Quiz 01

Name:

Time: Complete and submit to the instructor

Evaluation:

• As described in the syllabus, the Quiz is 20% of the overall grade.

Exercise1: select the correct answer.

- Let define the universe be $U = \{1, 2, 3, ..., 10\}$, determine the element of the set \overline{U}
 - 1. $\overline{U} = U U = \{1, 2, 3, ..., 10\}.$
 - 2. $\overline{U} = \emptyset$
 - 3. $\overline{U} = \{1, 10\}$
- **♦** Let A = {1, 4, 7, 10}, B = {1, 2, 3, 4, 5}, C = {2, 4, 6, 8} and $U = {1, 2, 3, ..., 10}$, determine $\overline{B} \cap (C A)$
 - 1. {6, 8}
 - 2. {2, 6, 8}
 - $3. \{6, 7, 8, 9, 10\}$
- Let $A = \{1, 3, 6, 9, 10\}$, determine $A \cup \emptyset$
 - 1. Ø
 - 2. $\{\emptyset, 1, 10\}$
 - 3. A

- Let define A = $\{x \mid x^2 4x + 4 = 1\}$ and B = $\{1, 3, 5\}$, determine the correct answer
 - 1. A is not a subset of B
 - 2. $\Delta < 0$: There is not solution in the set A.
 - 3. A is a subset of B
- Let consider the Cartesian product $X \times Y = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$ Determine the domain X and the codomain Y.
 - 1. $X = \{1, 2\}$ and $Y = \{a, b, c\}$
 - 2. $X = \{1\}$ and $Y = \{a, c\}$
 - 3. $X = \{1, 2\}$ and $Y = \{a, b\}$
- - 1. The sets A and B are equal.
 - 2. The sets A and B have the same elements.
 - 3. The sets A and B aren't equal.
- Let consider the set A = $\{1, 3\}$ and B = $\{x \mid 3x^2 + x 2 = 0\}$
 - 1. A is a proper subset of B.
 - 2. A is a subset of B.
 - 3. A is neither a subset nor a proper subset of B.
- - 1. $X = \{[11], [8, 9], [2, 6], [1]\}$
 - 2. $X = \{[9, 11], [8], [2, 6], [4]\}$
 - 3. $X = \{[8, 11], [9], [2, 4, 6], [1]\}$
- Let consider the set $X = \{1\}$ and $Y = \{y | y^2 + y 2 = 0\}$. Determine the answer.
 - 1. X is a subset of Y.
 - 2. X is a proper subset of Y.
 - 3. X and Y aren't equal.

- \bullet Let consider the set A = $\{1, 2, 7\}$ and B = $\{0, 3, 8\}$. Determine the correct answer.
 - 1. $B A = \{3, 8\}$
 - 2. $A B = \{1, 7\}$
 - 3. $B A \neq A B$
- **❖** Let A = {1, 5, 8, 9}, B = {1, 2, 3, 4, 5, 6}, C = {3, 5, 6, 8} and U = {1, 2, 3, ..., 10}, determine B ∩ ($\overline{C \cup A}$)
 - 1. {2, 4}
 - 2. {2, 6, 7}
 - $3. \{2, 7, 10\}$
- Let define A = $\{x | x^2 + x = 2\}$ and B = $\{2, 1\}$, determine the correct answer
 - 1. A is not equal to B
 - 2. $\Delta < 0$: There is not solution in the set A.
 - 3. A is equal to B
- The element in the set $X \times Y = \{(1, a), (1, b), (1, c)\}$. Determine the domain X and the codomain Y.
 - 1. $X = \{1, 2\}$ and $Y = \{a, b, c\}$
 - 2. $X = \{1\}$ and $Y = \{a, c\}$
 - 3. $X = \{1\}$ and $Y = \{a, b, c\}$
- ❖ Determine \(\overline{\phi} \)
 - 1. \overline{U}
 - 2. Ø
 - 3. *U*
- **♦** Let $A = \{1, 3, 6, 9, 10\}$, determine $A \cap \emptyset$
 - 1. Ø
 - 2. $\{\emptyset, 1, 6, 10\}$
 - 3. A

Exercise 2: Let the universe be the set $U = \{1, 2, 3, ..., 10\}$.

Let
$$A = \{1, 2, 3, 4, 7, 10\}$$
, $B = \{1, 2, 3, 4, 5, 6\}$ and $C = \{2, 3, 6, 8\}$.

List the elements of each set

$$A \cap (B \cup C) - \overline{A}$$

$$\bullet \ \overline{B} \cap (C - A) \cap (\overline{A \cap B})$$

$$(A \cap B) - C \cup (B \cap U)$$

$$\bullet$$
 $\overline{A \cup B} \cup (C - A) - \overline{U}$

$$(A \cup B) - (C - B) \cap (A \cup \overline{B})$$

Exercise 3: Using the induction, verify that each equation is true for every positive integer n, $n \ge 1$.

a)
$$1 * 2 + 2 * 3 + 3 * 4 + ... + n (n + 1) = \frac{n (n+1)(n+2)}{3}$$

b) 1(1!) + 2(2!) + ... + n(n!) = (n+1)! - 1

c)
$$1^3 + 2^3 + 3^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Exercise 4: Using the induction, verify the inequality

$$2n + 1 \le 2^n$$
, $n = 3, 4, ...$

Exercise 5: Use the induction to prove the statement

 $6*7^n - 2*3^n$ is divisible by 4, for all $n \ge 1$

Formula

The Sets

Let U be a universal set and let A, B, and C be subsets of U. The following properties hold.

(a) Associative laws:

$$(A \cup B) \cup C = A \cup (B \cup C), \quad (A \cap B) \cap C = A \cap (B \cap C)$$

(b) Commutative laws:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$

(c) Distributive laws:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

(d) Identity laws:

$$A \cup \emptyset = A, \quad A \cap U = A$$

(e) Complement laws:

$$A \cup \overline{A} = U$$
, $A \cap \overline{A} = \emptyset$

(f) Idempotent laws:

$$A \cup A = A$$
, $A \cap A = A$

(g) Bound laws:

$$A \cup U = U$$
, $A \cap \emptyset = \emptyset$

(h) Absorption laws:

$$A \cup (A \cap B) = A$$
, $A \cap (A \cup B) = A$

(i) Involution law:

$$\overline{\overline{A}} = A$$

(j) $0/1 \ laws$:

$$\overline{\varnothing} = U, \quad \overline{U} = \varnothing$$

(k) De Morgan's laws for sets:

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}, \quad \overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

Proof The proofs are left as exercises (Exercises 44–54, Section 2.1) to be done after more discussion of logic and proof techniques.

Quadratic equation

Theorem:

$$For ax^2 + bx + c = 0$$

$$Delta = \Delta = b^2 - 4ac$$

If $\sqrt{\Delta} \ge 0$: we have two solutions.

If $\sqrt{\Delta} < 0$: we don't have any solution.

$$\chi_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 and $\chi_2 = \frac{-b + \sqrt{\Delta}}{2a}$

$$ax^2 + bx + c = a(x - x_1)(x - x_2)$$

Mathematical induction

The Principle of Mathematical Induction consists of two steps:

- ❖ *Basic step*: Prove that S(1) is true.
- * Inductive step : Assuming that S (n) is true for $n \ge 1$, prove that S(n+1) is true

Then, S(n) is true for every positive integer n.