

Active Vibration Control strategies

By: Rasa Jamshidi

Email: r.jamshidi@uliege.be

Topics of Seminar:

- 1- Collocated systems
- 2- Positive position feedback (PPF) Controller
- 3- Negative Derivative Feedback Controller
- 4- Application on the beam
- 5- Application on the Bladed Rail

Collocated systems

Location of Sensor and actuator are considered very close to each other or the same

This creates an alternating poles and zeros in the open loop (Frequency Response from actuator to sensor)

The asymptotic stability of a wide class of single-input single-output (SISO) control systems, even if the system parameters are subject to large perturbations. This is because the root locus plot keeps the same general shape, and remains entirely within the left half plane when the system parameters are changed from their nominal values.

Such a control system is said to be *robust* with respect to stability.

Frequency

PPF Controller

PPF is one of the most effective control technique to damp a certain resonance of collocated primary system with multiple modes.

$$G(s) = \frac{V_s}{V_a} = g_0 \frac{s^2 + 2\xi_z \omega_z s + \omega_z^2}{s^2 + 2\xi_p \omega_p s + \omega_p^2}$$

$$C_f(s) = +\frac{g_f}{s^2 + 2\xi_f \omega_f s + \omega_f^2}$$

PPF

 W_b

- Characteristic Eq. from general case
- $1 + GC = (s^2 + 2\xi_f \omega_f s + \omega_f^2)(s^2 + \omega_p^2) g_0 g_f (s^2 + \omega_z^2) = s^4 + 2\xi_f \omega_f s^3 + \omega_p^2 + \omega_f^2 g_0 g_f s^2 + 2\xi_f \omega_f \omega_p^2 s + \omega_f^2 \omega_p^2 g_0 g_f \omega_z$

Maximum Damping Method

$$(s^{2} + 2\xi_{c}\omega_{c}s + \omega_{c}^{2})^{2} = s^{4} + 4\xi_{c}\omega_{c}s^{3} + (4\xi_{c}^{2}\omega_{c}^{2} + 2\omega_{c}^{2})s^{2} + 4\xi_{c}\omega_{c}^{3}s + \omega_{c}^{4}$$

$$\begin{cases} 4 \, \xi_c \omega_c &= 2\xi_f \alpha \omega_p \\ (4\xi_c^2 + 2)\omega_c^2 &= (\alpha^2 + 1)\omega_p^2 - \frac{\beta \alpha^2}{\gamma^2} g_0^2 \omega_p^2 \\ 4\xi_c \omega_c^3 &= 2\xi_f \alpha \omega_p^3 \\ \omega_c^4 &= \alpha^2 \omega_p^4 - \beta \alpha^2 g_0^2 \omega_p^4 \end{cases}$$

 $\alpha = \frac{\omega_f}{\omega_p}$

 $\omega_c = \omega_p$

Real

$$\bullet \quad \alpha = \sqrt{\frac{4\gamma^2 \xi_c^2}{\gamma^2 - 1} + 1}$$

Maximum Damping Method
$$\longrightarrow$$
 • $\xi_f = 2\xi_c \sqrt{\frac{\gamma^2 - 1}{4\gamma^2 \xi_c^2 + \gamma^2 - 1}}$

•
$$\beta = \frac{1}{g_0^2} \frac{4\gamma^2 \xi_c^2}{4\gamma^2 \xi_c^2 + \gamma^2}$$

The norm wanted to minimized: $\frac{G}{1+GC}$ =

$$g_0(s^2+2\xi_Z\omega_Z s+\omega_Z^2)$$

$$\frac{g_0(s^2 + 2\xi_z\omega_z s + \omega_z^2)}{s^4 + 2\xi_f\omega_f s^3 + \omega_p^2 + \omega_f^2 - g_0g_f s^2 + 2\xi_f\omega_f\omega_p^2 s + \omega_f^2\omega_p^2 - g_0g_f\omega_z}$$

Considering $s = j\omega$ the value of $\left| \frac{G}{1 + GC} \right|$ can be extracted

Using H_2 and H_{∞} optimization method For Finding an optimal value of closed loop damping

$$H_2 = \int_{\omega_1}^{\omega_2} \left| \frac{G}{1 + GC} \right| d\omega$$

$$H_{\infty} = \min\left(\left|\frac{G}{1 + GC}\right|\right)\Big|_{@W_n}$$

Minimizing the cost function with respect to values of closed loop damping (from zero to 1)

By increasing the value of the feedback gain, one pole of the closed-loop system crosses the imaginary axis and makes the system unstable.

The other trade-off in the system is that the more damping is added to the system, the more amplification of the static response the closed-loop system has.

PPF Controller

- Maximum damping happens when the two loops in Root-Locus are intersecting
- For each value of closed-loop damping, there is one controller which causes merged poles of closed-loop and subsequently maximum damping
- More damping requires higher control frequency! This results in some problems
- The amplification at low frequency
- Coupling with the next modes (for continuous structure) The control frequency should be tuned far enough from the next resonance frequency
- Although the formula has been developed for undamped primary system, they can be used for lightly damped structure as well
- The biggest issue with this new method is that the presented method is only applicable for pole before zero pattern!

Why NDF?

1- The NDF compensator is designed to work as a band-pass filter, cutting off the control action far from the natural frequencies associated with the controlled modes and reducing the so-called spillover effect.

2- Comparison with PPF:

As a low-pass filter, PPF is very sensitive to low-frequency disturbances.

To overcome this shortcoming of PPF controller, NDF controller, which acts as a bandpass filter and can effectively control the lower and higher frequency disturbances, has been developed recently.

- 3- Negative derivative feedback (NDF) proves particularly robust against spillover since modal velocity is fed back through a band-pass filter so that undesired effects can be limited both at high and low frequencies.
- 4- This type of Controller is a ideal controller for low damped structure vibration reduction

$$NDF = -\frac{\alpha\beta s}{s^2 + 2\xi\alpha s + \alpha^2}$$

NDF For Collocated Systems

Negative derivative feedback controller (NDF)

$$G(s) = \frac{V_s}{V_a} = g_0 \frac{s^2 + 2\xi_z \omega_z s + \omega_z^2}{s^2 + 2\xi_p \omega_p s + \omega_p^2}$$
$$C(s) = -\frac{K_c \omega_c s}{s^2 + 2\xi_c \omega_c s + \omega_c^2}$$

The characteristic equation of the system will be:

$$s^{4} + (2\xi_{p}\omega_{p} + 2\xi_{c}\omega_{c} + k_{c}\omega_{c}g_{0})s^{3} + (\omega_{p}^{2} + \omega_{c}^{2} + 4\xi_{p}\xi_{c}\omega_{p}\omega_{c} + 2\xi_{z}\omega_{z}K_{c}\omega_{c}g_{0})s^{2} + (2\xi_{p}\omega_{p}\omega_{c}^{2} + 2\xi_{c}\omega_{c}\omega_{p}^{2} + g_{0}\omega_{z}^{2}K_{c}\omega_{c})s + \omega_{p}^{2}\omega_{c}^{2} = 0$$

Considering Maximum damping Method:

$$\left(s^2 + 2\xi_f \omega_f s + \omega_f^2 \right)^2 =$$

$$s^4 + 4\xi_f \omega_f s^3 + \left(4\xi_f^2 \omega_f^2 + 2\omega_f^2 \right) s^2 + 4\xi_f \omega_f^3 s + \omega_f^4 = 0$$

Considering:

Negative derivative feedback controller works for both of zero before pole and zero after pole!

The pattern dose not matter!

$$\alpha = \frac{\omega_c}{\omega_p}$$
$$\gamma = \frac{\omega_z}{\omega_p}$$

$$\gamma$$
 < 1 zero before pole

 $\gamma > 1$ zero after pole

$$\begin{cases} 2\xi_{p}\omega_{p} + 2\xi_{c}\omega_{c} + k_{c}\omega_{c}g_{0} = 4\xi_{f}\omega_{f} & (1) \\ \omega_{p}^{2} + \omega_{c}^{2} + 4\xi_{p}\xi_{c}\omega_{p}\omega_{c} + 2\xi_{z}\omega_{z}K_{c}\omega_{c}g_{0} = 4\xi_{f}^{2}\omega_{f}^{2} + 2\omega_{f}^{2} \\ 2\xi_{p}\omega_{p}\omega_{c}^{2} + 2\xi_{c}\omega_{c}\omega_{p}^{2} + g_{0}\omega_{z}^{2}K_{c}\omega_{c} = 4\xi_{f}\omega_{f}^{3} & (3) \\ \omega_{p}^{2}\omega_{c}^{2} = \omega_{f}^{4} & (4) \end{cases}$$

$$(2) \begin{cases} \alpha < 1 & \text{then } \alpha = (\xi_{eq} + 1) - \sqrt{\xi_{eq}^{2} + 2\xi_{eq}} \\ \alpha > 1 & \text{then } \alpha = (\xi_{eq} + 1) + \sqrt{\xi_{eq}^{2} + 2\xi_{eq}} \end{cases}$$

Based on Maximum Damping Method

$$\alpha = \frac{\omega_c}{\omega_0}$$
(Cutoff frequency)
$$\xi = \xi_c$$
(Damping Ratio)
$$\alpha$$

$$(\xi_{eq} + 1) \pm \sqrt{\xi_{eq}^2 + 2\xi_{eq}}(\xi_{eq} = 2\xi_f^2 - 2\xi_p\xi_c - \xi_z\gamma K_c g_0)$$

$$\frac{(2\xi_f\sqrt{\alpha} - \xi_p)(1 - \gamma^2) - (1 - \alpha)[2\xi_f\sqrt{\alpha} - \xi_p(1 + \alpha)]}{\alpha(1 - \gamma^2)}$$

K_c (Gain)

 $\frac{2}{g_0} \frac{(1-\alpha)\left[2\xi_f\sqrt{\alpha} - \xi_p(1+\alpha)\right]}{\alpha(1-\gamma^2)}$

The norm wanted to minimized: $\frac{G}{1+GC}$ =

$$g_0(s^2+2\xi_z\omega_zs+\omega_z^2)$$

$$\overline{s^{4} + \left(2\xi_{p}\omega_{p} + 2\xi_{c}\omega_{c} + k_{c}\omega_{c}g_{0}\right)s^{3} + \left(\omega_{p}^{2} + \omega_{c}^{2} + 4\xi_{p}\xi_{c}\omega_{p}\omega_{c} + 2\xi_{z}\omega_{z}K_{c}\omega_{c}g_{0}\right)s^{2} + \left(2\xi_{p}\omega_{p}\omega_{c}^{2} + 2\xi_{c}\omega_{c}\omega_{p}^{2} + g_{0}\omega_{z}^{2}K_{c}\omega_{c}\right)s + \omega_{p}^{2}\omega_{c}^{2}}$$

Considering $s = j\omega$ we have

$$\left| \frac{G}{1+GC} \right| =$$

$$\sqrt{\frac{\left(\omega_{z}^{2}-\omega^{2}\right)^{2}+(2\xi_{z}\omega_{z}\omega)^{2}}{\left(\omega^{4}-\left(\omega_{p}^{2}+\omega_{c}^{2}+2\xi_{z}\omega_{c}K_{c}\omega_{c}g_{0}\right)\omega^{2}+\omega_{p}^{2}\omega_{c}^{2}\right)^{2}+\left(-\left(2\xi_{p}\omega_{p}+2\xi_{c}\omega_{c}+g_{0}K_{c}\omega_{c}\right)\omega^{3}+\left(2\xi_{p}\omega_{p}\omega_{c}^{2}+2\xi_{c}\omega_{c}\omega_{p}^{2}+g_{0}\omega_{z}^{2}K_{c}'omega_{c}\right)w\right)^{2}}}$$

Considering H_2 and H_{∞} optimization method

$$H_{2} = \int_{0}^{\infty} \sqrt{\frac{(\omega_{z}^{2} - \omega^{2})^{2} + (2\xi_{z}\omega_{z}\omega)^{2}}{\left(\omega^{4} - \left(\omega_{p}^{2} + \omega_{c}^{2} + 2\xi_{z}\omega_{c}K_{c}\omega_{c}g_{0}\right)\omega^{2} + \omega_{p}^{2}\omega_{c}^{2}\right)^{2} + \left(-\left(2\xi_{p}\omega_{p} + 2\xi_{c}\omega_{c} + g_{0}K_{c}\omega_{c}\right)\omega^{3} + \left(2\xi_{p}\omega_{p}\omega_{c}^{2} + 2\xi_{c}\omega_{c}\omega_{p}^{2} + g_{0}\omega_{z}^{2}K_{c}\omega_{c}\right)w\right)^{2}}} d\omega}$$

$$H_{\infty} = \min \left(\sqrt{\frac{(\omega_z^2 - \omega^2)^2 + (2\xi_z \omega_z \omega)^2}{\left(\omega^4 - (\omega_p^2 + \omega_c^2 + 2\xi_z \omega_c K_c \omega_c g_0)\omega^2 + \omega_p^2 \omega_c^2\right)^2 + \left(-(2\xi_p \omega_p + 2\xi_c \omega_c + g_0 K_c \omega_c)\omega^3 + (2\xi_p \omega_p \omega_c^2 + 2\xi_c \omega_c \omega_p^2 + g_0 \omega_z^2 K_c \omega_c)w\right)^2} \right) \Big|_{@w_p}$$

Minimizing the cost function with respect to values of closed loop damping (from zero to 1)

Stability of the System for various patterns

$$s^{4} + \left(2\xi_{p}\omega_{p} + 2\xi_{c}\omega_{c} + k_{c}\omega_{c}g_{0}\right)s^{3} + \left(\omega_{p}^{2} + \omega_{c}^{2} + 4\xi_{p}\xi_{c}\omega_{p}\omega_{c} + 2\xi_{z}\omega_{z}K_{c}\omega_{c}g_{0}\right)s^{2} + \left(2\xi_{p}\omega_{p}\omega_{c}^{2} + 2\xi_{c}\omega_{c}\omega_{p}^{2} + g_{0}\omega_{z}^{2}K_{c}\omega_{c}\right)s + \omega_{p}^{2}\omega_{c}^{2} = 0$$

Since the equations become very long in this case, a more simple method is considered.

It is considered that the damping of pole and zero to become zero. $\xi_p=0$, $\xi_z=0$

α	$(2\xi_f^2 + 1) \pm 2\xi_f \sqrt{{\xi_f}^2 + 1}$
ξ_c	$\frac{2\xi_f(\alpha-\gamma^2)}{\sqrt{\alpha}(1-\gamma^2)}$
K_c	$\frac{4\xi_f(1-\alpha)}{g_0\sqrt{\alpha}(1-\gamma^2)}$

$$\begin{cases} \gamma < 1 & \text{then } \alpha > \gamma^2 \\ \\ \gamma > 1 & \text{then } \alpha < \gamma^2 \end{cases}$$

Zero Before Pole ($\lambda > 1$)

Example 1:

$$G(s) = \frac{s^2 + 0.02 * s + 100}{s^2 + 0.04 * s + 400}$$

Zero After Pole ($\lambda < 1$)

Example 2:

$$G(s) = \frac{s^2 + 0.04 * s + 400}{s^2 + 0.02 * s + 100}$$

NDF For Collocated Systems

Experimental Verifications

Beam

Closed Loop Damping (ξ_{ϵ})

Optimal NDF

Bladed Rail

Experimental Test: First Bladed Rail Zero Before Pole Pattern

NDF Design

NDF For Bladed Rail

Test Result

NDF For Bladed Rail

Experimental Test: Second Bladed Rail

Zero After Pole Pattern

The Same Procedure has been done.

PPF Controller

Controllers are not the same!!!!

$$C(s) = +\frac{g_f \omega_f^2}{s^2 + 2\xi_f \omega_f + \omega_f^2}$$

$$\alpha = \sqrt{4\eta^2 + 1}$$

$$\beta = \frac{4\eta^2}{4\eta^2 + 1}$$

$$\xi_f = \frac{2\eta}{\sqrt{4\eta^2 + 1}}$$

Thank You