Міністерство освіти і науки України Національний технічний університет України «Київський Політехнічний Інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Звіт

3 виконання лабораторної роботи №1 з дисципліни "Схемотехніка аналогової та цифрової радіоелектронної апаратури - 1"

Виконав:

студент групи ДК-51

Якименко О. О.

Перевірив:

доц. Короткий \in В.

Для вимірів та генерацій сигналів, побудови графіка АЧХ було використано плату Analog Discavery2

1. Дослідження суматора напруг на резисторах

1.1) Було побудовано суматор напруг на двох резисторах по 47кОм та двома джерелами напруги - одне 4В інше 2В.

1.2) Теоретичне значення напруги в точці Vout=0.5(2+4)=3B

Виміри

	Channel 1			
DC	2.927 V			
True RMS	2.927 V			
AC RMS	2 mV			

Як бачимо - трохи менше за 3B, але з урахуванням деяких похибок, значення відповідає теоретичним розрахункам.

1.3)Симуляція в LTSpice

Схема

Сигнали

Порівнюючи симуляцію та реальні виміри можу сказати, що симуляція це ідеальна модель, яка побудована на теоретичних формулах і завжди видає точний результат, але в моделях зазвичай не враховуються побічні фактори, які впливають на реальні показники, тому ми й маємо невеличкі розбіжності(модель 3В, реальний тест 2.927В) в результатах. Але результат реальних тестів менший ніж в симуляції, бо поки сигнал дійде до точки виміру, напруга може виділитись ще десь. В даній ситуації скоріш за все впливають 50 омні щупи+точність вимірювання приладу. Також впливати може ще внутрішній опір джерела.

1.4)На суматор згідно з завданням було подано 2 сигнали(1 - імпульсний, амплітуда 1В, мінімум -1В, частота 1кГц, коеф заповненя 0.5; 2 - синусоїдальній, 5кГц, амплітуда 1В)

Параметри осцилографа: 0.5 В/клітинка, 0.5 мс/клітинка

Вхідні сигнали

Резульатат. Спостерігаєм змішування сигналів

1.5) Симуляція - всі налаштування налаштовано аналогічно з налаштуваннями в реальному досліді. За формою сигнали ідентичні, хоча при переходу імпульсного сигналу з 1В в -1В в реальному досліді спостерігається на цій ділянці деяка кривизна, а в симуляції там вертикальна лінія. Скоріш за все це обумовлено особливостями перехідних процесів в реальному джерелі сигналів

Ще декілька фото для візуалізації

2. Дослідження RC ланцюжка

2.1)Було складено RC ланцюжок

3 параметрами

R=1кОм

С=15нФ

2.2)Щоб конденсатор досягнув 0.99E потрібен час 5RC

5RC=5*10^3*15*10^(-9)=75мкс

2.3) На вхід подано імпульсний сигнал, амплітуда 1В, мінімум -1В, частота 3.1кГц (частота при якій період в 5 разів більший за розраховану тривалість заряду-розряду)

на виході отримали

Тут Параметри осцилографа: 0.5 В/клітинка, 0.2мс/клітинка

Перевірка часу заряду-розряду конденсатора

Тут Параметри осцилографа: 0.5 В/клітинка, 50мкс/клітинка

В даному випадку, в реальному досліді за 75мкс конденсатор зарядився до 965.6мВ, що відповідає теоретичним очікуванням.

2.4) Симуляція в LTS рісе повністю відповідає теоретичним очікуванням та реальному досліду. При 75мкс зарядився до 986мВ

- 3. Дослідження RC фільтру низької частоти.
- 3.1)Використано схему, яка побудована в завданні 2
- 3.2)Розрахунок частоти зрізу

$$f_{\rm 3}=rac{1}{2\pi imes R imes C}=rac{1}{2 imes 3,14 imes 1 imes 10^3 imes 15 imes 10^{-9}}pprox 10.6$$
к
Гц

3.3) Було розраховано ряд значень К_итеоретичного фільтру та порівняно з даними, отриманими експериментально. Результати наведено у таблиці:

Nº	<i>f</i> , кГц	К _и теоретичне	К _и експеримент.	Похибка, %
1	0	1	1	-
2	0.5	0,999	0,999	0
3	1	0,996	0,994	0,2
4	2.5	0,973	0,959	1,4
5	5	0,905	0,863	4,6
6	7.5	0,817	0,752	8
7	10.6	0,707	0,651	7,9
8	12	0,662	0,582	12,1
9	15	0,577	0,497	13,9
10	20	0,469	0,396	15,7
11	30	0,333	0,277	16,8
12	50	0,208	0,171	17,8

Виділено жирним частоту зрізу.

Перевірка: чи при частоті близкій до нуля Ки більше в корінь з двох раз більший ніж Ки на частоті зрізу

0.651*1.41=0.918 це майже дорівнює 0.999, що з урахуванням деяких похибок підтверджує теорію

АЧХ

Загальна форма АЧХ відповідає теоретичній

Точка частоти зрізу(-3дБ) знаходиться на частоті 8.152к Γ ц, шо трохи не відповідає теоретичним розрахункам(10.6к Γ ц), але значення доволі близьке до розрахованого, тому з урахуванням похибок можна сказати, що відповідає очікуванням.

Швидкість спадання -20дБ як і зазначено в теорії

3.4)Було симульовано AЧX в LTSpice і форма сигналу повністю відповідає теорії, також значення частоти зрізу(10.6к Γ ц) знаходиться саме у точці -3дБ, що абсолютно точно відповідає розрахункам

Висновок

Отже, в цій лабораторній роботі ми дослідили суматор напргуи на резисторах, та RC ФНЧ. Спочатку виконали завдання за допомогою Analog Discavery2, а потім провели симуляцію в LTSpice. Всюди результати реальних вимірів майже зійшлися з розрахунками.

Збіжність розрахунків з реальними дослідами підтверджує коректність теорії.