第7章脉冲波形的产生与变换

Pulse Circuits

- §7.1 555定时器 555 Timer
- §7.2 施密特触发器 Schmitt Trigger
- §7.3 单稳态触发器 One-Shots (Monostable Multivibrators)
- §7.4 多谐振荡器 Astable Multivibrators (Oscillators)

脉冲信号:作用在电路中<u>短暂的电压或电流</u>信号。 (既非直流又非正弦交流的电压或电流)

· 方波 (Square Wave)

• 三角波(Triangular Wave)

• 锯齿波 (Sawtooth Wave)

波形在时间轴上不连续

脉冲信号的参数

数字电路中用的脉冲信号为矩形波

脉宽 (T_{W}) : 半高宽(脉 冲最大值一半时的宽度)

频率 f=1/T

上升时间 t_r

下降时间 $t_{
m f}$

占空比 $q=T_{\rm W}/T$

- 个脉冲中有效的脉冲比
- 个脉冲中高电平占的比例 3

在同步时序电路中,作为时钟信号的矩形脉冲控制和协调整个系统的工作。因此,时钟脉冲的特性直接关系到系统能否正常工作。

扫描时间250µs/格

扫描时间10ns/格

上升时间和下降时间对数字电路的工作有重要影响。

脉冲信号如何产生?

获取方法通常有两种:

- (1) 直接产生。采用多谐振荡器。
- (2) 利用已有信号整形或<mark>变换</mark>得到。采用<u>施密</u>特触发器或单稳态触发器。

§ 7.1 555定时器

555 Timer

电路

3 个电阻 $R = 5 k\Omega$ 2 个比较器 C_1 、 C_2 1 个基本 RS-FF 放电管 T

Output
7
DIS Discharge
放电

555 定时器功能

$V_{\rm CO}$	悬空
不起	作用

$\overline{R}_{\mathrm{D}}$	TH (6)	TR (2)	\overline{R} (C ₁)	\overline{S} (C ₂)	Q (3)	$\overline{\boldsymbol{\varrho}}$	T 状态 (7)
1	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	0	1	0	截止 (断开)
		$> \frac{1}{3}V_{\rm CC}$			1保持	• 0	保持
1	$> \frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	0	1	0	1	导通 (GND)
0	Ф	Ф	Φ	Ф	0	1	导通 (GND)

555 定时器管

①
$$V_2 < \frac{1}{3}V_{CC}, V_6 < \frac{2}{3}V_{CC}, Q = 1 \overline{Q} = 0$$
 T 截止

②
$$V_2 > \frac{1}{3}V_{CC}$$
, $V_6 > \frac{2}{3}V_{CC}$, $Q = 0$ $\overline{Q} = 1$ **T导通**
③ $V_2 > \frac{1}{3}V_{CC}$, $V_6 < \frac{2}{3}V_{CC}$, Q 保持

③
$$V_2 > \frac{1}{3}V_{CC}$$
, $V_6 < \frac{2}{3}V_{CC}$, Q 保持

若用 V_{CO} , V_6 : V_{CO} 为参考电压

V2: ½ VCO 为参考电压

§7.2 施密特触发器 Schmitt Trigger

基于波形整形的脉冲信号产生电路 具有滞后特性的数字传输门

(1) 双稳态

$$\begin{cases} Q = 1, \overline{Q} = 0 \\ Q = 0, \overline{Q} = 1 \end{cases}$$

(2) 滞后 Hysteresis

输入电压增大和减 小过程中,输出翻转 电平不同

回差(Backlash)电压

$$\Delta V = V_{\text{T+}} - V_{\text{T-}}$$

§7.2.1 由555定时器构成的施密特触发器

电路:

- 2 端和 6 端接在一起 $(V_2=V_6,$ 两个比较器输入一致)
- 4端RD接高电平
- · 两个输出端波形相同,幅值可 能不同

工作原理 设输入为三角形波形

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \quad V_{\rm 2}, V_{\rm 6} < 1/3 \ V_{\rm CC}$$
 $Q = 1$

$$V_{\rm i} \uparrow$$
, $V_{\rm 2} > 1/3 \ V_{\rm CC}$, $V_{\rm 6} < 2/3 \ V_{\rm CC}$

Q 保持

$$V_{\rm i} > 2/3 \ V_{\rm CC}, \ V_{2}, V_{6} > 2/3 \ V_{\rm CC}$$
 $Q = 0$

$$V_{\rm i} \downarrow$$
, 1/3 $V_{\rm CC} < V_{\rm i} < 2/3 V_{\rm CC}$

Q 保持

$$V_{\rm i} < 1/3 \ V_{\rm CC}, \ V_{2}, \ V_{6} < 1/3 \ V_{\rm CC},$$
 $Q = 1$

小结

1) 波形转换:
 三角波 → 矩形波

2) 滞后

回差电压
$$\Delta V = V_{T+} - V_{T-} = \frac{2}{3}V_{cc} - \frac{1}{3}V_{cc} = \frac{1}{3}V_{cc}$$

3) 滞后的原因:

555 定时器分压结构, 使基本RS-FF工作在保 持状态

