体渲染预积分分类

Dezeming Family

2022年5月10日

DezemingFamily 系列书和小册子因为是电子书,所以可以很方便地进行修改和重新发布。如果您获得了 DezemingFamily 的系列书,可以从我们的网站 [https://dezeming.top/] 找到最新版。对书的内容建议和出现的错误欢迎在网站留言。

目录

一 预积分分类的引入	1
二 方法描述	1
三 实际的计算方式	2
参考文献	2

一 预积分分类的引入

在基于吸收发射方程的体渲染积分路径中,很容易因为传输函数而引入高频信息。设体空间的点为 \mathbf{x} ,传输函数分别将其映射为颜色 $q(s(\mathbf{x}))$ 和 $\kappa(s(\mathbf{x}))$ 。

我们应用预积分分类的思想,把数值积分分为两部分积分:一部分是在连续的标量场 $s(\mathbf{x})$ 上做积分,另一部分是对 g(s) 和 $\kappa(s)$ 做积分,来避免由于奈奎斯特频率引起的问题。

二 方法描述

第一步是在采样光线中采样连续标量场 $s(\mathbf{x})$,此时采样的奈奎斯特频率并不会被传输函数所影响。采样值构成了一段分段线性标量函数:

使用传输函数,不透明度就可以近似为:

$$\alpha_{i} = 1 - \exp\left(-\int_{id}^{(i+1)d} \kappa(s(\mathbf{x})) d\mathbf{x}\right)$$

$$\approx 1 - \exp\left(-\int_{0}^{1} d \times \kappa((1-l)s_{i} + l \cdot s_{i+1}) dl\right) \tag{\Box.1}$$

颜色 (关联颜色 q) 近似为:

$$c_i \approx d \times \int_0^1 \left(q((1-l)s_i + l \cdot s_{i+1}) \times \exp\left(-\int_0^l \kappa((1-l')s_i + l' \cdot s_{i+1}dl')\right) \right) dl \qquad (=.2)$$

使用非关联颜色 q' 可以转换为:

$$c_{i} \approx d \times \int_{0}^{1} \left(\kappa \left((1 - l)s_{i} + l \cdot s_{i+1} \right) q' \left((1 - l)s_{i} + l \cdot s_{i+1} \right) \times \exp \left(- \int_{0}^{l} \kappa \left((1 - l')s_{i} + l' \cdot s_{i+1} dl' \right) \right) \right) dl$$

$$(=.3)$$

也就是说, c_i 计算的结果永远是关联颜色的结果。

于是, 预积分分类就是计算:

$$I \approx \sum_{i=0}^{n} \left(c_i \prod_{j=0}^{i-1} (1 - \alpha_j) \right) \tag{-.4}$$

我们可以看到, c_i 和 α_i 的计算只会与 s_i 和 s_{i+1} 有关,因此我们可以提前计算出来一张表(或者两张表,一张存储颜色的积分,一张存储不透明度的积分):

这个表的横纵轴都是 $s(\mathbf{x})$,我们设分别是 s_a 和 s_b ,里面的值存储的是不透明度和颜色值从 s_a 到 s_b 的积分。当采样到某段 s_i 和 s_{i+1} 时,就可以以 s_i 为横坐标, s_{i+1} 为纵坐标,从该表中查找积分值。可以想象地到,当传输函数变化时,这张表一般是需要重新制作的(或者里面相应的部分需要重新制作)。

如果 s_i 和 s_{i+1} 的坐标并不在表上恰好对应,则通过插值的方法得到。

三 实际的计算方式

在采样中,我们会得到采样路段中每段的两个端点,假设为 s_i 和 s_{i+1} 。我们本节来研究如何预计算表。

 α_i 的计算一般是:

$$\alpha_i \approx 1 - \exp\left(-\int_0^1 d \times \kappa \left((1-l)s_i + l \cdot s_{i+1}\right) dl\right)$$

$$= 1 - \exp\left(-\frac{d}{s_{i+1} - s_i} \int_{s_i}^{s_{i+1}} \kappa(s) ds\right)$$
(Ξ .1)

对于 α ,和《吸收发射方程和编程描述》中一样,需要忽略本段自吸收的部分,因此:

$$c_{i} \approx d \times \int_{0}^{1} \left(q\left((1-l)s_{i} + l \cdot s_{i+1}\right) \right) dl$$

$$= \frac{d}{s_{i+1} - s_{i}} \int_{s_{i}}^{s_{i+1}} q(s) ds \qquad (\Xi.2)$$

注意,虽然不一定 $s_{i+1}>s_i$,但 $\frac{d}{s_{i+1}-s_i}$ 与积分值相乘的结果都是大于 0 的。

参考文献

[1] Engel K, Hadwiger M, Kniss J M, et al. Real-time volume graphics[M]//ACM Siggraph 2004 Course Notes. 2004: 29-es.