Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

MLP History

Class Logistics and Agenda

- Logistics:
 - Grading Update
 - Next time: Flipped Module on back propagation
- Multi Week Agenda:
 - Today: Neural Networks History, up to 1980
 - Today: Multi-layer Architectures
 - Town Hall, Lab 4 (probably next time)
 - Flipped: Programming Multi-layer training

Class Overview, by topic

Lab 3, Town Hall (if needed)

Tyler Rablin @Mr_Rablin · 2d You're not grading assignments.

You're collecting evidence to determine student progress and pointing them towards their next steps.

Make the mental switch. It matters.

A History of Neural Networks

Neurons

From biology to modeling:

McCulloch and Pitts, 1943

dendrite

X_1 X_2 X_3 X_3 X_4 X_5 X_8 X_8

logic gates of the mind

Warren McCulloch

Walter Pitts

Neurons

- McCulloch and Pitts, 1943
- Donald Hebb, 1949

Hebb's Law: close neurons

fire together

neurons "learn

easier synaptid

basis of neural

Axon terminal

Node of

I was infatuated with the idea of **brainwashing** and controlling minds of others! I also invented a number of torture procedures like sensory deprivation and isolation tanks—and carried out a number of secret studies on real people!!

Donald O. Hebb

Warren McCulloch

Walter Pitts

Rosenblatt's perceptron, 1957

Frank Rosenblatt

$$a = -1$$
 z< 0
 $a = 1$ z>=0

$$a = \frac{1}{1 + \exp(-z)}$$

input

 X_N

dendrite

function

The Mark 1 **PERCEPTRON** Perceptron Learning Rule: ~Stochastic Gradient Descent Lecture inotes for iviacnine Learning in Pytr

Layers Notation for Table Data

 $\mathbf{x}^{(i)}$ One row from Table data becomes input column to model

 X_N

notation adapted from Neural Network Design, Hagan, Demuth, Beale, and De Jesus

S x 1

 $\mathbf{a}^{(next)} = \begin{vmatrix} \phi(z_1^{curr}) \\ \vdots \\ \phi(z_N^{curr}) \end{vmatrix} \rightarrow \mathbf{a}^{(L)} = \begin{vmatrix} \phi(z_1^{L-1}) \\ \vdots \\ \phi(z_N^{L-1}) \end{vmatrix}$

Generic Multiple Layers Notation

$$\begin{split} \mathbf{a}^{(L+1)} &= \phi(\mathbf{z}^{(L)}) & \mathbf{a}^{(final)} \text{ size=unique classes, } C \\ \mathbf{z}^{(L)} &= \mathbf{W}^{(L)} \cdot \mathbf{a}^{(L)} + \mathbf{b}^{(L)} \\ \mathbf{z}^{(L)} &= \mathbf{W}^{(L)} \cdot \phi(\mathbf{z}^{(L-1)}) + \mathbf{b}^{(L)} \\ \mathbf{z}^{(L)} &= \mathbf{W}^{(L)} \cdot \phi\left(\mathbf{W}^{(L-1)} \cdot \phi(\mathbf{z}^{(L-2)}) + \mathbf{b}^{(L-1)}\right) + \mathbf{b}^{(L)} \end{split}$$

Multiple layers notation

- **Self test**: How many parameters need to be trained in the above network?
 - A. $[(N+1) \times S^1] + [(S^1+1) \times S^2] + [(S^2+1) \times S^3]$
 - B. $|\mathbf{W}^{(1)}| + |\mathbf{W}^{(2)}| + |\mathbf{W}^{(3)}| + |\mathbf{b}^{(1)}| + |\mathbf{b}^{(2)}| + |\mathbf{b}^{(3)}|$
 - C. can't determine from diagram
 - D. it depends on the sizes of intermediate variables, **z**⁽ⁱ⁾

Compact feedforward notation

$$\mathbf{X}^{T} = \begin{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix}^{(1)}, \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix}^{(2)} \dots \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N} \end{bmatrix}^{(M)} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} a_{0}^{(1)} \\ a_{1}^{(1)} \\ \vdots \\ a_{N}^{(1)} \end{bmatrix}^{(1)}, \begin{bmatrix} a_{0}^{(1)} \\ a_{1}^{(1)} \\ \vdots \\ a_{N}^{(1)} \end{bmatrix}^{(2)} \dots \begin{bmatrix} a_{0}^{(1)} \\ a_{1}^{(1)} \\ \vdots \\ a_{N}^{(1)} \end{bmatrix}^{(M)} \end{bmatrix} = \mathbf{A}^{(1)}$$

Table Data

Table Data, in Neural Net Notation

Compact feedforward notation

$$\mathbf{Z}^{(L)} = \mathbf{W}^{(L)} \cdot \phi(\mathbf{Z}^{(L-1)}) + \mathbf{b}^{(L)}$$

$$\left[\mathbf{z}^{(L)}\right]^{(i)} = \mathbf{W}^{(L)} \cdot \left[\mathbf{a}^{(L)}\right]^{(i)} + \mathbf{b}^{(L)} \qquad \begin{bmatrix} z_2 \\ \vdots \\ z_{SL}^{(L)} \end{bmatrix} = \mathbf{W}^{(L)} \cdot \begin{bmatrix} a_1 \\ \vdots \\ a_{SL-1}^{(L)} \end{bmatrix} + \mathbf{b}^{(L)}$$

$$\begin{bmatrix}
\begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}^{(1)}, \begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}^{(2)}, \begin{bmatrix} z_1^{(L)} \\ z_2^{(L)} \\ \vdots \\ z_{S^L}^{(L)} \end{bmatrix}^{(M)} \\
= \mathbf{W}^{(L)} \cdot \begin{bmatrix} \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}^{(1)}, \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}^{(2)}, \begin{bmatrix} a_0^{(L)} \\ a_1^{(L)} \\ \vdots \\ a_{S^{L-1}}^{(L)} \end{bmatrix}^{(M)} \\
+ \mathbf{b}^{(L)}$$

b is broadcast added

Training Neural Network Architectures

When a binary classification model outputs 0.5

Start Simple: Simplifying to One Layer

where ground truth \mathbf{Y} is

Need objective Function, minimize MSE $J(\mathbf{W}) = \|\mathbf{Y} - \hat{\mathbf{Y}}\|^2$

$$\mathbf{Y} = \begin{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(1)} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(2)} \dots \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(M)} \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}^{(1)} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}^{(2)} \dots \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}^{(M)}$$

$$J(\mathbf{W}) = \underbrace{\begin{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(1)} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(2)} \dots \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(M)}}_{\mathbf{Y}} - \underbrace{\begin{bmatrix} \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(1)} \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(2)} \dots \begin{bmatrix} a_1^{(L)} \\ a_2^{(L)} \\ \vdots \\ a_C^{(L)} \end{bmatrix}^{(M)}}_{\hat{\mathbf{Y}}}$$

Rosenblatt's perceptron, 1957

Self Test - If this is a binary classification problem, how large is *S*, the length of **yhat** and number of rows in **W**?

- A. Can't determine
- B. 2
- C. 1
- D. N

Adaline network, Widrow and Hoff, 1960

Bernard Widrow

Simplify Objective Function:

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2 \longrightarrow J(\mathbf{w}) = \| \mathbf{Y} - \mathbf{A} \cdot \mathbf{w} \|^2$$

Need gradient $\nabla J(\mathbf{w})$ for update equation $\mathbf{w} \leftarrow \mathbf{w} + \eta \, \nabla J(\mathbf{w})$

We have been using the Widrow-Hoff Learning Rule

Adaline network, Widrow and Hoff, 1960

Bernard Widrow

Need gradient $\nabla J(\mathbf{w})$ for update equation $\mathbf{w} \leftarrow \mathbf{w} + \eta \nabla J(\mathbf{w})$

For case S=1, **W** has only one row, **w** this is just linear regression...

$$J(\mathbf{w}) = \sum_{i=1}^{M} (y^{(i)} - \mathbf{x}^{(i)} \cdot \mathbf{w})^{2}$$
$$\mathbf{w} = (\mathbf{X}^{T} \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^{T} \cdot y$$

Modern Perceptron network

Need gradient $\nabla J(\mathbf{w})$ for update equation $\mathbf{w} \leftarrow \mathbf{w} + \eta \nabla J(\mathbf{w})$

For case S=1, this is just **logistic regression...** and we have already solved this!

$$\mathbf{w} \leftarrow \mathbf{w} + \eta \cdot \text{mean} \left(\underbrace{(\mathbf{y} - g(\mathbf{X} \cdot \mathbf{w}))}_{\mathbf{y}_{diff}} \odot \mathbf{X} \right)_{c}$$
What happens when S > 1 ?

What happens when S > 1?

One Layer Architectures of Many Classes

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^{2}$$

$$J(\mathbf{W}) = \| \mathbf{Y} - \phi (\mathbf{W} \cdot \mathbf{X}) \|^{2}$$

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^{2}$$

$$J(\mathbf{W}) = \| \mathbf{Y} - \phi(\mathbf{W} \cdot \mathbf{X}) \|^{2}$$

$$J(\mathbf{w}_{row=C}) = \sum_{i} (y_{C}^{(i)} - \phi(\mathbf{x}^{(i)} \cdot \mathbf{w}_{row=C})^{2}$$

$$\mathbf{Y} = \begin{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(1)} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(2)} \dots \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_C \end{bmatrix}^{(M)} \end{bmatrix} \rightarrow \begin{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{(1)} \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{(2)} & \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{(M)} \\ \vdots & \vdots & \vdots \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{(1)} \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{(2)} \dots \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{(M)}$$

Each target class in Y can be independently optimized

which is one versus-all!

	$\phi(\mathbf{x}^{(1)} \cdot \mathbf{w}_{row=1})$	$\phi(\mathbf{x}^{(2)} \cdot \mathbf{w}_{row=1})$	$\phi(\mathbf{x}^{(M)} \cdot \mathbf{w}_{row=1})$
$\hat{\mathbf{Y}} =$	$\phi(\mathbf{x}^{(1)} \cdot \mathbf{w}_{row=2})$	$\phi(\mathbf{x}^{(2)} \cdot \mathbf{w}_{row=2}) $	$\phi(\mathbf{x}^{(M)} \cdot \mathbf{w}_{row=2})$
	:	:	:
	$\phi(\mathbf{x}^{(1)} \cdot \mathbf{w}_{row=C})$	$\left[\phi(\mathbf{x}^{(2)}\cdot\mathbf{w}_{row=C})\right]$	$\phi(\mathbf{x}^{(M)} \cdot \mathbf{w}_{row=C})$

Early Architectures: Summary

- Adaline network, Widrow and Hoff, 1960
 - linear regression, iterative updates
- Perceptron
 - with sigmoid: logistic regression
- One-versus-all implementation is the same as having **w**_{class} be rows of weight matrix, **W**

Moving to multiple layers...

- The multi-layer perceptron (MLP):
 - two layers shown, but could be arbitrarily many layers

each element of yhat is no longer independent of the rows in $\mathbf{W}^{(1)}$

so we cannot optimize using one versus all 😥

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_C \end{bmatrix} = \begin{bmatrix} \phi(\phi(\mathbf{z}^{(1)}) \cdot \mathbf{w}_{row=1}^{(2)}) \\ \phi(\phi(\mathbf{z}^{(1)}) \cdot \mathbf{w}_{row=2}^{(2)}) \\ \vdots \\ \phi(\phi(\mathbf{z}^{(1)}) \cdot \mathbf{w}_{row=C}^{(2)}) \end{bmatrix}$$

$$\mathbf{z}^{(1)} = \mathbf{W}^{(1)} \cdot \mathbf{a}^{(1)}$$

Back propagation

- Optimize all weights of network at once
- Steps:
 - 1. Forward propagate to get all **Z**(1), **A**(1)
 - 2. Get final layer gradient
 - 3. Back propagate sensitivities
 - 4. Update each **W**(1)

Back-propagation is solved in flipped assignment!!

$$J(\mathbf{W}) = \| \mathbf{Y} - \hat{\mathbf{Y}} \|^2$$

$$w_{i,j}^{(l)} \leftarrow w_{i,j}^{(l)} - \eta \frac{\partial J(\mathbf{W})}{\partial w_{i,j}^{(l)}}$$

Back propagation Preview

This is solved in explainer video for next flipped assignment!

The First Al Winter (if time)

The Rosenblatt-Widrow-Hoff Dilemma

 1960's: Rosenblatt got into a public academic argument with Marvin Minsky and Seymour Papert

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

Minsky and Papert publish limitations paper, 1969:

"the style of research being done on the perceptron is doomed to failure because of these limitations."

- Widrow and Rosenblatt try to build bigger networks without limitations and fail
 - Neural Networks research basically stops for 17 years
- Until: researchers revisit training bigger networks
 - Neural Networks with multiple layers

Stable Training of Multi-layer Architectures: history

- 1986: Rumelhart, Hinton, and Williams popularize gradient calculation for multi-layer network
 - technically introduced by Werbos in 1982
- difference: Rumelhart et al. validated ideas with a computer
- until this point no one could train a multiple layer network consistently
- algorithm is popularly called **Back-Propagation**
- wins pattern recognition prize in 1993, becomes de-facto machine learning algorithm until: SVMs and Random Forests in ~2004
- would eventually see a resurgence for its ability to train algorithms for Deep Learning applications: Hinton is widely considered the

founder of deep learning

David Rumelhar

3eoffrey Hinton

End of Session

thanks! Next time is Flipped Assignment!!!

More help on neural networks to prepare for next time:

Dr. Sebastian Raschka

https://github.com/rasbt/python-machine-learning-book/blob/master/code/ch12/ch12.ipynb

Dr. Martin Hagan

https://www.google.com/url?

<u>sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwioprvn</u> <u>27fPAhWMx4MKHYbwDlwQFggeMAA&url=http%3A%2F%2Fhagan.okstate.edu%</u> <u>2FNNDesign.pdf&usg=AFQjCNG5YbM4xSMm6K5HNsG-4Q8TvOu_Lw&sig2=bgT3k-5ZDDTPZ07Qu8Oreg</u>

Dr. Michael Nielsen

http://neuralnetworksanddeeplearning.com