네트워크 계층(Network Layer)

https://youtu.be/Rr8wch3JiS8

Contents

Network Layer

IP(Internet Protocol)

ICMP,IGMP,ARP

Routing

security

Network Layer

OSI 7Layer

Network Layer 주기능

- 경로제어(routing) 라우터를 통해 패킷을 보낼 경 로를 설정.

Forwarding 하나의 폴트에서 폴트로 옮김

Protocol

- -IP
- -IGMP
- -ICMP
- -ARP

Network Layer

Switching

1. Circuit switching

폴트끼리 물리적으로 이어줌 (회선,회로) (ex. 아두이노 케이블 연결)

2. Packet switching

:source에서 destination까지 패킷을 어떻게 보낼지 결정.

- Virtual Circuit approach

경로설정 -> path가 1개, 모든 패킷 동일.

Connection Oriented Service

- Datagram approach

모든 패킷마다 path가 다름

->라우팅 테이블 기반으로 path 정함.

Connectionless Service

=> 실시간 서비스시, 데이터 경로가 다 다르면 순서대로 도착하지 않을 가능성.

Network Layer Protocol- IP(Internet Protocol)

IP 패킷

VER 4 bits	HLEN 4 bits		Service 8 bits	Total length 16 bits	
Identification 16 bits			n	Flags 3 bits	Fragmentation offset 13 bits
Time to I 8 bits		_	rotocol 8 bits	Header checksum 16 bits	
Source IP address					
Destination IP address					
Option					

VER: IP version

HLEN: 4-byte word

Service:Precedence

TOS bits

Total length: 전체 사이즈(1bit=1byte)

Identification:IP패킷 자를 때 하나의 패킷

으로 합칠 수 있는 정보

(+Flags,Fragmentation offset 함께 사용)

Time to live: 몇 개의 라우터를 거쳤는지 확

인

Protocol:상위 계층 정보

Header checksum:헤더 오류 체크

IPv4 address

- 가변적(논리적 주소) 주소공간 232
- Address prefix:어드레스 첫번째 부분, 네트워크 ID (n bits) suffix: 어드레스 뒷부분 , host ID (32-n bits)
- Classful address(계층 시스템)

prefix		suffix	
ex) 10000000	00001011	00000011	00011111
120.	11.	3.	

• Network Address (네트워크 주소) prefix 고정 – suffix 모두 0

Class	Prefix (bits)	Suffix (bits)	Host 수	앞 첫비트 고정	첫 자리
А	8	24	2^{24}	0	0~127
В	16	16	2 ¹⁶	10	128~191
С	24	8	28	110	192~223
D	Multicast addresses			1110	224~239
Е	Reserved for future use			1111	240~255

Ex) 클래스 A 비트마스크 11111111 000...... 0000 => slash /8 (앞에서부터 1의 개수) 120.11.3.31/8

• Mask(비트 마스크) 라우터는 클래스 이해 x ->클래스 확인으로 비트 마스크 사용 (AND 연산)

IPv4 address

• Classful address 문제점 = IP주소 모자름

=> longterm: IPv6

shorterm: classless address or NAT

• 사이더(Classless Inter-Domain Routing, CIDR): 클래스x, 마스킹으로 표현

NAT

유저가 내부에서는 많은 주소 사용, 외부에서는 하나의 주소 사용 => NAT 가 해줌

ICMP,IGMP,ARP

- ICMP (Internet Control Message Protocol)
 여러 정보를 전달하거나 컨트롤하는 용도로 사용되는 프로토콜 오류 메세지를 전송받는 데 주로 쓰임
 IP는 error-reporting, correcting 기능 없음
 => ICMP가 함
- IGMP(Internet Group Management Protocol) 서브넷 간에 멀티 캐스트 패킷의 목적지를 관리하기 위한 프로토콜
- ARP(Address Resolution Protocol)
 IP 주소를 물리적 네트워크 주소로 대응시키기 위해 사용되는 프로토콜

Routing protocol

ex) RIP, OSPF

• 내부 게이트웨이 프로토콜(IGP) = 내부경로 대에서 라우팅 정보를 교환할 때사용하는 프로토콜

• 외부 게이트웨이 프로토콜(EGP) = 외부경로 다른 그룹과 라우팅 정보를 교환하는 프로토콜 ex) BGP

Protocols

Interior Routing Protocols:

RIPIGRP

Autonomous

System 200

Autonomous

System 100

Routing protocol

프로토콜 및 라 우팅방식	RIP Distance-Vector	OSPF Link-State	BGP Path-Vector
업데이트	인접라우터	Area내 모든라우 터	BGP neighbor
업데이트 시점	일정주기	Link 변화발생시	Link 변화발생시
경로선택	벨만-포드 알고 리즘	Dijkstra 알고리 즘	정책기반(poicy)
Metric	Hop count	Hop 수, Bandwi dth, Delay등 다 양	Path
특징	불완전, 빠름 IGP	테이블 만들기까 지 시간이 걸림 IGP	EGP

Security

- Packet sniffing (패킷 습득) : 네트워크 상에서 자신이 아닌 다른 상대방들의 패킷 교환을 엿듣는 것
 - => 데이터 암호화
- IP spoofing :네트워크 계층에서 출발지 IP주소를 조작하는 방식 => 라우터에서 소스 라우팅 허용x, 암호화된 프로토콜 사용
- ICMP Flooding:다수의 호스트가 존재하는 서브 네트워크에 변조된 ICMP Echo 패 킷을 Broadcast 전송 (Source IP를 피해자의 IP로 변조함)

Q&A

