

FloodShield: Securing the SDN Infrastructure Against Denial-of-Service Attacks

Menghao Zhang Jun Bi Jiasong Bai Guanyu Li

Tsinghua University

Software Defined Networking

Fine-grained and Centralized network control

Decoupling of control plane and data plane

Unprecedented programmability

Data-to-control-plane Saturation Attack

Previous Studies

- AVANT-GUARD (CCS'13)
 - Modify switches: add *connection migration* module and *actuating trigger* module to enhance the scalability and responsiveness
- FloodGuard (DSN'15)
 - Adopt *proactive flow rule analyzer* in the controller
 - Introduce data plane cache to the data plane
- FloodDefender (INFOCOM'17)
 - Introduce table-miss engineering, packet filtering and flow table management to the controller

Limitation Summary

	Provide overall protection	Easy for deployment	Lightweight for controller
AVANT-GUARD (CCS'13)	*	*	
FloodGuard (DSN'15)	*	*	
FloodDefender (INFOCOM'17)			*
FloodShield			

FloodShield Architecture

Filters

forged

packets

directly

in the

data

plane

the

monitors
the
packet
states of
each real
address
to make
further
service
different

iation

Source Address Validation Module

- Source Address Validation Enforcement Position
 - Switch port classification
 - Switch Port, Host Port, Trusted Port
 - As long as source address validation is performed on the Host Ports, the traffic in the data plane is validated and trustworthy.
- Source Address Validation Enforcement Approach
 - **Monitoring**: Controller monitors the procedures of address allocation protocols (e.g., DHCP) to establish the *Binding Table*, where each binding entry is in the format of (*Address, Switch, Port*).
 - **Binding**: Controller *explicitly* installs *Filter Flow Rules* in the data plane switches to filter the unbound source addresses.

Examples of Source Address Validation Module

The Structure of Filter flow Table in switches					
Group	Match Fields Priority		Instruction		
Name					
Host Ports	in port=hport, mac src=given mac	port, mac src=given mac 2			
	src, ipv4, ip src=given ip src		table 1		
Host Ports	in port=hport, mac src=given mac	2	jump to		
	src, arp		table 1		
Host	in port=hport, ipv4	1	drop		
Ports's filter					
Host	in port=hport, arp	1	drop		
Ports's filter					
Switch	in port=sport	1	jump to		
Ports			table 1		
Trusted	in port=tport	1	jump to		
Ports			table 1		

Monitoring Example

Binding Example

Stateful Packet Supervision Module

- Precise Behavior Evaluation
 - Traffic feature collection
 - Frequency of New Flows + Packet Number Per Flow
 - Behavior evaluation quantization
 - Linear Mapping
 - Exponential Weighted Moving Average (EMWA) $w_i = (1 \alpha)w_i + \alpha w_{in}$
- Dynamic Service Differentiation

Behavior-based Network Service Differentiation				
Evaluation Level	Countermeasure Importance			
Obviously Malicious	Obviously Malicious drop/rate-limit in the ingress switch for a period			
Ambiguous	probability acceptance	low		
Obviously Good	deal all	high		

Implementation and Evaluation

Implementation

- Floodlight 1.2 open source controller
- Mininet to emulate network environment

- Compared targes: origin OpenFlow (of), FloodGuard (fg), FloodDefender (fd)

• Experiment

- Two Dell R730 servers
- 1 Controller, 1 Mininet

End-to-end Effect

Round Trip Time

Available Bandwidth

• FloodShield provides effective end-to-end protection for the SDN infrastructure.

Resource Utilization

CPU Utilization of Controller

Control Channel Utilization

Average Flow Rule Number						
	Normal Users	Attackers	Overheads	All		
OpenFlow	535.30(27%)	1423.14(71%)	0(0%)	1959.21(98%)		
FloodGuard	389.77(19%)	508.38(25%)	2.75(0.3%)	900.77(45%)		
FloodDefender	492.09(25%)	250.37(13%)	571.2(28%)	1313.11(66%)		
FloodShield	679.17(34%)	97.70(5%)	5.32(0.6%)	799.87(39%)		

Minimum
Flow Table
Occupation

Discussion

• Traffic feature imitation problem

- The evaluation criterion and the selected features are unknowable to the attacker under normal circumstances. Even if he could obtain these information, the cost for this saturation attack is multiplied, for he has to send multiple packets for each flow and reduce the new flow frequency to get a higher evaluation score.

• Intention hiding problem

- Attacker may behave correctly firstly, get classified as benign user, and then change his behavior. \rightarrow EMWA resolves this problems perfectly. (The convergence speed depends on the α in EWMA. The bigger α is, the faster the evaluation score converges.)

Summary

Conclusion

- Problem Identification
 - The drawbacks of state-of-the-art approaches.
- FloodShield Framework: comprehensive, deployable and lightweight
 - Source Address Validation
 - Stateful Packet Supervision
- Prototype Implementation and Evaluation
 - Effective protection for the SDN infrastructure with less resource consumption and negligible overheads.

• Future work

- Source address validation at the gateway scenario

Thanks! Q&A

netarchlab.tsinghua.edu.cn zhangmh16@mails.tsinghua.edu.cn