

## Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciência e Tecnologia

## Projeto POO Dev

Sistema para o Pescarte

Arthur Cézar Martins Ferreira Mól Matrícula: 20221100108

Professor: João Luiz de Almeida Filho

# Sumário

| Sumário . |                                        | 1   |
|-----------|----------------------------------------|-----|
| 1         | GitHub                                 | 2   |
| 2         | Descrição do sistema                   | 2   |
| 2.1       | O que é o projeto PEA-Pescarte         | 2   |
| 3         | Requisitos funcionais e não funcionais | 3   |
| 3.1       | Requisitos funcionais                  | 3   |
| 3.2       | Requisitos não-funcionais              | 3   |
| 4         | Diagrama de classes inicial            | 4   |
| 4.1       | Diagrama de classes (UML)              | 4   |
| 4.2       | Diagrama entidade relacionamento (ER)  | 4   |
| 5         | Fluxo básico de funcionamento          | 5   |
| 5.1       | Diagrama de casos de uso               | 5   |
| 6         | Orçamento                              | 5   |
| 6.1       | Custo do desenvolvimento               | 5   |
| 6.2       | Custo de manutenção                    | 5   |
| 6.3       | Custo total                            | 6   |
| 7         | Cronograma detalhado por semana        | 6   |
| 8         | Realização do projeto                  | 6   |
| 8.1       | Primeira semana                        | 6   |
| 8.2       | Segunda semana                         | 8   |
| 8.3       | Terceira semana                        | 8   |
| 8.4       | Quarta semana                          | 9   |
| 8.5       | Quinta semana                          | 9   |
| 8.6       | Sexta semana                           | . 0 |
| 8.7       | Sétima semana                          | n   |

#### 1 GitHub

Clique aqui para ser redirecionado ao repositório onde o projeto está.

#### 2 Descrição do sistema

Linguagem para o back-end (e orientação a objetos) Java utilizando o framework Springboot.

Para o front-end será usado React.

Para o banco de dados será usado Postgree.

O sistema que será criado é uma plataforma interativa para o projeto PEA-Pescarte. O intuito desse sistema é criar uma plataforma onde os pescadores artesanais que participam do projeto possam logar, interagir com a plataforma e utilizar os serviços que serão fornecidos pela plataforma, como o de controle de gastos e lucro, além de informações gerais.

O sistema visa buscar fornecer serviços aos pescadores artesanais de modo a facilitar a vida deles, além de torná-los mais conectados.

As funcionalidades que estarão presentes no sistema são:

- Página Home: contendo as informações principais e mais relevantes do momento no site;
- Página Login: contendo a tela de login e criação de conta;
- Página Serviços: contendo serviços que podem vir a ser relevantes para os pescadores, como indicações
  de lojas como fábricas de gelo, lojas de artigos de pesca, informações sobre transporte, serviço de mecânico
  para os barcos;
- Página Clima: contendo informações sobre a previsão do tempo para o dia, se existe possibilidade de chuva, velocidade do vento, dentre outros;
- Página Financeiro: que faz um "controle" do financeiro dos pescadores, nessa página eles vão poder inserir
  o que pescaram e a aplicação vai fazer uma estimativa de por quanto eles deveriam vender os peixes baseado
  em informações estaduais e federais. Além disso, também uma opção de gerar uma planilha financeira
  com os gastos e lucros dos mesmos;
- Página Sobre: essa página vai conter as informações sobre o que é o projeto PEA-Pescarte.

#### 2.1 O que é o projeto PEA-Pescarte

O Projeto PESCARTE tem como sua principal finalidade a criação de uma rede social regional integrada por pescadores artesanais e por seus familiares, buscando, por meio de processos educativos, promover, fortalecer e aperfeiçoar a sua organização comunitária e a sua qualificação profissional, bem como o seu envolvimento na construção participativa e na implementação de projetos de geração de trabalho e renda.

O Projeto de Educação Ambiental Pescarte (PEA Pescarte) trabalha junto às **comunidades de pesca artesanal** de Arraial do Cabo, Búzios, Cabo Frio, Campos, Carapebus, Macaé, Rio das Ostras, Quissamã, São Francisco de Itabapoana e São João da Barra. Desde 2014, atua juntamente aos pescadores artesanais e seus familiares, por meio de processos educativos, promovendo, fortalecendo e aperfeiçoando a organização comunitária e a sua qualificação profissional, bem como o seu envolvimento na construção participativa e na implementação de projetos de geração de trabalho e renda.

O processo educativo é realizado nos 10 municípios e se dá através de oficinas com temas diversos, entre eles: economia solidária, cooperativismo, políticas públicas, licenciamento ambiental, letramento digital e gestão participativa. O projeto promove, também, articulações entre os pescadores e pescadoras, com reuniões do Grupo de Trabalho, Grupo Gestor, Grupo de Acompanhamento de Obras e assembleias municipais.

#### 3 Requisitos funcionais e não funcionais

#### 3.1 Requisitos funcionais

Definem a **funcionalidade** que o sistema a ser desenvolvido deverá ter. Ele é um requisito relacionado com um tipo de comportamento produto de uma função do sistema.

Os requisitos funcionais deste projeto são:

- Cadastrar usuários;
- Realizar login;
- Transmitir dados;
- Exibir informações do usuário;
- Mostrar serviços;
- Gerar documentos;
- Consultar documentos.

Os requisitos funcionais se relacionam diretamente a processos<sup>1</sup> que o sistema deve executar. Ex: pesquisar, cadastrar, relatar, verificar, imprimir.

#### 3.2 Requisitos não-funcionais

Indicam propriedades comportamentais que o sistema deve possuir.

Os requisitos não-funcionais deste sistema são:

- Poder acessar a aplicação usando qualquer navegador;
- Poder acessar a aplicação usando qualquer dispositivo: celular, tablet ou computador (responsividade);
- Aplicação com informações expostas de modo que pessoas com dificuldade de usar elementos da tecnologia possa acessá-lo sem problemas (acessibilidade com botões e textos grandes e intuitivos);
- Boa formatação, legibilidade e confiabilidade dos documentos gerados pelo sistema;
- Usuários poderem fazer login somente atrelados a uma Corporativa.

<sup>1</sup> processos = verbos

## 4 Diagrama de classes inicial

## 4.1 Diagrama de classes (UML)



Figura 1 – Diagrama UML do projeto

## 4.2 Diagrama entidade relacionamento (ER)



Figura 2 – Diagrama ER do projeto

#### 5 Fluxo básico de funcionamento

## 5.1 Diagrama de casos de uso



Figura 3 – Diagrama de Casos de Uso do projeto

## 6 Orçamento

#### 6.1 Custo do desenvolvimento

Cobrando R\$100,00 a hora. Por dia seriam utilizadas pelo menos 2 horas de trabalho, considerando que seriam trabalhados 5 dias da semana no mínimo 1 hora durante 3 meses, o custo final do desenvolvimento seria por volta de R\$3000,00.

#### 6.2 Custo de manutenção

Mensalmente seria cobrado o custo mensal da hospedagem do site, que seria cerca de R\$300,00. Além do custo mensal de manutenção, que seria cerca de 2 horas de trabalho por mês exclusivamente para manutenção,

o que sairia cerca de R\$200,00. Resultando um total de R\$500,00 mensais.

#### 6.3 Custo total

O preço total do projeto sairia pelo preço total R\$3000,00 mais R\$500,00 por mês que o cliente continuar contratando os serviços de manutenção.

## 7 Cronograma detalhado por semana

| Semana | Datas         | Atividade                                          |
|--------|---------------|----------------------------------------------------|
| 1      | 15/09 - 19/09 | Planejamento do modelo do front-end                |
| 2      | 22/09 - 26/09 | Criação do esqueleto do front-end                  |
| 3      | 29/09 - 03/10 | Planejamento e criação do banco de dados           |
| 4      | 06/10 - 10/10 | Planejamento do modelo do back-end                 |
| 5      | 13/10 - 17/10 | Criação do back-end                                |
| 6      | 20/10 - 24/10 | Aprimoramento do back-end                          |
| 7      | 27/10 - 31/10 | Aprimoramento do back-end                          |
| 8      | 03/11 - 07/11 | Aprimoramento do front-end                         |
| 9      | 10/11 - 14/11 | Aprimoramento do front-end                         |
| 10     | 17/11 - 21/11 | Conexão entre front-end, back-end e banco de dados |
| 11     | 24/11 - 28/11 | Revisão geral e melhorias pontuais                 |
| 12     | 01/12 - 03/12 | Entrega do projeto pronto                          |

Tabela 1 – Cronograma de desenvolvimento do projeto

## 8 Realização do projeto

Nesta seção irei detalhar o cumprimento ou não cumprimento das tarefas propostas na seção 7.

#### 8.1 Primeira semana

Objetivo: Planejamento do modelo front-end

**Realizado**: Foi feito um wireframe (figura 4) para representar uma base de como o site vai ser. Um wireframe é um esboço visual básico e de baixa fidelidade de um site ou aplicativo, que ilustra a estrutura e o layout de uma página ou tela.



Figura 4 – Wireframe do projeto

Além disso, também foi feito o que foi proposto para a Semana 2: foram criadas as pastas iniciais do projeto (Figura 5) e também foi criada uma estrutura inicial para o front-end, contendo uma NavBar funcional, que altera as páginas das seções do site corretamente e os conteúdos principais de cada página (Figura 6).



Figura 5 — Estrutura inicial das pastas do projeto



 $Figura\ 6-Estrutura\ inicial\ do\ site$ 

#### 8.2 Segunda semana

Objetivo: Criação do esqueleto do front-end

**Realizado**: O que foi proposto na segunda semana já foi realizado na primeira. Na segunda semana nada foi feito em detrimento à semana de provas.

#### 8.3 Terceira semana

Objetivo: Planejamento e criação do banco de dados

**Realizado**: Foi atualizado o diagrama entidade relacionamento (Figura 2). Além disso foi criada a estrutura base do banco de dados, com todas as tabelas e atributos (Figura 7).



Figura 7 – Estrutura do Banco de Dados

#### 8.4 Quarta semana

Objetivo: Planejamento do modelo do back-end

Realizado: Foi criada a estrutura do back-end, como é possível ver na figura 8.

```
src/main/java/com/pescarte/
   config/

    SecurityConfig.java // Configuração do Spring Security (JWT, CORS)

       - CorsConfig.java // Configuração global do CORS (Conexão com React)
   controller/
      — AuthController.java // Endpoint para /api/auth/login
— ClimaController.java // Endpoint para /api/clima
      - DocumentoController.java // Endpoint para /api/documentos/gerar
   model/
    └─ User.java
                              // Entidade JPA para o usuário
   repository/
      — UserRepository.java
                                // Interface Spring Data JPA
                                // Lógica para buscar na API de clima externa
       - ClimaService.java
       - DocumentoService.java // Lógica para gerar documentos
    security/
      - JwtTokenProvider.java // (No caso de usar JWT para autenticação)
```

Figura 8 – Estrutura do Back-end

Além disso também foram criadas tuplas para começar a popular as tabelas do banco de dados.

#### 8.5 Quinta semana

#### ATRASO DEVIDO À SEMANA DE PROVAS

#### 8.6 Sexta semana

#### ATRASO DEVIDO À SEMANA DE PROVAS

#### 8.7 Sétima semana

Objetivo: Aprimoramento do back-end

Realizado: Configuração da conexão do banco de dados com o back-end, como podemos no código 1

```
// Configuracao do PostgreSQL
spring.datasource.driver-class-name=org.postgresql.Driver
spring.datasource.username=postgres
spring.datasource.password=190603
spring.datasource.url=jdbc:postgresql://localhost:5432/pescarte
spring.jpa.generate-ddl=true

// Configuracao do Hibernate (JPA)
spring.jpa.properties.hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
```

Listing 1 – Conexão banco de dados com back-end

Começo da implementação da função "Clima"no back-end (DETALHAR ISSO MELHOR) Fazer a conexão do front-end com o back-end