UNIVERSIDADE DO MINHO		11 de janeiro de 2012
	Álgebra Linear	
	$2^{\underline{0}}$ Teste - ${f A}$	
LEI		Duração: 2 horas

Nome: ______ N⁰: _____

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. As respostas incorrectamente assinaladas têm cotação negativa.

- **1**. Seja A uma matriz real de ordem $n \in \mathbb{N}$, tal que, det(A) = -1.
 - a) O núcleo da matriz A é o conjunto $\{0_{\mathbb{R}^n}\}$.
 - **b**) det(2A) = -2, para todo $n \in \mathbb{N}$.
 - c) Se B for uma matriz de ordem n semelhante a A então det(B) = -1.
 - d) Zero é valor próprio de A. V F
 - e) $det((A^{-1})^3) = det(A)$, para todo $n \in \mathbb{N}$.
- **2**. Seja A uma matriz de ordem 3 cujos valores próprios são, -1, 1 e 2. Os vectores x = (1,1,1), y = (2,1,-1) e z = (0,1,0) são vectores próprios da matriz A associados aos valores próprios, -1, 1 e 2, respectivamente.
 - a) O vector (6,3,-3) é vector próprio da matriz A.
 - b) Os valores próprios da matriz $(A + 2I_3)^{-1}$ são 1, 3 e 4.
 - c) x é vector próprio da matriz $(A+2I_3)^{-1}$ associado ao valor próprio 1. V
 - d) A dimensão do subespaço próprio associado ao valor próprio 2 é 1. V F
 - $e) det(A+I_3) = 0.$ V F
- 3. Seja $\{e_1, e_2, e_3, e_4\}$ a base canónica de \mathbb{R}^4 . Se f é aplicação linear definida em \mathbb{R}^4 por $f(e_1) = e_1 + e_2$, $f(e_2) = e_2 3e_3$, $f(e_3) = e_1$ e $f(e_4) = e_4$, então
 - a) $f(e_1 + 2e_2 e_3 + 3e_4) = (0, 0, 0, 0)$. V
 - **b**) A matriz da aplicação linear é $A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ V F
 - c) f(x, y, z, t) = (x + z, x + y, -3y, t), para qualquer $(x, y, z, t) \in \mathbb{R}^4$.
 - d) $dim(Im(f)) \le 4$.
 - e) Não existe nenhum vector $(x, y, z, t) \in \mathbb{R}^4$, tal que, f(x, y, z, t) = (0, 0, 0, 0). V

II

Responda às questões deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.

- 1. Considere a matriz $A=\left(\begin{array}{ccc}3\alpha^3&9&3\\2\alpha^2&4&2\\\alpha&1&1\end{array}\right)$, onde α é um número real.
 - a) Calcule o determinante da matriz A em função do parâmetro real α .
 - b) Indique, justificando, para que valores de α a matriz A é invertível.
 - c) Considerando $\alpha = 1$, determine o núcleo de A, indicando uma sua base e respectiva dimensão.

2. Considere as matrizes
$$A = \begin{pmatrix} -1 & 3 & 3 \\ -2 & 3 & 2 \\ 2 & -1 & 0 \end{pmatrix}$$
 e $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$.

- a) Calcule a inversa da matriz P.
- **b**) Verifique que a matriz $P^{-1}AP$ é uma matriz diagonal cujos elementos da diagonal são -1, 1 e 2.
- $\mathbf{c})$ Diga, justificando, quais os valores próprios da matriz A.
- \mathbf{d}) Determine o subespaço próprio associado ao valor próprio de maior módulo da matriz A e indique, justificando, a multiplicidade geométrica desse valor próprio.

3. Considere a aplicação

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

 $(x,y) \mapsto (x-y,x,x+y)$

- ${f a}$) Verifique que T é uma aplicação linear.
- b) Escreva a matriz que representa a aplicação linear T relativamente às bases canónicas de \mathbb{R}^2 e \mathbb{R}^3 .
- $\mathbf{c})$ Diga, justificando, se a aplicação linear T é injectiva.
- **d**) Determine car(T) e classifique, justificando, T quanto à sobrejectividade.

Cotação:

cota şao.			
I	II - 1	II - 2	II - 3
3.75	2+1+2	1.5 + 1 + 1 + 2	1.5 + 1.5 + 1.5 + 1.25