STAT 305 Quiz II Reference Sheet

Numeric Summaries

mean
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

population variance
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

population standard deviation
$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

sample variance
$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

sample standard deviation
$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Linear Relationships

Form
$$y \approx \beta_0 + \beta_1 x$$

Fitted linear relationship
$$\hat{y} = b_0 + b_1 x$$

Least squares estimates
$$b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$b_1 = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

$$b_0 = \bar{y} - b_1 \bar{x}$$

Residuals
$$e_i = y_i - \hat{y}_i$$

sample correlation coeffecient
$$r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 \sum_{i=1}^n (x_i - \bar{x})^2}}$$

$$r = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sqrt{\left(\sum_{i=1}^{n} x_i^2 - n\bar{x}^2\right)\left(\sum_{i=1}^{n} y_i^2 - n\bar{y}^2\right)}}$$

coeffecient of determination
$$R^2 = (r)^2$$

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Multivariate Relationships

Form $y \approx \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$

Fitted relationship $\hat{y} \approx b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$

Residuals $e_i = y_i - \hat{y}_i$

Sums of Squares $SSTO = \sum_{i=1}^{n} (y_i - \bar{y})^2$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SSR = SSTO - SSE = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

coeffecient of determination $R^2 = \frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$

$$R^2 = \frac{\text{SSTO} - \text{SSE}}{\text{SSTO}}$$

$$R^2 = \frac{\text{SSR}}{\text{SSTO}}$$

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})^2 - \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

Functions

Quantile Function Q(p) For a univariate sample consisting of n values that are ordered so that $x_1 \leq x_2 \leq \ldots \leq x_n$ and value p where $0 \leq p \leq 1$, let $i = \lfloor n \cdot p + 0.5 \rfloor$. Then the quantile function at p is:

$$Q(p) = x_i + (n \cdot p + 0.5 - i)(x_{i+1} - x_i)$$

Basic Probability

Definitions

Random experiment A series of actions that lead to an observable result.

The result may change each time we perform the experiment.

Outcome The result(s) of a random experiment.

Sample Space (S) A set of all possible results of a random experiment.

Event (A) Any subset of sample space.

Probability of an event (P(A)) the likelihood that the observed outcome of

a random experiment is one of the outcomes in the event.

 A^C The outcomes that are not in A.

 $A \cap B$ The outcomes that are both in A and in B. $A \cup B$ The outcomes that are either A or B.

General Rules

Probability A given B $P(A|B) = P(A \cap B)/P(B)$

Probability A and B $P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$

Probability A or B P(A or B) = P(A) + P(B) - P(A, B)

Independence

Two events are called independent if $P(A, B) = P(A) \cdot P(B)$. Clever students will realize this also means that if A and B are independent then P(A|B) = P(A) and P(B|A) = P(B).

Joint Probability

Joint Probability The probability an outcome is in event A and in event B = P(A, B).

Marginal Probability If $A \subseteq B \cup C$ then $P(A) = P(A \cap B) + P(A \cap C)$.

Conditional Probability For events A and B, if $P(B) \neq 0$ then $P(A|B) = P(A \cap B)/P(B)$.

Discrete Random Variables

General Rules

Probability function $f_X(x) = P(X = x)$

Cumulative probability function $F_X(x) = P(X \le x)$

Expected Value $\mu = E(X) = \sum_{x} x f_X(x)$

Variance $\sigma^2 = Var(X) = \sum_{x} (x - \mu)^2 f_X(x)$

or, $Var(X) = \sum_{i=1}^{n} x_i^2 \cdot f(x_i) - \mu^2$

or, $Var(X) = \sum_{x} (x - EX)^2 f(x) = E(X^2) - (EX)^2$

Standard Deviation $\sigma = \sqrt{Var(X)}$

Joint Probability Functions

Joint Probability Function $f_{XY}(x,y) = P[X = x, Y = y]$

Marginal Probability Function $f_X(x) = \sum_y f_{XY}(x,y)$ $f_Y(y) = \sum_x f_{XY}(x,y)$

Conditional Probability Function $f_{X|Y}(x|y) = f_{XY}(x,y)/f_Y(y)$

 $f_{Y|X}(y|x) = f_{XY}(x,y)/f_X(x)$

Geometric Random Variables

X is the trial count upon which the first successful outcome is observed performing independent trials with probability of success p.

Possible Values $x = 1, 2, 3, \dots$

Probability function $P[X = x] = f_X(x) = p^x(1-p)^{x-1}$

Expected Value $\mu = E(X) = \frac{1}{p}$

Variance $\sigma^2 = Var(X) = \frac{1-p}{p^2}$

Binomial Random Variables

X is the number of successful outcomes observed in n independent trials with probability of success p.

Possible Values $x = 0, 1, 2, \dots, n$

Probability function $P[X=x] = f_X(x) = \frac{n!}{(n-x)!x!}p^x(1-p)^{n-x}$

Expected Value $\mu = E(X) = np$

Variance $\sigma^2 = Var(X) = np(1-p)$

Poisson Random Variables

X is the number of times a rare event occurs over a predetermined interval (an area, an amount of time, etc.) where the number of events we expect is λ .

Possible Values $x = 0, 1, 2, 3, \dots$

Probability function $P[X = x] = f_X(x) = \frac{e^{-\lambda} \lambda^x}{x!}$

Expected Value $E(X) = \lambda$

Variance $Var(X) = \lambda$