

Shortest Path 1

Mauro Dell'Amico DISMI, Universitá di Modena e Reggio Emilia mauro.dellamico{at}unimore.it, www.or.unimore.it

4□ ト 4個 ト 4 種 ト 4 種 ト 種 り 4 @

Definitions

A graph G = (V, E) is given by a pair of sets:

 $V = \{v_1, v_2, \dots, v_n\}$: set of vertices $E = \{e_1, e_2, \dots, e_m\}$: set of edges

(pair of vertices in V: $e_i = (v_i^{from}, v_i^{to})$)

- ► If pair of vertices defining an edge are *undirected* the graph is *not oriented* (or simply "graph")
- ▶ If the pair of vertices is *ordered* it is called **arc** and the graph is *directed*. In this case we use A for **arc set**

A **cost** may be associated to each edge/arc $(c_e, e \in E, \text{ or } c_{ij}, (i, j) \in A)$

Definitions: cut

- ▶ Given $S \subset V$ a **cut** $\delta(S)$ is the subset of edges connecting S with $V \setminus S$
- For directed graphs we have to distinguish between arcs exiting from S and entering in S:

$$\delta^+(S) = \{(i,j), i \in S, j \in V \setminus S\} \text{ and } \delta^-(S) = \{(i,j), i \in V \setminus S, jS\}$$

 $\delta^{+}(S) = \{(1,2), (4,6)\}$ $\delta^{-}(S) = \{(5,1), (5,4)\}$

4□ > 4₫ > 4분 > 4분 > 1 900

Definitions: paths

- ▶ A path is a sequences of vertices, pairwise connected by and edge/arc
- ► A path is **simple** if doesn't use two times the same edge/arc
- ► A path is **elementary** if it doesn't use two times the same vertex

A cycle is a path that starts and ends in the same vertex

Shortest path

Given a directed graph G = (V, A) with cost c_{ij} associated to each arc $(i, j) \in A$, the **Shortest Path Problem (SPP)** asks for the minimum cost path from a given vertex $s \in V$ to a given vertex $t \in V$ (or to all vertices)

- ▶ If $c_{ij} \ge 0$, $\forall (i, j) \in A$, the path is elementary, and SPP can be solved in polynomial time
- ▶ If some c_{ij} is negative, then G may contain negative cost circuits
 - \triangleright in this case the circuit is used infinite times to minimize the cost

 - ▷ SPP becomes NP-complete

Mathematical model

$$x_{ij} = \begin{cases} 1 & \text{if } (i,j) \text{ is in the path;} \\ 0 & \text{otherwise.} \end{cases}$$

$$\min \sum_{(i,j) \in A} c_{ij} x_{ij}$$

$$\sum_{(i,h) \in \delta^+(h)} x_{hj} - \sum_{(i,h) \in \delta^-(h)} x_{ih} = \begin{cases} 1 & \text{se } h = s \\ -1 & \text{se } h = t \\ 0 & \forall h \in V \setminus \{s,t\} \end{cases}$$

$$\underbrace{\sum_{(i,j) \in A: i,j \in S}}_{\text{arcs in } S} x_{ij} \leq |S| - 1, \quad \forall S \subseteq V, S \neq \emptyset \quad (*)$$

The $2^n - 1$ constraints (*) are the subtour elimination.

 $x_{ij} \in \{0,1\}, \forall (i,j) \in A$

4□ > 4団 > 4 豆 > 4 豆 > 豆 り Q (P)

Dijkstra algorithm

- ► This algorithm finds the shortest path on graphs with **no negative costs**
- ▶ It iteratively extends a set $S \subseteq V$, starting with $S = \{s\}$

Theorem. Let L_i be the cost of the shortest path from s to i, for all $i \in S \subset V$, $S \ni s$. Let

 $(v,h) = argmin\{L_i + c_{ij} : (i,j) \in \delta^+(S)\}$. Then, $L_v + c_{vh}$ is the cost of the shortest path from s to h.

Proof. The theorem states that the shortest path from s to h reaches $v \in S$ using only vertices in S, and than goes directly to h. Suppose, by contradiction, that the shortest path to h is a different path P. Let $(i,j) \in P \cap \delta^+(S)$ be the first (possibly unique) arc of P exiting form S. Let $P = P_1 \cup \{(i,j)\} \cup P_2$. we have

$$C(P) = \underbrace{c(P_1)}_{\geq L_i} + c_{ij} + \underbrace{C(P_2)}_{\geq 0} \geq L_i + c_{ij} \geq L_v + c_{vh}.$$

Hence $L_v + c_{vh}$ is the minimu cost of any path from s to h.

The algorithm

The theorem suggests an iterative algorithm:

```
\begin{aligned} & \textbf{Dijkstra (1 version)} \\ & S = \{s\}; \ L[s] = 0; \ pred[s] = s; \\ & \textbf{while } (|S| \neq n) \ \textbf{do} \\ & (v,h) = argmin\{L[i] + c_{ij} : (i,j) \in \delta^+(S)\}; \\ & L[h] = L[v] + c_{vh}; \\ & pred[h] = v; \\ & S = S \cup \{h\}; \\ & \textbf{endwhile} \end{aligned}
```

The **while** loop is execute O(|V|) times. The search for the min $L[i] + c_{ij}$ requires O(|A|). The time complexity is O(|V||A|).

Example

Example

We can reduce the time complexity to $O(|V|^2)$ if we store the information computed at each iteration

```
L[j] = \begin{cases} \text{cost of the shortest path from } s \text{ to } j, & \text{if } j \in S; \\ \min\{L[i] + c_{ij} : i \in S\}, & \text{if } j \notin S; \end{cases}
\text{Dijkstra ($II$ version)} \\ \text{for } j \in V \text{ do } L[j] = c_{sj}; \ pred[j] = s; \\ S = \{s\}; \ L[s] = 0; \\ \text{while } (|S| \neq n) \text{ do} \\ h = argmin\{L[h] : h \in V \setminus S\}; \\ S = S \cup \{h\}; \\ //update \ labels \\ \text{for } j \in V \setminus S \text{ do} \\ \text{if } L[h] + c_{hj} < L[j] \text{ then} \\ L[j] = L[h] + c_{hj} < L[j]; \ pred[j] = h; \\ \text{endif} \\ \text{endfor} \\ \text{endwhile} \end{cases}
```

Example

Example

◆ロト ◆団ト ◆差ト ◆差ト 差 りくの

Tabular version

	Г	3					5	1
$[c_{ij}] =$			4				3	
		4		1			5	
			1		3	2	10	
				3		2		5
					2			1
		3	5					0
					5	1	0	

S	L[j]							pred[j]	
	2	3	4	5	6	7	8	2 3 4 5 6 7 8	
{1}	3	∞	∞	∞	∞	5	1	1 1 1 1 1 1 1	
$\{1, 8\}$	3	∞	∞	6	2	1	1	1 1 1 8 8 8 1	
$\{1, 8, 7\}$	3	6	∞	6	2	1	1	1718881	
$\{1, 8, 7, 6\}$	3	6	∞	4	2	1	1	1716881	
$\{1, 8, 7, 6, 2\}$	3	6	∞	4	2	1	1	1716881	
$\{1, 8, 7, 6, 2, 5\}$	3	6	7	4	2	1	1	1756881	
$\{1, 8, 7, 6, 2, 5, 3\}$	3	6	7	4	2	1	1	1756881	
$\{1, 8, 7, 6, 2, 5, 3, 4\}$	3	6	7	4	2	1	1	1756881	