Adaptive Experimental Design For Drug Combinations UT

Mijung Park, Marcel Nassar, Brian L. Evans, Haris Vikalo

Electrial and Computer Engineering, The University of Texas at Austin

1. Drug combinations problem

2. Respose modeling using Gaussian processes

generative model

MAP inference:
$$P(\mathbf{f}^*|X^*,X,\mathbf{y},\theta) \sim \mathcal{N}(\mu,\Sigma)$$
 at test points
$$\mu = K(X^*,X)(K+\sigma^2I)^{-1}\mathbf{y}$$

$$\Sigma = K(X^*,X^*) - K(X^*,X)(K+\sigma^2I)^{-1}K(X,X^*)$$

Hyperparameter estimation:

$$heta_{ml} = rg \max_{\theta} P(\mathbf{y}|\theta) = \int P(\mathbf{y}|X, \mathbf{f}) P(\mathbf{f}|X, \theta) d\mathbf{f}.$$

3. Info-theoretic Active Learning

- maximize expected info gain about f

$$\mathbf{x}^* = \arg \max_{\mathbf{x}} \mathbb{E}_{p(y|\mathbf{x},D_t)} \left[H(\mathbf{f}|D_t) - H(\mathbf{f}|D_t,\mathbf{x},y) \right]$$
$$= \arg \max_{\mathbf{x}} \Sigma(\mathbf{x},\mathbf{x}) \text{ uncertainty sampling}$$

- sequential active learning

4. Application to EGFR network

- Epidermal Growth Factor Receptor
- Inhibiting EGFR desired select drugs minimizing target: $t = \exp(\sum_{i=1}^{3} t_i)$

5. Results

