Scalable Direct Solver for Compact Stencil Calculation on Rectangular Grid

Yun Teck Lee, Ron Gonzales, Dr. Yury Gryazin

Lawrence Berkeley National Laboratory, Idaho State University

Author Contact Information

- Yun Teck Lee → leeyunt@isu.edu
- Ron Gonzales → gonzrona@isu.edu
- Dr. Yury Gryazin → gryazin@isu.edu

3D Helmholtz Equation

The model problem considered is the numerical solution of

$$\nabla^2 u + k^2 u = f, \quad \text{in } \Omega, \tag{1}$$

where k is a complex valued coefficient depending only on z. The Dirichlet boundary condition is considered.

Detecting Subsurface Objects

Figure 1: Subsurface objects

Figure 2: Scattered waves

High Resolution Compact Schemes

Each of the schemes for the approximation of the solution to (1) can be written as

$$L^{(n)}u = F^{(n)} \tag{2}$$

where $L^{(n)}$, n=2,4,6 is an $n^{\rm th}$ order approximation finite-difference operator and $F^{(n)}$ is the corresponding right hand side.

$$L^{(2)} = h_z^2 (\delta_{xx} + \delta_{yy} + \delta_{zz} + k^2 I)$$

$$L^{(4)} = h_z^2 \left[\delta_{xx} + \delta_{yy} + \delta_{zz} + \frac{1}{6} (h_x^2 + h_y^2) \delta_{xx} \delta_{yy} \right]$$

$$+ \frac{1}{6} (h_x^2 + h_z^2) \delta_{xx} \delta_{zz} + \frac{1}{6} (h_y^2 + h_z^2) \delta_{yy} \delta_{zz}$$

$$+ k^2 \left[I + \frac{h_x^2}{12} \delta_{xx}^2 + \frac{h_y^2}{12} \delta_y^2 + \frac{h_z^2}{12} \delta_{zz}^2 \right]$$

(Lele, 1992)

$$L^{(6)} = h^{2}(\delta_{xx} + \delta_{yy} + \delta_{zz}) \left[1 + \frac{k^{2}h^{2}}{30} \right] u + k^{2}h^{2}u$$

$$+ \frac{h^{4}}{6} (\delta_{xx}\delta_{yy} + \delta_{xx}\delta_{zz} + \delta_{yy}\delta_{zz}) \left[1 + \frac{k^{2}h^{2}}{15} \right] u$$

$$+ \frac{h^{6}}{30} \delta_{xx}\delta_{yy}\delta_{zz}u + \frac{h^{4}}{20} ((k^{2})_{zz} - k^{4}) u$$

$$+ \frac{h^{3}}{10} (k^{2})_{z} \left[h\delta_{z}u + \frac{h^{3}}{6} \left[\delta_{xxz}u + \delta_{yyz}u + \delta_{z}(k^{2}u) \right] \right]$$

(E. Turkel, D. and R. Gordon, S. Tsynkov, 2014)

Generalized 27-Point Stencil

Figure 3: Systems with the same stencil can be solved with this algorithm.

FFT Type Direct Solver

The system (2) can be presented in the form

$$C_1U_{l-1} + C_2U_l + C_3U_{l+1} = F_l$$

for $l = 1 ... N_z$, where C_1, C_2 and C_3 are $N_x \cdot N_y \times N_x \cdot N_y$ matrices. Let V be a matrix consisting of the set of orthonormal eigenvectors of C_1, C_2 and C_3 . Hence the matrices $\Lambda_1 = V^T C_1 V$, $\Lambda_2 = V^T C_2 V$ and $\Lambda_2 = V^T C_2 V$ are the diagonal matrices of eigenvalues. It follows

$$C_1 U_{l-1} + C_2 U_l + C_3 U_{l+1} = F_l$$
$$\Lambda_1 W_{l-1} + \Lambda_2 W_l + \Lambda_3 W_{l+1} = \bar{F}_l$$

where $W_l = V^T U_l$, $\bar{F}_l = V^T F_l$ and the transformed right hand side, \bar{F}_l , can be obtained from F_l by the discrete sine transform (DST) via parallel FFT. This direct solution requires $O(N_x N_y N_z \log N)$ operations, where $N = \max(N_x, N_y)$.

Results

Grid	Nodes	Processors	Time (s)
512^{3}	1	32	2.830525
1024^{3}	4	128	8.759851
2048^{3}	32	1024	40.465395
4096^{3}	256	4096	445.803343
	-	Table 1: MPI	
Crid			Timo (c)
	Nodes	Processors	
$\overline{512^3}$			Time (s) 7.793963
	Nodes	Processors	
$\overline{512^3}$	Nodes 1	Processors 32	7.793963
512^3 1024^3	Nodes 1 4	Processors 32 128	7.7939 16.911

Acknowledgments

The authors would like to thank the following institutions and people:

- Lawrence Berkeley National Laboratory
- Idaho State University
- Sustainable Horizons Institute
- Dr. Pieter Ghysels
- Dr. Xiaoye S. Li

