

A generalized framework for active learning reliability analysis in UQLab

Presentation

Author(s):

Moustapha, Maliki (D); Marelli, Stefano (D); Sudret, Bruno (D)

Publication date:

2020-02-25

Permanent link:

https://doi.org/10.3929/ethz-b-000466665

Rights / license:

In Copyright - Non-Commercial Use Permitted

A generalized framework for active active learning reliability analysis in UQLAB

Maliki Moustapha

Reliability analysis

Estimate the probability of occurence of an adverse event

$$P_{f}=\int_{\mathcal{D}_{f}}f_{oldsymbol{X}}\left(oldsymbol{x}
ight)\mathsf{d}oldsymbol{x}$$

 $f_{\pmb{X}}\left(\pmb{x}\right)$: Joint distribution of the random vector \pmb{X} $\mathcal{D}_f = \{\pmb{x} \in \mathcal{D}_{\pmb{X}} : g\left(\pmb{x}, \mathcal{M}\left(\pmb{x}\right) \leq 0\right)\}$: Failure domain

- Failure is assessed by a limit-state function $q: x \in \mathcal{D}_X \mapsto \mathbb{R}$
- The limit-state function is based on a computational model M describing the performance of the system

Reliability analysis (2/2)

Principal challenges

- Integration on an implicit domain
 - Analytical solutions only in a few cases e.g. Gaussian inputs + linear limit-state
 - In general problem solved using:
 - Approximation methods e.g. FORM, SORM
 - Simulation methods e.g. Monte Carlo, Importance sampling, Subset simulation
- High-dimensionality
 - Large number of parameters are often needed to characterize the system
 - Often inputs are stochastic processes
- Rare events
 - Failure are often rare events with low rates of occurrence e.g. 10^{-5} to 10^{-8}

These challenges boil down to computational cost/time

Reliability analysis (2/2)

Principal challenges

- Integration on an implicit domain
 - Analytical solutions only in a few cases e.g. Gaussian inputs + linear limit-state
 - In general problem solved using:
 - Approximation methods e.g. FORM, SORM
 - Simulation methods e.g. Monte Carlo, Importance sampling, Subset simulation
- High-dimensionality
 - Large number of parameters are often needed to characterize the system
 - Often inputs are stochastic processes
- Rare events
 - Failure are often rare events with low rates of occurence $_{e.g.}$ $_{10}^{-5}$ to $_{10}^{-8}$

These challenges boil down to computational cost/time

Surrogate models can be used to alleviate the computational burden

Surrogate models for uncertainty quantification

A surrogate model $\tilde{\mathcal{M}}$ is an approximation of the original computational model \mathcal{M} with the following features:

- It is built from a limited set of runs of the original model $\mathcal M$ called the experimental design $\mathcal X=\left\{x^{(i)},\,i=1,\ldots,N\right\}$
- It assumes some regularity of the model ${\mathcal M}$ and some general functional shape

Name	Shape	Parameters
Polynomial chaos expansions	$\mathcal{ ilde{M}}(oldsymbol{x}) = \sum a_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(oldsymbol{x})$	a_{lpha}
	$\alpha \in \mathcal{A}$ R / M	
Low-rank tensor approximations	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum_{l=1}^R b_l \left(\prod_{i=1}^M v_l^{(i)}(x_i) ight)$	$b_l,z_{k,l}^{(i)}$
Kriging (a.k.a Gaussian processes)	$ ilde{\mathcal{M}}(oldsymbol{x}) = eta^T \cdot oldsymbol{f}(oldsymbol{x}) + Z(oldsymbol{x}, \omega)$	$oldsymbol{eta},\sigma_Z^2,oldsymbol{ heta}$
Support vector machines	$ ilde{\mathcal{M}}(oldsymbol{x}) = \sum^m a_i \ K(oldsymbol{x}_i, oldsymbol{x}) + b$	$oldsymbol{a},b$
	i=1	

A surrogate model is fast to evaluate

Outline

1 Introduction

2 Active learning reliability

3 Benchmark

4 Conclusion

The basic idea

Enrich an initially poor experimental design using a learning function to improve the accuracy of the model in the vicinity of the limit-state surface

- $\textbf{0} \ \ \mathsf{Generate an experimental design} \ \left\{ \boldsymbol{\mathcal{X}}, \boldsymbol{\mathcal{Y}} \right\} = \left\{ \left(\boldsymbol{x}^{(i)}, g\left(\boldsymbol{x}^{(i)}\right)\right), i = 1, \, \ldots \, , N_0 \right\}$
- **2** Train a surrogate model \widetilde{g} using $\{\mathcal{X}, \mathcal{Y}\}$
- $oldsymbol{3}$ Compute the failure probability \widehat{P}_f using \widetilde{g}
- 4 Check whether some convergence criteria are met. If they are, stop, otherwise go to step 5
- § Choose the best next sample x^* to be added to ${\mathcal X}$ based on an appropriate learning function
- **6** Add x^* and the corresponding response $g(x^*)$ to the experimental design
- Return to step 2

Survey

- AK-MCS is one of the most popular active learning methods
- Other variants have been proposed by modifying:
 - the surrogate model
 - the learning function
 - the reliability method

Active learning reliability framework

Generalized framework

Reliability	Surrogate model	Learning function	Stopping criterion
Monte Carlo	Kriging	U	LF-based
Subset simulation	PCE	EFF	Stability of β
Importance sampling	SVR	FBR	Stability of P_f
Line sampling	PC-Kriging	CMM	Bounds on β
Directional sampling	Neural networks	SUR	Bounds on \mathcal{P}_f

UQLAB active learning reliability module

A framework where customized schemes can be built by combining non-intrusively different elements in each block

Possibility of adding custom/user-defined methods in each block

UQLAB active learning module

Important features

- Reliability method
 - Any simulation method
 - Points sampled at each iteration are used as candidates for enrichment
- Surrogate models
 - Any surrogate
 - Not necessarily with embedded error measure
- Learning function
 - Some learning functions are method-specific
 - Allow for multiple points enrichment (adaptive)
- Stopping criteria
 - Some stopping criteria are surrogate-model-specific
 - It is possible to combine various stopping criteria
 - Control of the short-term history of the stopping criteria

Example in UQLAB

Preliminary syntax

```
% Select active learning method
ALROptions.Type = 'Reliability';
ALROptions.Method = 'ALR';
% Surrogate model
ALROptions.ALR.Metamodel = 'PCK';
ALROptions.ALR.IExpDesign.NSamples = 10 ;
% Reliability analysis
ALROptions.ALR.Reliability = 'subset';
% Learning function
ALROptions.ALR.LearningFunction = 'U' ;
ALROptions.ALR.NumOfPoints = [3 1];
% Convergence
ALROptions.ALR.Convergence = {'stopBetaBound', 'stopBeta'};
ALROptions.ALR.ConvThres = [0.01 0.005];
ALROptions.ALR.MaxAddedED = 500 ;
```

Selected strategies

- Combination of various methods of each block
- Combination with Kriging and PCK: 36 strategies
- Combination with PCE: 3 strategie

Reliability	Metamodelling	Learning function	Stopping criterion
Monte Carlo	Kriging	U	LF-based
Subset simulation	PCE	EFF	Stability of β
Importance sampling	SVR	FBR	Stability of P_f
Line sampling	PC-Kriging	CMM	Bounds on β
Directional sampling	Neural networks	SUR	Bounds on \mathcal{P}_f

Selected strategies

- Combination of various methods of each block
- Combination with Kriging and PCK: 36 strategies
- Combination with PCE: 3 strategie

Reliability	Metamodelling	Learning function	Stopping criterion
Monte Carlo	Kriging	U	LF-based
Subset simulation	PCE	EFF	Stability of β
Importance sampling	SVR	FBR	Stability of P_f
Line sampling	PC-Kriging	CMM	Bounds on β
Directional sampling	Neural networks	SUR	Bounds on \mathcal{P}_f

Selected strategies

- Combination of various methods of each block
- Combination with Kriging and PCK: 36 strategies
- Combination with PCE: 3 strategies

Reliability	Metamodelling	Learning function	Stopping criterion
Monte Carlo	Kriging	U	LF-based
Subset simulation	PCE	EFF	Stability of β
Importance sampling	SVR	FBR	Stability of P_f
Line sampling	PC-Kriging	CMM	Bounds on β
Directional sampling	Neural networks	SUR	Bounds on \mathcal{P}_f
		•••	

Benchmark problems

- Aiming at a set of 30 different problems
- Various features: low- to high-dimensions, rare events, complex limit-state surfaces

ID	Problem	Dimension	Reference solution	Remarks
01	TNO benchmark RP1	5	$7.61 \cdot 10^{-3}$	
02	TNO benchmark RP2	2	$2.03 \cdot 10^{-3}$	
03	TNO benchmark RP3	2	$1.21 \cdot 10^{-7}$	
04	TNO benchmark RP4	2	$1.83 \cdot 10^{-4}$	
05	TNO benchmark RP5	7	$6.36 \cdot 10^{-3}$	
06	TNO benchmark RP6	2	$2.33 \cdot 10^{-2}$	
07	TNO benchmark RP7	20	$9.88 \cdot 10^{-4}$	
08	TNO benchmark RP8	100	$3.85 \cdot 10^{-4}$	
09	TNO benchmark RP9	2	$9.68 \cdot 10^{-3}$	
10	TNO benchmark RP10	10	$2.70 \cdot 10^{-7}$	
11	TNO benchmark RP11	2	$4.19 \cdot 10^{-7}$	
12	Four branch series	2	$4.45 \cdot 10^{-3}$	
13	Hat function	2	$3.96 \cdot 10^{-4}$	
14	Damped oscillator	8	$7.59 \cdot 10^{-4}$	
15	Non-linear oscillator	6	$5 \cdot 10^{-8}$	AK-SS paper; varying Pf; highly-nonlinear
16	HD function	50	$2 \cdot 10^{-3}$	AK-SS paper; varying Pf and dimension
17	Modified Rastrigin	50	$2 \cdot 10^{-3}$	varying Pf and dimension
	***	***	***	

Partial results (per problem)

 $\begin{array}{c} \text{Problem 01} \\ M=5 \text{ ; } \beta_{\text{ref}} \approx 3.17 \end{array}$

Problem 02 M=2 ; $\beta_{\rm ref} \approx 2.77$

	Р	ro	b	lem	03	3
I	=	2	:	β_{ref}	\approx	5.09

Strategy	N_{eval}	$\varepsilon_{\mathrm{rel.}}$
PCK+IS+U+BS	18	0.0037
PCE+IS+FBR+BS	18	0.0044
KRG+IS+U+BS	19	0.0010

Strategy	N_{eval}	$\varepsilon_{\mathrm{rel.}}$
KRG+MCS+U+BS	25	0.0026
$PCE {+} SuS {+} FBR {+} BS$	26	0.0030
KRG+SuS+U+BS	27	0.0019

$$\begin{array}{c|cccc} {\sf Strategy} & N_{\sf eval} & \varepsilon_{\sf rel.} \\ \hline {\sf PCK+SuS+U+BB} & 12 & 0.0070 \\ {\sf PCK+MC+U/EFF+BB} & 12 & 0.0090 \\ {\sf PCK+SuS+EFF+BB} & 12 & 0.0086 \\ \hline \end{array}$$

$$\varepsilon_{\rm rel.} = \frac{|{\rm median}\left(\beta\right) - \beta_{\rm ref}|}{\beta_{\rm ref}}$$

• All solutions with $\varepsilon_{\rm rel.}>0.01$ are discarded

Partial results (aggregate)

lacksquare Number of times a given method is within the K best results

$$K = 5$$

$$K = 3$$

- Number of times a method is the best
- Multiple counts in case of equality

Concluding remarks

- Global framework for active learning
- Methods can be combined non-intrusively according to the specifics of the problem at hand
- Large benchmark currently running
- Statistics on different methods in each block w.r.t. problems features
- Module to be released in UQLab~1.4

UQWorld

uqworld.org

- Share your work and research to the community; discuss them with the community
 - Help others by sharing your own best practices in reliability analysis
- Get news and updates from the UQ community at large

Questions?

Chair of Risk, Safety & Uncertainty Quantification

www.rsuq.ethz.ch

The Uncertainty Quantification Laboratory

www.uqlab.com

Thank you very much for your attention!