We assume that T is a complete theory with a monster model \mathcal{U} and we work in \mathcal{U} .

Question 1. Show that the following are equivalent (and hence equivalent to quantifier elimination for *T*):

- (i) every partial embedding $p: \mathcal{U} \to \mathcal{U}$ is elementary.
- (ii) for every finite partial embedding $p: \mathcal{U} \to \mathcal{U}$ and $b \in \mathcal{U}$, there is a partial embedding \hat{p} such that $p \subseteq \hat{p}$ and $b \in \text{dom}(\hat{p})$.

Solution (Sketch)

(ii) \Rightarrow (i) Assume that the language is countable and let $p: \mathcal{U} \to \mathcal{U}$ be a partial embedding. It suffices to show that every finite restriction p_0 of p is elementary.

We construct two countable models $M \leq \mathcal{U}$ and $N \leq \mathcal{U}$ together with an isomorphism $h: M \to N$ that extends p_0 . Then h is an elementary map.

The models \mathcal{M} and \mathcal{N} are constructed at the same time as h by defining a chain of finite partial embeddings $\langle h_i : i < \omega \rangle$ in such a way that eventually

$$h = \bigcup_{i < \omega} h_i,$$

and dom(h) and ran(h) satisfy the Tarski-Vaught test, so that we set M = dom(h) and N = ran(h).

Let $h_0 = p_0$. Assume h_i is given. Let $\varphi(x)$ be an $L(\text{dom}(h_i))$ -formula that is consistent and pick a solution $b \in \mathcal{U}$. By (ii) there is a $c \in \mathcal{U}$ such that $h_i \cup \{\langle b, c \rangle\}$ is a partial embedding. Let $h_{i+1/2} = h_i \cup \{\langle b, c \rangle\}$.

Similarly, we extend $h_{i+1/2}$ to h_{i+1} by using a similar argument with $h_{i+1/2}^{-1}$.

Let M = dom(h). By the Tarski-Vaught test we get $\mathfrak{M} \leq \mathfrak{U}$ if all L(M)-formulas are eventually considered. A similar consideration holds for \mathfrak{N} .

This is achieved if at stage i we choose $\varphi(x)$ appropriately. Let $\pi: \omega^2 \to \omega$ be a bijection such that $\pi(m,n) \geq m,n$ for all m,n. The formula we pick at stage $i=\pi(n,m)$ is the n-th $L(\operatorname{dom}(h_m))$ -formula in a suitable enumeration.

The result can be extended to the case when L is uncountable as follows. Suppose p is a partial embedding and assume for a contradiction that there is a formula $\varphi(x)$ that is not preserved by p. Let $L' \subseteq L$ be countable and such that φ is an L'-formula. Let \mathcal{U}' be the structure obtained by restricting the interpretation of \mathcal{U} to L'. Then \mathcal{U}' is saturated, and we can use the previous result to obtain a contradiction.

Question 2. Let p(x) be a type with parameters in A, and let $\varphi(x,y)$ be an L(A)-formula that defines, when restricted to $p(\mathcal{U})$, a *finite* equivalence relation – that is, an equivalence relation with finitely many classes. Prove that there is a finite equivalence relation definable over A that coincides with $\varphi(x,y)$ on $p(\mathcal{U})$.

Solution Let $\chi(x, y, z) \equiv \varphi(x, x) \wedge [\varphi(x, y) \rightarrow \varphi(y, x)] \wedge [(\varphi(x, y) \wedge \varphi(y, z)) \rightarrow \varphi(x, z)].$

We assume

$$[p(x) \land p(y) \land p(z)] \rightarrow \left[\chi(x, y, z) \land \left(\bigvee_{i=1}^{n} \varphi(x, b_i)\right)\right],$$

where the b_i are representatives of the equivalence classes defined by φ in $p(\mathcal{U})$.

By compactness/saturation there are $\psi_1(x), \psi_2(x), \psi_3(x) \in p(x)$ such that

$$[\psi_1(x) \wedge \psi_2(y) \wedge \psi_3(z)] \to \left[\chi(x,y,z) \wedge \left(\bigvee_{i=1}^n \varphi(x,b_i)\right)\right].$$

Let
$$\psi(x) \equiv \bigwedge_{i=1}^{3} \psi_i(x)$$
. Then

$$[\neg \psi(x) \land \neg \psi(y)] \lor [\psi(x) \land \psi(y) \land \varphi(x,y)]$$

defines the required equivalence relation.

Question 3. Let T be a consistent theory. Suppose that all complete theories containing T are of the form $T \cup S$ for some set S of quantifier-free sentences (for example, T = ACF). Prove that if all complete theories containing T have elimination of quantifiers, so does T.

Solution Let $\varphi(\bar{x})$ be a formula and $T \cup S$ be a completion of T. Then

$$T \cup S \vdash \forall \bar{x} [\varphi(\bar{x}) \leftrightarrow \psi_S(\bar{x})]$$

for some $\psi_S(\bar{x})$ that is quantifier-free. By compactness, there is a finite $\Sigma_S \subseteq S$ such that

$$T \cup \Sigma_S \vdash \forall \bar{x} [\varphi(\bar{x}) \leftrightarrow \psi_S(\bar{x})].$$

Let σ_S be the conjunction of the sentences in Σ_S . Since

$$T \vdash \bigvee \{\sigma_S : S \cup T \text{ is a completion of } T\},$$

there are $\sigma_{S_1}, \ldots, \sigma_{S_n}$ such that $T \vdash \bigvee_{i=1}^n \sigma_{S_i}$. Wlog we may choose the σ_{S_i} to be mutually exclusive (that is, $\sigma_{S_i} \to \neg \sigma_{S_j}$ for $i \neq j$). Let $\psi(\bar{x}) \equiv \bigwedge_{i=1}^n (\sigma_{S_i} \to \psi_{S_i}(\bar{x}))$. Then

$$T \vdash \forall \bar{x} \left[\varphi(\bar{x}) \leftrightarrow \psi(\bar{x}) \right].$$

Question 4. Let $\varphi(z)$ be a consistent L(A)-formula. Prove that if $a \in \operatorname{acl}(A,b)$ for every $b \models \varphi(z)$, then $a \in \operatorname{acl}(A)$. Prove that the same holds when $a \in \operatorname{acl}(A,b)$ for every $b \models p(z)$, where p(z) is a satisfiable type with parameters in A.

Solution Let $\varphi(z)$ be consistent, so $\mathcal{U} \models \exists z \, \varphi(z)$. Let \mathcal{M} be a model such that $A \subseteq \mathcal{M}$. By elementarity, \mathcal{M} contains a witness b of $\varphi(z)$. Therefore $\operatorname{acl}(A,b) \subseteq \mathcal{M}$, and so $a \in \mathcal{M}$. It follows that $a \in \bigcap_{A \subseteq \mathcal{M}} \mathcal{M}$, which is equivalent to $a \in \operatorname{acl}(A)$.

Now suppose $a \in \operatorname{acl}(A, b)$ for every $b \models p(z)$, where p(z) is a type with parameters in A.

Claim: $a \in acl(A)$.

Suppose for a contradiction that $a \notin \operatorname{acl}(A)$. Then $|\operatorname{Orb}(a/A)| = |\mathcal{U}|$ (this is because $\operatorname{Orb}(a/A) = q(\mathcal{U})$, where $q(x) = \operatorname{tp}(a/A)$). Let \mathcal{M} be a model that contains $A \cup \{b\}$ for some $b \models p(z)$. By cardinality considerations, there is $a' \in \operatorname{Orb}(a/A) \setminus \mathcal{M}$. Let $\beta \in \operatorname{Aut}(\mathcal{U}/A)$ be such that $a = \beta(a')$. Then $a \notin \beta(\mathcal{M})$, and $\beta(\mathcal{M})$ is a model that contains A and contains $\beta(b) \models p(z)$. However, $a \notin \beta(\mathcal{M})$ contradicts $a \in \operatorname{acl}(A\beta(b))$.

Question 5. Let \bar{c} be en enumeration of \mathcal{U} . Let \mathcal{V} be the set enumerated by some $\bar{a} \models \operatorname{tp}(\bar{c}/\varnothing)$. Prove that $\mathcal{V} \leq \mathcal{U}$.

Solution

Let \overline{c} enumerate \mathcal{U} , let $p(\overline{x}) = \operatorname{tp}(\overline{c}/\phi)$ (so $|\overline{x}| = |\mathcal{U}|$). Suppose $\overline{a} \models p(\overline{x})$. Claim: \overline{a} enumerates $\mathcal{V} \preceq \mathcal{U}$.

We use the Tarski-Vaught test. Suppose $\mathcal{U} \models \exists y \varphi(\overline{a}, y)$. Since $\operatorname{tp}(\overline{a}/\emptyset) = \operatorname{tp}(\overline{c}/\emptyset)$, this implies $\mathcal{U} \models \exists y \varphi(\overline{c}, y)$ (because $\exists y \varphi(\overline{x}, y) \in p(\overline{x})$). Then $\mathcal{U} \models \varphi(\overline{c}, c_i)$ for some i, so $\varphi(\overline{x}, x_i) \in p(\overline{x})$. Then $\mathcal{U} \models \varphi(\overline{a}, a_i)$.

Question 6. Let $a \in \mathcal{U} \setminus \operatorname{acl} A$. Prove that \mathcal{U} is isomorphic over A to some $\mathcal{V} \preceq \mathcal{U}$ such that $a \notin \mathcal{V}$.

Solution We want to find $\mathcal{V} \cong \mathcal{U}$, $\mathcal{V} \preceq \mathcal{U}$ such that $a \notin \mathcal{V}$.

Let \overline{c} enumerate \mathcal{U} and let $p(\overline{x}) = \operatorname{tp}(\overline{c}/A)$. Let $q(\overline{x}) = p(\overline{x}) \cup \{x_i \neq a : i < |\overline{x}|\}$.

Claim: $q(\overline{x})$ is finitely satisfiable. If not, there are $\varphi(\overline{x}) \in p(\overline{x})$ and i_1, \dots, i_n such that

$$\varphi(\overline{x}) \to \bigvee_{j=1}^n x_{i_j} = a.$$

Let $\mathcal{M} \supseteq A$ be a model. Since $\varphi(\overline{x})$ is satisfiable in \mathcal{U} , we have that $\mathcal{M} \models \exists \overline{x} \varphi(\overline{x})$, and so $\mathcal{M} \models \varphi(\overline{b})$ for some \overline{b} . Then $b_i = a$ for some i, and so $a \in \mathcal{M}$. It follows that $a \in \mathcal{M}$ whenever $\mathcal{M} \supseteq A$, that is, $a \in \operatorname{acl}(A)$, a contradiction.

So $q(\overline{x})$ is finitely satisfiable, hence satisfied by some \overline{d} , say. Since $\overline{d} \models q(\overline{x})$ we have that $\overline{d} \models p(\overline{x})$, so \overline{d} enumerates $\mathcal{V} \cong \mathcal{U}$. By Question 5, we also have $\mathcal{V} \preceq \mathcal{U}$. By construction, $a \notin \mathcal{V}$.

Question 7. Let *C* be a finite set. Prove that if $C \cap M \neq \emptyset$ for every model M containing A, then $C \cap \operatorname{acl}(A) \neq \emptyset$.

Solution *Method 1* Let $C = \{c_1, ..., c_n\}$ be such that $C \cap \mathcal{M} \neq \emptyset$ for every $\mathcal{M} \supseteq A$, and suppose for a contradiction that $C \cap \operatorname{acl}(A) = \emptyset$. By Question 6, there are $\mathcal{V}_1, ..., \mathcal{V}_n$ such that, for each i,

- (i) $\mathcal{V}_i \cong_A \mathcal{V}_{i-1}$
- (ii) $V_i \leq V_{i-1}$ (where $V_0 = U$)
- (iii) $c_i \notin \mathcal{V}_i$.

By the Downward Löwenheim-Skolem Theorem, there is \mathfrak{M} such that $A \subseteq \mathfrak{M} \preceq \mathcal{V}_n$, hence $C \cap \mathfrak{M} = \emptyset$, which is a contradiction.

Method 2 By induction on |C|.

Let |C| = 1, that is, $C = \{c\}$. Then $C \cap \mathcal{M} \neq \emptyset$ for all $\mathcal{M} \supseteq A$ implies that $c \in \mathcal{M}$ for all $\mathcal{M} \supseteq A$, and so $c \in \operatorname{acl}(A)$.

Now let $C = \{c_1, ..., c_{n+1}\}$. If $C \subseteq \operatorname{acl}(A)$, nothing to do. So let $c_j \in C \setminus \operatorname{acl}(A)$. By Question 6, there is $\mathcal{V} \cong \mathcal{U}$ such that $\mathcal{V} \preceq \mathcal{U}$, $A \subseteq \mathcal{V}$ and $c_j \notin \mathcal{V}$. Let $C' = C \cap \mathcal{V}$. Then:

- (i) $C' \neq \emptyset$ because $C \cap \mathcal{V} \neq \emptyset$ and $c_i \notin \mathcal{V}$
- (ii) $|C'| \le n$
- (iii) if $M \leq V$ and $A \subseteq M$ then also $A \subseteq M \leq U$, and so $C' \cap M \neq \emptyset$.

By inductive hypothesis, $C' \cap \operatorname{acl}(A) \neq \emptyset$. But $C' \cap \operatorname{acl}(A) \subseteq C \cap \operatorname{acl}(A)$, so we have the required result.

Question 8. Let $\varphi(x) \in L(\mathcal{U})$ and fix an arbitrary set A. Prove that the following are equivalent

- (i) there is some model \mathcal{M} containing A and such that $\mathcal{M} \cap \varphi(\mathcal{U}) = \emptyset$;
- (ii) there is no satisfiable L(A)-formula $\psi(z_1,...,z_n)$ such that

$$\psi(z_1,\ldots,z_n) \to \bigvee_{i=1}^n \varphi(z_i).$$

Solution (i) \Rightarrow (ii) Assume there is a satisfiable $\psi(z_1,...,z_n)$ such that

$$\psi(z_1,\ldots,z_n) \to \bigvee_{i=1}^n \varphi(z_i),$$

Let $\bar{z} = z_1, ..., z_n$. Then $\mathcal{U} \models \exists \bar{z} \psi(\bar{z})$, and

$$\mathcal{U} \models \forall \bar{z} \left[\psi(\bar{z}) \to \bigvee_{i=1}^n \varphi(z_i) \right].$$

Let \mathcal{M} be a model containing A. By elementarity, $\mathcal{M} \models \psi(\bar{b})$ for some \bar{b} . Again by elementarity, $\mathcal{M} \models \bigvee_{i=1}^n \varphi(b_i)$, hence $\mathcal{M} \cap \varphi(\mathcal{U}) \neq \emptyset$.

(ii) \Rightarrow (i) Let $\mathcal{N} \supseteq A$ be a model, let \bar{a} enumerate \mathcal{N} , and let $p(\bar{z}) = \operatorname{tp}(\bar{a}/A)$ (so $|\bar{z}| = |\mathcal{N}|$).

Claim: $p(\bar{z}) \cup \{ \neg \varphi(z_i) : i < |\bar{z}| \}$ is satisfiable.

If not, there are $\psi(z_1,...,z_n) \in p(\bar{z})$ and $\neg \varphi(z_{i_1}),..., \neg \varphi(z_{i_k})$ such that

$$\{\psi(z_1,...,z_n)\}\cup\{\neg\varphi(z_{i_1}),...,\neg\varphi(z_{i_k})\}$$

is inconsistent. By padding the second set if necessary, we may assume that the variables $z_1, ..., z_n$ and $z_{i_1}, ..., z_{i_k}$ coincide. Then

$$\mathcal{U} \models \forall \bar{z} [\psi(z_1, \dots, z_n) \rightarrow \bigvee_{i=1}^n \varphi(z_i)].$$

But by assumption no such $\psi(\bar{z})$ exists. Hence $p(\bar{z}) \cup \{\neg \varphi(z_i)\}$ is satisfied by a tuple \bar{c} , say. By \bar{c} enumerates a model \mathcal{M} that contains A and is such that $\mathcal{M} \cap \varphi(\mathcal{U}) = \emptyset$.

Question 9. Prove that in a strongly minimal theory every infinite algebraically closed set is a model.

Solution Let T be strongly minimal, $A \subseteq \mathcal{U}$ infinite (and small) such that $A = \operatorname{acl}(A)$. We use the Tarski-Vaught Test.

Let $\varphi(x)$ be an L(A)-formula such that $\mathcal{U} \models \exists x \varphi(x)$.

Case 1: $|\varphi(\mathcal{U})| < \omega$. Then all realizations of $\varphi(x)$ are algebraic over A, and so $\varphi(\mathcal{U}) \subseteq A$.

Case 2: $|\varphi(\mathcal{U})| \ge \omega$. Then by strong minimality $|\neg \varphi(\mathcal{U})| < \omega$, and so every infinite set intersects $\varphi(\mathcal{U})$, in particular A.

In either case, if $\mathcal{U} \models \exists x \varphi(x)$, then there is $b \in A$ such that $\mathcal{U} \models \varphi(b)$. By the Tarski-Vaught Test, A is the universe of an elementary substructure of \mathcal{U} , as required.

Question 10. Prove that a countable strongly minimal theory is either ω -categorical or has infinitely many countable models.

Solution Let T be strongly minimal and let \mathbb{M} and \mathbb{N} be two countable models of T such that $\mathbb{M} \ncong \mathbb{N}$. Then one of $\dim(\mathbb{M})$, $\dim(\mathbb{N})$ must be finite, say $\dim(\mathbb{M}) = n < \omega$.

Claim: there is a countable model that has dimension n+1. Let A be a basis of \mathcal{M} , let $b \in \mathcal{U} \setminus \mathcal{M}$. Then $b \notin \operatorname{acl}(A)$, and so $A \cup \{b\}$ is an independent set. Since A is a basis for \mathcal{M} , $\operatorname{acl}(A,b)$ is infinite. By Question 9, $\operatorname{acl}(A,b)$ is a model and it has dimension n+1. Since the language is countable, $|\operatorname{acl}(A,b)| = \omega$.