# Mathemathical Modelling

## isakhammer

## 2020

# Contents

| 1 | Lec           | ture 1                                                        | 3 |  |  |  |  |  |  |  |
|---|---------------|---------------------------------------------------------------|---|--|--|--|--|--|--|--|
|   | 1.1           | Practical Information                                         | 3 |  |  |  |  |  |  |  |
|   | 1.2           | Dimensional Analysis                                          |   |  |  |  |  |  |  |  |
|   | 1.3           | Fundamental Units                                             |   |  |  |  |  |  |  |  |
|   | 1.4           | Trinity of the first atomic blast                             |   |  |  |  |  |  |  |  |
|   | 1.5           | Steady-state single phase flow in a uniform straight pipeline |   |  |  |  |  |  |  |  |
| 2 | Lecture 2     |                                                               |   |  |  |  |  |  |  |  |
|   | 2.1           | Practical Information                                         | 3 |  |  |  |  |  |  |  |
|   | 2.2           | Recall                                                        | 3 |  |  |  |  |  |  |  |
|   | 2.3           | Scaling                                                       | 3 |  |  |  |  |  |  |  |
|   | 2.4           | Buckinghams Pi-Theorem                                        | 3 |  |  |  |  |  |  |  |
|   | 2.5           |                                                               | 7 |  |  |  |  |  |  |  |
| 3 | Lec           | Lecture 3                                                     |   |  |  |  |  |  |  |  |
|   | 3.1           | Recall                                                        | ) |  |  |  |  |  |  |  |
|   | 3.2           | Sinking Ball                                                  | ) |  |  |  |  |  |  |  |
|   |               | 3.2.1 Scaling                                                 | L |  |  |  |  |  |  |  |
|   | 3.3           | Let Analyze The equation                                      | 3 |  |  |  |  |  |  |  |
|   |               | 3.3.1 Case B                                                  | 3 |  |  |  |  |  |  |  |
|   |               | 3.3.2 Case C: High V and high friction                        | 3 |  |  |  |  |  |  |  |
|   | 3.4           | Turbulence                                                    | 1 |  |  |  |  |  |  |  |
| 4 | Lecture 31/08 |                                                               |   |  |  |  |  |  |  |  |
|   | 4.1           | Turbulence                                                    | 5 |  |  |  |  |  |  |  |
|   | 4.2           | Regular Perturbation Theory                                   | 7 |  |  |  |  |  |  |  |
|   | 4.3           | The Projectile Problem                                        | 7 |  |  |  |  |  |  |  |
| 5 | Lec           | ture 02/09                                                    | L |  |  |  |  |  |  |  |
|   | 5.1           | ·                                                             | 2 |  |  |  |  |  |  |  |
|   |               | 5.1.1 Scaling the model                                       | 5 |  |  |  |  |  |  |  |

| 6 | Lecture $07/09$       |                                                         |    |  |  |  |
|---|-----------------------|---------------------------------------------------------|----|--|--|--|
|   | 6.1                   | Emergent Osmotic Concentration                          | 26 |  |  |  |
|   | 6.2                   | Boundary Value Problem                                  | 26 |  |  |  |
|   | 6.3                   | Singular Perturbation                                   | 29 |  |  |  |
| 7 | Singular Perturbation |                                                         |    |  |  |  |
|   | 7.1                   | Singular perturbation applied to differential equations | 31 |  |  |  |
|   | 7.2                   | Further look at Singular Perturbation                   | 32 |  |  |  |
|   | 7.3                   | Biochemical reaction kinetics                           | 33 |  |  |  |
| 8 | Lecture 2020-09-14    |                                                         |    |  |  |  |
|   | 8.1                   | Biochemical example, kinetics                           | 35 |  |  |  |
|   | 8.2                   | Stability                                               | 38 |  |  |  |
|   |                       | 8.2.1 Dynamical Systems                                 | 38 |  |  |  |
|   |                       | 8.2.2 Linearization                                     |    |  |  |  |
| 9 | Ref                   | erences                                                 | 41 |  |  |  |

## 1 Lecture 1

#### 1.1 Practical Information

You need to know

- Separable 1. order equations.
- Linear 1. order equations.
- 2. order linear equations with constant coefficients.

## 1.2 Dimensional Analysis

Basic facts

- Any physical relation has to make sense dimensionally.
- Any physical relation must be valid for any choice of fundamental units.

Remark.

Make sure remark looks better

- Forbidden 3m + 2kg = ?
- m = f(x, t) is legal
- $e^{-t}$  and  $s = 5t^2$ , is nonsense
- Dimension is length, mass, energy, etc.
- Unit is meter, feet, year, etc

numerical value

Given a variable R, we write R =

$$(R)$$
  $(R)$ 

If we have a physical relation that is dimensionall correct that

$$f(R_1, R_2, ..., R_n) = 0 \rightarrow f(v(R_1), v(R_2), ..., v(R_n)) = 0$$

#### 1.3 Fundamental Units

Given units  $F_1, F_2, \ldots, F_m$  for fundamental if

$$F_1^{\alpha_1}, F_2^{\alpha_2}, \dots, F_m^{\alpha m} = 0 \quad \rightarrow \quad \alpha_1 = \alpha_2 = \dots = 0$$

This units are then independent. **Example.** The units kg, m, s are independent.

**Example.** In a right angle triangle with angle  $\alpha$  and hypothenus c. We know the area A is uniquely determined by  $\alpha$  and c

$$A = f\left(c, \alpha\right)$$

 $\alpha$  is dimensialless since  $\alpha = \frac{s}{r}$ . Since A scales as the square of the length, then is

$$f\left(ac,\alpha\right) = a^{2} f\left(c,\alpha\right)$$
$$c = 1 \to f\left(a,\alpha\right) = a^{2} f\left(1,\alpha\right) = a^{2} h\left(\alpha\right)$$

Which then ends up with the relation

$$A = a^2 h\left(\alpha\right)$$

### Make corollary environmet

Lets derive  $A=a^2h\left(\alpha\right)$  somwhat differently. We know there is a relation  $f\left(A,c,\alpha\right)=0$ . We want to introduce new variables.

$$\Pi_1 = \frac{A}{c^2}, \quad c = c_1, \quad \alpha = \alpha_1$$

which means  $f\left(c^2\Pi_1, c, \alpha\right) = 0$  and  $h\left(\Pi_1, \alpha, c\right) = 0$ . h must be dimensially consistent  $\to h$  must be independent of c.

$$h\left(\Pi_{1},\alpha\right) = 0 \leftrightarrow \Pi_{1} = k\left(\alpha\right)$$
$$\rightarrow \frac{A}{c^{2}} = k\left(\alpha\right) \quad \leftrightarrow \quad A = c^{2}k\left(\alpha\right).$$

## 1.4 Trinity of the first atomic blast

We assume there is a relation

$$f(E, \rho, r, t) = 0$$

- Energy:  $E, [E] = kgm^2s^{-2}$
- Mass density of air:  $\rho$ ,  $[\rho] = kg^{-3}$
- Radius: r, [r] = m
- Time: t, [t] = s

We choose 3 independent variables, say  $r, t, \rho$ . Also we call  $r, t, \rho$  core variables. Let is define a dimensionalless number  $\Pi_1$  such that

$$[\Pi_1] = 0$$

The relation is now given by  $h(\Pi, t, r, \rho) = 0$ , where h is independent of t, r and  $\rho$ . Which in fact is  $h(\Pi) = 0$ , where  $\Pi_1 = c$  s.t. [c] = 1.

Given by the definitnion is

$$\frac{Et^2}{\rho r^5} = c \quad \to \quad E = \frac{c\rho r^5}{t^2}$$

Using  $\rho = 12kgm^{-3}$ , r = 110m,  $t = 6 \cdot 10^{-3}$  do we end up with the relation

$$E = c \cdot 7.5 \cdot 10^{13} J$$

# 1.5 Steady-state single phase flow in a uniform straight pipeline

#### Figure of a pipe

Pipe with flow u, length L and pressure drop  $\Delta p$  Then there is a relation between

- L: length, [L] = m
- D: diameter [D] = m
- u: flow rate  $[u] = ms^{-1}$
- $\Delta p$ : Pressure drop,  $\left[\Delta kgm^{-1}s^{-2}\right]$
- $\mu$ : (Shear) viscousity  $[\mu] = kgm^{-1}s^{-1}$
- $\rho$ : mass density:  $[\rho] = kgm^{-3}$
- E: Wall roughness: [E] = m

We have to choose 3 core variables and they are not unique. Since we have 3 independent units  $\rho$ , u, D are independent such that it can be a core variable:

$$\Pi_1 = \frac{L}{D}$$
 ,  $\Pi_2 = \frac{\Delta p}{\rho u^2}$  ,  $\Pi_3 = \frac{\rho}{\mu}$  ,  $\Pi_4 = \frac{E}{D}$ 

Then the relation is

$$f\left(\Pi_{1}, \Pi_{2}, \Pi_{3}, \Pi^{4}, \rho, D, u\right) = 0 \quad \Pi_{2} = h\left(\Pi_{1}, \Pi_{3}, \Pi_{4}\right) \leftrightarrow \frac{\Delta p}{\rho u^{2}} = h\left(\Pi_{1}, \Pi_{3}, \Pi_{4}\right)$$

$$\rightarrow \frac{\Delta p}{u^{2}\rho} = \Pi_{1}k\left(\Pi_{3}, \Pi_{4}\right)$$

$$\Delta p = u^{2}\rho \frac{L}{D}k\left(\frac{\rho Du}{\mu}, \frac{E}{D}\right)$$

$$\text{measure} \quad \frac{\rho D\mu}{\mu} \quad , \quad k = \frac{\Delta pD}{u^{2}\rho}$$

## 2 Lecture 2

#### 2.1 Practical Information

Ask for zoom meeting. ola.mahlen@ntnu.no, wednesday 13-14.

#### 2.2 Recall

Last time did we consider steady-state single phase in a flow in a pipe.

• Assuming  $f(L, \Delta p, u, \mu, D, E, \rho) = 0$  we arrive with this formula

$$\frac{\Delta pD}{u^2 \rho L} = k \begin{pmatrix} \text{Reynhold number} \\ \hline \frac{\rho uD}{\mu} \\ \\ \text{Relative wall roughness} \end{pmatrix}$$

• Dimensionless numbers are often called **dimensionless groups**. Such numbers are independent of choice of fundamental units. They have real physical meaning. **Reynholds number**  $R_e$  essentially define what type of flow. Usually  $R_e < 2000$  is it laminar flow and  $R_e > 4000$  turbulent flow.

## 2.3 Scaling

Let a pipe have diameter D and flow rate u such that  $t_v = \frac{D}{u}$ . Then can we describe

$$t_{\alpha} = \frac{D^2}{\frac{\mu}{e}}$$

where  $\mu$  is the kinematic viscosity. Then is  $R_e$  defined such that

$$R_e = \frac{t_\alpha}{t_v}$$

Assume we have the relation

$$R_1 = f(R_2, \dots, R_m)$$

Such that it exist an

$$\Pi_1 = g(\Pi_2, \Pi_2, \dots, \Pi_{m-k}).$$

#### 2.4 Buckinghams Pi-Theorem

Assume we have a dimensionally valid relation  $f(R_1, \ldots, R_m) = 0$  and a set of fundemental units  $F_1, F_2, \ldots, F_n$  such that

$$[R_j] = F_1^{a_{j1}} F_2^{a_{j2}} \dots F_n^{a_{jn}} \quad j = 1, 2, \dots, m$$

This then defines the dimension matrix A given by

| Table 1:    |          |          |  |          |  |  |  |  |  |  |
|-------------|----------|----------|--|----------|--|--|--|--|--|--|
|             | $F_1$    | $F_2$    |  | $F_n$    |  |  |  |  |  |  |
| $R_1$ $R_2$ | $a_{11}$ | $a_{11}$ |  | $a_{1n}$ |  |  |  |  |  |  |
| $R_2$       | $a_{21}$ | $a_{21}$ |  | $a_{2n}$ |  |  |  |  |  |  |
| :           |          | ٠        |  |          |  |  |  |  |  |  |
| $R_n$       | $a_{m1}$ |          |  | $a_{mn}$ |  |  |  |  |  |  |

#### Fix better table environment

Let rank(A) = dim(row(A)) = k. This translates to that we have k dimensionally independent variables. Choosing k linearly independent row vectors, corresponds to choosing core variables. Let this basis be  $\mathbf{a}_{i1}, \mathbf{a}_{i2}, \ldots, \mathbf{a}_{ik}$ . Let the rest of the row vectors be

$$\mathbf{a}_{j_1}, \mathbf{a}_{j_2}, \dots, \mathbf{a}_{j_{m-k}}$$

Then is  $\mathbf{a}_{j_r} = \sum_{s=1}^k C_{j_r,s} \mathbf{a}_{\mathbf{i}_s}$  where  $r=1,\ldots,m-k$ . We end up with the equation

$$\Pi_r = \frac{R_{j_r}}{R_{i_1}^{r_{j_r,1}} R_{j_2}^{a_{j_r,2}} \dots R_{j_k}^{a_{j_r,k}}}$$

Are dimensionally numbers.

Our relation becomes

$$g(\Pi_1, \dots, \Pi_{m-k}) = 0, \quad \begin{cases} i_1, i_2, \dots, i_k \\ j_1, \dots, j_{m-k} \end{cases}$$

Example. Swinging pendulum

Assume there is a relation

$$f(w, \alpha_0, L, M, g,) = 0$$

where w is the frequency, g gravitational acceleration, M mass,  $\alpha_0$  the swinging angle. We can set L, M, g as core variables such that

$$\begin{bmatrix} \frac{L}{g} \end{bmatrix} = s^2 \quad \rightarrow \quad \begin{bmatrix} \frac{L}{g} w^2 \end{bmatrix} = 1$$
 
$$f\left(w, \alpha_0, L, M, g\right) = 0 \implies \quad g\left(\alpha_0, \frac{Lw^2}{g}\right) = 0$$

## 2.5 Scaling

We have a problem at hand, usually differential equations. Then we tru to find representative scales for the various variables, and then write the equation on so-called fimensionless form. This has several advantages

- Our dimensionless variables are of order 1 .
- We get rid of a lot of physical constants.
- It makes us able to see what terms are "small" in the equation. The idea is to introduce dimensionless variables by introducing appropriate scales. If we have a stick of length L, we choose L as length scale i.e

 $x^* = Lx$  Where x is dimensionless

**Example.** Heat flow in a rod with length L. Let  $u^*(x^*,t^*)$  be the temperatur with the boundary conditions

$$u^*(0,t^*) = 0$$
  $u^*(L,t^*) = 0$ 

If we let the model be

$$\frac{\partial u^*}{\partial t^*} = D \cdot \frac{\partial^2 u^*}{\partial x^{*2}}, \quad u^* (0, t^*) = 0 \quad u^* (L, t^*) = 0$$
$$u^* (x^*, 0) = u_0 \sin \left( \pi \frac{x^*}{L} \right)$$

We fund the tune scale T by scales **balancing the equation**. Let  $x^* = Lx$ , and  $t^* = Tt$ , where T is to be determined  $u^* = u_0u$ . If we find u(x,t), then the physical temperature is given by

$$u^*(x^*, t^*) = u_0 u\left(\frac{x^*}{L}, \frac{t^*}{T}\right)$$

We have u(0,t) = u(1,t) = 0

$$\begin{split} \frac{\partial u^*}{\partial t^*} &= D \frac{\partial^2 u^*}{\partial x^{*2}} \quad \Longrightarrow \quad \frac{u_0}{T} \frac{\partial u}{\partial t} = \frac{u_0}{L^2} D \frac{\partial^2}{\partial x^2} \\ & \leftrightarrow \frac{\partial u}{\partial t} = \left(\frac{TD}{L^2}\right) \frac{\partial^2 u}{\partial x^2} \quad \text{Balancing the equation} \\ \frac{TD}{L^2} &= 1 \quad \Longrightarrow \quad T = \frac{L^2}{D} \\ u^*\left(x^*, 0\right) &= u_0 \sin\left(\pi \frac{x^*}{L}\right) \\ u\left(x, 0\right) &= \sin\left(\pi x\right) \end{split}$$

which fulfills the condition

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
,  $u(0,t) = u(1,t) = 0$ 

## 3 Lecture 3

## 3.1 Recall

$$\frac{\partial u^*}{\partial t^*} = D \frac{\partial^2 u^*}{\partial x^{*2}}$$
$$0 \le x^* \le L$$
$$x^* = Lx$$
$$t^* = Tt$$
$$u^* = u_0$$

We can also recall

$$u^*\left(x^*,t^*\right) = u_0 u\left(\frac{x^*}{L},\frac{t^*}{T}\right)$$
 
$$\frac{u_0}{T}\frac{\partial u}{\partial t} = D\frac{u_0}{L^2} \implies \frac{\partial u}{\partial t} = \frac{TD}{L^2}\frac{\partial^2 u}{\partial x^2}$$
 Require 
$$\frac{TD}{L^2} = 1 \implies T = \frac{L^2}{D}$$

This can be generelized to

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 \le x \le 1$$

## 3.2 Sinking Ball



Figure 1: sinkingball

Let

- $\rho_b$  e mass density of ball
- $\rho_f$  mass density of fluid
- $\bullet$  V Volume of ball

Then is the equation

$$\rho_b V g - \rho_f V g = V g \rho_b \left( 1 - \frac{\rho_f}{\rho_b} \right)$$
$$= m \hat{g} \implies \hat{g} = g \left( 1 - \frac{\rho_f}{\rho_b} \right)$$

And we then end up with the newtions law

$$m\frac{dx^{*2}}{dt^{*2}} = m\hat{g} - k\frac{dx^*}{dt}, \quad \text{Friction coefficient} \quad k$$

where

$$x^*(0) = 0, \quad \frac{dx^*}{dt^*}(0) = V$$

The cases can be described as follows



Figure 2: highV

- 1. High friction, not so high V. Ball will sink at constant speed most of the time
- 2. Friction is low, and C not "too high". ( "Free fall with V=0")
- 3. High V, and high friction  $m \frac{d^2 x^*}{dt^{*2}} = m \hat{g} k \frac{dx^*}{dt^*}$



Figure 3: frefall

For this problem there is 3 characteristic speeds

- 1. V: initial velocity
- 2.  $v_0$  : equilibrium speed in case A  $v_0 = \frac{m\hat{g}}{k}$
- 3.  $v_f$  : free fall  $v_f = \sqrt{2\hat{g}L}$

Let us put

$$\frac{d^2x^*}{dt^{*2}} = 0 \implies k\frac{dx^*}{dt} = \hat{g}m$$
$$\implies \frac{dx^*}{dt^*} = \hat{g}\frac{m}{k} = v_0$$

and put

$$x^* (0) = \frac{dx^*}{dt^*} (0) = 0$$
$$k = 0$$

## 3.2.1 Scaling

- 1. Case A: The ball sinks at constant speed "most" of the time.
  - (a) Length scale  $L: x^* = Lx$ . Since the ball falls with speed most of the time, a timescale would be  $T = \frac{L}{v_0}$ . v is not much larger than  $v_0$



Figure 4: sinking

 $\implies$  it is not so that  $v \gg v_0$ 

$$\begin{split} m\frac{L}{T^2}x^{''} &= m\hat{g} - k\frac{L}{T}x^{'} & \text{Divide by } L \\ \Longrightarrow m\frac{1}{kT}x^{''} &= \frac{Tm\hat{g}}{KL} - x^{'} \\ \frac{m}{k\frac{L}{v_0}}x^{''} &= \frac{\frac{k}{v_0}m\hat{g}}{kL} - x^{'} \\ \Longrightarrow \frac{mv_0}{Lk}x^{''} &= \frac{Lm\hat{g}}{KLv_0} - x^{'} \end{split}$$

We can then derive

$$\frac{m\frac{m\hat{g}}{k}}{Lk}x'' = 1 - x'$$

$$\implies \frac{m^2\hat{g}}{Lk^2}x'' = 1 - x'$$

$$\implies \frac{m^2\hat{g}^2}{\hat{g}Lk^2}x'' = 1 - x'$$

$$\epsilon x'' = 1 - x' \quad \text{Where} \quad \epsilon = 2\left(\frac{v_0}{v_f}\right)^2$$

The condition are  $x\left(0\right)=0,\,\frac{L}{T}x^{'}\left(0\right)=V$  which can be rewritten to

$$x^{'}(0) = \frac{TV}{L} \frac{\frac{L}{v_0 V}}{L} = \frac{V}{v_0} = \mu$$

## 3.3 Let Analyze The equation

In case A is the

$$\epsilon \ddot{x} = 1 - \dot{x}$$

An approximation we can do is to put  $\epsilon = 0$  such that

$$0 = 1 - \dot{x}$$
  $x(0) = 0$ ,  $\dot{x}(0) = \mu$   $\dot{x} = 0$ 

unless  $\mu = 1$ , we cant find a solution.

#### 3.3.1 Case B

Small friction, V is not too high. Let the lengthscale be L.

$$\frac{d^2}{dt^{*2}}x^{*2} = \hat{g}, \quad x^*(0) = \frac{dx^*}{dt^*}(0) = 0$$
$$x^*(t^*) = \frac{1}{2}\hat{g}(t^*)^2$$

Hit the bottom with speed  $V_f$  . We can choose time scale T such that

$$T = \frac{L}{v_f}$$

So gain

$$\frac{mL}{T^2}\ddot{x} = m\hat{g} - \frac{kL}{T}\dot{x}$$

What you can observe is that gravity dominates so we modify the equation to be

$$\begin{split} \frac{L}{\hat{g}T^2}\ddot{x} &= 1 - \frac{kL}{gmT}\dot{x} \\ \Longrightarrow & 2\ddot{x} = 1 - \left(\frac{v_F}{v_0}\right), \quad \frac{K}{T}\dot{x}\left(0\right) = 0 \\ & 2\ddot{x} = 1 - \epsilon\dot{x} \quad \dot{x}\left(0\right) = \frac{V}{v_f} = \mu \end{split}$$

#### 3.3.2 Case C: High V and high friction

Let us consider

$$m\frac{d^2x^*}{dt^{*2}} = -kV \quad \frac{dx^*}{dt^*} = V - \frac{kV}{m}t^* = 0$$

Where we choose the scales  $t^* = \frac{m}{k} = T$ ,  $L = \frac{Vm}{k}$ , where TV = L.

$$\implies \ddot{x} = \epsilon - \dot{x}, \quad x(0) = 1, \quad \dot{x} = 1, \quad \epsilon = \frac{v_0}{V}$$

Example. Let

$$a\frac{d^{2}x^{*}}{dt^{*2}} + b\frac{dx^{*}}{dt^{*}} + cx^{*} = 0$$
$$x^{*}(0) = x_{0}, \quad \frac{dx^{*}}{dt^{*}}(0) = 0$$

Three waus to scale by balancing the equation. Last term "small"

$$x^* = x_0 x, \quad t^* = Tt$$

Where T is to be determined.

$$a\frac{x_0}{T^2}\ddot{x} + b\frac{x_0}{T}\dot{x} + cx_0 = 0$$

$$\ddot{x} + \frac{bT}{a}\dot{x} + \frac{cT^2}{a} = 0$$

If we are smart can we choose the timescale  $T = \frac{a}{b}$  then we get

$$\ddot{x} + \dot{x} + \frac{ca^2}{b^2a} = 0.$$
 
$$\implies \ddot{x} + \dot{x} + \left(\frac{ca}{b^2}\right)x = 0$$

### 3.4 Turbulence

Reynold number

$$R_e = \frac{u\rho L}{\mu} = \frac{uL}{\frac{mu}{\rho}} = \frac{uL}{\mathcal{V}}$$

Then we have

$$\frac{\partial v}{\partial t} = \mathcal{V} \frac{\partial^2 v}{\partial x^2}$$

## 4 Lecture 31/08

#### 4.1 Turbulence

Kolmogorvs Microscales .

$$\rho \frac{du}{dt} = \mu \frac{\partial^2 u}{\partial x^2}$$

Time svale for convitive flow over a distance L

$$t_c = \frac{L}{U}$$
,  $U$  is velocity.

This can be rearranged such that

$$\frac{\partial u}{\partial t} = \left(\frac{\mu}{\rho} \frac{\partial^2 u}{\partial x^2}\right).$$

We also define  $\mathcal{V} = \frac{\mu}{\rho}$  where  $[\mathcal{V}] = m^2 s^{-1}$ , which is the time for dispersion of velocity.

Let  $t_d = \frac{L^2}{\mathcal{V}}$  such that the Reynolds number can be written

$$R_e = \frac{v\rho L}{\mu} = \frac{UL}{\left(\frac{\mu}{\rho}\right)} = \frac{UL}{\mathcal{V}} = \frac{t_d}{t_0}$$

For water is  $V = 10^{-6} m^2 s^{-1}$ . So for a river, put L = 100m with  $U = 1ms^{-1}$ 

$$R_e = \frac{1ms^{-1} \cdot 100m}{10^{-6}m^2s^{-1}} = 10^8$$

Assume the generation of new whrils stops when  $t_d \approx t_c \to R_e \approx 1$  . Let

$$E = \frac{\text{Energy}}{\text{time per unit mass}}$$
 
$$[E] = kqm^2s^{-2}s^{-1}kq$$

Let l be bthe scale of the smallest whirls and u the unit velocity then is

$$E = E(l, u, \mathcal{V})$$
.

We assume that E is proportional to  $u^2$ .

$$f\left(\frac{E}{u^2}, l, \mathcal{V}\right) = 0$$

$$\begin{array}{c|c} \text{Table 2:} \\ m & s \\ \frac{E}{n^2} & 1 & 0 \\ l & 1 & 0 \\ v & 2 & -2 \end{array}$$

$$\begin{bmatrix} \frac{E}{u^2} \\ \overline{\mathcal{V}} \end{bmatrix} = m^{-2}$$

$$\Pi = \frac{\frac{E}{u^2}}{\mathcal{V}} l^2$$

$$\text{choose } \Pi = 1$$

$$\rightarrow E = \mathcal{V} (\frac{u^2}{l})^2$$

$$ul = \mathcal{V}$$

$$\implies k = \left( \mathcal{V}^3 \frac{1}{E} \right)^{\frac{1}{4}}, \quad u = (VE)^{\frac{1}{4}}$$

 $\mathbf{Example}$  . Let us have 1kg what in a mixma ster and apply 100W power. then is

$$l = \left(\frac{\left(10^{-6}m^2s^{-1}\right)^3}{100m^2s^{-3}}\right)^{\frac{1}{4}} = 0.01mm$$

## 4.2 Regular Perturbation Theory

Assume we have an equation s.t.

$$D(x,\varepsilon) = 0$$
 where  $\varepsilon \ll 1$ 

meaning that  $\varepsilon$  is small.

We have a solution  $x\left(\varepsilon\right)$  to the problem  $D\left(x,\varepsilon\right)$ . The perturbation problem is regular if  $\lim_{\varepsilon\to0}x\left(\varepsilon\right)$  is a solution to  $D\left(x,0\right)=0$ . The idea is

1. Put  $x(\varepsilon) = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \dots$ 

$$x(\varepsilon) \approx x_0$$
 in 0. order  $x(\varepsilon) \approx x_0 + \varepsilon x_1$  to 1. order

- 2. Insert  $x(\varepsilon) = x_0 + \varepsilon x_1 + \dots$  into  $D(x, \varepsilon)$ .
- 3. Collect all terms of order 0, all terms of order 1 so that

$$D(x,\varepsilon) = 0 \leftrightarrow \overbrace{()}^{=0} + \overbrace{()\varepsilon^2}^{=0} + \dots = 0$$

Example. Let

$$x^3 + x^2 + \varepsilon x - 2 = 0$$
,  $\varepsilon \ll 1$ 

For  $\varepsilon=0$  we have x=1 as a solution. To find a solution "close to" 1 when  $\varepsilon\neq 0$  we put

$$x = 1 + \varepsilon x_1 + \varepsilon^2 x_2 + O(\varepsilon)$$

Want an approximation to 2. order. We get

$$(1 + \varepsilon x_1 + \varepsilon^2 x_2)^3 + (1 + \varepsilon x_1 + \varepsilon^2 x_2)^2 + \varepsilon (1 + \varepsilon x_1 + \varepsilon^2 x_2) - 2 = 0$$

$$\implies \varepsilon (5x_1 + 1) + \varepsilon^2 (\dots) = 0$$

$$x (\varepsilon) \approx 1 - \frac{\varepsilon}{5} + \frac{\varepsilon^2}{125}$$

## 4.3 The Projectile Problem

Let  $v_0$  be the vertical velocity and  $v_e$  be escape velocity such that  $v_0 \ll v_e$ .

Newton gravitational law

$$\mathbf{F} = -m \frac{R^2 g}{\left(R + x^*\right)^2}$$

Where g is the gravitational constand at  $x^* = 0$ .

Energy to move to  $x^* = \infty$ 

$$-\int_0^\infty \mathbf{F} dx^* = mgR^2 \int_0^\infty \frac{dx^*}{(R+x^*)^2}$$
$$= mgR^2 \left[ -\frac{1}{(R+x^2)} \right]_0^\infty$$
$$= mgR = \frac{1}{2} mv_e^2$$
$$\implies v_e = \sqrt{2gR}$$

We have

$$m\frac{d^2x^*}{dt^{*2}} = -m\frac{gR^2}{(R+x^*)^2}$$

Such that

$$\frac{d^2}{dt^{*2}} = -\frac{R^2 g}{(R x^*)^2}, \quad x^* (0) = 0, \quad \frac{dx^*}{dt^*} (0) = v_0$$

and  $v_0 \ll v_e$  , when  $x^* \ll R$  (a consequence of  $v_0 \ll v_e$  )

$$\frac{d^2x^*}{dt^{*2}} \approx -g \quad \frac{dx^*}{dt^*} = v_0 - t^*g = 0 \quad \leftrightarrow t^* = \frac{v_0}{g} = T = \text{timescale}$$

$$X^* = v_0t^* - \frac{1}{2}t^*g \quad x^*\left(T\right) = \frac{v_0^2}{g} - \frac{1}{2}\frac{v_0^2}{g} = \frac{1}{2}\frac{v_0^2}{g}$$

Let  $L=\frac{v_0^2}{g}$  and scale the equation  $\left(\frac{L}{T}\right)=v_0$  and  $x^*=Lx$  .

$$\begin{split} \frac{L}{T^2}\ddot{x} &= \frac{-gR^2}{\left(R + Lx\right)^2} \leftrightarrow \frac{L}{T^2}\ddot{x} = -\frac{gR^2}{R^2\left(1 + \frac{L}{R}x\right)^2} \\ \rightarrow \ddot{x} &= \frac{-T^2\frac{g}{L}}{\left(1 + \frac{L}{R}x^2\right)} \rightarrow \ddot{x} = \frac{-1}{\left(1 + \varepsilon x\right)^2} \end{split}$$

Where

$$\varepsilon = \frac{L}{R} = \frac{v_0^2}{Rq} = 2\frac{2v_0^2}{v_0^2}$$

Following problem

$$\ddot{x} = \frac{-1}{\left(1 + \varepsilon x\right)^2}, \quad x\left(0\right) = 0, \quad \dot{x}\left(0\right) = 1$$

Recall that

$$f(u) = \frac{1}{(1+u)^2} \to \int f(u) = \frac{1}{1+u} + C$$
$$= C - (1 - u + u^2 - u^3 + \dots)$$
$$\implies f(u) = 1 - 2u03u^2 + O(u^3)$$

Then to second order

$$\ddot{x} = -\left(1 - 2\varepsilon x + 3\varepsilon x^2\right), \quad x\left(0\right) = 0, \quad \dot{x}\left(0\right) = q$$

Next et

$$x(t) = x_0(t) + \varepsilon x_1(t) + \varepsilon x_2(t) + O(\varepsilon)$$

So let

$$x_{j}(0) = 0 \quad \text{for} \quad j = 0, 1, 2$$

$$\ddot{x}_{0}(0) = 1, \quad \dot{x}_{1}(0) = \dot{x}_{2}(0) = 0$$

$$\rightarrow \ddot{x}_{0} + \varepsilon \ddot{x}_{1} + \varepsilon^{2} \ddot{x}_{2} = -1 + 2\varepsilon \left(x_{0}0\varepsilon x_{1}\right) - 3\varepsilon^{2}x_{0}^{2}$$

$$\rightarrow (\ddot{x}_{0} + 1) + \varepsilon \left(\ddot{x}_{1} - 2x_{0}\right) + \varepsilon^{2} \left(\ddot{x}_{2} + 2x_{1} + 3x_{0}^{2}\right) = 0$$

$$\ddot{x}_{0} = -1 \quad x_{0}(0) = 0, \quad \dot{x}_{0} = 1$$

$$\ddot{x}_{1} = 2x_{0}, \quad \dot{x}_{1}(0) = \dot{x}_{i}(0) = 0$$

$$\ddot{x}_{2} = 2x_{1} - 3x_{0}^{2}, \quad x_{2}(0) = \dot{x}_{2}(0) = 0$$

$$\rightarrow x_{0}(t) = t - \frac{1}{2}tst$$

$$\ddot{x}_{1}(t) = 2t - t^{2}$$

$$\dot{x}_{1}(t) = t^{2} - \frac{1}{3}t^{3}$$

$$x_{1}(t) = \frac{1}{3}t^{3} - \frac{1}{12}t^{4}$$

Where

$$\ddot{x_2} = \frac{2}{3}t^3 - \frac{1}{6}t^4 - 3\left(t^2 - t^3 + \frac{1}{4}t^4\right)$$
$$x_2 = -\frac{1}{4}t^4 + \frac{11}{60}t^5 - \frac{11}{360}t^6$$

Which end up with

$$x\left(t\right) = t - \frac{1}{2}t^{2}0\varepsilon\left(\frac{1}{3}t^{3} - \frac{1}{12}\right) + \varepsilon^{2}\left(-\frac{t^{4}}{4}0\frac{11}{60}t^{5} - \frac{11}{360}t^{6}\right)$$

Gives the diea of how to approx the time to the maximum height.  $\dot{x}\left(t\right)=0$  is a 5. degree equation containing  $\varepsilon$ .

Lets put

$$t = 1 + \varepsilon t_2 \varepsilon^2 t_2$$

Into the 5. degree edition and to regular perturabation

$$\rightarrow t = 1 + \frac{2}{3}\varepsilon + 2/5\varepsilon^2 + O(\varepsilon)$$

such that

$$\ddot{x} = \frac{-1}{(1+\varepsilon x)^2} \to \ddot{x}\dot{x} = \frac{\dot{x}}{(1+\varepsilon x)^2}$$

$$\to \frac{d}{dt}\left(\frac{1}{2}\dot{x}^2\right) = \frac{d}{dt}\left(\frac{-1}{\varepsilon}\frac{1}{1+\varepsilon x}\right)$$

$$\frac{1}{2}\dot{x}^2 = \frac{-1}{\varepsilon}\frac{1}{1+\varepsilon x} + C$$

$$\frac{1}{2} = \frac{-1}{\varepsilon}$$

$$C = \frac{1}{2} + \frac{1}{\varepsilon}$$

where

$$\frac{1}{2}\dot{x}^2 = \frac{-1}{\varepsilon}\frac{1}{1+\varepsilon x} + \frac{1}{2} + \frac{1}{\varepsilon}$$

At maximum height  $\dot{x} = 0$ 

$$0 = -\frac{1}{\varepsilon}.$$

## 5 Lecture 02/09

Let Newtons Law be

$$\frac{d^2s^*}{dt^{*2}} = g\sin\left(\alpha^*\right) \implies \frac{d^2\alpha^*}{dt^{*2}} = -\frac{g}{L}\sin\left(\alpha^*\right)$$

scaling:

$$\begin{split} \alpha^* &= \varepsilon \alpha, \quad t^* = Tt \\ \frac{\varepsilon}{T^2} \ddot{\alpha} &= \frac{-g}{L} \sin \left( \varepsilon \alpha \right) \implies \ddot{\alpha} = -\left( T^2 g \frac{1}{L} \right) \frac{\sin \left( \varepsilon \alpha \right)}{\varepsilon} \\ T &= \sqrt{\frac{L}{g}} \implies \ddot{\alpha} = -\frac{\sin \left( \varepsilon \alpha \right)}{\varepsilon} \\ \alpha \left( 0 \right) &= 1 \quad \dot{\alpha} \left( 0 \right) = 0 \end{split}$$

Let put  $\alpha = \alpha_0(t) + \varepsilon^2 \alpha_2(t) + O(\varepsilon^4)$ . where  $\alpha(t)$  is an even function of  $\varepsilon$  due to symmetry.

$$\alpha_0(0) = 1$$
,  $\dot{\alpha}_0(0) = 0$ ,  $\alpha_2(0) = \dot{\alpha}_2(0) = 0$ 

Inserted into the equation

$$\ddot{\alpha_0} + \varepsilon^2 \ddot{\alpha_2} = -\frac{\sin\left(\varepsilon\left(\alpha_0 + \varepsilon^2 \alpha_2\right)\right)}{\varepsilon} \implies \ddot{\alpha_0} + \varepsilon^2 \ddot{\alpha_2}$$
$$= \frac{-1}{3} \left(\varepsilon\underbrace{\left(\alpha_0 + \varepsilon^2 \alpha_2\right)}_{u} \frac{\varepsilon^2}{6} \left(\alpha_0 + \alpha \varepsilon^2\right)\right)$$

Let

$$\begin{aligned} &\alpha_0\left(t\right) = A\cos t + B\sin t\\ &\alpha_0\left(0\right) = 1, \quad \dot{\alpha}\left(0\right) = 0 \quad \Longrightarrow \quad \alpha_0\left(t\right) = \cos t\\ &\alpha_2\left(t\right) = A\cos t + B\sin t + \alpha_{2,f}\left(t\right)\\ &\cos^3 t = \left(\frac{1}{2}\left(e^{it} - e^{it}\right)\right)^3 = \frac{1}{8}\left(e^{i3t} + 3e^{it}03e^{-i3t}\right)\\ &= \frac{1}{4}\left(\cos 3t + 3\cos t\right)\\ &\alpha_{20}\left(t\right) = A\cos 3t + B\sin 3t + Ct\cos t + Dt\sin t\\ &\alpha_2\left(t\right) = \frac{1}{192}\left(\cos t + \cos 3t\right) + \frac{1}{16}t\sin t\\ &\alpha\left(t\right) = \alpha_0\left(t\right) + \varepsilon_2^2\left(t\right) \quad \text{is not periodic} \end{aligned}$$

#### Poincare-Lin Stel Method . Instead let

$$\alpha\left(t\right) = \alpha_{0}\left(\omega\left(\varepsilon\right)t\right) + \alpha_{2}\left(\omega\left(\varepsilon\right)t\right)\varepsilon^{2} + O\left(\varepsilon^{4}\right)$$

Where  $\omega\left(\varepsilon\right)=1+\omega_{2}\varepsilon^{2}~O\left(\varepsilon^{4}\right)$  . See exercise.

## 5.1 Modelling how the kidney disposes salt and water.



Figure 5: watermodell

#### Assumptions

- 1. Secondary channel is fed water by osmosis from the sorrouinding tissue.
- 2. Ions are transported down the channel by connection and diffusion.
- 3. Ions are fed into the channel be a chemical ppump-

We want the steady-state profiles of ion concenstration  $C^*(x^*)$  and the velocity  $v^*(x^*)$  of the ion water solution.

The ion concentration is written as

$$[C^*] = \frac{ions}{m^3} = \frac{osmol}{m^3}$$

One mole salt give two moles ions

Osomosis:

$$J^* = P\left(c^* - c_0\right)$$



Figure 6: molefig

Is flux density of water entering the secondary channel.  $J^*$  is volume water in per area per time.  $c_0$  ion concentration is tissue and main channel. P is called membrance permeability.

$$[P] = \frac{[J^*]}{[c^*]} = \frac{ms^{-1}}{osmol \cdot m^{-3}} = \frac{m^4}{s \cdot osmol}$$

Ion flux density

$$N^* = \begin{cases} N_0, & 0 \le x^* \le \delta \\ 0, & \delta \le x^* \le L \end{cases}$$

Where  $[N_0] = \frac{osmol}{m^2 \cdot s}$ . The toal rate of salt entering the channel

$$N_0 \cdot c \cdot \delta$$

Where c is the area of pump.

• The flux density of ions in the secondary channel

$$F^* = F_c^* + F_\alpha^*$$

$$[F^*] = \frac{osmol}{m^2 \cdot s}$$

• Convective flow

$$F_c^* = c^* v^*$$

• Diffusion: Ficus law

$$F_1^* = -D\frac{dc^*}{dx^*}.$$

where D is the diffusion of salt in water.

Conservation of water



Figure 7: conssswater

$$Q_{\text{out}}^* = Q_{\text{in}}^* + Q_{\text{os}}^*$$

$$v^* (x^* + \Delta x^*) = v^* A + P (c^* (\hat{x}) - c_0) c \Delta x^*,$$

$$\text{where } \hat{x^*} \in \langle x^*, x^* + \Delta x^* \rangle$$

$$\Rightarrow \frac{v^* (x^* + \Delta x^*) - v^* (x^*)}{\Delta x^*} = \frac{c}{A} P (c^* (\hat{x^*}) - c_0)$$

$$\Delta x^* \to 0 \quad \Rightarrow \frac{dv^*}{dx^*} = \left(\frac{cP}{A}\right) (c^* - c_0)$$

COnservation of salt

$$F^* \left( x^* + \Delta x^* \right) A = F^* \left( x^* \right) A + N^* \left( \hat{x^*} \right) c \Delta x^*$$

This ends up with

$$\Rightarrow \frac{dF^*}{dx^*} = \frac{c}{A}N^*(x^*)$$
or 
$$\frac{dF^*}{dx^*} = \frac{c}{A} \cdot \begin{cases} N_0, & 0 < x^* < \delta \\ 0, & \delta < x^* < L \end{cases}$$

$$F^*(0) = 0 \Rightarrow F(x^*) = \begin{cases} \frac{N_0 c}{A}x^*, & 0 < x^* < \delta \\ \frac{N_0 \delta c}{A}, & \delta < x^* < L \end{cases}$$

$$\Rightarrow v^*c^* - D\frac{dc^*}{dx^*} = F^*(x^*)$$

$$\frac{dv^*}{dt^*} = \frac{cP}{A}(c^* - c_0)$$

$$v^*(0) = 0$$

$$c^*(L) = c_0$$

Also same that  $v^*$  and  $c^*$  are continious at  $x^* = \delta$  .

#### 5.1.1 Scaling the model

Two length scales  $\delta$  and L. Choose  $\delta$  as length svale. Natural to use  $c_0$  as scale for  $c^*$ . The rate salt supplied is

$$N_0 \delta c = c_0 U A$$

Ions supplied is convective flux with  $c^*$  such that  $U = \frac{N_0 \delta c}{c_0 A}$ .

$$x^* = \delta,$$

$$c^* = c_0 c$$

$$v^* = U v$$

1.  $(Uc_0) cv - \frac{Dc_0}{\delta} \dot{c} = F^*$  such that

$$\implies vc - \frac{Dc}{\delta U c_0} \dot{c} = \frac{1}{Uc} \cdot \begin{cases} \frac{N_0 c \delta x}{AU c_0}, & 0 < x\delta < \delta \\ \frac{N_0 c \delta}{AU c_0}, & \delta < x\delta < L \end{cases}$$
$$vc - \varepsilon \dot{c} = \begin{cases} x & 0 < x < 1 \\ 1 & 1 < x < \lambda \end{cases}$$

where  $\varepsilon = \frac{D}{\delta u}$ , and  $\lambda = \frac{L}{\delta}$ 

$$\implies U = \frac{N_0 \delta c}{c_0 A}$$

$$2. \ \frac{U}{\delta}\dot{v} = \frac{cP}{A}c_0\left(c - 1\right)$$

## 6 Lecture 07/09

## 6.1 Emergent Osmotic Concentration

- (i) Total rate of salgt pumped per second  $\delta c N_0$
- (ii) Water out per second  $v^*(L) A = Uv(\lambda) A$ , where  $\lambda = \frac{L}{\delta}$

$$\delta c N_0 = C_0 U$$
 $\approx$  Flow out of salt per sec
$$\implies U = \frac{\delta c N_0}{C_0 A}$$

Measure of the efficiency

$$\frac{\text{Salt out}}{\text{Water out}} = Os^*$$

$$= \frac{\delta c N_0}{Uv(\lambda) A} = \frac{C_0}{v(\lambda)}$$

Thus  $v(\lambda) > \frac{1}{4}$ 

## 6.2 Boundary Value Problem

We know that

$$\sum v'(x) = C(x) - 1$$

$$v(x)C(x) - \mu C'(x) = f(x) = \begin{cases} x, & 0 \le x \le \\ 1, & 1 \le \lambda \end{cases}$$

Where  $v\left(0\right)=0,\quad C\left(\lambda\right)=1.$  In addition v and C must be continuous.

Let assume  $0 < \varepsilon \ll 1$ . Put  $C = c_0 + \varepsilon C_1 + O\left(\varepsilon^2\right)$  and  $v = v_0 + \varepsilon v_1 + \mathcal{O}\left(\varepsilon^2\right)$ . Inserted into the equation

$$\varepsilon \left(v_0'\right) = C_0 + \varepsilon C_1 - 1 + O\left(\varepsilon^2\right)$$

$$\left(v_0 + \varepsilon v_1\right) \left(1 + C_1 \varepsilon\right)^2 - \mu \left(\varepsilon C_1'\right) = f\left(x\right) + O\left(\varepsilon^2\right)$$

$$C_0 - 1 = 0 \leftrightarrow C_0 = 1$$

$$C_1 - v_0' = 0 \implies C_1 = v_0' \implies C_1 = f\left(x\right), \quad C_1 \text{ is discontinuity}$$

$$v_0 - f\left(x\right) = 0, \quad v_0 = f\left(x\right)$$

$$v_1 + v_0 C_1 - \mu \varepsilon C_1' = 0$$

Something is wrong.

$$\varepsilon v' = C - 1$$

$$\varepsilon vC - \underbrace{(\varepsilon \mu)}_{\text{not small}} = \varepsilon f(x)$$

For notation convenience let

$$(\varepsilon \mu) = \omega^{-1}$$

$$\varepsilon v' = C - 1$$

$$\varepsilon vC - \frac{1}{\omega^2}C' = \varepsilon f(x)$$

$$\Longrightarrow \varepsilon (\omega^2 vC) - C' = \varepsilon \omega^2 f(x)$$

We then get

$$v = v_0 + \varepsilon v_1$$

$$C = C_0 + \varepsilon C_1$$

$$\varepsilon v_0' = C_0 + \varepsilon C_1 \implies C_0 = 1, \quad v_0' = 1$$

$$\varepsilon \left(\omega^2 \left(v_0 C_0\right)\right) - C_0' - \varepsilon C_1' = \omega^2 \varepsilon f\left(\varepsilon\right)$$

$$\omega^2 v_0 - v_0'' = \omega^2 f\left(x\right)$$

$$v_0'' - \omega^2 v_0 = -\omega^2 f\left(x\right)$$

$$v\left(0\right) = 0 \implies v_0\left(0\right) = 0$$

Also

$$C(\lambda) = 1 = 1 + \varepsilon C_1(\lambda) + O(\varepsilon)$$
  

$$\Longrightarrow C_1(\lambda) = 0 \Longrightarrow v'_0(\lambda) = 0$$

v and C is continuous .  $v_0$  and  $v_0^\prime$  continuous.

For 
$$0 \le x \le 1$$
 we have

$$v_0'' + \omega^2 = -\omega^2 x$$

A solution to  $v_0'' + \omega = 0$ 

$$Ee^{\omega x} + Ee^{-\omega x} = A\cosh(\omega x) + B\sinh(\omega x)$$

$$\cosh u = \frac{1}{2} \left( e^u + e^{-u} \right) \\
\sinh u = \frac{1}{2} \left( e^u - e^{-u} \right) \\
\cosh' u = \sinh u \\
\sinh' u = \cosh u \\
\cosh u - v = \cosh u \cosh u - \sinh u \sinh v \\
\cosh 0 = 1 \\
\sinh 0 = 0$$

The solution is for  $0 \le x \le 1$ 

$$v_0(x) = x + A \cosh \omega x + B \sinh \omega x$$

In the same manner

$$v_0^+(x) = \overbrace{1 + C \cosh \omega x + D \sinh \omega x}^{0 \le x \le \lambda = \frac{L}{\delta}}$$

$$v_0^+(x) = 1 + C \cosh \omega x + D \sinh \omega x$$

$$v_0^-(0) = 0 \implies v_0^- = 0$$

$$\implies v_0^-(x) = x + B \sinh \omega x$$

$$\frac{dv_0^+}{dx}(\lambda) = 0$$

$$C\omega \sinh \omega \lambda + D\omega \cosh \omega \lambda = 0$$

The soution is

$$v_0(x) = E \cosh \varepsilon (x - \lambda)$$

Require continuity at x=1 of  $v_{0}\left(x\right)$  and  $C_{1}\left(x\right)=\frac{dv_{0}}{dx}\left(x\right)$ 

$$v_0^-(1) = v_0^+(1)$$

$$\frac{dv_0^-}{dx} = \frac{dv_0^+}{dx}$$

We get

$$v_0^-(x) = x - \frac{\cosh(\omega(\lambda - 1))}{\omega \cosh(\omega \lambda)} \sinh \omega \lambda \quad 0 \le x \le 1$$

$$v_0^+ = 1 - \frac{\sinh(\hbar\omega)}{\omega \cosh(\omega \lambda)} \cosh \omega (x - \lambda)$$

$$Os^* = \frac{C_0}{v(\lambda)} \approx \frac{C_0}{v_0(\lambda)}$$

$$= \frac{C_0}{\left(1 - \frac{\sinh\omega}{\omega} \frac{1}{\cosh\omega\lambda}\right)}$$

 $\varepsilon \ll 1, \, Os^*$  depends on  $\omega$  and  $\lambda \omega = k$ .

If  $\omega$  is smak then is

$$\frac{\sinh \omega}{\omega} \approx 1 + \frac{1}{6}\omega^2 + \dots$$

Let

$$Os^* \approx \frac{C_0}{1 - \frac{1}{\cosh k}} = C_0 \left( \frac{\cosh k}{\cosh k - 1} \right) = C_0 \left( \frac{1 + \frac{1}{2}k^2 + O(k^4)}{\frac{1}{2}k^2 + O(k^4)} \right)$$
$$\approx \left( 1 + \frac{2}{k^2} \right) C^*$$

Argue that

$$\frac{2}{k^2} \approx \frac{F_{\text{Diffusion}}^*}{F_{\text{Convection}}^*}$$

We can finally conclude that

$$Os^* \approx C_0 \left( 1 + \frac{F_{\text{diff}}^*}{F_{\text{conv}}^*} \right)$$

### 6.3 Singular Perturbation

Still we have a problem where there is a small parameter , say  $\varepsilon$ . The telltale sign of a singular perturbation problem is that the problem changes qualitively when  $\varepsilon=0$ .

Example.

$$\varepsilon y'' + 2y' + y = 0$$
  
  $y(0) = 0$  ,  $y(1) = 1$ 

 $\varepsilon = 0$  gives a problem where we cannot satisfy y(0) = 0 and y(1) = 1.

#### Example

$$\varepsilon^2 + 2m + 1 = 0$$

If  $|m| \leq M$ , ie m is bounded as  $\varepsilon \to 0$ , then  $\varepsilon m^2$  is small when  $\varepsilon \to 0$ . Assuming this we have

$$\varepsilon m^2 + 2m + 1 \approx 2m + 1a = 0 \implies m = -\frac{1}{2}$$

We can also get

$$m = -\frac{1}{2} + \varepsilon m_1 + O(\varepsilon^2)$$

$$\varepsilon \left(\frac{1}{4} - \varepsilon m_1\right) - 12m_1\varepsilon + 1 = 0$$

$$\frac{1}{4} + 2m_1 = 0$$

$$m_1 = -\frac{1}{8}$$

$$m = \frac{1}{2} - \varepsilon \frac{1}{8} + O(\varepsilon^2)$$

(i) If 2m is much smaller than  $\varepsilon m^2$  and 1, then

$$\varepsilon m^2 + 2m + 1 \approx \varepsilon m^2 + 1 = 0$$
 
$$\implies m \approx \pm -i \frac{1}{\sqrt{\varepsilon}}$$

Thus 2m is large (compared to 1), contradiciton.

Lets try

$$\varepsilon m^2 + 2m = 0$$

$$\implies m (\varepsilon m + 2) = 0$$

$$\implies 2 \cdot m = 2 \cdot -\frac{1}{3}$$

$$\varepsilon m^2 = \frac{4}{\varepsilon^2} \varepsilon = \frac{4}{3}$$

 $m \approx \frac{2}{3}$ . If we put

$$m = -\frac{2}{3}\widetilde{m}$$

## 7 Singular Perturbation

$$\varepsilon m^2 + 2m + 1 = 0, \quad 0 < \varepsilon \ll 1, \quad m = .\frac{1}{2}$$

If  $\varepsilon m^2$  and 1 are important

$$\begin{split} m \pm e \varepsilon^{\frac{1}{2}} &\implies \varepsilon m^2 + 2m \approx 0 \\ &\leftrightarrow m \left( \varepsilon m + 2 \right) = 0 \\ &m \approx -\frac{2}{\varepsilon} \\ &\varepsilon m^2 \approx -\frac{2}{\varepsilon} \\ &2m \approx \frac{4}{3} \\ &\varepsilon m^2 + 2m + 1 = 0 \\ &m = -\frac{1}{2} + \varepsilon m_1 \\ &m = -\frac{2}{3} \widetilde{m_1} \varepsilon \end{split}$$

## 7.1 Singular perturbation applied to differential equations

$$\varepsilon y'' + 2y' + y = 0$$
$$y(0) = 0, \quad y(1) = 1$$
$$0 \le x \le 1$$

Let  $\varepsilon = 0$  then is

$$2y' + y = 0 \implies y = ke^{-\frac{x}{2}}, k \in \mathbb{R}$$
$$y(0) = 0 \implies y := 0$$
$$y(1) = 1 \implies y(x) = e^{\frac{1}{2}}e^{-\frac{x}{2}}$$

Ther characteristic equaiotn for

$$\varepsilon y'' + y' + y = 0\varepsilon r^2 + 2r + 1 = 0, \quad r_1 \approx -\frac{1}{2}, r_2 \approx -\frac{2}{3}y\left(x\right)e^{-\frac{x}{2}}Be^{-\frac{2x}{\varepsilon}}$$

For 
$$y(0) = 0$$

$$y(x) = A\left(e^{-\frac{x}{2}} - e^{-\frac{2x}{\varepsilon}}\right)$$

And for y(1) = 1

$$y(x) \approx e^{-\frac{1}{2}} \left( e^{-\frac{x}{2}} - e^{-\frac{2x}{\varepsilon}} \right)$$

## 7.2 Further look at Singular Perturbation

Our main equation

$$\varepsilon y'' + 2y' + y = 0$$
,  $y(0) = 0$ ,  $y(1) = 1$ 

(i) Find outer solution  $y_o$  by setting  $\varepsilon = 0$ . Since the solution  $\varepsilon y_0(x) \approx y(x)$  for

$$x>\delta\left(\varepsilon\right), \quad \text{where} \quad \delta\left(\varepsilon\right)\to0 \text{ when } \varepsilon\to0$$
 
$$y_{0}\left(x\right)=e^{\frac{1}{2}}e^{-\frac{x}{2}}$$

Characteristic equation for

$$\begin{split} Y\left(\frac{x}{\delta\left(\varepsilon\right)}\right) &= y\left(x\right) \quad \text{is} \\ \zeta &= \frac{x}{\delta\left(\varepsilon\right)}, \quad Y\left(\zeta\right) = \frac{x}{y\left(\zeta\delta\left(\varepsilon\right)\right)} \\ \varepsilon Y'' + 2Y' + Y &= 0, \quad \Longrightarrow \quad \varepsilon \frac{1}{\delta^{2}}Y'' + \frac{2}{\delta}Y' + Y &= 0 \end{split}$$

Are of order of 1.

$$\implies \varepsilon \frac{1}{\delta^2}, \frac{1}{\delta}, 1 \text{ are}$$

the "size" of the terms.

CHossing  $\delta = \varepsilon$  gives

$$\frac{1}{3}Y'' + \frac{2}{3}Y' = 0 \implies Y'' + 2Y' + \varepsilon Y = 0$$

Let

$$Y\left(\frac{x}{\delta\left(\varepsilon\right)}\right) = y\left(x\right), \quad y\left(0\right) = 0 \implies Y\left(0\right) =$$

Which is called the **inner equation.** Putting  $\varepsilon = 0$  and Y'' + 2Y' = 0 where

$$\implies Y(\zeta) = D + Ee^{2\zeta}$$

We see that

$$Y(0) = 0 \implies E = -D$$
  
 $Y(\zeta) = E(1 - e^{-2\zeta})$ 

Let us match it with this equation

$$y_0(x) = e^{\frac{1}{2}}e^{-\frac{x}{2}}$$

We can try to match the solution at  $x = \theta(\varepsilon)$ . Then we need to require that

$$\lim_{\varepsilon \to 0^{+}} \theta(\varepsilon) = 0$$

$$\lim_{\varepsilon \to 0^{+}} \frac{\theta(\varepsilon)}{\delta(\varepsilon)} = \infty$$

Example.

$$\delta = \varepsilon, \quad \theta = \varepsilon^{\frac{1}{2}}$$

We know that

$$Y\left(\frac{x}{\delta\left(\varepsilon\right)}\right) = y_{I}\left(x\right)$$

Then can we start matching such that

$$y_{I}\left(\theta\left(\varepsilon\right)\approx y_{0}\left(\theta\left(\varepsilon\right)\right)\right) \implies Y\left(\frac{\theta\left(\varepsilon\right)}{\delta\left(\varepsilon\right)}\right) = y_{0}\left(\theta\left(\varepsilon\right)\right)$$

Let  $\varepsilon \to 0$  and require equality since  $\frac{\theta(\varepsilon)}{\delta(\varepsilon)} \to \infty$ ,  $\theta(\varepsilon) = 0$ . Then we obtain

$$\lim_{\zeta \to \infty} Y\left(\zeta\right) = \lim_{x \to 0} y_0\left(x\right)$$

the matching condition

$$\lim_{\zeta \to \infty} E\left(1 - e^{-2\zeta}\right) = \lim_{x \to 0} e^{\frac{1}{2}} e^{-\frac{x}{2}}, \quad \Longrightarrow \ E = e^{\frac{1}{2}}$$

$$y_0(x) + Y\left(\frac{x}{\varepsilon}\right) - \lim_{x \to 0} y_0(x) = y_u(x)$$

The uniform solution

$$y_u(x) = e^{\frac{1}{2}}e^{-\frac{x}{2}} + e^{\frac{1}{2}}\left(1 - e^{-\frac{2x}{\varepsilon}}\right) - e^{\frac{1}{2}}$$
  
=  $e^{\frac{1}{2}}\left(e^{-\frac{x}{2}} - e^{-\frac{2x}{\varepsilon}}\right)$ 

### 7.3 Biochemical reaction kinetics

Let the differential equation be

$$\frac{df^{*}(t^{*})}{dt^{*}} = ka^{*}(t^{*})b^{*}(t^{*})$$

Where  $s^*, e^*, c^*, p^*$  be molar concentrations of S, E, C and P at time  $t^*$ .

$$\frac{ds^*}{dt^*} = -k, \quad s^*, e^* + k_{-1}c^* \tag{1}$$

$$\frac{de^*}{dt^*} = -k_1 s^* e^* 0 k_2 \tag{2}$$

$$\frac{dc^*}{dt^*} = k_1 s^* e^* - (k_{-1} + k_2) \tag{3}$$

$$\frac{dp^*}{dt^*} = k_2 c^*. (4)$$

Add 2) and 3) we get

$$\frac{d}{dt^*} (e^* + c^*) = 0$$
$$e^* (t^*) + c^* (t^*) = k$$

Inital conditions

$$s^*(0) = \overline{s}, \quad e^*(0) = \overline{e}$$
$$c^*(0) = p^*(0) = 0$$

We have that

$$e^*\left(t\right) = \overline{e} - c^*\left(t^*\right)$$

1) gives out

$$\frac{ds^*}{dt^*} = -k_1 s^* (\overline{e} - c^*) + k_1 c^*$$

$$\frac{ds^*}{dt^*} = -(k_1 \overline{e}) s^* + (k_1) s^* c^* + k_{-1} c^*$$

$$\implies \frac{ds^*}{dt^*} = -(k_1 \overline{e}) s^* + [k_1 s^* + k_{-1}] c^*$$

$$dc^*$$

$$\frac{dc^*}{dt^*} = k_1 s^* (\overline{e} - c^*) (k_{-1} + k_2) c^*$$

$$\implies \frac{dc^*}{dt^*} = (k_1 \overline{e}) - [k_1 s^* + k_{-1} + k_2] c^*$$

Let the scalars be  $s^* = \overline{s}s$  ,  $c^* = \overline{e}c$ ,  $t^* = Tt$ .

$$\frac{\overline{s}}{T}s' = -(k_1\overline{e})\,\overline{s}s + [k_1\overline{s} + k_{-1}]\,\overline{e}c$$

$$s' = -(Tk_1\overline{e})s + \left[Tk_1\overline{e}s + k_{-1}\frac{\overline{e}T}{\overline{s}}\right]c$$

Let  $Tk_1e = 1 \implies T = \frac{1}{\overline{e}k_1}$ 

$$s' = -s + \left[ s0 \left( \frac{k_{-1}}{k_1 \overline{s}} \right) \right]$$

## 8 Lecture 2020-09-14

#### 8.1 Biochemical example, kinetics

We start with the inital conditions

$$s^*(0) = \overline{s}$$

$$e^*(0) = \overline{e}$$

$$c^*(0) = 0$$

$$p^*(0) = 0$$

With the reaction equations

$$\frac{ds^*}{dt^*} = -k_1 e^* s^* + k_{-1} c^* \tag{5}$$

$$\frac{de^*}{dt^*} = -k_1 e^* s^* + k_{-1} c^* + k_2 c^* \tag{6}$$

$$\frac{dc^*}{dt^*} = k_1 e^* s^* - k_1 c^* - k_2 c^* \tag{7}$$

$$\frac{dp^*}{dt^*} = -k_2 c^* \tag{8}$$

We can eliminate

$$e^* + c^* = \overline{e}e^* = \overline{e} - c^*$$

Inserter into (1).

$$\frac{ds^*}{dt^*} = -k_1 s^* (\overline{e} - c^*) + k_{-1} c^*$$

$$\frac{dc^*}{dt^*} = +k_1 s^* (\overline{e} - c^*) - (k_{-1} + k_2) c^*$$

Which can be transformed to

$$\frac{ds^*}{dt^*} = -(k_1 \overline{e}) \, s^* + [k_1 s^* + k_{-1}] \, c^* \tag{9}$$

$$\frac{dc^*}{dt^*} = (k_1 \overline{e}) s^* - [k_1 s^* - (k_{-1} + k_1)] c^*.$$
(10)

We can then scale such that

$$s^* = \overline{s}s, \quad c^* = \overline{e}c, \quad t^* = Tt$$

Using (9),

$$\frac{\overline{s}}{T}s' = -T\left(k_1\overline{e}\right)\overline{s}s + \left[Tk_1\overline{s}s + \frac{k_{-1}T}{\overline{s}}\right]\overline{e}c$$

$$s' = -\left(T\overline{e}k_1\right)s + \left[\left(Tk_1\overline{e}\right)s + \frac{k_{-1}T\overline{e}}{\overline{s}}\right]c$$

Put  $T = \frac{1}{\overline{e}k_1}$  we find

$$\implies s' = -s + \left[ s + \frac{k_{-1}}{k_1 \overline{s}} \right] c$$

Now seeing (10) we get

$$\overline{e}\frac{c'}{\overline{s}} = (Tk_1\overline{e})\,\overline{s}s - \left[k_1\overline{s}sT + \frac{(k_{-1} + k_2)\,T}{\overline{s}}\right]\overline{e}c$$

$$\implies \left(\frac{\overline{e}}{\overline{s}}\right)c' = s - \left[s + \frac{(k_{-1} + k_2)}{\overline{s}k_1}\right]c$$

$$\frac{\overline{e}}{\overline{s}} = \varepsilon, \quad \frac{k_{-1} + k_2}{\overline{s}k_1} = k, \quad \frac{k_2}{\overline{s}k_1} = \lambda$$

We then end up with

$$s' = -s + [s + k - \lambda] c$$
  

$$\varepsilon c' = s - [s + k] c$$
  

$$s(0) = 1, c(0) = 0$$

Assume that

$$\frac{\overline{e}}{\overline{s}} = \varepsilon \ll 1$$



Figure 8: whines good

 ${\bf Outer\ solution:}$ 

$$s = s_0 + \varepsilon s_1 + \dots$$
$$c = c_0 + \varepsilon c_1 + \dots$$

Put  $\varepsilon = 0$  . This gives

$$0 = s - [s + k] c$$
$$c = \frac{s}{s + k}$$

C is then

$$s' = -s + [(s+k) - \lambda] \frac{s}{s+k}$$
 
$$\implies s' = -\frac{\lambda s}{s+k}$$
 
$$\implies \left(\frac{s+k}{s}\right) ds = -\lambda dt$$

 $\downarrow$  Integration

Outer solution 
$$\begin{cases} s + k \ln s &= -\lambda t + K, \quad K \text{ is constant.} \\ c &= \frac{s}{s+k} \end{cases}$$

Let us introduce

$$S\left(\frac{t}{\delta}\right) = s\left(t\right), \quad \tau = \frac{t}{\delta}$$
 
$$C\left(\frac{t}{\delta}\right) = c\left(t\right)$$

For the inner solution (now capital).

$$\frac{1}{\delta}S' = -S + [S + k - \lambda]C$$
$$\frac{\varepsilon}{\delta}C' = S - [S + k]C$$

To retain  $\left(\frac{\varepsilon}{\delta}C'\right)$  we choose  $\delta=\varepsilon$ . This gives

$$S' = \varepsilon \left( -S + \left[ S + k - \lambda \right] C \right)$$
  
$$C' = S - \left[ S + k \right] C$$

S'=0. So we have that  $S\left( au 
ight) =L,$  but  $s\left( 0\right) =1$  , If we let  $\varepsilon = 0$ : means S(0) = 1

$$S(\tau) = 1$$

This gives C' = 1 - [1 + k] C, with the solution

$$C(\tau) = \frac{1}{1+k} + Me^{-(1+k)\tau}$$

$$C_I(0) = 0, \implies C(\tau) = \frac{1}{1+k} \left[ 1 - e^{-(k+1)\tau} \right]$$

$$S_I(\tau) = 1$$

$$C_0(t) = \frac{S_0(t)}{S_0(t) + k}$$

$$S_0(t) + k \ln S_0(t) = -\lambda t K$$

Matching.

$$\theta\left(\delta\right) \to 0, \quad \text{when} \quad \delta \to 0$$

$$\frac{\theta\left(\delta\right)}{\delta} \to \infty, \quad \text{when} \quad \delta \to 0$$

$$\lim_{\delta \to 0} \begin{bmatrix} S^{I}\left(\theta\left(\delta\right) \frac{1}{\delta}\right) \\ C^{I}\left(\frac{\theta\left(\delta\right)}{\delta}\right) \end{bmatrix} = \lim_{\delta \to 0} \begin{bmatrix} S_{0} \\ C_{0}\left(\theta\left(\delta\right)\right) \end{bmatrix}$$

$$\Longrightarrow \lim_{\tau \to 0} \begin{bmatrix} S_{I}\left(\tau\right) \\ C_{I}\left(\tau\right) \end{bmatrix}$$

$$\lim_{t \to 0} \begin{bmatrix} S_{0}\left(t\right) \\ C_{0}\left(t\right) \end{bmatrix} = \lim_{\tau \to \infty} \begin{bmatrix} 1 \\ \frac{1}{1+k}\left(1 - e^{-(1+k)\tau}\right) \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{1+k} \end{bmatrix}$$

#### Uniform solution

$$\begin{bmatrix} S_u \\ C_u \end{bmatrix} = \begin{bmatrix} S_0(t) \\ C_0(t) \end{bmatrix} + \begin{bmatrix} S_I(\frac{t}{\varepsilon}) \\ C_I(\frac{t}{\varepsilon}) \end{bmatrix} - \begin{bmatrix} 1 \\ \frac{1}{1+k} \end{bmatrix}$$
$$= \begin{bmatrix} S_0(t) \\ C_0(t) - \frac{1}{1+k}e^{-(1+k)\frac{t}{\varepsilon}} \end{bmatrix}$$
$$= \begin{bmatrix} S_0(t) \\ S_0(t) \frac{1}{S_0(t)+k} - \frac{1}{1+k}e^{(1+k)\frac{t}{\varepsilon}} \end{bmatrix}$$

$$S_0' + k + k \frac{S_0'}{S_0} = -\lambda$$

$$S_0(0) = 1 \implies S_0'(0) = \frac{-\lambda}{1+k} S_0(t) = 1 - \frac{\lambda}{1+k} t + O\left(t^2\right)$$

For large  $\lambda t : k \ln S_0(t) \approx -\lambda t$ 

$$S_0\left(t\right) \approx e^{\frac{\lambda}{k}t}$$

## 8.2 Stability

#### 8.2.1 Dynamical Systems

Let

$$x' = f_1(x_1, x_2, ..., x_n)$$

$$x'_2 = f_2(x_1, x_2, ..., x_n)$$

$$\vdots$$

$$x'_n = f_n(x_1, x_2, ..., x_n)$$

Where  $x_j(0) = x_j^{(0)}$  are given. Write this as

$$\mathbf{x}' = \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(0) = \mathbf{x}^{(0)}, \quad \mathbf{x}(t) \in \mathbb{R}$$

#### Example.

$$x'_1 = -x_2, \quad x_1(0) = 1$$
  
 $x'_2 = x_1, \quad x_2(0) = 0$ 

An equilibrium point for

$$\mathbf{x}' = \mathbf{f}(\mathbf{x})$$

is a constant solution. I.e.  $\mathbf{x}_e$  is an equilibrium point

$$\implies \mathbf{f}(\mathbf{x}_e) = 0$$

**Definition 8.1.** An equilibrium point  $\mathbf{x}_e$  is **stable** if for any  $\varepsilon > 0$ , there exist a  $\delta > 0$  such that if

$$\|\mathbf{x}(0) - \mathbf{x_e}\| < \delta \implies \|x(t) - \mathbf{x_e}\| < \varepsilon, \quad \text{for } t > 0$$

**Definition 8.2.** If  $\mathbf{x_e}$  is stable and, there exists a  $\delta > 0$  such that always

$$||x(0) - \mathbf{x_e}|| < \delta$$

Implies

$$\lim_{t \to \infty} \mathbf{x} \left( t_1 \right) = \mathbf{x_e}$$

Then  $\mathbf{x_e}$  is an asymptotically stable equilibrium point.

If  $\mathbf{x_e}$  is not stable, it is unstable .

### Example.

x' = -x,  $x_e = 0$  is a equilibrium point.

Where the solution is

$$x = Ce^{-t} \rightarrow \text{for any } C$$

#### 8.2.2 Linearization

$$x'_{j} = f_{j}(x_{1}, x_{2}, \dots, x_{n}), \quad j = 1, 2, \dots, n$$

Assume  $\mathbf{x_e}$  is an equilibrium point. If  $f_j$  is differentiable we can write

$$\frac{f_{j}\left(\mathbf{x_{0}}+\delta\delta\mathbf{x}\right)-f_{j}\left(\mathbf{x}\right)+\sum_{i=1}^{n}\frac{\partial f_{j}}{\partial x_{i}}\Delta x_{i}}{\left\Vert \Delta x\right\Vert }\overset{\left\Vert \Delta x\rightarrow0\right\Vert }{\longrightarrow}0$$

From matrix notation

$$\mathbf{f}\left(\mathbf{x_{1}}\Delta\mathbf{x}\right) = \mathbf{f}\left(\mathbf{x_{2}}\right) + J\left(\mathbf{x_{0}}\right)\Delta\mathbf{x_{1}}$$

Where the  $n \times n$  matrix  $J(\mathbf{x_0})$  is given by

$$(J(\mathbf{x_0}))_{ij} = \frac{\partial f_j}{\partial x_i}(\mathbf{x_0})$$

And is called the jacobian matrix of  $\mathbf{f}\left(\mathbf{x}\right)$  at  $\mathbf{x}=\mathbf{x_{0}}$ 

# 9 References