# This Page Is Inserted by IFW Operations and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

# BUNDESREPUBLIK DEUTSCHLAND

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)



EPOO 18989.

REC'D 2 4 NOV 2000

WIPO

PCT



Aktenzeichen: 199-44-098-0

Anmeldetag:

15. September 1999

Anmelder/Inhaber:

Continental Teves AG & Co oHG, Frankfurt/DE

Bezeichnung:

Verfahren zur Erfassung und Auswertung von fahr-

dynamischen Zuständen eines Kraftfahrzeugs

IPC:

G 01 L, G 01 P, B 60 T



Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 16. Oktober 2000

Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

A 9161 03/00 EDV-L . Hoiß

21

Continental Teves
P9714

-1-

Verfahren zur Erfassung und Auswertung von fahrdynamischen Zuständen eines Kraffahrzeugs

Die Erfindung betrifft ein Verfahren zur Erfassung und Auswertung des Fahrverhaltens eines Kraffahrzeugs nach dem Oberbegriff des Anspruchs 1.

Der Erfindung liegt die Aufgabe zugrunde, eine fehlerreduzierte Auswertung von Radkräften, insbesondere von mittels Reifensensoren erfassten Verformungen, wie Torsions-Deformationen des Reifens, zu ermöglichen.

Reifensensoren sind in der WO 96/10505 und DE 196 20 582 A1 beschrieben, auf die ausdrücklich hingewiesen wird. Die Größe des Luftspalts zwischen den in oder an den Reifen, insbesondere der Reifenseitenwand, angeordneten Encodern bzw. magnetischen Arealen zu dem Meßwertaufnehmern bilden bei den Reifensensoren(SWT(Seitenwandtorsionssensoren)-Sensoren) die Signale, die für die Berechnung der Querkräfte verwendet werden. Das so erzeugte Amplitudensignal bildet die Verformung der Reifenseitenwand ab, auf die die Querkräfte wirken, während eine Phasenverschiebung von zwei, auf einem äußeren und einem inneren Ring angeordneten Encodern, ein Signal für die Berechnung der auf den Reifen wikenden Längskraft definieren.

 Die SWT-Signalbearbeitung basiert unter anderem auf Amplituden- und Phaseninformation der Sensorsignale.
 . Continental Teves P9714

-2-

Die Amplitude (unabhängig von der Fehlerkorrektur) des Sensorsignals hängt nichtlinear (exponentiell) vom Sensorabstand zur Seitenwand ab.

3.

Die Montage der Sensoren ist nicht exakt duplizierbar - Es gibt Abweichungen vom nominellen/gewünschten Abstand.

4.

Die Ermittelung (Kalibrierung) der funktionalen Abbildung der Amplituden- und Phaseninformation zu der Kraftinformation erfolgt mittels Meßfelgen.

5.

Durch unterschiedliche Felgensysteme (z.B. Meßfelgen gegenüber Stahl- oder Alufelgen) ergeben sich unter anderem 5a)

unterschiedliche Abstände (Sensorabstand zur Seitenwand) und 5b)

unterschiedliche Kraft-Offsets (bedingt z.B. durch eine veränderte Einpreßtiefe -> andere Hebelwirkung)

Erfolgt die Kalibrierung direkt mit den Amplituden, so würde sie nur für den zur Zeitpunkt der Kalibrierung eingestellten Abstand (siehe 5a) – und damit für den bestimmten Betriebspunkt auf der nichtlinearen Kennlinie – und nur für den vorhandenen Kraft-Offset (siehe 5b) gelten.

### Verfahren:

Das Amplitudensignal wird auf einen Nennwert normiert. (Dieser Nennwert kann beispielsweise zu einem Zeitpunkt definiert werden, in dem das Fahrzeug ebenerdig fährt,

Continental Teves P9714

-3-

beschleunigungsfrei fährt/frei rollt, keinem Seitenwind oder Lastwechsel ausgesetzt ist, ....)

Dadurch werden statt Amplituden nur noch Abweichungen der Amplituden vom Nennwert (Amplitudenänderungen) betrachtet.

Des weiteren werden mittels der Umkehrfunktion der in 2. beschriebenen Abhängigkeit der Amplitude vom Luftspalt (Luftspalt = Sensorabstand zur Seitenwand) die Amplitudenänderungen auf Abstandsänderungen zurückgeführt. Damit ist die Signalbearbeitung unabhängig vom vorliegenden Sensorabstand und unabhängig von Kraft-Offsets.

#### Patentansprüche

1. Verfahren zur Erfassung und Auswertung von fahrdynamischen Zuständen eines Kraftfahrzeugs mittels Radkraftsensoren, vorzugsweise mit Reifensensoren, die als Maß für die Amplitude (Querkräfte die auf den Reifen wirken) den voreingestellten Luftspalt zwischen einem rotierenden Encoder und einem Meßwertaufnehmer heranziehen, gekennzeichnet, durch den Schritt

Ausbilden des von dem voreingestellten Luftspalt abhängigen Betriebspunkts der Ausgangsspannung unabhängig von der Voreinstellung.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei jedem Amplitudensignal bzw. bei jedem Polwechsel zum Zeitpunkt einer Fahrt des Fahrzeugs mit konstanter Geschwindigkeit bzw. frei rollend, ein Nennwert festgelegt wird, so daß die Amplitudenänderungen in Form von Abstandsänderungen erzeugt werden.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Amplitudensignal, vorzugsweise infolge einer nichtlinearen Abhängigkeit der Amplitude vom Luftspalt, durch eine Umkehrfunktion auf Abstandsänderungen zurückgeführt wird.

THIS PAGE BLANK (USPTO)