UNIVERSIDAD DEL VALLE DE GUATEMALA

 $\mathrm{MM2033}\text{--}2\ \mathrm{SEMESTRE}$ - 2021

LICENCIATURA EN MATEMÁTICA APLICADA

TEORÍA DE CONJUNTOS

Catedrático: Nancy Zurita

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

14 de julio de 2021

Índice

1	Sesión 2	1
	1.1 Axiomática	1
2	Sesión 3	4

1. Sesión 2

1.1. Axiomática

A0: (Axioma de vacío) Existe vacío. Notación: Ø.

A1: (Axioma de extensión) $\forall x(x \in A \iff x \in B) \implies A = B$.

A2: (Esquema axiomático de separación) $\exists B \ \forall x \ni (x \in B \iff [x \in A \land \Phi(x)]).$

Definición 1. (Conjunto) y es conjunto \iff $(\exists x(x \in y)) \lor (y = \varnothing)$.

Definición 2. (No pertenencia) $x \notin y \iff \neg(x \in y)$.

Teorema 1. $\forall x, x \notin \emptyset$.

Teorema 2. $\forall x, x \notin A \iff A = \emptyset$.

Definición 3. (Contención) $A \subseteq B \iff \forall x (x \in A \implies x \in B)$.

Definición 4. (Contención estricta) $A \subset B \iff (A \subseteq B \land A \neq B)$.

Teorema 3. $A \subseteq \emptyset \implies A = \emptyset$.

Teorema 4. $\neg (A \subset A)$.

TEOREMAS

 $1. \forall x, x \notin \emptyset$

den: Sea &(x) la expresión X+x. Por esquema axiomático de separación IB +x 7 (x = + x +x). Supongase JxeB → ×+× (x) > ∀x,x∉B. Por definición de conjunto B= \$ >> 4x,x&p.

A2: ESQUEMA AXIOMÁTICO DE SEPARACIÓN $\exists B \forall \mathbf{x} \ni (x \in B \iff [x \in A \ y \ \Phi(x)])$ conjunto !/

 $2. \forall x, x \notin A \Leftrightarrow A = \emptyset \circ$ Si $\forall x, x \notin A \Rightarrow \text{Der definition}$ de coujunto, $A = \Phi$.

(€) Si A= \$\phi \rightarrow Par teorema anterior ¥x, xeφ=A ⇒ ¥x, x¢A.

≯ DEFINICIÓN DE CONTENCIÓN $A \subseteq B \iff \forall x (x \in A \implies x \in B)$

AB DEFINICIÓN DE CONTENCIÓN ESTRICTA $A \subset B \Leftrightarrow (A \subseteq B \ y \ A \neq B)$

(P⇒q) = (¬=P)

TEOREMAS

1. $A \subseteq \emptyset \Rightarrow A = \emptyset$ dem: Sea A un conjunto $g A \subseteq \emptyset$. $\Rightarrow \forall x (x \in A \Rightarrow x \in \emptyset)$. Se asume ope

la implicación es rerdadera, también lo

la implicación es rerdadera, $\forall x (x \notin \emptyset \Rightarrow x \notin A)$ es su contra presta. Es decir, $\forall x (x \notin \emptyset \Rightarrow x \notin A)$ Como $\forall x, x \notin \emptyset$ es siempre verdadero \Rightarrow $\forall x, x \notin A$ es verdadero $\Rightarrow A = \emptyset$

$2.\neg(A \subset A)$

dem: Sea A un conjunto. Supérojase que ACA \Rightarrow ACA \Rightarrow AFA. \Rightarrow AF

:.7 (ACA).

2. Sesión 3

Teorema 5. (Construcción de la interesección) $\exists !C, \forall x \ni (x \in C \iff x \in A \land x \in B)$.

Definición 5. $A \cap B = y \iff [\forall x (x \in y \iff [x \in A \land x \in B]) \land y \text{ es conjunto.}]$

Teorema 6. (Varios)

1.
$$x \in A \cap B \Leftrightarrow [x \in A \ y \ x \in B]$$

$$2. A \cap A = A$$

3.
$$A \cap \emptyset = \emptyset$$

4.
$$A \cap B = B \cap A$$

5.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

A3: (De la unión) $\exists C \forall x \ni (x \in C \iff [x \in \lor x \in B])$.

Teorema 7. (Construcción de la unión) $\exists !C, \forall x \ni (x \in C \iff [x \in A \lor x \in B])$

Definición 6. $A \cup B = y \iff [\forall x (x \in y \iff [x \in A \lor x \in B]) \land y \text{ es conjunto.}]$

Teorema 8. (Varios)

1.
$$x \in A \cup B \Leftrightarrow [x \in A \ ó \ x \in B]$$

$$2. A \cup A = A$$

$$\beta. \ A \cup \emptyset = A$$

4.
$$A \cup B = B \cup A$$

5.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

A0 A. Vacío

A1 A. Extensión (Unicidad - Cuando hay igualdad)

A2 Existencia.

A3 Existencia.

Teorema 9. (Construcción de la diferencia de conjuntos) $\exists ! C, \forall x \ni (x \in C \iff [x \in \land x \notin B]).$

Definición 7.
$$A \sim B = y \iff [\forall x (x \in y \iff [x \in A \land x \notin B]) \land y \text{ es conjunto.}]$$

Teorema 10. (Varios)

1.
$$x \in A \sim B \iff [x \in A \land x \notin B]$$
.

2.
$$A \sim A = \emptyset$$
.

TEOREMAS

- 1. $x \in A \cap B \iff [x \in A \ y \ x \in B]$
- $2. \quad A \cap A = A$
- 3. $A \cap \emptyset = \emptyset$
- 4. $A \cap B = B \cap A$
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$

3 dem: Su póngase que xeAnd. > XEA & XEP > XEP(X) > X&AOP, HX. > AMP=D A3: DE LA UNIÓN $\exists C \forall x \ni (x \in C \iff [x \in A \land x \in B])$

TEOREMA CONSTRUCCIÓN DE LA UNIÓN

 $\exists ! C, \forall x \ni (x \in C \iff [x \in A \text{ \'o } x \in B])$

Existencia: Asegura Axióma de la Unión.
Viviadad: Asegura Axióma de la Extensión.

DEFINICIÓN

 $A \cup B = y \Leftrightarrow \begin{bmatrix} \forall x (x \in y \Leftrightarrow [x \in A \ \acute{o} \ x \in B]) \\ \land \\ y \ es \ conjunto \end{bmatrix}$

TEOREMAS

 $2. \ \ A \cup A = A$

3. $A \cup \emptyset = A$ 4. $A \cup B = B \cup A$

5. $A \cup (B \cup C) = (A \cup B) \cup C$

A. Union

J. Saberros que AUB = AUB.

De la definición, XE AUB (XEA V XEB.

2 dem Sea XEA (XEA V XEA) > XEA (S) XEAURA

Der Ax. de Extensión, A = AVA

3) dem: Sea KEA (XEA) XEA (XEA) XEAUP

Por Ax. do Extensión, A=AUP.

A. Vaco Unicidad nay ignalded. EASK-T Existencia

TEOREMA CONSTRUCCIÓN DE LA DIFERENCIA DE CONJUNTOS

Existencia: ₱(x):x&B EAS

Unicidad : A. Ext.

