Advanced Ring Theory

Labix

 $March\ 11,\ 2024$

Abstract

• Abstract Alebra by Thomas W. Judson

Contents

1	\mathbf{Div}	ision Rings
	1.1	The Structure of Quaternions
	1.2	The Multiplicative Group of Quaternions
	1.3	3D Rotations using Quaternions
	1.4	Division Rings over Real and Complex Numbers
	1.5	Finite Division Rings
	1.6	Laurent Series
2	Sen	nisimplicity
		Semisimple Modules
	2.2	Radical
	2.3	Artin-Wedderburn Theorem

1 Division Rings

1.1 The Structure of Quaternions

Definition 1.1.1: Quaternions

Define the quaternions as the quotient algebra

$$\mathbb{H} = \frac{\mathbb{R}\langle x_1, x_2, x_3 \rangle}{I}$$

where $I = (x_1^2 + 1, x_2^2 + 1, x_3^2 + 1, x_1x_2x_3 + 1).$

Elements of \mathbb{H} are of the form $a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ for $a, b, c, d \in \mathbb{R}$ and by writing $\mathbf{i} = x_1 + I$, $\mathbf{j} = x_2 + I$ and $\mathbf{k} = x_3 + I$.

A quaternion is said to be real if b = c = d = 0. It is said to be imaginary if a = 0. Denote the set of all imaginary quaternions by \mathbb{H}_0 .

Proposition 1.1.2

The quaternions satisfy the following multiplication table:

	1	i	j	k
1	1	i	j	k
i	i	-1	k	$-\mathbf{j}$
j	j	$-\mathbf{k}$	-1	i
k	k	j	-i	-1

Proof. We only need to consider products that does not involve 1. It clear for t = 1, 2, 3, $x_t^2 + 1 \in I$. This means that $x_t^2 + I = -1 + I$ and thus $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^1 = -1$. Similarly, we have that $x_1x_2x_3 + I = -1 + I$ and thus $\mathbf{ijk} = -1$. Multiplying this expression by $-\mathbf{i}$ on the left gives $\mathbf{jk} = \mathbf{i}$. We can also multiply the expression by $-\mathbf{k}$ on the right to get $\mathbf{ij} = \mathbf{k}$. Now multiply \mathbf{i} to the left of the equation $\mathbf{ij} = \mathbf{k}$ to get $-\mathbf{j} = \mathbf{ik}$. We can also multiply $\mathbf{ij} = \mathbf{k}$ by \mathbf{j} on the right gives $-\mathbf{i} = \mathbf{kj}$. Finally we have $\mathbf{j}(\mathbf{i} = \mathbf{jk}) \implies \mathbf{ji} = -\mathbf{k}$ and $(\mathbf{ji} = -\mathbf{k})(-\mathbf{i}) \implies \mathbf{j} = \mathbf{ki}$.

Proposition 1.1.3

The elements $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ form a basis for the \mathbb{R} -algebra \mathbb{H} .

Proof. It is clear that $1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2, x_3, \ldots$ span \mathbb{H} . By writing x_1, x_2, x_3 each in terms of $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ respectively, we have can see that $1, \mathbf{i}, \mathbf{j}, \mathbf{k}$ span \mathbb{H} . It remains to show that they are linearly independent.

Consider the \mathbb{R} -algebra homomorphism $f: \mathbb{R}\langle x_1, x_2, x_3 \rangle \to M_{2\times 2}(\mathbb{C})$ defined by $f(x_1) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $f(x_2) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $f(x_3) = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. It is clear that $I \subseteq \ker(f)$ since $f(x_1^2+1) = f(x_2^2+1) = f(x_3^2+1) = f(x_1x_2x_3+1) = 0$. By the first and third isomorphism theorem for modules, we have that

$$\frac{\mathbb{H}}{\ker(f)/I} \cong \frac{\mathbb{R}\langle x_1, x_2, x_3 \rangle}{\ker(f)} \cong \operatorname{im}(f)$$

This means that $\dim_{\mathbb{R}}(\mathbb{H}) \geq \dim_{\mathbb{R}}(\operatorname{im}(f))$. Since the matrices $f(x_1), f(x_2), f(x_3)$ and 1 are all linearly independent over \mathbb{R} , we have that $\operatorname{im}(f)$ is at least 4-dimensional. Hence the four spanning elements of \mathbb{H} must be linearly independent.

Proposition 1.1.4

The imaginary quaternions \mathbb{H}_0 form a three dimensional vector subspace of \mathbb{H} . The real quaternions form a subalgebra \mathbb{R} of \mathbb{H} .

We treat the imaginary quaternions \mathbb{H}_0 as the standard 3-space with dot product

$$(b_1\mathbf{i} + c_1\mathbf{j} + d_1\mathbf{k}) \cdot (b_2\mathbf{i} + c_2\mathbf{j} + d_2\mathbf{k}) = b_1b_2 + c_1c_2 + d_1d_2$$

and cross product

$$(b_1 \mathbf{i} + c_1 \mathbf{j} + d_1 \mathbf{k}) \times_c (b_2 \mathbf{i} + c_2 \mathbf{j} + d_2 \mathbf{k}) = (c_1 d_2 - c_2 d_1) \mathbf{i} + (d_1 b_2 - d_2 b_1) \mathbf{j} + (b_1 c_2 - c_2 b_1) \mathbf{k}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ b_1 & c_1 & d_1 \\ b_2 & c_2 & d_2 \end{vmatrix}$$

Proposition 1.1.5

Let $a_1 + \mathbf{h}_1$ and a_2, \mathbf{h}_2 be quaternions such that $a_1, a_2 \in \mathbb{R}$ and $\mathbf{h}_1, \mathbf{h}_2 \in \mathbb{H}_0$. Then

$$(a_1 + \mathbf{h}_1)(a_2 + \mathbf{h}_2) = (a_1 a_2 - \mathbf{h}_1 \cdot \mathbf{h}_2) + (a_1 \mathbf{h}_2 + a_2 \mathbf{h}_1 + \mathbf{h}_1 \times_c \mathbf{h}_2)$$

Definition 1.1.6: Conjugate and Norm

Let $x = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathbb{H}$ be a quaternion. Define the conjugate of x to be

$$x^* = a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}$$

Also define the norm of x to be

$$||x|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

Proposition 1.1.7

Let $x,y\in\mathbb{H}$ be quaternions. The following are true regarding the conjugate and norm of the quaternions:

- $\bullet \ xx^* = ||x||$
- $(xy)^* = y^*x^*$
- ||xy|| = ||x|| ||y||

Proof.

Proposition 1.1.8

 \mathbb{H} is a division ring.

Proof. Let $x \in \mathbb{H}$. By the above proposition, we have that $x\frac{x^*}{\|x\|} = 1$ which means we have found an inverse $\frac{x^*}{\|x\|}$ of x.

1.2 The Multiplicative Group of Quaternions

Definition 1.2.1: The Quaternionic Unitary Group

Define the quaternionic unitary group to be the subgroup

$$U(\mathbb{H}) = \{ x \in \mathbb{H} \mid ||x|| = 1 \}$$

of \mathbb{H}^{\times} .

Proposition 1.2.2

The multiplicative group \mathbb{H}^{\times} is isomorphic to $\mathbb{R}_{+}^{\times} \times U(\mathbb{H})$, where \mathbb{R}_{+}^{\times} is the multiplicative group of non-zero real numbers.

Proof.

Proposition 1.2.3: Quaternionic Euler's Formula

Write a quaternion into the form $q = a + b\mathbf{x} \in \mathbb{H}$ where $a, b \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{H}_0$ is purely imaginary such that $\|\mathbf{x}\| = 1$. Then

$$e^q = e^a(\cos(b) + \mathbf{x}\sin(b))$$

Proposition 1.2.4: Quaternionic De Moivre's Formula

Let $\mathbf{x} \in H_0$ be purely imaginary such that $\|\mathbf{x}\| = 1$. Let $n \in \mathbb{Z}$. Then

$$(\cos(b) + \mathbf{x}\sin(b))^n = \cos(nb) + \mathbf{x}\sin(nb)$$

1.3 3D Rotations using Quaternions

Recall the special orthogonal group in 3-dimensions is the group

$$SO_3(\mathbb{R}) = \{ M \in GL_3(\mathbb{R}) | \det(M) = 1 \}$$

Proposition 1.3.1

Let $M \in SO_3(\mathbb{R})$ be a special orthogonal transformation. Then there exists an orthonormal basis of \mathbb{R}^3 such that the matrix decomposes into the direct sum $(1) \oplus R_{\alpha}$, where $R_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$ is a rotation in \mathbb{R}^2 .

Now we know that every special orthogonal transformation is just a rotation in the plane orthogonal to e_1 . In generality, we write $R_{\mathbf{x}}^{\alpha}$ for the anti-clockwise rotation in angle α in the plane orthogonal to $\mathbf{x} \in \mathbb{R}^3$. We can use the quaternions to write out a formula for applying the special orthogonal transformation to a vector.

Lemma 1.3.2

Let $\mathbf{x} \in \mathbb{H}_0 \cap U(\mathbb{H})$ be an imaginary unit. Let $\theta \in \mathbb{R}$. Then

$$R_{\mathbf{x}}^{2\theta}(\mathbf{w}) = e^{\theta \mathbf{x}} \mathbf{w} e^{-\theta \mathbf{x}}$$

for all $\mathbf{w} \in \mathbb{H}_0$.

This leads tot he fundamental fact behind the theory of spinors in Geometry and Physics.

Theorem 1.3.3

The conjugation action map

$$\phi: U(\mathbb{H}) \to SO(\mathbb{H}_0) \cong SO_3(\mathbb{R})$$

defined by $\phi(x)(\mathbf{z}) = x\mathbf{z}x^{-1}$ for $\mathbf{z} \in \mathbb{H}_0$ and $x \in U(\mathbb{H})$ is a surjective two to one group homomorphism.

1.4 Division Rings over Real and Complex Numbers

Proposition 1.4.1

The only finite dimensional \mathbb{C} -division algebra is \mathbb{C} .

Proof. Let D be a finite dimensional \mathbb{C} -division algebra. Then in particular, $\mathbb{C} \subseteq D$. Suppose that $a \in D$. Then the minimal polynomial $\mu_a(x)$ is an irreducible element of $\mathbb{C}[x]$. By the fundamental theorem of algebra, $\mu_a(x) = x - \alpha$ with $\alpha \in \mathbb{C}$. This means that $a = \alpha \in \mathbb{C}$ and thus $D = \mathbb{C}$.

Proposition 1.4.2

The only odd dimensional \mathbb{R} -division algebra is \mathbb{R} .

Proof. Let D be an \mathbb{R} -division algebra of odd dimension n. Then in particular, $\mathbb{R} \subseteq D$. Let $a \in D$. In linear algebra we know that the \mathbb{R} -linear map $L:D \to D$ defined by L(d)=ad admits a real eigenvalue $\alpha \in D$ and eigenvector v. Then $av=\alpha v$ implies that $(a-\alpha)v=0$. Since D is a division algebra, we have that $a=\alpha \in \mathbb{R}$. Thus $\mathbb{R}=D$.

Theorem 1.4.3: Frobenius Theorem

A finite dimensional division algebra over \mathbb{R} is isomorphic to \mathbb{R} , \mathbb{C} or \mathbb{H} .

Theorem 1.4.4

The only countably generated division algebra over \mathbb{R} up to isomorphism is either \mathbb{R} , \mathbb{C} or \mathbb{H} .

1.5 Finite Division Rings

Lemma 1.5.1

Let R be a division ring. Then Z(R) is a field. Moreover, R is a Z(R)-algebra.

Corollary 1.5.2

Let D be a finite division ring. Then the following statements are true regrading D.

- Z(D) is a finite field \mathbb{F}_{p^n} for some $n \in \mathbb{N} \setminus \{0\}$
- The dimension of D, $m = \dim_{Z(D)} D$ over Z(D) is finite
- $|D| = p^{nm}$

Lemma 1.5.3

Let R be a division ring and $x \in R$. Then $C_R(x)$ is a division ring and a Z(R)-subalgebra.

Proposition 1.5.4

Let D be a finite division ring of dimension m over its center $Z(D) = \mathbb{F}_q$, where $q = p^n$ for some prime p and $n \in \mathbb{N} \setminus \{0\}$. Then there exists positive integers d_1, \ldots, d_k such that $d_i | m$, $d_i < m$ and

$$q^{m} = q + \sum_{i=1}^{k} \frac{q^{m} - 1}{q^{d_{i}} - 1}$$

Theorem 1.5.5: Little Wedderburn's Theorem

A finite division ring is a field.

1.6 Laurent Series

Definition 1.6.1: Laurent Series

Let R be a ring. A Laurent series in variable x with coefficients in a ring R is an expression of the form

$$\sum_{n=m}^{\infty} a_n x^n$$

for $m \in \mathbb{Z}$ and $a_n \in R$. Denote the set of Laurent series in x by

Lemma 1.6.2

Let R be a ring. Then R((x)) is also a ring. If R is a field, then R((x)) is also a field.

Lemma 1.6.3

The center of $\mathbb{H}((x))$ is precisely $\mathbb{R}((x))$.

2 Semisimplicity

2.1 Semisimple Modules

Definition 2.1.1: Semisimple Modules

A left R-module M is semisimple if M is a direct sum of simple modules.

Definition 2.1.2: Socle of a Module

Denote $\mathcal{SM}(M) = \{S \leq M | S \text{ is simple}\}$. A socle of a left R-module M is a submodule

$$\operatorname{soc}(M) = \sum_{S \in \mathcal{SM}(M)} S$$

Lemma 2.1.3

A module M is semisimple if and only if soc(M) = M.

Corollary 2.1.4

A quotient module of a semisimple module is semisimple.

Definition 2.1.5: Completely Reducible Modules

Let M be an R-module. M is said to be completely reducible if for every submodule N of M, there exists a submodule L of M such that $M = N \oplus L$.

Proposition 2.1.6

Let M be an R-module such that $M = N \oplus L$. Then there is an isomorphism

$$L\cong \frac{M}{N}$$

of R-modules.

Lemma 2.1.7

A submodule of a completely reducible module is reducible.

Lemma 2.1.8

A non-zero completely reducible module contains a simple submodule.

Theorem 2.1.9

Let M be an R-module. Then M is semisimple if and only if M is completely reducible.

Corollary 2.1.10

A submodule of a semisimple module is semisimple.

2.2 Peirce Decomposition for Modules

Definition 2.2.1: Idempotents

Let M be a module. We say that $e \in M$ is an idempotent if $e^2 = e$.

Proposition 2.2.2

Let M be an R-module. Then there is a bijection between the set of all finite direct sum decompositions $M = \bigoplus_{i=1}^n M_i$ with all $M_i \neq 0$ and the set of all full orthogonal system of idempotents in $S = \operatorname{End}_R(M)$.

Note that in particular, we can also take M to just be R to get a decomposition on idempotents by ideals of R. This means that for $\{e_1, \ldots, e_n\}$ a full orthogonal system of idempotents, we have a decomposition

$$R = Re_1 \oplus \cdots \oplus Re_n$$

Theorem 2.2.3: Peirce Decompositions

A full system of orthogonal idempotents in R gives a direct sum decomposition of R and M into \mathbb{Z} -modules that can be written in matrix forms

$$R = \bigoplus_{i,j=1}^{n} e_i Re_j = \begin{pmatrix} e_1 Re_1 & \cdots & e_1 Re_n \\ \vdots & \ddots & \vdots \\ e_n Re_1 & \cdots & e_n Re_n \end{pmatrix}$$

and

$$M = \bigoplus_{i=1}^{n} e_i M = \begin{pmatrix} e_1 M \\ \vdots \\ e_n M \end{pmatrix}$$

2.3 Radical

Definition 2.3.1: Cosimple

Let M be an R-module. We say that a submodule N of M is cosimple if $\frac{M}{N}$ is simple.

Lemma 2.3.2

Let M be an R-module and N a submodule of M. Then N is cosimple if and only if N is a maximal proper submodule of M.

Definition 2.3.3: Radical

Let M be an R-module. Define the radical of M to be the intersection

$$rad(M) = \bigcap_{\substack{S \le M \\ S \text{ is cosimple}}} S$$

of all cosimple submodules of M.

Lemma 2.3.4

Let M be an R-module. If M is semisimple, then rad(M) = 0.

2.4 Artin-Wedderburn Theorem

Definition 2.4.1

A left R-module M is said to be Artinian if for every descending chain of submodules

$$N_1 \supseteq N_2 \supseteq \cdots \supseteq N_n \supseteq \cdots$$

there exists $m \in \mathbb{N}$ such that $N_n = N_m$ for all n > m.

Theorem 2.4.2

Let M be an Artinian left R-module. Then M is semisimple if and only if rad(M) = 0.

Theorem 2.4.3: Artin-Wedderburn Theorem

Let R be a ring. Then the following are equivalent characterizations of semisimplicity.

- Every left R-module is semisimple
- \bullet The regular left R-module is semisimple
- There exists $n_1, \ldots, n_k \in \mathbb{N}$ and division rings D_1, \ldots, D_k such that R is isomorphic to the direct product $\prod_{i=1}^k M_{n_i}(D_i)$

 \square

Corollary 2.4.4

A ring is left semisimple if and only if it is right semisimple.

Proposition 2.4.5

The following are true regarding semisimple algebras over fields.

• A semisimple C-algebra of at most countable dimension is isomorphic to

$$\prod_{i=1}^k M_{k_i}(\mathbb{C})$$

ullet A semisimple \mathbb{R} -algebra of at most countable dimension is isomorphic to

$$\prod_{i=1}^{k} M_{k_i}(\mathbb{R}) \times \prod_{i=1}^{n} M_{n_i}(\mathbb{C}) \times \prod_{i=1}^{t} M_{t_i}(\mathbb{H})$$

$$\prod_{i=1}^k M_{k_i}(\mathbb{F}_q^{t(i)})$$