IN THE SPECIFICATION

Paragraph bridging pages 2 and 3 (amended):

The achievement of this object envisages using, for a pressure-sensitive adhesive article of the type outlined in the introduction, a pressure-sensitive adhesive which comprises at least one polyacrylate block copolymer that has a succession of **hard soft** polymer blocks [P(A)] having a glass transition temperature of not more than 10 °C and of **soft** <u>hard</u> polymer blocks [P(B)] having a glass transition temperature of not less than 10 °C. Further embodiments of the pressure-sensitive adhesive article of the invention are characterized in the dependent claims.

Paragraph beginning on page 3, line 13 (amended):

Surprisingly and unforeseeably for the skilled worker it has been found that the pressure-sensitive adhesive used in accordance with the invention can be applied in a full-area process in which it generates a microstructuring itself as a result of self-organization. In this organizational structure the "hard" domains, which are formed by the polymer blocks having a **low**- **high** softening or glass transition temperature (T_G) , give rise to the formation of very small regions which are adhesion-free or virtually so, and the "soft" domains, formed by the polymer blocks having a **higher** <u>lower</u> softening or glass transition temperature (T_G) , give rise to the formation of very small adhesive regions. As a result of this microstructuring the requirements for the relatively low bond strength and the associated complete redetachability needed for sticky notes are met.

Paragraph beginning on page 3, line 31 (amended):

The block copolymers used in accordance with the invention are characterized by a succession of "hard" "soft" polymer blocks [P(A) or P(A/C)] having a low softening/ glass transition temperature and of "soft" "hard" polymer blocks [P(B) or P(B/D)] having a high glass transition/ softening temperature, the block copolymers advantageously comprising at least one triblock copolymer structure [P(A)-P(B)-P(A))

and/or P(B)-P(A)-P(B), in each of which P(A) can be substituted by P(A/C) and/or P(B) by P(B/D)]. P(A/C) and P(B/D) denote polymer blocks constructed as a copolymer of A and C or of B and D, respectively. Some advantageous embodiments are set out below by way of example.