

Q1. Lir	nked link are	not superio	or to STL vector	S			
a) Tru	e	I	b) False				
Q2. De	_	de in a linke b) False	d list is a simple	matter of us	sing the dele	te operator to	free the node's memory
Q3. Th	e advantage	e of link list	over array is				
a)	Link list ca	n grow and	shrink in size d	uring the tim	1 е		
b)	Less space	is required	for storing elem	nents			
c)	Both 1 and	2 are corre	ct				
d)	None of th	e above					
a) Quio Q5. Th	ck Sort e inorder tr me tree pro	b) Merg aversal of so duced the s	ome binary tree) Bubble Sor prod <mark>uces th</mark>	rt d) ne sequence the following	Binary Search DBEAFC, and t g is correct pre	technique he postorder transversal of order transversal sequence? f the above
			oe contained in		/	/ /	
a) 0	b) .	At least 1	c) Any n	umber	d) None of	the above	
Q7. If	graph G has	no edges th	nen correspo <mark>ndi</mark>	ng adjacency	y matrix is		
	matrix	_	b) Zero ma <mark>trix</mark>		c) Matrix w	vith all 1's	d) None of the above
a) It is	hat is not tr easier to prequires spac	rogram	•	ssing? t may includ All are true	e more collis	sion	
	gorithms ca OGRAMS	n be represe	ented in various b) FLOWCHAF			N CHARTS	d) SPREADSHEET
Q10. T a) Larg c) Sma		at the root	of heap is b) Depending d) None of the		eap it may b	oe smallest or l	argest
Q11. T a) Fror			element gets acodo d) Bottom	dded to queu	ie is called		

PG DAC Feb 20 Data Structure Question Bank

a)	Arrays	b) Arrays or linked list	c) Only linked lis	t d) None	of the above
	t is connect If it is r If it con	is said to be a tree, if it satisfiented and there are no cycles in not connected and there are connected and there are cycles in the above	the graph. ycles in the graph	erties: a)	
a	A record k	refers to the process of deriving ey from storage address point code from a record key	b) \$	storage address from	om a record key
tra tra		rder traversal of some binary se same tree produced the seq sence? b) ABEDFC	•	•	g is a correct preorder
	.6. Which of empty(Q)	f the following is not an operatory b) deque(Q,X) c) enque(Q,		ning that queue h	as items `Q` and `X`?
	.7. In an adj Similar colu	acency matrix parallel edges a mns b) Similar	/ - /	ot representable	d) None of the above
	.8. A dynam) heap	iic data structure where we <mark>ca</mark> b) binary <mark>sear</mark> o		I records in O(log2 rcularly linked list	n) time is d) array
	.9. We can e	efficiently reverse a string usin ue b) circular que		t ack d) doub	oly linked list
ро	pped four t shed back o	items: A, B, C, D and E are pus imes and each element is inse on the stack. Now one item is p b) B	rted in a queue. The	en two elements a	re deleted from the queue and
	1. The men	nory address of the first elements b. foundation address	nt of an array is cal c. first address		
Q2	2. The men	nory address of fifth element o	of an array can be ca	alculated by the fo	rmula

a. LOC(Array[5]=Base(Array)+w(5-lower bound), where w is the number of words per memory cell for the

array

2

b.	LOC(Array[5])=Base array	e(Array[5])+(5-lower bound),	where w is the numbe	r of words per mem	ory cell for the
c. arra		e(Array[4])+(5-Upper bound)	where w is the numb	er of words per mem	nory cell for the
	None of above				
a.	None of above				
Q2:	3. Which of the follo	wing data structures are inde	exed structures?		
a)	linear arrays	b) linked lists	c) both of above	d) none of ab	ove
	4. Which of the follogist be sorted	wing is not the required cond	lition for binary search	algorithm?a) The I	ist
b)	there should be	the direct access to the mide	lle element in any sub	list	
c)	There must be n	nechanism to delete and/or	insert elements in list	d) none of above	
				97	
		wing is not a limitation of bir	. / /		
a) r		ray / / / / / / / / / / / / / / / / / / /		M Co. Marie Co.	
b)	requirement of s	sorted array is expensive who	en a lot of insertion an	<mark>d deletio</mark> ns are need	ed
c)	there must be a	mechanism to access mid <mark>dle</mark>	element directly		
d)	binary search al	gorithm is not efficient <mark>whe</mark>	n the data elements a	re more than 1000.	
	6. Two dimensional a				
a) 1	tables arrays	b) matrix arrays	c) both of above	d) none of abov	e
∩2 [.]	7. A variable P is calle	ed nointer if			
a)		ddress of an element in DAT	Δ /		
ս, b)		ddress of first element in DA			
c)	·	memory addresses			
d)	·	ATA and the address of DATA			
uj	r contain the Dr	tra and the address of DATA			
Q2	8. Which of the follo	wing data structure can't sto	re the non-homogene	ous data elements?	
	Arrays	b) Records	c) Pointers	d) No	ne
	_	element from list we make			
a) i	t is an list	b) it is not a invalid list	c) it is not an e	mpty list	d) it must be full.
	0. Each data item in a ecomposable are cal	a record may be a group iten led	n composed of sub-ite	ms; those items whic	ch are
	Elementary items	b) atoms	c) scalars	d) all of abov	e

PG DAC Feb 20 Data Structure Question Bank

Q31. T	he difference	between linear arra	ay and a record is					
a)	An array is s	uitable for homoger	neous data but the	e data items ir	a record may l	have different data type		
b)	In a record, there may not be a natural ordering in opposed to linear array.							
c)	A record for	m a hierarchical stru	icture but a linear	array does no	ot			
d)	All of above							
Q32. V	Which of the f	ollowing statement	is false?					
a)	Arrays are d	ense lists and static	data structure					
b)	data elemen	its in linked list need	not be stored in	adjecent spac	e in memory			
c)	pointers sto	re the next data ele	ment of a list					
d)	linked lists a	re collection of the	nodes that contai	n information	part and next p	oointer		
a) sort Q34. \	ed linked list When new dat	Sitil	ary trees c) so	VIUI		ter array space; this situation is		
	y called derflow	b) overflow	c) housef		d) saturated			
a) unc	JETTIOW	b) overnow	c) Housel	uli	u) saturateu			
Q35. T	he situation v	when in a linked list	START=NULL is					
a) und	erflow	b) overflo	w	c) houseful	Λ	d) saturated		
036 V	Mhich of the f	ollowing name does	not relate to star	rkc2				
a) FIFC		b) LIFO list	c) Piles	A A	ush-down lists			
a) gro	unded header	following is two way list eader and trailer noo		b) circular h				
Q38. T	he term "pus	h" and "pop" is rela	ted to the					
a) arra	у	b) lists	c) stacks	d) a	all of above			
		re where elements of Stacks c) Queues		emoved at eit	ner end but not	in the middle		

Q40. When inorder traversing a tree resulted E A C K F H D B G; the preorder traversal would return

c) EAFKHDCBG

d) FEAKDCHBG

b) FAEKCDHGB

a) FAEKCDBHG

Q41. V	Vhich data stru		_	nts from fro	nt and inserting a	-	
Stacks		b) Queues	c) Deques		d) Binary search	tree	
Q42. I	dentify the data	a structure whic	n allows deletions	at both en	ds of the list but i	nsertion at c	only one end.
a) Inpi	ut-restricted de	eque	b) Output-restrict	ted deque	c) Priority	y queues	d) None of above
Q43. V	Vhich of the fol	llowing data stru	cture is non-linea	ar type?			
a) Strii	ngs	b) Lists	c) Stacks	d) Nor	ne of above		
Q44. V	Vhich of the fol	llowing data stru	cture is linear typ	e?			
a) Strii	ngs	b) Lists	c) Queues		d) All of above		
Q45. T	o represent hie	erarchical relatio	nship between el	ements, wl	nich data structure	e is suitable $\widehat{:}$)
a) Dec	ue	b) Prior	ty c) -	Ггее	d) All of above	V.	
046 4	hinary tree wh	nose every node	has either zero o	r two childi	en is called		
	mplete binary	V.	y search tree		ended binary tree	d) Non	e of above
	•	complete binary		///			_
a)	Dn = n log2n	b) Dn =	n log2n+1	c) Dn	= log2n	Dn = log2n+	+1
Q48. V	Vhen represent	ting any algebrai	c expression E wh	nich us <mark>es or</mark>	<mark>ily b</mark> inary operatio	ons in a 2-tre	ee, a)
the va	riable in E will	appear as exter	nal n <mark>odes and</mark> op	erations in	internal nodes		
b)	the operation	s in E will appea	r as <mark>external</mark> node	es a <mark>nd varia</mark>	bles in internal no	odes	
c)	the variables a	and operations i	n E <mark>will app</mark> ear on	ly in intern	al nodes		
d)	the variables a	and operations i	n E will appear on	ly in exterr	al nodes		
Q49. <i>A</i>	binary tree ca	n easily be conv	erted into q 2-tre	e			
a)	by replacing e	ach empty sub t	ree by a new inte	rnal node			
b)	by inserting a	n internal nodes	for non-empty no	ode			
c)	by inserting a	n external nodes	for non-empty n	ode			
d)	by replacing e	each empty sub	tree by a new ext	ernal node			
O50 \	Whon convertin	a hinary troo int	a avtandad hinar	v troo all ti	ne original nodes i	in hinary tro	n aro
	rnal nodes on	•		•	des on extended 1	•	carc
•	shed on extend		27		e of above		
O51 T	he nost order t	raversal of a him	ary tree is DFRFC	A. Find out	the pre order trav	versal	
a) ABF	•	b) ADBI	•	ABDECF	d) ABDCE		

PG DAC Feb 20 Data Structure Question Bank

Q52. Which of the following sorting algorithm is of divide-and-conquer type? a) Bubble sort b) Insertion sort c) Quick sort	d) All of above
Q53. An algorithm that calls itself directly or indirectly is known as a) Sub algorithm b) Recursion c) Polish notation	d) Traversal algorithm
Q54. In a binary tree, certain null entries are replaced by special pointers which	point to nodes higher in the tree
for efficiency. These special pointers are called a) Leaf b) branch c) path d) thread	
Q55. The in order traversal of tree will yield a sorted listing of elements of tree in	n
a) Binary trees b) Binary search trees c) H	eaps d) None of above
Q56. In a Heap tree a) Values in a node is greater than every value in left sub tree and smaller the	nan right sub tree
b) Values in a node is greater than every value in children of it	
c) Both of above conditions applies	
d) None of above conditions applies	
OF7. In a graph if a-[u, u]. Then u and u are called	
Q57. In a graph if e=[u, v], Then u and v are called a) endpoints of e b) adjacent nodes c) neighbors	d) all of above
Q58. A connected graph T without any cycles is called	
a) a tree graph b) free tree c) a tree	d) All of above
Q59. In a graph if e=(u, v) means	
	u and ends at v
c) u is processor and v is successor d) both b and	l c
Q60. If every node u in G is adjacent to every other node v in G, A graph is said to a) isolated b)complete c) finite d) stro	o be ongly connected
Q61. Two main measures for the efficiency of an algorithm are	
a) Processor and memory b) Complexity and capacity c) Time and	d space d) Data and space
O62. The time factor when determining the efficiency of algorithm is recovered	hv.
Q62. The time factor when determining the efficiency of algorithm is measured a) Counting microseconds b) Counting the number of I	

d) Counting the kilobytes of algorithm

c) Counting the number of statements

	•	or when determinii imum memory ne		of algorithm is mea	asured by				
b)	_	minimum memory	_						
c)	Counting the average memory needed by the algorithm								
d)	Counting the	maximum disk spa	ace needed by th	e algorithm					
Q64. V	Vhich of the fo	ollowing case does	not exist in com	plexity theory					
a)	Best case	b) Worst	case c) i	Average case	d) Null case				
Q65. T	he Worst case	occur in linear sea	arch algorithm w	rhen a)					
	Item is some	where in the middl	e of the array						
b)		the array at all							
c)		st element in the a	•		37				
d)	Item is the la	st element in the	array or is not th	nere at all Mant	ri 🛦				
Q66. T	he Average ca	se occur in linear s	search algori <mark>thm</mark>	7/					
a)	When Item is	somewhere in th	e middle o <mark>f the</mark>	array					
b)	When Item is	not in the array at	t all						
c)	When Item is	the last element i	n the ar <mark>ray</mark>						
d)	When Item is	the last element i	n the a <mark>rray or i</mark> s	not the <mark>re at all</mark>					
Q67. T	he complexity	of the average cas	se o <mark>f an algo</mark> rithi	m is					
a)	Much more o	complicated to ana	aly <mark>ze than t</mark> hat o	of w <mark>orst cas</mark> e					
b)	Much more s	impler to analyze t	t <mark>han that</mark> of wor	st case					
c)	Sometimes m	ore complicated a	ind some other t	imes simpler than t	hat of worst case d)	None or above			
Q68. T	he complexity	of linear search al	gorithm is						
a) O(n)		b) O(log n)	c) O(n2)	(d) O(n log n)				
Q69. T	he complexity	of Binary search a	algorithm is						
a) O(n)		b) O(log)	c) O(n2)	d) O(n log n)					
	•	y of Bubble sort al	_						
a) O(n)		b) O(log n)	c) O(n2)	d) O(n lo	og n)				
	-	of merge sort alg							
a) O(n)		b) O(log n)	c) O(n2)	d) O(n l	og n)				

	he indirect cha rnal change	ange of the valu	nes of a variable in or b) inter-module cha		y another module is) side effect	called d) side-module update
		_	ructure is not linear (
a) Arra	ys	b) Linked lists	c) Both of a	bove	d) None of ab	ove
Q74. \	Which of the fo	ollowing data st	ructure is linear data	a structure?		
a) Tree	es	b) Graphs	c) Arrays	d) None of above	
Q75. T	he operation o	of processing ea	ich element in the lis	st is known a	as	
a) Sc	orting b) N	1erging	c) Inserting	d) Trave	ersal	
Q76.F	inding the loca	ition of the eler	nent with a given va	lue is		
	raversal	b) Sea	_		d) None of ab	ove
		Chi	iram .	Ma	ntri	
Q77. A	rrays are best	data structures	ururu.	LVIU	rilli	
a)	for relatively	permanent col	lections of data			
b)		the structure a	and the data i <mark>n the st</mark>	tructure are	constantly changing	; c)
۹/			iation			
d)	for none of al	ove situation			7 /	
Q78. L	inked lists are	best suited				
a)	for relatively p	permanent coll	ection <mark>s of data</mark>			
b)	for the size of	the structure	and <mark>the data</mark> in the s	st <mark>ructure</mark> ar	e constantly changir	ng c)
	for bo	th of above situ	ation			
d)	for none of ab	oove situation				
Q80. E	ach array decla	aration need no	ot give, implicitly or ϵ	explicitly, th	e information about	
a) the	name of array			b) the da	ta type of array	
c) the	first data from	the set to be s	tored	d) the index set of the	e array
Q81. T	he elements o	f an array are s	tored successively in	memory ce	lls because	
a)	by this way co	•	ep track only the add	dress of the	first element and th	e
eleme	nts can be calc	ulated				
b)	the architectu	ire of compute	r memory does not a	allow arrays	to store other than s	serially c)
	both o	of above				
d)	none of above	e				

Q82.	When is a line	ar queue said to b	e empty?					
a) fro	ont > rear	b) front = =	- 1 c)	front > r	ear + 1			d) rear = = front + 1
i) In s ii) mem	equential repre Linear queue ory is not allow		s logically as wastage as	well as reuse o	physicall f	ly full		
iii)	A Queue-full i & ii	condition for a cir b) i & iii	cular queue c) ii &		efront + d d) All.	1'a)		
Q84.	Queue-full con	dition for the circu	ılar queue r	epresen	ted sequ	entially is	s?	
a) fro	ont = = rear	b) rear +	1 + front	c) (rea	ar+1)%ar	raysize =	= front	d) None of the these
	In a linked repr ta, link, header	resentation a node - b	e consists of o) Only link f	7	f the foll	7.31	elds? lata field	d) Data and link fields.
a) Ar	In case of a link rays are used to Iks have a array	A	next link.	- V	J-	d node h bove Q87		the next node
	Which of the fo	ollowing is not true	e regar <mark>ding</mark>	a singly	linked lis	t? a)		
b)	The last node	e is pointing to NU	LL in <mark>dicatin</mark> g	g the en	d of list			
c)	•	a node always sta				verses th	rough every	subsequent nodes d)
		main function whi	ch takes cor	nmand l	ine argu		·	
•	nt main(int arg nt main(int arg	c, char *argv) c, char *argv[])				•	•	rgv, int argc) rgv[],int argc)
Q90. a) va		acro, we can displa b) va_list	ay the argur c) va_			ole numbo d) va_sta		ent function?
	ude <stdio.h> ain()</stdio.h>	e output of the fol 2.5,5.4,7.3,21.6,8.	0.	gram?				

PG DAC Feb 20 Data Structure Question Bank

```
printf("%d\n",sizeof(arr)/sizeof(arr[0]));
       return 0;
}
   a) 4
                      b) 5
                                    c) 8
                                                           d) 20
Q92. What is the output of the following program?
Int main()
{
       Int j,sum;
       for( j=1, sum=0; j<5; j++)
       sum+=j;
sum=j;
              cout<<sum;
              return 0;
}
  a) 5
                                           c) Compilation error: undefined variable sum and j
                                                                                                       d) 6
Q93. A program P reads in 500 integers in the range [0 to 100] representing the score of 500 students. It then
prints the frequency of each score above 50. What would be the best way for P to store the frequencies?
                                                                                                           a)
An array of 50 numbers
                                                   b) An array of 100 numbers
c) An array of 500 numbers
                                                   d) A dynamically allocated array of 550 numbers
Q94. Which is true about reference variable?
a)
       A reference can never be null
       A reference once established cannot be changed
b)
       Reference doesn't need an explicit dereferencing mechanism.
c)
       All of the above.
d)
Q95. Dynamic objects are stored in
a) Code segment
                                     b) Data segment
                                                                  c) Heap
                                                                                  d) Run time stack
Q96. What is the output of the following code? const
int a=124;
void main()
{
     const int* Sample();
int *p; p=Sample();
       cout<<*p;
```

const int* Sample()

{	return (&a);			
} a) V	Varning	b) compilation error	c) output : 124	d) garbage value
Q97. \ a) 1	What is the size of poin b) 2 c) 4	nter in C++ on 32 bit archite d) It depends on size of th		e to which pointer is pointing to
Q98. \	Which are the main th	ree features of OOP languag	ge?	
a)	Data Encapsulation,	Inheritance and Exception h	nandling	
b)	Inheritance , polymo	rphism and exception hand	ling	
c)	Data encapsulation,	inheritance and polymorpl	nism	
d)	Overloading, inherita	ance and polymorphism		
a) Nor	mal member function		TIT COLOR	or d) None of the above
class E	Read the code carefu	lly		
{	Jase			
privat	e: int I; protected: ir	nt j;		
	public: int k;			
}; 				
class L	Derived:public Base			
ι privat	e: int x; protected: i	nt v:		
	public: int z;	-		
} ;				
		sizeof(Derived) by	tes on a 32 bit archite	cture.
a)12 ,	12 b) 12 , 16 c	d) 4, 16		
Q101.	Static_cast can be ap	plied at		
a) Cor	npile time	b) runtime	c) linking time	d) both a and b
	Which inheritance type B: public C	pe is used in the class given	below? Class A:	
-	lti-level	b) multiple	c) hybrid	d) hierarchical

PG DAC Feb 20 Data Structure Question Bank

Q103. Which o	of the following op	perators cann	not be overloaded?		
a) []	b) ->	c)	?:	d) *	
Q104. Which o	of the following S [*] b) list		will store the elem	ents in adjacent men d) map	nory locations?
.,	3,		.,	ш,р	
	_	atement is in	correct regarding i		
a) It speeds (•		-	slows down executi	
c) It increase	s the code size		d) A	function can be inlin	e without inline specifier.
Q106. Which o	of the following is	not a membe	er of class?		
a) Static func	tion	b) frien	d function	c) constructor	d) virtual function
O107. In which	operator overloa	ading compil	er implicitly passes	a dummy integer as	an argument?
	ent / decrement	H H/* H H/* H	H H/H/H 1 N.Z.H	rement / decrement	
c) Both the ab	V/		the same of the sa	of the above	
Q108. Which o	of the following is	correct state	me <mark>nt regard</mark> ing ab	stract class?	
a) Abstract c	lass object can't k	oe created		b) Pointer to abst	ract class can be created
c) Reference	to abstract class	can be create	ed	d) All of the abov	re
0400 D day!	ala attaca da la tala	C. 15 . C. 11 .		12	
_			ving is not inherited	V A	d) All af the above
a) Friend fun	iction	b) Constr <mark>ucto</mark>	or c) Overioa	ded = operator	d) All of the above
Q110. What is	the output of the	following pr	ogram? class mycla	ass	
{					
public:					
	static int counter	;			
} ;					
void main()					
{					
		cout< <m< td=""><td>yclass::counter; }</td><td></td><td></td></m<>	yclass::counter; }		
a) Output 0	b) Compila	tion error	c) Linking error	d) Output garba	ge value
Q111. What is	the primary purp	ose of templ	ate function?		
a) To allow	w a single functio	n to be used	with varying type	s of arguments	
b) To hide	the name of the	function fror	n the linker (preve	nting duplicate symbo	ols)

c)

To improve execution speed of the program

d)	To enable better debi	ugging			
	Which of the following	g data structure may give ov ize?	erflow error, even t	though the current	number of
a) Simp	ole queue	b) Circular queue	c) Primary queue	e d) Sta	ack
Q113.	The most appropriate	matching for the following p	pairs:		
a)	Bubble sort	1) O(nlog(n))			
b)	Insertion sort	2) O(n)			
c)	Quick sort	3) O(n^2)			
a) a=1	b=2 c=3	b) a=3 b=1 c=2	c) a=3 b=2 c=1	d) a=	2 b=3 c=1
		in null entries are replaced be called	oy special pointers v	which point to nod	es higher in the
a) roo	t	b) node c) br	anch d)) thread	
Q115.	a binary search tree w	hose left subtree a <mark>nd right</mark> s	ubtree <mark>differ in</mark> hei	ght by at most one	unit is called.
a) AV	L tree	b) Red-black tree	c) L <mark>emma tr</mark> ee	d) No	one of the above
Q116.	algoritl	nm is not an e <mark>xample o</mark> f divi	de <mark>and conq</mark> uer rule	e.	
a) Qu	ick sort	b) bubble sort	c) merge sort	d) binary sea	arch
		stack ope <mark>rations c</mark> ould resu			
a) Pu	sh	b) pop c) is_	full d)) none of the abov	e
Q118.	Which of the following	g sorting algorithm has the w	orst time complexi	ity of nlog(n)?	
a) He	ap sort	b) Insertion sort	c) Selection sort	d) Bucket so	rt
Q119. a) 3	The number of binary b) 5 c) 7	trees with 3 nodes which wl d) 9	nen traversed in po	st order gives the s	sequence A, B , C is
Q120. a) n-1	· ·	n leaf nodes, all at same lev) 2n d) 2n-1	el. The number of n	non-leaf nodes in s	uch tree is
	Queue can be used to	·			
a) Re	ecursion	b) Breadth- first sea	rch c) Depth	– first search	d) None of these

a) Chain of responsibilityc) Builder pattern				rpreter pattern oter pattern	
Factor		•	o limit the class insta Builder design patte d) Singleton design	ern	ct? a)
Q124. known	-	h outlives the program ϵ	execution time and ϵ	exists between execu	tions of the program is
a) Glob	al object	b) persistent object	c) transient ob	ject d) de	legate object
interfa	= -	attern you would use to	b) Ada	class interface into a	a compatible target
c) Faça	de design patte	m Shrira	d) Brid	ge design pattern	
Creation	The adapter, bronal pattern avioral pattern	idge and composite desi b) Structural pattern	gn patterns are exar	raction pattern	a)
	Communication havior diagram	diagram, sequence diag b) Structu	gram and timing diag ure diagram	gram can all be categ c) Activity diagram	
Q128. True		not superior to STL <mark>vecto</mark> b) False	ors a)		
Q129. a) Tru e	_	in a linked list is a simpl b) False	e matter of using th	e delete operator to	free the node's memory
Q130.	The advantage	of link list over array is			
a)	Link list can gro	ow and shrink in size du	ring the time		
b)	Less space is re	quired for storing eleme	ents		
c)	Both 1 and 2 ar	re correct			
d)	None of the ab	ove			
Q131. a) Quic		ne following algorithm is b) Merge Sort	NOT an example of c) Bubble Sort	· · · · · · · · · · · · · · · · · · ·	echnique nary Search

Q132. The inorder traversal of some binary trothe same tree produced the sequence DEBFC/	•	ence DBEAFC, and the postorder transversal of ing is correct preorder transversal sequence?
a) DBAECF b) ABEDFC	c) ABDECF	d) None of the above
Q133. How many cycles should be contained in a) 0 b) at least 1 c) any nu	n a tree? Imber d) None of the a	above
Q134. If graph G has no edges then correspon a) unit matrix b) zero matrix	ding adjacency matrix c) matrix with al	
Q135. What is not true for linear collision produced	_	
	include more collision	1
c) It requires space for links	d) All are true	
Q136. In an adjacency matrix parallel edges ana) Similar columns b) Similar		presentable d) None of the above
Q137. The element at the root of heap is a) Largest		
b) Smallest		
c) Depending on type of heap it may bed) None of the above	s <mark>mallest</mark> or largest	
Q138. The end at which a new element gets a a) Front b) Rear c) Top		d
Q139. If we traverse a following tree in Pre or	der then what will be t	traversal
) None of the above
Q140. A graph is said to be a tree, if it satisfies a) If it is connected and there are no cycles in	• •	ies
b) If it is not connected and there are cyc		
c) If it connected and there are cycles in the		
d) None of the above	ine grupii	
Q141. Hashing refers to the process of deriving	g	
a) A record key from storage address	b) Storag	ge address from a record key
c) A floating-point code from a record key	d) None	of the above

		•	•		e postorder traversal of
	•	•	_	·	rder traversal sequence?
a) DBAECF	b) ABEDFC	c) ABDECF	d) None of the above	е	
Q143. What	is not true for lin	ear collision processir	ng?		
a) It is easie	r to program	b) It i	may include more coll	ision	
c) It require	s space for links	d) All	are true		
Q144. In an	adjacency matrix	parallel edges are giv	en by		
a) Similar co	lumns	b) Similar row	c) Not repres	entable	d) None of the above
Q145. What	is the output of t	the following program	?		
#include <io< td=""><td>stream> using na</td><td>mespace</td><td></td><td></td><td></td></io<>	stream> using na	mespace			
std; enum	_	•			
test	C	10 10 1 10 01 10	n Man	4-12	
{		nrıran	t IVI an	ITLA	
	2, B , C;				
} ;					
int main()					
{	1				
	< <a<<","<<b<<",< td=""><td>"<<c;< td=""><td></td><td></td><td></td></c;<></td></a<<","<<b<<",<>	"< <c;< td=""><td></td><td></td><td></td></c;<>			
retu	rn 0;				
}					
a) 32, 32, 3	32	b) 32 ,33 , 34	c) 32, <mark>31, 30</mark>	d) None of the	e above
Q146. A dyr	namic data structi	ıre where we can seai	rch for desired records	s in O(log2n) tin	ne is
a) heap	b) binary search	tree c) circularly linke	d list	d)	array
				ŕ	•
Q147. We c	an efficiently reve	erse a string using a			
a) linear que	eue	b) circular que	eue c) sta	ck d) dou	ıbly linked list
	ing a node in a lir	•	atter of using the dele	te operator to f	ree the node's memory.
a) True		b) False			
Q149. The ii	norder traversal c	of some binary tree pro	oduces the sequence	DBEAFC, and th	e postorder traversal of
the same tr	ee produced the s	sequence DEBFCA. Wh	nich of the following is	a correct preoi	rder traversal sequence?
a) DBAECF	b) ABE	OFC c) ABD	DECF d) No	ne of the above	
Q150. What	is not true for lin	ear collision processir	ng?		
	r to program		_	ude more collisi	ion

c) It re	quires space for link	S.S.	d) All ar	e true			
	In an adjacency ma lar columns	trix parallel edges are give b) Similar row		epresentable	d) None of the above		
The bir resulta Select	nary search tree use int tree?		atural numbers.		y empty binary search tree. traversal sequence of the		
Q153. a) Data c) Com Q154.	Two main measures a and space. plexity and capacity The complexity of t	s for the efficiency of an a	lgorithm are k orithm is	o) Processor and me			
a)	1.0	icated to analyze than th					
b)	•	r to analyze than that of v					
c)	Sometimes more c	omplicated and some oth	er times simpler	than that of worst	case d) None or above		
Q155. The time factor when determining the efficiency of algorithm is measured by a) Counting microseconds b) Counting the number of key operations, c) Counting the number of statements d) Counting the kilobytes of algorithm Q156. The space factor when determining the efficiency of algorithm is measured by a) Counting the maximum memory needed by the algorithm b) Counting the minimum memory needed by the algorithm c) Counting the average memory needed by the algorithm d) Counting the maximum disk space needed by the algorithm							
Q157.	Which of the follow	ing case does not exist in	complexity thec	pry			
a) Be	est case	b) Worst case	c) Average case	d) Null case			
	The running time of O(n log n)	insertion sort is b) O(log n)	c) O(n)	d) O(n^2)			
Q159.	Q159. Which of the following sorting procedure is the slowest?						
	Quick sort	b) Merge sort	c) Bubble sort	d) Heap	sort		

Q160. The correct o	rder of the efficiency of th	ne following	g sorting algorithms acc	ording	to their overall running	
time comparisons is						
a) bubble>selection	>insertion	b) Insertion>selection>bubble				
c) Merge=Quick=He	ар	d) none a	bove			
	teratively passes through		change the first elemen	t with a	any element less than it	
•	th a new first element is o					
a) quick sort	b) s	election so	ort			
Q162. The way a car	d game player arranges h	is cards as	he picks them one by o	ne can	be compared to	
a) Quick sort	b) Insertion sort	c) Se	lection sort d) Me	rge sor	t	
Q163. Which among	the following is the best	when the li	ist is already sorted	A.		
a) Merge sort	b) Quick sort	c) In	sertion sort	d) Se	lection sort	
Q164. Which of the	following sorting algorith	m is o <mark>f divid</mark>	de-and-conquer type?			
a) Bubble sort	b) Insert	ion s <mark>ort</mark>	c) Quick sort	d) All	l of above	
Q165. An algorithm	that calls itself directly or	indirectly i	s know <mark>n as</mark>			
a) Sub algorithm	b) Recur	sion	c) P <mark>olish no</mark> tation	d) Tra	aversal algorithm	
Q166. Representation	on of data structure in me	mory is kno	own as:			
a) recursive	b) abstract <mark>data</mark>	type	c) storage structure	A	d) file structure	
	ined to be a mathematica ations on that model.	l model of	a user-defined type alo	ng with	the collection of all	
a) Cardinality	b) Assign	nment	c) Primitive	d) Stı	ructured	
Q168. An algorithm algorithm is in the o	is made up of two indepe rder of	ndent time	complexities f (n) and	g (n). Tl	hen the complexities of th	
a) f(n) x g(n)	b) Max (f(n),g(n))	c) Mi	in (f(n),g(n))	d) f(n) + g(n)	
	maintenance work, you a			rrangin	g the library books in a	
a) Bubble sort	b) Quick	sort	c) Insertion sort	d) 9	Selection sort	
_	me of merge sort can be	-	· ·	/a) . a	N T/ \ 2T/ /2\	
a) T(n)=2T(n/4)+n	b) T(n)=2	2T(n/2)+n	c) T(n)=2T(n/	2)+2	d) T(n)=2T(n/3)+n	

Algorithm & Data Structure Question Bank eDAC May 21

Q171. You have a sorted array and n array is also sorted, the best sorting	=	· · · · · · · · · · · · · · · · · · ·	that array so	that the resulting	
a) Bubble sort	b) Selection sort	c) Insertion s	ort d) Me	erge sort	
Q172. The input to a merge sort is 6 algorithm in this case	5,5,4,3,2,1 and the sam	e input is applied to q	uick sort then	which is the best	
a) Merge sort	b) Quick sort	c) Cannot be decided	t		
Q173. The memory available for sto approach amongst the following	rage is less, in this case	e if you want to sort th	ne data which i	s the better	
a) Merge sort	b) Quick sort	c) Heap sort	d) All		
Q174. Arrange heap sort, merge sor a) heap>merge>quick Q175. One of the reason why quick	b) quick <heap<merg< td=""><td>e c) merge>qui</td><td>ck>heap</td><td>d) none</td></heap<merg<>	e c) merge>qui	ck>heap	d) none	
a) its running time is O(n)	b) its s	pace complexity is th	eta(log n),		
Q176. The running time of quick sor a) arrangement of elements	- 17	f pivo <mark>t eleme</mark> nt	c) small list,	d) none	
Q177. The running time of heapify is a) T(n) = T(2n/3) + Omega(1)		= T(2n/2) , T(n) = T(2	n)	c) None	
Q178. Which of the following stater	nents are right about r	adix sort?			
a) LSD radix sort is a stable sort	b) MSI	O radix sort is a stable	sort	c) None.	
Q179. LSD radix sort is applied on the following set of numbers: 21,86,124,33,29,163. What will be the order of numbers just before the MSD is considered? a) (21,29,86,33,124,163) b) (21,124,29,33,163,86) c) (21,29,124,163,33,86)					
Q180. The worst case time and worst O(k*lg (N)) b) O(N^2) c) O(k*N)	•	ty of radix sort is: a)			
Q181. The Worst case occur in linea	r search algorithm who	en			
a) Item is somewhere in the mi	• •				
b) Item is not in the array at all					
c) Item is the last element in th	ie array,				

Item is the last element in the array or is not there at all

d)

PG DAC Feb 20 Data Structure Question Bank

Q182. The Average case occur in linear search algorithm

When Item is not in the array at all.

a)

b)

When Item is somewhere in the middle of the array.

c)	When Item is	the last element	in the arra	у.			
d)) When Item is the last element in the array or is not there at all.						
0183.	Arravs are bes	t data structures					
a)							
b)	-	the structure an			are constantly		
•		of above situation			,		
_	none of above						
a) The	name of array		irai	icitly or explicitly	b) The data type of array d) The index set of the array	y	
		ollowing data str					
a) line	ar arrays	b) linked lists	c) both of	above d) none	of above		
0106	Which of the f	ollowing is not th	o required	condition for him	ary coarch		
	hm? a)	_	- U		e direct access to the		
_	e element in ar		, sorted, tri				
		chanism to dele	te and/or i	nsert elements i	n list c)		
-	e of above		/				
		ollowing stateme					
a)	•	nse lists and stati					
b)				-	space in memory		
c) 	-	e the next data e					
d)	linked lists are	e collection of the	e nodes tha	t contain inform	ation part and next pointer		
Q188.	Binary search	algorithm cannot	be applied	lto			
a) sort	ed linked list	ı	o) sorted bi	nary trees	c) sorted linear array	d) pointer array	
	•	inserted at the en		•	->-		
a) End	key.	b) Stop	key.	c) Sentinel.	D) Transposition.		
0190	The goal of ha	shing is to produ	ce a search	that takes			
~_JU.	5001 01 110	oo io to produ	4 5-41-611	at tanes			

a) O(1) time	b) O(n2) time	c) O(log n) time	d) O(n log n) time		
Q191. The largest element or a) lower bound.	f an array index is calle b) range.	ed its c) upper bour	d. d) All of these.		
Q192. When new data are to usually called	be inserted into a dat	a structure, but there	is no available space; this situation is		
a) underflow	b) overflow	c) house full	d) saturated		
Q193. Which of the following a) grounded header list c) linked list with header and		b) circular header lis	t		
Q194. Which of the following	g name does not relate	e to stacks?	<i>V</i>		
a) FIFO lists	b) LIFO list	c) Piles	d) Push-down lists		
Q195. A data structure where elements can be added or removed at either end but not in the middle					
a) Linked lists	b) Stacks	c) Queues	d) Deque		
Q196. Identify the data structure which allows deletions at both ends of the list but insertion at only one end. a) Input-restricted deque c) Priority queues b) Output-restricted deque d) None of above					
Q197. Which of the following a) Strings b) Lists of		-linear t <mark>ype?</mark> d) Non <mark>e of abo</mark> ve			
Q198. What is the postfix for	orm of the following p	refix *+ab–cd			
a) ab+cd-*	b) abc+*-	c) ab+*cd-	d) ab+*cd-		
Q199. The situation when i	n a linked list START=N	NULL is			
a) underflow	b) overflow	c) house full	d) saturated		
a) for the size of the strb) for both of above situ					
c) for none of above situ	Jation				
Q201. In list implementation		-			
a) the data	b) the link	c) the link and	the data d) non above		

PG DAC Feb 20 Data Structure Question Bank

Q202. The link field in the last node of the	ne linked list contains		
a) Zero value	b) link to the	first node	
c) Pointer to the next element location	d) all above		
Q203. To delete a node at the beginning			ddress of the.
a) second element in the list		b) first element in the list	
c) last element in the list		d) no element	
Q204. A linked list in which the last node	e points to the first is called	d a	
a) Doubly linked list b) (Circular list c) Generalized	list d) reveres li	st
Q205. A doubly linked list facilitates list t	traversal in	197	
a) Any direction b) (Circular direction	c) Either direction	d) no direction
Q206. In the linked list representation of	f the stacks <mark>, the top</mark> of the	stack is represented by	
a) the last node b) any of the	he nodes c) first	<mark>node d</mark>) non abov	e
Q207. Polynodes consists of three fields	representing		
a) Coefficient, exponential and link		m and the link	
b) Previous item link, data item and		exponential and link	
Q208. Linked list data structure usage of	ff <mark>ers cons</mark> iderable saving in		
a) Computational time		b) Space utilization	
c) Space utilization as well as computati	ional time.	d) all above	
Q209. Whether a list is full or empty is g	iven by the		
	•	c) The size of the list	d) zero value
Q210. To represent hierarchical relations	ship between elements, w	hich data structure is suital	ole?
•	Free d) All of		
	·		
Q211. The depth of a complete binary tr	ee is given by		
a) Dn = n log2n b) I	Dn = n log2n+1	c) Dn = log2n	d) Dn = log2n+1
Q212. When inorder traversing a tree re	esulted F.A.C.K.F.H.D.B.G. th	ne preorder traversal would	l return
<u> </u>		·	AKDCHBG
,		,, -, -	·

Q213. The post order traversal of a binary tree is DEBFCA. Find out the pre order traversal

a) ABFCDE b) ADBFEC		c) ABDECF	d) ABDCEF	
Q214. In a binary tree, of for efficiency. These spe			pecial pointers which	n point to nodes higher in the tree
a) Leaf b) bra	•	c) path	d) thread	
Q215. The in order trav	ersal of tree will	yield a sorted listing	of elements of tree	in
a) Binary trees	b) Binary	search trees	c) Heaps	d) None of above
Q216. If every node u ir a) isolated b) compl	-		in G, A graph is said gly connected	to be
Q217. A binary tree of ca) Each leaf in the tree i			ry tree if	A.
b) For any node "n' leaves, are also at level None of the abo	"d" d) Both a &		at level "d" all the le	of the descendents of "n" that are
Q218. The degree of a r	ode in a genera	l tree ca <mark>n be</mark>		
a) maximum two	b) two	c) more than two	d) zero	
Q219. In an ordered tre	e the left most s	son is the		
a) oldest son	b) youngest s	son c) left so	on d) Non	e of the above
Q220. An element of a t	ree is called a			
a) node b)	root	c) leaf		
Q221. The node which a	-	branch node is called grandfather	I the c) root node	
Q222. Going from leave	s to the root is o	called		
a) traversing	b)	descending	c) climbing	
Q223. A binary tree in v	•			
a) Strictly binary tree	b)	complete binary tree	e c) alm	ost complete binary tree
Q224. In the inorder tre	e traversal the r	oot is visited		
a) before left subtr	ee visit	b) in between su	ubtree visits	c) before right subtree visit

PG DAC Feb 20 Data Structure Question Bank

Q225. In the sequential representation of binary tree implementation each node of the tree will have a) no link field b) info, left, right and father fields three fields, data and the pointers to left and right subtrees. c) Q226. An adjacency matrix representation of a graph cannot contain information of: b) edges c) direction of edges d) parallel edges a) nodes Q227. In Breadth First Search of Graph, which of the following data structure is used? c) Linked List. d) None of the above. a) Stack. b) Queue. Q228. The binary tree in which the descendent points to the ancestor is called? a) linked tree b) threaded tree c) pointer tree Q229. A binary tree whose every node has either zero or two children is called: a) Complete Binary Tree b) Binary Search Tree c) None of the Above d) Extended Binary Tree Q230. What is the output of the following program? #include <iostream> int main() { char arr[20]; int I; for(i=0;i<10;i++) *(arr+i)=65+l; *(arr+i)='\0'; cout<<arr; return(0); } Select one: a) มมมมมม b) ABCDEFGHIJ c) None of these d) AAAAAAAAA Q231. What is the running time of the following code fragment? for (int i=0; i<10; i++) for (int j=0; j<N; J++) for (int k=N-2; k<N+2; K++) cout<<in<<" "<<j<<end a) O (log N) b) O (N) d) O (N log N) c) O (N²)

	The initial configur a minimum of?	ation of the queue is a,	b, c, d (a is the fi	ront end).To get the confi	guration d, c, b, a one
a)	2 deletions and 3 a	dditions		b) 3 deletions and 4 add	ditions
c) 3 deletions and 2 additions				d) 3 deletions and 3 add	ditions
Q233.	What is the infix ve	ersion of the following p	ostfix expression	า? X12+z17Y +42*/+	
a) x+1	2+z/ (17+y)*42			b) x+12+z ((17+y)*42	
c) x+12+z/17+y*42				d) x+12+z)/ (17+Y*42)	
Q234.	Linked lists are not	used in:			
a) Link	ker b) OS	c) None of th	nese	d) Compiler	
Q235.	The balance factor	for an AVL tree are:			
a) 0, 1	, or -1	b) All of these	c) 1, 2 or 3	d) 0, 1 or 2	
Q236. List no	- T	he following class whos	e underlying dat	a structure is a linked lis	t of of
class L	_ist{				
public	:				
//othe	er public functions				
~List()	; private:				
struct					
Listno	de{ int				
item;		V /			
node ¹	*next;				
} ;					
	ode*head;				
} ;					
		wing sequence of code on the code of code on the code of the code		the destructor~List () to o	correctly delete all of
I.	for(ListNode*n=he	ead;head!=NULL;head=r	n){ n=head->nex	t;	
delete	e head;		, ,		
}					
II.	for (ListNode *n=h	head;n!=NULL;n->next){	delete n;		
}	,	, , , , , , , , , , , , , , , , , , , ,	,		
III.	ListNode*n;				

Q238. while(head	=NULL){			
n=head>next; dele	• •			
head=n;				
}				
a) I and II only	b) III only	c) II and	d III only	d) and III only
Q239. Find the out	put of the following p	orogram?		
Main ()				
{				
int x=20, y=35; x=y	+++x;			
cout< <x<<y;< td=""><td></td><td></td><td></td><td></td></x<<y;<>				
}				
a) 56, 91	b) 55, 90	c) 57, 94	d) 57, 92	
Q240. The number	s of swapping needed	d to sort the numbe	ers 25,23,21,22,24 ir	n ascending order using bubble sort
is:	SILIL	rurre IV	LUILLI	
a) 12	b) 20 c) 6	d) 13		
Q241. What is the	expected time require	ed to sea <mark>rch for a</mark> v	alue in a binary sea	rch tree containing n nodes? (You
should make reaso	nable assumptions al	oout th <mark>e structu</mark> re o	of the tree.)	
a) O(log n)	b) O(n)	c) O(1)	d) <mark>O(n log n</mark>)	
Q242. The inorder	and preorder travers	al <mark>of a binar</mark> y tree a	r <mark>e a b c a</mark> f c e g and	dabdecfg, Respectively. The
-	I of the binary tree is			
a) debfgca	b) e d b g	f c a c) e d b	ofca d) d	e f b c a
Q243. Which one is	s not a type of a queu	e:		
a) Non-liner Queue	e b) Circula	r queue	c) Deque	d) Priority Queue
Q244. Consider the	e following C			
declaration struct{	short s[5]			
union{ float y;	long z; }u; }	t:		
Q245. Assume the	objects of type short,	float and long occ	upy 2 byte, 4 byte a	nd 8 byte respectively. The
memory requireme	ent for variable t igno	ring alignment con	siderations is	
a) 14 byte b) 22 byte	c) 18byte	d) 10byte	
Q246. In a complet	e binary tree of 'n' le	vels ,there are:		
a) 2n-1leaves and	•		b) 2 ⁿ leaves and	2^n-1 non-leaf nodes
c) n^2leaves and r	n^2-1 non-leaf nodes		d) 2^n-1leaves ar	nd 2^n non-leaf nodes

Q247. Which is n	ot a sorting technique:				
a) Merge sort	b) Radix sort	t c) Quic	k sort	d) Poll sort	
Q248. The way a o	card game player arrang rt b) merg	_	e picks them selection sort	-	s an example of bubble sort
Q249. Which one is	s the simplest data stru	cture:			
a) Strut	b) Tree	c) Linked List		d) Array	
	plate in C++ has the folloclass {				
 } ;	Shrip		1an	tri	
	meaning of T in the abo		(4		
a) It must be an int) It is a string		
c) It is a placeholde	er for a type name	0	i) it is a place	holder for a poin	ter value
Q252. In double or	der traversal :				
a) Every node is vis	ited once		b) Only root	node is visited to	wice
c) Some node are	visited twice	d) Ev	r <mark>ery node</mark> is v	isited twice	
Q253. What is the	output of the followi <mark>ng</mark>	?			
#include <iostream< td=""><td>></td><td></td><td></td><td></td><td></td></iostream<>	>				
using namespace s	td;				
int main ()					
{					
int i;					
	"C++","JAVA","VBA"};				
char *(*ptr)[4] = &					
char<<++ (*ptr) [2]	;				
return 0;					
} a) Java	b) C++	c) ava	d) co	mpile time error	
Ω254 In recursion	which data structure is	riseq.			
	Linked List	c) Array	ď) Stack	

Q256. Which of the	following operators of	cannot be overloade	d?		
a) =	b) ->	c) ::	d) ==		
Q257. The postfix e	quivalent of the infix	4 \$2*3-3+8/4(1+1)is			
a) 42\$3*3-8/411+/	+	b) 42\$3*	3-84/11+/+		
c) 42\$33*-84/11+/-	+	d) 42\$3*	3-84/11++/		
O 250) Stock is also	a called ac				
Q.258) Stack is also		- 1		d) Landin Contract	
a) First in first out	b) First in last	out c) Last i	n last out	d) Last in first out	
	the path from the roo	ot to the node is call			
a) Ancestor node o) Successor node	c) Internal node	d) Non	e of the above	
Q.260) Which of the	e following is not the	type of queue?	Torret	: A	
a) Priority queue b)	Circular queue	c) Single ended qu	eue d) Ord	inary queue	
Q.261) A graph is a	collection of nodes, ca	alled And line se	egments called	larcs or that connect pair o	of
nodes.					
a) vertices, paths	b) vertices, ed	lges c) graph	n node, edges	d) edges, vertices	
Q.262) In, sea	arch start at the begin	ning of the list and o	check every ele	ement in the list.	
a) Binary search	b) Hash Search	/ /-		ary Tree search	
O 262) In the	traversal we process	all of a vortov's dose	andants bafor	a wa maya ta an adiacent yerte	
a) Depth Limited	- W	c) Breadth First		e we move to an adjacent verte rst	!X.
a, Departement	2,	o, Breaden i not	u, 20pm		
Q. 267) To represer	nt hierarchical relation	iship between elem	ents, Which da	ta structure is suitable?	
a) Graph	b) Tree	c) Dequeue	d) Priority	
Q.268) Which of th	e following data struc	ture is linear type?			
a) Stack	b) Graph	c) rees d)	Binary tree		
Q.269) Herder nod	e is used as sentinel ir	١			
a) Queues	b) Stacks	c) Graphs	s d)		
Binary tree	,	, .	·		
•	e following data struc	ture can't store the	nonhomogen	eous data elements?	
a) Arrays	b) Stacks	c) Records	_		
Q.271) A binary sea	arch tree whose left si	ubtree and right sub	tree differ in h	night by at most 1 unit is called	

a) Lemma tree	b) Redblack tree	c) AVL tree	d) None of the abo	ve
Q.272) is a pile a) List d) Array	in which items are added a b) Queue	t one end and remo	oved from the other.	
• •	e following is non-linear da b) Stacks c) St		the above	
Q.274) The number a) (N/2)+1	of comparisons done by se	-	 d) (N-2)/2	
Q.275) is not th	ne operation that can be pe b) Insertion	rformed on queue. c) Deletion	d) Retrieval	
Q.276) Which is/are a) Function calls c) Evaluation of arit		b) Large number Ai		
Q.277) Which of the a) Stack	e following data structures b) Linked lists	are indexed structu c) Linear arrays	res? d) None of the above	
Q. 278) Which of th	e following data structu <mark>re s</mark> b) Pointers	store the homogene c) Records	eous data elements? d) Arrays	
Q.279) Linear arrays a) One-dimensiona	V /	l array c)	Horizontal array d)	All of the above
Q.280) A does a) Stack b) C	s not keep track of address (Queue c) String		the list.	
•	oity of linear search algorith O(log n) c) O(n2)	m is d) O(n log n)		
	xity of Binary search algorit O(log n) c) O(n2)	hm is d) O(n log n)		
	xity of Bubble sort algorithr O(log n) c) O(n2)	n is d) O(n log n)		
Q.284) The complex	xity of merge sort algorithm	n is		

a) O(n	b) O(log	n) c) O(n2)	d) O(n log n)	
Q.285)	The space factor v	vhen determining the	efficiency of algorithm i	s measured by
a)	·	imum memory need	, -	,
b)	Counting the mini	mum memory neede	d by the algorithm	
c)	Counting the aver	age memory needed	by the algorithm	
d)	Counting the max	imum disk space need	ded by the algorithm	
Q.286)	The operation of	processing each elem	ent in the list is known a	S
a) Trav	-	b) Inserting	c) Merging	d) Sorting
Q.287)	Binary trees with	threads are called as.		
	cial trees	b) Pointer trees		s d) None of the above
Q.288) a) End	A. A.	des with no successo b) Final nodes	r are called c) Last nodes	d) Terminal nodes

Q.289 The depth	of a complete binar	y tree is given by		
a) Dn = n log2n	b) Dn = n log2	n+1 c) Dn = lo	g2n d)) Dn = log2n+1
Q.290) Every node	N in a binary tree T	except the root has a u	unique parent	t called the of N.
a) Predecessor	b) Anteceden	ts c) Precur	sor d)	None of the above
-		yield a sorted listing		
a) Merging	b) AVL Trees	c) Binary	trees d) Bina	ry search trees
Q.292) A binary tre	ee whose every node	has either zero or two	o children is c	alled
a) Extended binary	/ tree b) Comp	lete binary tree		
c) Binary Search tro	ee d)[Disjoint tree		
O 293) The post or	der traversal of a hin:	ary tree is DEBFCA. Fin	nd out the pre	order traversal
a) ABFCDE	b) ADBF		BDECF	d) ABDCEF
a) Abi CDL	b) ADDI I	C C) A	IDDLCI	d) ADDCLI
Q.294) Three standa) Prefix, infix, pos	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ing a bi <mark>nary tree</mark> T wit b) Pre-pro		ess, post-process
c) Pre-traversal, in-	-traversal, post-trave	rsal d) P	re-order, in-o	order, post-order
•				\ \
Q.295) A technique	e for direct search is_			
a) Hashing	b) Tree Search	c) Binary Search	d) Line	ar Search
Q.296) If a node ha	aving two children is	deleted from a binary	tree, it is repl	laced by its
a) Preorder predec	cessor b) I	norder predecessor		
c) Inorder successo	or d) F	Preorder successor		
Q.297) A full binary	y tree with 2n+1 node	es contain		
a) n leaf nodes	b) n non-leaf node	s c) n-1 leaf nod	les d) n-1 non-leaf nodes
Q.298) A full bina	ry tree with n leaves	contains		
a) n - 1 nodes	b) log2n nodes	c) 2n – 1 nodes	d) 2n r	nodes
Q.299) The small	est element of an arr	ay's index is called its		
a) extraction	b) range	c) lower bound	d) upp	er bound

Q.300) The data st	tructure required for	Breadth First Trav	versal on a graph is		
a) queue	b) stack	c) array	d) None of the	above	
O 201) One can co	nyarta hinary traa ir	sto its mirror imag	o by traversing it in		
•	nvert a binary tree ir	_	_	Nama af tha abayya	
a) inorder	b) preorder	c) postor	der a) i	None of the above	
Q.302) The data st	ructure required to e	evaluate a postfix o	expression is		
a) queue	b) stack	c) linked-list	d) All of t	he above	
0 202) Which of th	o following conting n	nathada wayld ba	most suitable for se	orting a list which is almost say	م+مط
				orting a list which is almost som	tea
a) Insertion Sort	b) Selection Sort	c) Quick S	ort a) i	Bubble Sort	
O 204) The proces	es of accessing data s	torod in a social ac	coss momory is sim	ilar to manipulating data on a	
•		stack	d) None of the abo		
a) heap b)	queue c)	Stack	u) None of the abo	ve	
O.305) The postfix	form of A*B+C/D is				
a) ABCD+/*	b) AB*CD/+	c) *AB/CI)+ d)	A*BC+/D	
u) ABCD I	D) AD CD) !	C) Ab/C	a, a, a	A Delyb	
Q.306) A linear co	llection of data elem	ents where the lin	near <mark>node is given by</mark>	means of pointer is called	
a) linked list	b) node list	c) primitiv			
O 307) Renresent:	ation of data structu	re in memory is kn	own as:		
a) storage structui	Y A	-	ostract data type	d) None of the above	
a, storage stractar	b) mes	cractare c, a	ostract data type	a) None of the above	
Q.308) The goal of	hashing is to produc	e a search that tal	kes		
a) O(1) time	b) O(n2) time		(log n) time	d) O(n log n) time	
, , ,	, , ,			, (0 ,	
Q.309) The comp	lexity of multiplying t	two matrices of or	der m*n and n*p is		
a) np	b) mn+p c)	mn	d) mnp		
Q.310) For an und	irected graph with n	vertices and e edg	ges, the sum of the o	degree of each vertex is equal	to
a) 2n	b) 2e	c) (e2+1)/2	d) (2n-1)/2		
Q.311) Which data	structure allows del	eting data elemen	nts from and insertin	g at rear?	
a) Stacks	b) Queues c)	Dequeues	d) Binary search tre	ee	

Q.312) Which	n data structure	is used in brea	dth first sea	irch of a graph to hold r	nodes?
a) Array	b) Tree	c) Stack	d) queu	e	
Q.313) Ident a)	ify the data str	ucture which al	lows deletio	ons at both ends of the	list but insertion at only one end.
Stack b) Pri	iority aueues				
•	stricted qequeu	e d) Input rest	ricted dequ	eue	
Q.314) Whic	h of the followi	ng data structu	re is non lin	ear type?	
a) Graph	b) Stac	ks c) Lists	5	d) None of the abov	e
	0	7 0		71.11	- A
Q.315 respectively.	In a queue, the	initial values o	f front point	er f rare pointer r shou	ld be and
a) 0 and 1	b) 0 an	d -1 c)	-1 an <mark>d 0</mark>	d) 1 and 0	
Q.316) There	e is an extra ele	ment at the hea	ad of the list	t called a	
a) Sentinel	b) Antir	nel c) List	head	d) Li <mark>st heade</mark> r	
Q.317) The p	roperty of bina	ry tree is			
	annot contain I	1	b) The fi	irst <mark>subset is</mark> called left :	subtree
c) The second	d subtree is call	ed right sub <mark>tree</mark>	d)	T <mark>he right s</mark> ubtree can b	e empty
	new data are ty called	o be inserted in	nto a data si	cructure, but there is no	ot available space; this situation is
a) overflow	b) Und	erflow c)	housefull	d) memoryfull	
Q.319) A data	a structure whe	re elements ca	n be added	or removed at either er	nd but not in the middle is called
a) stacks	b) que	ues c) deq	ueuer	d) linked lists	
Q.320) The u	se of pointers t b) queue	o refer element c) pointers		structure in which elem	ents are logically adjacent is
Q.321) Binary	y search algorit	nm cannot be a	pplied to		
a) pointer ar	ray b) sorte	ed linear array	c)	sorted binary trees	d) sorted linked list

Q.322)	. is the metho	d used by card s	sorter?		
a) Quick	b) Heap	c) Insertion	d) Radi	x sort	
Q.323) Which	of the follow	ing conditions cl	hecks available f	ree space in	avail list?
a) Avail=Top	b) Null	=Avail c)	Avail=Null	d) Avail=	-Max stack
Q.324) Which	of the follow	ing is not the typ	oe of queue?		
a) Priority que	eue b) Circula	r queue	c) Ordinary o	queue	d) Single ended queue
Q.325) is	s a directed tr	ee in which outo	degree of each n	ode is less t	han or equal to two.
a) Binary tree	b)	Dinary tree	c) Unar	y tree	d) None of the above
Q.326) The nu	mber of comp	parisons done by	/ sequential sear	ch is	tri
a) (N/2)-1	b) (N+	1)/2	c) (N-1)/2	d) (N+2)/	/2
Q.327) In,	search start	at the beginning	of the list and c	heck every	element in the list.
		ary search			d) Binary Tree search

PG DAC Feb 20 Data Structure Question Bank

Q.328 The operation that combines the element is of A and B in a single sorted list C with n=r+s

element is called						
a) Sharing	b) Merging	c) Inserting	d) No	one of the above		
Q.329) Which of the	e following is an interna	al sorting?				
a) 2-way Merge Sort	b) Tape Sor	t c) Merge	Sort (d) Tree Sort		
Q.340) Which of the	following is an externa	al sorting?				
a) Merge Sort	b) Tree Sor	t c) Bubble	Sort o	d) Insertion Sort		
Q.341) is the term used to insert an element into stack?						
a) Push	b) Pull c) Рор	d) All of th	e above		
				37		
Q.342) is the	term used to delete ar	element from the	stack?			
a) Push	b) Pull c) Pop	d) All of th	e above		
		7//////////////////////////////////////				
Q.343) Before inser	ting into stack one mus	t che <mark>ck the co</mark> n <mark>diti</mark>	on			
a) Overflow	b) Underflow	c) Maximum e	lements o	d) Existing elements		
Q.344) Deletion in t	he linked stack takes p	lace by deleting				
a) Beginning of the	list b) End	of the list				
c) Middle of the list	d) Node pointed by	the start pr	ocess.		
Q.345) The value of	REAR is increased by 1	when				
a) An element is me	erged in a queue	b) An element	is added in	a queue		
-	versed in a queue d	-	leted in a qu	ieue		
,	•	,	·			
Q.346) The operation	on of processing each e	lement in the list is	known as			
a) merging	b) traversal c) inserting	d) sorting			
		_				
Q.347) Sequential r	epresentation of binary	tree uses				
a) Array with point		le linear array				
c) Two dimensional	arrays d) Three dimensiona	al arrays			
•	,	,	,			
Q.348) In a 2-tree, r	nodes with 0 children a	re called				
a) Outer node	b) Exterior node	c) Externa	al node	d) Outside node		
•	,	•		,		
Q.349) In a extende	d-binary tree nodes wi	th 2 children are ca	ılled			
a) Inner node	b) Internal node	c) Domestic no		d) Interior node		

PG DAC Feb 20 Data Structure Question Bank

Q.350) The line drawn from a node N of tree T to a successor is called

a) Route	b) Arrow	c) Edge	d) Path		
Q.351 Which	of the following sor	ting algorithms	does not have a wo	orst case running time of O(n2)?	
a) Insertion s	ort b) Qui	ck sort	c) Bubble sort	d) Merge sort	
Q.352) In a cir	cular linked list				
a) there	is no beginning and	no end.			
b) compo	onents are arranged	hierarchically.	n Mai	ntri A	
	rd and backward tra				
d) compo	onents are all linked	together in so	me sequential mani	ner.	
O 252) The	والمراجع والمراجع والمراجع والمراجع	V	da d		
a) Overflow	uick sort algorithm e b) Backtrack	0/ - /	design techniqu	d) Divide and Conquer	
a) Overnow	D) Backtiack	ing c) by	laithic programming	d) Divide and Conquer	
Q.354) The da	ata structure require	ed to check who	ether an expression	contains balanced parenthesis is	
a) Stack	- 7	Tree	d) Array		
Q.355) What	data structure woul	d you mostly li	kely see in a nonred	ursive implementation of a recursive	
algorithm?		V /- 7			
a) Trees	b) Linked list	c) Stack	d) Queue		
Q.356) The n	umber of leaf node	s in a complete	binary tree of dept	h d is	
a) 2d	b) 2d-1+1	c) 2d+1+1	d) 2d+1		
Q.357) The pr	e-order and post or	der traversal o	f a Binary Tree gene	erates the same output. The tree can h	nave
a) One node	b) Two nod	es c) Thre	ee nodes d) Ai	ny number of nodes	
Q.358) A bina	ry tree of depth "d"	' is an almost co	omplete binary tree	if	
a) Each le	eaf in the tree is eitl	ner at level "d"	or at level "d-1"		
·	y node "n" in the tr	ee with a right	descendent at level	"d" all the left descendents of "n" the	at
-	eaves are also at le	_			

d)	None of t	he above					
Q.359)	In a binar	y tree a sequ	ence of conse	cutive edg	es is called		
a) Path		b) Rotate	e c) Two	-way	d) Connecti	ing lines	
Q.360)	An adjace	ency matrix re	presentation	of a graph	cannot contair	n information of:	
a) node	es k) edges	c) parallel e	dges	d) direction	of edges	
Q.361)	is n	ot the operat	ion that can b	e perform	ed on queue.		
a) Trav	ersal	b) Retriev	val c)	Deletion	d) Inse	ertion	
Q.362)	A linear li	st in which th	e last node po	oints to the	e first node is		
		SI	ırira	ım	Man	tri 🛦	
a) singl	y linked li	V.				d) none of t	he above
-					the successive bly linked list		ne above
Q,364)	A ind	dicates the en	d of the list.				
a) Guar	d k) Sentinel	c) E <mark>nd</mark>	pointer	d) Last poin	iter	
-			ointing t <mark>o the</mark>				
a) head	l node	b) last no	ode c)	successo	r node c	d) predecessor no	ode
-	Indexing			t is not pos	ssible in linked l		
a) first		b) middle	e c) last		d) All (of the above	
Q.367)	A doubly	linked list has	s pointe	ers with ea	ch node.		
a) 0		b) 1	c)	2	d) 3		
Q.368 A	A linear lis	st in which ea	ch node has p	oint to the	predecessor a	nd successors no	des is called
a) singl	y linked li	st b) li	near linked lis	it c) doubly linked	list d) None of th	ne above
Q.369)	RLINK is t	he pointer po	ointing to the				
a) last r	node	b) h	ead node	c) succ	essor node	d) predeces	sor node

PG DAC Feb 20 Data Structure Question Bank

Q370) In a linked list, insertion can be done as.......

a)beginning b) middle c) end **d) all of the above**

Q.371 The link field of last node, in a singly link list representation is linked with

a) The data field of the first node

b) The link field of the first node

c) A null

d) The link field of the prior node

