Optická přenosová média používaná v LAN, optická vlákna a kabely, zdroje a detektory pro optická vlákna, princip přenosu signálu médiem

Optické vlákno

- Vhodné k přenosu na velké vzdálenosti
- Princip:
 - o světelný paprsek (optický signál) se láme a odráží na rozhraní dvou prostředí s různou optickou hustotou a indexem lomu, pod takovým úhlem, aby docházelo k totálnímu odrazu, kdy se všechno světlo odrazí a neopustí prostředí
- Numerická apertura:
 - o sinus maximálního úhlu, při kterém se budou paprsky uvnitř vlákna ještě šířit
- Základní části:
 - o Jádro (core)
 - určen pro přenos dat, průměr závisí na typu kabelu
 - o Obal jádra (cladding)
 - ochrana a zpevnění jádra
 - o Primární ochrana (buffer)
 - chrání jádro před vlivy vnějšího prostředí
 - většinou tvořena tvrzeným akrylátovým lakem
 - o Jádro může být chráněno ještě sekundární ochranou z plastické hmoty, na kterou mohou navazovat další vrstvy chránící proti mechanické námaze apod.
- Útlum vlákna
 - o při přenosu dochází k útlumu, udává se v dB/km
 - o Vlastní absorpce:
 - útlum v materiálu vlákna, závisí na vlnové délce světla
 - jsou definována tzv. okna vlnové délky s nejmenším útlumem, používají se zejména vlnové délky:
 - 850 nm multimode vlákna
 - 1310 nm single a multimode vlákna
 - 1550 nm singlemode vlákna
 - o Nevlastní absorpce:
 - útlum způsoben nečistotami ve vlákně
 - o Lineární rozptyl:
 - útlum způsoben nepřesným a nerovnoměrným oddělením jádra o obalu
 - o Nelineární rozptyl:
 - útlum při změně vlnové délky
 - o Ztráty při ohybu:
 - ohyby snižují kvalitu šíření světla
 - nejvýraznější u singlemode vláken
 - o Ztráty při spojování na konektorech:
 - značné ztráty při špatném napojení vlákna na konektor, konektory je nutné napojovat precizně
 - o Útlum kvalitnějších křemíkových vláken je v destinách dB/km, u plastových může být 50-100 dB/km

Typy vláken

- Mnohavidová (multimode) vlákna
 - o bez plynulé změny indexu lomu:
 - vlnová délka 850 nm pro gigabitové a 1310 nm pro 100Megabitové aktivní prvky
 - relativně levná technologie díky vláknům i generátorům a detektorům, jako generátor lze použít i LED
 - generátor vytváří impulsy tvořící více paprsků (vidů), které se odráží v různých úhlech, k detektoru dorazí jednotlivé vidy se zpožděním (vidová disperze), což vede ke zkreslení
 - zkreslení se zvyšuje se vzdáleností, používají se proto na vzdálenost do 2 km
 - o s plynulou změnou indexu lomu:
 - jsou tvořena více tenkými vrstvami s různými indexy lomu, čím je index dál, tím menší je index lomu a paprsek se vrací zpět ke středu
 - mají menší vidovou disperzi, paprsky dorazí k detektoru přibližně ve stejný čas
 - útlum je většinou 2-10 dB/km při vlnové délce 850 nm
 - o většinou se používají u LAN sítí, k tužšímu jádru je snadnější upevnit konektory
 - o Disperze:
 - časový rozptyl na přijímací straně
 - Vidová:
 - různé vidy se šíří různými drahami stejnou rychlostí, dorazí v různou dobu
 - snižuje rychlost přenosu dat
 - Ize omezit použitím singlemode nebo gradientního multimode vlákna
 - Chromatická (spektrální):
 - různý index lomu pro různé vlnové délky světla, ty se proto šíří různou rychlostí a dorazí v různou dobu
 - dochází ke snížení rychlosti přenosu
 - způsobena širší spektrální charakteristikou zdroje (generátoru)
 - Ize omezit použitím monochromatického zdroje (laser diodou)
- Jednovidová (singlemode) vlákna
 - o vlákna (více než 7x) slabší než lidský vlas
 - o vlnové délky 1310 nm a 1550 nm
 - o jeden paprsek šířící se středem vlákna, odráží se při ohybu
 - o dražší, je potřeba kvalitnějších zařízení
 - o generátory jsou většinou polovodičové lasery
 - o vlákna využívají skokový index lomu, útlum je v desetinách dB/km (větší délka = nižší útlum)
 - o použití pro přenos na velké vzdálenosti (cca 10 km) s vysokou přenosovou rychlostí
 - o WDM (wawelenght-division multiplexing):

- slouží pro obousměrný přenos, ostatní fungují jen jednosměrně
- přenosy jsou realizovány na různých vlnových délkách, lze použít jedno vlákno pro příjem i vysílání
- používá se u singlemode vláken
- příjem/vysílání vlnová délka 1550 nm, vysílání/příjem 1310 nm

Optické kabely

- vlákna se skládají do kabelů, jeden kabel může obsahovat až 144 vláken, u multimode se většinou používá menší počet
- mohou být upraveny pro různé účely, např.:
 - o natažení vzduchem
 - o vyztužené (ochrana před mechanickým poškozením)
 - hybrid s metalikou (např. pro napájení komponent zařízení) nebo kombinací multimode a singlemode vláken
- Pigtail
 - o část kabelu s konektorem na jednom konci
 - napojuje se přímo na konec jiného optického kabelu, je jednodušší napojit optický kabel, než nasadit konektor

Konektory

- pro LAN a WAN se nejčastěji používají LC a SC, případně ST konektory
- LC
 - o menší, častější v MiniGBIC modulech
 - o samostatně jako simplexní nebo v páru jako duplexní
- SC
- o větší
- o samostatně jako simplexní, nebo v páru jako duplexní
- Patch Cord
 - kabely o různých délkách provedení, simplex nebo duplex s připevněnými konektory pro obousměrnou komunikaci bez užití WDM
 - o na obou koncích mohou být stejné, nebo různé konektory
 - slouží pro propojení prvků na krátké vzdálenosti (podobně jako hotové UDP kabely)

Optické skříně, rozvaděče, kazety a vany

- slouží k zakončení optických tras
- vany a skříně slouží pro bezpečné uložení zbytku vlákna, obsahu pigtail pro spojení s Patch Cord