MECHANICAL EVENTS IN THE CARDIAC CYCLE

Dr Lesley Ulman Wallace Wurth room 204

Please log into ECHO360/Lecture recordings + via moodle to participate in the active learning activities

• cardiac events from beginning of one heartbeat to the beginning of the next = cardiac cycle.

- delay of >1/10 sec between passage of impulse from atria to ventricles - allows atria to contract ahead of ventricles - atria act as primer pumps for the ventricles & ventricles then provide major source of power for moving blood through the vascular system.
- electrical event occurs just prior to its corresponding mechanical event.

Objectives of this lecture

Understand the different phases of the cardiac cycle and how the following parameters vary in each of the phases

- · Left ventricular pressure
- Aortic pressure
- · Left atrial pressure
- · Ventricular volume
- Opening and closing of valves
- Heart sounds
- The ECG

 cardiac cycle consists of alternate periods of relaxation & filling = diastole and contraction and emptying = systole

atria & ventricles go through separate cycles of systole
 & diastole

We are now going to look at

- * pressure changes in the left ventricle
- * pressure changes in the aorta
- ❖ pressure changes in the left atrium
- ❖ ventricular volume
- ❖ points of opening and closing of valves
- generation of heart sounds
- the ECG

1. atrial systole 2. isovolumetric ventricular contraction 3. rapid ejection phase 4. reduced ejection phase 5. isovolumetric ventricular relaxation 6. filling - rapid & reduced

1. ATRIAL SYSTOLE

- SA node initiates electrical activity spreads throughout atria (P wave in ECG)
- atrial contraction follows atrial pressure ↑ (a wave)
- · mitral/bicuspid valve open, aortic valve closed
- as atria contract, ventricle is filling as blood is pushed through mitral valve - small ↑ in ventricular volume to reach end-diastolic volume
- \uparrow in ventricular volume \rightarrow slight \uparrow ventricular pressure
- pressure in aorta starts to ↓ aortic valve is closed ∴ no more blood enters aorta and that already there is moving into systemic circulation

2. VENTRICULAR EXCITATION & ISOVOLUMETRIC VENTRICULAR CONTRACTION

- electrical activity spreads through ventricles (QRS complex)
- electrical depolarisation → ventricular contraction
- ventricular pressure rises abruptly → mitral valve closure (first heart sound) (valve closes when ventricular pressure exceed atrial pressure)
- ventricle now a closed chamber which is contracting causing an † in ventricular pressure
- no change in intraventricular volume (isovolumetric) all valves are closed
- during isovolumetric ventricular contraction, AV valves bulge into atria - small sharp ↑ in atrial pressure (c wave)
- · aortic pressure continues to fall

3. RAPID EJECTION PHASE

- when LV pressure

 slightly above aortic pressure, the
 ventricular pressure pushes the aortic valve open &
 ventricular ejection begins
- blood pours out of the ventricles so ventricular volume ↓ -±70% of the emptying occurs during the first 1/3 of the period of ejection = rapid ejection phase.
- · ventricular pressure approaches its maximum
 - » Peak LV pressure is about 120 mm Hg
 - » (Peak RV pressure is about 25 mm Hg)
- aortic pressure ↑ as blood ejects into aorta
- atrial pressure
 ↓ as AV valves no longer bulge back into the atria

5. ISOVOLUMETRIC RELAXATION

- ↑ pressures in large arteries push blood back towards the ventricles - snaps aortic & pulmonary valves closed
 = 2nd heart sound
- dicrotic notch = small oscillation on falling phase of aortic pulse wave due to vibrations set up when the aortic valve snaps shut
- both valves closed no blood is leaving or entering ventricles. Ventricular vol at its lowest = end-systolic volume
- ventricular pressure ↓ but no change in ventricular volume
- blood flows into atria atrial pressure ↑ (v wave)

4. REDUCED EJECTION PHASE

- blood flow from heart begins to slow down so aortic pressure starts to fall
- repolarisation of the myocardium occurs (T wave)
- end of this phase represents the end of ventricular systole
- some blood is flowing back into the atria so atrial pressure starts to ↑ a little

6. RAPID & REDUCED FILLING PHASES

- ventricular pressure less than atrial, so AV valves open
- aortic & pulmonary valves are closed
- blood fills into atria & then directly into ventricles so atrial pressure falls and
- ventricular volume increases but ventricular pressure remains low
- in reduced filling phase, pressure remains low and ventricular filling is slow so ventricular volume ↑ only a little
- aortic pressure ↓ as blood is draining away and no further blood is entering the aorta
- towards the end of this phase atrial depolarisation starts and the cycle repeats itself

