SBML Model Report

Model name: "Goldbeter1990_CalciumSpike_CICR"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri¹ at March 21st 2007 at 3:41 p. m. and last time modified at May 24th 2014 at 5:41 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	2
events	0	constraints	0
reactions	6	function definitions	0
global parameters	13	unit definitions	4
rules	0	initial assignments	0

Model Notes

The model reproduces the time profile of cytosolic and intracellular calcium as depicted in the upper panel of Fig 2 in the paper. The model was successfully tested on MathSBML and Jarnac.

This model originates from BioModels Database: A Database of Annotated Published Models. It is copyright (c) 2005-2009 The BioModels Team. For more information see the terms of use.

¹California Institute of Technology, hdharuri@cds.caltech.edu

To cite BioModels Database, please use Le Novre N., Bornstein B., Broicher A., Courtot M., Donizelli M., Dharuri H., Li L., Sauro H., Schilstra M., Shapiro B., Snoep J.L., Hucka M. (2006) BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems Nucleic Acids Res., 34: D689-D691.

2 Unit Definitions

This is an overview of eight unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micromole

Definition µmol

2.2 Unit uM_per_sec

Name uM_per_sec

Definition $\mu mol \cdot l^{-1} \cdot s^{-1}$

2.3 Unit sec_inv

Name sec_inv

Definition s^{-1}

2.4 Unit uM

Name uM

Definition $\mu mol \cdot l^{-1}$

2.5 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.6 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.7 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.8 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cytosol store	cytosol store		3 3	1	litre litre	1	

3.1 Compartment cytosol

This is a three dimensional compartment with a constant size of one litre.

Name cytosol

3.2 Compartment store

This is a three dimensional compartment with a constant size of one litre.

Name store

4 Species

This model contains two species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Z		cytosol	$\mu mol \cdot l^{-1}$		
Y		store	$\mu mol \cdot l^{-1}$	\Box	

5 Parameters

This model contains 13 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
0			1.000	$\mu \text{mol} \cdot l^{-1} \cdot s^{-1}$	
v1			7.300	μ mol·l ⁻¹ ·s ⁻¹	$\overline{\mathscr{A}}$
beta			0.301	dimensionless	$\overline{\mathbf{Z}}$
Vm2			65.000	$\mu mol \cdot l^{-1} \cdot s^{-1}$	$\overline{\mathbf{Z}}$
n			2.000	dimensionless	$\overline{\mathbf{Z}}$
K2			1.000	μ mol·l ⁻¹	\checkmark
Vm3			500.000	$\mu mol \cdot l^{-1} \cdot s^{-1}$	
m			2.000	dimensionless	$\overline{\mathbf{Z}}$
Kr			2.000	μ mol·l ⁻¹	
Ka			0.900	μ mol·l ⁻¹	$\overline{\mathbf{Z}}$
kf			1.000	s^{-1}	$\overline{\mathbf{Z}}$
k			10.000	s^{-1}	$\overline{\mathbf{Z}}$
			4.000	dimensionless	$\overline{\mathscr{A}}$

6

6 Reactions

This model contains six reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	RO	Ca influx	$\emptyset \longrightarrow Z$	
2	R1	InsP3 dependent Ca influx	$\emptyset \longrightarrow Z$	
3	R2	ATP driven Ca pumping into store	$Z \longrightarrow Y$	
4	R3	ATP driven pumping into cytosol	$Y \longrightarrow Z$	
5	Rf	Ca leak	$Y \longrightarrow Z$	
6	R_{-} eff	Ca efflux	$Z \longrightarrow \emptyset$	

6.1 Reaction RO

This is an irreversible reaction of no reactant forming one product.

Name Ca influx

Reaction equation

$$\emptyset \longrightarrow Z$$
 (1)

Product

Table 6: Properties of each product.

Id	Name	SBO
Z		

Kinetic Law

Derived unit $\mu mol \cdot s^{-1}$

$$v_1 = \text{vol}\left(\text{cytosol}\right) \cdot \text{v0} \tag{2}$$

6.2 Reaction R1

This is an irreversible reaction of no reactant forming one product.

Name InsP3 dependent Ca influx

Reaction equation

$$\emptyset \longrightarrow Z$$
 (3)

Product

Table 7: Properties of each product.

Id	Name	SBO
Z		

Kinetic Law

Derived unit $\mu mol \cdot s^{-1}$

$$v_2 = \text{vol}(\text{cytosol}) \cdot \text{v1} \cdot \text{beta}$$
 (4)

6.3 Reaction R2

This is an irreversible reaction of one reactant forming one product.

Name ATP driven Ca pumping into store

Reaction equation

$$Z \longrightarrow Y$$
 (5)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Z		

Product

Table 9: Properties of each product.

Id	Name	SBO
Y		

Kinetic Law

Derived unit $1.000000000000024 \cdot 10^{-6} \ mol \cdot s^{-1}$

$$v_3 = \text{vol}\left(\text{cytosol}\right) \cdot \frac{\text{Vm2} \cdot [\mathbf{Z}]^n}{\text{K2}^n + [\mathbf{Z}]^n} \tag{6}$$

6.4 Reaction R3

This is an irreversible reaction of one reactant forming one product.

Name ATP driven pumping into cytosol

Reaction equation

$$Y \longrightarrow Z$$
 (7)

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
Y		

Product

Table 11: Properties of each product.

Id	Name	SBO
Z		

Kinetic Law

 $\textbf{Derived unit} \ \ 1.0000000000000022 \cdot 10^{-6} \ mol \cdot s^{-1}$

$$v_4 = \text{vol}(\text{store}) \cdot \frac{\text{Vm3} \cdot [\text{Y}]^m \cdot [\text{Z}]^p}{(\text{Kr}^m + [\text{Y}]^m) \cdot (\text{Ka}^p + [\text{Z}]^p)} \tag{8}$$

6.5 Reaction Rf

This is an irreversible reaction of one reactant forming one product.

Name Ca leak

Reaction equation

$$Y \longrightarrow Z$$
 (9)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
Y		

Product

Table 13: Properties of each product.

Id	Name	SBO
Z		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_5 = \text{vol}(\text{store}) \cdot \text{kf} \cdot [Y] \tag{10}$$

6.6 Reaction R_eff

This is an irreversible reaction of one reactant forming no product.

Name Ca efflux

Reaction equation

$$Z \longrightarrow \emptyset$$
 (11)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
Z		

Kinetic Law

Derived unit $s^{-1} \cdot \mu mol$

$$v_6 = \text{vol}(\text{cytosol}) \cdot \mathbf{k} \cdot [\mathbf{Z}]$$
 (12)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species Z

Initial concentration $0.15 \, \mu mol \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R2, R_eff and as a product in R0, R1, R3, Rf).

$$\frac{\mathrm{d}}{\mathrm{d}t}Z = v_1 + v_2 + v_4 + v_5 - v_3 - v_6 \tag{13}$$

7.2 Species Y

Initial concentration $1.6~\mu mol \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R3, Rf and as a product in R2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{Y} = v_3 - v_4 - v_5 \tag{14}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany