

WizFi250 Datasheet

(Version 1.00)

©2013 WIZnet Co., Ltd. All Rights Reserved.

For more information, visit our website at http://www.wiznet.co.kr

Document Revision History

Date	Revision	Changes
2013.11.28	V1.00	Official Release

<Contents>

1.	Introduction	l	1
2.	Features		2
3.		<u>a</u> m	
4.	•	ion	
	4.1. Pin	map	4
	4.2. Pin	description	5
5.		pecification	
	5.1. Abs	solute maximum rating	8
	5.2. Re	commendable operation condition	8
	5.2.1.	Temperature, humidity	8
	5.2.2.	Voltage	8
	5.2.3.	Current consumption	9
	5.3. Wir	eless specifications	9
	5.4. Spe	ecifications of WiFi's output power, evm, sensitivity	11
6.	I/O port cha	racteristics	12
7.	Dimensions	, weight and mounting	13
	7.1. Din	nensions	13
	7.2. Pin	out and pin description	14
	7.3. Re	commend footprint	15
8.		de	
	8.1. PC	B Antenna Guide	16
	8.1.1.	Module Location Recommendation	16
	8.1.2.	Module Layout Guideline	17
	8.1.3.	Antenna Simulation Result	
	8.1.4.	Antenna Measurement Setup	19
	8.1.5.	Antenna Measurement Results	20
	8.2. Firr	mware Update – Circuit Guide	
	8.2.1.	Case 1	21
_	8.2.2.	Case 2	22
9.	Recommen	d reflow profile	24
10.	Reference s	schematic	25

1. Introduction

The WizFi250 is a small size wireless module

The WizFi250 provides for the highest-level integration, featuring 802.11b/g and 802.11n.

It includes a 2.4 GHz WLAN CMOS power amplifier (PA) that meets the output power requirements of most handheld systems.

Along with the integrated power amplifier, the WizFi250 also includes integrated transmit and receive baluns, further reducing the overall solution cost.

The small size & low profile physical design make it easier for system design to enable high performance wireless connectivity without space constrain.

Hardware WAPI acceleration engine, AES, TKIP, WPA and WPA2 are supported to provide the latest security requirement on your network.

For the software and driver development, WIZnet provides extensive technical document and reference software code for the system integration.

2. Features

- Single band 2.4GHz IEEE 802.11b/g/n
- Integrated RF power amplifier
- Supports wireless data rates up to 65Mbit/s
- 1MB Flash Memory, 128KB SRAM, 1MB Serial Flash
- Supports per packet Rx Antenna diversity
- Low power consumption & excellent power management performance extend battery life.
- Small size suitable for low volume system integration.
- Easy for integration into mobile and handheld device with flexible system configuration.
- 2.412-2.484 GHz two SKUs for worldwide market.
- Lead Free design which supporting Green design requirement, RoHS Compliance.
- Device Package: 28x20 mm
- Serial Interface : UART, SPI
- Powerful Web server provides
- Soft AP
 - Enough memory retention
 - Wi-Fi Security (WEP, WPA/WPA2PSK)
 - L2 Switching
- OTA(Over The Air F/W Upgrading)

3. Block diagram

The WizFi250 module is designed based on WiFi block and MCU block. It supports generic SPI, UART interface to connect the WLAN to the host processor. A simplified block diagram of the WizFi250 module is depicted in the Fig. below.

4. Pin description

4.1. Pin map

4.2. Pin description

	description		
Pin Number	Pin Define	Туре	Description
1	GND		Ground
2	VBAT_WL	I	Battery supply input
3	VBAT_WL	1	Battery supply input
4	GND		Ground
5	VDDIO_3V3_WL	I	Digital I/O supply.
6	GND		Ground
7	NC		
8	NC		
9	NC		
10	NC		
11	NC		
12	NC		
13	GND		Ground
14	NC		
15	GND		Ground
16	NC		
17	NC		
18	NC		
19	NC		
20	NC		
21	SPI_MISO	I/O	SPI Master In Slave Out
22	SPI_SCK	I/O	SPI Clock
23	SPI_MOSI	I/O	SPI Master Out Slave In
24	SPI_SS	I/O	SPI Slave Select
25	GND		Ground
26	VDD 2V2		Power supply for I/O and the internal
26	VDD_3V3	I	regulator
07	VDD 2V2		Power supply for I/O and the internal
27	VDD_3V3	I	regulator
28	GND		Ground
20	LIADTO DTC	1/0	Active-low request-to-send signal for UART2
29	UART2_RTS	I/O	interface (Not Used)
30	UART2_CTS	I/O	Active-low clear-to-send signal for UART2
30	UAR12_U13	1/0	interface (Not Used)

31	UART2_RXD	ı	Serial data input for UART2 interface (Not Used)
32	UART2_TXD	0	Serial data output for UART2 interface (Not Used)
33	NC		
34	RESET	I	RESET pin (Active Low)
35	NC		
36	NC		
37	GND		Ground
38	VBAT	I	Power supply when VDD_3V3 is not present.
39	GND		Ground
40	GPIO1	I/O	GPIO1 pin
41	воот	I	BOOT MODE pin (Active low)
42	FUNCTION	1	FUNCTION pin (Active Low)
43	GPIO5	I/O	GPIO5 pin
44	GPIO6	I/O	GPIO6 pin
45	GPIO7	I/O	GPIO7 pin
46	GPIO8	I/O	GPIO8 pin
47	GPIO9	I/O	GPIO9 pin
48	WiFi_STATUS	I/O	Wi-Fi Status Pin
49	MODE_STATUS	I/O	Mode Status Pin
50	GPIO14	I/O	GPIO14 pin
51	JTAG_TRST	I	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
52	JTAG_TDO	I/O	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
53	JTAG_TDI	I/O	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
54	JTAG_TMS	I	For normal operation, if JTAG is not used, this pin can be left unconnected (NC)
55	GND		Ground
56	GND		Ground
57	GND		Ground
58	GND		Ground
59	GND		Ground
60	NC		
			-

61	UART1_RTS	I/O	Active-low request-to-send signal for UART interface (Use)
62	UART1_CTS	I/O	Active-low clear-to-send signal for UART interface (Use)
63	UART1_RXD	I	Serial data input for UART interface (Use)
64	UART1_TXD	0	Serial data output for UART interface (Use)
65~73	GND		Ground

5. Technical specification

5.1. Absolute maximum rating

Supply Power	Max +3.6 Volt	
NonOperating Temperature	- 40° to 85° Celsius	
Voltage ripple	+/- 2% Max	Values not exceeding Operating voltage

5.2. Recommendable operation condition

5.2.1. Temperature, humidity

The WizFi250 has to withstand the operational requirements as listed in the table below.

Operating Temperature	-20° to 85° Celsius	
Humidity range	Max 95%	Non condensing, relative humidity

^{*} The maximum operating ambient temperature range can up to 85°, but exposure to absolute-maximum-rated conditions may cause performance degradation and affect device reliability. So we recommend -20° to 75° for the best performance.

5.2.2. Voltage

Power supply for the WizFi250 module will be provided by the host via the power pins

Symbol	Parameter	Min	Тур.	Max	Unit
VBAT_WL	power supply for WizFi250	3.0	3.3	3.6	V
VDDIO_3V3_WL	host Interface power supply	3.0	3.3	3.6	V
VBAT_MICRO	backup operating voltage	3.0	3.3	3.6	V
VDD_3V3	power supply for MCU	3.0	3.3	3.6	V

5.2.3. Current consumption

The WizFi250 on operation output current consumption:

MCU mode	WiFi mode (802.11n)	Typ. (RMS)	Max.
Normal mode	Not Associated	14 mA	18 mA
Normal mode	Associated	67 mA	69 mA
Normal mode	Associated	32 mA	65 mA
	(IEEE Power Save mode		
Stop mode	Associated	14 mA	17 mA
	(IEEE Power Save mode)		
Stop mode	Not Associated	3 mA	23 mA

The WizFi250 on TX mode output current consumption :

(Typical spec is defined @3.3V 25°C; MAX. spec is defined @3.0V 70°C)

Current Consumption	TYP.	MAX.
Tx output power @16.5 dBm on 11b 1M	385 mA	430 mA
Tx output power @ 16.5 dBm on 11b 11M	370 mA	410 mA
Tx output power @ 15 dBm on 11g 6M	345 mA	380 mA
Tx output power @ 13 dBm on 11g 54M	290 mA	320 mA
Tx output power @ 14.5 dBm on 11n MCS0	315 mA	350 mA
Tx output power @ 12 dBm on 11n MCS7	265 mA	295 mA

The WizFi250 on RX mode current consumption :

(Typical spec is defined @3.3V 25°C; MAX. spec is defined @3.0V 70°C)

Current Consumption	TYP.	MAX.
Rx @ 11b 1M	120 mA	150 mA
Rx @ 11b 11M	120 mA	150 mA
Rx @ 11g 6M	120 mA	150 mA
Rx @ 11g 54M	120 mA	150 mA
Rx @ 11n MCS0	120 mA	150 mA
Rx @ 11n MCS7	120 mA	150 mA

5.3. Wireless specifications

The WizFi250 complies with the following features and standards;

Features	Description
WLAN Standards	IEEE 802 11 b/g/n
Antenna Connecter Port	One printed antenna, one U.FL connector for external antenna
Frequency Band	2.400 GHz – 2.484 GHz

Number of Sub Channels	CH1 to CH14		
Modulation	DSSS, CCK, OFDM, BPSK, QPSK,16QAM, 64QAM		
Supported data rates	11b	1, 2, 5.5, 11 (Mbps)	
	11g	6, 9, 12, 18, 24, 36, 48, 54 (Mbps)	
	11n	HT20 MCS0(6.5Mbps) to HT20 MCS7(65Mbps)	

5.4. Specifications of WiFi's output power, evm, sensitivity

The WizFi250 Wi-Fi output power as list in the table below:

Characteristics			Criteria	Unit
DE Average Output Dower 902 11h CCK Mode	1M	16.5	+/- 1.5	dBm
RF Average Output Power, 802.11b CCK Mode		16.5	+/- 1.5	dBm
DE Average Output Davier 2002 44 a OEDM Made	6M	15	+/- 1.5	dBm
RF Average Output Power, 802.11g OFDM Mode	54M	16.5 +/- 1.5 c 16.5 +/- 1.5 c 15 +/- 1.5 c 13 +/- 1.5 c 14.5 +/- 1.5 c	dBm	
RF Average Output Power, 802.11n OFDM Mode	MCS0	14.5	+/- 1.5	dBm
	MCS7	12	+/- 1.5	dBm

Wi-Fi TX EVM follow the IEEE spec that as list in the table below:

Characteristics	IEEE Spec	Unit	
RF Average Output EVM (11b)	@1 Mbps	-10	dB
RF Average Output EVIII (110)	@11 Mbps	-10	dB
DE Averege Output EVM (11a)	@6 Mbps	-5	dB
RF Average Output EVM (11g)	@54 Mbps	-25	dB
DE Averege Output EVA (11p)	@ MCS0	-5	dB
RF Average Output EVM (11n)	@ MCS7	-28	dB

The WizFi250 Wi-Fi sensitivity as list in the table below:

Receiver Characteristics		MAX.	Unit
PER <8%, Rx Sensitivity @ 1 Mbps	-96	-89	dBm
PER <8%, Rx Sensitivity @ 11 Mbps	-88	-84	dBm
PER <10%, Rx Sensitivity @ 6 Mbps	-90	-83	dBm
PER <10%, Rx Sensitivity @ 54 Mbps	-74	-70	dBm
PER <10%, Rx Sensitivity @ MCS0	-89	-83	dBm
PER <10%, Rx Sensitivity @ MCS7	-71	-67	dBm

6. I/O port characteristics

Unless otherwise specified, the parameters given as below Table.

Table I/O static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IL}	Standard IO input low level voltage		-0.3		0.28*(V _{DD} -2V)+0.8V	V	
	IO FT ⁽¹⁾ input low level voltage		-0.3		0.32*(V _{DD} -2V)+0.75V	V	
V _{IH}	Standard IO input high level voltage		0.41*(V _{DD} -2V)+1.3V		V _{DD} +0.3	V	
	IO FT ⁽¹⁾ input high level	VDD > 2V	0.42*(V _{DD} -2V)+1V		5.5	V	
	voltage	VDD≤ 2V	0.42 (V _{DD} -2V)+1V	Ì	5.2	V	
V_{hys}	Standard IO Schmitt trigger voltage hysteresis ⁽²⁾		200			mV	
	IOFT Schmitt trigger voltage hysteresis ⁽²⁾		5%V _{DD} ⁽³⁾			mV	
I _{lkg}	Input leakage current ⁽⁴⁾	V _{SS} ≤V _{IN} ≤V _{DD} Standard I/Os			±1	μΑ	
		V _{IN} =5V,I/O FT			3		
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	$V_{IN}=V_{SS}$	30	40	50	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	V _{IN} =V _{DD}	30	40	50	kΩ	
C _{IO}	I/O pin capacitance			5		pF	

- 1. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled.
- 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, nottested in production.
- 3. With a minimum of 100 mV.
- 4. Leakage could be higher than max. if negative current is injected on adjacent pins.
- 5. Pull-up and pull-down resistors are designed with a true resistance in series with aswitchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum(~10% order).

7. Dimensions, weight and mounting

The following paragraphs provide the requirements for the size, weight and mounting of the WizFi250.

7.1. Dimensions

28 mm (W) x 20 mm (L) x 1.9 mm (H) (+/-0.1mm) (PCB Antenna, including metal shielding) 17 mm (W) x 20 mm (L) x 1.9 mm (H) (+/-0.1mm)

7.2. Pin out and pin description

Top View

7.3. Recommend footprint

8. Design Guide

8.1. PCB Antenna Guide

8.1.1. Module Location Recommendation

To get better antenna performance, the following two module locations are advised.

- **Location 1**: Module is recommended to be on the upper right corner of main board.

- **Location 2**: Module is recommended to be on the upper left corner of main board.

8.1.2. Module Layout Guideline

- Main board antenna area under module printed antenna should be clear or empty.
- No signals, GND or power traces can be routed in antenna area for each layers of main board.
- Any metal lid, power trace or metal components should be placed far away from antenna area on main board.
- Keep GND plane as large as you can on main board.

8.1.3. Antenna Simulation Result

8.1.4. Antenna Measurement Setup

Module is on the upper right corner of main board for performance measurement.

Antenna measurement setup as the figure.

8.1.5. Antenna Measurement Results

8.2. Firmware Update – Circuit Guide

WizFi250 provides some specific functions according to it's firmware. Until now, there is standard firmware and some customized firmware to specific customers available. It is possible to perform firmware updates.

WizFi250 decides it's operating mode according to the input value of BOOT signal. The WizFi250 operates in booe mode when BOOT input value is "LOW", otherwise it operate in th standard run mode. The WizFi250 communicate with PC via UART in order to upload another firmware, so you have to connect UART1_RXD and UART1_TXD to the external interface for communicating with PC. We list here two different schematics to do that connection.

8.2.1. Case 1

A simple circuit for uploading firmware. If your application MCU has UART communication with WizFi250, there is a possibility that the firmware update with an external PC will fail because of dual use of the one UART interface. WIZnet can not guaranty 100% successful update in such a case. Therefore, please monitor the signal of BOOT of your MCU. Please stop the UART communication between your MCU and the WizFi250 when BOOT input value is "LOW". After that detection of a "LOW" BOOT signal you can succeed firmware update.

8.2.2. Case 2

This circuit selects the UART communication using some extra hardware. If the BOOT SW is ON(GND), it is the BOOT Mode, and if the BOOT SW is OFF(3.3V), it is RUN Mode. The UART signal of the WizFi250 is connected on the firmware update UART(PC) if it becomes the BOOT Mode. Because of that, You are able to make the firmware update. The UART signal of the WizFi250 is connected on your MCU if the BOOT signal is "High" and WizFi250 goes into the RUN mode.

9. Recommend reflow profile

The following paragraphs provide the requirements for the size, weight and mounting of the WizFi250.

A-B. Temp.: 150~200 °C; soak time:60~120sec.

C. Peak temp: 235~245 $^{\circ}$ C

D. Time above 220 $^{\circ}$ C: 40~90sec.

Suggestion: Optimal cooling rate is <1 $^{\circ}\text{C/sec.}$ from peak to 220 $\,^{\circ}\text{C}$.

10. Reference schematic

