رسم مجموعة البروفيلات على Gambit:

الشكل الهندسي للبروفيل:

■ احداثیات البروفیل:

Airfoil name : NACA 65A510	
Upper X	Upper Y
0.00000	0.00000
0.34090	0.88040
0.57220	1.08990
1.04980	1.41920
2.27290	2.02250
4.74670	2.95220
7.23670	3.69390
9.73520	4.32090
14.74760	5.33980
19.77190	6.12670
24.80330	6.73620
29.83960	7.18730
34.87880	7.49750
39.91940	7.67290
44.96040	7.70030

50.00000	7.56950		
55.03610	7.26740		
60.06680	6.82300		
65.09060	6.25590		
70.10640	5.58420		
75.11290	4.81900		
80.10940	3.97400		
85.09540	3.06420		
90.07050	2.09940		
95.03560	1.09390		
100.00000	0.00000		
Lower X	Lower Y		
0.00000	0.00000		
0.65910	-0.63040		
0.92780	-0.73990		
1.45020	-0.88420		
2.72710	-1.09250		
5.25330	-1.37220		
7.76330	-1.57390		
10.26480	-1.73590		
15.25240	-1.97480		
20.22810	-2.14670		
25.19670	-2.26120		
30.16040	-2.32730		
35.12120	-2.34750		
40.08060	-2.31790		
45.03960	-2.22530		
50.00000	-2.05450		
54.96390	-1.82500		
59.93320	-1.62360		
64.90940	-1.42190		
69.89360	-1.22000		
74.88710	-1.01760		
79.89060	-0.81490		
84.90460	-0.61170		
89.92950	-0.40810		
94.96440	-0.20410		
100.00000	0.00000		

احداثیات سطح المراقبة:

-0.5	-0.3
0	-0.3
0.1	-0.3
0.6	0
0.6	0.15
0.6	0.3
0.6	0.6
0.1	0.6
0	0.6

-0.5	0.6
-0.5	0.3
-0.5	0.15
-0.5	0.0

التقطيع الشبكي لكل البروفيلات:

التقطيع الشبكي حول البروفيل:

الشروط الحدية:

او هذه الصورة:

■ تصدير الملف بلاحقة الـ Mesh:

الدراسة على Fluent:

lpha=5 عند زاویة هجوم

$$M = 0.6 \Rightarrow V = M * a = 208.31 \frac{m}{s} \Leftrightarrow$$

$$V_x = V * COS(\alpha) = 207.52 \frac{m}{s},$$

$$V_y = V * SIN(\alpha) = 18.14 \frac{m}{s}$$

حل معادلات الإستمرار والسرعة والطاقة:

■ منحني معامل الرفع (1.06):

■ منحني معامل الكبح (7.448e-2):

مخطط أشعة السرعة:

أشعة السرعة بالقرب من البروفيل:

■ مخطط كونتور (Contour) السرعة:

■ مخطط كونتور (Contour) الضغط:

مخطط كونتور (Contour) الحرارة:

المعاملات الأيروديناميكية:

CD	CL	زاوية الهجوم
0.0444	0.46	0
0.0597	0.846	3
0.0745	1.05	5
0.1406	1.28	10
0.3120	1.32	15

- المعادلات التي توصف جريان مائع ثنائي البعد (التي يقوم الـ Fluent بحلها عددياً):
 - 1. المعادلات التي توصف حركة المائع:

هي معادلات نافير ستوكس العامة من دون اي اهمالات تعطى بالعلاقة التالية:

$$\frac{d(\rho \mathbf{V})}{dt} = \rho \mathbf{F} - \nabla P + \mu \nabla^2 \mathbf{V}$$

حيث:

V: هي السرعة وفق المحورين x و y، F: هي القوى الجسمية (تأثير الجاذبية) وفق المحورين x و y، P: الضغط.

2. معادلة الإستمرار:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = \mathbf{0}$$

3. معادلة الطاقة:

$$\rho \frac{De}{Dt} = \rho \dot{q} + \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) - p \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) + \tau_{xx} \frac{\partial u}{\partial x} + \tau_{yx} \frac{\partial u}{\partial y} + \tau_{xy} \frac{\partial v}{\partial y} \right)$$

$$\tau_{xx} = \lambda (\nabla \cdot \mathbf{V}) + 2\mu \frac{\partial u}{\partial x}$$

$$\tau_{yy} = \lambda (\nabla \cdot \mathbf{V}) + 2\mu \frac{\partial v}{\partial y}$$

$$\tau_{xy} = \tau_{yx} = \mu \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right]$$

$$\lambda = -\frac{2}{3} \mu$$

حيث:

e: الطاقة الداخلية، ·q· التدفق الحراري لواحدة المساحة، K: معامل التوصيل الحراري

4. معادلة كمية الحركة:

$$\frac{\partial(\rho u)}{\partial t} + \nabla \cdot (\rho u \mathbf{V}) = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \rho f_x$$

$$\frac{\partial(\rho v)}{\partial t} + \nabla \cdot (\rho v \mathbf{V}) = -\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \rho f_y$$

$$\tau_{xx} = \lambda(\nabla \cdot \mathbf{V}) + 2\mu \frac{\partial u}{\partial x}$$

$$\tau_{yy} = \lambda(\nabla \cdot \mathbf{V}) + 2\mu \frac{\partial v}{\partial y}$$

$$\tau_{xy} = \tau_{yx} = \mu \left[\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right]$$

$$\lambda = -\frac{2}{3}\mu$$

■ نموذج الإضطراب هو تموذج "تفكيك رينولدز" RANS الذي يعتمد على تجزيء القيمة الحالية الى قيمة وسطية وقيمة تراوحية (اضطرابية حول الوسطية).

مناقشة النتائج:

- 1. المسافة بين شفرات الضاغط S هي بارامتر هام ويؤثر بشكل مباشر على مقدار الإنضغاط بين الشفرات (حيث تعمل كناشر) حيث زيادتها يخفض التأثير المتبادل بين الشفرات اما نقصانها قد يسبب خنق للجريان لذالك تؤخذ قيم لهذه المسافة بجوار "مثل طول وتر البوفيل "C" وفي حالتنا تم اختيارها S=1.2C.
- 2. نقطة انفصال الطبقة الحدية تعتمد على نوع البروفيل (بشكل اساسي تقعر البوفيل ونصف قطر مقدمة البروفيل) وعلى زاوية هجوم البروفيل، حيث كلما زاد تقعر البروفيل ونصف القطر انخفض احتمال الإنفصال عند زاوايا هجوم كبيرة، في حالتنا تم اعتماد البروفيل NACA انخفض احتمال الإنفصال عند زاوايا هجوم كبيرة، في حالتنا تم اعتماد البروفيل 65A510 الذي يملك تحدب ونصف قطر مقدمة مناسبين جداً للجريانات في الضواغط، وهذا النوع من البروفيلات يشتهر استخدامه في الضواغط.

3. يلاحظ من المخططات انفصال الجريان لأجل زاوية هجوم 5 درجات عند الربع الأخير من البروفيل. البروفيل. اما لأجل زاوية هجوم 10 درجات فيتقدم الإنفصال الى الثلث الأخير من البروفيل. ولأجل زاوية 15 درجة سيتم الإنفصال عند ربع الوتر تقريباً. هذه الإنفصالات خطيرة جداً حيث انها ستؤثر عكساً على انسيابية الجريان على الصفوف الاحقة. وبالتالي بالنسبة للبروفي المدروس ينصح باستخدامه لزوايا هجوم اقل من 10 درجات لتقليل الإضطراب الناتج عن الإنفصال الخلفي.

عدد الخلايا:

Mesh Size

Level	Cells	Faces	Nodes	Partitions
1	32478	64480	32000	0