Peer-Graded Assignment: Data Management

Course: Managing Big Data in Clusters and Cloud Storage

Name: Bhavin Patel Date: 11th July 2020

Assignment

Create a table named **tbm_sf_la** in the database named **dig** to store the data from three tunnel boring machines (TBMs), which is currently stored in S3 in three separate subdirectories under a directory named **tbm_sf_la** in the bucket named **training-coursera2**. In this document, describe the steps taken to complete this task.

Solution

I performed the following steps to complete this task:

1. Examine and Copy the Data hdfs dfs -cp s3a://training-coursera2/tbm sf la/hdfs:///user/hive/warehouse/dig.db/

2. Create the Table

create table tbm_sf_la_central (tbm string, year smallint,month tinyint, day tinyint,hour tinyint,dist decimal (8,2), lon decimal (9,6),lat decimal (9,6)) row format delimited fields terminated by "," tblproperties('skip.header.line.count'='1','serialization.null.format'='')

create table tbm_sf_la_north (tbm string, `year` smallint, `month` tinyint, `day` tinyint, `hour` tinyint, dist decimal (8,2), lon decimal(9,6), lat decimal(9,6)) row format delimited fields terminated by ','

create table tbm_sf_la_south (tbm string, `year` smallint, `month` tinyint, `day` tinyint, `hour` tinyint, dist decimal (8,2), lon decimal(9,6), lat decimal(9,6)) row format delimited fields terminated by '\t'

3. Load the Data into the Table

LOAD DATA INPATH

'/user/hive/warehouse/dig.db/tbm_sf_la/central/hourly_central.csv' INTO TABLE dig.tbm_sf_la_central;

LOAD DATA INPATH '/user/hive/warehouse/dig.db/tbm_sf_la/north/hourly_north.csv' INTO TABLE dig.tbm_sf_la_north;

LOAD DATA INPATH '/user/hive/warehouse/dig.db/tbm_sf_la/south/hourly_south.tsv' INTO TABLE dig.tbm_sf_la_south;

4. Combine all the Data into Single Table

create table tbm_sf_la as select * from dig.tbm_sf_la_central union all select * from dig.tbm_sf_la_north union all select * from dig.tbm sf_la south;

Result

After performing the steps described above, I ran the following queries and they produced the following result sets:

SELECT tbm, COUNT(*) AS num_rows FROM dig.tbm_sf_la GROUP BY tbm ORDER BY tbm;

tbm	num_rows
Bertha II	91619
Diggy McDigface	93163
Shai-Hulud	94237

DESCRIBE dig.tbm_sf_la;

name	type
tbm	string
year	smallint
month	tinyint
day	tinyint
hour	tinyint
dist	decimal(8,2)
lon	decimal(9,6)
lat	decima(9,6)