$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!=} \; | \; \text{et non(fin) do} \\ & \text{Liste} <\text{-Liste} \; / \; | \; \text{Ch} | \; \text{rn} \; \text{<-dernierNoeud(Ch)}; \\ & \text{11} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch Uf [n1]; fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste Uf ((Ch Uf [n1]))}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ & \text{return fin}; \end{split}$$

| Ch | n | n1 | fin | Liste | Sol |
|----|---|----|-----|-------|-----|
| -  | - | -  | -   | {{A}} |     |
|    |   |    |     |       |     |



#### Ch <- Premier(Liste); fin <- Faux;

return fin;

 $\label{eq:while Ch!=} \begin{aligned} &\text{while } Ch!= \{\} \text{ et non}(\text{fin}) \text{ do} \\ &\text{Liste} < \text{Liste} / \{\text{Ch}\}; n <- \text{dernierNoeud}(\text{Ch}); \\ &n 1 <- \text{successeur}(n); \\ &\text{while non}(\text{fin}) \text{ et n} 1 \text{ est valide do} \\ &\text{if } n1 \text{ est solution then} \\ &\text{Sol Ch Uf } [n1]; \text{fin} <- \text{Vrai}; \\ &\text{else Liste} <- \text{Liste Uf } \{(\text{Ch Uf } [n1])\}; \\ &n 1 <- \text{successeur}(n); \\ &\text{Ch Premier(Liste)}; \end{aligned}$ 

| n | n1     | fin  | Liste  | Sol |
|---|--------|------|--------|-----|
| - | -      | Faux | {{A}}} |     |
|   |        |      |        |     |
|   | n<br>- |      |        |     |



Ch <- Premier(Liste); fin <- Faux;

while Ch!= {} et non(fin) do

Liste <- Liste / {Ch}; n <- dernierNoeud(Ch);

n1 <- successeur(n);

while non(fin) et n1 est valide do

if n1 est solution then

Sol Ch Uf  $\{n1\}$ ; fin <- Vrai;

else Liste <- Liste Uf {(Ch Uf {n1})};

n1 <- successeur(n):

Ch Premier(Liste);

| Ch  | n | n1 | fin  | Liste          | Sol |
|-----|---|----|------|----------------|-----|
| {A} | - | -  | Faux | {{ <b>A</b> }} |     |
|     |   |    |      |                |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {\} et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf [n1])}; n1 <- successeur(n); Ch Premier(Liste);

| Ch  | n | n1 | fin  | Liste | Sol |
|-----|---|----|------|-------|-----|
| {A} | Α | -  | Faux | {}    |     |
|     |   |    |      |       |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Chl} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch Uf } |\text{n1}|; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste Uf } |\text{(Ch Uf } |\text{n1}|)|; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \end{split}$$

| Ch  | n | n1 | fin  | Liste | Sol |
|-----|---|----|------|-------|-----|
| {A} | Α | В  | Faux | {}    |     |
|     |   |    |      |       |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Chl} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n} 1 <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch Uf } |\text{n1}|; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste Uf } |\text{(Ch Uf } |\text{n1}|)|; \\ & \text{n} 1 <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \end{split}$$

| Ch  | n | n1 | fin  | Liste | Sol |
|-----|---|----|------|-------|-----|
| {A} | Α | В  | Faux | {}    |     |
|     |   |    |      |       |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!=} \; | \; \text{et non(fin) do} \\ & \text{Liste} <\text{-Liste} \; / \; | \; \text{Ch} | \; \text{n} \; \text{c-dernierNoeud(Ch)}; \\ & \text{11} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch Uf [n1]; fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste Uf ((Ch Uf [n1]))}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ & \text{return fin}; \\ \end{split}$$

| Ch  | n | n1 | fin  | Liste | Sol |
|-----|---|----|------|-------|-----|
| {A} | Α | В  | Faux | {}    |     |
|     |   |    |      |       |     |



Ch <- Premier(Liste); fin <- Faux;
while Ch!= {| et non(fin) do}
Liste <- Liste / [Ch]; n <- dernierNoeud(Ch);
n1 <- successeur(n);
while non(fin) et n1 est valide do
if n1 est solution then
Sol Ch Uf [n1]; fin <- Vrai;
else Liste <- Liste Uf [(Ch Uf [n1])];
n1 <- successeur(n);
Ch Premier(Liste);

| Ch  | n | n1 | fin  | Liste  | Sol |
|-----|---|----|------|--------|-----|
| {A} | Α | В  | Faux | {{AB}} |     |
|     |   |    |      |        |     |
|     |   |    |      |        |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {} et non(fin) do Liste <- Liste / {Ch}; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf {n1}; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf {n1})}; n <- Vrai; chermier(Liste); Ch Premier(Liste);

| Ch  | n | n1 | fin  | Liste  | Sol |
|-----|---|----|------|--------|-----|
| {A} | Α | С  | Faux | {{AB}} |     |
|     |   |    |      |        |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= || et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf [(Ch Uf [n1])); n1 <- successeur(n); Ch Premier(Liste); return fin;

| fin  | Liste  | Sol |
|------|--------|-----|
| Faux | {{AB}} |     |
|      |        |     |
|      |        |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!=} \; | \; \text{et non(fin) do} \\ & \text{Liste} <\text{-Liste} \; / \; | \; \text{Ch} | \; \text{n} \; \text{c-dernierNoeud(Ch)}; \\ & \text{11} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch Uf [n1]; fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste Uf ((Ch Uf [n1]))}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ & \text{return fin}; \\ \end{split}$$

| Ch  | n | n1 | fin  | Liste  | Sol |
|-----|---|----|------|--------|-----|
| {A} | Α | С  | Faux | {{AB}} |     |
|     |   |    |      |        |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= || et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch UF [n1]; fin <- Vrai; else Liste <- Liste UF [(Ch UF [n1])]; n1 <- successeur(n); Ch Premier(Liste);

|   | Ch  | n | n1 | fin  | Liste       | Sol |
|---|-----|---|----|------|-------------|-----|
| ĺ | {A} | Α | С  | Faux | {{AB},{AC}} |     |
|   |     |   |    |      |             |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= || et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf [(Ch Uf [n1])); n1 <- successeur(n); Ch Premier(Liste);

| ſ | Ch  | n | n1 | fin  | Liste       | Sol |
|---|-----|---|----|------|-------------|-----|
| ĺ | {A} | Α | Т  | Faux | {{AB},{AC}} |     |
|   |     |   |    |      |             |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Chl} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n} 1 <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch Uf } |\text{n1}|; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste Uf } |\text{(Ch Uf } |\text{n1}|)|; \\ & \text{n} 1 <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \end{split}$$

|   | Ch  | n | n1 | fin  | Liste       | Sol |
|---|-----|---|----|------|-------------|-----|
| Î | {A} | Α | Т  | Faux | {{AB},{AC}} |     |
|   |     |   |    |      |             |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!=} \; | \; \text{th ron}(\text{fin}) \; \text{do} \\ & \text{Liste} <\text{-Liste} \; / \; | \text{Ch} \; ; \; \text{n} \; <\text{-dernierNoeud(Ch)}; \\ & \text{11} \; <\text{-successeur(n)}; \\ & \text{while non(fin)} \; \text{et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} \; <\text{-Vrai}; \\ & \text{else Liste} \; <\text{-Liste UF [(Ch UF [n1])]}; \\ & \text{n1} \; <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

| Ch          | n | n1 | fin  | Liste       | Sol |
|-------------|---|----|------|-------------|-----|
| {A}<br>{AB} | Α |    | Faux | {{AB},{AC}} |     |



Ch <- Premier(Liste); fin <- Faux;

while Ch!= {} et non(fin) do

Liste <- Liste / {Ch}; n <- dernierNoeud(Ch);

n1 <- successeur(n);

while non(fin) et n1 est valide do

if n1 est solution then

Sol Ch Uf  $\{n1\}$ ; fin <- Vrai;

else Liste <- Liste Uf {(Ch Uf {n1})};

n1 <- successeur(n):

Ch Premier(Liste);

| Ch          | n | n1 | fin  | Liste       | Sol |
|-------------|---|----|------|-------------|-----|
| {A}<br>{AB} | А | Τ  | Faux | {{AB},{AC}} |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {\} et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf [n1])}; n1 <- successeur(n); Ch Premier(Liste);

|   | Ch   | n | n1 | fin  | Liste       | Sol |
|---|------|---|----|------|-------------|-----|
| ĺ | {A}  | Α | 1  | Faux | {{AB},{AC}} |     |
|   | {AB} | В |    |      | {AC}        |     |
|   |      |   |    |      |             |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

|   | Ch   | n | n1 | fin  | Liste       | Sol |
|---|------|---|----|------|-------------|-----|
| ĺ | {A}  | Α | 1  | Faux | {{AB},{AC}} |     |
|   | {AB} | В | D  |      | {AC}        |     |
|   | , ,  |   |    |      | , ,         |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!=} \; | \; \text{th ron}(& \text{fin}) \; \text{do} \\ & \text{Liste} <\text{-Liste} \; / \; | \; \text{Ch} \; ; \; \text{n} \; <\text{-dernierNoeud(Ch)}; \\ & \text{11} \; <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]; fin} \; <\text{-Vrai}; \\ & \text{else Liste} \; <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} \; <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

| 1 | Ch          | n      | n1     | fin  | Liste               | Sol |
|---|-------------|--------|--------|------|---------------------|-----|
|   | {A}<br>{AB} | A<br>B | ⊥<br>D | Faux | {{AB},{AC}}<br>{AC} |     |
|   |             |        |        |      |                     |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= || et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf [(Ch Uf [n1])]; n1 <- successeur(n); Ch Premier(Liste);

| ſ | Ch          | n      | n1     | fin  | Liste               | Sol |
|---|-------------|--------|--------|------|---------------------|-----|
|   | {A}<br>{AB} | A<br>B | D<br>D | Faux | {{AB},{AC}}<br>{AC} |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {| et non(fin) do | Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf [(Ch Uf [n1])]; n1 <- successeur(n); Ch Premier(Liste);

| Ch          | n      | n1     | fin  | Liste                       | Sol |
|-------------|--------|--------|------|-----------------------------|-----|
| {A}<br>{AB} | A<br>B | D<br>D | Faux | {{AB},{AC}}<br>{{AC},{ABD}} |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {| et non(fin) do | Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf [n1])}; n1 <- successeur(n); Ch Premier(Liste);

| Ch          | n      | n1     | fin  | Liste                       | Sol |
|-------------|--------|--------|------|-----------------------------|-----|
| {A}<br>{AB} | A<br>B | ⊥<br>E | Faux | {{AB},{AC}}<br>{{AC},{ABD}} |     |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!=} \; | \; \text{th ron}(& \text{fin}) \; \text{do} \\ & \text{Liste} <\text{-Liste} \; / \; | \; \text{Ch} \; ; \; \text{n} \; <\text{-dernierNoeud(Ch)}; \\ & \text{11} \; <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]; fin} \; <\text{-Vrai}; \\ & \text{else Liste} \; <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} \; <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

| Ch          | n      | n1 | fin  | Liste                       | Sol |
|-------------|--------|----|------|-----------------------------|-----|
| {A}<br>{AB} | A<br>B | Τ_ | Faux | {{AB},{AC}}<br>{{AC},{ABD}} |     |
| {AD}        | Ь      | L  |      | {{AC},{ABD}}                |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= || et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf [(Ch Uf [n1])]; n1 <- successeur(n); Ch Premier(Liste);

| Ch          | n      | n1     | fin  | Liste                       | Sol |
|-------------|--------|--------|------|-----------------------------|-----|
| {A}<br>{AB} | A<br>B | ⊥<br>E | Faux | {{AB},{AC}}<br>{{AC},{ABD}} |     |
| ' '         |        |        |      | 11 - 17 11                  |     |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {| et non(fin) do | Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf [(Ch Uf [n1])]; n1 <- successeur(n); Ch Premier(Liste);

| Ch          | n      | n1     | fin  | Liste                             | S |
|-------------|--------|--------|------|-----------------------------------|---|
| {A}<br>{AB} | A<br>B | E<br>E | Faux | {{AB},{AC}}<br>{{AC},{ABD},{ABE}} |   |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {| et non(fin) do | Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf [n1])}; n1 <- successeur(n); Ch Premier(Liste);

| Ch          | n      | n1 | fin  | Liste                             | S |
|-------------|--------|----|------|-----------------------------------|---|
| {A}<br>{AB} | A<br>B |    | Faux | {{AB},{AC}}<br>{{AC},{ABD},{ABE}} |   |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Chl} = || \text{ et non(fin) do} \\ & \text{Liste} < \text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n} 1 <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]; fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n} 1 <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \end{split}$$

| Ch          | n      | n1       | fin  | Liste                             | S |
|-------------|--------|----------|------|-----------------------------------|---|
| {A}<br>{AB} | A<br>B | <u>⊤</u> | Faux | {{AB},{AC}}<br>{{AC},{ABD},{ABE}} |   |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {| et non(fin) do | Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf [n1])}; n1 <- successeur(n); Ch Premier(Liste);

| ſ | Ch                  | n      | n1     | fin  | Liste                             | S |
|---|---------------------|--------|--------|------|-----------------------------------|---|
| Ì | {A}<br>{AB}<br>{AC} | A<br>B | ⊥<br>⊥ | Faux | {{AB},{AC}}<br>{{AC},{ABD},{ABE}} |   |



Ch <- Premier(Liste); fin <- Faux;

while Ch!= {} et non(fin) do

Liste <- Liste / {Ch}; n <- dernierNoeud(Ch);

n1 <- successeur(n);

while non(fin) et n1 est valide do

if n1 est solution then

Sol Ch Uf {n1}; fin <- Vrai;

else Liste <- Liste Uf {(Ch Uf {n1})};

n1 <- successeur(n);

Ch Premier(Liste);

|   | Ch   | n | n1 | fin  | Liste              | S |
|---|------|---|----|------|--------------------|---|
| ĺ | {A}  | Α | Τ  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В | 1  |      | {{AC},{ABD},{ABE}} |   |
| l | {AC} |   |    |      |                    |   |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {} et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf [n1])}; n1 <- successeur(n); Ch Premier(Liste);

| Ch   | n | n1 | fin  | Liste              | S |
|------|---|----|------|--------------------|---|
| {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
| {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
| (AC) | С |    |      | {{ABD},{ABE}}      |   |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

|   | Ch   | n | n1 | fin  | Liste              | S |
|---|------|---|----|------|--------------------|---|
| ĺ | {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
|   | {AC} | С | F  |      | {{ABD},{ABE}}      |   |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

|   | Ch   | n | n1 | fin  | Liste              | S |
|---|------|---|----|------|--------------------|---|
| ĺ | {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
|   | {AC} | С | F  |      | {{ABD},{ABE}}      |   |



Ch <- Premier(Liste); fin <- Faux; while Ch!= || et non(fin) do Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf [(Ch Uf [n1])); n1 <- successeur(n); Ch Premier(Liste);

| Ch   | n | n1 | fin  | Liste              | S |
|------|---|----|------|--------------------|---|
| {A}  | Α | 上  | Faux | {{AB},{AC}}        |   |
| {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
| {AC} | С | F  |      | {{ABD},{ABE}}      |   |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]; fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

|   | Ch   | n | n1 | fin  | Liste              |   |
|---|------|---|----|------|--------------------|---|
| ĺ | {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
|   | {AC} | С | F  | Vrai | {{ABD},{ABE}}      | { |



Ch <- Premier(Liste); fin <- Faux; while Ch!= {| et non(fin) do | Liste <- Liste / [Ch]; n <- dernierNoeud(Ch); n1 <- successeur(n); while non(fin) et n1 est valide do if n1 est solution then Sol Ch Uf [n1]; fin <- Vrai; else Liste <- Liste Uf {(Ch Uf [n1])}; n1 <- successeur(n); Ch Premier(Liste);

|   | Ch   | n | n1 | fin  | Liste              |   |
|---|------|---|----|------|--------------------|---|
| ĺ | {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
|   | {AC} | С | G  | Vrai | {{ABD},{ABE}}      | { |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

|   | Ch   | n | n1 | fin  | Liste              |   |
|---|------|---|----|------|--------------------|---|
| Î | {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
|   | {AC} | С | G  | Vrai | {{ABD},{ABE}}      | { |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = || \text{ et non(fin) do} \\ & \text{Liste} <\text{-Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <\text{-Liste UF [(Ch UF [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

|   | Ch   | n | n1 | fin  | Liste              |   |
|---|------|---|----|------|--------------------|---|
| Î | {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
|   | (AC) | С | G  | Vrai | {{ABD},{ABE}}      | { |



Ch <- Premier(Liste); fin <- Faux;

while Ch!= {} et non(fin) do

Liste <- Liste / {Ch}; n <- dernierNoeud(Ch);

n1 <- successeur(n);

while non(fin) et n1 est valide do

if n1 est solution then

Sol Ch Uf  $\{n1\}$ ; fin <- Vrai;

else Liste <- Liste Uf {(Ch Uf {n1})};

n1 <- successeur(n);

Ch Premier(Liste);

| Ch   | n | n1 | fin  | Liste              |   |
|------|---|----|------|--------------------|---|
| {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
| {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
| {AC} | С | G  | Vrai | {{ABD},{ABE}}      | { |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = \big| \text{ th non(fin) do} \\ & \text{Liste} <-\text{Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{11} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <-\text{Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

| Ch   | n | n1 | fin  | Liste              |  |
|------|---|----|------|--------------------|--|
| {A}  | Α | 1  | Faux | {{AB},{AC}}        |  |
| {AB} | В |    |      | {{AC},{ABD},{ABE}} |  |
| {AC} | С | G  | Vrai | {{ABD},{ABE}}      |  |
|      | • |    |      |                    |  |



$$\begin{split} & \text{Ch} <\text{-Premier(Liste)}; & \text{fin} <\text{-Faux}; \\ & \text{while Ch!} = \big| \text{ th non(fin) do} \\ & \text{Liste} <-\text{Liste} / |\text{Ch}|; & \text{n} <\text{-dernierNoeud(Ch)}; \\ & \text{11} <\text{-successeur(n)}; \\ & \text{while non(fin) et n1 est valide do} \\ & \text{if n1 est solution then} \\ & \text{Sol Ch UF [n1]}; & \text{fin} <\text{-Vrai}; \\ & \text{else Liste} <-\text{Liste UF [(Ch Uf [n1])]}; \\ & \text{n1} <\text{-successeur(n)}; \\ & \text{Ch Premier(Liste)}; \\ \end{aligned}$$

|   | Ch   | n | n1 | fin  | Liste              |   |
|---|------|---|----|------|--------------------|---|
| Î | {A}  | Α | 1  | Faux | {{AB},{AC}}        |   |
|   | {AB} | В |    |      | {{AC},{ABD},{ABE}} |   |
|   | (AC) | С | G  | Vrai | {{ABD},{ABE}}      | { |

