Contents

1 Definizione di:

Piccola nota prima delle definizioni:

verso il 19xx ai matematici era partita una qualche ipocondria di assiomatizzare tutto l'assiomatizzabile, mista a un minimalismo da far sembrare tele bianche co' fossero capilettera minati. (vedere Principia Matematica (quello di Russel e Whitehead) per un esempio pratico, e vedersi il libro Goedel's Proof per il contesto storico)

Potete immaginare come gli enti definiti in questi tempi fossero di un astratto immane, a voler fare da denominatore comune a più o meno tutta la matematica mai fatta fino ad allora, i gruppi/anelli ET AL sono uno dei massimi esponenti di questo astrattismo da Mondrian, come a voler ridurre tutta l'algebra di tutto (lineare, reale, complessa, monomi, polinomii...), la teoria degli insiemi, magari la logica, e, perché no, il non toccare erba da anni, tutto a una qualche res cogitans comune, o cazzo si pippavano allora.

1.1 Anelli e gruppi et al

1.1.1 Anello

$$(R, +, 0_R; \circ; 1_R)$$

Un insieme di roba tale che

- $1_R e 0_R \in R$
- Possiamo definire un'addizione tale che
 - $-Coso + 0_R = Coso$ quando $Coso \in R$
 - La somma gode delle classiche proprietà
 - * Commutativa: a + b = b + a (quando $a, b \in R$)
 - * **Associativa**: a+(b+c)=(a+b)+c (quando $a,b,c\in R$) (che si definisce in questo modo perché la somma è un operatore binario)
 - E di quelle meno classiche
 - * **Di gruppo**: $\forall Coso \in R \rightarrow -Coso \in R$, dove -Coso = quell'affare che $Coso + (-Coso) = 0_R$
- Possiamo definire un prodotto tale che

- $Coso \circ 1_R = Coso$ quando $Coso \in R$
- Il prodotto gode delle classiche proprietà
 - * **Associativa** $a \circ (b \circ c) = (a \circ b) \circ c$
- La somma e il prodotto messi inseme godono delle classiche proprietà
 - Distributiva $a \circ (b+c) = (a \circ b) + (a \circ c)$

1.1.2 Anello Commutativo

Un anello per cui il prodotto ha anche proprietà commutativa, quindi

$$(R, +, 0_R; \circ; 1_R)$$

tale che (Ctrl-C sezione sopra, Ctrl-V qui)

- Il prodotto gode anche dell proprietà
 - $-a \circ b = b \circ a \text{ (quando } a, b \in R)$

(lo definiamo come classe a parte perchè le matrici sono bambini speciali che non voglioni avere un prodotto commutativo e vogliamo che questa stra astrazione possa valere anche per quegli esseri)

1.1.3 Gruppo commutativo

Prendi l'anello e ignora l'esistenza del prodotto e dell' 1_R , solo + e 0_R

1.1.4 Monoide unitario

Prendi l'anello e ignora l'esistenza della somma e dello 0_R , solo \circ e 1_R (da cui prende il nome, credo)

1.1.5 Morfismo di anello

Abbiamo due anelli a e b, e una relazione φ : a \rightarrow b¹ questa relazione si dice morfismo di anello se mantiene l'anellaggine di una relazione

 $^{^1}$ è abbstanza facile chiedersi a che cazzo serva una definzione del genere, da quanto si vedrà quando diamo la definizione un morfismo di anello è un qualcosa in cui posso prendere un teorema o un espressione in anellese-a valido, passare tutto quello che riguarda l'anellaggine in un morfismo $\varphi: a \to b,$ e uscirne con un teorema o espressione in anellese-b, anch'esso valido, più in genrale è una relazione tra a e b che mantiene l'anellaggine, e ci interessa parecchio mantenere l'anellaggine, almeno in questa materia

1.2 Equivalenza

1.2.1 Definizione tirata

Siano a e b due affari qualsiasi, facciamo due vettori. a e b possono essere uguali in qualche modo, o avere qualche caratteristica in comune, ad esempio possono avere entrabmi un primo membro $a_1 = b_1 =$ facciamo 7, se definiamo come relazione di equivalenza $a =_{\text{in questo caso}} b$ quando $a_1 = b_1$ allora la classe di equivalenza di a rispetto a questa relazione sarà l'insieme di tutti i vettori b tali che $a =_{\text{in questo caso}} b$.

Questo includerà (grazialcazzo) a visto che $a_1 = a_1$ e in generale $tutti\ i$ vettori che condividono quella certa caratteristica con a. In pratica stiamo studiando l'apartheid di a_0 .

2 Dimostrazione che

1. le calssi di equivalenza di due elementi qualsiasi $[x]_R$ e $[y]_R$