Statistics for Bioinformatics

Theoretical distributions of probability

Jacques van Helden
<u>Jacques.van.Helden@ulb.ac.be</u>
<u>Jacques.van-Helden@univ-amu.fr</u>

Statistics Applied to Bioinformatics

Combinatorial analysis

Problem - oligomers

How many oligomers contain exactly a single occurrence of each monomer, for oligonucleotides and oligopeptides, respectively?

Permutations within a set - the factorial

How many distinct permutations can be made from a set of x elements?

```
 x = 2 
 x = 3 
 x = 4 
 4*3*2 = 24 
 any x 
 x*(x-1)...1 = x!
```

- The factorial x! represents the number of possible permutations between x objects.
- Solution to the problem of oligomers
 - There are 4!=24 distinct oligonucleotides with a single occurrence of each nucleotide (A, C, G, T)
 - □ There are 20!=2.4*10¹⁸ distinct oligopeptides with a single occurrence of each amino acid.

Problem - Selection of a subset of elements

- A genome contains n=6000 genes.
- We select a series of genes in the following way :
 - Once a gene has been selected once, it cannot be selected anymore (no replacement)
 - We are not interested in the order of the selection: if A and B were selected, we do not consider whether A came out in first or in second position.
- How many possibilities do we have to select
 - 1 gene ?
 - 2 genes ?
 - 3 genes ?
 - x genes?

Selection of a subset of elements

Selection	Possible outcomes		Possible orderings		Distinct outcomes
	calculation	value	calculation	value	(orderless)
1	6000	6.00E+03	1	1	6.00E+03
2	6000*5999	3.54E+07	2*1	2	1.77E+07
3	6000*5999*5998	2.16E+11	3*2*1	6	3.60E+10
			•••		•••
10	6000*5999**5991	6.00E+37	10*9**1	3628800	1.65E+31

- Number of possible outcomes
 - \square *n* size of the set
 - \Box x size of the subset
- Possible permutations among the elements of a subset
- Number of distinct selections (orderless).
- The coefficient C_xⁿ represents the number of distinct choices of x elements among n. For this reason, it is called "Choose x among n". It is also called binomial coefficient (we will see later why).

$$n(n-1)(n-2)...(n-x+1) = \frac{n!}{(n-x)!}$$

$$C_n^x = \binom{n}{x} = \frac{n!}{x!(n-x)!}$$

Statistics Applied to Bioinformatics

Set comparisons

Problem - selection within a set with classes

- A given organism has 6,000 genes, 40 of which are involved in methionine metabolism.
- A set of 10 genes were reported as co-regulated in a microarray experiment. Among them,
 6 are related to methionine metabolism.
- How significant is this observation? More precisely, what would be the probability to observe such a correspondence by chance alone?

Selection within a set with classes

Let us define

g = 6000 number of genes

m = 40 genes involved in methionine

metabolism

n = 5960 genes not involved in methionine

metabolism

k = 10 number of genes in the cluster

x = 6 number of methionine genes in

the cluster

- We calculate the number of possibilities for the following selections
 - C1: 10 distinct genes among 6,000
 - C2: 6 distinct genes among the 40 involved in methionine
 - C3: 4 genes among the 5960 which are not involved in methionine
 - C4: 6 methionine and 4 non-methionine genes
- Probability to have exactly 6 methionine genes within a selection of 10
- Probability to have at least 6 methionine genes within a selection of 10

$$C1 = C_{m+n}^{k} = \frac{6000!}{10!5990!} = 1.65e^{31}$$

$$C2 = C_m^x = \frac{40!}{6!34!} = 3.8e^6$$

$$C3 = C_n^{k-x} = \frac{5960!}{4!5956!} = 5.2e^{13}$$

$$C4 = C_m^x C_n^{k-x} = 2.0e^{20}$$

$$P(X=6) = \frac{C_m^x C_n^{k-x}}{C_{m+n}^k} = 1.219e^{-11}$$

$$P(X \ge 6) = \sum_{i=x}^{k} \frac{C_m^i C_n^{k-i}}{C_{m+n}^k} = 1.222e^{-11}$$

The hypergeometric distribution

- The hypergeometric distribution represents the probability to observe x successes in a sampling without replacement
 - m number of marked elements in the set
 - n number of non-marked elements in the set
 - □ k sample size
 - \mathbf{x} number of marked elements in the sample

$$P(X = x) = \frac{C_m^x C_n^{k-x}}{C_{m+n}^k}$$

 The shape of the distribution depends on the ratio between m and n

$$m << n$$
 i-shaped

$$\mathbf{n} \sim n$$
 bell-shaped

$$\square$$
 $m >> n$ j -shaped

- The distribution is bounded on both sides $(0 \le x \le k)$.
- Statistical parameters

$$\min(x) = 0$$

$$\max(x) = \min(k, m)$$

$$\mu = \frac{km}{m + n}$$

$$\sigma^2 = 0$$

Statistics Applied to Bioinformatics

Bernoulli Schemas

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Bernoulli trial

 A Bernoulli trial is an experiment whose outcome is random and can lead to either of two possible outcomes, called success and failure, respectively.

Examples :

- Selection of a random nucleotide. Success if the nucleotide is a G.
- Looking at a position from an alignment of two sequences. Success if this position corresponds to a match.
- Selection of one gene from the yeast genome; success if the gene belongs to a specific functional class (e.g. Methionine biosynthesis).

Bernoulli schema

- A Bernoulli schema is a succession of *n* trials, each of which can lead or not to the realization of an event A.
 - Trials must be independent from each other
 - The probability of success is constant during the n trials
 - p is the probability of success at each trial
 - q = 1 p is the probability of failure at each trial
- Examples :
 - generation of a random sequence of length n; event X is the addition of a purine

Extreme cases - all successes or all failures

- What is the probability to observe n successes during the n trials?
 - We can apply the joint probability for stochastically independent events:

$$P(A_1, A_2, ..., A_n) = P(A_1)P(A_2)...P(A_n)$$

And since the probability of success is constant during the trials

$$P(A_1, A_2, ..., A_n) = P(A)^n = p^n$$

What is the probability to observe n failures during the n trials?

$$P(\neg A_1, \neg A_2, ..., \neg A_n) = P(\neg A)^n = (1-p)^n = q^n$$

Problems - series of successes/failures

• In a random gapless alignment of two DNA sequences, what is the probability to observe a succession of exactly 10 matches at a given position?

ATTAGTACCGTAGTAA
||||||||||-|--||
ATTAGTACCGCACAAA

In a random sequence with equiprobable nucleotides, what is the probability to observe the first G at the 30th position?

123456789012345678901234567890

ATTACTCTTACTCTCATCTATCTTTCATCG

Series of successes/failures

- In a random gapless alignment of two DNA sequences, what is the probability to observe a succession of exactly 10 matches at a given position?
 - P(match) = p = 0.25
 - $P(10 \text{ matches}) = p^{10} = 9.54e^{-7}$
 - P(mismatch) = 1 p = 0.75
 - $P(10 \text{ matches and } 1 \text{ mismatch}) = p^{10}(1 p) = 7.15e^{-7}$
- In a random sequence with equiprobable nucleotides, what is the probability to observe the first G at position 30 ?
 - P(G) = p = 0.25
 - P(not G) = 1 p = 0.75
 - $P(no\ G\ between\ positions\ 1\ and\ 29) = (1-p)^{29} = 2.38e^{-4}$
 - $P(first\ G\ at\ position\ 30) = (1-p)^{29}p = 5.95e^{-5}$

The geometric distribution

- The geometric distribution is used to calculate the probability to observe
 - x consecutive successes followed by a failure

$$P(X = x) = p^x (1 - p)$$

x consecutive failures followed by a success

$$P(X = x) = (1 - p)^x p$$

Defined succession of successes and failures

• What is the probability to first observe s consecutive successes, followed by n-s consecutive failures ?

$$P(A_1, A_2, ..., A_s) = p^s$$

$$P(\neg A_{s+1}, \neg A_{s+2}, ..., \neg A_n) = q^{n-s}$$

$$P(A_1, A_2, ..., A_s, \neg A_{s+1}, ..., \neg A_n) = p^n q^{n-s}$$

Permutations of successes and failures

- How many ways are there to permute s successes and n-s failures?
- The number of permutations of x distinct objects is given by the factorial

$$0!=1$$
 $1!=1$
 $x!=x(x-1)!$
 $x!=x(x-1)(x-2)...2$ when x is $large$

- However
 - The s successes are not distinct from each other
 - The *n-s* failures are not distinct from each other
- The number of permutations of s objects of one type and n-s objects of the other type is given by the binomial coefficient

$$C_n^s = \binom{n}{s} = \frac{n!}{s!(n-s)!}$$

The binomial distribution (Bernoulli distribution)

What is the probability to observe x successes during the n trials (irrespective of the particular order of succession)?

$$P(X = x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} = C_n^{x} p^{x} (1-p)^{n-x}$$

- This is the binomial probability.
- In this formula, the term C_n^x (choose x among n) is called the **binomial** coefficient.
- What is the probability to observe up to x successes during the n trials (irrespective of the particular order of succession)?

$$P(X \le x) = \sum_{i=0}^{x} \frac{n!}{i!(n-i)!} p^{i} (1-p)^{n-i}$$

This is the binomial cumulative distribution function (CDF).

The binomial distribution

Binomial (p = 0.25, n = 12)

- The binomial distribution represents the probability to observe x successes in a Bernoulli trial (such as a sampling with replacement).
- Parameters
 - p the probability of success at each trial
 - □ *n number of trials*
 - \Box x number of successes in the sample
- Values (X axis) are
 - always positive
 - comprised between 0 and n
- Probabilities (Y axis) are comprised between 0 and 1
- In R
 - dbinom(x,n,p) ## Density function
 - pbinom(x,n,p) ## CDF, left tail, inclusive
 - pbinom(x,n,p,lower.tail=F) ## CDF, right tail, exclusive
 - pbinom(x-1,n,p,lower.tail=F) ## CDF, right tail, inclusive

$$\min(s) = 0$$

$$\max(s) = n$$

$$\mu = np$$

$$\sigma^2 = np(1-p) = npq$$

Binomial: efficient computation

- The binomial probability can be computed efficiently by using a recursive formula.
- This drastically reduces the computation time.

$$P(X = 0) = (1 - p)^{n}$$

$$P(X = x + 1) = P(X = x) \frac{p(n - x)}{(1 - p)(x + 1)}$$

Binomial - effect of p (probability of success)

- The curve can take different shapes
 - i-shaped (small p)
 - bell-shaped (intermediate p)
 - j-shaped (high p)
- The curve is asymmetric, except when p=0.5
- The curve is bounded on both sides $(0 \le s \le n)$

Poisson distribution

$$P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$\min(X) = 0 \qquad \max(X) = \infty$$

$$\mu = \lambda \quad \sigma^2 = \lambda$$

- The Poisson distribution is characterized by a single parameter, λ, which is the mean of the distribution.
- The Poisson distribution can be used as an approximation of the binomial when
 - $n \to \infty$
 - $p \rightarrow 0$
 - $\lambda = p * n$ is small (e.g. < 5)
- The curve is bounded on the left (min=0).

Poisson - efficient computation

The Poisson probability can be calculated efficiently with a recursive formula

$$P(X = 0) = e^{-E_W}$$

$$P(X = C_w + 1) = P(X = C_w) \frac{E_w}{(z + 1)}$$

Binomial - effect of n (number of trials)

- When the number of trials increases
 - The number of distinct values for s increases
 - The probability of each value decreases
 - The binomial tends towards a bell-shaped curve

Binomial - effect of n (number of trials)

- On this figure, the density is displayed around the mean of the binomial $(\mu=np)$.
- When n increases :
 - The number of distinct values for s increases.
 - The probability of each value decreases.
 - The binomial tends towards a bell-shaped curve.
- When $n \to \infty$
 - The binomial tends towards a continuous density function

Reduced binomial distribution -> Normal

- Starting from a binomial distribution, let n -> Inf
- Let us replace x by the reduced variable U

$$U = \frac{x - \mu}{\sigma} = \frac{x - np}{\sqrt{np(1 - p)}} = \frac{x - np}{\sqrt{npq}}$$

■ When $n \rightarrow \infty$, the binomial tends towards the **standard normal density function**

$$f_N(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2}$$

 The cumulative density function (CDF) is obtained by integrating the density function

$$F_N(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-u^2/2} du$$

Normal distribution

Normal density and distribution; m=2; s=3

• A normal distribution with mean μ and a variance σ^2 is defined by the density function

$$f_N(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

The distribution function is obtained by integrating the density function from $-\infty$ to x

$$F_N(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx$$

The density function

Normal density function

- For continuous probability distributions, the density represents the limit of the probability per interval, when the range of this interval tends towards 0.
- The normal density function is continuous.
- It is defined from $-\infty$ to $+\infty$
- In R, the normal density function is
 - dnorm(x,m,s)

The distribution function

Normal distribution function

- The distribution function F(x) allows to easily calculate the probability of an interval.
- F(x) gives the probability to observe a value smaller than x.
- The probability to observe a value $x_1 \le x \le x_2$, is the difference $F(x_2)$ - $F(x_1)$
- In R, the normal distribution function is
 - pnorm(x,m,s)

$$P(x_{1} \le X \le x_{2}) = \int_{x_{1}}^{x_{2}} f(x) dx$$

$$= \int_{-\infty}^{x_{2}} f(x) dx - \int_{-\infty}^{x_{1}} f(x) dx$$

$$= F(x_{2}) - F(x_{1})$$

Quartiles on a distribution function

Quartiles on the normal distribution

- The first quartile *Q1* is the *x* which leaves 25% of the observations on its left. It is thus the *x* value such that
 - F(Q1)=0.25.
- The third quartile Q3 is the x which leaves 75% of the observations on its left. It is thus the x value such that
 - F(Q3)=0.75.
- The inter-quartile range IQR is the difference between the third and the first quartiles.
 - □ IQR=Q3-Q1

Standard normal distribution

Normal density and distribution; m = 0; s = 1

The standard normal is obtained by the transformation

$$z = \left(\frac{x - \mu}{\sigma}\right)$$

- This distribution has
 - mean $\mu = 0$
 - variance $\sigma^2 = 1$

$$f_N(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

$$F_N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}z^2} dx$$

Standard normal distribution - some landmarks

Parameters of the reduced normal distribution

 $\mathbf{n} = 0$ the **standard** normal distribution is centered around 0

 $\sigma^2 = 1$ the **standard** normal distribution has a unit variance

 $\beta_3 = 0$ the normal distribution is symmetric

Some landmarks

 $P(-\sigma < u < \sigma) = 68.3\%$

• $P(-2\sigma < u < 2\sigma) = 95.4\%$

 $P(-3\sigma < u < 3\sigma) = 99.7\%$

Central limit theorem

- Laplace-Liapounoff theorem
 - \square Any sum of *n* independent random variables $X_1, X_2, ..., X_n$ is asymptotically normal
- This naturally extends to the mean of n independent variables, since the mean is the sum divided by a constant.
- Mean of a series of binomial variables
 - Let us take a set of 100 random binomial variables, each with a small mean (e.g. n*p = 2.1).
 - Each individual variable is far from normal: it is strongly asymmetric and has an inferior boundary at 0 (there can be no negative values).
 - The sum of these variables however fits a normal distribution.

The chi-squared (χ^2) distribution

If we have N standard normal random variables

$$\square$$
 $X_1, \dots X_N$

The variable

$$S_n = \sum_{i=1}^n X_i^2$$

has a chi_n^2 distribution with n degrees of freedom

- Density
- Expectation
- Variance

$$f_n(x) = \frac{1}{2^{n/2} \Gamma(n/2)} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}$$

$$E[S_n] = n$$

$$V[S] = 2n$$

Shapes of χ^2 distributions

Student (t) distribution

- $Z \sim N(0,1)$ independent of $U \sim \chi_n^2$
- then

$$S = \frac{Z}{\sqrt{U/n}}$$

has a *t* distribution with n degrees of freedom

density

$$f_n(x) = \frac{\Gamma(n + 1/2)}{\sqrt{n\pi} \Gamma(n/2)} \left(1 + \frac{x^2}{n}\right)^{-(n+1)/2}$$

Shape of Student t distributions

- There is a family of Student distributions, defined by a degree of freedom (n).
- Platykurtic. The degree of kurtosis (flatness) decreases with the degrees of freedom.
- Approaches the normal N(0,1) distribution for large n (n > 30)

Extreme value distribution

Cumulative distribution CDF

$$\Pr[X < x] = \exp(-e^{-(x-\mu)/\sigma})$$

Probability density PDF

$$f_{EV}(x;\mu,\sigma) = \frac{1}{\sigma} e^{-(x-\mu)/\sigma} \exp(-e^{-(x-\mu)/\sigma})$$

Extreme Value $\mu = 3$, $\sigma = 4$

Extreme value distributions - random example

- Generate 100 random numbers
 - with standard normal random generator $(m=0, \sigma=1)$
- Take the maximum
- Repeat 1000 times
- The distribution of maxima is
 - Asymmetrical (right-skewed)
 - Bell-shaped
 - Centered around 2.5
 - Less dispersed than the normal populations from which it originated.
- Note that this is different from the central limit theorem :
 - Extreme value distributions are obtained by taking the min or the max of several variables.
 - The central limit theorem applies to the sum or mean of several variables.

Extreme value distribution - applications

- The extreme value distribution has a particular importance in bioinformatics, for its role in BLAST
 - Aligning two sequences consists in searching the alignment with maximum score
 - Aligning a sequence against a whole database amounts to get, for each database entry, the maximum alignment score
 - BLAST scores have thus an extreme value distribution.
 - (more details in the course on sequence analysis)

Other distributions not (yet) covered here

- Compound Poisson
- Snedecor (F)
- Beta function
- Gamma function

Statistics Applied to Bioinformatics

Exercises - theoretical distributions

Exercises - theoretical distributions

- In which cases is it appropriate to apply a hypergeometric or a binomial distribution, respectively?
- Does the hypergeometric distribution correspond to a Bernoulli schema?
- What are the relationships between binomial, Poisson and normal distributions?

Exercise - Word occurrences in a sequence

- A sequence of length 10,000 has the following residue frequencies
 - F(A) = F(T) = 0.325
 - F(C) = F(G) = 0.175
- What is the probability to observe the word GATAAG at a given position of a sequence (assuming a Bernoulli model).
- What would be the probability to observe, in the whole sequence
 - 0 occurrences
 - at least one occurrence
 - exactly one occurrence
 - exactly 15 occurrences
 - at least 15 occurrences
 - less than 15 occurrences

Exercise - substitutions of a word

- A sequence is generated with equiprobable nucleotides. What is the probability to observe the word GATAAG or a single-base substitution of it, at the first position?
- Same question with at most 3 substitutions.