

History of Plants

Seed plants have dominated for ~275my since mid-Permian~

Seed plants (~360mya) (Carboniferous)

Vascular plants (~420mya) (Silurian)

Non-vascular land plants (~475mya) (Ordovician)

Derived Traits of Seed Plants

Reduced Gametophyte Heterospory

Ovules & seeds Pollen

6

Derived Traits of Seed Plants

Reduced Gametophyte

Derived Traits of Seed Plants

Reduced Gametophyte

Derived Traits of Seed Plants

Reduced Gametophyte

Degree of Life Stage **Sporophyte Gametophyte Evolutionary trend towards** reduced gametophyte

Vascular Seed plants

Figure 30.2 (Campbell et al)

Evolutionary advantages of a miniaturized gametophyte stage

- 1. \bigcirc gametophyte (which produces the egg) can more easily receive:
 - a. <u>nutrition</u> from sporophyte.
 - b. <u>protection</u> by sporophyte from environmental stress (e.g. desiccation & UV radiation).
- 2. Water unnecessary for:
 - a. reproduction
 - Tiny ♂ gametophyte (and its sperm)
 easily packaged/delivered in small capsule (pollen grain)
 via wind/animals long distances directly to ♀ gametophyte
 - b. colonization
 - Allows colonization of dry places

Derived Traits of Seed Plants

Heterospory

Homosporous Single Typically a Eggs bisexual gametophyte Sperm

Homosporous:

- Sporophyte produces 1 kind of spore inside of a sporangium
- Germinates into a bisexual (usually) gametophyte
 - Homospory occurs in <u>most</u> seed<u>less</u> plants

Megaspore = female spore Microspore = male spore

Heterosporous

- Sporophyte produces one megaspore (♀)
 inside of each megasporangium
 and many microspores (♂)
 inside of each microsporangium
- Micro- and megaspores germinate into separate MALE and FEMALE gametophytes
- Heterospory occurs in <u>ALL</u> seed plants and a few seedless plants

12

Derived Traits of Seed Plants

Gymnosperm fertilization

Ovules & Seeds

- (a) Unfertilized ovule
- (A) Megasporangium on sporophyte (2n) produces megaspore (n) which develops into ♀ gametophyte (n) inside megasporangium
- (A) Initially, **Ovule** = Megasporangium (2n) w/ megaspore (n) + integument
- (B1) Later, Ovule = Megasporangium w/ ♀ gametophyte + integument

- (B1) As 早 gametophyte (n) matures (inside megasporangium) its archegonium (n) (gametangium) produces the egg (gamete)(n))
- (B2) Pollen grain
 (♂ gametophyte (n) in sporopollenin),
 goes to ♀ gametophyte (n)
 and discharges sperm to fertilize egg
 (sperm (n) + egg (n)= zygote (2n))
- (C) Once egg fertilized, ovule now called <u>seed</u>

Seed = Embryo (2n)

- + Seed coat
- + ♀ gametophyte (n) (food for embryo)

Figure 30.3 (Campbell et al)

SEEDS

- Fertilized ovule develops into a seed
- Contain an embryonic plant and a food supply (derived from ♀ gametophyte)
- Can last long periods of dormancy.
- Contain energy for germination
 - Until plant finds light and begins photosynthesis

Pine seed (w/seed coats removed)

Bean embryo after germination

Derived Traits of Seed Plants

Pollen

Derived Traits of Seed Plants

Each microspore develops into a pollen grain

Pollen

- containing a **male gametophyte**
- surrounded by a sporopollenin coat (makes it durable and waterproof)
- Pollen transferred to ovule via various methods (e.g. wind or animals).
 - i.e. it is water Independent!
- If Pollen grain reaches the female gametophyte it germinates.
 - i.e. It gives rise to sperm
 and a pollen tube
 that breaks out of pollen grain,
 <u>burrows towards ovule</u>
 and <u>discharges sperm</u>

Pollination

Movement of immature ♂ gametophyte, in pollen grain, near the immature ♀ gametophyte, in the ovule (i.e. prior to sperm or egg development and fertilization)

1. Wind pollinated plants:

- Most gymnosperms (non-flowering seed plants)
- Only 10% (25,000) of the angiosperm species are wind-pollinated.
 - Includes all the cereal plants such as wheat, rice and maize.
 - Also includes most of the trees found in forests.
 - Flowers are usually small and inconspicuous, do not produce nectar or have any scent (since don't need to attract animal pollinators).

2. Animal pollinated plants:

Wind pollinated plants liberate gigantic quantities of pollen •Must produce huge quantities of pollen to increase chance of pollination.

•1 anther on a maize flower produces 3000 pollen grains

(total = 18 million pollen grains per plant!)

Pollination

2. Animal pollinated plants:

Insects Birds Bats

Insect pollinated plants:

(many angiosperms, few gymnosperms)

- Insects are ATTRACTED to flowers by advertising colors and or smells
- Insects are REWARDED
 - Either they eat some of the pollen and/or nectar to make it worth their while
- Results in **POLLINATION** When pollen grains on ♂ flower stick to insect and are transferred to ♀ flower

Insect pollination is a form of INSECT – PLANT MUTUALISM

Bird pollinated plants: (some angiosperms only)

Hummingbird pollinated flowers:

Lots of nectar – hidden down long structure – deters nectar thieves

Bat pollinated flowers (some angiosperms only)

27

Pollination vs. Fertilization

Spore vs. Seed

	Spores	Seeds
Description	A haploid cell made in the sporangium of the sporophyte via meiosis	A sporophyte embryo (2n) + nutrients (n) (remnants of ♀ gametophyte)
# cells	1	Many
Energy reserves?	No	Yes
Protection	Sporopollenin layer	Seed coat
Destiny	Will become gametophyte Nonseed plant: After dispersed via wind germinates into independent gametophyte Seed plant: Microspore becomes ♂ gametophyte which is packaged as pollen Megaspore becomes ♀ gametophyte in ovule (which becomes seed)	Will become sporophyte

Spore vs. Pollen

	Spores	Pollen
Description	A haploid cell made in the sporangium of the sporophyte via meiosis	An immature gametophyte (n) in a protective layer
# cells	1	Multicellular
Energy reserves?	No	No
Protection	Sporopollenin layer	Sporopollenin layer
Destiny	Will become gametophyte Nonseed plant: After dispersed via wind germinates into independent gametophyte Seed plant: Microspore becomes ♂ gametophyte which is packaged as pollen Megaspore becomes ♀ gametophyte in ovule (which becomes seed)	Upon arrival at ovule will develop a pollen tube and sperm which will fertilize egg in ovule.

Spore vs. Gamete

	Spores	Gamete
Description	A haploid cell made in the sporangium of the sporophyte via meiosis	Haploid cell made in gametangium of gametophyte (n) via mitosis
# cells	1	1
Energy reserves?	No	No
Protection	Sporopollenin layer	None
Destiny	Will become gametophyte Nonseed plant: After dispersed via wind germinates into independent gametophyte Seed plant: Microspore becomes ♂ gametophyte which is packaged as pollen Megaspore becomes ♀ gametophyte in ovule (which becomes seed)	Sporophyte after fusion w/ another gamete Nonseed plant: Begins to mature into sporophyte immediately. Seed plant: embryonic sporphyte in seed matures later.

SEED Plant Diversity & Reproduction

Gymnosperms

Defining trait:

Seeds not enclosed in ovaries

("naked" seed)

4 clades

Ginkgophyta

Gnetophyta

Cycadophyta

Coniferophyta

Gymnosperms:

Adaptations to dry conditions

1. Needles

Thick, leathery leaves

or

Gymnosperms:

Adaptations to dry conditions

3. Sunken stomata

4. Relatively few stomata

2. Thick, waxy cuticle

Ginkgophyta

(1 extant species)

- Only <u>one extant species</u> in this phylum!
- Extinct in wild?
- Male trees commonly used as ornamentals
- Deciduous
 - Drop all leaves seasonally
- Dioecious,
 - ♂ and ♀ plants are separate
- Flagellated sperm

Cycadophyta

(~130 extant species)

- Flourished during Mesozoic era "Age of Dinosaurs/Cycads"
- Tropical distribution
- Look like palms,w/ large cones in center
- Dioecious
- Flagellated sperm

Cycads & ginkgos = only **seed** plants w/ flagellated sperm (found in all non-seed plants)

Gnetophyta

(~80 extant species)

- Includes 3 genera w/ no clear morphological synapomorphies.
- Have similarities in their vascular tissue to angiosperms (i.e. vessel elements)

Welwitschia

Gnetum: fleshy seeds (not fruit!)

Ephedra: source of ephedrine

Coniferophyta

(~600 extant species)

Pines, redwoods, firs, juniper, etc

Douglas Fir

Male cone

Micro<u>sporophyl</u>ls w/ Micro<u>sporangium</u> w/ Micro<u>spore</u>s

- Develop into pollen grain
 - \circlearrowleft gametophyte enclosed in sporopollenin wall

Pollen

Immature male gametophytes

- Made of only FOUR cells!
 - 1 tube cell (will form pollen tube)
 - 1 generative cell (will form sperm)
 - 2 prothallial cells (sterile; ? function)
- Does NOT have an antheridium
 - sperm form from generative cell

Pollen tube formation & spermatogenesis

- After pollen grain arrives near ovule it begins to develop.
- Tube cell divides into pollen tube which grows toward developing egg in archegonium of ♀ gametophyte
- Generative cell moves to tip of tube and divides into 2 sperm (mitosis)

TAKES ONE YEAR

While this happening...

Female cone

At time of pollination <u>ovule is immature</u> (and so is \eth gametophyte in pollen)

Ovule =

Megasporangium

+ integument

Pollen grain reaches ovule & pollen tubule burrows through ovule wall to megaspore inside.

Pollen near ovule

Figure 30.6 (4) (Campbell et al.)

Fertilization occurs one year after pollination

From Ovule to Seed

Seed = Sporophyte Embryo (2n) + food supply (n) + seed coat

After fertilization, seed takes ONE more YEAR to complete development

- Fertilized egg (zygote)(2n) develops into embryo (multicellular 2n) (embryo = new sporophyte)
- Female gametophyte tissue becomes food for embryo

Dispersal

wind, water, animals

Seed dispersal occurs a minimum of:

- One year after fertilization
- Two years after pollination

Key Haploid (n) Diploid (2n) Megasporocyte (2n) Integument Longitudinal section of Micropyle ovulate cone POLLINATIO Megasporangium Mature Microsporocytes Germinating sporophyte pollen grain (2n)Pollen grains (n) MEIOSIS (containing male gametophytes) MEIOSIS Surviving Longitudinal megaspore (n) section of Sporophyll pollen cone Microsporangium Seedling Germinating **DISPERSAL &** pollen grain Archegonium **GERMINATION** Integument Egg(n)Female Seeds on surface gametophyte of ovulate scale Germinating pollen grain (n) Food reserves Seed coat (gametophyte Discharged (derived from tissue) (n) sperm nucleus (n) parent sporophyte) (2n) Pollen Embryo • (new sporophyte) **FERTILIZATION** Egg nucleus (n)

Germination

Seed grows into sporophyte

After *dormancy* lasting days to millennia!

Summary of Gymnosperm Life Cycle

Sporophyte dominant

Heterosporous

Spores retained within sporangium

Offspring disperse as seeds

No antheridia; archegonia reduced

Don't need water film (except gingko and cycads)

Nonmotile sperm (except gingko and cycads)

52 Angiosperms (flowering plants)

Secret of Success:

1. Xylem components

Specialized Tissues

Flower Structure & Function

Sepals:

Protect flower bud

Petals:

Attract pollinators

<u>Stamens</u> (=microsporophylls):

- μ sporangia in anther
 - produce μ spores
 - $\rightarrow \mu$ gametophyte \rightarrow sperm

<u>Carpels</u> (=<u>mega</u>sporophylls):

- Contains ovary w/ ovules
- Produce megaspores
 - → Megagametophyte→ eggs

1 or more fused carpels = <u>pistil</u>

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Figure 30.7 (Campbell et al.)

Angiosperm Diversity

3 major clades + several minor clades

(b) Angiosperm phylogeny

Magnoliids

Nutmeg = seed
Mace = seed covering

Monocots

Orchid © 2011 Pearson Education, Inc

Pygmy date palm
© 2011 Pearson Education, Inc.

Lily
© 2011 Pearson Education, Inc.

Barley, a grass

Eudicots

Dog rose
© 2011 Pearson Education, Inc.

Snow pea

Zucchini
© 2011 Pearson Education, Inc.

Characteristic traits:

Monocots

~1/4 of angiosperms e.g. grasses, palms, lilies

VS.

Eudicots

~2/3 of angiosperms

e.g. roses, peas, oaks

MONOCOTS **EUDICOTS** California Eudicot Monocot (Lemboglossum рорру Characteristics Characteristics rossil) (Eschscholzia californica) Embryos Two cotyledons One cotyledon Pyrenean oak Leaf (Quercus pyrenaica) Veins usually Veins usually parallel Pygmy date palm (Phoenix roebelenii) Lily (Lillium Vascular tissue "Enchant-Vascular tissue usually arranged ment") in ring scattered. Dog rose (Rosa canina), a wild rose Taproot (main root) Root system usually fibrous usually present Barley (Hordeum vulgare), a grass (no main root) (Lathyrusne vosus, Lord Anson's Polien blue pea). a legume Pollen grain with Pollen grain with one opening three openings Zucchini (Cucurbita Floral organs usually Floral organs pepoi, female usually in in multiples of (left) and multiples of three four or five male flowers

Figure 30.13 (Campbell et al)

Angiosperm Life Cycle

No antheridia or archegonia!

Figure 30.10 (Campbell et al.)

Male Gametophyte

* Only 2 cells: tube cell, generative cell

3. Generative cell divides into 2 sperm

*Like gymnosperms, sperm are not produced in an antheridium

Double fertilization 63

- In ovule, egg develops from 1 cell of the female gametophyte (NO Archegonium)
- Pollen tube (w/ 2 sperm) grows into ovule
 - 1st sperm (n) fertilizes egg (n) \rightarrow zygote (2n)
 - 2nd sperm (n) fertilizes another cell of the female gametophyte (2n)
 - → endosperm (embryo food supply) (3n)

Double fertilization ONLY occurs in angiosperms.

<u>Seed</u> = Sporophyte Embryo (2n)

- + endosperm (3n)
- + seed coat

Figure 30.10 (3, 5) (Campbell et al.)

Fruit Development

Fruit = seed + thickened wall of ovary

Once the egg is fertilized, the surrounding <u>ovary wall</u> thickens forming a fruit.

Fruit Structure

Pericarp:

- Thickened wall of fruit
- Develops from ovary wall

Wings

Fruit & Dispersal

Winged fruits: wind-dispersed

Seeds within berries

Fleshy & often colorful Fruits with hard seeds: Dispersed INSIDE animals

Light seeds with hooked Structures: dispersed ON animals

Figure 30.9 (Campbell et al)

Coconuts

Long distance marine dispersal

Huge, floating, energy packed seeds

Seed dispersal by fishes

seed predation by fishes

Readings on which you will NOT be tested

Fossil Angiosperms (on pg. 628)

Evolutionary links between angiosperms and animals (pg. 632)

Section 30.4

Figure 30.16

In general:

- You are NOT responsible for definitions of terms or sections included in the text but which were not discussed in lecture
- You are not responsible for the details of examples used in the text but not discussed in lecture. HOWEVER, these additional examples will help your understanding of concepts discussed and may be used on exams to test if you understand the general concepts.
- You ARE responsible for material covered in lecture but not included in the readings

Next Chapter

Chapter 32 – An Overview of Animal Diversity