$22~{\rm March}~2023$

9.6 Classwork: Mixed review

CCSS.HSG.SRT.B.5

1. Given $m \angle E = 49$, and $m \angle GFH = 114$. Find $m \angle G$.

2. Given two vertical angles, $m\angle 1=4x+5,\ m\angle 2=\frac{9x-7}{2}.$ Find $m\angle 1.$ For full credit, check by comparing to $m\angle 2.$

3. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: $\angle SPU$ is an obtuse angle.
- (b) True or False: \overrightarrow{SP} and \overrightarrow{PS} are opposite rays.
- (c) True or False: $\angle RPT$ and $\angle TPU$ are a linear pair.
- (d) True or False: $\angle SPT$ and $\angle RPS$ are adjacent.

4. Given two parallel lines and a transversal, as shown. Apply the theorem, "If a transversal intersects two parallel lines, then corresponding angles are congruent."

- (a) State the angle corresponding with $\angle 7$.
- (b) Given $m\angle 2 = 68^{\circ}$. Find $m\angle 3$.
- (c) In a proof, what reason would justify $\angle 4 \cong \angle 5$?
- (d) Given $m \angle 5 = 112^{\circ}$ and $m \angle 3 = 4x^{\circ}$. Find x.

 $22~{\rm March}~2023$

5. On the graph below, draw \overline{CD} , with C(-1,6) and D(7,3), labeling the end points. Determine and state the coordinates of the midpoint M of \overline{CD} and mark and label it on the graph.

6. Given \overline{ABC} , AC=24, and the point B partitions \overline{AC} in a ratio of 1:3. Find AB.

7. Given \overrightarrow{KM} as shown on the number line, with K having the coordinate 2.2 and M the coordinate 5.1

(a) Find the value of the coordinate of the point L, the midpoint of \overline{KM} .

(b) The point J is collinear with \overrightarrow{KM} such that K is the midpoint of \overrightarrow{JM} . Mark J on the line and state the value of its coordinate.

8. Given $\triangle DEF$. $\overline{DF} \cong \overline{EF}$, $m \angle F = 68$. Find $m \angle D$.

22 March 2023

9. Construct a duplicate of the given angle A. [Leave all construction marks.]

10. Construct a perpendicular to \overline{AB} through C.

11. Construct the angle bisectors of the angles of the triangle and their intersection, the incenter.

12. Construct the centroid of $\triangle ABC$, leaving all construction marks.

13. Given M(-7, 10) and N(-2, -2), find the length of \overline{MN} .

- 14. Given $\triangle GEM$ with G(-9, -3), E(6, -3), and M(6, 5).
 - (a) Plot and label $\triangle GEM$ on the graph, labeling its vertices.
 - (b) Find the lengths of each side of the triangle. Show the substitution into the proper formulas for full credit.

- Unit 9: Dilation 22 March 2023
 - 15. Given right $\triangle EFG$ with $m \angle F = 90^{\circ}$, EG = 8, and $m \angle E = 43^{\circ}$. Round each value to three decimal places.

- (b) $\tan E =$
- (c) Find EF.

16. Find the slope of each line.

(a)
$$y = -3x - 7$$

(b)
$$2x - 3y = 9$$

17. Find the slope of the line through the points A(5,3) and B(7,-1).

- 18. Given the quadrilateral RSTU with $R(-8,-1),\,S(2,-1),\,T(10,5),$ and U(0,5).
 - (a) Plot and label RSTU on the grid.
 - (b) Find the slope of the diagonals \overline{RT} and \overline{SU} .
 - (c) Theorem: A quadrilateral is a rhombus if and only if its diagonals are perpendicular.

Prove that RSTU is a rhombus.

Unit 9: Dilation 22 March 2023 Name:

- 19. Given the square EASY with E(-1,1), A(6,1), S(6,8), and Y(-1,8).
 - (a) Draw EASY on the graph, labeling the vertices.
 - (b) Find the area of EASY.
 - (c) Find the perimeter of EASY.

- 20. Given a circle O with radius 2.2.
 - (a) Find the circumference of O.
 - (b) Find the area of O.

- 21. Given the circle C with circumference 8π .
 - (a) Write down the formula for the circumference of a circle and solve for the radius yielding a circumference of 8π .
 - (b) Find the area of the circle.

22. On the graph, draw polygon ABCDEF with vertices A(-1, 1), B(4, 1), C(4, 5), D(9, 5), E(9, 8), and F(-1, 8). Find the perimeter and the area of the polygon.

Name:

23. Solve each equation for x, rounded to the nearest thousandth.

(a)
$$\tan 32^{\circ} = \frac{x}{14.2}$$

(b)
$$\cos 32^{\circ} = \frac{14.2}{x}$$

24. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$, $m \angle A = 32^{\circ}$, and AC = 14.2.

(a) Find AB.

(b) Find BC.

25. Given right $\triangle EFG$ with $m\angle G=90^\circ,\ EG=3.3,\ FG=5,$ and EF=6. Express each trig ratio as a fraction.

(b) $\cos E =$

(c) $\tan F =$

(d) Spicy: Using guess and check, about how many degrees is $\angle F$?

26. Construct a triangle congruent to $\triangle ABC$ using the SAS theorem.

27. Construct a triangle congruent to $\triangle ABC$ using the SSS postulate.

Unit 9: Dilation 22 March 2023

Name:

28. Express the result to the nearest thousandth.

(a)
$$\cos 60^{\circ} =$$

(b)
$$\cos 27^{\circ} =$$

29. Given right $\triangle ABC$ with $m \angle C = 90^{\circ}$.

- (a) Given BC = 4.5, AB = 10. Express $\sin A$ as a ratio.
- (b) Given $m \angle A = 27^{\circ}$. Find $m \angle B$
- (c) Find AC
- 30. Given $\triangle EFG$ with \overline{EF} extended to A. If $m \angle F = 40^\circ$ and $m \angle AEG = 140^\circ$, what is $m \angle EGF$?

31. Given right $\triangle ABC$ with $AC=6, BC=3, AB=6.71, \, m\angle C=90^{\circ}$. Express each trig ratio as a fraction, then as a decimal to the nearest thousandth.

(a)
$$\sin A =$$

(c)
$$\sin B =$$

(b)
$$\cos A =$$

(d)
$$\tan B =$$

32. Express the result to the nearest thousandth.

(a)
$$\cos 60^{\circ} =$$

(c)
$$\cos 23^{\circ} =$$

(b)
$$\sin 67^{\circ} =$$

(d)
$$\tan 45^{\circ} =$$

33. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}, JL = 7, m \angle J = 20^{\circ}.$

 $22~{\rm March}~2023$

(a)	Find	the	length	JK

(b) Find the length KL

- 34. Spicy: Given a rectangle with area 35, width x, and length x + 2.
 - (a) Find x.

(b) Find the perimeter of the rectangle.