Adventures in Algebraic Path Problems with applications to Internet routing SBRC Tutorial May 2019, Gramado, Brazil

Timothy G. Griffin

tgg22@cam.ac.uk Computer Laboratory University of Cambridge, UK

SBRC 2019

The Plan

- Part I: Classical Semiring-based path finding
- Part II: Drop distributivity. Show that Dijkstra's algorithm computes local optima (Sobrinho & Griffin 2010)

Shortest paths example, $sp = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$

The adjacency matrix

Shortest paths solution

$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where $\pi(i, j)$ is the set of all paths from i to j.

Widest paths example, $bw = (\mathbb{N}^{\infty}, max, min, 0, \infty)$

$$\mathbf{A}^* = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 4 & 4 & 6 & 4 \\ 2 & 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 6 & 4 & 4 & \infty & 4 \\ 5 & 4 & 4 & 4 & 4 & \infty \end{bmatrix}$$

solves this global optimality problem:

$$\mathbf{A}^*(i, j) = \max_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the minimal edge weight in p.

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap, \{\}, \{a, b, c\})$

We want **A*** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcup_{\boldsymbol{p} \in \pi(i, j)} w(\boldsymbol{p}),$$

where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

$$A^*(4, 1) = \{a, b\}$$
 $A^*(4, 5) = \{b\}$

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$

We want matrix **R** to solve this global optimality problem:

$$\mathbf{A}^*(i, j) = \bigcap_{\boldsymbol{p} \in \pi(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{A}^*(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

$$A^*(4, 1) = \{b\}$$
 $A^*(4, 5) = \{b\}$ $A^*(5, 1) = \{\}$

Semirings (generalise $(\mathbb{R}, +, \times, 0, 1)$)

name	S	⊕,	\otimes	$\overline{0}$	1	possible routing use
sp	M_{∞}	min	+	∞	0	minimum-weight routing
bw	M_{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2^W	\cup	\cap	{}	W	shared link attributes?
	2^W	\cap	\cup	W	{}	shared path attributes?

A wee bit of notation!

Symbol	Interpretation
\mathbb{N}	Natural numbers (starting with zero)
M_{∞}	Natural numbers, plus infinity
0	Identity for ⊕
1	Identity for \otimes

Recommended Reading

Semigroups

Semigroup

A semigroup (S, \bullet) is a non-empty set S with a binary operation such that

```
AS associative \equiv \forall a, b, c \in S, a \bullet (b \bullet c) = (a \bullet b) \bullet c
```

Some Important Semigroup Properties

A semigroup with an identity is called a monoid.

A few concrete semigroups

S	•	description	α	ω	$\mathbb{C}\mathbb{M}$	SL	\mathbb{IP}
S S S*	left	$x \operatorname{left} y = x$				*	*
S	right	x right $y = y$				*	*
S*		concatenation	ϵ				
\mathcal{S}^+		concatenation					
$\{t, f\}$	^	conjunction	t	f	*	*	*
$\{t, f\}$	\ \	disjunction	f	t	*	*	*
N	min	minimum		0	*	*	*
N	max	maximum	0		*	*	*
2 ^W	U	union	{}	W	*		*
2 ^W	\cap	intersection	W	{}	*		*
fin(2 ^{<i>U</i>})	U	union	{}		*		*
$fin(2^U)$	\cap	intersection		{}	*		*
N	+	addition	0		*		
N	×	multiplication	1	0	*		

W a finite set, U an infinite set. For set Y, $fin(Y) \equiv \{X \in Y \mid X \text{ is finite}\}\$

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

$$\mathbb{RX} \qquad \text{reflexive} \quad \equiv \quad a \leqslant a$$

$$\mathbb{TR} \qquad \text{transitive} \quad \equiv \quad a \leqslant b \land b \leqslant c \rightarrow a \leqslant c$$

$$\mathbb{AY} \quad \text{antisymmetric} \quad \equiv \quad a \leqslant b \land b \leqslant a \rightarrow a = b$$

$$\mathbb{TO} \qquad \text{total} \quad \equiv \quad a \leqslant b \lor b \leqslant a$$

		partial	preference	total
	pre-order	order	order	order
$\mathbb{R}\mathbb{X}$	*	*	*	*
\mathbb{TR}	*	*	*	*
$\mathbb{A}\mathbb{Y}$		*		*
$\mathbb{T}\mathbb{O}$			*	*

Natural Orders

Definition (Natural orders)

Let (S, \bullet) be a semigroup.

$$a \leq_{\bullet}^{L} b \equiv a = a \bullet b$$

 $a \leq_{\bullet}^{R} b \equiv b = a \bullet b$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all a, $a \leq_{\bullet}^{L} \alpha$ and $\alpha \leq_{\bullet}^{R} a$
- If ω exists, then for all $a, \omega \leqslant^L_{\bullet} a$ and $a \leqslant^R_{\bullet} \omega$
- If α and ω exist, then S is bounded.

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for (min, +) we have

$$\begin{array}{ccccc}
0 & \leqslant_{\min}^{L} & a & \leqslant_{\min}^{L} & \infty \\
\infty & \leqslant_{\min}^{R} & a & \leqslant_{\min}^{R} & 0
\end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	•	α	ω	$\leq^{\mathbb{L}}_{ullet}$	\leq^{R}_{ullet}
M_{∞}	min	∞	0	<	\geqslant
$M_{-\infty}$	max	0	$-\infty$	≥	\leq
$\mathcal{P}(\mathbf{W})$	U	{}	W	⊆	\supseteq
$\mathcal{P}(\mathbf{W})$	\cap	W	{}	\supseteq	UI

Property Management

Lemma

Let $D \in \{R, L\}$.

Proof.

Bi-semigroups and Pre-Semirings

- (S, \oplus, \otimes) is a bi-semigroup when
 - (S, \oplus) is a semigroup
 - (S, \otimes) is a semigroup

(S, \oplus, \otimes) is a pre-semiring when

- ullet (S, \oplus, \otimes) is a bi-semigroup
- is commutative

and left- and right-distributivity hold,

$$\mathbb{LD} : \mathbf{a} \otimes (\mathbf{b} \oplus \mathbf{c}) = (\mathbf{a} \otimes \mathbf{b}) \oplus (\mathbf{a} \otimes \mathbf{c})$$

$$\mathbb{RD}$$
 : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when
 - (S, \oplus, \otimes) is a pre-semiring
 - $(S, \oplus, \overline{0})$ is a (commutative) monoid
 - $(S, \otimes, \overline{1})$ is a monoid
 - $\overline{0}$ is an annihilator for \otimes

Examples

Pre-semirings

name	S	\oplus ,	\otimes	0	1
min_plus	\mathbb{N}	min	+		0
max_min	\mathbb{N}	max	min	0	

Semirings

name	S	⊕,	\otimes	0	1
sp	M_{∞}	min	+	∞	0
bw	M_{∞}	max	min	0	∞

Note the sloppiness — the symbols +, max, and min in the two tables represent different functions....

Matrix Semirings

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

\oplus and \otimes

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

$$(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$$

J and I

$$\mathbf{J}(i, j) = \overline{0}$$

$$\mathbf{I}(i, j) = \begin{cases} \overline{1} & (\text{if } i = j) \\ \overline{0} & (\text{otherwise}) \end{cases}$$

Associativity

$$\textbf{A} \otimes (\textbf{B} \otimes \textbf{C}) = (\textbf{A} \otimes \textbf{B}) \otimes \textbf{C}$$

$$(\mathbf{A} \otimes (\mathbf{B} \otimes \mathbf{C}))(i, j)$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \mathbf{A}(i, u) \otimes (\mathbf{B} \otimes \mathbf{C})(u, j) \qquad (\text{def} \rightarrow)$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \mathbf{A}(i, u) \otimes (\bigoplus_{1 \leqslant v \leqslant n} \mathbf{B}(u, v) \otimes \mathbf{C}(v, j)) \qquad (\text{def} \rightarrow)$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \bigoplus_{1 \leqslant v \leqslant n} \mathbf{A}(i, u) \otimes (\mathbf{B}(u, v) \otimes \mathbf{C}(v, j)) \qquad (\mathbb{LD})$$

$$= \bigoplus_{1 \leqslant u \leqslant n} \bigoplus_{1 \leqslant u \leqslant n} (\mathbf{A}(i, u) \otimes \mathbf{B}(u, v)) \otimes \mathbf{C}(v, j) \qquad (\mathbb{AS}, \mathbb{CM})$$

$$= \bigoplus_{1 \leqslant v \leqslant n} \bigoplus_{1 \leqslant u \leqslant n} \mathbf{A}(i, u) \otimes \mathbf{B}(u, v) \otimes \mathbf{C}(v, j) \qquad (\mathbb{RD})$$

$$= \bigoplus_{1 \leqslant v \leqslant n} (\mathbf{A} \otimes \mathbf{B})(i, v) \otimes \mathbf{C}(v, j) \qquad (\text{def} \leftarrow)$$

$$= ((\mathbf{A} \otimes \mathbf{B}) \otimes \mathbf{C})(i, j) \qquad (\text{def} \leftarrow)$$

Left Distributivity

$$\textbf{A} \otimes (\textbf{B} \oplus \textbf{C}) = (\textbf{A} \otimes \textbf{B}) \oplus (\textbf{A} \otimes \textbf{C})$$

$$\begin{array}{ll} (\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i,\,j) \\ = & \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,\,q) \otimes (\mathbf{B} \oplus \mathbf{C})(q,\,j) \\ = & \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,\,q) \otimes (\mathbf{B}(q,\,j) \oplus \mathbf{C}(q,\,j)) \\ = & \bigoplus_{1 \leqslant q \leqslant n} (\mathbf{A}(i,\,q) \otimes \mathbf{B}(q,\,j)) \oplus (\mathbf{A}(i,\,q) \otimes \mathbf{C}(q,\,j)) \\ = & (\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,\,q) \otimes \mathbf{B}(q,\,j)) \oplus (\bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,\,q) \otimes \mathbf{C}(q,\,j)) \\ = & ((\mathbf{A} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i,\,j) \end{array}$$

Matrix encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The weight of a path $p = i_1, i_2, i_3, \dots, i_k$ is

$$\textbf{\textit{w}}(\textbf{\textit{p}}) = \textbf{\textit{w}}(\textbf{\textit{i}}_1, \ \textbf{\textit{i}}_2) \otimes \textbf{\textit{w}}(\textbf{\textit{i}}_2, \ \textbf{\textit{i}}_3) \otimes \cdots \otimes \textbf{\textit{w}}(\textbf{\textit{i}}_{k-1}, \ \textbf{\textit{i}}_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \overline{0} & \text{otherwise} \end{cases}$$

The general problem of finding globally optimal path weights

Given an adjacency matrix **A**, find **A*** such that for all $i, j \in V$

$$\mathbf{A}^*(i, j) = \bigoplus_{\boldsymbol{p} \in \pi(i, j)} \boldsymbol{w}(\boldsymbol{p})$$

where $\pi(i, j)$ represents the set of all paths from i to j.

How can we solve this problem?

Stability

 $\bullet \ (\mathcal{S}, \, \oplus, \, \otimes, \, \overline{\mathbf{0}}, \, \overline{\mathbf{1}}) \text{ a semiring}$

$a \in S$, define powers a^k

$$a^0 = \overline{1}$$

 $a^{k+1} = a \otimes a^k$

Closure, a*

$$a^{(k)} = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k$$

 $a^* = a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots$

Definition (q stability)

If there exists a q such that $a^{(q)}=a^{(q+1)}$, then a is q-stable. By induction: $\forall t, 0 \leq t, a^{(q+t)}=a^{(q)}$. Therefore, $a^*=a^{(q)}$.

Matrix methods

Matrix powers, \mathbf{A}^k

$$A^0 = I$$

$$\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$$

Closure, A*

$$\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist. Why?

Matrix methods can compute optimal path weights

- Let $\pi(i,j)$ be the set of paths from i to j.
- Let $\pi^k(i,j)$ be the set of paths from i to j with exactly k arcs.
- Let $\pi^{(k)}(i,j)$ be the set of paths from i to j with at most k arcs.

Theorem

$$(1) \quad \mathbf{A}^{k}(i, j) = \bigoplus_{\substack{p \in \pi^{k}(i, j) \\ p \in \pi^{(k)}(i, j)}} \mathbf{w}(p)$$

$$(2) \quad \mathbf{A}^{(k)}(i, j) = \bigoplus_{\substack{p \in \pi^{(k)}(i, j) \\ p \in \pi(i, j)}} \mathbf{w}(p)$$

Warning again: for some semirings the expression $\mathbf{A}^*(i, j)$ might not be well-defeind. Why?

Proof of (1)

By induction on k. Base Case: k = 0.

$$\pi^{0}(i, i) = \{\epsilon\},\$$

so
$$\mathbf{A}^0(i,i) = \mathbf{I}(i,i) = \overline{1} = \mathbf{w}(\epsilon)$$
.

And $i \neq j$ implies $\pi^0(i,j) = \{\}$. By convention

$$\bigoplus_{p\in\{\}} w(p) = \overline{0} = \mathbf{I}(i, j).$$

Proof of (1)

Induction step.

$$\begin{array}{lll} \mathbf{A}^{k+1}(i,j) & = & (\mathbf{A} \otimes \mathbf{A}^k)(i,\,j) \\ \\ & = & \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,\,q) \otimes \mathbf{A}^k(q,\,j) \\ \\ & = & \bigoplus_{1 \leqslant q \leqslant n} \mathbf{A}(i,\,q) \otimes (\bigoplus_{p \in \pi^k(q,\,j)} w(p)) \\ \\ & = & \bigoplus_{1 \leqslant q \leqslant n} \bigoplus_{p \in \pi^k(q,\,j)} \mathbf{A}(i,\,q) \otimes w(p) \\ \\ & = & \bigoplus_{(i,\,q) \in E} \bigoplus_{p \in \pi^k(q,j)} w(i,\,q) \otimes w(p) \\ \\ & = & \bigoplus_{p \in \pi^{k+1}(i,\,j)} w(p) \end{array}$$

Fun Facts

Fact 3

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Fact 4

If *S* is 0-stable, then $M_n(S)$ is (n-1)-stable. That is,

$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$

Why? Because we can ignore paths with loops.

$$(a \otimes c \otimes b) \oplus (a \otimes b) = a \otimes (\overline{1} \oplus c) \otimes b = a \otimes \overline{1} \otimes b = a \otimes b$$

Think of c as the weight of a loop in a path with weight $a \otimes b$.

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$

Note that the longest shortest path is (1, 0, 2, 3) of length 3 and weight 7.

(min, +) example

Our theorem tells us that $\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{A}^{(4)}$

$$\mathbf{A}^* = \mathbf{A}^{(4)} = \mathbf{I} \text{ min } \mathbf{A} \text{ min } \mathbf{A}^2 \text{ min } \mathbf{A}^3 \text{ min } \mathbf{A}^4 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 7 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

(min, +) example

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 6 & \infty \\ \frac{2}{2} & \infty & 5 & \infty & \frac{4}{2} \\ \frac{1}{1} & 5 & \infty & \frac{4}{2} & \frac{3}{2} \\ 6 & \infty & \frac{4}{2} & \infty & \infty \end{bmatrix} \quad \mathbf{A}^3 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 8 & 4 & 3 & 8 & 10 \\ 4 & 8 & 7 & \frac{7}{7} & 6 \\ 3 & 7 & 8 & 6 & 5 \\ 8 & \frac{7}{7} & 6 & 11 & 10 \\ 10 & 6 & 5 & 10 & 12 \end{bmatrix}$$

$$\mathbf{A}^{2} = \begin{bmatrix} 2 & 6 & 7 & \frac{5}{5} & \frac{4}{6} \\ 6 & 4 & \frac{3}{3} & 8 & 8 \\ 7 & \frac{3}{3} & 2 & 7 & 9 \\ \frac{5}{4} & 8 & 9 & \frac{7}{6} & 6 \end{bmatrix} \qquad \mathbf{A}^{4} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 4 & 8 & 9 & 7 & 6 \\ 8 & 6 & 5 & 10 & 10 \\ 9 & 5 & 4 & 9 & 11 \\ 7 & 10 & 9 & 10 & 9 \\ 6 & 10 & 11 & 9 & 8 \end{bmatrix}$$

First appearance of final value is in red and <u>underlined</u>. Remember: we are looking at all paths of a given length, even those with cycles!

A vs A \oplus I

Lemma

If \oplus is idempotent, then

$$(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}.$$

Proof. Base case: When k = 0 both expressions are **I**.

Assume $(\mathbf{A} \oplus \mathbf{I})^k = \mathbf{A}^{(k)}$. Then

$$(\mathbf{A} \oplus \mathbf{I})^{k+1} = (\mathbf{A} \oplus \mathbf{I})(\mathbf{A} \oplus \mathbf{I})^{k}$$

$$= (\mathbf{A} \oplus \mathbf{I})\mathbf{A}^{(k)}$$

$$= \mathbf{A}\mathbf{A}^{(k)} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}(\mathbf{I} \oplus \mathbf{A} \oplus \cdots \oplus \mathbf{A}^{k}) \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A} \oplus \mathbf{A}^{2} \oplus \cdots \oplus \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{k+1} \oplus \mathbf{A}^{(k)}$$

$$= \mathbf{A}^{(k+1)}$$

back to (min, +) example

$$(\mathbf{A} \oplus \mathbf{I})^1 \ = \ \ \begin{array}{c} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 6 & \infty \\ 1 & 2 & 0 & 5 & \infty & 4 \\ 1 & 5 & 0 & 4 & 3 & (\mathbf{A} \oplus \mathbf{I})^3 \ \ \, & \ \$$

$$(\mathbf{A} \oplus \mathbf{I})^2 = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 2 & 1 & 5 & 4 \\ 1 & 2 & 0 & 3 & 8 & 4 \\ 2 & 0 & 3 & 8 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 5 & 8 & 4 & 0 & 7 \\ 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

Solving (some) equations

Theorem 6.1

If **A** is q-stable, then **A*** solves the equations

$$L = AL \oplus I$$

and

$$R = RA \oplus I$$
.

For example, to show $\mathbf{L} = \mathbf{A}^*$ solves the first equation:

$$\mathbf{A}^* = \mathbf{A}^{(q)}$$

$$= \mathbf{A}^{(q+1)}$$

$$= \mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \ldots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I}$$

$$= \mathbf{A}(\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \ldots \oplus \mathbf{A} \oplus \mathbf{I}) \oplus \mathbf{I}$$

$$= \mathbf{A}\mathbf{A}^{(q)} \oplus \mathbf{I}$$

$$= \mathbf{A}\mathbf{A}^* \oplus \mathbf{I}$$

Note that if we replace the assumption "**A** is q-stable" with "**A*** exists," then we require that \otimes distributes over <u>infinite</u> sums.

A more general result

Theorem Left-Right

If **A** is q-stable, then $\mathbf{L} = \mathbf{A}^* \mathbf{B}$ solves the equation

$$L = AL \oplus B$$

and $\mathbf{R} = \mathbf{B}\mathbf{A}^*$ solves

$$R = RA \oplus B$$
.

For the first equation:

$$\mathbf{A}^*\mathbf{B} = \mathbf{A}^{(q)}\mathbf{B}$$

$$= \mathbf{A}^{(q+1)}\mathbf{B}$$

$$= (\mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \dots \oplus \mathbf{A}^2 \oplus \mathbf{A} \oplus \mathbf{I})\mathbf{B}$$

$$= (\mathbf{A}^{q+1} \oplus \mathbf{A}^q \oplus \dots \oplus \mathbf{A}^2 \oplus \mathbf{A})\mathbf{B} \oplus \mathbf{B}$$

$$= \mathbf{A}(\mathbf{A}^q \oplus \mathbf{A}^{q-1} \oplus \dots \oplus \mathbf{A} \oplus \mathbf{I})\mathbf{B} \oplus \mathbf{B}$$

$$= \mathbf{A}(\mathbf{A}^{(q)}\mathbf{B}) \oplus \mathbf{B}$$

$$= \mathbf{A}(\mathbf{A}^*\mathbf{B}) \oplus \mathbf{B}$$

The "best" solution

Suppose Y is a matrix such that

$$\mathbf{Y} = \mathbf{AY} \oplus \mathbf{I}$$

If **A** is q-stable and q < k, then

$$\mathbf{Y} = \mathbf{A}^k \mathbf{Y} \oplus \mathbf{A}^*$$

$$\mathbf{Y} = \mathbf{A}\mathbf{Y} \oplus \mathbf{I} \\
= \mathbf{A}^{1}\mathbf{Y} \oplus \mathbf{A}^{(0)} \\
= \mathbf{A}((\mathbf{A}\mathbf{Y} \oplus \mathbf{I})) \oplus \mathbf{I} \\
= \mathbf{A}^{2}\mathbf{Y} \oplus \mathbf{A} \oplus \mathbf{I} \\
= \mathbf{A}^{2}\mathbf{Y} \oplus \mathbf{A}^{(1)} \\
\vdots \vdots \vdots \\
= \mathbf{A}^{k+1}\mathbf{Y} \oplus \mathbf{A}^{(k)}$$

$$\mathbf{Y} \leq^{\underline{L}}_{\oplus} \mathbf{A}^*$$

and if \oplus is idempotent, then

$$\mathbf{Y} \leqslant^{\mathit{L}}_{\oplus} \mathbf{A}^*$$

So **A*** is the largest solution. What does this mean in terms of the sp semiring?

Example with zero weighted cycles using sp semiring

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 10 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 \mathbf{A}^* (= $\mathbf{A} \oplus \mathbf{I}$ in this case) solves

$$X = XA \oplus I$$
.

But so does this (dishonest) matrix!

$$\mathbf{F} = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 9 & 9 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

For example:

$$(\mathbf{FA} \oplus \mathbf{I})(0,1)$$
= $\min_{q \in \{0,1,2\}} \mathbf{F}(0,q) + \mathbf{A}(q,1)$
= $\min(0+10,9+\infty,9+0)$
= $\mathbf{9}$
= $\mathbf{F}(0,1)$

An interesting semiring

Let G = (V, E) be a directed graph.

Cut Sets

- A cut set $C \subseteq E$ for nodes i and j is a set of arcs such there is no path from i to j in the graph (V, E C).
- C is minimal if no proper subset of C is an arc cut set.

Martelli's Semiring

Let G = (V, E) be a directed graph.

```
\begin{array}{rcl} M &\equiv& (S,\,\oplus,\,\otimes,\,0,\,1)\\ S &\equiv& \{X\in 2^{2^E}\mid\forall\,U,\,V\in X,\,U\subseteq V\implies U=V\}\\ X\oplus Y &\equiv& \text{remove all supersets from }\{U\cup V\mid U\in X,\,\,V\in Y\}\\ X\otimes Y &\equiv& \text{remove all supersets from }X\cup Y\\ \hline \frac{\bar{0}}{1} &\equiv& \{\{\}\}\\ \hline 1 &\equiv& \{\}\end{array}
```

What does it do?

• If every arc (i, j) is has weight $\mathbf{A}(i, j) = \{\{(i, j)\}\}$, then $\mathbf{A}^*(i, j)$ is the set of all minimal arc cut sets for i and j.

A

Part of A*

$$\begin{array}{lll} \textbf{A}^*(0,\ 1) &=& \{\{(0,1),(2,1)\},\\ && \{(0,1),(0,2),(0,3)\},\\ && \{(0,1),(0,2),(3,2)\}\} \\ \\ \textbf{A}^*(0,\ 2) &=& \{\{(0,2),(1,2),(3,2)\},\\ && \{(0,1),(0,2),(3,2)\},\\ && \{(0,1),(0,2),(0,3)\},\\ && \{(0,2),(0,3),(1,2)\}\} \\ \textbf{A}^*(2,\ 0) &=& \{\{(2,0),(2,1),(3,0)\},\\ && \{(1,0),(2,0),(2,3)\},\\ && \{(2,0),(2,1),(2,3)\}\} \\ \textbf{A}^*(2,\ 3) &=& \{\{(2,0),(2,1),(2,3)\},\\ && \{(0,3),(2,3)\},\\ && \{(0,3),(2,3)\},\\ && \{(1,0),(2,0),(2,3)\}\} \end{array}$$

Part II

Drop distributivity!

Should distributivity hold in Internet Routing?

- j prefers long path though one of its customers (not the shorter path through a competitor)
- given two routes from a provider, i prefers the one with a shorter path
- More on inter-domain routing in the Internet later in the term ...

Widest shortest-paths

- Metric of the form (d, b), where d is distance (min, +) and b is capacity (max, min).
- Metrics are compared lexicographically, with distance considered first.
- Such things are found in the vast literature on Quality-of-Service (QoS) metrics for Internet routing.

Widest shortest-paths

Weights are globally optimal (we have a semiring)

Widest shortest-path weights computed by Dijkstra and Bellman-Ford

But what about the paths themselves?

Four optimal paths of weight (3, 10).

```
\begin{array}{lll} \textbf{P}_{optimal}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) & = & \{(2,1,0), \ (2,4,1,0)\} \end{array}
```

There are standard ways to extend Bellman-Ford and Dijkstra to compute paths (or the associated <u>next hops</u>).

Do these extended algorithms find all optimal paths?

Surprise!

Four **optimal** paths of weight (3, 10)

```
\begin{array}{lcl} \textbf{P}_{optimal}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{optimal}(2,0) & = & \{(2,1,0), \ (2,4,1,0)\} \end{array}
```

Paths computed by (extended) Dijkstra

$$\begin{array}{lcl} \textbf{P}_{Dijkstra}(0,2) & = & \{(0,1,2), \ (0,1,4,2)\} \\ \textbf{P}_{Dijkstra}(2,0) & = & \{(2,4,1,0)\} \end{array}$$

Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text{Dijkstra}}(1,2) = \{(1,4,2)\}.$

Paths computed by distributed Bellman-Ford

$$\begin{array}{lcl} \textbf{P}_{Bellman}(0,2) & = & \{(0,1,4,2)\} \\ \textbf{P}_{Bellman}(2,0) & = & \{(2,1,0),\ (2,4,1,0)\} \end{array}$$

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford

Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra

How can we understand this (algebaically)?

The Algorithm to Algebra (A2A) method

$$\left(\begin{array}{c} \text{original metric} \\ + \\ \text{complex algorithm} \end{array} \right) \rightarrow \left(\begin{array}{c} \text{modified metric} \\ + \\ \text{matrix equations (generic algorithm)} \end{array} \right)$$

Preview

- We can add paths explicitly to the widest shortest-path semiring to obtain a new algebra.
- We will see that distributivity does not hold for this algebra.
- Why? We will see that it is because min is not cancellative! $(a \min b = a \min c \text{ does not imply that } b = c)$

Towards a non-classical theory of algebraic path finding

We need theory that can accept algebras that violate distributivity.

Global optimality

$$\mathbf{A}^*(i, j) = \bigoplus_{\mathbf{p} \in P(i, j)} \mathbf{w}(\mathbf{p}),$$

Left local optimality (distributed Bellman-Ford)

$$L = (A \otimes L) \oplus I$$
.

Right local optimality (Dijkstra's Algorithm)

$$R = (R \otimes A) \oplus I$$
.

Embrace the fact that all three notions can be distinct.

Dijkstra's Algorithm

Classical Dijkstra

Given adjacency matrix **A** over a selective semiring and source vertex $i \in V$, Dijkstra's algorithm will compute $\mathbf{A}^*(i, _)$ such that

$$\mathbf{A}^*(i,\ j) = \bigoplus_{\boldsymbol{p}\in P(i,j)} w_{\mathbf{A}}(\boldsymbol{p}).$$

Non-Classical Dijkstra

If we drop assumptions of distributivity, then given adjacency matrix \mathbf{A} and source vertex $i \in V$, Dijkstra's algorithm will compute $\mathbf{R}(i, _)$ such that

$$\forall j \in V : \mathbf{R}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j).$$

Routing in Equilibrium, João Luís Sobrinho and Timothy G. Griffin, MTNS 2010.

Dijkstra's algorithm

Input : adjacency matrix **A** and source vertex $i \in V$, **Output** : the i-th row of **R**, **R**(i,).

```
begin
    S \leftarrow \{i\}
    \mathbf{R}(i, i) \leftarrow \overline{1}
    for each q \in V - \{i\} : \mathbf{R}(i, q) \leftarrow \mathbf{A}(i, q)
    while S \neq V
         begin
             find q \in V - S such that \mathbf{R}(i, q) is \leq_{\infty}^{L}-minimal
             S \leftarrow S \cup \{q\}
             for each j \in V - S
                  \mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) \oplus (\mathbf{R}(i, q) \otimes \mathbf{A}(q, j))
        end
end
```

Classical proofs of Dijkstra's algorithm (for global optimality) assume

Semiring Axioms

```
\mathbb{AS}(\oplus) : a \oplus (b \oplus c) = (a \oplus b) \oplus c
```

$$\mathbb{CM}(\oplus)$$
 : $a \oplus b = b \oplus a$

$$\mathbb{ID}(\oplus)$$
 : $\overline{0} \oplus a = a$

$$\mathbb{AS}(\otimes)$$
 : $a \otimes (b \otimes c) = (a \otimes b) \otimes c$

$$\mathbb{IDL}(\otimes)$$
 : $\overline{1} \otimes a = a$

$$\mathbb{IDR}(\otimes)$$
 : $a \otimes \overline{1} = a$

$$\mathbb{ANL}(\otimes)$$
 : $\overline{0} \otimes \underline{a} = \overline{0}$

$$\mathbb{ANR}(\otimes)$$
 : $a \otimes \overline{0} = \overline{0}$

$$\mathbb{L}\mathbb{D} \ : \ a \otimes (b \oplus c) \ = \ (a \otimes b) \oplus (a \otimes c)$$

$$\mathbb{RD}$$
 : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

Classical proofs of Dijkstra's algorithm assume

Additional axioms

$$\begin{array}{rclcrcl} \mathbb{SL}(\oplus) & : & \underline{a} \oplus b & \in & \{\underline{a}, \ b\} \\ \mathbb{AN}(\oplus) & : & \overline{1} \oplus \underline{a} & = & \overline{1} \end{array}$$

Note that we can derive right absorption,

$$\mathbb{R}\mathbb{A}$$
 : $a \oplus (a \otimes b) = a$

and this gives (right) inflationarity, $\forall a, b : a \leq a \otimes b$.

$$a \oplus (a \otimes b) = (a \otimes \overline{1}) \oplus (a \otimes b)$$

= $a \otimes (\overline{1} \oplus b)$
= $a \otimes \overline{1}$
= a

What will we assume? Very little!

Sendining Axioms

```
\mathbb{AS}(\oplus) : a \oplus (b \oplus c) = (a \oplus b) \oplus c
```

$$\mathbb{CM}(\oplus) : \qquad a \oplus b = b \oplus a$$

$$\mathbb{D}(\oplus) : \overline{0} \oplus a = a$$

$$AS(\varnothing): A\varnothing(D\varnothing C) \stackrel{\mathcal{U}}{=} (A\varnothing D) \varnothing C$$

$$+4444$$

$$ANL(\varnothing)$$
: $\overline{0}/\varnothing/a$ $\#$ $\overline{0}$

$$\mathbb{L} \mathbb{D} : \mathbb{A} \mathbb{D} (\mathbb{D} \mathbb{H} \mathbb{K}) \stackrel{\mathcal{U}}{=} (\mathbb{A} \mathbb{D} \mathbb{D}) \mathbb{H} (\mathbb{A} \mathbb{D} \mathbb{K})$$

$$\mathbb{R}^{\text{TD}}$$
 : $(\mathbb{A} \oplus \mathbb{A}) \otimes \mathbb{A} \oplus (\mathbb{A} \otimes \mathbb{A}) \oplus (\mathbb{A} \otimes \mathbb{A})$

What will we assume?

Additional axioms

```
\mathbb{SL}(\oplus) : \underline{a} \oplus b \in \{a, b\}

\mathbb{ANL}(\oplus) : \overline{1} \oplus a = \overline{1}

\mathbb{RA} : \underline{a} \oplus (a \otimes b) = a
```

- Note that we can no longer derive $\mathbb{R}\mathbb{A}$, so we must assume it.
- Again, $\mathbb{R}\mathbb{A}$ says that $a \leq a \otimes b$.
- We don't use SL explicitly in the proofs, but it is implicit in the algorithm's definition of q_k .
- We do not use $\mathbb{AS}(\oplus)$ and $\mathbb{CM}(\oplus)$ explicitly, but these assumptions are implicit in the use of the "big- \oplus " notation.

Under these weaker assumptions ...

Theorem (Sobrinho/Griffin)

Given adjacency matrix **A** and source vertex $i \in V$, Dijkstra's algorithm will compute $\mathbf{R}(i, _)$ such that

$$\forall j \in V : \mathbf{R}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in V} \mathbf{R}(i, q) \otimes \mathbf{A}(q, j).$$

That is, it computes one row of the solution for the right equation

$$R = RA \oplus I$$
.

Dijkstra's algorithm, annotated version

Subscripts make proofs by induction easier

```
begin
    S_1 \leftarrow \{i\}
    \mathbf{R}_1(i, i) \leftarrow \overline{1}
    for each g \in V - S_1 : \mathbf{R}_1(i, q) \leftarrow \mathbf{A}(i, q)
    for each k = 2, 3, ..., |V|
        begin
             find q_k \in V - S_{k-1} such that \mathbf{R}_{k-1}(i, q_k) is \leq_{\oplus}^L-minimal
             S_k \leftarrow S_{k-1} \cup \{a_k\}
             for each i \in V - S_k
                 \mathbf{R}_{k}(i, j) \leftarrow \mathbf{R}_{k-1}(i, j) \oplus (\mathbf{R}_{k-1}(i, a_{k}) \otimes \mathbf{A}(a_{k}, j))
        end
end
```

Main Claim, annotated

$$\forall k: 1 \leqslant k \leqslant \mid V \mid \implies \forall j \in \mathcal{S}_k: \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

We will use

Observation 1 (no backtracking):

$$\forall k : 1 \leqslant k < \mid V \mid \implies \forall j \in S_{k+1} : \mathbf{R}_{k+1}(i, j) = \mathbf{R}_k(i, j)$$

Observation 2 (Dijkstra is "greedy"):

$$\forall k: 1 \leqslant k \leqslant \mid V \mid \implies \forall q \in S_k: \forall w \in V - S_k: \mathbf{R}_k(i, q) \leqslant \mathbf{R}_k(i, w)$$

Observation 3 (Accurate estimates):

$$\forall k: 1 \leqslant k \leqslant \mid V \mid \implies \forall w \in V - S_k: \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

Observation 1

$$\forall k : 1 \leq k < |V| \Longrightarrow \forall j \in S_{k+1} : \mathbf{R}_{k+1}(i, j) = \mathbf{R}_k(i, j)$$

Proof: This is easy to see by inspection of the algorithm. Once a node is put into S its weight never changes again.

The algorithm is "greedy"

Observation 2

$$\forall k: 1 \leqslant k \leqslant \mid V \mid \implies \forall q \in S_k: \forall w \in V - S_k: \mathbf{R}_k(i, q) \leqslant \mathbf{R}_k(i, w)$$

By induction.

Base : Since $S_1 = \{i\}$ and $\mathbf{R}_1(i, i) = \overline{1}$, we need to show that

$$\overline{1} \leqslant \mathbf{A}(i, \mathbf{w}) \equiv \overline{1} = \overline{1} \oplus \mathbf{A}(i, \mathbf{w}).$$

This follows from $\mathbb{ANL}(\oplus)$.

Induction: Assume $\forall q \in S_k : \forall w \in V - S_k : \mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$ and show $\forall q \in S_{k+1} : \forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, q) \leq \mathbf{R}_{k+1}(i, w)$. Since $S_{k+1} = S_k \cup \{q_{k+1}\}$, this means showing

- $(1) \quad \forall q \in \mathcal{S}_k : \forall w \in V \mathcal{S}_{k+1} : \mathbf{R}_{k+1}(i, q) \leqslant \mathbf{R}_{k+1}(i, w)$
- (2) $\forall w \in V S_{k+1} : \mathbf{R}_{k+1}(i, q_{k+1}) \leq \mathbf{R}_{k+1}(i, w)$

By Observation 1, showing (1) is the same as

$$\forall q \in S_k : \forall w \in V - S_{k+1} : \mathbf{R}_k(i, q) \leqslant \mathbf{R}_{k+1}(i, w)$$

which expands to (by definition of $\mathbf{R}_{k+1}(i, w)$)

$$\forall q \in S_k : \forall w \in V - S_{k+1} : \mathbf{R}_k(i, q) \leqslant \mathbf{R}_k(i, w) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$$

But $\mathbf{R}_k(i, q) \leq \mathbf{R}_k(i, w)$ by the induction hypothesis, and $\mathbf{R}_k(i, q) \leq (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w))$ by the induction hypothesis and $\mathbb{R}\mathbb{A}$.

Since $a \leq_{\oplus}^{L} b \land a \leq_{\oplus}^{L} c \implies a \leq_{\oplus}^{L} (b \oplus c)$, we are done.

By Observation 1, showing (2) is the same as showing

$$\forall w \in V - S_{k+1} : \mathbf{R}_k(i, q_{k+1}) \leqslant \mathbf{R}_{k+1}(i, w)$$

which expands to

$$\forall w \in V - S_{k+1} : \mathbf{R}_k(i, \ q_{k+1}) \leqslant \mathbf{R}_k(i, \ w) \oplus (\mathbf{R}_k(i, \ q_{k+1}) \otimes \mathbf{A}(q_{k+1}, \ w))$$

But $\mathbf{R}_k(i,\ q_{k+1}) \leqslant \mathbf{R}_k(i,\ w)$ since q_{k+1} was chosen to be minimal, and $\mathbf{R}_k(i,\ q_{k+1}) \leqslant (\mathbf{R}_k(i,\ q_{k+1}) \otimes \mathbf{A}(q_{k+1},\ w))$ by $\mathbb{R}\mathbb{A}$. Since $a \leqslant^L_{\oplus} b \wedge a \leqslant^L_{\oplus} c \implies a \leqslant^L_{\oplus} (b \oplus c)$, we are done.

Observation 3

Observation 3

$$\forall k: 1 \leqslant k \leqslant \mid V \mid \implies \forall w \in V - S_k: \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

Proof: By induction:

Base: easy, since

$$\bigoplus_{q \in S_1} \mathbf{R}_1(i, q) \otimes \mathbf{A}(q, w) = \overline{1} \otimes \mathbf{A}(i, w) = \mathbf{A}(i, w) = \mathbf{R}_1(i, w)$$

Induction step. Assume

$$\forall w \in V - S_k : \mathbf{R}_k(i, w) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, w)$$

and show

$$\forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, w) = \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, w)$$

By Observation 1, and a bit of rewriting, this means we must show

$$\forall w \in V - S_{k+1} : \mathbf{R}_{k+1}(i, w) = \mathbf{R}_{k}(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{R}_{k}(i, q) \otimes \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{k}} \mathbf{A}(q_{k+1}, w) \oplus \bigoplus_{q \in S_{$$

Using the induction hypothesis, this becomes

$$\forall \textit{w} \in \textit{V} - \textit{S}_{k+1} : \textbf{R}_{k+1}(\textit{i}, \textit{w}) = \textbf{R}_{\textit{k}}(\textit{i}, \textit{q}_{k+1}) \otimes \textbf{A}(\textit{q}_{k+1}, \textit{w}) \oplus \textbf{R}_{\textit{k}}(\textit{i}, \textit{w})$$

But this is exactly how $\mathbf{R}_{k+1}(i, w)$ is computed in the algorithm.

Proof of Main Claim

Main Claim

$$\forall k : 1 \leqslant k \leqslant |V| \Longrightarrow \forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

Proof : By induction on *k*.

Base case: $S_1 = \{i\}$ and the claim is easy.

Induction: Assume that

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

We must show that

$$\forall j \in \mathcal{S}_{k+1} : \mathbf{R}_{k+1}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, j)$$

Since $S_{k+1} = S_k \cup \{q_{k+1}\}$, this means we must show

$$(1) \quad \forall j \in \mathcal{S}_k : \mathbf{R}_{k+1}(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, j)$$

(2)
$$\mathbf{R}_{k+1}(i, q_{k+1}) = \mathbf{I}(i, q_{k+1}) \oplus \bigoplus_{q \in S_{k+1}} \mathbf{R}_{k+1}(i, q) \otimes \mathbf{A}(q, q_{k+1})$$

By use Observation 1, showing (1) is the same as showing

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus \bigoplus_{q \in \mathcal{S}_{k+1}} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j),$$

which is equivalent to

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{I}(i, j) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)) \oplus \bigoplus_{q \in \mathcal{S}_k} \mathbf{R}_k(i, q) \otimes \mathbf{A}(q, j)$$

By the induction hypothesis, this is equivalent to

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) = \mathbf{R}_k(i, j) \oplus (\mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)),$$

Put another way,

$$\forall j \in \mathcal{S}_k : \mathbf{R}_k(i, j) \leqslant \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)$$

By observation 2 we know $\mathbf{R}_k(i, j) \leq \mathbf{R}_k(i, q_{k+1})$, and so

$$\mathbf{R}_k(i, j) \leqslant \mathbf{R}_k(i, q_{k+1}) \leqslant \mathbf{R}_k(i, q_{k+1}) \otimes \mathbf{A}(q_{k+1}, j)$$

by \mathbb{RA} .

To show (2), we use Observation 1 and $I(i, q_{k+1}) = \overline{0}$ to obtain

$$\mathbf{R}_k(i,\ q_{k+1}) = \bigoplus_{q \in S_{k+1}} \mathbf{R}_k(i,\ q) \otimes \mathbf{A}(q,\ q_{k+1})$$

which, since $\mathbf{A}(q_{k+1}, q_{k+1}) = \overline{0}$, is the same as

$$\mathbf{R}_k(i, \ q_{k+1}) = \bigoplus_{q \in S_k} \mathbf{R}_k(i, \ q) \otimes \mathbf{A}(q, \ q_{k+1})$$

This then follows directly from Observation 3.

Finding Left Local Solutions?

$$\mathbf{L} = (\mathbf{A} \otimes \mathbf{L}) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{L}^T = (\mathbf{L}^T \otimes^T \mathbf{A}^T) \oplus \mathbf{I}$$

$$\mathbf{R}^T = (\mathbf{A}^T \otimes^T \mathbf{R}^T) \oplus \mathbf{I} \qquad \Longleftrightarrow \qquad \mathbf{R} = (\mathbf{R} \otimes \mathbf{A}) \oplus \mathbf{I}$$

where

$$a \otimes^T b = b \otimes a$$

Replace $\mathbb{R}\mathbb{A}$ with $\mathbb{L}\mathbb{A}$,

 $\mathbb{L}\mathbb{A}: \forall a, b: a \leqslant b \otimes a$