MAT237 Multivariable Calculus Lecture Notes

Yuchen Wang, Tingfeng Xia January 26, 2019

Contents

1 Critical Points														2							
	1.1	symmetric matrices.																			2

1 Critical Points

1.1 symmetric matrices

Definition A symmetric $n \times n$ matrix A is

- 1. positive definite if $\mathbf{x}^T A \mathbf{x} > 0$ for all $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$
- 2. nonnegative definite if $\mathbf{x}^T A \mathbf{x} \geq 0$ for all $x \in \mathbb{R}^n$

In addition, we say that A is

- 1. **negative definite** if -A is positive definite
- 2. **nonpositive definite** if -A is nonnegative definite

A matrix A is **indefinite** if none of the above holds. Equivalently, A is indefinite if there exist $\mathbf{x}, \mathbf{y} \in \mathbb{R}$ such that $\mathbf{x}^T A \mathbf{x} < 0 < \mathbf{y}^T A \mathbf{y}$

Theorem 1 Assume that A is a symmetric matrix. Then

- 1. A is positive definite \iff all its eigenvalues are positive $\iff \exists \lambda_1 > 0$ such that $\mathbf{x}^T A \mathbf{x} \geq \lambda_1 |\mathbf{x}|^2$ for all $\mathbf{x} \in \mathbb{R}^n$
- 2. A is nonnegative definite \iff all its eigenvalues are nonnegative
- 3. A is indefinite \iff A has both positive and negative eigenvalues

Remark If A is a symmetric matrix then The smallest eigenvalue of $A = \min_{\{\mathbf{u} \in \mathbb{R}^n : |\mathbf{u}| = 1\}} \mathbf{u}^T A \mathbf{u}$

Theorem 2 For the matrix $A = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$,

- 1. if det A < 0, then A is indefinite
- 2. if det A > 0, then if $\alpha > 0$ then A is positive definite if $\alpha < 0$ then A is negative definite
- 3. if det A = 0 then at least one eigenvalue equals zero.

Definition A critical point **a** of C^2 function **f** is <u>degenerate</u> if $det(D_{\mathbf{H}}(\mathbf{a})) = 0$

Theorem 3 - first derivative test If $\mathbf{f}: S \in \mathbb{R}^n \to \mathbb{R}$ is differentiable, then every local extremum is a critical point.

Theorem 4 - second derivative test

- 1. If $f: S \to \mathbb{R}$ is C^2 and **a** is a local minimum point for f, then **a** is a critical point of f and $H(\mathbf{a})$ is nonnegative definite.
- 2. If **a** is a critical point and $H(\mathbf{a})$ is positive definite, then **a** is a local minimum point.

Corollary Assume that f is C^2 and $\nabla f(\mathbf{a}) = \mathbf{0}$

- 1. If H(a) is positive definite, then a is a local min;
- 2. If H(a) is negative definite, then a is a local max;
- 3. If H(a) is indefinite, then a is a saddle point;
- 4. If non of the above hold, then we cannot determine the character of the critical point without further though.