

Universidade Federal do Sul e Sudeste do Pará

Sistemas Distribuídos

Prof.: Warley Junior

wmvj@unifesspa.edu.br

Agenda

- □ AULA 2
- Estilos de arquitetura
 - Arquitetura de camadas
 - Arquitetura baseada em objetos
 - Arquitetura orientada a serviços
 - Arquitetura centradas em dados
 - Arquitetura baseada em eventos

Leitura Prévia

- COULOURIS, George. Sistemas distribuídos: conceitos e projetos. 5ª ed. Porto Alegre: Bookman, 2013.
 - Capítulo 2.
- TANENBAUM, Andrew S. Sistemas distribuídos: princípios e paradigmas. 2ª ed. São Paulo: Pearson Prentice Hall, 2007.
 - Capítulo 2.

Arquitetura

- □ Estilo arquitetônico
 - Componentes
 - Conexões
 - Dados intercambiados
 - Formas de configuração

Arquitetura de camadas

- Componentes são organizados em camadas
- Componente da camada N tem permissão para chamar componentes da camada N-1

Arquitetura baseada em objetos

- Objetos distribuídos interagem via chamada remota de métodos
 - Benefícios da orientação a objetos, rodando em máquinas diferentes

Arquitetura orientada a serviços

- Separação de serviços que operam de forma independente
 - Ideia similar aos objetos distribuídos
- Aplicação distribuída é composta por vários serviços diferentes
 - Importante ter interfaces bem definidas e padrão de comunicação

Arquitetura centrada em dados

- Componentes se comunicam através de um repositório comum, como se fosse uma "caixa postal"
- Fracamente acoplado

Arquitetura baseada em eventos

- Sistema publicar-subscrever (publish-subscribe)
- Componentes publicam eventos e certificam que somente os que subscreveram recebem estes eventos.

Agenda

- AULA 2
- Arquitetura de Sistemas Distribuídos
 - Arquitetura centralizada
 - Arquitetura descentralizada
 - Arquitetura híbrida

Arquitetura de sistemas

- □ Arquiteturas centralizadas
 - Cliente-servidor: Netflix, site de notícias
- □ Arquiteturas descentralizadas
 - Sistemas Peer-to-Peer
- □ Arquiteturas híbridas
 - Sistemas Peer-to-Peer, como o BitTorrent, Skype e WhatsApp

□ Cliente-Servidor

- Servidor: processo que implementa um serviço específico
- Cliente: processo que requisita um serviço específico
- Forma de interação: requisição-resposta

Figura 2.3 Interação geral entre um cliente e um servidor.

Camadas de aplicação

Figura 2.4 Organização simplificada de um mecanismo de busca da Internet em três camadas diferentes.

Arquitetura centralizada com arquiteturas multidivididas

Figura 2.5 Alternativas de organizações cliente—servidor (a)—(e).

- ☐ Gerenciamento de sistema:
 - Clientes gordos (fat clients)
 - Clientes magros (thin clients)

Cliente-servidor de 3 divisões: processos clientes interagem com processos servidores, localizados em distintos computadores hospedeiros, para acessar os recursos compartilhados que estes gerenciam.

- □ Arquitetura de três divisões:
 - Cliente
 - Servidor
 - Servidor que pode agir como cliente

□ Exemplo de arquitetura de três divisões:

- Cliente-servidor possuem duas distribuições:
 - Distribuição vertical
 - Distribuição horizontal
- Rede de sobreposição: rede onde os nós são formados pelos processos e os enlaces denotam os canais de comunicação.
- Arquitetura: estruturadas, não estruturadas e hierárquicos

Arquitetura Peer-to-Peer estruturada

Mecanismo usado comumente: DHT (Distributed Hash Table)

□ Dados e nós recebem uma chave aleatória (128~160 bits).

Desafio: dada uma chave de um dado, mapear para o identificador de um nó.

Arquitetura Peer-to-Peer estruturada

- Topologia é bem determinada (anel, árvore, grade, etc)
- Ex: cada peer tem um id e se comunica no máximo com 4 peers; para buscar chave x, repassa requisição para vizinho mais próximo

Arquitetura Peer-to-Peer estruturada

☐ Chord:

implementação de um DHT para redes peer-to-peer.

 Cada nó recebe um identificador aleatório (semelhante a um RG)

Figura 2.7 Mapeamento de itens de dados para nós em Chord.

Arquitetura Peer-to-Peer Não-estruturada

- A lista de vizinhos de cada peer é montada sem estrutura definida
 - Busca com *Flooding*: repassa requisição para todos os vizinhos
 - Busca com Random walk: repassa para alguns vizinhos aleatórios

Arquitetura Peer-to-Peer Não-estruturada

- Cada nó mantém uma lista de nós vizinhos.
- Dados são armazenados aleatoriamente.
- Como realizar a busca?
 - Inunda toda a rede. Tempestade de broadcast.

Arquitetura Peer-to-Peer: Hierárquicos (ou Superpares)

- A medida que a rede cresce, localizar itens de dados em sistemas P2P não estruturados pode ser problemático.
- Sempre que um nó comum se junta a rede, se liga a um dos superpares.

□ Problema: Seleção do líder.

Arquitetura Peer-to-Peer: Hierárquicos (ou Superpares)

Os superpares devem ter vida longa e alta disponibilidade.

Figura 2.12 Organização hierárquica de nós em uma rede de superpares.

Arquiteturas híbridas

□ Híbrida = centralizada + descentralizada

- □ Centralizada: Servir de diretório
- Descentralizada: Distribuição do conteúdo.
 - Ex.: Skype, BitTorrent, WhatsApp.

Arquiteturas híbridas

- □ Sistemas distribuídos colaborativos
 - Inicialmente, um esquema de procura pelo cliente-servidor tradicional.
 - Subsequentemente, o nó junta-se para dar um mecanismo descentralizado de colaboração.

Arquiteturas híbridas

- □ Edge computing: servidores são posicionados na "borda" da rede
 - Ex: limite entre a Internet e a rede de um provedor de Internet
 - Otimiza a distribuição de conteúdo e processamento
 - Dispositivos de clientes também podem fazer parte (fog computing)

