Biosignály

Přednáška č.01

OBSAH PŘEDNÁŠKY

Informace a systém	<u>3</u>
Biosignál	<u>13</u>
Zpracování biosignálu	<u>21</u>
Fyzikální povaha biosignálů	<u>28</u>
Snímače biosignálů	<u>44</u>
Elektrody	<u>58</u>

Informace a systém

INFORMACE

- Informace je velmi široký, mnohoznačný pojem, který se užívá v různých významech.
- V nejobecnějším smyslu je informace chápána jako údaj o prostředí, jeho stavu a procesech v něm probíhajících.
 - Ve vědě je informace vnímaným údajem o vlastnostech a uspořádání objektu.
 - V informatice tvoří informaci kódovaná data (protiklad šumu), která lze vysílat, přijímat, uchovávat a zpracovávat technickými prostředky
- Informace snižuje nebo odstraňuje neurčitost (entropii) systému (např. příjemce / uživatele informace).
- Množství informace lze charakterizovat tím, jak se jejím přijetím změnila míra neurčitosti přijímajícího systému.

Zdroi: wikipedia 4

SYSTÉM

- Systém je poměrně obecny pojem, vyjadřuje obvykle nějaké uspořádání prvků a vztahu mezi nimi.
- Příklady systému:
 - fylogenetická klasifikace šelem
 - model ekosystému
 - blokové schéma osciloskopu
 - kompartmentový model metabolizmu
 - metabolické dráhy
 - jing a jang
- ...Definice? Mnoho podob ⊗

Systém je celek složený z částí, které na sebe vzájemně působí. Mezi částmi systému mohou probíhat toky informací, hmoty a energie.

DĚLENÍ SYSTÉM

- Systémy můžeme dělit podle následujících kritérií:
 - uzavřené × otevřené zda nastává interakce s okolím
 - **deterministické** × **stochastické** podle toho, zda systém vykazuje jednoznačné nebo náhodné (statisticky popsatelné) chování,
 - statické × dynamické podle toho, zda se vyvíjejí v čase,
 - spojité × diskrétní podle toho, zda se hodnoty mění spojitě nebo skokově
 - tvrdé × měkké tvrdé systémy jsou spojovány s dobře strukturovanými vztahy (řešení lze poměrně snadno algoritmizovat), naopak v měkkých systémech vystupuje celá řada faktorů, jejich struktura není přesně definována, údaje jsou neurčité a neúplné.
- V systémech může nastat zpětná vazba, kdy některá výstupní veličina opětovně ovlivňuje některou ze vstupních veličin, a tedy i samotný systém.

Zdroj: wikipedia

BIOLOGICKÉ SYSTÉMY

 Biologický systém je otevřeným dynamickým systémem s kontinuálním příjmem i výdejem látek, energií a informací.

Přenos informací v biologických systémech

- Biologický systém je otevřeným dynamickým systémem s kontinuálním příjmem i výdejem látek, energií a informací.
- Přenos a zpracování informací v biologických systémech lidském organismu - probíhá buďto humorálními, nebo nervovými mechanismy ve třech úrovních:
 - První nejnižší úrovní jsou procesy spojené s řízením základních biochemických reakcí (buněčná a tkáňová úroveň).
 - Druhou úrovní jsou pochody v autonomních systémech využívající humorální i nervové mechanismy, jež řídí funkce některých orgánů (srdce).
 - Třetí nejvyšší úrovní je zpracování informací v centrálním nervovém systému

ENERGIE V BIOLOGICKÝCH SYSTÉMECH

- Základním zdrojem energie pro biologické systémy lidské organismy – je chemická energie vázaná v cukrech, tucích a bílkovinách.
- Formou potravy se tyto látky dostávají do organismu, jsou metabolicky zpracovávány, přičemž vzniká teplo a řada dalších chemických meziprodukty.
- Tato chemicky vázaná energie je ukládána do speciálních molekul.
 Nejznámější je ATP (adenosintrifosfát), jehož štěpením je odpovídajícím buňkám potřebná energie předávána.
- Dodaná chemicky vázaná energie se v biologických systémech spotřebovává nejen na mechanickou práci uvnitř organismu (srdce, zažívací trakt), ale i na práci osmotickou (činnost ledvin) a podporu vzniku akčních potenciálů, činnost nervové soustavy.
- Část chemicky vázané energie se transformuje i v nezbytnou energii tepelnou.

ADAPTACE A HOMEOSTÁZE

- Významnými vlastnostmi charakterizujícími biologické systémy jsou adaptace a homeostáze.
- Adaptací biologického systému (organismu) je chápána schopnost systému jako celku nebo jeho částí (orgánů) přizpůsobit se nové podmínky, doba adaptace na nové podmínky muže být krátká, střední, nebo dlouhá.
- Biofyzikální a chemické změny okolního prostředí vyvolávají v biologickém systému změny.
- Za normálních podmínek je však systém, vzhledem ke zpětným vazbám, udržován v dynamické rovnováze - homeostázi.
- U lidského organismu se jedná o stálost vnitřního prostředí (acidobazická rovnováha), funkci krevního oběhu, respiraci, termoregulační mechanismus.
- Homeostatické řízení biologického systému je založeno na principu dráždění, reakci a vedení vzruchů ve tkáních.

ORGANISMUS

- Organismus je soustava (systém) schopný reakce na vnější podněty, rozmnožování, růstu a stabilní existence.
- Základní složkou živých organismů jsou buňky.
- Dva hlavní typy buněk:
 - prokaryotická buňka (jednobuněčné organismy, netvoří tkáně)
 - eukaryotická buňka (diferenc. jádro, biomembrány)
- Projevy života (ne vždy!):
 - charakteristické znaky společné pro všechny organismy, např:
 - chemické složení z bílkovin, nukleových kyselin a sacharidů
 - dochází neustálé proměny a výměna látek, energie a informací s prostředím
 - Rozmnožování, evoluce, růst, dědičnost
- Nebuněčné organismy
 - Jedná se především o viry, viroidy a priony.
 - Nebuněčné organismy nejsou schopny samostatné existence nebo alespoň samostatného rozmnožování.

LIDSKÝ ORGANISMUS

- Lidský organismus je složitý systém, jehož vlastnosti téměř nikdy nelze definovat s matematickou přesností. Proto je u řady veličin uváděno rozmezí jejich "normálních" hodnot.
- Lze jej definovat jako otevřeny dynamický systém, schopný přijímat, zpracovávat a vydávat informace.
- Tyto výstupní informace odrážejí stav daného organismu (fyziologicky – zdravý, patologicky – nemocny) a jsou základem pro stanoveni diagnózy.
- Diagnózu definujeme jako konkrétní množinu funkčních a morfologických odchylek od normálniho, tedy zdravého stavu.
- Proces, ktery vede ke stanoveni diagnózy, nazýváme diagnostikou (vyšetření).
- Cíleny zásah do této množiny je podstatou léčení (terapie).
- Nově získané výstupní informace slouží k posouzení úspěšnosti terapeutického zásahu (zpětná vazba).

BIOFYZIKA

- Vývoj moderního zdravotnictví je úzce spjat s vývojem přírodních věd, především biologie, fyziky a chemie.
- Právě na rozhraní fyzikálních a biologických věd vznikla jedna z mezioborových vědních disciplín – biofyzika.
- Oblast lékařské biofyziky soustřeďuje svůj zájem na člověka, na fyziologické a patologické projevy organizmu a s tím související principy diagnostiky a terapie.
- Biofyzika studuje základní mechanizmy působení různých fyzikálních faktorů na zdraví člověka.
- Využívá fyzikálních procesů k získávání informace o stavu systému.
- Do oboru Lékařské biofyziky spadá i vývoj nových medicinálních diagnostických a terapeutických technologií.

Biosignál

CO JE TO SIGNÁL?

Co je to signál?

• Signál je fyzikální děj nesoucí užitečnou informaci o systému.

Co je informace?

 V nejobecnějším smyslu je informace chápána jako údaj o prostředí, jeho stavu a procesech v něm probíhajících.

• Co je systém?

 Systém (či soustava) je celek složený z částí, které na sebe vzájemně působí. Mezi částmi systému mohou probíhat toky informací, hmoty a energie.

• Co je živý systém?

 Organismus - schopný reakce na vnější podněty, rozmnožování, růstu a stabilní existence.

A biosignál?

• Děj nesoucí užitečnou informaci o organismu a jeho částech.

SIGNÁL

- Signál je znamení, záměrný fyzikální jev, nesoucí informaci o nějaké události, povel vyžadující provedení určité akce nebo zahájení činnosti, nebo výstraha před hrozícím nebezpečím.
- V technice signál používá ve významu pro fyzikální veličinu závislou na čase.
 - Může se tak jednat například o signály optické, elektrické, elektromagnetické, akustické, mechanické, pneumatické, nebo hydraulické.
- Pomocí signálů jsou přenášeny zprávy data
- Informace v signálech bývá často znehodnocena rušením i šumem, proto je třeba signály odpovídajícím způsobem zpracovat užít některé transformace i filtrace k získání požadovaných informací.
- Signály obecně také dělíme na deterministické a náhodné či stochastické.

Zdroje: wikipedia, ULF LF UP

DETERMINISTICKÝ SIGNÁL

- Deterministickými jsou ty signály, které mohou být exaktní popsány matematickými funkcemi nebo vyjádřeny graficky.
- Významnou třídou deterministických signálu jsou signály periodické, které jsou charakterizovány základním tvarem vlny a periodou, s níž se v čase opakují.
- Sledovaný a analyzovaný signál však může nést informace o celé řadě harmonických kmitočtů a dalších frekvencích.
- Většinu biosignálů řadíme do neperiodických deterministických signálů, označovaných jako téměř periodické (např. EKG)

Deterministicky biosignál

- Idealizace: jednoznačně určená hodnota v každém bodě.
- Lze jednoznačné popsat funkcí y = f (t; x₁; x₂; x₃; ...)
- Funkce, resp. posloupnost, je matematickým modelem deterministického (bio)signálu
- V medicíně spíš teoretický význam

STOCHASTICKÝ SIGNÁL

- Nejvýznamnější třídou signálů jsou stochastické (náhodné) signály.
- Stochastický signál je vzorkem funkce stochastického procesu.
- Náhodné signály nemohou být exaktní vyjádřeny, popisují se jen pravděpodobnostními funkcemi a statistickými vlastnostmi.
- Stochastické signály mohou být stacionární nebo nestacionární, kdy statistiky nebo frekvenční spektrum zůstávají stejné, popř. se mění v čase.
- Příkladem biosignálu tohoto typu mohou být signály EMG a signály spánkového EEG.

Stochastický biosignál

- reálna situace: náhody se nezbavíme: šum, onemocnění,...
- matematickym modelem je nahodny proces {X(t, x1, x2, x3, ...)}
- Výhody: dostatečně obecné, dostatečně věrné
- Nevýhody: lze popsat jen pravděpodobnostmi, příliš obecné, neučí se na střední škole

ČASOVÝ CHARAKTER SIGNÁLU

- Spojitý čas (res,. libovolná nezávislá proměnná)
 - spojitý lze si ho představit jako plynulý
 - deterministicky signál modelem je funkce
 - stochasticky signál modelem je spojitý náhodný proces

Diskrétní čas

- čas je definovány jen v izolovaných okamžicích
- mezi okamžiky nemusíme vidět např. čas mezi měřeními
- mezi okamžiky nemusí být signál definovány např. natalita
- deterministicky signál modelem je posloupnost
- stochastický signál modelem je diskrétní náhodný proces

Diskrétní hodnoty

- hodnoty jsou vybíraný jen z konečné množiny
- výsledek kvantovaní např.. cena v korunách, číslice na displeji
- přirozeně diskrétní signál např.. počet nemocných, náklady

ROZMĚR A ČASOVÝ CHARAKTER BIOSIGNÁLU

Charakter	statický signál	dynamický signál
Jednorozměrný	tlak krve	teplota
vektor	růst (např. BMI)	EKG
dvourozměrný	RTG	ultrasonografie
vícerozměrný	CT, MRI	4D sono

• Biosignály mohou mít jeden až čtyři rozměry.

PŘENOS SIGNÁLU

- Typickou částí zpracování signálu je jeho přenos mezi různými místy.
- Signály jsou snímány transducery, které ho konvertují z původní neelektrické formy na průběh, šířící se jako elektrický proud, tedy změny potenciálu či napětí nebo ve formě elektromagnetické vlny.
- Příkladem může být optický či radiový signál.

 V okamžiku jeho převodu na elektrický je možné jej dále zpracovat elektronickými přístroji, jako jsou zesilovače signálu, a je možné jej například přepravit do vzdálených lokací pomocí elektronických vysílačů a přijímačů.

Image source: wikipedia.org

Zpracování biosignálu

- Proces zpracování signálů má několik kroků.
- Nejdříve je třeba signál z pacienta sejmout, a to v odpovídající kvalitě.
- Přenosová soustava se skládá z vyšetřovaného subjektu (živý systém) a z vyšetřovací aparatury.

- Je nutné si uvědomit omezení, která jsou daná samotným principem snímaní, každá metodika má svá omezení.
- Je tedy často naprosto neúčelné snažit se o zobrazovaní naměřených veličin na řadu desetinných míst, když nemají smysl.

- Ke snímaní používáme:
 - Snímače (senzory) slouží ke snímaní elektrických biosignálů a
 jejich funkci plní elektrody
 - Měniče (transducery) slouží ke snímaní neelektrických biosignálů a zároveň mění původní energeticky impuls na elektricky signál.
- Podle typu energetické přeměny můžeme rozlišit tyto základní druhy měničů:
 - mechanoelektrické
 - fotoelektrické
 - termoelektrické
 - radioelektrické.
- Pro posouzení kvality snímačů a měničů je rozhodující řada jejich vlastností, jako je citlivost, přesnost, rozsah aj.

- Z hlediska možné interakce s tkáněmi je nutné, aby byl snímač nebo měnič biologicky inertní, tj. aby neovlivňoval tkáň, s níž je v kontaktu
- Pro zachovaní co nejvyšší kvality převedeného signálu je nutné vyšetřované místo, či samotný subjekt dostatečně připravit, např:
 - aplikace gelu při sonografií
 - očistěním pokožky při EEG
 - zabráněním dýchaní nosem při zátěžových testech.

- Dalším krokem zpracování signálů je jejich zesílení a elektronická úprava.
- Zesilovači je signál zesílen na požadovanou úroveň a pomocí selektivních filtrů je omezen vliv nežádoucích účinků, tzv. šumu.
- Další zpracování pomocí výpočetní techniky vyžaduje úplnou digitalizaci procesu zpracování.
- Většina moderních lékařských přístrojů, zvláště diagnostických, má tedy analogovou část omezenu pouze na proces sejmuti biosignálu, případně na přeměnu neelektrického signálu na elektricky.

- Dále následuje analogově-digitální převodník a za ním je zpracování a zobrazení biosignálů zcela na bázi počítačové technologie.
- V A/D převodníku se spojitý signál převádí do číslicové formy.
- Původní spojitá forma signálu je vzorkována, tj. v krátkých časových intervalech vyjádřena okamžitým diskrétním stavem.
- Čím je tento časový interval kratší (čím vyšší je vzorkovací kmitočet), tím více se číslicová forma signálu blíží jeho původnímu spojitému tvaru.

- Posledním krokem zpracovaní biosignálů je jejich záznam:
 - dočasný obrazovka počítače či monitoru
 - trvaly disk.
- Nemocnice jsou již vybaveny počítačovou sítí, záznamy a diagnosticke obrazy jsou ukládány do centrální databáze nemocničního informačního systému (NIS),
- Do různých lokalit je v současné době možný transfer dat nejen telefonem a internetem, ale i telemetricky.

Fyzikální povaha biosignálů

BIOLOGICKÉ SIGNÁLY

- Základem všech diagnostických metod jsou biologické signály (biosignály).
- Biosignál nese informaci o živém systému.
- Pokud biosignály vznikají aktivní činnosti organismu (např. elektrické jevy spojené s činnosti nervové nebo svalové tkáně), jsou označovány jako biosignály vlastní (aktivní, generované).
- Pokud organismus svoji strukturou nebo činnosti pouze ovlivňuje (moduluje) energeticky impuls vyslaný do organismu z vnějšího zdroje, jedná se o zprostředkované biosignály (pasivní, modulované).
- Zdroj signálu i forma jeho modulace může byt různá.
- Zdrojem může být ionizující záření, ultrazvukové vlnění nebo magnetické pole.
- Formou modulace může být absorpce (rtg diagnostika), odraz (ultrazvuková diagnostika) apod.

BIOLOGICKÉ SIGNÁLY

- Dalším kritériem rozdělení biosignálů je jejich fyzikální charakter.
- Z hlediska dalšího zpracování biosignálů je podstatné jejich rozdělení na signály elektrické a neelektrické.
- Většina signálů má neelektrický charakter (informace o pohybu, rychlosti, tlaku, teplotě, akustické odrazivosti, absobci rtg.paprsků).
- Tyto signály se v původní podobě obtížně přenášejí a ještě obtížněji zpracovávají.
- Proto se velmi často tyto neelektrické signály převádějí pomocí vhodných měničů na signály elektrické, které se mnohem snadněji přenášejí i zpracovávají.

KLASIFIKACE BIOSIGNÁLŮ

Zdroje nebo fyzikální podstaty biosignálů

• Třídění respektuje základní fyzikální charakteristiky uvažovaného procesu.

Obor lékařských aplikací

- Biosignály jsou získávány a zpracovávány v souladu s diagnostickým, monitorovacím nebo léčebným cílem.
- Klasifikace může být vytvořena také podle klinické oblasti aplikací nebo podle fyziologických studií organismu.

Charakteristiky signálu

- které jsou z hlediska analýzy signálu nejvýznamnější.
- · Rozeznáváme dvě základní kategorie signálů:
 - spojité a diskrétní.
- Biosignály snímané z biologických objektů jsou téměř vždy spojitými signály.
- Pro jejich následné číslicové zpracování v počítacích je nezbytný proces digitalizace - vzorkování v čase a kvantování v úrovni.

VZNIK BIOSIGNÁLU

Pasivní biosignály

- Organismus není zdrojem energie
- Organismus modifikuje vnější energii
- Napr. rentgen, ultrazvuk ci bioimpedance

Aktivní biosignály

- Organismus je zdrojem energie
- Tuto energii registrujeme a zesilujeme
- Napr. EKG, spirometrie ci ergometrie

BIOSIGNÁLY DLE PŮVODU ČI VZNIKU

Biosignál Elektrický Impedanční Magnetický Akustický Chemický Mechanický Optický Tepelný Radiologický Ultrasonografický

ELEKTRICKÝ BIOSIGNÁL

- Tyto biosignály jsou generovány nervovými a svalovými buňkami.
- Jsou výsledkem elektrochemických procesů uvnitř buněk a mezi buňkami.
- Pokud na nervovou nebo svalovou buňku působí stimul silnější než prahová hodnota dráždění, buňka generuje akční potenciál.
- Celkový akční potenciál, reprezentující tok iontů buněčnou membránou, můžeme měřit užitím nitrobuněčných mikroelektrod.
- Akční potenciály excitovaných buněk jsou přenášeny na přilehlé buňky a mohou vytvořit elektrické pole v odpovídající biologické tkáni.
- Změny v mezibuněčných potenciálech lze snímat elektrodami na povrchu orgánu nebo organismu jako časový průběh biosignálů.
- Příkladem jsou signály EKG, EEG, EMG, a další.

IMPEDANČNÍ BIOSIGNÁL

- Impedance tkáně nese významnou informaci o jejich skladbě, perfusi, objemu krve, nervové a endokrinní aktivit apod.
- Impedanční biosignál se získává povrchovými nebo vpichovými elektrodami při aplikaci malých proudů (20 uA až 2 mA) na frekvencích 50 kHz až 1MHz.
- Frekvence bývá volena s ohledem na minimalizaci polarizace elektrod, proud s ohledem na tepelné poškození tkání.
- Tato impedanční měření se obvykle provádí se čtyřmi elektrodami - dvě jsou zdrojové a dvě měřicí
- Metoda bývá označována jako impedanční pletysmografie nebo reografie.

MAGNETICKÝ BIOSIGNÁL

- Řada orgánů v těle, jako srdce, mozek a některé další, generuje velmi slabá magnetická pole (10^{-9} T to 10^{-6} T).
- Snímání těchto polí poskytuje informace, které jsou spojovány se specifickými fyziologickými aktivitami, ale nejsou obsaženy v jiných biosignálech.
- Měření těchto biosignálů je však velmi náročné, protože se jedná o úrovně intenzit magnetických polí o několik řádů nižších, než je pole geomagnetické.
- SQUIDS (superconductor quantum interference device)

Bioelectricity	Bioelectromagnetism (Biomagnetism)
Neural cells	
electroencephalography (EEG)	magnetoencephalography (MEG)
electroneurography (ENG)	magnetoneurography (MNG)
electroretinography (ERG)	magnetoretinography (MRG)
Muscle cells	
electrocardiography (ECG)	magnetocardiography (MCG)
electromyography (EMG)	magnetomyography (MMG)
Other tissue	
electro-oculography (EOG)	magneto-oculography (MOG)
electronystagmography (ENG)	magnetonystagmography (MNG)

AKUSTICKÉ BIOSIGNÁLY

- Mnoho fyziologických jevů je provázeno nebo samo vytváří akustické signály, pop. akustický šum.
- Měření těchto signálů přináší další informace při hodnocení funkce významných orgánů.
- Při toku krve srdečními chlopněmi nebo cévami vznikají typické akustické signály.
- Stejně tak průtok vzduchu horními i dolními dýchacími cestami v plicích vytváří akustické signály známé jako šelesty dýchání, kašel, chrápání.
- Zvuky jsou také generovány v zažívacím traktu a v kloubech.
- Snímání akustických biosignál jsou realizovány mikrofony.

CHEMICKÉ BIOSIGNÁLY

 Za chemické biosignály považujeme výsledky chemických měření provedených na živých tkáních nebo na vzorcích analyzovaných v klinických laboratořích.

 Jedná se o stanovení koncentrací nejrůznějších iontů (K, Ca) uvnitř buněk, ale i v jejich okolí pomocí speciálních iontově citlivých elektrod.

 Významné jsou i parciální tlaky kyslíku pO2 a oxidu uhličitého pCO2 v krvi nebo respiračním systému.

• Zásadní význam má i pH krve.

Copyright @ 2004, 2001 Elsevier Inc. All rights reserved.

MECHANICKÝ BIOSIGNÁL

- Každý mechanický biosignál má původ v některé z mechanických funkcí i činností biologického systému - organismu.
- Tyto signály jsou odvozené z pohybu, přemísťování, z tlaku a mechanického napětí nebo průtoku.
- Měření těchto biosignál vyžaduje užití nejrůznějších snímačů.
- Typickým příkladem je nepřímý způsob měření tlaku krve, fonokardiografie, snímání kartodiagramu a další.

OPTICKÝ BIOSIGNÁL

- Optické biosignály jsou výsledkem pozorování optických vlastností biologického systému - organismu - a už jsou podstatou systému, nebo jsou indukovány při měření.
- Je známo, že okysličení krve, saturace kyslíkem, může být hodnoceno měřením přímého a odraženého světla (různých vlnových délek) po průchodu tkání.
- Metoda je označována jako oximetrie.
- Významnou informací o stavu plodu je rovněž změna charakteristiky amniotické tekutiny (plodové vody).
- K hodnocení srdečního výdeje je možné také užít barvivovou diluční techniku, která využívá monitorování výskytu recirkulujícího barviva v krevním toku.

TEPELNÝ BIOSIGNÁL

- Tepelné biosignály spojitého nebo diskrétního charakteru nesou informace o teplotě tělesného jádra nebo rozložení teplot na povrchu organismu.
- Měřené teploty jsou výrazem fyzikálních a biochemických proces probíhajících v organismech.
- Měření probíhá obvykle kontaktním způsobem užitím nejrůznějších typ teploměrů.
- Speciální oblastí je využití signál z oblasti infračerveného záření, jež jsou snímány bezkontaktně ve 2D formátu termovizní kamerou.

RADIOLOGICKÝ BIOSIGNÁL

- Tyto biosignály vznikají interakcí ionizujícího záření s biologickými strukturami.
- Na všech aplikovaných vlnových délkách i úrovních energií nesou informace o vnitřních anatomických strukturách organismu.
- Jsou snímány speciálními snímači, zpracovávány a zobrazovány ve 2D, někdy i 3D formátu.
- Mají zásadní význam v diagnostice a při plánování radiační terapie.

ULTRAZVUKOVÝ BIOSIGNÁL

- Vznikají interakcí ultrazvukového vlnění s tkáněmi organismu.
- Nesou informace o akustických impedancích biologických struktur a jejich anatomických změnách.
- Snímány jsou sondami s piezoelektrickými měniči, zpracovávány a zobrazovány ve 2D nebo 3D formátu.
- Speciální formou ultrazvukových biosignálů jsou dopplerovské signály nesoucí informace o velikosti, směru a charakteru toku krve ve významných cévách nebo dutinách srdce.

Snímání biosignálů

ELEKTRODY A SENZORY

- Snímači biosignálů jsou nejrůznější typy elektrod a senzorů v podmínkách in vivo, tak in vitro.
- Elektrody nebo snímače aplikované in vivo slouží ke snímání biosignál nejen při klinických vyšetřeních, ale i při monitorování životních funkcí organismu na JIP, ARO nebo při chirurgických výkonech.
- Krom elektrod EKG, EEG to bývají snímače tlaku krve, průtoku krve, koncentrací kyslíku (pO2), oxidu uhličitého (pCO2).
- Při testech in vitro jsou hodnoceny fyziologické a biochemické veličiny jako elektrolyty, enzymy, metabolity v krvi - jejich obsah a koncentrace.
- Řada významných biosignálů nemá charakter elektrického potenciálu či napětí, proto je lze sledovat jen snímači, umožňujícími transformaci tohoto fyzikální signálu na signál elektrický.

ROZDĚLENÍ SNÍMAČŮ

- charakteru snímaného signálu:
 - elektrické, neelektrické
- povahy signálu:
 - fyzikální, chemické, biochemické
- způsobu aplikace:
 - povrchové, vpichové, vnitřní
- · techniky a metodiky snímání
 - klidové, neklidové podmínky
- doby aplikace
 - krátkodobé, déle trvající, implantabilní
- oboru aplikace
 - humánní, veterinární, pro fyziologický výzkum

PŘEHLED VLASTNÍCH BIOSIGNÁLŮ

Druh projevu	Způsob snímání	Diagnostická metoda
Mechanické projevy - pohyb - rychlost - tlak - mechanický výkon	mechanoelektrické měniče	spirometrie fonokardiografie apexkardiografie tonometrie ergometrie
Tepelné projevy - teplota tělesného jádra - povrchové rozložení teplot - vyzařování infračerveného záření	teploměry kapalné krystaly detektor infračerveného záření kalorimetr	termometrie kontaktní termografie termovize metabolická měření
Aktivní elektrické projevy	elektrody	EKG, EMG, EEG, ERG
Magnetické projevy	kvantový magnetometr	MKG, MMG, MEG
Faktory vnitřního prostředí - pH - pO ₂ - pCO ₂	elektrody	monitorování vnitřního prostředí

PŘEHLED ZPROSTŘEDKOVANÝCH BIOSIGNÁLŮ

Modulová veličina	Způsob modulace	Snímací zařízení	Diagnostická metoda
Rentgenové záření	útlum	fotomateriál luminiscenční stínítko	skiagrafie skiaskopie
Jaderné záření	rozložení aktivity zářiče emise fotonů emise positronů	scintilační detektory	pohybová scintigrafie gama kamera SPECT PET
Viditelné záření	odraz, lom světla	oko fotografická kamera videokamera	endoskopie videoendoskopie
Ultrazvuk	odraz změna frekvence	piezoelektrický měnič	ultrasonografie dopplerovské metody
Elektrický prou	elektrická vodivost stimulace	elektrody	reopletysmografie chronaximetrie
Elektromagnetické pole	rezonanční radiofrekvenční impuls	měřící cívky	magnetická rezonanční tomografie (MRI)

SNÍMAČE POSUNUTÍ - KAPACITNÍ

- Kapacitní snímač pro sledování změn polohy nebo posunutí využívá změny kapacity deskového kondenzátoru.
- Tyto snímače mohou být využity ke sledování pohybů pacienta na lůžku, mohou však být aplikovány i pro měření respirace, tlaku v objemu plynu nebo kapaliny.

Snímač nitroočního tlaku

SNÍMAČE RYCHLOSTI A PRŮTOKU KRVE

- Pro neinvazivní měření rychlosti toku krve, pop. i průtoku krve, se využívají piezoelektrické měniče v ultrazvukových dopplerovských médiích (např. proudění krve).
- Jde obvykle o keramické piezoelektrické měniče pracující na frekvencích od 4 do 10 MHz v kontinuálním nebo impulsním režimu.
- Piezoelektrické měniče je možné užít i k měření tlaku krve, sledování srdečních ozev ve fonokardiografii.

SNÍMAČ PROUDU VZDUCHU

- Snímač je tvořen přímým krátkým tubusem, ve kterém je uprostřed, napříč proudu vzduchu, fixována síťka.
- Ta způsobuje v proudu měřeného vzduchu malý tlakový spád.
- Tlaková diference nese informaci o rychlosti proudícího vzduchu.
- Měřena je diferenciálním tlakovým snímačem.
- Tubus má z obou stran kónické zakončení proto, aby byl zajištěn laminární rychlostní profil proudu vzduchu.
- Ohřev síťky slouží k odpařování vody, která tak na stěnách snímače nekondenzuje.

Fleishův pneumotachometr

SNÍMAČE TEPLOTY

- Teplota těla je jednou z nejpřesněji řízených fyziologických veličin v organismu a jedním ze čtyř vitálních parametrů při monitorování jeho stavu na JIP nebo ARO.
- Teplota jádra lidského těla je u zdravého jedince termoregulačními mechanismy udržována na konstantní hodnot (37 ± 0,5) °C.
- Změny této hodnoty indikují chorobný proces.
- Rutinně je tělesná teplota měřena na kůži v podpaží nebo v tělních dutinách (ústa, rektum).

SNÍMAČE TEPLOTY

- Snímače teploty lze obecně rozdlit na dotykové a bezdotykové.
- Dotykové snímače dělíme na:
 - elektrické odporové kovové, polovodičové, termočlánkové,
 - dilatační kapalinové, plynové, bimetalové,
- Bezdotykové snímače dělíme na:
 - tepelné pyroelektrické,
 - kvantové polovodičové.

• Krom dilatačního rtuťového teploměru je nejběžnějším měřičem

teploty těla teploměr termistorový.

 Bezdotykové snímače teploty, jinak snímače infračerveného záření, se využívají při měření teploty stěny zvukovodu v okolí tympanické membrány - bubínku.

MĚŘENÍ OBSAHU KYSLÍKU V KRVI

- Kyslík je za normálních fyziologických podmínek transportován z plic do tkání dvěma způsoby.
- Přibližně 2 % celkového množství O_2 neseného krví je rozpuštěno v plazmě, což je lineární úměrné p02 v krvi.
- Zbývajících 98 % je neseno erytrocyty, konkrétně reverzibilní chemickou sloučeninou O_2 s hemoglobinem zvanou oxyhemoglobin HbO2.
- Z toho vyplývají také dva přístupy k měření oxygenace krve: aplikace snímače p02 nebo měření saturace O₂ (relativního obsahu HbO2 v krvi) oxymetrem.
- Oxymetrie a využívají vlastností absorpce světla krví (plně okysličená krev má jasně červenou barvu).

MĚŘENÍ OBSAHU KYSLÍKU V KRVI

- Neinvazivní in vivo měření saturace krve kyslíkem umožňuje pulsní oxymetr.
- Snímač je tvořen párem světlo emitujících diod LED pracujících na dvou rozdílných vlnových délkách :
 - λ1 na které je velký rozdíl mezi absorpcí světla na Hb a na HbO2 (červená 660 nm),
 - λ2 kde absorpce světla je nezávislá na oxygenaci krve, nebo kde absorpce na Hb je nepatrně menší než na HbO2 (IR 960 nm).
- Elektronické obvody sekvenčně budí obě diody LED a synchronně vyhodnocují signály z fotodetektoru.

$$S_{\mathcal{O}_2} = A - B \frac{H(\lambda_1)}{H(\lambda_2)},$$

MĚŘENÍ OBSAHU KYSLÍKU V KRVI

PARAMETRY VYBRANÝCH BIOSIGNÁLŮ

Biosignál	Napěťový rozsah	Frekvenční rozsah	Elektroda
Elektrokardiogram EKG	0,5–5 mV	0,05-100 Hz	plošná
Elektroencefalogram EEG	$2-200~\mu V$	0,5-200 Hz	plošná
delta vlny		0,5–4 Hz	1
theta vlny		4–8 Hz	
alfa vlny		8–13 Hz	
beta vlny		13-22 Hz	
Elektromyogram EMG	0,05-5 mV	2-500 Hz	plošná – sval
	0,01-2 mV	5 Hz-10 kHz	jehlová – vlákno
Elektrogastrogram EGG	$10-1000 \mu V$	0–1 Hz	plošná – kůže
	0,5-80 mV	0–1 Hz	plošná – žaludek
Elektrookulogram EOG	$10 \mu V - 3.5 \text{ mV}$	0–100 Hz	plošná
Elektroretinogram ERG	0,5-1 mV	0-200 Hz	mikroelektroda
Fetální EKG, FEKG	$10-300 \mu V$	0,2-100 Hz	plošná

Elektrody

ELEKTRODY

- Tvoří periferní část spojující přístroj s tělem.
- U aktivních elektrodiagnostických metod elektrody slouží jako senzory detekující elektrické signály vytvářené různými tkáněmi.
- U pasivních elektrodiagnostických metod slouží pro přenos stimulujících proud.

MIKRO-ELEKTRODY

- Slouží k záznamu bio potenciálů z izolovaných buněk
- Mají malý průměr (0,5 1 um)
- Skleněné mikroelektrody lze získat ulomením hrotu skleněných kapilár vytažených do špičky, vnitřní prostor kapiláry je naplněn roztokem KCl o koncentraci 3 M

Microelectrodes

A glass micropipet electrode filled with an electrolytic solution (a) Section of fine-bore glass capillary. (b) Capillary narrowed through heating and stretching. (c) Final structure of glass-pipet microelectrode.

MAKRO-ELEKTRODY

- Povrchové elektrody zajištují vodivé spojení s povrchem těla
- Jehlové elektrody přímo s tkání

- Povrchové elektrody jsou kovové destičky různého tvaru
- K minimalizaci rezistence se používá tenká vrstva vodivého gelu mezi elektrodou a kůží
- Pro přesné a déletrvající měření jsou elektrody pokryty stříbrochloridovou vrstvou (k minimalizaci polarizace)

MAKRO-ELEKTRODY

- Jehlové elektrody (vpichové) mají podobu injekčních jehel a slouží k snímání biopotenciálů z anatomicky ohraničených oblastí tkáně.
- Vlastní elektrodou je vodič izolovaný uvnitř jehly.
- Slouží především ke snímání svalových biopotenciál (EMG) nebo k dlouhodobému snímání srdečních nebo mozkových potenciál.

MAKRO-ELEKTRODY

- Snímání bioelektrické aktivity i aplikace dráždivých proud se může dít bipolárně nebo unipolárně.
- Při bipolární aplikaci jsou obě elektrody aktivní.
- Při unipolární aplikaci je jen jedna elektroda diferentní (umístěna v aktivní oblasti) a druhá indiferentní (většinou velkoplošná) je umístěna do elektricky inaktivní oblasti.

Konec