UNIVERSIDADE FEDERAL DE OURO PRETO CIÊNCIA DA COMPUTAÇÃO

JULIANA APARECIDA BORGES MARIA CLARA MIRANDA DE SÁ

RELATÓRIO 07

Transistor com chave

MINAS GERAIS 2022

INTRODUÇÃO

Neste relatório vamos abordar um assunto bastante importante para a disciplina de eletrônica, que são os transistores, tipo de dispositivo semicondutor, geralmente feito de silício ou germânio, usado para amplificar ou diminuir a intensidade da corrente elétrica. Vamos entender como ele se comporta dentro de um circuito. Além disso, vamos conhecer os pontos de saturação e os de corte. Por fim, iremos montar um circuito com transistores PNP(positivo, negativo, positivo) e NPN(negativo, positivo, negativo).

DESENVOLVIMENTO

No começo da aula foi explicado o que era um transistor, que é como se fosse a união de dois diodos, e conforma associado seus dois lados (catodo e diodo), que como foi abordado em outro relatório, o diodo tem como objetivo evitar o fluxo de carga no sentido contrário e assim evitar que o circuito seja completamente comprometido. Por isso tem um lado dele que apenas aceita carga com sinal positivo, e outro que aceita carga com sinal negativo, e chamados respectivamente de P e N. E assim é o transistor, porém ele possui 3 polarizações diferentes, uma na base e duas nas saídas, que são conhecidas como coletor e receptor, e os principais objetivos do transistor é amplificar a corrente, ou barrar a sua passagem (funcionando como uma chave, que estaria aberta quando barrasse a passagem de corrente).

Atividades:

Primeira atividade: Tivemos que montar os seguintes circuitos:

No TinkerCad, usamos para montar os circuitos um resistor de 1k e um de 10k, duas fontes de energia, uma led, um transistor pnp para um circuito e o transistor npn para o outro circuito, e sete multímetros. Os circuitos montados abaixo:

Circuito com NPN:

Circuito com PNP:

<u>Segunda Atividade:</u> foi pedido que calculássemos os valores de IB, IC e Vce para os dois circuitos e que

considerássemos a queda de tensão nos extremos do LED = 1,6V.

Cálculos:

$$IB = (Vbb - Vbe) / Rb$$
 $IC = Vcc - VRC / Rc$ $IB = (15 - 0.7) / 10000$ $IC = 15 - 1.6 / 1000$ $IC = 0.0134$ ou 13,4mA

Vce = Vcc - VRCVce = Vcc - VRCVce = 15 - 1,6Vce = 15 - 13,4Vce
$$\simeq 13,4$$
 VVce $\simeq 1,6$ V

Terceira Atividade: foi pedido para que anotássemos os valores calculados em uma tabela, e analisássemos os valores calculados e medidos através do TinkerCad.

TABELA

	CALCULADO			MEDIDO		
TRANSISTOR	I _B	Ic	V _{CE}	IΒ	Ic	V _{CE}
BC558						
VBB=VCC	1,43mA	13,4mA	1,6V	-35 9uA	12,0mA	1,04V
(chave na				00,000	12,01111	.,
posição 1)						
BC558						
VBB=GND	0.4	0.4	13,4V	0 A	0 A	13,6 V
(chave na	0 A	0 A	13,41			10,0 0
posição 2)						
BC548						
VBB=VCC	1,43mA	13,4m <i>A</i>	1,6V	1,43mA	13,0mA	23,1mV
(chave na						
posição 1)						
BC548						
VBB=GND				0 A	0 A	13,6V
(chave na	0 A	0 A	13,4V		•	,
posição 2)						

Com isso terminamos a tabela, observamos que quando a fonte está em zero, a uma tensão maior em cima do coletor e emissor, porém ao colocarmos em 15v, a tensão entre esses dois se aproxima de 0. Além disso, podemos perceber que apenas a tensão, era diferente por mais que o circuito estivesse aberto ou fechado, ainda haveria tensão, em cima do coletor e emissor do transistor. Além disso pudemos observar na prática a queda provocada pelo diodo e pelo transistor, pois a uma diferença nas medições de tensão.

CONCLUSÃO:

Ao realizarmos este relatório aprendemos mais sobre a funcionalidade do transistor, bem como suas características. Também conseguimos entender como calcula a corrente do coletor e que na saturação fraca, a corrente de base é suficiente para levar o transistor à saturação. Concluímos que os transistores podem funcionar como interruptores, ligando ou desligando a corrente elétrica em um circuito.