데이터 과학 기초

03

# 선형회귀

경북대학교 배준현 교수 (joonion@knu.ac.kr)



- 회귀: regression
  - '회귀'의 사전적 의미: 되돌아감(어디로?)
  - 회귀라는 용어의 유래:
    - 프랜시스 골턴의 유전학 연구에서 유래함
    - 회귀의 법칙: the law of regression
  - 프랜시스 골턴의 연구:
    - 부모의 키와 자녀의 키는 유전적으로 어떤 관계가 있는가?
    - 평균으로의 회귀: regression to the mean



Galton, Francis. "Regression towards mediocrity in hereditary stature." *The Journal of the Anthropological Institute of Great Britain and Ireland* 15 (1886): 246-263.



## O3. 선형 회귀

#### ■ 프랜시스 골턴의 데이터셋: GaltonFamilies

```
> library(HistData)
> str(GaltonFamilies)
'data.frame': 934 obs. of 8 variables:
$ family
           : Factor w/ 205 levels "001", "002", "003", ...: 1 1 1 1 2 2 2 2 3 3 ...
$ mother
      : num 67 67 67 67 66.5 66.5 66.5 64 64 ...
$ midparentHeight: num 75.4 75.4 75.4 75.4 73.7 ...
$ children : int 4 4 4 4 4 4 4 2 2 ...
$ childNum : int 1 2 3 4 1 2 3 4 1 2 ...
```

- > df <- GaltonFamilies</pre>









• 자녀의 성별에 따라 키의 분포도 달라지지 않을까?

```
> color.m <- adjustcolor("steelblue", alpha.f = 0.3)</pre>
> color.f <- adjustcolor("orange", alpha.f = 0.3)</pre>
> with(df,
       plot(midparentHeight, childHeight, pch = 19,
            col = ifelse(gender == "male", color.m, color.f)))
> model.m <- lm(childHeight ~ midparentHeight,</pre>
                data = subset(df, gender == "male"))
> abline(model.m, col = "blue", lty = 1, lwd = 3)
> model.f <- lm(childHeight ~ midparentHeight,</pre>
                data = subset(df, gender == "female"))
> abline(model.f, col = "tomato", lty = 1, lwd = 3)
```







#### ■ 회귀분석과 선형회귀:

- 회귀분석: regression analysis
  - 독립변수와 종속변수의 관계를 잘 설명하는 회귀식을 찾는 과정
- 선형회귀: linear regression
  - 독립변수와 종속변수의 관계가 선형일 때
  - 선형 회귀식(직선의 방정식):  $y = \beta + \alpha x$
  - 선형 회귀식의 절편(intercept)과 기울기(slope)를 알면
    - 독립변수와 종속변수의 관계를 설명, 또는, 예측할 수 있다.



- 선형 회귀모델: linear regression model
  - 회귀식:  $y = \beta_0 + \beta_1 x$
  - 잔차(residual): 실제 데이터의 값(관측값)과 회귀식의 값(예측값)과의 차이
    - $r_i = y_i \hat{y}_i$ ,  $r_i$ : 잔차,  $y_i$ : 관측값,  $\hat{y}_i$ : 예측값



```
> set.seed(14)
> x < - runif(n = 7, min = 0, max = 10)
y < -3 + 2 * x + rnorm(n = 7, mean = 0, sd = 5)
> round(x, 2)
[1] 2.54 6.38 9.57 5.53 9.83 5.11 9.33
> round(y, 2)
[1] 7.18 14.25 17.25 19.26 25.87 15.48 22.86
```

| i               | 1    | 2     | 3     | 4     | 5     | 6     | 7     |
|-----------------|------|-------|-------|-------|-------|-------|-------|
| $x_i$           | 2.54 | 6.38  | 9.57  | 5.53  | 9.83  | 5.11  | 9.33  |
| $y_i$           | 7.18 | 14.25 | 17.25 | 19.26 | 25.87 | 15.48 | 22.86 |
| $\widehat{y}_i$ |      |       |       |       |       |       |       |
| $r_i$           |      |       |       |       |       |       |       |

```
> model <- lm(y \sim x, data = df)
> coef(model)
(Intercept)
   5.077833 1.960087
> intercept <- coef(model)[1]</pre>
> slope <- coef(model)[2]</pre>
> y.hat <- intercept + slope * x</pre>
> round(y.hat, 2)
[1] 10.06 17.58 23.84 15.91 24.35 15.10 23.36
> r <- y - y.hat
> round(r, 2)
[1] -2.88 -3.33 -6.59 3.35 1.53 0.37 -0.50
```



| i                         | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|
| $x_i$                     | 2.54  | 6.38  | 9.57  | 5.53  | 9.83  | 5.11  | 9.33  |
| $y_i$                     | 7.18  | 14.25 | 17.25 | 19.26 | 25.87 | 15.48 | 22.86 |
| $\widehat{\mathcal{Y}}_i$ | 10.06 | 17.58 | 23.84 | 15.91 | 24.35 | 15.10 | 23.36 |
| $r_i$                     | -2.88 | -3.33 | -6.59 | 3.35  | 1.53  | 0.37  | -0.50 |



- 선형회귀의 유형:
  - 단순 선형회귀: simple(univariate) linear regression
    - 한 개의 독립변수와 종속변수 간의 단순한(일차) 선형 관계
  - 다중 선형회귀: *multiple(multivariate)* linear regression
    - 두 개 이상의 독립변수와 종속변수 간의 선형 관계
  - 다항 선형회귀: polynomial linear regression
    - 종속변수와 한 개의 독립변수의 다항식으로 구성된 비선형 관계



#### O3. 선형 회귀

- 단순 선형회귀: *simple* linear regression
  - 교육기간과 평균소득 간에는 선형 관계가 있을까?
    - 종속변수: 평균소득(income)
    - 독립변수: 교육기간(education)
  - > library(car)
  - > str(Prestige)

```
'data.frame': 102 obs. of 6 variables:
$ education: num 13.1 12.3 12.8 11.4 14.6 ...
$ income : int 12351 25879 9271 8865 8403 11030 8258 14163 11377 11023 ...
$ women : num 11.16 4.02 15.7 9.11 11.68 ...
$ prestige : num 68.8 69.1 63.4 56.8 73.5 77.6 72.6 78.1 73.1 68.8 ...
$ census : int 1113 1130 1171 1175 2111 2113 2133 2141 2143 2153 ...
$ type : Factor w/ 3 levels "bc", "prof", "wc": 2 2 2 2 2 2 2 2 2 ...
```

#### Prestige 데이터셋

- 캐나다의 인구조사 데이터(1971년): 변수 6개, 관측값 102개
  - education: 재직자의 평균 교육기간 (years)
  - income: 재직자의 평균 소득 (dollars)
  - women: 여성 재직자의 비율
  - prestige: 직업에 대한 명성 점수 (1960년대 중반에 실시된 사회 조사 결과)
  - census: 캐나다의 직업 코드
  - type: 직업 분류: bc: blue color, prof: professional, wc: white color

# ▶ 03. 선형 회귀

```
> model <- lm(formula = formula, data = Prestige)</pre>
```

> abline(model, lwd = 2, col = "tomato")



- 다중 선형회귀: *multiple* linear regression
  - 종속변수에 영향을 미치는 독립변수가 여러 개일 경우
    - 다중 회귀식:  $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$
  - 평균소득에 영향을 주는 요인은 무엇일까?
    - 종속변수: 평균소득(income)
    - 독립변수: 교육(education), 성별(women), 명성(prestige)

income ~ education + women + prestige

```
> model <- lm(income ~ ., data = df)</pre>
> summary(model)
Call:
lm(formula = income ~ ., data = df)
Residuals:
   Min 10 Median 30
                                Max
-7715.3 -929.7 -231.2 689.7 14391.8
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -253.850 1086.157 -0.234 0.816
education 177.199 187.632 0.944 0.347
women -50.896 8.556 -5.948 4.19e-08 ***
prestige 141.435 29.910 4.729 7.58e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2575 on 98 degrees of freedom
Multiple R-squared: 0.6432, Adjusted R-squared: 0.6323
F-statistic: 58.89 on 3 and 98 DF, p-value: < 2.2e-16
```



- 다항 선형회귀: *polynomial* linear regression
  - 종속변수를 독립변수의 다항식이 더 잘 설명하는 경우
    - 다항 회귀식:  $y = \beta_0 + \beta_1 x^1 + \beta_2 x^2 + \dots + \beta_n x^n$
  - 교육기간과 평균소득의 관계를 직선보다 더 잘 설명하는 곡선이 있을까?
    - 종속변수: 평균소득(income)
    - 독립변수: 교육기간(education)



- 다항 선형회귀: *polynomial* linear regression
  - 종속변수를 독립변수의 다항식이 더 잘 설명하는 경우
    - 다항 회귀식:  $y = \beta_0 + \beta_1 x^1 + \beta_2 x^2 + \dots + \beta_n x^n$
  - 교육기간과 평균소득의 관계를 직선보다 더 잘 설명하는 곡선이 있을까?
    - 종속변수: 평균소득(income)
    - 독립변수: 교육기간(education)



```
> library(car)
> formula <- income ~ education + I(education^2)</pre>
> model <- lm(formula, data = Prestige)</pre>
> summary(model)
Call:
lm(formula = formula, data = Prestige)
Residuals:
   Min
            10 Median 30 Max
-5951.4 -2091.1 -358.2 1762.4 18574.2
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
              12918.23 5762.27 2.242 0.02720 *
(Intercept)
education -2102.90 1072.73 -1.960 0.05277 .
I(education<sup>2</sup>) 134.18 47.64 2.817 0.00586 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3369 on 99 degrees of freedom
Multiple R-squared: 0.383, Adjusted R-squared: 0.3706
F-statistic: 30.73 on 2 and 99 DF, p-value: 4.146e-11
```

```
03. 선형 회귀
```

```
> plot(income ~ education, data = Prestige, pch = 19, col = "steelblue")
> library(dplyr)
> with(Prestige,
      lines(arrange(data.frame(education, fitted(model)), education),
             lty = 1, lwd = 3, col = "tomato"))
```





#### Orange: Linear Regression









#### Orange: Educational/Polynomial Regression





## Orange: Paint Data





## Orange: 다양한 선형 회귀 실험







## O3. 선형 회귀

- 모형 적합: *fitting* a model
  - 데이터(관측값)를 가장 잘 설명하는 선형 회귀식은?
    - 데이터 전체를 고려했을 때 잔차가 가장 작은 직선의 방정식
  - 평균절대오차: MAE, mean absolute error

- 
$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

• 평균제곱오차: MSE, mean squared error

- 
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• 제곱근 평균제곱오차: RMSE, rooted mean squared error

- 
$$RMSE = \sqrt{MSE}$$

#### O3. 선형 회귀

```
\rightarrow plot(x, y, pch = 19, col = "steelblue", xlim = c(2, 10), ylim = c(5, 30))
> abline(model, lwd = 2, col = "steelblue")
> abline(a = intercept + 5, b = slope, lty = 2, lwd = 2, col = "orange")
> abline(a = intercept - 5, b = slope, lty = 2, lwd = 2, col = "orange")
> abline(a = intercept, b = slope + 1, lty = 3, lwd = 2, col = "violet")
> abline(a = intercept, b = slope - 1, lty = 3, lwd = 2, col = "violet")
\rightarrow legend(x = 2, y = 30, lwd = 2, col = "steelblue",
         legend = paste("v =", intercept, "+", slope, "* x"))
```





- 결정계수: coefficient of determination
  - $R^2(R\text{-}squared)$ : 선형 회귀식의 설명력 지표

- 
$$R^2 = \frac{SSE(Explained\ Sum\ of\ Squares)}{SST(Total\ Sum\ of\ Squares)} = \frac{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$$

- $R^{2} = 0$ : 독립변수와 종속변수 간의 선형 관계가 존재하지 않음
- $R^2 = 1$ : 독립변수와 종속변수 간에는 완전한 선형 관계가 존재함
- $Adjusted R^2$ : 다중 독립변수의 영향을 줄여줌
  - $R^{2}$ 는 독립변수의 개수가 증가하면 항상 값이 증가함
  - 독립변수의 개수가 많아지면 페널티를 부과하여 설명력을 보정
  - 과적합(overfitting)에 대한 고려



- 선형회귀 모델을 적용하기 위한 전제 조건:
  - 선형성: linearity
    - 독립변수와 종속변수 간의 선형적 관계가 존재한다.
  - 정규성: normality
    - 종속변수의 값들이 정규분포를 가진다.
  - 등분산성: homoscedasticity, homogeneity of variance
    - 종속변수 값들의 분포는 모두 동일한 분산을 가진다.
  - 독립성: independence
    - 모든 독립변수의 관측값들은 서로 독립이다.



- 페널티 회귀분석: *penalized* regression analysis
  - 너무 많은 독립변수를 갖는 모델에 페널티를 부과하여 간명한 회귀모델을 생성
    - 모델의 성능에 크게 기여하지 못하는 변수의 영향력을 축소하거나 제거
    - 제약화, 규제화: regularization, 축소: shirinkage
  - 회귀식에 페널티항을 추가
    - 잔차제곱합과 페널티항의 합이 최소가 되는 회귀계수를 추정
  - 페널티 회귀분석의 종류
    - 릿지 회귀분석: ridge regression analysis
    - 라소 회귀분석: *lasso* regression analysis
    - 일래스틱넷 회귀분석: elasticnet regression analysis

- 릿지 회귀분석: *ridge* regression analysis
  - 모델의 설명력에 기여하지 못하는 독립변수의 회귀계수 크기를
    - 0에 근접하도록 축소
  - L2-norm 페널티항으로 회귀모델에 페널티를 부과
    - L2-norm: 각 회귀계수의 제곱합
  - 릿지 회귀모델: 잔차의 제곱합과 L2-norm의 합을 최소화하는 회귀계수 추정

- 
$$\min_{\beta} \left[ \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right]$$

- $y_i$ : 관측값,  $\hat{y_i}$ : 예측값, n: 표본크기, p: 독립변수 개수,  $\beta_i$ : 회귀계수
- $\lambda$ : 페널티 튜닝 파라미터



- 라소 회귀분석: *lasso* regression analysis
  - 모델의 설명력에 기여하지 못하는 독립변수의 회귀계수 크기를
    - 0으로 만듬(해당 독립변수를 모델에서 제거)
  - $L_{1-norm}$  페널티항으로 회귀모델에 페널티를 부과
    - L2-norm: 각 회귀계수의 절대값의 합
  - 라소 회귀모델: 잔차의 제곱합과 L1-norm의 합을 최소화하는 회귀계수 추정

$$- \min_{\beta} \left[ \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right]$$

- $y_i$ : 관측값,  $\widehat{y_i}$ : 예측값, n: 표본크기, p: 독립변수 개수,  $\beta_i$ : 회귀계수
- $\lambda$ : 페널티 튜닝 파라미터



- 엘라스틱넷 회귀분석: *elasticnet* regression analysis
  - L1-norm과 L2-norm을 모두 이용하여 회귀모델에 페널티를 부과
  - 엘라스틱넷 회귀모델:

$$- \min_{\beta} \left[ \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda \left\{ (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 + \alpha \sum_{j=1}^{p} |\beta_j| \right\} \right]$$

- $y_i$ : 관측값,  $\hat{y_i}$ : 예측값, n: 표본크기, p: 독립변수 개수,  $\beta_j$ : 회귀계수
- $\lambda$ : 페널티 튜닝 파라미터,  $\alpha$ : 모델의 혼합 정도를 통제하는 파라미터
- $\alpha = 0$ : 순수한 릿지회귀모델
- $\alpha = 1$ : 순수한 라소회귀모델
- $-0 < \alpha < 1$ : 릿지회귀모델과 라소회귀모델의 혼합 정도를 통제

# ▶ 03. 선형 회귀

- 회귀식의 기울기와 절편을 찾는 방법은?
  - 실제값과 예측값의 차이를 최소화하는 기울기와 절편 찾기





- 회귀식의 기울기와 절편을 찾는 방법은?
  - 실제값과 예측값의 차이를 최소화하는 기울기와 절편 찾기





- 비용 함수: Cost Function
  - 실제값과 예측값의 차이를 측정하는 함수
    - 손실 함수: Loss Function
    - 목적 함수: *Objective* Function
  - 회귀식의 비용 함수를 최소화하는 기울기와 절편을 찾자.
    - 회귀식의 비용 함수: RSS, MAE, MSE, RMSE



#### ■ 선형 회귀식을 학습하기 위한 과정:



출처: 수학과 함께 하는 Al 기초, EBS



- 최소 제곱 추정법: LSM, Least Square Method
  - 선형 회귀식의 기울기와 절편을 찾는 가장 일반적인 방법
  - 잔차: residuals
    - y의 실제값과 추정값 사이의 수직 거리의 차이:  $r=y-\hat{y}$
  - 잔차 제곱합: RSS, Residual Sum-of-Squares
    - 잔차는 양수나 음수 모두 가능하므로 잔차의 제곱합을 구함
    - $RSS = \sum r^2 = \sum (y \hat{y})^2$
  - 선형 회귀 분석의 목표:
    - 잔차 제곱합의 값이 최소가 되는 회귀식 찾기:  $\hat{y}=\alpha\hat{x}+eta$

## ○ O3. 선형 회귀

- 경사하강법: Gradient Descent
  - 비용 함수(예: RSS)가 최소가 되는 기울기와 절편을 구하는 방법은?
    - 반복적인 계산을 통해 점진적으로 하강하면서 파라미터를 추정함
  - 어떻게 오류가 작아지는 방향으로 파라미터를 보정할 수 있을까?







## 03. 선형 회귀

- 다항 회귀: *Polynomial* Regression
  - 독립변수와 종속변수의 관계가 선형적일 때:  $y = \alpha x + \beta$
  - 만약, 두 변수의 관계가 2차 방정식, 3차 방정식의 관계라면?

$$- y = \beta_0 + \beta_1 x^1 + \beta_2 x^2 + \dots + \beta_n x^n$$







#### ■ 보스턴 주택 가격의 예측:









## 03. 선형 회귀

## Orange: Test and Score







- 더 나은 성능을 가진 학습 모델을 만들려면?
  - 종속변수를 설명하는데 도움이 되는 독립변수가 여러 개일 때
    - 모든 독립변수가 종속변수를 설명하는데 동일하게 기여하는가?
    - 기여도가 높은 독립변수와 기여도가 낮은 독립변수를 구분
    - 기여도가 낮거나 거의 없는 변수들은 학습 모형에서 제외시킴
  - 설명변수의 숫자가 많을수록 좋은 학습 모델이라 할 수 있는가?
    - 설명변수의 숫자가 적을수록 좋은 학습 모델이라 할 수 있음



# Any Questions?

