

PH502: Scientific Programming Concepts

Irish Centre for High End Computing (ICHEC)

September 23, 2020

Overview

- In this lecture we will discuss variables, in the programming sense.
- In programming there are certain things over which the programmer has no control.
- One of these is memory access.
- In FORTRAN and C the programmer is responsible for reserving the memory that the program needs.
- However the system controls where (in memory) information is stored.
- The programmer accesses reserved regions of memory through the use of variables.

Variables

- Each location in memory is addressed by a number but in the program we give memory locations a name, called a variable. Each variable has two numbers associated with it, its location or l-value and its value or r-value. Commands within a program set the r-value, the l-value is determined automatically.
- Each variable also has a type. There are four main variable types:
 - 1. integer,
 - 2. real,
 - 3. character.
 - 4. logical.
- Declaring variables means to give it a unique type. This in turn decides how much memory (how many bytes) are reserved to hold it.
- All variables in C must be declared before use.

Decimal and Binary Representations

- As we have stated already computers naturally use a binary numbering system. However for our convenience, in a program, numbers are expressed in base 10.
 - ▶ Decimal representation: base 10, needs numerals 0 9.

$$233 = 2 \times 10^2 + 3 \times 10^1 + 3 \times 10^0$$

▶ Binary representation: base 2, need numerals 0 − 1.

$$(110)_2 = 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (6)_{10}$$

Ex: Convert from 6 to Base 2.

Integers

- Numbers that can be written without a fractional component.
- Typically integers are represented by four bytes, which means that $2^{8\times4}=2^{32}$ numbers can be represented.
- However, 1-bit is needed to determine whether the number is positive or negative, thus the maximum absolute value is $2^{31} \sim 4 \times 10^9$.
- An integer variable can store a value in the range −2147483648 to 2147483647.
- Creating an integer variable which has a value out of this range limit may have unpredictable results.

Floating Point Numbers

Real numbers are stored differently to integers. The sign, mantissa and exponent must all be held in this space. The advantage in this, is that a larger range of numbers can be stored.

- There are two typical types of real number single precision, which is held in 4-bytes, and double precision, held in 8-bytes.
- Single precision has an approximate range of $10^{-44} \rightarrow 10^{+38}$. The range of double precision numbers is $\sim 10^{-323} \rightarrow 10^{+308}$. (Negative numbers can also be represented.)

Characters

- A character variable is <u>1 byte</u>. That makes 2⁸ =256 possible characters.
- In the computer, character variables are stored as numbers.
- There is a conversion table to convert the numerical value to the character called the ASCII (American Standard Code for Information Interchange) table. You can see the table on http://www.asciitable.com.
 - \circ ASCII Encoding: 'A' = 65, 'B' = 66, '.'= 46, ' ' = 32
- A string is a sequence (array) of characters. It is terminated by a special end-of-string character in C.

To store "Give input: " (12 characters), the array size must be 13 or more.

Logical Variables

- Logical variables have only two values TRUE and FALSE.
- A logical variable could be represented in 1 bit but the smallest addressable memory unit is 1 byte.
- As we shall see later logical variables/expressions are useful in directing the flow of the program's execution.