

CLAIMS

1 1. (Twice Amended) A method for allocating real-time audio data from a first
2 plurality of audio channels in a system having a first processor and a second processor, the
3 method comprising:

4 providing a second plurality of memory banks of semiconductor memory devices, each
5 memory bank being accessible to the first and second processors for operations selected from the
6 group comprising read and write operations; and
7 storing subsets of said audio data in the second plurality of memory banks, the subsets
8 corresponding to different groups of audio channels.

Mark E1 2. (Amended) The method of claim 1, further comprising selecting said memory
2 banks for access by one of the first and second processors.

D2 1 3. (Amended) The method of claim 1 wherein the second plurality of memory
2 banks includes two memory banks.

D3 1 3A. The method of claim 3 wherein one subset of said audio data corresponds to even-
2 numbered audio channels and one other subset of said audio data corresponds to odd-numbered
3 audio channels.

D4 1 5. (Twice Amended) A system having first and second buses for processing real-
2 time audio data from a first plurality of audio channels, the system comprising:
3 a first processor and a second processor coupled to said first and second busses,
4 respectively; and
5 a second plurality of memory banks of semiconductor memory devices coupled to said
6 first and second busses for storing said audio data, said second plurality of memory banks being
7 accessible to the first and second processors for operations selected from the group comprising
8 read and write operations, said second plurality of memory banks storing subsets of audio data,
9 said subsets corresponding to different groups of audio channels.

sub E 2)
1 6. (Amended) The system of claim 5 further comprises a plurality of selectors
2 coupled said first and second buses to select said memory banks for access by one of said first
3 and second processors.

cont)
1 7. (Amended) The system of claim 6 wherein the plurality of selectors include a
2 plurality of address multiplexers and data transceivers.

Df
1 8. The system of claim 5 wherein one subset of said audio data corresponds to even-
2 numbered audio channels and one other subset of said audio data corresponds to odd-numbered
3 audio channels.

sub E 3)
1 9. (Amended) The system of claims 5, ~~wherein the memory banks include dynamic~~
~~random access memories.~~

sub E 4)
1 10. The method of claim 1, wherein storing further comprises interleaving the subsets
2 of data.

1 11. The system as set forth in claim 5, wherein the subsets are stored in the memory
2 banks in an interleaving manner.

1 12. The method of claim 1, wherein storing comprises storing one of the subsets of
2 audio data in one of the memory banks, said method further comprising reading stored audio data
3 from a second of the memory banks.

1 13. The method as set forth in claim 1, wherein the first processor performs a read
2 operation on a first memory bank of the plurality of memory banks and the second processor
3 performs a write operation on a second memory bank of the plurality of memory banks.

Df
1 14. The system of claim 5, wherein subsets of audio data are stored in one of the
2 memory banks and stored audio data is read from a second memory bank of the memory banks.

E4
D
1
2
cont
3 } 15. The system as set forth in claim 5, wherein the first processor performs a read operation on a first memory bank of the plurality of memory banks and the second processor performs a write operation on a second memory bank of the plurality of memory banks.

