

BRAIN RESEARCH: DEVELOPMENTAL BRAIN RESEARCH

VOL. 90 NOS. 1,2

CONTENTS

21 December 1995

Cited in Biological Abstracts (BIOSIS) – Chem. Abstracts – Index Medicus (MEDLINE) – Current Contents (Life Sci.) – Excerpta Medica (EMBASE) – Psychological Abstracts (PsycINFO) – Pascal et Francis (INIST-CNRS) – RIS (Reference Update) – Current Awareness in Biological Science (CABS)

Guidelines to the submission of manuscripts

v

Research reports

Ontogeny of oxytocin-like immunoreactivity in the Brazilian opossum brain J. Iqbal and C.D. Jacobson (USA)	1
Phenotype plasticity and immunocytochemical evidence for ChAT and D β H co-localization in fetal pig superior cervical ganglion cells J.M. Wang, P.M. Partoens, D.P. Callebaut, E.P. Coen, J.-J. Martin and W.P. De Potter (Belgium, China)	17
GAP-43 expression in the medulla of macaque monkeys: changes during postnatal development and the effects of early median nerve repair N. Jain, S.L. Florence and J.H. Kaas (USA)	24
Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient <i>sparse fur</i> mouse M.B. Robinson, K. Hopkins, M.L. Batshaw, B.A. McLaughlin, M.P. Heyes and M.L. Oster-Granite (USA)	35
Developmental injury to the cerebellum following perinatal Borna disease virus infection J.R. Bautista, S.A. Rubin, T.H. Moran, G.J. Schwartz and K.M. Carbone (USA)	45
Postnatal changes in serine/threonine protein phosphatases and their association with the microtubules S.M. Dudek and G.V.W. Johnson (USA)	54
Few neocortical and thalamic morphological changes after a neonatal frontal cortical ablation contrast with the effects of a similar lesion in fetal cats G.F. Jackson III, J.R. Villablanca and L.D. Loopuijt (USA)	62
SCG10 expresses growth-associated manner in developing rat brain, but shows a different pattern to p19/stathmin or GAP-43 Y. Sugiura and N. Mori (USA)	73
Trophic and protective actions of brain-derived neurotrophic factor on striatal DARPP-32-containing neurons in vitro N. Nakao, P. Brundin, K. Funa, O. Lindvall and P. Odin (Sweden, Japan)	92
Complex gangliosides affect GD ₃ accessibility to antibody in developing neuronal cells M.L. Allende and P. Panzetta (Argentina)	102
Branching pattern of corticothalamic projections from the somatosensory cortex during postnatal development in the rat C. Frassoni, P. Arcelli, M.C. Regondi, M. Selvaggio, S. De Biasi and R. Spreafico (Italy)	111
K252a, a potent inhibitor of protein kinases, inhibits the migration of cerebellar granule cells in vitro S. Kobayashi, K. Isa, K. Hayashi, H.K. Inoue, K. Uyemura and T. Shirao (Japan)	122
Comparative localisation of CRYP α , a CAM-like tyrosine phosphatase, and NgCAM in the developing chick visual system A.W. Stoker, B. Gehrig, M.R. Newton and B.-H. Bay (UK, USA, Singapore)	129
Neurons derived from P19 embryonal carcinoma cells develop responses to excitatory and inhibitory neurotransmitters D.S.K. Magnuson, D.J. Morassutti, M.W. McBurney and K.C. Marshall (Canada)	141
The entry of acidic amino acids into brain and CSF during development, using <i>in situ</i> perfusion in the rat H. Al-Sarraf, J.E. Preston and M.B. Segal (UK)	151
The role of the cholinergic system in the development of the human cerebellum J.A. Court, E.K. Perry, D. Spurden, M. Griffiths, J.M. Kerwin, C.M. Morris, M. Johnson, A.E. Oakley, N.J.M. Birdsall, F. Clementi and R.H. Perry (UK, Italy)	159
<i>Short communications</i>	
Effects of neonatal and adult enucleation on the synaptic organization of the serotonergic projection to the superficial gray layer of the hamster's superior colliculus E.A. Arce, R.W. Rhoades and R.D. Mooney (USA)	168
Developmental expression of the immediate early gene EGR-1 mirrors the critical period in cat visual cortex I.V. Kaplan, Y. Guo and G.D. Mower (USA)	174
Ontogenetic development of dopamine D ₄ receptor in rat brain V.D. Nair and R.K. Mishra (Canada)	180
<i>Mash-1</i> is expressed during ROD photoreceptor differentiation and binds an E-box, E _{opsin-1} in the rat opsin gene I. Ahmad (USA)	184
Regulation by nerve growth factor of neuropeptide phenotypes in primary cultured sensory neurons prepared from aged as well as adult mice Z.-G. Jiang and R.A. Smith (UK)	190
Evidence for the elaboration of multiple axons by developing dentate granule cells W. Yan, J.L. Young and J.H. Haring (USA)	194
<i>Author Index</i>	198

0165-3806(19951221)90:1/2;1-N

