

VL4Pose: Active Learning Through Out-Of-Distribution Detection For Pose Estimation

Megh Shukla

Roshan Roy * Pankaj Singh * Shuaib Ahmed Alexandre Alahi

Researcher: Out-Of-Distribution For Pose Estimation?

Engineer: How can we improve pose estimation in production?

Introduction

Active Learning

On-Device Active Learning

Compute Hardware X Real-Time Data

Compute Hardware 🗸 Real-Time Data

VL4Pose / INTRODUCTION

Razvan Caramalau¹, Binod Bhattarai¹, and Tae-Kyun Kim^{1,2} Imperial College London, UK ²KAIST, South Korea

Non Real Time

Sener and Savarese. Active Learning for Convolutional Neural Networks, ICLR 2018

Caramalau, Bhattarai, and Kim. Sequential graph convolutional network for active learning, CVPR 2021.

Gong, Jia, et al. Meta agent teaming active learning for pose estimation. CVPR 2022.

Shukla. Bayesian Uncertainty and Expected Gradient Length – Regression: Two Sides of the Same Coin?, WACV 2022

Caramalau, Bhattarai, and Kim. Active learning for bayesian 3d hand pose estimation, WACV 2021

Real Time

Liu and Ferrari. Active learning for human pose estimation. CVPR 2017

Shukla and Ahmed. A mathematical analysis of learning loss for active learning in regression. CVPR Workshops 2021
Yoo and Kweon. Learning loss for active learning. CVPR 2019.

$$\operatorname{Var}(\mathbf{y}) \approx \frac{1}{T} \sum_{t=1}^{T} \hat{\mathbf{y}}_{t}^{2} - \left(\frac{1}{T} \sum_{t=1}^{T} \hat{\mathbf{y}}_{t}\right)^{2} + \frac{1}{T} \sum_{t=1}^{T} \hat{\sigma}_{t}^{2}$$

Kendall and Gal. What uncertainties do we need in bayesian deep learning for computer vision?. NeurIPS 2017

Methodology

VL4Pose: A First Principles Approach to Active Learning for Pose Estimation

VL4Pose: Intuition

Out-of-Distribution detection = Maximize likelihood of training distribution

VL4Pose: Likelihood

- Distribution over joints (Y_i) $q_{BN}(y_1, y_2 ... y_N | x, \theta)$
- Applying Chain Rule $q(y_1|y_2...y_N,x,\theta)q(y_2|y_3...y_N,x,\theta)...q(y_N|x,\theta)$
- Markov Blanket

$$q_{BN}(y_1, y_2 \dots y_N | x, \theta) = \left[\prod_{i=1}^{N-1} q(y_i | y_{i+1}, x, \theta) \right] q(y_N | x, \theta)$$

VL4Pose: *Expected* Likelihood

- But wait ... what if Y is a random variable given X?
 - For instance in human pose ... $p_{pose}(Y) = p_{pose}(y_1, y_2 ... y_N) = \prod_{i=1}^{N} p(y_i)$
- We get Expected Log-Likelihood!

$$\mathbb{E}_{Y}\left[\log q_{BN}(y_1, y_2 \dots y_N | x, \theta)\right]$$

A bit of solving gives us:

$$\sum_{Y} \left[p_{pose}(y_N) \log q_{BN}(y_N | x, \theta) + \sum_{i}^{N-1} p_{pose}(y_i) \log q_{BN}(y_i | y_{i+1}, X, \theta) \right]$$
Joint uncertainty Pose uncertainty

VL4Pose: Expected Likelihood

Megh Shukla

Caramalau, Bhattarai, and Kim. Active learning for Bayesian 3d hand pose estimation, WACV 2021

$$q_{BN}(y_i|y_{i+1},x,\theta) = \mathcal{N}\left(y_i - [y_{i+1} + \hat{o}_i], \Sigma_i\right)$$

 $p(y_i) = \{1 \text{ at ground truth location, 0 otherwise}\}$

Newell, Yang, and Deng. Stacked hourglass networks for human pose estimation. ECCV 2016

$$h \in \mathbb{R}^{\text{joints} \times 64 \times 64}$$

$$\begin{split} q(y_i|y_{i+1},x,\boldsymbol{\theta}) &= \mathcal{N}(\text{dist}(y_i,y_{i+1}) - \hat{d_i}\,,\, \boldsymbol{\sigma_i}) \\ \hat{p}(y_i) &= \text{softmax}\left(\text{local_maxima}\left(h_i\right)\right) \end{split}$$

VL4Pose: Pose Refinement (Heatmaps)

$$\sum_{Y} \left[p_{pose}(y_{N}) \log q_{BN}(y_{N}|x,\theta) + \sum_{i}^{N-1} p_{pose}(y_{i}) \log q_{BN}(y_{i}|y_{i+1},X,\theta) \right]$$

Interplay between *p* and *q*!

Results

Qualitative and Quantitative Analysis

EPFL

Qualitative Results

VL4Pose / RESULTS

Quantitative Results

Pose Refinement

Server

Conclusion

How far can simple domain knowledge take us?

- 1. Lightweight and real-time
- Unifies joint and pose uncertainty
- 3. Tackles three problem statements
 - Out-Of-Distribution
 - **Active Learning**
 - Pose refinement

