Определение 1. Арифметическая прогрессия — это (конечная или бесконечная) последовательность чисел a_1, a_2, a_3, \ldots , в которой разность $d = a_k - a_{k-1}$ между соседними членами a_k и a_{k-1} одинакова для всех k; она называется разностью или приращением прогрессии.

- **Задача 1** $^{\varnothing}$ **. а)** Выразите n-й член арифметической прогрессии через первый член и разность.
- б) Найдите 50-е натуральное число среди чисел, больших 90 и имеющих остаток 3 при делении на 4.

Задача 2[©]. а) Каждый член последовательности (кроме крайних, если они есть) равен среднему арифметическому двух соседних членов. Верно ли, что это арифметическая прогрессия? **б**) Верно ли обратное?

Задача 3. В некоторой арифметической прогрессии сумма первых n членов равна сумме первых m членов (где m < n). Докажите, что сумма первых n + m членов этой прогрессии равна нулю.

- **Задача 4** $^{\varnothing}$. Выразите сумму всех членов конечной арифметической прогрессии $a_1,\,a_2,\,\ldots,\,a_n$ через
- а) два крайних члена и число слагаемых; б) начальный член, число слагаемых и приращение.
- Задача 5. Найдите сумму всех трёхзначных чисел, оканчивающихся на 7.
- **Задача 6**°. По строкам и столбцам прямоугольной таблицы $m \times n$ стоят арифметические прогрессии. Найдите сумму всех чисел в таблице, если сумма четырёх угловых чисел равна S.
- **Задача 7.** Найдите арифметическую прогрессию, у которой при каждом натуральном n сумма первых n членов равна **a)** 3n; **b)** n^2 ; **b)** $n^2 + n$; **r)** $2n^2 3n$.
- **Задача 8.** Пусть $f(x) = ax^2 + bx + c$. Докажите, что арифметическая прогрессия, сумма первых n членов которой равна f(n) при всех натуральных n, **a)** существует при c = 0; **б)** не существует при $c \neq 0$.
- **Задача 9.** Фабрика выпускает наборы из n>2 белых слоников различной величины и массы, стоящих по росту. По стандарту, разность масс соседних слоников должна быть одной и той же. При каких n контролер гарантированно сможет это проверить с помощью чашечных весов без гирь?
- **Задача 10.** Можно ли натуральный ряд покрыть k арифметическими прогрессиями с различными натуральными разностями, не равными 1, если **a)** k=2; **б)** k=3; **в)*** k=4; **г)*** k=5?

Определение 2. Геометрическая прогрессия — это (конечная или бесконечная) последовательность ненулевых чисел a_1, a_2, a_3, \ldots , в которой отношение $q = a_k/a_{k-1}$ соседних членов одинаково для всех k; оно называется знаменателем прогрессии.

Задача 11 $^{\varnothing}$. Будет ли геометрической прогрессией последовательность, k-й член которой равен

- а) 0, 0...03; б) 1...1; в) 2^{3k+5} ; г) $g_k \cdot h_k$, где (g_k) , (h_k) геометрические прогрессии?
- д) Выразите n-й член геометрической прогрессии через первый член и знаменатель.
- **Задача 12**. **а)** Квадрат каждого члена последовательности (кроме крайних, если они есть) ненулевой и равен произведению двух соседних. Геометрическая ли это прогрессия? **б)** Верно ли обратное?
- Задача 13. Некто приезжает в город с новостью и сообщает её двоим. Каждый из вновь узнавших новость через 5 минут сообщает её ещё двоим (которые её не знают) и т. д. (пока все в городе её не узнают). Через сколько времени новость узнает весь город, если в нём 1 000 000 жителей?
- **Задача 14.** Торговец продавал одинаковые орехи. Первый покупатель купил 1 орех, второй -2, третий -4, и т. д.: каждый следующий покупал вдвое больше орехов, чем предыдущий. Орехи, купленные последним, весили 50 кг, после чего у торговца остался 1 орех. Сколько орехов (по массе) было у него вначале?
- Задача 15 $^{\textcircled{@}}$. Найдите суммы: **a)** $1+x+x^2+\ldots+x^n$; **б)** $1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\ldots-\frac{1}{512}$. **в)** Выразите сумму всех членов конечной геометрической прогрессии через начальный член a, число слагаемых n и знаменатель q.
- **Задача 16** По строкам и столбцам прямоугольной таблицы $m \times n$ стоят геометрические прогрессии. Произведение четырёх угловых чисел равно p. Чему может равняться произведение всех чисел таблицы?
- **Задача 17*.** а) Будут ли все целые члены геометрической прогрессии образовывать геометрическую прогрессию? б) Можно ли покрыть натуральный ряд конечным числом геометрических прогрессий?

Определение 3. Числа Фибоначии – это члены последовательности f_0, f_1, f_2, \ldots , в которой $f_0 = f_1 = 1$, а каждый следующий член равен сумме двух предыдущих: $f_n = f_{n-1} + f_{n-2}$ при всех целых $n \ge 2$.

Задача 18. Найдите все а) арифметические; б) геометрические прогрессии, у которых каждый член, начиная с третьего, равен сумме двух предыдущих.

Задача 19. а) У двух последовательностей одинаковые первые члены и вторые члены, и каждый член, начиная с третьего, равен сумме двух предыдущих. Докажите, что эти последовательности совпадают.

б) Представьте последовательность Фибоначчи в виде суммы двух геометрических прогрессий, то есть найдите такие прогрессии (g_n) и (h_n) , что $f_n = g_n + h_n$ при всех целых $n \ge 0$. **в)** Найдите $f_0 + \ldots + f_n$.

$\begin{bmatrix} 1 & 1 \\ a & 6 \end{bmatrix}$	2 a	$\begin{array}{c c} 2 & 2 \\ 6 & 6 \end{array}$	3	4 a	4 6	5	6	7 a	7 б	7 B	7 г	8 a	8 6	9	10 a	10 б	10 B	10 Г	11 a	11 б	11 B	11 Г	11 Д	12 a	12 б	13	14	15 a	15 б	15 B	16	17 a	17 б	18 18 a 6	3 19 a	9 б	19 B