实验 B5 RLC 串联电路的交流稳态和谐振特性

[实验前思考题]

- 1. 实验过程中信号发生器输出端电压幅度为什么要保持不变?若实验结束后才发现总电压发生了变化,在不重做实验的情况下应如何处理?
- - 2. 如何判断 RLC 电路处于谐振状态。

当电压与电流相位差 △4 =0 时,RLC 电路处于谐振状态,可用 *系波器进行测量,调节示波器进入 X-Y z1F模型,X轴导入 电阻网端电压,为轴导入总电压信号、调整输入信号频率,使 菩萨战图形为一条直线,此时相位差为0,电路增振、

物理实验教学中心基础物理实验室编制

【实验目的】

- 1. 学习数字示波器的使用方法:
- 2、观测 RC、RL、RLC 串联电路的幅频特性和相频特性;
- 3. 学习用双踪示波器测量相位差。

[仪器用具]

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	数字存储示波器		05 1152 D - EDU
2	函数信号发生器		DG 1022
3	双通道交流毫伏表		TH 1912A
4	电阻箱		7167×21
5	测试板 (接线板)		
6	电子元器件		

[实验原理]

在 RC、RL 和 RLC 串联电路中,若加在电路两端的正弦交流信号的幅度保持不变,则当电路中的电流和电压的变化达到稳定状态时,电流(或某元件两端的电压)与频率之间的关系称为幅频特性;电压、电流之间的位相差与频率之间的关系称为相频特性。下面分三种串联电路加以分析。

1. RC 串联电路

RC 串联电路如图 B5. 1 (a) 所示, 由于电容 C 的容抗为 $Z_C=1/j\omega C$,其中C为电容量,有

$$\dot{U} = \dot{U}_R + \dot{U}_C = \dot{I}(R + 1/j\omega C) \tag{B5.1}$$

其中 \dot{U} 为信号源输出的总电压, \dot{U}_R 为电阻两端的电压, \dot{U}_C 为电容两端的电压, ω 为角频率。由式(B5.1)可得电路总阻抗的模|Z|、电流有效值I、电阻两端电压的有效值 U_R 、电容两端电压的有效值 U_C 及电路电流与总电压之间的相位差 $\Delta \varphi$ 分别为

$$|Z| = \sqrt{R^2 + (1/\omega C)^2}$$
 (B5. 2)

$$I = U\omega C/\sqrt{1 + (R\omega C)^2}$$
 (B5. 3)

$$U_R = IR = U\omega RC/\sqrt{1 + (R\omega C)^2}$$
 (B5. 4)

$$U_C = I/(\omega C) = U/\sqrt{1 + (R\omega C)^2}$$
(B5. 5)

物理实验教学中心基础物理实验室编制

$$\Delta \varphi = \varphi_{D_B} - \varphi_D = \tan^{-1}(1/R\omega C) \tag{B5.6}$$

若总电压有效值U保持不变,根据式(B5.4)和式(B5.5)可画出 $U_R\sim f$ 和 $U_C\sim f$ 幅频特性曲线,如图 B5.1(b)所示。 U_R 和 U_C 都是频率f(或角频率 ω)的函数,都随f单调变化,当频率很低时, $1/\omega C \gg R$,总电压主要落在电容上;当频率很高时, $1/\omega C \ll R$,总电压主要落在电容上;当频率很高时, $1/\omega C \ll R$,总电压主要落在电容上;

根据式 (B5.6) 可画出 RC 串联电路的 $\Delta \varphi \sim f$ 相频特性曲线,如图 B5.1(c)所示。当f 很低时, $\Delta \varphi$ 趋于 $\pi/2$:当f 很高时, $\Delta \varphi$ 趋于 0。可利用 RC 电路的这种特性,设计各种移相电路。

注意: 相位差指的是两个电压相位的差值,故计算相位差时需确定一个基准相位。在图 85.1(a)的电路中,由于 $\dot{\mathbf{0}}$ 是信号发生器输出的信号,其相位 ϕ_{U} 不随外电路参数的变化而变化、故可作为相位的基准。而电阻R为线性元件,不会导致相位的变化,其两端电压的相位 ϕ_{U_R} 与流过 RC 串联电路的电流I的相位相同。故 RC 电路导致的相移 $\Delta \phi$ 按式 (B5.6)来定义。 $\Delta \phi$ 为正表示流过 RC 串联电路的电流的相位超前于总电压的相位。

2. RL 串联电路

RL 串联电路如图 B5. 2(a) 所示, 电感 L 的感抗为 $Z_L = j\omega L$,有

$$\dot{U} = \dot{U}_R + \dot{U}_L = \dot{I}(R + j\omega L) \tag{B5.7}$$

其中 \dot{U}_L 为电感两端的电压。由式(B5.7)可得总阻抗的模|Z|、电流有效值I、电阻两端电压的有效值 U_R 、电感两端电压的有效值 U_L 及电路电流与总电压之间的相位差 $\Delta \phi$ 分别为

$$|Z| = \sqrt{R^2 + (\omega L)^2}$$
 (B5. 8)

$$I = U/\sqrt{R^2 + (\omega L)^2}$$
 (B5, 9)

$$U_R = IR = UR/\sqrt{R^2 + (\omega L)^2}$$
 (B5. 10)

物理实验教学中心基础物理实验室编制 2017 年 2 月 10 日

$$U_1 = I\omega L = U\omega L/\sqrt{R^2 + (\omega L)^2}$$
(B5. 11)

$$\Delta \varphi = \varphi_{U_R} - \varphi_U = -\tan^{-1}(\omega L/R) \tag{B5. 12}$$

若总电压有效值U保持不变,根据式 (B5.10) 和式 (B5.11) 可画出 $U_R \sim f$ 和 $U_L \sim f$ 幅频特性曲线,如图 B5.2(b)所示。 U_R 和 U_L 都是频率f(或角频率 ω)的函数,都随f单调变化。当f很低时, $R \gg \omega L$,总电压主要落在电阻上;当f很高时, $R \ll \omega L$,总电压主要落在电感上。可以利用 RL 串联电路的这种特性设计各种滤波电路。

根据式 (B5. 12) 可画出 RL 串联电路的 $\Delta \varphi \sim f$ 相频特性曲线,如图 B5. 2(c)所示。当 f 很低时, $\Delta \varphi$ 趋于 0;当 f 很高时, $\Delta \varphi$ 趋于($-\pi/2$)。可利用 RL 电路的这种特性,设计各种移相电路。

图 B5.2 RL 串联电路的稳态特性

3. RLC 串联电路

RLC 串联电路如图 B5.3 (a) 所示,有

$$\dot{U} = \dot{U}_R + \dot{U}_L + \dot{U}_C = \dot{I}[R + j\omega L + (1/j\omega C)]$$
 (B5. 13)

可得总阻抗的模|Z|、电流有效值I、电路电流与总电压之间的相位差 $\Delta \varphi$ 分别为

$$|Z| = \sqrt{R^2 + (\omega L - 1/\omega C)^2}$$
 (B5. 14)

$$I = U/\sqrt{R^2 + (\omega L - 1/\omega C)^2}$$
 (B5. 15)

$$U_R = IR = UR/\sqrt{R^2 + (\omega L - 1/\omega C)^2}$$
 (B5. 16)

$$\Delta \varphi = \varphi_{U_R} - \varphi_U = -\tan^{-1}[(\omega L - 1/\omega C)/R]$$
 (B5. 17)

若总电压有效值U保持不变,根据式 (B5.15) 可画出 $I\sim f$ 幅频特性曲线和 $\Delta \varphi\sim f$ 相频特性曲线,分别如图 B5.3 (b) 和 (c) 所示。

(1) **谐振**: 当($\omega L - 1/\omega C$) = 0时,由式 (B5.17) 可知,此时 $\Delta \varphi = 0$,电流与总电压同相,整个串联电路呈电阻性,这种特殊的状态称为 RLC 串联电路的谐振,对应的频率称

物理实验教学中心基础物理实验室编制 2017年2月10日

为谐振圆频率,记为 ω_0 、或称为谐振频率 f_0 ,则

$$\omega_0 = 1/\sqrt{LC} \quad \vec{\boxtimes} \quad f_0 = 1/(2\pi\sqrt{LC}) \tag{B5. 18}$$

- (2) **电容性**,当 $\omega L < (1/\omega C)$,即 $f < f_0$ 时, $\Delta \varphi > 0$,电流相位超前于总电压,电路 呈电容性, $\Delta \varphi$ 随f的减小而增大。当 $f \to 0$ 时, $\Delta \varphi \to \pi/2$ 。
- (3) **电感性**: 当 $\omega L > (1/\omega C)$, 即 $f > f_0$ 时, $\Delta \varphi < 0$, 电流相位落后于总电压,电路 呈电感性, $\Delta \varphi$ 随f的增大而減小。当 $f \to \infty$ 时, $\Delta \varphi \to (-\pi/2)$ 。
- (4) 幅频特性: 根据式 (B5.15) 可知,谐振时电流有效值/达到最大值 $I_M = U/R$,f大于或小于谐振频率 f_0 时,I均小于 I_M 。当R很小时, I_M 可以很大,幅频特性曲线比较尖锐。为了描述 $I\sim f$ 曲线的尖锐程度,通常把I由 I_M 下降到 $I_M/\sqrt{2}$ (即 0.707 I_M)时的频带宽度 $\Delta f = f_2 f_1$ 称为通频带宽度。 Δf 越小,曲线越尖锐,电路对频率的选择性能越好。

如图 B5.3 (a), 电路谐振时, 电容和电感两端的电压分别为

$$\begin{cases}
U_C = I_M |Z_C| = U/(R\omega_0 C) \\
U_L = I_M |Z_L| = \omega_0 L U/R
\end{cases}$$
(B5. 19)

将式 (B5.18) 代入式 (B5.19), 有

$$\begin{cases} U_C/U = 1/(R\omega_0 C) = \sqrt{LC}/RC \\ U_L/U = \omega_0 L/R = \sqrt{LC}/RC \end{cases}$$
 (B5. 20)

定义参数

$$Q = U_C/U = U_L/U = 1/(R\omega_0 C) = \omega_0 L/R = \sqrt{LC}/RC$$
 (B5. 21)

该参数称为谐振电路的品质因数,简称Q值,是表征谐振电路性能优劣的重要物理量之一。谐振时, $U_C=U_L=QU$,所以Q值越大,电感、电容上的电压与总电压的比值也越大,电路储能效率越高。在某些传感器(如收音机接收天线)中,利用这种特性可显著提高仪器的灵敏度或效率。可证明, $\Delta f=f_0/Q$,即 $Q=f_0/\Delta f$,故Q值越大,带宽 Δf 越窄,幅频特性曲线的谐振峰越尖锐,电路对频率的选择性越强。

图 B5.3 RLC 串联电路的稳态特性

物理实验教学中心基础物理实验室编制

[实验内容及步骤]

1、RC 串联电路稳态特性

(1) 观测 RC 串联电路的幅频特性

按图 B5. 4 连线,由函数信号发生器产生正弦信号,取 $R=500\Omega$,C=0.47μF。测量过程中需经常调节信号源幅度,使总电压有效值U=2.0V 并保持不变。频率f取(100、300、600、1k、3k、6k、10k、30k、60k、100k、300k、600k、1M、3M、6M、10M)Hz,用图 B5. 4 (a) 测 U_R ,用图 B5. 4 (b) 测量 U_C ,作 (U_R,U_C) ~f 幅频特性曲线,并分析实验结果。上述取点方式使实验点在对数坐标系中几乎均匀分布。测量电压时可采用示波器,也可采用双通道交流毫伏表。

注意:图 B5.4 (a)和 (b)所示的电路是不同的,测量 U_R 或 U_C 时需重新接线。不能采用图 (a)测量 U_C ,这样会因为 CH1 点接地导致 RC 短路,或因为 CH2 点接地导致 R 短路。

图 B5.4 RC 和 RL 串联电路稳态特性分析接线图

(2) 观测 RC 串联电路的相频特性

按图 B5. 4 (a) 连线,总电压接示波器 CH1 通道,电阻两端电压接 CH2 通道,频率 f 取值与幅频特性实验相同。对应每个频率,用双踪示波器(或相位差计),测出流过电路的电流与总电压之间的相位差

$$\Delta \varphi = \varphi_{U_R} - \varphi_U = \varphi_2 - \varphi_1 = (\Delta L/L) \times 360^{\circ}$$
 (B5. 22)

作 $\Delta \varphi \sim f$ 相频特性曲线。计算时要注意 $\Delta \varphi$ 的正负。

注:波峰位置较平滑,误差较大,用波形与接地扫描线的交点来测量更为准确。

2. 观测 RL 串联电路的幅频特性和相频特性

(1) 测量方法和频率取值与 RC 串联电路相同,参照图 B5. 4 接线,但将其中的电容物理实验数学中心基础物理实验室编制 2017年2月10日

改为L=20mH的电感。测出各频率下的 U_R 和 U_L 值,以及 U_R 和U之间的相位差 $\Delta \varphi$,作 $(U_R,U_L)\sim f$ 幅频特性曲线和 $\Delta \varphi\sim f$ 相频特性曲线。

- (2) 取f = 300Hz时的 U_R 和 U_L 值, 计算电压 $(U_R + U_L)$ 的值, 验算 $(U_R + U_L)$ 是否等于总电压U = 2.0V。若不相等, 试解释原因。
 - 3. 观测 RLC 串联电路的幅频、相频、谐振特性

(1) 测量 RLC 串联电路的幅频特性

接图 B5. 5 连线, $C=0.47\mu F$, $L=20 \mathrm{mH}$, $R=10\Omega$,总电压有效值 $U=2.0 \mathrm{V}$ 保持不变。频率取值与实验内容 1 和 2 相同,测量电阻R两端的电压 U_R ,并计算流过电路的电流的有效值 $I=U_R/R$ 。作 $I\sim f$ 幅频特性曲线,曲线峰值对应的频率即电路的谐振频率,记为 f_{01} 。由 $I\sim f$ 曲线求出通频带宽度 Δf ,并计算电路的品质因素,记为 $Q_1=f_{01}/\Delta f$ 。

(2) 测量 RLC 串联电路的相频特性

电路和元件参数不变,用双踪示波器测量总电压和电阻两端电压的相位差 $\Delta \varphi = \varphi_{U_R} - \varphi_{U}$,测量时需注意 $\Delta \varphi$ 的正负。作 $\Delta \varphi \sim f$ 相频特性曲线,由曲线与f 轴(即 $\Delta \varphi = 0$ 的直线)的交点得到电路的谐振频率,记为 f_{02} 。根据式(B5.21)计算电路品质因素,记为 $Q_2 = 1/(2\pi f_0 RC)$ 。

(3) 谐振点性质的精确测量

图 B5.5 RLC 串联稳态

用双踪示波器观察波形,调节信号发生器输出信号的频率,直至总电压和电阻两端电压完全重合,相位差 $\Delta \varphi$ 为零,此时信号的频率即为电路的谐振频率,记为 f_{03} 。在谐振点下用交流毫伏表(地线是虚地)测量总电压U、电容两端电压 U_c 、电感两端电压 U_L 以及电阻两端电压 U_R 的有效值。并将这些参数代入式(B5.21)计算电路的品质因素,记为 $Q_3 = U_C/U$ 和 $Q_4 = U_L/U$ 。

根据选定元件的参数,由式(B5.18)计算电路谐振频率的理论值,记为 f_0 。根据式(B5.21)计算电路品质因素的理论值,记为Q。对比谐振频率(f_{01} , f_{02} , f_{03} , f_0)的异同并说明原因,对比品质因素(Q_1 , Q_2 , Q_3 , Q_4 , Q)的异同并说明原因。

提示:讨论分析时需考虑电感线圈直流电阻RL的影响。

[数据记录]

1. RC 串联电路的幅频特性和相频特性

R = 510 s			C= 0.47 µ F					U = 2.0V			
f/Hz	100	300	600	114	シド	6K	10k	30K	601	100/2	
U_c/V	1.972	1.850	1.463	1.098	0.45b	0.238	0.146	4.88/1	2.19>	1-09 ×10-0	
U_R/V	0.310							1		2.019	
L/div	5	6.6	8.3	> S	3.4	3. 4	5	6.7	4.2	4	
$\Delta L/\operatorname{div}$	1.2	1 · 1	1	0.4	0.2	0.1	0	0	D	0	
T/s											
$\Delta T/s$											
$\Delta \phi$ / °	86.4	60.0	43.4	28.8	21.1	10.6	0	0	0	O	

2.035 206

2. RL 串联电路的幅频特性和相频特性

ZOMH R= Sloa L= 0-470pf U = 2.0 V f/Hz614 31 100 300 600 1 k lok bok 100K 30k U_L/V 2.021 0.4120.432 0.478 0.567 1.091 1.589 1.808 2,037 2.012 0.241 0.139 U_R/V 1.600 1.585 1.578 1.560 1.362 1.015 0.656 0.072 L/div 3.5 8.3 5 10 6.7 5 6.8 5 6.7 3.4 0.9 $\Delta L/\text{div}$ 0.9 0.1 0 0.1 0.2 0.6 1.2 1.6 1 T/s $\Delta T/s$ Δφ / · -64.8 -86.0 -95.3 -14.4 -31.8 -52.0 -11.0

物理实验教学中心基础物理实验室编制

3. RLC 串联电路的相频特性

 $R = 510 \Omega$ L = 20mH $C = 0.47 \mu F$

谐振频率: fo= 1.64 kHz

f/Hz	100	300	600	Ik	3K	610	10/4	30 K	bok	1001
TIAM	0.08	3.36	1.72	1.02	0.332	0.168	0, 100		3 1.72	×10-2 1 6
$\Delta T/S$	2.48	0.68	0.3	0.152	-0.052	-0.014	-0.006	-0.001	-4×10	-4, -4,
$\Delta \phi$	3.6	4.4	6.0}	10.08	-30.2	-43.1	-56.16	-79.7	-86.2	-89.
f/Hz		book				IOM				
T/sms	3.36×1	0-31.681	1031.52	3.34 ×10	4	1.02 11	-4	- F-		
$\Delta T/$	4×10	6.8×1	0-7 	10-73.6	10-7 2.8	40 ⁻⁾ 2.2,	10-7			
	-86.2									
f/Hz	101							SE LE		
T/s	20 3	96 =	4		\$ 14	I 5.	6 00	€ G	1	
Δ <i>T</i> / s) , = 18	arc 8	18 1 18	2-118		0.87	H 12 2	0214	3	
$\Delta \phi_{/}$	11, 14	0.0102	d C 71		l-l ug	2.1-82	2. 28	1.60		
f/Hz	4	A. 1					9414 ·	d le		
T/s				1 6	9 5		g 1			
ΔT/s							1 1 1			
$\Delta \phi$										714

物理实验教学中心基础物理实验室编制 2017年2月10日

| 数据处理与分析 |

- 1. 画出 RC 串联电路的幅频特性曲线和相频特性曲线。
- 2. 画出 RL 串联电路的幅频特性曲线和相频特性曲线。
- 3. 取f = 200Hz 时数据,验算电压 $(U' = U_R + U_L)$ 是否等于总电压U = 5.0V。若不相
- 等,请解释原因。不相等,电阻,电图的电压有方向,总电室应为失量如而
- 4. 画出 RLC 串联电路的相频特性曲线,并从图中找出谐振点。由于频率跨度大,要 **不乏以为**求采用单对数坐标系画图,横坐标为以 10 为底的对数,纵坐标为线性坐标。

物理实验教学中心基础物理实验室编制

[实验后思考题]

- 1. 怎样测量两个同频率正弦信号的位相差?包括数值和符号。
- 2. 测量电路的幅频特性时,能否采用三角波或方波?为什么?
- 1. 可以用双键示波器测量相任差
 - ①将符测信号接入CHI. CHZ通道.
 - ②操作光林.使肠介波形-个周期内最靠近的波峰与光桥相点.
 - ③两为杨羌俊 OX为AT,再读出了国期的X,即为T.
 - 田相任羌四=学·江
- 2. 不断. 三角波和方波不是单额信号, 电路中电压达&不到船室收 **忘. 得不到 临频特性曲线.**