GERBANG LOGIKA DASAR

Gerbang Logika → blok dasar untuk membentuk rangkaian elektronika digital

- Sebuah gerbang logika mempunyai satu terminal output dan satu atau lebih terminal input
- ➤ Output-outputnya bisa bernilai HIGH (1) atau LOW (0) tergantung dari level-level digital pada terminal inputnya.
- Ada 7 gerbang logika dasar : AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR

Gerbang AND

Simbol gerbang logika AND

Operasi AND:

- Jika Input A AND B keduanya HIGH, maka output X akan HIGH
- Jika Input A atau B salah satu atau keduanya LOW maka output X akan LOW

Tabel Kebenaran gerbang AND – 2 input

INF	Output	
Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Cara kerja Gerbang AND:

Analogi elektrikal gerbang AND

Gerbang AND dengan switch Transistor

Gerbang AND dengan banyak Input

	Output			
Α	В	С	D	Х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Tabel Kebenaran AND-4 input

Gerbang OR

Simbol gerbang logika OR

Operasi OR:

- Jika Input A OR B atau keduanya HIGH, maka output X akan HIGH
- Jika Input A dan B keduanya LOW maka output X akan LOW

Tabel Kebenaran gerbang OR – 2 input

INPUT		Output
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Cara kerja Gerbang OR:

Gerbang OR dengan switch Transistor

Gerbang OR dengan banyak Input

Tabel Kebenaran OR-3 input

	INPUT				
Α	В	С	Output X		
0	0	0	0		
0	0	1	1		
0	1	0	1		
0	1	1	1		
1	0	0	1		
1	0	1	1		
1	1	0	1		
1	1	1	1		

Gerbang NOT / INVERTER

Simbol gerbang logika NOT

Operasi NOT:

- Jika Input A HIGH, maka output X akan LOW
- Jika Input A LOW, maka output X akan HIGH

$$X = \overline{A}$$

Tabel Kebenaran gerbang NOT / INVERTER

INPUT	Output
Α	X
0	1
1	0

Gerbang NAND

Simbol gerbang logika NAND

Operasi NAND:

- Merupakan Inversi (kebalikan) dari operasi AND
- Jika Input A AND B keduanya HIGH, maka output X akan LOW
- Jika Input A atau B atau keduanya **LOW**, maka output X akan **HIGH**

Tabel Kebenaran gerbang NAND

INF	Output	
Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Gerbang NAND dengan banyak Input

Tabel Kebenaran NAND-3 input

	INPUT					
Α	В	С	Output X			
0	0	0	1			
0	0	1	1			
0	1	0	1			
0	1	1	1			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	0			

Gerbang NOR

Simbol gerbang logika NOR

Operasi NOR:

- Merupakan Inversi (kebalikan) dari operasi OR
- Jika Input A dan B keduanya LOW, maka output X akan HIGH
- Jika Input A OR B salah satu atau keduanya HIGH, maka output X akan LOW

Tabel Kebenaran gerbang NOR

INF	Output	
Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

 $X=\overline{A+B}$

Gerbang Ex-OR

Simbol gerbang logika Ex-OR

Operasi Ex-OR:

- Ex-OR adalah kependekan dari Exclusive OR
- Jika salah satu dari kedua inputnya HIGH (bukan kedua-duanya), maka output X akan HIGH
- Jika kedua inputnya bernilai LOW semua atau HIGH semua, maka output X akan LOW

Tabel Kebenaran Gerbang Ex-OR

INPUT		OUTPUT
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Persamaan Logika Ex-OR $X = A \oplus B$

Berdasarkan Tabel Kebenaran di atas (yang bernilai output = 1), Ex-OR dapat disusun dari gerbang dasar : AND, OR dan NOT Persamaan EX-OR (dari AND, OR dan NOT) :

$$X = A\overline{B} + \overline{AB}$$

Gerbang Ex-OR dari AND, OR, NOT

Simbol logika Ex-OR

Gerbang Ex-NOR

Simbol gerbang logika Ex-NOR

Operasi Ex-NOR:

- Ex-NOR merupakan kebalikan dari Ex-OR
- Jika salah satu dari kedua inputnya HIGH (bukan kedua-duanya), maka output X akan LOW
- Jika kedua inputnya bernilai LOW semua atau HIGH semua, maka output X akan HIGH

Tabel Kebenaran Gerbang Ex-NOR

INP	OUTPUT	
Α	В	X
0	0	1
0	1	0
1	0	0
1	1	1

Persamaan Logika Ex-NOR
$$X = \overline{A \oplus B}$$

Berdasarkan Tabel Kebenaran di atas (yang bernilai output = 1), Ex-NOR dapat disusun dari gerbang dasar : AND, OR dan NOT Persamaan EX-NOR (dari AND, OR dan NOT) :

$$X = \overline{A}\overline{B} + AB$$

Gerbang Ex-NOR dari AND, OR, NOT

Simbol logika Ex-NOR

RINGKASAN JENIS GERBANG LOGIKA

No	NAMA	TIPE IC	Simbol Logika	Persamaan	Tabel Kebenaran
1	AND	7408	A B X	X=A.B	INPUT Output X O
2	OR	7432	A X	X=A+B	INPUT Output
3	NOT	7404	<u>A</u> X	X= A	INPUT Output A
4	NAND	7400	A X X	X=A.B	INPUT Output

RINGKASAN JENIS GERBANG LOGIKA.....cont

No	NAMA	TIPE IC	Simbol Logika	Persamaan	Tabel Kebenaran
5	NOR	7402	A X B	X= A+B	INPUT Output A B X
6	Ex-OR	7486	A X	X=A ⊕ B	INPUT OUTPUT A B X
7	Ex-NOR		A X X	X= A B	INPUT OUTPUT A B X

ANALISA PE-WAKTU-AN

Cara penganalisaan response output terhadap kombinasi input-inputnya pada periode waktu tertentu,

Cara penganalisaaan yang lain adalah dengan Tabel Kebenaran Peralatan yang digunakan disebut : *Timing Diagram* (Diagram pe-waktu-an).

Bentuk Timing Diagram:

Contoh:

1. Buatlah timing diagram untuk mendapatkan output dari gerbang AND berikut ini :

Jawab:

2. Buatlah timing diagram untuk mendapatkan output dari gerbang Ex-OR berikut ini :

Jawab:

Soal Latihan :

- 1. Sebuah input data mempunyai urutan : 101110010. Gambarkan bentuk gelombang dari data input tersebut dalam representasi sinyal digital.
- 2. Sebutkan 3 jenis aplikasi yang menggunakan teknologi digital.
- 3. Buat Tabel Kebenaran untuk gerbang AND-3 input berikut ini:

4. Buat Tabel Kebenaran untuk gerbang NOR-4 input berikut ini:

5. Buat Timing Diagram untuk output X dari gerbang OR-3 input berikut ini:

