Machine Learning from Data

Lecture 8: Spring 2021

Today's Lecture

- Linear Models
 - Classification and
 - Regression

VC Analysis

$$E_{\rm out} \le E_{\rm in} + \Omega(d_{\rm VC})$$

- 1. Did you fit your data well enough (E_{in}) ?
- 2. Are you confident your $E_{\rm in}$ will generalize to $E_{\rm out}$

The VC Insuarance Co.

The VC warranty had conditions for becoming void:

You can't look at your data before choosing \mathcal{H} . Data must be generated i.i.d from $P(\mathbf{x})$. Data and test case from same $P(\mathbf{x})$ (same bin).

Bias-Variance Analysis

$$E_{\rm out} = {\sf bias} + {\sf var}$$

- 1. How well can you fit your data (bias)?
- 2. How close to that best fit can you get (var)?

Linear Model

Classification

•

Minimizing $E_{\rm in}$ is a hard combinatorial problem.

The Pocket Algorithm

- Run PLA
- At each step keep the best $E_{\rm in}$ (and \mathbf{w}) so far.

(Its not rocket science, but it works.)

Each digit is a 16×16 image.

Each digit is a 16×16 image.

Feature Construction

•

Linear Model

•

Intensity and Symmetry Features

feature: an important property of the input that you think is useful for classification. (dictionary.com: a prominent or conspicuous part or characteristic)

\mathbf{PLA}

Linear Regression

•

age	32 years
gender	male
salary	40,000
debt	26,000
years in job	1 year
years at home	3 years

Classification: Approve/Deny

Regression: Credit Line (dollar amount)

regression $\equiv y \in \mathbb{R}$

$$h(\mathbf{x}) = \sum_{i=0}^d w_i x_i = \mathbf{w}^{\mathrm{T}} \mathbf{x}$$

Least Squares Linear Regression

$$y = f(\mathbf{x}) + \epsilon$$

 \leftarrow noisy target $P(y|\mathbf{x})$

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$

$$E_{\text{out}}(h) = \mathbb{E}_{\mathbf{x}}[(h(\mathbf{x}) - y)^2]$$

$$h(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x}$$

Thanks!