ACH2043 INTRODUÇÃO À TEORIA DA COMPUTAÇÃO

Aula 11

Cap 3.1 – Máquinas de Turing Cap 3.2 – Variantes de MT

Profa. Ariane Machado Lima ariane.machado@usp.br

Máquinas de Turing – Definição formal

Uma *máquina de Turing* é uma 7-upla, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{aceita}}, q_{\text{rejeita}})$, onde Q, Σ, Γ são todos conjuntos finitos e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada sem o símbolo em branco \Box ,
- **3.** Γ é o alfabeto de fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- 5. $q_0 \in Q$ é o estado inicial,
- **6.** $q_{\text{aceita}} \in Q$ é o estado de aceitação, e
- 7. $q_{\text{rejeita}} \in Q$ é o estado de rejeição, onde $q_{\text{rejeita}} \neq q_{\text{aceita}}$.

Máquinas de Turing – Definição formal

Uma *máquina de Turing* é uma 7-upla, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{aceita}}, q_{\text{rejeita}})$, onde Q, Σ, Γ são todos conjuntos finitos e

- 1. Q é o conjunto de estados,
- 2. Σ é o alfabeto de entrada sem o símbolo em branco \Box ,
- **3.** Γ é o alfabeto de fita, onde $\sqcup \in \Gamma$ e $\Sigma \subseteq \Gamma$,
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$ é a função de transição,
- 5. $q_0 \in Q$ é o estado inicial,
- 6. $q_{\text{aceita}} \in Q$ é o estado de aceitação, e
- 7. $q_{\text{rejeita}} \in Q$ é o estado de rejeição, onde $q_{\text{rejeita}} \neq q_{\text{aceita}}$.

$$\delta \colon Q' \times \Gamma \longrightarrow Q \times \Gamma \times \{E, D\}$$
, onde $Q' \notin Q$ sem $q_{\text{aceita}} \in q_{\text{rejeita}}$

- A entrada fica na porção mais à esquerda da fita
- O símbolo em branco marca o fim da entrada
- A máquina começa apontando para a primeira posição da fita
- Se a máquina está na primeira posição e tenta fazer um movimento para a esquerda, permanece no lugar
- Pára SOMENTE quando entra em um estado de aceitação ou rejeição

Configuração - situação atual da máquina:

- Configuração situação atual da máquina:
 - Estado atual
 - Conteúdo da fita
 - Posição da cabeça de fita
- Ex:

Dizemos que uma configuração C_1 origina uma configuração C_2 se a máquina puder ir de C_1 a C_2 em um **único** passo.

Suponha que tenhamos $a, b \in c$ em Γ , assim como $u \in v$ em Γ^* e os estados q_i e q_j . Nesse caso $ua q_i bv$ e $u q_j acv$ são duas configurações. Digamos que

 $ua q_i bv$ origina $u q_j acv$

se na função de transição

Suponha que tenhamos $a, b \in c$ em Γ , assim como $u \in v$ em Γ^* e os estados q_i e q_j . Nesse caso $ua q_i bv$ e $u q_j acv$ são duas configurações. Digamos que

 $ua q_i bv$ origina $u q_j acv$

se na função de transição $\delta(q_i, b) = (q_j, c, E)$.

Suponha que tenhamos $a, b \in c$ em Γ , assim como $u \in v$ em Γ^* e os estados q_i e q_j . Nesse caso $ua q_i bv$ e $u q_j acv$ são duas configurações. Digamos que

 $ua q_i bv$ origina $u q_j acv$

se na função de transição $\delta(q_i, b) = (q_j, c, E)$.

 $ua q_i bv$ origina $uac q_i v$

Suponha que tenhamos $a, b \in c$ em Γ , assim como $u \in v$ em Γ^* e os estados q_i e q_j . Nesse caso $ua \ q_i \ bv \in u \ q_j \ acv \ são duas configurações. Digamos que$

 $ua q_i bv$ origina $u q_j acv$

se na função de transição $\delta(q_i, b) = (q_j, c, E)$.

 $ua q_i bv$ origina $uac q_j v$

se $\delta(q_i, b) = (q_j, c, D)$.

- Configuração inicial:
- Configuração de aceitação:
- Configuração de rejeição:

- Configuração inicial: q₀w
- Configuração de aceitação:
- Configuração de rejeição:

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição:

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição: estado atual = q_{rejeita}

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição: estado atual = q_{rejeita}

Uma máquina de

Turing M aceita a entrada w se uma sequência de configurações C_1, C_2, \ldots, C_k existe, onde

- Configuração inicial: q₀w
- Configuração de aceitação: estado atual = q_{aceita}
- Configuração de rejeição: estado atual = q_{rejeita}

Uma máquina de

Turing M aceita a entrada w se uma seqüência de configurações C_1, C_2, \ldots, C_k existe, onde

- 1. C_1 é a configuração inicial de M sobre a entrada w,
- 2. cada C_i origina C_{i+1} e
- 3. C_k é uma configuração de aceitação.

Máquinas de Turing

A coleção de cadeias que M aceita é a linguagem de M, ou a linguagem reconhecida por M, denotada L(M).

DEFINIÇÃO 3.5

Chame uma linguagem de *Turing-reconhecível*, se alguma máquina de Turing a reconhece.¹

1 - Ou linguagem recursivamente enumerável ou linguagem irrestrita

Máquinas de Turing (MT) Decisoras

Uma MT é decisora se ela nunca entra em loop (isto é, sempre pára em um estado de aceitação ou de rejeição).

Dizemos que um decisor que reconhece uma linguagem decide essa linguagem.

DEFINIÇÃO 3.6

Chame uma linguagem de *Turing-decidível* ou simplesmente *de-cidível* se alguma máquina de Turing a decide.²

2 - Ou linguagem recursiva

Máquinas de Turing - Exemplos

EXEMPLO 3.7

Aqui descrevemos uma máquina de Turing (MT) M_2 que decide $A = \{0^{2^n} | n \ge 0\}$, a linguagem consistindo em todas as cadeias de 0s cujo comprimento é uma potência de 2.

M_2 = "Sobre a cadeia de entrada w:

- Faça uma varredura da esquerda para a direita na fita, marcando um 0 não, e outro, sim.
- 2. Se no estágio 1, a fita continha um único 0, aceite.
- 3. Se no estágio 1, a fita continha mais que um único 0 e o número de 0s era ímpar, rejeite.
- 4. Retorne a cabeça para a extremidade esquerda da fita.
- 5. Vá para o estágio 1."

Exemplo para a cadeia 0000

q_1 0000	$\sqcup q_5 \mathbf{x} 0 \mathbf{x} \sqcup$	$\sqcup \mathbf{x}q_{5}\mathbf{x}\mathbf{x}\sqcup$
$\sqcup q_2$ 000	q_5 \sqcup \mathbf{x} 0 \mathbf{x} \sqcup	$\sqcup q_5$ xxx \sqcup
$\sqcup \mathbf{x}q_3$ 00	$\sqcup q_2$ x0x \sqcup	q_5 uxxxu
$\sqcup x0q_40$	$\sqcup \mathtt{x} q_2 \mathtt{0} \mathtt{x} \sqcup$	$\sqcup q_2$ XXX \sqcup
$\sqcup x0xq_3 \sqcup$	$\sqcup \mathtt{xx} q_3 \mathtt{x} \sqcup$	$\sqcup \mathtt{x} q_2 \mathtt{x} \mathtt{x} \sqcup$
$\sqcup \mathtt{x} \mathtt{0} q_5 \mathtt{x} \sqcup$	$\sqcup \mathbf{x}\mathbf{x}\mathbf{x}q_3$ ப	$\sqcup \mathbf{x} \mathbf{x} q_2 \mathbf{x} \sqcup$
ப $\mathbf{x}q_50\mathbf{x}$ ப	\sqcup хх q_5 х \sqcup	$\sqcup \mathtt{xxx} q_2 \sqcup$
		\sqcup xxx $\sqcup q_{ m aceita}$

Agora, damos a descrição formal de $M_2=(Q,\Sigma,\Gamma,\delta,q_1,q_{\rm aceita},q_{\rm rejeita})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{aceita}}, q_{\text{rejeita}}\},$
- $\Sigma = \{0\} e$
- $\Gamma = \{0, x, \bot\}.$
- Descrevemos δ com um diagrama de estados (veja a Figura 3.8).
- Os estados inicial, de aceitação e de rejeição são $q_1,\,q_{\rm aceita}$ e $q_{\rm rejeita}.$

Agora, damos a descrição formal de $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{aceita}}, q_{\text{rejeita}})$:

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{aceita}}, q_{\text{rejeita}}\},$
- $\Sigma = \{0\} e$
- $\Gamma = \{0, x, \bot\}.$
- Descrevemos δ com um diagrama de estados (veja a Figura 3.8).
- Os estados inicial, de aceitação e de rejeição são q_1 , $q_{\rm aceita}$ e $q_{\rm rejeita}$.

EXEMPLO 3.9

O que segue é uma descrição formal de $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{aceita}}, q_{\text{rejeita}})$, a máquina de Turing que descrevemos informalmente na página 145, para decidir a linguagem $B = \{w \# w | w \in \{0,1\}^*\}$.

- $Q = \{q_1, \ldots, q_{14}, q_{\text{aceita}}, q_{\text{rejeita}}\},$
- $\Sigma = \{0,1,\#\}, e \Gamma = \{0,1,\#,x,\sqcup\}.$
- Descrevemos δ com um diagrama de estados (veja a figura seguinte).
- Os estados inicial, de aceitação e de rejeição são q_1 , $q_{\rm aceita}$ e $q_{\rm rejeita}$.

```
011000#011000 ...
 x 1 1 0 0 0 # 0 1 1 0 0 0 U ···
 x 1 1 0 0 0 # x 1 1 0 0 0 U ····
 * 1 1 0 0 0 # x 1 1 0 0 0 \(\dots\) ...
 x x 1 0 0 0 # x 1 1 0 0 0 U ···
 x x x x x x # x x x x x x L
                          aceita
```


Transições implícitas para $q_{rejeita}$ (indo para a direita, por convenção) quando aparece um símbolo não definido na transição.

3.2 – Variantes de Máquinas de Turing

Variantes de Máquinas de Turing

Máquina de Turing é um modelo robusto: ela e suas variações reconhecem a mesma classe de linguagens

Máquinas de Turing Multifita

- K fitas
- Cada fita tem sua própria cabeça para leitura e escrita
- Inicialmente, a cadeia de entrada fica na fita 1, e as demais fitas com branco

$$\delta: Q \times \Gamma^k \longrightarrow Q \times \Gamma^k \times \{E, D, P\}^k$$

$$\delta(q_i, a_1, \ldots, a_k) = (q_j, b_1, \ldots, b_k, \mathbf{E}, \mathbf{D}, \ldots, \mathbf{E})$$

TEOREMA 3.13

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

TEOREMA 3.13

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Seja S uma MT de fita única e M uma MT de k fitas.

S pode simular M:

TEOREMA 3.13

Toda máquina de Turing multifita tem uma máquina de Turing de uma única fita que lhe é equivalente.

Seja S uma MT de fita única e M uma MT de k fitas.

S pode simular M:

• Preparação da fita: (ex: $w = w_1 \cdots w_n$)

• Preparação da fita: (ex: $w=w_1\cdots w_n$) $\#w_1w_2\cdots w_n\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}$

• Preparação da fita: (ex: $w=w_1\cdots w_n$) $\#w_1w_2\cdots w_n\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}$

Leitura dos símbolos atuais:

• Preparação da fita: (ex: $w=w_1\cdots w_n$) $\#w_1w_2\cdots w_n\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}\#_{\sqcup}^{\bullet}$

 Leitura dos símbolos atuais: percorre a fita lendo os símbolos com ponto em cima (até o (k+1)-ésimo #)

• Preparação da fita: (ex: $w=w_1\cdots w_n$) $\#w_1w_2\cdots w_n\#_{\sqcup}\#_{\sqcup}\#_{\sqcup}\#_{\sqcup}\#_{\sqcup}$

 Leitura dos símbolos atuais: percorre a fita lendo os símbolos com ponto em cima (até o (k+1)-ésimo #)

Atualização das cabeças:

• Preparação da fita: (ex: $w = w_1 \cdots w_n$) $\#w_1 w_2 \cdots w_n \#_{\sqcup} \#_{\sqcup} \# \cdots \#$

 Leitura dos símbolos atuais: percorre a fita lendo os símbolos com ponto em cima (até o (k+1)-ésimo #)

Atualização das cabeças: percorre a fita fazendo as atualizações conforme a função de transição (tirando e colocando pontos para atualizar as cabeças de fitas), (até o (k+1)-ésimo #)

- Preparação da fita: (ex: $w=w_1\cdots w_n$) $\#w_1w_2\cdots w_n\#^{\bullet}_{\square}\#^{\bullet}_{\square}\#\cdots \#$
- Leitura dos símbolos atuais: percorre a fita lendo os símbolos com ponto em cima (até o (k+1)-ésimo #)
 - Atualização das cabeças: percorre a fita fazendo as atualizações conforme a função de transição (tirando e colocando pontos para atualizar as cabeças de fitas), (até o (k+1)-ésimo #)
- Se uma cabeça de fita vai para um "#":

• Preparação da fita: (ex: $w=w_1\cdots w_n$) $\#w_1w_2\cdots w_n\#^{\bullet}_{\square}\#^{\bullet}_{\square}\#\cdots \#$

- Leitura dos símbolos atuais: percorre a fita lendo os símbolos com ponto em cima (até o (k+1)-ésimo #)
 - Atualização das cabeças: percorre a fita fazendo as atualizações conforme a função de transição (tirando e colocando pontos para atualizar as cabeças de fitas), (até o (k+1)-ésimo #)
- Se uma cabeça de fita vai para um "#": desloca o conteúdo da fita para a direita e coloca o símbolo no lugar daquele "#"

COROLÁRIO 3.15

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing multifita a reconhece.

COROLÁRIO 3.15

Uma linguagem é Turing-reconhecível se e somente se alguma máquina de Turing multifita a reconhece.

Prova:

Linguagem L é TR => MTM reconhece L:

L é TR => existe uma MT de fita única que a reconhece => existe uma MT multifita que a reconhece (pois fita única é um caso especial de multifita)

MTM reconhece L => Linguagem L é TR:

MTM reconhece L => uma MT fita única a reconhece (pelo teorema) => L é TR