

	05 = 07 0#
583	P > Regalar -> RE = P* Q* B = P
_	P > Regular - RO - 7 4 D CP On - Content Free
(E)	Always regular
1	- Complement of Regular is Regular.
	(c) (p° = 2*-p)

	$L_1 = \{0^p 1^q p, q \in N\}$				
	$L_2 = \{0^p 1^q p, q \in N \text{ and } p = q\} \text{ and }$				
	$L_3 = \{0^p 1^q 0^r p, q, r \in N \text{ and } p = q = r\}$				
	Which of the following statements is not TRUE? GATE 201				
	(A) Pushdown automata (PDA) can be used to recognize L ₁ and L ₂				
	(B) L _i is a regular language				
	(C) All the three languages are context free				
	(D) Turing machines can be used to recognize all	the languages.			
Q.60	$S \rightarrow aSa bSb a b$				
	The language generated by the above grammar over the alphabets {a, b} is the set of GATE 2009				
	(A) All palindromes				
	(B) All odd length palindromes				
	(C) Strings that begin and end with the same symbol				
	(D) All even length palindromes				
Q.61	Let $L = L_1 \cap L_2$, where L_1 and L_1 are languages defined as follows,				
	$L_1 = \{a^m b^m c a^n b^n m, n \ge 0\}$				
	$L_2 = \{a^i b^j c^k i, j, k \ge 0\}$				
	Then L is		GATE 2009		
	(A) Not recursive	(B) Regular			
	(C) Context free but not regular (D) Recursively enumerable but not context free				
Q.62	The language $L = \{0^i 2^i 1^i i \ge 0\}$ over the alphabet $\{0^i 2^i 1^i i \ge 0\}$	0, 1, 2} is	GATE 2007		
	(A) Not recursive.	(B) Is recursive and is a determinis	tic CFL.		
	(C) Is a regular language. (D) Is not a deterministic CFL but a CFL.				
Q.63	Consider the CFG with {S,A,B} as the non-terminal alphabet, {a,b} as the terminal alphabet, S as the				
	start symbol and the following set of production rules				
	$S \to aB$ $S \to bA$	2004			
	$B \rightarrow b$ $A \rightarrow a$ $B \rightarrow bS$ $A \rightarrow aS$				
	$B \rightarrow bS \qquad A \rightarrow aS$ $B \rightarrow aBB \qquad A \rightarrow bAA$				
	Which of the following strings is generated by the grammar? GATE 2007				
	(A) aaaabb (B) aabbbb (C) aabbab (D) abbbba				
Q.64	Consider the following languages over the alphabet $\Sigma = \{0,1,c\}$:				
	$L_1 = \{0^n 1^n n \ge 0\}$				
	$L_2 = \{wew^r w \in \{0,1\}^*\}$				
	$L_3 = \{ww^r w \in \{0,1\}^*\}$				
	53 - fmm m c foirt }				

 $\textbf{Q.59} \quad \text{Consider the languages} \ L_1, L_2 \, \text{and} \ L_3 \, \text{as given below}.$

Here, w^{τ} is the reverse of the string w. Which of these language are deterministic context-free languages?

(A) None of the languages

(B) Only L₁

(C) Only L_1 and L_2

(D) All the three languages.

Q.65 Let $L_1 = \{0^{n+m}1^n0^m | n, m \ge 0\},$

$$L_{2}=\!\left\{ 0^{n+m}1^{n+m}0^{m}\left|n,m\geq0\right\} \right. , and$$

$$L_3 = \left\{0^{n+m}1^{n+m}0^{n+m} \left| n, m \ge 0 \right.\right\}$$

Which of these languages are NOT context free?

GATE 2006

(A) L₁ only

(B) L₃ only

(C) L₁ and L₂

(D) L_2 and L_3

