Mini-Problems 8

- 1. Clairaut's basic theorem says that if $f: \mathbb{R}^n \to \mathbb{R}$ is a C^2 function, then $\partial_{ij}f = \partial_{ji}f$ for all $1 \leq i, j \leq n$. Use the basic theorem to prove the more general version of Clairaut's theorem, which is Theorem 2.40 of the class notes: if $f: \mathbb{R}^n \to \mathbb{R}$ is a C^k function, then $\partial_{i_1 \cdots i_k} f = \partial_{j_1 \cdots j_k} f$ whenever (i_1, \ldots, i_k) and (j_1, \ldots, j_k) are tuples of indices which are rearrangements of each other. It may be helpful to observe that any rearrangement of (i_1, \ldots, i_k) may be obtained by a sequence of transpositions which switch i_r and i_{r+1} for some $1 \leq r \leq k-1$.
- **2.** Consider the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by $f(x,y,z) = e^{x+y} \sin(y+z)$. This function is (obviously) C^{∞} . (i) Calculate $\partial_{133}f$, $\partial_{313}f$, $\partial_{113}f$ and $\partial_{311}f$. If your calculation is correct then these won't all be equal. Why doesn't this contradict Clauraut's theorem? (ii) Calculate the Hessian of $g(x,y) = xe^{x+y} + y$.
- **3.** Consider the following matrices. For each of them, figure out if they are equal to the Hessian of some C^{∞} function $f: \mathbb{R}^2 \to \mathbb{R}$, and if so, find all such functions. (i) $\begin{pmatrix} 1 & 3x+y \\ 3y+x & 3x \end{pmatrix}$ (ii) $\begin{pmatrix} x-2y & x+2y \\ x+2y & 2x+2y \end{pmatrix}$ (iii) $\begin{pmatrix} 2y+2 & 2x+4y \\ 2x+4y & 4x+4 \end{pmatrix}$. **4.** Suppose you have a C^{∞} function $f: \mathbb{R}^n \to \mathbb{R}$ such that $\partial_{i_1 \cdots i_k} f = \partial_{j_1 \cdots j_k} f$
- **4.** Suppose you have a C^{∞} function $f: \mathbb{R}^n \to \mathbb{R}$ such that $\partial_{i_1 \cdots i_k} f = \partial_{j_1 \cdots j_k} f$ for **any** sets of indices $\{i_1, \ldots, i_k\}$ and $\{j_1, \ldots, j_k\}$ and any $k \geq 1$. What can you say about f? Can you find a characterization of all such functions?