Τεχνικές Βελτιστοποίησης – Εργασία 2ⁿ Θωμάς Κυριάκος Πραβινός

AEM: 9937

Χειμερινό Εξάμηνο, 2023-24

Θέμα 1

Το πρώτο κομμάτι της εργασίας αποτελείται από την απεικόνιση της δοθείσας συνάρτησης:

$$f(x,y) = x^3 e^{-x^2 - y^4}$$

Η υλοποίηση πραγματοποιήθηκε στο περιβάλλον του Matlab και τα υπόλοιπα θέματα της εργασίας εκτελούνται από τα αρχεία issue2.m, issue4.m για το καθένα αντίστοιχα.

Θέμα 2

Στο δεύτερο θέμα ζητείται η υλοποίηση ενός αλγορίθμου για την Μέθοδο Μέγιστης Καθόδου με στόχο την ελαχιστοποίηση της συνάρτησης. Το βήμα γ θα είναι για κάθε φορά σταθερό γ = 1 και θα ελαχιστοποιεί την συνάρτηση $f(x_k + y_k d_k)$.

Εφαρμόστηκε στο σύνολο αρχικών τιμών ο αλγόριθμος και το βέλτιστο αποτέλεσμα παρατηρήθηκε στο σημείο (-1,-1). Μόλις μετά από λίγες επαναλήψεις του αλγόριθμου, εντοπίσθηκε το αναμενόμενο σημείο της γραφικής παράστασης.

z Iteration Steps Optimal Solution

Παρατηρείται εντέλει ότι η σύγκλιση του σημείου με γ_k καθορισμένο από τον κανόνα Armijo θα είναι βέλτιστη.

Θέμα 3

Το ζητούμενο στο τρίτο θέμα είναι η ελαχιστοποίηση της συνάρτησης με την Μέθοδο Newton. Για την διερεύνηση θα χρησιμοποιηθούν τα ίδια αρχικά σημεία (x_0, y_0) .

Παρατηρείται εν τέλει ότι για την συνάρτηση αυτή ο Εσσιανός πίνακας δεν θα είναι θετικά ορισμένος, επομένως ο αλγόριθμος δεν θα μας δώσει κάποιο έγκυρο αποτέλεσμα, παρά το γεγονός ότι ο αλγόριθμος θα υλοποιηθεί.

Θέμα 4

Στο τέταρτο θέμα ζητείται η ελαχιστοποίηση της συνάρτησης με την Μέθοδο Levenberg-Marquardt. Για την διερεύνηση θα χρησιμοποιηθούν τα ίδια αρχικά σημεία (x_0, y_0) .

 $f(x,y) = x^3 * e^{-x^2-y^4}$ with steps for the Levenberg-Maquardt Method for Optimal Gamma Value for (1,1)

f(x,y) Iteration Steps Optimal Solution

 $f(x,y) = x^3*e^{-x^2-y^4} \text{ with steps for the Levenberg-Maquardt Method with Gamma Value through the Armijo Rule for (-1,-1)}$

Συμπεράσματα

Μέθοδος Μεγίστης Καθόδου

Φάνηκε από τις δοκιμές ότι για τιμές του $\gamma_k = 1$ θα έχουμε τις ελάχιστες επαναλήψεις για στεθερό γ_k . Από την άλλη, χρησιμοποιώντας το βέλτιστο γ_k ή τον κανόνα Armijo θα έχουμε λιγότερες επαναλήψεις του αλγόριθμου.

Μέθοδος Newton

Δεν υπάρχουν αξιοσημείωτα αποτελέσματα.

Μέθοδος Levenberg-Marquardt

Πάλι παρατηρούνται ελάχιστες επαναλήψεις του αλγόριθμου με την χρήση βέλτιστου γ και της μεθόδου Armijo, σε σχέση με σταθερές τιμές του γ_k . Για τις σταθερές τιμές του γ_k παρατηρήθηκε ότι είχαμε ελάχιστες επαναλήψεις του αλγόριθμου για γ_k = 0.5 και για περεταίρω τιμές χάνεται η ακρίβεια στην εύρεση του σωστού σημείου.