Elementy Sztucznej Inteligencji Laboratorium #1

Podstawy sztucznych sieci neuronowych. Perceptron. Zadania klasyfikacji

Grupa: ______ Data: _____

Nazwisko i imię:
Nazwisko i imię:
Nazwisko i imię:
Zadanie #1: Badanie prostego neuronu
 Uruchom program demonstracyjny w Matlabie ilustrujący działanie neuronu z dwon wejściami. W tym celu wykonaj następujące czynności: uruchom program Matlab wpisz polecenie nnd naciśnij przycisk Table of contents Rozwiń listę Chapter 2 demos Wybierz opcję Two-input neuron
 2. Zbadaj zachowanie się neuronu (sygnał n na wyjściu elementu sumacyjnego oraz sygnał a na wyjściu neuronu) dla następujących parametrów: a. p(1)=1, p(2)=1, w(1,1)=1, w(1,2)=1, b=0, F=Hardlim n=
Przebadaj zachowanie się wyjścia neuronu dla różnych funkcji aktywacji przy płynn zmianie wartości parametrów. Zwróć uwagę na różnice działania neuronu z dyskretnym i ciągłym sygnałem wyjściowym. Dla jakich parametrów możliwe jest uzyskanie sygnału wyjściowego a=6? e. p(1)=, p(2)=, w(1,1)=, w(1,2)=, b=, F=

Zadanie #2: Klasyfikacja z dwuwejściowym perceptronem

- 1. Uruchom program demonstracyjny **nnd4db**. W tym celu albo:
 - a. W menu programów demo wybierz opcję **Decision boundaries** w **Chapter 4**
 - b. Albo podaj polecenie **nnd4db** w oknie Matlab Commands

2.	Dla domyślnego ustawienia czterech punktów (w tym jednego czarnego) dokonaj takiego przemieszczenia granicy decyzyjnej perceptronu, aby uzyskać separację (klasyfikację) punktów białych od punktu czarnego (przeczytaj wskazówki z prawej strony okna). Podaj wagi i bias dla rozwiązania: w(1,1)=, w(1,2)=, b=
3.	Ustaw nową konfigurację punktów według podanych niżej współrzędnych x i y: punkty białe: (-1.5,1.5), (-1,-1), (2,0) punkt czarny: (-0.5,0)
4.	Spróbuj dokonać separacji dla nowej konfiguracji punktów. Opisz i wyjaśnij rezultat:
Zadan	ie #3: Uczenie perceptronu do zadań klasyfikacji
1.	Uruchom program demonstracyjny Perceptron rule (nnd4pr)
	Ustaw punkty według następujących współrzędnych (x i y):
	punkty białe: $(0, 1), (1, -1)$
	punkt czarny: (0, 2)
3.	Wykonaj uczenie klasyfikatora według następujących kroków:
	a. Wybierz bias=0 (no bias)
	b. Ustal losową wartość wag (random)
	c. Zastosuj regułę uczenia perceptronu (learn)
	d. Wykonaj kilka sekwencji uczenia wciskając kilkakrotnie przycisk train i zaobserwuj rezultaty. Podaj wnioski:
4	W 1 : : : 1 2 1 1 : :
4.	Wykonaj uczenie tak samo jak w p.3, ale z włączoną opcją bias . Podaj parametry perceptronu po nauczeniu go klasyfikacji:
	w(1,1)=, w(1,2)=, b=
Zadan	ie #4: Projekt programu symulacji neuronowego klasyfikatora typu perceptron
1	Napisz nowy program symulacji sieci neuronowej według podanego niżej wzoru:
1.	a. Wybierz opcję File a potem New
	b. W oknie edytora Matlab wpisz tekst następującego programu:
	<pre>p = [2 1 -2 -1;2 -2 2 1]; t = [0 1 0 1]; net = newlin([-2 2; -2 2],1); net.trainParam.goal= 0.1;</pre>
	<pre>[net, tr] = train(net,p,t);</pre>

- c. Zapisz utworzony program jako nowy plik m-file
 i. Umieść plik w katalogu MATLABR11/WORK
 ii. Nadaj mu własną nazwę (np. my_file1.m)

- d. Przeanalizuj dokładnie podany program i spróbuj szczegółowo zbadać znaczenie kolejnych linii. Wskazówka: posłuż się systemem Help i określ znaczenie poszczególnych poleceń.

 e. Odpowiedz na pytania:

 i. Co oznacza macierz p

 ii. Co oznacza macierz t

 iii. Ile neuronów zawiera sieć

 iv. Jakiego rodzaju jest funkcja aktywacji

 v. Ile wejść ma sieć

 vi. Ile wyjść ma sieć

 vii. Jaką funkcję spełnia sieć
- f. Uruchom program wybierając opcje **Tools** a następnie **Run**. Przeanalizuj obraz uzyskany w oknie graficznym oraz w oknie Matlab Command. W której iteracji sieć osiąga założone kryterium błędu uczenia? ______
- 2. Zmień kryterium błędu uczenia (zmniejsz wartość graniczną) i zaobserwuj co się dzieje. Dlaczego po znacznym zmniejszeniu błędu granicznego sieć nie osiąga zadanego celu? Spróbuj to zmienić. Wskazówka: wykorzystaj parametr net.trainParam.epochs. Jaka jest wartość domyślna tego parametru?
- 3. Spróbuj wykonać tak dużo modyfikacji i ulepszeń tego programu, ile potrafisz. W szczególności rozważ następujące propozycje:
 - a. Spróbuj wstawić do programu fragment, który przedstawi w postaci graficznej dane wejściowe. Wskazówka: wykorzystaj funkcję plot.
 Punkty, dla których t=0 i punkty dla których t=1 przedstaw różnymi kolorami. Wskazówka: wykreśl kolejne punkty w pętli for, do określenia koloru użyj instrukcji if.
 - b. Spróbuj zmienić dane wejściowe na inne. W szczególności spróbuj zmienić rozmiar wektorów.
 - c. Przy pomocy Help przeanalizuj zastosowaną metodę uczenia sieci. Zastanów się nad możliwością zmiany parametrów uczenia, w tym zwłaszcza współczynnika szybkości uczenia **lr**.
 - d. Zastanów się nad możliwością graficznej prezentacji błędu uczenia sieci w trakcie sesji uczenia. Funkcja **train** wykonuje to zadanie automatycznie. Spróbuj zrobić to samo używając funkcji **plot**.

Zadanie #5: Sieć neuronów liniowych z opóźnieniami (adaptacyjna).

Uruchomić plik wsadowy demolin8.m. Zapoznać się z opisem sieci w pliku pomocy.

- 1. Zmieniając szybkość uczenia zaobserwuj czas osiągania celu. Zapisz wnioski.
- 2. Zmień postacie sygnałów (zapisz w sprawozdaniu). Wykonaj polecenie punktu 1.

Zadanie #6: Dla ambitnych: Rozbudować program z zadania 4 tak, aby mógł klasyfikować obiekty nie na dwie klasy, ale na większą liczbę klas.

Wskazówki:

- 1. Trzeba zmodyfikować strukturę sieci i wyposażyć ją w większą liczbę wyjść.
- 2. Dane wejściowe powinny uwzględniać zróżnicowanie populacji na większą liczbę klas

```
p = [2 1 -2 -1;2 -2 2 1];
t = [0 1 0 1];
hold on;
for i=1:length(t),
    if t(i)==0
        plot(p(1,i),p(2,i),'go');
    else
        plot(p(1,i),p(2,i),'ro');
    end
end;
pause;
net = newlin([-2 2; -2 2],1,[0],0.001);
net.trainParam.epochs=200;
[net, tr] = train(net,p,t);
plot(tr.epoch,tr.perf);
```