Linear Algebra

Last Updated January 21, 2023

Concepts

Determinant - det(A)Singular matrix - det(A) = 0

Vector Spaces and Subspaces

Four Subspaces

Let A a m by n matrix

- r = rank(A) = dim(C(A)) =Number of pivots
- N(A) = Null space of A = Ker(A) = (FR) Noyau de A
- C(A) =Column Space of A = Im(A) =(FR) Image de A

Fundamental Theorem of Linear Algebra

- The column space and row space both have dimension r.
- The nullspaces have dimension n-r and m-r
- N(A) is the orthogonal complement of the row space $C(A^T)$ (in) \mathbb{R}^n
- $N(A^T)$ is the orthogonal complement of the column space C(A) (in) \mathbb{R}^m

Projection & Least Squares Projection

- $span(A) \perp r$
- span(A) = C(A) = Im(A)
- $y \in span(A)$

$$\Rightarrow span(A) \perp r$$

because each column of A is perpendicular to r

$$\Leftrightarrow A^T r = \vec{0}$$

$$\Leftrightarrow A^T (b - Ax) = \vec{0}$$

$$\Leftrightarrow x = (A^T A)^{-1} A^T b$$

$$\Leftrightarrow y = A(A^T A)^{-1} A^T b$$

$$\Leftrightarrow \rho = A(A^T A)^{-1} A^T$$

 ρ being the projection matrix

Least Squares

Let A be a matrix of $m \times n$, $x \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, where m is the number of samples and n is the number of dimension/features. The dimension of Ax, which is the span(A), is at maximum n, and b have dimension m.

Usually m > n because there are more samples than features, so $\dim(span(A)) < \dim(b)$, in that case it is not guaranteed that it can be found a x that satisfied the equation:

$$Ax = b$$

That is why the make a projection of b over span(A) to have the closest Ax to b. Taking the equations from projection section:

$$x = (A^T A)^{-1} A^T b$$

Matrix factorizations

- 1. A = LU
- $2. \ A = LDU$
- 3. PA = LU
- 4. EA = R
- 5. $S = C^T C$
- 6. A=QR orthonormal columns in Q, upper triangular R

Requirements

- 7. $A = X\Lambda X^{-1}$ Eigenvectors in X, eigenvalues in Λ
- 8. $A = Q\Lambda Q^T$
- 9. $A = BJB^{-1}$
- 10. $A = U\Sigma V^T$ SVD: (orthogonal U is $m \times m$) $(m \times n$ singular value matrix $\sigma_1, ..., \sigma_r$ on its diagonal)(orthogonal V is $n \times n$)
- 11. $A^+ = V\Sigma^+U^T$ Pseudoinverse
- 12. A = QS
- 13. $A = U\Sigma U^{-1}$
- 14. $A = QTQ^{-1}$