Dataset: Air Quality in India

Team: "Data Scientist"

Topic: A quick run on all 1-4 parts. Model: random forest

1. Dataset Exploration

- 2. Temporal Analysis
- 3. Regional Trends
- 4. Predictive Modeling

Extra: maybe web service for data science?

Dataset: Air Quality in India

Team: "Data Scientist"

1. Dataset Exploration

- Dataset: India Air Quality Data (Kaggle)
- Objective: Understand air pollution trends and explore correlation with environmental policies.
- Data Info:
 - Source: Historical Daily Ambient Air Quality Data
 - Key Features: sampling _date, state, city, pollutants like SO2, NO2, PM2.5, etc.
 - Preprocessing Steps:
 - Converted sampling_date to datetime
 - Extracted year, month, and week
 - Checked for missing dates and data integrity

Initial Findings:

- Coverage spans multiple years and regions
- Varying availability of pollutants across observations

Dataset: Air Quality in India

Team: "Data Scientist"

1. Dataset Exploration

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 435742 entries, 0 to 435741
Data columns (total 13 columns):
                                 Non-Null Count
    Column
                                                  Dtype
    stn code
                                 291665 non-null object
    sampling date
                                 435739 non-null object
    state
                                 435742 non-null object
    location
                                 435739 non-null object
                                 286261 non-null object
    agency
                                 430349 non-null object
    type
    so2
                                 401096 non-null float64
    no2
                                 419509 non-null float64
                                 395520 non-null float64
    rspm
                                 198355 non-null float64
     spm
    location_monitoring_station 408251 non-null object
                                 9314 non-null
                                                  float64
    pm2 5
 12 date
                                 435735 non-null object
dtypes: float64(5), object(8)
memory usage: 43.2+ MB
```

Dataset: Air Quality in India

Team: "Data Scientist"

Pollutant variables' distributions

Dataset: Air Quality in India

Team: "Data Scientist"

2. Temporal Analysis

- Goal: Discover trends over time and detect seasonal effects
- Techniques Used:
 - Time feature extraction (year, month, week)
 - Grouped statistics and line plots (notebook shows monthly/weekly patterns)

Findings:

- Visible long-term trends in pollutants
- Potential seasonality (e.g., spikes in winter for PM2.5)

Dataset: Air Quality in India

Team: "Data Scientist"

Dataset: Air Quality in India

Team: "Data Scientist"

2. Temporal Analysis

Week

Dataset: Air Quality in India

Team: "Data Scientist"

2. Temporal Analysis: component analysis

Monthly Seasonal Decomposition of SO2

Dataset: Air Quality in India

Team: "Data Scientist"

2. Temporal Analysis: component analysis

Dataset: Air Quality in India

Team: "Data Scientist"

2. Temporal Analysis: regime change analysis

Dataset: Air Quality in India

Team: "Data Scientist"

3. Regional Analysis

- Objective: Understand spatial variation in air pollution
- Methods:
 - Grouped data by state and city
 - Used summary statistics and visualizations (e.g., box plots, bar charts)
- Findings:
 - Certain cities/states consistently show higher pollution
 - Highlights of regional disparities and potential policy impact areas

Dataset: Air Quality in India

Team: "Data Scientist"

3. Regional Analysis

Dataset: Air Quality in India

Team: "Data Scientist"

3. Temporal + Regional mixed effects analysis

3D View: SO2 by Time and City

Anova test for Mixed Effects (temporal + regional)

Mixed Linear Model Regression Results					
Model: No. Observations: No. Groups: Min. group size: Max. group size: Mean group size:		Dependent Method: Scale: Log-Likel Converged	ihood:	REML 3623.2	2091 032.3882
	. Std.E	irr. z	P> z	[0.025	0.975]
Intercept 104.2		546 40.9 326 -44.0	35 0.000 28 0.000		
Group Var 1834.9		554	======		

Dataset: Air Quality in India

Team: "Data Scientist"

3. Temporal - Regional Analysis

Dataset: Air Quality in India

Team: "Data Scientist"

4. Predictive Modeling:

STEP-BY-STEP PLAN:

- 1. Prepare time-based features (month, year, week, lagged values)
- 2. Train/Test Split (time-aware)
- 3. Fit models (e.g., Random Forest, Linear Regression, XGBoost)
- 4. Evaluate performance (MAE, RMSE, R²)
- 5. Visualize predictions

For this testing, we used:

model = RandomForestRegressor(n_estimators=100, random_state=42)

Dataset: Air Quality in India

Team: "Data Scientist"

4. Predictive Modeling:

Predicting SO2 (Monthly Model)
MAE: 0.85 | R² Score: 0.24
Figure size 1000x400 with 0 Axes>

Dataset: Air Quality in India

Team: "Data Scientist"

4. Predictive Modeling:

Predicting NO2 (Weekly Model)
MAE: 1.05 | R² Score: 0.64

Dataset: Air Quality in India

Team: "Data Scientist"

Extra: maybe web service for data science?

Data science + software engineering

