DS 598 Introduction to RL

Xuezhou Zhang

Chapter 5: Policy-based RL (continued)

The REINFORCE algorithm

- 1. Initialize θ_0
- 2. For iteration t = 0,...,T
 - 1) Run π_{θ_t} and collect trajectories τ_1, \dots, τ_n
 - 2) Estimate the PG by

$$g_t = \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h}|s_{i;h}) R(\tau_i) \right]$$

3) Do SGD update $\theta_{t+1} = \theta_t + \alpha_t g_t$

The REINFORCE algorithm

• Pros:

- ✓ Convergence
- ✓ Conceptually simple

• Cons:

- Only works with stochastic policies
- On-policy -> Sample inefficient
- ightharpoonup High Variance $\mathbb{E}\left[\left|\left|g_t \nabla_{\theta}J(\pi_{\theta})\right|\right|_2^2\right]$

High Variance

• $\mathbb{E}\left[\left|\left|g_t - \nabla_{\theta}J(\pi_{\theta})\right|\right|_2^2\right]$ can be up to $(1 - \gamma)^3$.

$$g_t = \frac{1}{n} \sum_{i=1}^n \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h} | s_{i;h}) R(\tau_i) \right]$$

Reducing Variance
$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_h | s_h) R(\tau) \right]$$

• Key Observation: $\mathbb{E}_{a \sim \pi(s)} \left[\nabla_{\theta} \log \pi(a|s) f(s) \right] = 0$

• Therefore,
$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{h}|s_{h}) \sum_{i=0}^{\infty} \gamma^{h} r(s_{i}, a_{i}) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{h}|s_{h}) \sum_{i=h}^{\infty} \gamma^{h} r(s_{i}, a_{i}) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{h}|s_{h}) Q^{\pi_{\theta}}(s_{h}, a_{h}) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{h}|s_{h}) \left(Q^{\pi_{\theta}}(s_{h}, a_{h}) - b(s_{h}) \right) \right]$$

Reducing Variance

• A "good" baseline: $b(s) = V^{\pi_{\theta}}(s)$.

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_h | s_h) \left(Q^{\pi_{\theta}}(s_h, a_h) - b(s_h) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_h | s_h) \left(Q^{\pi_{\theta}}(s_h, a_h) - V^{\pi_{\theta}}(s_h) \right) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_h | s_h) A^{\pi_{\theta}}(s_h, a_h) \right]$$

Advantage function: $A^{\pi}(s, a) = Q^{\pi}(s, a) - V^{\pi}(s)$

Reducing Variance

• Sure, but how do we estimate $A^{\pi_{\theta}}(s, a)$?

• Estimate $V^{\pi_{\theta}}(s)$ using TD-learning.

$$\hat{V}^{\pi} = \underset{f}{\operatorname{arg\,min}} \sum_{i=1}^{N} \sum_{h=1}^{H} \left[f(s_{i;h}) - (r_{i;h} + \gamma r_{i;h+1} + \gamma^2 r_{i;h+2} + \dots +) \right]^2$$

• Then, $A^{\pi_{\theta}}(s_h, a_h) \approx r_{i;h} + \gamma r_{i;h+1} + \gamma^2 r_{i;h+2} + ... - \hat{V}^{\pi}(s_{i;h})$

This is the so-called Advantage Actor-Critic (A2C) algorithm.

The A2C algorithm

- 1. Initialize θ_0
- 2. For iteration t = 0,...,T
 - 1) Run π_{θ_t} and collect trajectories τ_1, \dots, τ_n
 - 2) Update Critic: $\hat{V} = \operatorname*{arg\,min}_{f} \sum_{i=1}^{N} \sum_{h=1}^{H} \left[f(s_{i;h}) (r_{i;h} + \gamma r_{i;h+1} + \gamma^2 r_{i;h+2} + ...+) \right]^2$
 - 3) Estimate the PG by

$$g_t = \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h}|s_{i;h}) (R(s_{i;h}, a_{i;h}) - \hat{V}(s_{i;h})) \right]$$

4) Do SGD update $\theta_{t+1} = \theta_t + \alpha_t g_t$

The A2C algorithm

• Pros:

- ✓ Convergence
- ✓ Conceptually simple
- ✓ Low PG Variance

• Cons:

- lacktriangleOnly works with stochastic policies $\nabla_{\theta}J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}}\left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_h|s_h)R(\tau)\right]$
- On-policy -> Sample inefficient

Can we make use of off-policy data?

importance sampling $E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$ $= \int \frac{q(x)}{q(x)} p(x) f(x) dx$ $= \int q(x) \frac{p(x)}{q(x)} f(x) dx$ $=E_{x\sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$

IS-based Off-Policy Policy Gradient

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{h=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{h}|s_{h}) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta'}} \left[\frac{p_{\theta}(\tau)}{p_{\theta'}(\tau)} \sum_{h=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{h}|s_{h}) R(\tau) \right]$$

$$= \mathbb{E}_{\tau \sim \pi_{\theta'}} \left[\prod_{h=0}^{\infty} \frac{\pi_{\theta}(a_{h}|s_{h})}{\pi_{\theta'}(a_{h}|s_{h})} \sum_{h=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{h}|s_{h}) R(\tau) \right]$$

Exponentially large -> blows up the variance

The IS-PG algorithm

• Pros:

- ✓ Convergence
- ✓ Conceptually simple
- ✓ Low PG Variance
- ✓ Can be off-policy

• Cons:

Only works with stochastic policies

Deterministic Policy Gradient Theorem

• Deterministic Policy: $a = \pi_{\theta}(s)$

Deterministic Policy Gradient Theorem

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim d^{\pi_{\theta}}} \left[\nabla_{\theta} \pi(s) \nabla_{a} Q^{\pi_{\theta}}(s, \pi_{\theta}(a)) \right]$$

Deterministic Policy Gradient Theorem

• How to learn $Q^{\pi_{\theta}}$?

• For stochastic policies: $Q^{\pi}(s_t, a_t) = \mathbb{E}_{r_t, s_{t+1} \sim E} \left[r(s_t, a_t) + \gamma \mathbb{E}_{a_{t+1} \sim \pi} \left[Q^{\pi}(s_{t+1}, a_{t+1}) \right] \right]$

• For deterministic policies: $Q^{\mu}(s_t, a_t) = \mathbb{E}_{r_t, s_{t+1} \sim E} \left[r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1})) \right]$

Can do off-policy learning!

Deep Determinisitic Policy Gradient (DDPG)

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set
$$y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$$

Update critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i - Q(s_i, a_i | \theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J = \underbrace{\frac{1}{N} \sum_{i} \nabla_{\theta} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}}_{\text{technically wrong}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for