Chapter 4: Euclid's Algorithm

Exercise 4.4 Prove that, for any odd square number x, there is an even square number y such that x + y is a square number.

Proof. Since x is square and odd, there must be an $n \in \mathbb{N}$ such that $x = (2n+1)^2$. Let y be some even square number. Thus, there must be an $m \in \mathbb{N}$ such that $y = (2m)^2$. It follows that

$$x + y = (2n + 1)^2 + (2m)^2$$

= $4(n^2 + m^2) + 4n + 1$

We must define m as a function of n in such a way that this number conforms a square. In order to do this, let's see what happens for some small cases:

- If n = 1, then x = 9. If we set m = 2, y = 16 and x + y = 25, which is a square.
- If n = 2, then x = 25. Taking m = 6, y = 144 and x + y = 169, which is a square (since $13^2 = 169$).
- If n = 3, then x = 49. Now, m can be 12, and then y = 576 and $x + y = 625 = 25^2$.

A careful analysis of these cases reveals a pattern: $m = n^2 + n$. Substituting this in the equation shown before,

$$\begin{array}{rcl} x+y & = & 4(n^2+m^2)+4n+1 \\ & = & 4(n^2+(n^2+n)^2)+4n+1 \\ & = & 4n^2+4(n^2+n)^2+4n+1 \\ & = & 4(n^2+n)^2+4(n^2+n)+1 \\ & = & (2(n^2+n)+1)^2 \end{array}$$

Exercise 4.5 Prove that, if x and y are both sums of two squares, then so is their product xy.

Proof. Being x and y both sums of two squares, we can write them like so:

$$x = x_1^2 + x_2^2$$

 $y = y_1^2 + y_2^2$

This implies that

$$\begin{array}{rcl} xy & = & (x_1^2 + x_2^2) \, (y_1^2 + y_2^2) \\ & = & x_1^2 y_1^2 + x_1^2 y_2^2 + x_2^2 y_1^2 + x_2^2 y_2^2 \end{array}$$

After several failed attempts at completing the squares (i.e., adding and subtracting the same thing), the following Python script was used to gain some insight into the underlying pattern of xy:

For example,

- find_squares((2,3), (5,7)) \rightarrow [(1, 31), (11, 29)].
- find_squares((1,2), (3,4)) \rightarrow [(2, 11), (5, 10)].

Playing with this script and guessing how to combine the elements in the input tuples in order to generate an output tuple (z_1, z_2) , the following pattern emerged:

$$z_1 = x_2y_1 + x_1y_2$$

 $z_2 = x_2y_2 - x_1y_1$

Indeed,

$$\begin{array}{lll} z_1^2+z_2^2 & = & (x_2y_1+x_1y_2)^2+(x_2y_2-x_1y_1)^2 \\ & = & ((x_2y_1)^2+(x_1y_2)^2+2x_2y_1x_1y_2)+((x_2y_2)^2+(x_1y_1)^2-2x_2y_2x_1y_1) \\ & = & x_2^2y_1^2+x_1^2y_2^2+x_2^2y_2^2+x_1^2y_1^2 \\ & = & x_1^2y_1^2+x_1^2y_2^2+x_2^2y_1^2+x_2^2y_2^2 \\ & = & xy \end{array}$$