Approximate Probabilistic Inference via Word-Level Counting

Supratik Chakraborty¹, <u>Kuldeep S. Meel²</u>, Rakesh Mistry¹, Moshe Y. Vardi²

¹ Indian Institute of Technology (IIT) – Bombay

² Department of Computer Science, Rice University

Probabilistic Inference to Model Counting

Model counting as the "assembly language" for inference

Model Counting

- Variables with Domain:
 - Time; {Morning, Afternoon, Evening}
 - Topic; {NLP, GM, Other} Attend; {Yes, No}
- Constraints:
 - (Topic = GM \rightarrow Attend = Yes) \land (Time = Afternoon \rightarrow Attend = Yes)
- Models:
 - (Time = Afternoon, Topic = GM, Attend = Yes)
 - (Time = Evening, Topic = Other, Attend = No)
 - •
- Model Counting: Count the number of models (#P complete)

Approximate Model Counting

Approximate Model Counting

$$\Pr\left[\frac{|R_F|}{1+\varepsilon} \le \operatorname{ApproxMC}(F, \varepsilon, \delta) \le (1+\varepsilon)|R_F|\right] \ge 1-\delta$$

- Hashing-based Approaches
 - CAV 2013
 - CP 2013
 - UAI 2013
 - NIPS 2013
 - DAC 2014
 - ICML 2014

- AAAI 2014
- TACAS 2015
- IJCAI 2015
- ICML 2015
- UAI 2015
- AAAI 2016
- AISTATS 2016

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Estimate = # of models in cell * # of cells

How to Partition?

How to partition into *roughly equal small cells* of solutions *without knowing the distribution* of solutions?

Universal Hashing [Carter-Wegman 1979]

Bit-level reasoning

• XOR-based (mod 2) hash functions in **all** prior works

- · Variables in Graphical Models are not binary
- Approach: Perform "bit-blasting"
 - $Dom(X) = \{0, 1, 2, 3\}$
 - X can be represented using two bits (y_1, y_2) such that $X = y_1 y_2$
 - XOR constraints over y_i variables
- Require solvers to perform bit-level reasoning

Word-level Revolution

- Development of SMT Solvers to reason directly at the level of words (No need for "bit-blasting")
- The biggest advance in formal methods in last 25 years (John Rushby, 2011)

Our Contributions

• H_{SMT}: Efficient word-level Hash Function

• SMTApproxMC: Efficient word-level counter

Towards Efficient word-level Hashing

- Lifting hashing from (mod 2) to (mod p) constraints
 - p: smallest prime greater than largest domain of variables
- Linear (mod p) constraints to partition into p cells
 - Amenable to Gaussian Elimination

- Number of cells $(N) = p^c$,
 - Challenge: Larger p does not give finer control on number of cells
 - Few cells → Too many solutions in a cell
 - Many cells → No solutions in most of the cells

H_{SMT}: Efficient word-level Hash Function

• Use different primes to control the number of cells

- Choose appropriate N and express as product of *preferred* primes, i.e. $N = p_1^{c_1} p_2^{c_2} p_3^{c_3} \dots p_n^{c_n}$
- \bullet H_{SMT}:
 - $c_1 \pmod{p_1}$ constraints
 - $c_2 \pmod{p_2}$ constraints
 - •
- H_{SMT} satisfies guarantees of 2-universality

Estimate = # of models in cell * # of cells

Theoretical Guarantees

- *F*: Formula over bounded domain variables;
- R_F : Solution Space of F
- SMTApproxMC
 - Input: F, ε , δ Output: C

$$\Pr\left[\frac{|R_F|}{(1+\varepsilon)} \le C \le |R_F|(1+\varepsilon)\right] \ge 1-\delta$$

• Polynomial in $F, \frac{1}{\varepsilon}, \log(\frac{1}{\delta})$ relative to word-level oracle

Experimental Evaluations

- Over 150 benchmarks from:
 - Ising Models
 - ISCAS89 Circuits
 - Program Synthesis
- Comparison with state of the art tool: CDM
 - · Based on Chistikov, Dimitrova, and Majumdar 2015
 - · Similar to Ermon et al, Chakraborty et al etc..
 - Uses XOR-based hash functions
- Objectives:
 - Runtime performance comparison
 - Quality of estimates

Quality Comparison

Runtime Performance Comparison

SMTApproxMC is 2-10 times faster than CDM

Summary

- Model Counting as "assembly language" for inference
- Recent model counting techniques rely on bit-level reasoning
- SMTApproxMC: The first efficient word-level model counter
 - Outperforms existing state of the art tool by 2-10 times in runtime
 - Observed error is far less than theoretical guarantees
- Source code available online at tinyurl.com/smtapproxmc