Física II Termodinámica

Primera ley de la termodinámica

Energía interna y Capacidades caloríficas de un gas ideal.

Procesos isotérmicos, adiabáticos, isocóricos, isobáricos, cíclicos, expansión libre.

Retroalimentación: Funciones de estado y funciones de proceso

Trabajo

 $dU = \delta Q - \delta W$

 Depende de la trayectoria → No es una función de las coordenadas del sistema Funciones de proceso

Calor

Un diferencial inexacto es una <u>forma diferencial</u> que no se puede expresar como el diferencial de una función

 Depende de la trayectoria → No es una función de las coordenadas del sistema

Energía interna

Función de estado

 No depende de la trayectoria → Es una función de las coordenadas del sistema

El calor es positivo cuando *entra* al sistema, y es negativo cuando *sale* del sistema.

El trabajo es positivo cuando es efectuado *por* el sistema, y negativo cuando se efectúa *sobre* el sistema.

$$\Delta U = Q - W$$

Pregunta de análisis 1:

En las últimas tres columnas de la siguiente tabla, llene los recuadros con los signos correctos (+, - \acute{o} 0) para $Q, W y \Delta U$. Para cada situación se identifica el sistema a considerar.

Situación	Sistema	Q	W	ΔU
Bombear rápidamente una llanta de bicicleta	Aire en la bomba	0	ı	+
Sartén con agua a temperatura ambiente en una estufa caliente	Agua en la sartén	+	0	+
Aire que sale rápidamente de un globo	Aire originalmente en el globo	0	+	_

Pregunta de análisis 2:

$$\Delta U = Q - W$$

Una persona agita durante algunos minutos una botella aislada y sellada que contiene café caliente.

- (i) ¿Cuál es el cambio en la temperatura del café?
- (a) Una gran reducción
- (b) Una ligera reducción

$$\Delta U = +W$$

- (c) No hay cambio
- (e) Un gran aumento
- (d) Un ligero aumento → porque se está agregando energía cinética a las moléculas
- (ii) ¿Cuál es el cambio en la energía interna del café?
- (d) Un ligero aumento
 - → El trabajo es realizado sobre el sistema

Pregunta de análisis 3:

El diagrama p-V muestra cuatro trayectorias a lo largo de los cuales se puede llevar un gas del estado i al estado f. Clasifique de mayor a menor las trayectorias de acuerdo con:

(a) El cambio ΔU en la energía interna del gas

Todas las trayectorias tienen el mismo ΔU porque éste depende de i y f, no de la trayectoria

(b) El trabajo W realizado por el gas

Todas las trayectorias indican trabajo positivo

De mayor a menor área bajo cada trayectoria (mayor a menor W):

$$4 - 3 - 2 - 1$$

(c) La magnitud de la energía transferida como calor Q entre el gas y su entorno,

$$\Delta U = Q - W$$

$$\rightarrow$$
 Q = Δ U + W

Como ΔU es el mismo y W es positivo desde 4 siendo el mayor hasta 1:

$$4 - 3 - 2 - 1$$

Ejemplo 6:

En un recipiente se confina 1.00 kg de agua líquida a 100 °C que luego se convierte en vapor después de haber sido hervida a presión atmosférica estándar (1.00 atm). El volumen del agua cambia de un valor inicial $1.00 \times 10^{-3} \, \mathrm{m}^3$ en fase líquida a un valor final 1.67 m^3 en fase gaseosa.

a) ¿Cuánto trabajo es realizado por el sistema durante este proceso?

¿El trabajo es positivo, negativo o cero? Es positivo por que el volumen aumenta ¿Cómo es la presión durante el proceso? Es constante con un valor de 1.01×10^5 Pa

$$W = \int_{V_i}^{V_f} p \, dV = p \int_{V_i}^{V_f} dV = p(V_f - V_i)$$
$$= (1.01 \times 10^5 \,\text{Pa})(1.671 \,\text{m}^3 - 1.00 \times 10^{-3} \,\text{m}^3)$$
$$= 1.69 \times 10^5 \,\text{J} = 169 \,\text{kJ}.$$

b) ¿Cuánta energía es transferida como calor durante este proceso?

¿Habrá un cambio de temperatura?

El cambio de fase se da a temperatura constante

$$Q = L_V m = (2256 \text{ kJ/kg})(1.00 \text{ kg}) = 2256 \text{ kJ}$$
 = 2.26 MJ

c) ¿Cómo es el cambio de la energía interna durante este proceso?

$$\Delta U = Q - W$$
 $\Delta U = 2260 \text{ kJ} - 169 \text{ kJ}$
 $\Delta U = 2091 \text{ kJ} = 2.09 \text{ MJ}$

La energía interna del sistema se ha aumentado durante el proceso ⁶

¿Cambia la *temperatura* durante una expansión libre?

19.17 La membrana se rompe (o se retira) para iniciar la expansión libre del gas hacia la región al vacío.

$$Q = 0$$
 $W = 0$

$$\Delta U = 0$$
 U es constante

Muchos experimentos han demostrado que, cuando un gas de baja densidad sufre una expansión libre, su temperatura *no* cambia.

Tal gas es en esencia un gas ideal.

La conclusión es la siguiente:

La energía interna de un gas ideal depende solo de su temperatura, no de su presión ni de su volumen.

¿Por qué son diferentes estas dos capacidades caloríficas molares?

$$Trabajo$$
 $W = 0$
 $Energía\ interna$
 $\Delta U = Q$

b) Presión constante: $dQ = nC_p dT$

$$Trabajo$$
 $W > 0$
 $Energía\ interna$
 $\Delta U + W = Q$

$$dU = dQ - dW$$

$$dQ = dU + dW$$

$$dW = pdV$$

$$pdV = nRdT$$

$$dW = nRdT$$

$$dQ = nC_p dT$$

$$dU = nC_V dT$$

$$nC_p dT = nC_V dT + nRdT$$

$$C_p = C_V + R$$

$$C_p = C_V + R$$
 (capacidades caloríficas molares del gas ideal)

Tabla 19.1 Capacidades caloríficas molares de gases a baja presión

		C_V	C_p	$C_p - C_V$		
Tipo de gas	Gas	(J/mol⋅K)	(J/mol·K)	(J/mol • K)	$\gamma = C_p/C_V$	
Monoatómico	Не	12.47	20.78	8.31	1.67	
	Ar	12.47	20.78	8.31	1.67	
Diatómico	H_2	20.42	28.74	8.32	1.41	
	N_2	20.76	29.07	8.31	1.40	
	O_2	20.85	29.17	8.31	1.40	
	CO	20.85	29.16	8.31	1.40	
Poliatómico	CO_2	28.46	36.94	8.48	1.30	
	SO_2	31.39	40.37	8.98	1.29	
	H_2S	25.95	34.60	8.65	1.33	

$$C_p = C_V + R$$

 $C_p = C_V + R$ (capacidades caloríficas molares del gas ideal)

$$\gamma = \frac{C_p}{C_V}$$

 $\gamma = \frac{C_p}{C_{cc}}$ (razón de capacidades caloríficas)

Gas monoatómico

$C_V = \frac{3}{2}R$

$$C_p = C_V + R = \frac{3}{2}R + R = \frac{5}{2}R$$

$$\gamma = \frac{C_p}{C_V} = \frac{\frac{5}{2}R}{\frac{3}{2}R} = \frac{5}{3} = 1.67$$

$$\gamma = \frac{C_p}{C_V} = \frac{\frac{7}{2}R}{\frac{5}{2}R} = \frac{7}{5} = 1.40$$

Gas diatómico

$$C_V = \frac{5}{2}R$$

$$C_p = C_V + R = \frac{7}{2}R$$

$$\gamma = \frac{C_p}{C_V} = \frac{\frac{7}{2}R}{\frac{5}{2}R} = \frac{7}{5} = 1.40$$

Ejemplo 7

Una burbuja de 5.00 moles de helio se sumerge a cierta profundidad en agua líquida cuando el agua (y por lo tanto el helio) sufre un aumento de temperatura $\Delta T = 20.0 \, \text{C}^{\circ}$ a presión constante. Como resultado, la burbuja se expande. el helio es monoatómico e ideal.

(a) ¿Cuánta energía se agrega al helio como calor durante el aumento de temperatura y la expansión?

$$Q = nC_p \Delta T = n \left(\frac{5}{2}R\right) \Delta T$$

$$= (5 \text{ mol}) \left[\frac{5}{2} \left(8.31 \frac{J}{\text{mol K}}\right)\right] (20 \text{ K})$$

$$= 2077.5 \text{ J}$$

$$Q = 2.08 \text{ kJ}$$

$$C_p = C_V + R = \frac{3}{2}R + R = \frac{5}{2}R$$

(b) ¿Cuál es el cambio en la energía interna del helio durante el aumento de temperatura?

Durante ΔT , el volumen cambia, pero el gas sigue confinado $v \Delta II$ puede ser encontrado mediante:

$$\Delta E_{\text{int}} = nC_V \Delta T = n(\frac{3}{2}R) \Delta T$$
= (5 mol) $\left[\frac{3}{2} \left(8.31 \frac{J}{\text{mol K}}\right)\right]$ (20 K)
= 1246.5 $\left[\frac{3}{2} \left(8.31 \frac{J}{\text{mol K}}\right)\right]$

(c) ¿Cuánto trabajo W realiza el helio a medida que se expande durante el aumento de temperatura?

$$W = Q - \Delta U$$

 $W = (2077.5 - 1246.5) \text{ J}$

$$W = Q - \Delta U$$

 $W = (2077.5 - 1246.5) \text{ J}$
 $W = 831 \text{ J}$
 $W = p\Delta V = nR\Delta T$ $W = 831 \text{ J}$
 $W = 831 \text{ J}$
 $W = 831 \text{ J}$
 $W = 831 \text{ J}$

Ejemplo 8

$$Q = nC_p \Delta T \qquad C_V = \frac{5}{2}R$$

$$C_V = \frac{5}{2}R$$

Se transfieren 1000 J como calor Q a un gas ideal diatómico, lo que permite al gas expandirse a presión constante. Cada molécula de gas gira alrededor de un eje interno pero no oscilan. ¿Cuánto de los 1000 J se destina al aumento de la energía interna del gas? De esa cantidad, ¿cuánta corresponde a energía cinética traslacional y cuanta a energía cinética rotacional de las moléculas? $\Delta E_{\rm int} = nC_V \Delta T$.

$$C_p = C_V + R = \frac{7}{2}R$$

$$Q = 1000 \text{ J}$$

$$\Delta T = \frac{Q}{\frac{7}{2}nR}$$
71% del calor absorbido por el gas se invierte en aumentar ΔU

se invierte en expandirse → W

$$= n \frac{\sqrt{5}}{2} R \left(\frac{Q}{\frac{7}{2} n R} \right) = \frac{5}{7} Q$$

= 714.3 J. $\Delta U = 714.3 \text{ J}$

= 0.71428Q

 $\Delta K_{\rm trans} = 428.6 \, \mathrm{J}$

$$\Delta K_{\rm rot} = 285.7 \, \text{J}.$$

Traslación + rotación

Grados de libertad: 3 + 2

$$C_V = \frac{3}{2}R$$

$$= n_{\overline{2}}^3 R \Delta T.$$

$$= n \frac{3}{2} R \left(\frac{Q}{n \frac{7}{2} R} \right) = \frac{3}{7} Q$$

= 428.6 J.

$$(714.3 - 428.6) J = 285.7 J_4$$

Ejemplo 9

- Considere el ciclo cerrado $1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1$, que es un proceso *cíclico* donde los estados inicial y final son iguales. Calcule el trabajo total efectuado por el sistema en este proceso y demuestre que es igual al área encerrada por dicho ciclo.
- b) ¿Qué relación hay entre el trabajo efectuado por el proceso del inciso a) y el que se realiza si se recorre el ciclo en el sentido opuesto, $1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 1$?

Procesos cíclicos y sistema aislado

Un proceso que tarde o temprano hace volver un sistema a su estado inicial.

¿Como es el cambio total de energía interna?

 $\Delta U = O - W = 0$

$$U_2 = U_1 \qquad \Rightarrow \Delta U = 0$$

$$\Rightarrow Q - W = 0$$

$$\Rightarrow Q = W$$

Si el sistema realiza una cantidad neta de trabajo W durante un proceso cíclico, deberá haber entrado en el sistema una cantidad igual de energía como calor Q.

Si el sistema es aislado

$$Q = W = 0$$

$$\rightarrow \Delta U = 0$$

La energía interna de un sistema aislado es constante.

Procesos cíclicos

En un ciclo horario el trabajo es positivo

En un ciclo antihorario el trabajo es negativo

Procesos termodinámicos.

ADIABÁTICO

Sin transferencia de calor: Q = 0

$$U_2 - U_1 = \Delta U = -W$$

ISOCÓRICO

A volumen constante: $\Delta V = 0 \rightarrow W = 0$

$$U_2 - U_1 = \Delta U = Q$$

ISOBÁRICO

A presión constante

ISOTÉRMICO

A temperatura constante

Procesos adiabáticos para el dU = -dW $nC_V dT = -p dV$ p = nRT/Vgas ideal

Expansión adiabática:

W positivo

ΔU negativo

T disminuye

Compresión adiabática

W negativo

ΔU positivo

T aumenta

$$dU = -dW$$

$$nC_V dT = -p dV$$

$$p = nRT/V.$$

$$nC_V dT = -\frac{nRTdV}{V} \qquad \frac{dT}{T} + \frac{R}{C_V} \frac{dV}{V} = 0 \qquad C_p = C_V + R$$

$$\frac{dT}{T} + \frac{R}{C_V} \frac{dV}{V} = 0$$

$$C_p = C_V + R$$

$$\frac{dT}{T} + \frac{C_p - C_V}{C_V} \frac{dV}{V} = 0$$

$$\frac{dT}{T} + \frac{C_p - C_V}{C_W} \frac{dV}{V} = 0 \qquad \frac{dT}{T} + (\gamma - 1) \frac{dV}{V} = 0$$

$$\ln T + (\gamma - 1) \ln V = \text{constante}$$

$$e^{\ln T + (\gamma - 1) \ln V} = e^{constante}$$

$$TV^{\gamma-1} = constante$$

$$T = pV/nR$$

$$\frac{pV}{nR}V^{\gamma-1} = \text{constante}$$

$$pV^{\gamma} = \text{constante}$$

$$W = nC_V(T_1 - T_2)$$

 $W = nC_V(T_1 - T_2)$ (proceso adiabático, gas ideal)

$$W = \frac{C_V}{R}(p_1V_1 - p_2V_2) = \frac{1}{\gamma - 1}(p_1V_1 - p_2V_2)$$
 (proceso adiabático, gas ideal)

TABLA APLICACIONES DE LA PRIMERA LEY

Proceso	Restricción	Primera ley	Otros resultados
Todos	Ninguna	$\Delta U = Q - W$	$\Delta U = nC_{\mathbf{V}} \Delta T, W = \int p dV$
Adiabático	Q = 0	$\Delta U = -W$	$\overline{W} = \overline{(p_{\rm f} V_{\rm f} - p_{\rm i} V_{\rm i})/(1 - \gamma)}$
A volumen constante	W = 0	$\Delta U = Q$	$Q = nC_{V} \Delta T$
A presión constante	$\Delta p = 0$	$\Delta U = Q - W$	$W = p\Delta V, Q = nC_p \Delta T$
Isotérmico	$\Delta U = 0$	Q = W	$W = nRT \ln(V_{\rm f}/V_{\rm i})$
Cíclico	$\overline{\Delta U} = 0$	Q = W	
Expansión libre	$\overline{Q} = W = 0$	$\Delta U = 0$	$\Delta T = 0$

[†] Las expresiones subrayadas se aplican únicamente a los gases ideales; todas las demás se aplican en general.

Ejemplo 10:

a) ¿Cuál es el trabajo para el proceso 2?

Área bajo la trayectoria 2

Triangulo
$$\frac{1}{2} (4 V_i) (p_i/2) = p_i V_{i,j}$$

 $W_2 = 4 p_i V_i + p_i V_i = 5 p_i V_{i,j}$

$$Q_2 = W_2 + U_b - U_a = 5 p_i V_i + 6 p_i V_i = 11 p_i V_i$$

Una muestra de gas experimenta un cambio de estado desde uno inicial a hasta otro final b, por medio de 3 trayectorias (procesos). $V_b = 5.00V_i$

El calor transferido en el proceso 1 es $10p_iV_i$

En términos de p_iV_i , a) ¿Cuál es el calor transferido en el proceso 2? b) ¿Cuál es el cambio de energía interna en el proceso 3?

¿Cómo es el cambio de energía interna para los 3 procesos? ¿Cuál es el trabajo para el proceso 1? Área bajo la trayectoria 1

$$W_1 = (V_b - V_i)(p_i)$$
$$W_1 = 4V_i p_i$$

$$\Delta U = U_b - U_a$$

$$\Delta U = Q_1 - W_1$$

$$\Delta U = 10p_iV_i - 4V_ip_i$$

$$\Delta U = 6V_ip_i$$

b) ¿Cuál es el cambio de energía interna en el proceso 3?

$$\Delta U = 6V_i p_i$$

GRACIAS