TYPES OF TESTS

-MUKESH KUMAR

Two-Tailed

- Hypotheses:
 - Null Hypothesis (H₀): The sample mean is equal to the population mean ($\mu = \mu_0$).
 - Alternative Hypothesis (H₁): The sample mean is not equal to the population mean ($\mu \neq \mu_0$).
- Critical Regions: Located in both tails of the distribution. The total significance level (α) is split between the two tails (e.g., if α = 0.05, each tail gets 0.025).
- Interpretation: If the test statistic falls in either tail, you reject the null hypothesis.
- Example: Testing if a new drug has a different effect than the current standard (it could be either more effective or less effective).

Right-Tailed

- Hypotheses:
 - Null Hypothesis (H₀): The sample mean is less than or equal to the population mean ($\mu \leq \mu_0$).
 - Alternative Hypothesis (H₁): The sample mean is greater than the population mean ($\mu > \mu_0$).
- Critical Region: Located in the right tail of the distribution.
- Interpretation: If the test statistic falls in the right tail, you reject the null hypothesis.
- Example: Testing if a new teaching method is more effective than the traditional method (expecting the new method to result in higher scores).

Left Tailed

Hypotheses:

- Null Hypothesis (H₀): The sample mean is greater than or equal to the population mean ($\mu \ge \mu_0$).
- Alternative Hypothesis (H₁): The sample mean is less than the population mean ($\mu < \mu_0$).
- Critical Region: Located in the left tail of the distribution.
- Interpretation: If the test statistic falls in the left tail, you reject the null hypothesis.
- Example: Testing if a new fuel additive reduces the average miles per gallon (expecting the
 additive to decrease fuel efficiency).

Right-tail test

 H_a : μ > value

Left-tail test

 H_a : μ < value

Two-tail test

 H_a : $\mu \neq value$

Based on Samples

One Sample

Tests

Two-Sample (Independent)

Paired

