代数学I第9回本レポート課題解答例

担当:大矢浩徳 (OYA Hironori)*

問題1

6次二面体群

$$D_6 = \{e, \sigma, \sigma^2, \sigma^3, \sigma^4, \sigma^5, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau, \sigma^4\tau, \sigma^5\tau\}$$

の部分群を全て求めよ (答えのみで良い). ここで, σ, τ は講義資料 5.2 節のものを指すこととする.

問題1解答例。

$$\{e\}, \ \{e, \sigma^3\}, \ \{e, \tau\}, \ \{e, \sigma^2\tau\}, \ \{e, \sigma^3\tau\}, \ \{e, \sigma^4\tau\}, \ \{e, \sigma^5\tau\}, \ \{e, \sigma^2, \sigma^4\}, \ \{e, \sigma^3, \tau, \sigma^3\tau\}, \\ \{e, \sigma^3, \sigma\tau, \sigma^4\tau\}, \ \{e, \sigma^3, \sigma^2\tau, \sigma^5\tau\}, \ \{e, \sigma, \sigma^2, \sigma^3, \sigma^4, \sigma^5\}, \ \{e, \sigma^2, \sigma^4, \tau, \sigma^2\tau, \sigma^4\tau\}, \ \{e, \sigma^2, \sigma^4, \sigma\tau, \sigma^3\tau, \sigma^5\tau\}, \ D_6 \}$$

П

問題 1 補足解説. 本間は第 9 回講義資料の例題として解説した第 6 回本レポート課題問題 1 の類題である. それぞれの部分群が正六角形の板の対称性と考えたときにどのような変換の集まりに対応しているか考えてみると面白いだろう.

 D_6 の全ての部分集合 ($2^{12}=4096$ 通り) の中から二項演算と逆元を取る操作で閉じるものを探そうとすると大変なことになるので,ラグランジュの定理とその系を上手く用いながら部分群を探していくことになると思われる.以下に探し方の一例を解説した (必ずしもこの通りの方法で探さないといけないというわけではない). ちなみに以下で部分群 $\{e,\sigma^3\}$ を Z と書いているが,これは D_6 の中心 $Z(D_6)$ である.

部分群の探し方一例. $|D_6|=12$ なので、ラグランジュの定理から D_6 の部分群の位数は

のいずれかである. さらに、位数 1 の部分群は $\{e\}$ 、位数 12 の部分群は D_6 という自明なものに限られるので、非自明な部分群の位数は 2,3,4,6 のいずれかである.

• 位数 2 の部分群について 2 は素数なので、位数 2 の部分群は必ず巡回群である. よって、位数 2 の部分群は D_6 の位数 2 の元によって生成される部分群となるが、 D_6 における位数 2 の元は σ^3 , τ , σ^τ , σ^2 , σ^3 , τ , σ^4 , σ^5 τ なので、 D_6 の位数 2 の部分群は

$$\{e,\sigma^3\}, \{e,\tau\}, \{e,\sigma\tau\}, \{e,\sigma^2\tau\}, \{e,\sigma^3\tau\}, \{e,\sigma^4\tau\}, \{e,\sigma^5\tau\}$$

で全てである.

• 位数 3 の部分群について 3 は素数なので、位数 3 の部分群は必ず巡回群である。よって、位数 3 の部分群は D_6 の位数 3 の元によって生成される部分群となるが、 D_6 における位数 3 の元は σ^2 , σ^4 なので、 D_6 の位数 3 の部分群は

$$\langle \sigma^2 \rangle = \langle \sigma^4 \rangle = \{e, \sigma^2, \sigma^4\}$$

のみである.

 $^{^*}$ $e ext{-}mail:$ hoya@shibaura-it.ac.jp

- 位数 4 の部分群について 位数 4 の部分群を H とすると,ラグランジュの定理から H の元の位数は 4 の約数なので,1,2,4 のいずれかである.ここで, D_6 に位数 4 の元は存在しないので,H は単位元(= 位数 1 の元)と 3 つの位数 2 の元からなる群である.
 - (i) $\sigma^3 \in H$ のとき. $Z := \langle \sigma^3 \rangle = \{e, \sigma^3\}$ は H の部分群である. ここでラグランジュの定理より,

$$4 = |H| = (H:Z) \cdot |Z| = 2(H:Z)$$

となるので、(H:Z)=2 である. これより、ある $h\in H$ が存在して H は

$$H = Z \cup Zh$$

と 2 つの Z による右剰余類に分解される. ここで, D_6 を Z による右剰余類に分解すると,

 $D_6 = Z \cup Z \sigma \cup Z \sigma^2 \cup Z \tau \cup Z \sigma \tau \cup Z \sigma^2 \tau = \{e, \sigma^3\} \cup \{\sigma, \sigma^4\} \cup \{\sigma^2, \sigma^5\} \cup \{\tau, \sigma^3 \tau\} \cup \{\sigma\tau, \sigma^4 \tau\} \cup \{\sigma^2\tau, \sigma^5\tau\}$

となるが、このうち位数 2 の元のみからなる右剰余類は Z_{τ} , $Z_{\sigma\tau}$, $Z_{\sigma\tau}$ なので Z_h はこれらのいずれかである.ここで、

$$Z \cup Z\tau = \{e, \sigma^3, \tau, \sigma^3\tau\}$$

$$Z \cup Z\sigma\tau = \{e, \sigma^3, \sigma\tau, \sigma^4\tau\}$$

$$Z \cup Z\sigma^2\tau = \{e, \sigma^3, \sigma^2\tau, \sigma^5\tau\}$$

のいずれも二項演算と逆元を取る操作で閉じることが直接計算で確かめられるので、これらは全て H の候補、すなわち D_6 の位数 4 の部分群である.

(ii) $\sigma^3 \notin H$ のとき、 σ^k (k=1,2,4,5) の元の位数は 2 でないので、結局 $\sigma^k \notin H$ (k=1,2,3,4,5) であることがわかる。これより、H の位数を 4 とするためには H の中に $0 \le \ell_1 < \ell_2 \le 5$ となる $\sigma^{\ell_1} \tau, \sigma^{\ell_2} \tau$ が含まれることとなる。このとき、

$$\sigma^{\ell_2}\tau\sigma^{\ell_1}\tau=\sigma^{\ell_2}\sigma^{-\ell_1}\tau\tau=\sigma^{\ell_2-\ell_1}\in H$$

となるが、 $\ell_2-\ell_1$ は 1,2,3,4,5 のいずれかなので、これは $\sigma^k\notin H$ (k=1,2,3,4,5) に矛盾する。よって、 $\sigma^3\notin H$ を満たす位数 4 の部分群 H は存在しない。

- 位数 6 の部分群について 位数 6 の部分群を H とする. もし, $\sigma^k \notin H$ (k=1,2,3,4,5) であると すると位数 4 の部分群についての考察の (ii) で行ったのと同様の計算により矛盾するので H は σ^k (k=1,2,3,4,5) の形の元を少なくとも 1 つは含むことがわかる. すなわち,ある k=1,2,3,4,5 が存在して $\langle \sigma^k \rangle \subset H$ となる.
 - (I) $\langle \sigma \rangle = \langle \sigma^5 \rangle \subset H$ のとき.

$$\langle \sigma \rangle = \langle \sigma^5 \rangle = \{e, \sigma, \sigma^2, \sigma^3, \sigma^4, \sigma^5\}$$

であり、これがすでに位数 6 なので、 $\langle \sigma \rangle = \langle \sigma^5 \rangle = H$ である.

(II) $\langle \sigma \rangle = \langle \sigma^5 \rangle \not\subset H$ かつ $H' \coloneqq \langle \sigma^2 \rangle = \langle \sigma^4 \rangle \subset H$ のとき. $H' = \{e, \sigma^2, \sigma^4\}$ は H の部分群であり,ラグランジュの定理より,

$$6 = |H| = (H:H') \cdot |H'| = 3(H:H')$$

となるので、(H:H')=2である. これより、ある $h\in H$ が存在して H は

$$H = H' \cup H'h$$

と 2 つの H' による右剰余類に分解される.ここで, D_6 を H' による右剰余類に分解すると,

$$D_6 = H' \cup H' \sigma \cup H' \tau \cup H' \sigma \tau = \{e, \sigma^2, \sigma^4\} \cup \{\sigma, \sigma^3, \sigma^5\} \cup \{\tau, \sigma^2\tau, \sigma^4\tau\} \cup \{\sigma\tau, \sigma^3\tau, \sigma^5\tau\}$$

となるが、 $\langle \sigma \rangle = \langle \sigma^5 \rangle \not\subset H$ となることより、H'h の候補となり得るのは $H'\tau$ 、 $H'\sigma\tau$ である. いま、

$$H' \cup H'\tau = \{e, \sigma^2, \sigma^4, \tau, \sigma^2\tau, \sigma^4\tau\}$$

$$H' \cup H'\sigma\tau = \{e, \sigma^2, \sigma^4, \sigma\tau, \sigma^3\tau, \sigma^5\tau\}$$

のいずれも二項演算と逆元を取る操作で閉じることが直接計算で確かめられるので、これらは H の候補、すなわち D_6 の位数 6 の部分群である.

(III) $\langle \sigma \rangle = \langle \sigma^5 \rangle \not\subset H$ かつ $\langle \sigma^2 \rangle = \langle \sigma^4 \rangle \not\subset H$ かつ $Z = \langle \sigma^3 \rangle \subset H$ のとき. 位数 4 の部分群についての考察の (i) の場合の計算により,H は $Z\tau, Z\sigma\tau, Z\sigma^2\tau$ から 2 つを選んだものと Z との和集合として得られる. しかし, $Z\tau, Z\sigma\tau, Z\sigma^2\tau$ らと Z の和集合はいずれも位数 4 の部分群となったので,この場合,H は位数 4 の部分群を含むことになる. しかし,H の位数は 6 であり,4 は 6 の約数ではないからこれは矛盾する.よって,(III) の仮定を満たす位数 6 の部分群 H は存在しない.

以上より, D_6 の部分群は,

 $\{e\}, \ \{e,\sigma^3\}, \ \{e,\tau\}, \ \{e,\sigma^2\tau\}, \ \{e,\sigma^3\tau\}, \ \{e,\sigma^4\tau\}, \ \{e,\sigma^5\tau\}, \ \{e,\sigma^2,\sigma^4\}, \ \{e,\sigma^3,\tau,\sigma^3\tau\}, \\ \{e,\sigma^3,\sigma\tau,\sigma^4\tau\}, \ \{e,\sigma^3,\sigma^2\tau,\sigma^5\tau\}, \ \{e,\sigma,\sigma^2,\sigma^3,\sigma^4,\sigma^5\}, \ \{e,\sigma^2,\sigma^4,\tau,\sigma^2\tau,\sigma^4\tau\}, \ \{e,\sigma^2,\sigma^4,\sigma\tau,\sigma^3\tau,\sigma^5\tau\}, \ D_6$ で全てである.

問題 2 -

G を巡回群でない位数 10 の群とする. G の元 g が $g^2 \neq e$ (e は G の単位元) を満たすとき,g の位数を求めよ. ただし,計算の過程も説明すること.

問題 2 解答例. ラグランジュの定理の系より、ord g は |G|=10 の約数である. よって、ord g は 1,2,5,10 の いずれかである. ここで、ord g=1 または 2 とすると、 $g^2=e$ となるので仮定に反する. また、ord g=10 とすると、位数の定義より $|\langle g \rangle|=10$ となるが、|G|=10 より、このとき $G=\langle g \rangle$ となる. これは、G が巡回群でないという仮定に反する.

以上より、 $\operatorname{ord} g = 5$ である.

問題 2 補足解説. 問題 2 の群 G の具体例としては,5 次二面体群 D_5 が挙げられ,この場合 g の例としては σ^k $(1 \le k \le 4)$ が挙げられる.さらに,実は巡回群でない位数 10 の群は D_5 と同型なものしか存在しないことが知られている (つまり本質的には例はこれしかない).