第三次作业

$March\ 2022$

1 作业答案

练习7

2. 下面的公式哪些恒为永真式?

$$3^{\circ}.(q \vee r) \rightarrow (\neg r \rightarrow q)$$

$$4^{\circ}.(p \wedge \neg q) \vee ((q \wedge \neg r) \wedge (r \wedge \neg p))$$

$$5^{\circ}.(p \rightarrow (q \rightarrow r)) \rightarrow ((p \wedge \neg q) \vee r)$$

解

(q	V	r)	\rightarrow	(\neg	r	\rightarrow	q)
		0			1		1	0	0	0	
	0	1	1		1		0	1	1	0	
	1	1	0		1		1	0	1	1	
	1	1	1		1		0	1	1	1	

3°. 由真值表可知,公式3°为永真式。

(p	٨	\neg	\boldsymbol{q})	V	((q	٨	\neg	r)	٨	(r	٨	\neg	p))
	0	0	1	0		0		0	0	1	0		0		0	0	1	0	
	0	0	1	0		0		0	0	0	1		0		1	1	1	0	
	0	0	0	1		0		1	1	1	0		0		0	0	1	0	
	0	0	0	1		0		1	0	0	1		0		1	1	1	0	
	1	1	1	0		1		0	0	1	0		0		0	0	0	1	
	1	1	1	0		1		0	0	0	1		0		1	0	0	1	
	1	0	0	1		0		1	1	1	0		0		0	0	0	1	
	1	0	0	1		0		1	0	0	1		0		1	0	0	1	

表 1: 公式 4° 的真值表

4° 由真值表可知,公式 4°可能存在成假指派,因此不恒为永真式。

(p	\rightarrow	(q	\rightarrow	r))	\rightarrow	((p	Λ	\neg	q)	V	r)
	0	1		0	1	0	3	0		0	0	1	0		0	0	
	0	1		0	1	1		1		0	0	1	0		1	1	
	0	1		1	0	0		0		0	0	0	1		0	0	
	0	1		1	1	1		1		0	0	0	1		1	1	
	1	1		0	1	0		1		1	1	1	0		1	0	
	1	1		0	1	1		1		1	1	1	0		1	1	
	1	0		1	0	0		1		1	0	0	1		0	0	
	1	1		1	1	1		1		1	0	0	1		1	1	

表 2: 公式 5° 的真值表

5° 由真值表可知,公式 5°可能存在成假指派,因此不恒为永真式。

3. 以下结论是否正确? 为什么?

$$1^{\circ} \models p(x_1, \dots, x_n) \Leftrightarrow \models (\neg x_1, \dots, \neg x_n).$$

$$2^{\circ} \quad \vDash (p \to q) \leftrightarrow (p' \to q') \ \Rightarrow \ \vDash p \leftrightarrow p' \ \underline{\sqcap} \ \vDash q \leftrightarrow q'.$$

解

1° 结论正确,以下对等价关系 \Leftrightarrow 做两个方向上的 分别证明: \longleftarrow 形式上参考代换定理的证明证明. " \Rightarrow ": 由代换定理,取 p_1, \dots, p_n 分别为 $\neg x_1, \dots, \neg x_n$, 立刻可得:

$$\vDash p(x_1, \cdots, x_n) \Rightarrow \vDash (\neg x_1, \cdots, \neg x_n).$$

'⇐': 设v 是L(X) 的任一赋值,记

$$u_1 = v(\neg x_1), \cdots, u_n = v(\neg x_n)$$

将 u_1, \dots, u_n 分别指派给 x_1, \dots, x_n , 且将此真值指派扩张成 $L(X_n)$ 的赋值 u_n 于是 u 满足:

(1)
$$u(x_i) = u_i = v(\neg x_i) = \neg v(x_i)$$
 $i = 1, \dots, n$

现需证明下面的(2)式:

(2)
$$v(p(x_1, \dots, x_n)) = u(p(\neg x_1, \dots, \neg x_n))$$

我们有:

$$\begin{split} u(p(\neg x_1,\,\cdots,\,\neg x_n)) &= p(\neg u(x_1),\,\cdots,\,\neg u(x_n)) & (u \text{ 的保运算性}) \\ &= p(\neg u_1,\,\cdots,\,\neg u_n) \\ &= p(\neg v(\neg x_i),\,\cdots,\,\neg v(\neg x_n)) & (由(1)式) \\ &= p(\neg \neg v(x_i),\,\cdots,\,\neg \neg v(x_n)) & (v \text{ 的保运算性}) \\ &= p(v(x_i),\,\cdots,\,v(x_n)) & (\mathbb{Z}_2 \text{ 中公式}) \\ &= v(p(x_i,\,\cdots,\,x_n)) & (v \text{ 的保运算性}) \end{split}$$

有了(2)便可得:

$$\vdash (\neg x_1, \dots, \neg x_n) \Rightarrow u(p(\neg x_1, \dots, \neg x_n)) = 1$$

$$\Rightarrow v(p(x_i, \dots, x_n)) = 1$$

$$\vdash p(x_1, \dots, x_n)$$

2° 结论不正确,取以下公式为例

$$p = x_1, q = x_1$$

 $p' = x_2, q' = x_2$

我们有

$$\vDash (x_1 \to x_1) \leftrightarrow (x_2 \to x_2)$$

但

$$\not\vdash x_1 \to x_2$$