CÁLCULO EM VÁRIAS VARIÁVEIS :: PROVA 02

PROF. TIAGO MACEDO

Nome:	Assinatura:	RA:
Questão 1 (5 pontos). Consider	ce o seguinte algoritmo:	
Input: $F: \mathbb{R}^2 \to \mathbb{R}, (a, b) \in \mathbb{R}^2$	2	
if F não for contínua em (a,b)) then	
\lfloor print "F não é diferenciáve	el, porque não é contínua	em (a,b) ";
else if $F_x(a,b)$ ou $F_y(a,b)$ $n\tilde{a}a$	o existirem then	
\lfloor print "F não é diferenciáve	el, porque o gradiente de	F em (a,b) não existe";
else if F_x e F_y forem contínuo		
\lfloor print " F é diferenciável em	(a,b)";	
else		
Calcule $z(x,y) = F(a,b) +$	$F_x(a,b)(x-a) + F_y(a,b)$	(y-b);
if $\lim_{(x,y)\to(a,b)} \frac{F(x,y)-z(x,y)}{\sqrt{(x-a)^2+(y-b)^2}}$	$\frac{1}{ x ^2} \neq 0$ then	
∟ print "F não é diferenci	iável em (a, b) , porque o	limitão não é 0";
•		

Rode o algorítmo acima para as funções a seguir e indique a saída.

print "F é diferenciável em (a, b)".

(a)
$$F(x,y) = \begin{cases} \frac{x^3-y^2}{x^2+y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$
 Saída: F não é diferenciável, porque não é contínua em (a,b) .

(b) $F(x,y) = \sqrt{x^2 + y^2}$. Saída: F não é diferenciável, porque o gradiente de F em (a,b) não existe.

(c)
$$F(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$
 Saída: F é diferenciável em (a,b) .

(c)
$$F(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$$
 Saída: F é diferenciável em (a,b) .

(d) $F(x,y) = \begin{cases} \frac{y^3}{x^2+y^2}, & \text{se } (x,y) \neq (0,0), \\ 0, & \text{se } (x,y) = (0,0). \end{cases}$ Saída: F não é diferenciável em (a,b) , porque o limitão não é 0 .

(e)
$$F(x,y)=\begin{cases} (x^2+y^2)\sin\left(\frac{1}{x^2+y^2}\right), & \text{se } (x,y)\neq (0,0),\\ 0, & \text{se } (x,y)=(0,0). \end{cases}$$
 Saída: F é diferenciável em $(a,b).$

Data: 24 de abril de 2019.

Questão 2 (2 pontos). Considere uma superfície em \mathbb{R}^3 cuja altura em relação ao nível do mar é, em cada ponto $(x,y) \in \mathbb{R}^2$ é dada pela função $H(x,y) = \operatorname{sen}(x) \cos(y)$ (onde o eixo x indica o Leste e o eixo y indica o Norte). Se chover sobre essa superfície, em cada ponto onde a chuva cair, ou ela vai correr em alguma direção, ou ela vai ficar parada. Encontre os pontos $(a,b) \in \mathbb{R}^2$ com $0 < a,b < 2\pi$, nos quais a chuva vai:

- (a) Ficar parada.
- (b) Correr em direção ao Leste.

Observe que, em cada ponto $(a,b) \in \mathbb{R}^2$, a chuva vai correr na direção em que a inclinação da montanha for maior (para baixo), ou seja, na direção que a altura da montanha H(x,y) decrescer mais. Agora, lembre que, dado um ponto $(a,b) \in \mathbb{R}^2$, a derivada direcional na direção $v \in \mathbb{R}^2$, ||v|| = 1, nos dá a taxa de variação de H na direção de v: $D_v H(a,b) \in \mathbb{R}$. Além disso, como H é diferenciável, $D_v H(a,b) = \nabla H(a,b) \cdot v$ é máxima (resp. mínima) quando $v = \frac{\nabla H(a,b)}{\|\nabla H(a,b)\|}$ (resp. $v = -\frac{\nabla H(a,b)}{\|\nabla H(a,b)\|}$). Assim, para cada ponto $(a,b) \in \mathbb{R}^2$, a água vai correr na direção $v = -\frac{\nabla H(a,b)}{\|\nabla H(a,b)\|}$.

(a) Usando o argumento acima, a água vai ficar parada se, e somente se, $\nabla H(a,b) = (0,0)$. Explicitamente, temos que ter:

$$0 = H_x(a, b) = \cos(a)\cos(b)$$
 e $0 = H_y(a, b) = -\sin(a)\sin(b)$.

Da primeira equação, segue que $a \in \{\frac{\pi}{2}, \frac{3\pi}{2}\}$ ou $b \in \{\frac{\pi}{2}, \frac{3\pi}{2}\}$, e da segunda equação, segue que $a \in \{0, \pi, 2\pi\}$ ou $b \in \{0, \pi, 2\pi\}$. Agora, observe que, se $a \in \{\frac{\pi}{2}, \frac{3\pi}{2}\}$, então $a \notin \{0, \pi, 2\pi\}$, logo temos que ter $b \in \{0, \pi, 2\pi\}$. Analogamente, se $b \in \{\frac{\pi}{2}, \frac{3\pi}{2}\}$, então $b \notin \{0, \pi, 2\pi\}$, logo temos que ter $a \in \{0, \pi, 2\pi\}$. Juntando esses dois casos, nós concluimos que os pontos onde a chuva fica parada são:

$$\left(\frac{\pi}{2}, 0\right), \left(\frac{\pi}{2}, \pi\right), \left(\frac{\pi}{2}, 2\pi\right), \left(\frac{3\pi}{2}, 0\right), \left(\frac{3\pi}{2}, \pi\right), \left(\frac{3\pi}{2}, 2\pi\right),$$

$$\left(0, \frac{\pi}{2}\right), \left(\pi, \frac{\pi}{2}\right), \left(2\pi, \frac{\pi}{2}\right), \left(0, \frac{3\pi}{2}\right), \left(\pi, \frac{3\pi}{2}\right), \left(2\pi, \frac{3\pi}{2}\right).$$

(b) Usando o argumento acima, concluimos que a água vai correr na direção Leste quando $-\frac{\nabla H(a,b)}{\|\nabla H(a,b)\|}=(1,0)$. Explicitamente, temos que ter:

$$-\|\nabla H(a,b)\| = H_x(a,b) = \cos(a)\cos(b)$$
 e $0 = H_y(a,b) = -\sin(a)\sin(b)$.

Da primeira equação, segue que $\cos(a)\cos(b) < 0$, e da segunda equação, segue que $a \in \{0, \pi, 2\pi\}$ ou $b \in \{0, \pi, 2\pi\}$.

Vamos estudar cada um dos casos separadamente. Primeiro, observe que, se $a \in \{0, 2\pi\}$, temos que $\cos(a) = 1 > 0$. Logo, nesses casos, segue da primeira equação que $\cos(b) < 0$, ou seja, $\frac{\pi}{2} < b < \frac{3\pi}{2}$. Agora, se $a = \pi$, temos que $\cos(a) = -1 < 0$. Logo, nesse caso, segue da primeira equação que $\cos(b) > 0$, ou seja, $0 < b < \frac{\pi}{2}$ ou $\frac{3\pi}{2} < b < 2\pi$.

Analogamente, se $b \in \{0, 2\pi\}$, temos que $\cos(b) = 1 > 0$. Logo, nesses casos, segue da primeira equação que $\cos(a) < 0$, ou seja, $\frac{\pi}{2} < a < \frac{3\pi}{2}$. Agora, se $b = \pi$, temos que $\cos(b) = -1 < 0$. Logo, nesse caso, segue da primeira equação que $\cos(a) > 0$, ou seja, $0 < a < \frac{\pi}{2}$ ou $\frac{3\pi}{2} < a < 2\pi$.

Juntando todos esses casos, concluimos que o conjunto de pontos onde a água corre para Leste é:

$$\left\{ (0,b) \mid \frac{\pi}{2} < b < \frac{3\pi}{2} \right\} \cup \left\{ (\pi,b) \mid -\frac{\pi}{2} < b < \frac{\pi}{2} \right\} \cup \left\{ (2\pi,b) \mid \frac{\pi}{2} < b < \frac{3\pi}{2} \right\}$$

$$\cup \left\{ (a,0) \mid \frac{\pi}{2} < a < \frac{3\pi}{2} \right\} \cup \left\{ (a,\pi) \mid -\frac{\pi}{2} < a < \frac{\pi}{2} \right\} \cup \left\{ (a,2\pi) \mid \frac{\pi}{2} < a < \frac{3\pi}{2} \right\}.$$

Questão 3 (3 pontos). Suponha que a Unifesp tenha 6π m^2 de um super-papelão disponível para produzir uma lixeira-modelo. Por questões estruturais, essa lixeira-modelo deverá ter formato cilíndrico, com raio da base igual a $r \ge 0$, altura igual a $h \ge 0$, e sem tampa. Determine o maior volume da lixeira-modelo que pode ser construida com parte (ou todo) esse super-papelão.

Nosso objetivo é maximizar a função $V(h,r)=\pi h r^2$, restrita a condição $A(h,r)=\pi r^2+2\pi h r<6\pi$.

Primeiro observe que $\nabla V(h,r) = (\pi r^2, 2\pi hr) = (0,0)$ se, se somente se, r=0. Nesse caso, V(h,0)=0 para todo $h\geq 0$. Como $V(1,1)=\pi>0$ e $A(1,1)=3\pi<6\pi$, então os pontos da forma (h,0) com $h\geq 0$ não são de máximo para V. Isso significa que a função V não tem pontos de máximo no conjunto $\{(h,r)\in\mathbb{R}^2\mid \pi r^2+2\pi hr<6\pi\}$.

Porém, como o conjunto $\{(h,r) \in \mathbb{R}^2 \mid \pi r^2 + 2\pi hr \leq 6\pi\}$ é compacto (limitado e fechado), o Teorema de Weierstrass implica que V deve ter ao menos um ponto de máximo global nesse conjunto. Como, pelo parágrafo anterior, este ponto de máximo não pertence ao interior, ele deve pertencer à fronteira: $\{(h,r) \in \mathbb{R}^2 \mid A(h,r) = \pi r^2 + 2\pi hr = 6\pi\}$.

Usando multiplicadores de Lagrange para calcular os pontos de máximo e mínimo de V restrita ao conjunto $\{(h,r)\in\mathbb{R}^2\mid A(h,r)=6\pi\}$, temos que ter

$$\nabla V(h,r) = \lambda \nabla A(h,r),$$
 para algum $\lambda \in \mathbb{R}$.

Explicitamente, temos:

$$(\pi r^2, 2\pi hr) = (\lambda 2\pi r, \lambda 2\pi (r+h))$$
 e $\pi r^2 + 2\pi hr = 6\pi$.

Como $r \neq 0$, temos que:

$$r = 2\lambda$$
, $hr = \lambda(r+h)$, $r^2 + 2hr = 6$.

Consequentemente, $\lambda > 0$ e temos que:

$$r = 2\lambda, \qquad h = 2\lambda, \qquad 12\lambda^2 = 6.$$

Daí concluimos que $r=h=\sqrt{2}$ e que $V(\sqrt{2},\sqrt{2})=2\pi\sqrt{2}\,m^3$ é o volume máximo.