$$G = 6.7 \times 10^{-11}$$

A. Gaya gravitasi

- 1. Dua bua benda masing-masing 4 kg dan 3 kg berada pada jarak 2 m. Gaya gravitasi yang dirasakan benda tersebut adalah
 - A. $6.7 \times 10^{-11} \text{ N}$
- D. $3.35 \times 10^{-10} \text{ N}$
- B. $1.34 \times 10^{-11} \text{ N}$
- E. $6.7 \times 10^{-10} \text{ N}$
- C. $2,01 \times 10^{-10} \text{ N}$
- 2. Dua massa masing-masing 20 kg, dan 10 kg berada pada jarak 8 m. Gaya tarik kedua massa tersebut adalah . . .
 - A. 8.32×10^{-10}
- D. 2.09×10^{-10}
- B. $6,24 \times 10^{-10}$
- E. $1,04 \times 10^{-10}$
- C. 4.16×10^{-10}
- 3. Dua buah benda dengan massa tertentu pada jarak r memiliki gaya gravitasi F. Jika kedua benda massanya dijadikan 3 kali lipat, dan jarak ke dua benda dijadikan 2 kali lipat, maka gaya yang terjadi sekarang adalah .

. . .

A. 4F

D. $\frac{4}{9}F$

B. $\frac{9}{4}F$

E. $\frac{4}{3}F$

C. $\frac{1}{2}F$

4. Dua buah benda dengan massa 2 kg dan 12,5 kg berada pada jarak 35 m. Jika ada benda ketiga diletakkan antara dua benda tersebut (m=3 kg), agar jumlah gaya adalah nol maka harus diletakkan di

A. 10 m dari 12,5 kg

D. 20 m dari 12,5 kg

B. 15 m dari 2 kg

E. 25 m dari 12,5 kg

C. 10 m dari 2 kg

- 5. Tiga buah benda masing-masing 1kg, jika jarak A dan B 1m, B dan C 1 m, dan B ada di siku-siku. Maka besar gaya di C adalah . , , ,
 - A. $\sqrt{2}$ G
- D. $2\sqrt{2}$ G
- B. $\sqrt{2+\sqrt{2}}$ G
- E. $\frac{1}{2}\sqrt{5+2\sqrt{2}}$ G
- C. $\sqrt{3}$ G

- 6. Benda A massanya 6 kg, benda B 2 kg dan C 4 kg. Jarak A dan B 2 m, jarak B dan C adalah 2 m. Jika B ada di siku-siku maka gaya di titik B adalah
 - A. $\sqrt{13}$ G N
- D. $2\sqrt{3}$ G N
- B. $2\sqrt{2}$ G N
- E. 3 G N
- C. $\sqrt{7}$ G N

B. Perbandingan medan/percepatan, dan berat

- 1. Berat di bumi adalah 3200N. Berat benda tersebut jika berada pada ketinggian 3R adalah. . . .
 - A. 6400 N

D. 160 N

- B. 3200 N
- E. 200 N

C.	1600 N		

- 2. Suatu planet mempunyai massa 10 kali bumi dan jari-jari 3 kali bumi. Maka percepatan gravitasi di planet tersebut adalah . . .
 - A. 2g

B. $\frac{10}{3}g$

- C. $\frac{3}{10}g$
- 3. Planet B dengan massa jenis dua kali bumi dan tiga kali jari-jari bumi. Maka percepatan gravitasi di permukan B adalah . . .
 - A. $\frac{2}{3}g$

D. 6g

B. $\frac{1}{3}g$

E. 3g

- 4. Percepatan gravitasi di permukaan bumi adalah 10 N/kg. Pada titik di ketinggian tertentu percepatan gravitasi adalah 2 N/kg. Ketinggian tersebut dari pusat bumi adalah. . . .
 - A. $\sqrt{5}$ R
- D. $2\sqrt{2}$ R
- B. $\sqrt{2}$ R
- E. $\frac{1}{2}$ R
- C. $2\sqrt{3} \ R$

- 5. Planet x memiliki percepatan gravitasi 7,5 kali gravitasi bumi. Jika jari-jari planet adalah 2 kali bumi, maka massa planet adalah . . .
 - A. 3M
- D. $\frac{1}{2}M$

B. 2M

E. $\frac{3}{4}M$

C. 1M

- 6. Berat seorang astronot di Bumi adalah 1000 N. Astronot bepergian ke planet X yang mempunyai massa 18 kali bumi dan jari-jari 10 kali bumi. Maka berat astronot tersebut saat berada di ketinggian 2R dari permukaan planet X adalah
 - A. 3200 N
- D. 800/3 N
- B. 3200/9 N
- E. 200 N
- C. 800 N

C. Kecepatan satelit/kecepatan lepas

$$v_{satelit} = \sqrt{\frac{GM}{r}}$$
 $v_{satelit} = \sqrt{gr}$

$$v_{lepas} = \sqrt{\frac{2GM}{r}}$$

$$r = R + h$$

g = percepatan pada titik tertentu

$$EP = G\frac{Mm}{r}$$

$$V = G\frac{M}{r}$$

1. Seorang peneliti berada di planet yang berjari-jari 1000km. Jika percepatan gravitasi di planet adalah 8 m/s²,maka kecepatan minimum untuk lepas dari planet adalah . . .

A. 2 km/s

D. $4\sqrt{10}$ km/s

B. $\sqrt{8}$ km/s

E. 16 km/s

C. 4 km/s

- 2. Suatu roket berada di permukaan bumi. Kecepatan minimal agar bisa lepas dari pengaruh gravitasi bumi adalah . . . $(R = 6, 4x10^3 \text{ km})$

A. $8\sqrt{2} \text{ km/s}$

D. 4 km/s

B. 8 km/s

E. 2 km/s

C. 16 km/s

- 3. Suatu planet memiliki massa 2×10^{20} kg dan jari-jari 1000 km. Maka kecepatan untuk meninggalkan planet adalah

A. $2\sqrt{G} \times 10^7 \text{ m/s}$ D. $\sqrt{2G} \times 10^7 \text{ m/s}$

B. $\sqrt{G} \times 10^7 \text{ m/s}$ E. $\frac{3}{2} \times 10^7 \text{ m/s}$

C. $\frac{1}{2}\sqrt{G} \times 10^7 \text{ m/s}$

4. Pada ketinggian R dari permukaan bumi kecepatan satelit adalah v. Apabila satelit berada pada ketinggia 3R maka kecepatan satelit mengorbit adalah . . .

D. 2v

B. $\frac{3}{4}v$ C. v

E. $\frac{3}{2}$

5. Suatu roket berada di permukaan planet. Jika roket ingin diluncurkan sampai ketinggian R maka kecepatan yang dibutuhkan adalah . . .

A. $\left(\frac{4GM}{3R}\right)^{\frac{1}{2}}$

D. $\left(\frac{GM}{R}\right)^{\frac{1}{2}}$

B. $\left(\frac{5GM}{3R}\right)^{\frac{1}{2}}$

E. $\left(\frac{GM}{3R}\right)^{\frac{1}{2}}$

C. $\left(\frac{2GM}{5R}\right)^{\frac{1}{2}}$

D. Hukum Kepler

1. Suatu planet berada pada jarak 2,25 kali jarak bumi matahari. Maka waktu putaran planet tersebut mengelilingi matahari adalah

A. 3,375

D. 0,5

B. 2,25

E. 0,25

C. 1,5

2.	Periode planet A dan B masing-masing 27 dan 8 tahun. Jika diketahui jarak planet B ke pusat tata surya adalah 44 juta km, maka jarak planet A ke pusat tata surya adalah								
	Α.	23		D.	99				
	В.	-			256				
	C.	81							
3.	Per	Perhatikan pernyataan berikut:							
	(1)	Semakin j planet sem	auh dari pu akin kecil	sat	matahari,	kecepatan			

- (2) Luasan sapuan juring yang sama ditempuh dalam waktu yang sama
- (3) Lintasan planet adalah elips dengan matahari di salah satu titik pusatnya
- (4) Periode pangkat tiga berbanding lurus dengan jarak ke matahari pangkat dua

 $Pernyataan\ yang\ benar\ tentang\ hukum\ Kepler\ adalah$

. . .

A. 1,2,3

D. 4 saja

B. 1,3

E. semua benar

C. 2,4