Рубежная контрольная работа 1

Содержание

PUNGWUAG KOUTHOULUAG NANOTA I	
Рубежная контрольная работа 1	Z

Рубежная контрольная работа 1.Вариант 2

1.

Лифт двигался вверх с ускорением $a=2.1~{\rm m/c}$. В какой-то момент от потолка в кабине лифта отвалился и начал падать вниз винт. Найдите время падения винта до пола кабины. Ускорение свободного падения принять равным $g=10~{\rm m/c}$. Высота кабины лифта $h=232~{\rm cm}$.

2.

Автомобиль массой m=1 т въезжает на наклонную плоскость, где траекторией его движения является окружность радиуса R=20 м. Угол наклона плоскости к горизонтали $\alpha=30^\circ$. Сила трения, действующая на колеса автомобиля равна F=1000 Н. С какой скоростью движется автомобиль в самой высокой точке своей траектории? Ускорение свободного падения g считать равным $10~{\rm M/c^2}$. Ответ приведите в м/с и округлите до сотых.

3.

Два бруска с массами m_1 и m_2 , соединенные недеформированной легкой пружинкой, лежат на горизонтальной плоскости. Коэффициент трения между брусками и плоскостью равен k. Какую минимальную постоянную силу нужно приложить в горизонтальном направлении к бруску с массой m_1 , чтобы другой брусок сдвинулся с места?

4.

Велосипедист едет по круглой горизонтальной площадке, радиус которой R, а коэффициент трения зависит только от рас-

стояния r до центра площадки по закону $k=k_0(1-r/R)$, где k_0 — постоянная. Найти радиус окружности с центром в точке O, по которой велосипедист может ехать с максимальной скоростью. Какова эта скорость?