Подготовка к экзамену по матану.

Иван Пешехонов. ФКН. БПМИ1912.

23 февраля 2020 г.

Оглавление

1	Сис	Системы линейных уравнений		
	1.1	Теория	Я	2
		1.1.1	Сколько может быть решений у системы	2
		1.1.2	Расширенная матрица	2
		1.1.3	Метод Гаусса	3
		1.1.4	Операции с матрицами: перемножение и транспонирование	4
	1.2	Разбој	ры задач	2
		1.2.1	Пример системы с единственным решением	2
		1.2.2	Пример несовместной системы	6
		1.2.3	Пример системы с бесконечным числом решений	6
	1.3	Задач	и	7

Глава 1

Системы линейных уравнений

1.1 Теория

Вспомним некоторые понятия, которые пригодятся нам для решения системок.

1.1.1 Сколько может быть решений у системы

Прежде всего поговорим про число решений у системы, всего, вообще говоря, может быть три варианта:

- Система может не иметь решений (быть несовместной)
- Система может иметь ровно одно решение
- Система может иметь бесконечно много решений

Это все варианты, бывает случай, когда система не может не иметь решений, но никогда не может быть такого, чтобы система имела конечное число решений, большее одного.

1.1.2 Расширенная матрица

Так же нам понадобится понятие расширенной матрицы:

Расширенная матрица имеет вид (A|b), где A - матрица, составленная из коэффициентов перед неизвестными в системе, а b - столбец значений, стоящих после знака равно. Покажу на примере, как делать переход от системы к расширенной матрице:

$$\begin{cases} 4x_1 + 6x_2 + 14x_3 + x_4 = 12 \\ 31x_1 + x_2 + 12x_4 = 7 \\ 13x_2 + 17x_3 + 21x_4 = 5 \\ 3x_1 + 7x_2 + x_3 + 3x_4 = 0 \end{cases} \iff \begin{pmatrix} 4 & 6 & 14 & 1 & | & 12 \\ 31 & 1 & 0 & 12 & | & 7 \\ 0 & 13 & 17 & 21 & | & 5 \\ 3 & 7 & 1 & 3 & | & 0 \end{pmatrix}$$

Обратим внимание на красные нули: во втором уравнении отсутсвует переменная x_3 , так же как отсутсвует x_1 в третьем уравнении, это то же самое, как если бы мы их записали, но поставили перед ними коэффициент 0. Вот этот 0 мы и переносим в матрицу.

Немного про размер раширенной матрицы: если в системе есть m уравнений, и всего в системе используется n переменных, то размер матрицы коэффициентов будет $m \times n$, а размер расширенной матрицы, соответственно $m \times (n+1)$.

1.1.3 Метод Гаусса

Теперь немного о том, как собственно решать системы уравнений. Алгоритм:

- 1. Записать раширенную матрицу
- 2. Выполнять элементарные преобразования, приводя левую часть расширенной матрицы к ступенчатому виду
- 3. Выполнять элементарные преобразования, приводя левую часть расширенной матрицы к улучшенному ступенчатому виду
- 4. Записать ответ

Будем считать, что с первым пуктном мы разобрались, теперь второй и третий.

Вспомним, что есть такое элементарные преобразования и что вообще значит "матрица ступенчатого вида".

Элементарные преобразования, это способ менять матрицу, не меняя при этом какие-то важные харрактеристики, которые нас интересуют (множество решений, ранг, определитель...). Всего элементарные преобразования существуют трёх типов:

- 1. К какой-то строке прибавить какую-то другую строку, умноженную на некоторое число.
- 2. Поменять две строки местами.
- 3. Какую-то строку умножить на некоторое, ненулевое число.

Все эти действия можно в <u>последовательном</u> порядке применять к расширенной матрице, и не бояться, что какие-то решения продолбаются (если конечно не сделать арифметическую ошибку). Что значит "последовательный порядок"? Очень просто, строго запрещается одновременно выполнять с одной строкой два каких-то преобразования, чтобы избежать путаницы, и действительно не продолбать решения.

Теперь про ступенчатый и улучшенный ступенчатый виды:

Прежде всего верущим элементом будем называть первый ненулевой элемент в строке. Матрица имеет ступенчатый вид, если под всеми ведущими элементами стоят нули, а номера ведущих элементов строго возрастают. Пример: слева и посередине матрица ступенчатого вида, справа матрица не имеет ступенчатый вид.

$$\begin{pmatrix} 1 & 4 & 5 & 11 \\ 0 & 3 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix} \qquad \begin{pmatrix} 1 & 4 & 5 & 11 & 6 \\ 0 & 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 8 & 1 \\ 0 & 0 & 0 & 0 & 12 \end{pmatrix} \qquad \begin{pmatrix} 1 & 4 & 5 & 11 & 6 \\ 0 & 0 & 1 & 2 & 4 \\ 2 & 0 & 0 & 8 & 1 \\ 0 & 4 & 0 & 0 & 12 \end{pmatrix}$$

Контрольный вопрос: является ли матрица
$$\begin{pmatrix} 1 & 4 & 5 & 11 & 6 \\ 0 & 0 & 1 & 2 & 4 \\ 0 & 0 & 0 & 8 & 1 \\ 0 & 4 & 0 & 0 & 12 \end{pmatrix}$$
 ступенчатой?

Аналогично матрица имеет улучшенный ступенчатый вид, если

- 1) Она имеет ступенчатый вид
- 2) Ведущими элементами являются единицы
- 3) Над ведущими элементами стоят нули

Следующие матрицы имею улучшенный ступенчатый вид:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 8 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Контрольный вопрос: имеет ли матрица
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 2 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 6 \\ 0 & 0 & 0 & 1 & 8 \end{pmatrix}$$
 улучшенный ступенчатый вид?

Собственно по системам уравнений всё, как это делать ручками и как записывать ответ я покажу на конкретных примерах в следующем блоке.

Полезный факт: матрицу можно привести к ступенчатому виду используя <u>только</u> целочисленные преобразования. С улучшенным ступенчатым видом так уже не работает.

Всё что будет написано дальше касается уже следующего типа задач, а именно решений матричных уравнений.

1.1.4 Операции с матрицами: перемножение и транспонирование

Хз на самом деле, как описать по-русски переменожение матриц, поэтому я лучше приведу тройку примеров, и буду надеяться, что что-то понятно:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot 5 + 2 \cdot 0 \\ 3 \cdot 2 + 4 \cdot 1 & 3 \cdot 5 + 4 \cdot 0 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ 10 & 15 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 5 & 3 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 1 & 1 \cdot 5 + 2 \cdot 0 & 1 \cdot 3 + 2 \cdot 2 \\ 3 \cdot 2 + 4 \cdot 1 & 3 \cdot 5 + 4 \cdot 0 & 3 \cdot 3 + 4 \cdot 2 \end{pmatrix} = \begin{pmatrix} 4 & 5 & 7 \\ 10 & 15 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = 1 \cdot 2 + 2 \cdot 1 + 8 \cdot 0 = 4$$

$$\begin{pmatrix} 1 & 2 & 8 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \\ 1 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 \cdot 2 + 2 \cdot 1 + 8 \cdot 0 & 1 \cdot 4 + 2 \cdot 3 + 8 \cdot 1 \end{pmatrix} = \begin{pmatrix} 4 & 18 \end{pmatrix}$$

Стоит немного об этом подумать, запомнить что с чем и как складывается, и очень важно обратить внимание на размеры.

Транспонирование, в свою очередь, простая и интуитивно понятная операция: если матрица, в которой сколько строк, мы берём эти строки, и в том же порядке записываем в стобцы матрицы. На примерах, пожалуй, всё ещё будет нагляднее:

$$\begin{pmatrix} 2 & 4 & 6 \\ 1 & 3 & 5 \\ 0 & 1 & 2 \end{pmatrix}^T = \begin{pmatrix} 2 & 1 & 0 \\ 4 & 3 & 1 \\ 6 & 5 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 4 \\ 1 & 3 \\ 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 2 & 1 & 0 \\ 4 & 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 4 & 6 & 8 & 12 \end{pmatrix}^T = \begin{pmatrix} 2 \\ 4 \\ 6 \\ 8 \\ 12 \end{pmatrix}$$

Опять же важно просто внимательно на это посмотреть, осознать как это работает и что происходит с размерами матриц.

1.2 Разборы задач

1.2.1 Пример системы с единственным решением

Задача: Найти решение системы уравнений

$$\begin{cases} 3x_1 - 2x_2 + 5x_3 = 5 \\ -6x_1 + 2x_2 - 5x_3 = -2 \\ 3x_1 - 6x_2 + 10x_3 = 11 \end{cases}$$

Решение:

Идём по алгоритму, запишем расширенную матрицу:

$$\left(\begin{array}{ccc|c}
3 & -2 & 5 & 5 \\
-6 & 2 & -5 & -2 \\
3 & -6 & 10 & 11
\end{array}\right)$$

Начинаем приводить матрицу к ступенчатому виду. Я прибавлю дважды первую строчку ко второй, и из третьей строчки вычту первую чтобы получить нули под угловой тройкой:

$$\left(\begin{array}{ccc|c}
3 & -2 & 5 & 5 \\
-6 & 2 & -5 & -2 \\
3 & -6 & 10 & 11
\end{array}\right) \leadsto \left(\begin{array}{ccc|c}
3 & -2 & 5 & 5 \\
0 & -2 & 5 & 8 \\
0 & -4 & 5 & 6
\end{array}\right)$$

Теперь я вычту из первой и из третьей строчки вторую:

$$\left(\begin{array}{ccc|c} 3 & -2 & 5 & 5 \\ 0 & -2 & 5 & 8 \\ 0 & -4 & 5 & 6 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 3 & 0 & 0 & 3 \\ 0 & -2 & 5 & 8 \\ 0 & -2 & 0 & -2 \end{array}\right)$$

И наконец я вычту из второй строчки третью, а потом поменяю их местами:

$$\left(\begin{array}{ccc|c} 3 & 0 & 0 & 3 \\ 0 & 0 & 5 & 10 \\ 0 & -2 & 0 & -2 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 3 & 0 & 0 & -3 \\ 0 & -2 & 0 & -2 \\ 0 & 0 & 5 & 10 \end{array}\right)$$

Итак, пункт 2 алгоритма выполнен: матрица имеет ступенчатый вид. Теперь будем приводить её к улучшенному ступенчатому виду. Матрица у нас достаточно хорошая, поэтому привести её можно практически в одно действие: раздели первую строчку на 3 (умножим на $\frac{1}{3}$, если так больше нравится), вторую строчку разделим на -2, и третью строчку разделим на 5.

$$\left(\begin{array}{ccc|c} 3 & 0 & 0 & -3 \\ 0 & -2 & 0 & -2 \\ 0 & 0 & 5 & 10 \end{array}\right) \rightsquigarrow \left(\begin{array}{ccc|c} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \end{array}\right)$$

И вот матрица уже имеет улучшенный ступенчатый вид, пункт три выполнен. Осталость только записать ответ. Чтобы было понятно, я сделаю переход от расширенной матрицы обратно к системе:

$$\begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & | & 2 \end{pmatrix} \Rightarrow \begin{cases} x_1 + 0x_2 + 0x_3 = -1 \\ 0x_1 + x_2 + 0x_3 = 1 \\ 0x_1 + 0x_2 + x_3 = 2 \end{cases} \Leftrightarrow \begin{cases} x_1 = -1 \\ x_2 = 1 \\ x_3 = 2 \end{cases}$$

5

Собственно, мы выразили все переменные однозначно, это и есть ответ.

1.2.2 Пример несовместной системы

Задача: Найти решение системы уравнений

$$\begin{cases} x_1 + x_2 - x_3 + 2x_4 + 3x_5 = 1 \\ x_1 + x_3 - x_4 + x_5 = 2 \\ 3x_1 + x_2 + x_3 + 5x_5 = 4 \\ 2x_1 + x_2 + x_4 + 4x_5 = 3 \end{cases}$$

Решение: Расширенная матрица и сразу УСВ (там чисто арифметика):

 $C_n - C_m$ значит "из n-ой строчки вычесть m-ую".

Если поменять первую и вторую строчку местами, то получится УСВ, но нам гораздо интереснее послдняя строка матрицы. Если мы сделаем переход обратно к системе, то последней строчкой такой системы будет $0x_1 + 0x_2 + 0x_3 + 0x_4 + 0x_5 = -1$, т.е. 0 = -1, но такого же не может быть, а значит система не имеет решений, или, другими словами, система несовместна.

1.2.3 Пример системы с бесконечным числом решений

Задача: Решить систему линейных уравнений

$$\begin{cases} 5x_1 - x_2 - x_3 - 3x_4 = 1\\ 5x_1 - x_2 + 5x_3 + 3x_4 = 3\\ 5x_1 - x_2 - 7x_3 - 9x_4 = -1 \end{cases}$$

Решение: Расширенная матрица и ступенчатый вид:

Матрица имеет ступенчатый вид, теперь приведём её к УСВ (ух, сейчас классные числа повылезают):

$$\left(\begin{array}{ccc|ccc|c} 5 & -1 & 2 & 0 & 2 \\ 0 & 0 & 3 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc|c} C_1/5 & C_1/5 & C_1/5 & 2/5 & 0 & 2/5 \\ 0 & 0 & 1 & 1 & 1/3 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) \left(\begin{array}{ccc|c} C_1 & -1/5 & 0 & -2/5 & 2/5 & -2/15 \\ 0 & 0 & 1 & 1 & 1/3 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

Здорово, матрица имеет УСВ, но какой ценой(((

Теперь важный момент: как выписывать решение в такой системе? Снова сделаем переход к системе:

$$\begin{pmatrix} 1 & -1/5 & 0 & -2/5 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{vmatrix} 2/5 - 2/15 \\ 1/3 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 - \frac{1}{5}x_2 - \frac{2}{5}x_4 = \frac{2}{5} - \frac{2}{15} \\ x_3 + x_4 = \frac{1}{3} \end{cases}$$

Выразим переменные x_1 и x_3 :

$$\begin{cases} x_1 = \frac{1}{5}x_2 + \frac{2}{5}x_4 + \frac{2}{5} - \frac{2}{15} \\ x_3 = \frac{1}{3} - x_4 \end{cases}$$

Переменные x_2 и x_4 могут принимать любое значение и называются **свободными**, но как только мы зафиксируем какие-то значения x_2 и x_4 , то мы можем их подставить в уравнения, и значения переменных x_1, x_3 сразу определятся. Запишем общее решение системы:

$$\begin{pmatrix} \frac{1}{5}x_2 + \frac{2}{5}x_4 + \frac{4}{15} \\ x_2 \\ \frac{1}{3} - x_4 \\ x_4 \end{pmatrix}$$

Можно ещё дополнительно записать, что $x_2, x_4 \in \mathbb{R}$, но это не обязательно на самом деле. Так выглдяит общее решение системы с бесконечным число решений (недеюсь, теперь понятно, почему их бесконечное число). Вопрос: что делать если в задаче просят найти общее решение, и какое-то частное решение? Очень просто: можно просто подставить любые знчения в свободные неизвестные и получится частное решение. например в этой задаче я хочу подставить $x_2 = 5$, а $x_4 = \frac{1}{3}$, тогда получится частно решение

$$\left(\begin{array}{c} 1 + \frac{6}{15} \\ 5 \\ 0 \\ \frac{1}{3} \end{array}\right)$$

1.3 Задачи

1. Найти решения систем

a)
$$\begin{cases} 3x_1 + 4x_2 = 7 \\ 5x_1 + 3x_2 = 8 \end{cases}$$
 b)
$$\begin{cases} 3x_1 + 4x_2 = -3 \\ 5x_1 + 3x_2 = -5 \end{cases}$$
 c)
$$\begin{cases} 3x_1 + 4x_2 = 2 \\ 5x_1 + 3x_2 = 7 \end{cases}$$
 d)
$$\begin{cases} 2x_1 - 2x_2 - 3x_3 - 2x_4 = 0 \\ x_1 - x_2 - 2x_3 + x_4 = -2 \\ -2x_1 + x_2 - x_3 + x_4 = -1 \\ x_1 - 2x_2 + 2x_3 + x_4 = -4 \end{cases}$$

2. Перемножить матрицы

a)
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix}$$
b) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 5 & 7 \\ 6 & 8 \end{pmatrix}$
c) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 5 & 2 \\ 7 & 2 & 7 & 1 \end{pmatrix}$
d) $\begin{pmatrix} 1 & 2 & 14 \\ 3 & 4 & 17 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
e) $\begin{pmatrix} 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix}$
f) $\begin{pmatrix} 1 & 2 & 14 \\ 3 & 4 & 17 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 2 \end{pmatrix}$

3. Транспонировать матрицы

$$a) \begin{pmatrix} 1 & 0 \\ 3 & 1 \\ 0 & 2 \end{pmatrix} \qquad b) \begin{pmatrix} 1 \\ 3 \\ 3 \\ 12 \\ 4 \\ 8 \end{pmatrix} \qquad c) \begin{pmatrix} 1 & 3 & 5 & 7 & 9 \\ 2 & 4 & 6 & 8 & 10 \\ 3 & 14 & 159 & 256 & 0 \\ 2 & 7 & 18 & 61 & 18 \end{pmatrix} \qquad d) \begin{pmatrix} 1 & 4 & 6 \\ 4 & -8 & 7 \\ 6 & 7 & 11 \end{pmatrix}$$