

Date:	Q
· Anamoly detection -> conveilence videos	
· RNN -> predicts next word who in keyboard	
	Í
→ Shallow Vs seep Neural Network:	
de capitales more	•
have only one have dozens or complex patterns	
layers hidden layers data	-0
-> Hyperparemeters 15 parameters:	
↓	
- allow the model to - control how the	(
team the rules from model a training	(
the dala	-(
- estimated during - values are set beforhand	_
inaining with historical - eg: w, 6	(
dati	(
- ej: # of conjers, depth,	(
ilévatione, epock,	(
nemon in each layer	
> Epoch:	
Divide dete mito botches, each batch would be run	
a certain as, of times	

Date: -> Cross racidation: Divide data into vatios no. of pair we take night & be siased * K-fold were validation -> dataset is divided into k subself folds, model is evaluated and howined k time using a different gold as the validation set each -> Overfitting Vs Underfitting - good accuracy on training data but - bad accuracy on both hairing and testing dala bad on testing - biasner 1 varionce in data 1 -Train Test -s over fitting 0,4 4 0.9 -> underfitting -> parameleis are 0,3 0.3 (1) no [maperly (1) an el 1

Date: => Linear Repression: n -> independent variable y -> dependent variable y = mutc y = 6, n + 60 / y = w, n + wo simple LR: ŷ = bn + a multiple LR: ŷ = bini+ bini+ -..+ bkxk+a * Objective is to find weights => The Perception: Forward Propagation y = wo + & winti Z > LR equation bias * range for y, x, w -> - 00 to +00 Hidden layer Shrut · Output

• Hyperbolic Tomyent . ReLU

$$g(z) = e^{z} - e^{-z}$$
 $g(z) = \max(0, z)$
 $e^{z} + e^{-z}$
 $g'(z) = \int 1 \cdot x > 0$
 $g'(z) = 1 - g(z)^{2}$

0, otherwise

LOGISTIC REGREGION - tingle remon is equivalent to esquite Repression - Clanes can only be two - Linear Regression + Activation Function = Logistic Regression activation function (sigmoid) $z = w_0 + \frac{2}{2} w_1 x_1 + \frac{1}{2}$ $\frac{\text{midelle}}{\text{variable}}$ $\hat{y} = g(z)$

midelle
$$\hat{y} = g(z)$$

- values in terms of logs - probability of event occurring ve the ratio of not occurring Jodds

0

0

Date:	•
⇒ Learning in Logistic Regression:	
1) con function / cost function; now dose the current	
usel (q) is to the time usel y.	
2) Optimization algorithm: for iteratively updating meight	
=> Loca (Cost Function	
Cron entropy con maximum cikelihood	
predicted > actual	
- Conditional nax likelihood estimation prefers the correct	
clan labels of the training examples it be more likely.	(
- We choose w, b that maximize the log probability of	(
the time y tabels in the training data given the	(
observations x.	(
	(
-> Max likelihood tetimation	(
- For complex calelled on 1: The g	(
() is as along to 1	

is as close to 1

as possible

- For samples tabelled as
$$0: \overline{\Lambda}$$
 $(1-\hat{\gamma})$
4 $(1-\hat{\gamma})$ should be s'm $Y_i=0$

$$y = 1 : p(y|n) = \hat{y}$$

 $y = 0 : p(y|n) = 1 - \hat{y}$

B

B

A)

$$\log_{\rho}(\gamma | \gamma) = \log_{\rho}[\hat{\gamma}^{\gamma}(1-\hat{\gamma})^{1-\gamma}]$$

$$= \gamma \log_{\rho}\hat{\gamma} + (1-\gamma)\log_{\rho}(1-\hat{\gamma})$$

eg:

$$P(y|n) = \hat{y}^{\gamma}(i-\hat{y})^{i-\gamma}$$

Date: data examples 0,01 (5)(0,02)+(3)(0,09) 0.38 0.5939 α AC)

$$\frac{\partial L}{\partial \omega_1} = \frac{\partial L}{\partial \alpha} \times \frac{\partial \alpha}{\partial z} \times \frac{\partial \alpha}{\partial \omega_1}$$

$$L = \left[-y \log \left(\hat{q} \right) - (1-y) \log \left(1-\hat{q} \right) \right]$$

$$= \left[-y \log \alpha - (1-y) \log \left(1-\alpha \right) \right]$$

$$\frac{dL}{da} = -\frac{y}{a} - \frac{1}{a} - \frac{1}{a} - \frac{1}{a} - \frac{1}{a}$$

$$= -\frac{1}{4} + (1-\frac{1}{4})$$

$$a = \frac{1}{1 + e^{-2}} \quad \frac{\partial a}{\partial z} = \alpha(1 - a)$$

$$\frac{\partial z}{\partial w_i} = u_i$$

$$\frac{dL}{dw_{1}} = \begin{bmatrix} -\frac{1}{4} + (1-\frac{1}{4}) \\ \alpha \\ (1-\alpha) \end{bmatrix} \times \begin{bmatrix} \alpha(1-\alpha) \end{bmatrix} \times \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= (1-\alpha)(-\frac{1}{4}) + \alpha(1-\frac{1}{4}) \times \alpha(x-\alpha) \times x$$

KI

0,03

NEURAL NETWORKS

- from wides

<u>al</u>	=	DLI	x _	gac.	x 225	x das	×	Az3	
aw13		das		925	Daz	Oz3		dw13	
	Loss	2	•						
+	I DL	2 x	das	x &) _{26 x}	Daz x	Jz:	3	

$$= \frac{1}{2} (y_1 - as)^2 + \frac{1}{2} (y_2 - a6)^2$$

$$= -(y_1 - as) \cdot as(1 - as) a_3 \cdot a_3 (1 - a_3) x_1$$

$$-(y_2 - a6) \cdot a_6 (1 - a_6) a_3 \cdot a_3 (1 - a_3) x_1$$

REGULARIZATION overfitting - good accuracy on training, bad on teiting and underlitting underfitting - bad accuracy or MN are assumed to be overfitted models by default they are too complex - hain k wo museen date pe perform natio karpata there are so nony rainbles that we cannot know Win1 + W2 n2 5 0.1 n1 + 0.3 x2 their importance nove dominantly affecting → Regularization makes elight modifications to the learning algoritin such that the model generalizes better and in turn improves the model's Q performance on the unseen date as well - in DL, regularization penalizes the exergicients - in DL, it penalizes the weight matrices of

the nodes

Date: assume that me regularization coefficient is so high that some of the weight matrices are nearly equal to sero J) - this will result in a nucl simpler linear network 4 and slight underfitting of the training data \$ a large value of the regularization coefficient is not that useful — we need to opimize the value of the coefficient 1 1 T Training, testing pe sali to obtain a well-fitted kaan kanay - appropiate model Ø Ø ⇒ 4 L2 Regularization 2 modified = Lon Function + $\lambda \leq^n |w_i|$ Lon Function | i=1 Modified = Lon Function + $\lambda \leq^n w_i^2$ Lon Function 10 T 0.001 [WILL + WIS +] when overfitting, meights values one higher like 45,30...

, renally to keep weights in range

Date:	0
=> Dropout:	
- umbomly skip some nemons	
- undom sampling of nemous	•
- har layer pe probability set karsaktany hain k	
in layer pe kithe nemons chathinge	
- testing time pe nemons one set as it is	6
ez: layer pe 50% ki prob eet ki k in layer	•
le 50°/0 nemone chahige	-
- Back propogation is done on reduced nework	
- clipped of meight one not updréed in B.P	
- Bipperent no. of meights one updated on each	0
teration	
- Full network on certains	C
- Random selection of nemons on each iteration	C
- Presel accuracy is improved - overfitting pe	C
nali jaati	4
→ Method 1:	
- Each will is retained with a pros p. (train)	
- weight multiplied with p (test)	
	-9
→ Method 2:	- Of
- weights multiplied with to (train)	-a
- no scaling (test)	9

Date: - Dropout main poora neuron delete nota hair uske ingoing and outgoing connections shi 5 biases 12 neights remore (5) _ new parameters - On which layer to apply dropout? CNN 6 sharp edges, comen - 100 samples pe dropout ho tou euror siada ayega & les dates - model couldn't learn merge methods like dropout + L2 To