REGRESSION METRICS

- MUKESH KUMAR

AGENDA

- ✓ Mean Squared Error (MSE)
- ✓ Mean Absolute Error (MAE)
- ✓ Root Mean Squared Error (RMSE)
- ✓ R-squared (R²)
- ✓ Adjusted R-squared

Why error metrics

 Once you have built a regression model, how do you know how good the model is?

 There are many metrics to find how good the model is, lets look at few of them

Mean Absolute Error (MAE)

Formula:
$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

- MAE measures the average magnitude of the errors without considering their direction.
- It is less sensitive to outliers compared to MSE.

Original MAE Formula:

$$ext{MAE} = rac{1}{n} \sum_{i=1}^n |y_i - \hat{y}_i|$$

Expanded Summation:

For a dataset with n observations, the summation $\sum_{i=1}^n |y_i - \hat{y}_i|$ expands as follows:

$$ext{MAE} = rac{1}{n} \left(|y_1 - \hat{y}_1| + |y_2 - \hat{y}_2| + |y_3 - \hat{y}_3| + \dots + |y_n - \hat{y}_n|
ight)$$

Advantages of MAE:

- Easy Interpretability: MAE is intuitive and easy to understand, representing the average error in the same units as the target variable.
- Less Sensitive to Outliers: MAE doesn't exaggerate large errors since it doesn't square them, making it more robust to outliers compared to MSE.
- **No Exaggeration of Errors:** MAE treats all errors linearly, offering a balanced view of average performance without overemphasizing large deviations.

Disadvantages of MAE:

- Equal Weight to All Errors: MAE treats small and large errors equally, which might not be ideal when larger errors are more significant in your context.
- Non-differentiable at Zero: MAE can be less convenient for optimization in gradient-based algorithms due to its nondifferentiability at zero.
- Under-penalization of Large Errors: MAE may underpenalize large errors, making it less suitable when large deviations are particularly problematic

Mean Squared Error (MSE)

Formula:
$$ext{MSE} = \frac{1}{n} \sum_{i=1}^n \left(y_i - \hat{y}_i \right)^2$$

- MSE is the most commonly used error function in linear regression.
- It penalizes larger errors more heavily due to the squaring term, making it sensitive to outliers.

Original MSE Formula:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Expanded Summation:

For a dataset with n observations, the summation $\sum_{i=1}^n \left(y_i - \hat{y}_i\right)^2$ expands as follows:

$$ext{MSE} = rac{1}{n} \left(\left(y_1 - \hat{y}_1
ight)^2 + \left(y_2 - \hat{y}_2
ight)^2 + \left(y_3 - \hat{y}_3
ight)^2 + \dots + \left(y_n - \hat{y}_n
ight)^2
ight)$$

Advantages of MSE:

- Sensitive to Large Errors: MSE squares the errors, giving more weight to larger errors, making it useful when you want to penalize large deviations more heavily.
- Mathematically Convenient: MSE is differentiable and widely used in gradient-based optimization algorithms, making it suitable for many machine learning models, particularly neural networks.
- Reflects Variability in Error Distribution: MSE captures the variability in the error distribution, providing insights into how widely the errors are spread.

Disadvantages of MSE:

- Less Interpretable: The squaring of errors means MSE is not in the same units as the target variable, making it less intuitive to interpret compared to MAE.
- Highly Sensitive to Outliers: MSE's emphasis on larger errors makes it very sensitive to outliers, which can disproportionately affect the metric.
- May Over-penalize Large Errors: By squaring the errors, MSE can exaggerate the impact of large errors, which might not be desirable in all applications.

Root Mean Squared Error (RMSE)

Formula:
$$\mathrm{RMSE} = \sqrt{rac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{y}_i
ight)^2}$$

- RMSE is the square root of MSE and has the same units as the target variable, making it more interpretable.
- Like MSE, it is sensitive to outliers.

Original RMSE Formula:

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Expanded Summation for RMSE:

For a dataset with n observations, the summation $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ inside the RMSE formula expands as follows:

$$ext{RMSE} = \sqrt{rac{1}{n} \left(\left(y_1 - \hat{y}_1
ight)^2 + \left(y_2 - \hat{y}_2
ight)^2 + \left(y_3 - \hat{y}_3
ight)^2 + \dots + \left(y_n - \hat{y}_n
ight)^2
ight)}$$

Advantages of RMSE:

- Same Units as Target Variable: RMSE is in the same units as the target variable, making it more interpretable than MSE while still reflecting error magnitude.
- Sensitive to Large Errors: Like MSE, RMSE squares the errors, giving greater weight to larger deviations, which is useful when larger errors need to be emphasized.
- Widely Used and Accepted: RMSE is a standard metric in regression tasks and is commonly used for evaluating model performance, making it a familiar and widely understood measure.

More on Gradient Vs loss

Jupyter Notebook: Gradient Vs loss.ipynb

Disadvantages of RMSE:

- Sensitive to Outliers: RMSE is highly sensitive to outliers due to the squaring of errors, which can lead to an overestimation of model error if outliers are present.
- Less Intuitive Interpretation: Although RMSE is in the same units as the target variable, the squaring of errors can make it less intuitive to interpret compared to simpler metrics like MAE.
- May Over-penalize Large Errors: RMSE can overemphasize large errors, which might not be desirable in situations where all errors should be treated more equally.

R-squared (R²)

$$R^{2} = 1 - \frac{SS_{RES}}{SS_{TOT}} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

- R² represents the proportion of the variance in the dependent variable that is predictable from the independent variables.
- While not an error function per se, it is often used to assess the goodness-of-fit of the model.

Advantages of R-squared:

- Easy Interpretation: R-squared provides a clear interpretation of model performance by representing the proportion of variance in the target variable explained by the model.
- **Standardized Measure:** R-squared is a widely recognized and commonly used metric in regression analysis, making it easy to compare different models.
- Indicates Goodness of Fit: A higher R-squared value indicates a better fit between the model and the data, showing how well the model captures the underlying trend.

Original R-squared Formula:

$$R^2 = 1 - rac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Expanded Summation for R-squared:

For a dataset with n observations, the formula can be expanded as follows:

$$R^{2} = 1 - \frac{\frac{1}{n} \left((y_{1} - \hat{y}_{1})^{2} + (y_{2} - \hat{y}_{2})^{2} + (y_{3} - \hat{y}_{3})^{2} + \dots + (y_{n} - \hat{y}_{n})^{2} \right)}{\frac{1}{n} \left((y_{1} - \bar{y})^{2} + (y_{2} - \bar{y})^{2} + (y_{3} - \bar{y})^{2} + \dots + (y_{n} - \bar{y})^{2} \right)}$$

Disadvantages of R-squared:

- Insensitive to Overfitting: R-squared does not account for model complexity, meaning it can increase with additional predictors, even if they do not contribute meaningfully, potentially leading to overfitting.
- Misleading with Non-linear Relationships: R-squared assumes a linear relationship between variables, making it less useful or misleading when the true relationship is nonlinear.
- Does Not Measure Predictive Power: A high R-squared value doesn't necessarily mean that the model will perform well on new, unseen data, as it only reflects the fit to the training data.

Adjusted R-squared

Formula: Adjusted
$$R^2 = 1 - \left(\frac{1 - R^2}{n - k - 1} \right) imes (n - 1)$$

- N- number of samples
- K features
- Adjusted R² accounts for the number of predictors in the model, preventing overfitting by penalizing the inclusion of unnecessary variables.

Advantages of Adjusted R-squared:

- Accounts for Model Complexity: Adjusted R-squared adjusts for the number of predictors in the model, penalizing the addition of unnecessary variables, which helps prevent overfitting.
- Better Comparison Between Models: It allows for a more accurate comparison of models with different numbers of predictors, as it adjusts for the model complexity.
- Reflects True Fit: Adjusted R-squared provides a more realistic measure of model performance by considering both the goodness of fit and the number of predictors, making it a better indicator of how well the model generalizes.

Disadvantages of Adjusted R-squared:

- **Complexity in Calculation:** Adjusted R-squared is less intuitive and slightly more complex to calculate than the standard R-squared, which might make it harder to interpret for beginners.
- Limited Use in Non-linear Models: Similar to R-squared, Adjusted R-squared assumes a linear relationship and may not be as informative or useful in non-linear models.
- Does Not Account for All Overfitting: While it adjusts for the number of predictors, Adjusted R-squared does not fully account for all forms of overfitting, particularly if irrelevant variables still slightly improve the fit.