

Digraphs

- A digraph is a graph whose edges are all directed
 - Short for "directed graph"
- Applications
 - one-way streets
 - flights
 - task scheduling

© 2010 Goodrich, Tamassia

Directed Graphs

2

Digraph Properties

- □ A graph G=(V,E) such that
 - Each edge goes in one direction:
 - Edge (a,b) goes from a to b, but not b to a
- □ If G is simple, $m \le n \cdot (n-1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

Digraph Application

 Scheduling: edge (a,b) means task a must be completed before b can be started

© 2010 Goodrich, Tamassia Directed Graphs 3 © 2010 Goodrich, Tamassia Directed Graphs 4

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s

C

© 2010 Goodrich, Tamassia

Directed Graphs

F

Reachability

 DFS tree rooted at v: vertices reachable from v via directed paths

© 2010 Goodrich, Tamassia

Directed Graphs

Strong Connectivity

Strong Connectivity Algorithm

- □ Pick a vertex v in G
- Perform a DFS from v in G
 - If there's a w not visited, print "no"
- □ Let G' be G with edges reversed
- Perform a DFS from v in G'
 - If there's a w not visited, print "no"
 - Else, print "yes"
- □ Running time: O(n+m)

© 2010 Goodrich, Tamassia Directed Graphs 7 © 2010 Goodrich, Tamassia Directed Graphs

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

© 2010 Goodrich, Tamassia

Directed Graphs

9

11

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same vertices
 as G
 - if G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

© 2010 Goodrich, Tamassia

Directed Graphs

Computing the Transitive Closure

We can perform DFS starting at each vertex

O(n(n+m))

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm

Floyd-Warshall Transitive Closure

- □ Idea #1: Number the vertices 1, 2, ..., n.
- Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

Uses only vertices numbered 1,...,k

(add this edge if it's not already in)

Uses only vertices
numbered 1,...,k-1

Uses only vertices
numbered 1,...,k-1

© 2010 Goodrich, Tamassia Directed Graphs

© 2010 Goodrich, Tamassia

Directed Graphs

Floyd-Warshall's Algorithm

No. con

- \square Number vertices $v_1, ..., v_n$
- Compute digraphs $G_0, ..., G_n$
 - \bullet $G_0=G$
 - G_k has directed edge (v_p, v_j) if G has a directed path from v_i to v_j with intermediate vertices in $\{v_1, \dots, v_k\}$
- We have that $G_n = G^*$
- □ In phase k, digraph G_k is computed from G_{k-1}
- Running time: O(n³),
 assuming areAdjacent is O(1)
 (e.g., adjacency matrix)

```
Algorithm FloydWarshall(G)
  Input digraph G
  Output transitive closure G^* of G
  for all v \in G.vertices()
      denote v as v;
     i \leftarrow i + 1
  G_0 \leftarrow G
  for k \leftarrow 1 to n do
     G_k \leftarrow G_{k-1}
      for i \leftarrow 1 to n \ (i \neq k) do
         for j \leftarrow 1 to n (j \neq i, k) do
            if G_{k-1}.areAdjacent(v_i, v_k) \land
                   G_{k-1}.areAdjacent(v_k, v_i)
               if \neg G_{i} are Adjacent (v_i, v_i)
                   G_kinsertDirectedEdge(v_i, v_i, k)
      return G_n
```

© 2010 Goodrich, Tamassia Directed Graphs

Algorithm for Topological Sorting

 Note: This algorithm is different than the one in the book

```
Algorithm TopologicalSort(G)

H \leftarrow G // Temporary copy of G

n \leftarrow G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v \leftarrow n

n \leftarrow n - 1

Remove v from H
```

24

□ Running time: O(n + m)

© 2010 Goodrich, Tamassia Directed Graphs

Implementation with DFS

- Simulate the algorithm by using depth-first search
- □ O(n+m) time.

Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G $n \leftarrow G.numVertices()$

for all $u \in G.vertices()$

u.setLabel(UNEXPLORED)

for all $v \in G.vertices()$

if v.getLabel() = UNEXPLORED
topologicalDFS(G, v)

Algorithm topologicalDFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G in the connected component of v

v.setLabel(VISITED)

for all $e \in v.outEdges()$ { outgoing edges }

 $w \leftarrow e.opposite(v)$

if w.getLabel() = UNEXPLORED

{ e is a discovery edge }

topologicalDFS(G, w)

else

{ e is a forward or cross edge }

Label ν with topological number n

 $n \leftarrow n - 1$

© 2010 Goodrich, Tamassia

Directed Graphs

25

27

Topological Sorting Example

© 2010 Goodrich, Tamassia

Directed Graphs

26

Topological Sorting Example

Topological Sorting Example

© 2010 Goodrich, Tamassia

Directed Graphs

Topological Sorting Example

Directed Graphs

Topological Sorting Example

© 2010 Goodrich, Tamassia

Directed Graphs

20

Topological Sorting Example

© 2010 Goodrich, Tamassia

© 2010 Goodrich, Tamassia

Topological Sorting Example

Directed Graphs 31 © 2010 Goodrich, Tamassia

Directed Graphs

Topological Sorting Example

© 2010 Goodrich, Tamassia

Directed Graphs

33

Topological Sorting Example

34

Topological Sorting Example

Directed Graphs