Übungsblatt 1 zu Modellkategorien

Aufgabe 1. Beispiele für natürliche Transformationen

Sei $\mathrm{Id}_{\mathrm{Set}}:\mathrm{Set}\to\mathrm{Set}$ der Identitätsfunktor auf Set und $K:\mathrm{Set}\to\mathrm{Set}$ der Funktor

$$\begin{array}{ccc} X & \longmapsto & X \times X \\ f & \longmapsto & f \times f := ((a,b) \mapsto (f(a),f(b))). \end{array}$$

Tipp: Betrachte zum Nachweis der Eindeutigkeit geeignete Abbildungen $1 \to X$, $\heartsuit \mapsto x$. Dabei ist $1 = \{ \heartsuit \}$ eine einelementige Menge, das $einsame\ Herz$. :-(

- b) Wir nehmen an, dass wir für jede nichtleere Menge X ein bestimmtes Element $a_X \in X$ gegeben haben. Zeige: Die Setzung $\tau_X : X \to X, \ x \mapsto a_X$ definiert nicht eine natürliche Transformation $\mathrm{Id}_{\mathcal{C}} \to \mathrm{Id}_{\mathcal{C}}$, wobei \mathcal{C} die Kategorie der nichtleeren Mengen und beliebigen Abbildungen bezeichnet.
- c) Welche natürlichen Transformationen $\mathrm{Id}_{\mathcal{C}} \to \mathrm{Id}_{\mathcal{C}}$ gibt es, wenn \mathcal{C} die Kategorie der reellen Vektorräume bezeichnet?
- d) Seien $\alpha, \beta: M \to N$ zwei Monoidhomomorphismen. Zeige, dass die induzierten Funktoren zwischen den Kategorien BM und BN genau dann isomorph sind, wenn es ein Element $u \in N$ gibt mit $\beta(x) \circ u = u \circ \alpha(x)$ für alle $x \in M$.

Aufgabe 2. Kanonizität der horizontalen Komposition

Sei $\eta: F \to G$ eine natürliche Transformation zwischen Funktoren $F, G: \mathcal{C} \to \mathcal{D}$ und $\varepsilon: J \to K$ eine natürliche Transformation zwischen Funktoren $J, K: \mathcal{D} \to \mathcal{E}$. Zeige, dass die beiden Möglichkeiten, die horizontale Komposition $\eta \star \varepsilon: J \circ F \to K \circ G$ zu definieren, übereinstimmen:

$$(\eta \star \varepsilon)_X := K(\eta_X) \circ \varepsilon_{F(X)} \qquad (\eta \star \varepsilon)_X := \varepsilon_{G(X)} \circ J(\eta_X)$$

Aufgabe 3. Allgemeines zu Kategorienäquivalenzen

- a) Zeige mit allen Details: Ein Funktor $F: \mathcal{C} \to \mathcal{D}$ definiert genau dann eine Kategorienäquivalenz, wenn er volltreu und wesentlich surjektiv ist.
- b) Zeige: Das Quasiinverse einer Kategorienäquivalenz ist eindeutig bis auf eindeutige Isomorphie.

Aufgabe 4. Die duale Kategorie der Kategorie der Mengen

- a) Zeige: In der Kategorie der Mengen ist jeder Morphismus ins initiale Objekt ein Iso.
- b) Zeige: In Set^{op} stimmt die Aussage aus a) nicht.
- c) Folgere: Die Kategorien Set und Set^{op} sind nicht äquivalent.

Ein initiales Objekt in einer Kategorie ist ein Objekt X, sodass es zu jedem Objekt Y genau einen Morphismus $X \to Y$ gibt. Wenn du noch Lust hast, dann zeige, dass der kontravariante Potenzmengenfunktor eine Äquivalenz zwischen Set^{op} und der Kategorie der vollständigen atomischen Heyting-Algebren definiert.

