AVL TREES

CS212:Data Structure

• Consider a situation when data elements are inserted in a BST in sorted order: 1, 2, 3, ...

- BST becomes a <u>degenerate tree</u>.
- Search operation FindKey takes O(n), which is as inefficient as in a list.

- It is possible that after a number of insert and delete operations a binary tree may become imbalanced and increase in height.
- Can we insert and delete elements from BST so that its height is guaranteed to be O(logn)?
 - Yes, AVL Tree ensures this.
- Named after its two inventors:
 Adelson-Velski and Landis.

AVL Tree: Definition

 We cannot always guarantee perfectly balanced trees, since this depends on the currently inserted nodes.

 But some nodes arrangements make a tree more balanced than other nodes arrangements.

Balanced Tree?

Balanced Tree?

-

Balanced Tree?

AVL Tree: Definition

- Height: the longest path from a node to a leaf node.
- **Height-balanced tree:** A binary tree is a height-balancedp-tree if for each node in the tree, the absolute difference in height of its two subtrees is at most p.
- AVL tree is a BST that is height-balanced-1-tree.
 - For each node in the tree, the absolute difference in height of its two subtrees must be at most 1.
 - Balance = Right Subtree Height Left Subtree Height
 - Therefore, it must be either +1 (longer right), 0 (equal), -1 (longer left).

It is balanced tree but not AVL because it is not BST!

Remember:

AVL tree is a **BST** that is **height-balanced-1-tree**.

BSTs vs. AVL Trees

Inserting 1, 2, 3, 4 and 5

AVL Tree?

ADT AVL Tree: Specification

Elements: The elements are nodes, each node contains the following data type: Type.

Structure: Same as for the BST; in addition the height difference of the two subtrees of any node is at the most one.

Domain: the number of nodes in a AVL is bounded; type AVLTree.

ADT AVL Tree: Specification

Operations:

- Method FindKey (int tkey, boolean found).
- 2. **Method** Insert (int k, Type e, boolean inserted).
- 3. **Method** Remove_Key (int tkey, boolean deleted)
- 4. **Method** Update(Type e)
- Method Traverse (Order ord)
- Method DeleteSub ()
- 7. **Method** Retrieve (Type e)
- 8. **Method** Empty (boolean empty).
- Method Full (boolean full)

ADT AVL Tree: Element

```
public class AVLNode<T> {
 public int key
 public T data;
 public Balance bal; // Balance is enum (+1, 0, -1)
 public AVLNode<T> left, right;
 public AVLNode(int key, T data) {
 this.key = key;
 this.data = data;
 bal = Balance.Zero;
 left = right = null;
```

ADT AVL Tree: Implementation

- The implementation of: **FindKey**, **Update data**, **Traverse**, **Retrieve**, **Empty**, **Full**, and any other method that doesn't change the tree are exactly like the implementation of BST.
- The only difference in implementation is when we change the nodes of the tree, i.e. **Insert/Remove** from the tree.

AVL Tree: Insert

Step 1:

A node is first inserted into the tree as in a BST.

Step 2:

Nodes in the <u>search path</u> are examined to see if there is a <u>pivot node</u>. Three cases arise.

- search path is a unique path from the root to the new node.
- <u>pivot node</u> is a node closest to the new node on the search path, whose balance is either –1 or +1.

AVL Tree: Insert

Case 1:

There is no pivot node in the search path. No adjustment required.

Case 2:

The pivot node exists and the subtree to which the new node is added has smaller height. No adjustment required.

Case 3:

The pivot node exists and the subtree to which the new node is added has the larger height. Adjustment required.

Insert 5

AVL Tree is no more an **AVL Tree** after insertion.

- When after an insertion or a deletion an AVL tree becomes imbalanced, adjustments must be made to the tree to change it back into an AVL tree.
- These adjustments are called <u>rotations</u>.
- Rotations can be in the <u>left</u> or <u>right</u> direction.
- Rotations are either <u>single</u> or <u>double</u> rotations.

- Therefore, there are four different rotations:
 - Left Rotation (Single)
 - Right Rotation (Single)
 - Left-Right Rotations (Double)
 - Right-Left Rotations (Double)

Right Rotation (Single)

Right Rotation (Single)

Right Rotation (Single) Insert 30

Right Rotation (Single) Insert 30

Right-Left Rotation (Double) Insert 70

Right-Left Rotation (Double) Insert 70

Right-Left Rotation (Double) Insert 70

AVL Tree: Delete

Step 1:

Delete the node as in BSTs. Remember there are three cases for BST deletion.

• Step 2:

For <u>each node</u> on the path from the root to deleted node, check if the node has become imbalanced; if yes perform rotation operations otherwise update balance factors and exit. Three cases can arise for each node p, in the path.

AVL Tree: Delete

Case 1:

Node p has balance factor 0. No adjustment required.

Case 2:

Node p has balance factor of +1 or -1 and a node was deleted from the taller sub-trees. No adjustment required.

Case 3:

Node p has balance factor of +1 or -1 and a node was deleted from the shorter sub-trees.

Adjustment required.

AVL (Case 2)

- Like insertion, when the tree become unbalanced after deletion, rotation need to be done.
- Like before, there are four cases:
 - Left Rotation (Single)
 - Right Rotation (Single)
 - Left-Right Rotations (Double)
 - Right-Left Rotations (Double)
- Rotation need to be done at every unbalanced nodes in the search path.

AVL Tree: Delete (Case 3)
IMPORTANT: we decided to use max in left subtree when deleting

in this example (instead of min in right subtree).

AVL Tree: Delete (Case 3)
IMPORTANT: we decided to use max in left subtree when deleting

in this example (instead of min in right subtree).

AVL Tree: Delete (Case 3)
IMPORTANT: we decided to use max in left subtree when deleting

IMPORTANT: we decided to use max in left subtree when deleting in this example (instead of min in right subtree).

AVL Tree: Delete (Case 3: Sub-Case 1) Remainder of Remainder of the tree the tree +1 **Single Rotation** p В +1 0 h-1 h В T3 h-1 h h-1 h-1 T3

Deleted Node

AVL Tree: Delete (Case 3: Sub-Case 2)

Deleted Node

AVL Tree: Delete (Case 3: Sub-Case 3) Remainder of Remainder of the tree the tree **Double Rotation RL** +1 p В -1 0 +1 h-1/ В A -1 h-1 h-1 h-2 h-1 h-1 T4 T2 T3 T4 **Deleted** Node T3 h-1 h-2

AVL Tree: Delete (Case 3: Sub-Case 4) Remainder of Remainder of the tree the tree **Double Rotation RL** +1 p В -1 -1 0 h-1/ В A +1 h-1 h-2 h-1 h-1 h-1 T4 T2 T3 T4 **Deleted** Node T3 h-2 h-1

AVL Tree: Delete (Case 3: Other Sub-Cases)

- Sub-Case 5: mirror image of Sub-Case 1.
- Sub-Case 6: mirror image of Sub-Case 2.
- Sub-Case 7: mirror image of Sub-Case 3.
- Sub-Case 8: mirror image of Sub-Case 4.