Q

Backpropagation Algorithm

"Backpropagation" is neural-network terminology for minimizing our cost function, just like what we were doing with gradient descent in logistic and linear regression. Our goal is to compute:

$$\min_{\Theta} J(\Theta)$$

That is, we want to minimize our cost function J using an optimal set of parameters in theta. In this section we'll look at the equations we use to compute the partial derivative of $J(\Theta)$:

$$\frac{\partial}{\partial \Theta_{i,j}^{(l)}} J(\Theta)$$

To do so, we use the following algorithm:

Backpropagation algorithm

Training set
$$\{(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})\}$$

Set $\Delta_{ij}^{(l)}=0$ (for all l,i,j). (use C sequely C sequely

Back propagation Algorithm

Given training set $\{(x^{(1)}, y^{(1)}) \cdots (x^{(m)}, y^{(m)})\}$

ullet Set $\Delta_{i,j}^{(l)}$:= 0 for all (I,i,j), (hence you end up having a matrix full of zeros)

For training example t =1 to m: