Lesson 3

José M. Corcuera. University of Barcelona.

Theorem (FFTAP)

A financial market is viable (free of arbitrage opportunities) if and only if there exists \mathbb{P}^* equivalent to \mathbb{P} such that the discounted prices of the stocks $((\tilde{S}_n^j)_{0 < n < N}, j = 1, ..., d)$ are \mathbb{P}^* -martingales.

In the previous lesson we gave a proof of the "only if" part based in the asumption that

$$L\cap L^0_+=\{0\}$$

where

$$L = \{X, X = \tilde{V}_N(\phi), (\phi_n^i)_{1 \leq i \leq d, 1 \leq n \leq N} \text{ predictable}, \tilde{V}_N = \sum_{j=1}^N \phi_j \cdot \Delta \tilde{S}_j \}.$$

But the no arbitrage condition is

$$\Lambda \cap L^0_+ = \{0\}, \tag{1}$$

where $\Lambda = \{X, X = \tilde{V}_N(\phi), (\phi_n)_{1 \leq n \leq N} \text{ predictable and admissible: } \tilde{V}_n(\phi) = \sum_{j=1}^n \phi_j \cdot \Delta \tilde{S}_j, \ \tilde{V}_n(\phi) \geq 0 \text{ for all } 1 \leq n \leq N\}.$ We are going to see that

$$\Lambda \cap L_{+}^{0} = \{0\} \Rightarrow L \cap L_{+}^{0} = \{0\}$$

We have the following lemma.

Lemma

The class of admissible trading strategies contains no arbitrage opportunities if and only if the class of self-financing strategies contains no arbitrage opportunities.

Proof.

Assume that $L \cap L^0_+ \neq \{0\}$ then there exists φ predictable $V_0 = 0$ and $\tilde{V}_N(\varphi) \in L^0_+ \setminus \{0\}$. Define

$$n=\inf\{j,\, ilde{V}_{k}(\varphi)\,(\omega)\geq 0\ \ ext{for all}\ k>j\ ext{and}\ \omega\in\Omega\},$$

note that $n \leq N-1$ since $\tilde{V}_N(\varphi) \geq 0$. Let $B = \{\tilde{V}_n(\varphi) < 0\}$, define the predictable vector process such that for all i = 1, ..., d

$$\theta_j^i = \left\{ \begin{array}{ll} 0 & j \le n \\ \mathbf{1}_B \varphi_j^i & j > n \end{array} \right.$$

Proof.

Then, $\tilde{V}_k(\theta) = 0$, for all $0 \le k \le n$ and for all k > n

$$egin{aligned} ilde{V}_k(heta) &= \sum_{j=n+1}^k \mathbf{1}_B arphi_j \cdot \Delta ilde{S}_j = \mathbf{1}_B \left(\sum_{j=1}^k arphi_j \cdot \Delta ilde{S}_j - \sum_{j=1}^n arphi_j \cdot \Delta ilde{S}_j
ight) \ &= \mathbf{1}_B \left(ilde{V}_k(arphi) - ilde{V}_n(arphi)
ight) \geq 0, \end{aligned}$$

so θ is admissible and we have that $\tilde{V}_N(\theta) = \mathbf{1}_B \left(\tilde{V}_N(\varphi) - \tilde{V}_n(\varphi) \right) > 0$ in B. So $\tilde{V}_N(\theta) \in \Lambda \cap L^0_+ \setminus \{0\}$ and consequently $\Lambda \cap L^0_+ \neq \{0\}$ contradicting the no-arbitrage condition (1).

Remark

 \mathbb{P}^* is named martingale measure or risk-neutral probability. Notice that the discounted values of self-financing portfolios are \mathbb{P}^* -martingales.

Complete markets and derivative pricing

We define a European option, derivative or contingent claim as a contract with maturity N and with a payoff $h \geq 0$, where h is \mathcal{F}_N -measurable. For instance a Call is a European option with payoff $h = (S_N^1 - K)_+$, for a Put $h = (K - S_N^1)_+$, and an Asian option is a European one! with $h = \left(\frac{1}{N}\sum_{j=0}^N S_j^1 - K\right)_+$

Put-Call parity condition

Since

$$(S_N - K)_+ - (K - S_N)_+ = S_N - K$$

the value of a portfolio, at any time n, with a long position in a Call (that we buy, say, by C_n) and a short position in a Put (that we sell by, say, P_n) with the same strike, has to be the same as the price to buy the stock S_n and lend $\frac{K}{(1+r)^{N-n}}$ units of money. That is

$$C_n - P_n = S_n - \frac{K}{(1+r)^{N-n}}.$$

Definition

A derivative defined by h is said to be replicable if there exists an admissible strategy ϕ such that replicates h that is $V_N(\phi) = h$.

Proposition

If ϕ is a self-financing strategy that replicates h and the market is viable then it is admissible.

Proof.

 $ilde{V}_{ extsf{N}}(\phi) = ilde{h}$ and since there exists \mathbb{P}^* such that

 $\mathbb{E}_{\mathbb{P}^*}(\widetilde{V}_N(\phi)|\mathcal{F}_n)=\widetilde{V}_n(\phi)$, we have $\widetilde{V}_n(\phi)\geq 0$.

Definition

A market is said to be complete if any derivative is replicable.