

Fizyka 2 - laboratorium 2

Wyznaczanie ładunku właściwego $\frac{e}{m}$ elektronu

Ćwiczenie nr 45

8 października 2024

Aleksander Jóźwik

Adrian Krawczyk

Wydział WI	Imię i nazwisko 1. Aleksander Jóźwik 2. Adrian Krawczyk		Rok II	Grupa 3	Zespół 3
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Wyznacza	Nr ćwiczenia 45			
Data wykonania 08.10.2024	Data oddania 17.10.2024	Zwrot do popr.	Data oddania	Data zaliczenia	Ocena

1. Wprowadzenie

1.1. Cel ćwiczenia

Obserwacja toru ruchu elektronu w jednorodnym polu magnetycznym, wytworzonym przez układ dwóch cewek Helmholtza. Wyznaczenie ładunku właściwego $\frac{e}{m}$ elektronu metodą badania ruchu wiązki elektronów w jednorodnym polu magnetycznym.

1.2. Wstęp teoretyczny

Do wyznaczenia ładunku właściwego elektronu wykorzystamy w wysokim stopniu jednorodne pole magnetyczne. Na elektron w takim polu oddziałuje siła Lorentza wyrażona wzorem:

$$\vec{F} = e\vec{v} \times \vec{B}$$

gdzie e to ładunek elektronu, \vec{v} to prędkość ładunku, a \vec{B} to wektor indukcji pola magnetycznego.

Siła ta działa w kierunku prostopadłym zarówno do indukcji pola \vec{B} , jak i do prędkości \vec{v} ładunku, zakrzywiając jego tor i nie wpływając na zmianę wartości jego prędkości. Jeżeli pole magnetyczne jest dostatecznie silne, to elektron zacznie poruszać się po okręgu. W takim przypadku siła Lorentza równa jest sile dośrodkowej, z czego możemy wyznaczyć $\frac{e}{m}$:

$$evB = \frac{mv^2}{r}$$

$$\frac{e}{m} = \frac{v}{Br}$$

gdzie m to masa elektronu, a r to promień zataczanego okregu.

Ładunek jest rozpędzany w polu elektrycznym na drodze o różnicy potencjałów U, więc zależność jego prędkości v można wyznaczyć z zasady zachowania energii:

$$\frac{mv^2}{2} = eU \Leftrightarrow v = \sqrt{\frac{2eU}{m}}$$

Po podstawieniu do poprzedniego wzoru otrzymujemy:

$$\frac{e}{m} = \frac{2U}{B^2r^2}$$

Przy założeniu, że przez obie cewki układu Helmholtza płynie taki sam prąd, indukcję pola magnetycznego B w środku takiego układu można obliczyć ze wzoru:

$$B = 0.715\mu_0 \frac{nI}{R}$$

Po podstawieniu wyrażenia oraz przyjęciu za przenikalność magnetyczną powietrza $\mu_0=1.256\cdot 10^{-6}~\frac{\rm Tm}{A}$ ostatecznie otrzymujemy:

$$\frac{e}{m} = 2.480 \cdot 10^{12} \frac{UR^2}{n^2 I^2 r^2}$$

Do wyznaczenia ładunku właściwego elektronu potrzebne są: liczba zwojów wraz z ich promieniem, napięcie przyspieszające, natężenie prądu płynącego w cewkach oraz promień zataczanego przez elektron okręgu.

2. Układ pomiarowy

- 1. **Układ dwóch cewek Helmholtza** (Rysunek 1)
- 2. Lampa katodowa ze skalą o kształcie poziomej drabinki
- 3. Zasilacz cewek
- 4. Zasilacz lampy katodowej
- 5. Multimetry
- 6. Miernik

Rysunek 1: Układ dwóch cewek Helmholtza [1].

Rysunek 2: Ogólny widok układu pomiarowego [2].

Rysunek 3: Schemat obwodu zasilania cewek Helmholtza [1].

Rysunek 4: Schemat obwodu zasilania lampy katodowej [1].

3. Przebieg ćwiczenia

Po sprawdzeniu układu i podłączeniu go do zasilania, rozpoczęto właściwą część ćwiczenia. Najpierw uruchomiono obwód żarzenia, a po upływie minuty załączono napięcie siatkowe o wartości 30 V oraz napięcie anodowe, które początkowo ustawiono na 175 V. Prawidłowość napięć zweryfikowano na podłączonych miernikach. Układ stabilizował się przez około 3 minuty, po czym zaobserwowano wyraźny ślad wiązki elektronów emitowanej przez działo elektronowe lampy katodowej. Następnie uruchomiono zasilacz cewek Helmholtza i obserwując tor wiązki elektronowej, zwiększano natężenie prądu w cewkach, dążąc do uzyskania toru o kształcie okręgu. W kolejnym etapie przeprowadzono serię pomiarów dla różnych wartości napięcia anodowego: 150 V, 175 V, 190 V, 200 V i 210 V. Dla każdego z tych napięć regulowano natężenie prądu płynącego przez cewki, odczytując jego wartość w momencie, gdy wiązka trafiała w kolejne szczeble drabinki umieszczonej wewnątrz lampy. Drabinka ta służyła jako punkt odniesienia, umożliwiając określenie promienia toru wiązki elektronów dla wartości 2, 3, 4 oraz 5 cm.

4. Analiza danych pomiarowych

4.1. Wyniki pomiarów

Odczytano promień R cewek układu Helmholtza oraz liczbę zwojów n:

$$R = 0.2 \, \text{m}$$

$$n = 154$$

$\boxed{ U \ [\mathrm{V}] }$	$\boxed{ r \ [\mathrm{m}] }$	I [A]	$\frac{e}{m} \left[\frac{C}{ ext{kg}} \right]$	$\left[\left(\left(\frac{e}{m} \right)_i - \left(\frac{e}{m} \right)_{\acute{\text{sr}}} \right)^2 \left[\frac{C^2}{\text{kg}^2} \right] \right.$
150	0.02	3.28	$1.4580 \cdot 10^{11}$	$2.3584\cdot 10^{20}$
	0.03	2.04	$1.6752 \cdot 10^{11}$	$4.0463\cdot 10^{19}$
	0.04	1.49	$1.7663 \cdot 10^{11}$	$2.3951 \cdot 10^{20}$
	0.05	1.19	$1.7723 \cdot 10^{11}$	$2.5825 \cdot 10^{20}$
175	0.02	3.53	$1.4686 \cdot 10^{11}$	$2.0442 \cdot 10^{20}$
	0.03	2.27	$1.5784 \cdot 10^{11}$	$1.1002 \cdot 10^{19}$
	0.04	1.65	$1.6804 \cdot 10^{11}$	$4.7433 \cdot 10^{19}$
	0.05	1.32	$1.6804 \cdot 10^{11}$	$4.7433 \cdot 10^{19}$
190	0.02	3.65	$1.4913 \cdot 10^{11}$	$1.4451 \cdot 10^{20}$
	0.03	2.34	$1.6127 \cdot 10^{11}$	$1.2697 \cdot 10^{16}$
	0.04	1.72	$1.6790 \cdot 10^{11}$	$4.5464\cdot 10^{19}$
	0.05	1.36	$1.7187 \cdot 10^{11}$	$1.1484 \cdot 10^{20}$
200	0.02	3.80	$1.4483 \cdot 10^{11}$	$2.6638 \cdot 10^{20}$
	0.03	2.46	$1.5360 \cdot 10^{11}$	$5.7111 \cdot 10^{19}$
	0.04	1.79	$1.6318 \cdot 10^{11}$	$4.1083 \cdot 10^{18}$
	0.05	1.42	$1.6595 \cdot 10^{11}$	$2.3007 \cdot 10^{19}$
210	0.02	3.87	$1.4662 \cdot 10^{11}$	$2.1115 \cdot 10^{20}$
	0.03	2.49	$1.5742 \cdot 10^{11}$	$1.3988 \cdot 10^{19}$
	0.04	1.83	$1.6393 \cdot 10^{11}$	$7.7147 \cdot 10^{18}$
	0.05	1.44	$1.6944 \cdot 10^{11}$	$6.8683 \cdot 10^{19}$

Tabela 1: Wyniki pomiarów natężenia prądu I płynącego w cewkach dla różnych promieni zataczanych przez wiązkę okręgów i dla różnych wartości napięcia anodowego.

W wynikach pomiarów nie zaobserwowano żadnych błędów grubych.

$$\left(\frac{e}{m}\right)_{\text{\'er}} = 1.6116 \cdot 10^{11} \; \frac{C}{\text{kg}}$$

4.2. Niepewność standardowa $u_A(\frac{e}{m})$

$$\sum_{i=1}^{20} \left(\left(\frac{e}{m} \right)_i - \left(\frac{e}{m} \right)_{\text{\'sr}} \right)^2 = 2.0413 \cdot 10^{21} \; \frac{C^2}{\text{kg}^2}$$

$$u_A\!\left(\frac{e}{m}\right) = \sqrt{\frac{\sum\!\left(\left(\frac{e}{m}\right)_i - \left(\frac{e}{m}\right)_{\text{\'{sr}}}\right)^2}{N(N-1)}}$$

$$u_A\left(\frac{e}{m}\right) = \sqrt{\frac{2.0413 \cdot 10^{21} \left[\frac{C^2}{\text{kg}^2}\right]}{20(20-1)}} = 2.3177 \cdot 10^9 \frac{C}{\text{kg}} \approx 2.4 \cdot 10^9 \frac{C}{\text{kg}}$$

4.3. Niepewność rozszerzona

$$U\left(\frac{e}{m}\right) = u_A\left(\frac{e}{m}\right) \cdot k$$

gdzie k to współczynnik rozszerzenia (przyjmujemy k = 2):

$$U\left(\frac{e}{m}\right) = 2.4 \cdot 10^9 \ \frac{C}{\text{kg}} \cdot 2 = 4.8 \cdot 10^9 \ \frac{C}{\text{kg}} = 0.048 \cdot 10^{11} \ \frac{C}{\text{kg}}$$

4.4. Otrzymany ładunek właściwy elektronu

Odpowiednio zaokrąglamy wynik:

$$\left(\frac{e}{m}\right)_{\rm \acute{sr}} = 1.6116 \cdot 10^{11} \; \frac{C}{\rm kg} \approx 1.612 \cdot 10^{11} \; \frac{C}{\rm kg}$$

Porównanie wartości zmierzonej z teoretyczną:

Otrzymany wynik nie jest zgodny z tablicową wartością ładunku właściwego elektronu.

$$rac{e}{m} = \left(1.612 \cdot 10^{11} \pm 0.048 \cdot 10^{11}
ight) \, rac{C}{ ext{kg}}$$

5. Wnioski

Wartość ładunku właściwego $\frac{e}{m}=\left(1.612\cdot 10^{11}\pm 0.048\cdot 10^{11}\right)\frac{C}{\mathrm{kg}}$ nie jest zgodna z wartością teoretyczną $\left(\frac{e}{m}\right)_0=1.759\cdot 10^{11}\,\frac{C}{\mathrm{kg}}$ w granicach niepewności. Na tę rozbieżność wpływ mogły mieć: niedoskonałość wykorzystanych przyrządów, zjawisko paralaksy związane z patrzeniem pod kątem na wskazania miernika analogowego, możliwość że kształt toru ruchu wiązki elektronów nie był doskonale kolisty. Ponadto warto zwrócić uwagę, że dla każdego z napięć anodowych, wartości ładunku właściwego dla $r=2\,$ cm są wyraźnie zaniżone w stosunku do pozostałych pomiarów. Może to sugerować, że promień przyjęty dla pierwszego szczebla drabinki nie jest dostatecznie dokładnie określony.

Bibliografia

[1] W. Zieliński, Ćwiczenia laboratoryjne z fizyki.

AGH WFiIS, "Ćwiczenie nr 45: Wyznaczanie ładunku właściwego elektronu". Dostęp: 10 październik 2024. [Online]. Dostępne na: https://pf.agh.edu.pl/home/wfiis/pracfiz/Opisy_

[2] cwiczen/45_wykon-beta.pdf