

SiI9034/9134 HDMI Transmitter

Programmer's Reference

Document # SiI-PR-0039-F

This document was watermarked on 25-08-2008 at 12:03:50 local time.

May 2008

Copyright Notice

Copyright © 2008 Silicon Image, Inc. All rights reserved. These materials contain proprietary and confidential information (including trade secrets, copyright and other interests) of Silicon Image, Inc. You may not use these materials except only for your bona fide non-commercial evaluation of your potential purchase of products and/or services from Silicon Image or its affiliates, and/or only in connection with your purchase of products and/or services from Silicon Image or its affiliates, and only in accordance with the terms and conditions herein. You have no right to copy, modify, transfer, sublicense, publicly display, create derivative works of or distribute these materials, or otherwise make these materials available, in whole or in part, to any third party.

Trademark Acknowledgment

Silicon ImageTM, VastLaneTM, SteelVineTM, PinnaClearTM, SimplayTM, Simplay HDTM, SatalinkTM, and TMDSTM are trademarks or registered trademarks of Silicon Image, Inc. in the United States and other countries. HDMITM, the HDMI logo and High-Definition Multimedia InterfaceTM are trademarks or registered trademarks of, and are used under license from, HDMI Licensing, LLC.

Further Information

To request other materials, documentation, and information, contact your local Silicon Image, Inc. sales office or visit the Silicon Image, Inc. web site at www.siliconimage.com.

Revision History

Revision	Date	Comment
A	12/2006	First production draft
В	03/2007	Updated Data Control and HDMI Control Registers
С	04/2007	Updated DDC I ² C Status Register Information
D	08/2007	Updated Device Revision and Ri Command registers
Е	12/2007	Clarified and corrected content throughout, multi-word tables broken up, editorial cleanup
F	5/2008	Added appendix for PLL set up

© 2008 Silicon Image. Inc.

Table of Contents

Introduction	1
Register Maps	
Document Conventions	2
Base Register Set	3
Vendor ID Register	3
Device ID Register	3
Device Revision Register	
Software Reset Register	3
System Control Register #1	
System Status Register	4
Legacy Registers	5
Legacy Registers	5
Data Control Register	5
HDCP Register Set	6
HDCP BKSV Register	7
HDCP AN Register	7
HDCP AKSV Register	7
HDCP Control Register HDCP BKSV Register HDCP AN Register HDCP AKSV Register HDCP Ri Register HDCP Ri 128 Compare Register HDCP I Counter Register Automatic Ri Check	8
HDCP Ri 128 Compare Register	8
HDCP I Counter Register	8
Automatic Ri Check	8
Ri Command Register Ri Line Start Register Ri From RX Registers	9
Ri Line Start Register	10
Ri From RX Registers	10
Ri Debug Registers DE Generator Register Set	10
DE Generator Register Set	11
V. 1 DE D.1. D 1	1 2
Video DE Control Register	12
Video DE Top Register	12
Video DE Count Register	13
Video DE Line Register	13
Video H Resolution Register	13
Video V Refresh Register	13
Video Embedded Sync Decoding Registers	14
Video DE Control Register Video DE Top Register Video DE Count Register Video DE Line Register Video H Resolution Register Video V Refresh Register Video Embedded Sync Decoding Registers Video Interlace Adjustment Register	14
Video SYNC Polarity Detection Register	14
Video Hbit to HSYNC Register	15
Video Field2 HSYNC Offset Register	
Video HSYNC Length Register	15
Video Vbit to VSYNC Register	
Video VSYNC Length Register	
Video Control Register	
Video Action Enable Register	
Video Mode Register (SiI9034)	
Video Mode Register (SiI9134)	
Video Blanking Registers	
Video VSYNC Length Register (SiI9134)	
Interrupt Registers	
Interrupt State Register	
Interrupt Source Registers	
Register INTR1	
Register INTR2	
Register INTR3	

	2.4
Interrupt Unmask Register	
Interrupt Control Register	
TMDS Control Registers	
TMDS C Control Register	
TMDS Control Register #1	
TMDS Control Register #2	
TMDS Control Register #3	
TMDS Control Register #4	
Repeater Authentication Enable Register	
DDC Master Registers	
DDC I ² C Manual Register	
DDC I ² C Target Slave Address Register	
DDC I ² C Target Segment Address Register	30
DDC I ² C Target Offset Address Register DDC I ² C Data Count Register DDC I ² C Status Register	30
DDC I ² C Data Count Register	31
DDC I ² C Status Register	31
DDC I ² C Command Register	32
DDC I ² C Data Register	33
DDC I ² C FIFO Count Register ROM Registers	33
ROM Registers	33
ROM Status Register	33
ROM Command Register	34
Audio Registers	35
ACR Control Register ACR Audio Frequency Register	35
ACR Audio Frequency Register	35
ACR N Software Value Register	36
ACR CTS Software Value Register	36
ACR CTS Hardware Value Register	36
ACR N Software Value Register ACR CTS Software Value Register ACR CTS Hardware Value Register Audio In Mode Register	37
Audio In S/PDIF Control Register	37
Audio In S/PDIF Extracted Fs and Length Register	38
Audio In I ² S Channel Swap Register	38
Audio Error Threshold Register.	39
Audio In I ² S Data In Map Register	39
Audio In S/PDIF Extracted Fs and Length Register Audio In I ² S Channel Swap Register Audio Error Threshold Register Audio In I ² S Data In Map Register Audio In I ² S Control Register (SiI9034)	40
Audio III I 5 Control Register (511/154)	
Audio In I ² S Channel Status Register Word 1 (9034)	41
Audio In I ² S Channel Status Register Word 1 (9134)*	41
Audio In I ² S Channel Status Register Word 2	41
Audio In I'S Channel Status Register Word 3	41
Audio In I'S Channel Status Register Word 4 (9034)	41
Audio In I ² S Channel Status Register Word 4 (9134)*	42
Audio In I ² S Channel Status Register Word 5 (9034)	42
Audio In I ² S Channel Status Register Word 5 (9134) ¹	
Audio Sample Rate Conversion Register (SiI9034)	
Audio Sample Rate Conversion Register (SiI9134)	
Audio I ² S Input Length Register (SiI9034)	
Audio I ² S Input Length Register (SiI9134)	
Audio Mode Switching Sequence	
HDMI Control Register (SiI9034)	
HDMI Control Register (SiI9134)	
Audio Path Status Register	
Diagnostic Power Down Register	
InfoFrame Registers	
CEA-861D InfoFrame Control #1 Register	
CEA-861D InfoFrame Control #2 Register	
CEA-861D InfoFrame Registers	53

Silicon Image, Inc. —

SPD InfoFrame Registers	54
Audio InfoFrame Registers.	
MPEG InfoFrame Registers	
Generic Packet Registers	
General Control Packet Register	
Generic Packet #2 Registers	
Appendices	
Handling Audio	
Enabling Audio Inputs	
Encoding Audio on HDMI	
Handling DVD Audio	
Handling Video	
Programming Video Input Mode and Video Output Mode	
Deep-Color Video Data (SiI9134 Transmitter Only)	60
Handling Interlaced Video	6/
480i Input	
480i Multiplexed YCbCr 4:2:2 Embedded Sync Input	70
480i Multiplexed YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D	71
480i YCbCr 4:2:2 Multiplexed YC Separate Sync Input	72
576i Input	73
576i YCbCr 4:2:2 Embedded Sync Input	73
5/61 YCbCr 4·2·2 Embedded Sync Input – Adjustment for CEA-X611)	1/4
576i YCbCr 4:2:2 Multiplexed YC Separate Sync Input	75
576i YCbCr 4:2:2 Multiplexed YC Separate Sync Input 480p Input	76
480p RGB Input	76
480p YCbCr 4:4:4 Separate Sync Input	77
480p YCbCr 4:2:2 Separate Sync Input	78
480p YCbCr 4:2:2 Embedded Sync Input	79
480p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D	80
576p Input	81
576n RGR Input	81
576p YCbCr 4:4:4 Separate Sync Input	82
576p YCbCr 4:4:4 Separate Sync Input 576p YCbCr 4:2:2 Separate Sync Input	83
576p YCbCr 4:2:2 Embedded Sync Input	84
576p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D	85
720p Input	86
720p RGB Input	86
720p YCbCr 4:4:4 Separate Sync Input	87
720n YCbCr 4·2·2 Separate Sync Input	88
720p YCbCr 4:2:2 Separate Sync Input	89
720p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D	90
1080i Input	91
1080i YCbCr 4:4:4 Separate Sync Input	92
1080i YCbCr 4:2:2 Separate Sync Input	
1080i YCbCr 4:2:2 Embedded Sync Input	
1080i YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D.	
1080p Input.	
1080p RGB Input.	
1080p YCbCr 4:4:4 Separate Sync Input	
1080p YCbCr 4:2:2 Separate Sync Input	
1080p YCbCr 4:2:2 Embedded Sync Input	
1080p YCbCr 4:2:2 Embedded Sync Input — Adjustment for CEA-861D	
Handling InfoFrames and General Control Packets	
General Control Packets Handling Audio Content Protection (ACP) Packets	103 106
FIZORODO A DORO COMENI PROJECTION LACEL PACKEIS	106

Silicon Image, In	1C.
-------------------	-----

Operating DDC Master	106
Device Addresses.	
Write Command	
Abort Command	
Setting up the PLL Control Registers	109
General	
PLL Setup Tables.	
Basic Requirements and Assumptions	109
PLL Setup Procedure – Overview	109
PLL Setup Firmware Implementation	110
A Numerical Example	111
SiI9134 Register Setting Implementation	112
Muting Video and Audio in HDCP Applications	
Power Down Control	123
Logic Blocks Affected by Power Down	123
Logic Blocks Affected by Power Down	123
References	124
Standards Documents	124
Silicon Image Documents	124

List of Figures

Figure 1. Transmitter Video Data Processing Path	1
Figure 2. DE Generator Measurements	
Figure 3. Interrupt Pin Control	21
Figure 4: Input Bus Diagram for Different Formats	27
Figure 5. Audio Input Control	
Figure 6. Overview of HDMI Operating Modes in 480p Stream	62
Figure 7. ACP Packet Control Flowchart	64
Figure 8. Transmitter Video Data Processing Path	65
Figure 9. 480i Example for Handling Syncs	67
Figure 10. Video Input to Video Output Data Flow	68
Figure 11. Muting Video and Audio from Reset to Authentication	104
Figure 12. Muting Video and Audio from Link Failure to Authentication	
Figure 13. Supported Master I ² C Transactions	106
Figure 14. Master I ² C Read Command Flowchart.	107
Figure 15. Master I ² C Write Command Flowchart	108

List of Tables

Table 1. Control of I ² C Address with CI2CA Pin	2
Table 2. Register Address Groups	2
Table 3. Audio/Video Mute Settings	
Table 4. TMDS Control Register Example	26
Table 5. Encoded Audio Sampling Frequency	44
Table 6. Registers Used to Handle Interlaced Video	
Table 7. AVI InfoFrame Layout	
Table 8. AVI InfoFrame Field Settings	102
Table 9. Mute Actions for Setting or Clearing SET AVMUTE and CLR AVMUTE Bits	103
Table 10. HDCP DDC Standard Device Addresses.	107
Table 11. IFPLL Setting: 8-bit to 8-bit, 1x	117
Table 12. IFPLL Setting: 10-bit to 8-bit, 1x	118
Table 13. IFPLL Setting: 12-bit to 8-bit, 1x	119
Table 14. IFPLL Setting: 16-bit to 8-bit, 1x	120
Table 15. MPLL Setting #1	121
Table 16. MPLL Setting #2	122
Table 17. Power Down Control Bit Effects	123
Table 18. Registers Affected by PD Bits	123
Table 19. Referenced Documents	124
Table 20. Silicon Image Documents	124

Introduction

This document provides information about the SiI9034/9134 HDMI Transmitter so that system designers and programmers can implement the firmware and software necessary to control the device's features in a system environment.

The SiI9134 transmitter has capabilities that the SiI9034 device does not, including deep color, 14-to-8/10/12-dither, and high bit-rate audio support. Therefore, the SiI9134 register set is a superset of the SiI9034 register set. Where differences occur, the registers are explicitly called out for each of the parts.

Figure 1 shows the path along which the transmitter processes outgoing video data.

Register Maps

The registers in this document are described in groups according to function. Certain registers in each address range are reserved for future use. Detailed definitions about the reserved registers are not provided in this document.

Register addresses range from 0x00 to 0xFF on each page in the I²C protocol. Because there are more than 255 bytes of registers in the transmitter, the device is accessible at one of two I²C device addresses. The device address may be altered with the CI2CA pin. The level on the CI2CA pin is not latched internally and must *not* be changed during any active I²C operations. All references to device address in this document use the default values of 0x72 and 0x7A.

Table 1 shows how the CI2CA pin state corresponds to device addresses. Table 2 provides an overview of the register address groups.

Figure 1. Transmitter Video Data Processing Path

Table 1. Control of I²C Address with CI2CA Pin

Device Address	CI2CA = HIGH	CI2CA = LOW		
First Device Addr	0x76	0x72		
Second Device Addr	0x7E	0x7A		

Table 2. Register Address Groups

I ² C Address	Address Range	Group Name	ne Purpose			
0x72	0x00-0x0E	Base	Device identification and general programming	3		
	0x0F-0x2B	HDCP	HDCP authentication and other processes	6		
	0x32-0x4D	Video	DE, sync decoder and encoder	11		
	0x70-0x7F	Interrupt	pt Interrupt processing			
	0x80-0xB2	TMDS	TMDS control			
	0xEC-0xFF	DDC	Mastering DDC bus	29		
	0xF8-0xFF	ROM	Status of HDCP keys in ROM	33		
0x7A	0x00-0x3D	Audio	Audio features and translations			
	0x3E-0xFE	CEA-861D	Support for InfoFrame packets	50		

Important: Do not use I²C to write to register addresses that are not described in this document. Modifications to undocumented registers can cause unintended errors in the chip function.

Document Conventions

Bit N	Bits are numbered in little-endian format: the least-significant bit of a byte or word is referred to as bit 0.
0xNN	Hexadecimal representation of base-16 numbers is represented using C language notation, preceded by
	0x.

0bNN Binary (base-2) numbers are represented using C language notation, preceded by 0b. NN Decimal (base-10) numbers are represented using no additional prefixes or suffixes.

Reserved register bits are shaded in the register description.

RSVD0 A bit in a register that is reserved and read-only, and returns a zero value.

RSVD1 A bit in a register that is reserved and read-only, and returns a one value.

RSVD A bit in a register that is reserved and read-only, and returns an indeterminate value.

RSVDRW A bit in a register that is reserved and read-write, returning the value written to it.

RSVDRW0 implies a default of 0 and RSVDRW1 implies a default of 1.

RSVDRW implies a default of 0 unless other specified.

X A register bit defaulting to X has no defined state after hardware reset.

Base Register Set

Vendor ID Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x00	VND_IDL	Vendor II	Vendor ID Low Byte						
0x72	0x01	VND_IDH	Vendor II	Vendor ID High Byte						
Bit	Label	R/W	Description Default							
			Low byte High byte							
15:0	VND_ID	R	Provides	unique vend	dor identific	cation throu	ıgh I ² C.	0x01	0	x00

Device ID Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x02	DEV_IDL	Device II	D Low Byte	/) 🔪					
0x72	0x03	DEV_IDH	Device II	High Byte		,				
Bit	Label	R/W	Descripti	on				Default		
								Low byt	e Hi	gh byte
15:0	DEV_ID	R	Provides I ² C.	unique devi	ce type ide	ntification	through	0x34		34: 0x90 34: 0x91

Device Revision Register

Dev	Addr	Name	7	6	5	4	3	2	1	0		
0x72	0x04	DEV_REV	Device Rev	Device Revision Byte								
				Description Default								
Bit	Label	R/W	Descriptio	n						Default		

Software Reset Register

		- 8										
Dev	Addr	Name	7	7 6 5 4 3 2 1								
0x72	0x05	SRST	RSVD0	SVD0 FIFORST								
Bit	Label	R/W	Descrip	escription								
1	FIFORST	RW	0 = Nori	audio FIFO reset: = Normal operation = Reset (flush) audio FIFO								
0	SWRST	R/W	0 = Nori 1 = Rese	oftware reset: = Normal operation = Reset all sections, including the audio FIFO, except registers that are ser configurable.								

System Control Register #1

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x08	SYS_C	ΓRL1	RSVD0	VSYNC	VEN	HE N	RSVDRW0	BSEL	EDGE	PD#
Bit	Label	R/W	Desci	ription						Default	
6	VSYNC	R	(0x72)	eurrent status 2:0x72), descr e edge.		X					
5	VEN	R/W	0 = F	NC enable: ixed LOW ollow VSYN	C input					1	
4	HEN	R/W	0 = F	NC enable: ixed LOW ollow HSYN	C input	20	1			1	
2	BSEL	R/W	Input 0 = 1: 1 = 24		0	. 7			())	
1	EDGE	R/W	0 = L	select: atch input on atch input on				~~		0	
0	PD#	R/W	Power down mode: HIGH is normal operation. When LOW, the TMDS core is powered down and interrupts are in power-down mode. Most other register values are not affected by assertion of the PD# bit. For exceptions, see page 123.							0	

System Status Register

Dev	Addr	Name								0	
0x72	0x09	SYS_S	TAT	VLOW	RSVD0				RSEN	HPD	P_STABLE
Bit	Label	R/W	Desci	Description							
7	VLOW	R	VREI	VREF mode. Always HIGH.							
2	RSEN	R	Recei	ver Sense (works in D	OC-coupled	systems or	nly):			X
				o receiver o		nd powered	lon				
1	HPD	R	Hot P	lug Detect.	Provides t	he state of	the Hot Plu	ıg Detect p	in.		X
0	P_STABLE	R	IDCK to TMDS clock is stable and the Transmitter can send reliable data on the TMDS link. A change to the IDCK sets this bit LOW. After a subsequent LOW to HIGH transition, indicating a stable input clock, Silicon Image recommends performing a software reset.							0	

RSEN is active when the TMDS link is terminated, usually into a powered-on TMDS receiver chip. An active RSEN implies an active HPD, because the link must also be physically connected.

The *HDCP Specification* defines a *Repeater* device and a protocol for such a device to notify the source of any change in the connection status of any downstream HDCP link. Part of this protocol toggles the Hot Plug signal whenever a downstream device is attached or detached.

Legacy Registers

Dev	Addr	Name	7 6 5 4 3 2 1							0
0x72	0x0A	SYS_CTRL3	RSVD0		RSVD0					
0x72	0x0B	LEGACY1	RSVD0							
0x72	0x0E	LEGACY3	RSVD0							
Bit	Label	R/W	Description	on						Default
2:1	CTL	R/W	The states during bla	C	0b00					

System Control Register #4

Dev	Addr	Name	7	6	5	4	3	2	1	0	
0x72	0x0C	SYS_CTRL4	RSVDRW1	RSVD0		PLLF				PFEN	
Bit	Label	R/W	Description							Default	
4:1	PLLF	R/W	Specifies the $0b0000 = 5 \mu$ $0b0001 = 10$ $0b0010 = 15$ $0b0100 = 25$ $0b0111 = 40$ $0b1000 = 45$ $0b1111 = 80$	Α μΑ μΑ μΑ μΑ μΑ	charge pum	p current:				0ь0001	
0	PFEN	R/W		= Disable PLL filter = Enable PLL filter							
Data (Control R	legister	1 8	, 60,7 L D- U()							

Zum Control Lugaron										
Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x0D	DCTL	RSVD0			RSVD0)	VID_BLANK	AUD_MUTE	RSVD0
Bit	Label	R/W	Descrip	Description						Default
2	VID_BLANK	K R/W	1 = Vide	eo output	is blanked	o output id and the odd on page	colors sen	nked) It are those specifi	ed in registers	0
1	AUD_MUTE	R/W			eros in au audio pac	dio packe ket	t			0

Table 3. Audio/Video Mute Settings

Table 5. Addio/	Video Mute Sei	ungs	
VID_BLANK	AUD_MUTE	SET_AVMUTE*	HDMI Transmitter Sends
х	х		All zeros in audio packets and blank-level data in all video packets
0	1	0	All zeros in audio packets and real video in video packets
1	0	0	Blank-level data in all video packets and real audio in audio packets
0	0	0	Real video in video packet and real audio in audio packets

^{*}Note: Described in register 0x7A:0xDF, bit [0], on page 58.

HDCP Register Set

All multi-byte registers (such as AKSV) should be written to hardware in order from the least-significant byte to the most-significant byte. For AKSV and BKSV, the action of writing a value to the most-significant byte triggers an HDCP operation

Important: An active link clock is required to read back valid data from the HDCP registers on the E-DDC bus.

HDCP Control Register

Dev	Addr	Name		7 6 5 4 3 2 1 0 [RSVDRW0 FNC RKSV RX TX CP RI F								
0x72	0x0F	HDCP_	CTRL	RSVDRW0	ENC_ ON	BKSV_ ERR	RX_ RPTR	TX_ ANSTOP	CP_ RESTN	RI_ RDY	ENC_ EN	
Bit	Label		R/W	Description							Default	
6	ENC_ON		R	Encryption statu 0 = Encryption of 1 = Encryption of	disabled or					,	0	
5	BKSV_EF	RR	R	1 = Error in BKS To clear this bit,	0 = No error in BKSV format 1 = Error in BKSV format To clear this bit, the firmware must first set the TX_ANSTOP bit, and then perform an authentication twice with a valid BKSV value.							
4	RX_RPTF		R/W	1 = HDMI received if the HDMI received authentication properties. This bit is repeater. This store is the store in the sto								
3	TX_ANST	OP	R/W	AN Control. When cleared, the pseudo-random When set, the cite and initialize the Important: To consecutively. To clear this bit, hardware is rese	he cipher envalues. pher engine AN regist set this bit	e stops and er. to 1, a 1 mu RX_RPTR	ree and the HDCP st be writt	e AN register-capable rec	ceiver can r	read	0	
2	CP_REST	N	R/W	Content protecti 0 = Reset 1 = Normal oper							0	
1	RI_RDY		R	R_i Ready. R_i Ready. R_i Ready. R_i Ready. R_i First value is ready in the HDMI transmitter R_i A hardware reset clears this bit. This bit is also cleared when the first byte of BKSV is written into the HDMI transmitter (performed at the beginning of the next authentication process).							0	
0	ENC_EN		R/W	0 = Encryption disabled 1 = Encryption enabled This bit can be written to 0 or 1. A 1-to-0 transition of this bit triggers the HDCP encryption logic and sets an interrupt bit. See register 0x72:0x72[5] on page 23.						0		

HDCP BKSV Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x10	BKSV1	BKSV1							
0x72	0x11	BKSV2	BKSV2							
0x72	0x12	BKSV3	BKSV3							
0x72	0x13	BKSV4	BKSV4							
0x72	0x14	BKSV5	BKSV5							
Bit	Label	R/W	Description							Default
39:0	BKSV	W	Written with t byte 5 triggers last.							0
		R	Value of the E	SKSV regist	er.					

HDCP AN Register

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0	
0x72	0x15	AN	1	AN1				-				
0x72	0x16	AN	2	AN2	X							
0x72	0x17	AN	3	AN3				-				
0x72	0x18	AN	4	AN4			. (1			
0x72	0x19	AN	5	AN5	1							
0x72	0x1A	AN	6	AN6					1	7		
0x72	0x1B	AN	7	AN7		7						
0x72	0x1C	AN	8	AN8			7			·		
Bit	Label		R/W	Descript	ion						Default	
63:0	AN		R/W	AN is an	HDCP 64-l	oit pseudo	-random valu	ie.			0	

HDCP AKSV Register

		-	2002								
Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0
0x72	0x1D	AK	SV1	AKSV1	X						
0x72	0x1E	AK	SV2	AKSV2		<i>y</i>					
0x72	0x1F	AK	SV3	AKSV3	. \ \ \						
0x72	0x20	AK	SV4	AKSV4							
0x72	0x21	AK	SV5	AKSV5							
Bit	Label		R/W	Descripti	on						Default
39:0	AKSV	Y	R			smitter Key in the receiv			e 5 triggers t.	the	0

HDCP Ri Register

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0	
0x72	0x22	RI1		RI1								
0x72	0x23	RI2		RI2								
Bit	Label		R/W	Descripti	Description							
15:0	RI		R	R _i Register. The value of this register must be read and compared with the R _i ' value from the HDMI receiver.							0	

HDCP Ri 128 Compare Register

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x72	0x24	Ri_1	28_COMP	RSVDRW0	RI_128_	COMP					
Bit	Label		R/W	Description						Default	
6:0	RI_128_COM	P	R/W	Limit counter for R _i comparison.							0
				When the frame counter (I_CNT) reaches the index set in this register, the transmitter generates an RI_128 interrupt.						ster,	

The HDCP R_i value is updated during the vertical blanking interval for frame[j] when $j \mod 128 = 0$. Refer to the HDCP Specification. The interrupt RI_128 in INTR1 is generated in the frame with the index that matches RI_128_COMP. RI_128_COMP defaults to generate the interrupt when j = 0. For example, setting RI_128_COMP to 0x7F creates the interrupt one frame before R_i is updated in the HDMI transmitter and receiver.

HDCP I Counter Register

Dev	Addr	Nan	1e	7	6	5	4	3	2	1	0
0x72	0x25	I_Cl	VT	RSVDR0	I_CNT			>		,	
Bit	Label		R/W	Description							Default
6:0	I_CNT		R		Current value of I counter. This register counts frame and then rolls over to zero.					27,	0

Automatic Ri Check

The auto-synchronous R_i check compares the R_i value of the transmitter to the R_i' value of the receiver on the 0^{th} and 127^{th} frame. When reading the R_i' value of the receiver, the automatic R_i check uses the DDC output port. Use bit 0 in the RI_STAT register (0x72:0x26), described in the following table, for proper handshaking between the automatic R_i check and the master DDC functionality. The automatic R_i check is disabled by default. To enable automatic R_i check, set the R_i _EN bit to 1 in the RI_CMD register (0x72:0x27). Interrupts can be configured to trigger on an HDMI transmitter R_i and receiver R_i' mismatch condition.

Using the R_i 128 method is not required if the automatic R_i check is enabled.

Important: Enable the automatic R_i check only after the first stage of HDCP authentication is complete.

Ri Status Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x26	RI_STAT	RSVD0							Ri_ STARTED
Bit	Label	R/W	Descripti	on						Default
0	Ri_STARTEI	D R	This signa After the finish the firmware	R _i check is current tra	or handshak enabled, the nsaction bef bility to use	e hardware fore taking	waits for th control. Aft	e DDC mas er this bit is	ster to s set, the	0

Ri Command Register

Dev	Addr	Na	me	7	6	5	4	3	2	1	0	
0x72	0x27	RI_	CMD	RSVD0						BCAP_EN	Ri_EN	
Bit	Label		R/W	Descript	ion						Default	
1	BCAP_EN		R/W	0 = Disa	able polling of the BCAP_DONE bit (0x72:0x72[7]). = Disable = Enable							
				Note: To	Enable te: To poll the BCAP_DONE bit, the ENC_EN (0x72:0x0F[0]) bit and the EN bit must be enabled on the HDMI transmitter.							
0	Ri_EN		R/W	Check bind DDC conduction of a Disable 1 = Enable Note: Aupage 58) that the I	ntrol hands ble ble itomatic R . The HDM HDCP dev	Ri_STAT is haking. I check is the transmitice is in the transmitical in the trans	not affected tter R _i cour	d by SET_ nter does r E state, ar	for firmware and AVMUTE (descripted does not resumme to the contract of the c	ribed on ng the time	0	

Ri Line Start Register

Dev	Addr	Name	e	7	6	5	4	3	2	1	0	
0x72	0x28	RI_S	TART	Ri_LINE	LINE_START							
Bit	Label		R/W	Descripti	scription							
7:0	Ri_LINE_ST.	ART	R/W	Indicates	Indicates at what line within frame 127 or 0 to start the R _i check.							
				Note: The	Note : The value for this register bit represents the power of 2; 2 LSB is 0.							

Ri From RX Registers

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x72	0x29	RI_	RX_L	Ri_RX[7:	0]						
0x72	0x2A	RI_	RX_H	Ri_RX[1:	5:8]		1				
Bit	Label		R/W	Descripti	on					Default	
15:0	Ri_RX		R		e represents	the HDMI red.	receiver R	' value if a	ny of the	0	

Ri Debug Registers

111 1	coug reg	BUCIB			X						
Dev	Addr	Name	7	6	5	4	3	2	1	0	
0x72	0x2B	RI_DEBUG	RI_DBG_ TRASH	RI_DBG_ HOLD	RSVDX						
Bit	Label	R/W	Description	escription Default							
7	RI_DBG_TRA	ASH R/W		0 = Continue with regular updates to R _i 1 = Force a corruption of the R _i values							
6	RI_DBG_HOI	LD R/W	0 = Continue with regular updates to R_i 1 = Hold the R_i value steady, stop updating								

DE Generator Register Set

The HDMI transmitter provides an internal Data Enable (DE) generator for use when the attached video source does not provide a DE signal with the other video signals. The DE signal is needed for encoding the TMDS output of the HDMI transmitter. A DE signal is generated based on the values in the DE generator registers and the arrival times of the HSYNC and VSYNC pulses from the video source. This DE signal is included in the control data sent to the HDMI receiver across the link. Refer to the Sil9034/9134 HDMI Transmitter Data Sheet (SiI-DS-0189) for more details.

The DE generator registers are used only for DE generation. Figure 2 shows the registers diagrammatically. The vertical sync pulse (VSYNC) occurs in the top area of the frame, before the active video area. The active (leading) edge is shown with an arrow. The horizontal sync pulse (HSYNC) occurs in every line before the active video area during the DE_DLY time. The active (leading) edge of HSYNC is shown with an arrow.

Note: The VSYNC and HSYNC widths are not shown to scale.

Figure 2. DE Generator Measurements

In the following definitions, *pixels* mean unique pixels. The counts in the DE generator registers, if expressed in pixels, are counted according to the original input clock even if that original input clock is multiplied within the chip. For example, a 480i field contains 720 unique pixels per line in the active video area, even when the clock is multiplied to 1440 clock cycles per active video time.

Register 0x72:0x3F records the detected polarity of VSYNC and HSYNC. The output polarities are set by register 0x72:0x33.

Note: When using the Sync Decoding module (see page 14), the DE input signal should be tied LOW.

Video DE Delay Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0	
0x72	0x32	DE_	DLY	DE_DLY	[7:0]							
Bit	Label		R/W	Descripti	Description							
7:0	DE_DLY[7:0]		R/W	pixels. The (horizontal generation Note: This	nis register s al back pord n. is 12-bit val	should be so ch) + (horiz	et to the sur ontal left be s four bits fi	splay. The un of (HSYN order), and some register alue.	NC width) + is used only	for DE	0x00	

Video DE Control Register

	J DE COM		,							
Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x33	DE_CTRL	RSVD0	DE_GEN	VS_POL#	HS_POL#	DE_DL	Y[11:8]		
Bit	Label	R/W	Descripti	on						Default
6	DE_GEN	R/W	Generate	DE signal.	10		•			0
			0 = Disab		X					
			1 = Enabl	3						
5	VS_POL#	R/W	VSYNC r	olarity.						0
			0 = Positi	ve polarity (1	eading edge ri	ses)	\bigcup		4	
			1 = Negat	ive polarity (leading edge f	falls)				
					VSYNC pola					1
					d syncs, set th		esired VS	YNC polar	ity	
			that is ger	erated from	the embedded	sync codes.				
4	HS_POL#	R/W	HSYNC p	-						0
			0 = Positi	ve polarity (l	eading edge ri	ses)				
			1 = Negat	ive polarity (leading edge t	falls)				
					HSYNC pola					
					d syncs, set th		esired HS	YNC polar	rity	
				-	the embedded		7			
3:0	DE_DLY[11:8	R/W	Bits 11:8	of the DE_D	LY value (refe	er to the Video	DE Dela	y Register		0b0000
			section).		<u> </u>					

Note: If both DE signal generation and sync decoding are enabled, VS_POL# and HS_POL# define the polarities of VSYNC and HSYNC from the sync decoder. The DE generator can be used in combination with sync decoding because the encoded syncs do not carry polarity information. To set the transmitted HSYNC and VSYNC to HDMI-compliant states, the DE generator may be needed. Refer to register 0x72:0x4A (in the Video Mode Register (SiI9034) or the Video Mode Register (SiI9134) sections).

Video DE Top Register

	- Add - Name 7 (5 4 2 2 1 0											
Dev	Addr	Name	7	6	5	4	3	2	1	0		
0x72	0x34	DE_TOP	RSVD0	DE_TOP								
Bit	Label	R/W	Description Default									
6:0	DE_TOP	R/W	measure is sum of (V	e height of s lines (HSY SYNC widt range is 1–1	NC pulses) (h) + (vertice)	. This regis al back porc	ter should b ch) + (vertic			000000		

Video DE Count Register

Dev	Addr	Name	7	6	5	4	3	2	1	0	
0x72	0x36	DE_CNTL	DE_CNT	[7:0]							
0x72	0x37	DE_CNTH	RSVD0								
Bit	Label	R/W	Descripti	Description							
11:0	DE_CNT	R/W	Defines the width of the active display. The unit of measure is pixels. Set this register to the desired horizontal resolution. The valid range is 1–4095. 0 is an invalid value.						0		

Note: Values measured in pixels (DE_CNT, and so on) count the total number of unique pixels on a line. If the input clock is a multiple of the pixel rate (see the DEMUX bit, described on page 18 and the ICLK bit, described on page 16), the registers indicate pixel count, which is not the same as clock count.

Video DE Line Register

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0
0x72	0x38	DE	LINL	DE_LIN[7:0]						
0x72	0x39	DE	LINH	RSVD0 DE_LIN[10:8] Description							
Bit	Label		R/W								Default
10:0	DE_LIN		R/W	(HSYNC interlaced half the o	pulses). Se	t this regist this registe cal resolution	er to the deer to the nu	esired vertice mber of line	easure is ling al resolution es per field,	. For	0

Video H Resolution Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x72	0x3A	HRI	ES_L	H_RES[7	:0]						
0x72	0x3B	HRI	ES_H	RSVD0			H_RES[1	2:8]			
Bit	Label		R/W	Descripti	on						Default
12:0	H_RES		R	Measures the time between two HSYNC active edges. The unit of measure is pixels.					0		

Video V Refresh Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x72	0x3C	VRI	ES_L	V_RES[7	:0]						
0x72	0x3D	VRI	ES_H	RSVD0 V_RES[10:8]							
Bit	Label		R/W	Descripti	on				Default		
10:0	V_RES		R	Measures the time between two VSYNC active edges. The unit of measures lines.							0

The values in the DE generator read-only registers are maintained until input HSYNC and VSYNC pulses are stopped. If an input IDCK continues, the DE generator counters overflow and the registers store zero until HSYNC and VSYNC are active again. The values in these registers are accurate only when there are active HSYNC and VSYNC inputs, or in the case of embedded sync input, active SAV/EAV sequences.

Video Embedded Sync Decoding Registers

When decoding syncs from the embedded sync stream (refer to register 0x72:0x4A in the Video Mode Register (SiI9034) or Video Mode Register (SiI9134) sections), disable the DE generator block (refer to register 0x72:0x33 in the Video DE Control Register section). Also, the DE input signal should be tied LOW (refer to the Handling Interlaced Video section).

Video Interlace Adjustment Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x3E	IADJUS	Τ	RSVD0					DE_ADJ#	F2VADJ	F2VOFST
Bit	Label	R/W	Des	cription							Default
2	DE_ADJ#	R/W	1 = Sett be n dete	nore comp	SYNC adjute the second of the	ustment sables VSY existing to the position	ansmitters ion of VS	s. Clearing t YNC relativ	sets the DE g this bit enable ve to HSYNC VSYNC in th	and only	1
			Not	e: Silicon	Image reco	ommends t	hat this bit	always be	set to 0.		
1	F2VADJ	R/W	duri		of an inter				x72:0x46) is a ng of the F2V		0
0	F2VOFST	R/W	0x7	2:0x46) is 2VADJ an	decrement d this bit a	ed by one	during fiel, VBIT_T	\overline{d} 2 of an in O_VSYNC	NC (register aterlace frame (register 0x72)		0

Video SYNC Polarity Detection Register

Dev	Addr	Nam		7	1	0						
0x72	0x3F	POL	DETECT	RSVD	0				I_DET	VPOL_DET#	HPOL_DET#	
Bit	Label		R/W	Descri	ption						Default	
2	I_DET		R	0 = Nc $1 = Int$ This bi	Interlace detect. 0 = Non-interlaced video 1 = Interlaced video This bit is set by checking for a varying VSYNC timing characteristic of interlaced modes.							
1	VPOL_DE	T#	R	Detected input VSYNC polarity, using internal circuit. 0 = Active HIGH (leading edge rises) 1 = Active LOW (leading edge falls)						0		
0	HPOL_DE	T#	R	0 = Ac	tive HIGI	ISYNC por I (leading I (leading)	edge rises	s)	al circuit.		0	

Video Hbit to HSYNC Register

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0x40	HBIT	2HSYNC	C1 HBIT_T	O_HSYN	C[7:0]						
0x72	0x41	HBIT	2HSYNC							HBIT_TO_	HSYNC[9:8]	
Bit	Label		R/W	Description		Default						
9:0	HBIT_TO_HSY	NC	R/W	of an EAV s HSYNC. Th	Creates HSYNC pulses. Set this register to the delay from the detection of an EAV sequence (H bit change from 1 to 0) to the active edge of HSYNC. The unit of measure is pixels.							
				The valid range is 1–1023. 0 is an invalid value.								

Note: Registers 0x72:0x40 and 0x72:0x41 are useful only when the input video uses 656 encoded syncs.

Video Field2 HSYNC Offset Register

Dev	Addr	Na	me		7	6	5	4	3	2	1	0
0x72	0x42	FL	D2_HS_O	FSTL	FIELD2	OFST[7:	0]					
0x72	0x43	FL	D2_HS_O	FSTH	H RSVD0 FIELD2_OFST[11:8]							
Bit	Label		R/W	Descri	escription						Default	
11:0	FIELD2_OFS7	Γ	R/W	Set thi	mines VSYNC pixel offset for the odd field of an interlaced source. is register to half the number of pixels/line. alid range is 1–4095. 0 is an invalid value.						0	

Video HSYNC Length Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0	
0x72	0x44	HW	IDTH1	HWIDT	H[7:0]			> /				
0x72	0x45	HW	IDTH2	RSVD0 HWIDTH							H[9:8]	
Bit	Label		R/W	Descrip	Description							
9:0	HWIDTH		R/W	HSYNC	Sets the width of the HSYNC pulses. Set this register to the desired HSYNC pulse width. The unit of measure is pixels. The valid range is 1–1023. 0 is an invalid value.							

Video Vbit to VSYNC Register

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0x46	VBIT	TO_VSYNC	RSVD0		VBIT_T	O_VSYNC	2				
Bit	Label				Description							
5:0	VBIT_TO_VS	YNC	R/W	an EAV measure	sequence, is lines.		rting edge	of VSYNC	from 1 to 0. C. The unit of		0b000000	

Note: Registers 0x72:0x42 through 0x46 are useful only when the input video uses 656 encoded syncs.

Video VSYNC Length Register

Dev	Addr	Nai	me	7	6	5	4	3	2	1	0
0x72	0x47	VW	/IDTH	RSVD0							
Bit	Label		R/W	Description						Default	
5:0	VWIDTH R/W			Sets the valid ran	Гће	0b000000					

Figure 2 on page 11 shows the HWIDTH and VWIDTH dimensions relative to the complete frame time.

Video Control Register

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x72	0x48	VID_CTRL	IFPOL	RSVDRW	EXTN	CSCSEL	RSVD0		ICLK	
Bit	Label	R/W	Descript	ion						Default
7	IFPOL	R/W	0 = Do not 1 = Invertible This bit in Field 1 and format H mode, the based on	eld polarity. ot invert field by t field bit s used when the d Field2. Inversive and VS e HDMI transn the setting of t HSYNC and V uence.	e 656 Flag rting the fi YNC prop nitter does the F bit. V	eld polarity overly based of not detect every with explicit	causes the on the F bit wen from of syncs, the	sync extract. In embedd dd field, ext HDMI trans	tion to led sync cept smitter	0
6	RSVDRW	R/W	Do not w	rite this bit to	1.					0
5	EXTN	R/W	0 = All 8 $1 = All 1$	Bit modebit input mode 2-bit 4:2:2 input inputs wider to e set to 0.	ut modes	but less than	12 bits, th	e unused bi	ts	0
4	CSCSEL	R/W	0 = BT.6	ace Conversion 01 conversion 09 conversion	n Standard	l select.				0
1:0	ICLK	R/W	0b01 = E 0b10 = R 0b11 = E Note : If t to 0, set 1 the same of the AV example, AVI v2 of Refer to	ixel data is not ach pixel is ser	nt twice nt four tim it in the V bixel replic EMUX bi 5 to the n 1 and ICL b11. amples on	nes ID_MODE r cation field o it is set to 1, s ext higher pi K = 0b01, se programmin	f the AVI veset the pixed replicate the pixel g ICLK, T	v2 data byte el replication tion rate. Fo replication CLKSEL, a	e 5 to n field or field of	0ь00

Video Action Enable Register

Dev	Addr	Name	e	7	6	5	4	3	2	1	0		
0x72	0x49	VID_	ACEN	WIDE_H	BUS	RSVD0	CLIP_ CS_ID	RANGE_ CLIP	RGB_2_ YCBCR	RANGE_ CMPS	DOWN_ SMPL		
Bit	Label		R/W	Descript	ion						Default		
7:6	WIDE_BUS	S	R/W	0b00 = 8 0b01 = 1	bits per 0 bits per 2 bits per	channel or er channel or er channel or	24-bit bus m 30-bit bus	mode			0b00		
4	CLIP_CS_I	D	R/W	determin 0 = Outp	e which out color	tput color sp way to clip space is RC space is YC	B	nk - used by	the clipper blo	ock to	0		
3	RANGE_C	LIP	R/W	1 = Enab When ra to 235, a	D = Disable I = Enable When range clip is enabled, the range of possible values for RGB and Y is 1 to 235, and for CbCr the range of values is 16 to 240. Actual values outside these ranges are clipped to the associated lower (16) or upper (235 or 240)								
2	RGB_2_YC	CBCR	R/W	0 = Disa	1	0							
1	RANGE_CMPS R/W Enable range compression. 0 = Disable 1 = Enable When range compression is enable Y is 16 to 235, and for CbCr the range from 0 to 255 are compressed represented within the compressed (more than one actual value is rep							f values is 16 mapped) so the There may led by the same	to 240. All po at they are al be some dupli e compressed	ossible l cation	0		
0	the duplication is distributed across the defined range. DOWN_SMPL R/W Enable downsampler 4:4:4 to 4:2:2. 0 = Disable 1 = Enable								0				
		<	5-0		X								

Video Mode Register (SiI9034)

Dev	Addr	Name	e	7 6 5 4 3 2 1 ODE DITHER_MODE DITHER RANGE CSC UPSMP DEMUX								
0x72	0x4A	VID_	MODE	DITHER	MODE	DITHER	RANGE	CSC	UPSMP	DEMUX	SYNCEXT	
Bit	Label		R/W	Descripti	on						Default	
7:6	DITHER_MO	DDE	R/W	Identifies 0b00 = D 0b01 = R 0b10 = R 0b11 = R	ither to 8 eserved eserved	per of bits pe bits	r output vid	eo channe	1:		0b00	
5	DITHER		R/W	specified 1 = Dithe	in DITHE r enabled:	l; the video of ER_MODE [; the video of ER_MODE [7:6] utput is dith		•		0	
4	RANGE		R/W	0 = Disab 1 = Enabl When this values from suitable from the suitable from the su	ole e s bit is set om 16–23 or translat tt use the -861D mo sink. Thi nay be a s specific na DMI con ansmitter	the HDMI ting input YC complete rande in the first is the native tandard PC attive resolut nector, whice receives YC g RGB full-r	transmitter 1 8-bit rang CbCr data in 1 8-bit rang CbCr data in 1 9-bit rand only 1 on contraction (2 1 on. In these 1 h allows mu 1 bCr data, th	e of 0–255 nto output DMI Special 18-byte de of the sin XGA, SXC cases (or ultiple PC e data mus	This feature RGB data in the secriptor of the k, which m GA, WXGA for a sink with the secriptor of the sink with the secriptor of the sink with the expansion of the secreptor o	tre is n PC ows one the EDID ay be a, and so with the ten the ded to full	0	
3	CSC		R/W	range for delivering RGB full-range modes. See the <i>HDMI Specification</i> . YCbCr to RGB color space conversion. 0 = Disable 1 = Enable						0		
2	UPSMP		R/W	0 = Disable 1 = Enable						0		
1	DEMUX		R/W	One- to to 0 = Disab 1 = Enabl	le	hannel demu	ltiplexing.				0	
0	SYNCEXT R/W Embedded sync extraction. 0 = Disable 1 = Enable							0				

Video Mode Register (SiI9134)

Dev	Addr	Name	e	7	6	5	4	3	2	1	0
0x72	0x4A	VID_	MODE	DITHER	MODE	DITHER	RANGE	CSC	UPSMP	DEMUX	SYNCEXT
Bit	Label		R/W	Descripti	on						Default
7:6	DITHER_MO	DDE	R/W	Identifies 0b00 = D 0b01 = D 0b10 = D 0b11 = R	ither to 8 ither to 10 ither to 12	0 bits	r output vid	eo channe	1:		0b00
5	DITHER		R/W	specified 1 = Dithe specified	in DITHI r enabled in DITHI	l; the video of ER_MODE [; the video of ER_MODE [7:6] utput is dith 7:6]	ered to the	•		0
4	RANGE		R/W	0 = Disab 1 = Enabl When thi values for suitable f modes the non-CEA EDID 1.3 may be a specific n HDMI co transmitte	s bit is set om 16–23 or translat at use the -861D mo . This is t standard attive reso	t, the HDMI 5 into the ful ting input YC complete ran ode in the fir the native res PC resolution blution. In the which allows s YCbCr dat 6 full-range r	transmitter 1 8-bit rang CbCr data ir nge. The HI st and only solution of t n (XGA, SX ese cases (o multiple Po a, the data r	expands the of 0–255 ato output <i>DMI Specij</i> 18-byte de he sink, w (GA, WX) or for a sink C modes), nust be ex	This feature RGB data in fication allow escriptor of hich may be GA, and so could the T when the F panded to fi	tre is n PC ows one the sink e RGB. It on), or a Type B IDMI ull range	0
3	CSC		R/W	YCbCr to 0 = Disab 1 = Enab	ole	lor space cor	iversion.	Y	O		0
2	UPSMP		R/W	Up sampl 0 = Disab 1 = Enab	ole le	01		5			0
1	DEMUX		R/W	One- to two-data-channel demultiplexing. 0 = Disable 1 = Enable						0	
0	SYNCEXT		R/W	1 = Enable Embedded sync extraction. 0 = Disable 1 = Enable						0	

Video Blanking Registers

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x4B	VID_I	BLANK1	VID_BLA	NK1						
0x72	0x4C	VID_I	BLANK2	VID_BLA	NK2						
0x72	0x4D	VID_I	BLANK3	VID_BLANK3							
Bit	Label		R/W	Description	on						Default
7:0	VID_BLAN	IK1	R/W	Defines th	e video bla	nking value	for Channel	l 1 (Blue).			0x00
7:0	VID_BLAN	IK2	R/W	Defines the video blanking value for Channel 2 (Green). 0x00							0x00
7:0	VID_BLANK3 R/W Defines the video blanking value for Channel 3 (Red). 0x00							0x00			

Note: The VID_BLANK bit in the DCTL register (0x72:0x0D[2]) enables video blanking. Refer to page 5.

These registers are not affected by the SET_AVMUTE flag.

Video VSYNC Length Register (SiI9134)

Dev	Addr	Nam	ie	7	6	5	4	3	2	1	0		
0x72	0x4E	DC_I	HEADER	DC_HE	DC_HEADER								
Bit	Label		R/W	Descrip		Default							
7:0	DC_HEADER	HEADER R/W			This is the least significant byte of the deep color header that send the TMDS dynamic phase once per frame.								

Interrupt Registers

The interrupt registers coordinate enabling and recognizing the interrupts generated by the HDMI transmitter.

Figure 3 shows the control of the INT output pin. Each interrupt source has a bit (shown as INTa_bit in the figure) and a mask (shown as MASKa_bit), where a is the label of the interrupt bit and its corresponding mask bit. Each of these pairs is logically ANDed. The AND result of each pair is then ORed and latched with the active output clock and appears in the INTR bit (0x72:0x70[0]). This bit, along with the POLARITY# and OUTPUT_TYPE bits (0x72:0x79[2:1]; refer to page 25) affect INT in all modes. When RESET# goes LOW, POLARITY# defaults to 1 and OUTPUT_TYPE defaults to 0 (push-pull).

When the device is powered down by setting PD# (0x72:0x08[0] shown on page 4) to 0, RSEN (0x72:0x71[5]) is the only interrupt that affects the INT output pin. No other condition generates an interrupt when the transmitter is powered-down with PD#. If necessary, the host device must use other means to monitor the hot plug state, such as polling the System Status Register. Note that when RESET# is LOW, PD# is reset to zero.

Figure 3. Interrupt Pin Control

Interrupt State Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x70	INTR_	STATE	RSVD0							INTR
Bit	Label		R/W	Descripti		Default					
0	INTR	8	R	polarity o	f the INT of INT_CTRICS with materials.	output signa _ register (0	1 is set usin 0x72:0x79).	g this bit ar Only INTI	s set to 1. The result of the POLAR1, INTR2, contribute to	ARITY# and	0

Interrupt Source Registers

When reading any interrupt bit in the following three tables, a 1 indicates that the interrupt is asserted, and a 0 indicates no interrupt occurred.

Register INTR1

Dev	Addr	Name	7	6	5	4	3	2	1	0				
0x72	0x71	INTR1	SOFT	HPD	RSEN	DROP_ SAMPLE	BI_PHASE _ERR	RI_128	OVER_ RUN	UNDER _RUN				
Bit	Label		R/W	Descripti	on					Default				
7	SOFT		R		Induced Into		s the firmware	to generate an	interrupt	0				
6	HPD		R	The HDM unplug or sink EDII	II transmitte plug. HDM I is ready to	er signals a cl I specifies the be read and		nnectivity to a ast be active or s toggled any	sink, either	0				
5	RSEN		R	Receiver	Sense Interr	upt, asserted	if RSEN has c	hanged. Write	a 1 to clear.	X				
4	DROP	P_SAMPLE	E R	If the HD before the that stops	MI transmit subframe h	ter detects ar has been capt r a flat-line c	ple (S/PDIF ing 8-bit preamble ared, this interpondition can er	e in the S/PDI rupt is set. An		0				
3	BI_PH	IASE_ERF	R		Input S/PDIF stream has a bi-phase error. This can occur when there is noise or a change of the Fs rate on the S/PDIF input. Write a 1 to clear.									
2	RI_12	8	R	This interby the VS firmware	Input counted past frame count threshold set in RI_128_COMP register. This interrupt occurs when the count written to register 0x72:0x24 is matched by the VSYNC (frame) counter in the HDMI transmitter. It should trigger the firmware to perform a link integrity check. Such a match occurs every 128 frames. Write a 1 to clear.									
1	OVER	R_RUN	R	Audio FIFO Overflow. This interrupt occurs if the audio FIFO overflows when more samples are written into it than are drawn out across the HDMI link. Such a condition can occur from a transient change in the Fs or pixel clock rate. Write a 1 to clear.										
0	UNDE	ER_RUN	R				rupt occurs wh	nen the audio I	FIFO empties.	0				
			2		Xe		<i>J</i>							

Register INTR2

Dev	Addr	2 INTR2 BCAP_ SPDIF_ ENC_ PREAM CTS_CHG ACR_OVR TCLK_ V						0						
0x72	0x72	INTR2		CAP_ ONE	SPDIF_ PAR	ENC_ DIS	PREAM _ERR	CTS_CHG	ACR_OVR	TCLK_ STBL	VSYNC_ REC			
Bit	Label			R/W	Description	on					Default			
7	BCAP	_DONE		R	in the HD To enable	MI receiver this interrup	pt, ENC_EN	(0x72:0x0F[0]	oit (0x74:0x40[5]), BCAP_EN all be set to 1. V		0			
6	SPDIF	F_PAR		R	The S/PD	occurs if the			e end of each sul match the state o		0			
5	ENC_	DIS		R		rupt occurs		nanged from 1 is turned off (to 0. 0x72:0x0F[0] is	set to 0).	0			
4	PREA	M_ERR		R	(0x72:0x7)	1[4]). This	is the opposite of the condition that causes DROP_SAMPLI. This interrupt occurs if a preamble is expected but not four IF stream is being decoded. Write a 1 to clear.							
3	CTS_0	CHG		R	Change in ACR CTS value. This interrupt occurs when the change is of an unexpected magnitude. Such ar interrupt should be expected when changing Fs or pixel clock frequency. Write a 1 to clear.									
2	ACR_	OVR		R	ACR Packet Overwrite. This interrupt occurs if the HDMI transmitter puts an NCTS packet into the queue before the previous NCTS packet has been sent. This can occur if very long active data times do not allow for sufficient NCTS packet bandwidth. For all CEA-861D modes, no ACR_OVR interrupt should occur. Write a 1 to clear.									
1	TCLK	_STBL	j	R	TCLK_STABLE (register 0x72:0x09[0]) changes state. Whenever IDCK changes, there is a temporary instability in the internal clocking. This interrupt is set when the internal clocking has stabilized. Note: TCLK is a multiple of IDCK and is generated by the internal PLL. Write a 1 to clear.									
0	VSYN	IC_REC		R										
		<	2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	SX	O.								

Register INTR3

Dev	Addr	Name	7	6	5	4	3	2	1	0		
0x72	0x73	INTR3	REG_ INTR3_ STAT7	RSVD	REG_ INTR3_ STAT5	REG_ INTR3_ STAT4	REG_ INTR3_ STAT3	REG_ INTR3_ STAT2	REG_ INTR3_ STAT1	REG_ INTR3_ STAT0		
Bit	Label		R/W	Description	on					Default		
7	REG_I STAT	INTR3_ 7	R/W	R _i not read	d within one	frame; to cl	ear, write a 1.			0		
6	Ri_ER	R#2	R/W	Reserved						0		
5	REG_I STAT:	INTR3_ 5	R/W	R_i and R_i' 0x25); to Q	0 = reg.	0						
4	REG_I STAT	INTR3_ 4	R/W		R_i and R_i ' do not match during 1st frame (default during frame #127 = reg. $0x25 - 1$); to clear, write a 1.							
3	REG_II STAT3		R/W	DDC command is complete. Asserted if set to 1. Write a 1 to clear.								
2	REG_I STAT	INTR3_ 2	R/W	DDC FIFO is half-full interrupt. Asserted if set to 1. Write a 1 to clear.								
1	REG_I STAT	INTR3_ 1	R/W	DDC FIFO is full interrupt. Asserted if set to 1. Write a 1 to clear.								
0	REG_I STAT0	_	R/W	DDC FIFO is empty. Asserted if set to 1. Write a 1 to clear.								

Interrupt Unmask Register

Interrupts are set in the INTR1, INTR2, and INTR3 registers as they occur, but only interrupts with a corresponding bit set in the INT_UNMASK1 through INT_UNMASK3 registers are logically ORed into the INT output pin signal. The state of any interrupt can be checked at any time by reading the INTR1, INTR2, and INTR3 registers directly. The INTR_STATE register 0x72:0x70, described on page 21, is also only set for matching INT_UNMASK bits.

All bits marked RSVD in the interrupt registers should have the corresponding bit in the INT_UNMASK register cleared to zero.

Dev	Addr	Name		7	6	5	4	3	2	1	0		
0x72	0x75	INT_U	UNMASK1	INT_UN	MASK[7:0] (7)							
0x72	0x76	INT_U	UNMASK2	INT_UN	MASK[15:	8]							
0x72	0x77				MASK[23:	16]							
Bit	Label	Label R/W			Description								
7:0 7:0 7:0	INT_UNMAS INT_UNMAS INT_UNMAS	SK2	R/W	Enable or Enable or 0 = Disab		rresponding rresponding onding inte	g bit in large bit	INTR2.			0x00 0x00 0x00		

Interrupt Control Register

Dev	Addr	Name	e	7	6	5	4	3	2	1	0		
0x72	0x79	INT_	CTRL	RSV	DRW			SOFT_INTR	OUTPUT_TYPE	POLARITY	RSVDRW		
										#			
Bit	Label		R/W	Desc	riptio	n					Default		
3	SOFT_INTR		R/W	Set s	oftwa	re inte	rrupt.				0		
						nterruj	ot						
		VDE D'AV			1 = Set interrupt								
2	OUTPUT_TYP	OUTPUT_TYPE R/W				INT pin output type.							
				0 = Push/pull									
				1 = (Open d	lrain							
				Note : This bit must be set to 1 after reset to configure the INT pin as an									
						open drain output.							
1	POLARITY# R/W			INT	pin as		1						
		0 = Assert HIGH											
				1 = A	Assert	LOW							

TMDS Control Registers

The TMDS registers control Transition-Minimized Differential Signaling (TMDS). Please see the Setting up the PLL Control Registers section (p. 109) for details regarding the settings of the registers described in this section.

TMDS C Control Register

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0x80	TMDS_CC	TRL	RSVDRW0	RSVDRW0	FAPOSTCOUNT	RSVDRW1	RSVD	RW0	RS	VDRW1	
Bit	Label		R/W	Description	Description							
5	FAPOS	TCOUNT	R/W	Filter PLL p 0 = Divided 1 = Divided	l by 1	ting for the audio clo	ck.				0	

TMDS Control Register #1

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x82	TMDS	_CTRL	RSVDRW0	TCLK	SEL	RSVDRW0 LVBIAS RSVDRW				STERM
Bit	Label R/W			Description							
6:5	TCLKSEL R/W			Selects FPLL multiple of the IDCK: 0b00 = FPLL is 0.5 • IDCK 0b01 = FPLL is 1.0 • IDCK 0b10 = FPLL is 2.0 • IDCK 0b11 = FPLL is 4.0 • IDCK							0b01
2	LVBIAS R/W			This bit should always be set to 1 after reset.							
0	STERM R/W Internal source termination. 0 = Disable 1 = Enable Note: Silicon Image recommends enabling source termination. Refer to the respective datasheet for more information.								1		

For certain combinations of video input clock frequency and audio sampling rate, the HDMI transmitter must use a higher multiple of the input pixel clock when sampling the S/PDIF input.

Set ICLK to reflect the pixel replication factor of the input data stream so that it is properly decoded. TCLKSEL indicates the factor by which the input clock (IDCK) must be multiplied to yield the output clock frequency. These settings ensure that the output clock can provide sufficient bandwidth for multi-channel audio data on an HDMI link (25 MHz at a minimum). The pixel replication count bits in the AVI InfoFrame Packet must be accurate. Refer to Table 4 for examples.

Table 4. TMDS Control Register Example

480p mode (pixel clock = 27 MHz)										
Input Clock (IDCK) ¹	Audio Mode & max F _s	ICLK ² 0x72:0x48[1:0] Input Pixel Replication ⁴	DEMUX 0x72:0x4A[1]	TCLKSE ³ 0x72:0x82[6:5]	Output (Link) Clock ¹	Output Pixel Replication ¹⁰	AVI InfoFrame Packet Byte 5 bits PR3:PR0 ¹⁰			
54 MHz	8 ch, 96 kHz	0b01 (2x)	0	0b01 (1.0)	54 MHz ⁶	$2x^7$	0b0001			
54 MHz	2 ch, 192 kHz	0b01 (2x)	0	0b00 (0.5)	27 MHz	1x	0b0000			
54 MHz	8 ch, 96 kHz	0b00 (1x)	1 ⁵	0b01	54 MHz ⁶	$2x^7$	0b0001			
54 MHz	2 ch, 192 kHz	0b00 (1x)	1 ⁵	0b00	27 MHz	1x	0b0000			
27 MHz	8 ch, 96 kHz	0b00 (1x)	0	0b10 (2.0)	54 MHz ⁶	$2x^7$	0b0001			
27 MHz	2 ch, 192 kHz	0b00 (1x)	0	0b11 (4.0)	108 MHz	4x ⁸	0b0011			
27 MHz	8 ch, 48 kHz	0b00 (1x)	0	0b01 (1.0)	27 MHz	1x ⁹	0b0000			

Notes:

1. Input Clock (IDCK) and Output Clock must be within the min/max range for the HDMI transmitter.

- 2. For proper decoding, set ICLK to reflect the pixel replication factor of the input data stream.
- 3. Factor by which input clock must be multiplied to give output clock frequency.
- 4. There is only one pixel per 27 MHz clock cycle, so each must be replicated.
- 5. When YCbCr 4:2:2 data is multiplexed onto a single channel, the input clock must be doubled.
- 6. 54 MHz is necessary so that the blanking intervals have sufficient bandwidth to carry the 8-channel audio data sampled at frequencies up to 96 kHz.
- 7. Because the output clock has been doubled, pixels must be replicated.
- 8. Illustrates 4x pixel replication on output.
- 9. 27 MHz input clock provides sufficient bandwidth for 8-channel audio data sampled at frequencies 48 kHz and below. Refer to the *HDMI Specification*.
- 10. Bits PR0:PR3 of Byte 5 of the AVI InfoFrame packet indicate to the HDMI sink how many repetitions of each unique pixel are transmitted. Refer to Table 14 in the *CEA-861D Specification*.

These settings ensure that the output clock provides sufficient bandwidth for multi-channel audio data on an HDMI link (25 MHz minimum).

Figure 4: Input Bus Diagram for Different Formats

Note: All three input bus formats can use 656 encoded syncs.

TMDS Control Register #2

Dev	Addr	Name	<u> </u>	7	6	5	4	3	2	1	0
0x72	0x83 TMDS_CTRL2		POST_CO	POST_COUNT FFB_COUNT FFR_COUNT							
Bit	Label R/W		Descripti	Description							
7:6	POST_COUNT		R/W	Sets the d	Sets the divider ratio for the HDMI transmitter PLL post counter:						
				0b00 = Divide by 1 0b01 = Divide by 2 0b10 = Divide by 4 0b11 = Invalid							
5:3	FFB_COUNT R/W		R/W	Sets the divider ratio for the PLL filter feedback counter:							0b011
				0b000 = Divide by 1 0b001 = Divide by 2 0b010 = Divide by 3 0b011 = Divide by 4 0b100 = Divide by 5 0b101 = Divide by 6 0b110 = Divide by 7						5	
2:0	FFR_COUNT R/W			Sets the divider ratio for the PLL filter front counter: 0b000 = Divide by 1 0b001 = Divide by 2 0b011 = Divide by 4 0b111 = Divide by 8							0b011

TMDS Control Register #3

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0x84	TMDS_C	TRL3	RSVDRW0	ITPLL				FPOST_C	COUNT	
Bit	Label R/W			Description							Default
6:3	ITPLL	R		Controls the fit PLL: $0b0000 = 5 \mu A \\ 0b0001 = 10 \mu \\ 0b0010 = 20 \mu \\ 0b0011 = 25 \mu \\ 0b0100 = 40 \mu \\ 0b0110 = 50 \mu \\ 0b1000 = 80 \mu \\ 0b1011 = 135 \\ The filter band using the default operating tempadjust that value 0b1010 = 100 \\ 0b1111 = 135 \\ 0b1011 = 100 \\ 0b1111 = 135 \\ 0b10111 = 135 \\ 0b101111 = 135 \\ 0b$	A A A A A A A OμA μA dwidth is a ult value. Derature, a	approximat However, o	ely 4 MHz depending equency v	z. Silicon loon the supariations,	image recor pply voltage the user ma	mmends e, ıy	0b0011
2:0	FPOST_COUN	NT R	R/W	Sets the divide 0b000 = Divid 0b001 = Divid 0b011 = Divid 0b111 = Divid	le by 1 le by 2 le by 4	r the PLL fi	ilter post c	ounter:			0ь000

TMDS Control Register #4

Dev	Addr	Name	<u> </u>	7	6	5	4	3	2	1	0
0x72	0x85	TMDS	_CTRL4	RSVDRW0				RSVDR	W0	TFR_C	DUNT
Bit	Label		R/W	Description		Default					
1:0	TFR_COUNT		R/W	HDMI trans		0b01					
				0b00 = Divi 0b01 = Divi 0b10 = Divi 0b11 = Inva	ide by 2 ide by 4						

Repeater Authentication Enable Register

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0xCC	TMDS	_CTRL4	Reserv	Reserved Repeater Authentication Reserved Enable							
Bit	Label		R/W	Descri	Description							
3	Repeater Authentication Enable	l	R/W	IMPORTANT: This bit <i>must</i> be set to 1 if the sink connected to the Si19034/9134 transmitter is a repeater.							0	

DDC Master Registers

The following registers control the DDC output port, described on page 106. The speed of the Master DDC clock is determined by an internal oscillator in the HDMI transmitter, with a maximum of 100 kbps. There is no requirement for an active input pixel clock to the HDMI transmitter, and the DDC SCL speed is not affected by the pixel clock frequency.

The auto-synchronous R_i check also uses the DDC output port. For proper handshaking, refer to the $Ri_STARTED$ bit in the Ri_STAT register (0x72:0x26[0]), described on page 8.

Note: The DDC CMD, DDC_DATA and DDC_STATUS registers are not accessible if PDOSC = 0 or PDTOT# = 0.

DDC I²C Manual Register

				8								
Dev	Addr	Nam	ne	7	6	5	4	3	2	1	0	
0x72	0xEC	DDC	C_MAN	MAN_OVR	RSVDRW0	MAN_SDA	MAN_SCL	RSVI	DRW0	IO_SCL	IO_SDA	
Bit	Label		R/W	Description							Default	
7	MAN_OV	R	R/W	Manual Overr		0						
				0 = Normal op 1 = Override p	O = Normal operation I = Override port with MAN_SCL and MAN_SDA states							
5	MAN_SDA	1	R/W	Manual SDA output.								
4	MAN_SCI	,	R/W	Manual SCL output.						0		
1	IO_SCL		R	DDC SCL input state.								
0	IO_SDA		R	DDC SDA inp	out state.		• ()		1	0	

DDC I²C Target Slave Address Register

Dev	Addr	Nam	ie	7	6	5	4	3	2	1	0
0x72	0xED	DDC	_ADDR	DDC_AD	DR						RSVD0
Bit	Label		R/W	Description	n					Default	
7:1	DDC_ADE)R	R/W	DDC devi	ce address.				>	06000000	00

DDC I²C Target Segment Address Register

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x72	0xEE	DDC	_SEGM	DDC_SEC	DDC_SEGM						
Bit	Label		R/W	Description							
7:0	DDC_SEGM R/W			DDC segment address. 0x00							

DDC I²C Target Offset Address Register

Dev	Addr	Name	;	7	2	1	0				
0x72	0xEF	DDC_	OFFSET 4	DDC_OFFSET							
Bit	Label		R/W	Description I						Default	
7:0	DDC_OFF	SET	R/W	DDC offset address.						0x00	

DDC I²C Data Count Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x72	0xF0	DDC_C	COUNT1	DDC_CO	UNT[7:0]						
0x72	0xF1	DDC_C	COUNT2	RSVDRW	0		DDC_COUNT[9:8				
Bit	Label		R/W	Description	on		Default				
7:0 1:0	DDC_COU		R/W	slave before HDCP KS	re a <i>Stop</i> bi V FIFO len	ytes to be ret t is sent on t gth is 635 b ust be 0x27I	he DDC but ytes (127 de	s. For exam	ple, if the	0x00 0b00	

DDC I²C Status Register

Dev	Addr	Name	8	7	6	5	4	3	2	1	0
0x72	0xF2	DDC_S	STATUS	RSVDR0	BUS_ LOW	NO_ ACK	IN_ PROG	FIFO_ FULL	FIFO_ EMP	FRD_ USE	FWT_ USE
Bit	Label		R/W	Description	n						Default
6	BUS_LOW R/W $1 = I^2C$ transaction did not start because I^2C bus is pertentional device. This bit must be cleared to 0 by the									y an	0
5	NO_ACK										0
4	IN_PROG		R	1 = DDC o	peration in	progress	2		1		0
3	FIFO_FULI	_	R	1 = DDC F	IFO full		1/				0
2	FIFO_EMP		R	1 = DDC FIFO empty						0	
1	FRD_USE	. (R	1 = DDC FIFO read in use						0	
0	FWT_USE		R	1 = DDC F	IFO write	in use		> /			0

The DDC master feature recognizes and supports clock stretching by an I^2C slave device. Clock stretching is described in the I^2C Specification.

DDC I²C Command Register

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x72	0xF3	DDC	_CMD	RSVD0	•	DDC_FLT_EN	SDA_DEL_EN	DDC_C	MD		
Bit	Label		R/W	Descript	tion						Default
5	DDC_FLT	_EN	R/W	Enable tl	he DDC de	lay.					0
				0 = Enab 1 = Disa							
				edge of t real start does not oscillator	he DDC Slacondition remove the r.	DA signal to preve must have a setup e real START cond	a line to create a 30 nt an erroneous I ² C time of 600 ns so the lition. Filtering is c	C START hat this de done using	condition. lay of 300	The	
4	SDA_DEL	_EN	R/W		_	iltering on the DD	C clock and data li	ne:			0
				0 = Enab 1 = Disa Filtering	ble	ing a ring oscillato	r		C	7	
3:0	DDC CM	D	R/W	DDC cor		ing a ring openiato			(1		0b0000
				0b1001 = 0b1010 = 0b0000 = 0b0110 = 0b0111 = 0b0111 = Writing to Note: The Data form FIFO is a bus to ha	= Sequentia = Enhancec = Sequentia = Sequentia to this regista to Clear FII merly loaden now emptyung if used.	CO CL ddress read with no al read with no AC d DDC read with no al write ignoring A al write requiring A ster immediately in FO command reset ed into the FIFO ca c. Other command	o ACK on last byte CK on last byte ACK on last byte ACK on last byte nitiates the I ² C trans the FIFO read an annot be read after codes are reserved	saction on d write po a Clear FI and may o	ointers to z FO, becau cause the I	ero. use the	
							² C devices on the lang the DDC comm		. This rese	et	

DDC I²C Data Register

Dev	Addr	Name	;	7	6	5	4	3	2	1	0
0x72	0xF4	DDC	DATA	DDC_DATA							
Bit	Label		R/W	Description I						Default	
7:0	DDC_DAT	ГА	R/W	DDC data input.					0x00		

The FIFO supports multi-byte sequential read commands from the controller. Such a command is diagrammed in Figure 13 on page 106. Up to 16 bytes can be read in one local I²C command. Data bytes continue to be loaded into the FIFO until it is full.

DDC I²C FIFO Count Register

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x72	0xF5	DDC_F	FIFOCNT	RSVDRV	RSVDRW0 DDC_FIFOCNT							
Bit	Label		R/W	Description					Default			
4:0	DDC_FIFO	CNT	R/W			, ,	er of bytes maximum v			NT is	0b00000	

ROM Registers

The following registers are used to determine the status of the HDCP keys stored in the HDMI transmitter ROM.

ROM Status Register

Write a bit in this register to 0 to clear the corresponding condition bit.

		Name 7				0					
Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x72	0xF9			RSVD	BIST2	BIST1	RSVDRW1	RSVD	RSVD	CRC_ERR	CMD_DONE
		STATUS			_ERR	_ERR					
Bit	Label	Label R/W Description							Default		
6	BIST2_EI	RR	R/W	1 = BIS	ST self-autl	hentication	test 2 error				0
5	BIST1_E	RR	R/W	1 = BIS	ST self-aut	hentication	test 1 error				0
1	CRC_ERI	RC_ERR R/W 1 = CRC error						0			
0	CMD_DONE R/W 1 = Command d					ne (last ope		0			

ROM Command Register

Dev	Addr	Name	7 6 5 4 3 2 1							0
0x72	0xFA	KEY_ COMMAND	RSVD0		LD_KSV	EPCM				
Bit	Label	R/W	Descript	ion						Default
5	LD_KSV	R/W	Enable KSV load from embedded keys: 0 = Disable 1 = Enable (write 0 before enabling again) I ² C master command to the embedded keys:							N/A
4:0	EPCM	R/W	0b00000 0b00011 0b00100 0b01000 verify en 0b10000 authentic HDCP ci Do not u Before w	= Run no E = Run all E = Run only = Run only bedded key = Run only tation that u pher engine se any other	BIST tests BIST tests CRC test BIST self-a contents) BIST self-a ses an inverte	uthentication uthentication uthentication ded key sele	on test 1 (a 1 on test 2 (a 2 ction vector , verify that	e-pass to verify the	he	0ь00000

The BIST command can be performed according to this procedure:

- 1. Assert hardware reset and release it. (RESET# pin is HIGH).
- 2. IDCK is active and is 74 MHz.
- 3. Set SWRST = 1 (0x72:0x05=0x01).
- 4. Set up PLL:

0x72:0x80 = 0x23, 0x72:0x83 = 0x98, 0x72:0x84 = 0x63, 0x72:0x85 = 0x00.

- 5. Power up (0x72:0x08 = 0x01).
- 6. Release SWRST (0x72:0x05 = 0x00).
- 7. Wait until P STABLE = 1 (read 0x72:0x09[0]).
- 8. Write ANSTOP 2 times:

0x72:0x0F = 0x0C

0x72:0x0F = 0x0C

- 9. Wait until 0x72:0xF9[0] = 1.
- 10. Write 0x72:0xF9 = 0x00.
- 11. BIST start 0x72:0xFa = 0x03
- 12. Wait until 0x72:0xF9[0] = 1.
- 13. Pass if 0x72.0xF9 = 0x03, fail for other values.

Audio Registers

The HDMI link does not transport an explicit audio master clock; instead, it encodes the frequency of that clock in N/CTS Packets sent during command times. The ratio of the current pixel clock frequency to the desired MCLK frequency is defined by a numerator, N, and a denominator, CTS. Whenever the pixel clock frequency changes (the video mode changes) or the audio clock changes (the audio sampling rate changes), the value of N must also be updated.

ACR Control Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x7A	0x01	ACI	R_CTRL	RSVD0						NCTSPKT_EN	CTS_SEL
Bit	Label		R/W	Description CTS request analysis						Default	
1	NCTSPKT_E	ČN	R/W	CTS request enable: 0 = N/CTS packet disabled 1 = N/CTS packet enabled							1
0	CTS_SEL		R/W	2002						0	

ACR Audio Frequency Register

Dev	Addr	Name	_	7 6 5 4 3 2 1 RSVD0 MCLK_CONF							
0x7A	0x02	FREQ_S	SVAL	RSVD0					MCLK_C	ONF	
Bit	Label	R/	/W	Descripti	on						Default
2:0	MCLK_CONF	R/	/W	0b000 = M 0b001 = M 0b010 = M 0b011 = M 0b100 = M 0b101 = M 0b110 = M 0b111 = M The HDM produce C to Fs is fo	CTS values or the input	56 • Fs 84 • Fs 12 • Fs 58 • Fs 124 • Fs 152 • Fs 92 • Fs er uses thes according t	o the 128 downsam	livide the MC • Fs formula pled output F	. The ratio N	ICLK	0ь001
	<	5,0		× (

ACR N Software Value Register

Dev	Addr	Naı	ne	7 6 5 4 3 2 1								
0x7A	0x03	N_5	SVAL1	N_SVAL	[7:0]							
0x7A	0x04	N_5	SVAL2	N_SVAL	N_SVAL[15:8]							
0x7A	0x05	N_5	SVAL3	RSVD0								
Bit	Label		R/W	Descripti	Description							
7:0	N_SVAL1		R/W						st be writter		0x00	
7:0	N_SVAL2			registers to create the correct divisor for audio clock regeneration. Only								
3:0	N_SVAL3			values greater than 0 are valid. This register must be written after a hardware reset.								

ACR CTS Software Value Register

Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0
0x7A	0x06	CTS	S_SVAL1	CTS_SV	AL[7:0]						
0x7A	0x07	CTS	S_SVAL2	CTS_SV	CTS_SVAL[15:8]						
0x7A	0x08	CTS	S_SVAL3	RSVD0							
Bit	Label		R/W	Descripti	Description						
7:0	CTS_SVAL1		R/W	CTS value for the audio clock regeneration method.							0x00
7:0	CTS_SVAL2				For diagnostic use and applied only when the CTS_SEL bit						0x00
3:0	CTS_SVAL3			(0x7A:0x	01[0]) is se	t to 1.				1	0b0000

ACR CTS Hardware Value Register

Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x7A	0x09	CTS	S_HVAL1	CTS_HV	AL[7:0]						<u>'</u>
0x7A	0x0A	CTS	S_HVAL2	CTS_HV	'AL[15:8]		X	7			
0x7A	0x0B	CTS	S_HVAL3	RSVD0				CTS_H	VAL[19:16	6]	
Bit	Label	·									Default
7:0	CTS_HVAL1		R CTS value for the audio clock regeneration method. This value is								
7:0	CTS_HVAL2			measured and stored here by the hardware when MCLK is active and N is							
3:0	11.1 - C - 120 F AL - 1 - CMCL IV										X
3:0 CIS_HVALS A SOCIAL A SOCIA											

Audio In Mode Register

Dev	Add	Nan	ne	7	6	5	4	3	2	1	0	
0x7 A	0x14	AUD	_MODE	SD3_EN	SD2_EN	SD1_EN	SD0_EN	DSD_EN	RSVDRW0	SPDIF_EN	AUD_EN	
Bit	Label		R/W	Descriptio	n						Default	
7	SD3_E	N	R/W	I ² S input c	hannel #3.						0	
				0 = Disable 1 = Enable								
6	SD2_E	N	R/W	I ² S input c	² S input channel #2.							
				0 = Disable 1 = Enable	= Disable = Enable							
5	SD1_E	N	R/W	I ² S input c	= Enable S input channel #1.							
				0 = Disable 1 = Enable								
4	SD0_E	N	R/W	I ² S input c	hannel #0.	7)	0	
				0 = Disable 1 = Enable		0,			·. 0			
3	DSD_E	EN	R/W	Direct Stre	am Digital	Audio enab	le.				0	
				0 = Disable 1 = Enable			¥					
1	SPDIF_	_EN	R/W		out stream.			10			0	
				0 = Disable 1 = Enable						4		
0	AUD_I	EN	R/W				7				0	
				0 = Disable 1 = Enable	= Disable							

Audio input data is selected from either the S/PDIF input or the I²S inputs. Audio input data can be disabled by clearing the AUD_EN bit (refer to Figure 5 on page 61). Bits 7:4 also apply to DSD and HBR (High Bit Rate) Audio when any of them are selected.

The Direct Stream Digital Audio (DSD) Enable bit has a lower priority than S/PDIF enable, but higher than the I^2S stream. When it is set, most of the I^2S configuration register bits become control for the DSD logic including SD3/2/1/0 enable, the I^2S FIFO map, and the Channel Status registers.

See the note on page 39 about the limitation of the HDMI transmitter in assigning the I²S channels to audio FIFOs.

Audio In S/PDIF Control Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x7A	0x15	SPDIF	CTRL	RSVI	DRW0			NOAUDIO	RSVDRW0	FS_OVERRIDE	RSVDRW0
Bit	Label		R/W	Desci	ription		Default				
3	NOAUDI	О	R	No S/PDIF audio. 0 = Detected change on the S/PDIF input 1 = No change detected on the S/PDIF input							0
1	FS_OVEF	RRIDE	R/W	S/PDIF input stream override. 0 = Use input S/PDIF stream's detected FS 1 = Use software FS in I2S_CHST4 register (0x7A:0x21)							0

Audio In S/PDIF Extracted Fs and Length Register

Dev	Addr	Name									0
0x7A	0x18	HW_SI	PDIF_FS	HW_S	PDIF_L	EN	HW_MAXLEN	HW_SI	PDIF_FS		•
Bit	Label		R/W	Descri	ption						Default
7:5	HW_SPDIF HW_MAXL		R R	Combisample of the combis sample of the combis samp	nes with e size: aximum aximum sample	sample sample word ler (HW_M llows: t availab		el status b es [7:5], d	it 32) to ind	he	0ь0000
3:0	HW_SPDIF	FS	R	Set to the Fs extracted from the S/PDIF input channel status bits 24–27.							0b0000

Audio In I²S Channel Swap Register

Dev	Addr	Name	7	6 5 4 3 2 1						
0x7A	0x19	SWAP_I2S	SWCH3	SWCH2	SWCH1	SWCH0	RSVDF	RW		
Bit	Label	R/W	Description	n						Default
7	SWCH3	R/W	0 = Do not swap left and right 1 = Swap left and right							
6	SWCH2	R/W	Swap left-right channels for I ² S Channel 2. 0 = Do not swap left and right 1 = Swap left and right							
5	SWCH1	R/W	I = Swap left and right Swap left-right channels for I ² S Channel 1. 0 = Do not swap left and right 1 = Swap left and right							0
4	SWCH0	R/W	Swap left-right channels for I ² S Channel 0. 0 = Do not swap left and right 1 = Swap left and right							0
3:0	RSVDRW	R/W	Reserved; do not modify.							

Note: Each SWCH[3:0] bit is active *only* when the corresponding I²S input channel is enabled with register 0x7A:0x14.

Audio Error Threshold Register

Dev	Addr	Nam	ie	7	6	5	4	3	2	1	0
0x7A	0x1B	SPD	IF_ERTH	RSVDRW0 RSVDRW1 AUD_ERR_THRESH							
Bit	Label	Label R/W								Default	
5:0	AUD_ERR_THRESH R/W			number of bi-	error threshold phase mark enc threshold level d	oding err	ors in the	audio str		0b00100	00

Audio In I²S Data In Map Register

	111 5 20		1			_					
Dev	Addr	Nar	ne	7	6	5	4	3	2	1	0
0x7A	0x1C	I2S_	_IN_MAP	FIFO3_M	AP	FIFO2_M	AP	FIFO1_M	1AP	FIFO0_N	1AP
Bit	Label		R/W	Descripti	on					Default	
7:6	FIFO3_MAP		R/W	0b00 = M 0b01 = M 0b10 = M	nap to FIFO ap SD0 to I ap SD1 to I ap SD2 to I ap SD3 to I	3	0b11				
5:4	FIFO2_MAP		R/W	0b00 = M 0b01 = M 0b10 = M	nap to FIFO ap SD0 to I ap SD1 to I ap SD2 to I ap SD3 to I		0b10				
3:2	FIFO1_MAP		R/W	0b00 = M 0b01 = M 0b10 = M	nap to FIFO ap SD0 to lap SD1 to lap SD2 to lap SD3 to	FIFO #1 FIFO #1	DMI Layou	nt 1):	200	0b01	
1:0	FIFO0_MAP)	R/W	Channel map to FIFO #0 (for HDMI Layout 0 or 1): 0b00 = Map SD0 to FIFO #0 0b01 = Map SD1 to FIFO #0 0b10 = Map SD2 to FIFO #0 0b11 = Map SD3 to FIFO #0						0b00	

HDMI allows for up to eight channels of audio content. Two channels pass through each of the four FIFOs listed in the description for register 0x7A:0x1C. HDMI does not restrict the source to use any specific subset of the FIFOs. For example, 4-channel content can use many combinations of two FIFOs and two fields in the Audio InfoFrame packets (indicated by each packet's B.X and SP.X bits; see the *HDMI Specification*) limited only by the channel assignment choices in EIA/CEA-861D Section 8.3.2. The HDMI transmitter logic sets the B and PR bits automatically in each Audio InfoFrame packet, using both the 0x1C register settings and the I²S channel enables in the 0x7A:0x14 register.

Some HDMI receiver chips do not make the arriving B and PR bit information accessible to the sink firmware. Therefore, the only indicator of *used audio channels* is in Data Byte 4 of the Audio InfoFrame packet.

Audio In I²S Control Register (SiI9034)

Dev	Addr	Name	e	7	6	5	4	3	2	1	0			
0x7A	0x1D	I2S_I	N_CTRL	RSVD0	SCK_ EDGE	RSVD0	RSVD0	I2S_ WS	I2S_ JUST	I2S_ DIR	I2S_ SHIFT			
Bit	Label		R/W	Descripti	on						Default			
6	SCK_EDGE		R/W	0 = Samp on the risi 1 = Samp	SCK sample edge: 0 = Sample edge is falling; SD3-SD0 and WS source should change state on the rising edge of SCK 1 = Sample clock is rising; SD3-SD0 and WS source should change state on the falling edge of SCK									
3	I2S_WS		R/W	WS polar 0 = Left p	ws polarity: 0 = Left polarity when ws is LOW 1 = Left polarity when ws is HIGH									
2	I2S_JUST		R/W		v: s left-justif s right-just					5	1			
1	I2S_DIR		R/W	SD direct 0 = MSB 1 = LSB s	0									
0	I2S_SHIFT		R/W	WS to SD first bit shift: 0 = First bit shift (refer to the <i>Philips Specification</i>) 1 = No shift										

Audio In I²S Control Register (SiI9134)

Dev	Addr	Name	e										
0x7A	0x1D	I2S_I	N_CTRL	HBRA_ ON	SCK_ EDGE	CBIT_ ORDER	VBit	I2S_ WS	I2S_ JUST	I2S_ DIR	I2S_ SHIFT		
Bit	Label		R/W	Descripti	on						Default		
7	HBRA_ON		R/W	•	Rate Audio	On. ot high bit ra	ota.	5			0		
				1 = Input	stream is hi	gh bit rate. Ash Bit Rate A	All of the I	² S control	oits will app	oly to			
6	SCK_EDGE	Ξ	R/W		SCK sample edge:								
					0 = Sample edge is falling; SD3-SD0 and WS source should change state on the rising edge of SCK								
				1 = Samp	1 = Sample clock is rising; SD3-SD0 and WS source should change state								
	CDVT ODD		200		on the falling edge of SCK This bit should be set to 1 for High Bit Rate Audio								
5	CBIT_ORD	ER	R/W			to 1 for Hig	gh Bit Rate	Audio			0		
4	VBit		R/W	V bit valu	e						0		
				0 = PCM 1 = Comp	ranged								
3	I2S_WS		R/W	WS polari							0		
3	125_W5		IX/ VV		-	n WS is LO	W				U		
						n WS is EO							
2	I2S JUST		R/W	SD justify							1		
	_			0 = Data i	s left-justif	ied							
				1 = Data i	s right-just	fied							
1	I2S_DIR		R/W	SD directi		0							
				-	shifted first								
_	IOC CITIES		D/III		hifted first	. 0							
0	I2S_SHIFT		R/W		first bit sh						1		
				0 = First bit shift (refer to the <i>Philips Specification</i>) 1 = No shift									

Audio In I²S Channel Status Register Word 1 (9034)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x1E	I2S_0	CHST1	I2S_CH							
Bit	Label		R/W	Descrip	tion						Default
7:0	I2S_CHST1		R/W	Channel Status Byte #0 0x00							0x00

Audio In I²S Channel Status Register Word 1 (9134)*

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x1E	I2S_	CHST1	I2S_CH	IST1[7:3]				PCM_COMP	RSVD	CON_PROF
Bit	Label		R/W	Description							Default
7:3	I2S_CHST1		R/W	Channel Status Byte #0[7:3] 0b00000							
2	PCM_COMP		R/W	0 = PCI	ession flag M mpressed	9.			. (1	7	0
0	CON_PRPF		R/W	Select consumer or professional. 0 = Consumer 1 = Professional							0

*Note: When using the SiI9134 transmitter, information written to this register does not comply with the IEC 60958 audio standard. The PCM/compressed bit is not accessible at bit 1 of this register. Instead, to set high bit rate audio, write a 1 to bit 2. This correctly sets bit 1 in the CHST1 header byte sent to the receiver. The copyright-asserted bit is not accessible, but is forced to 0 (copyright protection asserted).

Audio In I²S Channel Status Register Word 2

Dev	Addr	lame	7	6	5	4	3	2	1	0
0x7A	0x1F I	2S_CHST2	I2S_CH	IST2						
			_							
Bit	Label	R/W	Descrip	tion						Default

Audio In I²S Channel Status Register Word 3

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x20	I2S_0	CHST3	I2S_CH	AN_NUN						
Bit	Label		R/W	Descrip	Description						Default
7:4	I2S_CHAN_N	NUM	R/W	Channel	Channel Status Byte #2: Channel number						
3:0	I2S_SRC_NU	M	R/W	Channel Status Byte #2: Source number							0b0000

Audio In I²S Channel Status Register Word 4 (9034)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x21	I2S_0	CHST4	CLK_ACCUR SW_SPDIF_FS							
Bit	Label		R/W	Description							Default
7:4	CLK_ACCUI	₹	R/W	Clock a	ccuracy.						0b0000
3:0	SW_SPDIF_F	FS	R/W	Sampling frequency as set by software which is inserted into the S/PDIF stream if FS_OVERRIDE is enabled.							0b1111

Audio In I²S Channel Status Register Word 4 (9134)*

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x21	I2S_0	CHST4	CLK_A	CCUR			SW_SPDI	F_FS		
Bit	Label		R/W	Descrip	tion						Default
7:4	CLK_ACCUI	₹	R/W	Clock a	ccuracy.						0b0000
3:0	SW_SPDIF_F	FS	R/W	Sampling frequency as set by software that is inserted into the S/PDIF stream if FS_OVERRIDE is enabled. Refer to the note below.							0b1111

^{*}Note: When the transmitter processes high bit rate audio, set this register to 0x09.

Audio In I²S Channel Status Register Word 5 (9034)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x22	I2S_0	CHST5	FS_ORI	[G			I2S_LEN	•		I2S_MAXLEN
Bit	Label		R/W	Descrip	tion						Default
7:4	FS_ORIG		R/W	Original	l Fs.					-5	0b0000
3:1	I2S_LEN I2S_MAXLE	N	R/W	0 = 20 b 1 = 24 b Audio s bit 0 (I2 follows: 0b000 0b001 0b100 0b101 0b100 0b001 0b000 0b001 0b010 0b100	oits oits ample wo S MAXI	EN). The	set with b	its [3:1], de	pends on the ang bits [3:0] a		060001

Notes:

- 1. The word length bits [3:0] should always match the word length of the audio samples coming into the HDMI transmitter, even if the transmitter downsamples the audio. The word length of the input I²S stream is set in the 0x7A:0x24 register, described on page 46. Audio stream down sampling is enabled in the 0x7A:0x23 register, described on page 45.
- 2. If an audio input whose sample length is less than or equal to 20 bits is downsampled, then the output sample length will always be 20 bits, and 0x7A:0x22[3:0] should be set to 0b0011. However, if the downsampled input sample length is larger than 20 bits, the output sample length is equal to the input sample length, and 0x7A:0x22[3:0] should be set accordingly.

Audio In I²S Channel Status Register Word 5 (9134)¹

Dev	Addr	Name	e	7	6	5	4	3	2	1	0
0x7A	0x22	12S_0	CHST5	FS_ORI	G			I2S_LEN	•		I2S_MAXLEN
Bit	Label		R/W	Descrip	tion						Default
7:4	FS_ORIG		R/W	Original	Fs.						0b0000
3:1	I2S_LEN I2S_MAXLE	N	R/W	0 = 20 b 1 = 24 b Audio si bit 0 (I2 follows: 0b000 0b010 0b101 0b100 0b001 0b001 0b001 0b010 0b010 0b010 0b010	its its ample words MAXL 2,3 0 = not av 0 = 16 0 = 18 0 = 19 0 = 20 0 = 17 1 = not av 1 = 20	rd length, EN). The	set with b		gth: pends on the ng bits [3:0] a		0b0001

Notes:

- 1. When the transmitter processes high bit rate audio, set this register to 0xE2.
- 2. With the exception of high bit rate audio, the word length bits [3:0] must always match the word length of the audio samples coming into the HDMI transmitter, even if the transmitter downsamples the audio. The word length of the input I²S stream is set in the 0x7A:0x24 register, described on page 46. Audio stream down sampling is enabled in the 0x7A:0x23 register, described on page 45.
- 3. If an audio input whose sample length is less than or equal to 20 bits is downsampled, then the output sample length will always be 20 bits, and 0x7A:0x22[3:0] should be set to 0b0011. However, if the downsampled input sample length is larger than 20 bits, the output sample length is equal to the input sample length, and 0x7A:0x22[3:0] must be set accordingly.

HDMI 1.1 requires that accurate channel status information be transmitted in the Audio InfoFrames. When the audio is supplied to the HDMI transmitter at the S/PDIF input, the channel status is extracted from the S/PDIF stream. When the audio is supplied by I^2S inputs, the firmware must write accurate values into the channel status registers. Refer to IEC 60958-3 for detailed definitions of the channel status bits. The channel status information is used in the HDMI receiver to reconstruct the audio into I^2S format.

When down-sampling the audio stream (see the ASRC register on page 45), both CHST5 and CHST4 should be loaded with the original (input) Fs rate. The chip sends the original Fs in the audio packet channel status bits corresponding to CHST5, divides the original Fs rate (according to register ASRC), and sends that slower Fs in the bits corresponding to CHST4. Always write the input Fs into CHST4 and CHST5 when connected to an I²S source. An S/PDIF source loads both bytes automatically.

If FS_OVERRIDE is set to 0 (0x7A:0x15[1]), the sampling frequency is extracted from the S/PDIF input stream. It is encoded in that stream's Channel Status bits as shown in Table 5.

The value in FS_OVERRIDE assists source systems that do not provide correct Fs information in the raw S/PDIF stream. The *HDMI Specification* requires the transmitted Fs value to be correct in the channel status bits of the audio sample packets. By setting FS_OVERRIDE to 1, the HDMI transmitter can be programmed (in SW_SPDIF_FS) with the correct Fs value and can ignore the value in the input S/PDIF stream. *Values not listed in Table 5 are reserved*.

Table 5. Encoded Audio Sampling Frequency

CH_ST	74 bit			Fs Sampling
3	2	1	0	Frequency
0	0	0	0	44.1 kHz
1	0	0	0	88.2 kHz
1	1	0	0	176.4 kHz
0	0	1	0	48 kHz
1	0	1	0	96 kHz
1	1	1	0	192 kHz
0	0	1	1	32 kHz
0	0	0	1	not indicated
1	0	0	1	768 kHz

Audio Sample Rate Conversion Register (SiI9034)

Dev	Addr	Name		7	6	5	4	3	2	1	0					
0x7A	0x23	ASRC		RSVD0			RSDV1	RSVDRV	V0	RATIO	SRC_EN					
Bit	Label		R/W	Descript	ion						Default					
7:5	RSVD0		R	These bits are reserved and read-only, and return a zero value.							0b000					
4	RSVD1		R	This bit is reserved and read-only, and returns a one value.							This bit is reserved and read-only, and returns a one value.					1
1	RATIO		R/W	Sample r	ate down-	conversion	ratio:				0					
							SRC_EN is SRC_EN is									
0	SRC_EN		R/W	Audio sample rate conversion:						0						
				0 = Disable 1 = Enable												

Audio Sample Rate Conversion Register (SiI9134)

Dev	Addr	Name		7	6	5	4	3	2	1	0	
0x7A	0x23	ASRC		HBR_SF	R_MASK	10		RSVDRV	V0	RATIO	SRC_EN	
Bit	Label		R/W	Descript	ion						Default	
7:4	HBR_SPR_M	IASK	R/W	header. Each bit masks one of the subpacket sample-present bits. 0 = Mask out 1 = Unmask Bits 7:4 must be programmed to 0b0000 when HBRA mode is selected.					0ь0001			
1	RATIO				Sample rate down-conversion ratio: 0 = Downsample 2-to-1 when SRC_EN is set to 1 1 = Downsample 4-to-1 when SRC_EN is set to 1							
0	SRC_EN R/W			Audio sample rate conversion: 0 = Disable 1 = Enable							0	

Sample rate conversion is applied only to 2-channel audio, either from the S/PDIF input or from the I²S Channel 0 input. Setting register ASRC to 0x01 downsamples 96-kHz audio to 48 kHz and 88.2-kHz audio to 44.1 kHz. Setting ASRC to 0x02 downsamples 192 kHz-audio to 48K kHz and 176.4-kHz audio to 44.1 kHz. This conversion is performed after selecting S/PDIF or I²S input paths to the HDMI transmitter. The CHST5 bits written in register 0x7A:0x22 should always indicate the sample rate before any down sampling (refer to page 41).

If an audio source is connected to both the HDMI transmitter and an audio DAC, the audio source may output 192-kHz (or 176.4-kHz) audio to drive the DAC and the transmitter. The DAC uses the higher sample rate, while the HDMI transmitter simultaneously downsamples that stream to the 48 kHz (or 44.1 kHz) sample rate. 48 kHz and 44.1 kHz are the default audio rates for HDMI.

The N value and the I^2S channel status registers should be set according to the input audio configuration. The N value is affected by the down sampling so that the outgoing N value in the N/CTS packets represents the video-to-audio ratio for the downsampled audio stream. For example, to input 96 kHz audio with 74.25 MHz video input and to output 48kHz audio, the N register value should be set to 12288. This N will be divided by the downsample RATIO, so that the HDMI transmitter sends packets with N = 6144.

Note: Bits 7:4 must be programmed to 0b0000 when HBRA mode is selected.

Important: Sample rate conversion works only for 2-channel PCM audio; set LAYOUT to 0 in register 0x7A:0x2F.

Audio I²S Input Length Register (SiI9034)

Dev	Addr	Nam		7	6	5	4	3	2	1	0
0x7A	0x24	I2S_	IN_LEN	RSVD				IN_LENC	TH		
Bit	Label		R/W	Description	on						Default
7:4	RSVD		R	These bits	are reserve	d and read-o	only, and ret	urn an inde	terminate va	lue.	X
3:0	IN_LENGTH		R/W	I ² S data fr 0b1111 - 0b1101 = 0b1100 = 0b1011 = 0b1010 = 0b1001 = 0b1010 = 0b0101 = 0b0011 = 0b0010 =	om the inpu 0b1110 = N 21 bit 17 bit 24 bit 20 bit 23 bit 19 bit 0b0110 = N 22 bit 18 bit N/A	nt stream.	I ² S stream.	Used for the	extraction	of the	0b1011

Audio I²S Input Length Register (SiI9134)

Dev	Addr	Nam	e	7	6	5	4	3	2	1	0
0x7A	0x24	I2S_	IN_LEN	HDR_PK	Γ_ID		2	IN_LENC	ЭТН		
Bit	Label		R/W	Description	on						Default
7:4	HDR_PKT_I	D	R/W	Four LS b	its of the II	of the High	n Bit Rate A	udio packet	header.*		0b1001
3:0	IN_LENGTH		R/W	I ² S data from Ob1111 - 0 Ob1101 = 1 Ob1101 = 1 Ob1010 = 1 Ob1000 = 1 Ob0101 = 1 Ob01101 =	om the inpu 0b1110 = N 21 bit 17 bit 24 bit 20 bit 23 bit 19 bit 0b0110 = N 22 bit 18 bit N/A	I/A	I ² S stream.	Used for the	eextraction	of the	0b1011

^{*}Note: Specified by HDMI 1.3, Table 5-28.

Audio Mode Switching Sequence

When switching audio modes, the following procedure must be followed to ensure that the frame counter is properly reset.

- 1. Mute the audio sent to the receiver, as shown in Table 3. (Set 0x72:0x0D[2] to 0, 0x72:0x0D[1] to 1, and 0x7A:0xDF[0] to 0).
- 2. Disable the audio input stream by setting 0x7A:0x14[0] to 0.
- 3. Set all audio mode registers to the new audio mode as needed.
- 4. Wait 6 ms.
- 5. Enable the audio input stream by setting 0x7A:0x14[0] to 1.
- 6. Unmute the audio sent to the receiver. (Set 0x72:0x0D[2] to 0, 0x72:0x0D[1] to 0, and 0x7A:0xDF[0] to 0).

HDMI Control Register (SiI9034)

Dev	Addr	Nan	ne	7 6 5 4 3 2 1 RSVD0 LAYOU							0
0x7A	0x2F	HDN	MI_CTRL					HDMI_MODE			
Bit	Label		R/W	Descripti	Description Audio packet header layout indicator:						Default
1	LAYOUT		R/W	Audio packet header layout indicator: 0 = Layout 0 (2-channel) 1 = Layout 1 (up to 8 channels)						0	
0	HDMI_MOD	ЭE	R/W	HDMI mode: 0 = Disable 1 = Enable					0		

HDMI Control Register (SiI9134)

Dev	Addr	Nan	1e	7	6	5	4	3	2	1	0
0x7A	0x2F	HDI	MI_CTRL	RSVD0	DC_EN	PACKI	ET_MODE	3	RSVD0	LAYOUT	HDMI_MODE
Bit	Label		R/W	Descripti	on						Default
6	DC_EN		R/W	Deep-col	or packet e	nable:					0
					ot send deep	p-color re	elated info	rmation in	the packet	to the	
				HDMI re	ceıver deep-color	ralatad ir	.formation	in the ne	alrat ta tha	прмі	
					The follow						
				7 = PP3	}						
				6 = PP2							
				5 = PP1 $4 = PP0$			01				
				3 = CD							
				2 = CD	2		Λ.				
				1 = CD)
				0 = CD				1 6 1:	.1		
					is always (egister bits	
					on that con						
5:3	PACKET_MO	ODE	R/W	Specifies	the number	r of bits p	er pixel se	ent to the p	oacketizer:		0b000
					Reserved			•		()	
					24 bits per j						
				0b101 = 3 0b110 = 3	30 bits per j 36 bits per j	pixel (10 pixel (12	bits per ch	nannel; pao	ck to 8 bits		
				0b110 = 1 0b111 = 1		pixel (12	oits per ci	iamici, pa	ck to 8 bits		
1	LAYOUT		R/W	Audio pa	cket header	layout ii	ndicator:				0
					ut 0 (2-char		\ '	\			
					ut 1 (up to	8 channel	s)	X	*		
0	HDMI_MOD	E	R/W	HDMI m					0.		0
			1	0 = Disab) ,			
	1			1 = Enab	e			(

Audio Path Status Register

Dev	Addr	Name		7	6	5	4	3	2	1	0
0x7A	0x30	AUDO_T	XSTAT	RSVE	00				MUTE	NULL_ PACKET_EN VS_HIGH	NULL_ PACKET_EN
Bit	Label		R/W	Descr	iption						Default
2	MUTE		R	0 = No 1 = A The M 0x7A: immed writter Control SET_A of VS Control mode, CLR_Note: = {0,0 is not	o packet packet IUTE book oxDF, diately in In HI ol Pack AVMU YNC. I ol Pack MUTE AVMU The cool and complia	with SE it is equidescribe when the DMI most is trar TE to 1. TE to 1. TE to 1. TE has mbination [1, 1] and the Formation of the second of the	ET_AVM al to the don pa e SET_ de, MU smitted In DVI I mode, CLR_A ed at th been with ons {SE re not su	MUTE: MUTE = e SET_A ge 58. M AVMU' ITE is solution I mode, MUTE WMUTI e start critten to T_AVM upported	MUTE is a TE bit in a set after the er writing MUTE is is cleared E = 1 is seen of VSYNO 1. MUTE, Claby HDM	bit in register not set register 0xDF is e General set at the start when a General ent. In DVI	0
1	NULL_PAG VS_HIGH	CKET_EN	R/W	HDMI Specification. Enables null packet flooding only when VSync is HIGH.					c is HIGH.	0	
0	NULL_PACKET_EN R/W			Enables null packet flooding all the time. Note: The HDMI compliance test will fail if this bit is set to 1. This bit should always remain 0.						0	

Diagnostic Power Down Register

				7 6 5 4 3 2 1						•	
Dev	Addr	Nan	ne	7	6	5	4	3	2	1	0
0x7A	0x3D	DPI)	RSVD0	, (/ (7.	RSVD	PDIDCK#	PDOSC	PDTOT#
Bit	Label		R/W	Descrip	tion						Default
3	RSVD		R	This bit	is reserv	ed					1
2	PDIDCK#		R/W	Power d	own IDC	K input:		>			1
				0 = Power down; block IDCK signal to disable all IDCK-based logic 1 = Normal operation Power down the internal ring oscillator. The ring oscillator clock is required							
1	PDOSC		R/W	Power down the internal ring oscillator. The ring oscillator clock is required for the operation of the DDC master, the ROM, and interrupts.					1		
				0 = Power down 1 = Normal operation							
0	PDTOT#		R/W	Power d	own tota	1:				·	1
			V	0 = Power down everything							
				1 = Normal operation							

Refer to page 123 for details on the restrictions for using these power-down bits.

InfoFrame Registers

For each of the seven packets described in the following registers, two bits control whether the packet is sent once or repeatedly. To send a packet one time, set the EN (enable) bit corresponding to that packet after the packet data has been written into the appropriate registers. Read the EN bit to determine if the packet has actually been transmitted across the link. When the EN bit is cleared to zero, the packet has been transmitted.

To send a packet repeatedly, write the corresponding RPT (repeat) bit to 1 at the same time as EN is set to 1. This sends the packet during every VBLANK period.

To disable repeated transmission, clear the corresponding RPT and EN bits simultaneously.

To guarantee that the HDMI receiver remains in HDMI mode, at least one HDMI packet must be transmitted every two VSYNC periods (refer to the *HDMI Specification*). This occurs automatically whenever audio is being transmitted. If audio is not yet enabled or if the HDMI transmitter is not sending audio for some other reason, transmit a null packet (all zeroes) during every VBLANK period. Set the contents of the Generic Control Packet buffer to all zeroes and then set both EN and RPT bits for that packet.

The ID, TYPE, checksum, and length fields in each HDMI InfoFrame must be loaded by the microcontroller. The SiI9034/9134 transmitter has no internal logic for calculating the checksum or any preset length value.

Note: The EN bits in registers 0x7A:0x3E and 0x7A:0x3F can be set or cleared only when IDCK is active and when the HDMI transmitter is *not* in a powered-down state. Refer to page 123 for more details on power-down bits. Data bytes can be written in each InfoFrame. The SET_AVMUTE and CLR_AVMUTE bits in the General Control Packet, along with the RPT bit for each packet type, can be set or cleared when the transmitter is powered down. Therefore, the firmware can write all necessary registers except the EN bits, de-assert any power-down bits, and then write any necessary EN bits.

Note: The EN and RPT bits for the various packet types are not affected by the state of the HDMI_MODE bit (register 0x7A:0x2F[0], described on page 46). Although packets cannot be transmitted in DVI mode (when HDMI_MODE is set to 0), and the HDMI transmitter ignores the states of registers 0x3E through 0x3F when HDMI_MODE is set to 0, the firmware should clear the packet EN and RPT bits whenever switching to DVI mode so that the status of packet sending, when read back from registers 0x3E and 0x3F, is consistent with the link mode. All packet enable and repeat bits are set to their default values after reset.

CEA-861D InfoFrame Control #1 Register

Dev	Addr	Nan		7	6	5	4	3	2	1	0
0x7A	0x3E	PB_	CTRL1	MPEG_ EN	MPEG_ RPT	AUD_EN	AUD_RPT	SPD_EN	SPD_RPT	AVI_EN	AVI_RPT
Bit	Label		R/W	Descripti	on						Default
7	MPEG_	EN	R/W	Enable M	PEG InfoFr	ame transmis	sion:				0
				0 = Disab 1 = Enabl							
6	MPEG_	RPT	R/W	Repeat M	PEG InfoFr	ame transmis	sion:				0
					Disable (send once after EN bit is set) Enable (send in every VBLANK period) able Audio InfoFrame transmission: Disable Enable						
5	AUD_E	N	R/W	Enable A	= Enable						0
				0 = Disab 1 = Enabl							
4	AUD_R	PT	R/W	•		ame transmiss				7	0
						ce after EN bi very VBLAN			· 0		
3	SPD_EN	1	R/W	Enable SI	PD InfoFran	ne transmissio	on:				0
				0 = Disab 1 = Enabl							
2	SPD_RP	PΤ	R/W		· // //	ne transmissio					0
						e after EN bi					
1	AMI EN	Т	R/W			very VBLAN ne transmission					0
1	AVI_EN	•	K/W	0 = Disab		ie transmissio)II.		7		U
		. \		1 = Enabl	// .	\cup \setminus					
0	AVI_RP	T	R/W	Repeat A	VI InfoFran	ne transmissio	on:		U		0
)	~ (ce after EN bi		0			

Refer to the following sections of the CEA-861D Specification:

- i. For AVI InfoFrames: Section 6.4.
- ii. For Source Product Description (SPD) InfoFrames: Section 6.5.
- iii. For Audio InfoFrames: Section 6.6.
- iv. For MPEG InfoFrames: Section 6.7.

CEA-861D InfoFrame Control #2 Register

Dev	Addr	Nai	ne	7	6	5	4	3	2	1	0
0x7A	0x3F	PB_	CTRL2	RSVI	00	GEN2_EN	GEN2_RPT	GCP_EN	GCP_RPT	GEN_EN	GEN_ RPT
Bit	Label		R/W	Desci	ription						Default
5	GEN2_E	EN	R/W		isable	ric #2 packet tr	ansmission:				0
4	GEN2_R	RPT	R/W	0 = D	Repeat generic #2 packet transmission: = Disable (send once after EN bit is set) = Enable (send in every VBLANK period) Enable General Control Packet transmission:						0
3	GCP_EN	1	R/W	0 = D	I = Enable (send in every VBLANK period) Enable General Control Packet transmission: I = Disable I = Enable						0
2	GCP_RP	Т	R/W	0 = D	1 = Enable Repeat General Control Packet transmission: 0 = Disable (send once after EN bit is set) 1 = Enable (send in every VBLANK period)						0
1	GEN_EN	1	R/W		isable	ric packet trans	smission:		10	7	0
0	GEN_RF	PT	R/W	Repeat generic packet transmission: 0 = Disable (send once after EN bit is set) 1= Enable (send in every VBLANK period)						0	

Refer to the *HDMI 1.3 Standard*, section 5.3.6, for a detailed description of General Control Packets (GCP). Refer to pages 50 and 63 for more information regarding the usage of Generic Control Packets.

CEA-861D InfoFrame Registers

Refer to the HDMI Specification and the CEA-861D Specification for a detailed explanation of these register fields.

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x7A	0x40	AVI_TYPE	AVI_HD	R[7:0]	•	•				•
0x7A	0x41	AVI_VERS	AVI_HD	R[15:8]						
0x7A	0x42	AVI_LEN	AVI_HD	R[23:16]						
0x7A	0x43	AVI_CHSUM	AVI_HD	R[31:24]						
0x7A	0x44	AVI_DBYTE1								
0x7A	0x45	AVI_DBYTE2								
0x7A	0x46	AVI_DBYTE3								
0x7A	0x47	AVI_DBYTE4								
0x7A	0x48	AVI_DBYTE5								
0x7A	0x49	AVI_DBYTE6								
0x7A	0x4A	AVI_DBYTE7						6		
0x7A	0x4B	AVI_DBYTE8	AVI_DA	TA						
0x7A	0x4C	AVI_DBYTE9			1		• (
0x7A	0x4D	AVI_DBYTE10		X						
0x7A	0x4E	AVI_DBYTE11								
0x7A	0x4F	AVI_DBYTE12								
0x7A	0x50	AVI_DBYTE13	. 0				ノ、\		1	
0x7A	0x51	AVI_DBYTE14	XC	/						
0x7A	0x52	AVI_DBYTE15				7) .				
Bit	Label	R/W	Descripti	ion					Default	
7:0	AVI_TYPE	R/W	AVI Info	Frame type	code.				0x00	
7:0	AVI_VERS	R/W	AVI Info	Frame vers	sion code.	, \			0x00	
7:0	AVI_LEN	R/W	AVI Info	Frame leng	gth.				0x00	
7:0	AVI_CHSUM	R/W	AVI Info	Frame chec	eksum.				0x00	
	AVI_DATA	R/W	AVI Info	Frame data	bytes.					

Refer to page 101 for more details on the fields and valid settings in the AVI InfoFrame.

SPD InfoFrame Registers

Refer to the CEA-861D Specification for more information on these register fields.

Dev	Addr	Specification for n Name	7	6	5	4	3	2	1	0
0x7A	0x60	SPD_TYPE	SPD_HD	R[7:0]						
0x7A	0x61	SPD_VERS	SPD_HD							
0x7A	0x62	SPD_LEN	SPD_HD	R[23:16]						
0x7A	0x63	SPD_CHSUM	SPD_HD	R[31:24]						
0x7A	0x64	SPD_DBYTE1								
0x7A	0x65	SPD_DBYTE2								
0x7A	0x66	SPD_DBYTE3								
0x7A	0x67	SPD_DBYTE4								
0x7A	0x68	SPD_DBYTE5			10					
0x7A	0x69	SPD_DBYTE6		(
0x7A	0x6A	SPD_DBYTE7			\mathcal{P}					
0x7A	0x6B	SPD_DBYTE8		~'0'						
0x7A	0x6C	SPD_DBYTE9			. ()					
0x7A	0x6D	SPD_DBYTE10	1	7 ×						
0x7A	0x6E	SPD_DBYTE11								
0x7A	0x6F	SPD_DBYTE12				_				
0x7A	0x70	SPD_DBYTE13								
0x7A	0x71	SPD_DBYTE14	SPD_DA	TA		. \	1		1	
0x7A	0x72	SPD_DBYTE15	·. ()	•)
0x7A	0x73	SPD_DBYTE16						2		
0x7A	0x74	SPD_DBYTE17								
0x7A	0x75	SPD_DBYTE18				C	1			
0x7A	0x76	SPD_DBYTE19				X				
0x7A	0x77	SPD_DBYTE20						1		
0x7A	0x78	SPD_DBYTE21						7		
0x7A	0x79	SPD_DBYTE22			0.					
0x7A	0x7A	SPD_DBYTE23		>						
0x7A	0x7B	SPD_DBYTE24					7			
0x7A	0x7C	SPD_DBYTE25		~ \)						
0x7A	0x7D	SPD_DBYTE26	> •.							
0x7A	0x7E	SPD_DBYTE27			20	7				
Bit	Label	R/W	Descripti						Default	
7:0	SPD_TYPE	R/W	_	Frame type					0x00	
7:0	SPD_VERS	R/W		Frame vers					0x00	
7:0	SPD_LEN	R/W		Frame leng					0x00	
7:0	SPD_CHSUM	R/W		Frame chec					0x00	
	SPD_DATA	R/W	SPD Info	Frame data	bytes.					

Audio InfoFrame Registers

Refer to the HDMI Specification and the CEA-861D Specification for more information on these register fields.

Dev	Addr	Name	:	7	6	5	4	3	2	1	0
0x7A	0x80	AUDI	O_TYPE	AUDIO_	HDR[7:0]			•			
0x7A	0x81	AUDI	O_VERS	AUDIO_	HDR[15:8]					
0x7A	0x82	AUDI	O_LEN	AUDIO_	HDR[23:1	6]					
0x7A	0x83	AUDI	O_CHSUM	AUDIO_	HDR[31:2	4]					
0x7A	0x84	AUDI	O_DBYTE1								
0x7A	0x85	AUDI	O_DBYTE2								
0x7A	0x86	AUDI	O_DBYTE3								
0x7A	0x87	AUDI	O_DBYTE4			>					
0x7A	0x88	AUDI	O_DBYTE5	AUDIO	DATA						
0x7A	0x89	AUDI	O_DBYTE6	AUDIO_	DATA						
0x7A	0x8A	AUDI	O_DBYTE7						6		
0x7A	0x8B	AUDI	O_DBYTE8	_'()						
0x7A	0x8C	AUDI	O_DBYTE9			()		• (
0x7A	0x8D	AUDI	O_DBYTE10		X						
Bit	Label		R/W	Descript	ion					Default	
7:0	AUDIO_TYP	Е	R/W	AUDIO I	nfoFrame	type code.	. (7	4	0x00	
7:0	AUDIO_VER	S	R/W	AUDIO I	nfoFrame	version co	de.			0x00	
7:0	AUDIO_LEN		R/W	AUDIO I	nfoFrame	length.			1	0x00	
7:0	AUDIO_CHS			AUDIO I	nfoFrame	checksum.	7			0x00	

MPEG InfoFrame Registers

Refer to the CEA-861D Specification for more information on these register fields.

Dev	Addr	Name	7	6	5	4	3	2	1	0
0x7A	0xA0	MPEG_TYPE	MPEG_	HDR[7:0]						
0x7A	0xA1	MPEG_VERS	MPEG_	MPEG_HDR[15:8]						
0x7A	0xA2	MPEG_LEN	MPEG_	HDR[23:16]					
0x7A	0xA3	MPEG_CHSUM	MPEG_	HDR[31:24	.]					
0x7A	0xA4	MPEG_DBYTE1								
0x7A	0xA5	MPEG_DBYTE2								
0x7A	0xA6	MPEG_DBYTE3								
0x7A	0xA7	MPEG_DBYTE4								
0x7A	0xA8	MPEG_DBYTE5								
0x7A	0xA9	MPEG_DBYTE6								
0x7A	0xAA	MPEG_DBYTE7			クヽ					
0x7A	0xAB	MPEG_DBYTE8		10						
0x7A	0xAC	MPEG_DBYTE9				,	•			
0x7A	0xAD	MPEG_DBYTE10		X						
0x7A	0xAE	MPEG_DBYTE11								
0x7A	0xAF	MPEG_DBYTE12								
0x7A	0xB0	MPEG_DBYTE13	_	7			\mathbf{V}		1	
0x7A	0xB1	MPEG_DBYTE12		DATA			1		1	
0x7A	0xB2	MPEG_DBYTE15								
0x7A	0xB3	MPEG_DBYTE16								
0x7A	0xB4	MPEG_DBYTE17				\				
0x7A	0xB5	MPEG_DBYTE18				C	T .			
0x7A	0xB6	MPEG_DBYTE19				X				
0x7A	0xB7	MPEG_DBYTE20					7	1		
0x7A	0xB8	MPEG_DBYTE21								
0x7A	0xB9	MPEG_DBYTE22			0.					
0x7A	0xBA	MPEG_DBYTE23		×	V)			
0x7A	0xBB	MPEG_DBYTE24			U		,			
0x7A	0xBC	MPEG_DBYTE25								
0x7A	0xBD	MPEG_DBYTE26								
0x7A	0xBE	MPEG_DBYTE27			20					
Bit	Label	R/W	Descrip						Default	
7:0	MPEG_TYPE	MPEG_TYPE R/W		MPEG InfoFrame type code. 0x0					0x00	
7:0	MPEG_VERS			nfoFrame v		e.			0x00	
7:0	MPEG_LEN	R/W	MPEG I	MPEG InfoFrame length. 0x00						
7:0	MPEG_CHSU	MPEG_CHSUM R/W		MPEG InfoFrame checksum. 0x00						
	MPEG_DATA	R/W	MPEG I	nfoFrame d	ata bytes.					· · · · · · · · · · · · · · · · · · ·

Generic Packet Registers

These registers can transmit any type of packet.

Dev Addr Name 7 6 5 4 3 2 1 0x7A 0xC1 GEN_DBYTE2 0x7A 0xC2 GEN_DBYTE3 0x7A 0xC2 GEN_DBYTE4 0x7A 0xC3 GEN_DBYTE5 0x7A 0xC3 GEN_DBYTE5 0x7A 0xC5 GEN_DBYTE6 0x7A 0xC6 GEN_DBYTE7 0x7A 0xC6 GEN_DBYTE9 0x7A 0xC6 GEN_DBYTE9 0x7A 0xCB GEN_DBYTE10 0x7A 0xCB GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCB GEN_DBYTE14 0x7A 0xCB GEN_DBYTE14 0x7A 0xCB GEN_DBYTE15 0x7A 0xCB GEN_DBYTE16 0x7A 0xCB GEN_DBYTE19 0x7A 0xDB GEN_DBYTE19 0x7A 0xDB GEN_DBYTE19 0x7A 0xDB GEN_DBYTE29 0x7A 0xDB GEN_DBYTE29 0x7A 0xDB GEN_DBYTE22 0x7A 0xDB GEN_DBYTE23 0xDB 0xDB 0xDB 0xDB 0xDB 0xDB 0xD	Ĭ		nit any type of pack			_	4	2	1		0
0x7A 0xC1 GEN_DBYTE2 0x7A 0xC2 GEN_DBYTE3 0x7A 0xC3 GEN_DBYTE4 0x7A 0xC4 GEN_DBYTE5 0x7A 0xC5 GEN_DBYTE6 0x7A 0xC6 GEN_DBYTE7 0x7A 0xC7 GEN_DBYTE9 0x7A 0xC8 GEN_DBYTE10 0x7A 0xCA GEN_DBYTE10 0x7A 0xCB GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCB GEN_DBYTE13 0x7A 0xCD GEN_DBYTE13 0x7A 0xCD GEN_DBYTE16 0x7A 0xCB GEN_DBYTE16 0x7A 0xCB GEN_DBYTE18 0x7A 0xD0 GEN_DBYTE18 0x7A 0xD1 GEN_DBYTE19 0x7A 0xD2 GEN_DBYTE20 0x7A 0xD5 GEN_DBYTE23 0x7A 0xD5 GEN_DBYTE23 0x7A 0xD6 GEN_DBYTE25 0x7A </th <th></th> <th>Addr</th> <th>Name</th> <th>7</th> <th>6</th> <th>5</th> <th>4</th> <th>3</th> <th>2</th> <th>1</th> <th>0</th>		Addr	Name	7	6	5	4	3	2	1	0
0x7A 0xC2 GEN_DBYTE3 0x7A 0xC3 GEN_DBYTE4 0x7A 0xC4 GEN_DBYTE5 0x7A 0xC5 GEN_DBYTE6 0x7A 0xC6 GEN_DBYTE7 0x7A 0xC6 GEN_DBYTE8 0x7A 0xC8 GEN_DBYTE9 0x7A 0xCB GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE13 0x7A 0xCB GEN_DBYTE14 0x7A 0xCB GEN_DBYTE15 0x7A 0xCB GEN_DBYTE16 0x7A 0xCB GEN_DBYTE16 0x7A 0xCB GEN_DBYTE18 0x7A 0xDB GEN_DBYTE18 0x7A 0xDB GEN_DBYTE19 0x7A 0xDB GEN_DBYTE20 0x7A 0xDB GEN_DBYTE21 0x7A 0xDB GEN_DBYTE23 0x7A 0xDB GEN_DBYTE25 0x7A 0xDB GEN_DBYTE26 0x7A </td <td></td>											
0x7A 0xC3 GEN_DBYTE4 0x7A 0xC4 GEN_DBYTE5 0x7A 0xC5 GEN_DBYTE6 0x7A 0xC6 GEN_DBYTE7 0x7A 0xC6 GEN_DBYTE8 0x7A 0xC8 GEN_DBYTE9 0x7A 0xCB GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCC GEN_DBYTE16 0x7A 0xCC GEN_DBYTE16 0x7A 0xCC GEN_DBYTE16 0x7A 0xD GEN_DBYTE17 0x7A 0xD GEN_DBYTE18 0x7A 0xD GEN_DBYTE19 0x7A 0xD GEN_DBYTE20 0x7A 0xD GEN_DBYTE21 0x7A 0xD GEN_DBYTE23 0x7A 0xD GEN_DBYTE24 0x7A 0xD GEN_DBYTE25 0x7A 0xD GEN_DBYTE26 0x7A											
0x7A 0xC4 GEN_DBYTE5 0x7A 0xC5 GEN_DBYTE6 0x7A 0xC6 GEN_DBYTE7 0x7A 0xC7 GEN_DBYTE8 0x7A 0xC7 GEN_DBYTE9 0x7A 0xC8 GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCD GEN_DBYTE15 0x7A 0xCD GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE19 0x7A 0xD2 GEN_DBYTE20 0x7A 0xD3 GEN_DBYTE22 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A			_								
0x7A 0xCS GEN_DBYTE6 0x7A 0xC6 GEN_DBYTE7 0x7A 0xC7 GEN_DBYTE8 0x7A 0xC8 GEN_DBYTE9 0x7A 0xCB GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE19 0x7A 0xD2 GEN_DBYTE20 0x7A 0xD3 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE25 0x7A 0xDA GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDA GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7			_								
0x7A 0xC6 GEN_DBYTE7 0x7A 0xC7 GEN_DBYTE8 0x7A 0xC8 GEN_DBYTE9 0x7A 0xC9 GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD1 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE23 0x7A 0xD6 GEN_DBYTE25 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD8 GEN_DBYTE26 0x7A 0xDB GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x			_								
0x7A 0xC7 GEN_DBYTE8 0x7A 0xC8 GEN_DBYTE9 0x7A 0xC9 GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCD GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCE GEN_DBYTE16 0x7A 0xD GEN_DBYTE17 0x7A 0xD GEN_DBYTE19 0x7A 0xD GEN_DBYTE20 0x7A 0xD GEN_DBYTE21 0x7A 0xD GEN_DBYTE22 0x7A 0xD GEN_DBYTE23 0x7A 0xD GEN_DBYTE24 0x7A 0xD GEN_DBYTE25 0x7A 0xD GEN_DBYTE26 0x7A 0xD GEN_DBYTE27 0x7A 0xD GEN_DBYTE28 0x7A 0xD GEN_DBYTE28 0x7A 0xD GEN_DBYTE29 0x7A			_								
0x7A 0xC8 GEN_DBYTE9 0x7A 0xC9 GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE19 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE21 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xDA GEN_DBYTE26 0x7A 0xDA GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A 0xDB GEN_DBYTE30 0x7A 0xDC GEN_DBYTE31			_								
0x7A 0xC9 GEN_DBYTE10 0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE25 0x7A 0xD8 GEN_DBYTE25 0x7A 0xDA GEN_DBYTE27 0x7A 0xDA GEN_DBYTE28 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A 0xDC GEN_DBYTE30	0x7A	0xC7	GEN_DBYTE8			>,					
0x7A 0xCA GEN_DBYTE11 0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE21 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD8 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A 0xDB GEN_DBYTE29 0x7A 0xDB GEN_DBYTE29 0x7A 0xDB GEN_DBYTE31	0x7A	0xC8	GEN_DBYTE9		_ \						
0x7A 0xCB GEN_DBYTE12 0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A 0xDC GEN_DBYTE31	0x7A	0xC9	GEN_DBYTE10								
0x7A 0xCC GEN_DBYTE13 0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xDB GEN_DBYTE27 0x7A 0xDA GEN_DBYTE28 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xCA	GEN_DBYTE11						6		
0x7A 0xCD GEN_DBYTE14 0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD8 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A 0xDD GEN_DBYTE31	0x7A	0xCB	GEN_DBYTE12	16)						
0x7A 0xCE GEN_DBYTE15 0x7A 0xCF GEN_DBYTE16 0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD8 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xDB GEN_DBYTE26 0x7A 0xDB GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 0x7A 0xDC GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xCC	GEN_DBYTE13					• (
0x7A 0xCF GEN_DBYTE16 GEN_DATA 0x7A 0xD0 GEN_DBYTE17 GEN_DBYTE18 0x7A 0xD1 GEN_DBYTE18 GEN_DBYTE19 0x7A 0xD2 GEN_DBYTE20 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 GEN_DBYTE22 0x7A 0xD5 GEN_DBYTE23 GEN_DBYTE23 0x7A 0xD6 GEN_DBYTE24 GEN_DBYTE25 0x7A 0xD8 GEN_DBYTE25 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 GEN_DBYTE28 0x7A 0xDB GEN_DBYTE29 GEN_DBYTE30 0x7A 0xDD GEN_DBYTE31	0x7A	0xCD	GEN_DBYTE14		X						
0x7A 0xD0 GEN_DBYTE17 0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE31	0x7A	0xCE	GEN_DBYTE15								
0x7A 0xD1 GEN_DBYTE18 0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xCF	GEN_DBYTE16	GEN_DA	ATA						
0x7A 0xD2 GEN_DBYTE19 0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD0	GEN_DBYTE17					/ . ()		
0x7A 0xD3 GEN_DBYTE20 0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE31	0x7A	0xD1	GEN_DBYTE18								
0x7A 0xD4 GEN_DBYTE21 0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD2	GEN_DBYTE19		-		7				
0x7A 0xD5 GEN_DBYTE22 0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD3	GEN_DBYTE20								
0x7A 0xD6 GEN_DBYTE23 0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD4	GEN_DBYTE21								
0x7A 0xD7 GEN_DBYTE24 0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD5	GEN_DBYTE22				X)		
0x7A 0xD8 GEN_DBYTE25 0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD6	GEN_DBYTE23			r X					
0x7A 0xD9 GEN_DBYTE26 0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD7	GEN DBYTE24	•				7.			
0x7A 0xDA GEN_DBYTE27 0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD8	GEN DBYTE25								
0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xD9	GEN DBYTE26	10			19				
0x7A 0xDB GEN_DBYTE28 0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xDA	GEN_DBYTE27		VV	/ 🔪					
0x7A 0xDC GEN_DBYTE29 0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xDB									
0x7A 0xDD GEN_DBYTE30 0x7A 0xDE GEN_DBYTE31	0x7A	0xDC									
0x7A 0xDE GEN_DBYTE31	0x7A	0xDD		, X)		7,					
			_			U					
				Descript	tion					Default	
GEN DATA R/W Generic packet data bytes.				Ξ_		a bytes.					

General Control Packet Register

Refer to the HDMI Specification and the HDCP Specification for more information on the 0xDF register bits.

Dev	Addr	Name	e	7	6	5	4	3	3 2 1		0
0x7A	0xDF	GCP_	BYTE1	RSVD(RSVD0 CLR_AVMUTE RSVD0						
Bit	Label		R/W	Descrip	Description						
4	CLR_AVM	UTE	R/W	Clear tl	ne AVM	UTE flag	<u>.</u>				0
0	SET_AVM	UTE	R/W	When to General the data data for When to is being	l Contro a may be r all vide the AVM g receive	UTE flag l Packet of incorrect o packets UTE flag d. Option	g is set, the HDMI tr on the TMDS link to t. The HDMI transm s and 0x00 for all au- g is set, the sink assu- nally, the sink can ap	0			

Note: Before enabling General Control Packet transmission (GCP_EN, GCP_RPT), the firmware must write 0x10 or 0x01 to this register. The default value of 0x00 is not valid in a transmitted General Control Packet.

Generic Packet #2 Registers

These registers can be used to transmit any type of packet.

Dev	Addr	Name	7	6	5	4	3	2	1	0	
0x7A	0xE0	GEN2_DBYTE1									
0x7A	0xE1	GEN2_DBYTE2									
0x7A	0xE2	GEN2_DBYTE3									
0x7A	0xE3	GEN2_DBYTE4									
0x7A	0xE4	GEN2_DBYTE5									
0x7A	0xE5	GEN2_DBYTE6									
0x7A	0xE6	GEN2_DBYTE7									
0x7A	0xE7	GEN2_DBYTE8			>						
0x7A	0xE8	GEN2_DBYTE9		. (
0x7A	0xE9	GEN2_DBYTE10									
0x7A	0xEA	GEN2_DBYTE11						6			
0x7A	0xEB	GEN2_DBYTE12	_'() /							
0x7A	0xEC	GEN2_DBYTE13					•. (
0x7A	0xED	GEN2_DBYTE14		X /							
0x7A	0xEE	GEN2_DBYTE15									
0x7A	0xEF	GEN2_DBYTE16	GEN2_E	DATA							
0x7A	0xF0	GEN2_DBYTE17									
0x7A	0xF1	GEN2_DBYTE18							4		
0x7A	0xF2	GEN2_DBYTE19	•			7					
0x7A	0xF3	GEN2_DBYTE20									
0x7A	0xF4	GEN2_DBYTE21									
0x7A	0xF5	GEN2_DBYTE22									
0x7A	0xF6	GEN2_DBYTE23			X	, i					
0x7A	0xF7	GEN2_DBYTE24	•				7_1				
0x7A	0xF8	GEN2_DBYTE25									
0x7A	0xF9	GEN2_DBYTE26	, '0			19					
0x7A	0xFA	GEN2_DBYTE27		x							
0x7A	0xFB	GEN2_DBYTE28									
0x7A	0xFC	GEN2_DBYTE29	7 > \								
0x7A	0xFD	GEN2_DBYTE30									
0x7A	0xFE	GEN2_DBYTE31									
Bit	Label	R/W	Descript	ion					Default		
	GEN2_DATA	R/W	Generic 1	packet #2 o	data bytes.	<u> </u>					

Appendices

The following sections describe how to use the functional block of the HDMI transmitter.

Area	Page	Topic
Audio	61	Handling Audio
	63	Handling DVD Audio
Video	67	Handling Interlaced Video
Control	101	Handling InfoFrames
	106	Operating DDC Master
	109	Setting up the PLL Control Registers
HDCP	122	Muting Video and Audio in HDCP Applications

Handling Audio

Enabling Audio Inputs

Audio input data is received from either the S/PDIF input or one or more I²S channels. The AUD_EN bit (register 0x7A:0x14) is logically ANDed with each channel enable bit (S/PDIF and I²S in register 0x7A:0x14). Stop audio processing by writing a 0 to the AUD_EN bit. This stops the decoding of input samples so no samples are written into the audio FIFOs. When the FIFOs are emptied by HDMI formatting, the HDMI transmitter stops sending audio packets on the HDMI link. NCTS packets continue to be sent as long as the transmitter is in HDMI mode.

Figure 5. Audio Input Control

Encoding Audio on HDMI

Figure 6. Overview of HDMI Operating Modes in 480p Stream

Handling DVD Audio

This section describes source support for audio content protection and ACP packet transmission.

Source Support for Audio Content Protection

HDMI 1.1 describes three new packet types to support content protection for various audio formats: ACP, ISRC1, and ISRC2. The source transmits these packets, like other packets, as data islands during the vertical blanking time. The source transmits these packets only if it recognizes that the attached sink or repeater is able to receive them, as indicated with the presence of an AI bit in the EDID VSDB. The formats for the ACP, ISRC1, and ISRC2 packets are defined in the *HDMI Specification*.

For more details on handling E-EDID and determining features of the sink based on its E-EDID, see the *HDMI Source Device Software Application Note* (SiI-AN-0117).

Transmitting ACP Packets

The HDMI transmitter allocates register space for four packets with a full-size payload of 31 data bytes. Each packet includes a 4-byte header with TYPE, VERSION, LENGTH, and CHECKSUM fields. The SPD and MPEG InfoFrames are defined in CEA-861D, although their lengths are less than 31 bytes. The HDMI transmitter expands the register space for those InfoFrame packets to accommodate any type of packet with 31 total bytes. In addition, the HDMI transmitter provides for a *Generic Packet* and *Generic Packet #2*. With these four packets, the transmitter can set up and transmit any four of the five defined packet types: SPD, MPEG, ACP, ISRC1, and ISRC2.

ISRC packets are used together to transmit International Standard Recording Code (ISRC) data from the source to the sink. When this information extends beyond 16 bytes, the ISRC_CONT field in the ISRC1 packet is set in the header and the remaining bytes are sent in the ISRC2 packet. The requirements for handling ISRC data are defined in the *DVD Specifications for Read-Only Disc, Part 4 (Version 1.0, March 1999, Annex B)*.

The source device is required by HDMI 1.1 to transmit ACP packets within 300 milliseconds of changing to audio content, which requires transmission of content protection information and to repeat transmission of ACP packets at least every 300 milliseconds. If a sink does not detect ACP packets for 600 milliseconds, it assumes that no content protection information is needed. Details on transmission timing requirements for ACP and related packets are described in the *HDMI Specification*.

To control transmission of ACP and related packets with the transmitter, the packet registers must be loaded and enabled. If, in addition to ACP, ISRC1, and ISRC2, the source also needs to send MPEG and SPD InfoFrames, then one set of packet registers must alternate between one of those packet payloads and the ACP or related payload. One possible flowchart for this process is shown in Figure 7. If all five types are sent, the last register set alternates between sending SPD and MPEG InfoFrames. Refer to page 50 for register details on enabling and disabling packet transmission.

For a detailed description of the ACP, ISRC1, and ISRC2 packets, refer to the HDMI 1.3 Standard, sections 5.3.7, 5.3.8, and 5.3.9, respectively.

Figure 7. ACP Packet Control Flowchart

Handling Video

Programming Video Input Mode and Video Output Mode

Specific registers must be programmed according to the selection of input video bus mode and output video format. Figure 8 shows video input data processing that leads to TMDS encoding.

Figure 8. Transmitter Video Data Processing Path

Deep-Color Video Data (SiI9134 Transmitter Only)

The SiI9134 transmitter provides support for deep-color video data. It supports both 30-bit (10 bits per pixel component) and 36-bit (12 bits per pixel component) video input formats, and assembles the data into 8-bit data packets for encryption and TMDS encoding for transfer across the link.

When the width of the input data is more than the data size to be sent, the transmitter can be programmed to dither or truncate the video data to the desired size. For example, if the input data width is 12-bits per pixel component but the sink can only support 10-bits per pixel component, the 12-bit input data can be dithered or truncated to the desired 10-bit output data. See the VID MODE register (0x72:0x4A[5]) on page 18.

By default, the transmitter does not send deep-color related information to the HDMI receiver. To send deep-color information, set register 0x7A:0x2F[6] to 1 (refer to page 46).

For more information about deep-color, refer to the Si19034/9134 HDM1 Transmitter Data Sheet.

Handling Interlaced Video

In interlaced video mode, the timing from VSYNC to pixel data changes from even to odd fields. Also, many MPEG sources do not provide standard timing. The HDMI transmitter must correct this so that the video timing across the HDMI link is compliant with CEA-861D.

Table 6 lists the registers involved in decoding embedded syncs and generating DE for interlaced modes.

Table 6. Registers Used to Handle Interlaced Video

Tubic of Itegisters C			
Field	Register	Address	Use
DE_ADJ#	IADJUST	0x72:0x3E[2]	Video interface adjustment.
F2VADJ		0x72:0x3E[1]	VBIT_TO_VSYNC adjustment.
F2VOFST		0x72:0x3E[0]	Set VBIT_TO_VSYNC to increment or decrement.
I_DET	POL_DETECT	0x72:0x3F[2]	Video SYNC interlace detection.
VPOL_DET#		0x72:0x3F[1]	VSYNC polarity detection.
HPOL_DET#		0x72:0x3F[0]	HSYNC polarity detection.
HBIT_2H_SYNC	HBIT_2HSYNC	0x72:0x40-0x41	Video H bit to HSYNC.
FIELD2_OFST	FLD2_HS_OFST	0x72:0x42-0x43	Video Field to HSYNC offset.
HWIDTH	HWIDTH	0x72:0x44-0x45	Video HSYNC length.
VBIT_TO_VSYNC	VBIT_TO_VSYNC	0x72:0x46	Video V bit to VSYNC.
VWIDTH	VWIDTH	0x72:0x47	Video VSYNC length.

Figure 9. 480i Example for Handling Syncs

Note: Registers 0x72:0x40 through 0x46 are useful only when the input video uses 656 encoded syncs.

Summary of Video Processing Path Options YCbCr MUX 4:2:2 Embedded Syncs YCbCr 4:2:2 Figure 10A TMDS and DEMUX HDMI **SYNCS** Encoding YCbCr MUX 4:2:2 Embedded Syncs YCbCr 4:4:4 Figure 10B TMDS and Upsample DEMUX 4:2:2 Dither HDMI **SYNCS** to 4:4:4 Encoding YCbCr MUX 4:2:2 Embedded Syncs RGB 4:4:4 Figure 10C YCbCr to TMDS and Upsample **RGB** Color **DEMUX** 4:2:2 Dither HDMI **SYNCS** Space Encoding to 4:4:4 Converter Separate Syncs YCbCr 4:2:2 YCbCr 4:2:2 Figure 10D TMDS and DE **HDMI** Generator Encoding Separate Syncs YCbCr 4:4:4 YCbCr 4:2:2 Figure 10E TMDS and Upsample DE 4:2:2 Dither **HDMI** Generator to 4:4:4 Encoding Separate Syncs YCbCr 4:2:2 Figure 10F RGB 4:4:4 YCbCr to TMDS and Upsample DE **RGB Color** 4:2:2 Dither HDMI Generator Space to 4:4:4 Encoding Converter

Figure 10. Video Input to Video Output Data Flow

RGB 4:4:4 Separate Syncs

DE

Generator

RGB 4:4:4

TMDS and

HDMI

Encoding

Figure 10G

Video Input Tables

These notes apply to the tables that follow:

- 1. Program the DE parameters only when the DE generator is enabled (register 0x72:0x33[6]).
- 2. The timings are based on the CEA-861D Specification.
- 3. The parameters are application-dependent. Consult the timing requirements of the source.
- 4. Set this bit to 1 only when Y and C channels are each 12 bits wide. If these bus widths are less than 12 bits, set this bit to 0 and tie all unused pins to GND.
- 5. HBIT_TO_HSYNC, FIELD2_OFST, and VBIT_TO_VSYNC may differ depending on the porch timings in the input stream.
- 6. Set RANGE to 1 whenever converting YCbCr data and sending full-range (0–255) RGB (PC mode) data across HDMI. When sending limited-range (16–235) RGB (CE mode) data, clear RANGE to 0.
- 7. Set WIDE_BUS to the number of bits per *input* video channel.
- 8. Set DITHER_MODE to the number of bits per *output* video channel supported by the sink. By default, the HDMI transmitter dithers the input (if DITHER 0x72:0x4A[5] is enabled) or truncates the input (if DITHER is disabled) to 8 bits.

480i Input

480i Multiplexed YCbCr 4:2:2 Embedded Sync Input

Input Mode			Multiplexed Embedded S	YCbCr 4:2:2 yncs				
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable		12
HBIT_TO_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x13	0x13	0x13			
FIELD2 OFST	0x43	3:0	001	001	001	Odd Field Offset	2	15
	0x42	7:0	0xAD	0xAD	0xAD	\mathbb{C}^{-1}		
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3E	0x3E	0x3E			
VBIT TO VSYNC	0x46	5:0	0x04	0x04	0x04	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select		16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	1	0	>1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	Up sampling		18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1)	1	Dither Enable		18
Data Flow Diagram (Fig	gure 10)		A	В	С		_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. Refer to page 71 for register settings that enable both the sync decoder and the DE generator.

480i Multiplexed YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D

Input Mode			Multiplexed Embedded S	YCbCr 4:2:2 yncs				
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x77	0x77	0x77			
DE_TOP	0x34	6:0	0x12	0x12	0x12	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x0	0x0	0x0	DE Lines	1, 2	13
	0x38	7:0	0xF0	0xF0	0xF0			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	r	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	(\mathcal{L})	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x13	0x13	0x13	. ()		
FIELD2_OFST	0x43	3:0	001	001	001	Odd Field Offset	2, 5	15
	0x42	7:0	0xAD	0xAD	0xAD			
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3E	0x3E	0x3E) (1 .		
VBIT_2_VSYNC	0x46	5:0	0x04	0x04	0x04	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	/_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		A	В	С			68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861D compliant. Refer to page 70 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

480i YCbCr 4:2:2 Multiplexed YC Separate Sync Input

Input Mode			YCbCr 4:2:2 Syncs	2 Mux YC Se	parate			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x77	0x77	0x77			
DE_TOP	0x34	6:0	0x12	0x12	0x12	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x0	0x0	0x0	DE Lines	1, 2	13
	0x38	7:0	0xF0	0xF0	0xF0			
HS_POL#	0x33	4	1	1 (1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable		12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0				. ()		
FIELD2 OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0	_	_	_		4	
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication		16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction		18
DEMUX	0x4A	1	1	1	1	- 0	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert		18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6			7	Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	4	Dither Enable		18
Data Flow Diagram (Fi	gure 10)		D	Е	F		_	68

576i Input

576i YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	2 Embedded 8	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	_			DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	_			DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0	_	_	_	DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x0C	0x0C	0x0C			
FIELD2_OFST	0x43	3:0	001	001	001	Odd Field Offset	2	15
	0x42	7:0	0xB0	0xB0	0xB0			
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3F	0x3F	0x3F			
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	1	ľ	4 6	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		A	В	С		_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source. Refer to page 74 for register settings that enable both the sync decoder and the DE generator.

576i YCbCr 4:2:2 Embedded Sync Input - Adjustment for CEA-861D

Input Mode			YCbCr 4:2:2	2 Embedded 8	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x16	0x16	0x16	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	DE Lines	1, 2	13
	0x38	7:0	0x20	0x20	0x20			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	-1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x0C	0x0C	0x0C			
FIELD2_OFST	0x43	3:0	001	001	001	Odd Field Offset	2, 5	15
	0x42	7:0	0xB0	0xB0	0xB0			
HWIDTH	0x45	1:0	000	000	000	HSYNC Pulse Width	2	15
	0x44	7:0	0x3F	0x3F	0x3F			
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x03	0x03	0x03	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	- 00	00	00	Pixel Replication		16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	1-to-2 Chan Demultiplex		18
UPSMP	0x4A	2	0	1	1	Up sampling		18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6			-	Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		A	В	C	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861D compliant. Refer to page 73 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

576i YCbCr 4:2:2 Multiplexed YC Separate Sync Input

Input Mode			YCbCr 4:2:2 Syncs	Mux YC Se	parate			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x16	0x16	0x16	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	DE Lines	1, 2	13
	0x38	7:0	0x20	0x20	0x20			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0				· . U		
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	_	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	1	1	1	Θ_1	_	18
UPSMP	0x4A	2	0	1		Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	С	_	_	68

480p Input

480p RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB	Ī		
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x0	DE Delay	1, 2, 3	12
	0x32	7:0			0x7A			
DE_TOP	0x34	6:0			0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x2	DE Count	1, 2	13
	0x36	7:0			0xD0			
DE_LIN	0x39	2:0			0x1	DE Lines	1, 2	13
	0x38	7:0			0xE0			
HS_POL#	0x33	4			1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	_	12
HBIT_TO_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	14
	0x40	7:0	_					
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0	_					
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_TO_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0	7	_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	6	18
WIDE_BUS	0x49	7:6			-	Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)				G	_	_	68

480p YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	l:4 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		0x0	0x0	DE Delay	1, 2, 3	12
	0x32	6:0		0x7A	0x7A			
DE_TOP	0x34	7:0		0x24	0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x2	0x2	DE Count	1, 2	13
	0x36	7:0		0xD0	0xD0			
DE_LIN	0x39	2:0		0x1	0x1	DE Lines	1, 2	13
	0x38	7:0		0xE0	0xE0			
HS_POL#	0x33	4		1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0	_					
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0) (
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	<u>) </u>	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0		_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

480p YCbCr 4:2:2 Separate Sync Input

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4	:		Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	6:0	0x7A	0x7A	0x7A			
DE_TOP	0x34	7:0	0x24	0x24	0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	DE Lines	1, 2	13
	0x38	7:0	0xE0	0xE0	0xE0			
HS_POL#	0x33	4	1	1	7	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	(-)	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1		1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	-	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

480p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	2 Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33 0x32	3:0 7:0				DE Delay	1, 2, 3	12
DE TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37 0x36	3:0 7:0		_		DE Count	1, 2	13
DE_LIN	0x39 0x38	2:0 7:0				DE Lines	1, 2	13
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	14	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41 0x40	1:0 7:0	00 0x10	00 0x10	00 0x10	H Bit to HSYNC Delay	2	15
FIELD2_OFST	0x43 0x42	3:0 7:0				Odd Field Offset	2	15
HWIDTH	0x45 0x44	1:0 7:0	0x0 0x3E	0x0 0x3E	0x0 0x3E	HSYNC Pulse Width	2	15
VBIT_2_VSYNC	0x46	5:0	0x09	0x09	0x09	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x06	0x06	0x06	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication) <u> </u>	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0			18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable		18
Data Flow Diagram (Fig	ure 10)		A	В	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. Refer to page 80 for register settings that enable both the sync decoder and the DE generator.

480p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D

Input Mode			YCbCr 4:	2:2 Embedo	ded Syncs				
Output Mode			YCbCr	YCbCr	RGB	BTA-			
Register			4:2:2	4:4:4		T1004		Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x7A	0x7A	0x7A	0x7A			
DE_TOP	0x34	6:0	0x24	0x24	0x24	0x24	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	0x02	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x1	0x1	0x1	0x01	DE Lines	1, 2	13
	0x38	7:0	0xE0	0xE0	0xE0	0xE0			
HS_POL#	0x33	4	1	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x10	0x10	0x10	0x10			
FIELD2_OFST	0x43	3:0				011	Odd Field Offset	2, 5	15
	0x42	7:0				0x5A			
HWIDTH	0x45	1:0	0x0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x3E	0x3E	0x3E	0x3E			
VBIT_2_VSYNC	0x46	5:0	0x09	0x09	0x09	0x09	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x06	0x06	0x06	0x06	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	00	Pixel Replication	.—)	16
CSCSEL	0x48	4			0	0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	1 (Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	1	1-to-2 Chan Demultiplex	_	18
UPSMP	0x4A	2	0	1	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	1	Color Space Convert	_	18
RANGE	0x4A	4			1	1	Range Select	6	18
WIDE_BUS	0x49	7:6					Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6					Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	1	Dither Enable		18
Data Flow Diagram (Figure 10)		A	В	С	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861D compliant. Refer to page 79 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

576p Input

576p RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x0	DE Delay	1, 2, 3	12
	0x32	7:0			0x84			
DE_TOP	0x34	6:0			0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x2	DE Count	1, 2	13
	0x36	7:0			0xD0			
DE_LIN	0x39	2:0			0x2	DE Lines	1, 2	13
	0x38	7:0			0x40			
HS_POL#	0x33	4			1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0	_					
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
_	0x42	7:0	_					
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0	_		_	11		
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0		_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	_	18
WIDE_BUS	0x49	7:6			-	Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)				G	_	_	68

576p YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	:4 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB	Ī		
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0		0x84	0x84			
DE_TOP	0x34	6:0		0x2C	0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x2	0x2	DE Count	1, 2	13
	0x36	7:0		0xD0	0xD0			
DE_LIN	0x39	2:0		0x2	0x2	DE Lines	1, 2	13
	0x38	7:0		0x40	0x40			
HS_POL#	0x33	4		1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0	_					
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication		16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0	_	_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

576p YCbCr 4:2:2 Separate Sync Input

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x2C	0x2C	0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x40	0x40	0x40			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable		12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0	_					
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0) (
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	<u> </u>	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction		18
DEMUX	0x4A	1	0	0	0			18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

576p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33 0x32	3:0 7:0			_	DE Delay	1, 2, 3	12
DE TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
_	0x36	7:0		_				
DE_LIN	0x39	2:0 7:0				DE Lines	1, 2	13
HS POL#	0x38 0x33	4	1	1	1 4	HSYNC Polarity	2, 3	12
VS POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE GEN	0x33	6	0	0	0	DE GEN Enable		12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x0C	0x0C	0x0C			
FIELD2_OFST	0x43	3:0	7		\mathcal{O}	Odd Field Offset	2	15
	0x42	7:0			ŀ			
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x40	0x40	0x40			
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication		16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	-	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		A	В	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. Refer to page 85 for register settings that enable both the sync decoder and the DE generator.

576p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0x84	0x84	0x84			
DE_TOP	0x34	6:0	0x2C	0x2C	0x2C	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x2	0x2	0x2	DE Count	1, 2	13
	0x36	7:0	0xD0	0xD0	0xD0			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x40	0x40	0x40			
HS_POL#	0x33	4	1	1	1	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	1	1	1	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x0C	0x0C	0x0C			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2, 5	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x40	0x40	0x40			
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication)	16
CSCSEL	0x48	4			0	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0		_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		A	В	С		_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861D compliant. Refer to page 84 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

720p Input

720p RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x1	DE Delay	1, 2, 3	12
	0x32	7:0			0x04			
DE_TOP	0x34	6:0			0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x5	DE Count	1, 2	13
	0x36	7:0			0x00			
DE_LIN	0x39	2:0			0x2	DE Lines	1, 2	13
	0x38	7:0			0xD0			
HS_POL#	0x33	4			0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0	6	_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	_	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)				G	_	_	68

720p YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	l:4 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		0x1	0x1	DE Delay	1, 2, 3	12
	0x32	7:0		0x04	0x04			
DE_TOP	0x34	6:0		0x19	0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x5	0x5	DE Count	1, 2	13
	0x36	7:0		0x00	0x00			
DE_LIN	0x39	2:0		0x2	0x2	DE Lines	1, 2	13
	0x38	7:0		0xD0	0xD0			
HS_POL#	0x33	4		0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0	_					
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	<u>) </u>	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0		_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (Fig.	gure 10)		D	Е	F	_	_	68

720p YCbCr 4:2:2 Separate Sync Input

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x1	0x1	0x1	DE Delay	1, 2, 3	12
	0x32	7:0	0x04	0x04	0x04			
DE_TOP	0x34	6:0	0x19	0x19	0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x5	0x5	0x5	DE Count	1, 2	13
	0x36	7:0	0x00	0x00	0x00			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0xD0	0xD0	0xD0			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication		16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1		1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	- ~	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

720p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	2 Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0				DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0				DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable		12
HBIT 2 HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x6E	0x6E	0x6E			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0	_	_	_			
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28) (
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	<u> </u>	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0		_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1 0	1	Dither Enable	_	18
Data Flow Diagram (Fig	gure 10)		A	В	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. Refer to page 90 for register settings that enable both the sync decoder and the DE generator.

720p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D

Input Mode			YCbCr 4:2:2	Embedded 8	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x1	0x1	0x1	DE Delay	1, 2, 3	12
	0x32	7:0	0x04	0x04	0x04			
DE_TOP	0x34	6:0	0x19	0x19	0x19	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x5	0x5	0x5	DE Count	1, 2	13
	0x36	7:0	0x00	0x00	0x00			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0xD0	0xD0	0xD0			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x6E	0x6E	0x6E			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2, 5	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28			
VBIT_2_VSYNC	0x46	5:0	0x05	0x05	0x05	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	(-)	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1		1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	- 0	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	-0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		A	В	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861D compliant. Refer to page 89 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

1080i Input

1080i RGB Input

Input Mode			RGB					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0			0x0	DE Delay	1, 2, 3	12
	0x32	7:0			0xC0			
DE_TOP	0x34	6:0			0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x7	DE Count	1, 2	13
	0x36	7:0			0x80			
DE_LIN	0x39	2:0			0x2	DE Lines	1, 2	13
	0x38	7:0			0x1C			
HS_POL#	0x33	4			0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5			0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0	_					
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0		_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)				G	_	_	68

1080i YCbCr 4:4:4 Separate Sync Input

Input Mode			YCbCr 4:4	l:4 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4		I	Notes	Pg
DE_DLY	0x33	3:0		0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0		0xC0	0xC0			
DE_TOP	0x34	6:0		0x14	0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x7	0x7	DE Count	1, 2	13
	0x36	7:0		0x80	0x80			
DE_LIN	0x39	2:0		0x2	0x2	DE Lines	1, 2	13
	0x38	7:0		0x1C	0x1C			
HS_POL#	0x33	4		0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6		1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication	(-)	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0	-	_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

1080i YCbCr 4:2:2 Separate Sync Input

Input Mode			YCbCr 4:2:2	2 Separate Sy	ncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x14	0x14	0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x7	0x7	0x7	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x1C	0x1C	0x1C			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0				H Bit to HSYNC Delay	2	15
	0x40	7:0		_				
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0		_				
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0) (
VBIT_2_VSYNC	0x46	5:0				V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication)_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0		_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1 0	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

1080i YCbCr 4:2:2 Embedded Sync Input

Input Mode		YCbCr 4:2:2	Embedded S	Syncs				
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0		_		DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	_		_	DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0	_		_	DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2	15
	0x40	7:0	0x58	0x58	0x58			
FIELD2_OFST	0x43	3:0	0x4	0x4	0x4	Odd Field Offset	2	15
	0x42	7:0	0x4C	0x4C	0x4C			
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x2C	0x2C	0x2C			
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	-)	16
CSCSEL	0x48	4			1	Color Space Select		16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	- ~	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	gure 10)		A	В	С	_		68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. Refer to page 95 for register settings that enable both the sync decoder and the DE generator.

1080i YCbCr 4:2:2 Embedded Sync Input - Adjustment for CEA-861D

Input Mode	YCbCr 4:2:2	Embedded S	Syncs					
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	3:0	0x0	0x0	0x0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x14	0x14	0x14	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x7	0x7	0x7	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x2	0x2	0x2	DE Lines	1, 2	13
	0x38	7:0	0x1C	0x1C	0x1C			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_2_HSYNC	0x41	1:0	00	00	00	H Bit to HSYNC Delay	2, 5	15
	0x40	7:0	0x58	0x58	0x58			
FIELD2_OFST	0x43	3:0	0x4	0x4	0x4	Odd Field Offset	2, 5	15
	0x42	7:0	0x4C	0x4C	0x4C			
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x2C	0x2C	0x2C) (
VBIT_2_VSYNC	0x46	5:0	0x02	0x02	0x02	V Bit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication) _	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0		_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	Υ	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	Dither Enable	_	18
Data Flow Diagram (Fig	ure 10)		A	В	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source device. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861D compliant. Refer to page 94 for register settings that enable only the sync decoder when the source device provides compliant SAV/EAV timings.

1080p Input

1080p RGB Input

Input Mode			RGB					
Output Mode			YCbCr YCbCr		RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0			0	DE Delay	1, 2, 3	12
	0x32	7:0			0xC0			
DE_TOP	0x34	6:0			0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0			0x07	DE Count	1, 2	13
	0x36	7:0			0x80			
DE_LIN	0x39	2:0			0x04	DE Lines	1, 2	13
_	0x38	7:0			0x38			
HS_POL#	0x33	4			0	HSYNC Polarity	2, 3	12
VS POL#	0x33	5			0	VSYNC Polarity	2, 3	12
DE GEN	0x33	6			1	DE GEN Enable	_	12
HBIT TO HSYNC	0x41	1:0				HBit to HSYNC Delay	2, 5	15
	0x40	7:0	_		_			
FIELD2 OFST	0x43	3:0				Odd Field Offset	2, 5	15
_	0x42	7:0		_				
HWIDTH	0x45	1:0				HSYNC Pulse Width	2,	15
	0x44	7:0						
VBIT_TO_VSYNC	0x46	5:0				VBit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0			00	Pixel Replication	_	16
CSCSEL	0x48	4				Color Space Select	_	16
EXTN	0x48	5			0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0			0	Sync Extraction	_	18
DEMUX	0x4A	1			0	É	_	18
UPSMP	0x4A	2			0	Up sampling	_	18
CSC	0x4A	3			0	Color Space Convert	_	18
RANGE	0x4A	4				Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5			0	10-to-8 Bit Dithering	_	18
Data Flow Diagram (Fig	gure 10)				G	_	_	68

1080p YCbCr 4:4:4 Separate Sync Input

Input Mode	YCbCr 4:4	:4 Separate Sy	ncs					
Output Mode Register		YCbCr YCbCr		RGB				
			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0		0	0	DE Delay	1, 2, 3	12
	0x32	7:0		0xC0	0xC0			
DE_TOP	0x34	6:0		0x29	0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		0x07	0x07	DE Count	1, 2	13
	0x36	7:0		0x80	0x80			
DE_LIN	0x39	2:0		0x04	0x04	DE Lines	1, 2	13
	0x38	7:0		0x38	0x38			
HS_POL#	0x33	4		0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5		0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6			1	DE_GEN Enable	_	12
HBIT_TO_HSYNC	0x41	1:0				HBit to HSYNC Delay	2	15
	0x40	7:0	_					
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0) (
VBIT_TO_VSYNC	0x46	5:0				VBit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0		00	00	Pixel Replication)_	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5		0	0	Extended Bit Mode	4	16
SYNCEXT	0x4A	0		0	0	Sync Extraction	_	18
DEMUX	0x4A	1		0	0		_	18
UPSMP	0x4A	2		0	0	Up sampling	_	18
CSC	0x4A	3		0	Y (Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5		0	1	10-to-8 Bit Dithering	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

1080p YCbCr 4:2:2 Separate Sync Input

Input Mode	YCbCr 4:2:2	2 Separate Sy	nes					
Output Mode			YCbCr YCbC	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0	0	0	0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x29	0x29	0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x07	0x07	0x07	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x04	0x04	0x04	DE Lines	1, 2	13
	0x38	7:0	0x38	0x38	0x38			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_TO_HSYNC	0x41	1:0				HBit to HSYNC Delay	2	15
	0x40	7:0						
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0				HSYNC Pulse Width	2	15
	0x44	7:0						
VBIT_TO_VSYNC	0x46	5:0				VBit to VSYNC Delay	2	15
VWIDTH	0x47	5:0				VSYNC Pulse Width	2	16
ICLK	0x48	1:0	00	00	00	Pixel Replication	-)	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	0	0	0	Sync Extraction	_	18
DEMUX	0x4A	1	0	0	0	- 0	_	18
UPSMP	0x4A	2	0	1	1	Up sampling	_	18
CSC	0x4A	3	0	0	1	Color Space Convert	_	18
RANGE	0x4A	4			1	Range Select	6	18
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	Y	1	10-to-8 Bit Dithering	_	18
Data Flow Diagram (Fig	ure 10)		D	Е	F	_	_	68

1080p YCbCr 4:2:2 Embedded Sync Input

Input Mode			YCbCr 4:2:2	2 Embedded 8	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0		_		DE Delay	1, 2, 3	12
	0x32	7:0						
DE_TOP	0x34	6:0				DE Top	1, 2, 3	12
DE_CNT	0x37	3:0		_		DE Count	1, 2	13
	0x36	7:0						
DE_LIN	0x39	2:0				DE Lines	1, 2	13
	0x38	7:0						
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	0	0	0	DE_GEN Enable	_	12
HBIT_TO_HSYNC	0x41	1:0	00	00	00	HBit to HSYNC Delay	2	14
	0x40	7:0	0x6E	0x6E	0x6E			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28) (
VBIT_TO_VSYNC	0x46	5:0	0x05	0x05	0x05	VBit to VSYNC Delay	2	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	15
ICLK	0x48	1:0	00	00	00	Pixel Replication) _	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1	1	1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1	Sync Extraction	_	17
DEMUX	0x4A	1	0	0	0		_	17
UPSMP	0x4A	2	0	1	1	Up sampling	_	17
CSC	0x4A	3	0	0	1	Color Space Convert	_	17
RANGE	0x4A	4			1	Range Select	6	17
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	10-to-8 Bit Dithering	_	17
Data Flow Diagram (Fig	ure 10)		A	В	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source. Refer to page 100 for register settings that enable both the sync decoder and the DE generator.

1080p YCbCr 4:2:2 Embedded Sync Input – Adjustment for CEA-861D

Input Mode			YCbCr 4:2:2	Embedded S	Syncs			
Output Mode			YCbCr	YCbCr	RGB			
Register			4:2:2	4:4:4			Notes	Pg
DE_DLY	0x33	1:0	0	0	0	DE Delay	1, 2, 3	12
	0x32	7:0	0xC0	0xC0	0xC0			
DE_TOP	0x34	6:0	0x29	0x29	0x29	DE Top	1, 2, 3	12
DE_CNT	0x37	3:0	0x07	0x07	0x07	DE Count	1, 2	13
	0x36	7:0	0x80	0x80	0x80			
DE_LIN	0x39	2:0	0x04	0x04	0x04	DE Lines	1, 2	13
	0x38	7:0	0x38	0x38	0x38			
HS_POL#	0x33	4	0	0	0	HSYNC Polarity	2, 3	12
VS_POL#	0x33	5	0	0	0	VSYNC Polarity	2, 3	12
DE_GEN	0x33	6	1	1	1	DE_GEN Enable	_	12
HBIT_TO_HSYNC	0x41	1:0	00	00	00	HBit to HSYNC Delay	2, 5	14
	0x40	7:0	0x6E	0x6E	0x6E			
FIELD2_OFST	0x43	3:0				Odd Field Offset	2, 5	15
	0x42	7:0						
HWIDTH	0x45	1:0	0x0	0x0	0x0	HSYNC Pulse Width	2	15
	0x44	7:0	0x28	0x28	0x28			
VBIT_TO_VSYNC	0x46	5:0	0x05	0x05	0x05	VBit to VSYNC Delay	2, 5	15
VWIDTH	0x47	5:0	0x05	0x05	0x05	VSYNC Pulse Width	2	15
ICLK	0x48	1:0	00	00	00	Pixel Replication	(-)	16
CSCSEL	0x48	4			1	Color Space Select	_	16
EXTN	0x48	5	1		1	Extended Bit Mode	4	16
SYNCEXT	0x4A	0	1	1	1 6	Sync Extraction	_	17
DEMUX	0x4A	1	0	0	0	- 0	_	17
UPSMP	0x4A	2	0	1	1	Up sampling	_	17
CSC	0x4A	3	0	0	1	Color Space Convert	_	17
RANGE	0x4A	4			1	Range Select	6	17
WIDE_BUS	0x49	7:6				Bits per Input Video Channel	7	17
DITHER_MODE	0x4A	7:6				Bits per Output Video Channel	8	18
DITHER	0x4A	5	0	1	1	10-to-8 Bit Dithering	_	17
Data Flow Diagram (Fig	ure 10)		A	В	С	_	_	68

The video reconstructed by the transmitter may not be compliant with CEA-861D timings, depending on the sync timings received from the source. This table shows programming of both the sync decoder and the DE generator to correct porch timings to be CEA-861D compliant. Refer to page 99 for register settings that enable only the sync decoder when the source provides compliant SAV/EAV timings.

Handling InfoFrames and General Control Packets

AVI InfoFrames

The following descriptions are adapted from the *CEA-861D Specification* and from the *HDMI Specification*. AVI InfoFrame packets are enabled by AVI_EN and AVI_RPT in the Packet Buffer Control #1 Register (0x7A:0x3E), described on page 51.

Table 7. AVI InfoFrame Layout

			Bit Numl	t Number								
Reg.			7	6	5	4	3	2	1	0	Notes	
0x40	0	Type Code	0x82	82								
0x41	1	Version	0x02		. (7)						2	
0x42	2	Length	0x0D								3	
0x43	3	Checksum			777						4	
0x44	4	Data Byte 1	0	Y1	Y0	A0	B1	В0	S 1	S0	5, 6	
0x45	5	Data Byte 2	C1	C0	M1	M0	R3	R2	R1	R0		
0x46	6	Data Byte 3	0	0	0	0	0	0	SC1	SC0		
0x47	7	Data Byte 4	0	VIC6	VIC5	VIC4	VIC3	VIC2	VIC1	VIC0		
0x48	8	Data Byte 5	0	0	0	0	PR3	PR2	PR1	PR0		
0x49	9	Data Byte 6				7				1		
0x4A	10	Data Byte 7	61		1 /	>		1				
0x4B	11	Data Byte 8		. 6(1						
0x4C	12	Data Byte 9	Par info f	For Lattorbo	x and Pillarbox t	rangmissis	ng					
0x4D	13	Data Byte 10	Dai iiio i	or Letterbo	x and i marbox u	ansinissio	115					
0x4E	14	Data Byte 11		0				,				
0x4F	15	Data Byte 12		, (J 0.		9					
0x50	16	Data Byte 13		$(\times \vee \setminus)$								
0x51	17	Data Byte 14	19	*	101						7	
0x52	18	Data Byte 15	0	(X)	U A							

Notes:

- 1. Although the *CEA-861D Specification* defines TYPE as 0x02, the *HDMI Specification* defines TYPE as 0x82 with bit 7 set.
- 2. VERSION 0x02 defines this as a CEA-861D AVI InfoFrame.
- 3. LENGTH should be set to 13 (0x0D). Additional data bytes are ignored. See the *HDMI Specification*.
- 4. CHECKSUM is calculated so that the modulo-256 sum of {TYPE + VERSION + LENGTH + CHECKSUM + Data Bytes 1 to LENGTH} is zero. See the *HDMI Specification*.
- 5. Shaded bits are RESERVED and are not to be set to other values.
- 6. Refer to CEA-861D, Sections 6.1.2–6.1.3 for more details on the labeled fields in Data Bytes 1 through 13. The fields are summarized in Table 8, below.
- 7. CEA-861D defines only 13 data bytes. HDMI defines 27 data bytes. The HDMI transmitter has 15 data byte registers. Load data bytes 14 and 15 with 0x00.

Table 8. AVI InfoFrame Field Settings

Field								
Y1		Y0		Color Space				
0		0		RGB				
0		1		YCbCr 4:2:2				
1		0		YCbCr 4:4:4				
1		1		Future				
		A0		Active Format Information Present				
		0		No format data present.				
		1		Active format identification data is present in the AVI InfoFrame.				
B1		В0		Bar Info				
0		0		Bar data not valid.				
0		1		Vertical bar info valid.				
1		0		Horizontal bar info valid.				
1		1		Both vertical and horizontal bar info valid.				
S1		SO		Scan Information				
0		0		No data.				
0		1		Over scanned (television).				
1		0		Under scanned (computer).				
1		1		Future				
SC1		SC0		Non-Uniform Picture Scaling				
0		0		No known non-uniform scaling.				
0		1		Picture has been scaled horizontally.				
1		0		Picture has been scaled vertically.				
1		1		Picture has been scaled both horizontally and vertically.				
C1		C0		Colorimetry				
0		0 4		No data.				
0		1		SMTPE 170M and ITU 601 (for standard definition TV)				
1		0		ITU 709 (for advanced and high definition TV)				
1		1		Future				
M1		M0		Picture Aspect Ratio				
0		0		No data.				
0		1		4:3				
1		0		16:9				
1		1		Future				
R3	R2	R1	R0	Active Format Aspect Ratio				
1	0	0	0	Same as Picture Aspect Ratio (M1:M0 field).				
1	0	0	1	4:3				
1	0	1	0	16:9				
	0	1	1	14:9				
other va	alues			As specified by the DVB AFD active_format field.				

General Control Packets

General Control Packets control the flow of video and audio data across the HDMI link. The General Control Packet is defined in the *HDMI Specification*. This data byte is controlled in the transmitter with the GCP_BYTE1 register (0x7A:0xDF), described on page 58. The General Control Packet is transmitted only during the vertical blanking period, after the active edge of VSYNC.

To change the content of the GCP_BYTE1 register, GCP_EN must be zero. The firmware should keep GCP_EN cleared until the desired value is written into SET_AVMUTE and CLR_AVMUTE. Then GCP_EN and GCP_RPT should be set to 1 (refer to page 50 more information about EN and RPT bits). The SET_AVMUTE bit and CLR_AVMUTE bit cannot both be set at the same time (refer to page 58). Because the General Control Packet is synchronized to VSYNC, the action from SET_AVMUTE and CLR_AVMUTE takes effect immediately after the next VSYNC pulse.

Table 9. Mute Actions for Setting or Clearing SET_AVMUTE and CLR_AVMUTE Bits

SET_AVMUTE	CLR_AVMUTE	Action
0	0	Default setting after RESET#. Same action as SET_AVMUTE = 0 with CLR_AVMUTE = 1.
0	1	Allow pixel data and audio sample data to pass across the link.
1	0	The transmitter sends a General Control Packet on the TMDS link to inform the sink that the data may be incorrect, and sends blank level data for all video packets and 0x00 for all audio packet data.
1	1	NOT ALLOWED BY HDMI SPECIFICATION.

When the HDCP link fails, the transmitter must carefully manage the video and audio content to minimize the disruption of video output from the receiver. The firmware should follow the process described in Figure 12 on page 105.

When transmitting in DVI mode, setting SET_AVMUTE to 1 changes the video content to 0x00. CTL3 pulses stop at the next frame, so the receiver stops decrypting and sends the 0x00 data as a blank screen. Although HDMI receivers reset their HDCP engines with a new authentication (at the writing of the last byte of AKSV), earlier DVI receivers may not do so. To guarantee interoperability with all DVI-HDCP sinks, the source firmware should stop the video signaling before beginning a new authentication. This causes the receiver to create an SCDT event, which resets the receiver HDCP engine. The new authentication can then complete normally, and video transmission and reception resumes with a decrypted picture.

When a Link Integrity check fails in DVI mode, the transmitter should stop the video signaling briefly before beginning a new authentication. This break in DE causes an SCDT event in the DVI-HDCP receiver, which resets its HDCP engine.

Initiating HDMI Video after Hardware Reset and Successful HDCP Authentication

Figure 11. Muting Video and Audio from Reset to Authentication

- A Transmitter comes out of hardware reset.
- B Assert SET_AVMUTE to blank video and audio when they become active.
- C Set up video path and audio path before powering on.

Transmitter Actions

- Set PD# = 1 to enable video and audio output, which is blanked.
- E Set GCP_EN and GCP_RPT bits for General Control Packets, which flow to receiver at next VSYNC.
- F Source begins authentication.
- G Authentication completes successfully.
- H Clear GCP RPT, wait for GCP EN = 0.
- I Set $CLR_AVMUTE = 1$.
- J Set GCP_EN and GCP_RPT together. The transmitter enables video output and begins sending new General Control Packets with CLR_AVMUTE.

Receiver Actions

- x The receiver chip senses the start of HDMI signaling and asserts its SCDT. The sink's firmware recognizes the SCDT = 1 state, and enables the receiver chip's video and audio output pins.
- The receiver chip detects a General Control Packet with SET_AVMUTE = 1 and automatically blanks the video output.
- z The receiver chip detects a General Control Packet with CLR_AVMUTE = 1 and automatically begins decrypting and providing active content.

If the receiver chip senses that HDMI signaling has stopped (when the HDMI transmitter is reset), the receiver firmware blanks the video output. The receiver enables content at the video outputs only after it receives active video signaling, completes HDCP authentication, and receives a CLR AVMUTE General Control Packet.

Controlling HDMI Video through an HDCP Link Failure and Re-Authentication

Figure 12. Muting Video and Audio from Link Failure to Authentication

- X Extra or missing control pulse gets decryption out of step with encryption, and the receiver produces snow.
- A Transmitter firmware fails Link Integrity check of polling of R_i
- B Clear GCP RPT and wait for the transmitter to reset GCP EN to 0.
- C Set SET_AVMUTE = 1, then set GCP_EN and GCP_RPT. New General Control Packets are sent.
- D Receiver senses SET_AVMUTE and sends BLANKLEVEL video.
- E Source firmware begins authentication. BKSV write resets the transmitter HDCP engine. AKSV write resets the receiver HDCP engine.
- F Successful authentication begins encryption and decryption on the next frame. Firmware clears GCP RPT and waits for GCP EN = 0.
- G Write SET_AVMUTE = 0, then set GCP_EN = 1 and GCP_RPT = 1 again.
- H Video content resumes from the transmitter on the next frame and is decrypted in the receiver.

During this process, the video from the transmitter is not interrupted. An SCDT event does not occur on the receiver side because sync information continues to arrive from the transmitter. Although snow may appear when the link fails (before the Link Integrity check, but for no longer than 2 seconds), a blank screen in the correct color space quickly replaces it. Live video content resumes smoothly after authentication.

Handling Audio Content Protection (ACP) Packets

HDMI 1.1 defines new packets for handling content protection for audio. Refer to the explanations beginning on page 63.

Operating DDC Master

The transmitter includes a logic block to drive the E-DDC bus, which supports a variety of I²C commands. The individual registers are described on page 29. The speed of the I²C clock is determined by an internal oscillator in the transmitter and is not dependent on or a function of any input pixel clock. The I²C frequency does not exceed 100 kHz.

Figure 13. Supported Master I²C Transactions

Current Address Read: Reads from the last offset address so that no offset needs to be written to the slave. Multiple bytes can be read from consecutive addresses, which increment in the slave with each ACK received from the master.

Sequential Read: Reads from a specific start address, which is sent as a write command to the slave. Multiple bytes may be read from consecutive addresses. Although the FIFO in the transmitter can hold only 16 bytes, the sequential read command can be of any length up to the 10-bit value in the DDC_COUNT register (0x72:0xF0 and 0xF1). A *Stop* bit is sent by the DDC master only when the entire DDC_COUNT is complete.

Enhanced DDC Read: A special command, defined by the *VESA E-DDC Specification*, that writes a segment address to a separate I²C device address, then sends an offset address to the slave device, and finally reads one or more data bytes beginning from address 256 • segment + offset. Multiple bytes within the same segment can be read, as the slave increments the offset with each ACK received from the master. The segment register in the slave is reset at the end of each command. A NACK or ACK is required from the slave device if the segment is not zero, but is ignored if the segment is zero. Refer to the *E-DDC Specification*.

Sequential Write: Similar to the sequential read, this command sends one or more bytes to the slave, beginning at the explicit offset address. Multiple bytes may be written, as the slave increments the address until the master sends a stop bit. Two command op codes are available that either wait for ACK/NACK or ignore ACK/NACK on the last byte.

Device Addresses

Table 10 lists the standardized device addresses for the E-DDC bus, as specified in the E-DDC and HDCP standards.

Table 10. HDCP DDC Standard Device Addresses

Device	Address
EDID PROM	0xA0
E-DDC Segment Address	0x60
HDCP Receiver	0x74

DDC Read Operation

The firmware sets up the read command when it loads values for the device address, the offset address, and the byte count. If the read command is an extended-DDC read, the segment address must also be loaded. After loading these values, the command register is loaded with the read command code.

The transmitter uses a FIFO to hold data read across the DDC bus. Up to 16 bytes can be held in the FIFO, but as many as 1023 bytes can be read in one master DDC operation by setting the overall count in DDC_COUNT. The IN_PROG bit (0x72:0xF2[4]) is cleared when the last byte has been read. Figure 14 illustrates how to perform a *short read* of 16 bytes or less. All *N* bytes can be read from the finished FIFO with one local I²C read command.

Figure 14. Master I²C Read Command Flowchart

To perform lengthy, multi-byte read operations that exceed the depth of the physical FIFO, the firmware should poll the status of the master DDC block FIFO by reading the value of the DDC_FIFOCNT register (0x72:0xF5). Each time the FIFO fills up to contain a certain number of bytes (up to 16), the firmware should read that number of bytes, wait for the FIFO to refill, and then repeat the process until the required total number of bytes is read. At that point, the master DDC issues a stop command. The source firmware can pull bytes from the FIFO continuously while the transmitter performs the actual read cycles on the DDC bus.

Silicon Image recommends that the designer add timeout protection in case the FIFO fails to fill up to the required number of bytes.

Note: During such a read, the DDC bus is busy. No other operation can take place on the DDC bus until the read is complete.

Write Command

Write commands are similar to read commands. The FIFO must be written by the firmware before initiating the command, after emptying the FIFO as described above. If fewer than 17 bytes will be written to the DDC channel, the firmware must only load the bytes to the FIFO and then write the DDC_CMD register with the write command code. If more than 16 bytes will be written, the firmware must fill the FIFO, wait for it to begin sending, and then write the remaining bytes into the FIFO without causing it to overflow. Because neither HDMI nor HDCP require a write of more than 16 bytes, such an operation is not described in this Programmer's Reference.

Each master I²C operation begins with writes to several registers in the transmitter. For a write command, the destination device address is followed by the offset address and the byte count. The firmware must also clear the FIFO before writing data to it. When the byte count is complete, the transmitter automatically sends the stop bit to the DDC bus.

Figure 15 shows how to write up to 16 bytes from the firmware to the DDC bus. All the data fits into the FIFO so that a multi-byte I²C write can be used from the firmware to the transmitter. The WRITE command is then issued to the DDC_CMD register and all data bytes are transferred across the DDC bus. Some type of timeout should be used when checking that the Master DDC module is available, either before starting a new command or before returning from the subroutine after beginning a command.

Figure 15. Master I²C Write Command Flowchart

Figure 15 includes a check before beginning the write command to be certain that the master DDC block is not already in use, and a check after triggering the write command to check for bus hangs. If the write command times out or fails to receive an ACK from the slave device, an abort command is issued.

Abort Command

A read or write command can be interrupted by the firmware at any time by writing an abort command to the DDC_CMD register (0x72:0xF3). The abort command issues a STOP, followed by nine SCK clock cycles, but only if a previous command is incomplete. If the abort command is issued when no other command is in progress, no action occurs on the DDC link. Firmware should allow for DDC bus hangs and include a timeout in the loop that waits for the completion of a write or read command. This can be done by setting up a watchdog timer with an interrupt service routine and aborting the DDC command if the timer expires. It can also be done by polling the DDC_STATUS byte and deciding that the command is stalled, then issuing an abort command.

Setting up the PLL Control Registers

General

The following seven registers need to be set for a proper operation of the HDMI Transmitter's PLL (the register names in this section are the names used in this Programmer's Reference):

- 0x72:0x0C System Control Register #4 enables/disables the PLL filter and sets its Charge pump current.
- 0x72:0x49 Video Action Enable Register defines the input video bus width, and specifically the color depth of the HDMI Transmitter output.
- 0x72:0x80 TMDS C Control Register sets the Filter PLL post counter for the audio clock FAPOSTCOUNT.
- 0x72:0x82 TMDS Control Register #1 sets the multiplication ratio TCLKSEL between the FPLL frequency and the input pixel clock (IDCK) frequency.
- 0x72:0x83 TMDS Control Register #2 sets the divider ratio for the HDMI transmitter PLL post counter POST_COUNT, the divider ratio for the PLL filter feedback counter FFB_COUNT, and the divider ratio for the PLL filter front counter FFR_COUNT.
- 0x72:0x84 TMDS Control Register #3 sets ITPLL, which controls the current of the low pass filter (LPF) of the PLL, and the divider ratio for the PLL post counter, FPOST_COUNT.
- 0x72:0x85 TMDS Control Register #4 sets the PLL front counter divide ratio TFR_COUNT.

The settings depend on the input pixel clock frequency, which varies with the input resolution and on the required color depth (24/30/36 bits).

PLL Setup Tables

To set the PLL control registers, Table 11 through Table 16 are used.

The **mpll settings** tables define the link (HDMI output) clock frequency as a function of **TPOSTCOUNT** (0x72:0x83[7:6]), **ITPLL** (0x72:0x84[6:3]) and **TFRCOUNT** (0x72:0x85[1:0]).

The **ifpll settings** tables define the following outputs:

- The outputs of the PLL's phase frequency detector (PFD)
- The PLL's VCO
- The output clock

Each of these outputs is a function of some or all of the following:

- The color depth (set in 0x72:0x49[7:6])
- The Link-frequency-to-input-IDCK-multiplication ratio (set in 0x72:0x82[6:5])
- IPLLF (set in 0x72:0x0C[4:1])
- FFRCOUNT (set in 0x72:0x83[2:0])
- FFBCOUNT (set in 0x72:0x83[5:3])
- FPOSTCOUNT (set in 0x72:0x84[1:0]
- FAPOSTCOUNT (set in 0x72:0x80[5]).

Note: The Programmer's Reference, Table 11 through Table 16, and the reference firmware use slightly different names for some of the variables, enumerations and macro definitions that represent similar register fields. This appendix explicitly re-defines these terms, using the register full address and bit-field.

Basic Requirements and Assumptions

The VCO frequency of the PLL (refer to the previous section) must always be between 100 MHz and 250 MHz for proper operation.

In the SiI9134 reference code, **TCLKSEL** (0x72:0x82[6:5]) is always set to 0b10, meaning that **FPLL** is the same as **IDCK** (the input pixel clock). Therefore, the firmware only uses the sections marked as **'1x'** in Table 11 through Table 14 for the PLL setup.

The reference firmware does not use Table 16, **Recommended Setting #2.** Refer to the next section.

Note: The user is free to use any another TCLKSEL and Recommended Setting #2 as needed.

PLL Setup Procedure – Overview

The following steps are implemented by Silicon Image reference firmware to set up the PLL control registers.

Table 15 and Table 16 contain the recommended settings for ITPLL (0x72:0x84[6:3]) which sets the PLL LPF frequency response; TPOSTCOUNT (0x72:0x83[7:6]) which sets the post count divider; and TFRCOUNT (0x72:0x85[1:0]) that sets the PLL front counter. These settings define, for each of the two groups, three frequency ranges for the link (output) clock frequency.

The SiI9034/9134 reference firmware uses Table 15, Recommended Setting #1, and does not use Table 16. Therefore, 0x72:0x84[6:3] (the **ITPLL** field) is set to 0b0110, which sets the charge pump current to 50 μA.

Table 15 and Table 16 define three ranges for the link clock frequency, which is the clock that will be sent from the SiI9134 HDMI output. For 24-bit color depth the link frequency is the standard pixel clock frequency of the format sent from the HDMI transmitter. The link frequency must be multiplied by a factor of 30/24 for 30 bit depth and by 36/24 for 36 bit depth.

The three regions are named **Blue**, **Yellow** and **Orange**. In **Table 11** through **Table 16**, the left column is nicknamed **Orange**, the middle column is nicknamed **Yellow** and the right column is nicknamed **Blue**. The three regions are defined by their lowest and highest frequencies (corner points), which are the link frequencies of 25, 64, 126 and 270 MHz, respectively.

After a region (such as Yellow) is selected, based on the input pixel clock (**IDCK**) frequency and the input color depth, the function **SiI_Mpll_setup**() is called by the PLL setup function **SiI_TMDS_setup**. **SiI_Mpll_setup**() sets 0x72:0x83[7:6] (**tpostcount**) and 0x72:0x85[1:0] (**tfrcount**). It takes the values of these parameters from the header of the corresponding regions of Table 15.

PLL Setup Firmware Implementation

The function $SiI_TMDS_setup()$ is the main function called to set the PLL. It takes as a parameter an index into the firmware table VModeTables[], from which it extracts the proper input pixel clock frequency (IDCK). It first reads 0x72:0x82[6:5] to find the ratio between the link clock frequency and the input pixel clock. In the current SiI9134 reference firmware that ratio is set to 1 by setting 0x72:0x82[6:5] to 0b10. The local variable tclk is then set to x1, which is a macro definition for 0x20.

SiI_TMDS_setup() then reads 0x72:0x49[7:6] to determine the input bus width. This value must already have been set by the host. If using the Silicon Image starter kit, be sure that it is running only with **HDMIGear** 3.11.

SiI_TMDS_setup() sets local variable iLowRange to 25, which is lowest value of the link clock acceptable for HDMI. Based on the value of 0x72:0x49[7:6], the switch statement **switch** (**bRegVal**) sets the values of local variable **nFFBCOUNT** (that will eventually be written to 0x72:0x83[5:3]) and the values of corner points **iMidRange1**, **iMidRange2**, **iHghRange**.

For a color depth of 24 bits, **iMidRange1**, **iMidRange2**, and **iHghRange** are the corner points as defined in the previous section. However, for color depths of 30 and 36 bits the clock values must be multiplied by 30/24 and 36/24, respectively. The corner points for larger depths must be made lower to select higher PLL multipliers. Therefore, **iMidRange1** becomes 64.84•24/30 = 48.63, and 53 is selected from Table 15. For 36 bits, **iMidRange1** becomes 64•24/36 = 42.66, so 44 is selected. Similarly, **iMidRange2** is 126•24/30 = 93.75 (but 104, which is the first available value higher than 93.75 is selected) and 126•24/36 = 84 (86 which is the closest value above it is selected). Similarly **iHghRange** is set to 203 and 168, respectively.

The value for **nFFBCOUNT**, which needs to be written to 0x72:0x83[5:3], is taken from the header of the corresponding section of Table 11 through Table 14. In the reference firmware, 0x72:0x82[6:5] = 0b10. As a result, only the tables marked as **x1** are used (there are **three** such tables for each color depth, one for the **Orange**, one for the **Yellow** and one for the **Blue** region). If, for example, the frequency range matches the **Orange** region, then, for 24 bit color depth, the **8bit to 8bit; 1x Orange** table should be used. That sets **nFFBCOUNT** to 0b011. For 30 bit color depth the **10bit to 8bit; 1x Orange** table should be used, which sets **nFFBCOUNT** to 0b100, and for 36 bit color depth the **12bit to 8bit; 1x Orange** table should be used, which sets **nFFBCOUNT** to 0b101.

nFPOSTCOUNT, which goes into 0x72:0x84[2:0], is first set to 0x03 which is the correct value for the Blue region, but is adjusted to 1 and 0 for the Yellow and Orange ranges, respectively, if needed, as specified in the headers of the **x1** tables (8-bit to 8-bit, 10-bit to 8-bit, 12-bit to 8-bit) of the three frequency regions.

After the adjusted frequency range (defined by its corner points) is determined, **nFFRCOUNT** (to be written to 0x72:0x83[2:0]) is selected from the header of the proper frequency range table. For each frequency range, **nFFRCOUNT** has the same value for all three possible color depths (0b011 for **Orange**, 0b001 for **Yellow** and 0b000 for **Blue**).

After **nFFRCOUNT** is set, **SiI_TMDS_setup()** calls function **SiI_Mpll_setup()** with the proper frequency range as an argument. That sets 0x72:0x83[7:6] (**tpostcount**) and 0x72:0x85[1:0] (**tfrcount**). Refer to the previous section.

SiI_TMDS_setup() then calls function **SiI_FApost_setup**(), which takes the frequency range, the input pixel clock frequency, and the color depth as parameters. Based on the input frequency range (Blue, for instance) and on the color depth, **SiI_FApost_setup**() takes the value of **nFAPOSTCOUNT** (0x72:0x80[5]) from the corresponding **x1** section of Table 11 through Table 14.

For example, if the input pixel clock is 74.25MHz, and the color depth is set to 36 bits, **SiI_TMDS_setup()** selects the **Yellow** range, because its **iMidRange1** is 44 and **iMidRange2** is 86. The **Yellow** frequency range will be passed as a parameter to **SiI_FApost_setup()**, together with **IDCK** of 74 and color depth of 36 bit (enumerated as 2). Because **IDCK** is more than 58, from the **Yellow** 12bit-to-8bit-1x columns of **Table 13**, **nFAPOSTCOUNT** is set to 1.

SiI_FApost_setup() then writes the selected value of **nFAPOSTCOUNT** to 0x72:0x80[5].

SiI_TMDS_setup() writes the recommended value of nIPLLF to 0x72:0x0C[4:1] to set the PLL filter charge pump current to 10uA; **nFFRCOUNT** to 0x72:0x83[2:0] and **nFPOSTCOUNT** to 0x72:0x84[2:0].

A Numerical Example

The following example follows the procedure described in the previous section for an input format of 1280 x 720p, and a color depth of 36 bits. Please refer to the listing of function **SiI_TMDS_setup()** below.

For 720p, the input parameter bVMode for the function **SiI_TMDS_setup()** is 2. The function uses it to access input mode table VModeTables[2], to extract the value of the pixel clock for 720p and divide it by 100, setting variable idclk freq to 74.

Reading 0x82[6:5], the function finds that **FPLL** is the same as **IDCK**, setting tclk to **x1**. This value is later used to calculate **nFPOSTCOUNT**.

The input video bus width (color depth) is found by reading 0x49[7:6].

Based on the color depth found in 0x49[7:6], SiI_TMDS_setup() sets:

nFFBCOUNT = 0x05;

iMidRange1 = 44;

iMidRange2 = 86;

iHghRange = 168;

The value of **nFFBCOUNT** is then written to 0x72:0x83[5:3].

IPLLF (0x72:0x0C[4:1]) is set to 1, which is the value listed in the tables.

Because tclk was set to 1, the function initially sets **nFPOSTCOUNT** to 0x03. This value is adjusted later.

SiI_TMDS_setup() then checks between what pair of values (defined in the TMDS setup) the input pixel clock falls. Because idclk_freq is 74 MHz, it is between 44 and 86 MHz, which is the **Yellow** color range for 36-bit color depth. This range dictates (from the **12 bits to 8 bits 1x Yellow** columns of **Table 13**) that **nFFRCOUNT** (0x72:0x83[2:0]) be 0x03 and **nFPOSTCOUNT** be 0.

SiI_TMDS_setup() calls **SiI_Mpll_setup(yellow)**. **SiI_Mpll_setup** handles the settings defined in Table 15 and Table 16. For Recommended Settings #1 (Table 15), the value of (0x72:0x84[6:3]) is always 6. It also sets both **tpostcount** (0x72:0x83[7:6] and **tfrcount** (0x72:0x85[1:0]) to 0b01, since these are the values defined at the top of the **Yellow** column of the **Table 15**. **SiI_Mpll_setup()** writes these values to 0x72:0x83[7:6], 0x72:0x84[6:3] and 0x72:0x85[1:0].

SiI_TMDS_setup() then calls SiI_FApost_setup(yellow, idclk_freq, bRegVal), where yellow is the second table column, idclk_freq is 74 and bRegVal is the color depth. In this example, the table region is Yellow and the color depth is 36.

SiI_FApost_setup() then checks if the input pixel clock frequency is higher than 58 MHz, because this is the value in the Yellow column of the **12bit to 8bit;1x** in Table 13 where **FAPOSTCOUNT** (0x72:0x80[5]) needs to be set to 1. For a 74-MHz pixel clock, that is the case, so **SiI_FApost_setup()** sets (0x72:0x80[5] to 1 and returns.

SiI_TMDS_setup() writes the values of **nIPLLF**, **nFFRCOUNT**, **nFPOSTCOUNT** to 0x72:0x80, 0x72:0x83 and 0x72:0x84 respectively. This step completes the settings of the PLL control registers.

SiI9134 Register Setting Implementation

```
// SiI_TMDS_setup
//----
byte SiI_TMDS_setup(byte bVMode)
    int idclk_freq, iLowRange, iMidRange1, iMidRange2, iHghRange;
    TCLK_SEL tclk;
    byte bReqVal;
    byte bRegVal2;
    byte nIPLLF, nFFRCOUNT, nFFBCOUNT, nFPOSTCOUNT;
    printf ("[TXVIDP.C](SiI TMDS setup): Start...\n");
    idclk_freq = (int) VModeTables[bVMode].PixClk / 100;
bReqVal = ReadByteHDMITXP0 ( TX TMDS CTRL ADDR ) & 0x60;
                                                                      get TCLSEL
value from 0x72:0x82[6:5]. In this prgram it is always x1 (==0b01)
switch (bRegVal)
        case 0x00: tclk = x0_5; printf ("[TXVIDP.C](SiI_TMDS_setup):
tclk\n"); break;
        default:
        case 0x20: tclk = x1;
                                printf ("[TXVIDP.C](SiI_TMDS_setup):
tclk\n"); break;
                  tclk = x2;
                                printf ("[TXVIDP.C](SiI_TMDS_setup): 2.0x
        case 0x40:
tclk\n"); break;
                                printf ("[TXVIDP.C](SiI_TMDS_setup): 4.0x
        case 0x60: tclk
                        = x4;
tclk\n"); break;
    bRegVal = ReadByteHDMITXP0 ( VID_ACEN_ADDR );
    bRegVal = bRegVal & (~VID_ACEN_DEEP_COLOR_CLR);
                                                             // 0x72:0x49[7:6]
      (bus width => color depth - 24/30/36 bit)
   bRegVal = bRegVal >> 6;
    iLowRange = 25;
                                       "Blue" range lower point
switch (bRegVal)
        case SiI DeepColor 24bit
            nFFBCOUNT = 0x03;
                                          // 0x72:0x83[5:3]
            iMidRangel =
                                    "Blue" upper freq and "Yellow" range lower
freq for 24 bit color depth
            iMidRange2 = 126;
                                 // "Yellow" range upper freq and "Orange" range
lower freq for 24 bit
                                // color depth
            iHghRange = 270;
                                 // "Orange" range highest freq for 24 bit color
depth
            break;
case SiI_DeepColor_30bit:
            nFFBCOUNT = 0x04; // 0x72:0x83[5:3]
```

```
iMidRange1 = 53; // "Blue" range upper freq and "Yellow" range
lower freq for 30 bit
// color depth
iMidRange2 = 104; // "Yellow" range upper freq and and "Orange" range lower freq
for 30 // bit color depth
            iHghRange = 203; // "Orange" range highest freq for 30 bit color
depth
            break;
        case SiI DeepColor 36bit:
            nFFBCOUNT = 0x05;
                                    // 0x72:0x83[5:3]
            iMidRange1 = 44; // "Blue" range upper freq and "Yellow" range
                  // 36 bit color depth
lower freq for
iMidRange2 = 86; // "Yellow" range upper freq and "Orange" range lower freq
for 36 bit color depth
                                       "Orange" range highest freq for 36 bit
            iHghRange = 168;
color depth
            break;
    // Set FFBCount field in 0x72:0x83[5:3]:
   bRegVal2 = ReadByteHDMITXP0 ( TX_TMDS_CTRL2_ADDR
   bRegVal2 &= CLR_BITS_5_4_3;
    bReqVal2 |= (nFFBCOUNT << 3);
    WriteByteHDMITXP0 ( TX_TMDS_CTRL2_ADDR, bRegVal2
    nIPLLF = 0x01;
    switch (tclk) {
        case x0_5:
                   nFPOSTCOUNT = 0x07; break;
                    nFPOSTCOUNT = 0x03; break;
                                                   // This is the value set in
        case x1:
0x72:0x84[2:0]
                    nFPOSTCOUNT = 0x01; break;
        case x2:
        case x4:
                    nFPOSTCOUNT = 0x00; break;
    // Out of Range
if ((idclk_freq < iLowRange) || (idclk_freq > iHghRange))
            // example: iLowRange == 25 (always) for DC 36bit - IHghRange == 168
        return TMDS_SETUP_FAILED;
    // Blue range
if ((idclk_freq >= iLowRange) && (idclk_freq <= iMidRange1))</pre>
        nFFRCOUNT = 0x00;
        SiI_Mpll_setup(blue);
        SiI_FApost_setup(blue, idclk_freq, bRegVal);
    else
        // Yellow range
        if ((idclk_freq > iMidRange1) && (idclk_freq <= iMidRange2))</pre>
            if (tclk == x4)
```

```
return TMDS_SETUP_FAILED;
            nFFRCOUNT = 0x01;
            nFPOSTCOUNT >>= 1;
            SiI_Mpll_setup(yellow);
            SiI_FApost_setup(yellow, idclk_freq, bRegVal);
        }
        else
            // Orange range
            if ((idclk_freq > iMidRange2) && (idclk_freq <= iHghRange))</pre>
                if ((tclk == x4) | (tclk == x2))
                    return TMDS SETUP FAILED;
                nFFRCOUNT = 0x03;
                nFPOSTCOUNT >>= 2;
                SiI_Mpll_setup(orange);
                SiI_FApost_setup(orange, idclk_freq, bRegVal);
                                    72:0x0C
    // TX_SYS_CTRL4_ADDR
    // [7:5] reserved
// [4:1] IPLLF = 0x01* - Set 72:0x0C[4:1] to "1"
                                                    => set the PLL filter charge
pump current to
                      // 10uA
    // [0]
               reserved
WriteByteHDMITXPO (TX_SYS_CTRL4_ADDR,
                                         ((ReadByteHDMITXP0(TX_SYS_CTRL4_ADDR) &
0xE1 ) | (nIPLLF << 1))); // 72:0x0C
    // TX_TMDS_CTRL2_ADDR
    // [7:6]
                TPOSTCOUNT
    // [5:3]
                FFBCOUNT = 0x03*
   // [2:0]
                FFRCOUNT*
       WriteByteHDMITXP0 (TX_TMDS_CTRL2_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL2_ADDR) & 0xF8) | (nFFRCOUNT)));
// Value set after the "switch (bRegVal)" statement in this function.
    // TX_TMDS_CTRL3_ADDR
    // [7]
                reserved
    // [6:3]
                ITPLL
    // [2:0]
                FPOSTCOUNT*
    WriteByteHDMITXP0 (TX TMDS CTRL3 ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL3_ADDR) & 0xF8) | (nFPOSTCOUNT)));
    return TMDS_SETUP_PASSED;
// SiI_Mpll_setup
// Use "Recommended Setting #1" (table 5)
```

```
_____
void SiI_Mpll_setup(byte MpllSet)
   byte itpll, tpostcount, tfrcount;
    itpll = 0x06;
                                              // always
    switch (MpllSet) {
       default:
       case blue:
           tpostcount = 0x02;
           tfrcount = 0x00;
           break;
       case yellow:
           tpostcount = 0x01;
           tfrcount
                      = 0x01;
           break;
       case orange:
           tpostcount = 0x00i
           tfrcount
                      = 0 \times 02
           break;
    // TX_TMDS_CTRL2_ADDR
    // [7:6] TPOSTCOUNT*
    // [5:3]
               FFBCOUNT
    // [2:0] FFRCOUNT
    WriteByteHDMITXP0 (TX_TMDS_CTRL2_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL2_ADDR) & 0x3F)
                                               (tpostcount
    // TX_TMDS_CTRL3_ADDR
    // [7]
               reserved
    // [6:3]
               ITPLL*
    // [2:0]
               FPOSTCOUNT
   WriteByteHDMITXP0 (TX_TMDS_CTRL3_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL3_ADDR) & 0x87)
                                             | (itpl1 << 3))); // 72:84
    // TX TMDS CTRL4 ADDR
                                   72:85
    // [7:2]
               reserved
    // [1:0]
              TFRPOSTCOUNT*
    WriteByteHDMITXP0 (TX_TMDS_CTRL4_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CTRL4_ADDR) & 0xFC) | (tfrcount)));
// SiI_FApost_setup
void SiI_FApost_setup(byte RangeSet, int idclk_freq, byte bpp)
   byte nFAPOSTCOUNT = 0;
    switch (RangeSet) {
       default:
       case blue:
           switch (bpp)
               default:
```

```
case SiI_DeepColor_Off:
                case SiI_DeepColor_24bit: if (idclk_freq >= 44) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_30bit: if (idclk_freq >= 33) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_36bit: if (idclk_freq >= 30) nFAPOSTCOUNT =
1; break;
            break;
case yellow:
            switch (bpp)
                default:
                case SiI_DeepColor_Off:
                case SiI_DeepColor_24bit: if (idclk_freq >= 86) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_30bit: if (idclk_freq >= 71) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_36bit: if (idclk_freq >= 58) nFAPOSTCOUNT =
1; break;
            break;
case orange:
            switch (bpp)
                default:
                case SiI DeepColor Off:
                case SiI_DeepColor_24bit: if (idclk_freq >= 168) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_30bit: if (idclk_freq >= 139) nFAPOSTCOUNT =
1; break;
                case SiI_DeepColor_36bit: if (idclk_freq >= 114) nFAPOSTCOUNT =
1; break;
            break;
           // TX_TMDS_CCTRL_ADDR
       [7:6]
                reserved
        [5]
                FAPOSTCOUNT*
    //
       [4:0]
                reserved
    WriteByteHDMITXP0 (TX_TMDS_CCTRL_ADDR,
((ReadByteHDMITXP0(TX_TMDS_CCTRL_ADDR) & 0xDF) | (nFAPOSTCOUNT << 5))); // 72:80
```

Table 11. IFPLL Setting: 8-bit to 8-bit, 1x

IPLLF[3:0]	0001	<u></u>	չ։ ծ-քու ա			0001					0001				
FFRCOUNT [2:0]	011					001					000				
FFBCOUNT [2:0]	011					011					011				
FPOST COUNT[2:0]	000					001					011				
	D=	4				D=	2				D=	1			
	N=	4				N=	4				N=	4			
	P=	1				P=	2				P=	4			
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]	PFD	vco	Out Clk	Ratio	FA POS TC OU NT [0]	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]
25.00	6.25	25.00	25.00	1.00		12.50	50.00	25.00	1.00		25.00	100.00	25.00	1.00	0
27.50	6.88	27.50	27.50	1.00		13.75	55.00	27.50	1.00		27.50	110.00	27.50	1.00	0
30.25	7.56	30.25	30.25	1.00		15.13	60.50	30.25	1.00		30.25	121.00	30.25	1.00	0
33.28	8.32	33.28	33.28	1.00		16.64	66.55	33.28	1.00		33.28	133.10	33.28	1.00	0
36.60	9.15	36.60	36.60	1.00		18.30	73,21	36.60	1.00		36.60	146.41	36.60	1.00	0
40.26	10.07	40.26	40.26	1.00		20.13	80.53	40.26	1.00	4	40.26	161.05	40.26	1.00	0
44.29	11.07	44.29	44.29	1.00		22.14	88.58	44.29	1.00		44.29	177.16	44.29	1.00	1
48.72	12.18	48.72	48.72	1.00		24.36	97.44	48.72	1.00		48.72	194.87	48.72	1.00	1
53.59	13.40	53.59	53.59	1.00		26.79	107.18	53.59	1.00	0	53.59	214.36	53.59	1.00	1
58.95	14.74	58.95	58.95	1.00		29.47	117.90	58.95	1.00	0	58.95	235.79	58.95	1.00	1
64.84	16.21	64.84	64.84	1.00		32.42	129.69	64.84	1.00	0	64.84	259.37	64.84	1.00	1
71.33	17.83	71.33	71.33	1.00		35.66	142.66	71.33	1.00	0	71.33	285.31	71.33	1.00	
78.46	19.62	78.46	78.46	1.00	•	39.23	156.92	78.46	1.00	0	78.46	313.84	78.46	1.00	
86.31	21.58	86.31	86.31	1.00		43.15	172.61	86.31	1.00	1	86.31	345.23	86.31	1.00	
94.94	23.73	94.94	94.94	1.00		47.47	189.87	94.94	1.00	1	94.94	379.75	94.94	1.00	
104.43	26.11	104.43	104.43	1.00	0	52.22	208.86	104.43	1.00	1	104.43	417.72	104.43	1.00	
114.87	28.72	114.87	114.87	1.00	0	57.44	229.75	114.87	1.00	1	114.87	459.50	114.87	1.00	
126.36	31.59	126.36	126.36	1.00	0	63.18	252.72	126.36	1.00	1	126.36	505.45	126.36	1.00	
139.00	34.75	139.00	139.00	1.00	0	69.50	278.00	139.00	1.00)	139.00	555.99	139.00	1.00	
152.90	38.22	152.90	152.90	1.00	0	76.45	305.80	152.90	1.00		152.90	611.59	152.90	1.00	
168.19	42.05	168.19	168.19	1.00	0	84.09	336.37	168.19	1.00		168.19	672.75	168.19	1.00	
185.01	46.25	185.01	185.01	1.00	1	92.50	370.01	185.01	1.00		185.01	740.02	185.01	1.00	
203.51	50.88	203.51	203.51	1.00	1	101.75	407.01	203.51	1.00		203.51	814.03	203.51	1.00	
223.86	55.96	223.86	223.86	1.00	1	111.93	447.72	223.86	1.00		223.86	895.43	223.86	1.00	
246.24	61.56	246.24	246.24	1.00	1	123.12	492.49	246.24	1.00		246.24	984.97	246.24	1.00	
270.87	67.72	270.87	270.87	1.00	1	135.43	541.74	270.87	1.00		270.87	1083.47	270.87	1.00	
297.95					<u> </u>										

Table 12. IFPLL Setting: 10-bit to 8-bit, 1x

IPLLF[3:0]	0001	Setting				0001					0001				
	0001					0001					0001				
FFRCOUNT [2:0]	011					001					000				
FFBCOUNT [2:0]	011					011					011				
FPOST COUNT[2:0]	000					001					011				
	D=	4				D=	2				D=	1			
	N=	5				N=	5				N=	5			
	P=	1				P=	2				P=	4			-
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]	PFD	vco	Out Clk	Ratio	FA POS TC OU NT [0]	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]
25.00	6.25	31.25	31.25	1.25		12.50	62.50	31.25	1.25		25.00	125.00	31.25	1.25	0
27.50	6.88	34.38	34.38	1.25		13.75	68.75	34.38	1.25		27.50	137.50	34.38	1.25	0
30.25	7.56	37.81	37.81	1.25		15.13	75.63	37.81	1.25		30.25	151.25	37.81	1.25	0
33.28	8.32	41.59	41.59	1.25		16.64	83.19	41.59	1.25		33.28	166.38	41.59	1.25	1
36.60	9.15	45.75	45.75	1.25		18.30	91.51	45.75	1.25		36.60	183.01	45.75	1.25	1
40.26	10.07	50.33	50.33	1.25		20.13	100.66	50.33	1.25	0	40.26	201.31	50.33	1.25	1
44.29	11.07	55.36	55.36	1.25		22.14	110.72	55.36	1.25	0	44.29	221.45	55.36	1.25	1
48.72	12.18	60.90	60.90	1.25		24.36	121.79	60.90	1.25	0	48.72	243.59	60.90	1.25	1
53.59	13.40	66.99	66.99	1,25		26.79	133.97	66.99	1.25	0	53.59	267.95	66.99	1.25	1
58.95	14.74	73.69	73.69	1.25		29.47	147.37	73.69	1.25	0	58.95	294.74	73.69	1.25	
64.84	16.21	81.05	81.05	1.25		32.42	162.11	81.05	1.25	0	64.84	324.22	81.05	1.25	
71.33	17.83	89.16	89.16	1.25	X	35.66	178.32	89.16	1.25	1	71.33	356.64	89.16	1.25	
78.46	19.62	98.08	98.08	1.25		39.23	196.15	98.08	1.25	1	78.46	392.30	98.08	1.25	
86.31	21.58	107.88	107.88	1.25	0	43.15	215.77	107.88	1.25	1	86.31	431.53	107.88	1.25	
94.94	23.73	118.67	118.67	1.25	0	47.47	237.34	118.67	1.25	1	94.94	474.69	118.67	1.25	
104.43	26.11	130.54	130.54	1.25	0	52.22	261.08	130.54	1.25	1	104.43	522.16	130.54	1.25	
114.87	28.72	143.59	143.59	1.25	0	57.44	287.19	143.59	1.25	. (114.87	574.37	143.59	1.25	
126.36	31.59	157.95	157.95	1.25	0	63.18	315.90	157.95	1.25		126.36	631.81	157.95	1.25	
139.00	34.75	173.75	173.75	1.25	1	69.50	347.49	173.75	1.25		139.00	694.99	173.75	1.25	
152.90	38.22	191.12	191.12	1.25	1	76.45	382.24	191.12	1.25		152.90	764.49	191.12	1.25	
168.19	42.05	210.23	210.23	1.25	1	84.09	420.47	210.23	1.25		168.19	840.94	210.23	1.25	
185.01	46.25	231.26	231.26	1.25	1	92.50	462.52	231,26	1.25		185.01	925.03	231.26	1.25	
203.51	50.88	254.38	254.38	1.25	1	101.75	508.77	254.38	1.25		203.51	1017.53	254.38	1.25	
223.86	55.96	279.82	279.82	1.25		111.93	559.64	279.82	1.25		223.86	1119.29	279.82	1.25	
246.24	61.56	307.80	307.80	1.25		123.12	615.61	307.80	1.25		246.24	1231.22	307.80	1.25	
270.87	67.72	338.58	338.58	1.25	1	135.43	677.17	338.58	1.25		270.87	1354.34	338.58	1.25	
297.95						X									

Table 13. IFPLL Setting: 12-bit to 8-bit, 1x

Table 15.		Detting	,. 12 010	1000	11, 12	000					0000				
IPLLF[3:0]	0001					0001					0001				
FFRCOUNT [2:0]	011					001					000				
FFBCOUNT [2:0]	011					011					011				
FPOST COUNT[2:0]	000					001					011				
	D=	4				D=	2				D=	1			
	N=	6				N=	6				N=	6			
	P=	1				P=	2				P=	4			
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]	PFD	vco	Out Clk	Ratio	FA POS TC OU NT [0]	PFD	vco	Out Clk	Ratio	FAP OST COU NT[0]
25.00	6.25	37.50	37.50	1.50		12.50	75.00	37.50	1.50		25.00	150.00	37.50	1.50	0
27.50	6.88	41.25	41.25	1.50		13.75	82.50	41.25	1.50		27.50	165.00	41.25	1.50	0
30.25	7.56	45.38	45.38	1.50		15.13	90.75	45.38	1.50		30.25	181.50	45.38	1.50	1
33.28	8.32	49.91	49.91	1.50		16.64	99.83	49.91	1.50		33.28	199.65	49.91	1.50	1
36.60	9.15	54.90	54.90	1.50		18.30	109.81	54.90	1.50	0	36.60	219.62	54.90	1.50	1
40.26	10.07	60.39	60.39	1.50		20.13	120.79	60.39	1.50	0	40.26	241.58	60.39	1.50	1
44.29	11.07	66.43	66.43	1.50		22.14	132.87	66.43	1.50	0	44.29	265.73	66.43	1.50	1
48.72	12.18	73.08	73.08	1.50		24.36	146.15	73.08	1.50	0	48.72	292.31	73.08	1.50	
53.59	13.40	80.38	80.38	1.50		26.79	160.77	80.38	1.50	0	53.59	321.54	80.38	1.50	
58.95	14.74	88.42	88.42	1.50		29.47	176.85	88.42	1.50	1	58.95	353.69	88.42	1.50	
64.84	16.21	97.27	97.27	1.50		32.42	194.53	97.27	1.50	1	64.84	389.06	97.27	1.50	
71.33	17.83	106.99	106.99	1.50	0	35.66	213.98	106.99	1.50	1	71.33	427.97	106.99	1.50	
78.46	19.62	117.69	117.69	1.50	0	39.23	235.38	117.69	1.50	1	78.46	470.76	117.69	1.50	
86.31	21.58	129.46	129.46	1.50	0	43.15	258.92	129.46	1.50	1	86.31	517.84	129.46	1.50	
94.94	23.73	142.41	142.41	1.50	0	47.47	284.81	142.41	1.50		94.94	569.62	142.41	1.50	
104.43	26.11	156.65	156.65	1.50	0	52.22	313.29	156.65	1.50		104.43	626.59	156.65	1.50	
114.87	28.72	172.31	172.31	1.50	1	57.44	344.62	172.31	1.50		114.87	689.25	172.31	1.50	
126.36	31.59	189.54	189.54	1.50	1	63.18	379.09	189.54	1.50		126.36	758.17	189.54	1.50	
139.00	34.75	208.50	208.50	1.50	1	69.50	416.99	208.50	1.50		139.00	833.99	208.50	1.50	
152.90	38.22	229.35	229.35	1.50	1	76.45	458.69	229.35	1.50		152.90	917.39	229.35	1.50	
168.19	42.05	252.28	252.28	1.50	1	84.09	504.56	252.28	1.50		168.19	1009.12	252.28	1.50	
185.01	46.25	277.51	277.51	1.50		92.50	555.02	277.51	1.50		185.01	1110.04	277.51	1.50	
203.51	50.88	305.26	305.26	1.50		101.75	610.52	305.26	1.50		203.51	1221.04	305.26	1.50	
223.86	55.96	335.79	335.79	1.50		111.93	671.57	335.79	1.50		223.86	1343.15	335.79	1.50	
246.24	61.56	369.36	369.36	1.50		123.12	738.73	369.36	1.50		246.24	1477.46	369.36	1.50	
270.87	67.72	406.30	406.30	1.50		135.43	812.60	406.30	1.50		270.87	1625.21	406.30	1.50	
297.95															

Table 14. IFPLL Setting: 16-bit to 8-bit, 1x

IPLLF[3:0]	0001	8				0001				
FFRCOUNT [2:0]	011					001				
FFBCOUNT [2:0]	011					011				
FPOST COUNT[2:0]	000					001				
	D=	2				D=	1			
	N=	4				N=	4			
	P=	1				P=	2			
Pixel Clock Freq.	PFD	vco	Out Clk	Ratio	FAPOSTCOUNT[0]	PFD	vco	Out Clk	Ratio	FAPOSTCOUNT[0]
25.00	12.50	50.00	50.00	2.00		25.00	100.00	50.00	2.00	0
27.50	13.75	55.00	55.00	2.00		27.50	110.00	55.00	2.00	0
30.25	15.13	60.50	60.50	2.00	. (30.25	121.00	60.50	2.00	0
33.28	16.64	66.55	66.55	2.00		33.28	133.10	66.55	2.00	0
36.60	18.30	73.21	73.21	2.00		36.60	146.41	73.21	2.00	0
40.26	20.13	80.53	80.53	2.00		40.26	161.05	80.53	2.00	0
44.29	22.14	88.58	88.58	2.00		44.29	177.16	88.58	2.00	1
48.72	24.36	97.44	97.44	2.00		48.72	194.87	97.44	2.00	1
53.59	26.79	107.18	107.18	2.00	0	53.59	214.36	107.18	2.00	1
58.95	29.47	117.90	117.90	2.00	0	58.95	235.79	117.90	2.00	1
64.84	32.42	129.69	129.69	2.00	0	64.84	259.37	129.69	2.00	1
71.33	35.66	142.66	142.66	2.00	0	71.33	285.31	142.66	2.00	
78.46	39.23	156.92	156.92	2.00	0	78.46	313.84	156.92	2.00	
86.31	43.15	172.61	172.61	2.00	1	86.31	345.23	172.61	2.00	
94.94	47.47	189.87	189.87	2.00	1	94.94	379.75	189.87	2.00	
104.43	52.22	208.86	208.86	2.00	1	104.43	417.72	208.86	2.00	~
114.87	57.44	229.75	229.75	2.00	1	114.87	459.50	229.75	2.00	
126.36	63.18	252.72	252.72	2.00	1	126.36	505.45	252.72	2.00	
139.00	69.50	278.00	278.00	2.00		139.00	555.99	278.00	2.00	
152.90	76.45	305.80	305.80	2.00	1/>	152.90	611.59	305.80	2.00	
168.19	84.09	336.37	336.37	2.00		168.19	672.75	336.37	2.00	
185.01	92.50	370.01	370.01	2.00	X	185.01	740.02	370.01	2.00	
203.51	101.75	407.01	407.01	2.00		203.51	814.03	407.01	2.00	
223.86	111.93	447.72	447.72	2.00	~ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	223.86	895.43	447.72	2.00	
246.24	123.12	492.49	492.49	2.00		246.24	984.97	492.49	2.00	
270.87	135.43	541.74	541.74	2.00		270.87	1083.47	541.74	2.00	
297.95										

Table 15. MPLL Setting #1

ITPLL[3:0]	0110	0110	0110
TPOSTCOUNT[1:0]	00	01	10
TFRCOUNT[1:0]	10	01	00
Link Clock Frequency			
25.00			
27.50			
30.25			
33.28			
36.60			
40.26			
44.29			
48.72			
53.59			
58.95			
64.84			
71.33			
78.46			
86.31			
94.94			-
104.43			
114.87	_()		
126.36			
139.00			
152.90		X	
168.19		▼	
185.01			
203.51			
223.86			17
246.24			
270.87			X
297.95			

Notes:

0x083[7:6]: TPOSTCOUNT[1:0]: TXPLL post counter 0x084[6:3]: ITPLL[3:0]: TXPLL charge pump current 0x085[1:0]: TPRCOUNT[1:0]: TXPLL pre-counter

Table 16. MPLL Setting #2

Table 10. WIT LL Sett		0110	0110
ITPLL[3:0]	0110	0110	0110
TPOSTCOUNT[1:0]	00	01	10
TFRCOUNT[1:0]	10	01	00
Link Clock Frequency			
25.00			
27.50			
30.25			
33.28			
36.60			
40.26			
44.29			
48.72			
53.59			
58.95			
64.84			
71.33			
78.46			\ \ \
86.31			
94.94			
104.43			
114.87			
126.36)
139.00		X	$\mathcal{L}(\mathcal{L}(\mathcal{L}))$
152.90			X
168.19			
185.01			
203.51			
223.86			
246.24			
270.87			X
297.95			
Notes:	•	A	

Notes:

0x083[7:6]: TPOSTCOUNT[1:0]: TXPLL post counter 0x084[6:3]: ITPLL[3:0]: TXPLL charge pump current 0x085[1:0]: TPRCOUNT[1:0]: TXPLL pre-counter

Muting Video and Audio in HDCP Applications

Some HDCP applications may require that video and audio be muted until authentication is complete. Whenever the transmitter starts from a powered-down state (either after RESET or after assertion of one or more power-down register bits), the video and audio has to be suppressed until authentication is complete, because authentication cannot be performed when the transmitter is powered-down.

Muting video and audio with General Control Packets in HDMI mode is described on page 103. In DVI mode, there are no General Control Packets, but the SET_AVMUTE bit in register GCP_BYTE1 (refer to page 58) sets the output pixel values to 0x00 when set to 1. Because there is no audio in DVI mode, all content is muted as soon as SET_AVMUTE is set to 1.

Power Down Control

Logic Blocks Affected by Power Down

The transmitter provides four register bits to control power down of various sections of the chip. PD# is defined on page 4. PDIDCK#, PDOSC, and PDTOT# are defined on page 49.

Table 17. Power Down Control Bit Effects

PD#	PDIDCK#	PDOSC	PDTOT#	Function	Note
X	X	X	0	Powers down everything.	1
0	1	1	1	Powers down TMDS core and PLL. Digital logic is switching with an active IDCK. Registers are accessible via I ² C with the exceptions listed Table 18.	2
1	0	1	1	Powers down internal digital clock tree.	3
1	1	0	1	Powers down internal ring oscillator.	4, 5
				Disables internal read of HDCP keys and KSV.	
				Disables master DDC block.	

Notes:

- 1. This combination delivers the lowest power consumption if input signals are switching.
- 2. An attached HDMI receiver sees no switching clock or data and should react by disabling that HDMI input port until switching is detected again.
- 3. A quiet internal clock tree significantly reduces power consumption.
- 4. HDCP keys and KSV are read only at the rising edge of RESET#. PDOSC = 1 by default; therefore, after RESET#, the keys and KSV will be read completely before the firmware can write a 0 to PDIDCK#.
- 5. Set PDOSC = 1 and PDTOT# = 1 whenever Master DDC block is used to write or read across the DDC bus for HDCP. Master DDC can be used when PD# = 0 or PDIDCK# = 0, such as for reading EDID when the attached HDMI receiver is not powered on.

Registers Affected by Power Down

The registers shown in Table 18 require PD# = 1 AND PDIDCK# = 1 AND PDOSC = 1 AND PDTOT# = 1.

Table 18. Registers Affected by PD Bits

Device	Offset	Register
0x7A	0x3E	PB_CTRL1
0x7A	0x3F	PB_CTRL2
0x72	0x0F	HDCP_CTRL
0x72	0x10	BKSV1
0x72	0x11	BKSV2
0x72	0x12	BKSV3
0x72	0x13	BKSV4
0x72	0x14	BKSV5

۹			
	Device	Offset	Register
	0x72	0x15	AN1
	0x72	0x16	AN2
	0x72	0x17	AN3
(0x72	0x18	AN4
•	0x72	0x19	AN5
	0x72	0x1A	AN6
	0x72	0x1B	AN7
	0x72	0x1C	AN8

References

Standards Documents

Table 19 lists the abbreviations of standards used in this document. Contact the responsible standards groups for more information on these Specifications.

Table 19. Referenced Documents

Abbreviation	Specification
HDMI	High-bandwidth Digital Multimedia Interface, Revision 1.3, HDMI Consortium; June 2006
HDCP	High-bandwidth Digital Content Protection, Revision 1.2, Digital Content Protection, LLC; June 2006
DVI	Digital Visual Interface, Revision 1.0, Digital Display Working Group; April 1999
E-EDID	Enhanced Extended Display Identification Data Standard, Release A Revision 1, Video Electronics Standards Association (VESA); February 2000
CEA861D	A DTV Profile For Uncompressed High Speed Digital Interfaces, EIA/CEA; August 2005
EDDC	Enhanced Display Data Channel Standard, Version 1, VESA; September 1999
DVD	DVD Specifications for Read-Only Disc, Part 4 (Version 1.0, March 1999, Annex B), DVD Forum

Silicon Image Documents

Table 20 lists the documents relevant to this programmer's reference available from your Silicon Image sales representative.

Table 20. Silicon Image Documents

Document Number	Document Name
SiI-AN-0073	Handling EDID and CEA-861D Application Note
SiI-DS-0189	SiI9034 HDMI Transmitter Data Sheet

Disclaimers

These materials are provided on an "AS IS" basis. Silicon Image, Inc. and its affiliates disclaim all representations and warranties (express, implied, statutory or otherwise), including but not limited to: (i) all implied warranties of merchantability, fitness for a particular purpose, and/or non-infringement of third party rights; (ii) all warranties arising out of course-of-dealing, usage, and/or trade; and (iii) all warranties that the information or results provided in, or that may be obtained from use of, the materials are accurate, reliable, complete, up-to-date, or produce specific outcomes. Silicon Image, Inc. and its affiliates assume no liability or responsibility for any errors or omissions in these materials, makes no commitment or warranty to correct any such errors or omissions or update or keep current the information contained in these materials, and expressly disclaims all direct, indirect, special, incidental, consequential, reliance and punitive damages, including WITHOUT LIMITATION any loss of profits arising out of your access to, use or interpretation of, or actions taken or not taken based on the content of these materials.

Silicon Image, Inc. and its affiliates reserve the right, without notice, to periodically modify the information in these materials, and to add to, delete, and/or change any of this information.

Notwithstanding the foregoing, these materials shall not, in the absence of authorization under U.S. and local law and regulations, as required, be used by or exported or re-exported to (i) any U.S. sanctioned or embargoed country, or to nationals or residents of such countries; or (ii) any person, entity, organization or other party identified on the U.S. Department of Commerce's Denied Persons or Entity List, the U.S. Department of Treasury's Specially Designated Nationals or Blocked Persons List, or the Department of State's Debarred Parties List, as published and revised from time to time; (iii) any party engaged in nuclear, chemical/biological weapons or missile proliferation activities; or (iv) any party for use in the design, development, or production of rocket systems or unmanned air vehicles.

Products and Services

The products and services described in these materials, and any other information, services, designs, know-how and/or products provided by Silicon Image, Inc. and/or its affiliates are provided on as "AS IS" basis, except to the extent that Silicon Image, Inc. and/or its affiliates provides an applicable written limited warranty in its standard form license agreements, standard Terms and Conditions of Sale and Service or its other applicable standard form agreements, in which case such limited warranty shall apply and shall govern in lieu of all other warranties (express, statutory, or implied). EXCEPT FOR SUCH LIMITED WARRANTY, SILICON IMAGE, INC. AND ITS AFFILIATES DISCLAIM ALL REPRESENTATIONS AND WARRANTIES (EXPRESS, IMPLIED, STATUTORY OR OTHERWISE), REGARDING THE INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS PROVIDED BY SILICON IMAGE, INC. AND/OR ITS AFFILIATES, INCLUDING BUT NOT LIMITED TO, ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND/OR NON-INFRINGEMENT OF THIRD PARTY RIGHTS. YOU ACKNOWLEDGE AND AGREE THAT SUCH INFORMATION, SERVICES, DESIGNS, KNOW-HOW AND PRODUCTS HAVE NOT BEEN DESIGNED, TESTED, OR MANUFACTURED FOR USE OR RESALE IN SYSTEMS WHERE THE FAILURE, MALFUNCTION, OR ANY INACCURACY OF THESE ITEMS CARRIES A RISK OF DEATH OR SERIOUS BODILY INJURY, INCLUDING, BUT NOT LIMITED TO, USE IN NUCLEAR FACILITIES, AIRCRAFT NAVIGATION OR COMMUNICATION, EMERGENCY SYSTEMS, OR OTHER SYSTEMS WITH A SIMILAR DEGREE OF POTENTIAL HAZARD. NO PERSON IS AUTHORIZED TO MAKE ANY OTHER WARRANTY OR REPRESENTATION CONCERNING THE PERFORMANCE OF THE INFORMATION. PRODUCTS. KNOW-HOW, DESIGNS OR SERVICES OTHER THAN AS PROVIDED IN THESE TERMS AND CONDITIONS.

1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com

1060 E. Arques Avenue Sunnyvale, CA 94085 T 408.616.4000 F 408.830.9530 www.siliconimage.com