Convex Optimization

Lecture 15 - Gradient Descent in Machine Learning

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

Today's Lecture

Motivation

2 Subgradient Method

3 Stochastic Subgradient Method

Outline

Motivation

Subgradient Method

3 Stochastic Subgradient Method

Why Gradient Descent in Machine Learning?

in theory:

• Newton methods much faster than gradient descent

in practice, especially in machine learning involving big data:

gradient descent (and its variations) are used

why and how to use gradient descent in machine learning tasks?

least squares:

minimize
$$||Ax - b||_2^2$$

assuming A^TA is invertible, we have analytical solution:

$$x^{\star} = (A^T A)^{-1} (A^T b)$$

building block of Newton methods (i.e., inverse of $\nabla^2 f(x)$)

with big data, we can have $A \in \mathbb{R}^{m \times n}$ where $m \approx 10^6$ and $n \approx 10^5$ the size of $(A^TA)^{-1}$ is $10^5 \times 10^5 \rightarrow 74$ GB of memory sparsity of A does not help, because $(A^TA)^{-1}$ can be dense

in gradient descent, we do

$$x^{(k+1)} = x^{(k)} - t^{(k)} \nabla f(x^{(k)})$$

= $x^{(k)} - t^{(k)} (A^T A x^{(k)} - A^T b)$

need to store

- $A \in \mathbb{R}^{m \times n}$: $\approx 740 MB$ memory if density of A is 10^{-3}
- $A^T b \in \mathbb{R}^n$: $\approx 7MB$ memory
- $Ax^{(k)} \in \mathbb{R}^m$: $\approx 0.7MB$ memory
- $A^T(Ax^{(k)}) \in \mathbb{R}^n$: $\approx 0.7MB$ memory

memory needed in gradient descent: $\approx 740MB$

as compared to 74GB in analytical solution or Newton method

least squares:

minimize
$$||Ax - b||_2^2$$

with m = 500,000, n = 400,000, and density of A being 10^{-3}

Outline

Motivation

2 Subgradient Method

3 Stochastic Subgradient Method

Motivation – Objective is Not Differentiable

least squares with regularization:

minimize
$$||Ax - b||_2^2 + ||x||_1$$

do not want to introduce additional variables

• $n = 10^5 \rightarrow \text{another } 10^5 \text{ variables}$

do not want to use Newton method

can we use variations of gradient descent?

Subgradient

g is a subgradient of f at x if:

$$f(y) \ge f(x) + g^T(y - x)$$
 for all y

the line $f(x) + g^{T}(y - x)$ is a global underestimator of f

 g_1 subgradient at x_1 ; g_2 , g_3 subgradients at x_2

Descent Directions

-g may not be descent direction for nondifferentiable f

example:
$$f(x) = |x_1| + 2|x_2|$$

Subgradient Method

subgradient method:

$$x^{(k+1)} = x^{(k)} - \alpha_k g^{(k)}$$

• $g^{(k)}$ is any subgradient at $x^{(k)}$

not a descent method; need to keep track of the best point

$$f_{\text{best}}^{(k)} = \min_{i=1,\dots,k} f(x^{(i)})$$

Subgradient Method – Step Size Rules

not a descent method - no backtracking line search

step sizes fixed ahead of run time

- constant step size: $\alpha_k = \alpha$
- square summable but not summable:

$$\sum_{k=1}^{\infty} \alpha_k^2 < \infty, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$

- example: $\alpha_k = 1/k$
- diminishing, not summable:

$$\lim_{k \to \infty} \alpha_k = 0, \quad \sum_{k=1}^{\infty} \alpha_k = \infty$$

• example: $\alpha_k = 1/\sqrt{k}$

Example - Piecewise Linear Minimization

piecewise linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

with m = 100, n = 20

constant step size:

Example – Piecewise Linear Minimization

piecewise linear minimization

minimize
$$\max_{i=1,\ldots,m} (a_i^T x + b_i)$$

with m = 100, n = 20

diminishing step size:

Outline

Motivation

Subgradient Method

3 Stochastic Subgradient Method

Stochastic Subgradient Method

least squares reformulation:

minimize
$$\sum_{i=1}^{m} (a_i^T x - b_i)^2$$

more generally, consider a problem:

minimize
$$\sum_{i=1}^{m} f_i(x)$$

stochastic subgradient method:

$$x^{(k+1)} = x^{(k)} - \alpha_k g_i^{(k)}$$

• $g_i^{(k)}$ is any subgradient of randomly chosen f_i at $x^{(k)}$

Advantages of Stochastic Subgradient Method

even less memory

• in the LS example, need to store $a_i \in \mathbb{R}^{100,000}$ ($\approx 0.7 \text{MB}$)

sometimes data arrive consecutively

• update x after each data a; arrives

Example – Piecewise Linear Minimization

piecewise linear minimization

minimize
$$\max_{i=1,\ldots,m} (a_i^T x + b_i)$$

with m = 100, n = 20

convergence:

Example - Piecewise Linear Minimization

piecewise linear minimization

minimize
$$\max_{i=1,...,m} (a_i^T x + b_i)$$

with m = 100, n = 20

empirical distribution of $f_{\text{best}}^{(k)} - f^*$:

