

Devoir surveillé 3 - 19/11/24

Exercice 1 : Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définie par : pour tous $x\in\mathbb{R}, n\in\mathbb{N}^*, u_n(x)=\frac{2x}{x^2+n^2\pi^2}$

- 1. (a) Montrer que $\sum u_n$ converge simplement sur \mathbb{R} . On note U sa somme.
 - (b) Montrer que pour tout $a \in \mathbb{R}_+^*$, $\sum u_n$ converge normalement sur [-a, a]. Converge-t-elle normalement sur \mathbb{R} ?
 - (c) Montrer que U est continue sur \mathbb{R} .
- 2. (a) Soit $n \in \mathbb{N}^*$, déterminer la primitive de u_n qui s'annule en 0.
 - (b) Soit $(v_n)_{n\in\mathbb{N}^*}$ la suite de fonctions définies par : pour tous $n\in\mathbb{N}^*, x\in\mathbb{R}, v_n(x)=\ln(1+\frac{x^2}{n^2\pi^2})$. Démontrer que $\sum v_n$ converge simplement sur \mathbb{R} . On note V sa somme.
 - (c) Montrer que V est la primitive de U qui s'annule en 0.
- 3. Soit $(p_n)_{n\in\mathbb{N}^*}$ définie par : pour tout $x\in\mathbb{R}$ et pour tout $n\in\mathbb{N}^*, p_n(x)=\prod_{k=1}^n(1+\frac{x^2}{k^2\pi^2})$. Montrer que (p_n) converge simplement sur \mathbb{R} vers une fonction que l'on exprimera à l'aide de V.

Exercice 2 : Déterminer $\lim_{n\to+\infty} \int_0^{\frac{\pi}{4}} \tan^n(x) dx$.

Exercice 3 : Soit $(f_n)_{n \in \mathbb{N}}$ une suite de fonctions définies et continues sur [a,b] (avec $a,b \in \mathbb{R}, a < b$) qui converge simplement vers la fonction nulle. On suppose que pour tout $x \in [a,b], (f_n(x))_{n \in \mathbb{N}}$ est décroissante.

- 1. Justifier que pour tout $n \in \mathbb{N}$, il existe $x_n \in [a,b]$ tel que $||f_n||_{\infty,[a,b]} = f_n(x_n)$.
- 2. Démontrer que $(\|f_n\|_{\infty,[a,b]})$ est décroissante.
- 3. Démontrer que (f_n) converge uniformément sur [a, b].

Exercice 4:

- 1. Soit $\sum a_n z^n$ une série entière, donner la définition de son rayon de convergence.
- 2. Soit $(a_n) \in (\mathbb{R}^*)^{\mathbb{N}}$. On note R et R' les rayons de convergences respectifs de $\sum a_n z^n$ et $\sum \frac{1}{a_n} z^n$. Démontrer que $RR' \leq 1$ (On pourra démontrer que pour tout $z \in \mathbb{C}^*$ si |z| < R alors $|z| < \frac{1}{R'}$)
- 3. Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Déterminer le rayon de convergence de $\sum a_n z^{2n}$.