Semantic Web for the Working Ontologist

Chapter 13: Ontologies on the Web

Data on the Web

Schemas:

- schema.org http://schema.org/
- Open Graph Protocol http://ogp.me/
- Good Relations Ontology <u>http://www.heppresearch.com/</u>

Formats:

- RDFa (W3C Recommendation)
- Microformats http://microformats.org/
- JSON LD (W3C Recommendation; does not completely intersect with RDF) https://json-ld.org/TR/json-ld/

RDFa extraction demo

- http://bioimages.vanderbilt.edu/baskauf/11926.htm
- View page source
- Go to W3C RDFa Validator: https://www.w3.org/2012/pyRdfa/Validator.html
- Paste in URL, or upload from saved HTML file.

Supposed Good Relations RDF

- http://www.bestbuy.com/site/apple-apple-watch-sport-42mm-space-gray-aluminum-case-space-gray-sports-band/4274802.p?id=1219733906250&skuId=42748
- Check page source for RDFa
- https://www.w3.org/2012/pyRdfa/Validator.html
- Open Graph protocol, not Good Relations
- Significant lack of commitment to "pure" RDF (use of literals for everything)
- Could not find GR at sears.com, kmart.com, etc.

Taking a look at Good Relations

- Source is at <u>http://www.heppnetz.de/ontologies/goodrelations</u>
 /v1.html
- RDF/XML on GitHub
- Turtle on GitHub
- Ugliness; look at in Protégé
- Note that cardinality is given in literals, not OWL definitions (???)
- Note the usual problem of competing schemas and attempt to reconcile with schema.org

The literal problem

```
ex:flyingPig ex:hasMeasurement "21"^^xsd:integer.
```

- The datatyping lets us know that the literal is a number.
- But what kind of measurement is this? What are the units?

Reification examples: rdf:value and DCMI RDF model

https://www.w3.org/TR/rdf-schema/#ch_value

http://dublincore.org/documents/dc-rdf/

Reification of price specification

Describing services

```
gr:ProductOrService
 CONSTRUCT {
 ?o gr:includesObject :n .
 :n rdf:type gr:TypeAndQuantityNode.
                                                             rdf:type
 :n gr:amountOfThisGood "1.0"^^xsd:float.
  :n gr:hasUnitOfMeasurement "C62"^^xsd:string.
  :n gr:typeOfGood ?p.}
 WHERE
                                                    plush:Service_1
 ?o rdf:type gr:Offering.
                             gr:includes
 ?o gr:includes ?p. }
  plush:Offering_1
                                                                         "1.0"^^xsd:float
rdf:type
                                   plush:PriceSpec_1
               gr:includesObject
                                                         gr:amountOfThisGood
 gr:Offering
                                                        gs:hasUnitOfMeasurement
                               rdf:type
                                                    "C62"^^xsd:string
              gr:TypeAndQuantityNode
```

(by the job; datatyped this time???)

What good does this do?

- Well, it provides an automatic way to say stuff that we were too lazy to assert explicitly.
- Unfortunately, can't be expressed in OWL, so what's the point of building the ontology?

SPIN rules allow SPARQL "rules" to be "ontologized"

owl:Ontology and owl:imports

• Example:

dcterms:hasPart and dcterms:isPartOf

 There is no semantic relationship between these two terms, although they seem to be inverses.

my:ontology a owl:Ontology;

owl:imports http://purl.org/dc/terms/.

dcterms:hasPart owl:inverseOf dcterms:isPartOf.

Quantities, Units, and Dimensions (QUDT)

- Global reference for units
- Conversion services
- Dimension verification

owl:allValuesFrom to restrict possible values

operating on:

```
vocab-units:Foot a qudt:Unit ;
    qudt:quantityKind vocab-quantities:Length .
```

entails:

```
vocab-quantities:Length a qudt:QuantityKind .
```

(any reason why we couldn't have just said that?)

Conversion services

- Apply SPIN rules; again, not really done using OWL
- But what is gained by embedding these in the ontology as opposed to just telling people how to do the SPARQL?

Dimension verification

 Again, depends on SPIN rules that could have just been done by telling people what SPARQL queries to run.

CHEBI, an OBO ontology

- http://www.obofoundry.org/
- Water:

http://www.ontobee.org/ontology/CHEBI?iri=http://purl.obolibrary.org/obo/CHEBI 15377