Customer Transaction Prediction

Table of Contents

Business Problem

Model Overview

Our Dataset

Model Performance

O3Data Preprocessing

Conclusion &
Business Implications

01Business Problem

Which customers will make a specific transaction in the future, irrespective of the amount of money transacted?

02Our Dataset

- 200 Anonymized numeric feature variables
- The binary target column
- An ID code column

03Data Preprocessing

After excluding the outliers, 5.52% of data is removed.

| Z-Score | > 3

Data Preprocessing

04Model Overview

- Logistic Regression with gridsearchCV
- XGBoost with gridsearchCV
- LightGBM with gridsearchCV

Logistic Regression with gridsearchCV

Why powerful?

Easy to implement, interpret and efficient to train. Can be use as benchmark to measure performance

- Simplest machine learning algorithms
- Provide the importance of each feature

- Over-fit when the datasets are on high dimensional
- Sensitive to outliers

XGBoost with gridsearchCV

Why powerful? <u>Learn from previous mistake through iteration</u>

- General good result
- Less data preparation needed
- Provide insight on key factor

- Result is more likely to be influenced by extreme value
- Can not transform categorical data in numerical form

LightGBM with gridsearchCV

Why powerful than XGBoost?

<u>LightGBM grows vertically while XGBoost</u> <u>grows horizontally</u>

- Time efficient
- General good result
- Perform well with huge dataset

 Not compatible with small dataset

05Model Performance

- Logistic Regression with gridsearchCV
- XGBoost with gridsearchCV
- LightGBM with gridsearchCV

Logistic Regression with gridsearchCV

Hyperparameter Tuning

Penalty	l2
С	0.001
solver	lbfgs

Model Performance

Accuracy	Precision	Recall	F1-score
0.91	0.89	0.91	0.89

XGBoost with gridsearchCV

Hyperparameter Tuning

colsample_bytree	0.3	
gamma	0.01	
learning_rate	0.1	
max_depth	3	
n_estimators	200	
objective	binary:logistic	

Model Performance

Accuracy	Precision	Recall	F1-score
0.90	0.90	0.90	0.85

LightGBM with gridsearchCV

Hyperparameter Tuning

colsample_bytree	0.3
learning_rate	0.1
max_depth	3
n_estimators	200
objective	binary

Model Performance

Accuracy	Precision	Recall	F1-score
0.91	0.90	0.91	0.87

O6 Conclusion & Business Implications

 91% of the customers can be predicted correctly for future transactions

Advantages of this analysis:

- More precise and targeted incentive plan
 - By Category, amount of money
- Fraud detection on irregular transactions
 - Comparing to predicted actions

Thank You!

