1. Numerical Results

In this paper, we have applied six supervised machine learning techniques termed as Random Forest, XGBoost, Decision Tree, K-nearest Neighbours, Naïve Bayes approach, and Logistic Regression for the Credit Card Fraud detection dataset. We have performed these algorithms on a dataset comprising of European Cardholders in which the total number of samples is **284807** and the total number of attributes is **31**. Last column represents a class label where positive class represents Fraudulent transaction and negative class represents Legit/Non-fraudulent transaction. In our experiments, **397216** samples are chosen as training data and remaining **170236** samples for test data. Here, True positive (TP) represents number of samples with the Fraudulent transactions predicted as those having Fraudulent transactions. False positive (FP) represents number of samples with the Legit Transactions predicted as those having Fraudulent transactions. True negative (TN) represents number of samples with the Legit Transactions predicted as those having Legit Transactions, and False negative (FN) represents number of samples with the Fraudulent transactions predicted as those having Legit transactions. Here, we have used the following quality measures to check the performance of machine learning techniques:

- Accuracy = (TP + TN)/(TP + TN + FP + FN)
- Recall (Sensitivity or true positive rate) = TP/(TP + FN)
- Specificity (True negative rate) = TN/(TN + FP)
- Precision = TP/(TP + FP)
- Negative predicted value (NPV) = TN/(TN + FN)
- False positive rate (FP rate) = FP/(FP + TN)
- Rate of misclassification (RMC) = (FP + FN)/(TP + TN + FP + FN)
- F1-measure = 2 * (precision * recall)/(precision + recall)
- G-mean = sqrt(precision*recall)

The confusion matrix of prediction results for Random Forest, XGBoost, Decision Tree, K-nearest Neighbours, Naïve Bayes approach, and Logistic Regression are tabulated in Tables 1, 2, 3, 4, 5 and 6. One can observe from these tables that Random Forest, XGBoost, Decision Tree, K-nearest Neighbours are having the highest number of true positive (with the Fraudulent transactions predicted as those having Fraudulent transactions) and Random Forest is having the highest number of true negatives (the Legit Transactions predicted as those having Legit Transactions). Further, Random Forest, XGBoost, Decision Tree, K-nearest Neighbours are having the lowest number of false negative and Random Forest is having the lowest number of false positive. We have also drawn the classification results of these methods in Fig. 1. We have computed the value of TP, FP, TN and FN for Random Forest, XGBoost, Decision Tree, K-nearest Neighbours, Naïve Bayes approach, and Logistic Regression and depicted in Table 6. Further, we have computed quality measures termed as accuracy, recall, true positive rate, precision, negative predicted value, false positive rate, rate of misclassification, F1-measure, G-mean and ROC_AUC_Score based on predicted result by using Random Forest, XGBoost, Decision Tree, K-nearest Neighbours, Naïve Bayes approach, and Logistic Regression and depicted in Table 7 and also shown in Fig. 2. Here, one can conclude from this Table 7 that Random Forest has performed better among all six algorithms, whereas Naïve Bayes is having the lowest accuracy. In terms of F1-measure, Random Forest performed better than other compared methods.

1. Random Forest

		Confusion Matrix for Random Forest					
		Actual					
pa		Positive (1)	Negative (0)	Total Actual			
Predicted	Positive	TP	FP				
rec	(1)	85222	16	85238			
Δ	Negative	FN	TN				
(0)		0	84714	84714			
Total	Predicted	85222	84730	169952			

2. XGBoost

	Confusion Matrix for XGBoost					
Actual						
	Positive (1)	Negative (0)	Total Actual			
Positive	TP	FP				
(1)	85222	19	85241			
Positive (1) Negative (0)	FN	TN				
	0	84711	84711			
edicted	85222	84730	169952			
	(1) Negative (0)	Positive (1) 85222 Negative (0) 0	Positive (1) Negative (0) Positive (1) FP FP (1) 85222 19 Negative (0) TN TN (0) 0 84711			

3. Decision Tree

		Confusion Matrix for Decision Tree		
			Actual	
eq		Positive (1)	Negative (0)	Total Actual
<u>ic</u>	Positive	TP	FP	
Predicted	(1)	85222	55	85277
Ф	Negative	FN	TN	
	(0)	0	84675	84675
Total P	redicted	85222	84730	169952

		Confusion Matrix for K-Nearest Neighbours		
		Actual		
pa		Positive (1)	Negative (0)	Total Actual
Predicted	Positive	TP	FP	
red	(1)	85222	102	85324
Д	Negative	FN	TN	
	(0)	0	84628	84628
Total P	redicted	85222	84730	169952

5. Naïve -Bayes

		Confusion Matrix for Naïve -Bayes		
			Actual	
eq		Positive (1)	Negative (0)	Total Actual
Predicted	Positive	TP	FP	
rec	(1)	64919	812	65731
Δ.	Negative	FN	TN	
	(0)	20303	83918	104221
Total P	redicted	85222	84730	169952
Total P				

6. Logistic Regression

		Confusion Matrix for Logistic Regression		
			Actual	
eq		Positive (1)	Negative (0)	Total Actual
Predicted	Positive	TP	FP	
red	(1)	77831	3181	81012
Д	Negative	FN	TN	
	(0)	7391	81549	88940
Total F	Predicted	85222	84730	169952

Table 6- Values of TP, FP, TN, and FN for Random Forest, XGBoost, Decision Tree, K-nearest Neighbours, Naïve Bayes approach, and Logistic Regression

	Random Forest	XGBoost	Decision tree	KNN	Naïve Bayes	Logistic Regression
TP	85222	85222	85222	85222	64919	77831
FP	16	19	55	102	812	3181
TN	84714	84711	84675	84628	83918	81549
FN	0	0	0	0	20303	7391

Table 7- Classification performance measure indices of Random Forest, XGBoost, Decision Tree, K-nearest Neighbours, Naïve Bayes approach, and Logistic Regression

	Random Forest	XGBoost	Decision tree	KNN	Naïve Bayes	Logistic Regression
Accuracy	0.99990586	0.99988820	0.99967638	0.99939983	0.87575904	0.93779420
Recall (Sensitivity or true positive rate)	1.00000000	1.00000000	1.00000000	1.00000000	0.76176339	0.91327357
Specificity (True negative rate)	0.99981116	0.99977576	0.99935088	0.99879618	0.99041662	0.96245722
Precision	0.99981229	0.99977710	0.99935504	0.99880456	0.98764662	0.96073421
Negative predicted value (NPV)	1.00000000	1.00000000	1.00000000	1.00000000	0.80519281	0.91689903
False positive rate (FP rate)	0.00018884	0.00022424	0.00064912	0.00120382	0.00958338	0.03754278
Rate of misclassification (RMC)	0.00009414	0.00011180	0.00032362	0.00060017	0.12424096	0.06220580
F1-measure	0.99990614	0.99988854	0.99967742	0.99940192	0.86012202	0.93640290
G-mean	0.99990614	0.99988855	0.99967747	0.99940210	0.86738287	0.93670335
ROC_AUC_Score	0.99993	0.999889	0.999707	0.999402	0.89642	0.938817

99.992939	0.999930	1.000000	0.999859	0.999930
	0.00000	1.000000	0.999859	0.999930
99.988820	0.000000			
	0.333003	1.000000	0.999777	0.999889
99.970580	0.999707	1.000000	0.999414	0.999707
99.939983	0.999402	1.000000	0.998805	0.999402
93.779420	0.938817	0.913274	0.960734	0.936403
87.575904	0.896420	0.761763	0.987647	0.860122
	99.970580 99.939983 93.779420	99.970580 0.999707 99.939983 0.999402 93.779420 0.938817	99.970580 0.999707 1.000000 99.939983 0.999402 1.000000 93.779420 0.938817 0.913274	99.970580 0.999707 1.000000 0.999414 99.939983 0.999402 1.000000 0.998805 93.779420 0.938817 0.913274 0.960734