Department of Electrical and Computer Engineering North South University

EEE111 Project

Regulated DC power supply converts AC line voltage to a constant DC voltage for 4.3V

Asif Rahman ID # 1821214042

Mossran Tahmid Khan ID # 1821117042

Shahriar Hasan Shanto ID # 2011465642

Saniyat Tamjit Niloy ID # 2111801643

Objective:

Regulated DC power supply converts AC line voltage to a constant DC voltage of 4.3.

Introduction:

A regulated power supply (also known usually as a linear power supply) ensures that the output current remains constant, even if the input changes, by converting unregulated AC (alternating current) to a constant DC (direct current).

Fig1: Regulated DC Power Supply Diagram

Equipment List:

Serial No	Component Details	Specification	Quantity
1	P-N Junction Diode	1N4007	4
2	Resistor	220Ω, 1ΚΩ	1
3	Stepdown	Input-220v 50hz	1
	Transformer	Output-12v	
4	Capacitor	220Uf	1
5	Zener Diode	1N4731A	1
6	Chords and wire		as required
7	Bread Board		1

Circuit Diagram:

Fig2: Regulated DC power supply multisim diagram

Result (Simulation Result):

Fig3: Simulation result

Mathematical Calculation:

Assume, Vzd = V(R2) = 4.3.

So,
$$12 = 0.43$$
mA

$$Iz = I(R1) - I2 = 70.77mA - 0.43mA = 70.34 mA$$

$$V(R2) = 0.43mA * 10Kohm = 4.3 V.$$