The 2020 MCUT-UNDIKSHA Artificial Intelligence Online Workshop

No.	Date	Торіс	Course outline	Course Instructors
1.	8/11	AI lecture for overview (I)	1. Course Introduction	Jiun-Wei Liou
			2. What is AI?	
			3. History of AI.	
			4. Applications of AI.	
			5. Categorization of AI.	
2.	8/13	AI lecture for overview (II)	1. Introduction of data science.	
			2. Introduction of (basic) machine learning.	
			3. Introduction of deep learning.	
			4. Future thoughts of AI.	
3.	8/18		Assignment and Tutorial	I Made Gede Sunarya
4.	8/20	Machine Learning Essential	1. Business Problems and Data Mining/Machine Learning Tasks Set	Ching-Shih Tsou
		- R/Python Hands-on and	2. Dimensionality Reduction and Principal Component Analysis	
		Theoretical Background	3. Clustering Analysis	
5.	8/25	Machine Learning Essential	4. Association Rule Mining	
		- R/Python Hands-on and	5. k Nearest Neighbors	
		Theoretical Background	6. Tree-Based Models (Classification Trees, Regression Trees, and Model Trees	
			incl.)	
6.	8/27		Assignment and Tutorial	I Made Gede Sunarya
7.	9/1	Machine Learning Essential	7. Naïve Bayes Classification (text processing incl.)	Ching-Shih Tsou
		- R/Python Hands-on and	8. Support Vector Machines	
		Theoretical Background	9. Bagging and Boosting	
8.	9/3		Assignment and Tutorial	I Made Gede Sunarya
9.	9/8	AI in Smart Grid (I)	1. Introduction to AI	Yu-Hsiu Lin
			2. Machine Learning vs. Deep Learning	
			3. Supervised learning	
			4. Perceptron	
10.	9/10	AI in Smart Grid (II)	Multi-layer perceptron (MLP)	

No.	Date	Topic	Course outline	Course Instructors
			2. MLP applied on iris data for iris flower classification	
			3. A case study: AI in load management	
11.	9/15		Assignment and Tutorial	I Made Gede Sunarya
12.	9/17	Image recognition-	1. Low-level vision: image processing, edge detection, feature detection,	Meng-Jey Youh
		Introduction to Computer	cameras, image formation	
		Vision	2. Geometry and algorithms: projective geometry, stereo, structure from motion,	
			optimization	
			3. Recognition: face detection / recognition, category recognition, segmentation	
13.	9/22	AI-based Face recognition -	Dowload code from Github	Chuang-Jan Chang
		Image Transformations	2. Affine Transformation	
			3. Homograohy & Perspective Transformation	
			4. Face Recognition	
14.	9/24	AI-based Face recognition-	1. DrawOver Image	
		OpenCV Basics - 2	2. Mouse Handling	
			3. Read · Write Over Image & Display	
15.	9/29		Assignment and Tutorial	I Made Gede Sunarya
16.	<u>9/30</u>	Image recognition-	1. History and definition of CNN: Neocognitron (a self-organizing neural	Meng-Jey Youh
	(Wed)	Convolutional Neural	network model for a mechanism of pattern recognition).	
		Networks, CNN	2. Algorithm architecture: convolutional layer, pooling layer, Relu layer, fully	
			connected layer, loss layer	
			3. Applications: image recognition, video analysis, natural language processing,	
			time series forecasting, etc.	
			4. Convolutional neural networks for visual recognition.	
17.	10/6	Image recognition- Region-	1. Definition of R-CNN	
		based CNN, R-CNN	2. Extended algorithm: fast R-CNN, masked R-CNN, Mesh R-CNN, YOLO	
			3. Application of region-based convolutional neural network	
18.	10/8		Group Presentation and Course Feedback	UNDIKSHA & MCUT

Course time: 18:30~21:30 (Bali time), **Tuesdays & Thursdays**