Álgebra Geométrica para Ciência da Computação

Fernando Náufel

03/05/2023 18:23

Índice

Prefácio			3	
1	Intro	odução Referências	4 4	
2	O produto externo			
	2.1	Vetores em \mathbb{R}^2	5	
	2.2	Retas em \mathbb{R}^2	7	
	2.3	Vetores e retas em \mathbb{R}^3	10	
	2.4	Bivetores e planos em \mathbb{R}^3	11	
	2.5	O produto externo de vetores cria bivetores	14	
	2.6	Bivetores em \mathbb{R}^2 ?	15	
	2.7	Trivetores em \mathbb{R}^3	15	
	2.8	k -vetores em \mathbb{R}^n	15	
	2.9	Propriedades do produto externo	15	
	2.10	Resolvendo problemas com \land	15	
	2.11	Representando subespaços homogêneos orientados e com peso	15	
	2.12	Blades	15	
	2.13	Multivetores	15	
	2.14	Resumo	15	
	2.15	Exercícios	15	
Re	Referências			

Prefácio

???

1 Introdução

???

1.1 Referências

???

Livros em português e em inglês

Sites

Playlists

???

2 O produto externo

2.1 Vetores em \mathbb{R}^2

- Por enquanto, vamos trabalhar no espaço vetorial \mathbb{R}^2 .
- Os elementos de \mathbb{R}^2 são vetores com duas coordenadas; por exemplo:

$$\mathbf{v} = (-1, 3)$$

$$\mathbf{w} = \left(\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$$

Notação: vetores em negrito

Você deve estar acostumado a escrever nomes de vetores como \vec{v} , \vec{w} etc. Neste livro, como na maioria dos livros sobre álgebra geométrica, nomes de vetores serão escritos em negrito: v, w.

• Usando a base canônica de \mathbb{R}^2 , com $\mathbf{e}_1=(1,0)$ e $\mathbf{e}_2=(0,1)$, os vetores do exemplo acima podem ser escritos como

$$\mathbf{v} = -1\mathbf{e}_1 + 3\mathbf{e}_2$$
$$\mathbf{w} = \frac{1}{2}\mathbf{e}_1 + \frac{\sqrt{2}}{2}\mathbf{e}_2$$

- Tecnicamente, estamos escrevendo cada vetor como uma combinação linear dos vetores da base $\{\mathbf{e}_1, \mathbf{e}_2\}$.
- Para lembrar que estamos trabalhando com \mathbf{e}_1 e com \mathbf{e}_2 , vamos rotular os eixos x e ydos nossos gráficos com os nomes destes dois vetores, como na Figura 2.1.
- $\bullet\,$ Mas você deve se lembrar que ${\bf e}_1$ e ${\bf e}_2$ representam os dois vetores unitários da figura, e não os eixos orientados (que são infinitos).

Figura 2.1: Vetores da base canônica e eixos

⚠ Notação: vetores como combinações lineares dos vetores da base

Como na maioria dos livros sobre álgebra geométrica, em vez de escrevermos

$$\mathbf{v} = (x, y)$$

vamos escrever

$$\mathbf{v} = x\mathbf{e}_1 + y\mathbf{e}_2$$

Se uma das coordenadas for zero, podemos omitir o vetor da base correspondente. Por exemplo, vamos escrever o vetor

$$\mathbf{u} = (0, 3)$$

como

$$\mathbf{u}=3\mathbf{e}_2$$

- Para acompanhar o restante deste capítulo, você deve revisar os seguintes tópicos sobre vetores, especialmente em \mathbb{R}^2 e em \mathbb{R}^3 :
 - Adição de vetores,
 - Multiplicação de vetor por escalar (nossos escalares vão ser números reais),
 - Vetor nulo,
 - Vetor inverso (para a adição),
 - Dependência e independência linear,
 - Módulo (norma) de um vetor,
 - Produto vetorial,
 - Subespaços vetoriais.

2.2 Retas em \mathbb{R}^2

- Por enquanto, só temos vetores.
- Cada vetor (diferente de **0**, o vetor nulo) indica uma direção.
- Mas apenas uma direção não basta para definir uma reta. Por exemplo, todas as retas da Figura 2.2 têm a mesma direção: a direção dada pelo vetor $\mathbf{v} = \mathbf{e}_1 + 2\mathbf{e}_2$.
- Vamos combinar que todas as nossas retas de interesse passam pela origem ou seja, pelo ponto O = (0,0).
- Fazendo isto, cada vetor determina uma única reta.
- Chamamos as retas que passam pela origem de retas homogêneas. Na Figura 2.2, só há uma reta homogênea (a reta r).
- Mas, além de uma direção, um vetor também um sentido.
- Na Figura 2.2, o vetor $\mathbf{w} = -\mathbf{e}_1 2\mathbf{e}_2$ tem a mesma direção da reta r, mas seu sentido é oposto ao sentido do vetor \mathbf{v} .
- Então, qual dos dois vetores v e w representa a reta r?
- Vamos decidir esta questão do seguinte modo: nossas retas também vão ter um sentido.
 Ou seja, vamos trabalhar com retas orientadas.
- Na Figura 2.2, então, os vetores \mathbf{v} e \mathbf{w} representam duas retas r e r', ambas com a mesma direção, mas com sentidos opostos.
- Mas, além de direção e sentido, um vetor também tem um comprimento (ou magnitude, ou módulo, ou norma).
- Na Figura 2.3, os 3 vetores $\mathbf{v}_1, \mathbf{v}_2$ e \mathbf{v}_3 têm a mesma direção e sentido que a reta r.

Figura 2.2: Retas e vetores

- De novo, vamos combinar que cada um destes vetores define uma reta diferente, todas as retas com a mesma direção e sentido, mas cada reta com uma magnitude (ou peso) diferente.
- Você pode imaginar o peso de uma reta como a velocidade com que um ponto percorre a reta, ou como a velocidade com que a reta avança na direção e no sentido especificados pelo vetor.

Figura 2.3: Vetores de magnitudes diferentes

Resumindo: vetores = retas homogêneas orientadas e com peso

Um vetor

$$\mathbf{v} = a\mathbf{e}_1 + b\mathbf{e}_2$$

(com $a, b \in \mathbb{R}$, e com pelo menos um dentre a e b diferente de zero) representa uma reta homogênea orientada, com a direção e o sentido de \mathbf{v} , e com peso igual à norma de \mathbf{v} :

$$||\mathbf{v}|| = \sqrt{a^2 + b^2}$$

Figura 2.4: Vetor e reta em \mathbb{R}^3

2.3 Vetores e retas em \mathbb{R}^3

- Agora, vamos trabalhar em \mathbb{R}^3 .
- Tudo que falamos acima sobre vetores e retas em \mathbb{R}^2 se aplica a vetores e retas em \mathbb{R}^3 , com as seguintes alterações:
 - A base canônica agora é $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$, onde os vetores correspondem aos eixos x,y e z, respectivamente.
 - Logo, um vetor em \mathbb{R}^3 é escrito como $\mathbf{v}=x\mathbf{e}_1+y\mathbf{e}_2+z\mathbf{e}_3,$ com $x,y,z\in\mathbb{R}.$
 - Cada vetor $\mathbf{v} = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3$ (com $a,b,c \in \mathbb{R}$, e com pelo menos um dentre a,b e c diferente de zero) representa uma reta homogênea orientada, com a direção e o sentido de \mathbf{v} , e com peso igual à norma de \mathbf{v} :

$$||\mathbf{v}|| = \sqrt{a^2 + b^2 + c^2}$$

• A Figura 2.4 mostra um exemplo.

Figura 2.5: Plano homogêneo em \mathbb{R}^3

2.4 Bivetores e planos em \mathbb{R}^3

- Agora, ainda em \mathbb{R}^3 , considere planos homogêneos (que contêm a origem).
- Um plano homogêneo neste espaço tridimensional é definido por dois vetores linearmente independentes (isto é, com direções diferentes).
- Por exemplo, o plano da Figura 2.5 é definido pelos vetores $\mathbf{v}=\mathbf{e}_1+2\mathbf{e}_2+\mathbf{e}_3$ e $\mathbf{w}=3\mathbf{e}_1-\mathbf{e}_2.$
- De novo, como fizemos antes com as retas, vamos querer levar em conta os sentidos e as normas destes dois vetores na maneira como eles definem um plano.
- Quanto aos sentidos: vamos dizer que o plano gerado por estes dois vetores pode ter duas orientações, dependendo da ordem em que tomarmos os vetores.
- Detalhando: o plano gerado por \mathbf{v} e \mathbf{w} (nesta ordem) vai ter uma orientação, e o plano gerado por \mathbf{w} e \mathbf{v} (nesta ordem) vai ter a orientação oposta.
- Se você revisou os tópicos recomendados sobre vetores, você deve estar lembrando que o produto vetorial tem um comportamento parecido:
- Quando \mathbf{v} e \mathbf{w} são linearmente independentes, o resultado do produto vetorial $\mathbf{v} \times \mathbf{w}$ é um vetor perpendicular ao plano definido por \mathbf{v} e \mathbf{w} .

Figura 2.6: Produtos vetoriais

- O resultado do produto vetorial $\mathbf{v} \times \mathbf{w}$ é um vetor que tem o sentido oposto ao resultado do produto vetorial $\mathbf{w} \times \mathbf{v}$. O sentido de cada resultado é dado pela regra da mão direita.
- Além disso, a norma do produto vetorial v × w que é igual à norma do produto vetorial w × v tem o mesmo valor do que a área do paralelogramo definido por v e w. Veja a Figura 2.6.
- Com isto, temos tudo de que precisamos para definir planos homogêneos que, além de direção, têm peso (magnitude) e orientação (sentido):
- O peso do plano definido por **v** e **w** tem o mesmo valor absoluto da área do paralelogramo, com o sinal positivo ou negativo, dependendo da regra da mão direita. Na Figura 2.6, o peso do plano definido por **v** e **w** (nesta ordem) é negativo, e o peso do plano definido por **w** e **v** (nesta ordem) é positivo.

Figura 2.7: Bivetor definido por w e v (nesta ordem)

- A orientação do plano definido por **v** e **w** (nesta ordem) é oposta à orientação do plano definido por **w** e **v** (nesta ordem).
- Vamos chamar de bivetor este plano homogêneo, orientado e com peso.
- A Figura 2.7 mostra o bivetor definido por **w** e **v** (nesta ordem). A orientação é dada por uma seta circular.
- A Figura 2.8 mostra o bivetor definido por v e w (nesta ordem). A orientação é oposta à do bivetor na Figura 2.7.
- Nas figuras, representamos um bivetor como uma área orientada em um plano.
- Mas a forma desta área não é importante. As figuras mostram paralelogramos, mas os mesmos bivetores poderiam ser mostrados como círculos, triângulos etc. com a mesma área.
- As figuras parecem diferenciar planos (que são infinitos) e bivetores (que têm, associados a eles, áreas finitas). Mais adiante, vamos ver que, em algumas aplicações, podemos interpretar um bivetor como representando o plano no qual ele está contido; em outras aplicações, podemos interpretar um bivetor como uma porção finita do plano.

Figura 2.8: Bivetor definido por ${\bf v}$ e ${\bf w}$ (nesta ordem)

2.5 O produto externo de vetores cria bivetores

???

Notação

Antissimetria

Vetores paralelos

Distributividade

Exemplos numéricos

- **2.6** Bivetores em \mathbb{R}^2 ?
- **2.7 Trivetores em** \mathbb{R}^3
- **2.8** k-vetores em \mathbb{R}^n
- 2.9 Propriedades do produto externo
- 2.10 Resolvendo problemas com \wedge
- 2.11 Representando subespaços homogêneos orientados e com peso
- 2.12 Blades
- 2.13 Multivetores
- 2.14 Resumo
- 2.15 Exercícios

Referências