Physical realization of a Qubit Introduction to Quantum Computing

Jothishwaran C.A.

Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee

May 4, 2025

Outline

Introduction

The Physical Bit Information, Computation and Physics

Polarization and Superposition

A little bit of Electromagnetism Polarization of light waves Linear combinations and Polarizers

From waves to particles

Angles and Intensities A Physical Qubit

Conclusion

Concluding Remarks
One final point

What have we heard so far?

- ► The definition of a qubit
- ightharpoonup State space, $\mathbb{C} \times \mathbb{C}$
- Vector space
- Superposition
- Measurement
- ▶ and many others...

What shall we do now?

- We will attempt to give a physical context to the various concepts discussed in the previous lecture.
- To do that we shall discuss a little bit of physics.
- Is a discussion of physics really necessary to learn computation?

Information, Computation and Physics

- ► The classical bit may exist in one of two states, these states are labelled as "0" and "1". This is the most fundamental unit of information.
- A physical realization of the bit is required for performing computation. In a classical computer, bits are realised in the states of a register.
- ▶ By the same token, a physical realization of a qubit is required for performing quantum computation.

Light waves

- Light is described by an electromagnetic wave, consisting of electric and magnetic field components.
- ► The electric field of a plane polarized light is given by the following function:

$$\vec{\mathbf{E}} = \hat{\mathbf{n}} E_0 \sin(\omega t - kz)$$

here, the light wave is propagating (moving) along the $\hat{\mathbf{z}}$ direction.

\hat{n} is a unit vector in the x-y plane.

Light particles

- At around 1900, it was established that light waves consist of particles called photons.
- ► The electromagnetic wave can now be visualised as a stream of a very large number of photons.
- ► The electromagnetic wave is now associated with each photon.
- ► Therefore, when we refer to a property of the light waves, they also become properties of the photons.

Polarization of light waves

- ▶ The polarization of an electromagnetic wave propagating along the z-axis is in the x-y plane.
- Any vector in the x y plane can be represented in terms of its x and y components.

Figure 1: Horizontally Polarized Wave

Figure 2: Vertically Polarized Wave

A little bit of Vector Algebra

- The linearly independent vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to represent vertical and horizontal polarizations respectively.
- A polarization vector inclined at an angle
 θ to the vertical is represented as follows:

$$\cos\theta\begin{pmatrix}1\\0\end{pmatrix} + \sin\theta\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix} \qquad (1)$$

Figure 3: An obliquely polarized wave

Fun with polarizers

- Polarizers are optical filters that allow light waves of a particular polarization to pass through them.
- ► A vertically aligned polarizer will block all horizontally polarized light from passing through and vice versa.
- But what will happen when an obliquely polarized light wave is incident on a vertically (or horizontally) aligned polarizer?
- ► The following video answers the above question through demonstrations:
 - https://www.youtube.com/watch?v=6N3bJ7Uxpp0

A classical result

- When a light wave with polarization as defined in equation (1) is incident on a vertically aligned polarizer, only a fraction of this wave emerges.
- ► The fraction of the intensity that is transmitted is given by $|\cos \theta|^2$. In the case of a horizontally aligned polarizer, the same fraction is $|\sin \theta|^2$.
- ▶ In general, the fraction of the intensity that is transmitted is given by $|\cos \alpha|^2$ where α is the angle between the polarization vector and the direction along which the polarizer is aligned.
- ▶ It should be remembered that the polarization of the transmitted light wave is along the alignment of the polarizer.

The Quantum Perspective

- One of the earliest conclusions of quantum theory was that light waves exhibited particle like behaviour and these particles were named photons.
- Light waves discussed thus far may be visualised as a stream of a very large number of photons.
- ▶ The reduction of intensity when a light wave passes through a polarizer implies that only a fraction of the incident photons are transmitted. This fraction as mentioned before is $|\cos \alpha|^2$.
- ▶ It is once again emphasized that the polarization of the photons emerging is along the direction in which the polarizer is aligned.

The Photon as a Qubit

- ▶ Based on the ideas discussed so far, it is possible to state the following about single photons incident on a polarizer.
- ▶ It is in general not possible to state with certainty if an incident photon will be transmitted by a polarizer.
- ▶ A photon polarized along the direction of a polarizer will certainly be transmitted. A photon with a polarization that is orthogonal to a polarizer's alignment will certainly not be transmitted.
- ► The probability of a photon being transmitted by a polarizer is once again given by $|\cos \alpha|^2$.
- ► The aforementioned facts have all been verified through experiments.

Concluding Remarks

- ► The photon is a particle that can exist simultaneously in both (orthogonal) polarization states.
- ► The polarization of the photon may be represented as a linear combination of these orthogonal states.
- ► The outcome of an experiment to estimate the polarization of a photon can only be interpreted statistically. The experiment also leaves the state of the photon changed.
- ► Such photon based qubits are used extensively in Quantum Information and Communication, most notably in Quantum Key Distribution (QKD).

But what of the complex numbers?

- ► The photon states described so far have all been real linear combinations of the vertical and the horizontal polarization states.
- Complex linear combination of these states are used to define polarization states such as circular and elliptical polarization.

Figure 4: A circularly polarized wave