Econometrics III Assignment Part 3, 4, 5 Tinbergen Insitute

Stanislav Avdeev 590050sa stnavdeev@gmail.com Bas Machielsen 590049bm 590049bm@eur.nl

March 25, 2021

Question 1

Part 1:

First, we plot the two time series:

Then, we show the acf and pacf-functions:

```
n1 <- df3$NETFLIX %>%
    acf(lag.max = 12, plot = F)

n2 <- df3$NETFLIX %>%
    pacf(lag.max = 12, plot = F)

a1 <- df3$APPLE %>%
    acf(lag.max = 12, plot = F)

a2 <- df3$APPLE %>%
    pacf(lag.max = 12, plot = F)

par(mfrow=c(2,2))

plot(n1, main = "Netflix");plot(n2, main = "Netflix")
    plot(a1, main = "Apple"); plot(a2, main = "Apple")
```


The ACF's tell us that the stock price is highly dependent on the past stock price, and this dependence decays only very slowly: even the 50 or 100-period lag still shows significant autocorrelation.

Part 2

We now implement a general to specific unit root test function:

```
unit_root_test <- function(column, order){</pre>
  # Make the dataset
  series <- ts(column)</pre>
  first_differences <- diff(series, differences = 1)</pre>
  laggedvar <- stats::lag(series, -1)</pre>
  #other lagged first differences, delta x_{t-1}, ..., delta x_{t-p+1}
  lagged_fds <- list()</pre>
  for(i in 1:(order-1)){
    lagged_fds[[i]] <- stats::lag(first_differences, k = -i)</pre>
  }
  df <- cbind(first_differences, laggedvar, purrr::reduce(lagged_fds, cbind)) %>%
    as_tibble()
  colnames(df) <- c("dxt", "xtm1", paste("dxtm", 1:(order-1), sep = ""))</pre>
  df <- df %>%
    na.omit()
  # run the stepwise regression - find the best model
  null = lm(data = df, formula = "dxt ~ xtm1")
  full = lm(data = df, formula = paste("dxt ~ xtm1 +",
                                         paste(paste("dxtm", 1:(order-1), sep = ""),
                                               collapse = ' + '),
                                         collapse = " ")
  )
  bestmodel <- step(full,</pre>
       scope = list(lower = null, upper = full),
       direction = "backward",
       criterion = "BIC",
       k = log(nrow(df)))
  # perform the unit root test (MacKinnon, 2010)
  b_critical <- -1.6156
  t_value <- bestmodel %>%
    summary() %>%
    .$coefficients %>%
    .[,3] %>%
    .["xtm1"]
  significant = abs(t_value) > abs(b_critical)
  data.frame(stock = deparse(substitute(column)),
             best_model = as.character(bestmodel$call[2]),
             t_value = t_value,
             sig = significant)
```

```
summary_tests <- list()

for(i in 1:length(colnames(df3[,-1]))){
    df <- unit_root_test(df3[, i+1], 12)
    summary_tests[[i]] <- df %>%
        mutate(name = colnames(df3[,-1][i]))
}

summary_tests <- summary_tests %>%
    purrr::reduce(rbind) %>%
    select(-stock)

rownames(summary_tests) <- NULL</pre>
```

knitr::kable(summary_tests)

best_model	t_value	sig	name
$\frac{1}{1} dxt \sim xtm1 + dxtm1 + dxtm3 + dxtm7$	-0.6984454	FALSE	APPLE
$dxt \sim xtm1 + dxtm1 + dxtm2$	-2.0475011	TRUE	EXXON_MOBIL
$dxt \sim xtm1$	-1.1619768	FALSE	FORD
$dxt \sim xtm1 + dxtm1 + dxtm3$	-1.5455395	FALSE	GEN_ELECTRIC
$dxt \sim xtm1$	-2.2598273	TRUE	INTEL
$dxt \sim xtm1$	-2.3999971	TRUE	MICROSOFT
$dxt \sim xtm1 + dxtm2$	-1.0642387	FALSE	NETFLIX
$dxt \sim xtm1 + dxtm2 + dxtm3$	-0.6373731	FALSE	NOKIA
$dxt \sim xtm1 + dxtm1$	-1.3045653	FALSE	SP500
$dxt \sim xtm1 + dxtm1 + dxtm6 + dxtm11$	-2.6283893	TRUE	YAHOO

The test seems to be significant for a number of stocks, indicating that for these stocks, the null hypothesis of a unit root is rejected in favor of stationarity. With a 10% α -level, we expect to see a type I-error (rejecting the null while it is true) about one tenth of the time for every test. This means that the probability of having at least 1 type-I error is very large: $(1-0.9^{10})=0.6513216$. It would be better to use some kind of Bonferroni correction to correct for these compounding type I-errors, but alternatively, we could also lower the α -level.

Part 3

The forecast $\mathbb{E}[P_{t+1}|D_t] = \mathbb{E}[P_{t+1}|P_t] = \mathbb{E}[P_t + \epsilon_t] = P_t$. Similarly, the forecast $\mathbb{E}[P_{t+2}] = \mathbb{E}[P_{t+1} + \epsilon_{t+1}] = \mathbb{E}[P_{t+1}] = P_t$. Generalizing this pattern, the forecast for $P_{t+h} = P_t$. The variance of the forecast is derived using the distribution:

$$\begin{split} P_{t+1} &= P_t + \epsilon_t \Rightarrow P_{t+1} | P_t \sim N(P_t, \sigma^2) \\ P_{t+2} &= P_{t+1} + \epsilon_{t+1} = \\ &= P_t + \epsilon_t + \epsilon_{t+1} \Rightarrow P_{t+2} | P_t \sim N(P_t, 2\sigma^2) \end{split}$$

Hallo