Math 206A Probability: Chapter 5 Markov Chains: written by Rick Durrett

This article is transcribed by Charlie Seager

January 29, 2024

Chapter 5.1 Examples

Cahpter 5.2 Construction, Markov Properties

THeorem 5.2.1 X_n is a Markov chain (with respect to $\mathcal{F}_n = \sigma(X_0, X_1, ..., X_n)$) with transition probability p. That is,

$$P_{\mu}(X_{n+1} \in B | \mathcal{F}_n) = p(X_n, B)$$

Theorem 5.2.2 Monotone class theorem Let A be a π – system that contains Ω and let \mathcal{H} be a collection of real valued functions that satisfies:

- (i) If $A \in \mathcal{A}$ then $1_A \in \mathcal{H}$
- (ii) If $f,g \in \mathcal{H}$ then f + g, and $cf \in \mathcal{H}$ for any real number c.
- (iii) If $f_n \in \mathcal{H}$ are nonnegative and increase to a bounded function f then $f \in \mathcal{H}$ Then \mathcal{H} contains all bounded functions measurable with respect to $\sigma(\mathcal{A})$.

Theorem 5.2.3 The Markov property Let $Y : \Omega_o \to R$ be bounded and measurable

$$E_{\mu}(Y \circ \theta_m | \mathcal{F}_m) = Ex_m Y$$

Theorem 5.2.4 Chapman-Kolmogorov equation

$$P_x(X_{m+n} = z) = \sum_{y} P_x(X_m = y) P_y(X_n = z)$$

Theorem 5.2.5 Strong Markov property Suppose that for each n, Y_n : $\Omega_0 \to R$ is measurable and $|Y_n| \le M$ for all n. Then

$$E_{\mu}(Y_n \circ \theta_N | \mathcal{F}_N) = Ex_N Y_N \text{ on } \{N < \infty\}$$

where the right hand side is $\varphi(x,n)=E_xY_n$ evaluated at $x=X_N, n=N$ Theorem 5.2.6 $P_x(T_y^k<\infty)=p_{xy}p_{yy}^{k-1}$ Intuitively in order to make k visits to y, we first have to go from x to y and then return k - 1 times to y.

Theorem 5.2.7 Reflection principle $\xi_1, \xi_2, ...$ be independent and identically distributed with a distribution that is symmetric about 0. Let $S_n =$ $\xi_1 + \dots + \xi_n$ If a > 0 then

$$P(sup_{m \le n} S_m \ge a) \le 2P(S_n \ge a)$$

Chapter 5.3 Recurrence and Transience

Theorem 5.3.1 y is recurrent if and only if $E_y N(y) = \infty$

Theorem 5.3.2 If x is recurrent and $p_{xy} > 0$ then y is recurrent and $p_{yx} = 1$

Theorem 5.3.3 Let C be a finite closed set. Then C contains a recurrent state. If C is irreducible then all states in C are recurrent.

Theorem 5.3.5 Decomposition Theorem Let $R = \{x : p_{xx} = 1\}$ be the recurrent states of a Markov chain. R can be written as $\bigcup_i R_i$, where each R_i is closed and irreducible.

Theorem 5.3.8 Suppose S is irreducible and $\varphi \geq 0$ with $E_x \varphi(X_i) \leq \varphi(x)$ for $x \notin F$, a finite set, and $\varphi(x) \to \infty$ as $x \to \infty$ i.e. $\{x : \varphi(x) \leq M\}$ is finite for any $M < \infty$, then the chain is recurrent.

Theorem 5.3.10 If a < x < b then

$$P_x(T_a < T_b) = \frac{\varphi(b) - \varphi(x)}{\varphi(b) - \varphi(a)} \qquad P_X(T_b < T_a) = \frac{\varphi(x) - \varphi(a)}{\varphi(b) - \varphi(a)}$$

Theorem 5.3.11 0 is recurrent if and only if $\varphi(M) \to \infty$ as $M \to \infty$ i.e.,

$$\varphi(\infty) = \sum_{m=0}^{\infty} \prod_{j=1}^{m} \frac{q_j}{p_j} = \infty$$

If $\varphi(\infty) < \infty$ then $P_x(T_0 = \infty) = \varphi(x)/\varphi(\infty)$

Chapter 5.4 Recurrence of Random Walks

Theorem 5.4.1 The set V of recurrent values is either \emptyset or a closed subgroup of \mathbb{R}^d . In the second case V = U, the set of possible values.

Theorem 5.4.3 For any random walk, the following are equivalent: (i) $P(\mathcal{T}_1 < \infty) = 1$, (ii) $P(S_m = 0 \text{ i.o.}) = 1$ and (iii) $\sum_{m=0}^{\infty} P(S_m = 0) = \infty$

Theorem 5.4.4 Simple random walk is recurrent in $d \le 2$ and transient in d > 3

Lemma 5.4.5 If $\sum_{n=1}^{\infty} P(||S_n|| < \epsilon) < \infty$ then $P(||S_n|| < \epsilon$ i.o.) = 0. If $\sum_{n=1}^{\infty} P(||S_n|| < \epsilon) = \infty$ then $P(||S_n|| < 2\epsilon$ i.o.) = 1.

Lemma 5.4.6 Let m be an integer ≥ 2

$$\sum_{n=0}^{\infty} P(||S_n|| < m\epsilon) \le (2m)^d \sum_{n=0}^{\infty} P(||S_n|| < \epsilon)$$

Theorem 5.4.7 The convergence (resp. divergence) of $\sum_n P(||S_n|| < \epsilon)$ for a single value of $\epsilon > 0$ is sufficient for transience (resp. recurrence).

Theorem 5.4.8 Chung Fuchs theorem Suppose d=1. If the weak law of large numbers holds in the form $S_n/n \to 0$ in probability, then S_n is recurrent.

Theorem 5.4.9 If S_n is a random walk in R^2 and $S_n/n^{1/2} \Rightarrow$ a nondegenerate normal distribution then S_n is recurrent.

Theorem 5.4.10 Let $\delta > 0.S_n$ is recurrent if and only if

$$\int_{(-\delta,\delta)^d} Re \frac{1}{1-\varphi(y)} dy = \infty$$

Theorem 5.4.11 Let $\delta > 0S_n$ is recurrent if and only if

$$\sup_{r<1} \int_{(-\delta,\delta)^d} Re \frac{1}{1-\varphi(y)} dy = \infty$$

Lemma 5.4.12 Parseval relation Let μ and v be probability measures on R^d with ch.f.'s φ and ψ

$$\int \psi(t)\mu(dt) = \int \varphi(x)v(dx)$$

lemma 5.4.13 If $|x| \le \pi/3$ then $1 - \cos x \ge x^2/4$

Theorem 5.4.14 No truly three dimensional random walk is recurrent.

Chapter 5.5 Stationary Measures

Theorem 5.5.5 Let μ be a stationary measure and suppose X_0 has "distribution" μ . Then $Y_m = X_{n-m}, 0 \le m \le n$ is a Markov chain with initial measure μ and transition probability

$$q(x, y) = \mu(y)p(y, x)/\mu(x)$$

q is called the dual transition probability. If μ is a reversible measure then q = p.

Theorem 5.5.6 Kolmogorov's cycle condition Suppose p is irreducible. A necessary and sufficient condition for the existence of a reversible measure is that (i) p(x,y) > 0 implies p(y,x) > 0 and (ii) for any loop $x_0, x_1, ..., x_n = x_0$ with $\prod_{1 \le i \le n} p(x_i, x_{i-1}) > 0$

$$\prod_{i=1}^{n} \frac{p(x_{i-1}, x_i)}{p(x_i, x_{i-1})} = 1$$

Theorem 5.5.7 Let x be a recurrent state and let $T = \inf\{n \ge 1 : X_n = x\}$. Then

$$\mu_x(y) = E_x(\sum_{n=0}^{T-1} 1_{\{X_n = y\}}) = \sum_{n=0}^{\infty} P_x(X_n = y, T > n)$$

defines a stationary measure.

Theorem 5.5.9 if p is irreducible and recurrent (i.e. all states are) then the stationary measure is unique up to constant multiples.

Theorem 5.5.10 If there is a stationary distribution then all states that have $\pi(y) > 0$ are recurrent.

Theorem 5.5.11 if p is irreducible and has stationary distribution π , then

$$\pi(x) = 1/E_x T_x$$

Theorem 5.5.12 If p is irreducible then the following are equivalent

- (i) Some x is positive recurrent
- (ii) There is a stationary distribution
- (iii) All states are positive recurrent

This result shows that being positive recurrent is a class property. If it holds for one state in an irreducible set, then it is true for all.

Theorem 5.5.15 If p is irreducible and has a stationary distribution π then any other stationary measure is a multiple of π

Chapter 5.6 Asymptotic behavior

Theorem 5.6.1 Suppose y is recurrent. For any $x \in S$, as $n \to \infty$

$$\frac{N_n(y)}{n} \to \frac{1}{E_y T_y} 1_{\{T_y < \infty\}} \qquad P_x - a.s.$$

Here $1/\infty = 0$

lemma 5.6.4 If $p_{xy} > 0$ then $d_y = d_x$

Lemma 5.6.5 If $d_x = 1$ then $p^m(x, x) > 0$ for $m \ge m_0$

Theorem 5.6.6 Convergence theorem Suppose p is irreducible aperiodic (i.e. all states have $d_x = 1$), and has stationary distribution π . Then, as $n \to \infty, p^n(x, y) \to \pi(y)$

Chapter 5.7 Periodicity, Tail $\sigma - field^*$ Lemma 5.7.1 Suppose p is irreducible, recurrent, and all states have period d. Fix $x \in S$, and for each $y \in S$, let $K_y = \{n \ge 1 : p^n(x,y) > 0\}$ (i) There is an $r_y \in \{0,1,..,d-1\}$ so that if $n \in K_y$ then $n = r_y \mod d$, i.e. the difference $n - r_y$ is a multiple of d. (ii) Let $S_r = \{y : r_y = r\}$ for $0 \le r < d$. If $y \in S_i, z \in S_j$ and $p^n(y,z) > 0$, then $n = (j-i) \mod d$. (iii) $S_0, S_1, ..., S_{d-1}$ are irreducible classes for p^d , and all states have period 1.

Theorem 5.7.2 Convergence theorem, periodic case Suppose p is irreducible, has a stationary distribution π , and all states have period d. Let $x \in S$ and let $S_0, S_1, ..., S_{d-1}$ be the cyclic decomposition of the state space with $x \in S_0$ If $y \in S_r$ then

$$\lim_{m\to\infty} p^{md+r}(x,y) = \pi(y)d$$

Theorem 5.7.3 Suppose p is irreducible, recurrent, and all states have period d, $\mathcal{T} = \sigma(\{X_0 \in S_r\} : 0 \le r < d)$

Theorem 5.7.4 Suppose X_0 has initial distribution μ . The equations

$$h(X_n, n) = E_{\mu}(Z|\mathcal{F}_n)$$
 and $Z = \lim_{n \to \infty} h(X_n, n)$

set up a 1-1 correspondence between bounded $Z \in \mathcal{T}$ and bounded space-time harmonic functions, i.e. bounded $h: Sx\{0,1,\ldots\} \to R$, so that $h(X_n,n)$ is a martingale.

Theorem 5.7.6 For d-dimensional simple random walk

$$\mathcal{T} = \sigma(\{X_0 \in L_i\}, i = 0, 1)$$

Chapter 5.8 General State Space*

Lemma 5.8.4 $v\bar{p} = \bar{p}$ and $\bar{p}v = p$.

Lemma 5.8.5 Let Y_n be an inhomogeneous Markov chain with $p_{2k} = v$ and $p_{2k+1} = \bar{p}$. Then $\bar{X}_n = Y_{2n}$ is a Markov chian with transition probability \bar{p} and $X_n = Y_{2n+1}$ is a Markov chain with transition probability p.

Lemma 5.8.6 If μ is a probability measure on (S, \mathcal{S}) then

$$E_{\mu}f(X_n) = E_{\mu}\bar{f}(\bar{X}_n)$$

Chapter 5.8.1 Recurrence and Transience

Theorem 5.8.8 Let $\lambda(C) = \sum_{n=1}^{\infty} 2^{-n} p^{-n}(\alpha, C)$. In the recurrent case if $\lambda(C) > 0$ then $P_{\alpha}(\bar{X}_n \in C \text{ i.o.}) = 1$. For $\lambda - a.e.x, P_x(R < \infty) = 1$

Chapter 5.8.2 Stationary Measures

Theorem 5.8.9 in the recurrent case, there is a $\sigma-finite$ stationary measure $\bar{\mu}<<\lambda$

Lemma 5.8.10 If v is a $\sigma-finite$ stationary measure for p, then $v(A)<\infty$ and $\bar{v}=v\bar{p}$ is a stationary measure for \bar{p} with $\bar{v}(\alpha)<\infty$

Theorem 5.8.11 Suppose p is recurrent. If v is a σ – finite stationary measure then $v = \bar{v}(\alpha)\mu$, where μ is the measure constructed in the proof of theorem 5.8.9.

Theorem 5.8.12 Let X_n be an aperiodic recurrent Harris chain with stationary distribution π . If $P_x(R < \infty) = 1$ then as $n \to \infty$

$$||p^n(x,\cdot) - \pi(\cdot)|| \to 0$$

Chapter 5.8.4 G1/G/1 queue

Lemma 5.8.13 Suppose $X, Y \ge 0$ are independent and $P(X > x) = e^{-\lambda x}$. Show that $P(X - Y > x) = ae^{-\lambda x}$. Show that $P(X - Y > x) = ae^{-\lambda x}$, where a = P(X - Y > 0).