Mathematics of Multi-Antenna Transmission in 5G networks

Ilya Sinilshchikov, Evgeny Bobrov

Sinill57@gmail.com

eugenbobrov@ya.ru

Agenda

Introduction to cellular communication systems

- 1. Massive MIMO precoding in 5G
 - 1. Precoding basics
 - 2. Optimization approaches
 - 3. Quantization
 - 4. User selection
- 2. Link adaptation
- 3. Brief overview of other problems

Cellular Networking

2020s: + cloud AR/VR/Gaming, smart cities, robots

Evolution mainly due to mathematics

2010s: + video, live streaming, maps

2000s: + web surfing, music

Evolution mainly due to **physics**

1990s: voice calls, text messaging, basic data service

Single antenna transmission

Massive MIMO transmission – key 5G technology

- Evolution due to efficient resource utilization
- More sophisticated transmission requires cutting-edge mathematical methods

Source of

- Non-convex optimization problems
- Combinatorial optimization problems
- Stochastic optimization problems
- Dynamic control problems

Single antenna transmission

Channel h_{ij} :

$$h_{ij} \in \mathbb{C}$$
, $\left| h_{ij} \right| \le 1$

$$i \rightarrow j$$

Transmitter antenna

Receiver antenna

Describes signal transformation during transmission from antenna i to antenna j

After modulation data is represented by a complex number (symbol):

$$x_1 \in \mathbb{C}$$

$$|x_1|^2 = 1$$

Transmission with power p

$$y_1 = h_{11} \cdot \sqrt{p} \cdot x_1 + noise$$

Received symbol

Transmitted symbol

Input-output relation of linear system:

$$y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau) x(t-\tau) d\tau$$

$$y_n = x_n \circledast h_n \Longleftrightarrow Y(k) = X(k)H(k)$$

Single antenna transmission

Channel h_{ij} :

$$h_{ij} \in \mathbb{C}, \left| h_{ij} \right| \leq 1$$

$$i \rightarrow j$$

Transmitter antenna

Receiver antenna

Describes signal transformation during transmission from antenna i to antenna j

After modulation data is represented by a complex number (symbol):

$$x_1 \in \mathbb{C}$$

$$|x_1|^2 = 1$$

Transmission with power p

$$y_1 = h_{11} \cdot \sqrt{p} \cdot x_1 + noise$$

Received symbol Transmitted symbol

$$SINR_1 = \frac{P(signal)}{P(noise + interference)} = \frac{p \cdot |h_{11}|^2}{\delta^2}$$

Shannon theorem for gaussian channel:

upper bound for information transmission capacity is

$$C = \max_{p(x):E|x|^2 \le 1} I(X;Y) = \max_{p(x):E|x|^2 \le 1} H(Y) - H(Y|X) = \log(1 + SINR)$$

Multi antenna transmission

n – number of transmitting antennas

 w_k^1 – "weight" of the symbol at antenna

Symbol x_1 is multiplied by w_k^1 and then transmitted from k-th antenna

$$w^1 = \begin{pmatrix} w_1^1 \\ \vdots \\ w_n^1 \end{pmatrix} -- \text{ precoding vector}$$

$$w^1 \in \mathbb{C}^n, \\ \left| |w^1| \right|_{L^\infty} \le p,$$

$$y_1 = (h_{11} \dots h_{1n}) \cdot \begin{pmatrix} w_1^1 \\ \vdots \\ w_n^1 \end{pmatrix} \cdot x_1 + noise$$

$$SINR_1 = \frac{\left| \left\langle h_1, w^{1^*} \right\rangle \right|^2}{\delta^2}$$

Which **precoding vector** w^1 maximizes SINR for user with channel h_1 ?

Answer: $w_{opt}^1 = c \cdot h_1^*$

 w_{opt}^1

CR-calculus

$$f(z) = f(z, \bar{z}) = f(x, y) = u(x, y) + j v(x, y)$$

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z+\Delta z) - f(z)}{\Delta z} \qquad \text{exists only for holomorphic functions}$$

MSE is not holomorphic!

$$f(z) = |z|^2 = \bar{z}z = x^2 + y^2$$

Conjugate Coordinates:
$$c \triangleq (z, \bar{z})^T \in \mathbb{C} \times \mathbb{C}$$
, $z = x + jy$ and $\bar{z} = x - jy$

$$\underline{\mathbb{R}\text{-Derivative of }f(c)} \triangleq \left. \frac{\partial f(z,\bar{z})}{\partial z} \right|_{\bar{z}=\text{ const.}} \text{ and } \underline{\text{Conjugate }\mathbb{R}\text{-Derivative of }f(c)} \triangleq \left. \frac{\partial f(z,\bar{z})}{\partial \bar{z}} \right|_{z=\text{ const.}}$$

Cauchy Riemann Condition:
$$\frac{\partial f}{\partial \bar{z}} = 0$$

CR-calculus identities

$$f(z) = f(z, \bar{z}) = f(x, y) = u(x, y) + j v(x, y)$$

$$\underline{\mathbb{R}\text{-Derivative of }f(c)} \triangleq \frac{\partial f(z,\bar{z})}{\partial z}\bigg|_{\bar{z}=\,\mathrm{const.}} \ \ \text{and} \ \ \underline{\text{Conjugate }\mathbb{R}\text{-Derivative of }f(c)} \triangleq \left.\frac{\partial f(z,\bar{z})}{\partial \bar{z}}\right|_{z=\,\mathrm{const.}}$$

$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - j \frac{\partial f}{\partial y} \right) \quad \text{and} \quad \frac{\partial f}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} \right)$$

$$\frac{\partial \bar{f}}{\partial \bar{z}} = \overline{\left(\frac{\partial f}{\partial z}\right)} \\
\frac{\partial \bar{f}}{\partial z} = \overline{\left(\frac{\partial f}{\partial z}\right)} \\
df = \overline{\frac{\partial f}{\partial z}} dz + \overline{\frac{\partial f}{\partial \bar{z}}} d\bar{z}$$

$$f(z) \in \mathbb{R} \Rightarrow \overline{\left(\frac{\partial f}{\partial z}\right)} = \overline{\frac{\partial f}{\partial \bar{z}}}$$

Application to gradient descent

$$L = L(s) \in \mathbb{R}; \quad s = f(z) = f(x, y) \in \mathbb{C}$$

$$egin{aligned} z_{n+1} &= x_n - (lpha/2) * rac{\partial L}{\partial x} + 1j * (y_n - (lpha/2) * rac{\partial L}{\partial y}) \ &= z_n - lpha * 1/2 * (rac{\partial L}{\partial x} + jrac{\partial L}{\partial y}) \ &= z_n - lpha * rac{\partial L}{\partial z^*} \ &= z_n - lpha * rac{\partial L}{\partial z^*} \ &= z_n - lpha * rac{\partial L}{\partial z^*} \ &= z_n - lpha * rac{\partial L}{\partial z^*} \ &= z_n - lpha * rac{\partial L}{\partial z^*} \ &= z_n - lpha * rac{\partial L}{\partial z^*} \ &= z_n - lpha * rac{\partial L}{\partial z^*} \ &= z_n - a_n * z_n + z_$$

$$\begin{split} \frac{\partial L}{\partial z^*} &= \frac{\partial L}{\partial u} * \frac{\partial u}{\partial z^*} + \frac{\partial L}{\partial v} * \frac{\partial v}{\partial z^*} \\ \frac{\partial L}{\partial z^*} &= (\frac{\partial L}{\partial s} + \frac{\partial L}{\partial s^*}) * \frac{\partial u}{\partial z^*} - 1j * (\frac{\partial L}{\partial s} - \frac{\partial L}{\partial s^*}) * \frac{\partial v}{\partial z^*} \\ &= \frac{\partial L}{\partial s} * (\frac{\partial u}{\partial z^*} + \frac{\partial v}{\partial z^*}j) + \frac{\partial L}{\partial s^*} * (\frac{\partial u}{\partial z^*} - \frac{\partial v}{\partial z^*}j) \\ &= \frac{\partial L}{\partial s} * \frac{\partial (u + vj)}{\partial z^*} + \frac{\partial L}{\partial s} * \frac{\partial (u + vj)^*}{\partial z^*} \\ &= \frac{\partial L}{\partial s} * \frac{\partial s}{\partial z^*} + \frac{\partial L}{\partial s^*} * \frac{\partial s^*}{\partial z^*} \end{split}$$

$$\frac{\partial L}{\partial z^*} = (\frac{\partial L}{\partial s^*})^* * \frac{\partial s}{\partial z^*} + \frac{\partial L}{\partial s^*} * (\frac{\partial s}{\partial z})^*$$
 - backpropagation rule

Multi-stream transmission

Real-world channel matrix origin:

Fig. 1: Fading principle.

Multi-stream transmission

$$y_1 = (h_{11} \dots h_{1n}) \cdot \left(\begin{pmatrix} w_1^1 \\ \vdots \\ w_n^1 \end{pmatrix} \cdot x_1 + \begin{pmatrix} w_1^2 \\ \vdots \\ w_n^2 \end{pmatrix} \cdot x_2 \right) + noise_1$$

$$y_2 = (h_{21} \dots h_{2n}) \cdot \left(\begin{pmatrix} w_1^1 \\ \vdots \\ w_n^1 \end{pmatrix} \cdot x_1 + \begin{pmatrix} w_1^2 \\ \vdots \\ w_n^2 \end{pmatrix} \cdot x_2 \right) + noise_2$$

Channel matrix

Precoding matrix

 $y = H \cdot W \cdot x + noise$

Shannon formula:

$$Rate \le \log_2 \det \left(I + \frac{P}{N \cdot \delta^2} HW(HW)^* \right)$$

Capacity optimization: Ideal receiver is assumed

SVD-based Single-User precoding

W is selected as singular vectors of SVD decomposition of H:

$$H = U \cdot \Lambda \cdot V^*$$

$$W = V$$

Physical meaning:

- 1. Choose the best transmitting direction
- 2. Choose the next best direction in the orthogonal complement to the first one
- 3. etc...

Multi-user transmission

$$SINR_1(W) = \frac{\left|\left\langle h_1, w^{1^*} \right\rangle\right|^2}{\left|\left\langle h_1, w^{2^*} \right\rangle\right|^2 + \delta_1^2}$$

$$SINR_2(W) = \frac{\left|\left\langle h_2, w^{2^*} \right\rangle\right|^2}{\left|\left\langle h_2, w^{1^*} \right\rangle\right|^2 + \delta_2^2}$$

Transmit two symbols to two different users simultaneously

$$\begin{aligned} y_1 &= (h_{11} \dots h_{1n}) \cdot \begin{pmatrix} \begin{pmatrix} w_1^1 \\ \vdots \\ w_n^1 \end{pmatrix} \cdot x_1 + \begin{pmatrix} w_1^2 \\ \vdots \\ w_n^2 \end{pmatrix} \cdot x_2 \end{pmatrix} + noise_1 & w^k &= \begin{pmatrix} w_1^k \\ \vdots \\ w_n^k \end{pmatrix} \\ y_2 &= (h_{21} \dots h_{2n}) \cdot \begin{pmatrix} \begin{pmatrix} w_1^1 \\ \vdots \\ w_n^1 \end{pmatrix} \cdot x_1 + \begin{pmatrix} w_1^2 \\ \vdots \\ w_n^2 \end{pmatrix} \cdot x_2 \end{pmatrix} + noise_2 & w^k \in \mathbb{C}^n, \\ \left| \sum_k w^k \right|_{L^{\infty}} \leq p, \end{aligned}$$

How to choose precoding matrix?

Maximizing weighted sum of spectral efficiency:

$$\sum_{k \in U} \alpha_k \cdot \log(1 + SINR_k) \to \max_{W}$$

Multi-user beamforming

$$\sum_{u \in U} \alpha_u \cdot \log(1 + SINR_u(W)) \to \max_{W}$$

$$SINR_{k}(W) = \frac{\left|\left\langle h_{k}, w^{k^{*}} \right\rangle\right|^{2}}{\sum_{k \neq l} \left|\left\langle h_{k}, w^{l^{*}} \right\rangle\right|^{2} + \delta_{1}^{2}}$$

Classic solution #1: Maximum-rate transmission

$$w_{MRT}^k = c_k \cdot h_k^* \qquad \qquad w_{MRT}^1$$

Classic solution #2: Zero Forcing

ZF beam orthogonal to all other users channel vectors:

$$w_{ZF}^k \in < h_1, \dots, h_{k-1}, h_{k+1}, \dots, h_n >^\perp$$

 w_{ZF}^{k} maximizes $\left|\left\langle h_{k},w_{ZF}^{k}\right|^{2}$ in this subspace

 $W_{\rm ZF}$ is a pseudo-inverse matrix to H:

$$W_{ZF} = H^* \cdot (HH^*)^{-1}$$

Eigen Zero Forcing Theory

Combination of SVD decompositions

User also performs beamformig:

$$r = G(HWx + n) \in \mathbb{C}^L$$

$$H = [H_1 ... H_K] = [U_1^H S_1 V_1 ... U_K^H S_K V_K] =: U^H S V$$

$$\begin{cases} H = U^{H}SV \\ G = S^{-1}U \end{cases} \rightarrow GHW = S^{-1}UU^{H}SVW = S^{-1}SVW = \boxed{VW = I}$$

Theorem. The same holds for $L_i < R_i$

Bobrov, Evgeny, et al. "Adaptive Regularized Zero-Forcing Beamforming in Massive MIMO with Multi-Antenna Users." *arXiv preprint arXiv:2107.00853* (2021).

$$L \quad \mathbf{r} \quad = \quad \mathbf{G_1} \quad \mathbf{G_K}$$

$$L_1 \quad \mathbf{G_1} \quad \mathbf{G_2} \quad \mathbf{G_K}$$

Gradient-based optimization

Assuming special form of the matrix G we have come to the following approximated function of the SINR:

$$SINR_{I}^{C}(\boldsymbol{W}, \widetilde{\boldsymbol{v}}_{I}, s_{I}, \sigma^{2}, P) = \frac{|\widetilde{\boldsymbol{v}}_{I} \boldsymbol{w}_{I}|^{2}}{\sum_{i \neq I}^{L} |\widetilde{\boldsymbol{v}}_{I} \boldsymbol{w}_{i}|^{2} + s_{I}^{-2} \frac{\sigma^{2}}{P}}$$

Spectral Efficiency function may be simplified in the following way:

$$SE^{C}(\boldsymbol{W}, \widetilde{\boldsymbol{V}}, \boldsymbol{S}, \sigma, P) = \sum_{l=1}^{L} \log_{2}(1 + SINR_{l}^{C}(\boldsymbol{W}, \widetilde{\boldsymbol{v}}_{l}, s_{l}, \sigma, P)) =$$

$$\sum_{l=1}^{L} \log_{2}\left(\sum_{i=1}^{L} |\widetilde{\boldsymbol{v}}_{l} \boldsymbol{w}_{i}|^{2} + s_{l}^{-2} \frac{\sigma^{2}}{P}\right) - \sum_{l=1}^{L} \log_{2}\left(\sum_{i \neq l}^{L} |\widetilde{\boldsymbol{v}}_{l} \boldsymbol{w}_{i}|^{2} + s_{l}^{-2} \frac{\sigma^{2}}{P}\right)$$

- 1. $\widetilde{\mathbf{v}}_{l} \in \mathbb{C}^{T}$ is the singular vector of the *l*-th symbol;
- 2. $\mathbf{s}_l \in \mathbb{R}$ is the singular value of the *l*-th symbol.

Gradient-based optimization

This method explicitly constrains antenna rows using projection:

$$\begin{array}{ll}
\text{maximize} & SE^{C}(\text{proj}_{P,T}(\boldsymbol{W}), \widetilde{\boldsymbol{V}}, \boldsymbol{S}, \sigma, P) \\
\boldsymbol{W} \in \mathbb{C}^{T \times L}
\end{array}$$

$$\operatorname{proj}_{P,T}(\boldsymbol{W}) = \begin{cases} \boldsymbol{w}^m, & \|\boldsymbol{w}^m\|^2 \leqslant \frac{P}{T} \\ \frac{\boldsymbol{w}^m}{\|\boldsymbol{w}^m\|} \sqrt{\frac{P}{T}}, & \|\boldsymbol{w}^m\|^2 > \frac{P}{T}, & \forall m = 1 \dots T \end{cases}$$

Algorithm 1: On the optimal precoding matrix

Input: Initial precoding matrix W, channel singular vectors \widetilde{V} , channel singular values S, station power P, noise σ^2 , iterations N

for
$$t = 1$$
 to N do

Calculate the gradient: $\nabla SE^{C}(\operatorname{proj}_{P,T}(\boldsymbol{W}), \widetilde{\boldsymbol{V}}, \boldsymbol{S}, \sigma, P);$ Find the optimal direction recursively: $\boldsymbol{D} = \boldsymbol{D}(\nabla SE^{C});$ Find the optimal step length $\alpha = \arg\max_{\alpha} SE^{C}(\operatorname{proj}_{P,T}(\boldsymbol{W} + \alpha \boldsymbol{D}));$ Make the optimization step: $\boldsymbol{W} \leftarrow \boldsymbol{W} + \alpha \boldsymbol{D};$

end

return $proj_{P,T}(\mathbf{W})$

Quantization justification

Math Modeling Lab

- Increase in antennas
- Increase in layers
- Stricter requirements for service quality

Even linear methods for uplink equalization and downlink precoding appear to be too expensive as dimension grows

$$F = H^{H}(H \cdot H^{H} + R_{nn})^{-1} \qquad \text{Coarse-grained} \\ \text{(per-RB) computations} \qquad W = H^{H}(H \cdot H^{H} + \sigma I)^{-1}$$

$$\hat{s} = G \cdot y \qquad \text{Fine-grained} \qquad \longrightarrow x = W \cdot s$$

$$\text{(per-RE) computations}$$

DL MU Precoding

Precoding Matrix Computation in High-Precision values: $V \cdot W = I$

~10% of total complexity

Application of High Precision Precoding Matrix to low-bit vector of symbols: x = Ws

~90% of total complexity

Key direction

Reduce complexity of the RE-based computations

Quantization basics

O PyTorch — O PyTorch

float32 int8

$$x_q = \text{quantize}(x, b, s, z) = \text{clip}(\text{round}(s \cdot x + z), -2^{b-1}, 2^{b-1} - 1)$$

$$\hat{x} = \text{dequantize}(x_q, s, z) = \frac{1}{s}(x_q - z)$$

$$y_{ij} \approx \sum_{k=1}^{p} \frac{1}{s_x} (x_{q,ik} - z_x) \frac{1}{s_{w,j}} (w_{q,kj} - z_{w,j})$$

$$= \frac{1}{s_x s_{w,j}} \left(\sum_{k=1}^{p} x_{q,ik} w_{q,kj} - \sum_{k=1}^{p} (w_{q,kj} z_x + z_x z_{w,j}) - \sum_{k=1}^{p} x_{q,ik} z_{w,j} \right)$$
(1)
(2)
(3)

(a) Affine quantization

(b) Scale quantization

Quantization approaches

Post-training quantization

$$\sum_{k \in U} L_k \cdot \log(1 + SINR_k^{eff}(W)) \rightarrow \underset{W}{argmax} = W^*$$

$$\|W_q - W^*\| = \|diag(\beta) \cdot F - W^*\| \rightarrow \min_{\beta,F}$$

Histogram of input activations to layer 3 in ResNet50 and calibrated ranges

Quantization-aware training

$$\sum_{k \in U} L_k \cdot \log(1 + SINR_k^{eff}(fq(W))) \to \max_{W \in C^{T \times L}}$$

$$fq(W) = dequantize(quantize(W)) =$$

= $\beta \cdot round(clip(\frac{W}{\beta}, -2^p, 2^p - 1))$

Straight-through gradient estimation

Multi-user pairing

Not necessary to transmit to all active users A

Set $U \subseteq A$

How to select optimal subset $U \subseteq A$ of users for transmission?

$$\sum_{k \in U} \alpha_k \cdot \log(1 + SINR_k(W)) \to \max_{\substack{U \subseteq A \\ W}}$$

Joint user selection and beamforming?

Channel Reconstruction

If we know channel matrix, we may speed up transmission several times:

TDD: Uplink Measurement for Downlink Beamforming

FDD FDD FINE Time

FDD: Downlink Measurement and/or Channel Reconstruction

Link adaption problem

MCS – Modulation and Coding Scheme

0.094 2,792 30,000 3,624 30,000 0.122 4,584 30,000 0.154 0.192 5,736 30,000 7,224 30,000 0.242 10,296 30,000 30,000 12,216 0.471 14,112 30,000 15,840 30,000 0.529 29 options 0.264 0.295 17,658 60,000 for MCS 19,848 60,000 0.331 22,920 60,000 0.382 25,456 60,000 0.425 16 QAM 28,336 60,000 16 QAM 30,576 60,000 0.510 64QAM 30,576 90,000 0.340 **Modulation**: 64QAM 32,856 90,000 0.365 64QAM 36,696 90,000 how many 64QAM 39,232 43,816 bits are 64QAM 46,888 90,000 64QAM 51,024 90,000 encoded into 55,056 90,000 0.612 26 a complex 27 64QAM 63,776 90,000 64QAM 75,326 90,000 number

Coding:
how many
parity bits
are used in
an error
correcting

code

Code Rate

MCS should correspond to channel quality. Higher MCS values

- allow more information to be transmitted
- increase risk of unsuccessful transmission!
 Retransmissions are painful.

Beam is focused on new

user position

Which number of layers is optimal for transmission?

(4/16/64)

Beam is focused on user

Which MCS is optimal for transmission?

User moves out of beam

Neural network MCS estimation

 $\widehat{mcs}(state) = \underset{mcs}{\operatorname{arg max}} \{p_w(ack|mcs, state)SE(mcs)\}.$

 $\hat{p}_{ack}(state; \theta) \approx p_w(ack|mcs, state)$

state: SINR, UE CSI, etc.

Uplink Equalization Problem

$$y = H \cdot x + r$$

r – random noise and interference

H – channel matrix

x – transmitted signal (dimension = number of users)

y – received signal (dimension = number of base station antennas)

$$\widehat{x} = G \cdot H \cdot x + G \cdot r$$

MMSE formulation

$$E_{r,x}\left(\left|\left|G\cdot y-x\right|\right|_{2}^{2}\right)\to \min_{G}$$

$$G_{MMSE}=H^{*}\cdot\left(H\cdot H^{*}+R_{r}\right)^{-1}$$
Noise + Interference Covariance matrix

Difference with precoding:

- Applied after interference and noise
- Can be nonlinear
- Can be combined with demodulation/decoding

Beamforming problem

- ❖ Non-convex optimization
- Complex analysis
- Probability theory

Equalization problem

- Statistical estimations
- Probability theory
- Statistical physics

Multi-stream transmission problem

- Information theory
- Computational linear algebra
- Probability theory

User pairing problem

- Combinatorial optimization
- Submodular optimization
- Graph theory

Channel Reconstruction problem

- ❖ Non-convex optimization
- Complex analysis
- Stochastic process

Thank you!