- 1) Sean $p, q, r \in G_n$ entonces usando su notación exponencial $(e^{\frac{2k\pi i}{n}}) \in G_n \quad \forall \in \mathbb{Z}$
 - - Sabemos que $1 \in G_n$ y cumple $e^{\frac{2k\pi i}{n}}1 = 1e^{\frac{2k\pi i}{n}} = e^{\frac{2k\pi i}{n}}$
 - Sea $p=e^{\frac{2k\pi i}{n}}$ tomamos $p^{-1}=e^{\frac{-2k\pi i}{n}}$ luego $p^{-1}\in G_n$ y además $pp^{-1}=p^{-1}p=e^0=1$
 - \bullet Usando las mismas ideas es facil verificar que $pq=e^{\frac{(2k+2k_1)\pi i}{n}}=qp$
- ii. b) Sabemos que $G_n = \langle e^{\frac{2\pi i}{n}} \rangle$
- 2) a) Sale trivialmente usando la notacion $e^{\alpha i}$ b) No lo és supongo
- 3) Probar si son grupo
- (a) $(G = \mathbb{Q}_{>0} \text{ con } a * b = ab)$ Es trivial ver que es grupo abeliano para todo $\frac{p}{q}$ el inverso es $\frac{q}{p}$ el neutro es el 1, es evidentemente asociativa y conmutativa
- (b) $(G = GL_3(\mathbb{Z}) \text{ con } a * b = a.b) \text{ Sean } A, B, C \in GL_3$
 - i. Podemos pensar que estas son matices de transformaciones f,g,h respectivamente y sabemos $(f \circ g) \circ h(x) = (f \circ g)h(x) = f(g(h(x))) = f((g \circ h)(x)) = f \circ (g \circ h)(x)$ esto vale $\forall x \in \mathbb{Z}_3$

Entonces $(f \circ g) \circ h = f \circ (g \circ h)$ por ende (AB)C = A(BC)

- ii. La matriz identidad es el elemento neutro, sabemos que AId = IdA = A
- iii. No necesariamente existe inverso, cualquier matriz con determinante diferente de 0 no es inversible
- (c) $(G = GL_n(\mathbb{R}) \text{ con } a * b = a + b)$ Es evidentemente grupo abeliano , dado que podemos restringirnos a mirar una sola coordenada de la matriz y probar que todo sucede, es asociativa , tiene elemento neutro e inverso y da lo mismo el orden en el que sumemos dos matrices
- (d) $(G = SL_n(\mathbb{R}) \text{ con } a * b = ab)$
 - i. Sean $A, B, C \in G$ podemos pensar que estas son matices de transformaciones f, g, h respectivamente y sabemos $(f \circ g) \circ h(x) = (f \circ g)h(x) = f(g(h(x))) = f((g \circ h)(x)) = f \circ (g \circ h)(x)$ esto vale $\forall x \in \mathbb{Z}_3$

Entonces $(f \circ g) \circ h = f \circ (g \circ h)$ por ende (AB)C = A(BC)

- ii. La matriz identidad es el elemento neutro, sabemos que AId=IdA=A
- iii. Sea $A \in G$ sabemos que det(A) = 1 entonces por tener determinante diferente de cero existe A^{-1} y por otro lado sabemos $det(A^{-1}) = det(A)^{-1} = 1^{-1} = 1$ Entonces $A^{-1} \in G$. Además sabemos que $AA^{-1} = A^{-1}A$

iv.

- (e) $(G = End_K(V), V \text{ un } K ev \text{ con } f * g = f \circ g)$
 - i. Sabemos que la composición de funciones es asociativa por definición
 - ii. Tenemos la funcion Id un enfomorfismo que cumple la propiedad de neutro $f \circ Id(x) = Id \circ f(x) = f(x) \quad \forall x \in V$ luego $f \circ Id = Id \circ f = f$
 - iii. Si pensamos a $A \in G$ como matriz sabemos que no necesariamente tienen inverso ya que puede tener determinante igual a 0
- (f) $(G = \{ f \in End_{\mathbb{R}}(\mathbb{R}^n) \mid d(f(x), f(y)) = d(x, y) \quad \forall x, y \in \mathbb{R}^n \} \text{ con } f * g = f \circ g)$
 - i. Una vez la composición de funciones es asociativa
 - ii. Sabemos que la funciona identidad es una isometría asi que está en G y cumple las propiedades de elemento neutro
- (g) $(G = S(X) = \{f : X \to X \mid f \text{ es biyectiva }\} X \neq \emptyset \text{ con } f * g = f \circ g)$
 - Como siempre por ser función es asociativa
 - La función identidad es el neutro
 - Aqui si tenemos inverso , por ser f biyectiva y sabemos $f\circ f^{-1}=f^{-1}\circ f=Id$

•

- (h) $(G = S(\mathbb{Z}) \text{ con } f * g = f \circ g^{-1})$
 - Sean $f,g,h\in G$ tenemos que $(f\circ g)\circ h=(f\circ g^{-1})\circ h$
- 6) Sea G un grupo Sea (G^{op}, \cdot) como conjunto y el producto está dado por $a \cdot b = ba$. Entonces G^{op} es un grupo. (Llamamos G^{op} el grupo opuesto de G)

Acá asumo que cuando dice ba se refiere al producto en el grupo G.

- \bullet Sean $a,b,c\in G$ tenemos que a*(b*c)=a*(cb)=cba=(ba)*c=(a*b)*c
- $\bullet\,$ El elemento neutro e del grupo G sirve. Sea $a\in G$ entonces a*e=ea=a=a=e=e*a
- Sea $a \in G$ usemos el a^{-1} dado por el grupo G. $a*a-1=a^{-1}a=e=aa^{-1}=a^{-1}*a$. Y sabemos que e es el mismo para ambos

Entonces si G es grupo $(G^{op}, j * h = h \cdot_G j)$ es grupo