OSCILLATORS

Oscillator

 Oscillator is a circuit that produces a time varying waveform using the d.c. input

Loop gain

Aβ is called a loop gain.
 It is kept slightly higher than 1
 So initially the oscillations grow

Amplitude stabilization

- Due to non-linearity in the circuit A falls as amplitude increases
- \square The amplitude stabilizes when A β becomes unity
- The frequency of oscillations is the frequency at which the phase shift becomes zero.

L-C oscillator

Note that A has an angle of zero and β has zero angle at resonance so the Barkhausen criterion is satisfied and the circuit oscillates at resonant frequency

Minimum gain requirement

$$A_{\min}\beta = 1$$
: At resonance

$$A_{\min} = \frac{1}{\beta} = \frac{R_3 + R_4}{R_4}$$

Frequency of oscillations

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Problem

R3 = R4

Find the ratio of R2 to R1 to satisfy Barkhausen criterion

L =100 μH and C = 100 pF

Find the frequency of oscillations

Answers

Amplitude limiting in oscillators

Design the above circuit for oscillating at 1.59 MHz. Diodes used are for limiting amplitude. Chose A slightly greater than Amin. And chose R5 much larger than R2 to keep distortion low.

Problem

 Build an oscillator circuit using a series resonant circuit

Oscillator with amplitude limiting

.tran 1000u startup

Output waveform

An RF oscillator circuit

Common base amplifier
C1 and C2 form the feedback circuit
Amplifier gain can be controlled by R