EE 368 机器人运动与控制方法(Robotic Motion and Control) Assignment #2

Due time: 5:00pm on Monday, April 10, 2023 via Blackboard

Q-1. Assign link frames to the RPR planar robot shown in Figure Q-1, give the D-H table (linkage parameters).

Figure Q-1

Q-2. For the two-link manipulator shown in Figure Q-2(a), the link-transformation matrices, ${}_{1}^{0}T$ and ${}_{2}^{1}T$, were constructed. Their product is

$${}_{2}^{0}T = \begin{bmatrix} c\theta_{1}c\theta_{2} & -c\theta_{1}s\theta_{2} & s\theta_{1} & l_{1}c\theta_{1} \\ s\theta_{1}c\theta_{2} & -s\theta_{1}s\theta_{2} & -c\theta_{1} & l_{1}s\theta_{1} \\ s\theta_{2} & c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The link-frame assignments used are indicated in Figure Q-2(b). Note that frame $\{0\}$ is coincident with frame $\{1\}$ when θ_1 = 0. The length of the second link is l_2 . Find an expression for the vector ${}^0P_{in}$, which locates the tip of the arm relative to the $\{0\}$ frame.

Figure Q-2

Q-3. Sketch the fingertip workspace of the three-link manipulator illustrated in Figure Q-3, for the case of $I_1 = 15$, $I_2 = 10$, and $I_3 = 3$.

Figure Q-3

Q-4. For the cases of (1) both the desired orientation and position of the tip frame with respect to the base frame are given as:

$${}_{3}^{0}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and (2) only the desired position of the tool frame is given as: ${}^{3}P_{tool} = [l_{3} \ 0 \ 0]^{T}$, derive the inverse kinematics of the three-link manipulator in Figure Q-3, knowing that

$${}_{3}^{0}T = \begin{bmatrix} c_{1}c_{23} & -c_{1}s_{23} & s_{1} & c_{1}(c_{2}l_{2}+l_{1}) \\ s_{1}c_{23} & -s_{1}s_{23} & -c_{1} & s_{1}(c_{2}l_{2}+l_{1}) \\ s_{23} & c_{23} & 0 & s_{2}l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

- Q-5. (a) Describe a simple algorithm for choosing the nearest solution from a set of possible solutions.
 - (b) There exist 6-DOF robots for which the kinematics are NOT closed-form solvable. Does there exist any 3-DOF robot for which the (position) kinematics are NOT closed-form solvable?
- Q-5. ${}^{A}_{B}R$ is a 3 x 3 matrix with eigenvalues 1, and e^{+ai} , and e^{-ai} , where $i=\sqrt{-1}$. What is the physical meaning of the eigenvector of ${}^{A}_{B}R$ associated with the eigenvalue 1?