- 1. If a sequence is convergent, then every subsequence of it is convergent,
- 2. If a subsequence is divergent, the original sequence is divergent,
- 3. If two subsequences converge to distinct limits, the original sequence is divergent.

Example 0.1.

- 1. 3, $\sqrt{10}$, ..., \sqrt{n} , ... diverges to ∞ ,
- 2. $((1+\frac{1}{n})^n)_2$ converges to e,
- 3. 1, -1, 1, -1 ..., $(-1)^{n-1}$, ... diverges since it has the subsequences (1) and (-1) having distinct limits 1 and -1.

THEOREM 0.1. If $(a_n) \to a$, $(b_n) \to b$, and $c \in R$, then

$$a)(c \ a_n) \to ca$$
 $b)(a_n + b_n) \to a + b$ $c)(a_n b_n) \to ab$ $d)(\frac{a_n}{b_n}) \to \frac{a}{b} \ (if \ b_n \neq 0, \ b \neq 0)$ $d)(|a_n|) \to |a|$

PROOF. We prove c) only. Those of the others are similar. The proof runs in the same way as that for functions with continuous variable.

Let $a_n \to a$, $b_n \to b$. Then given $\epsilon > 0$ there exists N > 0 such that