

FIG. 1

FIG. 2. Cathode Profile Changes

Typical Axial Anode Erosion Profile, 3 Bp in 4 kHz ArF

3
FIG.

FIG. 4

FIG. 5

Fig. 7. Cathode Discharge Width vs Material Type
(TD133, 2.5 KHz ArF, 1100 Volts, 2.3 Bp)

Fig. 8. Surface Roughness Vs. Alloy Type C26000
Measured by "Pocket Surf", TD133 6410A, 2.5 KHz ArF, 2.3 Bp

FIG. 6

FIG. 7

Fig. 10. Average Cathode Erosion Rates (2KHz, >2Bp)

FIG. 8

Fig. 8. Surface Roughness Vs. Alloy Type C26000
Measured by "Pocket Surf", TD133 6410A, 2.5 KHz ArF, 2.3 Bp

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIGURE 1. Cathode or Anode Surface Temperature Control Using Diffusion Bonding Technology.

FIG. 16

FIG. 17

Spatter rate of annealed Cu about $\frac{1}{2}$ that of brass.

Good machining and mechanical properties for mounting and gas sealing.
(Low erosion rate cathode not relying on differential erosion.)

FIG. 18

FIG. 19

FIG. 20a

FIG. 20b

FIG. 20c

FIG. 21a

FIG. 21b

FIG. 22

FIG. 23a

FIG. 23b

FIG. 23c

208^l

211

FIG. 23d

Current return tangs removed to increase
inductance at end of discharge region.

FIG. 24

FIG. 25a

FIG. 25b

