Submitted by:

- \ll Alan Lee \gg : \ll alanlee2 \gg
- «Joshua Burke»: «joshuab3»
- «Gerald Kozel»: «gjkozel2»

(100 PTS.) Aberrant

1 (25 PTS.) Prove that the following language is not regular by providing a fooling set. You need to prove an infinite fooling set and also prove that it is a valid fooling set. For $\Sigma = \{a, b\}$, the language is

$$L = \{ww \mid w \in \Sigma^+\}.$$

Version: 1.0

- 2 (25 PTS.) Same as (A) for the following language. Recall that a run in a string is a maximal non-empty substring of identical symbols. Let L be the set of all strings in Σ^* that contains two distinct runs of equal length. A few examples about L:
 - L contains any string of the form $b^i a^+ b^+ a^i$.
 - L contains any string of the form $b^i a^+ b^i$.
 - L does not contain the strings abbaaa, abbaaabbbb.
- 3 (25 PTS.) Suppose you are given two languages L, L' that are not regular but such that $L' \setminus L$ is regular. Prove that $L \cup L'$ is not regular. (Hint: Use closure properties of regular languages.)
- 4 (15 Pts.) Provide a counter-example for the following claim:

Claim: Consider two languages L and L'. If \overline{L} is not regular, L' is regular, and $L \cup L'$ is regular, then $L \cap L'$ is regular.

- **5** (10 PTS.) (Slightly harder¹) Same as (A) for $L = \{0^{n^4} \mid n \ge 3\}$.
- 10 Solution:

¹Feel free to use IDK.

1. Let F be the language $w|w \in \Sigma$.

Let x and y be arbitrary strings in F.

Then x = w = a and y = w = b for some w.

Let z = w = a.

Then xw = aa is in language L, and yw = ab is not in language L.

Thus F is a fooling set of L.

Because F is infinite, L cannot be regular.

2. Let L be put into two cases:

$$w_2^*w_1^iw_2^+w_1^iw_2^*$$

Oï

 $w_2^*w_1^iw_2^kw_1^mw_2^iw_1^*$

where $w \in \Sigma^+$, $w_1 \neq w_2$, and $(k = m = 0) | (k \geq 1 \& m \geq 1)$.

Let F be the language $w_2^*w_1^iw_2^+ \mid w \in \Sigma^+, w_1 \neq w_2$.

Then let x, y, u, and v be arbitrary strings in F.

Let $z = w_2^* w_1^i w_2^k$,

 $x = w_1^i w_2^*,$

 $y = w_1^j w_2^*,$

 $u = w_1^m w_2^i w_1^*,$

 $v = w_1^m w_2^j w_1^*$

where $i \neq j$, $k \geq 1$ if there is only k and no m, and $(k = m = 0) | (k \geq 1 \& m \geq 1)$ if there exists both k and m.

Then $zx = w_2^* w_1^i w_2^k w_1^i w_2^*$ is in language L, and $zy = w_2^* w_1^i w_2^k w_1^j w_2^*$ is not in language L. We also see that $zu = w_2^* w_1^i w_2^k w_1^m w_2^i w_1^*$ is in language L, and $zv = w_2^* w_1^i w_2^k w_1^m w_2^j w_1^*$ is not in language L.

Thus F is a fooling set of L.

Because F is infinite, L cannot be regular.

3. Claim: $L \cup L'$ is not regular, given L and L' are not regular, and $L' \setminus L$ is regular.

Proof: We will prove this claim by contradiction. Assume $L \cup L'$ is regular.

Since $L \cup L'$ is regular, and $L \cap L' \subseteq L \cup L'$, therefore $L \cap L'$ must also be regular.

If $L \cap L'$ is regular, and $L' \setminus L$ is regular as well, then by set closure properties the union of these two sets is regular. The union of these two sets: $(L \cap L') \cup (L' \setminus L) = L'$, is therefore regular.

But L' cannot be regular, as we are told in the problem description that it is not regular. We have arrived at a contradiction. Therefore, our original claim that $L \cup L'$ is not regular must be true.

4. Let $L = 0^i 1^i \mid i \ge 1$.

Let $L' = 0^*1^*$.

L is not regular (as seen in class), therefore \bar{L} is also not regular by closure properties (cond. i). L' is regular, as seen in class (cond. ii).

 $L \cup L'$ is equivalent to L', as $L \subseteq L'$. Since L' is regular, $L \cup L'$ must be regular (cond. iii).

 $L \cap L'$ is equivalent to L, as it is a subset of L'. Since L is not regular, therefore $L \cap L'$ is not regular as well, and (cond. iv) fails.

5. IDK