11.9.5-13

EE23BTECH11033-killana jaswanth

question:

$$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} \tag{1}$$

then show that a,b,c,d are in G.P

solution:

let,

$$\frac{b}{a} = \frac{c}{b} = \frac{d}{c} = r \tag{2}$$

parameter	description	value
x(0)	first term	a
x(1)	second term	b
x(2)	third term	С
x(3)	fourth term	d
r	common ratio	$\frac{b}{a}$
n	no of terms	4
x(n)	<i>n</i> / th term	$x(0) r^n$

TABLE 0: input parameters

$$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} \tag{3}$$

$$\frac{a+arx}{a-arx} = \frac{ar+ar^2x}{ar-ar^2x} \tag{4}$$

$$\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx}$$

$$\frac{a+arx}{a-arx} = \frac{ar+ar^2x}{ar-ar^2x}$$

$$\frac{1+rx}{1-rx} = \frac{1+rx}{1-rx}$$
(5)

LHS=RHS So a,b,c are in G.P

$$\frac{b+cx}{b-cx} = \frac{c+dx}{c-dx} \tag{6}$$

$$\frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$$

$$\frac{ar+ar^2x}{ar-ar^2x} = \frac{ar^2+ar^3x}{ar^2-ar^3x}$$
(6)

$$\frac{1+rx}{1-rx} = \frac{1+rx}{1-rx}$$
 (8)

LHS=RHS So b,c,d are in G.P

As proved above a,b,c are in G.P and b,c,d are also in G.P. So, a,b,c,d are in G.P.

Applying z-transform

$$X(z) = \frac{a^2}{a - bz^{-1}} \quad |z| > \left| \frac{b}{a} \right| \tag{9}$$