}
                                                                            8: \langle it\text{-list} \rangle \rightarrow
4: \langle \text{stat} \rangle \rightarrow \overline{\text{read}} \text{ id}
                                                               9: \langle \text{item} \rangle \rightarrow \text{int}
5: \langle \text{stat} \rangle \rightarrow \overline{\text{write}} \langle \text{item} \rangle 10: \langle \text{item} \rangle
                                                                                                        \rightarrow id
                                                                                                                                           add
                                                                      id
                                                                              int
                         beg end
                                                          wr
  cprog>
  <st-list>
  <stat>
  <it-list>
```


LL gramatiky: Úspěšné transformace

- Některé BKG mohou být převedeny na ekvivalentní LL gramatiky pomocí následujících transformací:
- 1) Faktorizace (vytýkání)
- 2) Odstranění levé rekurze

Pozn.: Pravidlo tvaru $A \to Ax$, kde $A \in N$, $x \in (N \cup T)^*$ se nazývá *levě rekurzívní pravidlo*.

Faktorizace (vytýkání)

Myšlenka: Zaměnit pravidla tvaru:

$$A \rightarrow xy_1, A \rightarrow xy_2, \dots, A \rightarrow xy_n$$
 na:

$$A \rightarrow xA', A' \rightarrow y_1, A' \rightarrow y_2, \dots, A' \rightarrow y_n,$$

kde A' je nový neterminál

Faktorizace (vytýkání)

Myšlenka: Zaměnit pravidla tvaru:

$$A \rightarrow xy_1, A \rightarrow xy_2, \dots, A \rightarrow xy_n$$
 na:

$$A \rightarrow xA', A' \rightarrow y_1, A' \rightarrow y_2, \dots, A' \rightarrow y_n,$$

kde A' je nový neterminál

Ilustrace:

Příklad:

$$\langle \text{stat} \rangle \rightarrow \text{write id}$$

 $\langle \text{stat} \rangle \rightarrow \text{write int}$

Faktorizace (vytýkání)

Myšlenka: Zaměnit pravidla tvaru:

$$A \rightarrow xy_1, A \rightarrow xy_2, \dots, A \rightarrow xy_n$$
 na:

$$A \rightarrow xA', A' \rightarrow y_1, A' \rightarrow y_2, \dots, A' \rightarrow y_n,$$

kde A' je nový neterminál

Ilustrace:

Příklad:

Odstranění levé rekurze

Myšlenka: Zaměnit pravidla tvaru: $A \rightarrow Ax$, $A \rightarrow y$ za: $A \rightarrow yA'$, $A' \rightarrow xA'$, $A' \rightarrow \varepsilon$, kde A' je nový neterminál.

Odstranění levé rekurze

Myšlenka: Zaměnit pravidla tvaru: $A \rightarrow Ax$,

 $A \rightarrow y$ za: $A \rightarrow yA'$, $A' \rightarrow xA'$, $A' \rightarrow \varepsilon$, kde

4' je nový neterminál.

Příklad:

$$E \rightarrow E + T$$

$$E \rightarrow T$$

$$T \rightarrow T^*F$$

$$T \rightarrow F$$

$$F \rightarrow (E)$$

$$F \rightarrow i$$

Odstranění levé rekurze

Myšlenka: Zaměnit pravidla tvaru: $A \rightarrow Ax$, $A \rightarrow y$ za: $A \rightarrow yA'$, $A' \rightarrow xA'$, $A' \rightarrow \varepsilon$, kde A' je nový neterminál.

Příklad:

$$\left\{ egin{array}{c} E
ightarrow E + T \ E
ightarrow T
ightarrow T st F \ T
ightarrow F \ F
ightarrow (E) \ F
ightarrow i \end{array}
ight.$$
 $\left\{ egin{array}{c} E
ightarrow TE', E'
ightarrow \epsilon \ T
ightarrow FT', T'
ightarrow \epsilon \ F
ightarrow (E) \ F
ightarrow i \end{array}
ight.$

LL-gramatiky s \(\epsilon\)-pravidly: Úvod

Proč ε-pravidla?

- Odstranění levé rekurze vytvoří ε-pravidla
- ε-pravidla často udělají gramatiku ,,čistější"

Zjednodušení této části:

Budeme předpokládat, že každý vstupní řetězec je zakončen \$.

Pozn.: \$ značí "zakončovač"

Pozn.: Musíme definovat další množiny: Empty, Follow a Predict.

Gramatika pro aritmetické výrazy

```
• G_{expr3} = (N, T, P, E), kde

• N = \{E, E', T, T', F\},

• T = \{i, +, *, (,)\},

• P = \{1: E \to TE', 2: E' \to +TE', 3: E' \to \epsilon, 4: T \to FT', 5: T' \to *FT', 6: T' \to \epsilon, 7: F \to (E), 8: F \to i \}
```

Příklad:

$$(i+i)*(i+i) \in L(G_{expr3})$$

Množina Empty

Myšlenka: Empty(x) je množina, která obsahuje jediný prvek ε , pokud x derivuje ε , jinak je prázdná

```
Definice: Necht' G = (N, T, P, S) je BKG.

Empty(\mathbf{x}) = \{ \mathbf{\epsilon} \} \text{ if } \mathbf{x} \Rightarrow^* \mathbf{\epsilon}; \text{ jinak}

Empty(\mathbf{x}) = \emptyset, \text{ kde } x \in (N \cup T)^*.
```

Ilustrace:
$$x = X_1 X_2 \cdots X_n$$

Množina Empty

Myšlenka: Empty(x) je množina, která obsahuje jediný prvek ε , pokud x derivuje ε , jinak je prázdná

```
Definice: Necht' G = (N, T, P, S) je BKG.

Empty(\mathbf{x}) = \{ \mathbf{\epsilon} \} \text{ if } \mathbf{x} \Rightarrow^* \mathbf{\epsilon}; \text{ jinak}

Empty(\mathbf{x}) = \emptyset, \text{ kde } x \in (N \cup T)^*.
```

Illustrace:
$$x = X_1 X_2 \cdots X_n$$

$$\xi \quad \xi \cdots \quad \xi$$

Množina Empty

Myšlenka: Empty(x) je množina, která obsahuje jediný prvek ε , pokud x derivuje ε , jinak je prázdná

Definice: Necht'
$$G = (N, T, P, S)$$
 je BKG.
 $Empty(\mathbf{x}) = \{ \mathbf{\epsilon} \} \text{ if } \mathbf{x} \Rightarrow^* \mathbf{\epsilon}; \text{ jinak}$
 $Empty(\mathbf{x}) = \emptyset, \text{ kde } x \in (N \cup T)^*.$

Illustrace:
$$x = X_1 X_2 \cdots X_n$$

$$\varepsilon \quad \varepsilon \quad \varepsilon$$

$$x = X_1 X_2 \cdots \varepsilon$$

$$\varepsilon \quad x = X_1 X_2 \cdots X_n \Rightarrow^* \varepsilon$$

$$Empty(x) = \{\varepsilon\}$$

Algoritmus: Empty(X)

- **Vstup:** G = (N, T, P, S)
- Výstup: Empty(X) pro každý symbol $X \in N \cup T$
- Metoda:
- pro každé $a \in T$: $Empty(a) := \emptyset$
- pro každé $A \in N$:

$$\underline{\mathbf{if}} \mathbf{A} \to \varepsilon \in P \underline{\mathbf{then}} \ Empty(\mathbf{A}) := \{\varepsilon\}$$

$$\underline{\mathbf{else}} \ Empty(\mathbf{A}) := \emptyset$$

- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *Empty*:
 - $\underline{\mathbf{if}} A \to X_1 X_2 \dots X_n \in P \ \underline{\mathbf{and}} \ Empty(X_i) = \{\epsilon\} \ \mathrm{prov \check{\mathbf{s}} echna} \ i = 1, \dots, n \ \underline{\mathbf{then}} \ Empty(A) = \{\epsilon\}$

- 1) Pro každé $\mathbf{a} \in T$: $Empty(\mathbf{a}) := \emptyset$, protože $\mathbf{a} \Rightarrow^* \mathbf{\epsilon}$
- 2) Pro každé $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$, protože $A \Rightarrow^1 \varepsilon [r]$
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *Empty*:

- 1) Pro každé $\mathbf{a} \in T$: $Empty(\mathbf{a}) := \emptyset$, protože $\mathbf{a} \Rightarrow^* \mathbf{\epsilon}$
- 2) Pro každé $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$, protože $A \Rightarrow^1 \varepsilon [r]$
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *Empty*:
- if $A \to X_1 X_2 \dots X_n \in P$ and $Empty(X_i) = \{\epsilon\}$ pro všechna $i = 1, \dots, n$ then $Empty(A) = \{\epsilon\}$

- 1) Pro každé $\mathbf{a} \in T$: $Empty(\mathbf{a}) := \emptyset$, protože $\mathbf{a} \Rightarrow^* \mathbf{\epsilon}$
- 2) Pro každé $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$, protože $A \Rightarrow^1 \varepsilon [r]$
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *Empty*:
- if $A \to X_1 X_2 \dots X_n \in P$ and $Empty(X_i) = \{\epsilon\}$ pro všechna $i = 1, \dots, n$ then $Empty(A) = \{\epsilon\}$

- 1) Pro každé $\mathbf{a} \in T$: $Empty(\mathbf{a}) := \emptyset$, protože $\mathbf{a} \Rightarrow^* \mathbf{\epsilon}$
- 2) Pro každé $r: A \to \varepsilon \in P$: $Empty(A) := \{\varepsilon\}$, protože $A \Rightarrow^1 \varepsilon [r]$
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *Empty*:
- $\underline{\mathbf{if}} A \to X_1 X_2 \dots X_n \in P \ \underline{\mathbf{and}} \ Empty(X_i) = \{\epsilon\}$ pro všechna $i = 1, \dots, n \ \underline{\mathbf{then}} \ Empty(A) = \{\epsilon\}$

Empty(X) pro G_{expr3} : Příklad

```
G_{expr3} = (N, T, P, E), \text{ kde: } N = \{E, F, T\}, T = \{i, +, *, (,)\},
P = \{1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \epsilon, 4: T \rightarrow FT'\}
5: T' \rightarrow *FT', 6: T' \rightarrow \epsilon, 7: F \rightarrow (E), 8: F \rightarrow i\}
Inicializace:
Empty(i) := \emptyset \quad Empty(E) := \emptyset
Empty(+) := \emptyset \quad Empty(E') := \{\epsilon\}
Empty(*) := \emptyset \quad Empty(T) := \emptyset
Empty(() := \emptyset \quad Empty(T') := \{\epsilon\}
Empty() := \emptyset \quad Empty(F) := \emptyset
```

• Žádná *Empty* množina již nemůže být změněna

Algoritmus: First(X)

- **Vstup:** G = (N, T, P, S)
- Výstup: First(X) pro každé $X \in N \cup T$
- Metoda:
- pro každé $a \in T$: $First(a) := \{a\}$
- pro každé $A \in N$: $First(A) := \emptyset$
- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \rightarrow X_1 X_2 ... X_{k-1} X_k ... X_n \in P$ then
 - přidej všechny symboly z $First(X_1)$ do First(A)
 - if $Empty(X_i) = \{\epsilon\}$ pro i = 1,..., k-1, kde $k \le n$ then přidej všechny symboly z $First(X_k)$ do First(A)

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow 0$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow 0$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

 3a) přidej všechny symboly z $First(X_1)$ do First(A)

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow 0$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

 3a) přidej všechny symboly z $First(X_1)$ do First(A)

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow a$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then

 3a) přidej všechny symboly z $First(X_1)$ do First(A)

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow 0$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - 3a) přidej všechny symboly z $First(X_1)$ do First(A)
 - 3b) if $Empty(X_i) = \{\epsilon\}$ pro i = 1,..., k-1, kde k < nthen přidej všechny symboly z $First(X_k)$ do First(A):

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow 0$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - 3a) přidej všechny symboly z $First(X_1)$ do First(A)
 - 3b) <u>if</u> $Empty(X_i) = \{\epsilon\}$ pro i = 1, ..., k-1, kde k < n<u>then</u> přidej všechny symboly z $First(X_k)$ do First(A):

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow 0$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - 3a) přidej všechny symboly z $First(X_1)$ do First(A)
 - 3b) if $Empty(X_i) = \{\epsilon\}$ pro i = 1,..., k-1, kde k < nthen přidej všechny symboly z $First(X_k)$ do First(A):

- 1) pro každé $a \in T$: $First(a) := \{a\}$, protože $a \Rightarrow 0$
- 2) pro každé $A \in N$: $First(A) := \emptyset$ (Inicializace)
- 3) Používej následující pravidlo, dokud bude možné měnit nějakou množinu *First*:
- if $A \to X_1 X_2 \dots X_{k-1} X_k \dots X_n \in P$ then
 - 3a) přidej všechny symboly z $First(X_1)$ do First(A)
 - 3b) if $Empty(X_i) = \{\epsilon\}$ pro i = 1,..., k-1, kde k < nthen přidej všechny symboly z $First(X_k)$ do First(A):


```
Inicializace: First(i) := \{i\} First(E) := \emptyset

First(+) := \{+\} First(E') := \emptyset

First(*) := \{*\} First(T) := \emptyset

First(() := \{(\} First(T') := \emptyset

First()) := \{(\} First(F) := \emptyset
```

```
Inicializace:
                               First(i) := \{i\}
First(+) := \{+\}
First(*) := \{*\}
                                                             First(E)
                                                             First(E')
                                                             First(T)
                                First(()
                                                             First(T')
                                First(
                                                             First(F)
F \rightarrow i \in P:
                           \overline{\mathbf{p\check{r}idej}} \ First(\mathbf{i}) = \{\mathbf{i}\}\
                                                            do First(F)
                      přidej First() = \{()\}
F \rightarrow (E) \in P:
                                                            do First(F)
Celkově: First(F) = \{i, (\}\}
```

```
Inicializace:
                           First(i)
                                                        First(E)
                             First(+) := \{+\}

First(*) := \{*\}
                                                        First(E')
                                                        First(T)
                             First(()
                                                        First(T')
                             First(
                                                        First(F)
F \rightarrow i \in P:
                       \overline{\mathbf{p\check{r}idej}}\ First(\mathbf{i}) = \{\mathbf{i}\}
                                                        do First(F)
                    přidej First() = \{()\}
F \rightarrow (E) \in P:
                                                       \mathbf{do} \ First(\mathbf{F})
Celkově: First(F) = \{i, (\}\}
T' \rightarrow *FT' \in P: přidej First (*) = {*}
                                                             do First(T')
Celkově: First(T') = \{*\}
```

```
Inicializace:
                          First(i)
                                                  First(E)
                                                  First(E')
                          First(+)
                          First(*)
                                                   First(T)
                                                   First(T')
                          First(()
                          First(
                                                   First(F)
\overline{F} \rightarrow i \in P:
                     \mathbf{p}řidej First(\mathbf{i}) = \mathbf{i}
                                                  do First(F)
F \rightarrow (E) \in P:
                  přidej First() = \{()\}
                                                  do First(F)
Celkově: First(F) = \{i, (\}
T' \rightarrow *FT' \in P: přidej First(*) = \{*\}
                                                       do First(T')
Celkově: First(T') = \{*\}
T \rightarrow FT' \in P: přidej First (F) = \{i, (\}\})
                                                       do First(T)
Celkově: First(T) = \{i, ()\}
```

```
Inicializace:
                           First(i)
                                                     First(E)
                                                     First(E')
                           First(+) := \{+\}
                           First(*)
                                                     First(T)
                                                     First(T')
                           First(()
                           First(
                                                     First(F)
\overline{F} \rightarrow i \in P:
                     \mathbf{p}řidej First(\mathbf{i}) =
                                                    \overline{\mathbf{do}} \ First(\mathbf{F})
F \rightarrow (E) \in P: přidej First(()) = \{()\}
                                                    do First(F)
Celkově: First(F) = \{i, (\}
T' \rightarrow *FT' \in P: přidej First(*) = \{*\}
                                                         do First(T')
Celkově: First(T') = \{*\}
\overline{T} \rightarrow FT' \in P:
                   přidej First(F) = \{i, (\}
                                                         do First(T)
Celkově: First(T) = \{i, (i)\}
E' \rightarrow +TE' \in P: přidej First (+) = \{+\}
                                                         do First(E')
Celkově: First(E') = \{+\}
```

```
Inicializace:
                          First(i)
                                                  First(E)
                                                  First(E')
                          First(+) := \{+\}
                          First(*) := {*}
                                                  First(T)
                                                  First(T')
                          First(()
                          First(
                                                  First(F)
\overline{F \rightarrow i} \in P:
                    \overline{\phantom{a}}přidej First(i) =
                                                 do First(F)
F \rightarrow (E) \in P: přidej First(()) = \{()\}
                                                 do First(F)
Celkově: First(F) = \{i, (\}
T' \rightarrow FT' \in P: přidej First (*) = {*}
                                                       do First(T')
Celkově: First(T') = \{*\}
\overline{T} \rightarrow FT' \in P:
                                                       do First(T)
                  přidej First(\mathbf{F}) = \{i, (\}
Celkově: First(T) = \{i, (i)\}
E' \rightarrow +TE' \in P: přidej First (+) = \{+\}
                                                       do First(E')
Celkově: First(E') = \{+\}
E \rightarrow TE' \in P: přidej First (T) = \{i, (\}\})
                                                       do First(E)
Celkově: First(E) = \{i, (\}
```

```
Inicializace:
                        First(i)
                                     :=\{i\}
                                                First(E)
                        First(+) := \{+\}
                                               First(E')
                        First(*) := {*}
                                                First(T)
                                                First(T')
                        First(()
                        First(
                                                First(F)
F \rightarrow i \in P: přidej First(i) =
                                               do First(F)
F \rightarrow (E) \in P: přidej First(()) = \{()\}
                                               do First(F)
Celkově: First(F) = \{i, (\}\}
T' \rightarrow *FT' \in P: přidej First(*) = \{*\}
                                                    do First(T')
Celkově: First(T') = \{*\}
\overline{T} \rightarrow FT' \in P:
                 přidej First(F) = \{i, (\}\}
                                                    do First(T)
Celkově: First(T) = \{i, (i)\}
E' \rightarrow +TE' \in P: přidej First (+) = \{+\}
                                                    do First(E')
Celkově: First(E') = \{+\}
E \rightarrow TE' \in P: přidej First (T) = \{i, (\}\})
                                                    do First(E)
Celkově: First(E) = \{i, (\}\}
```

• Žádná First množina již nemůže být změněna.

First(X) & Empty(X) pro G_{expr3} : Celkově

```
G_{expr3} = (N, T, P, E), \text{ kde: } N = \{E, F, T\}, T = \{i, +, *, (, )\},
P = \{ 1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \varepsilon, 4: T \rightarrow FT' \}
         5: T' \rightarrow *FT', 6: T' \rightarrow \varepsilon, 7: F \rightarrow (E), 8: F \rightarrow i
                       Empty(i) := \emptyset
                                                                         := \emptyset
Množina Empty
                                                      Empty(\mathbf{E})
                                                                        := \{\epsilon\}
                       Empty(+) := \emptyset
                                                      Empty(E')
pro všechna
                       Empty(*) := \emptyset
                                                     Empty(T)
X \in N \cup T:
                       Empty( ( ) := \emptyset 
                                                     Empty(T')
                                                                        := \{\epsilon\}
                       Empty() := \emptyset
                                                     Empty(\mathbf{F})
                                                     First(\mathbf{E}) := \{i, (\}
 Množina First First(i) := \{i\}
                       First(+) := \{+\}
                                                      First(E') := \{+\}
 pro všechna
                       First(*) := {*}
                                                      First(T) := \{i, (\}
X \in N \cup T:
                       First( ( ) := \{ ( ) \}
                                                      First(T') := \{*\}
                       First() := { ) }
                                                      First(\mathbf{F}) := \{i, (\}
```

Pozn.: pro každé $\mathbf{a} \in T$: $Empty(\mathbf{a}) = \emptyset$, $First(\mathbf{a}) = \{\mathbf{a}\}$

- Vstup: G = (N, T, P, S); First(X) & Empty(X) pro každé $X \in N \cup T$; $x = X_1 X_2 ... X_n$, kde $x \in (N \cup T)^+$
- Výstup: $First(X_1X_2...X_n)$
- Metoda:
- $First(X_1X_2...X_n) := First(X_1)$
- Používej následující pravidlo, dokud bude možné měnit množinu $First(X_1X_2...X_{k-1}X_k...X_n)$:
 - if $Empty(X_i) = \{\epsilon\}$ pro i = 1,...,k-1, kde $k \le n$ then přidej všechny symboly z $First(X_k)$ do $First(X_1X_2...X_n)$
- ! Pozn.: $First(\varepsilon) = \emptyset$

Illustrace: $X_1 X_2 \cdots X_{k-1} X_k \cdots X_n$

- Vstup: G = (N, T, P, S); First(X) & Empty(X) pro každé $X \in N \cup T$; $x = X_1 X_2 ... X_n$, kde $x \in (N \cup T)^+$
- Výstup: $First(X_1X_2...X_n)$
- Metoda:
- $First(X_1X_2...X_n) := First(X_1)$
- Používej následující pravidlo, dokud bude možné měnit množinu $First(X_1X_2...X_{k-1}X_k...X_n)$:
 - if $Empty(X_i) = \{\epsilon\}$ pro i = 1,...,k-1, kde $k \le n$ then přidej všechny symboly z $First(X_k)$ do $First(X_1X_2...X_n)$
- ! Pozn.: $First(\varepsilon) = \emptyset$

- Vstup: G = (N, T, P, S); First(X) & Empty(X) pro každé $X \in N \cup T$; $x = X_1 X_2 ... X_n$, kde $x \in (N \cup T)^+$
- Výstup: $First(X_1X_2...X_n)$
- Metoda:
- $First(X_1X_2...X_n) := First(X_1)$
- Používej následující pravidlo, dokud bude možné měnit množinu $First(X_1X_2\dots X_{k-1}X_k\dots X_n)$:
 - if $Empty(X_i) = \{\epsilon\}$ pro i = 1,...,k-1, kde $k \le n$ then přidej všechny symboly z $First(X_k)$ do $First(X_1X_2...X_n)$
- ! Pozn.: $First(\varepsilon) = \emptyset$

- Vstup: G = (N, T, P, S); First(X) & Empty(X) pro každé $X \in N \cup T$; $x = X_1 X_2 ... X_n$, kde $x \in (N \cup T)^+$
- Výstup: $First(X_1X_2...X_n)$
- Metoda:
- $First(X_1X_2...X_n) := First(X_1)$
- Používej následující pravidlo, dokud bude možné měnit množinu $First(X_1X_2...X_{k-1}X_k...X_n)$:
 - if $Empty(X_i) = \{\epsilon\}$ pro i = 1,...,k-1, kde $k \le n$ then přidej všechny symboly z $First(X_k)$ do $First(X_1X_2...X_n)$
- ! Pozn.: $First(\varepsilon) = \emptyset$

$First(X_1X_2...X_n)$: Příklad

```
G_{expr3} = (N, T, P, E), \text{ kde: } N = \{E, F, T\}, T = \{i, +, *, (, )\},
 P = \{ 1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \varepsilon, 4: T \rightarrow FT' \}
           5: T' \rightarrow *FT', 6: T' \rightarrow \varepsilon, 7: F \rightarrow (E), 8: F \rightarrow i
Množiny Empty & Empty(E) := \emptyset First(E) := \{i, (\}
                          Empty(\underline{E'}) := \{ \underline{\varepsilon} \} \quad First(\underline{E'}) := \{ + \}
First pro všechna Empty(T)' := \emptyset First(T) := \{i, (\}\}
        X \in \mathbb{N}: Empty(T') := \{\epsilon\} First(T') := \{*\}
                           Empty(\mathbf{F}) := \emptyset \quad First(\mathbf{F}) := \{i, (\}i\}
Určeme: First(E'T'FET)
```

- 1) $First(E'T'FET) := First(E') = \{+\}$
- 2) $First(\underline{F'}\underline{T'}FET)$: přidej $First(T') = \{*\}$ do $First(\underline{E'}\underline{T'}FET)$ $Empty(\mathbf{E}^{2}) = \{\epsilon\}$
- 3) First(F'T'FET): přidej $First(F) = \{i, (\} \text{ do } First(E'T'FET)\}$ $Empty(E') = Empty(T') = \{\epsilon\}$

Celkově: $First(E'T'FET) = \{+, *, i, (\}$

Algoritmus: $Empty(X_1X_2...X_n)$

- Vstup: G = (N, T, P, S); Empty(X) pro všechna $X \in N \cup T$; $x = X_1 X_2 ... X_n$, $kde x \in (N \cup T)^+$
- Výstup: $Empty(X_1X_2...X_n)$
- Metoda:
- if $Empty(X_i) = \{\epsilon\}$ pro všechna i = 1, ..., n then $Empty(X_1X_2...X_n) := \{\epsilon\}$

<u>else</u>

$$Empty(X_1X_2...X_n) := \emptyset$$

! Pozn.: $Empty(\varepsilon) = \{\varepsilon\}$

Algoritmus: $Empty(X_1X_2...X_n)$

- Vstup: G = (N, T, P, S); Empty(X) pro všechna $X \in N \cup T$; $x = X_1 X_2 ... X_n$, $kde x \in (N \cup T)^+$
- Výstup: $Empty(X_1X_2...X_n)$
- Metoda:
- if $Empty(X_i) = \{\epsilon\}$ pro všechna i = 1, ..., n then $Empty(X_1X_2...X_n) := \{\epsilon\}$

<u>else</u>

$$Empty(X_1X_2...X_n) := \emptyset$$

! Pozn.: $Empty(\varepsilon) = \{\varepsilon\}$

Algoritmus: $Empty(X_1X_2...X_n)$

- Vstup: G = (N, T, P, S); Empty(X) pro všechna $X \in N \cup T$; $x = X_1 X_2 ... X_n$, $kde x \in (N \cup T)^+$
- Výstup: $Empty(X_1X_2...X_n)$
- Metoda:
- if $Empty(X_i) = \{\epsilon\}$ pro všechna i = 1, ..., n then $Empty(X_1X_2...X_n) := \{\epsilon\}$

<u>else</u>

$$Empty(X_1X_2...X_n) := \emptyset$$

! Pozn.: $Empty(\varepsilon) = \{\varepsilon\}$

$Empty(X_1X_2...X_n)$: Příklad

```
G_{expr3} = (N, T, P, E), \text{ kde: } N = \{E, F, T\}, T = \{i, +, *, (,)\},
P = \{1: E \rightarrow TE', 2: E' \rightarrow +TE', 3: E' \rightarrow \varepsilon, 4: T \rightarrow FT'\}
5: T' \rightarrow *FT', 6: T' \rightarrow \varepsilon, 7: F \rightarrow (E), 8: F \rightarrow i\}
Množina Empty
Empty(E)
Empty(E')
Empty(E')
Empty(F')
Empty(T')
Empty(T')
Empty(T')
Empty(F)
Empty(F
```

Určeme: Empty(E'T')

 $Empty(E') = Empty(T') = \{\epsilon\}, \text{ tedy } Empty(E'T') = \{\epsilon\}$

Myšlenka: Follow(A) je množina všech terminálů, které se mohou vyskytovat vpravo od A ve větné formě.

```
Definice: Necht' G = (N, T, P, S) je BKG. Pro všechna A \in N definujeme množinu Follow(A): Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```


Myšlenka: Follow(A) je množina všech terminálů, které se mohou vyskytovat vpravo od A ve větné formě.

```
Definice: Necht' G = (N, T, P, S) je BKG. Pro všechna A \in N definujeme množinu Follow(A): Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```


Myšlenka: Follow(A) je množina všech terminálů, které se mohou vyskytovat vpravo od A ve větné formě.

```
Definice: Necht' G = (N, T, P, S) je BKG. Pro všechna A \in N definujeme množinu Follow(A): Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```


Myšlenka: Follow(A) je množina všech terminálů, které se mohou vyskytovat vpravo od A ve větné formě.

```
Definice: Necht' G = (N, T, P, S) je BKG. Pro všechna A \in N definujeme množinu Follow(A): Follow(A) = \{a: a \in T, S \Rightarrow^* xAay, x, y \in (N \cup T)^*\} \cup \{\$: S \Rightarrow^* xA, x \in (N \cup T)^*\}
```


Algoritmus: Follow(A)

- **Vstup:** G = (N, T, P, S);
- Výstup: Follow(A) pro každé $A \in N$
- Metoda:
- $Follow(S) := \{\$\};$
- Používej následující pravidlo, dokud bude možné měnit nějakou množinu *Follow*:
- if $A \rightarrow xBy \in P$ then
 - if y ≠ ε then
 přidej všechny symboly z First(y) do Follow(B);
 - if Empty(y) = {ε} then
 přidej všechny symboly z Follow(A) do Follow(B);

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)
 - **2b**) <u>if</u> $Empty(y) = \{\epsilon\}$ <u>then</u> přidej všechny symboly z Follow(A) do Follow(B)

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)
 - 2b) <u>if</u> $Empty(y) = \{\epsilon\}$ <u>then</u> přidej všechny symboly z Follow(A) do Follow(B)

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)
 - 2b) <u>if</u> $Empty(y) = \{\epsilon\}$ <u>then</u> přidej všechny symboly z Follow(A) do Follow(B)

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)
 - **2b**) <u>if</u> $Empty(y) = \{\epsilon\}$ <u>then</u> přidej všechny symboly z Follow(A) do Follow(B)

- 2) Používej následující pravidlo, dokud bude možné měnit *Follow*:
- if $A \rightarrow xBy \in P$ then 2a) if $y \neq \varepsilon$ then přidej všechny symboly z First(y) do Follow(B)
 - 2b) <u>if</u> $Empty(y) = \{\epsilon\}$ <u>then</u> přidej všechny symboly z Follow(A) do Follow(B)


```
First(E)
                                                          Follow(\mathbf{E}) := \emptyset
                              Empty(E)
                              Empty(E')
                                             := \{\epsilon\}
First(E')
                                                          Follow(E') := \emptyset
First(T)
                              Empty(T)
                                                          Follow(T) := \emptyset
                                                          Follow(T') := \emptyset
First(T')
                              Empty(T')
                                             := \{\epsilon\}
First(F)
                              Empty(F)
                                                          Follow(\mathbf{F}) := \emptyset
```

```
First(E)
                                                              Follow(\mathbf{E}) := \emptyset
                                Empty(E)
                                                             Follow(E') := \emptyset
                                                 := \{\epsilon\}
First(E')
                                Empty(E')
                                                              Follow(T)
First(T)
                                Empty(T)
First(T')
                                Empty(T')
                                                 := \{\epsilon\}
                                                              Follow(T')
First(F)
                                                              Follow(F)
                                Empty(\mathbf{F})
\overline{\mathbf{0})} \ Follow(\underline{E}) := \{\$\}
```

```
First(E)
                                                     Follow(E) := \emptyset
                           Empty(E)
                                          := \{\epsilon\}
                                                     Follow(E') := \emptyset
First(E')
                           Empty(E')
First(T)
                                                     Follow(T)
                           Empty(T)
First(T')
                           Empty(T')
                                          := \{\epsilon\}
                                                     Follow(T')
First(F)
                                                     Follow(F)
                           Empty(\mathbf{F})
```

 $0) Follow(E) := \{\$\}$

$$1) F \rightarrow (E) \in P:$$

$$\neq \varepsilon$$

```
First(E)
                            Empty(E)
                                                     Follow(\mathbf{E}) := \emptyset
                            Empty(E')
                                          := \{\epsilon\}
First(E')
                                                     Follow(E') := \emptyset
First(T)
                            Empty(T)
                                                     Follow(T)
First(T')
                                          := \{\epsilon\}
                                                     Follow(T')
                            Empty(T')
First(F)
                                                      Follow(F)
                            Empty(F)
```

 $\overline{\mathbf{0})} \ Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: přidej First() = \{\} do Follow(E)
```

```
First(E)
                           Empty(E)
                                                    Follow(\mathbf{E}) := \emptyset
                                         := \{\epsilon\}
First(E')
                           Empty(E')
                                                   Follow(E') :=
First(T)
                           Empty(T)
                                                    Follow(T)
First(T')
                                         := \{\epsilon\}
                                                    Follow(T')
                           Empty(T')
First(F)
                           Empty(F
                                                    Follow(F
```

 $\overline{\mathbf{0}}) \ Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: přidej First() = \{\} do Follow(E)
```

```
First(E)
                            Empty(E)
                                                       Follow(\mathbf{E}) := \emptyset
                                           := \{\epsilon\}
                            Empty(E')
First(E')
                                                       Follow(E') := \emptyset
First(T)
                            Empty(T)
                                                       Follow(T)
                                           := \{\epsilon\}
                                                       Follow(T')
First(T')
                            Empty(T')
First(F)
                                                       Follow(F)
                            Empty(\mathbf{F})
```

 $\overline{\mathbf{0}}) \ Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: přidej First() = \{\} do Follow(E)
```

```
2) E \rightarrow TE' \in P:

\varepsilon: Empty(\varepsilon) = \{\varepsilon\}
```

```
First(E)
                                                        Follow(\mathbf{E}) := \emptyset
                             Empty(E)
                                            := \{\epsilon\}
                                                       Follow(E') :=
First(E')
                             Empty(E')
First(T)
                             Empty(T)
                                                        Follow(T)
                                            := \{\epsilon\}
                                                        Follow(T')
First(T')
                             Empty(T')
                                                        Follow(F)
First(\mathbf{F})
                             Empty(\mathbf{F})
```

 $\overline{\mathbf{0}}) Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: přidej First()) = \{\}\} do Follow(E)
```

```
2) E \rightarrow TE' \in P: přidej Follow(E) = \{\$, \} do Follow(E')

\varepsilon: Empty(\varepsilon) = \{\varepsilon\}
```

```
First(E)
                             Empty(E)
                                                       Follow(\mathbf{E}) := \emptyset
                            Empty(E') := \{\epsilon\}
First(E')
                                                       Follow(E') := \emptyset
                                                       Follow(T)
First(T)
                          Empty(T)
                                           := \{\epsilon\}
                                                       Follow(T')
First(T')
                            Empty(T')
                                                       Follow(F)
First(\mathbf{F})
                            Empty(\mathbf{F})
```

 $\overline{\mathbf{0}}) Follow(\underline{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: přidej First()) = \{\}\} do Follow(E)
```

2)
$$E \rightarrow TE' \in P$$
: přidej $Follow(E) = \{\$, \}$ do $Follow(E')$
 $E : Empty(E) = \{E\}$
 $E \rightarrow TE' \in P$:
 $\neq E$

```
First(E) := {i, (} Empty(E) := \emptyset Follow(E) := \emptyset

First(E') := {+} Empty(E') := {\epsilon} Follow(E') := \emptyset

First(E') := {i, (} Empty(E') := \emptyset Follow(E') := \emptyset

First(E') := {*} Empty(E') := {\epsilon} Follow(E') := \emptyset

First(E') := {*} Empty(E') := {\epsilon} Follow(E') := \emptyset

First(E') := {\epsilon} Empty(E') := {\epsilon} Follow(E') := \emptyset
```

 $\overline{\mathbf{0})} \ Follow(\mathbf{E}) := \{\$\}$

```
1) F \rightarrow (E) \in P: přidej First()) = \{\}\} do Follow(E)
```

2)
$$E \rightarrow TE' \in P$$
: přidej $Follow(E) = \{\$, \}$ do $Follow(E')$ $E : Empty(E) = \{E\}$

$$E \rightarrow TE' \in P$$
: přidej $First(E') = \{+\}$ do $Follow(T)$

$$\neq E$$

```
Follow(X) pro G_{expr3}: Příklad 1/3
First(E)
                              Empty(E)
                                                          Follow(\mathbf{E}) := \emptyset
First(\mathbf{E'}) := \{+\} Empty(\mathbf{E'}) := \{\epsilon\}
                                                          Follow(E') := \emptyset
First(T) := \{i, (\} \\ First(T') := \{*\}
                           Empty(T) := \emptyset
                                                          Follow(T)
                        Empty(T') := \{\epsilon\}
                                                          Follow(T')
                                                          Follow(F)
                           Empty(\mathbf{F})
First(F)
\overline{\mathbf{0})} \, \overline{Follow}(\underline{E}) := \{\$\}
\overline{1)} \stackrel{F}{\longrightarrow} (E) \in P:
                           p\check{r}idej First()) = \{\} do Follow(E)
Celkově: Follow(E) = \{\$, \}
2) E \rightarrow TE' \subseteq P: přidej Follow(E) = \{\$, \} do Follow(E')
                  \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
   E \rightarrow TE' \in P: přidej First(E') = \{+\} \text{ do } Follow(T)
   E \rightarrow TE' \in P:
```

 $Empty(\mathbf{E'}) = \{ \epsilon \}$

```
Follow(X) pro G_{expr3}: Příklad 1/3
                             Empty(E)
                                                        Follow(\mathbf{E}) := \emptyset
First(E)
First(\mathbf{E'}) := \{+\} Empty(\mathbf{E'}) := \{\epsilon\}
                                                        Follow(E') := \emptyset
First(T) := \{i, (\} \\ First(T') := \{*\}
                          Empty(T) := \emptyset
                                                        Follow(T)
                       Empty(T') := \{\epsilon\}
                                                        Follow(T')
                                                         Follow(F)
                          Empty(\mathbf{F})
First(F)
\overline{\mathbf{0})} \, \overline{Follow}(\underline{E}) := \{\$\}
\overline{1)} \stackrel{F}{\longrightarrow} (E) \in P:
                          p\check{r}idej First()) = \{\} do Follow(E)
Celkově: Follow(E) = \{\$, \}
2) E \rightarrow TE' \subseteq P: přidej Follow(E) = \{\$, \} do Follow(E')
                 \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
                          přidej First(E') = \{+\} do Follow(T)
   E \rightarrow TE' \in P: přidej Follow(E) = \{\$, \} do Follow(T)
   Empty(\mathbf{E'}) = \{ \epsilon \}
```

```
Follow(X) pro G_{expr3}: Příklad 1/3
First(\mathbf{E}) := \{i, (\} Empty(\mathbf{E}) := \emptyset
First(\mathbf{E}') := \{+\} Empty(\mathbf{E}') := \{\varepsilon\}
                                                                 Follow(\mathbf{E}) := \emptyset
                                                                 Follow(E') := \emptyset
\begin{array}{ll} First(T) & := \{i, (\} & Empty(T) & := \emptyset & Follow(T) & := \emptyset \\ First(T') & := \{*\} & Empty(T') & := \{\epsilon\} & Follow(T') & := \emptyset \end{array}
                                                                 Follow(\mathbf{F}) := \emptyset
                              Empty(\mathbf{F})
First(F)
0) Follow(E) := \{\$\}
1) \stackrel{F}{\longrightarrow} (\stackrel{E}{E}) \in P:
                              p\check{r}idej First() = \{\} do Follow(E)
Celkově: Follow(E) = \{\$, \}
2) E \rightarrow TE' \in P: přidej Follow(E) = \{\$, \} do Follow(E')
                    \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
   E \rightarrow TE' \in P: přidej First(E') = \{+\} do Follow(T)
   E \rightarrow TE' \in P: přidej Follow(E) = \{\$, \} do Follow(T)
    Empty(\mathbf{E'}) = \{ \epsilon \}
Celkově: Follow(E') = \{\$, \}, Follow(T) = \{+, \$, \}
```

```
First(E)
                           Empty(E)
                                                     Follow(E) := \{\$,
                                         := \{\epsilon\}
First(E')
                           Empty(E')
                                                     Follow(E') := \{\$,
First(T)
                                                     Follow(T) := \{+, \$, \}
                           Empty(T)
                                                     Follow(T') := \emptyset
First(T')
                           Empty(T')
                                          := \{\epsilon\}
First(F)
                           Empty(F)
                                                     Follow(\mathbf{F}) := \emptyset
```

```
Follow(E)
First(E)
             Empty(\mathbf{E})
                                                Follow(E') := \{\$,
First(E')
             First(T)
                                         := \emptyset \quad Follow(T) := \{+, \$, \}
                                         := \{ \epsilon \} \quad Follow(T') := \emptyset
First(T')
First(F)
           := \{i, (\} Empty(F)\}
                                                Follow(\mathbf{F})
3) E' \rightarrow +TE' \subseteq P: přidej Follow(E') = \{\$, \} do Follow(E')
                   \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
  E' \rightarrow +TE' \in P: \widetilde{pridej} \widetilde{First}(E') = \{+\} \operatorname{do} Follow(T)
  E' \rightarrow +TE' \in P: přidej Follow(E') = \{\$, \} do Follow(T)
      Empty(\mathbf{E}') = \{\varepsilon\}
```

Celkově: Nic nezměněno

```
Follow(X) pro G_{expr3}: Příklad 2/3
First(\mathbf{E}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{E}) := \emptyset \quad Follow(\mathbf{E}) := \{\$, \}\}
First(\mathbf{E}') := \{+\} \quad Empty(\mathbf{E}') := \{\epsilon\} \quad Follow(\mathbf{E}') := \{\$, \}\}
First(\mathbf{T}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{T}) := \emptyset \quad Follow(\mathbf{T}) := \{+, \$, \}\}
First(\mathbf{T}') := \{\$\} \quad Empty(\mathbf{T}') := \{\epsilon\} \quad Follow(\mathbf{T}') := \emptyset
                                                                     \emptyset Follow (\mathbf{F})
                  :=\{i,(\}) Empty(F)
 First(F)
 3) E' \rightarrow +TE' \in P: přidej Follow(E') = \{\$, \} do Follow(E')
                              \varepsilon: Empty(\varepsilon) = \{\varepsilon\}
     E' \rightarrow +TE' \in P: \widetilde{pridej} \widetilde{First}(E') = \{+\} \operatorname{do} Follow(T)
     E' \rightarrow +TE' \in P: přidej Follow(E') = \{\$, \} do Follow(T)
           Empty(\mathbf{E'}) = \{ \epsilon \}
  Celkově: Nic nezměněno
4) T \rightarrow FT \in P: přidej \overline{Follow(T)} = \{+, \$, \}  do Follow(T')
                        \varepsilon: Empty(\varepsilon) = {\varepsilon}
    T \to FT' \in P: přiděj First(T') = \{*\} \text{ do } Follow(F)
T \to FT' \in P: přiděj Follow(T) = \{+, \$, \} \text{ do } Follow(F)
     Empty(T') = \{\epsilon\}
 Celkově: Follow(T') = \{+, \$, \}, Follow(F) = \{*, +, \$, \}
```

```
First(E)
                           Empty(E)
                                                     Follow(\mathbf{E}) := \{\$,
                                          := \{\epsilon\}
First(E')
                           Empty(E')
                                                     Follow(E') := \{\$,
              := {i, (}
:= {*}
First(T)
                           Empty(T)
                                                     Follow(T) := \{+, \$, \}
                                                     Follow(T') := \{+, \$,
First(T')
                           Empty(T') := \{\epsilon\}
                                                     Follow(F) := \{*, +, \$, \}
First(F)
              := \{i, (\}
                           Empty(\mathbf{F})
```

```
First(E) := {i, (} Empty(E) := \emptyset Follow(E) := {$, )}

First(E') := {+} Empty(E') := {\epsilon} Follow(E') := {$, )}

First(T) := {i, (} Empty(T) := \emptyset Follow(T) := {+, $, )}

First(T') := {*} Empty(T') := {\epsilon} Follow(T') := {+, $, )}

First(F) := {i, (} Empty(F) := \emptyset Follow(F) := {*, +, $, )}

5) T' \rightarrow *FT' \in P: přidej Follow(T') = {+, $, )} do Follow(T')

\epsilon: Empty(\epsilon) = {\epsilon}

T' \rightarrow *FT' \epsilon P: přidej Follow(T') = {*} do Follow(F)

E Empty(E) = {\epsilon} Pridej Follow(E) = {+, $, )} do Follow(E)
```

Konec: Žádná množina Follow nemůže být změněna.

```
First(E) := {i, (} Empty(E) := \emptyset Follow(E) := {$, )}

First(E') := {+} Empty(E') := {$} Follow(E') := {$, )}

First(T) := {i, (} Empty(T) := \emptyset Follow(T) := {+, $, )}

First(T') := {*} Empty(T') := {$} Follow(T') := {+, $, )}

First(F) := {i, (} Empty(F) := \emptyset Follow(F) := {*, +, $, )}

5) T' \rightarrow *FT' \in P: přidej Follow(T') = {+, $, )} do Follow(T')

E: Empty(E) = {E}

T' \rightarrow *FT' \in P: přidej First(T') = {*} do Follow(F)

E: Empty(T') = {E}
```

Konec: Žádná množina Follow nemůže být změněna.

```
Celkově: Follow(E) := \{\$, \}\}
Follow(E') := \{\$, \}\}
Follow(T) := \{+, \$, \}\}
Follow(T') := \{+, \$, \}\}
Follow(F) := \{*, +, \$, \}\}
```

Množina Predict

Myšlenka: $Predict(A \rightarrow x)$ je množina všech terminálů, které mohou být aktuálně nejlevěji vygenerovány, pokud pro libovolnou větnou formu použijeme pravidlo $A \rightarrow x$.

Definice: Necht' G = (N, T, P, S) je BKG. Prokaždé $A \rightarrow x \in P$ definujeme množinu $Predict(A \rightarrow x)$ jako:

- pokud $Empty(\mathbf{x}) = \{ \mathbf{\epsilon} \}$ potom: $Predict(\mathbf{A} \to \mathbf{x}) = First(\mathbf{x}) \cup Follow(\mathbf{A})$
- jinak pokud $Empty(\mathbf{x}) = \emptyset$ potom: $Predict(\mathbf{A} \rightarrow \mathbf{x}) = First(\mathbf{x})$

$$Empty(X_1X_2...X_n) = \emptyset \text{ vs. } Empty(X_1X_2...X_n) = \{\varepsilon\}$$

 $Empty(X_1X_2...X_n) = \emptyset$ vs. $Empty(X_1X_2...X_n) = \{\epsilon\}$

 $Empty(X_1X_2...X_n) = \emptyset$ vs. $Empty(X_1X_2...X_n) = \{\epsilon\}$

 $Empty(X_1X_2...X_n) = \emptyset$ vs. $Empty(X_1X_2...X_n) = \{\epsilon\}$


```
First(E)
                           Empty(E)
                                                     Follow(\mathbf{E}) :=
                           Empty(E')
                                          := \{\epsilon\}
First(E')
                                                     Follow(E') := \{\$,
First(T)
                                                     Follow(T) := \{+, \}
                           Empty(T)
First(T')
                                          := \{\epsilon\}
                                                     Follow(T') :=
                           Empty(T')
First(F)
                                                     Follow(F)
                           Empty(\mathbf{F})
```

```
First(E)
                                                  Follow(E)
                          Empty(E)
                                        := \{\epsilon\}
First(E')
                          Empty(E')
                                                  Follow(E') :=
First(T)
                          Empty(T)
                                                  Follow(T)
                                                  Follow(T') :=
First(T')
                          Empty(T')
                                        := \{\epsilon\}
First(F)
                                                  Follow(F)
                          Empty(\mathbf{F})
```

1: $E \rightarrow TE$

```
Empty(TE') = \emptyset, protože Empty(T) = \emptyset

Predict(1) := First(TE') = First(T) = \{i, (\}
```

```
Follow(E) :=
First(E)
                         Empty(E)
                                      := \{\epsilon\}
First(E')
                         Empty(E')
                                                Follow(E') := \{
First(T)
                         Empty(T)
                                                Follow(T) := \{+, \}
First(T')
                         Empty(T')
                                      := \{\epsilon\}
                                                Follow(T') :=
First(F)
                                                Follow(F)
                         Empty(F)
```

1: $E \rightarrow TE$

```
Empty(TE') = \emptyset, protože Empty(T) = \emptyset

Predict(1) := First(TE') = First(T) = \{i, (\}
```

$2:E'\to +TE'$

```
Empty(+TE') = \emptyset, protože Empty(+) = \emptyset

Predict(2) := First(+TE') = First(+) = \{+\}
```

```
First(E)
                                                Follow(E) :=
                         Empty(E)
                                      := \{\epsilon\}
                                                Follow(E') := \{\$,
First(E')
                         Empty(E')
First(T)
                         Empty(T)
                                                Follow(T) := \{+, \$, \}
                         Empty(T')
                                                Follow(T') :=
First(T')
                                      = \{ \epsilon \}
First(\mathbf{F})
                                                Follow(F)
                         Empty(F)
```

$1: E \rightarrow TE'$

```
Empty(TE') = \emptyset, protože Empty(T) = \emptyset

Predict(1) := First(TE') = First(T) = \{i, (\}
```

$2: E' \rightarrow +TE'$

```
Empty(+TE') = \emptyset, protože Empty(+) = \emptyset

Predict(2) := First(+TE') = First(+) = \{+\}
```

$3: E' \rightarrow \varepsilon$

```
Empty(\varepsilon) = \{\varepsilon\}

Predict(3) := First(\varepsilon) \cup Follow(E') = \emptyset \cup \{\$, \} = \{\$, \}
```

```
First(\mathbf{E}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{E}) := \emptyset \quad Follow(\mathbf{E}) := \{\$, \}\}
First(\mathbf{E}') := \{+\} \quad Empty(\mathbf{E}') := \{\epsilon\} \quad Follow(\mathbf{E}') := \{\$, \}\}
First(\mathbf{T}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{T}) := \emptyset \quad Follow(\mathbf{T}) := \{+, \$, \}\}
First(\mathbf{F}) := \{*\} \quad Empty(\mathbf{F}) := \{\epsilon\} \quad Follow(\mathbf{F}) := \{*, +, \$, \}\}
First(\mathbf{F}) := \{\mathbf{i}, (\} \quad Empty(\mathbf{F}) := \emptyset \quad Follow(\mathbf{F}) := \{*, +, \$, \}\}
```

$1: E \rightarrow TE'$

```
Empty(TE') = \emptyset, protože Empty(T) = \emptyset

Predict(1) := First(TE') = First(T) = \{i, (\}
```

$2: E' \rightarrow +TE'$

```
Empty(+TE') = \emptyset, protože Empty(+) = \emptyset

Predict(2) := First(+TE') = First(+) = \{+\}
```

$3: E' \rightarrow \varepsilon$

```
Empty(\varepsilon) = \{\varepsilon\}

Predict(3) := First(\varepsilon) \cup Follow(E') = \emptyset \cup \{\$, \} = \{\$, \}
```

4: $T \rightarrow FT$

$$Empty(FT') = \emptyset$$
, protože $Empty(F) = \emptyset$
 $Predict(4) := First(FT') = First(F) = \{i, (\}$

```
Predict(A \rightarrow x) pro G_{expr3}: Příklad 2/2
```

```
First(E)
                                                     Follow(\mathbf{E}) :=
                           Empty(E)
                           Empty(E')
                                          := \{\epsilon\}
First(E')
                                                     Follow(E') := \{\$,
First(T)
                                                     Follow(T) := \{+, \}
                           Empty(T)
First(T')
                           Empty(T')
                                          := \{\epsilon\}
                                                     Follow(T') :=
First(F)
                                                     Follow(F)
                           Empty(\mathbf{F})
```

$Predict(A \rightarrow x) \text{ pro } G_{expr3}$: Příklad 2/2

```
First(E)
                                                   Follow(E) :=
                          Empty(E)
                                        := \{\epsilon\}
First(E')
                          Empty(E')
                                                  Follow(E') := \{
First(T)
                          Empty(T)
                                                   Follow(T) := \{+, \}
                                                   Follow(T') :=
First(T')
                          Empty(T')
                                        := \{\epsilon\}
First(F)
                                                   Follow(F)
                          Empty(\mathbf{F})
```

```
5: T' \rightarrow *FT'

Empty(*FT') = \emptyset, protože Empty(*) = \emptyset

Predict(5) := First(*FT') = First(*) = \{*\}
```

```
Follow(E) :=
First(E)
                          Empty(E)
                                       := \{\epsilon\}
First(E')
                          Empty(E')
                                                  Follow(E') := \{\$,
First(T)
                          Empty(T)
                                                  Follow(T) := \{+, \$, \}
First(T')
                          Empty(T')
                                       = \{ \epsilon \}
                                                  Follow(T') :=
First(\mathbf{F})
                                                  Follow(F)
                          Empty(F)
```

5: $T' \rightarrow *FT'$ $Empty(*FT') = \emptyset$, protože $Empty(*) = \emptyset$ $Predict(5) := First(*FT') = First(*) = \{*\}$

```
\overline{6: T' \to \varepsilon} 

Empty(\varepsilon) = \{\varepsilon\} 

Predict(6) := First(\varepsilon) \cup Follow(T') = \emptyset \cup \{+, \$, \} = \{+, \$, \} \}
```

```
First(E)
                                                  Follow(\mathbf{E}) :=
                          Empty(E)
                                       := \{\epsilon\}
                                                  Follow(E') := \{\$,
First(E')
                          Empty(E')
First(T) := \{i, (\}
                          Empty(T)
                                                  Follow(T) := \{+, \$, \}
                                                  Follow(T') := \{+,
First(T')
                          Empty(T') := \{\epsilon\}
First(F)
                          Empty(\mathbf{F})
                                                  Follow(F)
```

5: $T' \rightarrow *FT'$ $Empty(*FT') = \emptyset$, protože $Empty(*) = \emptyset$ $Predict(5) := First(*FT') = First(*) = \{*\}$

```
6: T' \rightarrow \varepsilon

Empty(\varepsilon) = \{\varepsilon\}

Predict(6) := First(\varepsilon) \cup Follow(T') = \emptyset \cup \{+, \$, \} = \{+, \$, \}
```

```
7: F \rightarrow (E)

Empty((E)) = \emptyset, protože Empty(() = \emptyset

Predict(7) := First((E)) = First(() = \{()\}
```

```
First(\mathbf{E}) := \{\mathbf{i}, (\} Empty(\mathbf{E}) := \emptyset Follow(\mathbf{E}) := \{\$, \}\}
First(\mathbf{E}') := \{+\} Empty(\mathbf{E}') := \{\epsilon\} Follow(\mathbf{E}') := \{\$, \}\}
First(\mathbf{T}) := \{\mathbf{i}, (\} Empty(\mathbf{T}) := \emptyset Follow(\mathbf{T}) := \{+, \$, \}\}
First(\mathbf{F}) := \{\mathbf{i}, (\} Empty(\mathbf{F}) := \emptyset Follow(\mathbf{F}) := \{*, +, \$, \}\}
```

5: $T' \rightarrow *FT'$ $Empty(*FT') = \emptyset$, protože $Empty(*) = \emptyset$ $Predict(5) := First(*FT') = First(*) = \{*\}$

```
6: T' \to \varepsilon 

Empty(\varepsilon) = \{\varepsilon\} 

Predict(6) := First(\varepsilon) \cup Follow(T') = \emptyset \cup \{+, \$, \} = \{+, \$, \} \}
```

```
7: F \rightarrow (E)

Empty((E)) = \emptyset, protože Empty(() = \emptyset

Predict(7) := First((E)) = First(() = \{(\}
```

```
8: F \rightarrow i

Empty(i) = \emptyset

Predict(8) := First(i) = \{i\}
```

α	•••	a	•••
•••			
\boldsymbol{A}		$\alpha(A, a)$	
•••			

α	•••	a	•••
•••			
\boldsymbol{A}		$\alpha(A, a)$	
•••			

 $\alpha(A, \mathbf{a}) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $\mathbf{a} \in Predict(A \rightarrow X_1 X_2 ... X_n)$; jinak $\alpha(A, \mathbf{a})$ je prázdné.

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; jinak $\alpha(A, a)$ je prázdné.

 $\overline{\text{Určeme: LL}}$ tabulku pro G_{expr1}

Pravidlo <i>r</i>	Predict(r)
$1: E \rightarrow TE'$	{ <i>i</i> , (}
$2: E' \rightarrow +TE'$	{+ }
$3: E' \rightarrow \varepsilon$	{\$,)}
$4: T \rightarrow FT'$	{ <i>i</i> , (}
$5: T' \rightarrow *FT'$	{* }
6: T $\rightarrow \varepsilon$	{ + , \$,) }
$7: \mathbf{F} \rightarrow (\mathbf{E})$	{ <mark>(</mark> }
$8: F \rightarrow i$	{ <i>i</i> }

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; jinak $\alpha(A, a)$ je prázdné.

 $\overline{\mathbf{Ur\check{c}eme:}}$ LL tabulku pro G_{expr1}

Pravidlo *r* Predict(r) 1: $E \rightarrow TE$ $\{i, (\}$ $2: E' \rightarrow +TE'$ **{+**} $3: E' \rightarrow \varepsilon$ **{\$**,)} 4: $T \rightarrow FT$ $\{i, (\}$ $5: T' \rightarrow *FT'$ **{***} 6: $T' \rightarrow \varepsilon$ $\{+, \$, \}$ 7: $F \rightarrow (E)$ **{()** $\{i\}$

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; jinak $\alpha(A, a)$ je prázdné.

Pravidlo <i>r</i>	Predict(r)
• 1: $E \rightarrow TE$	{ <i>i</i> , (}
$2: E' \rightarrow +TE'$	{+ }
$3: E' \rightarrow \varepsilon$	{\$,)}
$-4: T \rightarrow FT'$	{ <i>i</i> , (}
$5: T' \to *FT'$	{* }
6: T $\rightarrow \varepsilon$	{+, \$,) }
$7: \mathbf{F} \rightarrow (\mathbf{E})$	{ <mark>(</mark> }
$8: F \rightarrow i$	{ <i>i</i> }

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; jinak $\alpha(A, a)$ je prázdné.

 $\overline{\text{Určeme:}}$ LL tabulku pro G_{expr1}

Pravidlo r Predict(r) 1: $E \rightarrow TE$ $\{i, (\}$ $2: E' \rightarrow +TE'$ **{+**} $3: E' \rightarrow \varepsilon$ **{\$**,)} 4: $T \rightarrow FT$ $\{i, (\}$ 5: $T' \rightarrow *FT'$ **{***} 6: T $\rightarrow \epsilon$ **{+, \$,**)} $7: \mathbf{F} \rightarrow (\mathbf{E})$ **{()** $-8: F \rightarrow i$ $\{i\}$

 $\alpha(A, a) = A \rightarrow X_1 X_2 ... X_n \in P$ pokud $a \in Predict(A \rightarrow X_1 X_2 ... X_n)$; jinak $\alpha(A, a)$ je prázdné.

Pravidlo *r*

 $\overline{\text{Určeme:}}$ LL tabulku pro G_{expr1}

Zbytek tabulky by se

sestrojil analogicky.

1: $E \rightarrow TE$ $\{i, (\}$ $2: E' \rightarrow +TE'$ **{+**} $3: E' \rightarrow \varepsilon$ **{\$**,)} 4: $T \rightarrow FT$ $\{i, (\}$ 5: $T' \rightarrow *FT'$ **{***} 6: $T' \rightarrow \varepsilon$ **{+, \$,**)} $7: \mathbf{F} \rightarrow (\mathbf{E})$ **{()** $-8: F \rightarrow i$ $\{i\}$

Predict(r)

	i	+	*	(\$
\boldsymbol{E}	1			1		
E, T		2			3	3
\boldsymbol{T}	4			4		
T' F		6	5		6	6
\boldsymbol{F}	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

Otázka: $i * i \in L(G_{expr3})$?

E

$$i * i$$

	i	+	*			\$
\boldsymbol{E}	1			1		
E, T		2			3	3
	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

	i	+	*	()	\$
\boldsymbol{E}	1			1		
E E' T T'		2			3	3
\boldsymbol{T}	4			4		
T		6	5		6	6
F	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

$$i * i$$

	i	+	*			\$
\boldsymbol{E}	1			1		
E, T		2			3	3
	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

	i	+	*	(\$
\boldsymbol{E}	1			1		
E ,		2			3	3
T'	4			4		
T		6	5		6	6
$ar{m{F}}$	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

	i	+	*	(\$
\boldsymbol{E}	1			1		
E ,		2			3	3
T'	4			4		
T		6	5		6	6
$ar{m{F}}$	8			7		

1:
$$E \rightarrow TE'$$
 5: $T' \rightarrow *FT'$
2: $E' \rightarrow +TE'$ 6: $T' \rightarrow \varepsilon$
3: $E' \rightarrow \varepsilon$ 7: $F \rightarrow (E)$
4: $T \rightarrow FT'$ 8: $F \rightarrow i$

	i	+	*	(\$
\boldsymbol{E}	1			1		
E ,		2			3	3
T'	4			4		
T		6	5		6	6
$ar{m{F}}$	8			7		

```
1: E \rightarrow TE' 5: T' \rightarrow *FT'

2: E' \rightarrow +TE' 6: T' \rightarrow \varepsilon

3: E' \rightarrow \varepsilon 7: F \rightarrow (E)

4: T \rightarrow FT' 8: F \rightarrow i
```


	i	+	*			\$
\boldsymbol{E}	1			1		
E ,		2			3	3
T'	4			4		
T '		6	5		6	6
F	8			7		

```
1: E \rightarrow TE' 5: T' \rightarrow *FT'

2: E' \rightarrow +TE' 6: T' \rightarrow \varepsilon

3: E' \rightarrow \varepsilon 7: F \rightarrow (E)

4: T \rightarrow FT' 8: F \rightarrow i
```


LL gramatiky s \(\mathcal{\psi}\)-pravidly: Definice

```
Definice: Necht' G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé a \in T a každé A \in N existuje maximálně jedno A-pravidlo tvaru A \to X_1 X_2 ... X_n \in P a platí: a \in Predict(A \to X_1 X_2 ... X_n)
```

Ilustrace:

LL gramatiky s \(\mathcal{\psi}\)-pravidly: Definice

Definice: Nechť G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé $a \in T$ a každé $A \in N$ existuje **maximálně jedno** A-pravidlo tvaru $A \to X_1 X_2 ... X_n \in P$ a platí: $a \in Predict(A \to X_1 X_2 ... X_n)$

Ilustrace:

LL gramatiky s \(\varepsilon\)-pravidly: Definice

Definice: Necht' G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé $a \in T$ a každé $A \in N$ existuje **maximálně jedno** A-pravidlo tvaru $A \to X_1 X_2 ... X_n \in P$ a platí: $a \in Predict(A \to X_1 X_2 ... X_n)$

Ilustrace:

LL gramatiky s \(\mathcal{\psi}\)-pravidly: Definice

Definice: Nechť G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé $a \in T$ a každé $A \in N$ existuje **maximálně jedno** A-pravidlo tvaru $A \to X_1 X_2 ... X_n \in P$ a platí: $a \in Predict(A \to X_1 X_2 ... X_n)$

Ilustrace: Pravidlo r_1 : $A \rightarrow X_1 X_2 ... X_n$ $a \in Predict(A \rightarrow X_1X_2...X_n)$

LL gramatiky s \(\varepsilon\)-pravidly: Definice

Definice: Necht' G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé $a \in T$ a každé $A \in N$ existuje **maximálně jedno** A-pravidlo tvaru $A \to X_1 X_2 ... X_n \in P$ a platí: $a \in Predict(A \to X_1 X_2 ... X_n)$

Ilustrace: Pravidlo r_1 : $A \rightarrow X_1 X_2 ... X_n$ $a \in Predict(A \rightarrow X_1X_2...X_n)$

LL gramatiky s \(\varepsilon\)-pravidly: Definice

Definice: Necht' G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé $a \in T$ a každé $A \in N$ existuje **maximálně jedno** A-pravidlo tvaru $A \to X_1 X_2 ... X_n \in P$ a platí: $a \in Predict(A \to X_1 X_2 ... X_n)$

Ilustrace: Pravidlo r_1 : Pravidlo r_2 : $A \rightarrow X_1 X_2 ... X_n$ $A \rightarrow Y_1 Y_2 ... Y_m$ $a \in Predict(A \rightarrow X_1X_2...X_n)$

LL gramatiky s \(\varepsilon\)-pravidly: Definice

Definice: Necht' G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé $a \in T$ a každé $A \in N$ existuje **maximálně jedno** A-pravidlo tvaru $A \to X_1 X_2 ... X_n \in P$ a platí: $a \in Predict(A \to X_1 X_2 ... X_n)$

Ilustrace: Pravidlo r_1 : Pravidlo r_2 : $A \rightarrow X_1 X_2 ... X$ $A \rightarrow Y_1 Y_2 ... Y_m$ $a \in Predict(A \rightarrow Y_1Y_2...Y_m)$ $a \in Predict(A \rightarrow X_1X_2...X_n)$

LL gramatiky s \(\varepsilon\)-pravidly: Definice

Definice: Nechť G = (N, T, P, S) je BKG. G je LL-gramatika, pokud pro každé $a \in T$ a každé $A \in N$ existuje **maximálně jedno** A-pravidlo tvaru $A \to X_1 X_2 ... X_n \in P$ a platí: $a \in Predict(A \to X_1 X_2 ... X_n)$

Implementace LL Analyzátoru

1) Rekurzívní sestup

• Každý neterminál je reprezentován procedurou, která řídí SA:

2) Prediktivní syntaktická analýza

• Syntaktický analyzátor se zásobníkem řízený tabulkou

Rekurzívní sestup: Příklad 1/4

```
Procedure GetNextToken;
begin
{ tato procedura uloží následující token do proměnné "token"}
end
• Pro E \in N: Pravidlo 1: E \to TE
function E: boolean;
begin
  E := false;
                                         E
  if token in ['i', '('] then
      { simulace pravidla 1: E \rightarrow TE' }
       E := T \text{ and } E1;
end;
• Pro T \in N: Pravidlo 4: T \to FT
function T: boolean;
begin
                                         E
  T := false;
                                         E
  if token in ['i', '('] then
      { simulace pravidla 4: T \rightarrow FT' }
      T := F \text{ and } T1;
end;
```

Rekurzívní sestup: Příklad 2/4

• Pro $E' \in N$: Pravidla 2: $E' \to +TE'$, 3: $E' \to \varepsilon$

```
function E1: boolean;
begin
  E1 := false;
                                            E
  if token = '+' then begin
      { simulace pravidla 2: E' \rightarrow +TE' }
      GetNextToken;
      E1 := T \text{ and } E1;
  end
  else
  if token in [')', '$'] then
      { simulace pravidla 3: E' \rightarrow \varepsilon}
      E1 := true;
end;
```

Rekurzívní sestup: Příklad 3/4

• Pro $T' \in N$: Pravidla 5: $T' \to *FT'$, 6: $T' \to \varepsilon$

```
function T1: boolean;
begin
  T1 := false;
                                            E
  if token = '*' then begin
      { simulace pravidla 5: T' \rightarrow *FT' }
      GetNextToken;
      T1 := F \text{ and } T1;
  end
  else
  if token in ['+', ')', '$'] then
      { simulace pravidla 6: T' \rightarrow \varepsilon}
      T1 := true;
end;
```

Rekurzívní sestup: Příklad 4/4

```
• Pro F \in N: Pravidla 7: F \to (E), 8: F \to i
 function F: boolean;
 begin
   F := false;
   if token = '(' then begin
       { simulace pravidla 7: F \rightarrow (E) }
       GetNextToken;
       if E then begin
          F := (token = ')');
          GetNextToken;
       end;
                                  Hlavní tělo programu:
   end
   else
                                  begin
   if token = 'i' then begin
                                     GetNextToken;
       { simulace pravidla 8: F \rightarrow i }
                                     if E then
                                        write('OK')
       F := true;
       GetNextToken;
                                     else
                                        write('ERROR')
   end;
 end;
                                  end.
```

Start:

Vstupní řetězec:

```
i*i
```

Start: GetNextToken; Call E;

Vstupní řetězec:

Start: GetNextToken;

Call E;

Vstupní řetězec:

i * *i* \$

Pro token = i: Call T, Call E1


```
Start: GetNextToken;
            Call E;
Vstupní řetězec:
                            Pro token = i:
                           Call T, Call E1
                Pro token = i:
               Call F, Call T1
F:
  Pro token = i:
 GetNextToken;
 Return TRUE;
```



```
Start: GetNextToken;
            Call E;
Vstupní řetězec:
                           Pro token = i:
                           Call T, Call E1
               Pro token = i:
               Call F, Call T1
F:
                              Pro token = *:
  Pro token = i:
                   TRUE
 GetNextToken;
                             GetNextToken;
 Return TRUE;
                              Call F, Call T1
               Pro token = i:
               GetNextToken;
               Return TRUE;
```



```
Start: GetNextToken;
            Call E;
Vstupní řetězec:
                           Pro token = i:
                           Call T, Call E1
               Pro token = i:
               Call F, Call T1
                             T1:
F:
  Pro token = i:
                              Pro token = *:
                   TRUE
 GetNextToken;
                             GetNextToken;
 Return TRUE;
                              Call F, Call T1
                                          T1:
               Pro token = i:
                                            Pro token = $:
                                  TRUE
                                            Return TRUE;
               GetNextToken;
               Return TRUE;
```


Prediktivní syntaktická analýza

• Model pro prediktivní syntaktickou analýzu:

Levý rozbor = posloupnost pravidel, která je použita v nejlevější derivaci pro vstupní řetězec.

Prediktivní SA: Algoritmus

- Vstup: LL-tabulka pro $G = (N, T, P, S); x \in T^*$
- Výstup: Levý rozbor pro x, pokud $x \in L(G)$ jinak chyba
- Metoda:
- push(\$) & push(\$) na zásobník
- repeat
 - nechť X je vrchol zásobníku a a aktuální token
 - case X of:
 - X = \$: if a = \$ then úspěch else chyba;
 - $X \in T$: if X = a then pop(X) & přečti další a ze vstupního řetězce

else chyba;

• $X \in N$: if $r: X \to \overline{x} \in \text{LL-tabulka}[X, a]$ then zaměň na vrcholu zásobníku X za reversal(x) & zapiš r na výstup else chyba;

until úspěch or chyba

Zásobník Vstup

	i	+	*)	\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

Vstupní řetězec: i * i \$

Pravidlo

Derivace

T 4 6 5 4 6 6		
T' 6 5 6 6		
F 8 7		
Pravidla:		
$: E \rightarrow TE'$		
$: E' \rightarrow +TE'$		
$: E' \to \varepsilon$		
$: T \rightarrow FT'$		
$: T' \rightarrow *FT'$		
$: T^{\bullet} \rightarrow \varepsilon$		
$f: F \rightarrow (E)$		
$\cdot F \longrightarrow i$		

	i	+	*			\$	Vstupní	řetěz
E	1			1			Zásobník	Vstup
E'	4	2		4	3	3	\$ <i>E</i>	<i>i*i</i> \$
	4		_	4	6	6		
F	8	U	7	7	U	U		

Vstupní řetězec: i * i \$

	Zasobnik	Vstup	Pravidlo	Derivace
-	\$E		$1: E \rightarrow TE'$	$E \Rightarrow TE'$

Drovidla

Pravidla:

4			
•	<i>H</i> '	\	' H'
1.		$\overline{}$	

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

4:
$$T \rightarrow FT$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*)	\$
E	1			1		
E		2			3	3
	4		_	4		
		6	5		6	6
\boldsymbol{F}	8			7		

Vstupní řetězec: i * i \$

Zásobník Vstup Pravidlo

		Zasobilik	Volup	TTaviuio	Derivace
3	3	\$ E	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{T}E'$
6	6	\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
•					
•					

Derivace

Pravidla:

1:	\boldsymbol{E}	\rightarrow	TE
_		•	

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

4:
$$T \rightarrow FT$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*	()	\$	Vstupní	í řetěz	zec: i * i \$
\boldsymbol{E}	1			1			Zásobník	Vstup	Pravidlo
E '		2			3	3	\$ <i>E</i>	<i>i</i> * <i>i</i> \$	$1: E \rightarrow TE$
T _T	4	6	5	4	6	6	\$E'T	<i>i</i> * <i>i</i> \$	$4: T \to FT$
F	8	U		7	U	U	\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$

Vstupní řetězec: i * i \$

	Zasobilik	vStup	Fraviulo	Derivace
3	\$ E	<i>i</i> * <i>i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{TE}$
6	\$E'T	<i>i</i> * <i>i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
	\$E'T'F	<i>i</i> * <i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow iT'E'$

Pravidla:

•	H'	 'H'?

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

	i	+	*)	\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T'		6	5		6	6
\boldsymbol{F}	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{T}E'$
\$E'T	<i>i</i> * <i>i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i</i> * <i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'E'}$
\$E'T'i	<i>i</i> *i\$		
			<u> </u>

	i	+	*			\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T		6	5		6	6
F	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{TE}$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'E'}$
\$E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$
			_

	i	+	*			\$
E	1			1		
E		2			3	3
T	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

 $3: E' \rightarrow \varepsilon$

 $4: T \rightarrow FT'$

5: $T' \rightarrow *FT'$

6: $T' \rightarrow \varepsilon$

 $7: F \rightarrow (E)$

 $8: F \rightarrow i$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{TE}'$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'}E'$
E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^* \underline{F} T'E'$
\$E'T'F*	*i\$		

	i	+	*			\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T'		6	5		6	6
\boldsymbol{F}	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{TE}'$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow iT'E'$
E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$
\$E'T'F*	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T}'\underline{E}'$

	i	+	*			\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T'		6	5		6	6
\boldsymbol{F}	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{TE}'$
\$E ' T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'}E'$
\$E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$
\$E'T'F*	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T}'\underline{E}'$
E'T'i	<i>i</i> \$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	

	i	+	*)	\$
E	1			1		
E'		2			3	3
	4			4		
		6	5		6	6
F	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{TE}'$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T}'\underline{E}'$
E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^*\underline{F}T'E'$
\$E'T'F*	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T'E'}$
E'T'i	<i>i</i> \$		
\$E'T'	\$	6: $T' \rightarrow \varepsilon$	$\Rightarrow i*i\underline{E}'$

	i	+	*)	\$
\boldsymbol{E}	1	•		1	2	3
E' T	4	2		4	3	3
T '		6	5		6	6
\boldsymbol{F}	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{T}E'$
\$E ' T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'}E'$
E'T'i	<i>i</i> * <i>i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^* \underline{F} T'E'$
\$ <i>E</i> 'T' <i>F</i> *	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T'}E'$
E'T'i	<i>i</i> \$		
\$E'T'	\$	6: $T' \rightarrow \varepsilon$	$\Rightarrow i*iE'$
\$ <i>E</i> '	\$	$3: E' \rightarrow \varepsilon$	$\Rightarrow i*i$

Prediktivní SA: Příklad

	i	+	*)	\$
E	1			1		
E		2			3	3
\boldsymbol{T}	4			4		
T '		6	5		6	6
\boldsymbol{F}	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Vstupní řetězec: i * i \$

Zásobník	Vstup	Pravidlo	Derivace
\$ <i>E</i>	<i>i*i</i> \$	$1: E \to TE'$	$\underline{E} \Rightarrow \underline{T}E'$
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow i\underline{T'}E'$
E'T'i	<i>i*i</i> \$		
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^* \underline{F} T'E'$
\$ <i>E</i> 'T' <i>F</i> *	*i\$		
\$E'T'F	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T'}E'$
E'T'i	<i>i</i> \$		
\$E'T'	\$	6: $T' \rightarrow \varepsilon$	$\Rightarrow i*iE'$
\$ <i>E</i> '	\$	$3: E' \rightarrow \varepsilon$	$\Rightarrow i*i$
\$	_\$		

Prediktivní SA: Příklad

	i	+	*)	\$
E	1			1		
E'		2			3	3
\boldsymbol{T}	4			4		
T'		6	5		6	6
\boldsymbol{F}	8			7		

Pravidla:

$$1: E \rightarrow TE'$$

$$2: E' \rightarrow +TE'$$

$$3: E' \rightarrow \varepsilon$$

$$4: T \rightarrow FT'$$

$$5: T' \rightarrow *FT'$$

6:
$$T' \rightarrow \varepsilon$$

$$7: F \rightarrow (E)$$

$$8: F \rightarrow i$$

Vstupní řetězec: i * i \$

Zásobník	Vstup	Pravidlo	Derivace		
\$ <i>E</i>	<i>i*i</i> \$	$1: E \rightarrow TE'$	$\underline{E} \Rightarrow \underline{TE}'$		
\$E'T	<i>i*i</i> \$	$4: T \to FT'$	$\Rightarrow \underline{F}T'E'$		
\$E'T'F	<i>i*i</i> \$	$8: F \rightarrow i$	$\Rightarrow iT'E'$		
E'T'i	<i>i*i</i> \$				
\$E'T'	*i\$	$5: T' \to *FT'$	$\Rightarrow i^* \underline{F} T'E'$		
\$ <i>E</i> ' <i>T</i> ' <i>F</i> *	*i\$				
\$ <i>E</i> ' <i>T</i> ' <i>F</i>	<i>i</i> \$	$8: F \rightarrow i$	$\Rightarrow i*i\underline{T'}E'$		
E'T'i	<i>i</i> \$				
\$E'T'	\$	6: $T' \rightarrow \varepsilon$	$\Rightarrow i*i\underline{E}'$		
\$E '	\$	$3: E' \rightarrow \varepsilon$	$\Rightarrow i*i$		
\$	\$	Úsr	Úspěch		
		T 4 1	1/05062		

Hartmannova metoda: Zotavení z chyb

Context(X) pro prediktivní SA: Varianta I

```
Pro G = (N, T, P, S),

Context(A) = Follow(A) pro všechna A \in N
```

- Metoda:
- Nechť *A* je vrchol zásobníku & žádné pravidlo nelze použít:
- repeat

 a := GetNextToken;
 {Tyto tokeny jsou přeskočeny}
 until a v množině Context(A)
- odstraň A ze zásobníku;

Context(X) pro prediktivní SA: Varianta II

```
Pro G = (N, T, P, S),

Context(A) = First(A) \cup Follow(A) pro všechna A \in N
```

- Metoda:
- Nechť A je vrchol zásobníku & žádné pravidlo nelze použít:
- repeat

```
a := GetNextToken;
{Tyto tokeny jsou přeskočeny}
until a v množině Context(A)
```

if a ∈ First(A) then ponech symbol A na zásobníku
else odstraň A ze zásobníku; // a ∈ Follow(A)

