Độ Phức Tạp Thuật Toán

Nguyễn Văn Huy

huyite.vn@gmail.com

Ngày 22 tháng 2 năm 2024

Outline

1 Định nghĩa và ký hiệu

- 2 Các phương pháp phân tích
 - Đếm các phép toán cơ bản

Giới thiệu

Input size	Algorithm A	Algorithm B
n	$5000 \ n$	1.2^{n}
10	50,000	6
100	500,000	2,817,975
1,000	5,000,000	1.5×10^{79}
100,000	5×10^8	1.3×10^{7918}

- Phần lớn các bài toán thường có nhiều giải thuật khác nhau để giải một bài toán.
- Lựa chọn giải thuật phù hợp với ngữ cảnh và tài nguyên hệ thống.
- So sánh các giải thuật được giải trên một bài toán.
- Thời gian tính toán là tài nguyên quan trọng nhất.

Ví dụ

Tính tổng $S = 1 + 2 + \dots + n$

Độ phức tạp thuật toán

- 1 Thời gian chạy trong trường hợp tốt nhất (Best-case). Thời gian chạy ít nhất của thuật toán trên tất cả các tập dữ liệu cùng cỡ.
- 2 Thời gian chạy trung bình. Là thời gian chạy trung bình cộng trên tất cả các tập dữ liệu.
- 3 Thời gian chạy trong trường hợp xấu nhất (Worse-case). Thời gian chay lớn nhất của thuật toán trên cùng tập dữ liệu

Đánh giá thời gian chạy thuật toán

- ① Hầu hết các giải thuật thường có một thông số chính, N, số mẩu dữ liêu input.
- (2) T(n) số lượng các phép toán sơ cấp phải thực hiện(phép toán số học, logic, so sánh).
- 3 Quan tâm tốc độ tăng của hàm T(n)

Ví dụ

$$T(n) = 3 \times n^4 + 5 \times n$$

Big-O

Định nghĩa: Giả sử f(n) và g(n) là các hàm số thực không âm. Ta nói:

$$f(n) = O(g(n))$$

Nếu tồn tại hằng số c và n_0 sao cho $f(n) \leq c \times g(n), \forall n_0$

Big-O

Ví dụ

Let $T(n) = 2n + 3n^3 + 5$. T(n) is in $O(n^3)$ with:

• $(c = 8 \text{ and } n_0 = 1) \text{ or } (c = 5 \text{ and } n_0 = 2)$

Complexity classes - a small vocabulary

- Constant: O(1) (independing on the input size)
- Sub-linear or logarithmic: $O(\log n)$
- Linear: O(n)
- Quasi-linear: $O(n \log n)$
- Quadratic: $O(n^2)$
- Cubic: $O(n^3)$
- Polynomial: $O(n^p)$ $(O(n^2), O(n^3), \text{ etc})$
- Quasi-polynomial: $O(n^{\log(n)})$
- Exponential: $O(2^n)$
- Factorial: O(n!)

- 1. Var int: d = 0
- 2. For i from 1 to n do
 - 1. d = d + 1
 - 2. $a[i] = a[i] \times a[i] + d \times d$
- 3. Endfor

- 1. (1) Var int: d = 0
- 2. For i from 1 to n do
 - 1. d = d + 1
 - 2. $a[i] = a[i] \times a[i] + d \times d$
- 3. Endfor

- 1. (1) Var int: d = 0
- 2. (n)For i from 1 to n do
 - 1. d = d + 1
 - 2. $a[i] = a[i] \times a[i] + d \times d$
- 3. Endfor

- 1. (1) Var int: d = 0
- 2. (n)For i from 1 to n do
 - 1. (1)d = d + 1
 - 2. $a[i] = a[i] \times a[i] + d \times d$
- 3. Endfor

- 1. (1) Var int: d = 0
- 2. (n)For i from 1 to n do
 - 1. (1)d = d + 1
 - 2. $(1)a[i] = a[i] \times a[i] + d \times d$
- 3. Endfor

- 1. (1) Var int: d = 0
- 2. (n)For i from 1 to n do
 - 1. (1)d = d + 1
 - 2. $(1)a[i] = a[i] \times a[i] + d \times d$
- 3. Endfor

Number of elementary operations: $1 + n \times (1 + 1) = 2n + 1$.

Linear loop example

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Write "Bonjour"
 - i = i + 1
- 3. EndWhile

Linear loop example

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Write "Bonjour"
 - 2. i = i + 1
- 3. EndWhile

- 1. Var int: i = n
- 2. While i > 1 do
 - 1. Write "Bonjour"
 - 2. i = i 1
- 3. EndWhile

Linear loop example

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Write "Bonjour"
 - 2. i = i + 1
- 3. EndWhile

- 1. Var int: i = n
- 2. While i > 1 do
 - 1. Write "Bonjour"
 - 2. i = i 1
- 3. EndWhile

Number of elementary operations: 2n + 1.

Logarithmic loop example

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Write "Bonjour"
 - $2. i = i \times 2$
- 3. EndWhile

Logarithmic loop example

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Write "Bonjour"
 - $2. i = i \times 2$
- 3. EndWhile

- 1. Var int: i = n
- 2. While i > 1 do
 - 1. Write "Bonjour"
 - 2. i = i/2
- 3. EndWhile

Logarithmic loop example

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Write "Bonjour"
 - $2. i = i \times 2$
- 3. EndWhile

- 1. Var int: i = n
- 2. While i > 1 do
 - 1. Write "Bonjour"
 - 2. i = i/2
- 3. EndWhile

Number of elementary operations: $1 + \log_2(n)$.

Nested loop example

Nb of iterations = nb of iterations of external loop \times nb of iterations of internal loop

Nested loop example

Nb of iterations = nb of iterations of external loop \times nb of iterations of internal loop

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Var int: j = 1
 - 2. While $j \leq n$ do
 - 1. Write "Bonjour"
 - 2. $j = j \times 3$
 - 3. EndWhile
 - 4. i = i + 1
- 3. EndWhile

Nested loop example

Nb of iterations = nb of iterations of external loop \times nb of iterations of internal loop

- 1. Var int: i = 1
- 2. While $i \leq n$ do
 - 1. Var int: j = 1
 - 2. While $j \leq n$ do
 - 1. Write "Bonjour"
 - 2. $j = j \times 3$
 - 3. EndWhile
 - 4. i = i + 1
- 3. EndWhile

Number of elementary operations: $1 + 2n + n \times \log_3(n)$.

- 1. **Var** int: *i*
- 2. For i from 1 to n do
 - 1. Var int: t = a[i]
 - 2. **Var** int: *j*
 - 3. For j from i-1 to 0 do

1.
$$a[j+1] = a[j]$$

- 4. EndFor
- 5. a[j+1] = t
- 3. EndFor

- 1. (1)Var int: i
- 2. For i from 1 to n do
 - 1. Var int: t = a[i]
 - 2. **Var** int: *j*
 - 3. For j from i-1 to 0 do

1.
$$a[j+1] = a[j]$$

- 4. EndFor
- 5. a[j+1] = t
- 3. EndFor

- 1. (1)Var int: i
- 2. (n)For i from 1 to n do
 - 1. Var int: t = a[i]
 - 2. **Var** int: *j*
 - 3. For j from i-1 to 0 do

1.
$$a[j+1] = a[j]$$

- 4. EndFor
- 5. a[j+1] = t
- 3. EndFor

- 1. (1)Var int: i
- 2. (n)For i from 1 to n do
 - 1. (1) Var int: t = a[i]
 - 2. **Var** int: *j*
 - 3. For j from i-1 to 0 do

1.
$$a[j+1] = a[j]$$

- 4. EndFor
- 5. a[j+1] = t
- 3. EndFor

- 1. (1)Var int: i
- 2. (n)For i from 1 to n do
 - 1. (1) Var int: t = a[i]
 - 2. (1)Var int: j
 - 3. For j from i-1 to 0 do

1.
$$a[j+1] = a[j]$$

- 4. EndFor
- 5. a[j+1] = t
- 3. EndFor

- 1. (1)Var int: i
- 2. (n)For i from 1 to n do
 - 1. (1) Var int: t = a[i]
 - 2. (1)Var int: j
 - 3. (?) For j from i 1 to 0 do

1.
$$a[j+1] = a[j]$$

- 4. EndFor
- 5. a[j+1] = t
- 3. EndFor

- 1. (1)Var int: i
- 2. (n)For i from 1 to n do
 - 1. (1) Var int: t = a[i]
 - 2. (1)Var int: j
 - 3. (?) For j from i-1 to 0 do

1.
$$(1)a[j+1] = a[j]$$

- 4. EndFor
- 5. a[j+1] = t
- 3. EndFor

- 1. (1)Var int: i
- 2. (n)For i from 1 to n do
 - 1. (1) Var int: t = a[i]
 - 2. (1)Var int: j
 - 3. (?) For j from i-1 to 0 do

1.
$$(1)a[j+1] = a[j]$$

- 4. EndFor
- 5. (1)a[j+1] = t
- 3. EndFor

Bài tập

- ① Cài đặt các thuật toán có độ phức tạp lần lượt là $O(n), O(log(n)), O(n^2)$. Chạy thự nghiệm đo thời gian thực thi với tập dữ liệu lần lượt là: 10, 100, 1000, 10000, 100000, 1000000
- 2 Xây dựng các tập dữ liệu sau:
 - Gồm 10 số được sinh ngẫu nhiêu khác nhau trong khoảng [1..100]
 - Gồm 100 số được sinh ngẫu nhiêu khác nhau trong khoảng [1..1000]
 - Gồm 1000 số được sinh ngẫu nhiêu khác nhau trong khoảng [1..10000]
 - Gồm 10000 số được sinh ngẫu nhiêu khác nhau trong khoảng [1..100000]

Xây dưng cây tìm kiếm nhị phân(AVL) và danh sách liên kết đơn với các tập dữ liệu đã sinh ở trên. sinh một số ngẫu nhiên thực nghiệm tìm kiếm trên các cấu trúc để đo thời gian thực thi. So sánh thực nghiệm kết quả thuật toán tìm kiếm trên 2 cấu trúc dữ liệu trên.

Bài tập

Give algorithms having number of elementary operations as below.

- $T_1(n) = 3 + 5n$
- $T_2(n) = n \log_2 n$
- $T_3(n) = n^3$
- $T_4(n) = (3n)!$
- $T_5(n) = \log_2(3n)$
- $T_6(n) = 2\log_3(2n)$
- $\bullet \ T_7(n) = n^2 \log_4 n$
- $T_8(n) = \sqrt{n}$
- $T_9(n) = \sqrt[3]{n^2}$
- $T_{10}(n) = 2^n$
- $T_{11}(n) = n!$