



# Nonparametric modelling for spaced repetition scheduling

Politecnico di Milano - 03/02/2021

# **Spaced Repetition**

# Spaced repetition is a method for **memorizing concepts**:

- No cramming, reviews spaced through time
- Increasing durations
   between reviews as one
   learns the item
- Software schedules each review



# duolingo and Half-Life Regression

### **Duolingo** is a language learning app:

- Relies on spaced repetition under the hood
- Half-Life Regression model to estimate the user's probability of recalling an item at any point in time after the last review

### Half-Life Regression paper + dataset:

- 2 weeks of real usage data
- 115'000 users
- 13 million word recall probabilities

# duolingo Model

Forgetting Curve Model: p =  $2^{-\triangle h}$ (Ebbinghaus, 1885)

| Percentage | Percen



# duolingo Model

lag time

**Forgetting Curve Model:** (Ebbinghaus, 1885)

p-recall

Half-life

0.8 0.6  $\Delta = h$ 0.4 0.2  $\Delta \gg h$ 2 3

 $\Delta = 0$ 

### **Half-Life Regression Model:**

parameters

$$\hat{h}_{\Theta}=2^{\Theta(\mathbf{x})}$$



$$\hat{p}_{\Theta} = 2^{-\Delta/\hat{h}_{\Theta}}$$

feature variables

# duolingo Model

lag time

**Forgetting Curve Model:** 

$$p = 2^{-\Delta h}$$

(Ebbinghaus, 1885)

p-recall



#### **Half-Life Regression Model:**

parameters

$$\hat{h}_{\Theta} = 2\Theta \otimes$$

$$\rightarrow$$

$$\hat{p}_{\Theta} = 2^{-\Delta/\hat{h}_{\Theta}}$$

feature variables

### **GOALS:**

develop the best model in order to improve the users' experience

# **DATA EXPLORATION**





- More than 12 million "sessions"
- More than 115,000 users
- More than 19,000 words in 5 languages

- p\_recall proportion of exercises from this lesson/practice where the word/lexeme was correctly recalled
- timestamp UNIX timestamp of the current lesson/practice
- delta time (in seconds) since the last lesson/practice that included this word/lexeme
- user\_id student user ID who did the lesson/practice (anonymized)
- learning\_language language being learned
- ui\_language user interface language (presumably native to the student)
- lexeme\_id system ID for the lexeme tag (i.e., word)
- lexeme string lexeme tag (see below)
- history\_seen total times user has seen the word/lexeme prior to this lesson/practice
- history\_correct total times user has been correct for the word/lexeme prior to this lesson/practice
- session\_seen times the user saw the word/lexeme during this lesson/practice
- session\_correct times the user got the word/lexeme correct during this lesson/practice











#### We created some **new variables**:

- delta\_day = delta / (24\*3600)
- word\_length = length of the word
- p\_history = history\_correct/history\_seen
- learning\_language\_tag = we manually grouped the word by learning\_language; we came up with 3 groups; learning\_language\_tagis 0 if the user is learning French, 1 if the user is learning Italian or Portuguese and 2 otherwise.
- ui\_language\_tag = we manually grouped the word by ui\_language; we came up with 2 groups: ui\_language\_tagis is 1 if the user is learning Italian
- avg\_user\_p = mean value of the p\_recall scores of every user (if the user is new, we consider the mean value of the whole dataset)

#### p\_recall ~ delta\_day



#### p recall ~ delta day



#### p\_recall ~ p\_history

#### **Tukey depth**



p\_recall ~ delta\_day



p\_recall ~ p\_history



#### lexeme\_length



p recall ~ delta day



p\_recall ~ p\_history



lexeme\_length

p\_recall ~ avg\_user\_p
Tukey depth



#### p\_recall ~ p\_history





P\_recall ~ avg\_user\_P

Tukey depth

- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
- 0.19
-



learning\_language\_tag

ui\_language\_tag

# **OUR GOALS**

# **Initial goal**

- Help Duolingo improve their user experience by making better decision about which word to test the user on
- Fit a model which makes better predictions about
   p\_recall, in order to better prioritize between words

# **OUR MODELS**

### **Model 1**



We resort to a **logistic GAM** with some penalized cubic regression spline terms:

$$g(\mathbb{E}[p|\Delta = d, H = h, L_l = l_l, L_{ui} = l_{ui}, W = w]) = \beta_0 + \beta_1 l_l + \beta_2 l_{ui} + f_1(d) + f_2(h) + f_3(w)$$

### Model 2



We resort to a logistic regression model:

$$g(\mathbb{E}[P|U=u]) = \beta_0 + \beta_1 u$$

- avg\_user\_p seems to be the most important variable...
- ... here we started questioning the validity of Duolingo's data...
- ... are we sure that exists any time dependence ?



### **GLM**

 We reintroduce the dependence to delta\_day to study its significance



# p\_recall transformation

- We want to do some permutation tests for the significance of delta\_day...
- ... but they are quite problematic in a logistic regression setting
- We decided to abandon this setting and go back to linear models, by transforming our response:



$$g(p recall) \in (-\infty, +\infty)$$

# LM-g (full)

We are making inference on our transformed data

$$\mathbb{E}[g(P)|U=u,D=d] = \beta_0 + \beta_1 u + f(d)$$

### **Permutation Test**

Given our GAM model:  $g(P)|U=u,D=d\sim \beta_0+\beta_1 u+f(d)+\varepsilon$ 

we study the following test:  $H_0: f(d) = 0$  vs  $H_1: f(d) \neq 0$ 

adopting the Freedman and Lane scheme and choosing as Test Statistic:

$$T = ||f(d)||_{L^2(d_1, d_2)}$$

**p-value** = 0.18

We can ignore delta\_day!!!



# LM-g (reduced)

• We ignore the time dependence:

$$g(P)|U=u\sim\beta_0+\beta_1u+\varepsilon$$

Permutation Test for the significance of avg\_user\_p:

$$H_0: \beta_1 = 0 \quad vs \quad H_1: \beta_1 \neq 0$$

$$p$$
-value = 0

# **RESULTS**

| $MAE \downarrow$ | AUC↑                                             |
|------------------|--------------------------------------------------|
| 0.128            | 0.538                                            |
| 0.146            | 0.626                                            |
| 0.109            | 0.602                                            |
| 0.109            | 0.599                                            |
| 0.104            | n/a                                              |
| 0.175            | n/a                                              |
|                  | 0.128<br>0.146<br>0.109<br>0.109<br><b>0.104</b> |

- No evidence of any relationship between p\_recall and delta\_day (i.e. between the probability of recalling a word and the lag time of the word review)
- According to our analysis and our statistical (non-parametric) tests it seems like
  the only important feature for the inference of p\_recall is the users' previous
  performances (avg\_user\_p), i.e. their ability to learn new words.
- A constant p = 1 model reaches a smaller MAE



# THANK YOU!!!



### References

- David Freedman and David Lane. "A nonstochastic interpretation of reported significancelevels". In: Journal of Business & Economic Statistics 1.4 (1983), pp. 292–298.
- John Gerring and Daniel Pemstein. "A Political Science Peer Review and Publication Con-sortium". In:PS: Political Science and Politics(2020)
- Douglas M Potter. "A permutation test for inference in logistic regression with small-andmoderate-sized data sets". In:Statistics in medicine24.5 (2005), pp. 693–708
- B. Settles and B. Meeder. "A Trainable Spaced Repetition Model for Language Learn-ing". In:Proceedings of the Association for Computational Linguistics (ACL). ACL, 2016,pp. 1848–1858.doi:10.18653/v1/P16-1174.url:http://www.aclweb.org/anthology/P16-1174
- Burr Settles.Replication Data for: A Trainable Spaced Repetition Model for LanguageLearning. Version V1.
   2017.doi:10.7910/DVN/N8XJME.url:https://doi.org/10.7910/DVN/N8XJME