Stock Price Prediction

- -Stock Price Prediction using machine learning helps you discover the future value of company stock and other financial assets traded on an exchange.
- -The entire idea of predicting stock prices is to gain significant profits.
- -Predicting how the stock market will perform is a hard task to do. There are other factors involved in the prediction, such as physical and psychological factors, rational and irrational behavior, and so on.
- -All these factors combine to make share prices dynamic and volatile. This makes it very difficult to predict stock prices with high accuracy.

LSTM

Long Short Term Memory Network is used for building model to predict the stock prices of Google.

LTSMs are a type of Recurrent Neural Network for learning long-term dependencies.

It is commonly used for processing and predicting time-series data.

LOADING DATASET

import pandas as pd
df=pd.read_csv("/content/Google_Stock_Price_Train.csv",index_col="Date",parse_dates=True)
df

	Open	High	Low	Close	Volume	2
Date						
2012-01-03	325.25	332.83	324.97	663.59	7,380,500	
2012-01-04	331.27	333.87	329.08	666.45	5,749,400	
2012-01-05	329.83	330.75	326.89	657.21	6,590,300	
2012-01-06	328.34	328.77	323.68	648.24	5,405,900	
2012-01-09	322.04	322.29	309.46	620.76	11,688,800	
2016-12-23	790.90	792.74	787.28	789.91	623,400	
2016-12-27	790.68	797.86	787.66	791.55	789,100	
2016-12-28	793.70	794.23	783.20	785.05	1,153,800	
2016-12-29	783.33	785.93	778.92	782.79	744,300	
2016-12-30	782.75	782.78	770.41	771.82	1,770,000	
1258 rows × 5 columns						

df1=pd.read_csv("/content/Google_Stock_Price_Test.csv")
df1

	Date	0pen	High	Low	Close	Volume
0	1/3/2017	778.81	789.63	775.80	786.14	1,657,300
1	1/4/2017	788.36	791.34	783.16	786.90	1,073,000
2	1/5/2017	786.08	794.48	785.02	794.02	1,335,200
3	1/6/2017	795.26	807.90	792.20	806.15	1,640,200
4	1/9/2017	806.40	809.97	802.83	806.65	1,272,400
5	1/10/2017	807.86	809.13	803.51	804.79	1,176,800
6	1/11/2017	805.00	808.15	801.37	807.91	1,065,900
7	1/12/2017	807.14	807.39	799.17	806.36	1,353,100
8	1/13/2017	807.48	811.22	806.69	807.88	1,099,200
9	1/17/2017	807.08	807.14	800.37	804.61	1,362,100
10	1/18/2017	805.81	806.21	800.99	806.07	1,294,400
11	1/19/2017	805.12	809.48	801.80	802.17	919,300
12	1/20/2017	806.91	806.91	801.69	805.02	1,670,000
13	1/23/2017	807.25	820.87	803.74	819.31	1,963,600
14	1/24/2017	822.30	825.90	817.82	823.87	1,474,000
15	1/25/2017	829.62	835.77	825.06	835.67	1,494,500
16	1/26/2017	837.81	838.00	827.01	832.15	2,973,900
17	1/27/2017	834.71	841.95	820.44	823.31	2,965,800
18	1/30/2017	814.66	815.84	799.80	802.32	3,246,600
19	1/31/2017	796.86	801.25	790.52	796.79	2,160,600

df.plot(figsize=(12,6))

<AxesSubplot:xlabel='Date'>

len(df)

1258

train=df.iloc[:,0:1]

train

```
Date

2012-01-03 325.25
2012-01-04 331.27
2012-01-05 329.83
2012-01-06 328.34
2012-01-09 322.04
....
```

train.shape

(1258, 1)

test=df1.iloc[:,1:2]

2010-12-00 102.10

test

.. ----

19 796.86

13 807.25

14 822.30

15 829.62

16 837.81

17 834.71

18 814.66

test.shape

(20, 1)

NORMALIZING THE DATASET

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(train)
scaled_train=scaler.transform(train)
scaled_test=scaler.transform(test)
```

scaled_train[:10]

scaled_test

```
array([[0.92955205],
       [0.94731751],
       [0.94307612],
       [0.96015329],
       [0.98087655],
       [0.98359253],
       [0.97827219],
       [0.98225314],
       [0.98288563],
       [0.98214153],
       [0.979779],
       [0.97849542],
       [0.98182528],
       [0.98245777],
       [1.01045465],
       [1.02407173],
       [1.03930724],
       [1.03354044],
       [0.99624228],
       [0.9631297]])
```

```
from keras.preprocessing.sequence import TimeseriesGenerator
n_inputs=3
n_features=1
generator=TimeseriesGenerator(scaled_train,scaled_train,length=n_inputs,batch_size=1)
```

```
X,y=generator[1]
print("Input",X)
print("Generated:",y)
Input [[0.09701243]
```

```
Input [[[0.09701243]
   [0.09433366]
   [0.09156187]]]
Generated: [[0.07984225]]
```

n_inputs=20
generator=TimeseriesGenerator(scaled_train,scaled_train,length=n_inputs,batch_size=1)

Building the Model by Importing the Libraries and Adding Different Layers to LSTM

```
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM

model=Sequential()
model.add(LSTM(100,activation='relu',return_sequences=True,input_shape=(n_inputs,n_features))
model.add(LSTM(120,activation='relu'))
model.add(Dense(1))
```

Fitting the Model

```
model.compile(optimizer='adam',loss='mse')
model.summary()
```

Model: "sequential_2"

Non-trainable params: 0

Layer (type)	Output Shape	Param #
=======================================		========
lstm_4 (LSTM)	(None, 20, 100)	40800
_ , ,	, , ,	
lstm_5 (LSTM)	(None, 120)	106080
13 cm_5 (23 m)	(110112)	100000
dense_2 (Dense)	(None, 1)	121
dense_2 (bense)	(None, 1)	121
	=======================================	========
Total params: 147,001		
Trainable params: 147,001		

model.fit(generator,epochs=10,batch_size=2)

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
1238/1238 [============== ] - 29s 24ms/step - loss: 7.6372e-04
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
1238/1238 [============== ] - 28s 23ms/step - loss: 4.5729e-04
<keras.callbacks.History at 0x7f63b2a00640>
```

loss_per_epoch=model.history.history["loss"] loss_per_epoch

```
[0.005348223727196455,
0.0017143437871709466,
0.0014249780215322971,
0.0009638919145800173,
0.0007637225207872689,
0.000819212116766721,
0.0006049296353012323,
0.000513831153512001,
0.0005764021771028638,
0.00045728866825811565]
```

import matplotlib.pyplot as plt plt.plot(range(len(loss_per_epoch)),loss_per_epoch)

last_train_batch=scaled_train[-20:]

last_train_batch=last_train_batch.reshape(1,n_inputs,n_features)

```
model.predict(last_train_batch)
   1/1 [=======] - 0s 311ms/step
   array([[0.96708816]], dtype=float32)
scaled_test
   array([[0.92955205],
       [0.94731751],
       [0.94307612],
       [0.96015329],
       [0.98087655],
       [0.98359253],
       [0.97827219],
       [0.98225314],
       [0.98288563],
       [0.98214153],
       [0.979779],
       [0.97849542],
       [0.98182528],
       [0.98245777],
       [1.01045465],
       [1.02407173],
       [1.03930724],
       [1.03354044],
       [0.99624228],
       [0.9631297]])
scaled_train[-20:]
   array([[0.86589404],
       [0.89030062],
       [0.90335962],
       [0.89642086],
       [0.91777662],
       [0.93176576],
       [0.94114145],
       [0.95762334],
       [0.96413424],
       [0.96402262],
       [0.96971501],
       [0.95077759],
       [0.96294367],
       [0.96123223],
       [0.95475854],
       [0.95204256],
       [0.95163331],
       [0.95725128],
       [0.93796041],
       [0.93688146]])
test_predictions=[]
first_eval_batch=scaled_train[-n_inputs:]
current_batch=first_eval_batch.reshape(1,n_inputs,n_features)
import numpy as np
for i in range(len(test)):
 current pred=model.predict(current batch)
 test_predictions.append(current_pred)
 current_batch=np.append(current_batch[:,1:,:],[current_pred],axis=1)
   1/1 [======= ] - 0s 25ms/step
   1/1 [======] - 0s 26ms/step
   1/1 [======] - 0s 30ms/step
   1/1 [======= ] - 0s 27ms/step
   1/1 [======= ] - 0s 29ms/step
   1/1 [======] - 0s 27ms/step
```

```
1/1 [=======] - 0s 26ms/step
1/1 [=======] - 0s 25ms/step
1/1 [=======] - 0s 27ms/step
```

test_predictions

```
[array([[0.96708816]], dtype=float32),
array([[0.994685]], dtype=float32),
array([[1.0219613]], dtype=float32),
array([[1.0486861]], dtype=float32),
array([[1.0747463]], dtype=float32),
array([[1.1003034]], dtype=float32),
array([[1.1255462]], dtype=float32),
array([[1.1506323]], dtype=float32),
array([[1.1756778]], dtype=float32),
array([[1.200766]], dtype=float32),
array([[1.2259517]], dtype=float32),
array([[1.2512852]], dtype=float32),
array([[1.2767829]], dtype=float32),
array([[1.3023021]], dtype=float32),
array([[1.3277144]], dtype=float32),
array([[1.3529316]], dtype=float32),
array([[1.3779018]], dtype=float32),
array([[1.4025879]], dtype=float32),
array([[1.4269595]], dtype=float32),
array([[1.4509915]], dtype=float32)]
```

predictions=current_batch predictions

```
array([[[0.96708816],
        [0.99468499],
        [1.02196133],
        [1.04868615],
        [1.07474625],
        [1.10030341],
        [1.12554622],
        [1.15063226],
        [1.17567778],
        [1.20076597],
        [1.22595167],
        [1.2512852],
        [1.27678287],
        [1.30230212],
        [1.32771444],
        [1.35293162],
        [1.37790179],
        [1.40258789],
        [1.42695951],
        [1.45099151]])
```

prediction=predictions.reshape(20,1)

```
y_pred=scaler.inverse_transform(prediction)
y_pred
```

```
array([[ 798.98791285],
         813.82286549],
        828.48553329],
        842.85172504],
       [ 856.86059474],
        870.59910188],
         884.16862439],
         897.65387888],
        911.11734545],
        924.60375342],
         938.14258059],
        951.76086961],
         965.46739975],
        979.18552876],
       [ 992.84617609],
       [1006.40192094],
       [1019.82488759],
       [1033.09514648],
       [1046.19635668],
       [1059.11499684]])
```

Calculating the metrics

```
from sklearn.metrics import mean_squared_error,r2_score
print("Mean Squarred Error",mean_squared_error(scaled_test,prediction))
print("r2_score",r2_score(scaled_test,prediction))
```

Mean Squarred Error 0.06913200816247353 r2_score -90.91662970343795

```
test["Open"]
```

18

```
778.81
1
     788.36
2
     786.08
3
     795.26
4
     806.40
     807.86
     805.00
6
7
     807.14
     807.48
9
     807.08
10
     805.81
11
     805.12
12
     806.91
13
     807.25
14
     822.30
15
     829.62
16
     837.81
17
     834.71
```

19 796.86 Name: Open, dtype: float64

814.66

```
y_pred1=y_pred.flatten()
```

Displaying the actual and predicted values

df=pd.DataFrame({"Actual":test["Open"],"Predicted":y_pred1})
df

	Actual	Predicted	1
0	778.81	798.987913	
1	788.36	813.822865	
2	786.08	828.485533	
3	795.26	842.851725	
4	806.40	856.860595	
5	807.86	870.599102	
6	805.00	884.168624	
7	807.14	897.653879	
8	807.48	911.117345	
9	807.08	924.603753	
10	805.81	938.142581	
11	805.12	951.760870	
12	806.91	965.467400	
13	807.25	979.185529	
14	822.30	992.846176	
15	829.62	1006.401921	
16	837.81	1019.824888	
17	834.71	1033.095146	
18	814.66	1046.196357	
19	796.86	1059.114997	

```
import matplotlib.pyplot as plt
plt.plot(test,color="red",label="Actual Google Stock Price")
plt.plot(y_pred1,color="green",label="Predicted Google Stock Price")
plt.title("GOOGLE STOCK PRICE PREDICTION")
plt.xlabel("Time")
plt.ylabel("Predicted Stock Price")
plt.legend()
```

<matplotlib.legend.Legend at 0x7f63b27ed280>

✓ 0s completed at 3:13 PM

×