```
GRAFOS
  posteriores(X):
           if X está pintado: return \emptyset
           pintar X
           P \leftarrow \emptyset
           for Y tal que X \to Y:
                    P \leftarrow P \cup \{Y\}
                   P \leftarrow P \cup posteriores(Y)
           return P
 hay ciclo luego de(X):
        if X está pintado de gris: return true
        if X está pintado de negro: return false
        Pintar \boldsymbol{X} de gris
        for Y tal que X \to Y:
               if\ hay\ ciclo\ luego\ de(Y),\ return\ true
        Pintar X de negro
        return false
  hay ciclo en(G(V, E)):
          for X \in V:
                  if X está pintado, continue
                  if hay ciclo luego de (X):
                         return true
          return false
  P. Dinámica
Conjunto de subprocesos:
           Idealmente polinomial
           Sol. Original a partir de subprocesos
           Orden natural de los subprocesos: peque ->
           grande
           Recurrencia fácil de calcular
Problema de programación de charlas con ganancias
donde queremos maximizar las ganancias totales:
   rec-opt(j):
if j = 0:
          return O
          if m[j] no está vacía:
              return m[j]
              m[j] = max{v_j + rec - opt(b(j)), rec - opt(j-1)}
              return m[j]
rec-opt(n) es O(n):
  it-opt:
       m[0] = 0
       for j = 1, 2, ..., n:
            m[j] = max{v_j + m[b(j)], m[j-1]}
```

Problema de dar vuelto con monedas de distintos valores donde gueremos minimizar la cantidad de monedas a usar:

```
Modo recursivo:
```

```
int z(S, n, T):
        si T[S] está en la tabla:
        return T[S] si S < 0:
               return infinity
        si S = 0:
                return 0
        minimo = infinity
        for i = 1...n:
                result = z(S-v_i, n, T) + 1
                si result < minimo:
                       minimo = result
        T[S] = minimo
```

Modo iterativo:

```
int z(S, n):

T = [-1 \text{ for } i = 0...S]
         T[0] = 0
         for i = 1...S:
                   si tengo una moneda de costo S:
                            T[i] = 1
                            Break
                   minimo = infinity
                   for j = 1...n:
                            si v_j \leq S:
                                      \mathrm{result} = \mathrm{T}[\mathrm{S}\text{-}v_j] + 1
                                      si result < minimo:
                                               minimo = result
                   T[S] = minimo
                             0 \, si \, S = 0
  z(S,n) = \langle
```

 $\min\left(z(S-v_i,n)+1\right)$

```
DES
```

```
Aristas de árbol: la arista (u, v) es una arista de árbol si v fue descubierto por primera vez al transitar (u, v)
Aristas hacia atrás: aristas (u, v) que conectan un nodo u a un
ancestro v en un árbol DFS:
 el grafo es acíclico si y solo si DFS no produce aristas hacia atrás
Aristas hacia adelante: aristas (u, v) que no son de árbol y conectan
un nodo u a un descendiente v en un árbol DFS; no aparecen en
grafos no direccionales
```

```
un i
par
inic
de d
dfs(V,E):
  time = 1 *-
  for each u in V:
      u.color = white
  for each u in V:
      if u.color == white:
         time = dfsVisit(u, time)
 dfsVisit(u, time):
   u.color = gray
    u.start = time -
    time += 1 --
    for each v in \alpha[u]:
       if v. color == white:
         time = dfsVisit(v, time)
    u.color = black
    u.end = time +
    time += 1
    return time
```

Ciclos: comp. fuertemente conectados (CFC) Acíclicos: Orden topológico (Se obtiene con:)

```
topSort(G)
```

Crear lista \boldsymbol{L} vacía

Ejecutar dfs(G) con tiempos

Insertar nodos en L en orden descendiente de tiempos end

return L

```
BFS
```

extract(H):

```
BFS(s): —s es el vértice de partida
   for each u in V-{s}:
       u.color \leftarrow white; u.\delta \leftarrow \infty; \pi[u] \leftarrow null
   s.color \leftarrow gray; s.\delta \leftarrow 0; \pi[s] \leftarrow \text{null}
   Q \leftarrow cola; Q.enqueue(s)
   while !Q.empty():
       u ← Q.dequeue()
       for each v in \alpha[u]:
           if v.color == white:
v.color \leftarrow gray; v.\delta \leftarrow u.\delta+1
                \pi[v] \leftarrow u; Q.enqueue(v)
       u.color ← black
Dijkstra(s): —s es el vértice de partida
                                            O((E+V)LogV)
   for each u in V:
```

```
s.color \leftarrow gray; d[s] \leftarrow 0; Q.enqueue(s) while !Q.empty(): \forall \leftarrow Q.dequeue()
        For each v in a[u]:

if v.color == white or v.color == gray:

if d[v] > d[u] + costo(u,v):

d[v] \leftarrow d[u] + costo(u,v); \pi[v] \leftarrow u

if v.color == white:

v.color \leftarrow gray; Q.enqueue(v)

u.color \leftarrow black
             for each v in \alpha[u]:
```

```
Heaps
      Up
sift down(H, i):
   if i tiene hijos:
        i' \leftarrow el hijo de i de mayor prioridad
        if H[i'] > H[i]:
            H[i'] \rightleftarrows H[i]
            sift\ down(H, i')
```

```
i \leftarrow la última celda no vacía de H
                                              insert(H,e):
best \leftarrow H[1]
                                                  i \leftarrow la primera celda desocupada de H
H[1] \leftarrow H[i]
                                                  H[i] \leftarrow e
H[i] \leftarrow \emptyset
sift down(H, 1)
                                                  sift up(H,i)
return best
```

 $-\!H$ es el arreglo en que está almacenado el heap

Algoritmo	Mejor caso	Caso promedio	Peor caso	Memoria adicional
SelectionSort	$O(n^2)$	$O(n^2)$	$O(n^2)$	0(1)
InsertionSort	0(n)	$O(n^2)$	$O(n^2)$	0(1)
MergeSort	$O(n \cdot \log n)$	$O(n \cdot \log n)$	$O(n \cdot \log n)$	0(n)
QuickSort	$O(n \cdot \log n)$	$O(n \cdot \log n)$	$O(n^2)$	0(1)

	union	find
arreglo simple	O(n)	O(1)
lista ligada lineal	O(1)	O(n)
árboles con raíz (representados mediante arreglos)	O(1)	O(n)
árboles con raíz, en que el árbol más pequeño apunta al más grande	O(1)	O(logn)

Codiciosos

```
greedy(a[], n):
     solution = empty
                                                       agrega x a l
     for i = 1, ..., n:
         x = select(a)
         if feasible(solution, x):
              solution = union(solution, x)
     return solution
 MST
Prim(s): —s es el vértice de partida
   Q \leftarrow cola\ de\ prioridades; \ T \leftarrow \emptyset
   for each u in V-{s}:
         d[u] \leftarrow \infty; \pi[u] \leftarrow null; Q.enqueue(s)
   d[s] \leftarrow 0; \pi[s] \leftarrow null; Q.enqueue(s)
   while !Q.empty():
       u \leftarrow Q.dequeue(); T \leftarrow T \cup (\pi[u],u)
        for each v in \alpha[u]:
             if v \in Q:
                 if d[v] > costo(u,v):
                       \texttt{d[v]} \leftarrow \textit{costo(u,v); } \pi[v] \leftarrow \texttt{u}
   return T
def mst_prim(grafo):
    vertice = grafo.vertice aleatorio()
visitados = set()
    visitados.agregar(vertice)
    q = heap_crear()
    arbol = grafo_crear(grafo.obtener_vertices())
for w in grafo.adyacentes(v):
         q.encolar((v, w) , grafo.peso_arista(v, w))
    while not q.esta vacia():
         (v, w) = q.desencolar()
         if w in visitados:
              continue
         arbol.agregar_arista(v, w, grafo.peso_arista(v, w))
         visitados.agregar(w)
         for u in grafo.adyacentes(w):
    if u not in visitados: q.encolar((w, u), grafo.peso_arista(w, u))
    return arbol
```

Complejidad prim: heap binario: O(E log(V))

Matriz abyacencia: O(V^2)

CFC

Las CFCs de un grafo direccional G son conjuntos máximos de nodos $C \subseteq V$ tales que para todo par de nodos $u \lor v$ en C, $u \lor v$ son mutuaente alcanzables

si el representante de dos nodos es el mismo, entonces los nodos pertenecen a

```
assign(u, rep):
   if u.rep = \emptyset:
       u.rep = rep
      for each v in \alpha'[u]:
           assign(v, rep)
```

kosaraju(G)

Crear lista L vacía

Eiecutar dfs(G) con tiempos

Insertar vértices en L en orden descendiente de tiempos f

```
for each u in L:
    assign(u, u)
```