Clase 15 Introducción a Modelos Lineales Generales

OCE 386 - Introducción al análisis de datos con R.

Dr. José A. Gallardo y y Dra. María Angélica Rueda | Pontificia Universidad Católica de Valparaíso

23 November 2021

PLAN DE LA CLASE

1.- Introducción

- Modelos lineales generales ¿Qué son y para que sirven?
- Regresión cuadrática.
- Regresión logística.
- Interpretación de MLG con R.

2.- Práctica con R y Rstudio cloud

- Ajustar modelos lineales generales.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

INTRODUCCIÓN

Los modelos **lineales** clásicos permiten describir la mayoría de los fenómenos que ocurren en el entorno, siempre que la relación entre variables sea lineal.

¿Qué podemos hacer cuando los datos no se ajustan a un modelo lineal?

- Muchas veces se recurre a transformar la variable respuesta (Logaritmo).
- Pero la transformación de la variable respuesta NO necesariamente permite cumplir con todos los supuestos.
- Las interpretaciones deben hacerse en términos de la variable transformada.

¿QUÉ SON LOS MODELOS LINEALES GENERALES (MLG)?

Los modelos lineales generales extienden a los modelos lineales clásicos admitiendo distribuciones **no lienales** para la variable respuesta y modelando funciones de la media.

Los MLG incluyen como casos particulares a los siguientes modelos:

- Modelos Lineales: Regresión lineal simple, regresión lineal múltiple
- Modelos no lineales: Con variables predictoras elevadas a alguna potencia (cuadráticas, cúbicas, etc).
- Modelo de regresión logística: Variable respuesta binaria.

¿POR QUÉ USAR MODELOS LINEALES GENERALES?

- Reflejan mejor la naturaleza de los datos.
- Hay variables respuestas que son resistentes a ser transformadas (por ej. Variables discretas, o variables con gran cantidad de ceros).
- Las relaciones lineales generalmente fuerzan las predicciones del espacio de la variable respuesta (por ej. Predicción de valores negativos cuando la variable respuesta es un conteo).

ESTUDIO DE CASO TASA DE ACLARACIÓN EN MITILIDOS

Tasa de aclaración dieta artificial en mitilidos.

Fuente: Willer and Aldridge 2017

		particle concentration
mussel	а	400
mussel	a	320
mussel	а	280
control	а	160
Control	a	120
Control	a	120
	mussel mussel control Control	mussel a mussel a control a Control a

TASA DE ACLARACIÓN MUSSEL.

Problemas: La concentración es discreta y la relación no es lineal.

 $Tips: \ stat_smooth(method=`loess', formula=y\sim x, \ se=T)$

MODELO LINEAL

En este ejemplo vamos a comparar el modelo lineal vs. el modelo no lineal con término cuadrático.

Modelo 1:

Log (Microparticle concentration) = $\beta_0 + \beta_1 time + \epsilon$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.567087	0.0333508	76.97221	0
time	-0.014116	0.0009433	-14.96447	0

$$R^2 = 0.78$$
, p - $val = 2.0490325 \times 10^{-22}$

MODELO NO LINEAL (INCLUYE TÉRMINO CUADRÁTICO)

Modelo 2:

Microparticle concentration = $\beta_0 + \beta_1 time + \beta_2 time^2 + \epsilon$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.1436057	0.0163730	130.923107	0.0000000
poly(time, 2)1	-2.1291367	0.1320034	-16.129403	0.0000000
poly(time, 2)2	0.4415801	0.1320034	3.345217	0.0013997

$$R^2 = 0.81$$
, p-val = $2.2610223 \times 10^{-23}$

COMPARACIÓN DE MODELOS

► Modelo 1:

Log(microparticle concentration) = $\beta_0 + \beta_1 time + \epsilon$

► Modelo 2:

Microparticle concentration = $\beta_0 + \beta_1 time + \beta_2 time^2 + \epsilon$

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
63	1.275337	NA	NA	NA	NA
62	1.080344	1	0.194993	11.19047	0.0013997

REGRESIÓN LOGÍSTICA

Las principales condiciones de la regresión logística son:

- Respuesta binaria: La variable respuesta debe ser binaria.
- Independencia: las observaciones deben ser independientes.
- Multicolinealidad: se requiere de muy poca a ninguna multicolinealidad entre los predictores (para regresión logística múltiple).
- ► Linealidad: entre la variable independiente y el logaritmo natural de odds (Cociente de chances).

ESTUDIO DE CASO: MADURACIÓN EN SALMÓN DEL ATLÁNTICO

Estudio de la relación entre peso de la gónada y nivel de maduración en salmones (n=90, solo machos).

variable	Descripción
Fish	Identificador del salmón
Genotype	Genotipo
Gonad	Peso de gónada
Maturation	estado de maduración (1: maduro) o (0: inmaduro)

RELACIÓN ENTRE MADURACIÓN VS PESO DE GÓNADA

RELACIÓN LINEAL ENTRE MADURACIÓN VS PESO DE GÓNADA

MODELO LINEAL

${f Maduraci\'on}=eta_0+eta_1$ Peso de gónada + ϵ

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.0280808	0.0306710	-0.9155493	0.3624054
Gonad	0.0984246	0.0042997	22.8908036	0.0000000

$$R^2 = 0.86$$
, p -val = 7.977942×10^{-39}

RELACIÓN SIGMOIDEA ENTRE MADURACIÓN VS PESO DE GÓNADA

PREDECIR SI UN SALMÓN MADURA O NO PARA UN PESO DE GÓNADA DE 4

CONSIDERANDO LA REGRESIÓN LINEAL

Probabilidad	de	maduración
		0.3656176

[1] "No madura"

CONSIDERANDO LA REGRESIÓN LOGÍSTICA

```
Probabilidad de maduración
0.0715492
```

[1] "No madura"

REGRESIÓN LOGÍSTICA (MODELO NULO)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0	0.2108185	0	1

$$P(X) = \frac{e(\beta_0)}{1 + e(\beta_0)}$$

REGRESIÓN LOGÍSTICA SIMPLE

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-8.089844	2.6425566	-3.06137	0.0022033
Gonad	1.381678	0.4255612	3.24672	0.0011674

$$P(X) = \frac{e(\beta_0 + \beta_1 X)}{1 + e(\beta_0 + \beta_1 X)}$$

REGRESIÓN LOGÍSTICA MÚLTIPLE

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-5.951859	3.1608767	-1.8829772	0.0597035
Gonad	1.135307	0.4546516	2.4970928	0.0125216
GenotypeEL	-1.296134	1.6538041	-0.7837292	0.4331990
GenotypeLL	-16.852220	3447.6185502	-0.0048881	0.9960999

$$P(X) = \frac{e(\beta_0 + \beta_1 X + \beta_2 X)}{1 + e(\beta_0 + \beta_1 X + \beta_2 X)}$$

COMPARACIÓN DE MODELOS POR ANOVA

Resid. D	f Res	id. Dev	Df	Deviance	Pr(>Chi)
89	9 12	4.76649	NA	NA	NA
88	3 14	4.30228	1	110.464210	0.0000000
80	5 13	3.25087	2	1.051411	0.5911383

COMPARACIÓN DE MODELOS POR AIC

AIC(mod_nulo,mod_logit,mod_logit_mult) %>%
 kable()

	df	AIC
mod_nulo	1	126.76649
mod_logit	2	18.30228
mod_logit_mult	4	21.25087

RESUMEN DE LA CLASE

- 1). Revisión de conceptos: modelos lineales generales.
- 2). Construir y ajustar modelo de regresión cuadrática.
- 3). Construir y ajustar modelo de regresión logística.
- **4).** Comparar modelos de regresión.