14 Galois cohomology

14.1 群の cohomology

定義 14.1. G: 群、 M: 加法 (Abel) 群で G は M に加群としての作用をしているとする。ここで以下のように G^n から M への写像全体の集合を $C^n(n\in\mathbb{Z}_{\geq 0})$ として定める。

$$C^n = C^n(G, M) := \{f : G^n \longrightarrow M\} = \operatorname{Map}(G^n, M)$$

ただし $G^0=\{e\}$ と考えることで $C^0:=M$ と定める。この C^n の各元を n コチェイン $(\operatorname{cochain})$ という。 C^n 上へは $f,g\in C^n$ に対して (f+g)(x):=f(x)+g(x) と演算を定めることで C^n は加法群となる。

定義 14.2. C^n から C^{n+1} への以下のように定まる写像 ∂ を考える。

$$\partial = \partial^n : C^n \longrightarrow C^{n+1}$$
$$f \longmapsto \partial f$$

ここで $\partial f: G^{n+1} \longrightarrow M$ は G が M へ作用していることに注意して

$$\partial f(g_1, \dots, g_{n+1}) = g_1 f(g_2, \dots, g_{n+1})$$

$$+ \sum_{i=1}^n (-1)^i f(g_1, \dots, g_i g_{i+1}, \dots, g_{n+1})$$

$$+ (-1)^{n+1} f(g_1, \dots, g_n)$$

と定める。このときこの $\partial (=\partial^n): C^n(G,M) \longrightarrow C^{n+1}(G,M)$ は加法群の準同型になり、これを n 次のコバウンダリー (双対境界) 作用素 (coboundary operator)とよぶ。

命題 **14.3.** コバウンダリー作用素 ∂ に対して $\partial^{n+1} \circ \partial^n = 0$ が成り立つ。

Proof. $4 \le n$ でまず考える。

 $(\partial^{n+1}\circ\partial^n)(f)(g_1,\ldots,g_{n+2})=\partial^{n+1}(\partial^n f)(g_1,\ldots,g_{n+2})$ なので $f':=\partial^n f$ として $\partial^{n+1} f'(g_1,\ldots,g_{n+2})$ は

$$\partial^{n+1} f'(g_1, \dots, g_{n+2}) = g_1 f'(g_2, \dots, g_{n+2})$$

$$+ \sum_{i=1}^{n+1} (-1)^i f'(g_1, \dots, g_i g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f'(g_1, \dots, g_{n+1})$$

である。 $f'(g_1,\ldots,g_ig_{i+1},\ldots,g_{n+2})=\partial^n f(g_1,\ldots g_ig_{i+1},\ldots,g_{n+2})$ を i の値によって計算する。 ・ i=1 のとき

$$\partial^{n} f(g_{1}g_{2}, \dots, g_{n+2}) = g_{1}g_{2}f(g_{3}, \dots, g_{n+2})$$

$$+ (-1)^{1} f((g_{1}g_{2})g_{3}, g_{4}, \dots, g_{n+2})$$

$$+ \sum_{k=3}^{n+1} (-1)^{k-1} f(g_{1}g_{2}, g_{3}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}g_{2}, g_{3}, \dots, g_{n})$$

i = 2 のとき

$$\partial^{n} f(g_{1}, g_{2}g_{3}, g_{4}, \dots, g_{n+2}) = g_{1} f(g_{2}g_{3}, g_{4}, \dots, g_{n+2})$$

$$+ (-1)^{1} f(g_{1}(g_{2}g_{3}), g_{4}, \dots, g_{n+2})$$

$$+ (-1)^{2} f(g_{1}, (g_{2}g_{3})g_{4}, g_{5}, \dots, g_{n+2})$$

$$+ \sum_{k=4}^{n+1} (-1)^{k-1} f(g_{1}, g_{2}g_{3}, g_{4}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}, g_{2}g_{3}, g_{4}, \dots, g_{n+1})$$

・ $3 \le i \le n-1$ のとき

$$\partial^{n} f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{n+2}) = g_{1} f(g_{2}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ \sum_{k=1}^{i-2} (-1)^{k} f(g_{1}, \dots, g_{k}g_{k+1}, \dots, g_{i}g_{i+1}, \dots, g_{n+2})$$

$$+ (-1)^{i-1} f(g_{1}, \dots, g_{i-2}, g_{i-1}(g_{i}g_{i+1}), g_{i+2}, \dots, g_{n+2})$$

$$+ (-1)^{i} f(g_{1}, \dots, g_{i-1}, (g_{i}g_{i+1})g_{i+2}, g_{i+3}, \dots, g_{n+2})$$

$$+ \sum_{k=i+2}^{n+1} (-1)^{k-1} f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{k}g_{k+1}, \dots, g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}, \dots, g_{i}g_{i+1}, \dots, g_{n+1})$$

· i=n のとき

$$\partial^{n} f(g_{1}, \dots, g_{n}g_{n+1}, g_{n+2}) = g_{1} f(g_{2}, \dots, g_{n}g_{n+1}, g_{n+2})$$

$$+ \sum_{k=1}^{n-2} (-1)^{k} f(g_{1}, \dots, g_{k}g_{k+1}, \dots, g_{n}g_{n+1}, g_{n+2})$$

$$+ (-1)^{n-1} f(g_{1}, \dots, g_{n-1}(g_{n}g_{n+1}), g_{n+2})$$

$$+ (-1)^{n} f(g_{1}, \dots, g_{n-1}, (g_{n}g_{n+1})g_{n+2})$$

$$+ (-1)^{n+1} f(g_{1}, \dots, g_{n-1}, g_{n}g_{n+1})$$

・ i = n + 1 のとき

$$\partial^{n} f(g_{1}, \dots, g_{n+1}g_{n+2}) = g_{1} f(g_{2}, \dots, g_{n+1}g_{n+2})$$

$$+ \sum_{k=1}^{n-1} (-1)^{k} f(g_{1}, \dots, g_{k}g_{k+1}, \dots, g_{n}, g_{n+1}g_{n+2})$$

$$+ (-1)^{n} f(g_{1}, \dots, g_{n-1}, g_{n}(g_{n+1}g_{n+2}))$$

$$+ (-1)^{n+1} f(g_{1}, \dots, g_{n})$$

となる。

また、
$$g_1f'(g_2,\ldots,g_{n+2})$$
 と $(-1)^{n+2}f'(g_1,\ldots,g_{n+1})$ は以下のようになる。
$$g_1\partial^n f(g_2,\ldots,g_{n+2}) = g_1(g_2f(g_3,\ldots,g_{n+2}) \\ + \sum_{i=2}^{n+1} (-1)^{i-1}f(g_2,\ldots,g_ig_{i+1},\ldots,g_{n+2}) \\ + (-1)^{n+1}f(g_2,\ldots,g_{n+1})) \\ (-1)^{n+2}\partial^n f(g_1,\ldots,g_{n+1}) = (-1)^{n+2}(g_1f(g_2,\ldots,g_{n+1}) \\ + \sum_{i=1}^n (-1)^i f(g_1,\ldots,g_ig_{i+1},\ldots,g_{n+1}) \\ + (-1)^{n+1}f(g_1,\ldots,g_n))$$

$$\begin{array}{l} -2i \frac{\lambda}{2} \frac{\partial^{n+1}(\partial^n f)(g_1,\ldots,g_{n+2})}{\partial^n x^{k_1}} \left\{ \frac{\lambda}{2} \frac{\lambda}{2} \frac{\lambda}{2} \right\} \\ \partial^{n+1}(\partial^n f)(g_1,\ldots,g_{n+2}) & + \sum_{i=2}^{n+1} (-1)^{i-1} g_1 f(g_2,\ldots,g_i g_{i+1},\ldots,g_{n+2}) \\ & + \sum_{i=2}^{n+1} (-1)^{n+1} g_1 f(g_2,\ldots,g_{n+1}) \right\} \\ & + (-1)^{n+1} g_1 g_2 f(g_3,\ldots,g_{n+2}) \\ & + (-1)^1 f(g_1 g_2 g_3,g_4,\ldots,g_{n+2}) \\ & + \sum_{i=2}^{n+1} (-1)^{k-1} f(g_1 g_2,g_3,\ldots,g_n) \\ & + (-1)^{n+1} f(g_1 g_2,g_3,\ldots,g_n) \right\} \\ & + (-1)^{n+1} f(g_1 g_2,g_3,\ldots,g_n) \\ & + (-1)^2 f(g_1 f(g_2 g_3),g_4,\ldots,g_{n+2}) \\ & + (-1)^{n+1} f(g_1,g_2 g_3,g_4,\ldots,g_{n+2}) \\ & + (-1)^{n+1} f(g_1,g_2 g_3,g_4,\ldots,g_{n+1}) \right\} \\ & + \sum_{i=3}^{n-1} (-1)^i f(g_1,\ldots,g_i g_{i+1},\ldots,g_{n+2}) \\ & + (-1)^{i-1} f(g_1,\ldots,g_{i-2},g_{i-1}(g_i g_{i+1}),g_{i+2},\ldots,g_{n+2}) \\ & + (-1)^{i-1} f(g_1,\ldots,g_{i-1},(g_i g_{i+1})g_{i+2},g_{i+3},\ldots,g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_i g_{i+1},\ldots,g_n g_{n+1}) \\ & + \sum_{k=i+2} (-1)^k f(g_1,\ldots,g_i g_{i+1},\ldots,g_n g_{n+1}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_{n-1},(g_n g_{n+1}),g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_{n-1},(g_n g_{n+1}),g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_{n-1},(g_n g_{n+1}),g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_{n-1},g_n g_{n+1}) \\ & + \sum_{k=1} (-1)^k f(g_1,\ldots,g_n g_{k+1},\ldots,g_n,g_{n+1}) \\ & + \sum_{k=1} (-1)^k f(g_1,\ldots,g_n g_{k+1},\ldots,g_n,g_{n+1}) \\ & + \sum_{k=1} (-1)^k f(g_1,\ldots,g_n g_{k+1},\ldots,g_n,g_{n+1}) \\ & + \sum_{i=1} (-1)^k f(g_1,\ldots,g_n g_{n+1},g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_n g_{n+1},g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_n g_{n+1},g_{n+2}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_n g_{n+1},\ldots,g_n g_{n+1}) \\ & + \sum_{i=1} (-1)^k f(g_1,\ldots,g_n g_{n+1},\ldots,g_n g_{n+1}) \\ & + (-1)^{n+1} f(g_1,\ldots,g_n g_{n+1},\ldots,g_n g_{n+1})$$

定義 14.4. 以下のように $n\in\mathbb{Z}_{\geq 0}$ に対して定める Z^n を \underline{n} -th (次) コサイクル (双対輪体)といい、 B^n を \underline{n} -th (次) コバウンダリー (境界輪体)という。

 \Box

$$Z^n = Z^n(G, M) := \ker(\partial^n)$$

$$B^n = B^n(G, M) := \operatorname{Im}(\partial^{n-1})$$

ただし $B^0:=0$ とする。このとき命題 (14.3) から $\partial^n\circ\partial^{n-1}=0$ なので $\partial^n(\mathrm{Im}(\partial^{n-1}))=0$ より $B^n\subset Z^n$ が成り立っている。よって剰余群 Z^n/B^n が定義できて

$$H^n = H^n(G, M) := Z^n(G, M)/B^n(G, M)$$

を G の M 係数のn-th (次) コホモロジー群 (cohomology)という。

例 14.5. n=0 のときのコホモロジー群を考える。 $Z^0=\ker(\partial^0)$ であり、定義から $\partial^0:C^0(=M)\longrightarrow C^1,x\longmapsto\partial^0x$ と、 $\partial^0x(g)=gx-x$ なので $Z^0=\{gx-x=0\Leftrightarrow gx=x|x\in M, ^\forall g\in G\}$ となる。gx は M の元への G の作用でありそれがどんな $g\in G$ でも x になるから M の中で G によって固定されるので $Z^0=M^G$ である。 $B^0:=0$ だったのでコホモロジー群 H^0 は $H^0=Z^0/B^0=M^G$ である。

例 14.6. n=1 のときのコホモロジー群を考える。 $Z^1=\ker(\partial^1)$ で $\partial^1:C^1\longrightarrow C^2, f\longmapsto \partial^1 f$ となって $\partial^1 f(g_1,g_2)=g_1f(g_2)-f(g_1g_2)+f(g_1)$ となるから $Z^1=\{f\in C^1|g_1f(g_2)-f(g_1g_2)+f(g_1)=0\Leftrightarrow f(g_1g_2)=g_1f(g_2)+f(g_1), \ \forall g_1,g_2\in G\}$ となる。 $B^1=\operatorname{Im}(\partial^0)=\{\partial^0 x|x\in M,\partial^0 x(g)=gx-x\}$ となっている。いま作用が $G\times M\longrightarrow M, (g,x)\longmapsto gx=x$ として自明なものであるときを考えると $Z^1=\{f\in C^1|f(g_1g_2)=f(g_1)+f(g_2), \ \forall g_1,g_2\in G\}$ でこれは G から M への群準同型なので $Z^1=\operatorname{Hom}_{\sharp}(G,M)$ となる。 $B^1=\{\partial^0 x|x\in M,\partial^0 x(g)=gx-x=x-x=0\}=0$ となるから n=1 のときのコホモロジー群 H^1 は $H^1=\operatorname{Hom}_{\sharp\sharp}(G,M)$ となる。

Fact 14.7. *G* 加群 M_i (1 < i < 3) に対して以下の加群の完全列が存在するとする。

$$0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$$

このとき以下のような無限の長さの完全列が存在する。

$$0 \longrightarrow H^0(G, M_1) \longrightarrow H^0(G, M_2) \longrightarrow H^0(G, M_3)$$

$$\longrightarrow H^1(G, M_1) \longrightarrow H^1(G, M_2) \longrightarrow H^1(G, M_3)$$

$$\longrightarrow H^2(G, M_1) \longrightarrow \cdots$$

14.2 Galois cohomology

定義 14.8. A を群 G が作用する Abel とは限らない群とする。このとき例 (14.5) より 0 次のコホモロジー群を $H^0(G,A):=A^G$ としても矛盾しないのでそのように定義する。

また、
$$\alpha \in C^1(G,A)$$
 を

$$\alpha: G \longrightarrow A$$
$$g \longmapsto \alpha_g$$

と定めると、 A の演算を非可換性を表すため積で書くことにすると

$$\begin{split} \partial^1(\alpha)(g,h) &= g\alpha_h \cdot \alpha_{gh}^{-1} \cdot \alpha_g \\ \alpha \in Z^1 &= \ker(\partial^1) \Leftrightarrow {}^\forall g,h \in G, g\alpha_h \cdot \alpha_{gh}^{-1} \cdot \alpha_g = 1 \\ \Leftrightarrow \alpha_{gh}^{-1} \cdot \alpha_g &= (g\alpha_h)^{-1} \\ \Leftrightarrow \alpha_g(g\alpha_h) &= \alpha_{gh} \end{split}$$

となるから例 (14.6) より 1 次のコサイクルは $Z^1=\{\alpha\in C^1|^\forall g,h\in G,\alpha_{gh}=\alpha_g\cdot g\alpha_h\}$ となるのでそのように定義する。

定義 14.9. 群 G とそれが作用する非可換群 A の 1 次コサイクル Z^1 について $\alpha,\beta\in Z^1$ が cohomologous $(\alpha\sim\beta)$ とは

$$\exists a \in A \text{ s.t. } \forall g \in G , \ \beta_g = a^{-1} \cdot \alpha_g \cdot ga$$

となることであり、これは同値関係になる。G が恒等的な作用をするのであれば ga=a よりこれは α_g と β_g が共役な関係になってることと同じになる。つまり共役から ga の分だけねじれているともみれる。

Proof. 同値関係になることをしめす。

まず、 $\forall g \in G$ と $\forall a \in A$ について $(ga)^{-1} = ga^{-1}, g(1) = 1$ が成り立つことを示す。定義から G が A に 加群のように作用するので $g(1) = g(1 \cdot 1) = g(1) \cdot g(1)$ から $g(1) = g(1) \cdot g(1)^{-1} = 1$ より成立。これを用いれば $1 = g(1) = g(a \cdot a^{-1}) = ga \cdot ga^{-1} \Leftrightarrow (ga)^{-1} = ga^{-1}$ より成立。

· 反射律

 $a=1\in A$ としてとれば $\alpha_g=1\cdot\alpha_g\cdot 1=1^{-1}\cdot\alpha_g\cdot g(1)$ が任意の $g\in G$ で成り立つので $\alpha\sim\alpha$ より反射律が成り立つ。

·対称律

 $\alpha \sim \beta$ のときある $a \in A$ で $\beta_g = a^{-1} \cdot \alpha_g \cdot ga$ となっているので逆元をそれぞれかけて $\alpha_g = a \cdot \beta_g \cdot (ga)^{-1}$ となっていて上で述べたことより $b := a^{-1} \in A$ を取る時 $(ga)^{-1} = ga^{-1} = gb$ から $\alpha_g = b^{-1} \cdot \beta_g \cdot gb$ となるので $\beta \sim \alpha$ より対称律がなりたつ。

推移律

 $\alpha \sim \beta, \beta \sim \gamma$ となっているとするときある $a,b \in A$ で $\beta_g = a^{-1} \cdot \alpha_g \cdot ga$ と $\gamma_g = b^{-1} \cdot \beta_g \cdot gb$ となっている。 β_g に代入すると $\gamma_g = b^{-1} \cdot (a^{-1} \cdot \alpha_g \cdot ga) \cdot gb = (b^{-1}a^{-1}) \cdot \alpha_g \cdot (ga \cdot gb) = (ab)^{-1} \cdot \alpha_g \cdot g(ab)$ となり $ab \in A$ なので $\alpha \sim \gamma$ から推移律が成り立つ。

定義 14.10. Galois cohomology とは有限次 Galois 拡大 L/K があるとき $G:=\mathrm{Gal}(L/K)$ としてこれが作用する群 M についてのコホモロジー群 $H^n(G,M)$ のことである。とくに M として $L,L^n,GL_n(L)$ 等を考える。ただし $GL_n(L)$ は L 成分の n 次正則行列全体の積による群であり、一般に L に作用する群を G としたとき $\sigma \in G$ は $X=(x_{ij}) \in M_n(L):=(n$ 次正方行列全体の集合)に対して $\sigma(X):=(\sigma(x_{ij}))$ と定める。

命題 14.11. 体 L と有限群 $G \subset Aut(L)$ について以下が成り立つ。

- (1) $\forall n \in \mathbb{Z}_{\geq 1}$ について $H^n(G, L) = 0$ となる。
- (2) $\forall n \in \mathbb{Z}_{\geq 1}$ について $H^1(G,GL_n(L))=1$ となる。とくに $H^1(G,L^{\times})=1$ となる。これは一つの成分だけの正則行列が $GL_1(L)=L^{\times}$ となることからすぐ導かれる。

Proof. (2)

一般に定義 (14.4) から $B^1\subset Z^1$ だから $Z^1\subset B^1$ を示せば $B^1=Z^1$ から $H^1=Z^1/B^1=1$ が示される。 まず、 0 次コバウンダリー作用素 ∂^0 に対して $B^1=\mathrm{Im}(\partial^0)=\{\partial^0X|X\in GL_n(L)\}$ となっていて例 (14.6) の B^1 から ∂^0X は $GL_n(L)$ での演算は積であることに注意すれば

$$\partial^0 X : G \longrightarrow GL_n(L)$$

 $g \longmapsto \partial^0 X(g) = gX \cdot X^{-1}$

となっている。 したがって $^{\forall}\alpha\in Z^1$ に対して $^{\forall}g\in G, \alpha_g=\partial^0X(g)=gX\cdot X^{-1}$ となる $X\in GL_n(L)$ が存在すればよい。 いま、ある $X\in GL_n(L)$ について

$$b := \sum_{h \in G} \alpha_h \cdot h(X)$$

と定義すると $b \in GL_n(L)$ である。 $h \in G \subset \operatorname{Aut}(L)$ より Dedekind の補題 (??) から M を L とみれば その対偶を取ることで $\alpha_h \in GL_n(L)$ はより任意の $h \in G$ で $\alpha_h \neq 0$ となるからある $x_{ij} \in L$ が存在して $\sum_{h \in G} \alpha_h \cdot h x_{ij} \neq 0$ となる。