ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ – Học kì 20132

Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

Câu 1(2 điểm). a) Dùng bảng giá trị chân lý chỉ ra $(p \rightarrow q) \Leftrightarrow (p \lor q)$ với p, q là hai mênh để bất kì.

b) Tìm phần thực của $A = z_1^2 + z_2^2$ với z_1 , z_2 là hai nghiệm của phương trình $z^2 - (\sqrt{3} + 8i)z + (-30 + i + 7\sqrt{3}i) = 0$.

Câu 2 (2 điểm). a) Tìm X thỏa mãn
$$\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} X + \begin{bmatrix} -2 & -1 \\ 1 & 2 \end{bmatrix} X = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
.

b) Tìm các tham số a, b để hệ phương trình sau vô nghiệm

$$\begin{cases} x_1 + 2x_2 + ax_3 + 4x_4 = b \\ 2x_1 + (a+3)x_2 + (1+2a)x_3 + 8x_4 = 2b+5 \\ x_1 + (a+1)x_2 + (1+2a)x_3 + 4x_4 = 2b+4 \end{cases}$$

Câu 3 (2 điểm). a) Trong không gian vector M_3 – gồm các ma trận vuông cấp 3, cho $V = \{A \in M_3 \mid A^T = A\}$. Chứng minh V là một không gian con của M_3 .

b*) Cho A là ma trận vuông cấp n. Chứng minh rằng: $r(A^{T}A) = r(A)$

Câu 4 (2 điểm). Cho ánh xạ tuyến tính $f: P_2[x] \to P_2[x]$ xác định bởi $f(a + bx + cx^2) = (-a + 2b + c) + (-6a + 6b + 2c)x + (6a - 4b)x^2$.

- a) Tìm ma trận A của f theo cơ sở chính tắc của $P_2[x]$ và các trị riêng của f.
- b) Tìm một cơ sở B của $P_2[x]$ để ma trận của f theo B có dạng chéo.

Câu 5 (2 điểm).

1. Tìm m để dạng toàn phương sau xác định dương

$$\omega(x_1; x_2; x_3) = x_1^2 + 5x_2^2 + x_3^2 - 4x_1x_2 + 2mx_1x_3.$$

2. Trong không gian Euclide R^3 với tích vô hướng thông thường, tìm hình chiếu của v=(1;2;3) lên không gian $H = \{u = (x_1; x_2; x_3) \in R^3 | x_1 + x_2 + x_3 = 0\}$.

ĐỀ2 ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ – Học kì 20132

Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhân số đề vào bài thi

$$\begin{split} \textbf{Câu 1} &\textbf{1}(2 \text{ $\vec{di\'{e}m}$).} \text{ a) Cho các hàm số } f,g:\mathbb{R} \to \mathbb{R} \text{ . Biểu diễn tập nghiệm của} \\ &\frac{f(x).g(x)}{f(x)^2+g(x)^2}=0 \text{ theo } A=\{x\in\mathbb{R}|f(x)=0\}, B=\{x\in\mathbb{R}|g(x)=0\} \end{split}$$

b) Giải phương trình phức $iz^2 + (1+10i)z + 23i + 11 = 0$.

Câu 2 (2 điểm). a) Tìm X thỏa mãn
$$\begin{bmatrix} 3 & 3 \\ 2 & 4 \end{bmatrix} X + \begin{bmatrix} -2 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$
.

b) Tìm các tham số a, b để hệ $\begin{cases} x_1 + ax_2 - x_3 + 2x_4 = b \\ -x_1 + 3x_3 - 2x_4 = b + 1 & \text{vô nghiệm.} \\ 2ax_2 + (a+3)x_3 = 5b + 1 \end{cases}$

Câu 3 (2 điểm). a) Trong không gian vecto M_3 – gồm các ma trận vuông cấp 3, cho $W = \{A \in M_3 \mid A^T = -A\}$. Chứng minh W là một không gian con của M_3 .

b*) Cho A là ma trận vuông cấp n. Chứng minh rằng: $r(AA^T) = r(A)$.

Câu 4 (2 điểm). Cho ánh xạ tuyến tính $f: P_2[x] \to P_2[x]$ xác định bởi $f(a + bx + cx^2) = (2a + b - 2c) + (2a + 3b - 4c)x + (a + b - c)x^2$.

- a) Tìm ma trận A của f theo cơ sở chính tắc của $P_2[x]$ và các trị riêng của f.
- b) Tìm một cơ sở B của $P_2[x]$ để ma trận của f theo B có dạng chéo. Câu $\mathbf{5}$ (2 điểm).
- a. Tìm m để dạng toàn phương sau xác định dương

$$\omega(x_1; x_2; x_3) = x_1^2 + 2x_2^2 + mx_3^2 - 2x_1x_2 + 2mx_2x_3.$$

b. Trong không gian Euclide R^3 với tích vô hướng thông thường, tìm hình chiếu của v=(3;1;2) lên không gian $H = \{u = (x_1; x_2; x_3) \in R^3 | x_1 - 2x_2 + x_3 = 0\}$.