ARMA Process

Bruno Pereira, Economist and Data Scientist

Contents

1	Identification Table	2
2	AR(p) Process	2
3	Non-Stationary Process: Slow, Linear Decay	4
4	White Noise	5

Type	ACF	PACF
AR(p)	Exponential or oscillating decay	Truncated at lag p
MA(q)	Truncated at lag q	Exponential or oscillating decay
ARMA(p,q)	Truncated at q	Truncated at p

```
library(forecast)
library(ggplot2)
library(tidyverse)
library(gridExtra)
library(knitr)
library(kableExtra)
library(dplyr)
```

1 Identification Table

2 AR(p) Process

```
# Simulation of the AR(1) process
set.seed(123)

ar1 <- arima.sim(model = list(ar = 0.7), n = 500)

#
g1 <- ggAcf(ar1) +
    ggtitle("ACF - Exponential Decay") +
    theme_classic()

#
g2 <- ggPacf(ar1) +
    ggtitle("PACF - Truncated at p = 1") +
    theme_classic()

grid.arrange(g1, g2, ncol = 2)</pre>
```


MA(Q) Process

```
\# MA(2) Simulation: X_t = _t + _{\{t-1\}} + _{\{t-2\}}
set.seed(123)
ma2 \leftarrow arima.sim(n = 1500, model = list(ma = c(0.7, -0.4)))
# ACF: truncated after lag 2
g1 \leftarrow ggAcf(ma2, lag.max = 20) +
  ggtitle("ACF - MA(2) (Truncated at q = 2)\n = 0.7,
                                                         = -0.4") +
  geom_hline(yintercept = 0, linetype = "dashed") +
  theme_classic()
# PACF: exponential decay
g2 \leftarrow ggPacf(ma2, lag.max = 20) +
  ggtitle("PACF - MA(2) (Exponential Decay)") +
  geom_hline(yintercept = 0, linetype = "dashed") +
  theme_classic()
# Display both plots side by side
grid.arrange(g1, g2, ncol = 2)
```


3 Non-Stationary Process: Slow, Linear Decay

```
# Simulation of an ARIMA(1,1,0) Process - Non-Stationary
set.seed(123)
non_stationary <- arima.sim(</pre>
  model = list(
    order = c(1, 1, 0),
    ar = 0.98
 ),
  n = 500
# ACF: Slow decay suggests non-stationarity
g1 <- ggAcf(non_stationary) +</pre>
  ggtitle("ACF - Slow Decay\n(Indicates Non-Stationarity)") +
  theme_classic()
# PACF: AR(1) pattern
g2 <- ggPacf(non_stationary) +</pre>
  ggtitle("PACF - AR(1) Pattern") +
  geom_hline(yintercept = 0) +
  theme_classic()
grid.arrange(g1, g2, ncol = 2)
```


4 White Noise

```
set.seed(123)
n <- 15000
noise <- scale(rnorm(n))

#
g1 <- ggAcf(noise) +
    ggtitle("ACF - No Significant Lags\n(95% Within Confidence Bands)") +
    theme_classic()

#
g2 <- ggPacf(noise) +
    ggtitle("PACF - No Significant Lags") +
    theme_classic()

#
grid.arrange(g1, g2, ncol = 2)</pre>
```

