第六章 大气的辐射特性

6.1 消光、散射和吸收

b) *** ***

6.1.1 描述消光的物理量

引入实验 利用高射投影仪演示辐射**透射消光过程**: (a) 三个盛有水的器皿,正好处于投影仪光源照射的位置。

透明液体是水,黑色液体是稀释的墨汁(吸收介质),白色液体是稀释的牛奶(散射介质)。(b) 三个

器皿的投影照片:牛奶和墨汁的黑色阴影表明**吸收和散射**在衰减透射辐射是有效相等的。

机制分析 散射和吸收机制:透射消光 Exinction= 吸收+散射

稀疏介质 粒子间距需要大于数倍的波长,由此消光截面可以直接相加。 大气适用,某些医学领域不适用。

特性物理量 对于消光过程, 定义如下光学特性物理量:

粒子**消光截面\sigma_e** 单个粒子**消光的横截面积** 量纲: 面积

粒子**消光效率Q。 粒子消光截面**与其**几何横截面积**的比值 量纲: 无量纲

体积消光系数β_e 单位体积里所有粒子的消光截面之和 量纲:面积/体积=1/长度

质量消光系数ke 单位质量里所有粒子的消光截面之和 量纲: 面积/质量

 $\sigma_e = k_e m = Q_e A$ m 为单个粒子的质量,A 为粒子的几何横截面积。

 $β_e = ρk_e = Nσ_e$ ρ为物质密度(介质密度), N 为粒子数密度。

对于**散射和吸收过程**,定义类似的物理量: σ_s , Q_s , β_s , k_s 和 σ_a , Q_a , β_a , k_a

 $\beta_s = \rho k_s = N \sigma_s$ $\beta_a = \rho k_a = N \sigma_a$ $\sigma_s = k_s m = Q_s A$ $\sigma_a = k_a m = Q_a A$

 $\sigma_e = \sigma_s + \sigma_a$ $Q_e = Q_s + Q_a$ $\beta_e = \beta_s + \beta_a$ $k_e = k_s + k_a$

反照率 为描述介质散射和吸收的相对比重,定义单次散射反照率: $\tilde{\omega} = \frac{\beta_s}{\beta_e} = \frac{k_s}{k_e} = \frac{\sigma_s}{\sigma_e}$

消光截面 $I_{\text{LLM}} = \sigma_{e \parallel 1 + N_{\text{PB}}} I_{\text{NM}}$ 其与**宏观几何截面**A的关系是: $\sigma_e = 2A$ 消光悖论 $Q_e = 2$ 其与微观粒子几何截面的关系是:两者无明显关系。

6.1.2 消光物理量示例

问题 完成下面的表格,利用各列中的信息确定相同列中的缺失数值。

1	(a)	(b)	(c)	(d)
$k_e[\mathrm{m}^2/kg]$	3.89×10^{2}	?	0.45	?
$N[m^{-3}]$?	?	80	10 ⁹
$A[m^2]$	2.8×10^{-19}	7.07×10^{-14}	?	3.14×10^{-10}
$egin{pmatrix} Q_e \ \widetilde{\omega} \end{matrix}$?	0.2	0.6	?
$\widetilde{\omega}$	0	0.1	?	0.9
m[kg]	7.3×10^{-26}	1.41×10^{-17}	?	4.19×10^{-12}
$\rho[\mathrm{kg/m^3}]$	4.8×10^{-4}	?	3.35×10^{-4}	?
$\sigma_e[\mathrm{m}^2]$?	?	1.89×10^{-6}	?
$\beta_e [\mathrm{m}^{-1}]$?	1.41×10^{-4}	?	0.628
$\beta_s[\mathrm{m}^{-1}]$?	1.41×10^{-5}	6.03×10^{-5}	?

第一列: 由于 $\widetilde{\omega} = 0 \Rightarrow \beta_s = 0$ 由 $k_e, m \Rightarrow \sigma_e = k_e m = 2.83 \times 10^{-23}$ 由 $\beta_e = \rho k_e = 0.187$ 由 $N = \beta_e / \sigma_e = 6.6 \times 10^{21}$ 或 $N = \rho / m$ $Q_e = \sigma_e / A = 1 \times 10^{-4}$

6.2 比尔-布格-朗伯定律

6.2.1 比尔-布格-朗伯定律

适用范围 透射消光假设: 忽略多次散射导致的辐射增强的贡献。

沿任意路径上有限距离的辐射传输方程: 传输方程

 $I_{\lambda}(s+ds)$

 $I_{\lambda}(s_2)$

对上式进行积分来描述s1和s2两点之间延伸路径的消光:

$$I_{\lambda}(s_2) = I_{\lambda}(s_1) \exp\left[-\int_{s_1}^{s_2} \beta_e(s) ds\right]$$

6.2.2 与比尔定律相关的定义和结论

 s_1 和 s_2 之间的**光学厚度**(无量纲),又称为**光学路径**: $\tau(s_1, s_2) = \int_{s_1}^{s_2} \beta_e(s) ds$ 光学厚度

1. 表示单位横截面(由此无量纲), 从s₁到s₂这段路径中所有粒子的消光截面之和。

2. $d\tau(s) = \beta_e(s)ds$ 微分路径上的光学厚度,表示消光的比重(概率)。

 s_1 和 s_2 之间的**透过率**(无量纲,取值范围从零($au o \infty$)至1(au = 0)): $t(s_1,s_2) \equiv \frac{l_\lambda(s_2)}{l_\lambda(s_1)} \equiv e^{- au(s_1,s_2)}$ 透过率

① 如果 β_e 在 s_1 和 s_2 之间保持不变,那么 $\tau = \beta_e(s_2 - s_1)$ 性质

② 光学厚度的加法定律: $\tau(s_1, s_N) = \tau(s_1, s_2) + \tau(s_2, s_3) + \cdots + \tau(s_{N-1}, s_N)$ 截面相加

③ 透过率的乘法定律: $t(s_1, s_N) = t(s_1, s_2) \cdot t(s_2, s_3) \cdot \cdots \cdot t(s_{N-1}, s_N)$ 指数项的性质

④ 对于光学厚度 $\tau(s_1, s_2) \ll 1$ 的情况,透过率可近似: $t = \exp(-\tau) \approx 1 - \tau(s_1, s_2) = 1 - \beta_e(s_2 - s_1)$ 光学厚度非常小时,可以理解为微分路径上消光的概率,则减去后为透过的概率。

对于光学厚度不非常小时,可以从数学上论证: $\lim_{N\to\infty} \left(1-\frac{\tau}{N}\right)^N = e^{-\tau}$ 表示理论自洽。

⑤ 如果介质没有散射 $(e_{\omega} = 0)$, 路径吸收率为 $\alpha = 1 - t$

6.2.3 平面平行大气近似

透过率

平行假设 指定高度后,该层**大气性质不随水平变化**: $\beta_e(x,y,z) \approx \beta_e(z)$ $T(x,y,z) \approx T(z)$

分子大气(无云/气溶胶)十分合理,压强、温度主要变化于垂直方向(不考虑地球曲率情况) 太阳高度角小时,也不适用。有云大气,该假设不合理;对于层云,较为合理。

 z_1 和 z_2 之间的**垂直光学厚度** $\tau(z_1,z_2) = \int_{z_1}^{z_2} \beta_e(z) dz$ 光学厚度

倾斜情况: 有 $\tau(z_1, z_2, \cos \theta) = \int_{s_1}^{s_2} \beta_e(s) ds = \int_{s_1}^{s_2} \beta_e(s) \frac{dz}{\cos \theta} = \frac{\tau(z_1, z_2)}{\cos \theta}$

高度z的光学厚度 $\tau(z) \equiv \tau(z, \infty) = \int_{z}^{\infty} \beta_{e}(z')dz'$

 z_1 和 z_2 之间沿 μ 传输的**透过率** $t(z_1,z_2)=\exp\left[-\frac{1}{\mu}\tau(z_1,z_2)\right]$

在平面平行大气中倾斜路径和垂直路径之间的关系

高度z至大气顶沿 μ 传输的透过率 $t(z) \equiv \exp\left[-\frac{1}{u}\tau(z)\right]$

1. 某平面平行云的液态水云层密度 $\rho_w=0.1~gm^{-3}$ 和厚度 $\Delta z=100~m$ 。在某特定波长上,云粒子的质 计算示例 量消光系数 $k_{e,w}=150~m^2/kg$,单次散射反照率 $\tilde{\omega}_w=1.0$ 。但是悬浮粒子的空气本身在此波长上存在 吸收,体消光系数 $\beta_a,v=10~km^{-1}$ 和单次散射反照率 $\tilde{\omega}_v=0$ 。

- (a) 计算混合大气成分的联合 β_e 、 β_a 和 β_s 。
- (b) 计算云层总的光学厚度τ。
- (c) 如果辐射强度 $I_{\lambda,top}$ 以天顶角 $\theta=60^\circ$ 从云层顶部入射,请计算直接透射的辐射强度 $I_{\lambda,bot}$ 。

- (a) 混合大气成分的联合光学特性 $\beta_s = k_{e,w} \rho_w \widetilde{\omega}_w + \beta_{a,v} \widetilde{\omega}_v = 15 \text{km}^{-1}$
- $\beta_e = k_{e,w} \rho_w + \beta_{a,v} = 25 \text{ km}^{-1}$ $\beta_a = k_{e,w} \rho_w (1 - \widetilde{\omega}_w) + \beta_{a,v} (1 - \widetilde{\omega}_v) = 10 \text{km}^{-1}$

log(S

 $\log(l_{\lambda})$

- (b) 云层总的光学厚度 $\tau = \beta_e \Delta z = 2.5$
- (c) 直接透射的辐射强度 $I_{\lambda,\mathrm{bot}} = I_{\lambda,\mathrm{top}} \exp\left[-\frac{\tau}{\cos\theta}\right] = 0.7\%I_{\lambda,\mathrm{top}}$ 非常小的值,需进一步考虑散射

6.3 地基观测太阳辐射强度

概述 卫星出现之前直接利用太阳光谱仪器观测太阳辐射强度是不可能的。 地基观测总是一定程度上**受大气吸收和散射造成的阳光衰减**的影响。 然而卫星观测之前,人们就可以**合理估算太阳光谱**。

具体方法 假设大气平面平行,**大气特性在一整天里基本保持不变**。 $Z = \sec \theta$ 对于白天**任意特定时间**,比尔定律表明海平面观测的**太阳辐射强度**为 $I_{\lambda \pm \text{mbg}\psi} = S_{\lambda \pm \text{NL} + \text{NL$

图表解释 对于光学厚度 τ_{λ} 的大气,波长 λ 太阳辐射强度对数和太阳天顶角正割之间的示意性关系。其中加号代表一天中不同时间的各个观测值,由此我们**可以确定最佳拟合直线的斜率和截距**。

示例 1. 单个 O_2 分子的吸收截面在波长 $0.24~\mu m$ 上近似为 $7 \times 10^{-29}~m^2$ (对于更短的波长,它会显著增大)给定标准海平面压强 p_0 等于 $1.01 \times 10^5~Pa$,氧气的摩尔分数21~%,空气的平均分子质量m等于29~kg/kmole,重力加速度 $g=9.81~m/s^2$,阿伏伽德罗常数 $N_A=6.02 \times 10^{26}~kmole^{-1}$,计算

- (a) 在流体静力平衡条件假设下单位面积的大气柱质量
- (b) 单位面积的氧气分子大气柱数目
- (c) 在波长0.24 µm 上分子氧气所产生的光学厚度和垂直透过率。
- ① 单位面积的大气柱质量 $L = P_0/g = (1.01 \times 10^5 \text{Pa})/(9.81 \text{m/s}^2) \approx 1 \times 10^4 \text{kgm}^{-2}$
- ② 单位面积的氧气分子的大气柱数目 $N = L/\bar{m} \times N_A \times 21\% = 1 \times 10^4/(29) \times (6.02 \times 10^{26}) \times 21\%$ $\approx 4.49 \times 10^{28} \text{m}^{-2}$
- ③ 分子氧气所产生的光学厚度和垂直透过率 $\tau = N \times \sigma_a = (4.49 \times 10^{28} \, \mathrm{m}^{-2}) \times (7 \times 10^{-29} \, \mathrm{m}^2) \approx 3.14$ $t = \exp(-\tau) = \exp(-3.14) \approx 0.043$

6.4 大气透射光谱

6.4.1 关键空气成分的吸收带

成分	体积比	吸收带及注意事项
N_2	78.1%	无重要的吸收带
O_2	20.9%	UV-C、60 和 118 GHz
		附近微波、可见光和红外中的 弱谱带
H_2O	(0~2%)	贯穿红外的无数强谱带 在时空上高度变化
		重要吸收带: 6.3、2.7 μm
Ar 惰性	0.936%	单原子 无吸收
CO_2	370ppm	2.8、4.3 和 15 μm 附近 ,浓度增加
CH_4	1.7ppm	3.3 和 7.8 μm 附近,人类活动引起的增加
N_2O	0.335ppm	4.5、7.8 和 17 μm
CO	0.07ppm	4.7μm (弱)
O_3	~10 ⁻⁸	UV-B、9.6 µm(热红外) 浓度高度变化
		在 平流层和污染空气中 浓度高
$CFCl_3$	$\sim 10^{-10}$	氟氯烃,吸收红外,来源于工业排放

6.4.2 大气透射光谱

描述 ① 对于典型的中纬度夏季(水汽较多)大气条件(上页右图),不考虑云和气溶胶的大气的天顶透过率

- ② 上面的各个子图描述了一个单一大气成分产生的吸收贡献
- ③ 最下面的子图描绘了所有成分的联合效应 (透过率的乘法定律)
- ④ 当波长大概短于 0.5 μm 时分子散射逐渐变得重要, 但是在这些图并没有做考虑。
- ⑤ 可见水汽对总的透过率贡献最大,两者高度相似。

6.5 云层的光学厚度和透过率

6.5.1 云层的辐射过程

6.5.1.1 云层的基本物理性质

云层性质 ① 云由悬浮在空气中的大量非常小的**水滴**和/或**冰晶**组成。

- ② 液态水云的典型液滴半径落于5 μm 至15 μm 之间。
- ③ 典型的云滴浓度范围为102 到103 个每立方厘米。
- ④ 典型的液态水云密度落于 $0.1 1 g/m^3$ 之间。

云滴的单分散和多分散定义示意图

6.5.1.2 太阳辐射在云层中的可能经历的过程

直射透过率 可能直接穿透云层,<mark>没有经历一次散射或者吸收</mark>,使用比尔定律描述。以这种方式直接穿透云层的入 射辐射比重称之为**直射透过率***t_{dir}*

6.5.2 单分散云层的光学厚度和透过率

单分散 所有粒子的大小都一致的云层。相对应的,多分散指粒子大小不一致的云层。

云水密度 对于单分散云,云水密度 ρ_w 恰好是液滴数密度N 乘以单个液滴的质量 $\rho_w = N\frac{4}{3}\pi r^3 \rho_l$ 其中 $\rho_l \approx 1000~kg/m^3$ 是纯水密度,r为粒子半径。

液态水路径 液态水路径L(每单位水平面积的垂直积分云水质量)定义为 $L \equiv \int_{z_{\rm hot}}^{z_{\rm top}} \rho_w(z) dz$ 单位: $kg \cdot m^{-2}$

消光系数 由**体积消光系数与消光效率和质量消光系数**的数学关系可知

$$\beta_e = NQ_e \pi r^2 = k_e \rho_w = k_e N \frac{4}{3} \pi r^3 \rho_l \Longrightarrow k_e = \frac{3Q_e}{4\rho_l r}$$

光学厚度 云底 z_{bot} 和云顶 z_{top} 之间的光学厚度 $\tau^* = \int_{z_{bot}}^{z_{top}} \beta_e(z) dz = \int_{z_{bot}}^{z_{top}} k_e \rho_w(z) dz$

假设 k_e 为常数,则 $\tau^* = k_e L$ 大粒子 $Q_e \approx 2$,<mark>总光学厚度正比于液态水路径L,反比于云滴半径</mark>: $\tau^* \approx \frac{3L}{2nr}$ 小粒子的光学厚度反而更大,反射率也更大,降温 卫星云图白色,积雨云呈现黑色

案例 设典型的较厚层积云, $L = 0.5 kg m^{-2}$, $r = 10 \mu m$, 则 $\tau^* = 75$, $t_{dir}^* = 0$ 。除了特别薄的云层外, 几乎所有的云对直射太阳辐射都是不透明的。