

RF Exposure Evaluation Declaration

Product Name: Wireless Access point

Model No. : AP122, AP122X

FCC ID : WBV-AP122

Applicant: Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard,

Milpitas, CA 95035, United States

Date of Receipt: Oct. 10, 2017

Test Date : Oct. 10, 2017~ Nov. 24, 2017

Issued Date: Jan. 04, 2018

Report No. : 17A2003R-RF-US-P20V01

Report Version: V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF, A2LA or any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd.

Test Report Certification

Issued Date: Jan. 04, 2018

Report No.: 17A2003R-RF-US-P20V01

Product Name : Wireless Access point

Applicant : Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard, Milpitas,

CA 95035, United States

Manufacturer : Aerohive Networks, Inc.

Address : Aerohive Networks, 1011 McCarthy Boulevard, Milpitas,

CA 95035, United States

Model No. : AP122, AP122X

FCC ID : WBV-AP122

Brand Name : Aerohive EUT Voltage : PoE 48V

Test Voltage : AC 120V/60Hz Applicable Standard : KDB 447498D01V06

FCC Part1.1310

Test Result : Complied

Reviewed By

Performed Location : DEKRA Testing and Certification (Suzhou) Co., Ltd.

Corporation - Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,

215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Designation Number: CN1199

Documented By : Kathy Feng (Project Assistant: Kathy Feng)

` ,

(Senior Engineer: Frank He)

Approved By : Harry Than

(Engineering Manager: Harry Zhao)

1. RF Exposure Evaluation

1.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm2)	Average Time (Minutes)			
(A) Limits for C	(A) Limits for Occupational/ Control Exposures						
300-1500			F/300	6			
1500-100,000			5	6			
(B) Limits for C	(B) Limits for General Population/ Uncontrolled Exposures						
300-1500			F/1500	6			
1500-100,000			1	30			

F= Frequency in MHz

Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE, 1 mW/cm2. If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

1.2. Test Procedure

Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually.

The temperature and related humidity: 18°C and 78% RH.

1.3. Test Result of RF Exposure Evaluation

Product	:	Wireless Access point
Test Item	:	RF Exposure Evaluation
Test Site	:	AC-6

Antenna Information:

2.4G:

Model No.	N/A							
Antenna manufacturer	N/A							
Antenna Delivery		1*TX+1*R	*TX+1*RX					+3*RX
Antenna technology		SISO	SISO					
		MIMO		Basic				
			\boxtimes	□ CDD				
				Secto	rized			
			\boxtimes	Beam-forming				
Antenna Type		External	\boxtimes	Dipole				
				Sectorized				
		Internal		PIFA				
				PCB				
				Ceramic Chip Antenna				
				Metal	plate type F	ate type F antenna		
		A + O :				Directional Gain		
Antenna Technology	Ant Gain (dBi)					(dBi)		
						For F	ower	For PSD
CDD		Ant1:4 Ant2: 4			1	-	4	7.01
⊠ Beam-forming		Ant1:4 Ant			1	7.	01	7.01

5G:

Antenna Model No.	N/A									
Antenna Manufacturer	N/A	N/A								
Antenna Delivery	\boxtimes	1*TX+1*RX				2*TX+2*RX			3*TX+	-4*RX
Antenna Technology	\boxtimes	⊠ siso								
				Ba	sic	methodology				
		МІМО		Se	ctor	ized antenna	syst	tems	3	
	⊠ MIMO			Cro	Cross-polarized antennas					
				Un	Unequal antenna gains, with equal transmit powers					
				Spatial Multiplexing						
		Cyclic Delay Diversity (CDD)								
Antenna Type	Dip	ole Antenna	a							
							Directional Gain			nal Gain
Antenna Technology	Ant Gain				(dBi)		Bi)			
		(dBi)				Fo	or Po	ower	For PSD	
⊠CDD		Ant	1:4	Ant	2: 4	1		4		7.01
⊠ Beam-forming		Ant	1:4	Ant	2: 4	ļ		7.0	1	7.01

Power DensityStandlone modes

Standione me	<u> </u>				
		Maximum	Directional	Power	Power
Test Mode	Frequency	Output Power	Gain	Density at R =	Density Limit
	Band (MHz)	to	(dBi)	20 cm	at R = 20 cm
		Antenna (dBm)	(uDi)	(mW/cm2)	(mW/cm2)
BLE	2400 ~ 2483.5	4.84	3.96	0.001	0.54
802.11b/g/n(20MHz) with SISO	2412 ~ 2462	18.41	4	0.035	1.0
802.11b/g/n(20MHz) with CDD	2412 ~ 2462	20.88	4	0.061	1.0
802.11n(20MHz) with Beam-forming	2412 ~ 2462	20.20	7.01	0.105	1.0
802.11a/n/ac (20MHz) with SISO	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	18.36	4	0.034	1.0
802.11n/ac (40MHz) with SISO	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	18.76	4	0.038	1.0
802.11ac(80MHz) with SISO	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	14.17	4	0.013	1.0
802.11a/n/ac (20MHz) with CDD	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	21.44	4	0.070	1.0
802.11n/ac (40MHz) with CDD	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	20.54	4	0.057	1.0
802.11ac(80MHz) with CDD	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	16.50	4	0.022	1.0
802.11n/ac(20MHz) with Beamforing	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	20.45	7.01	0.111	1.0
802.11n/ac(40MHz) with Beamforing	5150 ~ 5350 5470 ~ 5725 5725 ~ 5850	20.34	7.01	0.108	1.0

000 44 (00MLI-)	5150 ~ 5350				
802.11ac(80MHz) with Beamforing	5470 ~ 5725	16.26	7.01	0.042	1.0
with bealmoning	5725 ~ 5850				

Simultaneous transmission:

Frequency Band	Maximum Output	Directional Gain	Power Density at R = 20 cm	Power Density Limit at R = 20 cm
(MHz)	Power to Antenna (dBm)	(dBi)	(mW/cm2)	(mW/cm2)
2400 ~ 2483.5	4.84	3.96	0.001	0.54
2412 ~ 2462	20.20	7.01	0.105	1.0
5150 ~ 5350				
5470 ~ 5725	20.45	7.01	0.111	1.0
5725 ~ 5850				
Simultaneo	us transmission powe	0.217	0.54	

Note: The simultaneous transmission power density is 0.217 mW/cm2 for Wireless Access Point without any other radio equipment.

— The End	