

Machine Learning Case Study Housing Price Prediction

Submitted by:

M.Kavitha

ACKNOWLEDGMENT

This presentation includes about the House price prediction done by myself with reference to the data analysis I learnt so far also referred Google for some detailed learning in the analysis report writing for the completion of the project.

INTRODUCTION

Business Problem Framing

Houses are one of the necessary need of each and every person around the globe and therefore housing and real estate market is one of the markets which is one of the major contributors in the world's economy. Data science comes as a very important tool to solve problems in the domain to help the companies increase their overall revenue, profits, improving their marketing strategies and focusing on changing trends in house sales and purchases. Predictive modelling, Market mix modelling, recommendation systems are some of the machine learning techniques used for achieving the business goals for housing companies. Our problem is related to one such housing company. We are going to build a model using Machine Learning in order to predict the actual value of the prospective properties and decide whether to invest in them or not.

For this company wants to know:

- Which variables are important to predict the price of a variable?
- How do these variables describe the price of the house?

Conceptual Background of the Domain Problem

A US-based housing company named Surprise Housing has decided to enter the Australian market. The company uses data analytics to purchase houses at a price below their actual values and flip them at a higher price. For the same purpose, the company has collected a data set from the sale of houses in Australia. The data is provided in the CSV file below. The company is looking at prospective properties to buy houses to enter the market.

Review of Literature

I started the Research by first reading and analyzing the housing data housing data and dividing the features into numerical and categorical types.

SalePrice is the target column here.

All the features are then analyzed, missing data handling, outlier detection, data cleaning are done.

New features are extracted, redundant features dropped and categorical features are encoded accordingly.

Then the data in split into train and test data and feature scaling is performed.

Target variable SalePrice is right skewed. Natural log of the same is Normal distributed, hence for model building, natural log of SalePrice is considered.

Creating dummy variables increases the number of features greatly, highly imbalanced columns are dropped.

Ridge and Lasso Regression Model are built with optimum alpha calculated in GridSearchCV method.

Optimum alpha = 9.0 for ridge and 0.0001 for lasso model.

Model evaluation is done with R2 score and Root Mean Square Error.

Lasso Regression is chosen as the final model for having a slightly better R-square value on test data.

Out of 50 features in the final model, top 10 features in order of descending importance are ['1stFlrSF', '2ndFlrSF', 'OverallQual', 'OverallCond', 'SaleCondition_Partial', 'LotArea', 'BsmtFinSF1','SaleCondition_Normal', 'MSZoning_RL', 'Neighborhood_Somerst']

Model coefficients are listed in a table along with the corresponding features, for example natural log of SalePrice will change by 0.124911 with unit change in the feature '1stFlrSF' when all the features remain constant. Negative sign in the coefficient signifies negative correlation between the predictor and target variable.

Predicted value of SalePrice is transformed into its original scale by performing antilog.

This is a comprehensive research done in the dataset.

Motivation for the Problem Undertaken

The main Objective behind the project is to perform the given task successfully and analyze the dataset thoroughly, learn the objective concepts and perform the prediction according to the provided dataset.

Analytical Problem Framing

- Mathematical/ Analytical Modeling of the Problem
- 1.Importing modules, Reading the data
- 2. Analyzing Numerical Features

Checking Statistical summary

Checking Distribution of numerical features

Outlier Treatment

Inspecting Correlation

Missing Value Handling

Extracting new features and drop redundant ones

Correcting data type

Univariate and Bivariate Analysis, DataVisualization.

3. Analyzing Categorical Features

Missing Value Handling

Encoding Categorical Features

Data Visualization

Dropping Redundant Features

4. Splitting data into Train and Test data

Transformation of Target Variable

Imputing Missing Values

Feature Scaling

5. Primary Feature Selection using RFE

- 6.Ridge Regression
- 7.Lasso Regression
- 8. Comparing model coefficients
- 9. Model Evaluation
- 10. Choosing the final model and most significant features.

Data Sources and their formats

- Data contains 1460 entries each having 81 variables.
- Data contains Null values.
- Extensive EDA is performed to gain relationships of important variables and price.
- Data contains numerical as well as categorical variables.
- We have to build Machine Learning models, apply regularization and determine the optimal values of Hyper

Parameters.

• We need to find important features which affect the price.

Data Description: First, we will import the required libraries:

Importing Dataset

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# for model building
from sklearn.model selection import train test split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.linear model import LinearRegression, Ridge, Lasso
from sklearn.model selection import GridSearchCV
from sklearn.feature selection import RFE
import statsmodels.api as sm
# for model evaluation
from sklearn.metrics import r2 score
from sklearn.metrics import mean_squared_error
# for suppressing warnings
import warnings
warnings.filterwarnings("ignore")
```

	ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	MiscV
0	127	120	RI	NaN	4928	Pave	NaN	IR1	I vI	AllPub	0	NaN	NaN	NaN	
1	889	20	RL	95.0	15865	Pave	NaN	IR1	LvI	AllPub	 0	NaN	NaN	NaN	
2	793	60	RL	92.0	9920	Pave	NaN	IR1	LvI	AllPub	 0	NaN	NaN	NaN	
3	110	20	RL	105.0	11751	Pave	NaN	IR1	LvI	AllPub	 0	NaN	MnPrv	NaN	
4	422	20	RL	NaN	16635	Pave	NaN	IR1	LvI	AllPub	 0	NaN	NaN	NaN	
163	289	20	RL	NaN	9819	Pave	NaN	IR1	LvI	AllPub	 0	NaN	MnPrv	NaN	
164	554	20	RL	67.0	8777	Pave	NaN	Reg	LvI	AllPub	 0	NaN	MnPrv	NaN	
165	196	160	RL	24.0	2280	Pave	NaN	Reg	LvI	AllPub	 0	NaN	NaN	NaN	
166	31	70	C (all)	50.0	8500	Pave	Pave	Rog	LvI	AllPub	 0	NaN	MnPrv	NaN	
167	61/	60	KL	NaN	/861	Pave	NaN	IR1	LvI	AllPub	 U	NaN	NaN	NaN	

Once the data is collected, we perform several steps to explore the data. The Aim of this step is to get the better understanding of the data structure, do initial preprocessing, clean the data, check for skewness, outliers, missing values, do encoding, standard scale the dataset and finally build the model.

Understanding the data:

In the first part of the dataframe is evaluated for structure, columns, data types. we use basics pandas functions to perform these steps.

Exploratory Data Analysis

```
df.shape
(1168, 81)
df.isnull().sum()
Id
                    0
                    0
MSSubClass
MSZoning
                    0
LotFrontage
                  214
LotArea
MoSold
YrSold
SaleType
                    0
SaleCondition
SalePrice
Length: 81, dtype: int64
```

```
df.columns
```

Checking datatypes of the column

df.dtypes

Ιd int64 MSSubClass int64 MSZoning object LotFrontage float64 LotArea int64 . . . MoSold int64 YrSold int64 SaleType object SaleCondition object SalePrice int64 Length: 81, dtype: object

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1168 entries, 0 to 1167
Data columns (total 81 columns):

Data	columns (total	81 columns):	
#	Column	Non-Null Count	Dtype
0	Id	1168 non-null	int64
1	MSSubClass	1168 non-null	int64
2	MSZoning	1168 non-null	object
3	LotFrontage	954 non-null	float64
4	LotArea	1168 non-null	int64
5	Street	1168 non-null	object
6	Alley	77 non-null	object
7	LotShape	1168 non-null	object
8	LandContour	1168 non-null	object
9	Utilities	1168 non-null	object
10	LotConfig	1168 non-null	object
11	LandSlope	1168 non-null	object
12	Neighborhood	1168 non-null	object
13	Condition1	1168 non-null	object
14	Condition2	1168 non-null	object
15	BldgType	1168 non-null	object
16	HouseStyle	1168 non-null	object
17	OverallQual	1168 non-null	int64
18	OverallCond	1168 non-null	int64
19	YearBuilt	1168 non-null	int64

19	YearBuilt	1168	non-null	int64
20	YearRemodAdd	1168	non-null	int64
21	RoofStyle	1168	non-null	object
22	RoofMatl	1168	non-null	object
23	Exterior1st	1168	non-null	object
24	Exterior2nd	1168	non-null	object
25	MasVnrType	1161	non-null	object
26	MasVnrArea	1161	non-null	float64
27	ExterQual	1168	non-null	object
28	ExterCond	1168	non-null	object
29	Foundation	1168	non-null	object
30	BsmtQual	1138	non-null	object
31	BsmtCond	1138	non-null	object
32	BsmtExposure	1137	non-null	object
33	BsmtFinType1	1138	non-null	object
34	BsmtFinSF1	1168	non-null	int64
35	BsmtFinType2	1137	non-null	object
36	BsmtFinSF2	1168	non-null	int64
37	BsmtUnfSF	1168	non-null	int64
38	TotalBsmtSF	1168	non-null	int64
39	Heating	1168	non-null	object
40	HeatingQC	1168	non-null	object
41	CentralAir	1168	non-null	object
42	Electrical	1168	non-null	object
43	1stF1rSF	1168	non-null	int64
44	2ndF1rSF	1168	non-null	int64
45	LowQualFinSF	1168	non-null	int64

56	Fireplaces	1168 non-null	int64
57	FireplaceQu	617 non-null	object
58	GarageType	1104 non-null	object
59	GarageYrBlt	1104 non-null	float64
60	GarageFinish	1104 non-null	object
61	GarageCars	1168 non-null	int64
62	GarageArea	1168 non-null	int64
63	GarageQual	1104 non-null	object
64	GarageCond	1104 non-null	object
65	PavedDrive	1168 non-null	object
66	WoodDeckSF	1168 non-null	int64
67	OpenPorchSF	1168 non-null	int64
68	EnclosedPorch	1168 non-null	int64
69	3SsnPorch	1168 non-null	int64
70	ScreenPorch	1168 non-null	int64
71	PoolArea	1168 non-null	int64
72	Poo1QC	7 non-null	object
73	Fence	237 non-null	object
74	MiscFeature	44 non-null	object
75	MiscVal	1168 non-null	int64
76	MoSold	1168 non-null	int64
77	YrSold	1168 non-null	int64
78	SaleType	1168 non-null	object
79	SaleCondition	1168 non-null	object
80	SalePrice	1168 non-null	int64
dtype	es: float64(3),	int64(35), object	ct(43)
nomo	ny usago: 730 2	. VB	

memory usage: 739.2+ KB

Getting Statistical Analysis for the numerical features:

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	 WoodDec
count	1168.000000	1168.000000	954.00000	1168.000000	1168.000000	1168.000000	1168.000000	1168.000000	1161.000000	1168.000000	 1168.000
mean	724.136130	56.767979	70.98847	10484.749144	6.104452	5.595890	1970.930651	1984.758562	102.310078	444.726027	 96.206
std	416.159877	41.940650	24.82875	8957.442311	1.390153	1.124343	30.145255	20.785185	182.595606	462.664785	 126.158
min	1.000000	20.000000	21.00000	1300.000000	1.000000	1.000000	1875.000000	1950.000000	0.000000	0.000000	 0.000
25%	360.500000	20.000000	60.00000	7621.500000	5.000000	5.000000	1954.000000	1966.000000	0.000000	0.000000	 0.000
50%	714.500000	50.000000	70.00000	9522.500000	6.000000	5.000000	1972.000000	1993.000000	0.000000	385.500000	 0.000
75%	1079.500000	70.000000	80.00000	11515.500000	7.000000	6.000000	2000.000000	2004.000000	160.000000	714.500000	 171.000
max	1460.000000	190.000000	313.00000	164660.000000	10.000000	9.000000	2010.000000	2010.000000	1600.000000	5644.000000	 857.000

Separating the Numerical and Categorical features for analysis:

```
# Separating the Numerical and Categorical features for analysis
numeric_df = df.select_dtypes(include=['int64', 'float64'])
categorical_df = df.select_dtypes(include=['object'])
```

```
# Numerical features in the dataframe
df.columns
```

Analyzing Numerical Data

Outlier Detection

Checking percentage of outliers for all the numerical columns.

```
outliers_percentage={}

for feature in numeric_df.columns:
    IQR=numeric_df[feature].quantile(.75)-numeric_df[feature].quantile(.25)
    outliers_count=numeric_df[(numeric_df[feature]*)(numeric_df[feature].quantile(.75)*1.5*IQR)) | (numeric_df[feature]*(numeric_outliers_percentage[feature]=round(outliers_count/numeric_df.shape[0]*100,2)

outlier_df=pd.DataFrame({'Features':list(outliers_percentage.keys()), 'Percentage':list(outliers_percentage.values())})

outlier_df.sort_values(by="Percentage", ascending=False)

*//
**The proof of the pd. DataFrame ({ 'Features':list(outliers_percentage.keys()), 'Percentage':list(outliers_percentage.values())})

outlier_df.sort_values(by="Percentage", ascending=False)
```

	Features	Percentage
30	EnclosedPorch	14.47
10	BsmtFinSF2	11.64
5	OverallCond	8.90
32	ScreenPorch	8.13
1	MSSubClass	6.76
8	MasVnrArea	6.59
2	LotFrontage	6.16
3	LotArea	6.08
18	BsmtHalfBath	5.39
2 9	OpenPorchSF	4.71
12	TotalBsmtSF	4.62
22	KitchenAbvGr	4.62
37	SalePrice	3.85
34	MiscVal	3.60
21	BedroomAbvGr	2.40
16	GrLivArea	1.97

15	LowQualFinSF	1.97
28	WoodDeckSF	1.97
31	3SsnPorch	1.88
23	TotRmsAbvGrd	1.71
11	BsmtUnfSF	1.71
13	1stFlrSF	1.63
27	GarageArea	1.46
9	BsmtFinSF1	0.60
33	PoolArea	0.60
6	YearBuilt	0.51
24	Fireplaces	0.43
26	GarageCars	0.34
14	2ndFlrSF	0.17
4	OverallQual	0.17
17	BsmtFullBath	0.09
35	MoSold	0.00
36	YrSold	0.00
0	ld	0.00

Comments:

Majority of the numeric features have outliers.

Dropping all the outliers will cause loss of information.

Hence reassigning fixed minimum and maximum values to those rows where feature value is outside the range of [25th percentile - 1.5 IQR, 75th percentile + 1.5 IQR]

IQR or Inter Quartile Range = Difference between 75th percentile and 25th percentile values of a feature.

Target column 'SalePrice' is excluded in this.

```
for feature,percentage in outliers_percentage.items():
     if feature!='SalePrice':
         IQR = df[feature].quantile(.75) - df[feature].quantile(.25)
         max\_value = df[feature].quantile(.75)+1.5*IQR
         min_value = df[feature].quantile(.25)-1.5*IQR
         df[feature] (df[feature] > max_value] = max_value
df[feature][df[feature] < min_value] = min_value</pre>
# Checking the dataset after reassigning minmum and maximum values
df.describe()
  Id MSSubClass LotFrontage
                                  LotArea OverallQual OverallCond
                                                                     YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 ... WoodDeckSF OpenPorchSi
0000 1168.000000 954.000000 1168.000000 1168.000000 1168.000000 1168.000000
                                                                                 1168 000000 1161 000000 1168 000000
                                                                                                                         1168 000000
                                                                                                                                      1168.000000
       54.982877
                   69.894130 9671.869435
                                             6.106164
                                                         5.566781 1970.958904
                                                                                 1984.758562
                                                                                              87.333333 440.206978
                                                                                                                           93.913099
                                                                                                                                        42.927226
                                                                                20.785185 130.890807 434.416564
9877
       37.149385 19.241774 3514.692231 1.384464
                                                         0.973862 30.061548
                                                                                                                          117.913672
                                                                                                                                        53 496969
       20.000000
                   30.000000 1780.500000
                                            2.000000
                                                         3.500000 1885.000000
                                                                                 1950.000000
                                                                                              0.000000
                                                                                                           0.000000
                                                                                                                                         0.000000
       20.000000 60.000000 7621.500000 5.000000
                                                         5.000000 1954.000000
                                                                                 1966.000000
                                                                                               0.000000
0000
                                                                                                           0.000000
                                                                                                                            0.000000
                                                                                                                                         0.000000
0000
       50.000000
                   70.000000 9522.500000
                                            6.000000
                                                         5.000000 1972.000000
                                                                                 1993.000000
                                                                                               0.000000
                                                                                                          385.500000 ...
                                                                                                                            0.000000
                                                                                                                                        24.000000
0000
       70.000000
                  80.000000 11515.500000
                                            7.000000
                                                         6.000000 2000.000000
                                                                                 2004.000000 160.000000 714.500000
                                                                                                                          171.000000
                                                                                                                                        70.00000
      145.000000 110.000000 17356.500000
                                            10.000000
                                                         7.500000 2010.000000
                                                                                 2010.000000
                                                                                              400.000000 1786.250000
                                                                                                                          427.500000
                                                                                                                                       175.00000
```

Correlation in Numeric Data

Comments:

Some of the features have high correlation with each other. Garage Cars and Garage Area (0.88)

GarageYrBlt and YearBuilt (0.83)

TotRmsAbvGrd and GrLivArea (0.83)

TotalBsmtSF and 1stflrSF (0.82)

One feature from each of these pair will be dropped after data visualization.

Data Visualization:

Univariate and Bivariate Analysis - Numerical Features

Analyzing Numerical Features with continuous values

```
fig=plt.subplots(figsize=(12, 12))

for i, feature in enumerate(['MSSubClass', 'LotFrontage', 'LotArea', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'Total plt.subplot(9, 3, i+1)
   plt.subplots_adjust(hspace = 2.0)
   sns.scatterplot(df[feature],df['SalePrice'])
   plt.tight_layout()
```


Comments:

Features like 'LotFrontage', 'LotArea', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF' are showing positive correlation with SalePrice.

'MSSubClass' has discrete values.

'BsmtSF2' has single value and can be dropped.

Comment:

'GrLivArea' and 'GarageArea' are showing positive correlation with SalePrice.

'LowQualFinSF','EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal' features have single values and can be dropped.

Visualizing the distribution of the numeric features:

df[['	LowQualFinSF	osedPorch',	'3SsnPor	ch', 'S							
	LowQualFinSF	GrLivArea	GarageCars	GarageArea	WoodDeckSF	OpenPorch\$F	EnclosedPorch	3SsnPorch	ScreenPorch	PoolArea	MiscVal
count	1168.0	1168.000000	1168.000000	1168.000000	1168.000000	1168.000000	1168.0	1168.0	1168.0	1168.0	1168.0
mean	0.0	1513.293129	1.774829	474.148973	93.913099	42.927226	0.0	0.0	0.0	0.0	0.0
std	0.0	481.471291	0.741001	206.578078	117.913672	53.496965	0.0	0.0	0.0	0.0	0.0
min	0.0	334.000000	0.000000	0.000000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0
25%	0.0	1143.250000	1.000000	338.000000	0.000000	0.000000	0.0	0.0	0.0	0.0	0.0
50%	0.0	1468.500000	2.000000	480.000000	0.000000	24.000000	0.0	0.0	0.0	0.0	0.0
75%	0.0	1795.000000	2.000000	576.000000	171.000000	70.000000	0.0	0.0	0.0	0.0	0.0
max	0.0	2772.625000	3.500000	933.000000	427.500000	175.000000	0.0	0.0	0.0	0.0	0.0

Removing these features having fixed values as they won't contribute to predicting SalePrice.

df[['L	.owQualFinSF'	, 'EnclosedPo	rch', '3Ss	nPorch', 'S	creenPor	ch', 'Po
	LowQualFinSF	EnclosedPorch	3SsnPorch	ScreenPorch	PoolArea	MiscVal
count	1168.0	1168.0	1168.0	1168.0	1168.0	1168.0
mean	0.0	0.0	0.0	0.0	0.0	0.0
std	0.0	0.0	0.0	0.0	0.0	0.0
min	0.0	0.0	0.0	0.0	0.0	0.0
25%	0.0	0.0	0.0	0.0	0.0	0.0
50%	0.0	0.0	0.0	0.0	0.0	0.0
75%	0.0	0.0	0.0	0.0	0.0	0.0
max	0.0	0.0	0.0	0.0	0.0	0.0

Data Preprocessing:

Analyzing Numerical Features with Discrete Values

df[['OverallQual','OverallCond','MoSold','YrSold','BsmtFullBath','BsmtHalfBath','FullBath','HalfBath','BedroomAbvGr','KitchenAbvC

	OverallQual	OverallCond	MoSold	YrSold	BsmtFullBath	BsmtHalfBath	FullBath	HalfBath	BedroomAbvGr	KitchenAbvGr	TotRmsAbvGrd	Fireplaces	G
0	6	5.0	2	2007	0.0	0	2	0	2.0	1	5	1.0	
1	8	6.0	10	2007	1.0	0	2	0	4.0	1	8	1.0	
2	7	5.0	6	2007	1.0	0	2	1	3.0	1	8	1.0	
3	6	6.0	1	2010	0.0	0	2	0	3.0	1	7	1.0	
4	6	7.0	6	2009	0.0	0	2	0	3.0	1	8	1.0	
1163	5	5.0	2	2010	0.0	0	1	0	3.0	1	5	0.0	
1164	4	5.0	5	2009	0.0	0	2	0	2.0	1	5	0.0	
1165	6	6.0	7	2009	0.0	0	2	1	3.0	1	7	1.0	
1166	4	4.0	7	2008	0.0	0	1	0	3.0	1	6	0.0	
1167	6	5.0	6	2006	1.0	0	2	1	3.0	1	7	1.0	

Comment: Following are the observations from the plots.

'OverallQual': More the rating of this feature, more the SalePrice (target variable)

'OverallCond': SalePrice is highest for rating 5

'MoSold' and 'YrSold': SalePrice does not show a strong trend depending on month and year on which realty is sold

'FullBath' = 2 and 'HalfBath' = 1 have highest SalePrice

'TotRmsAbvGrd': More the number of total rooms above grade more the Sale Price

'GarageYrBlt','YearBuilt','YearRemodAdd', 'YrSold' : Will extract new features from to identify any trend

'BsmtFullBath', 'KitchenAbvGr': Need further inspection for meaningful insight.

```
df[['BsmtFullBath', 'KitchenAbvGr','GarageYrBlt','YearBuilt','YearRemodAdd']].describe()
       BsmtFullBath KitchenAbvGr GarageYrBlt
                                           YearBuilt YearRemodAdd
  count
        1168.000000
                         1168.0 1104.000000 1168.000000
                                                      1168.000000
           0.425086
                           1.0 1978.193841 1970.958904
                                                      1984.758562
  mean
           0.519702
                           0.0
                                24.890704
                                           30.061548
                                                        20.785185
   std
           0.000000
                           1.0 1900.000000 1885.000000
                                                      1950.000000
   min
   25%
           0.000000
                           1.0 1961.000000 1954.000000
                                                      1966.000000
           0.000000
   50%
                           1.0 1980.000000 1972.000000
                                                      1993.000000
   75%
           1.000000
                           1.0 2002.000000 2000.000000
                                                      2004.000000
                           1.0 2010.000000 2010.000000
                                                      2010.000000
           2.500000
   max
print(df['BsmtFullBath'].value_counts())
print(df['KitchenAbvGr'].value_counts())
0.0
        686
1.0
        468
2.0
         13
2.5
Name: BsmtFullBath, dtype: int64
      1168
Name: KitchenAbvGr, dtype: int64
# dropping KitchenAbvGr for not having useful information
df.drop(['KitchenAbvGr'], axis=1, inplace=True)
df[['GarageYrBlt','YearBuilt','YearRemodAdd', 'YrSold']].describe()
        GarageYrBlt
                        YearBuilt YearRemodAdd
                                                        YrSold
       1104.000000
                     1168.000000
                                      1168.000000 1168.000000
count
 mean 1978.193841 1970.958904
                                      1984.758562 2007.804795
          24.890704
   std
                       30.061548
                                       20.785185
                                                      1.329738
       1900.000000
                     1885.000000
                                     1950.000000 2006.000000
  min
```

1966.000000 2007.000000

25%

1961.000000 1954.000000

```
# Converting the year related features into number of years
for feature in ['GarageYrBlt','YearBuilt','YearRemodAdd', 'YrSold']:
    df[feature] = 2021 - df[feature]
```

```
df[feature]
0
         14
1
         14
2
         14
3
         11
4
         12
1163
         11
1164
         12
1165
         12
1166
         13
1167
         15
Name: YrSold, Length: 1168, dtype: int64
```

```
fig=plt.subplots(figsize=(12, 12))
for i, feature in enumerate(['GarageYrBlt','YearBuilt','YearRemodAdd', 'YrSold']):
    plt.subplot(4, 2, i+1)
    plt.subplots_adjust(hspace = 2.0)
    sns.scatterplot(df[feature], df['SalePrice'])
    plt.tight_layout()
   700000
                                                                700000
   600000
                                                                600000
   500000
                                                                500000
   400000
                                                                400000
   300000
                                                                300000
                                                                200000
   200000
   100000
                                                                100000
                                                        120
                                                                                                               120
                                                                                                                      140
                              GarageYrBlt
                                                                                            YearBuilt
```


Comment

For most the realty properties Garage is built within last 20 years, SalePrice is more recently built garages.

SalePrice is more lower value of YearBuilt i.e. more recently build houses

Recently remodelled houses (lower value of YearRemodAdd) have higher SalePrice

YrSold still does not show any significant trend.

Missing Value Handling - Numerical Features

```
# Checking the number of remaining columns
df.columns.shape
(73,)
```

Comment:

GarageCars and GarageArea (Correlation coefficient = 0.88), dropping GarageCars.

GarageYrBlt and YearBuilt (Correlation coefficient = 0.83), dropping GarageYrBlt for high correlation and containing missing value.

TotRmsAbvGrd and GrLivArea (Correlation coefficient = 0.83), dropping GrLivArea.

TotalBsmtSF and 1stflrSF (Correlation coefficient = 0.82), dropping TotalBsmtSF.

Missing Value Imputation to be done for housing_df['LotFrontage'] after splitting data into train and test set to avoid data leakage.

```
df.drop(['GarageCars', 'GarageYrBlt', 'GrLivArea', 'TotalBsmtSF'], axis=1, inplace=True)
# Checking the number of remaining columns
print(df.columns.shape)
(69,)
```

Analyzing Categorical Features

Missing Value Handling - Categorical Features

```
df['Electrical'].isnull().sum()

df['PoolQC'].value_counts()

Gd 3
Fa 2
Ex 2
Name: PoolQC, dtype: int64
```

Comment:

For 'Alley', Nan means 'No access to alley'

For 'BsmtQual', 'BsmtCond', BsmtExposure, BsmtFinType1, BsmtFinType2 Nan means 'No basement'

For GarageType, GarageFinish, GarageQual, GarageCond Nan means 'No garage'

For 'FireplaceQu' and 'Fence' Nan means 'No Fire place' and 'No fence' respectively

MiscFeature - Nan means no additional features mentioned.

All these features will be imputed with meaningful values in place of missing data.

Data Inputs- Logic- Output Relationships

```
mv_categorical_features = ['Alley', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'GarageType', '
  Alley
                                       1085
   BsmtQual
   BsmtCond
   BsmtExposure
   BsmtFinType1
                                           30
   BsmtFinType2
                                           31
   GarageType
                                           64
  GarageFinish
   GarageQual
                                           64
                                           64
   GarageCond
   FireplaceQu
                                         924
   MiscFeature
                                       1117
   dtype: int64
    # Imputing missing values with "Not_applicable"
    df[mv_categorical_features] = df[mv_categorical_features].fillna(value='Not_applicable', axis=1)
    # Checking after imputation
    print(df[mv_categorical_features].isnull().sum())
    BsmtQual
    BsmtCond
                                                   0
    BsmtExposure
                                                   a
    BsmtFinType1
                                                   0
    BsmtFinType2
    GarageType
    GarageFinish
    GarageQual
                                                   0
                                                 0
    GarageCond
                                                 0
    FireplaceQu
    Fence
    MiscFeature
    dtype: int64
i]: # dropping 'PoolQC' for very high percentage of missing value and highly imbalance data (if missing value is imputed)
         df.drop(['PoolQC'], axis=1, inplace=True)
         # dropping rows with null values in 'Electrical', for very low missing value count
        df.dropna(subset=['Electrical'], inplace=True)
|: print("Feature : Percentage of Missing Value")
         print("-----")
         for feat in df.columns:
                 if df[feat].isnull().any():
                         print(feat, ':', round(df[feat].isnull().sum()/df.shape[0], 2)*100)
         Feature : Percentage of Missing Value
```

LotFrontage : 18.0

Missing value imputation will be done after splitting the data into train and test set to avoid data leakage.

```
df.columns.shape
(68,)
```

Encoding For Categorical Variables Ordered Features -- to be label encoded 'LotShape', 'Utilities', 'LandSlope', 'HouseStyle', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'HeatingQC', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageFinish', 'GarageQual', 'GarageCond', 'CentralAir'

Unordered Features -- to be one hot encoded 'MSZoning', 'Street', 'Alley', 'LandContour', 'LotConfig', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd', 'MasVnrType', 'Foundation', 'Heating', 'Electrical', 'GarageType','PavedDrive', 'Fence','MiscFeature', 'SaleType','SaleCondition'

```
# Function to generate boxplot for SalePrice against different features given the list of features

def generate_boxplot(feature_list):
    fig=plt.subplots(figsize=(20, 16))
    for i, feature in enumerate(feature_list):
        plt.subplot(4, 2, i+1)
        plt.subplots_adjust(hspace = 2.0)
        sns.boxplot(df['SalePrice'],df[feature])
        plt.tight_layout()
```

Dividing the ordinal features into smaller segments and visualizing their impact on SalePrice.

Analyzing Ordered Features

Comment

'LotShape' : Slightly irregular LotShape have the highest SalePrice.

'Utilities': Most of the houses in the dataset have all the public utilities

'LandSlope': Houses at severe land slope have lowest SalePrice

'HouseStyle' : 2 storied houses have the highest SalePrice

'ExterQual' : Houses with Excellent quality of material on the exterior have the highest SalePrice

'ExterCond': Houses with Excellent condition of material on the exterior have the highest SalePrice.

Comment:

Houses having excellent heating quality and kitchen quality have the highest SalePrice.

Houses with typical functionality have highest SalePrice. There are very few houses that are severely damaged.

SalePrice range in largest for houses with average fireplace quality.

Comment:

SalePrice is highest where garage is finished.

The range of SalePrice is widest for Typical/Average Garage quality and condition.

There are very few houses with excellect condition of garage.

Comment:

Houses with excellent quality basement have the highest SalePrice.

Housing with good living quarters (BsmtFinType1= GLQ) have highest SalePrice

A lot of houses have unfinished basment or no basement (label = Not_applicable)

Encoding Categorical Features ¶

```
df['LotShape'] = df['LotShape'].map({'IR1':0, 'IR2':1, 'IR3':2, 'Reg':3})
df['Utilities'] = df['Utilities'].map({'AllPub':3, 'NoSewr':2, 'NoSeWa':1, 'ELO':0})
df['LandSlope'] = df['LandSlope'].map({'Gtl':0, 'Mod':1, 'Sev':2})
df['HouseStyle'] = df['HouseStyle'].map({'IStory':0, '1.5Unf':1, '1.5Fin':2, '2Story':3, '2.5Unf':4, '2.5Fin':5, 'SFoyer':6, '5d['ExterQual'] = df['ExterQual'].map({'Po':0, 'Fa':1, 'TA':2, 'Gd':3, 'Ex':4})
df['ExterCond'] = df['BsmtQual'].map({'Not_applicable':0, 'Po':1, 'Fa':2, 'TA':3, 'Gd':4, 'Ex':5})
df['BsmtQual'] = df['BsmtQual'].map({'Not_applicable':0, 'Po':1, 'Fa':2, 'TA':3, 'Gd':4, 'Ex':5})
df['BsmtExposure'] = df['BsmtExposure'].map({'Not_applicable':0, 'No':1, 'Mn':2, 'Av':3, 'Gd':4})
df['BsmtExposure'] = df['BsmtFinType1'].map({'Not_applicable':0, 'No':1, 'Mn':2, 'Av':3, 'Gd':4})
df['BsmtFinType2'] = df['BsmtFinType2'].map({'Not_applicable':0, 'No':1, 'Mn':2, 'Av':3, 'Gd':4, 'ALQ':5, 'GLQ':6})
df['HeatingQC'] = df['BsmtFinType2'].map({'Not_applicable':0, 'Nof':1, 'LwQ':2, 'Rec':3, 'BLQ':4, 'ALQ':5, 'GLQ':6})
df['HeatingQC'] = df['HeatingQC'].map({'Po':0, 'Fa':1, 'TA':2, 'Gd':3, 'Ex':4})
df['GarageCond'] = df['GarageCond'].map({'Not_applicable':0, 'Nof':1, 'RFn':2, 'Fin':3})
df['GarageCond'] = df['GarageCond'].map({'Not_applicable':0, 'Nof':1, 'RFn':2, 'TA':3, 'Gd':4, 'Ex':5})
df['GarageCond'] = df['GarageCond'].map({'Not_applicable':0, 'Po':1, 'Fa':2, 'TA':3, 'Gd':4, 'Ex':5})
df['GarageCond'] = df['GarageCond'].map({'Not_applicable':0, 'Po':1, 'Fa':2, 'TA':3, 'Gd':4, 'Ex':5})
df['Functional'] = df['Functional'].map({'Not_applicable':0, 'Po':1, 'Fa':2, 'TA':3, 'Gd':4, 'Ex':5})
```

```
# Checking the features after encoding
df[['LotShape', 'Utilities', 'LandSlope', 'HouseStyle', 'ExterQual', 'ExterCond', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtF:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1161 entries, 0 to 1167
Data columns (total 18 columns):
   Column
                   Non-Null Count Dtype
 0
     LotShape
                   1161 non-null
                                   int64
     Utilities
                   1161 non-null
                                   int64
     LandSlope
                   1161 non-null
                                   int64
     HouseStvle
                                   int64
                   1161 non-null
     ExterQual
                   1161 non-null
                                   int64
     ExterCond
                   1161 non-null
                                   int64
     BsmtQual
                   1161 non-null
                                   int64
     BsmtCond
                   1161 non-null
                                   int64
     BsmtExposure
                   1161 non-null
                                   int64
     BsmtFinType1
                   1161 non-null
                                   int64
 10
    BsmtFinType2
                   1161 non-null
                                   int64
 11
     HeatingQC
                   1161 non-null
                                   int64
     KitchenQual
                   1161 non-null
     Functional
                   1161 non-null
                                   int64
 13
 1/
     FireplaceQu
                   1161 non-null
                                   int64
 15
     GarageFinish
                   1161 non-null
                                   int64
```

Analyzing Unordered Featues

Most of the houses do not have alley.

Neighborhood has a lot of labels, using one hot encoding directly would lead to high number of additional columns

Houses classified as MSZoning = RL or Residential Low density have the highest SalePrice.

Normal Condition (Condition1 = Norm and Condition2 = Norm) Houses are likely to have high SalePrice.

Features like 'RoofMatl', 'Exterior1st', 'Exterior2nd' have some labels with very few data, this labels cannot contribute in predicting Sale Price.

Houses with foundation of poured concrete (Foundation = PConc) and/or Electrical with Standard Circuit Breaker and/or Heating type = GasA have the highest price

Houses with attached and built-in garage have high SalePrice

Most of the houses do not have fence (Fence= Not_applicable).

Most of the houses are newly built, houses with warranty deed have high SalePrice.

Sale condition = Normal leads to high SalePrice.

Encoding Categorical Variables

```
dummy_df = pd.get_dummies(df[unordered_features], drop_first=True)

dummy_df.shape

(1161, 142)
```

Comment:

Adding 144 features to the existing dataset will make the model very complex.

From the above boxplots, for some categorical features only label is dominating over others.

In dummy_df any label having same value in 95% or more rows will be dropped, as those new features are highly imbalanced.

```
dummies_to_drop = []
for feat in dummy_df.columns:
    if dummy_df[feat].value_counts()[0]/dummy_df.shape[0] >= 0.95:
         dummies_to_drop.append(feat)
print(dummies_to_drop)
print(len(dummies_to_drop))
```

['MSZoning_FV', 'MSZoning_RH', 'Alley_Pave', 'LandContour_HLS', 'LandContour_Low', 'LotConfig_FR2', 'LotConfig_FR3', 'Neighborh ood_Blueste', 'Neighborhood_BrDale', 'Neighborhood_BrKSide', 'Neighborhood_ClearCr', 'Neighborhood_Crawfor', 'Neighborhood_IDDT RR', 'Neighborhood_MadowV', 'Neighborhood_Mitchel', 'Neighborhood_NPKVill', 'Neighborhood_NoRidge', 'Neighborhood_SWISU', 'Neighborhood_SwyerW', 'Neighborhood_StoneBr', 'Neighborhood_Timber', 'Neighborhood_Veenker', 'Condition1_PosA', 'Condition1_PosA', 'Condition1_RRAn', 'Condition1_RRNe', 'Condition1_RRNn', 'Condition2_Feedr', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_PosA', 'Condition2_RRAn', 'BldgType_2fmCon', 'BldgType_Duplex', 'BldgType_Twnhs', 'Ro ofStyle_Gambrel', 'RoofStyle_Mansard', 'RoofStyle_Shed', 'RoofMatl_Membran', 'RoofMatl_Metal', 'RoofMatl_Roll', 'RoofMatl_Tar&G rv', 'RoofMatl_WdShake', 'RoofMatl_WdShngl', 'Exterior1st_AsphShn', 'Exterior1st_BrkComm', 'Exterior1st_BrkFace', 'Exterior1st_CemntBd', 'Exterior1st_BrkComm', 'Exterior2nd_AsphShn', 'Exterior2nd_Brk Cmn', 'Exterior2nd_BrkFace', 'Exterior2nd_CmentBd', 'Exterior2nd_ImStucc', 'Exterior2nd_Other', 'Exterior2nd_Stone', 'Exterior2nd_Stone', 'Exterior2nd_Md Shng', 'Foundation_Slab', 'Foundation_Slab', 'Foundation_Wood', 'Heating_GasW', 'Heating_Grav', 'Heating_OthW', 'Heating_Mall', 'Electrical_FuseF', 'Electrical_FuseP', 'Electrical_Mix', 'GarageType_Basment', 'Ga rageType_CarPort', 'PavedDrive_P', 'Fence_GdWo', 'Fence_MnWw', 'MiscFeature_Othr', 'MiscFeature_Shed', 'MiscFeature_Tenc', 'SaleType_ConlD', 'SaleType_Conl

```
: # Dropping the highly imbalanced dummy variables
dummy_df = dummy_df.drop(dummies_to_drop, axis=1)
print(dummy_df.shape)
(1161, 52)
: df.shape
: (1161, 68)
: # Adding the dummy variables to the original dataframe df = pd.concat([df,dummy_df],axis=1)
# Dropping the redundant columns df = df.drop(unordered_features,axis=1)
: df.shape
: (1161, 97)
```

Splitting into Train and Test Data

```
X = df.drop(['SalePrice'], axis=1)
  MSSubClass LotFrontage LotArea LotShape Utilities LandSlope HouseStyle OverallQual OverallCond YearBuilt ... GarageType_Detchd GarageType_No
0 120
                NaN 4928.0
          20
                  95.0 15865.0
                                    0
                                        3
         60
                 92.0 9920.0
                                0
                                                   0
                                                             3
                                                                       7
                                                                                5.0
                                                                                        25
                  105.0 11751.0
                  NaN 16635.0
5 rows × 96 columns
```

```
# Checking the distribution of target variable, SalePrice

plt.title('Distribution of SalePrice')
sns.distplot(df['SalePrice'])
plt.show()
```


Since SalePrice is highly right skewed, checking the distribution of transformed SalePrice.

```
sns.distplot(np.log(df['SalePrice']))
plt.title('Distribution of log transformed SalePrice')
plt.show()
```

Distribution of log transformed SalePrice 1.2 1.0 0.8 0.0 0.4 0.2 0.0 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 SalePrice

```
# log transformed SalePrice is normally distributed, hence transformed data will be used for model building
y = np.log(df['SalePrice'])
print(y)
        11.759786
1
        12.498742
        12.505399
2
        12.154779
        12.278393
1163
        11.711776
1164
        11.589887
1165
        11.908340
1166
        10.596635
1167
        12.118334
Name: SalePrice, Length: 1161, dtype: float64
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=101)

```
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
(928, 96)
(233, 96)
(928,)
(233,)
X['LotFrontage'].isnull().any()
True
# Imputing missing value of LotFrontage after splitting training and test set to prevent data leakage.
si = SimpleImputer(missing_values=np.nan, strategy='mean')
si.fit(X_train[['LotFrontage']])
SimpleImputer()
X_train[['LotFrontage']] = si.transform(X_train[['LotFrontage']])
X_test[['LotFrontage']] = si.transform(X_test[['LotFrontage']])
```

Model Development and Evaluation

Identification of possible problem-solving approaches (methods)

Feature Scaling

```
X_train.values
array([[6.0000e+01, 6.9000e+01, 9.5880e+03, ..., 0.0000e+00, 0.0000e+00, 1.0000e+00],
      [6.0000e+01, 7.3000e+01, 8.7600e+03, ..., 0.0000e+00, 0.0000e+00, 1.0000e+00],
      [2.0000e+01, 1.1000e+02, 1.4442e+04, ..., 1.0000e+00, 1.0000e+00, 0.0000e+00],
      ...,
      [5.0000e+01, 6.0000e+01, 1.0410e+04, ..., 1.0000e+00, 1.0000e+00, 0.0000e+00],
      [1.2000e+02, 4.0000e+01, 4.6710e+03, ..., 1.0000e+00, 1.0000e+00, 0.0000e+00],
      [2.0000e+01, 8.0000e+01, 1.2984e+04, ..., 1.0000e+00, 1.0000e+00, 0.0000e+00]])
ss = StandardScaler()
ss.fit(X_train)
```

StandardScaler()

```
X_tr_scaled = pd.DataFrame(data=ss.transform(X_train), columns=X_train.columns)
X_te_scaled = pd.DataFrame(data=ss.transform(X_test), columns=X_test.columns)
# Checking the features after
print(X tr scaled) # train data
```

```
MSSubClass LotFrontage
                             LotArea LotShape Utilities LandSlope
0
      0.120692
                 -0.048336 -0.016668 -1.374625
                                                    0.0 -0.220360
                                                    0.0 -0.220360
1
      0.120692
                  0.179162 -0.252924 0.750281
2
     -0.945998
                  2.283521 1.368343 0.750281
                                                    0.0 -0.220360
3
      0.120692
                  0.577284 0.169370 0.750281
                                                    0.0 -0.220360
4
     -0.945998
                 1.146030 1.275038 -1.374625
                                                    0.0 -0.220360
                                                     . . .
                                 . . .
     2.387410
                 -0.560207 0.064652 0.750281
923
                                                    0.0 -0.220360
                                                         3.245634
924
      2.387410
                 0.000000 2.199948 0.750281
                                                    0.0
925
     -0.145980
                 -0.560207 0.217876 0.750281
                                                    0.0 -0.220360
926
     1.720728
                 -1.697698 -1.419655 -1.374625
                                                    0.0 -0.220360
                 0.577284 0.952326 0.750281
                                                    0.0 -0.220360
927
    -0.945998
    HouseStyle OverallQual OverallCond YearBuilt ... GarageType_Detchd
0
      0.683176
                  1.380450
                             -0.571288 -1.203520 ...
                                                               -0.598925
1
      0.683176
                  0.657913
                              -0.571288 -1.170113 ...
                                                               -0.598925
2
                              1.495595 0.466835 ...
     -0.868180
                 -0.064623
                                                              -0.598925
3
      0.683176
                  1.380450
                              -0.571288 -1.136706 ...
                                                               -0.598925
```

Initial Feature Selection with RFE

print(X_te_scaled) # test data

```
# Given the number of features = n, the functions prints and returns top n features selected by RFE

def top_n_features(n):
    top_n_cols = []

    linear_m = LinearRegression()
    linear_m.fit(X_tr_scaled, y_train)
    rfe = RFE(linear_m, n)
    rfe = rfe.fit(X_tr_scaled, y_train)

print("Top %d features : " %n)
    rfe_ranking = list(zip(X_tr_scaled.columns,rfe.support_,rfe.ranking_))

for i in rfe_ranking:
    if i[1]:
        top_n_cols.append(i[0])
    print(top_n_cols)
    return top_n_cols
```

```
# Checking top 45, 50 and 55 features
top_45 = top_n_features(45)
top_50 = top_n_features(50)
top_50 = top_n_features(50)
top_55 = top_n_features(5)

Top_45 features:
['MSSubClass', 'LotArea', 'Utilities', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtCond', 'BsmtExposure',
'BsmtFin5F1', 'HeatingQC', 'CentralAir', 'IstFlrSF', '2ndFlrSF', 'BsmtFullBath', 'FullBath', 'HalfBath', 'KitchenQual', 'Functional', 'FireplaceQu', 'Garagefinish', 'GarageArea', 'GarageGond', 'MSZoning_RL', LotConfig_CulDSac', 'Neighborhood_Edwards',
'Neighborhood_Mridght', 'Neighborhood_Somerst', 'Condition1_Norm', 'Condition2_Horn's', 'BidgType_TunhSE', 'Exterior1st_M 'Sdng',
'Exterior2nd_Wd Sdng', 'WasVnriype_BrKFace', 'MasVnriype_None', 'MasVnriype_Stone', 'Foundation_PConc', 'Electrical_SBrkr', 'Ga
rageType_Attchd', 'GarageType_Detchd', 'GarageType_Not_applicable', 'Fence_MnPrv', 'Fence_MnPrv', 'Fence_Mnlprv', 'SaleCondition_Normal']
Top_50 features:
['MSSubClass', 'LotArea', 'Utilities', 'OverallQual', 'OverallCond', 'YearBuilt', 'YearRemodAdd', 'BsmtCulBath', 'BsmtFin5F1', 'BsmtFin5F2', 'HeatingQC', 'CentralAir', '1stFlrSF', '2ndFlrSF', 'BsmtFulBath', 'BsmtFin5F1', 'BsmtFin5F2', 'HeatingQC', 'CentralAir', 'IstFlrSF', 'Condition_Normal', 'Gondition_Normal', 'FullBath', 'HalfBath', 'KitchenQual', 'Functional', 'FireplaceQu', 'GarageFinish', 'GarageArea', 'GarageCond', 'MSZoning_RL', 'LotConfig_CulDSac', 'WasVnrType_ Edwards', 'Neighborhood_Mnidght', 'Neighborhood_Moserst', 'Condition_Normal']
Top_55 features:

['MSSubClass', 'LotArea', 'Utilities', 'OverallQual', 'OverallCond', 'YearRemodAdd', 'BsmtCond', 'BsmtExposure', 'BsmtFinfSF1', 'BsmtFinfSF1', 'BsmtFinfSF2', 'HeatingQC', 'CentralAir', 'IstFlrSF, 'YearRemodAdd', 'BsmtCond', 'BsmtExposure', 'BsmtFinfSF1', 'BsmtFinfSF1', 'GarageType_Detch', 'GarageType_Detch', 'GarageType_Detch', 'GarageType_Detch', 'GarageType_Now', 'SaleCondition_Normal']
Top_55 features:

['MSSubClass', 'LotArea', 'Utilities', 'OverallQual', 'OverallCond', 'YearRemodAdd', 'BsmtCond', 'BsmtExpos
```

|: build_regressor(X_tr_scaled,y_train,top_45)

print(lin_reg.summary())

OLS Regression Results

```
______
Dep. Variable:
                             y R-squared:
                OLS Adj. R-squared:
Least Squares F-statistic:
Sat, 11 Sep 2021 Prob (F-statistic):
Model:
                                                             0.899
Method:
                                                             189.3
                                                             0.00
Date:
                        15:44:02 Log-Likelihood:
                                                            637.73
                            928
No. Observations:
                                 AIC:
                                                            -1185.
Df Residuals:
                            883
                                 BIC:
                                                             -968.0
Df Model:
                             44
Covariance Type:
                      nonrobust
```

```
build_regressor(X_tr_scaled,y_train,top_50)
                          OLS Regression Results
______
Dep. Variable:
                                 y R-squared:
                  OLS Adj. R-squared:
Least Squares F-statistic:
Model:
Method:
Date:
                  Sat, 11 Sep 2021 Prob (F-statistic):
                          15:44:49 Log-Likelihood:
                                                                     640.81
                                928 AIC:
No. Observations:
                                                                      -1186.
Df Residuals:
                                880 BIC:
Df Model:
                                 47
                 nonrobust
Covariance Type:
______
                            coef std err t P>|t| [0.025
                             _____
                       MSSubClass
Lot∆rea
Utilities
OverallOual
OverallCond
YearBuilt
YearRemodAdd
build_regressor(X_tr_scaled,y_train,top_55)
                         OLS Regression Results
______
Dep. Variable:
                               y R-squared:
              OLS Adj. R-squared:

Least Squares F-statistic:
Sat, 11 Sep 2021 Prob (F-statistic):
                                                                  0.900
Model:
Method:
Date:
                       15:45:01 Log-Likelihood:
                                                                  646.19
Time:
                           928 AIC:
No. Observations:
Df Residuals:
                              875 BIC:
Df Model:
                               52
Covariance Type:
                        nonrobust
                            coef std err t P>|t| [0.025 0.975]

    12.0233
    0.004
    2949.012
    0.000
    12.015
    12.031

    -0.0156
    0.007
    -2.387
    0.017
    -0.028
    -0.003

    0.0301
    0.006
    4.932
    0.000
    0.018
    0.042

    2.36e-17
    1.39e-17
    1.701
    0.089
    -3.62e-18
    5.08e-17

    0.0790
    0.008
    9.868
    0.000
    0.063
    0.095

    0.0428
    0.006
    7.682
    0.000
    0.032
    0.054

    -0.0252
    0.010
    -2.597
    0.010
    -0.044
    -0.006

MSSubClass
LotArea
Utilities
OverallQual
OverallCond
YearBuilt
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The smallest eigenvalue is 3.64e-29. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular.

Comment:

By inspecting adjusted R-square value of linear regression model with top 45, top 50 and top 55 features, top 50 features seem to be optimum as models with 50 and 55 features have the same adjusted R-squared value on the training data.

Testing of Identified Approaches (Algorithms)

```
X_train_rfe = X_tr_scaled[top_50]
X_test_rfe = X_te_scaled[top_50]
```

```
# Reusable Code Block for Cross-validation, Model Building and Model Evaluation
def build_model(X_train, y_train, X_test, params, model='ridge'):
 if model == 'ridge':
   estimator model = Ridge()
   estimator_model = Lasso()
 model cv = GridSearchCV(estimator = estimator model,
                         param_grid = params,
                          scoring= 'neg mean absolute error',
                          cv = 5,
                          return_train_score=True,
                          verbose = 1)
 model_cv.fit(X_train, y_train)
 alpha = model_cv.best_params_["alpha"]
 print("Optimum alpha for %s is %f" %(model, alpha))
 final_model = model_cv.best_estimator_
 final_model.fit(X_train, y_train)
 y_train_pred = final_model.predict(X_train)
 y_test_pred = final_model.predict(X_test)
# Model Evaluation
```

```
# Model Evaluation
print(model," Regression with ",alpha)
print("===========")
print('R2 score (train) : ',r2_score(y_train,y_train_pred))
print('R2 score (test) : ',r2_score(y_test,y_test_pred))
print('RMSE (train) : ', np.sqrt(mean_squared_error(y_train, y_train_pred)))
print('RMSE (test) : ', np.sqrt(mean_squared_error(y_test, y_test_pred)))
return final_model, y_test_pred
```

Ridge Regression

Comment: Ridge Regression model was able to achieve R2 score of 0.88 on test data i.e. 88% of the variance in test data can be explained by the model.

Root Mean Square Error = 0.1369 on test data, that means the prediction made by the model can off by 0.1369 unit.

Lasso Regression

Run and Evaluate selected models

Comparing Model Coefficients¶

```
]: model_coefficients = pd.DataFrame(index=X_test_rfe.columns)
model_coefficients.rows = X_test_rfe.columns

model_coefficients['Ridge (alpha=9.0)'] = ridge_final_model.coef_
model_coefficients['Lasso (alpha=0.0001)'] = lasso_final_model.coef_
pd.set_option('display.max_rows', None)
model_coefficients
```

]:

Ridge (alpha=9.0) Lasso (alpha=0.0001)

-0.013995	-0.011786
0.031863	0.029625
0.000000	0.000000
0.078729	0.082145
0.039758	0.040644
-0.020523	-0.024540
-0.018367	-0.017193
0.016292	0.015516
0.012143	0.010770
	0.031863 0.000000 0.078729 0.039758 -0.020523 -0.018367 0.016292

```
# Converting the predictions to its original scale (anti log)

test_prediction = np.round(np.exp(y_test_predicted)).astype(int)
print(test_prediction[:5])
```

[112914 138600 115910 149355 418861]

 Key Metrics for success in solving problem under consideration:

Final Model

Lasso Regression produced slightly R2 score on test data than Ridge Regression. Choosing Lasso as the final model.

```
# 50 features ordered by feature importance in Lasso Regression

model_coefficients[['Lasso (alpha=0.0001)']].sort_values(by='Lasso (alpha=0.0001)', ascending=False)
```

	Lasso (alpha=0.0001)
1stFlrSF	0.125864
2ndFlrSF	0.101592
OverallQual	0.082145
OverallCond	0.040644
MSZoning_RL	0.030336
LotArea	0.029625
Neighborhood_Somerst	0.029245

Interpretation of the Results

Summary:

First the housing data is read and analyzed dividing the features into numerical and categorical types.

SalePrice is the target column here.

All the features are then analyzed, missing data handling, outlier detection, data cleaning are done. Trend of SalePrice is observed for change in individual features.

New features are extracted, redundant features dropped and categorical features are encoded accordingly. Then the data in split into train and test data and feature scaling is performed.

Target variable SalePrice is right skewed. Natural log of the same is Normal distributed, hence for model building, natural log of SalePrice is considered.

Creating dummy variables increased the number of features greatly, highly imbalanced columns are dropped.

Top 50 features are selected through RFE and adjusted R-square. 50 features: ['MSSubClass', 'LotArea', 'LandSlope', 'OverallQual', 'OverallCond', 'YearBuilt', 'BsmtQual', 'BsmtExposure', 'BsmtFinSF1', 'BsmtUnfSF', 'HeatingQC', 'CentralAir', '1stFlrSF', '2ndFlrSF', 'BsmtFullBath', 'HalfBath', 'KitchenQual', 'Functional', 'Fireplaces', 'GarageFinish', 'GarageArea', 'GarageQual', 'OpenPorchSF', 'MSZoning RL', 'Street Pave', 'LotConfig_CulDSac', 'Neighborhood_Edwards', 'Neighborhood_NAmes', 'Neighborhood_NWAmes', 'Neighborhood NridgHt', 'Neighborhood Somerst', 'Condition1 Feedr', 'Condition1 Norm', 'Condition2_Norm', 'BldgType_TwnhsE', 'RoofStyle_Gable', 'RoofStyle_Hip', 'Exterior1st_HdBoard', 'Exterior1st Wd Sdng', 'Exterior2nd HdBoard', 'Exterior2nd_Wd Sdng', 'MasVnrType_BrkFace', 'MasVnrType None', 'MasVnrType Stone', 'Foundation PConc', 'Heating GasA',

'GarageType_Not_applicable', 'PavedDrive_Y', 'SaleCondition_Normal', 'SaleCondition_Partial']

Ridge and Lasso Regression Model are built with optimum alpha calculated in GridSearchCV method. Optimum alpha = 9.0 for ridge and 0.0001 for lasso model.

Model evaluation is done with R2 score and Root Mean Square Error.

Lasso Regression is chosen as final model for having slightly better R-square value on test data.

Out of 50 features in the final model, top 10 features in order of descending importance are ['1stFlrSF', '2ndFlrSF', 'OverallQual', 'OverallCond', 'SaleCondition_Partial', 'LotArea', 'BsmtFinSF1','SaleCondition_Normal', 'MSZoning_RL', 'Neighborhood_Somerst']

Model coefficients are listed in a table along with the corresponding features, for example natural log of SalePrice will change by 0.124911 with unit change in the feature '1stFlrSF' when all the features remain constant. Negative sign in the coefficient signifies negative correlation between the predictor and target variable.

Predicted value of SalePrice is tranformed into its original scale by performing antilog.

CONCLUSION

Model Building

```
ridge_model = Ridge(alpha=18.0)
ridge_model.fit(X_train_rfe, y_train)

# Predicting
y_train_pred = ridge_model.predict(X_train_rfe)
y_test_pred = ridge_model.predict(X_test_rfe)

print("Model Evaluation : Ridge Regression, alpha=18.0")
print('R2 score (train) : ',round(r2_score(y_train,y_train_pred), 4))
print('R2 score (test) : ',round(r2_score(y_test,y_test_pred), 4))
print('RMSE (train) : ', round(np.sqrt(mean_squared_error(y_train, y_train_pred)), 4))
print('RMSE (test) : ', round(np.sqrt(mean_squared_error(y_test, y_test_pred)), 4))

Model Evaluation : Ridge Regression, alpha=18.0
R2 score (train) : 0.9044
R2 score (test) : 0.8897
RMSE (train) : 0.1215
RMSE (test) : 0.1368
```

```
lasso model = Lasso(alpha=0.0002)
lasso_model.fit(X_train_rfe, y_train)
y_train_pred = lasso_model.predict(X_train_rfe)
y_test_pred = lasso_model.predict(X_test_rfe)
print("Model Evaluation : Lasso Regression, alpha=0.0002")
print('R2 score (train) : ',round(r2_score(y_train,y_train_pred), 4))
print('R2 score (test) : ',round(r2_score(y_test,y_test_pred), 4))
print('RMSE (train) : ', round(np.sqrt(mean_squared_error(y_train, y_train_pred)), 4))
print('RMSE (test) : ', round(np.sqrt(mean_squared_error(y_test, y_test_pred)), 4))
Model Evaluation: Lasso Regression, alpha=0.0002
R2 score (train) : 0.9047
R2 score (test) : 0.8913
RMSE (train): 0.1214
RMSE (test): 0.1358
model_coefficients['Ridge (alpha = 18.0)'] = ridge_model.coef_
model_coefficients['Lasso (alpha = 0.0002)'] = lasso_model.coef_
pd.set_option('display.max_rows', None)
model_coefficients
```

OverallQual	0.078729	0.082145	0.078781	
0		5.552116	0.070701	0.079602
OverallCond	0.039758	0.040644	0.039877	0.040945
YearBuilt	-0.020523	-0.024540	-0.020858	-0.024607
YearRemodAdd	-0.018367	-0.017193	-0.018343	-0.017974
BsmtCond	0.016292	0.015516	0.016291	0.016118
BsmtExposure	0.012143	0.010770	0.012169	0.012174
BsmtFinType1	0.009467	0.009594	0.009456	0.009414
BsmtFinSF1	0.024810	0.024894	0.024739	0.024120
BsmtFinSF2	0.000000	0.000000	0.000000	0.000000
HeatingQC	0.013147	0.012817	0.013112	0.012775
CentralAir	0.014595	0.013950	0.014592	0.014382
1stFlrSF	0.118539	0.125864	0.119341	0.127273
2ndFlrSF	0.096363	0.101592	0.097397	0.107167
1etElr\$E				o (alpha = 0.0002)
1stFlrSF	0.118539	0.125864	0.119341	0.127273
	0.118539	0.125864	0.119341	<u> </u>
model_coeffi	0.118539 cients.sort_val	0.125864 ues(by='Ridge (al	0.119341 pha = 18.0)', as	0.127273 cending=False).head(1
model_coeffi	0.118539 cients.sort_val	0.125864	0.119341 pha = 18.0)', as	0.127273 cending=False).head(1
model_coeffi Ridg	0.118539 cients.sort_val pe(alpha=9.0) Lass	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass	0.127273 cending= False).head(1 so(alpha = 0.0002)
model_coeffi Ridg 1stFIrSF	0.118539 cients.sort_val pe(alpha=9.0) Lass	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg 0.125864	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass	0.127273 cending= False).head(1 so(alpha = 0.0002)
model_coeffi Ridg 1stFIrSF # Top 5 feat	0.118539 cients.sort_val ge(alpha=9.0) Lasso 0.118539	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass 0.119341	0.127273 cending= False).head(1 so(alpha = 0.0002)
model_coeffi Ridg 1stFlrSF # Top 5 feat	0.118539 cients.sort_val ge(alpha=9.0) Lasso 0.118539	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass 0.119341	0.127273 cending=False).head(1 so (alpha = 0.0002) 0.127273
model_coeffi Ridg 1stFlrSF # Top 5 feat	0.118539 cients.sort_val ge(alpha=9.0) Lasso 0.118539 rues in Lasso fi cients.sort_val	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass 0.119341 pha=0.0001)', as	0.127273 cending=False).head(1 so (alpha = 0.0002) 0.127273
model_coeffi Ridg 1stFIrSF # Top 5 feat	0.118539 cients.sort_val ge(alpha=9.0) Lasso 0.118539 rues in Lasso fi cients.sort_val	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass 0.119341 pha=0.0001)', as	0.127273 cending=False).head(1 so (alpha = 0.0002)
model_coeffi Ridg 1stFIrSF # Top 5 feat model_coeffi	0.118539 cients.sort_val ge (alpha=9.0) Lasso 0.118539 sues in Lasso fi cients.sort_val Ridge (alpha=9.0)	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass 0.119341 pha=0.0001)', as Ridge (alpha = 18.0)	0.127273 cending=False).head(1 so (alpha = 0.0002)
model_coeffi Ridg 1stFlrSF # Top 5 feat model_coeffi 1stFlrSF	0.118539 cients.sort_val e(alpha=9.0) Lass 0.118539 ues in Lasso fi cients.sort_val Ridge(alpha=9.0) 0.118539	0.125864 ues(by='Ridge (al o (alpha=0.0001) Ridg	0.119341 pha = 18.0)', as e (alpha = 18.0) Lass 0.119341 pha=0.0001)', as Ridge (alpha = 18.0) 0.119341	0.127273 cending=False).head(1 so (alpha = 0.0002)

Ridge (alpha=9.0) Lasso (alpha=0.0001) Ridge (alpha = 18.0) Lasso (alpha = 0.0002)

-0.014154

0.031727

0.000000

-0.014921

0.030139

0.000000

-0.011786

0.029625

0.000000

-0.013995

0.031863

0.000000

 ${\bf MSSubClass}$

LotArea

Utilities

```
X_train_new = X_train_rfe.drop(['1stFlrSF', '2ndFlrSF', '0verallQual', '0verallCond', 'SaleCondition_Normal'], axis=1)
X_test_new = X_test_rfe.drop(['1stFlrSF', '2ndFlrSF', '0verallQual', '0verallCond', 'SaleCondition_Normal'], axis=1)
alpha = 0.0001
lasso_model = Lasso(alpha=alpha)
lasso_model.fit(X_train_new, y_train)
y_train_pred = lasso_model.predict(X_train_new)
y_test_pred = lasso_model.predict(X_test_new)
lasso model.coef
array([-0.01250212, 0.06081117, 0. , 0.03374579, -0.04282206, 0.02806455, 0.01948429, 0.00123001, 0.04627592, 0. , 0.01730744, 0.02043862, 0.01430715, 0. , 0.10060322, 0.04928814, 0.05611037, -0.01846189, 0.06071655, 0.01452197, 0.0234471, 0.023447305, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.01452197, 0.014
                      0.0522451, 0.03244774, 0.02647395, 0.01445796, -0.02665003, 0.02045071, 0.02398737, 0.02082199, 0.01024634, 0.00919277,
                     -0.01519461, -0.01965894, 0.0079257, 0.02519173, 0.03955275, 0.01701565, 0.02440478, 0.02272969, -0.01510877, 0.00872045, 0.00954478, 0.02771228, 0.01349331, 0.01164613, 0.01030034])
      model_coeff = pd.DataFrame(index=X_test_new.columns)
       model_coeff.rows = X_test_new.columns
      model_coeff['Lasso'] = lasso_model.coef_
      model_coeff.sort_values(by='Lasso', ascending=False).head(5)
                                                                    Lasso
                        FullBath 0.100603
                         LotArea 0.060811
           FireplaceQu 0.060717
          KitchenQual 0.056110
            GarageArea 0.052245
```