Instituto Federal do Piauí Tecnologia em Análise e Desenvolvimento de Sistemas Introdução a Computação Prof. Ricardo Ramos

Tabela de Conversão de Decimal para Binário

1 byte

27	2^6	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	Decimal
128	64	32	16	8	4	2	1	
0	0	0	0	1	0	1	0	10 ₁₀
0	1	1	0	0	1	0	0	100 ₁₀
1	1	1	1	1	1	1	1	255 ₁₀

Exercícios:

- 1. Converter 87₁₀ para binário
- 2. Converter 146₁₀ para binário
- 3. Converter 270₁₀ para binário
- 4. Converter 101011102 para decimal
- 5. Converter 110000010₂ para decimal

Aritmética Computacional

1. Binário - Sinal e Magnitude (04 bits)

1.1 Soma:

1.1.1 Mesmo sinal: somam-se as magnitudes e conserva-se o sinal das parcelas

1.1.2 Sinais diferentes: subtrai-se a magnitude menor da maior e conserva-se o sinal da que possuir maior magnitude. Obs: serve também para a **subtração**, ver Ex 3.

Ex 1:
$$2 + (-5)$$
 Ex 2: $(-7) + 3$ Ex 3: $6 - 3 = 6 + (-3)$

```
      1 1 0 1
      1 1 1 1
      0 1 1 0

      0 0 1 0
      0 0 1 1
      1 0 1 1

      -------
      1 0 1 1 (-3)
      1 1 0 0 (-4)
      0 0 1 1 (+3)
```

2. Octal

2.1 Soma

```
Ex 1: 2247 + 3566

2 2 4 7
3 5 6 6
------
6 0 3 5

1 Passo: 7 + 6 = 13 (não existe no sistema octal) - 8 = 5 (vai 1)
2 Passo: 1 + 4 + 6 = 11 (não existe no sistema octal) - 8 = 3 (vai 1)
3 Passo: 1 + 2 + 5 = 8 (não existe no sistema octal) - 8 = 0 (vai 1)
4 Passo: 1 + 2 + 3 = 6 (existe no sistema octal)

2.2 Subtração
```

2.2 Subtração

```
Ex 1: 7654 - 2367

7 6 5 4
2 3 6 7
------
5 2 6 5

1 Passo: 4 - 7 não é possível, então faz-se 8 + 4 = 12 - 7 = 5 (vem 1)
2 Passo: 5 - 1 = 4, 4 - 6 não é possível, então faz-se 8 + 4 = 12 - 6 = 6 (vem 1)
3 Passo: 6 - 1 = 5, 5 - 3 = 2
4 Passo: 7 - 2 = 5
```

3. Hexadecimal

3.1 Soma

3.2 Subtração

4. Binário - Complemento de 1 (04 bits)

Inverte-se o número de cada algarismo, ou seja, quem for 0 passa a ser 1 e quem for 1 passa para 0.

5. Binário - Complemento de 2 (04 bits)

Inverte-se o número de cada algarismo, ou seja, quem for 0 passa a ser 1 e quem for 1 passa para 0. Soma-se 1 ao algarismo mais à direita.

6. Multiplicação binária

$$0 \times 0 = 0 \\
0 \times 1 = 0 \\
1 \times 0 = 0 \\
1 \times 1 = 1$$

$$1 \quad 0 \quad 1_2 \qquad \longrightarrow \qquad 5_{10} \\
\times \frac{1 \quad 1 \quad 0_2}{0 \quad 0 \quad 0} \qquad \longrightarrow \qquad 6_{10} \\
1 \quad 0 \quad 1 \qquad 1 \\
1 \quad 1 \quad 1 \quad 1 \quad 0_2 \qquad \longrightarrow \qquad 30_{10}$$

Observação: vídeo sobre multiplicação e divisão binária https://www.youtube.com/watch?

v=WOFKKTUWFd0

7. Representação de Número Fracionário

$$10.101_2 = 1x2^1 + 1x2^0$$
 (parte inteira)
+ $1x2^{-1} + 0x2^{-2} + 1x2^{-3}$ (parte fracionária)
2 + $0.5 + 0.125 = 2.62510$