1 Conjuntos Finitos e Infinitos

1.1 Números Naturais

Definição 1 O conjunto N dos naturais é tal que

- Existe $s : \mathbb{N} \to \mathbb{N}$ injetiva tal que $\operatorname{Im}(s) = \mathbb{N} \{1\};$
- $\bullet \quad \left. \begin{array}{l} 1 \in X \subseteq \mathbb{N} \\ s(X) \subseteq X \end{array} \right\} \Rightarrow X = \mathbb{N}$

Teorema 2 (Princípio da Boa Ordenação)

$$\left. \begin{array}{l} A \subseteq \mathbb{N} \\ A \neq \varnothing \end{array} \right\} \Rightarrow A \ possui \ "menor \ elemento"$$

1.2 Conjuntos Finitos

Seja
$$I_n = \{1, 2, 3, ..., n\} = \{i \in \mathbb{N} \mid i \le n\}$$

Definição 3 Um conjunto X é **finito** se há uma bijeção $f: X \to I_n$ (denotaremos $X \rightleftarrows I_n$). O número n é dito **cardinal** de X.

Fato 4 Para cada X finito, há um único n.

Proposição 5 Se X é finito, então X é limitado. Também, $f: X \to X$ é injetiva sse é sobrejetiva.

Proposição 6 Se $Y \subseteq X$ e X é finito, então Y é finito; se também $Y \rightleftarrows X$ então Y = X.

1.3 Conjuntos Infinitos

Proposição 7 Se X é infinito, então existe $Y \subseteq X$ tal que $Y \rightleftarrows X$ e $Y \ne X$.

Proposição 8 Se X é infinito, então existe $Y \subseteq X$ tal que $Y \rightleftarrows \mathbb{N}$.

1.4 Enumerabilidade

Definição 9 X é enumerável se $X \rightleftharpoons \mathbb{N}$ ou X é finito.

Exemplo 10 $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q}$ são enumeráveis. $\{0,1\}^{\mathbb{N}} = \mathcal{F}(\mathbb{N},\{0,1\})$ e \mathbb{R} não são enumeráveis.

Proposição 11 $X \subseteq \mathbb{N} \Rightarrow X$ é enumerável.

Proposição 12 X e Y enumeráveis \Rightarrow $X \times Y$ \acute{e} enumerável.

Proposição 13 X_i enumerável para todo $i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} X_i$ é enumerável

2 Números Reais

2.1 \mathbb{R} é um corpo

Definição 14 Um corpo S é um conjunto dotado de operações binárias $+, \cdot : S \times S \to S$ que são associativas, comutativas e possuem elementos neutros distintos 0 e 1. Além disso, a adição tem de ser distributiva com relação à multiplicação e cada elemento não-nulo $x \in S$ tem de ter inverso aditivo -x e multiplicativo x^{-1} .

Desta definição saem todas as propriedades algébricas às quais estamos acostumados.

2.2 \mathbb{R} é um corpo ordenado

Definição 15 Um corpo ordenado S é um corpo que pode ser separado em uma união disjunta de S^+ ("positivos"), S^- ("negativos") e $\{0\}$, de forma que

$$x, y \in S^+ \Rightarrow \begin{cases} x + y \in S^+ \\ xy \in S^+ \end{cases}$$

 $x \in S^+ \Leftrightarrow -x \in S^-$

Definição 16 Dados $x, y \in S$, definimos x < y sempre que $y - x \in S^+$.

Fato 17 Num corpo ordenado, a relação x < y é transitiva, monótona com relação à adição e monótona com relação à multiplicação por números positivos. Também, dado $x \neq y$, tem-se apenas uma dentre x < y ou y < x.

Definição 18 A operação valor absoluto é dada por

$$|x| = \begin{cases} x, se \ x \ge 0 \\ -x, se \ x < 0 \end{cases}$$

Assim, $x \neq 0 \Rightarrow |x| \in S^+$.

Proposição 19 Num corpo ordenado, para quaisquer x, y, a, δ tem-se $|x + y| \le |x| + |y|$; |xy| = |x| |y| e

$$|x - a| < \delta \iff a - \delta < x < a + \delta$$

2.3 \mathbb{R} é um corpo ordenado completo

Definição 20 O número c é dito **cota superior** do conjunto X quando $\forall x \in X$, $x \le c$ (e então X é dito **limitado superiormente**). O **supremo** de X é sua menor cota inferior, isto é

$$b = \sup X \Rightarrow \left\{ \begin{array}{l} \forall x \in X, \ x \leq b \\ (\forall x \in X, x \leq c) \Rightarrow b \leq c \end{array} \right.$$

As definições de **cota inferior**, conjunto **limitado inferiormente** e **ínfimo** são análogas. X é **limitado** se o for superiormente e inferiormente.

Definição 21 Dizemos que S é um corpo ordenado completo quando

 $X \notin limitado superiormente \Rightarrow X tem supremo$

Definição 22 \mathbb{R} é um corpo ordenado completo (por assim dizer, o único).

3 Sequências de Números Reais

3.1 Limite de uma Seqüência

Definição 23 Uma seqüência (x_n) de números reais é uma função $x: \mathbb{N} \to \mathbb{R}$. A seqüência é dita limitada (inferiormente, superiormente) se $\operatorname{Im}(x)$ o for. Uma subseqüência (x_{n_k}) de (x_n) é a restrição de x a um subconjunto infinito $\mathbb{N}' = \{n_1 < n_2 < ... < n_k < ...\} \subseteq \mathbb{N}$ (tecnicamente, é a composição $x \circ f: \mathbb{N} \to \mathbb{R}$ onde $f: \mathbb{N} \to \mathbb{N}$ é uma função crescente com $f(k) = n_k$).

Definição 24 A seqüência (x_n) é convergente quando tem limite L (denota-se $\lim x_n = L$ ou $\lim_{n\to\infty} x_n = L$ ou $x_n \to L$), isto é,

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ tal \ que \ n > n_0 \Rightarrow L - \varepsilon < x_n < L + \varepsilon$$

Fato 25 Se uma seqüência tem limite L, então ela é limitada e este limite é único. Também, todas as suas subseqüências convergem para L.

Definição 26 Uma seqüência é dita **monótona** quando $(\forall n \in \mathbb{N}, x_n \leq x_{n+1})$ ou $(\forall n \in \mathbb{N}, x_n \geq x_{n+1})$.

Proposição 27 Toda seqüência monótona limitada é convergente.

Teorema 28 (Bolzano-Weierstrass) Toda seqüência limitada possui subseqüência monótona (e, portanto, convergente).

3.2 Limites e Desigualdades

Proposição 29 Se $\lim x_n = a > b$, então $x_n > b$ para todo n suficientemente grande.

Proposição 30 Se $\lim x_n = a$, $\lim y_n = b$ e $x_n > y_n$ para todo n suficientemente grande, então $a \ge b$.

Teorema 31 (Sanduíche) Se $\lim x_n = \lim y_n = a$ e $x_n \le z_n \le y_n$ para todo n suficientemente grande, então $\lim z_n = a$.

3.3 Operações com Limites

Teorema 32 (Anulamento) Se $\lim x_n = 0$ e (y_n) é limitada então $\lim (x_n y_n) = 0$.

Proposição 33 Se $\lim x_n = a$ e $\lim y_n = b$ então

$$\lim (x_n \pm y_n) = a \pm b$$

$$\lim (x_n y_n) = ab$$

$$\lim \left(\frac{x_n}{y_n}\right) = \frac{a}{b} (desde \ que \ b \neq 0)$$

Exemplo 34 As seqüências $a_n = \sum_{k=1}^n \frac{1}{k!}$ e $b_n = \left(1 + \frac{1}{n}\right)^n$ convergem para o mesmo número, denotado $e \approx 2,7182818...$

3.4 Limites Infinitos

Definição 35 Diz-se que **o** limite de (x_n) é mais infinito (denotado por $\lim x_n = +\infty$) quando

$$\forall A > 0, \exists n_0 \in \mathbb{N} \ tal \ que \ n > n_0 \Rightarrow A < x_n$$

A definição para **menos infinito** é análoga.

Fato 36 Se $\lim x_n = +\infty$ então (x_n) não é limitada superiormente.

Proposição 37 Se $\lim x_n = +\infty$ e (y_n) é limitada inferiormente então $\lim (x_n + y_n) = +\infty$.

Proposição 38 Se $\lim x_n = +\infty$ e $y_n > c > 0$ para todo n suf..gr., então $\lim (x_n y_n) = +\infty$.

Proposição 39 Se $x_n > c > 0$ e $\lim y_n = 0^+$ (isto é, $y_n > 0$ para todo n suf.gr. e $\lim y_n = 0$) então $\lim (x_n/y_n) = +\infty$.

Proposição 40 Se (x_n) é limitada e $\lim y_n = +\infty$ então $\lim (x_n/y_n) = 0$.

4 Séries Numéricas

4.1 Séries Convergentes

Definição 41 Definimos sua **série** a partir de uma seqüência (a_n) (o **termo geral** da série) como uma nova seqüência (s_n) onde cada elemento é uma **soma parcial** ou **soma reduzida** da série, a saber,

$$s_n = \sum_{i=1}^n a_i$$

Denota-se a série por $\sum a_n$. A série é dita **convergente** ou **divergente** se a seqüência (s_n) o for.

Proposição 42 Se $\sum a_n$ converge, então $a_n \to 0$. Em outras palavras, se $a_n \not\to 0$, então $\sum a_n$ diverge.

Proposição 43 (Critério da Comparação para Séries) Suponha que $0 \le a_n \le cb_n$ para todo n suf. grande. Então

$$\sum b_n \ converge \Rightarrow \sum a_n \ converge$$

Exemplo 44 A série geométrica $\sum a^n$ é convergente com limite $\frac{1}{1-a}$ se |a| < 1, e divergente caso contrário.

Exemplo 45 A série- $p \sum \frac{1}{n^p}$ é convergente se p > 1 e divergente se p < 1. No caso p = 1, a série $\sum \frac{1}{n}$ é chamada série harmônica.

4.2 Séries Absolutamente Convergentes

Definição 46 A série $\sum a_n$ é absolutamente convergente quando $\sum |a_n|$ for convergente. Se $\sum a_n$ é convergente mas não é absolutamente convergente (isto é, $\sum a_n$ converge mas $\sum |a_n|$ diverge), a série $\sum a_n$ é dita condicionalmente convergente.

Teorema 47 (Leibniz) Se (a_n) é monótona decrescente e $\lim a_n = 0$ então $\sum (-1)^{n+1} a_n$ converge.

Exemplo 48 $\sum \frac{(-1)^n}{n} e^{-n} e^{-n} \sum (-1)^n \ln \left(1 + \frac{1}{n}\right)$ são condicionalmente convergentes.

Proposição 49 Toda série absolutamente convergente é convergente.

4.3 Testes de Convergência

Proposição 50 Se $\sum b_n$ converge absolutamente com $b_n \neq 0$ para todo n e $\frac{a_n}{b_n}$ é limitada, então $\sum a_n$ converge absolutamente.

Proposição 51 (Teste de d'Alembert) Se $a_n \neq 0$ para todo n e $\left| \frac{a_{n+1}}{a_n} \right| \leq c < 1$ para todo n suf. grande, então $\sum a_n$ converge absolutamente.

Corolário 52 (Teste da Razão) Suponha que existe $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Se L > 1, a série $\sum a_n$ diverge; se L < 1, a série $\sum a_n$ converge. Se L = 1, este teste é inconclusivo.

Proposição 53 (Teste de Cauchy) Se $\sqrt[n]{|a_n|} \le c < 1$ para todo n suf. grande, então $\sum a_n$ converge absolutamente.

Corolário 54 (Teste da Raiz) Suponha que existe $L = \sqrt[n]{|a_n|}$. Se L > 1, a série $\sum a_n$ diverge; se L < 1, a série $\sum a_n$ converge. Se L = 1, este teste é inconclusivo.

Proposição 55 Se $a_n \neq 0$ para todo n então

$$\lim \left| \frac{a_{n+1}}{a_n} \right| = L \Rightarrow \lim \sqrt[n]{|a_n|} = L$$

4.4 Comutatividade

Definição 56 A série $\sum a_n$ é dita comutativamente convergente se qualquer permutação $b_n = a_{\varphi(n)}$ faz com que $\sum b_n$ seja convergente.

Teorema 57 Se $\sum a_n$ é absolutamente convergente então qualquer permutação $b_n = a_{\varphi(n)}$ é absolutamente convergente com o mesmo limite.

Teorema 58 (Riemann) Seja $\sum a_n$ condicionalmente convergente. Então, dado $c \in \mathbb{R}$ qualquer, existe uma permutação $b_n = a_{\varphi(n)}$ tal que $\sum b_n = c$.

Conclusão 59 Uma série é comutativamente convergente se, e somente se, é absolutamente convergente.

Algumas Noções Topológicas $\mathbf{5}$

Conjuntos Abertos 5.1

Definição 60 Diz-se que a é interior a X (ou X é uma vizinhança de a) quando há intervalo $(a - \varepsilon, a + \varepsilon) \subseteq X$. O interior do conjunto X (int X) é o conjunto dos pontos interiores a X. O conjunto X é aberto se intX=X.

Teorema 61 Uma interseção finita de abertos é aberta. Uma união qualquer de abertos é aberta.

Conjuntos Fechados

Definição 62 Diz-se que a é aderente a X quando há seqüência $x_n \in X$ com $\lim x_n = a$. O fecho de X é o conjunto \bar{X} dos pontos aderentes a X. Se $F = \bar{F}$, o conjunto F é **fechado**. Se $X \subseteq Y \subseteq \bar{X}$, diz-se que X é **denso** em Y.

Teorema 63 O ponto a é aderente a X se, e somente se, toda vizinhança de a intersecta X.

Teorema 64 O conjunto \bar{X} é fechado.

Teorema 65 F é fechado se, e somente se, $A = \mathbb{R} - F$ é aberto.

Teorema 66 Uma união finita de fechados é fechada. Uma interseção qualquer de fechados é fechada.

Definição 67 Uma cisão de um conjunto $X \subseteq \mathbb{R}$ é uma decomposição $X = A \cup B$ tal que $A \cap \bar{B} = \bar{A} \cap B = \emptyset$.

Teorema 68 Um intervalo I da reta só admite a cisão trivial $I = I \cup \emptyset$. Portanto, os únicos subconjuntos de $\mathbb R$ que são simultaneamente abertos e fechados são \mathbb{R} e \emptyset .

5.3Pontos de Acumulação

Definição 69 Sejam $a \in \mathbb{R}$ e $X \subseteq \mathbb{R}$. Diz-se que a é **ponto de acumulação** de X quando toda vizinhança V de a satisfaz $V \cap X - \{a\} \neq \emptyset$. O conjunto dos pontos de acumulação de X é denotado X. Um **ponto isolado** de X é um ponto $a \in X$ que não é ponto de acumulação. O conjunto X é discreto se todos os seus pontos são isolados.

Teorema 70 Dados $a \in \mathbb{R}$ e $X \subseteq \mathbb{R}$, são equivalentes: (i) a é ponto de acumulação de X; (ii) $a = \lim x_n$ onde $x_n \in X - \{a\}$; (iii) Toda vizinhança de a contém infinitos pontos de X.

Proposição 71 Todo conjunto infinito limitado de reais admite pelo menos um ponto de acumulação.

Conjuntos Compactos

Definição 72 Um conjunto $X \subseteq \mathbb{R}$ é compacto quando for limitado e fechado.

Teorema 73 X é compacto \Leftrightarrow toda seqüência (x_n) com $x_n \in X$ possui uma subseqüência (y_n) com $\lim y_n \in X$.

Teorema 74 Se $X_1 \supseteq X_2 \supseteq ... \supseteq X_n \supseteq ...$ é uma seqüência de compactos não-vazios, então $\bigcap X_i \neq \emptyset$.

Definição 75 Uma cobertura (finita) de um conjunto X é uma família (finita) C de conjuntos C_{λ} (com $\lambda \in L$) tal que $X\subseteq\bigcup C_{\lambda}$. Numa **cobertura aberta**, cada C_{λ} é um conjunto aberto. Se $L'\subseteq L$ é tal que $X\subseteq\bigcup C_{\lambda}$, então a família C_{λ} com $\lambda \in L'$ é uma **subcobertura** de C.

Teorema 76 (Borel-Lebesgue) Toda cobertura aberta de um compacto possui subcobertura finita.

Conjunto de Cantor

Definição 77 O conjunto K dos números que podem ser escritos em base 3 usando apenas os dígitos 0 e 2:

$$K = \left\{ x \in \mathbb{R} \mid x = \sum_{i=1}^{\infty} \frac{a_i}{3^i} \text{ onde } a_i \in \{0, 2\} \right\}$$

é chamado conjunto de Cantor. Ele pode também ser obtido por passos:

- i) Retire o terço médio aberto do intervalo $K_0 = [0,1]$, sobrando $K_1 = \left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right]$.

- ii) Retire o terço médio aberto de cada intervalo restante, sobrando $K_2 = \begin{bmatrix} 0, \frac{1}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{9}, \frac{3}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{6}{9}, \frac{7}{9} \end{bmatrix} \cup \begin{bmatrix} \frac{8}{9}, 1 \end{bmatrix}$.

 iii) Repita o passo anterior: $K_3 = \begin{bmatrix} 0, \frac{1}{27} \end{bmatrix} \cup \begin{bmatrix} \frac{2}{27}, \frac{3}{27} \end{bmatrix} \cup \begin{bmatrix} \frac{6}{27}, \frac{7}{77} \end{bmatrix} \cup \begin{bmatrix} \frac{8}{27}, \frac{9}{27} \end{bmatrix} \cup \begin{bmatrix} \frac{18}{27}, \frac{19}{27} \end{bmatrix} \cup \begin{bmatrix} \frac{20}{27}, \frac{21}{27} \end{bmatrix} \cup \begin{bmatrix} \frac{24}{27}, \frac{25}{27} \end{bmatrix} \cup \begin{bmatrix} \frac{26}{27}, 1 \end{bmatrix}$.

 iv) Continue este processo "indefinidamente", isto é, $K = K_1 \cap K_2 \cap K_3 \cap \ldots$

Proposição 78 K é compacto e $intK = \emptyset$, mas K é não-equivariant e não tem pontos isolados.

6 Limites de Funções

6.1 Definição e Primeiras Propriedades

Definição 79 Seja $f: X \to \mathbb{R}$ e $a \in X'$. Dizemos que $\lim_{x \to a} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists \delta > 0; x \in ((X - \{a\}) \cap (a - \delta, a + \delta)) \Rightarrow f(x) \in (L - \varepsilon, L + \varepsilon)$$

Notação 80 Sendo $a \in X'$, denotaremos $V_{\delta}^*(a) = (X - \{a\}) \cap (a - \delta, a + \delta)$ (uma vizinhança furada de a em X).

Proposição 81 Se $\lim_{x\to a} f(x) = L$ então f(x) é limitada em alguma $V_{\delta}^*(a)$.

Teorema 82 Tem-se $\lim_{x\to a} f(x) = L$ se, e somente se, toda seqüência de pontos $x_n \in X - \{a\}$ com $\lim_{n\to\infty} x_n = a$ satisfaz $\lim_{n\to\infty} f(x_n) = L$.

Corolário 83 Se o limite de uma função existir, ele é único.

Teorema 84 Se $\lim_{x\to a} f(x) = L < M = \lim_{x\to a} g(x)$ então existe $V_{\delta}^*(a)$ onde $f(x) \leq g(x)$. Em particular, se $\lim_{x\to a} f(x) < M$, então f(x) < M em uma $V_{\delta}^*(a)$.

Corolário 85 Se $f(x) \leq g(x)$ em $V_{\delta}^*(a)$, então $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$ (desde que os limites existam).

Teorema 86 (Sanduíche) $Se\ f(x) \le g(x) \le h(x)\ e \lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L,\ ent \tilde{a}o\ \lim_{x\to a} g(x) = L.$

Proposição 87 Se $f, g: X \to \mathbb{R}$, $\lim_{x \to a} f(x) = L$ e $\lim_{x \to a} g(x) = M$ então

$$\lim_{x \to a} (f(x) \pm g(x)) = L \pm M$$

$$\lim_{x \to a} (f(x) g(x)) = LM$$

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M} (desde \ que \ M \neq 0)$$

Corolário 88 Se f(x) é uma função racional (fração de polinômios) e $a \in \text{Dom} f$ então $\lim_{x\to a} f(x) = f(a)$.

Proposição 89 Se $f, g: X \to \mathbb{R}$, $\lim_{x\to a} f(x) = 0$ e g(x) é limitada em $V_{\delta}^*(a)$, então $\lim_{x\to a} f(x) \cdot g(x) = 0$.

6.2 Limites Laterais

Definição 90 a é ponto de acumulação de X à direita $(a \in X'_+)$ quando $\forall \delta > 0$, $V_{\delta}^+(a) = (a, a + \delta) \cap X \neq \emptyset$.

Definição 91 Seja $a \in X'_{+}$. Dizemos que $\lim_{x \to a^{+}} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists \delta > 0; x \in X \cap (a, a + \delta) \Rightarrow f(x) \in (L - \varepsilon, L + \varepsilon)$$

Proposição 92 As propriedades dos limites laterais são as mesmas dos limites devidamente adaptadas. Por exemplo:

$$\lim_{x \to a^{+}} f(x) = L \Leftrightarrow \forall (x_{n}) \subseteq X, \text{ se } x_{n} > a \text{ e } x_{n} \to a, \text{ então } f(x_{n}) \to L$$

Teorema 93 $\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = L \Rightarrow \lim_{x\to a} f(x) = L$. Se $a \in X'_+ \cap X'_-$, vale também a volta.

Definição 94 Diz-se que f(x) é monótona não-decrescente quando $x_1, x_2 \in Domf$, $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$. As definições de monótona decrescente, monótona crescente e monótona não-crescente são análogas.

Teorema 95 Existem sempre os limites laterais (que fizerem sentido) de uma função monótona limitada.

6.3 Limites Infinitos e no Infinito

Definição 96 (Limite em ∞) $Seja \operatorname{Dom} f = X \subseteq \mathbb{R}$ ilimitado superiormente. Dizemos que $\lim_{x \to +\infty} f(x) = L$ quando

$$\forall \varepsilon > 0, \exists A > 0; x \in X \cap (A, +\infty) \Rightarrow f(x) \in (L - \varepsilon, L + \varepsilon)$$

Definição 97 (Limite ∞) Dada $f: X \to \mathbb{R}$ e $a \in X'$, dizemos que $\lim_{x \to a} f(x) = +\infty$ quando

$$\forall A > 0, \exists V_{\delta}^{*}(a) \text{ onde } f(x) \in (A, +\infty)$$

Comentário 98 Pode-se definir: $\lim_{x\to a} f(x) = b$ significa que, para toda vizinhança V(b), existe uma vizinhança $V^*(a)$ (lateral para limites laterais) tal que $f(V^*(a)) \subseteq V(b)$. Faça $V(+\infty) = V^*(+\infty) = V^*(+\infty) = (A, +\infty)$ e tome $V(-\infty) = V^*(-\infty) = V^*(-\infty) = (-\infty, A)$ e a definição vale com $a \in \mathbb{R} \cup \{\pm \infty\}$ e $b \in \mathbb{R} \cup \{\pm \infty\}$.

Teorema 99 Existem sempre (ou são $\pm \infty$) os limites laterais (incluindo em $+\infty^-$ e $-\infty^+$) de uma função monótona.

Proposição 100 As expressões $\frac{0}{0}$, $\infty - \infty$, $0.\infty$, $\frac{\infty}{\infty}$, 0^0 , ∞^0 e 1^∞ são indeterminadas (mas $\lim f(x)^{g(x)} = 0^0 = 1$ sempre que f(x) e g(x) forem analíticas com f(x) não-nula!).

7 Funções Contínuas

7.1 Definição e Primeiras Propriedades

Definição 101 Diz-se que $f: X \to \mathbb{R}$ é contínua no ponto $a \in X$ quando

$$\forall \varepsilon > 0, \exists \delta > 0; x \in V_{\delta}(a) = X \cap (a - \delta, a + \delta) \Rightarrow f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon)$$

Diz-se que f é **contínua** se f for contínua em todos os pontos de X.

Comentário 102 Com esta definição, f(x) é contínua em $a \in X$ se, e somente se, $\lim_{x\to a} f(x) = f(a)$ ou $a \notin X'$.

Teorema 103 Se $f, g: X \to \mathbb{R}$ são contínuas e f(a) < g(a), então f(x) < g(x) em algum $V_{\delta}(a)$. Em particular, se $f(a) \neq 0$, f(x) terá o sinal de f(a) em algum $V_{\delta}(a)$.

Corolário 104 Se $f, g: X \to \mathbb{R}$ são contínuas, então $Y = \{x \in X \mid f(x) < g(x)\}$ é aberto em X (isto é, $Y = X \cap A$ para algum aberto A) e $Z = \{x \in X \mid f(x) \leq g(x)\}$ é fechado em X ($Z = X \cap F$ para algum fechado F). Em particular, se X é aberto então Y é aberto, e se X é fechado então Z é fechado.

Teorema 105 Tem-se f(x) contínua em a se, e somente se, $(x_n) \subseteq X$ e $x_n \to a \Rightarrow f(x_n) \to f(a)$.

Corolário 106 Se $f,g:X\to\mathbb{R}$ são contínuas em a, então $f\pm g$, f.g e f/g também o são (esta última desde que $g(a)\neq 0$). Em particular, todo polinômio é contínuo e toda função racional é contínua (em seu domínio).

Teorema 107 Se $f: X \to \mathbb{R}$ é contínua em a e $g: Y \to \mathbb{R}$ é contínua em b = f(a) (e $f(X) \subseteq Y$ para que a composta $g \circ f$ faça sentido) então $g \circ f$ é contínua em a. Em suma: a composta de funções contínuas é contínua.

7.2 Funções Contínuas num Intervalo

Teorema 108 (do Valor Intermediário) Se $f:[a,b] \to \mathbb{R}$ é contínua e f(a) < d < f(b), então existe $c \in (a,b)$ tal que f(c) = d. Isto é, se f é contínua e I é um intervalo, então f(I) é um intervalo.

Teorema 109 (Ponto Fixo) Se $f:[a.b] \to \mathbb{R}$ é contínua e $f(a) \le a$ e $f(b) \ge b$, então existe $c \in [a,b]$ tal que f(c) = c.

Teorema 110 Se I é um intervalo e $f: I \to \mathbb{R}$ é contínua e injetiva, então f é monótona e é um **homeomorfismo** entre I e J = f(I) (isto é, bijeção contínua com inversa contínua).

Corolário 111 A função $g:[0,+\infty)\to[0,+\infty)$ dada por $g(x)=\sqrt[n]{x}$ é contínua para $n\in\mathbb{N}$.

7.3 Funções Contínuas em Conjuntos Compactos

Teorema 112 Se X é compacto e $f:X \to \mathbb{R}$ é contínua então f(X) é compacto.

Teorema 113 (Weierstrass) Se X é compacto e $f: X \to \mathbb{R}$ é contínua, então f assume mínimo e máximo em X.

Corolário 114 Se X é compacto e $f: X \to \mathbb{R}$ é contínua em X, então f é limitada.

Teorema 115 Se X é compacto e $f: X \to Y \subseteq \mathbb{R}$ é uma bijeção contínua então f é um homeomorfismo entre X e Y.

7.4 Continuidade Uniforme

Definição 116 Diz-se que $f: X \to \mathbb{R}$ é uniformemente contínua quando

$$\forall \varepsilon > 0, \exists \delta > 0; \forall a \in X, x \in V_{\delta}(a) = X \cap (a - \delta, a + \delta) \Rightarrow f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon)$$

(note que aqui o δ não pode depender de a). Em outras palavras:

$$\forall \varepsilon > 0, \exists \delta > 0; \forall x,y \in X, \ |x-y| < \delta \Rightarrow |f\left(x\right) - f\left(y\right)| < \varepsilon$$

Definição 117 Diz-se que $f: X \to \mathbb{R}$ é de Lipschitz quando

$$\exists k > 0; x, y \in X \Rightarrow |f(x) - f(y)| < k|x - y|$$

Comentário 118 Toda função de Lipschitz é uniformemente contínua.

Teorema 119 $f: X \to \mathbb{R}$ é uniformemente contínua se, e somente se, para quaisquer $(x_n), (y_n) \subseteq X$ tem-se

$$\lim (y_n - x_n) = 0 \Rightarrow \lim (f(y_n) - f(x_n)) = 0$$

Teorema 120 Se X é compacto e $f: X \to \mathbb{R}$ é contínua então f é uniformemente contínua.

Teorema 121 Se X é limitado e $f: X \to \mathbb{R}$ é uniformemente contínua então f é limitada.

Teorema 122 Se $f: X \to \mathbb{R}$ é uniformemente contínua e $a \in X'$ então existe $\lim_{x \to a} f(x)$.

8 Derivadas

8.1 A Noção de Derivada

Definição 123 Sejam $f: X \to \mathbb{R}$ e $a \in X \cap X'$. A derivada de f em a é

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Se f'(a) existir, a função é **derivável em** a. Se f for derivável em cada ponto de $X \cap X'$, f é **derivável em** X e a função $f': X \cap X' \to \mathbb{R}$ é a **função derivada de** f. Se f' for contínua, f é **de classe** C^1 .

Teorema 124 Dado $a \in X \cap X'$, a derivada f'(a) existe se e somente se

$$f(a+h) = f(a) + c.h + r(h) \quad onde \quad \lim_{h \to 0} \frac{r(h)}{h} = 0$$

Corolário 125 Se f é derivável em a, então f é contínua em a.

Definição 126 Seja $a \in X \cap X'_+$. A derivada à direita de f no ponto $a \notin f'_+(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$.

Proposição 127 Seja $a \in X'_{+} \cap X'_{-}$. A função f é derivável em a se, e somente se, $f'_{+}(a) = f'_{-}(a)$.

Exemplo 128 Há funções deriváveis que não são de classe C^1 , como $g(x) = x^2 \sin(1/x)$ (tome g(0) = 0). Então $g'(x) = 2x \sin(1/x) - \cos(1/x)$ se $x \neq 0$ mas g'(0) = 0, isto é, $g'(x) \neq 0$ descontínua em x = 0.

8.2 Regras Operacionais

Proposição 129 Valem as Regras da Soma, do Produto e do Quociente.

Teorema 130 (Regra da Cadeia) Sejam $f: X \to \mathbb{R}$ e $g: Y \to \mathbb{R}$ tais que $f(X) \subseteq Y$. Se f é derivável em a e g é derivável em b = f(a) então

$$(g \circ f)'(a) = g'(f(a)).f'(a)$$

Corolário 131 Se $f: X \to Y$ é uma bijeção derivável em a e $g = f^{-1}$ é contínua em b = f(a), então

$$g \notin deriv \acute{a} vel \ em \ b \Longleftrightarrow f'(a) \neq 0$$

No caso $f'(a) \neq 0$, tem-se g'(b) = 1/f'(a).

8.3 Derivada e Crescimento Local

Teorema 132 Se $f'_{+}(a) > 0$ então $\exists \delta > 0$ tal que $x \in (a, a + \delta) \Rightarrow f(x) > f(a)$. Analogamente, se $f'_{-}(a) > 0$ então $\exists \delta > 0$ tal que $x \in (a - \delta, a) \Rightarrow f(x) < f(a)$.

Corolário 133 Se f é não-decrescente, então $f'_{+}(a) \geq 0$ ou $\not\exists f'(a)$, e também $f'_{-}(a) \geq 0$ ou $\not\exists .f'_{-}(a)$.

Definição 134 Se $f(x) \le f(a)$ em $V_{\delta}(a)$ então f tem um **máximo local** em a. Se f(x) < f(a) em $V_{\delta}^*(a)$ então f tem um **máximo local estrito em** a. Se $f(x) \le f(a)$ em X então a é **ponto de máximo absoluto** de f.

Corolário 135 Suponha que f tem um máximo local em a. Se $a \in X'_+$ então $f'_+(a) \le 0$ (ou não existe). Se f é derivável em $a \in X'_+ \cap X'_-$, então f'(a) = 0.

Exemplo 136 f'(a) > 0 não implica f monótona numa vizinhança de a. Por exemplo, $g(x) = x^2 \sin(1/x) + x/2$ (com g(0) = 0) satisfaz $g'(x) = 2x \sin(1/x) - \cos(1/x) + 1/2$ para $x \neq 0$ e $g'(0) = \frac{1}{2} > \dot{0}$. Como $g'(\frac{1}{2K\pi}) = -\frac{1}{2}$, g não pode ser crescente em intervalo algum perto de x = 0.

Definição 137 Se f'(a) = 0 então $a \notin um$ ponto crítico de f.

8.4 Funções Deriváveis num Intervalo

Teorema 138 (Darboux) Se $f:[a,b] \to \mathbb{R}$ é derivável então f'(x) tem a propriedade do valor intermediário em (a,b).

Teorema 139 (Rolle) Se f é contínua em [a,b], derivável em (a,b) e f (a) = f (b) então $\exists c \in (a,b)$ tal que f' (c) = 0.

Teorema 140 (TVM) Se f é contínua em [a,b] e derivável em (a,b), então $\exists c \in (a,b)$ tal que $f'(c) = \frac{f(b) - f(a)}{b-a}$

Corolário 141 Se f'(x) = 0 num intervalo I, f é constante em I. Se f'(x) = g'(x) em I, g = f + c em I.

Corolário 142 Se $|f'(x)| \le k$ num intervalo, então $|f(y) - f(x)| \le k |y - x|$ neste intervalo.

Corolário 143 Seja f derivável no intervalo I. Tem-se $f'(x) \ge 0$ em I se, e somente se, f é não-decrescente em I.

Corolário 144 Seja f derivável no intervalo I. Se $f'(x) >_{8} 0$ em I, então f \acute{e} bijeção crescente com inversa derivável.

9 Fórmula de Taylor e Aplicações da Derivada

9.1 Fórmula de Taylor

Definição 145 Seja I um intervalo. Uma função $f: I \to \mathbb{R}$ é **de classe** C^n quando sua n-ésima derivada $f^{(n)}: I \to \mathbb{R}$ é contínua. Se f é de classe C^n para todo $n \in \mathbb{N}$, diz-se que f é **de classe** C^{∞} .

Definição 146 Seja f uma função n vezes derivável em a. O polinômio de Taylor de ordem n da função f no ponto a é o único polinômio p(h) de grau menor ou igual a n que satisfaz $p^{(i)}(0) = f^{(i)}(a)$ para i = 0, 1, 2, ..., n:

$$p(h) = f(a) + f'(a) \cdot h + \frac{f''(a)}{2!} h^2 + \dots + \frac{f^{(n)}(a)}{n!} h^n$$

Em outras palavras, r(h) = f(a+h) - p(h) satisfaz $r(0) = r'(0) = ... = r^{(n)}(0) = 0$.

Lema 147 Seja $r: J \to \mathbb{R}$ n vezes derivável em $0 \in J$. Então $r(0) = r'(0) = \dots = r^{(n)}(0) = 0 \Leftrightarrow \lim_{h \to 0} \frac{r(h)}{h^n} = 0$.

Teorema 148 (Taylor Infinitesimal) Seja $f: I \to \mathbb{R}$ n vezes diferenciável em $a \in I$. Então $\lim_{h\to 0} \frac{r(h)}{h^n} = 0$, onde

$$f(a+h) = f(a) + f'(a) \cdot h + \dots + \frac{f^{(n)}(a)}{n!} h^n + r(h)$$

Teorema 149 (L'Hôpital) Se f, g são n vezes deriváveis em a e $f^{(i)}(a) = g^{(i)}(a) = 0 \neq g^{(n)}(a)$ para i = 0, 1, ..., n-1, então $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f^{(n)}(a)}{g^{(n)}(a)}$.

Corolário 150 Seja $f:[a,a+h]\to\mathbb{R}$ de classe C^{n-1} e n vezes diferenciável em (a,a+h). Então $\exists c\in(a,a+h)$ tal que

$$f(a+h) = f(a) + f'(a) \cdot h + \dots + \frac{f^{(n-1)}(a)}{(n-1)!} h^{n-1} + \frac{f^{(n)}(c)}{n!} h^n$$

9.2 Funções Convexas e Côncavas

Definição 151 A função $f: I \to \mathbb{R}$ é **convexa** quando

$$x \in (a,b) \subseteq I \Rightarrow f(x) \le f(a) + \frac{f(b) - f(a)}{b - a}(x - a) = f(b) + \frac{f(b) - f(a)}{b - a}(x - b) = \frac{b - x}{b - a}f(a) + \frac{x - a}{b - a}f(b)$$

Teorema 152 Se f é convexa em I e $c \in I$ então existem as derivadas laterais $f'_{+}(c)$ e $f'_{-}(c)$, e f é contínua em intI.

Teorema 153 Seja $f: I \to \mathbb{R}$ derivável. São equivalentes:

- i) f é convexa;
- ii) f' é não-decrescente;
- iii) $f(x) \ge f(a) + f'(a)(x a)$ para quaisquer $x, a \in I$.

Corolário 154 Se c é um ponto crítico da função convexa f, então c é um mínimo absoluto de f.

Corolário 155 Seja $f: I \to \mathbb{R}$ duas vezes derivável. Então f é convexa se, e somente se, $f''(x) \geq 0$ em I.

Proposição 156 Se f é convexa, então dados $a_1, a_2, ..., a_n \in I$ e $t_1, t_2, ..., t_n \in [0, 1]$ com $\sum t_i = 1$ tem-se

$$f(t_1a_1 + t_2a_2 + \dots + t_na_n) \le t_1f(a_1) + t_2f(a_2) + \dots + t_nf(a_n)$$

9.3 Aproximações Sucessivas e Método de Newton

Definição 157 A função $f: X \to \mathbb{R}$ é uma **contração** se é Lipschitziana com constante de Lipschitz k < 1.

Teorema 158 Se X é fechado e $f: X \to X$ é uma contração, então f tem um único ponto fixo a = f(a), que pode ser obtido partindo de $x_0 \in X$ qualquer e tomando o limite da seqüência $x_{n+1} = f(x_n)$.

Teorema 159 Seja $f: I \to \mathbb{R}$ de classe C^1 . A partir de $x_0 \in I$ qualquer, monte a seqüência

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = N(x_n)$$

Se $x_n \to a$, então f(a) = 0. Em particular, se f é de classe C^2 e não se anula em I, então toda raiz a da equação f(x) = 0 tem uma vizinhança $V_{\delta}(a)$ a partir da qual o método de Newton converge para a.

Teorema 160 Mais explicitamente, se $|f''(x)| \le A$ e $|f'(x)| \ge B$ em I, o método de Newton nos dá

$$|x_{n+1} - a| \le \frac{A}{2B} |x_n - a|^2$$

10 A Integral de Riemann

10.1 Revisão sobre sup e inf

Lema 161 $Dados\ A, B \subseteq \mathbb{R}\ e\ f, g: X \to \mathbb{R}\ limitados,\ tem-se\ \sup(A+B) = \sup A + \sup B\ e\ \sup(f+g) \le \sup f + \sup g.$ Se $c \ge 0$, tem-se $\sup (cA) = c \sup A$ e $\sup (cf) = c \sup f$. Enfim, $\sup_{x,y \in X} \{|f(x) - f(y)|\} = \sup_{x \in X} f - \inf_{x \in X} f$.

10.2 Integral de Riemann

Definição 162 A soma inferior e a soma superior da função limitada $f:[a,b] \to \mathbb{R}$ relativamente à partição $P = \{t_0, t_1, ..., t_n\}$ são respectivamente

$$s(f; P) = \sum_{i=1}^{n} m_i (t_i - t_{i-1}) e S(f; P) = \sum_{i=1}^{n} M_i (t_i - t_{i-1})$$

onde $m_i = \inf_{[t_{i-1},t_i]} f$ e $M_i = \sup_{[t_{i-1},t_i]} f$. A integral inferior e a integral superior de f são

$$\int_{a}^{b} f(x) dx = \sup_{P} s(f; P) e \int_{a}^{b} f(x) dx = \inf_{P} S(f; P)$$

Teorema 163 $P \subseteq Q \Rightarrow s(f; P) \leq s(f; Q) \ e \ S(f; Q) \leq S(f; Q)$.

Corolário 164 Dadas $P \in Q$ quaisquer, $s(f; P) \leq S(f; Q)$. Portanto, se $m = \inf f \in M = \sup f$

$$m(b-a) \le \int_{-a}^{b} f(x) dx \le \overline{\int}_{a}^{b} f(x) dx \le M(b-a)$$

Corolário 165 Podemos considerar apenas partições que refinem P_0 para definir integrais inferior e superior.

Definição 166 Uma função limitada $f:[a,b] \to \mathbb{R}$ é **integrável** quando suas integrais inferior e superior coincidem. Este valor é chamado a **integral** de f em [a,b].

Teorema 167 Seja $f:[a,b] \to \mathbb{R}$ limitada. São equivalentes:

- i) f é integrável;
- ii) Para todo $\varepsilon > 0$ existem partições P e Q tais que $S(f;Q) s(f;P) < \varepsilon$. iii) Para todo $\varepsilon > 0$ existe partição P tal que $S(f;P) s(f;P) = \sum_{i=1}^{n} w_i (t_i t_{i-1}) < \varepsilon$ (onde $w_i = M_i m_i$).

Propriedades da Integral

Teorema 168 Seja a < c < b. A função limitada $f : [a,b] \to \mathbb{R}$ é integrável se, e somente se, suas restrições a [a,c] e [b, c] o forem. Neste caso:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Definição 169 Convenciona-se $\int_a^a f(x) dx = 0$ e, se a < b, $\int_b^a f(x) dx = -\int_a^b f(x) dx$.

Teorema 170 Se $f, g : [a, b] \to \mathbb{R}$ são integráveis:

- i) f + g é integrável e $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$;
- ii) f.g é integrável; se $c \in \mathbb{R}$, $\int_a^b cf(x) dx = c \int_a^b f(x) dx$. iii) $Se |g(x)| \ge k > 0$ em [a, b], então f/g é integrável; iv) $Se |f(x)| \le g(x)$ em [a, b], então $\int_a^b f(x) dx \le \int_a^b g(x) dx$; v) |f| é integrável e $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.

Condições Suficientes de Integrabilidade 10.4

Teorema 171 Se f é contínua então f é integrável.

Teorema 172 Se f é monótona, então f é integrável.

Definição 173 X tem **medida nula** quando, para todo $\varepsilon > 0$, existe uma cobertura enumerável $X \subseteq \bigcup I_k$ por intervalos abertos I_k tal que $\sum |I_k| < \varepsilon$.

Teorema 174 f é integrável se, e somente se, o conjunto dos seus pontos de descontinuidade tem medida nula.

11 Cálculo com Integrais

11.1 Teoremas Clássicos do Cálculo Integral

Teorema 175 (TFC) Seja $f: I \to \mathbb{R}$ contínua e $a \in I$. Então $F(x) = \int_a^x f(t) dt$ é derivável em I e

$$\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x), \text{ isto \'e, } F'(x) = f(x)$$

Reciprocamente, se $F: I \to \mathbb{R}$ é de classe C^1 , tem-se

$$\int_{a}^{x} F'(t) dt = F(x) - F(a), \text{ isto } \acute{e}, F(x) = F(a) + \int_{a}^{x} F'(t) dt$$

Teorema 176 (Mudança de variável) Sejam $f:[a,b] \to \mathbb{R}$ contínua e $g:[c,d] \to \mathbb{R}$ de classe C^1 tais que $g([c,d]) \subseteq [a,b]$. Então

$$\int_{a}^{b} f(g(t)) g'(t) dt = \int_{g(c)}^{g(d)} f(x) dx$$

Teorema 177 (Integração por Partes) Sejam $f, g : [a, b] \to \mathbb{R}$ de classe C^1 . Então

$$\int_{a}^{b} f(x) g'(x) dx = (f \cdot g)_{a}^{b} - \int_{a}^{b} f'(x) g(x) dx$$

Teorema 178 (TVM para Integrais) Seja $f:[a,b] \to \mathbb{R}$ contínua e $p:[a,b] \to \mathbb{R}$ integrável com $p(x) \ge 0$. Então existe $c \in [a,b]$ tal que

$$\int_{a}^{b} f(x) p(x) dx = f(c) \int_{a}^{b} p(x) dx$$

Em particular, existe $c \in [a, b]$ tal que $\int_a^b f(x) dx = f(c) \cdot (b - a)$.

Lema 179 Seja $\varphi:[0,1]\to\mathbb{R}$ de classe C^n . Então

$$\varphi(1) = \varphi(0) + \varphi'(0) + \frac{\varphi''(0)}{2!} + \dots + \frac{\varphi^{(n-1)}(0)}{(n-1)!} + \int_{0}^{1} \frac{(1-t)^{n-1}}{(n-1)!} \varphi^{(n)}(t) dt$$

Teorema 180 (Fórmula de Taylor com Resto Integral) $Seja\ f:I\to\mathbb{R}\ de\ classe\ C^n\ em\ [a,a+h]\ (ou\ [a+h,a]).$ $Ent\~ao:$

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}h^{n-1} + \left[\int_0^1 \frac{(1-t)^{n-1}}{(n-1)!}f^{(n)}(a+th)dt\right].h^n$$

11.2 A Integral como limite de somas de Riemann

Teorema 181 Seja $f:[a,b] \to \mathbb{R}$ limitada. Para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$|P| < \delta \Rightarrow S(f; P) < \int_{a}^{b} f(x) dx + \varepsilon$$

Portanto, $\lim_{|P|\to 0} S(f;P) = \overline{\int}_a^b f(x) dx$.

Definição 182 Uma partição pontilhada P^* é definida por $P = \{t_0, t_1, ..., t_n\}$ e $\xi = \{\xi_1, ..., \xi_n\}$ com $t_{i-1} \leq \xi_i \leq t_i$. Uma soma de Riemann é

$$\sum (f; P^*) = \sum_{i=1}^{n} f(\xi_i) (t_i - t_{i-1})$$

Teorema 183 $f:[a,b]\to\mathbb{R}$ é integrável se, e somente se existir $\lim_{|P|\to 0}\sum (f;P^*)$, que será o valor de sua integral.

11.3 Logaritmos e Exponenciais

Definição 184 A função **logaritmo natural** é definida em \mathbb{R}^+ por

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$

Proposição 185 A função $\ln x$ é monótona crescente (logo uma bijeção entre, \mathbb{R}^+ e \mathbb{R}), côncava, de classe C^{∞} . Além disso, se x, y > 0, e $r \in \mathbb{Q}$ temos $\ln (xy) = \ln x + \ln y$ e $\ln (x^r) = r \ln x$. Note que $\ln'(x) = 1/x$.

Definição 186 A função exponencial natural exp : $\mathbb{R} \to \mathbb{R}^+$ é a função inversa de $\ln x$.

Proposição 187 A função $\exp(x)$ é monótona crescente, convexa de classe C^{∞} . Além disso, $\exp(x+y) = \exp(x) \cdot \exp(y)$ e, denotando $\exp(1) = e$, temos $\exp(r) = e^r$ para $r \in \mathbb{Q}$. Também, $\exp'(x) = \exp(x)$.

Definição 188 Sejam $x \in \mathbb{R}$ e a > 0. Definimos $e^x = \exp(x)$ e, em geral, $a^x = \exp(x \ln a)$. Note que esta definição coincide com a usual para $x \in \mathbb{Q}$.

Proposição 189 Tem-se $\lim_{x\to +\infty} \frac{\ln x}{x} = 0$; $\lim_{x\to 0} \frac{e^x-1}{x} = 1$; $\lim_{x\to 0} (1+x)^{1/x} = e$; $e \lim_{x\to +\infty} \frac{p(x)}{e^x} = 0$ onde p(x) é um polinômio qualquer. Em particular, $\lim_{x\to 0} (1+x)^n = e$.

Proposição 190 Se $f: I \to \mathbb{R}$ é derivável e f'(x) = kf(x) então $f(x) = f(x_0) e^{k(x-x_0)}$ para todo $x, x_0 \in I$.

11.4 Integrais Impróprias

Proposição 191 Seja $f:(a,b] \to \mathbb{R}$ limitada tal que a restrição de f a [c,b] é integrável para qualquer $c \in (a,b]$. Então atribuindo qualquer valor para f(a), a nova função $f:[a,b] \to \mathbb{R}$ é integrável e $\int_a^b f(x) dx = \lim_{c \to 0} \int_c^b f(x) dx$.

Definição 192 (Tipo I) Seja $f:(a,b] \to \mathbb{R}$ ilimitada e contínua. Sua **integral imprópria** (se convergir) é definida por

$$\int_{a}^{b} f(x) dx = \lim_{c \to a^{+}} \int_{c}^{b} f(x) dx$$

Ela é dita absolutamente convergente se $\int_a^b |f(x)| dx$ convergir.

Definição 193 Se tem-se apenas $f:(a,b)\to\mathbb{R}$ contínua, escolhe-se $c\in(a,b)$ e define-se

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

onde ambas as integrais do lado direito têm de convergir.

Definição 194 (Tipo II) Seja $f:[a,+\infty)\to\mathbb{R}$ contínua. Sua integral imprópria (se convergir) é definida por

$$\int_{a}^{+\infty} f(x) dx = \lim_{c \to +\infty} \int_{a}^{c} f(x) dx$$

Ela é dita absolutamente convergente se $\int_{a}^{+\infty} |f(x)| dx$ convergir.

Definição 195 Se $f:(-\infty,+\infty)\to\mathbb{R}$ é contínua, define-se

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx$$

onde ambas as integrais do lado direito têm de convergir.

Proposição 196 Se uma integral é absolutamente convergente então é convergente. Se $f, g: I \to \mathbb{R}$ são contínuas e $|f(x)| \le kg(x)$ para todo $x \in I$ então

$$\int_{I} g(x) dx \ converge \Rightarrow \int_{I} f(x) dx \ converge \ absolutamente$$

Exemplo 197 (Função Gama) Define-se $\Gamma:(0,+\infty)\to\mathbb{R}$ por

$$\Gamma(x) = \int_0^{+\infty} e^{-x} x^{t-1} dx$$

È possível ver que $\Gamma(n) = (n-1)!$ se $n \in \mathbb{N}$ e, em geral, $\Gamma(x+1) = x\Gamma(x)$ para $x \geq 0$.

Teorema 198 Sejam $f:[a,+\infty)\to\mathbb{R}$ contínua e decrescente e $a_n=f(n)$. Então $\sum a_n$ converge se, e somente se, $\int_a^{+\infty} f(x) dx$ converge.

12 Seqüências e Séries de Funções

12.1 Convergência simples e convergência uniforme

Definição 199 Uma seqüência de funções $f_n: X \to \mathbb{R}$ converge simplesmente para $f: X \to \mathbb{R}$ se, para cada $x \in X$, tem-se $f_n(x) \to f(x)$, isto é

$$\forall x \in X, \forall \varepsilon > 0, \exists N_0 > 0 \text{ tal que } n \geq N_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon$$

Definição 200 Uma seqüência de funções $f_n: X \to \mathbb{R}$ converge uniformemente para $f: X \to \mathbb{R}$ se é possível escolher N acima sem depender de x, isto é

$$\forall \varepsilon > 0, \exists N_0 > 0 \text{ tal que } \forall x \in X, n \geq N_0 \Rightarrow |f_n(x) - f(x)| < \varepsilon$$

12.2 Propriedades da Convergência Uniforme

Teorema 201 Se $f_n \to f$ uniformemente e cada f_n é contínua em a então f é contínua em a.

Definição 202 Uma seqüência de funções $f_n: X \to \mathbb{R}$ converge monotonicamente para $f: X \to \mathbb{R}$ se para cada x fixo a seqüência $f_n(x)$ é monótona e converge para f(x).

Teorema 203 Se X é compacto, $f_n \to f$ monotonicamente e f_n e f são contínuas, então $f_n \to f$ uniformemente.

Teorema 204 Se $f_n \to f$ uniformemente e cada f_n é integrável, então f é integrável e

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx$$

Teorema 205 Seja (f_n) uma seqüência de funções de classe C^1 em [a,b]. Suponha que, para algum $c \in [a,b]$ fixo, a seqüência $f_n(c)$ converge e que $f'_n \to g$ uniformemente. Então $f_n \to f$ uniformemente onde f' = g.

Teorema 206 Seja $f_n: X \to \mathbb{R}$ com $|f_n(x)| \le a_n$ para todo $n \in \mathbb{N}$ e todo $x \in X$. Se $\sum a_n$ converge, então $\sum |f_n|$ e $\sum f_n$ convergem uniformemente.

12.3 Séries de Potências

Teorema 207 Uma série de potências é uma série de funções da forma

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$

Teorema 208 A série de potências converge sse x pertence a um intervalo de centro x_0 e raio de convergência

$$r = \frac{1}{\limsup \left(\sqrt[n]{|a_n|}\right)}$$

 $(pode\ ser\ r=0\ ou\ r=+\infty).\ De\ fato,\ a\ série\ converge\ absolutamente\ em\ (x_0-r,x_0+r)\ e\ diverge\ fora\ de\ [x_0-r,x_0+r].$

Comentário 209 Em particular, se $\lim \frac{|a_{n+1}|}{|a_n|} = L \in \mathbb{R}$, então $r = \frac{1}{L}$.

Teorema 210 Se $0 < \rho < r$ então a série $\sum a_n (x - x_0)^n$ converge uniformemente em $[x_0 - \rho, x_0 + \rho]$. Assim, a função $f(x) = \sum a_n (x - x_0)^n$ é contínua em $(x_0 - r, x_0 + r)$.

Teorema 211 Seja $f(x) = \sum a_n x^n$. Se $[\alpha, \beta] \subseteq (-r, r)$ então

$$\int_{\alpha}^{\beta} f(x) dx = \sum \frac{a_n}{n+1} \left(\beta^{n+1} - \alpha^{n+1} \right)$$

Teorema 212 Seja $f(x) = \sum a_n x^n$ definida no intervalo (-r,r). Então f é de classe C^{∞} e

$$f'(x) = \sum na_n x^{n-1}$$

tem raio de convergência r também.

Corolário 213 Em particular, $a_k = \frac{f^{(k)}(0)}{k!}$ e $a_0 + a_1x + ... + a_nx^n$ é o polinômio de Taylor de ordem n de f(x) em x = 0.

Corolário 214 Seja $X \subseteq (-r,r)$ tendo 0 como ponto de acumulação. Se $\sum a_n x^n$ e $\sum b_n x^n$ convergem em (-r,r) e são iguais para todo $x \in X$ então $a_n = b_n$ para todo $n \in \mathbb{N}$.

12.4 Funções Trigonométricas

Definição 215 As funções seno e cosseno são definidas pelas séries de raio de convergência infinito abaixo

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

Proposição 216 As funções seno e cosseno são C^{∞} , com $\cos'(x) = -\sin x \ e \sin'(x) = \cos x$. Valem: $\cos^2(x) + \sin^2(x) = 1$; $\cos(x+y) = \cos x \cos y - \sin x \sin y \ e \sin(x+y) = \sin x \cos y + \sin y \cos x$.

Proposição 217 Definimos π como a menor raiz da equação $\cos\left(\frac{x}{2}\right) = 0$. Então \cos e \sin são periódicas de período 2π .

12.5 Séries de Taylor

Exemplo 218 Temos as seguintes séries de Taylor

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots \ para \ x \in (-1,1)$$

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} = 1 - x^2 + x^4 - x^6 + \dots \ para \ x \in (-1,1)$$

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \ para \ x \in \mathbb{R}$$

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n!} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \ para \ x \in (-1,1]$$

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \ para \ x \in [-1,1]$$