Graphy Theory

Directed Graph

Theorem:

A diagraph D contains a directed graph of length X-1

TheoLem: (Chvátal. Lauász, 1974)

In a divected graph (7, there is always an independent set of vertices such that given any v

\$\forall \text{5}. there is an \$u \in S with \$d(u,u) \in \text{2}\$

Proof:

By induction. Let $w \in G$; Let G'be the subgraph of G induced by $Suld(w,u) \ge 23 : : \exists S' \subseteq G'$ $Zf d(u,w) \le 1$ for some $u \in S'$, Let S = S'Otherwise we set $S = S' \cup Sw$

Connectivity

Example,

Would Conn, Single Conn Strong Conn.
P(u,u) or P(v,u) P(u,u) and P(v,u)

Theorem:

only of All vertices in Grave in one directed path.

Theorem:

Fis strong connected digraph if and only if any vertices in Fare in one directed closed path.

Theorem (Robbins, 1939):

Undirected graph G can be orientated to strong connected dipraph of and

only if G is wonnected and no cut edge CG is 2-edge wonnected)

-> Hoperoft-Tarjan Orientation Algo.

<17 Find directed Tree T

(2) For every e= uv not in Tree.

Give an orientation

Euler and Hamilton Digraph

Theorem.

Non-trivial weak connected digraph Fis Enler digraph of and only it $\forall v \in V(G): d(v) = d(v)$

Theorem: (Meyniel. 1973)

Theorem: (Meyniel. 1973)

To is strong connected digraph, for any two dis adjacent u, v, have diw+d(v) = 278-1, then G is

Hamilton Dipraph.

Tournament 養養園

DRFINITION

An orientation of a complete graph is called a Tournament.

Theorem:

A Tournament contains a ventex from which every other vertex is reachable by a directed path of length at most two.

Theorem: (Rédei, 1934)

Every tournament has a directed Hamilton path.

Theorem (Moon, 1966)

Strong Connectivity Tournament with 1923. Every vertex is in a directed

cycle with length & (k=3,4,11,19)

Conollary: (Camion, 1959)
Strong Connectivity Tournament
is Hamilton Directed Graph.