6.3 Uniform Convergence and Differentiation

Theorem 6.3.1 (Differentiable Limit Theorem)

Let fn->f pointwise on Gaib] and assume each fn is

differentiable. If (fin) converges uniformly on Gaib] to a

function g, then f is differentiable and f'=9.

Fix $c \in Ca,b$ and let E>0. We wish to show that f'(c) = g(c). That is, $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = g(c)$. To do this, we need a E so that

 $|x-c| < \xi$ implies $\left| \frac{f(x)-f(c)}{x-c} - g(c) \right| < \xi$. Summon some terms and

apply the triangle inequality to get

$$\left| \frac{f(x) - f(c)}{x - c} - \frac{f_n(x) - f_n(c)}{x - c} + \frac{f_n(x) - f_n(c)}{x - c} - f'_n(c) + f'_n(c) - g(2) \right|$$

$$\frac{\zeta \left| \frac{f(x)-f(c)}{x-c} - \frac{f_n(x)-f_n(c)}{x-c} \right| + \left| \frac{f_n(x)-f_n(c)}{x-c} - f_n(c) \right| + \left| f_n(c)-g(c) \right|}{\chi \in Ca,b]}$$

We want to get each of these terms smaller than $^{E/3}$. First, because $f'n(c) \rightarrow g(c)$, then $\exists N_i$ s.t. $n \ge N_i \Rightarrow |f'n(c) - g(c)| \angle ^{E/3}$. By uniform convergence and Thm 6:2:5, $\exists N_2$ s.t. $|f'n(c) - f'm(c)| < ^{E/3}$ $\forall m_i n \ge N_2$. Choose $N = \max \ge N_i, N_2 \ge F_{nom}$ the definition of the derivative, $\exists \delta \le N_i, N_2 \ge F_{nom}$ the definition of the derivative, $\exists \delta \le N_i, N_2 \ge F_{nom}$ $f'n(c) \ge F_{n(c)}$. This is the desired δ , but $f'n(c) = F_{n(c)} = F_{n(c)}$

we still have the first term left. Fix α so $|\alpha-c|<\delta$, let $m \ge N$, and the MVT soys for $[c,\alpha]$ WLOG that $\exists \alpha \in (c,\alpha)$ s.t.

 $f'_{m}(x) - f'_{N}(\alpha) = \frac{(f_{m}(x) - f_{N}(x)) - (f_{m}(c) - f_{N}(c))}{x - c}$. Since $|f'_{m}(x) - f'_{N}(x)| < \frac{2}{3}$

it follows $\left|\frac{f_{m}(x)-f_{m}(c)}{n-c} - \frac{f_{n}(x)-f_{n}(c)}{x-c}\right| \ge \frac{1}{3}$, and by OLT, taking m-sayields $\left|\frac{f_{m}(x)-f_{n}(c)}{x-c} - \frac{f_{n}(x)-f_{n}(c)}{x-c}\right| \le \frac{1}{3}$. Put them together and voila D

- Thm 6.3.1 hypothesi's unnecessorily strong, don't need to assume $f_n(x) \rightarrow f(x)$ because assumption that (f'_n) converges uniformly is enough to prove that $(f_n) \rightarrow f$ uniformly
- Theorem 6.3.2 Let (In) be a sequence of differentiable functions on $\mathbb{L}q,b$] and assume (I'n) converges uniformly on $\mathbb{L}a,b$]. If $\exists x_0 \in \mathbb{L}q,b$] where $f_n(x_0)$ is convergent, then (f_n) converges uniformly on $\mathbb{L}q,b$].

Proof: Exercise 6.3.7

f,=0"

· Combine 6.3.1 and 6.3.2 to get a stronger verson

Theorem 6.3.3

Let (5n) be a sequence of differentiable functions defined an [a,b] and assume (5'n) converges uniformly to g on [a,b].

If I Xo E [a,b] for which In (Xo) is convergent, then (fn) converges uniformly. Moreover, f= limfn is differentiable and

6.3 Exercises

- 1) Consider $9n(x) = \frac{x^n}{n}$
 - a) Show (9n) converges uniformly on [0,1] and find g=1rm9n. Show g is differentiable and compute g'(x) Yx&[0,1].

lim gn=0. Choose $N>1/\epsilon$, and then $\forall n\geq N$, $\frac{1}{n}<8$, and $\frac{x^n}{n} \geq \frac{1}{n}<\epsilon$, so $|x^n/n|<\epsilon$. Since g is constant, it is differentiable, and so g(x) < 0 $\forall x \in [0,1]$

b) Now show (g'n) converges on [0,1]. Is the convergence uniform? Set h= limg's and compare h and g'. Are they the same?

 $g'_n(x) = \chi^{n-1}$ $\lim_{n\to\infty} g'_n = h = \{0 \text{ if } 6 \text{ if } x < 1 \}$ g'(x) = 0 and they prenot the some. $g'_n(x)$ does not converge uniformly. Consider the sequence $\chi_n = a^{-1/n-1}$. Then $|g'_n(x) - h(x_n)| \ge 1/2$.

3) Consider $f_n(x) = \frac{x}{1 + nx^2}$

a) Find paints on IR where each file) attains max and min value. Prove (50) converges uniformly on IR. What is the limit function?

 $f'n(x) = \frac{1-nx^2}{(1+nx^2)^2} = 0 \Rightarrow x = \frac{1}{\sqrt{n}}, \quad f_n(\sqrt{n}) = \frac{1}{2\sqrt{n}}.$ $S_0[f_n(x)] \leq \frac{1}{2\sqrt{n}} \quad \forall n \in \mathbb{N}. \quad \text{Choose } \mathbb{N} > \frac{1}{4} \leq 2, \text{ and } \text{:t follows that}$ $|f_n(x)| \leq \frac{1}{2\sqrt{n}} \quad \langle \mathcal{E} \quad \forall n \geq \mathbb{N}. \quad \text{Thus } f_n(x) \text{ converges uniformly to } 0.$

b) Let
$$f = \lim_{n \to \infty} f_n$$
. Compute $f'_n(x)$ and find all values of x for which $f'(x) = \lim_{n \to \infty} f'_n(x)$.

$$f = \lim_{n \to \infty} f_n(x) = \frac{1 - nx^2}{(1 + nx^2)^2}$$
 $\lim_{n \to \infty} f_n(x) = \begin{cases} 1 & x = 0 \\ 0 & x \neq 0 \end{cases}$
 $f'(x) = \lim_{n \to \infty} f'_n(x)$ When $x \neq 0$.

4) Let
$$h_n(x) = \frac{\sin(nx)}{\sqrt{n}}$$
. Show $h_n > 6$ uniformly on IR but (h'_n) diverges $\forall x \in \mathbb{R}$.

Choose N>1/2? Then Yn > N sin < E, and | sin(nx) | sin(xx) | In < E, so he converges uniformly to O.

h'n = In cos(nx), which is unbounded as n > M.

domain of all.

- 6) Provide on example or explain why it's impossible
- (a) (f_n) of nowhere differentiable functions with $f_n \to f$ uniformly and f everywhere differentiable. $o(x) = \begin{cases} o & \text{if } x \in \mathbb{Q} \\ i & \text{if } x \neq \emptyset \end{cases} f_n(x) = \frac{g(x)}{n} f_n \to f$ uniformly, and since $f_n(x) = g_n(x) f_n(x) = g_n(x) f_n(x) f_n(x) f_n(x) f_n(x)$.

b)
$$(sn)$$
 of differentiable functions s.t. (sin) enverges uniformly but (sn) does not converge $\forall x \in \mathbb{R}$

$$f_n(x) = \frac{sin(x)}{n} + n \text{ does not converge}$$

$$f_n(x) = \frac{cos(x)}{n} \text{ des}.$$

Impossible, violotes differentiable limit theorem

7) Use the MVT to prove Thm 6.3.2. Observe that the triangle inequality implies for any $x \in [a,b]$ and $m,n \in \mathbb{N}$, $|f_n(x) - f_m(x)| \le |(f_n(x) - f_m(x)) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)|$

Loot; Suppose (fn) is a sequence of differentiable functions on [a,b], and that (f'n) converges uniformly on [a,b]. If I Xo & [a,b] where In (Xo) is convergent, then (In) converges uniformly on [a,b]. We want to show $\exists N \in \mathbb{N} \text{ s.t. } \forall m,n \geq N$, $| \exists n(x) - \exists m(x) | \forall s \in \mathbb{N} \text{ which}$ would make (fr) uniformly convergent by Conchy Criterian. Observe |fn(x)-fm(x)| = |(fn(x)-fm(x))-(fn(x0)-fm(x0))|+ |fn(x0)-fm(x0)|. Beconse Inlixo) is convergent, IN, s.t. ti, m=N, I fo(xo)-for(xo)) L E/2. Now by the MUT we know $\exists c \in (\chi_0, \chi)$ whose s.l. $f'_n(c) = (f_n(\chi) - f_n(\chi_0))/(\alpha - \chi_0)$ and fin(c) = (fin(x)-fin(xa))/(x-xa). Becomes fin converges uniformly, = Nast. 4mm=Na, Ish (c)-fine()/< E/2(x-x0). This expands to $\left|\frac{f_n(x)-f_m(x_0)}{x-x_0}-\frac{f_m(x)-f_m(x_0)}{x-x_0}\right|<\frac{\varepsilon}{2(x-x_0)}\Rightarrow \left|(f_n(x)-f_m(x))-(f_n(x_0)-f_m(x_0))\right|<\frac{\varepsilon}{2}.$ Choose N = max {N1, N2}, and we have $\forall n, m \ge N, |f_n(x) - f_m(x)| < ED$