THERMODYNAMICS **PROCESSES**

- ISothermal Process $dt = -. \Delta U = 0$
- Isochoric Process $\Delta V = 0$
- Adiabatic Process $\Delta q = 0$
- · Cyclic Process $\Delta U_{cyclic} = 0$

THERMODYNAMICS **PROPERTIES**

INTENSIVE PROPERTIES P. T. N

Properties of the System which only depend on the nature of matter

STATE FUNCTION Δυ. ΔΗ. ΔΘ

Properties of the System which only depend on the nature of matter

EXTENSIVE PROPERTIES V. U. H

Properties of the System which depend on the Path of the System

PATH FUNCTION HEAT WORK

Properties of the System which depend on the Path of the System

Surroundings

ZEROTH LAW OF THERMODYNAMICS

THERMODYNAMICS

If two thermodynamics States are in thermal equilibrium with a third one. then they are in thermal equilibrium with each other.

GIBB'S ENERGY CHANGE & EQUILIBRIUM

energy'.

 Δ r $G^{\circ} = -2.303$ RT log K log K = 0 Equilibrium reached log K > 0 Mixture contains log K < 0 Products Mixture contains

reactants

GIBB'S FREE ENERGY

The net energy available to do useful work and is a measure of 'free

Gibb's - Helmholtz equation $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}\Delta G^{\circ} = NFE_{cell}^{o}$

Sign of

Standard free energy of a reaction: $\Delta r G^\circ = \Sigma \Delta_f G^\circ_{Products} - \Sigma \Delta_f G^\circ_{reactants}$

DG < 0. rocess is spontaneous

DG > 0. rocess is non-spontaneous

Equilibrium reached

DG < 0. rocess is equilibrium

TYPES OF SYSTEM

<--->Matter

⇒Energy

CLOSED SYSTEM

ISOLATED SYSTEM

ENTHALPY

 $\Delta H = \Delta U + \Delta (PV)$ $\Delta H = \Delta U + \Delta N_a RT$

ENTHALPY of reaction (AN_H) Reactants \rightarrow Products

 $\Delta_{\mathbf{r}} \mathbf{H} = \mathbf{e} \sum \mathbf{a}_{i} \mathbf{H} \ \mathbf{Products} - \sum \mathbf{b}_{i} \mathbf{H} \ \mathbf{reactants}$

STANDARD ENTHALPY OF REACTIONS (AH°)

Standard enthalpy of fusion = Δ_{min} H°

Standard enthalpy of phase change $\Delta_{\text{rus}} H^{\circ}$, $\Delta_{\text{vap}} H^{\circ}$, $\Delta_{\text{SUB}} H^{\circ}$

Standard enthalpy of combustion $\Delta_{\cdot}\mathsf{H}^{\circ}$

HESS' LAW CONSTANT

HEAT SUMMATION

 $\Delta_{r}H = \Delta_{r}H_{1} + \Delta_{r}H_{2} + \Delta_{r}H_{3}$

Lattice enthalpy = $\Delta_{\text{lattice}} H^{\circ}$

HEAT CAPACITY

Amount of heat required to raise the temperature of a System by 1°C. Molar heat capacity 1°C.

Universe

SYSTEM

Molar heat capacity \Rightarrow 9 = NC \triangle T

Specific heat capacity \Rightarrow 9 = mc Δ T

MEYERS'S FORMULA

 $C_p - C_v = R$

POISSON'S RATIO

HEAT (Q)

Exchange of energy due to temperature differnece.

INTERNAL **ENERGY**

Total energy within the Substance

WORK (W)

when there is difference between presence of the System and surroundings. the work done is known as W_vV

FIRST LAW OF THERMODYNAMICS

Law of conservation of energy total energy of an isolated

Mathematically. $\Delta U = 9 + W$

At constant pressure

∆U = **q**₀

EORN HABER CYCLE

SIGN CONVENTION

Heat absorbed by the System = +ve

Heat evolved by the System = -ve

work done by the System = -ve

work done on the System = +ve

At constant volume CALORIMETRY

 $(\triangle U) = CV \times \triangle T \times M$

 $(\triangle U) = CV \times \triangle T \times M$

EXPANSION: V. > V. Compression: V, < V

 $\mathbf{W}_{\mathsf{PV}} = -\mathbf{P}_{\mathsf{ext}} \Delta \mathbf{V}$ SOTHERMAL REVERSIBLE $w_{rev} = -2.303 \text{ NRT log} \left| \frac{v_2}{v_1} \right|$ WORK $\mathbf{w}_{\mathsf{irrev}} = -\mathbf{P}_{\mathsf{ext}}\mathbf{R}\left(\frac{\mathbf{P}_{1}\mathbf{T}_{1} - \mathbf{P}_{2}\mathbf{T}_{2}}{\mathbf{P}_{1}\mathbf{P}_{2}}\right)$

FREE EXPANSION

when an ideal gas expands in vacuum then, $P_{ext} = 0$.

∴ W=0

SECOND LAW OF THERMODYNAMICS

The entropy of the universe is always increasing in the course of every s Pontaneous or natural change.

THIRD LAW OF THERMODYNAMICS

The Entropy of a perfectly crystalline Substance at OK or absolute zero is taken to be zero.

 $\Delta S = \int_0^T C_P d \ln T$

Always Spontaneous at all temp Positive Negative Negative Non-Spontaneous at all Always Positive Negative temperature Negative Non-Spontaneous at all +ve @ low temp. temperature Postive Postive -ve @ low temp. Spontaneous at low -ve @ low temp. temperature Negative Negative SPONTANEOUS AT LOW +ve @ low temp.

 $\Delta G = \Delta H - T \Delta S$

SPONTANEITY

ENTROPY

This is the measure of the degree of randomness or disorder of the system.

 $\Delta S = \frac{q_{rev}}{T(Reversible Process)}$

 $\Delta S_{Total} = \Delta S_{SyeStem} + \Delta S_{Surroundings}$

Entropy changes during phase transformation

 $\Delta_{\text{FUSion}}\mathbf{S} = \frac{\Delta_{\text{FUSion}}\mathbf{H}}{\mathbf{T_m}}, \Delta_{\text{ValP}}\mathbf{S} = \Delta_{\text{ValP}}\mathbf{S} = \frac{\Delta_{\text{ValP}}\mathbf{H}}{\mathbf{T_m}}$

 $\Delta_{ extbf{r}} extbf{S}^{\circ} = \Sigma extbf{S}^{\circ}_{ extbf{products}} - \Sigma extbf{S}^{\circ}_{ extbf{reactants}}$