

VTruST: Controllable value function based subset selection for Data-Centric Trustworthy AI

Soumi Das * 1,3, Shubhadip Nag * 1, Shreyyash Sharma 1, Suparna Bhattacharya ², Sourangshu Bhattacharya ¹

1. Indian Institute of Technology Kharagpur 2. AI Research Lab, Hewlett Packard Labs, Bengaluru, India

3. Max Planck Institute for Software Systems (MPI-SWS), Saarbrücken, Germany

Data Centric Trustworthy AI (DCTAI)

Research Goal

1. Trustworthy AI is mostly model centric [1,2].

- 2. Data centric AI aims to create high quality datasets by optimizing the error rate [7].
- Research question: Can we design a data centric approach for *implementing trustworthy AI?*
- 4. Research challenge:

Designing a "value function" capturing the value of a datapoint towards optimising trustworthiness metrics.

Designing a user controllable framework for providing weightage between the various metrics.

Contributions

We propose the framework **VTruST** that has 2 components:

General value function based framework for different **trustworthy metrics**: We propose the value functions for fairness and robustness that are used in our framework for approximation.

Algorithm for constructing high quality subsets: We pose the problem of data valuation as an **online sparse approximation** objective using Orthogonal Matching Pursuit(OMP). Our algorithm replaces selected datapoints with incoming ones on the fly, as long as they lead to a better approximation of the value function.

Difference with traditional OMP? OMP selects datapoints after parsing the entire dataset. Online OMP parses the selected set (a much smaller set) and the incoming datapoint over time to decide on replacement.

Image Datasets

Scientific Datasets

Methods

income stability tax of the line of the li

Controllable value function framework

Training set : $\mathcal{D}=\{d_i|i=1,2,..,N\}$; Validation set : $\mathcal{D}'=\{d_i'|j=1,2,..,M\}$

The value of a datapoint d_i at an epoch t can be attributed to its influence on the validation set D'.

[4] defined the value as the change in loss between epochs:

$$v_i^t(D') = l(\theta_t^{i-1}, D') - l(\theta_t^i, D') - \cdots$$
 Equation 1

The total value function can be written as:

function can be written as:
$$\mathcal{V}(\mathcal{D}') = \sum_{t=1}^T \sum_{i=1}^N v_i^t(\mathcal{D}')$$

$$= \mathcal{V}_a(\mathcal{D}') \text{ Value function for accuracy}$$

The cumulative value function till epoch t can be written as:

$$\overrightarrow{y}_t = \sum_{k=1}^t \sum_{i=1}^N v_i^k(D')$$

Goal : Find a subset $\mathcal{S} \subset D \mid |\mathcal{S}| < \omega$ that can approximate the above value function as:

$$\overrightarrow{y}_t \approx \sum_{d_i \in S_t \subseteq D} \alpha_i^t \left[\sum_{k=1}^t v_i^k(D') \right]$$

Using Taylor series expansion over Equation 1 and using SGD update, we can rewrite the above approximation as $\overrightarrow{y}_t \approx \sum_{i=1}^{\infty} \alpha_i^t [\sum_{k=1}^{i} X_i^k]$

 \vec{X}_i^k defines the feature of a datapoint d_i at epoch k which is derived from the expansion as:

$$\overrightarrow{X}_i^k = \nabla l(\theta_k^{i-1}, d_i)^T \nabla l(\theta_k^{i-1}, D') + \frac{(\nabla l(\theta_k^{i-1}, d_i)^T \nabla l(\theta_k^{i-1}, D'))^2}{2}$$

Challenge: Storing the features of all training datapoints over all epochs is prohibitively expensive.

Proposed solution: Online Sparse Approximation (OSA) method, **VTruST**, for solving the approximation problem: $\overrightarrow{y}_t \approx \sum_{i} \alpha_p^q \overrightarrow{X}_p^q$

The features \vec{X} are derived from the value function $\mathcal{V}(\mathcal{D}')$ that are defined for different trustworthy objectives.

Since we define additive value functions, we can combine them weighed by λ to construct different **user-controlled composite value** functions: $\mathcal{V}(\mathcal{D}') = \sum_f \lambda_f \mathcal{V}_f(\mathcal{D}')$

Value functions for trustworthy AI

Fairness value function

Let $x \in \mathcal{X}$ be the input domain, $\{y_0, y_1\} \in \mathcal{Y}$ be the true binary labels, $\{z_0, z_1\} \in \mathcal{Z}$ be the sensitive binary attributes.

Based on [3], equalised odds disparity (*ed*) is defined as the maximum difference in accuracy between sensitive groups preconditioned on the true labels:

$$ed(\theta, \mathcal{D}') = max(\|l(\theta, \mathcal{D}'_{y_0, z_0}) - l(\theta, \mathcal{D}'_{y_0, z_1})\|, \|l(\theta, \mathcal{D}'_{y_1, z_0}) - l(\theta, \mathcal{D}'_{y_1, z_1})\|)$$

We define the fairness value function as the change in equalised odds disparity:

$$\mathcal{V}_f(\mathcal{D}') = \sum_{t=1}^T \sum_{d_i \in \mathcal{D}} ed(\theta_t^i, \mathcal{D}') - ed(\theta_t^{i-1}, \mathcal{D}')$$

Robustness value function

We use various perturbations to create the augmented training \mathcal{D}_a and validation \mathcal{D}_a' sets.

The perturbations includes adding noise or several transformations.

The selected subset includes a mix of unaugmented and augmented datapoints that aim to optimise the robustness value function:

$$\mathcal{V}_r(\mathcal{D}_a') = \sum_{t=1}^T \sum_{d_i \in \{\mathcal{D} \cup \mathcal{D}_a\}} l(\theta_t^i, \mathcal{D}_a') - l(\theta_t^{i-1}, \mathcal{D}_a')$$

Controllable composite value functions

Accuracy-Fairness: $\mathcal{V}_{af}(\mathcal{D}') = \lambda \mathcal{V}_a(\mathcal{D}') + (1-\lambda)\mathcal{V}_f(\mathcal{D}')$ Accuracy-Robustness: $\mathcal{V}_{ar}(\mathcal{D}',\mathcal{D}'_a) = \lambda \mathcal{V}_a(\mathcal{D}') + (1-\lambda)\mathcal{V}_r(\mathcal{D}'_a)$

Robustness-Fairness: $\mathcal{V}_{rf}(\mathcal{D}',\mathcal{D}'_a) = \lambda \mathcal{V}_r(\mathcal{D}'_a) + (1-\lambda)\mathcal{V}_f(\mathcal{D}')$

AdultCensus

Online sparse approximation algorithm

Online OMP based algorithm adding datapoints sequentially till buffer is full followed by replacement of selected data with incoming ones.

Replacement criteria: Select the datapoints that contribute to a better approximation of the current value function $\vec{y_t}$

Controlling error rate / accuracy and fairness on social data

Wholedata-	ER ±std	Disp ±std 0.19	Disp ±std 0.13	 Measuring error rate (ER) and fairness metrics (EO Disp and DP Disp) after training on 60% subsets.
ST	± 0.002 0.19	±0.06 0.16	± 0.06 0.13	• UTruCT E performs the closest to Whole Data in terms
Random	±0.002	± 0.05	± 0.05	 VTruST-F performs the closest to Whole Data in terms of utility and the best in terms of fairness.
SSFR [5]	0.21 ± 0.001	0.18 ± 0.03	0.12 ± 0.01	or definely date the best in terms or fair ness.
Fair- [2] Dummies	0.16 ± 0.002	0.14 ± 0.01	0.10 ±0.01	
Fair- [6] Mixup	$0.24 \\ \pm 0.04$	0.11 ±0.05	$0.1 \\ \pm 0.02$	Adult Census - Error Rate vs Fairness
VTruST-F	0.18 ± 0.001	$0.11 \\ \pm 0.03$	$0.05 \\ \pm 0.01$	0.30
	r A	netrics acro Accuracy-Fa VTruST-F ca	oss different irness value n achieve lo	weightage of λ in e function. Wholedata-ST Fair Dummies Random:60% SSFR:60% $\lambda = 1$ λ

Post hoc explanations through data centric analysis

[1] Wang et al. "Augmax: Adversarial composition of random augmentations for robust training." NeurIPS 2021. [6] Chuang et al., "Fair mixup: Fairness via interpolation." ICLR 2021

[2] Romano, Yaniv, et al., "Achieving equalized odds by resampling sensitive attributes." NeurIPS 2020.

VTruST-F which anyway has relatively lower

CF-gap contains a diverse set of samples.

with similar attribute values.

[3] Roh et al. "Fairbatch: Batch selection for model fairness." ICLR 2021. [8] Garg et al. "Counterfactual fairness in text classification through robustness." AAAI, AI, Ethics, and Society. 2019

[4] Pruthi et al. "Estimating training data influence by tracing gradient descent." NeurIPS 2020. [5] Roh et al. "Sample selection for fair and robust training." NeurIPS 2021.

soumidas@mpi-sws.org soumi-das <u>https://soumidas.github.io/</u>

Husb

UnM

Wife

OC

NIF

 D_8

 D_9

[7] Paul, et al., "Deep learning on a data diet: Finding important examples early in training." NeurIPS 2021.

 D_5

 D_6

 D_7

 D_8

 D_9

OC

Husb

US

US

US

US

Col DE

M F F

AIE W

US