Решение задачи Коши для системы ОДУ модифицированным методом Эйлера

Филиппов Денис Константинович (группа 5030102/10401) 24 мая 2024 г.

1 Постановка задачи

Требуется запрограммировать модифицированный метод Эйлера решения задачи Коши для системы ОДУ:

$$y' = f(t, y), t \in [t_0, T]$$

 $y(t_0) = y_0$

Здесь $y = (y_1(t), \dots, y_2(t))^T$, $f(t,y) = (f_1(t,y), \dots, f_n(t,y))^T$. Программа должна работать для произвольной размерности системы уравнений. Функция правой части системы и начальное условие подаются на вход программе.

Вычисления должны производиться с пошаговым контролем точности по правилу Рунге: если на текущем шаге точность не достигается, то шаг уменьшается в 2 раза, если достигнутая погрешность меньше заданной в 64 раза, то шаг увеличивается в 2 раза.

2 Описание алгоритма

2.1 Процедура одного шага по методу Эйлера

Идея модифицированного метода Эйлера состоит в том, что производную вычисляют не в i-ой точке, а между двумя соседними точками: i и i+1. Данная процедура состоит из следующих шагов:

1). В точке i вычисляют значение производной, делают пол-шага и вычисляют значение функции на середине отрезка:

$$y_{i+\frac{1}{2}} = y_i + \frac{h}{2} \cdot f(t_i, y_i)$$

2). В точке $i+\frac{1}{2}$ вычисляют производную, делается полный шаг из точки i в точку i+1 по значению уточненной производной:

$$y_{i+1} = y_i + h \cdot f(t_{i+\frac{1}{2}}, y_{i+\frac{1}{2}});$$

Данный метод обладает точностью $O(h^2)$, то есть на порядок выше, чем метод Эйлера, при увеличении числа вычислений всего в 2 раза.

2.2 Оценка точности по правилу Рунге

Оценка точности по правилу Рунге - это метод определения точности численного метода путем сравнения результатов, полученных с разными размерами шага интегрирования. Формула для оценки точности выглядит следующим образом:

$$R = \frac{||y_1 - y_2||}{2^p - 1}$$

Здесь y_1 - значение функции в точке, вычисленное с использованием шага интегрирования $h,\ y_2$ - значение функции в этой же точке, вычисленное с использованием шага интегрирования $h/2,\ p=2$ - порядок точности метода.

2.3 Описание входных и выходных данных

На вход подаются несколько строк, в которых:

- ullet t_0 начало промежутка
- \bullet T конец промежутка
- ullet h_0 начальный шаг
- ullet N_x максимальное число вызовов функции правой части
- ullet eps желаемая точность
- *n* число уравнений
- ullet Следующие n+3 строк определяют функцию правой части на Python
- Начальное условие

Программа печатает в консоль следующие столбцы, одна строчка соответствует одному шагу интегрирования:

- 1. Значение t
- 2. Значение шага h
- 3. Оценка Рунге R
- 4. Истраченое число вычислений правой части N
- 5. Значения функций решений

2.4 Блок-схема

3 Пример работы программы

Для запуска программы в файле main.py требуется библиотека Numpy. Пример выполнения программы в виде скриншота: входные данные и полный вывод.

Рис. 1: Входные данные

```
1.500000
                0.100000 0.00000e+00
                                              0
                                                   1.000000
                                                               1.000000
                                                                           2.000000
    1.600000
                0.100000 8.45154e-05
                                              6
                                                    0.962820
                                                               1.061398
                                                                           2.210309
    1.700000
                0.100000 9.33737e-05
                                             12
                                                    0.927221
                                                               1.125613
                                                                           2.442690
    1.750000
                0.050000 1.28171e-05
                                             24
                                                   0.909992
                                                               1.158775
                                                                           2.568019
    1.800000
                0.050000 1.34742e-05
                                                 0.893138
                                                             1.192634
                                                                           2.699768
                                             30
    1.850000
                0.050000 1.41654e-05
                                                 0.876652 1.227187
                                                                           2.838267
    1.900000
                0.050000 1.48925e-05
                                             42
                                                   0.860527
                                                             1.262426
                                                                           2.983862
                0.050000 1.56573e-05
    1.950000
                                             48
                                                   0.844756
                                                               1.298342
                                                                           3.136916
                0.050000 1.64617e-05
    2.000000
                                             54
                                                   0.829333
                                                               1.334924
                                                                           3.297812
    2.050000
                0.050000 1.73079e-05
                                             60
                                                   0.814253
                                                               1.372157
                                                                           3.466951
                0.050000 1.81979e-05
                                                   0.799508
                                                             1.410026
    2,100000
                                             66
                                                                           3.644757
    2.150000
                0.050000 1.91341e-05
                                             72
                                                   0.785092
                                                             1.448511
                                                                           3.831672
    2.200000
                0.050000 2.01189e-05
                                            78
                                                    0.771001
                                                             1.487590
                                                                           4.028165
                0.050000 2.11548e-05
    2.250000
                                             84
                                                   0.757227
                                                             1.527236
                                                                           4.234726
    2.300000
                0.050000 2.22444e-05
                                             90
                                                   0.743766
                                                               1.567420
                                                                           4.451871
                0.050000 2.33906e-05
                                             96
                                                    0.730612
                                                               1.608110
                                                                           4.680143
    2.400000
                0.050000 2.45962e-05
                                            102
                                                    0.717758
                                                               1.649267
                                                                           4.920111
                                                    0.705200
    2.450000
                0.050000 2.58644e-05
                                            108
                                                               1.690849
                                                                           5.172377
    2.500000
                0.050000 2.71984e-05
                                            114
                                                    0.692932
                                                               1.732810
                                                                           5.437568
    2.550000
                0.050000 2.86017e-05
                                            120
                                                    0.680948
                                                               1.775097
                                                                           5.716349
Process finished with exit code 0
```

Рис. 2: Результат работы программы

4 Исследование полученных результатов

4.1 Изменение шага по отрезку для разных значений заданной точности

4.2 Зависимость минимального шага от заданной точности

4.3 Зависимость числа шагов от заданной точности

4.4 Решение для разных значений заданной точности

