0.1 Basics

Topological space: defined as a set of points, along with a set of neighborhoods.

Satisfy a set of axioms relating the points and the neighborhood.

Motivation: most general notion of a mathematical space that allows for

- continuity,
- connectedness,
- convergence

Extension: manifolds, metric spaces, etc

Commonly used: defined in terms of open sets.

More intuitive: neighborhoods.

X a set, together with $\mathbf{N}: X \mapsto 2^{2^X}, \ N \in \mathbf{N}(x)$ is a neighborhood of x, satisfying

- 1. Point in its own neighborhood;
- 2. Superset of neighborhood is a neighborhood, $N \subseteq M \implies M \in \mathbf{N}(x)$;
- 3. Intersection of neighborhoods is a neighborhood, $\forall N, M \in \mathbf{N}(x), N \cap M \in \mathbf{N}(x)$
- 4. $\forall N \in \mathbf{N}(x) \exists M, s.t. y \in M \implies N \in \mathbf{N}(y)$

Open sets:
$$x \in U \implies U \in \mathbf{N}(x)$$

Equivalent definition with respect to open sets:

$$(X,\tau), \tau \subseteq 2^{2^X}$$
, satisfying:

- 1. $\emptyset, X \subseteq \tau$
- 2. $N_i \in \tau, \bigcup_i N_i \in \tau$
- 3. $N_i \in \tau, \bigcap_i N_i \in \tau, i$ finite

These are called open sets.

Continuous: the inverse image of every open set is an open set.

Homotopy: Intuitively from the idea of continuous deformation; is strictly weaker than homeomorphism.

0.2 Homology

Intuitive view:

Path: continuous map $[0,1] \mapsto X$; $x \sim y$ if $\gamma(0) = x, \gamma(1) = y$.

This is clearly an equivalence relation. Therefore, the path connected components of X are equivalence classes under \sim .

0.2.1Simplicial Complexes

General idea is that simplicial complexes extend the notion of graph to include higher dimensional components in it.

Turn simplicial complexes to topological spaces: "embed" it into Euclidean space.

Embedding: map points to coordinates and all points affinely independent.

Induced map: $\hat{f}: K \to 2^{\mathbb{R}^d}, \{v_0, v_1, ..., v_r\} \mapsto Conv(f(v_0), ..., f(v_r))$

All embeddings $f: K \to \mathbb{R}^d$, $g: K \to \mathbb{R}^{d'}$, \hat{f} and \hat{g} are homeomorphic.

Underlying space, |K|, the image of K through embedding, unique up to homeomorphism.

Triangulability: X is triangulable if $\exists K, h : X \to |K|, h$ is homeomorphism.

Simplicial map: combinatorial equivalence of continuous map.

Topological realization of a map: simplicial $f: K \to L$ induces continuous $|f|:|K|\to |L|$

Reverse is not necessarily true.

Simplicial Approximation: continuous $f: |K| \to |L|$ is homotopic to $|f'|: |K| \to |L|$ |L|, where $f': K' \to L$, for some simplicial subdivision K' of K.

Intuition: by dividing the simplicial complex sufficiently many times, we can approximate the topological space.

Simplicial Homology 0.2.2

Orientation: Ordering of vertices, unique up to even permutation, negative by odd permutation.

Chains

K finite simplicial complex and k a fixed field. Given $r \in \mathbb{N}$, we are interested in the k-linear combinations (formal sums) of r-simplices in K.

The linear space of all the formal sums for each r is a chain space of k-chains. Note: Seems that the field k can be relaxed to a ring. Can study later.

Boundary Operator

Remove one vertex from a simplex, we get a face of the simplex. The linear combination together with interchanging orientation is the boundary.

 $\begin{array}{l} \partial_r: C_r(K,k) \to C_{r-1}(K,k) \\ [v_0,...,v_r] \mapsto \sum_{j=0}^r (-1)^j [v_0,...\hat{v_j}...,v_r] \\ \text{Clearly } \partial_r \text{ is distributive.} \end{array}$

Note: $\partial^2 = 0$, and therefore is nilpotent. (Actually it's $\partial_r \circ \partial_{r+1} = 0$.

Homology Groups

Important motivation: want to find "cycles modulo the boundaries".

Note: need to further think about this.

r-cycles: $Z_r(K, k) := \ker \partial$

r-boundaries: $Z_r(K, k) := \operatorname{im} \partial_{r+1}$ Homology group: $Z_r(K, k)/Z_r(K, k)$

Algorithm for Homology

Since it's a vector space, it's isomorphic to k^{β_r} ,

Note: when relaxed to ring, it's a module, and therefore we still have the fundamental theorem for modules to decompose to a torsion part and a torsion-free part. Still have some kind of β_r .

Note: everything is linear space / linear transformation.

Matrix form M_r of ∂_r for each r:

 $\#K_r$ columns and $\#K_{r-1}$ rows, $\beta_r = \#K_r - \text{rank}M_r - \text{rank}M_{r+1}$, just compute ranks to get the dimension, which I have learned and don't want to go into details.

Morphisms

Operator on spaces: $H_r: K \mapsto H_r(K, k)$, which we want to extend to maps as well.

Idea of a functor? Some category stuff?

Chain level: simplicial map induces a chain map. Details omitted.

The chain map commutes with boundary operator.

Functoriality:

0.2.3 From simplicial complexes to topological spaces

Theorem: X triangulable, then, $\forall K, L, H_r(K, k) \simeq H_r(L, k)$.

Conclusion: homology groups of triangulable spaces, and the morphisms between them, are uniquely defined, for different ways of triangulation. Moreover, morphisms are invariant under homotopy.

Corollary: $X \sim Y \implies H_r(X, k) \simeq H_r(Y, k)$.

However, homology does not completely characterize the topology of a space. Thus still much weaker than homeomorphism.

0.3 Exercise

Compute the homology groups, and in particular, the Betti numbers.

Often we only want the Betti numbers, so choose the simplest field, \mathbb{Z}_2 , whereby we can ignore the orientation.

The key is

- 1. triangulation
- 2. identify the structures
- 3. computationally, matrix and linear algebra

Questions:

- 1. Circle, $\mathbb{S}^1 : \beta_0 = 1, \beta_1 = 1$
- 2. Disk, \mathbb{B}^2 : $\beta_0=1, \beta_1=1, \beta_2=0, etc$, same homology groups as a single point. In fact, homotopy equivalent to a point.
- 3. Cylinder, $\mathbb{S}^1 \times [0,1]$: $\beta_0=1, \beta_1=1, \beta_2=0$, homotopy equivalent to a circle.
- 4. Sphere, $\mathbb{S}^2 : \beta_0 = 1, \beta_1 = 0, \beta_2 = 1$
- 5. Ball, $\mathbb{B}^3:\beta_0=1,\beta_1=0,\beta_2=0,etc,$ homotopy equivalent to a single point.
- 6. Torus, see online for triangulation, $\mathbb{T}: \beta_0 = 1, \beta_1 = 2, \beta_2 = 1, \beta_3 = 0$
- 7. Homology for sphere \mathbb{S}^d , $\beta_0 = 1$, $\beta_i = 0$, $\beta_d = 1$

Brouwer's fixed point theorem:

 \forall continuous $f: \mathbb{B}^2 \to \mathbb{B}^2, \exists p \in \mathbb{B}^2, f(p) = p.$

Hairy ball theorem:

For d even, \forall continuous tangent vector field $V: \mathbb{S}^d \to \mathbb{R}^d, \exists p \in \mathbb{S}^d, \text{ s.t. } V(p) = 0$