CS589: Machine Learning - Fall 2017 Quiz 5

Dec. 4, 2017

Wand.

Instructions: You have 30 minutes to complete this quiz. No calculator is permitted. You may answer any requiring a numerical response with an unevaluted expression, i.e write " $\frac{2\times10}{100}$ " rather than ".2". This expression can contain only specific numbers, e.g. you may not write " 2^2 " but not "2K" since that contains "K". Only the final form will be graded. If you perform intermediate calculations, draw a box around your final answer. Each minute late the quiz is turned in will result in a 20 point penalty.

1. Bayesian Probabilities (30 points)

Recall the setup of the "Monkeys" problem from class:

$$Pr(M = a) = .25$$
 $Pr(M = b) = .75$
 $Pr(B = g|M = a, W = c) = .8$
 $Pr(B = g|M = a, W = r) = .2$
 $Pr(B = g|M = b, W = c) = .2$
 $Pr(B = g|M = b, W = r) = .8$

Question: Suppose you observe two rainy days, and two green balls, i.e. W = rr and B = gg.

What is the probability that Alfred is the monkey, i.e. what is Pr(M = a|W = rr, B = gg)? $P(M=A|W=VV, B=gg) = \frac{P(M=A)P(W=VV, B=gg)M=a)P(W=VV, B=gg)}{P(W=VV, B=gg)} = \frac{P(W=VV, B=gg)}{P(W=VV, B=gg)}$

3. K-means (30 points)

Recall the K-means algorithm. After initialization, one iterates between the two steps of

- Fix $m_1, m_2, ..., m_K$ and set $C(i) = \operatorname{argmin}_{1 \le k \le K} \|x_i m_k\|_2^2$ for all i.
- Fix C and set $m_k = \frac{1}{N_k} \sum_{i:C(i)=k} x_i$ for all k,

where $N_k = \sum_{i=1}^N I[C(i) = k]$ is the number of points currently assigned to cluster K. Suppose that we have the following one-dimensional dataset and the current state for C:

i	1	2	3	4	5	6
x_i	0.5	2.0	3.0	5.0	5.5	7.0
C(i)	3	(1)	2	2	3	2

Question: If we were to run the step to compute the new values of m_k , what would they be?

$$m_1 = 2$$

$$m_2 = 5$$

$$m_3 = 3$$

3. A change to the Metropolis Algorithm (40 points)

Recall the metropolis algorithm. One takes as input an unnormalized distribution $\hat{p}(m)$ and a symmetric proposal distribution q and uses the following steps

- Initialize m^0
- For t = 0, 1, ..., T 1
 - $-m' \sim q(m'|m^t)$
 - If rand() $\leq \hat{p}(m')/\hat{p}(m^t)$
 - * $m^{t+1} = m'$
 - Else

$$* m^{t+1} = m^t$$

• Return $m^1, m^2, ..., m^T$.

We saw in class that the probability of transitioning from state m to state n was

$$Pr(m \to n) = q(n|m) \min(1, \hat{p}(n)/\hat{p}(m)).$$

We also saw that these transitions satisfy detailed balance with respect to p, i.e. that for each pair of states m and n,

$$p(m)Pr(m \to n) = p(n)Pr(n \to m).$$

New algoroithm: Now, consider an alternative version of the algorithm which is identical in all respects, except that the fourth line of the algorithm is changed:

- Initialize m^0
- For t = 0, 1, ..., T 1
 - $-m' \sim q(m'|m^t)$
 - If rand() $\leq \frac{\hat{p}(m')}{\hat{p}(m') + \hat{p}(m^t)}$
 - $* m^{t+1} = m'$
 - Else

$$* \ m^{t+1} = m^t$$

• Return $m^1, m^2, ..., m^T$.

Question: In the alternate algorithm, what is the probability of transitioning from state m to state n?

$$Pr(m \to n) = Q(n|m) \min \left(\left(\right), \frac{\widehat{p}(n)}{\widehat{p}(n) + \widehat{p}(m)} \right)$$

Question: Does this alternative algorithm also satisfy detailed balance with respect to p?

Question: Does this alternative algorithm also satisfy detailed balance with respect to
$$p$$
?

Answer clearly "yes" or "no" and give a short justification of your answer.

$$\frac{P(N)}{P(N-N)} = \frac{P(N)}{P(N-N)} = \frac{P(N)}{P(N)} = \frac{P(N)}{P(N)$$