1 Skineffekt

Ein Leiter mit der Leitfähigkeit σ und magnetischer Permeabilität μ , die beide bei der betrachteten Frequenz ω reell seien, befinde sich im Halbraum z > 0. An der Grenzfläche z = 0 liegt ein räumlich homogenes, periodisch mit Frequenz ω oszillierendes **H** -Feld entlang der x-Richtung an, d.h. in komplexer Darstellung: $\mathbf{H}(z=0) = H_0 \hat{e}_x exp(-i\omega t)$.

- (a) Bestimmen Sie das physikalische Feld \mathbf{H} (z, t) im Halbraum z > 0 aus der Lösung der Wellengleichung mit dem komplexen Wellenvektor $\mathbf{k}(\omega) = \mathbf{n}(\omega)\frac{\omega}{c}$. Verwenden Sie dazu die quasistatische Näherung, in der $\epsilon(\omega) = i\sigma/(\epsilon_0\omega)$ rein imaginär, $\mu(\omega)$ aber rein reel ist. Zeigen Sie, dass das Feld wie exp(-z/ δ) abfällt und bestimmen Sie die entsprechende Skintiefe $\delta(\omega)$.
- (b) Berechnen Sie unter Vernachlässigung des Maxwell'schen Verschiebungsstroms das zugehörige elektrische Feld ${\bf E}$ (z, t) und zeigen Sie, dass im Grenzfall quasistatischer Felder $\omega\delta$ « c die Ungleichung $|{\bf E}|$ « c $|{\bf B}|$ erfüllt ist.

2 Feldverteilung eines Kastens

Für einen Kasten der Länge a, Breite b und Höhe c sei das Potential auf der Deckelfläche parallel zur x-y-Ebene bei z=c gegeben durch:

$$\Phi_{Deckel}(x,y) = \Phi_0 \sin\left(\frac{x\pi}{a}\right) \sin\left(\frac{y\pi}{b}\right) \tag{1}$$

vgl. untenstehende Abbildung mit der grauen Deckelfläche.

Die anderen Seitenflächen der Box seien geerdet ($\Phi=0$). Berechnen Sie die Potentialverteilung im Inneren.

(a) Beginnen Sie mit der Laplacegleichung $\Delta\Phi(x, y, z) = 0$. Zeigen Sie, dass sie durch einen Ansatz der Form $\Phi(x, y, z) = X(x) Y(y) Z(z)$ in die Form:

$$\frac{1}{X}\frac{d^2X}{dx^2} + \frac{1}{Y}\frac{d^2Y}{du^2} + \frac{1}{Z}\frac{d^2Z}{dz^2} = 0$$
 (2)

gebracht werden kann, wobei die einzelnen Summanden jeweils einer Konstanten entsprechen.

- (b) Zeigen Sie, dass sich die möglichen Lösungen der Gleichung darstellen lassen als $X = A_x e^{\alpha_x x} + B_x e^{-\alpha_x x}$, analog für Y und Z. Benutzen Sie die Erdungsbedingung $\Phi = 0$ für einige der Platten, um Beziehungen zwischen den Koeffizienten A_i , B_i und α_i abzuleiten.
- (c) Zeigen Sie, dass sich daraus die allgemeine Lösung:

$$\Phi_{nm}(x, y, z) = A_{nm} \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{b}\right) \sinh(\gamma_{nm} z)$$
(3)

mit n,m = 0, ± 1 , ± 2 , \cdots konstruieren lässt, wobei die A_{nm} aus der Potentialverteilung bei z = c folgen. Was ist γ_{nm} ?

(d) Zeigen Sie, dass sich die Koeffizienten A_{nm} als:

$$A_{nm} = \frac{4}{ab \sinh(\gamma_{nm}c)} \int_{0}^{a} dx \int_{0}^{b} dy \Phi_{Deckel}(x,y) \sin\left(\frac{n\pi x}{a}\right) \sin\left(\frac{m\pi y}{b}\right)$$
(4)

darstellen lassen und geben Sie damit die komplette Potentialverteilung $\Phi(x, y, z)$ im Inneren des Kastens an.

Hinweis: Hilfsintegrale:

$$\int dx \sin(ux) \sin(vx) = \frac{\sin[(u-v)x]}{2(u-v)} - \frac{\sin[(u+v)x]}{2(u+v)}, \ |u| \neq |v|$$
 (5)

$$\int dx \sin^2(ux) = \frac{1}{2}x - \frac{1}{4u}\sin(2ux),\tag{6}$$

3 Schwingungstypen in Rechteckwellenleitern

Der Querschnitt eines Wellenleiters habe die Gestalt eines Rechteckes mit den Seiten a und b (s. Abb.). Für das Medium innerhalb des Leiters gelte $\mu_r = \epsilon_r = 1$.

Unter der Annahme ideal leitender Wände bestimme man die möglichen Arten ausbreitungsfähiger Wellen und deren Grenzfrequenz.

4 Streuung von Licht an einem Atom

Beschreiben Sie in Dipolnäherung die Streuung von Licht an einem Atom.

(a) Nehmen Sie hierzu eine harmonische Bindung der Elektronen (Eigenfrequenz ω_0) an dem (festsitzenden) Atomrumpf an. Bestimmen Sie zunächst die maximale Auslenkung \mathbf{r}_0 des mit ω schwingenden Elektrons aufgrund der einfallenden ebenen Lichtwelle (Frequenz ω).

Hinweis: Setzen Sie $\mathbf{k}\cdot\mathbf{r}$ « 1 an.

(b) Betrachten Sie nun eine harmonisch mit der Frequenz ω schwingende Ladungsverteilung und bestimmen Sie für die elektrische Dipolstrahlung E1

$$\mathbf{E}_{E1}(\mathbf{r},t) = \frac{e^{i(kr-\omega t)}}{4\pi\epsilon_0 r} k^2 (\hat{e}_r \times \mathbf{p}_0) \times \hat{e}_r \text{ und } \mathbf{B}_{E1}(\mathbf{r},t) = \frac{e^{i(kr-\omega t)}}{4\pi\epsilon_0 r} \frac{k^2}{c} (\hat{e}_r \times \mathbf{p}_0)$$
 (7)

die abgestrahlte Leistung pro Winkelelement $\frac{dP}{d\Omega}$ über:

$$dP = \bar{S} \cdot \hat{e}_r r^2 d\Omega \tag{8}$$

(c) Das Dipolmoment \mathbf{p}_0 wird im vorliegenden Fall der Streuung von Licht an einem Atom über die Auslenkung des Elektrons erzeugt:

$$\mathbf{p}_0 = -e\mathbf{r}_0 \tag{9}$$

Die durch dieses Dipolmoment erzeugte Strahlung entspricht dem gestreuten Licht. Bestimmen Sie den differentiellen Wirkungsquerschnitt der Lichtstreuung:

$$\frac{d\sigma}{d\Omega} = \frac{\text{abgestrahlte Leistung}/d\Omega}{\text{einfallende Leistung/Fläche}}$$
(10)

Eine Integration über den gesamten Raumwinkel ergibt den totalen Wirkungsquerschnitt $\sigma(\omega)$. Betrachten Sie hier insbesondere die beiden Grenzfälle $\omega \gg \omega_0$ (Thomson-Streuung) und $\omega \ll \omega_0$ (Rayleigh-Streuung).

5 Streuung an einer dielektrischen Kugel

Eine ebene elektromagnetische Welle werde an einer dielektrischen Kugel mit Radius R und Dielektrizitätskonstante $\epsilon > 1$ gestreut.

(a) Berechnen Sie den differentiellen Streuquerschnitt in Born'scher Näherung für ϵ nahe eins mit beliebigem Impulsübertrag $\mathbf{q}=\mathbf{k}_0$ - \mathbf{k} und Polarisationsvektoren \mathbf{e} bzw. \mathbf{e} '. Für den Fall beliebig grosser Werte von ϵ kann der Streuquerschnitt im Grenzfall grosser Wellenlängen kR « 1 allgemein aus der Gleichung

$$\frac{d\sigma}{d\Omega} = \frac{k^4}{(4\pi)^2} \left| \mathbf{e}^{\prime *} \cdot \mathbf{p}_0 / E_0 \right|^2 \tag{11}$$

bestimmt werden. Dabei ist $E_0\mathbf{e}$ die Amplitude der einfallenden Welle und p_0 das von dem entsprechenden statischen Feld $\mathbf{E}_{\infty}=E_0\mathbf{e}$ induzierte Dipolmoment der Kugel.

(b) Berechnen Sie den totalen Wirkungsquerschnitt σ