

Claims

- [c1] 1. A method for modeling a characteristic C that is distributed within a domain, said method comprising:
- providing a base equation expressing the characteristic C as a function f of a variable V through use of N+1 parameters C_0, C_1, \dots, C_N , said base equation being of the form $C = f(C_0, C_1, \dots, C_N, V)$, said N being at least 1, said parameters C_0, C_1, \dots, C_N being subject to uncertainty;
- providing a probability density function (PDF) for describing the probability of occurrence of C_0 in accordance with said uncertainty; and
- providing subsidiary equations expressing C_1, \dots, C_N in terms of C_0 .
- [c2] 2. The method of claim 1, wherein $C = C_0$ if $V = V_0$, and wherein providing the PDF comprises:
- providing test data of $C = C_0(k)$ at each node k of K nodes in a space such that $V = V_0$ at node k, said $C_0(k)$ being C_0 at node k, said K being at least 2, said k being an integer having values 1, 2, ..., K; and
- deriving said PDF from said test data.
- [c3] 3. The method of claim 1, wherein providing the sub-

sidiary equations comprise:

providing test data of $C(k)$ versus V at each node k of K nodes in a space, said $C(k)$ being C at node k , said K being at least 2, said k being an integer having values 1, 2, ..., K ;

fitting the function f to the test data at each node k of the K nodes to obtain $C(k) = f(C_0(k), C_1(k), \dots, C_N(k), V)$, said $C_0(k), C_1(k), \dots, C_N(k)$ respectively denoting C_0, C_1, \dots, C_N at node k ; and

deriving the subsidiary equations by utilizing $C(k) = f(C_0(k), C_1(k), \dots, C_N(k), V)$ at each node k of the K nodes.

[c4] 4. The method of claim 1, further comprising:

providing a value V'' of V ;

picking a random value C_{0R} of C_0 from the PDF;

computing values C_{1R}, \dots, C_{NR} of C_1, \dots, C_N , respectively, by substituting C_{0R} into the subsidiary equations; and

calculating a value of C by substituting $C_{0R}, C_{1R}, \dots, C_{NR}$ and V'' into the base equation.

[c5] 5. The method of claim 1, further comprising determining a performance characteristic of a design, said design comprising I nodes in the domain, said I being at least 2, each node i of the I nodes having a value $C(i)$ of the characteristic C , said i having values of 1, 2, ..., I , said

determining a performance characteristic comprising:
randomly selecting a value of $C(i)$ of C at each node i
of the I nodes; and
determining the performance characteristic, includ-
ing utilizing said randomly selected $C(1), C(2), \dots,$
 $C(I)$.

- [c6] 6. The method of claim 5, said randomly selecting a value of $C(i)$ comprising:
 - providing a value $V(i)$ of V at node i ;
 - picking a random value C_{0R} of C_0 from the PDF;
 - calculating corresponding values C_{1R}, \dots, C_{NR} of C_1, \dots, C_N , respectively, by substituting C_{0R} into the subsidiary equations; and
 - computing $C(i)$ by substituting $C_{0R}, C_{1R}, \dots, C_{NR}$ and $V(i)$ into the base equation.
- [c7] 7. The method of claim 1, said PDF being a normal prob-
ability distribution.
- [c8] 8. The method of claim 1, said subsidiary equations hav-
ing a form of $C_x = g_x(C_{x-1})$ for functions g_x , said func-
tions g_x each being a linear or quadratic function of C_{x-1} ,
said x having values of 1, 2, ..., N.
- [c9] 9. The method of claim 1, said domain being a physical
domain, said characteristic C being spatially distributed

within said physical domain.

- [c10] 10. The method of claim 1, said characteristic C being an electrical characteristic.
- [c11] 11. The method of claim 10, said characteristic C denoting capacitance at a node of the domain, said V denoting a voltage applied to the node.
- [c12] 12. The method of claim 11, said function f being a polynomial in V of order N, said N being at least 5.
- [c13] 13. The method of claim 12, said N=2, said function f being $C_0/(1-V/V_B)^m$, said $C_1 = V_B$, said $C_2 = m$.
- [c14] 14. A method for modeling a characteristic C that is distributed within a domain, said characteristic C having J subcharacteristics S_1, S_2, \dots, S_J , said method comprising:
 - providing a combination equation that expresses C as a function F of the J subcharacteristics, said J being at least 2;
 - providing base equations expressing S_j as a function f_j of a variable V through use of N+1 parameters $S_{j0}, S_{j1}, \dots, S_{jN}$, said base equations being of the form $S_j = f_j(S_{j0}, S_{j1}, \dots, S_{jN}, V)$, said N being at least 1, said parameters $S_{j0}, S_{j1}, \dots, S_{jN}$ being subject to uncertainty, said j having values of 1, 2, ..., J;
 - providing at least one probability density function

(PDF) from PDF₁, PDF₂, ..., PDF_J, said PDF_n describing the probability of occurrence of S_{n0} in accordance with said uncertainty for n=1, 2, ..., J, said at least one PDF including PDF₁;

for each PDF_n not provided: providing an auxiliary equation E_n expressing S_{n0} in terms of S₁₀; and providing subsidiary equations expressing S_{j1}, ..., S_{jN} in terms of S_{j0} for each subcharacteristic S_j of the J subcharacteristics.

- [c15] 15. The method of claim 14, wherein S_j = S_{j0} if V = V₀ for each subcharacteristic S_j of the J subcharacteristics, and wherein providing the PDF_n for the at least one n comprises:

providing test data from which S_{n0}(k) may be inferred at each node k of K nodes in a space such that V = V₀ at node k, said S_{n0}(k) being S_{n0} at node k, said K being at least 2, said k having values of 1, 2, ..., K; and deriving said PDF_n from said test data.

- [c16] 16. The method of claim 14, wherein providing the subsidiary equations comprise for each subcharacteristic S_j of the J subcharacteristics:

providing test data from which S_j(k) versus V may be inferred at each node k of K nodes in a space, said S_j(k) being S_j at node k, said K being at least 2, said k having values of 1, 2, ..., K;

fitting the function f_j to the test data at each node k of the K nodes to obtain $S_j(k) = f(S_{j0}(k), S_{j1}(k), \dots, S_{jN}(k), V)$, said $S_{j0}(k), S_{j1}(k), \dots, S_{jN}(k)$ respectively denoting $S_{j0}, S_{j1}, \dots, S_{jN}$ at each node k ; and deriving the subsidiary equations by utilizing $S_j(k) = f(S_{j0}(k), S_{j1}(k), \dots, S_{jN}(k), V)$ for each node k of the K nodes.

- [c17] 17. The method of claim 14, further comprising:
- providing a value V' of V ;
 - for each PDF_n provided: picking a random value of S_{n0R} from PDF_n ;
 - for PDF_n not provided: calculating S_{n0R} by substituting S_{10R} into the auxiliary equation E_n ;
 - computing values S_{j1R}, \dots, S_{jNR} of S_{j1}, \dots, S_{jN} , respectively, by substituting S_{j0R} into the subsidiary equations for each subcharacteristic S_j of the J subcharacteristics;
 - calculating S_j by substituting $S_{j0R}, S_{j1R}, \dots, S_{jNR}$ and V' into the base equations $S_j = f(S_{j0}, S_{j1}, \dots, S_{jN}, V)$ for each subcharacteristic S_j of the J subcharacteristics; and
 - computing C by substituting S_1, S_2, \dots, S_J into the combination equation.

- [c18] 18. The method of claim 14, further comprising determining a performance characteristic of a design, said

design comprising I nodes in the domain, said I being at least 2, each node of the I nodes having the characteristic C comprising the J subcharacteristics S_1, S_2, \dots, S_j , said I having values of 1, 2, ..., I, said determining a performance characteristic comprising:

randomly selecting a value $C(i)$ of C at each node i of the I nodes, including:

randomly selecting a value $S_j(i)$ of S_j at node i for each subcharacteristic S_j of the J subcharacteristics and computing $C(i)$ by substituting $S_1(i), S_2(i), \dots, S_j(i)$ into the combination equation for each node i; and determining said performance characteristic, including utilizing said randomly selected $C(1), C(2), \dots, C(I)$.

- [c19] 19. The method of claim 18, said randomly selecting $S_j(i)$ at node i for each subcharacteristic S_j of the J subcharacteristics comprising:

providing a value $V(i)$ of V at node i;

for each n such that PDF_n is provided for: picking a random value of S_{n0R} from PDF_j ;

for each n such that PDF_n is not provided for: calculating S_{n0R} by substituting S_{10R} into the auxiliary equation E_n ;

calculating corresponding values S_{j1R}, \dots, S_{jNR} of S_{j1}, \dots, S_{jN} , respectively, by substituting S_{j0R} into the sub-

sidiary equations; and
calculating $S_j(i)$ by substituting S_{j0R} , S_{j1R} , ..., S_{jNR} and
 $V(i)$ into the base equation of S_j .

- [c20] 20. The method of claim 14, said method further comprising for $n=2, \dots, J$: determining whether S_{n0} is sufficiently correlated with S_{10} , wherein if said determining determines that S_{n0} is not sufficiently correlated with S_{10} then providing said PDF_n , but if said determining determines that S_{n0} is sufficiently correlated with S_{10} then not providing said PDF_n and instead deriving said auxiliary equation E_n from scatter data of S_{n0} versus S_{10} .
- [c21] 21. The method of claim 20, wherein said determining whether S_{n0} is sufficiently correlated with S_{10} comprises computing a correlation parameter R_n from said scatter data of S_{n0} versus S_{10} , said correlation parameter R_n being a square of a correlation coefficient r_n between S_{n0} and S_{10} , and wherein S_{n0} is sufficiently correlated with S_{10} if R_n is no less than a specified minimum correlation parameter R_{MIN} .
- [c22] 22. The method of claim 14, said f_j having a same functional form of V for each subcharacteristic S_j of the J subcharacteristics.
- [c23] 23. The method of claim 14, said f_j being constant with

respect to any variation in V for each subcharacteristic S_j of the J subcharacteristics.

- [c24] 24. The method of claim 14, said f_j varying with respect to a variation in V for each subcharacteristic S_j of the J subcharacteristics.
- [c25] 25. The method of claim 14, said PDF j being a normal probability distribution for at least one subcharacteristic S_j of the J subcharacteristics.
- [c26] 26. The method of claim 14, said domain being a physical domain, said characteristic C being spatially distributed within said physical domain.
- [c27] 27. The method of claim 14, said characteristic C being an electrical characteristic.
- [c28] 28. The method of claim 27, said characteristic C denoting capacitance at a node of the domain, said V denoting a voltage applied to the node.
- [c29] 29. The method of claim 28, said function f_j being a polynomial in V of order N for each subcharacteristic S_j of the J subcharacteristics, said N being at least 5.
- [c30] 30. A computer program product, comprising a computer usable medium having a computer readable program code embodied therein, said computer readable

program code adapted to be executed on a processor for implementing a method for modeling a characteristic C that is distributed within a domain, said method comprising:

providing a base equation expressing the characteristic C as a function f of a variable V through use of N+1 parameters C_0, C_1, \dots, C_N , said base equation being of the form $C = f(C_0, C_1, \dots, C_N, V)$, said N being at least 1, said parameters C_0, C_1, \dots, C_N being subject to uncertainty;

providing a probability density function (PDF) for describing the probability of occurrence of C_0 in accordance with said uncertainty; and

providing subsidiary equations expressing C_1, \dots, C_N in terms of C_0 .

- [c31] 31. The computer program product of claim 30, further comprising:

providing a value V'' of V;

picking a random value C_{0R} of C_0 from the PDF;

computing values C_{1R}, \dots, C_{NR} of C_1, \dots, C_N , respectively, by substituting C_{0R} into the subsidiary equations; and

calculating a value of C by substituting $C_{0R}, C_{1R}, \dots, C_{NR}$ and V'' into the base equation.

[c32] 32. The computer program product of claim 30, further comprising determining a performance characteristic of a design, said design comprising I nodes in the domain, said I being at least 2, each node i of the I nodes having a value C(i) of the characteristic C, said i having values of 1, 2, ..., I, said determining a performance characteristic comprising:

randomly selecting a value of C(i) of C at each node i of the I nodes; and
determining the performance characteristic, including utilizing said randomly selected C(1), C(2), ..., C(I).

[c33] 33. The computer program product of claim 32, said randomly selecting a value of C(i) comprising:

providing a value V(i) of V at node i;
picking a random value C_{0R} of C_0 from the PDF;
calculating corresponding values C_{1R}, \dots, C_{NR} of C_1, \dots, C_N , respectively, by substituting C_{0R} into the subsidiary equations; and
computing C(i) by substituting $C_{0R}, C_{1R}, \dots, C_{NR}$ and V(i) into the base equation.

[c34] 34. A computer program product, comprising a computer usable medium having a computer readable program code embodied therein, said computer readable program code adapted to be executed on a processor for

implementing a method for modeling a characteristic C that is distributed within a domain, said characteristic C having J subcharacteristics S_1, S_2, \dots, S_J , said method comprising:

providing a combination equation that expresses C as a function F of the J subcharacteristics, said J being at least 2;

providing base equations expressing S_j as a function f of a variable V through use of N+1 parameters $S_{j0}, S_{j1}, \dots, S_{jN}$, said base equations being of the form $S_j = f(S_{j0}, S_{j1}, \dots, S_{jN}, V)$, said N being at least 1, said parameters $S_{j0}, S_{j1}, \dots, S_{jN}$ being subject to uncertainty, said j having values of 1, 2, ..., J;

providing at least one probability density function (PDF) from $PDF_1, PDF_2, \dots, PDF_J$, said PDF_n describing the probability of occurrence of S_{n0} in accordance with said uncertainty for $n=1, 2, \dots, J$, said at least one PDF including PDF_1 ;

for each PDF_n not provided: providing an auxiliary equation E_n expressing S_{n0} in terms of S_{10} ; and providing subsidiary equations expressing S_{j1}, \dots, S_{jN} in terms of S_{j0} for each subcharacteristic S_j of the J subcharacteristics.

- [c35] 35. The computer program product of claim 34, further comprising:

providing a value V^n of V ;

for each PDF_n provided: picking a random value of S_{nOR} from PDF_n ;

for PDF_n not provided: calculating S_{nOR} by substituting S_{10R} into the auxiliary equation E_n ;

computing values S_{j1R}, \dots, S_{jNR} of S_j , ..., S_{jN} , respectively, by substituting S_{jOR} into the subsidiary equations for each subcharacteristic S_j of the J subcharacteristics;

calculating S_j by substituting $S_{jOR}, S_{j1R}, \dots, S_{jNR}$ and V^n into the base equations $S_j = f(S_{j0}, S_{j1}, \dots, S_{jN}, V)$ for each subcharacteristic S_j of the J subcharacteristics; and

computing C by substituting S_1, S_2, \dots, S_J into the combination equation.

- [c36] 36. The computer program product of claim 34, further comprising determining a performance characteristic of a design, said design comprising I nodes in the domain, said I being at least 2, each node of the I nodes having the characteristic C comprising the J subcharacteristics S_1, S_2, \dots, S_J , said I having values of 1, 2, ..., I , said determining a performance characteristic comprising:

randomly selecting a value $C(i)$ of C at each node i of the I nodes, including:

randomly selecting a value $S_j(i)$ of S_j at node i for

each subcharacteristic S_j of the J subcharacteristics and computing $C(i)$ by substituting $S_1(i), S_2(i), \dots, S_J(i)$ into the combination equation for each node i and determining said performance characteristic, including utilizing said randomly selected $C(1), C(2), \dots, C(I)$.

- [c37] 37. The computer program product of claim 36, said randomly selecting $S_j(i)$ at node i for each subcharacteristic S_j of the J subcharacteristics comprising:
- providing a value $V(i)$ of V at node i;
 - for each n such that PDF_n is provided for: picking a random value of S_{nOR} from PDF_j ;
 - for each n such that PDF_n is not provided for: calculating S_{nOR} by substituting S_{10R} into the auxiliary equation E_n ;
 - calculating corresponding values S_{j1R}, \dots, S_{jNR} of S_{j1}, \dots, S_{jN} , respectively, by substituting S_{jOR} into the subsidiary equations; and
 - calculating $S_j(i)$ by substituting $S_{jOR}, S_{j1R}, \dots, S_{jNR}$ and $V(i)$ into the base equation of S_j .

- [c38] 38. The computer program product of claim 34, said method further comprising for $n=2, \dots, J$: determining whether S_{n0} is sufficiently correlated with S_{10} , wherein if said determining determines that S_{n0} is not sufficiently correlated with S_{10} then providing said PDF_n , but if said

determining determines that S_{n0} is sufficiently correlated with S_{10} then not providing said PDF n and instead deriving said auxiliary equation E_n from scatter data of S_{n0} versus S_{10} .

- [c39] 39. The computer program product of claim 38, wherein said determining whether S_{n0} is sufficiently correlated with S_{10} comprises computing a correlation parameter R_n from said scatter data of S_{n0} versus S_{10} , said correlation parameter R_n being a square of a correlation coefficient r_n between S_{n0} and S_{10} , and wherein S_{n0} is sufficiently correlated with S_{10} if R_n is no less than a specified minimum correlation parameter R_{MIN} .

- [c40] 40. A model, comprising:
- a base equation expressing a characteristic C as a function f of a variable V through use of N+1 parameters C_0, C_1, \dots, C_N , said base equation being of the form $C = f(C_0, C_1, \dots, C_N, V)$, said N being at least 1, said parameters C_0, C_1, \dots, C_N being subject to uncertainty, said characteristic C being distributed within a domain;
 - a probability density function (PDF) for describing the probability of occurrence of C_0 in accordance with said uncertainty; and
 - subsidiary equations expressing C_1, \dots, C_N in terms of C_0 .

- [c41] 41. The model of claim 40, further comprising means for using the base equation, the PDF, and the subsidiary equations to calculate a value of C from input comprising a value V" of V.
- [c42] 42. The model of claim 40, further comprising means for using the base equation, the PDF, and the subsidiary equations to determine a performance characteristic of a design, said design comprising I nodes in the domain, said i being at least 2, each node i of the I nodes having a value C(i) of the characteristic C, said i having values of 1, 2, ..., I.
- [c43] 43. The model of claim 40, said PDF being a normal probability distribution.
- [c44] 44. The model of claim 40, said subsidiary equations having a form of $C_x = g_x(C_{x-1})$ for functions g_x , said functions g_x each being a linear or quadratic function of C_{x-1} , said x having values of 1, 2, ..., N.
- [c45] 45. The model of claim 40, said domain being a physical domain, said characteristic C being spatially distributed within said physical domain.
- [c46] 46. The model of claim 45, said characteristic C being an electrical characteristic.

- [c47] 47. The model of claim 46, said characteristic C denoting capacitance at a node of the domain, said V denoting a voltage applied to the node.
- [c48] 48. The model of claim 47, said function f being a polynomial in V of order N, said N being at least 5.
- [c49] 49. A model, comprising:
- a combination equation that expresses C as a function F of the J subcharacteristics, said J being at least 2, said characteristic C being distributed within a domain, said characteristic C having J subcharacteristics S_1, S_2, \dots, S_J ;
- base equations expressing S_j as a function f_j of a variable V through use of $N+1$ parameters $S_{j0}, S_{j1}, \dots, S_{jN}$, said base equations being of the form $S_j = f_j(S_{j0}, S_{j1}, \dots, S_{jN}, V)$, said N being at least 1, said parameters $S_{j0}, S_{j1}, \dots, S_{jN}$ being subject to uncertainty, said j having values of 1, 2, ..., J;
- at least one probability density function (PDF) from $\text{PDF}_1, \text{PDF}_2, \dots, \text{PDF}_J$, said PDF_n describing the probability of occurrence of S_{n0} in accordance with said uncertainty for $n=1, 2, \dots, J$, said at least one PDF including PDF_1 ;
- for each PDF_n that does not exist: an auxiliary equation E_n expressing S_{n0} in terms of S_{10} ; and

subsidiary equations expressing S_{j_1}, \dots, S_{j_N} in terms of S_{j_0} for each subcharacteristic S_j of the J subcharacteristics.

- [c50] 50. The model of claim 49, further comprising means for using the combination equation, the base equations, the at least one PDF, each auxiliary equation, and the subsidiary equations to calculate a value of C from input comprising a value V'' of V.
- [c51] 51. The model of claim 49, further comprising means for using the combination equation, the base equations, the at least one PDF, each auxiliary equation, and the subsidiary equations to determine a performance characteristic of a design, said design comprising I nodes in the domain, said I being at least 2, each node i of the I nodes having the characteristic C comprising the J subcharacteristics S_1, S_2, \dots, S_j , said i having values of 1, 2, ..., I.
- [c52] 52. The model of claim 49, said f_j having a same functional form of V for each subcharacteristic S_j of the J subcharacteristics.
- [c53] 53. The model of claim 49, said f_j being constant with respect to any variation in V for each subcharacteristic S_j of the J subcharacteristics.

- [c54] 54. The model of claim 49, said f_j varying with respect to a variation in V for each subcharacteristic S_j of the J subcharacteristics.
- [c55] 55. The model of claim 49, said PDF_j being a normal probability distribution for at least one subcharacteristic S_j of the J subcharacteristics.
- [c56] 56. The model of claim 49, said domain being a physical domain, said characteristic C being spatially distributed within said physical domain.
- [c57] 57. The model of claim 56, said characteristic C being an electrical characteristic.
- [c58] 58. The model of claim 57, said characteristic C denoting capacitance at a node of the domain, said V denoting a voltage applied to the node.
- [c59] 59. The model of claim 58, said function f_j being a polynomial in V of order N for each subcharacteristic S_j of the J subcharacteristics, said N being at least 5.