Aula13

DATA SCIENCE IPT

TURMA 02

Um pouco de **Lagrange**..... Minimizar função sujeita a restrições...exemplo:

Restrição (y=1-x)

Gradientes de f (pretos) e de g (brancos)

Observe que o ponto onde os gradientes são paralelos, acontece o mínimo

SVM Parte 2

Se os gradientes de f e g são paralelos:

ou...
$$\nabla f = \lambda \nabla g$$
$$\nabla f - \lambda \nabla g = 0$$

Podemos definir a função Lagrangeana como:

$$L(x,y,\lambda) = f - \lambda g$$

E impor
$$\nabla L(x,y,\lambda) = 0$$

(gradientes de f e g paralelos)...

No exemplo:

$$L(x,y,\lambda) = x^2 + y^2 - \lambda(x+y-1)$$

$$\nabla L=0 => 2x-\lambda=0$$
 (deriv. Parc. x)
 $2y-\lambda=0$ (deriv. Parc. y)
 $x+y-1=0$ (restrição)

3 equações, e 3 variáveis... x=y=1/2 é o Ponto que minimiza f sob a restrição g

SVM Parte 2

No SVM queremos maximizar a margem que separa as duas classes. Na aula passada, vimos que isso acontece quando MINIMIZAMOS o módulo do vetor normal ao hiperplano (w), já que a margem d é 2/||w||.

SVM Parte 2

Além disso, para pontos x positivos: w.x+b>=1 e para pontos negativos: w.x+b<=-1 (a igualdade acontece na borda da margem (1 e -1)).

SVM Parte 2

Chegamos a um problema de minimização com restrições....

$$\underset{\mathbf{w},b}{\operatorname{Minimizar}} \quad \frac{1}{2} \|\mathbf{w}\|^2$$

Com as restrições:
$$y_i (\mathbf{w} \cdot \mathbf{x}_i + b) - 1 \ge 0, \ \forall i = 1, \dots, n$$

yi são os rótulos das amostras (1 ou -1). Quando yi =1,w.x+b>=1. Quando yi=-1, w.x+b <=-1

Conteúdo

Minimizar

$$L(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{n} \alpha_i \left(y_i \left(\mathbf{w} \cdot \mathbf{x}_i + b \right) - 1 \right)$$

Equação 1

Impondo $\nabla L=0$

$$\frac{\partial L}{\partial b} = 0$$
 e $\frac{\partial L}{\partial \mathbf{w}} = 0$

Equação 2

Substituindo 3 em 1, Chegamos ao problema dual: Chegamos a:

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Equação 3

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

Maximizar
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \left(\mathbf{x}_i \cdot \mathbf{x}_j \right)$$

Com as restrições:
$$\left\{ \begin{array}{ll} \alpha_i\geqslant 0, & \forall i=1,\dots,n\\ \sum\limits_{i=1}^n\alpha_iy_i=0 \end{array} \right.$$

SVM (Support Vector Machines)

Sendo α* vindo do problema dual e os correspondentes w* e b*....há as condições de Kühn-Tucker para problemas de otimização (temos inequações e Lagrange prevê equações nas restrições):

$$\alpha_i^* (y_i (\mathbf{w}^* \cdot \mathbf{x}_i + b^*) - 1) = 0, \ \forall i = 1, \dots, n$$

Para que as condições sejam satisfeitas com α *> 0, xi deverá estar nas bordas....será um Support Vector!

A função decisora será o sinal da fórmula abaixo...

$$g(\mathbf{x}) = \operatorname{sgn}(f(\mathbf{x})) = \operatorname{sgn}\left(\sum_{\mathbf{x}_i \in SV} y_i \alpha_i^* \mathbf{x}_i \cdot \mathbf{x} + b^*\right)$$

Conteúdo

O vídeo calcula pela forma dual um SVM com apenas dois pontos...simples e didático.

https://www.youtube.com/watch?v=5zRmhOU
jjGY

Conteúdo

Partindo de lousa-svm.ipynb

Atividade1: analisar código

Atividade 2 : mostrar que a reta é x1=1.5

Atividade 3 : apresentar vetores de suporte

Atividade 4: criar função decisora com base em support vectors e coeficientes da solução dual...

Conteúdo

Quando as classes não são 100% separáveis linearmente, utiliza-se a "soft margin", ou seja, um relaxamento da condição de não haver pontos entre as margens e pontos classificados errados no treinamento.

Conteúdo

Soft Margin

Constraint becomes:

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i, \ \forall x_i$$

 $\xi_i \ge 0$

Objective function

penalizes for misclassified instances and those within the margin

$$\min \frac{1}{2} \left\| w \right\|^2 + C \sum_i \xi_i$$

C trades-off margin width and misclassifications

Conteúdo

SVM não linear

Um interessante recurso do SVM é a possibilidade de utilizar um "mapeamento" que leva um problema não separável linearmente na dimensão "n" para uma dimensão "n+1" onde os pontos são linearmente separáveis por um hiperplano.

Conteúdo

A função Kernel permite calcular o produto interno de vetores em outras dimensões, onde a separação linear por hiperplanos pode ser mais fácil...e podemos verificar a similaridade desses vetores em outras dimensões

Exemplo de mapeamento que leva de R² para R³

$$\Phi(\mathbf{x}) = \Phi(x_1, x_2) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$$

Com esse mapeamento do exemplo,
Os dados bidimensionais a são linearmente separáveis no espaço!

Para esse mapeamento, o Kernel é :

$$K(x,y) = \langle x,y \rangle^2$$

Fonte imagens

LINKEDEDUCATION

:http://www.seer.ufrgs.br/rita/article/download/rita_v14_n2_p43₁67/3543

SVM (Support Vector Machines)

Kernels do scikit

- linear: $\langle x, x' \rangle$.
- polynomial: $(\gamma\langle x,x'
 angle+r)^d$. d is specified by keyword degree , r by coefø .
- rbf: $\exp(-\gamma ||x-x'||^2)$. γ is specified by keyword gamma, must be greater than 0.
- sigmoid $(anh(\gamma\langle x,x'
 angle+r))$, where r is specified by coef0.

Conteúdo

Quais seriam os parâmetros do Kernel Polinomial

 $K(x,y)=(x.y)^2$ no scikit?

Conteúdo

O fator Gamma no Kernel rbf

Valores baixos de γ fazem com que vetores de suporte mesmo longe de amostras tenham influência na classificação...é um modelo menos complexo

Conteúdo

Com Kernels que dependem de γ e C é necessário testar a performance do algoritmo em várias combinações ...esse processo é denominado grid-search

Conteúdo

Partindo de kernel-not-linear.ipynb

Atividade1: Analisar código

Atividade 2: Fazer grid-search com c e gamma :[0.01,0.1,1,10,100] Apresentar melhor acurácia no teste e correspondente par c-gamma

Ensemble Methods

Conteúdo

Os Ensemble Methods combinam as predições de vários algoritmos visando diminuir bias e variância...o objetivo é melhorar a generalização das predições. Há dois tipos clássicos :

Averaging methods: geram a média de várias predições independentes.

Exemplo: Bagging

Boosting methods: usa várias predições e, sequencialmente, há a tentativa de reduzir o bias da predição combinada. **A ideia é produzir uma estimativa melhor combinando muitos estimadores "fracos (?)".**

Exemplo : Adaboost

Weak Learners

Weak Learners são hipóteses (modelos) com performance levemente superior ao aleatório (50% de acurácia em uma classificação com 2 classes balanceadas, por exemplo)

Árvores de decisão de um nível apenas (decision stumps) são weak learners muito utilizados...mas por que utilizar weak learners?

A ideia do boosting é combinar vários weak learners e produzir um Strong learner...os weak learners combinados são robustos quanto a overfitting...

AdaBoost (adaptive boosting)

Adaboost é o mais popular algoritmo de boosting. Basicamente sua ideia é :

Amostras inicialmente têm o mesmo peso

Para os "m" weak learners

treinar amostras e obter modelo mod i

mudar os pesos das amostras, reforçando as que tiveram predição errada

Fazer um preditor com a ponderação dos modelos individuais

AdaBoost

Conteúdo

Exemplo: Box1,2 e 3 são weak learners...box4 os combina Note que após o box1, o box2 "reforçou" as amostras erradas em box 1 (os 3 +)

AdaBoost - algoritmo

Given: $(x_1, y_1), ..., (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$.

Initialize: $D_1(i) = 1/m$ for i = 1, ..., m.

For t = 1, ..., T:

- Train weak learner using distribution D_t.
- Get weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$.
- Aim: select h_t with low weighted error:

$$\varepsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.
- Update, for i = 1, ..., m:

$$D_{t+1}(i) = \frac{D_t(i)\exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Fonte: Robert E. Schapire

AdaBoost Data Set teste

Conteúdo

x,y,classe

29,11,-1

56,51,-1

86,25,-1

87,81,-1

33,58,-1

14,25,1

11,44,1

37,79,1

56,92,1

70,75,1

ada.txt

AdaBoost

Conteúdo

Com base em : ada-raiz.ipynb

Atividade 1:

Obter erro médio

Atividade 2:

Obter alpha

Atividade 3 : atualizar pesos

Discussão: Como criar um preditor genérico com o modelo criado?

AdaBoost

Conteúdo

Com base em ada_scikit.ipynb

Atividade:

Obter acurácia na amostra toda até atingir 100% variando o número de weak learners..de 1 para cima

Revisão

K-means no Excel Analisando o código da classe MKMeans (Prof. Leston)

Cursos com Alta Performance de Aprendizado

© 2019 – Linked Education