Informe Técnico Completo

Pipeline Bioestadístico para la Clasificación de Sedentarismo mediante Lógica Difusa y Clustering

Perspectiva Bioestadística, Clínica y Computacional

Luis Ángel Martínez

Universidad Autónoma de Chihuahua Facultad de Medicina y Ciencias Biomédicas

Programa de Maestría en Ciencias de la Salud

22 de octubre de 2025

Resumen

El presente informe técnico documenta de manera exhaustiva el pipeline bioestadístico desarrollado para la clasificación objetiva del sedentarismo semanal utilizando datos biométricos de dispositivos wearables (Apple Watch). Este proyecto representa un estudio longitudinal con N=10 participantes (5M/5H) que generaron 1,337 semanas válidas de datos continuos.

El pipeline integra tres perspectivas complementarias: bioestadística (modelado probabilístico robusto, reducción dimensional, clustering, validación), clínica (normalización antropométrica, interpretación fisiológica de variables derivadas, relevancia para ciencias del ejercicio), y computacional (arquitectura modular en Python, estrategias de imputación jerárquica, optimización de hiperparámetros).

Metodológicamente, el estudio pivotó de un enfoque supervisado inicial (predicción de Calidad de Vida mediante Redes Neuronales Artificiales, invalidado empíricamente) a un paradigma data-driven dual: (1) descubrimiento de patrones mediante clustering no supervisado (K-Means, K=2, Silhouette= 0,232), empleado como **Verdad Operativa** (GO), y (2) construcción de un Sistema de Inferencia Difusa Mamdani interpretable con 5 reglas expertas, validado contra la GO con F1=0,840, Recall= 0,976, MCC= 0,294.

Cada fase del pipeline se presenta bajo el marco riguroso de los **6 pasos del análisis estadístico**: planteamiento de hipótesis, selección del estadístico, regla de decisión, cálculos, decisión estadística y conclusión. Se incluyen ecuaciones matemáticas formales, pseudocódigo, referencias a figuras y tablas, y una justificación detallada de la decisión metodológica de *no* emplear un split Train/Test 80/20, reemplazado por validación cruzada Leave-One-User-Out (LOUO) y análisis de sensibilidad.

Palabras clave: Sedentarismo, Wearables, Apple Watch, Lógica Difusa, Clustering, K-Means, Imputación Jerárquica, Ingeniería de Características, Validación Cruzada, Python.

Índice general

1.	Pla	nteamiento del Problema e Hipótesis Inicial	4
	1.1.	Contexto Epidemiológico y Clínico	4
	1.2.	Hipótesis Inicial y Objetivo Primario	4
		1.2.1. Objetivo Primario (Fase Inicial)	5
	1.3.		5
2.	Sele	ección del Dispositivo Wearable y Diseño de la Cohorte	6
	2.1.	Evaluación de Dispositivos Wearables	6
		2.1.1. Criterios de Selección	6
		2.1.2. Análisis Comparativo	6
	2.2.	Diseño de la Cohorte	7
		2.2.1. Tamaño Muestral y Justificación	7
		2.2.2. Criterios de Inclusión/Exclusión	8
3.	Pro	tocolo de Convocatoria, Recepción y Preprocesamiento de Datos	9
	3.1.	Protocolo de Recolección de Datos	Ö
		3.1.1. Diseño del Protocolo	Ö
		3.1.2. Estructura de Datos Crudos	Ĝ
	3.2.	Pipeline de Preprocesamiento	10
		3.2.1. Conversión XML \rightarrow CSV	10
		3.2.2. Auditoría de Calidad de Datos	11
4.	Aná	álisis Exploratorio de Datos (EDA) y Validación del SF-36	12
	4.1.	Caracterización de Variables Biométricas	12
		4.1.1. Tipología y Distribuciones	12
		4.1.2. Gráficos Exploratorios	13
	4.2.	Validación Psicométrica del SF-36	13
		4.2.1. Estructura del Cuestionario	13
5.	Pive	ote Metodológico: Del Enfoque Supervisado al Data-Driven	15
	5.1.	Análisis de Correlación SF-36 vs Biométricos	15
		5.1.1. Hipótesis y Pruebas Iniciales	15
	5.2.	Modelado con Redes Neuronales Artificiales (ANN)	16
		5.2.1. Arquitectura y Entrenamiento	16
	5.3	Reformulación: Nuevo Enfoque Data-Driven	17

Índice general 3

	5.3.1. Nueva Hipótesis	17						
6.	Estrategia de Imputación Jerárquica para Datos Faltantes 5.1. Diagnóstico de Missingness	19 19 19 20 20						
	6.2.2. Algoritmo de Imputación	21 22						
7.	Ingeniería de Características: Variables Derivadas con Normalización Antropométrica	23						
	7.1. Problema de Comparabilidad Inter-Sujeto	23 23						
	7.2. Variable 1: Actividad Relativa	24 24 24						
	7.3. Variable 2: Superávit Calórico Basal	25 25						
	7.3.2. Definición de Superávit	25 25 25 26						
8.	Agregación Temporal y Análisis Dual de Variabilidad 3.1. Justificación de la Agregación Semanal 8.1.1. Ventana de Agregación 3.2. Estadísticos Calculados por Semana 3.3. Análisis Dual de Variabilidad 8.3.1. Definición de Variabilidad Observada vs Operativa 8.3.2. Comparación Observada vs Operativa 8.3.3. Gráficos de Variabilidad	27 27 27 27 28 28 28 29						
9.	8.4. Agregación Semanal: Resultados Finales Análisis de Correlación, Multicolinealidad y Reducción Dimensional (PC)	29 A) 31						
10	Clustering No Supervisado: Verdad Operativa (K-Means, K=2)	32						
11.Sistema de Inferencia Difusa Mamdani 33								
12	Validación Cruzada y Análisis de Robustez	34						
13	Justificación Metodológica: Por Qué NO Split Train/Test 80/20	35						

Planteamiento del Problema e Hipótesis Inicial

1.1. Contexto Epidemiológico y Clínico

El comportamiento sedentario (CS), definido por la Organización Mundial de la Salud como cualquier actividad con gasto energético $\leq 1,5$ METs en posición sentada o reclinada durante horas de vigilia, constituye un factor de riesgo independiente para enfermedades crónicas no transmisibles (ECNT), incluyendo obesidad, diabetes tipo 2, enfermedad cardiovascular y ciertos tipos de cáncer [1].

La medición objetiva del CS mediante acelerometría triaxial en dispositivos wearables de consumo masivo (e.g., Apple Watch, Fitbit, Garmin) ha revolucionado la epidemiología del comportamiento, permitiendo cuantificar patrones de actividad física en condiciones de "vida libre" con alta resolución temporal ($\geq 1~{\rm Hz}$) y sin el sesgo de auto-reporte característico de cuestionarios.

1.2. Hipótesis Inicial y Objetivo Primario

Paso 1: Planteamiento de Hipótesis

Hipótesis H₀ (inicial, posteriormente rechazada):

Existe una relación inversa, lineal y medible entre el comportamiento sedentario objetivo (CS_obj), cuantificado mediante métricas derivadas de acelerometría y fotopletismografía (PPG) del Apple Watch, y la percepción subjetiva de Calidad de Vida Relacionada con la Salud (CVRS), evaluada mediante el cuestionario SF-36. Formalmente:

$$CVRS_{SF36} = f(CS_{obj}) + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$
(1.1)

donde f sería una función lineal o no lineal modelable mediante Redes Neuronales Artificiales (ANN).

1.2.1. Objetivo Primario (Fase Inicial)

Desarrollar un modelo predictivo (ANN) capaz de cuantificar la CVRS a partir de métricas biométricas continuas, con $R^2 \ge 0.70$ y MAE ≤ 10 puntos en escala SF-36.

1.3. Marco de los 6 Pasos: Planteamiento

Paso 2: Selección del Estadístico/Método

Selección del método:

Se propuso inicialmente un análisis correlacional (Pearson/Spearman) seguido de modelado supervisado mediante ANN (arquitectura feedforward, activación ReLU, optimizador Adam).

Paso 3: Regla de Decisión

Regla de decisión:

Si $|r| \ge 0.60$ (correlación fuerte) y el modelo ANN alcanza $R^2 \ge 0.70$ en validación cruzada 5-fold, se aceptará la hipótesis de relación cuantificable.

Paso 5: Decisión Estadística

Decisión preliminar:

Se decidió proceder con un diseño longitudinal que recolectaría datos biométricos continuos (Apple Watch) y evaluaciones periódicas del SF-36 para probar esta correlación.

Paso 6: Conclusión

Conclusión del planteamiento:

Existía suficiente justificación teórica (revisión de literatura: correlaciones reportadas entre actividad física y CVRS en el rango r=0.30-0.50) para explorar esta vía, aunque con la precaución de que la relación podría ser más compleja de lo anticipado.

Selección del Dispositivo Wearable y Diseño de la Cohorte

2.1. Evaluación de Dispositivos Wearables

2.1.1. Criterios de Selección

Paso 1: Planteamiento de Hipótesis

Problema/Hipótesis:

Necesitábamos un dispositivo wearable que cumpliera simultáneamente:

- Alta penetración de mercado (facilitar reclutamiento BYOD)
- Sensores validados: acelerómetro 3-ejes (≥ 50 Hz), PPG para FC/VFC
- Plataforma de exportación de datos crudos o agregados
- Consistencia inter-versión (minimizar heterogeneidad instrumental)

Hipótesis: El Apple Watch, por su ecosistema cerrado y validaciones previas en literatura (Stahl et al., 2016; Shcherbina et al., 2017), sería la opción preferente.

2.1.2. Análisis Comparativo

Tabla 2.1: Matriz de Decisión: Comparación de Dispositivos Wearables

Criterio	Apple Watch	Fitbit	Garmin	Mi Band
Penetración México	Alta	Media	Media-Baja	Alta
Sensores validados	Sí	Sí	Sí	Parcial
Exportación datos	HealthKit (XML)	API limitada	Garmin Connect	Propietaria
Consistencia HW	Alta	Media	Alta	Baja
Costo promedio (USD)	300-800	100-300	250-700	30-50
Score ponderado	9.2	7.5	7.8	5.1

Paso 2: Selección del Estadístico/Método

Método de evaluación:

Matriz de decisión multicriterio con pesos asignados según importancia para el estudio:

 \blacksquare Validez de sensores: 35 %

■ Exportabilidad de datos: 30 %

Consistencia: 20 %Penetración: 15 %

Paso 5: Decisión Estadística

Decisión:

Se seleccionó el **Apple Watch** (Series 3 o superior) como dispositivo estándar del estudio, adoptando un enfoque *Bring Your Own Device* (BYOD) para maximizar adherencia y minimizar el efecto Hawthorne.

2.2. Diseño de la Cohorte

2.2.1. Tamaño Muestral y Justificación

Paso 1: Planteamiento de Hipótesis

Planteamiento:

Dada la naturaleza longitudinal del estudio (objetivo: capturar variabilidad intrasujeto durante ≥ 12 semanas), el tamaño muestral N se justificó por:

$$n_{\text{observaciones}} = N_{\text{sujetos}} \times T_{\text{semanas}} \ge 1000$$
 (2.1)

Con N=10 y $T\approx 130$ semanas (promedio), se alcanzarían ≈ 1300 observaciones semanales, suficiente para:

- \bullet Modelado de clustering con $n/K \ge 500$ por grupo (K=2)
- Optimización de hiperparámetros del sistema difuso
- Validación cruzada Leave-One-Subject-Out

2.2.2. Criterios de Inclusión/Exclusión

Tabla 2.2: Criterios de Elegibilidad de Participantes

Inclus	Criterio
18-65 a	Edad
Propietario Apple Watch Series	Dispositivo
≥ 6 meses contin	Uso previo
Ambulatorio, sin limitacio	Estado de salud
Informado por esc	Consentimiento
$\geq 80\%$ días con da	Datos exportables

Paso 4: Cálculos

Cálculos de factibilidad:

Se convocó a 15 candidatos, de los cuales:

- 12 cumplieron criterios de inclusión
- 10 completaron el protocolo (2 abandonos por causas no relacionadas)
- Distribución final: 5 hombres, 5 mujeres
- Edad: $\bar{x} = 32.4$ años, s = 8.7 años
- IMC: $\bar{x} = 26.1 \text{ kg/m}^2$, $s = 4.2 \text{ kg/m}^2$

Paso 6: Conclusión

Conclusión metodológica:

Aunque no representativa poblacionalmente (muestra de conveniencia), la cohorte de N=10 permite un análisis longitudinal profundo con potencia estadística adecuada para el descubrimiento de patrones intra-sujeto y validación de sistemas expertos interpretativos (objetivo secundario tras el pivote metodológico).

Protocolo de Convocatoria, Recepción y Preprocesamiento de Datos

3.1. Protocolo de Recolección de Datos

3.1.1. Diseño del Protocolo

Paso 1: Planteamiento de Hipótesis

Planteamiento:

Para garantizar la integridad, trazabilidad y ética de los datos biométricos sensibles, se diseñó un protocolo estandarizado que incluye:

- 1. Consentimiento informado (aprobación comité ética institucional)
- 2. Instrucciones de exportación (HealthKit → archivo export.zip)
- 3. Aplicación del cuestionario SF-36 (versión mexicana validada)
- 4. Anonimización inmediata (códigos: u1, u2, ..., u10)
- 5. Almacenamiento seguro (servidor institucional, encriptación AES-256)

3.1.2. Estructura de Datos Crudos

Los datos exportados de Apple Health siguen el esquema XML:

Listing 3.1: Estructura XML de Apple Health Export

3.2. Pipeline de Preprocesamiento

3.2.1. Conversión XML \rightarrow CSV

Paso 2: Selección del Estadístico/Método

Método:

Parseo XML mediante ElementTree (Python), con transformaciones:

- Filtrado por sourceName (solo datos Apple Watch, excluir iPhone)
- Conversión de timestamps a zona horaria local (UTC-6, Chihuahua)
- Agregación a nivel diario (suma/media según métrica)

Algorithm 1 Preprocesamiento XML a CSV Diario

```
1: Input: export.zip por participante
2: Output: DB u{id}.csv con columnas [fecha, pasos, calorias, fc reposo, hrv sdnn,
 3:
 4: procedure ParseXML(xml file, user id)
       tree \leftarrow parse(xml file)
       records \leftarrow tree.findall(Record")
 6:
       df \leftarrow empty dataframe()
 7:
       for record in records do
 8:
           if record.sourceName contains . Apple Watch then
9:
              type \leftarrow record.type
10:
              value \leftarrow record.value
11:
12:
              date \leftarrow record.startDate.date()
13:
              df.append([date, type, value])
           end if
14:
       end for
15:
16:
       df pivot \leftarrow df.pivot(index=date, columns=type, values=value)
       df pivot.to csv(f"DB u{user id}.csv")
17:
18: end procedure
```

Paso 4: Cálculos

Cálculos de agregación:

Para cada usuario y día:

$$Pasos_{día} = \sum_{t=0}^{23:59} StepCount(t)$$
(3.1)

$$FC_{reposo} = min\{HeartRate(t) : t \in [02 : 00, 05 : 00]\}$$
 (3.2)

$$HRV_SDNN_{dfa} = mean\{SDNN(t) : t \in [00 : 00, 23 : 59]\}$$
 (3.3)

3.2.2. Auditoría de Calidad de Datos

Tabla 3.1: Métricas de Completitud por Usuario (Fase Pre-Imputación)

Usuario	Días totales	Días válidos	Completitud (%)	Missing FC (%)	Missing HRV
u1	900	852	94.7	8.2	
u2	850	801	94.2	9.1	
u3	920	884	96.1	5.4	
•••	•••	•••	•••	•••	
u10	880	831	94.4	7.8	
Media	885	838	94.7	7.6	

Paso 5: Decisión Estadística

Decisión:

La completitud general > 94% es aceptable para estudios observacionales de vida libre. Las variables cardiovasculares (FC, HRV) presentan mayor tasa de missingness (mecanismo: quitarse el reloj durante sueño/carga), requiriendo estrategia de imputación robusta (Capítulo 6).

Análisis Exploratorio de Datos (EDA) y Validación del SF-36

4.1. Caracterización de Variables Biométricas

4.1.1. Tipología y Distribuciones

Paso 1: Planteamiento de Hipótesis

Hipótesis:

Se esperaba que las variables biométricas diarias presentaran:

- Distribuciones asimétricas (pasos, minutos ejercicio: asimetría positiva)
- Alta variabilidad día-a-día (CV > 50 %)
- No-normalidad (rechazo de Shapiro-Wilk con p < 0.05)

Paso 2: Selección del Estadístico/Método

Métodos aplicados:

- Estadísticos descriptivos robustos: mediana, IQR, MAD
- \blacksquare Pruebas de normalidad: Shapiro-Wilk (si n < 5000), Kolmogorov-Smirnov (si n > 5000)
- Visualización: histogramas, Q-Q plots, boxplots por usuario

Variable Media \mathbf{DE} Mediana **IQR** Min Max SW p-valor Pasos 6,842 4,231 6,120 4,890 0 28,450 < 0.001Calorías activas 385 287 342 298 0 1,892 < 0.001FC reposo (lpm) 58.3 8.7 57.0 10.0 42 92 0,014 HRV SDNN (ms) 52.1 18.4 48.522.0 128 < 0.00115 FC caminar (lpm) 95.8 12.3 94.0 15.0 65 145 0.082 Min sedentarios 678 142 702 185 120 1,320 < 0.001

Tabla 4.1: Estadísticos Descriptivos de Variables Clave (Nivel Diario, n=8,380 días)

Paso 5: Decisión Estadística

Decisión estadística:

Se rechaza la normalidad para todas las variables excepto FC_caminar (p = 0.082). Consecuencia: uso obligatorio de métodos no paramétricos o robustos (medianas, bootstrapping, Mann-Whitney U) en análisis posteriores.

4.1.2. Gráficos Exploratorios

Ver Figuras:

- 4 semestre_dataset/analisis_u/histogramas_variables_clave.png
- 4 semestre dataset/analisis_u/qqplots_normalidad.png
- 4 semestre dataset/analisis u/boxplots por usuario.png

4.2. Validación Psicométrica del SF-36

4.2.1. Estructura del Cuestionario

El SF-36 evalúa 8 dimensiones de CVRS mediante 36 ítems:

- Función Física (FF)
- Rol Físico (RF)
- Dolor Corporal (DC)
- Salud General (SG)
- Vitalidad (VT)
- Función Social (FS)
- Rol Emocional (RE)
- Salud Mental (SM)

Paso 2: Selección del Estadístico/Método

Métrica de fiabilidad:

Alfa de Cronbach por dimensión, criterio $\alpha \geq 0.70$ (aceptable).

$$\alpha = \frac{K}{K - 1} \left(1 - \frac{\sum_{i=1}^{K} \sigma_i^2}{\sigma_{\text{total}}^2} \right) \tag{4.1}$$

donde K = número de ítems, $\sigma_i^2 =$ varianza del ítem i.

Tabla 4.2: Fiabilidad del SF-36 en la Cohorte (N = 10)

Dimensión SF-36	α Cronbach	Varianza	Decisión
Función Física	0.82	145.3	Aceptable
Rol Físico	0.51	0.0	Rechazada (var=0)
Dolor Corporal	0.78	98.7	Aceptable
Salud General	0.73	112.4	Aceptable
Vitalidad	0.64	87.2	Marginal
Función Social	0.71	102.1	Aceptable
Rol Emocional	0.76	118.5	Aceptable
Salud Mental	0.80	134.2	Aceptable

Paso 5: Decisión Estadística

Decisión crítica:

La dimensión Rol Físico presenta varianza nula (todos los participantes reportaron el mismo valor, efecto techo/suelo), invalidando su uso. Vitalidad ($\alpha=0.64$) está por debajo del umbral.

Consecuencia: Estos problemas psicométricos, sumados a correlaciones débiles con biométricos (siguiente sección), motivaron el rechazo de la hipótesis inicial y el pivote metodológico.

Paso 6: Conclusión

Conclusión EDA:

- 1. Los datos biométricos son ruidosos y no-normales, requiriendo métodos robustos.
- 2. El SF-36 presenta limitaciones en esta cohorte específica (tamaño, homogeneidad).
- 3. La alta variabilidad diaria (CV $> 100\,\%$ en ejercicio) justifica agregación temporal (semanal) para capturar patrones estables.

Pivote Metodológico: Del Enfoque Supervisado al Data-Driven

5.1. Análisis de Correlación SF-36 vs Biométricos

5.1.1. Hipótesis y Pruebas Iniciales

Paso 1: Planteamiento de Hipótesis

Hipótesis H_1 a probar:

Las métricas biométricas agregadas (media de 4 semanas) correlacionan significativamente ($|r| \ge 0.60$, p < 0.01) con los puntajes de CVRS del SF-36.

Paso 2: Selección del Estadístico/Método

Métodos:

- Correlación de Spearman (datos no-normales)
- Corrección Bonferroni para comparaciones múltiples ($\alpha^* = 0.05/32 = 0.0016$)
- Scatter plots con líneas de regresión LOWESS

Tabla 5.1: Matriz de Correlación: Biométricos Agregados vs SF-36 (N=10)

	\mathbf{FF}	\mathbf{RF}	\mathbf{DC}	\mathbf{SG}	VT	\mathbf{FS}	\mathbf{RE}	\mathbf{SM}
Pasos promedio	0.32		0.18	0.41	-0.05	0.27	0.14	0.09
Calorías promedio	0.38		0.22	0.45	-0.12	0.31	0.19	0.13
FC reposo promedio	-0.21		-0.14	-0.28	0.08	-0.18	-0.11	-0.06
HRV SDNN promedio	0.15		0.09	0.24	0.31	0.12	0.08	0.19
Min sedentarios	-0.29		-0.16	-0.35	-0.18	-0.24	-0.13	-0.11

Nota: RF excluido por varianza nula. Ninguna correlación alcanza $|r| \ge 0,60$ ni p < 0,0016.

Paso 5: Decisión Estadística

Decisión estadística:

Se rechaza \mathbf{H}_1 . Las correlaciones observadas son débiles a moderadas $(0.09 \le |r| \le 0.45)$ y ninguna sobrevive la corrección Bonferroni. La asociación es insuficiente para justificar un modelo predictivo.

5.2. Modelado con Redes Neuronales Artificiales (ANN)

5.2.1. Arquitectura y Entrenamiento

A pesar de las correlaciones débiles, se procedió a entrenar ANNs como prueba definitiva:

Algorithm 2 Entrenamiento de ANN para CVRS

- 1: Input: $X \in \mathbb{R}^{10 \times 16}$ (16 features biométricos), $y \in \mathbb{R}^{10 \times 7}$ (7 dimensiones SF-36 válidas)
- 2: Output: Modelo ANN, métricas de desempeño

3:

- 4: Arquitectura: [16 inputs] \rightarrow [32 ReLU] \rightarrow [16 ReLU] \rightarrow [7 Linear]
- 5: Optimizador: Adam ($\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999$)
- 6: Función de pérdida: MSE
- 7: Validación cruzada: 5-fold
- 8: Épocas: 500 con early stopping (patience=50)

Paso 4: Cálculos

Resultados del entrenamiento:

Métrica	Train	Validación	Test	Criterio
$\overline{R^2}$	0.92	-0.18	-0.34	≥ 0.70
MAE	5.2	18.7	21.3	≤ 10
RMSE	7.8	24.1	27.9	≤ 15

Tabla 5.2: Desempeño del modelo ANN (peor de 20 configuraciones probadas)

Observación crítica: R^2 negativo en validación/test indica que el modelo es peor que predecir la media, evidenciando sobreajuste severo y ausencia de relación generalizable.

Paso 5: Decisión Estadística

Decisión metodológica CRÍTICA:

Se rechaza definitivamente la hipótesis inicial y el enfoque supervisado. Las causas identificadas:

- 1. N=10 es insuficiente para ANN (regla de oro: $\geq 10 \times$ parámetros; aquí: $\approx 1,000$ parámetros)
- 2. Relación CS-CVRS es multifactorial, confundida por variables psicosociales no capturadas
- 3. SF-36 carece de sensibilidad a variaciones diarias/semanales de actividad en población joven-adulta sana

5.3. Reformulación: Nuevo Enfoque Data-Driven

5.3.1. Nueva Hipótesis

Paso 1: Planteamiento de Hipótesis

Hipótesis H_2 (reformulada):

Los datos biométricos contienen patrones latentes que permiten clasificar objetivamente semanas como "alto sedentarismo" vs "bajo sedentarismo", independientemente de la percepción subjetiva de CVRS.

Enfoque dual propuesto:

- 1. **Descubrimiento empírico**: Clustering no supervisado (K-Means) para identificar grupos naturales en los datos $\rightarrow Verdad\ Operativa\ (GO)$
- 2. Sistema experto interpretable: Lógica Difusa (Mamdani) con reglas basadas en conocimiento fisiológico $\rightarrow Modelo$ Clínico
- 3. Validación cruzada: Concordancia entre ambos métodos independientes

Paso 2: Selección del Estadístico/Método

Métricas de éxito reformuladas:

- F1-Score ≥ 0.80 (balance precisión-recall)
- Matthews Correlation Coefficient (MCC) ≥ 0.30 (manejo desbalanceo)
- Interpretabilidad clínica de las reglas difusas

Paso 6: Conclusión

Conclusión del pivote:

Este cambio paradigmático transforma el estudio de *predictivo supervisado* a descriptivo-clasificatorio data-driven, más apropiado para la naturaleza exploratoria de los datos y el tamaño muestral. Los capítulos siguientes desarrollan este nuevo enfoque.

Estrategia de Imputación Jerárquica para Datos Faltantes

6.1. Diagnóstico de Missingness

6.1.1. Mecanismos de Datos Faltantes

Paso 1: Planteamiento de Hipótesis

Hipótesis sobre mecanismos:

Los datos faltantes en wearables no son MCAR (Missing Completely At Random), sino:

- MAR (Missing At Random): FC/HRV ausentes durante actividades acuáticas (no resistance device)
- MNAR (Missing Not At Random): Dispositivo quitado intencionalmente durante eventos sedentarios prolongados (e.g., cine, sueño extendido)

Paso 2: Selección del Estadístico/Método

Pruebas aplicadas:

- Test de Little MCAR: $\chi^2 = 487.3$, $p < 0.001 \rightarrow \text{Rechazo MCAR}$
- Patrones de missingness visualizados con matrices de co-ocurrencia
- Análisis temporal: ACF/PACF de indicadores de missingness

Ver Figuras:

- 4 semestre dataset/analisis u/missingness y acf/missingness matrix u1.png
- 4 semestre_dataset/analisis_u/missingness_y_acf/acf_plots/acf_u1.png
- 4 semestre_dataset/analisis_u/missingness_y_acf/pacf_plots/pacf_u1.png

6.2. Estrategia de Imputación Jerárquica

6.2.1. Principios de Diseño

- 1. Sin fuga temporal: Imputación forward-only (día t usa solo info $\leq t-1$)
- 2. Plausibilidad fisiológica: Valores imputados dentro de rangos clínicos
- 3. Jerarquía de métodos: De específico a general
- 4. Transparencia: Marcar columnas con sufijo _imp y registrar tasa

6.2.2. Algoritmo de Imputación

Algorithm 3 Imputación Jerárquica para Variables Cardiovasculares

```
1: Input:
           DataFrame
                          diario
                                  con columnas
                                                     fecha,
                                                            FC caminar,
                                                                             FC reposo,
   HRV SDNN, ...]
 2: Output: DataFrame con valores imputados y flags
 3:
 4: for variable in [FC_caminar, FC_reposo, HRV_SDNN] do
       for row idx in missing indices(variable) do
5:
          usuario \leftarrow row idx.usuario
6:
 7:
          fecha \leftarrow row\_idx.fecha
 8:
          // Método 1: Media móvil 7 días previos
9:
          ventana \leftarrow [fecha-7, fecha-1]
10:
          if count(ventana) \ge 4 then
11:
              impute median(ventana)
                                                                     ▶ Robusto a outliers
12:
              continue
13:
          end if
14:
15:
          // Método 2: Media del mismo día de semana (último mes)
16:
          mismo dia \leftarrow filter(fecha.weekday == dia semana, fecha \in [fecha-28,
17:
   fecha-1
          if count(mismo dia) \geq 2 then
18:
              impute median(mismo dia)
19:
20:
              continue
          end if
21:
22:
          // Método 3: Mediana histórica del usuario
23:
          historico \leftarrow filter(usuario == usuario, fecha < fecha)
24:
          if count(historico) \ge 10 then
25:
              impute median(historico)
26:
27:
              continue
          end if
28:
29:
          // Método 4: Estimación por ecuaciones de Tanaka (FC reposo)
30:
          if variable == FC_reposo and edad disponible then
31:
              impute 220 - \text{edad} \times 0.7
                                                                   ▶ FC reposo estimado
32:
              continue
33:
          end if
34:
35:
          // Método 5 (último recurso): Mediana global
36:
          impute median global(variable)
37:
       end for
38:
39: end for
```

6.2.3. Resultados de Imputación

Tabla 6.1: Tasa de Imputación por Variable y Método

Variable	Missing (%)	M1 (%)	M2 (%)	M3 (%)	M4 (%)	M5 (%)
FC_caminar	7.6	68.2	21.3	8.9	0.0	1.6
FC_reposo	4.2	72.1	18.7	6.5	2.1	0.6
HRV_SDNN	14.8	61.5	24.8	10.3	0.0	3.4

Paso 4: Cálculos

Validación de plausibilidad:

Post-imputación, se verificó que todos los valores cumplan:

$$40 \le FC_{\text{reposo}} \le 100 \text{ lpm} \tag{6.1}$$

$$60 \le FC_{caminar} \le 160 \text{ lpm}$$
 (6.2)

$$15 \le HRV_SDNN \le 150 \text{ ms} \tag{6.3}$$

Violaciones detectadas: 3 outliers extremos (0.04%), reemplazados por mediana del usuario.

Paso 5: Decisión Estadística

Decisión:

La estrategia jerárquica logró reducir missingness de $14.8\,\%$ (HRV) a $0\,\%$, con $> 90\,\%$ de valores imputados mediante métodos específicos del usuario (M1-M3), garantizando consistencia individual.

Paso 6: Conclusión

Conclusión:

La imputación jerárquica sin fuga temporal preserva la integridad de series temporales para análisis posteriores (ACF/PACF, agregación semanal). El análisis de variabilidad dual (Capítulo 8) confirmará que la imputación no distorsiona las distribuciones originales.

Ingeniería de Características: Variables Derivadas con Normalización Antropométrica

7.1. Problema de Comparabilidad Inter-Sujeto

7.1.1. Heterogeneidad Antropométrica

Paso 1: Planteamiento de Hipótesis

Problema:

Variables brutas (pasos, calorías, FC) no son directamente comparables entre individuos con diferente:

- \blacksquare Masa corporal (IMC: $19.8-32.4~\mathrm{kg/m^2}$ en la cohorte)
- Tasa Metabólica Basal (TMB: función de sexo, edad, peso, altura)
- Tiempo de uso del dispositivo (6.2 23.8 h/día)

Consecuencia: Un usuario pesado quemará más calorías en reposo que uno liviano; ignorar esto induce sesgo en clustering.

7.2. Variable 1: Actividad Relativa

7.2.1. Definición y Justificación

Paso 2: Selección del Estadístico/Método

Derivación matemática:

$$Actividad_relativa_{día} = \frac{Pasos}{Horas_con_datos} \times \frac{1}{1000}$$
 (7.1)

Unidades: kilopasos por hora de monitoreo

Justificación clínica: Normaliza por exposición al dispositivo. Un usuario con 10,000 pasos en 10 horas (1.0 kph) es $m\'{a}s$ activo que uno con 10,000 pasos en 20 horas (0.5 kph).

7.2.2. Distribución y Validación

Tabla 7.1: Comparación: Pasos Brutos vs Actividad Relativa

Variable	Usuario	Media	DE	CV (%)	Mediana	IQR
	u1 (IMC 22.1)	8,542	3,921	45.9	8,120	4,650
Pasos	u5 (IMC 29.8)	5,234	2,814	53.8	5,010	3,210
	u9 (IMC 24.5)	7,892	3,654	46.3	7,650	4,120
	u1	0.62	0.28	45.2	0.59	0.31
Act_rel (kph)	u5	0.58	0.31	53.4	0.55	0.35
	u9	0.65	0.30	46.2	0.63	0.34

Paso 5: Decisión Estadística

Decisión:

Actividad_relativa reduce la varianza inter-sujeto atribuible a diferencias en tiempo de uso (CV similar, pero medianas más homogéneas), permitiendo clustering más justo.

7.3. Variable 2: Superávit Calórico Basal

7.3.1. Cálculo de TMB

Paso 2: Selección del Estadístico/Método

Ecuación de Harris-Benedict (revisada):

Para hombres:

$$TMB_h = 88,362 + (13,397 \times peso_kg) + (4,799 \times altura_cm) - (5,677 \times edad)$$
 (7.2)

Para mujeres:

$$TMB_m = 447,593 + (9,247 \times peso_kg) + (3,098 \times altura_cm) - (4,330 \times edad)$$
 (7.3)

7.3.2. Definición de Superávit

$$Superávit_calórico_basal_{día} = \frac{Calorías_activas}{TMB} \times 100\%$$
 (7.4)

Interpretación clínica:

- < 20 %: Gasto activo muy bajo (sedentarismo)
- 20 − 50 %: Actividad ligera-moderada
- > 50 %: Actividad vigorosa o deportiva

Tabla 7.2: TMB y Superávit Calórico por Usuario

Usuario	Sexo	IMC	TMB (kcal/día)	Sup. p50 (%)
u1	Μ	22.1	1,742	28.3
u2	\mathbf{F}	24.3	1,521	31.7
u3	Μ	26.8	1,865	25.9
•••	•••	•••		
u10	\mathbf{F}	23.5	1,498	34.2

7.4. Variables 3 y 4: Perfiles Cardiovasculares

7.4.1. Delta Cardíaco

$$Delta_cardiaco_{día} = FC_caminar - FC_reposo$$
 (7.5)

Relevancia fisiológica: Mayor delta indica mejor reserva cardiovascular (respuesta rápida del sistema nervioso autónomo a demanda metabólica).

7.4.2. HRV SDNN

La Variabilidad de la Frecuencia Cardíaca (HRV), específicamente SDNN (Standard Deviation of NN intervals), es un biomarcador del tono vagal:

- SDNN > 50 ms: Buena modulación autonómica
- SDNN < 30 ms: Posible fatiga, sobreentrenamiento, o estrés crónico

Paso 4: Cálculos

Correlación entre variables derivadas:

	Act_rel	Sup_cal	HRV	Delta_card
Act_rel	1.00	0.68	0.12	0.24
Sup_cal	0.68	1.00	0.09	0.31
HRV	0.12	0.09	1.00	0.18
Delta_card	0.24	0.31	0.18	1.00

Tabla 7.3: Matriz de Correlación (Spearman, n = 8,380 días)

Observación: Correlación moderada Act_rel – Sup_cal (esperada: ambas reflejan volumen de actividad), pero baja con variables cardiovasculares, confirmando que capturan dominios distintos.

Paso 6: Conclusión

Conclusión:

Las 4 variables derivadas son:

- 1. Antropométricamente normalizadas (comparabilidad)
- 2. Fisiológicamente interpretables (relevancia clínica)
- 3. Relativamente independientes (r < 0.70, evitando multicolinealidad severa)

Estas formarán la base para la agregación semanal (siguiente capítulo) y posterior modelado.

Agregación Temporal y Análisis Dual de Variabilidad

8.1. Justificación de la Agregación Semanal

Paso 1: Planteamiento de Hipótesis

Hipótesis:

Los datos diarios presentan una variabilidad excesiva (CV $> 50\,\%$) atribuible a:

- Comportamientos esporádicos (ejercicio intenso 1 día, sedentarismo el siguiente)
- Ruido de medición (errores de sensor, eventos atípicos)
- Ciclos semanales (diferencias fin de semana vs días laborales)

La agregación a nivel semanal (7 días continuos) utilizando estadísticos robustos (mediana, IQR) capturará el *patrón habitual* de comportamiento, reduciendo ruido y mejorando estabilidad para clustering/modelado.

8.1.1. Ventana de Agregación

Semana
$$k$$
: fecha_inicio = Lunes, fecha_fin = Domingo (8.1)

Criterio de validez: Semana incluida si ≥ 5 días tienen datos completos (71 % completitud).

8.2. Estadísticos Calculados por Semana

Para cada una de las 4 variables derivadas:

$$x_{\text{p50}}^{(k)} = \text{median}\{x_{\text{día}_1}, x_{\text{día}_2}, \dots, x_{\text{día}_7}\}$$
 (8.2)

$$x_{\text{IQR}}^{(k)} = Q_3(x) - Q_1(x) \tag{8.3}$$

$$x_{\text{p10}}^{(k)} = \text{percentil}_{10}(x) \tag{8.4}$$

$$x_{p90}^{(k)} = \text{percentil}_{90}(x) \tag{8.5}$$

Resultado: Dataset semanal con $n_{\rm semanas} = 1,337$ (válidas) y 16 features (4 variables \times 4 estadísticos).

8.3. Análisis Dual de Variabilidad

8.3.1. Definición de Variabilidad Observada vs Operativa

Paso 2: Selección del Estadístico/Método

Variabilidad Observada (datos crudos, sin imputar):

Cuantifica la fluctuación natural día-a-día medida directamente por el sensor.

$$CV_{\text{obs}}^{(u,v)} = \frac{\sigma_{\text{obs}}(v,u)}{\mu_{\text{obs}}(v,u)} \times 100\%$$
 (8.6)

donde v = variable, u = usuario.

Variabilidad Operativa (datos post-imputación):

Refleja la variabilidad utilizada en el análisis final.

$$CV_{op}^{(u,v)} = \frac{\sigma_{op}(v,u)}{\mu_{op}(v,u)} \times 100\%$$
 (8.7)

8.3.2. Comparación Observada vs Operativa

Tabla 8.1: Coeficiente de Variación: Observado vs Operativo (promedio 10 usuarios)

Variable	CV obs (%)	CV op (%)	ΔCV (%)	Dir.	Efecto impute
Pasos	62.3	59.8	-2.5	\downarrow	Suaviza
Actividad_relativa	58.7	56.4	-2.3	\downarrow	Suaviza
Calorías_activas	74.5	71.2	-3.3	\downarrow	Suaviza
Superávit_calórico	68.9	66.1	-2.8	\downarrow	Suaviza
FC_reposo	14.2	13.8	-0.4	\downarrow	Mínimo
FC_caminar	11.8	13.1	+1.3	\uparrow	Leve aumento
HRV_SDNN	35.4	32.7	-2.7	\downarrow	Suaviza
Delta_cardiaco	15.6	16.2	+0.6	\uparrow	Leve aumento

Paso 5: Decisión Estadística

Decisión:

La imputación tiene un impacto moderado ($|\Delta \text{CV}| < 5\,\%$), tendiendo a reducir ligeramente la dispersión (efecto de regresión a la media en métodos basados en medianas). El aumento en FC_caminar y Delta_cardiaco es marginal ($< 2\,\%$) y aceptable.

Conclusión: La imputación no distorsiona dramáticamente las distribuciones; los datos operativos son representativos de los observados.

8.3.3. Gráficos de Variabilidad

Ver Figuras:

- 4 semestre_dataset/variabilidad_operativa_vs_observada.png: Comparación global
- 4 semestre_dataset/variabilidad_por_usuario_boxplot.png: Distribución por individuo
- 4 semestre_dataset/heatmap_cv_usuario_variable.png: Mapa de calor CV
- 4 semestre_dataset/analisis_u/variabilidad/CV_por_usuario_u1.png: Desglose usuario 1

8.4. Agregación Semanal: Resultados Finales

Paso 4: Cálculos

Dataset semanal generado:

- Archivo: DB_usuarios_consolidada_con_actividad_relativa.csv
- Dimensiones: 1,337 × 18 (16 features + usuario_id + semana_inicio)
- Completitud: 100 % (post-imputación y agregación)

Estadísticos de las 4 variables p50 (para clustering/fuzzy):

Variable p50	Mediana global	IQR global	Min	Max
Actividad_relativa	0.58	0.31	0.02	1.87
Superávit_calórico	29.4	18.7	1.2	98.5
HRV_SDNN	48.2	21.5	18.3	112.7
Delta_cardiaco	36.8	14.2	8.5	78.4

Tabla 8.2: Estadísticos del Dataset Semanal (n=1,337 semanas)

Paso 6: Conclusión

Conclusión del capítulo:

- 1. La agregación semanal reduce efectivamente el ruido diario.
- 2. El análisis dual de variabilidad confirma que la imputación no introduce artefactos severos.
- 3. El dataset semanal con 4 variables p50 + 4 IQRs está listo para el clustering (Capítulo 9) y modelado difuso (Capítulo 10).

Análisis de Correlación, Multicolinealidad y Reducción Dimensional (PCA)

Clustering No Supervisado: Verdad Operativa (K-Means, K=2)

Sistema de Inferencia Difusa Mamdani

Validación Cruzada y Análisis de Robustez

Justificación Metodológica: Por Qué NO Split Train/Test 80/20

Bibliografía

- [1] World Health Organization. (2020). WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization.
- [2] Stahl, S. E., et al. (2016). How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? *BMJ Open Sport & Exercise Medicine*, 2(1), e000106.
- [3] Shcherbina, A., et al. (2017). Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. *Journal of Personalized Medicine*, 7(2), 3.
- [4] Little, R. J. (1988). A test of missing completely at random for multivariate data with missing values. *Journal of the American Statistical Association*, 83(404), 1198-1202.
- [5] Pedregosa, F., et al. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12, 2825-2830.
- [6] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
- [7] Mamdani, E. H., & Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. *International Journal of Man-Machine Studies*, 7(1), 1-13.