MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise T	Type:
J#:	Quiz	
Date: 2017 July 20		
Standard: This student is able to		Mark:
C11: LineInt. Compute and apply line integrals.		
3/4	reattempt due on:	

Recall that if C is oriented counter-clockwise, then flux may be computed with the line integral $\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_C (M \, dy - N \, dx) = \int_{t=a}^{t=b} (M \frac{dy}{dt} - N \frac{dx}{dt}) \, dt$. Find the flux of the vector field $\mathbf{F} = \langle x^2, xy \rangle$ around the circle $x^2 + y^2 = 16$.

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 July 20		
Standard: This student is able to C12: FundThmLine. Apply the Fundamental Theorem of Line Integrals.		Mark:
2/4 * reath	tempt due on:	

Find $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F} = \langle e^{x+2z} + 4y^2, 8xy, 2e^{x+2z} - 3 \rangle$ and C is the elliptical curve formed by the intersection of the cylinder $y^2 + z^2 = 7$ and the plane $3x + 2y - \sqrt{3}z = \pi$. (Hint: what's the only important property of the curve?)

MA 227-103 — Summer 2017 — Dr. Clontz

Name:	Exercise Type:	
J#:	Quiz	
Date: 2017 July 20		
Standard: This student is able to So9: ParamSurf. Parametrize surfaces in three-dimensional Euclidean space.	al	Mark:
1/3 * reat	tempt due on:	

Use the spherical coordinate transformation $\mathbf{s}(\rho, \phi, \theta) = \langle \rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi \rangle$ to find a parametrization $\mathbf{r}(\phi, \theta)$ for the hemispherical surface $x = \sqrt{4 - y^2 - z^2}$. You may orient this surface however you like, but make sure to give appropriate bounds for ϕ, θ .