

Administración de Redes Escuela Profesional de Ciencia de la Computación Facultad de Ciencias Universidad Nacional de Ingeniería

[Cod.: CC481 Curso: Administración de Redes]

[Tema: Monitorización del sistema] [Prof.: José Manuel Castillo Cara]

# Laboratorio dirigido 4

# Monitorización del sistema

#### **Instrucciones:**

- 1. Fecha de entrega será antes del domingo a las 23:59.
- 2. El formato de entrega será pdf.
- 3. El laboratorio tendrá una puntuación sobre 20.
- 4. En el solucionario se deberá copiar los enunciados y dejarlos en negrita.
- 5. La primera hoja será para la portada que se especificará, el número de laboratorio, nombre y apellidos de los integrantes, nombre de la asignatura y el escudo de la UNI. La segunda página será el índice. Donde se deberá tener en cuenta la página de cada Actividad.
- 6. Las citas y extracciones realizadas de Internet se deberán especificar. No se corregirá el laboratorio en caso de copiar y pegar fragmentos sin especificar su fuente.
- 7. Utilizar letra clara y adecuada a un documento técnico con tamaño 12 y márgenes superior e inferior de 3 cm y laterales de 2,5 cm.
- Se corregirá la claridad y exactitud de la pregunta, en ningún caso se expondrán fundamentos no preguntados, además de la claridad del documento.
- 9. En las actividades realice una captura de pantalla mínimo por actividad para verificar su autoría.

Prof. Manuel Castillo 1/8 ECC-FC-UNI



## **Objetivos**

En esta práctica estudiaremos los aspectos básicos sobre la monitorización del sistema que incluye principalmente la gestión y monitorización de procesos y los archivos de *log* del sistema. Además veremos cómo automatizar la ejecución de tareas.

#### Contenidos

- Preparando el entorno...
- Monitorización y Gestión de Procesos
  - Control de Trabajos en la *Shell*
  - Monitorización de procesos
  - Automatización de procesos
- Logs del Sistema

### 1. Preparando el entorno

En esta práctica necesitaremos dos máquinas virtuales:

- El *router* virtual para acceder a Internet y los repositorios de paquetes.
- Una máquina estación de trabajo donde realizaremos las pruebas.

# 2. Monitorización y Gestión de Procesos

En primer lugar estudiaremos cómo monitorizar los procesos que hay en ejecución en el sistema y los recursos que consumen. Esta sección está dividida en dos partes: la gestión de las tareas iniciadas en la *shell*; y los procesos de sistema.

Prof. Manuel Castillo 2/8 ECC-FC-UNI



# 2.1. Control de Trabajos en la Shell

El control de trabajos iniciados en la *shell* permite consultar, detener y reanudar su ejecución. La *shell* mantiene una lista de trabajos arrancados que puede consultarse con el comando *jobs*. Cada trabajo tiene un identificador, un *PID* del proceso asociado y la orden de ejecución.

#### Actividad 1

 Para probar diferentes acciones sobre los procesos vamos a usar un comando gráfico que permita comprobar fácilmente el estado del proceso asociado.

Escribir el siguiente contenido en un archivo (*progreso.sh*) y darle permisos de ejecución.

```
#!/bin/bash
( for i in $(seq 00 99) ; do
echo $i
sleep 1
done ) |
zenity --progress
```

- 2. Ejecutar el script anterior y comprobar su funcionamiento.
- 3. Para detener la ejecución terminar un proceso se envía una señal. La combinación Ctrl+c envía la señal de interrupción (SIGINT) que interrumpe el proceso y Ctrl+z lo detiene (SIGSTOP). Comprobar el efecto de ambos sobre el comando.
- 4. Ejecuciones en primer y segundo plano. Cuando ejecutamos un comando decimos que está en primer plano (foreground) y puede recibir las señales generadas por teclado (ej. Ctrl+c). Equivalentemente, un proceso en segundo plano mantiene su



ejecución pero desvincula su *ID* de grupo de procesos del de la *shell*.

Los comandos *fg* y *bg* permiten poner en primer (*foreground*) y segundo plano (*background*) un proceso, respectivamente:

- Enviar un proceso a segundo plano: (1) arrancar progreso.sh; (2)
   Ctrl+z; (3) bg.
- 2. Recuperar la ejecución en primer plano y terminar su ejecución Ctrl+c
- 3. **bg** y **fg** admiten especificar el trabajo que modifican de varias formas (%**n**). Usar esta funcionalidad cuando hay varios procesos en segundo plano o suspendidos. Ver la lista con jobs (opción **-l**).
- 4. Consultar la página de manual bash en releación a jobs, fg y bg.
- 5. Es posible arrancar un proceso en segundo plano directamente usando & al final. Arrancar el comando de prueba en segundo plano y comprobarlo con *jobs*.
- 6. Terminal de control. Los procesos tienen asociados un terminal de control al que se envían las salidas estándar y de error y que recoge la entrada estándar si es necesaria. Ejecutar el siguiente comando (sleep 1; date; cat -> /tmp/entrada; sleep 1; date) en segundo plano y analizar dónde se muestra la salida estándar y qué sucede cuando lee de la entrada estándar.
- 7. Arrancar el comando de prueba en segundo plano, cerrar la ventana del terminal donde se arranco y comprobar qué sucede. Ejecutar el mismo comando con la orden *nohup* (*man nohup*) también en segundo plano y repetir el ejercicio.

Prof. Manuel Castillo 4/8 ECC-FC-UNI



# 2.2. Monitorización de procesos

#### Actividad 2

- La herramienta principal para ver los procesos en ejecución del sistema es ps. Ejecutar la orden sin argumentos y ver su salida.
- Estudiar la página de manual de ps, especialmente las opciones más comunes (ej. aux) y el significado de los datos mostrados por cada proceso.
- El consumo de la memoria virtual se puede obtener con *free*(1).
   Consultar el consumo de memoria del sistema.
- 4. La herramienta *top* es muy útil porque muestra un resumen del sistema que incluye: carga (ver comando *uptime*), estado de la memoria (*free*) y procesos (*ps*). Esta herramienta permite filtrar por usuario, enviar señales a procesos, ordenar la lista de procesos según diferentes criterios y configurar la información mostrada. Ejecutar *top* y estudiar su uso (*man top*; pulsar *h* una vez arrancada).
- 5. De la misma forma el comando *vmstat* permite recoger información sobre el rendimiento dinámico del sistema. Estudiar su uso (*man vmstat*) y el significado de la información que muestra.
- 6. Otra forma sencilla de localizar procesos específicos (por ejemplo para enviar una señal) es mediante los comandos *pgrep* y *pidof*. Estudiar el uso de *pgrep* y *pidof*, buscar por ejemplo los procesos que encajen con *gnome*.
- 7. El comando *kill* sirve para enviar señales a un proceso:

Prof. Manuel Castillo 5/8 ECC-FC-UNI



- 1. Consultar *kill -l* para ver las señales disponibles.
- 2. kill puede usar un PID o un job (%n). Repetir los ejercicios fg/bg usando kill en lugar de Ctrl+c y Ctrl+z.
- 3. Se puede enviar un señal a un proceso por nombre (a todos lo procesos que encajen) con *pkill*.
- 4. Probar el envío de señales en top con el comando  $\boldsymbol{k}$  (kill).
- 8. Finalmente el comando *lsof* permite ver los descriptores que tiene abierto un proceso, consultar la página de manual y probar las siguientes opciones:
  - 1. Procesos tienen abierto para escritura /var/log/messages.
  - 2. Procesos que tienen abierto algún fichero o directorio de /etc (+D).
  - 3. Ficheros que tiene abierta la *shell* que está usando (-p).
  - 4. NOTA: Las conexiones de red (sockets) se pueden ver con -i.

### 2.3. Automatización de procesos (cron y at)

Es el sistema de automatización permite ejecutar procesos a una hora y con una determinada periodicidad (e.g. reconstruir los índices de archivos del sistema los lunes a las 2am). Normalmente el demonio responsable es *cron*, aunque *CentOS* usa *anacron* para equipos que se apagan regularmente.

#### Actividad 3

Las programación de trabajos generales se especifica en /etc/crontab.
 Cada línea especifica una variable o un trabajo, mediante 5 parámetros temporales. Un \* en uno de los parámetros significa para

Prof. Manuel Castillo 6/8 ECC-FC-UNI



todos los posibles valores. Determinar la configuración para ejecutar un comando:

- 1. 15 minutos después de la medianoche todos los sábados.
- 2. El primer día de cada mes a las 3:30 AM.
- 2. Consultar los archivos del directorio /etc/cron.d e interpretar su contenido.
- 3. *Cron* está a disposición de los usuarios:
  - crontab -e, permite editar una nueva entrada. Planificar la ejecución de un comando (date >> /tmp/salida) cada 5 minutos (\*/5).
  - 2. comprobar la planificación de trabajos con *crontab -l*.
- 4. El comando at sirve para planificar trabajos específicos que se ejecutan una sola vez, planificar la ejecución de un comando (ej. date > /tmp/at.ejemplo):
  - at <hora>, la hora se puede especificar de muchas formas ver
     (man at), por ejemplo at now + 3 minutes
  - 2. Escribir los comandos que se ejecutarán, terminar con *Ctrl+d*
  - Consultar los trabajos planificados con atq (atrm elimina comandos)

# 3. Logs del sistema

Una parte importante del mantenimiento de un sistema es monitorizar las acciones que ocurren en él. Los archivos de *log* recogen esta

Prof. Manuel Castillo 7/8 ECC-FC-UNI



información y son gran ayuda cuando es necesario analizar un problema. El servicio de *logs* por defecto en *RHEL* y *CentOS* es *rsyslog*.

#### Actividad 4

- Comprobar que el paquete rsyslog está instalado y que está en ejecución.
- 2. El archivo de configuración es /etc/rsyslog.conf. Estudiar la sección rules, cada regla hacereferencia <servicio>.<severidad>. Los servicios son authpriv, cron, kern, mail, news, user, y uucp; y los niveles de severidad, de menor a mayor son: debug, info, notice, warn, err, crit, alert, emerg.
- 3. Estudiar los archivos de *log* en /var/log, ejemplo boot.log, syslog. y auth.log.
- 4. Los archivos de log pueden crecer demasiado lo que dificulta su manejo. Por defecto la utilidad logrotate rota los logs cada semana. Estudiar los contenidos de /etc/logrotate.conf y los archivos de configuración específicos de cada servicio en /etc/logrotate.d.



Laboratorio 5: Monitorización del sistema - Escuela Profesional de Ciencia de la Computación - Facultad de Ciencias - Universidad Nacional de Ingeniería por José Manuel Castillo Cara se encuentra bajo una <u>Licencia Creative Commons Atribución-NoComercial 4.0 Internacional</u>.

Prof. Manuel Castillo 8/8 ECC-FC-UNI