STA260 Tutorial 2 Question 3

Question 3

Let X and Y be two independent exponential random variables with mean 1. Show that $\frac{X}{Y}$ has an F distribution and find its degrees of freedom.

Hint: First prove Exp(1) = Gamma(1, 1).

Note: Gamma (
$$d=1,\beta=1$$
) $f(y) = \frac{1}{\Gamma(\alpha)} p^{\alpha} y^{\alpha-1} e^{-9/\beta}$ Oxyxxx $\Gamma(n) = (n-1)!$ $= \frac{1}{\Gamma(1)(1)^{(1)}} y^{1-1} e^{-9/\beta}$ Oxyxxx $\Gamma(1) = (1-1)! = 0! = 1$ $= e^{-9/\beta} - 0$

which is exponential.

Now, let
$$\times \sim Gamma(1,1) \Rightarrow 2 \times \sim Gamma(1,2)$$

note: if $\times \sim Gamma(\alpha,\beta) = Gamma(\alpha,\alpha)$
then $C \in \mathbb{R}$, $C \times \sim Gamma(\alpha,C\beta) = \chi^2_{(2)}$
and $\chi^2_{(n)} = Gamma(\alpha,\alpha)$
Hence, $2 \times \sim \chi^2_{(2)} \Rightarrow \times \sim \chi^2_{(2)}/2$
similarly, $\chi \sim \chi^2_{(2)}/2$

Thus since X & Y are indep:

$$\frac{X}{Y} = \frac{\chi^{2}_{(2)}/2}{\chi^{2}_{(2)}/2} \sim F(2,2) \left(\frac{\text{Recall:}}{F(n,m)} \sim \frac{\chi^{2}_{(n)}/n}{\chi^{2}_{(m)}/m} \right)$$