

课程大纲

- Chapter 1. Introduction of Networking
 - Chapter 1, 2
- Chapter 2. Direct Link Networks
 - Chapter 15, 16, 17
- Chapter 3. Packet Switching Networks
 - Chapter 10, 11, 12
- Chapter 4. Internetworking
 - Chapter 18, 19, 21
- Chapter 5. End-to-End Protocols
 - Chapter 22
- Chapter 6. Congestion Control and QoS
 - Chapter 13, 20, Reference book
- Chapter 7. Network Security
 - Chapter 23, 24
- Chapter 8. Internet Applications
 - Reference book

Chapter 4. Internetworking

- The Internet Protocol
- IP Address
- ARP and DHCP
- ICMP
- IPv6
- Mobile IP
- Internet Routing
- BGP and OSPF
- IP Multicasting
- Multiprotocol Label Switching (MPLS)

<u>Internetworkina</u>

- IP Internet Protocol
 - Most famous internet protocol developed for ARPANET
 - RFC 791, Internet STD number 5
- IP layer entity resides on each host and router
- Provides connectionless service (i.e. datagram mechanism)

The Internet Network layer

Host, router network layer functions

- Addressing level
- Addressing scope
- Addressing mode

- Physical network address
 - Used to route PDU within single physical network
- Inter-network address
 - IP address or internet address, used to route PDU across networks
 - Unique address for each end system (host) and each intermediate system (router)
- Application address
 - Process identifier assigned at destination host
 - i.e. TCP/IP port

Addressing Scope

Global address

- Identifies host or router with global non-ambiguity
- Synonyms permitted, i.e. a router may have more than one global address

Network attachment address

- Unique address for each device interface on specific network
- e.g. MAC address on IEEE 802 network or ATM host address

Port address

- Above network level and unique within a system (router or host)
- e.g. port 80 web server listening port on TCP/IP
- Need not be unique outside the single system

- Individual or Unicast address
 - Address referring to a single system or port
- Broadcast address
 - For all entities within a domain
- Multicast address
 - For specific subset of entities
- Anycast address
 - Any (suitable) entity within a subset

- Routing
- Datagram lifetime
- Fragmentation and re-assembly
- Error control
- Flow control

The Internet as a Network

(a) Packet-switching network architecture

(b) Internetwork architecture

Routing

- Hosts and routers maintain routing tables
 - Indicate next router to which datagram should be sent
 - Static may contain alternative routes
 - Dynamic flexible response to congestion and errors
- Routing policy
 - Distance vector, Link state, Path vector
- Source routing
 - Source specifies route as sequential list of routers to be followed
- Route recording

Datagram Lifetime

- Datagrams may loop indefinitely
 - Routing based on obsolete networks information
 - TCP needs upper bound on datagram life
- Datagram marked with lifetime
 - Time To Live (TTL) field in IP
 - Once lifetime expires, datagram is discarded instead of forwarded
- Types of lifetime
 - Hop count Decrement TTL on passing through each router

Fragmentation and Re-assembly

- Length of a packet exceeds the coming network's MTU (maximum transmission unit)
- When to fragment
 - Host determine min of MTUs along the path
 - Router fragment if the next MTU is exceeded
- When to re-assemble
 - Host Packets getting smaller as data traverses internet
 - Router infeasible since fragments may take different routes

IP Fragmentation (1)

IPv4 fragments at router

One datagram becomes several datagrams

IP header bits used to identify order related fragments

IP re-assembles at destination only

- Data Unit Identifier (ID)
 - Identifies end system originated datagram, also needs:
 - Source and destination address, Upper layer (e.g. TCP)
- Data length
 - Length of user data in octets including header
- Offset
 - Position of fragment of user data in original datagram
 - In multiples of 64 bits (i.e. 8 octets)
- More flag
 - Indicates that this is not the last fragment

Example

- 4000 octets datagram
 (3980 data + 20 header)
- MTU = 1500 octets

length	ID	moreflag	offset	
=4000		_	=0	

One large datagram becomes several smaller datagrams

Datagram Re-assembly

- Must prepare enough buffer space at reassembly point
- As fragments with the same ID arrive, data are inserted in proper position in the buffer
 - Use Length and Offset header fields
 - Use More flag to determine if end fragment arrived
- Until entire data field is reassembled
 - Starting with an Offset of 0 and ending with a false
 More flag

Dealing with Failure

- Re-assembly may fail if some fragments get lost
- Re-assembly time out
 - Assigned when first fragment arrived
 - If timeout expires before all fragments arrive, discard partial data
- Use packet lifetime (TTL in IP)
 - Decrement with each fragment
 - If TTL runs out, kill partial data
- IPv6 use source fragmentation

Error Control

- Not guaranteed delivery
- Router should attempt to inform source if packet discarded
 - e.g. for checksum failure, TTL expiring
 - Datagram identification needed
- ICMP used to send error message
- Source may inform higher layer protocol

Flow Control

- Allows routers to limit rate of incoming data
 - Limited control functions in connectionless systems
 - New mechanisms coming soon
- Router discards incoming packets when buffer saturates
 - May send source quench packets to sending host
 - Using ICMP

IPv4 Header

- Version (4 bits)
 - Currently 4
 - IPv6 see later
- Internet header length (4 bits)
 - In 32 bit words (4 octets)
 - Minimum fixed header (20 octets) + options
- Type of service (8 bits)
 - Precedence
 - 3 bits, 8 levels defined
 - Reliability
 - 1 bit, Normal or high
 - Delay
 - 1 bit, Normal or low
 - Throughput
 - 1 bit, Normal or high

- Of datagram, in octets
- Identification (16 bits)
 - Sequence number
 - Used with addresses and user protocol to identify datagram uniquely
- Flags (3 bits)
 - More flag, Don't fragment
- Fragmentation offset (13 bits)
- Time to live (8 bits)
- Protocol (8 bits)
 - Next higher layer to receive data field at destination

Header Fields (3)

- Version IHL Type of Service Total Length

 Identification Flags Fragment Offset

 Time to Live Protocol Header Checksum

 Source Address

 Destination Address

 Options + Padding
- Header checksum (16 bits)
 - Complement sum of all 16 bit words in header
 - Reverified and recomputed at each router, set to 0 during calculation
- Source address (32 bits)
- Destination address (32 bits)
- Options (variable ≤ 40 octets)
- Padding (variable)
 - To fill to multiple of 32 bits long

Data Field

- Carries user data from next layer up
- Multiple of 8 bits long (i.e. octet)
- Max length of datagram (header + data) 65,535 octets

IP Primitives

2 primitives

- Send (called by upper layer)
 - Request transmission of data unit
- Deliver (notify upper layer)
 - Notify user of arrival of data unit
- Parameters
 - Used to pass data and control info

IP Addressing (1)

IP address

- 32 bit global internet address for each interface
- Network part (high order bits)
- Host part (low order bits)
- Physical network (from IP perspective)
 - Can reach each other without intervening router

Count the Physical Networks

IP Address

- A separate address is required for each physical interface of a host/router to a network
 - Facilitates routing
- Use Dotted-Decimal Notation
- netid unique & administered by
 - American Registry for Internet Numbers (ARIN)
 - Reseaux IP Europeens (RIPE)
 - Asia Pacific Network Information Centre (APNIC)
- hostid assigned within designated organization

0 Network (7 b	pits)	Host (24 bits)		
1 0	Network (14 bits)	Host ((16 bits)	Class B
1 1 0	Network (21	bits)	Host (8 bits)	Class C
1 1 1 0		Multicast		Class D
1 1 1 1 0		Future Use		Class E

IP Addresses – Class A

0 Network (7 bits)

Host (24 bits)

Class A

- Start with binary 0
- Reserved netid
 - All 0 reserved
 - 01111111 (127) reserved for loopback
- Range 1.x.x.x to 126.x.x.x
- Up to 16 million hosts
- All allocated

A类地址:

首位为0;

支持27-2=126个网段;

每个网段支持主机数为224-2

=16777214(全0和全1的地址要扣除,

全0是网络号,全1是广播号)

127.*.*.*: 回环测试,用于测试本地网卡。127.0.0.1 "localhost"

1 0

Network (14 bits)

Host (16 bits)

Class B

- Start with 10
- Range 128.0.x.x to 191.255.x.x
- Second Octet also included in network address
- 2¹⁴ = 16,384 class B networks
- Up to 65,000 (=2¹⁶-2) hosts
- All allocated

- Start with 110
- Range 192.0.0.x to 223.255.255.x
- Second and third octet also part of network address
- $2^{21} = 2,097,152$ networks
- Up to 254 (=28-2) hosts
- Nearly all allocated

Inter-Networks with Addresses

Subnets and Subnet Masks

- Handle problem of network address inadequacy
- Host portion of address partitioned into subnet number and host number
 - Subnet mask indicates which bits are subnet number and which are host number
 - Each LAN assigned a subnet number, more flexibility
 - Local routers route within subnetted network
- Subnets looks to rest of internet like a single network
 - Insulate overall Internet from growth of network numbers and routing complexity

Routing Using Subnets (1)

IP Address: 192.228.17.97

Host number: 1

Routing Using Subnets (2)

(a) Dotted decimal and binary representations of IP address and subnet masks

	Binary Representation	Dotted Decimal
IP address	11000000.11100100.00010001.00111001	192.228.17.57
Subnet mask	11111111.111111111.111111111.11100000	255.255.255.224
Bitwise AND of address and mask (resultant network/subnet number)	11000000.11100100.00010001.00100000	192.228.17.32
Subnet number	11000000.11100100.00010001.001	1
Host number	00000000.000000000.00000000.00011001	25

(b) Default subnet masks

	Binary Representation	Dotted Decimal
Class A default mask	11111111.00000000.00000000.00000000	255.0.0.0
Example Class A mask	11111111.11000000.00000000.00000000	255.192.0.0
Class B default mask	11111111.111111111.00000000.00000000	255.255.0.0
Example Class B mask	11111111.11111111.11111000.00000000	255.255.248.0
Class C default mask	11111111.111111111.11111111.00000000	255. 255. 255.0
Example Class C mask	11111111.111111111.11111111.11111100	255. 255. 255.252

CIDR Notation

- Classless Inter Domain Routing (CIDR)
 - An IP address is represented as "A.B.C.D/n", where n is called the IP (network) prefix

IP Address	10 . 217 . 123 . 7 00001010 11011001 01111011 00000111
Subnet	255 . 255 . 240 . 0 11111111 11111111 11110000 00000000
Network ID	00001010 11011001 01110000 00000000
CIDR	10.217.112.0/20

- An ISP can be looked as a set of subnets
 - Support many organizations (Intranets)
 - Hierarchical addressing

ISP's block	11001000	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	11001000	00010111	00010000	00000000	200.23.16.0/23
Organization 1	<u>11001000</u>	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	<u>11001000</u>	00010111	<u>0001010</u> 0	00000000	200.23.20.0/23
•••				• • • • •	
Organization 7	<u>11001000</u>	00010111	00011110	00000000	200.23.30.0/23

Route Aggregation

Allows efficient advertisement of routing information

Network Address Translation

NAT

- Enables different sets of IP addresses for internal and external traffic
- The IP address translations occur where the Intranet interfaces with the broader Internet

Purposes

- Acts as a firewall by hiding internal IP addresses
- Enables an enterprise (organization) to use more internal IP addresses
- Isolate the (organization / ISP) changes

Overloading Global Address

Network Address Translation

2 Types of NAT

- Static NAT
 - A private IP address is mapped to one reserved public IP address
 - Usually for server hosts in Intranet
- Dynamic NAT
 - The NAT router keeps a pool of registered IP addresses, and assign to private IP addresses on demand
 - Usually for client PCs in Intranet

- Addresses changes from time to time
 - E.g. must be taken into account by P2P applications
- Relaying in Skype
 - NATed supernodes establishes connection to relay
 - External client connects to relay
 - Relay bridges packets between 2 connections

3. relaying established

1. connection to relay initiated by NATed host

138.76.29.7 NAT router

- IP Operations
- IPv4包头格式
- IP地址及分配(A类,B类,C类)
 - 子网掩码
- NAT原理