Homework Set 3

Problem 1: Consider an MDP with three states $S = \{1, 2, 3\}$, initial state 1, two actions $A = \{g, h\}$, transition function P(s'|s, a) defined as

$$\begin{split} &P(1|1,g)=0.1\;,\quad P(2|1,g)=0.8\;,\quad P(3|1,g)=0.1\;,\\ &P(1|1,h)=0.8\;,\quad P(2|1,h)=0.1\;,\quad P(3|1,h)=0.1\;,\\ &P(1|2,g)=0.1\;,\quad P(2|2,g)=0.1\;,\quad P(3|2,g)=0.8\;,\\ &P(1|2,h)=0.1\;,\quad P(2|2,h)=0.8\;,\quad P(3|2,h)=0.1\;,\\ &P(1|3,g)=0.8\;,\quad P(2|3,g)=0.1\;,\quad P(3|3,g)=0.1\;,\\ &P(1|3,h)=0.1\;,\quad P(2|3,h)=0.1\;,\quad P(3|3,h)=0.8\;,\\ \end{split}$$

reward function R(s,a) outputting 1 for (3,h) and 0 otherwise, and discount factor 0.95 in the infinite-horizon, discounted setting. Consider a deterministic policy π

$$\pi(1) = g$$
, $\pi(2) = g$, $\pi(3) = h$.

- 1. Compute $\mathbf{P}^{\pi} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{S}|}$ which is the probability transition matrix for the induced Markov chain under policy π .
- 2. Recall the definition of the state occupancy measure $\rho_{\mu_0}^{\pi}(s)$ given initial state distribution μ_0 and under policy π :

$$\rho_{\mu_0}^{\pi}(s) = \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(S_t = s | \mu_0, P, \pi).$$

It can be shown that

$$\rho_{\mu_0}^{\pi} = \mu_0 + \gamma \mathbf{P}^{\pi \top} \rho_{\mu_0}^{\pi},$$

where $\rho_{\mu_0}^{\pi} \in \mathbb{R}^{|\mathcal{S}|}$ is a column vector concatenating $\rho_{\mu_0}^{\pi}(s)$ for all $s \in \mathcal{S}$, $\mu_0 \in \mathbb{R}^{|\mathcal{S}|}$ is a column vector concatenating $\mu_0(s)$ for all $s \in \mathcal{S}$, and $\mathbf{P}^{\pi} \in \mathbb{R}^{|\mathcal{S}| \times |\mathcal{S}|}$ is a probability transition matrix for the induced Markov chain under policy π . Hence, $\rho_{\mu_0}^{\pi}(s)$ can be analytically computed by

$$\rho_{\mu_0}^{\pi} = (I - \gamma \mathbf{P}^{\pi \top})^{-1} \mu_0.$$

Use this formula to compute $\rho_{\mu_0}^{\pi}(s)$ and report its value in all states for policy π .

- 3. Compute the normalized state occupancy measure $\bar{\rho}_{\mu_0}^{\pi}$ and report its value in all states for the same policy.
- 4. Now, consider another MDP that is identical to the original MDP except that its transition function P'(s'|s,a) is different in the following entries:

$$P'(1|1,g) = 0.15$$
, $P'(2|1,g) = 0.7$, $P'(3|1,g) = 0.15$,
 $P'(1|2,g) = 0.05$, $P'(2|2,g) = 0.05$, $P'(3|2,g) = 0.9$,
 $P'(1|2,h) = 0.15$, $P'(2|2,h) = 0.8$, $P'(3|2,h) = 0.05$.

Compute the L1-difference between the transition probabilities of these two MDPs at every state under policy π . In particular, report

$$||P'(.|s,\pi(s)) - P(.|s,\pi(s))||_1$$

for all $s \in \mathcal{S}$.

5. Using the results of the previous parts, apply the simulation lemma to upper-bound the difference between the value functions of the given policy over these two MDPs in the initial state s = 1, i.e., $|V'^{\pi}(1) - V^{\pi}(1)|$.

[Note: For this problem, attach all your code (if any) in a programming language of your choice to the end of your submission.]

Problem 2: Consider the same MDP as in Problem 1 with three states $S = \{1, 2, 3\}$, initial state 1, two actions $A = \{g, h\}$, transition function P(s'|s, a) defined as

$$\begin{split} &P(1|1,g)=0.1\;,\quad P(2|1,g)=0.8\;,\quad P(3|1,g)=0.1\;,\\ &P(1|1,h)=0.8\;,\quad P(2|1,h)=0.1\;,\quad P(3|1,h)=0.1\;,\\ &P(1|2,g)=0.1\;,\quad P(2|2,g)=0.1\;,\quad P(3|2,g)=0.8\;,\\ &P(1|2,h)=0.1\;,\quad P(2|2,h)=0.8\;,\quad P(3|2,h)=0.1\;,\\ &P(1|3,g)=0.8\;,\quad P(2|3,g)=0.1\;,\quad P(3|3,g)=0.1\;,\\ &P(1|3,h)=0.1\;,\quad P(2|3,h)=0.1\;,\quad P(3|3,h)=0.8\;,\\ \end{split}$$

reward function R(s,a) outputting 1 for (3,h) and 0 otherwise, and discount factor 0.95 in the infinite-horizon, discounted setting. Consider a deterministic policy π

$$\pi(1) = g$$
, $\pi(2) = g$, $\pi(3) = h$.

- 1. Evaluate policy π using the analytical solution for policy evaluation. Report the value function V^{π} at all states.
- 2. Assume oracle access to P(s'|s,a) where by passing a state-action pair (s,a), a sample $s' \sim P(.|s,a)$ can be generated. Estimate the true transition function P by sampling each state-action pair 100 times. Report the estimated transition function \hat{P} .
- 3. Compute the L1-difference (error) between the true and estimated transition probabilities at every state under policy π . In particular, report

$$\|\hat{P}(.|s,\pi(s)) - P(.|s,\pi(s))\|_{1}$$

for all $s \in \mathcal{S}$.

4. [Bonus] Apply the simulation lemma to upper-bound the difference between the value functions of the given policy over the true and estimated transition functions in the initial state s = 1, i.e., $|\hat{V}^{\pi}(1) - V^{\pi}(1)|$.

[Hint: You can reuse the normalized state occupancy measure computed in Problem 1.]

- 5. Evaluate policy π over the estimated transition function \hat{P} using the analytical solution for policy evaluation. Report the value function \hat{V}^{π} at all states.
- 6. Measure and report the exact difference between the value functions computed in Part 1 and Part 5 in the initial state s = 1, i.e., $|\hat{V}^{\pi}(1) V^{\pi}(1)|$.

[Note: For this problem, attach all your code in a programming language of your choice to the end of your submission.]

Problem 3: Consider linear function approximation for representing the state-action value function in the infinite-horizon, discounted setting. In this case, one may define a set of k features $\phi_l(s,a)$ for $l \in \{1,2,\ldots,k\}$ and approximate the state-action value function as a linear combination of these features

$$Q_{\theta}(s, a) = \theta^{\top} \phi(s, a) = \sum_{l=1}^{k} \theta_{l} \phi_{l}(s, a)$$

weighted by parameters θ_l . Here θ and $\phi(s, a)$ are column vectors concatenating θ_l and $\phi_l(s, a)$, respectively, for all $l \in \{1, 2, ..., k\}$.

1. For an MDP with a finite state space S and a finite action space A, one can use a tabular representation of the state-action value function Q(s,a) for all states and actions. Show that the tabular representation is a special class of linear functions by creating a class of linear functions

$$Q = \{Q_{\theta} : Q_{\theta}(s, a) = \theta^{\top} \phi(s, a) \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}, \ \theta \in \mathbb{R}^k\},$$

parametrized by θ that is equivalent to the tabular representation. Determine how the number of features k and the vector-valued function $\phi(s, a) : \mathcal{S} \times \mathcal{A} \to \mathbb{R}^k$ that maps each state-action pair to a k-dimensional feature vector should be defined.

2. Consider an MDP with a finite state space S and a finite action space A. Suppose we have identified that the state space and the action space can be partitioned based on the similarity between the states and actions:

$$S = S_1 \cup S_2 \cup \ldots \cup S_n \text{ such that } S_{j_1} \cap S_{j_2} = \emptyset \text{ for all } j_1 \neq j_2,$$
$$A = A_1 \cup A_2 \cup \ldots \cup A_m \text{ such that } A_{j_1} \cap A_{j_2} = \emptyset \text{ for all } j_1 \neq j_2,$$

i.e., the subsets S_j and A_j group the similar states and actions (in terms of value functions), respectively. Create a class of linear functions

$$Q = \{Q_{\theta} : Q_{\theta}(s, a) = \theta^{\top} \phi(s, a) \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}, \ \theta \in \mathbb{R}^k\},$$

parametrized by θ that uses this partitioning to efficiently represent the state-action value function Q(s,a) for all states and actions. Determine how the number of features k and the vector-valued function $\phi(s,a): \mathcal{S} \times \mathcal{A} \to \mathbb{R}^k$ that maps each state-action pair to a k-dimensional feature vector should be defined.

3. [Bonus] Suppose we want to use supervised learning to approximate the state-action value function $Q^{\pi}(s, a)$ of an MDP with a large state space \mathcal{S} and large action space \mathcal{A} under policy π . We have collected a data set $\{x^i = (s^i, a^i), y^i\}_{i=1}^N$ of size N, where x^i represents the ith sampled state-action pair and y^i represents a sampled return for x^i . The goal is to learn the best fit to the data by empirical risk minimization with square loss, i.e., solving

$$\hat{Q}^{\pi}(s, a) = \operatorname*{arg\,min}_{Q \in \mathcal{Q}} \sum_{i=1}^{N} \left(Q(s^{i}, a^{i}) - y^{i} \right)^{2},$$

where

$$Q = \{Q_{\theta} : Q_{\theta}(s, a) = \theta \phi(s, a) \text{ for all } s \in \mathcal{S} \text{ and } a \in \mathcal{A}, \ \theta \in \mathbb{R}\}$$

represents a class of linear functions based on a single (known) feature $\phi(s, a)$ and parametrized by a single parameter θ . Assume that

$$\sum_{i=1}^{N} \phi^{2}(s^{i}, a^{i}) \neq 0.$$

Derive a closed-form solution for $\hat{Q}^{\pi}(s, a)$.

[Hint: You can use the fact that this linear parametrization makes the objective function of the minimization problem a convex function in θ such that the solution is a stationary point of the objective function, i.e., a point where the derivative is zero.]