1 Lattice energies

Table 1: Lattice energies (LEs)

Lattice	Calc. LE, eV	Exp. LE, eV	Lattice type	Space group
Li ₃ OCl	-38.21	-	antiperovskite	221
LiCl	-8.59	-8.96	rocksalt	225
LiO_2	29.02	-29.45	fluorite	225
Na_3OCl	-34.44	-	antiperovskite	221
NaCl	-8.09	-8.19	rocksalt	225
Na_2O	-26.30	-25.68	fluorite	225
MgCl_2	-26.52	-26.33	CdCl_2	164
$_{\rm MgO}$	-41.16	-39.29	rocksalt	225
$CaCl_2$	-21.15	-23.54	rutile	136
CaO	-35.88	-35.25	rocksalt	225
$SrCl_2$	-21.14	-22.49	fluorite	225
SrO	-33.40	-33.40	rocksalt	225
$BaCl_2$	-20.16	-21.44	fluorite	225
BaO	-31.20	-31.65	rocksalt	225

Experimental values from David R. Lide (Editor-in-Chief): Handbook of Chemistry and Physics - 88th Edition, 2007-2008; pages 12-19 to 12-27.

2 Li₃OCl data

Figure 1: Li_3OCl defects

Figure 2: Li₃OCl doping

Figure 3: Li_3OCl clustering

Figure 4: Li_3OCl lithium ion vacancy migration profile

Figure 5: Li_3OCl oxide vacancy migration profile

Figure 6: Li₃OCl chloride vacancy migration profile

3 Na₃OCl data

Figure 7: Na₃OCl defects

Table 2: Literature comparison

Parameter	Calc.	Comp.	Exp.
lattice parameter, Å	4.508	4.54 [?] , 4.538 [?] , 4.382 [?] , 4.501 [?]	4.504 [?] , 4.496 [?] , 4.500 [?] , 4.491 [?]
Na Frenkel, eV	1.58	1.57?, 2.6?	
NaCl Schottky, eV	1.29	1.18?, 1.8?	
Na ₂ O Schottky, ev	3.73	1.74?	
Na ₃ OCl Schottky, ev	4.96	6.2?	
Na vacancy migration, eV	0.68	$0.61^{?}, 0.428^{?}, 0.29^{?}$	0.63?, 1.04?
MgO solution, eV	2.13	1.93?	
CaO solution, eV	2.06	1.56?	
SrO solution, eV	1.32	1.28?	
BaO solution, eV	1.11	0.77?	
Mg clustering, eV	-0.35	-0.25?	
Ca clustering, eV	-0.71	-0.1?	
Sr clustering, eV	-0.67	-0.15?	
Ba clustering, eV	-1.62	-0.42?	

Figure 8: Na₃OCl doping

Figure 9: Na₃OCl clustering

Figure 10: Na migration in Na $_3$ OCl with migration coordinate along line from (0.5 0.5 0) to (0.5 0 0.5) fixed in all dimensions

Figure 11: Na migration in Na₃OCl with migration coordinate along line from $(0.5\ 0.5\ 0)$ to $(0.5\ 0\ 0.5)$ fixed in the x dimension

Figure 12: Na migration in Na₃OCl with migration coordinate along line from $(0.5\ 0.5\ 0)$ to $(0.5\ 0\ 0.5)$ fixed in the y dimension

Figure 13: The effect of the radius of Region I and Region II in the calculation of the Na migration energy barrier in Na $_3$ OCl (intersitial fixed in all dimensions)