Quiz 1 2020

Allen Fang and Xu Yuan

1 Exercise 1

Let $f_n:[0,1]\to\mathbb{R}$ be defined by

$$f_n(x) = n^2(x^{n-1} - x^n)$$
 for $n \in \mathbb{N}^+$.

1. Show that for any $x \in [0,1]$

$$\lim_{n\to\infty}f_n(x)=0.$$

2. Calculate $\int_0^1 f_n(x) dx$ for $n \in \mathbb{N}^+$. 3. Calculate

$$\lim_{n\to\infty}\int_0^1 f_n(x)\,\mathrm{d}x.$$

4. Conclude that the sequence $(f_n)_{n\in\mathbb{N}^+}$ does not converge uniformly to 0 on [0,1].

Exercise 2

Suppose f is a C^2 function on $[-\delta, \delta]$ with f(0) = 0, 0 < f'(0) < 1. Set

$$f_0(x) = f(x)$$
 and $f_n(x) = f(f_{n-1}(x))$ for $n \in \mathbb{N}^+$.

1. Show that for any $0 < \delta_1 < \delta$,

$$|f(x)| \le \left(f'(0) + \frac{1}{2}M\delta_1\right)|x| \quad \text{for } x \in (-\delta_1, \delta_1),$$

where

$$M = \max_{x \in [-\delta, \delta]} |f''(x)|.$$

Hint: Taylor formula.

2. Show that there exists $0 < \delta_2 < \delta$ such that

$$|f(x)| < q|x|$$
 for $x \in (-\delta_2, \delta_2)$,

where 0 < q < 1.

3. Show that for all $n \in \mathbb{N}^+$

$$|f_n(x)| < q^n |x|$$
 for $x \in (-\delta_2, \delta_2)$.

Conclude that the series $\sum_{n=0}^{\infty} f_n$ converges uniformly on $(-\delta_2, \delta_2)$.

3 Exercise 3

Find the radius of convergence R for $\sum a_n x^n$ with the given coefficients a_n .

1. Consider

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{(2x)^n}{n}.$$

2. Consider

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{n x^n}{e^n}.$$

3. Consider

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{\pi^n x^n}{n^{\pi}}.$$

4. Consider

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{(n!)^2 x^n}{(2n)!}.$$

5. Consider

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{x^n}{C_{2n}^n}, \quad \text{where } C_m^k = \frac{m!}{k!(m-k)!} \quad \text{for all } m, k \in \mathbb{N}^+.$$

4 Exercise 4

Let I = [0, 1] and $f_n : I \to \mathbb{R}$, defined by

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n$$
, for $n \in \mathbb{N}^+$.

show that the sequence $(f_n)_{n\in\mathbb{N}^+}$ converges uniformly to $f(x)=e^x$ on I.

5 Exercise 5

- 1. Write the partial fraction decomposition of $\frac{5}{(x^2+4)(x^2-1)}$.
- 2. Write $\frac{1}{1+x^2}$ and $\frac{1}{1-x^2}$ as a power series.
- 3. Write $\frac{5}{(x^2+4)(x^2-1)}$ as a power series, and compute the radius of convergence.