Set u=0 and $K_1=\mathcal{M}$.

Put $cmat = (c + (q^-)^T \bar{A}, 1)$, Amat = NULL, bmat = NULL

repeat

Put $\nu = \nu + 1$

Compute $\eta_{\nu} = \sum_{n \in K_{\nu}} p_n (q^+ + q^-)^T A(\omega_n)$ and $\zeta_{\nu} = \sum_{n \in K_{\nu}} p_n (q^+ + q^-)^T b(\omega_n)$ Put $Amat = rbind(Amat, (-\eta_{\nu}, \zeta_{\nu}, -1))$, bmat = c(bmat, 0)

Solve the linear problem $\min_{(x,w)} cmat^T*(x,w)$ with the constraints $Amat*(x,w)^T \leq bmat^T$ and denote its solution by (x^*,w^*) .

$$K^{*} = \left\{ n \in \mathcal{M} : \left(q^{+} + q^{-} \right)^{T} \left(b \left(\omega_{n} \right) - A \left(\omega_{n} \right) x^{*} \right) \ge 0 \right\},$$

$$w_{+}^{*} = \sum_{n \in K^{*}} p_{n} \left(q^{+} + q^{-} \right)^{T} \left(b \left(\omega_{n} \right) - A \left(\omega_{n} \right) x^{*} \right), \quad \hat{w}^{*} = \zeta_{\nu} - \eta_{\nu} x^{*}.$$

Set $K_{\nu+1}=K^*$ Compute

$$\underline{F} = c^T x^* + (q^-)^T \bar{A} x^* + w_+^*, \quad \overline{F} = c^T x^* + (q^-)^T \bar{A} x^* + \hat{w}^*.$$

while $(\overline{F}-\underline{F})>\varepsilon$

Output: x^*