Kolokwium 1 Grupa B

Zadanie 1. Niech $\xi_n = \eta_1 + \cdots + \eta_n$. Kiedy $\xi_n^2 - n$ jest martyngalem względem filtracji $\mathcal{F}_n = \sigma(\eta_1, \dots, \eta_n)$?

Zadanie 2. Niec X będzie supermartyngałem względem pewnej filtracji takim, że jego wartość oczekiwana jest stała w czasie. Udowodnij, że proces ten jest martyngałem.

Zadanie 3. Niech $(Y_n)_{n=0}^{\infty}$ będzie ciągiem całkowalnych zmiennych losowych adaptowanym do filtracji $\{\mathcal{F}_n\}_{n=0}^{\infty}$. Załóżmy, że istnieją ciągi liczb $\{u_n\}$, $\{v_n\}$, $n \geq 0$ takie, że $\mathbb{E}(Y_{n+1}|\mathcal{F}_n) = u_nY_n + v_n$. Znajdź ciągi liczbowe $\{a_n\}$, $\{b_n\}$, $n \geq 0$ takie, że ciąg zmiennych losowych $M_n = a_nY_n + b_n$, n > 1 jest martyngałem względem filtracji $\{\mathcal{F}_n\}$.

Zadanie 4 (Druga tożsamość Wald'a). Niech T będzie ograniczonym momentem stopu względem pewnej filtracji i niech (X_n) będzie ciągiem zmiennych losowych adaptowanym do tej filtracji. Załóżmy, że dla dowolnego $i \geq 0$ zachodzi $(X_1, X_2, \ldots, X_i, T \wedge (i+1)) \perp X_{i+1})$ i niech $\mathbb{E} T < \infty$, $\mathbb{E} X_i = 0$ oraz $\mathbb{E} X_i^2 = \mathbb{E} X_1^2 < \infty$ dla dowolnego i. Oznaczmy ponadto $S_n = \sum_{i=1}^n X_i$. Udowodnij, że $\mathbb{E} S_n^2 = \mathbb{E} X_1^2 \mathbb{E} T$.