UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2017/2 Prova da área IIB

1 - 5	6	7	Total	

Nome:	Cartão:	

 ${\bf Regras\ Gerais:}$

- $\bullet\,$ Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- $\bullet\,$ Justifique to do procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente!

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

I TOPI	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.					
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$				
2.	Transformada da derivada	Se $\lim_{t \to \pm \infty} f(t) = 0$, então $\mathcal{F}\left\{f'(t)\right\} = iw\mathcal{F}\left\{f(t)\right\}$				
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$				
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$				
4.	Deslocamento no eixo t	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$				
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$				
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$				
7.	Teorema da Convolução	$\mathcal{F}\{(f*g)(t)\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$				
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$				
8.	Conjugação	$\overline{F(w)} = F(-w)$				
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$				
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$				
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a }F\left(\frac{w}{a}\right), \qquad a \neq 0$				
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$				
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$				

Séries e transformadas de Fourier:

	Forma trigonométrica	Forma exponencial
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} [a_n \cos(w_n t) + b_n \sin(w_n t)]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$	
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$	
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$	
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real,}$ onde $A(w) = \int_0^\infty f(t) \cos(wt) dt \in B(w) = \int_0^\infty f(t) \sin(wt) dt$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt} dw,$ onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt} dt$
	$J_{-\infty}$	$J_{-\infty}$

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sec(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ n > 0) \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0 \\ 0, & m = 0 \\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \operatorname{sen}(mx) \cos(nx) dx =$
	$= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} (a > 0, m \ge 0)$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty x e^{-a^2 x^2} \operatorname{sen}(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em Hertz:

Nota \ Escala	1	2	3	4	5	6
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá ‡	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integraic

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (1.0 ponto) Considere as funções dadas por:

$$\begin{array}{rcl} f(t) & = & \left\{ \begin{array}{ll} t, & 0 < t < 2, \\ 1, & t = 2, \end{array} \right. \\ f(t+2) & = & f(t), & \forall t \in \mathbb{R} \quad \mathrm{e} \\ g(t) & = & f(t-1) - 1 \end{array}$$

Considere as representações em séries de Fourier dadas por:

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{iw_n t},$$

$$g(t) = \sum_{n=-\infty}^{\infty} G_n e^{iw_n t}.$$

onde w_n é a frequência fundamental destas funções.

Assinale as alternativas corretas.

Os valores de F_0 e G_0 são:

- () 0 e 1
- (X) 1 e 0
- () 1/2 e 0
- () 1/2 e 1/2
- () 0 e -1

- O valor de G_1

- () $-\frac{5i}{\pi}$ () $-\frac{4i}{\pi}$ () $-\frac{3i}{\pi}$ () $-\frac{2i}{\pi}$
- $(X) \frac{i}{-}$
- Questão 2 (1.0 pontos) Considere a função dada por $f(t) = \cos^4(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(w_n t) + b_n \sin(w_n t)]$, onde w_1 é a frequência fundamental. Assinale as alternativas que indicam a_n e b_n .

()
$$a_n = 0, \forall n \geq 0.$$

()
$$a_0 = -\frac{3}{4}$$
, $a_1 = \frac{1}{2}$, $a_2 = -\frac{1}{2}$, $a_n = 0$, $n > 2$.

(X)
$$a_0 = \frac{3}{4}$$
, $a_1 = \frac{1}{2}$, $a_2 = \frac{1}{8}$, $a_n = 0$, $n > 2$.

()
$$a_0 = -\frac{3}{4}$$
, $a_1 = -\frac{1}{2}$, $a_2 = \frac{1}{8}$, $a_n = 0$, $n > 2$.

()
$$a_{n} = 0$$
, $\forall n \ge 0$.
() $a_{0} = -\frac{3}{4}$, $a_{1} = \frac{1}{2}$, $a_{2} = -\frac{1}{8}$, $a_{n} = 0$, $n > 2$.
() $b_{0} = \frac{3}{4}$, $b_{1} = \frac{1}{2}$, $b_{2} = \frac{1}{8}$, $b_{n} = 0$, $n > 2$.
() $b_{0} = \frac{3}{4}$, $b_{1} = \frac{1}{2}$, $b_{2} = \frac{1}{8}$, $b_{n} = 0$, $b_{3} = 0$, $b_{4} = 0$, $b_{5} = 0$, $b_{6} = 0$, $b_{7} = 0$.
() $b_{8} = 0$, $b_{8} = 0$,

(X)
$$b_n = 0, \forall n \ge 0.$$

()
$$b_0 = \frac{3}{4}$$
, $b_1 = \frac{1}{2}$, $b_2 = \frac{1}{8}$, $b_n = 0$, $n > 2$

()
$$b_0 = -\frac{3}{4}$$
, $b_1 = \frac{1}{2}$, $b_2 = -\frac{1}{8}$, $b_n = 0$, $n > 2$

()
$$b_0 = -\frac{3}{4}$$
, $b_1 = -\frac{1}{2}$, $b_2 = \frac{1}{8}$, $b_n = 0$, $n > 2$

()
$$b_0 = \frac{3}{4}$$
, $b_1 = -\frac{1}{2}$, $b_2 = -\frac{1}{8}$, $b_n = 0$, $n > 2$

• Questão 3 (1.0 ponto) Seja $f(t) = e^{-|t|}$ e $F(w) = \mathcal{F}\{f(t)\}$ e $g(t) := \mathcal{F}^{-1}\{iwF(w)e^{-iw}\}$. Assinale corretamente a alternativa que indica corretamente os valores de g(2) e de $E := \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw$.

$$(X) -e^{-1}$$

$$() e^{-1}$$

$$() e^{-2}$$

• Questão 4 (2.0 pontos) Considere as funções dadas por:

$$\begin{array}{lll} f(t) & = & e^{-|t|} \\ g(t) & = & te^{-|t|} \\ h(t) & = & \cos(t)e^{-|t|} \\ l(t) & = & t\cos(t)e^{-|t|} \end{array}$$

Assinale as alternativas que indicam F(w), G(w), H(w) e L(w)

G(w)

$$\binom{w}{1} = \frac{1}{(w^2+1)^2}$$

()
$$\frac{1}{(w^2+1)^2}$$
 () $\frac{1}{w^2+1}$ () $\frac{4iw}{(w^2+1)^2}$

()
$$\frac{w}{w^2 + 1}$$
 () $\frac{4w}{(w^2 + 1)^2}$

(a)
$$\frac{2w}{(w^2+1)^2}$$
 (b) $\frac{2w}{(w^2+1)^2}$ (c) $\frac{-4iw}{(w^2+1)^2}$

()
$$\frac{2}{(w^2+1)^2}$$
 () $\frac{-2iw}{(w^2+1)^2}$ () $\frac{2w}{(w^2+1)}$

(X)
$$\frac{1}{(w+1)^2+1} + \frac{1}{(w-1)^2+1}$$
 () $\frac{2i(w+1)}{((w+1)^2+1)} + \frac{2i(w-1)}{((w-1)^2+1)}$

$$() \frac{1}{2} \left[\frac{1}{(w+1)^2+1} + \frac{1}{(w-1)^2+1} \right]$$

$$() \frac{2i(w+1)}{((w+1)^2+1)^2} + \frac{2i(w-1)}{((w-1)^2+1)^2}$$

$$() \frac{1}{2} \left[\frac{w+1}{(w+1)^2+1} + \frac{w+1}{(w-1)^2+1} \right]$$

$$() \frac{2(w+1)}{((w+1)^2+1)} + \frac{2(w-1)}{((w-1)^2+1)}$$

$$() \frac{w-1}{((w+1)^2+1)^2} + \frac{w-1}{((w-1)^2+1)^2}$$

$$() -\frac{i(w+1)}{((w+1)^2+1)^2} - \frac{i(w-1)}{((w-1)^2+1)^2}$$

$$() \frac{1}{((w+1)^2+1)^2} + \frac{1}{((w-1)^2+1)^2}$$

$$(X) -\frac{2i(w+1)}{((w+1)^2+1)^2} - \frac{2i(w-1)}{((w-1)^2+1)^2}$$

$$() \frac{1}{2} \left[\frac{1}{((w+1)^2+1)^2} + \frac{1}{((w-1)^2+1)^2} \right]$$

$$() \frac{w+1}{((w+1)^2+1)} + \frac{w-1}{((w-1)^2+1)^2}$$

• Questão 5 (1.0 pontos) Considere os diagramas de espectro de amplitude e fase de uma função f(t).

Marque as alternativas que indicam, respectivamente, C_1 , C_2 e C_3 e o sinal f(t).

()
$$C_1 = -2$$
, $C_2 = 1$ e $C_3 = -\frac{1}{2}$.

()
$$C_1 = 2i$$
, $C_2 = -i$ e $C_3 = \frac{i}{2}$.
() $f(t) = 1 + 4\cos(t) - 2\cos(2t) + \cos(3t)$.
() $f(t) = -1 + 4\cos(t) - 2\cos(2t) + \cos(3t)$.

(X)
$$C_1 = -2i$$
, $C_2 = i$ e $C_3 = -\frac{i}{2}$.

()
$$f(t) = -1 + 4\operatorname{sen}(t) + 2\operatorname{sen}(2t) + \operatorname{sen}(3t)$$
.

()
$$C_1 = -2, C_2 = -i e C_3 = -\frac{1}{2}$$
.

(X)
$$f(t) = 1 + 4\operatorname{sen}(t) - 2\operatorname{sen}(2t) + \operatorname{sen}(3t)$$
.

()
$$C_1 = -2i$$
, $C_2 = -i$ e $C_3 = \frac{i}{2}$.

()
$$f(t) = 4\operatorname{sen}(t) - 2\operatorname{sen}(2t) + \operatorname{sen}(3t)$$
.

• Questão 6 (2.0 pontos) Um fluido se desloca em um tubo termicamente isolado com velocidade constante v de forma que a evolução da temperatura u(x,t) como uma função da coordenada x e do tempo é descrita pelo seguinte modelo simplificado:

$$u_t - vu_x - u_{xx} = 0.$$

Sabendo que no instante t=0, a temperatura foi bruscamente aquecida em uma região muito pequena, de forma que podemos considerar

$$u(x,0) = 500\delta(x).$$

Use a técnica das transformadas de Fourier para obter a solução desta equação diferencial quando v = 1m/s.

Solução: Aplicamos a transforma de Fourier na variável x, obtemos a seguinte expressão para a equação transformada

$$U_t(k,t) - v(ik)U(k,t) - (ik)^2U(k,t) = 0$$

onde foi usada a propriedade da derivada. A condição inicial se torna:

$$U(k,0) = 500 \int_{-\infty}^{\infty} \delta(x)e^{-ikx} = 500$$

Portanto temos o seguinte problema de valor inicial:

$$U_t(k,t) = (-k^2 + ivk)U(k,t)$$
$$U(k,0) = 500$$

cuja solução é

$$U(k,t) = 500e^{(-k^2 + ivk)t} = 500e^{ivkt}e^{-k^2t}$$

A multiplicação por e^{ivtk} indica um deslocamento no eixo $\boldsymbol{x}.$ Logo precisamos calcular:

$$\mathcal{F}_{x}^{-1}\left\{e^{-k^{2}t}\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-k^{2}t} e^{ikx} dk = \frac{1}{\pi} \int_{0}^{\infty} e^{-k^{2}t} \cos(ikx) dk$$
$$= \frac{1}{\pi} \frac{\sqrt{\pi}}{2\sqrt{t}} e^{-\frac{x^{2}}{4t}} = \frac{1}{2\sqrt{\pi t}} e^{-\frac{x^{2}}{4t}}$$

Portanto

$$u(x,t) = \frac{250}{\sqrt{\pi t}}e^{-\frac{(x+vt)^2}{4t}} = \frac{250}{\sqrt{\pi t}}e^{-\frac{(x+t)^2}{4t}}$$

• Questão 7 (2.0 pontos) Sejam f(t) e g(t) funções que possuem transformadas de Fourier e $F(w) = \mathcal{F}\{f(t)\}$ e $G(w) = \mathcal{F}\{g(t)\}$. Os gráficos abaixo apresentam os seus diagramas de espectro de magnitudes.

Esboce o diagrama de magnitudes de $h(t) = f(t) \cos^2(3t)$ e l(t) = h(t) * g(t).

