LECTURER: DR AKBAR GHOBAKHLOU SCHOOL OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES

Classification Basic Concept- Decision Tree (2)

Weekly Learning Outcomes

- 1. Practical Issues of Classification
- 2. Metrics for Performance Evaluation
- 3. Methods for Model Comparison
- 4. Methods for Performance Evaluation

Decision Tree Classification Task

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values
- Costs of Classification

Under-fitting and Over-fitting (Example)

500 circular and 500 triangular data points.

Circular points:

$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2+x_2^2) < 0.5 or$$

$$sqrt(x_1^2+x_2^2) > 1$$

Is this Model Good?

What about this?

And This?

Underfitting and Overfitting

- Two problems that can arise with models developed with Data Mining are: Overfitting and Underfitting
- Underfitting occurs when the model has not fully learned all the patterns in the data, resulting in poor prediction accuracy (test accuracy).
- Underfitting is generally caused by the inability of the algorithm to find all patterns in the training dataset.
- In the case of a Decision Tree method the tree developed is not of sufficient depth and size to learn all the patterns present in the data

Overfitting

- With Overfitting the model's learns the patterns in the training data very well but the model learnt cannot predict newly arriving data well
- In other words, accuracy on training dataset is high but accuracy drops drastically on newly arriving data – training set accuracy >> test set accuracy
- In the case of the Decision tree method the tree developed is too detailed (too large in size)
- Overfitting is generally caused by:
 - 1. Noise (errors in assigning class labels) in the training dataset
 - Lack of sufficient data to capture certain types of patterns

Underfitting and Overfitting

Overfitting due to Noise

Decision boundary is distorted by noise point

Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task

Notes on Overfitting

 Overfitting results in decision trees that are more complex than necessary

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

Methods for estimating the error

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a Tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

Training error = 10/1000 = 1%

Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

- Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

Decision Trees Pruned vs Unpruned

Occam's Razor

 Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

 For complex models, there is a greater chance that it was fitted accidentally by errors in data

 Therefore, one should include model complexity when evaluating a model

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Why Evaluate?

- Multiple methods are available to classify or predict
- For each method, multiple choices are available for settings
- To choose best model, need to assess each model's performance

Misclassification error

- Error = classifying a record as belonging to one class when it belongs to another class.
- Error rate = percent of misclassified records out of the total records in the validation data

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (true positive)

b: FN (false negative) Type 2 error

c: FP (false positive) Type 1 error

d: TN (true negative)

Confusion Matrix

Classification Confusion Matrix			
Predicted Class			
Actual Class	1	0	
1	201	85	
0	25	2689	

Confusion Matrix

201 1's correctly classified as "1"

85 1's incorrectly classified as "0"

25 0's incorrectly classified as "1"

2689 0's correctly classified as "0"

Classification Confusion Matrix			
	Predicted Class		
Actual Class	1	0	
1	201	85	
0	25	2689	

Metrics for Performance Evaluation...

	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
	Class=No	c (FP)	d (TN)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Error Rate

Overall error rate = (25+85)/3000 = 3.67%

Accuracy = 1 - err = (201 + 2689) = 96.33%

If multiple classes, error rate is:

(sum of misclassified records)/(total records)

Classification Confusion Matrix			
	Predicted Class		
Actual Class	1	0	
1	201	85	
0	25	2689	

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Main Metrics

Accuracy: the ratio of correctly classified (TP+TN) to the total number samples

$$Accuracy = \frac{TN+TP}{TN+FP+FN+TP}$$

Precision: the ratio of correctly classified (*TP*) to the total samples **predicted** as positive samples

$$Precision = \frac{TP}{TP+FP}$$

Recall : the ratio of correctly classified (*TP*) divided by total number of **actual** positive samples

$$\operatorname{Re} call = \frac{TP}{TP + FN}$$

F1 score is also known as the **F Measure**. The F1 score states the equilibrium between the precision and the recall.

$$F1Score = \frac{2*precision*recall}{precision+recall}$$

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Effect of small sample size:
 - ✓ Bias in the estimate
 - ✓ Variance of estimate

Methods of Estimation

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Test of Significance

- Given two models:
 - Model M1: accuracy = 85%, tested on 30 instances
 - Model M2: accuracy = 75%, tested on 5000 instances

- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Comparing Performance of 2 Models

- Given two models, say M1 and M2, which is better?
 - M1 is tested on D1 (size=n1), found error rate = e_1
 - M2 is tested on D2 (size=n2), found error rate = e_2
 - Assume D1 and D2 are independent
 - If n1 and n2 are sufficiently large, then

$$e_1 \sim N(\mu_1, \sigma_1)$$

 $e_2 \sim N(\mu_2, \sigma_2)$

– Approximate:

$$\hat{\sigma}_{i} = \frac{e_{i}(1-e_{i})}{n_{i}}$$

Comparing Performance of 2 Models

- To test if performance difference is statistically significant: d = e1 e2
 - $d \sim N(d_t, \sigma_t)$ where d_t is the true difference
 - Since D1 and D2 are independent, their variance adds up:

$$\sigma_{t}^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} \cong \hat{\sigma}_{1}^{2} + \hat{\sigma}_{2}^{2}$$

$$= \frac{e1(1 - e1)}{n1} + \frac{e2(1 - e2)}{n2}$$

• At (1-lpha) confidence level, $d_{_t}=d\pm Z_{_{lpha/2}}\hat{\sigma}_{_t}$

Link to read more on Model evaluation, model selection

References

1. Data Mining: Practical Machine Learning Tools and Techniques (3rd edition) / Ian Witten, Eibe Frank; Elsevier, 2011, Chapter 4