Trägheit

Julian Schilliger

1 Überblick

Dies ist ein Versuch, Trägheit als eine Folge einer endlichen Gravitationsausbreitungsgeschwindigkeit $c < \infty$ herzuleiten. Es wird eine Masse m mit konstanter Geschwindigkeit v aus der Sicht eines stationären Beobachters untersucht. m_t bezeichnet die Position der Masse zur Zeit t. v_t bezeichnet dessen Geschwindigkeit zur Zeit t.

Figure 1: Bewegte Masse

Ziel ist es zu zeigen, dass m_t Geschwindikeit $v_t = v$ hat unter der Annahme, dass $\forall i < t \ m_i$ die Geschwindigkeit $v_i = v$ hatte.

2 Kräfte im 3D Raum um die Masse

Normalerweise wird die Gravitationskraft mit der Formel $F_m^i = G \cdot \frac{m_1 \cdot m_2}{s^2}$, $i = \frac{s}{c \cdot dt}$ angegeben. Das Gravitationsfeld ist jedoch rund um die Masse herum. Jeder Punkt auf Oberfläche der als Kugel angenommene Masse spürt durch das Gravitationsfeld eine Kraft senkrecht zu der Oberfläche. Addiert man all diese Kräfte auf, so sollte sich F_m^i ergeben.

$$F_m^i = \frac{F_m^0}{i^2} \approx \int_0^\pi \frac{F_m^{dt} \cdot 2 \cdot \pi \cdot c^2 \cdot \sin(\alpha) \cdot \cos(\alpha) \cdot d^2t}{i - \cos(\alpha)} \, d\alpha = \int_0^\frac{\pi}{2} \frac{F_m^{dt} \cdot 4 \cdot \pi \cdot c^2 \cdot \sin(\alpha) \cdot \cos^2(\alpha) \cdot d^2t}{i^2 - \cos^2(\alpha)} \, d\alpha$$

$$i \gg \int_0^\frac{\pi}{2} \frac{F_m^{dt} \cdot 4 \cdot \pi \cdot c^2 \cdot \sin(\alpha) \cdot \cos^2(\alpha) \cdot d^2t}{i^2} \, d\alpha = F_m^{dt} \frac{\frac{4}{3} \cdot \pi \cdot c^2 \cdot d^2t}{i^2}$$

Das Integral setzt sich aus dem Kugeloberflächenintegral $\int_0^\pi 2 \cdot \pi \cdot c^2 \cdot \sin(\alpha) \cdot d^2t \, d\alpha$, der Kraft sowie ihr Faktor für Winkel Alpha $F_m^{dt} \cdot \frac{1}{(i-\cos(\alpha))}$ und dessen Anteil in Bewegungsrichtung $\cos(\alpha)$ zusammen.

3 Relativistischer Dopplereffekt

Würde eine Masse zur Zeit t nur für einen Bruchteil einer Sekunde Δt existieren, so würde das eine Gravitationswelle ähnlich der Welle eines in das Wasser fallenden Steins zur Folge haben. Das Gravitationsfeld, welches von m_t ausgesendet wurde, hat zum Zeitpunkt t+u einen inneren Radius von $c \cdot u$ und äusseren Radius von $c \cdot (u + \Delta t)$. Für $\Delta t \to 0$ liegt das Gravitationsfeld auf der Kugeloberfläche mit Radius $c \cdot u$.

Figure 2: Ausbreitung einer Gravitationswelle

Hängt man nun viele solcher nur dt lang existierende Massen nacheinander auf einer Linie mit jeweils Abstand $v \cdot dt$ zusammen, so hat man eine sich mit Geschwindigkeit v bewegende Masse.

Figure 3: Ausbreitung der Gravitationsfelder eines sich bewegenden Objekts

4 Geometrie

Eine sich bewegende Masse erzeugt also ein gestauchtes Gravitationsfeld. Um den Betrag der Stauchung herleiten zu können, muss man die zurückgelegte Distanz von m_{t-dt_0} während der Zeit dt_0 untersuchen.

$$c \overset{m_{t-dt_0}}{\longleftrightarrow} \underbrace{v \cdot dt_0} \overset{m_t}{\smile} \underbrace{c \cdot dt_0}$$

Figure 4: Geometrie während dt

Betrachtet man nur die Geometrie des Feldes, so ergibt sich eine Stauchung von $\frac{c}{c-v}$ in Bewegungsrichtung und $\frac{c}{c-v}$ entgegen der Bewegungsrichtung. Für einen allgemeinen Winkel α zur Bewegungsrichtung gilt eine Stauchung von

Figure 5: Geometrie für einen Winkel α während dt

$$\frac{c}{x} = \frac{c}{\sqrt{c^2 - \sin^2(\alpha) \cdot v^2} - \cos(\alpha) \cdot v} = \frac{1}{\sqrt{1 - \sin^2(\alpha) \cdot \frac{v^2}{c^2} - \cos(\alpha) \cdot \frac{v}{c}}}$$

5 Zeitdillation

Da m sich mit Geschwindigkeit v vortbewegt, hat m eine Zeitdillation. Das Gravitationsfeld welches m produziert ist um den Faktor $\frac{\sqrt{c^2-v^2}}{c}$ reduziert.

$$F_m^v = F_m^0 \cdot \frac{\sqrt{c^2 - v^2}}{c}$$

Generell gilt

$$dt_v = dt_0 \cdot \frac{\sqrt{c^2 - v^2}}{c}$$

6 Kräfte um die bewegte Masse

Kraft wird in $\frac{Gewicht \cdot Distanz}{Zeit^2}$ angegeben. Da der Meter über die Distanz, welche Licht im Vakuum innerhalb einer Sekunde zurücklegt definiert ist und das Verhältniss zwischen t und dt_v nicht bestimmbar ist, ist der Meter nicht geeignet um die Kraft, welche auf m_t während der Zeit dt_v wirkt zu messen. Stattdessen kann man Distanz als einen Faktor der Strecke, welche Licht in der Zeit dt_v zurücklegt definieren.

Geschwindigkeit:

$$v_{dt} = \frac{v_t}{c_t}$$

Krafteinheit:

$$\frac{kg \cdot c \cdot dt_v}{d^2t_0}$$

Somit ist die resultierende Kraft, welche an Zeit t während dt_v auf m_t wirkt und sich aus den Kräften welche auf die Kugeloberfläche des Objekts wirken zusammensetzt:

$$\int_0^\pi \frac{F_m^v \cdot 2 \cdot \pi \cdot c^2 \cdot sin(\alpha) \cdot cos(\alpha) \cdot d^2t}{\sqrt{1 - sin^2(\alpha) \cdot \frac{v^2}{c^2} - cos(\alpha) \cdot \frac{v}{c}}} \, d\alpha = F_m^v \frac{\frac{4}{3} \cdot \pi \cdot c^2 \cdot \frac{v}{c} \cdot d^2t}{1 - \frac{v^2}{c^2}} \approx F_m \frac{\frac{v}{c}}{1 - \frac{v^2}{c^2}}$$

Und umgewandelt in die richtigen Einheiten:

$$F_m \cdot \frac{\frac{v}{c}}{1 - \frac{v^2}{c^2}} \cdot \frac{kg \cdot c \cdot dt_v}{d^2 t_0} = F_m \cdot \frac{v}{c} \cdot \frac{kg \cdot c}{dt_v}$$

7 Masse

Da ein Zeitabschnitt von nur Länge dt betrachtet wird, kann ein Objekt mit Masse m nicht als Punktobjekt abstrahiert werden, sondern muss auf der Basis seiner individuellen kleinsten Einheiten welche als grosses Ganzes m bilden betrachtet werden. Der Abstand zwischen den einzelnen Basisteilen sollte somit um einiges grösser als $c \cdot dt_v$ sein. Somit entfällt ihre gravitative Wirkung auf das einzelne Teilchen in der Rechnung zur Beschleunigung, weil sie die gleiche Gravitation auf das Teilchen ausüben wie im nicht bewegtem System (angepasst an die lokale Uhr der Masse und mit der Annahme des selben relativen Abstandes zwischen den Massen):

$$\frac{1}{\sqrt{1 - \sin^2(\alpha) \cdot \frac{v^2}{c^2} - \cos(\alpha) \cdot \frac{v}{c}}} \cdot \frac{1}{\sqrt{1 - \sin^2(\alpha) \cdot \frac{v^2}{c^2} + \cos(\alpha) \cdot \frac{v}{c}}} \cdot F_G = \frac{1}{1 - \frac{v^2}{c^2}} \cdot F_G$$

$$\frac{1}{1 - \frac{v^2}{c^2}} \cdot F_G \cdot \frac{kg \cdot c \cdot dt_v}{d^2 t_0} = F_G \cdot \frac{kg \cdot c}{dt_v}$$

Da durch die Bewegung sowieso die gestauchte Raumzeit eine Kraft auf die Masse auswirkt und das Konzept der Trägheit komplexer macht, nehme ich einfach mal als gutes Indiz das Gewicht eines einzelnen Teilchens als 1 S an mit S = G kg. Dessen Gravitationskraft sollte dann $F_S = \frac{1}{i^2} \frac{S \cdot c}{dt}$ sein.

8 Geschwindigkeit

Herleiten der Trägheit durch Induktion. Es wird nun ein Zeitabschnitt dt_0 an Zeitpunkt t betrachtet unter der Annahme, dass $\forall i \in \mathbb{N}$ die Masse $m_{t-i \cdot dt_v}$ Geschwindigkeit v hatte. Es ist zu zeigen, dass m_t ebenso Geschwindigkeit v hat. Es kann nun ein einzelnes Teilchen betrachtet werden mit Masse S.

Die Beschleuningung, welche konstant während dt_v auf S wirkt, ist somit

$$\frac{v}{c} \cdot \frac{c}{dt_v}$$

Besitzt eine Masse m_t keine Trägheit während dt_v , so ist die Ausgangsgeschwindigkeit an m_t 0 und jegliche Beschleunigung während dt_v ist instantan. Damit ist die Geschwindigkeit, welche während dt_v erreicht wurde

$$\frac{v}{c} \cdot \frac{c}{dt_v} \cdot dt_v = v$$

 m_{t+dt} hat also eine Geschwindigkeit von $v \cdot \frac{m}{sec}$. Dies ergibt auch die Entfernung, welche m_{t+dt} von m_{dt} hat und in der Zeit dt_0 zurückgelegt wurde.

$$v_{t+dt} = v = v_t$$

 $9 ext{ } ext{F} = ext{m a}$

Will man nun m mit a beschleunigen, so kann man wieder ein einzelnes Teilchen während dt betrachten. Es benötigt somit eine Beschleunigung von $a \cdot \frac{m}{s^2} = a^{dt} \cdot \frac{c}{dt}$ für jeden Zeitschritt dt in s. Wenn m_t Geschwindigkeit v_t hatte, so sollte m_{t+dt} den Abstand $(v_t + a^{dt} \cdot dt) \cdot dt = v_{t+dt} \cdot dt$ haben, was eine Geschwindigkeit $v_{t+dt} = v_t + a^{dt} \cdot dt$ an m_{t+dt} ergibt. Dazu muss eine Kraft $F_S = S \cdot \frac{v_t + a^{dt} \cdot dt}{c}$ an m_t anliegen. $F_v = S \cdot \frac{v_t}{c}$ wird durch das sich mit v_t bewegende Objekt selbst erzeugt.

Somit muss eine Kraft $F_a = S \cdot \frac{a_{dt} \cdot dt}{c}$ von aussen angelegt werden um ein einzelnes kleinstes Teilchen mit a^{dt} während dt zu beschleunigen. Missachtet man nun die Zeitdillation, so ergibt sich eine benötigte Kraft von $F_a = S \cdot a$ um das Teilchen mit a zu beschleunigen. Die Masse m benötigt dem zufolge die Kraft $F_a^m = m \cdot a$ für eine Beschleunigung von a.

$10 ext{ } 1S = G ext{ kg}$

Würde Trägheit existieren, so würde jedes Objekt mit einer Masse kontinuerlich beschleunigen. Für den Fall, dass Trägheit nicht existiert lassen sich ebenso Schlussfolgerungen ziehen. Da die obigen Formeln zur Beschleunigung von der Masse des betrachteten Teilchens abhängig sind, würden alle kleinsten Teilchen mit einer Masse < 1S abgebremst und stehen bleiben. Alle Teilchen mit einer Masse > 1S würden kontinuerlich beschleunigen. Da die Objekte in unserer Welt verschiedene Geschwindigkeiten annehmen können und ohne äussere Krafteinwirkung diese halten, sollte das Verhältnis $1S = G \cdot kg$ für alle beobachtbaren kleinsten Teilchen gelten.

11 PS

Dies sind einige Gedanken die ich in mir zu dem Thema gemacht habe. Was scheint plausibel und was nicht?