Számítógépes Hálózatok

7. Előadás: Hálózati réteg II.

Hálózati réteg

Alkalmazási Megjelenítési Ülés Szállítói Hálózati Adatkapcsolati Fizikai

□ Feladatok:

- Csomagok végpontok közötti leszállítása, akár több közbenső állomáson keresztül
- □ Kihívások:
 - Címek ábrázolása
 - Útvonal meghatározás
 - Skálázhatóság
 - Konvergencia

3

 Gyors javítás az IP címek elfogyásának problémájára. (hálózati címfordítás)

ALAPELVEK

- Az internet forgalomhoz minden cégnek egy vagy legalábbis kevés IPcímet adnak. A vállalaton belül minden számítógéphez egyedi IP-címet használnak a belső forgalomirányításra.
- A vállalaton kívüli csomagokban a címfordítást végzünk.
- 3 IP-címtartományt használunk:
 - 10.0.0.0/8, azaz 16 777 216 lehetséges hoszt;
 - □ 172.16.0.0/12, azaz 1 084 576 lehetséges hoszt;
 - 192.168.0.0/16, azaz 65 536 lehetséges hoszt;
- NAT box végzi a címfordítást

- Hogyan fogadja a választ?
 - A port mezők használata, ami mind a TCP, mind az UDP fejlécben van
 - Kimenő csomagnál egy mutatót tárolunk le, amit beírunk a forrás port mezőbe. 65536 bejegyzésből álló fordítási táblázatot kell a NAT box-nak kezelni.
 - A fordítási táblázatban benne van az eredeti IP és forrás port.
- Ellenérvek: sérti az IP architekturális modelljét, összeköttetés alapú hálózatot képez, rétegmodell alapelveit sérti, kötöttség a TCP és UDP fejléchez, szöveg törzsében is lehet az IP, szűkös port tartomány

IP Fragmentation – IP Fragmentáció(darabolás)

Datagram Dgram1 Dgram2 1 2 3 4

- Probléma: minden hálózatnak megvan a maga MTU-ja
 - MTU: Maximum Transmission Unit lényegében a maximális használható csomag méret egy hálózatban
 - DARPA/Internet alapelv: hálózatok heterogének lehetnek
 - A minimális MTU nem ismert egy adott útvonalhoz
- □ IP esetén: fragmentáció
 - Vágjuk szét az IP csomagot, amikor az MTU csökken
 - Állítsuk helyre a darabokból a csomagot a fogadó állomásnál

IP fejléc: 2. szó

6

- Identifier (azonosító):
 - egyedi azonosító minden IP datagramhoz (csomaghoz)
- 🗆 Flags (jelölő bitek):
 - M flag, értéke 0, ha ez az utolsó darab/fragment, különben 1
- □ Offset (eltolás):
 - A darab/fragment első bájtjának pozíciója

0	4	4 8	3 12 1	6 1	9 24	3	
Ve	rsion	HLen	TOS		Datagram Length		
	ldentifier			Flags	Offset		
	TTL		Protocol	Checksum			
Source IP Address							
Destination IP Address							
Options (if any, usually not)							
Data							

Példa

Példa

IP csomag helyreállítása

Ģ

Hossz = 1500, M = 1, Offset = 0

- IP Data
- 20 1480

Hossz = 520, M = 1, Offset = 1480

IP Data

20 500

Hossz = 1500, M = 1, Offset = 1980

IP Data

20 1480

Hossz = 360, M = 0, Offset = 3460

IP Data

20 340

- A végponton történik
- M = 0, akkor ebből a darabból tudjuk a teljes adatmennyiséget
 - Hossz IPHDR_hossz + Offset
 - 360 20 + 3460 = 3800
- □ Kihívások:
 - Nem sorrendben beérkező darabok
 - Duplikátumok
 - Hiányzó darabok
- Memória kezelés szempontjából egy rémálom...

Fragmentáció

- Az Internet esetén
 - Elosztott és heterogén
 - Minden hálózat maga választ MTU-t
 - Kapcsolat nélküli datagram/csomag alapú protokoll
 - Minden darab tartalmazza a továbbításhoz szükséges összes információt
 - A darabok függetlenül kerülnek leszállításra, akár különböző útvonalon keresztül
 - Legjobb szándék elve szerint (best effort)
 - A router-ek és a fogadó is eldobhat darabokat
 - Nem követelmény a küldő értesítése a "hibáról"
 - A legtöbb feladat a végpontra hárul
 - Csomag helyreállítása a darabokból

- A fragmentáció költséges
 - Memória és CPU költés a csomag visszaállításához
 - Ha lehetséges, el kell kerülni
- MTU felderítő protokoll
 - Csomagküldés a "don't fragment" flag bittel
 - Folyamatosan csökkentjük a csomag méretét, amíg egy meg nem érkezik
 - Lehetséges "can't fragment" hiba egy routertől, ami közvetlenül tartalmazza az adott hálózatban használt MTU-t
- Darabok kezelését végző router
 - Gyors, specializált hardver megoldás
 - Dedikált erőforrás a darabok kezeléséhez

IPv6

Fogyó IPv4 címek

- □ Probléma: az IPv4 címtartomány túl kicsi
 - $2^{32} = 4,294,967,296$ lehetséges cím
 - Ez kevesebb mint egy emberenként
- A világ egy részén már nincs kiosztható IP blokk
 - □ IANA az utolsó /8 blokkot 2011-ben osztotta ki

Régió	Regional Internet Registry (RIR)	Utolsó IP blokk kiosztása
Asia/Pacific	APNIC	April 19, 2011
Europe/Middle East	RIPE	September 14, 2012
North America	ARIN	13 Jan 2015 (Projected)
South America	LACNIC	13 Jan 2015 (Projected)
Africa	AFRINIC	17 Jan 2022(Projected)

- □ IPv6, 1998(!)-ban mutatták be
 - □ 128 bites címek
 - 4.8 * 10²⁸ cím/ember
- Cím formátum
 - 16 bites értékek 8 csoportba sorolva (':'-tal elválasztva)
 - Minden csoport elején szereplő nulla sorozatok elhagyhatók
 - Csupa nulla csoportok elhagyhatók, ekkor '::'

2001:0db8:0000:0000:0000:ff00:0042:8329 2001:db8:0:0:0:ff00:42:8329

2001:db8::ff00:42:8329

- □ Ki tudja a localhost IPv4 címét?
 - **127.0.0.1**

- Mi ez az IPv6 esetén?
 - **::**1

Az IPv4-nél látott kétszerese (320 bit vs. 160 bit)

Különbségek az IPv4-hez képest

- Számos mező hiányzik az IPv6 fejlécből
 - □ Fejléc hossza beépült a Next Header mezőbe
 - Checksum nem igazán használták már korábban se...
 - Identifier, Flags, Offset
 - IPv6 routerek nem támogatják a fragmentációt
 - Az állomások MTU felderítést alkalmaznak
- Az Internet felhasználás súlypontjainak megváltozása
 - Napjaink hálózatai sokkal homogénebbek, mint azt kezdetben gondolták
 - Azonban a routing költsége és bonyolultsága domináns

Teljesítmény növekmény

- Nincsenek ellenőrizendő kontrollösszegek (checksum)
- Nem szükséges a fragmentáció kezelése a routerekben
- Egyszerű routing tábla szerkezet
 - A cím tér nagy
 - Nincs szükség CIDR-re (de aggregáció szükséges)
 - A szabványos alhálózat méret 2⁶⁴ cím
- Egyszerű auto-konfiguráció
 - Neighbor Discovery Protocol

További IPvó lehetőségek

- □ Forrás Routing
 - Az állomás meghatározhatja azt az útvonalat, amelyen a csomagjait továbbítani szeretné
- Mobil IP
 - Az állomások magukkal vihetik az IP címüket más hálózatokba
 - Forrás routing használata a csomagok irányításához
- Privacy kiterjesztések
 - Véletlenszerűen generált állomás azonosítók
 - Megnehezíti egy IP egy adott állomáshoz való kapcsolását
- Jumbograms
 - 4Gb-es datagramok küldése

Bevezetési nehézségek

- □ IPv6 bevezetése a teljes Internet frissítését jelentené
 - Minden router, minden hoszt
 - □ ICMPv6, DHCPv6, DNSv6
- 2013: 0.94%-a a Google forgalmának volt IPv6 feletti
- □ 2015: ez 2.5%

Átmenet IPv6-ra

- □ Hogyan történhet az átmenet IPv4-ről IPv6-ra?
 - Napjainkban a legtöbb végpont a hálózat széleken támogatja az IPv6-ot
 - Windows/OSX/iOS/Android mind tartalmaz IPv6 támogatást
 - Az itteni vezetéknélküli access point-ok is valószínűleg IPv6 képesek
 - Az Internet magja a probléma

Átmeneti megoldások

- Azaz hogyan routoljunk IPv6 forgalmaz IPv4 hálózat felett?
- Megoldás
 - Használjunk tunneleket az IPvó csomagok becsomagolására és IPv4 hálózaton való továbbítására
 - Számos különböző implementáció
 - 6to4
 - IPv6 Rapid Deployment (6rd)
 - Teredo
 - **...**

Routing 2. felvonás

Újra: Internet forgalom irányítás

- Az Internet egy két szintű hierarchiába van szervezve
- Első szint autonóm rendszerek (AS-ek)
 - AS egy adminisztratív tartomány alatti hálózat
 - PI.: ELTE, Comcast, AT&T, Verizon, Sprint, ...
- AS-en belül ún. intra-domain routing protokollokat használunk
 - Distance Vector, pl.: Routing Information Protocol (RIP)
 - Link State, pl.: Open Shortest Path First (OSPF)
- AS-ek között ún. inter-domain routing protokollokat
 - Border Gateway Routing (BGP)
 - Napjainkban: BGP-4

Miért van szükség AS-ekre?

- A routing algoritmusok nem elég hatékonyak ahhoz, hogy a teljes Internet topológián működjenek
- Különböző szervezetek más-más politika mentén akarnak forgalom irányítást (policy)
- Lehetőség, hogy a szervezetek elrejtsék a belső hálózatuk szerkezetét
- Lehetőség, hogy a szervezetek eldöntsék, hogy mely más szervezeteken keresztül forgalmazzanak
 - Egyszerűbb az útvonalak számítása
 - Nagyobb rugalmasság
 - Nagyobb autonómia/függetlenség

AS számok

- □ Minden AS-t egy AS szám (ASN) azonosít
 - 16 bites érték (a legújabb protokollok már 32 bites azonosítókat is támogatnak)
 - 64512 65535 más célra foglalt
- Jelenleg kb. 40000 AS szám létezik
 - □ AT&T: 5074, 6341, 7018, ...
 - □ Sprint: 1239, 1240, 6211, 6242, ...
 - □ ELTE: 2012
 - Google 15169, 36561 (formerly YT), + others
 - □ Facebook 32934
 - Észak-amerkiai AS-ek → ftp://ftp.arin.net/info/asn.txt

Inter-Domain Routing

- A globális összeköttetéshez szükséges!!!
 - Azaz minden AS-nek ugyanazt a protokollt kell használnia
 - Szemben az intra-domain routing-gal
- Milyen követelmények vannak?
 - Skálázódás
 - Rugalmas útvonal választás
 - Költség
 - Forgalom irányítás egy hiba kikerülésére
- Milyen protokollt válasszunk?
 - link state vagy distance vector?
 - □ Válasz: A BGP egy path vector (útvonal vektor) protokoll

ÁLTALÁNOS

AS-ek közötti (exterior gateway protocol).

Eltérő célok vannak forgalomirányítási szempontból, mint az AS-eken belüli protokollnál.

Politikai szempontok szerepet játszathatnak a forgalomirányítási döntésben.

NÉHÁNY PÉLDA FORGALOMIRÁNYÍTÁSI KORLÁTOZÁSRA

- Ne legyen átmenő forgalom bizonyos AS-eken keresztül.
- Csak akkor haladjunk át Albánián, ha nincs más út a célhoz.
- Az IBM-nél kezdődő illetve végződő forgalom ne menjen át a Microsofton.
- A politikai jellegű szabályokat kézzel konfigurálják a BGP-routeren.
- A BGP router szempontjából a világ AS-ekből és a közöttük átmenő vonalakból áll.

DEFINÍCIÓ

Két AS összekötött, ha van köztük a BGP-router-eiket összekötő vonal.

Border Gateway Protocol

HÁLÓZATOK CSOPORTOSÍTÁSA AZ ÁTMENŐ FORGALOM SZEMPONTJÁBÓL

- Csonka hálózatok, amelyeknek csak egyetlen összeköttetésük van a BGP gráffal.
- 2. Többszörösen bekötött hálózatok, amelyeket használhatna az átmenő forgalom, de ezek ezt megtagadják.
- Tranzit hálózatok, amelyek némi megkötéssel, illetve általában fizetség ellenében, készek kezelni harmadik fél csomagjait.

JELLEMZŐK

- A BGP router-ek páronként TCP-összeköttetést létrehozva kommunikálnak egymással.
- A BGP alapvetően távolságvektor protokoll, viszont a router nyomon követi a használt útvonalat, és az útvonalat mondja meg a szomszédjainak.

BGP egyszerűsített működése

Border Gateway Protocol

A F által a szomszédjaitól kapott D-re vonatkozó információ az alábbi:

B-től: "Én a BCD-t használom"
G-től: "Én a GCD-t használom"
I-től: "Én a IFGCD-t használom"
E-től: "Én a EFGCD-t használom"

BGP kapcsolatok

Tier-1 ISP Peering

Tier-1 ISP Peering

Útvonalvektor protokoll Path Vector Protocol

37

- AS-útvonal: AS-ek sorozata melyeken áthalad az útvonal
 - Hasonló a távolságvektorhoz, de további információt is tartalmaz
- Hurkok, körök detektálása és külnböző továbbítási politikák alkalmazása
 - PI. válaszd a legolcsóbb/legrövidebb utat
- Routing a leghosszabb prefix egyezés alapján

AS 3 130.10.0.0/16 AS 2 AS 4 120.10.0.0/16

AS 5 110.10.0.0/16

AS₁

120.10.0.0/16: AS 2 \rightarrow AS 3 \rightarrow AS 4

130.10.0.0/16: AS 2 \rightarrow AS 3

110.10.0.0/16: AS 2 \rightarrow AS 5

Útvonalvektor protokoll Path Vector Protocol

- A távolságvektor protokoll kiterjesztése
 - Rugalmas továbbítási politikák
 - Megoldja a végtelenig számolás problémáját
 - Útvonalvektor: Célállomás, következő ugrás (nh), AS útvonal
- Otlet: a teljes útvonalat meghirdeti
 - □ Távolságvektor: távolság metrika küldése célállomásonként
 - Útvonalvektor: a teljes útvonal küldése célállomásonként

Rugalmas forgalomirányítás

- Minden állomás hely/saját útválasztási politikát alkalmaz
 - Útvonal kiválasztás: Melyik útvonalat használjuk?
 - Útvonal export: Melyik útvonalat hirdessük meg?
- Példák
 - A 2. állomás által preferált útvonal: "2, 3, 1" (nem a "2, 1")
 - Az 1. állomás nem hagyja, hogy a 3. állomás értesüljön az "1, 2" útvonalról

BGP

IGB - iBGP - eBGP

41

- eBGP: Routing információk cseréje autonóm rendszerek között
- IGP: útválasztás egy AS-en belül belső célállomáshoz
- iBGP: útválasztás egy AS-en belül egy külső célállomáshoz

- 1. eBGP A megismeri az útvonal a célhoz, ehhez eBGP-t használunk
- 2. iBGP A-ban levő router megtanulja a célhoz vezető utat az iBGP segítségével (a köv. ugrás a határ router)
- 3. IGP IGP segítségével eljuttatja
 a csomagot az A határrouteréig

Cél állomás

További protokollok

Internet Control Message Protocol

FELADATA

Váratlan események jelentése

HASZNÁLAT

- □ Többféle ICMP-üzenetet definiáltak:
 - Elérhetetlen cél;
 - Időtúllépés;
 - Paraméter probléma;
 - Forráslefojtás;
 - Visszhang kérés;
 - Visszhang válasz;

Internet Control Message Protocol

- Elérhetetlen cél esetén a csomag kézbesítése sikertelen volt.
 - Esemény lehetséges oka: Egy nem darabolható csomag továbbításának útvonalán egy "kis csomagos hálózat" van.
- Időtúllépés esetén az IP csomag élettartam mezője elérte a 0át.
 - Esemény lehetséges oka: Torlódás miatt hurok alakult ki vagy a számláló értéke túl alacsony volt.
- Paraméter probléma esetén a fejrészben érvénytelen mezőt észleltünk.
 - **Esemény lehetséges oka:** Egy az útvonalon szereplő router vagy a hoszt IP szoftverének hibáját jelezheti.

Internet Control Message Protocol

- Forráslefojtás esetén lefojtó csomagot küldünk.
 - **Esemény hatása:** A fogadó állomásnak a forgalmazását lassítania kellett.
- Visszhang kérés esetén egy hálózati állomás jelenlétét lehet ellenőrizni.
 - Esemény hatása: A fogadónak vissza kell küldeni egy visszhang választ.
- Átirányítás esetén a csomag rosszul irányítottságát jelzik.
 - **Esemény kiváltó oka:** Router észleli, hogy a csomag nem az optimális útvonall.

Address Resolution Protocol

Address Resolution Protocol

FELADATA

Az IP cím megfeleltetése egy fizikai címnek.

HOZZÁRENDELÉS

- Adatszóró csomag kiküldése az Ethernetre "Ki-é a 192.60.34.12-es IP-cím?" kérdéssel az alhálózaton, és mindenegyes hoszt ellenőrzi, hogy övé-e a kérdéses IP-cím. Ha egyezik az IP a hoszt saját IP-jével, akkor a saját Ethernet címével válaszol. Erre szolgál az ARP.
- Opcionális javítási lehetőségek:
 - a fizikai cím IP hozzárendelések tárolása (cache használata);
 - Leképezések megváltoztathatósága (időhatály bevezetése);
- Mi történik távoli hálózaton lévő hoszt esetén?
 - A router is válaszoljon az ARP-re a hoszt alhálózatán. (proxy ARP)
 - Alapértelmezett Ethernet-cím használata az összes távoli forgalomhoz

Reverse Address Resolution Protocol

Reverse Address Resolution Protocol

FELADATA

A fizikai cím megfeleltetése egy IP címnek

HOZZÁRENDELÉS

- Az újonnan indított állomás adatszórással csomagot küld ki az Ethernetre "A 48-bites Ethernet-címem 14.04.05.18.01.25. Tudja valaki az IP címemet?" kérdéssel az alhálózaton. Az RARP-szerver pedig válaszol a megfelelő IP címmel, mikor meglátja a kérést
- Opcionális javítási lehetőségek:
 - BOOTP protokoll használata. UDP csomagok használata. Manuálisan kell a hozzárendelési táblázatot karbantartani. (statikus címkiosztás)
 - DHCP protokoll használata. Itt is külön kiszolgáló osztja ki a címeket a kérések alapján. A kiszolgáló és a kérő állomások nem kell hogy ugyanazon a LAN-on legyenek, ezért LAN-onként kell egy DHCP relay agent. (statikus és dinamikus címkiosztás)

DHCP: DYNAMIC HOST CONFIGURATION PROTOCOL

- Lényegében ez már az Alkalmazási réteg
 - de logikailag ide tartozik

- Segítségével a hosztok automatikusan juthatnak hozzá a kommunikációjukhoz szükséges hálózati azonosítókhoz:
 - IP cím, hálózati maszk, alapértelmezett átjáró, stb.

 Eredetileg az RFC 1531 a BOOTP kiterjesztéseként definiálta. Újabb RFC-k: 1541, 2131 (aktuális)

- IP címek osztása MAC cím alapján DHCP szerverrel
 - Szükség esetén (a DHCP szerveren előre beállított módon) egyes kliensek számára azok MAC címéhez fix IP cím rendelhető
- IP címek osztása dinamikusan
 - A DHCP szerveren beállított tartományból "érkezési sorrendben" kapják a kliensek az IP címeket
 - Elegendő annyi IP cím, ahány gép egyidejűleg működik
- Az IP címeken kívül további szükséges hálózati paraméterek is kioszthatók
 - Hálózati maszk
 - Alapértelmezett átjáró
 - Névkiszolgáló
 - Domain név
 - Hálózati rendszerbetöltéshez szerver és fájlnév

DHCP - Címek bérlése

- A DHCP szerver a klienseknek az IP-címeket bizonyos bérleti időtartamra (lease time) adja "bérbe"
 - Az időtartam hosszánál a szerver figyelembe veszi a kliens esetleges ilyen irányú kérését
 - Az időtartam hosszát a szerver beállításai korlátozzák
- A bérleti időtartam lejárta előtt a bérlet meghosszabbítható
- Az IP-cím explicit módon vissza is adható

Virtuális magánhálózatok alapok

FŐ JELLEMZŐI

- Mint közeli hálózat fut az interneten keresztül.
- IPSEC-et használ az üzenetek titkosítására.
- Azaz informálisan megfogalmazva fizikailag távol lévő hosztok egy közös logikai egységet alkotnak.
 - Például távollévő telephelyek rendszerei.

□ ALAPELV

- Bérelt vonalak helyett használjuk a publikusan hozzáférhető Internet-et.
- İgy az Internettől logikailag elkülöníthető hálózatot kapunk. Ezek a virtuális magánhálózatok avagy VPN-ek.
- A célok közé kell felvenni a külső támadó kizárását.

Virtuális magánhálózatok alapok

 A virtuális linkeket alagutak képzésével valósítjuk meg.

■ ALAGÚTAK

- Egy magánhálózaton belül a hosztok egymásnak normál módon küldhetnek üzenetet.
- Virtuális linken a végpontok beágyazzák a csomagokat.
 - IP az IP-be mechanizmus.
- Az alagutak képzése önmagában kevés a védelemhez. Mik a hiányosságok?
 - Bizalmasság, autentikáció
 - Egy támadó olvashat, küldhet üzeneteket.
 - Válasz: Kriptográfia használata.

Virtuális magánhálózatok alapok

 Hosszú távú célja az IP réteg biztonságossá tétele. (bizalmasság, autentikáció)

■ Műveletei:

- Hoszt párok kommunikációjához kulcsokat állít be.
- A kommunikáció kapcsolatorientáltabbá tétele.
- Fejlécek és láblécek hozzáadása az IP csomagok védelme érdekében.
- Több módot is támogat, amelyek közül az egyik az alagút mód.

