MATH 564 - Assignment6

2022-11-20

-Mohammed Wasim RD(A20497053)-

Problem 1 - Ex 14.9

```
data1<-read.table("http://www.cnachtsheim-text.csom.umn.edu/Kutner/Chapter%2014%20Data%20Sets/CH14PR09.
colnames(data1)[1] ="Y"
colnames(data1)[2]="X"
head(data1)
    Y
## 1 0 474
## 2 0 432
## 3 0 453
## 4 1 481
## 5 1 619
## 6 0 584
lg = glm(Y ~ X, data = data1, family=binomial('logit'))
summary(lg)
##
## Call:
## glm(formula = Y ~ X, family = binomial("logit"), data = data1)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -1.7845 -0.8350
                      0.5065
                               0.8371
                                        1.7145
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -10.308925
                            4.376997 -2.355
                                               0.0185 *
                 0.018920
                            0.007877
                                       2.402
                                               0.0163 *
## X
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 37.393 on 26 degrees of freedom
## Residual deviance: 29.242 on 25 degrees of freedom
## AIC: 33.242
## Number of Fisher Scoring iterations: 4
```

Fitted response function is

```
b_0 = -10.308925 b_1 = 0.018920 \hat{\pi} = \frac{1}{1 + e^{(10.308925 - 0.018920X)}}
```

b)

```
xx <- with(data1, seq(min(X), max(X), len = 200))
plot(Y ~ X, data1, pch = 19, col = "gray40", xlab = "X", ylab = "Y")
lines(xx, predict(loess(Y ~ X, data1), data.frame(X = xx)), lty = 2, col = 'blue')
lines(xx, predict(lg, data.frame(X = xx), type = "resp"), lwd = 2)
title("Scatter Plot with Loess (blue) and Logistic Mean Response Functions")</pre>
```

Scatter Plot with Loess (blue) and Logistic Mean Response Function

The above plot seems to be good with low curves.

c)

```
expo_b1 = exp(0.018920)
cat("Exponent of beta 1 :", expo_b1)
```

Exponent of beta 1:1.0191

The e^{β_1} is 1.0191, The odds ratio of able to perform in a task group (Y=1) versus unable to perform in a task group (Y=0) increase by 1.0191 times.

d)

cat("The estimated probability that employees with an emotional stability \n test scores of 550 will be

The estimated probability that employees with an emotional stability
test scores of 550 will be able to perform in a task group is: 0.5242263

```
e)
xi= (log(.70/.30) - lg$coefficients[1])/lg$coefficients[2]
xi

## (Intercept)
## 589.6577
```

From the function: $\log \frac{\hat{\pi}}{1-\hat{\pi}} = \beta_0 + \beta_1 X$ knowing $\hat{\pi} = 0.70$, test score of X = 589.65 can be calculated to be. Therefore at least test score of 589.65 increase in will cause 70% of employee to able perform in the task group

Ex 14.10 (a)

```
probit_mean_response = glm(Y ~ X, data = data1, family=binomial('probit'))
summary(probit_mean_response)
##
## Call:
## glm(formula = Y ~ X, family = binomial("probit"), data = data1)
## Deviance Residuals:
##
       Min
                      Median
                                    3Q
                 1Q
                                            Max
## -1.7940 -0.8336
                      0.4824
                                0.8380
                                         1.7223
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -6.374398
                            2.464111 -2.587 0.00968 **
                0.011695
                            0.004437
                                       2.636 0.00839 **
## X
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 37.393 on 26 degrees of freedom
## Residual deviance: 29.102 on 25 degrees of freedom
## AIC: 33.102
##
## Number of Fisher Scoring iterations: 5
The probit link model function is : \hat{\phi} = (-6.374398 + 0.011695X)
If we look at the "probit" link model, it is better since it has a lower AIC and smaller Deviance.
```

Problem 2 - Ex 14.13

```
data2=read.table("http://www.cnachtsheim-text.csom.umn.edu/Kutner/Chapter%2014%20Data%20Sets/CH14PR13.ta
colnames(data2)[1] = "Y"
colnames(data2)[2] = "X1"
colnames(data2)[3] = "X2"
head(data2)
```

Y X1 X2

```
## 1 0 32
## 2 0 45
## 3 1 60
## 4 0 53
            1
## 5 0 25
## 6 1 68 1
  a)
car_logistic = glm(Y ~ X1 + X2, data=data2, family=binomial('logit'))
summary(car_logistic)
##
## Call:
## glm(formula = Y ~ X1 + X2, family = binomial("logit"), data = data2)
## Deviance Residuals:
                        Median
##
       Min
                  1Q
                                      3Q
                                               Max
  -1.6189
            -0.8949 -0.5880
                                  0.9653
                                            2.0846
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.73931
                             2.10195
                                       -2.255
                                                 0.0242 *
## X1
                 0.06773
                             0.02806
                                        2.414
                                                 0.0158 *
## X2
                 0.59863
                             0.39007
                                        1.535
                                                 0.1249
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 44.987 on 32 degrees of freedom
## Residual deviance: 36.690 on 30 degrees of freedom
## AIC: 42.69
## Number of Fisher Scoring iterations: 4
b_0 = -4.73931 \text{ \$b\_1} = 0.06773 \text{ \$ } b_2 = 0.59863 \text{ } \hat{\pi} = \tfrac{1}{1 + e^{(4.73931 - 0.06773X1 - 0.59863X2)}}
  b)
expo_b1 = exp(0.06773)
expo_b2 = exp(0.59863)
cat("Exponent of beta 1 :", expo_b1)
## Exponent of beta 1 : 1.070076
cat("\nExponent of beta 2 :", expo_b2)
## Exponent of beta 2 : 1.819624
e^{\beta_1}: 1.070076 \ e^{\beta_2}: 1.819624
```

Here beta 1 value says that for every every one unit increase in annual income, the odds ratio to family purchasing new car (Y=1) versus not purchasing (Y=0) increase by 1.070076 times

Here beta 2 value says that every one unit increase in current age of the oldest family automobile, the odds ratio to family purchasing new car (Y=1) versus not purchasing (Y=0) increase by 1.819624 times

c)
cat("The estimated probability that a family with annual income of \n\$50 dollar and an oldest car of 3
The estimated probability that a family with annual income of
\$50 dollar and an oldest car of 3 year will purchase a new car is: 0.6090245

Problem 3 - Ex 14.12

```
data3<-read.table("http://www.cnachtsheim-text.csom.umn.edu/Kutner/Chapter%2014%20Data%20Sets/CH14PR12.
colnames(data3)[1] ="X"
colnames(data3)[2]="n"
colnames(data3)[3] ="Y"
head(data3)
##
    Х
        n
## 1 1 250
          28
## 2 2 250 53
## 3 3 250 93
## 4 4 250 126
## 5 5 250 172
## 6 6 250 197
toxic_logistic = glm(Y/n ~ X, data=data3, family=quasibinomial(link = "logit"))
summary(toxic_logistic)
##
## Call:
## glm(formula = Y/n ~ X, family = quasibinomial(link = "logit"),
      data = data3)
##
## Deviance Residuals:
          1
## -0.032203 -0.007051
                         0.047185 -0.018146 0.030001 -0.035409
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.09405 -28.11 9.53e-06 ***
## (Intercept) -2.64367
               0.67399
                          0.02356
                                   28.61 8.89e-06 ***
## X
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for quasibinomial family taken to be 0.001451794)
##
##
      Null deviance: 1.5322779 on 5 degrees of freedom
## Residual deviance: 0.0057964 on 4 degrees of freedom
##
## Number of Fisher Scoring iterations: 4
```

```
library(ggplot2)
ggplot(data3, aes(x=X, y=Y/n)) + geom_point(alpha=.5) + stat_smooth(method="glm",se=FALSE, method.args=:
## `geom_smooth()` using formula 'y ~ x'
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```


It seems like the logistic regression for this data seems appropriate. as we are having the curve.

```
b)
toxic_logistic = glm(Y/n ~ X, data=data3, family=quasibinomial(link = "logit"))
summary(toxic_logistic)
##
## Call:
```

```
## glm(formula = Y/n ~ X, family = quasibinomial(link = "logit"),
##
       data = data3)
##
## Deviance Residuals:
                                3
                                                       5
## -0.032203 -0.007051
                         0.047185 -0.018146
                                               0.030001 -0.035409
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.64367
                          0.09405 -28.11 9.53e-06 ***
               0.67399
                           0.02356
                                    28.61 8.89e-06 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for quasibinomial family taken to be 0.001451794)
##
       Null deviance: 1.5322779 on 5 degrees of freedom
##
## Residual deviance: 0.0057964 on 4 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 4
b_0 = -2.64367 \ b_1 = 0.67399 \ \hat{\pi} = \frac{1}{1 + e^{(4.73931 - 0.06773X1)}}
  c)
toxic1 = data.frame(X=seq(min(data3$X), max(data3$X),len=500))
toxic1$Y = predict(toxic_logistic,toxic1, type="response")
plot(Y/n ~ X, data = data3, col='blue')
lines(Y/n ~ X, data = data3, lwd=3, col='violet')
lines(Y ~ X, data=toxic1 , lwd= 3, col='orange')
legend(x = "topleft", box.col = "black", box.lwd = 2 , title="Toxicity Experiments", legend=c("part(a)"
                  Toxicity Experiments
                 part(a)
                fitted logistic regression(part
                 estimated data
     0.5
     0.3
             1
                           2
                                         3
                                                                      5
                                                                                    6
```

Fitted Logistic Regression line (orange) seems to fit significantly good on the estimated datapoints.

d)
expo_b1 = exp(0.67399)
cat("Exponent of beta 1 :", expo_b1)

Χ

Exponent of beta 1 : 1.96205

 $e^{\beta_1}:e^{1.96205}=1.96205$ is the increase in Odds of disease gain obtained increaseing in X by 1 unit

```
e)
cat("The estimated probability that an insect dies when the dose level is X = 3.5:", predict(toxic_logi
## The estimated probability that an insect dies when the dose level is X = 3.5: 0.4293018

f)

xi_toxic= (log(.50/.50) - toxic_logistic$coefficients[1])/toxic_logistic$coefficients[2]
xi_toxic

## (Intercept)
## 3.922409
```