

(A) -2f'(0). (B) -f'(0). (C) f'(0).

8.设函数 y = f(x) 由方程 $\cos(xy) + \ln y - x = 1$ 确定,则 $\lim_{n \to \infty} n \left[f(\frac{2}{n}) - 1 \right] = ($

(A) x = 0 是 f(x) 的第一类间断点; (B) x = 0 是 f(x) 的第二类间断点;

(C) f(x) 在 x = 0 处连续但不可导; (D) f(x) 在 x = 0 处可导.

9. 已知函数 $f(x) = \begin{cases} x, & x \le 0, \\ \frac{1}{-}, & \frac{1}{-} < x \le \frac{1}{-}, & n = 1, 2, \dots, \end{cases}$ ().

(A) 2 (B) 1

10. 若曲线 $y = x^2 + ax + b$ 和 $2y = -1 + xy^3$ 在点 $(1, -1)$ 处相切, 其中 a, b 是常数, 则()
(A) $a = 0, b = -2$ (B) $a = 1, b = -3$ (C) $a = -3, b = 1$ (D) $a = -1, b = -1$
11. 设周期函数 $f(x)$ 在 $(-\infty, +\infty)$ 内可导, 周期为 4. 又 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$, 则曲线 $y = f(x)$ 在点 $(5, f(5))$
处的切线的斜率为 () (A) $\frac{1}{2}$ (B) 0 (C) -1 (D) -2
12.设函数 $g(x)$ 可微, $h(x) = e^{1+g(x)}, h'(1) = 1, g'(1) = 2, 则 g(1) 等于()$
(A) $\ln 3 - 1$ (B) $-\ln 3 - 1$ (C) $-\ln 2 - 1$ (D) $\ln 2 - 1$
13. 已知函数 $f(x) = \frac{1}{1+x^4}$,则 $f^{(3)}(0) = ($)
(A) $\frac{1}{2}$ (B) 0 (C) 1 (D) -2
14.设函数 $f(x) = (e^x - 1)(e^{2x} - 2)\cdots(e^{nx} - n)$,其中 n 为正整数,则 $f'(0) = ($)
(A) $(-1)^{n-1}(n-1)!$ (B) $(-1)^n(n-1)!$ (C) $(-1)^{n-1}n!$ (D) $(-1)^nn!$
15. 设曲线 $f(x) = x^n$ 在点 (1,1) 处的切线与 x 轴的交点为 $(\xi_n, 0)$, 则 $\lim_{n \to \infty} f(\xi_n) = ($)
(A) $\frac{1}{2}$ (B) 0 (C) 1 (D) $\frac{1}{e}$
16.
(A)跳跃间断点 (B) 可去间断点 (C) 无穷间断点 (D) 连续
17. 设 $f(x)$ 可导, $F(x) = f(x)(1+ \sin x)$,则 $f(0) = 0$ 是 $F(x)$ 在 $x = 0$ 处可导的 ()
(A) 充分必要条件 (B) 充分条件但非必要条件 (C) 必要条件但非充分条件 (D) 既非充分条件又非必要条件
18. 设 $f(x)$ 在 $x = a$ 的某个领域内有定义,则 $f(x)$ 在 $x = a$ 处可导的一个充分条件是()
(A) $\lim_{h \to +\infty} h[f(a+\frac{1}{h})-f(a)]$ 存在 (B) $\lim_{h \to 0} \frac{f(a+2h)-f(a+h)}{h}$ 存在
(C) $\lim_{h \to 0} \frac{f(a+h) - f(a-h)}{2h}$ 存在 (D) $\lim_{h \to 0} \frac{f(a) - f(a-h)}{h}$ 存在
19. 若 $f(x) = -f(-x)$, 在 $(0,+\infty)$ 内 $f'(x) > 0$, $f''(x) > 0$, 则 $f(x)$ 在 $(-\infty,0)$ 内
(A) $f'(x) < 0, f''(x) < 0$ (B) $f'(x) < 0, f''(x) > 0$ (C) $f'(x) > 0, f''(x) < 0$ (D) $f'(x) > 0, f''(x) > 0$
20. 己知 $y - xe^y = 1$,则 $y'' _{x=0}$ ()
(A) 1 (B) 2 (C) $2e$ (D) $2e^2$