Probability and Random Process (SWE3026)

Statistical Inference

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at https://www.probabilitycourse.com, Kappa Research LLC, 2014.

Objectives

Instead of estimating a parameter pointwise such as

$$\widehat{\boldsymbol{\theta}} = 34.25$$

We might report the interval

$$\left[\widehat{\theta}_l, \widehat{\theta_h}\right] = \left[30.69, 37.81\right]$$

with a confidence level that shows how confident we are about the interval

Interval Estimation

Definition

An interval estimator with confidence level $1-\alpha$ consists of two estimators

$$\widehat{\Theta}_l(X_i)$$
 and $\widehat{\Theta}_h(X_i)$ such that
$$P\big(\widehat{\Theta}_l \leq \theta \; and \; \widehat{\Theta}_h \geq \theta \big) \geq 1-\alpha$$

for every possible value of θ .

Interval Estimation

$$P(x_l \le X \le x_h) = 1 - \alpha$$

 $\Rightarrow P(X \le x_l) = \frac{\alpha}{2}$, and $P(X \ge x_h) = \frac{\alpha}{2}$
 $\Rightarrow F_X(x_l) = \frac{\alpha}{2}$, and $F_X(x_h) = 1 - \frac{\alpha}{2}$
 $\Rightarrow x_l = F_X^{-1}(\frac{\alpha}{2})$, and $x_h = F_X^{-1}(1 - \frac{\alpha}{2})$

Let $Z \sim N(0, 1)$, find x_l and x_h such that $P(x_l \le Z \le x_h) = 0.95$

$\boldsymbol{z_p}$

Definition

Let
$$Z\sim N(0,1).$$
 For any $p\in[0,1],$
$$P\big(Z>z_p\big)=p$$

$$\Phi\big(z_p\big)=1-p, z_p=\Phi^{-1}(1-p)$$

$$z_p = \Phi^{-1}(1-p)$$

$$\Phi(z_p) = 1-p$$
PDF of N(0,1)
$$z_p$$

$$z_p$$

$$z_p$$
area = p
area = p

 $\mathbf{z}_{1-\mathbf{p}} = -\mathbf{z}_{\mathbf{p}}$

Interval Estimation

 $(1-\alpha)$ interval for the standard normal random variable Z

$$P\left(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}\right) = 1 - \alpha$$

Pivotal Quantity

Definition

The random variable Q

- 1. It is a function of the observed data and the unknown parameter θ
- 2. It does not depend on any other unknown parameters
- 3. The probability distribution of $m{Q}$ does not depend on $m{ heta}$ or any other unknown parameters

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with known variance $Var(X_i) = \sigma^2$, and unknown mean $E[X_i] = \theta$. Find a $(1 - \alpha)$ confidence interval for θ . Assume that n is large.

We would like to estimate the portion of people who plan to vote for Candidate A in an upcoming election. It is assumed that the number of voters is large, and θ is the portion of voters who plan to vote for Candidate A. We define the random variable X as follows. A voter is chosen uniformly at random among all voters and we ask her/him: "Do you plan to vote for Candidate A?" If she/he says "yes," then X = 1, otherwise X = 0. Then, $X \sim Bernoulli(\theta)$.

Let X_1, X_2, \ldots, X_n be a random sample from this distribution, which means that the X_i 's are i.i.d. and $X_i \sim Bernoulli(\theta)$. In other words, we randomly select n voters (with replacement) and we ask each of them if they plan to vote for Candidate A. Find a $(1-\alpha)$ confidence interval for θ based on X_1, X_2, \ldots, X_n

We would like to estimate the portion of people who plan to vote for Candidate A in an upcoming election. It is assumed that the number of voters is large, and θ is the portion of voters who plan to vote for Candidate A. We define the random variable X as follows. A voter is chosen uniformly at random among all voters and we ask her/him: "Do you plan to vote for Candidate A?" If she/he says "yes," then X = 1, otherwise X = 0. Then, $X \sim Bernoulli(\theta)$.

Let $X_1, X_2, ..., X_n$ be a random sample from this distribution, which means that

the X_i 's are i.i.d. and $X_i \sim Bernoulli(\theta)$. In other words, we randomly select n voters (with replacement) and we ask each of them if they plan to vote for Candidate A. Find a $(1-\alpha)$ confidence interval for θ based on X_1, X_2, \dots, X_n

There are two candidates in a presidential election: Candidate A and Candidate B. Let θ be the portion of people who plan to vote for Candidate A. Our goal is to find a confidence interval for θ . Specifically, we choose a random sample (with replacement) of n voters and ask them if they plan to vote for Candidate A. Our goal is to estimate the θ such that the margin of error is 3 percentage points. Assume a 95% confidence level. That is, we would like to choose n such that $P(\overline{X}-0.03 \le \theta \le \overline{X}+0.03) \ge 0.95$ where \overline{X} is the portion of people in our random sample that say they plan to vote for Candidate A. How large does n need to be?

There are two candidates in a presidential election: Candidate A and Candidate B. Let θ be the portion of people who plan to vote for Candidate A. Our goal is to find a confidence interval for θ . Specifically, we choose a random sample (with replacement) of n voters and ask them if they plan to vote for Candidate A. Our goal is to estimate the θ such that the margin of error is 3 percentage points. Assume a 95% confidence level. That is, we would like to choose n such that $P(\overline{X}-0.03 \le \theta \le \overline{X}+0.03) \ge 0.95$ where \overline{X} is the portion of people in our random sample that say they plan to vote for Candidate A. How large does n need to be?

Chi-Squared Distribution

Definition

If $Z_1, Z_2, ... Z_n$ are independent standard normal R.V, the R.V Y defined as

$$Y = Z_1^2 + Z_2^2 + \cdots + Z_n^2, Y \sim \chi^2(n)$$

Properties

The chi-squared distribution is a special case of the gamma distribution.

$$Y \sim Gamma(\frac{n}{2}, \frac{1}{2})$$

•
$$E[Y] = n, Var(Y) = 2n$$

•
$$E[Y] = n, Var(Y) = 2n$$
• $P(Y > \chi^2_{p,n}) = p$

Chi-Squared Distribution

Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\mu, \sigma)$ random variables.

Let S^2 be the standard variance for this random sample.

Then, the random variable Y defined as

$$Y = \frac{1}{\sigma^2} \sum_{i=1}^{\infty} (X_i - \overline{X})^2 = \frac{(n-1)S^2}{\sigma^2}$$

$$Y \sim \chi^2(n-1)$$

t-Distribution

Definition

Let $Z \sim N(0, 1)$ and $Y \sim \chi^2(n)$. Z and Y are independent. The R.V T defined as

$$T=\frac{Z}{\sqrt{Y/n}}, T\sim T(n)$$

Properties

- $E[T] = 0(n > 0, n \neq 1), Var(T) = \frac{n}{n-2}(n > 2)$
- $T(n) \rightarrow N(0,1)$ when n becomes large
- $P(T > t_{p,n}) = p$

t-Distribution

Let $X_1, X_2, ..., X_n$ be i.i.d. $N(\mu, \sigma)$ random variables. Let S^2 be the standard variance for this random sample.

Then, the random variable T defined as

$$T=\frac{\overline{X}-\mu}{S/\sqrt{n}}$$

$$T \sim T(n-1)$$

Confidence Intervals for the Mean of Normal R.V

Let X_1, X_2, \dots, X_n be i.i.d. $N(\mu, \sigma)$ random variables Let's find an interval estimator for μ

- When we know the value of σ^2
- When we do not know the value of σ^2

When we know the value of σ^2

Define Q

$$Q = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

 $Q \sim N(0,1)$

Q is a pivotal quantity

$$[\overline{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}]$$

is a $(1 - \alpha)$ confidence interval for μ

When we do not know the value of σ^2

Define *T*

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

 $T \sim T(n-1)$

T is a pivotal quantity

$$P\left(-t_{\frac{\alpha}{2},n-1} \leq T \leq t_{\frac{\alpha}{2},n-1}\right) = 1 - \alpha$$

$$\left[\overline{X} - t_{\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}}\right]$$

is a $(1-\alpha)$ confidence interval for μ

A farmer weighs 10 randomly chosen watermelons from his farm and he obtains the following values (in lbs):

7.72 9.58 12.38 7.77 11.27 8.80 11.10 7.80 10.17 6.00

Assuming that the weight is normally distributed with mean μ and variance σ^2 , find a 95% confidence interval for μ .

Confidence Intervals for the Variance of Normal R.V

Let X_1, X_2, \dots, X_n be i.i.d. $N(\mu, \sigma)$ random variables Let's find an interval estimator for σ , We assume that μ is also unknown

Define Y

$$Y = \frac{1}{\sigma^2} \sum_{i=1}^{\infty} (X_i - \bar{X})^2 = \frac{(n-1)S^2}{\sigma^2}$$

$$Y \sim \chi^2(n-1)$$

Y is a pivotal quantity

$$P\left(\chi_{1-\frac{\alpha}{2},n-1}^{2} \leq Y \leq \chi_{\frac{\alpha}{2},n-1}^{2}\right) = 1 - \alpha$$

$$\left[\frac{(n-1)S^{2}}{\chi_{\frac{\alpha}{2},n-1}^{2}}, \frac{(n-1)S^{2}}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}\right]$$

is a $(1-\alpha)$ confidence interval for σ^2

A farmer weighs 10 randomly chosen watermelons from his farm and he obtains the following values (in lbs):

7.72 9.58 12.38 7.77 11.27 8.80 11.10 7.80 10.17 6.00

Assuming that the weight is normally distributed with mean μ and variance σ^2 , find a 95% confidence interval for σ^2 where μ and σ^2 are unknown.