

Convolutional Neural Network

Dr. Trần Vũ Hoàng

Smaller Network: CNN

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Consider learning an image:

• Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Consider learning an image:

Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
_)				
0	1	0	0	1	0

Dot product 3

-1

6 x 6 image

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
)		1)
0	1	0	0	1	0

3 -3

6 x 6 image

1-1-1-11-1-1-11

Filter 1

stride=1

6 x 6 image

-3 (-3 (0) (1

3 -2 -2 -1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully Connected

Fullyconnected

6 x 6 image

fewer parameters!

The whole CNN

cat dog

Fully Connected Feedforward network

Flattened

Max Pooling

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

Why Pooling?

• Subsampling pixels will not change the object

We can subsample the pixels to make image smaller

fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

Max Pooling

is a channel

The whole CNN

Convolution

Max Pooling

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

The whole CNN

cat dog

Flattening

3

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

AlphaGo

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better

AlphaGo's policy network

The following is quotation from their Nature article:

Note: AlphaGo does not use Max Pooling.

Neural network architecture. The input to the policy network is a $\underline{19 \times 19 \times 48}$ <u>image</u> stack consisting of 48 feature planes. The first hidden layer <u>zero pads the</u> input into a 23 \times 23 image, then convolves <u>k</u> filters of kernel size 5 \times 5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

CNN in speech recognition

CNN in text classification

Convolutional Neural Networks: 1998. Input 32*32. CPU

LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and ultimately a classifier for handwritten digits. [LeNet]

Convolutional Neural Networks: 2012. Input 224*224*3. GPU.

AlexNet: a layered model composed of convolution, subsampling, and further operations followed by a holistic representation and all-in-all a landmark classifier on ILSVRC12. [AlexNet]

- + data
- + gpu
- + non-saturating nonlinearity
- + regularization

VGGNet

- 16 layers
- Only 3*3 convolutions
- 138 million parameters

VGG16

ResNet

- 152 layers
- ResNet50

The popular CNN

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- LeNet, 1998
- AlexNet, 2012
- VGGNet, 2014
- ResNet, 2015

Computational complexity

- The memory bottleneck
- GPU, a few GB

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

CNN applications

- Transfer learning
- Fine-tuning the CNN
 - Keep some early layers
 - Early layers contain more generic features, edges, color blobs
 - Common to many visual tasks
 - Fine-tune the later layers
 - More specific to the details of the class
- CNN as feature extractor
 - Remove the last fully connected layer
 - A kind of descriptor or CNN codes for the image
 - AlexNet gives a 4096 Dim descriptor

CNN classification/recognition nets

- CNN layers and fully-connected classification layers
- From ResNet to DenseNet
 - Densely connected
 - Feature concatenation

Fully convolutional nets: semantic segmentation

- Classification/recognition nets produce 'non-spatial' outputs
 - the last fully connected layer has the fixed dimension of classes, throws away spatial coordinates
- Fully convolutional nets output maps as well

Semantic segmentation

This image is CC0 public domain

Using sliding windows for semantic segmentation

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Fully convolutional

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Fully convolutional

Downsampling: Pooling, strided convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Input: 3xHxW

High-res: D₁ x H/2 x W/2

Upsampling: Unpooling or strided

transpose convolution

Predictions: HxW

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Detection and segmentation nets: The Mask Region-based CNN (R-CNN):

- Class-independent region (bounding box) proposals
 - From selective search to region proposal net with objectness
- Use CNN to class each region
- Regression on the bounding box or contour segmentation

Using sliding windows for object detection as classification

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

Detection and segmentation nets: The Mask Region-based CNN (R-CNN):

- Class-independent region (bounding box) proposals
 - From selective search to region proposal net with objectness
- Use CNN to class each region
- Regression on the bounding box or contour segmentation

Detection and segmentation nets: The Mask Region-based CNN (R-CNN):

- Mask R-CNN: end-to-end
 - Use CNN to make proposals on object/non-object in parallel

Excellent results

He et al, "Mask R-CNN", arXiv 2017 Figures copyright Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick, 2017. Reproduced with permission.

Bài tập 11

Trong dữ liệu ex7data.mat chưa dữ liệu lưu dưới dạng dict gồm:

X: 5000x400 là 5000 ảnh nhị phân chữ số viết tay có kích thước 20x20

y: 5000x1 là nhãn của các ảnh tương ứng

Các bạn làm các công việc sau:

- Reshape X về kích thước 5000x1x20x20 (pytorch) hoặc 5000x20x20x1 (keras)
- Chia dữ liệu thành 70% train, 30% test (train_test_split) đảm bảo tính ngẫu nhiên và đồng đều về nhãn.
- Chia dữ liệu train thành 90% train, 10% val (train_test_split) đảm bảo tính ngẫu nhiên và đồng đều về nhãn.
- Xây dựng một mạng CNN cho phù hợp với dữ liệu trên để đạt được hiệu suất tốt nhất
- Show đường cong loss trong quá trình học
- Show độ chính xác trên tập test