Лабораторная забота №3.

Проверка статистических гипотез о виде и параметрах распределения случайных величин.

Часть 1.

- 1. Используя данные Росстата, приведенные в файле данных CHISLO_DOCTORS.xlsx, найти значения случайного показателя X : **Число врачей на 10 тысяч человек населения** в указанном в Вашем варианте Федеральном Округе в каждый год периода T:2005, 2010, 2015, 2019, 2020 и 2021 гг.
- 2. Визуализировать данные показателя X в каждый год периода T по указанному в Вашем варианте Федеральному Округу с помощью графиков и боксплотов.
- 3. Вычислить описательную статистику: среднее, стандартное отклонение, квартили, минимальное и максимальное значения показателя X в каждый год периода T по указанному в Вашем варианте Федеральному Округу.
- 4. Проверить, можно ли считать, что распределение случайной величины X в указанном Федеральном Округе в каждый год периода T подчинено нормальному закону распределения. Использовать для проверки тест Шапиро-Уилка (уровень значимости α указан в Вашем варианте).

Для дальнейшего исследования использовать только те года, для которых распределение случайного показателя X в указанном в Вашем варианте Федеральном Округе можно считать нормальным.

5. Выделить те года t_1 - t_m с нормально распределенными значениями рядов данных Xt_1 - Xt_m , где Xt_1 - Xt_m имеют одинаковую дисперсию (уровень значимости взять равным α). Использовать для проверки нулевой гипотезы о равенстве дисперсий тесты Бартлетта и Левена.

Для выполнения п. 6-8 использовать ряды данных Xt₁- Xt_m из этой группы.

- 6. Проверить, можно ли считать, что среднее значение показателя X по данному Федеральному Округу в каждый год периода t_1 - t_m значимо выше (ниже) общероссийского значения показателя X (уровень значимости взять равным α). Общероссийские значения показателя X найти в файле CHISLO_DOCTORS.xlsx. Использовать для проверки гипотезы о равенстве средних t-тест для одной выборки.
- 7. Проверить, можно ли считать, что различия между средними значениями показателя X по данному Федеральному Округу в какие-то два года из периода t_1 - t_m незначимы, появились случайно (уровень значимости взять равным α). Использовать для проверки гипотезы о равенстве средних t-тест для двух выборок.
- 8. Проверить значимость отличий средних в выбранной группе (уровень значимости взять равным α). Использовать для проверки гипотезы о равенстве средних групп тест Тьюки и односторонний тест ANOVA.

Часть 2.

1. Проверить, можно ли считать, что распределение случайной величины X в указанном Федеральном Округе за весь период T подчинено нормальному закону распределения. Использовать для проверки следующие три критерия:

Хи-квадрат, Шапиро-Уилка и критерий Д'Агостино (уровень значимости α указан в Вашем варианте).

- 2. Смоделировать М выборок объемом n из значений случайной величины X, имеющей нормальное распределение с параметрами, указанными в Вашем варианте. На уровне значимости α проверить для каждой выборки гипотезу о нормальном законе распределения с помощью критериев Шапиро-Уилка и Д'Агостино. По результатам моделирования M выборок вычислить оценку вероятности совершить ошибку первого рода.
- 3. Смоделировать М выборок объемом n из значений случайной величины Y, имеющей указанное в Вашем варианте распределение. На уровне значимости α проверить для каждой выборки гипотезу о нормальном законе распределения с помощью критериев Шапиро-Уилка и Д'Агостино. Вычислить оценку вероятности не допустить ошибку второго рода. Какой из критериев при данной альтернативе является более мощным?

УКАЗАНИЯ.

Полную информацию о статистических критериях от команды разработчиков см.

https://docs.scipy.org/doc/scipy/reference/stats.html

Информацию о t-тестах см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_1samp.html#scipy.stats.ttest_1samp https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind_from_stats.html#scipy.stats.ttest_ind_from_stats

Информацию о тестах для проверки на нормальность см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html#scipy.stats.normaltest
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html#scipy.stats.shapiro
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html#scipy.stats.chisquare

Информацию о тестах для проверки выборок на равенство дисперсий см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bartlett.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html#scipy.stats.levene

Информацию о тестах для проверки групп на равенство средних (ожидаемых) значений групп см.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html#scipy.stats.f_oneway

Краткая информация по параметрическим гипотезам

Предполагается, что случайная величина X имеет нормальный закон распределения.

Таблица 1. Основные параметрические гипотезы для одной выборки.

H_{0}	Предпо- ложения	Статистика критерия	H_1	Область принятия H_0
$a = a_0$	σ ² известно	$U = \frac{\overline{x} - a_0}{\sigma} \sqrt{n}$	$a < a_o$	$U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = 1/2 - \alpha$ $U > -u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = 1/2 - \alpha$ $ U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1-\alpha)/2$
	σ² не- известно	$T = \frac{\overline{x} - a_0}{s} \sqrt{n}$	a>a ₀	$T < t_{\kappa p}(\alpha, n-1)$ для односторонней области $T > -t_{\kappa p}(\alpha, n-1)$ для односторонней области
			a≠a _o	$ T < t_{\kappa p}(\alpha, n-1)$ для двусторонней области
$\sigma^2 = \sigma_0^2$	а не- известно	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$	$\chi^{2} < \chi^{2}_{\alpha; n-1}$ $\chi^{2} > \chi^{2}_{1-\alpha; n-1}$ $\chi^{2}_{1-\alpha/2; n-1} < \chi^{2} < \chi^{2}_{\alpha/2; n-1}$
$p = p_0$	п порядка несколь- ких десятков или сотен	$U=rac{w-p_0}{\sqrt{p_0(1-p_0)}}\sqrt{n}\;,$ где $w=m/n$	$p > p_0$ $p < p_0$ $p \neq p_0$	$U < u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$ $U > -u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$ $ U < u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = (1 - \alpha)/2$

Предполагается, что случайные величины X и Y являются независимыми и имеют нормальный закон распределения.

Таблица 2. Основные параметрические гипотезы для двух выборок.

H_{0}	Предпо- ложения	Статистика критерия	H ₁	Область принятия H_{0}
	σ _x ² и σ _y ² известны	$U = \frac{\overline{x} - \overline{y}}{\overline{y}}$		$U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = 1/2 - \alpha$
		$U = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_x^2}{n} + \frac{\sigma_y^2}{m}}}$	$a_x < a_y$	$U > -u_{\rm kp}, \ \Phi_0(u_{\rm kp}) = 1/2 - \alpha$
		y n m	$a_x \neq a_y$	$ U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1 - \alpha)/2$
$a_x = a_y$	σ_x^2 и σ_y^2 не-известны,	$T = \frac{\overline{x} - \overline{y}}{s\sqrt{\frac{1}{n} + \frac{1}{m}}}$, где	$a_x > a_y$	$T < t_{xp}(\alpha, n + m - 2)$ для односторонней области
	но равны	• • • • • • • • • • • • • • • • • • • •	$a_x < a_y$	$T > -t_{sp}(\alpha, n + m - 2)$ для односторонней области
		$s^{2} = \frac{(n-1)s_{x}^{2} + (m-1)s_{y}^{2}}{n+m-2}$	$a_x \neq a_y$	$ T < t_{xp}(\alpha, n + m - 2)$ для двусторонней области
g,	а _х иа _у не-	$E = \frac{s_x^2}{s_x^2}$ rma $s^2 > s^2$	$\sigma_x^2 > \sigma_y^2$	$F < F_{\kappa p}(\alpha, n-1, m-1)$
$\sigma_{x}^{2} =$	известны	$F = \frac{s_x^2}{s_y^2}$, где $s_x^2 > s_y^2$	$\sigma_x^2 \neq \sigma_y^2$	$F \leq F_{\kappa p}(\alpha/2, n-1, m-1)$
	 n₁ и n₂ порядка несколь- ких десятков или сотен 	$U=\frac{w_1-w_2}{},$	$p_1 > p_2$	$U < u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$
$p_1 = p_2$		$(n_1 n_2)$	$p_1 < p_2$	$U > -u_{\text{kp}}, \ \Phi_0(u_{\text{kp}}) = 1/2 - \alpha$
			$p_1 \neq p_2$	$ U < u_{\kappa p}, \ \Phi_0(u_{\kappa p}) = (1 - \alpha)/2$
		где $w = \frac{m_1 + m_2}{n_1 + n_2}$		

См. также критерии Колмогорова- Смирнова, Хи-квадрат, Шапиро- Уилка, Бартлета, Тьюки, Левена и др..

ВАРИАНТЫ ЗАДАНИЙ

Вариант	Федеральный		<i>M</i>	$(a;\sigma^2)$	n	Закон
<u>Барнан г</u>	округ	α	171	(a,o^{-})	п	распределения
	(ФО)					случайной величины Ү
<u>1</u>	Центральный ФО	0,025	3000	(1; 4)	55	Хи-квадрат
						распределение с числом степеней свободы k = 2.
<u>2</u>	Южный	0,01	4000	(2; 9)	65	Распределение
	ФО					Стьюдента с числом степеней свободы k =4.
<u>3</u>	Приволжский	0,015	5000	(-1; 5)	60	Распределение Релея с
	ФО	·		(=, =)		модой, равной 16.
<u>4</u>	Уральский *-	0,02	5500	(-2; 25)	70	F-распределение с
	ФО					числом степеней свободы $k_1=k_2=8$.
<u>5</u>	Сибирский	0,03	6000	(3; 9)	75	Распределение Лапласа
	ФО					с параметром масштаба,
						равным 2, и параметром сдвига, равным 1.
<u>6</u>	Дальневосточный	0,035	2500	(-3;7)	80	Распределение
_	ФО					Стьюдента с числом
7	C	0.045	2500	(0.4)	50	степеней свободы k =3.
<u>7</u>	Северо-Западный федеральный	0,045	3500	(0;4)	50	Хи-квадрат распределение с числом
	округ					степеней свободы k =5.
<u>8</u>	Центральный ФО	0,035	4500	(0; 1,21)	45	Распределение
						Стьюдента с числом степеней свободы k =6.
<u>9</u>	Южный	0,055	5500	(1; 6)	69	Распределение Релея с
_	ФО			() -/		модой, равной 10.
<u>10</u>	Приволжский	0,065	6500	(-2; 6,25)	90	F-распределение с
	ФО					числом степеней свободы $k_1=k_2=7$.
11	Уральский	0,025	7000	(-1; 1)	70	Хи-квадрат
	ФО					распределение с числом
12	Сибирский	0,01	1500	(2; 3)	65	степеней свободы k =6. Распределение
<u>12</u>	ФО	0,01	1300	(2, 3)	03	Стьюдента с числом
						степеней свободы k =7.
<u>13</u>	Дальневосточный	0,015	3300	(-1;8)	85	Треугольное
	ФО					распределение на отрезке
						(1, 4) и модой, равной 2
<u>14</u>	Центральный ФО	0,025	4400	(0,5;3)	90	Распределение Релея с модой, равной 7.
<u>15</u>	Южный	0,03	5700	(-3; 1)	95	Логистическое
	ФО					распределение с
						параметрами масштаба
						и сдвига 9 и 4, соответственно.
<u>16</u>	Приволжский	0,035	3400	(-2;9)	100	Показательное
·	ФО					распределение с
						математическим ожиданием, равным 2.
<u>17</u>	Уральский	0,045	4300	(0, 75; 3)	55	Б-распределение с
_	фО					числом степеней
10	Care	0.06	F000	(2.0)		свободы k ₁₌ 3 и k ₂ =7.
<u>18</u>	Сибирский ФО	0,06	5200	(3; 9)	66	Логистическое распределение с
						параметрами масштаба

						и сдвига 5 и 2,
						соответственно.
<u>19</u>	Дальневосточный	0,055	4400	(1; 2)	90	F-распределение c
	ФО					числом степеней
						свободы k ₁ =8 и k ₂ =7.
20	Северо-Западный	0,065	5600	(2; 1)	70	Распределение
_	федеральный					Стьюдента с числом
	округ					степеней свободы k =5.
<u>21</u>	Центральный ФО	0,075	5900	(-1; 3)	80	Распределение Релея с
						модой, равной 10.
<u>22</u>	йинжОІ	0,01	3300	(-2; 9)	60	Хи-квадрат
	ФО					распределение с числом
						степеней свободы k =3.
<u>23</u>	Приволжский	0,03	4600	(3; 7)	58	F-распределение c
	ФО					числом степеней
						свободы $k_1=5$ и $k_2=7$.
<u>24</u>	Уральский	0,04	5400	(-3; 25)	68	Показательное
	ФО					распределение с
						математическим
						ожиданием, равным 100.
<u>25</u>	Сибирский	0,05	6000	(0; 4)	73	Логнормальное
	ФО					распределение со
						средним, равным 2 и
						стандартным
		0.007		(отклонением, равным 1.
<u>26</u>	Дальневосточный	0,025	6500	(-3; 36)	45	Распределение
	ФО					Стьюдента с числом
27		0.07	2700	(2.1)		степеней свободы k =8.
<u>27</u>	Северо-Западный	0,07	2700	(3;1)	56	Распределение Релея с
	федеральный					модой, равной 12.
20	округ	0.025	2600	(2 1)	(7	П
<u>28</u>	Северо-Западный	0,035	3600	(-3; 1)	67	Логистическое
	федеральный					распределение с
	округ					параметрами масштаба
						и сдвига 6 и 2
20	Центральный ФО	0,045	4800	(4.4)	78	соответственно. Хи-квадрат
<u>29</u>	центральный ФО	0,043	4000	(4; 4)	/8	1
						распределение с числом степеней свободы k =4.
30	Южный	0,05	5100	(-4; 16)	87	F-распределение с
30	ФО	0,05	5100	(- 4; 10)	07	числом степеней
	ΨΟ					свободы k_1 =4 и k_2 =7.
<u>31</u>	Приволжский	0,06	4800	(3; 25)	66	Распределение Лапласа
<u> </u>	ФО	0,00	4000	(3, 43)	00	с параметром масштаба,
	40					равным 1, и параметром
						сдвига, равным 0.
						одрига, разным о.