# MA0505 - Análisis I

Lección V: Compacidad

Pedro Méndez<sup>1</sup>

<sup>1</sup>Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021



## Agenda

Compacidad Secuencial

2 Cubrimientos

## La Definición de Compacidad

- Dado C ⊆ X, diremos que C es secuencialmente compacto si cualquier sucesión (x<sub>n</sub>)<sub>n=1</sub><sup>∞</sup> ⊆ C poseé una subsucesión convergente.
- Note que si  $(x_{n_k})_{k=1}^{\infty}$  converge a  $x_0$ , tenemos que dado  $\varepsilon > 0$ , existe  $k_0$  tal que

$$k \geqslant k_0 \Rightarrow d(x_{n_k}, x_0) < \varepsilon.$$

### Continuando la idea...

• De lo anterior,  $x_{n_k} \in B(x_0, \varepsilon)$  cuando  $k \geqslant k_0$ . Así para  $k \geqslant 1$ 

$$B(x_0,\varepsilon)\cap\{x_m:\ m\geqslant k\}\neq\emptyset.$$

• Por lo tanto  $x_0 \in \overline{\{x_m : m \geqslant k\}}$  para  $k \geqslant 1$  y en consecuencia

$$x_0 \in \bigcap_{k=1}^{\infty} \overline{\{x_m : m \geqslant k\}}$$

### Una nueva idea...

Tomemos  $x_0 \cap_{k=1}^{\infty} \overline{\{x_m : m \geqslant k\}}$  podemos tomar iterativamente:

- $x_k \in B(x_0, 1) \cap \{x_m : m \geqslant 1\}.$
- $x_{k_2} \in B(x_0, \frac{1}{2}) \cap \{x_m : m \geqslant k_1 + 1\}.$

:

•  $x_{k_n} \in B(x_0, \frac{1}{n}) \cap \{x_m : m \geqslant k_{n+1} + 1\}.$ 

Así  $x_{k_n} \to x_0$  y  $(x_{n_k})$  es una subsucesión de  $(x_n)$ 

### Condensamos lo anterior

#### Lema

Si (X, d) es un espacio métrico y  $C \subseteq X$ , son equivalentes

- C es secuencialmente compacto.

### Una conexión con lo anterior

Si  $z \in \overline{C}$ , existe  $(x_n) \subseteq C$  tal que  $x_n \to z$ . Si C es secuencialmente compacto, existe una subsucesión  $(x_{n_k})_{k=1}^{\infty}$  que converge a un punto de C. Es decir,  $z \in C$ .

#### Lema

Sea C secuencialmente compacto, entonces C es cerrado y acotado.

### Ejercicio

Muestre que C es acotado cuando es secuencialmente compacto.

## Cubrimientos por abiertos

#### Definición

A una colección  $\mathcal{U}=\{\ U_\alpha:\ \alpha\in\Lambda\ \}$  de abiertos le llamamos un recubrimiento de un conjunto A si

$$A\subseteq\bigcup_{\alpha\in\Lambda}U_{\alpha}.$$

#### Lema

Si C es secuencialmente compacto y  $\mathcal U$  es un recubrimiento de C, existe  $\varepsilon>0$  tal que para  $x\in C$ , existe  $U\in \mathcal U$  tal que

$$B(x,\varepsilon)\cap C\subseteq \mathcal{U}.$$



### Probemos lo anterior

Supongamos que para  $\varepsilon > 0$  existe  $x_{\varepsilon} \in C$  tal que

$$B(x_{\varepsilon}, \varepsilon) \subsetneq U_{\alpha}, \ \alpha \in \Lambda.$$

- En particular existe  $(x_n)_{n=1}^{\infty} \subseteq C$  tal que  $B(x_n, \frac{1}{n}) \subsetneq U_{\alpha}$ , para  $\alpha \in \Lambda$ .
- Al ser C secuencialmente compacto, existe  $(x_{n_k})_{k=1}^{\infty} \subseteq C$  y  $x_0 \in C$  tal que  $x_{n_k} \to x_0$ .
- Como  $\mathcal U$  es recubrimiento, existe  $U_{\alpha_0}$  tal que  $x_0 \in U_{\alpha_0}$ .



### **Terminemos**

Sea  $\varepsilon > 0$  tal que  $B(x_0,\varepsilon)\subseteq U_{\alpha_0}$  y tomemos  $k_0$  tal que

$$k\geqslant k_0\Rightarrow d(x_{n_k},x_0)<rac{arepsilon}{2}.$$

Con argumentos usuales podemos probar que

$$B\left(x_{n_k}, \frac{1}{n_k}\right) \subseteq B(x_0, \varepsilon)$$
 cuando  $\frac{1}{n_k} < \frac{\varepsilon}{\varepsilon}$ . Es decir

$$\frac{1}{n_k} < \frac{\varepsilon}{2}$$
. Es decir

$$B\left(x_{n_k},\frac{1}{n_k}\right)\subseteq B(x_0,\varepsilon)$$
  
$$\subseteq U_{\alpha_0}.$$



#### Resumen

- Definición de compacidad secuencial. 3
- Equivalencia entre compacidad secuencial y la propiedad de intersección. 1.
- Compacidad secuencial implica compacidad usual. 2
- Definición de recubrimiento por abiertos. 1 y el último lema.

## **Ejercicios**

- Lista 5
  - Terminar el detalle en la prueba del lema de compacidad secuencial a la usual. 2.

### Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.