Lemma 4.6. Let A be the generator of a positive group on a Banach lattice E which has order continuous norm. Given $\mu \in \rho(A) \cap \mathbb{R}$ then every $g \in E_{\mathbb{R}}$ is representable as sum of two elements g_1 and g_2 such that

- (a) $g \ge 0$ if and only if both g_1 and g_2 are positive;
- (b) $R(\mu, A)g_1 = (R(\mu, A)g)^+$;
- (c) $R(\mu,A)g_2 = -(R(\mu,A)g)^{-}$.

We need another lemma. It can be formulated for arbitrary positive semigroups on Banach lattices.

<u>Lemma</u> 4.7. Let $(T(t))_{t\geq 0}$ be a positive semigroup on a Banach lattice E with generator A . Given $\mu \in \rho(A) \cap \mathbb{R}$ and $h \in E_+$ then the following assertions are equivalent:

- (i) $R(\mu,A)h \ge 0$;
- (ii) $\{\int_0^t e^{-\mu s} T(s) h \ ds : t \in \mathbb{R}_+ \}$ is bounded in E .

Proof. (i) \rightarrow (ii): We have $\int_0^t e^{-\mu s} T(s) h \ ds = (Id - e^{-\mu t} T(t)) R(\mu, A) h \quad (see A-I, (3.2)).$ Since $R(\mu, A) h \geq 0$ and T(t) is a positive operator we obtain $\int_0^t e^{-\mu s} T(s) h \ ds = R(\mu, A) h - e^{-\mu t} T(t) R(\mu, A) h \leq R(\mu, A) h \quad \text{which implies assertion (ii)}.$

(ii) +(i): The assumption implies that $\int_0^\infty e^{-\nu s} T(s) h \ ds := \lim_{t\to\infty} \int_0^t e^{-\nu s} T(s) h \ ds \ exists for \ \nu > \mu \ .$ Using that A is a closed operator it follows that $(\nu - A) \left(\int_0^\infty e^{-\nu s} T(s) h \ ds \right) = h \ .$ For ν sufficiently close to μ such that $\nu \in \rho(A) \cap \mathbb{R}$ we have $R(\nu,A) h = \int_0^\infty e^{-\nu s} T(s) h \ ds \ge 0$. By continuity we conclude $R(\mu,A) h \ge 0$.

By now we are prepared to prove the spectral decomposition for positive groups. Before we formulate the theorem we recall the following consequence of Thm.4.2: For any $\mu \in \rho(A) \cap \mathbb{R}$ the line $\mu + i \mathbb{R}$ is a subset of the resolvent set and divides $\sigma(A)$ into disjoint sets. Both sets will be unbounded in general.

Theorem 4.8. Let $(T(t))_{t \in \mathbb{R}}$ be strongly continuous group of positive operators on a Banach lattice E with order continuous norm.

If A is the generator and $\mu \in \rho(A) \cap \mathbb{R}$ then $I_{\mu} := \{ f \in E : R(\mu,A) \mid f \mid \geq 0 \} \text{ and } J_{\mu} := \{ f \in E : R(\mu,A) \mid f \mid \leq 0 \}$ are $(T(t))_{+ \in \mathbb{R}}$ -invariant projection bands, the direct sum of them