CS & IT

ENGINEERING

Predicate logic

Lecture No. 04

By-SATISH YADAV SIR

01 open statements

02 predicate variables

03 Universe of Discourse

04 Quantifier

05 Theorems on Quantifier

Truth value. > Simple propositional. Compound

Predicate variable. P(n): n'is even no -> open statement P(0): 0/is even no (T) P(1): 1/is even no ->(f) P(2): 2/is even no (7)

Is we can not define truth value but once we put input into this it changes Simple stmt N+450

Domain of discourse univvese of duscouvse

$$P(1): 1 \le 3(T)$$
 $P(2): 2 \le 3(T)$

Truth value in terms o quantity some

Quantifier:

Tool interms to ask the truth value in quantity.

Quantity: Ly check au elements are True or not

Anp(n)

Universal quantifier $(\forall n)$ \rightarrow check all elements are True or not in P(n)

VnP(n)→True

-> for all of n such that P(n)

for each of n such that P(n)

for every element of n such that P(n)

$$\forall n P(n) \rightarrow True. OR \left\{ \frac{1.2.31}{\forall n (n^2 \le 9)} \rightarrow True \right\}$$

$$P(1)$$
: $1^{2} \le 9(T)$
 $P(2)$: $2^{2} \le 9(T)$
 $P(3)$: $3^{2} \le 9(T)$

$$D^{\circ} \{ 1, 2, 3 \}$$
 $P(n)^{\circ} n^2 = 4$

$$P(2) : 2^2 = 4(T)$$

$$D: \{1, 2, 3\}$$

 $\forall n P(n) \rightarrow false$

$$\begin{array}{c}
(1(\mp))\\
2(7)\\
3(F)
\end{array}$$
at least 1

$$D: \{1, 2, 3\}$$

 $\forall n(n^2=4)$
false.

Doubts:

1. (D: Z.
p(n): n²>0

$$\forall n p(n) \rightarrow folse$$
.
2. D: Z⁺

$$P(n): n^2 70$$
 $\forall n P(n) \rightarrow True.$

D:Z. $p(n): n^2 > 0$ or $p(m): m^2 > 0$ $\forall n p(n)$ $\forall m p(m)$

check (some) of the elements are True or not Existential quantifier: (3n)

Jap(n)→false FF when all are false

Vnp(n) → True

TT Towner all elements are

True

Hnp(n) → false

=np(n) -> True.

T-+> at least 1 True Jup(n) -false +) au false

D: [1,2,3]

$$\exists n p(n)$$
 $p(n): n^2 = 9$

$$\frac{\Im N(N^2-9)}{m}$$

D:
$$\{1, 2, 3\}$$
.
P(n): $n^2 = 16$.
 $\exists n(n^2 = 16) \Rightarrow false$
 $P(1): 1^2 = 16(f)$
 $P(2): 2^2 = 16(f)$
 $P(3): 3^2 = 16(f)$

$$\frac{D:Z}{\forall n P(n) \rightarrow \exists n P(n)}$$
True

$$\neg \forall n P(n) = \exists n \supseteq P(n)$$

$$\int \left\{ \exists n p(n) \right\} = \left\{ \forall n r p(n) \right\}$$

$$\frac{1}{2} \left\{ \frac{p(1)}{p(1)} \wedge \frac{p(2)}{p(3)} \right\}$$

$$= \frac{p(1)}{p(2)} \vee \frac{p(3)}{p(3)}$$

$$= \frac{p(1)}{p(2)} \vee \frac{p(3)}{p(3)}$$

$$= \frac{p(1)}{p(2)} \vee \frac{p(2)}{p(3)}$$

$$= \frac{p(1)}{p(2)} \vee \frac{p(2)}{p(3)}$$

$$= \frac{p(1)}{p(2)} \vee \frac{p(2)}{p(3)}$$

$$= \frac{p(1)}{p(3)} \vee \frac{p(2)}{p(3)}$$

$$D: \{ 1, 2, 3 \}.$$

$$P(n) : n+1=4$$

$$\exists n P(n) \exists \tau \text{ True}$$

$$P(1) : 1+1=4(f)$$

$$P(2) : 2+1=4(f)$$

$$P(3) : 3+1=4(T)$$

$$Q(n): 2n+1=7$$

$$\exists n Q(n)$$

Theck
$$\exists \pi \left(p(n) \land Q(n) \right) \longrightarrow \exists \pi p(n) \land \exists \pi Q(n)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$T = \frac{1}{2\pi p(n)} \wedge (3\pi Q(n)) + \frac{1}{2\pi Q(n)} + \frac{1}{2\pi Q(n)$$

T
$$\wedge$$
 F \rightarrow F

 $\exists x [p(n) \land Q(n)] \rightarrow \exists x p(n) \land \exists n Q(n)$ Jap(n) V JaQ(n) 3n[p(n)vQ(n)] $\forall n)(n) \land \forall nQ(n)$ Au[b(n)va(n)] Anpin) N Andin) 4n[b(n) n d(n)] $\forall n P(n) \longrightarrow \forall n Q(n)$ $\forall x[b(n) \rightarrow a(n)]$ $\forall n b(n) \longleftrightarrow \forall n d(n)$ $\forall n[p(n) \leftrightarrow Q(n)]$

