## Построение отрезков квадратичной длины при помощи отрезков линейной длины в спектре транспозиционного графа

Кравчук Артём Витальевич Институт Математики им. С. Л. Соболева, Новосибирск artemkravchuk13@gmail.com Секция: Алгебра

В данной работе исследуются собственные значения транспозиционного графа Кэли  $T_n$ ,  $n\geqslant 2$ . Собственные значения графа  $T_n$  являются целыми числами [1,2]. Спектр  $Spec(T_n)$  этого графа симметричен относительно нуля, так как граф является двудольным. Кроме этого, в работе [1] доказано, что наибольшее собственное значение  $\frac{n(n-1)}{2}$  имеет кратность 1, второе собственное значение  $\frac{n(n-3)}{2}$  имеет кратность  $(n-1)^2$ . Таким образом, имеется некоторое представление о том, как устроен спектр транспозиционного графа. Однако точное описание спектра для этого графа неизвестно. Следующий результат даёт описание спектра около нуля.

**Теорема 1.** [3, Теорема 3] Для  $n \geqslant 19$ , все целые числа из отрезка  $[-\frac{n-4}{2}, \frac{n-4}{2}]$  лежат в спектре  $T_n$ .

В данной работе показывается, что при  $n \geqslant 48$  существует отрезок квадратичной относительно n длины, который целиком содержится в спектре транспозиционного графа.

**Теорема 2.** [4, Теорема 4] Для всех  $n\geqslant 48$ , все целые числа из отрезков  $[-y_2,-y_1]$  и  $[y_1,y_2]$  лежат в спектре  $T_n$ , где  $y_1=C^2_{\lceil\frac{n}{3}\rceil+1}-2(\lfloor\frac{2n}{3}\rfloor-1)$ ,  $y_2=C^2_{\lfloor\frac{2n+1}{3}\rfloor}$ .

Доказательства этих теорем опирается на основные факты из теории представлений симметрической группы для графов Кэли, а также некоторые новые утверждения о соответствии между собственными значениями графа  $T_n$  и разбиениями числа n.

Работа выполнена при поддержке Математического Центра в Академгородке, соглашение с Министерством науки и высшего образования Российской Федерации номер 075-15-2022-281.

- [1] *K. Kalpakis, Y. Yesha*, On the bisection Width of the Transposition network, *Networks*, **29** (1997) 69–76.
- [2] E. V. Konstantinova, D. V. Lytkina, Integral Cayley graphs over finite groups, Algebra Colloquium, 27(1) (2020) 131–136.
- [3] Elena V. Konstantinova, Artem Kravchuk, Distinct eigenvalues of the Transposition graph, *LAA*, **690** (2024) (132-141), https://doi.org/10.1016/j.laa.2024.03.011.
- [4] Artem Kravchuk, Constructing segments of quadratic length in  $Spec(T_n)$  through segments of linear length, https://arxiv.org/abs/2404.00410.