EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (CHEMISTRY)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Magnitude of charge on electron	е	$1,6 \times 10^{-19}\mathrm{C}$
Mass of an electron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standard pressure	p_{θ}	1,01 × 10⁵ Pa
Molar gas volume at STP	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature	T^{θ}	273 K (0 °C)
Avogadro's constant	NA	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday's constant	F	96 500 C⋅mol ⁻¹

TABLE 2 CHEMISTRY FORMULAE

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$						
$c = \frac{n}{V}$ OR $c = \frac{m}{MV}$	_	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14}$ at 25 °C (298 K)						
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$								
q = It	$E_{cell}^{ heta}=E_{cat}^{ heta}$	$_{hode}$ – $E^{ heta}_{anode}$						
q = nF	$m{\mathcal{E}_{cell}^{ heta} = \mathbf{\mathcal{E}_{oxidising ag}^{ heta}}}$	$_{ m gent}$ $ {\sf E}^{ heta}_{ m reducing}$ agent						

IEB Copyright © 2023 PLEASE TURN OVER

TABLE 3 PERIODIC TABLE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1					Atomic ber (Z)		,	Electronegati									He
2	3 1,0 Li 7	Be 9				Rela atomic	1 ative						5 2,0 B 10,8	C	N 14	O	F 19	10 Ne 20
3	11 0,9 Na 23	12 1,2 Mg 24,3				atomi	C IIIa53	•					13 1,5 Al 27	14 1,8 Si 28	15 2,1 P 31	16 2,5 S 32	17 3,0 Cℓ 35,5	18 Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga 70	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb 85,5												49 1,7 In			_	53 2,5 I	
6	55 Cs	⁵⁶ Ba	09	72 Hf	⁷³ Ta	74 W	75 Re	⁷⁶ Os	77 I r	⁷⁸ Pt	⁷⁹ Au	80 Hg	115 81 T£	82 Pb	83 Bi	84 Po	127 85 At	86 Rn
7	133 87 Fr	137,3 88 Ra		178,5	181	184	186	190	192	195	197	200,6	204,4	207	209	-	-	_

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
/ 10	•••	Ι . α			. u	/ \\	O		O .			IVIG	110	

TABLE 4 STANDARD ELECTRODE POTENTIALS

Half-	reacti	on	E^{θ} / volt
Li+ + e-	=	Li	-3,05
K+ + e-	\rightleftharpoons	K	-2,93
Cs+ + e-	\rightleftharpoons	Cs	-2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ba	-2,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	-2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	-2,87
Na+ + e-	\rightleftharpoons	Na	-2,71
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	-2,37
Aℓ³+ + 3e-	\rightleftharpoons	Αl	-1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	-1,18
2H ₂ O + 2e ⁻	\rightleftharpoons	$H_2(g) + 2OH^-$	-0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	-0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	-0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	-0,44
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	-0,40
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	-0,28
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	-0,25
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	-0,14
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	-0,13
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	-0,04
2H+ + 2e-	\rightleftharpoons	$H_2(g)$	0,00
S + 2H+ + 2e-	\rightleftharpoons	$H_2S(g)$	+0,14
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+0,15
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+0,34
2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+0,40
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H ₂ O	+0,45
$I_2 + 2e^-$	\rightleftharpoons	2I ⁻	+0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+0,68
Fe ³⁺ + e ⁻		Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻		Hg	+0,79
NO ₃ ⁻ + 2H ⁺ + e ⁻		$NO_2(g) + H_2O$	+0,80
Ag+ + e-		Ag	+0,80
NO ₃ ⁻ + 4H ⁺ + 3e ⁻		$NO(g) + 2H_2O$	+0,96
Br ₂ + 2e ⁻		2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻		Pt	+1,20
$MnO_2 + 4H^+ + 2e^-$		$Mn^{2+} + 2H_2O$	+1,21
$O_2 + 4H^+ + 4e^-$		2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$		2Cr ³⁺ + 7H ₂ O	+1,33
$C\ell_2(g) + 2e^-$		2Cℓ ⁻	+1,36
Au ³⁺ + 3e ⁻		Au	+1,42
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻			+1,51
$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+1,77
$F_2(g) + 2e^-$	=	2F-	+2,87

Increasing strength of reducing agent

Increasing strength of oxidising agent