MATH211: Linear Methods I

Matthew Burke

Thursday 11th October, 2018

Lecture on Thursday 11th October, 2018

Lines and planes

Scalar product

Orthogonality

Projections

Last time

► Eulidean space

► Addition scalar multiplication etc..

ightharpoonup Lines and planes in \mathbb{R}^2 and \mathbb{R}^3

Lines and planes

Two dimensions

Definition

A parametric (vector) equation describing a line in \mathbb{R}^2 is a vector equation of the form

$$\vec{x} = \vec{c} + s\vec{d}$$

for \vec{x} . \vec{c} and \vec{d} in \mathbb{R}^2 and s in \mathbb{R} .

Definition

A parametric (vector) equation describing a line in \mathbb{R}^3 is a vector equation of the form

$$\vec{x} = \vec{c} + s\vec{d}$$

for \vec{x} . \vec{c} and \vec{d} in \mathbb{R}^3 and s in \mathbb{R} .

Parametric forms of 3D lines and planes

Definition

A parametric (vector) equation describing a plane in \mathbb{R}^3 is a vector equation of the form

$$\vec{x} = \vec{c} + s\vec{d} + t\vec{e}$$

for \vec{x} , \vec{c} , \vec{d} and \vec{e} in \mathbb{R}^3 and s, t in \mathbb{R} .

Definition (Symmetric form of equation for line)

$$\frac{x_1+b_1}{a_1}=\frac{x_2+b_2}{a_2}=\frac{x_3+b_3}{a_3}$$

where $a_i \neq 0$.

Converting between various forms

Conversion example

Example

Write down all three forms for the line

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + s \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

Example

Write down a parametric equation for the line passing through

$$\left[\begin{array}{c}4\\-7\\1\end{array}\right]$$

and parallel to the line

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ -7 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ -5 \\ 3 \end{bmatrix}$$

Example

Write down the equation for the plane passing through the following three points.

$$\left[\begin{array}{c}1\\0\\1\end{array}\right], \left[\begin{array}{c}1\\2\\0\end{array}\right], \left[\begin{array}{c}0\\0\\3\end{array}\right]$$

Example

For the following two lines find the point of intersection.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$

Scalar product

Definition (Two dimensions)

If
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 then $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2}$

Definition (Three dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 then $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}$

Definition (n dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 then $\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$

Distance between two points

Definition (Two dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ then

$$d(\vec{x}, \vec{y}) = d(0, \vec{y} - \vec{x}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

Scalar product

Definition (Three dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ then

$$d(\vec{x}, \vec{y}) = d(0, \vec{y} - \vec{x}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}$$

Definition (n dimensions)

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ then

$$d(\vec{x}, \vec{y}) = d(0, \vec{y} - \vec{x}) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

Lemma (Scalar multiplication)

If \vec{v} is a non-zero vector and a is a scalar then

$$\|a\vec{v}\| = |a|\|\vec{v}\|$$

Examples

Definition

A *unit vector* is a vector with length equal to 1.

Example

The following vectors are unit vectors:-

$$\left[\begin{array}{c}1\\0\\0\end{array}\right], \left[\begin{array}{c}0\\1\\0\end{array}\right], \left[\begin{array}{c}0\\0\\1\end{array}\right], \left[\begin{array}{c}\sqrt{\frac{1}{2}}\\0\\-\sqrt{\frac{1}{2}}\end{array}\right]$$

Examples

Example

Find the distance between

$$\begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} \text{ and } \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$

Example

Find the length of

$$\begin{bmatrix} -3 \\ 4 \end{bmatrix} \text{ and } \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

Scalar/dot product

Definition

If \vec{x} and \vec{y} are in \mathbb{R}^n then

$$\vec{x} \cdot \vec{y} = \sum_{k=1}^{n} x_k y_k$$
$$= x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

And so in fact

$$\|\vec{x}\| = \sqrt{\vec{x} \cdot \vec{x}}$$

Properties of the scalar product

Theorem

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors in \mathbb{R}^3 (or \mathbb{R}^2) and let $k \in \mathbb{R}$.

- 1. $\vec{u} \cdot \vec{v}$ is a real number
- 2. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- $\vec{u} \cdot \vec{0} = 0$
- 4. $\vec{u} \cdot \vec{u} = |\vec{u}|^2$
- 5. $(k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (k\vec{v})$
- 6. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ $\vec{u} \cdot (\vec{v} - \vec{w}) = \vec{u} \cdot \vec{v} - \vec{u} \cdot \vec{w}$

Scalar product in terms of angle

Definition (Scalar product in terms of angle)

$$\vec{x} \cdot \vec{y} = |x||y|\cos(\theta)$$

Example

lf

$$u = \begin{bmatrix} 1 \\ 2 \\ 0 \\ -1 \end{bmatrix} \text{ and } v = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

then find $u \cdot v$.

Example

Find the angle between

$$\left[\begin{array}{c}1\\0\\-1\end{array}\right] \text{ and } \left[\begin{array}{c}0\\1\\-1\end{array}\right]$$

Examples

Example

Find the angle between

$$\left[\begin{array}{c} 7\\ -1\\ 3 \end{array}\right] \text{ and } \left[\begin{array}{c} 1\\ 4\\ -1 \end{array}\right]$$

Questions?

Orthogonality

Definition

Two vectors u and v are orthogonal iff

$$u \cdot v = 0$$

Note that a zero vector is orthogonal to any other vector.

Orthogonal complement

Definition (Slightly non-standard)

If v is a vector then the *orthogonal complement* v^{\perp} of v is the set of all vectors u such that $u \cdot v = 0$.

Therefore

- ▶ If $v \neq 0 \in \mathbb{R}^1$ then $v^{\perp} = 0$.
- ▶ If $v \neq 0 \in \mathbb{R}^2$ then v^{\perp} is the line perpendicular to v.
- ▶ If $v \neq 0 \in \mathbb{R}^2$ then v^{\perp} is a plane.

In general if $v \neq 0 \in \mathbb{R}^n$ then v^{\perp} is a (n-1)-dimensional subspace.

Planes via normal vector

- Let P be a point in the plane and n a normal vector to the plane.
- For every point Q in the plane the vector \overrightarrow{PQ} is orthogonal to n.
- Therefore the solutions to

$$n \cdot (x - P) = 0$$

form a plane.

Examples

Example

Find all vectors orthogonal to both

$$\begin{bmatrix} -1 \\ -3 \\ 2 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Example

Are the following the vertices of a right angled triangle?

$$\begin{bmatrix} 4 \\ -7 \\ 9 \end{bmatrix}, \begin{bmatrix} 6 \\ 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 7 \\ 10 \\ -6 \end{bmatrix}$$

Example

Example

Find an equation of the plane containing

$$\left[\begin{array}{c}1\\-1\\0\end{array}\right]$$

orthogonal to

$$\begin{bmatrix} -3 \\ 5 \\ 2 \end{bmatrix}$$

Example

A rhombus is a parallelogram with sides of equal length. Prove that the diagonals of a rhombus are perpendicular.

Questions?

Projections

Projection onto a vector

If e is a unit vector then

$$e \cdot v = |e||v|\cos\theta = |v|\cos\theta$$

and so $e \cdot v$ is the length of v projected onto the line in direction e.

Projection onto a vector

Therefore we can write

$$v = (e \cdot v)e + (v - e(e \cdot v))$$

where $(e \cdot v)e$ is parallel to e and $(v - e(e \cdot v))$ is orthogonal to e.

Examples

Example

Let

$$v = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \text{ and } u = \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

Find vectors v_0 and v_1 such that $v = v_0 + v_1$, v_0 is orthogonal to u and v_1 is parallel to u.

Example

Example

lf

$$p = \left[\begin{array}{c} 3 \\ 2 \\ -1 \end{array} \right]$$

find the closest point to *p* on the following line:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + s \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$

Example

Example

Find the shortest distance from the point

$$\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$

to the plane with equation 5x + y + z = -1.

Projections 000000

Questions?