First Name:	Solution	
	1,	
Last Name:		

- Open text book, and closed notes. One sheet of notes (A4 size, both sides) will be allowed to the exam.
- Time for this Test is one hour thirty minutes.
- Calculators are allowed for this test (any kind)
- All work in this exam must be your own, sharing of calculators, formula sheet or text book will not be allowed.

(1)
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 Transfer the given model into observable canonical form by using transformation matrix. (25 points)
$$\begin{bmatrix} SI - A \end{bmatrix} = \begin{bmatrix} S & 0 \\ 0 & S \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & S \end{bmatrix} = \begin{bmatrix} S - 3 & 0 \\ 0 & S - 2 \end{bmatrix}$$

$$\begin{bmatrix} S - A \end{bmatrix} = \begin{bmatrix} S & 0 \\ 0 & S - 2 \end{bmatrix}$$

$$\begin{bmatrix} S & A \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & S \end{bmatrix}$$

$$\begin{bmatrix} C & A \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} C & A \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2$$

Please show me your calculations for partial credit

(2) A model has
$$A = \begin{bmatrix} 0 & 1 \\ 2 & -3 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $C = \begin{bmatrix} 1 & -1 \end{bmatrix}$ design an observer with a desired poles at $-1 \pm j4$ (25 points)

$$A_{0} = A - KC = \begin{pmatrix} 0 & 1 \\ 2 & -3 \end{pmatrix} - \begin{pmatrix} K_{1} \\ K_{2} \end{pmatrix} \begin{pmatrix} 1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & -3 \end{pmatrix} - \begin{pmatrix} K_{1} & -K_{1} \\ K_{2} & -K_{2} \end{pmatrix}$$

$$A_{0} = \begin{pmatrix} -K_{1} & 1 + K_{1} \\ 2 - K_{2} & K_{2} - 3 \end{pmatrix}$$

$$(SI-Ab) = (SO) - (-K_1 + K_1) = (S+K_1 - 1-K_1)$$

 $(-2+K_2 + K_2-1) = (-2+K_2 + S+3-K_2)$

Det
$$|SI-Ao| = (S+k_1)(S+3-k_2) - -(K+1)(K_2-2)$$

 $= S^2 + 3k_1 - k_2/k_2 + 38 - k_2S_1 + (K_1/k_2 + K_2 - 2K_1 - 2)$
 $= S^2 + (3-K_2+k_1)S + (K_1+k_2-2=0)$

desiry plu

Please show me your calculations for partial credit

Unique Solution

$$|3-K_2+K_1=2$$

$$1=K_2-K_1$$

$$3K_1+K_2-2=17$$

$$3K_1+K_2=19$$

$$-K_1+K_2=1$$

$$2K_2=1$$

$$2K_2=10$$

$$|C_2=10$$

$$|C_1=10$$

$$|C_1=10$$

$$(3)\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 3u, \text{ convert the}$$

given model into jordan form, also find the controllability and observability of the given model before and after trasferring the model

given model into jordan form, also find to observability of the given model before a

$$\begin{cases}
c_2 \left(S \right), & ArS \right) = \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix}$$

$$ASZ \left(S \right) = \begin{pmatrix} 2 & 1 \\ -2 & -3 \end{pmatrix}$$

$$Det \left(S \right) = -14 - 1 = -15$$

$$it is Controllable.$$

$$\begin{cases}
c_2 \left(S \right) = \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix}$$

$$c_3 = \begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ -2 & -2 \end{pmatrix}$$

$$it is not observable.$$

$$(A - AI) = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ -2 & -3 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 & -3 \end{pmatrix}$$

$$A(3+1) + 2 = 0$$

$$A = -1, -2$$

$$A = -1, -2$$

$$\begin{cases}
V_1 = 1 \\ V_2 = -1 \\ V_3 = -1
\end{cases}$$
Please show me your calculations for partial ored

$$\begin{array}{l} P_{c} = \left\{ \begin{array}{c} B_{c} \\ ABS \end{array} \right\} = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A_{c} \\ A_{c} \end{array} \right\} \\ ABS = \left\{ \begin{array}{c} A$$

(4) $\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$, $y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 3u$, Transfer the given model into Jordan form by using transformation matrix. (25 points)

$$A = \begin{cases} 0 \\ -2 - 5 \end{cases}$$

$$A = \lambda I \quad for \quad 3^{1/2} \text{ proble}$$

$$T = \begin{pmatrix} 1 & 1 \\ -1 - 2 \end{pmatrix} \quad T' = \begin{pmatrix} 2 & 1 \\ -1 - 1 \end{pmatrix}$$

$$\hat{A} = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}$$

$$\hat{C} = T = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\hat{C} = (T = \begin{pmatrix} 0 \\ 1 \end{pmatrix}) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$