2. Projekt

Quasi-Newton-Verfahren & Gauß-Newton-Verfahren

im Fach

Numerische Optimierung

Juni 2020

Maximilian Gaul

Aufgabe 1

Siehe Programmcode in Project 2.m.

 $I - \frac{s_s TA}{s^T As} + \frac{A^{-1} y y^T}{y^T s} + \frac{s^s TA - A^{-1} y s^T A + s(s^T - (A^{-1} y)^T)A}{y^T s s^T As} - \frac{s^s TA + s(s^T - (A^{-1} y)^T)A s s^T A}{y^T s s^T A s} + \frac{s^s T y y^T - A^{-1} y s^T T y y^T}{(y^T s)^2} - \frac{(s^T - (A^{-1} y)^T)y s s^T A}{(y^T s)^2 s^T A s} + \frac{(s^T - (A^{-1} y)^T)y s s^T A A}{(y^T s)^2 s^T A s} - \frac{(s^T - (A^{-1} y)^T)y s$ $\frac{1 - \frac{s(As)T}{sTAs} + \frac{A - 1yyT}{yTs} + \frac{(s - A - 1y)sTA + s(s - A - 1y)TA}{yTs} + \frac{(s - A - 1y)sTA + s(s - A - 1y)TyyT + s(s - A - 1y)TyyT + s(s - A - 1y)TyyT}{yTs} + \frac{(s - A - 1y)TysTA}{yTs} + \frac{(s - A - 1y)TysTA}{yTs} + \frac{(s - A - 1y)TysTA}{yTs} + \frac{(s - A - 1y)TysTA}{(yTs)^2} + \frac{(s - A - 1y)TysTAs}{(yTs)^2} + \frac{(s I - \frac{s_s TA}{s^T As} + \frac{A^{-1} yy^T}{y^T s} + \frac{2s_s TA - A^{-1} y_s TA - sy^T}{y^T s} - \frac{2s_s TA - A^{-1} y_s TA - sy^T}{y^T s^T As} \cdot \frac{2s_s TA - A^{-1} y_s TA - sy^T}{(y^T s)^2} \cdot \frac{s_s TA - A^{-1} y_s TA - sy^T}{(y^T s)^2} \cdot \frac{s_s TA + \frac{s_s TA - y^T (A^{-1})^T}{(y^T s)^2} \cdot \frac{s_s TA + \frac{s_s TA - y^T (A^{-1})^T}{(y^T s)^2} \cdot \frac{s_s TA - \frac{s_s TA - y^T}{(y^T s)^2} \cdot \frac{s_s TA - y$

Aufgabe 3

Wenn die Suchrichtung des BFGS Verfahrens:

$$d = -B \cdot \nabla f(x)$$

keine Abstiegsrichtung ist, d.h. die Bedingung:

$$\nabla f(x)^T \cdot d < 0$$

nicht erfüllt ist, muss das Verfahren 'resettet' werden. In diesem Fall bietet es sich an, die Suchrichtung auf den negativen Gradienten zu setzen:

$$d = -\nabla f(x)$$

Da nun die Abstiegsrichtung nicht mehr zur approximierten Inversen der Hesse-Matrix B passt, muss diese ebenfalls für den nächsten Schritt neu bestimmt werden. Hierzu bieten sich verschiedene Möglichkeiten an:

- Wie beim Start des BFGS-Verfahrens B=I setzen
 - Hierbei geht jeglicher berechnete Fortschritt verloren, es handelt sich um einen recht naiven Ansatz
- Die Hesse-Matrix einmalig aus Differenzenquotienten des Gradienten bestimmen und anschließend invertieren
 - Hoher Rechenaufwand von $\mathcal{O}(n^2)$ für die Hesse-Matrix und nochmal $\mathcal{O}(n^3)$ für das Invertieren
 - Bisher berechneter Fortschritt geht ebenfalls verloren aber die Approximation der Hesse-Matrix ist sehr genau
- Man könnte, wie in den Vorlesungsfolien beschrieben, $\frac{y^Ts}{y^Ty} \cdot I_n$ als positivdefinitve Matrix verwenden

Um herauszufinden, welche dieser Methoden am besten geeignet ist (d.h. die richtig Lösung in der kürzesten Zeit findet), wird die Laufzeit des inversen BFGS-Verfahrens bestimmt:

Abbildung 1: Vergleich der Rechenzeit für eine Genauigkeit von 10^{-8} gemittelt über 100 Durchläufe