Class 13 min RNA set

```
library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    anyDuplicated, aperm, append, as.data.frame, basename, cbind,
    colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find,
    get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply,
   match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
   Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort,
    table, tapply, union, unique, unsplit, which.max, which.min
Attaching package: 'S4Vectors'
The following objects are masked from 'package:base':
    expand.grid, I, unname
```

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedSds, rowWeightedVars

```
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
   rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
  colData <- read.csv("GSE37704_metadata.csv", row.names = 1)</pre>
  head(colData)
             condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
              hoxa1_kd
SRR493369
SRR493370
              hoxa1_kd
SRR493371
              hoxa1_kd
  countData <- read.csv("GSE37704_featurecounts.csv", row.names = 1)</pre>
  head(countData)
               length SRR493366 SRR493367 SRR493368 SRR493369 SRR493370
ENSG00000186092
                  918
                            0
                                      0
                                                0
                                                         0
                                                                    0
                  718
                             0
                                       0
                                                0
                                                                    0
ENSG00000279928
                                                          0
                            23
                                               29
ENSG00000279457 1982
                                      28
                                                          29
                                                                   28
ENSG00000278566 939
                             0
                                       0
                                                0
                                                           0
                                                                    0
ENSG00000273547
               939
                            0
                                       0
                                                0
                                                                    0
```

ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

Q. Complete the code below to remove the troublesome first column from count-Data

```
countData <- countData[,-1]
colnames(countData)</pre>
```

[1] "SRR493366" "SRR493367" "SRR493368" "SRR493369" "SRR493370" "SRR493371"

colData\$id

NULL

Q. Complete the code below to filter countData to exclude genes (i.e. rows) where we have 0 read count across all samples (i.e. columns).

```
to.keep <- rowSums(countData) > 0
counts <- countData[to.keep,]
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Now we got rid of our stuff > How many genes should we have left

```
nrow(counts)
```

[1] 15975

A: there are 15,975

#PCA AS QUALITY CONTROL

the base r prcomp funciton should help with, you also need to scale. t()

```
pca <- prcomp(t(counts), scale= TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4 PC5 PC6 Standard deviation 87.7211 73.3196 32.89604 31.15094 29.18417 6.648e-13 Proportion of Variance 0.4817 0.3365 0.06774 0.06074 0.05332 0.000e+00 Cumulative Proportion 0.4817 0.8182 0.88594 0.94668 1.00000 1.000e+00
```

Q How mych variance is captured in the first 2 PCS?

A: BY the first two, about ~82% variance is captured.

Q. What doies your score pot (PC1 vs PC2 plot) look like hwne coplored by condition (controlv s knockdown)

```
library(ggplot2)

x <- as.data.frame(pca$x)
ggplot(x) +
   aes(PC1, PC2, col=colData$condition) +
   geom_point()</pre>
```


plot(pca\$x[,1], pca\$x[,2], pch=16, col=as.factor(colData\$condition))


```
#DESeq2 analysis
  library(DESeq2)
  dds = DESeqDataSetFromMatrix(countData=counts,
                                colData=colData,
                                design=~condition)
Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
design formula are characters, converting to factors
  dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
  dds
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
```

colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371

colData names(2): condition sizeFactor

```
class: DESeqDataSet
dim: 15975 6
metadata(1): version
assays(4): counts mu H cooks
rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345
  ENSG00000271254
rowData names(22): baseMean baseVar ... deviance maxCooks
colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371
colData names(2): condition sizeFactor
     Q. Call the summary() function on your results to get a sense of how many genes
     are up or down-regulated at the default 0.1 p-value cutoff.
  res = results(dds)
  summary(res)
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up)
                    : 4349, 27%
LFC < 0 (down)
                  : 4396, 28%
outliers [1]
                    : 0, 0%
low counts [2]
                    : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
#Yay now Volcano Plot!
  mycols <- rep("gray", nrow(res))</pre>
  mycols[abs(res$log2FoldChange) >2] <- "blue"</pre>
  mycols[res$padj > 0.05] <- "red"</pre>
  ##complete this yourself
  plot(res$log2FoldChange, -log(res$padj), col=mycols)
  abline(v=c(-2,2), lty=2)
```


Q. Improve this plot by completing the below code, which adds color and axis labels

plot(res\$log2FoldChange, -log(res\$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(

add gene annotation

```
library(AnnotationDbi)
  library("org.Hs.eg.db")
  columns(org.Hs.eg.db)
 [1] "ACCNUM"
                     "ALIAS"
                                     "ENSEMBL"
                                                     "ENSEMBLPROT"
                                                                     "ENSEMBLTRANS"
 [6] "ENTREZID"
                     "ENZYME"
                                     "EVIDENCE"
                                                     "EVIDENCEALL"
                                                                     "GENENAME"
[11] "GENETYPE"
                     "GO"
                                     "GOALL"
                                                     "IPI"
                                                                     "MAP"
[16] "OMIM"
                     "ONTOLOGY"
                                     "ONTOLOGYALL"
                                                     "PATH"
                                                                     "PFAM"
[21] "PMID"
                     "PROSITE"
                                     "REFSEQ"
                                                     "SYMBOL"
                                                                     "UCSCKG"
[26] "UNIPROT"
  res$symbol <- mapIds(org.Hs.eg.db,</pre>
                        keys=row.names(counts),
```

```
keytype="ENSEMBL",
                       column="SYMBOL",
                       multivals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez <- mapIds(org.Hs.eg.db,
                       keys=row.names(counts),
                       keytype="ENSEMBL",
                       column="ENTREZID",
                       multivals="first")
'select()' returned 1:many mapping between keys and columns
  res$name <- mapIds(org.Hs.eg.db,</pre>
                     keys=row.names(res),
                     keytype="ENSEMBL",
                     column="GENENAME",
                     multivals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1 kd vs control sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                  baseMean log2FoldChange
                                              lfcSE
                                                          stat
                                                                    pvalue
                  <numeric>
                                <numeric> <numeric> <numeric>
                                                                 <numeric>
ENSG00000279457
                 29.913579
                                0.1792571 0.3248216
                                                      0.551863 5.81042e-01
ENSG00000187634 183.229650
                                0.4264571 0.1402658
                                                      3.040350 2.36304e-03
ENSG00000188976 1651.188076
                               -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.637938
                                0.7297556 0.1318599 5.534326 3.12428e-08
                                0.0405765 0.2718928 0.149237 8.81366e-01
ENSG00000187583 47.255123
                                0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642 11.979750
ENSG00000188290 108.922128
                                2.0570638 0.1969053 10.446970 1.51282e-25
```

0.2573837 0.1027266 2.505522 1.22271e-02

ENSG00000187608 350.716868

ENSG00000188157	9128.439422	0.38990	88 0.0467163	8.346304 7.04321e-17
ENSG00000237330	0.158192	0.78595	52 4.0804729	0.192614 8.47261e-01
	padj	symbol	entrez	name
	<numeric></numeric>	<character></character>	<character></character>	<character></character>
ENSG00000279457	6.86555e-01	NA	NA	NA
ENSG00000187634	5.15718e-03	SAMD11	148398	sterile alpha motif
ENSG00000188976	1.76549e-35	NOC2L	26155	NOC2 like nucleolar
ENSG00000187961	1.13413e-07	KLHL17	339451	kelch like family me
ENSG00000187583	9.19031e-01	PLEKHN1	84069	pleckstrin homology
ENSG00000187642	4.03379e-01	PERM1	84808	PPARGC1 and ESRR ind
ENSG00000188290	1.30538e-24	HES4	57801	hes family bHLH tran
ENSG00000187608	2.37452e-02	ISG15	9636	ISG15 ubiquitin like
ENSG00000188157	4.21963e-16	AGRN	375790	agrin
ENSG00000237330	NA	RNF223	401934	ring finger protein

Q. Finally for this section let's reorder these results by adjusted p-value and save them to a CSV file in your current project directory.

```
res = res[order(res$pvalue),]
write.csv(res,"deseq_results.csv")
#Section 2 Pathway anlaysis
library(gage)
```

```
library(gageData)
library(pathview)
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

```
data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
               "1066"
                        "10720"
                                            "151531" "1548"
                                                               "1549"
                                                                         "1551"
                                  "10941"
               "1576"
                        "1577"
 [9] "1553"
                                  "1806"
                                            "1807"
                                                      "1890"
                                                               "221223" "2990"
[17] "3251"
               "3614"
                        "3615"
                                  "3704"
                                            "51733"
                                                      "54490"
                                                               "54575"
                                                                         "54576"
                                            "54657"
[25] "54577"
               "54578"
                        "54579"
                                  "54600"
                                                      "54658"
                                                               "54659"
                                                                         "54963"
[33] "574537" "64816"
                        "7083"
                                  "7084"
                                            "7172"
                                                      "7363"
                                                               "7364"
                                                                         "7365"
                                            "7378"
[41] "7366"
               "7367"
                        "7371"
                                  "7372"
                                                      "7498"
                                                               "79799"
                                                                         "83549"
[49] "8824"
                        "9"
                                  "978"
               "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
                "10201"
                         "10606"
                                   "10621"
                                             "10622"
                                                       "10623"
                                                                "107"
                                                                          "10714"
  [9] "108"
                "10846"
                         "109"
                                   "111"
                                             "11128"
                                                       "11164"
                                                                 "112"
                                                                          "113"
 [17] "114"
                "115"
                         "122481" "122622" "124583" "132"
                                                                 "158"
                                                                          "159"
                "171568" "1716"
                                   "196883"
                                             "203"
                                                       "204"
                                                                 "205"
                                                                          "221823"
 [25] "1633"
 [33] "2272"
                "22978"
                         "23649"
                                   "246721" "25885"
                                                       "2618"
                                                                 "26289"
                                                                          "270"
 [41] "271"
                "27115"
                         "272"
                                   "2766"
                                             "2977"
                                                                          "2984"
                                                       "2982"
                                                                 "2983"
 [49] "2986"
                "2987"
                         "29922"
                                   "3000"
                                             "30833"
                                                       "30834"
                                                                "318"
                                                                          "3251"
                                                                 "4830"
 [57] "353"
                "3614"
                         "3615"
                                   "3704"
                                             "377841"
                                                      "471"
                                                                          "4831"
                                             "4882"
 [65] "4832"
                "4833"
                         "4860"
                                   "4881"
                                                       "4907"
                                                                 "50484"
                                                                          "50940"
                "51251"
                                   "5136"
                                             "5137"
                                                       "5138"
                                                                 "5139"
                                                                          "5140"
 [73] "51082"
                         "51292"
 [81] "5141"
                "5142"
                         "5143"
                                   "5144"
                                             "5145"
                                                       "5146"
                                                                 "5147"
                                                                          "5148"
 [89] "5149"
                "5150"
                         "5151"
                                   "5152"
                                             "5153"
                                                       "5158"
                                                                "5167"
                                                                          "5169"
 [97] "51728"
                                                                 "54107"
                                                                          "5422"
                "5198"
                         "5236"
                                   "5313"
                                             "5315"
                                                       "53343"
[105] "5424"
                "5425"
                         "5426"
                                   "5427"
                                             "5430"
                                                       "5431"
                                                                 "5432"
                                                                          "5433"
                                   "5437"
[113] "5434"
                "5435"
                          "5436"
                                             "5438"
                                                       "5439"
                                                                 "5440"
                                                                          "5441"
[121] "5471"
                "548644" "55276"
                                   "5557"
                                             "5558"
                                                       "55703"
                                                                "55811"
                                                                          "55821"
[129] "5631"
                "5634"
                          "56655"
                                   "56953"
                                             "56985"
                                                       "57804"
                                                                 "58497"
                                                                          "6240"
                                                       "7498"
                                                                 "8382"
[137] "6241"
                "64425"
                         "646625" "654364"
                                             "661"
                                                                          "84172"
                                                                          "9060"
                                   "8622"
                                                                "8833"
[145] "84265"
                "84284"
                         "84618"
                                             "8654"
                                                       "87178"
[153] "9061"
                "93034"
                         "953"
                                   "9533"
                                             "954"
                                                       "955"
                                                                 "956"
                                                                          "957"
```

```
[161] "9583"
               "9615"
  foldchanges <- res$log2FoldChange</pre>
  names(foldchanges) <- res$entrez</pre>
  head(foldchanges)
     1266
              54855
                         1465
                                   51232
                                              2034
                                                        2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
#now lets gage the pathway analysis
  keggres <- gage(foldchanges, gsets=kegg.sets.hs)</pre>
  attributes(keggres)
$names
[1] "greater" "less"
                         "stats"
  head(keggres$less)
                                          p.geomean stat.mean
                                                                      p.val
hsa04110 Cell cycle
                                       8.995727e-06 -4.378644 8.995727e-06
hsa03030 DNA replication
                                       9.424076e-05 -3.951803 9.424076e-05
hsa03013 RNA transport
                                       1.375901e-03 -3.028500 1.375901e-03
hsa03440 Homologous recombination
                                       3.066756e-03 -2.852899 3.066756e-03
hsa04114 Oocyte meiosis
                                       3.784520e-03 -2.698128 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                             q.val set.size
                                                                     exp1
                                       0.001448312
                                                        121 8.995727e-06
hsa04110 Cell cycle
hsa03030 DNA replication
                                       0.007586381
                                                         36 9.424076e-05
hsa03013 RNA transport
                                                        144 1.375901e-03
                                       0.073840037
hsa03440 Homologous recombination
                                                        28 3.066756e-03
                                       0.121861535
hsa04114 Oocyte meiosis
                                       0.121861535
                                                        102 3.784520e-03
hsa00010 Glycolysis / Gluconeogenesis 0.212222694
                                                         53 8.961413e-03
  pathview(foldchanges, pathway.id = "hsa04110")
```

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa04110.pathview.png
  # A different PDF based output of the same data
  pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa04110.pathview.pdf
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
```

```
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa04330.pathview.png
    Q. Can you do the same procedure as above to plot the pathview figures for the
    top 5 down-reguled pathways?
  ## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$less)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids2 = substr(keggrespathways, start=1, stop=8)
  keggresids2
[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"
  pathview(gene.data=foldchanges, pathway.id=keggresids2, species="hsa")
'select()' returned 1:1 mapping between keys and columns
```

```
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa03440.pathview.png
Info: Downloading xml files for hsa04114, 1/1 pathways...
Info: Downloading png files for hsa04114, 1/1 pathways...
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/daira/OneDrive/Desktop/BGGN213/Class 13
Info: Writing image file hsa04114.pathview.png
#using Gene Ontology
  data(go.sets.hs)
  data(go.subs.hs)
```

```
# Focus on Biological Process subset of GO
  gobpsets = go.sets.hs[go.subs.hs$BP]
  gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)
  lapply(gobpres, head)
$greater
                                             p.geomean stat.mean
                                                                        p.val
GO:0007156 homophilic cell adhesion
                                          8.519724e-05 3.824205 8.519724e-05
GO:0002009 morphogenesis of an epithelium 1.396681e-04 3.653886 1.396681e-04
GO:0048729 tissue morphogenesis
                                          1.432451e-04 3.643242 1.432451e-04
GD:0007610 behavior
                                          2.195494e-04 3.530241 2.195494e-04
GO:0060562 epithelial tube morphogenesis 5.932837e-04 3.261376 5.932837e-04
GO:0035295 tube development
                                          5.953254e-04 3.253665 5.953254e-04
                                              q.val set.size
                                                                     exp1
GO:0007156 homophilic cell adhesion
                                                         113 8.519724e-05
                                          0.1951953
GO:0002009 morphogenesis of an epithelium 0.1951953
                                                         339 1.396681e-04
GO:0048729 tissue morphogenesis
                                          0.1951953
                                                         424 1.432451e-04
GO:0007610 behavior
                                          0.2243795
                                                         427 2.195494e-04
GO:0060562 epithelial tube morphogenesis 0.3711390
                                                         257 5.932837e-04
GO:0035295 tube development
                                          0.3711390
                                                         391 5.953254e-04
$less
                                            p.geomean stat.mean
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GD:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.841698e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.841698e-12
                                                           352 4.286961e-15
GD:0007067 mitosis
                                         5.841698e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195672e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                         1.658603e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178402e-07
                                                            84 1.729553e-10
$stats
```

GO:0007156 homophilic cell adhesion

stat.mean

3.824205 3.824205

exp1

```
GO:0002009 morphogenesis of an epithelium 3.653886 3.653886
GO:0048729 tissue morphogenesis
                                          3.643242 3.643242
GO:0007610 behavior
                                          3.530241 3.530241
GO:0060562 epithelial tube morphogenesis 3.261376 3.261376
GO:0035295 tube development
                                          3.253665 3.253665
```

#Reactome Analysis!

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]</pre>
print(paste("Total number of significant genes:", length(sig_genes)))
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q: What pathway has the most significant "Entities p-value"? Do the most significant pathways listed match your previous KEGG results? What factors could cause differences between the two methods?

A: Based on the results table, the ones that had the most significant are the CNN3 and TENT5C. The factors that cause differences are the types of statistical tests on the data.