p wirkt auf S	$\exists A \in \text{Atom}(S) : \lfloor p \rfloor_A \text{ def.}$
p <u>arbeitsprozess</u> auf S	$\lfloor p \rfloor_{S'}$ def gdw. $S' \in \operatorname{Sub}(S)$
p <u>zyklisch</u> auf S	$\lfloor p \rfloor_S = \lceil p \rceil_S$
p identitäts-proz. auf S	$p \in \mathcal{P}_S \text{ und } \lfloor p \rfloor_S = \lceil p \rceil_S$
$p \in \mathcal{P}_S \text{ \underline{reversibel}}$	$\exists p^{\mathrm{rev}} \in \mathcal{P}_S : p^{\mathrm{rev}} \circ p \equiv \mathrm{id}_S$
	$\Rightarrow W_S(p^{\mathrm{rev}}) = -W_S(p)$
Arbeit W_S	$W_A: \mathcal{P} \to \mathbb{R},$
	$W_A(p'\circ p)=W_A(p)+W_A(p')$
Zustandsgrösse Z	$Z: \Sigma_S \to \mathbb{R}^n$,
$\operatorname{von} S$	$\Delta Z(p) \coloneqq Z(\sigma) - Z(\sigma_0)$
	$\delta E = dE = \frac{\partial E}{\partial x} dx + \frac{\partial E}{\partial y} dy$
innere Energie U_S	$U_S: \Sigma_S \to \mathbb{R}$ ist Zustandsgr.,
	$\Delta U_S(p' \circ p) = \Delta U(p) + \Delta U(p')$
	$\Delta U_{A\vee B} = \Delta U_A + \Delta U_B,$
	$p \in \mathcal{P}_S \Rightarrow W_S = \Delta U_S$
W ärme Q_S (hin zu)	$Q_S(p) \coloneqq \Delta U_S(p) - W_S(p),$
	$Q_S(p' \circ p) = Q_S(p) + Q_S(p'),$
	$Q_{A\vee B}(p) = Q_A(p) + Q_B(p),$
	$ p \text{ zyki.} \rightarrow Q_S(p) = -W_S(p), $ $ \text{und } \oint \delta Q_A = -\oint \delta W_A $
m C D quasistaticals	
$p \in \mathcal{P}_S$ quasistatisch	$ [p(\lambda, \lambda')], [p(\lambda, \lambda')] = \sigma_{\lambda}, \sigma_{\lambda'} $
differenzielle Grössen	$\Delta U_A = \int_{\sigma_{\lambda}}^{\sigma_{\lambda'}} \mathrm{d}U_A,$ $W_A = \int_{\sigma_{\lambda}}^{\sigma_{\lambda'}} \delta W_A,$
	$\delta Q_A = \mathrm{d} U_A - \delta W_A$
p adiabatisch auf S	p quasistatisch und $\delta Q_S=0$
R Reservoir	$U_R: \Sigma_R \to \mathbb{R}$ injektiv,
	$\forall p: W_R(p) \ge 0,$
	$ \forall p_{\text{wirkend(S)}}, \forall \Delta U \exists "T_{\Delta U}(p)", \Rightarrow \forall U_R(\sigma_2) \geq U_R(\sigma_1) : $
	$\exists p \in \mathcal{P}_R[\sigma_1 \to \sigma_2]$
Absolute Temperatur T	$ T \coloneqq \tau(R,R_{\mathrm{ref}})T_{\mathrm{ref}}, \text{wobei} \\ \tau(R_1,R_2) \coloneqq -\frac{Q_{R_1}(p)}{Q_{R_2}(p)} $
	$\tau(R_1, R_2) \coloneqq -\frac{q R_1(P)}{Q_{R_2}(p)}$
$\mathcal{A}, \mathcal{S}, \mathcal{P}, \operatorname{Sub}(S), \operatorname{Atom}(S)$	$S), \Sigma_A, \Sigma_S, \mathcal{R}, \mathcal{P}_S, p _{G}, \lceil p \rceil_{G}$

 $\mathcal{A}, \mathcal{S}, \mathcal{P}, \mathrm{Sub}(S), \mathrm{Atom}(S), \Sigma_A, \Sigma_S, \mathcal{R}, \mathcal{P}_S, [p]_S, [p]_S$

Interne Energie	$U(S, V, N) = \int \mathrm{d}U$	
interne Energie	$dU = TdS - pdV + \mu dN$	
Entropie	$S(U, V, N) = \frac{1}{T}(U + pV - \mu N)$	
Linitopio	$dS = \frac{1}{T}(dU + pdV - \mu dN)$	
Helmholz Free Energy	F(T, V, N) = U - TS	
$(-U^{*(S o T)})$	$dF = -SdT - pdV + \mu dN$	
Enthalpie	H(S, p, N) = U + pV	
$(-U^{*(V \to -p)})$	$dH = TdS + Vdp + \mu dN$	
Gibbs Free Energy	G(T, p, N) = U + pV - TS	
$(-U^{*((V,S)\to(-p,T))})$	$\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \mu\mathrm{d}N$	
Grand Potential	$\Omega(T,V,\mu) = U - TS - \mu N$	
$(-U^{*((S,N)\to(T,\mu))})$	$d\Omega = -SdT - pdV - Nd\mu$	
Maxwell's Relations	Other relations	
$\left \frac{\partial T}{\partial V} \right _{S} = \left \frac{\partial P}{\partial S} \right _{V},$	$\left \left. \frac{\partial S}{\partial U} \right _{V,N} = \frac{1}{T}, \left. \frac{\partial S}{\partial V} \right _{N,U} = \frac{p}{T},$	
$\left \frac{\partial T}{\partial P} \right _{S}^{S} = \left. \frac{\partial V}{\partial S} \right _{P},$	$\left \frac{\partial S}{\partial N} \right _{V,U}^{\gamma,\gamma} = -\frac{\mu}{T}$	
$\left \frac{\partial S}{\partial V} \right _{T}^{S} = \left. \frac{\partial P}{\partial T} \right _{V}^{T},$	$\left \frac{\partial T}{\partial S} \right _{V}^{\gamma, \varsigma} = \frac{T}{C_{V}}, \frac{\partial T}{\partial S} \right _{P} = \frac{T}{C_{P}},$	
$\left \frac{\partial S}{\partial P} \right _T^T = -\frac{\partial T}{\partial V} \Big _P$	$\left. \left(\frac{\partial p}{\partial V} \right)_{T}^{V} = \frac{-1}{VK_{T}} \right)$	
Gibbs-Helmholtz Equ		
$H = -T^2 \frac{\partial \left(\frac{G}{T}\right)}{\partial T} \bigg \ , \frac{\partial H}{\partial p} \bigg _T = V - T \frac{\partial V}{\partial T} \bigg _P,$		
$\left U = -T^2 \frac{\partial \left(\frac{F}{T} \right)}{\partial T} \right _V^{p}, \frac{\partial U}{\partial V} \right _T = T \frac{\partial P}{\partial T} \Big _V - P, G = -V^2 \frac{\partial \left(\frac{F}{V} \right)}{\partial V} \Big _T$		
Gibbs-Duhem Eq.	$SdT - Vdp + Nd\mu = 0$	
Euler-Gleichung	$U = TS - pV + \mu N$	
Carnot-Maschine: (S, R)	$\mathcal{C}_1, R_2, p \in \mathcal{P}_{S \vee R_1 \vee R_2} \text{ zykl}(S)$	
$\forall i: W_{R_i}(p) = 0 \text{, und } \exists i: Q_{R_i}(p) \neq 0 \text{. rev} \leftrightarrow p \text{ rev}.$		
(S,R_1,R_2,p) eine Carn	ot-Maschine. OBDA $Q_{R_2} > 0$.	
<u>Wärmekraftmaschine</u>	<u>Wärmepumpe</u>	
$W_S < 0 \Rightarrow Q_{R_1} < 0$	$T_2 > T_1 : \Rightarrow W_S(p) > 0$	
Effizienz: $(T_2 < T_1)$	Leistungszahl	
$\eta = \frac{ W_S(p) }{ Q_{R_1}(p) } \le 1 - \frac{T_2}{T_1}$	$COP = \frac{Q_{R_2}}{W_S} \le \frac{1}{1 - \frac{T_1}{T_2}}$	
$\eta_{ ext{rev}} = \eta_C \coloneqq 1 - rac{T_2}{T_1}$	2	
Mit $f(x, y, z) = 0$, $\omega = \omega(x, y)$ (also $x = x(y, z)$ etc.) gilt:		
$ \begin{vmatrix} \frac{\partial x}{\partial y} \Big _z = \frac{\partial y}{\partial x} \Big _z^{-1}, -1 = \frac{\partial x}{\partial y} \Big _z \frac{\partial y}{\partial z} \Big _x \frac{\partial z}{\partial x} \Big _y, \frac{\partial x}{\partial \omega} \Big _z = \frac{\partial x}{\partial y} \Big _z \frac{\partial y}{\partial \omega} \Big _z, \\ \frac{\partial x}{\partial z} \Big _\omega = \frac{\partial x}{\partial y} \Big _\omega \frac{\partial y}{\partial z} \Big _\omega, \frac{\partial x}{\partial y} \Big _z = \frac{\partial x}{\partial y} \Big _\omega + \frac{\partial x}{\partial \omega} \Big _y \frac{\partial \omega}{\partial y} \Big _z $		

1. Hauptsatz

Für jedes $S \in \mathcal{S}$ gilt:

- 1. $\forall \sigma_1, \sigma_2 \in \Sigma_S \exists p \in \mathcal{P}_S : p \text{ verbindet } \sigma_1 \text{ mit } \sigma_2$
- 2. $\forall p, p' \in \mathcal{P}_S$ mit gleichem Start und endzustand : $W_{S}(p) = W_{S}(p')$
- $\Rightarrow \forall S, \sigma \in \Sigma_S : \exists \mathrm{id}_S^{\sigma} \in \mathcal{P}_S \text{ und } W_S(\mathrm{id}_S^{\sigma}) = 0$
- \Rightarrow falls $p \in \mathcal{P}_S$ rev. : $W_S(p^{\text{rev}}) = -W_S(p)$

Entropiesatz

In einem adjabatischen Prozess kann die Entropie eines (abgeschlossenen?) Systems nicht abnehmen.

- $p \in \mathcal{P}$ adjabatisch auf $S \Rightarrow S_S(\lfloor p \rfloor_S) \leq S_S(\lceil p \rceil_S)$ und = falls p rev.
- 2. Hauptsatz

Sei $S, R \in \mathcal{S}, R$ Reservoir, $S \wedge R = \emptyset$.

 $\Rightarrow \forall p \in \mathcal{P}_{S \vee R}$ zyklisch auf $S: W_S(p) \geq 0$

Carnots Theorem

Sei (S, R_1, R_2, p) eine reversible Carnot-Maschine, (S', R_1, R_2, p') eine Carnot-Maschine. OBDA

 $\begin{vmatrix} Q_{R_2}(p') > 0. \Rightarrow \\ -\frac{Q_{R_1}(p')}{Q_{R_2}(p')} \leq -\frac{Q_{R_1}(p)}{Q_{R_2}(p)} \text{ und falls } p' \text{ rev., dann Gleichheit.} \end{vmatrix}$

Clausius-Theorem

Seien $S, \{R_i\}_{i=1}^N \in \mathcal{S}$. Seien $\{p_i\}_{i=1}^N \in \mathcal{P}_{S \vee R_i}$ mit $\begin{array}{l} W_{R_i}(p_i) = 0. \ p = \circ_i \ p_i \quad \text{zykl. auf } S. \\ \Rightarrow \sum_i^N \frac{Q_{S(p_i)}}{T_i} \leq 0 \ \text{mit Gleichheit falls } p \ \text{rev. Falls} \end{array}$ quasistatisch dann $\oint \frac{\delta Q}{T} \leq 0$ mit Gleichheit falls p rev.

$$\underline{\text{Entropie}} \text{: Sei } p = \circ_i \; p_i. \quad \boxed{\mathrm{d} S = \frac{\delta Q}{T}} \quad \boxed{\frac{\partial S_{\max}}{\partial U_{S_i}}} = 0$$

$$S_S(\sigma) \coloneqq \sum_{i=1}^N \frac{Q_S(p_i)}{T_i} + S_{\text{ref}} \equiv \int_{\sigma_{\text{ref}}}^{\sigma} \frac{\delta Q_S}{T} + S_{\text{ref}}$$

$$\Delta S(p' \circ p) = \Delta S(p') + \Delta S(p)$$
 Konkav

$$\Delta S_{A \vee B} = \Delta S_A + \Delta S_B \text{ Homogen}(S(\lambda X) = \lambda S(X))$$

 $Supperadditiv(S(z_1 + z_2) \ge S(z_1) + S(z_2))$ Z_S homogen Grad $k: Z_{NS}(\lambda \sigma) = \lambda^k Z_S(\sigma)$

intensiv: T, P, k = 0 extensiv: U, S, V, N, k = 1

Extremalprinzipien: Bei Glg. $F|_{V,T}^{\min}$, U^{\min} , S^{\max}

Legendre Transformation $(A,D\subset\mathbb{R}^n,f:D o\mathbb{R})$	
A konvex	$\forall \lambda \in [0,1], \forall x,y \in A: \lambda x + (1-\lambda)y \in A$
f konvex	$\Gamma(f) = \{(x,t) \in D \times \mathbb{R} : t \ge f(x)\}$
	konvex. ($\approx (f'')_{lok} > 0$)
	$\Rightarrow f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$
f strikt kx	$f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$
f <u>konkav</u>	$f(\lambda x + (1-\lambda)y) \geq \lambda f(x) + (1-\lambda)f(y)$
$\underline{\text{Leg.TF}} f^*$	$f^*(p) = \sup_x [(px - f(x))]$
	f^* ist konvex und $f^{**} = f$ falls f konvex.
	$f^*(p,y)$ konkav in y falls f konv in x,y
spez.	f konv und $p_0 = f'(x_0)$
$f:R\to R$	$\Rightarrow f^*(p_0) = p_0 x_0 - f(x_0)$
	f konv und C^1 in $x_0 \Rightarrow p_0 = f'(x_0)$
	$\Rightarrow f^* \in C^1 \wedge \left(f^*\right)'(p_0) = x_0$
	f strikt konv und $C^1 \Rightarrow f^*(p) = px - f(x)$
	$x = (f')^{-1}(p), (f*)' = (f')^{-1}$

<u>Wärmekap</u>	$\underline{\text{isochor}} : C_V \coloneqq \frac{\delta Q}{\partial T}\Big _V = \frac{\partial U}{\partial T}\Big _V$
	isobar:
	$\left \overline{C_p \coloneqq} \frac{\delta Q}{\partial T} \right _p = \left. \frac{\partial U}{\partial T} \right _p + p \frac{\partial V}{\partial T} \right _p$
isoth. Kompressibilität	$\kappa_T \coloneqq -rac{1}{V}rac{\partial V}{\partial p}\Big _T$
<u>Volumen-</u>	$\alpha := \frac{1}{V} \frac{\partial V}{\partial T} \Big _{n}$
<u>ausdehnungskoeff.</u>	$\Rightarrow C_p - C_V^P = \frac{TV\alpha^2}{\kappa_T}$
<u>Stabilitätsbedingungen</u>	$C_p \geq C_V \geq 0, \kappa_T \geq 0$
<u>molare Wärmekap.</u>	$c_x \coloneqq \frac{C_x}{n}, n = \frac{N}{N_A}$
<u>Adiabatenexponent</u>	$\gamma \coloneqq \frac{C_p}{C_V}$
Adiabatische Wand	Lässt weder Wärme noch
$\Delta V \Rightarrow P' = P''$	Teilchen durch. (Bewegl.)
<u>Diathermische Wand</u>	$\Delta T \Rightarrow \Delta U \Rightarrow T' = T''$
Gibbssche Phasenregel	f = k + 2 - n,
	k = #Komp, n = #koexPh
Clausius-Clapeyron	Entlang Koex-Kurve zweier
	Phasen gilt:
	$\frac{\partial p}{\partial T} = \frac{S_2^ S_1}{V_2 - V_1} = \frac{L_{12}}{T(V_2 - V_1)}$

Modelle

Ideales Gas $\delta W = -p dV$

$$\left \lceil pV = nRT
ight
ceil_{ ext{thZg}} \left
floor dU = (n)C_V ext{d}T
ight
ceil_{ ext{kalZg}}$$

$$C_V \coloneqq rac{\partial U}{\partial T}\Big|_V \quad \left| egin{array}{c} rac{\partial U}{\partial p}\Big|_T = 0 \end{array}
ight| lpha = rac{1}{T} \quad \kappa_T = rac{1}{p} \
angle$$

$$\boxed{C_p - C_V = nR} \quad \gamma = \frac{nR}{C_V} + 1$$

$$\mathrm{d}U = -p\mathrm{d}V$$
 $pV^{\gamma}, TV^{\gamma-1}, T^{\gamma}p^{1-\gamma} = \mathrm{const}$

Thermalisierung (Wärmeaustausch):

$$\begin{array}{l} \frac{\partial S}{\partial U_A} = 0 \Rightarrow T_F^A = T_F^B, \ \Delta U_{A \vee B} = 0 \ \text{und} \ U_i = N_i C_V T_i \\ \Rightarrow C_V \left(N_A \left(T_F - T_A^{\text{init}} \right) + N_B \left(T_F - T_B^{\text{init}} \right) \right) = 0 \\ \Delta S_A(T,V) = N_A \left(C_V \log \left(\frac{T}{T_0} \right) + R \log \left(\frac{V}{V_0} \right) \right) \end{array}$$

Isotrope paramagnetische Substanz $\delta W = H dM$

$$oxed{KH=MT}_{ ext{thZg(Curie)}} oxed{\mathrm{d}U=C_M\mathrm{d}T}_{ ext{kalZg}} oxed{C_M=rac{\partial U}{\partial T}}_{ ext{HM}}$$

$$\left. \frac{\partial U}{\partial H} \right|_T = 0 \left[dU = \frac{C_M K}{M} \left(-\frac{H}{M} dM + dH \right) \right]$$

Magnetische Carnot-Maschine $\eta = \eta_C$

$$T = T_0 \exp\left(\frac{M^2 - M_0^2}{2KC_M}\right) \qquad W = \int H \mathrm{d}M$$

$\Gamma_N = \mathbb{R}^{6N}$ für N Teilchen,
$x=(q,p)\in\Gamma_N \text{ und } q=(q_1q_n)$
$\mathrm{d}\mu(x) = \omega(x)\mathrm{d}x$
$\omega(x)$: Wahrscheinlichkeitsdichte
$f:\Gamma_N\to\mathbb{R}, x\mapsto f(x)$
$\langle f \rangle_{\omega} = \int \mathrm{d}x \omega f$
$\left\langle f\right\rangle _{\omega_{t}}^{\omega}=\int\mathrm{d}x\omega(x)f(\varphi_{t}(x))$
$S(\omega) \coloneqq -k_B \int \mathrm{d}x \omega \log(\omega)$
$\omega(x) = \omega_{t=0}(x). \ x \mapsto \varphi_t(x).$
$\omega_t(x) = \omega(\varphi_{-t}(x))$
$\left \frac{1}{T} \int_0^T \mathrm{d}t \langle f \rangle_{\omega_t} \right $
wobei $\overline{\omega} \coloneqq \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathrm{d}t \omega_t$

Ergodenhypothese Fast alle Bahnen mit E konstant besuchen fast alle Punkte in Γ_E mit gleicher Häufigkeit und immer wieder.

Formell:
$$\forall E, \forall \omega(x) \equiv \widetilde{\omega}(x) \delta(H(x) - E) : \overline{\omega} = \omega_E$$
 und somit $\langle f \rangle_{\overline{\omega}} = \langle f \rangle_{\omega_E}$

Satz über Max. Entropie: Die mikrokan. Gesamtheit $\omega_E(x)$ maximiert für E,N fest die Entropie.

Gleichverteilungssatz:
$$\left\langle x_i \frac{\partial H}{\partial x_j} \right\rangle_{c} = \delta_{ij} k_B T$$

Mikrokanonisches Ensemble (S isoliert, Fix: E, N, V)

<u>Gesamtheit</u>	$\omega_E(x) = \frac{1}{\Sigma}\delta(H(x) - E)$
Zustandssumme	$\Sigma(E,V,N) = \int_{\Gamma_N} \mathrm{d}x \delta(H(x) - E)$
<u>Entropie</u>	$S(E, V, N) = k_B \log(\Sigma)$

Kanonisches Ensemble (S, R, Fix: N, V,

Energieaustausch mit R)

<u>Gesamtheit</u>	$\omega_{\beta}(x) = \frac{1}{Z} \exp(-\beta H(x))$
Zustandssumme	$Z(eta,V,N)=\int \mathrm{d}x e^{-eta H(x)}$
	$=\int_{\mathbb{R}}\mathrm{d}Ee^{-eta E}\cdot\Sigma(E,V,N)$
<u>Freie Energie</u>	$F(\beta,V,N) = -k_BT\log(Z)$
<u>Entropie</u>	$S(\beta, V, N) = \frac{U - F}{T} = k_B \beta U + k_B \log(Z)$

Grosskanonisches Ensemble (S, R, Fix: V)

Energie- und Teilchenaustausch mit R

Energie- und Tenenaustausen init It	
Gesamtheit	$\omega_{eta,\mu}(N,x) = \frac{1}{\Xi} e^{-eta H(x) + eta \mu N}$
Zustandssumme	$\Xi(\beta, V, \mu)$
	$= \sum_{N=0}^{\infty} \int dx e^{-\beta H(x) + \beta \mu N}$ $= \sum_{N=0}^{\infty} z^N Z(\beta, V, N)$ $z = e^{\beta \mu}, \beta = \frac{1}{k_B T}$
	$ = \sum_{N=0}^{\infty} z^N Z(\beta, V, N) $
	$z = e^{\beta \mu}, \beta = \frac{1}{k_B T}$
<u>Potential</u>	$\Omega(T, V, \mu) = -k_B T \log(\Xi)$
<u>Teilchenzahl</u>	$N = -\frac{\partial \Omega}{\partial \mu}_{T,V}$
<u>Entropie</u>	$S(T,V,N) = \frac{U-\Omega}{T}$
	$=k_B\beta(U-\mu N)+k_B\log(\Xi)$

PH-Ü: 1.0:
$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{\Delta S}{\Delta V}$$
 2.0: $\Delta S_j = \Delta V_j = 0$

$$\Delta C_P = \frac{\mathrm{d}P}{\mathrm{d}T} \cdot VT\Delta\alpha, \quad N = \sum_i n_i \quad \Sigma = \frac{N!}{\prod n_{i!}}$$

$$S = -k_B \sum_i \log(\frac{n_i}{N}) \quad U = \sum_i \varepsilon_i n_i \quad n_i = A \exp(-\beta \varepsilon_i)$$