

Valeriano A. de Oliveira Socorro Rangel Departamento de Matemática Aplicada

antunes@ibilce.unesp.br, socorro@ibilce.unesp.br

AULA 2 Subgrafos, Operações com Grafos

Preparado a partir do texto: Rangel, Socorro. Teoria do Grafos, Notas de aula, IBILCE, Unesp, 2002-2013.

Subgrafos

Definição 1. Um grafo H(V',A') é um subgrafo de um grafo G(V,A) se todos os vértices e todas as arestas de H pertencem a G $(V' \subseteq V, A' \subseteq A)$, e cada aresta de H possui as mesmas extremidades que em G. Denotamos um subgrafo através da mesma notação usada para conjuntos, isto é $H \subset G$.

os seguintes grafos são subgrafos de G:

As seguintes observações podem ser feitas:

- 1. Todo grafo é um subgrafo de si próprio.
- 2. Um subgrafo de um subgrafo de um grafo G também é um subgrafo de G.
- 3. Um vértice de um grafo G é um subgrafo de G.
- 4. Uma aresta de um grafo G é um subgrafo de G.

Definição 3. Dois subgrafos de um grafo G, G_1 e G_2 , são aresta-disjuntos se eles não possuem arestas em comum. Se G_1 e G_2 não possuírem vértices em comum, os dois subgrafos são chamados de vértice-disjuntos.

Exercício: Considere os grafos

 G_5 :

 $\stackrel{\bullet}{C}$

Determine quais são:

- Aresta-disjuntos:
- Vértices-disjuntos:

Operações com grafos

Definição 4. A união de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \cup G_2, \ V_3 = V_1 \cup V_2 \ e \ A_3 = A_1 \cup A_2.$$

Definição 5. A intersecção de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \cap G_2, \ V_3 = V_1 \cap V_2 \ e \ A_3 = A_1 \cap A_2.$$

Observação 6. Se $V_3 = \emptyset$, dizemos que a intersecção entre G_1 e G_2 , $G_1 \cap G_2$, é vazia.

Pelas definições dadas é fácil verificar que as operações de união e intersecção de grafos são comutativas, isto é:

$$G_1 \cup G_2 = G_2 \cup G_1,$$

$$G_1 \cap G_2 = G_2 \cap G_1.$$

Exemplo 7. Determine a união e a intersecção dos grafos dados abaixo:

Definição 8. Um grafo G é dito decomposto em dois sub-grafos G_1 e G_2 se:

$$G_1 \cup G_2 = G$$
 e $G_1 \cap G_2 = g$ rafo nulo.

Ou seja, cada aresta de G pertence a G_1 ou a G_2 . Alguns vértices no entanto podem pertencer aos dois.

Exemplo 9. O grafo G_1 do exemplo anterior é decomposto nos subgrafos G_{1a} e G_{1b} abaixo:

Definição 10. Se a_j é uma aresta de um dado grafo G, então $G - a_j$ é um sub-grafo de G obtido pela remoção da aresta a_j do grafo G.

Se v_i é um vértice de G, então $G - v_i$ é um sub-grafo de G obtido pela remoção do vértice v_i do grafo G.

• A remoção de um vértice implica na remoção das arestas a ele incidentes.

De maneira similar é possível incluir vértices e arestas em um grafo.

$$G_3 = G_1 + G_2, \ V_3 = V_1 \cup V_2 \ e \ A_3 = A_1 \cup A_2 \cup \{(v_i, v_j) : v_i \in V_1, \ v_j \in V_2\}.$$

Definição 12. A soma direta de dois grafos $G_1(V_1, A_1)$ e $G_2(V_2, A_2)$ é um grafo $G_3(V_3, A_3)$ onde:

$$G_3 = G_1 \oplus G_2, \ V_3 = V_1 \cup V_2 \ e \ A_3 = [A_1 \cup A_2] \setminus [A_1 \cap A_2]$$

Exemplo 13. A seguir estão ilustradas algumas das operações definidas.

$$G + (1,4)$$
:

 G_2

 $G_{\mathfrak{l}}$

 $G_1 \cap G_2$

v₅

 $G_1 \oplus G_2$

Definição 14. A fusão de um par de vértices a e b em um Grafo G é feita substituindo os dois vértices por um único vértice \overline{ab} , de tal forma que toda aresta que era incidente no vértice a e/ou no vértice b passa a ser incidente no novo vértice \overline{ab} .

Observação 15. A fusão de vértices em um grafo não altera seu número de arestas, apenas diminui o número de vértices.

Definição 16. A contração de dois vértices a e b é feita através da fusão dos vértices a e b e a remoção dos loops e arestas paralelas que são formadas no processo.

Definição 17. A contração de uma aresta (a,b) é feita removendo-se a aresta (a,b) e fazendo a contração dos vértices a e b. É denotado por $G \setminus (a,b)$.

Exemplo 18. Na figura abaixo temos, à esquerda, um grafo G; no centro, o grafo obtido após a fusão dos vértices 1 e 2; e à direita o grafo obtido após a contração da aresta (1,2).

Subgrafos Operações com grafos

Exercícios: Considere o grafo:

- 1. Remova o vértice 5 deste grafo e acrescente a aresta (2,7).
- 2. Decomponha este grafo em três sub-grafos.
- 3. Contraia a aresta (2,3).