

Interactome network analysis

Giuseppe Gentile

Course: COMPLESSITÁ NEI SISTEMI E NELLE RETI

Origin of the network

Network preprocessing

Not connected

Genome	Nodes	Edges	Avg degree
Human	15796	1.387e+6	175.871
Rat	14360	9.235e+5	166.965
Mouse	10833	9.042e+5	128.647

Considering only the one big connected component

Genome	Nodes	Edges	Avg degree	Nodes kept	Edges kept
Human	15571	1.386e+6	178.063	99.98752%	98.576%
Rat	14300	9.235e+5	167.349	99.996102%	99.582%
Mouse	10806	9.041e+5	129.164	99.998341%	99.571%

Network's statistic

Strenght and degree are linearly correlated with a factor of ≈ 6

If a **gene** has **lots of links**, those links are also **more likely** to be **experimentally** true (in the next slides this concept will be more clear)

Network's statistic

Genome	Density
HUMAN	0.008961
RAT	0.011155
MOUSE	0.015417

Sparse network

Disassortative network

High-degree nodes (hubs) connected to low-degree nodes

No dense core of interconnected hubs, instead, hubs are isolated: each important genes for a pathway is independent from other important regulatory genes

$$k_{nn} = \langle k \rangle + \frac{\sigma^2}{\langle k \rangle}$$

Pathways are instrinsecally dependent due to the network structure, but important genes don't interact with others pathway's leaders

Disassortative network

Modular Organization: The network's modular organization is reflected in the clustering behavior. Modules (biological pathways) have high internal clustering, but the connectivity between different modules is less dense, particularly through hub genes.

More interactions within pathway than between pathways.

Genes involved in the same pathway (forming cliques) are more likely to be connected, while those connecting different pathways (hubs) decrease the overall clustering coefficient as their degree increases.

Scale free: preferential attachment

$$P(k) = k^{-\gamma}$$

Network	γ
Human	5,28
Rat	12,51
Mouse	6,53

Human genome has more hubs (more primary biological functions)

Origin of preferential attachment

Robust to both mutations and deletion. (not to attacks)
Hub genes are essential for survival, so their preservation is vital: mutations on hubs are mutation that cause changes to overall network (diseases).

Evolution of the genome **involves** the **duplication of genes**. When a gene duplicates, its interactions with other proteins are retained, maintaining the network's connectivity. Over time **duplicates acquire new connections**, contributing to the scale-free nature.

Low degrees nodes have high variation of betweenness: scale free: most of the nodes have low degree

NCBI Gene Summary for SGCG Gene 🗹

This gene encodes gamma-sarcoglycan, one of several sarcolemmal transmembrane glycoproteins that interact with dystrophin. The dystrophin-glycoprotein complex (DGC) spans the sarcolemma and is comprised of dystrophin, syntrophin, alpha-and beta-dystroglycans and sarcoglycans. The DGC provides a structural link between the subsarcolemmal cytoskeleton and the extracellular matrix of muscle cells. Defects in the encoded protein can lead to early onset autosomal recessive muscular dystrophy, in particular limb-girdle muscular dystrophy, type 2C (LGMD2C). [provided by RefSeq, Oct 2008]

Low degree: specialized function related to muscle

NCBI Gene Summary for SGCG Gene 🗹

This gene encodes gamma-sarcoglycan, one of several sarcolemmal transmembrane glycoproteins that interact with dystrophin. The dystrophin-glycoprotein complex (DGC) spans the sarcolemma and is comprised of dystrophin, syntrophin, alpha-and beta-dystroglycans and sarcoglycans. The DGC provides a structural link between the subsarcolemmal cytoskeleton and the extracellular matrix of muscle cells. Defects in the encoded protein can lead to early onset autosomal recessive muscular dystrophy, in particular limb-girdle muscular dystrophy, type 2C (LGMD2C). [provided by RefSeq, Oct 2008]

Low degree: specialized function related to muscle

High betweenness: mediates communication between cells.

High degree & betweenness

Involved in 2 biological processes

GeneCards Summary for SNAP25 Gene

SNAP25 (Synaptosome Associated Protein 25) is a Protein Coding gene. Diseases associated with SNAP25 include Myasthenic Syndrome, Congenital, 18 and Presynaptic Congenital Myasthenic Syndromes. Among its related pathways are Neurotransmitter release cycle and Uptake and actions of bacterial toxins. Gene Ontology (GO) annotations related to this gene include calciumdependent protein binding and SNAP receptor activity. An important paralog of this gene is SNAP23.

Highest betweenness:

Mutations causes several diseases

GeneCards Summary for SNAP25 Gene

SNAP25 (Synaptosome Associated Protein 25) is a Protein Coding gene. Diseases associated with SNAP25 include Myasthenic Syndrome, Congenital, 18 and Presynaptic Congenital Myasthenic Syndromes. Among its related pathways are Neurotransmitter release cycle and Uptake and actions of bacterial toxins. Gene Ontology (GO) annotations related to this gene include calciumdependent protein binding and SNAP receptor activity. An important paralog of this gene is SNAP23.

A rare multisystem **disorder**: **lack of** the corpus callosum, that **link the two hemispheres**

GeneCards Summary for RAN Gene

RAN (RAN, Member RAS Oncogene Family) is a Protein Coding gene. Diseases associated with RAN include Vici Syndrome and Teratocarcinoma. Among its related pathways are Transport of the SLBP independent Mature mRNA and HIV Life Cycle. Gene Ontology (GO) annotations related to this gene include RNA binding and GTP binding.

https://www.telethon.it/cosa-facciamo/ricerca/malattie-studiate/sindrome-di-vici/

The need of a community based analysis

molecular causes of disease has become complex. Fortunately, network medicine, which ascribes the disease phenotype not to perturbation in one gene but to a network of functional and/or physically interacting nodes, has now come to the rescue [172].

No gene acts in isolation but as a part of a larger network of interacting partners. Thus, understanding the properties of the disease-associated interactome or community provides insights into the functional impairment associated with the disease. The disease-associated net-

"TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 20, JANUARY/FEBRUARY 2023"

Single gene mutation ≠ disease

(Not necessarly)

Community-based analysis allow to gain insights about functional impairment of the disease

Human interactome network communities

Properties of the most important communities

# of nodes	<k></k>	knn
5389	28.09317	272.2270
2706	87.4077	199.6563
2350	253.0825	503.5698
2142	117.9299	77.73041

ANOVA highest pvalue 1.1102e-16

Properties of the most important communities

# of nodes	<k></k>	knn
5389	28.09317	272.2270
2706	87.4077	199.6563
2350	253.0825	503.5698
2142	117.9299	77.73041

core biological module in which genes coordinate cohesely!

ANOVA highest pvalue

1.11e-16

Dense community nodes are likely to connect to nodes with high degree

10% density: 1/10 of all possible edges are actually present!

Database for community interpretation

An open-source, open access, manually curated and reviewed pathway database. For pathway visualization and interpretation.

GenAge

DB of genes related to human ageing. Result of extensive review of the literature with manually-curated annotation.

Human Ageing Genomic Resources: new and updated databases. (597 citations)

Community interpretation

# of nodes	<r></r>	knn
5389	28.09317	272.2270
2706	87.4077	199.6563
2350	253.0825	503.5698
2142	117.9299	77.73041

Pathway name	Reactions found	Reactions total
Transport of Mature Transcript to Cytoplasm	13	13
Processing of Capped Intron-Containing Pre-mRNA	34	34
mRNA Splicing - Major Pathway	10	10
mRNA Splicing	15	15
Metabolism of RNA	163	199
Late Phase of HIV Life Cycle	61	78
Chromatin organization	59	85
Chromatin modifying enzymes	59	85
HIV Infection	94	160
HIV Life Cycle	74	117
tRNA processing in the nucleus	6	7
RNA Polymerase II Pre-transcription Events	16	17
rRNA modification in the nucleus and cytosol	8	8
rRNA processing in the nucleus and cytosol	15	15
Transport of Mature mRNA derived from an Intron-Containing Transcript	4	4
Major pathway of rRNA processing in the nucleolus and cytosol	7	7
Gene expression (Transcription)	479	1,103

Community interpretation

# of nodes	<r></r>	knn
5389	28.09317	272.2270
2706	87.4077	199.6563
2350	253.0825	503.5698
2142	117.9299	77.73041

Pathway name	Reactions found	Reactions total
Extracellular matrix organization	304	319
Neuronal System	189	221
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)	14	14
Potassium Channels	17	20
ECM proteoglycans	23	23
Post-translational protein phosphorylation	1	1
Nuclear Receptor transcription pathway	2	2
Degradation of the extracellular matrix	98	105
Neurexins and neuroligins	19	19
Elastic fibre formation	17	17
Voltage gated Potassium channels	1	1
Non-integrin membrane-ECM interactions	22	22
Protein-protein interactions at synapses	32	33
Molecules associated with elastic fibres	10	10
Class B/2 (Secretin family receptors)	23	24
Integrin cell surface interactions	51	55
Muscle contraction	48	53
Assembly of collagen fibrils and other multimeric structures	26	26
Collagen degradation	31	34
Activation of Matrix Metalloproteinases	27	27

GenAge

All "entries with evidence **linking** the gene or its product **to longevity**"

Community interpretation

# of nodes	<r></r>	knn
5389	28.09317	272.2270
2706	87.4077	199.6563
2350	253.0825	503.5698
2142	117.9299	77.73041

reactome

Pathway name	Reactions found	Reactions total
Extracellular matrix organization	304	319
Neuronal System	189	221
Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)	14	14
Potassium Channels	17	20
ECM proteoglycans	23	23
Post-translational protein phosphorylation	1	1
Nuclear Receptor transcription pathway	2	2
Degradation of the extracellular matrix	98	105
Neurexins and neuroligins	19	19
Elastic fibre formation	17	17
Voltage gated Potassium channels	1	1
Non-integrin membrane-ECM interactions	22	22
Protein-protein interactions at synapses	32	33
Molecules associated with elastic fibres	10	10
Class B/2 (Secretin family receptors)	23	24
Integrin cell surface interactions	51	55
Muscle contraction	48	53
Assembly of collagen fibrils and other multimeric structures	26	26
Collagen degradation	31	34
Activation of Matrix Metalloproteinases	27	27

The uncategorized gene network

Not all genes have been studied.

They are too much!

Without experimental evidence it's challenging to categorize those genes into pathways.

Maximize modularity for gene classification

All genes experimentally observed to link with longevity are actually in this community

Source: GenAge

(A weak) **Hypothesis:** this community is capturing some mechanism of longevity

This assumption can't be actually checked

From now on consider only this community as the whole network (longevity network)

- 1: Find communities of the longevity network
- 2: Measure modularity when placing an uncategorized gene in all possible communities
- 3: Place the uncategorized gene in the community maximizing modularity
- 4: Repeat for each uncategorized gene

The final longevity network community

Heuristic runned on a very small subset (5) of uncategorized genes and thresholded original community

# of nodes	<r></r>	knn
197	148.467	162.0642
151	67.3245	89.7882
4	3.5	3.44999
41	9.46341	17.6569
15	6.133333	8.04566
2	1.0	1.0

The final longevity network community

Heuristic runned on a very small subset (5) of uncategorized genes and thresholded original community

# of nodes	<r></r>	knn
197	148.467	162.0642
151	67.3245	89.7882
4	3.5	3.44999
41	9.46341	17.6569
15	6.133333	8.04566
2	1.0	1.0

The final longevity network community

Heuristic runned on a very small subset (5) of uncategorized genes and thresholded original community

# of nodes	<r></r>	knn
197	148.467	162.0642
151	67.3245	89.7882
4	3.5	3.44999
41	9.46341	17.6569
15	6.133333	8.04566
2	1.0	1.0

Conclusions

- Genome interactome is a scale free, disassortative network
- This guarantee robustness to failure (not to attacks)
- Communities are crucial to understand intrinsic behaviour of such a complex network
- Modularity maximization (or other heuristics) are nowadays crucial as a pre-screening of genome to further study on laboratory
- Complex network analysis is more and more used also for medical purposes