2017 秋微积分 A 期末考试答案

- 一. 填空题 (每空 3 分,共 15 题) (请将答案直接填写在横线上!)
- 2. 函数 $f(x) = x + \sqrt{1-x}$ 在区间 [-5,1] 上的最小值为_____. $f(-5) = -5 + \sqrt{6}$
- 3. 设曲线 $y = \frac{1}{x} + \ln(1 + e^x)$ 有 k 条渐近线,则 $k = _____$ 。 3

- 6. $\int \frac{8}{x(x^2+4)} dx = \frac{1}{x^2+4} + C$
- 7. $\lim_{n \to +\infty} \ln \left(\frac{1}{n} \sqrt[n]{(n+1)(n+2)\cdots(n+n)} \right) = \underline{\qquad} \quad 2\ln 2 1$
- 8. $\int_{-1}^{1} (x + \sqrt{\pi^2 x^2})^2 dx = \underline{\qquad} 2\pi^2$
- 9. 设 $f(x) = \int_0^{x-\sin x} (1-\cos t^2) dt$, 若 $\lim_{x\to 0} \frac{f(x)}{x^k} = C \neq 0$,则 $k = \underline{\qquad}$ 。 15
- 11. 由曲线 $y = \ln x$ 与两直线 y = e + 1 x 及 y = 0 所围成的平面图形的面积为______。 $\frac{3}{2}$
- 13. 设 p > 0,广义积分 $\int_0^{+\infty} \frac{1}{(1+x^{2p})(\ln(1+x))^p} dx$ 收敛,则实数 p 满足______。 $\frac{1}{2}$

$$y = x - x \ln x$$

二. 计算题 (每题 10 分,共 4 题) (请写出详细的计算过程和必要的根据!)

1. 求函数 $f(x) = \frac{x}{x^2 + 1}$ 的定义域, 单调、凸性区间, 极值、拐点, 渐近线。

解:
$$f(x) = \frac{x}{x^2 + 1}$$
 定义域为 $(-\infty, +\infty)$1 分

$$f'(x) = \frac{1-x^2}{(1+x^2)^2}, f'(x) = 0$$
 \(\text{\text{\$\frac{1}{2}\$}}, \quad x = \pm 1\).

$$f''(x) = \frac{2x(x^2 - 3)}{(1 + x^2)^3}, \quad f''(x) = 0, x = \pm \sqrt{3}$$

单调减区间: (-∞,-1),(1,+∞)

单调增区间: (-1,1)

----2分

上凸区间: $(-\infty, -\sqrt{3}), (0, \sqrt{3})$

下凸区间: $(-\sqrt{3},0),(\sqrt{3},+\infty)$

----2分

极大值: $f(1) = \frac{1}{2}$

极小值: $f(-1) = -\frac{1}{2}$

······2 分

拐点:
$$(-\sqrt{3}, \frac{-\sqrt{3}}{4}), (\sqrt{3}, \frac{\sqrt{3}}{4})$$
2 分

渐近线: y=0 ······1 分

2. 求广义积分
$$\int_0^{+\infty} \frac{\ln x}{(1+x)^3} dx$$
.

解:
$$\int \frac{\ln x}{(1+x)^3} dx = -\frac{1}{2} \int \ln x dx \frac{1}{(1+x)^2} = -\frac{1}{2} \frac{\ln x}{(1+x)^2} + \frac{1}{2} \int \frac{dx}{x(1+x)^2}$$

$$= -\frac{1}{2} \frac{\ln x}{(1+x)^2} + \frac{1}{2} \int \left(\frac{1}{x} - \frac{1}{1+x} - \frac{1}{(1+x)^2} \right) dx = -\frac{1}{2} \frac{\ln x}{(1+x)^2} + \frac{1}{2} \ln \frac{x}{1+x} + \frac{1}{2} \frac{1}{1+x} + C$$
......5 \(\frac{1}{2}\)

所以

3. 设 a > 0,求摆线 $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ $(0 \le \theta \le 2\pi)$ 绕 y 轴旋转一周生成旋转面的面积.

解:
$$S = 2\pi \int_0^{2\pi} a(\theta - \sin \theta) \sqrt{a^2 (1 - \cos \theta)^2 + a^2 \sin^2 \theta} d\theta$$
 5 分
$$= 4\pi a^2 \int_0^{2\pi} (\theta - \sin \theta) \sin \frac{\theta}{2} d\theta$$

$$= 16\pi a^2 \int_0^{\pi} (t - \sin t \cos t) \sin t dt$$

$$= 16\pi^2 a^2$$

-----5分

若做成绕 x 轴旋转成的旋转面面积

$$S = 2\pi \int_0^{2\pi} a(1 - \cos\theta) \sqrt{a^2 (1 - \cos\theta)^2 + a^2 \sin^2\theta} d\theta = 8\pi a^2 \int_0^{2\pi} \sin^3\frac{\theta}{2} d\theta = \frac{64}{3}\pi a^2$$

得5分

4. 设函数 y(x) 满足微分方程 $y^{(4)}(x) - y''(x) = 0$,且当 $x \to 0$ 时, $y(x) \sim x^3$,求 y(x)。

解: 方程 $y^{(4)}-y''=0$ 的特征根为 $\lambda_1=\lambda_2=0$, $\lambda_3=1$, $\lambda_4=-1$,故方程的通解为

$$y(x) = C_1 + C_2 x + C_3 e^x + C_4 e^{-x}$$
4 $\frac{1}{2}$

由于当 $x \to 0$ 时,

于是当 $x \to 0$ 时,

$$y(x) = (C_1 + C_3 + C_4) + (C_2 + C_3 - C_4)x + \frac{C_3 + C_4}{2}x^2 + \frac{C_3 - C_4}{6}x^3 + \circ(x^3),$$

由此知,欲使 $x \to 0$ 时, $y(x) \sim x^3$,只需要
$$\begin{cases} C_1 + C_3 + C_4 = 0 \\ C_2 + C_3 - C_4 = 0 \\ C_3 + C_4 = 0 \\ C_3 - C_4 = 6 \end{cases}$$

解之得,
$$C_1 = 0$$
; $C_2 = -6$; $C_3 = -C_4 = 3$ 。4 分

 $\mathbb{P} y(x) = -6x + 3e^x - 3e^{-x} .$

三. 证明题(请写出详细的证明过程!)

1. (7分)设
$$x \in (-1,1)$$
,证明不等式: $x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2}$ 。

证明: 设
$$F(x) = x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2}$$
, 则 $F(0) = 0$;

$$F'(x) = \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x , \quad F'(0) = 0 ; \qquad \cdots 1$$

$$F''(x) = \frac{4}{(1-x^2)^2} - \cos x - 1 \ge 0, \quad x \in (-1,1),$$
 $2 / 2$

所以
$$F'(x)$$
单调增, $F'(x) \ge 0$, $x \in (0,1)$; $F'(x) \le 0$, $x \in (-1,0)$, ……2 分

故
$$F(0) = 0$$
 是 $F(x)$ 在 $(-1,1)$ 的最小值,即 $F(x) = x \ln \frac{1+x}{1-x} + \cos x - 1 - \frac{x^2}{2} \ge 0$, $x \in (-1,1)$ 。 ……2 分

除去以上标准的求导验证极值的做法,也可以用常用的不等式证得该题(可作为解法二)需要用两个结论:

1. $ln(1+x) \leq x$

$$2. \quad \cos x \ge 1 - \frac{x^2}{2}$$

这两条均可用求函数极值或者直接用含 Lagrange 余项的 Taylor 展式证明。由于欲证不等式两边都是偶函数,只证x>0的情况:

因为
$$x \ln \frac{1+x}{1-x} = x \ln(1+x) - x \ln(1-x) \ge -x \ln(1-x) \ge -x \cdot (-x) = x^2$$
, $\cos x \ge 1 - \frac{x^2}{2}$,

相加得原不等式成立。

2. (8分)设
$$f(x)$$
 在 $[0,+\infty)$ 上连续, 令 $g(x) = \int_0^x f(t) dt$,

(I) 若
$$A, B \in (0, +\infty)$$
, 证明 $\int_A^B \frac{g^2(x)}{x^2} dx = \frac{g^2(B)}{B} - \frac{g^2(A)}{A} + 2 \int_A^B \frac{f(x)g(x)}{x} dx$;

(II) 若广义积分
$$\int_0^{+\infty} f^2(x) dx$$
 收敛,证明广义积分 $\int_0^{+\infty} \frac{g^2(x)}{r^2} dx$ 收敛,且

$$\int_0^{+\infty} \frac{g^2(x)}{x^2} dx \leqslant 4 \int_0^{+\infty} f^2(x) dx$$

证明: (1)
$$\int_{A}^{B} \frac{g^{2}(x)}{x^{2}} dx = -\int_{A}^{B} g^{2}(x) d(\frac{1}{x}) = -\frac{g^{2}(x)}{x} \bigg|_{A}^{B} + 2 \int_{A}^{B} \frac{g(x)g'(x)}{x} dx$$

$$= \frac{g^{2}(A)}{A} - \frac{g^{2}(B)}{B} + 2 \int_{A}^{B} \frac{f(x)g(x)}{x} dx$$
3 \(\frac{1}{2}\)

(II) $\diamondsuit A = \varepsilon > 0, B = M > \varepsilon$, 由(I) 得

$$\int_{\varepsilon}^{M} \frac{g^{2}(x)}{x^{2}} dx = \frac{g^{2}(\varepsilon)}{\varepsilon} - \frac{g^{2}(M)}{M} + 2 \int_{\varepsilon}^{M} \frac{f(x)g(x)}{x} dx$$
$$\leq \frac{g^{2}(\varepsilon)}{\varepsilon} + 2 \int_{\varepsilon}^{M} \frac{f(x)g(x)}{x} dx$$

由己知 $g(x) = \int_0^x f(t)dt$, 且f(x)在 $[0,+\infty)$ 上连续,

$$\lim_{x \to 0^+} \frac{g(x)}{x} = \lim_{x \to 0^+} \frac{\int_0^x f(t)dt}{x} = f(0)$$

$$\lim_{x \to 0^+} \frac{g^2(x)}{x} = 0$$

所以令
$$\varepsilon \to 0^+$$
, $\int_0^M \frac{g^2(x)}{x^2} dx \le 2 \int_0^M \frac{f(x)g(x)}{x} dx$ 。

曲 Cauchy 不等式,
$$\int_0^M \frac{g^2(x)}{x^2} dx \le 2 \left(\int_0^M f^2(x) dx \right)^{\frac{1}{2}} \left(\int_0^M \frac{g^2(x)}{x^2} dx \right)^{\frac{1}{2}}$$
。

因为
$$\int_0^M \frac{g^2(x)}{x^2} dx \ge 0$$
,所以无论 $\int_0^M \frac{g^2(x)}{x^2} dx = 0$ 或 $\int_0^M \frac{g^2(x)}{x^2} dx \ge 0$,不等式

$$\left(\int_{0}^{M} \frac{g^{2}(x)}{x^{2}} dx\right)^{\frac{1}{2}} \leq 2\left(\int_{0}^{M} f^{2}(x) dx\right)^{\frac{1}{2}}$$

均成立。故 $\int_0^M \frac{g^2(x)}{x^2} dx \le 4 \int_0^M f^2(x) dx$.

因为广义积分 $\int_0^{+\infty} f^2(x) dx$ 收敛,所以广义积分 $\int_0^{+\infty} \frac{g^2(x)}{x^2} dx$ 也收敛,且

$$\int_0^{+\infty} \frac{g^2(x)}{x^2} dx \le 4 \int_0^{+\infty} f^2(x) dx \qquad \cdots 5$$