Q-Learning

When deciding on how to move the robot in a specific direction and updating the environment's state. It involves:

- 1. Initializing the robot's current position and score
- 2. Checking if the move direction is within grid boundaries and is not into a wall
- 3. Updating the robot's position based on the direction
- 4. Adding a visit penalty for revisiting cells
- 5. Rewarding or Penalizing the robot based on the cell type of delivery, high-traffic, or terminal state
- 6. Clears the cell after the robot moves
- 7. Updating the score with the computed reward
- 8. We also ensure that the score remains finite by resetting it to `initial_score` if necessary.

Hence we can explore new areas and avoid penalties based on cell type of delivery, high-traffic, or terminal state.

Q-Learning with ε-Greedy

Here we are trying to navigate the grid world by balancing exploration and exploitation. The function, we:

- 1. Start with a random start position
- 2. On choosing the next action:
 - a. With probability ϵ (epsilon), it explores and the robot selects a random action to explore new states.
 - b. With probability `1-ε`, the robot selects the action with the highest Q-value to exploit known information.
- 3. It executes the selected action using the 'move' function, which updates the robot's position and computes the reward.
- 4. If the new position is out of bounds or a wall, the reward is penalized, and the robot is reset to a random position.
- 5. It updates the Q-value using the Q-learning update rule.
- 6. The visit count is increased for the state-action pair.
- 7. The screen update refreshes the visual representation of the grid world.
- 8. The `decay `k` gradually reduces the value of `k` to shift from exploration to exploitation over time.

Q-Learning with Exploration Function

Here we are trying to navigate the grid world optimally using Q-learning with exploration bonuses. In the function, we:

1. Start with a random start position

- 2. Use the exploration function
 - a. During exploration, we randomly select an action based on a parameter `k`.
 - b. During exploitation, we use the Q-values and visit counts to decide the best action.
- 3. It moves based on the selected action and calculates the reward.
- 4. The Q-value is updated based on the received reward and the maximum future Q-value.
- 5. The visit count is increased to track exploration.
- 6. The screen update refreshes the visual representation of the grid world.
- 7. The `decay `k` gradually reduces the value of `k` to shift from exploration to exploitation over time.

Parameter Tuning

a. Exploration Rate with ε-Greedy Analysis

Epsilon Value (ε)	Episodes Tested	Cumulative Rewards (Range)	Average of Final Scores	Observations
1.0	13	34.0 to -176	-56.0	Full exploration; slow convergence, poor performance.
0.9	5	-34.0 to -152	-116.4	Mix of exploration and exploitation; inconsistent rewards.
0.7	5	-8.0 to -176	-117.2	Faster convergence; more exploitation, better performance.
0.5	6	-8.0 to -170	-125.00	Balanced exploration; stabilized rewards but worse performance.
0.3	7	-2.0 to -200	-139.14	Less exploration; faster stabilization, moderate performance.
0.1	4	-74.0 to -176	-146.0	Minimal exploration; heavy exploitation, faster convergence.

Learning Rate and Discount Factor Analysis

Experiments were conducted by varying the **learning rate** (α) and **discount factor** (γ). The impact of these parameters on performance is summarized below:

Parameter	Values Tested	Observations
Learning Rate (α)	0.1, 0.5, 0.9	Higher α (e.g., 0.9) allowed faster convergence but risked overshooting optimal policies. Lower α slowed learning.
Discount Factor (γ)	0.5, 0.7, 0.9	Higher γ encouraged long-term rewards but delayed convergence. Moderate γ (e.g., 0.7) provided a good balance.

b. Exploration Parameter k Analysis

Experiments were conducted with various values of exploration function's parameter k to observe its impact on learning efficiency and agent behavior. Results are summarized below:

k	Observations	Final Score
0.5	Encouraged balanced exploration. Converged after moderate exploration with optimal path discovery.	-212.0
1.0	Enhanced exploration but slowed convergence due to overemphasis on less-visited states.	16.0
1.5	Excessive exploration hindered optimal policy learning, leading to higher penalties.	-818.0

Convergence Analysis

Episodes to Learn Good Policies

The convergence rates for the two Q-learning methods were analyzed based on the number of episodes required to stabilize cumulative rewards and achieve consistent optimal performance:

Method	Episodes to Converge	Observations
ε-Greedy	20–30	Often suboptimal due to limited exploration

Exploration Function	30–50	Better long-term performance due to thorough exploration	
-------------------------	-------	--	--

Effects of ε-Greedy Strategy:

- Early high exploration enabled the agent to explore diverse states.
- Gradual reduction in ε improved exploitation but limited discovery of less-visited states.

Effects of Exploration Function Strategy:

- Enhances exploration by adding a bonus reward to encourage the agent to visit less-explored states, preventing them from getting stuck in local optima.
- Enhances long-term performance by allowing agents to discover optimal policies over time, despite initial slower convergence, as they explore a wider range of states and actions.

Performance Comparison

Aspect	ε-Greedy	Exploration Function	Observations
Convergence Speed	Faster (20–30 episodes)	Slower (30–50 episodes)	ε-Greedy converged faster but less robustly.
Cumulative Rewards	Moderate	Higher	Exploration Function achieved higher long-term rewards.
State Coverage	Limited	Extensive	Exploration Function explored less-visited states more effectively.
Learning Stability	Medium	High	Exploration Function produced consistent policies.

Better Performing Approach

• ε-Greedy Approach:

- Suitable for faster learning where immediate performance is significant.
- Simpler implementation with quicker convergence but less robust.

Exploration Function Approach:

- o Achieved higher cumulative rewards and better state coverage.
- o Produced more stable policies and improved overall learning performance.
- o Ideal for scenarios requiring extensive state exploration.

Conclusion

For Q-learning with ε -Greedy, the optimal performance was achieved with a learning rate of α = 0.9, discount factor γ = 0.9, and exploration rate = 1.0.

For Q-learning with a bonus reward, 1.0 is the optimal performance for the parameter k of the exploration function.

The Q-Learning with Exploration Function performed better than Q-Learning with ϵ -Greedy after continuous evaluation, attaining faster convergence and bigger cumulative rewards.