00014regUS.ST25.txt SEQUENCE LISTING

<110> Holmgren, Erik Kihlen, Mats Wood, Tim Ekblom, Jonas	
<120> Novel Matrix Metalloproteinases	
<130> 00014regUS	
<150> 206119 <151> 2000-05-22	
<160> 8	
<170> PatentIn version 3.0	
<210> 1 <211> 1845 <212> DNA <213> Homo sapiens	
<400> 1 gcttcagctg aagaaagaga ggaatgaagc gccttctgct tctgtgtttg ttctttataa	60
cattitette tgcattice ttagteegga tgaeggaaaa tgaagaaaat atgcaactgg	120
ctcaggcata tctcaaccag ttctactctc ttgaaataga agggaatcat cttgttcaaa	180
gcaagaatag gagteteata gatgacaaaa ttegggaaat gcaageattt tttggattga	240
cagtgactgg aaaactggac tcaaacaccc ttgagatcat gaagacaccc aggtgtgggg	300
tgcctgatgt gggccagtat ggctacaccc tccctgggtg gagaaaatac aacctcacct	360
acagaataat aaactatact ccggatatgg cacgagctgc tgtggätgag gctatccaag	420
aaggtttaga agtgtggagc aaagtcactc cactaaaatt caccaagatt tcaaagggga	480
ttgcagacat catgattgcc tttaggactc gagtccatgg tcggtgtcct cgctattttg	540
atggtccctt gggagtgctt ggccatgcct ttcctcctgg tccgggtctg ggtggtgaca	600
ctcattttga tgaggatgaa aactggacca aggatggagc aggattcaac ttgtttcttg	660
tggctgctca tgaatttggt catgcactgg ggctctctca ctccaatgat caaacagcct	720
tgatgttccc aaattatgtc tccctggatc ccagaaaata cccactttct caggatgata	780
tcaatggaat ccagtccatc tatggaggtc tgcctaaggt acctgctaag ccaaaggaac	840
ccactatace ccatgcctgt gaccctgact tgacttttga cgctatcaca actttccgca	900
gagaagtaat gttctttaaa ggcaggcacc tatggaggat ctattatgat atcacggatg	960
ttgagtttga attaattgct tcattctggc catctctgcc agctgatctg caagctgcat	1020
acgagaaccc cagagataag attctggttt ttaaagatga aaacttctgg atgatcagag	1080
gatatgctgt cttgccagat tatcccaaat ccatccatac attaggtttt ccaggacgtg	1140
tgaagaaaat agatgcagcc gtctgtgata agaccacaag aaaaacctac ttctttgtgg	1200
gcatttggtg ctggaggttt gatgaaatga cccaaaccat ggacaaagga ttcccgcaga	1260

Page 1

gagtggtaaa acactttcct ggaatcagta tccgtgttga tgctgctttc cagtacaaag 1320

		•		•		
gattcttctt	tttcagccgt	ggatcaaagc	aatttgaata	caacattaag	acaaagaata	1380
ttacccgaat	catgagaact	aatacttggt	ttcaatgcaa	agaaccaaag	aactcctcat	1440
ttggttttga	tatcaacaag	gaaaaagcac	attcaggagg	cataaagata	ttgtatcata	1500
agagtttaag	cttgtttatt	tttggtattg	ttcatttgct	gaaaaacact	tctatttatc	1560
aataaattca	tagacctaaa	ataaacctca	acaggtcttt	taatataaat	tctgcttcaa	1620
aatagaataa	aaccattctt	taacaacaag	ttgctggtcc	tagttctaaa	tatccaaatt	1680
caatggccat	tttgagctgc	ctgattcttt	taataggaag	ttattatgta	gaaacaaaaa	1740
tctctgactg	tactttaagc	ctatttcatg	ctttgtggac	ttggagaaga	catgtcttat	1800
aactgaatac	tgaaacattt	attaaaccaa	tctttagcat	tctaa		1845
<210> 2 <211> 989 <212> DNA <213> Homo	o sapiens					
	ggtttggcat	gcagctcgtc	atcttaagag	ttactatctt	cttgccctgg	60
tgtttcgccg	ttccagtgcc	ccctgctgca	gaccataaag	gatgggactt	tgttgagggc	120
tatttccatc	aatttttcct	gaccaagaag	gagtcgccac	tccttaccca	ggagaċacaa	180
acacagetee	tgcaacaatt	ccatcggaat	gggacagacc	tacttgacat	gcagatgcat	240
gctctgctac	accagcccca	ctgtggggtg	cctgatgggt	ccgacácctc	catctcgcca	300
ggaagatgca	agtggaataa	gcacactcta	acttacagga	ttatcaatta	cccacatgat	360
atgaagccat	ccgcagtgaa	agacagtata	tataatgcag	tttccatctg	gagcaatgtg	420
acccctttga	tattccagca	agtgcagaat	ggagatgcag	acatcaaggt	ttctttctgg	480
cagtgggccc	atgaagatgg	ttggcccttt	gatgggccag	gtggtatctt	aggccatgcc	540
tttttaccaa	attctggaaa	tcctggagtt	gtccattttg	acaagaatga	acactggtca	600
gcttcagaca	ctggatataa	tctgttcctg	gttgcaactc	atgagattgg	gcattctttg	660
ggcctgcagc	actctgggaa	tcagagetee	ataatgtacc	ccacttactg	gtatcacgac	720
cctagaacct	tccagctcag	tgccgatgat	atccaaagga	tccagcattt	gtatggagaa	780
aaatgttcat	ctgacatacc	ttaatgttag :	cacagaggac	ttattcaacc	tgtcctttca	840
gggagtttat	tggaggatca	aagaactgaa	agcactagag	cagccttggg	gactgctagg	900
atgaagccct	aaagaatgca	acctagtcag	gttagctgaa	ccgacactca	aaacgctact	960
gagtcacaat	aaagattgtt	ttaaagagt				989

<212> DNA <213> Homo sapiens

<400> gctccccgag ccgggctgca ccggaggcgg cgagatggtc gcgcgcgtcg gcctcctgct 60 gegegeeetg cagetgetae tgtggggeea eetggaegee cageeeggg agegeggagg 120 ccaggagctg cgcaaggagg cggaggcatt cctagagaag tacggatacc tcaatgaaca 180 ggtccccaaa gctcccacct ccactcgatt cagcgatgcc atcagagcgt ttcagtgggt 240 gtcccagcta cctgtcagcg gcgtgttgga ccgcgccacc ctgcgccaga tgactcgtcc 300 ccgctgcggg gttacagata ccaacagtta tgcggcctgg gctgagagga tcagtgactt 360 gtttgctaga caccggacca aaatgaggcg taagaaacgc tttgcaaagc aaggtaacaa 420 atggtacaag cagcacctct cctaccgcct ggtgaactgg cctgagcatc tccggagccg 480 gcagttcggg gcgccgtgcg cgccgccttc cagttgtgga gcaacgtctc agcgctggag 540 ttctgggagg ccccagccac aggccccgct gacatccggc tcaccttctt ccaaggggac 600 cacaacgatg ggctgggcaa tgcctttgat ggcccagggg gcgccctggc gcacgccttt 660 cctgccccgc cgcggcgaag cgcacttcga ccaagatgag cgctggtccc tgagccgccg 720 ccgcgggcgc aacctgttcg tggtgctggc gcacgagatc ggtcacacgc ttggcctcac 780 ccactegeee gegeegegeg egeteatgge geectactae aagaggetgg geegegaege 840 gctgctcagc tgggacgacg tgctggccgt gcagagcctg tatgggaagc ccctaggggg 900 ctcagtggcc gtccagctcc caggaaagct gttcactgac tttgagacct gggactccta 960 cagcccccaa ggaaggcgcc ctgaaacgca gggccctaaa tactgccact cttccttcga 1020 tgccatcact gtagacaggc aacagcaact gtacattttt aaagggagcc atttctggga 1080 ggtggcagct gatggcaacg tctcagagcc ccgtccactg caggaaagat gggtcgggct 1140 gccccccaac attgaggctg cggcagtgtc attgaatgat ggagatttct acttcttcaa 1200 agggggtcga tgctggaggt tccggggccc caagccagtg tggggtctcc cacagctgtg 1260 ccgggcaggg ggcctgcccc gccatcctga cgccgccctc ttcttccctc ctctgcgccg 1320 cctcatcctc ttcaagggtg cccgctacta cgtgctggcc cgagggggac tgcaagtgga 1380 gecetactae eccegaagte tgeaggaetg gggaggeate eetgaggagg teageggege 1440 cctgccgagg cccgatggct ccatcatctt cttccgagat gaccgctact ggcgcctcga 1500 ccaggccaaa ctgcaggcaa ccacctcggg ccgctgggcc accgagctgc cctggatggg 1560 ctgctggcat gccaactcgg ggagcgccct gttctga 1597

<210> 4 <211> 513 <212> PRT

<213> Homo sapiens

<400> 4

2...

											- ,			•	
Met 1	Lys	Arg	Leu	Leu 5	Leu	Leu	Cys	Leu	Phe 10	Phe	Ile	Thr	Phe	Ser 15	Ser
Ala	Phe	Pro	Leu 20	Val	Arg	Met	Thr	Glu 25	Asn	Glu	Glu	Asn	Met 30	Gln	Leu
Ala	Gln	Ala 35	Tyr	Leu	Asn	Gln	Phe 40	Tyr	Ser	Leu	Glu	Ile 45	Glu	Gly	Asn
His	Leu 50	Val	Gln	Ser	Lys	Asn 55	Arg	Ser	Leu	Ile	Asp 60	Asp	Lys	Ile	Arg
Glu 65	Met	Gln	Ala	Phe	Phe 70	Gly	Leu	Thr	Val	Thr 75	Gly	Lys	Leu	Asp	Ser 80
Asn	Thr	Leu	Glu	Ile 85	Met	Lys	Thr	Pro	Arg 90	Cys	Gly	Val	Pro	Asp 95	Val
Gly	Gln	Tyr	Gly 100	Tyr	Thr	Leu	Pro	Gly 105	Trp	Arg	Lys	Tyr	Asn 110	Leu	Thr
				_	_		_	_			_				

- Tyr Arg Ile Ile Asn Tyr Thr Pro Asp Met Ala Arg Ala Ala Val Asp
- Glu Ala Ile Gln Glu Gly Leu Glu Val Trp Ser Lys Val Thr Pro Leu 130 135 140
- Lys Phe Thr Lys Ile Ser Lys Gly Ile Ala Asp Ile Met Ile Ala Phe 145 150 155 160
- Arg Thr Arg Val His Gly Arg Cys Pro Arg Tyr Phe Asp Gly Pro Leu 165 170 175
- Gly Val Leu Gly His Ala Phe Pro Pro Gly Pro Gly Leu Gly Gly Asp 180 185 , 190
- Thr His Phe Asp Glu Asp Glu Asn Trp Thr Lys Asp Gly Ala Gly Phe 195 200 205
- Asn Leu Phe Leu Val Ala Ala His Glu Phe Gly His Ala Leu Gly Leu 210 215 220
- Ser His Ser Asn Asp Gln Thr Ala Leu Met Phe Pro Asn Tyr Val Ser 225 230 235 240
- Leu Asp Pro Arg Lys Tyr Pro Leu Ser Gln Asp Asp Ile Asn Gly Ile 245 250 255
- Gln Ser Ile Tyr Gly Gly Leu Pro Lys Val Pro Ala Lys Pro Lys Glu . 260 265 270
- Pro Thr Ile Pro His Ala Cys Asp Pro Asp Leu Thr Phe Asp Ala Ile 275 280 285
- Thr Thr Phe Arg Arg Glu Val Met Phe Phe Lys Gly Arg His Leu Trp 290 295 300
- Arg Ile Tyr Tyr Asp Ile Thr Asp Val Glu Phe Glu Leu Ile Ala Ser 305 310 315 320
- Phe Trp Pro Ser Leu Pro Ala Asp Leu Gln Ala Ala Tyr Glu Asn Pro 325 330 335
- Arg Asp Lys Ile Leu Val Phe Lys Asp Glu Asn Phe Trp Met Ile Arg Page 4

5

Gly Tyr Ala Val Leu Pro Asp Tyr Pro Lys Ser Ile His Thr Leu Gly
355 360 365

Phe Pro Gly Arg Val Lys Lys Ile Asp Ala Ala Val Cys Asp Lys Thr 370 375 380

Thr Arg Lys Thr Tyr Phe Phe Val Gly Ile Trp Cys Trp Arg Phe Asp 385 390 395 400

Glu Met Thr Gln Thr Met Asp Lys Gly Phe Pro Gln Arg Val Val Lys
405 410 415

His Phe Pro Gly Ile Ser Ile Arg Val Asp Ala Ala Phe Gln Tyr Lys 420 425 430

Gly Phe Phe Phe Phe Ser Arg Gly Ser Lys Gln Phe Glu Tyr Asn Ile 435 440 445

Lys Thr Lys Asn Ile Thr Arg Ile Met Arg Thr Asn Thr Trp Phe Gln 450 460

Cys Lys Glu Pro Lys Asn Ser Ser Phe Gly Phe Asp Ile Asn Lys Glu 465 470 475 480

Lys Ala His Ser Gly Gly Ile Lys Ile Leu Tyr His Lys Ser Leu Ser 485 490 495

Leu Phe Ile Phe Gly Ile Val His Leu Leu Lys Asn Thr Ser Ile Tyr 500 505 510

Gln

<210> 5

<211> 259 <212> PRT

<213> Homo sapiens

<400> 5

Met Gln Leu Val Ile Leu Arg Val Thr Ile Phe Leu Pro Trp Cys Phe 1 5 10 15

Ala Val Pro Val Pro Pro Ala Ala Asp His Lys Gly Trp Asp Phe Val

Glu Gly Tyr Phe His Gln Phe Phe Leu Thr Lys Lys Glu Ser Pro Leu 35 40 45

Leu Thr Gln Glu Thr Gln Thr Gln Leu Leu Gln Gln Phe His Arg Asn-50 55 60

Gly Thr Asp Leu Leu Asp Met Gln Met His Ala Leu Leu His Gln Pro 65 70 75 80

His Cys Gly Val Pro Asp Gly Ser Asp Thr Ser Ile Ser Pro Gly Arg 85 90 95

Cys Lys Trp Asn Lys His Thr Leu Thr Tyr Arg Ile Ile Asn Tyr Pro 100 105 110

His Asp Met Lys Pro Ser Ala Val Lys Asp Ser Ile Tyr Asn Ala Val 115 120 125

Page 5

4.

	130	Trp	Ser	Asn	Val	Thr 135	Pro	Leu	Ile	Phe	Gln 140	Gln	Val	Gln	Asn
Gly 145	Asp ·	Ala	Asp	Ile	Lys 150	Val	Ser	Phe	Trp	Gln 155	Trp	Ala	His	Glu	Asp 160
Gly	Trp	Pro	Phe	Asp 165	Gly	Pro	Gly	Gly	Ile 170	Leu	Gly	His	Ala	Phe 175	Leu
Pro	Asn	Ser	Gly 180	Asn	Pro	Gly	Val	Val 185	His	Phe	Asp	Lys	Asn 190	Glu	His
Trp	Ser	Ala 195	Ser	Asp	Thr	Gly	Tyr 200	Asn	Leu	Phe	Leu	Val 205	Ala	Thr	His
Glu	Ile 210	Gly	His	Ser	Leu	Gly 215	Leu	Gln	His	Ser	Gly 220	Asn	Gln	Ser	Ser
Ile 225	Met	Tyr	Pro	Thr	Tyr 230	Trp	Tyr	His	Asp	Pro 235	Arg	Thr	Phe	Gln	Leu 240
Ser	Ala	Asp	Asp	Ile 245	Gln	Arg	Ile	Gln	His 250	Leu	Tyr	Gly	Glu	Lys 255	Cys
Ser	Ser	Asp													
<210 <211 <211 <211	1> 5 2> 1	5 520 PRT Homo	sapi	iens											
<400	0> (5													
		Ala	Arg	Val 5	Gly	Leu	Leu	Leu	Arg 10	Ala	Leu	Gļņ	Leu	Leu 15	Leu
Met 1	Val			5					10			٠.		15	
Met 1 Trp	Val Gly	Ala	Leu 20	5 Asp	Ala	Gln	Pro	Ala 25	10 Glu	Arg	Gly	Gly	Gln 30	15 Glu	Leu
Met 1 Trp Arg	Val Gly Lys	Ala His Glu	Leu 20 Ala	5 Asp Glu	Ala Ala	Gln Phe	Pro Leu 40 Ser	Ala 25 Glu	10 Glu Lys	Arg Tyr	Gly Gly	Gly Tyr 45	Gln 30 Leu	15 Glu Asn	Leu Glu
Met 1 Trp Arg Gln	Val Gly Lys Val	Ala His Glu 35	Leu 20 Ala Lys	5 Asp Glu Ala	Ala Ala Pro	Gln Phe Thr	Pro Leu 40 Ser	Ala 25 Glu Thr	10 Glu Lys Arg	Arg Tyr Phe	Gly Gly Ser 60	Gly Tyr 45 Asp	Gln 30 Leu Ala	15 Glu Asn Ile	Leu Glu Arg
Met 1 Trp Arg Gln Ala 65	Val Gly Lys Val 50 Phe	Ala His Glu 35 Pro	Leu 20 Ala Lys Trp	5 Asp Glu Ala Val	Ala Pro Ser 70	Gln Phe Thr 55	Pro Leu 40 Ser Leu	Ala 25 Glu Thr	10 Glu Lys Arg Val	Arg Tyr Phe Ser 75	Gly Gly Ser 60 Gly	Gly Tyr 45 Asp	Gln 30 Leu Ala Leu	15 Glu Asn Ile Asp	Leu Glu Arg Arg
Met 1 Trp Arg Gln Ala 65 Ala	Val Gly Lys Val 50 Phe	Ala His Glu 35 Pro	Leu 20 Ala Lys Trp	5 Asp Glu Ala Val Gln 85	Ala Ala Pro Ser 70 Met	Gln Phe Thr 55 Gln Thr	Pro Leu 40 Ser Leu Arg	Ala 25 Glu Thr Pro	10 Glu Lys Arg Val Arg	Tyr Phe Ser 75 Cys	Gly Gly Ser 60 Gly Gly	Gly Tyr 45 Asp Val	Gln 30 Leu Ala Leu Thr	Glu Asn Ile Asp Asp 95	Leu Glu Arg Arg 80 Thr
Met 1 Trp Arg Gln Ala 65 Ala Asn	Val Gly Lys Val 50 Phe Thr	Ala His Glu 35 Pro Gln Leu	Leu 20 Ala Lys Trp Arg	5 Asp Glu Ala Val Gln 85 Ala	Ala Ala Pro Ser 70 Met	Gln Phe Thr 55 Gln Thr	Pro Leu 40 Ser Leu Arg	Ala 25 Glu Thr Pro Pro	Glu Lys Arg Val Arg 90 Ile	Arg Tyr Phe Ser 75 Cys Ser	Gly Ser 60 Gly Gly Asp	Gly Tyr 45 Asp Val Val	Gln 30 Leu Ala Leu Thr	Glu Asn Ile Asp Asp 95 Ala	Leu Glu Arg Arg 80 Thr
Met 1 Trp Arg Gln Ala 65 Ala Asn	Val Gly Lys Val 50 Phe Thr Ser	Ala His Glu 35 Pro Gln Leu Tyr Thr 115	Leu 20 Ala Lys Trp Arg Ala 100 Lys	5 Asp Glu Ala Val Gln 85 Ala Met	Ala Ala Pro Ser 70 Met Trp Arg	Gln Phe Thr 55 Gln Thr Ala	Pro Leu 40 Ser Leu Arg Glu Lys 120 Ser	Ala 25 Glu Thr Pro Pro Arg 105 Lys	Glu Lys Arg Val Arg 90 Ile Arg	Arg Tyr Phe Ser 75 Cys Ser	Gly Ser 60 Gly Gly Asp	Gly Tyr 45 Asp Val Val Leu Lys 125 Asn	Gln 30 Leu Ala Leu Thr Phe 110 Gln	Glu Asn Ile Asp Asp 95 Ala Gly	Leu Glu Arg 80 Thr Arg

Cys Gly Ala Thr Ser Gln Arg Trp Ser Ser Gly Arg Pro Gln Pro Gln 165 170 175

Ala Pro Leu Thr Ser Gly Ser Pro Ser Ser Lys Gly Thr Thr Met 180 185 190

Gly Trp Ala Met Pro Leu Met Ala Gln Gly Ala Pro Trp Arg Thr Pro 195 200 205

Phe Leu Pro Arg Arg Gly Glu Ala His Phe Asp Gln Asp Glu Arg Trp 210 215 220

Ser Leu Ser Arg Arg Gly Arg Asn Leu Phe Val Val Leu Ala His 225 230 235 240

Glu Ile Gly His Thr Leu Gly Leu Thr His Ser Pro Ala Pro Arg Ala 245 250 255

Leu Met Ala Pro Tyr Tyr Lys Arg Leu Gly Arg Asp Ala Leu Leu Ser 260 265 270

Trp Asp Asp Val Leu Ala Val Gln Ser Leu Tyr Gly Lys Pro Leu Gly
275 280 285

Gly Ser Val Ala Val Gln Leu Pro Gly Lys Leu Phe Thr Asp Phe Glu 290 295 300

Thr Trp Asp Ser Tyr Ser Pro Gln Gly Arg Arg Pro Glu Thr Gln Gly 305 310 315 320

Pro Lys Tyr Cys His Ser Ser Phe Asp Ala Ile Thr Val Asp Arg Gln 325 330 335

Gln Gln Leu Tyr Ile Phe Lys Gly Ser His Phe Trp Glu Val Ala Ala 340 345 350

Asp Gly Asn Val Ser Glu Pro Arg Pro Leu Gln Glu Arg Trp Val Gly 355 360 365

Leu Pro Pro Asn Ile Glu Ala Ala Ala Val Ser Leu Asn Asp Gly Asp 370 375 380

Phe Tyr Phe Phe Lys Gly Gly Arg Cys Trp Arg Phe Arg Gly Pro Lys 385 390 395 400

Pro Val Trp Gly Leu Pro Gln Leu Cys Arg Ala Gly Gly Leu Pro Arg
405 410 415

His Pro Asp Ala Ala Leu Phe Phe Pro Pro Leu Arg Arg Leu Ile Leu 420 425 430

Phe Lys Gly Ala Arg Tyr Tyr Val Leu Ala Arg Gly Gly Leu Gln Val 435 440 445

Glu Pro Tyr Tyr Pro Arg Ser Leu Gln Asp Trp Gly Gly Ile Pro Glu 450 455 . 460

Glu Val Ser Gly Ala Leu Pro Arg Pro Asp Gly Ser Ile Ile Phe Phe 465 470 475 480

Arg Asp Asp Arg Tyr Trp Arg Leu Asp Gln Ala Lys Leu Gln Ala Thr 485 490 495

Thr Ser Gly Arg Trp Ala Thr Glu Leu Pro Trp Met Gly Cys Trp His 500 505 510

```
Ala Asn Ser Gly Ser Ala Leu Phe
       515
<210>
      7
<211>
      999
<212>
      DNA
<213>
      Homo sapiens
<300>
<301>
      Park, H.I., Ni, J., Gerkema, F.E., Liu, D., Belozero Sang, Q.X.
      Identification and characterization of human endometalloproteinase-26) from endometria
<302>
1 tumor
<303>
      J. Biol. Chem.
      275
<304>
<305>
      27
      20540-20544
<306>
<307>
      2000-03-23
<308>
      GenBankAF248646
<309>
      2000-03-23
<300>
<308>
      GenbankAF248646
<309>
      2000-03-23
ggcacgagca tgcagctcgt catcttaaga gttactatct tcttgccctg gtgtttcgcc
                                                                     60
gttccagtgc cccctgctgc agaccataaa ggatgggact ttgttgaggg ctatttccat
                                                                    120
caatttttcc tgaccgagaa ggagtcgcca ctccttaccc aggagacaca aacacagctc
                                                                    180
ctgcaacaat tccatcggaa tgggacagac ctacttgaca tgcagatgca tgctctgcta
                                                                    240
caccagcccc actgtggggt gcctgatggg tccgacacct ccatctcgcc aggaagatgc
                                                                    300
aagtggaata agcacactct aacttacagg attatcaatt acccacatga tatgaagcca
                                                                    360
tccgcagtga aagacagtat atataatgca gtttccatct ggagcaatgt gacccctttg
                                                                    420
atattccagc aagtgcagaa tggagatgca gacatcaagg tttctttctg gcagtgggcc
                                                                    480
catgaagatg gttggccctt tgatgggcca ggtggtatct taggccatgc ctttttacca
                                                                    540
aattotggaa atootggagt tgtocatttt gacaagaatg aacactggto agottoagac
                                                                    600
actggatata atctgttcct ggttgcaact catgagattg ggcattcttt gggcctgcag
                                                                    660
cactotggga atcagagete cataatgtae eccaettaet ggtateaega ecctagaace
                                                                    720
ttccagctca gtgccgatga tatccaaagg atccagcatt tgtatggaga aaaatgttca
                                                                    780
tctgacatac cttaatgtta gcacagagga cttattcaac ctgtctttca gggagtttat
                                                                    840
tggaggatca aagaactgaa agcactagag cagccttggg gactgctagg atgaagccct
                                                                    900
aaagaatgca acctagtcag gttagctgaa ccgacactca aaacgctact gagtcacaat 960
999
```

<210> 8 <211> 261 <212> PRT <213> Homo sapiens

```
<300>
<301>
       Park, H.I., Ni, J., Gerkema, F.E., Liu, D., Belozero Sang, Q.X.
<302> Identification and characterization of human endometalloproteinase-26) from endometria
1 tumor
<303>
      J. Biol. Cehm.
<304>
      275
<305>
      27
<306>
      20540-205444
<307>
      2000-03-23
<308>
      GenBankAF248626
<309>
       2001-03-23
<300>
<308>
       GenbankAF248646
<309>
      2000-03-23
<400> 8
Met Gln Leu Val Ile Leu Arg Val Thr Ile Phe Leu Pro Trp Cys Phe
Ala Val Pro Val Pro Pro Ala Ala Asp His Lys Gly Trp Asp Phe Val
Glu Gly Tyr Phe His Gln Phe Phe Leu Thr Glu Lys Glu Ser Pro Leu
Leu Thr Gln Glu Thr Gln Thr Gln Leu Leu Gln Gln Phe His Arg Asn
Gly Thr Asp Leu Leu Asp Met Gln Met His Ala Leu Leu His Gln Pro
His Cys Gly Val Pro Asp Gly Ser Asp Thr Ser Ile Ser Pro Gly Arg
                                    90
Cys Lys Trp Asn Lys His Thr Leu Thr Tyr Arg Ile Ile Asn Tyr Pro
                                105
His Asp Met Lys Pro Ser Ala Val Lys Asp Ser Ile Tyr Asn Ala Val
Ser Ile Trp Ser Asn Val Thr Pro Leu Ile Phe Gln Gln Val Gln Asn
Gly Asp Ala Asp Ile Lys Val Ser Phe Trp Gln Trp Ala His Glu Asp
Gly Trp Pro Phe Asp Gly Pro Gly Gly Ile Leu Gly His Ala Phe Leu
                                    170
Pro Asn Ser Gly Asn Pro Gly Val Val His Phe Asp Lys Asn Glu His
Trp Ser Ala Ser Asp Thr Gly Tyr Asn Leu Phe Leu Val Ala Thr His
Glu Ile Gly His Ser Leu Gly Leu Gln His Ser Gly Asn Gln Ser Ser
Ile Met Tyr Pro Thr Tyr Trp Tyr His Asp Pro Arg Thr Phe Gln Leu
Ser Ala Asp Asp Ile Gln Arg Ile Gln His Leu Tyr Gly Glu Lys Cys
                                             Page 9
```

245

Ser Ser Asp Ile Pro 260

Page 10

1,