C241 HW10

Zac Monroe

October 2018

1 Problem 1

2) **Claim**: For all $a, b, c \in \mathbb{Z}$, if a|b and a|c, then $a|(b \cdot c)$.

Proof. Choose some $a, b, c \in \mathbb{Z}$ with a|b and a|c.

Since a|b, there exists some $k_1 \in \mathbb{Z}$ with $b = k_1 a$.

Similarly, since a|c there exists some $k_2 \in \mathbb{Z}$ with $c = k_2 a$.

Therefore $b \cdot c = k_1 a \cdot k_2 a = (k_1 k_2 a) \cdot a$.

Since $k_1, k_2, a \in \mathbb{Z}, k_1 k_1 a \in \mathbb{Z}$.

Since $b \cdot c = (k_1 k_2 a) \cdot a$ and $k_1 k_2 a \in \mathbb{Z}$, $a | (b \cdot c)$.

4) **Claim**: For all $a, b, c \in \mathbb{Z}$, if a|b and b|c, then a|c.

Proof. Choose some $a, b, c \in \mathbb{Z}$ with a|b and b|c.

Since a|b, there exists some $k_1 \in \mathbb{Z}$ with $b = k_1 a$.

Similarly, since b|c there exists some $k_2 \in \mathbb{Z}$ with $c = k_2 b$.

Since $c = k_2 b$ and $b = k_1 a$, $c = k_2 (k_1 a) = k_1 k_2 \cdot a$.

Since $k_1, k_2 \in \mathbb{Z}, k_1 k_2 \in \mathbb{Z}$.

Therefore since $c = k_1 k_2 \cdot a$ and $k_1 k_2 \in \mathbb{Z}$, a | c.

6) Claim: For all $n \in \mathbb{Z}$, if n^2 is odd, then n is odd.

Proof. Choose some $n \in \mathbb{Z}$ with n^2 odd.

Suppose towards a contradiction that n is even.

Since n is even, for some $k \in \mathbb{Z}$, n = 2k.

Therefore $n^2 = 2k \cdot 2k = 2 \cdot (2k^2)$.

Since $2, k \in \mathbb{Z}, \ 2k^2 \in \mathbb{Z}$.

Since $n^2 = 2 \cdot (2k^2)$ and $2k^2 \in \mathbb{Z}$, n^2 is even, which contradicts our earlier claim.

Therefore n is not even.

Since n is not even and $n \in \mathbb{Z}$, n is odd.

10) Claim: For all $n_1, n_2 \in \mathbb{Z}$, if n_1, n_2 are odd, then $n_1 + n_2$ is even.

Proof. Choose some $n_1, n_2 \in \mathbb{Z}$ with n_1 and n_2 both odd.

Since n_1 is odd, for some $k_1 \in \mathbb{Z}$, $n_1 = 2k_1 + 1$.

Similarly, for some $k_2 \in \mathbb{Z}$, $n_2 = 2k_2 + 1$.

Therefore $n_1 + n_2 = 2k_1 + 1 + 2k_2 + 1 = 2k_1 + 2k_2 + 2 = 2(k_1 + k_2 + 1)$.

Since $1, k_1, k_2 \in \mathbb{Z}, k_1 + k_2 + 1 \in \mathbb{Z}$.

Since $k_1 + k_2 + 1 \in \mathbb{Z}$ and $n_1 + n_2 = 2(k_1 + k_2 + 1)$, $n_1 + n_2$ is even.

14) **Def**: An integer n is sane if $3|(n^2+2n)$.

(a) 5 is an odd integer. $5^2 + 2 \cdot 5 = 35$. $\frac{35}{3} = 11 + \frac{1}{3}$, which is not an integer, so $\neg (3|(5^2 + 2 \cdot 5))$, so 5 is not sane.

(b) Claim: If 3|n, then n is sane.

Proof. Choose some $n \in \mathbb{Z}$ with 3|n.

Since 3|n, there exists some $k \in \mathbb{Z}$ with $n = k \cdot 3 = 3k$.

Thus
$$n^2 + 2n = (3k)^2 + 2 \cdot 3k = 9k^2 + 6k$$
.

$$\frac{9k^2 + 6k}{3} = 3k^2 + 2k.$$

Since $2, 3, k \in \mathbb{Z}, 3k^2 + 2k \in \mathbb{Z}$.

Since
$$3k^2 + 2k \in \mathbb{Z}$$
 and $\frac{9k^2 + 6k}{3} = 3k^2 + 2k$ and $9k^2 + 6k = n^2 + 2n$, $3|(n^2 + 2n)$.

Therefore n is sane.

(c) Claim: If for some $n, j \in \mathbb{Z}$, n = 3j + 2, then n is not sane.

Proof. Choose some $n, j \in \mathbb{Z}$ with n = 3j + 2.

Suppose towards a contradiction that n is sane.

Since n is sane, $3|(n^2+2n)$.

Since
$$n = 3j + 2$$
 and $3|(n^2 + 2n)$, $3|((3j + 2)^2 + 2 \cdot (3j + 2))$.

Therefore $3|(9j^2+12j+4+6j+4)$.

Therefore $3|(9j^2 + 18j + 8)$.

Since $3|(9j^2+18j+8)$, $9j^2+18j+8=3k$ for some $k \in \mathbb{Z}$.

Since
$$9j^2 + 18j + 8 = 3k$$
, $k = 3j^2 + 6j + \frac{8}{3}$.

Since $\frac{8}{3} \notin \mathbb{Z}$, $3j^2 + 6j + \frac{8}{3} \notin \mathbb{Z}$.

Since $k = 3j^2 + 6j + \frac{8}{3}$ and $3j^2 + 6j + \frac{8}{3} \notin \mathbb{Z}$, $k \notin \mathbb{Z}$, which contradicts our earlier claim.

Therefore n = 3j + 2 is not sane.

18) Claim: Rational numbers are closed under addition, i.e. for any $r_1, r_2 \in \mathbb{Q}, r_1 + r_2 \in \mathbb{Q}$ as well.

Proof. Choose some $r_1, r_2 \in \mathbb{Q}$.

Since $r_1 \in \mathbb{Q}$, there exist $p_1, q_1 \in \mathbb{Z}$ with $r_1 = \frac{p_1}{q_1}$ and $q_1 \neq 0$.

Similarly, there exist $p_2, q_2 \in \mathbb{Z}$ with $r_2 = \frac{p_2}{q_2}$ and $q_2 \neq 0$.

Therefore
$$r_1 + r_2 = \frac{p_1}{q_1} + \frac{p_2}{q_2}$$

 $= \frac{p_1 q_2}{q_1 q_2} + \frac{p_2 q_1}{q_1 q_2}$
 $= \frac{p_1 q_2 + p_2 q_1}{q_1 q_2}$.

$$= \frac{p_1 q_2}{q_1 q_2} + \frac{p_2 q_1}{q_1 q_2}$$

$$= \frac{p_1 q_2 + p_2 q_1}{q_1 q_2}.$$

Since $p_1, p_2, q_1, q_2 \in \mathbb{Z}, p_1q_2 + p_2q_2 \in \mathbb{Z}$.

Since $q_1, q_2 \in \mathbb{Z}, q_1q_2 \in \mathbb{Z}$.

Since $q_1 \neq 0$ and $q_2 \neq 0$, $q_1q_2 \neq 0$.

Since $p_1q_2 + p_2q_1 \in \mathbb{Z}, q_1q_2 \in \mathbb{Z}, \text{ and } q_1q_2 \neq 0, \ \frac{p_1q_2 + p_2q_1}{q_1q_2} \in \mathbb{Q}.$

Since
$$r_1 + r_2 = \frac{p_1 q_2 + p_2 q_1}{q_1 q_2}$$
 and $\frac{p_1 q_2 + p_2 q_1}{q_1 q_2} \in \mathbb{Q}$, $r_1 + r_2 \in \mathbb{Q}$.

20) The universe is \mathbb{R} . Claim: For any $x \in \mathbb{Q}$, $y \notin \mathbb{Q}$, $x + y \notin \mathbb{Q}$.

Proof. Choose some $x \in \mathbb{Q}$ and some $y \notin \mathbb{Q}$.

Since $x \in \mathbb{Q}$, $x = \frac{p}{q}$ for some $p, q \in \mathbb{Z}$ with $q \neq 0$.

Suppose towards a contradiction that $x + y \in \mathbb{Q}$.

Since $x+y\in\mathbb{Q},\ x+y=\frac{r}{s}$ for some $r,s\in\mathbb{Z}$ with $s\neq 0$. Since $x=\frac{p}{q}$ and $x+y=\frac{r}{s},\ \frac{p}{q}+y=\frac{r}{s}$.

$$= \frac{rq}{qs} - \frac{ps}{qs}$$
$$= \frac{rq - ps}{qs}$$

Therefore $y = \frac{r}{s} - \frac{p}{q}$ $= \frac{rq}{qs} - \frac{ps}{qs}$ $= \frac{rq - ps}{qs}$. Since $p, q, r, s \in \mathbb{Z}, rq - ps \in \mathbb{Z}$.

Since $q, s \in \mathbb{Z}, qs \in \mathbb{Z}$.

Since $q \neq 0$ and $s \neq 0$, $qs \neq 0$.

Since $rq - ps \in \mathbb{Z}$, $qs \in \mathbb{Z}$, and $qs \neq 0$, $\frac{rq - ps}{qs} \in \mathbb{Q}$.

Since $y = \frac{rq - ps}{qs}$ and $\frac{rq - ps}{qs} \in \mathbb{Q}$, $y \in \mathbb{Q}$, which contradicts our previous claim.

Therefore $x + y \notin \mathbb{Q}$.

Bonus $\mathbf{2}$

7) What's unusual about this claim is this: if x is odd, so is x^2 . 1 is also odd. The sum of any two odd numbers is even, so x+1 is even. The sum of an even number and an odd number is odd, so x^2+x+1 is odd. But the claim's premise is that this quantity is even!

When x is even, x^2 is even. 1 is still odd. The sum of any two even numbers is even, so $x^2 + x$ is even. The sum of an even number and an odd number is odd, so $x^2 + x + 1$ is odd. But, again, the premise of the claim is that $x^2 + x + 1$ is even!

So, for any $x \in \mathbb{Z}$, $x^2 + x + 1$ is odd, so the original claim holds true, but only trivially so.