UNIVERSIDADE FEDERAL DE MINAS GERAIS ESCOLA DE ENGENHARIA

Alunos: Camila de Brito

Dickson Alves

Luiz Paulo Torres

Pedro Ribeiro

Rodolfo Ferreira

Prof.: Gilberto de Miranda Júnior

Disciplina: Otimização e Simulação para Engenharia

TRABALHO DE OTIMIZAÇÃO

Problema retirado da disciplina de Siderurgia II do curso de Engenharia Metalúrgica

Otimização do carregamento do Forno Elétrico a Arco

O carregamento do forno elétrico a arco (FEA) pode ser feito com dois ou mais cestões. Para que seja feito com dois cestões é necessário utilizar sucatas de maior densidade e de maior custo. O carregamento também poderá ser feito com três cestões, se sucatas de menor densidade (menor custo) forem utilizadas. A vantagem do carregamento com dois cestões é o menor consumo de energia (cerca de 10 kWh/t) devido às perdas durante a abertura do forno e menor tempo de corrida, pois cada carregamento leva cerca de 5 minutos. O objetivo desse exercício é avaliar economicamente as opções de se fazer o carregamento do FEA com 2 ou 3 cestões. Para isso, é necessário inicialmente calcular o peso de cada classe de sucata (conforme tabela abaixo) de modo a se obter a carga mais econômica.

Tabela 1: Densidade e preços de diversas classes de sucatas

Item	Classe de sucata	Tipo	Densidade (t/m³)	Preço (R\$/t)
1	No. 1 Heavy	Р	0,85	320,00
2	No. 2 Heavy	Р	0,75	280,00
3	Internal Low Alloy	Р	3,00	480,00
4	Plate & Structural	Р	2,00	580,00
5	Internal Stainless Steel	Р	3,00	660,00
6	No. 1 Bundles	M	1,20	360,00
7	No. 2 Bundles	M	1,10	340,00
8	DRI	M	1,65	440,00
9	No. 1 Busheling	L	1,50	420,00
10	Shredded	L	1,50	400,00

P = Sucata pesada, M = Sucata média, L = Sucata leve

Deseja-se produzir uma corrida de 165 t de aço líquido. Entretanto, devido à adição de ligas durante o processo, a carga deve ser de 160 t utilizando-se, no máximo, 3 carregamentos. A capacidade de carga do forno é de 72 m³ (dimensões do forno: 3 m de altura por 5,5 m de diâmetro). No entanto, a partir da fusão do primeiro cestão, esse volume é menor devido ao volume ocupado pelo aço líquido resultante dos carregamentos anteriores (densidade do aço líquido = 7500 kg/m³). Outras restrições ao carregamento são:

- Limite máximo de 30% (em peso) de sucata pesada em cada cestão para evitar a quebra de eletrodos durante a fusão;
- Necessidade de uma camada de sucata leve na superfície da carga de cada cestão com 30 cm de espessura para acelerar a penetração inicial dos eletrodos.

Para essas considerações:

- Calcule o peso de cada sucata que resulte no menor custo (conforme a tabela) para carregamento em 3 cestões;
- 2. Repita o cálculo para dois cestões;
- 3. Compare o custo da carga metálica para as duas opções;

Para resolver esse exercício você deve:

- i. Equacionar o custo da carga metálica em função do peso e preço de cada tipo de sucata;
- ii. Equacionar as restrições abaixo em função do peso de cada tipo de sucata:
 - 1. Peso total da carga metálica = 160 t;
 - 2. Volume de cada carga (cestão) de acordo com o volume disponível no forno;
 - 3. Limite de no máximo 30% em peso de sucata pesada em cada cestão;
 - Necessidade de uma camada de sucata leve no topo de cada cestão com 30 cm de espessura;
- iii. Minimizar a equação de custo da carga metálica sujeita às restrições acima (utilizar o Solver do Excel ou um programa de otimização).

RESOLUÇÃO: PROBLEMA DOS DOIS CESTÕES

Conjuntos:

C: conjuntos dos cestões a serem carregados (primeiro e segundo cestão), $c \in [1,2]$;

S: tipo de sucata (ver Tabela 1), $s \in [1,10]$.

Parâmetros:

 d_s : densidade da sucata s, em t/m³, $\forall s \in S$;

 p_s : preço da sucata s, em R\$/t, $\forall s \in S$;

 V_c : volume carregado no cestão c, em m³, $\forall c \in C$;

V: volume físico do cestão (igual ao volume do forno) (72 m³).

Variáveis de decisão

 m_{sc} : massa da sucata s no cestão c, em t, $\forall s \in S$, $\forall c \in C$.

Restrições:

Massa total de sucata igual a 160 t:

$$\sum_{c=1}^{2} \sum_{s=1}^{10} m_{sc} = 160$$

Volume da sucata não pode exceder volume do cestão:

$$\sum_{s=1}^{10} \frac{m_{sc}}{d_s} \le V, \forall c \in C$$

Volume remanescente no forno deve ser superior ao volume carregado como carga sólida:

$$V - \frac{1}{7.5} \sum_{j=1}^{c-1} \sum_{s=1}^{10} m_{sj} \ge \sum_{s=1}^{10} \frac{m_{sc}}{d_s} , \forall c \in C$$

Limite de 30% de sucata pesada em cada cestão:

$$\sum_{s=1}^{5} m_{sc} \le \frac{30}{100} \sum_{s=1}^{10} m_{sc} , \forall c \in C$$

Camada de 30 cm de sucata leve no topo do cestão:

$$\sum_{s=0}^{10} \frac{m_{sc}}{d_s} \ge \pi \times \frac{5.5^2}{4} \times 0.30$$

Função-objetivo:

$$Min \sum_{c=1}^{2} \sum_{s=1}^{10} m_{sc} \times p_{s}$$

RESOLUÇÃO: PROBLEMA DOS TRÊS CESTÕES

Conjuntos:

C: conjuntos dos cestões a serem carregados (primeiro, segundo e terceiro cestão), $c \in [1,3]$;

S: tipo de sucata (ver Tabela 1), $s \in [1,10]$.

Parâmetros:

 d_s : densidade da sucata s, em t/m³, $\forall s \in S$;

 p_s : preço da sucata s, em R\$/t, $\forall s \in S$;

 V_c : volume carregado no cestão c, em m³, $\forall c \in C$;

V: volume físico do cestão (igual ao volume do forno) (72 m³).

Variáveis de decisão

 m_{sc} : massa da sucata s no cestão c, em t, $\forall s \in S$, $\forall c \in C$.

Restrições:

Massa total de sucata igual a 160 t:

$$\sum_{c=1}^{3} \sum_{s=1}^{10} m_{sc} = 160$$

Volume da sucata não pode exceder volume do cestão:

$$\sum_{s=1}^{10} \frac{m_{sc}}{d_s} \le V, \forall c \in C$$

Volume remanescente no forno deve ser superior ao volume carregado como carga sólida:

$$V - \frac{1}{7.5} \sum_{j=1}^{c-1} \sum_{s=1}^{10} m_{sj} \ge \sum_{s=1}^{10} \frac{m_{sc}}{d_s}$$
, $\forall c \in C$

Limite de 30% de sucata pesada em cada cestão:

$$\sum_{s=1}^{5} m_{sc} \le \frac{30}{100} \sum_{s=1}^{10} m_{sc} , \forall c \in C$$

Camada de 30 cm de sucata leve no topo do cestão:

$$\sum_{s=9}^{10} \frac{m_{sc}}{d_s} \ge \pi \times \frac{5.5^2}{4} \times 0.30$$

Função-objetivo:

$$Min \sum_{c=1}^{3} \sum_{s=1}^{10} m_{sc} \times p_s$$

Nas páginas a seguir, apresentam-se os arquivos do modelo programado em AMPL, os respectivos dados para o caso de dois cestões e o script de solução, pelo qual o CPLEX é chamado para resolver o problema linear.

```
1: #
     OTIMIZAÇÃO DO CARREGAMENTO DE SUCATA NO FORNO ELÉTRICO A ARCO
2: #
     Camila de Brito Ferreira , Dickson Alves de Souza, Luiz Paulo Horta Torres
3: #
4: #
     Pedro Ribeiro Martins Bento, Rodolfo Paulo Santos Ferreira
5: #
6: #
     Segundo semestre de 2012, Alunos do curso de Engenharia Metalúrgica - UFMG
7: #
8: # Professor Gilberto de Miranda Júnior - Departamento de Engenharia de Produção
9: #
     Escola de Engenharia - UFMG
10: #
11: #
                         CARREGAMENTO COM DOIS CESTOES
12: #
16: param pi; # Número pi.
17:
18: param s; # Número de tipos de sucata.
19: param c; # Número de cestões de sucata usado no carregamento.
20:
21: param M; # Massa total de sucata de aço a ser carregada, em toneladas.
22: param d_al; # Densidade do aço líquido, em toneladas por metro cúbico
23:
24: param d_s{i in 1..s}; # Densidade da sucata s, em toneladas por metro cúbico.
25: param p_s{i in 1..s}; # Preço da sucata s, em R$/tonelada;
26:
27: param V; # Volume físico do cestão, em metros cúbicos.
28:
29: var m_sc{i in 1..s, j in 1..c}; # Massa da sucata s adicionada no cestão c;
30:
31: # Função-objetivo
32: minimize total_cost: sum{i in 1..c, j in 1..s} m_sc[j,i] * p_s[j];
33:
34: # Restricões
35:
36: s.t. positivo{i in 1..s, j in 1..c}: m_sc[i,j] >= 0;
37:
38: # Carga de M toneladas de aço líquido.
39: s.t. carga: sum{i in 1..c, j in 1..s} m_sc[j,i] = M;
40:
41: # Volume do cestão disponível.
42: s.t. cestao{i in 1..c}: sum{j in 1..s} (m_sc[j,i] / d_s[j]) <= V;
43:
44: # Volume disponível para cada cestão após o primeiro;
45: s.t. volume_remanescente{i in 1..c}: sum{j in 1..s} (m_sc[j,i] / d_s[j])
                         + 1/d_al * sum{k in 1..i-1,j in 1..s} (m_sc[j,k]) <= V;
46:
47:
48: # Exigência de 30% de sucata pesada (no máximo);
49: s.t. sucata_pesada{i in 1..c}: sum{j in 1..5} (m_sc[j,i])
                                    - 30/100 * sum{j in 1..s} (m_sc[j,i]) <= 0;
50:
51:
52: # Exigência de 30 cm de sucata leve (no mínimo);
53: s.t. sucata_leve{i in 1..c}: sum{j in 9..10} (m_sc[j,i] / d_s[j]) >=
                                                     pi * 5.5 ^ 2 / 4 * 0.30;
```

```
1: #
2: # OTIMIZAÇÃO DO CARREGAMENTO DE SUCATA NO FORNO ELÉTRICO A ARCO
3: #
     Camila de Brito Ferreira , Dickson Alves de Souza, Luiz Paulo Horta Torres
4: #
      Pedro Ribeiro Martins Bento, Rodolfo Paulo Santos Ferreira
5: #
6: #
      Segundo semestre de 2012, Alunos do curso de Engenharia Metalúrgica - UFMG
7: #
8: # Professor Gilberto de Miranda Júnior - Departamento de Engenharia de Produção
9: # Escola de Engenharia - UFMG
10: #
11: #
                         CARREGAMENTO COM DOIS CESTOES
12: #
13: #-----
14: #========= DADOS DO PROBLEMA ============================
15: #-----
16: param pi:= 3.14159265359;
17:
18: param s:= 10; # Número de tipos de sucata.
19: param c:= 2; # Número de cestões de sucata usado no carregamento.
20:
21: param M:= 160; # Massa total de sucata de aço a ser carregada, em toneladas.
22: param d_al:= 7.5; # Densidade do aço líquido, em toneladas por metro cúbico.
23:
24: # Densidade da sucata s, em toneladas por metro cúbico.
25: param d_s:=
             1 0.85
26:
27:
             2 0.75
28:
             3 3.00
29:
             4 2.00
30:
             5 3.00
31:
             6 1.20
32:
             7 1.10
33:
             8 1.65
34:
             9 1.50
35:
             10 1.50
36:
37:
38: # Preço da sucata s, em R$/tonelada.
39: param p_s:=
40:
             1 320.00
41:
             2 280.00
             3 480.00
42:
43:
             4 580.00
44:
             5 660.00
            6 360.00
45:
             7 340.00
46:
47:
             8 440.00
             9 420.00
48:
49:
             10 400.00
50:
51:
52: param V:= 72; # Volume físico do cestão, em metros cúbicos.
53:
54: end;
```

```
1: #
2: # OTIMIZAÇÃO DO CARREGAMENTO DE SUCATA NO FORNO ELÉTRICO A ARCO
3: # Camila de Brito Ferreira , Dickson Alves de Souza, Luiz Paulo Horta Torres
4: #
    Pedro Ribeiro Martins Bento, Rodolfo Paulo Santos Ferreira
5: #
6: #
    Segundo semestre de 2012, Alunos do curso de Engenharia Metalúrgica - UFMG
7: #
8: # Professor Gilberto de Miranda Júnior - Departamento de Engenharia de Produção
9: # Escola de Engenharia - UFMG
10: #
                    CARREGAMENTO COM DOIS CESTOES
11: #
12: #
15: #-----
16:
17: model Dois_cestoes.md;
18:
19: data Dois_cestoes.dat;
20:
21: option solver cplexamp;
22:
23: option cplex_options 'integrality = 1e-8 mipdisplay=2';
24:
25: solve;
26:
27: display m_sc;
```

ANÁLISE DE RESULTADOS:

Os resultados obtidos na simulação do CPLEX e pelo Solver no Microsoft Office Excel são mostrados na tabela abaixo:

TABELA 2: Comparação das soluções obtidas pelo Solver e pelo CPLEX para o caso de dois cestões

Dois cestões					
Cesta	ăo 1	Cestão 2			
Solver - Excel	CPLEX	Solver - Excel	CPLEX		
0,00	0,00	0,00	0,00		
0,00	0,00	0,00	0,00		
0,00	0,00	12,53	12,52		
0,00	0,00	0,00	0,00		
0,00	0,00	0,00	0,00		
0,00	0,00	0,00	0,00		
71,36	71,36	54,74	54,73		
0,00	0,00	0,00	0,00		
0,00	0,00	0,00	0,00		
10,69	10,69	10,69	10,69		

	R\$ 28.538,40	R\$ 28.538,40	R\$ 28.902,00	R\$ 28.893,80
Custo	Solver - Excel	R\$ 57.440,40		
(R\$)	CPLEX	R\$ 57.432,20		

TABELA 3: Comparação das soluções obtidas pelo Solver e pelo CPLEX para o caso de três cestões

Três cestões					
Cestão 1		Cestão 2		Cestão 3	
Solver - Excel	CPLEX	Solver - Excel	CPLEX	Solver - Excel	CPLEX
0,00	0,00	0,00	0,00	0,00	0,00
19,15	10,00	15,04	20,31	13,81	17,69
0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00
34,00	12,64	24,40	36,69	21,54	30,59
0,00	0,00	0,00	0,00	0,00	0,00
0,00	0,00	0,00	0,00	0,00	0,00
10,69	10,69	10,69	10,69	10,69	10,69

	R\$ 21.198,00	R\$ 11.373,60	R\$ 16.783,20	R\$ 22.437,40	R\$ 15.466,40	R\$ 19.629,80
Custo	Solver - Excel	R\$ 53.447,60				
(R\$)	CPLEX	R\$ 53.440,80				

Pela análise dos resultados, podemos perceber que o resultado encontrado pela simulação no CPLEX tem valor muito próximo ao resultado do Solver, logo em primeira análise, podemos concluir que a programação no CPLEX foi realizada de modo satisfatório. Pode-se perceber também que os valores encontrados pelo CPLEX são, ainda que ligeiramente, melhores que os valores encontrados no Solver. O Solver, por ser um método iterativo, necessita de um valor inicial ou um "chute". Dependendo do valor dado no "chute" o método pode convergir para uma solução ótima ou ocorrer divergência do método. Tanto para 2 cestões quanto para 3 cestões, o método CPLEX apresentou melhor resultado que o Solver e, em linhas gerais, conclui-se que um carregamento do forno com 3 cestões é mais economicamente viável, já que seu valor foi R\$ 53.440,80 em comparação com os R\$ 57.432,20 do carregamento com 2 cestões.