Теоремы о неявной обратной функции

Линейные отображения

Определение. Функция $L: R^n \to R^m$ называется линейным отображением, если $\forall \alpha, \beta \in R, \ \forall x, y \in R^n: \ L(\alpha x + \beta y) = \alpha L(x) + \beta L(y)$

Лемма 1. Если $L \in \mathcal{L}(R^n, R^m)$, то $\exists C \in R : \forall x \in R^n : ||L|| < C||x||$.

Доказательство. Имеем $||L(x)||^2 = \sum\limits_{i=1}^m (L_i,x)^2$, где $L_i = (a_{i1},\ldots a_{in})$. По неравенству Коши-Буняковского: $(L_i,x)^2 \leqslant ||L_i||^2 \cdot ||x||^2$ и, значит $||L||^2 \leqslant ||x||^2 \sum\limits_{i=1}^m ||L_i||^2 = ||x||^2 \sum\limits_{i=1}^m \sum\limits_{j=1}^n a_{ij}^2$ так, что $||L(x)|| \leqslant C||x||$ выполняется для

$$C = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}.$$

Определение. Число $||L||=\inf\{C\in R,\ maкux,\ что\ \forall x\in R^n: ||L(x)||< C||x||^2\}$ называется нормой линейного отображения L.

Замечание.

- 1. Определение корректно.
- 2. Поскольку условие $(\forall x \in R^n : ||L(x)|| \leq ||L|| + \varepsilon||x||$ выполняется при всех $\varepsilon > 0$, то inf достигается, т.е. $\forall x \in R^n : ||L(x)|| \leq ||L|| \cdot ||x||$
- 3. $||L(x) L(y)|| <= ||L||||x y|| \forall x, y from R^n$ Применяя последнее неравенство к разности векторов и пользуясь линейностью L получим

$$||L(x) - L(y)|| \le ||L|| \cdot ||x - y|| \quad \forall x, y \in \mathbb{R}^n$$

в частности, заключаем, что любое линейное оторажение непрерывно.

Лемма 2. Φ -ция $|| \cdot || : L(\mathbb{R}^n, \mathbb{R}^m) \to \mathbb{R}$ удовлетворяет свойствам.

- 1. $||L|| \geqslant 0$, $||L|| = 0 \Leftrightarrow L = \Theta$ нулевое отображение
- 2. $\forall \alpha \in R ||\alpha L|| = |\alpha| \cdot ||L||$
- 3. $||L_1 + L_2|| \le ||L_1|| + ||L_2||$
- 4. Если $L_1 \in L(R^n, R^m)$, $L_2 \in L(R^m, R^k)$, то определено произведение (композиция) $L_2L_1 \in L(R^n, R^k)$, $||L_1L_2|| \leq ||L_1|| \cdot ||L_2||$

Определение. Последовательность $L_kL \in (R^n, R^m)$ сходится $\kappa L \in L(R^n, R^m)$, если $||L_k - L|| \to 0$.

Лемма 3. Пусть линейные оторажение L_k и L имеют матрицы $A_k = (a_{ij}^{(k)} \ u \ A \ coomsemcmsehho.$ Последовательность $L_k \to L$, тогда u только тогда, когда $a_{ij}^{(k)} \to a_{ij}$.

Доказательство. Заменяя L_k на L_k-L - линейное отображение с матрицей A_k-A , сведем к случаю $L=\Theta$, что равносильно $a_{ij}=0 \ \ \forall i,j.$

Элемент $a_{ij}^{(k)}$ - *i*-й элемент $L_k(e^j)$. Поэтому $a_{ij}^{(k)} \leqslant L_k(e^j) \leqslant ||L_k|| \to 0$. Обратно, если все $A_{ij}^{(k)} \to 0$ при $k \to \infty$, то $||L_k|| \to 0$ в силу оценки.

Напомним, что $f: E \subset \mathbb{R}^n \to \mathbb{R}^m$ задается набором координатных функций: $f_i: E \to \mathbb{R}, \quad f = (f_1, \dots f_m).$

Дифференцируемые отображения

Определение. Пусть $E \subset R^n$, а - внутренняя точка E. Отобрадение $f: E \to R^m$ называется дифференцируемым в a, если существует линейное отображение $L_a: R^n \to R^m$ такое, что

$$f(a+h) - f(a) = L_a(h) + \alpha(h)||h||,$$
(1)

где $\alpha(x) \to 0$ при $h \to 0$. В случае существования отображение L_a определено однозначно. Оно называется дифференциалом f в точке а D_{f_a} .

Матрица дифференциала D_{f_a} называется матрицей Якоби отображения f в a и обозначается $\frac{\partial f}{\partial x}(a)$.

Теорема 1. Отобрадение f дифференцируесм в точке а тогда, и только тогда, когда все координатные функции f_i дифференцируемы.

Доказательство. Пусть $L_a=(L_1,\ldots L_m),$ равенство (1) эквивалентно системе:

$$f(a+h) - f(a) = L_i(h) + \alpha_i(h)||h||$$

 L_a линейно тогда, и только тогда, когда все L_i линейны. $\alpha(h) \to 0 \Leftrightarrow \alpha_i(h) \to 0.$

Следствие. Если отображение $f: E \to R^n$ дифф. в точке a, то ij-й элемент матрицы Якоби f в этой точке равен $\frac{\partial f_i}{\partial x_i}(a)$.

Теорема 2. (О композиции) Если отображение $f: E \to F \subset R^n$ диф-ференцируемо в точке a, а отображение $g: F \to R^k$ дифференцируемо в точке b = f(a), то композиция $g \circ fE \to R^k$ дифференцируема в точке a и $D(g \circ f)_a = D_{g_b} \circ D_{f_a}$.

Доказательство. Доказательство очевидно.

Теорема 3. (О среднем) Пусть U - открытое множество в R^n , отрезок $\Delta_{a,b} \subset U$. Если отображение f дифференцируемо на U и $D_{f_x} \leqslant M$ для всех $x \in U$, то $||f(b) - f(a)|| \leqslant M||b - a||$.

Доказательство. Рассмотрим вектор-функцию $t \to \gamma(t) = f(a+(b-a)t)$. Эта функция дифференцируема по теореме 2 в каждой точке $t \in [0,1]$, $\gamma(1) = f(b), \ \gamma(0) = f(a)$ и по правилу дифференцирования композиции $\gamma(t) = D_{f_{a+t(b-a)}}(b-a)$. По теореме Лагранжа для вектор функций $\exists \Theta \in$

 $(0,1): ||\gamma(1)-\gamma(0)||\leqslant ||\gamma(\Theta).$ Положим $c=a+\Theta(b-a).$ Тогда по пункту 4 леммы 2 $||\gamma'(\theta)||\leqslant ||Df_c||||b-a||$ Следовательно, $||f(b)-f(a)||\leqslant ||\gamma'(\theta)||\leqslant M||b-a||$