Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 15. října 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. 9:

Závislost indexu lomu skla na vlnové délce

 $T=21,1~^{\circ}\mathrm{C}$ $p=101,35~\mathrm{kPa}$ $\varphi=47,7~\%$

1. Úvod

V úloze budu měřit index lomu hranolu metodou minimální deviace pro několik spektrálních čar rtuti. Z naměřených hodnot určím materiálové konstanty v Cauchyho vztahu a Abbeovo číslo charakterizovaného skla.

2. Postup měření

2.1. Měření lámavého úhlu

Dvě sousední strany hranolu, kterými paprsek vstupuje a vystupuje svírají úhel ω . Hranol položím na goniometr, který nejprve seřídím tak, aby stěny hranolu byli kolmé na optickou osu dalekohledu a najdu úhly φ_1 a φ_2 , kdy je nitkový kříž kolmý na některou z těchto ploch. Vrcholový úhel dopočítám podle

$$\omega = 180 - (\varphi_1 - \varphi_2) \tag{1}$$

2.2. Měření minimální deviace

Paprsek se při průchodu takovým hranolem zlomí, o nějak úhel δ . Ze Snellova zákona lze zjistit, že existuje minimum této deviace δ_m , pro kterou platí

$$n = \frac{\sin((\delta_m + \omega)/2)}{\sin(\omega/2)} \tag{2}$$

Zdrojem světla bude výbojka, která ve viditelné oblasti spektra obsahuje řadu čar o známých vlnových délkách. Budu otáčet se stolkem goniometru a hledat úhel φ_1 , pro který deviace vykazuje minimum. Tuto hodnotu odečtu a budu se stolkem točit na druhou stranu dokud nenajdu druhé minimum φ_2 . Úhel minimální deviace potom spočítám podle

$$2\delta_m = \varphi_2 - \varphi_1 \tag{3}$$

Toto provedu pro každou spektrální čáru a dopočítám index lomu, který nutně bude různý pro různé vlnové délky.

Obrázek 1: Měření úhlu minimální deviace

Obrázek 2: Průchod paprsku světla hranolem

2.3. Měření materiálových konstant Cauchyho vztahu a abbeova čísla

Získanou závislost indexu lomu na vlnové délce budu prokládat Cauchyový vztahem prvního řádu

$$n = A + \frac{B}{\lambda^2}. (4)$$

Dvěma hlavními optickými parametry jsou index lomu n_d pro žlutou čáru $\lambda_d=587.6$ nm a Abbeovo číslo ν_d , které je převrácenou hodnotou optické mohutnosti skla

$$\nu_d = \frac{n_d - 1}{n_F - n_C},\tag{5}$$

kde n_F a n_C jsou indexy lomu pro Fraunhoferovy čáry o vlnových déklách $\lambda_F=486.1$ nm (modrá) a $\lambda_C=656.3$ nm (červená).

3. Výsledky měření

3.1. Měření lámavého úhlu

Hranol umístím na goniometr a provedu justování. Srovnám nitkový kříž se stranami hranolu, svírajícími úhel ω a odečtu úhly φ_1 a φ_2 . Vrcholový úhel dopočítám podle (1).

$$\omega = 45.00^{\circ} \pm 0.05$$
 (6)

3.2. Měření minimální deviace

Měření úhlu minimální deviace δ_m provádím pro každou spektrální čáru rtuti v bodě obratu paprsku na obou stranách, při otáčení stolečkem goniometru a index lomu dopočítávám podle (2).

barva	$\lambda \text{ (nm)}$	δ_m (°)	n
červená	623.4	30.8402	1.6059 ± 0.0008
žlutá	576.9	30.9638	1.6082 ± 0.0008
zelená	546.1	31.0513	1.6097 ± 0.0008
modro-zelená	491.6	31.3444	1.6150 ± 0.0008
modr á	435.8	31.7132	1.6216 ± 0.0008
fialová	404.6	31.9069	1.6250 ± 0.0008

Tabulka 1: Měření úhlu minimální deviace pro každou spektrální čáru rtuti

3.3. Měření materiálových konstant Cauchyho vztahu a abbeova čísla

Vynesl jsem do grafu závislost indexu lomu n na vlnové délce λ a hodnoty proložil Cauchyovým vztahem (4). Uvedl jsem výsledné materiálové konstanty A a B a vzorkoval jsem výslednou funkci v Fraunhoferových vlnových délkách pro výpočet Abbeova čísla ν_d .

$$n_d = 1.608 \pm 0.001$$
 $A = 1.5915 \pm 0.0008$ $n_F = 1.615 \pm 0.001$ $B = 5.6 \pm 0.2 \cdot 10^{-15} \text{ m}^2$ $n_C = 1.604 \pm 0.0009$ $\nu_d = 57 \pm 2$

Graf 1: Závislost indexu lomu na vlnové délce

4. Závěr

Změřil jsem lámavý úhel hranolu a minimální deviaci pro několik spektrálních čar rtuti. Výsledné hodnoty, které jsou uvedeny v tabulce 1 jsem dál fitoval Cauchyovým vztahem a dostal materiálové konstanty A a B, a zjistil index lomu pro žlutou čáru $n_d=1.608\pm0.001$ a Abbeovo číslo $\nu_d=57\pm2$. Použitý hranol byl z materiálu N-SK2 výrobce SCHOTT. Tabulkové hodnoty z odkazu 1 jsou $n_d=1.60738$ a $\nu_d=56.65$.

Reference

[1] tabulkové hodnoty hranolů N-SK2 SCHOTT https://www.schott.com/shop/advanced-optics/en/Optical-Glass/N-SK2/c/glass-N-SK2.