Chapter 5

Benjamin Basseri

Problem 1

If integers a and b are not both zero, then gcd(a, b) = gcd(a - b, b).

Solution:

Show inequality both ways. Let $d = \gcd(a, b)$, so a = dx and b = dy for some x, y, and let $e = \gcd(a - b, b)$. We want to show that d divides both a - b and b, so that $d \le e$. We already have d dividing b since $d = \gcd(a, b)$. We can write a - b as dx - dy = d(x - y), which means $d \mid d(x - y) \implies d \mid a - b$. Since d divides both a - b and b it is a common divisor, and cannot be greater than $e = \gcd(a - b, b)$. Therefore $d \le e$.

Now to show $e \leq d$, note that e divides b and e divides a - b. Therefore e divides (a - b) + b = a. Since e divides both a and b it is a common divisor but cannot be greater than the $\gcd(a,b) = d$. Therefore $e \leq d$.

1. 29: If integers a and b are not both zero, then gcd(a,b) = gcd(a-b,b).

Solution: show inequality both ways. Let $d = \gcd(a, b)$, so a = dx and b = dy for some x, y, and let $e = \gcd(a - b, b)$. We want to show that d divides both a - b and b, so that $d \le e$. We already have d dividing b since $d = \gcd(a, b)$. We can write a - b as dx - dy = d(x - y), which means $d \mid d(x - y) \implies d \mid a - b$. Since d divides both a - b and b it is a commond divisor, and cannot be greater than $e = \gcd(a - b, b)$. Therefore $d \le e$.

Now to show $e \leq d$, note that e divides b and e divides a-b. Therefore e divides (a-b)+b=a. Since e divides both a and b it is a common divisor but cannot be greater than the $\gcd(a,b)=d$. Therefore $e\leq d$

1 Introduction

This is the introduction section.

2 Main Content

This is the main content section.

2.1 Subsection

This is a subsection.

2.1.1 Subsubsection

This is a subsubsection.

3 Conclusion

This is the conclusion section.