CAR SALES ANALYSIS IN UKRAINE ¶

Do the EDA and find key metrics

Out[3]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
0	Ford	15500.0	crossover	68	2.5	Gas	yes	2010	Kuga	full
1	Mercedes- Benz	20500.0	sedan	173	1.8	Gas	yes	2011	E- Class	rear
2	Mercedes- Benz	35000.0	other	135	5.5	Petrol	yes	2008	CL 550	rear
3	Mercedes- Benz	17800.0	van	162	1.8	Diesel	yes	2012	B 180	front
4	Mercedes- Benz	33000.0	vagon	91	NaN	Other	yes	2013	E- Class	NaN
9571	Hyundai	14500.0	crossover	140	2.0	Gas	yes	2011	Tucson	front
9572	Volkswagen	2200.0	vagon	150	1.6	Petrol	yes	1986	Passat B2	front
9573	Mercedes- Benz	18500.0	crossover	180	3.5	Petrol	yes	2008	ML 350	full
9574	Lexus	16999.0	sedan	150	3.5	Gas	yes	2008	ES 350	front
9575	Audi	22500.0	other	71	3.6	Petrol	yes	2007	Q7	full

9576 rows × 10 columns

In [4]: 1 car_s.describe()

Out[4]:

	price	mileage	engV	year
count	9576.000000	9576.000000	9142.000000	9576.000000
mean	15633.317316	138.862364	2.646344	2006.605994
std	24106.523436	98.629754	5.927699	7.067924
min	0.000000	0.000000	0.100000	1953.000000
25%	4999.000000	70.000000	1.600000	2004.000000
50%	9200.000000	128.000000	2.000000	2008.000000
75%	16700.000000	194.000000	2.500000	2012.000000
max	547800.000000	999.000000	99.990000	2016.000000

In [5]: 1 car_s.shape

Out[5]: (9576, 10)

In [6]: 1 car_s.info

ut[6]:	<box< td=""><td>d method DataFr</td><td>ame.info</td><td>of</td><td>ca</td><td>r</td><td>price</td><td>body mileag</td></box<>	d method DataFr	ame.info	of	ca	r	price	body mileag	
	e en	gV engType regi	stration	\					
	0	Ford	15500.0	crossover	68	2.5	Gas	yes	
	1	Mercedes-Benz	20500.0	sedan	173	1.8	Gas	yes	
	2	Mercedes-Benz	35000.0	other	135	5.5	Petrol	yes	
	3	Mercedes-Benz	17800.0	van	162	1.8	Diesel	yes	
	4	Mercedes-Benz	33000.0	vagon	91	NaN	Other	yes	
		• • •		• • •				• • •	
	9571	Hyundai	14500.0	crossover	140	2.0	Gas	yes	
	9572	Volkswagen	2200.0	vagon	150	1.6	Petrol	yes	
	9573	Mercedes-Benz	18500.0	crossover	180	3.5	Petrol	yes	
	9574	Lexus	16999.0	sedan	150	3.5	Gas	yes	
	9575	Audi	22500.0	other	71	3.6	Petrol	yes	

	year	model	drive
0	2010	Kuga	full
1	2011	E-Class	rear
2	2008	CL 550	rear
3	2012	B 180	front
4	2013	E-Class	NaN
9571	2011	Tucson	front
9572	1986	Passat B2	front
9573	2008	ML 350	full
9574	2008	ES 350	front
9575	2007	Q7	full

[9576 rows x 10 columns]>

In [7]: 1 car_s.head(10)

Out[7]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
0	Ford	15500.0	crossover	68	2.5	Gas	yes	2010	Kuga	full
1	Mercedes-Benz	20500.0	sedan	173	1.8	Gas	yes	2011	E-Class	rear
2	Mercedes-Benz	35000.0	other	135	5.5	Petrol	yes	2008	CL 550	rear
3	Mercedes-Benz	17800.0	van	162	1.8	Diesel	yes	2012	B 180	front
4	Mercedes-Benz	33000.0	vagon	91	NaN	Other	yes	2013	E-Class	NaN
5	Nissan	16600.0	crossover	83	2.0	Petrol	yes	2013	X-Trail	full
6	Honda	6500.0	sedan	199	2.0	Petrol	yes	2003	Accord	front
7	Renault	10500.0	vagon	185	1.5	Diesel	yes	2011	Megane	front
8	Mercedes-Benz	21500.0	sedan	146	1.8	Gas	yes	2012	E-Class	rear
9	Mercedes-Benz	22700.0	sedan	125	2.2	Diesel	yes	2010	E-Class	rear

In [8]: 1 from pandas_profiling import ProfileReport

In [9]: 1 car_sales=ProfileReport(car_s,title="Car_Sales")

In [10]: 1 car_sales

Summarize dataset: 36/36 [00:06<00:00, 5.68it/s,

100% Completed]

Generate report structure: 1/1 [00:07<00:00,

100% 7.59s/it]

Render HTML: 100% 1/1 [00:01<00:00, 1.31s/it]

Overview

Dataset statistics	
Number of variables	10
Number of observations	9576
Missing cells	945
Missing cells (%)	1.0%
Duplicate rows	88
Duplicate rows (%)	0.9%
Total size in memory	748.2 KiB
Average record size in memory	80.0 B
Variable types	
Categorical	5
Numeric	4
Boolean	1
Alerts	
Dataset has 88 (0.9%) duplicate rows	Duplicates
car has a high cardinality: 87 distinct values	High cardinality

```
In [11]:
           1 car_s.isnull().sum()
Out[11]: car
                            0
         price
                            0
         body
                            0
                            0
         mileage
         engV
                          434
                            0
         engType
         registration
                            0
         year
                            0
                            0
         model
         drive
                          511
         dtype: int64
In [12]:
           1 car_s["engV"]
Out[12]: 0
                  2.5
                  1.8
         1
         2
                  5.5
         3
                 1.8
         4
                 NaN
                 . . .
         9571
                 2.0
         9572
                 1.6
         9573
                 3.5
         9574
                 3.5
         9575
                 3.6
         Name: engV, Length: 9576, dtype: float64
```

In [13]: 1 car_s.sort_values(by=['price'],ascending=False)

Out[13]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
7621	Bentley	547800.0	sedan	0	6.75	Petrol	yes	2016	Mulsanne	rear
7914	Bentley	499999.0	crossover	0	6.00	Petrol	yes	2016	Bentayga	full
1611	Bentley	499999.0	crossover	0	6.00	Petrol	yes	2016	Bentayga	full
4134	Bentley	449999.0	crossover	0	6.00	Petrol	yes	2016	Bentayga	full
4325	Mercedes- Benz	300000.0	sedan	68	6.00	Petrol	yes	2011	S 600	NaN
70	Mercedes- Benz	0.0	crossover	0	3.00	Diesel	yes	2016	GLE- Class	full
158	Land Rover	0.0	crossover	45	3.00	Petrol	yes	2014	Range Rover Sport	full
4786	Mercedes- Benz	0.0	crossover	27	3.00	Diesel	yes	2015	G 350	full
4784	Rolls- Royce	0.0	sedan	22	6.75	Other	yes	2008	Phantom	rear
215	Mercedes- Benz	0.0	sedan	62	3.00	Diesel	yes	2013	S 350	rear

9576 rows × 10 columns

In [14]: 1 car_s.value_counts(["car"]).count()

Out[14]: 87

Out[15]: <AxesSubplot:>

In [16]: 1 car_s

Out[16]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
0	Ford	15500.0	crossover	68	2.5	Gas	yes	2010	Kuga	full
1	Mercedes- Benz	20500.0	sedan	173	1.8	Gas	yes	2011	E- Class	rear
2	Mercedes- Benz	35000.0	other	135	5.5	Petrol	yes	2008	CL 550	rear
3	Mercedes- Benz	17800.0	van	162	1.8	Diesel	yes	2012	B 180	front
4	Mercedes- Benz	33000.0	vagon	91	NaN	Other	yes	2013	E- Class	NaN
9571	Hyundai	14500.0	crossover	140	2.0	Gas	yes	2011	Tucson	front
9572	Volkswagen	2200.0	vagon	150	1.6	Petrol	yes	1986	Passat B2	front
9573	Mercedes- Benz	18500.0	crossover	180	3.5	Petrol	yes	2008	ML 350	full
9574	Lexus	16999.0	sedan	150	3.5	Gas	yes	2008	ES 350	front
9575	Audi	22500.0	other	71	3.6	Petrol	yes	2007	Q7	full

9576 rows × 10 columns

Out[17]: car

Volkswagen 936
Mercedes-Benz 921
BMW 694
Toyota 541
VAZ 489
Name: price, dtype: int64

it has been obsserved that the maximum sessling cars is Volkswagen, Mercedez-Benz & BMW

Out[18]: <AxesSubplot:>


```
In [19]:
          1 # To find the Null Values
           3 car_s.isnull().sum()
Out[19]: car
                           0
         price
                           0
         body
                           0
         mileage
                           0
         engV
                         434
         engType
                           0
         registration
                           0
                           0
         year
         model
                           0
         drive
                         511
         dtype: int64
In [20]:
           1 # We can see the eng V & drive has null values. To fill the values of null c
           2 #To use mean or median, we want to see if the distribution has outlier or no
           3 # To check the outlier we can use the box plot
           1 #Find the outlier of engV
In [21]:
           2 sns.boxplot(data=car_s.engV)
```

Out[21]: <AxesSubplot:>


```
In [22]: 1 car_s.value_counts("registration")
```

Out[22]: registration yes 9015 no 561 dtype: int64 In [23]:

- 1 #To find the duplicate rows
- 2 car_s.loc[car_s.duplicated(),:]

Out[23]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
18	Nissan	16600.0	crossover	83	2.0	Petrol	yes	2013	X-Trail	full
42	Mercedes- Benz	20400.0	sedan	190	1.8	Gas	yes	2011	E- Class	rear
70	Mercedes- Benz	0.0	crossover	0	3.0	Diesel	yes	2016	GLE- Class	full
86	Toyota	103999.0	crossover	0	4.5	Diesel	yes	2016	Land Cruiser 200	full
98	Mercedes- Benz	20400.0	sedan	190	1.8	Gas	yes	2011	E- Class	rear
						•••				
9156	Volkswagen	15700.0	sedan	110	1.8	Petrol	yes	2011	Passat B7	front
9163	Mercedes- Benz	20500.0	sedan	222	5.5	Petrol	yes	2006	S 500	rear
9164	VAZ	3900.0	hatch	121	1.4	Petrol	yes	2008	1119	front
9169	Hyundai	12900.0	crossover	49	2.7	Petrol	yes	2008	Tucson	full
9477	BMW	77777.0	sedan	8	4.4	Petrol	yes	2014	750	full

113 rows × 10 columns

```
In [24]: 1 car_s.duplicated().sum()
```

Out[24]: 113

In [25]: 1 #To remove the null value "drop_duplicates"

In [26]: 1 car_s.drop_duplicates(inplace=True)

```
1 | car_s.value_counts("engV")
In [27]:
Out[27]: engV
          2.00
                  1525
          1.60
                  1224
          1.50
                   689
          3.00
                   672
          1.80
                   575
          4.67
                     1
          1.12
                     1
          5.40
                      1
          0.65
                     1
          0.10
                     1
          Length: 117, dtype: int64
In [28]:
           1 car_s.loc[car_s.duplicated(),:]
Out[28]:
            car price body mileage engV engType registration year model drive
          There is no duplicates in the data
```

In [29]: 1 car_s

Out[29]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
0	Ford	15500.0	crossover	68	2.5	Gas	yes	2010	Kuga	full
1	Mercedes- Benz	20500.0	sedan	173	1.8	Gas	yes	2011	E- Class	rear
2	Mercedes- Benz	35000.0	other	135	5.5	Petrol	yes	2008	CL 550	rear
3	Mercedes- Benz	17800.0	van	162	1.8	Diesel	yes	2012	B 180	front
4	Mercedes- Benz	33000.0	vagon	91	NaN	Other	yes	2013	E- Class	NaN
9571	Hyundai	14500.0	crossover	140	2.0	Gas	yes	2011	Tucson	front
9572	Volkswagen	2200.0	vagon	150	1.6	Petrol	yes	1986	Passat B2	front
9573	Mercedes- Benz	18500.0	crossover	180	3.5	Petrol	yes	2008	ML 350	full
9574	Lexus	16999.0	sedan	150	3.5	Gas	yes	2008	ES 350	front
9575	Audi	22500.0	other	71	3.6	Petrol	yes	2007	Q7	full

9463 rows × 10 columns

In [30]: 1 car_s_copy=car_s.copy()

In [31]: 1 car_s_copy.head() Out[31]: body mileage engV engType registration year car price model drive 0 Ford 15500.0 crossover 68 2.5 Gas yes 2010 Kuga full Mercedes-Benz 20500.0 173 1.8 2011 E-Class sedan Gas yes rear Mercedes-Benz 35000.0 other 135 5.5 Petrol 2008 CL 550 2 yes rear Mercedes-Benz 17800.0 162 2012 B 180 1.8 Diesel front 3 van yes Mercedes-Benz 33000.0 vagon 91 NaN Other yes 2013 E-Class NaN car_s_copy.loc[car_s_copy.duplicated()] In [32]: Out[32]: car price body mileage engV engType registration year model drive In [33]: from pandas_profiling import ProfileReport

In [34]: 1 ProfileReport(car_s_copy,title="car_s_copy")

Summarize dataset: 36/36 [00:06<00:00, 5.47it/s,

100% Completed]

Generate report structure: 1/1 [02:58<00:00,

100% 178.52s/it]

Render HTML: 100% 1/1 [00:01<00:00, 1.07s/it]

Overview

Dataset statistics

Number of variables	10
Number of observations	9463
Missing cells	944
Missing cells (%)	1.0%
Duplicate rows	0
Duplicate rows (%)	0.0%
Total size in memory	1.0 MiB
Average record size in memory	115.9 B

Variable types

Categorical	5
Numeric	4
Boolean	1

Alerts

car has a high cardinality: 87 distinct values

High cardinality

model has a high cardinality: 863 distinct values

High cardinality

High cardinality

Out[34]:

```
In [35]: 1 car_s_copy['drive'].mode()
```

Out[35]: 0 front

Name: drive, dtype: object

```
In [36]:
           1 car_s_copy['drive']=car_s_copy['drive'].fillna('front')
           2 car_s_copy['drive'].isnull().sum()
Out[36]: 0
In [37]:
           1 car_s_copy['price'].isnull().sum()
Out[37]: 0
In [38]:
             car_s_copy['engV']=car_s_copy.groupby(['car','body'])['engV'].transform(lamb
           1
             car_s_copy['engV'].isnull().sum()
Out[38]: 10
In [39]:
             car_s_copy.isnull().sum()
Out[39]: car
                          0
         price
                          0
         body
                          0
         mileage
                          0
                          10
         engV
         engType
                          0
         registration
                          0
                          0
         year
         model
                          0
         drive
         dtype: int64
In [40]:
             car_s_copy[car_s_copy.engV.isnull()]
```

Out[40]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
319	Tesla	58000.0	hatch	52	NaN	Other	yes	2013	Model S	front
1437	Tesla	178500.0	crossover	0	NaN	Other	yes	2016	Model X	full
2486	Tesla	185000.0	crossover	1	NaN	Other	yes	2016	Model X	full
5084	GAZ	0.0	crossover	1	NaN	Petrol	yes	1963	69	full
6773	UAZ	3000.0	other	1	NaN	Other	yes	1985	3303	full
8569	Tesla	176900.0	crossover	0	NaN	Other	yes	2016	Model X	full
8824	Fisker	0.0	other	100	NaN	Other	yes	2001	Karma	front
8905	Changan	6028.0	crossover	101	NaN	Other	yes	2005	Ideal	front
9360	Barkas	5500.0	van	80	NaN	Petrol	yes	2015	B1000	front
9566	UAZ	850.0	van	255	NaN	Other	yes	1981	3962	front

```
In [41]:
           1 car_s_copy['engV']
Out[41]: 0
                  2.5
         1
                  1.8
         2
                  5.5
         3
                  1.8
         4
                  2.3
         9571
                  2.0
         9572
                  1.6
         9573
                  3.5
         9574
                  3.5
         9575
                  3.6
         Name: engV, Length: 9463, dtype: float64
In [43]:
           1 #Drop Null Values
           2 car_s_copy.dropna(subset=['engV'],inplace=True)
In [44]:
             car_s_copy.isnull().sum()
Out[44]: car
                          0
         price
                          0
         body
                          0
         mileage
                          0
         engV
                          0
                          0
         engType
         registration
                          0
         year
                          0
         model
                          0
         drive
         dtype: int64
In [45]:
              b=car_s_copy.mileage.value_counts()
In [46]:
              car_s_copy['mileage'].replace(0,'b')
Out[46]: 0
                   68
         1
                  173
         2
                  135
         3
                  162
         4
                   91
         9571
                  140
         9572
                  150
         9573
                  180
         9574
                  150
         9575
                  71
         Name: mileage, Length: 9453, dtype: object
```

```
In [47]:
           1 car_s_copy['mileage'].value_counts()
Out[47]: 0
                 308
                 295
         1
                 170
         200
         150
                 130
         250
                 128
         362
                   1
         547
                   1
         413
                   1
         332
                   1
         427
                   1
         Name: mileage, Length: 442, dtype: int64
In [48]:
              car_s_copy['mileage']=car_s['mileage']
In [49]:
              car_s_copy['mileage']
Out[49]: 0
                   68
         1
                  173
         2
                  135
         3
                  162
         4
                   91
         9571
                  140
         9572
                  150
         9573
                  180
         9574
                  150
         9575
                  71
         Name: mileage, Length: 9453, dtype: int64
In [50]:
              car_s_copy['mileage']=car_s_copy['mileage'].replace(0,'b')
In [53]:
              car_s_copy['mileage']
Out[53]: 0
                   68
                  173
         1
         2
                  135
         3
                  162
         4
                   91
         9571
                  140
         9572
                  150
         9573
                  180
                  150
         9574
         9575
                   71
         Name: mileage, Length: 9453, dtype: object
           1 profile_cleaned=ProfileReport(car_s_copy,title="Cleaned Profile")
In [54]:
```

In [55]: 1 profile_cleaned

Summarize dataset: 28/28 [00:03<00:00, 7.30it/s,

100% Completed]

Generate report structure: 1/1 [00:02<00:00,

100% 2.23s/it]

Render HTML: 100% 1/1 [00:00<00:00, 1.10it/s]

Overview

Datas	set s	statis	Stics

Number of variables	10
Number of observations	9453
Missing cells	0
Missing cells (%)	0.0%
Duplicate rows	183
Duplicate rows (%)	1.9%
Total size in memory	1.0 MiB
Average record size in memory	116.0 B
Variable types	

Categorical	5
Numeric	3
Unsupported	1
Boolean	1

Alerts

Dataset has 183 (1.9%) duplicate rows Duplicates

Out[56]: <AxesSubplot:xlabel='body', ylabel='count'>

From the graph. it is understood that sedan cars are sold maximum

Out[57]: <AxesSubplot:xlabel='mileage', ylabel='price'>

From the above graph, it seems majority of thr car price falls under 150000 and the milage in between 0 to 400

In [58]:

1 #Total number of cars registered
2 car_s_copy

Out[58]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
0	Ford	15500.0	crossover	68	2.5	Gas	yes	2010	Kuga	full
1	Mercedes- Benz	20500.0	sedan	173	1.8	Gas	yes	2011	E- Class	rear
2	Mercedes- Benz	35000.0	other	135	5.5	Petrol	yes	2008	CL 550	rear
3	Mercedes- Benz	17800.0	van	162	1.8	Diesel	yes	2012	B 180	front
4	Mercedes- Benz	33000.0	vagon	91	2.3	Other	yes	2013	E- Class	front
9571	Hyundai	14500.0	crossover	140	2.0	Gas	yes	2011	Tucson	front
9572	Volkswagen	2200.0	vagon	150	1.6	Petrol	yes	1986	Passat B2	front
9573	Mercedes- Benz	18500.0	crossover	180	3.5	Petrol	yes	2008	ML 350	full
9574	Lexus	16999.0	sedan	150	3.5	Gas	yes	2008	ES 350	front
9575	Audi	22500.0	other	71	3.6	Petrol	yes	2007	Q7	full

9453 rows × 10 columns

In [59]: 1 sns.countplot('registration',data=car_s_copy).set_title('Car registration st

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnin
g: Pass the following variable as a keyword arg: x. From version 0.12, the only
valid positional argument will be `data`, and passing other arguments without a
n explicit keyword will result in an error or misinterpretation.
 warnings.warn(

Out[59]: Text(0.5, 1.0, 'Car registration status')

From the above graph, it can observe that 8000+ cars are registered and less than 500 cars are not registered

In [60]: 1 #Price distribution between registered and non registered cars
2 car_s_copy.groupby(['registration','body'])['price'].mean()

Out[60]: registration body no 7816.542373 crossover hatch 2563.750000 other 3817.393939 sedan 3906.605691 vagon 3055.507353 van 3488.457143 29400.477100 yes crossover hatch 8606.659842 other 19714.860379 sedan 12613.659852 9944.810356 vagon van 10531.747228

Name: price, dtype: float64

In [61]: 1 car_s_copy

Out[61]:

	car	price	body	mileage	engV	engType	registration	year	model	drive
0	Ford	15500.0	crossover	68	2.5	Gas	yes	2010	Kuga	full
1	Mercedes- Benz	20500.0	sedan	173	1.8	Gas	yes	2011	E- Class	rear
2	Mercedes- Benz	35000.0	other	135	5.5	Petrol	yes	2008	CL 550	rear
3	Mercedes- Benz	17800.0	van	162	1.8	Diesel	yes	2012	B 180	front
4	Mercedes- Benz	33000.0	vagon	91	2.3	Other	yes	2013	E- Class	front
9571	Hyundai	14500.0	crossover	140	2.0	Gas	yes	2011	Tucson	front
9572	Volkswagen	2200.0	vagon	150	1.6	Petrol	yes	1986	Passat B2	front
9573	Mercedes- Benz	18500.0	crossover	180	3.5	Petrol	yes	2008	ML 350	full
9574	Lexus	16999.0	sedan	150	3.5	Gas	yes	2008	ES 350	front
9575	Audi	22500.0	other	71	3.6	Petrol	yes	2007	Q7	full

9453 rows × 10 columns

Out[62]: <AxesSubplot:xlabel='registration', ylabel='price'>

Majority of the cars are registered and the price is less than 30000. Non registered cars are cheaper in cost

Out[63]: <AxesSubplot:xlabel='engV', ylabel='price'>

Out[64]: <AxesSubplot:xlabel='engV', ylabel='price'>


```
In [65]: 1 #Type of engine cars users prefers maximum
2 sns.countplot(data=car_s_copy,x='engType')
```

Out[65]: <AxesSubplot:xlabel='engType', ylabel='count'>

Petrol cars are more prefered by users followed by diesel, Gas and other

```
In [67]: 1 #Corelation between the data
2 car_cor=car_s_copy.corr()

In [68]: 1 sns.heatmap(data=car_cor,annot=True,linecolor='black',)
2 plt.title("Corelation between features")
```

Out[68]: Text(0.5, 1.0, 'Corelation between features')

-Mileage is negatively corelated with year. -Price is also negatively corelated with year -Engine Value is positively corelated with Mileage and price

Out[69]: Text(0.5, 1.0, 'Distribution of Price')

From the above distribution plot, we can see most of the car sales price lies between 0 to 8000	0