Grafos (parte 1)

Clase 19

IIC 1253

Prof. Miguel Romero

Outline

Introducción

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Grado de un vértice

Epílogo

¿Por qué aprender grafos?

- Problemas de conectividad
- Optimización
- Bases de datos
- Redes sociales
- Manejo de concurrencia
- En general, todo lo que se representa con relaciones binarias!

Redes

Motivación

Una línea aérea tiene una lista de vuelos entre ciudades del mundo, y desea saber cuáles son los posibles viajes que se pueden realizar combinando vuelos. La lista de vuelos es la siguiente:

Origen	Destino
Stgo	BsAs
Stgo	Miami
Stgo	Londres
BsAs	Stgo
Miami	Stgo
Miami	Londres
Londres	Stgo
Londres	Paris
Frankfurt	Paris
Frankfurt	Moscu
Paris	Moscu
Moscu	Frankfurt

Objetivos de la clase

- □ Conocer definiciones básicas de grafos
- □ Aplicar nociones básicas de isomorfismo y subgrafos

Outline

Introducción

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Grado de un vértice

Epílogo

Definición

Un grafo G = (V, E) es un par donde V es un conjunto, cuyos elementos llamaremos vértices o nodos, y E es una relación binaria sobre V (es decir, $E \subseteq V \times V$), cuyos elementos llamaremos aristas o arcos.

Esta definición es bastante general.

Los grafos así definidos son llamados grafos dirigidos.

Si un grafo es dirigido, las aristas se dibujan con flechas.

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 3), (4, 4)\}$.

Dado un grafo G = (V, E):

Definición

Un **rulo** (o *loop*) es una arista $(x, y) \in E$ tal que x = y. Es decir, es una arista que conecta un vértice con sí mismo.

Definición

Dos aristas $(x, y) \in E$ y $(z, w) \in E$ son paralelas si x = w e y = z. Es decir, si conectan a los mismos vértices.

El ejemplo anterior tiene rulos y aristas paralelas.

Definición

Un grafo G = (V, E) es no dirigido si toda arista tiene una arista paralela.

¿Cómo se expresa esto en términos de la relación E?

Definición (alternativa)

Un grafo G = (V, E) es no dirigido si E es simétrica.

Si un grafo es no dirigido, se dibuja con trazos en lugar de flechas.

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}.$

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4)\}.$

Definición

Un grafo no dirigido G = (V, E) es simple si no tiene rulos.

¿Cómo se expresa esto en términos de la relación E?

Definición (alternativa)

Un grafo no dirigido G = (V, E) es simple si E es irrefleja.

Ejemplo

G = (V, E), donde $V = \{1, 2, 3, 4\}$ y $E = \{(1, 2), (1, 4), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)\}.$

De ahora en adelante (a menos que se explicite otra cosa), cuando hablemos de grafos estaremos refiriéndonos a grafos simples, no dirigidos, no vacíos y finitos.

- $V \neq \emptyset$ y |V| = n, con $n \in \mathbb{N}$.
- E es simétrica e irrefleja.

Una pequeña definición:

Definición

Dado un grafo G = (V, E), dos vértices $x, y \in V$ son adyacentes o vecinos si $(x, y) \in E$.

Outline

Introducción

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Grado de un vértice

Epílogo

Definición

Dos grafos $G_1 = (V_1, E_1)$ y $G_2 = (V_2, E_2)$ son **isomorfos** si existe una función biyectiva $f: V_1 \rightarrow V_2$ tal que $(x, y) \in E_1$ si y sólo si $(f(x), f(y)) \in E_2$.

En tal caso:

- Diremos que f es un **isomorfismo** entre G_1 y G_2 .
- Escribiremos $G_1 \cong G_2$.

Dos grafos son isomorfos cuando tienen "la misma forma"

Teorema

≅ es una relación de equivalencia.

Ejercicio

Demuestre el teorema.

Teorema

≅ es una relación de equivalencia.

Demostración:

- **Refleja:** Sea G = (V, E) tomemos la función $f : V \to V$ dada por f(x) = x. Luego, de manera trivial podemos inferir que $G \cong G$.
- Simétrica: Sean G₁ = (V₁, E₁) y G₂ = (V₂, E₂) tales que G₁ ≅ G₂. Por definición existe f : V₁ → V₂ biyectiva tal que todo (u, v) ∈ E₁ si y sólo si (f(u), f(v)) ∈ E₂ (*). Además, como f es biyectiva, sabemos que es invertible. Ahora mostraremos que f⁻¹ cumple la definición de isomorfismo.
 - (⇒) Sea $(u_2, v_2) \in E_2$ como f es biyectiva podemos expresarlo como $(f(u_1), f(v_1)) \in E_2$ con $u_1, v_1 \in V_1$. Luego, por (*) obtenemos $(u_1, v_1) \in E_1$. Como f^{-1} es inversa obtenemos que $(f^{-1}(u_2), f^{-1}(v_2)) \in E_1$.
 - (\Leftarrow) Sea $(f^{-1}(u_2), f^{-1}(v_2)) \in E_1$, podemos reescribirlo como $(u_1, v_1) \in E_1$ con $u_1, v_1 \in V_1$. Luego por (*) obtenemos $(f(u_1), f(v_1)) \in E_2$ lo que es equivalente a $(u_2, v_2) \in E_2$.

Teorema

≅ es una relación de equivalencia.

■ Transitiva: Sean $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$ y $G_3 = (V_3, E_3)$ tales que $G_1 \cong G_2$ y $G_2 \cong G_3$. Por definición, sabemos que existen $f : V_1 \to V_2$ y $g : V_2 \to V_3$ biyectivas tales que

$$(u_1, v_1) \in E_1$$
 si y sólo si $(f(u_1), f(v_1)) \in E_2$ (i) $(u_2, v_2) \in E_2$ si y sólo si $(g(u_2), g(v_2)) \in E_3$ (ii)

Sea $u_1, v_1 \in V_1$ tales que $(u_1, v_1) \in E_1$, por (i) sabemos que $(f(u_1), f(v_1)) \in E_2$. Luego, si aplicamos (ii) obtenemos $(g(f(u_1)), g(f(v_1))) \in E_3$. Por lo tanto, podemos utilizar $g \circ f$ como la función biyectiva y concluimos que $G_1 \cong G_3$.

El concepto de isomorfismo nos permite concentrarnos en la estructura subyacente de los grafos.

- Podemos independizarnos de los nombres de los vértices.
- No importa cómo dibujemos los grafos.

Definiremos familias de grafos a partir de isomorfismos

Definición (informal)

Un camino es un grafo cuyos vértices pueden dibujarse en una línea tal que dos vértices son adyacentes si y sólo si aparecen consecutivos en la línea.

Ejemplo

Definición (formal)

Considere un grafo
$$G_n^P = (V_n^P, E_n^P)$$
, donde $V_n^P = \{v_1, ..., v_n\}$ y $E_n^P = \{(v_i, v_j) \mid i \in \{1, ..., n-1\} \land j = i+1\}$.

Un camino (de n vértices) es un grafo isomorfo a G_n^P .

Llamaremos P_n a la clase de equivalencia $\left[G_n^P\right]_{\cong}$ Los caminos con n vértices.

Observación:

Asumimos que G_n^P es no dirigido, a pesar de su definición

Definición (informal)

Un ciclo es un grafo cuyos vértices pueden dibujarse en un círculo tal que dos vértices son adyacentes si y sólo si aparecen consecutivos en él.

Definición (formal)

Considere un grafo
$$G_n^C = (V_n^C, E_n^C)$$
, donde $V_n^C = \{v_1, ..., v_n\}$ y $E_n^C = \{(v_i, v_j) \mid i \in \{1, ..., n-1\} \land j = i+1\} \cup \{(v_n, v_1)\}$.

Un ciclo (de n vértices) es un grafo isomorfo a G_n^C .

Llamaremos C_n a la clase de equivalencia $\left[G_n^C\right]_{\cong}$ Los ciclos con n vértices.

Observación:

lacktriangle Asumimos que G_n^C es no dirigido, a pesar de su definición

Definición

Un grafo completo es un grafo en el que todos los pares de vértices son adyacentes.

Llamaremos K_n a la clase de equivalencia de los grafos completos de n vértices.

Definición

Un grafo G = (V, E) se dice **bipartito** si V se puede particionar en dos conjuntos no vacíos V_1 y V_2 tales que para toda arista $(x, y) \in E$, $x \in V_1$ e $y \in V_2$, o $x \in V_2$ e $y \in V_1$.

Es decir:

- $V = V_1 \cup V_2$
- $V_1 \cap V_2 = \emptyset$
- Cada arista une a dos vértices en conjuntos distintos de la partición.

Definición

Un grafo G = (V, E) se dice **bipartito** si V se puede particionar en dos conjuntos no vacíos V_1 y V_2 tales que para toda arista $(x, y) \in E$, $x \in V_1$ e $y \in V_2$, o $x \in V_2$ e $y \in V_1$.

Definición

Un grafo bipartito completo es un grafo bipartito en que cada vértice es adyacente a todos los de la otra partición.

Llamaremos $K_{n,m}$ a la clase de los grafos bipartitos completos, donde $n \ y \ m$ son los tamaños de las particiones.

Dado un grafo $G = (V_G, E_G)$:

Definición

Un grafo $H = (V_H, E_H)$ es un subgrafo de G (denotado como $H \subseteq G$) si $V_H \subseteq V_G$ y $E_H \subseteq E_G$.

Dado un grafo $G = (V_G, E_G)$:

Definición

Un **clique** en G es un conjunto de vértices $K \subseteq V_G$ tal que $\forall v_1, v_2 \in K, (v_1, v_2) \in E_G$.

Definición

Un **conjunto independiente** en G es un conjunto de vértices $K \subseteq V_G$ tal que $\forall u, v \in K$, $(u, v) \notin E_G$.

Definición

El **complemento** de G es el grafo $\overline{G} = (V_G, \overline{E_G})$, donde $(u, v) \in \overline{E_G} \Leftrightarrow (u, v) \notin E_G$.

Definición

Un grafo G se dice autocomplementario si $G \cong \overline{G}$.

Teorema

Dado un grafo G = (V, E), un conjunto $V' \subseteq V$ es un clique en G si y sólo si es un conjunto independiente en \overline{G} .

Ejercicio

Demuestre el teorema.

Ejercicio

¿Es cierto que en un conjunto cualquiera de 6 personas, siempre hay 3 que se conocen mutuamente o 3 que se desconocen mutuamente? Demuestre usando grafos.

Teorema

Dado un grafo G = (V, E), un conjunto $V' \subseteq V$ es un clique en G si y sólo si es un conjunto independiente en \overline{G} .

Demostración:

- (⇒) Sea $V' \subseteq V$ un clique en G. Por definición sabemos que para todo par de vértices $u, v \in V'$ ocurre que $(u, v) \in E$. Por otro lado, por definición de \overline{G} sabemos que para todo $u, v \in V'$ ocurre que $(u, v) \notin \overline{E}$, y por lo tanto V' es un conjunto independiente en \overline{G} .
- (\Leftarrow) Sea $V' \subseteq V$ un conjunto independiente en \overline{G} . Por definición sabemos que para todo par de vértices $u, v \in V'$ ocurre que $(u, v) \notin \overline{E}$. Por otro lado, por definición de \overline{G} sabemos que para todo $u, v \in V'$ ocurre que $(u, v) \in E$, y por lo tanto V' es un clique en G.

Más definiciones

Ejercicio

¿Es cierto que en un conjunto cualquiera de 6 personas, siempre hay 3 que se conocen mutuamente o 3 que se desconocen mutuamente?

Demostración:

Sea G = (V, E) con |V| = 6, buscamos demostrar que G tiene un clique o un conjunto independiente de tamaño 3. Sea $v \in V$ un vértice cualquiera. Tenemos 2 casos:

v tiene por lo menos 3 vecinos: Sean $x,y,z \in V$ los vecinos de v, es decir, $(v,x),(v,y),(v,z) \in E$. Si existe una arista entre x,y,z, entonces tenemos clique de tamaño 3 en G. En caso contrario, si no existe tal arista, entonces x,y,z forman un conjunto independiente de tamaño 3 en G.

Más definiciones

Ejercicio

¿Es cierto que en un conjunto cualquiera de 6 personas, siempre hay 3 que se conocen mutuamente o 3 que se desconocen mutuamente?

v tiene menos de 3 vecinos: Como |V| = 6, en este caso v no es adyacente con por lo menos 3 vertices de G. Sean x, y, z estos vértices, es decir, $(v,x), (v,y), (v,z) \notin E$. Si falta una arista entre x,y,z, entonces tenemos conjunto independiente de tamaño 3 en G. En caso contrario, si no falta ninguna arista, entonces x,y,z forman un clique de tamaño 3 en G.

En ambos casos concluimos que existe un clique de tamaño 3 o existe un conjunto independiente de tamaño 3 en G.

Outline

Introducción

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Grado de un vértice

Epílogo

Representación matricial

Dado un grafo G = (V, E), como E es una relación binaria podemos representarla en una matriz.

Ejemplo

$$G = (V, E), \text{ donde } V = \{1, 2, 3, 4\} \text{ y } E = \{(1, 2), (1, 4), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)\}.$$

$$M_G = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Llamaremos a M_G la matriz de adyacencia de G.

Representación matricial

- Si el grafo es simple, la diagonal sólo contiene ceros.
- Si el grafo es no dirigido, entonces $M_G = M_G^T$.
- ¿Cómo puedo obtener $M_{\overline{G}}$?

Estas construcciones solo necesitan operar con los bits en la matriz

Representación matricial

También podemos usar una matriz de incidencia A_G .

- Etiquetamos las aristas de G.
- Cada fila de la matriz representará a un vértice, y cada columna a una arista.
- Cada posición de la matriz tendrá un 1 si la arista de la columna incide en el vértice de la fila.

Ejemplo

$$G = (V, E), \text{ donde } V = \{1, 2, 3, 4\} \text{ y } E = \{(1, 2), (1, 4), (2, 1), (2, 3), (2, 4), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)\}.$$

$$A_G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Outline

Introducción

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Grado de un vértice

Epílogo

Grado de un vértice

Dado un grafo G y un vértice v de él:

Definición

El grado de v (denotado como $\delta_G(v)$) es la cantidad de aristas que inciden en v.

Definición

La **vecindad** de v es el conjunto de vecinos de v:

$$N_G(v) = \{u \mid (v, u) \in E\}.$$

En un grafo no dirigido y simple se tiene que $\delta_G(v) = |N_G(v)|$.

Un teorema muy importante:

Teorema (Handshaking lemma)

Si G = (V, E) es un grafo, entonces

$$\sum_{v \in V} \delta_G(v) = 2|E|.$$

Es decir, la suma de los grados de los vértices es dos veces la cantidad de aristas.

Ejercicio

Demuestre el teorema.

Teorema (Handshaking lemma)

Si G = (V, E) es un grafo, entonces

$$\sum_{v\in V}\delta_G(v)=2|E|.$$

Demostración:

Sea G = (V, E) un grafo. Supongamos |V| = n y |E| = m. Sea M la matriz de incidencia de este grafo. Una represantación general de esta matriz sería de la forma:

$$M = \begin{pmatrix} e_1 & \dots & e_j & \dots & e_m \\ 0 & \cdots & 1 & \cdots & 1 \\ \vdots & \ddots & \vdots & & \vdots \\ \vdots & & \ddots & & \vdots \end{pmatrix} \begin{array}{c} v_1 \\ v_2 \\ \vdots \\ \vdots \end{array}$$

Con v_i representando los nodos y e_j representando las aristas entre nodos.

A partir de la representación es posible notar que la suma de los valores en una fila cualquiera i, equivale al grado del vértice v_i . En otras palabras:

$$\delta(v_1) = \sum_{j=1}^{m} M_{1j}$$

$$\delta(v_2) = \sum_{j=1}^{m} M_{2j}$$

$$\vdots$$

$$\delta(v_i) = \sum_{j=1}^{m} M_{ij}$$

Luego la suma de todos los grados del grafo está dada por:

$$\sum_{v \in V} \delta_G(v) = \sum_{i=1}^n \sum_{j=1}^m M_{ij}$$

Por otra, parte, si sumamos los valores de columna cualquiera j, obtendremos la cantidad de vértices en los que incide la arista e_j , o bien dicho: 2. En otras palabras:

$$\sum_{i=1}^n M_{ij} = 2$$

Ahora, si agregamos esta sumatoria por sobre todas las columnas, obtenemos lo siguiente:

$$\sum_{j=1}^{m} \sum_{i=1}^{n} M_{ij} = \sum_{j=1}^{m} 2$$
$$= 2m$$
$$= 2|E|$$

Dado que la suma es conmutativa, cambiar el orden de las sumatorias no altera el resultado. Luego:

$$\sum_{v \in V} \delta_G(v) = \sum_{i=1}^n \sum_{j=1}^m M_{ij}$$
$$= \sum_{j=1}^m \sum_{i=1}^n M_{ij}$$
$$= 2|E|$$

Corolario

En un grafo siempre hay una cantidad par de vértices de grado impar.

Ejercicio

Demuestre el corolario.

Ejercicio

En el departamento de informática de una empresa trabajan 15 empleados. Uno de ellos es la secretaria del departamento y otro es el jefe del departamento. Ambos se saludan todos los días y saludan a todos los demás empleados. Cada uno de los restantes empleados del departamento asegura que diariamente se saluda con exactamente 3 de sus compañeros (sin contar a la secretaria y el jefe). ¿Es esto posible?

Corolario

En un grafo siempre hay una cantidad par de vértices de grado impar.

Demostración:

Sea G = (V, E) un grafo. Separemos V en dos conjuntos V_I y V_P , tales que

$$V_I = \{ v \in V \mid \delta_G(v) \text{ es impar} \}$$

 $V_P = \{ v \in V \mid \delta_G(v) \text{ es par} \}$

Es simple observar que $V = V_I \cup V_P$ y a su vez $V_I \cap V_P = \emptyset$. Utilizando esto, y el resultado del *Handshaking lemma*, obtenemos lo siguiente:

$$\sum_{v \in V} \delta_G(v) = \sum_{v \in V_I} \delta_G(v) + \sum_{v \in V_P} \delta_G(v) = 2|E|$$
 (1)

Notemos que la segunda sumatoria actúa sólo sobre números pares, en consecuencia, debe ser par. En otras palabras, existe un entero no negativo k tal que:

$$\sum_{v \in V_P} \delta_G(v) = 2k \tag{2}$$

Usando (2) en (1) y despejando:

$$\sum_{v \in V_I} \delta_G(v) = 2 \cdot (|E| - k)$$

Donde |E|-k es un entero no negativo. En consecuencia, el valor de esta sumatoria debe ser un número par. Por las definición de V_I , sabemos que esta sumatoria actúa solo sobre números impares, luego, debe ser cierto que existe una cantidad par de términos en la suma. En consecuencia $|V_I|=2i$ para algún entero no negativo i, o en otras palabras, existe una cantidad par de vértices con grado impar.

Outline

Introducción

Definiciones básicas

Isomorfismo de grafos

Representación de grafos

Grado de un vértice

Epílogo

Objetivos de la clase

- Conocer definiciones básicas de grafos
- □ Aplicar nociones básicas de isomorfismo y subgrafos