Memoria. Sesión 4: Superposición de señales DC y AC

Ana Calzada y Junco de las Heras.

Construimos el circuito en la entrenadora. Para ello suministramos una tensión continua V1 de 10 V DC por la fuente S1. A través del generador de funciones suministraremos la señal V2 AC fijando una amplitud de 2V y una frecuencia de 1KHz.

Para medir la diferencia de tensión en el nodo A (VA), conectaremos el punto marcado como A al canal 1 del osciloscopio, en modo de acoplamiento DC.

Representamos el valor de VA en función del tiempo, midiendo los valores máximos y mínimos que alcanza la señal, así como el valor promedio.

$$V_{min} = 1.29 V$$

$$V_{max} = 2.22 V$$

$$V_{\text{medio}} = 1.76 \text{ V}$$

El valor medio es distinto de cero debido a la componente continua de la señal. Los valores los hemos obtenido a través del menú measure del osciloscopio.

A continuación cambiamos a modo de acoplamiento AC. Mantenemos conectada la salida VA al canal 1 del osciloscopio, y añadiremos la señal de entrada V2 al canal 2 del mismo. Iremos variando la frecuencia de la señal de entrada V2 con el generador de funciones, siguiendo una escala logarítmica, desde 50Hz hasta 50KHz. Para cada frecuencia medimos la amplitud de la señal de salida VA, la amplitud de la señal de entrada V2, y el desfase temporal entre las dos ondas. Con estos datos elaboraremos una tabla, a la que añadiremos una columna correspondiente a la ganancia Av (Av = |VA|/|V2|). A continuación convertiremos el desfase temporal a grados usando la siguiente fórmula:

$$\frac{\delta t}{T} = \frac{\phi}{360^{\circ}} = \frac{\phi}{2\pi \text{ rad}}$$

ecuencia(Hz)	abs(Vab)(V) VA	abs(V2)(V) ENTRADA	Av=abs(Vab)/abs(V2)	deltaT(s)	delta(grados)	20log(Av) (dB)
50	0.108	4	0.027	0.0048	86.4	-31.37272472
60	0.128	4.04	0.03168316832	0.004	86.4	-29.98342791
70	0.148	4.08	0.0362745098	0.0035	88.2	-28.80796895
80	0.176	4.08	0.0431372549	0.003	86.4	-27.30294991
90	0.194	4.08	0.04754901961	0.0026	84.24	-26.45716866
100	0.216	4.08	0.05294117647	0.0024	86.4	-25.52412824
200	0.424	4.08	0.1039215686	0.00116	83.52	-19.66588613
300	0.632	4.08	0.1549019608	0.00074	79.92	-16.1988617
400	0.832	4.08	0.2039215686	0.00056	80.64	-13.81073674
500	1.024	4.08	0.2509803922	0.00041	73.8	-12.00720413
600	1.208	4.08	0.2960784314	0.00034	73.44	-10.57186458
700	1.376	4.08	0.337254902	0.00028	70.56	-9.440834584
800	1.488	4.04	0.3683168317	0.00023	66.24	-8.675568678
900	1.728	4.04	0.4277227723	0.0002	64.8	-7.376752539
1000	1.872	4	0.468	0.00017	61.2	-6.595082939
2000	2.84	3.96	0.7171717172	0.00006	43.2	-2.887536918
3000	3.32	3.94	0.8426395939	0.000032	34.56	-1.487162762
4000	3.48	3.94	0.883248731	0.00002	28.8	-1.078339558
5000	3.64	3.94	0.923857868	0.000011	19.8	-0.6878967635
6000	3.68	3.68	1	0.000006	12.96	0
7000	3.72	3.88	0.9587628866	0.000005	12.6	-0.3657757142
8000	3.76	3.84	0.9791666667	0.000003	8.64	-0.1828675888
9000	3.8	3.84	0.9895833333	0.000002	6.48	-0.09095255501
10000	3.8	3.84	0.9895833333	0.00003	10.8	-0.09095255501
20000	3.8	3.84	0.9895833333	0.000001	7.2	-0.09095255501
30000	3.8	3.8	1	0.0000002	2.16	0
40000	3.8	3.8	1	0.0000002	2.88	0
50000	3.8	3.8	1	0.000001	1.8	0

Representamos la diferencia de fase en escala logarítmica y la ganancia en función de la frecuencia usando primero una escala logarítmica y después una escala lineal para el eje X:

Con las gráficas confirmamos lo que ya habíamos visto en el estudio previo, es decir, que el circuito se comporta como un filtro paso-alto, lo que quiere decir que la ganancia es cero para frecuencias bajas y máxima (1) para frecuencias altas. El ángulo de desfase, por el contrario, es máximo (pi/2 rad) para frecuencias bajas y cero para frecuencias altas. La frecuencia de corte será aquella a partir de la cual la ganancia deje de valer cero. Podemos calcularla como la ganancia máxima entre $\sqrt{2}$.

$$fc = \frac{1V}{\sqrt{2}} = 0.707V = > 1.974KHz$$

Gráfica obtenida en la simulación

Ahora, repetimos el proceso cambiando el condensador por una bobina de 10mH:

Los datos obtenidos en la tabla son los siguientes:

frecuencia(Hz)	abs(Vab)(V) VA	abs(V2)(V) ENTRADA	Av=abs(Vab)/abs(V2)	deltaT(s)	delta(grados)	20log(Av) (dB)
50	3.6	3.74	0.9625668449	0	0	-0.3313820287
70	3.6	3.76	0.9574468085	-0.000004	-0.1008	-0.3777068832
90	3.62	3.78	0.9576719577	-0.000002	-0.0648	-0.3756645861
100	3.68	3.8	0.9684210526	-0.000018	-0.648	-0.2787155589
200	3.64	3.8	0.9578947368	-0.000017	-1.224	-0.3736442594
300	3.68	3.8	0.9684210526	-0.000016	-1.728	-0.2787155589
400	3.64	3.78	0.962962963	-0.000016	-2.304	-0.3278083238
500	3.68	3.8	0.9684210526	-0.000016	-2.88	-0.2787155589
600	3.68	3.8	0.9684210526	-0.000016	-3.456	-0.2787155589
700	3.72	3.8	0.9789473684	-0.000016	-4.032	-0.1848131347
800	3.72	3.8	0.9789473684	-0.000015	-4.32	-0.1848131347
900	3.72	3.8	0.9789473684	-0.000014	-4.536	-0.1848131347
1000	3.68	3.8	0.9684210526	-0.00001	-3.6	-0.2787155589
2000	3.64	3.84	0.9479166667	-0.000014	-10.08	-0.4645968144
3000	3.6	3.84	0.9375	-0.000012	-12.96	-0.560574472
4000	3.56	3.84	0.9270833333	-0.000012	-17.28	-0.6576245279
5000	3.48	3.84	0.90625	-0.000011	-19.8	-0.8550396084
6000	3.4	3.84	0.8854166667	-0.000011	-23.76	-1.057046147
7000	3.32	3.84	0.8645833333	-0.0000104	-26.208	-1.263862813
8000	3.2	3.88	0.824742268	-0.000011	-31.68	-1.673634945
9000	3.12	3.88	0.8041237113	-0.00001	-32.4	-1.893542632
10000	3.04	3.88	0.7835051546	-0.00001	-36	-2.11916284
20000	2.16	4	0.54	-0.000008	-57.6	-5.352124804
30000	1.6	4	0.4	-0.00006	-64.8	-7.958800173
40000	1.28	4	0.32	-0.000005	-72	-9.897000434
50000	1.04	4	0.26	-0.000004	-72	-11.70053304

Representamos la diferencia de fase y la ganancia en función de la frecuencia usando primero una escala lineal y después una escala logarítmica para el eje X:

Podemos observar que este circuito se comporta al contrario que el anterior, siendo la ganancia máxima (0.953) para frecuencias bajas, y mínima (cero) para frecuencias altas. Es decir, se comporta como un filtro paso-bajo. El desfase es negativo, cero para frecuencias bajas, y -pi/2 rad para frecuencias altas. La frecuencia de corte será aquella a partir de la cual la ganancia deje de ser máxima. Podemos calcularla como la ganancia máxima entre $\sqrt{2}$.

$$fc = \frac{0.953V}{\sqrt{2}} = 0.674V = > 13.76KHz$$

Gráfica obtenida en la simulación