Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики :::: УНИВЕРСИТЕТ ИТМО УЧЕБНЫЙ ЦЕНТР ОБШЕЙ ФИЗИКИ ФТФ

Группа <u>М3202</u>	К работе допущен
Студент <u> Кочубеев Николай</u>	_Работа выполнена
Преподаватель Тимофеева Эльвира	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 4.10

Законы Малюса и Брюстера

1. Цель работы.

Исследование характера поляризации лазерного излучения и экспериментальная проверка законов Малюса и Брюстера.

2. Задачи, решаемые при выполнении работы.

Проверка закона Малюса и определение угла Брюстера.

3. Объект исследования.

Естественный и поляризованный свет

4. Метод экспериментального исследования.

Эксперимент, анализ данных.

5. Рабочие формулы и исходные данные.

$$I_{\text{IIp}} = kI \cos^2 \phi,$$
 $P = \frac{(n^2 - 1)^2}{2(n^2 + 1)^2 - (n^2 - 1)^2}.$ $P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$ $\tan \alpha_{\text{Bp}} = \frac{n_2}{n_1} = n_{21}.$ $k_{\parallel} = \frac{I_{max}}{I};$ $k_{\perp} = \frac{I_{min}}{I},$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Микроскоп			

7. Схема установки.

Кафедра физики

- Поляризатор 4 закреплен на турели во вращающейся обойме со стрелкой-указателем и транспортиром. При выполнении работ, в которых не требуется поляризатор, турель поляризатора может поворачиваться и выводиться из поля зрения.
 - Анализатор 7, выполнен аналогично 4.
- Двулучепреломляющий одноосный образец 5, используемый в работах по поляризации света, конструктивно выполнен аналогично 4.
- Блок 6 для измерения угла Брюстера состоит из стеклянной пластинки с поворотным устройством и отсчетной вертикальной шкалой 9, закрепленной на стойке 8.

Устройство электронного блока

Электронный блок содержит следующие органы управления, коммутации и индикации:

- 12 индикатор измерений блока амперметра-вольтметра
- 13 индикатор режима измерений блока амперметра-вольтметра
- 14 индикаторы включенного источника;
- 15 регулятор накала белого осветителя;
- 16 кнопка переключения режима измерений блока амперметра-вольтметра;
- 17 кнопка включения лазера:
- 18 ручка установки относительной интенсивности «J/J0»;
- 19 кнопка переключения фотоприемников;
- 20 индикатор относительной интенсивности излучения;
- 21 индикаторы включенного фотоприемника;
- 22 кнопка «Сеть»;
- 23 окно фотоприемников белого осветителя;
- 24 окно фотоприемника лазерного излучения;
- 25 кнопка включения лампы.

Упражнение 1

Лазер			
градус	l1	12	ср. знач
150	0,767	0,778	0,773
140	0,595	0,598	0,597
130	0,39	0,385	0,388
120	0,144	0,241	0,193
110	0,105	0,112	0,109
100	0,032	0,031	0,032
90	0,006	0,006	0,006
80	0,029	0,04	0,035
70	0,146	0,142	0,144
60	0,257	0,254	0,256
50	0,439	0,483	0,461
40	0,707	0,7	0,704
30	0,823	0,865	0,844
20	1,027	1,04	1,034
10	1,065	1,092	1,079
0	1,1	1,016	1,058
10	0,95	0,955	0,953
20	0,843	0,869	0,856
30	0,719	0,727	0,723
40	0,529	0,544	0,537
50	0,344	0,347	0,346
60	0,173	0,168	0,171
70	0,076	0,07	0,073
80	0,013	0,014	0,014
90	0,009	0,007	0,008
100	0,041	0,036	0,039
110	0,148	0,164	0,156
120	0,338	0,329	0,334
130	0,496	0,507	0,502
140	0,665	0,688	0,677
150	0,855	0,877	0,866

 $I_0 = 1.55$

Белый свет			
a,°	11	12	ср. знач
150	0.47	0.468	0.469
140	0.473	0.472	0.473
130	0.478	0.48	0.479
120	0.49	0.493	0.492
110	0.504	0.501	0.503
100	0.52	0.519	0.52
90	0.524	0.525	0.525
80	0.53	0.531	0.531
70	0.533	0.529	0.531
60	0.536	0.535	0.536

50	0.54	0.541	0.541
40	0.546	0.544	0.545
30	0.554	0.549	0.552
20	0.558	0.554	0.556
10	0.549	0.55	0.55
0	0.54	0.539	0.54
10	0.536	0.528	0.532
20	0.53	0.528	0.529
30	0.523	0.526	0.525
40	0.511	0.522	0.517
50	0.504	0.512	0.508
60	0.492	0.503	0.498
70	0.483	0.491	0.487
80	0.475	0.484	0.48
90	0.474	0.478	0.476
100	0.469	0.474	0.472
110	0.476	0.471	0.474
120	0.474	0.473	0.474
130	0.478	0.479	0.479
140	0.493	0.49	0.492
150	0.481	0.482	0.482

 $I_{0 \text{ (без поляризатора)}} = 1.549$ $I_{0 \text{ (с поляризатором)}} = 0.46$

 $I_{max} = 0.564$ $I_{min} = 0.46$

Упражнение 2 $a_{\rm 6pюcT} = 60^{\circ}$ I = 0.104

a,°	1
30	0.267
32	0.251
34	0.243
36	0.228
38	0.218
40	0.204
42	0.187
44	0.17
46	0.158
48	0.149
50	0.142
52	0.136
54	0.129
56	0.119
58	0.114
60	0.112
62	0.109
64	0.106
62	0.108
60	0.112
58	0.112
56	0.118
54	0.126
52	0.136
50	0.142
48	0.147
46	0.158
44	0.171
42	0.187
40	0.203
38	0.218
36	0.228
34	0.244
32	0.251
30	0.267

a,°	$I_{ m {\scriptsize лазерa}}$
90	0.016
0	0.011

	<i>I</i> _{бел.света}	a,°
min	0.26	90
max	0.455	29

Расчет результатов косвенных измерений

 $P_{\text{лазера}} = 0.98$

Относительная интенсивность лазера и зависимость $cos(\varphi-\varphi_m)^2$ от угла:

a,°	$I_{ m oth}$
150	0.71
140	0.567
130	0.341
120	0.182
110	0.091
100	0.033
90	0.01
80	0.018
70	0.06
60	0.181
50	0.329
40	0.509
30	0.69
20	0.848
10	0.937
0	0.978
10	1
20	0.943
30	0.828
40	0.656
50	0.463
60	0.272
70	0.138
80	0.044
90	0.036
100	0.033
110	0.096
120	0.244
130	0.404
140	0.571
150	0.74

$K_{ }$	= 0.7129
K_{2}	= 0.0071

110 0.007 1	
a,°	$cos(\varphi-\varphi_m)^2$
150	0.587
140	0.413
130	0.25
120	0.117
110	0.03
100	0
90	0.03
80	0.117
70	0.25
60	0.413
50	0.587
40	0.75
30	0.883
20	0.97
10	1
0	0.97
10	1
20	0.97
30	0.883
40	0.75
50	0.587
60	0.413
70	0.25
80	0.117
90	0.03
100	0
110	0.03
120	0.117
130	0.25
140	0.413
150	0.587

$$P_{\text{бел.света}} = 0.1015$$

 $P_{\text{бел.света (лп)}} = 0.0849$

Относительная интенсивность света и его зависимость от угла:

$I_{ m OTH}$
0.844
0.851
0.862
0.885
0.905
0.935
0.944
0.955
0.955
0.964
0.973
0.98
0.993
1
0.989
0.971
0.957
0.951
0.944
0.93
0.914
0.896
0.876
0.863
0.856
0.849
0.853
0.853
0.862
0.885
0.867

Показатель преломления стекла:

$$n_2 = 1.732$$

Степень поляризации:

 $P_{\text{лазера}} = 0.432$ $P_{(\text{по формуле})} = 0.1428$

Степень поляризации:

 $P_{\text{бел.света}} = 0.2727$

 $P_{(\pi o \phi o p M y \pi e)} = 0.1428$

Графики

Вывод

Во время лабораторной работы был эксперементально найден угол Брюстера, доказан закон Малюса, а также иследован характер поляризации света.

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

учебный центр общей физики фтф

Группа	M3202	К работе допущен 🛺
Студент	Кочубеев Николай	Работа выполнена 🐠 12.72.71
Преподаватель	Тимофеева Э. О.	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 4.10

Законы Малюса и Брюстера

1. Цель работы.

Исследование характера поляризации лазерного излучения и экспериментальная проверка законов Малюса и Брюстера.

2. Задачи, решаемые при выполнении работы.

Проверка закона Малюса.

Определение угла Брюстера.

3. Объект исследования.

Естественный и поляризованный свет

4. Метод экспериментального исследования.

Эксперимент и анализ данных

5. Рабочие формулы и исходные данные.

$$I_{\text{IIp}} = kI \cos^2 \phi, \qquad P = \frac{(n^2 - 1)^2}{2(n^2 + 1)^2 - (n^2 - 1)^2}.$$

$$P = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} \qquad \tan \alpha_{\text{Ep}} = \frac{n_2}{n_1} = n_{21}.$$

$$k_{\parallel} = \frac{I_{max}}{I};$$

$$k_{\perp} = \frac{I_{min}}{I},$$

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов) Упражнение 1.

		Лазер	
a,°	11	12	ср. знач
150	0,76	7 0,778	
170	0,595		
130	0,390	0,385	
120	0,244		
110	0,105	0,112	
100	0,032	0,031	
90	0,096	0,006	
80	0,029	0,040	
70	0,146	0,132	
60	0,257	0,254	
50	0,439	0,483	
40	0,707	0,700	
30	0,823	0,865	
20	1,017	1,040	
(0	1,065	1,072	
0	1,100	1,016	
10	0,950	0,955	
10	0,843	0,869	
30	0,719	0,727	
10	0,527	0,544	
50	0,344	0,347	
GO	0,173	0,168	
70	0,076	0000	
80	0,013	0,019	
90	0,009	0,007	
00	0,041	0,036	
10	0,149	0 164	
Lo	0,339	0,319	
130	0,496	0,507	
90	0, 665	0,699	
90	0,855	7.77	

 $I_0 = I_1 sis$

		лый свет	
a, °	11	12	ср. знач
150	0,470	0,469	
170	0,473	0,792.	
(30	0,489	0,490 80	
120	0,990	0,493	
110	0,504	9,500	
100	0,52	0,519	
90	0,524	0,525	
30	0,53	0,531	
70	0,533	0,529	
60	0,536	0,535	
50	0,54	0,541	
40	0,546	0,544	
30	0,554	0,549	
20	0,559	0,554	
10	0,549	0,55	
0	0,54	0,539	
10	0,536	0,329	
20	0,53	0,528	
30	0,523	0,526	
40	0,511	0,522	
50	0,504	0,512	
60	0,492	0,503	
20	0,483	0.491	
90	0,475	0,484	
90	0,474	0,478	
100	0,469	0,474	
(10	0,476	0,471	
120	0,474	0,473	
13#	0,499	0,479	
140	6,493	0,490	

 $I_{0 \text{ (без поляризатора)}} = \text{NM} \text{ 1 } \text{ 1$

AN 22.42.25

Упражнение 2.

 $a_{6piocr} = 60 60$

1 = 4/10	1
a. 0	1
30	0,263
32 34 36 36 30	0,251
34	4,243
34	0,114
38	0,211
40	0,124
42	1,197
44	0,770
92 94 96 98 50 58 60 62 64 62 60 58 56 59	0,119 0,119 0,124 0,137 0,170 0,153
49	0,49
50	0,142
\$2	0,136
54	0,129
56	0,142
58	0,114
60	0,112
6.5	0.109
64	0,106
62	0 108
60	0,112
58	0,112
56	0,118
54	0,112
52	0,136
50	0,142
48	0, 147
70 48 46 44 42	0,136 0,149 0,149 0,158 0,171 0,189 0,2093
44	0,171
42	9187
40	0,2093
31	0,218

36	0,218
31	0,244
51.	0,251
30	0,267

a, °	Ілазера
90	0,016
0	0,011

	Ібедсвета	a, o
min	0,16	90
max	0,455	29

Qu 82.17,24