Route or path: criteria of goodness

- Hop count
- Delay
- Bandwidth
- Loss rate

Composition of goodness metric:

- → quality of end-to-end path
- Additive: hop count, delay
- Min: bandwidth
- Multiplicative: loss rate

Goodness of routing:

- \longrightarrow assume N users or sessions
- → suppose path metric is delay

Two approaches:

- system optimal routing
 - \rightarrow choose paths to minimize $\frac{1}{N} \sum_{i=1}^{N} D_i$
 - \rightarrow good for the system as a whole
- user optimal routing
 - \rightarrow each user i chooses path to minimize D_i
 - \rightarrow selfish route selections by each user
 - \rightarrow end result may not be good for system as a whole

Algorithms

Find short, in particular, shortest paths from source to destination.

Key observation on shortest paths:

- Assume p is a shortest path from S to D $\to S \stackrel{p}{\leadsto} D$
- \bullet Pick any intermediate node X on the path
- \bullet Consider the two segments p_1 and p_2

$$\rightarrow S \stackrel{p_1}{\leadsto} X \stackrel{p_2}{\leadsto} D$$

- The path p_1 from S to X is a shortest path, and so is the path p_2 from X to D
 - → leads to Dijkstra's algorithm

Illustration:

 \rightarrow suggests algorithm for finding shortest path

Leads to Dijkstra's shortest-path algorithm:

 \rightarrow single-source all-destination

Features:

- nunning time: $O(n^2)$ time complexity
 - $\rightarrow n$: number of nodes
- if heap is used: $O(|E| \log |V|)$
 - $\rightarrow O(n \log n)$ if |E| = O(n)
- can also be run "backwards"
 - \rightarrow start from destination D and go to all sources
 - \rightarrow a variant used in inter-domain routing
 - \rightarrow forward version: used in intra-domain routing
- \bullet source S requires global link distance knowledge
 - \rightarrow centralized algorithm (center: source S)
 - \rightarrow every router runs Dijkstra with itself as source
 - \rightarrow lots of broadcast management packets

- Internet protocol implementation
 - → OSPF (Open Shortest Path First)
 - \rightarrow also called link state algorithm
 - \rightarrow broadcast protocol
- \bullet builds minimum spanning tree rooted at S:
 - \rightarrow to all destinations
 - \rightarrow if select destination: called multicasting
 - \rightarrow multicast group
 - \rightarrow standardized feature of IETF but not actively utilized on Internet
 - → complexity including group membership management

Distributed/decentralized shortest path algorithm:

- \longrightarrow Bellman-Ford algorithm
- → based on shortest path decomposition property

Key procedure:

- Each node X maintains current shortest distance to all other nodes
 - \rightarrow a distance vector
- Each node advertises to neighbors its current best distance estimates
 - \rightarrow i.e., neighbors exchange distance vectors
- Each node updates shortest paths based on neighbors' advertised information
 - \rightarrow same update criterion as Dijkstra's algorithm

Features:

- running time: $O(n^3)$
- each source or router only talks to neighbors
 - \rightarrow local interaction
 - \rightarrow no need to send update if no change
 - \rightarrow if change, entire distance vector must be sent
- knows shortest distance, but not path
 - \rightarrow just the next hop is known
- elegant but additional issues compared to Dijkstra's algorithm
 - \rightarrow e.g., stability
- Internet protocol implementation
 - \rightarrow RIP (Routing Information Protocol)

QoS routing:

Given two or more performance metrics—e.g., delay and bandwidth—find path with delay less than target delay D (e.g., 100 ms) and bandwidth greater than target bandwidth B (e.g., 1.5 Mbps)

- → from shortest path to best QoS path
- → multi-dimensional QoS metric
- \longrightarrow other: jitter, hop count, etc.

How to find best QoS path that satisfies all requirements?

Brute-force

- enumerate all possible paths
- rank them

Policy routing:

- → meaning of "policy" is not precisely defined
- \longrightarrow almost anything goes

Criteria include:

- Performance
 - \rightarrow e.g., short paths
- Trust
 - \rightarrow what is "trust"?
- Economics
 - \rightarrow pricing
- Politics, etc.

BGP (Border Gateway Protocol):

→ inter-domain routing

Autonomous System B Peering Border Routers

- → "peering" between two domains
- → typical: customer-provider relationship
- \longrightarrow in some cases: equals (true peers)
- → Internet exchanges: multiple domains meet up

• CIDR addressing

- \rightarrow i.e., a.b.c.d/x
- \rightarrow Purdue: 128.10.0.0/16, 128.210.0.0/16, 204.52.32.0/20
- → check at www.iana.org (e.g., ARIN for US)
- Metric: policy
 - \rightarrow e.g., shortest-path, trust, pricing
 - → meaning of "shortest": delay, router hop, AS hop
 - → mechanism: path vector routing
 - \rightarrow BPG update message

BGP route update:

→ BGP update message propagation

BGP update message format:

$$ASNA_k \rightarrow \cdots \rightarrow ASNA_2 \rightarrow ASNA_1$$
; a.b.c.d/x

Meaning: ASN A_1 (with CIDR address a.b.c.d/x) can be reached through indicated path

- \longrightarrow called path vector
- \longrightarrow also AS-PATH

Some AS numbers:

- Purdue: 17
- BBN: 1
- UUNET: 701
- Level3: 3356
- Abilene (aka "Internet2"): 11537
- AT&T: 7018

Performance

Route update frequency:

- → routing table stability vs. responsiveness
- \longrightarrow rule: not too frequently
- \longrightarrow 30 seconds
- \longrightarrow stability wins
- → hard lesson learned from the past (sub-second)
- \longrightarrow legacy: TTL

Other factors for route instability:

- \longrightarrow selfishness (e.g., fluttering)
- → BGP's vector path routing: inherently unstable
- → more common: slow convergence
- \longrightarrow target of denial-of-service (DoS) attack

Route amplification:

- \longrightarrow shortest AS path \neq shortest router path
- → e.g., may be several router hops longer
- \longrightarrow AS graph vs. router graph
- → policy: company in Denmark

Route asymmetry:

- → routes are not symmetric
- \longrightarrow estimate: > 50%
- → mainly artifact of inter-domain policy routing
- → various performance implications
- \longrightarrow source traceback

Black holes:

→ persistent unreachable destination prefixes

→ BGP routing problems

 \longrightarrow further aggrevated by DNS