

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen I

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2017-18.

Grupo B.

Profesor Rafael Ortega Ríos.

Descripción Parcial A.

Fecha 22 de marzo de 2018.

Ejercicio 1. Se considera una solución cualquiera x(t) de la ecuación diferencial

$$x'=2tx$$
.

Se supone que dicha solución está definida en un intervalo abierto I. Demuestra que, para cada $t \in I$, existe $c \in \mathbb{R}$ tal que

$$x(t) = cet^2.$$

Definimos la siguiente función auxiliar:

$$f: I \longrightarrow \mathbb{R}$$

$$t \longmapsto e^{-t^2} x(t)$$

Tenemos que f es derivable en I por ser producto de funciones derivables. Calculemos su derivada:

$$f'(t) = -2te^{-t^2} x(t) + e^{-t^2} x'(t) = -2te^{-t^2} x(t) + 2te^{-t^2} x(t) = 0.$$

Por tanto, al ser f'(t)=0 para todo $t\in I$, la función f es constante en I. Es decir:

$$\exists c \in \mathbb{R} \mid f(t) = c \quad \forall t \in I.$$

Multiplicando por e^{t^2} ambos lados de la ecuación anterior, obtenemos que:

$$x(t) = cet^2 \quad \forall t \in I.$$

Ejercicio 2. Demuestra que la transformación $\phi(t,x)=(s,y),\ s=t,\ y=x+t$ define un difeomorfismo del plano que es compatible con la ecuación

$$x' = (x+t)^2.$$

Encuentra la solución de esta ecuación que cumple x(0) = 0 y especifica su intervalo de definición.

Ejercicio 3. Encuentra un cambio de variable que transforme la ecuación diferencial

$$x' = \frac{x+t+3}{t-x+2}$$

en una ecuación homogénea.

Ejercicio 4. Dadas las ecuaciones

$$x = t + e^t, \quad y = 1 + t^4$$

demuestra que la eliminación del parámetro t nos permite definir una función derivable $y : \mathbb{R} \to \mathbb{R}$, $x \mapsto y(x)$. Además, la función y(x) alcanza su mínimo en x = 1.

Ejercicio 5. Demuestra que la ecuación

$$x - \frac{1}{3}\sin x = t$$

define de forma implícita una única función $x : \mathbb{R} \to \mathbb{R}$, $t \mapsto x(t)$. Además, prueba que se cumple la identidad $x(t+2\pi) = x(t) + 2\pi$ para cada $t \in \mathbb{R}$.

Para verlo, hemos de demostrar que x es una aplicación; es decir, que para cada valor de $t \in \mathbb{R}$, existe un único valor $x(t) \in \mathbb{R}$ tal que cumple dicha ecuación. Para ello, fijado $t \in \mathbb{R}$, definimos la función auxiliar:

$$f_t: \mathbb{R} \longrightarrow \mathbb{R}$$

$$x \longmapsto x - \frac{1}{3} \operatorname{sen} x - t$$

Demostrar la existencia y unicidad de x(t) es equivalente a demostrar que f_t tiene un único cero en \mathbb{R} .

Existencia Tenemos que f es continua, por lo que podemos aplicar el Teorema de Bolzano:

$$\lim_{x \to -\infty} f_t(x) = -\infty, \quad \lim_{x \to +\infty} f_t(x) = +\infty.$$

Por tanto, por el Teorema de Bolzano, existe $x(t) \in \mathbb{R}$ tal que $f_t(x(t)) = 0$.

Unicidad Veamos para ello que f_t es estrictamente creciente. Para ello, como es derivable, tenemos que:

$$f'_t(x) = 1 - \frac{1}{3}\cos x > 0 \quad \forall x \in \mathbb{R}.$$

Por tanto, f_t es estrictamente creciente, lo que implica que tiene a lo sumo un cero. Por tanto, x(t) es único.