Leonel Garay

CS-225: Discrete Structures in CS

Homework 1, Part 1

Exercise Set 2.1: Problem #5 (b, c, d)

- b. Not a statement
- c. Statement
- d. Not a statement

Exercise Set 2.1: Problem #10

- a. pΛqΛr
- b. p ∧ ~q
- c. p \((~q \(V ~r \))
- d. (~p Λ q) Λ ~r
- e. ~p ∨ (q ∧ r)

Exercise Set 2.1: Problem (26, 28, 29, 30, 39)

- 26. Sam is not an orange belt or Kate is not a red belt
- 28. The train is not late and my watch is not fast.
- 29. The computer program does not have a logical error in the first ten lines and it is not being run with an incomplete data set.
- 30. The dollar is not at an all-time high or the stock market is not at a record low.
- 39. (num_orders > 50 or num_instock < 300) and (50 ≥ num_order > 75 or num_instock < 500)

Exercise Set 2.1: Problem #42

р	q	~p	q	(~p ∨ q)	(p ∧ ~q)	(~p∨q)∨(p∧~q)
Т	Т	F	F	T	F	T T
F	Т	Т	F	Т	F	T T
Т	F	F	Т	F	Т	T T
F	F	Т	Т	T	F	T T

Answer: Tautology, because all are T.

Exercise Set 2.1: Problem #54

 $(p \land (^{\sim}(^{\sim}p) \land ^{\sim}q)) \lor (p \land q)$ by De Morgan's Laws by Double Negative Laws $(p \land (p \land ^{\sim}q)) \lor (p \land q)$ by Associative Laws $(^{\sim}q \land (p \land p)) \lor (p \land q)$ $(^{\sim}q \wedge p) \vee (p \wedge q)$ by Idempotent laws $(p \land ^q) \lor (p \land q)$ by Commutative Laws $p \wedge (^q \vee q)$ by Distributive Laws p ∧ (q ∨ ~q) by Commutative Laws by Negation Laws pΛt by Identity Laws р