Table des matières

1	\mathbf{Intr}	oduction aux distributions	3
	1.1	Introduction heuristique	3
	1.2	L'espace de fonctions tests \mathcal{D}	3
		1.2.1 Convergence dans $\mathcal{D}(\Omega)$	6
	1.3	L'espace des distributions	6
		1.3.1 Comment montrer qu'une forme linéaire sur $\mathcal{D}(\Omega)$ est une distribution ?	7
		1.3.2 Types de distributions	7
	1.4	Convergence faible	9
		1.4.1 Approximation de δ par des distributions régulières	10
		1.4.2 Support d'une distribution	12
		1.4.3 Multiplication des distributions	12
	1.5	Changement de variable affine	13
		1.5.1 Translation	13
		1.5.2 Homothétie	13
	1.6	Dérivées d'une distribution	14
		1.6.1 Dérivation d'une fonction discontinue	15
	1.7	Équations différentielles	16
	1.8	Distributions tempérées	17
		1.8.1 L'espace de Schwartz	17
		1.8.2 Comment montrer qu'une distribution est tempérée ?	18
		1.8.3 Multiplication dans $\mathcal{S}'(\mathbb{R})$	19
	1.0	Distributions dans \mathbb{R}^n	10

Introduction aux distributions

Chapitre 1

Introduction aux distributions

Les distributions sont des outils mathématiques utilisés pour représenter des phénomènes physiques que les fonctions classiques s'avèrent incapables de transcrire.

La théorie des distributions a été formalisée par L. Schwartz dans les années 50, après des idées de Heaviside à la fin du dix-neuvième siècle, mais aussi Hadamard, Leray, Poincaré et Sobolev au début du vingtième siècle. Il s'agit de généraliser la notion de fonction et d'étendre la notion de dérivée à toute fonction localement intégrable.

Dans toute la suite de ce chapitre, Ω sera un intervalle ouvert de \mathbb{R} .

1.1 Introduction heuristique

Les physiciens et ingénieurs ont travaillé avec une fonction δ nulle partout sauf en 0 (où elle vaut $+\infty$) de telle sorte que $\int \delta(x)dx = 1$. Bien évidemment, une telle fonction ne peut exister car même avec $\delta(0) = +\infty$, on a malgré tout $\int \delta(x)dx = 0$, il est donc impossible d'avoir $\int \delta(x)dx = 1$. Ainsi, une nouvelle interprétation de δ est possible comme répartition de masse sur \mathbb{R} avec toute la masse concentrée en 0.

Nous allons définir l'être mathématique δ (distribution de Dirac) comme la forme linéaire sur l'espace des fonctions d'essai.

1.2 L'espace de fonctions tests \mathcal{D}

Dans ce chapitre, nous nous restreindrons au cas à une dimension, c'est-à-dire que les fonctions considérées seront des fonctions à une seule variable réelle.

Définition 1.1 Soit $f: \Omega \longrightarrow \mathbb{C}$ une fonction. On appelle **support** de f, l'ensemble $\operatorname{supp}_{\Omega}(f)$ de Ω , défini par : $\operatorname{supp}_{\Omega}(f) = \overline{\{x \in \Omega : f(x) \neq 0\}}$.

Rappel:

- 1. L'adhérence d'un ensemble est le plus petit fermé contenant cet ensemble.
- 2. Si $\operatorname{supp}_{\Omega}(f)$ est borné, alors $\operatorname{supp}_{\Omega}(f)$ est un compact (un ensemble fermé et borné dans l'espace \mathbb{R} qui est de dimension finie). Autrement dit $\operatorname{supp}_{\Omega}(f) = [a, b]$, avec $a, b \in \mathbb{R}$.

Remarque 1.1 Le support de f est donc un ensemble fermé en dehors duquel f est nulle.

Exemple 1.1 La fonction **porte** $\chi_T : \mathbb{R} \longrightarrow \mathbb{R}$ de largeur T > 0 est définie par :

$$\chi_T(t) = \begin{cases} 1, & |t| \le \frac{T}{2} \\ 0, & |t| > \frac{T}{2}, \end{cases}$$

On a $\operatorname{supp}_{\mathbb{R}}(\chi_T) = \left[-\frac{T}{2}, \frac{T}{2} \right].$

Exercice 1.1 La fonction paire f définie sur \mathbb{R} par

$$f(x) = \begin{cases} 4 - x^2, & x \in [0, 2] \\ 0, & x > 2. \end{cases}$$

La fonction f est-elle à support compact?

Solution. On a $\text{supp}_{\mathbb{R}}(f) = \overline{]-2,0] \cup [0,2[} = \overline{]-2,0]} \cup \overline{[0,2[} = [-2,0] \cup [0,2] = [-2,2].$ Donc f est à support compact. \mathbb{Z}

Exemple 1.2 $f : \mathbb{R} \longrightarrow \mathbb{C}$, définie par f(x) = 1, $\forall x \in \mathbb{R}$. Il est clair que $\text{supp}_{\mathbb{R}}(f) = \mathbb{R}$. Donc le support de f n'est pas compact.

Définition 1.2 Soit Ω un ouvert de \mathbb{R} . On note $\mathcal{D}(\Omega)$ l'espace des fonctions $f:\Omega \longrightarrow \mathbb{C}$ indéfiniment dérivables à support compact dans Ω .

Exemple 1.3 La fonction nulle est un élément de $\mathcal{D}(\Omega)$.

Remarque 1.2 L'espace $\mathcal{D}(\Omega)$ est un \mathbb{C} -espace vectoriel.

Exemple 1.4 Soit $f(x) = (1-x^2)\mathbb{1}_{[-1,1]}(x)$, où $\mathbb{1}_{[-1,1]}$ est dite fonction caractéristique, ou fonction indicatrice de [-1,1] est définie de \mathbb{R} dans $\{0,1\}$, par

$$1_{[-1,1]}(x) = \begin{cases} 1, & x \in [-1,1] \\ 0, & x \notin [-1,1]. \end{cases}$$

Il est clair que $\sup_{\mathbb{R}}(f) = [-1,1]$, alors que $f \notin \mathcal{D}(\mathbb{R})$. Puisque f n'est pas dérivable en 1. Donc f n'est pas de classe $C^{\infty}(\mathbb{R})$.

Exemple 1.5 Soit ξ la fonction définie par

$$\xi_a(x) = \begin{cases} 0, & |x| \ge \frac{1}{a} \\ \exp\left(-\frac{1}{1 - a^2 x^2}\right), & |x| < \frac{1}{a} \end{cases}$$

avec a > 0. Elle est indéfiniment dérivable, son support est $\left[-\frac{1}{a}, \frac{1}{a} \right]$.

FIGURE 1.1: La courbe de la fonction ξ_2

Définition 1.3 Une fonction $f: \Omega \longrightarrow \mathbb{C}$ est dite localement sommable si elle est intégrable sur tout compact de K = [a,b] de Ω . Autrement dit $f \in L^1_{loc}(\Omega)$ si et seulement si

$$\forall (a,b) \in \mathbb{R}^2, \ \int_{[a,b]} |f(t)| dt = \int_a^b |f(t)| dt < +\infty.$$

Proposition 1.1 Pour toute $\varphi \in \mathcal{D}(\Omega)$, $\forall \alpha : \Omega \longrightarrow \mathbb{C}$, $\alpha \in \mathbb{C}^{\infty}(\Omega)$, on a

- i) $\varphi' \in \mathcal{D}(\Omega)$.
- ii) $\alpha \varphi \in \mathcal{D}(\Omega)$.

Démonstration.

- i) On peut facilement voir que $\operatorname{supp}_{\Omega}(\varphi') \subset \operatorname{supp}_{\Omega}(\varphi)$. On a $\operatorname{supp}_{\Omega}(\varphi')$ est un ensemble borné, puisqu'il est inclus dans l'ensemble borné $\operatorname{supp}_{\Omega}(\varphi)$. De plus $\operatorname{supp}_{\Omega}(\varphi')$ par définition est un fermé. Donc $\operatorname{supp}_{\Omega}(\varphi')$ est compact. Par ailleurs $\varphi' \in C^{\infty}(\Omega)$. Donc $\varphi' \in \mathcal{D}(\Omega)$.
- ii) Il est clair que $\alpha \varphi \in C^{\infty}(\Omega)$ et $\operatorname{Supp}_{\Omega}(\alpha \varphi) \subset \operatorname{Supp}_{\Omega}(\varphi)$. On en déduit que $\operatorname{Supp}_{\Omega}(\alpha \varphi)$ est compact. Ainsi $\alpha \varphi \in \mathcal{D}(\Omega)$. \mathbf{Z}

1.2.1 Convergence dans $\mathcal{D}(\Omega)$

Définition 1.4 On dit qu'une suite $(\varphi_n) \subset \mathcal{D}(\Omega)$ converge vers $\varphi \in \mathcal{D}(\Omega)$, si

- 1. Il existe un compact B de Ω tel que $\operatorname{supp}_{\Omega}(\varphi) \subset B$ et $\operatorname{supp}_{\Omega}(\varphi_n) \subset B$, $\forall n$
- 2. $\forall k \in \mathbb{N}, \lim_{n \to +\infty} \sup_{x \in B} |\varphi_n^{(k)}(x) \varphi^{(k)}(x)| = 0.$

Remarque 1.3 $\varphi^{(k)}$ désigne la dérivée à l'ordre k de la fonction φ .

Exercice 1.2 Soient $\alpha \in C^{\infty}(\Omega)$, $\forall n \in \mathbb{N}$, $\varphi_n \in \mathcal{D}(\Omega)$ et $\varphi \in \mathcal{D}(\Omega)$. Montrons que $\varphi_n \to \varphi$ dans $\mathcal{D}(\Omega) \Rightarrow \alpha \varphi_n \to \alpha \varphi$ dans $\mathcal{D}(\Omega)$ quand $n \to +\infty$.

Solution.

- Comme $\varphi_n \to \varphi$ dans $\mathcal{D}(\Omega)$, alors il existe au moins un compact B de Ω tel que $\operatorname{Supp}_{\Omega}(\varphi) \subset B$ et $\forall n$, $\operatorname{Supp}_{\Omega}(\varphi_n) \subset B$. On en déduit que $\operatorname{Supp}_{\Omega}(\alpha\varphi) \subset \operatorname{Supp}_{\Omega}(\varphi) \subset B$ et $\operatorname{Supp}_{\Omega}(\alpha\varphi_n) \subset \operatorname{Supp}_{\Omega}(\varphi_n) \subset B$, $\forall n$. Ainsi $\alpha\varphi_n, \alpha\varphi \in \mathcal{D}(\Omega)$.
- En utilisant la formule de Leibniz aux produits $\alpha \varphi_n \in C^{\infty}(\Omega)$ et $\alpha \varphi \in C^{\infty}(\Omega)$, pour tout $k \in \mathbb{N}$, on obtient

$$\lim_{n \to +\infty} \sup_{x \in B} |(\alpha \varphi_n)^{(k)}(x) - (\alpha \varphi)^{(k)}(x)| = \lim_{n \to +\infty} \sup_{x \in B} |\sum_{j=0}^k C_k^j \alpha^{(j)}(x) \varphi_n^{(k-j)}(x) - \alpha^{(j)}(x) \varphi^{(k-j)}(x)|$$

$$\leq \sum_{j=0}^k C_k^j \sup_{x \in B} |\alpha^{(j)}(x)| \lim_{n \to +\infty} \sup_{x \in B} |\varphi_n^{(k-j)}(x) - \varphi^{(k-j)}(x)|$$

$$\leq M \lim_{n \to +\infty} \sum_{j=0}^k \sup_{x \in B} |\varphi_n^{(k-j)}(x) - \varphi^{(k-j)}(x)| = 0.$$

Puisque $\forall j \in \llbracket 0, k \rrbracket$, $\lim_{n \to +\infty} \sup_{x \in B} |\varphi_n^{(k-j)}(x) - \varphi^{(k-j)}(x)| = 0$ et $M = \max_{j \in \llbracket 0, k \rrbracket} \{C_k^j \sup_{x \in B} |\alpha^{(j)}(x)|\} < +\infty$. D'où le résultat. \mathbf{Z}

1.3 L'espace des distributions

Définition 1.5 Une distribution sur Ω est une forme linéaire continue sur l'espace $\mathcal{D}(\Omega)$. Les distributions forment un espace vectoriel noté $\mathcal{D}'(\Omega)$.

Remarque 1.4 1. Une distribution T est donc une application de $\mathcal{D}(\Omega)$ dans \mathbb{C} faisant correspondre à une fonction test φ un nombre complexe noté $\langle T, \varphi \rangle$ ou bien $T(\varphi)$.

- 2. La notation \langle , \rangle est appelée **crochet de dualité**.
- 3. La linéarité de T signifie que $\forall \varphi_1, \varphi_2 \in \mathcal{D}(\Omega), \forall \lambda \in \mathbb{C} : \langle T, \lambda \varphi_1 + \varphi_2 \rangle = \lambda \langle T, \varphi_1 \rangle + \langle T, \varphi_2 \rangle$.

Proposition 1.2 L'ensemble des distributions $\mathcal{D}'(\Omega)$ est un espace vectoriel. La somme de deux distributions et le produit d'une distribution par un scalaire sont définis comme suit :

- 1. $\langle S + T, \varphi \rangle = \langle S, \varphi \rangle + \langle T, \varphi \rangle, \forall \varphi \in \mathcal{D}(\Omega).$
- 2. $\langle \lambda T, \varphi \rangle = \lambda \langle T, \varphi \rangle, \forall \varphi \in \mathcal{D}, \forall \lambda \in \mathbb{C}.$

1.3.1 Comment montrer qu'une forme linéaire sur $\mathcal{D}(\Omega)$ est une distribution ?

Proposition 1.3 Soit T est une forme linéaire sur $\mathcal{D}(\Omega)$. Alors $T \in \mathcal{D}'(\Omega) \Leftrightarrow \forall \varphi_n \to 0$ dans $\mathcal{D}(\Omega)$, alors $\langle T, \varphi_n \rangle \to 0$ quand $n \to +\infty$. Autrement dit

- i) Support $(\varphi_n) \subset B$, avec B est un compact de Ω .
- ii) $\forall k \in \mathbb{N}, \sup_{x \in B} |\varphi_n^{(k)}(x)| \to 0 \text{ quand } n \to +\infty.$

Alors $\langle T, \varphi_n \rangle \to 0$ quand $n \to +\infty$.

Exemple 1.6 Soient $f \in L^1_{loc}(\Omega)$ et T_f une application définie de $\mathcal{D}(\Omega)$ dans \mathbb{C} par

$$\langle T_f, \varphi \rangle = \int_{\Omega} f(x) \varphi(x) dx.$$

Montrons que $T_f \in \mathcal{D}'(\Omega)$.

Solution. Il est clair que T_f est linéaire. Montrons maintenant T_f est continue dans $\mathcal{D}'(\Omega)$. Soit $\varphi_n \to 0$ dans $\mathcal{D}(\Omega)$. Alors $\exists B$ un compact de Ω (i.e $B = [a, b], a, b \in \Omega$) tel que $\mathsf{Support}(\varphi_n) \subset B, \forall n$.

$$|\langle T_f, \varphi_n \rangle| = |\int_{\Omega} f(t)\varphi_n(t)dt| \le \int_{\Omega} |f(t)\varphi_n(t)|dt = \int_{B} |f(t)\varphi_n(t)|dt \le \sup_{t \in B} |\varphi_n(t)| \underbrace{\int_{B} |f(t)|dt}_{<+\infty} < +\infty$$

Comme $\varphi_n \to 0$ dans $\mathcal{D}(\Omega)$, on tire que $\sup_{t \in B} |\varphi_n(t)| \to 0$. Ce qui montre que $\langle T_f, \varphi_n \rangle \to 0$. Donc $T_f \in \mathcal{D}'(\Omega)$. \mathbf{Z}

Exemple 1.7 On définit pour $a \in \Omega$, l'application δ_a de $\mathcal{D}(\Omega)$ dans \mathbb{C} , par

$$\langle \delta_a, \varphi \rangle = \varphi(a).$$

Montons que $\delta_a \in \mathcal{D}'(\Omega)$. En effet, δ_a est bien linéaire. Soit $\varphi_n \to 0$ dans $\mathcal{D}(\Omega)$. Alors

$$|\langle \delta_a, \varphi_n \rangle| = |\varphi_n(a)| \le \sup_{t \in B} |\varphi_n(t)| \to 0.$$

Donc $\delta_a \in \mathcal{D}'(\Omega)$.

Remarque 1.5 La distribution δ_a est dite distribution de Dirac au point a. En particulier $\delta = \delta_0$.

1.3.2 Types de distributions

On distingue souvent deux classes de distributions : les distributions **régulières** et les distributions **singulières**.

On examine maintenant des distributions particulières, nommées distributions régulières, définies par une intégrale et qui permettent d'associer de manière univoque une fonction localement sommable.

Définition 1.6 À toute fonction f localement sommable, on associe la distribution T_f ou [f], définie par

$$\forall \varphi \in \mathcal{D}(\Omega), \ \langle T_f, \varphi \rangle = \int_{\Omega} f(x) \varphi(x) dx.$$

Une telle distribution est dite **régulière**.

Remarque 1.6 Vérifions que $\int_{\Omega} f(x)\varphi(x)dx$ existe bien. Soit $\operatorname{Support}(\varphi)\subset I$, où I=[a,b]. Soit $M=\|\varphi\|_{\infty}=\sup_{x\in I}|\varphi(x)|=\max_{x\in I}|\varphi(x)|$. On a

$$\left| \int_{\Omega} f(x)\varphi(x)dx \right| \leq \int_{\Omega} |f(x)\varphi(x)|dx = \int_{[a,b]} |f(x)\varphi(x)|dx \leq M \int_{a}^{b} |f(x)|dx < +\infty$$

qui existe bien, puisque $f \in L^1_{loc}(\mathbb{R})$. \square

Exemple 1.8 Distribution de Heaviside : distribution régulière.

Fonction H de Heavside:

$$H(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0. \end{cases}$$

FIGURE 1.2: Fonction de Heavside

Distribution $W = T_H$ de Heaviside :

$$\langle W, \varphi \rangle = \langle T_H, \varphi \rangle = \int_{-\infty}^{+\infty} H(x) \varphi(x) dx = \int_{0}^{+\infty} \varphi(x) dx.$$

Exemple 1.9 La distribution porte χ_1 est définie par $\langle T_{\chi_1}, \varphi \rangle = \int_{-\frac{1}{2}}^{\frac{1}{2}} \varphi(t) dt$.

Remarque 1.7 Les distributions qui ne s'écrivent pas sous forme de T_f pour f localement sommable sont dites singulières.

Exemple 1.10 Distribution δ_a de Dirac est une distribution singulière.

Remarque 1.8 En physique, on écrit souvent $\delta(x)$ ou $\delta(x-a)$ au lieu de δ et δ_a . Cette écriture laisse croire que δ est une fonction ce qui est faux!

Proposition 1.4 Deux distributions T et G sont égales ssi $\forall \varphi \in \mathcal{D}(\Omega), \langle T, \varphi \rangle = \langle G, \varphi \rangle.$

Exemple 1.11 Les distributions régulières T_1 et W sont égales sur $]0, +\infty[$. En effet, $\forall \varphi \in \mathcal{D}(]0, +\infty[)$, on a

$$\langle T_1, \varphi \rangle = \int_0^{+\infty} 1 \times \varphi(x) dx = \int_0^{+\infty} \varphi(x) dx.$$

Par ailleurs

$$\langle W, \varphi \rangle = \langle T_H, \varphi \rangle = \int_0^{+\infty} H(x) \varphi(x) dx = \int_0^{+\infty} \varphi(x) dx.$$

Proposition 1.5 Soient $f, g: \Omega \longrightarrow \mathbb{C}$ deux fonctions localement intégrables. Alors $T_f = T_g \Leftrightarrow f = g$ p.p sur Ω .

Proposition 1.6 Soient f et g deux fonctions continues sur Ω telles que $T_f = T_g$, alors f = g sur Ω .

Définition 1.7 La distribution nulle T = 0 est définie par $\langle T, \varphi \rangle = 0$, $\forall \varphi \in \mathcal{D}(\Omega)$.

1.4 Convergence faible

Définition 1.8 Une suite de distributions (T_n) converge vers dans $\mathcal{D}'(\Omega)$ vers T, lorsque

$$\lim_{n \to +\infty} \langle T_n, \varphi \rangle \to \langle T, \varphi \rangle$$

dans \mathbb{C} pour toute $\varphi \in \mathcal{D}(\Omega)$. Autrement dit

$$\lim_{n\to+\infty} T_n = T \Leftrightarrow \lim_{n\to+\infty} \langle T_n, \varphi \rangle \to \langle T, \varphi \rangle, \, \forall \varphi \in \mathcal{D}(\Omega).$$

Exercice 1.3 Soit $\alpha_n \to a$ quand $n \to +\infty$ dans \mathbb{R} . Montrons que $\delta_{\alpha_n} \to \delta_{\alpha}$ dans $\mathcal{D}'(\mathbb{R})$.

Solution. Pour toute $\varphi \in \mathcal{D}(\mathbb{R})$. On a

$$\lim_{n \to +\infty} \langle \delta_{\alpha_n}, \varphi \rangle = \lim_{n \to +\infty} \varphi(\alpha_n) = \varphi(a) = \langle \delta_a, \varphi \rangle.$$

D'où le résultat. **Z**

Exemple 1.12 Montrons $\delta_n \to 0$. On a $\forall \varphi \in \mathcal{D}(\Omega)$, $\langle \delta_n, \varphi \rangle = \varphi(n)$. Puisque φ est à support compact, alors

$$\lim_{n \to +\infty} \langle \delta_n, \varphi \rangle = \lim_{n \to +\infty} \varphi(n) = 0.$$

Définition 1.9 Si la suite (T_{f_k}) converge vers une distribution T, on dit que la suite (f_k) converge vers T au sens des distributions et on écrit

$$\lim_{k \to \infty} f_k = T \quad \text{dans } \mathcal{D}'(\Omega).$$

Remarque 1.9 Le but de ce qui suit est de justifier le fait que toute fonction qui est dans $L^1_{loc}(\Omega)$ peut être vue comme une distribution. On introduit l'application suivante : $\Phi: L^1_{loc}(\Omega) \longrightarrow \mathcal{D}'(\Omega)$ donnée par $\Phi(u) = T_u$, $\forall u \in L^1_{loc}(\Omega)$. L'application Φ associe à chaque fonction u sa distribution régulière T_u . Alors $\Phi(L^1_{loc}(\Omega))$ n'est autre que l'ensemble des distributions régulières.

Théorème 1.1 1. Φ est un isomorphisme entre $L^1_{loc}(\Omega)$ et $\Phi(L^1_{loc}(\Omega))$. 2. Φ n'est pas surjective.

Remarque 1.10 L'intérêt de ce résultat est le fait qu'on peut "identifier" les deux espaces $L^1_{loc}(\Omega)$ et $\Phi(L^1_{loc}(\Omega))$ en identifiants en fait chaque fonction $u \in L^1_{loc}(\Omega)$ à sa distribution régulière T_u . Donc on va dire par **abus de language** que u est une distribution en pensant en fait à T_u . C'est dans ce sense qu'on peut dire que les distributions **généralisent** les fonctions : une fonction localement intégrable est un cas particulier de distribution.

1.4.1 Approximation de δ par des distributions régulières

Il existe de nombreux théorème permettant d'affirmer qu'une suite de fonctions $(f_n) \subset L^1_{loc}(\Omega)$ telles que $f_n \to \delta$ dans $\mathcal{D}'(\Omega)$.

Exemple 1.13 Il est clair que la suite de fonctions (f_n) définie par

$$f_n(x) = \begin{cases} 0, & x < -\frac{1}{n} \\ n^2 x + n, & -\frac{1}{n} \le x < 0 \\ -n^2 x + n, & 0 \le x < \frac{1}{n} \\ 0, & x \ge \frac{1}{n} \end{cases}$$

FIGURE 1.3: La courbe de f_n

Nous allons montrer que $f_n \to \delta$ dans $\mathcal{D}'(\mathbb{R})$. Pour n suffisamment grand, on a

$$\langle T_{f_n}, \varphi \rangle = \int_{\mathbb{R}} f_n(t) \varphi(t) dt = \int_{-\infty}^{+\infty} f_n(t) \varphi(t) dt = \int_{-\frac{1}{n}}^{\frac{1}{n}} f_n(t) \varphi(t) dt \simeq \varphi(0) \underbrace{\int_{-\frac{1}{n}}^{\frac{1}{n}} f_n(t) dt}_{=1} = \varphi(0)$$

$$= \langle \delta, \varphi \rangle,$$

puisque $\varphi(t) \simeq \varphi(0)$ pour $t \in [-\frac{1}{n}, \frac{1}{n}]$, quand $n \to +\infty$. Ainsi $f_n \to \delta$ dans $\mathcal{D}'(\mathbb{R})$.

Théorème 1.2 (Théorème de convergence dominée).

Soit (f_n) une suite de fonctions de Ω à valeurs réelles ou complexes, telle que

- la suite de fonctions (f_n) converge simplement sur Ω vers une fonction f,
- il existe une fonction intégrable g telle que $\forall n \in \mathbb{N}, \forall x \in \Omega, |f_n(x)| \leq g(x)$.

Alors f est intégrable et

$$\lim_{n \to \infty} \int_{\Omega} f_n(x) dx = \int_{\Omega} \lim_{n \to \infty} f_n(x) dx = \int_{\Omega} f(x) dx.$$

Exercice 1.4 Montrer que $\lim_{\epsilon \to 0^+} f_{\epsilon}(x) = \delta$, avec $f_{\epsilon}(x) = \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2}$.

Solution. On a

$$\langle \frac{1}{\pi} \frac{\epsilon}{x^2 + \epsilon^2}, \varphi \rangle = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\epsilon}{x^2 + \epsilon^2} \varphi(x) dx = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{t^2 + 1} \varphi(\epsilon t) dt \to \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{t^2 + 1} \varphi(0) dt = \varphi(0),$$

par convergence dominée (φ est bornée).

Avec Maple:

 $> with(plots): f := (epsilon, x) - > 1/Pi * epsilon/(x^2 + epsilon^2); p := epsilon - > plot(f(epsilon, x), x = -4..4, color = COLOR(RGB, rand()/10^{12}, rand()/10^{12}, rand()/10^{12}), thickness = 2); display(p(1), p(0.5), p(0.25));$

FIGURE 1.4: La courbe de f_{ϵ}

Remarque 1.11 Toute combinaison linéaire de distributions de Dirac est une distribution singulière. En particulier la distribution $\sum_{n=-\infty}^{+\infty} \delta_n$ (n entier) a des propriétés intéressantes et joue un rôle important en physique. On l'appelle distribution peigne de Dirac et on la note III.

1.4.2 Support d'une distribution

Définition 1.10 Soit U un ouvert de Ω . On dit qu'une distribution T est nulle dans U si :

$$\forall \varphi \in \mathcal{D}(\Omega), \operatorname{Supp}(\varphi) \subset U \Rightarrow \langle T, \varphi \rangle = 0$$

et que deux distributions T_1 et T_2 coïncident sur U si $T_1 - T_2$ est nulle sur U. La réunion des ouverts sur lesquels T est nulle est un ouvert sur lequel T est nulle (le plus grand ouvert sur lequel T est nulle). Le complémentaire de cet ouvert (qui est un fermé) est appelé **support** de T, on le note Supp(T), et on a :

$$\forall \varphi \in \mathcal{D}(\Omega), \, \operatorname{Supp}(\varphi) \bigcap \operatorname{Supp}(T) = \emptyset \Rightarrow \langle T, \varphi \rangle = 0.$$

Exemple 1.14 On a Supp $(\delta_a) = \{a\}.$

Proposition 1.7 Soit $f : \mathbb{R} \longrightarrow \mathbb{C}$ une fonction continue sauf un nombre fini de points de discontinuité de première espèce, alors $Supp(T_f) = Supp(f)$.

Exemple 1.15 On a Supp $(H) = \text{Supp}(T_H) = [0, +\infty[$.

1.4.3 Multiplication des distributions

 \bullet La multiplication de deux fonctions localement sommables f et g définies par

$$f(t) = g(t) = \frac{1}{\sqrt{t}}$$

n'est pas une fonction localement sommable. Cet exemple montre que le **produit** de deux distributions quelconques n'est **pas toujours défini**.

2 Dans le cas ou un des éléments (disons α) est une fonction de $C^{\infty}(\Omega)$, on définit le produit (qui a toujours un sens) par

$$\langle \alpha T, \varphi \rangle = \langle T, \alpha \varphi \rangle, \, \forall \varphi \in \mathcal{D}(\Omega).$$

f a partir de cette définition, on peut définir le produit d'une distribution quelconque T par une distribution régulière T_{ψ} associée à une fonction indéfiniment dérivable ψ de la manière suivante :

$$\forall \varphi \in \mathcal{D}, \ \langle T_{\psi}T, \varphi \rangle = \langle T, \psi \varphi \rangle.$$

Exemple 1.16 $x\delta = 0$. En effet $\forall \varphi \in \mathcal{D}(\Omega), \langle x\delta, \varphi \rangle = \langle \delta, x\varphi \rangle = 0 \times \varphi(0) = 0 = \langle 0, \varphi \rangle$. Ainsi $x\delta = 0$.

1.5 Changement de variable affine

1.5.1 Translation

Si $f: \mathbb{R} \longrightarrow \mathbb{C}$ avec $f \in L^1_{loc}(\mathbb{R})$ et $\varphi \in \mathcal{D}(\mathbb{R})$, alors

$$\int_{\mathbb{R}} f(x+a)\varphi(x)dx = \int_{\mathbb{R}} f(x)\varphi(x-a)dx, \, \forall a \in \mathbb{R}^*.$$

De plus, la fonction $\tau_a \varphi : x \longmapsto \varphi(x+a)$ translatée de $\varphi \in \mathcal{D}(\mathbb{R})$. Ainsi, nous définirons la translatée d'une distribution T de la manière suivante :

Définition 1.11 Soit $T \in \mathcal{D}'(\mathbb{R})$, on définit la translatée de T qu'on notera $\tau_a T$ par

$$\langle \tau_a T, \varphi \rangle = \langle T, \tau_{-a} \varphi \rangle, \ \varphi \in \mathcal{D}(\mathbb{R}),$$

où $\tau_a \varphi(x) = \varphi(x+a), x \in \mathbb{R}.$

Exemple 1.17 On a $\tau_a \delta_b = \delta_{b-a}$ avec $a, b \in \mathbb{R}$. En effet, il est facile de voir que

$$\langle \tau_a \delta_b, \varphi \rangle = \langle \delta_b, \tau_{-a} \varphi \rangle = \tau_{-a} \varphi(b) = \varphi(b-a) = \langle \delta_{b-a}, \varphi \rangle.$$

Ainsi $\tau_a \delta_b = \delta_{b-a}$.

1.5.2 Homothétie

Soit $\lambda \in \mathbb{R}^*$ et $f \in L^1_{loc}(\mathbb{R})$, on a

$$\int_{\mathbb{R}} f(\lambda x) \varphi(x) dx = \frac{1}{|\lambda|} \int_{\mathbb{R}} f(x) \varphi(\frac{x}{\lambda}) dx, \, \forall \varphi \in \mathcal{D}(\mathbb{R}).$$

Ceci nous conduit à poser la définition suivante pour l'homothétique d'une distribution T.

Définition 1.12 Soit $T \in \mathcal{D}'(\mathbb{R})$, on définit l'homothétique de la distribution T de facteur $\lambda \in \mathbb{R}^*$ qu'on notera $T_{(\lambda)}$ par

$$\langle T_{(\lambda)}, \varphi \rangle = \frac{1}{|\lambda|} \langle T, \varphi_{(\frac{1}{\lambda})} \rangle, \ \forall \varphi \in \mathcal{D}(\mathbb{R}),$$

où $\varphi_{(\lambda)}(x) = \varphi(\lambda x), x \in \mathbb{R}.$

Exemple 1.18 Pour tout $\lambda \in \mathbb{R}^*$, on a $\delta_{(\lambda)} = \frac{1}{|\lambda|} \delta$. En effet, $\forall \varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle \delta_{(\lambda)}, \varphi \rangle = \frac{1}{|\lambda|} \langle \delta, \varphi_{\left(\frac{1}{\lambda}\right)} \rangle = \frac{1}{|\lambda|} \varphi_{\left(\frac{1}{\lambda}\right)}(0) = \frac{1}{|\lambda|} \varphi(0) = \langle \frac{1}{|\lambda|} \delta, \varphi \rangle.$$

Remarque 1.12 Ne pas confondre $\delta_{(a)}$ avec δ_a .

1.6 Dérivées d'une distribution

C'est une propriété essentielle des distributions. Pour une fonction continûment dérivable, par intégration par parties :

$$\langle T_{f'}, \varphi \rangle = \int_{\Omega} f'(t)\varphi(t)dt = -\int_{\Omega} f(t)\varphi'(t)dt = -\langle T_f, \varphi' \rangle, \, \forall \varphi \in \mathcal{D}(\Omega).$$

Définition 1.13 Pour toute distribution $T \in \mathcal{D}'(\Omega)$, on définit la distribution T' et on l'appelle distribution dérivée de T par

$$\langle T', \varphi \rangle = -\langle T, \varphi' \rangle, \, \forall \varphi \in \mathcal{D}(\Omega).$$

Plus généralement pour tout $m \in \mathbb{N}$, on a

$$\langle T^{(m)}, \varphi \rangle = (-1)^m \langle T, \varphi^{(m)} \rangle, \, \forall \varphi \in \mathcal{D}(\Omega).$$

Remarque 1.13 1. Notons que $\varphi \longmapsto -\langle T, \varphi' \rangle$ est bien linéaire et continue dans $\mathcal{D}(\Omega)$, ce qui implique que T' est une distribution sur $\mathcal{D}(\Omega)$.

2. Toute distribution est indéfiniment dérivable.

Exemple 1.19 On a $\langle \delta', \varphi \rangle = -\langle \delta, \varphi' \rangle = -\varphi'(0)$. De plus pour tout $k \in \mathbb{N}$, on a

$$\langle \delta^{(k)}, \varphi \rangle = (-1)^k \langle \delta, \varphi^{(k)} \rangle = (-1)^k \varphi^{(k)}(0).$$

Exemple 1.20 (Dérivée de Heaviside).

On a
$$\langle T'_H, \varphi \rangle = -\langle T_H, \varphi' \rangle = -\int_0^{+\infty} \varphi'(t) dt = -\lim_{x \to +\infty} [\varphi(t)]_0^x = \varphi(0) = \langle \delta, \varphi \rangle$$
. Donc $T'_H = \delta$.

Proposition 1.8 Si T est une distribution et si q est une fonction de $C^{\infty}(\Omega)$, alors:

$$(qT)' = q'T + qT'.$$

Démonstration : Pour toute $\varphi \in \mathcal{D}(\Omega)$, on a

$$\langle (gT)', \varphi \rangle = -\langle T, g\varphi' \rangle.$$
 (1.1)

Par ailleurs, on a

$$\langle g'T + gT', \varphi \rangle = \langle g'T, \varphi \rangle + \langle gT', \varphi \rangle = \langle T, g'\varphi \rangle - \langle T, g'\varphi + g\varphi' \rangle = -\langle T, g\varphi' \rangle. \tag{1.2}$$

De (1.1) et (1.2), on déduit que (gT)' = g'T + gT'.

Proposition 1.9 Soient T et G deux distributions et $\lambda \in \mathbb{C}$. On a

$$(\lambda T + G)' = \lambda T' + G'.$$

Exemple 1.21 Soit $f(t) = t\mathbb{1}_{[-1,1]}(t) + 3\mathbb{1}_{[1,2]}(t)$, alors on a le graphe suivant :

Pour toute $\varphi \in \mathcal{D}(\mathbb{R})$, on a

$$\begin{split} \langle T_f', \varphi \rangle &= -\int_{\mathbb{R}} t \mathbb{1}_{[-1,1]}(t) \varphi'(t) dt - 3 \int_{\mathbb{R}} \mathbb{1}_{[1,2]}(t) \varphi'(t) dt \\ &= -\int_{-1}^{1} t \varphi'(t) dt - 3 \int_{1}^{2} \varphi'(t) dt \\ &= -[t \varphi(t)]_{-1}^{1} + \int_{-1}^{1} \varphi(t) dt - 3(\varphi(2) - \varphi(1)) \\ &= -(\varphi(1) + \varphi(-1)) + \langle [\mathbb{1}_{[-1,1]}], \varphi \rangle - 3\varphi(2) + 3\varphi(1) \\ &= 2\varphi(1) - 3\varphi(2) - \varphi(-1) + \langle [\mathbb{1}_{[-1,1]}], \varphi \rangle \\ &= \langle [\mathbb{1}_{[-1,1]}] + 2\delta_{1} - 3\delta_{2} - \delta_{-1}, \varphi \rangle. \end{split}$$

Ainsi

$$T_f' = [\mathbb{1}_{[-1,1]}] + 2\delta_1 - 3\delta_2 - \delta_{-1}.$$

1.6.1 Dérivation d'une fonction discontinue

On a vu que la dérivée au sens des distributions de la distribution de Heaviside était égale à la distribution de Dirac. Maintenant si on considère la fonction de Heaviside, sa dérivée est nulle partout sauf en 0 où elle n'est pas définie et la distribution associée n'est pas δ . Par conséquent, les opérations "prendre la distribution associée" et "dérivation" ne commutent pas, ou, autrement dit, $T'_f \neq T_{f'}$. Cela sera ainsi pour toute fonction présentant une discontinuité en un point.

Soit f une fonction \mathcal{C}^1 par morceaux. Soient $a_1, \ldots a_n$ les points de discontinuité de f (que nous supposons en nombre fini) et

$$\sigma_i^{(0)} = f(a_i^+) - f(a_i^-)$$

le saut de discontinuité de f en a_i .

Théorème 1.3 Soit f une fonction de classe C^1 par morceaux. Avec les notations précédentes, on a alors

$$T_f' = T_{f'} + \sum_i \sigma_i^{(0)} \delta_{a_i}.$$

Figure 1.5: Fonction C^1 par morceaux

Exemple 1.22 On reprend l'Exemple 1.21, on trouve

$$T_f' = T_{f'} + \sigma_{-1}^{(0)} \delta_{-1} + \sigma_{1}^{(0)} \delta_{1} + \sigma_{2}^{(0)} \delta_{2} = [\mathbb{1}_{[-1,1]}] + 2\delta_{1} - 3\delta_{2} - \delta_{-1}.$$

1.7 Équations différentielles

Rappel: Soit f une fonction continue sur un intervalle $A \subset \mathbb{R}$ et $\alpha, \beta : I \longrightarrow A$ sont de classe $C^1(I)$, alors la fonction

$$F: x \longmapsto \int_{\alpha(x)}^{\beta(x)} f(t)dt$$

est de classe $C^1(I)$ et

$$F'(x) = \beta'(x)f(\beta(x)) - \alpha'(x)f(\alpha(x)).$$

Proposition 1.10 Lorsque φ décrit $\mathcal{D}(\mathbb{R})$, sa dérivée $\varphi'(\mathbb{R})$ décrit

$$\mathcal{D}_0(\mathbb{R}) = \{ \Psi \in \mathcal{D}(\mathbb{R}); \int_{-\infty}^{+\infty} \Psi(t) dt = 0 \}.$$

Démonstration.

- i) Tout d'abord, si φ est une fonction test, sa dérivée φ' est également une fonction-test. De plus, il est clair que $\int_{-\infty}^{+\infty} \varphi'(t)dt = 0$.
- ii) Réciproquement, soit Ψ une fonction-test telle que $\int_{-\infty}^{+\infty} \Psi(t) dt = 0$. Posons, pour tout x,

$$\varphi(x) = \int_{-\infty}^{x} \Psi(t) dt.$$

C'est une fonction indéfiniment dérivable, nulle au voisinage de $-\infty$, et égale à $\int_{-\infty}^{+\infty} \Psi(t)dt$ pour x assez grand, c'est-à-dire nulle pour x assez grand. Bref, c'est une fonction-test. Ainsi $\varphi'(x) = \Psi(x)$. \mathbf{Z}

Proposition 1.11 Pour qu'une distribution T ait une dérivée nulle, il faut et il suffit qu'elle soit constante.

Théorème 1.4 Toute distribution T admet une primitive U, et ses primitives sont de la forme U + cte.

Exemple 1.23 La primitive de δ est T_H .

Exercice 1.5 Soit $a \in \mathbb{C}$. Résoudre $T' - aT = \delta$ au sens des distributions.

Solution. On a

$$T' - aT = \delta \Leftrightarrow e^{-ax}(T' - aT) = e^{-ax}\delta \Leftrightarrow e^{-ax}(T' - aT) = \delta \Leftrightarrow \frac{d}{dx}(e^{-ax}T) = \delta \Leftrightarrow T = e^{ax}(H + c).$$

Avec Maple:

> dsolve(diff(T(x), x) - a * T(x) = Dirac(x), T(x));

$$T(x) = (Heaviside(x) + C_1)e^{(ax)}$$

Exercice 1.6 Résolution de u' + au = T, avec u, T sont des distributions et $a \in C^{\infty}(\mathbb{R})$.

Solution. Notons A une primitive de a. On a

$$u' + a(x).u = T \Leftrightarrow e^{A(x)}(u' + a(x).u) = e^{A(x)}T \Leftrightarrow \frac{d}{dx}(e^{A(x)}u) = e^{A(x)}T \Leftrightarrow u = e^{-A(x)} \left[\int e^{A(x)}Tdx + C_1\right].$$

Avec Maple:

> dsolve(diff(u(x), x) + a(x) * u(x) = T(x), u(x));

$$u(x) = \left[\int T(x)e^{\int a(x)dx}dx + C\mathbf{1} \right]e^{\int -a(x)dx}$$

1.8 Distributions tempérées

1.8.1 L'espace de Schwartz

Définition 1.14 Une fonction f fait partie de l'espace $\mathcal{S}(\mathbb{R})$ lorsqu'elle est indéfiniment dérivable, et si f et toutes ses dérivées sont à décroissance rapide, c'est-à-dire que leur produit par une fonction polynomiale quelconque est borné à l'infini. Les fonctions appartenant à $\mathcal{S}(\mathbb{R})$ sont dites déclinantes. Alors l'espace de Schwartz peut être décrit par

$$\mathcal{S}(\mathbb{R}) = \{ f \in \mathcal{C}^{\infty}(\mathbb{R}) \mid \forall (m,j) \in \mathbb{N}^2, \ \mathcal{N}_{mj}(f) := \sup_{x \in \mathbb{R}} |x^m f^{(j)}(x)| < +\infty \}.$$

Exemple 1.24 $x \mapsto e^{-x} \in \mathcal{S}(\mathbb{R})$.

Exemple 1.25 $x \longmapsto e^{-|x|} \notin \mathcal{S}(\mathbb{R})$ et $x \longmapsto \frac{1}{x^2+1} \notin \mathcal{S}(\mathbb{R})$. En effet $x \longmapsto e^{-|x|} \notin C^{\infty}(\mathbb{R})$ et $x \longmapsto \frac{x^4}{x^2+1}$ n'est pas bornée dans \mathbb{R} .

Remarque 1.14 Il est évident que $\mathcal{D}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R})$.

Définition 1.15 On définit l'espace vectoriel $\mathcal{O}_M(\mathbb{R})$ des fonctions de classe $C^{\infty}(\mathbb{R})$ à croissante lente par $\mathcal{O}_M(\mathbb{R}) = \left\{\alpha : \Omega \longrightarrow \mathbb{C}, \ \alpha \in C^{\infty}(\mathbb{R}), \ \forall k \in \mathbb{N}, \ \exists C_k > 0, \ \exists n_k \in \mathbb{N}; \ |\alpha^{(k)}(x)| \leq C_k(1 + |x|^{n_k})\right\}.$

Exemple 1.26 $x \longmapsto \sin(x) \in \mathcal{O}_M(\mathbb{R}), x \longmapsto \cos(x) \in \mathcal{O}_M(\mathbb{R}) \text{ et } x \longmapsto e^x \notin \mathcal{O}_M(\mathbb{R}).$

Proposition 1.12 1. $\forall \varphi, \psi \in \mathcal{S}(\mathbb{R}) \text{ et } \alpha, \beta \in \mathbb{C}, \text{ on a } \alpha\varphi + \beta\psi \in \mathcal{S}(\mathbb{R}).$

- 2. Soient $\varphi \in \mathcal{S}(\mathbb{R})$, $P \in \mathbb{C}[X]$ et $R \in \mathbb{C}(X)$ sans pôle sur \mathbb{R} , alors $P\varphi \in \mathcal{S}(\mathbb{R})$ et $R\varphi \in \mathcal{S}(\mathbb{R})$.
- 3. $\alpha \in \mathcal{O}_M(\mathbb{R})$ et $\varphi \in \mathcal{S}(\mathbb{R}) \Rightarrow \alpha \varphi \in \mathcal{S}(\mathbb{R})$.
- 4. $\varphi \in \mathcal{S}(\mathbb{R}) \Rightarrow \varphi' \in \mathcal{S}(\mathbb{R})$.
- 5. $\varphi \in \mathcal{S}(\mathbb{R}) \Rightarrow \tau_a \varphi \in \mathcal{S}(\mathbb{R}), \forall a \in \mathbb{R}^*.$

Définition 1.16 Une distribution tempérée T est une forme linéaire continue sur $\mathcal{S}(\mathbb{R})$. L'ensemble des distributions tempérées est noté par $\mathcal{S}'(\mathbb{R})$.

Définition 1.17 Une suite de fonctions $(\phi_n)_{n\in\mathbb{N}}$ converge dans $\mathcal{S}(\mathbb{R})$ vers une fonction ϕ si $\phi \in \mathcal{S}(\mathbb{R})$ et si

$$\forall (m,j) \in \mathbb{N}^2, \quad \lim_{n \to \infty} \mathcal{N}_{mj}(\phi_n - \phi) = 0.$$

1.8.2 Comment montrer qu'une distribution est tempérée ?

Proposition 1.13 T est une distribution tempérée si et seulement si

- i) T est une forme linéaire.
- ii) Si $\varphi_n \to 0$ dans $\mathcal{S}(\mathbb{R})$, alors $\lim_{n \to \infty} \langle T, \varphi_n \rangle = 0$.

Exemple 1.27 L'espace $\mathcal{S}(\mathbb{R})$ est un sous-espace vectoriel des différents espaces

$$L^p(\mathbb{R}) = \{ f : \mathbb{R} \longmapsto \mathbb{C}, \int_{-\infty}^{+\infty} |f(x)|^p dx < +\infty \}, \text{ pour } 1 \leq p < +\infty.$$

Il est d'ailleurs dense dans chacun de ces ensembles.

Exemple 1.28 Les distributions à support compact, comme la distribution de Dirac définissent des distributions tempérées.

Proposition 1.14 On a $\mathcal{S}'(\mathbb{R}) \subset \mathcal{D}'(\mathbb{R})$.

Démonstration. Soit $T \in \mathcal{S}'(\mathbb{R})$. Montrons que $T \in \mathcal{D}'(\mathbb{R})$. Soit $(\varphi_n) \subset \mathcal{D}(\mathbb{R})$ avec $\varphi_n \to 0$ dans $\mathcal{D}(\mathbb{R})$. Comme support de φ_n est compact, alors $\varphi_n \to 0$ dans $\mathcal{S}(\mathbb{R})$. En effet

$$\lim_{n \to +\infty} \mathcal{N}_{mj}(\varphi_n) = \lim_{n \to +\infty} \sup_{x \in B} |x^m \varphi_n^{(j)}(x)| \le C_m \sup_{x \in B} |\varphi_n^{(j)}(x)| \to 0,$$

avec $C_m = \sup_{x \in B} |x|^m$, puisque $x \longmapsto |x|^m$ est continue sur un compact B, donc bornée et atteint ses bornes. Comme $\lim_{n \to +\infty} \langle T, \varphi_n \rangle = 0$. On en déduit que $T \in \mathcal{D}'(\mathbb{R})$.

Dans la pratique, la plupart des distributions que nous rencontrons seront tempérées.

Exemple 1.29 $\delta_a, \delta'_a \in \mathcal{S}'(\mathbb{R})$.

Exemple 1.30 En général $T_f \notin \mathcal{S}'(\mathbb{R})$, pour $f \in L^1_{loc}(\mathbb{R})$: Si $f(x) = e^{2x}$ et $\varphi(x) = e^{-x}$, alors

$$\langle T_f, \varphi \rangle = \int_{-\infty}^{+\infty} e^x dx = \infty.$$

La proposition suivante donne une condition suffisante pour que T_f soit tempérée.

Proposition 1.15 Soit $f: \mathbb{R} \longrightarrow \mathbb{C}$, $f \in L^1_{loc}(\mathbb{R})$. On suppose $\exists p \geq 0$ tel que

$$\int_{\mathbb{R}} \frac{|f(x)|}{1+|x|^p} dx < \infty,$$

alors $T_f \in \mathcal{S}'(\mathbb{R})$.

Démonstration. T_f est linéaire. De plus si $\varphi_n \to 0$ dans $\mathcal{S}(\mathbb{R})$, alors

$$|\langle T_f, \varphi_n \rangle| = |\int_{\mathbb{R}} f(x)\varphi_n(x)dx|$$

$$\leq \int_{\mathbb{R}} \frac{|f(x)|}{1+|x|^p} |(1+|x|^p)\varphi_n(x)|dx$$

$$\leq \sup_{x \in \mathbb{R}} |(1+|x|^p)\varphi_n(x)| \underbrace{\int_{\mathbb{R}} \frac{|f(x)|}{1+|x|^p}dx}_{C+\infty} \to 0.$$

1.8.3 Multiplication dans $S'(\mathbb{R})$

Définition 1.18 Si $\alpha \in \mathcal{O}_M(\mathbb{R})$ et $T \in \mathcal{S}'(\mathbb{R})$, alors $\alpha T \in \mathcal{S}'(\mathbb{R})$ est définie par

$$\langle \alpha T, \varphi \rangle = \langle T, \alpha \varphi \rangle, \, \forall \varphi \in \mathcal{S}(\mathbb{R})$$

est une distribution appelée distribution produit de T par α .

1.9 Distributions dans \mathbb{R}^n

D'une façon analogue, on peut définir des distributions à n dimensions comme fonctionnelles sur l'espace $\mathcal{D}(\mathbb{R}^n)$ des fonctions de \mathbb{R}^n dans \mathbb{C} indéfiniment dérivables sur \mathbb{R}^n et à support borné. Par exemple, la distribution régulière associée à une fonction $f: \mathbb{R}^n \longrightarrow \mathbb{C}$ localement sommable est définie par :

$$\forall \varphi \in \mathcal{D}(\mathbb{R}^n), \langle T_f, \varphi \rangle = \int \dots \int f(x_1, \dots, x_n) \varphi(x_1, \dots, x_n) dx_1 \dots dx_n$$

et

$$\forall \varphi \in \mathcal{D}(\mathbb{R}^n), \langle \delta, \varphi \rangle = \varphi(\underbrace{0, 0, \dots, 0}_{n \text{ fois}}).$$

Exemple 1.31 Soit

$$\langle T, \varphi \rangle = \int_{\mathbb{R}^2} e^{-x^2 - y^2} \varphi(\sin(xy)) dx dy = \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-x^2 - y^2} \varphi(\sin(xy)) dx dy.$$

Montrons que $T \in \mathcal{D}'(\mathbb{R}^2)$. Il est clair que T est linéaire. Puisque $\operatorname{Support}(\varphi_n) \subset B$, avec B est un compact de \mathbb{R}^2 , telle que $\varphi_n \to 0$ dans $\mathcal{D}(\mathbb{R}^2)$. On a pour tous $x, y \in \mathbb{R}$,

$$|\varphi_n(\sin(xy))| \le \sup_{t \in \mathbb{R}} |\varphi_n(t)| = \sup_{t \in B} |\varphi_n(t)|.$$

Donc

$$|\langle T, \varphi_n \rangle| \le \sup_{t \in B} |\varphi_n(t)| \underbrace{\int_B \int_B e^{-x^2 - y^2} dx dy}_{<+\infty} \to 0.$$

Ainsi $T \in \mathcal{D}'(\mathbb{R}^2)$.