

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULADE DE ENGENHARIA MECÂNICA

RELATÓRIO DE ALGORITMO IMPLEMENTADO CÁLCULO DE SOLUÇÕES DE PROBLEMAS DE VALOR INICIAL MÉTODO DE RUNGE-KUTTA DE 4ª ORDEM

Aluno: Diego Fernando Luque Martin

Matrícula: 191606

Campinas

2017

SUMÁRIO

1.	Introdução	3
	Método	
	2.1. Algoritmo	
	2.2. Teste	
	2.3. Validação	7
3.	Exercícios resolvidos	9
4.	Conclusão	14
5.	Referências	15
AN	EXO A. Código Fonte	16

1. INTRODUÇÃO

Este relatório tem por fundamento a apresentação numérica do Método de Euler para resolução de problemas de valor inicial (PVI).

O método descrito aqui é apenas uma das formas de resolução de Equações Diferenciais Ordinárias, sendo que, outros métodos serão estudados posteriormente no curso.

2. MÉTODO

O Método de Runge-Kutta é um método de resolução de problema de valor inicial, onde, como pré-requisito, é necessário possuir o valor inicial dado.

Neste método, adotaremos a aproximação da solução de um problema conforme abaixo:

$$\frac{dy}{dt} = f(t, y), \qquad a \le t \le b, \qquad y(a) = \alpha$$

Com t sendo:

$$t = a + i \cdot h, \qquad h = \frac{(b - a)}{N}$$

O Método de Runge-Kutta será descrito da seguinte maneira:

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2.k_2 + 2.k_3 + k_4)$$

Onde os termos informados acima são definidos como:

$$k_{1} = h.f(t_{i}, w_{i});$$

$$k_{2} = h.f(t_{i} + \frac{h}{2}, wi + \frac{1}{2}.k_{1})$$

$$k_{3} = h.f(t_{i} + \frac{h}{2}, wi + \frac{1}{2}.k_{2})$$

$$k_{4} = h.f(t_{i} + 1, wi + k_{3})$$

O motivo da existência das notações k1, k2, k3 e k4 é para eliminação da necessidade de encaixes sucessivos na segunda variável de f(t, y).

2.1. Algoritmo

O livro Analise Numérica (Burden, Análise Numérica, 2015), fornece o seguinte algoritmo:

ENTRADA: extremidades a e b; número inteiro N; condição inicial α.

SAÍDA: aproximação w de y nos (N + 1) valores de t.

Passo 1: Faça
$$h = (b - a) / N$$
; $t = a$; $w = \alpha$; $SAÍDA$: (t, w)

Passo 2: Para i = 1, 2, ..., N, execute os Passos 3 e 4.

Passo 3: Faça $K_1 = h.f(t, w)$;

 $K_2 = h.f(t + h/2, w + K_1/2);$

 $K_3 = h.f(t + h/2, w + K_2/2);$

 $K_4 = h.f(t + h, w + K_3);$

Passo 4: Faça $w = w + (K_1 + 2K_2 + 2K_3 + K_4)/6$; (Calcula wi)

t = a + ih. (Calcule t_i .)

Passo 5: SAÍDA (t,w).

Passo 6: PARE.

Com base no descrito acima, é sabido que o algoritmo deverá apresentar ao final de sua execução uma aproximação do problema de valor inicial.

Com base no exemplo dado acima, o algoritmo deverá exigir informações do usuário:

- Valor do início do intervalo [a];
- Valor do fim do intervalo [b];
- Número de pontos da malha [n];
- Valor da condição inicial [α].

Após realizadas as iterações de cálculo, o algoritmo deverá apresentar ao final de sua execução uma das seguintes alternativas:

- Aproximação para a solução do problema de valor inicial bem-posto;
- Erro devido a informação de parâmetros informados errados.

Para execução do programa em linguagem de programação, os seguintes parâmetros foram adotados:

- Linguagem de Programação: C;
- Compilador: Code::Blocks 16.01

2.2. Teste

Para teste do código fonte escrito em linguagem de programação C, foi usado exemplo de cálculo dado pelo Livro Análise Numérica (Burden, 2015), página 317:

```
y' = y - t^2 + 1, y(t) = (t+1)^2 - 0.5e^t, 0 \le t \le 2, y(0) = 0.5, N = 10
```

Resultados:

```
Digite o início do intervalo [a]: 0
Digite o fim do intervalo [b]: 2
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 0,5
Os parâmetros digitados foram: [a]= 0,000 [b]= 2,000 [n]= 10 [alpha] = 0,500
         t= 0,00000000
                         W = 0,50000000
                                          y= 0,50000000
i= 0
                                                          e= 0,00000000
i= 1
         t= 0,20000000
                         W = 0,82929333
                                          y= 0,82929862
                                                          e= 0,00000529
                                                          e= 0,00001141
         t= 0,40000000
i= 2
                         w= 1,21407620
                                          y= 1,21408761
i=3
         t= 0,60000000
                         w= 1,64892199
                                          y= 1,64894068
                                                          e= 0,00001870
i=4
         t= 0,80000000
                         w= 2,12720264
                                          y= 2,12722945
                                                          e= 0,00002681
i= 5
         t= 1,00000000
                         w = 2,64082265
                                          y = 2,64085913
                                                          e= 0,00003647
i= 6
         t= 1,20000000
                         W = 3,17989411
                                          y= 3,17994165
                                                          e= 0,00004754
i=7
         t= 1,40000000
                         w = 3.73234001
                                          y= 3,73239994
                                                          e= 0,00005993
         t= 1,60000000
                         w = 4,28340942
                                          y = 4,28348398
                                                          e= 0,00007457
i= 8
i= 9
         t= 1,80000000
                         W = 4,81508559
                                          y= 4,81517601
                                                          e= 0,00009042
                                          y= 5,30547190
         t= 2,00000000
                         W = 5,30536290
                                                          e= 0,00010900
i= 10
```

A título de avaliação dos erros do método para cálculo de soluções de problemas de valor inicial, foi possível traçar um gráfico tendo o valor de t no eixo horizontal e o valor de w e y no eixo vertical. Desta maneira pode se observar a característica de propagação do erro conforme o valor de t aumenta:

Foi realizado também uma comparação entre os valores obtidos com o método analisado anteriormente, método de Euler, com os mesmos parâmetros:

$$y' = y - t^2 + 1$$
, $y(t) = (t + 1)^2 - 0.5e^t$, $0 \le t \le 2$, $y(0) = 0.5$, $N = 10$

Método de Euler:

```
Digite o início do intervalo [a]: 0
Digite o fim do intervalo [b]: 2
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 0,5

Os parâmetros digitados foram: [a]= 0,000 [b]= 2,000 [n]= 10 [alpha] = 0,500
i= 0 t= 0,00000000 w= 0,500000000 y= 0,500000000 e= 0,000000000
...
i= 10 t= 2,000000000 w= 4,86578438 y= 5,30547190 e= 0,43968751
```

Método de Runge-Kutta

```
Digite o início do intervalo [a]: 0
Digite o fim do intervalo [b]: 2
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 0,5

Os parâmetros digitados foram: [a]= 0,000 [b]= 2,000 [n]= 10 [alpha] = 0,500
i= 0 t= 0,00000000 w= 0,50000000 y= 0,50000000 e= 0,00000000
...
i= 10 t= 2,00000000 w= 5,30536290 y= 5,30547190 e= 0,00010900
```

Comparando se o valor do erro real (e) dos dois métodos em 10 iterações pode se observar a melhora significativa de exatidão de ordem de 4000 vezes. Isto evidencia claramente a superioridade do Método de Runge-Kutta, apesar da necessidade de maior poder computacional em comparação com o método de Euler.

2.3. Validação

Para validação do algoritmo escrito foi utilizado o exemplo de cálculo demonstrado no livro Análise Numérica, (Burden, 2015), página 317, onde o autor demostra o método de Euler com os seguintes parâmentros:

$$y' = y - t^2 + 1$$
, $y(t) = (t + 1)^2 - 0.5e^t$, $0 \le t \le 2$, $y(0) = 0.5$, $N = 10$

Os resultados obtidos pelo autor estão na tabela 1 a seguir:

Tabela 1 (Burden, 2011)

	Runge-Kutta			
	Exact $y_i = y(t_i)$	Order Four w_i	Error $ y_i - w_i $	
t_i				
0.0	0.5000000	0.5000000	0	
0.2	0.8292986	0.8292933	0.0000053	
0.4	1.2140877	1.2140762	0.0000114	
0.6	1.6489406	1.6489220	0.0000186	
0.8	2.1272295	2.1272027	0.0000269	
1.0	2.6408591	2.6408227	0.0000364	
1.2	3.1799415	3.1798942	0.0000474	
1.4	3.7324000	3.7323401	0.0000599	
1.6	4.2834838	4.2834095	0.0000743	
1.8	4.8151763	4.8150857	0.0000906	
2.0	5.3054720	5.3053630	0.0001089	

Utilizando os mesmos critérios de aproximação e tolerância do exemplo acima e aplicando ao algoritmo, obteve se os seguintes resultados:

Com base nos resultados da iteração 10, o algoritmo foi considerado válido pois os valores de w tem igualdade em todas as casas decimais apresentadas pelo autor salvo arredondamentos.

3. EXERCÍCIOS RESOLVIDOS

Exercício 5.4 – 13a (Burden, 2015)

```
y'=te^{3t}-2y, \qquad 0 \leq t \leq 1, \qquad y(0)=0, \qquad h=0,5 Digite o início do intervalo [a]: 0 Digite o fim do intervalo [b]: 1 Digite o número de pontos da malha [n]: 2 Digite a condição inicial do valor [alpha]: 0,5 0s \ parâmetros \ digitados \ foram: [a]=0,000 \ [b]=1,000 \ [n]=2 \ [alpha]=0,500 \ i=0 \qquad t=0,00000000 \qquad w=0,500000000 \qquad y=-0,000000000 \qquad e=0,500000000 \ i=1 \qquad t=0,500000000 \qquad w=0,48449746 \qquad y=0,28361651 \qquad e=0,20088095
```

Exercício 5.4 – 13b (Burden, 2015)

i= 2

t= 1,00000000 w= 3,38462423 y= 3,21909928 e= 0,16552495

Exercício 5.4 - 14c (Burden, 2015)

Exercício 5.4 – 14d (Burden, 2015)

```
y'=t^{-2}(sen(2t)-2ty), \qquad 1\leq t\leq 2, \qquad y(1)=2, \qquad h=0,25 Digite o início do intervalo [a]: 1 Digite o fim do intervalo [b]: 2 Digite o número de pontos da malha [n]: 4 Digite a condição inicial do valor [alpha]: 2
```

```
Os parâmetros digitados foram: [a]= 1,000 [b]= 2,000 [n]= 4 [alpha] = 2,000
i= 0
        t= 1,00000000
                       w= 2,00000000 y= 2,00000000
                                                      e= 0,00000000
                       w= 1,40335661  y= 1,40319896
                                                      e= 0,00015765
i=1
        t= 1,25000000
i= 2
       t= 1,50000000
                       w= 1,01655858  y= 1,01641011
                                                      e= 0,00014847
                       w= 0,73813168 y= 0,73800975
i=3
      t= 1,75000000
                                                      e= 0,00012193
      t= 2,00000000
                       w= 0,52978557 y= 0,52968711 e= 0,00009846
i= 4
```

Exercício 5.4 – 15a (Burden, 2015)

Digite o início do intervalo [a]: 1

$$y' = \frac{y}{t} - \left(\frac{y}{t}\right)^2$$
, $1 \le t \le 2$, $y(1) = 1$, $h = 0.1$

```
Digite o fim do intervalo [b]: 2
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 1
Os parâmetros digitados foram: [a]= 1,000 [b]= 2,000 [n]= 10 [alpha] = 1,000
       t= 1,00000000
                    w= 1,00000000 y= 1,00000000 e= 0,00000000
i= 0
       t= 1,10000000
                    w= 1,00428150  y= 1,00428176
                                              e= 0,00000026
i= 2
       t= 1,20000000
                    t= 1,30000000
                    w= 1,02981334  y= 1,02981365
                                              e= 0,00000031
i=3
                                 y= 1,04753387
i= 4
      t= 1,40000000
                    w= 1,04753356
                                              e= 0,00000031
                    t= 1,50000000
i= 5
```

Exercício 5.4 – 15b (Burden, 2015)

$$y' = 1 + \frac{y}{t} + (\frac{y}{t})^2$$
, $1 \le t \le 3$, $y(1) = 0$, $h = 0.2$

```
Digite o início do intervalo [a]: 1
Digite o fim do intervalo [b]: 3
Digite o número de pontos da malha [n]: 10
Digite a condição inicial do valor [alpha]: 0
```

```
Os parâmetros digitados foram: [a]= 1,000 [b]= 3,000 [n]= 10 [alpha] = 0,000
i=0
         t= 1,00000000
                        W = 0,00000000
                                         y= 0,00000000
                                                         e= 0,00000000
i= 1
         t= 1,20000000
                        W = 0,22124571
                                         y= 0,22124283
                                                         e= 0,00000288
i=2
        t= 1,40000000
                        w = 0,48968417
                                        y= 0,48968163
                                                         e= 0,00000254
i= 3
        t= 1,60000000
                        w = 0,81275217
                                        y= 0,81275278
                                                         e= 0,00000062
i= 4
        t= 1,80000000
                        w= 1,19943202
                                        y= 1,19943857
                                                         e= 0,00000655
i= 5
        t= 2,00000000
                        w= 1,66126510
                                        y= 1,66128170
                                                         e= 0,00001661
                        w= 2,21346932  y= 2,21350193
i= 6
        t= 2,20000000
                                                         e= 0,00003261
                        w= 2,87649411  y= 2,87655187
i= 7
        t= 2,40000000
                                                         e= 0,00005776
      t= 2,60000000
t= 2,80000000
i= 8
                        w= 3,67837901  y= 3,67847490
                                                         e= 0,00009590
i= 9
                        w= 4,65850625  y= 4,65866470
                                                         e= 0,00015846
i= 10
      t= 3,00000000
                        w= 5,87383847  y= 5,87410021
                                                         e= 0,00026174
```

Exercício 5.4 – 16c (Burden, 2015)

Exercício 5.4 – 16d (Burden, 2015)

```
y'=-ty+4ty^{-1}, \qquad 0\leq t\leq 1, \qquad y(0)=1, \qquad h=0,1 Digite o início do intervalo [a]: 0 Digite o fim do intervalo [b]: 1 Digite o número de pontos da malha [n]: 10 Digite a condição inicial do valor [alpha]: 1
```

```
Os parâmetros digitados foram: [a]= 0,000 [b]= 1,000 [n]= 10 [alpha] = 1,000
          t= 0,00000000
                             w= 1,00000000 y= 1,00000000 e= 0,00000000
i= 0
          t= 0,10000000
                             i= 1
i= 2
         t= 0,20000000
                           t= 0,30000000
t= 0,40000000
t= 0,50000000
                           W= 1,12103389 y= 1,12103802 e= 0,00000187
W= 1,20148810 y= 1,20148599 e= 0,00000211
W= 1,28980715 y= 1,28980529 e= 0,00000185
W= 1,38093255 y= 1,38093126 e= 0,000000129
W= 1,47041576 y= 1,47041523 e= 0,00000053
W= 1,55503110 y= 1,55503142 e= 0,00000032
W= 1,63261187 y= 1,63261318 e= 0,00000032
i= 4
i= 5
        t= 0,60000000
i= 6
i= 7
          t= 0,70000000
i= 8
          t= 0,80000000
                                                                    e= 0,00000131
i= 9
          t= 0,90000000
                             w= 1,63261187
                                               y= 1,63261318
i= 10
          t= 1,00000000
                             w= 1,70186772  y= 1,70187008
                                                                    e= 0,00000237
```

Exercício 5.4 – 28a (Burden, 2015)

$$y' = -0.6\pi r^2 \sqrt{2g} \frac{\sqrt{x}}{A(x)}, \quad A(x) = \pi r^2$$

Substituindo r e g em y' e sabendo que $w_0 = 8$ pés:

$$y' = -0.6 \cdot \pi \cdot 0.1^2 \cdot \sqrt{2 \cdot 32.1} \frac{\sqrt{w}}{\pi \cdot w^2}$$

Com: $0 \le t \le 600$ segundos, y(0) = 8 pés, h = 20 segundos

Para efeito de cálculo do algoritmo a função f (solução da equação diferencial ordinária) retornará sempre o valor 1, o valor de y e o valor de e devem ser desconsiderados:

```
Digite o início do intervalo [a]: 0
Digite o fim do intervalo [b]: 600
Digite o número de pontos da malha [n]: 30
Digite a condição inicial do valor [alpha]: 8
Os parâmetros digitados foram: [a]= 0,000 [b]= 600,000 [n]= 30 [alpha] = 8,000
       t= 0,00000000
                    w= 8,00000000 y= 1,00000000 e= 7,00000000
i= 0
i= 1
       t= 20,00000000
                           w= 7,95733687
                                        y= 1,00000000
                                                       e= 6,95733687
     t= 40,00000000
                                        y= 1,00000000
i= 2
                           w= 7,91432784
                                                      e= 6,91432784
i=3
      t= 60,00000000
                           w= 7,87096533
                                        y= 1,00000000
                                                      e= 6,87096533
i= 27 t= 540,00000000
                           w= 6,69823015
                                        y= 1,00000000
                                                      e= 5,69823015
                           i= 28 t= 560,00000000
                                                      e= 5,64241817
                        i= 29 t= 580,00000000
i= 30 t= 600,00000000
```

Exercício 5.4 - 28b (Burden, 2015)

Digite o início do intervalo [a]: 0

$$y' = -0.6 \cdot \pi \cdot 0.1^2 \cdot \sqrt{2 \cdot 32.1} \frac{\sqrt{w}}{\pi \cdot w^2}$$

Com: $0 \le t \le 1600$ segundos, y(0) = 8 pés, h = 20 segundos

```
i= 4
                           w= 7,78314818
        t= 100,00000000
                                            y= 1,00000000
i= 5
                                                           e= 6,78314818
. . .
i= 72
        t= 1440,00000000
                           w = 2,29158661
                                            y= 1,00000000
                                                           e= 1,29158661
i= 73
        t= 1460,00000000
                           w= 1,98418975
                                            y= 1,00000000
                                                           e= 0,98418975
i= 74
        t= 1480,00000000
                           w= 1,58076835
                                            y= 1,00000000
                                                           e= 0,58076835
                                          y= 1,00000000
i= 75 t= 1500,00000000
                           w = 0,88463583
                                                          e= 0,11536417
i= 76 t= 1520,00000000
                           W = -1, #IND0000
                                          y= 1,00000000
                                                          e= 1,#QNAN000
                                          y= 1,00000000
i= 77
                           w= -1,#IND0000
        t= 1540,00000000
                                                           e= 1,#QNAN000
                                          y= 1,00000000
i= 78
        t= 1560,00000000
                           W = -1, #IND0000
                                                           e= 1,#QNAN000
                                          y= 1,00000000
i= 79 t= 1580,00000000
                           w= -1,#IND0000
                                                           e= 1,#QNAN000
i = 80
        t= 1600,00000000
                           w= -1,#IND0000
                                          y= 1,00000000
                                                           e= 1,#QNAN000
```

A partir de 1500 segundos, ou 25 minutos a altura do líquido dentro do cone (w) tende a zero, indicando que o cone estará vazio a partir deste período.

A título de estudo foi realizado um procedimento experimental para o refinamento do resultado do exercício 5.4 – 28b.

Utilizando os valores das iterações anteriores e reaplicando os sucessivamente ao método:

```
1500 \le t \le 1520 segundos,
                                        y(0) = 0.88463583
                                                               h = 0.02
Digite o início do intervalo [a]: 1500
Digite o fim do intervalo [b]: 1520
Digite o número de pontos da malha [n]: 1000
Digite a condição inicial do valor [alpha]: 0,88463583
        t= 1506,12000000
                            w= 0,04814016
                                                             e= 0,95185984
i= 306
                                             y= 1,00000000
i= 307
        t= 1506,14000000
                            w= -1,#IND0000
                                             y= 1,00000000
                                                             e= 1,#QNAN000
     1506,12 \le t \le 1506,14 \text{ segundos},
                                         y(0) = 0.04814016,
                                                                h = 0.00002
Digite o início do intervalo [a]: 1506,12
Digite o fim do intervalo [b]: 1506,14
Digite o número de pontos da malha [n]: 1000
Digite a condição inicial do valor [alpha]: 0,04814016
i= 211
        t= 1506,12422000
                            w= 0,00439689
                                             y= 1,00000000
                                                             e= 0,99560311
i= 212 t= 1506,12424000
                            w= -1,#IND0000
                                             y= 1,00000000
                                                             e= 1,#QNAN000
                                           y(0) = 0.00439689
1506,12422 \le t \le 1506,12424 segundos,
                                                                  h = 0.00000002
Digite o início do intervalo [a]: 1506,12422
Digite o fim do intervalo [b]: 1506,12424
Digite o número de pontos da malha [n]: 1000
Digite a condição inicial do valor [alpha]: 0,00439689
i= 533
        t= 1506,12423066
                            W = 0,00022143
                                             y= 1,00000000
                                                             e= 0,99977857
i= 534
       t= 1506,12423068
                            w = -1, #IND0000
                                             y= 1,00000000
                                                             e= 1,#QNAN000
```

Com este procedimento foi possível refinar o resultado do exercício proposto (1506,12423066 segundos), porém é necessário um estudo mais aprofundado sobre a propagação dos erros, pois provavelmente o erro da primeira iteração permanece sendo "somado" com os erros das iterações seguintes.

4. CONCLUSÃO

Como avaliado neste relatório o método de Rugen-Kutta necessita de maior poder computacional pois requer quatro cálculos da função por passo definido enquanto o método de Euler requer apenas um. Mesmo diante desta desvantagem o método apresenta exatidão do resultado muito superior ao anterior.

Dos dois métodos estudados até o momento para obter uma aproximação para a solução de um problema de valor inicial bem-posto, o Runge-Kutta foi o que apresentou maiores vantagens e melhor aproximação do valor real, além de não ser necessário o cálculo das derivadas, o erro de truncamento obtido é mínimo.

Os exercícios resolvidos neste trabalho são os mesmos resolvidos no trabalho anterior do método de Euler, com os resultados obtidos em ambos foi possível tirar as conclusões acima.

5. REFERÊNCIAS

- Burden, R. L. (2011). *Numerical Analysis* (9th Edition ed.). Boston: Cengage Learning.
- Burden, R. L. (2015). *Análise Numérica* (Tradução da 10ª edição norte-americana ed.). São Paulo: Cengage Learning.

ANEXO A. CÓDIGO FONTE

```
/***************
 * \brief Programa realizado para a Aula de Métodos Númericos em Fenômenos de Transporte
           Análise Numérica - Burden, Richard - 10ª edição - Pág. 316
           Algoritmo 5.2 - Método de Runge-Kutta de 4ª ordem
 * \param
           Extremidade a
 * \param
           Extremidade b
 * \param
           Número de Pontos da Malha
 * \param
           Condição Inicial w0
 * \return Aproximação w de y em (N+1) valores de t
 #include <stdio.h>
#include <math.h>
#include <locale.h>
/*Função f(solução da equação diferencial ordinária*/
float f(float t, float y)
                                                                       return(pow((t + 1), 2) - 0.5 *
    /*validação ex. 1 no intervalo [0,2], n = 10, w0 = 0,5*/
exp(t));
                                                                       /*return((t * exp(3 * t) / 5) -
   /*exercicio 5.4-13a no intervalo [0,1], n = 2, w0 = 0,5*/
(exp(3 * t) / 25) + (pow(exp(2 * t), -1) / 25));*/
    /*exercicio 5.4-13b no intervalo [2,3], n = 2, w0 = 2*/
                                                                     /*return(t + (1 / (1 - t)));*/
    /*exercicio 5.4-14c no intervalo [2,3], n = 4, w0 = 2*/
                                                                       /*return(pow((t - 2 + sqrt(2) *
exp(1) * 1 / exp(t / 2)),2));*/
    /*exercicio 5.4-14d no intervalo [1,2], n = 4, w0 = 2*/
                                                                     /*return((4 + cos(2) - cos(2 * t)))
/ (2 * pow(t, 2)));*/
    /*exercicio 5.4-15a no intervalo [1,2], n = 10, w0 = 1*/
                                                                     /*return(t / (1 + log(t)));*/
                                                                     /*return(t * tan(log(t)));*/
    /*exercicio 5.4-15b no intervalo [1,3], n = 10, w0 = 0*/
    /*exercicio 5.4-16c no intervalo [1,3], n = 10, w0 = -2*/
                                                                     /*return((2 * t) / (1 - 2 * t));*/
                                                                          /*return(sqrt(4 - 3 * exp(-
    /*exercicio 5.4-16d no intervalo [0,1], n = 10, w0 = 1/3*/
pow(t,2))));*/
    /*exercicio 5.4-28a no intervalo [0,600], n = 30, w0 = 8*/
                                                                     /*return(1):*/
    /*exercicio 5.4-28b no intervalo [0,1600], n = 80, w0 = 08*/
                                                                     /*return(1);*/
}
/*Função derivada f'*/
float dy(float t, float w)
    /*validação ex. 1 no intervalo [0,2], n = 10, w0 = 0,5*/
                                                                     return(w - pow(t, 2) +1);
                                                                        /*return(t * exp(3 * t) - 2 *
    /*exercicio 5.4-13a no intervalo [0,1], n = 2, w0 = 0,5*/
w);*/
    /*exercicio 5.4-13b no intervalo [2,3], n = 2, w0 = 2*/
                                                                     /*return(1 + pow((t - w),2));*/
                                                                     /*return(-w + t * sqrt(w));*/
/*return(pow(t, -2) * (sin(2 * t)
    /*exercicio 5.4-14c no intervalo [2,3], n = 4, w0 = 2*/
    /*exercicio 5.4-14d no intervalo [1,2], n = 4, w0 = 2*/
- 2 * t * w));*/
    /*exercicio 5.4-15a no intervalo [1,2], n = 10, w0 = 1*/
                                                                        /*return(w / t - pow((w / t),
2));*/
    /*exercicio 5.4-15b no intervalo [1,3], n = 10, w0 = 0*/
                                                                     /*return(1 + w / t + pow((w / t),
2));*/
    /*exercicio 5.4-16c no intervalo [1,3], n = 10, w0 = -2*/
                                                                      /*return(pow(t, -1) * (pow(w, 2)
+w));*/
    /*exercicio 5.4-16d no intervalo [0,1], n = 10, w0 = 1/3*/
                                                                       /*return(-t * w + 4 * t * (1 / 
    /*exercicio 5.4-28a no intervalo [0,600], n = 30, w0 = 8*/
                                                                       /*return(- 0.6 * pow(0.1, 2) *
sqrt(2 * 32.1) * (sqrt(w) / pow(w, 2)));*/
  /*exercicio 5.4-28b no intervalo [0,1600], n = 80, w0 = 08*/
                                                                       /*return(- 0.6 * pow(0.1, 2) *
sqrt(2 * 32.1) * (sqrt(w) / pow(w, 2)));*/
/*Programa principal*/
int main(void)
    setlocale(LC_ALL,"");
    /*Declaração de variáveis*/
```

```
double a, b, h, t, w, k1, k2, k3, k4, y, e;
   int n, i;
   /*Entrada de parâmetros*/
   printf("Digite o início do intervalo [a]: ");
    scanf("%lf", &a);
   printf("Digite o fim do intervalo [b]: ");
scanf("%1f", &b);
   printf("Digite o número de pontos da malha [n]: ");
   scanf("%d", &n);
   printf("Digite a condição inicial do valor [alpha]: ");
   scanf("%lf", &w);
   /*Exibição dos parâmetros de cáculo para o usuário*/
   printf ("\nOs parâmetros digitados foram: [a]= \%.3f [b]= \%.3f [n]= \%i [alpha] = \%.3f \n", a, b, n,
    /*Cálculo do Passo h*/
   h = (b - a) / n;
   t = a;
   for(i=0; i<=n; i++)
        /*Cálculo de ti*/
        t = a + i * h;
       /*Cálculo da solução da equação diferencial*/
       y = f(t, w);
        /*Erro (diferença do valor exato y com a aproximação w)*/
        e = fabs(y - w);
        /*Exibição dos valores calculados para o usuário*/
        printf("i= %d \t t= %.8f \t w= %.8f \t y= %.8f \t e= %.8f \n", i, t, w, y, e);
        /*Cálculo das notações */
        k1 = h * dy(t, w);
        k2 = h * dy(t + h / 2, w + k1 / 2);
        k3 = h * dy(t + h / 2, w + k2 / 2);
        k4 = h * dy(t + h, w + k3);
        /*Equação de diferença*/
        w = w + (k1 + 2 * k2 + 2 * k3 + k4) / 6;
   }
   return 0;
}
```