Computational Foundations for ML

10-607

Notes and reminders

Lab 3 on Monday

 $A \in \mathbb{R}$ For k = 2,3,... $A(k) \leftarrow A(k-1) + A(k-2)$

R(n) intrus of $R(L_2^2I)$ $R(\Gamma_2^2T)$ -> index 1000 C $\tilde{V}=1$ $\tilde{V}=2$

The grick brown fox

5 -> NP UP NP -> dut A N

0 (N 3)
0 (N 3)

P(i,j) = P(i-1,j-1) + P(i-1,j)

A (i,j) = 0

 $P(i,j) + 0 \Rightarrow A(i,j)$ $j=1 \Rightarrow 1$ $i=j \Rightarrow 1$ $T \Rightarrow P(i-1,j-1) + P(i-1,j)$ Garsign to A(i,j) before returning

subsequence XYZ, XYY not ZYX S = X4227 T = XYZXYZ ACijj LCS(i,j) > lougest common subrequence of 5[1...i] and T[1...j] S[i]=T[j] = cell LCS(i-1,j-1), append S[i] else = LCS(i-1,j) = take longer
LCS(i,j-1)

7 12 22 22 (1) -27

$$J(u) = \cot \theta$$
chapast
path
$$from u + 0$$

$$gon!$$

$$J(u) = 0$$

$$J(u) = (u, w) \in E$$

$$(u, u) = \cot \theta$$

$$(u$$

$$J(y_0al, 0) = 0$$

$$J(v_1 0) = 0$$

$$J(v_1 x_1) = \min \left[J(v_1 x_{-1}) \right]$$

$$\lim_{(v_1 w_1 \in E)} \left[c_{vw} + J(w_1 x_{-1}) \right]$$

$$O(|V||E|)$$

Bellman-Ford

pancauses 00
$$\frac{1}{2}$$
 0 $\frac{1}{2}$ 0 $\frac{1}{2}$ 8 $\frac{1}{2}$ 10 $\frac{1}{2}$ 10 $\frac{1}{2}$ 11 $\frac{1}{2}$ 12 $\frac{1}{2}$ 13 $\frac{1}{2}$ 14 $\frac{1}{2}$ 14 $\frac{1}{2}$ 16 $\frac{1}{2}$ 17 $\frac{1}{2}$ 18 $\frac{1}{2}$ 19 $\frac{1}{2$