第一节 点估计

- 一、点估计问题的提法
- 二、估计量的求法
- 三、小结

一、点估计问题的提法

设总体 X 的分布函数形式已知, 但它的一个或多个参数为未知, 借助于总体 X 的一个样本来估计总体未知参数的值的问题称为点估计问题.

例1 在某炸药制造厂,一天中发生着火现象的次数 X 是一个随机变量,假设它服从以 $\lambda > 0$ 为参数的泊松分布,参数 λ 为未知,设有以下的样本值,试估计参数 λ .

着火次数 k	0	1	2	3	4	5	6	
发生 k 次着 火的天数 n_k	75	00	51	22	6	2	1	$\Sigma = 250$
火的天数 n_k	13	90	54	44	U	4	1	L = 250

解 因为 $X \sim \pi(\lambda)$, 所以 $\lambda = E(X)$.

用样本均值来估计总体的均值 E(X).

$$\overline{x} = \frac{\sum_{k=0}^{6} k n_k}{\sum_{k=0}^{6} n_k} = \frac{1}{250} (0 \times 75 + 1 \times 90 + 2 \times 54 + 3 \times 22 + 4 \times 6 + 5 \times 2 + 6 \times 1) = 1.22.$$

故 $E(X) = \lambda$ 的估计为 1.22.

点估计问题的一般提法

设总体 X 的分布函数 $F(x;\theta)$ 的形式为已知, θ 是待估参数. X_1, X_2, \dots, X_n 是 X 的一个样本, X_1, X_2, \dots, X_n 为相应的一个样本值.

点估计问题就是要构造一个适当的统计量 $\hat{\theta}(X_1, X_2, \dots, X_n)$,用它的观察值 $\hat{\theta}(x_1, x_2, \dots, x_n)$ 来估计未知参数 θ .

 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 称为 θ 的估计量. 通称估计, $\hat{\theta}(x_1, x_2, \dots, x_n)$ 称为 θ 的估计值. 简记为 $\hat{\theta}$.

例2 在某纺织厂细纱机上的 断头次数 X 是一个随机变量,假设它服从以 $\lambda > 0$ 为参数的泊松分布,参数 λ 为未知,现检查了150只纱锭在某一时间段内断头的次数,数据如下,试估计参数 λ .

断头次数 k	0	1	2	3	4	5	6	
断头 k 次的纱锭数 n_k	45	60	32	9	2	1	1	150

解 先确定一个统计量 \bar{X} ,再计算出 \bar{X} 的观察值 \bar{x} , 把 \bar{x} 作为参数 λ 的估计值.

 $\bar{x} = 1.133$. λ 的估计值为 1.133.

二、估计量的求法

由于估计量是样本的函数,是随机变量,故对不同的样本值,得到的参数值往往不同,如何求估计量是关键问题.

常用构造估计量的方法: (两种)

矩估计法和最大似然估计法.

1. 矩估计法

设 X 为连续型随机变量,其概率密度为 $f(x;\theta_1,\theta_2,\cdots,\theta_k)$,或 X 为离散型随机变量, 其分布律为 $P\{X=x\}=p(x;\theta_1,\theta_2,\cdots,\theta_k)$, 其中 $\theta_1,\theta_2,\cdots,\theta_k$ 为待估参数, 若 X_1, X_2, \dots, X_n 为来自X的样本, 假设总体 X 的前k 阶矩存在, 且均为 $\theta_1, \theta_2, \dots, \theta_k$ 的函数, 即

$$\mu_l = E(X^l) = \int_{-\infty}^{+\infty} x^l f(x; \theta_1, \theta_2, \dots, \theta_k) dx \quad (X \text{ 5 in } \mathbb{Z})$$

或
$$\mu_l = E(X^l) = \sum_{x \in R_X} x^l p(x; \theta_1, \theta_2, \dots, \theta_k), (X 为 离 散型)$$

其中 R_X 是x可能取值的范围, $l=1,2,\dots,k$

因为样本矩 $A_l = \frac{1}{n} \sum_{i=1}^{n} X_i^l$ 依概率收敛于相应的

总体矩 μ_l $(l=1,2,\cdots,k)$,

样本矩的连续函数依概 率收敛于相应的总体矩的连续函数.

矩估计法的定义

用样本矩来估计总体矩,用样本矩的连续函数来估计总体矩的连续函数,这种估计法称为矩估计法.

这是一个包含k个未知参数 $\theta_1,\theta_2,\dots,\theta_k$ 的方程组,解出其中 $\theta_1,\theta_2,\dots,\theta_k$.

用方程组的解 $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_k$ 分别作为 $\theta_1, \theta_2, \dots, \theta_k$ 的估计量,这个估计量称为矩估计量.

矩估计量的观察值称为矩估计值.

例3 设总体 X 在[0, θ]上服从均匀分布,其中 θ ($\theta > 0$)未知,(X_1, X_2, \dots, X_n)是来自总体 X 的样本,求 θ 的估计量.

解 因为
$$\mu_1 = E(X) = \frac{\theta}{2}$$
,

根据矩估计法,令
$$\frac{\hat{\theta}}{2} = A_1 = \overline{X}$$
,

所以 $\hat{\theta} = 2\overline{X}$ 为所求 θ 的估计量.

例4 设总体 X 在 [a,b]上服从均匀分布,其中a,b未知, (X_1, X_2, \dots, X_n) 是来自总体 X的样本,求a,b的估计量.

解
$$\mu_{1} = E(X) = \frac{a+b}{2},$$

$$\mu_{2} = E(X^{2}) = D(X) + [E(X)]^{2} = \frac{(a-b)^{2}}{12} + \frac{(a+b)^{2}}{4},$$

$$\frac{a+b}{2} = A_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i},$$

$$\frac{(a-b)^{2}}{12} + \frac{(a+b)^{2}}{4} = A_{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2},$$

即
$$\begin{cases} a+b=2A_{1},\\ b-a=\sqrt{12(A_{2}-A_{1}^{2})}. \end{cases}$$

解方程组得到a,b的矩估计量分别为

$$\hat{a} = A_1 - \sqrt{3(A_2 - A_1^2)} = \overline{X} - \sqrt{\frac{3}{n}} \sum_{i=1}^{n} (X_i - \overline{X})^2,$$

$$\hat{b} = A_1 + \sqrt{3(A_2 - A_1^2)} = \overline{X} + \sqrt{\frac{3}{n}} \sum_{i=1}^{n} (X_i - \overline{X})^2.$$

例5 设总体 X 服从几何分布,即有分布律

$$P{X = k} = p(1-p)^{k-1}$$
 $(k = 1, 2, \dots),$

其中 $p(0 未知,<math>(X_1, X_2, \dots, X_n)$ 是来自总体X的样本,求p的估计量.

所以 $\hat{p} = \frac{1}{X}$ 为所求 p的估计量.

例6 设总体 X 的均值 μ 和方差 σ^2 都存在,且有 $\sigma^2 > 0$,但 μ 和 σ^2 均为未知,又设 X_1, X_2, \dots, X_n 是 一个样本,求 μ 和 σ^2 的矩估计量.

解
$$\mu_1 = E(X) = \mu,$$

$$\mu_2 = E(X^2) = D(X) + [E(X)]^2 = \sigma^2 + \mu^2,$$

$$\Leftrightarrow \begin{cases} \mu = A_1, \\ \sigma^2 + \mu^2 = A_2. \end{cases}$$

解方程组得到矩估计量分别为 $\hat{\mu} = A_1 = \overline{X}$,

$$\hat{\sigma}^2 = A_2 - A_1^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

上例表明:

总体均值与方差的矩估计量的表达式不因不同的总体分布而异.

例 $X \sim N(\mu, \sigma^2)$, μ, σ^2 未知,即得 μ, σ^2 的矩估计量 $\hat{\mu} = \overline{X}, \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$

一般地,

用样本均值 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ 作为总体X的均值的矩估计,

用样本二阶中心矩 $B_2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$ 作为总体

X的方差的矩估计.

2. 最大似然估计法

(1) 设总体 X 属离散型

似然函数的定义

设分布律 $P\{X = k\} = p(x;\theta)$, θ 为待估参数, $\theta \in \Theta$,

 $(其中 \Theta 是 \theta 可能的取值范围)$

 X_1, X_2, \cdots, X_n 是来自总体 X 的样本,

则 X_1, X_2, \dots, X_n 的联合分布律为 $\prod_{i=1}^n p(x_i; \theta)$.

又设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的一个样本值.

则样本 X_1, X_2, \dots, X_n 取到观察值 x_1, x_2, \dots, x_n 的概率,

即事件 $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$ 发生的概率为

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n p(x_i; \theta), \quad \theta \in \Theta,$$

 $L(\theta)$ 称为样本似然函数.

最大似然估计法

得到样本值 x_1, x_2, \dots, x_n 时,选取使似然函数 $L(\theta)$

取得最大值的 $\hat{\theta}$ 作为未知参数 θ 的估计值,

即 $L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta)$. (其中 Θ 是 θ 可能的取值范围)

这样得到的 $\hat{\theta}$ 与样本值 x_1, x_2, \dots, x_n 有关,记为

 $\hat{\theta}(x_1, x_2, \dots, x_n)$,参数 θ 的最大似然估计值

 $\hat{\theta}(X_1, X_2, \dots, X_n)$ 参数 θ 的最大似然估计量

(2) 设总体 X 属连续型

似然函数的定义

设概率密度为 $f(x;\theta)$, θ 为待估参数, $\theta \in \Theta$,

 $(其中 \Theta 是 \theta 可能的取值范围)$

 X_1, X_2, \dots, X_n 是来自总体 X 的样本,

则 X_1, X_2, \dots, X_n 的联合密度为 $\prod_{i=1}^n f(x_i; \theta)$.

又设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的一个样本值.

则随机点 (X_1, X_2, \dots, X_n) 落在点 (x_1, x_2, \dots, x_n) 的 邻域(边长分别为 dx_1, dx_2, \dots, dx_n 的n维立方体)内的概率近似地为 $\prod_{i=1}^n f(x_i; \theta) dx_i$,

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta),$$

 $L(\theta)$ 称为样本的似然函数.

若
$$L(x_1,x_2,\dots,x_n;\hat{\theta}) = \max_{\theta \in \Theta} L(x_1,x_2,\dots,x_n;\theta).$$

$$\hat{\theta}(x_1, x_2, \dots, x_n)$$
 参数 θ 的最大似然估计值,

$$\hat{\theta}(X_1, X_2, \dots, X_n)$$
 参数 θ 的最大似然估计量

最大似然估计法是由费舍尔引进的.

费舍尔

求最大似然估计量的步骤:

(一) 写出似然函数

$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n p(x_i; \theta)$$

或
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta);$$

(二) 取对数

$$\ln L(\theta) = \sum_{i=1}^{n} \ln p(x_i; \theta) \quad \text{iff} \quad \ln L(\theta) = \sum_{i=1}^{n} \ln f(x_i; \theta);$$

(三) 对
$$\theta$$
 求导 $\frac{d \ln L(\theta)}{d \theta}$, 并令 $\frac{d \ln L(\theta)}{d \theta} = 0$ 对数似然方程

解方程即得未知参数 θ 的最大似然估计值 $\hat{\theta}$.

最大似然估计法也适用于分布中含有多个未知参数的情况.此时只需令

$$\frac{\partial}{\partial \theta_i} \ln L = 0$$
, $i = 1, 2, \dots, k$. 对数似然方程组

解出由 k 个方程组成的方程组,即可得各未知参数 θ_i $(i=1,2,\dots,k)$ 的最大似然估计值 $\hat{\theta}_i$.

例7 设 $X \sim B(1,p)$, X_1, X_2, \dots, X_n 是来自X的一个样本,求p的最大似然估计量.

解 设 x_1, x_2, \dots, x_n 为相应于样本 X_1, X_2, \dots, X_n 的一个样本值,

X的分布律为 $P\{X = x\} = p^x (1-p)^{1-x}, x = 0,1,$ 似然函数 $L(p) = \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i}$

$$\ln L(p) = \left(\sum_{i=1}^n x_i\right) \ln p + \left(n - \sum_{i=1}^n x_i\right) \ln(1-p),$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}p}\ln L(p) = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1 - p} = 0,$$

解得 p 的最大似然估计值 $p = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$.

p的最大似然估计量为 $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$.

这一估计量与矩估计量是相同的.

例8 设X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, $X_1, X_2, ..., X_n$ 是来自X的一个样本,求 λ 的最大 似然估计量.

解 因为X的分布律为

$$P\{X = x\} = \frac{\lambda^x}{x!} e^{-\lambda}, \quad (x = 0, 1, 2, \dots, n)$$

所以ん的似然函数为

$$L(\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right) = e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} (x_i!)},$$

$$\ln L(\lambda) = -n\lambda + \left(\sum_{i=1}^n x_i\right) \ln \lambda - \sum_{i=1}^n (x_i!),$$

$$\Leftrightarrow \frac{\mathrm{d}}{\mathrm{d}\lambda}\ln L(\lambda) = -n + \frac{\sum\limits_{i=1}^{n} x_i}{\lambda} = 0,$$

解得 λ 的最大似然估计值 $\lambda = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$,

 λ 的最大似然估计量为 $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$.

这一估计量与矩估计量是相同的.

例9 设总体 $X \sim N(\mu, \sigma^2)$, μ, σ^2 为未知参数, x_1, x_2, \dots, x_n 是来自X的一个样本值, 求 μ 和 σ^2 的最大似然估计量.

解 X的概率密度为

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

X的似然函数为

$$L(\mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}},$$

$$\ln L(\mu,\sigma^2) = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n(x_i - \mu)^2,$$

$$\left[\frac{1}{\sigma^2}\left[\sum_{i=1}^n x_i - n\mu\right] = 0,\right]$$

$$\left[-\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0 \right],$$

由
$$\frac{1}{\sigma^2}\left[\sum_{i=1}^n x_i - n\mu\right] = 0$$
解得
$$\hat{\mu} = \frac{1}{n}\sum_{i=1}^n x_i = \overline{x},$$

由
$$-\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0$$
解得

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2},$$

故 μ 和 σ^2 的最大似然估计量分别为

$$\hat{\mu} = \overline{X}, \ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
. 它们与相应的矩估计量相同.

例10 设总体 X 在 [a,b] 上服从均匀分布,其中 a,b 未知, x_1,x_2,\cdots,x_n 是来自总体 X 的一个样本值,求 a,b 的最大似然估计量.

解 记
$$x_{(l)} = \min(x_1, x_2, \dots, x_n),$$

$$x_{(h)} = \max(x_1, x_2, \dots, x_n),$$

X的概率密度为

$$f(x;a,b) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & 其他. \end{cases}$$

因为 $a \le x_1, x_2, \dots, x_n \le b$ 等价于 $a \le x_{(l)}, x_{(h)} \le b$,作为a, b的函数的似然函数为

$$L(a,b) = \begin{cases} \frac{1}{(b-a)^n}, & a \le x_{(l)}, b \ge x_{(h)}, \\ 0, & \text{if } d \end{cases}$$

于是对于满足条件 $a \le x_{(l)}, b \ge x_{(h)}$ 的任意a,b有

$$L(a,b) = \frac{1}{(b-a)^n} \le \frac{1}{(x_{(h)} - x_{(l)})^n},$$

即似然函数L(a,b)在 $a=x_{(l)}, b=x_{(h)}$ 时

取到最大值 $(x_{(h)} - x_{(l)})^{-n}$,

a,b 的最大似然估计值

$$\hat{a} = x_{(l)} = \min_{1 \le i \le n} x_i, \quad \hat{b} = x_{(h)} = \max_{1 \le i \le n} x_i,$$

a,b 的最大似然估计量

$$\hat{a} = \min_{1 \le i \le n} X_i, \qquad \hat{b} = \max_{1 \le i \le n} X_i.$$

最大似然估计的性质

设 θ 的函数 $u = u(\theta)$, $\theta \in \Theta$ 具有单值反函数 $\theta = \theta(u)$, $u \in \Phi$. 又设 $\hat{\theta}$ 是 X 的概率密度函数 $f(x;\theta)$ (f 形式已知)中的参数 θ 的最大似然估计,则 $\hat{u} = u(\hat{\theta})$ 是 $u(\theta)$ 的最大似然估计.

证明 因为 $\hat{\theta}$ 是 θ 的最大似然估计值,

所以
$$L(x_1, x_2, \dots, x_n; \hat{\theta}) = \max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta),$$

其中 x_1, x_2, \dots, x_n 是来自总体 X的一个样本值,

由于
$$\hat{u} = u(\hat{\theta}), \hat{\theta} = \theta(\hat{u}),$$

故
$$L(x_1, x_2, \dots, x_n; \theta(\hat{u})) = \max_{u \in \mathbb{P}} L(x_1, x_2, \dots, x_n; \theta(u)),$$

于是 $\hat{u} = u(\hat{\theta})$ 是 $u(\theta)$ 的最大似然估计.

此性质可以推广到总体分布中含有多个未知 参数的情况.

如例9中 σ^2 的最大似然估计值为 $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$,

函数 $u = u(\sigma^2) = \sqrt{\sigma^2}$ 有单值反函数 $\sigma^2 = u^2(u \ge 0)$, 故标准差 σ 的最大似然估计值为

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}.$$

三、小结

在统计问题中往往先使用最大似然估计法, 在最大似然估计法使用不方便时, 再用矩估计法.

似然函数
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n p(x_i; \theta)$$

或
$$L(\theta) = L(x_1, x_2, \dots, x_n; \theta) = \prod_{i=1}^n f(x_i; \theta);$$

