Задача SAT

- ⋆ Метод резолюций один из способов решения задачи SAT
 - от satisfiability (выполнимость)
- ullet SAT: дана КНФ $F=igwedge_{i=1}^\ell C_i$, определить, выполнима ли она
 - если *F* выполнима, обычно нужно предъявить пример
 - т.е. булев вектор $ec{b}$ такой, что $F_{|ec{b}}=1$
 - если F противоречие, иногда нужно предъявить доказательство
- SAT трудная задача
 - NP-полная
- SAT самая важная NP-полная задача
 - для нее существуют эффективные с практической точки зрения решатели (SAT-solvers)
- Очень часто оптимальный способ решения других трудных задач состоит в том, чтобы перекодировать задачу в задачу SAT и скормить решателю
 - так решают
 - ⋆ задачи планирования
 - \star задачи верификации железа и софта
 - \star комбинаторные задачи вроде раскраски и гамильтонова цикла

Задача о гамильтоновом пути в форме SAT

- HAMILTONIAN PATH: дан граф G=(V,E), определить, есть ли в нем гамильтонов путь
 - при ответе «да» предъявить пример такого пути
- Опишем преобразование HAMILTONIAN PATH в SAT:
 - переменные: x_{ij} , $i,j \in V = \{1,\ldots,n\}$
 - ullet семантика: $x_{ij}=1\Leftrightarrow j-i$ -я вершина в гамильтоновом пути
- Клозы разбиваются на 5 групп:
 - $oldsymbol{0}$ $x_{1j} \lor \ldots \lor x_{nj}$ для всех $j=1,\ldots,n$
 - вершина ј есть в гамильтоновом пути
 - ② $ar{x}_{ij} ee ar{x}_{kj}$ для всех $i,k,j=1,\ldots,n$, i
 eq k
 - вершина j не входит в гамильтонов путь дважды
 - $\mathbf{3}$ $x_{i1} \lor \ldots \lor x_{in}$ для всех $i=1,\ldots,n$
 - на і-ом месте в гамильтоновом пути стоит какая-то вершина
 - $oldsymbol{\Phi}$ $ar{x}_{ij} ee ar{x}_{ik}$ для всех $i,k,j=1,\ldots,n,j
 eq k$
 - на *i*-ом месте в гамильтоновом пути есть только одна вершина
 - lacktriangledown $ar{x}_{ij} ee ar{x}_{(i+1)k}$ для всех $i=1,\ldots,n-1,\; k,j=1,\ldots,n,\; (j,k)
 otin E$
 - соседние вершины в гамильтоновом пути должны быть соединены ребром
- если формула выполнима, переменные, равные 1, задают гамильтонов путь

Еще немного про SAT

- ★ SAT остается вычислительно трудной даже при ограничении, что задана константа $k\geqslant 3$ и каждый клоз содержит не более k литералов (задача k-SAT)
- \star Общепринятая в настоящее время гипотеза экспоненциального времени утверждает существование констант $s_k>0$ для любого $k\geqslant 3$ таких, что ни один алгоритм не может решить задачу $k ext{-SAT}$ за время, меньшее $2^{s_k\ell}$
 - \star фразу «не может решить» следует понимать так: для любого алгоритма найдется бесконечная серия «трудных» КНФ с разным числом клозов ℓ , на проверку выполнимости которых алгоритм затратит время $\Omega(2^{s_k\ell})$
- ★ Особенность SAT: трудные примеры встречаются редко
 - ullet важную роль играет отношение числа клозов ℓ к числу переменных n
 - если клозов мало, обычно есть много выполняющих наборов и такой набор можно быстро найти
 - если клозов много, обычно формула невыполнима и противоречие находится быстро
 - на границе попадаются трудные формулы (либо выполнимые с очень малым числом выполняющих наборов, либо невыполнимые, но такие, что некоторые наборы выполняют почти все клозы)

Распространение переменной

- ullet Пусть КНФ состоит из клозов C_1,\ldots,C_ℓ и зависит от переменных x_1,\ldots,x_n
 - можно считать, что КНФ F задана двуми массивами:
 - L[1..2n]: в L[i] хранится список номеров клозов, в которые входит литерал x_i (при $i \leq n$) либо литерал \bar{x}_{i-n} (при i > n)
 - $C[1..\ell]$: в C[i] хранится список номеров литералов, которые входят в клоз C_i (номер i>n означает литерал \bar{x}_{i-n})
 - при переводе КНФ в такую форму можно сразу отбросить клозы, содержащие два противоположных литерала одновременно
- ullet Распространение переменной (unit propagation) процедура упрощения КНФ
 - \star Если в F есть клоз, состоящий из единственного литерала $(x_i$ либо $\bar{x_i})$, то набор (b_1,\ldots,b_n) выполняет F только при условии, что b_i выполняет данный клоз
 - \Rightarrow значение b_i определено однозначно
 - ullet пусть литерал равен x_i , т.е. $b_i=1$; случай $b_i=0$ аналогичен
 - \Rightarrow можно присвоить значение b_i и упростить формулу:
 - ♣ клозы, содержащие x_i, выполнены их можно удалить
 - 🌲 из клозов, содержащих $ar{x_i}$, можно удалить этот литерал (он равен 0)
 - если получился пустой клоз, то F невыполнима
 - \star можно создать очередь одноэлементных клозов
 - очередь пополняется при выполнении пункта (♠)
 - \star распространение переменной выполняется в цикле, пока очередь непуста
- * KH Φ F $\xrightarrow{\text{распространение переменной}}$ KH Φ UP(F)
 - UP(F) = 1, если удалены все клозы
 - UP(F) = 0, если встретился пустой клоз
 - UP(F) выполнима $\Leftrightarrow F$ выполнима
- \star Распространение переменной выполняется за время O(число литералов в F)

Распространение переменной (2)

Пример:

$$F = (a \lor d) \land (c \lor d \lor \bar{a}) \land (\bar{b} \lor \bar{c} \lor \bar{d}) \land (\bar{a}) \land (a \lor b \lor \bar{c})$$

- ullet в очереди единственный клоз $ar{a}$, достаем его
- \clubsuit удаляем клозы \bar{a} и $c \lor d \lor \bar{a}$
- \spadesuit удаляем a из клозов $a \lor b \lor \bar{c}$ и $a \lor d$ (новый клоз d добавляем в очередь)
- ullet текущий список клозов: $d, ar{b} \lor ar{c} \lor ar{d}, b \lor ar{c}$
- достаем клоз d из очереди
- 🌲 удаляем клоз d
- \spadesuit удаляем \bar{d} из клоза $\bar{b} \lor \bar{c} \lor \bar{d}$
- очередь пуста, получаем $UP(F) = (b \lor \bar{c}) \land (\bar{b} \lor \bar{c})$
- \star UP(F) можно выполнить, положив c=0
- \Rightarrow набор a=0, c=0, d=1 выполняет F (при любом b)
- Дополнение к распространению переменной: правило чистой переменной
 - ⋆ если в результате удаления клоза (♣) у литерала не осталось вхождений в формулу, то переменной этого литерала присваивается значение, превращающее этот литерал в 0
 - это позволяет выполнить все клозы, содержащие противоположный литерал, и тем самым упростить текущую КНФ
 - * когда в примере получено $UP(F) = (b \lor \bar{c}) \land (\bar{b} \lor \bar{c})$, литерал c не имеет вхождений, и присвоение c = 0 позволяет выполнить оба оставшихся клоза
- \star В дальнейшем под UP(F) мы понимаем формулу, полученную из F применением обоих правил

Процедура DPLL

- Процедура DPLL это алгоритм оптимизированного перебора, решающий задачу SAT
 - основан на статьях Дэвиса-Патнема (1960) и Дэвиса-Логманна-Лавлэнда (1962)
- ullet Пусть $\mathit{DPLL}(F)$ булево значение, возвращаемое алгоритмом на входе F
- ⋆ Рекурсивная запись процедуры DPLL:
 - ullet выбрать переменную x
 - вернуть $DPLL(F) = DPLL(UP(F \land x)) \lor DPLL(UP(F \land \bar{x}))$
- Комментарии:
 - \star формулы F и $(F \wedge x) \vee (F \wedge \bar{x})$ эквивалентны
 - * алгоритм представляет вычисление деревом:
 - с каждым узлом связана «остаточная» формула, которую нужно выполнить;
 - некоторой переменной х остаточной формулы присваивается значение 1, формула упрощается распространением переменной и присваивается дочернему узлу
 - если формулу не удалось выполнить, вычисление возвращается в родительский узел и выполняется присвоение x=0
 - \star клоз \times $(ar{x})$ добавляется не к формуле, а сразу в очередь, чтобы запустить распространение переменной
- ullet Скорость работы перебора зависит от эвристики выбора переменной x_i
 - пример эвристики: выбирается переменная с максимальным числом вхождений в клозы минимальной длины
 - цель увеличить ресурс использования распространения переменной
- Используется много других оптимизаций для сокращения перебора
- ⋆ DPLL до сих пор лежит в основе многих SAT-решателей

Хорновская выполнимость

- Существуют частные случаи задачи SAT, для которых существуют полиномиальные (и даже линейные) алгоритмы
- * КНФ называется хорновской, если каждый клоз содержит не более одной переменной без отрицания
 - ullet Пример $F=(ar{a}ee bee ar{c})\wedge (ar{b}ee ar{d})\wedge (a)\wedge (ar{a}ee d)$
- ⋆ Задача SAT с хорновской КНФ также называется хорновской (HornSAT)

Теорема

Задача HornSAT может быть решена за время $\mathit{O}(\mathit{m})$, где $\mathit{m}-$ число литералов в формуле.

- Доказательство:
 - пусть *F* хорновская КНФ
 - ullet применим распространение переменной и вычислим UP(F)
 - как уже обсуждалось, это требует времени O(m)
 - если $UP(F) \in \{0,1\}$ мы уже получили ответ
 - иначе каждый клоз содержит хотя бы два литерала
 - \Rightarrow каждый клоз содержит литерал вида $ar{x}$
 - ⇒ присвоим всем оставшимся переменным нули
 - $\Rightarrow UP(F)$ выполнима $\Rightarrow F$ выполнима
- * Тем же способом решается SAT для двойственных хорновских КНФ, в которых каждый клоз содержит не более одного литерала с отрицанием

Хорновская выполнимость (2)

Пример 1:

$$F = (a \lor \bar{b} \lor \bar{c}) \land (\bar{b} \lor \bar{c} \lor d) \land (\bar{d} \lor \bar{c}) \land (c) \land (\bar{d} \lor e) \land (\bar{a} \lor \bar{c} \lor d \lor \bar{e})$$

- распространяем c: $a \lor \bar{b}, \bar{b} \lor d, \bar{d}, \bar{d} \lor e, \bar{a} \lor d \lor \bar{e}$
- ullet распространяем $ar{d}$: $a ee ar{b}$, $ar{b}$, $ar{a} ee ar{e}$
- ullet распространяем $ar{b}$: $ar{a} ee ar{e}$
- присваиваем нули оставшимся переменным: a=e=0
- \Rightarrow набор a = 0, b = 0, c = 1, d = 0, e = 0 выполняет F

Пример 2:

$$F = (a \lor \bar{b} \lor \bar{c}) \land (b \lor \bar{c} \lor \bar{d}) \land (d \lor \bar{c}) \land (c) \land (\bar{d} \lor e) \land (\bar{a} \lor \bar{c} \lor \bar{d} \lor \bar{e})$$

- ullet распространяем c: $a \lor ar{b}, b \lor ar{d}, d, ar{d} \lor e, ar{a} \lor ar{d} \lor ar{e}$
- распространяем d $a \lor \bar{b}, b, e, \bar{a} \lor \bar{e}$
- распространяем b: $a, e, \bar{a} ∨ \bar{e}$
- распространяем e: a, ā
- распространяем *а*: \square
- распространяем *а.* ∟
- ⇒ F невыполнима

2-выполнимость

- КНФ, в которой каждый клоз состоит из двух литералов, называется 2-КНФ
- \star Задача SAT с 2-КНФ называется 2-выполнимость (2-SAT)
- igstar Формула $\emph{l}_1 \lor \emph{l}_2$, где \emph{l}_1 и \emph{l}_2 литералы, эквивалентна $ar{\emph{l}}_1
 ightarrow \emph{l}_2$ и $ar{\emph{l}}_2
 ightarrow \emph{l}_1$
 - Пусть дана 2-КНФ F; построим по ней орграф G(F) (граф импликаций):
 - вершины литералы из F
 - ullet каждому клозу $l_1ee l_2$ сопоставлены ребра $(ar l_1,l_2)$ и $(ar l_2,l_1)$
 - Эквивалентная формулировка 2-SAT на языке графа импликаций:
 - \star существует ли раскраска ϕ графа импликаций в цвета $\{0,1\}$ такая, что
 - (i) $\phi(I)
 eq \phi(ar{I})$ для любой вершины I и
 - (ii) $\phi(I_2)\geqslant \phi(I_1)$ для любого ребра (I_1,I_2) ?
 - ullet ϕ с указанными свойствами будем называть булевой раскраской
 - \diamond по транзитивности, если l_2 достижима из l_1 , то $\phi(\mathit{l}_2) \geqslant \phi(\mathit{l}_1)$

Пример:
$$F = (x \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{x} \lor z) \land (\bar{z} \lor y)$$

граф импликаций G(F):

2-выполнимость (2)

Лемма

Существует булева раскраска орграфа $G(F) \Leftrightarrow$ не существует переменной x, для которой вершины x и \bar{x} взаимно достижимы в G(F).

- Доказательство необходимости:
 - существование такой переменной x влечет $\phi(x) = \phi(\bar{x})$ согласно (\diamond) , что нарушает первое условие для булевой раскраски
- Доказательство достаточности:
 - ullet разобьем G(F) на компоненты сильной связности
 - отношение достижимости компонент отношение порядка, дополним его до линейного порядка ≤
 - т.е. выполним топологическую сортировку компонент
 - ullet по условию, вершины x и $ar{x}$ лежат в разных компонентах для любой переменной x
 - \Rightarrow положим $\phi(x)=1$ $(\phi(x)=0)$, если $\mathsf{comp}(x)>\mathsf{comp}(\bar{x})$ $(\mathsf{comp}(x)<\mathsf{comp}(\bar{x}))$
 - все вершины любой компоненты имеют один цвет
 - $\Rightarrow \phi(x) \neq \phi(\bar{x})$ для всех x, условие (i) выполнено
 - пусть существует ребро (I_1,I_2) такое, что $\phi(I_1)=1,\phi(I_2)=0$
 - \Rightarrow существует ребро $(\bar{l}_2, \bar{l}_1), \phi(\bar{l}_2) = 1, \phi(\bar{l}_1) = 0$
 - \Rightarrow comp (l_1) < comp (l_2) и comp $(\overline{l_2})$ < comp $(\overline{l_1})$
 - из нашего определения ϕ следует $\mathsf{comp}(\bar{l_1}) < \mathsf{comp}(l_1)$ и $\mathsf{comp}(l_2) < \mathsf{comp}(\bar{l_2})$
 - ⇒ противоречие с тем, что ≤ порядок
 - $\Rightarrow \phi(I_2) \geqslant \phi(I_1)$ для любого ребра (I_1,I_2) , условие (ii) выполнено

2-выполнимость (3)

Примеры:

 $F = (x \lor y) \land (\bar{y} \lor \bar{z}) \land (\bar{z} \lor y)$ выполнима: $F' = F \land (x \lor \bar{y})$ невыполнима:

B графе G(F) две компоненты, красные вершины красим в 0, синие — в 1

 B графе $\mathsf{G}(\mathsf{F}')$ единственная компонента, ее нельзя раскрасить

Теорема

Задача 2-SAT может быть решена за время $O(\ell)$, где ℓ — число клозов в формуле.

- Доказательство:
 - построим по формуле F граф G(F), в нем 2ℓ ребер
 - найдем компоненты сильной связности и отсортируем их топологически
 - ⋆ например, и алгоритм Косараю, и алгоритм Тарьяна ищут компоненты за линейное от числа ребер время и выдают их в топологически отсортированном виде
 - \bullet если comp $(x)={\sf comp}(\bar{x})$ для какой-нибудь вершины x, возвращаем 0
 - ullet иначе выполняем булеву раскраску G(F) и возвращаем полученные значения
 - ullet все шаги требуют времени $O(\ell)$