强化学习-策略梯度

主讲TA: 陈梓烨

2020.12.18

强化学习方法分类

- 基于值函数
 - ➤ 动态规划算法: p(s'|s,a)和r(s,a,s')已知, 通过优化值函数来找最优策略
 - ✔ 策略迭代: 先根据贝尔曼方程更新值函数, 再改进策略
 - ✓ 值迭代: 直接根据贝尔曼最优方程更新值函数
 - ➤ 蒙特卡罗方法: p(s'|s,a)和r(s,a,s')未知, 需采样多条轨迹来估计Q函数
 - ▶ 时序差分学习方法: 结合前两种
 - ✓ SARSA: 同策略
 - ✓ Q学习(以及DQN): 异策略
- 基于策略函数

强化学习方法分类

- 基于值函数
 - ➤ 动态规划算法: p(s'|s,a)和r(s,a,s')已知, 通过优化值函数来找最优策略
 - ✔ 策略迭代: 先根据贝尔曼方程更新值函数, 再改进策略
 - ✓ 值迭代: 直接根据贝尔曼最优方程更新值函数
 - ▶ 蒙特卡罗方法: p(s'|s,a)和r(s,a,s')未知, 需采样多条轨迹来估计Q函数
 - ▶ 时序差分学习方法: 结合前两种
 - ✓ SARSA: 同策略
 - ✓ Q学习(以及DQN): 异策略
- 基于策略函数: 在策略空间直接搜索来得到最佳策略
 - ▶ 策略梯度
 - ✓ REINFORCE算法
 - ✓ 演员-评论员算法

用参数网络学习策略,输出动作的概率

- □ 连续状态及动作
- □ 随机性策略

策略梯度

强化学习的目标函数:

$$\mathcal{J}(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[G(\tau)] = \mathbb{E}_{\tau \sim p_{\theta}(\tau)}\left[\sum_{t=0}^{T-1} \gamma^{t} r_{t+1}\right]$$

目标函数 $\mathcal{J}(\theta)$ 关于策略参数 θ 的导数为:

$$\begin{split} \frac{\partial \mathcal{J}(\theta)}{\partial \theta} &= \frac{\partial}{\partial \theta} \int p_{\theta}(\tau) G(\tau) d\tau \\ &= \int \left(\frac{\partial}{\partial \theta} p_{\theta}(\tau) \right) G(\tau) d\tau \\ &= \int p_{\theta}(\tau) \left(\frac{1}{p_{\theta}(\tau)} \frac{\partial}{\partial \theta} p_{\theta}(\tau) \right) G(\tau) d\tau \\ &= \int p_{\theta}(\tau) \left(\frac{\partial}{\partial \theta} \log p_{\theta}(\tau) \right) G(\tau) d\tau \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\frac{\partial}{\partial \theta} \log p_{\theta}(\tau) G(\tau) \right], \end{split}$$

策略梯度

 $\frac{\partial}{\partial \theta} \log p_{\theta}(\tau)$ 可以进一步分解为

$$\frac{\partial}{\partial \theta} \log p_{\theta}(\tau) = \frac{\partial}{\partial \theta} \log \left(p(s_0) \prod_{t=0}^{T-1} \pi_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t) \right)$$

$$= \frac{\partial}{\partial \theta} \left(\log p(s_0) + \sum_{t=0}^{T-1} \log \pi_{\theta}(a_t | s_t) + \sum_{t=0}^{T-1} \log p(s_{t+1} | s_t, a_t) \right)$$

$$= \sum_{t=0}^{T-1} \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t | s_t).$$

可以看出, $\frac{\partial}{\partial \theta} \log p_{\theta}(\tau)$ 是和状态转移概率无关, 只和策略函数相关.

策略梯度

因此,策略梯度 $\frac{\partial J(\theta)}{\partial \theta}$ 可写为

$$\begin{split} \frac{\partial \mathcal{J}(\theta)}{\partial \theta} &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T-1} \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) G(\tau) \right] \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\left(\sum_{t=0}^{T-1} \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_{t}|s_{t}) \right) \left(G(\tau_{0:t}) + \gamma^{t} G(\tau_{t:T}) \right) \right] \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=0}^{T-1} \left(\frac{\partial}{\partial \theta} \log \pi_{\theta}(a_{t}|s_{t}) \gamma^{t} G(\tau_{t:T}) \right) \right], \end{split}$$

其中 $G(\tau_{t:T})$ 为从时刻t作为起始时刻收到的总回报

$$G(\tau_{t:T}) = \sum_{t'=t}^{T-1} \gamma^{t'-t} r_{t'+1}.$$

REINFORCE 算法

采用随机游走方法采集多个轨迹:

$$\frac{\partial \mathcal{J}(\theta)}{\partial \theta} = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=0}^{T-1} \left(\frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t | s_t) \gamma^t G(\tau_{t:T}) \right) \right],$$

$$\frac{\partial \mathcal{J}(\theta)}{\partial \theta} \approx \frac{1}{N} \sum_{n=1}^{N} \left(\sum_{t=0}^{T-1} \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_{t}^{(n)} | s_{t}^{(n)}) \gamma^{t} G_{\tau_{t:T}^{(n)}} \right).$$

REINFORCE 算法

算法 14.6 REINFORCE 算法

输入:状态空间 S, 动作空间 A, 可微分的策略函数 $\pi_{\theta}(a|s)$, 折扣率 γ , 学习率 α ;

1 随机初始化参数 θ ;

2 repeat

s until π_θ 收敛;

输出: 策略 π_{θ}

演员-评论员算法

结合**策略梯度**和时序差分学习

- 演员: 指策略函数 $\pi_{\theta}(a|s)$, 学习一个策略来得到尽可能高的回报。
- 评论员:指值函数 $V_{\phi}(s)$,,对当前策略的状态值函数进行估计,即评估演员的好坏。

演员-评论员算法可以进行单步更新参数,不需要等到回合结束才进行更新。

演员-评论员算法

假设从时刻t 开始的回报 $G(\tau_{t+T})$,我们用下面公式近似计算:

$$\hat{G}(\tau_{t:T}) = r_{t+1} + \gamma V_{\phi}(s_{t+1}),$$

在每步更新中,分别进行策略函数 $\pi_{\theta}(s, a)$ 和值函数 $V_{\theta}(s)$ 的学习。

一方面,更新参数 ϕ 使得值函数 $V_{\theta}(s_t)$ 接近于估计的真实回报 $\hat{G}(\tau_{t+T})$,即

$$\min_{\phi} \left(\hat{G}(\tau_{t:T}) - V_{\phi}(s_t) \right)^2,$$

另一方面,将值函数 $V_{\theta}(s_t)$ 作为基线函数来更新参数 θ ,减少策略梯度的方差,即

$$\theta \leftarrow \theta + \alpha \gamma^t \left(\hat{G}(\tau_{t:T}) - V_{\phi}(s_t) \right) \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t | s_t).$$

演员-评论员算法

算法 14.8 演员-评论员算法

输入: 状态空间 \mathcal{S} , 动作空间 \mathcal{A} , 可微分的策略函数 $\pi_{\theta}(a|s)$, 可微分的状态值函数 $V_{\theta}(s)$, 折扣率 γ , 学习率 $\alpha > 0$, $\beta > 0$;

1 随机初始化参数 θ , ϕ ;

输出: 策略 π_{θ}

```
2 repeat
```

```
初始化起始状态 s; \lambda = 1;
           repeat
                 在状态 s, 选择动作 a = \pi_{\theta}(a|s);
                 执行动作a,得到即时奖励r和新状态s';
                 \delta \leftarrow r + \gamma V_{\phi}(s') - V_{\phi}(s);
                \phi \leftarrow \phi + \beta \delta \frac{\partial}{\partial \phi} V_{\phi}(s);
                                                                                              // 更新值函数参数
                 \theta \leftarrow \theta + \alpha \lambda \delta \frac{\partial}{\partial \theta} \log \pi_{\theta}(a|s);
                                                                                           // 更新策略函数参数
                \lambda \leftarrow \gamma \lambda;
 10
                 s \leftarrow s';
11
           until s 为终止状态;
12
13 until θ收敛;
```

强化学习总结

图 14.4 不同强化学习算法之间的关系

期末Project

实现8*8黑白棋的人机对战,要求:

- 横排、竖排、对角线均可翻转。
- 要求使用强化学习方法。
- 评价函数不限。

期末Project

初始状态如图所示, 要求有电脑先手和电脑后手两种模式

组队

- 一组人数1~2人,提交队伍名字,共同评分,推荐组队完成
- 12月25日0点前提交组队名单: https://docs.qq.com/form/page/DT0ltVUpaZE9naEhV?_w_tencentdocx_form=1

评分标准

• 实验报告: 80%

• Rank: 20%

Rank

• 方式: 分为四大组, 组内进行车轮战对弈, 四组积分第一进行决赛

• 时间: 1月8日实验课

报告要求

- 实验原理
- 实现过程
- 实验结果分析
- 创新点