Redes de Computadoras

Examen de Interciclo

- ¿Cuál es el propósito de la capa de transporte?
 Controlar los errores y el flujo extremo a extremo
- ¿Cuál es el propósito de la capa de aplicación?
 Desarrollar protocolos de comunicación que son utilizados por los usuarios finales.
 Ejemplos: correo electrónico, http, ftp, VoIP, IPtv, Video bajo demanda, videoconferencias.
- ¿Cuál es la señalización más simple de datos digitales?
 NRZ
- 4. Dé un ejemplo de señalización analógica de datos digitales ASK, FSK, PSK.
- 5. ¿Qué manifiesta el Teorema de Muestreo de Nyquist? Es suficiente un número de muestras, a intervalos regulares, igual al doble de la frecuencia máxima de la señal analógica para capturar toda la información.
- 6. Dé un ejemplo de señalización analógica de datos analógicos AM, FM, PM.
- 7. ¿Qué plantea conceptualmente, no matemáticamente, el Análisis de Fourier? Cualquier función periódica se puede construir sumando una cantidad, posiblemente infinita, de senos y cosenos.
- 8. ¿Qué es el ancho de banda efectivo? Es el ancho de banda va desde 0 Hz hasta fc en la que la amplitud de la señal, sumando todos los armónicos hasta fc se atenúa a la mitad del valor original.
- 9. ¿Pará que los cables UTP y STP son trenzados? El trenzado evita que los alambres se comporten como antena y así sean interferidos o interfieran a otros cables.
- 10. ¿Cuál es el propósito fundamental de los métodos de señalización Spread Spectrum? Este método evita la interceptación de las señales transmitidas.

Redes de Computadoras

Enero del 2022

Prueba 2. Capítulos 4, 5 y 6

- 1. ¿Qué es un canal de difusión?
 - R. Es un medio de comunicación compartido entre múltiples usuarios, en el que se pueden producir colisiones de tramas en la transmisión.
- 2. ¿Cómo se resuelve el problema de la asignación del canal compartido?
 - R. Utilizando algún protocolo de comunicación de acceso al medio.
- 3. ¿Cuál es la diferencia fundamental de funcionamiento entre Aloha continuo y Aloha ranurado?
 - R. En Aloha continuo una estación puede transmitir en cualquier momento, mientras que en Aloha ranurado el tiempo se divide en ranuras, y una estación solo puede intentar transmitir al inicio de cada ranura de tiempo.
- 4. ¿Qué es un protocolo de contienda?
 - R. Es un protocolo de la subcapa MAC, que procura que varias estaciones puedan transmitir a través de un medio compartido, sin que se produzcan colisiones.
- 5. ¿Por qué no se puede usar CSMA en redes inalámbricas?
 - R. En general las estaciones no son capaces de detectar portadora (CS) debido a la limitación de alcance de las mismas.
- 6. ¿Qué es un circuito virtual?
 - R. Es el establecimiento de un camino entre enrutadores finales para el envío de paquetes o segmentos. Los recursos físicos que utiliza el CV no son dedicados.
- 7. ¿Cuál es la función de un algoritmo de enrutamiento?
 - R. Construir y actualizar periódicamente las tablas de enrutamiento en enrutadores.
- 8. ¿Por qué se usa enrutamiento jerárquico en redes grandes?
 - R. Porque no se puede tener información a todos los destinos.
- 9. ¿Qué es una red ad-hoc?
 - R. Es una red que se establece temporalmente para una circunstancia en particular.
- 10. ¿Qué es la congestión de una red?
 - R. Es la disminución del desempeño de la red debido a la existencia de demasiados paquetes.

- 11. ¿Cómo se llama el índice que obtenemos cuando el número de paquetes entregados a través de una red, se divide para el número de paquetes enviados en un determinado período de tiempo?
 - R. Desempeño de la red.
- 12. ¿Qué es la dirección de transporte?
 - R. Dirección de transporte o puerto, es la interfaz entre un proceso de red y la capa de transporte. Esta dirección permite comunicar con otro proceso de red remoto.
- 13. IP y UDP ambos ofrecen servicios sin conexión. ¿Por qué usar ambos a la vez y no usar solo IP?
 - R. Se usa UDP para indicar las direcciones de puertos origen y destino.
- 14. ¿Qué es una aplicación de tiempo real?
 - R. Aplicación computacional que informa de un evento con restricciones de retardo de transmisión y propagación.