Demonstração Exaustiva

Introdução

Prof. Eanes Torres Pereira

UFCG CEEL

Técnicas de Demonstração

Prof. Eanes Torres Pereira

FMCC-2

1/29

Roteiro

•00000

1. Introdução

- 4. Demonstração por Contraposição

Prof Fanes Torres Pereira

Introdução

Introdução

000000

- ► Os números primos são infinitos?
- ► A soma de dois números pares é um número par?
- ► Como saber que um programa está correto?
- Para um positivo inteiro $n \ge 3$, não existem inteiros positivos x, y e z que satisfaçam a equação $x^n + y^n = z^n$ (Último Teorema de Fermat).

Prof. Eanes Torres Pereira 2 / 29

Introdução

Introdução

000000

- ▶ Uma prova estabelece a verdade de afirmações matemáticas.
- Um teorema é uma afirmação que pode ser mostrada verdadeira.
- Um lemma é normalmente um teorema auxiliar utilizado para provar outros teoremas.
- Um corolário é um teorema que pode ser estabelecido diretamente de um teorema que foi provado.
- ► Uma conjectura é uma afirmação sendo proposta como verdade, mas que precisa ser provada para virar teorema.

Prof. Eanes Torres Pereira 3 / 29 UFCG CEEI

Forma dos Teoremas

Muitos teoremas são apresentados na forma condicional p o q.

Exemplo 1: "Se x > y, no qual x e y são números reais positivos, então $x^2 > y^2$ ".

O que esse teorema realmente significa é:

$$\forall x, y (P(x, y) \rightarrow Q(x, y))$$

onde

Introdução

000000

$$P(x, y)$$
 denota $x > y$
 $Q(x, y)$ denota $x^2 > y^2$

Prof. Eanes Torres Pereira 4 / 29

Forma dos Teoremas

Introdução

000000

- ► Teoremas também aparecem na forma bi-condicional.
- ► A implicação deve ser demonstrada nas duas direções.

Prof. Eanes Torres Pereira 5 / 29 UFCG CEEI

Preliminares

00000

Considere as definições a seguir para os exemplos que seguem.

Paridade de Números Inteiros

Um inteiro n é par se existe um inteiro k tal que n=2k, e n é ímpar se existe um inteiro k tal que n = 2k + 1.

Prof Fanes Torres Pereira UFCG CEEL 6/29

Preliminares

000000

Considere as definições a seguir para os exemplos que seguem.

Paridade de Números Inteiros

Um inteiro n é par se existe um inteiro k tal que n=2k, e n é ímpar se existe um inteiro k tal que n = 2k + 1.

Números Racionais

Um número real r é dito racional se existem inteiros p e q com $q \neq 0$ tal que r = p/q. Um número que não é racional é chamado irracional.

Preliminares

000000

Considere as definições a seguir para os exemplos que seguem.

Paridade de Números Inteiros

Um inteiro n é par se existe um inteiro k tal que n=2k, e n é ímpar se existe um inteiro k tal que n = 2k + 1.

Números Racionais

Um número real r é dito racional se existem inteiros p e q com $q \neq 0$ tal que r = p/q. Um número que não é racional é chamado irracional.

Potência Perfeita

Um número inteiro n é dito uma potência perfeita se existem números inteiros b > 1 e k > 1 tais que $n = b^k$.

Prof Fanes Torres Pereira 6/29LIECG CEEL

Roteiro

- 1. Introdução
- 2. Demonstração Exaustiva
- 3. Demonstração Direta
- 4. Demonstração por Contraposição
- 5. Demonstração por Contradição
- 6. Provas de Existência

Introdução

Demonstração Exaustiva e por Contra-Exemplo

- ► Verifica-se a verdade da conjectura para todos os elementos da coleção.
- Para provar a falsidade da conjectura, basta achar um contra-exemplo.

Prof. Eanes Torres Pereira 7/29 UFCG CEEI

Introdução

Prove a conjectura "Para todo inteiro positivo n, $n! \le n^2$ ".

Solução: A conjectura é falsa pois não é verdade para todo n: é falsa para n=4.

n	n!	n^2	$n! \leq n^2$
1	1	1	sim
2	2	4	sim
3	6	9	sim
4	24	16	não

Introdução

Prove a conjectura "Para qualquer inteiro positivo menor ou igual a 5, o quadrado do inteiro é menor ou igual à soma de 10 mais 5 vezes o inteiro".

Solução: A conjectura é verdadeira pois

n	n^2	10 + 5n	$n^2 \leq 10 + 5n$
1	1	15	sim
2	4	20	sim
3	9	25	sim
4	16	30	sim
5	25	35	sim

Exercícios

Exercício 1: Mostre que a afirmação "Todo número inteiro positivo é a soma dos quadrados de dois inteiros" é falsa.

Exercício 2: Mostre que os únicos inteiros positivos consecutivos não excedendo 100 que são potências perfeitas são 8 e 9.

Prof. Eanes Torres Pereira 10 / 29 UFCG CEEI

Introdução

Demonstração por Casos

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Prof. Eanes Torres Pereira UFCG CEEL 11 / 29

Demonstração por Casos

Introdução

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

Demonstração por Casos

Introdução

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

(i) Quando n = 0. Como $0^2 = 0$, então $n^2 \ge n$ é verdadeiro nesse caso.

Prof. Eanes Torres Pereira 11/29 UFCG CEEI

Demonstração por Casos

Introdução

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 \ge n$.

- (i) Quando n = 0. Como $0^2 = 0$, então $n^2 \ge n$ é verdadeiro nesse caso.
- (ii) Quando $n \ge 1$. Multiplicando os dois lados da inequação por n, obtemos

$$n \cdot n > n \cdot 1$$

Isso implica que $n^2 \ge n$ para $n \ge 1$.

Prof. Eanes Torres Pereira

Introdução

Demonstração por Casos

Uma prova por casos deve cobrir todos os casos possíveis que aparecem em um teorema.

Exemplo 4: Prove que se n é um inteiro, então $n^2 > n$.

- (i) Quando n = 0. Como $0^2 = 0$, então $n^2 > n$ é verdadeiro nesse caso.
- (ii) Quando $n \ge 1$. Multiplicando os dois lados da inequação por n, obtemos

$$n \cdot n \ge n \cdot 1$$

Isso implica que $n^2 > n$ para n > 1.

(iii) Quando $n \le -1$. Como $n^2 \ge 0$ segue que $n^2 > n$. \square

Exercícios

Exercício 3: Mostre que se x ou y forem inteiros pares, então xy é par.

Exercício 4: Mostre que se x e y são números reais, então

$$\max(x,y) + \min(x,y) = x + y$$

Roteiro

- 1. Introdução
- 2. Demonstração Exaustiva
- 3. Demonstração Direta
- 4. Demonstração por Contraposição
- 5. Demonstração por Contradição
- 6. Provas de Existência

Prof. Eanes Torres Pereira

Demonstração Direta

A demonstração direta de uma afirmação da forma $p \rightarrow q$:

- 1. assume que o antecedente p é verdadeiro e daí;
- 2. deduz a conclusão q.

Normalmente usa-se axiomas, definições, lemmas e teoremas, em conjunto com regras de inferência, para mostrar que *q* também deve ser verdade.

Prof. Eanes Torres Pereira 13 / 29 UFCG CEEI

Prove o seguinte teorema:

"se n é um número inteiro ímpar, então n^2 também é ímpar."

UFCG CEEL

Introdução

Prove o seguinte teorema:

"se n é um número inteiro ímpar, então n^2 também é ímpar."

Solução:

- 1. Como n é ímpar, n=2k+1 para $k\in\mathbb{Z}$ (pela definição).
- 2. Elevando os dois lados da igualdade ao quadrado, $n^2 = (2k+1)^2$, temos

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

3. Portanto concluimos que n^2 também é ímpar.

Prove que o produto de dois números inteiros pares é par.

Introdução

Prove que o produto de dois números inteiros pares é par.

Solução:

- 1. Como x e y são pares, x=2m e y=2n para $m,n\in\mathbb{Z}$ (pela definição).
- 2. Como

$$xy = (2m)(2n) = 2(2mn)$$

que por definição é um número par, provamos o teorema.

Exercícios

- ► Exercício 5: Dê uma demonstração direta ao teorema "Se um inteiro é divisível por 6, então duas vezes esse inteiro é divisível por 4".
- ► Exercício 6: Prove que se *m* e *n* são ambos quadrados perfeitos, então *nm* também é um quadrado perfeito.
- ► Exercício 7: Mostre que o produto de um número ímpar com um número par é um número par.

Prof. Eanes Torres Pereira 16 / 29 UFCG CEEI

Roteiro

- 1. Introdução
- 2. Demonstração Exaustiva
- 3. Demonstração Direta
- 4. Demonstração por Contraposição
- 5. Demonstração por Contradição
- 6. Provas de Existência

Prof. Eanes Torres Pereira

Demonstração por Contraposição

Uma conjectura da forma p o q pode ser provada mostrando-se a sua contrapositiva

$$\neg q \rightarrow \neg p$$

UFCG CEEL

Prof. Eanes Torres Pereira 17 / 29

Mostre que se 3n + 2 é ímpar, então n é ímpar.

Mostre que se 3n + 2 é ímpar, então n é ímpar.

Solução: Primeiro assumimos que n é par (a negação que n é ímpar), ou seja, n=2k. Agora basta verificar que 3n+2 também é par:

$$3(2k) + 2 = 6k + 2 = 2(3k + 1)$$

Prof. Eanes Torres Pereira 18 / 29 UFCG CEEI

Exercício 8

Mostre que se $n \in \mathbb{Z}$ e n^2 é ímpar, então n é ímpar.

Prof. Eanes Torres Pereira

Mostre que se n=ab, no qual a e b são inteiros positivos, então $a \leq \sqrt{n}$ ou $b \leq \sqrt{n}$.

Prof. Eanes Torres Pereira

Mostre que se n=ab, no qual a e b são inteiros positivos, então $a \leq \sqrt{n}$ ou $b \leq \sqrt{n}$.

Solução:

1. Pela contrapositiva temos

$$\neg (a \leq \sqrt{n} \lor b \leq \sqrt{n}) \rightarrow (n \neq ab)$$

2. Por De'Morgan:

$$\neg (a \le \sqrt{n} \lor b \le \sqrt{n}) \equiv a > \sqrt{n} \land b > \sqrt{n}$$

3. Multiplicando as desigualdades temos:

$$ab > (\sqrt{n})^2 = n$$

4. Como $ab > n \rightarrow ab \neq n$, Q.E.D.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Exercício 9

Prove que o número n é um inteiro ímpar se, e somente se,

$$3n + 5 = 6k + 8$$

para algum inteiro k.

Note que como se trata de uma implicação bicondicional, você deve provar os dois lados da implicação:

- i "Se n é um inteiro ímpar, então 3n + 5 = 6k + 8 para algum inteiro k."
- ii "Se 3n + 5 = 6k + 8 para algum inteiro k, então n é um inteiro ímpar ."

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ か へ ○

Roteiro

- 1. Introdução
- 2. Demonstração Exaustiva
- 3. Demonstração Direta
- 4. Demonstração por Contraposição
- 5. Demonstração por Contradição
- 6. Provas de Existência

Prof. Eanes Torres Pereira

Demonstração por Absurdo

- Para demonstrar p, assumimos $\neg p$ e mostramos que isso leva a uma contradição.
- ▶ Para provar $p \rightarrow q$, basta mostrar $p \land \neg q \rightarrow \mathbf{F}$.

Prof. Eanes Torres Pereira 22 / 29 UFCG CEEI

Mostre que se um número qualquer somado a ele mesmo resulta nele mesmo, então esse número é 0.

Solução:

1. Tentamos mostrar que

$$[(x+x=x) \land (x \neq 0)] \rightarrow \mathbf{F}$$

onde x é um número qualquer.

2. Como $x \neq 0$, então ambos os lados da equação 2x = x podem ser divididos por x, dando 2 = 1, o que é um absurdo.

Mostre que se 3n + 2 é ímpar, então n é ímpar por contradição.

Mostre que se 3n + 2 é ímpar, então n é ímpar por contradição.

Solução:

- ▶ Vamos assumir que 3n + 2 é ímpar e n é par.
- ▶ Vimos no Exemplo 7 que se n é par então 3n + 2 é par.
- ► Por contradição *n* tem que ser ímpar.

Prof. Eanes Torres Pereira 24 / 29 UFCG CEEI

Exercícios

- **Exercício 8:** Mostre por absurdo que $\sqrt{2}$ é um número irracional.
- ► Exercício 9: Mostre por absurdo que existem infinitos números primos.

Prof. Eanes Torres Pereira 25 / 29 UFCG CEEI

Roteiro

Introdução

- 1. Introdução
- 2. Demonstração Exaustiva
- 3. Demonstração Direta
- 4. Demonstração por Contraposição
- 5. Demonstração por Contradição
- 6. Provas de Existência

Provas de Existência

- ▶ Muitos teoremas são da forma $\exists x P(x)$.
- ► Formas de provar:
 - ightharpoonup Provas **construtivas:** encontrar elemento a tal que P(a).
 - Provas **não construtivas:** provar que $\exists x P(x)$ é verdade de alguma outra forma.

Introdução

Mostre que existe um inteiro positivo que pode ser escrito como a soma de cubos de inteiros positivos de duas formas diferentes.

Solução:

► Após uma busca computacional, descobrimos que:

$$1729 = 10^3 + 9^3 = 12^3 + 1^3$$

Erros em Demonstrações

Há muitos erros comuns na construção de demonstrações, e.g., falácias e erros de aritmética.

Exemplo 12: O que está errado com a prova abaixo?

Passo

Introdução

1.
$$a = b$$

2.
$$a^2 = ab$$

3.
$$a^2 - b^2 = ab - b^2$$

4.
$$(a - b)(a + b) = b(a - b)$$

5.
$$a + b = b$$

6.
$$2b = b$$

$$7.2 = 1$$

Justificativa

Dados dois inteiros positivos iguais

Multiplica ambos os lados de (1) por a Subtrai b^2 de ambos os lados de (2)

Fatoriza ambos os lados de (3)

Divide ambos os lados de (4) por a - b

Substitui a por b em (5) já que a = b e simplifica

Divide ambos os lados de (6) por b

Referências

- Keneth H. Rosen. Discrete Mathematics and Its Applications. Sexta Edição. McGRAW-HILL International Edition, 2007.
- Judith L. Gersting. Fundamentos Matemáticos para a Ciência da Computação. Quinta Edição. LTC, 2004.
- Leandro Balby Marinho. Slides fornecidos de anos anteriores, 2013.

Prof. Eanes Torres Pereira 29 / 29 UFCG CEEI