

Solid propellanto

Homogeneous

fuel and oxidizer

in the same molecule

Ex: double-base propellant

(nitroglycerin-nitrocellulose) Ex: composite

Heterogeneous

Fuel and exidizer grossly mixed

(plastic-like Linder: HTPB oxidizing crystals: AP, AN,

NP, KP, KN

Metal additives: Al, Mg, B

Solid propellants are observed to regress at a uniform rate during their burn (regression rate r)

The regression rate is related to pressure as follows:

$$r = a p_0^n (12.25)$$

n-pressure exponent (independent of temperature) a - depends on initial temperature of the grain (Tp):

$$a = \frac{A}{T_1 - T_b} \qquad (12.26)$$

{ A, T, are constants }

$$(12.25) \Rightarrow \ln r = \ln \alpha + n \ln \beta_0$$

lnr no

$$\Rightarrow n = \frac{\ln(r_2/r_1)}{\ln(r_0/r_0)}$$

Quasi-steady model

$$\dot{m}_{g} = \dot{m}_{t}$$

$$\dot{m}_{g} = \rho_{p} A_{b} r = \rho_{p} A_{b} a \rho_{o}^{r}$$

$$\dot{m}_{t} = \frac{\rho_{o}}{\sqrt{RT_{o}}} \sqrt{\gamma} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}} A_{t} \left\{ M_{t} = 1 \right\}$$

Egnating mg to my yields The steady state operating pressure of the rocket motor

Ex: Find $\left(\frac{A_b}{A_t}\right)$ required to reach a steady state operating pressure of 14 MPa in a SRM with the following characteristics:

R-4 propellant, see Fig 12.15 for burn data

At
$$p_{01} = 10 \text{ atm}$$
, $r_1 = 0.07 \text{ cm/s}$
At $p_{02} = 100 \text{ atm}$, $r_2 = 0.22 \text{ cm/s}$

$$N = \frac{\ln\left(\frac{r_2}{r_1}\right)}{\ln\left(\frac{p_{02}}{p_{01}}\right)} = \frac{\ln\left(\frac{0.22}{0.07}\right)}{\ln\left(\frac{100}{10}\right)} = 0.4973$$

$$\alpha = \frac{r_1}{p_{01}} = \frac{(0.07)(10^{-2})}{[10(101325)]^{0.4973}} = 7.2186(10^{-7})$$

$$\left\{\frac{m/s}{p_{\alpha}^{0.4973}}\right\}$$

$$p_0 = 14 \text{ MPa}, \ p = 1710 \text{ kg/m}^3, \ 1 = 1.27, \ R = \frac{R}{M} = 36^{1.5} \frac{T}{kg-K}$$

$$c^* = \sqrt{\frac{1}{\gamma} RT_0 \left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{\gamma-1}}} = 1353.7 \text{ m/s}$$

$$\Rightarrow \frac{A_b}{A_t} = \frac{P_0^{1-n}}{\alpha P_p c^*} = 2341$$

$$\begin{cases} r = \alpha p_0^{n} = 7.2186 (10^{-7}) \underbrace{\left[14 (10^6)\right]}_{Pa}^{0.4973} \\ \underbrace{\frac{m(s)}{Pa}^{0.4973}}_{Pa} \end{cases}$$

See Fig 12.17 for schematics of several internal burning grains and associated thrust histories

End burning grains burn neutrally

Burning Stability

0.4 < n < 0.7 (typical)

n >1: explosive behavior

n <1: stable behavior

mig(n < 1)

mig(n < 1)

mig(n < 1)

mig(n > 1)

The sensitivity of burning nate to initial propellant temperature is defined as

$$TT_{r} \stackrel{\text{def}}{=} \frac{1}{r} \left(\frac{\partial r}{\partial T_{p}} \right)_{p_{0}} = \left[\frac{\partial}{\partial T_{p}} (lnr) \right]_{p_{0}} (12.30)$$

r = apo, lnr = lnat nlnpo

$$TT_r = \left[\frac{\partial (\ln r)}{\partial T_p}\right]_{P_0} = \frac{d(\ln a)}{dT_p} + 0$$

Since
$$a = \frac{A}{T_1 - T_h}$$
, $\ln a = \ln A - \ln (T_1 - T_p)$

$$\frac{d(\ln a)}{dT_p} = + \frac{1}{T_1 - T_p}, (or) \frac{1}{a} \frac{da}{dT_p} = \frac{1}{T_1 - T_p}$$

$$TT_r = \frac{1}{T_1 - T_b} \qquad (12.31)$$

The sensitivity of to initial grain temperature is defined as

$$TT_{p} = \frac{1}{p_{o}} \left(\frac{\partial p_{o}}{\partial \tau_{p}} \right)_{A_{b}} = \left[\frac{\partial}{\partial \tau_{p}} \left(\ln p_{o} \right) \right]_{A_{b}} T_{o}$$

From $p_0 = \left(\frac{A_b}{A_t} a p_p c^*\right)$, and observing only a is initial temperature dependent,

$$\left(\frac{\partial \left(\ln \beta_{0}\right)}{\partial T_{p}}\right) \frac{A_{b}}{A_{b}}, T_{0} = \frac{1}{1-n} \frac{d(\ln a)}{dT_{p}} = \frac{1}{1-n} T_{r} (12.32)$$

$$T_{p} = \frac{1}{1-n} T_{r} = \frac{1}{(1-n)} \frac{1}{(T_{r} - T_{p})}$$

To lessen the sensitivity of to initial grain temperature, the propellant should have high T, and low n. Fig 12.19

Shows the impact of the initial grain temperature on to.

Axial pressure variation

X-Momentum.

$$\dot{m}u + (\dot{d}\dot{m})(0) + \dot{p}A - (\dot{p}+d\dot{p})A = (\dot{m}+d\dot{m})(u+du)$$
 neglect
= $\dot{m}u + u\,d\dot{m} + \dot{m}\,du + (\dot{d}\dot{m})(\dot{d}u)$
 z^{nd} orden

$$\Rightarrow -Adb = udm + mdu = d(mu)$$

$$\Rightarrow (mu)$$

$$-\int Adb = \int d(mu)$$

$$\Rightarrow p = p_1 \qquad mu = 0$$

$$\Rightarrow A(p,-p) = (\hat{m}u)_{\times}$$

$$\Rightarrow b = b, -\frac{(mu)}{A}$$
 (12.35)

Since
$$u = \frac{m}{\rho A}$$
,
$$b = b_1 - \frac{1}{\rho} \left(\frac{\dot{m}}{A}\right) \qquad (12.36)$$

If c is the circumference of the grain, the mass flow

rate at any station
$$\times$$
 is
$$\dot{m} = P_{p}(cx)r \qquad \{A_{b} = cx\}$$

$$\dot{p} = \dot{p}_{1} - \frac{RT}{\dot{p}} \left(\frac{P_{p}cxr}{A}\right)$$

$$\Rightarrow p = \frac{p_l}{2} \left[1 + \sqrt{1 - 4RT \left(\frac{p_p crx}{p_l A} \right)^2} \right] \qquad (12.37)$$