16. Write the equation of the graph presented below in the form $f(x) = ax^2 + bx + c$, assuming a = 1 or a = -1. Then, choose the intervals that a, b, and c belong to.

a =

b =

 $c = \int_{-\infty}^{\infty}$

- A. $a \in [-2, 4], \quad b \in [-5, -3], \text{ and } c \in [-1, 4]$
- B. $a \in [0,3], b \in [-1,6], \text{ and } c \in [3,8]$
- C. $a \in [-3, 0], b \in [-5, -3], \text{ and } c \in [-1, 4]$
- ${\rm D.} \ \ a \in [0,3], \quad \ b \in [-5,-3], \ \ {\rm and} \quad \ \ c \in [3,8]$
- E. $a \in [0,3]$, $b \in [-1,6]$, and $c \in [-1,4]$
- 17. Graph the equation $f(x) = (x 1)^2 12$.

0.0 x

-2.5

Α.

C.

D.

В.

80

40

20

18. Factor the quadratic below. Then, choose the intervals that contain the constants in the form (ax + b)(cx + d); $b \le d$.

- A. $a \in [14.5, 17], b \in [1.5, 3.5], c \in [3.5, 5.5], and <math>d \in [2.5, 4]$
- B. $a \in [7, 8.5], b \in [1.5, 3.5], c \in [7, 9], and <math>d \in [2.5, 4]$
- C. $a \in [3.5, 5.5], b \in [1.5, 3.5], c \in [15, 17.5], and <math>d \in [2.5, 4]$
- D. $a \in [-1.5, 3], b \in [-3.5, -1.5], c \in [63, 64.5], and <math>d \in [-4, -1.5]$
- E. $a \in [-1.5, 3], b \in [1.5, 3.5], c \in [63, 64.5], and <math>d \in [2.5, 4]$
- 19. Solve the quadratic equation below. Then, choose the intervals that the solutions x_1 and x_2 belong to, with $z_1 \leq z_2$.

$$216x^2 + 12x - 20 = 0$$

$$x_1 = \square$$
 x

$$x_2 = \square$$

- A. $x_1 \in [-0.69, -0.62]$ and $x_2 \in [0.11, 0.27]$
- B. $x_1 \in [-0.05, 0.32]$ and $x_2 \in [4.9, 5.19]$
- C. $x_1 \in [-0.14, -0.11]$ and $x_2 \in [0.65, 0.86]$
- D. $x_1 \in [-4.1, -3.89]$ and $x_2 \in [-0.16, 0.12]$
- E. $x_1 \in [-0.4, -0.15]$ and $x_2 \in [0.24, 0.4]$
- 20. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_1 \leq x_2$ (if they exist).

$$-9x^2 + 2x + 2 = 0$$

$$x_1 = \boxed{\qquad}$$

$$x_2 = \boxed{\qquad}$$

- A. $x_1 \in [-0.52, -0.21]$ and $x_2 \in [0.43, 1.26]$
- B. $x_1 \in [-3.59, -3.29]$ and $x_2 \in [4.67, 5.7]$
- C. $x_1 \in [-5.53, -5.25]$ and $x_2 \in [3.35, 3.48]$
- D. $x_1 \in [-0.66, -0.59]$ and $x_2 \in [0.13, 0.48]$
- E. There are no Real solutions.