Harold's Physics of Forces "Cheat Sheet"

12 November 2015

Modified GUESS Method			
Diagram	$F_{a} = ma$ $F_{b} = F_{b}$		
G ivens	$m=100~kg~$ Mass $ heta=30^\circ~$ Degrees inclined from horizontal		
	v = 0	v = constant	a = constant
	$\mu_{s}=0.30$ Static coefficient of friction (not moving) (0,1]	$\mu_k = $ Kinetic coefficient of friction (moving) [0, 1)	$\mu_k = 0.20$
Unknowns	$F_{f_S} = \underline{\hspace{1cm}} N$		$a = _{m/_{S^2}}$
Observations	$\mu_k = \underline{\qquad} \qquad \mu_k = \underline{\qquad} \qquad \mu_{s^2}$ $g = 9.8 \frac{m}{s^2}$		
Equations	$\sum F_{y} = F_{N} - F_{g_{y}} = 0$	$\sum F_x = F_{g_x} - F_{f_k} = 0$	$\sum F_{x} = F_{g_x} - F_{f_k} = F_a$
	Since $v = 0$: $F_{g_x} < F_{f_S}$	Since $v = constant$: $F_{g_x} = F_{f_k}$	Since $a = constant$: $F_a = F_{g_x} - F_{f_k}$
Solve	$F_{g} = mg$ $F_{N} = F_{gy}$ $F_{N} = F_{g} \cos(\theta) = mg \cos(\theta)$ $F_{gx} < F_{fs max}$ $F_{gx} = F_{g} \sin(\theta) = mg \sin(\theta)$ $F_{fs} = \mu_{s}F_{N} = \mu_{s}mg \cos(\theta)$	$F_{g_x} = F_{f_k}$ $F_{g_x} = F_g \sin(\theta) = mg \sin(\theta)$ $F_{f_k} = \mu_k F_{g_y} = \mu_k mg \cos(\theta)$ $mg \sin(\theta) = \mu_k mg \cos(\theta)$ $\mu_k = \tan(\theta)$	$F_{a} = F_{g_{x}} - F_{f_{k}}$ $F_{a} = ma$ $F_{g_{x}} = F_{g} \sin(\theta) = mg \sin(\theta)$ $F_{f_{k}} = \mu_{k} F_{N} = \mu_{k} mg \cos(\theta)$ $F_{a} = F_{g_{x}} - F_{f_{k}}$ ma $= mg \sin(\theta) - \mu_{k} mg \cos(\theta)$ $a = g \left[\sin(\theta) - \mu_{k} \cos(\theta) \right]$
S ubstitute	$F_{g_x} = (100)(9.8) \sin(30^\circ)$ = 490 N $F_{f_s max}$ = (0.30)(100)(9.8) cos(30°) = 509 N	$\mu_k = \tan(30^\circ) = 0.577$	$a = (9.8)[\sin(30^\circ) - (0.20)\cos(30^\circ)] = 3.2 \frac{m}{s^2}$
Box & Check Your Answer	$F_{f_s} = 490 N$ $490 N < 509 N \checkmark$	$\mu_k = 0.577 \\ 0.577 < 1.0 \checkmark$	$a = 3.2 \frac{m}{s^2}$