### Extending Treelets for Estimation of Heritability

#### B. Draves<sup>1</sup>

<sup>1</sup>Department of Mathematics Lafayette College

Advisor: T. Gaugler

Lafayette College, 2016

### What is Treelets?

An adaptive method for multi-scale representation and eigenanalysis of data where the variables can occur in any given order.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Crossett, A., Lee, A. B., Klei, L., Devlin, B., and Roeder, K., Refining Genetically Inferred Relationships Using Treelet Covariance Smoothing, Annals of Applied Statistics, 7(2):669 690, 2013.

### What is Treelets?

An adaptive method for multi-scale representation and eigenanalysis of data where the variables can occur in any given order.<sup>1</sup>

What does that mean?

<sup>&</sup>lt;sup>1</sup>Crossett, A., Lee, A. B., Klei, L., Devlin, B., and Roeder, K., Refining Genetically Inferred Relationships Using Treelet Covariance Smoothing, Annals of Applied Statistics, 7(2):669–690, 2013.

### What is Treelets? - My Take

Treelets is a method to systematically cluster correlated data in a way that yields information of the underlying structure while smoothing noisy samples.





Otis

Oliver

Trent

Brooke

Will

Ben

Jeff

Pat











### **SNP Samples**

 Each person has a specific genetic composition which can be described by a sample of single nucleotide polymorphisms (SNPs)

### **SNP Samples**

- Each person has a specific genetic composition which can be described by a sample of single nucleotide polymorphisms (SNPs)
- Idea: Use Treelets to refine an estimate of relatedness in a sample of individuals

### **SNP Samples**

- Each person has a specific genetic composition which can be described by a sample of single nucleotide polymorphisms (SNPs)
- Idea: Use Treelets to refine an estimate of relatedness in a sample of individuals
- Use this information to estimate heritability of a phenotype in the population

# Estimating Relatedness- Theoretic

|        | Otis | Will | Trent | Pat | Jeff | Ben | Oliver | Brooke |
|--------|------|------|-------|-----|------|-----|--------|--------|
| Otis   | 1    | 0    | 1/2   | 0   | 0    | 0   | 1/2    | 1/2    |
| Will   | 0    | 1    | 0     | 1/2 | 1/2  | 1/2 | 0      | 0      |
| Trent  | 1/2  | 0    | 1     | 0   | 0    | 0   | 1/2    | 0      |
| Pat    | 0    | 1/2  | 0     | 1   | 0    | 1/2 | 0      | 0      |
| Jeff   | 0    | 1/2  | 0     | 0   | 1    | 1/2 | 0      | 0      |
| Ben    | 0    | 1/2  | 0     | 1/2 | 1/2  | 1   | 0      | 0      |
| Oliver | 1/2  | 0    | 1/2   | 0   | 0    | 0   | 1      | 1/2    |
| Brooke | 1/2  | 0    | 0     | 0   | 0    | 0   | 1/2    | 1      |

# Estimating Relatedness- Theoretic

|        | Otis | Oliver | Trent | Brooke | Jeff | Ben | Will | Pat |
|--------|------|--------|-------|--------|------|-----|------|-----|
| Otis   | 1    | 1/2    | 1/2   | 1/2    | 0    | 0   | 0    | 0   |
| Oliver | 1/2  | 1      | 1/2   | 1/2    | 0    | 0   | 0    | 0   |
| Trent  | 1/2  | 1/2    | 1     | 0      | 0    | 0   | 0    | 0   |
| Brooke | 1/2  | 1/2    | 0     | 1      | 0    | 0   | 0    | 0   |
| Jeff   | 0    | 0      | 0     | 0      | 1    | 1/2 | 1/2  | 0   |
| Ben    | 0    | 0      | 0     | 0      | 1/2  | 1   | 1/2  | 1/2 |
| Will   | 0    | 0      | 0     | 0      | 1/2  | 1/2 | 1    | 1/2 |
| Pat    | 0    | 0      | 0     | 0      | 0    | 1/2 | 1/2  | 1   |

# Estimating Relatedness - Sample

|        | Otis | Will | Trent | Pat  | Jeff | Ben  | Oliver | Brooke |
|--------|------|------|-------|------|------|------|--------|--------|
| Otis   | 0.82 | 0.31 | 0.52  | 0.04 | 0.39 | 0.15 | 0.51   | 0.44   |
| Will   | 0.31 | 0.96 | 0.10  | 0.48 | 0.41 | 0.43 | 0.29   | 0.01   |
| Trent  | 0.52 | 0.10 | 0.89  | 0.17 | 0.02 | 0.09 | 0.58   | 0.16   |
| Pat    | 0.04 | 0.48 | 0.17  | 0.95 | 0.02 | 0.45 | 0.01   | 0.07   |
| Jeff   | 0.39 | 0.41 | 0.02  | 0.02 | 0.83 | 0.54 | 0.05   | 0.13   |
| Ben    | 0.41 | 0.43 | 0.09  | 0.45 | 0.54 | 0.96 | 0.03   | 0.04   |
| Oliver | 0.51 | 0.29 | 0.58  | 0.01 | 0.05 | 0.03 | 0.85   | 0.46   |
| Brooke | 0.44 | 0.01 | 0.16  | 0.07 | 0.13 | 0.04 | 0.46   | 0.79   |











#### Outline of Our Work

 Treelets works well with distant relatedness - what about closely related?

#### Outline of Our Work

- Treelets works well with distant relatedness what about closely related?
- Generate several different pedigrees and phenotypes to estimate a known heritability

### Outline of Our Work

- Treelets works well with distant relatedness what about closely related?
- Generate several different pedigrees and phenotypes to estimate a known heritability
- Modify Treelets to better predict heritability in a sample given some measure of relatedness

# Estimating Heritability - TCS



### Conclusions

• Treelets is an exciting and powerful algorithm

#### **Conclusions**

- Treelets is an exciting and powerful algorithm
- ... that is in no way perfect

#### Conclusions

- Treelets is an exciting and powerful algorithm
- ... that is in no way perfect
- Our work looks to offer an alternative perhaps more realistic algorithm that handles highly correlated variables well

## Thanks for listening

Questions? Comments? Jokes?

