

Figure 1.6 Reduced clock slopes can cause a register circuit to fail.

Figure 1.7 Impact of clock misalignment.

For a current of 100 A, a wire resistance of 1.25 m Ω leads to a 5% drop in supply voltage (2.5 V supply)! On the other hand, current demand can change from zero to this peak value within 1nsec which leads to a current variation of 100GA/sec!

Fundamental Design Metrics

- Functionality
- Scalability
- Cost
 - λ NRE (fixed) costs design effort
 - λ RE (variable) costs cost of parts, assembly, test
- Reliability, robustness
 - λ Noise margins
 - λ Noise immunity
- Performance
 - λ Speed (delay)
 - λ Power consumption; energy
- Time-to-market

Cost of Integrated Circuits

- NRE (non-recurring engineering) costs
 - λ Fixed cost to produce the design
 - design effort
 - design verification effort
 - mask generation
 - λ Influenced by the design complexity and designer productivity
 - λ More pronounced for small volume products
- Recurring costs proportional to product volume
 - λ silicon processing (also proportional to chip area)
 - λ Parts
 - λ assembly (packaging)
 - λ test

Die Cost

From http://www.amd.com

Cost per Transistor

Recurring Costs

dies per wafer =
$$\frac{\pi \times (\text{wafer diameter/2})^2}{\text{die area}} - \frac{\pi \times \text{wafer diameter}}{\sqrt{2} \times \text{die area}}$$

die yield = (1 + (defects per unit area × die area)/ α)^{- α} die yield (%) = No. of good chips per wafer x 100 / Total number of chips per wafer

 α is a parameter that depends upon the complexity of the manufacturing process and is roughly proportional to the number of masks.

 $\alpha = 3$ (a good estimate for today's complex CMOS processes)

A value between 0.5 - 1 defects per cm² is typical these days.

$$die cost = f (die area)^4$$

•Smaller gate → higher integration density → smaller die size

•Smaller gate faster less energy less gate capacitance

Yield Example

Example

- wafer size of 12 inches, die size of 2.5 cm², 1 defects/cm², $\alpha = 3$ (measure of manufacturing process complexity)
- λ 252 dies/wafer (remember, wafers round & dies square)
- λ die yield of 16%
- λ 252 x 16% = only 40 dies/wafer die yield!

Examples of Cost Metrics (1994)

Chip	Metal layers	Line width	Wafer cost	Defects /cm ²	Area (mm²)	Dies/ wafer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
PowerPC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super SPARC	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

Reliability

Noise in Digital Integrated Circuits

- Noise unwanted variations of voltages and currents at the logic nodes
- from two wires placed side by side
 - λ capacitive coupling
 - voltage change on one wire can influence signal on the neighboring wire
 - cross talk
 - λ inductive coupling
 - current change on one wire can influence signal on the neighboring wire

- from noise on the power and ground supply rails
 - λ can influence signal levels in the gate

Static Gate Behavior

- Steady-state parameters of a gate static behavior tell how robust a circuit is with respect to both variations in the manufacturing process and to noise disturbances.
- Digital circuits perform operations on Boolean variables x ∈ {0,1}
- A logical variable is associated with a nominal voltage level for each logic state

$$1 \Leftrightarrow V_{OH}$$
 and $0 \Leftrightarrow V_{OL}$

$$V(x) \longrightarrow V(y)$$

$$V_{OH} = (\overline{V_{OL}})$$

$$V_{OL} = (\overline{V_{OH}})$$

Difference between V_{OH} and V_{OL} is the logic or signal swing V_{sw}

DC Operation Voltage Transfer Characteristic

VOH = f(VOL) VOL = f(VOH)VM = f(VM)

Mapping between analog and digital signals

Noise Margins

□ For robust circuits, want the "0" and "1" intervals to be as large as possible

Large noise margins are desirable, but not sufficient ...

Noise Immunity

- Noise margin expresses the ability of a circuit to overpower a noise source
 - λ noise sources: supply noise, cross talk, interference, offset
- Absolute noise margin values are deceptive
 - λ a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage)
- Noise immunity expresses the ability of the system to process and transmit information correctly in the presence of noise (reject a noise source)
- For good noise immunity, the signal swing (i.e., the difference between V_{OH} and V_{OL}) and the noise margin have to be large enough to overpower the impact of fixed sources of noise

Assuming
$$V_{NM} = V_{SW}/2$$

$$V_{NM} = \frac{V_{sw}}{2} \ge \sum_{i} f_{i} V_{Nfi} + \sum_{j} g_{j} V_{sw}$$

Given a set of noise sources, we can derive the minimum signal swing necessary for the system to be operational

$$V_{sw} \ge \frac{2\sum_{i} f_{i} V_{Nfi}}{1 - 2\sum_{j} g_{j}}$$

f = transfer function from noise to signal node V_{Nf} = amplitude of noise (fixed) source gV_{SW} = Noise proportional to the signal swing

Key Metrics & Reliability Properties

- □ Noise immunity is the more important metric the capability to suppress noise sources
- □ A gate must be undirectional: changes in an output level should not appear at any unchanging input of the same circuit
 - In real circuits full directivity is an illusion (e.g., due to capacitive coupling between inputs and outputs)
- output impedance of the driver and input impedance of the receiver
 - ideally, the output impedance of the driver should be zero
 - input impedance of the receiver should be infinity

The Regenerative Property

A gate with regenerative property ensure that a disturbed signal converges back to a nominal voltage level

Conditions for Regeneration

□ To be regenerative, the VTC must have a transient region with a gain greater than 1 (in absolute value) bordered by two valid zones where the gain is smaller than 1. Such a gate has two stable operating points.

Fan-In and Fan-Out

- Fan-out number of load gates connected to the output of the driving gate
 - λ gates with large fan-out are slower

- □ Fan-in the number of inputs to the gate
 - λ gates with large fan-in are bigger and slower

The Ideal Inverter

- The ideal gate should have
 - λ infinite gain in the transition region
 - λ a gate threshold located in the middle of the logic swing
 - λ high and low noise margins equal to half the swing
 - λ input and output impedances of infinity and zero, resp.

An Old-time Inverter

Delay Definitions

Delay Definitions

Ring Oscillator

$$T = 2 x t_p x N$$

$$2Nt_p>>t_f+t_r$$

EE141

Modeling Propagation Delay

Model circuit as first-order RC network

$$v_{out}(t) = (1 - e^{-t/\tau})V$$
 where $\tau = RC$

Time to reach 50% point is
$$t = ln(2) \tau = 0.69 \tau$$

Time to reach 90% point is
$$t = ln(9) \tau = 2.2 \tau$$

Matches the delay of an inverter gate

Power Dissipation

•Instantaneous power:

$$p(t) = v(t)i(t) = V_{supply}i(t)$$

•supply line sizing (determined by peak power)

Peak power:

$$P_{peak} = V_{supply} i_{peak}$$

•battery lifetime (determined by average power dissipation)

Average power:

$$P_{ave} = \frac{1}{T} \int_{t}^{t+T} p(t)dt = \frac{V_{supply}}{T} \int_{t}^{t+T} i_{supply}(t)dt$$

packaging and cooling requirements

Power and Energy Dissipation

- Propagation delay and the power consumption of a gate are related
- Propagation delay is (mostly) determined by the speed at which a given amount of energy can be stored on the gate capacitors
 - λ the faster the energy transfer (higher power dissipation) the faster the gate
- For a given technology and gate topology, the product of the power consumption and the propagation delay is a constant
 - $_{\lambda}$ Power-delay product (PDP) energy consumed by the gate per switching event : $P_{av}\times t_{v}$
- An ideal gate is one that is fast and consumes little energy, so the ultimate quality metric is
 - λ Energy-delay product (EDP) = PDP $\times t_p$

Power and Energy Dissipation

■ Two important components: static and dynamic

$$PDP = C_L V_{dd}^2 f_{0\rightarrow 1} t_p$$

$$E_{0 \rightarrow 1} = \int\limits_{0}^{T} P(t)dt = V_{dd} \int\limits_{0}^{i} \sup_{supply} (t)dt = V_{dd} \int\limits_{0}^{f} C_{L} dV_{out} = C_{L} \cdot V_{dd}^{2}$$

$$E_{cap} = \int_{0}^{T} P_{cap}(t)dt = \int_{0}^{T} V_{out} i_{cap}(t)dt = \int_{0}^{Vdd} C_{L} V_{out} dV_{out} = \frac{1}{2} C_{L} \cdot V_{dd}^{2}$$