Room 102 08:30 -- 09:30 Tu1A • Opening Ceremony and Plenary Talk

**08:15 Opening Ceremony** 

# Tu1A.1 • 08:45 Plenary/Keynote Submission

**Liquid Crystal for Non-display Photonic Applications,** Yanqing Lu<sup>1</sup>; <sup>1</sup>Nanjing Univ., China. Inducing micro-patterns and structures inside a Liquid crystal (LC) cell is an effective way to improve the performance of LC display. However, in addition to display applications, LC also plays an important role in various tunable photonic devices with the advantages of low cost, no moving parts, low power consumption and high reliability. In this talk, I am going to review some of our work in merging LC and various artificial microstructures in different spans. The related photonic applications are discussed.

Room 102 10:00 -- 11:30 Tu2A • Plenary II

# Tu2A.1 • 10:00 Plenary/Keynote Submission

**Ultra-precision Control of Optical Waves by Use of Fiber-based Frequency Combs and its Application,** Kaoru Minoshima<sup>1</sup>; <sup>1</sup>Univ. of Electro-Communications, Japan. Optical frequency combs have opened up several new application fields not only in frequency metrology as "ultraprecise frequency ruler" but also in broad area by use of its capability for fully controlling the phase, time, and frequency information of light waves, i.e., "optical synthesizer", with an extreme precision and wide dynamic range. In this talk, development of fiber-based frequency combs, which are the key for practical application is presented. Moreover, some of the applications of frequency combs, including precision spectroscopy for gas sensing and material characterization, distance measurement, and imaging are presented.

# Tu2A.2 • 10:45 Plenary/Keynote Submission

**Technology and Applications of Fiber Bragg Grating Sensors in Germany,** Hartmut Bartelt<sup>1</sup>; <sup>1</sup>Fiber Optics, IPHT, Germany. Fiber Bragg gratings have proven to be extremely versatile elements for manifold signal and sensing applications. They provide localized and fiber integrated sensing functionalities. Such attractive properties have resulted in several successful commercialization activities in Germany.

Room 102 13:00 -- 15:00 Tu3A • Physical Sensing

## **Tu3A.1 • 13:00 (Invited)**

**Brillouin Scattering in Plastic Optical Fibers and its Applications to High-speed Distributed Sensing,** Yosuke Mizuno<sup>1</sup>, Heeyoung Lee<sup>1</sup>, Neisei Hayashi<sup>2</sup>, Kentaro Nakamura<sup>1</sup>; 

<sup>1</sup>Tokyo Inst. of Technology, Japan; 

<sup>2</sup>The Univ. of Tokyo, Japan. We briefly review the unique

properties of Brillouin scattering in plastic optical fibers (POFs). We then present our latest research results on POF-based distributed strain/temperature sensing with high spatial resolution and high sampling rate.

## Tu3A.2 • 13:30

**Semi-auxetic Optical Fibre Distributed Load Sensor,** Luca Schenato<sup>2</sup>, Alessandro Pasuto<sup>2</sup>, Andrea Galtarossa<sup>1</sup>, Luca Palmieri<sup>1</sup>; <sup>1</sup>Univ. of Padova, Italy; <sup>2</sup>Research Inst. for Geo-Hydrological Protection, National Research Council, Italy. A distributed optical fibre load sensor exploiting a semi-auxetic structure is presented. The fibre is interrogated by means of optical frequency domain reflectometry. The device is described and a prototype is assembled and characterized.

#### Tu3A.3 • 13:45

**A High Sensitivity Three-Component Fiber Laser Seismic System,** Zhihui Sun<sup>1</sup>; <sup>1</sup>Laser Inst. of Shandong Academy of S, China. We are presenting experimental results for a new 3C fiber laser geophone and comparing its performance with regular exploration geophones. It has a better performance in terms of sensitivity and micro-seismic signal detection.

#### Tu3A.4 • 14:00

**Ultra-Long Random Laser for Remote Real-time Interferometric Sensor Monitoring Using FFT Analysis,** Veronica de Miguel<sup>1</sup>, Aitor Lopez<sup>1</sup>, Daniel Leandro<sup>1</sup>, Manuel Lopez-Amo<sup>1</sup>; 

<sup>1</sup>Universidad Publica de Navarra, Spain. A new sensing application of random distributed feedback fiber lasers that allows real-time remote monitoring of an interferometric sensor by means of FFT analysis is presented and demonstrated.

# Tu3A.5 • 14:15

**Multi-layer Graphene Diaphragm-based Fabry-Perot Interferometer for Acoustic Detection with Long Term Stability,** Congzhe Zhang<sup>1,2</sup>, Yuanhong Yang<sup>1</sup>, Yanzhen Tan<sup>3,2</sup>, Jun Ma<sup>3</sup>, Hoi Lut Ho<sup>3,2</sup>, Wei Jin<sup>3,2</sup>; <sup>1</sup>Beihang Univ., China; <sup>2</sup>Photonic Sensors Research Center, The Hong Kong Polytechnic Univ. Shenzhen Research Inst., China; <sup>3</sup>Department of Electrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong. Graphene diaphragm-based Fabry-Perot interferometer acoustic sensor with a feedback control to achieve long term stable operation is reported. The long term stability test shows that the system can work over 12 hours without obvious reduction of detection sensitivity.

### Tu3A.6 • 14:30

An Electro-optic Modulator Detection Method in All Optical Atomic Magnetometer, Yanhui Hu<sup>1</sup>, Xuejing Liu<sup>1</sup>, Yang Li<sup>1</sup>, Ming Ding<sup>1</sup>; <sup>1</sup>Beihang Univ., China. An EOM detection method is demonstrated to detect the optical atomic precession in the all optical atomic magnetometer, which achieved a sensitivity of ~30 fT/Hz<sup>1/2</sup> @ 30Hz.It is feasible for the compactness and simplicity of atomic magnetometer.

## Tu3A.7 • 14:45

High-resolution Fiber Laser Static Strain Sensor Using Beat Frequency Interrogation Technique, Wentao Zhang<sup>1</sup>, Wenzhu Huang<sup>1</sup>, Shengwen Feng<sup>1</sup>, Fang Li<sup>1</sup>; <sup>1</sup>Chinese Academy of Sciences, China. A distributed feedback fiber laser is used for static strain sensing by beating

with another fiber laser which is locked to a temperature compensation FBG resonator. A sub-0.5 ne resolution is achieved.

#### **Room 102**

15:30 -- 17:30

Tu4A • Grating and Component Technologies for Sensing

### **Tu4A.1 • 15:30 (Invited)**

Introduction of FBG Sensors and their Application to Structural Health Monitoring,

Yoshifumi Suzaki<sup>1</sup>; <sup>1</sup>Kagawa Univ., Japan. Because fiber Bragg gratings (FBGs) have very sharp narrow-band reflection spectra, they are well suited for applications involving narrow-band optical signals, such as various types of fiber sensors. Some applications using FBGs will be introduced.

### Tu4A.2 • 16:00

**Periodically Patterned Long-period Grating on a D-shaped Photonic Crystal Fiber for Simultaneous Measurement of Temperature and Ambient Index,** Jong Cheol Shin<sup>1</sup>, Eun Ji Lim<sup>1</sup>, Kwang Wook Yoo<sup>1</sup>, Young-Geun Han<sup>1</sup>; <sup>1</sup>Hanyang Univ., Korea (the Republic of). A periodically patterned long-period grating on a D-shaped photonic crystal fiber is investigated for simultaneous measurement of temperature and ambient index. The proposed LPG exhibits different temperature and ambient index sensitivities corresponding to two polarization states.

### Tu4A.3 • 16:15

**Orientation-dependent Accelerometer using Inner-Cladding-FBG,** Weijia Bao<sup>1</sup>, Qiangzhou Rong<sup>1</sup>, Xueguang Qiao<sup>1</sup>; <sup>1</sup>Northwest Univ., China. An orientation-dependent accelerometer based on inner-cladding-FBG inscribed on quadruple -cladding fiber is proposed and demonstrated, experimentally. And the device shows a good sensitivity and orientation-dependence in the vector acceleration measurement.

### Tu4A.4 • 16:30

A Gas Pressure Sensor Based on Long Period Fiber Grating Inscribed in Air-core Photonic Bandgap Fiber, Jian Tang<sup>1</sup>, Zhe Zhang<sup>1</sup>, Guolu Yin<sup>1</sup>, Zhengyong Li<sup>1</sup>, Shen Liu<sup>1</sup>, Changrui Liao<sup>1</sup>, Ying Wang<sup>1</sup>, Yiping Wang<sup>1</sup>; \*IShenzhen Univ., China.\* We experimentally demonstrated a high-sensitivity gas pressure sensor based on long period fiber grating (LPFG) inscribed in an air-core photonic bandgap fiber (PBF), which exhibits a high gas pressure sensitivity of up to -1.30 nm/MPa.

#### Tu4A.5 • 16:45

**Real-time Monitoring of the Dynamic Fiber Bragg Grating Sensor Interrogation,** Jinwoo Park<sup>1</sup>, Yong Seok Kwon<sup>1</sup>, Min Yong Jeon<sup>1</sup>; <sup>1</sup>Chungnam National Univ., Korea (the Republic of). We report a real-time monitoring of the dynamic variation for the fiber Bragg grating (FBG) sensor interrogation using a 1550 nm band resonance Fourier domain mode-locked fiber laser. The resolution of the dynamic measurement could be achieved up to 2 Hz.

### Tu4A.6 • 17:00

**Strain Interrogation of FBG Sensor Based on Radio Frequency M-Z Interferometer with TDCMX,** Jiaao Zhou<sup>2,1</sup>, Li Xia<sup>2,1</sup>, Ying Wu<sup>2,1</sup>, Rui Cheng<sup>2,1</sup>, Deming Liu<sup>1</sup>; <sup>1</sup>Huazhong Univ of Science & Technology, China; <sup>2</sup>Wuhan National Laboratory for Optoelectronics, China. The operation of a novel radio-frequency M-Z interferometer is demonstrated for strain interrogation on FBG sensor, which adopts a dispersion compensation module to change the phase difference and achieve strain sensing with high accuracy.

#### Tu4A.7 • 17:15

Short-time Energy Characterization of Low Velocity Impact Localization Method on CFRP Using FBG Sensors, Junsong Yu<sup>1</sup>, Jie Zeng<sup>1</sup>; <sup>1</sup>State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing U. of Aero. and Astro., China. An impact localization method using four FBG sensors based on short-time energy characterization and SVM is proposed and verified on a CFRP plate with 300mm\*300mm experiment area. By optimizing the free parameters of short-time energy characterization extraction method and SVM models, the experiment showed that most of the results are satisfying.

Room 102 08:00 -- 10:00 W1A • Biological / Biomedical Sensing and Imaging

## W1A.1 • 08:00 (Invited)

**Real Time Optical Imaging for Biomedical Informatics,** Tae Joong Eom<sup>1</sup>; <sup>1</sup>Gwangju Inst of Science & Technology, Korea (the Republic of). The real time and high-resolution optical imaging were enhanced image processing quality and contribute for analyzing and diagnosis guidelines. A high speed OCT imaging system and an image processing modality was introduced for several ophthalmology applications to obtain quantified information.

### W1A.2 • 08:30

**Fiber Laser Ultrasound Detector With Enhanced Sensitivity for Photoacoustic Imaging Applications,** Xue Bai<sup>1</sup>, Long Jin<sup>1</sup>, Yizhi Liang<sup>1</sup>, Bai-Ou Guan<sup>1</sup>; <sup>1</sup>Jinan Univ., China. A beat-frequency encoded fiber laser ultrasound probe has been demonstrated for photoacoustic imaging applications. Experimental result suggests the imaging contrast can be enhanced by shortening the laser cavity.

### W1A.3 • 08:45

Measurement of Blood Glucose Level by using Mid-Infrared Hollow-Optical Fiber Probe with ATR Multi-Reflection Prism, Saiko Kino<sup>1</sup>, Yuji Matsuura<sup>1</sup>; <sup>1</sup>Tohoku Univ., Japan. Midinfrared ATR spectroscopy system comprising hollow optical fibers and a multi-reflection prism are developed for blood-glucose measurement. Absorption spectra of lip mucosa revealed clear signatures of glucose and measurement errors less than 20% was obtained.

# W1A.4 • 09:00

**Lab on Fiber Biosensors Integrated with Microgels,** Martino Giaquinto<sup>1</sup>, Anna Aliberti<sup>1</sup>, Alberto MIcco<sup>1</sup>, Armando Ricciardi<sup>1</sup>, Menotti Ruvo<sup>2</sup>, Antonello Cutolo<sup>1</sup>, Andrea Cusano<sup>1</sup>; 
<sup>1</sup>Univ. of Sannio, Italy; <sup>2</sup>CNR-IBB, Italy. We experimentally demonstrate a novel optical fiber label free biosensing platform resulting from the integration between Lab-on-Fiber Technology

and Microgels Photonics. The novel platform allows to overcome the main issues associated to small molecule detection.

### W1A.5 • 09:15

Whispering-gallery-type Sensor for Single Nanoparticle Detection Using the Dissipative Interaction, Yanyan Zhi<sup>1,2</sup>, Bo-Qiang Shen<sup>1</sup>, Xiao-Chong Yu<sup>1</sup>, Li Wang<sup>1,2</sup>, Donghyun Kim<sup>3</sup>, Qihuang Gong<sup>1,2</sup>, Yun-Feng Xiao<sup>1,2</sup>; <sup>1</sup>State Key Laboratory for Mesoscopic Physics and School of Physics, Peking Univ., China; <sup>2</sup>Collaborative Innovation Center of Quantum Matter, China; <sup>3</sup>School of Electrical and Electronic Engineering, Yonsei Univ., Korea (the Republic of). Different from the conventional whispering-gallery-mode sensing using reactive interaction, the dissipative interaction is proposed and demonstrated to detect single nanoparticles which are lossy and with an ultra-small real part of the polarizability.

### W1A.6 • 09:30

Rapid Estimation of Bacteria Counts using Acridine Orange, Rachel Guo<sup>1</sup>, Cushla M. McGoverin<sup>1</sup>, Simon Swift<sup>2</sup>, Frederique Vanholsbeeck<sup>1</sup>; <sup>1</sup>Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Univ. of Auckland, New Zealand; <sup>2</sup>School of Medical Sciences, Univ. of Auckland, New Zealand. Determining bacterial concentration by order of magnitude rapidly will be useful in several fields of microbiology. For this purpose we have analysed the fluorescence behavior of acridine orange bound to bacteria with independent components analysis.

## W1A.7 • 09:45

**Solving the Photon Maze for Sensing and Imaging inside Scattering Media,** Cheng Ma<sup>1,2</sup>; <sup>1</sup>Washington Univ. in St Louis, USA; <sup>2</sup>Electronic Engineering, Tsinghua Univ., China. This paper summarizes some of our recent achievements in suppressing light scattering. These technologies may have profound impacts in biomedical applications since most biological tissues are opaque to visible or near-infrared photons due to scattering.

Room 102 10:30 -- 11:45 W2A • Integrated Technologies for Sensing

# W2A.1 • 10:30 (Invited)

**Direct Fabrications of Photonic Devices in Multi-Corre Fibers with Rectangular Cross-Sections,** Ming-Jun Li<sup>1</sup>, Kevin P. Chen<sup>2</sup>; <sup>1</sup>Corning Incorporated, USA; <sup>2</sup>Univ. of Pittsburgh, USA. This paper reports ultrafast laser direct writing of optical components in multi-core rectangular shape fibers for sensing and fiber laser applications. We will discuss efforts to turn optical fibers from one-dimensional devices to three-dimensional devices.

#### W2A.2 • 11:00

**Temperature Controlled Portable Smartphone Fluorimeter,** Md. Arafat Hossain<sup>1,4</sup>, Zhikang Yu<sup>2</sup>, John Canning<sup>2</sup>, Sandra Ast<sup>3</sup>, Joseph Wong<sup>2</sup>, Peter Rutledge<sup>2</sup>, Maxwell Crossley<sup>2</sup>, Abbas Jamalipour<sup>1</sup>; <sup>1</sup>School of Electrical and Information Engineering, The Univ. of Sydney, Australia; <sup>2</sup>School of Chemistry, The Univ. of Sydney, Australia; <sup>3</sup>Australian Sensors and Identification Systems, Australia; <sup>4</sup>Electrical and Electronic Engineering, Khulna Univ. of Engineering and

*Technology, Bangladesh.* A self-powered temperature-controlled smartphone fluorimeter is demonstrated. The device measures fluorescence for a temperature range of T = 10 to 40 °C with a precision of 0.1 °C. Results can be shared via wireless networking.

### W2A.3 • 11:15

**Simultaneous Measurement of Temperature and Humidity Based on Integrative Sensor of Fiber Bragg Grating and multilayer Fraby-Perot interferometer,** Jiankun -. Peng<sup>1</sup>, Chongjie Qi<sup>1</sup>, Weijia Wang<sup>1</sup>, Minghong Yang<sup>1</sup>; <sup>1</sup>Wuhan Univ. of Technology, China. Temperature and humidity measurement system based on Fabry-Perot interferometer and fiber Bragg grating is proposed. Experimentally results show the average humidity and temperature sensitivity of the integrative sensor are 0.57 nm/%RH and 10 pm/°C.

### W2A.4 • 11:30

Refractive Index Sensing in an Optically Integrated Flat-fiber Substrate, sumiaty ambran<sup>1</sup>, Christopher Holmes<sup>2</sup>, James Gates<sup>2</sup>, Siti Rahmah Aid<sup>1</sup>, Azura Hamzah<sup>1</sup>, Minoru Yamada<sup>1</sup>, Osamu Mikami<sup>1</sup>, Peter Smith<sup>2</sup>, Jayanta Sahu<sup>2</sup>; <sup>1</sup>Malaysia Japan International Inst. of Technology, Universiti Teknologi Malaysia, Malaysia; <sup>2</sup>Optoelectronics Research Centre, Univ. of Southampton, UK. An optical flat-fiber substrate is presented for refractive index sensor. A series of Bragg grating is used as a sensing tool. A maximum sensitivity to approximately 95 nm per refractive index unit has been achieved.

Room 102 13:00 -- 15:00 W3A • Chemical and Gas Sensing

### **W3A.1 • 13:00 (Invited)**

**Microfluidics for Photochemical Harvesting of Solar Energy,** Xuming Zhang<sup>1</sup>; <sup>1</sup>Hong Kong Polytechnic Univ., Hong Kong. Abstract not available.

### W3A.2 • 13:30

**Dynamics of Photothermal Phase Modulation in a Gas-filled Hollow-core Photonic Bandgap Fiber,** Yuechuan Lin<sup>1</sup>, Wei Jin<sup>1</sup>, Fan Yang<sup>1</sup>, Yang Liu<sup>1</sup>; <sup>1</sup>Hong Kong Polytechnic Univ., Hong Kong. The dynamics of photothermal phase modulation in a gas-filled hollow-core photonic bandgap fiber pumped by a pulsed laser is investigated. The magnitude of phase modulation for different parameters of the pump pulses is studied numerically and experimentally.

#### W3A.3 • 13:45

Near-infrared Enzyme-immobilized Dual-peak Long Period Fibre Grating (LPFG) as Sugar Concentration and Glucose Detection Biosensor, Abdulyezir Badmos<sup>1</sup>, Qizhen Sun<sup>2</sup>, Zhongyuan Sun<sup>1</sup>, Zhijun Yan<sup>1,2</sup>, Lin Zhang<sup>1</sup>; <sup>1</sup>Aston Univ., UK; <sup>2</sup>School of Optical and Electronic Information, Huazhong Univ. of Science and Technology, China. Dual-peak long period fibre grating UV-inscribed in boron-germanium (B/Ge) doped 80µm-cladding at near infra-red region is presented for sugar concentration and glucose detection. High sensitivities of ~4.6696 nm/% and 7.16nm/mgml<sup>-1</sup> were obtained for sugar-concentration and glucose-detection respectively.

#### W3A.4 • 14:00

Sensitivity Improvement of Fiber-optic NH<sub>3</sub> Gas Sensor Using Pt Nanoparticle Doped Graphene Oxide, Caibin Yu<sup>1</sup>, Yu Wu<sup>1</sup>, Xiaolei Liu<sup>1</sup>, Fei Fu<sup>1</sup>, Yuan Gong<sup>1</sup>, Yunjiang Rao<sup>1</sup>, Yuanfu Chen<sup>1</sup>; <sup>1</sup> Univ. of Electronic Science and Technology of China, China. By incorporating Pt nanoparticle with graphene oxide (GO), a nanocomposite-based microfiber sensor with high sensitivity for NH<sub>3</sub> sensing was fabricated and demonstrated, which indicates sensitivity improvement of 3 times over that without Pt doping.

### W3A.5 • 14:15

Nitric Oxide Sensitive Optic Fiber Sensor Based on Immobilized Ruthenium(II) Complex, Peng Zhang<sup>1,2</sup>, shuai ruan<sup>1</sup>, Ruan Zhang<sup>3</sup>, Benjamin Pullen<sup>4</sup>, Xiaozhou Zhang<sup>1</sup>, Malcolm S. Purdey<sup>1</sup>, Heike E. Heidepriem<sup>1</sup>, Andrew Abell<sup>1</sup>, Liyun Ding<sup>5</sup>, ming tang<sup>2</sup>, Yinlan Ruan<sup>1</sup>; <sup>1</sup>IPAS, Univ. of Adelaide, Australia; <sup>2</sup>Wuhan National Laboratory for Optoelectronics, Huazhong Univ. of Science and Technology, China; <sup>3</sup>Macquarie Univ., Australia; <sup>4</sup>South Australian Health & Medical Research Inst., Australia; <sup>5</sup>National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan Univ. of Technology, China. A nitric oxide fiber dip sensor was developed by immobilizing ruthenium(II) complex on multimode fiber tip using silica sol-gel. The emitted fluorescence from fiber NO sensor showed linear dependence on NO concentration below 60mM.

#### W3A.6 • 14:30

A Raspberry Pi Based Tunable Diode Laser Spectroscopy System with an Android Backend Application for Continuous Monitoring of Gas Parameters, Priti S. Chakraborty<sup>1</sup>, Arup Lal Chakraborty<sup>1</sup>, Abhishek Ranjan<sup>1</sup>, Shashank Pareta<sup>1</sup>; <sup>1</sup>Indian Inst. of Technology Gandhinagar, India. A tunable diode laser spectroscopy system for absolute gas parameter measurements for urban pollution monitoring is described. The time-stamped data are stored on a server. An Android application remotely accesses the sensor data for analysis.

### W3A.7 • 14:45

Localized Surface Plasmon Resonance Based Fiber Optic Ethanol and Methanol Sensor Using UV light based AgNO<sub>3</sub>/ZnO Nanorods, shiva dixit<sup>1</sup>, Praveen Sharma<sup>1</sup>, Rajneesh K. Verma<sup>1</sup>; <sup>1</sup>Physics, Central Univ. of Rajasthan, India. LSPR based sensor is proposed for Ethanol and Methanol by coating the fiber's unclade portion with UV light based AgNO<sub>3</sub> coating followed bya ZnO Nanorods and in both cases LSPR spectra finds red shift in wavelength for higher concentration.

Room 306 15:30 -- 17:30 W4A • Poster Session I

## W4A.1 • 15:30

An Extension Apparatus for a Large Range of Optical Delay Line in Distributed Polarization Coupling Measurement, Yonggui Yuan<sup>2,1</sup>, Dongchuan Lu<sup>2</sup>, Guicang Ran<sup>2</sup>, Feng Peng<sup>2</sup>, Jun Yang<sup>2</sup>, Libo Yuan<sup>2</sup>; <sup>1</sup>College of Information and Communication Engineering, Harbin Engineering Univ., China; <sup>2</sup>Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering Univ., China. We propose a new extension method of optical delay

line for the demand of long-time delay in measurement. The method, combination of a scanning stage and switchable fixed delays, can provide an ultra-large range without increasing the insertion loss.

### W4A.2 • 15:30

**Fading-noise-free Distributed Fiber-optic Vibration Sensor Based on Time-gated Digital OFDR,** Dian Chen<sup>1</sup>, Qingwen Liu<sup>1</sup>, Xinyu Fan<sup>1</sup>, Zuyuan He<sup>1</sup>; <sup>1</sup>Shanghai Jiao Tong Univ., China. A novel distributed fiber-optic vibration sensor based on phase detection method from TGD-OFDR is presented, where frequency shift method and weighted average method are utilized to eliminate phase demodulation errors caused by fading noise.

### W4A.3 • 15:30

**A FBG Senor for Tip-timing Measuring of Blades,** Hongli Li<sup>1</sup>, Huaping Mei<sup>1</sup>, Hui Liu<sup>1</sup>, Gang Xu<sup>1,2</sup>, Min Wang<sup>3</sup>, Lei Liang<sup>2</sup>; <sup>1</sup>Hubei Engineering Univ., China; <sup>2</sup>Wuhan Univ. of Technology, China; <sup>3</sup>Wuhan Textile Univ., China. Based on tip-timing method, a FBG sensor adopting dual-FBG coupling and intensity demodulation is proposed, and experiments were carried out. The result shows that the sensor can be used in the blade condition monitoring.

#### W4A.4 • 15:30

Complex Conjugate-free Optical Coherence Tomography Imaging by using Vibration-induced Phase Shift, Seung Seok Lee<sup>1</sup>, Joo Ha Kim<sup>1</sup>, Woosub Song<sup>2</sup>, Eun Seo Choi<sup>1</sup>; 

<sup>1</sup>Department of Physics, Chosun Univ., Korea (the Republic of); 

<sup>2</sup>Medical Photonics Research Center, Korea Photonics Technology Inst., Korea (the Republic of). We proposed complex conjugate-free optical coherence tomography imaging method and demonstrated its performance on mirror image suppression operating in fiber-based interferometer.

#### W4A.5 • 15:30

**Sol-Gel Silica Waveguide for Biophotonic Sensors,** Yasufumi Enami<sup>1</sup>; <sup>1</sup>Kochi Univ. of Technology, Japan. We report a sol-gel silica waveguide for biophotonic sensors. The fist demonstration is simple and novel nano-imprint lithographic method to fabricate Bragg grating in a sol-gel silica optical waveguide with high resolution of 250 and 90 nm.

# W4A.6 • 15:30

Conjugate Interferometer-Based Optical Detection System for Multi-component Gas Sensing, Xin Gui<sup>2</sup>, Yuheng Tong<sup>1</sup>, Haihu Yu<sup>2</sup>, Zhengying Li<sup>1</sup>; <sup>1</sup>Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan Univ. Of Technology, China; <sup>2</sup>National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan Univ. of Technology, China. An optical gas detection system for multi-component gas based on gas conjugate interferometer was proposed. The experimental results show that the system can simultaneously detect multi-component gases and has good sensing linearity.

#### W4A.7 • 15:30

Manipulating micro-silica particles using a tapered fiber, Yi Zhou<sup>1</sup>, Yue Li<sup>1</sup>, Qiangzhou Rong<sup>1</sup>, Xueguang Qiao<sup>1</sup>; <sup>1</sup>Northwest Univ., China, China. A tapered fiber technique as a facile strategy is proposed and demonstrated experimentally for manipulating the micro-silica particles, which make it as an optical tweezer for application in the biology.

#### W4A.8 • 15:30

**Distributed acoustic sensing network with identical weak fiber Bragg gratings,** Chen Wang<sup>1</sup>, ying shang<sup>1</sup>, Xiaohui Liu<sup>1</sup>, Chang Wang<sup>1</sup>, Gang-Ding Peng<sup>2,1</sup>; <sup>1</sup>Shandong Academy Sciences, China; <sup>2</sup>Univ. of New South Wales, Australia. We demonstrate a distributed sensing network with 600 identical weak fiber Bragg gratings using balanced Michelson OTDR-interferometer for acoustic measurement. Experimental results show that our system can demodulate distributed acoustic signal from 10Hz to 1280Hz.

### W4A.9 • 15:30

**Radio Frequency Interrogation of Large Scale Intensity-Modulated Ultra-short FBGs Sensing Network,** Jalal Rohollahnejad<sup>1</sup>, Li Xia<sup>1</sup>, Rui Cheng<sup>1</sup>, Jiaao Zhou<sup>1</sup>; <sup>1</sup>*Huazhong Univ of Science & Technology, China.* A USFBGs sensing network interrogation based on its complex frequency response monitoring is reported. Experimentally high average strain sensitivity of ~0.038%/με and dynamic range of ~2400με obtained for three wavelength channels of cascaded USFBGs.

### W4A.10 • 15:30

**Path Imbalance Measurement of Fiber-Optic Interferometer Based On Phase-Compared Method,** Changbo Hou<sup>1,2</sup>, Jianguo Wang<sup>1</sup>, Dongchuan Lu<sup>1</sup>, Yonggui Yuan<sup>1</sup>, Feng Peng<sup>1</sup>, Jun Yang<sup>1</sup>, Libo Yuan<sup>1</sup>; \*\*Ikey Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering Univ., China; \*\*2College of Information and Communication Engineering, Harbin Engineering Univ., China. A simple system for measuring path imbalance of two-arm fiber-optic interferometer based on phase-compared method is demonstrated. Its relative precision is beyond 10<sup>-4</sup> in the range of tens centimeters to tens meters and the smallest absolute precision is 81 μm.

### W4A.11 • 15:30

Single-prism method for ultrashort pulse compression in three-photon microscopy, Chang-Seok Kim<sup>1</sup>, SooKyung Chun<sup>1</sup>, seung won jun<sup>1</sup>; <sup>1</sup>Pusan National Univ., Korea (the Republic of). We demonstrated an optimized pulse compression method in the three-photon microscopy for 1200nm wavelength band by using a single-prism pulse compressor. A comparison of three-photon fluorescence intensity between non-compressed and compressed pulses of the same energy showed a 2-fold improvement.

### W4A.12 • 15:30

**Fiber Optical Methane Sensors Using Functional Metal Oxide Nanomaterials,** aidong yan<sup>1</sup>, sheng huang<sup>1</sup>, shuo li<sup>1</sup>, paul ohodnicki<sup>2</sup>, Kevin P. Chen<sup>1</sup>; <sup>1</sup>Univ. of Pittsburgh, USA; <sup>2</sup>National Energy Technology Laboratory, USA. This paper reports fiber optic sensors for methane measurements based on evanescent optical interactions. Porous Pd-SnO<sub>2</sub> thin film synthesized by block copolymer template scheme was coated on D-shaped fiber as functional sensing materials

### W4A.13 • 15:30

**Delayed differential pulse pair BOTDA sensor with three-tone probe,** Wenqiao Lin<sup>1</sup>, Xiaobin Hong<sup>1</sup>, Zhisheng Yang<sup>1</sup>, Sheng Wang<sup>1</sup>, Jian Wu<sup>1</sup>; <sup>1</sup>Beijing Univ. of Posts and Telecommunications, China. A BOTDA sensor based on delayed dual-frequency differential pulse pair is proposed to realize extended range and sub-meter spatial resolution simultaneously. Spatial resolution of 0.5 m is experimentally demonstrated with a 24.444 km sensing fiber.

#### W4A.14 • 15:30

A Single Optical Fiber Tweezers with High Trapping Efficiency Based on Bessel-like Beams, Yaxun Zhang<sup>1</sup>, xiaoyun tang<sup>1</sup>, Yu Zhang<sup>1</sup>, Zhihai Liu<sup>1</sup>; <sup>1</sup>Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Science, Harbin Engineering Univ., Harbin 150001, P. R. China, China. We propose and demonstrate a novel structure of single optical fiber tweezers with high trapping efficiency based on bessel-like beams, trapping of polystyrene with deep micrometer-scale and submicrometer-scale with larger force and high capture efficiency.

### W4A.15 • 15:30

**Polarization sensitive optical coherence domain reflectometry using mode-locked laser as optical source,** Jin Chen<sup>1</sup>, Xinyu Fan<sup>1</sup>, Qingwen Liu<sup>1</sup>, Zuyuan He<sup>1</sup>; <sup>1</sup>Shanghai Jiao Tong Univ., China. A polarization-sensitive optical coherence domain reflectometry using mode-locked laser as optical source is proposed and demonstrated. Thanks to the high spatial resolution, polarization changes in polarization-maintaining fiber and fiber Bragg grating is successfully observed.

### W4A.16 • 15:30

**Beyond-Nominal-Resolution Distributed Strain Sensing by Slope-Assisted Brillouin Optical Correlation-Domain Reflectometry,** Heeyoung Lee<sup>1</sup>, Neisei Hayashi<sup>2</sup>, Yosuke Mizuno<sup>1</sup>, Kentaro Nakamura<sup>1</sup>; <sup>1</sup>Tokyo Inst. of Technology, Japan; <sup>2</sup>The Univ. of Tokyo, Japan. We investigate the system output of slope-assisted Brillouin optical correlation-domain reflectometry (BOCDR) and experimentally show that, unlike standard BOCDR, frequency-shift change along a section shorter than the nominal spatial resolution can be detected.

### W4A.17 • 15:30

Novel interrogation of the multiple FBGs with same Bragg wavelength by using active mode locking cavity, Gyeong Hun Kim<sup>1</sup>, Chang Hyun Park<sup>1</sup>, Chang-Seok Kim<sup>1</sup>, Hwi Don Lee<sup>2</sup>, Youngjoo Chung<sup>3</sup>; <sup>1</sup>Department of Cogno-Mechatronics Engineering, Pusan National Univ., Korea (the Republic of); <sup>2</sup>Advanced Photonics Research Inst., Gwangju Inst. of Science and Technology, Korea (the Republic of); <sup>3</sup>School of Electrical Engineering and Computer Science, Gwangju Inst. of Science and Technology, Korea (the Republic of). We proposed a new type of FBG interrogator using active mode locking technique. Since the interrogation mechanism is based on the separated detection of mode-locked frequency of each series FBG, we can interrogate multiple same FBGs.

#### W4A.18 • 15:30

**Bacterial cell enumeration using flow cytometry,** Fang Ou<sup>1</sup>, Cushla McGoverin<sup>1</sup>, Simon Swift<sup>2</sup>, Frederique Vanholsbeeck<sup>1</sup>; <sup>1</sup>The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, The Univ. of Auckland, New Zealand; <sup>2</sup>School of Medical Sciences, The Univ. of Auckland, New Zealand. Traditional culture-based methods of bacterial detection are time consuming and have limited accuracy. We outline a reliable method for obtaining the absolute numbers of live, dead and total bacterial cells using flow cytometry.

#### W4A.19 • 15:30

**Thin-core fiber modal interferometer for ammonia sensing,** Xinyue Huang<sup>1</sup>, xueming li<sup>1</sup>, huifei chen<sup>1</sup>, xin che<sup>1</sup>, jianchun yang<sup>1</sup>; <sup>1</sup>Chongqing Univ., USA. A ammonia sensor depositing with a polyelectrolyte thin film composed of poly(acrylic acid) (PAA) and poly(allyamine

hydrochloride) (PAH) via the layer-by-layer (LbL) self-assembly technique, is demonstrated with a thin-core fiber modal interferometer (TCFMI).

### W4A.20 • 15:30

**Fiber Optic for Brain control in Optogenetics Studies,** Mohammad I. Zibaii<sup>1</sup>, Hamid Latifi<sup>1</sup>, Leila Dargahi<sup>2</sup>, Abdolaziz Ronaghi<sup>2</sup>, Sareh Pandamoz<sup>2</sup>, Saeid Salehi<sup>2</sup>, Abbas Haghparast<sup>2</sup>, Amir Hossein Baradaran Ghasemi<sup>1</sup>; <sup>1</sup>Shahid Beheshti Univ., Iran (the Islamic Republic of); <sup>2</sup>Shahid Beheshti Univ. of Medical Sciences, Iran (the Islamic Republic of). Neural activity can be controlled with visible light in optogenetics technique. Light-sensitive proteins are genetically targeted into specific classes of neurons in living animal models and target neurons stimulated by a fiber optic optrode.

#### W4A.21 • 15:30

Glycoprotein Detection by Using the Surface Plasmon Resonance Technology, Xinlei Zhou<sup>1</sup>, Ke Chen<sup>1</sup>, Li Li<sup>1</sup>, Zhenfeng Gong<sup>1</sup>, Wei Peng<sup>1</sup>, Qingxu Yu<sup>1</sup>; <sup>1</sup>Dalian Univ. of Technology, China. Specific detection of glycoprotein is performed by using the surface plasmon resonance technology. Ribonuclease B solutions with different concentration are measured in the range of 0.01-1 mg/mL and a good linearity is obtained.

#### W4A.22 • 15:30

Fiber Microstructures based Distributed Sensor System for Dynamic Pressure Detection, Wei Zhang<sup>2,1</sup>, Jingyi Wang<sup>2,1</sup>, Qizhen Sun<sup>2,1</sup>, Fan Ai<sup>2,1</sup>, Yang Xiang<sup>2,1</sup>, Chen Zhu<sup>2</sup>, Chaotan Sima<sup>2,1</sup>, Deming Liu<sup>2,1</sup>; <sup>1</sup>National Engineering Laboratory for Next Generation Internet Access System, Huazhong Univ. of Science and Technology, China; <sup>2</sup>School of Optical and Electronic Information, Huazhong Univ. of Science and Technology, China. We report a distributed dynamic pressure sensor system based on fiber microstructure arrays packaged with high elastic polymer, achieving a spatial resolution of 1cm and high sensitivity of 1.665nm/Mpa.

### W4A.23 • 15:30

**Lossy Mode Resonances biosensor for the detection of C-reactive protein,** Pablo Zubiate<sup>1</sup>, Carlos R. Zamarreño<sup>1</sup>, Pedro Sanchez<sup>1</sup>, Ignacio R. Matias<sup>1</sup>, Francisco J. Arregui<sup>1</sup>; <sup>1</sup>Universidad Publica de Navarra, Spain. The fabrication and characterization of optical fiber biosensor based on Lossy Mode Resonances (LMR) to detect C-reactive protein (CRP) are presented. The optical fiber sensor presented shows a high selectivity and low limit detection.

## W4A.24 • 15:30

**Long-range BOTDA denoising with multi-threshold 2D discrete wavelet,** Xianyang Qian<sup>1</sup>, Zinan Wang<sup>1</sup>, Wei Sun<sup>1</sup>, Bin Zhang<sup>1</sup>, Qiheng He<sup>1</sup>, Li Zhang<sup>1</sup>, Han Wu<sup>1</sup>, Yunjiang Rao<sup>1</sup>; <sup>1</sup>Univ. Electronic Sci. & Tech. of China, China. Multi-threshold 2D discrete wavelet based on BayesShrink method is utilized to enhance the SNR of BOTDA. Then a 154.42 BOTDA is experimentally demonstrated with 40ns pump pulses, and the measurement uncertainty is reduced from ±1.52MHz down to ±1.03MHz.

## W4A.25 • 15:30

**A** Compact Fabry-Perot Photothermal Gas Sensor with Hollow-core Optical Fiber, Fan Yang<sup>1</sup>, Wei Jin<sup>1</sup>; <sup>1</sup>Hong Kong Polytechnic Univ., China. A compact and highly sensitive photothermal gas sensor with hollow-core fiber-based Fabry-Perot interferometer is reported.

The noise equivalent concentration of 117 ppb acetylene is achieved with 2-cm-long hollow-core fiber.

### W4A.26 • 15:30

Optical Fiber Liquid-Level Sensing Based on Self-Heated Optical Fiber and DPP-BOTDA, Hongying Zhang<sup>1</sup>, Zhijun Yuan<sup>1</sup>, Ziye Liu<sup>1</sup>, Yifu Cheng<sup>1</sup>, Yong Kang Dong<sup>2</sup>; <sup>1</sup>Harbin U. Science and Technology, China; <sup>2</sup>Harbin Inst. of Technology, China. A liquid-level sensor with a large range of 20cm and a resolution of 1cm is demonstrated, where the principle is to measure the temperature abruption position based on DPP-BOTDA with a self-heated high attenuation fiber.

#### W4A.27 • 15:30

**Point-by-point inscription of microfiber Bragg gratings using femtosecond laser pulses,** Changrui Liao<sup>1</sup>, Tianhang Yang<sup>1</sup>, Ying Wang<sup>1</sup>, Yiping Wang<sup>1</sup>; <sup>1</sup>Shenzhen Univ., China. Microfiber Bragg gratings have been successfully fabricated by femtosecond laser point-by-point inscription. Temporal thermal response of the induced microfiber gratings have been tested by means of periodic CO<sub>2</sub> laser irradiation to create a rapid temperature change for the fiber.

#### W4A.28 • 15:30

**Optimization of Detection Schemes in BOTDA,** Li Zhang<sup>2,1</sup>, Marcelo A. Soto<sup>1</sup>, Zinan Wang<sup>2</sup>, Luc Thevenaz<sup>1</sup>; <sup>1</sup>Ecole Polytechnique Federale de Lausanne, Switzerland; <sup>2</sup>Key Lab of Optical Fiber Sensing & Communication, Univ. of Electronic Science & Technology of China, China. The impact of different detection schemes on the performance of Brillouin optical time-domain analysis is investigated theoretically and experimentally. The study provides guidance for the optimization of BOTDA sensors depending on the targeted range.

# W4A.29 • 15:30

A Non-contact Single Optical Fiber Multi-optical Tweezers Based on Bessel-like Beams, Zhihai Liu<sup>1</sup>, xiaoyun tang<sup>1</sup>, Yu Zhang<sup>1</sup>, Yaxun Zhang<sup>1</sup>; <sup>1</sup>Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Science, Harbin Engineering Univ., Harbin 150001, P. R. China, China. We propose and demonstrate a novel structure of non-contact single optical fiber multi-optical tweezers based on Bessel-like beams, simplified the structure of multi-optical tweezers, achieve the non-contact capture of particles at different axial positions.

### W4A.30 • 15:30

A hybrid fiber-optic condition monitoring technique with arrayed waveguide grating, Daegil Kim<sup>1</sup>, Hyunjin Kim<sup>1</sup>, Umesh Sampath<sup>1</sup>, Minho Song<sup>1</sup>; <sup>1</sup>Division of Electronics and Information Engineering, Chonbuk National Univ., Korea (the Republic of). A fiber-optic sensor system for potential uses in multi-stress monitoring of large scale wind turbine is proposed. It consists of FBG sensors and Michelson interferometers in single fiber-optic circuit with an AWG for multiplexing the interferometers.

#### W4A.31 • 15:30

**Study on fiber optic oxygen sensor and its application in coal mine,** Wei Yubin<sup>1</sup>, weisong zhao<sup>1</sup>, Jie Hu<sup>2</sup>, tingting zhang<sup>1</sup>, Tongyu Liu<sup>2</sup>; <sup>1</sup>Shandong Academy of Sciences, China; <sup>2</sup>shandong microsensor photonics limited, China. Based on laser absorption spectroscopy and

optical fibre sensing technology, this study proposed an optical fiber oxygen detection sensor. The system showed a good test results in the coal spontaneous combustion beam tube used .

### W4A.32 • 15:30

**Dual-Core Fiber Characterizations for Distributed Simultaneous Temperature and Strain Measurements Using Brillouin Optical Time Domain Analysis,** Kevin P. Chen<sup>1</sup>, Mohamed Zaghloul<sup>1</sup>, mohan wang<sup>1</sup>, Ming-Jun Li<sup>2</sup>; <sup>1</sup>Univ. of Pittsburgh, USA; <sup>2</sup>Corning Inc., USA. This paper reports characterizations of dual-core optical fiber designed for simultaneous temperature and strain measurements using Brillouin optical time domain analysis

#### W4A.33 • 15:30

Immobilization of cholesterol oxidase on SiO<sub>2</sub> nanoparticles and its application in Fiber optic cholesterol sensor, Mengshi Li<sup>1</sup>, Jun Huang<sup>1</sup>, Peipei Zhang<sup>1</sup>, Pengfei Zhang<sup>1</sup>, Liyun Ding<sup>1</sup>; <sup>1</sup>Wuhan Univ. of Technology, China. Cholesterol oxidase was immobilized on SiO<sub>2</sub> nanoparticles, which was used to develop a fiber optic cholesterol sensor. The sensor has good repeatability, selectivity and can be used for the detection of practical samples.

### W4A.34 • 15:30

**Near-infrared photoacoustic imaging for detection of early-stage dental diseases,** Teng Li<sup>1,2</sup>; <sup>1</sup>Beijing Jiaotong Univ., China; <sup>2</sup>Biomedical Engineering, Washington Univ. in St. Louis, USA. A compact near-infrared photoacoustic (PA) probe for detection of early-stage dental diseases was reported. An integrated probe with PVDF transducer and a fiber was designed. Visualization of dental caries in a human tooth phantom shows the potential of the probe for early-stage dental diseases diagnosis.

### W4A.35 • 15:30

Modified technique for the fiber surface using Staphylococcal protein A, Bin-bin Luo<sup>1</sup>, Shengxi Wu<sup>1</sup>, Wengen Zou<sup>1</sup>, Zhonghao Zhang<sup>1</sup>, Mingfu Zhao<sup>1</sup>, Xue Zou<sup>1</sup>, Yong Liu<sup>2</sup>; 

<sup>1</sup>Chongqing Univ. of Technology, China; <sup>2</sup>School of Opto-electronic Information, Univ. of Electronic Science and Technology of China, China. We presented a modified technique for the fiber surface using Staphylococcal protein A, and the effectiveness of the fiber surface modification was investigated by scanning electron microscope and fluorescence microscope.

### W4A.36 • 15:30

**A new method to fabricate phase-shifted Fiber Bragg gratings by femtosecond laser point-by-point inscription,** Changrui Liao<sup>1</sup>, Ying Wang<sup>1</sup>, Yiping Wang<sup>1</sup>, Feng Zhu<sup>1</sup>; <sup>1</sup>Shenzhen Univ., China. Microfiber Bragg gratings have been successfully fabricated by femtosecond laser point-by-point inscription. Temporal thermal response of the induced microfiber gratings have been tested by means of periodic CO<sub>2</sub> laser irradiation to create a rapid temperature change for the fiber.

#### W4A.37 • 15:30

**Feature Extraction with WD and WPD in Distributed Optical-fiber Vibration Sensing System for Oil Pipeline Safety Monitoring,** Ya Qian<sup>1</sup>, Huijuan Wu<sup>1</sup>, Wei Zhang<sup>1</sup>, Lidong Lu<sup>2</sup>, Xiaoyan Sun<sup>2</sup>, Yunjiang Rao<sup>1</sup>; <sup>1</sup>Univ of Electronic Sci & Tech of China, China; <sup>2</sup>Information and Communication, Global Energy Interconnection Research Inst., State Grid Corporation of China, China. Feature extraction methods in distributed optical-fiber vibration sensing system

are comparatively studied. It proves the wavelet packet decomposition performs better in identifiable feature extraction for the field testing signals in oil pipeline safety monitoring.

#### W4A.38 • 15:30

High-robustness strain sensor based on in-fiber Fabry-Perot interferometer with an elliptical cavity, Shen Liu<sup>1</sup>, Cailing Fu<sup>1</sup>, Changrui Liao<sup>1</sup>, Ying Wang<sup>1</sup>, Yiping Wang<sup>1</sup>; 

<sup>1</sup>Shenzhen Univ., China. An in-fiber Fabry-Perot interferometer based on an elliptical air-cavity was developed to a strain sensor with a high-robustness (up to 9800 με), and the detailed fracture analysis of the high-robustness strain sensor was made.

#### W4A.39 • 15:30

**Highly Sensitive Mach-Zehnder Gas Refractometer Using Slotted Photonic Crystal Fiber,** Zhihua Shao<sup>1</sup>, Xueguang Qiao<sup>1</sup>, Qiangzhou Rong<sup>1</sup>; <sup>1</sup>Northwest Univ., China. A compact gas refractometer based on Mach-Zehnder interference is proposed using a slotted photonic crystal fiber by femtosecond micromachining. An extremely high gas refractive index sensitivity of -827.94 dB/refractive index unit is obtained.

# W4A.40 • 15:30

**Optical fiber sensor for the detection of mercury based on immobilized fluorophore,** Yinlan Ruan<sup>1</sup>, shuai ruan<sup>1</sup>, Heike E. Heidepriem<sup>1</sup>; <sup>1</sup>ARC Centre of Excellence for Nanoscale BioPhotonics, Inst. for Photonics and Advanced Sensing, The Univ. of Adelaide, Australia. A mercury optical fiber dip sensor was developed by immobilizing Rhod-5N on a multimode fiber endface by silica sol-gel. The detection limit was 0.3 ppb with the dye in aqueous condition and 25 ppb when it was immobilized on fiber tips.

### W4A.41 • 15:30

Analysis of the Influence of Offset on the Detection Accuracy of the Optical Fiber CO Detecting System, Tingting (. Zhang¹, Yubin Wei¹, Jie Hu², Yanfang Li¹, Tongyu Liu¹; ¹Laser Inst. of Shandong Academy of S, China; ²Shandong Micro-sensor Photonics Limited, China. The influence of offset on the detection accuracy of the CO detection system based on TDLAS has been researched and analyzed. It is concluded that the relative error of gas concentration is 0.16% when the offset difference is 1. It provides theoretical guidance and reference for the selection of components in gas detection system.

### W4A.42 • 15:30

**Distributed dynamic nano-strain sensing based on Φ-OTDR with coherent detection and IQ demodulation,** Xi Chen¹, Erhu Liu¹, Cheng Fu¹, Hongying Zhang², Zhiwei Lu¹, Yong Kang Dong¹; ¹National Key Laboratory of Science and Technology on Tunable Laser, Harbin Inst. of Technology, China; ²Inst. of Photonics and Optical Fiber Technology, Harbin Univ. of Science and Technology, China. A sensing system is proposed for quantitative and large-range measurement of dynamic nano-strain based on phase-sensitive optical time domain reflectometer with a 1 ne strain resolution and a large sensing range of 10-1000 ne.

#### W4A.43 • 15:30

Ultrasensitive magnetic field sensor based on in-fiber Mach-Zehnder interferometer and magnetic fluid, Zhengyong Li<sup>1</sup>, Changrui Liao<sup>1</sup>, Jun Song<sup>1</sup>, Ying Wang<sup>1</sup>, Yiping Wang<sup>1</sup>;

<sup>1</sup>Shenzhen Univ., China. An ultrasensitive magnetic field sensor based on in-fiber Mach-Zehnder interferometer created in twin-core fiber was proposed. The sensor exhibits an ultrahigh sensitivity of 20.8 nm/mT with a measurement range from 5 to 9.5 mT.

#### W4A.44 • 15:30

A Switch Resistance Monitoring Method Based on FBG, jianjun pan<sup>1</sup>; <sup>1</sup>Wuhan Univ. of Technology, China. An FBG strain gauge with sensitizing method is used to monitor railway switch resistance. An on-line monitoring system was built at a Metro station. This method monitors health state of the switches in long-term service.

#### W4A.45 • 15:30

**Hybrid Distributed Multi-Parameter Fiber Sensing System Based on Modulated Pulses** Φ/B-OTDR, Jingdong Zhang<sup>1</sup>, Tao Zhu<sup>1</sup>, Leilei Shi<sup>1</sup>, Huan Zhou<sup>1</sup>, Min Liu<sup>1</sup>; <sup>1</sup>Key Laboratory of Optoelectronic Technology and Systems (Education Ministry of China), Chongqing Univ., China. We demonstrate a hybrid distributed vibration, temperature and strain fiber sensing system using modulated pulses Φ/B-OTDR with the advantages of only one photo-detector and data acquisition channel for realizing 10km sensing range.

#### W4A.46 • 15:30

**SNR** enhancement with bilateral filtering algorithm for phase-sensitive optical time domain reflectometry, Haijun He<sup>1</sup>, Li-Yang Shao<sup>1</sup>, Hengchao Li<sup>1</sup>; <sup>1</sup>Southwest Jiaotong Univ., China. A bilateral filtering algorithm has been proposed to process the phase-sensitive optical time domain reflectometry signal to enhance SNR. The maximum SNR enhancement of 8.3 dB has been achieved without spatial resolution loss.

### W4A.47 • 15:30

**Ultrafast and High Resolution Crack Detection Using Fully Distributed Chirped Fiber Bragg Grating Sensors,** Dejun Feng<sup>1,2</sup>, Eamonn J. Ahmad<sup>1</sup>, Chao Wang<sup>1</sup>; <sup>1</sup>Univ. of Kent at Canterbury, UK; <sup>2</sup>School of Information Science and Engineering, Shandong Univ., China. We demonstrate for the first time that photonic time-stretch frequency domain reflectometry (PTS-FDR) enables ultrafast and high spatial-resolution crack detection using fully distributed chirped fiber Bragg grating strain sensors.

### W4A.48 • 15:30

**1550** nm band Raman distributed temperature sensor using 35 km-long single-mode fiber, Sun Woo Kim<sup>1</sup>, Jung Min Hwang<sup>2</sup>, Min Seong Seo<sup>2</sup>, Bong-Wan Lee<sup>2</sup>, Min Yong Jeon<sup>1</sup>; <sup>1</sup>Chungnam National Univ., Korea (the Republic of); <sup>2</sup>FiberPro, Korea (the Republic of). We report a 1550 nm band Raman distributed temperature fiber-optic sensor based on 35 km-long single-mode fiber. We achieved the temperature resolution of 2.6 °C with a measurement time of 600 s using a finite impulse response filter.

#### W4A.49 • 15:30

**Hydrogel-Coated Long-Period Fiber Grating PH Sensor**, Satyendra K. Mishra<sup>1</sup>, Bing Zou<sup>1</sup>, Kin S. Chiang<sup>1</sup>; <sup>1</sup>City Univ. of Hong Kong, Hong Kong. We report a long-period fiber grating coated with a specially synthesized hydrogel for the measurement of pH changes in an aqueous solution. The coated grating operates sensitively for the pH ranges 2-5 and 8-12.

#### W4A.50 • 15:30

Improving Spatial Resolution of Time-gated Digital Optical Frequency Domain Reflectometry using Diode Laser Sources, Tianjiao Li<sup>1</sup>, Qingwen Liu<sup>1</sup>, Dian Chen<sup>1</sup>, Xinyu Fan<sup>1</sup>, Zuyuan He<sup>1</sup>; <sup>1</sup>Shanghai JiaoTong Univ., China. To improve the spatial resolution of time-gated-digital OFDR, a distributed feedback (DFB) diode laser with current tuning is used to provide a large laser frequency tuning range. The driving current of DFB laser diode is predistorted to commentate the tuning nonlinearity of laser, and 10-cm spatial resolution over 74-km fiber link is realized.

#### W4A.51 • 15:30

**Differential detection for coherent BOTDA sensor based on single sideband probe light,** Yunpeng Zhang<sup>1</sup>, Li-Yang Shao<sup>1</sup>, Haijun He<sup>1</sup>; <sup>1</sup>Southwest Jiaotong Univ., China. A differential detection method has been used in a coherent BOTDA system for DC component cancellation. 10.8-dB SNR enhancement of the Brillouin gain signal and 2.7-MHz Brillouin frequency shift accuracy improvement have been achieved.

### W4A.52 • 15:30

**TDM-BOTDA** with suppressed non-local effect and sweeping time reduction using frequency comb pairs, Xin-Hong Jia<sup>1</sup>, Lei Ao<sup>1</sup>, Han-Qing Chang<sup>1</sup>, Cong Xu<sup>1</sup>; <sup>1</sup>Sichuan Normal Univ., China. Simultaneous non-local effect suppression and sweeping time reduction was achieved experimentally over ~50km time-division-multiplexing (TDM) based Brillouin optical time domain analysis (BOTDA) sensors using pump-probe frequency comb pairs.

### W4A.53 • 15:30

**Temperature-Insensitive Strain Sensing with a Polarization-Maintaining Photonic Crystal Fiber Based on Brillouin Dynamic Grating,** Hongying Zhang<sup>1</sup>, Yong Kang Dong<sup>2</sup>, Yafeng Bi<sup>1</sup>, Xiaobo Hu<sup>1</sup>, Guiyuan Cao<sup>1</sup>; <sup>1</sup>Harbin U. Science and Technology, China; <sup>2</sup>Harbin Inst. of Technology, China. We propose and demonstrate temperature-insensitive strain sensing by using a polarization-maintaining photonic crystal fiber based on Brillouin dynamic grating, where the results indicate a strain coefficient of -0.154MHz/με while the temperature-insensitive range is of 5~80°C.

## W4A.54 • 15:30

Massive data compression in long-distance distributed optical fiber sensing systems, Huijuan Wu¹, Wei Zhang¹, Jiwei Xu¹, David Atubga¹, Lidong Lu², Xiaoyan Sun², Yunjiang Rao¹; ¹Univ of Electronic Sci & Tech of China, China; ¹Information and Communication, Global Energy Interconnection Research Inst., State Grid Corporation of China, China. In this paper, two compression algorithms of Huffman and Lempel-Ziv-Welch (LZW) are comparatively studied to effectively compress the huge amount of data of typical fully distributed optical fiber sensors (DOFSs), e.g. Φ-OTDR, P-OTDR, and BOTDA systems.

## W4A.55 • 15:30

**Temperature-compensated distributed hydrostatic pressure Brillouin sensor using a thin-diameter and high-birefrigent photonics crystal fiber,** Lei Teng<sup>1</sup>, Yong Kang Dong<sup>1</sup>, Deng w. Zhou<sup>1</sup>, Taofei Jiang<sup>1</sup>; <sup>1</sup>*Harbin Inst. of Technology, China.* A distributed hydrostatic pressure sensor based on Brillouin dynamic gratings is proposed and demonstrated, which features

temperature-compensated and a distributed measurement with a 20-cm spatial resolution and a measurement accuracy of 0.025 MPa.

#### W4A.56 • 15:30

Nanorod engineering of Hydroxylated In<sub>2</sub>O<sub>3</sub> for H<sub>2</sub> gas Sensing, Joel Yi Yang Loh<sup>1</sup>; <sup>1</sup>Univ. of Toronto, Canada. Hydroxylated In<sub>2</sub>O<sub>3</sub> nanoparticles is proposed for H<sub>2</sub> gas sensing. Dangling OH groups and surface oxygen vacancies enables capture of a H<sub>2</sub> gas molecule. The electrical conductivity of In<sub>2</sub>O<sub>3</sub> nanoparticles increases by 3 times under H<sub>2</sub>.

### W4A.57 • 15:30

Photoacoustic microscopy equipped with a lensed fiber for pulsed diode laser scanning, Soongho Park<sup>1</sup>, Jonghyun Eom<sup>1</sup>, Byeongha Lee<sup>1</sup>; <sup>1</sup>GIST, Korea (the Republic of). We present a photoacoustic microscopy using a self-built lensed fiber to guide the excitation laser. A pulsed laser diode was used to generate the acoustic signal, and the laser beam was focused on the sample.

#### W4A.58 • 15:30

**Brillouin optical correlation domain analysis system for simultaneous interrogation of 150 sensing positions,** Gukbeen G. Ryu<sup>1,2</sup>, Kwang Yong Song<sup>3</sup>, Gyu-Tae Kim<sup>2</sup>, Sang Bae Lee<sup>1</sup>, Kwanil Lee<sup>1</sup>; <sup>1</sup>KIST, Korea (the Republic of); <sup>2</sup>Korea Univ., Korea (the Republic of); <sup>3</sup>Chung-Ang Univ., Korea (the Republic of). Brillouin optical correlation domain system simultaneously interrogating 150 sensing position with time-domain data processing is proposed. Distributed strain sensing in 1,500 m-long fiber with 5 cm resolution is experimentally demonstrated.

#### W4A.59 • 15:30

A fiber optic cholesterol biosensor based on magnetic immobilized cholesterol oxidase, Peipei Zhang<sup>1</sup>, Jun Huang<sup>1</sup>, Mengshi Li<sup>1</sup>, Pengfei Zhang<sup>1</sup>, Liyun Ding<sup>1</sup>; <sup>1</sup>Wuhan Univ. of Technology, China. A fiber optical cholesterol sensor based on magnetic immobilized cholesterol oxidase was developed, optimal detection conditions were obtained, detection range: 25-250 mg/dL, sensor has good repeatability, selectivity and stability.

#### W4A.60 • 15:30

**Long-distance Brillouin optical time-domain analysis with 1**<sup>st</sup>-order and 2<sup>nd</sup>-order distributed Brillouin amplification, Xin-Hong Jia<sup>1</sup>, Han-Qing Chang<sup>1</sup>, Lei Ao<sup>1</sup>, Cong Xu<sup>1</sup>; <sup>1</sup>Sichuan Normal Univ., China. We experimentally demonstrated the long-distance Brillouin optical time-domain analysis (BOTDA) sensing with high-efficiency 1<sup>st</sup>-order (~50km) and 2<sup>nd</sup>-order (~99km) distributed Brillouin amplification.

### W4A.61 • 15:30

*In-situ* detection of electroactive biofilms using an electrochemical surface Plasmon resonance fiber-optic sensor, Wanjun Hu<sup>1</sup>, Xuhui Qiu<sup>1</sup>, Xuejun Zhang<sup>1</sup>, Zhaochuan Zhang<sup>1</sup>, Jiahuan Tang<sup>2</sup>, Yong Yuan <sup>2</sup>, Bai-Ou Guan<sup>1</sup>, Tuan Guo<sup>1</sup>; <sup>1</sup>*Jinan Univ.*, *China*; <sup>2</sup>*Guangdong Inst. of Eco-Environmental and Soil Sciences*, *China*. Electrochemical surface Plasmon resonance tilted fiber grating has been proposed for extracellular electron transfer mechanism of electroactive biofilms revealing. A close relationship between the redox state of the EABs and SPR signal has been achieved.

#### W4A.62 • 15:30

Ultra-long Distance Distributed Optical Fiber Vibration Sensing System, Lai M. Cheng<sup>1,3</sup>, Qizhen Sun<sup>1,3</sup>, Kuan Peng<sup>1,3</sup>, Xiaolei Li<sup>1,3</sup>, Xiang Li<sup>2</sup>, Ying Qiu<sup>2</sup>, Qi Yang<sup>2</sup>, Deming Liu<sup>1</sup>; 

<sup>1</sup>School of Optical and Electronic Information, Huazhong Univ. of Science and Techn, China; 

<sup>2</sup>State Key Laboratory of Optical Comm, China; 

<sup>3</sup>National Engineering Laboratory fot Next Generation Internet Access System, Huazhong Univ. of Science and Technology, China. Based on bi-directional amplification in the fiber sensing link, an ultra-long distance distributed optical fiber vibration sensing system is proposed and experimentally demonstrated.

#### W4A.63 • 15:30

A Satellite Communication Link Rain Attenuation Evaluating Scheme Based on Wide Range of Passive Optical Fiber Rainfall Monitoring System, Yuanshun Sun<sup>1</sup>, Zhiguo Zhang<sup>1</sup>, Luming Li<sup>2</sup>; <sup>1</sup>BUPT, China; <sup>2</sup>Information and Communications branch, Jiangxi Electric Power Company, Nanchang, China. This paper proposes a satellite communication link rain attenuation evaluating scheme based on wide range of passive optical fiber rainfall monitoring system. Achieve wide range rain attenuation monitoring and the sensitivity is about 2dB.

Room 102 08:00 -- 10:15 Th1A • Industrial Structural Monitoring

### Th1A.1 • 08:00 (Invited)

Advances of Fibre Optic Sensors for Mining Safety, Tongyu Liu<sup>1</sup>; <sup>1</sup>Shandong Micro-Sensor Photonics Ltd, China. Abstract not available.

### Th1A.2 • 08:30

Ring Circumferential Strain Measurement Based on a Model of Brillouin Gain Spectrum Shape, Hiroshi Naruse<sup>1</sup>, Takeshi Ogawa<sup>1</sup>, Takanori Nishino<sup>1</sup>; <sup>1</sup>Mie Univ., Japan. We present a method based on a model of a Brillouin gain spectrum shape for measuring the strain formed at the circumference of ring structures. The effectiveness of this method is confirmed through our simulations.

### Th1A.3 • 08:45

**Application of Distributed Brillouin Optical Fiber Sensor Systems in Geo-technical Monitoring,** Stephan Grosswig<sup>1</sup>; <sup>1</sup>GESO GmbH & Co. Projekt KG, Germany. The potential of advanced commercial fiber optical Brillouin Distributed Strain and Temperature Sensor (DSTS) systems for safety monitoring of geo-technical structures such as railroad embankments, tunnel construction, and landslides has been demonstrated.

### Th1A.4 • 09:00

Optical Fiber Sensors for Asphalt Structures Monitoring, Mikel Bravo<sup>1</sup>, Sergio Rota-Rodrigo<sup>1</sup>, Daniel Leandro<sup>1</sup>, Alayn Loayssa<sup>1</sup>, Javier Urricelqui<sup>1</sup>, Ana Bravo-Acha<sup>2</sup>, Manuel Bravo-Navas<sup>3</sup>, Jose Ramon Mitxelena<sup>4</sup>, Jose Javier Martinez-Mazo<sup>4</sup>, Manuel Lopez-Amo<sup>1</sup>; 

<sup>1</sup>Universidad Publica de Navarra, Spain; 

<sup>2</sup>Asfaltos y Construcciones del Baztán, Spain; 

<sup>3</sup>Eurocontratas S.A., Spain; 

<sup>4</sup>Obysur S.L., Spain. A novel optical fiber installation method was explored for asphalt monitoring. Glass-fiber polymer encapsulated SMF was installed in the

intermediate and surface layers in order to study the strain sensitivity with a distributed strain interrogator.

# Th1A.5 • 09:15

**2D** Single-shot Profilometry for Scattered Media Using Supercontinuum Source Interferometry in Visible Region, Tuan Q. Banh<sup>1,2</sup>, Tuan Truong Cong<sup>1</sup>, Heui-Hyeon Kim<sup>1</sup>, Tatsutoshi Shioda<sup>1</sup>; <sup>1</sup>Saitama Univ., Japan; <sup>2</sup>Sevensix Inc., Japan. Supercontinuum light and visible camera are employed for improving resolution of our 2D single-shot, long-range interferometry. A 3D plot of a profile surface of a scattered sample is effectively demonstrated.

#### Th1A.6 • 09:30

**Long-range Single-shot 2-dimensional Profilometry Using Multi-order Comb Interferometry,** Hikaru Ariya<sup>1</sup>, Banh Q. Tuan<sup>1</sup>, Tatsutoshi Shioda<sup>1</sup>; <sup>1</sup>SAITAMA UNIV., Japan. Multiple interference orders of optical frequency comb interferometry expands a measurement range of profilometry and tomography. The order was identified by using two low-coherent combs with different teeth intervals generated from a supercontinuum light source.

### Th1A.7 • 09:45

**Optical Fiber Sensor-Fused Additive Manufacturing and Its Applications in Residual Stress Measurements in Titanium Parts,** Kevin P. Chen<sup>1</sup>, Ran Zou<sup>1</sup>, Mohamed Zaghloul<sup>1</sup>, aidong yan<sup>1</sup>, rongzhang chen<sup>1</sup>, paul ohodnicki<sup>2</sup>, michael buric<sup>2</sup>, xuan liang<sup>1</sup>, albert to<sup>1</sup>; <sup>1</sup>Univ. of Pittsburgh, USA; <sup>2</sup>National Energy Technology Laboratory, USA. This paper reports optical fiber embedding in titanium parts using additive manufacturing process. Residual stress incurred during laser processing on the sensor-embedded parts was measured using Rayleigh scattering distributed sensing scheme with 5-mm spatial resolutions.

#### Th1A.8 • 10:00

**Application of Two Mixing Wave Interferometer on Laser Ultrasonic Detection of Thermal Barrier Coating,** Yang Zhao<sup>1</sup>, Jian Ma<sup>1</sup>, Zhenzhen Zhang<sup>1</sup>, Yinian Zhu<sup>2</sup>, Sridhar Krishnaswamy<sup>2</sup>; <sup>1</sup>Laser Inst. of Shandong Academy of Science, China; <sup>2</sup>Northwestern Univ., American Samoa. This paper describes an adaptive laser interferometer based on two wave mixing in InP:Fe photorefractive crystal. The interferometer is feasible for industrial applications due to its insensitivity of low frequency ambient vibrations and temperature change.

Room 102 10:45 -- 11:45 Th2A • Novel Materials for Sensing

#### Th2A.1 • 10:45 (Invited)

Integration of Functional Nanomaterials with Fiber Devices for Sensing Applications, Hai Xiao<sup>1</sup>; <sup>1</sup>Clemson Univ., USA. Abstract not available.

# Th2A.2 • 11:15

Whispering-gallery-mode Tuning in a Magnetic-fluid-infiltrated Microbubble Resonator Based on Laser-induced Photo-thermal Effect, Yuetao Li<sup>1</sup>, Hao Zhang<sup>1</sup>, Bo Liu<sup>1</sup>, Yuhan Li<sup>1</sup>, Binbin Song<sup>1</sup>; <sup>1</sup>Nankai Univ., China. A magnetic-fluids-infiltrated microbubble resonator is

proposed and experimentally demonstrated. WGM tuning property of this microresonator under different pump laser power densities has been investigated, showing its potential applications in optically manipulated photonic devices.

## Th2A.3 • 11:30

Highly Efficient Biosensing with All-Dielectric Nanoparticles, Nicolò Bontempi<sup>1,2</sup>, Katie E. Chong<sup>1</sup>, Henry Orton<sup>1</sup>, Isabelle Staude<sup>3</sup>, Duk-Yong Choi<sup>4</sup>, Ivano Alessandri<sup>2</sup>, Yuri S. Kivshar<sup>1</sup>, Dragomir N. Neshev<sup>1</sup>; <sup>1</sup>Nonlinear Physics Centre, Australian National Univ., Australia; <sup>2</sup>INSTM and Chemistry for Technologies Laboratory, Univ. of Brescia, Italy; <sup>3</sup>Inst. of Applied Physics, Friedrich-Schiller-Univ. Jena, Germany; <sup>4</sup>Laser Physics Centre, Australian National Univ., Australia. We suggest a new platform for highly efficient biosensing using nontoxic, low loss silicon nanoresonators. We demonstrate a low-concentration detection limit of 10<sup>-10</sup> M for streptavidin using biotin-coated silicon nanodisks with Mie-type magnetic dipole resonances.

**Room 102** 

13:00 -- 15:00

Th3A • Distributed, Multiplexed and Networked Sensing

### Th3A.1 • 13:00 (Invited)

**Pushing the Limits in Distributed Fibre Sensing,** Luc Thevenaz<sup>1</sup>; <sup>1</sup>Ecole Polytechnique Federale de Lausanne, Switzerland. Different techniques to improve the response of distributed fiber sensors are reviewed, which turn out to be far from simplistic as a result of cross-interactions between nonlinear effects.

### Th3A.2 • 13:30

Single-Shot True Distributed Strain Variation Measurements Over >10 km Using Phase-Sensitive OTDR with Chirped Pulses, Andres Garcia-Ruiz<sup>1</sup>, Hugo Martins<sup>2</sup>, Juan Pastor-Graells<sup>1</sup>, Sonia Martin-Lopez<sup>1</sup>, Miguel Gonzalez-Herraez<sup>1</sup>; \*\*IElectronics Dept., Univ. of Alcalá, Spain; \*\*2Research Dept, FOCUS S.L., , Spain. Single-shot, true strain dynamic measurements with few ne resolution over >10 km are achieved with a ΦOTDR employing linearly chirped pulses. Strain variations at frequencies up to 4 kHz can be monitored over this distance.

### Th3A.3 • 13:45

**Long-range Millimeter-resolution OFDR Based on 100 GHz Linear Frequency-sweep of Optical Source by Injection-locking Technique and Cascaded FWM Process,** Bin Wang<sup>1</sup>, Xinyu Fan<sup>1</sup>, Qingwen Liu<sup>1</sup>, Jiangbing Du<sup>1</sup>, Zuyuan He<sup>1</sup>; <sup>1</sup>Shanghai Jiao Tong Univ., China. We demonstrate a high spatial resolution OFDR by utilizing injection-locking technique and cascaded FWM. A frequency sweeping span of ~100 GHz is obtained for realizing a 1.1 mm spatial resolution over 2 km measurement range.

#### Th3A.4 • 14:00

**200** km Fiber-Loop Conventional Brillouin Distributed Sensor with 2m Spatial Resolution Using Image Denoising, Marcelo A. Soto<sup>1</sup>, Jaime Ramírez<sup>1</sup>, Luc Thevenaz<sup>1</sup>; <sup>1</sup>Ecole Polytechnique Federale de Lausanne, Switzerland. Non-local means image denoising method is optimized to boost the performance of Brillouin distributed fiber sensors. Results demonstrate

ultra-long sensing over a 200-km fiber-loop with 2m resolution using a sensing scheme without any hardware sophistication.

# Th3A.5 • 14:15

**Ultra-High-Resolution OTDR based on Linear Optical Sampling with Digital Dispersion Compensation,** Wang Shuai<sup>1</sup>, Xinyu Fan<sup>1</sup>, Qingwen Liu<sup>1</sup>, Zuyuan He<sup>1</sup>; <sup>1</sup>Shanghai Jiao Tong Univ., China. We demonstrate an optical time domain reflectometry based on linear optical sampling (LOS). Taking advantage of its ultrahigh bandwidth and low timing jitter, we obtained a spatial resolution of 340 um at 10 km

#### Th3A.6 • 14:30

Overcoming High-resolution Limitations in Optimized Long-range BOTDA Sensors, Alejandro Dominguez-Lopez<sup>1</sup>, Marcelo A. Soto<sup>2</sup>, Sonia Martin-Lopez<sup>1</sup>, Luc Thevenaz<sup>2</sup>, Miguel Gonzalez-Herraez<sup>1</sup>; <sup>1</sup>Universidad de Alcala, Spain; <sup>2</sup>Inst. of Electrical Engineering, SCI-STI-LT Station 11, Ecole Polytechnique Federale de Lausanne, Switzerland. A fundamental limitation in high-resolution and long-range Brillouin optical time-domain systems is overcome in this paper, enabling 500k resolved points over 25 km of SMF with 5 cm spatial resolution in a usual acquisition time.

### Th3A.7 • 14:45

Enhanced and Spatially Equalized SNR in DAS via Digital Summation of Complex Rayleigh Speckles, Haniel Gabai<sup>1</sup>, Avishay Eyal<sup>1</sup>; <sup>1</sup>Physical Electronics, Tel-Aviv Univ., Israel. In distributed acoustic sensing the SNR of each sensor varies randomly along the fiber and is affected by propagation losses. We introduce a new method for enhancing and equalizing the SNR via digital means only.

Room 306 15:30 -- 17:30 Th4A • Poster Session II

#### Th4A.1 • 15:30

**Multi-wavelength Fiber Bragg Grating Induced by Femtosecond Laser Point-by-Point Inscription,** Changrui Liao<sup>1</sup>, Yiping Wang<sup>1</sup>; <sup>1</sup>Shenzhen Univ., China. Multi-wavelength fiber Bragg grating has been realized by the inscription of several fiber gratings with different pitches in the same part of the fiber core. The polarization dependent loss of this grating has also been experimentally investigated.

### Th4A.2 • 15:30

Temperature-insensitive strain sensor using a microfiber Mach-Zehnder interferometer, Seungmin Lee<sup>1</sup>, Eun Ji Lim<sup>1</sup>, Ik Su Jo<sup>1</sup>, Kwang Wook Yoo<sup>1</sup>, Young-Geun Han<sup>1</sup>; <sup>1</sup>Physics, Hanyang Univ., Korea (the Republic of). Temperature-insensitive strain sensor based on a microfiber Mach-Zehnder interferometer is proposed by controlling the waist diameter of the microfiber. The temperature sensitivity of the microfiber-MZI was dramatically reduced to be  $1.94 \times 10^{-6}$  nm<sup>-1</sup>×°C<sup>-1</sup>.

**Integrated MFP/RSFBG Sensor with Micro-Channel for Simultaneous Measurement of Gas Pressure and Temperature,** Haihong Bao<sup>1</sup>, ZengLing Ran<sup>1</sup>, Xuezhong Wu<sup>1</sup>, Yunjiang Rao<sup>1</sup>; <sup>1</sup>Univ of Electronic Science & Tech China, China. An integrated sensor via overlapping a Fabry-Pérot (F-P) cavity with micro-channel on a regenerated fiber Bragg grating (RFBG) is constructed for dual-parameter sensing of temperature and gas pressure under high temperature.

# Th4A.4 • 15:30

Real-time Transverse Force Sensing using Stokes Parameters through Fiber Bragg Grating and Performance Analysis, Yang SU<sup>1</sup>, Hua Zhou<sup>1</sup>, Yong Zhu<sup>1</sup>, Baofu Zhang<sup>1</sup>; <sup>1</sup>PLA Univ. of Science and Technology, China. Real-time force measurement is achieved through direct measurement of Stokes parameters through FBG at single wavelength. A proportional relationship and linear fit are found between Stokes parameters and applied force. The performance dependence on the state of polarization (SOP) of incident light is investigated experimentally.

#### Th4A.5 • 15:30

Chirped Bragg grating inscribed in microfiber, Peng Xiao<sup>1</sup>, Fu-Rong Feng<sup>2</sup>, Tong Liu<sup>1</sup>, Yang Ran<sup>1</sup>, Long Jin<sup>1</sup>, Bai-Ou Guan<sup>1</sup>; <sup>1</sup>Inst. of Photonics Technology, China. The chirped Bragg grating is inscribed in microfiber with a uniform phase mask. Characteristic of the spectrum in response to the ambient refractive index is studied.

# Th4A.6 • 15:30

**Application of phase shifted fiber Bragg grating to advanced ultrasonic structural health monitoring,** Qi Wu<sup>1</sup>, Yoji Okabe<sup>1</sup>, Fengming Yu<sup>1</sup>, Wensheng Kong<sup>1</sup>; <sup>1</sup>Univ. of Tokyo, Japan. Several novel sensing systems based on phase-shifted fiber Bragg grating with high sensitivity and broad bandwidth were proposed and applied to acoustic emission detection and nonlinear ultrasonic detection, demonstrating their abilities in practical applications.

### Th4A.7 • 15:30

**LP**<sub>01</sub>-**LP**<sub>21</sub> intermodal interferometer based on long period grating in few mode fiber for dual parameter sensing, Ya Han<sup>1</sup>, Yange Liu<sup>1</sup>, wei huang<sup>1</sup>, zhi wang<sup>1</sup>, hongwei zhang<sup>1</sup>; <sup>1</sup>Inst. of Modern Optics, Nankai Univ, China. A FMF-LPG converting LP<sub>01</sub> to LP<sub>21</sub> core mode is proposed for the first time. The proposed interferometer is composed of the matching LPG and a slight core-offset spliced end. It can be used as dual parameter sensors

### Th4A.8 • 15:30

**Phase-shift Bragg gratings written in microfibers,** Tong Liu<sup>1</sup>, Fu-Rong Feng<sup>1</sup>, Peng Xiao<sup>1</sup>, Yang Ran<sup>1</sup>, Long Jin<sup>1</sup>, Bai-Ou Guan<sup>1</sup>; <sup>1</sup>Inst. of Photonics Technology, China. The phase-shift Bragg gratings inscribed into microfibers are proposed. Depending on the narrow notch in the reflection spectrum, the grating can detect outer refractive index change with higher accuracy.

#### Th4A.9 • 15:30

**Dual-Polarization Fiber Laser Ultrasound Hydrophone,** Di Liu<sup>1</sup>, Yizhi Liang<sup>1</sup>, Long Jin<sup>1</sup>, Bai-Ou Guan<sup>1</sup>; <sup>1</sup>*Inst. of Photonics Technology, China.* A highly-sensitive fiber optic ultrasound hydrophone is fabricated by coating a dual-polarization fiber laser with epoxy resin. It presents broad working bandwidth and a detection limit of 31 Pa at 200 kHz. Its capability of ultrasound imaging is also demonstrated.

#### Th4A.10 • 15:30

Microwave photonics filtering technique for interrogating Fiber Bragg grating transverse load sensors, Yiping Wang<sup>1</sup>; <sup>1</sup>Nanjing Normal Univ., China. A transverse load fiber Bragg grating (FBG) sensor exploiting microwave photonics filtering technique is presented and experimentally demonstrated. The proposed sensor has the advantages of higher resolution, remote sensing and adjustable sensitivity.

#### Th4A.11 • 15:30

Inscription and improvement of novel fiber Bragg gratings by 800 nm femtosecond laser through a phase mask, Jun He<sup>1,2</sup>, Yiping Wang<sup>1</sup>, Changrui Liao<sup>1</sup>, Kaiming Yang<sup>1</sup>, Shen Liu<sup>1</sup>, Ying Wang<sup>1</sup>, Gang-Ding Peng<sup>2</sup>; <sup>1</sup>Shenzhen Univ., China; <sup>2</sup>Univ. of New South Wales, Australia. Novel FBGs were inscribed by 800 nm femtosecond laser through a phase mask. The improvement of the experimental setup and the inscription results of broadband FBGs, phase-shifted FBGs, and negative-index FBGs were exhibited.

#### Th4A.12 • 15:30

Magnetic field vector sensor based on directional scattering between polarized plasmon wave and arrayed nanoparticles, Zhaochuan Zhang<sup>1</sup>, Xuejun Zhang<sup>1</sup>, Jian Xu<sup>1</sup>, Bai-Ou Guan<sup>1</sup>, Tuan Guo<sup>1</sup>; <sup>1</sup>Jinan Univ., China. A magnetic field vector sensor based on surface Plasmon resonance of a gold-coated tilted fiber Bragg grating and magnetic fluid is proposed. Both the orientation and the intensity of magnetic fields can be determined.

#### Th4A.13 • 15:30

**Grating Inscription to Few-Mode Multi-Core Optical Fiber,** Hiroki Ishihara<sup>1</sup>, Hitoshi Uemura<sup>1</sup>, Yusuke Sasaki<sup>1</sup>, Koji Omichi<sup>1</sup>, Takeshi Fujisawa<sup>2</sup>, Kunimasa Saitoh<sup>2</sup>; <sup>1</sup>Fujikura Ltd., Japan; <sup>2</sup>Hokkaido Univ., Japan. Preliminary fiber Bragg grating inscription to 2LP-mode 4-core fiber is demonstrated to confirm feasibility for optical fiber sensing application. Clear Bragg reflection spectra for LP<sub>01</sub> and LP<sub>11</sub> are obtained individually using all fiber-optic few-mode multi-core input/output module.

#### Th4A.14 • 15:30

Thermal response time measurement of photonic crystal fiber device based on anti-resonant reflecting guidance, Ying Wang<sup>1</sup>, Zhengchun Peng<sup>1</sup>, Changrui Liao<sup>1</sup>, Yiping Wang<sup>1</sup>; 

Shenzhen Univ., China. The thermal response time of a photonic crystal fiber device based on anti-resonant reflecting guidance was measured to be ~267 ms with using a CO<sub>2</sub> laser as thermal excitation scource.

# Th4A.15 • 15:30

**Secondary-type In grating and its laser applications,** Feng Furong<sup>1</sup>, Yang Ran<sup>1</sup>, Bai-Ou Guan<sup>1</sup>; <sup>1</sup>*Inst. of Photonics Technology, China.* An abnormal phenomenon of secondary dip existing in type In Bragg grating formation is discovered and the laser applications based on those secondary-type In gratings are researched.

## Th4A.16 • 15:30

**Remote point-sensing systems based on erbium-Raman random fiber laser,** Wei Sun<sup>1</sup>, Han Wu<sup>1</sup>, Zinan Wang<sup>1</sup>, Zedong Wei<sup>1</sup>, Xianyang Qian<sup>1</sup>, Qiheng He<sup>1</sup>, Yunjiang Rao<sup>1</sup>; <sup>1</sup>Univ. Electronic Sci. & Tech. of China, China. We demonstrate a long-distance point-sensing system

based on the erbium-Raman random fiber laser. With the relatively low pump power, the sensing distance can reach 100km with the OSNR as high as 35dB.

### Th4A.17 • 15:30

Fiber optic bending sensor based on resonance splitting of  $\pi$ -phase-shifted FBG, Jiageng Chen<sup>1</sup>, Qingwen Liu<sup>1</sup>, Xinyu Fan<sup>1</sup>, Zuyuan He<sup>1</sup>; <sup>1</sup>State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong Univ., China. We present a bending sensor using  $\pi$ -phase-shifted FBG ( $\pi$ -PSFBG).

Based on the bending-induced resonance splitting effect of the  $\pi$ -PSFBG, a curvature measurement within 25 m<sup>-1</sup> or orientation-recognizable in  $\pm 14$  m<sup>-1</sup> is realized.

### Th4A.18 • 15:30

**Particle trapping by a helical optical fiber,** Hongchang Deng<sup>1</sup>, Xianbin Wang<sup>1</sup>, Yaxun Zhang<sup>1</sup>, Xiaotong Zhang<sup>1</sup>, Libo Yuan<sup>1</sup>; <sup>1</sup>Harbin Engineering Univ., USA. We present a microparticle trapping technique using a helical optical fiber. The nearby polystyrene microparticles with 10 µm diameters will be trapped on the fiber surface by the evanescent wave induced by cladding modes interference.

#### Th4A.19 • 15:30

**Investigation of relative humidity sensor using periodically micro-tapered long-period fiber gratings without sensing uncertainty,** Jong Cheol Shin<sup>1</sup>, Ik Su Jo<sup>1</sup>, Ju Il Hwang<sup>1</sup>, Young-Geun Han<sup>1</sup>; <sup>1</sup>Hanyang Univ., Korea (the Republic of). We propose a humidity sensor using a periodically micro-tapered long-period fiber grating incorporating low index polymer and polyvinyl alcohol (PVA). We effectively suppress sensing uncertainty for measurement of the relative humidity.

#### Th4A.20 • 15:30

**Torsion sensors based on Pre-twisted in-fiber Long period fiber gratings,** Mi Deng<sup>1</sup>, Shen Liu<sup>1</sup>, Zhiyong Bai<sup>1</sup>, Ying Wang<sup>1</sup>, Yiping Wang<sup>1</sup>; <sup>1</sup>Shenzhen Univ., China. We demonstrated a novel CO<sub>2</sub>-laser based long period fiber grating by periodically twisting the SMF to introduce a pre-twist strain for each point. The new structure exhibits very high torsion sensitivity of 17.9 nm/(rad/cm)

### Th4A.21 • 15:30

**Strain Sensor Based on Fiber Bragg Grating with a Carbon Fiber Coating,** Rui Wang<sup>1</sup>, Chunliu Zhao<sup>1</sup>, Dongyou Yu<sup>2</sup>; <sup>1</sup>China Jiliang Univ., China; <sup>2</sup>Anshan Photonics Land Technology Co.Ltd, China.

A strain sensor based on fiber Bragg grating with a carbon fiber coating is proposed and measurement. The range of measurement is from 2kg to 20kg and the strain sensor presents good characteristic of repeatability.

#### Th4A.22 • 15:30

A Compensation Method on Scale Factor of FOG for Space Application, Yuanhong Yang<sup>1,2</sup>, Dandan Wang<sup>1</sup>, Fuling Yang<sup>1</sup>; <sup>1</sup>National Key Laboratory on Inertial Technology, Beihang Univ., China; <sup>2</sup>Key Laboratory on Precision Opto-Mechatronics Technology of Ministry of Education, Beihang Univ., China. The intrinsic parameter of multifunction integrated optic chip is extracted

and found to be linear with wavelength and temperature experimentally. The scale factor stability of FOG is improved by about ten times with the established model.

### Th4A.23 • 15:30

An Integrated All Fiber Whispering Gallery Mode Resonator, Dongmei Huang<sup>1</sup>, Tao Zhu<sup>1</sup>, Leilei Shi<sup>1</sup>, Min Liu<sup>1</sup>, Ming Deng<sup>1</sup>, Wei Huang<sup>1</sup>; <sup>1</sup>Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing Univ., China. An integrated all fiber WGMR with the maximum quality factor 3.39×10<sup>3</sup> is demonstrated by positioning tapered fiber in the micro-groove fixed, which has potential applications in chemical solutions or current by tracing the resonant wavelength.

# Th4A.24 • 15:30

Measurement of Distributed Polarization Crosstalk in LiNbO<sub>3</sub> Straight Through Waveguide Phase Modulator, Haoliang Zhang<sup>1</sup>, Jun Yang<sup>1</sup>, Zhangjun Yu<sup>1</sup>, Chuang Li<sup>1</sup>, Yonggui Yuan<sup>1</sup>, Yongqing Cheng<sup>1</sup>, Zhe Yang<sup>1</sup>, Feng Peng<sup>1</sup>, Bing Wu<sup>1</sup>, Hanyang Li<sup>1</sup>, Libo Yuan<sup>1</sup>; \*Harbin Engineering Univ., China. A full analysis of distributed polarization crosstalk in straight through waveguide was proposed. The measuring error caused by dispersion was eliminated by using dispersion compensation. The results enable us to evaluate the performance of the waveguide accurately.

### Th4A.25 • 15:30

A refractive-index sensor based on hollow-core silica tube, Yijian Huang<sup>1</sup>, Ying Wang<sup>1</sup>, Mi Deng<sup>1</sup>, Shen Liu<sup>1</sup>, Changrui Liao<sup>1</sup>, Yiping Wang<sup>1</sup>; <sup>1</sup>Shenzhen Univ., China. A novel design for a compact fiber-optic sensor based on a multimode interference self-imaging phenomenon is presented. Such a sensor exhibits an average sensitivity of 2548nm/RIU for the 1.42-1.442 refractive index range.

# Th4A.26 • 15:30

**Study on Vibration Isolation Packaging of Distributed Feedback Fiber Laser,** Zhiqiang Song<sup>1</sup>; <sup>1</sup>Shandong Academy of Sciences, USA. A vibration isolation packaging structure of distributed feedback fiber laser was designed. The experimental results show that laser line-width and wavelength are stable under acoustic and vibration disturbing.

#### Th4A.27 • 15:30

**A VCSEL-Based Fast Precision FBG Interrogation System,** Binxin Hu<sup>1</sup>, Guangxian Jin<sup>1</sup>, Tongyu Liu<sup>1</sup>, Jinyu Wang<sup>1</sup>; <sup>1</sup>Shandong Academy of Sciences, China. This paper presents a fast precision FBG interrogation system based on VCSEL. The system achieves 1.2 pm accuracy with 3 nm tuning range and 1 kHz tuning rate, applicable to both static and dynamic measurements.

#### Th4A.28 • 15:30

**Discrete cavity length demodulation algorithm for optical fiber F-P sensor based on variable step size mountain climbing search algorithm,** Huadong Yang<sup>1</sup>, Xinglin Tong<sup>1</sup>, Pan Hu<sup>1</sup>, Qian Guo<sup>1</sup>; <sup>1</sup>Wuhan Univ. of Technology, China. This paper present a novel variable step size mountain-climbing search algorithm to reduce the computation of the discrete cavity length demodulation algorithm. Wavelet denoising is also used to realize fast high precision signal demodulation.

### Th4A.29 • 15:30

All fiber-optic humidity sensor based on tungsten disulfide (WS2), Heyuan Guan<sup>1</sup>, Yunhan Luo<sup>1</sup>, Chaoying Chen<sup>1</sup>, Xia Kai<sup>1</sup>, shuihua peng<sup>1</sup>, Jieyuan Tang<sup>1</sup>, Huihui Lu<sup>1</sup>, JianHui Yu<sup>1</sup>, Jun Zhang<sup>1</sup>, Yi Xiao<sup>1</sup>, Zhe Chen<sup>1</sup>; <sup>1</sup>Jinan Univ., China. A novel all-fiber-optic humidity sensor comprised of a tungsten disulfide (WS2) film and a side polished fiber (SPF) is demonstrated. This sensor will promote the employment of WS2 in chemical sensing techniques.

#### Th4A.30 • 15:30

Magnetic Filed Tunability of All-solid Waveguide Array Fiber Integrated with Ferrofluid, Miao Yinping<sup>1</sup>, CHAO LI<sup>1</sup>, xixi ma<sup>1</sup>; <sup>1</sup>Tianjin Univ. of Technology, China. All-solid waveguide array fiber integrated with ferrofluid was periodically modulated by both radial and axial microstructure. The propagation characteristics were studied through tuning the applied magnetic field intensity.

### Th4A.31 • 15:30

**Self-reference single-beam optical sensor for methane measurement in different background gases,** Jun Chang<sup>1</sup>; <sup>1</sup>Shandong Univ., China. Self-reference single-beam optical sensor is presented to detect methane concentration, whose advantage is measuring absorption line shape precisely. Consequently measurement accuracy could be improved by absorption line shape correction of methane in different background gases.

# Th4A.32 • 15:30

**All-fiber-optic Temperature Sensor Based on Cholesteric Liquid Crystal,** Jieyuan Tang<sup>1</sup>, Ruizhi Chen<sup>1</sup>, Zhe Chen<sup>1</sup>, Jianhui Yu<sup>1</sup>, Heyuan Guang<sup>1</sup>, Huihui Lu<sup>1</sup>, Yunhan Luo<sup>1</sup>, Jun Zhang<sup>1</sup>; 

<sup>1</sup>Dept of Optoelectronic Engin, Jinan Univ, China. We propose a all-fiber-optic temperature sensor by coating cholesteric liquid crystal film on a side-polished fiber. This sensor has a sensitivity of 0.28 dB /°C from 30°C-70°C and possesses high potentiality in photonics applications.

#### Th4A.33 • 15:30

**Fiber Optic Pressure and Temperature Sensor with Bourdon Tube for Downhole Application,** Xiaohui Liu<sup>1</sup>, an w. zhao<sup>1</sup>, Qingchao Zhao<sup>1</sup>, Yingying Wang<sup>1</sup>, Long Ma<sup>1</sup>, Chang Wang<sup>1</sup>, Gang-Ding Peng<sup>2,1</sup>; <sup>1</sup>Shandong Key Laboratory of Optical Fiber Sensing Technologies, Laser Inst. of Shandong Academy of Sciences, China; <sup>2</sup>School of Electrical Engineering & Telecommunications, the Univ. of New South Wales, Australia. A pressure and temperature sensor for downhole application is reported. Experiments show the sensor has sensitivity of 0.99μm/MPa and accuracy of 0.1%F.S. for pressure measurement. The sensor is successfully used for downhole 24-hours monitoring.

## Th4A.34 • 15:30

A magnetic field sensor with optical resonant measurement, Qiang Huang<sup>1</sup>; <sup>1</sup>Harbin Engineering Univ., China. This paper reports a magnetometer with optical resonant measurement. Experiments show the scalar signal with the resonant precession frequency of the coherent atoms and the vector signal with the Lock-in Amplifier phase shift on the field angle.

### Th4A.35 • 15:30

A Miniaturized FBG Accelerometer based on a Lantern-Shape Metallic Shell, Jun Wang<sup>1</sup>, Jing Zhu<sup>2</sup>, Peng Gan<sup>1</sup>, Zhengliang Hu<sup>1</sup>, Yongming Hu<sup>1</sup>; <sup>1</sup>Academy of Ocean Science and Engineering, National Univ. of Defense Technology, China; <sup>2</sup>College of Optoelectronic Science and Engineering, National Univ. of Defense Technology, China. A miniaturized FBG accelerometer based on a lantern-shape metallic shell is demonstrated. The shell structures are analyzed and optimized using ANSYS. A Michelson interferometer system is applied to acquire signals. The accelerometer sensitivity is 43.6 pm/g, the resonant frequency is 1000 Hz, and the orthogonal crosstalk is -15.3 dB.

#### Th4A.36 • 15:30

**Polarization Insensitive Electro-optic Probe,** Dong-Joon Lee<sup>1</sup>, Young-Pyo Hong<sup>1</sup>, Seok Kim<sup>1</sup>; <sup>1</sup>Korea Research Inst of Standards & Sci, Korea (the Republic of). A highly simple and polarization insensitive fiber-optic probe for electric field sensing is demonstrated. The polarization instability problem – often occurs due to the birefringence drift in lengthy optical fibers – is overcome for fiber-coupled optical sensors.

# Th4A.37 • 15:30

**Fabrication of notched long-period fiber grating by inductively coupled plasma etching for temperature sensing,** Chia-Chin Chiang<sup>1</sup>; <sup>1</sup>Dept. of Mechanical Engineering, KUAS, Taiwan. This study proposes the notched long-period fiber grating (NLPFG) temperature sensor fabricated by inductive couple plasma (ICP) etching. The experimental results show that the largest sensitivity of the NLPFG sensor is 0.107 nm/°C. Therefore, the NLPFG temperature sensor possesses superior sensitivity.

### Th4A.38 • 15:30

Theoretical Investigation on Whispering Gallery Modes of Microsphere with Anisotropic **Deformation**, xiaoxia wang<sup>1</sup>, Honghui Zhang<sup>1</sup>, Jia Wang<sup>1</sup>;  ${}^{I}College$  of Optoelectronic Engineering, Chongqing Univ., China. A sensing mechanism is proposed based-on microsphere with anisotropic deformation in whispering gallery modes. Ellipsoid index  $\varepsilon$  is introduced to describe the deformation, which happens on the microsphere under a unidirectional force.

#### Th4A.39 • 15:30

**Load Identification Method Based on Fiber Bragg Grating Sensors,** Song X. Gang<sup>1</sup>; <sup>1</sup>Nanjing Univ. of Aeronautics and Astronautics, State Key Laboratory of Mechanics and Control of Mechanical Structures, China. Fiber Bragg Grating (FBG) sensing system is utilized to monitor load in this paper. The load identification theory is based on inverse FEM approach and least square method. Experiment results reveal that the novel algorithm can accurately estimates the values of load.

### Th4A.40 • 15:30

Simultaneous Strain and Temperature Measurement Using Cascaded Chirp Long Period Fiber Grating, Mayumi Nagatsuka<sup>1</sup>, Masayoshi Koizumi<sup>1</sup>, Junki Saito<sup>1</sup>, Than Ngo<sup>1</sup>, Satoshi Tanaka<sup>1</sup>, Atsushi Wada<sup>1</sup>, Nobuaki Takahashi<sup>1</sup>; <sup>1</sup>National Defense Academy, Japan. Simultaneous multi-parameter sensing using a cascaded chirp LPG is proposed, in which two resonance peaks are utilized for discriminating between strain and temperature and applied strain and temperature changes are simultaneously determined within  $\pm 23$  micro-strain and  $\pm 0.14$  degree C, respectively.

### Th4A.41 • 15:30

**Broadband Vibration Sensors Using Fiber Bragg Gratings,** Kenji Sato<sup>1</sup>; <sup>1</sup>National Inst. of Technology, Numazu College, Japan. A vibration sensor using fiber Bragg gratings has been demonstrated for monitoring broadband vibrations. We proposed temperature-insensitive vibration sensing by monitoring and stabilizing the direct current from a photo-diode.

### Th4A.42 • 15:30

**In-situ characterization of epoxy composites with polymer-coated fiber Bragg grating sensors,** umesh sampath<sup>1</sup>, Hyunjin Kim<sup>1</sup>, Daegil Kim<sup>1</sup>, Minho Song<sup>1</sup>; <sup>1</sup>Electronics and Information Engineering, Chonbuk National Univ., Korea (the Republic of). A pair of polymer-coated fiber Bragg gratings are proposed for simultaneous characterization of temperature and strain in curing composite structures. Temperature sensitivity was 81 pm/°C which is 7 times larger than normal FBG sensors.

#### Th4A.43 • 15:30

**Radio Frequency Detection Based on Photonic Time-Stretched Technique,** Ying Yue<sup>1</sup>, Zhongying Wu<sup>1</sup>, Hui Ding<sup>1</sup>; <sup>1</sup>Xi'an jiaotong Univ., China. Sample rate improvement via photonic time-stretched technique is proposed and experimentally demonstrated. This technique can be used to measure radio frequency with sampling rate of 220GSa/s and bandwidth of 27.5GHz.

### Th4A.44 • 15:30

**Specialty Optical Fibers for Fiber Optical Current Sensors,** Yang Di<sup>1</sup>, Xin Mao<sup>1</sup>, Weijun Tong<sup>1</sup>, Jinjin Tao<sup>1</sup>, Tongqing Liu<sup>1</sup>, Xiaoguang Liu<sup>1</sup>, Huifeng Wei<sup>1</sup>; <sup>1</sup>Yangtze Optical Fibre and Cable Joint Stock Limited Company, China. We design and manufacture specialty fibers for fiber optical current sensor (FOCS) head: PANDA, elliptical core fiber, and spun highly birefringent fiber. The sensor head achieves good linearity in temperature range -40°C -70°C without compensation.

### Th4A.45 • 15:30

Fiber Optic Gyro base on Photonic Crystal Fiber Sensing Coil, KuiYan Song<sup>1</sup>, Yuanhong Yang<sup>1</sup>, Changxin Wu<sup>1</sup>; <sup>1</sup>Beihang Univ., China. We proposed a new type of fiber optic gyroscope with reduced thermal sensitivity and improved radiation resistant by introducing a polarization-maintaining photonic crystal fiber coil.

### Th4A.46 • 15:30

**Research on FBG Packaging Technique for Ultrahigh Resolution Strain Sensing,** Jun Cao<sup>1</sup>, Qingwen Liu<sup>1</sup>, Xinyu Fan<sup>1</sup>, Zuyuan He<sup>1</sup>; <sup>1</sup>Shanghai Jiao Tong Univ., China. We reported a new FBG packaging method with both good long time stability and simple field assembly by fixing metallized fiber to metal board with V-shaped groove, for the purpose of ultrahigh strain sensing.

#### Th4A.47 • 15:30

**Dual-parameter Measurement Based on Multiple Acoustic Modes in SBS Process,** Xin Zhou<sup>1</sup>, Zhen Guo<sup>1</sup>, Changjian Ke<sup>1,2</sup>, Ming Tang<sup>1,2</sup>, Deming Liu<sup>1,2</sup>; <sup>1</sup>School of Optical and Electronic Information, Huazhong Univ. of Science and Technology, China; <sup>2</sup>National Engineering Laboratory for Next Generation Internet Access System, Huazhong Univ. of Science and Technology, China. A dual-parameter measurement method is proposed, utilizing the multi-

peak BGS contributed by multiple acoustic modes in stimulated Brillouin scattering process. A fivefold enhancement in measurement sensitivity may be achieved for temperature and strain.

#### Th4A.48 • 15:30

A High Sensitive Magnetic Field Sensor Based on Photonic Crystal Fiber Modal Interferometer, Ying Li<sup>1</sup>, Guofeng Yan<sup>1</sup>, Sailing He<sup>1</sup>; <sup>1</sup>College of Optical Science and Engineering, Zhejiang Univ., China. A high sensitive magnetic field sensor is newly designed and analyzed, which is consisted of two segments of thin core fiber and a sandwiched photonic crystal fiber. The average sensitivity we obtained is 481 pm/Oe.

#### Th4A.49 • 15:30

Photoluminescence spectral characteristics of Pb/Bi co-doped silica fiber, Jianxiang Wen<sup>1</sup>, Haihong Zhan<sup>1</sup>; <sup>1</sup>Shanghai Univ., China. A Pb/Bi co-doped silica fiber is fabricated by atomic layer deposition (ALD). The absorption bands are at 692 nm, ~800 nm and 1013 nm. There are broadband fluorescence spectra with 980 nm and 830 nm pumping.

#### Th4A.50 • 15:30

**Metal enhanced fluorescence based on tapered fiber,** Fenghong Chu<sup>1</sup>, Jiayan Lu<sup>1</sup>, Fengyu Cheng<sup>1</sup>, Jie Sang<sup>1</sup>, Chengxin Pang<sup>1</sup>, Chunjuan Wei<sup>1</sup>, Wei Jiang<sup>1</sup>, Xiaojun Song<sup>1</sup>; <sup>1</sup>School of Electronic and Information Engineering, Shanghai Univ. of Electric Power, China. Polymer tapered fiber was fabricated by photo-polymerization reaction method, gold nanoparticles and fluorophore were dipped coated on the tapered fiber, compared with fiber coated only with fluorophore this kind of structure can gather more fluorescence.

#### Th4A.51 • 15:30

A novel Mach-Zehnder interferometer based on hybrid liquid crystal-photonic crystal fiber, Xianping Luo<sup>1</sup>, Kai Yu<sup>2</sup>, Jialu Wang<sup>1</sup>, Feiru Wang<sup>1</sup>, Yongjun Liu<sup>1</sup>, Weimin Sun<sup>1</sup>; <sup>1</sup>Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering Univ., China; <sup>2</sup>College of Information and Communications Engineering, Harbin Engineering Univ., China. We propose a novel all fiber Mach-Zehnder interferometer based on photonic crystal fiber with liquid crystal-filled.We mainly studied the MZIs with different LC-filled structure. The temperature sensitivities can be enlarged to -1.5666nm/·C.

### Th4A.52 • 15:30

**Exciting Surface Waves on Metal-Coated Multimode Optical Waveguides using Skew Rays,** Han Chunyang<sup>2,1</sup>, John Canning<sup>2</sup>, Kevin Cook<sup>2</sup>, Hui Ding<sup>1</sup>; <sup>1</sup>Xi'an Jiaotong Univ., China; <sup>2</sup>The Univ. of Sydney, Australia. Multi-point SPR excitation using skew ray within a multimode plastic optical waveguide is proposed and analysed. The approach entails a novel method of measuring the SPR angle which is in agreement with theoretically predicted values.

#### Th4A.53 • 15:30

An Intensity Modulation-Based FOVS Using Serpentine Spring with Proof Mass Structure, Ze Wei Zuo<sup>1</sup>, Jae-Kyung Pan<sup>1</sup>; <sup>1</sup>Electrical Engineering, Chonbuk National Univ., Korea (the Republic of). An intensity modulation-based fiber optic vibration sensor (FOVS) using serpentine spring with proof mass structure is proposed and demonstrated via experiments. The structure, operating principle, and characteristics of the proposed sensor are given.

#### Th4A.54 • 15:30

Sensitivity improvement of fiber Bragg grating sensors based on optical attenuation-based weak value amplification, Kwang Wook Yoo<sup>1</sup>, Young-Geun Han<sup>1</sup>; <sup>1</sup>Hanyang Univ., Korea (the Republic of). We investigate the sensitivity improvement of fiber Bragg grating (FBG) sensors based on the optical attenuation-based weak value amplification (WVA). We successfully enhance the strain sensitivity of the FBG sensor based on the proposed WVA.

#### Th4A.55 • 15:30

**Near-infrared SPR Sensor based on D-shaped Photonic Crystal Fiber Coated with Indium Tin Oxide,** Tianye Huang<sup>1</sup>, Xiang Li<sup>2</sup>, Ying Qiu<sup>2</sup>; <sup>1</sup>China Univ. of Geosciences, China; <sup>2</sup>Wuhan research Inst. of posts and telecommunications, China. D-shaped photonic crystal fiber SPR sensor operating in near-infrared is proposed. The wavelength and phase sensitivity achieve 8800 nm/RIU and 5.4×10<sup>5</sup> Deg./RIU/cm, respectively. The sensor can be used for highly precise refractive index sensing.

#### Th4A.56 • 15:30

Improvement of Mechanical Strength of Polymer-Coated, Hollow-Optical Fiber for FT-IR Remote Spectroscopy, Katsumasa Iwai<sup>1</sup>, Yuji Matsuura<sup>2</sup>, Mitsunobu Miyagi<sup>1</sup>, Hiroyuki Takaku<sup>1</sup>, Takashi Katagiri<sup>2</sup>, Yi-Wei Shi<sup>3</sup>; <sup>1</sup>National Inst. of Tech., Sendai College, Japan; <sup>2</sup>Tohoku Univ., Japan; <sup>3</sup>Fudan Univ., China. Rugged hollow fibers for FT-IR remote spectroscopy are fabricated by all-liquid phase technique. A buffer film coated on the inside of the silica-glass capillary protects the tube from acid solution and improves the mechanical strength.

### Th4A.57 • 15:30

**Single-End-Access Strain and Temperature Sensing Based on Multimodal Interference in Plastic Optical Fibers,** Tomohito Kawa<sup>1</sup>, Goki Numata<sup>1</sup>, Neisei Hayashi<sup>2</sup>, Yosuke Mizuno<sup>1</sup>, Kentaro Nakamura<sup>1</sup>; <sup>1</sup>Inst. of Innovative Research, Tokyo Inst. of Technology, Japan; <sup>2</sup>Research Center for Advanced Science and Technology, The Univ. of Tokyo, Japan. We develop a single-end-access strain/temperature sensor configuration based on multimodal interference in a plastic optical fiber with an extremely high sensitivity. The light Fresnel-reflected at the distal open end of the plastic fiber is exploited.

### Th4A.58 • 15:30

**Resonant fiber optic gyro based on total internal reflection photonic crystal fiber ring resonator,** Linglan Wang<sup>1</sup>, Hanzhao Li<sup>1</sup>, Huilian Ma<sup>1</sup>, Zhonghe Jin<sup>1</sup>; <sup>1</sup>School of Aeronautics and Astronautics, Zhejiang Univ., China. A new type resonant fiber optic gyro (RFOG) equipped with a fiber ring resonator fabricated by the total internal reflection photonic crystal fiber (TIR-PCF) is firstly demonstrated and achieves a bias stability of 4.63°/h.

# Th4A.59 • 15:30

**Refractive index insensitive Mach-Zehnder interferometer based on an air-clad thin-core fiber,** Zi-Wei Feng<sup>1</sup>, Chuang Wu<sup>1</sup>, Zhengyong Liu<sup>2</sup>, Bai-Ou Guan<sup>1</sup>, Hwa Yaw Tam<sup>2</sup>; <sup>1</sup>Inst. of Photonics Technology, Jinan Univ., China; <sup>2</sup>Electrical Engineering, The Hong Kong Polytechnic Univ., Hong Kong. We demonstrate an inline Mach-Zehnder interferometer (MZI) based on an air-clad thin-core fiber for strain and temperature sensing. The output spectrum of this MZI is insensitive to the variation of surrounding refractive index.

#### Th4A.60 • 15:30

Fabrication of Kagomé Hollow-core Photonic Crystal Fiber for Temperature Sensing, Haihu Yu<sup>1,2</sup>, Xiong CHENG<sup>1</sup>, Jian MA<sup>1</sup>, Yu Zheng<sup>1</sup>; <sup>1</sup>National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan Univ. of Technology, China; <sup>2</sup>Key Lab of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan Univ. of Technology, China. A kagomé-lattice photonic crystal fiber was fabricated using the "stack-and-draw" method and a temperature sensor based on the fiber was proposed. The calculation results show that the sensor has a high sensitivity of 4.09 nm/°C.

#### Th4A.61 • 15:30

Microcavity Assisted Strain Sensor Using Wavelength and Intensity Based Interrogation, Rajan Jha<sup>1</sup>, Jitendra N. Dash<sup>1</sup>; <sup>1</sup>I.I.T. Bhubaneswar, India. An axial strain sensor based on microcavity incorporated solid core photonic crystal fiber (SCPCF) modal interferometer is proposed. The probe has strain sensitivity of 2.4 pm/ με and 0.005dB/με in wavelength and intensity interrogation respectively.

### Th4A.62 • 15:30

**Fiber-coupled self-mixing displacement measurement with a waveguide phase modulator,** YuFeng Tao<sup>1</sup>, Ming Wang<sup>1</sup>, Wei Xia<sup>1</sup>; <sup>1</sup>NanJing Normal Univ., China. Fiber-pigtailed self-mixing sensor employs waveguide modulator in polarization maintaining fiber to introduce phase carrier. Quadrature phases are extracted from amplitudes of harmonics to recur displacement. High sensitivity is experimentally verified by comparison to laser LDV.

### Th4A.63 • 15:30

**Investigation of optimization of fiber Bragg grating writing based on single-pulse excimer laser,** Cheng Cheng<sup>1</sup>, Huiyong Guo<sup>1</sup>, Yu Zheng<sup>1</sup>, Haihu Yu<sup>1</sup>; <sup>1</sup>Wuhan Univ. of Technology, China. The mechanism of the fiber Bragg grating based on 193/248 nm excimer laser by one pulse is compared. The results inspire the best way to write weak FBG on high/low germanium doped optical fibers.

Room 102 08:00 -- 10:00 F1A • Specialty Optical Fibers for Sensing

### F1A.1 • 08:00 (Invited)

**Specialty Optical Fibre Sensors and Their Applications,** Hwa Yaw Tam<sup>1</sup>; <sup>1</sup>The Hong Kong Polytechnic Univ., Hong Kong. Abstract not provided.

#### F1A.2 • 08:30

**Step Index Optical Fibre Drawn From a 3D-printed Preform,** Kevin Cook<sup>1</sup>, Geoffrey Balle<sup>1</sup>, John Canning<sup>1,2</sup>, Md. Arafat Hossain<sup>1</sup>, Chunyang Han<sup>1</sup>, Jade-Edouard Comatti<sup>1</sup>, Yanhua Luo<sup>2</sup>, Gang-Ding Peng<sup>2</sup>; <sup>1</sup>The Univ. of Sydney, Australia; <sup>2</sup>Univ. of New South Wales, Australia. The first successful fabrication of step index optical fibre drawn from a 3D-printed polymer preform is reported. This milestone in fibre fabrication has huge implications for optical fibre fabrication and fibre devices and sensors.

#### F1A.3 • 08:45

**Optical Fiber Meta-Tips,** Maria Principe<sup>1</sup>, Marco Consales<sup>1</sup>, Alberto MIcco<sup>1</sup>, Alessio Crescitelli<sup>2</sup>, Giuseppe Castaldi<sup>1</sup>, Emanuela Esposito<sup>2</sup>, Vera La Ferrara<sup>3</sup>, Antonello Cutolo<sup>1</sup>, Vincenzo Galdi<sup>1</sup>, Andrea Cusano<sup>1</sup>; <sup>1</sup>Univ. of Sannio, Italy; <sup>2</sup>Inst. for Microelectronics and Microsystems - CNR, Italy; <sup>3</sup>ENEA research center, Italy. We realize the first optical-fiber "meta-tips" implementing in the near-infrared the beam-steering with increasing angles, up to the limit case of surface-waves excitation. We also explore their capability to work as local refractive index sensor.

#### F1A.4 • 09:00

**Distributed Strain Monitoring in Tunnel Shotcrete (with and without yieldable concrete wedges) by fiber-based TW-COTDR technique,** Isabelle Planes<sup>1,2</sup>, Sylvain Girard<sup>2</sup>, Aziz Boukenter<sup>2</sup>, Emmanuel Marin<sup>2</sup>, Sylvie Lesoille<sup>1</sup>, Radwan Farhoud<sup>1</sup>, Jad Zghondi<sup>3</sup>, Frank Fischli<sup>3</sup>, Youcef Ouerdane<sup>2</sup>; <sup>1</sup>Andra, France; <sup>2</sup>Laboratoire Hubert Curien, France; <sup>3</sup>Marmota Engineering AG, Switzerland. We studied the potential of a fiber-based sensor using the Tunable Wavelength Coherent Optical Time Domain Reflectometry (TW-COTDR) technique to monitor the distributed strain profile inside a tunnel shotcrete, with and without yieldable concrete wedges.

# F1A.5 • 09:15

Raman Distributed Temperature Optical Fiber Sensor Based on Few Mode Fibers, Meng Wang<sup>2</sup>, Tongqing Liu<sup>1</sup>, Hao Wu<sup>2</sup>, Yong Xiang<sup>1</sup>, Huifeng Wei<sup>1,2</sup>, Weijun Tong<sup>1</sup>, ming tang<sup>2</sup>; 

<sup>1</sup>State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC), China; 

<sup>2</sup>School of Optics and Electronic Information, Huazhong Univ. of Science and Technology, China. We report a Raman based distributed temperature sensor over 20km few mode fibers. The spatial and temperature resolution are achieved with 6 meters and 3.3 degrees Celsius, respectively.

### F1A.6 • 09:30

An Open-cavity Fabry-Perot Interferometer for Sensing Applications, Guofeng Yan<sup>1</sup>, Shengnan Wu<sup>1</sup>, Zhenggang Lian<sup>2</sup>, Sailing He<sup>1</sup>; <sup>1</sup>Zhejiang Univ., China; <sup>2</sup>Yangtze Optical Electronics Co.,Ltd. (YOEC), China. An open-cavity Fabry-Perot Interferometer (FPI) is proposed and fabricated by using the chemical etching method based on a side-hole fiber. Its liquid RI, gas pressure and relative humidity sensing performance was experimentally tested as well.

## F1A.7 • 09:45

Hybrid-Cavity Fabry-Perot Interferometer for Simultaneous Relative Humidity and Temperature Measurement, Chengliang Wang<sup>1</sup>, Guofeng Yan<sup>1</sup>, Sailing He<sup>1</sup>; <sup>1</sup>Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang Univ., China. A novel hybrid-cavity Fabry-Perot interferometer based on four-hole suspended-core fiber and optical adhesive is theoretically and experimentally demonstrated for simultaneous RH and temperature measurement, by using the fast Fourier transform with the phase tracking method.

Room 102 10:00 -- 12:00 PDP • Post-deadline Paper

To be announced later.