

planetmath.org

Math for the people, by the people.

orbifold

Canonical name Orbifold

Date of creation 2013-03-22 15:40:06 Last modified on 2013-03-22 15:40:06

Owner guffin (12505) Last modified by guffin (12505)

Numerical id 8

Author guffin (12505) Entry type Definition Classification msc 57M07

Synonym orbifold structure Defines orbifold structure Roughly, an orbifold is the quotient of a manifold by a finite group. For example, take a sheet of paper and add a small crease perpendicular to one side at the halfway point. Then, line up the two halves of the side. This may be thought of as the plane \mathbb{R}^2 modulo the group \mathbb{Z}^2 . Now, let us give the definition.

Define a category \mathcal{X} : The objects are pairs (G, X), where G is a finite group acting effectively on a connected smooth manifold X. A morphism Φ between two objects (G', X') and (G, X) is a family of open embeddings $\phi: X' \to X$ which satisfy

- for each embedding $\phi \in \Phi$, there is an injective homomorphism λ_{ϕ} : $G' \to G$ such that ϕ is λ_{ϕ} equivariant
- For $g \in G$, we have

$$g\phi: X' \to X$$

 $g\phi: x \mapsto g\phi(x)$

and if $(g\phi)(X) \cap \phi(X) \neq \emptyset$, then $g \in \lambda_{\phi}(G')$.

• $\Phi = \{g\phi, g \in G\}$, for any $\phi \in \Phi$

Now, we define orbifolds. Given a paracompact Hausdorff space X and a nice open covering \mathcal{U} which forms a basis for the topology on X, an orbifold structure \mathcal{V} on X consists of

- 1. For $U \in \mathcal{U}$, $\mathcal{V}(U) = (G_U, \tilde{U}) \stackrel{\tau}{\to} U$ is a ramified cover $\tilde{U} \to U$ which identifies $\tilde{U}/G_U \cong U$
- 2. For $U \subset V \in \mathcal{U}$, there exists a morphism $\phi_{VU}(G_U, \tilde{U}) \to (G_V, \tilde{V})$ covering the inclusion
- 3. If $U \subset V \subset W \in \mathcal{U}$, $\phi_{WU} = \phi_{WV} \circ \phi_{VU}$

References:

[1] Kawasaki T., The Signature theorem for V-manifolds. Topology 17 (1978), 75-83. MR0474432 (57:14072)