Desátá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK)

Zimní semestr 2024

Desátá přednáška

Program

- unifikace, unifikační algoritmus
- rezoluční pravidlo, rezoluční důkaz
- korektnost rezoluce
- lifting lemma a úplnost rezoluce

Materiály

Zápisky z přednášky, Sekce 8.4-8.6 z Kapitoly 8

8.4 Unifikace

Příklady substitucí

Místo všech základních použijeme 'vhodné' substituce (unifikace):

- 1. $\{P(x), Q(x, a)\}\ a\ \{\neg P(y), \neg Q(b, y)\}$
 - substitucí $\{x/b, y/a\}$ získáme $\{P(b), Q(b, a)\}$ a $\{\neg P(a), \neg Q(b, a)\}$, z nich rezolucí $\{P(b), \neg P(a)\}$
 - nebo $\{x/y\}$ a rezolucí přes P(y) máme $\{Q(y,a), \neg Q(b,y)\}$
 - šlo by např. $\{x/a\}$, získat $\{Q(a,a), \neg Q(b,a)\}$, ale to je horší
- 2. $\{P(x), Q(x, z)\}\$ a $\{\neg P(y), \neg Q(f(y), y)\}\$
 - Ize použít $\{x/f(a), y/a, z/a\}$, získat $\{P(f(a)), Q(f(a), a)\}$ a $\{\neg P(a), \neg Q(f(a), a)\}$, rezolucí $\{P(f(a)), \neg P(a)\}$
 - lepší je $\{x/f(z), y/z\}$, dává $\{P(f(z)), Q(f(z), z)\}$ a $\{\neg P(z), \neg Q(f(z), z)\}$, rezolventu $\{P(f(z)), \neg P(z)\}$
 - proč lepší? obecnější, rezolventa 'říká více': $\{P(f(a)), \neg P(a)\}$ je důsledkem $\{P(f(z)), \neg P(z)\}$, ale nejsou ekvivalentní
 - $\{x/f(a), y/a, z/a\}$ získáme složením $\{x/f(z), y/z\}$ a $\{z/a\}$

Substituce formálně

- substituce je konečná množina $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, kde x_i jsou navzájem různé proměnné, t_i jsou termy, t_i není x_i
 - základní: všechny termy t_i jsou konstantní
 - přejmenování proměnných: vš. t_i navzájem různé proměnné
- výraz je term nebo literál (atomická formule nebo její negace)
- instance výrazu E při substituci $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, $E\sigma$: simultánně nahradíme všechny výskyty x_i za termy t_i
- pro množinu výrazů S je $S\sigma = \{E\sigma \mid E \in S\}$
- ullet simultánně proto, aby výskyt x_i v termu t_j nevedl ke zřetězení
- např. $S = \{P(x), R(y, z)\}, \ \sigma = \{x/f(y, z), y/x, z/c\}$

$$S\sigma = \{P(f(y,z)), R(x,c)\}$$

Skládání substitucí

- substituce lze skládat, σau znamená nejprve σ a potom au
- chceme, aby platilo $E(\sigma\tau) = (E\sigma)\tau$, pro libovolný výraz E
- např. pro výraz E = P(x, w, u) a substituce

$$\sigma = \{x/f(y), w/v\} \qquad \tau = \{x/a, y/g(x), v/w, u/c\}$$
 máme $E\sigma = P(f(y), v, u)$ a $(E\sigma)\tau = P(f(g(x)), w, c)$, takže:
$$\sigma\tau = \{x/f(g(x)), y/g(x), v/w, u/c\}$$

- skládání není komutativní, $\sigma \tau$ je (typicky) jiná než $\tau \sigma$, zde

$$\tau\sigma = \{x/a, y/g(f(y)), u/c, w/v\}$$

- ale je asociativní (takže nemusíme psát závorky v $\sigma_1\sigma_2\cdots\sigma_n$)

Buď
$$\sigma = \{x_1/t_1, \ldots, x_n/t_n\}$$
 a $\tau = \{y_1/s_1, \ldots, y_m/s_m\}$, označme $X = \{x_1, \ldots, x_n\}$ a $Y = \{y_1, \ldots, y_m\}$. Složení σ a τ je substituce
$$\sigma\tau = \{x_i/t_i\tau \mid x_i \in X, x_i \neq t_i\tau\} \cup \{y_j/s_j \mid y_j \in Y \setminus X\}$$

Vlastnosti skládání

Tvrzení: Pro libovolné substituce σ , τ , ϱ a výraz E platí:

(i)
$$(E\sigma)\tau = E(\sigma\tau)$$
 (ii) $(\sigma\tau)\varrho = \sigma(\tau\varrho)$

Důkaz: (i) Buď $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ a $\tau = \{y_1/s_1, \dots, y_m/s_m\}$. Stačí pro E proměnnou (substituce nemění ostatní symboly):

- pro $E = x_i$ je $E\sigma = t_i$ a $(E\sigma)\tau = t_i\tau = E(\sigma\tau)$
- pro $E=y_j\notin X$ je $E\sigma=E$ a $(E\sigma)\tau=E\tau=s_j=E(\sigma\tau)$
- je-li E jiná proměnná, potom $(E\sigma)\tau=E=E(\sigma\tau)$.
- (i) opakovaným užitím (i) máme pro lib. výraz, tedy i proměnnou:

$$E((\sigma\tau)\varrho) = (E(\sigma\tau))\varrho = ((E\sigma)\tau)\varrho = (E\sigma)(\tau\varrho) = E(\sigma(\tau\varrho))$$

Z toho plyne, že $(\sigma\tau)\varrho$ a $\sigma(\tau\varrho)$ jsou touž substitucí.

(Podrobněji, zřejmě platí: $\pi = \{z_1/v_1, \dots, z_k/v_k\}$ právě když $z_i\pi = v_i$ a $E\pi = E$ je-li E proměnná různá od všech z_i .)

Unifikace

- unifikace pro $S = \{E_1, \dots, E_n\}$ je substituce σ taková, že $E_1 \sigma = E_2 \sigma = \dots = E_n \sigma$, tj. $S \sigma$ obsahuje jediný výraz
- pokud má S unifikaci, je unifikovatelná
- unifikace pro S je nejobecnější, pokud pro každou unifikaci au pro S existuje substituce λ taková, že $au = \sigma \lambda$

NB: různé nejobecnějších unifikace pro S se liší jen přejmenováním proměnných

Např. pro
$$S = \{P(f(x), y), P(f(a), w)\}$$

- $\sigma = \{x/a, y/w\}$ je nejobecnější unifikace
- $\tau = \{x/a, y/b, w/b\}$ je unifikace, ale není nejobecnější, nelze z ní získat např. unifikaci $\varrho = \{x/a, y/c, w/c\}$
- z nejobecnější unifikace σ získáme $\tau=\sigma\lambda$ pro $\lambda=\{w/b\}$

Unifikační algoritmus

- postupně od začátku výrazů aplikuje substituce
- buď p nejlevější pozice, na které se nějaké dva výrazy z S liší
- D(S) je množina všech podvýrazů začínajících na pozici p
- $S = \{P(x, y), P(f(x), z), P(z, f(x))\}, p = 3, D(S) = \{x, f(x), z\}$

vstup: konečná množina výrazů $S \neq \emptyset$ výstup: nejobecnější unifikace σ nebo info, že není unifikovatelná

- (0) nastav $S_0 := S$, $\sigma_0 := \emptyset$, k := 0
- (1) pokud $|S_k| = 1$, vrať $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$
- (2) zjisti, zda je v $D(S_k)$ proměnná x a term t neobsahující x
- (3) pokud ano, nastav $\sigma_{k+1} := \{x/t\}$, $S_{k+1} := S_k \sigma_{k+1}$, k := k+1, a jdi na (1)
- (4) pokud ne, odpověz, že S není unifikovatelná

NB: hledání x a t v kroku (2) je relativně výpočetně náročné

Ukázkový běh

```
S = S_0 = \{P(f(y, g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), y)\}
(k = 0) |S_0| > 1, D(S_0) = \{y, h(w), h(b)\}, proměnná y není v
h(w), nastavíme \sigma_1 := \{y/h(w)\}\ a S_1 = S_0\sigma_1
S_1 = \{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}
(k = 1) D(S_1) = \{w, b\}, \sigma_2 = \{w/b\}, S_2 = S_1\sigma_2
S_2 = \{P(f(h(b), g(z)), h(b)), P(f(h(b), g(a)), t)\}
(k = 2) D(S_2) = \{z, a\}, \sigma_3 = \{z/a\}, S_3 = S_2\sigma_3
S_3 = \{P(f(h(b), g(a)), h(b)), P(f(h(b), g(a)), t)\}
(k = 3) D(S_3) = \{h(b), t\}, \sigma_4 = \{t/h(b)\}, S_4 = S_3\sigma_4
S_4 = \{P(f(h(b), g(a)), h(b))\}
(k=4) |S_4| = 1, nejobecnější unifikace pro S je \sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_4 =
\{y/h(w)\}\{w/b\}\{z/a\}\{t/h(b)\} = \{y/h(b), w/b, z/a, t/h(b)\}
```

Důkaz korektnosti

Tvrzení: Unifikační algoritmus je korektní. Pro sestrojenou σ navíc platí, že je-li τ libovolná unifikace, potom $\tau = \sigma \tau$.

Důkaz: Algoritmus vždy skončí, neboť v každém kroku eliminuje proměnnou. Skončí-li neúspěchem, nelze unifikovat S_k , tedy ani S.

Odpoví-li $\sigma=\sigma_0\sigma_1\cdots\sigma_k$, zjevně jde o unifikaci. Zbývá dokázat, že je nejobecnější, k tomu stačí dokázat vlastnost 'navíc': Buď τ lib. unifikace pro S. Indukcí pro $0\leq i\leq k$ ukážeme $\tau=\sigma_0\sigma_1\cdots\sigma_i\tau$

(báze indukce) Pro i=0 je $\sigma_0=\emptyset$, $\tau=\sigma_0\tau$ tedy platí triviálně.

(indukční krok) Buď $\sigma_{i+1} = \{x/t\}$. Ukažme, že pro lib. proměnnou platí: $u\sigma_{i+1}\tau = u\tau$ Z toho okamžitě plyne i $\tau = \sigma_0\sigma_1\cdots\sigma_i\sigma_{i+1}\tau$.

Pro $u \neq x$ je $u\sigma_{i+1} = u$, tedy i $u\sigma_{i+1}\tau = u\tau$. Je-li u = x, máme $u\sigma_{i+1} = x\sigma_{i+1} = t$. Protože τ unifikuje $S_i = S\sigma_0\sigma_1\cdots\sigma_i$ a $x,t\in D(S_i)$, τ unifikuje i x a t, tzn. $t\tau = x\tau$, tj. $u\sigma_{i+1}\tau = u\tau$. \square

8.5 Rezoluční metoda

Příklad rezolučního kroku

Chceme-li ukázat $T \models \varphi$, skolemizací najdeme CNF formuli S ekvisplnitelnou s $T \cup \{\neg \varphi\}$. Stačí najít rezoluční zamítnutí S.

Jediným podstatným rozdílem bude rezoluční pravidlo.

Rezolventou dvojice klauzulí bude klauzule, kterou lze odvodit aplikací (nejobecnější) unifikace. Nejprve příklad:

$$C_1 = \{P(x), Q(x, y), Q(x, f(z))\}, C_2 = \{\neg P(u), \neg Q(f(u), u)\}$$

Vyberme z C_1 oba pozitivní literály začínající Q, z C_2 negativní.

$$S = \{Q(x,y), Q(x,f(z)), Q(f(u),u)\}$$
 lze unifikovat pomocí nejobecnější unifikace $\sigma = \{x/f(f(z)), y/f(z), u/f(z)\}$

- $C_1 \sigma = \{ P(f(f(z))), Q(f(f(z)), f(z)) \}$
- $C_2\sigma = {\neg P(f(z)), \neg Q(f(f(z)), f(z))}$

z nich odvodíme rezolventu $C = \{P(f(f(z))), \neg P(f(z))\}$

Rezoluční pravidlo

Mějme klauzule C_1 a C_2 s disjunktními množinami proměnných tvaru

$$C_1 = C_1' \sqcup \{A_1, \dots, A_n\}, \quad C_2 = C_2' \sqcup \{\neg B_1, \dots, \neg B_m\}$$

kde $n,m\geq 1$ a $S=\{A_1,\ldots,A_n,B_1,\ldots,B_m\}$ lze unifikovat. Buď σ nejobecnější unifikace S. Rezolventa C_1 a C_2 je potom klauzule

$$C = C_1' \sigma \cup C_2' \sigma$$

- Disjunktní množ. proměnných získáme přejmenováním. Proč? Z $\{\{P(x)\}, \{\neg P(f(x))\}\}$ odvodíme \square , nahradíme-li $\{P(x)\}$ klauzulí $\{P(y)\}$. Ale $S = \{P(x), P(f(x))\}$ není unifikovatelná.
- Proč potřebujeme z klauzule odstranit více literálů najednou? $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\}\$ je zamítnutelná, ale nemá zamítnutí, které by v každém kroku odstranilo jen jeden.

Rezoluční důkaz

Rezoluční důkaz (odvození) klauzule C z formule S je konečná posloupnost klauzulí $C_0, C_1, \ldots, C_n = C$ taková, že pro každé i je buď

- $C_i = C_i' \sigma$ pro nějakou $C_i' \in S$ a přejmenování proměnných σ
- nebo C_i je rezolventou nějakých C_j , C_k kde j < i a k < i.

Existuje-li, je C rezolucí dokazatelná z S, $S \vdash_R C$. (Rezoluční) zamítnutí S je rez. důkaz \square z S, potom je S (rezolucí) zamítnutelná.

Příklad

$$S = \{ \{ \neg P(x, y), \neg P(y, z), P(x, z) \}, \{ \neg P(x, x) \}, \{ \neg P(x, y), P(y, x) \}, \{ P(x, f(x)) \} \}$$

rezoluční zamítnutí:

$$\{\neg P(x,y), \neg P(y,z), P(x,z)\}, \{P(x',f(x'))\}, \{\neg P(f(x),z), P(x,z)\}, \{\neg P(x,y), P(y,x)\}, \{P(f(x'),x')\}, \{P(x,x)\}, \{P(x',x')\}, \Box$$

rezoluční strom:

$$\{\neg P(x,y), \neg P(y,z), P(x,z)\} \qquad \{P(x',f(x'))\} \qquad \{\neg P(x,y), P(y,x)\} \qquad \{P(x',f(x'))\}$$

$$y/f(x'), x'/x \quad \{\neg P(f(x),z), P(x,z)\} \qquad \{P(f(x'),x')\} \qquad x/x', y/f(x')$$

$$z/x, x'/x \quad \{P(x,x)\} \qquad \{\neg P(x',x')\}$$

x'/x

8.6 Korektnost a úplnost

Korektnost rezolučního kroku

Tvrzení: Mějme klauzule C_1 , C_2 a jejich rezolventu C. Platí-li v nějaké struktuře A klauzule C_1 a C_2 , potom v ní platí i C.

Důkaz: Buď $C_1=C_1'\sqcup\{A_1,\ldots,A_n\}$, $C_2=C_2'\sqcup\{\neg B_1,\ldots,\neg B_m\}$, a $C=C_1'\sigma\cup C_2'\sigma$, kde $S\sigma=\{A_1\sigma\}$ (a σ je nejobecnější). Klauzule jsou otevřené formule, proto platí i jejich instance:

$$\mathcal{A} \models C_1 \sigma$$
 a $\mathcal{A} \models C_2 \sigma$

Po aplikaci unifikace máme:

$$C_1 \sigma = C_1' \sigma \cup \{A_1 \sigma\}$$

$$C_2 \sigma = C_2' \sigma \cup \{\neg A_1 \sigma\}$$

Chceme ukázat, že $A \models C[e]$ pro lib. ohodnocení e.

- Je-li $\mathcal{A} \models A_1\sigma[e]$, potom $\mathcal{A} \not\models \neg A_1\sigma[e]$ a musí $\mathcal{A} \models C_2'\sigma[e]$. Tedy i $\mathcal{A} \models C[e]$.
- Je-li $\mathcal{A} \not\models A_1 \sigma[e]$, musí být $\mathcal{A} \models C_1' \sigma[e]$ a opět $\mathcal{A} \models C[e]$. \square

Korektnost rezoluce

Věta (O korektnosti rezoluce): Pokud je CNF formule *S* rezolucí zamítnutelná, potom je nesplnitelná.

Důkaz: Víme, že $S \models_R \square$, vezměme tedy nějaký rezoluční důkaz \square z S. Kdyby existoval model $\mathcal{A} \models S$, díky korektnosti rezolučního pravidla bychom dokázali (indukcí podle délky důkazu) i $\mathcal{A} \models \square$, což ale není možné. \square

Lifting lemma

úplnost rezoluce dokážeme převedením na případ výrokové logiky: rezoluční důkaz 'na úrovni VL' je možné 'zvednout' na úroveň PL

Lifting lemma: Buďte C_1 a C_2 klauzule s disj. množ. proměnných, C_1^* a C_2^* jejich základní instance, C^* rezolventa C_1^* a C_2^* . Potom C_1 a C_2 mají rezolventu C takovou, že C^* je základní instance C. (důkaz na příštím slidu)

Důsledek: Buď S CNF formule a označme S^* množinu všech jejích základních instancí. Pokud $S^* \vdash_R C^*$ pro nějakou základní klauzuli C^* ('na úrovni VL'), potom existuje klauzule C a základní substituce σ taková, že $C^* = C\sigma$ a $S \vdash_R C$ ('na úrovni PL').

Důkaz: Snadno z Lifting lemmatu indukcí dle délky důkazu.

Důkaz Lifting lemmatu

Nechť $C_1^*=C_1\tau_1$ a $C_2^*=C_2\tau_2$, τ_1 a τ_2 zákl. substituce nesdílející žádnou proměnnou. Najdeme rezolventu C, že $C^*=C\tau_1\tau_2$.

Buď C^* rezolventa C_1^* a C_2^* přes literál $P(t_1, \ldots, t_k)$. Víme, že:

$$C_1 = C_1' \sqcup \{A_1, \dots, A_n\}, \text{ kde } \{A_1, \dots, A_n\} \tau_1 = \{P(t_1, \dots, t_k)\}$$

$$C_2 = C_2' \sqcup \{\neg B_1, \dots, \neg B_m\}, \{\neg B_1, \dots, \neg B_m\} \tau_2 = \{\neg P(t_1, \dots, t_k)\}$$

Tedy $(\tau_1\tau_2)$ unifikuje $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$. Buď σ nejob. unifikace pro S z Unifikačního algoritmu. Zvolme $C = C_1'\sigma \cup C_2'\sigma$.

$$C\tau_{1}\tau_{2} = (C'_{1}\sigma \cup C'_{2}\sigma)\tau_{1}\tau_{2} = C'_{1}\sigma\tau_{1}\tau_{2} \cup C'_{2}\sigma\tau_{1}\tau_{2} = C'_{1}\tau_{1}\tau_{2} \cup C'_{2}\tau_{1}\tau_{2}$$

$$= C'_{1}\tau_{1} \cup C'_{2}\tau_{2} = (C_{1} \setminus \{A_{1}, \dots, A_{n}\})\tau_{1} \cup (C_{2} \setminus \{\neg B_{1}, \dots, \neg B_{m}\})\tau_{2}$$

$$= (C_{1}^{*} \setminus \{P(t_{1}, \dots, t_{k})\}) \cup (C_{2}^{*} \setminus \{\neg P(t_{1}, \dots, t_{k})\}) = C^{*}$$

Zde = plyne z vlastnosti 'navíc' Unif. algoritmu $(\tau_1\tau_2) = \sigma(\tau_1\tau_2)$, a = z toho, že jde o základní substituce nesdílející proměnnou.

Úplnost rezoluce

Věta (O úplnosti rezoluce): Je-li CNF formule <i>S</i> nesplnitelná, potom je zamítnutelná rezolucí.
Důkaz: Množina S^* všech základních instancí klauzulí z S je také nesplnitelná (důsledek Herbrandovy věty). Úplnost výrokové rezoluce dává $S^* \vdash_R \square$ ('na úrovni VL').
Z důsledku Lifting lemmatu dostáváme klauzuli C a základní substituci σ takové, že $C\sigma = \square$ a $S \models_R C$ ('na úrovni PL').
Ale protože prázdná klauzule \square je instancí C , musí být $C = \square$. Tím jsme našli rezoluční zamítnutí $S \models_R \square$. \square