Algèbre linéaire et géométrie vectorielle

Préparation pour l'examen 2

A - PARTIE THÉORIQUE (ENVIRON 50% DE L'EXAMEN)

I. À maîtriser

Matrices

- Notation double indice (a_{ij})
- Opérations d'addition de matrices, de multiplication par un scalaire
- Condition pour la multiplication matricielle ET Définition de la multiplication matricielle (savoir appliquer la méthode des index)
- Propriétés valides et non valides pour la multiplication matricielle (référence : Document du cours 7, au milieu de la page 19)
- Effet de la multiplication par l'identité I_n et par l'inverse A^{-1}

<u>Méthode de Gauss</u>

- Pouvoir appliquer à la main la méthode de Gauss pour un système très simple.
- Savoir construire le vecteur général de solutions pour les systèmes à infinité de solutions.
- Savoir détecter les systèmes incompatibles
- Connaître le système homogène et ses particularités

Déterminants

- Pouvoir évaluer le déterminant de matrices pour les cas simples, soit :
 - o Matrices 2×2 , ou 3×3 contenant des 0
 - Matrices triangulaires
 - Matrice avec une ligne/colonne nulle OU Matrice avec des lignes/colonnes identiques (ou multiple l'une de l'autre)
 - o Matrice que l'on peut simplifier avec des opérations élémentaires

Applications particulières

- Pouvoir construire une matrice d'adjacence
- Comprendre ce que signifient concrètement les puissances d'une matrice d'adjacence.
- Pour les chaînes de Markov :
 - À partir d'une mise en situation, pouvoir représenter la matrice de transition T et la matrice des états initiaux.
 - Pouvoir interpréter le produit $T^k P^{(0)}$, où T^k est une puissance donnée.
 - Connaître la condition d'application du **théorème de convergence**, et comprendre ce qu'il signifie.
 - Pouvoir interpréter la matrice des états stationnaires

II. Formules ou résultats à savoir

Matrices

- **Définitions**: Matrice nulle $O_{m \times n}$ et matrice identité I_n
- *Définitions*: Matrice carrée, triangulaire supérieur et inférieure, diagonale
- Définition : Matrice symétrique et antisymétrique
- **Définitions**: Inverse A^{-1} , puissance A^n , transposée A^{\top}

Méthode de Gauss

- **Définition :** Trois opérations élémentaires
- Langage: Matrice échelonnée, pivot, variables liées et libres

<u>Déterminants</u>

- *Résultat*: Effet des 3 opérations élémentaires sur le déterminant
- Résultat: Déterminant d'un produit de matrices, d'une transposée et d'une matrice inverse
- Résultat : Lien entre le déterminant d'une matrice et son inversibilité
- Définition : Méthode de Cramer
- Matrice avec une ligne/colonne nulle OU Matrice avec des lignes/colonnes identiques (ou multiple l'une de l'autre)
 - o Matrice que l'on peut simplifier avec des opérations élémentaires

III. Laissés tomber à l'examen

- Matrices nilpotentes et idempotentes
- Propriétés plus poussées de la multiplication matricielle (associativité, etc.)

B - PARTIE EXCEL (ENVIRON 50% DE L'EXAMEN)

À maîtriser

- Addition de matrices, Multiplication par un scalaire
- Multiplication de matrices grâce à la commande PRODUITMAT et interprétation du résultat d'une multiplication (exemple des bijoux)
- Application de la méthode de Gauss-Jordan pour résoudre un système à solution unique
- Utilisation de la commande INVERSEMAT pour trouver une matrice inverse
- Calcul du déterminant grâce à la commande **DETERMAT**
- Application de la méthode de la matrice inverse pour résoudre un système à solution unique
- Application de la méthode de Cramer pour résoudre un système à solution unique