2D Object Detection and Segmentation

Jiayuan Gu 2019.10.29

Outline

- What is object detection and segmentation?
- Object detection: R-CNN
- Segmentation: U-Net

Why do we focus on R-CNN?

COCO Object Detection Average Precision (%)

Figure from Ross Girshick tutorial at CVPR 2019

Resources

Tutorials of CVPR

- http://deeplearning.csail.mit.edu
- https://sites.google.com/view/cvpr2018-recognition-tutorial
- http://feichtenhofer.github.io/cvpr2019-recognition-tutorial

Github Repo

https://github.com/facebookresearch/detectron2

Background

- Bounding box

Figures from

- Bounding box
- Instance mask

- Bounding box
- Instance mask
- Keypoint

- Bounding box
- Instance mask
- Keypoint

Object Detection with Bounding Boxes

"Object detection"

Object Detection with Segmentation Masks

"Instance segmentation"

Semantic Segmentation

Predict a pixel-wise class label

Stuff: walls, buildings, sky, road

Things: human, cars, bikes

(a) image

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation

Datasets

Microsoft COCO

Visual Object Classes Challenge 2012 (VOC2012)

R-CNN: Region-based CNN

Object Detection → Object Classification

We've already reduced object detection to object classification!

R-CNN

Computationally expensive

How can we modify this bounding box?

\rightarrow CNN v.s. Fast R-CNN: CNN \rightarrow Crop	
	or order viol ruot it order. Order

Fast R-CNN

Feature map for a Rol

Slides modified from Ross Girshick tutorial at CVPR 2019

Feature map for an image

Rol Pooling (for each proposal)

Rol Pooling (for each proposal)

Rol Pooling (for each proposal)

Slides modified from Ross Girshick tutorial at CVPR 2019

RPN: Anchor Box

RPN: Anchor Box

RPN: Prediction (on object)

P(object) = 0.94

Direction to the accurate box

Slides modified from Ross Girshick tutorial at CVPR 2019

RPN: Prediction (off object)

RPN: Multiple Anchors

Two stages or one stage?

You Look Only Once (YOLO)

Figure from You Only Look Once: Unified, Real-Time Object Detection

Other Methods

http://web.stanford.edu/class/cs231a/lectures/lecture12_2D_detection.pdf

- VJ Face
- Deformable Part Model
- Implicit Shape Model

U-Net

Semantic vs. Instance Segmentation

How shall we modify CNN?

- We need to predict a label for each pixel, but CNN has downsampled our input to a very small scale (e.g. from 224x224 to 7x7).
- Thus, we need a layer to upsample feature maps to the original size.

Transposed Convolution

3x3 Convolution

3x3 Transposed Convolution

Encoder-Decoder

Transposed Convolution

Skip Layer

References

- [1] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," pp. 1–9, 2015.
- [2] R. Girshick, "Fast R-CNN," Proc. IEEE Int. Conf. Comput. Vis., vol. 11-18-Dece, pp. 1440-1448, 2016.
- [3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," *Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, pp. 580–587, 2014.
- [4] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," in *International Conference on Medical image computing and computer-assisted intervention*, 2015, pp. 234–241.

Thanks