Conditional gradient methods. Projected Gradient Descent. Frank-Wolfe Method. Mirror Descent Algorithm Idea.

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

♥ റ ഉ

Projection

The **distance** d from point $\mathbf{y} \in \mathbb{R}^n$ to closed set $S \subset \mathbb{R}^n$:

$$d(\mathbf{y}, S, \|\cdot\|) = \inf\{\|x - y\| \mid x \in S\}$$

We will focus on **Euclidean projection** (other options are possible) of a point $\mathbf{y} \in \mathbb{R}^n$ on set $S \subseteq \mathbb{R}^n$ is a point $\operatorname{\mathsf{proj}}_S(\mathbf{y}) \in S$:

$$\operatorname{proj}_{S}(\mathbf{y}) = \frac{1}{2} \underset{\mathbf{x} \in S}{\operatorname{argmin}} \|x - y\|_{2}^{2}$$

- Sufficient conditions of existence of a projection. If $S \subseteq \mathbb{R}^n$ closed set, then the projection on set S exists for any point.
- Sufficient conditions of uniqueness of a projection. If $S \subseteq \mathbb{R}^n$ closed convex set, then the projection on set S is unique for any point.
- If a set is open, and a point is beyond this set, then its projection on this set does not exist.
- If a point is in set, then its projection is the point itself.

Projection

Bourbaki-Cheney-Goldstein inequality theorem

Let $S \subseteq \mathbb{R}^n$ be closed and convex, $\forall x \in S, y \in \mathbb{R}^n$. Then

$$\langle y - \operatorname{proj}_S(y), \mathbf{x} - \operatorname{proj}_S(y) \rangle \le 0$$
 (1)

$$||x - \operatorname{proj}_{S}(y)||^{2} + ||y - \operatorname{proj}_{S}(y)||^{2} \le ||x - y||^{2}$$
 (2)

Non-expansive function

A function f is called **non-expansive** if f is L-Lipschitz with L < 1¹. That is, for any two points $x, y \in \text{dom } f$.

$$\|f(x)-f(y)\|\leq L\|x-y\|, \text{ where } L\leq 1.$$

It means the distance between the mapped points is possibly smaller than that of the unmapped points.

Figure 1: Obtuse or straight angle should be for any point $x \in S$

Non-expansive becomes contractive if L < 1.

Problems

Question

Is projection operator non-expansive?

Question

Find projection $\operatorname{proj}_S(\mathbf{y})$ onto S, where S:

ullet l_2 -ball with center 0 and radius 1:

$$S = \{x \in \mathbb{R}^d | \|x\|_2^2 = \sum_{i=1}^a x_i^2 \le 1\}$$

• \mathbb{R}^d -cube:

$$S = \{ x \in \mathbb{R}^d | \ a_i \le x_i \le b_i \}$$

Affine constraints:

$$S = \{ x \in \mathbb{R}^d | Ax = b \}$$

Projected Gradient Descent (PGD). Idea

$$x_{k+1} = \operatorname{proj}_{S}(x_k - \alpha_k \nabla f(x_k))$$
 \Leftrightarrow $y_k = x_k - \alpha_k \nabla f(x_k)$ $x_{k+1} = \operatorname{proj}_{S}(y_k)$

Figure 2: Illustration of Projected Gradient Descent algorithm

⊕ n ø

Figure 3: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଓ ବ

Figure 4: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଚ

Figure 5: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ 0 Ø

Figure 6: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଚ

Figure 7: Illustration of Frank-Wolfe (conditional gradient) algorithm

େ ଚେ ଚ

Figure 8: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ ೧ ⊘

Figure 9: Illustration of Frank-Wolfe (conditional gradient) algorithm

♥ ೧ Ø

$$\begin{aligned} y_k &= \arg\min_{x \in S} f_{x_k}^I(x) = \arg\min_{x \in S} \langle \nabla f(x_k), x \rangle \\ x_{k+1} &= \gamma_k x_k + (1 - \gamma_k) y_k \end{aligned}$$

Figure 10: Illustration of Frank-Wolfe (conditional gradient) algorithm

Convergence rate for smooth and convex case

Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be convex and differentiable. Let $S \subset \mathbb{R}^n$ d be a closed convex set, and assume that there is a minimizer x^* of f over S; furthermore, suppose that f is smooth over S with parameter L.

• The **Projected Gradient Descent** algorithm with stepsize $\frac{1}{L}$ achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \le \frac{L||x_0 - x^*||_2^2}{2k}$$

• The **Frank-Wolfe Method** achieves the following convergence after iteration k > 0:

$$f(x_k) - f^* \le \frac{2L||x_0 - x^*||_2^2}{k+1}$$

- FWM specificity
 - FWM convergence rate for the μ -strongly convex functions is $\mathcal{O}\left(\frac{1}{L}\right)$
 - FWM doesn't work for non-smooth functions. But modifications do.
 - FWM works for any norm.

Subgradient method: linear approximation + proximity

Recall SubGD step with sub-gradient g_k :

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \underbrace{f(x_k) + g_k^\top (x - x_k)}_{\text{linear approximation to f}} + \underbrace{\frac{1}{2\alpha} \|x - x_k\|_2^2}_{\text{proximity term}}$$
$$= \underset{x}{\operatorname{argmin}} \alpha g_k^\top x + \frac{1}{2} \|x - x_k\|_2^2$$

Figure 11: $\|\cdot\|_1$ is not spherical symmetrical

♥೧0

Example. Poor condition

Consider $f(x_1, x_2) = x_1^2 \cdot \frac{1}{100} + x_2^2 \cdot 100$.

Figure 12: Poorly conditioned problem in $\|\cdot\|_2$ norm

Example. Poor condition

Suppose we are at the point: $x_k = (-10 \quad -0.1)^{\top}$. SubGD method: $x_{k+1} = x_k - \alpha \nabla f(x_k)$

$$\nabla f(x_k) = \left(\frac{2x_1}{100} \quad 2x_2 \cdot 100\right)^{\top}\Big|_{(-10 \ -0.1)^{\top}} = \left(-\frac{1}{5} \quad -20\right)^{\top}$$

The problem: due to elongation of the level sets the direction of movement $(x_{k+1} - x_k)$ is $\sim \perp (x^* - x_k)$.

The solution: Change proximity term

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \underbrace{f(x_k) + g_k^{\top}(x - x_k)}_{\text{linear approximation to f}} + \underbrace{\frac{1}{2\alpha}(x - x_k)^{\top}I(x - x_k)}_{\text{originity term}}$$

to another

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \underbrace{f(x_k) + g_k^\top(x - x_k)}_{\text{linear approximation to f}} + \underbrace{\frac{1}{2\alpha}(x - x_k)^\top Q(x - x_k)}_{\text{proximity term}},$$

where $Q = \begin{pmatrix} \frac{1}{50} & 0 \\ 0 & 200 \end{pmatrix}$ for this example. And more generally to another function $B_{\phi}(x,y)$ that measures proximity.

Example. Poor condition

Let's find x_{k+1} for this **new** algorithm

$$\alpha \nabla f(x_k) + \begin{pmatrix} \frac{1}{50} & 0\\ 0 & 200 \end{pmatrix} (x - x_k) = 0.$$

Solving for x, we get

$$x_{k+1} = x_k - \alpha \begin{pmatrix} 50 & 0 \\ 0 & \frac{1}{200} \end{pmatrix} \nabla f(x_k) = (-10 - 0.1)^{\top} - \alpha (-10 - 0.1)^{\top}$$

Observation: Changing the proximity term, we change the direction $x_{k+1} - x_k$. In other words, if we measure distance using this new way, we also change Lipschitzness.

What is the Lipshitz constant of f at the point $(1\ 1)^{\top}$ for the norm:

$$||z||^2 = z^{\top} \begin{pmatrix} 50 & 0 \\ 0 & \frac{1}{200} \end{pmatrix} z?$$

Example. Robust Regression

Square loss $||Ax - b||_2^2$ is very sensitive to outliers.

Instead: $\min ||Ax - b||_1$. This problem also **convex**.

Let's compute L-Lipshitz constant for $f(x) = ||Ax - b||_1$:

$$|||Ax - b||_1 - ||Ay - b||_1| \le L||x - y||_2.$$

To simplify calculation: A=I, b=0, i.e. $f(x)=\|x\|_1$.

If we take $x = \mathbf{1}_d$, $y = (1 + \varepsilon)\mathbf{1}_d$:

$$|n - (1 + \varepsilon)n| = \varepsilon n \le L||x - y||_2 = ||-\varepsilon||_2 = \sqrt{(n\varepsilon^2)} = \varepsilon \sqrt{n}.$$

Finally, we get $L = \sqrt{n}$. As we can see, L is dimension dependent.

Show that if $\|\nabla f(x)\|_{\infty} \le 1$, then $\|\nabla f(x)\|_2 < \sqrt{d}$.

References

Examples for the Mirror Descent was taken from the $\hfill \square$ Lecture.

