实验八 测定金属中的杨氏模量 实验报告

物理学院 庄易诚

2024年6月2日

目录

1	CCD 成像系统测定杨氏模量	2
	1.1 多个数据和测量多次的物理量的测量结果	2
	1.2 一次测量的物理量结果及其不确定度	2
	1.3 用逐差法处理 $\overline{r}-m$ 关系	3
	1.4 用最小二乘法处理 $\overline{r}-m$ 关系	3
	1.5 杨氏模量的测量的结果及其不确定度	4
2	梁的弯曲测定杨氏模量	5
	2.1 物理量的测量结果	5
	2.2 用最小二乘法处理数据	6
3	光杠杆装置测定杨氏模量	8
	3.1 物理量的测量结果	8
	3.2 用最小二乘法处理数据	9
4	分析与讨论	10
	4.1 开始加第一、二个砝码时 r 的变化量大于正常的变化量可能的原因	10
	4.2 开始加第一、二个砝码时 r 的变化量小于正常的变化量可能的原因	10
5	收获与感想	10

1 CCD 成像系统测定杨氏模量

1.1 多个数据和测量多次的物理量的测量结果

用螺旋测微器测量 10 次金属丝不同方向直径,数据如下:

	i	1	2	3	4	5	6	7	8	9	10
d	l/mm	0.320	0.320	0.321	0.316	0.318	0.320	0.321	0.318	0.319	0.320

表 1: 测量金属丝直径数据表 (CCD)

由表可知, 金属丝直径的平均值与 A 类不确定度分别为

$$\overline{d} = 0.3193mm$$

$$\sigma_{dA} = \sqrt{\frac{\sum_{i} (d_i - \overline{d})^2}{10 \times 9}} = 4.955 \times 10^{-4} mm$$

螺旋测微器的允差为 0.004 mm, 故总不确定度为

$$\sigma_d = \sqrt{\sigma_{dA}^2 + \frac{e^2}{3}} = 2.4 \times 10^{-3} \,\mathrm{mm}$$

故直径的测量结果为

$$d = (0.319 \pm 0.002) \text{ mm}$$

用电子天平测量每个砝码的质量,用 CCD 读出金属丝的伸长量。测量数据如下。表中 i 为大砝码个数,m 为第 i 个砝码的质量, M_i 为前 i 个砝码的总质量。 r_i 为增加砝码时 CCD 的读数, r_i' 为减少砝码时 CCD 的读数, $\overline{r_i}$ 为两者的平均值,k 为逐差法的中间量,其表达式为 $k_i = (\overline{r_{i+5}} - \overline{r_i})/(M_{i+5} - M_i)$ 。在实验中,为了防止空载时金属丝未伸直造成的影响,在砝码托盘上预置了一个小砝码作为质量零点,i=0 表示托盘上只有小砝码。

i	m_i/g	M_i/g	r_i/mm	r_i'/mm	$\overline{r_i}/mm$	$k_i/(10^{-4}mm \cdot g^{-1})$
0	/	0	3.25	3.25	3.250	5.655
1	199.70	199.70	3.39	3.25	3.385	5.455
2	199.78	399.48	3.49	3.47	3.480	5.604
3	199.91	599.39	3.60	3.59	3.595	5.552
4	199.96	799.35	3.70	3.470	3.700	5.602
5	199.78	999.13	3.82	3.81	3.815	/
6	199.57	1198.76	3.94	3.92	3.930	/
7	199.99	1398.95	4.05	4.03	4.040	/
8	200.26	1598.95	4.15	4.15	4.150	/
9	200.01	1798.96	4.26	4.26	4.260	/

表 2: 用 CCD 测量金属丝受外力拉伸后的伸展变化数据表

1.2 一次测量的物理量结果及其不确定度

重力加速度取为 g = 9.8m/s,不确定度不计。

用米尺测金属丝长度

$$L1 = 37.35cm$$
 $L2 = 116.42cm$
 $L = L2 - L1 = 79.07cm$

实验所用米尺的允差为 e = 0.15cm, 因此 L 的不确定度为

$$\sigma_L = \frac{e}{\sqrt{3}} = 0.08cm$$

故金属丝长度为

$$L = (79.1 \pm 0.08) \, cm$$

1.3 用逐差法处理 $\bar{r} - m$ 关系

斜率的平均值为

$$\overline{k} = \frac{1}{5} \sum_{i=1}^{5} k_i = 5.57 \times 10^{-4} mm/g$$

根据贝塞尔公式, A 类不确定度为:

$$\sigma_{kA} = \sqrt{\frac{\sum_{i} (k_i - \overline{k})^2}{5 \times 4}} = 3.38 \times 10^{-6} mm/g$$

对 B 类不确定度,由于小圆柱刻线的分度为 0.05mm,允差可取 $e_r = 0.03$ mm,电子天平的允差为 $e_m = 0.04$ g,取 Δr 为隔五项差的平均值, $\Delta r = 0.557$ mm,并近似取 $\Delta m = 1000$ g,实际上,m 对相对不确定度的贡献比 r 的贡献小三个数量级,故可以直接忽略 m 的不确定度,故 k 的 B 类不确定度为

$$\sigma_{kB} = k \sqrt{(\frac{e_r}{\sqrt{3}\Delta r})^2 + (\frac{e_m}{\sqrt{3}\Delta m})^2} \approx k \frac{e_r}{\sqrt{3}\Delta r} = 1.73 \times 10^{-5} mm/g$$

k 的总不确定度为

$$\sigma_m = \sqrt{\sigma_{kA}^2 + \sigma_{kB}^2} = 1.8 \times 10^{-5} mm/g$$

因此最终的测量结果为

$$k = (5.57 \pm 0.18) \times 10^{-4} mm/g$$

1.4 用最小二乘法处理 $\bar{r} - m$ 关系

由于质量测量的误差较小,故以 m 为横坐标, \overline{r} 为纵坐标进行作图并进行线性拟合,作图结果如下:

图 1: 用 CCD 测量金属丝杨氏模量 $\overline{r} - M$ 关系图

拟合结果为:

$$k = 5.5687 \times 10^{-4} mm/g$$
$$r = 0.99984$$

对斜率,不确定度为

$$\sigma_{kA} = k\sqrt{\frac{r^{-2} - 1}{n - 2}} = 3.52 \times 10^{-6} mm/g$$

$$\sigma_{kB} = \frac{e_r/\sqrt{3}}{\sum_{i=1}^{10} (M_i - \overline{M})^2} = 1.508 \times 10^{-5} mm/g$$

$$\sigma_k = \sqrt{\sigma_{kA}^2 + \sigma_{kB}^2} = 1.5 \times 10^{-5} mm/g$$

可以看出,斜率的 B 类不确定度明显大于 A 类,故斜率的测量结果为

$$k = (5.57 \pm 0.15) \times 10^{-4} mm/g$$

1.5 杨氏模量的测量的结果及其不确定度

逐差法处理的测量结果为

$$E = \frac{4gL}{\pi d^2 k} = 1.7384 \times 10^{11} Pa$$

不确定度为

$$\sigma_E = E\sqrt{\left(\frac{\sigma_L}{L}\right)^2 + 4\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2} = 6 \times 10^9 Pa$$

因此逐差法测得杨氏模量的测量结果为

$$E = (1.74 \pm 0.06) \times 10^{11} Pa$$

最小二乘法得到的测量结果为

$$E = \frac{4gL}{\pi d^2 k} = 1.738 \times 10^{11} Pa$$

不确定度为

$$\sigma_E = E\sqrt{\left(\frac{\sigma_L}{L}\right)^2 + 4\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2} = 5 \times 10^9 Pa$$

因此最小二乘法测得杨氏模量的测量结果为

$$E = (1.74 \pm 0.05) \times 10^{11} \,\mathrm{Pa}$$

2 梁的弯曲测定杨氏模量

2.1 物理量的测量结果

实验中用钢尺测得梁的有效长度为

$$l = 24.50cm$$

钢尺的允差为 $e=0.15\mathrm{mm}$,故 l 的不确定度为 $\sigma=\frac{e}{\sqrt{3}}=0.09\mathrm{mm}$,因此长度的测量结果为

$$l = (24.50 \pm 0.09) \text{ mm}$$

用螺旋测微器测量梁不同位置不的厚度十次,测量数据如下:

i	1	2	3	4	5	6	7	8	9	10
h/mm	1.472	1.470	1.502	1.531	1.530	1.530	1.505	1.465	1.512	1.520

表 3: 梁的厚度数据表

厚度的平均值与 A 类不确定度分别为

$$\overline{h} = 1.504mm$$

$$\sigma_{\overline{h}} = \sqrt{\frac{\sum_{i} (h_i - \overline{h})^2}{10 \times 9}} = 8.2 \times 10^{-3} \, \text{mm}$$

螺旋测微器的允差为 0.004 mm, 故总不确定度为

$$\sigma_h = \sqrt{\sigma_{\overline{h}}^2 + \frac{e^2}{3}} = 9 \times 10^{-3} \,\text{mm}$$

故厚度的测量结果为

$$h = (1.504 \pm 0.009) \text{ mm}$$

用游标卡尺测量梁不同位置的宽度六次,测量结果如下:

i	1	2	3	4	5	6
a/cm	1.040	1.050	1.030	1.035	1.050	1.040

表 4: 梁的宽度数据表

故宽度的平均值与 A 类不确定度分别为

$$\overline{a} = 1.041cm$$

$$\sigma_{\overline{a}} = \sqrt{\frac{\sum_{i} (a_i - \overline{a})^2}{6 \times 5}} = 3.3 \times 10^{-3} cm$$

游标卡尺的允差为 0.002cm, 故总不确定度为

$$\sigma_a = \sqrt{\sigma_a^2 + \frac{e^2}{3}} = 3 \times 10^{-3} cm$$

故宽度的测量结果为

$$a = (1.041 \pm 0.003) \, cm$$

用电子天平测量每个砝码的质量,用读数显微镜读出梁的中心挠度,测量结果如下表所示。其中 i 为砝码个数, m_i 为第 i 个砝码的质量, M_i 为当前情况下全部砝码的质量, λ_i 为添加砝码时读数显微镜的读数, $\overline{\lambda_i}$ 为两者的平均值。初始时托盘上有一个砝码,但不计人总质量。

i	m_i/g	M_i/g	λ_i/mm	$\lambda^{i'}$ mm	$\overline{\lambda_i}/\mathrm{mm}$
0	/	0	32.888	32.753	32.8205
1	199.63	199.63	31.943	31.755	31.8490
2	199.51	399.14	30.820	30.705	30.7025
3	200.46	599.60	29.823	29.700	29.7615
4	200.38	799.98	28.687	28.617	28.6520
5	200.88	1000.86	27.725	427.730	27.7275

表 5: 梁中点的挠度与砝码质量关系数据表

2.2 用最小二乘法处理数据

以 m 为横坐标, $\bar{\lambda}$ 为纵坐标进行作图并进行线性拟合, 图像如下:

图 2: 梁的弯曲测定杨氏模量 $\bar{\lambda} - M$ 关系图

拟合结果为:

$$k = -5.1467 \times 10^{-3} mm/g$$
$$r = -0.99978$$

根据测量原理,换算单位后,可计算出最小二乘法的测量结果为

$$E = \frac{gl^3}{4|k|ah^3} = 1.989 \times 10^{11} Pa$$

下面计算不确定度,读数显微镜允差 $e_{\lambda}=0.005mm$,根据不确定度公式,有:

$$\sigma_{kA} = |k| \sqrt{\frac{r^{-2} - 1}{n - 2}} = 5.40 \times 10^{-5} mm/g$$

$$\sigma_{kB} = \frac{e_{\lambda}/\sqrt{3}}{\sum_{i=1}^{10} (M_i - \overline{M})^2} = 3.15 \times 10^{-6} mm/g$$

$$\sigma_k = \sqrt{\sigma_{kA}^2 + \sigma_{kB}^2} = 5 \times 10^{-5} mm/g$$

$$\sigma_E = E\sqrt{\left(3\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_a}{a}\right)^2 + \left(3\frac{\sigma_h}{h}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}$$

$$= 3 \times 10^9 Pa$$

因此, 最终结果为:

$$E = (1.99 \pm 0.03) \times 10^{11} Pa$$

3 光杠杆装置测定杨氏模量

3.1 物理量的测量结果

用米尺测金属丝长度

$$l_1 = 26.19cm$$
 $l_2 = 100.65cm$
 $l = l_2 - l_1 = 74.46cm$
 $\sigma_l = \frac{e}{\sqrt{3}} = 0.08cm$

故金属丝长度为

$$l = (74.5 \pm 0.08) \, cm$$

同理, 用米尺测出平面镜反射面到竖尺面距离

$$R = (141.9 \pm 0.08) \, cm$$

用坐标纸读出光杠杆底脚到刀口的垂线长度

$$D = (9.200 \pm 0.010)cm$$

用螺旋测微器测量 10 次金属丝不同方向直径,数据如下:

i	1	2	3	4	5	6	7	8	9	10
d/mm	0.320	0.319	0.320	0.321	0.319	0.323	0.320	0.319	0.318	0.321

表 6: 测量金属丝直径数据表 (光杠杆)

由表可知, 金属丝直径的平均值与 A 类不确定度分别为

$$\overline{d} = 0.320mm$$

$$\sigma_{dA} = \sqrt{\frac{\sum_{i} \left(d_{i} - \overline{d}\right)^{2}}{10 \times 9}} = 4.471 \times 10^{-4} mm$$

总不确定度为

$$\sigma_d = \sqrt{\sigma_{dA}^2 + \frac{e^2}{3}} = 2 \times 10^{-3} mm$$

故直径的测量结果为

$$d = (0.320 \pm 0.002) \text{ mm}$$

用电子天平测量每个砝码的质量,用镜尺组读出金属丝的伸长量。测量数据如下。 $M_i=0$ 时砝码托盘上有一个预置的砝码作为零点,没有计入总质量。

i	m_i/g	M_i/g	r_i/cm	$r_i'/{ m cm}$	$\overline{r_i}/cm$
0	/	0	7.50	7.50	7.500
1	199.76	199.76	7.85	7.83	7.840
2	199.98	399.74	8.20	8.19	8.195
3	199.74	599.48	8.53	8.53	8.530
4	199.70	799.18	9.17	8.87	8.860
5	199.83	999.01	9.57	9.20	9.185
6	199.66	1198.67	9.83	9.55	9.530
7	199.84	1398.51	9.83	9.85	9.840
8	199.81	1598.32	10.14	10.17	10.155
9	199.74	1798.06	10.50	10.51	10.505
10	199.69	1997.75	10.80	10.80	10.800

表 7: 用光杠杆测量金属丝受外力拉伸后的伸展变化数据表

3.2 用最小二乘法处理数据

用最小二乘法拟合,图像如下:

图 3: 用光杠杆测定杨氏模量 $\bar{r}-M$ 关系图

拟合结果为:

$$k = 1.652 \times 10^{-3} cm/g$$

 $r = 0.99988$

计算得:

$$E = \frac{8lRg}{\pi d^2 Dk} = 1.670 \times 10^{11} Pa$$

$$\sigma_{kA} = k \sqrt{\frac{r^{-2} - 1}{n - 2}} = 8.53 \times 10^{-6} cm/g$$

$$\sigma_{kB} = \frac{e_r / \sqrt{3}}{\sum_{i=1}^{10} (M_i - \overline{M})^2} = 1.31 \times 10^{-5} cm/g$$

$$\sigma_k = \sqrt{\sigma_{kA}^2 + \sigma_{kB}^2} = 1.56 \times 10^{-5} cm/g$$

$$\sigma_E = E \sqrt{\left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_R}{R}\right)^2 + \left(\frac{\sigma_D}{D}\right)^2 + 4\left(\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_k}{k}\right)^2}$$

$$= 0.03 \times 10^{11} Pa$$

因此, 最终结果为:

$$E = (1.67 \pm 0.03) \times 10^{11} Pa$$

4 分析与讨论

4.1 开始加第一、二个砝码时 r 的变化量大于正常的变化量可能的原因

- 可能是金属丝在没有砝码时并没有完全伸直,此时放砝码会使伸长量大于正常变化量,会出多一个从弯曲的伸直的长度变化。
- 如果金属丝有微小的弯折,在砝码的重力下突然变直,也有可能使伸长量变大。
- 另一种可能是金属丝没有完全夹紧,使得加砝码时金属丝相对夹具有相对的滑动。因此,做实验时最好不要让砝码托盘空载,因先预置一个砝码作为零点使得金属丝伸直。

4.2 开始加第一、二个砝码时 r 的变化量小于正常的变化量可能的原因

- 可能是因为没有调节好,比如限转螺丝旋的过紧,螺丝与刻槽有摩擦,或者支架没有完全竖直,从 而开始时摩擦影响较大,实际的应力比重力小,因此伸长量变小,当砝码足够多时,摩擦的影响会 相对减小。
- 如果限转螺丝没调好,金属丝存在转动,没有在稳定后读数,也会导致伸长量变小。因此,仪器的初始调节很重要,正式实验前一定要认真调节,尽可能减小摩擦。

5 收获与感想

- 计算不确定度发现,尽管光杠杆装置和梁的弯曲测杨氏模量时公式相对较为复杂,对不确定度有贡献的项也更多,但 CCD 成像系统测得的不确定度略大一些。实际上,总不确定度主要由斜率贡献,并且除了梁的弯曲实验,其他两个实验中都是 B 类不确定度对斜率不确定度的贡献更多(这可能是因为梁的弯曲实验中数据点数目过少,读数显微镜允差更小),实验的误差大部分由伸长量(或挠度)的测量所引起。
- 实验中使用了三种不同方法测量微小的形变量,但其本质都是利用光学方法对其进行放大,但梁的弯曲和 CCD 装置都是直接用精密的光学仪器,而光杠杆法巧妙地搭建了光路,利用几何原理进行放大测量,思路值得借鉴。

