# **Minimization and** Karnaugh Maps

# VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

**VOLKAN KURSUN** 

### **Minimization and Karnaugh Maps**

- □ We have used algebraic manipulation utilizing the axioms, theorems, and properties of Boolean algebra to find reduced-cost implementation of a function in either sum-of-products or product-ofsums form: can be quite tedious and success not guaranteed
- □ Karnaugh map: provides a systematic way of producing a minimum-cost logic expression

#### **Outline**

- Minimization
- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs)

**VOLKAN KURSUN** 

**Bilkent University** 

ockan kursun **Key to Karnaugh Maps** Bilken □ Karnaugh maps apply the combining property in a systematic way for logic minimization:

14a: 
$$x \cdot y + x \cdot y' = x$$

□ The combining property **replaces the** sum of two minterms that differ in the value of only one variable with a single product term that does not include the different variable: two minterms simplified to one product term

**VOLKAN KURSUN Key to Karnaugh Maps** 

□ Karnaugh maps apply the combining property in a systematic way for logic minimization:

14b: 
$$(x + y) \cdot (x + y') = x$$

□ The combining property **replaces the** product of two maxterms that differ in the value of only one variable with a single sum term that does not include the different variable: two maxterms simplified to one sum term

**VOLKAN KURSUN** 

### **Combining Property in Action: Example**

 $\square$  m<sub>0</sub> and m<sub>2</sub> differ only in the value of one variable x<sub>2</sub>: **combine m<sub>0</sub> OR m<sub>2</sub> into one** simplified product term without x<sub>2</sub>

$$f1 = x_1'x_2'x_3'+x_1'x_2x_3' = x_1'x_3'(x_2'+x_2) = x_1'x_3'$$

□ m<sub>4</sub> and m<sub>6</sub> differ only in the value of one variable x<sub>2</sub>: **combine m<sub>4</sub> OR m<sub>6</sub> into one** simplified product term without x<sub>2</sub>

$$f2 = x_1x_2'x_3'+x_1x_2x_3' = x_1x_3'(x_2'+x_2) = x_1x_3'$$

□ The two newly generated product terms can be further simplified by the combining property as

$$f3 = f1 + f2 = x_1'x_3' + x_1x_3' = (x_1' + x_1)x_3' = x_3'$$

FEE 102 Introduction to Digital Circuit Design

**Bilkent University** 

**VOLKAN KURSUN** 

### **Combining Property in Action: Example**

□ Consider the function with the following truth table:

$$f = x_1'x_2'x_3' + x_1'x_2x_3' + x_1x_2'x_3' + x_1x_2'x_3 +$$

$$\mathbf{x_1}\mathbf{x_2}\mathbf{x_3}' = \sum m(0,2,4,5,6)$$
The combining property

| 123                  |                   | 1 - 1 - (   | - , - , - | , , , , |
|----------------------|-------------------|-------------|-----------|---------|
| Row<br>number        | $x_1$             | $x_2$       | $x_3$     | f       |
| 0                    | 0                 | 0           | 0         | 1       |
| 1                    | 0                 | 0           | 1         | 0       |
| 2                    | 0                 | 1           | 0         | 1       |
| 3                    | 0                 | 1           | 1         | 0       |
| 4                    | 1                 | 0           | 0         | 1       |
| 5                    | 1                 | 0           | 1         | 1       |
| 6                    | 1                 | 1           | 0         | 1       |
| 7                    | 1                 | 1           | 1         | 0       |
| EEE 102 Introduction | l<br>to Digital C | ircuit Desi | an I      | I       |

replaces sum of two minterms that differ in the value of only one variable with a single product term that does not include the different variable: sum of two minterms simplified to one product term Example-1: m<sub>0</sub> OR m<sub>2</sub> Example-2: m<sub>4</sub> OR m<sub>6</sub>

Combining Property in Action: Example

□ The remaining minterm m<sub>5</sub> can be combined with m<sub>4</sub>:

$$f4 = x_1x_2'x_3' + x_1x_2'x_3 = x_1x_2'$$

Note: using theorem 7b ( $m_4 = m_4 + m_4$ ), minterm m<sub>4</sub> was used twice (replicated) and combined with minterms  $m_0$ ,  $m_2$ , and  $m_6$  to yield the simplifed term x<sub>3</sub>' and combined with m<sub>5</sub> to yield the simplified product term  $x_1x_2$ 

 $\square$  All minterms m(0,2,4,5,6) in f are covered with these two simplified terms, thereby providing the minimum cost-expression for f:

VOLKAN KURSUN Bilkent University

#### **Combining Property in Action: Example**

These optimization steps indicate that four minterms  $m_0$ ,  $m_2$ ,  $m_4$ , and  $m_6$  can be replaced with a single term  $\mathbf{x_3}$ '

| Row | $x_1$ | $x_2$ | $x_3$ | f |
|-----|-------|-------|-------|---|
| 0   | 0     | 0     | 0     | 1 |
| 2   | 0     | 1     | 0     | 1 |
| 4   | 1     | 0     | 0     | 1 |
| 6   | 1     | 1     | 0     | 1 |

m(0, 2, 4, 6) represent all possible minterms for which  $x_3 = 0$ . And f =1 for these minterms. This implies that f = 1 when  $x_3 = 0$ , regardless of the values of  $x_1$  and  $x_2$ 

 $\Box$  Similarly, two minterms m<sub>4</sub> and m<sub>5</sub> can be replaced with a single product term  $x_1x_2$ '

| Row | $x_1$ | $x_2$ | $x_3$ | f |
|-----|-------|-------|-------|---|
| 4   | 1     | 0     | 0     | 1 |
| 5   | 1     | 0     | 1     | 1 |

m(4, 5) represent all possible minterms for which  $x_1 = 1$  and  $x_2 = 0$ . And f = 1 for these minterms. This implies that f = 1 when  $x_1 = 1$  and  $x_2 = 0$ , regardless of the value of  $x_3$ 

EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

VOLKAN KURSUN

Bilkent University

### Karnaugh Map

- Karnaugh map provides <u>an easy</u>
   (visual) way to discover groups of minterms for which f = 1 and can be combined into simpler terms
- □Karnaugh map is an alternative to the truth table for representing a logic function: the map consists of cells (squares) that correspond to the minterms (rows) of the truth table

#### **Outline**

Minimization

- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs)

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

**Bilkent University** 

VOLKAN KURSUN

### Two-Variable Karnaugh Map

 $\Box$  Four cells: columns are labeled by the value of  $x_1$ . Rows are labeled by the value of  $x_2$ .

| <b>X</b> <sub>1</sub> |                |
|-----------------------|----------------|
| 0                     | $m_0$          |
| 1                     | m <sub>1</sub> |
| 0                     | $m_2$          |
| 1                     | $m_3$          |
|                       | 0              |

(a) Truth table
EEE 102 Introduction to Digital Circuit Design

(b) Karnaugh map

## Two-Variable Karnaugh Map

□ Karnaugh map allows easy recognition of minterms that can be combined using property 14a: minterms in any two cells that are adjacent, either in the same row or the same column, can be combined if the function is true for those minterms

| <b>X</b> <sub>1</sub> |                |
|-----------------------|----------------|
| O                     | $m_0$          |
| 1                     | $\mathbf{m}_1$ |
| O                     | $m_2$          |
| 1                     | $m_3$          |
|                       | 0<br>1         |

0  $m_1$  $m_0$  $m_2$  $m_3$ 

(a) Truth table EEE 102 Introduction to Digital Circuit Design (b) Karnaugh map

**Bilkent University** 

#### **VOLKAN KURSUN**

### Two-Variable Map Example

- □ Blue circle and black circle cover all the minterms for which the function is 1 (f = 1)
- □ Rule to find the minimum-cost **implementation**: find the **smallest number of** product terms with the smallest number of variables that produce f = 1



**VOLKAN KURSUN Bilkent University** 

### Two-Variable Map Example

- $\square$  Blue circle at the bottom: if  $\bar{x}_2 = 1$ , f = 1regardless of x<sub>1</sub>. The product term that represents these two cells is therefore x<sub>2</sub>
- □ Black circle: if  $x_1 = 0$ , f = 1 regardless of  $x_2$ . The product term that represents these two cells is therefore x<sub>1</sub>'



**VOLKAN KURSUN** 

#### **Outline**

**Bilkent University** 

- Minimization
- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs)

**EEE 102 Introduction to Digital Circuit Design** 

VOLKAN KURSUN Bilkent University

### Three-Variable Karnaugh Map

- □ To ensure that minterms in adjacent cells can be combined into a single product term, the <u>adjacent</u> cells must differ in the value of only one variable
- □ Gray code: a sequence of codes where consecutive codes differ in one variable only

| $X_3$          | $X_2$     | <b>X</b> <sub>1</sub> |                      |
|----------------|-----------|-----------------------|----------------------|
| 0              | 0         | 0                     | $m_{0}$              |
| 0              | 0         | 1                     | $m_{1}$              |
| 0              | 1         | 0                     | $m_2$                |
| 0              | 1         | 1                     | $m_3$                |
| 1              | 0         | 0                     | $m_{4}$              |
| 1              | 0         | 1                     | $m_{5}$              |
| 1              | 1         | 0                     | $m_{6}$              |
| 1              | 1         | 1                     | $m_{7}$              |
| <b>EEE 102</b> | 2 Introdu | ction to D            | igital Circuit Desig |

| $\times$ X <sub>2</sub> X | 1              |                |                |       |
|---------------------------|----------------|----------------|----------------|-------|
| $X_3$                     | 00             | 01             | 11             | 10    |
| 0                         | $m_0$          | m <sub>1</sub> | $m_3$          | $m_2$ |
| 1                         | m <sub>4</sub> | m <sub>5</sub> | m <sub>7</sub> | $m_6$ |
|                           |                |                |                |       |

(b) Karnaugh map

**VOLKAN KURSUN** 

VOLKAN KURSUN

Bilkent University

### Three-Variable Map Example

□ For a minimum-cost implementation, cover the four 1s in the map as efficiently as possible



VOLKAN KURSUN Bilkent University

### **Three-Variable Karnaugh Map**

□ The first and fourth columns also differ only in one variable x2: these two columns are also considered to be adjacent (<u>assume the left</u> <u>and right edges of the map touch</u>)

|    | $\mathbf{x}_3$ | $\mathbf{x}_2$ | <b>X</b> <sub>1</sub> |          | Fir      | st colum | n        | Fourth | column    |
|----|----------------|----------------|-----------------------|----------|----------|----------|----------|--------|-----------|
|    | O              | 0              | 0                     | $m_{0}$  | $X_2X_1$ |          |          |        |           |
|    | O              | 0              | 1                     | $m_{-1}$ | $X_3$    | 00       | 01       | 11     | 10        |
|    | O              | 1              | O                     | $m_{2}$  |          |          |          |        |           |
|    | O              | 1              | 1                     | $m_3$    | 0        | $m_0$    | m₁       | $m_3$  | $m_2$     |
|    | 1              | O              | O                     | $m_{4}$  |          | U        | I I      | 0      |           |
|    | 1              | 0              | 1                     | m 5      | 1        | m₄       | $m_5$    | $m_7$  | $m_6$     |
|    | 1              | 1              | O                     | $m_{6}$  |          |          |          | 1      | U         |
|    | 1              | 1              | 1                     | m 7      | (h)      | Karnau   | ah man   |        |           |
| El | EE 102 Intro   | duction to [   | Digital Circuit D     | Design   | (0)      | ) Karnau | girillap | VOLK   | AN KURSUN |

VOLKAN KURSUN

Bilkent Universit

### **Three-Variable Map Example-2**

- □ Product terms can be formed by either a single cell, or combining two adjacent cells, or combining four adjacent cells, or combining all cells (f is permanently 1, f = 1)
- □ Red circle: if  $x_3 = 0$ , then f = 1 regardless of  $x_2$  and  $x_4$  (for all possible values of  $x_2$  and  $x_4$ , f = 1 if  $x_3 = 0$ ). Therefore, the product term  $x_3$  represents these four cells



### Three-Variable Map Example-2

- □ Product terms can be formed by either a single cell, or combining two adjacent cells, or combining four adjacent cells, or combining all cells (f is permanently 1, f = 1)
- □ Black circle: if  $x_2 = 1$  AND  $x_4 = 0$ , then f = 1 regardless of  $x_3$  (for all possible values of  $x_3$ , f = 1 if  $x_2 = 1$  AND  $x_4$ = 0). The product term  $x_2x_1$  represents these two cells



**VOLKAN KURSUN** 

**Bilkent University** 

### Four-Variable Karnaugh Map

☐ The first and fourth columns differ only in one variable x2: these two columns are also considered to be adjacent (assume the left and right edges of the map touch): (m0 and m2), (m4 and m6), (m12 and m14), and (m8 and m10) are First column Fourth column



 $X_1$ 

**VOLKAN KURSUN** 

#### **Outline**

- Minimization
- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs)

**Bilkent University** 

**Bilkent University** 

#### VOLKAN KURSUN Four-Variable Karnaugh Map

☐ The first and fourth rows differ only in one variable x4: these two rows are also considered to be adjacent (assume the top and bottom edges of the map touch): (m0 and m8), (m1 and m9), (m3 and m11), and (m2 and m10) are adjacent



EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

EEE 102 Introduction to Digital Circuit Design



#### VOL<u>kan</u> <u>K</u>ursun Five-Variable Karnaugh Map

- □ Two four-variable maps can be used to construct a fivevariable Karnaugh map: assume one map is directly above the other and the two maps are distinguished by the fifth variable x<sub>5</sub>  $(x_5 = 0 \text{ in one map and } x_5 = 1 \text{ in the other overlapping map})$
- ☐ In the following example, two groups of four 1s (two red circles) appear in the same place (they **overlap**) in both four-variable maps: the minimized logic function does **NOT** depend on the value of  $x_5$



**VOLKAN KURSUN Outline** 

- Minimization
- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs)

**Bilkent University** 

#### VOLKAN KURSUN Bilkent University Five-Variable Karnaugh Map

- ☐ The two groups of two 1s (two black circles) also overlap in the two four-variable maps: the minimized logic function does NOT depend on the value of  $x_5$
- ☐ The group of two 1s (purple circle) appears only in the **second map where x\_5 = 1**:  $x_5$  can **NOT** be eliminated, forming a simplified term of  $x_5\bar{x_4}'x_2x_4'$



VOLKAN KURSUN

**Outline** 

- Minimization
- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs)

**Bilkent University** 

#### VOLKAN KURSUN **Strategy for Minimization**

- □ For large functions with many variables, intuitive method and Karnaugh maps are not suitable: a methodology for logic minimization is used by the CAD tools
- □ In the following examples, we will continue to use the Karnaugh maps to illustrate these strategies used by the CAD tools
- □ Terminology for describing the minimization process:
- □ Literal: A variable in a product term is called a literal. A literal can be in either uncomplemented or complemented form.
- $\square$  Examples: the product term  $x_1'x_2'x_3$  has three literals.

The product term abc'de'f'g has 7 literals.

**EEE 102 Introduction to Digital Circuit Design** 

**VOLKAN KURSUN** 

## Intuition for Minimization

- □ Used intuition to group 1s in a Karnaugh map to obtain a minimum-cost implementation of a logic function
- ☐ The larger the group of 1s, the fewer the number of variables in the product term
- □ Intuitive strategy: minimize the number and maximize the sizes of groups of 1s that cover all cases where the function has a value of 1

Goal-1: Minimize the number of groups to minimize the number of terms in the representation of the function

Goal-2: Maximize the sizes of groups to minimize the number of variables in each term in the representation of the function

□ Intuition works well for simple functions with small maps **EEE 102 Introduction to Digital Circuit Design** 

**VOLKAN KURSUN** 

**Bilkent University** 

## Terminology for Minimization

- □ Implicant: Any product term or single variable for which the function is 1 is called an implicant of the function
- □ The minterms for which the function is equal to 1 are implicants
- □ Any other product terms or single variables for which the function is 1 are also called implicants of the function
- □ Example: Identify the implicants for the following three-variable function

$$f(x_3, x_2, x_1) = \Sigma m(0, 1, 4, 5, 7)$$

EEE 102 Introduction to Digital Circuit Design

#### VOLKAN KURSUN **Finding the Implicants Example**

□ Example: The function has 11 implicants.



Three-variable function  $f(x_3, x_2, x_1) = \Sigma m(0, 1, 4, 5, 7)$ 

 $X_2$   $X_3X_1$ 

- □ 5 of these 11 implicants are the minterms for which the function is 1:  $x_3'x_2'x_1'$ ,  $x_3'x_2'x_1$ ,  $x_3x_2'x_1'$ ,  $x_3x_2'x_1$ ,  $x_3x_2x_1$ .
- □ Remaining 5 of these 11 implicants correspond to all possible pairs of minterms that can be combined: x<sub>3</sub>'x<sub>2</sub>' (combine m<sub>0</sub> and  $m_1$ ),  $x_2'x_1'$  (combine  $m_0$  and  $m_4$ ),  $x_2'x_1$  (combine  $m_1$  and  $m_5$ ),  $x_3x_2$ ' (combine  $m_4$  and  $m_5$ ),  $x_3x_4$  (combine  $m_5$  and  $m_7$ )
- $\ \ \Box$  The 11<sup>th</sup> implicant covers the group of 4 minterms:  $x_2$ ' EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

# **Terminology for Minimization**

- □ **Cover**: A collection of implicants that account for all valuations for which a given function is equal to 1 is called a cover of that function
- □ A cover is one particular implementation of a function: a number of different covers may exist for a function

Cover examples:

- $\square$  A set of all minterms for which f = 1 is a cover (canonical sum of products)
- □ A set of all prime implicants is a cover

### **Terminology for Minimization**

- □ Prime Implicant: An implicant that cannot be combined into another implicant with fewer literals is called a prime implicant
- □ The literals in a prime implicant cannot be removed (or further simplified) as they represent the largest groups of 1s that can be circled in the Karnaugh map



Three-variable function  $f(x_3, x_2, x_1) = \Sigma m(0, 1, 4, 5, 7)$  $x_2$ ' and  $x_3x_1$  are the two prime implicants in this example: it is not possible to remove any literal in these two implicants

**VOLKAN KURSUN** 

Cover Examples

The following three are all different covers of the same function Three-variable function



 $f(x_3, x_2, x_1) = \Sigma m(0, 1, 4, 5, 7)$ While all these covers are correct representations of this function, the cover consisting of the prime implicants leads to the lowestcost implementation  $f = x_2' + x_3x_4$ 

1) A cover consisting of the minterms for which f = 1:

$$f = x_3'x_2'x_1' + x_3'x_2'x_1 + x_3x_2'x_1' + x_3x_2'x_1 + x_3x_2x_1$$

- 2) Another cover:  $f = x_3'x_2' + x_3x_2' + x_3x_1$
- 3) Another cover with the prime implicants:  $f = x_2' + x_3x_4$ **EEE 102 Introduction to Digital Circuit Design**

**Bilkent University** 

### **Terminology for Minimization**

- □ Lowest cost implementation is achieved with a cover consisting of prime implicants
- □ Some prime implicants may be included in the minimum cost implementation while others may not (there are options)
- □ How to determine the optimum subset of prime implicants that cover a function with the minimum cost?
- □ **Essential Prime Implicant**: If a prime implicant includes a minterm (for which f = 1) that is **NOT** included in any other prime implicant, it is called an essential prime implicant

**EEE 102 Introduction to Digital Circuit Design** 

VOLKAN KURSUN

**VOLKAN KURSUN** 

**Bilkent University** 

**VOLKAN KURSUN** 

### **Essential Prime Implicants Example-2**

- □ Few examples with choices on which prime implicants to include in the final cover
- □ Consider the following 4-variable function



prime implicants (highlighted ue circles) must be included in the

EEE 102 Introduction to Digital Circuit Design

There are 5 prime implicants: x<sub>4</sub>x<sub>2</sub>', x<sub>4</sub>x<sub>1</sub>',  $X_{4}X_{3}', X_{4}'X_{3}X_{1}, X_{3}X_{2}'X_{1}$ 3 of these 5 prime implicants are essential (highlighted with blue circles): x<sub>4</sub>x<sub>4</sub>' (because of  $m_{14}$ ),  $x_4x_3$  (because of  $m_{11}$ ), and  $x_4'x_2x_4$ (because of m<sub>7</sub>)

### **Essential Prime Implicants**

- □ Essential prime implicants must be included in the minimum cost cover
- □ Example: In the following example, both prime implicants are essential.  $x_3x_4$  is the only prime implicant that covers the minterm  $m_7$  and  $x_2$ ' is the only prime implicant that covers the minterms m<sub>0</sub>, m<sub>1</sub>, and m<sub>₄</sub>.



Three-variable function  $f(x_3, x_2, x_1) = \Sigma m(0, 1, 4, 5, 7)$ 

The minimum cost cover consists of the essential prime implicants:  $f = x_2' + x_3x_4$ 

**VOLKAN KURSUN** 

**Essential Prime Implicants Example-2** 

- □ In this example, the essential prime implicants cover all minterms where the f = 1, except  $m_{13}$ .
- $\square$  m<sub>13</sub> is covered by two prime implicants:  $x_4x_2$  and  $x_3x_2$ ' $x_1$ .  $x_4x_2$ ' is preferred since it has fewer literals.



The minimum cost x<sub>3</sub>x<sub>2</sub>'x<sub>1</sub> implementation is:  $x_4'x_3x_1$  f =  $x_4x_2' + x_4x_1' + x_4x_3'$ 

 $+ x_4' x_3 x_1$ 

EEE 102 Introduction to Digital Circuit Design **VOLKAN KURSUN** 

#### **Process of Finding a Minimum Cost Circuit**

- 1) Step-1: Identify all the prime implicants for the given function
- 2) Step-2: Identify the set of essential prime implicants
- 3) Step-3: Check if the set of essential prime implicants covers all the minterms for which f = 1. then the minimum cost implementation is composed of only the essential prime implicants. Alternatively, **if some minterms** for which f = 1are not covered by the essential prime implicants, determine the nonessential prime implicants that should be included to form a complete minimum-cost cover
- The choice of the nonessential prime implicants in step-3 may not be obvious: for large functions there may be many possibilities with similar number of literals and heuristics (arbitrary selection of a smaller subset of options and trial and error) may be used by the CAD tools EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN

**Bilkent University** 

### **Minimum Cost Implementation Example-4**

□ A possible implementation (includes the **prime implicants in** black circles) is:

$$f = x_4'x_3'x_2' + x_4'x_3x_1 + x_4x_3x_2 + x_4x_3'x_1'$$

□ Another implementation which includes the **prime implicants** in blue circles is:

$$f = x_3'x_2'x_1' + x_4'x_2'x_1 + x_3x_2x_1 + x_4x_2x_1'$$



EEE 102 Introduction to Digital Circuit Design

For some functions, there may be no essential prime

There are 8 prime implicants none of which are essential:

 $f = \Sigma m(0, 1, 5, 7, 8, 10, 14, 15)$ 

**EEE 102 Introduction to Digital Circuit Design** 

**VOLKAN KURSUN Bilkent University** 

### **Minimum Cost Implementation Example-3**

□ A possible implementation is:

$$f = x_4'x_3' + x_4'x_2x_1 + x_4x_3x_2 + x_3'x_2x_1'$$

□ A second and **better** implementation is:



There are 6 prime implicants: x<sub>4</sub>'x<sub>3</sub>',  $X_4'X_2X_1, X_3'X_2X_1', X_4X_3X_2,$  $X_{4}X_{2}X_{1}', X_{3}X_{2}X_{1}$ Only 1 of these 6 prime implicants is essential: x<sub>4</sub>'x<sub>3</sub>' (because of mo and

 $f = \Sigma m(0, 1, 2, 3, 7, 10, 14, 15)$ 

**Bilkent University** 

**VOLKAN KURSUN** 

#### **Outline**

Minimization

**EEE 102 Introduction to Digital Circuit Design** 

- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs

□ To find the minimum-cost product-of-sums implementations, combine the maxterms for which f **= 0** into groups that are as large as possible: the larger the group is (the more maxterms the group covers) the smaller the number of literals in the sum term and the cost of implementation





 $f(x_3, x_2, x_4) = \Pi M(2, 3, 6)$ There are 3 maxterms that must be covered: M<sub>2</sub>, M<sub>3</sub>,

Two sum terms shown in the figure cover these three maxterms

$$x_2' + x_1$$
  $f = (x_3 + x_2') \cdot (x_2' + x_1)_{VOLKAN KURSUN}$ 

# Winimization of POS: Example-2

 $\square$  Example: **f** =  $\Pi$  M(0, 1, 2, 3, 4, 6, 15)



7 maxterms for which f  $x_4 + x_3 = 0$  can be covered as  $x_4 + x_1$  follows: **f** =  $(x_4 + x_3)$ .  $(x_4 + x_1) \cdot (x_4' + x_3' + x_2')$ 

Cost (POS) = 1\*4 + 2\*2 + 4 + 3 = 15□ Compare the minimum-cost POS to the minimum-cost SOP:

 $X_4X_3$ 

X<sub>4</sub>X<sub>2</sub>' X<sub>4</sub>X<sub>1</sub>' EEE 102 Introduction to Digital Circuit Design

×<sub>4</sub>'×<sub>3</sub>×<sub>1</sub> implementation is:

$$f = x_4.x_2' + x_4.x_1' + x_4.x_3' + x_4'.x_3.x_1$$

Cost (SOP) = 1\*4 + 3\*2 + 3 + 4 = 17

**VOLKAN KURSUN** 

#### **Minimized POS and SOP Comparison** ■ Example:



 $f(x_3, x_2, x_1) = \Pi M(2, 3, 6)$ There are 3 maxterms that must be covered: M<sub>2</sub>, M<sub>3</sub>, and M<sub>6</sub> Two sum terms shown in the figure cover these three maxterms

figure cover these three maxterms
$$f = (x_3 + x_2') \cdot (x_2' + x_1)$$

$$x_2' + x_1 \quad \text{Cost (POS)} = 2 + 2*2 + 1 = 7$$

□ Compare the minimum-cost POS and the minimumcost SOP implementations



 $f(x_3, x_2, x_1) = \Sigma m(0, 1, 4, 5, 7)$ The minimum cost cover consists of the essential prime

implicants: 
$$f = x_2' + x_3.x_1$$
  
Cost (SOP) = 1 + 2 + 2 = 5

VOLKAN KURSUN

#### **Bilkent University Minimization of POS Forms**

□ **Alternative way** to find the minimum-cost POS implementation: first find a minimum-cost SOP implementation for f' (complement of f) and then use DeMorgan's theorem to find the minimum-cost POS implementation





f Karnaugh map

The simplest SOP  $x_3 + x_2$  implementation of f' is:

 $f' = \Sigma m(2, 3, 6)$ 

$$f' = (x_3'.x_2) + (x_2.x_1')$$

Using DeMorgan's theorem:



Same as the minimum

00 01 11

POS implementation found before f' Karnaugh map
EEE 102 Introduction to Digital Circuit Design

□ Alternative way Example-2:



f' Karnaugh map

 $f' = \Sigma m (0, 1, 2, 3, 4, 6, 15)$ 

The simplest SOP implementation of f' is:

 $f' = x_4'.x_3' + x_4'.x_1' +$ 

 $X_4.X_3.X_2.X_1$ 

Using DeMorgan's theorem:

f = (f')'

 $= (x_4 + x_3) \cdot (x_4 + x_1) \cdot (x_1 + x_2) \cdot (x_4 + x_1) \cdot (x_1 + x_2) \cdot (x_2 + x_3) \cdot (x_4 + x_4)$ 

 $(x_4' + x_3' + x_2' + x_1')$ 

Same as the minimum POS implementation found before

EEE 102 Introduction to Digital Circuit Design

# Incompletely Specified Functions In some digital systems, certain input combinations

- ☐ In some digital systems, certain input combinations can never occur: these input combinations that can never occur are called don't care conditions
- A circuit that has don't care conditions is incompletely specified
- Don't cares can be used to advantage in design: since these valuations will never occur, the designer may assume the function is either 0 or 1 for these input combinations, whichever is more useful to find a minimum-cost implementation (to form the largest groups with the maximum number of 1s or 0s)
- □ Maximize group sizes by appropriate choice of don't cares

  EEE 102 Introduction to Digital Circuit Design

  VOLKAN KURSU

#### Outline

- Minimization
- Two-Variable Karnaugh Map
- Three-Variable Karnaugh Map
- Four-Variable Karnaugh Map
- Five-Variable Karnaugh Map
- Simplification Methodology
- POS Minimization
- Don't Cares (Incomplete Specs)

EEE 102 Introduction to Digital Circuit Design

VOLKAN KURSUN

VOLKAN KURSUN

### **Don't Care Example: SOP Implementation**

□ Consider the following logic function where minterms m<sub>3</sub>, m<sub>7</sub>, m<sub>11</sub>, and m<sub>15</sub> are don't cares:

$$f(x_4, x_3, x_2, x_1) = \Sigma m(1,5,8,9,10) + D(3,7,11,15)$$



(a) SOP implementation

To form the largest possible groups of 1s for the lowest-cost prime implicants, assume that the don't cares D<sub>3</sub>, D<sub>7</sub>, and D<sub>11</sub> are 1s while D<sub>15</sub> is 0.

With these assumptions, there are only two prime implicants that provide a complete cover of f. The simplest SOP implementation of f is:

 $f = x_4'.x_1 + x_4.x_3'$ 

**EEE 102 Introduction to Digital Circuit Design** 

**VOLKAN KURSUN** 

### **Don't Care Example: POS Implementation**

□ Consider the following logic function where minterms  $m_3$ ,  $m_7$ ,  $m_{11}$ , and  $m_{15}$  are don't cares:

$$f(x_4, x_3, x_2, x_1) = \sum m(1,5,8,9,10) + D(3,7,11,15)$$



To form the largest possible  $X_4+X_1$  groups of 0s for the lowestcost implementation, assume that the don't cares  $D_3$ ,  $D_7$ , and  $D_{11}$  are 1s while  $D_{15}$  is 0. -X<sub>4</sub>'+X<sub>3</sub>' With these assumptions, the simplest POS implementation is:

 $f = (x_4 + x_1) \cdot (x_4' + x_3')$ 

(b) POS implementation EEE 102 Introduction to Digital Circuit Design

# Don't Care Example-2 Design a logic circuit that displays the decimal value

of a four-bit number on a seven-segment display



(a) Logic circuit and 7-segment display



EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

VOLKAN KURSUN

**Bilkent University** 

#### **VOLKAN KURSUN** Bilkent University Don't Care Example-2 Since the circuit can display only decimal digits (0 to

9),  $x_3x_2x_1x_0 = 0b1010$  to 0b1111 are unused and can be treated as don't care conditions in the design





 $a = x_3 + x_1 + x_2 \cdot x_0 + x_2' \cdot x_0$ EEE 102 Introduction to Digital Circuit Design



VOLKAN KURSUN

EEE 102 Introduction to Digital Circuit Design

**VOLKAN KURSUN** 

#### **VOLKAN KURSUN Bilkent University** Don't Care Example-2 Since the circuit can display only decimal digits (0 to

9),  $x_3x_2x_1x_0 = 0b1010$  to 0b1111 are unused and can be treated as don't care conditions in the design



(a) Logic circuit and 7-segment display

|    | $x_3$ | $x_2$ | $\boldsymbol{x}_1$ | $x_0$ | a | Ь | c | d | e | f | g |
|----|-------|-------|--------------------|-------|---|---|---|---|---|---|---|
| 0  | 0     | 0     | 0                  | O     | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
|    | 0     | O     | O                  | 1     | О | 1 | 1 | O | O | O | O |
| 2  | 0     | O     | 1                  | O     | 1 | 1 | O | 1 | 1 | O | 1 |
| 3  | O     | O     | 1                  | 1     | 1 | 1 | 1 | 1 | O | O | 1 |
| Ÿ. | 0     | 1     | O                  | O     | 0 | 1 | 1 | O | O | 1 | 1 |
| 5  | O     | 1     | O                  | 1     | 1 | O | 1 | 1 | O | 1 | 1 |
| Ę  | 0     | 1     | 1                  | O     | 1 | O | 1 | 1 | 1 | 1 | 1 |
|    | 0     | 1     | 1                  | 1     | 1 | 1 | 1 | O | O | O | O |
| 8  | 1     | O     | O                  | O     | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 9  | 1     | 0     | O                  | 1     | 1 | 1 | 1 | 1 | O | 1 | 1 |

(b) Truth table