Planifique el foro de presentación

Datos de planificación de Foro. Ecuaciones diferenciales clásicas.

Número de intento: 1 intento dividido en dos momentos

Tema para desarrollar:

1.1. Definiciones principales.

- 1.1.1. ¿Qué son y cómo surgen las EDP?
- 1.1.2. Los operadores GRAD, ROT, DIV y Laplaciano.
- 1.1.3. Problemas con condiciones iniciales y de contorno asociados a las EDP.

1.2. Ejemplos clásicos de EDP de la física matemática y significado de los problemas de contorno asociados a las EDP.

- 1.2.1. Ecuación de la difusión: la ecuación de calor.
- 1.2.2. Ecuaciones de Maxwell: la ecuación de onda.
- 1.2.3. Eccuaciones de primer orden: conservación de masa, Eules y las ecuaciones de la mecánica de fluidos.

Forma de evaluar

Fecha de entrega primer momento

	0-100%	Hasta el 05 de octubre de 2024 a las 23:59 horas (Tiempo del centro de México).
0-80% Hasta el 08 de octubre de 2024 a las 23:59 de México).		Hasta el 08 de octubre de 2024 a las 23:59 horas (Tiempo del centro de México).
	0- 70%	Hasta el 03 de diciembrebre de 2024 a las 23:59 horas (Tiempo del centro de México).

Fecha de entrega segundo momento

0-100%	Hasta el 09 de octubre de 2024 a las 23:59 horas (Tiempo del centro de México).
0-80%	Hasta el 12 de octubre de 2024 a las 23:59 horas (Tiempo del centro de México).
0- 70%	Hasta el 03 de diciembrebre de 2024 a las 23:59 horas (Tiempo del centro de México).

Bibliografía de apoyo para la actividad.

- Apostol, T. (1967). Calculus. Vol. 2. Multi-Variables Calculus and Linear Algebra, with Applications to Differential Equations and Probability. México: Editorial Reverte.
- Peral Alonso, I. (2004). Primer curso de ecuaciones en derivadas parciales. Universidad Autónoma Metropolitana.
- García Hernández, Ana (2015). *Ecuaciones Diferenciales*. Grupo Editorial Patria. *Diferenciales Con Problemas de Valores En La Frontera*. Editorial Cengage Learning.

Estrategia de enseñanza: Dar solución al cuestionario y discutir los tópicos en clase a través de una videoconferencia.

Estrategia de aprendizaje: Debatir las definiciones matemáticas y resultados entre alumnos.

Secuencia de actividad

Primer momento:

- 1. Lee el material de estudio de la Unidad 1.
- Ingresa al foro de la Actividad 1.
- 3. Escribe la actividad en formato PDF con una correcta ortografía, redacción y sintaxis.
- 4. Redacta una introducción para explicar la importancia de los subespacios vectoriales con una extensión mínima de 100 y máxima de 200 palabras. Incluye una cita de autor que tenga una extensión mínima de 100 y máxima de 200 palabras en formato APA 7ma edición.
- 5. Argumenta cada una de tus respuestas para una de las siguientes preguntas:
 - **Ejercicio 1.** Explica con detalle cuál es la diferencia entre una ecuación diferencial parcial y una ecuación diferencial ordinaria, considerando y anotando las definiciones matemáticas para cada una de ellas.
 - **Ejercicio 2.** ¿Existe diferencia entre una condición inicial y una condición de contorno? Justifica tu respuesta tomando en cuenta las definiciones matemáticas.
 - **Ejercicio 3.** De acuerdo a las definiciones matemáticas describe las EDP siguientes, indicando si es lineal, homogénea y el orden.

i)
$$uy \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial y} = 1$$

ii)
$$\left(\frac{\partial^2 \mathbf{u}}{\partial x^2}\right)^4 + \frac{\partial^3 \mathbf{u}}{\partial x^2 \partial y} = 3x$$

iii)
$$c \frac{\partial^3 m}{\partial y^2 \partial x} + \frac{\partial m}{\partial x} - 5m = -3t$$

iv)
$$xy \frac{\partial^2 v}{\partial x^2} + xz \frac{\partial^2 v}{\partial y^2} + yz \frac{\partial^2 v}{\partial z^2} - v = 0$$

Ejercicio 4. A partir de la definición matemática del operador Nabla, construye los operadores: gradiente, divergencia, rotacional y Laplaciano en coordenadas cilíndricas, indicando el desarrollo para la obtención de cada uno de ellos.

Ejercicio 5. Considerando las ecuaciones diferenciales clásicas, explica la ecuación de onda y las ecuaciones de Maxwell, reflexionando su interpretación física.

Segundo momento:

- 1. Lee detenidamente las participaciones de tus compañeros/as.
- 2. Redacta una conclusión para **explicar** los objetivos que has alcanzado. Considera una extensión mínima de 100 y máxima de 150 palabras.
- 3. Argumenta en una segunda aportación, con un texto mínimo de 80 y máximo de 200 palabras, la retroalimentación respecto a la participación de dos compañeros (as) de manera constructiva, crítica y asertiva. Incluye en tu aportación una cita de autor. La extensión del texto no incluye las referencias ni la cita del autor.
- 4. Incluye la referencia de la cita de autor en formato APA 7ma edición.
- 5. Consulta el <u>instrumento de evaluación</u> verificando que tus momentos cumplan con cada uno de los criterios establecidos en el.

Instrumento de evaluación

Escala de evaluación Foro

Criterios de evaluación	Puntaje por criterio	Observaciones		
Desarrollo de la actividad. Primer momento (80%)				
Utiliza la plantilla correspondiente para entrega de actividades.	Obligatorio	Al no utilizarla se descontarán 10 puntos de la evaluación total obtenida. El archivo está en formato PDF.		
Redacta una introducción y conclusión del tema de la actividad.				

3. Presenta máximo 5 errores ortográficos.	5				
4. Uso adecuado de citas y fuentes en formato APA (7ª edición).	5				
5. Definición y diferencias de EDO y EDP, indicando las diferencias.	5				
6. Diferencia entre condición inicial y condición de contorno.	5				
7. Descripción de las EDPs.	10				
8. Construcción de los operadores gradiente, divergencia, rotacional y Laplaciano en coordenadas cilíndricas a partir del operador Nabla.	40				
9. Explica las ecuaciones de Maxwell, reflexionando su interpretación física.	10				
Participación en foro. Segundo momento (20%)					
1. Buena redacción y ortografía.	3				
Retroalimentar a dos compañeros (as) con al menos dos citas de referencia.	17				
Total de puntos	100				