ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

MÔN LINH KIỆN ĐIỆN TỬ

BÀI TẬP LỚN CÁ NHÂN GIẢI THÍCH SÓNG LỚI RA 10 MẠCH

Giảng viên hướng dẫn : Phạm Ngọc Thảo

Sinh viên thực hiện : Hoàng Nhật Minh -21020696

1 Trang 1: Mạch dịch mức điện áp

Sóng đầu vào:

- Giá trị: $C = 100 \mu F$, $R = 10 k \Omega$, $V_{nguồn} = V_1 = 1.5 V$

1.1 Mạch 1:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng vào, diode dẫn, tụ được nạp \rightarrow dòng điện đi qua diode $\rightarrow v_o = v_{diode} = 0.7~V$
 - Tại nửa chu kỳ âm của sóng vào, diode ngắt, tụ được xả \rightarrow dòng điện đi qua điện trở R \rightarrow R và C được xác định bằng phương trình hằng số thời gian t = RC mà t lại lớn hơn rất nhiều so với khoảng thời gian nửa chu kỳ âm của sóng vào $\rightarrow v_C = V_m 0.7$

1.2 Mạch 2:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương đầu tiên của sóng vào, diode ngắt, tụ không được nạp
 → dòng điện đi qua R → v_o = V_m + v_C = V_m + 0 = V_m = 6V
 - Tại nửa chu kỳ âm đầu tiên của sóng vào, diode dẫn, tụ được nạp \rightarrow dòng điện đi qua diode $\rightarrow v_o = -v_{diode} = -0.7 \, V$
 - Tại nửa chu kỳ dương tiếp theo của sóng vào, diode ngắt, nhưng khi này tụ đã được nạp sẵn từ chu kỳ trước → tụ được xả → dòng điện đi qua R

$$\rightarrow v_C = V_m + (-0.7)$$

$$\rightarrow v_o = V_m + v_C = V_m + V_m - 0.7 = 2V_m - 0.7 = 2 * 6 - 0.7 = 11.3 V$$

1.3 Mạch 3:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng vào, diode dẫn, tụ được nạp → dòng điện đi qua diode, do có nguồn riêng

$$\rightarrow v_o = v_{diode} = 0.7 V + V_1 = 0.7 + 1.5 = 2.2V$$

• Tại nửa chu kỳ âm của sóng vào, diode ngắt, tụ được xả \rightarrow dòng điện đi qua điện trở R \rightarrow nguồn V_1 không ảnh hưởng đến đầu ra $\rightarrow v_C = V_m - 2.2$

1.4 Mach 4:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương đầu tiên của sóng vào, diode ngắt, tụ không được nạp
 → dòng điện đi qua R → v_o = V_m + v_C = V_m + 0 = V_m = 6V
 - Tại nửa chu kỳ âm đầu tiên của sóng vào, diode dẫn, tụ được nạp \rightarrow dòng điện đi qua diode, do có nguồn riêng $\rightarrow v_o = -v_{diode} + V_1 = -0.7 + 1.5 = 0.8 \, V$
 - Tại nửa chu kỳ dương tiếp theo của sóng vào, diode ngắt, nhưng khi này tụ đã được nạp sẵn từ chu kỳ trước → tụ được xả → dòng điện đi qua R

$$\rightarrow v_C = V_m + 0.8$$

$$\rightarrow v_o = V_m + v_C = V_m + V_m + 0.8 = 2V_m + 0.8 = 2 * 6 + 0.8 = 12.8 V$$

2 Trang 2: Mạch chỉnh lưu nửa sóng

Sóng đầu vào:

- Giá trị: $R=10k\Omega$, $V_{nguồn}=V=1.5V$

2.1 Mạch 7:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng vào, diode ngắt $\rightarrow v_o = 0 V$
 - Tại nửa chu kỳ âm của sóng vào, diode dẫn $\rightarrow v_o = -V_m + v_{diode} = -6 + 0.7 = -5.3 V$ Vẽ sóng đầu ra theo proteus:

Digital Oscilloscope

2.2 Mạch 8:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng vào, diode dẫn $\rightarrow v_o = V_m v_{diode} = 6 0.7 = 5.3 V$
 - Tại nửa chu kỳ âm của sóng vào, diode ngắt $\rightarrow v_o = 0 \ V$
- Vẽ sóng đầu ra theo proteus:

2.3 Mạch 9:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng vào, diode ngắt $\rightarrow v_o = 0 \ V$
 - Tại nửa chu kỳ âm của sóng vào, diode dẫn $\Rightarrow v_o = -V_m + v_{diode} - V = -6 + 0.7 - 1.5 = -6.8 V$ Vẽ sóng đầu ra theo proteus:

3 Trang 3: Mạch hạn biên

Sóng đầu vào:

- Giá trị: $R = 10k\Omega$,

3.1 Mạch 13:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng vào, khi V_{in} lớn hơn 0.7 V \rightarrow diode dẫn $\rightarrow v_o$ nối xuống đất

$$\rightarrow v_o = 0 + v_{diode} = 0 + 0.7 = 0.7 V$$

- Tại nửa chu kỳ âm của sóng vào, diode ngắt $\rightarrow v_o = V_{in} = -6 V$

AC

Source

Channel D

3.2 Mạch 14:

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng vào, diode ngắt $\rightarrow v_o = V_{in} = 6 V$
 - Tại nửa chu kỳ âm của sóng vào, V_{in} nhỏ hơn -0.7 V \Rightarrow diode dẫn $\Rightarrow v_o$ nối xuống đất $\Rightarrow v_o = 0 v_{diode} = -0.7$ V
- Vẽ sóng đầu ra theo proteus:

3.3 Mạch 15:

$$- V_{ngu\"{o}n} = V = 3 V$$

- Giải thích sóng đầu ra:
 - Tại nửa chu kỳ dương của sóng đầu vào, khi V_{in} lớn hơn 0.7 V \Rightarrow diode dẫn
- Vẽ sóng đầu ra theo proteus:

