SESSION 2003 PSIM207

EPREUVE SPECIFIQUE - FILIERE PSI

MATHEMATIQUES 2

Durée : 4 heures

Les calculatrices sont autorisées.

N.B. Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

On désigne par N l'ensemble des entiers naturels, par N* l'ensemble N privé de 0 et par R l'ensemble des nombres réels.

Etant donné un entier naturel n, on note [0,n] l'ensemble des entiers naturels k tels que $0 \le k \le n$.

On note $\mathbf{R}[x]$ l'espace des polynômes à coefficients réels et, pour $k \in \mathbf{N}$, on note $\mathbf{R}_k[x]$ le sous espace de $\mathbf{R}[x]$ des polynômes de degré inférieur ou égal à k. On identifiera le polynôme $P \in \mathbf{R}[x]$ avec la fonction polynôme associée.

On note C l'espace des fonctions continues définies sur l'intervalle [-1,1] et à valeurs dans \mathbf{R} , on note R l'espace des restrictions à [-1,1] des polynômes de $\mathbf{R}[x]$ et on note R l'espace des restrictions à [-1,1] des polynômes de $\mathbf{R}_k[x]$. Par abus, on appellera polynôme une fonction de R.

Le but du problème est de définir une méthode de calcul approché d'une famille d'intégrales.

Dans la partie I, on étudie une famille de polynômes. La partie II utilise une structure d'espace préhilbertien réel de l'espace $\mathcal C$, pour obtenir une formule de calcul exacte de certaines intégrales. La partie III conduit à la méthode de calcul approché annoncée.

Dans tout le problème, n désigne un entier naturel. Pour tout entier $n \in \mathbb{N}$, on définit la fonction $t_n \in \mathbb{C}$ par : pour tout $x \in [-1,1]$, $t_n(x) = \cos(n \ Arc \ \cos x)$.

PARTIE I

- **1.** Simplifier les expressions de t_0 , t_1 , t_2 , t_3 et constater que ces fonctions ont des expressions polynomiales, que l'on explicitera.
- **2.** Tracer, sur un même dessin, les graphes de t_0 , t_1 , t_2 et t_3 . Préciser les racines et les extremums de chaque fonction.

Pour
$$n \in \mathbb{N}^*$$
 et $k \in [[0, n-1]]$, on note $\theta_k = \frac{2k+1}{2n}\pi$ et $x_k = \cos(\theta_k)$.

- **3.** Pour $n \in \mathbb{N}^*$, déterminer les racines de la fonction t_n . Montrer que les racines de t_n sont deux à deux opposées.
- **4.** On suppose l'entier $n \ge 2$. Soit $p \in [[1, n-1]]$.
 - **4.1** Calculer la somme $\sum_{k=0}^{n-1} e^{ip\theta_k}$.
 - **4.2** Montrer que $\sum_{k=0}^{n-1} t_p(x_k) = 0$.

Pour $x \in [-1,1]$, le changement de variable bijectif $\theta = Arc \cos x$, permet d'écrire $t_n(x) = \cos(n\theta)$ avec $\theta \in [0,\pi]$.

- **5.** Pour $n \ge 1$, exprimer $t_{n+1}(x) + t_{n-1}(x)$ en fonction de x et de $t_n(x)$.
- **6.** En déduire que pour tout $n \in \mathbb{N}$, la fonction t_n est la restriction à l'intervalle [-1,1] d'un polynôme T_n de $\mathbb{R}[x]$. Préciser le degré de T_n et le coefficient de son terme de plus haut degré.
- 7. Montrer que pour tout entier $n \ge 1$, le polynôme T_n n'a pas de racine complexe non réelle.

PARTIE II

- **1.** Soit f une fonction de C. Montrer que la fonction $x \mapsto \frac{f(x)}{\sqrt{1-x^2}}$ est intégrable sur -1,1.
- **2.** Pour $n \in \mathbb{N}$, on note $I_n = \int_{-1}^1 \frac{x^n}{\sqrt{1-x^2}} dx$.

- **2.1** Calculer I_0 et I_1 .
- **2.2** Pour $n \ge 2$, donner une relation entre I_n et I_{n-2} (on pourra, entre autre méthode, utiliser le changement de variable $\theta = Arc \cos x$).
- **2.3** En déduire les valeurs de I_2 et I_4 . Quelle est la valeur de I_{2p+1} pour $p \in \mathbb{N}$?
- **3.** Définition d'une structure préhilbertienne réelle sur C.
 - **3.1** Montrer que l'application de $C \times C$ dans R définie par $(f,g) \mapsto \langle f | g \rangle = \int_{-1}^{1} \frac{f(x)g(x)}{\sqrt{1-x^2}} dx$ définit un produit scalaire sur C.
 - **3.2** Montrer que la famille de fonction t_p , pour $p \in [0,n]$, est une base orthogonale de l'espace vectoriel R_n .

Calculer la norme de chaque fonction t_p .

- **3.3** Déduire de ce qui précède que, pour tout $n \ge 1$ et tout $k \in [[0, n-1]]$, on a $\int_{-1}^{1} \frac{x^k t_n(x)}{\sqrt{1-x^2}} dx = 0.$
- **4.** On veut monter qu'il existe trois réels a_0, a_1, a_2 uniques, tels que pour tout polynôme $P \in R_5$, on a

(1)
$$\int_{-1}^{1} \frac{p(x)}{\sqrt{1-x^2}} dx = a_0 P\left(\frac{-\sqrt{3}}{2}\right) + a_1 P(0) + a_2 P\left(\frac{\sqrt{3}}{2}\right).$$

- **4.1** On suppose que l'égalité (1) est satisfaite par tout $P \in R_5$. En prenant successivement les polynômes P définies par P(x)=1, P(x)=x, $P(x)=x^2$, déterminer les réels a_0,a_1,a_2 .
- **4.2** Montrer que le triplet (a_0, a_1, a_2) trouvé convient pour les polynômes P définies par $P(x) = x^4$ puis $P(x) = x^5$.

En déduire que l'égalité (1) est vérifiée pour tout polynôme $P \in R_{5}$.

- 5. calcul d'une intégrale.
 - **5.1** Montrer que la fonction $x \mapsto \frac{x^4}{\sqrt{x(1-x)}}$ est intégrable sur]0,1[.
 - **5.2** Calculer l'intégrale $J = \int_0^1 \frac{x^4}{\sqrt{x(1-x)}} dx$, à l'aide du changement de variable t = 2x 1 et de la formule (1).

PARTIE III

Soit $n \in \mathbb{N}^*$. Etant donné des réels a_0, a_1, \dots, a_{n-1} et une fonction $f \in \mathbb{C}$, on note $S_n(f) = \sum_{k=0}^{n-1} a_k f(x_k)$ où $x_k = \cos\left(\frac{2k+1}{2n}\pi\right)$.

On se propose de montrer qu'il existe des réels $a_0, a_1, ..., a_{n-1}$ uniques, tels que pour tout polynôme P de R_{n-1} , on ait :

(2)
$$\int_{-1}^{1} \frac{P(x)}{\sqrt{1-x^2}} dx = S_n(P).$$

- **1.** On suppose que l'égalité (2) est satisfaite pour tout $P \in \mathbb{R}_{n-1}$. En prenant successivement pour polynômes P les monômes $1, x, ..., x^{n-1}$, montrer que les réels $a_0, a_1, ..., a_{n-1}$ sont les solutions d'un système de n équations linéaires à n inconnues, dont le déterminant est non nul (on ne demande pas le calcul des intégrales qui interviennent dans le second membre du système).
- 2. On suppose qu'il existe des réels $a_0, a_1, ..., a_{n-1}$ tels que, pour tout $p \in [[0, n-1]]$, la relation (2) soit vérifiée par les fonctions t_p .
 - **2.1** Montrer qu'alors la relation (2) est vérifiée pour tout polynôme $P \in \mathbb{R}_{n-1}$.
 - **2.2** En utilisant ce qui précède, en particulier **I.4** et **II.3**, montrer que les a_k sont tous égaux et calculer leur valeur.
 - **2.3** On suppose que les a_k ont la valeur trouvée en **2.2**. Soit P un polynôme de R_{2n-1} . En écrivant la division euclidienne de P par t_n (sur [-1,1]), montrer que P vérifie (2). Etant donné une fonction $g \in C$, on note $D_n(g) = \int_{-1}^1 \frac{g(x)}{\sqrt{1-x^2}} \, dx S_n(g)$ et on note $\|g\|_{\infty} = \sup_{x \in [-1,1]} |g(x)|$.
- **3.** Soit $f \in C$.
 - **3.1** Soit $P \in \mathbb{R}$. Montrer qu'il existe un entier $n_0 > 0$, qui dépend de P, tel que pour tout $n \ge n_0$, on a $|D_n(f)| \le 2\pi ||f P||_{\infty}$.
 - **3.2** En déduire $\lim_{n\to+\infty} S_n(f) = \int_{-1}^1 \frac{f(x)}{\sqrt{1-x^2}} dx$.
- **4.** Pour $x \in [-1,1]$, on prend $f(x) = e^x$. Soit m un entier de \mathbb{N}^* .
 - **4.1** Montrer que la série $\sum_{k\geq 0} \frac{1}{k!}$ converge et que $\sum_{k=m+1}^{+\infty} \frac{1}{k!} \leq \frac{1}{m.m!}$.

- **4.2** Déterminer un polynôme P de degré m tel que $||f P||_{\infty} \le \frac{1}{m \cdot m!}$.
- **4.3** Justifier que $S_4(f)$ fournit une valeur approchée de l'intégrale $\int_{-1}^{1} \frac{e^x}{\sqrt{1-x^2}} dx \ \text{à} \ 10^{-3}$ près.
- 4.4 Calculer cette valeur approchée.

Fin de l'énoncé.