Chapter 3

Metal-Oxyde Semiconductor Field Effect Transistors (MOSFET)

Chapter 3: MOSFET

Outline

- Introduction to the MOSFET characteristics
- NMOS device structure
- NMOS detailled I-V characteristics
- PMOS and CMOS technology
- Complements on NMOS technology
- Depletion-type MOSFETs

- Transistors are the component that allowed the electronic industry to really take off
 - Transistors are usefull for analog electronics, but even more so for digital electronics
 - Extreme miniaturization possible

1 transistor (1948)

Field-effect transistors or FET are the most commonly used transistors

- Used in analog and digital electronics
- High imput resistance, small size
- \Rightarrow Ideal for applications that require low consumption \curvearrowright
- Used a lot in VLSI (very large scale integraiton)
 - i.e. putting a lot of transistors in a small chip
- Two basic forms
 - Metal Oxyde Semiconductor FET (MOSFET)
 - Junction gate FET (JFET)

way high chance of burning something (small area,...)

The basic principle of a transistor is very simple: it is an electronic switch

Diode: voltage reaches a threshold ⇒ Current flows
Similar to a pressure valve

Transistor: when we apply a voltage ⇒ current flows similar to a water tap

The basic principle of a transistor is very simple: it is an electronic switch

MOSFET = voltage-controlled current source

The voltage applied at the input will determine the amount of current that flows through the transistor

NMOS I-V characteristics

Idealized model of a NMOS transistor

- NMOS is a three-port component*
- Infinite input resistance*
- Current source controlled through input voltage v_{GS} *

NMOS I-V characteristics

- Transconductance characteristic
- Magnitude of current source controlled through input voltage

NMOS I-V characteristics

Idealized model of a NMOS transistor

- NMOS is a three-port component*
- Infinite input resistance*
- Current source controlled through input voltage v_{GS} *

NMOS I-V characteristics

Symbols for NMOS transistor

Poorly standardized for MOSFET

Chapter 3: MOSFET

Outline

- Introduction to the MOSFET characteristics
- NMOS device structure
- NMOS detailled I-V characteristics
- PMOS and CMOS technology
- Complements on NMOS technology
- Depletion-type MOSFETs

Three semiconductors (N-P-N)

- Example of a NPN MOSFET (NMOS transistor)
 - gate electrode is electrically insulated from the body
 - NMOS has 4 terminals (but B often connected to S)
 - n-region heavily doped (n⁺)

No voltage at gate

Two depletion areas appear at both PN junctions

- ⇒ If no voltage is aplied, no current flows
- ⇒ Equivalent to 2 back-to-back diodes

No voltage at gate

When a voltage is applied at the drain (but not at the gate)

Voltage at the gate ($v_{GS} < V_{TH}$)

If a positive voltage is applied at the gate ($v_{GS} < V_{TH}$)

- Holes in the P semiconductor are repelled
- A depletion area appears along the gate
- If $v_{GS} < V_{TH}$, the positive charge on the gate is compensated by the negative bound charges

Voltage at the gate ($v_{GS} < V_{TH}$)

If a positive voltage is applied at the gate ($v_{GS} < V_{TH}$)

- The charges along the gate are bound charges (جامعة)
- ⇒ Even if a voltage is applied at the drain, no current will flow between drain and source

Voltage at the gate ($v_{GS} > V_{TH}$)

When the positive voltage at the gate increases $(v_{GS} > V_{TH})$

- The charges on the gate will attract electrons from the N-type semiconductors (as well as minority carriers from the P-side)
- ⇒ A N-type channel is created, connecting source and drain
 - The channel is composed of mobile carriers

Voltage at the gate ($v_{GS} > V_{TH}$)

When the positive voltage at the gate increases (v_{GS} > V_{TH})

• the higher v_{GS} , the larger the induced channel

Voltage at the gate ($v_{GS} > V_{TH}$)

When the positive voltage at the gate increases (v_{GS} > V_{TH})

- If a positive voltage is applied at the drain, a current will flow from drain to source
- ⇒ The gate voltage allows to establish a channel
- ⇒ The drain voltage allows make the current flow

Voltage at the gate ($v_{GS} > V_{TH}$)

- If v_{DS} increases
 - ⇒ Mobile carriers move faster
 - \Rightarrow current i_D increases
- If v_{GS} increases
 - ⇒ Channel becomes wider
 - \Rightarrow current i_D increases

Voltage at the gate (higher values of v_{DS})

Higher values of v_{DS}

- Gate-substrate voltage is not uniform
 - Gate-substrate voltage is lower close to drain
 - ⇒ Channel takes tapered form
- Tapered channel => increased resistance
 - The $i_D = f(v_{DS})$ curve bends

Voltage at the gate (higher values of v_{DS})

Eventually, when $v_{DS} \geq v_{GS} - V_{TH}$

- Channel is completely pinched off
- Increase in v_{DS} no longer increases current

Chapter 3: MOSFET

Outline

- Introduction to the MOSFET characteristics
- NMOS device structure
- NMOS detailled I-V characteristics
- PMOS and CMOS technology
- Complements on NMOS technology
- Depletion-type MOSFETs

Derivation of i_D-v_{DS}

Strip dx:
$$C = C_{ox}Wdx$$

Oxide
$$dq = -C(v_{GS} - V_T - v(x))$$
Capacitor of value
$$dq = -C(v_{GS} - V_T - v(x))$$

$$dq = -C(v_{GS} - V_T - v(x))dx$$

$$E(x) = -\frac{dv(x)}{dx}$$
$$v_{drift} = \frac{dx}{dt} = -\mu_n E(x)$$

$$\frac{dx}{dt} = \mu_n \frac{dv(x)}{dx}$$

Derivation of i_D-v_{DS}

$$\frac{dq}{dx} = -C_{ox}W(v_{GS} - V_T - v(x))$$

$$\frac{dx}{dt} = \mu_n \frac{dv(x)}{dx}$$

$$i = \frac{dq}{dt} = \frac{dq}{dx} \frac{dx}{dt}$$

$$i_D = -i = C_{ox}W\mu_n(v_{GS} - V_T - v(x))\frac{dv(x)}{dx}$$

$$i_D dx = C_{ox}W\mu_n(v_{GS} - V_T - v(x))dv(x)$$

$$i_D dx = C_{ox} W \mu_n (v_{GS} - V_T - v(x)) dv(x)$$

$$i_D = k'_n \frac{W}{L} \left[(v_{GS} - V_T) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

with
$$k'_n = \mu_n C_{ox}$$

Derivation of i_D-v_{DS}

$$i_D = k_n' \frac{W}{L} \left[(v_{GS} - V_T) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$
Saturation: $v_{DS} = v_{GS} - V_T$

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_T)^2$$

$$i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_T)^2$$
Curve bends because the channel resistance increases with v_{DS}

$$v_{DS} \ge v_{GS} - V_t$$
Curve bends because the channel is pinched off at the drain end, and v_{DS} no longer affects the channel.

Almost a straight line with slope proportional to $(v_{GS} - V_t)$

$$v_{DSSMAI} = v_{GS} - V_t$$

$$v_{DSSMAI} = v_{GS} - V_t$$

$$v_{DSSMAI} = v_{GS} - V_t$$

$$v_{DS} \ge v_{CS} - V_t$$

Derivation of i_D-v_{DS}

Triode region:
$$i_D = k_n' \frac{W}{L} \left[(v_{GS} - V_T) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

Saturation region:
$$i_D = \frac{1}{2} k'_n \frac{W}{L} (v_{GS} - V_T)^2$$

Limit between triode and saturation region:

$$v_{DS} = v_{GS} - V_T$$

$$\Leftrightarrow i_D = \frac{1}{2} k'_n \frac{W}{L} v_{DS}^2$$

In saturation region...

- large-scale equivalent circuit
 - NMOS operates as a perfect current source
 - Input on gate: very high (infinite) input impedance
 - Valid for v_{DS} ≥ v_{GS} V_T

Saturation region: effect of channel pinching

- Increasing v_{DS} reduces the channel length
 - Voltage accross actual channel remains $v_{GS} V_T = V_{D,sat}$
 - Electrons are accelerated through depletion region by additional voltage drop

Saturation region: effect of channel pinching

Quantitative analysis:

$$\begin{split} i_D &= \frac{1}{2} k_n' \frac{W}{L - \Delta L} (v_{GS} - V_T)^2 \\ \Rightarrow i_D &= \frac{1}{2} k_n' \frac{W}{L} \left(\frac{1}{1 - \Delta L/L} \right) (v_{GS} - V_T)^2 \\ \Rightarrow i_D &= \frac{1}{2} k_n' \frac{W}{L} \left(1 + \frac{\Delta L}{L} \right) (v_{GS} - V_T)^2 \end{split}$$

• Let us assume: $\frac{\Delta L}{L} = \frac{\lambda'}{L} v_{DS} = \lambda v_{DS}$

$$\Rightarrow i_D = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_T)^2 (1 + \lambda v_{DS})$$

the shorter the V, the shorter the channel

Saturation region: effect of channel pinching

=> Output impedance of current source:
$$r_o = \left[\frac{di_D}{dv_{DS}}\right]^{-1} \approx \frac{1}{\lambda I_D} = \frac{V_A}{I_D}$$
 with $I_D = k_n' \frac{W}{L} (v_{GS} - V_T)^2$

 $-V_A = -1/\lambda$

Saturation region: effect of channel pinching

- large-scale equivalent circuit
 - Current source has output impedance r_o

- Valid for
$$v_{DS} \ge v_{GS} - V_T$$

Chapter 3: MOSFET

Outline

- Introduction to the MOSFET characteristics
- NMOS device structure
- NMOS detailled I-V characteristics
- PMOS and CMOS technology
- Complements on NMOS technology
- Depletion-type MOSFETs

PMOS and CMOS technology

PMOS transistors

- Mobile charge carriers in the channel => holes
- A channel is created when $v_{SG} \ge V_{TH}$
- Saturation when $v_{SD} \geq v_{SG} V_{TH}$
- The drain current (from source to drain) when saturating is $i_D=\frac{1}{2}k_p'\frac{W}{L}~(v_{SG}-V_{TH})^2$

• Note that $k_p' \approx 0.25 k_n'$ to $0.5 k_n'$

PMOS and CMOS technology

Complementary MOS (CMOS) transistors

Both NMOS and PMOS and same substrate

- ⇒ Many powerful circuit-design possibilities
- ⇒ Most widely used IC technology
- ⇒ Many BJT applications now possible with CMOS

PMOS and CMOS technology

CMOS transistors

- CMOS = Combination of NMOS and PMOS
- Example: a CMOS inverter


```
If \mathbf{v_i} = \mathbf{V_{DD}}
\Rightarrow v_{SGP} = 0 and i_{DP} = 0
\Rightarrow Transistor \mathbf{Q_p} closed

\Rightarrow i_{DN} = 0 and v_{GSN} = V_{DD}
\Rightarrow Only possible for v_{DSN} = 0
\Rightarrow v_o = vDSN
\Rightarrow \mathbf{v_o} = \mathbf{0}
```


CMOS transistors

- CMOS = Combination of NMOS and PMOS
- Example: a CMOS inverter


```
If v_i = 0
\Rightarrow v_{GSN} = 0 \text{ and } i_{DN} = 0
\Rightarrow \text{Transistor } Q_N \text{ closed}
\Rightarrow i_{DP} = 0 \text{ and } v_{SGP} = V_{DD}
```

 \Rightarrow Only possible for $v_{SDP}=0$

$$\Rightarrow v_o = V_{DD} - v_{SDP}$$

$$\Rightarrow v_o = V_{DD}$$

CMOS transistors

- CMOS can be seen as two switches
- ⇒ No static current

v _i	v _o
0	V_{DD}
V_{DD}	0

CMOS transistors

NAND logic gate with CMOS transistors

Α	В	Х
0	0	V_{DD}
0	V_{DD}	V_{DD}
V_{DD}	0	V_{DD}
V_{DD}	V_{DD}	0

Reminder: with NAND logic gates, you can create any sum of minterms => any combinatory function

CMOS transistors

NOR logic gate with CMOS transistors

Α	В	Х
0	0	V_{DD}
0	V_{DD}	0
V_{DD}	0	0
V_{DD}	V_{DD}	0

Reminder: with NAND logic gates, you can create any sum of minterms => any combinatory function

Chapter 3: MOSFET

Outline

- Introduction to the MOSFET characteristics
- NMOS device structure
- NMOS detailled I-V characteristics
- PMOS and CMOS technology
- Complements on NMOS technology
- Depletion-type MOSFETs

Complements on NMOS technology

Effects of the substrate

- v_{sB} not alwas zero
- Substrate common to many MOS transistors
 - ⇒ usually connected to most negative power supply in NMOS circuit
 - \Rightarrow V_{SB} may not be zero for all transistors!

Complements on NMOS technology

Effects of the substrate

- V_t changes with V_{SB}
- Depletion region widens
 - ⇒ More negative ions in depletion region
 - ⇒ Less electrons required to compensate positive charges at gate
 - ⇒ n-type channel narrows
- \Rightarrow macroscopic effect: V_t increases

$$V_t = V_{t0} + \gamma \left[\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right]$$

with
$$\gamma = \frac{\sqrt{2qN_d\varepsilon_S}}{C_{ox}}$$

Complements on NMOS technology

NMOS input impedance

Gate acts as capacitor with substrate

- Input resistance r_G very high (~10¹⁵ Ω)
- C_{GS} ~ a few fF to some nF depending on size of NMOS with medical effect.)
- \Rightarrow static i_G is zero

if problems: generally the + effe

Chapter 3: MOSFET

Outline

- Introduction to the MOSFET characteristics
- NMOS device structure
- NMOS detailled I-V characteristics
- PMOS and CMOS technology
- Complements on NMOS technology
- Depletion-type MOSFETs

Depletion-type MOSFET

channel is physically implanted in MOSFET

- For a NMOS, the channel is of type n
 - \Rightarrow A n-type silicon region is implanted between the n⁺ source and the n⁺ drain at the top of the p-type substrate
 - \Rightarrow If voltage v_{DS} is applied between drain and source, a current i_D flows, even for $v_{GS} = 0$
 - ⇒ There is no need to induce a channel
- Channel depth and conductivity is controlled through v_{GS}
 - \Rightarrow Positive v_{GS} : more electrons into channel => channel enhanced
 - \Rightarrow Negative v_{GS} : electrons repelled from channel => channel becomes shallower => conductivity decreases

Depletion-type MOSFET

I-V characteristics

• The curve $i_D = f(v_{GS})$ is shifted to the left

Depletion-type MOSFET

Enhancement-type vs depletion-type

- Enhancement-type and depletion-type MOSFET can be realized onto the same IC chip
 - ⇒ Circuits with improved characteristics
 - ⇒ See part on active loads in next chapter

Conclusions

- Transistors are created with semiconductors
 - Voltage at gate creates a channel that allows current to flow
 - Voltage at gate determines the width of the channel
 - ⇒ voltage-controlled current source
- MOSFET transistors have internal resistance
 - Due to channel pinching
- PMOS transistors are complementary of NMOS
 - PMOS + NMOS = CMOS
 - ⇒ CMOS offers interesting circuit for digital logic
- Depletion-type MOSFET have pre-implanted channel
 - No treshold voltage to have current flowing

