INTRODUCTION

DATABASE MANAGEMENT SYSTEM

Sujan Tamrakar

Concepts

Data

- □ Collection of facts & figures on any topic
- May or may not give meaning
- When processed gives information
- Stored for future reference
- Examples:
 - Text: numbers, scripts, any textual contents, etc.
 - Image: photographs, medical/ satellite charts, etc.
 - Audio: songs & music, speech, conversation, etc.
 - Video: documentary, live telecast, movies, etc.

Concepts

THE NATURE OF DATA IS SHIFTING

essential

Concepts

Database

- Collection of related data on a specific kind
- Collection of coherent data with inherent meaning
- Data are collected and integrated
- Can be accessed by many users concurrently but security should be maintained
- ☐ Used in: banks, universities, hospitals, research centres, industries, telecommunications, sales, human resources, etc.

Concepts

- Database Management System
 - Collection of programs that allows users to manipulate data in db
 - □ Responsible for defining, constructing, manipulating & sharing db
 - Takes request from users via application interface
 - Processes and returns results to user
 - □ DB + Software = DBMS

Pros | Need | Necessity | Objective

- Speed
- Compactness
- Less drudgery (mechanical work)
- Accuracy & up to date info
- Security
- Share ability
- Redundancy check
- Inconsistency check
- Backup and Recovery
- Persistence storage
- ☐ Multi user-interface

Database Users

- Application Programmer
 - Writes db application in various languages
- Database Administrator
 - Administers db, dbms and related software, authorizes users to access db

Database Users (cont...)

Lack of experience

- End User
 - Access the db by various queries, Uses to fulfil his goal
 - Types:
 - Casual end user: ocassionally uses db (middle/high level manager)
 - Naïve end user: frequently uses db (bank tellers/reservation counters)
 - Sophisticated end user: uses for complex requirement (scientists, analysts)
 - Standalone end user: uses personal db for simpler frequent tasks (normal layman)

Data Abstraction

- Db's records are needed to be retrieved efficiently
- Designers have used complex data structure to represent & operate on data
- All db users aren't trained & lack knowledge
- □ To simplify user interaction, complexity are hidden through several levels of abstraction.

Data Abstraction

Reality

Figure 3: Three Levels of Data Abstractions

Conceptual Model

- Discrete Objects
- Continuous Fields

Logical Model

- Object
- Attribute
- Class

Physical Model

- Row
- Column
- Table

Data Abstraction (cont...)

- Physical Level
 - Lowest level of abstraction
 - Describes HOW data are actually stored
 - Describes complex low level data structure in detail
- Logical Level
 - Next higher level of abstraction
 - Describes WHAT data are stored in db & WHAT relationship exist among those data
 - Describes entire db in simpler structure (but complex in physical level)
 - Used by DBA (as he decides WHAT info to keep)

Data Abstraction (cont...)

- View Level
 - Highest level of abstraction
 - Provides interface to various users
 - Simplifies user interaction with the system
 - System may provide many views for same db (based on roles and access policy)

Data Abstraction (cont...)

Figure 1 Levels of Abstraction in Automotive Design

Data Independence

- Immunity of applications to change in one layer without affecting other layers.
- Capacity to change schema at one level of a DBMS without having to change schema at next higher level.
- □ Why?
 - Portability
 - Changing requirement (changes in any layer)
 - Dynamic nature of app

Data Independence (cont...)

Data Independence

Data Independence (cont...)

Types:

- 1. Logical Data Independence
 - Capacity to change logical level without having to change external view.
 - Occurs very often (for better adaptive product)
 - Changes in logical level like db manipulation, constraint changes, database schema changes, etc.

Data Independence (cont...)

Types:

- 2. Physical Data Independence
 - Capacity to change internal schema (physical level) without having to change logical level
 - Changes may be needed as some physical files may be reorganized.
 - App remains unaware of these details
 - Exists in most db as exact location of data on disk, hardware details of storage, compression, etc. are hidden from users.

