

Tutorial T0

Partha Pratin Das

Tutorial Reca

Objective & Outline

Design
Operations

Class Design Implementation Test

Polynomial UD7

Test

Practice UDTs

Tutorial Summ

Programming in Modern C++

Tutorial T08: How to design a UDT like built-in types?: Part 2: Int and Poly UDT

Partha Pratim Das

Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

ppd@cse.iitkgp.ac.in

All url's in this module have been accessed in September, 2021 and found to be functional

Tutorial Recap

Tutorial Recap

- Analysed the difference between Built-in & UDT
- Discussed the meaning of Building a data type
- Understood the necessity of Building a data type
- Built a Fraction data type by iterative refinement

Tutorial Objectives

Objective & Outline

• To build more UDTs: Int<N> and Poly<T>

• To test mix of UDTs

Tutorial Outline

Tutorial T0

Partha Pratii Das

Tutorial Reca

Objective &

Outline

Design
Operations
Class Design

Polynomial UD7
Design
Implementation

Practice UDTs

Tutorial Summary

- 1 Tutorial Recap
- 2 Int<N> UDT
 - Design
 - Operations
 - Class Design
 - Implementation
 - Test
- Polynomial UDT
 - Design
 - Implementation
 - Test
- Practice UDTs
- **5** Tutorial Summary

Int<N> UDT

Tutorial T

Partha Pratii Das

Tutorial Reca

Objective &

Int<N> UDT

1110 4117 01

Operation

Class Desig

Implementati

Polynomial UDT

Test Test

Practice UDTs

utorial Summa

Int<N> UDT

Understanding int

Partha Pratim

Objective &

Int<N> UDT

Design

Operations

Class Design

Implementation

Polynomial UDT Design Implementation Test

Practice UDTs Tutorial Summar

- The datatype we are most familiar with is int which is a signed integer
 - o Represented in a given number of bits, typically, 8, 16, 32, 64, or 128
 - $\circ\,$ Hence, int can represent numbers from <code>INT_MAX</code> to <code>INT_MIN</code>
 - \circ For example, for 32 bits, <code>INT_MAX</code> = 2^{31} 1 = 2147483647 and <code>INT_MIN</code> = $-2^{31} = -2147483648$
 - Beyond the INT_MAX .. INT_MIN range we get integer overflow and numbers wraparound

Design of Int UDT

Partha Pratin Das

Objective & Outline

Int<N> UDT

Design
Operations
Class Design
Implementation
Test

Polynomial UD⁻ Design Implementation Test

Practice UDTs

- To understand int better, we intend to design a UDT Int<N> which can behave like int albeit for a of size N > 0 bits that can be specified
- The range of values will be:

$$\circ MinInt = -2^{N-1} \dots MaxInt = 2^{N-1} - 1$$

- The broad tasks involved include:
 - Make a clear statement of the concept of Int
 - Identify a representation for a Int object
 - o Identify the properties and assertions applicable to all objects
 - Identify the operations for Int objects
 - ▷ Choose appropriate operators to overload for the operations
 - > For example operator+ to add two Int objects, or operator<< to stream a
 Int to cout
 - ▶ Do not break the natural semantics for the operators

Notion of Int

Tutorial T

Partha Pratir Das

Tutorial Rec

Objective & Outline

Int<N> UE

Design
Operations
Class Design
Implementation
Test

Polynomial UDT
Design
Implementation
Test

Tutorial Summa

Intuitively Int<N> is a notation for whole numbers of the form of N bits signed integers

• MinInt = -2^{N-1} ... MaxInt = $2^{N-1} - 1$

• Numbers in Int<N> bits within a range of values MinInt .. MaxInt. Beyond this range the numbers wrap around:

$$\circ$$
 MaxInt $+1 = MinInt$

• For example:

$$\circ$$
 N = 4 \Rightarrow Range: $-8 ... 7$

• MinInt =
$$-2^3 = -8$$
 and MaxInt = $2^3 - 1 = 7$

Except for overflow¹ as follows, all operations of Int<N> is same as int

$$ho 7 + 1 = -8$$

$$> -8 - 1 = 7$$

$$> -8 = -8$$

¹Some authors distinguish between overflow (being more than MaxInt) and underflow (being less than MinInt). However, we prefer to use the term overflow in both cases because actually representation overflows the bits in both cases

Operations of Int<N>

Tutorial 10

Partha Pratin Das

Tutorial Reca

Outline

Int<N> UD
Design

Operations
Class Design

Implementation Test

Polynomial UD^{*}
Design
Implementation
Test

Practice UDTs

Tutorial Summar

Definition

Limits: $MaxInt = 2^{N-1} - 1$

$$MinInt = -2^{N-1}$$

Negation: -a = a, if a == MinInt

$$=$$
 $-a$, otherwise

Addition: $a+b = a+b-2^N$, if a+b > MaxInt

$$=$$
 $a+b+2^N$, if $a+b < MinInt$

$$=$$
 $a+b$, otherwise

$$a-b = a+(-b)$$

Let N = 4

Subtraction:

Example 1: 2+3=5. 4+7=-5. (-5)+6=1. (-3)+(-2)=-5. (-6)+-7=3

Example 2: 2-3=-1. 4-7=-3. (-5)-6=5. (-3)-(-2)=-1. (-6)-(-7)=1

Multiplication, Division, and Modulus: Left as exercise

Design of Int<N> Class

Tutorial T0

Partha Pratim Das

Objective & Outline

Int<N> UDT

Design

Operations

Design
Operations
Class Design
Implementation
Test

Polynomial UDT Design Implementation Test

Tutorial Summar

- Clearly, the representation of a Int<N> needs to be a template with an unsigned int param N
- For the implementation, the Int<N> needs to use an underlying type T where basic arithmetic operations are available. So T is a type parameter for Int<N>. By default this can be int
- It is important to note that N <= sizeof(T) * 8. Otherwise, our basic operations may overflow
- Hence, the Int<N> class would look like:

```
template<typename T = int, unsigned int N = 4>
class Int_ { // an N-bits integer class with underlying type T
   T v_; // actual value in underlying type T
   // ... Rest of the class
}
```

- Note that we name the type as Int_ so that we can conveniently alias it in the user program as: template<typename T, unsigned int N> class Int_; typedef Int_<int, 4> Int; // T = int and N = 4 // Use as Int
- Int<N> should support the operation of int:
- Int<N> should also support conversion the underlying type T
- Int<N> may support the following constants for convenience of implementation:

```
static const Int_<T, N> MaxInt; // 2^(N-1)-1 static const Int_<T, N> MinInt; // -2^(N-1) Programming in Modern C++
```


Design of Int<N> Interface and Implementation

```
template<typename T = int, unsigned int N = 4>
              class Int_ { public:
                   static const Int_<T, N> MaxInt; // 2^(N-1)-1
                   static const Int <T. N> MinInt: // -2^(N-1)
                   explicit Int_<T, N>(int v = 1) : v_(v) { // Two overloads of Constructor
                       assert(v_ <= static_cast<int>(MaxInt)); // assert will fire if the value is out of limits
                       assert(v >= static cast<int>(MinInt)):
                   Int_<T, N>(const Int_<T, N>& i) : v_(i.v_) { } // Copy Constructor
                   "Int <T. N>() { } // No virtual destructor needed
                   Int_<T, N>& operator=(const Int_<T, N>& i) { v_ = i.v_; return *this; } // Assignment
                   // Streaming operators for IO
Implementation
                   friend ostream& operator << (ostream& os. const Int <T. N>& i) { os << i.v : return os: }
                   friend istream& operator>>(istream& is, Int_<T, N>& i) {
                       T v: is >> v: i = Int <T. N>(v): // We deliberately construct to test that v is within limits
                       return is:
                   // Unary arithmetic operators
                   Int <T. N> operator-() const {
                                                  return Int <T. N>(v == MinInt T? v : -v ): }
                                                  return *this: }
                   Int <T. N> operator+() const
                   Int_<T, N>& operator++()
                                                  *this = *this + Int <T. N>(1): return *this: }
                   Int <T. N>& operator--()
                                                  *this = *this - Int <T. N>(1): return *this: }
                   Int <T. N> operator++(int)
                                                  Int <T. N> i = *this: ++*this: return i: }
                   Int <T. N> operator--(int)
                                                 { Int <T, N> i = *this: --*this: return i: }
              Programming in Modern C++
                                                                     Partha Pratim Das
```

T08 11

Design of Int<N> Interface and Implementation

T v = i1.v + i2.v : // add values in underlying type T if (v > MaxInt_T) // MaxInt_T is MaxInt in type T

else if (v < MinInt_T) // MinInt_T is MinInt in type T

friend Int_<T, N> operator+(const Int_<T, N>& i1, const Int_<T, N>& i2) {

// Binary arithmetic operators

else

```
Implementation
```

return Int <T. N>(v): // value within limits - no action friend Int <T. N> operator-(const Int <T. N>& i1. const Int <T. N>& i2) { return i1 + (-i2): } // NOT IMPLEMENTED - left as exercises friend Int <T. N> operator*(const Int <T. N>& i1. const Int <T. N>& i2): friend Int_<T. N> operator/(const Int_<T. N>& i1. const Int_<T. N>& i2): friend Int_<T, N> operator%(const Int_<T, N>& i1, const Int_<T, N>& i2); // Logical comparison operators friend bool operator==(const Int_<T, N>& i1, const Int_<T, N>& i2) return i1.v_ == i2.v_; } return i1.v_ != i2.v_; } friend bool operator!=(const Int_<T, N>& i1, const Int_<T, N>& i2) return i1.v_ < i2.v_: } friend bool operator<(const Int <T. N>& i1. const Int <T. N>& i2) friend bool operator <= (const Int <T, N>& i1, const Int <T, N>& i2) return i1.v <= i2.v : } return i1.v_ > i2.v_; } friend bool operator>(const Int_<T, N>& i1, const Int_<T, N>& i2) friend bool operator>=(const Int <T. N>& i1. const Int <T. N>& i2) return i1.v >= i2.v : }

return Int <T. N>(v - TwoPowerN T): // wrap around if the value is more than MaxInt

return Int <T. N>(v + TwoPowerN_T); // wrap around if the value is less than MinInt

Design of Int<N> Interface and Implementation

```
// Advanced assignment operators: NOT IMPLEMENTED - left as exercises
                   Int_<T, N>& operator+=(const Int_<T, N>& i);
                   Int <T. N>& operator-=(const Int <T. N>& i):
                   Int_<T, N>& operator*=(const Int_<T, N>& i);
                   Int <T. N>& operator/=(const Int <T. N>& i):
                   Int_<T, N>& operator%=(const Int_<T, N>& i);
                   operator T() const { return v_; } // conversion to underlying type T
               private: // data members
                   T v :
                                              // Value in underlying type T
                   static const T MaxInt_T: // MaxInt = 2^(N-1)-1 in underlying type T
Implementation
                   static const T MinInt_T; // MinInt = -2^(N-1) in underlying type T
                   static const T TwoPowerN T: // 2^N in underlying type T
               public: static int Int_<T, N>::pow() { return Int_<T, N - 1>::pow() * 2; }
               template<typename T> class Int <T, 1> { public: static int Int <T, 1>::pow() { return 1: } }:
               // Instantiations of static const members
               const Int Int::MaxInt = Int(Int::pow() - 1);
               const Int Int::MinInt = Int(-Int::pow());
               const int Int::MaxInt_T = static_cast<int>(Int::MaxInt); // 2^(N-1)-1
               const int Int::MinInt T = static cast<int>(Int::MinInt): // -2^(N-1)
               const int Int::TwoPowerN_T = (Int::MaxInt_T+1) << 1; // 2^N
Programming in Modern C++
Partha Pratim Das
```


Testing Int<N>

Partha Pratir

Objective & Outline

Int<N> UDT

Design
Operations

Polynomial UD Design Implementation Test

Practice UDTs

utorial Sumn

```
#include <iostream>
using namespace std;
template<typename T, unsigned int N> class Int :
typedef Int_<int, 4> Int; // N = 4
#include "Int.h"
void main() {
   cout << "Int::MaxInt = " << Int::MaxInt << endl; // Int::MaxInt = 7</pre>
   cout << "Int::MinInt = " << Int::MinInt << endl: // Int::MinInt = -8
   // Constructor, Copy Operations and Write Test
   Int f1(5): cout << "Int f1(5) = " << f1 << endl; // Int f1(5) = 5
   Int f2(0): cout << "Int f2(0) = " << f2 << endl: // Int f2(0) = 0
   Int f3: cout << "Int f3 = " << f3 << endl: // Int f3 = 1
   Int f4(f1): cout << "Int f4(f1) = " << f4 << endl: // Int f4(f1) = 5
   cout << "Assignment: f2 = f1: f2 = " << (f2 = f1) << endl: // Assignment: f2 = f1: f2 = 5
   // Read Test
   cin >> f1:
                                      // 3
   cout << "Read f1 = " << f1 << endl: // Read f1 = 3
```


Testing Int<N>

Tutorial TO

Partha Pratir Das

Tutorial Reca

Objective & Outline

Design
Operations
Class Design
Implementation

Polynomial UD7
Design
Implementation
Test

Practice UDTs

ıtorial Summa

```
// Unary Operations Test
cout << "-Int(2) = " << -Int(2) << end1: // -Int(2) = -2
cout << "-Int(-2) = " << -Int(-2) << end1: // -Int(-2) = 2
cout << "-Int(-8) = " << -Int(-8) << endl: // -Int(-8) = -8
cout << "-Int(7) = " << -Int(7) << endl; // -Int(7) = -7
cout << "++Int(2) = " << ++Int(2) << end1: // ++Int(2) = 3
cout << "++Int(7) = " << ++Int(7) << endl: // ++Int(7) = -8
cout << "++Int(-8) = " << ++Int(-8) << endl: // ++Int(-8) = -7
cout << "-Int(0) = " << --Int(0) << endl: // --Int(0) = -1
cout << "--Int(-7) = " << --Int(-7) << endl: // --Int(-7) = -8
cout << "-Int(-8) = " << --Int(-8) << endl: // --Int(-8) = 7
// Binary Operations Test
cout << "Int(2) + Int(3) = " << (Int(2) + Int(3)) << end1: // Int(2) + Int(3) = 5
cout << "Int(4) + Int(7) = " << (Int(4) + Int(7)) << endl: // Int(4) + Int(7) = -5
cout << "Int(-5) + Int(6) = " << (Int(-5) + Int(6)) << endl: // Int(-5) + Int(6) = 1
cout << "Int(-3) + Int(-2) = " << (Int(-3) + Int(-2)) << endl: // Int(-3) + Int(-2) = -5
cout << "Int(-6) + Int(-7) = " << (Int(-6) + Int(-7)) << endl: // Int(-6) + Int(-7) = 3
```


Testing Int<N>

```
Tutorial T(
```

Partha Pratir Das

Tutorial Reca

Objective &

Int<N> UD7
Design
Operations

Class Design Implementation

Polynomial UD Design Implementation Test

Practice UDT

Tutorial Summ

Polynomial UDT

Tutorial T

Partha Pratii Das

Tutorial Reca

Objective of Outline

Int<N> UD7

Design

Class Desig

Implementati Test

Polynomial UDT

Design Implementation Test

Practice UDTs

Tutorial Summ

Polynomial UDT

Design of Polynomial UDT

• Polynomials A(x) of x having degree degree(A) = n and n+1 coefficients a_0 , a_1 , a_2 , \cdots , a_n :

$$A(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n = \sum_{i=0}^n a_ix^i$$

- The representation of a polynomial UDT Poly would need
 - o a vector to keep the coefficients, and
 - o a simple member to the degree (for null polynomials without coefficients)
- The types of coefficient and variable should be appropriate so that they can be multiplied and added. For simplicity, let us assume that they have the same type:

```
template<typename T = int> // Type of Coefficients and value
class Poly {
                         // a polvnomial of type T
       vector<T> coeff_; // coefficients
              deg_; // deg_ = coeff_.size()-1
   // ... Rest of the class
```


Design of Polynomial UDT

Tutorial 108

Partha Pratir Das

Tutorial Reca

Objective & Outline

Int<N> UDT

Design
Operations
Class Design
Implementation
Test

Polynomial UDT Design Implementation Test

Tutorial Summar

• A polynomial A(x) of degrees n may be negated to generate polynomial R(x) of degrees n by flipping the sign of every coefficient. That is:

$$R(x) = -A(x) = -\sum_{i=0}^{n} a_i x^i = \sum_{i=0}^{n} (-a_i) x^i$$

Hence,

$$r_i = -a_i, \ 0 \le i \le n$$

• Two polynomials A(x) and B(x) of degrees n and m respectively may be added to generate polynomial R(x) of degree max(n,m) by pairwise adding the coefficients of the same power. That is, for $n \ge m$

$$R(x) = A(x) + B(x) = \sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{m} b_i x^i = \sum_{i=0}^{m} (a_i + b_i) x^i + \sum_{i=m+1}^{n} a_i x^i$$

Hence,

$$r_i = a_i + b_i, \ 0 \le i \le m$$

= $a_i, \ m+1 \le i \le n$

Note: A(x) - B(x) = A(x) + (-B(x))

Design of Poly<T> Interface and Implementation

Partha Pratim
Das

Objective & Outline

Int<N> UDT

Design

Operations

Class Design

Polynomial UD^{*}
Design
Implementation
Test

Practice UDTs

```
template<typename T = int> // Type of Coefficients and Value
class Poly { public:
   Poly(vector < T > \& c = vector < T > (1)) : coeff_(c), deg_(c.size() - 1) { }
   Poly(size_t n) : coeff_(vector<T>(n+1)), deg_(n) { } // null polynomial
   Poly(const Poly& p) : coeff_(p.coeff_), deg_(p.deg_) { }
                // No virtual destructor needed
   "Polv() { }
   Poly& operator=(const Poly& p) { deg = p.deg : coeff = p.coeff : return *this: }
   Polv operator+() const { return *this; }
   Poly operator-() const { Poly r(deg_);
       for (unsigned int i = 0; i <= deg_; i++) r.coeff_[i] = -coeff_[i];
       return r:
   Polv operator+(const Polv& p) const { Polv r(max(p.deg_, deg_)); // result
       vector<T> v:
       if (deg_ > p.deg_) { v = p.coeff_; r.coeff_ = coeff_; } // copy the longer (shorter) vector
       else { v = coeff_: r.coeff_ = p.coeff_: } // of coefficients to r.coeff_ (v)
       for (unsigned int i = 0; i <= min(p.deg_, deg_); i++) { // add the common coefficients
           r.coeff_[i] = t.coeff_[i] + v[i]:
       return r:
   Poly operator-(const Poly&p) const { return *this + (-p); }
```


Design of Poly<T> Interface and Implementation

Implementation

```
Polv& operator+=(const Polv& p) { *this = *this + p; return *this; }
   Poly& operator = (const Poly&p) { *this = *this - p: return *this: }
   friend ostream& operator << (ostream& os, const Polv& p) { int j;
       for (i = p.deg : i \ge 0: --i)
            { if (static_cast<T>(0) != p.coeff_[i]) break; } // first non-zero coeff.
        if (0 > i)
            os << 0:
        else
            if (0 == i) os << p.coeff [i]:
            else os << p.coeff_[i] << "x^" << j;
        for (int i = j-1; i \ge 0; --i) {
            if (static cast<T>(0) != p.coeff [i]) {
                if (0 != i)
                    if (static cast<T>(1) != p.coeff [i])
                        os << " + " << p.coeff [i] << "x^" << i:
                    else
                        os << " + " << "x^" << i:
                else
                    os << " + " << p.coeff_[i];
        os << ".":
        return os:
Programming in Modern C++
```


Design of Poly<T> Interface and Implementation

```
Implementation
```

Programming in Modern C++

```
friend istream& operator >>(istream& is, Poly& p) {
        cout << "Enter degree of the polynomial ";
        is >> p.deg_;
        p.coeff .resize(p.deg + 1):
        cout << "Enter all the coefficients like a0+a1*x+a2*x^2+....an*x^n" << endl:
       for (unsigned int i = 0; i <= p.deg_: i++)
            is >> p.coeff [i]:
        return is:
    // Evaluates the polynomial - use Horner's Rule
   T operator()(const T& x) {
       T \text{ val} = 0:
       for (int i = deg_{:} i >= 0; i--)
            val = val * x + coeff_[i]:
        return val:
private:
   vector<T>
                coeff_;
    size t
                deg_;
    template<tvpename T> inline static T max(T a, T b) { return a > b ? a : b: }
   template<typename T> inline static T min(T a. T b) { return a < b ? a : b: }
};
```


Testing Poly<T>

```
#include <iostream>
using namespace std;
#include "fraction.h"
#include "polynomial.h"
void main() { vector<int> v = { 1, 2, 1 }:
   Poly<int> p(y); cout << "p(x): " << p << " p(2) = " << p(2); // p(x): 1x^2 + 2x^1 + 1. p(2) = 9
   Poly<int> q(p); cout << "q(p): " << q << " q(2) = " << q(2); // q(p): 1x^2 + 2x^1 + 1. q(2) = 9
   Poly<int> s(vector<int>({ 0, 0, 1, 2, 1, 0, 2, 7, 0 }));
    cout << "s(x): " << s << " s(1) = " << s(1); // s(x): 7x^7 + 2x^6 + x^4 + 2x^3 + x^2. s(1) = 13
   Polv < int > r: cout << "r: " << r << " r(2) = " << r(2): // r: 1, r(2) = 1
    cin >> r: // 2 1 2 1
    cout << "r: " << r << " r(2) = " << r(2): // r: 1x^2 + 2x^1 + 1. r(2) = 9
   Poly<int> t(2); cout << "t(x): " << t << " t(2) = " << t(2); // t(x): 0. t(2) = 0
   r = p; cout << "r = p; " << r << " r(2) = " << r(2); // r = p; 1x^2 + 2x^1 + 1, r(2) = 9
   r = -p; cout << "r = -p: " << r << " r(2) = " << r(2); // r = -p: -1x^2 + -2x^1 + -1. r(2) = -9
    p = vector < int > ({ 1, 5, 6 });
    cout << "p(x): " << p << " p(2) = " << p(2): // p(x): 6x^2 + 5x^1 + 1, p(2) = 35
   q = vector < int > (\{ 1, -2, 1 \});
    cout << q(x): " << q << " q(2) = " << q(2); // q(x): <math>1x^2 + -2x^1 + 1. q(2) = 1
Programming in Modern C++
                                                      Partha Pratim Das
```


Testing Poly<T>

```
Partha Pratin
```

Objective & Outline

Int<N> UDT

Design

Operations

Class Design

Implementation

Polynomial UD

Design
Implementation
Test

Practice UDTs

```
Tutorial Sumn
```

```
r = p - q; cout << "r = p - q: " << r << " r(2) = " << r(2); // r = p - q: r(2) = " << r(2) = " <
r = p; p += q; cout << "p += : " << p << " <math>p(2) = " << p(2); // p += : 7x^2 + 3x^1 + 2, p(2) = 36
p = r; p - q; cout << "p - q: " << p < q = " << q(2); // q - q = : q(2) = " << q(2); // q - q = : q(2) = 34
vector<Fraction> vf = { Fraction(1, 2), Fraction(-3, 5), Fraction(2, 3) };
Poly<Fraction> pf1(vf); cout << "pf1(x): " << pf1 << " pf1(2) = " << pf1(2) << endl;
// pf1(x): 2/3x^2 + -3/5x^1 + 1/2. pf1(2) = 59/30
Poly<Fraction> pf2: cout << "pf2(x): " << pf2 << " pf2(2) = " << pf2(2) << end1:
// pf2(x): 1. pf2(2) = 1
cin >> pf2: // 1 2 3 1 2
cout << "pf2: " << pf2 << " pf2(2) = " << pf2(2) << end1;
// pf2(x): 1/2x^1 + 2/3. pf2(2) = 5/3
Polv<Fraction> pf3 = pf1 + pf2:
cout << "pf3(x): " << pf3 << " pf3(2) = " << pf3(2) << endl;
// pf3(x): 2/3x^2 + -1/10x^1 + 7/6. pf3(2) = 109/30
Polv<Fraction> pf4 = pf1 - pf2:
cout << "pf4(x): " << pf4 << " pf4(2) = " << pf4(2) << endl;
// pf4(x): 2/3x^2 + -11/10x^1 + -1/6. pf4(2) = 3/10
```


Practice UDTs

Practice UDTs

Practice UDTs

Practice UDTs

Tutorial T0

Partha Pratir Das

Tutorial Reca

Objective & Outline

Design
Operations
Class Design
Implementation

Polynomial UD Design Implementation Test

Practice UDTs

• Fraction

- Change binary arithmetic and comparison operators to friend functions from methods
- Parameterize Fraction with type T = int
- o Provide mixed mode support
- Int<N>
 - o Implement operator*()
 - Implement operator/()
 - Implement operator%()
- Poly<T>
 - o Test Poly<double>
 - \circ Use member function template for <code>operator()()</code> with another type parameter U for x
 - Analyze the compatibility issues between types T and U
- Mixed UDTs
 - o Test Fraction<Int<N> >
 - o Test Poly<Int<N> >
 - o Test Poly<Fraction<Int<N>>>

Tutorial Summary

Tutorial T0

Partha Pratii Das

Tutorial Reca

Objective & Outline

Int<N> UD

Operations
Class Design
Implementation

Polynomial UE Design Implementation

Tutorial Summary

- Presented the design, implementation and test for Int<N> and Poly<T> types
- Showed how Poly<int> as well as Poly<Fraction> works
- Outlined several practice UDTs for homework