Subreddit Classification

Roadmap

Introduction

PROBLEM STATEMENT

We aim to answer whether we can build a Classification model to accurately predict if a post belongs to one subreddit or the other. Should we be able to, we next seek to determine which model works best and why.

Data Collection

Using Pushshift's API, we performed webscrapping to collect posts from two subreddits over the year 2021.

The subreddits are 'PremierLeague' and 'mma'

Premier League	WIWIA
Most popular football league and the most- watched sports league in the world	MMA stands for Mixed Martial Arts, which is a full contact sport based on striking, grappling and ground fighting
8290 posts extracted	6514 posts extracted

Data Cleaning

Preprocessing

Top 20 Words

The words 'like', 'would', 'think' appear frequently in both subreddits.

Under MMA, a few words stand out. They are 'thread', 'discussion', 'post', 'message'. Judging from the nature of such words, these words should appear quite frequently in all the subreddits.

Add these words to StopWords

Model Workflow

Model	Hyperparameters	Accuracy Score	Training Score	Test Score	Overfitting	Cross_val_score
Logistic Regression with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 3, ngram_range = (1, 3)	0.954	0.985	0.958	0.027	0.951
Logistic Regression with TF- IDF Vectorizer	tvec: max_df = 0.9, max_features = 20000, ngram_range = (1,2)	0.956	0.983	0.961	0.022	0.956
Random Forest with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 2, randomforest: max_depth = 5	0.722	0.684	0.682	0.002	0.718
Random Forest with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 15000, min_df = 2, randomforest: max_depth = 5, n_estimators = 200	0.725	0.726	0.723	0.003	0.729
Naive Bayes with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000	0.960	0.975	0.955	0.02	0.960
Naive Bayes with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 10000, min_df = 2	0.956	0.972	0.951	0.021	0.954

 Using <u>Logistic Regression</u> and <u>Naïve Bayes</u> allow us to accurately classify the posts to their respective subreddits

Model	Hyperparameters	Accuracy Score	Training Score	Test Score	Overfitting	Cross_val_score
Logistic Regression with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 3, ngram_range = (1, 3)	0.954	0.985	0.958	0.027	0.951
Logistic Regression with TF- IDF Vectorizer	tvec: max_df = 0.9, max_features = 20000, ngram_range = (1,2)	0.956	0.983	0.961	0.022	0.956
Random Forest with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 2, randomforest: max_depth = 5	0.722	0.684	0.682	0.002	0.718
Random Forest with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 15000, min_df = 2, randomforest: max_depth = 5, n_estimators = 200	0.725	0.726	0.723	0.003	0.729
Naive Bayes with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000	0.960	0.975	0.955	0.02	0.960
Naive Bayes with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 10000, min_df = 2	0.956	0.972	0.951	0.021	0.954

• Random Forest performs poorly

Model	Hyperparameters	Accuracy Score	Training Score	Test Score	Overfitting	Cross_val_score
Logistic Regression with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 3, ngram_range = (1, 3)	0.954	0.985	0.958	0.027	0.951
Logistic Regression with TF- IDF Vectorizer	tvec: max_df = 0.9, max_features = 20000, ngram_range = (1,2)	0.956	0.983	0.961	0.022	0.956
Random Forest with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 2, randomforest: max_depth = 5	0.722	0.684	0.682	0.002	0.718
Random Forest with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 15000, min_df = 2, randomforest: max_depth = 5, n_estimators = 200	0.725	0.726	0.723	0.003	0.729
Naive Bayes with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000	0.960	0.975	0.955	0.02	0.960
Naive Bayes with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 10000, min_df = 2	0.956	0.972	0.951	0.021	0.954

- Works best when
 - there is low correlation between the trees, so that the trees protect each other from individual errors
 - > there are multi classes

• TF-IDF > Count Vectorizer

Model	Hyperparameters	Accuracy Score	Training Score	Test Score	Overfitting	Cross_val_score
Logistic Regression with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 3, ngram_range = (1, 3)	0.954	0.985	0.958	0.027	0.951
Logistic Regression with TF- IDF Vectorizer	tvec: max_df = 0.9, max_features = 20000, ngram_range = (1,2)	0.956	0.983	0.961	0.022	0.956
Random Forest with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 2, randomforest: max_depth = 5	0.722	0.684	0.682	0.002	0.718
Random Forest with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 15000, min_df = 2, randomforest: max_depth = 5, n_estimators = 200	0.725	0.726	0.723	0.003	0.729
Naive Bayes with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000	0.960	0.975	0.955	0.02	0.960
Naive Bayes with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 10000, min_df = 2	0.956	0.972	0.951	0.021	0.954

- TF-IDF fixes some issues that Count Vectorizer faces
 - Helps us tease us relevance of words instead of just using word count

- <u>Logistic Regression</u> > Naïve Bayes
- Naïve Bayes makes a conditional independence assumption, which is violated when you have correlated/repetitive features

Model	Hyperparameters	Accuracy Score	Training Score	Test Score	Overfitting	Cross_val_score
Logistic Regression with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 3, ngram_range = (1, 3)	0.954	0.985	0.958	0.027	0.951
Logistic Regression with TF- IDF Vectorizer	tvec: max_df = 0.9, max_features = 20000, ngram_range = (1,2)	0.956	0.983	0.961	0.022	0.956
Random Forest with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000, min_df = 2, randomforest: max_depth = 5	0.722	0.684	0.682	0.002	0.718
Random Forest with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 15000, min_df = 2, randomforest: max_depth = 5, n_estimators = 200	0.725	0.726	0.723	0.003	0.729
Naive Bayes with Count Vectorizer	cvec: max_df = 0.9, max_features = 20000	0.960	0.975	0.955	0.02	0.960
Naive Bayes with TF-IDF Vectorizer	tvec: max_df = 0.9, max_features = 10000, min_df = 2	0.956	0.972	0.951	0.021	0.954

- Some words might be correlated to others
 - > Top words for Logistic Regression are the ones with the best predictors with the context of other words

Logistic Regression with TF-IDF Vectorizer

0. 10	pl	mma
0	league	usman
1	player	dana
2	club	training
3	team	conor
4	removed	mcgregor
5	season	khabib
6	football	fighter
7	game	fight
8	pl	ufc
9	chelsea	mma

 Top 10 words in each subreddit that contribute the most in predicting whether a post belongs to 'PremierLeague' or 'mma'

Logistic Regression with TF-IDF Vectorizer

Orange area:
Premier League posts that
have been classified correctly

Logistic Regression with TF-IDF Vectorizer

Brown area: Misclassified posts

Misclassifications center around 0.5

<u>Logistic Regression with TF-IDF Vectorizer</u>

Misclassified posts (False Positives)

	Actual	Predicted	Predict_Proba	Text	Predicted_minus_Actual
1960	0	1	0.523518	hi everyone	1
13343	0	1	0.551185	hi see subscribe see	1
4636	0	1	0.567036	lionel messi v dortmund	1
11667	0	1	0.632282	starting podcast	1
10971	0	1	0.564271	honest well thought opinion g	1
5311	0	1	0.514045	win	1
13029	0	1	0.569813	anybody else play mmatycoon	1
12230	0	1	0.565418	lower level ticket section section price curious anyone cheap know obstruction anyone familiar toyota center buying last minute ticket need advice	1

- Misclassified posts tend to contain very few words
 - Average number of word per post, after cleaning and preprocessing is ~ 30

Conclusion

- <u>TF-IDF</u> > Count Vectorizer
- <u>Logistic Regression</u> > Naïve Bayes > Random Forest
- <u>Logistic Regression with TF-IDF</u> works best for our subreddit classification problem!

Future Steps:

Test our model with a larger dataset

Thanks!