ST2131

AY21/22 SEM 2

github/jovyntls

01. COMBINATORIAL ANALYSIS

The Basic Principle of Counting

- basic principle of counting → Suppose that two experiments are performed. If exp1 can result in any one of m possible outcomes and if, for each outcome of exp1, there are n possible outcomes of exp2, then together there are mn possible outcomes of the two experiments.
- generalized basic principle of counting \to If r experiments are performed such that the first one may result in any of n_1 possible outcomes and if for each of these n_1 possible outcomes, there are n_2 possible outcomes of the 2nd exp, and if ..., then there is a total of $n_1 \cdot n_2 \cdot \dots \cdot n_r$ possible outcomes of r experiments.

Permutations

factorials - 1! = 0! = 1

N1 - if we know how to count the number of different ways that an event can occur, we will know the probability of the event.

N2 - there are n! different arrangements for n objects.

N3 - there are $\frac{n!}{n_1! \; n_2! \; ... \; n_r!}$ different arrangements of n objects, of which n_1 are alike, n_2 are alike, ..., n_r are alike.

Combinations

$$\binom{n}{r} = \frac{n!}{(n-r)!} = \binom{n-1}{r-1} + \binom{n-1}{r}, \quad 1 \le r \le n$$

N5 - The Binomial Theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Multinomial Coefficients

$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! \, n_2! \dots n_r!}$$

N6 - represents the number of possible divisions of n distinct objects into r distinct groups of respective sizes n_1,n_2,\ldots,n_3 , where $n_1+n_2+\cdots+n_r=n$

$$\begin{array}{l} \text{N7 - The Multinomial Theorem: } (x_1 + x_2 + \dots + x_r)^n \\ = \sum\limits_{(n_1, \dots, n_r): n_1 + n_2 + \dots + n_r = n} \frac{n!}{n_1! \ n_2! \ \dots n_r!} x_1^{n_1} x_2^{n_2} \dots x_r^{n_r} \end{array}$$

Number of Integer Solutions of Equations

N8 - there are $\binom{n-1}{r-1}$ distinct *positive* integer-valued vectors (x_1, x_2, \dots, x_r) satisfying $x_1 + x_2 + \dots + x_r = n$. $x_i > 0$. $i = 1, 2, \dots, r$

satisfying $x_1+x_2+\cdots+x_r=n, \quad x_i>0, \quad i=1,2,\ldots,r$ N9 - there are $\binom{n+r-1}{r-1}$ distinct non-negative integer-valued vectors

 (x_1, x_2, \ldots, x_r) satisfying $x_1 + x_2 + \cdots + x_r = n$

Proof. let $y_k = x_k + 1 \Rightarrow y_1 + y_2 + \cdots + y_r = n + r$

02. AXIOMS OF PROBABILITY

Sample Space and Events

- sample space → The set of all outcomes of an experiment
- event → Any subset of the sample space
- ${\bf complement}$ of $E\to E^c$ is the event that contains all outcomes that are ${\it not}$ in E
- **subset** $\to E \subset F$ is all of the outcomes in E that are also in F.

•
$$E \subset F \land F \subset E \Rightarrow E = F$$

 $\begin{array}{lll} \text{DeMorgan's Laws:} & (\bigcup\limits_{i=1}^n E_i)^c = \bigcap\limits_{i=1}^n E_i^c & \text{and} & (\bigcap\limits_{i=1}^n E_i)^c = \bigcup\limits_{i=1}^n E_i^c \end{array}$

Axioms of Probability

definition 1: relative frequency

 $P(E)=\lim_{n o\infty}\frac{n(E)}{n}$. problems: (1) $\frac{n(E)}{n}$ may not converge when $n\to\infty$. (2) $\frac{n(E)}{n}$ may not converge to the same value if the experiment is repeated.

Axioms (definition 2)

Consider an experiment with sample space S. For each event E of the sample space S, we assume that a number P(E) is defined and satisfies the following 3 axioms:

1.
$$0 \le P(E) \le 1$$

2.
$$P(S) = 1$$

3. For mutually exclusive events, $P(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$. same for finite case

mutually exclusive \rightarrow events for which $E_i E_j = \emptyset$ when $i \neq j$

Simple Propositions

 $\mathbf{N1} \cdot P(\emptyset) = 0$

N6 - **probability function** \iff it satisfies the 3 axioms.

N8 - if $E \subset F$, then $P(E) \leq P(F)$

N10 - Inclusion-Exclusion identity where n=3

 $P(E \cup F \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG)$

N11 - Inclusion-Exclusion identity -

$$P(E_1 \cup E_2 \cup \dots \cup E_n) = \sum_{i=1}^n P(E_i) - \sum_{i_1 < i_2} P(E_{i_1} E_{i_2}) + \dots + (-1)^{r+1} \sum_{i_1 < i_2 < \dots < i_r} P(E_{i_1} E_{i_2} \dots E_{i_r}) + \dots + (-1)^{n+1} P(E_1 E_2 \dots E_n)$$

(i) $P(\bigcup_{i=1}^n E_i) \leq \sum_{i=1}^n P(E_i)$ (based on Inclusion-Exclusion identity)

(ii)
$$P(\bigcup_{i=1}^{n} E_i) \ge \sum_{i=1}^{n} P(E_i) - \sum_{j \le i} P(E_i E_j)$$

(iii)
$$P(\bigcup_{i=1}^{n} E_i) \le \sum_{i=1}^{n} P(E_i) - \sum_{j < i} P(E_i E_j) + \sum_{k < j < i} P(E_i E_j E_k)$$

(iv) and so on.

Sample Space having Equally Likely Outcomes

Consider an experiment with sample space $S=\{e_1,e_2,\ldots,e_n\}$. Then $P(\{e_1\})=P(\{e_2\})=\cdots=P(\{e_n\})=\frac{1}{n}$ or $P(\{e_i\})=\frac{1}{n}$. N1 - for any event $E,P(E)=\frac{\# \text{ of outcomes in }E}{\# \text{ of outcomes in }S}=\frac{\# \text{ of outcomes in }E}{n}$

increasing sequence of events $\{E_n, n \geq 1\} \rightarrow E_1 \subset E_2 \subset \cdots \subset E_n \subset \cdots$ decreasing sequence of events $\{E_n, n \geq 1\} \rightarrow E_1 \supset E_2 \supset \cdots \supset E_n \supset \cdots$

increasing: $\lim_{n \to \infty} E_n = \bigcup_{i=1}^\infty E_i$ decreasing: $\lim_{n \to \infty} E_n = \bigcap_{i=1}^\infty E_i$

N2 - for both *increasing* and *decreasing* sequence $\lim_{n\to\infty} P(E_n) = P(\lim_{n\to\infty} E_n)$

03. CONDITIONAL PROBABILITY AND INDEPENDENCE

Conditional Probability

if
$$P(F) > 0$$
, then $P(E|F) = \frac{P(E \cap F)}{P(F)}$ multiplication rule:

 $P(E_1 \dots E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1E_2)\dots P(E_n|E_1E_2\dots E_{n-1})$

N3 - axioms of probability apply to conditional probability 1. 0 < P(E|F) < 1 2. P(S|F) = 1 where S is the sample space

3. If E_i $(i \in \mathbb{Z}_{\geq 1})$ are mutually exclusive, then $P(\bigcup_{i=1}^{\infty} E_i | F) = \sum_{i=1}^{\infty} P(E_i | F)$

N4 - If we define Q(E) = P(E|F), then all previously proven results apply $P(E_1 \cup E_2|F) = P(E_1|F) + P(E_2|F) - P(E_1E_2|F)$

Total Probability & Bayes' Theorem

conditioning formula - $P(E) = P(E|F)P(F) + P(E|F^c)P(F^c)$

$$P(F) \xrightarrow{F} F \xrightarrow{E^c} E \qquad P(F|E) = \frac{P(EF)}{P(E)} = \frac{P(F) \cdot P(E|F)}{P(E)}$$

$$F^c \xrightarrow{F^c} E \qquad P(F^c|E) = \frac{P(EF^c)}{P(E)} = \frac{P(F^c) \cdot P(E|F^c)}{P(E)}$$

Total Probability

theorem of total probability - Suppose F_1, F_2, \ldots, F_n are mutually exclusive events such that $\bigcup_{i=1}^n F_i = S$, then $P(E) = \sum_{i=1}^n P(EF_i) = \sum_{i=1}^n P(F_i)P(E|F_i)$

Bayes Theorem

$$P(F_j|E) = \frac{P(EF_j)}{P(E)} = \frac{P(F_j)P(E|F_j)}{\sum_{i=1}^{n} P(F_i)P(E|F_i)}$$

application of bayes' theorem

$$P(B_1 \mid A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2)}$$

Let *A* be the event that the person test positive for a disease.

 B_1 : the person has the disease. B_2 : the person does not have the disease. true positives: $P(B_1 \mid A)$ false negatives: $P(\bar{A} \mid B_1)$ false positives: $P(\bar{A} \mid B_2)$ true negatives: $P(\bar{A} \mid B_2)$

Independent Events

N1 - E and F are independent $\iff P(EF) = P(E) \cdot P(F)$

N2 - E and F are independent $\iff P(E|F) = P(E)$

N3 - E and F are independent $\iff E$ and F^c are independent.

N4 - if E, F, G are independent, then E will be independent of any event formed from F and G. (e.g. $F \cup G$)

N6 - (E and F are indep) \land (E and G are indep) \Rightarrow E and FG are independent

N7 - For independent trials with probability p of success, probability of m successes before n failures, for $m, n \ge 1$,

method 2
$$P_{n-1,m} \to A \text{ win} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-1 \choose k} p^k (1-p)^{m+n-1-k} \\ P_{n,m} = \sum_{k=n}^{m+n-1} {m+n-$$

04. RANDOM VARIABLES

ullet random variable ullet a real-valued function defined on the sample space

Types of Random Variables

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
r.v.	-	E(X)
binomial	X= # of successes in n trials w/ replacement	np
negative binomial	X= # of trials until k successes	k/p
geometric	X= # of trials until a success	1/p
hypergeometric	X= # of successes in n trials, no replacement	rn/N

• X is a **Bernoulli r.v.** with parameter p if \rightarrow

$$p(x) = \begin{cases} p, & x = 1, \text{ ('success')} \\ 1 - p, & x = 0 \text{ ('failure')} \end{cases}$$

- Y is a **Binomial r.v.** with parameters n and $p o Y = X_1 + X_2 + \cdots + X_n$ where X_1, X_2, \ldots, X_n are independent Bernoulli r.v.'s with parameter p.
 - $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$
 - P(k successes from n independent trials each with probability p of success) $E(Y) = np, \quad Var(Y) = np(1-p)$
- Negative Binomial → X = number of trials until k successes are obtained
 e.g. number of balls drawn (with replacement) until k red balls are obtained
- **Geometric** $\rightarrow X =$ number of trials until a success is obtained

- $P(X = k) = (1 p)^{k-1} \cdot p$ where k is the number of trials needed
- e.g. number of balls drawn (with replacement) until 1 red ball is obtained
- Hypergeometric $\to X =$ number of trials until success, without replacement

•
$$P(X=k)=\frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, k=0,1,\ldots,n$$
 (for m red balls of N balls)

e.g. number of red balls out of n balls drawn without replacement

Properties

N1 - if
$$X \sim \text{Binomial}(n,p)$$
, and $Y \sim \text{Binomial}(n-1,p)$, then
$$E(X^k) = np \cdot E[(Y+1)^{k-1}]$$
 N2 - if $X \sim \text{Binomial}(n,p)$, then for $k \in \mathbb{Z}^+$,

$$P(X = k) = \frac{(n-k+1)p}{k(1-p)} \cdot P(X = k-1)$$

Coupon Collector Problem

Q. Suppose there are N distinct types of coupons. If T denotes the number of coupons needed to be collected for a complete set, what is P(T=n)?

A.
$$P(T > n - 1) = P(T \ge n) = P(T = n) + P(T > n)$$

 $\Rightarrow P(T = n) = P(T > n - 1) - P(T > n)$

Let $A_i = \{$ no type j coupon is contained among the first $n\}$

$$P(T > n) = P(\bigcup_{j=1}^{N} A_j)$$

 $P(T > n) = \sum_{i} P(A_i)$ - coupon j is not among the first n collected $-\sum\sum_{j_1 < j_2} P(A_{j_1}A_{j_2})$ - coupon j_1 and j_2 are not the first n $+\cdots+(-1)^{N+1}P(A_1A_2\cdots A_N)$ by inclusion-exclusion identity

$$P(A_{j_1}A_{j_2}\cdots A_{j_k})=(\frac{N-k}{N})^n$$

Hence
$$P(T>n)=\sum\limits_{i=1}^{N-1}{N\choose i}(\frac{N-i}{N})^n(-1)^{i+1}$$

Probability Mass Function

probability mass function, pmf of X (discrete) $\rightarrow p(a) = P(X = a)$ • if X assumes one of the values x_1, x_2, \ldots , then $\sum_{i=1}^{\infty} p(x_i) = 1$

Cumulative Distribution Function

- cumulative distribution function (cdf) of a r.v. $X \to \text{the function } F$ defined $F(x) = P(X \le x), \quad -\infty < x < \infty$
 - F(x) is defined on the entire real line. (aka distribution function)

$$\begin{aligned} & \mathbf{pmf}, \frac{a & 1 & 2 & 4}{p(a) & \frac{1}{2} & \frac{1}{4} & \frac{1}{4}} \\ & F(a) = \sum p(x) \text{ for all } x \leq a \end{aligned} \qquad \mathbf{cdf}, F(a) = \begin{cases} 0, & a < 1 \\ 1/2, & 1 \leq a < 2 \\ 3/4, & 2 \leq a < 4 \\ 1, & a \geq 4 \end{cases}$$

Expected Value

aka population mean/sample mean, μ

discrete:
$$E(X) = \sum_x x \cdot p(x)$$
 continuous: $E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$

$$E[g(x)] = \int_{-\infty}^{\infty} g(x)f(x) dx$$

 ${\bf N1}$ - if a and b are constants, then E(aX+b)=aE(X)+b

N3 - for a non-negative r.v. $Y, E(Y) = \int_0^\infty P(Y > y) dy$

Proof.
$$\int_0^\infty P(Y>y)\,dy=\int_0^\infty \int_y^\infty f_Y(x)\,dx\,dy$$
 (because $f(x)=\frac{d}{dx}F(x)$) = $\int_0^\infty x f_Y(x)\,dx$ = $E(Y)$

• I is an indicator variable for event A if $I = \begin{cases} 1, \text{ if } A \text{ occurs} \\ 0, \text{ if } A^c \text{ occurs} \end{cases}$. then E(I) = P(A).

finding expectation of f(x)

- method 1, using pmf of Y: let Y = f(X). Find corresponding X for each Y.
- method 2, using pmf of X: $E[f(x)] = \sum_{x} f(x)p(x)$

Variance

If X is a r.v. with mean $\mu = E[X]$, then the variance of X is defined by

$$Var(X) = E[(X - \mu)^{2}]$$

= $E(x^{2}) - [E(x)]^{2}$

- $Var(aX + b) = a^2 Var(x)$
- $Var(X) = \sum_{x} (x_i \mu)^2 \cdot p(x_i)$ (deviation · weight)

Poisson Random Variable

a r.v. X is said to be a **Poisson r.v.** with parameter λ if for some $\lambda > 0$.

$$P(X = i) = e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$$

$$E(X) = \lambda, \quad Var(X) = \lambda$$

- $\sum_{i=0}^{\infty} P(X=i) = 1$
- Poisson Approximation of Binomial if $X \sim \text{Binomial}(n, p)$, where n is large and p is small, then $X \sim Poisson(\lambda)$ where $\lambda = np$.
 - ✓ weak dependence is ok
- · 2 ways to look at the Poisson distribution
 - 1. an approximation to the binomial distribution with large n and small p
 - 2. counting the number of events that occur at *random* at certain points in time

Poisson distribution as random events

Let N(t) be the number of events that occur in time interval [0, t].

N1 - If the 3 assumptions are true, then $N(t) \sim \mathsf{Poisson}(\lambda t)$.

N2 - If λ is the *rate of occurrences* of events per unit time, then the number of occurrences in an interval of length t has a Poisson distribution with mean λt .

$$P(N(t)=k)=rac{e^{-\lambda t}(\lambda t)^k}{k!},$$
 for $k\in\mathbb{Z}_{\geq 0}$

o(h) notation

o(h) stands for any function f(h) such that $\lim_{h\to 0} \frac{f(h)}{h} = 0$

- $\bullet \ o(h) + o(h) = o(h)$ $\bullet \ \frac{\lambda t}{n} + o(\frac{t}{n}) \dot{=} \frac{\lambda t}{n} \ \text{for large} \ n$

Expected Value of sum of r.v.

For a r.v. X, let X(s) denote the value of X when $s \in \mathcal{S}$

$$\mathbf{N1} - E(x) = \sum_i x_i P(X = x_i) = \sum_{s \in \mathcal{S}} X(s) p(s) \text{ where } \mathcal{S}_i = \{s : X(s) = x_i\}$$

N2 -
$$E(\sum_{i=1}^{n}) = \sum_{i=1}^{n} E(X_i)$$
 for r.v. X_1, X_2, \dots, X_n

e.g. distribution of time to next event

Q. suppose an accident happens at a rate of 5 per day. Find the distribution of time, starting from now, until the next accident.

A. Let X = time (in days) until the next accident.

Let V = be the number of accidents during time period [0, t].

$$V \sim \text{Poisson}(5t)$$
 $\Rightarrow P(V = k) = \frac{e^{-5t} \cdot (5t)^k}{k!}$

 $P(X>t)=P(\text{no accidents happen during }[0,t])=P(V=0)=e^{-5t}$ $P(X \le t) - 1 - e^{-5t}$

example: finding pdf

Q - Find the pdf of (b-a)X + a where a, b are constants, b > a. The pdf of X

is given by
$$f(x) = \begin{cases} 1, & 0 \le X \le 1 \\ 0, & \text{otherwise} \end{cases}$$

A. Let Y = (b-a)X + a. C(x) = P(x) = $F_Y(y) = \int_0^{\frac{y-a}{b-a}} 1 \, dx = \frac{y-a}{b-a}, \quad a < y < b$

$$f_Y(y) = \frac{d}{dy} F_Y(y) = \begin{cases} \frac{1}{b-a}, & a < y < b \\ 0, & \text{otherwise} \end{cases}$$

05. CONTINUOUS RANDOM VARIABLES

X is a **continuous r.v.** \rightarrow if there exists a nonnegative function f defined for all real $x \in (-\infty, \infty)$, such that $P(X \in B) = \int_B f(x) dx$

N1 -
$$P(X \in (-\infty, \infty)) = \int_{-\infty}^{\infty} f(x) \, dx = 1$$

N2 -
$$P(a \le X \le b) = \int_a^b f(x) dx$$

N3 -
$$P(X = a) = \int_a^a f(x) dx = 0$$

N4 -
$$P(X < a) = P(X \le a) = \int_{-\infty}^{a} f(x) dx$$

N5 - interpretation of probability density function

$$P(x < X < x + dx) = \int_{x}^{x + dx} f(y) \, dy$$

$$\approx f(x) \cdot dx$$
 pdf at x , $f(x) \approx \frac{P(x < X < x + dx)}{dx}$

N6 - if X is a continuous r.v. with pdf f(x) and cdf F(x), then $f(x) = \frac{d}{dx}F(x)$. (Fundamental Theorem of Calculus)

N7 - median of X, x occurs where $F(x) = \frac{1}{2}$

Generating a Uniform r.v.

if X is a continuous r.v. with cdf F(x), then

• N8 -
$$F(X) = U \sim uniform(0, 1)$$
.

Proof. let
$$Y=F(X)$$
. then cdf of Y , $F_Y(y)=P(Y\leq y)=P(F(X)\leq y)=P(X\leq F^{-1}(y))=F(F^{-1}(y))=y.$

- N9 $X = F^{-1}(U) \sim \text{cdf } F(x)$.
 - generating a r.v. from a uniform(0, 1) r.v. and a r.v. with cdf F(x).

Uniform Random Variable

X is a **uniform r.v.** on the interval (α, β) , $X \sim Uniform(\alpha, \beta)$ if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha}, & \alpha < x < \beta \\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{\alpha + \beta}{2}, \quad Var(X) = \frac{(\beta - \alpha)^2}{12}$$

if $X \sim Uniform(\alpha, \beta)$, then $\frac{x-\alpha}{\beta-\alpha} \sim Uniform(0, 1)$

Normal Random Variable

X is a **normal r.v.** with parameters μ and σ^2 , $X \sim N(\mu, \sigma^2)$ if the pdf of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty$$
$$E(x) = \mu, \quad Var(X) = \sigma^2$$

 $\begin{array}{ll} \text{if } X \sim N(\mu,\sigma^2), \text{then } \frac{X-\mu}{\sigma} \sim N(0,1) \\ \text{if } Y \ \sim \ N(\mu,\sigma^2) \ \text{and } a \ \text{is a constant, } F_y(a) \ = \end{array}$

standard normal distribution $\to X \sim N(0,1)$

- $F(x) = P(X \le x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy = \Phi(x)$

Normal Approximation to the Binomial Distribution

if
$$S_n \sim Binomial(n,p)$$
, then $\frac{S_n-np}{\sqrt{np(1-p)}} \sim N(0,1)$ for large n .
$$\mu=np, \quad \sigma^2=np(1-p)$$

Exponential Random Variable

a continuous r.v. X is a **exponential r.v.**, $X \sim Exponential(\lambda)$ or $Exp(\lambda)$ if for some $\lambda > 0$, its pdf is given by

$$\begin{split} f(x) &= \begin{cases} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & \text{otherwise} \end{cases} \\ E(X) &= \frac{1}{\lambda}, \quad Var(X) = \frac{1}{\lambda^2} \end{split}$$

$$P(X < a) = \int_0^a \lambda e^{-\lambda x} dx = 1 - e^{-\lambda a}$$

- an exponential r.v. is memoryless.
 - a non-negative r.v. is memoryless → if

$$P(X > s + t \mid X > t) = P(X > s)$$
 for all $s, t > 0$.

Gamma Distribution

a r.v. X has a gamma distribution, $X \sim Gamma(\alpha, \lambda)$ with parameters (α, λ) , $\lambda > 0$ and $\alpha > 0$ if its pdf is given by

$$f(x) \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & x \ge 0\\ 0, & x < 0 \end{cases}$$
$$E(X) = \frac{\alpha}{\lambda} \quad Var(X) = \frac{\alpha}{\lambda^2}$$

where the gamma function $\Gamma(\alpha)$ is defined as $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} dy$. N1 - $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$

Proof, using integration by parts of LHS to

N2 - if α is an integer n, then $\Gamma(n) = (n-1)!$ **N3** - if $X \sim Gamma(\alpha, \lambda)$ and $\alpha = 1$, then $X \sim Exp(\lambda)$

N4 - for events occurring randomly in time following the 3 assumptions of poisson distribution, the amount of time elapsed until a total of n events has occurred is a gamma r.v. with parameters (n, λ) .

- time at which the *n*-th event occurs, $T_n \sim Gamma(n, \lambda)$
- number of events in time period [0,t], $N(t) \sim Poisson(\lambda t)$

N5 - $Gamma(\alpha = \frac{n}{2}, \lambda = \frac{1}{2}) = \chi_n^2$ (chi-square distribution to n degrees of freedom)

Beta Distribution

a r.v. X is said to have a **beta distribution**, $X \sim Beta(a,b)$

$$f(x) = \begin{cases} \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1}, & 0 < x < 1\\ 0, & \text{otherwise} \end{cases}$$

$$E(X) = \frac{a}{a+b} \quad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

N1 - $\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx$ **N2** - $\beta(a = 1, b = 1) = Uniform(0, 1)$

N3 - $\beta(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$

Cauchy Distribution

a r.v. X has a cauchy distribution, $X \sim Cauchy(\theta)$ with parameter θ , $\infty < \theta < \infty$ if its density is given by

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \theta)^2}, -\infty < x < \infty$$

06. JOINTLY DISTRIBUTED RANDOM VARIABLES

Joint Distribution Function

the **joint cumulative distribution function** of the pair of r.v. X and Y is \rightarrow $F(x,y) = P(X \le x, Y \le y), -\infty < x < \infty, -\infty < y < \infty$

N1 - marginal cdf of X, $F_X(x) = \lim_{y \to \infty} F(x, y)$.

N2 - marginal cdf of Y, $F_Y(y) = \lim_{x \to \infty} F(x, y)$.

N3 - $P(X > a, Y > b) = 1 - F_X(a) - F_Y(b) + F(a, b)$ **N4** - $P(a_1 < X \le a_2, b_1 < Y \le b_2)$

 $=F(a_2,b_2)+F(a_1,b_1)-F(a_1,b_2)-F(a_2,b_1)$

Joint Probability Mass Function

if X and Y are both discrete r.v., then their **joint pmf** is defined by p(i,j) = P(X=i, Y=j)

N1 - marginal pmf of X, $P(X = i) = \sum_{i} P(X = i, Y = j)$

N2 - marginal pmf of Y, $P(Y=i) = \sum_i P(X=i, Y=j)$

Joint Probability Density Function

the r.v. X and Y are said to be *jointly continuous* if there is a function f(x,y)called the **joint pdf**, such that for any two-dimensional set C,

$$P[(X,Y) \in C] = \iint_C f(x,y) dx dy$$

= volume under the surface over the region C.

N1 - if $C = \{(x, y) : x \in A, y \in B\}$, then Surface $P(X \in A, Y \in B) = \int \int f(x, y) dx dy$

 $=P(X \in (-\infty, a], Y \in (-\infty, b])$ $=\int_{-\infty}^{b}\int_{-\infty}^{a}f(x,y)\,dx\,dy$

N3 - $f(a,b) = \frac{\delta^2}{5-5L} F(a,b)$

interpretation of pdf

$$P(x < X < x + dx) = \int_{x}^{x+dx} f(y) dy$$
$$\approx f(x) dx$$

pdf at x, $f(x) \approx \frac{P(x < X < x + dx)}{dx}$

interpretation of joint pdf

P(a < X < a + da, b < Y < b + db) $= \int_{b}^{b+db} \int_{a}^{a+da} f(x,y) \, dx \, dy$ $\approx f(a,b) \, da \, db$ (density of probability) marginal pdf of X, $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$ marginal pdf of Y, $f_Y(x) = \int_{-\infty}^{\infty} f(x, y) dx$

Independent Random Variables

N1 - X, Y are independent $\rightarrow P(X \in A, Y \in B) = P(X \in A) \cdot P(Y \in B)$

N2 - X and Y are **independent** \rightarrow

 $P(X < a, Y < b) = P(X < a) \cdot P(Y < b)$

or $F(a,b) = F_X(a) \cdot F_Y(b)$ \Rightarrow joint cdf is the product of the marginal cdfs

N3 - discrete case: discrete r.v. X and Y are independent \iff

 $P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$ for all x, y.

N4 - continuous case: jointly continuous r.v. X and Y are independent \iff $f(x,y) = f_X(x) \cdot f_Y(y)$ for all x, y.

 $-\infty < x < \infty, \quad -\infty < y < \infty$

N5 - independence is a **symmetric** relation $\to X$ indep of $Y \iff Y$ indep of X

if X and Y are independent, then for any functions h and g,

$$E[g(X)h(Y)] = E[g(X)] \cdot E[h(Y)]$$

N1 - for independent, continuous r.v. X and Y having pdf f_X and f_Y ,

$$F_{X+Y}(a) = \int_{-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$

$$f_{X+Y}(a) = \int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

Distribution of Sums of Independent r.v.

Sum of Independent Random Variables

for i = 1, 2, ..., n,

1. $X_i \sim Gamma(t_i, \lambda) \Rightarrow \sum_{i=1}^n X_i \sim Gamma(\sum_{i=1}^n t_i, \lambda)$

2. $X_i \sim Exp(\lambda)$ $\Rightarrow \sum_{i=1}^n X_i \sim Gamma(n, \lambda)$ 3. $Z_i \sim N(0, 1)$ $\Rightarrow \sum_{i=1}^n z_i^2 \sim \chi_n^2 = Gamma(\frac{n}{2}, \frac{1}{2})$

4. $X_i \sim N(\mu_i, \sigma_i^2) \quad \Rightarrow \quad \sum_{i=1}^n X_i \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

5. $X \sim Poisson(\lambda_1), Y \sim Poisson(\lambda_2) \Rightarrow X + Y \sim Poisson(\lambda_1 + \lambda_2)$

6. $X \sim Binom(n, p), Y \sim Binom(m, p) \Rightarrow X + Y \sim Binom(n + m, p)$

Conditional Distribution (discrete)

for discrete r.v. X and Y, the **conditional pmf** of X given that Y=y is

$$P_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x,y)}{p_Y(y)}$$

for discrete r.v. X and Y, the **conditional pdf** of X given that Y = y is

 $F_{X|Y}(x|y) = P(X \le x|Y = y) = \sum_{a \le x} P(X = a, Y = y) = \sum_{a \le x} P_{X|Y}(a|y)$

N0 - equivalent notation:

• $P_{X|Y}(x|y) = P(X = x|Y = y)$

• $P_X(x) = P(X = x)$

N1 - if X is independent of Y, then $P_{X|Y}(x|y) = P_X(x)$

Conditional Distribution (continuous)

for X and Y with joint pdf f(x,y), the **conditional pdf** of X given that Y=y is

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} \quad \text{for all } y \text{ s.t. } f_Y(y) > 0$$

$$F_{X|Y}(a|y) = P(X \le a|Y = y) = \int_{-\infty}^{a} f_{X|Y}(x|y) dx$$

N1 - for any set $A, P(X \in A|Y = y) = \int f_{X|Y}(x|y) dy$

N2 - if X is independent of Y, then $f_{X|Y}(x|y) = f_X(x)$.

! "find the marginal/conditional pdf of Y" \Rightarrow must include the **range** too!! Joint Probability Distribution of Functions of r.v.

Let X_1 and X_2 be jointly continuous r.v. with joint pdf $f_{x_1,x_2}(x_1,x_2)$. Suppose $Y_1 = q_1(X_1, X_2)$ and $Y_2 = q_2(X_1, X_2)$ satisfy

1. the equations $y_1 = q_1(X_1, X_2)$ and $y_2 = q_2(X_1, X_2)$ can be uniquely solved for x_1, x_2 in terms of y_1 and y_2

2. $g_1(x_1, x_2)$ and $g_2(x_1, x_2)$ have continuous partial derivatives at all points

$$(x_1,x_2) \text{ such that } J(x_1,x_2) = \begin{vmatrix} \frac{\delta g_1}{\delta x_1} & \frac{\delta g_1}{\delta x_2} \\ \frac{\delta g_2}{\delta x_1} & \frac{\delta g_2}{\delta x_2} \end{vmatrix} = \frac{\delta g_1}{\delta x_1} \cdot \frac{\delta g_2}{\delta x_2} - \frac{\delta g_2}{\delta x_2} \cdot \frac{\delta g_1}{\delta x_1} \cdot \frac{\delta g_2}{\delta x_2} \neq 0$$

then

$$\begin{split} f_{Y_1,Y_2}(y_1,y_2) &= f_{X_1,X_2}(x_1,x_2) \frac{1}{|J(x_1,x_2)|} \\ \text{where } x_1 &= h_1(y_1,y_2), x_2 = h_2(y_1,y_2) \end{split}$$

07. PROPERTIES OF EXPECTATION

- for a discrete r.v. X, $E(X)=\sum_x x\cdot p(x)=\sum_x \cdot P(X=x)$ for a continuous r.v. X, $E(X)=\int_{-\infty}^\infty x\cdot f(x)\,dx$
- for a non-negative integer-valued r.v. $Y, E(Y) = \sum_{i=1}^\infty P(Y \geq i)$ for a non-negative r.v. $Y, E(Y) = \int_{-\infty}^\infty P(Y > y) \, dy$

Expectations of Sums of Random Variables

for
$$X$$
 and Y with joint pmf $p(x,y)$ and joint pdf $f(x,y)$,
$$E[g(x,y)] = \sum_{y} \sum_{x} g(x,y) p(x,y)$$

$$E[g(x,y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, dx \, dy$$

N2 - if
$$P(a \le X \le b) = 1$$
, then $a \le E(X) \le b$

N4 - for r.v.s
$$X$$
 and Y , if $X > Y$, then $E(X) > E(Y)$

N5 - let X_1, \ldots, X_n be independent and identically distributed r.v.s having distribution $P(X_i \leq x) = F(x)$ and expected value $E(X_i) = \mu$.

if
$$\bar{X} = \sum\limits_{i=1}^n \frac{X_i}{n}$$
, then $E(\bar{X}) = \mu$

N6 - \bar{X} is the sample mean. ⇒ sample mean = population mean ! trick: express a r.v. as a sum of r.v. with easier to find expectation

examples

- hypergeometric with r red balls out of N balls with n trials
 - indicator r.v. = 1 if the ith ball selected is red
 - $P(Y_i = 1) = \frac{r}{N} \Rightarrow E(Y_i) = \frac{r}{N} \Rightarrow E(X) = \sum_{i=1}^n Y_i = n \frac{r}{N}$
- coupon collector problem:
 - let X = number of coupons collected for a complete set
 - let X_i = additional number to be collected to obtain distinct type after idistinct types have been collected. $X_i \sim Geometric(p = \frac{N-i}{N})$
 - $E(X) = \sum_{i=1}^{N-1} E(X_i) = 1 + \frac{1}{N-1} + \frac{1}{N-2} + \dots + \frac{1}{\frac{1}{N-2}}$ $=N(\frac{1}{N}+\frac{1}{N-1}+\cdots+1)$

Covariance, Variance of Sums and Correlations

covariance → measure of *linear relationship*

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

N1 - X and Y are independent $\Rightarrow Cov(X,Y) = 0$

N2 - $Cov(X,Y) = 0 \Rightarrow X$ and Y are independent. *Proof.* let E(X) = 0, $E(XY) = 0 \Rightarrow Cov(X,Y) = 0$, but not independent e.g. non-linear relationship

Covariance properties

- 1. Cov(X,Y) = Cov(Y,X)
- 2. Cov(X, X) = Var(X)
- 3. Cov(aX, Y) = aCov(X, Y)
- **4.** $Cov(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$
- 5. $Cov(I_A, I_B) = P(B)[P(A|B) P(A)]$

N1 -
$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

N2 - if
$$X_1, \ldots, X_n$$
 are pairwise independent, $Var(\sum\limits_{i=1}^n X_i) = \sum\limits_{i=1}^n Var(X_i)$

N3 - for *n* independent and identically distributed r.v. with variance σ^2 ,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
 $Var(\bar{X}) = \frac{\sigma^2}{2}$ $E(S^2) = \sigma^2$

 $\Rightarrow S^2$ is an unbiased estimator for σ^2 .

Correlation

N1 - $-1 < \rho(X,Y) < 1$ where -1 and 1 denote a perfect negative and positive linear relationship respectively.

N2 - $\rho(X,Y)=0 \Rightarrow$ no *linear* relationship - uncorrelated

N3 -
$$\rho(X,Y) = 1 \Rightarrow Y = aX + b, a = \frac{\delta y}{\delta x} > 0$$

N4 - for independent events A, B with indicator r.v. I_A , I_B : $Cov(I_A, I_B) = 0$.

N5 - deviation is not correlated with the sample mean. For independent & identically distributed r.v. X_1, X_2, \ldots, X_n with variance σ^2 , then $Cov(X_i - \bar{X}, \bar{X}) = 0.$

Conditional Expectation

the **conditional expectation** of X given that Y = y, $\forall y$ s.t. $P_Y(y) > 0$, is:

$$\begin{split} E[X|Y=y] &= \sum_x x \cdot P(X=x|Y=y) = \sum_x x \cdot p_{X|Y}(x|y) \\ E(X|Y=y) &= \int\limits_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) \, dx = \int\limits_{-\infty}^{\infty} x \cdot \frac{f(x,y)}{f_Y(y)} \, dx \\ &\text{! note the range for } f_{X|Y}(x|y) \end{split}$$

N1 - If $X, Y \sim Geometric(p)$,

then $P(X=i|X+Y=n)=\frac{1}{n-1}$, a uniform distribution.

N2 -
$$E(X|X+Y=n)=\sum_{i=1}^{n-1}i\cdot P(X=i|X+Y=n)=\frac{n}{2}$$
 discrete case: $E[g(x)|Y=y]=\sum_{i=1}^{n}g(x)P_{X|Y}(x|y)$

continuous case: $E[g(x)|Y=y] = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx$ then $E(X) = E_{w.r.t.\ y}(E_{w.r.t.\ X|Y=y}(X|Y))$

Deriving Expectation

$$E(X) = E_Y(E_X(X|Y))$$

discrete case:
$$E(X)=\sum_y E(X|Y=y)P(Y=y)$$
 continuous case: $E(X)=\int_{-\infty}^\infty E(X|Y=y)f_Y(y)\,dy$

 ${f N3}$ - 3 methods for finding E(X) given f(x,y)

- 1. using $E(g(x,y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) dx dy \implies \text{let } g(x,y) = x$
- 2. using $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$
- 3. using $E(X) = \int_{-\infty}^{\infty} E(X|Y=y) f_Y(y) dy$

N4 -
$$E(\sum_{i=1}^{N} X_i) = E_N(E(\sum_{i=1}^{N} X_i | N)) = \sum_{n=0}^{\infty} E(\sum_{i=1}^{N} X_i | N = n) \cdot P(N = n)$$

Computing Probabilities by Conditioning

discrete:
$$P(E) = \sum_{y} P(E|Y=y)P(Y=y)$$

continuous:
$$P(E) = \int_{-\infty}^{y} P(E|Y=y) f_Y(y) dy$$

$$\textit{Proof.} \ X \text{ is an indicator r.v.}; E(X|Y=y) = P(X=1|Y=y) = P(E|Y=y)$$

N5 -
$$P(X < Y) = \int P(X < Y | Y = y) \cdot f_Y(y)$$

Conditional Variance

$$Var(X|Y) = E[(X - E(X|Y))^{2} | Y]$$

= $E(X^{2}|Y) - [E(X|Y)]^{2}$

N6 - Var(X) = E[Var(X|Y)] + Var[E(X|Y)]

N7 -
$$E(f(Y)) = E(f(Y)|Y=t) = E(f(t)|Y=t)$$

= $E(f(t))$ if $N(t)$ and Y are independent

Moment Generating Functions

moment generating function M(t) of the r.v. $X \rightarrow$

$$M(t) = E(e^{tX})$$
 for all real values of t

- if X is discrete with pmf p(x), $M(t) = \sum_x e^{tx} \cdot p(x)$
- if X is continuous with pdf f(x), $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

M(t) is called the **mgf** because all moments of X can be obtained by successively differentiating M(t) and then evaluating the result at t=0.

- the n^{th} moment of of X is given as $E(X^n) = \sum_{x} x^n \cdot p(x)$
 - $M'(0) = E(X), M''(0) = E(X^2), M^n(0) = E(X^n), n \ge 1$
 - $M'(t) = E(X^n e^{tX}), n > 1$

if X and Y are independent and have mgf's $M_X(t)$ and $M_Y(t)$ respectively,

N10 - the mgf of X + Y is $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$

N11 - if $M_X(t)$ exists and is finite in some region about t=0, then the distribution of X is **uniquely** determined. $M_X(t) = M_Y(t) \iff X = Y$

joint mgf:
$$E[e^{tX+sY}] = \int \int e^{tx+sy} f(x,y) \, dy \, dx$$

Common mqf's

- $X \sim Normal(\mu, \sigma^2), \quad M(t) = e^{\frac{\sigma^2 t^2}{2} + \mu t}$
- $X \sim Binomial(n, p), \quad M(t) = (pe^t + (1-p))^n$
- $X \sim Poisson(\lambda), \quad M(t) = \exp[\lambda(e^t 1)]$
- $X \sim Exp(\lambda), \quad M(t) = \frac{\lambda}{\lambda t}$

08. LIMIT THEOREMS

Markov's Inequality \rightarrow if X is a non-negative r.v., $\forall a > 0, P(X \ge a) \le \frac{E(x)}{a}$ **Chebyshev's inequality** \rightarrow if X is an r.v. with finite mean μ and variance σ^2 ,

then for any value of k > 0, $P(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$.

N1 - if
$$Var(X) = 0$$
, then $P(X = E[X]) = 1$

weak law of large numbers \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distributed r.v.s, each with finite mean $E[X_i] = \mu$. Then, for any $\epsilon > 0, P\{|\frac{X_1 + \dots + X_n}{n} - \mu| \ge \epsilon\} \to 0 \text{ as } n \to \infty$

central limit theorem \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distributed r.v.s each having mean μ and variance σ^2 . Then the distribution of $\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}$ tends to the standard normal as $n\to\infty$.

- aka: $\frac{\bar{x}-\mu}{\sigma/\sqrt{n}} \to z \sim N(0,1)$
- $\begin{array}{l} \bullet \text{ for } -\infty \stackrel{\vee}{\sim} a < \infty, \quad \text{as } n \to \infty, \\ P(\frac{X_1 + \dots + X_n n\mu}{\sigma \sqrt{n}} \leq a) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^a e^{-x^2/2} \, dx = F(a) \quad \text{- cdf of } N(0,1) \end{array}$

N2 - Let Z_1, Z_2, \ldots be a sequence of r.v.s with distribution functions F_{Z_n} and moment generating functions M_{Z_n} , $n \geq 1$. Let Z be a r.v. with distribution function F_Z and mgf M_Z .

If $M_{Z_n}(t) \to M_Z(t)$ for all t, then $F_{Z_n}(t) \to F_Z(t)$ for all t at which $F_Z(t)$ is

strong law of large numbers \rightarrow let X_1, X_2, \dots be a sequence of independent and identically distribution r.v.s, each having finite mean $\mu = E[X_i]$.

Then, with probability $1,\,\frac{X_1+\cdots+X_n}{n}\to\mu$ as $n\to\infty$ **Chernoff bounds** \rightarrow Suppose X is a r.v. and a constant.

 $P(X > a) < e^{-ta} M_X(t)$, for all t > 0 $P(X \le a) \le e^{-ta} M_X(t)$, for all t < 0

Jensen's Inequality \rightarrow If f(x) is a convex function ($f''(x) \ge 0$), and the expectation exists and is finite, $E(f(X)) \ge f(E(X))$

approximations - $\lim_{n \to \infty} (1 - \frac{\lambda}{n})^n = e^{-\lambda}$