Pool Table Recognition

Scott Harris

Colorado School of Mines

5/3/16

Introduction Set Up Method Finding The Balls Mapping the Table Result

Outline

- Introduction
- Set Up
- Method
- Finding The Balls
 - Classifying the Balls
- Mapping the Table
 - Finding the Edges
 - Identifying the Edges
 - Projecting the Balls
- 6 Results

Introduction

Goals

- Find the balls in play
- Create a top down map of the table
- Use multiple views
- Classify the balls

Introduction Continued

Topics Covered

- Circle finding
- Projective transformations
- General image statistics

Previous work

- Three Other Classmates
- Many circle finding algorithms
- Pool table mappings
 - Use a full view of the table
 - Full views are difficult to obtain
 - Require additional equipment

Set Up

Assumptions

- Standard brown and green color scheme
- Bumper markers are circles
- Takes 4 images
- Images taken in a specific order

ntroduction Set Up Method Finding The Balls Mapping the Table Results

Image Sequence

Start

Method

General Steps

- Find the balls
 - Classify the balls
- Map the table
 - Find the edges
 - Identify the edges
 - Project the balls

Finding the balls

- Assume we are looking for balls in the specific corner
- Look for dark and light polarity
- Eliminate double detection

Example detection

Example cleaned detection

Ball classification

Secondary goal

Method

- Based of standard deviation
- Solids have fewer instances of color
- Find std inside ball radius
- Threshold with mean value of standard deviations

Example Classification

Mapping the table

Steps

- Find the edge markers
- Identify
- Create projection
- Project balls onto digital table

Edge Markers

- All pool tables have them
- Spaced set distances
- Circles on most tables
- High contrast
- Found using circle finding

roduction Set Up Method Finding The Balls **Mapping the Table** Results
oo **o●oo**ooooo

Example found edges

Eliminate false edges

- Eliminate ones on balls
- Eliminate groups

troduction Set Up Method Finding The Balls Mapping the Table Result oo ooo●○○○○

Example cleaned edges

Identifuing the Edges

Steps

- Group co-linearly
- Determine long or short edge
- Use sequence information for global location

roduction Set Up Method Finding The Balls **Mapping the Table** Results
oo oooo●ooo

Grouped Edges

Projecting the balls

- Create a synthetic image with set inches to pixel ratio
- Use fitgeotrans function
 - Needs 4 points
 - Use the located edges
- Transform applied to ball centers
 - Only transform balls in the image corner

Digital Table

Populated Digital Table

Ball Finding

Over 20 Images

True Balls	Found Balls
105	92
Success	87.76 %
True Solids	Found Solids
57	22
Success	38.60 %
True Stripes	Found Stripes
48	69
Success	143.75 %

Table Mapping

- Designed table
 - 5/5 Successful image set runs
 - Edges always found and identified
 - Ball location error increases drastically towards middle of table
- Rec center table
 - Poor results
 - No edge markers detected
 - Fewer balls detected

Middle Error

Future Work

Possible Improvements

- Increase picture size
- Constant lighting
- New classification algorithm
- Require more edge markers in each picture
- Ray trace uniquely identified balls