Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaç

Complexidade de Algoritmos

Análise da ordenação po inserção

Complexidade de melho

Complexidade de pior

Aula 3 Complexidade de Algoritmos

Projeto e Análise de Algoritmos

Professor Eurinardo Rodrigues Costa Universidade Federal do Ceará Campus Russas

2021.1

Aula Passada

Aula Passada

Complexidade de Algoritmos

Complexidade de Algoritmos Iterativos

Complexidade de Algoritmos Iterativos

Análise da ordenação por inserção

Tempo do Insertion-Sort

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de melhor caso

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espac

Complexidade de Algoritmos

Análise da ordenação p inserção

Tempo do Insertion-Sort Complexidade de melho

Correção de Algoritmos Iterativos

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Complexidade de melho

Complexidade de pior

4 □ ト 4 圖 ト 4 圖 ト 4 圖 ・ 夕 Q ○ ○

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

> Tempo do Insertion-Sort Complexidade de melho

- Correção de Algoritmos Iterativos
 - Invariante de Laço

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

- Correção de Algoritmos Iterativos
 - Invariante de Laço
 - ► Exemplo: Insertion-Sort

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

Sejam A um algoritmo

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Complexidade de melhor

Complexidade de pior

4□▶ 4億▶ 4億▶ 4億▶ 億 900℃

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação por inserção

Complexidade de melho caso

Complexidade de pior

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \cdots, E_m\}$ entradas de A que possuem tamanho n

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$.

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

> Tempo do Insertion-Sort Complexidade de melhor caso

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Complexidade de melhor caso

Complexidade de pior

Complexidade de Tempo

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

Complexidade de pior caso

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

> Tempo do Insertion-Sort Complexidade de melhor caso

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- ► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- Complexidade de melhor caso

.

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação por inserção

Complexidade de melho caso

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- ► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- ► Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- ► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- ► Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação por inserção

Tempo do Insertion-Sort Complexidade de melho caso

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- ► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- ► Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio

$$= p_1 \times t_1 + p_2 \times t_2 + \cdots + p_m \times t_m,$$

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação por inserção

Complexidade de melhor caso

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- ► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- ► Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio $= p_1 \times t_1 + p_2 \times t_2 + \cdots + p_m \times t_m$, onde p_i é a probabilidade de ocorrência da entrada E_i .

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação por inserção

Complexidade de melho caso

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- ► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- ► Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio = p₁ × t₁ + p₂ × t₂ + ··· + pm × tm, onde pᵢ é a probabilidade de ocorrência da entrada Eᵢ.

Complexidade de Espaço

Prof. Eurinardo

Aula Passada

Complexidade de

Algoritmos Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho caso

Sejam A um algoritmo, $E = \{E_1, E_2, \dots, E_m\}$ entradas de A que possuem tamanho n. Denote por t_i , o número de passos efetuados por A, quando a entrada é E_i , $i = 1, \dots, m$. Definem-se

- ► Complexidade de pior caso= $\max\{t_1, t_2, \dots, t_m\}$
- ► Complexidade de melhor caso= $min\{t_1, t_2, \dots, t_m\}$
- Complexidade de caso médio $= p_1 \times t_1 + p_2 \times t_2 + \cdots + p_m \times t_m$, onde p_i é a probabilidade de ocorrência da entrada E_i .

Complexidade de Espaço

Análogo a Complexidade de Tempo para células de memória (em vez de passos de execução).

◆□▶◆□▶◆≡▶◆≡▶ = ★)९(℃

Prof. Eurinardo Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Complexidade de melho caso

Algoritmo 1: Insertion-Sort

```
Entrada: Vetor A[1 \cdots n] e inteiro n (tamanho de A) Saída: A ordenado
```

```
1 para j \leftarrow 2 até n faça
2 | chave \leftarrow A[j]
3 | %inserir A[i] na se
```

 $A[i+1] \leftarrow \text{chave}$

```
3 | %inserir A[j] na sequência ordenada A[1 \cdots j-1]
4 | i \leftarrow j-1
5 | enquanto (A[i] > chave) e (i > 0) faça
6 | A[i+1] \leftarrow A[i]
7 | i \leftarrow i-1
```

10 **fim**

8

9

fim

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

PAA - Aula 3

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo

Complexidade de Espaço

Complexidade de Algoritmos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

Tempo do Insertion-Sort.

PAA - Aula 3

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de

Aula Passada

PAA - Aula 3

Prof. Eurinardo

Complexidade de Algoritmos

Complexidade de Espaço

Complexidade de Algoritmos Iterativos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

- Tempo do Insertion-Sort.
- Complexidade de melhor caso.

Aula Passada Complexidade de

Algoritmos

PAA - Aula 3

Prof. Eurinardo

Complexidade de Espaço

Complexidade de Algoritmos

Análise da ordenação po inserção

Tempo do Insertion-Sort Complexidade de melho

- Tempo do Insertion-Sort.
- Complexidade de melhor caso.
- Complexidade de pior caso

Bibliografia

LEISERSON, C.E., STEIN, C., RIVEST, R.L., CORMEN T.H.

Algoritmos: teoria e prática, 3ed. Editora Campus, ano 2012.

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de

Prof. Eurinardo

Aula Passada

Complexidade de Algoritmos

Complexidade de Tempo Complexidade de Espaço

Complexidade de Algoritmos

Análise da ordenação po inserção

> Tempo do Insertion-Sort Complexidade de melho

Complexidade de pior caso

Obrigado!