CB N°3 - Nombres complexes - Sujet 1

1. Question de cours

Pour $\theta \in]0, 2\pi[$, donner la forme trigonométrique des nombres complexes

$$Z_1 = -\left(\overline{e^{i\theta}}\right)$$
 et $Z_2 = e^{i\theta} - 1$

- **2a.** Donner la forme trigonométrique des nombres complexes $z_1 = \sqrt{2} + \sqrt{6}i$ et $z_2 = 2 + 2i$.
- **b.** Donner la forme trigonométrique et la forme algébrique du nombre complexes $\frac{z_1}{z_2}$.
- **c.** En déduire la valeur exacte de $\cos\left(\frac{\pi}{12}\right)$.
- 3. Donner les racines quatrièmes du nombre complexe $z=2\sqrt{3}+2\mathrm{i}.$
- 4. Résoudre dans $\mathbb C$ l'équation suivante, après avoir montré qu'elle admet une solution réelle :

$$2z^3 + 3z^2 + (-1 + 6i)z - 1 + 3i = 0$$

- **5.** Linéariser $\cos^2 x \sin^3 x$.
- **6.** Développer $\cos(2x)\sin(4x)$.

CB N°3 - Nombres complexes - Sujet 2

1. Question de cours

Pour $\theta \in]-\pi,\pi[$, donner la forme trigonométrique des nombres complexes

$$Z_1 = \overline{-e^{i\theta}}$$
 et $Z_2 = e^{i\theta} + 1$

- **2a.** Donner la forme trigonométrique des nombres complexes $z_1 = \sqrt{2} + \sqrt{2}i$ et $z_2 = \sqrt{3} + i$.
 - **b.** Donner la forme trigonométrique et la forme algébrique du nombre complexes $\frac{z_1}{z_2}$.
 - c. En déduire la valeur exacte de $\sin\left(\frac{\pi}{12}\right)$
- 3. Donner les racines quatrièmes de $z = 2\sqrt{2}(1 i)$.
- 4. Résoudre dans C l'équation suivante, après avoir montré qu'elle admet une solution réelle :

$$2z^{3} + (-1+2i)z^{2} + (2+5i)z - 1 - 3i = 0$$

- **5.** Linéariser $\cos^3 x \sin^2 x$.
- **6.** Développer $\cos(4x)\sin(2x)$.

Sup PTSI A