Критерий Лебега

Теорема 1. (**Критерий Лебега**) f интегрируема по Риману на $I \Leftrightarrow f$ - ограничена и f - непрерывна почти всюду на I.

Rm: 1. Заметим, что доказать эту теорему можно идентично тому, что было во 2-м семестре (см. лекцию 25). Сейчас же мы докажем теорему немного по-другому, использовав факт, который станит понятен только в дальнейшем, но позволяющий доказать эту теорему проще.

Предполагаем, что f - ограниченна. По критерию интегрируемости, пусть у нас есть $\{I_m^N\}$ - разбиение бруска I на попарно непересекающиеся бруски так, что $\dim(I_m^N) < \frac{1}{N}$ и N+1-ое разбиение получается из N-го разбиением уже имеющихся брусков. Для таких разбиений мы определяли две функции:

$$h_N(x) = \sum_{m} \inf_{\mathbf{I}_m^N} f(x) \cdot \chi_{\mathbf{I}_m^N}(x), \quad g_N(x) = \sum_{m} \sup_{\mathbf{I}_m^N} f(x) \cdot \chi_{\mathbf{I}_m^N}(x)$$

Тогда по критерию интегрируемости верно:

$$f$$
 - интегрируема на $\mathbf{I} \Leftrightarrow \int\limits_{\mathbf{I}} (\underbrace{g_N(x) - h_N(x)}_{\geq 0}) dx \xrightarrow[N \to \infty]{} 0$

Рассмотрим внимательнее подинтегральное выражение:

$$g_N(x) - h_N(x) = \sum_{m} (\sup_{\mathbf{I}_m^N} f(x) - \inf_{\mathbf{I}_m^N} f(x)) \cdot \chi_{\mathbf{I}_m^N}(x) = \sum_{m} \omega(f, \mathbf{I}_m^N) \cdot \chi_{\mathbf{I}_m^N}(x)$$

Возьмем $x \in I$ такой, что x не принадлежит границам I_m^N , $\forall m, N$, то есть каждый раз эта точка оказывается внутри бруска разбиения. Возьмем $\delta > 0$ и рассмотрим шар $\mathcal{B}(x, \delta) \Rightarrow$ брус содержащий x попадет в шар $\mathcal{B}(x, \delta)$ с ростом $N \Rightarrow$ колебание на брусе будет меньше, чем на шаре:

$$\operatorname{diam}(\mathbf{I}_{m}^{N}) < \frac{1}{N} \to 0 \Rightarrow \exists N \colon \mathbf{I}_{m}^{N} \subset \mathcal{B}(x, \delta) \Rightarrow \omega(f, \mathbf{I}_{m}^{N}) \leq \omega(f, \mathcal{B}(x, \delta))$$

где последнее верно, в силу того, что при расширении множества sup может только возрасти,а inf только уменьшиться (см. лекцию 2 этого семестра). Вспомним, что колебание в точке $\omega_f(x)$ это предел:

$$\omega_f(x) = \lim_{\delta \to 0+} \omega(f, \mathcal{B}(x, \delta))$$

Про это можно посмотреть, в лекции 17 семестра 1 и лекции 25 семестра 2. Возьмем $\varepsilon > 0$, тогда:

$$\exists \, \delta > 0 \colon \omega(f, \mathcal{B}(x, \delta)) < \omega_f(x) + \varepsilon \Rightarrow \omega(f, \mathbf{I}_m^N) < \omega_f(x) + \varepsilon \Rightarrow g_N(x) - h_N(x) < \omega_f(x) + \varepsilon$$

где последнее верно в силу того, что: $x \in \mathcal{I}_m^N \Rightarrow \chi_{\mathcal{I}_m^N}(x) = 1, \ \forall k \neq m, \ \chi_{\mathcal{I}_k^N}(x) = 0.$ Таким образом:

$$\forall \varepsilon > 0, \ \exists \ N_0 : \forall N > N_0, \ g_N(x) - h_N(x) < \omega_f(x) + \varepsilon$$

Точка $x \in \mathcal{I}_m^N$ не принадлежит граням этого бруска \Rightarrow она внутренняя, тогда:

$$\exists \gamma > 0 \colon \mathcal{B}(x,\gamma) \subset \mathcal{I}_m^N \Rightarrow \omega(f,\mathcal{B}(x,\gamma)) \leq \omega(f,\mathcal{I}_m^N)$$

Когда мы стягиваем шары, то колебания на них не возрастают при уменьшении радиуса, тогда:

$$\omega_f(x) \le \omega(f, \mathcal{B}(x, \gamma)) \le \omega(f, \mathcal{I}_m^N) \Rightarrow \exists N_0 : \forall N > N_0, \ \omega_f(x) \le g_N(x) - h_N(x) \le \omega_f(x) + \varepsilon$$

Таким образом, для x не принадлежащим граням брусков $\forall m, N, \mathbf{I}_m^N$ мы получаем:

$$g_N(x) - h_N(x) \xrightarrow[N \to \infty]{} \omega_f(x)$$

Объединение всех граней I_m^N по всем m и N является множеством меры нуль по Лебегу, поскольку каждая грань это подмножество $x_k = \text{const}$ - график непрерывной функции над соответствующим параллелепипедом (для конкретного бруска, все его грани это множество меры нуль), а объединение всех граней это объединение счётного набора множеств меры нуль. Тогда:

$$\forall N, \ |g_N(x) - h_N(x)| \leq 2 \cdot \sup_{\mathbf{I}} |f|, \quad g_N(x) - h_N(x) \xrightarrow[N \to \infty]{} \omega_f(x)$$
 п.в. на $\mathbf{I} \Rightarrow$

$$\Rightarrow \int_{\mathbf{I}} (g_N(x) - h_N(x)) dx \xrightarrow[N \to \infty]{} \int_{\mathbf{I}} \omega_f(x) dx$$

где мы пользуемся теоремой Лебега об ограниченной сходимости и утверждением о том, что интеграл Лебега совпадает с интегралом Римана, если функция интегрируема по Риману (мы пока не знакомы с данными утверждениями). Тогда:

$$f$$
 - интегрируема по Риману на I $\Leftrightarrow \int\limits_{\mathbf{I}} \omega_f(x) dx = 0$

$$\omega_f(x) \ge 0 \Rightarrow \int_{\mathbf{I}} \omega_f(x) dx = 0 \Leftrightarrow \omega_f(x) = 0$$
 п.в.

Вспоминая, что: $\omega_f(x) = 0 \Leftrightarrow f$ непрерывна в точке x, мы получаем требуемое.

Следствие 1. Если f интегрируема по Риману на I, $f \ge 0$ и $\int_{\mathbb{T}} f(x) dx = 0$, то f = 0 п.в. на I.

 \square Пусть x_0 - точка непрерывности функции f и $f(x_0)>0$, тогда $\exists\, \mathrm{J}$ - брусок такой, что:

$$J \subset I, x_0 \in J, |J| > 0, f(x) \ge \frac{f(x_0)}{2}, \forall x \in J$$

Поскольку функция непрерывна и положительна в какой-то точке ⇒ в целой окрестности отделена от нуля, окрестность можно взять в виде бруска положительного объема. Тогда можно утверждать:

$$f(x) \geq \frac{f(x_0)}{2} \cdot \chi_{\mathbf{J}}(x) \Rightarrow 0 = \int_{\mathbf{J}} f(x) dx \geq \int_{\mathbf{J}} \frac{f(x_0)}{2} \cdot \chi_{\mathbf{J}}(x) dx = \frac{f(x_0)}{2} \cdot |\mathbf{J}| > 0$$

Получили противоречие \Rightarrow во всех точках непрервности $f=0\Rightarrow$ по критерию Лебега f=0 п.в.

Следствие 2. Если f интегрируема по Риману на I и φ - непрерывна на $[\inf_{\mathbf{I}} f, \sup_{\mathbf{I}} f]$, то $\varphi(f)$ интегрируема по Риману на I.

 \square Если функция φ непрерывна на I, то она ограничена на нём \Rightarrow подставили f в ограниченную функцию $\Rightarrow \varphi(f)$ ограничена. Если f непрерывна в x_0 , то и $\varphi(f)$ непрерывна в $x_0 \Rightarrow \varphi(f)$ непрерывна почти всюду $\Rightarrow \varphi(f)$ по критерию Лебега интегрируема.

Следствие 3. Если f и q интегрируемы по Риману на I, то $f \cdot q$ интегрируемы на I.

 \square Очевидно, поскольку каждая функция ограничена $\Rightarrow f \cdot g$ ограничено. Каждая из них почти всюду непрерывна, но объединение двух множеств меры ноль это множество меры ноль \Rightarrow обе одновременно непрерывны почти всюду, а произведение непрерывных функций - непрерывно \Rightarrow получаем требуемое по критерию Лебега.

Пример: Рассмотрим функцию Римана и функцию знака:

$$R(x) = \begin{cases} \frac{1}{n}, & x = \frac{m}{n}, (m, n) = 1\\ 0, & x \notin \mathbb{Q} \end{cases}, \quad \operatorname{sgn}(x) = \begin{cases} 1, & x > 0\\ 0, & x = 0\\ -1, & x < 0 \end{cases}$$

Функция R(x) это ограниченная, почти всюду непрерывная функция \Rightarrow интегрируемая функция. $\operatorname{sgn}(x)$ это интегрируемая функция. Композиция этих функций: $\operatorname{sgn}(R(x)) = D(x)$ это функция Дирихле. Следовательно, композиция функций - не интегрируема.

Rm: 2. Пример, когда внутрь подставляем не непрерывную функцию и получаем неинтегрируемую - сложнее. Ранее похожее обсуждалось во 2-м семестре, когда множество точек разрыва получает положительную меру: используется множество, похожее на Кантаровское, только положительной меры.

Интеграл Римана по множеству

Мы умеем интегрировать только по бруску, но нам хотелось бы научиться интегрировать не только по ним, но и по любому произвольному множеству.

<u>Идея</u>: Пусть у нас есть произвольное множество A и на нём задана функция $f \colon A \to \mathbb{R}$. Пусть A это ограниченное множество. Сделаем продолжение функции f на брус I, содержащий A:

$$\widetilde{f}(x) = \begin{cases} f(x), & x \in A \\ 0, & x \notin A \end{cases}$$

Рис. 1: Продолжение функции f на брус I.

Тогда интеграл по множеству A будет иметь вид:

$$\int_{A} f(x)dx = \int_{I} \widetilde{f}(x)dx$$

Тогда все свойства интеграла Римана переносятся и сюда, при этом заметим, что необходимо существование интеграла справа. Вместе с этим, возникают справедливые вопросы, что если интеграл по другому бруску будет иным:

$$\int_{\mathbf{I}} \widetilde{f}(x)dx \neq \int_{\mathbf{I}} \widetilde{f}(x)dx$$

Или что по одному бруску интеграл есть, а по другому его нет. Вспомним определения. Пусть (X, ρ) - метрическое пространство и $A \subset X$.

Опр: 1. Точка $a \in A$ называется внутренней, если $\exists \mathcal{B}(a,r) \subset A$.

Обозначение: $\mathring{A}=$ множество внутренних точек A.

Опр: 2. Точка a называется граничной, если: $\forall \mathcal{B}(a,r), \ \mathcal{B}(a,r) \cap A \neq \varnothing \land \mathcal{B}(a,r) \cap (X \setminus A) \neq \varnothing$.

Обозначение: $\partial A =$ множество граничных точек A.

Опр: 3. Множество $\overline{A} = A \cup \partial A$, называется замыканием множества A.

Rm: 3. Замыкание, как мы помним, это замкнутое множество.

Утв. 1. Пусть A - ограниченное множество и $f: A \to \mathbb{R}$, \widetilde{f} определена так:

$$\widetilde{f}(x) = \begin{cases} f(x), & x \in A \\ 0, & x \notin A \end{cases}$$

Пусть I и J - замкнутые бруски такие, что $\overline{A} \subset \mathring{\mathbf{I}}, \overline{A} \subset \mathring{\mathbf{J}}$. Тогда \widetilde{f} интегрируема на I $\Leftrightarrow \widetilde{f}$ интегрируема на J и интегралы, если они существуют, по ним совпадают:

$$\int_{\mathbf{I}} \widetilde{f}(x)dx = \int_{\mathbf{I}} \widetilde{f}(x)dx$$

 \square Применим критерий Лебега. \widetilde{f} непрерывна на $\mathbb{R}^n \setminus A$, поскольку $\forall x \in \mathbb{R}^n \setminus A$ функция $\widetilde{f} \equiv 0$ вместе с некоторой своей окрестностью (т.е. $\mathbb{R}^n \setminus A$ - открытое множество) \Rightarrow все точки разрыва \widetilde{f} лежат в пересечении внутренностей брусков: $\mathring{\mathbf{I}} \cap \mathring{\mathbf{J}}$, так как: $\overline{A} \subset \mathring{\mathbf{I}} \cap \mathring{\mathbf{J}}$.

 (\Rightarrow) Если \widetilde{f} интегрируема на I, то \widetilde{f} ограничена на I \Rightarrow \widetilde{f} ограничена на I \cap J \Rightarrow \widetilde{f} ограничена на J, потому что $\widetilde{f}=0$ вне этого пересечения. Если \widetilde{f} интегрируема на I, то множество точек разрыва \widetilde{f} в I (а значит в \mathbb{R}^n) имеет меру нуль по Лебегу. Но точки разрыва лежат в общей части I \cap J \Rightarrow \widetilde{f} почти всюду непрерывна на J \Rightarrow по критерию Лебега \widetilde{f} интегрируема на J.

(⇐) Аналогично предыдущему пункту.

Рис. 2: Пересечение брусков I и J.

Поскольку у нас пока нет аддитивности, то равенство интегралов будем обосновывать по определению. Пусть оба интеграла существуют. Заметим, что $I \cap J$ - замкнутый брус с рёбрами положительной длины, поскольку $A \neq \emptyset$ и каждая точка A - это внутренняя точка I и $J \Rightarrow I \cap J$ имеет внутренние точки. Теперь будем строить разбиение. Пусть \mathbb{T}_1 это разбиение I, а \mathbb{T}_2 это разбиение J такие, что на общей части они совпадают. Это можно сделать включением точек концов общих отрезков в разбиение:

Рис. 3: Включение точек концов отрезков пересечения $I \cap J$ в разбиение.

Возьмем отмеченные точки ξ_1 для \mathbb{T}_1 и ξ_2 для \mathbb{T}_2 так, чтобы они совпадали на общей части. Тогда:

$$\begin{split} \sigma(\widetilde{f}, \mathbb{T}_{1}, \xi_{1}) &= \sum_{j} \widetilde{f}(\xi_{j}^{1}) \cdot |\mathbf{I}_{j}^{1}| = \sum_{j: \, \mathbf{I}_{j}^{1} = \mathbf{I}_{j}^{2}} \widetilde{f}(\xi_{j}^{1}) \cdot |\mathbf{I}_{j}^{1}| + \sum_{j: \, \mathbf{I}_{j}^{1} \neq \mathbf{I}_{j}^{2}} \widetilde{f}(\xi_{j}^{1}) \cdot |\mathbf{I}_{j}^{1}| = \sum_{j: \, \mathbf{I}_{j}^{1} = \mathbf{I}_{j}^{2}} \widetilde{f}(\xi_{j}^{1}) \cdot |\mathbf{I}_{j}^{1}| + 0 = \\ &= \sum_{j: \, \mathbf{I}_{j}^{1} = \mathbf{I}_{j}^{2}} \widetilde{f}(\xi_{j}^{1}) \cdot |\mathbf{I}_{j}^{1}| + \sum_{j: \, \mathbf{I}_{j}^{1} \neq \mathbf{I}_{j}^{2}} \widetilde{f}(\xi_{j}^{2}) \cdot |\mathbf{I}_{j}^{2}| = \sum_{j} \widetilde{f}(\xi_{j}^{2}) \cdot |\mathbf{I}_{j}^{2}| = \sigma(\widetilde{f}, \mathbb{T}_{2}, \xi_{2}) \end{split}$$

Разбиваем так, чтобы $\lambda(\mathbb{T}_1) \to 0$ и $\lambda(\mathbb{T}_2) \to 0$, тогда сразу получаем: $\int_{\mathbb{T}} \widetilde{f}(x) dx = \int_{\mathbb{T}} \widetilde{f}(x) dx$.

Опр: 4. Интеграл Римана по произвольному множеству A (где A - ограничено) это интеграл:

$$\int\limits_A f(x)dx = \int\limits_{\mathbf{I}} \widetilde{f}(x)dx, \quad \overline{A} \subset \mathring{\mathbf{I}}, \quad \widetilde{f}(x) = \begin{cases} f(x), & x \in A \\ 0, & x \notin A \end{cases}$$

Утв. 2. $\int_A 1 dx$ существует $\Leftrightarrow \partial A$ - множество меры нуль по Лебегу.

 \square Возьмем $\overline{A}\subset \mathring{\mathrm{I}},$ в данном случае $\widetilde{f}(x)=\chi_A(x),$ тогда по определению:

$$\exists \int\limits_A 1 dx = \int\limits_{\mathrm{I}} \chi_A(x) dx \Leftrightarrow \chi_A(x)$$
 - п.в. непрерывна

Точки разрыва у индикатора могут быть лишь на границе: взяли внутреннюю точку $A\Rightarrow\chi_A\equiv 1$ вместе с некоторой окрестностью, взяли внешнюю точку $\Rightarrow\chi_A\equiv 0$ вместе с некоторой окрестностью \Rightarrow точки разрыва оказываются там, где в окрестности есть точки A и точки дополнения. Если это не так, то либо там есть окрестность, где нет точек A и это внешняя точка, либо там есть окрестность, где нет внешних точек и это внутренняя точка. Во всех остальных случаях мы приходим к граничной точке $\Rightarrow \partial A$ это точки разрыва и $\chi_A(x)$ п.в. непрерывна $\Leftrightarrow \partial A$ это множество меры нуль по Лебегу.

Пример: $A=\mathbb{Q}\Rightarrow$ граница не является множеством меры нуль по Лебегу.

Пример: $\int_A f(x) dx$ существует, но при этом не существует $\int_A 1 dx$? Да, например: f(x) = 0.

Объем допустимого множества

Опр: 5. Множество A допустимо (измеримо по Жордану), если A - ограничено и ∂A это множество меры нуль по Лебегу.

Опр: 6. Объемом допустимого множества A (или мерой Жордана множества A) называется интеграл:

$$|A| = \int_{A} 1dx$$

Rm: 4. Заметим, что не нужно путать этот объем с мерой Лебега. Мера Лебега множества рациональных чисел равна нулю, а объем ему приписать нельзя, потому что индикатор этого множества не интегрируем по Риману.

Утв. 3. Если A допустимо и |A|=0, то \forall ограниченная функция f интегрируема по Риману на A и кроме того, верно:

$$\int_{A} f(x)dx = 0$$

 \Box Возьмем $\widetilde{f}(x)$ и брус $\mathrm{I}\colon \overline{A}\subset \mathring{\mathrm{I}}$. f - ограничена $\Rightarrow \widetilde{f}$ тоже ограничена. Точки разрыва $\subset \overline{A}$, где $\overline{A}=A\cup\partial A$, так как вне этого множества функция - тождественный ноль. Поскольку A - допустимо, то ∂A это множество меры нуль по Лебегу и верно:

$$\int\limits_{\mathrm{I}} \underbrace{\chi_A(x)}_{>0} dx = |A| = 0 \Rightarrow \chi_A(x) = 0$$
 почти всюду

Поскольку $\chi_A(x) \neq 0$ на множестве A, то A это множество меры нуль. Тогда $\overline{A} = A \cup \partial A$ - множество меры нуль \Rightarrow точки разрыва это множество меры нуль $\Rightarrow \widetilde{f}$ непрерывана почти всюду и $\widetilde{f} = 0$ почти всюду, поскольку A это множество меры нуль ($\widetilde{f} \neq 0$ только на A) \Rightarrow интеграл $\int_{\mathbf{I}} \widetilde{f}(x) dx$ существует и равен $0 \Rightarrow$ интеграл $\int_{A} f(x) dx$ существует и равен 0.

Таким образом, если объем ноль, то это множество меры нуль и любая ограниченаня функция на этом множестве интегрируема.

Теорема 2. (**Критерий Лебега для допустимых множеств**) Пусть A - допустимое множество. Тогда f интегрируема на $A \Leftrightarrow f$ - ограничена на A и непрерывна почти всюду на A.

 \square f интегрируема на $A \Leftrightarrow \widetilde{f}$ интегрируема на $I \colon \overline{A} \subset \mathring{I} \Leftrightarrow \widetilde{f}$ - ограничена и почти всюду непрерывна на брусе I. Следовательно, поскольку \widetilde{f} ограничена на A, то и f ограничена на A.

 \widetilde{f} непрерывна на $\operatorname{I}\setminus\overline{A}$, а внутри A она почти всюду непрерывна и там же $\widetilde{f}=f$. Поскольку ∂A это множество меры нуль \Rightarrow \widetilde{f} почти всюду непрерывна на $\operatorname{I}\Rightarrow f$ почти всюду непрерывна на A, потому что на ∂A мы не смотрим, а изучаем только внутренние точки. В окрестностях внутренних точек \widetilde{f} совпадает с $f\Rightarrow \widetilde{f}$ - ограничена и почти всюду непрерывна на $\operatorname{I}\Leftrightarrow f$ - ограничена и почти всюду непрерывна на A. Следовательно, мы получаем требуемое.

 \mathbf{Rm} : 5. В условии имеется в виду непрерывность почти всюду по A на множестве A, но не вообще. То есть проверяются последовательности, которые лежат только в A.

 \mathbf{Rm} : 6. В условии невозможно отказаться от допустимости множества A, иначе можно взять функцию Дирихле и множество рациональных чисел \Rightarrow она на нём непрерывна (потому что просто константа), при этом нельзя утверждать, что f интегрируема, так как функция Дирихле не будет интегрируема.

 ${f Rm:}\ {f 7.}\ {f E}$ сли множество не является допустимым, то важной становится сама функция f.