Recall: The general form of a linear program

For the objective variables x_1, \ldots, x_n find the minimum (or the maximum) of the objective function

$$z = c_1 x_1 + \ldots + c_n x_n$$

subject to the constraints:

$$a_{i1}x_1 + \ldots + a_{in}x_n \stackrel{\leq}{=} b_i$$

for i = 1, ..., m, and possibly $x_j \ge 0$ for j = 1, ..., n.

The equality (or standard) form of a linear program:

- we are looking for the maximum;
- all constraints are of the form

$$a_{i1}x_1 + \ldots + a_{in}x_n = b_i$$

• we require that $x_j \ge 0$ for j = 1, ..., n.

Fact

Every linear program can be converted to the equality form.

- finding minimum of $Z = C_1 \times_1 + C_2 \times_2 + ... + C_n \times_n$ Il

 finding maximum of $Z = -(C_1 \times_1 + C_2 \times_2 + ... + C_n \times_n)$ $= -C_1 \times_1 C_2 \times_2^- ... C_n \times_n$
 - if we have a constraint of the form $a_{i_1} \times_1 + ... + a_{i_n} \times_n \leq b_i$ then we can replace it by $a_{i_1} \times_1 + ... + a_{i_n} \times_n + s_i = b_i$ where $s_i > 0$ is a new <u>slack variable</u>.
 - a constraint of the form $a_{i_1} \times_1 + ... + a_{i_n} \times_n \gg b_i$ is equivalent to $-a_{i_1} \times_1 ... a_{i_n} \times_n \leqslant -b_i$ so we can use a slack variable again: $-a_{i_1} \times_1 ... a_{i_n} \times_n + s_i = -b_i$ where $s_i \gg 0$.
 - if x_j is an urestricted variable (i.e. x_j can be any real number) then we can replace if by $x_j = x_j^+ x_j^-$ where x_j^+, x_j^- are new variables such that $x_j^+, x_j^- \gg 0$.

Example. Convert the following linear program to the equality form.

Minimize the function

$$z = 6x_1 - 10x_2$$

subject to the constraints:

$$5x_1 + 7x_2 \le 8$$

$$4x_1 + 2x_2 \ge 10$$

$$x_1 \ge 0$$

$$x_2 \in \mathbb{R}$$

Solution:

Maximize

$$Z = -6x_1 + 10x_2$$

Constraints:

$$5x_{1} + 7x_{2} + 9_{1} = 8$$
 $-4x_{1} - 2x_{2} + 9_{2} = -10$
 $x_{1} > 0$
 $y_{1} > 0$
 $y_{2} > 0$
 $y_{3} = 0$
 $y_{4} \in \mathbb{R}$

Morimi ze:

$$Z = -6x_1 + 10x_2^+ - 10x_2^- + 0s_1 + 0s_2$$

$$5 \times_{1} + 7 \times_{2}^{+} - 7 \times_{2}^{-} + 9_{1} = 8$$

$$-4 \times_{1} - 2 \times_{2}^{+} + 2 \times_{2}^{-} + 8_{2} = -10$$

$$\times_{2} = \times_{2}^{+} - \times_{2}^{-}$$

$$\times_{1} > 0$$

$$\times_{2} > 0$$

$$9_{1} > 0$$

$$9_{2} > 0$$

the equality form

The inequality form of a linear program:

- we are looking for the maximum;
- all constraints are of the form

$$a_{i1}x_1 + \ldots + a_{in}x_n \leq b_i$$

• we require that $x_j \ge 0$ for j = 1, ..., n.

Fact

Every linear program can be converted to the inequality form.

• if we have a constraint of the form $a_{i_1} \times_i + ... + a_{i_n} \times_n = b_i$ then we can replace it by two constraints $a_{i_1} \times_i + ... + a_{i_n} \times_n \leq b_i$ $a_{i_1} \times_i + ... + a_{i_n} \times_n \geq b_i$

Linear programs with Python:

scipy.optimize.linprog (looks for the minimum of the objective function).