Lead Frame AOI評估報告

2021/01/11

○ 思脈科技 趙新民 博士

什麼是卷對卷製程

卷對卷(R2R)製程是一種高效能、低成本的連續生產方式

可撓式顯示器、可撓式玻璃、光學膜、

軟性電路板、新能源電池材料...等,

高科技產品皆屬於R2R生產製程。

R2R製程是未來電子產業的發展趨勢!!

Roll to Roll Process

卷對卷製程的共同痛點

我們可提供的解決方案:

- 1) 無法及時得知產品的生產狀況
- 2) 生產中設備發生故障導致停線
- → R2R AOI
- → R2R 設備異常預警系統

復盛精密湖口廠Lead Frame製程

• 蝕刻製程結束後已產出90%的缺陷,且**缺陷在經過蝕刻後會放大**,因此 建議**在蝕刻製程收卷前架設AOI**來偵測瑕疵。

復盛精密湖口廠Lead Frame目前檢驗方式

• 目前以人工目檢為主,卷料頭/尾各取一米抽檢,抽檢率約為1%,蝕刻製程後瑕疵大小約為60~70um,人眼識別不易。

Lead Frame測試樣本

12/29 由陳必強工程師提供13片瑕疵樣本,整理如下:

瑕疵名稱	瑕疵代號	樣本數
蝕刻過度	OE	7
蝕刻不足	UE	5
異物	FO	1

使用電子顯微鏡拍攝的瑕疵影像(放大400倍)

■ Lead Frame AOI系統

項目	規格
相機	8K Line Scan CCD * 2
光學架構	正/反面同軸落光
檢測精度	35um/pixel
支援機速	Max. 5M/min
支援幅寬	280 mm
CD CD CD CD CD CD CD CD CD CD CD CD CD C	Transmission Transmission

思脈卷料AOI系統具備良好瑕疵檢出能力及簡易操作之特性

Lead Frame AOI光學系統架構

測試結果說明

- 此次測試瑕疵共分三大類:OE有8個、UE有5個、FO有1個,共計14個缺陷樣本。
- 因部分缺陷是發生在背面,故需由背面取像才可檢出,如:OE-1。
- UE缺陷利用反面取像才能突顯瑕疵特徵,OE缺陷則大多是以正面取像呈現較佳效果。
- 正/反同軸落光兩個光學系統是互補的,若架設正/反兩套光學系統此次樣本之瑕疵成像率可達100%。

蝕刻過度(OE)			
缺陷編號	正面取像	反面取像	
OE-1	X	0	
OE-2	0	X	
OE-3	0	0	
OE-4	0	X	
OE-5.1	0	0	
OE-5.2	0	X	
OE-6	0	Χ	
OE-7	0	0	
檢出率	87.5%	50%	

蝕刻不足(UE)				
正面取像	反面取像			
X	0			
X	0			
Χ	0			
X	0			
X	0			
0%	100%			
	正面取像 X X X X X			

異物(FO)				
缺陷編號	正面取像	反面取像		
FO-1	0	Χ		
檢出率	100%	0%		

O:可成像且可檢測	
X:不可成像,無法檢出	

瑕疵成像結果說明-OE

瑕疵成像結果說明-OE

瑕疵成像結果說明-OE

瑕疵成像結果說明-UE

瑕疵成像結果說明-UE

瑕疵成像結果說明-FO

Thank you for your time and attention

