Losing Market Dominance in a Growing Industry: BYD Company and Electric Vehicles in China

Victor Aguirregabiria, Yiran Hao & Yu Hao

University of Toronto, Xi'an Jiaotong University & The University of Hong Kong

2022 DSE Conference, Australian National University

1/32AHH (2022) BYD's Market Shares

BYD Company

▷ One of China's largest car manufacturers & the world's leading EV producers

Figure: The global EV market: 2010-2019

Leading manufacturers in terms of cumulative global light-duty electric vehicle sales 2010-2019. Note: Based on EV-volumes (2020).

Figure Source: Jin. et al.(2021)

BYD's Market Position

- ▶ Production bases: Shenzhen, Beijing, **Xi'an**, Shanghai and Changsha
- Strength:
 - ♦ Technological superiority & cost advantage: developing, designing, and producing batteries on its own Global leading battery suppliers

AHH (2022) BYD's Market Shares 3/32
 Motivation
 Overview
 Decomposition
 Empirical Results
 Conclusion

 00 ● 00
 00
 00
 0000
 0000

Trends in Chinese EV market

- National / Local consumer EV mileage-based subsidy phasing out
 National and Local Subsidy
- 2. Entrant of the "new forces": XPeng, Li, NIO VEV Characteristics Evolution
- 3. Incumbent firms introduce EV brands.
- 4. The "Drivabilities" and prices of EVs and ICEVs are getting closer.

AHH (2022) BYD's Market Shares 4/32

Motivation 000•0

BYD's decline in market shares

Research Question

- What are the contributions of each factor to explain the evolution of market shares and prices of
 - changes in competitions among incumbents firms
 - o entries of new firms
 - marginal cost, demand shocks
 - subsidy
 - consumer type
- ▶ How do the incumbent firms respond to the changes in competition?

AHH (2022) BYD's Market Shares 6/32

 Overview
 Decomposition
 Empirical Results
 Conclusion

 ●00
 00
 00000
 0000

Data

- ▶ The Department of Motor Vehicles in the Xi'an city (Jan.2010-Aug.2020)
 - New car registration data at consumer transaction-level
 - ★ VIN, purchase date, model name
 - buyer's age, gender, car ownership
- ▶ The largest China automobile website Autohome
 - Model attributes
 - * seats, engine horsepower, suggested market price, displacement, etc.
 - * EV driving range, EV horsepower.

 objectivation
 Overview
 Decomposition
 Empirical Results
 Conclusion

 0000
 0 ● 0
 0000
 0000
 0000

Overview

- ▶ Estimate demand model
 - fixed-effect approach, accounting for household heterogeneity
- ▶ Estimate multi-product firms' marginal costs
 - assuming firms' competition mode
 - multi-product firm
 - no collusion
- Counterfactual decomposition
 - keeping all exogenous variables constant
 - allowing one exogeneous variable to evolve at a time
 - comparing the difference in market prices/price evolution paths

otivation Overview Decomposition Empirical Results Conclusion

OOO OOO OOO OOO

Contribution

- ▶ Explain how BYD lose its dominant position in a growing market.
- Counterfactual decomposition: decompose the algorithm that explains the contribution of each factor.
- ▶ Equilibrium solving: develop an algorithm to search for equilibrium for price competition with heterogeneous demand. Extend Garrido (2020).

AHH (2022) BYD's Market Shares 9/32

Decomposition Algorithm[1]

▶ Let \mathbf{Z}_t be the set of exogenous variables affecting equilibrium prices \mathbf{p}_t and market shares \mathbf{s}_t at t

$$\mathbf{Z}_t \equiv \{ \mathbf{x}_t, \mathbf{subsidy}_t, \mathbf{\xi}_t, \mathbf{\omega}_t, \mathbf{w}_t, \mathbf{J}_t : t = 1, 2, ..., T \}$$

where

- \diamond \mathcal{J}_t product set available.
- ⋄ x_t product characteristics.
- \diamond ξ_t consumer preferences. Estimated Demand Shocks
- $\diamond \; \omega_t \; {\sf marginal \; cost \; shocks.} \; igledown^{\sf Estimated \; Supply \; Shocks}$
- \diamond **w**_t consumer weights.
- subsidy_t subsidies.

AHH (2022) BYD's Market Shares 10 / 32

Decomposition Algorithm[2]

Let \mathcal{Z} represent the sequence of vectors $\{\mathbf{Z}_1, \mathbf{Z}_2, ..., \mathbf{Z}_T\}$ over the sample period Define a *counterfactual decomposition* as a sequence of N cumulative changes in \mathcal{Z} that are taken together imply a transformation from \mathcal{Z}^{base} into $\mathcal{Z}^{factual}$:

- ▶ Explaining the evolution of market shares and prices:
- $\triangleright \ \mathcal{Z}^{base} = \{ \ \mathbf{Z}_t = \mathbf{Z}_1 : \text{for any t=1, 2, ..., T} \}$

$$\mathcal{Z}^{factual} = \mathcal{Z}^{base} + \Delta \mathcal{Z}^1 + \Delta \mathcal{Z}^2 + ... + \Delta \mathcal{Z}^N$$

where $\Delta \mathcal{Z}^1, \Delta \mathcal{Z}^2, ..., \Delta \mathcal{Z}^N$ are this sequence of changes.

11 / 20 11 / 32 Overview Decomposition Empirical Results Conclusion

Estimated Parameters

Demand Parameters			Marginal Cost Parameters				
(Across Groups)	Mean	Max	Min			Estimates	S.E.
log(price - sub- sidy)	-1.5556	-2.6237	-0.3812	Interce	ept	-2.2543	(0.4542)
1 FV	-0.62178	-1.14666	-0.129	^{1}FV		8.4709	(0.4689)
Max Power	0.0028	$7.72 * 10^{-05}$	0.0068	Max P	Power	0.0844	(0.004)
Max Torque	0.0008	0.0002	0.0015	Max T	orque	0.0066	(0.0014)
Displacement	-0.0400	-0.2693	0.1337	Displa	cement	3.3670	(0.2711)
Fuel Efficiency	0.1060	0.0236	0.1586	Fuel E	fficiency	-0.1410	(0.0319)
EV Driving Range	$-6.20*10^{-05}$	-0.0027	0.0010	EV Range	Driving	-0.0041	(0.002)

AHH (2022) BYD's Market Shares 12 / 32

otivation Overview Decomposition Empirical Results Conclusion

OOO OO OOO OOO

Decomposition Order

- ▶ Fixing the date to *January*, 2016, we identify the separate contributions of:
 - ♦ CF-1: changes in the proliferation of products by initial incumbent firms
 - CF-2: changes in product characteristics by incumbent firms
 - CF-3: the entry of new firms and their corresponding new products
 - ♦ CF-4: changes in marginal costs
 - ♦ CF-5: changes in consumer preferences
 - CF-6: changes in government subsidy policy
 - ♦ CF-7: changes in the distribution of consumer types

14 / 20

Effect - Market Share Drop

	Incumbent Proliferation	Incumbent Quality	Entry	Cost Shocks		Consumer Preference	Subsidy	Consumer Type
					2020			
Market Share Price	Down Up	Up Down	Down Up	Down Up	Up Down	Mixed Mixed	Up Down	Up Down

Effect - Quality Adjustment

	Incumbent Proliferation	Incumbent Quality	Entry		ost ocks	Consumer Preference	Subsidy	Consumer Type
					2020			
Market Share Price	Down Up	Up Down	Down Up	Down Up	Up Down	Mixed Mixed	Up Down	Up Down

AHH (2022) BYD's Market Shares 16/32

view Decomposition Empirical Results Conclusion
OO OOOO ••OOO

Conclusion

- New entrant and incumbent product proliferation serve have a market stealing effect BYD: lower market shares and lower prices.
- Incumbent quality evolution has a cost reducing effect BYD: higher market shares and lower prices.
- ▶ Yes, BYD is adapting its strategies in response to the new entrant.

 Overview
 Decomposition
 Empirical Results
 Conclusion

 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

What's next?

- ▶ Endogenous product quality choice in response to the policy.
- ▶ Vertical integration and potential foreclosure.

Conclusion 00•0

AHH (2022) BYD's Market Shares 20 / 32

Leading Battery Supplies

Figure Source: elements.visualcapitalist.com

National Market Shares

Figure: National Market Shares

National and Local EV Subsidy: Phasing Out

Table: Subsidy amounts: National Subsidy and city Xi'an Supplement

Time	Na	Ratio Nat./city Xi'ar					
			BEV			PHEV	
	80-150	150-250	250-300	300-400	400+	50+	
2013	3.5	5.0	6.0	6.0	6.0	3.5	1:1
2014	3.325	4.75	5.7	5.7	5.7	3.325	1:1
2015	3.15	4.5	5.4	5.4	5.4	3.15	1:1
2016	2.5	4.5	5.5	5.5	5.5	3.0	1:1
2017	2.0	3.6	4.4	4.4	4.4	2.4	1:0.3
2018-2019(3)	1.5	2.4	3.4	4.5	5.0	2.2	1:0.3
2019(4)-2019(6)	0.9	1.44	2.04	2.7	3.0	1.3	1:0.3
2019(7)-2020(4)	-	-	-	1.8	2.5	1.0	none
2020(5)-2020(7)	-	-	-	1.62	2.25	0.85	none
2021	-	-	-	1.3	1.8	0.68	none

Note: The average RMB-to-USD exchange rate in 2021 was 0.1548.

EV Characteristics Evolution

Summary statistics

Sample P	eriod: Jan. 201	0-Aug.20)20		
Variable	Obs	Mean	Std. Dev.	Min	Max
Panel 1: Individual characte	ristics				
Age	2,872,002	34.90	9.40	10	89
Male dummy	2,872,002	0.72	0.45	0	1
OwnCarBefore	2,872,002	0.06	0.24	0	1
Panel 2: Product attributes:	Gasoline, Di	esel, an	d HEV mo	odels	
Retail price (10,000 RMB)	6,270	24.92	23.23	2.08	138
Maximum power (kw)	6,270	122.55	46.82	26.5	415
Engine displacement (liters)	6,270	1.94	0.60	0.8	6.5
Fuel capacity (liters)	6,270	55.86	19.26	28	138
Panel 3: Product attributes:	BEV and PI	HEV mo	odels		
Retail price (10,000 RMB)	172	32.76	29.12	4.98	147.95
		3.71	2.84	0	
Subsidy (10,000 RMB)	172	3.71	2.04	U	11
Subsidy (10,000 RMB) Maximum power (kw)	172	139.25	117.8	9	11 568
	172				
Maximum power (kw)	172	139.25	117.8	9	568

Warren Buffett's BYD Vs. Elon Musk's Tesla

- ▶ In 2008, Warren Buffett invested \$232 million for a nearly 10% stake in BYD ▶ Back to BYD intro
- "Tesla is the world's largest electric vehicle maker, delivering 308,600 electric vehicles in the fourth quarter, up from 241,300 in Q3, 201,250 in Q2 and 184,800 in Q1. But BYD is catching up. BYD sold 93,945 new energy vehicles in December, up 218% vs. a year earlier," reports Ed Carson at *Investor's Business Daily*
- Differences: "Tesla, targeting the luxury and affordable luxury markets, has far-higher selling prices than BYD," notes Carson. But, BYD's lower-cost EVs and hybrids are selling for between \$15,000–\$34,000. That said, BYD is now trying to offer higher-priced EVs like the Han, which tops out at about \$40,000.
- ▶ Both companies make their own chips and energy storage products. But BYD also has a strong business selling electric buses and EV batteries. In fact, according to Carson, "There has been repeated but unconfirmed speculation that Tesla Shanghai will use BYD batteries starting in 2022."

AHH (2022) BYD's Market Shares 27 / 32

Estimation: zero-market-shares problem

- The Chinese EV market is an emerging market
 - a large number of new products entering
 - a small even zero market shares for some combinations of consumer groups and quarters
- Methods for market level data cannot incorporate this issue
 - selection biases by ignoring
- Apply Gandhi et al. (2019)'s method
 - assumes zero market shares come from a relatively small population of consumers that implies a strictly positive probability for the event $s_{it}^h = 0$
 - deriving lower and upper bounds for the true consumer choice probabilities
 - ♦ a Laplace correction factor forcing the corrected market share to fall into (0, 1)

$$\widetilde{s}_{jt}^h = egin{cases} s_{0t}^h imes (1-\kappa) & ext{for } j=0 \ s_{jt}^h + \kappa imes s_{0t}^h / J_t & ext{for } j
eq 0 \end{cases}$$

- * s_{0t}^h : market share of the outside good, $\kappa \in (0,1)$: small constant
- \star $\kappa = 0.001$ in the paper back

28 / 32 AHH (2022) RYD's Market Shares

Estimation: IV

Endogeneity: $log(p_{jt} - sub_{jt})$

$$z_{rjt}(\rho) = \sum_{k \in \mathcal{J}_t} \mathbf{1}\{k \notin \mathcal{J}_{b(j)} \& |x_{rkt} - x_{rjt}| \leq \rho\}$$

- $\triangleright z_{rjt}(\rho)$: the number of competing car models with a value of attribute r within a neighborhood- ρ of that attribute for product j
- ρ =0.5, 0.7, 1.0, 1.5

▶ back

Estimation: Gauss-Newton Approximation

Extending the work by Garrido (2020)

- \triangleright For outer loop iteration k = 1, 2, ...
 - \diamond Compute the inclusive function $\mathbf{I}^h(\mathbf{p}) = \log\left(\sum_{i \in \mathcal{I}} \exp(\bar{u}_{it}^h(p_i))\right)$ for $h \in \mathcal{H}$
 - ⋄ For inner-loop iteration I = 1, 2, ..., N
 - * Compute the demand function given the inclusive function and the prices from last iteration $s_i^{h(l)} = D_i^h(p_i^{(k-1)}, \mathbf{I}^{h,(k)}) = \exp(\bar{u}_{it}^h(p_i))/\exp(\mathbf{I}^h(\mathbf{p}))$
 - * Compute the gradient $G_j(p_j^{(l-1)}, s_j^{(l)}) = \frac{d\Pi_{f(j),t}(\mathbf{p}_t)}{dp_j}, \Pi_{f(j),t}(\mathbf{p}_t)$ is the profit for firm f, producer of j.
 - * Compute the diagonal element of the Hessian matrix for the price $H_j(\rho_j^{(l-1)}, s_j^{(l)}) = \frac{d^2\Pi_{f(j),t}(\mathbf{p}_t)}{d\rho^2}$.
 - * Update the price vector $\mathbf{p}_{j}^{(l)} = \mathbf{p}_{j}^{(l-1)} G_{j}(\mathbf{p}_{j}^{(k-1)}, \mathbf{s}_{j}^{(l)}) / H_{j}(\mathbf{p}_{j}^{(k-1)}, \mathbf{s}_{j}^{(l)})$

AHH (2022) BYD's Market Shares 30 / 32

Demand Shocks

Figure: Estimated Average Demand Shocks

AHH (2022) BYD's Market Shares 31/32

Figure: Estimated Average Supply Shocks

AHH (2022) BYD's Market Shares

32 / 32

- Gandhi, A., Lu, Z., and Shi, X. (2019). Estimating demand for differentiated products with zeroes in market share data. *Available at SSRN 3503565*.
- Garrido, F. (2020). An aggregative approach to price equilibrium among multi-product firms with nested demand. *Available at SSRN 3647311*.

32 / 32