Analysis on All Data Files

On this notebook, I will apply the best optimized models on all five datasets.

Load Libraries

```
In [11]: # Import base libraries
         import pandas as pd
         import numpy as np
         from scipy.io import arff
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.model_selection import GridSearchCV
         from xgboost import XGBClassifier
         from sklearn.metrics import classification report
         from sklearn.metrics import confusion_matrix
         from sklearn.metrics import plot confusion matrix
         from sklearn.metrics import roc auc score, roc curve, auc
         from sklearn.metrics import precision score, recall score, accuracy score,
         from sklearn.utils import class weight
         from functions import *
         from datetime import datetime
         import warnings
         warnings.filterwarnings('ignore')
```

Load Data

There are five data files:

```
* data1, 1year.arff
* data2, 2year.arff
* data3, 3year.arff
* data4, 4year.arff
* data5, 5year.arff
```

Note: No cleaning applied to data. XGBoost Classifier can handle the missing values and outliers.

```
In [2]: # Load all five data files
        data1 = arff.loadarff('data/lyear.arff')
        df1 = pd.DataFrame(data1[0])
        data2 = arff.loadarff('data/2year.arff')
        df2 = pd.DataFrame(data2[0])
        data3 = arff.loadarff('data/3year.arff')
        df3 = pd.DataFrame(data3[0])
        data4 = arff.loadarff('data/4year.arff')
        df4 = pd.DataFrame(data4[0])
        data5 = arff.loadarff('data/5year.arff')
        df5 = pd.DataFrame(data5[0])
In [3]: # Convert class/label type to binary
        df1['class'] = df1['class'].astype('int64')
        df2['class'] = df2['class'].astype('int64')
        df3['class'] = df3['class'].astype('int64')
        df4['class'] = df4['class'].astype('int64')
        df5['class'] = df5['class'].astype('int64')
In [4]: | # Size of datasets
        print('Size of datasets')
        print("Data 1 (Year1):", len(df1))
        print("Data 2 (Year2):", len(df2))
        print("Data 3 (Year3):", len(df3))
        print("Data 4 (Year4):", len(df4))
        print("Data 5 (Year5):", len(df5))
        Size of datasets
        Data 1 (Year1): 7027
        Data 2 (Year2): 10173
        Data 3 (Year3): 10503
        Data 4 (Year4): 9792
        Data 5 (Year5): 5910
```

Imbalance Information

I am using both sample weight and scale pos weight parameters to deal with the class imbalance.

- sample_weight: The weights for training sample are calculated for each dataset seperately and used when during training.
- scale_pos_weight: I provide certain values to initiate the classifier. I either use the imbalance ratio or square root of the imbalance ratio. These values are not exactly same for the datasets, but close enough to use a constant about average number.
 - Model 7 (max_depth=5): scale_pos_weight=20 (~imbalance ratio)
 - Model 8 (max_depth=4): scale_pos_weight=4.5 (~square root of imbalance ratio)

Model 9 (max_depth=6): scale_pos_weight=20 (~imbalance ratio)

```
In [5]: # Imbalance info using class weight.compute class weight
        print('Class Weights:')
        df list = [df1, df2, df3, df4, df5]
        for i, df in enumerate(df list, start=1):
            class weights = class weight.compute class weight(class weight='balance
            ratio = class weights[1]/class weights[0]
            sqrt ratio = np.sqrt(class weights[1]/class weights[0])
            print(f'Data {i}: Ratio={round(ratio,3)}, sqrt(ratio)={round(sqrt_ratio)}
        # The values are very similar for train/test/whole datasets.
        # Training weights are used for data training.
        Class Weights:
        Data 1: Ratio=24.93, sqrt(ratio)=4.993, class weights=[ 0.52005625 12.964
        944651
        Data 2: Ratio=24.432, sqrt(ratio)=4.943, class_weights=[ 0.52046455 12.71
        625
        Data 3: Ratio=20.218, sqrt(ratio)=4.496, class weights=[ 0.52473022 10.60
        Data 4: Ratio=18.014, sqrt(ratio)=4.244, class weights=[0.52775682 9.5067
        Data 5: Ratio=13.415, sqrt(ratio)=3.663, class weights=[0.53727273 7.2073
        1707]
In [6]: # Imbalance info using class value counts
        print('Imbalance Ratio, based on class value counts:')
        df list = [df1, df2, df3, df4, df5]
        for i, df in enumerate(df list, start=1):
            val_counts = df['class'].value_counts()
            ratio= val counts[0]/val counts[1]
            sqrt ratio= np.sqrt(val counts[0]/val counts[1])
            print(f'Data {i}: Ratio={round(ratio,3)}, sqrt(ratio)={round(sqrt_ratio)}
        # The values are very similar for train/test/whole datasets.
        Imbalance Ratio, based on class value counts:
        Data 1: Ratio=24.93, sqrt(ratio)=4.993
        Data 2: Ratio=24.432, sqrt(ratio)=4.943
        Data 3: Ratio=20.218, sqrt(ratio)=4.496
        Data 4: Ratio=18.014, sqrt(ratio)=4.244
        Data 5: Ratio=13.415, sgrt(ratio)=3.663
```

Compare Model 7, 9, 10 Performance on All Datasets

```
In [7]: # Model 9: Best Model for Data 3, max depth=4
        xgbParams_m9 = {
             'eval_metric': 'logloss',
             'random_state': 42,
             'scale_pos_weight': 4.5,
             'n_estimators': 125,
             'max_depth': 4,
             'min_child_weight': 3,
             'gamma': 0,
             'learning_rate': 0.20,
             'max_delta_step': 0,
             'reg_lambda': 1,
             'reg_alpha': 0,
             'subsample': 1,
             'colsample_bytree': 1
        }
        df_{list} = [df1, df2, df3, df4, df5]
        #df list = [df1, df2]
        model_9_df = compare_datafiles_perf(df_list, xgbParams_m9, 'model_9', 1, 1,
        model_9_df
        ----model_9-----
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
```

auc

Out[7]:

					•	
Data						
Data 1	Train	0.9520	1.0000	0.9760	0.9980	1.0000
Data 1	Test	0.7590	0.8040	0.7810	0.9840	0.9630
Data 2	Train	0.8590	1.0000	0.9240	0.9930	1.0000
Data 2	Test	0.4890	0.6340	0.5520	0.9640	0.9240
Data 3	Train	0.7190	1.0000	0.8360	0.9820	1.0000
Data 3	Test	0.5540	0.7200	0.6260	0.9560	0.9160
Data 4	Train	0.7440	1.0000	0.8530	0.9820	1.0000
Data 4	Test	0.4960	0.6600	0.5670	0.9470	0.9420
Data 5	Train	0.9500	1.0000	0.9740	0.9960	1.0000
Data 5	Test	0.6600	0.7330	0.6950	0.9510	0.9580
Average	Train	0.8448	1.0000	0.9126	0.9902	1.0000
Average	Test	0.5916	0.7102	0.6442	0.9604	0.9406

Sample weights are used!

False Positive Rate

```
In [8]: # Model 7, max depth=5
        xgbParams_m7 = {
            'eval_metric': 'logloss',
            'random_state': 42,
            'scale_pos_weight': 20,
            'n estimators': 125,
            'max_depth': 5,
            'min child weight': 3,
            'gamma': 0,
            'learning_rate': 0.20,
            'max_delta_step': 0,
            'reg_lambda': 0,
            'reg_alpha': 5,
            'subsample': 1,
            'colsample_bytree': 0.7
        }
        df_{list} = [df1, df2, df3, df4, df5]
        model_7 df = compare datafiles_perf(df_list, xgbParams_m7, 'model_7', 1, 1,
        model_7_df
        ----model_7----
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
```

auc

Out[8]:

Data							
Data 1	Train	0.8800	1.0000	0.9360	0.9950	1.0000	
Data 1	Test	0.6270	0.8240	0.7120	0.9760	0.9690	
Data 2	Train	0.8730	1.0000	0.9320	0.9940	1.0000	
Data 2	Test	0.4840	0.6340	0.5490	0.9640	0.9320	
Data 3	Train	0.7700	1.0000	0.8700	0.9860	1.0000	
Data 3	Test	0.5380	0.7200	0.6160	0.9540	0.9270	
Data 4	Train	0.8060	1.0000	0.8930	0.9870	1.0000	
Data 4	Test	0.5560	0.6800	0.6110	0.9550	0.9490	
Data 5	Train	0.8290	1.0000	0.9070	0.9860	1.0000	
Data 5	Test	0.6070	0.7890	0.6860	0.9450	0.9600	
Average	Train	0.8316	1.0000	0.9076	0.9896	1.0000	
Average	Test	0.5624	0.7294	0.6348	0.9588	0.9474	


```
In [9]: # Model 10, max depth=6
        xgbParams_m10 = {
             'eval_metric': 'logloss',
             'random_state': 42,
             'scale_pos_weight': 20,
             'n_estimators': 80,
             'max_depth': 6,
             'min child weight': 3,
             'gamma': 0,
             'learning_rate': 0.25,
             'max_delta_step': 4,
             'reg_lambda': 1,
             'reg_alpha': 0,
             'subsample': 1,
             'colsample_bytree': 1,
        }
        df_{list} = [df1, df2, df3, df4, df5]
        model_10_df = compare_datafiles_perf(df_list, xgbParams_m10, 'model_10', 1,
        model_10_df
        ----model_10-----
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
        Sample weights are used!
```

auc

Out[9]:

					•	
Data						
Data 1	Train	0.9780	1.0000	0.9890	0.9990	1.0000
Data 1	Test	0.6900	0.7840	0.7340	0.9790	0.9560
Data 2	Train	0.9510	1.0000	0.9750	0.9980	1.0000
Data 2	Test	0.5810	0.6060	0.5930	0.9710	0.9060
Data 3	Train	0.9000	1.0000	0.9470	0.9950	1.0000
Data 3	Test	0.6360	0.7010	0.6670	0.9640	0.9310
Data 4	Train	0.8980	1.0000	0.9460	0.9940	1.0000
Data 4	Test	0.5640	0.6410	0.6000	0.9550	0.9480
Data 5	Train	0.9700	1.0000	0.9850	0.9980	1.0000
Data 5	Test	0.6370	0.7220	0.6770	0.9480	0.9510
Average	Train	0.9394	1.0000	0.9684	0.9968	1.0000
Average	Test	0.6216	0.6908	0.6542	0.9634	0.9384

0.4

False Positive Rate

0.8

1.0

0.6

0.0

0.2

```
In [10]:
               # Compare models
               model_df_list = [model_9 df, model_7 df, model_10 df]
               model_names_list = ['Model 9', 'Model 7', 'Model 10']
               plot_compare_model_metricsAvg(model_df_list, model_names_list, 1)
                 1.0
                 0.8
                                                                                0.8
               precision Average
                                                                              recall Average
                                                                                   --- Model 9 Train
                     -- Model 9 Train
                      Model 9 Test
                                                                                    → Model 9 Test
                     -- Model 7 Train
                                                                                   --- Model 7 Train
                        Model 7 Test
                                                                                    → Model 7 Test
                     -- Model 10 Train
                                                                                   --- Model 10 Train
                     → Model 10 Test
                                                                                    → Model 10 Test
                                           Data 3
                                                       Data 4
                                                                   Data 5
                    Data 1
                               Data 2
                                                                                  Data 1
                                                                                                          Data 3
                                                                                                                      Data 4
                                                                                                                                  Data 5
                 1.0
                                                                                1.0
                 0.8
                                                                                0.8
                                                                              auc Average
               f1 Average
                                                                                   --- Model 9 Train
                     -- Model 9 Train
                     → Model 9 Test
                                                                                    → Model 9 Test
                     -- Model 7 Train
                                                                                    --- Model 7 Train
                     → Model 7 Test
                                                                                    → Model 7 Test
```

-- Model 10 Train

→ Model 10 Test

Data 3

Data 4

Data 5

Data 1

-- Model 10 Train

→ Model 10 Test

Data 3

Data 4

Data 5

Data 1

Comments

Overall the performance of the models are similar, especially recall.

Model 9 (max_depth=4):

- * Previously Selected performance for data 3
- * Overfitting is least on Data 3

Model 7 (max_depth=5):

- * Performance is similar to Model 9
- * Recall is sligtly larger than Model 9
- * More smooth performance on all datasets

Model 10 (max_depth=6):

- * Highest metrics
- * But overfitting is larger

Selected model: Model 7

Some Tuning and Comparing

Try some more tuning...

```
In [11]: # sample weight only, no scale pos weight
         xgbParams = {
              'eval_metric': 'logloss',
              'random_state': 42,
             #'scale pos weight': 4.5,
              'n estimators': 125,
              'max_depth': 4,
              'min_child_weight': 3,
              'gamma': 0,
              'learning_rate': 0.20,
              'max_delta_step': 0,
              'reg_lambda': 1,
              'reg_alpha': 0,
              'subsample': 1,
              'colsample bytree': 1
         }
         df_{list} = [df1, df2, df3, df4, df5]
         model_noSpw_df = compare_datafiles_perf(df_list, xgbParams, 'noSpw', 1, 0,
         model_noSpw_df
         ----noSpw-----
         Sample weights are used!
```

auc

Sample weights are used! Sample weights are used!

Sample weights are used!

Sample weights are used!

Sample precision recall

Out[11]:

					_	
Data						
Data 1	Train	0.9780	1.0000	0.9890	0.9990	1.0000
Data 1	Test	0.8720	0.8040	0.8370	0.9890	0.9660
Data 2	Train	0.9590	1.0000	0.9790	0.9980	1.0000
Data 2	Test	0.6450	0.5630	0.6020	0.9740	0.9400
Data 3	Train	0.8860	1.0000	0.9390	0.9940	1.0000
Data 3	Test	0.6670	0.6360	0.6510	0.9650	0.9290
Data 4	Train	0.9260	1.0000	0.9610	0.9960	1.0000
Data 4	Test	0.6090	0.5150	0.5580	0.9570	0.9450
Data 5	Train	0.9820	1.0000	0.9910	0.9990	1.0000
Data 5	Test	0.7590	0.7330	0.7460	0.9620	0.9630
Average	Train	0.9462	1.0000	0.9718	0.9972	1.0000
Average	Test	0.7104	0.6502	0.6788	0.9694	0.9486

```
In [12]: #n estimators=100
         xgbParams_11 = {
              'eval_metric': 'logloss',
              'random_state': 42,
              'scale_pos_weight': 4.5,
              'n_estimators': 100,
              'max_depth': 4,
              'min_child_weight': 3,
              'gamma': 0,
              'learning_rate': 0.20,
              'max_delta_step': 0,
              'reg_lambda': 1,
              'reg_alpha': 0,
              'subsample': 1,
              'colsample_bytree': 1
         }
         df_list = [df1, df2, df3, df4, df5]
         model_nEst100_df = compare_datafiles_perf(df_list, xgbParams_11, 'nEst100',
         model_nEst100_df
         ----nEst100----
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
```

auc

Out[12]:

Data						
Data 1	Train	0.8870	1.0000	0.9400	0.9950	1.000
Data 1	Test	0.6450	0.7840	0.7080	0.9770	0.964
Data 2	Train	0.6970	1.0000	0.8210	0.9820	1.000
Data 2	Test	0.4230	0.6620	0.5160	0.9570	0.923
Data 3	Train	0.6090	1.0000	0.7570	0.9700	1.000
Data 3	Test	0.4910	0.7480	0.5930	0.9480	0.916
Data 4	Train	0.6250	1.0000	0.7690	0.9680	1.000
Data 4	Test	0.4270	0.6800	0.5240	0.9350	0.938
Data 5	Train	0.8420	1.0000	0.9140	0.9870	1.000
Data 5	Test	0.6110	0.7330	0.6670	0.9440	0.959
Average	Train	0.7320	1.0000	0.8402	0.9804	1.000
Average	Test	0.5194	0.7214	0.6016	0.9522	0.940

```
In [13]: # reg lambda=5
         xgbParams = {
              'eval_metric': 'logloss',
              'random_state': 42,
              'scale_pos_weight': 4.5,
              'n_estimators': 125,
              'max_depth': 4,
              'min_child_weight': 3,
              'gamma': 0,
              'learning_rate': 0.20,
              'max_delta_step': 0,
              'reg_lambda': 5,
              'reg_alpha': 0,
              'subsample': 1,
              'colsample_bytree': 1
         }
         df_list = [df1, df2, df3, df4, df5]
         model_lambda5_df = compare_datafiles_perf(df_list, xgbParams, 'lambda5', 1,
         model_lambda5_df
         ----lambda5----
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
```

auc

Out[13]:

Data						
Data 1	Train	0.9090	1.0000	0.9520	0.9960	1.0000
Data 1	Test	0.6890	0.8240	0.7500	0.9800	0.9660
Data 2	Train	0.7850	1.0000	0.8800	0.9890	1.0000
Data 2	Test	0.4800	0.6620	0.5560	0.9630	0.9480
Data 3	Train	0.6470	1.0000	0.7850	0.9750	1.0000
Data 3	Test	0.5070	0.7200	0.5950	0.9500	0.9240
Data 4	Train	0.7400	1.0000	0.8500	0.9810	1.0000
Data 4	Test	0.4770	0.6120	0.5360	0.9440	0.9430
Data 5	Train	0.8600	1.0000	0.9250	0.9890	1.0000
Data 5	Test	0.6190	0.7780	0.6900	0.9470	0.9610
Average	Train	0.7882	1.0000	0.8784	0.9860	1.0000
Average	Test	0.5544	0.7192	0.6254	0.9568	0.9484

```
In [14]: #n estimators=100
         # reg lambda=5
         xgbParams = {
              'eval_metric': 'logloss',
              'random_state': 42,
              'scale pos weight': 4.5,
              'n_estimators': 100,
              'max_depth': 4,
              'min_child_weight': 3,
              'gamma': 0,
              'learning_rate': 0.20,
              'max_delta_step': 0,
              'reg_lambda': 5,
              'reg_alpha': 0,
              'subsample': 1,
              'colsample_bytree': 1
         }
         df_{list} = [df1, df2, df3, df4, df5]
         model_nEst100_lambda5_df = compare_datafiles_perf(df_list, xgbParams, 'nEst
         model_nEst100_lambda5_df
         ----nEst100_lambda5-----
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
         Sample weights are used!
```

auc

Out[14]:

	oup.o	production	. ooa	• •	accuracy	aao
Data						
Data 1	Train	0.8460	1.0000	0.9170	0.9930	1.0000
Data 1	Test	0.6090	0.8240	0.7000	0.9740	0.9670
Data 2	Train	0.6280	1.0000	0.7710	0.9760	1.0000
Data 2	Test	0.4050	0.6900	0.5100	0.9540	0.9480
Data 3	Train	0.5390	1.0000	0.7000	0.9600	1.0000
Data 3	Test	0.4180	0.7570	0.5380	0.9340	0.9200
Data 4	Train	0.5930	1.0000	0.7440	0.9640	1.0000
Data 4	Test	0.4240	0.6990	0.5270	0.9340	0.9370
Data 5	Train	0.7860	1.0000	0.8800	0.9820	1.0000
Data 5	Test	0.6100	0.8330	0.7040	0.9470	0.9610
Average	Train	0.6784	1.0000	0.8024	0.9750	1.0000
Average	Test	0.4932	0.7606	0.5958	0.9486	0.9466

Sample weights are used!

In [15]: model_df_list2 = [model_7_df, model_noSpw_df, model_nEst100_df, model_lambd model_names_list2 = ['Model 7', 'nsSpw', 'nEst100', 'lambda5', 'nEst100_lam plot_compare_model_metricsAvg(model_df_list2, model_names_list2) 0.8 0.8 precision Average recall Average -- Model 7 Train Model 7 Train Model 7 Test Model 7 Test nsSpw Train nsSpw Train nsSpw Test nsSpw Test nEst100 Train -- nEst100 Train nEst100 Test nEst100 Test 0.2 lambda5 Train -- lambda5 Train lambda5 Test lambda5 Test nEst100_lambda5 Train -- nEst100_lambda5 Train nEst100_lambda5 Test → nEst100_lambda5 Test Data 1 Data 2 Data 4 Data 5 Data 2 Data 3 Data 1 Data 3 Data 4 Data 5 1.0 0.8 0.8 auc Average f1 Average Model 7 Train Model 7 Train Model 7 Test Model 7 Test nsSpw Train nsSpw Train nsSpw Test nsSpw Test -- nEst100 Train -- nEst100 Train nEst100 Test nEst100 Test -- lambda5 Train -•- lambda5 Train -• nEst100_lambda5 Train -••• nEst100_lambda5 Train → nEst100_lambda5 Test Data 1 Data 2 Data 3 Data 4 Data 5 Data 1 Data 2 Data 3 Data 4 Data 5

Comments

After some tuning, still best performance is Model 7.

Final Model

Model 7 has the best performance.

```
In [16]: # Final Model Parameters
         # Model 7, max_depth=5
         xgbParams_final = {
              'eval_metric': 'logloss',
             'random_state': 42,
              'scale_pos_weight': 20,
              'n_estimators': 125,
              'max_depth': 5,
              'min_child_weight': 3,
              'gamma': 0,
             'learning_rate': 0.20,
              'max_delta_step': 0,
             'reg_lambda': 0,
              'reg_alpha': 5,
              'subsample': 1,
              'colsample_bytree': 0.7
         }
```

In [17]: # Final Model Results for All data files df_list = [df1, df2, df3, df4, df5] final_model_df = compare_datafiles_perf(df_list, xgbParams_final, 'final_mofel_df

-----final_model----Sample weights are used!
Sample weights are used!
Sample weights are used!
Sample weights are used!
Sample weights are used!

Out[17]:

	Sample	precision	recall	f1	accuracy	auc
Data						
Data 1	Train	0.8800	1.0000	0.9360	0.9950	1.0000
Data 1	Test	0.6270	0.8240	0.7120	0.9760	0.9690
Data 2	Train	0.8730	1.0000	0.9320	0.9940	1.0000
Data 2	Test	0.4840	0.6340	0.5490	0.9640	0.9320
Data 3	Train	0.7700	1.0000	0.8700	0.9860	1.0000
Data 3	Test	0.5380	0.7200	0.6160	0.9540	0.9270
Data 4	Train	0.8060	1.0000	0.8930	0.9870	1.0000
Data 4	Test	0.5560	0.6800	0.6110	0.9550	0.9490
Data 5	Train	0.8290	1.0000	0.9070	0.9860	1.0000
Data 5	Test	0.6070	0.7890	0.6860	0.9450	0.9600
Average	Train	0.8316	1.0000	0.9076	0.9896	1.0000
Average	Test	0.5624	0.7294	0.6348	0.9588	0.9474

In [18]: # Data 1 Final Model
d1_final_model = xgb_model_report2(1, df1, xgbParams_final, 'final_model',

Sample weights are used!
Data 1 Classification Report:

Training Data:

	precision	recall	f1-score	support
0	1.00	0.99	1.00	5401
1	0.88	1.00	0.94	220
accuracy			0.99	5621
macro avg	0.94	1.00	0.97	5621
weighted avg	1.00	0.99	0.99	5621
Testing Data:				
	precision	recall	f1-score	support
0	0.99	0.98	0.99	1355
1	0.63	0.82	0.71	51
accuracy			0.98	1406
macro avg	0.81	0.90	0.85	1406
weighted avg	0.98	0.98	0.98	1406

In [19]: # Data 2 Final Model d2_final_model = xgb_model_report2(2, df2, xgbParams_final, 'final_model',

Sample weights are used!
Data 2 Classification Report:

Training Data:

	precision	recall	f1-score	support
0	1.00	0.99	1.00	7809
1	0.87	1.00	0.93	329
accuracy			0.99	8138
macro avg	0.94	1.00	0.96	8138
weighted avg	0.99	0.99	0.99	8138
Testing Data:				
	precision	recall	f1-score	support
0	0.99	0.98	0.98	1964
1	0.48	0.63	0.55	71
accuracy			0.96	2035
macro avg	0.74	0.80	0.76	2035
weighted avg	0.97	0.96	0.97	2035

In [20]: # Data 3 Final Model d3_final_model = xgb_model_report2(3, df3, xgbParams_final, 'final_model',

Sample weights are used!
Data 3 Classification Report:

Training Data:

	precision	recall	f1-score	support
0	1.00	0.99	0.99	8014
1	0.77	1.00	0.87	388
accuracy			0.99	8402
macro avg	0.88	0.99	0.93	8402
weighted avg	0.99	0.99	0.99	8402
Testing Data:				
-	precision	recall	f1-score	support
0	0.98	0.97	0.98	1994
1	0.54	0.72	0.62	107
accuracy			0.95	2101
macro avg	0.76	0.84	0.80	2101
weighted avg	0.96	0.95	0.96	2101

```
d4_final_model = xgb_model_report2(4, df4, xgbParams_final, 'final_model',
         Sample weights are used!
         Data 4 Classification Report:
         Training Data:
                         precision
                                      recall f1-score
                                                          support
                     0
                             1.00
                                       0.99
                                                  0.99
                                                            7421
                     1
                             0.81
                                       1.00
                                                  0.89
                                                             412
                                                  0.99
                                                            7833
             accuracy
            macro avg
                             0.90
                                       0.99
                                                  0.94
                                                            7833
         weighted avg
                             0.99
                                       0.99
                                                  0.99
                                                            7833
         Testing Data:
                         precision
                                      recall f1-score
                                                          support
                     0
                             0.98
                                       0.97
                                                  0.98
                                                            1856
                     1
                             0.56
                                       0.68
                                                  0.61
                                                             103
                                                  0.95
                                                            1959
             accuracy
                             0.77
                                       0.82
                                                  0.79
            macro avg
                                                            1959
                             0.96
                                       0.95
                                                  0.96
         weighted avg
                                                            1959
In [22]: # Data 5 Final Model
         d5 final model = xgb model report2(5, df5, xgbParams final, 'final model',
         Sample weights are used!
         Data 5 Classification Report:
         Training Data:
                         precision
                                      recall f1-score support
                     0
                             1.00
                                       0.99
                                                  0.99
                                                            4408
                     1
                             0.83
                                       1.00
                                                  0.91
                                                             320
             accuracy
                                                  0.99
                                                            4728
            macro avq
                             0.91
                                       0.99
                                                  0.95
                                                            4728
         weighted avg
                             0.99
                                       0.99
                                                  0.99
                                                            4728
         Testing Data:
                         precision
                                      recall f1-score
                                                          support
                     0
                             0.98
                                       0.96
                                                  0.97
                                                            1092
                     1
                             0.61
                                       0.79
                                                  0.69
                                                              90
                                                  0.95
                                                            1182
             accuracy
                             0.79
                                       0.87
                                                  0.83
                                                            1182
            macro avg
         weighted avg
                             0.95
                                       0.95
                                                  0.95
                                                            1182
```

In [21]: # Data 4 Final Model

```
In [23]: # List important attitudes

final_model_list = [d1_final_model, d2_final_model, d3_final_model, d4_fina

df_important_Attr = pd.DataFrame()

cols = df1.columns

for i,df in enumerate(final_model_list, start=1):
    importance = df.feature_importances_
    attribute_importance = pd.DataFrame([cols, importance], index=['Attribute'] attribute_importance.sort_values(by='Importance', ascending=False, inpled_important_Attr[f'Data{i}'] = attribute_importance['Attribute'][0:20]

df_important_Attr
```

Out[23]:

	Data1	Data2	Data3	Data4	Data5
0	Attr34	Attr59	Attr52	Attr62	Attr62
1	Attr6	Attr34	Attr34	Attr33	Attr34
2	Attr22	Attr10	Attr10	Attr31	Attr64
3	Attr24	Attr5	Attr26	Attr6	Attr7
4	Attr25	Attr27	Attr27	Attr34	Attr27
5	Attr27	Attr7	Attr59	Attr27	Attr6
6	Attr26	Attr26	Attr31	Attr26	Attr42
7	Attr8	Attr25	Attr16	Attr42	Attr16
8	Attr45	Attr24	Attr35	Attr52	Attr49
9	Attr50	Attr16	Attr24	Attr13	Attr5
10	Attr1	Attr22	Attr25	Attr57	Attr48
11	Attr51	Attr58	Attr20	Attr21	Attr25
12	Attr5	Attr15	Attr13	Attr64	Attr51
13	Attr59	Attr11	Attr41	Attr41	Attr43
14	Attr21	Attr42	Attr5	Attr1	Attr31
15	Attr49	Attr41	Attr37	Attr5	Attr23
16	Attr13	Attr28	Attr45	Attr37	Attr2
17	Attr37	Attr20	Attr58	Attr24	Attr50
18	Attr38	Attr31	Attr19	Attr59	Attr21
19	Attr35	Attr37	Attr6	Attr15	Attr14

```
In [24]: #Common Best predictors
         set1 = set(df_important_Attr['Data1'])
         set2 = set(df_important_Attr['Data2'])
         set3 = set(df_important_Attr['Data3'])
         set4 = set(df_important_Attr['Data4'])
         set5 = set(df_important_Attr['Data5'])
         important_attr_common = set.intersection(set1, set2, set3, set4, set5)
         important_attr_common
Out[24]: {'Attr27', 'Attr34', 'Attr5'}
In [25]: # Scatter Graphs, Data 3
         plt.figure(figsize=(20, 5))
         for i, col in enumerate(important_attr_common, start=1):
             plt.subplot(1, 3, i)
             plt.scatter(df3[col], df3['class'], alpha=0.1)
             plt.title(col)
         plt.savefig('figures/scatter_d3_importantAttr.png')
                                                                         Attr34
                                    1.0
                                                              1.0
                                    0.6
                                                              0.6
```

0.4

-2000 -1000 0 1000 2000 3000 4000 5000 6000

500000 1000000 1500000 2000000 2500000

0.4

0.4

-0.8

-0.6

-0.4

```
In [26]: # Histograms

plt.figure(figsize=(20, 5))

for i, col in enumerate(important_attr_common, start=1):
    plt.subplot(1, 3, i)
    plt.hist(df3[col], bins=100, log=True)
    plt.title(col)

plt.savefig('figures/hist_d3_log_importantAttr.png')
```


In [27]: # Box plots plt.figure(figsize=(20, 5)) for i, col in enumerate(important_attr_common, start=1): plt.subplot(1, 3, i) plt.boxplot(df3[col].dropna()) plt.title(col) plt.savefig('figures/boxPlot_d3_importantAttr.png') ## Boxplot only draws the attribute only when missing entries removed.

Best predictor descriptions

- X27: profit on operating activities / financial expenses
- X34: operating expenses / total liabilities
- X5: [(cash + short-term securities + receivables short-term liabilities) / (operating expenses depreciation)] * 365

Interpretation of Results

5-year Period (Data 1):

- Model correctly identifies the 80.4% of the true bankrupt companies, which will bankrupt 5
 years later. (recall)
- Among the model predicted bankruptcy companies, 64.1% of them are true bankrupt companies, which will bankrupt 5 years later. (precision)
- The Harmonic Mean of Precision and Recall (f1-score) is 71.3%.

4-year Period (Data 2):

- Model correctly identifies the 62.0% of the true bankrupt companies, which will bankrupt 4
 years later. (recall)
- Among the model predicted bankruptcy companies, 50.6% of them are true bankrupt companies, which will bankrupt 4 years later. (precision)
- The Harmonic Mean of Precision and Recall (f1-score) is 55.7%.

3-year Period (Data 3):

- Model correctly identifies the 72.0% of the true bankrupt companies, which will bankrupt 3
 years later. (recall)
- Among the model predicted bankruptcy companies, 53.5% of them are true bankrupt companies, which will bankrupt 3 years later. * The Harmonic Mean of Precision and Recall (f1score) is 61.4%.

2-year Period (Data 4):

- Model correctly identifies the 68.0% of the true bankrupt companies, which will bankrupt 2
 years later. (recall)
- Among the model predicted bankruptcy companies, 55.6% of them are true bankrupt companies, which will bankrupt 2 years later. (precision)
- The Harmonic Mean of Precision and Recall (f1-score) is 61.1%.

1-year Period (Data 5):

- Model correctly identifies the 78.9% of the true bankrupt companies, which will bankrupt 1
 years later. (recall)
- Among the model predicted bankruptcy companies, 60.7% of them are true bankrupt companies, which will bankrupt 1 years later. (precision)
- The Harmonic Mean of Precision and Recall (f1-score) is 68.6%.

On Average:

- Model correctly identifies the 72.3% of the true bankrupt companies. (recall)
- Among the model predicted bankruptcy companies, 56.9% of them are true bankrupt companies. (precision)
- The Harmonic Mean of Precision and Recall (f1-score) is 63.6%.

Class 0 predictions:

Model correctly identifies the ~97% of the true still operating companies. (recall, class 0)

- Among the model predicted still operating companies, ~98% of them are true still operating companies. (precision, class 0)
- The Harmonic Mean of Precision and Recall (f1-score, class 0) is ~98%.

Conclusion

I had three main challenges in this project:

1. Class Imbalance:

- · Resolved.
- Balancing the sample increased the recall and so decreased the precision. The balance sample has moderate evaluation scores. See Model 2 for Data 3.
- · However overfitting didn't improve much.

2. Low recall score:

- I managed to improve recall significantly for all datasets. For instance, Data 3 recall score improved from 0.467 to 0.720.
- I couldn't go for higher recall value, because the precision was decreasing dramatically (below 0.5). The recall and precision are inversely proportional.

3. Large overfitting:

- I did decrease the overfitting, but not on desired level.
- I tuned parameters which are effecive on overfitting, and find the optimum designs that produces low overfitting, large recall and moderate precision.
- However, I couldn't enforce larger reduction in overfitting, since it causes the precision go below 0.5. which is the random guess probability.

Overall, my model correctly identifies

- 72.3% of the true bankrupt companies
- 97% of the true still operating companies

Future Work

- Create seperate final models for each dataset; not just one final model that applies on all.
- Search for alternative Classifier methods/tools.
- Simply/shorten functions that are created during the project. They have repeating codes.