Finx_torch

01. Transformer

김남형

Department of Industrial Engineering Hanyang University

2022-01-09

FINANCIAL INNOVATION & ANALYTICS LAB.

스터디 방향

스터디 방향

자연어처리와 금융 딥러닝

• 논문 리스트

순서	Paper
01	Attention is all you need
02	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
03	Deep Learning Statistical Arbitrage
04	Accurate Multivariate Stock Movement Prediction via Data-Axis Transformer with Multi-Level Contexts

[Transformer와 그 응용]

스터디 방향

자연어처리와 금융 딥러닝

- 스케쥴
 - 2월 28일까지 최대한 4개의 논문을 구현하는 것을 목표
 - » Transformer: 1.5주, BERT: 2.5주
 - » Arbitrage: 2.5주, Stock Prediction: 2주
- 구현 Reference
 - 구현할 때 참고할 reference가 있으면 좋을 것 같음
 - 각자 논문 발제일에 reference로 삼으면 좋을만한 코드(github, colab ..) 조사, 공유
 - 공유된 reference를 기준으로 구현해보면서 질문 공유
- 논문 발제
 - 첫번째 Transformer: 김남형
 - 이후 돌아가며 발제하고자 함.
 - 발제할 때 발표자가 놓친 부분이나 질문이 있으면 언제든지 이야기할 것!

1. Introduction

- Transformer를 쓰는 이유
 - RNN계열은 내재적으로 시퀀스 속성을 지님
 - » 이는 병렬처리를 방해 ▶ 메모리에 제약이 걸림 ▶ 긴 시퀀스에 치명적
 - Attention Mechanism
 - » Input과 output의 거리에 상관없이 dependency를 모델링하게 해줌
 - » 그러나 Transformer 이전 모델(NEURAL MACHINE TRANSLATION
 - » BY JOINTLY LEARNING TO ALIGN AND TRANSLATE)은 recurrent 구조와 결합하여 사용해왔음
 - Transformer 제시
 - » Recurrence 구조 제거. 오직 Attention mechanism에만 의존하여 global dependency를 그린다

2. Background

- CNN 모델과 Self-attention에 대한 설명
 - CNN모델
 - » Operation량이 포지션 사이 거리에 따라 증가함(선형: ConvS2S, logarithm: ByteNet)
 - » 먼 거리의 dependency 배우기 어려움
 - » Transformer에서는 operation량이 상수(c)로 줄어듦
 - 잘 모르겠는 부분
 - » Transformer의 averaging attention-weighted position으로 인해 효과적인 분해(resolution)은 감소하나 Multi-Head Attention으로 대응한다.
 - >> Averaging attention-weighted position: $softmax(\frac{QK^T}{\sqrt{d_k}})$ 가 확률이므로 position(V)가 가중평균된다는 뜻인 것 같은데… 이로 인해 resolution의 감소가 뜻하는 바는 무엇인지 잘 모르겠음
 - Self-attention: 이미 Transformer 이전에 제시된 방법론.
 - » 하나의 시퀀스의 서로 다른 포지션을 relating. ▶ 시퀀스의 representation 계산

3. Model Architecture

Encoder Decoder

Figure 1: The Transformer - model architecture.

Autoregressive한 성격

Encoder: $(x_1, ..., x_n) \to (z_1, ..., z_n)$

Decoder: $given Z, generate(y_1, ..., y_n)$

3. Model Architecture

3.1 Encoder & Decoder Stacks

- Encoder
 - » 개별 layer는 MH Self-Attention과 position-wise fully connected ffn으로 구성
 - » 여기에 Residual Connection을 추가하고 그 후 Layer 정규화가 뒤따름
 - » 개별 Sublayer 들의 Output: LayerNorm(x + Sublayer(x))
- Decoder
 - » Decoder의 2번째 sublayer는 cross attention.
 - 또한, subsequent position에 attention이
 적용되는 것 막기위해 masking이 도입

3. Model Architecture

3.2 Attention

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}
ight)V$$

- Output: weighted sum of Value.
- 개별 value에 할당되는 weight는 compatibility function(query, key)로 계산됨. (이게 어텐션?)
- 3.2.1 Scaled Dot-product Attention
 - 가장 많이 사용되는 어텐션: additive/dot-product
 - $-d_k$ 가 작을 때는 두 어텐션이 비슷하나 d_k 가 커지면 additive가 훨씬 좋았다.
 - Dot-product 개선 ▶ Scaled Dot-product Attention

이름	스코어 함수
dot	$score(s_t, h_i) = s_t^T h_i$
bahdanau(additive)	$score(s_t, h_i) = W_a^T \tanh(W_b[s_t; h_i])$
scaled dot	$score(s_t, h_i) = \frac{s_i^T h_i}{\sqrt{n}}$

3. Model Architecture

- 3.2.1 Scaled Dot-product Attention
 - Softmax의 미분

$$rac{\partial}{\partial z_j} s_i(\mathbf{z}) = egin{cases} s_j(\mathbf{z})(1-s_j(\mathbf{z})), & ext{if } i=j \ -s_i(\mathbf{z})s_j(\mathbf{z}), & ext{if } i
eq j \end{cases}$$

- » Softmax의 미분계수: 함수의 요소들 끼리 곱으로 결정 ▶ 0또는 1에 아주 가까우면 Gradient 소실
- » Q, K는 Layer 정규화를 거치게 되므로 q, k의 요소들은 대략 평균 0, 1을 따른다고 가정할 수 있음

$$q_i, k_i \sim p(0,1)$$

 \gg 따라서 표준편차 $\sqrt{d_k}$ 로 나누어 E[QK]의 평균과 분산을 0,1에 가깝게 만들고자 함

$$egin{aligned} \mathbb{E}\left[\mathbf{q}\cdot\mathbf{k}
ight] &= \mathbb{E}\left[\sum_{i=1}^{d_k}q_ik_i
ight] \ &= \sum_{i=1}^{d_k}\mathbb{E}\left[q_ik_i
ight] \end{aligned}$$

$$egin{aligned} \mathbb{E}[q_i k_i] &= \sum_{q_i} \sum_{k_i} q_i k_i \ p(q_i, k_i) \ &= \sum_{q_i} \sum_{k_i} q_i k_i \ p(q_i) p(k_i) \quad \because q_i \ ext{and} \ k_i \ ext{are independent} \ &= \sum_{q_i} q_i \ p(q_i) \sum_{k_i} k_i \ p(k_i) \ &= \mathbb{E}[q_i] \ \mathbb{E}[k_i] = 0 \quad \because \mathbb{E}[q_i] = \mathbb{E}[k_i] = 0 \end{aligned}$$

3. Model Architecture

• 3.2.1 Scaled Dot-product Attention

Scaled Dot-Product Attention $Q = EW_i^Q : (d_{model}, d_k)$ p_attn much so you love $V = EW_i^V : (d_{model}, d_v)$ MatMul i $E = (n_{seq}, d_{model})$ love you SoftMax love $\operatorname{softmax}$ S0 you much S0 Mask (opt.) much $K = EW_i^K : (d_{model}, d_k)$ Scale i love MatMul you S0

 $head_i$

3. Model Architecture

- 3.2.2 Multi-Head Attention
 - d_{model} 차원으로 한번 어텐션 하지않고 h번 서로 다른 선형 projection ($W \in \mathbb{R}^{d_{model} \times d_k}$) 시킴
 - » 개별 projected q,k,v ($d_k = d_v$ 차원) 에 어텐션 함수를 병렬 처리

3. Model Architecture

- 3.2.2 Multi-Head Attention
 - 실제 구현에 있어서 개별적으로 여러 번 행렬 곱을 시행 후 Concatenate하지 않음
 - » $(n_{batch}, n_{seq}, d_{model})$ 자체를 Linear 한 뒤 $\rightarrow (n_{batch}, head, n_{seq}, d_k)$ 로 변환(Reshape)
 - » $(n_{batch}, n_{seq}, head * d_k)$
 - » 이와 같이 동작할 경우 여러 개의 weight matrix를 만들 필요가 없어짐(계산, 메모리 효율성)

3. Model Architecture

• 3.2.2 Multi-Head Attention

3. Model Architecture

- 3.2.3 Applications of Attention in our Model
 - 총 3개의 방법으로 Attention을 활용함
 - » Encoder-Decoder Attention (Cross Attention): q-이전 디코더층 / k,v 인코더의 아웃풋
 - » Self-Attention layer in Encoder: q,k,v가 같은 곳에서 도출. 개별 포지션이 모든 포지션에 어텐션
 - » Self-Attention layer in Decoder: AR성격을 위한 masking out

3.3 Position-wise Feed-Forward Network

- 잘 모르겠는 점
 - 논문에는 2개의 Convolution(kernel size=1)로 볼 수 있다고 하는데..
 - » Kernel size가 1이고 channel이 layer인 convolution을 두 번 수행한 것으로도 위 과정을 이해할 수 있습니다?

3.4 Embeddings and Softmax

Embeddings

- $-\sqrt{d_{model}}$ 을 임베딩 층에 곱하는 이유? (비공식)
 - » $\sqrt{512} \approx 22$ 정도로 이 값이 임베딩 벡터에 곱해지게 됨
 - » Positional Encoding이 더해지는 것으로 인해 임베딩 결과가 희석되는 것 방지하기 위함

3.5 Positional Encoding

- 포지션 정보
 - RNN과 같이 순차적 구조가 아니기에 단어 간 순서를 반영하기 위해 적용
 - Sinusoid 함수

$$egin{aligned} PE_{(pos,2i)} &= \sinigg(rac{pos}{10000^{2i/d_{
m model}}}igg) \ PE_{(pos,2i+1)} &= \cosigg(rac{pos}{10000^{2i/d_{
m model}}}igg) \end{aligned}$$

- » 1. 각 위치마다 유일한 값 출력 문장의 총 길이에 무관하게 (Error: 0, 1, ,2 , ··· , n)
- » 2. 길이가 다른 문장의 단어 위치도 상대적 거리가 같으면 같은 값 출력(Error: divided by Seq_N)
- » 3. 상대 위치의 선형성 확보 (모델 학습 측면): 주기함수적 측면 $PE_{pos+k} = PE_{pos}$

4. Why Self-Attention

- Recurrent, Convolution과 비교했을 때
 - 1. total computational complexity per layer
 - 2. 병렬화 되는 계산량
 - 3. 먼 거리 사이의 dependency
- 차후 연구 언급

5. Training

- 5.1 Training Data and Batching
 - WMT2014
 - » English German 4.5백만개 문장 pair. 37000 token (BPE)
 - » English French 3천6백만개 문장 pair. 32000 token (Wordpiece)
 - » 개별 training batch가 대략 25000 src token, 25000 tarket token으로 구성
- 5.2 Hardware and Schedule
 - NVIDIA P100 * 8개
 - » (base) 100,000 step 12시간. (large) 300,000 step 3.5일.
- 5.3 Optimizer
 - Adam
 - Learning rate warm up

$$lrate = d_{\mathrm{model}}^{-0.5} \cdot \min \left(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5} \right)$$

- » <u>キ</u>フ| $step_num \cdot warmup_steps^{-1.5} = \min\left(step_num^{-0.5}, step_num \cdot warmup_steps^{-1.5}\right)$
- » $step_num$ 이 증가함에 따라 선형적으로 학습률 증가, $step_{num} = warmup_{steps}$ 일 때 두 항이 같아짐
- » 이후 제곱에 반비례하여 천천히 줄어들게 됨

5.4 Regularization

- Residual Dropout
 - 개별 sublayer의 아웃풋에 먼저 Dropout을 적용한 후 Residual connection
 - Residual connection(<u>Identity Mappings in Deep Residual Networks</u>)

$$x_2 = x_1 + F(x_1, W_1)$$
 $x_L = x_l + \sum_{i=1}^{L-1} F(x_i, W_i)$ $rac{\sigma \epsilon}{\sigma x_l} = rac{\sigma \epsilon}{\sigma x_L} rac{\sigma x_L}{\sigma x_l} = rac{\sigma \epsilon}{\sigma x_L} (1 + rac{\sigma}{\sigma x_l} \sum_{i=1}^{L-1} F(x_i, W_i))$

- Dropout(<u>Dropout: a simple way to prevent neural networks from overfitting</u>)
- Label Smoothing(Rethinking the inception architecture for computer vision)
 - Ex. 정답 1 오답 0의 확률 분포를 정답 0.8 오답 0.2로 고루 분배
 - 정답 분포를 '신뢰도' 정도로 해석할 수 있게 하는 방식 $q'(k|x) = (1-\epsilon)\delta_{k,y} + \epsilon u(k)$
- Layer Normalization(<u>Layer Normalization)</u>
 - 같은 layer에 있는 모든 hidden unit이 동일한 평균 μ , 분산 σ 을 공유

```
w 배치 정규화:
mean = x.mean(axis=0)
var = x.var(axis=0, unbiased=False)

w 레이어 정규화:
mean = x.mean(axis=0, unbiased=False)

war = x.var(axis=-1).reshape(-1,1,1)
var = x.var(axis=-1, unbiased=False).reshape(-1,1,1)
```


참고 자료

- https://jalammar.github.io
- https://pozalabs.github.io/transformer/
- https://colab.research.google.com/github/metamath1/ml-simpleworks/blob/master/transformer/annotated_transformer.ipynb
- https://github.com/pilsung-kang/text-analytics
- https://yngie-c.github.io/nlp/2020/07/01/nlp_transformer/
- https://wikidocs.net/book/2155

#