Universidad Nacional Autónoma de México

FACULTAD DE INGENIERÍA

Robot Manipulador con 5 grados de Libertad

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

Ingeniero Mecatrónico

PRESENTA:

Eduardo Alanis Vázquez

DIRECTOR DE TESIS: Dr. Juan Mauricio Ángeles Cervantes

México, D.F., 2018

A la Facultad de Ingeniería y a la Universidad, por la formación que me han dado. Es gracias a ustedes que es posible el presente trabajo. Eduardo Alanis.

Reconocimientos

También quisiera reconocer a...

Declaración de autenticidad

Por la presente declaro que, salvo cuando se haga referencia específica al trabajo de otras personas, el contenido de esta tesis es original y no se ha presentado total o parcialmente para su consideración para cualquier otro título o grado en esta o cualquier otra Universidad. Esta tesis es resultado de mi propio trabajo y no incluye nada que sea el resultado de algún trabajo realizado en colaboración, salvo que se indique específicamente en el texto.

Eduardo Alanis Vázquez. México, D.F., 2018

Resumen

Esta tesis está dedicada al diseño, manufactura y puesta en marcha de un robot manipulador de 5 grados de libertad. La metodología de diseño propuesta busca simplificar los procesos de manufactura para la creación de robots articulados, economizar su construcción y exponer de manera educativa los principales componentes de los robots manipuladores industriales.

Índice general

Ín	\mathbf{dice}	de figuras	XI
Ín	dice	de tablas	XIII
1.	Intr	roducción	1
	1.1.	Presentación	1
		1.1.1. Objetivo	2
		1.1.2. Motivación	2
		1.1.3. Planteamiento del problema	3
		1.1.4. Metodología	3
		1.1.5. Contribuciones	3
		1.1.6. Estructura de la tesis	3
	1.2.	Marco teórico	3
2.	Des	cripción de un robot de 5 grados de libertad	7
	2.1.	Articulaciones y pares cinemáticos	7
	2.2.	Cinemática directa	9
		2.2.1. Posición	9
		2.2.2. Orientación	9
	2.3.	Cinemática inversa	9
	2.4.	Modelado	9
3.	Con	itrol	11
	3.1.	Fundamentos de control	11
	3.2.	Esquemas de control	11
		3.2.1. PID	11
	3.3.	Control por par calculado	11
	3.4.	Parámetros de diseño	11
4.	Disc	eño Mecánico	13
	4.1.	Elementos físicos	13
	4.2.	Barras, rodamientos, contrapesos	13
	4.3.	Métodos de unión	13

ÍNDICE GENERAL

5.		nufactura e instrumentación	15
	5.1.	Ensamble de componentes	15
	5.2.	Sensores y actuadores	15
		5.2.1. Motores	15
		5.2.2. Decodificador óptico	15
	5.3.	Microcontrolador	15
6.	Imp	lementación	17
	6.1.	Programación	17
	6.2.	Puesta en marcha	17
	6.3.	Pruebas mecánicas	17
Α.	Res	ultados	19
в.	Refe	erencias	21
c.	Con	clusiones/Trabajo a futuro	23

Índice de figuras

1.1.	Manipulador robótico y sus partes equivalentes en el cuerpo humano	2
1.2.	(a) La patente de G. Devol marcó el comienzo del trabajo en conjunto	
	con J. Engelberer para crear la primera compañía de robótica del mundo	
	(b) El primer robot instalado en una planta de General Motors	4
1.3.	The Stanford Arm. La configuración no es antropomórfica, cuenta con 6	
	pares cinemáticos (5 rotacionales, 1 prismático)	5
2.1.	Pares cinemáticos superiores e inferiores	8
5.1.	Órgano Terminal	16

,	/				
1	[nc]	lice	de	tab	โลร

3.1	$T\Gamma_{-}1_{-}1_{-}1_{-}1_{-}$																			10	ŝ
.3 I	Tabia i																				١

Introducción

1.1. Presentación

La primera concepción de la palabra robot proviene de la obra Rossum's Universal Robots del novelista checo Karel Capek[1]. En la lengua checha robota significa trabajo, y la RAE [2] define a un robot como Máquina o ingenio electrónico programable, capaz de manipular objetos y realizar operaciones antes reservadas solo a las personas.

En la industria, los robots más utilizados son conocidos como robots manipuladores, cuya estructura se asemeja a los brazos humanos, Fig. (1.1) [3]. Se estructura está formada por eslabones unidos mediante articulaciones para brindar libertad de movimiento en el entorno de trabajo, donde uno de los extremos del manipulador permanece fijo mientras que el otro extremo cuenta con una herramienta que le permite realizar una tarea para la que fue programado. Los robots manipuladores son utilizados en gran parte de las tareas como seleccionar y distribuir objetos, o para realizar modificaciones en su entorno como pintar o ensamblar, entre muchas otras, reduciendo los tiempos de operación y minimizando la necesidad de supervisión.

Un robot manipulador se constituye de cuatrp sistemas fundamentales. El primero es un sistema mecánico que le da forma al cuerpo del robot y está constituido pricipalmente por eslabones y articulaciones que permiten el movimiento en su espacio de trabajo, aunque también forman parte del sistema mecánico elementos de transmisión de potencia, como engranes, cadenas y poleas; elementos que otorgan estabilidad al robot, como los sistemas de contrapesos, ya sean fijos o móviles; y elementos de unión, como soldadura y tornillos. El segundo es un sistema eléctrico-electrónico que otorga energía para el movimiento de los motores, para la activación de sensores y la distribución de señales. El tercer sistema pertenece a la programación, que constituye la comunicación entre el humano y la máquina. El cuarto sistema es de control, que describe de manera matemática al robot y permite su manipulación para la realización de una tarea asignada.

Figura 1.1: Manipulador robótico y sus partes equivalentes en el cuerpo humano

1.1.1. Objetivo

Diseño y manufactura de un robot manipulador con 5 grados de libertad capaz de realizar seguimiento de trayectorias.

1.1.2. Motivación

Los robots manipuladores tienen un amplio uso en la industria y en áreas donde se pretende replicar el trabajo que realiza una persona, ya sea porque es demasiado complejo o se trata de procesos donde se requiera una gran precisión, por encontrarse en ambientes peligrosos o tóxicos, etc. Sin embargo, los robots manipuladores también pueden ser de gran utilidad en el ámbito educativo. Los estudiantes de robótica suelen tener acceso nulo o restringido a manipuladores ya sea por su delicadeza o por la intención de no dañar al robot debido a los elevados costos de reparación. La creación de un manipulador con 5 grados de libertad a un bajo costo pondrá al alcance de los estudiantes una herramienta práctica en el área de la robótica industrial.

1.1.3. Planteamiento del problema

El diseño de robots manipuladores es una temática ampliamente abarcada en los trabajos escolares de nivel licenciatura, aunque la mayor parte de esa literatura tiene por objetivo demostrar conceptualmente las capacidades de los robots manipuladores. La construcción del prototipo funcional es un elemento que no se suele llevar a término.

1.1.4. Metodología

El proceso de construcción del manipulador comienza con el diseño, para ello se plantean los requerimientos y se traducen a especificaciones del robot. Posteriormente se elabora un diseño asistido por computadora donde se obtiene la geometría y espacio de trabajo del manipulador. Se realiza la descripción analítica del movimiento mediante la cinemática directa e inversa, y se termina con la construcción de las piezas y el ensamble del prototipo.

1.1.5. Contribuciones

La principal contribución de este trabajo es la simplificación del proceso de construcción para un robot manipulador con 5 grados de libertad, con los elementos necesarios para ser replicado en posteriores trabajos y reduciendo los costos asociados a la fabricación.

1.1.6. Estructura de la tesis

En este capítulo se hace una breve descripción del trabajo a desarrollar, el objetivo y algunas ideas generales de robots manipuladores, en el siguiente capítulo se encuentran los fundamentos teóricos que sirven para entender las generalidades de los manipuladores, su composición y la forma de operarlos. En el tercer capítulo se aborda el diseño mecánico junto con un análisis de los elementos que conforman al manipulador, las geometrías y los espacios de trabajo que definirán la movilidad. En el capítulo cuatro se lleva a cabo la construcción del prototipo y la puesta en marcha. En el quinto capítulo se analizan los resultados obtenidos donde se observa la capacidad real del robot manipulador construido y en el último capítulo se tratan las conclusiones y el posible trabajo a futuro del proyecto.

1.2. Marco teórico

Los robots actuales tienen sus orígenes en máquinas controladas remotamente por un operador (teleoperadores) y por máquinas-herramienta controladas numéricamente. A pesar de que el primer teleoperador fue desarrollado en 1947 no fue hasta la década

1. INTRODUCCIÓN

de los 60's cuando los robots manipuladores se incrustaron con éxito en la industria, debido a su alta confiabilidad, repetibilidad y capacidad de adaptación a numerosas actividades. Debajo se encuentra una lista con acontecimientos importantes en el desarrollo de robots manipuladores desde sus inicios al presente.

- 1947 Desarrollo del primer teleoperador servo-eléctrico. El esclavo era servo-controlado para seguir la trayectoria del maestro, sin realimentación.
- 1948 Introducción de un sistema de realimentación en el que la fuerza ejercida por el esclavo era transmitida de vuelta al operador.
- 1949 La Fuerza Aérea de los Estados Unidos patrocinó investigaciones en el desarrollo de herramientas controladas numéricamente. La investigación se realizó para combinar la experiencia en servo-sistemas sofisticados con las recién desarrolladas técnicas de computación digital.
- 1954 George Devol registra una patente en transferencia programada de artículos, Fig (1.2).
- 1961 Desarrollo del primer brazo teleoperado equipado con sensores de contacto para dar realimentación de fuerza al operador.

Figura 1.2: (a) La patente de G. Devol marcó el comienzo del trabajo en conjunto con J. Engelberer para crear la primera compañía de robótica del mundo (b) El primer robot instalado en una planta de *General Motors*.

1963 - Lawrence G. Roberts demuestra la factibilidad de integrar sistemas de visión en los robots.

1969 - Victor Scheinman diseña *The Stanford Arm*, uno de los primeros manipuladores en ser concebidos exclusivamente para control por computadora. Fig(1.3)

Figura 1.3: The Stanford Arm. La configuración no es antropomórfica, cuenta con 6 pares cinemáticos (5 rotacionales, 1 prismático).

1973 - Creación del primer lenguaje de programación para robots WAVE en la Universidad de Stanford.

1974 - La compañía Cincinnati Milacron introduce el robot T3 con control por computadora integrado.

1976 - Avión

Descripción de un robot de 5 grados de libertad

2.1. Articulaciones y pares cinemáticos

La movilidad de un sistema puede expresarse en función de los parámetros independientes mínimos que se necesitan para describir de manera única su posición y orientación en un instante de tiempo (Norton, 2009). Estos parámetros reciben por nombre **grados de libertad** (GDL). El número de GDL también depende de las dimensiones del espacio en el que se trabaje. Para ejemplificar el caso del movimiento en un espacio plano de dos dimensiones se puede tomar un cuadrado de papel y colocarlo sobre un escritorio, el papel puede moverse de manera vertical (primer GDL), horizontal (segundo GDL) o girar (tercer GDL). Dichos movimientos también pueden limitarse. Si ahora se toma un alfiler y se clava el cuadrado de papel sobre el escritorio se han restringido los movimientos horizontales y verticales, quedando únicamente la rotación alrededor del alfiler (solamente un GDL).

En el caso del movimiento plano, los cuerpos rígidos sin restricción cuentan con tres GDL, dos que indican posición y uno que indica orientación. Si se considera ahora el espacio tridimensional, los cuerpos rígidos cuentan con seis GDL, se necesitan tres para definir la posición y otros tres que definen la orientación.

Los eslabones que componen a un robot manipulador están conectados de tal manera que se permita cierto tipo de movimiento. Existen dos movimientos a partir de los cuales se derivan cualquier movimiento complejo conocido: la traslación pura y la rotación pura. Estas conexiones entre eslabones reciben el nombre de articulaciones o pares cinemáticos, Fig (2.1)

Clase del par	Condiciones de enlace	Grados de Libertad	Nombre	Dibujo	Representación Esquemática
I	1	5	Esfera - plano		4
П	2	4	Esfera - cilindro		9
III	3	3	Esférica o rótula		Ø
III	3	3	Plana		\
IV	4	2	Cilíndrica		_
IV	4	2	Rótula con pasador		Q
V	5	1	Prismático		47
V	5	1	Rotación		^ 〒
V	5	1	Helicoidal		

Figura 2.1: Pares cinemáticos superiores e inferiores

- 2.2. Cinemática directa
- 2.2.1. Posición
- 2.2.2. Orientación
- 2.3. Cinemática inversa
- 2.4. Modelado

% Declaracion de las variables simbolicas

Control

En este capítulo, se presenta la introducción al desarrollo de la tesis, ya sea el modelo matemático o las bases del proyecto, etc. Ejemplo de cita [?)] Ejemplo de cita [?]

3.1. Fundamentos de control

Ejemplo de cita (?)

3.2. Esquemas de control

- 3.2.1. PID
- 3.3. Control por par calculado

3.4. Parámetros de diseño

Antes de comenzar, se definen en la tabla 3.1 los parámetros y variables utilizadas

Nombre Parámetro/Variable	Símbolo
Masa del péndulo	m
Masa del carro	M
Distancia del eje de giro al centro de masa	l
Aceleración gravitatoria	g
Momento de inercia péndulo respecto del eje de giro	J
Ángulo del péndulo respecto del eje vertical	θ
Velocidad angular del péndulo	$\dot{\theta},\omega$
Distancia del carro respecto al centro del riel	х
Velocidad del carro	\dot{x},v

Tabla 3.1: Parámetros dinámicos del carro-péndulo - Estos son los valores de parámetros utilizados en el diseño y las simulaciones, corresponden a los valores reales.

Diseño Mecánico

- 4.1. Elementos físicos
- 4.2. Barras, rodamientos, contrapesos
- 4.3. Métodos de unión

Manufactura e instrumentación

La figura (5.1) ilustra la geometría del efector final

5.1. Ensamble de componentes

5.2. Sensores y actuadores

5.2.1. Motores

5.2.2. Decodificador óptico

Para obtener datos que representen la posición y orientación de los eslabones se utiliza un deco

5.3. Microcontrolador

Figura 5.1: Órgano Terminal

Implementación

- 6.1. Programación
- 6.2. Puesta en marcha
- 6.3. Pruebas mecánicas

Apéndice A

Resultados

Apéndice B

Referencias

- [1] Karel Capek. (1920). R. U. R. (Rossum's Universal Robots).
- [2] Real Academia Española. (2017). Diccionario de la lengua española (23.a ed.). Consultado en http://www.rae.es/rae.html
- [3] Mark W. Spong, Seth Hutchinson, M. Vidyasagar. (2004). Robot Dynamics and Control. Lugar de publicación. Editorial.

Apéndice C

Conclusiones/Trabajo a futuro

Apéndice