

Chương 1: LINH KIỆN BÁN DẪN 2 LỚP VÀ ỨNG DỤNG (TT)

DIODE

Diode chỉnh lưu

Đặc tuyến Volt Ampere

Vùng đánh thủng

Vùng dẫn $V_{AK} > V\gamma$

Vùng phân cực ngược

Models of Diode

Ideal Model $V\gamma = 0$ (Diode lý tưởng)

Practical Model (Sut áp là hằng số)

Ideal model:

$$V_{\rm F} = \mathbf{0} \, \mathbf{V}$$

$$I_{\rm F} = \frac{V_{\rm BIAS}}{R_{\rm LIMIT}} = \frac{10 \, \rm V}{1.0 \, \rm k\Omega} = \mathbf{10} \, \rm mA$$

Practical model:

$$V_{\rm F} = 0.7 \text{ V}$$

$$I_{\rm F} = \frac{V_{\rm BIAS} - V_{\rm F}}{R_{\rm LIMIT}} = \frac{10 \text{ V} - 0.7 \text{ V}}{1.0 \text{ k}\Omega} = \frac{9.3 \text{ V}}{1.0 \text{ k}\Omega} = 9.3 \text{ mA}$$

$$V_{R_{\rm LIMIT}} = I_{\rm F}R_{\rm LIMIT} = (9.3 \text{ mA})(1.0 \text{ k}\Omega) = 9.3 \text{ V}$$

Reverse bias : $I_R = 0$

Datasheet Diode

Axial Lead Standard Recovery Rectifiers

This data sheet provides information on subminiature size, axial lead mounted rectifiers for general-purpose low-power applications.

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 220°C Max. for 10 Seconds, 1/16" from case
- Shipped in plastic bags, 1000 per bag.
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: 1N4001, 1N4002, 1N4003, 1N4004, 1N4005, 1N4006, 1N4007

1N4001 thru 1N4007

1N4004 and 1N4007 are Motorola Preferred Devices

LEAD MOUNTED
RECTIFIERS
50-1000 VOLTS
DIFFUSED JUNCTION

Datasheet của Diode

MAXIMUM RATINGS

Rating	Symbol	1N4001	1N4002	1N4003	1N4004	1N4005	1N4006	1N4007	Unit
*Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	Volts
*Non–Repetitive Peak Reverse Voltage (halfwave, single phase, 60 Hz)	VRSM	60	120	240	480	720	1000	1200	Volts
*RMS Reverse Voltage	^V R(RMS)	35	70	140	280	420	560	700	Volts
*Average Rectified Forward Current (single phase, resistive load, 60 Hz, see Figure 8, T _A = 75°C)	IO	1.0				Amp			
*Non–Repetitive Peak Surge Current (surge applied at rated load conditions, see Figure 2)	IFSM	30 (for 1 cycle)					Amp		
Operating and Storage Junction Temperature Range	TJ T _{Stg}	– 65 to +175					°C		

ELECTRICAL CHARACTERISTICS*

Rating	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage Drop (i _F = 1.0 Amp, T _J = 25°C) Figure 1	٧F	0.93	1.1	Volts
Maximum Full–Cycle Average Forward Voltage Drop (IO = 1.0 Amp, T _L = 75°C, 1 inch leads)	[∨] F(AV)	_	0.8	Volts
Maximum Reverse Current (rated dc voltage) (T _J = 25°C) (T _J = 100°C)	l _R	0.05 1.0	10 50	μА
Maximum Full–Cycle Average Reverse Current (IO = 1.0 Amp, TL = 75°C, 1 inch leads)	I _{R(AV)}	_	30	μА

^{*}Indicates JEDEC Registered Data

Preferred devices are Motorola recommended choices for future use and best overall value.

CÁC LOẠI DIODE

Diode taùch soùng : söû duïng tieáp xuùc ñieåm ñeå ñieän dung beù → laøm vieäc ôû taàn soá cao

Diode tunnel : noàng ñoä taïp chaát raát cao → öùng duïng trong caùc maïch sieâu cao taàn

Diode bieán dung : coù lôùp tieáp xuùc ñaëc bieät ñeå dieän dung khaù tuyeán tính vôùi ñieän aùp ngöôïc → taïo soùng ñieàu taàn deå ñieàu chænh taàn soá coäâng höôûng

Diode Schottky: tiếp xúc Schottky (bán dẫn, kim loại) → ứng dụng cho những mạch cần tốc độ chuyển mạch cao

<u>Diode Zener</u>: thường bằng vật liệu Si chịu nhiệt và tỏa nhiệt tốt họat động chủ yếu vùng zener töø (1,8 ÷ 200)V

Diode phát quang : thường dùng bán dẫn hợp chất có mức Wg thay đổi điều chỉnh được theo nồng độ tạp chất, sử dụng yếu tố phát sáng bước sóng λ nhìn thấy được khi phân cực thuận có sự tái hợp e^- và lỗ trống

Color of LED		Voltage Drop (Volt)		
2	Red	1.63 ~ 2.03		
	Yellow	2.10 ~ 2.18		
2	O range	2.03 ~ 2.10		
#	Blue	2.48 ~ 3.7		
2	Green	1.9 ~ 4.0		
	Violet	2.76 ~ 4.0		
	UY	3.1 ~ 4.4		
	White	3.2 to 3.6		

APPLICATONS

Chinh luu - Rectifier(AC →DC)

a. Chỉnh lưu bán kỳ - Half Wave Rectifier

Điện áp trung bình ngõ ra

$$V_{ODC} = \frac{1}{T} \int_{0}^{T} V_{O}(t) dt = \frac{1}{2\pi} \int_{0}^{\pi} V_{Om} \sin(\omega t) d(\omega t) = \frac{V_{Om}}{\pi} = \frac{V_{im} - V_{\gamma}}{\pi}$$

Dòng trung bình qua tải

$$I_{ODC} = \frac{V_{ODC}}{R_L}$$

Dòng trung bình qua diode

$$I_{DC_{DIODE}} = I_{ODC}$$

(PIV – Peak Inverse Voltage)

$$PIV = V_{im}$$

<u>Vd:</u>

Chỉnh lưu bán kì có tụ lọc - Haft wave rectifier with capacitor - filter

Chỉnh lư bán kỳ có tụ lọc - Haft wave rectifier with capacitor - filter

Điện áp trung bình trên tải

$$U_{ODC} = \frac{2.f.R_{L}.C}{1 + 2.f.R_{L}.C}.U_{Om}$$

Độ gọn sóng của điện áp trên tải

r% =
$$\frac{U_{r,rm}}{U_{ODC}} = \frac{100\%}{2\sqrt{3}.f.R_{L}.C}$$

Chỉnh lưu bán kỳ có tụ lọc

Tụ lọc có giá trị nhỏ → độ gọn sóng lớn

Tụ lọc có giá trị lớn → độ gọn sóng nhỏ

<u>Chỉnh lưu toàn kỳ dùng biến áp đôi - Full Wave Rectifier using center – tapped tranformer</u>

<u>Chỉnh lưu toàn kỳ dùng biến áp đôi - Full Wave Rectifier using center – tapped tranformer</u>

$$V_{ODC} = \frac{1}{T} \int_{0}^{T} V_{O}(t) dt = \frac{1}{2\pi} \int_{0}^{2\pi} V_{Om} \sin(\omega t) d(\omega t) = 2 \frac{V_{Om}}{\pi} = 2 \frac{V_{i} - V_{\gamma}}{\pi}$$

$$PIV = 2V_{im} - V_{\gamma} \qquad I_{ODC} = \frac{V_{ODC}}{R_L} \qquad I_{DC_{DIODE}} = \frac{I_{ODC}}{2}$$

c. Chỉnh lưu toàn kỳ dùng cầu diode - Full wave rectifier using diode bridge

c. Chỉnh lưu toàn kỳ dùng cầu diode - Full wave rectifier using diode bridge

$$V_{ODC} = 2\frac{V_{Om}}{\pi} = 2\frac{V_{im} - 2V_{\gamma}}{\pi}$$

$$I_{ODC} = \frac{V_{ODC}}{R_I}$$

$$I_{DC_{DIODE}} = \frac{I_{ODC}}{2}$$

$$PIV = V_{im} - V_{\gamma}$$

<u>Chính lưu toàn kỳ có tụ lọc - Full wave rectifier with capacitor -</u> filter

Điện áp trung bình trên tải

$$U_{ODC} = \frac{4.f.R_{L}.C}{1 + 4.f.R_{L}.C}.U_{Om}$$

Độ gọn sóng của điện áp ngõ ra

$$= \frac{U_{r,rms}}{U_{ODC}} = \frac{100\%}{4\sqrt{3}.f.R_L.C}$$

Mạch nhân áp

Mạch nhân áp bán kì

<u>Úng dụng</u>

Mach xén

Mach xén song song

Vi

Mach xén (Clippers)

Các bước làm bài

- > Tìm điều kiện của Vi để Diode dẫn (dùng định luật Kirchhoff)
- > Tìm Vo tương ứng khi Diode dẫn.
- Tìm điều kiện Vi để Diode ngưng dẫn (ngược lại điều kiện dẫn)
- Tìm Vo tương ứng khi Diode không dẫn.
- ➤ Vẽ Vo

Mach xén

Mạch xén song song

 $\underline{\mathbf{D}}$ iều kiện Vi để Diode dẫn $Vi \leq 4V$

Diode không dẫn $Vi \ge 4V$

Mạch xén nối tiếp

Diode dẫn khi: $V_i \ge (V_{\gamma} - 4)$

Khi đó
$$Vo=I.R_L=Vi+4-V_\gamma$$

Diode ko dẫn khi : $V_i \leq (4 + V_{\gamma})$ 4- V_{γ}

Khi đó $V_o = IR = 0$

<u>Úng dụng mạch xén</u>

<u>Mach kep – Mach dòi mức DC (Clampers)</u>

Diode zener Cấu tạo Thường cấu tạo bằng Si Phân cực thuận: Hoạt động giống diode thường (Vγ= 0.7V, Si)

Đặc tuyến

giới hạn

công suất

của zener

 V_7 : Điện áp ghim

'I_{AK} Diode zener Phân cực ngược: Уz **0**v .6 .7 Izmin Vùng Zener Izmax Đặc tuyến giới han công suất $\underline{\mathbf{V}_{\mathrm{KA}}} \geq \underline{\mathbf{V}_{\mathrm{Z}}} \quad \text{và } \underline{\mathbf{I}_{\mathrm{Zmin}}} \leq \underline{\mathbf{I}_{\mathrm{Z}}} \leq \underline{\mathbf{I}_{\mathrm{Zmax}}}$: V_z: Điện áp ghim zener dẫn ngược $\rightarrow V_{K\Delta} = V_{7}$, của zener $I_7 \neq 0$

 $\underline{\underline{\mathbf{V}_{KA}}} < \underline{\mathbf{V}_{Z}}$: zener không dẫn, = 0

- → Úng dụng phân cực ngược làm mạch ổn áp
- \rightarrow Thực tế $1.8V \le V_Z \le 200V$, công suất 0.25W : 50W

Diode zener - Úng dụng mạch ổn áp

Điện áp vào tăng $\frac{V_{in} > V_{z}}{V_{in}}$ Dòng qua zener tăng $\frac{I_{zmin} < I_{z} < I_{zmax}}{}$

Điện áp vào giảm $V_{in} > V_{z}$ Dòng qua zener giảm

 $I_{zmin} < I_z < I_{zmax}$

Diode zener - Úng dụng mạch ổn áp

