Course coordinator/ Instructor: Alika Khare

Due date: Wednesday, Feb 22 & 23, 2024

Note: All the problems in this tutorial are to be solved via multipole expansion. From the practice point of view, please try some of the problems of tut 3-5 also via multipole expansion.

- 1. A circular ring of radius R (in x-y plane) carries a line charge density on its rim given by $\lambda(\varphi)=K\cos\varphi$. Obtained potential due to this at any point outside the ring (r>>R). What is the equivalent dipole moment and corresponding electric field in this case?
- 2. A spherical shell of radius R (origin as the centre) carries a surface charge density $\sigma(\theta) = K\cos(\theta)$.
 - (a) Calculate the potential far away from this sphere using multipole expansion
 - (b) Calculate the dipole moment due to this charge distribution.
 - (c) Corresponding electric field
 - (d) Compare the solutions with that of worked out earlier by solving the Laplace's equation.
- 3. Consider a sphere of radius R (centred at origin) filled with a uniform volume charge density ρ_0 on the northern hemisphere and that of $-\rho_0$ on southern hemisphere.
 - a. Find the potential in the region r>R by multipole expansion.
 - b. From this obtained the very first non zero term.
 - c. From part (a) above, find the expression for dipole moment.
 - d. Work out the approximate expression for electric field due to the very first non zero term in the potential).
- 4. A spherical shell of radius R carries a surface charge density $\sigma(\theta) = K\cos(\theta)$.
 - (e) Calculate the dipole moment due to this charge distribution.
 - (f) Calculate the potential far away from this sphere and
 - (g) Corresponding electric field.
 - (h) What is the potential in the limit $r \rightarrow \infty$
- 5. A sphere of radius R carries a charge density $\rho(r,\theta) = K\frac{R}{r^2}(R-2r)sin\theta$. Calculate the very first non zero term in the potential far from the sphere along the z axis.
- 6. A charge distribution is specified by $\rho(r,\theta) = \frac{1}{64\pi}r^2e^{-r}\sin^2\theta$. Using multipole approximation, obtain the expression for potential.