The Reparamaterisation Trick

Greg Feldmann

May 26, 2020

Abstract

The reparamatisation trick is used to enable variational autoencoders (VAEs) to be trained with gradient descent.

1 Quick Overview of Variational Autoencoders

Let **z** be a vector of latent variables, **x** be a row vector from a dataset X, $q_{\phi}(\mathbf{z}|\mathbf{x})$ be the encoder and $p_{\theta}(\mathbf{x}|\mathbf{z})$ be the decoder. The loss function used is referred to as the evidence lower bound (ELBO). ELBO is defined as follows

$$\mathcal{L}_{\theta,\phi}(\mathbf{x}) = log(p_{\theta}(\mathbf{x})) - D_{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x}))$$
(1)

where D_{KL} is the Kullback-Leibler divergence.

2 Optimising ELBO with SGD

To optimise our VAE, we need to be able to take gradients of the expected value of ELBO with respect to the network weights θ and ϕ . This is easy enough for θ :

$$\nabla_{\theta} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\mathcal{L}_{\theta,\phi}] = \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\nabla_{\theta} \mathcal{L}_{\theta,\phi}]$$
 (2)

Once the grad operator is inside the expectation, all we have to do is approximate the expectation with a sample.

Things are trickier with ϕ . As the expectation assumes that $p(\mathbf{z}|\mathbf{x}) = q_{\phi}(\mathbf{z}|\mathbf{x})$, we cannot simply move ∇_{ϕ} in and out of the expectation arbitrarily.

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\mathcal{L}_{\theta,\phi}] \neq \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} [\nabla_{\phi} \mathcal{L}_{\theta,\phi}]$$
(3)

That the left and right hand sides are not equal can be seen as follows:

$$\nabla_{\phi} \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\mathcal{L}_{\theta,\phi}] = \nabla_{\phi} \int q_{\phi}(\mathbf{z}|\mathbf{x}) \mathcal{L}_{\theta,\phi} d\mathbf{x}$$
 (4)

$$= \int \nabla_{\phi}(q_{\phi}(\mathbf{z}|\mathbf{x})\mathcal{L}_{\theta,\phi})d\mathbf{x}$$
 (5)

$$= \int [q_{\phi}(\mathbf{z}|\mathbf{x})(\nabla_{\phi}\mathcal{L}_{\theta,\phi}) + \mathcal{L}_{\theta,\phi}(\nabla_{\phi}q_{\phi}(\mathbf{z}|\mathbf{x}))]d\mathbf{x}$$
 (6)

$$= \int q_{\phi}(\mathbf{z}|\mathbf{x})(\nabla_{\phi}\mathcal{L}_{\theta,\phi})d\mathbf{x} + \int \mathcal{L}_{\theta,\phi}(\nabla_{\phi}q_{\phi}(\mathbf{z}|\mathbf{x}))d\mathbf{x}$$
 (7)

$$= \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\nabla_{\phi}\mathcal{L}_{\theta,\phi}] + \int \mathcal{L}_{\theta,\phi}(\nabla_{\phi}q_{\phi}(\mathbf{z}|\mathbf{x}))d\mathbf{x}$$
(8)

This isn't in a form that we can easily handle. In particular, $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$, meaning \mathbf{z} is stochastic rather than deterministic. This is where the reparamaterisation trick comes into play. We can make \mathbf{z} deterministic by making it a function of a stochastic variable, ϵ :