

Hackpack Anthology Volume II V.0.1

Contents

Hackpack Anthology	1
Computer Science Skills competencies checklist	
Hack 1: Around the world with Python by @ncscomputing world code by @damienmoney	8
Hack 2: 'Gui Zero Tweeting Minecraft Selfie Machine'	13
by Many including mostly Ferran Febregas, Martin O'Hanlon bits on top by @ncscomputing	13

Computer Science Skills competencies checklist

Syntax	
checklist(Reproduced with his kind permission :))	
Based on NC and @Craigarghs brilliant Python programming with Minecraft book	

Variables	Changing Variables
Data types	Statements
Integers	Whitespace and Tabs
	Single-line comments
Floats	Multi-line Comments
Boolean	

Maths Operations

Expressions and statements	Exponentials
Maths operators	Modulo
Addition	Operator order
Subtraction	Interchanging variables and values
Multiplication	Short hand operators
Division	

String and console output

Strings	Placeholders	

Substrings	Console Input	
String functions	Date and Time	
-len()		
-lower()		
-upper()		
-str()		
Print		
Concatenation		

Comparators and Control Flow

Comparators including:	Greater than or equal to (>=)
-Equal to (==)	Boolean Operators
-Not equal to (!=)	If statements
-Less than(<)	Else statements
-Less than or equal to (<=)	Elif statements
-Greater than (>)	

Functions

Creating and Calling Functions	Built in functions including:
Returning a value	-max
Arguments	-min
Modules	-abs
Importing modules	-type

<u>Lists and Dictionaries</u>

Creating lists	Removing items
Accessing index positions	For loop
Adding items	Sorting a list
List length	Combining lists
Slicing	Defining a dictionary
Searching a list	Changing / adding items in a dictionary
Inserting an item	Deleting items in a dictionary

Functions and Lists

Lists as arguments	Splitting a string into a list	
Modifying ever list item	Multi-dimension lists	

Range Function	Joining two lists	
Converting a list into a string	Undefined number of lists	
Loops		
While Loops	Strings as lists	
Boolean Operators with While Loops	Looping dictionaries	
Infinite Loops	Indexes and for loops	
Break	Zipping two lists	
While/else	For /else loops	
For Loops	For / else break	

File Input and Output

Opening a file	Reading a line	
Writing and closing a file	Automatically closing a file	
Reading a file	Closed attribute	

Classes and Object Orientated Programming

Creating classes	Creating objects	

U <u>-init-()</u>	Accessing attributes
Arguments	Class scope
Creating methods	Overiding methods and attributes
Multiple objects	Referencing superclass methods in a subclass
Inheritance	

Programmer competencies

Reusing code	Working in team
Decomposing a problem	Sharing knowledge
Problem solving	Testing
Persevering when a program doesn't work	Peer review and constructive feedback
Systems thinking understanding how parts of a program relate to each other	Chosing the correct technology for the solution.
Communication with others	Requirements analysis (understanding and prioritising the different needs of the system)

Hack 1: Around the world with Python by @ncscomputing world code by @damienmoney

Acknowledgements

For the project we use a couple of tools that we want to reference and whose authors we want to give credit to.

Damian Mooney created the script which we will use to draw and create the world map. This is used in his ISS Minecraft real time tracker project which you can see here.

Also want to thank the <u>author</u> of the raspi2png software I used to capture the screenshots. I followed the tutorial created by Martin O'Hanlon, is available <u>here</u> you can also use <u>this guide</u> from Les Pounder.

Building the project

The text here was written by the Kano Blog author (David Ortiz) who used the tutorial I sent in. You can access here: https://kano.me/blog/tour-the-world-with-minecraft-and-python/

Here's the list of steps you need to follow to make it happen:

- Create a folder on your desktop to store the files. We will call it "Around the world in Minecraft" for example.
- Download the world map data file from here. This file contains the blueprint for the Minecraft map. This will automagically create a world map in Minecraft so we can focus on the fun bit of travelling around it.

Save it to the folder you created above. Now you need to download Damien's python script which
draws the world based on the blueprint downloaded in the previous step. For this project I have very
slightly tweaked it so the link is from my Github repository here.

Now we have the map blueprint and a script that actually paints it on Minecraft. Looking good so far. Next step is to create a script to teleport Steve and control his position. Open up the Python shell. Create a new document and type in the following code: Complete Code: "Written by: @ncscomputing /@warksraspijam" from mcpi import minecraft as minecraft from mcpi import block as block from datetime import datetime import time import random import BuildWorldDM as bw WoolList [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] EngX = 1.0EngZ = 50.0UsaX = 53.8UsaZ = 39.7CanadaX = 59.0CanadaZ = 61.3IceLandX = 10.0IceLandZ = 61.1 mc = minecraft.Minecraft.create() bw.**Build**() time.sleep(9)

```
def Teleport(x,z,Country):
    mc.player.setPos(x,20,z)
    mc.camera.setFollow()
    mc.setBlock(x,1,z,35,random.choice(WoolList))
    mc.postToChat(Country)

while True
    Teleport(EngX,EngZ,"England")
    time.sleep(8)
    Teleport(UsaX,UsaZ,"USA")
    time.sleep(8)
    Teleport(CanadaX,CanadaZ,"Canada")
    time.sleep(8)
    Teleport(IceLandX,IceLandZ,"Iceland")
    time.sleep(8)
    Teleport(IceLandX,IceLandZ,"Iceland")
    time.sleep(8)
```

- Now you have created your code you will need to save it.
- Open up Minecraft and create a new world and press f5 to work through any errors.
- Your program should now be teleporting around the 4 countries ③

Explanation of the code

The code first imports the required libraries into the system. Is essential that you import Damien's python script with the correct name of the file. E.g. If the file name is BuildWorldDM.py you would import BuildWorldDM

from mcpi import minecraft as minecraft
from mcpi import block as block

from datetime import datetime

import time

import random

import BuildWorldDM as bw

After that variables are created. They are the latitude and longitude coordinates of the following countries USA, Eng land, Iceland and Canada, that we use as Minecraft X and Z axis positions.

The list is used to store the different colours of wool. You could use random.randint() function but that is just personal preference.

WoolList = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

EngX = 1.0

EngZ = 50.0

UsaX = 53.8

UsaZ = 39.7

CanadaX = 59.0

CanadaZ = 61.3

IceLandX = 10.0

IceLandZ = 61.1

12345678910111213

After that, we connect to the game so that we can manipulate it. The build world library function 'build' is called which builds the map of the world. A delay of 9 seconds is added to give the Pi enough time to build the world

A function called 'Teleport' is created that allows us to efficiently move the player and drop a coloured block on that country and then send the new country name as a message to the chat.

mc = minecraft.Minecraft.create()

bw.**Build**()

time.sleep(9)

def **Teleport**(x,z,Country):

mc.player.setPos(x,20,z)
mc.camera.setFollow()
mc.setBlock(x,1, z,35,random.choice(WoolList))
mc.postToChat(Country)

1234567891011

And to finalize, we start a permanent loop. This allows the program to run until you kill the python script.

The function Teleport is reused for each country name and X and X coordinates passed through as parameters.

while True:

Teleport(EngX,EngZ,"England")

time.sleep(8)

Teleport(UsaX,UsaZ,"USA")

time.sleep(8)

Teleport(CanadaX,CanadaZ,"Canada")

time.sleep(8)

Teleport(IceLandX,IceLandZ,"Iceland")

time.sleep(8)

Hack 2: 'Gui Zero Tweeting Minecraft Selfie Machine'

by Many including mostly Ferran Febregas, Martin O'Hanlon bits on top by @ncscomputing Picture of what happens

Code

- # Martin O'Hanlon
- # www.stuffaboutcode.com
- # Minecraft Selfie Camera

```
# Minecraft Picture Rendering Script By Ferran Fabregas (ferri.fc@gmail.com)
from guizero import *
import subprocess
import picamera
from PIL import Image
import math
from mcpi.minecraft import Minecraft
from time import sleep, time
mc=Minecraft.create()
import sys
from twython import Twython
#once you have created your own Twitter app put in your info below
consumer_key = "
consumer_secret = "
access_token = "
access_token_secret = "
api = Twython(consumer_key,consumer_secret,access_token,access_token_secret)
def Tweet():
  pos = mc.player.getTilePos()
  block = mc.getBlock(pos.x,pos.y,pos.z)
  mc.postToChat("@warksraspijam is building a tweeting selfie
machine for CPC:)")
  msg = "LMF CPC tweeting selfie test 1 "
  a=subprocess.check_output('./raspi2png -d 3 -p
"myscreenshot.png",shell=True)
  photo = open('myscreenshot.png', 'rb')
  response = api.upload_media(media=photo)
  api.update_status(status = msg, media_ids=[response['media_id']])
def takePicture(filename):
  with picamera.PiCamera() as camera:
    camera.start_preview(alpha=192)
    sleep(1)
    camera.capture(filename)
    camera.stop_preview()
def colormap(pixel):
  white=(221,221,221)
  orange=(219,125,62)
  magenta=(179,80,188)
```

```
lightblue=(107,138,201)
  yellow=(177,166,39)
  lime=(65,174,56)
  pink=(208,132,153)
  gray=(64,64,64)
  lightgray=(154,161,161)
  cyan=(46,110,137)
  purple=(126,61,181)
  blue=(46,56,141)
  brown=(79,50,31)
  green=(53,70,27)
  red=(150,52,48)
  black=(25,22,22)
  colors=(white,orange,magenta,lightblue,yellow,lime,pink,gray,lightgray,cyan,purple,blue,brown,green,red,black)
  thecolor=0
  finalresult=256*256*256
  for idx,color in enumerate(colors):
     result=math.fabs(color[0]-pixel[0])+math.fabs(color[1]-pixel[1])+math.fabs(color[2]-pixel[2])
    if result<finalresult:
       finalresult=result
       thecolor=idx
  return thecolor
def buildMCImage(mc, filename, pos):
  MAXY = 60
  im = Image.open(filename)
  #resize image file
  if im.size[1] > MAXY:
     ratio = MAXY / float(im.size[1])
     sizeY = MAXY
    sizeX = int(im.size[0] * ratio)
    size = sizeX, sizeY
    im.thumbnail(size, Image.ANTIALIAS)
  pixels=im.load()
  for x in range (-int(im.size[0]/2),int(im.size[0]/2)):
    for y in range (0,(im.size[1])):
       mc.setBlock(pos.x + x, pos.y + sizeY - y, pos.z - 1, 35,
               colormap(pixels[x+(im.size[0]/2), y]))
       #print "{}.{}.{}".format(x, y, 5)
       sleep(0.005)
def BuildAndSave():
  #mc=Minecraft.create()
```

```
filename = "/home/pi/" + str(int(time())) + ".png"
  mc.postToChat("Taking picture in 1 second")
  sleep(1)
  takePicture(filename)
  mc.postToChat("Building image")
  pos=mc.player.getTilePos()
  pos.x = pos.x-30
  #start in front of you
  buildMCImage(mc, filename, pos)
  mc.postToChat("Image built")
 # break
  sleep(0.1)
app = App()
buttonBuildImage = PushButton(app,BuildAndSave,text="Build Selfie")
buttonTweetImage = PushButton(app,Tweet,text="Tweet it :)")
app.display()
```