2016-2017 学年第二学期《微积分 I-2》期末试卷

一、讨论下列级数的敛散性. 如果收敛,说明是条件收敛,还是绝对收敛? (每 小题 4 分, 共 12 分)

1.
$$\sum_{n=2}^{\infty} \frac{(-1)^n \sqrt{n}}{n-1}$$
; 2. $\sum_{n=2}^{\infty} \left(\frac{(-1)^n \sqrt{n}}{n-1} + n \sin \frac{1}{n} \right)$; 3. $\sum_{n=1}^{\infty} \frac{n^2 [1 + 2(-1)^n]^n}{6^n}$.

2.
$$\sum_{n=2}^{\infty} \left(\frac{(-1)^n \sqrt{n}}{n-1} + n \sin \frac{1}{n} \right);$$

3.
$$\sum_{n=1}^{\infty} \frac{n^2 [1 + 2(-1)^n]^n}{6^n}$$

- 二、计算下列各题: (每小题 6 分, 共 12 分)
- 1. $\iint_{D} |xy| \, dxdy$, \mathbb{T} \mathbb{E} \mathbb{E}
- 2. $\iiint x^2 + y^2 dx dy dz$,其中 Ω 为z = 1, z = 4和 $z = y^2 + x^2$ 所围区域.
- 三、计算下列各题: (每小题 6 分, 共 12 分)
- (1) $\iiint_{\Omega} e^{|z|} dx dy dz$, $\not\equiv + \Omega$: $x^2 + y^2 + z^2 \le 1$.
- (2) $\int_{\Gamma} z^2 ds$, 曲线 Γ 为 $x^2 + y^2 + z^2 = 1$ 与 y = x 的交线.

四、(1)确定常数 a,b, 使得 $\frac{ax+y}{x^2+y^2}dx - \frac{x-y+b}{x^2+y^2}dy$ 为某个二元函数 u(x,y) 的全微分;

(2)求该二元函数u(x,y)。 (8 分)

五、用格林公式计算曲线积分 $I = \int_L (x^2 - 2y) dx - (x + \sin^2 y) dy$, 其中L 是点 A(0,0)到点 B(2,0)的上半圆周 $y = \sqrt{2x - x^2}$. (8分)

解: 设从 A(0,0)到 B(2,0)的有向线段为l.则 L+l为上半球面 $D: y \le \sqrt{2x-x^2}$ 的正向 边界, 由格林公式 ----(2分)

$$I = -\int_{L^{-}} (x^{2} - 2y) dx - (x + \sin^{2} y) dy$$

$$= -\left[\int_{L^{-}+l} (x^{2} - 2y) dx - (x + \sin^{2} y) dy - \int_{l} (x^{2} - 2y) dx - (x + \sin^{2} y) dy \right]$$

$$= -\left(\iint_{D} dx dy - \int_{0}^{2} x^{2} dx \right) \qquad -----(6 \%)$$

$$= -\left(\frac{\pi}{2} - \frac{8}{3} \right) = \frac{8}{3} - \frac{\pi}{2}. \qquad -----(8 \%)$$

六、将函数 $\frac{1}{x^2-1}$ 展开成(x-3)的幂级数。(8分)

七、设 $r = \sqrt{x^2 + y^2 + z^2}$,利用 Gauss 公式计算曲面积分

$$\bigoplus_{\Sigma} \frac{x}{r^3} dydz + \frac{y}{r^3} dzdx + \frac{z}{r^3} dxdy ,$$

其中Σ为任意不经过原点的闭曲面,取外侧。(10分)

八、设 Σ 是四面体 $x+y+z \le 1, x \ge 0, y \ge 0, z \ge 0$ 的表面,计算 $I = \iint_{\Sigma} \frac{1}{(1+x+y)^2} dS$. (10分)

九、求幂级数 $\sum_{n=0}^{\infty} \frac{(2n+1)x^{2n}}{(n+1)!}$ 的收敛域以及和函数 S(x),并由此求 $\sum_{n=0}^{\infty} \frac{(2n+1)4^n}{(n+1)!}$ (10分)

十、将函数
$$f(x) =$$

$$\begin{cases} \sin x, & x \in [0, \frac{\pi}{2}) \\ 0, & x \in [\frac{\pi}{2}, \pi] \end{cases}$$
 在 $[0, \pi]$ 上展开成正弦级数,并求该级数在 $[0, \pi]$ 上

的和函数S(x). (10分)