Results

Descriptives

Descriptives

	Cloak
N	24
Missing	0

Frequencies

Frequencies of Cloak

Cloak	Counts	% of Total	Cumulative %
No Cloak	12	50.0%	50.0%
Cloak	12	50.0%	100.0%

Plots

Cloak

Descriptives

Descriptives

	Cloak	Mischief
N	No Cloak Cloak	12 12
Missing	No Cloak Cloak	0 0
Mean	No Cloak Cloak	3.75 5.00
Median	No Cloak Cloak	4.00 5.00
Standard deviation	No Cloak Cloak	1.91 1.65
Minimum	No Cloak Cloak	0.00 2.00
Maximum	No Cloak Cloak	6.00 8.00
Skewness	No Cloak Cloak	-0.789 0.00
Std. error skewness	No Cloak Cloak	0.637 0.637
Kurtosis	No Cloak Cloak	-0.229 0.161
Std. error kurtosis	No Cloak Cloak	1.23 1.23
Shapiro-Wilk W	No Cloak Cloak	0.913 0.973
Shapiro-Wilk p	No Cloak Cloak	0.231 0.936

Plots

Mischief

Relationships, Prediction, and Group Comparisons

You have entered a numeric variable for Variable 1 / Dependent Variable and a dichotomous variable for Variable 2 / Independent Variables. Hence, the two sample t test assuming equal population variances or the two sample t test not assuming equal population variances seems to be a good option for you! Both tests are tests for the difference between two population means. In order to run these tests in jamovi, go to: T-Tests > Independent Samples T-Test

- Drop your dependent (numeric) variable in the box below Dependent Variables and your independent (grouping) variable in the box below Grouping Variable
- Under Tests, select Student's if you want to assume equal population variances, and Welch's if you don't want to assume equal population variances
- · Under Hypothesis, select your alternative hypothesis

If the normality assumption is violated, you could use the non-parametric Mann-Whitney U test. Click on the links to learn more about these tests!

Scatter Plots of Bivariate Relationships - Dependent/Independent Variables

Independent Samples T-Test

Independent Samples T-Test

		Statistic	df	р	Mean difference	SE difference		Effect Size
Mischief	Student's t Welch's t	-1.71 -1.71		0.101 0.101	-1.25 -1.25	0.730 0.730	Cohen's d Cohen's d	-0.700 -0.700

Note. $H_a \mu_{No\ Cloak} \neq \mu_{Cloak}$

Group Descriptives

	Group	N	Mean	Median	SD	SE
Mischief	No Cloak	12	3.75	4.00	1.91	0.552
	Cloak	12	5.00	5.00	1.65	0.477

Plots

Mischief

Robust Independent Samples T-Test

Robust Independent Samples T-Test

						95% Confidence Interval		
		t	df	р	Mean diff	Lower	Upper	ξ
Mischief	Yuen's test Yuen's bootstrapped		12.3	0.165 0.185	-1.00	-2.47	0.472	0.398

Independent Samples T-Test

Independent Samples T-Test

		Statistic	±%	df	р	Mean difference	SE difference		Effect Size
Mischief	Student's t	-1.71		22.0	0.101	-1.25	0.730	Cohen's d	-0.700
	Bayes factor ₁₀	1.05	3.55e- 5						
	Welch's t	-1.71		21.5	0.101	-1.25	0.730	Cohen's d	-0.700
	Mann- Whitney U	47.0			0.149	-1.00		Rank biserial correlation	0.347

Note. $H_a \mu_{No Cloak} \neq \mu_{Cloak}$

[3] [4] [5]

Assumptions

Normality Test (Shapiro-Wilk)

	W	р
Mischief	0.965	0.546

Note. A low p-value suggests a violation of the assumption of normality

Homogeneity of Variances Test (Levene's)

	F	df	df2	р
Mischief	0.545	1	22	0.468

Note. A low p-value suggests a violation of the assumption of equal variances **[6]**

Group Descriptives

	Group	N	Mean	Median	SD	SE
Mischief	No Cloak Cloak			4.00 5.00		

Plots

Mischief

Descriptives

Descriptives

Ν

Missing

Mean

Median

Standard deviation

Minimum

Maximum

Bayesian Paired Samples T-Test

Bayesian Paired Samples T-TestC

			BF ₁₀	error %
Cloak	-	Mischief	6.02e+7	1.10e-10

Descriptives

Descriptives Plot

Cloak - Mischief

Inferential Plots

Cloak - Mischief

Prior and Posterior

Bayes Factor Robustness Check

C

Sequential Analysis

References

[1] The jamovi project (2022). jamovi. (Version 2.3) [Computer Software]. Retrieved from https://www.jamovi.org.

n

- [2] R Core Team (2021). *R: A Language and environment for statistical computing*. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).
- [3] Morey, R. D., & Rouder, J. N. (2018). *BayesFactor: Computation of Bayes Factors for Common Designs*. [R package]. Retrieved from https://cran.r-project.org/package=BayesFactor.
- [4] Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. *Psychonomic Bulletin & Review, 16*, 225-237.

[5] Kerby, D. S. (2014). The simple difference formula: An approach to teaching nonparametric correlation. *Comprehensive Psychology*, *3*, 2165–2228.

[6] Fox, J., & Weisberg, S. (2020). *car: Companion to Applied Regression*. [R package]. Retrieved from https://cran.r-project.org/package=car.

[7] JASP Team (2018). JASP. [Computer software]. Retrieved from https://jasp-stats.org.