Hoja nº 5.b

Cardinalidad

- 1. Sean A, B y C tres conjuntos tales que $A \subset B \subset C y A$ equipotente a C (i.e. Card(A) = Card(C)). Utilizando los resultados del curso, demostrar que los tres conjuntos son equipotentes (i.e. Card(A) = Card(B) = Card(C)).
- **2.** Definimos la siguiente relación en \mathbb{R} : $x\mathcal{R}y \iff x-y \in \mathbb{Q}$. Demostrar que es una relación de equivalencia. ¿Cuántos elementos tiene cada clase de equivalencia? ¿Es numerable el conjunto cociente?
- **3.** Demostrar que el conjunto de los números irracionales, $\mathbb{R} \setminus \mathbb{Q}$, no es numerable.
- **4.** Sea A un conjunto infinito. Demostrar que si $a_1, \ldots, a_n \in A$ son elementos de A, el conjunto $A \setminus \{a_1, \ldots, a_n\}$ es equipotente a A.
- **5.** Demostrar:
- a) Todo subconjunto de un conjunto finito es finito.
- b) Todo subconjunto de un conjunto numerable es numerable.
- c) Un conjunto A es infinito si existe un subconjunto $B \subset A$, $B \neq A$, y un biyección $f: B \longrightarrow A$.
- 6. Determinar el cardinal de cada uno de los siguientes conjuntos:
- a) $\mathbb{N} \times \mathbb{N}$.
- **b)** $\mathbb{N} \times \mathbb{Q}$.
- c) $(-\pi/2, \pi/2)$.
- d) El intervalo I = (0,1) y más generalmente el intervalo (a,b).
- e) $I \times I$.
- f) $\mathbb{R} \times \mathbb{R}$.
- g) El conjunto \mathbb{C} de los números complejos.
- h) $\mathcal{P}(\mathbb{N})$.
- i) $\mathcal{P}(\mathbb{Q})$.
- j) $\mathbb{R} \setminus \mathbb{N}$.
- **k)** Los intervalos [a, b] y [a, b) en \mathbb{R} .
- l) El conjunto de todas las raíces (racionales o no) de todos los polinomios con coeficientes racionales (a este conjunto se le llama conjunto de los números algebraicos).
- m) El conjunto de todos los subconjuntos de N que tienen dos elementos.
- n) El conjunto de los números reales $x \in [0,1)$ en cuyo desarrollo decimal no aparece el 9.