學號:B03901098 系級: 電機四 姓名:王建翔

1. (1%) 請說明你實作的 RNN model, 其模型架構、訓練過程和準確率為何? (Collaborators: Sample Code)

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	40)	0
embedding_1 (Embedding)	(None,	40, 256)	5120000
gru_1 (GRU)	(None,	40, 512)	1181184
gru_2 (GRU)	(None,	512)	1574400
batch_normalization_1 (Batch	(None,	512)	2048
dense_1 (Dense)	(None,	256)	131328
batch_normalization_2 (Batch	(None,	256)	1024
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	1)	257

Total params: 8,010,241 Trainable params: 8,008,705 Non-trainable params: 1,536

一開始先dim為40的字句向量輸入,後經過embedding layer輸出(40,256)的 embedding向量,之後經過兩層的GRU,一層全連接層,前後各有一個Batchnormalization 層,然後Dropout,最後通過sigmoid function得到最後結果。

訓練過程切10%的資料為validation data, loss funciton為cross_entropy, 同時也設立 EarlyStopping和ReduceLR, patience分別為5和2, batchsize為512。

Kaggle	Public	Private
Acc	0.80381	0.80259

2. (1%) 請說明你實作的 BOW model, 其模型架構、訓練過程和準確率為何? (Collaborators: b03901109陳緯哲)

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	2000)	0
embedding_1 (Embedding)	(None,	2000, 480)	960000
dense_1 (Dense)	(None,	2000, 80)	38480
leaky_re_lu_1 (LeakyReLU)	(None,	2000, 80)	0
batch_normalization_1 (Batch	(None,	2000, 80)	320
dropout_1 (Dropout)	(None,	2000, 80)	0
flatten_1 (Flatten)	(None,	160000)	0
dense_2 (Dense)	(None,	1)	160001

Total params: 1,158,801 Trainable params: 1,158,641 Non-trainable params: 160

將向量輸入後接一層embedding後接一層全連階層,後面以relu, normalization, 和 dropout輔助訓練,最後經過sigmoid函數得到最後答案,訓練過程切10%的資料為 validation data, loss funciton為cross_entropy。

Kaggle	Public	Private
Acc	0.77376	0.77287

3. (1%) 請比較bag of word與RNN兩種不同model對於"today is a good day, but it is hot" 與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

答:

	Bag of word	RNN
情緒分數	0.6012087/ 0.6012087	0.5442213/ 0.9862688

因為RNN對於字詞的輸入順序較為敏感,所以雖然句子的組成是同些字詞,但是

因為順序的不同會影響語意,另外Bag of word則是考慮每一個句子單字出現的個數,所以會有一樣的分數,若單就這個句子來看,RNN模型應該是判斷了but後的子句才是情緒表達的重點,所以給前者較低、後者較高的分數。

4. (1%) 請比較"有無"包含標點符號兩種不同tokenize的方式,並討論兩者對準確率的影響。

答:

在經過比較之後,發現有將標點符號做tokenize的結果會比較好,推測是因為在一些文章中,標點符號對於語氣的表達也有很大影響,像是驚嘆號、問號如果做了tokenize可以輔助RNN更好地去判斷正負語氣。

Kaggle	With tokenize	Without tokenize
public/private	0.80381/0.80259	0.79864/0.79809

5. (1%) 請描述在你的semi-supervised方法是如何標記label, 並比較有無 semi-surpervised training對準確率的影響。

答:

於semi-supervised, 對尚未label的檔案進行label, 而分數超過0.8的才標示為正向, 小於0.2則標記為負向的情緒, 將這些資料匯於原本的訓練資料再進行訓練, validation data一樣是切10%, 總共經過5次iteration, 在經過semi-supervised後的結果也比較好。

Kaggle	With semi	Without semi
public/private	0.80381/0.80259	0.79798/0.79645