«Interrogation 01/TR02 - 2de - P/C - Janvier 2025 - 40 min »

Données à utiliser dans les exercices.

Atome	С	н	0	Na	Cu	S	Cl	Fe	N
Masse (g)	1,99×10 ⁻²³	$1,67 \times 10^{-24}$	$2,66 \times 10^{-23}$	$3,82 \times 10^{-23}$	$1,05 \times 10^{-22}$	5,33×10 ⁻²³	5,90 × 10 ⁻²³	$9,27 \times 10^{-23}$	2,33×10 ⁻²³

Une mole contient environ $6,02 \times 10^{23}$ entités.

Exercice 01: Définition de la mole avant 2019

Avant sa révision en 2019, la définition de la mole adoptée en 1971 par le 14^e Congrès général des poids et mesures était la suivante :

« La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans **0,012 kilogramme** de carbone 12 ; son symbole est "**mol**". »

Données:

- $m_{\text{nucl\'eon}} = 1,67 \times 10^{-27} \text{ kg}.$
- Symbole du noyau de carbone 12 : ${}^{12}_6 \it C$

Questions:

- 1. À partir de la définition adoptée en 1971, calculez le nombre d'entités élémentaires contenues dans une mole.
- 2. Comparez ce résultat avec la valeur donnée dans le cours.

Exercice 02: L'hydrogénocarbonate de sodium (NaHCO3) et son rôle en pâtisserie

L'hydrogénocarbonate de sodium, **NaHCO**₃, est un composé ionique qui entre dans la composition de la levure chimique utilisée en pâtisserie. Lorsqu'il est chauffé, il se décompose en libérant du dioxyde de carbone (**CO**₂), ce qui permet d'obtenir un gâteau aéré.

Un sachet de levure chimique contient en moyenne 3,0 g de NaHCO₃.

Questions:

- 1. Calculez la masse du composé ionique NaHCO₃.
- Calculez le nombre de molécules de NaHCO₃ contenues dans ce sachet.

Exercice 03: Fabrication de glaçons

Un bac à glaçons vide pèse **133 g**. Une fois rempli d'eau et placé au congélateur, il pèse **410 g** à sa sortie.

Données:

L (chaleur latente de solidification de l'eau) = 335 kJ.kg-1.

Questions:

- 1. Donnez le nom de la transformation physique subie par l'eau.
- Calculez la valeur du transfert d'énergie thermique nécessaire pour fabriquer des glaçons, l'eau étant prise à 0 °C.

Correction

Exercice 01: Définition de la mole avant 2019

1. La masse d'un atome est concentrée dans son noyau donc : $m_{\text{carbone}} = 12 \times m_{\text{nucléon}} = 2,00 \times 10^{-26} \text{ kg}$. Le nombre d'entités élémentaires dans 0,012 kg de carbone

12 est
$$N = \frac{0.012}{2.00 \times 10^{-26}} = 6.0 \times 10^{23}$$
.

2. Le résultat obtenu est proche de la valeur donnée dans le cours 6.02×10^{23} .

Pour aller plus loin: https://www.lne.fr/fr/comprendre/systeme-international-unites/mole

Exercice 02: L'hydrogénocarbonate de sodium (NaHCO3) et son rôle en pâtisserie

1.
$$m(NaHCO3) = m(Na) + m(H) + m(C) + 3 \times m(O)$$

= 3,82 × 10⁻²³ + 1,66 × 10⁻²⁴ + 1,99 × 10⁻²³ + 3 × 2,66 × 10⁻²³
= 1,40 × 10⁻²² g

2.
$$N(NaHCO_3) = \frac{m(\text{\'echantillon})}{m(NaHCO_3)}$$

= $\frac{3.0}{1.40 \times 10^{-22}} = 2.1 \times 10^{22}$

Exercice 03: Fabrication de glaçons

1. Solidification.

2.
$$m_{eau} = 410 - 133 =$$
277 g Eth = Q = m_{eau} x Ls = 0,277 x 333 x10³ = 92,2 x 10³ J = **92,2** k J