Vertex of the Quadratic

Given a quadratic $y(x) = ax^2 + bx + c$ compute its value at $x_1 = -\frac{b}{2a}$ namely $y(x_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at
$$x_1+h$$
, namely $v(x_1+h)=-\frac{b^2}{2a}+ah^2+c$

 $y(x_1+h) = -\frac{b^2}{4a} + a h^2 + c$ Compute $\triangle = y(x_1 + h) - y(x_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $y(x) = 4x^2 + 24x - 54$ 1000

Example 2. $y(x) = -4x^2 + 32x + 44$

-1000

