

INFERENTIAL STATISTICS

INTRODUCTION

prepared by:

Gyro A. Madrona

Electronics Engineer

........

TOPIC OUTLINE

Inferential Statistics

Distribution

Histogram

Normal Distribution

INFERENTIAL STATISTICS

<u>Inferential statistics</u> is a branch of statistics that uses sample data to <u>draw conclusions</u>(inferences) about a population.

Normal Distribution

Distribution or the probability distribution describes the **probabilities** or **frequencies** of different outcomes in an experiment or observed data.

Rolling

one die		
come	Probability	
1	1/6 or 0.17	

Outcome	Probability
1	1/6 or 0.17
2	1/6 or 0.17
3	1/6 or 0.17
4	1/6 or 0.17
5	1/6 or 0.17
6	1/6 or 0.17
7 (all else)	0

Sum of probabilities = 1 or 100%

UNIFORM DISTRIBUTION

Discrete data

One die distribution

Rolling one die

Outcome	Probability
1	1/6 or 0.17
2	1/6 or 0.17
3	1/6 or 0.17
4	1/6 or 0.17
5	1/6 or 0.17
6	1/6 or 0.17
7 (all else)	0

Sum of probabilities = 1 or 100%

36 possible outcomes

(1,1)	(2,1)	(3,1)	(4,1)	(5,1)	(6,1)
(1,2)	(2,2)	(3,2)	(4,2)	(5,2)	(6,2)
(1,3)	(2,3)	(3,3)	(4,3)	(5,3)	(6,3)
(1,4)	(2,4)	(3,4)	(4, 4)	(5, 4)	(6,4)
(1,5)	(2,5)	(3,5)	(4,5)	(5,5)	(6,5)
(1,6)	(2,6)	(3,6)	(4,6)	(5,6)	(6,6)

Rolling two dice

Sum	Probability
2	0.03
3	0.06
4	0.08
5	0.11
6	0.14
7	0.17
8	0.14
9	0.11
10	0.08
11	0.06
12	0.03
All else	0

Discrete data

Two dice distribution

Rolling two dice

Sum	Probability
2	0.03
3	0.06
4	0.08
5	0.11
6	0.14
7	0.17
8	0.14
9	0.11
10	0.08
11	0.06
12	0.03
All else	0

HISTOGRAM

Histograms are used to visualize the shape, spread, and central tendency of data, making them a useful tool for assessing whether a dataset follows a normal distribution or deviates from it.

Histogram

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or bell curve because of its shape.

Johann Carl Friedrich Gauss

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or <u>bell curve</u> because of its shape.

Denoted by:

$$N(\mu, \sigma^2)$$

Bell Curve

A <u>normal distribution</u> is a probability distribution where the values of a random variable are distributed symmetrically. Also known as <u>Gaussian</u> distribution or <u>bell curve</u> because of its shape.

Formula:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Bell Curve

LABORATORY

EXERCISE

The dataset consists of 30 samples of current measurements (in mA). Generate a **normal distribution plot** in a Jupyter Notebook.

Dataset:

L16-current-data.csv

Current Response

Sample	Current
1	12.0
2	15.0
3	8.3
4	9.7
5	12.0
6	13.9
7	14.1
8	9.2
9	12.4
10	13.7
11	10.6
12	21.5
13	12.0

