Group Manipulation in Judgment Aggregation

Sirin Botan, Arianna Novaro and Ulle Endriss ILLC - Universiteit van Amsterdam

November 20, 2015

Motivating Example

Judgment Aggregation: Combine agents' opinions about some issues into a collective decision on them.

	р	q	p∧q
Agent 1	√	√	√
Agent 2	\checkmark	×	×
Agent 3	×	\checkmark	×
PB-Rule	✓	√	✓

We will talk about:

- ⇒ Different type of Rules
- ⇒ More general type of Preferences

Outline of the Talk

- 1. JA Framework & Quota Rules
- 2. Single-agent manipulation
- 3. Group manipulation
- 4. Conclusions

Notation and Formal Framework

- $\mathcal{N} = \{1, \dots, n\}$ is the set of **agents**.
- ◆ is the agenda (finite non-empty set of propositional formulas and their negations).
- $J_i \subseteq \Phi$ is the **individual judgment set** for agent *i*.
- $J = (J_1, \ldots, J_n)$ is the **profile** on agenda Φ .
- $\mathcal{J}(\Phi)$ is the set of all *complete* & *consistent* subsets of Φ .

An **aggregation rule** for an agenda Φ and a set of n agents is a function from profiles to (collective) judgment sets:

$$F: \mathcal{J}(\Phi)^n \to 2^{\Phi}.$$

Uniform Quota Rules

A **uniform quota rule** is defined by $q \in \{0, 1, ..., n + 1\}$:

$$F_q(\mathbf{J}) = \{ \varphi \in \Phi \mid \#\{i \in \mathcal{N} \mid \varphi \in J_i\} \ge q \}.$$

	r	S	t	¬r	¬s	¬t
J_1	X	\checkmark	\checkmark	√	×	×
J_2	\checkmark	\times	\checkmark	×	\checkmark	×
J_3	\checkmark	\checkmark	×	×	×	\checkmark
J_4	×	\times	×	\checkmark	\checkmark	\checkmark
J ₅	×	×	×	✓	\checkmark	✓
$F_3(\mathbf{J})$	×	×	×	✓	\checkmark	✓

In this example, F_3 is the Majority Rule.

Individual Preferences

The *Hamming Distance* is defined as

$$H(J,J') := |J \setminus J'| + |J' \setminus J|.$$

The Hamming Preferences of agent *i* are such that

$$J \succeq_i J' \Leftrightarrow H(J,J_i) \leq H(J',J_i).$$

We will assume Hamming Preferences for our theorems.

Single-Agent Strategy-Proofness

Agent i manipulates whenever she does not report her *truthful* judgment set J_i .

Agent *i* has an incentive to manipulate if for some $J_i \in \mathcal{J}(\Phi)$:

$$F(\mathbf{J}_{-i},J'_i) \succ_i F(\mathbf{J}).$$

A rule *F* is single-agent strategy-proof, if for no truthful profile *J* there is an agent with an incentive to manipulate.

Theorem. Quota Rules are single-agent strategy-proof.

Dietrich & List. Strategy-Proof Judgment Aggregation. Economics & Philosophy, 2007.

Group Strategy-Proofness

A coalition *C* of agents is a subset of \mathcal{N} .

J' is a C-variant of **J** if $J_i = J_i'$ for all agents *i* not in C.

F is group strategy-proof against coalitions of size $\leq k$, if for all truthful profiles J, for all coalitions C of size $\leq k$, and for all C-variants J' of J we have $F(J) \succeq_i F(J')$ for all agents $i \in C$.

Manipulation by Two Agents

Theorem. Uniform Quota Rules are strategy-proof against coalitions of manipulators of at most 2 agents.

Proof. We can distinguish two cases:

- 1 agent Follows from previous theorem. ✓
- 2 agents Formulas on which the agents *agree*: already both rejecting or both accepting them.
- \Rightarrow Changes useless or counterproductive.
- Formulas on which the agents *disagree*: if agent 1 changes her opinion on some φ s, she goes against her interest to possibly help agent 2 (by changing the outcome).
- ⇒ Agent 1 needs "in return" strictly more formulas from agent 2 (Hamming Distance preferences).
- \Rightarrow The reasoning is symmetric for both agents. \checkmark

Manipulation by Three Agents (or more)

Theorem. If the (atomic) agenda Φ includes at least 3 (non-negated) formulas, then every Uniform Quota Rule F_q such that $3 \le q \le n$ (or $1 \le q \le n-2$) is not group strategy-proof against coalitions of size ≤ 3 .

Proof. We show, for any such $3 \le q \le n$ (other case similar), a general method for constructing a profile manipulable by three agents. By checking the Hamming Distances we see that they have an incentive to manipulate *together*.

Proof

Consider the truthful profile **J**...

	φ_1	φ_2	φ_3	 $\neg \varphi_1$	$\neg \varphi_2$	$\neg \varphi_3$	•••
$\overline{J_1}$	×	√	√	 √	×	×	
J_2	\checkmark	×	\checkmark	 \times	\checkmark	×	•••
J_3	\checkmark	\checkmark	×	 \times	\times	\checkmark	•••
J_4	\checkmark	\checkmark	\checkmark	 ×	×	×	
:	:	:	:	 :	:	÷	
J_q	\checkmark	\checkmark	\checkmark	 \times	\times	\times	•••
J_{q+1}	×	×	×	 \checkmark	\checkmark	\checkmark	
÷	÷	:	÷	 :	:	÷	
J_n	×	×	×	 \checkmark	\checkmark	\checkmark	•••
$F_{q}(\boldsymbol{J})$	×	×	×	 ?	?	?	•••

Proof

... and the manipulated profile **J**'.

	φ_1	φ_2	φ_3	 $\neg \varphi_1$	$\neg \varphi_2$	$\neg \varphi_3$	
J_1'	√	√	√	 ×	×	×	
J_2^{\prime}	\checkmark	\checkmark	\checkmark	 \times	×	×	
J_3'	\checkmark	\checkmark	\checkmark	 ×	\times	×	•••
J_4	\checkmark	\checkmark	\checkmark	 \times	\times	\times	
:	:	:	:	 :	:	:	
J_q	\checkmark	\checkmark	\checkmark	 \times	\times	×	•••
J_{q+1}	×	×	×	 \checkmark	\checkmark	\checkmark	
:	:	:	÷	 :	÷	÷	
J_n	×	×	×	 \checkmark	\checkmark	\checkmark	
Fq(/ ′)	✓	√	✓	 ?	?	?	

Strategy-Proofness with Opting Out

- \Rightarrow What happens if agents in our construction are allowed to opt out of the jointly agreed plan?
- ⇒ What happens if agents are risk-averse (to the possibility of the rest of the coalition opting out)?

	φ_1	φ_2	φ_3	$\neg \varphi_1$	$\neg \varphi_2$	$\neg \varphi_3$
J_1	×	√	√	✓	×	×
J_2	\checkmark	\checkmark	\checkmark	×	×	×
J_3	\checkmark	\checkmark	\checkmark	×	×	×
J_4	X	X	×	\checkmark	\checkmark	\checkmark
J_5	×	×	×	\checkmark	\checkmark	\checkmark
F ₃ (J)	×	√	✓	✓	×	×

Theorem. If agents are risk-averse and may opt out, then Uniform Quota Rules are group strategy-proof.

Conclusion & Future Work

We introduced the notion of group manipulation in JA.

For Uniform Quota Rules we get the following results:

- ✓ Strategy-proof against single agent (D. & L., 2007).
- ✓ Strategy-proof against two manipulators.
- imes Manipulable by three (or more) agents.
- ✓ Strategy-proof against unstable groups.

Similar results for more general rules (Independent and Monotonic).