

Stand 08/2016, Handbuchversion 1.1

Technisches Handbuch MDT Heizungsaktoren

AKH - 0400.02

AKH - 0800.02

1 Inhalt

1 Inhalt	2
2 Übersicht	4
2.1 Übersicht	4
2.1.1 Besondere Funktionen des Heizungsaktors	5
2.2 Verwendung & Anwendungsmöglichkeiten des Heizungsaktor	5
2.3 Anschluss-Schema	6
2.4 Aufbau & Bedienung	7
2.5 Funktionen	8
2.6 Kanal-LEDs	9
2.7. Einstellung in der ETS-Software	9
2.8. Inbetriebnahme	9
3 Kommunikationsobjekte	10
3.1 Übersicht und Verwendung	10
3.2 Standard-Einstellungen der Kommunikationsobjekte	16
4 Referenz ETS-Parameter	18
4.1 Allgemeine Einstellungen	18
4.1.1 Gerätekonfiguration	19
4.1.2 Sommer-/Winterbetrieb	20
4.1.3 Heiz-/Kühlsystem – Anforderung & Umschaltung	21
4.1.4 Festsitzschutz/Ventilschutz	25
4.1.5 max. Stellwert	26
4.1.6 Verhalten nach Busspannungswiederkehr	27
4.1.7 Sollwert Frostbetrieb	28
4.1.8 Diagnosetext	28
4.2 Betriebsart Kanal	30
4.3 Kanal-Konfigurationen - "schaltend (1 Bit)"	31
4.3.1 Grundeinstellungen	32
4.3.2 Sperrfunktion	33
4.3.3 Notbetrieb	33
4.3.4 Zwangsstellung/Taupunktalarm	34
4.3.5 Diagnosefunktion	35
4.4 Kanal-Konfigurationen - "stetig(1 Byte)"	36
4.4.1 PWM Zyklus	
4.4.2 Stellwert Begrenzungen	40
4.4.3 Temperaturbegrenzung Vorlauf	41

4.4.4 Stellwert bei Unterschreitung der minimalen Begrenzung	43
4.5 Kanal-Konfigurationen - "integrierter Regler"	44
4.5.1 Betriebsarten	45
4.5.2 Priorität der Betriebsarten	47
4.5.3 Betriebsartenumschaltung	47
4.5.4 Sollwertverschiebung	51
4.5.5 Meldefunktion (Frost/Hitze)	55
4.5.6 Heiz-/Kühlsystem	56
4.5.7 zusätzliche Einstellungen bei Heiz- & Kühlbetrieb	58
4.5.8 Komfortverlängerung	59
4.5.9 Totzone	60
5 Index	61
5.1Abbildungsverzeichnis	61
5.2 Tabellenverzeichnis	62
6 Anhang	64
6.1 Gesetzliche Bestimmungen	64
6.2 Entsorgungsroutine	64
6.3 Montage	64
6.4 Erläuterungen	65
6.4.1 PWM-Regelung	65
6.4.2 stetige PI-Regelung	67
6.4.1 1Bit schaltend	69
6.5 Beispiele zur Programmierung	70
6.5.1 Beispiel 1: Ansteuerung über Raumtemperaturregler	70
6.5.2 Beispiel 2: Ansteuerung über Temperaturwert	74
6.6 Revisionshistorie	76
C.7 Detection	77

2 Übersicht

2.1 Übersicht

Die Beschreibung bezieht sich auf nachfolgende Heizungsaktoren (Bestellnummer jeweils fett gedruckt):

- AKH-0400.02 Heizungsaktor 4-fach, 2TE, 24 oder 230V AC, Reiheneinbaugerät
 - 4 Kanäle für elektrothermische Stellantriebe, max. Anzahl an Stellantrieben pro Kanal siehe 6.7 Datenblatt, 230V AC Ausfallerkennung, 230V AC/24V AC Kurzschlusserkennung an Last
- AKH-0800.02 Heizungsaktor 8-fach, 4TE, 24 oder 230V AC, Reiheneinbaugerät
 - 8 Kanäle für elektrothermische Stellantriebe, max. Anzahl an Stellantrieben pro Kanal siehe 6.7 Datenblatt, 230V AC Ausfallerkennung, 230V AC/24V AC Kurzschlusserkennung an Last

<u>Achtung:</u> Jeder Aktor kann entweder mit 230V oder mit 24V gespeist werden. Eine Mischung aus beiden Spannungen an einem Aktor ist nicht zulässig!

2.1.1 Besondere Funktionen des Heizungsaktors

Die Heizungsaktoren verfügen über eine sehr umfangreiche Applikation mit besonderen Funktionen:

Integrierter Raumtemperaturregler

Der Heizungsaktor kann direkt mit einer Ist-Temperatur des Raumes angesteuert werden. Ein umfangreicher Raumtemperaturregler ist im Gerät integriert.

Erweiterte Szenenfunktion

Die erweiterte Szenenfunktion kann neben der Solltemperatur auch Sommer/Winter, Komfort, Nacht und Standby schalten.

Mindestvorlauftemperatur

Es besteht die Möglichkeit, z.B. für das Badezimmer, eine minimale Komfort-Temperatur der Bodenheizung einzustellen. Dazu wird mit einem zusätzlichen Bodenfühler die Bodentemperatur gemessen und auf beispielsweise 18Grad gehalten. Damit vermeidet man einen "kalten" Boden in Übergangszeiten.

Erweiterte Sollwertverschiebung

Die Sollwertverschiebung kann neben Plus/Minus (1Bit) und einer 2 Byte Temperatur auch mit einer 1 Byte Verschiebung erfolgen.

Automatische Umschaltung Heizen/Kühlen

Der Aktor kann automatisch die Betriebsart Heizen/Kühlen umschalten. Hierzu dient ein Raum als Referenz.

Komfortverlängerung/Präsenzobjekt

Der Aktor kann per Tastendruck für eine Zeit wieder in Komfort geschaltet werden, wenn er schon im Nachtmodus ist. Alternativ kann auch eine Präsenzfunktion verwendet werden.

Neues Blinkverhalten

Der Aktor hat ein geändertes Blinkverhalten, mit welchem sich Störungen leichter erkennen lassen.

Klartextdiagnose

Der Aktor hat je Kanal eine Klartextdiagnose mit einem 14 Byte Objekt. Hierdurch lassen sich Fehler in kurzer Zeit lokalisieren. Der aktuelle Zustand/Fehlerzustand wird hier ausgegeben.

2.2 Verwendung & Anwendungsmöglichkeiten des Heizungsaktor

Der Heizungsaktor kann entweder mit 24V AC oder mit 230V AC gespeist werden und ermöglicht es somit elektrothermische Stellantriebe mit 24V AC oder 230V AC anzusteuern. Der Heizungsaktor ist in der Ausführung mit vier oder acht Kanälen erhältlich.

Über eine integrierte 230V AC Ausfallerkennung sowie eine Kurzschlusserkennung, für beide Spannungshöhen, an der Last verfügt der Heizungsaktor über maximale Ausfallsicherheit. Zusätzlich kann ein Notbetrieb eingestellt werden, welcher bei Ausfall der zyklischen Stellgröße aktiv wird. Der Aktor kann sowohl über 1 Bit als auch über 1 Byte Stellgrößen angesteuert werden. Als Besonderheit verfügt der Aktor über einen integrierten Temperaturregler, welcher es ermöglicht den Aktor direkt über einen Temperaturwert anzusteuern. Der integrierte Temperaturregler verfügt über vier Betriebsarten, Komfort, Nacht, Standby und Frost-/Hitzeschutz. Die Sollwerte für die einzelnen Betriebsarten können sowohl für den Heiz- als auch Kühlbetrieb individuell angepasst werden. Stellwertbegrenzungen, Sommer-/Winterbetrieb sowie Ventilschutzfunktion runden das Leistungsspektrum des Heizungsaktors ab.

2.3 Anschluss-Schema

Abbildung 1: Anschlussbeispiel Heizungsaktor 4fach 230V

Abbildung 2: Anschlussbeispiel Heizungsaktor 8fach 230V

2.4 Aufbau & Bedienung

Der Heizungsaktor, hier in der 8-fachen Ausführung, verfügt über die Standardbauteile Programmier-Knopf, Programmier-LED, welche einen aktiven Programmierbetreib anzeigt, und eine Busanschlussklemme.

Mittels der Anschlussklemme können an den einzelnen Ausgängen die anzusteuernden Stellventile nach dem obigen Anschluss-Schema angeschlossen werden.

Jeder einzelne Kanal verfügt über eine Status-LED, welche über ein langsames Blinken einen aktiven Betrieb des Kanals anzeigt. Das Puls-Pausenverhältnis entspricht dem Stellwert. Ein deutlich schnelleres Blinken dieser Status-LED signalisiert eine aktive Störung.

Abbildung 3: Übersicht Hardwaremodul

2.5 Funktionen

Die Funktionalität ist für alle Kanäle identisch, je nach Hardwareausführung besitzt das Gerät bis zu 8 Kanäle.

Die Kennzeichnung der Kanäle ist in alphabetisch fortlaufender Reihenfolge ausgeführt. Die allgemeinen Einstellungen werden für alle Kanäle des Geräts übernommen. Für jeden Kanal gibt es 4 mögliche Funktionalitäten:

Kanal nicht aktiv

Dem Kanal wird keine weitere Funktion zugewiesen. Somit gibt es für diesen Kanal auch keine weiteren Parametrierungsmöglichkeiten.

schaltend (1 Bit)

Der Kanal verarbeitet eine 1 Bit Größe als Eingangssignal für die Stellgröße, z.B. von einem Zweipunktregler oder eines PWM-Signals. Dementsprechend wird der Ausgang nur ein- oder ausgeschaltet, bei einem Wechsel des 1 Bit Eingangssignals.

Über weitere Parametrierungsmöglichkeiten wie Ventilart, aktivierbare Sperrobjekte, aktivierbarer Notbetrieb und Taupunktalarm/Zwangsstellung sowie Statusobjekte für den Stellwert lässt sich der Kanal an vorhandene Stellventile anpassen.

stetig (1 Byte)

Der Kanal verarbeitet als Eingangssignal eine stetige 1 Byte Größe, z.B. eines PI-Reglers. Das Eingangssignal wird über einen PWM-Regler, mit einstellbarer Zykluszeit, an das Stellventil weitergegeben.

Neben den gleichen Parametrierungsmöglichkeiten wie bei der 1 Bit Eingangsgröße, verfügt der Kanal beim 1 Byte-Signal noch über Einstellmöglichkeiten für Begrenzungen der Stellgröße, sowie der Vorlauftemperatur.

• integrierter Temperaturregler

Wird der Kanal mit der Betriebsart integrierter Temperaturregler ausgewählt, so erzeugt der integrierte Regler eine eigene stetige Stellgröße, welche dann als PWM-Signal an den Schaltausgang weitergegeben wird.

Neben den gleichen Parametrierungsmöglichkeiten wie bei der 1 Byte Eingangsgröße, können noch Einstellungen am Regler vorgenommen werden um die Heiz-/Kühlregelung individuell anzupassen.

2.6 Kanal-LEDs

Jeder Kanal verfügt über eine LED, welche den Schaltzustand des jeweiligen Kanals angeben. Zusätzlich zum Status zeigen diese Kanal LEDs auch Störungen an.

Die Störungen werden wie folgt angezeigt:

- 2x blinken, lange Pause, 2x blinken...
 Der Kanal befindet sich im Notbetrieb aufgrund Stellwertausfall
- 3x blinken, lange Pause, 3x blinken...

Im 230V Betrieb wird ein Netzausfall erkannt und durch ein Blinken signalisiert. Da meist 4 Kanäle gemeinsam gespeist werden, blinken auch 4 Kanäle gleichzeitig. Beim 4-fachen Aktor muss der 1. Kanal immer belegt sein, beim 8-fachen Aktor zusätzlich noch der 5. Kanal. Ist dies nicht der Fall, so geht der Aktor in den Störbetrieb und signalisiert dies über das gleichzeitige Blinken aller Kanal-LEDs.

4x blinken, lange Pause, 4x blinken...
 Der zugehörige Kanal befindet sich im Überlastbetrieb oder hat einen Kurzschluss am Ausgang.

Das normale Verhalten des Aktors wird ebenfalls wie folgt über diese LEDs angezeigt:

- schaltender Betrieb (1 Bit)
 Die LED zeigt das Schaltverhalten des Ausgangs an. Gibt der Zweipunktregler ein 1-Signal aus, so leuchtet die LED.
- stetig (1 Byte)/ integrierter Regler
 Die LED wird im PWM-Betrieb betrieben, mit der festen Periodendauer von 4s und blinkt im
 Rhythmus des Stellwertes. Bei 50% wäre die LED demnach 2s an und 2s aus.

2.7. Einstellung in der ETS-Software

Auswahl in der Produktdatenbank

<u>Hersteller:</u> MDT Technologies <u>Produktfamilie:</u> Aktoren <u>Produkttyp:</u> Heizungsaktoren <u>Medientyp:</u> Twisted Pair (TP)

Produktname: vom verwendeten Typ abhängig, z.B.: AKH-0800.02 Heizungsaktor 8-fach, 4TE

Bestellnummer: vom verwendeten Typ abhängig, z.B.: AKH-0800.02

2.8. Inbetriebnahme

Nach der Verdrahtung des Gerätes erfolgt die Vergabe der physikalischen Adresse und die Parametrierung der einzelnen Kanäle:

- (1) Schnittstelle an den Bus anschließen, z.B. MDT USB Interface
- (2) Busspannung zuschalten
- (3) Programmiertaste am Gerät drücken(rote Programmier LED leuchtet)
- (4) Laden der physikalischen Adresse aus der ETS-Software über die Schnittstelle(rote LED erlischt, sobald dies erfolgreich abgeschlossen ist)
- (5) Laden der Applikation, mit gewünschter Parametrierung
- (6) Wenn das Gerät betriebsbereit ist kann die gewünschte Funktion geprüft werden(ist auch mit Hilfe der ETS-Software möglich)

${\bf 3}\ Kommunikation sobjekte$

3.1 Übersicht und Verwendung

Nr.	Name	Objektfunktion	Datentyp	Richtung	Info	Verwendung	Hinweis
globale	Objekte:		•				
80/ 160	Sommer/Winter	Umschaltung	DPT 1.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Grundfunktion des Heizungsaktor, dauerhaft eingeblendet; dient der Umschaltung zwischen Sommer- und
81/ 161	Heizen/Kühlen	Status	DPT 1.100	senden	Aktor sendet Status	Umschaltung Heiz- /Kühlbetrieb, Status	Winterbetrieb Umschaltung zwischen Heizen und Kühlen oder Ausgabe des aktuellen Modus
82/ 162	Heiz-/Kühlanforderung	0 wenn alle Ventile geschlossen, sonst 1	DPT 1.002	senden	Aktor sendet Status	Schalten der Pumpe	Senden der Heiz- /Kühlanforderung bei gemeinsamer Anforderung (für 2-Rohr Systeme die entweder Kühlen oder Heizen können)
82/ 162	Heizanforderung	0 wenn alle Ventile geschlossen, sonst 1	DPT 1.002	senden	Aktor sendet Status	Schalten der Pumpe	Senden der Heizanforderung bei getrennter Anforderung (für 4-Rohr Systeme die gleichzeitig Heizen und Kühlen können)

83/ 163	Kühlanforderung	0 wenn alle Ventile geschlossen, sonst 1	DPT 1.002	senden	Aktor sendet Status	Schalten der Pumpe	Senden der Kühlanforderung bei getrennter Anforderung (für 4-Rohr Systeme die gleichzeitig Heizen und Kühlen können)
84/ 164	Störung	Bei Netzausfall/Kurzschluss	DPT 1.005	senden	Aktor sendet Störungsmeldung	Visualisierung, Generierung Störungs- meldung	Ausgabe einer Störungsmeldung; dauerhaft eingeblendet
85/ 165	Max. Stellwert	Eingang	DPT 5.001	empfangen	Aktor reagiert auf Eingangs- telegramm	weiterer Heizungsaktor	Kaskadierung von mehreren Heizungsaktoren; wird eingeblendet wenn Objekte max. Stellwert aktiviert sind
86/ 166	Max. Stellwert	Eingang	DPT 5.001	senden	Aktor sendet Status	Modulierung Heizungsanlage/ weiterer Heizungsaktor	Kaskadierung von mehreren Heizungsaktoren; wird eingeblendet wenn Objekte max. Stellwert aktiviert sind
87/ 167	Szene	Aktivieren	DPT 17.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Aufrufen von Szenen; wird eingeblendet wenn Szenenfunktion aktiviert wurde
88/ 168	Zentrale Funktion	In Betrieb	DPT 1.011	senden	Aktor sendet Status	Ausfall- erkennung, Diagnose, Visu	Objekt kann über die Parameter eingeblendet werden, sendet einen zyklischen Status

Objekt	te pro Kanal:						
0	Kanal A	Stellwert	DPT 1.001/ DPT 5.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Temperatur- regler	Empfang des aktuellen Stellwertes; wird im 1 Bit und 1 Byte Modus eingeblendet
0	Kanal A	Temperaturmesswert	DPT 9.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Temperatur- sensor	Empfang des aktuellen Temperaturwertes; wird eingeblendet im Modus integrierter Regler
1	Kanal A	Vorlauftemperatur	DPT 9.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Temperatur- sensor	Empfang der Vorlauftemperatur; wird eingeblendet wenn Vorlauftemperaturbegrenzung aktiviert ist
2	Kanal A	Sperren	DPT 1.003	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Sperrt den Kanal; wird eingeblendet wenn Sperrfunktion aktiv ist
3	Kanal A	Status Stellwert	DPT 1.001/ DPT 5.001	senden	Aktor sendet Status	Diagnose, Visu	Gibt den aktuellen Stellwert aus; wird eingeblendet in der Betriebsart schaltend/stetig
4	Kanal A	Komfortverlängerung	DPT 1.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Verlängerung des Komfortbetriebs – "Party- Taste"; kann in der Betriebsart integrierter Regler eingeblendet werden

5	Kanal A	Zwangsstellung	DPT 1.003	empfange	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Aktivierung/Deaktivierung der Zwangsstellung; Zusatzfunktion in allen Betriebsarten
5	Kanal A	Taupunktalarm	DPT 1.005	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Aktivierung/Deaktivierung der Taupunktalarm; Zusatzfunktion in allen Betriebsarten
6	Kanal A	PWM Ausgang Kühlen für 4 Rohr	DPT 5.001	senden	Aktor sendet Status	Kanal Heizungs- aktor	Ausgangsobjekt bei 4-Rohr Heizen/Kühlen; Zusatzfunktion in der Betriebsart integrierter Regler (Heizen/Kühlen)
7	Kanal A	Sollwert Komfort	DPT 9.001	senden/ empfangen	Aktor reagiert auf Eingangs- telegramm/ sendet Status	Visu, Taster, Sollwertvorgabe	Sollwertvorgabe für den Komfort-Modus; Grundfunktion in der Betriebsart integrierter Regler
8	Kanal A	Sollwertverschiebung	DPT 9.002	empfangen	Aktor reagiert auf Eingangs- telegramm	Visu, Taster, Sollwertvorgabe	Sollwertverschiebung; Zusatzfunktion in der Betriebsart integrierter Regler
9	Kanal A	aktueller Sollwert	DPT 9.001	senden	Aktor sendet Status	Diagnose, Visualisierung	Statusausgabe des aktuellen Sollwertes; Zusatzfunktion in der Betriebsart integrierter Regler
10	Kanal A	Betriebsartvorwahl	DPT 20.102	senden/ empfangen	Aktor reagiert auf Eingangs- telegramm/ sendet Status	Bedientasten, Visu Visualisierung	Anwahl der Betriebsart; Grundfunktion in der Betriebsart integrierter Regler

11	Kanal A	DPT_HVAC Status	ohne	senden	Aktor sendet Status	Diagnose, Visu	Statusobjekt; Zusatzfunktion in der Betriebsart integrierter Regler
12	Kanal A	DPT_RHCC Status	DPT 22.101	senden	Aktor sendet Status	Diagnose, Visu	Statusobjekt; Zusatzfunktion in der Betriebsart integrierter Regler
13	Kanal A	Betriebsart Komfort	DPT 1.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Anwahl der Betriebsart; Grundfunktion in der Betriebsart integrierter Regler
14	Kanal A	Betriebsart Nacht	DPT 1.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Anwahl der Betriebsart; Grundfunktion in der Betriebsart integrierter Regler
15	Kanal A	Betriebsart Frost/Hitzeschutz	DPT 1.001	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Anwahl der Betriebsart; Grundfunktion in der Betriebsart integrierter Regler
16	Kanal A	Frostalarm	DPT 1.005	senden	Aktor sendet Status	Diagnose, Visualisierung	Statusobjekt; Grundfunktion in der Betriebsart integrierter Regler
17	Kanal A	Hitzealarm	DPT 1.005	senden	Aktor sendet Status	Diagnose, Visualisierung	Statusobjekt; Grundfunktion in der Betriebsart integrierter Regler

18	Kanal A	Sollwertverschiebung (0=-/1=+)	DPT 1.007	empfangen	Aktor reagiert auf Eingangs- telegramm	Bedientasten, Visu zur manuellen Bedienung	Sollwertverschiebung; Zusatzfunktion in der Betriebsart integrierter Regler
19	Kanal A	Diagnosetext	DPT 16.000	senden	Aktor sendet Status	Diagnose, Visualisierung	Statusobjekt; Zusatzfunktion in der Betriebsart integrierter Regler

Tabelle 1: Übersicht Kommunikationsobjekte

3.2 Standard-Einstellungen der Kommunikationsobjekte

Die folgende Tabelle zeigt die Standardeinstellungen für die Kommunikationsobjekte:

	5	Standardeinstellu		j					
Nr.	Kanal	Funktion	Größe	Priorität	K	L	S	Ü	Α
0	Kanal A	Stellwert	1 Bit	Niedrig	Х		Χ	Х	
0	Kanal A	Stellwert	1 Byte	Niedrig	Х		Χ	Χ	
0	Kanal A	Temperaturmesswert	2 Byte	Niedrig	Х		Χ	Χ	
1	Kanal A	Vorlauftemperatur	2 Byte	Niedrig	Х		Χ		
2	Kanal A	Sperren	1 Bit	Niedrig	Х		Χ		
3	Kanal A	Status Stellwert	1 Bit	Niedrig	Х	Χ		Χ	
3	Kanal A	Status Stellwert	1 Byte	Niedrig	Х	Χ		Χ	
4	Kanal A	Komfortverlängerung	1 Bit	Niedrig	Х		Χ		
5	Kanal A	Zwangsstellung	1 Bit	Niedrig	Х		Χ		
5	Kanal A	Taupunktalarm	1 Bit	Niedrig	Х		Χ		
6	Kanal A	PWM Ausgang Kühlen für 4 Rohr	1 Byte	Niedrig	Х	Х		Х	
7	Kanal A	Sollwert Komfort	2 Byte	Niedrig	Х		Χ		
8	Kanal A	Sollwertverschiebung	2 Byte	Niedrig	Х		Χ		
9	Kanal A	aktueller Sollwert	2 Byte	Niedrig	Х	Χ		Χ	
10	Kanal A	Betriebsartvorwahl	1 Byte	Niedrig	Х		Χ	Χ	
11	Kanal A	DPT_HVAC Status	1 Byte	Niedrig	Х	Χ		Χ	
12	Kanal A	DPT_RHCC Status	2 Byte	Niedrig	Х	Χ		Χ	
13	Kanal A	Betriebsart Komfort	1 Bit	Niedrig	Х	Χ	Χ		
14	Kanal A	Betriebsart Nacht	1 Bit	Niedrig	Х	Χ	Χ		
15	Kanal A	Betriebsart Frost/Hitzeschutz	1 Bit	Niedrig	Х	Χ	Χ		
16	Kanal A	Frostalarm	1 Bit	Niedrig	Х	Χ		Χ	
17	Kanal A	Hitzealarm	1 Bit	Niedrig	Х	Х		Χ	
18	Kanal A	Sollwertverschiebung (1=+/0=-)	1 Bit	Niedrig	Х		Х		
19	Kanal A	Diagnosetext	14 Byte	Niedrig	Х	Χ		Χ	
+20	nächster Kanal								

80/160	Sommer/Winter	Umschaltung	1 Bit	Niedrig	Х		Х	Х	
81/161	Heizen/Kühlen	Umschaltung	1 Bit	Niedrig	Х		Χ	Χ	
82/162	Heizanforderung/ Heiz- /Kühlanforderung	0 wenn alle Ventile zu, sonst 1	1 Bit	Niedrig	Х	Х		Х	
83/163	Kühlanforderung	0 wenn alle Ventile zu, sonst 1	1 Bit	Niedrig	Х	Х		Х	
84/164	Störung	Bei Netzausfall/Kurzschluss	1 Bit	Niedrig	Х	Χ		Χ	
85/165	Max. Stellwert	Ausgang	1 Byte	Niedrig	Х	Χ		Χ	
86/166	Max. Stellwert	Eingang	1 Byte	Niedrig	Х		Х		
87/167	Szene	Aktivieren	1 Byte	Niedrig	Х		Х		
88/168	Zentrale Funktion	In Betrieb	1 Bit	Niedrig	Х		Χ		

Tabelle 2: Standard-Einstellungen Kommunikationsobjekte

Aus der auf der vorigen Seite stehenden Tabelle können die voreingestellten Standardeinstellungen entnommen werden. Die Priorität der einzelnen Kommunikationsobjekte, sowie die Flags können nach Bedarf vom Benutzer angepasst werden. Die Flags weisen den Kommunikationsobjekten ihre jeweilige Aufgabe in der Programmierung zu, dabei steht K für Kommunikation, L für Lesen, S für Schreiben, Ü für Übertragen und A für Aktualisieren.

4 Referenz ETS-Parameter

4.1 Allgemeine Einstellungen

Im nachfolgenden Bild sind die allgemeinen Einstellmöglichkeiten für den Aktor zu sehen. Die Einstellungen wirken sich auf alle Kanäle aus.

Abbildung 4: allgemeine Einstellungen

4.1.1 Gerätekonfiguration

Die nachfolgenden beiden Parameter dienen der Konfiguration des Aktors.

Geräteanlaufzeit	0 s	•
In Betrieb Telegramm zyklisch senden (0 = nicht aktiv)	0	min
Thermischer Antrieb	C 24V © 230V	

Abbildung 5: Gerätkonfiguration

Die nachfolgende Tabelle zeigt den Einstellbereich für diese Parameter:

	Manual and a second	
Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Geräteanlaufzeit	0-60s	Zeit, die zwischen der
	[0s]	Busspanungswiederkehr und dem
		Anlauf des Gerätes vergeht
In-Betrieb Telegramm	0-30000min	Einstellung, ob ein In-Betrieb
	[0 = nicht aktiv]	Telegramm zyklisch gesendet
	-	werden soll.
Thermischer Antrieb	■ 24V	Einstellung der Spannung an den
	■ 230V	thermischen Antrieben

Tabelle 3: Gerätkonfiguration

Mit der Geräteanlaufzeit kann die Zeit festgelegt werden, die zwischen einer Busspannungswiederkehr, bzw. einem ETS-Download, vergeht und dem Anlauf des Geräts. Mit der Spannungseinstellung für den thermischen Antrieb wird festgelegt mit welcher Versorgungsspannung der thermische Antrieb arbeitet. Durch die Spannungseinstellung ändert sich im Aktor selbst nur die Störungserkennung, sonst bleiben die Funktionen identisch. Die Störungsfunktion erkennt im 230V Betrieb sowohl einen Kurzschluss als auch einen Netzausfall. Im 24V Betrieb wird nur der Kurzschluss erkannt. Bei einer aktiven Störung wird über das zugehörige Objekt ein 1-Signal geschickt. Zusätzlich reagiert der sich "in Störung" befindliche Kanal mit einem schnellen Blinken der zugehörigen Kanal-LED (Kurzschluß: 4x blinken, lange Pause, 4x blinken...). Bei Ausfall der 230V Versorgung blinken alle 4 Kanäle die mit diesem L-Anschluss versorgt werden (3x blinken, lange Pause, 3x blinken...).

Nummer	Name	Größe	Verwendung
83/163	Störung	1 Bit	Meldung einer aktiven Störung
88/168	In-Betrieb	1 Bit	Senden eines In-Betrieb Telegramms

Tabelle 4: Kommunikationsobjekt Störung

Eine aktive Störung kann durch Drücken der Programmiertaste zurückgesetzt werden.

Achtung: Der 1. Kanal beim 4-fachen Aktor, sowie der 1. und 5. Kanal beim 8-fachen Aktor, müssen als erstes belegt werden, da sonst eine Störung ausgegeben wird!

Achtung: Jeder Aktor kann nur eine Spannung betreiben, entweder 230V oder 24V. Eine Kombination beider Spannungen an einem Aktor ist aufgrund der Leiterbahnabstände nicht zulässig!

4.1.2 Sommer-/Winterbetrieb

In den nachfolgenden Einstellungen kann der Sommer-/Winterbetrieb eingestellt werden:

Stellwerte bei Sommerbetrieb auf 0% setzen	Neir	n O Ja
Polarität für Objekt "Sommer/Winter"	_	nmer = 1 / Winter = 0 nmer = 0 / Winter = 1

Abbildung 6: Sommer-/Winterbetrieb

Die nachfolgende Tabelle zeigt den Einstellbereich für diese Parameter:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Stellwerte bei	■ Ja	Ist diese Einstellung aktiv wird der
Sommerbetrieb auf 0%	■ Nein	Stellwert im Sommerbetrieb auf
setzen		0% gesetzt
Polarität für Objekt	Sommer=1/Winter=0	Einstellung der Polarität für die
Sommer/Winter	Sommer=0/Winter=1	Umschaltung

Tabelle 5: Sommer-/Winterbetrieb

Der Heizungsaktor kann in einen Sommer- und einen Winterbetrieb geschaltet werden. Die Polarität des Objektes kann eingestellt werden.

Zusätzlich kann eine Einstellung getroffen werden, dass der Stellwert im Sommerbetrieb dauerhaft auf 0% gesetzt wird. Diese Einstellung kann jedoch natürlich nur vorgenommen werden, wenn die Umschaltung für den Kühlbetrieb als "nicht aktiv" ausgewählt wurde, der Aktor somit als reiner Heizungsaktor arbeitet.

Nummer	Name	Größe	Verwendung
80/160	Sommer/Winter	1 Bit	Umschaltung Sommer-/Winterbetrieb

Tabelle 6: Kommunikationsobjekt Sommer-/Winterbetrieb

4.1.3 Heiz-/Kühlsystem - Anforderung & Umschaltung

Das folgende Bild zeigt die relevanten Parameter zeigt die relevanten Parameter für die Festlegung des verwendeten Systems:

Abbildung 7: Heiz-/Kühlumschaltung

Grundsätzlich wird zwischen 4 verschiedenen Systemen unterschieden:

Reines Heizsystem oder **reines Kühlsystem** – Es existiert nur ein Kreislauf der nur für Heizen oder nur für Kühlen verwendet wird.

Empfohlene Einstellungen:

Parameter	Einstellung	Erklärung
Auswahl Heizsystem	2 Rohr System (Heizen oder	Auswahl ob ein 2-Rohr oder 4-
	Kühlen)	Rohr System vorliegt
Auswahl Betriebsart	Heizen oder Kühlen	Auswahl ob ein reines Heiz- oder
		Kühlsystem vorliegt
Umschalten für	wird nicht eingeblendet	
Heizen/Kühlen		
Objekt für Anforderung	aktiv oder aktiv mitmin	Der Parameter aktiviert die
Heizen/Kühlen	Ausschaltverzögerung	Objekte für die Heizanforderung
		oder die Kühlanforderung.
Heizanforderung in	beliebig	siehe Tabelle 10:
Abhängigkeit von		Einstellmöglichkeiten Heiz-
		/Kühlumschaltung

Tabelle 7: Empfohlene Einstellungen reines Heizsystem oder reines Kühlsystem

2-Rohr System - Heizen **und** Kühlen– Es existiert nur ein Kreislauf für Heizen/Kühlen. Die Heizung kann entweder Heizen oder Kühlen:

Abbildung 8: 2-Rohr System

Empfohlene Einstellungen:

Parameter	Einstellung	Erklärung
Auswahl Heizsystem	2 Rohr System (Heizen oder	Auswahl das ein 2-Rohr System
	Kühlen)	vorliegt
		Wichtig: In dieser Einstellung ist
		das Heizen und Kühlen
		gegeneinander verriegelt! Es ist
		nur der Heiz- oder der
		Kühlbetrieb möglich!
Auswahl Betriebsart	Heizen und Kühlen	Auswahl eines kombinierten Heiz-
		/Kühlsystems
Umschalten für	über Objekt oder automatisch	Dem Heizungsaktor kann ein
Heizen/Kühlen	mit Referenzkanal	Referenzkanal für die
		Umschaltung zugewiesen. Dieser
		bestimmt in welchem Zustand
		sich das 2-Rohr System gerade
		befindet und hat Auswirkungen
		auf den gesamten Heizungsaktor.
		Alternativ kann der Heizungsaktor
		manuell über ein Objekt zwischen
		Heizen und Kühlen umgeschaltet
		werden.
		Wichtig: Heizen und Kühlen sind
		gegeneinander verriegelt.
Objekt für Anforderung	aktiv oder aktiv mitmin	Der Parameter aktiviert das
Heizen/Kühlen	Ausschaltverzögerung	Objekt für die Heiz-
		/Kühlanforderung. Es existiert nur
		ein Objekt für die Heiz-
		/Kühlanforderung.
Heizanforderung in	beliebig	siehe Tabelle 10:
Abhängigkeit von		Einstellmöglichkeiten Heiz-
		/Kühlumschaltung

Tabelle 8: Empfohlene Einstellungen 2-Rohr Heizen und Kühlen

4-Rohr System: Es existieren 2 separate Kreisläufe für Heizen und Kühlen. Die Heizung kann parallel Heizen und Kühlen:

Abbildung 9: 4-Rohr System

Empfohlene Einstellungen:

Parameter	Einstellung	Erklärung
Auswahl Heizsystem	4 Rohr System (Heizen und	Auswahl das ein 4-Rohr System
	Kühlen gleichzeitig)	vorliegt.
		Wichtig: In dieser Einstellung ist
		das Heizen und Kühlen nicht
		gegeneinander verriegelt!
Auswahl Betriebsart	Heizen und Kühlen	Auswahl eines kombinierten Heiz-
		/Kühlsystems
Umschalten für	über Objekt oder automatisch	Der Heizungsaktor kann zwischen
Heizen/Kühlen	mit Referenzkanal	Heizen und Kühlen umgeschaltet
		werden oder dies kann in
		Abhängigkeit eines
		Referenzkanals geschehen.
		Wichtig: Trotz Umschaltung
		zwischen Heizen und Kühlen ist
		es möglich, dass der
		Heizungsaktor gleichzeitig heizt
		und kühlt, da ein getrenntes
		System vorliegt.
Objekt für Anforderung	aktiv oder aktiv mitmin	Der Parameter aktiviert das
Heizen/Kühlen	Ausschaltverzögerung	Objekt für die Heiz-
		/Kühlanforderung. Es existiert nur
		ein Objekt für die Heiz-
		/Kühlanforderung.
Heizanforderung in	beliebig	siehe Tabelle 10:
Abhängigkeit von		Einstellmöglichkeiten Heiz-
		/Kühlumschaltung

Tabelle 9: Empfohlene Einstellungen 4-Rohr Heizen und Kühlen

Parameterübersicht und Beschreibung:

Linterfunktion		Vommenter.
Unterfunktion	Wertebereich [Defaultwert]	Kommentar
Auswahl Heizsystem	 2 Rohr System (Heizen oder Kühlen) 4 Rohr System (Heizen und Kühlen gleichzeitig) 	Auswahl ob ein 2-Rohr oder ein 4- Rohr System vorliegt.
Auswahl Betriebsart	HeizenKühlenHeizen und Kühlen	Auswahl der Betriebsart
Umschaltung für Heizen/Kühlen	 nicht aktiv über Objekt Sommer/Winter über Objekt Kühlen automatisch 	Festlegung der Umschaltung zwischen Heizen und Kühlen; nur bei der Betriebsart Heizen und Kühlen verfügbar!
Umschalten für Heizen/Kühlen	 über Objekt oder automatisch mit Referenzkanal 	Umschalten für Heizen/Kühlen
Referenzkanal für automatische Umschaltung Heizen/Kühlen	Kanal A- Kanal D[H][Kanal A]	Festlegung des Referenzkanals bei automatischer Umschaltung
Objekt für Anforderung Heizen/Kühlen	 nicht aktiv aktiv aktiv mit 10min Ausschaltverzögerung aktiv mit 20min Ausschaltverzögerung aktiv mit 30min Ausschaltverzögerung 	Aktivierung des Objekts Heiz/Kühlanforderung und Einstellung einer Ausschaltverzögerung.
Heizanforderung in Abhängigkeit von	■ Ventilzustand ■ Stellwert	Ventilzustand: Die Anforderung schaltet auf 0 wenn kein Ventil bestromt wird, d.h. auch in der PWM-Pause. Stellwert: Die Anforderung geht erst auf 0 wenn alle Stellwerte auf 0% sind. Wichtig: Bei der Einstellung "Ventilzustand" wird das Objekt max. Stellwert Eingang (vgl. 4.1.5 max. Stellwert) nicht mit einbezogen.

Tabelle 10: Einstellmöglichkeiten Heiz-/Kühlumschaltung

Die nachfolgende Tabelle zeigt die dazugehörigen Kommunikationsobjekte:

Nummer	Name	Größe	Verwendung
80/160	Sommer/Winter	1 Bit	Umschaltung Sommer/Winter
81/161	Heizen/Kühlen	1 Bit	Umschaltung Heizbetrieb(=1) und Kühlbetrieb(=0)
82/162	Heiz-/Kühlanforderung	1 Bit	sendet "0" wenn alle Ventile zu, "1" wenn min.
			eins offen;
			bei gemeinsamer Heiz-/Kühlanforderung
82/162	Heizanforderung	1 Bit	sendet "0" wenn alle Ventile zu, "1" wenn min.
			eins offen;
			bei getrennter Heiz-/Kühlanforderung oder bei
			gemeinsamer Heiz-/Kühlanforderung
82/162	Kühlanforderung	1 Bit	sendet "0" wenn alle Ventile zu, "1" wenn min.
			eins offen;
			bei gemeinsamer Heiz-/Kühlanforderung
83/163	Kühlanforderung	1 Bit	sendet "0" wenn alle Ventile zu, "1" wenn min.
			eins offen;
			bei getrennter Heiz-/Kühlanforderung

Tabelle 11:Kommunikationsobjekt Heiz-/Kühlumschaltung

4.1.4 Festsitzschutz/Ventilschutz

Die nachfolgende Grafik zeigt die Einstellmöglichkeiten für diesen Parameter:

Abbildung 10: Festsitz-/Ventilschutz

Die nachfolgende Tabelle zeigt den Einstellbereich für diesen Parameter:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Festsitzschutz (alle 6 Tage	nicht aktiv	aktiviert den Festsitz-/
für 5min Ventile auf/zu)	aktiv	Ventilschutz

Tabelle 12:Einstellbereich Festsitz-/Ventilschutz

Um sicherzugehen, dass ein Ventil, welches über einen längeren Zeitraum nicht geöffnet wird, nicht blockiert, verfügt der Heizungsaktor über einen Festsitzschutz/Ventilschutz. Dieser steuert alle Kanäle in einem festen Zyklus von 6 Tagen für 5min an und fährt somit alle angeschlossenen Ventile einmal komplett auf.

Somit kann ein reibungsloses Auf- und Zufahren der Ventile gesichert werden.

4.1.5 max. Stellwert

Das nachfolgende Bild zeigt die Einstellmöglichkeiten für diesen Parameter:

Objekt max. Stellwert senden bei Änderung und zykl. Senden 30min ▼

Abbildung 11: max. Stellwert

Die nachfolgende Tabelle zeigt den Einstellbereich für diesen Parameter:

	5	
Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Objekt max. Stellwert	nicht aktiv	aktiviert die Objekte für den max.
	senden bei Änderung	Stellwert und legt deren
	senden bei Änderung	Sendeverhalten fest
	und zykl. Senden 30min	

Tabelle 13:Einstellbereich max. Stellwert

Durch den Parameter "Objekt max. Stellwert" kann festgelegt werden, ob ein Objekt mit dem max. Stellwert aller Kanäle ausgegeben wird. Wird dieser Parameter mit einer der beiden Einstellungen aktiviert, so werden zwei Objekte eingeblendet, welche in der unten stehenden Tabelle dargestellt sind. Der maximale Stellwert wird dabei entweder nur bei einer Änderung gesendet oder aber bei einer Änderung und zusätzlich alle 30min.

Diese Funktion ermöglicht es Heizungen, welche die Leistung modulieren können, bei geringem Heizungsbedarf entsprechend zu drosseln. Das Objekt für den Ausgang sendet dabei den maximalen im Heizungsaktor benötigten Stellwert, der Kanäle in der diese Funktion aktiviert wurde. Das Ausgangssignal kann dann ausgewertet werden und die geforderte Heizleistung an die Heizung weitergeben.

Wurden mehrere Heizungsaktoren verbaut, welche alle die Heizleistung von einer Heizung beziehen, so können diese durch das zusätzliche Objekt für den Eingang(Nummer 84/164) miteinander verknüpft werden. Der Ausgang des ersten Aktors wird dabei mit dem Eingang des zweiten Aktors verbunden, also in eine gemeinsame Gruppenadresse abgelegt, usw. Das Ausgangsobjekt für den maximalen Stellwert des letzten Heizungsaktor gibt dann den maximalen Stellwert über alle relevanten Kanäle der Aktoren an.

Nummer	Name	Größe	Verwendung
84/164	Max. Stellwert(Ausgang)	1 Byte	sendet den aktuellen maximalen Stellwert
85/165	Max. Stellwert(Eingang)	1 Byte	setzt den aktuellen maximalen Stellwert

Tabelle 14: Kommunikationsobjekte max. Stellwert

4.1.6 Verhalten nach Busspannungswiederkehr

Das nachfolgende Bild zeigt die Einstellmöglichkeiten für diesen Parameter:

Verhalten nach Busspannungswiederkehr	Objekt "Sommer/Winter" abfragen	•
Betriebsarten und Sollwerte nach Busspannungswiederkehr wiederherstellen	nicht aktiv aktiv	
Betriebsart nach Busspannungswiederkehr	○ Komfort ○ Standby	

Abbildung 12: Verhalten bei Busspannungswiederkehr

Die nachfolgende Tabelle zeigt den Einstellbereich für diesen Parameter:

Unterfunktion	Wertebereich [Defaultwert]	Kommentar
Verhalten bei Busspannungswiederkehr	 Keine Werte abfragen Objekt "Sommer/Winter" abfragen Winterbetrieb Sommerbetrieb 	Festlegung, welche Werte bei einer Busspannungswiederkehr abgefragt werden sollen
Betriebsarten und Sollwerte nach Busspannungswiederkehr wiederherstellen	nicht aktivaktiv	Einstellung ob letzte Sollwerte und Betriebsarten wieder hergestellt werden sollen
Betriebsart nach Busspannungswiederkehr	KomfortStandby	Auswahl der Betriebsart nach Busspannungswiederkehr. Nur einstellbar wenn letzte Betriebsart und Sollwert nicht wiederhergestellt wurden

Tabelle 15:Verhalten bei Busspannungswiederkehr

Mit dem Verhalten bei Busspannungswiederkehr kann festgelegt werden, welche Werte im Falle der Busspannungswiederkehr abgefragt werden sollen. Werden keine Werte abgefragt, so arbeitet der Aktor nach einer Busspannungswiederkehr einfach so weiter, als wenn sich die Ventile in den Default-Einstellungen befänden, also alle Ventile geschlossen wären. Mit den anderen Einstellungen kann entweder das "Sommer/Winter" Objekt abgefragt werden oder aber fest im Sommer- bzw. Winterbetrieb fortgefahren.

Mit der Einstellung "Betriebsarten und Sollwerte nach Busspannungswiederkehr wiederherstellen" wird erreicht, dass der Aktor nach einer Busspannungswiederkehr mit den Werten weiterarbeitet, die er vor dem Busspannungsausfall hatte. Bitte beachten dass nach einer Neuprogrammierung bzw. Entladen des Aktors die Betriebsart "Standby" aktiv ist da es in diesem Falle keine vorherigen Werte gab. Deshalb muss einmalig manuell in einen Betriebsmodus geschalten werden.

Über die Einstellung "Betriebsart nach Busspannungswiederkehr" kann festgelegt werden ob der der Aktor in den Komfort- oder Standby Modus gesetzt wird.

4.1.7 Sollwert Frostbetrieb

Der Sollwert für den Frostbetrieb kann einmalig eingestellt werden und gilt für alle Kanäle:

Abbildung 13: Sollwert Frostbetrieb

Die nachfolgende Tabelle zeigt die verfügbaren Einstellungen:

= 10 110 110 110 110 110 110 110 110 110			
Unterfunktion	Wertebereich	Kommentar	
	[Defaultwert]		
Sollwert	7°C-14°C	Festlegung, des Sollwertes in der	
Frostbetrieb	[7°C]	Betriebsart Frostschutz. Gültig für	
		alle Kanäle.	

Tabelle 16: Sollwert Frostbetrieb

Der Sollwert für die Betriebsart Hitzeschutz ist fest auf den Wert 35°C eingestellt.

4.1.8 Diagnosetext

In den allgemeinen Einstellungen kann die Sprache für den Diagnosetext eingestellt werden:

Abbildung 14: Sprache Diagnosetext

Die Diagnosefunktion kann in jedem Kanal – unabhängig von der Betriebsart – aktiviert werden:

Abbildung 15: Aktivierung Diagnosetext

Die nachfolgende Tabelle zeigt die verfügbaren Sendebedingungen für den Diagnosetext:

Unterfunktion	Wertebereich	Kommentar	
	[Defaultwert]		
Diagnosetext senden	nicht aktiv	Festlegung der Sendebedingung	
	bei Abfrage	für den Diagnosetext	
	bei Änderung		

Tabelle 17: Sendebedingung Diagnosetext

Die Diagnosefunktion gibt den Status jedes einzelnen Kanals im "Klartext" aus und dient dazu den aktuellen Status des Kanals schnell ablesen zu können.

Folgende Meldungen kann die Diagnosefunktion aussenden:

	Byte 0-1	Byte 3	Byte 5-11	Byte 13
Info	Sommer/Winter	Heizen/Kühlen	Betriebsart	Stellwert > 0%,
				wenn ja: Wert 1
Mögliche	Winter: Wi	Heizen: H	Komfort	Stellwert = 0%: 0
Anzeigen	Sommer: So	Kühlen: K	Standby	Stellwert >0%: 1
			Nacht	
			Frost	
			Mode K: Kanal ist	
			auf Kühlen	
			eingestellt, Aktor	
			steht aber im	
			Heizmodus	
			Mode H: Kanal ist	
			auf Heizen	
			eingestellt, Aktor	
			steht aber im	
			Kühlmodus	
			Mode ER: Kanal	
			hat anderes	
			Heizsystem	
			parametriert als	
			in den allg.	
			Einstellungen	-
			BIT –	
			Kanalbetriebsart	
			schaltend 1 Bit	
			PWM BYTE –	
			Kanalbetriebsart	
			stetig 1 Byte	
Sondermeldungen	Gesperrt	Kanal ist gesperrt		
Johachhelaungen	Notbetrieb	Kanal ist gesperrt	rieh	
	Zwangsbetrieb	Kanal ist in der Zwa		
	No H/K Info	Kanal ist auf 2-Rohr eingestellt, jedoch ist keine		st keine
	140 11/10 11110	Umschaltung zwischen Heizen/Kühlen eingestellt.		
	230V Fehler	An der Kanalgruppe sind keine 230V angeschlossen. Die		
	230 7 1 211121	Überprüfung der 230V erfolgt immer gruppenweise – für		
		die Kanäle 1-4 am Kanal 1, für die Kanäle 5-8 am Kanal 5.		
	Taupunktalarm	Der Taupunktalarm ist aktiv		

Tabelle 18: Übersicht Diagnosetext

4.2 Betriebsart Kanal

Bevor mit der Konfiguration des Kanals begonnen werden kann, muss die Betriebsart des Kanals ausgewählt werden. Die Betriebsart eines Kanals richtet sich nach dem zu verarbeiten Objekt für den Stellwert. Die Betriebsart "schaltend(1Bit)" verarbeitet dabei 1 Bit Größen, welche nur die zwei Zustände "O" und "1" senden. Diese Stellwerte werden meist von Zweipunktreglern oder bereits in PWM umgewandelten Stellgrößen gesendet. Liegt ein stetiges Eingangssignal vor, z.B. einer Pl-Regelung, so ist die Betriebsart "stetig(1Byte)" zu wählen. Wenn nur Temperaturwerte zur Verfügung stehen, so können diese unter der Einstellung "integrierter Regler" weiterverarbeitet werden. Das nachfolgende Bild zeigt das Einstellfenster für die Betriebsarten der Kanäle:

Abbildung 16: Auswahl der Betriebsart

In der nachfolgenden Tabelle sind die möglichen Betriebsarten für die Kanäle dargestellt:

in der nachholgenden rabene sind die mognetien betriebsarten far die Randie dargestent			
Unterfunktion	Wertebereich	Kommentar	
	[Defaultwert]		
Betriebsart Kanal A-	Kanal nicht aktiv	Einstellung der Betriebsart für	
D/H	schaltend(1Bit)	den jeweiligen Kanal	
	stetig (1Byte)		
	integrierter Regler		

Tabelle 19: Einstellmöglichkeiten Betriebsarten

4.3 Kanal-Konfigurationen - "schaltend (1 Bit)"

Wird der Kanal als "schaltend (1Bit)" ausgewählt, so sind in der Registerkarte für den jeweiligen Kanal die folgenden Parametrierungsmöglichkeiten zu sehen:

Abbildung 17: Kanal-Konfiguration - "schaltend (1 Bit)"

Sobald der Kanal als "schaltend (1Bit)" ausgewählt wird, wird ein Kommunikationsobjekt für den Stellwert, der Größe 1 Bit eingeblendet. Dieses Objekt muss mit dem zu verarbeitenden Objekt für den Stellwert, über eine Gruppenadresse, verbunden werden. Das eingehende Signal für den Stellwert kann z.B. von einem Temperaturregler mit einem Zweipunktregler oder einer PWM-Regelung, wie z.B. dem MDT SCN-RT, empfangen werden.

Nummer	Name	Größe	Verwendung
0	Stellwert	1 Bit	Verarbeitung der Stellgröße

Tabelle 20:Kommunikationsobjekte Stellwert 1Bit

4.3.1 Grundeinstellungen

Als erste grundlegende Einstellung muss eingestellt werden, welche Ventilart vorliegt, damit der Heizungsaktor dem Ausgang den richtigen Schaltzustand zuweisen kann:

	8 8	
Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Ventilart	spannungslos geschlossen	Einstellung der Ventilart
	spannungslos geöffnet	

Tabelle 21: Einstellmöglichkeiten Ventilart

Diese Einstellung dient dazu, den Ausgang so zu konfigurieren, dass er bei den jeweiligen Schaltzuständen des Ausgangs die richtigen Spannungszustände an das Ventil weitergibt. Es handelt sich dabei lediglich um eine Anpassung an Schließer-/Öffner-Kontakte. Bei der Einstellung "spannungslos geöffnet" wird das Ausgangssignal invertiert.

Des Weiteren kann eingestellt werden, ob der Kanal in den allgemeinen Einstellungen bei der Heiz-/Kühlanforderung und beim maximalen Stellwert berücksichtig wird:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Kanal in Heiz-	■ Ja	Konfiguration, ob der Kanal in die
/Kühlfanforderung und max.	■ Nein	Berechnung des max. Stellwerts und die
Stellwert berücksichtigen?		Heiz-Kühlanforderung eingebunden wird

Tabelle 22: Einstellmöglichkeiten Heiz-/Kühlanforderung

Wird diese Einstellung aktiviert, so berücksichtigt der Aktor diesen Kanal bei der Berechnung des maximalen Stellwerts und der Heiz-/Kühlanforderung.

Für jeden Kanal kann festgelegt werden, ob ein Statusobjekt zum Senden des Stellwerts eingeblendet wird und unter welchen Bedingungen dieses sendet:

	5 ··· · · · · · · · · · · · · · · · · ·	
Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Status Stellwert senden	nicht aktiv	Konfiguration, ob ein Statusobjekt für den
	bei Änderung	Stellwert eingeblendet werden soll und
	bei Abfrage	wann dieser seinen aktuellen Wert sendet

Tabelle 23: Einstellmöglichkeiten Status Stellwert senden

Ist dieser Parameter als "nicht aktiv" gewählt, so wird kein zusätzliches Objekt für den Status des Stellwerts eingeblendet. Bei der Einstellung Status Stellwert senden "bei Änderung" sendet das zugehörige Kommunikationsobjekt, welches in der unten stehenden Tabelle dargestellt ist und immer die gleiche Größe hat, wie der Stellwert selbst, also hier 1 Bit, den aktuellen Zustand des Stellwerts bei jeder Änderung. Die Einstellung "bei Abfrage" bewirkt, dass zwar ein Objekt für den Status eingeblendet wird, dies jedoch passiv ist und nur durch direktes Abfragen den Zustand des Stellwertes sendet.

Nummer	Name	Größe	Verwendung
3	Status Stellwert	1 Bit	Statusobjekt für den Stellwert

Tabelle 24: Kommunikationsobjekt Status Stellwert

4.3.2 Sperrfunktion

Für jeden Kanal kann wahlweise ein Sperrobjekt aktiviert oder deaktiviert werden:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Sperrobjekt	nicht aktiv	Aktivierung/ Deaktivierung eines
	aktiv	Sperrobjekts

Tabelle 25: Einstellmöglichkeiten Sperrobjekt

Durch das Sperrobjekt kann der jeweilige Kanal für weitere Bedienung gesperrt werden. Das Sperren wird durch Senden einer logischen "1" auf das Sperrobjekt ausgelöst. Erst durch Senden einer logischen "0" wird der Sperrvorgang wieder aufgehoben. Bei Aktivierung der Sperrfunktion wird der Kanal ausgeschaltet(Stellwert=0%). Nach Deaktivierung des Sperrvorgangs nimmt der Kanal wieder seinen ursprünglichen Wert an. Werden während eines aktiven Sperrvorgangs Telegramme an den Stellwert geschickt, so führt das zu keiner Änderung. Allerdings nimmt der Kanal nach Aufhebung des Sperrvorgangs den Wert des letzten Telegramms an.

Nummer	Name	Größe	Verwendung
2	Sperren	1 Bit	sperrt den zugehörigen Kanal

Tabelle 26: Kommunikationsobjekt Sperren

4.3.3 Notbetrieb

Für jeden Kanal kann ein Notbetrieb aktiviert und konfiguriert werden. Ein aktivierter Notbetrieb ist im nachfolgenden Bild dargestellt:

Abbildung 18: Notbetrieb

Die Einstellmöglichkeiten für den Notbetreib sind in der nachfolgenden Tabelle dargestellt:

		<u> </u>
Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Notbetrieb	nicht aktiv	Aktivierung/ Deaktivierung des
	aktiv	Notbetriebs
Notbetrieb bei Ausfall	nicht aktiv, 30min, 35min, 40	Einstellung, ab wann der
von Stell- bzw-	min,,90min	Notbetrieb eingeleitet werden soll
Temperaturmesswert	[45min]	
nach		
Stellwert für	100%, 90%, 80%,, 0%	Einstellung des Stellwerts für den
Notbetrieb Winter	[50%]	Winterbetrieb
Stellwert für	100%, 90%, 80%,, 0%	Einstellung des Stellwerts für den
Notbetrieb Sommer	[0%]	Sommerbetrieb

Tabelle 27: Einstellmöglichkeiten Notbetrieb

Sobald der Notbetrieb für einen Kanal aktiviert wurde, ergeben sich mehrere Einstellmöglichkeiten für den Notbetrieb.

Durch die Einstellung "Notbetrieb bei Ausfall des Stellwerts nach" in den Betriebsarten "schaltend 1Bit" bzw. "stetig 1Byte" kann eingestellt werden, ab wann der Notbetrieb aktiviert werden soll. Das Eingangsobjekt für den Stellwert braucht einen zyklischen Impuls. Bleibt dieses Signal für die parametrierte Zeit aus, so wird der Notbetrieb aktiviert. Bei der Betriebsart "integrierter Regler" wird der Notbetrieb aktiviert sobald der Temperaturmesswert für die eingestellte Dauer ausbleibt. Für die beiden Betriebsarten Sommer und Winter kann ein fester Stellwert für den Notbetrieb konfiguriert werden. Der feste Wert kann als prozentualer Wert von 0-100% eingestellt werden und der Heizungsaktor arbeitet im Notbetrieb im PWM-Modus mit einem festen PWM-Zyklus von 10min. Dies verhindert, dass bei einem Ausfall eines Temperaturreglers die Heizung dauerhaft mit beispielsweise 100% gefahren wird.

Wird in den Kanalbetriebsarten "schaltend 1Bit" bzw. "stetig 1Byte" ein ungültiger Temperaturwert (Temperatur > 50°C oder Temperatur < -10°C) empfangen, so schaltet der Kanal ebenfalls in den Notbetrieb. Ist kein Notbetrieb aktiv und ein ungültiger Temperaturwert wird empfangen schaltet der Kanal auf 0%.

4.3.4 Zwangsstellung/Taupunktalarm

Zusätzlich kann für jeden Kanal entweder eine Zwangsstellung oder ein Taupunktalarm aktiviert werden:

Abbildung 19: Zwangsstellung/Taupunktalarm

Die Einstellmöglichkeiten für diesen Parameter sind in der nachfolgenden Tabelle dargestellt:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Zwangsstellung/	nicht aktiv	Aktivierung/ Deaktivierung der
Taupunktalarm	aktiv	Zwangsstellung oder des
		Taupunktalarms

Tabelle 28: Einstellmöglichkeiten Zwangsstellung/Taupunktalarm

Durch die Aktivierung des Taupunktalarms wird ein zusätzliches Objekt, wie in der unten stehenden Tabelle dargestellt, eingeblendet. Durch Senden eines "1-Signals" wird der Taupunktalarm aktiviert, ein "0-Signal" deaktiviert den Taupunktalarm. Der Taupunktalarm setzt den Stellwert beim Kühlbetrieb auf 0%.

Numme	r Name	Größe	Verwendung
5	Taupunktalarm	1 Bit	aktiviert den Taupunktalarm

Tabelle 29: Kommunikationsobjekt Taupunktalarm

Wird die Zwangsstellung aktiviert, so sind weitere Einstellungen möglich, welche in der nachfolgenden Tabelle dargestellt sind:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Zwangsstellung/ Taupunktalarm	Zwangsstellung	Zwangsstellung ist aktiviert
Stellwert für	100%, 90%, 80%,, 0%	Einstellung des Stellwerts für die
Zwangsstellung Winter	[50%]	aktive Zwangsstellung im
		Winterbetrieb
Stellwert für	100%, 90%, 80%,, 0%	Einstellung des Stellwerts für die
Zwangsstellung Sommer	[0%]	aktive Zwangsstellung im
		Sommerbetrieb

Tabelle 30: Einstellmöglichkeiten Zwangsstellung

Die Zwangsstellung kann den Stellwert bei Aktivierung auf einen festen Zustand einstellen. Dabei unterscheidet die Zwangsstellung zwischen Sommer- und Winterbetrieb. Für beide Zustände sind feste Werte von 0-100% parametrierbar. Der Kanal arbeite in einer aktiven Zwangsstellung als PWM-Controller mit einem fixen PWM-Zyklus von 10min. Die Zwangsstellung wird durch ein "1-Signal" an das zugehörige Objekt aktiviert. Wird eine "0" gesendet, so fällt der Kanal in seinen alten Zustand zurück, bzw. nimmt den letzten empfangenen Wert für die Stellgröße an.

Nummer	Name	Größe	Verwendung
5	Zwangsstellung	1 Bit	aktiviert die Zwangsstellung

Tabelle 31: Kommunikationsobjekt Zwangsstellung

4.3.5 Diagnosefunktion

Die nachfolgende Tabelle zeigt die verfügbaren Sendebedingungen für den Diagnosetext:

	<u> </u>	<u> </u>
Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Diagnosetext senden	nicht aktiv	Festlegung der Sendebedingung
	bei Abfrage	für den Diagnosetext
	bei Änderung	

Tabelle 32: Sendebedingung Diagnosetext

Die nachfolgende Tabelle zeigt das dazugehörige Kommunikationsobjekt:

Nummer	Name	Größe	Verwendung
19	Diagnosetext	14 Byte	Senden des Diagnosetextes

Tabelle 33: Kommunikationsobjekt Diagnosetext

Die Beschreibung des Diagnosetextes finden Sie in den Beschreibungen der allgemeinen Einstellungen unter 4.1.8 Diagnosetext.

4.4 Kanal-Konfigurationen - "stetig(1 Byte)"

Wird der Kanal als "stetig (1 Byte) ausgewählt, so ergeben sich die nachfolgenden Parametrierungsmöglichkeiten:

Abbildung 20: Kanal-Konfiguration "stetig"

In der Betriebsart "stetig (1Byte)" verfügt der Kanal über die gleichen Parametrierungsmöglichkeiten wie bei der Betriebsart "schaltend(1 Bit)". Diese werden in diesem Abschnitt nicht nochmal erläutert, siehe hierzu Abschnitt 4.3 schaltend (1 Bit). Zusätzlich sind jedoch noch weitere Parametrierungsmöglichkeiten verfügbar, welche in den nachfolgenden Abschnitten näher erläutert werden.

Die Stellgröße und damit auch das Statusobjekt ist nun eine 1 Byte Größe und braucht damit stetige Werte, z.B. von einem PI-Regler:

Nummer	Name	Größe	Verwendung
0	Stellwert	1 Byte	Verarbeitung der Stellgröße
3	Status Stellwert	1 Byte	Statusobjekt für den Stellwert

Tabelle 34: Kommunikationsobjekte Stellwert 1Byte

4.4.1 PWM Zyklus

Die Zykluszeit "PWM Zyklus" dient der PWM-Regelung zur Berechnung des Ein- und Ausschaltimpulses der Stellgröße. Diese Berechnung geschieht auf Basis der eingehenden Stellgröße. Ein PWM-Zyklus umfasst die Gesamtzeit die vom Einschaltpunkt bis zum erneuten Einschaltpunkt vergeht.

<u>Beispiel:</u> Wird eine Stellgröße von 75% berechnet, bei einer eingestellten Zykluszeit von 10min, so wird die Stellgröße für 7,5min eingeschaltet und für 2,5min ausgeschaltet.

Die Einstellmöglichkeiten für den PWM-Zyklus sind in der nachfolgenden Tabelle dargestellt:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
PWM-Zyklus	1min, 2min,, 10min, 15min,	Einstellung der PWM-Zykluszeit
	20min, 25min, 30min	
	[10min]	

Tabelle 35: Einstellmöglichkeiten PWM-Zyklus

Grundsätzlich haben sich zwei verschiedene Einstellmöglichkeiten bewährt. Zum einen die Einstellung bei der die Ventile innerhalb eines kompletten Zyklus komplett geöffnet und wieder geschlossen werden können und zum anderen die Einstellung bei der die Zykluszeit deutlich kleiner ist als die Verstellzeit der Ventile und sich somit ein Mittelwert einstellt.

Die beiden Einstellmöglichkeiten und deren Anwendungsmöglichkeiten sollen in den folgenden Abschnitten näher erläutert werden. Wenn mehrere Ventile gleichzeitig angesteuert werden sollen, ist es zu empfehlen nach dem trägsten System einzustellen.

<u>Einstellmöglichkeit 1:</u> <u>Zykluszeit ist größer als die Verstellzeit</u>

Diese Einstellung bewirkt, dass innerhalb eines Zyklus das Ventil einmal komplett auf- und wieder zugefahren wird. Während eines Zyklus durchläuft das Ventil somit den kompletten Ventilhub. Die Verstellzykluszeit eines Ventils setzt sich aus einer Totzeit(Zeit die zwischen Ansteuerung des Ventils und Öffnungsvorgang des Ventils vergeht) und der eigentlichen Verstellzeit des Ventils zusammen. Die Zeit in der das Ventil also tatsächlich geöffnet ist, ist somit deutlich kürzer als die Ansteuerung innerhalb eines PWM-Zyklus.

Das Wirkprinzip bei dieser Einstellmöglichkeit soll das nachfolgende Diagramm darstellen:

Die gesamte Verstellzykluszeit beträgt hier in etwa 2,5-3min, wie sie typischerweise bei Stellantrieben von Fußbodenheizungen vorkommen. Um diese Verstellzykluszeit ist das Ventil kürzer geöffnet als der PWM-Einschaltimpuls lang ist, bzw. kürzer geschlossen als der PWM-Ausschaltimpuls ist. Obwohl diese Verstellzykluszeit sowohl die tatsächliche Öffnungszeit als auch die tatsächliche Schließzeit verkürzt, regelt sich die Raumtemperatur durch diese Methode relativ genau ein. Allerdings kann das komplette Öffnen/Schließen der Ventile auch zu größeren Schwankungen der Temperatur in der unmittelbaren Nähe der Heizquelle führen. Des Weiteren werden durch das relativ häufige Auf- und Zufahren der Ventile, diese auch stärker belastet. Diese Einstellung hat sich besonders für trägere, langsamere Systeme bewährt, wie z.B. Fußbodenheizungen.

<u>Einstellmöglichkeit 2:</u> <u>Zykluszeit ist kleiner als die Verstellzeit</u>

Diese Einstellung bewirkt, dass sich das Ventil innerhalb des PWM-Einschaltimpulses, bzw. Ausschaltimpulses, nicht komplett öffnen kann, sondern immer nur kleine Bewegungen durchläuft. Langfristig ergibt sich durch diese Einstellung ein Mittelwert bei der Öffnung des Ventils.

Auch hier beträgt die gesamte Verstellzykluszeit in etwa 3min. Allerdings kann das Ventil während der Ansteuerung immer nur kleine Auslenkungen vollziehen und nicht wie bei der vorigen Einstellungen die gesamte Amplitude. Zu Beginn findet innerhalb des Ausschaltimpulses der PWM-Regelung keinerlei Bewegung statt, da die Totzeit des Ventils hier genauso lang ist, wie die Ansteuerung des Ventils. Somit fährt das Ventil erst mal kontinuierlich weiter auf. Übersteigt die Temperatur im Raum den eingestellten Wert, so regelt der Temperaturregler die Stellgröße nach und somit wird der PWM-Impuls neu gesetzt. Langfristig wird durch diese Einstellung ein nahezu konstanter Wert für die Ventilstellung erreicht.

Zu beachten bei dieser Einstellung ist auch, dass sich durch das dauerhaft durchfließende warme Wasser im Stellventil die Totzeiten verringern werden und somit innerhalb des Impulses die tatsächlichen Fahrtzeiten größer werden. Da der Temperaturregler jedoch dynamisch reagiert, wird er auf diese Veränderung mit einer geänderten Stellgröße reagieren und somit auch eine nahezu konstante Ventilposition erreichen. Vorteilhaft bei dieser Einstellung ist, dass die Stellventile nicht zu stark belastet werden und durch die kontinuierliche Anpassung des Stellwertes die Temperatur im Raum kaum Schwankungen unterliegt. Werden jedoch mehrere Ventile angesteuert ist der Mittelwert für die Ventilstellung kaum zu erreichen und somit kann es zu Schwankungen bei der Raumtemperatur kommen.

Diese Einstellung hat sich insbesondere bei schnellen Systemen etabliert, bei denen nur ein Stellventil angesteuert wird, z.B. Heizkörper.

4.4.2 Stellwert Begrenzungen

Der Stellwert kann sowohl im Heizbetrieb, als auch im Kühlbetrieb, nach oben, sowie nach unten, begrenzt werden:

Abbildung 21: Stellwertbegrenzung

Die Einstellmöglichkeiten für diesen Parameter sind in der nachfolgenden Tabelle dargestellt:

	Die Emstellingfienkeiten für diesen auflichen sind in der nachfolgenden fübene dangestent.				
Unterfunktion	Wertebereich	Kommentar			
	[Defaultwert]				
Minimale Begrenzung des	0%,10%,,100%	Festlegung der minimalen Begrenzung			
Stellwerts bei Heizen	[0%]	des Stellwerts im Heizbetrieb			
Maximale Begrenzung des	100%,90%,,0%	Festlegung der maximalen Begrenzung			
Stellwerts bei Heizen	[100%]	des Stellwerts im Heizbetrieb			
Minimale Begrenzung des	0%,10%,,100%	Festlegung der minimalen Begrenzung			
Stellwerts bei Kühlen	[0%]	des Stellwerts im Kühlbetrieb			
Maximale Begrenzung des	100%,90%,,0%	Festlegung der maximalen Begrenzung			
Stellwerts bei Kühlen	[100%]	des Stellwerts im Kühlbetrieb			

Tabelle 36: Einstellmöglichkeiten Stellwert Begrenzung

Die Stellwertbegrenzung begrenzt den Wert der Stellgröße, welche an das PWM-Signal weitergeleitet wird. Bei einer aktiven Stellwertbegrenzung, also Minimum>0% oder Maximum<100%, wird das Eingangssignal, insofern es außerhalb der Begrenzung liegt, auf die entsprechende Grenze angehoben/abgesenkt. Aus diesem Wert werden dann erst die Impulse für das PWM-Signal berechnet.

<u>Beispiel:</u> Im Heizbetrieb ist die maximale Begrenzung zu 70% eingestellt und die minimale Begrenzung auf 10%. Der PWM-Zyklus beträgt 10 min. Wird nun eine Stellgröße von 100% geschickt, so nimmt der Kanal die maximale Begrenzung von 70% an und berechnet daraus den "Einschaltimpuls" zu 7min. Eine Stellgröße innerhalb der Begrenzung verhält sich ganz normal, d.h. ein Stellwert von 50% führt auch zu einem "Einschaltimpuls" von 5min.

Die Stellwertbegrenzungen lassen sich für den Heiz- als auch den Kühlbetrieb individuell parametrieren.

Die minimale Begrenzung des Stellwertes ist hierbei so ausgeführt, dass ein Stellwert von 0% nicht begrenzt wird und auch zu einem Stellwert von 0% führt. Jeder Stellwert über 0%, aber unterhalb der minimalen Begrenzung führt zum eingestellten Wert. Dieses Verhalten ist aus Gründen des Energiesparens sinnvoll, da sonst das Stellventil selbst bei Nichtgebrauch ständig den Begrenzungswert der Nennleistung verbrauchen würde.

4.4.3 Temperaturbegrenzung Vorlauf

Um Schwankungen in der Regelung minimal zu halten, kann zusätzlich eine Vorlauftemperaturbegrenzung aktiviert werden:

Zusätzlicher Fühler für Vorlauftemperatur	nicht aktiv aktiv	
Maximale Temperaturbegrenzung Vorlauf bei Heizen	38 °C	•
Minimale Temperaturbegrenzung Vorlauf bei Kühlen	18 °C	•
Minimale Begrenzung für Vorlauftemperatur	nicht aktiv aktiv	
Mindesttemperatur Vorlauf	20 °C	-
Aktiviert für Komfort	nicht aktiv aktiv	
Aktiviert für Standby	nicht aktiv aktiv	
Aktiviert für Nacht	nicht aktiv aktiv	
Aktiviert für Frost	nicht aktiv aktiv	

Abbildung 22: Vorlauftemperaturbegrenzung

Die Einstellmöglichkeiten für diese Parameter sind in der nachfolgenden Tabelle dargestellt:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Zusätzlicher Fühler für	nicht aktiv	Aktivierung/Deaktivierung einer
Vorlauftemperatur	aktiv	Vorlauftemperaturbegrenzung
Maximale	nicht aktiv, 25°C, 26°C,	Festlegung der maximalen
Temperaturbegrenzung	27°C,,60°C	Vorlauftemperatur im Heizbetrieb
Vorlauf bei Heizen	[38°C]	
Minimale	nicht aktiv, 15°C, 16°C,	Festlegung der minimalen
Temperaturbegrenzung	17°C,,25°C	Vorlauftemperatur im Kühlbetrieb
Vorlauf bei Kühlen	[18°C]	
Minimale Begrenzung der	nicht aktiv	Aktivierung/Deaktivierung der min.
Vorlauftemperatur	aktiv	Vorlauftemperaturbegrenzung
Mindesttemperatur	14°C, 15°C,,25°C	Festlegung der minimalen
Vorlauf	[20°C]	Vorlauftemperatur
Aktiviert für Komfort/	nicht aktiv	Aktivierung/Deaktivierung der
Standby/Nacht/Frost	■ aktiv	Betriebsarten für welche die
		Begrenzung gelten soll

Tabelle 37: Einstellmöglichkeiten Vorlauftemperaturbegrenzung

Durch die Vorlauftemperaturbegrenzung kann die aktuelle Vorlauftemperatur begrenzt werden. Dies ermöglicht eine Begrenzung der Heiztemperatur, wie sie in bestimmten Situationen erforderlich ist. Soll z.B. eine Fußbodenheizung nicht über einen bestimmten Wert heizen um die Bodenbeläge zu schützen, so kann die Heiztemperatur durch die Vorlauftemperaturbegrenzung begrenzt werden. Die Vorlauftemperaturbegrenzung benötigt einen zweiten Messfühler am Vorlauf selbst. Dieser Messfühler misst die aktuelle Vorlauftemperatur. Das Objekt, welches die Vorlauftemperatur erfasst, wird dann in einer Gruppenadresse mit dem Objekt für die Vorlauftemperatur des Heizungsaktors verbunden. Dieser begrenzt dann die Vorlauftemperatur nach den eingestellten Parametern.

Nummer	Name	Größe	Verwendung
1	Vorlauftemperatur	2 Byte	Verarbeitung der gemessenen Vorlauftemperatur

Tabelle 38: Kommunikationsobjekt Vorlauftemperaturbegrenzung

4.4.4 Stellwert bei Unterschreitung der minimalen Begrenzung

Das nachfolgende Bild zeigt die Einstellungen für diesen Parameter:

Stellwert Heizen bei Unterschreitung der	0% = 0% ansonsten Mindeststellwert nutzen
minimalen Begrenzung	0% = Mindeststellwert

Abbildung 23: Stellwert bei Unterschreitung der minimalen Begrenzung

Die nachfolgende Tabelle zeigt die verfügbaren Einstellungen für einen Stellwert von 0%:

	<u> </u>	
Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Stellwert bei	■ 0% = 0%, ansonsten Werte	Festlegung was bei einem
Unterschreitung der	vom Mindeststellwert	Stellwert von 0% geschehen soll
minimalen Begrenzung	nutzen	
	0% = Mindeststellwert	

Tabelle 39: Stellwert bei Unterschreitung der minimalen Begrenzung

Obiger Parameter legt das Verhalten fest wenn der Kanal einen Stellwert von 0% empfängt:

- 0% = 0%, ansonsten Werte vom Mindeststellwert nutzen

 Der Kanal setzt bei Empfang eines Stellwertes von 0%, den Kanal auf dauerhaft aus, d.h. die

 0% werden auch wirklich als diese interpretiert.
- 0% = Mindeststellwert

Der Kanal setzt bei Empfang eines Stellwertes von 0% den Kanal auf den eingestellten Mindeststellwert. Wird zum Beispiel ein Stellwert von 0% empfangen und der Mindeststellwert steht auf 10%, so ruft der Kanal die Einstellungen für 10% auf.

4.5 Kanal-Konfigurationen - "integrierter Regler"

In der Betriebsart "integrierter Regler" verfügt der Kanal über die gleichen Parametrierungsmöglichkeiten wie bei den Betriebsarten "stetig(1Byte)" und "schaltend(1Bit)". Diese werden in diesem Abschnitt nicht nochmal erläutert, siehe hierzu die Abschnitte 4.3 schaltend (1 Bit) und 4.4 stetig (1 Byte).

Zusätzlich sind jedoch noch weitere Parametrierungsmöglichkeiten verfügbar, welche in den nachfolgenden Abschnitten näher erläutert werden.

Bei der Betriebsart "integrierter Regler" wird als einziger Unterschied zur Betriebsart "stetig(1 Byte)" in der ursprünglichen Registerkarte eine Umschaltung zwischen Heizbetrieb, Kühlbetrieb oder Heiz- und Kühlbetrieb eingeblendet:

Abbildung 24: Heiz-/Kühlbetrieb

Diese Umschaltung bewirkt, dass beim Heizbetrieb nur die für den Heizbetrieb relevanten Parameter eingeblendet werden, beim Kühlbetrieb nur die für den Kühlbetrieb relevanten und beim Heiz- und Kühlbetrieb alle beiden.

Das heißt auch das in einem ausgewählten reinen Heizbetrieb keine Einstellungen mehr für den Kühlvorgang vorgenommen werden können und umgekehrt.

Zusätzlich wird bei der Betriebsart "integrierter Regler" eine Registerkarte für die Regler Einstellungen eingeblendet. In dieser Registerkarte kann der Regler dann weiter parametriert werden.

Abbildung 25: Registerkarte Regler

4.5.1 Betriebsarten

Der Regler verfügt über verschiedene Betriebsarten, welche wie nachfolgende erläutert eingestellt werden können:

Abbildung 26: Betriebsarten für Heiz- & Kühlbetrieb

Die Einstellmöglichkeiten für die Betriebsarten sind in der nachfolgenden Tabelle dargestellt:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Basis Komfortwert	18,0°C, 18,5°C, 19,0°C,,	Einstellung des Basis-Komfortwerts, gilt für
	25°C	Heiz- & Kühlbetrieb
	[21°C]	
Sollwerte Heizung:		
Absenkung Standby	0K, 0,5K, 1,0K,, 10,0K	Einstellung der Absenkung der Temperatur
	[2,0K]	im Standbybetrieb im Heizmodus
Absenkung Nacht	0K, 0,5K, 1,0K,, 10,0K	Einstellung der Absenkung der Temperatur
	[3,0K]	im Nachtbetrieb im Heizmodus
Sollwerte Kühlung:		
Anhebung Standby	0K, 0,5K, 1,0K,, 10,0K	Einstellung der Anhebung der Temperatur
	[2,0K]	im Standbybetrieb im Kühlmodus
Anhebung Nacht	0K, 0,5K, 1,0K,, 10,0K	Einstellung der Anhebung der Temperatur
	[3,0K]	im Nachtbetrieb im Kühlmodus

Tabelle 40: Einstellmöglichkeiten Betriebsarten

Wird der Regler auf nur Heizen oder nur Kühlen eingestellt, so sind nur Einstellungen für diesen Modus zu treffen. Die Einstellmöglichkeiten für den anderen Modus werden dann nicht eingeblendet.

Die einzelnen Betriebsarten, sowie die Umschaltung zwischen diesen, sind in den nachfolgenden Abschnitten näher erläutert.

4.5.1.1 Betriebsart Komfort

Die Betriebsart Komfort ist die Bezugsbetriebsart des Reglers. Hiernach richten sich die Absenkwerte in den Betriebsarten Nacht und Standby. Die Betriebsart Komfort sollte aktiviert werden, wenn der Raum genutzt wird. Als Sollwert wird der Basis-Komfortwert parametriert. Der Basis-Komfortwert gilt sowohl für den Heiz- als auch den Kühlbetrieb, falls der Aktor für den Heiz- und den Kühlbetrieb ausgelegt wurde. Eine Totzone existiert aufgrund der manuellen Umschaltung zwischen Heiz- und Kühlbetrieb nicht.

Das 1 Bit Kommunikationsobjekt für diese Betriebsart ist in nachfolgender Tabelle dargestellt:

Nummer	Name	Größe	Verwendung
13	Betriebsart Komfort	1 Bit	Aktivierung der Betriebsart Komfort

Tabelle 41: Kommunikationsobjekt Betriebsart Komfort

4.5.1.2 Betriebsart Nacht

Die Betriebsart Nacht soll eine deutliche Temperatursenkung bewirken, z.B. nachts oder am Wochenende. Der Wert der Absenkung ist frei parametrierbar und bezieht sich auf den Basis-Komfortwert. Wenn also eine Absenkung von 5K parametriert wurde und ein Basis-Komfortwert von 21°C eingestellt wurde, so ist der Sollwert für die Betriebsart Nacht 16°C.

Das 1 Bit Kommunikationsobjekt für diese Betriebsart ist in nachfolgender Tabelle dargestellt:

Nummer	Name	Größe	Verwendung
14	Betriebsart Nacht	1 Bit	Aktivierung der Betriebsart Nacht

Tabelle 42: Kommunikationsobjekt Betriebsart Nacht

4.5.1.3 Betriebsart Standby

Die Betriebsart Standby wird verwendet, wenn niemand den Raum benutzt. Sie soll eine geringe Absenkung der Temperatur bewirken. Die Absenkung sollte hier deutlich geringer eingestellt sein, als die Absenkung bei der Betriebsart Nacht um ein schnelleres Wiederaufheizen des Raums zu ermöglichen.

Der Wert der Absenkung ist frei parametrierbar und bezieht sich auf den Basis-Komfortwert. Wenn also eine Absenkung von 2K parametriert wurde und ein Basis-Komfortwert von 21°C eingestellt wurde, so ist der Sollwert für die Betriebsart Standby 19°C.

Die Betriebsart Standby wird dann aktiviert, sobald alle anderen Betriebsarten deaktiviert sind. Somit verfügt diese Betriebsart auch über kein Kommunikationsobjekt.

4.5.1.4 Betriebsart Frost-/Hitzeschutz

Der Heizungsaktor verfügt über eine kombinierte Betriebsart Frost-/Hitzeschutz. Ist der Aktor auf nur Heizen eingestellt, so kann der Aktor natürlich nur einen Frostschutz bewirken. Im Kühlbetrieb nur einen Hitzeschutz. Wenn der Regler auf Heizen & Kühlen eingestellt ist, so bewirkt diese Betriebsart einen kombinierten Frost- und Hitzeschutz.

Die Betriebsart Frost-/Hitzeschutz bewirkt ein automatisches Einschalten von Heizung bzw. Kühlung bei unter- bzw. überschreiten einer festen Temperatur. Die Temperatur ist in für den Frostschutz fest mit 7°C und für den Hitzeschutz fest mit 35°C eingestellt und kann nicht weiter parametriert werden. Darf z.B. während einer längeren Abwesenheit die Temperatur nicht unter einen bestimmten Wert sinken, so sollte die Betriebsart Frostschutz aktiviert werden.

Das 1 Bit Kommunikationsobjekt für diese Betriebsart ist in nachfolgender Tabelle dargestellt:

Nummer	Name	Größe	Verwendung
15	Betriebsart Frost-/Hitzeschutz	1 Bit	Aktivierung der Betriebsart Frost-/Hitzeschutz

Tabelle 43: Kommunikationsobjekt Betriebsart Frost/Hitzeschutz

4.5.2 Priorität der Betriebsarten

Das folgende Bild zeigt die Einstellmöglichkeiten der Priorität der Betriebsarten:

Abbildung 27: Einstellungen Priorität Betriebsarten

In der nachfolgenden Tabelle sind die Einstellmöglichkeiten für diesen Parameter dargestellt:

ETS-Text	Wertebereich	Kommentar
	[Defaultwert]	
Priorität	Frost/Komfort/Nacht/Standby	Einstellung der Prioritäten der
	Frost/Nacht/Komfort/Standby	Betriebsarten

Tabelle 44: Einstellbereich Parameter Priorität

Durch die Prioritätseinstellung der Betriebsarten kann eingestellt werden, welche Betriebsart vorrangig eingeschaltet wird, wenn mehrere Betriebsarten angewählt wurden. Ist bei der Priorität Frost/Komfort/Nacht/Standby z.B. Komfort und Nacht gleichzeitig eingeschaltet, so bleibt der Regler solange im Komfortbetrieb bis dieser ausgeschaltet wird. Anschließend wechselt der Regler automatisch in den Nachtbetrieb.

4.5.3 Betriebsartenumschaltung

Es gibt 2 Möglichkeiten der Betriebsartenumschaltung: Zum einen kann die Betriebsart über die dazugehörigen 1 Bit Kommunikationsobjekte angesteuert werden und zum anderen über ein 1 Byte Objekt.

Die Anwahl der Betriebsarten über ihr dazugehöriges 1 Bit Kommunikationsobjekt geschieht über eine direkte Ansteuerung ihres individuellen Kommunikationsobjektes. Unter Berücksichtigung der eingestellten Priorität wird die über ihr Kommunikationsobjekt angesteuerte Betriebsart ein- oder ausgeschaltet. Sind alle Betriebsarten ausgeschaltet, so schaltet sich der Regler in den Standby-Betrieb.

Beispiel(eingestellte Priorität: Frost/Komfort/Nacht/Standby):

	Retri	ebsart	eingestellte Betriebsart
Komfort	Nacht	Frost-/Hitzeschutz	emgestente betriebsurt
1	0	0	Komfort
0	1	0	Nacht
0	0	1	Frost/Hitzeschutz
0	0	0	Standby
1	0	1	Frost/Hitzeschutz
1	1	0	Komfort

Tabelle 45: Beispiel Betriebsartenumschaltung 1 Bit

Die Betriebsartenumschaltung über 1 Byte geschieht über ein einziges Objekt, mit der Größe 1 Byte, dem DPT HVAC Mode 20.102 laut KNX-Spezifikation. Zusätzlich sind 2 Objekte zur Visualisierung vorhanden, zum einen das 1 Byte Objekt "DPT_HVAC Status" und zum anderen das 2 Byte Objekt "DPT_RHCC Status". Zur Betriebsartenanwahl wird ein Hex-Wert an das Objekt "Betriebsartvorwahl" gesendet. Das Objekt wertet den empfangen Hex-Wert aus und schaltet so die zugehörige Betriebsart ein und die davor aktive Betriebsart aus. Werden alle Betriebsarten ausgeschaltet(Hex-Wert=0), so geht auch hier der Regler automatisch in den Standby Betrieb. Die eingestellten Hex-Wert für die einzelnen Betriebsarten können aus nachfolgender Tabelle entnommen werden:

Betriebsartvorwahl (HVAC Mode)	Hex-Wert
Komfort	0x01
Standby	0x02
Nacht	0x03
Frost/Hitzeschutz	0x04

Tabelle 46: Hex-Werte Betriebsarten

Das nachfolgende Beispiel soll verdeutlichen, wie der Regler empfangene Hex-Werte verarbeitet und damit Betriebsarten ein- oder ausschaltet. Die Tabelle baut von oben nach unten aufeinander auf. Beispiel(eingestellte Priorität: Frost/Komfort/Nacht/Standby):

empfangener Hex- Wert	Verarbeitung	eingestellte Betriebsart
0x01	Komfort=1	Komfort
0x03	Komfort=0	Nacht
	Nacht=1	
0x02	Nacht=0	Standby
	Standby=1	
0x04	Frost/Hitzeschutz=1	
	Standby=0	Frost/Hitzeschutz

Tabelle 47: Beispiel Betriebsartenumschaltung 1 Byte

Das Objekt Betriebsartvorwahl kann zusätzlich den aktuellen Status senden. Dazu ist der folgende Parameter zu aktivieren:

Abbildung 28: Status auf Betriebsartvorwahl senden

Somit sendet das Objekt ebenfalls den Status gemäß Tabelle 46: Hex-Werte Betriebsarten. Die Werte stimmen mit dem KNX-Standard überein und können ohne weitere Verarbeitung von z.B. Gira Homeservern verarbeitet werden.

Das Objekt 11 ist ein reines Status-Objekt und kann als DPT HVAC Status oder als DPT 20.102 – HVAC Mode ausgesendet werden und bei Bedarf auch zyklisch gesendet werden. Wie das Objekt verwendet wird definiert der folgende Parameter:

Abbildung 29: Verwendung Objekt 11

Wird das Objekt 11 als DPT 20.102 – HVAC Mode verwendet, so sendet es die Werte für die einzelnen Betriebsarten wie in Tabelle 46: Hex-Werte Betriebsarten angegeben. Der Unterschied zur Verwendung der Betriebsartenvorwahl als sendendes Objekt liegt darin, dass es bei dieser Einstellung 2 getrennte Objekte für Umschaltung und Bedienung gibt.

Wird das Objekt 11 als DPT HVAC Status (ohne Nummer) verwendet, so sendet das Objekt die folgenden Werte für die einzelnen Zustände aus:

Bit	DPT HVAC Status		Hex-Wert
0	Komfort	1=Komfort	0x01
1	Standby	1=Standby	0x02
2	Nacht	1=Nacht	0x04
3	Frost/Hitzeschutz	1=Frost/Hitzeschutz	0x08
4			
5	Heizen/Kühlen	0=Kühlen/1=Heizen	0x20
6			
7	Frostalarm	1=Frostalarm	0x80

Tabelle 48: Hex-Werte DPT HVAC Status

Wird zum Beispiel im Komfortbetrieb geheizt, so gibt das Kommunikationsobjekt den Wert 20(für Heizen) + 1(für den Komfortbetrieb)=21 aus.

Das DPT RHCC Status Kommunikationsobjekt ist ein zusätzliches 2 Byte Statusobjekt. Es enthält zusätzliche Statusmeldungen. Auch hier werden wieder genau wie beim HVAC Objekt die Hex-Werte bei mehreren Meldungen addiert und der addierte Wert ausgegeben.

Die nachfolgende Tabelle zeigt die zu den einzelnen Meldungen zugehörigen Hex-Werte:

Bit	DPT RHCC Status		Hex-Wert
0	Fehler Messsensor	1=Fehler	0x01
8	Heizen/Kühlen	0=Kühlen/1=Heizen	0x100
13	Frostalarm	1=Frostalarm	0x2000
14	Hitzealarm	1=Hitzealarm	0x4000

Tabelle 49: Hex-Werte DPT RHCC Status

Der Regler reagiert immer auf den zuletzt gesendeten Wert. Wurde z.B. zuletzt eine Betriebsart über einen 1 Bit Befehl angewählt, so reagiert der Regler auf die Umschaltung über 1 Bit. Wurde zuletzt ein Hex-Wert über das 1 Byte-Objekt gesendet, so reagiert der Regler auf die Umschaltung über 1 Byte.

Die Kommunikationsobjekte für die Betriebsartenumschaltung sind in nachfolgender Tabelle dargestellt. Die ersten 3 Objekte sind für die 1 Bit Umschaltung, die letzten 3 Objekte für die 1 Byte Umschaltung:

Nummer	Name	Größe	Verwendung
10	Betriebsartvorwahl	1 Byte	Anwahl der Betriebsarten
11	DPT_HVAC Status	1 Byte	Visualisierung angewählter Betriebsart
12	DPT_RHCC Status	2 Byte	Visualisierung Messung/ Regler Status
13	Betriebsart Komfort	1 Bit	Aktivierung der Betriebsart Komfort
14	Betriebsart Nacht	1 Bit	Aktivierung der Betriebsart Nacht
15	Betriebsart Frost-/Hitzeschutz	1 Bit	Aktivierung der Betriebsart Frost-/Hitzeschutz

Tabelle 50: Kommunikationsobjekte zur Betriebsartenumschaltung

4.5.4 Sollwertverschiebung

Das folgende Bild zeigt die Einstellmöglichkeiten für die Sollwertverschiebung:

Sollwert Komfort zyklisch senden	5 min	•
Sollwertänderungen senden	Nein C Ja	
max. Sollwertverschiebung	3,0 K	•
Sollwertverschiebung über 1Byte/2Byte Objekt	nicht aktiv	•
Sollwertverschiebung über 1Bit Objekt	nicht aktiv	
Sollwertverschiebung gilt für	Komfort C Komfort / Nacht / Standby	
Sollwertverschiebung löschen nach Betriebsartenwechsel	⊙ Nein C Ja	

Abbildung 30: Einstellungen Sollwertverschiebung

In der nachfolgenden Tabelle sind die Einstellmöglichkeiten für diesen Parameter dargestellt:

	ETS-Text Wertebereich Kommentar		
E13-Text		Kommentar	
	[Defaultwert]		
Sollwert Komfort zyklisch	nicht aktiv	Einstellung ob das Objekt – Sollwert	
senden	■ 5min-4h	Komfort zyklisch ausgesendet werden soll	
Sollwertänderung senden	Nein	Einstellung, ob eine Sollwertänderung	
	Ja	gesendet werden soll	
max. Sollwertverschiebung	0K – 10,0K	gibt die max. Sollwertverschiebung an	
	[3,0K]		
Sollwertverschiebung über	nicht aktiv	Einstellung ob die Sollwertverschiebung	
1Byte/2 Byte Objekt	2 Byte - Objekt	über 2 Byte- oder 1 Byte-Objekt erfolgen	
	1 Byte - Objekt	soll	
Sollwertverschiebung über	nicht aktiv	Einstellung ob die Sollwertverschiebung	
1Bit Objekt	aktiv	über 1Bit Objekt erfolgen soll	
Schrittweite	0,1K-1k	Wird nur eingeblendet wenn die Sollwert-	
	[1K]	verschiebung über 1Byte oder 1Bit	
		aktiviert wurde.	
		Gemeinsamer Parameter für 1Byte und	
		1Bit	
Sollwertverschiebung gilt für	Komfort	Gültigkeitsbereich der	
	Komfort/Nacht/Standby	Sollwertverschiebung	
Sollwertverschiebung löschen	■ Nein	Einstellung ob die Sollwertverschiebung	
nach Betriebsartenwechsel	Ja	nach Betriebsartenwechsel ihre Gültigkeit	
		behält	

Tabelle 51: Einstellmöglichkeiten Sollwertverschiebung

Nachfolgend sind die verschiedenen Möglichkeiten der Sollwertverschiebung beschrieben. Beispielhaft ist hier der Kanal A gültig. Die jeweiligen Kommunikationsobjekte für Kanal B-D bzw. B-H erhöhen sich jeweils um "+20":

Vorgabe eines neuen absoluten Sollwertes

Beim Einlesen eines neuen absoluten Komfort Sollwertes wird dem Regler ein neuer Basis Komfortwert eingelesen. Dieser neue Komfortwert bewirkt auch automatisch eine Anpassung der abhängigen Sollwerte in den anderen Betriebsarten. Mit dieser Funktion ist es zum Beispiel möglich, dem Regler die aktuelle Raumtemperatur als neuen Basiswert einzulesen. Die Einstellungen "max. Sollwertverschiebung", "Sollwertverschiebung gilt für" und "Sollwertverschiebung löschen nach Betriebsartenwechsel" gelten hier nicht, da dem Regler ein komplett neuer Basiswert zugewiesen wird. Die Vorgabe eines neuen Basis Komfortwertes wird durch Ansprechen des Kommunikationsobjektes "Komfort Sollwert" erreicht.

Nummer	Name	Größe	Verwendung
7	Sollwert Komfort	2 Byte	Vorgabe eines neuen absoluten Sollwertes

Tabelle 52: Kommunikationsobjekt Komfort Sollwert

Sollwertverschiebung über 2 Byte

Bei der Sollwertverschiebung über 2 Byte werden dem Objekt "Sollwertverschiebung" ein positiver Kelvin-Wert für eine Anhebung und ein negativer Kelvin-Wert zur Absenkung des Sollwertes gesendet. Dabei bezieht sich die Verschiebung immer auf den Wert, welcher in den Parametern hinterlegt wurde. Somit wird mit Senden des Wertes OK der Wert aus den Parametern wieder hergestellt.

Über die Einstellung "max. Sollwertverschiebung" kann die maximale manuelle Verschiebung des Sollwertes eingestellt werden. Ist der Regler zum Beispiel auf einen Basis-Komfortwert von 21°C und eine max. Sollwertverschiebung von 3K eingestellt, so kann der Basis Komfortwert nur in den Grenzen von 18°C bis 24°C manuell verschoben werden.

Über die Einstellung "Sollwertverschiebung gilt für" kann eingestellt werden, ob die Verschiebung nur für Komfort gilt oder ob die Einstellung auch für die Betriebsarten Nacht und Standby übernommen werden sollen. Die Betriebsarten Frost-/Hitzeschutz sind in jedem Fall von der Sollwertverschiebung unabhängig.

Die Vorgabe eines neuen Komfort-Sollwertes über das Objekt "Sollwert Komfort" setzt eine aktive Sollwertverschiebung zurück auf O.

Nummer	Name	Größe	Verwendung
8	Sollwertverschiebung	2 Byte	Verschiebung des Sollwertes relativ zum
			voreingestellten Komfort-Sollwert

Tabelle 53: Kommunikationsobjekt Komfort Sollwert

Sollwertverschiebung über 1 Byte

Bei der Sollwertverschiebung über 1 Byte Objekt wird dem Objekt "Sollwertverschiebung" ein Wert von zwischen -128 und 127 zur Sollwertverschiebung gesendet. Der Sollwert wird dann in Abhängigkeit der eingestellten Schrittweite verstellt, die Sollwertverschiebung wird nach dem folgenden Schema berechnet:

gesendeter Wert x eingestellte Schrittweite = Sollwertverschiebung

Beispiel:

eingestellte Schrittweite 0,5K

gesendeter Wert: 6 aktueller Sollwert: 21°C

-> Sollwertverschiebung = 6 x 0,5K = 3K -> neuer Sollwert 21°C + 3°C = 24°C

Nummer	Name	Größe	Verwendung
8	Sollwertverschiebung	1 Byte	Verschiebung des Sollwertes relativ zum
			voreingestellten Komfort-Sollwert unter
			Einbehaltung der Schrittweite

Tabelle 54: Kommunikationsobjekt Sollwertverschiebung über 1 Byte

Sollwertverschiebung über 1 Bit

Bei der Sollwertverschiebung über 1 Bit Objekt wird dem Objekt "Sollwertverschiebung (1=+/0=-)" ein 1Bit Wert zur Sollwertverschiebung gesendet. Der Sollwert wird dann in Abhängigkeit der eingestellten Schrittweite verstellt. Eine 0 verschiebt den Wert dabei um die eingestellte Schrittweite nach unten, eine 1 um die eingestellte nach oben.

Beispiel:

eingestellte Schrittweite 0,5K

gesendeter Wert: 0 aktueller Sollwert: 21°C

-> Sollwertverschiebung = -0,5°C

-> neuer Sollwert $21^{\circ}C - 0.5^{\circ}C = 20.5^{\circ}C$

Nummer	Name	Größe	Verwendung
18	Sollwertverschiebung (1=+/0=-)	1 Bit	Verschiebung des Sollwertes relativ zum
			voreingestellten Komfort-Sollwert
			1 = +eingestellte Schrittweite / 0 = -eingestellte
			Schrittweite

Tabelle 55: Kommunikationsobjekt Sollwertverschiebung über 1 Bit

Aktueller Sollwert

Das folgende Bild zeigt die Einstellmöglichkeiten für das Senden bei Sollwertänderung:

Abbildung 31: Sollwertänderungen senden

In der nachfolgenden Tabelle sind die Einstellmöglichkeiten für diesen Parameter dargestellt:

ETS Text	Wertebereich	Kommentar
	[Defaultwert]	
Sollwertänderungen	■ ja	Festlegung ob Sollwertänderungen
senden	■ nein	gesendet werden sollen
Aktuellen Sollwert	nicht aktiv	Einstellung ob das Objekt Aktueller
zyklisch senden	■ 5min-4h	Sollwert zyklisch ausgesendet werden
		soll. Nur einstellbar wenn
		Sollwertänderungen senden aktiviert ist

Tabelle 56: Einstellungen Sollwertänderungen senden

Das Kommunikationsobjekt "aktueller Sollwert" dient der Anzeige des aktuell eingestellten Sollwertes(jeweils für die angewählte Betriebsart) und kann bei Änderung oder zyklisch gesendet werden:

Nun	nmer	Name	Größe	Verwendung
9		aktueller Sollwert	2 Byte	gibt den aktuell eingestellten Sollwert aus

Tabelle 57: Kommunikationsobjekt aktueller Sollwert

4.5.5 Meldefunktion (Frost/Hitze)

Durch die Meldefunktion kann das Unter- bzw. Überschreiten einer eingestellten Temperatur über seine dazugehörigen Kommunikationsobjekte angezeigt werden:

Abbildung 32: Meldefunktion (Frost/Hitze)

Die Einstellmöglichkeiten für diesen Parameter sind in der nachfolgenden Tabelle dargestellt:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Frostalarm wenn Temperatur	nicht aktiv, 1°C-25°C	Einstellbereich des unteren
kleiner	[8°C]	Meldewertes;
		Einstellung möglich wenn
		Meldefunktion aktiviert
Hitzealarm wenn Temperatur	nicht aktiv, 18°C-40°C	Einstellbereich des oberen
größer	[35°C]	Meldewertes;
		Einstellung möglich wenn
		Meldefunktion aktiviert

Tabelle 58: Einstellmöglichkeiten Meldefunktion (Frost/Hitze)

Die Meldefunktion meldet das Unter- bzw. Überschreiten über das zugehörige Objekt. Die Unterschreitung des unteren Meldewerts wird über das Objekt Frostalarm gemeldet. Das Überschreiten des oberen Meldewerts wird über das Objekt Hitzealarm gemeldet. Die beiden Meldeobjekte der Größe 1 Bit können zur Visualisierung oder zur Einleitung von Gegenmaßnahmen verwendet werden.

Die nachfolgende Tabelle zeigt die beiden Objekte:

Nummer	Name	Größe	Verwendung
16	Frostalarm	1 Bit	meldet das Unterschreiten des unteren Meldewerts
17	Hitzealarm	1 Bit	meldet das Überschreiten des oberen Meldewerts

Tabelle 59: Kommunikationsobjekte Meldefunktion

4.5.6 Heiz-/Kühlsystem

Durch Einstellung eines geeigneten Heizsystems wird der Regler an das vorhandene Heiz- bzw. Kühlsystem angepasst:

Heizsystem	Anpassung über Regelparameter	•
Proportionalbereich (in K)	2K	. ▼
Nachstellzeit (in min)	150 min	•

Abbildung 33: Heiz-/Kühlsystem

Die nachfolgende Tabelle zeigt die Einstellmöglichkeiten für diesen Parameter:

Unterfunktion	Wertebereich	Kommentar
	[Defaultwert]	
Heiz-/Kühlsystem	Wasserheizung 4K/120min	Einstellung des verwendeten Heiz- /Kühlsystems.
	Fußbodenheizung	individuelle Parametrierung über
	4K/150min	Einstellung 4 möglich
	Split Unit 4K/60min	
	Anpassung über	
	Regelparameter	
Proportionalbereich	1K-8K	wird bei Heizsystem "Anpassung
(in K)	[3K]	über Regelparameter ausgewählt, so
		kann der Proportionalbereich frei
		parametriert werden
Nachstellzeit	15min – 210 min	wird bei Heizsystem "Anpassung
(in min)	[120 min]	über Regelparameter ausgewählt, so
		kann die Nachstellzeit frei
		parametriert werden

Tabelle 60: Einstellmöglichkeiten Heizsystem

Über die Einstellung des verwendeten Heizsystems werden die einzelnen Regelparameter, P-Anteil und I-Anteil, eingestellt. Die Einstellung des Heizsystems gilt sowohl für einen Heiz- als auch einen Kühlbetrieb.

Es ist möglich voreingestellte Werte zu benutzen, welche zu bestimmten Heiz- bzw. Kühlsystemen passen oder aber auch die Anteile des P-Reglers und des I-Reglers frei zu parametrieren. Die voreingestellten Werte bei dem jeweiligem Heiz- bzw. Kühlsystemen beruhen auf, aus der Praxis erprobten, Erfahrungswerten und führen meist zu guten Regelergebnissen.

Wird eine freie "Anpassung über Regelparameter" ausgewählt so können Proportionalbereich und Nachstellzeit frei parametriert werden.

Achtung: Diese Einstellung setzt ausreichende Kenntnisse auf dem Gebiet der Regelungstechnik voraus.

4.5.6.1 Proportionalbereich

Der Proportionalbereich steht für den P-Anteil einer Regelung. Der P-Anteil einer Regelung führt zu einem proportionalen Anstieg der Stellgröße zur Regeldifferenz.

Ein kleiner Proportionalbereich führt dabei zu einer schnellen Ausregelung der Regeldifferenz. Der Regler reagiert bei einem kleinen Proportionalbereich nahezu unvermittelt und stellt die Stellgröße schon bei kleinen Regeldifferenzen nahezu auf den max. Wert(100%). Wird der Proportionalbereich jedoch zu klein gewählt, so ist die Gefahr des Überschwingens sehr groß.

Ein Proportionalbereich von 4K setzt den Stellwert auf 100% bei einer Regelabweichung (Differenz zwischen Sollwert und aktueller Temperatur) von 4°C. Somit würde bei dieser Einstellung eine Regelabweichung von 1°C zu einem Stellwert von 25% führen.

→ Details zur Einstellung und Wirkweise des PI-Reglers unter 6.4.2

4.5.6.2 Nachstellzeit

Die Nachstellzeit steht für den I-Anteil einer Regelung. Der I-Anteil einer Regelung führt zu einer integralen Annährung des Istwertes an den Sollwert. Eine kurze Nachstellzeit bedeutet, dass der Regler einen starken I-Anteil hat.

Eine kleine Nachstellzeit bewirkt dabei, dass die Stellgröße sich schnell der dem Proportionalbereich entsprechend eingestellten Stellgröße annähert. Eine große Nachstellzeit hingegen bewirkt eine langsame Annäherung an diesen Wert.

Bei der Einstellung ist zu beachten, dass eine zu klein eingestellte Nachstellzeit ein Überschwingen verursachen könnte. Grundsätzlich gilt: je träger das System, desto größer die Nachstellzeit.

→ Details zur Einstellung und Wirkweise des PI-Reglers unter 6.4.2

4.5.7 zusätzliche Einstellungen bei Heiz- & Kühlbetrieb

Wird der integrierte Regler im Heiz- und Kühlbetrieb betrieben, so muss eingestellt werden, ob das System über einen kombinierten Heiz- und Kühlkreislauf verfügt oder über einen getrennten:

System 2 Rohr / 1	Kreis 0 4 Rohr / 2 Kreis System
-------------------	---------------------------------

Abbildung 34: Systemauswahl für Heiz-/Kühlkreislauf

Die nachfolgende Tabelle zeigt die Einstellmöglichkeiten für diesen Parameter:

zie naem eigenae rabene zeigt and zinistem regnermenten rar anesen rarameten				
Unterfunktion	Wertebereich	Kommentar		
	[Defaultwert]			
System	2 Rohr/ 1 Kreis	Einstellung ob getrennte oder		
	4 Rohr/ 2 Kreis	kombinierte Heiz- und Kühlsysteme		
		vorliegen		

Tabelle 61: Einstellmöglichkeiten Heiz-/Kühlkreislauf

Bei der Einstellung 2Rohr/1Kreis liegt ein kombiniertes Heiz- und Kühlsystem vor. Dadurch wird mit ein und demselben Kanal auch dasselbe Stellventil angesteuert.

Wird die Einstellung 4Rohr/2Kreis ausgewählt so liegen ein separates Heizsystem und ein separates Kühlsystem vor. Da nun zwei Stellventile vorhanden sind, müssen diese auch von zwei unterschiedlichen Kanälen angesteuert werden. Dazu wird ein weiteres Kommunikationsobjekt "Ausgang Kühlen für 4 Rohr" eingeblendet. Dieses Objekt kann dann beliebig weiterverarbeitet werden, z.B. durch einen weiteren Kanal des Heizungsaktors. Das Objekt hat die Größe 1 Byte und gibt somit ein stetiges Signal, wie der Ausgang eines PI-Reglers, aus.

Die nachfolgende Tabelle zeigt das Objekt:

Nummer	Name	Größe	Verwendung
6	PWM Ausgang Kühlen für 4	1 Byte	Stellwert für Kühlbetrieb. Wird nur angezeigt
	Rohr		wenn System "4 Rohr/ 2 Kreis" eingestellt ist.

Tabelle 62: Kommunikationsobjekt PWM Ausgang Kühlen für 4 Rohr

4.5.8 Komfortverlängerung

Die Komfortverlängerung bewirkt ein temporäres Schalten in den Komfort-Modus. Folgende Parameter sind hierfür verfügbar:

Präsenz / Komfortverlängerung bei Nacht	Komfortverlängerung mit Zeit	
Komfort Verlängerungszeit	30 min	•

Abbildung 35: Komfortverlängerung

Die nachfolgende Tabelle zeigt die Einstellmöglichkeiten für diesen Parameter:

Unterfunktion	Wertebereich		Kommentar
	[Defaultwert]		
Präsenz /	•	nicht aktiv	Aktivierung der
Komfortverlängerung bei	•	Komfortverlängerung mit	Komfortverlängerung über
Nacht	Zeit		zeitabhängiges Objekt oder über
	•	Komfort über Präsenzobjekt	Präsenz
Komfort		30 min , 1 h, 1,5 h, 2 h, 2,5 h,	Einstellbare Zeit für die
Verlängerungszeit		3 h, 3,5 h, 4 h	Komfortverlängerung

Tabelle 63: Einstellmöglichkeiten Komfortverlängerung

Wird die Komfortverlängerung aktiviert, so erscheint das folgende Kommunikationsobjekt:

Nummer	Name	Größe	Verwendung
4	Komfortverlängerung	1 Bit	Temporäres Umschalten in den Komfort-Betrieb über Objekt für die Dauer einer vorgegebenen Zeit
4	Präsenz schalten	1 Bit	Temporäres Umschalten in den Komfort-Betrieb über Objekt. Zeitunabhängig.

Tabelle 64: Kommunikationsobjekt Komfortverlängerung

Die Komfortverlängerung kann zum Beispiel eingesetzt werden um den Komfort-Modus bei Besuch, Partys, etc. zu verlängern. Schaltet beispielsweise eine Zeitschaltuhr den Kanal zu einem bestimmten Zeitpunkt in den Nachtbetrieb, so kann mittels der Komfortverlängerung wieder für eine bestimmte Zeit in den Komfort-Modus geschaltet werden. Bei Senden einer 1 auf das Objekt

Komfortverlängerung schaltet der Kanal für die eingestellte "Komfort Verlängerungszeit" vom Nacht-Modus zurück in den Komfort Modus. Nach Ablauf der "Komfort Verlängerungszeit" schaltet der Kanal wieder automatisch in den Nachtbetrieb.

Die Komfortverlängerung funktioniert dabei nur für eine Umschaltung von den Nacht in den Komfort Modus und zurück!

4.5.9 Totzone

Das folgende Bild zeigt die Einstellmöglichkeiten für die Totzone::

Abbildung 36: Einstellungen Totzone

In der nachfolgenden Tabelle sind die Einstellmöglichkeiten für diesen Parameter dargestellt:

ETS-Text	Wertebereich	Kommentar
	[Defaultwert]	
Totzone zwischen Heizen	1,0K - 10,0K	Einstellbereich für die Totzone
und Kühlen (in K)	[2,0K]	(Bereich in dem der Regler weder
		den Heiz- noch den Kühlvorgang
		aktiviert)

Tabelle 65: Einstellbereich Parameter Totzone

Die Einstellungen für die Totzone sind nur möglich wenn die Reglerart auf Heizen und Kühlen (siehe 4.2 Betriebsart Kanal) eingestellt ist. Sobald diese Einstellungen getroffen sind kann die Totzone parametriert werden.

Als Totzone wird der Bereich beschrieben, in dem der Regler weder den Heiz- noch den Kühlvorgang aktiviert. Der Regler sendet der Stellgröße folglich in dem Bereich der Totzone keinen Wert und somit bleibt die Stellgröße ausgeschaltet. Bei der Einstellung der Totzone ist zu beachten, dass ein zu niedrig gewählter Wert zu einem häufigen Umschalten zwischen Heiz- und Kühlvorgang führt, ein hoch gewählter Wert jedoch zu einer großen Schwankung der tatsächlichen Raumtemperatur. Wenn der Regler auf Heizen und Kühlen gestellt ist, so bildet der Basis-Komfortwert immer den Sollwert für den Heizvorgang. Der Sollwert für den Kühlvorgang ergibt sich aus der Addition des Basis-Komfortwertes und der Totzone. Ist also der Basis-Komfortwert auf 21°C und die Totzone auf 3K eingestellt so ergibt sich für den Heizvorgang ein Sollwert von 21°C und für den Kühlvorgang ein Sollwert von 24°C.

5 Index

5.1Abbildungsverzeichnis

Abbildung 1: Anschlussbeispiel Heizungsaktor 4tach 230V	. 6
Abbildung 2: Anschlussbeispiel Heizungsaktor 8fach 230V	
Abbildung 3: Übersicht Hardwaremodul	
Abbildung 4: allgemeine Einstellungen	18
Abbildung 5: Gerätkonfiguration	19
Abbildung 6: Sommer-/Winterbetrieb	20
Abbildung 7: Heiz-/Kühlumschaltung	21
Abbildung 8: 2-Rohr System	22
Abbildung 9: 4-Rohr System	23
Abbildung 10: Festsitz-/Ventilschutz	25
Abbildung 11: max. Stellwert	26
Abbildung 12: Verhalten bei Busspannungswiederkehr	27
Abbildung 13: Sollwert Frostbetrieb	
Abbildung 14: Sprache Diagnosetext	28
Abbildung 15: Aktivierung Diagnosetext	28
Abbildung 16: Auswahl der Betriebsart	
Abbildung 17: Kanal-Konfiguration – "schaltend (1 Bit)"	31
Abbildung 18: Notbetrieb	33
Abbildung 19: Zwangsstellung/Taupunktalarm	34
Abbildung 20: Kanal-Konfiguration "stetig"	36
Abbildung 21: Stellwertbegrenzung4	40
Abbildung 22: Vorlauftemperaturbegrenzung4	41
Abbildung 23: Stellwert bei Unterschreitung der minimalen Begrenzung	43
Abbildung 24: Heiz-/Kühlbetrieb4	44
Abbildung 25: Registerkarte Regler4	44
Abbildung 26: Betriebsarten für Heiz- & Kühlbetrieb	45
Abbildung 27: Einstellungen Priorität Betriebsarten	47
Abbildung 28: Status auf Betriebsartvorwahl senden4	48
Abbildung 29: Verwendung Objekt 114	49
Abbildung 30: Einstellungen Sollwertverschiebung5	51
Abbildung 31: Sollwertänderungen senden	54
Abbildung 32: Meldefunktion (Frost/Hitze)	55
Abbildung 33: Heiz-/Kühlsystem	56
Abbildung 34: Systemauswahl für Heiz-/Kühlkreislauf	58
Abbildung 35: Komfortverlängerung	59
Abbildung 36: Einstellungen Totzone6	60

5.2 Tabellenverzeichnis

Tabelle 1: Übersicht Kommunikationsobjekte	15
Tabelle 2: Standard-Einstellungen Kommunikationsobjekte	17
Tabelle 3: Gerätkonfiguration	19
Tabelle 4: Kommunikationsobjekt Störung	19
Tabelle 5: Sommer-/Winterbetrieb	20
Tabelle 6: Kommunikationsobjekt Sommer-/Winterbetrieb	
Tabelle 7: Empfohlene Einstellungen reines Heizsystem oder reines Kühlsystem	21
Tabelle 8: Empfohlene Einstellungen 2-Rohr Heizen und Kühlen	22
Tabelle 9: Empfohlene Einstellungen 4-Rohr Heizen und Kühlen	23
Tabelle 10: Einstellmöglichkeiten Heiz-/Kühlumschaltung	24
Tabelle 11:Kommunikationsobjekt Heiz-/Kühlumschaltung	25
Tabelle 12:Einstellbereich Festsitz-/Ventilschutz	25
Tabelle 13:Einstellbereich max. Stellwert	26
Tabelle 14: Kommunikationsobjekte max. Stellwert	26
Tabelle 15:Verhalten bei Busspannungswiederkehr	27
Tabelle 16: Sollwert Frostbetrieb	28
Tabelle 17: Sendebedingung Diagnosetext	28
Tabelle 18: Übersicht Diagnosetext	29
Tabelle 19: Einstellmöglichkeiten Betriebsarten	30
Tabelle 20:Kommunikationsobjekte Stellwert 1Bit	31
Tabelle 21: Einstellmöglichkeiten Ventilart	
Tabelle 22: Einstellmöglichkeiten Heiz-/Kühlanforderung	32
Tabelle 23: Einstellmöglichkeiten Status Stellwert senden	32
Tabelle 24: Kommunikationsobjekt Status Stellwert	
Tabelle 25: Einstellmöglichkeiten Sperrobjekt	
Tabelle 26: Kommunikationsobjekt Sperren	
Tabelle 27: Einstellmöglichkeiten Notbetrieb	
Tabelle 28: Einstellmöglichkeiten Zwangsstellung/Taupunktalarm	
Tabelle 29: Kommunikationsobjekt Taupunktalarm	
Tabelle 30: Einstellmöglichkeiten Zwangsstellung	
Tabelle 31: Kommunikationsobjekt Zwangsstellung	
Tabelle 32: Sendebedingung Diagnosetext	
Tabelle 33: Kommunikationsobjekt Diagnosetext	
Tabelle 34: Kommunikationsobjekte Stellwert 1Byte	
Tabelle 35: Einstellmöglichkeiten PWM-Zyklus	37
Tabelle 36: Einstellmöglichkeiten Stellwert Begrenzung	
Tabelle 37: Einstellmöglichkeiten Vorlauftemperaturbegrenzung	
Tabelle 38: Kommunikationsobjekt Vorlauftemperaturbegrenzung	
Tabelle 39: Stellwert bei Unterschreitung der minimalen Begrenzung	
Tabelle 40: Einstellmöglichkeiten Betriebsarten	
Tabelle 41: Kommunikationsobjekt Betriebsart Komfort	
Tabelle 42: Kommunikationsobjekt Betriebsart Nacht	
Tabelle 43: Kommunikationsobjekt Betriebsart Frost/Hitzeschutz	
Tabelle 44: Einstellbereich Parameter Priorität	
Tabelle 45: Beispiel Betriebsartenumschaltung 1 Bit	
Tabelle 46: Hex-Werte Betriebsarten	
Tabelle 47: Beispiel Betriebsartenumschaltung 1 Byte	
Tabelle 48: Hex-Werte DPT HVAC Status	

Tabelle 49: Hex-Werte DPT RHCC Status	49
Tabelle 50: Kommunikationsobjekte zur Betriebsartenumschaltung	50
Tabelle 51: Einstellmöglichkeiten Sollwertverschiebung	51
Tabelle 52: Kommunikationsobjekt Komfort Sollwert	52
Tabelle 53: Kommunikationsobjekt Komfort Sollwert	52
Tabelle 54: Kommunikationsobjekt Sollwertverschiebung über 1 Byte	53
Tabelle 55: Kommunikationsobjekt Sollwertverschiebung über 1 Bit	53
Tabelle 56: Einstellungen Sollwertänderungen senden	
Tabelle 57: Kommunikationsobjekt aktueller Sollwert	54
Tabelle 58: Einstellmöglichkeiten Meldefunktion (Frost/Hitze)	55
Tabelle 59: Kommunikationsobjekte Meldefunktion	55
Tabelle 60: Einstellmöglichkeiten Heizsystem	
Tabelle 61: Einstellmöglichkeiten Heiz-/Kühlkreislauf	58
Tabelle 62: Kommunikationsobjekt PWM Ausgang Kühlen für 4 Rohr	58
Tabelle 63: Einstellmöglichkeiten Komfortverlängerung	59
Tabelle 64: Kommunikationsobjekt Komfortverlängerung	59
Tabelle 65: Finstellhereich Parameter Totzone	60

6 Anhang

6.1 Gesetzliche Bestimmungen

Die oben beschriebenen Geräte dürfen nicht in Verbindung mit Geräten benutzt werden, welche direkt oder indirekt menschlichen-, gesundheits- oder lebenssichernden Zwecken dienen. Ferner dürfen die beschriebenen Geräte nicht benutzt werden, wenn durch ihre Verwendung Gefahren für Menschen, Tiere oder Sachwerte entstehen können.

Lassen Sie das Verpackungsmaterial nicht achtlos liegen, Plastikfolien/-tüten etc. können für Kinder zu einem gefährlichen Spielzeug werden.

6.2 Entsorgungsroutine

Werfen Sie die Altgeräte nicht in den Hausmüll. Das Gerät enthält elektrische Bauteile, welche als Elektronikschrott entsorgt werden müssen. Das Gehäuse besteht aus wiederverwertbarem Kunststoff.

6.3 Montage

Lebensgefahr durch elektrischen Strom:

Alle Tätigkeiten am Gerät dürfen nur durch Elektrofachkräfte erfolgen. Die länderspezifischen Vorschriften, sowie die gültigen EIB-Richtlinien sind zu beachten.

6.4 Erläuterungen

6.4.1 PWM-Regelung

Der Heizungsaktor wandelt das stetige Signal eines PI-Reglers in ein PWM-Signal um. Das Stellgrößensignal (0-100% oder in KNX 0-255) der PI-Regelung wird dabei nicht an Ausgang weitergegeben, sondern nur intern verarbeitet. Aus dem Ausgangssignal der PI-Regelung wandelt die PWM Regelung die Stellgröße in einen Ein- und Ausschaltimpuls um. Dieser Ein- Ausschaltimpuls hat dabei jedoch nicht, wie die 2-Punkt Regelung einen festen Ein- und Ausschaltpunkt, sondern die Länge der Impulse werden anhand der von der PI-Regelung berechneten Stellgröße ermittelt. Je größer dabei die berechnete Stellgröße der PI-Regelung ist, je größer wird auch das Verhältnis von Ein- zu Ausschaltzeit.

Die Zykluszeit kann dabei frei parametriert werden. Als Zykluszeit wird die Zeit bezeichnet, welche ein Zyklus, also die Dauer eines Ein- und Ausschaltimpulses zusammen, umfasst(siehe Grafik vorherige Seite). Die Dauer des Einschaltimpulses berechnet sich dabei aus dem Produkt von berechneter Stellgröße und Zykluszeit, z.B. bei einer Zykluszeit von 10min und einer berechneten Stellgröße von 70% beträgt der Einschaltimpuls: 0,7*10 min=7 min. Die restlichen 3 Minuten des Zyklus verbleiben somit für den Ausschaltimpuls. Eine kurze Zykluszeit bewirkt dabei, dass die Einschaltimpulse in ziemlich kurzen Abständen wiederkehren. Dadurch wird ein zu starkes Absinken der Temperatur vermieden und der Istwert bleibt weites gehend stabil. Allerdings können dadurch auch zu häufige Schaltimpulse verursacht werden, welche das System negativ beeinflussen können oder den Bus überlasten kann.

Bei der Einstellung der Zykluszeit werden die beiden Einstellmöglichkeiten, welche unter "4.4.1 PWM-Zyklus" beschrieben wurden, unterschieden. Je nach System und gewünschten Effekt kann die Einstellung der Zykluszeit dann vorgenommen werden.

6.4.2 stetige PI-Regelung

Die stetige PI-Regelung ist eine Regelung mit einer sich ständig ändernde Stellgröße. Der Wert für die Stellgröße wird dabei immer punktgenau an die anstehende Regeldifferenz(damit wird der Unterschied zwischen Sollwert und Ist-Temperatur bezeichnet) angepasst. Die PI-Regelung besteht dabei aus einem proportionalen Anteil, dem P-Regler, und einem integralen Anteil, dem I-Regler. Durch die Zusammenschaltung dieser beiden Regler Typen werden die Vorteile beider Regler kombiniert.

Das Kommunikationsobjekt der PI-Regelung für die Stellgröße ist ein 1 Byte Objekt. Der Wert für die Stellgröße kann verschiedene prozentuale Zustände annehmen(siehe Bild oben). Die KNX-Software wandelt das Stellgrößensignal, dann in eben dieses 1 Byte Objekt um. Dabei entsprechen 0%=0 und 100%=255.

Der P-Anteil des PI-Reglers bewirkt, dass die Stellgröße mit einem proportionalen Verhalten auf eine anstehende Regeldifferenz reagiert. Würde z.B. die Stellgröße bei einer Regeldifferenz von 1°C 30% entsprechen, so würde bei einer Regeldifferenz von 2°C die Stellgröße 60% ausgeben. Der Anteil des P-Reglers wird als Proportionalbereich bezeichnet und in K(dimensionslos) angegeben. Der Wert für den Proportionalbereich gibt dabei lediglich die proportionale Auswirkung einer anstehenden Regeldifferenz auf die Stellgröße an. Ein halb so hoher Proportionalbereich bedeutet bei gleicher Regeldifferenz einen doppelt so hohen Stellwert. Der P-Regler ist ein sehr schneller Regler, jedoch hat ein P-Regler alleine immer eine bleibende Regeldifferenz.

Der I-Anteil des Reglers bewirkt, dass die Stellgröße mit einem integralen Verhalten auf eine anstehende Regeldifferenz reagiert. Die aktuell anstehende Regeldifferenz wird immer auf die Stellgröße addiert. Da die Regeldifferenz immer kleiner wird, aufgrund des Einwirkens der Stellgröße, wird folglich auch die Stellgröße immer kleiner. Somit nähert sich der tatsächliche Istwert dem Sollwert langsam an. Der Einstellbereich des I-Reglers wird als Nachstellzeit bezeichnet und wird in min angegeben. Je kleiner die Nachstellzeit ist, je größer ist der I-Anteil an der gesamten Regelung. Der I-Regler ist ein langsamer Regler, jedoch ist dieser in der Lage eine Regeldifferenz vollständig auszuregeln.

Der PI-Regler kombiniert nun die Vorteile beider Regler, es entsteht also ein relativ schneller Regler ohne bleibende Regeldifferenz. Für die Einstellung gilt, dass ein kleiner Proportionalbereich zu einem dynamischen Verhalten des Reglers führt, jedoch sollte dieser auch nicht zu klein gewählt werden, da dies zu einer Überschwingung führen kann. Ebenfalls gilt, dass eine kleine Nachstellzeit zu einer schnellen Ausregelung der Regeldifferenz führt. Allerdings kann eine zu kleine Nachstellzeit auch zu einem Überschwingen des Regler führen. Daraus lassen sich folgende Grundsätze für die Einstellung definieren:

- **kleiner Proportionalbereich:** kaum Gefahr des Überschwingens; jedoch langsames Einregeln; Verwendung überall dort wo große Streckenverstärkungen gebraucht werden (hohe Heizleistung, etc.)
- **großer Proportionalbereich:** große Überschwingung möglich bei Sollwertänderung; schnelles Einregeln auf Sollwert; Verwendung bei schnellen Systemen
- kleine Nachstellzeit: schnelles Ausregeln von Regeldifferenzen; Verwendung bei schnellen Systemen und dort wo wechselnde Umgebungsbedingungen(Störgrößen, wie Zugluft, etc.) herrschen
- **große Nachstellzeit:** langsames Ausregeln von Regeldifferenzen; kaum Überschwingen; Verwendung bei trägen Heizsystemen, wie z.B. Fußbodenheizungen

Die stetige PI-Regelung sollte dort verwendet werden, wo die Stellgröße stetig überwacht werden kann und mehrere Zustände annehmen kann, wie z.B. mehrere Ventilzustände(10% offen; 50% offen; ...) und exakte Regelergebnisse erwünscht werden.

6.4.1 1Bit schaltend

6.5 Beispiele zur Programmierung

6.5.1 Beispiel 1: Ansteuerung über Raumtemperaturregler

Szenario:

In einer Wohnung soll eine Fußbodenheizung und eine Klimaanlage in einem Raum geregelt werden. Der Raum verfügt über einen Temperaturregler und somit über ein geregeltes Ausgangssignal. Um Strom zu sparen soll die Heizungspumpe bei Nichtbenutzung der Fußbodenheizung abgeschaltet werden.

Die Heizungspumpe wird über einen Schaltaktor geschaltet.

Da die Bodenbeläge keine zu großen Wärmeeinflüsse vertragen, muss die Vorlauftemperatur begrenzt werden.

Die Vorlauftemperatur wird mit einem zusätzlichen Temperatursensor erfasst, welcher an einen SCN-RT6AP.01 angeschlossen ist.

In diesem Beispiel verwendete Geräte:

- Heizungsaktor AKH-0400.01
- Temperaturregler SCN-RT1UP.01
- Temperatursensor/-regler SCN-RT6AP.01 + Temperaturfühler SCN-PTST3.01
- Schaltaktor AKI-0816.01
- optional: Temperaturfühler SCN-PTST3.01

Umsetzung:

Die Raumtemperaturregelung wurde über den **Temperaturregler SCN-RT1UP.01** realisiert. Dieser wurde als Heizen und Kühlen parametriert und für den Heiz- als auch den Kühlbetrieb individuell angepasst:

Für die Fußbodenheizung wird ein stetiger Stellwert ausgegeben, welcher dann im Heizungsaktor zum PWM-Signal umgewandelt wird. Die Klimaanlage wird über eine Zweipunktregelung angesteuert.

Folgende Einstellungen werden im Temperaturregler SCN-RT1UP.01 vorgenommen:

Im **Heizungsaktor** wurde der **Kanal A**, welcher die Fußbodenheizung ansteuert, als Betriebsart "stetig(1Byte)" parametriert:

Um die Heizungspumpe nachher schalten zu können ist es wichtig das die Heiz-/Kühlanforderung für diesen Kanal aktiviert wurde. Der PWM-Zyklus wurde bewusst mit 20min relativ lang gewählt, da eine Fußbodenheizung ein sehr träges System darstellt und die Fußbodenheizung nach der Einstellmöglichkeit 1(siehe 4.4.1 PWM Zyklus) geschaltet werden soll.

Für die Fußbodenheizung muss nun noch abschließend die Zuordnung der Gruppenadressen getroffen werden. Hierbei muss der ausgegebene Stellwert des Reglers für den Heizbetrieb mit dem Eingangsobjekt für den Stellwert des Heizungsaktor verbunden werden:

Da der Belag des Fußbodens jedoch sehr empfindlich auf zu große Temperaturschwankungen reagiert, soll die maximale Heiztemperatur jedoch begrenzt werden. Dies wird über die Vorlauftemperaturbegrenzung realisiert. Hierzu wird zusätzlich zu den obigen Einstellungen im **Kanal** A des **Heizungsaktor** noch die Vorlauftemperaturbegrenzung aktiviert und der maximale Temperaturwert eingestellt:

Die Vorlauftemperatur muss nun direkt am Heizungsrohr erfasst werden und als Temperaturmesswert an den Heizungsaktor weitergegeben werden. Die Temperaturerfassung wird mit dem SCN-RT6AP.01 in Verbindung mit dem PT1000-Fühler SCN-PTST3.01 realisiert. In dem SCN-RT6AP.01 im Menü Temperaturmessung werden die folgenden Einstellungen vorgenommen:

Abschließend müssen noch die Zuordnungen der Gruppenadressen für die Vorlauftemperaturbegrenzung vorgenommen werden:

Objekt	Gerät
ज़िर्दे 1: Kanal A - Vorlauftemperatur	1.1.1 AKH-0400.01 Heizungsaktor 4-fach, 2TE, 24/230VAC
्रिद्री0: Temperaturmesswert - Messwert senden	1.1.2 SCN-RT1xPx.xx Raumtemperaturregler/-sensor

Nun muss der Kühlbetrieb realisiert werden. Dies geschieht über **Kanal C** des **Heizungsakto**r. Dieser wurde, da für den Kühlbetrieb nur eine 2-Punkt-Regelung vorliegt, als "schaltend (1Bit)" parametriert:

Wichtig ist dabei, dass der Kanal nicht in die Heiz-/Kühlanforderung berücksichtigt wird, da die Heizungspumpe natürlich nicht im Kühlbetreib laufen soll.

Der ausgegebene Stellwert des Reglers und der empfangene Wert des Aktors wurden, wie nachfolgend dargestellt, verknüpft:

Objekt	Gerät
武10: Stellwert Kühlen - Stellgrösse senden	1.1.2 SCN-RT1xPx.xx Raumtemperaturregler/-sensor
긁다 40: Kanal C - Stellwert	1.1.1 AKH-0400.01 Heizungsaktor 4-fach, 2TE, 24/230VAC

Abschließend sorgen wir noch dafür, dass die Heizungspumpe bei Nichtbenutzung des Heizbetriebs abgeschaltet werden soll. Dazu wird das Heiz-/Kühlanforderungsobjekt des Heizungsaktor, welches in unserem Beispiel nur eine Heizanforderung darstellt mit dem zugehörigen Kanal des Schaltaktors, welcher die Heizungspumpe ansteuert, verbunden:

Objekt	Gerät
긁컦82: Heiz-/Kühlanforderung - 0	1.1.1 AKH-0400.01 Heizungsaktor 4-fach, 2TE, 24/230VAC
급之0: Kanal A - Schalten EIN/AUS	1.1.3 AKI-0816.01 Schaltaktor 8-fach, 8TE, 16A, C-Last

6.5.2 Beispiel 2: Ansteuerung über Temperaturwert

In einer Wohnung wurde nur ein Temperaturwert erfasst und keine komplette Raumtemperaturregelung realisiert. Trotzdem soll mittels des Heizungsaktor zwei Heizkörper gleichen Typs angesteuert werden.

Die Heizungspumpe soll bei Nichtbenutzung der Heizung abgeschaltet werden. Die Heizungspumpe wird über einen Schaltaktor geschaltet.

In diesem Beispiel verwendete Geräte:

- Temperatursensor SCN-TS1UP.01
- SchaltaktorAKI-0816.01
- Heizungsaktor AKH-0400.01

Der Raum verfügt nun nur über die gemessene Raumtemperatur. Diese Temperatur wird über einen Temperatursensor, den SCN-TS1UP.01, erfasst.

In **Sensor** wurden folgende Einstellungen getroffen:

Da nun für den **Heizungsaktor** noch kein geregeltes Signal vorliegt wurde der **Kanal B**, welcher die Heizkörper ansteuern soll, als integrierter Regler ausgewählt. Durch einen kurzen PWM-Zyklus soll ein Absinken der Raumtemperatur verhindert werden(Einstellmöglichkeit 2, siehe 4.4.1 PWM-Zyklus):

Das Temperatureingangssignal des Heizungsaktor muss nun mit dem vom externen Fühler gemessenen Temperaturmesswert verbunden werden. Der integrierte Regler im Heizungsaktor regelt die Temperatur nun nach den eingestellten Größen der PI-Regelung und wandelt das so entstandene PI-Signal intern in ein PWM-Signal um. Dieses PWM-Signal wird an den Ausgang des Aktors weitergegeben und steuert somit die Stellventile der Heizkörper an.

Gerät
1.1.2 SCN-RT1xPx.xx Raumtemperaturregler/-sensor
1.1.1 AKH-0400.01 Heizungsaktor 4-fach, 2TE, 24/230VAC

Abschließend sorgen wir noch dafür, dass die Heizungspumpe bei Nichtbenutzung des Heizbetriebs abgeschaltet werden soll. Dazu wird das Heiz-/Kühlanforderungsobjekt des Heizungsaktor, welches in unserem Beispiel nur eine Heizanforderung darstellt mit dem zugehörigen Kanal des Schaltaktors, welcher die Heizungspumpe ansteuert, verbunden:

Objekt	Gerät
긁컦82: Heiz-/Kühlanforderung - 0	1.1.1 AKH-0400.01 Heizungsaktor 4-fach, 2TE, 24/230VAC
a라0: Kanal A - Schalten EIN/AUS	1.1.3 AKI-0816.01 Schaltaktor 8-fach, 8TE, 16A, C-Last

6.6 Revisionshistorie

Version 1.0 - Erste Handbuchversion für die "2. Generation" der Heizungsaktoren – Stand 04/16 Version 1.1 - Stand 08/16

MDT Heizungsaktor

MDT Heizungsaktor 4/8-fach, Reiheneinbaugerät

Ausführungen		
AKH-0400.02	Heizungsaktor 4-fach	2TE REG, für elektrothermische Stellantriebe 24-230VAC
AKH-0800.02	Heizungsaktor 8-fach	4TE REG, für elektrothermische Stellantriebe 24-230VAC

Der MDT Heizungsaktor empfängt KNX/EIB Telegramme und steuert bis zu 8 Regelkreise unabhängig voneinander. Jeder Kanal verfügt über eine eigene LED Anzeige.

Jeder Kanal kann bis zu 4 Stellantriebe steuern und ist durch die ETS individuell programmierbar. Der Heizungsaktor kann mit PWM (1Bit) oder stetigen 1Byte Stellgrößen angesteuert werden. Zusätzlich besteht die Möglichkeit den integrierten Temperaturregler direkt mit KNX- Temperatursensoren anzusteuern. Zur Auswahl beim Regler stehen Komfort-, Nacht-, Frostschutzbetrieb sowie Sommer- und Winterbetrieb.

Der MDT Heizungsaktor verfügt über eine 230VAC Spannungsausfallerkennung, Notbetrieb bei Ausfall der zyklischen Stellgrößen und Objekte zur Heizungsanforderung sowie eine Festsitzschutzfunktion.

Der MDT Heizungsaktor ist zur festen Installation auf einer Hutprofilschiene in Verteilungen vorgesehen. Die Montage muss in trockenen Innenräumen erfolgen.

Zur Inbetriebnahme und Projektierung des MDT Heizungsaktors benötigen Sie die ETS. Die Produktdatenbank finden Sie auf unserer Internetseite unter www.mdt.de/Downloads.html

AKH-0400.02

AKH-0800.02

- Produktion in Engelskirchen, zertifiziert nach ISO 9001
- Umfangreiche Funktionserweiterung
- Jeder Kanal kann bis zu 4 Stellantriebe (230VAC) steuern
- Ansteuerung mit 1Bit (Schalten/PWM) / 1Byte (stetig) Stellgrößen oder direkte Ansteuerung mit Temperaturwert über KNX Bus
- Integrierter PI Temperaturregler (Heizen und Kühlen)
- Speicherung der Sollwerte bei Busspannungsausfall
- Sollwertverstellung mit 1Bit +/-, 1Byte oder 2Byte Absolutobjekt
- Komfort-, Nacht-, Frostschutzbetrieb. Sommer-/Winterbetrieb
- Notbetrieb bei Ausfall der zyklischen Stellgrößen
- Kurzschlußerkennung der Last
- 230VAC Spannungsausfallerkennung
- Objekte für Heizungsanforderung sowie Festsitzschutz
- Umfangreiche Szenenfunktionen
- Mindestvorlauftemperatur
- Klartextdiagnose je Kanal mit 14Byte Objekt
- Reiheneinbaugerät für 35mm Hutschiene
- Integrierter Busankoppler
- 3 Jahre Produktgarantie

MDT Heizungsaktor

Technische Daten	AKH-0400.02 AKH-0800.02
Anzahl Ausgänge	4/8
Maximale Schaltleistung	
Bei 24VAC und ohmsche Last	500mA
Bei 230VAC und ohmscher Last	500mA
max. Einschaltstrom**	5A
Externe Schaltspannung	24-230VAC
Maximale Last	
Anzahl elektrothermische Stellantriebe*	230VAC: 4 je Kanal 24VAC: 3 je Kanal
Mech. Schalthäufigkeit	Triacausgang, verschleißfrei
Spezifikation KNX Schnittstelle	TP-256
Verfügbare KNX Datenbanken	ETS 4/5 Projektdatei für ETS 3 (*.pr5)
Max. Kabelquerschnitt	
Schraubklemmen	0,5 - 4,0mm² eindrähtig 0,5 - 2,5mm² feindrähtig
KNX Busklemme	0,8mm Ø, Massivleiter
Versorgungsspannung	KNX Bus
Leistungsaufnahme KNX Bus typ.	< 0,3W
Umgebungstemperatur	0 bis + 45°C
Schutzart	IP 20
Abmessungen REG (Teilungseinheiten)	2/4TE

^{*} je nach Hersteller. Einschaltstrom bei 4 Stellantrieben muß < 1A je Stellantrieb sein ** je 4er Gruppe

Anschlussbeispiel AKH-0800.02

