

CSE 3113 / CSE 3214 INTRODUCTION TO DIGITAL IMAGE PROCESSING SPRING 2023

Homework 2 Report

Ferhat Çelik - 190316046

Submission Date: 2 мау 2023

Programming Language	☑ Python ☐ Matlab ☐ Octave
Programming Environment	I used Python version 3.11. The libraries I used were numpy, scipy, matplotlib, and pillow.
Your filter (3x3)	Write the values of your filter for size $3x3$ $h = \begin{bmatrix} -0.11111111 & -0.11111111 & -0.11111111 \\ -0.11111111 & 1.88888889 & -0.11111111 \\ -0.11111111 & -0.11111111 & -0.11111111 \end{bmatrix}$
Reflections	It was really hard to calculate h. Thanks to the information given at the end of video 7, I was able to do it.

Discussion

1. Discuss the behavior of your filter for different k values (especially k < -1, k = -1, k = 0, k = 1, k > 1), with screenshots.

For that purpose I will define s as 3 in every image.

a. If k < -1:

b. If k = -1:

c. If k = 0:

d. If k = 1:

e. If k > 1:

2. What is the effect of filter size **s**?

When user increase s the render will look grainier than before.

Source Code

```
import numpy as np
from scipy.signal import convolve2d
import matplotlib.pyplot as plt
from PIL import Image

def calculate_h(s, k):
    identity_filter = np.zeros((s, s))
    identity_filter[s // 2, s // 2] = 1
    box_filter = np.ones((s, s)) / (s ** 2)
    h = (k + 1) * identity_filter - k * box_filter
    return h

s = int(input("Enter s: "))
k = int(input("Enter k: "))
image = Image.open('sample images/moon.tif')

h = calculate_h(s, k)
print("h =")
print(h)
sharpened_image = convolve2d(np.array(image.convert('L')), h, mode="same")
plt.subplot(1, 2, 1)
plt.imshow(image, cmap="gray")
plt.title("Original")
plt.subplot(1, 2, 2)
plt.imshow(sharpened_image, cmap="gray")
plt.title("Sharpened")
plt.title("Sharpened")
plt.show()
```