Note 17 - Mar 14

Review

Branching Processes

 $\mathbb{E}(Y) \leq 1 \implies$ case 2. Expectation probability = 1

 $\mathbb{E}(Y) > 1 \quad \Rightarrow \text{case 1. Expectation probability is the smallest solution of } \psi(s) = s \text{ between 0 and 1}$

Poisson Processes

Definition

$$0 \leq S_1 \leq S_2 \leq \cdots$$

$$N(t) = \sum_{n=1}^{\infty} 1\!\!\!\perp_{\{S_n \leq t\}} \; ext{ is the counting process of events } \{S_n\}_{n=1,2,...}$$

Properties of a counting process

- 1. $N(t) \geq 0, t \geq 0$
- 2. N(t) takes integer values
- 3. N(t) is increasing.
 - $\circ \ \ N(t_1) \leq N(t_2)$ if $t_1 \leq t_2$
- 4. N(t) is right-continuous
 - $\circ \ \ N(t) = \lim_{s\downarrow t} N(s)$

Additional asumption: N(0)=0, N(t) only has jumps with size 1

5 Poisson Processes (cont'd)

Recall: Properties of the Exponential Distributions

 $X \sim Exp(\lambda)$

- Basic properties
 - \circ pdf: $f(x) = \lambda e^{-\lambda x}$ (x>0)
 - \circ cdf: $F(x) = 1 e^{-\lambda x}$
 - $\circ \ \mathbb{E}(x) = \frac{1}{\lambda}$
 - $\circ \ Var(X) = rac{1}{\lambda^2}$
- Memoryless property

$$\circ \ \mathbb{P}(X>s+t|x>s)=\mathbb{P}x>t$$

· Min of exponentials

$$\circ \ X_1,...,X_n$$
 independent, $X_i\sim Exp(\lambda_i)$, then 1. $min(X_1,\cdots,X_n)\sim Exp(\lambda_1+\cdots+\lambda_n)$ Proof: it suffices to prove the result for $n=2$

1.
$$min(X_1,\cdots,X_n) \sim Exp(\lambda_1+\cdots+\lambda_n)$$
 Proof: it suffices to prove the result for $n=2$ Let $Z=min(X_1,X_2)$, then
$$\mathbb{P}(Z>z)=\mathbb{P}(X_1>z,X_2>z) = \mathbb{P}(X_1>z)\cdot\mathbb{P}(X_2>z) = e^{-\lambda_1 z}\cdot x^{-\lambda_2 z} = e^{-(\lambda_1+\lambda_2)z}$$
 $\Rightarrow \mathbb{P}(Z\leq z)=\underbrace{1-e^{-(\lambda_1+\lambda_2)z}}_{\mathrm{cdf of } Exp(\lambda_1+\lambda_2)} z>0$ 2. $\mathbb{P}(X_i=min(X_1,\cdots,X_2))=\frac{\lambda_i}{\lambda_1+\cdots+\lambda_n}$ Proof: (again for $n=2$)
$$\mathbb{P}(X_1=min(X_1,X_2)) = \mathbb{P}(X_1\leq X_2) = \mathbb{P}(X_1\leq X_2) = \mathbb{E}(\mathbb{P}(X_1\leq X_2|X_1)) = \mathbb{E}(e^{-\lambda_2 X_1}) = \mathbb{E}(e^{-\lambda_2 X_1}) = \int_0^\infty e^{-\lambda_2 x} \lambda_1 e^{-\lambda_1 x} dx = \lambda_1 \int_0^\infty e^{-(\lambda_1+\lambda_2)x} dx$$

5.3. Properties of Poisson Processes

5.3.1. Continuous-time Markov Property

$$\mathbb{P}(N(t_m)=j|N(t_{m-1})=i,N(t_{m-2})=i_{m-2},\cdots,N(t_1)=i_1) \ \mathbb{P}(N(t_m)=j|N(t_{m-1}=i))$$

 $=\frac{\lambda_1}{\lambda_1+\lambda_2}$

for any m, $t_1 < \cdots < t_m$, $i_1, i_2, \cdots, i_{m-2}, i, j \in S$

Fact 5.3.1.1

The Poisson Process is the only renewal process having the Markov Property

Reason:

Since the exponential distribution is memoryless, the future arrival times will not depend on how long we have waited \Rightarrow The future of the counting process only depends on its current value.

In fact,

$$\mathbb{P}(N(t+s)=j|N(s)+j)$$

time homogeneity = $\mathbb{P}(N(t)=j|N(0)=i)$ only difference by which number we start ti civbt = $\mathbb{P}(N(t)=j-i|N(0)=0)$

5.3.1.1. Independent Increments

The Poisson Process has independent increments

$$t_1 < t_2 < t_3 < t_4 \Rightarrow \underbrace{N(t_2) - N(t_1)}_{ ext{increments}} \perp \!\!\! \perp \underbrace{N(t_4) - N(t_3)}_{ ext{increments}}$$

Reasons:

Memoryless property of exponential distribution.

5.3.1.2. Poisson Increments

The Poisson Process has Poisson increments

$$N(t_2) - N(t_1) \sim Poi(\lambda(t_2 - t_1))$$

Reason:

Let the arrival times between t_1 and t_2 be $S_1, cdots, S_N$, where $N=N(t_2)-N(t_1)$. Then $W_1=S_1-t$. $W_2=S_2-S_1$, \cdots are i.i.d r.v's with distribution $Exp(\lambda)$

$$N = n \Leftrightarrow W_1 + W_2 + \dots + W_n \le t_2 - t_1$$

 $W_1 + W_2 + \dots + W_n + W_{n+1} > t_2 - t_1$

Fact 5.3.1.2

If W_1,\cdots,W_n are i.i.d. r.v's following $Exp(\lambda)$, then $W_1+\cdots+W_n\sim Erlang(n,\lambda)$ (a special type of Gamma)

$$c.d.f:F(x)=1\sum_{k=1}^{n-1}rac{1}{k!}e^{-\lambda x}(\lambda x)^k$$

Thus,

$$egin{aligned} \mathbb{P}(W_1 + W_2 + \cdots + W_n \leq t_2 - t_1) \ &= 1 - \sum_{k=0}^{n-1} rac{1}{k!} e^{-\lambda(t_2 - t_1)} (\lambda(t_2 - t_1))^k \ &\mathbb{P}(W_1 + W_2 + \cdots + W_n + W_{n+1} \leq t_2 - t_1) \ &= 1 - \sum_{k=0}^{n} rac{1}{k!} e^{-\lambda(t_2 - t_1)} (\lambda(t_2 - t_1))^k \ &\mathbb{P}(N = n) = \mathbb{P}(W_1 + \cdots + W_n \leq t_2 + t_1) - \mathbb{P}(W_1 + \cdots + W_{n+1} \leq t_2 - t_1) \ &= rac{1}{n!} e^{-\lambda(t_2 - t_1)} (\lambda(t_2 - t_1))^n \end{aligned}$$

In particular, $N(t) = N(t) - N(0) \sim Poi(\lambda t)$

 $\mathbb{E}(N(1)) = \lambda \quad \leftarrow \text{intensity: expected number of arrivals in one unit of time}$

5.3.1.3. Combining and Thining of Poisson Process

Theorem:

$$\{N_1(t)\} \sim Poi(\lambda_1 t)$$

$$\{N_2(t)\} \sim Poi(\lambda_2 t)$$

 $\{N_1(t)\}$ and $\{N_2(t)\}$ are independent

Let
$$N(t) = N_1(t) + N_2(t)$$
, then $\{N(t)\} \sim Poi((\lambda_1 + \lambda_2)t)$