Universidade Federal do Ceará Departamento de Engenharia de Teleinformática Curso de Engenharia de Computação

Projeto Computacional (TI0097 - Introdução ao Reconhecimento de Padrões)

Responsável: Prof. Guilherme de Alencar Barreto Data de Início: 12/08/2020 - Data de entrega: 12/10/2020

Item 1 (Estatísticas Descritivas): Usando o conjunto de dados a você atribuído conforme a tabela mostrada na próxima página, pede-se:

1.1 - Escolher dois atributos quaisquer e calcular suas estatísticas descritivas (global e por classe), organizando-as conforme tabela abaixo.

	Média	Desvio-padrão	Mediana	Mínimo/Máximo
10. atributo escolhido	Global	Global	Global	Global
	Classe 1	Classe 1	Classe 1	Classe 1
	i i	:	:	÷ i
	Classe K	Classe K	Classe K	Classe K
20. atributo escolhido	Global	Global	Global	Global
	Classe 1	Classe 1	Classe 1	Classe 1
	:	:	:	:
	Classe K	Classe K	Classe K	Classe K

- 1.2 Escolha uma das classes (de preferência a que possuir mais dados) e estime o (*i*) seu centróide e (*ii*) sua matriz de covariância. Mostrar como foi realizado/feito/implementado este subitem.
- 1.3 Para a classe do Subitem 1.2, fazer o gráfico de dispersão dos atributos escolhidos para resolução do Subitem 1.1. Colocar nomes dos atributos nos eixos dos gráficos.
- 1.4 O diagrama de dispersão do Subitem 1.3 indica a existência de algum tipo de correlação entre os dois atributos escolhidos? Detalhe sua resposta.
- 1.5 Estimar o coeficiente de correlação entre os dois atributos escolhidos para resolução do Subitem 1.3 para a classe escolhida. Mostrar os cálculos e qual método/procedimento foi utilizado para realizá-los.
- 1.6 Determinar os parâmetros *a* (inclinação) e *b* (intercepto) da reta de tendência para os gráfico de dispersão mostrado no Subitem 1.3. Mostrar os cálculos e qual método/procedimento foi utilizado.

- 1.7 Escolha um dos atributos usados na resolução do Subitem 1.1 e gere o histograma correspondente para uma classe de sua escolha. A distribuição do atributo escolhido assemelha-se a uma gaussiana? Há suspeita de presença de outliers nos dados? Detalhe sua resposta.
- 1.8 Aplique o método de Box-Cox aos dados do Subitem 1.7 e, em seguida, aplique a transformação z-score (normalização para média zero e variância unitária). Forneça o histograma para o novo conjunto de medidas. A distribuição dos novos dados ficou mais próxima de uma gaussiana? Detalhe sua resposta.

Item 2 (Classificação de Padrões): Usando o mesmo conjunto de dados do Item 1, pede-se:

2.1 - Implementar classificadores estudados na disciplina e preencher a tabela abaixo.

	Média	Desvio	-padrão	Mediana	Mínima/Máxima
Vizinho mais Próximo	Global	Global		Global	Global
	Classe 1	Classe 1		Classe 1	Classe 1
	÷	÷		:	:
	Classe K	Classe K		Classe K	Classe K
Classificador Linear de Mínimos Quadrados	Global	Global		Global	Global
	Classe 1	Classe 1		Classe 1	Classe 1
	÷	:		:	:
	Classe K	Classe K		Classe K	Classe K
Classificador Quadrático (Geral)	Global	Global		Global	Global
	Classe 1	Classe 1		Classe 1	Classe 1
	÷	÷		:	:
	Classe K	Classe K		Classe K	Classe K
Classificador Quadrático (Variantes 1, 2 e 3)	Global	Global		Global	Global
	Classe 1	Classe 1		Classe 1	Classe 1
	i i	:		i i	i i
	Classe K	Classe K		Classe K	Classe K

Metodologia: Separar aleatoriamente 80% do conjunto de vetores para treinar o classificador linear dos mínimos quadrados e os 20% restantes serão usados para testar. Repetir 100 vezes o procedimento de treino-teste e determinar as estatísticas da tabela após as 100 rodadas.

2.2 – A utilização de PCA melhora o desempenho global de algum dos classificadores do Item 2.1? Em caso afirmativo, qual a dimensão dos vetores de atributos após a aplicação de PCA? Quanto da variância (i.e. informação) presente nos dados originais foi preservada?

Boa Sorte!

Aluno	Conjunto		
ADRIANO RODRIGUES DE PAULA	https://archive.ics.uci.edu/ml/datasets/Abalone		
ANTONIO DE ALENCAR ALVES	https://archive.ics.uci.edu/ml/datasets/Adult		
JOAQUIM RAIMUNDO DO NASCIMENTO NETO	https://archive.ics.uci.edu/ml/datasets/Credit+Approval		
MARCELO ARAUJO LIMA	https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic %29		
MARCELO BRUNO DE ALMEIDA VERAS	https://archive.ics.uci.edu/ml/datasets/Covertype		
MATHEUS FREIRE E SILVA DO NASCIMENTO	https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes		
RENAN ALMEIDA DO NASCIMENTO BARROSO	https://archive.ics.uci.edu/ml/datasets/Wine		
WILLIAM DE ARAUJO SALES	https://archive.ics.uci.edu/ml/datasets/Vertebral+Column		
MÁRCIO MORI	https://archive.ics.uci.edu/ml/datasets/Ionosphere		
PATRÍCIA JAMILLE	https://archive.ics.uci.edu/ml/datasets/Hepatitis		
NATANAEL RODRIGUES	https://archive.ics.uci.edu/ml/datasets/Wall-Following+Robot+Navigation+Data		
SÉRGIO CLÉRIO	https://archive.ics.uci.edu/ml/datasets/Lung+Cancer		
ADRIABOLIVEIRA@GMAIL. COM	https://archive.ics.uci.edu/ml/datasets/Lymphography		
THIAGO.GIL@HOTMAIL.CO	https://archive.ics.uci.edu/ml/datasets/Mushroom		
ARTUR.FHTAGN@GMAIL.CO M	https://archive.ics.uci.edu/ml/datasets/Arcene		
WESLLEY LIOBA CALDAS	https://archive.ics.uci.edu/ml/datasets/Parkinsons		
LEONARDO PINHEIRO DE QUEIROZ	https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations		
ERIC SAMIR	https://archive.ics.uci.edu/ml/datasets/Echocardiogram		
SILAS ALYSSON	https://archive.ics.uci.edu/ml/datasets/ILPD+%28Indian+Liver+Patient+Dataset %29		