Advanced Risk Management

Week 5

Tail Dependence and Copulas

Outline

- Integrated risk management
- Tail dependence: threshold correlation
- Bivariate standard normal and standardized t distributions
- Bivariate skewed t distribution
- Copulas
- Normal and Student's t copulas
- Applied copula modelling
- Systemic risk: ΔCoVaR

Integrated risk management

- So far we looked at risk of individual assets, or portfolios of similar assets (stocks).
- For portfolios, we used multivariate volatility / correlation model (DCC) with normal distribution.
- Under normality and zero mean, we find for portfolio VaR with $R = w_1 R_1 + w_2 R_2$

$$VaR^{p} = -\sqrt{w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + 2w_{1}w_{2}\rho\sigma_{1}\sigma_{2} \times \Phi_{p}^{-1}}$$

$$= \sqrt{(w_{1}VaR_{1}^{p})^{2} + (w_{2}VaR_{2}^{p})^{2} + 2w_{1}w_{2}\rho VaR_{1}^{p}VaR_{2}^{p}}$$

$$\stackrel{\rho=1}{=} w_{1}VaR_{1}^{p} + w_{2}VaR_{2}^{p}.$$

So aggregation of risks is possible using (conditional) correlations.

- Actual distributions may deviate from normal; in particular, dependence in tails may be stronger.
- Also, financial institutions need to aggregate risks over different business units, with very different P&L distributions. Hence need for method to "couple" different distributions: copulas.

Tail dependence

• Consider a pair (z_{1t}, z_{2t}) of standardized returns on two assets, with percentiles $(z_1(p), z_2(p))$. Coefficient of lower tail dependence:

$$\lambda = \lim_{\rho \to 0} \Pr(z_{1t} < z_1(\rho) | z_{2t} < z_2(\rho))$$

$$= \lim_{\rho \to 0} \frac{\Pr(z_{1t} < z_1(\rho), z_{2t} < z_2(\rho))}{\rho},$$

with an analogous definition for upper tail dependence.

• Christoffersen focusses on the threshold correlation:

$$\rho(p) = \operatorname{Corr}(z_{1t}, z_{2t} | z_{1t} < z_1(p), z_{2t} < z_2(p)), \qquad p \leq 0.5.$$

Example – simulations from bivariate normal with $\rho = 0.8$

• Threshold correlations $\rho(p)$ are 0.6 for p=0.5 (left) and 0.4 for p=0.05 (right).

Example – threshold correlations, stock and bond market shocks

Figure 9.2 Threshold correlation for S&P 500 versus 10-year treasury bond GARCH shocks.

Bivariate standard normal distribution

Probability density function:

$$f(z_1, z_2; \rho) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2}\frac{z_1^2 + z_2^2 - 2\rho z_1 z_2}{1-\rho^2}\right).$$

- Multivariate normal density (n > 2) involves determinant and inverse of correlation matrix ↑.
- If $z \sim N(0, \Upsilon)$, then for any weight vector w,

$$w'z = \sum_{i=1}^{n} w_i z_i \sim N(0, w' \Upsilon w).$$

• Coefficient of tail dependence $\lambda=0$, regardless of ρ ; threshold correlation $\rho(p)$ converges to 0 as $p\to 0$.

Tail dependence of bivariate normal distribution

Figure 9.3 Simulated threshold correlations from bivariate normal distributions with various linear correlations.

Bivariate standardized t distribution

Probability density function:

$$f_{\tilde{t}(d,\pi)}(z_1,z_2;d,\rho) = C(d,\rho) \left(1 + \frac{1}{d-2} \frac{z_1^2 + z_2^2 - 2\rho z_1 z_2}{1-\rho^2}\right)^{-(d+2)/2}.$$

- Implies that z_1 and z_2 both have a $\tilde{t}(d)$ distribution, and correlation ρ .
- Generalization to n > 2; see Christoffersen, p. 199.
- Simple way to simulate vector z:

$$\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = \sqrt{\frac{d-2}{d}} \begin{pmatrix} X_1/S \\ \vdots \\ X_n/S \end{pmatrix},$$

where $(X_1, \ldots, X_n) \sim N(0, \Upsilon)$, and $S^2 \sim \chi^2(d)/d$.

• Also implies that linear combinations w'z have a t(d) distribution with variance $w' \Upsilon w$.

Tail dependence of bivariate standardized *t* distribution

- Coefficient of tail dependence λ :
 - ▶ $\lambda > 0$ for all ρ and $d < \infty$;
 - λ increases with ρ and decreases with d.
- Threshold correlation $\rho(p)$ fairly constant, sometimes even increases as $p \to 0$.

Example – simulations from bivariate standardized t(4), $\rho = 0.8$

• Threshold correlations $\rho(p)$ are 0.7 for p=0.5 (left) and 0.7 for p=0.05 (right).

Tail dependence of bivariate standardized *t* distribution

Figure 9.4 Simulated threshold correlations from the symmetric t distribution with various parameters.

Bivariate skewed t distribution

- General density formula presented in Section 9.3.3 of Christoffersen hard to interpret.
- For n = 1 and $\Upsilon = 1$, this formula does not reduce to asymmetric t distribution of Section 7.6: different generalization.
- Vector z can be simulated as

$$\begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix} = \sqrt{\frac{d-2}{d}} \begin{pmatrix} X_1/S \\ \vdots \\ X_n/S \end{pmatrix} + \begin{pmatrix} \dot{\mu}_1 + \lambda_1/S^2 \\ \vdots \\ \dot{\mu}_n + \lambda_n/S^2 \end{pmatrix},$$

where:

- $(X_1,\ldots,X_n)\sim N(0,\dot{\Upsilon})$, and $S^2\sim \chi^2(d)/d$;
- λ_i , i = 1, ..., n, are skewness parameters;
- $\dot{\mu}$ and $\dot{\Upsilon}$ are chosen such that E(z)=0 and $Var(z)=\Upsilon$.

Copulas

- Idea: to give dependence to risks which may have very different distributions.
- Copula approach: build a bivariate cumulative distribution function (CDF)

$$F(z_1, z_2) = \Pr(z_{1t} \leq z_1, z_{2t} \leq z_2)$$

from:

- ▶ marginal CDFs $F_1(z_1) = \Pr(z_{1t} \le z_1)$ and $F_2(z_2) = \Pr(z_{2t} \le z_2)$;
- ▶ copula CDF $G(u_1, u_2)$, with $u_1 \in [0, 1]$ and $u_2 \in [0, 1]$.
- Sklar's Theorem: For every joint distribution, there exists a copula CDF such that

$$F(z_1, z_2) = G(F_1(z_1), F_2(z_2)).$$

• $G(u_1, u_2)$ is joint CDF of $u_{1t} = F_1(z_{1t})$ and $u_{2t} = F_2(z_{2t})$, the **probability integral** transforms.

Probability integral transforms

• If z_t has CDF F(z), then $u_t = F(z_t)$ has a uniform distribution on [0, 1]:

$$Pr(u_t \le u) = Pr(F(z_t) \le u)$$

$$= Pr(z_t \le F^{-1}(u))$$

$$= F(F^{-1}(u)) = u.$$

Copulas

- Copula is joint distribution of two random variables (u_{1t}, u_{2t}) with uniform marginal distribution.
- Examples:
 - ▶ Independence copula: $G(u_1, u_2) = u_1 u_2$.
 - Clayton copula

$$G(u_1, u_2) = (u_1^{-\alpha} + u_2^{-\alpha} - 1)^{-1/\alpha}, \qquad \alpha > 0;$$

lower tail dependence increasing with α ; approaches independence as $\alpha \to 0$.

- ► Normal / Gaussian and (skewed) Student's *t* copula more below.
- Copula density is the PDF $g(u_1, u_2)$ corresponding to CDF $G(u_1, u_2)$. Differentiation gives:

$$f(z_1, z_2) = g(F_1(z_1), F(z_2)) \times f_1(z_1) \times f_2(z_2).$$

Example – Clayton copula with normal marginals

• Contour plot of $f(z_1, z_2)$, with standard normal $f_1 \& f_2$ and Clayton copula, $\alpha = 1$.

Normal and Student's t copula

- Normal / Gaussian copula:
 - Let $\Phi_{\rho^*}(z_1, z_2)$ be bivariate normal CDF, and $\Phi(z)$ univariate standard normal CDF; then

$$G(u_1, u_2; \rho^*) = \Phi_{\rho^*}(\Phi^{-1}(u_1), \Phi^{-1}(u_2)),$$

Letting $\phi_{\rho^*}(z_1, z_2)$ and $\phi(z)$ be the bivariate / univariate normal PDFs, copula PDF is:

$$g(u_1, u_2; \rho^*) = \frac{\phi_{\rho^*} \left(\Phi^{-1}(u_1), \Phi^{-1}(u_2) \right)}{\phi(\Phi^{-1}(u_1)) \times \phi(\Phi^{-1}(u_2))},$$

- Note: using this copula does not require that marginal distribution of z₁ and z₂ is normal!
 - ▶ If actual CDFs are F_1 and F_2 , then implied joint distribution is

$$F(z_1, z_2) = \Phi_{\rho^*}(\Phi^{-1}(F_1(z_1)), \Phi^{-1}(F_2(z_2)));$$

▶ copula correlation ρ^* is correlation between $\Phi^{-1}(F_1(z_{1t}))$ and $\Phi^{-1}(F_2(z_{2t}))$.

Normal and Student's t copula

- Student's t copula: replace Φ_{ρ^*} and Φ^{-1} by joint CDF $t_{(d,\rho^*)}$ and inverse CDF t_d^{-1} , respectively.
- Can be generalized to skewed *t* distribution.
- All of these can be easily generalized to multivariate normal and t distributions (n > 2).
- Next slides give contour plots of implied PDFs, in all cases with normal marginal distributions.

Normal and Student's t copula, normal marginals

Skewed t copula, normal marginals

Applied copula modelling

- Stepwise estimation procedure, applied to time series of returns $\{(R_{1t}, R_{2t})\}_{t=1}^T$:
 - **①** Select and fit GARCH models to R_{1t} and R_{1t} separately; keep σ_{it} and $z_{it} = R_{it}/\sigma_{it}$;
 - ② Fit distribution $F_1(z)$ to $\{z_{1t}\}_{t=1}^T$, and similarly fit $F_2(z)$ to $\{z_{2t}\}_{t=1}^T$ (Student's t, FHS);
 - **3** Construct $(u_{1t}, u_{2t}) = (F_1(z_{1t}), F_2(z_{2t})), t = 1, ..., T;$
 - **⑤** Fit parameters θ of copula density $g(u_1, u_2; \theta)$ by maximum likelihood applied to $\{(u_{1t}, u_{2t})\}_{t=1}^T$;
 - ★ for normal copula, this is done by sample correlation ρ^* of $\Phi^{-1}(u_{1t}), \Phi^{-1}(u_{2t})$.
- Monte Carlo simulation of portfolio VaR:
 - Simulate (u_{1i}, u_{2i}) , i = 1, ..., MC from estimated copula density $g(u_1, u_2; \rho^*)$;
 - ② For each replication *i*, transform (u_{1i}, u_{2i}) to shocks $(z_{1i}, z_{2i}) = (F_1^{-1}(u_{1i}), F_2^{-1}(u_{2i}))$;
 - Oreate simulated returns $R_{1i,T+1} = \sigma_{1,T+1}z_{1i}$ and $R_{2i,T+1} = \sigma_{2,T+1}z_{2i}$;
 - Create simulated portfolio returns $R_{PF,i,T+1} = w_{1t}R_{1i,T+1} + w_{2t}R_{2i,T+1}$, and hence

$$VaR_{T+1}^{p} = -Percentile\left\{\left\{R_{PF,i,T+1}\right\}_{i=1}^{MC}, 100p\right\}.$$

Systemic risk

- Copula approach can also be applied to dependence between losses of different banks.
- The 2008 financial crisis illustrated the fragility of a strongly interconnected banking system.
- It has shown that banks may have a systemic importance: they are "so interconnected and large that they can generate negative risk spillover effects on others."
- There may be various causes to the interconnectedness, e.g.:
 - interbank investment and lending;
 - common exposure to risk in particular financial products.
- Adrian and Brunnermeier (2016) propose a measure of an institution's contribution to the financial system's risk, based on conditional VaR or CoVaR.
- (Other research on systemic risk has taken the opposite point of view: the institution's exposure to the system's risk.)

Δ CoVaR

- Let R_i be the return on equity of institution i, and R_s be the return on the system (market index, or financial sector index).
- The CoVaR is definied from

$$\Pr(R_s < -CoVaR_p^{s|i}|R_i) = p,$$

and \(\Delta \text{CoVaR} \) is

$$\Delta \textit{CoVaR}_p^{\textit{s}|\textit{i}} = \textit{CoVaR}_p^{\textit{s}|\textit{R}_i = -\textit{VaR}_p} - \textit{CoVaR}_p^{\textit{s}|\textit{R}_i = -\textit{VaR}_{0.5}}.$$

- Interpretation: the additional systemic risk when institution i moves from a normal situation ($R_i = -VaR_{0.5}$) to a crisis situation ($R_i = -VaR_p$).
- Adrian and Brunnermeier propose to implement this using quantile regression.
- Alternatively, it can be implemented from a DCC or copula model.

△CoVaR based on DCC

Assuming

$$\begin{pmatrix} R_{i,t+1} \\ R_{s,t+1} \end{pmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{i,t+1}^2 & \rho_{is,t+1}\sigma_{i,t+1}\sigma_{s,t+1} \\ \rho_{is,t+1}\sigma_{i,t+1}\sigma_{s,t+1} & \sigma_{s,t+1}^2 \end{bmatrix} \end{pmatrix},$$

then

$$R_{s,t+1}|R_{i,t+1} \sim N\left(\mu_{s|i,t+1}, \sigma_{s|i,t+1}^2\right),$$

$$\mu_{s|i,t+1} = \rho_{is,t+1} \frac{\sigma_{s,t+1}}{\sigma_{i,t+1}} R_{i,t+1}, \qquad \sigma_{s|i,t+1}^2 = \sigma_{s,t+1}^2 (1 - \rho_{is,t+1}^2).$$

ullet Because assumptions imply $\mathit{VaR}_{t+1}^{p} = -\sigma_{i,t+1}\Phi_{p}^{-1}$ and $\mathit{VaR}_{t+1}^{0.5} = 0$, we have

$$\Delta \textit{CoVaR}_p^{s|i} = -\sigma_{s,t+1} \rho_{is,t+1} \Phi_p^{-1}.$$

Copyright statement

Figure 9.2–9.4 on Slides 6, 8 and 12, and the figures on Slides 20 and 21 have been extracted from:

Christoffersen, P. F. (2012), *Elements of Financial Risk Management*, Second Edition. Waltham (MA): Academic Press. ISBN 978-0-12-374448-7.

► Back to first slide