Group theory (and some applications in Computer Science)

Mai Hoàng Biên

Faculty of Mathematics and Computer Science, University of Science, VNUHCM

Chapter 3. Subgroups of Groups

- **1** 3.1. Dihedral groups (in computer visions)
- 2 3.2. Braid group Cryptography
- 3 3.3. Linear groups (in Neural Networks)
- 3.4. Groups of points (of Elliptic Curve Cryptography)

3.1. Dihedral groups (in computer visions)

1.1. Motivation

A regular polygon with n sides has 2n different symmetries: n rotational symmetries and n reflection symmetries.

Stop sign

These rotations and reflections make up a group (will be called D_8).

Snowflake

These rotations and reflections "make" up a group (will be called D_6).

Regular triangle

These rotations and reflections "make" up a group (will be called D_3).

1.2. Definition

Let n be a natural number. The dihedral group D_n is defined as the *rigid motions* taking a regular n-gon back to itself, with the operation being composition.

Dihedral group D_{16}

Imperial Seal of Japan, representing eightfold chrysanthemum with sixteen petals.

The Red Star of David

Dihedral group D_{12}

The Naval Jack of the Republic of China (White Sun)

Dihedral group D_{24}

Ashoka Chakra, as depicted on the National flag of the Republic of India.

Let n be a positive integer and a regular polygon with n sides. Let r be the (counter-clockwise) rotation by $\frac{2\pi}{n}$ radian. Then, denote by r^i the counter-clockwise rotation by $\frac{2i\pi}{n}$ radian for every $i \in \mathbb{Z}$.

1.2. Theorem

The *n* rotations in D_n are $1, r, \dots, r^{n-1}$.

Let n be a positive integer and a regular polygon with n sides. Let r be the (counter-clockwise) rotation by $\frac{2\pi}{n}$ radian. Then, denote by r^i the counter-clockwise rotation by $\frac{2i\pi}{n}$ radian for every $i \in \mathbb{Z}$.

1.2. Theorem

The *n* rotations in D_n are $1, r, \dots, r^{n-1}$.

Look at the first line.

Let n be a positive integer and a regular polygon with n sides. Let s be a reflection across a line through a vertex.

1.3. Theorem

The *n* reflections in D_n are $s, rs, \dots, r^{n-1}s$.

Let n be a positive integer and a regular polygon with n sides. Let s be a reflection across a line through a vertex.

1.3. Theorem

The *n* reflections in D_n are $s, rs, \dots, r^{n-1}s$.

Look at the second line.

1.4. Theorem

Let n be a positive integer and a regular polygon with n sides. Let a be the (counter-clockwise) rotation by $\frac{2\pi}{n}$ radian and b a reflection across a line through a vertex. Then

$$D_n = \{1, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}.$$

In particular, D_n has exactly 2n elements.

Lines of reflections.

Dihedral group D₄

$$D_4 = \{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$$

1.5. Theorem

Let n be a natural number. The dihedral group D_n is defined as the group with presentation

$$D_n = \langle a, b \mid a^n = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle.$$

1.5. Theorem

Let n be a natural number. The dihedral group D_n is defined as the group with presentation

$$D_n = \langle a, b \mid a^n = 1, b^2 = 1, bab^{-1} = a^{-1} \rangle.$$

Examples

write tables of elements of D_3 and D_4 with operations.

1.6. Theorem

$$D_n = \langle a, b \mid a^n = 1, b^2 = 1, (ab)^2 = 1 \rangle.$$

Exercises

1.1

Find the center of D_5 , that is, find the set of all elements $a \in D_5$ such that ab = ba for every $b \in D_5$.

1.2

Find the center of D_6 , that is, find the set of all elements $a \in D_6$ such that ab = ba for every $b \in D_6$.

1.3

Find the center of D_n for $n \ge 3$.

1.4

Show that $\langle a \rangle$ is a normal subgroup of D_n for $n \geq 3$.

Exercises

1.5

Find all subgroups of D_n for $n \ge 3$.

1.6

Find all normal subgroups of D_n for $n \ge 3$.

Semidirect products of subgroups

1.7. Definition

Let (G, \cdot) be a group. Assume that A, B are subgroups of G and A is normal in G. If G = AB, that is, $G = \{ab \mid a \in A, b \in B\}$, and $A \cap B = \{1\}$, then G is called the semidirect product of A and B.

Semidirect products of subgroups

1.7. Definition

Let (G, \cdot) be a group. Assume that A, B are subgroups of G and A is normal in G. If G = AB, that is, $G = \{ab \mid a \in A, b \in B\}$, and $A \cap B = \{1\}$, then G is called the semidirect product of A and B.

1.8. Theorem

 $D_n=\langle a,b\mid a^n=b^2=1,bab^{-1}=a^{-1}\rangle$ is the semidirect product of $\langle a\rangle$ and $\langle b\rangle$.

Infinite dihedral group

Recall that for element a in a group G, the order of a, denoted by o(a), the smallest positive integer k in case there exists a positive integer n such that $a^n = 1$. Otherwise, we write $o(a) = \infty$.

Infinite dihedral group

Recall that for element a in a group G, the order of a, denoted by o(a), the smallest positive integer k in case there exists a positive integer n such that $a^n = 1$. Otherwise, we write $o(a) = \infty$.

1.9. Definition

The infinite dihedral group, denoted by D_{∞} , is defined as the group with presentation

$$D_{\infty} = \langle a, b \mid o(a) = \infty, b^2 = 1, bab^{-1} = a^{-1} \rangle.$$

Example

An example of infinite dihedral symmetry is in aliasing of real-valued signals.

Semidirect products of subgroups

1.11. Theorem

 $D_{\infty} = \langle a, b \mid o(a) = \infty, b^2 = 1, bab^{-1} = a^{-1} \rangle$ is the semidirect product of $\langle a \rangle$ and $\langle b \rangle$.

Another definition of D_{∞}

1.12. Theorem

Let $\mathbb Z$ be the set of integers and $S_{\mathbb Z}$ the group of permutations on $\mathbb Z$. Then, D_{∞} the set of all permutations $\sigma \in S_{\mathbb Z}$ such that $|\sigma(i) - \sigma(j)| = |i - j|$ for every $i, j \in \mathbb Z$.

Another definition of D_{∞}

1.12. Theorem

Let $\mathbb Z$ be the set of integers and $S_{\mathbb Z}$ the group of permutations on $\mathbb Z$. Then, D_{∞} the set of all permutations $\sigma \in S_{\mathbb Z}$ such that $|\sigma(i) - \sigma(j)| = |i - j|$ for every $i, j \in \mathbb Z$.

Proof.

1.13. Theorem

Let $\mathbb Z$ be the set of integers and $S_{\mathbb Z}$ the group of permutations on $\mathbb Z$. Then, an element $\sigma \in S_{\mathbb Z}$ in D_{∞} if and only if there exists n>0, either $\sigma(i)=i+n$ or $\sigma(i)=-i+n$ for every $i\in \mathbb Z$.

