Linear Programming Engineering Mathematics 3

R.U. Gobithaasan

Associate Professor Dept. of Mathematics, Faculty of Ocean Engineering Technology & Informatics, University Malaysia Terengganu

7 October 2020

Table of Contents

- 1 Introduction: Some notations
- 2 Geometric Meaning: Linear Programming
- 3 General LP: More than three constraints
- 4 Simplex Method: Optimal Solution
- **6** Examples in Textbook
- 6 Conclusion
- Appendices

Overall content

Linear Programming

- 4.3 Apply simplex method
- 4.3.1 Identify the standard simplex form for linear programming problems in standard form for maximize problem
- 4.3.2 Construct simple simplex table up to three constraint and three variables
- 4.3.3 Compute the optimal solution by considering basic feasible solution

Overview: Optimization Problems

- Optimization theory and methods deal with selecting the best solution (either maximize or minimize) for a given function f called objective function.
- In most optimization problems, the **objective function** f depends on several variables, $\mathbf{x} = \{x_1, \dots, x_n\}$ called **control variables** because we can choose their values.
- The choice of control variables usually restricted due to the nature of the problem, hence forming **constraints**.

```
Maximize f(\mathbf{x})
subject to:
constraint 1,
constraint 2.

control variables in the form of constraints
```

Various types of optimization classification

Control variables:

- Constrained
- Unconstrained

Convexity

- Convex
- Nonconvex

Approach:

- Deterministic:
 - ▶ Linear Prog. (LP)
 - NLP
 - ► Mixed-Integer (MILP)
- Heuristics Algo.
- Meta-Heuristic Algo.
- Deterministic approach employs analytic properties of the problem.
- Heuristic algo is trial-and-error approach mainly based on nature-inspired ideas.

Heuristic Classification [3]

Figure: Heuristic Optimization Algorithm

Convexity Classification [2]

Figure: Convexity Based classification

Convexity Test

Figure: Which is a convex polygon?

Convexity Test: Drawing a line

Figure: drawing a line for convexity identification

Convexity Test: Wrapping with a rubber-band via nails

Figure: The area enclosed by the rubber-band is denoted as **convex hull**

Some constraint notations

Symbol	Remark
<	Less than, fewer
>	Greater than, over
\leq	Less than or equal to, at most
\geq	Greater than or equal to, at least
s.t	subject to

Linear Programming: two variables

Simple Linear Programming or linear optimization consists of methods for solving optimization problems with constraints for finding maximum (or minimum) $\mathbf{x} = [x_1, x_2]$ of a linear objective function:

maximize (or minimum) $f(x_1, x_2) = x_1 + x_2$ linear objective function, s.t.

$$\begin{vmatrix}
 x_1 + 2x_2 \le 10, \\
 3x_1 + 2x_2 \le 18 \\
 x_1 \ge 0 \\
 x_2 \ge 0
 \end{vmatrix}$$
 linear constraints,

(1)

Graphing the Constraints: Two constraints

Figure: Right: Shaded area is where the solution lives. Each point in this region is called **feasibility region**, is the set of all feasible solution (maximum or minimum).

Graphing the Constraints:

Think...

- How many control variables?
- How many constraints?

Figure: feasibility region

14/54

Graphing the Objective Function

Figure: Feasible solution region.

Red line shows the corresponding value of the objective function.

Think...

What will be the maximum or minimum feasible solution?

Graphing the Objective Function

Figure: Feasible solution region.

Red line shows the corresponding value of the objective function.

Think...

What will be the maximum or minimum feasible solution?

Remarkable Theorem

The **maximum or minimum** of a linear program, if it exists, will necessarily occur at a vertex (corner point) of the constraint.

Why non-convex case cannot be the constraint set of a Linear Program?

Figure: A set of constraints forming non-convex region

Remark

The line connecting P and Q shows this is a non-convex region.

ALL the region of constraint AB (pink) does not intersect with blue region. This is not a proper solution region!

For example Q does not satisfy constraint AB

Nonlinear Constraints

Figure: two variables

Feasible region vertices: Optimal solution

Maximum value: The point furthest from the origin containing at least one point on the line parallel to the isoline.

Minimum value: The point closest to the origin containing at least one point on the line parallel to the isoline.

Two methods:

- isoline,
- trial-and-error.
- Simplex Method.
- See **simulation** example for two variables.

Three control variables: Feasible solutions region

Figure: The solution region is a **polyhedron**

More than three constraints?

Play...

See simulation for better understanding.

Figure: 3D cloud points

Think...

What if i have more than three control variables?

General LP: More than three constraints

Linear Programming: solve optimization problems with constraints for finding maximum (or minimum) $\mathbf{x} = [x_1, \dots, x_n]$ of a **linear objective function**:

Maximize:
$$f(\mathbf{x}) = c_1 x_1 + \dots + c_n x_n$$

 $\mathbf{s.t.}$

$$\left. \begin{array}{l} a_{11}x_1 + a_{12}x_1 + a_{1n}x_n \leq b_1, \\ \dots \\ a_{m1}x_1 + a_{m2}x_1 + a_{mn}x_n \leq b_m, \\ x_i, \geq 0, \; (i=1,...,n) \end{array} \right\} \text{linear inequalities},$$

(2)

Minimization: simply means we maximize $-f(\mathbf{x})$, thus no need separate consideration.

Conversion to normal form of LP

Simplex Method: First, we need convert to **normal form**:

Maximize
$$f(\mathbf{x}) = c_1 x_1 + \dots + c_n x_n$$

s.t.

$$\left. \begin{array}{l} a_{11}x_1 + a_{12}x_1 + a_{1n}x_n = b_1, \\ \dots \\ a_{m1}x_1 + a_{m2}x_1 + a_{mn}x_n = b_m, \\ x_i, \geq 0, \; (i=1,...,n) \end{array} \right\} \text{linear eqns with extra variables},$$

Take note that $\mathbf{b_i} \geq \mathbf{0}$. If a component of b_i is negative, then we multiply the ith b_i by -1 to obtain a positive right-hand side.

4 D > 4 D > 4 B > 4 B > B 9 9 9

General LP: keywords

Feasible solution: An n-tuple x_1, \ldots, x_n that satisfies all the constraints in (3).

Optimal solution: A feasible solution is called optional when the objective function becomes maximum among the rest of feasible solution.

Basic Feasible Solution (BFS): a feasible solution for which some of the control variables x_1, \ldots, x_n are zero. e.g. LP with 2 control variables and 4 constraints: where BFS are the extreme points in the form of vertices.

BFS: Example of LP [1]

Basic Feasible Solution (BFS): a feasible solution for which some of the control variables x_1, \ldots, x_n are zero where BFS are the extreme points . e.g. LP with 2 control variables and 4 constraints: the BFS are in the form of vertices O, A, B, C.

Slack variable: constraints with: lesser than or equals to

Slack variable: We introduce **slack variable** for the conversion to normal form. For example:

$$f(x_1, x_2) = x_1 + x_2$$

s.t.

$$x_1 + 2x_2 \le 10,$$

 $3x_1 + 2x_2 \le 18$ inequalities with \le , except for x_i
 $x_1, x_2 \ge 0$

(4)

One Slack for each constraint (lesser than or equals to)

Constraint 1

$$x_1 + 2x_2 \le 10,$$

$$\Rightarrow \underbrace{10 - x_1 - 2x_2}_{\text{always non-negative}} \ge 0$$

$$\Rightarrow x_3 = 10 - x_1 - 2x_2,$$
$$x_3 \ge 0$$

$$\therefore x_1 + 2x_2 + x_3 = 10.$$

Constraint 2

$$3x_1 + 2x_2 \le 18,$$

$$\Rightarrow \underbrace{18 - 3x_1 - 2x_2}_{\text{always non-negative}} \ge 0$$

$$\Rightarrow x_4 = 18 - 3x_1 - 2x_2,$$
$$x_4 > 0$$

$$\therefore 3x_1 + 2x_2 + x_4 = 18.$$

26 / 54

Simple Simplex Table

Simplex Tableau: We represent the equations to **simplex table**.

Maximize
$$f(x_1, x_2) = x_1 + x_2$$
: we re-write as $P - x_1 - x_2 = 0$, where $P = f(x_1, x_2)$ s.t.

$$\begin{cases}
 x_1 + 2x_2 + s_1 = 10, \\
 3x_1 + 2x_2 + s_2 = 18, \\
 x_1, x_2, s_1, s_2 \ge 0
 \end{cases}$$

Simple Tableau:

ompie rasicaa.								
		x_1	x_2	x_3	x_4	(b_i)		
	P	-1	-1	0	0	0		
,	s_1	1	2	1	0	10		
,	s_2	3	2	0	1	18		
T A . 13.5								

In Augmented Matrix:

$$\begin{pmatrix}
-1 & -1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 10 \\
3 & 2 & 0 & 1 & 18
\end{pmatrix}$$

Augmented Matrix: stepwise pivot

In Augmented Matrix:

$$\begin{pmatrix}
-1 & -1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 10 \\
3 & 2 & 0 & 1 & 18
\end{pmatrix}$$

Two types of variables:

- Basic variables (columns with only one nonzero entry)
- 2 nonbasic variables (columns with many nonzero entries)

- Every simplex table gives a basic feasible solution.
- ② E.g., we let the **nonbasic variables** to zero; $x_1 = x_2 = 0$:

$$x_1 = 0, x_2 = 0,$$

 $s_1 = 10, s_2 = 18,$
 $P = f(0, 0) = 0$

Optimal solution is obtained by **stepwise pivoting** until maximum of P is reached; slightly different than Gauss elimination.

A short review of Gauss elimination

Step 1. Elimination of x_1

Call the first row of **A** the **pivot row** and the first equation the **pivot equation**. Call the coefficient 1 of its x_1 -term the **pivot** in this step. Use this equation to eliminate x_1 (get rid of x_1) in the other equations. For this, do:

Add 1 times the pivot equation to the second equation.

Add -20 times the pivot equation to the fourth equation.

This corresponds to **row operations** on the augmented matrix as indicated in BLUE behind the **new matrix** in (3). So the operations are performed on the **preceding matrix**. The result is

(3)
$$\begin{bmatrix} 1 & -1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 10 & 25 & | & 90 \\ 0 & 30 & -20 & | & 80 \end{bmatrix} \quad \begin{array}{c} x_1 - x_2 + x_3 = 0 \\ \text{Row } 2 + \text{Row } 1 & 0 = 0 \\ 10x_2 + 25x_3 = 90 \\ \text{Row } 4 - 20 \text{ Row } 1 & 30x_2 - 20x_3 = 80. \end{array}$$

A short review of Gauss elimination

Pivot 10
$$\longrightarrow$$
 $\begin{bmatrix} 1 & -1 & 1 & | & 0 \\ 0 & \boxed{10} & 25 & | & 90 \\ 0 & \boxed{30} & -20 & | & 80 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ Pivot $10 \longrightarrow \underbrace{10x_2 + x_3 = 0}_{10x_2} + 25x_3 = 90$ Eliminate $30x_2 \longrightarrow \boxed{30x_2} - 20x_3 = 80$ $0 = 0$

$$x_1 - x_2 + x_3 = 0$$
Pivot $10 \longrightarrow 10x_2 + 25x_3 = 90$
Eliminate $30x_2 \longrightarrow 30x_2 - 20x_3 = 80$

$$0 = 0$$

To eliminate x_2 , do:

Add -3 times the pivot equation to the third equation.

The result is

(4)
$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 10 & 25 & 90 \\ 0 & 0 & -95 & -190 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 Row 3 - 3 Row 2

$$x_1 - x_2 + x_3 = 0$$

 $10x_2 + 25x_3 = 90$
 $-95x_3 = -190$

Stepwise pivot: three steps

The choice of **pivot equation** and **pivot** are different from the Gauss elimination because $x_1, x_2, s_1, s_2 \ge 0$.

The Augmented Matrix:

$$\begin{pmatrix}
1 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 10 \\
0 & 3 & 2 & 0 & 1 & 18
\end{pmatrix}$$

The **three steps** moving to optimal solution:

- Selection of the Column of the Pivot.
- Selection of the Row of the Pivot
- 3 Elimination by Row Operation

Stepwise pivot

- Selection of the Column to Pivot:
 - ► Select the first column with **negative** entry in Row 1.

$$\begin{pmatrix}
1 & (-1) & -1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 10 \\
0 & 3 & 2 & 0 & 1 & 18
\end{pmatrix}$$

- 2 Selection of the Row of the Pivot:
 - Divide the right sides by the corresponding entries of the column which you selected earlier.
 - (10/1 = 10, 18/3 = 6)
 - ► Take the pivot equation that gives the smallest positive quotient. Thus, the pivot is 3 because 18/3 is the smallest.

$$\begin{pmatrix}
1 & -1 & -1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 10 \\
0 & \boxed{3} & 2 & 0 & 1 & 18
\end{pmatrix}$$

Stepwise pivot:

- 3 Elimination by Row Operations:
 - ▶ This steps gives zeros above and below pivot.
 - ▶ Below is the row operation with its details:

$$\begin{pmatrix} 1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 10 \\ 0 & \boxed{3} & 1 & 0 & 1 & 18 \end{pmatrix} \xrightarrow{r_1 + \frac{1}{3}r_3} \begin{pmatrix} 1 & \boxed{0} & \frac{-1}{3} & 0 & \frac{1}{3} & 6 \\ 0 & 1 & 2 & 1 & 0 & 10 \\ 0 & \boxed{3} & 2 & 0 & 1 & 18 \end{pmatrix}$$

$$\xrightarrow{r_2 - \frac{1}{3}r_3} \begin{pmatrix} 1 & \boxed{0} & \frac{-1}{3} & 0 & \frac{1}{3} & 6 \\ 0 & \boxed{0} & \frac{4}{3} & 1 & \frac{-1}{3} & 4 \\ 0 & \boxed{3} & 1 & 0 & 1 & 18 \end{pmatrix}$$

Optimal solution after first iteration

$$\begin{pmatrix}
1 & 0 & \frac{-1}{3} & 0 & \frac{1}{3} & 6 \\
0 & 0 & \frac{4}{3} & 1 & \frac{-1}{3} & 4 \\
0 & 3 & 1 & 0 & 1 & 18
\end{pmatrix}$$

The basic variables are x_1, x_3 and nonbasic variables are x_2, x_4 . We set nonbasic variables as zero; $x_2 = 0, x_4 = 0$:

- row 3: $x_1 = 18/3 = 6$
- row 2: $x_3 = 4/1 = 4$
- row 1: $P = f(x_1, x_2) = 6 + 0 = 6$

Check your optimal solution

Think...

Can you identify whether we have reached to optimal (maximum) solution?

Check your optimal solution

Think...

Can you identify whether we have reached to optimal (maximum) solution?

When $(x_1 = 6, x_2 = 0)$, P = 6. We are yet to reach optimal solution!

Stepwise pivot: second iteration

The basic feasible solution is not yet optimal because there is a negative entry: $\frac{-1}{3}$. We need to repeat again the three steps.

$$\begin{pmatrix} 1 & 0 & (-1/3) & 0 & \frac{1}{3} & 6 \\ 0 & 0 & \frac{4}{3} & 1 & \frac{-1}{3} & 4 \\ 0 & 3 & 1 & 0 & 1 & 18 \end{pmatrix}$$

- Steps towards optimal solution:
 - Column of the pivot: Select the **second column** with negative entry in Row 1.
 - 2 Row of the Pivot $(4 \div \frac{4}{3} = 3)$ or $(18 \div 1 = 18)$, choose smaller: $\frac{4}{3}$
 - 3 Next is row operation based on pivot at $\frac{4}{3}$.

$$\begin{pmatrix} 1 & 0 & -1/3 & 0 & \frac{1}{3} & 6 \\ 0 & 0 & \boxed{4/3} & 1 & \frac{-1}{3} & 4 \\ 0 & 3 & 1 & 0 & 1 & 18 \end{pmatrix}$$

Stepwise pivot: second iteration

- Selimination by Row Operations:
 - ▶ This steps gives zeros above and below pivot.
 - ▶ Below is the row operation with its details:

$$\begin{pmatrix}
1 & 0 & -1/3 & 0 & \frac{1}{3} & 6 \\
0 & 0 & \boxed{4/3} & 1 & \frac{-1}{3} & 4 \\
0 & 3 & 1 & 0 & 1 & 18
\end{pmatrix}
\xrightarrow{r_1 + \frac{1}{4}r_2}
\begin{pmatrix}
1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 7 \\
0 & 0 & \boxed{4/3} & 1 & \frac{-1}{3} & 4 \\
0 & 3 & 1 & 0 & 1 & 18
\end{pmatrix}$$

$$\xrightarrow{r_3 - \frac{3}{2}r_2}
\begin{pmatrix}
1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 7 \\
0 & 0 & \boxed{4/3} & 1 & -\frac{1}{3} & 4 \\
0 & 3 & 0 & -\frac{3}{3} & -\frac{1}{3} & 12
\end{pmatrix}$$

Optimal solution after second iteration

$$\begin{pmatrix}
1 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 7 \\
0 & 0 & \frac{4}{3} & 1 & -\frac{1}{3} & 4 \\
0 & 3 & 0 & -\frac{3}{2} & -\frac{1}{2} & 12
\end{pmatrix}$$

The basic variables are x_1, x_2 and nonbasic variables are x_3, x_4 . We set nonbasic variables as zero; $x_3 = 0, x_4 = 0$:

- row 3: $x_1 = 12 \div 3 = 4$
- row 2: $x_2 = 4 \div \frac{4}{3} = 3$
- row 1: $P = x_1 + x_2 = 7$

Check your optimal solution

When $(x_1 = 4, x_2 = 3)$, P = 7. We reach to the vertex (4,3), which is indeed an optimal solution!

Simplex Method: Minimization

- If we want to minimize $f(\mathbf{x})$ (instead of maximize), we take as columns of the pivot those entry in Row 1 **positive** (instead of negative).
- 2 In such a column k, we consider only **positive entries** t_{jk} and take the pivot a t_{jk} for which b_{jk}/t_{jk} is smallest (as before).

Examples 3.17: $(x_1, x_2) = (4, 5)$

Examples 3.18: $(x_1, x_2) = (6, 4)$

Examples 3.19: $(x_1, x_2) = (15, 12)$

Examples 3.20: $(x_1, x_2) = (1.8, 2.4)$

Examples 3.25: $(x_1, x_2) = (20, 30) = (40, 0)$

Examples 3.26: $(x_1, x_2) = (4, 5)$

Examples 3.27: $(x_1, x_2) = (20, 60)$

Summary Simplex method:

Three methods to solve:

- graphs
- trial-error of vertices
- Simplex method (after normal form conversion):
 - Selection of the Column of the Pivot.
 - 2 Selection of the Row of the Pivot
 - 3 Elimination by Row Operation

Make sure no more negative (for maximizing $f(\mathbf{x})$) entries in the first row to obtain maximum possible solution.

Thanks

Doubts and Suggestions?

gr@umt.edu.my or gobithaasan@gmail.com

References

E. Kreyszig.

Advanced Engineering Mathematics (10th Edition).

John Wiley & Sons, Ltd., Singapore, 2011.

Chian-Son Yu Ming-Hua Lin, Jung-Fa Tsai.

A review of deterministic optimization methods in engineering and management.

Mathematical Problems in Engineering, 2012:Article ID 756023, 2017.

Mohammad Shehab, Ahamad Tajudin Khader, and Mohammed Azmi Al-Betar.

A survey on applications and variants of the cuckoo search algorithm.

Applied Soft Computing, 61:1041 - 1059, 2017.

Appendices

Discussion on worked examples coming next!

Artificial variable: constraints with: greater than or equals to

Artificial variable: We introduce **extra variables** for the conversion to normal form with inequality \geq . For example:

Maximize

$$f(x_1, x_2) = 2x_1 + x_2$$

s.t.

$$x_1 - \frac{1}{2}x_2 \ge 1,$$

$$x_1 - x_2 \le 2$$

$$x_1 + x_2 \le 4$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$
mixed type of inequalities,

(5)

Artificial variable: constraints with: greater than or equals to

Constraint 1

$$\mathbf{x_1} - \frac{1}{2}\mathbf{x_2} \ge 1,$$

$$\Rightarrow \underbrace{x_1 - \frac{1}{2}x_2 - 1}_{\text{always non-negative}} \ge 0$$

$$\Rightarrow x_3 = x_1 - \frac{1}{2}x_2 - 1,$$

$$\therefore x_1 - \frac{1}{2}x_2 - x_3 = 1.$$

We cannot proceed solving the row operation as $x_3 < 0$ might not be in solution region. So we have to introduce extra variable:

$$x_3 = x_1 - \frac{1}{2}x_2 - 1 + \mathbf{x_6}$$

 x_6 is called an artificial variable and is subject to the constraint $x_6 \ge 0$. Thus, need to modify $f(\mathbf{x})$!

53 / 54

Artificial variable: constraints with: greater than or equals to

with artificial variable:

$$x_{3} = x_{1} - \frac{1}{2}x_{2} - 1 + \mathbf{x_{6}}$$

$$\Rightarrow x_{6} = x_{3} - x_{1} + \frac{1}{2}x_{2} + 1$$

$$\Rightarrow Mx_{6} = x_{3} - M(x_{1} + \frac{1}{2}x_{2} + 1)$$

where $M \in \Re$. Next, need to remove the artifical variable from objective function: $z = f(x_1, x_2) = 2x_1 + x_2$.

Modified objective function

$$\hat{z} = 2x_1 + x_2 - Mx_6
\therefore \hat{z} = (2+M)x_1 + (1 - \frac{1}{2}M)x_2
-Mx_3 - M$$

Next, we can represent simplex table and continue with three steps of Simplex method.

