Problem Set #6

Danny Edgel Econ 711: Microeconomics I Fall 2020

October 18, 2020

Question 1: Rationalizing Demand

Suppose we observe the following "data":

W	p	X
100	(5, 5, 5)	(12, 4, 4)
100	(7, 4, 5)	(9, 3, 5)
100	(2, 4, 1)	(27, 9, 10)
150	(7, 4, 5)	(15, 5, 5)

(a) Under Walras's law, $p_i \cdot x_i = w \ \forall i$. Then, we can calculate:

$$5*12+5*4+4*5=100=w$$

$$7*9+4*3+5*5=100=w$$

$$2*27+4*9+10=100=w$$

$$7*15+4*5+5*5=150=w$$

Thus, the data are consistent with Walras's Law.

- (b) Given that Walras's Law is satisfied for each observation, $x^i > x^j \Rightarrow p \cdot x^i > p \cdot x^j$ for any p >> 0, and all price vectors in our data are strictly positive, we can conclude the following:
 - i. $x^3 > x^i \ \forall i \neq 3$ implies that: 1) all other goods bundles were affordable at p^3 , and 2) x^3 was unaffordable at all $p^i \neq p^3$. Thus, $x^3 \succ^D x^i \ \forall i \neq 3$.
 - ii. $x^4 > x^1$ implies that 1) x^1 was affordable at p^4 , and 2) x^4 was not affordable at p^1 . Thus, $x^4 \succ^D x^1$.
 - iii. Since $p^4 = p^2$ and $w^4 > w^2$, we know 1) x^2 was affordable when x^4 was chosen, and 2) x^4 was not affordable when x^2 was chosen. Thus, $x^4 \succ^D x^2$.
 - iv. $p^1 \cdot x^2 = 85 < 100$, so $p^1 \cdot x^2 < p^2 \cdot x^2$, and x^2 was chosen at p^2 . Therefore, $x^2 \succ^D x^1$

v. $p^2 \cdot x^1 = 120 > w^2$, so x^1 was not affordable when x^2 was chosen. Thus, $\neg(x^2 \succsim^D x^1)$

Taken together, these preference relations indicate:

$$x^3 \succ^D x^4 \succ^D x^1 \succ^D x^2$$

Where it is not possible to have any preference relation "loops". Therefore, these data satisfy GARP. By Afrias's theorem, satisfying GARP is a sufficient condition for concluding that these data can be rationalized by a continuous, monotonic, and concave utility function.

Question 2: Aggregating Demand

Suppose there are n consumers, where consumer $i \in \{1, 2, ..., n\}$ has the indirect utility function

$$v^i(p, w_i) = a_i(p) + b(p)w_i$$

where $\{a_i\}_{i=1}^n$ and b are differentiable functions from \mathbb{R}_+^k to \mathbb{R} .

(a) Assuming that b(p) > 0 and $(p, w_i) >> 0 \,\forall i$, then by Roy's identity,

$$x^{i}(p, w_{i}) = \left(-\frac{\partial v^{i}(p, w_{i})/\partial p_{1}}{\partial v^{i}(p, w_{i})/\partial w_{i}}, \dots, -\frac{\partial v^{i}(p, w_{i})/\partial p_{k}}{\partial v^{i}(p, w_{i})/\partial w_{i}}\right)$$

$$= \left(-\frac{\frac{\partial a_{i}(p)}{\partial p_{1}} + \frac{\partial b(p)}{\partial p_{1}}w_{i}}{b(p)}, \dots, -\frac{\frac{\partial a_{i}(p)}{\partial p_{k}} + \frac{\partial b(p)}{\partial p_{k}}w_{i}}{b(p)}\right)$$

(b) Using Roy's identity on the representative consumer, we get

$$X(p,W) = \left(-\frac{\left(\sum_{i=1}^{n} \frac{\partial a_{i}(p)}{\partial p_{1}}\right) + \frac{\partial b(p)}{\partial p_{1}}W}{b(p)}, ..., -\frac{\left(\sum_{i=1}^{n} \frac{\partial a_{i}(p)}{\partial p_{k}}\right) + \frac{\partial b(p)}{\partial p_{k}}w_{i}}{b(p)}\right)$$

Where, if $W = \sum_{i=1}^{n} w_i$, we can solve, for each j = 1, ..., k:

$$X_{j}(p, W) = -\frac{\left(\sum_{i=1}^{n} \frac{\partial a_{i}(p)}{\partial p_{j}}\right) + \frac{\partial b(p)}{\partial p_{j}}W}{b(p)}$$

$$= -\frac{\sum_{i=1}^{n} \left(\frac{\partial a_{i}(p)}{\partial p_{j}} + \frac{\partial b(p)}{\partial p_{j}}w_{i}\right)}{b(p)}$$

$$= \sum_{i=1}^{n} \left(-\frac{\frac{\partial a_{i}(p)}{\partial p_{j}} + \frac{\partial b(p)}{\partial p_{j}}w_{i}}{b(p)}\right)$$

$$X_{j}(p, W) = \sum_{i=1}^{n} x_{j}^{i}(p, w_{i})$$

Question 3: Homothetic Proferences

Complete, transitive preferences, \succsim , are homothetic if, $\forall x,y \in \mathbb{R}^k_+, t > 0$,

$$x \succsim y \iff tx \succsim ty$$

- (a) Let $x^* \in x(p, w)$ and define $Y = \{y \in \mathbb{R}^k_+ | y \notin x(p, w)\}.$
 - 1. Suppose, for some t > 0, that $tx^*(p, w) \notin x(p, tw)$
 - a. Since preferences are complete, there must exist some $y^* \in Y$ such that $ty^* \in x(p, tw)$
 - b. $x^* \in x(p,w) \land y^* \notin x(p,w) \Rightarrow x^* \succsim y^*$. By homothetic preferences, this implies that $tx^* \succsim ty^* \ \forall t > 0$
 - c. $tx^* \succsim ty^* \Rightarrow u(tx) \ge u(ty)$. Since $x^* \in x(p,w)$, then $p \cdot x^* \le w$. This implies also that $p \cdot (tx^*) \le tw$
 - d. Since $ty^* \in x(p, tw)$,

$$ty^* = \underset{x}{\operatorname{argmax}} u(x) \text{ s.t. } p \cdot x \le tw$$

And by c., $u(tx^*) \ge u(ty^*)$, where $p \cdot (tx^*) \le tw$. Thus, $tx^* \in x(p,tw)$

- \therefore by contradiction, $x^* \in x(p, w) \Rightarrow tx^* \in x(p, tw)$
- 2. Suppose $\exists y^* \in Y$ such that $ty^* \in x(p, tw)$
 - a. By definition, $ty \succeq z \ \forall z \in \mathbb{R}^k_+$ such that $p \cdot z \leq tw$
 - b. $p\cdot (tx^*)=t(p\cdot x^*)$ where, by definition, $p\cdot x^*\leq w$. Then $p\cdot (tx^*)\leq tw$. Thus, $ty^*\succsim tx^*$
 - c. Since preferences are homothetic, $ty^* \succsim tx^* \Rightarrow y^* \succsim x^*$. Thus, $y^* \in x(p,w)$
 - \therefore by contradiction, $tx^* \in x(p,tw) \Rightarrow x^* \in x(p,w)$
 - \therefore for any t > 0, x(p, tw) = tx(p, w)