

Elementos de transición interna

Principales Familias

Grupo I A	Alcalinos	ns ¹	LiNa Koreana Robo Casa Francesa Li : Na :K; Rb; Cs; Fr
Grupo II A	Alcalinos térreos	ns²	Bety-Magaly-Carmen-Sr-BaRa Be ; Mg ;Ca; Sr; Ba; Ra
Grupo III A	Térreos o boroides	np [‡]	B; Al; Ga; In;Ti
Grupo IV A	Carbonoides	np ²	C:Si:Ge:Sn:Pb
Grupo V A	Nitrogenoides	np³	N; P; As; Sb;Bi
Grupo VI A	Calcógenos o anfígenos	np⁴	O; S; Se; Te; Po
Grupo VII A	Halógenos	np ⁵	F; Cl; Br; I; At
Grupo VIII A	Gases nobles	np ⁶ (*)	He; Ne; Ar; Kr; Xe Rn
Grupo I B	Metales de acuñación	(n-1)s ¹ nd ¹⁰	Cu: Ag: Au
Grupo II B	Elementos de puente	(n-1) nd ¹⁰	Zn; Cd; Hg

El Helio termina su distribución electrónica en s².

Estado físico de los elementos

A condiciones ambientales (25°C) 11 elementos gaseosos, 2 elementos líquidos, el resto solidos.

ESTADO NATURAL	METAL	NO METAL	GAS NOBLE
GASEOSO	ninguno	Nz, Oz, Fz, Clz, Hz	He, Ne, Ar, Kr, Xe, Rn
LIQUIDO	Hg	Brz	ninguno
SOLIDO	Restantes	Restantes	Ninguno

Abundancia de los elementos en la Naturaleza:

- El elemento más abundante en el universo: es el hidrógeno
- El elemento más abundante en la atmósfera: es el nitrógeno.
- El elemento más abundante de la corteza terrestre: es el oxígeno.
- El elemento metálico más abundante de la corteza terrestre: es el aluminio.
- El elemento no metálico más abundante de la corteza terrestre: es el silicio.

Metaloides o semimetales:

Son 8 elementos

PROPIEDADES PERIÓDICAS

NOMENCLATURA INORGÁNICA

- VALENCIA. Es la capacidad de combinación de un elemento
- ESTADO DE OXIDACIÓN.- Es la carga que adquiere un elemento cuando gana ó pierde e. . Al estado de oxidación también se le conoce como "número de oxidación".

Valencia = Estado de oxidación (numéricamente)

Los Estados de oxidación mas importantes que debes conocer

H = +1 generalmente en Hidruros metalicos es (-1) O = -2 generalmente en peróxidos es (-1)

Metales: (I)

- Metales del IA **→** +2 Metales del IIA
- Fe, Co, Ni, Cr, Mr → +2, +3
- **→** +1, +2 Hg, Cu → +1, +3
- Au
- Ag ++1
- +2, +4 Pb Zn + +2

No metales.

- S, Se, Te → 2, 4, 6 Cl, Br, I → 1, 3, 5, 7

Obs: N=1,2,4 en óxidos neutros

ANFOTEROS: Elementos que se comportan como metal y no metal

Elementos	EO como metal	EO como no metal
Manganeso (Mn)	+2; +3	+4,+6,+7
Cromo (Cr)	+2,+3	+3,+6
Vanadio(V)	+2,+3	+4,+5

FUNCIONES INORGANICAS

Función	Reconocimiento
Oxido básico	M ₂ O _x
Oxido Ácido	1000
(anhídrido)	NM ₂ O _x
Hidróxidos	M(OH) _x
Acidos oxacidos	H _x NMO _y
Ac. Hidracidos	H _* NM
Sal Oxisal	Mx(NMOy)
Sal Haloidea	M _x (NM) _v

Sistema comun de nomenclatura

Prefijo	Sufijo	1EO	2EO	3EO	4EO
Hipo	Oso			X	X
	Oso		x	x	X
	Ico	X(no es obligatorio)	x	x	X
Per	Ico			W. 1.	x

Ácidos Polihidratados

Se forman cuando los anhidridos reaccionan con cantidades variables de agua. Estos ácidos llevan en su nombre los prefijos "meta", "piro" y "orto".

prefijo	valencia par	Valencia impar
meta	1 anh. + 1H ₂ O	1 anh. + 1H ₂ O
piro	2 anh. + H ₂ O	1 anh. + 2H ₂ O
orto	1 anh. + 2H ₂ O	1 anh. + 3H ₂ O

Los ácidos mas conocidos

Ácido	Nombre del Ácido	Formación de Radicales al quitar "H' Oso × Ito Ico × Ato Hídrico × Uro		
HNO₃	Acido Nitrico	NO ₃ -1	Nitrato	
HCIO	Acido Hipocloroso	CIO-1	Hipoclorito	
HCIO ₄	Acido Perclorico	CIO4-1	Perclorato	
H ₂ CO ₃	Acido Carbonico	CO3-2	Carbonato	
H ₂ 5O ₄	Acido sulfurico	5O4 ⁻²	Sulfato	
H ₃ PO ₄	Acido Fosforico	PO4-3	Fosfato	
HCI	Acido clorhidrico	CI-1	Cloruro	
H₂S	Acido Sulfhidrico	5-2	Sulfuro	

ENLACES QUÍMICOS

Son fuerzas que mantienen unidos a los átomos (enlace interatómico) o iones para formar moléculas o sistemas cristalinos (iónicos, metálicos o covalentes) y moléculas (enlace intermolecular)para formar compuestos. Cuando un átomo se enlaza con otro, este forma un sistema más estable con menor contenido energético

propiedades de los compuestos iónicos

- A condiciones ambientales son sólidos cristalinos duros y quebradizos de elevado de fusión y Ebullición
- 2. la atracción iónica es polidireccional
- 3. son conductores eléctricos sólo estando fundidos o en disolución
- 4. no forma moléculas; solo agregado ordenado de iones

en compuestos iónicos binarios, generalmente la diferencia de electronegatividades (Δ E.N.≥1.7)

ENLACE COVALENTE

Se produce por lo general:

Propiedades de las sustancias covalentes

- A condiciones ambientales pueden ser sólidas, líquidas o gases
- 2. Generalmente tienen bajo punto de fusión
- Son muchos mas los compuestos covalentes que los iónicos
- 4. Mayormente sus soluciones no son conductores de electricidad
- 5. Constituyen moléculas que son agregados de un número definido de átomos iguales o diferentes (02, , H2504,)
- 6. Generalmente

0 ≤ ΔE.N. <1.7

El enlace iónico es más fuerte que el covalente

*POR LA POLARIDAD DEL ENLACE

Enlace Covalente Apolar

(compartición equitativa de electrones)

Se produce entre átomos de igual E.N.

H-H Δ E.N. = 0

ΔEN= 2,1- 2,1=0

Enlace Covalente Polar

(comparición desigual de electrones)

Producido entre átomos de diferente E.N. los electrones compartidos se aproximan más al de mayor E.N

H - CI EN= 2,1 3,0

ΔE.N. <1,7

Por	el número de pares compartidos	
Enlace Simple	Un solo par de electrones compartidos (enlace sigma σ)	A B
	Enlace doble. Se comparte dos pares de electrones (1 sigma y 1 pi)	$A = \frac{\sigma}{\pi} B$
nlace Múltiple	Enlace triple. Se comparte tres pares de electrones (1 sigma y 2 pi)	A <u>π</u> Β

Geometría Electrónica El Modelo RPENV

Llamamos geometría electrónica a la disposición espacial de los grupos electrónicos alrededor del átomo central

El modelo RPENV nos dice:

Los grupos electrónicos se disponen en el átomo de tal manera que estén lo más alejados posible entre sí, lo cual minimiza la repulsión entre los electrones (que existe pues tienen la misma carga)

Según el modelo RPENV, podemos observar las siguientes geometrías electrónicas posibles

Numero de grupos electronicos	Arreglamiento de los grupos electronicos	Tipo de geometria electronica
2	180°	lineal
3	120	triangular plana
4	1 top 5	tetraedrica

Como podrás observar, contando el número de grupos electrónicos alrededor del átomo central, podemos saber la geometría electrónica que le corresponderá a un compuesto dado.

Geometría Molecular

Llamamos geometría molecular a la disposición espacial de los grupos electrónicos ENLAZANTES UNICAMENTE alrededor del átomo central

El modelo RPENV permite también predecir la geometría molecular, los resultados los vemos en el siguiente cuadro

Molecula	Ejrasplo	Numero total de grupos electronicos	Numero de grapos enlutantes	Numero de grupos no enfarantes	GEOMETRIA MOLECULAR	HIBRIDIZACIÓN: Combinación de Orbitales puros s,p,d,f; para formar orbitales híbridos. Obs: La hibridización se efectúa entre orbitales de los subniveles que pertenecen a un mismo nivel
AB ₂	002	2	2	0	LINEAL	sp
AB ₃	BF ₃	3	3	0	TRIANGULAR PLANA	sp ²
AB ₂	so ₂	3	2	1	ANGULAR.	sp ²
AB ₄	CH4	4	4	0	TETRAEDRICA	sp ³
AB ₃	NH3	4	3	1	PIRAMIDAL	sp ³
\mathtt{AB}_2	н,о	4	2	2	ANGULAR	sp ³

Efecto de los pares no enlazantes

Se ha comprobado mediante métodos experimentales (cristalografía de Rayos X que es distinta la repulsión entre grupos enlazantes que entre grupos libres, más exactamente:

UNIDADES QUIMICA DE MASA (U.Q.M.)

 $1 \text{Uma} = 1/12 \text{(masa}^{12}\text{C)} = 1,66 \times 10^{-24} \text{ g} \text{(Unidad de masa atómica)}$

Masa Atómica promedio (m.A)(CALCULO EXPERIMENTAL)

ISOTOPO	Masa Isotópica(UMA)	Abundancia atómica (%)
zX	A1	a%
zX	A2	b%
zX	A3	c%

m.
$$A(x)_{real} = A_{1}x + A_{2}x + A_{3}x + A_$$

Nota: Se sabe que en la tabla periódica encontramos la Masa atomica (m.A) de cada elemento

· Masa Molecular (M) y Masa Fórmula (MF)

$$M = \sum m.A.$$

También resulta de la suma de las masas atómicos de los elementos que constituyen la unidad fórmula. Es se llama peso molecular promedio relativo.

 $M(H_2SO_4) = 2PA(H) + PA(S) + 4PA(O) = 98uma$

 $M(H_2O) = 2(1) + 1(16) = 18uma$

· LA MOL (mol)

Es una unidad del sistema internacional mide la cantidad de sustancia contenida en un material bajo la forma de número de átomos, moléculas, iones, etc.

No= Numero de avogadro

ÁTOMO GRAMO (at-q)

$$At-g_{(E)} = m_{(E)}/m.A_{(E)} = \#atomos_{(E)}/N_o$$

MOLECULA GRAMO (mol -q)

$$mol-g(s) = m(s)/m$$
. $A(s) = #moleculas(s)/N_o$

CONDICIONES NORMALES (C.N)

condición Para sust. gaseosas : esta referida a: Presión= 1atm=760mmHg= 101,3Kpa Temperatura = 0°C= 273K

1mol-g (gas) ocupa en C.N 22,4L

$$V_{(gas)}^{C.N} = n.(22,4L)$$

$$D_{i,j,k}^{(i,j)} = \frac{M}{22...4L}$$

n=#mol-g =Masa/PM D = densidad del gas en C.N

EL ESTADO GASEOSO

LEYES DE LOS GASES IDEALES

ECUACIÓN GENERAL DE LOS GASES
$$\frac{P_{-1}V_{-1}}{T_{-1}} = \frac{P_{-2}V_{-2}}{T_{-2}}$$

Se Aplica para 2 o mas procesos donde la masa del gas permanece constante m =cte proceso isomasico

PROCESOS RESTRINGIDOS Son aquellos donde la masa es cte y una de las variables de estado(P,T o V)	VARIABLE DE ESTADO CTE	PARA DOS PROCESOS SE CUMPLE:
LEY DE BOYLE - MARIOTE Proceso isotérmico	T°=Cte	$P_1V_1 = P_2V_2$
LEY DE J. CHARLES Proceso isobàrico	P=Cte	$\frac{V_1}{T_1} = \frac{V_2}{T_2}$
GAY-LUSSAC Proceso isocòrico o isometrico	V=Cte	$\frac{P_1}{T_1} = \frac{P_2}{T_2}$

ECUACIÓN UNIVERSAL DE LOS GASES

n= Nº de moles No= Numero de avogadro

$$n = \frac{Masa}{M} = \frac{N^{a}de \, moleculas}{No} = \frac{volmen}{Vm}$$

CASOS PARTICULARES

$$PV = \frac{m}{M} RT$$

Valores de "R"	Depende de la presión
R= 0,082	P(atm)
R= 62,4	P(mmHg)
R= 8,31	P(Kpa)
To absoluta= °C +27	The state of the s

$$D_{gas} = \frac{P \cdot M}{R \cdot T}$$

REACCIONES QUÍMICAS

TIPO DE REACCIÓN	RECONOCIMIENTO	EJEMPLO	
Síntesis O Adición	A + B → AB	$H_2 + N_2 \rightarrow NH_3$	
Descomposición	AB → A + B	$CaCO_3 \rightarrow CaO + O_2$	
Simple Desplazamiento o sustitución	$A + BC \rightarrow AC + B$	HCl + Na → NaCl + H ₂	
Doble Desplazamiento	AB + CD → AD + CB NaCl + AgNO ₃ → AgCl		
Combustión Completa	Sust + $O_2 \rightarrow CO_2$ + H_2O	$C_3H_8 + O_2 \rightarrow CO_2 + H_2O$	
Combustión Incompleta	Sust + $O_2 \rightarrow CO + H_2O$ Sust + $O_2 \rightarrow C_{(s)} + H_2O$	$C_2H_2 + O_2 \rightarrow CO + H_2O$	
Neutralización (Ácido-Base)	Ácido + base → sal + H₂O	HCI + NaOH → NaCl + H ₂ O	
TEORIA ACIDO-BASE	Según Arrhenius: Acido : en medio acuoso libera (H*) Base: en medio acuoso libera (OH)	$H_2SO_4 \rightarrow SO_4^- + 2H^*$ $Ca(OH)_2 \rightarrow Ca^{*2} + 2(OH)^*$	
	Según Bronsted y Lowry: Acido: sust. que cede protones (H*) Base:sust.que acepta protones (H*)	H ₂ O + NH ₃ ↔ NH ₄ ⁺¹ + OH Ácido Base Ácido Ba Conjugado Conjugado	
Reacciones de Precipitación 2 o mas iones en solución se juntan por atracción electrostática formando sólido iónico insoluble que precipita.	$X_{(oc)}^{*p} + Y_{(oc)}^{-q} = X_q Y_{p(s)}$ cation anion Precipitado	$Ag_{(ac)}^{-1} + Cl_{(ac)}^{-} = AgCl_{(s)}$ cation anion Precipitado	
Reacción de Formación de Complejos Cede el par electrónico: LIGANDO Acepta el par electrónico: ION CENTRAL	$(I \`{o}n \ Central)^{***} + n(Ligandos) \rightarrow \left[(I \`{o}n \ Central)(Ligandos)n \right]^Q \\ \qquad (Ion \ Complejo) \\ \text{Donde: Q= Carga(Ion central) + Carga de los ligandos} \\ \text{Ejemplo:} \\ Co^{*2}_{(inc)} + 4Cl^{-1}_{(inc)} \iff \left[CoCl_4 \right]^{2-}_{(inc)} * I \`{o}n \ Central : Co^{*2}_{(inc)} \\ * ligando : 4Cl^{-1}_{(inc)} \\ \end{cases}$		
	*C arg a del lòn Complejo $Q = (+2) + (-4) = -2$		

ESTEQUIOMETRIA

Relaciones cuantitativas , relacionado a la masa , moles , volumen , etc.., de las sustancias que intervienen en una reacción química.

Relacion Cuantitativa	Aplicación en problemas a la ecuación balanceada mediante regla de tres simple		Ley ponderal	
	N ₂ +	3H₂ →	2 NH ₃	
Masa - Masa *(Coef)(PM)gramos	28g	69	2(17)g	Conservación de la Masa (Lavoisier)
mol- mol Coeficientes de la ecuación.	1mol	3mol	2mol	Proporciones definidas (Proust)
Masa -mol *Coef(PM) grCoef.(ec.)	289		2mol	Caso particular

Volúmenes *Coeficientes (L, ml) Sust. Gaseosas a las mismas condiciones de presión y temperatura	1L	3L	2L	Volumétrica (Gay-Lussac)
Condiciones Normales Para gases Coef(22,4)L	1(22,4L)	3(22,4L)	2(22,4L)	P=1atm =760mmhg=101,3Kpa T°= 0 °C = 273K
Para otras condiciones de los gases se aplicara:		PV = nRT		Caso particular

Método para resolver Problemas Se resolverá por regla de 3 simple RD3 Nota: La estequiometría se resuelve con un solo dato.	Aplique RD3 R1(ecuc)			
Reactivo Limitante (R.L) Es el reactivo que se consume totalmente Se encuentra en menor proporción; con el se deben realizar los cálculos estequiométricos. Reactivo en exceso(R.E) No se consume totalmente en el proceso	En el problema se identifica con 2 datos en el lado de los reactantes siendo uno el limitante y otro el exceso:			
Pureza de un reactante (%P) Masa Pura del reactante Masa Total	% $P = \frac{Masa Pura}{Masa total}$.100 % Recuerde que en la estequiometria se utiliza sustancias puras!			
Eficiencia o Rendimiento de una Reacción (%R)	En los problemas al resultado obtenido del calculo estequiometrico le sacas el(R%) Generalmente			

Peq = Masa atômica E.O

Peq (Fe+2)=56/2=28 Peq (O-2) =16/2 = 8

Masa Equivalente (Peq)

Para un compuesto Tambien:

Peq(AxBy) = Peq(AY) + Peq(BX)

Peq(Ha) = Peq(H+1) + Peq(a-1)

 $Peq_{(HCI)} = 1 + 35,5=36,5$

Para un Compuesto

Para un Elemento:

 $Peq = \frac{Masa\ Molecular}{}$

Calculo de 0

Compuesto	θ	Ejemplo	PM	θ	Peq
Oxido E ₂ O _x	Carga total del Oxigeno	Al ₂ O ₃	102	6	102/6 =17
Ácidos H _* NMO _y H _* NM	Nº de Hidrógenos	HNO ₃	63	1	63/1=63
Hidróxidos o bases M(OH),	№ de (OH)	Ca(OH) ₂	74	2	74/2=37
Sales M _x (NMO _y), M _x (NM),	Carga total del metal	Ca ₃ (PO ₄) ₂	310	6	310/6=51,67
Agente Oxidante	N° electrones ganados	N*3 → N*1	14	4	14/4=3,5
Agente Reductor	Nº electrones perdidos	F° → F*1	56	2	56/2=28
Iòn	Carga Iónica	(CO ₃)-2	60	2	60/2=30

El Equivalente Gramo (Eq-g)	1 Eq-g _(sust) = Peq _(sust) gramos
Numero de Equivalente Gramo #(Eq-g) También: #(Eq-g) = 0.n	$\# Eq - g = \frac{masa(gramos)}{Peq}$

Ley de Combinación:

$$A + B \rightarrow C + D$$

Se cumple....#(Eq-g)_A = #(Eq-g)_B = #(Eq-g)_C = #(Eq-g)_D

Que es igual a....
$$\frac{masa_{(A)}}{Peq_{(A)}} = \frac{masa_{(B)}}{Peq_{(B)}} = \frac{masa_{(C)}}{Peq_{(C)}} = \frac{masa_{(D)}}{Peq_{(D)}}$$

SOLUCIONES

Son Mezclas Homogéneas de dos o mas sustancias en proporción variable

	Porcentaje en masa (%m _{sto})	Porcentaje en volumen (%V _{sto})	Partes por millon (ppm)
Unidades Físicas de Concentración	$\%m_{(sto)} = \frac{m_{sto}}{m_{sol}},100$ $m_{sol} = m_{sto} + m_{ste}$	$%V_{(sto)} = \frac{V_{sto}}{V_{sal}}.100$ $v_{sol} = v_{sto} + v_{ste}$	$1ppm = \frac{m_{sto}}{m_{stol}} . 10^6$
	Molaridad(M)	Normalidad (N)	Molalidad(m)
	$M = \frac{n_{sto}}{V_{(sol\ en\ Litros)}}$ $n_{sta} = \# mol-g\ de\ sto$	$N = \frac{\# Eq - g_{(sto)}}{V_{(sol\ en\ Litrus)}}$	$m = \frac{n_{sho}}{m_{(ste\ en\ Kg)}}$
Unidades Quimicas de Concentración	En función a la masa de soluto : sabemas n=m/M $M = \frac{m_{sta}}{MV_{(sol~cu~Litrus)}}$	En función a la Molaridad N=0M 0:depende de la sustancia	En función al %m _{sto} : $m = \frac{10^3 (\% \text{m}_{\text{sto}})}{(100 - \% \text{m}_{\text{sto}}) M_{\text{sto}}}$
	En función al $\%m_{sto}$ y densidad de la solución(D_{sel}): $M = \frac{10(\%m_{sto})D_{sol}}{M_{sto}}$	Fraccion Molar(Fm) $fm = \frac{n_{(sto)}}{n_{(sol)}}$	
	S.E.P.MO.	nsoL= nsta . nste	

PROCESOS DE SOLUCION

DILUCIÓN:

Consiste en Bajar la concentración de una solución hasta una concentración deseada agregando agua sin alterar la cantidad de soluto

Se cumple:

$$M_1V_1 = M_2V_2$$
 $N_1V_1 = N_2V_2$

Tambien:

$$m_{sto(1)}.m_{sol(1)} = m_{sto(2)}.m_{sol(2)}$$

$$V_{sto(1)}.V_{sol(1)} = V_{sto(2)}.V_{sol(2)}$$

MEZLA DE SOLUCIONES de un mismo soluto pero diferente concentración

Se cumple:

$$M_1V_1 + M_2V_2 = M_3V_3$$

$$N_1V_1 + N_2V_2 = N_3V_3$$

Tambien:

NEUTRALIZACIÓN (Ácido - Base)

Es igual a.....
$$(NV)_{Acido}$$
 = $(NV)_{Base}$ = $(NV)_{Sal}$

Tambien......
$$(\theta.\mathbf{n})_{Acido} = (\theta.\mathbf{n})_{Base} = (\theta.\mathbf{n})_{Sal}$$