第二章 贝叶斯决策与分类

基于概率统计知识的分类方法

■客观现象或事物可以分为两类:一类是确定 性的, 此类事物在一定条件下必然要发生或 不发生: 另一类是随机性的, 此类事物有若 干可能的结果, 在实验或实现前不能预知会 出现哪种结果,但是其有统计规律,这种规 律可用概率分布 (密度) 函数或数字特征来 刻划。

■ 贝叶斯决策方法是一个有效的应对具有随机 性的模式的分类方法

"概率论"有关知识

■划分:设S为实验E的样本空间, B_1 , B_2 , ... B_n 为E一组事件,若 $B_i \cap B_j = \Phi$, $i \neq j$, i, j = 1, 2, ..., n; $B_1 \cup B_2 \cdots \cup B_n = S$ 则称, B_1 , B_2 , ... B_n 为S一个划分。对每次实验 B_1 , B_2 , ... B_n 中必有一个且仅有一个发生。

$$P(B_i) > 0 \ (i = 1, 2, \dots, n)$$

"概率论"有关知识

全概率公式: 设实验E的样本空间为S,A为E的事件, B_1 , B_2 , ... B_n 为S的一个划分,且, $P(B_i) > 0$ $(i = 1, 2, \cdots, n)$ 则

$$P(A) = P(A | B_1)P(B_1) + P(A | B_2)P(B_2) + \dots + P(A | B_n)P(B_n)$$

Bayes公式: 设实验E的样本空间为S, A为E的事件, $B_1, B_2, ..., B_n$ 为S的一个划分,且P(A) > 0, $P(B_i) > 0$, (i=1, 2, ..., n). 则:

$$P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{P(A)} = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^{n} P(A \mid B_j)P(B_j)}$$

$$P(A)P(B_i|A) = P(B_i)P(A|B_i)$$

$$P(A)P(B_i|A) = P(B_i)P(A|B_i)$$

$$p(\vec{x})P(\omega_i|\vec{x}) = P(\omega_i)p(\vec{x}|\omega_i)$$

先验概率: $P(\omega_i)$ 表示类 ω_i 出现的先验概率,简称类 ω_i 的概率。

条件概率:事件A发生的条件下,事件B发生的概率P(B|A)。

后验概率: $P(\omega_i|\mathbf{x})$ 表示x出现条件下类 ω_i 出现的概率, 称其为类别的<u>后验概率</u>,对于模式识别来讲可理解为("观察"到的)样本x来自(属于)类 ω_i 的概率。

类概密: $p(\mathbf{x}|\omega_i)$ 表示在类 ω_i 条件下的概率密度,即类 ω_i 样本 \mathbf{x} 的概率分布密度,简称为类概密,也称为第i类的似然函数。

后验概率: P(Male | x=170)

物理意义: 已知一个人身高为170cm, 其为男性的概率

在类Male条件下的概率密度:P(x=170 | Male) ??

最直观的解释: 男性中身高为170cm的比例

实例: 1300个学生中男生与女生的人数分别为1000与300。其中身高为175cm的男生有200个,身高为175cm的女生有15个

 ω_1 : male

 ω_2 : female

X:身高为175cm的事件

$$p(x \mid \omega_1) = \frac{200}{1000}, p(x \mid \omega_2) = \frac{15}{300}$$
$$p(x, \omega_1) = \frac{200}{1300}, p(x, \omega_2) = \frac{15}{1300}$$

$$p(x) = \frac{200 + 15}{1300}$$

进行观察之前(似然未知或相等)

■ 问题

给定所有可能类别的先验概率,在不进行观察的前提下, 预测下一个可能出现的模式的类别

最简单的但不精确的决策规则:

如果
$$P(\omega_i) \ge P(\omega_i)$$
, $\forall i \ne j$ 则预测下一个模式为 ω_i

Bayes法则一最小错误贝叶斯分类

对于两类 ω_1 , ω_2 问题,直观地,可以根据后验概率做判决:

若
$$p(\omega_1|\vec{x}) > p(\omega_2|\vec{x})$$
 则 $\vec{x} \in \omega_1$ 若 $p(\omega_1|\vec{x}) < p(\omega_2|\vec{x})$ 则 $\vec{x} \in \omega_2$

相似问题:基于Bayes法则的因果分析

P(reason|result)P(result) = P(reason)P(result|reason)

百度为您找到相关结果约386,000个

平搜索工具

Bayesian Causal Analysis用贝叶斯网络进行因果分析_百度学术

王双成,林士敏-《计算机科学》-2000

The Bayesian causal analysis includes two techniques, one of which takes advantage of Bayesian network structure learning under the Causal Markov assumptio...

xueshu.baidu.com

**The Bayesian causal analysis includes two techniques, one of which takes advantage of Bayesian network structure learning under the Causal Markov assumptio...

贝叶斯 因果分析 相关论文(共734篇) 百度学术

最高相关	最新发表			
用贝叶斯网络	8进行因果分析	计算机科学		被引:22
用于因果分析	f的混合贝叶斯网	络结构学习	《智能系统学报》	被引:13
用于离散变量	因果分析的贝叶	-斯网络学习	系统工程学报	被引:6

基于Bayes法则的因果分析

1763年,英国的长老会牧师贝叶斯发表了一篇论文"论有关机遇问题的求解",提出了解决的框架:那就是用不断增加的信息和经验,可以逐步逼近未知的真相或理解未知。并给出了算法(其实贝叶斯由于是一个牧师,他关心的原始问题本来的表述是:人能不能根据凡人世界的经验和现实世界的证据,证明上帝的存在,因为宗教人士的逻辑是机遇就是上帝存在的主要证据,能够认识机遇的规律,几乎等同于证明上帝存在)。

后来经拉格朗日等数学家进一步努力,获得了大突破,贝叶斯理论成为现代统计学两大支柱之一。

基于Bayes法则的因果分析

人类思考问题有两个方向,一个是正向,也即知道结果找原因(例如现在我们经常讨论的明朝灭亡的原因);一个是倒向,也即根据一些现象判断结果

例如如果我们事先并不知道黑箱里面黑白球的比例, 而是闭着眼睛摸出一个或好几个球,观察这些取出来的球 的颜色之后,就此对黑箱里面的黑白球的比例进行推测。 现实需要大量的倒向计算,例如现在某些现象出现,企业 会不会破产,现在应该怎么办等等。

Bayes法则一最小错误贝叶斯分类

根据**Bayes**公式,后验概率 $p(\omega_i/\vec{x})$ 可由类 ω_i 的先验概率 $P(\omega_i)$ 和条件概率密度 $p(\vec{x}/\omega_i)$ 来表示,即

$$p(\omega_i \mid \vec{x}) = \frac{p(\vec{x} \mid \omega_i)P(\omega_i)}{p(\vec{x})} = \frac{p(\vec{x} \mid \omega_i)P(\omega_i)}{\sum_{i=1}^n p(\vec{x} \mid \omega_i)P(\omega_i)}$$

式中, $p(x|\omega_i)$ 又称似然函数(likelihood function of class ω_i),可由已知样本求得。

解释

贝叶斯概率公式:

最小错误贝叶斯分类重要公式:

$$p(\boldsymbol{\omega}_i|\mathbf{x}) = \frac{p(\mathbf{x} \mid \boldsymbol{\omega}_i)p(\boldsymbol{\omega}_i)}{p(\mathbf{x})}$$

解释: x属于第i类的概率(即后验概率)等于先验概率与似然的乘积除以x的全概率。

解释

贝叶斯概率公式:

$$p(\boldsymbol{\omega}_i|\mathbf{x}) = \frac{p(\mathbf{x} \mid \boldsymbol{\omega}_i)p(\boldsymbol{\omega}_i)}{p(\mathbf{x})}$$

理解: (1) 先验概率越大,后验概率就越大

(2) 似然越大,后验概也越大

(1)的形象例子: 北方的蛇基本上都是无毒蛇(无毒蛇这个类别的先验概率很大),所以在北方被蛇咬上不用担心会致命(在北方见碰到一条蛇时,它属于无毒蛇这个类别的概率--后验概率大)

(2)的形象例子: 因为男艺术家中留长发的居多(似然大),所以我们看到留长发的男人就猜测他可能是艺术家(后验概率大)

例题1: 鱼类加工厂对鱼进行自动分类, ω_1 : 鲈鱼; ω_2 : 鲑鱼。模式特征 $\mathbf{x}=\mathbf{x}$ (长度)。

已知: (统计结果)

先验概率: $P(\omega_I)=1/3$ (鲈鱼出现的概率)

 $P(\omega_2)=1-P(\omega_1)=2/3$ (鲑鱼出现的概率)

例题1: 鱼类加工厂对鱼进行自动分类, ω_1 : 鲈鱼; ω_2 : 鲑鱼。模式特征 $\mathbf{x}=\mathbf{x}$ (长度)。

条件概率: $p(x|\omega_1)$ 见图示 (鲈鱼的长度特征分布概率) $p(x|\omega_2)$ 见图示 (鲑鱼的长度特征分布概率)

求:后验概率: $P(\omega|x=10)=?$

(如果一条鱼x=10,将其判定为什么类别?)

例题1图示

解:

利用Bayes公式

$$P(\omega_1 \mid x = 10) = \frac{p(x = 10 \mid \omega_1) P(\omega_1)}{p(x = 10)}$$

$$= \frac{p(x = 10 \mid \omega_1) P(\omega_1)}{p(x = 10 \mid \omega_1) P(\omega_1) + p(x = 10 \mid \omega_2) P(\omega_2)}$$

$$= \frac{0.05 \times 1/3}{0.05 \times 1/3 + 0.50 \times 2/3} = 0.048$$

因为,
$$P(\omega_2|x=10) = 1-P(\omega_1|x=10) = 1-0.048 = 0.952$$

 $P(\omega_1|x=10) < P(\omega_2|x=10)$

故判决: (x=10) ∈ ω_2 ,即是鲑鱼。

结论:长度为10的这条鱼应该判别为鲑鱼!!

例题1图示

Bayes法则一最小错误贝叶斯分类(两类问题)

错误率=1-max($P(\omega_1/x)$, $P(\omega_2/x)$)

1 性感女性安吉丽娜·朱莉做了乳腺切除手术

好莱坞知名女星安吉丽娜·朱莉14日在《纽约时报》上发表了"我的医疗选择"一文,她表示自己已 经接受预防性的双侧乳腺切除手术,以降低罹癌风险。而之所以进行这项手术,是因为她有基因缺陷,罹 患乳癌和卵巢癌风险恐较高。

例:对一批人进行癌症普查,患癌症者定为属 ω_1 类, 正常者定为属的类。统计资料表明人们患癌的概率 $P(\omega_1) = 0.005$,从而 $P(\omega_2) = 0.995$ 。设有一种诊断此病的 试验,其结果有阳性反应和阴性反应之分,依其作诊 断。化验结果是一维离散模式特征。统计资料表明: 癌症者有阳性反映的概率为0.95即 $P(x=阳|\omega_1)=0.95$, 从而可知 $P(x= | \Theta_0) = 0.05$, 正常人阳性反映的概率 为0.01即 $P(x=阳\omega_2)=0.01$,可知 $P(x=阴\omega_2)=0.99$ 。

问有阳性反映的人患癌症的概率有多大?

解:

$$P(\omega_{1}|x = \beta \exists) = \frac{P(x = \beta \exists |\omega_{1})P(\omega_{1})}{P(x = \beta \exists)}$$

$$= \frac{P(x = \beta \exists |\omega_{1})P(\omega_{1})}{P(x = \beta \exists |\omega_{1})P(\omega_{1}) + P(x = \beta \exists |\omega_{2})P(\omega_{2})}$$

$$= \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.01 \times 0.995}$$

$$=0.323$$

说明有阳性反应的人其患癌的概率有32.3%

思考

- 1. 在多类分类问题中最小错误贝叶斯分类的决策公式是什么?
- 2. 在多类分类问题中最小错误贝叶斯分类的错误率公式可得到吗?
- 3. 你认为最小错误贝叶斯分类在实际应用中有什么不便之处(缺点)?

