Homework Assignments II

MA1130 VECTOR CALCULUS

January 14, 2019

Assume $\mathbf{r}(t)$, $\mathbf{v}(t)$, $\mathbf{a}(t)$ be the position vector, velocity vector and the acceleration vectors respectively whenever they arise.

1. Let

$$f(t)=\big(\frac{\cos t}{\sqrt{1+a^2t^2}},\frac{\sin t}{\sqrt{1+a^2t^2}},\frac{-at}{\sqrt{1+a^2t^2}}\big) \text{ with } a\neq 0$$

- (a) Show that $\|\mathbf{f}(t)\| = 1$ for all t.
- (b) Show directly that $\mathbf{f}'(t) \cdot \mathbf{f}(t) = 0$ for all t.
- 2. Show that

Α.

$$\frac{d}{dt}(\mathbf{r} \times (\mathbf{v} \times \mathbf{r})) = \|\mathbf{r}\|^2 \mathbf{a} + (\mathbf{r} \cdot \mathbf{v})\mathbf{v} - (\|v\|^2 + \mathbf{r} \cdot \mathbf{a})\mathbf{r}$$

4

B. Let $\mathbf{f}(t)$ be a differentiable curve such that $\mathbf{f} \neq 0$ for all t. Show that

$$\frac{d}{dt} \left(\frac{\mathbf{f}(\mathbf{t})}{\|\mathbf{f}(\mathbf{t})\|} \right) = \frac{\mathbf{f}(\mathbf{t}) \times (\mathbf{f}(\mathbf{t})' \times \mathbf{f}(\mathbf{t}))}{\|\mathbf{f}(\mathbf{t})\|^{3}}$$

- 3. Let $\mathbf{r}(t)$ be the position vector in \mathbb{R}^3 for a particle that moves with constant speed c > 0 in a circle of radius a > 0 in the xy-plane. Show that $\mathbf{a}(t)$ points in the opposite direction as $\mathbf{r}(t)$ for all t.
- 4. Give an example to show the Mean Value Theorem does not hold for vector-valued functions.
- 5. Parametrize the helix $\mathbf{f}(t) = (cost, sint, t)$, for t in $[0, 2\pi]$, by arc length.

6. Suppose that $r = r(t), \theta = \theta(t)$ and z = z(t) are the cylindrical coordinates of a curve f(t), for t in [a, b]. Then show that the arc length L of the curve over [a, b] is

$$L = \int_{a}^{b} \sqrt{r'(t)^{2} + r(t)^{2} \theta'(t)^{2} + z'(t)^{2}} dt$$

7. Show that

A.

$$\Delta |\mathbf{r}|^n = n(n+1) |\mathbf{r}|^{n-2}$$

where n is a constant.

В.

$$\Delta(\phi\psi) = (\Delta\phi)\psi + 2\nabla\phi\nabla\psi + \phi(\Delta\psi)$$

- 8. Show that if ω is a constant vector and $\mathbf{v} = \omega \times \mathbf{r}$ then $\nabla \cdot \mathbf{v} = 0$
- 9. Let $f: \mathbb{R}^3 \to \mathbb{R}$ is a radial function i.e. $f(\mathbf{r}) = f(|\mathbf{r}|)$. Then show that for $r = |\mathbf{r}|$ one has

$$\Delta f(r) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}$$

From the above find a example of a nontrivial radial function f such that $\Delta f = 0$

10. Find the equation of the tangent plane to the surface $x^2 + y^2 + z^2 = 9$ at the point (2, 2, 1).