Меры и меры по борьбе с ними

Лектор: А. А. Лодкин Записал :ta_xus

6 июня 2017 г.

А эти множества? Какой для них язык?.. Горе́ душа летит, Все необъятное в единый вздох теснится, И лишь молчание понятно говорит.

Студент на экзамене по теории меры

Оглавление

1	Теория м	меры и интегралы по мере	3
	$N_{\overline{0}}$ 1	Системы множеств	3
	$N_{\overline{2}}$ 2	Борелевская сигма-алгебра	3
	$N_{\overline{0}}$ 3	Mepa	5
	$N_{ m 0}$ 4	Свойства меты	5
	$N_{\overline{2}}$ 5	Объём в \mathbb{R}^n . Мера Лебега	8
	$N_{\overline{0}}$ 6	Измеримые функции	10
	$N_{ m o}$ 7	Интеграл по мере	11
	№ 8	Теорема Беппо Ле́ви	12
	№ 9	Свойства интеграла от суммируемых функций	12
	№ 10	Счётная аддитивность интеграла	12
	№ 11	Абсолютная непрерывность интеграла	13
	$N_{\overline{2}}$ 12	Интеграл от непрерывной функции по мере Лебега	13
	$N_{\overline{2}}$ 13	Сравнение подходов Римана и Лебега	13
	$N_{\overline{2}}$ 14	Сравнение несобственного интеграла и интеграла Лебега	13
	$N_{ m 0}$ 15	Интеграл по дискретной мере и мере, задаваемой плотностью	14
	№ 16	Мера Лебега-Стилтьеса. Интеграл по распределению	14
	$N_{ m 0}$ 17	Интеграл Эйлера-Пуассона	15
	№ 18	Вероятностный смысл мемы	15
	№ 19	Геометрический смысл меры Лебега. Принцип Кавальери	15
	N_{2} 20	Сведение кратного интеграла к повторному	16
	N_{2} 21	Мера Лебега и аффинные преобразования	16
	N_{2} 22	Мера образа при гладком отображении	17
	N_{2}	Глакая замена переменной в интеграле	17
	$N_{ m 0}24$	Предельный переход под знаком интеграла	17
	$N_{ m 0}25$	Теорема Лебега об ограниченной сходимости	18
	№ 26	Равномерная сходимость несобственного параметрического	
		интеграла. Признаки	18
	$N_{ m 0}27$	Несобственные интегралы с параметром и операции анали-	
		за над параметром 🛠	19
	№ 28	Г-функция Эйлера	20
	N_{2}	В-функция	20

	№ 30	Объём n -мерного шара	20	
2	Дифференциальная геометрия (※)			
	$N_{\overline{2}} 31$	Регулярная кривая и её естественная параметризация	21	
	$N_{\overline{2}}$ 32	Кривизна кривой		
	№ 33	Кручение и нормаль	22	
	$N_{\overline{2}}$ 34	Формулы Френе	23	
	№ 35	Регулярная поверхность. Касательная плоскость. Первая квадратичная форма		
	№ 36	Вычисление длин и площадей на поверхности		
	№ 37	Вторая квадратичная форма		
	№ 38	Нормальная кривизна в данном направлении. Главные кривизны		
	№ 39	Гауссова кривизна поверхности. Теорема Гаусса		
	№ 40	Геодезическая кривизна. Теорема Гаусса-Бонне.		
	№ 41	Ориентация кривой и поверхности		
	№ 42	Интеграл второго рода		
	№ 43	Дифференцирование векторных полей		
	№ 44	Формула Грина		
	$N_{ m 0}45$	Классическая формула Стокса		
	№ 46	Формула Гаусса-Остроградского	32	
	$N_{ m 0}47$	Физический смысл дивергенции и ротора	33	
	№ 48	Разные векторные поля		
	№ 49	Примеры полей с разными свойствами	33	
3	Анализ	Фурье $\langle \mathfrak{S} \rangle$	35	
	№ 50	Гильбертово пространство. \mathcal{L}_2	35	
	$N_{ m 0}51$	Ортогональные системы. Ряд Фурье в гильбертовом про-		
		странстве.	35	
	$N_{ m P}$ 52	Тригонометрические системы		
	N_{2} 53	Ядро Дирихле. Лемма Римана-Лебега		
	$N_{ m 0}54$	Теорема Дини о поточечной сходимости		
	$N_{ m P}$ 55	Свойства коэффициентов Фурье		
	№ 56	Сходимость рядов Фурье		
	№ 57	Преобразование Фурье		
	№ 58	Решение уравнения теплопроводности	39	
A	Обознач	ения	40	

Глава 1: Теория меры и интегралы по мере ре

Билет № 1: Системы множеств

Определение 1. Пусть здесь (и дальше) X — произвольное множество. Тогда $\mathcal{P}(X) \equiv 2^X$ — множество всех подмножеств X.

Е.g.
$$X = \{1 ... n\} \Rightarrow \#\mathcal{P}(X) = 2^n$$
 (это количество элементов, если что)

Определение 2 (Алгебра). Пусть $\mathcal{A} \subset \mathcal{P}(X)$. Тогда \mathcal{A} — алгебра множеств, если

- 1. $\varnothing \in \mathcal{A}$
- 2. $X \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \Rightarrow A \cap B, A \cup B, A \setminus B \in \mathcal{A}$

Замечание. Заметим, что в алгебре пересечение (или объединение) конечного числа её элементов лежит в алгебре. Это можно доказать простой индукцией. А вот для бесконечных объединений пользоваться индукцией уже нельзя, ведь $\infty \notin \mathbb{N}$.

Определение 3 (σ -алгбера). Пусть $\mathcal{A} \in \mathcal{P}(X)$. Тогда $\mathcal{A} - \sigma$ -алгебра, если

- 1. \mathcal{A} алгебра
- 2. $A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{k=1}^{\infty} A_k \in \mathcal{A}, \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}$

Определение 4. Пусть $\mathcal{E} \subset \mathcal{P}(X)$. Тогда

$$\sigma(\mathcal{E}) := \bigcap \left\{ \mathcal{A} \mid \mathcal{A} - \sigma$$
-алгебра, $\mathcal{A} \supset \mathcal{E} \right\}$

эта конструкция — сигма-алгебра, просто аксиомы проверить.

Билет № 2: Борелевская сигма-алгебра

Определение 1. Пусть \mathcal{O} — все открытые множества в \mathbb{R}^n . Тогда $\mathcal{B}_n = \sigma(\mathcal{O})$ — борелевская σ -алгебра в \mathbb{R}^n .

Определение 2 (Ячейка в \mathbb{R}^n). Обозначать её будем Δ^n , по размерности соответствующего пространства.

$$\Delta^{1} = \begin{cases} [a; b) \\ (-\infty; b) \\ [a; +\infty) \\ (-\infty; +\infty) \end{cases} \quad \forall n \ \Delta = \prod_{k=1}^{n} \Delta_{k}^{1}$$

Ещё введём алгебру $\mathcal{A} = \mathcal{C}ell_n = \{A \mid A = \bigcup_{k=1}^p \Delta_k\}$

Лемма 1. Пусть $\mathcal{E}_1, \mathcal{E}_2 \subset \mathcal{P}(X), \ \sigma(\mathcal{E}_1) \supset \mathcal{E}_2$. Тогда $\sigma(\mathcal{E}_1) \supset \sigma(\mathcal{E}_2)$

▼___

 $\sigma(.)$ от обеих частей.

lack

Теорема 2. $\mathcal{B}_n = \sigma(\mathcal{C}ell_n)$.

 $\sigma(\mathcal{O})\supset \mathcal{Cell}$ Покроем открытыми квадратиками.

 $\sigma(\operatorname{Cell})\supset \mathcal{O}$ Для упрощения жизни $\mathcal{O}\supset G\in\mathbb{R}^2$. Рассмотрим классы ячеек

$$C_k = \left\{ \left[\frac{m}{2}; \frac{m+1}{2^k} \right) \times \left[\frac{n}{2}; \frac{n+1}{2^k} \right) \subset G \mid m, n \in \mathbb{Z} \right\}$$

Осталось показать, что любую точку из G покрывает ячейка какого-то класса.

Каждая точка открытого множества входит с какой-то окрестностью, которую можно считать обединением множеств из базы топологии. Короче, есть маленький открытый квадратик, содержащий точку.

Так что теперь можно думать просто про одномерье. Ясно, что

$$\exists m, k :: \begin{cases} x - \varepsilon < \frac{m}{2^k} < x \\ x + \varepsilon > \frac{m+1}{2^k} > x \end{cases}$$

Для этого хватит, чтобы $|x-\varepsilon;x|>\frac{1}{2^k}$, например.

Пример 1. Все множества нижё — борелевские.

- $\langle 1 \rangle \mathcal{O}$.
- $\langle 2 \rangle \ \mathcal{F} = \{ A \mid \overline{A} \in \mathcal{O} \}.$

$$\langle 3 \rangle \left(A = \bigcap_{\substack{k=1 \ G_k \in \mathcal{O}}}^{\infty} G_k \right) \in G_{\delta}.$$

$$\langle 4 \rangle \left(B = \bigcup_{\substack{k=1 \ F_k \in \mathcal{F}}}^{\infty} F_k \right) \in F_{\sigma}.$$

$$\langle 5 \rangle \left(C = \bigcup_{\substack{k=1\\A_k \in G_\delta}}^{\infty} A_k \right) \in G_{\delta\sigma}.$$

У всех этих множеств со сложными индексами δ — пересечение, σ — объединение, G — операция над открытыми в самом начале, F — над замкнутыми.

Билет № 3: Мера

Определение 1. Пусть задано $X,\,\mathcal{A}\subset\mathcal{P}(X),\,A_k\in\mathcal{A}.$ Тогда $\mu\colon\mathcal{A}\to[0;+\infty]$ — мера, если

1.
$$\mu(\emptyset) = 0$$

2.
$$\mu(\bigsqcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$$
. Здесь никто не обещает, что будет именно σ -алгебра.

Множества $A \in \mathcal{A}$ в таком случае называются μ -измеримыми.

Пример 1.
$$a \in X$$
, $\mu(A) = \begin{cases} 1, & a \in A \\ 0, & a \notin A \end{cases} - \delta$ -мера Дирака.

Пример 2.
$$a_k \in x, \ m_k \geqslant 0, \ \mu(a) := \sum_{k: \ a_k \in a} m_k$$
 — «молекулярная» мера.

Пример 3. $\mu(A) = \#A$ — считающая мера. ¹

Билет № 4: Свойства меты

Здесь всюду будем рассматривать тройку $(X, \mathcal{A} \subset \mathcal{P}(X), \mu)$

Утверждение 1 (Монотонность меры). Пусть $A, B \in \mathcal{A}, A \subset B$. Тогда $\mu(A) \leqslant \mu(B)$.

▼

 $B = A \sqcup C$. Дальше очевидно

A

Утверждение 2. Пусть
$$A, B \in \mathcal{A}, A \subset B, \mu(B) < +\infty.$$
 Тогда $\mu(B \setminus A) = \mu(B) - \mu(A).$

Мемы A, B конечны, иначе нельзя вычитать.

Утверждение 3 (Усиленная монотонность). Пусть $A_{1..n}, B \in \mathcal{A}, \bigsqcup_i A_i \subset B$. $Tor \partial a \sum_{k=1}^n \mu(A_k) \leqslant \mu B$

Утверждение 4 (Полуаддитивность меры). Пусть $B_{1..n}, A \in \mathcal{A}, A \subset \bigcup_{k=1}^n B_k$. Тогда $\mu A \leqslant \sum_{k=1}^n \mu(B_k)$.

Сделать B_k дизъюнктными: $C_k = B_k \setminus \bigcup_{j < k} B_k$. Затем представить A как дизъюнктное объединение D_k : $D_k = C_k \cap A$. Так можно сделать, потому что

$$A = A \cap \bigcup_{k=1}^{n} B_k = A \cap \bigsqcup_{k=1}^{n} C_k = \bigsqcup_{k=1}^{n} A \cap C_k$$

 $^{^{1}}$ она считает, не считывает $\stackrel{\cdot \cdot \cdot}{\smile}$

Рис. 1.1: Метод исчерпывания Евдокса

Ну а тогда

$$\mu(A) = \sum_{k} \mu D_k \leqslant \sum_{k} \mu C_k \leqslant \sum_{k} \mu B_k$$

A

Утверждение 5 (Непрерывность меры снизу). Пусть $A_1 \subset A_2 \subset \cdots$, $A_k \in \mathcal{A}$,

$$\left(A = \bigcup_{k=1}^{\infty} A_k\right) \in \mathcal{A}. \ ^{1}$$
$$Toe \partial a \ \mu A = \lim_{n \to \infty} \mu A_n$$

V

Строим разности $C_k = A_{k+1} \setminus A_k, C_0 = A_1$ а $A = \bigsqcup_k C_k$.

Вот ещё картинка: 1.1, для пущей очевидности.

•

Утверждение 6 (Непрерывность меры сверху). Пусть $A_1 \supset A_2 \supset \cdots, A_k \in \mathcal{A},$

$$A = \bigcap_{k=1}^{\infty} A_k \in \mathcal{A}, \ \mu A_1 < +\infty.$$

$$Tor \partial a \ \mu A = \lim_{n \to \infty} \mu A_n$$

▼

Сначала заметим, что все меры сделаны конечными, ведь нужно считать разности мер, а это так себе.

Снова сделаем разности $C_k = A_k \setminus A_{k+1}$

$$\bigsqcup_{k=1}^{n} C_k = A_1 \setminus A_{n+1} \Rightarrow \mu(A_{n+1}) = \mu(A_1) - \mu\left(\bigsqcup_{k=1}^{n} C_k\right)$$

Понятно, что

$$\lim_{n \to \infty} \bigsqcup_{k=1}^{n} C_k \sqcup A = \bigsqcup_{k=1}^{\infty} C_k \sqcup A = A_1$$

 $^{^{1}}$ Опять-таки никто не сказал, что $\mathcal{A}-\sigma$ -алгебра.

Так что

$$\lim_{n \to \infty} \mu \left(\bigsqcup_{k=1}^{n} C_k \right) = \mu(A_1) - \mu(B)$$

Но тогда

$$\lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(A_{n+1}) = \mu B$$

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Тогда μ — полная, если

$$\forall A \in \mathcal{A} : \mu A = 0 \ \forall B \subset A, B \in \mathcal{A} :: \mu B = 0$$

Определение 2. Мера μ на \mathcal{A} называется σ -конечной, если

$$\exists X_n \in \mathcal{A}, \mu X_n < +\infty :: \bigcup_{n=1}^{\infty} X_n = X$$

Определение 3. Пусть $\mathcal{A}_1, \mathcal{A}_2$ — сигма-алгебры подмножеств $X, \mathcal{A}_1 \subset \mathcal{A}_2, \mu_1 \colon \mathcal{A}_1 \to [0; +\infty], \mu_2 \colon \mathcal{A}_2 \to [0; +\infty]$. Тогда μ_2 называется продолжением μ_1 .

Теорема 7 (Лебега-Каратеодора). Пусть μ — сигма-конечная мера на \mathcal{A} . Тогда

- 1. Существуют её полные сигма-конечные продожения
- 2. Среди них есть наименьшее: $\overline{\mu}$. Её ещё называют стандартным продолжением.

Определение 4 (Внешняя мема). Пусть $E \subset X$. Положим

$$\mu^*(E) := \inf \left\{ \sum_{k=1}^{\infty} \mu A_k \mid A_k \in \mathcal{A}, E \subset \bigcup_{k=1}^{\infty} A_k \right\}$$

Тогда μ^* — внешняя мема, порождённая μ . Она не мера.

Пример 1. Например, сигма-алгебра из вертикальных полос на квадратике. Аддитивность сломается, если взять 2 непересекающихся горизонтальных «лоскутка» один по другим.

Так, вот про идею доказательства. Внешняя мема — очень привлекательная вещь, но не мера.

Давайте разрешим лишь определённый набор множеств. Назовём их хорошо разбивающими.

Определение 5. Пусть $E \subset A$. Тогда E — хорошо разбивающее, если

$$\forall A \in \mathcal{A} :: \mu A = \mu^* (A \cap E) + \mu^* (A \setminus E)$$

Хорошо разбивающие явно содержат исходную алгебру.

Для тех же вертикальных полос в хорошо разбивающие попадут все множества, проектирующиеся в точку на ось \bot полосками.

Билет № 5: Объём в \mathbb{R}^n . Мера Лебега

Определение 1. Пусть $\Delta = \Delta_1 \times \cdots \times \Delta_n$, $\Delta_k = [a_k, b_k)$. Тогда

$$v_1\Delta_k\equiv |\Delta_k|:=egin{cases} b_k-a_k, & a_k\in\mathbb{R}\wedge b_k\in\mathbb{R}\ \infty, & ext{иначе} \end{cases}$$
 $v_2\Delta_k^{(\in \mathbb{R}^n)} v_2\Delta_k:=|\Delta_1|\cdots|\Delta_n|$

Для всего, что $\in \mathcal{C}ell_n$, представим его в виде дизъюнктного объединения Δ_j . Тогда $vA := \sum_{j=1}^q v\Delta_j$.

3амечание. Здесь радикально всё равно, входят ли концы — у них мера ноль.

Теорема 1. $v - \kappa$ онечно-аддитивен, то есть

$$\forall A, A_{1..p} \in \mathcal{Cell}, A = \bigsqcup_{k=1}^{p} A_k :: vA = \sum_{k=1}^{p} vA_k$$

□ На клеточки побить.

Теорема 2. v - cчётно-аддитивен, то есть

$$\forall A, A_{1..} \in \mathcal{C}ell, A = \bigsqcup_{k=1}^{\infty} A_k \quad :: \ vA = \sum_{k=1}^{\infty} vA_k$$

Сначала докажем маленькую лемму.

Лемма 3. Пусть Δ — ограниченная ячейка в \mathbb{R}^n . Тогда

$$\exists \Delta' \in \mathcal{O}, \Delta'' \in \mathcal{F} :: \begin{cases} v\Delta' < v\Delta + \varepsilon \\ v\Delta'' > v\Delta - \varepsilon \end{cases}$$

lack Hапример, для $\Delta = \prod_k [a_k; b_k)$

$$\Delta_i' = \prod_{k=1}^n \left(a_k - \frac{1}{i}; b_k \right)$$
$$\Delta_i'' = \prod_{k=1}^n \left[a_k; b_k - \frac{1}{i} \right]$$

Увеличивая i можно добраться до любого ε .

□ (Счётной аддитивности объема) Здесь в конспекте лишь частный случай про ячейки. А по-хорошему Се́ содержит и любые конечные объединения ячеек. Утверждается, что там тоже самое, только возни сильно больше.

Пусть $A = \Delta$, $A_k = \Delta_k$, причём они все конечны. Рассмотрим

$$\Delta'_k \supset \Delta :: v\Delta'_k < v\Delta_k + \frac{\varepsilon}{2^k}$$

 $\Delta'' \subset \Delta :: v\Delta'' > v\Delta - \varepsilon$.

штрихи имеют смысл как в лемме.

Тогда

$$\Delta'' \subset \bigcup_{k=1}^{\infty} \Delta'_k$$

По определению компактности,

$$\exists (l_k) :: \Delta' \subset \bigcup_{l=1}^N \Delta''_{k_l}$$

Так что из счётной аддитивности

$$v\Delta'' \leqslant v\left(\bigcup_{l=1}^{N} \Delta'_{k_l}\right) = \sum_{l=1}^{N} v\Delta'_{k_l} < \sum_{l=1}^{N} v\Delta_{k_l} + \varepsilon$$

Α

$$\sum_{l=1}^{N} v \Delta_{k_l} < \sum_{k=1}^{\infty} v \Delta_k$$

Так что

$$v\Delta < \sum_{k=1}^{\infty} v\Delta_k + 2\varepsilon \Rightarrow v\Delta \leqslant \sum_{k=1}^{\infty} v\Delta_k$$

В другую сторону не так понятно. Для частных сумм из конечной аддитивности

$$\forall N :: \sum_{k=1}^{N} v \Delta_k \leqslant v \Delta$$

При увеличении N сумма лишь возрастает, но она и ограничена. Значит пределесть. Тогда $\sum_k v \Delta_k \leqslant v \Delta$. \blacksquare

Определение 2 (Мера Лебега). $X = \mathbb{R}^n$, $\mathcal{A} = Cell_n$. Тогда $\lambda_n = \overline{v_n}$, $\mathcal{M} = \overline{\mathcal{A}}$ — мера Лебега и алгебра множеств, измеримых по Лебегу, соответственно.

Свойства меры Лебега

- $(1) \triangleright \lambda\{x\} = 0$
- $(2) \triangleright \lambda(\{x_k\}_k) = 0$
- (3) $\triangleright \mathcal{B} \subset \mathcal{M}$. Это, кстати, не очевидно. С другой стороны, для них есть покрытие квадратиками.
- $(4) \triangleright L \subset \mathbb{R}^m, m < n \Rightarrow \lambda_n L = 0$

А это уже целая теормема.

Теорема 4 (Регулярность меры Лебега). Пусть $A \in \mathcal{M}, \, \varepsilon > 0$. Тогда

$$\exists G \in \mathcal{O}, F \in \mathcal{F} :: F \subset A \subset G \land \begin{cases} \lambda(G \setminus A) < \varepsilon \\ \lambda(A \setminus F) < \varepsilon \end{cases}$$

(1) Сначала разберёмся с конечными множествами. Из определения инфимума, $\exists \{\Delta_k\} :: \lambda(A) > \sum_k \Delta_k - \frac{\varepsilon}{2}$.

Снова подберём Δ_k' , как в 1.5.2, только $\widetilde{\varepsilon}=\frac{\varepsilon}{2^{k+1}}$. В таком случае

$$\lambda(A) > \sum_{k} \Delta_k - \varepsilon/2 > \sum_{k} \Delta'_k - \varepsilon$$

(2) $\langle \mathbf{x} \rangle$, но что-то жесть. Обычно доказывают что $\lambda \inf G_k = \lambda A$.

Кажется, победа. Для замкнутых можно доказывать все для $X \setminus A$ сводя к первому пунку. Как-то так

$$(F^c \setminus A^c) = (F^c \cap A) = (A \cap F^c) = A \setminus F$$

Следствие 1. $\forall A \exists D \in G_{\delta} :: A = D \cup N, \ \mu(N) = 0.$

Пример 1 (Пример неизмеримого множества (по Лебегу)). Пусть $x \sim y \Leftrightarrow y - x \in \mathbb{Q}$ и всё это лежит на отрезке I = [0; 1]. Пусть $R_k - k$ -ый смежный класс по \sim . Тогда $S = \sqcup_k R_k$.

Выберем $E \colon \forall k :: |E \cap R_k| = 1$. Как видно, $\{E_j\}$ отличаются сдвигом на $r \in \mathbb{Q}$. Будем считать, что сдвиг — это скорее поворот, как бы замыкаем начало и конец отрезка, так что $E_j + r \in I \ \forall k \in \mathbb{Z}, r \in [0;1] \cap \mathbb{Q}$.

Тогда $I = \sqcup_k E_k, \, \forall \, j, k \, :: \, \lambda E_j = \lambda E_l.$

Но теперь

$$1 = \lambda I = \sum_{k=1}^{\infty} \lambda E_k = \sum_{k=1}^{\infty} a$$

А бесконечная сумма вещественных чисел либо 0 либо ∞ .

Билет № 6: Измеримые функции

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu)$. Пусть ещё $f: X \to \mathbb{R}$. Тогда f называется измеримой относительно \mathcal{A} , если

$$\forall \Delta \subset \mathbb{R} :: f^{-1}(\Delta) \in \mathcal{A}$$

Теорема 1. Пусть f измеримо относительно \mathcal{A} . Тогда измеримы и следующие (Лебеговы) множества

1 типа $\{x \in X \mid f(x) < a\} \equiv X[f < a]$

2 типа $\{x \in X \mid f(x) \leqslant a\} \equiv X[f \leqslant a]$

3 типа $\{x \in X \mid f(x) > a\} \equiv X[f > a]$

4 типа $\{x \in X \mid f(x) \geqslant a\} \equiv X[f \geqslant a]$

При этом верно и обратное: если измеримы множества какого-то отдного типа, то f измерима.

Теорема 2. Пусть f_1, \ldots, f_n измеримы относительно \mathcal{A} и $g: \mathbb{R}^n \to R$ непрерывна. Тогда измерима и $\varphi(x) = g(f_1(x), \ldots, f_n(x))$.

Замечание. В частности, $f_1 + f_2$ измерима.

Теорема 3. Пусть f_1, f_2, \ldots измеримы относительно \mathcal{A} . Тогда измеримы $\sup f_n$, $\inf f_n$, $\liminf f_n$, $\limsup f_n$, $\lim f_n$. Последний, правда, может не существовать.

□ Следует из непрерывности меры. ■

Определение 2. Пусть $f: X \to \mathbb{R}$ — измерима. Тогда она называется простой, если принимает конечное множество значений.

Определение 3 (Индикатор множества).

$$E \subset X, \mathbb{1}_E := \begin{cases} 1, & x \in E \\ 0, & x \notin E \end{cases}$$

Он, как видно совсем простая функция.

Утверждение 4.
$$f-npocmas \Rightarrow f=\sum_{k=1}^p c_k \mathbb{1}_{E_k}$$

Теорема 5. Пусть $f: X \to \mathbb{R}$, измерима, $f \geqslant 0$. Тогда

$$\exists (\varphi_n) : 0 \leqslant \varphi_1 \leqslant \varphi_2 \leqslant \cdots :: \varphi_n \nearrow f \text{ (поточечно)}$$

Билет № 7: Интеграл по мере

Определение 1. Пусть задана тройка $(X, \mathcal{A}_{\sigma}, \mu), f$ — измерима.

[1] f — простая.

$$\int_X f \, \mathrm{d}\mu := \sum_{k=1}^p c_k \mu E_k$$

[2] $f \geqslant 0$.

$$\int_X f \, \mathrm{d}\mu := \sup \left\{ \int_X g \, \mathrm{d}\mu \, \middle| \, g\text{-простая}, 0 \leqslant g \leqslant f \right\}$$

[3] f общего вида.

$$\begin{split} f_+ &= \max\{f(x),0\}\\ f_- &= \max\{-f(x),0\}\\ \int_X f \,\mathrm{d}\mu = \int_X f_+ \,\mathrm{d}\mu - \int_X f_- \,\mathrm{d}\mu \end{split}$$

Здесь нужно, чтобы хотя бы один из интегралов в разности существовал.

Замечание 1.
$$\int_A f \,\mathrm{d}\mu := \sum_{k=1}^p c_k \mu(E_k \cap A)$$

Замечание 2. Дальше измеримость и неотрицательность или суммируемость f будет периодически называться «обычными» условиями.

Утверждение 1.
$$\int_A f \, \mathrm{d}\mu = \int_X f \cdot \mathbbm{1}_A \, \mathrm{d}\mu.$$

Свойства интеграла от неотрицательных функций Здесь всюду функции неотрицательны и измеримы, что не лишено отсутствия внезапности.

$$\mathbf{A}_1 \ 0 \leqslant f \leqslant g$$
. Тогда $\int_X f \, \mathrm{d}\mu \leqslant \int_X g \, \mathrm{d}\mu$.

$${\bf A}_2\ A\subset B\subset X,\, A,B\in {\mathcal A},\, f\geqslant 0,$$
 измерима. Тогда $\int_A f\,{
m d}\mu\leqslant \int_B f\,{
m d}\mu$

 A_3 cm теорему 1.8.1.

$$A_4 \int_X (f+g) d\mu = \int_X f dmu + \int_X g dmu$$

$$A_5 \int_X (\lambda g) d\mu = \lambda \int_X f dmu$$

Билет № 8: Теорема Беппо Ле́ви

Теорема 1. Пусть (f_n) — измеримы на X, $0 \leqslant f_1 \leqslant \cdots$, $f = \lim_n f_n$. Тогда

$$\int_X f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu$$

Билет № 9: Свойства интеграла от суммируемых функций

Определение 1. f — суммируемая (на X, μ), если $\int_X f \, \mathrm{d}\mu < \infty$. Весь класс суммируемых (на X, μ) функций обозначается через $\mathcal{L}(X, \mu)$.

Здесь всюду функции $\in \mathcal{L}$

$$B_1 f \leqslant g \Rightarrow \int_X f d\mu \leqslant \int_X g d\mu.$$

$$B_2 \int_X (f \pm g) d\mu = \int_X f d\mu \pm \int_X g d\mu.$$

$$B_3 \int_X \lambda f \, d\mu = \lambda \int_X f \, d\mu.$$

$$B_4 |f| \leqslant g \Rightarrow \left| \int_X f d\mu \right| \leqslant \int_X g d\mu.$$

$$B_5 \left| \int_X f \, \mathrm{d}\mu \right| \leqslant \int_X |f| \, \mathrm{d}\mu.$$

$$B_6 \ f \in \mathcal{L} \Leftrightarrow |f| \in \mathcal{L}$$

$$B_7 |f| \leqslant M \leqslant +\infty \Rightarrow \left| \int_X f \, \mathrm{d}\mu \right| \leqslant M\mu X$$

Билет № 10: Счётная аддитивность интеграла

Теорема 1. Пусть задана тройка (X, \mathcal{A}, μ) , f — измерима и $f \geqslant 0 \lor f \in \mathcal{L}$. Пусть к тому же

$$A, A_{1..} \subset X, A = \bigcup_{n=1}^{\infty} A_n$$

Tог ∂a

$$\int_{A} f \, \mathrm{d}\mu = \sum_{n=1}^{\infty} \int_{A_n} f \, \mathrm{d}\mu$$

Билет № 11: Абсолютная непрерывность интеграла

Теорема 1. Пусть $f \in \mathcal{L}(X, \mathcal{A}, \mu)$. Тогда

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; :: \; \forall A \in \mathcal{A}, A \subset X : \; \mu A < \delta \; :: \; \left| \int_A f \, \mathrm{d}\mu \right| < \varepsilon$$

Билет № 12: Интеграл от непрерывной функции по мере Лебега

Теорема 1. Пусть $f \in C([a;b])$, λ — мера Лебега на X = [a;b]. Тогда

$$f \in \mathcal{L}, \ \int_{[a;b]} f \,\mathrm{d}\mu = \int_a^b f = F(b) - F(a),$$

 $r \partial e \ F \ - \ nep вообразная \ f.$

Билет № 13: Сравнение подходов Римана и Лебега

Сначала вспомним определения того, о чём собираемся рассуждать.

Определение 1 (Интеграл Римана). Пусть $f \in C([a;b])$ $a < x_1 < \cdots < x_{n-1} < x_n = b, \ \xi_i \in [x_i; x_{i+1}]$. Тогда

- $\tau = \{x_1, \dots, x_{n-1}\}$ разбиение отрезка [a; b]
- $\xi = \{\xi_1, \dots, \xi_{n-1}\}$ оснащение разбиения au
- $\Delta x_i = x_{i+1} x_i$ длина i-го отрезка
- $r = r(\tau) = \max_i \{\Delta x_i\}$ ранг разбиения

•
$$\sigma = \sigma(\tau, \xi, f) := \sum_{i=0}^{n-1} f(\xi_i) \cdot \Delta x_i$$
 — сумма Римана

Сам интеграл определяется как-то так

$$\int_{a}^{b} f \, \mathrm{d}x = \lim_{r(\tau) \to 0} \sigma(\tau, \xi, f)$$

Определение 2 (Интеграл Лебега). см. 1.7.1. В качестве множества X понятное дело, отрезок [a;b].

Пример 1. Пусть X = [0;1]. Тогда $f(x) = \begin{cases} 0, & x \notin \mathbb{Q} \\ 1, & x \in \mathbb{Q} \end{cases}$ интегрируема по Лебегу, но не по Риману.

<+картиночка с обоими интегралами+>

Билет № 14: Сравнение несобственного интеграла и интеграла Лебе-га

Теорема 1. Пусть
$$f \geqslant 0 \lor f \in \mathcal{L}([a;b),\lambda)$$
. Тогда $\int_{[a;b)} f \, d\lambda = \int_a^{\to b} f$.

□ ⟨Х⟩ Свести к собственному, а дальше непрерывность меры.

Билет № 15: Интеграл по дискретной мере и мере, задаваемой плотностью

Теорема 1. Пусть $\mu = \sum_k m_k \delta_{a_k}, \ \{a_k\} \in X \ u \ f \colon X \to \mathbb{R}, \ f \geqslant 0 \ unu \ f \in \mathcal{L}(X,\mu).$ Тогда

$$\int_X f \, \mathrm{d}\mu = \sum_k f(a_k) \cdot \underbrace{m_k}_{\mu\{a_k\}}$$

□ 🛠 Счётная аддитивность интеграла поможет. 1.10.1 🗖

Пример 1. Пусть $\mu A = \# A$. Тогда

$$\sum_{m,n\in\mathbb{N}} = \int_{\mathbb{N}^2} f(m,n) \,\mathrm{d}\mu$$

Причем условия суммируемости ¹ ряда такие же, как у интеграла Лебега:

$$\left[\begin{array}{c} \forall \, m, n \in \mathbb{N} \ :: \ a_{m,n} \geqslant 0 \\ \sum_{m,n \in \mathbb{N}} |a_{m,n}| < \infty \end{array}\right]$$

Определение 1. Пусть задана пара 2 $(X, \mu), \rho \colon X \to \mathbb{R}$, измерима, $\rho \geqslant 0$. Тогда

- $\nu(E) := \int_E \rho \,\mathrm{d}\mu$ мера, задаваемая плотностью ρ
- ρ плотность меры ν относительно меры μ .

Замечание. Она правда мера, интеграл счётно-аддитивен.

Теорема 2. Пусть выполнены «обычные» условия на f. Тогда $\int_X f \, \mathrm{d} \nu = \int_X f \rho \, \mathrm{d} \mu$.

Билет № 16: Мера Лебега-Стилтьеса. Интеграл по распределению

Определение 1. Пусть $I \subset \mathbb{R}$, $F: I \to \mathbb{R}$, $F \nearrow$, F(x) = F(x-0) (непрерывна слева).³. Рассмотрим порождённую полуинтервалами $[a;b) \subset I$ σ -алгебру. Введём «объём» $\nu_F: \nu([a;b)) = F(b) - F(a)$.

Тогда мера Лебега-Стилтьеса μ_F — стандартное продолжение ν_F на некоторую σ -алгебру \mathcal{M}_F .

Замечание 1. Здесь надо доказывать счётную аддитивность, а то как продолжать ν , если она — не мера?

Свойства мемы Лебега-Стилтьеса

Утверждение 1. Пусть $\Delta = [a; b]$. Тогда $\mu \Delta = F(b+0) - F(a)$.

Утверждение 2. Пусть $\Delta = \{a\}$. Тогда $\mu\Delta = F(a+0) - F(a)$.

Утверждение 3. Пусть $\Delta = (a;b)$. Тогда $\mu\Delta = F(b) - F(a+0)$.

¹ здесь объявим бесконечность приличным значением суммы ряда

²тройка, но все же поняли, что сигма-алгебра имелась в виду

³ А можно и без. Тогда $\nu([a;b)) = F(b-0) - F(a-0)$, см. ??

Лемма 4. Пусть $F \in C(I)$, $\Delta \subset I$. Тогда $\mu_F(\Delta) = \int_{\Delta} F'(t) d\lambda$.

Теорема 5. Пусть $F \nearrow$, кусочно-гладка на $I \subset \mathbb{R}$, а для f выполнены обычные условия $(X = \mathcal{B}, \mu = \mu_F)$. Промежутки гладкости F обозначим за (c_k, c_{k+1}) . Тогда

$$\int_{X} f \, \mathrm{d}\mu_{F} = \sum_{k} \int_{c_{k}}^{c_{k+1}} f F' \, \mathrm{d}\lambda + \sum_{k} f(c_{k}) \underbrace{\Delta_{c_{k}} F}_{c_{Kayor} \ e \ c_{k}}$$

Определение 2 (Образ мемы). Пусть (X, \mathcal{A}, μ) — пространство с мемой, $f: X \to Y$. Превратим и Y в пространство с мемой.

- 1. $\mathcal{A}' = \{ E \subset Y \mid f^{-1}(E) \in \mathcal{A} \}.$
- 2. $\mu' \equiv \nu = \mu \circ f^{-1}$.

Теорема 6. Пусть для $g: Y \to \mathbb{R}$ выполнены обычные условия $(\mathcal{A} = \mathcal{A}', \mu = \nu)$. Тогда $\int_Y g \, \mathrm{d}\nu = \int_X (g \circ f) \, \mathrm{d}\mu$.

Определение 3 (Функция распределения). Пусть задано (X, μ) , $\mu X < +\infty$, $f \colon X \to \mathbb{R}$. Тогда $F(t) := \mu X[f < t]$. Как видно, она возрастает и непрерывна слева.

Теорема 7. Пусть задано (X, μ) , $\mu X < +\infty$, выполнены обычные условия для f. Тогда $\int_X f \, \mathrm{d}\mu = \int_{-\infty}^{+\infty} t \, \mathrm{d}\mu_F$.

Билет № 17: Интеграл Эйлера-Пуассона

Утверждение 1. $\int_{\mathbb{R}^2} e^{-(x^2+y^2)} \, \mathrm{d}\lambda_2 = \pi$

Билет № 18: Вероятностный смысл мемы

<+Табличка с соответствием+>

Билет № 19: Геометрический смысл меры Лебега. Принцип Кавальери

Определение 1. Пусть задано (X, μ) , P(x) — предикат. Говорят, что P(x) = 1 почти везде (п.в.), если $\mu\{x \mid P(x) = 0\} = 0$.

Определение 2. $f \sim g \Leftrightarrow f(x) = g(x)$ п.в. .

Лемма 1 (Беппо-Леви для рядов). *Пусть заданы* $(X, \mu), u_n : X \to \mathbb{R}, n \in \mathbb{N}, u_n$ измеримы, $u_n \geqslant 0$. *Тогда*

a)
$$\int_{x} \sum_{n=1}^{\infty} u_n d\mu = \sum_{n=1}^{\infty} \int_{x} u_n d\mu.$$

b) Если эти числа конечны, то ряд $\sum_n u_n$ сх n.в.

Лемма 2 (Беппо-Леви «вверх ногами»). Пусть задано (X, μ) , (f_n) , измеримы, $f_1 \geqslant f_2 \geqslant \cdots \geqslant 0$. Пусть ещё $f_1 \in \mathcal{L}$. Тогда

$$\lim_{n\to\infty} \int_X f_n \,\mathrm{d}\mu = \int_X \lim_{n\to\infty} f_n \,\mathrm{d}\mu$$

<+Здесь была ещё пара лемм, но они не особо используются дальше. Вроде+> Определение 3. Пусть $E \subset \mathbb{R}^m \times \mathbb{R}^n \in \mathcal{M}_{m+n}.$

$$\triangleright E_x = \{y \in \mathbb{R}^n \mid (x, y) \in E\}$$
 — «cpe3»

$$ho$$
 $\Pi_1(E) = \{x \in \mathbb{R}^m \mid E_x \neq \varnothing\}$ — «проекция»

<+картиночка для \mathbb{R}^2 +>

Теорема 3. Пусть $E \in \mathcal{M}_{m+n}$, $E_x \in \mathcal{M}_n$ п.в. x, $\varphi(x) = \lambda_n(E_x)$ измерима относительно \mathcal{M}_m .

Тогда

$$\lambda_{m+n}(E) = \int_{\mathbb{R}^m} \lambda_n(E_x) \, \mathrm{d}\lambda_m$$

<+много букв+>

Определение 4 (График). $\Gamma^f = \{(x,t) \in \mathbb{R}^{n+1} \mid t = f(x)\}.$

Определение 5 (Подграфик). $\Gamma_{-}^{f} = \{(x,t) \in \mathbb{R}^{n+1} \mid 0 \leqslant t \leqslant f(x)\}.$

Определение 6 (Надграфик). $\Gamma_{+}^{f} = \{(x,t) \in \mathbb{R}^{n+1} \mid t \geqslant f(x)\}.$

Теорема 4 (Геометрический смысл интеграла). Пусть $f: \mathbb{R}^n \to \mathbb{R}$, измерима, $\geqslant 0$. Тогда

- 1. Γ_{-}^{f} измеримо.
- 2. $\lambda_{n+1}\Gamma_-^f = \int_{\mathbb{R}^n} f \, \mathrm{d}\lambda_n$ измеримо.

Билет № 20: Сведение кратного интеграла к повторному

Будем в дальнейшем обозначать интегрирование по мере через dx (ну или dy), размерность определяется из размерности x. Еще обозначим d(x,y) через dxdy.

Теорема 1 (Тонелли). Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\geqslant 0$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

Теорема 2 (Фубини). Пусть $f: \mathbb{R}^{m+n} \to \mathbb{R}$, измерима, $\in \mathcal{L}(\mathbb{R}^{n+m}, \lambda_{m+n})$, $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Тогда

$$\iint_{\mathbb{R}^m \times \mathbb{R}^n} f(x, y) \, dx dy = \int_{\mathbb{R}^m} dx \int_{\mathbb{R}^n} f(x, y) \, dy$$

Билет № 21: Мера Лебега и аффинные преобразования

Главные герои этого параграфа:

- \bigcirc Сдвиг: $T: \mathbb{R}^n \to \mathbb{R}^n$, Tx = x + a, $a \in \mathbb{R}^n$.
- \bigcirc Поворот с растяжением: $L \colon \mathbb{R}^n \to \mathbb{R}^n$, L линейный император.

Утверждение 1. $E \in \mathcal{M} \Rightarrow T(E) \in \mathcal{M}$.

Утверждение 2. $E \in \mathcal{M} \Rightarrow L(E) \in \mathcal{M}$.

Утверждение 3. Пусть $L: \mathbb{R}^n \to \mathbb{R}$, линейно. Тогда

$$\exists C \ge 0 \forall E \in \mathcal{M} :: \lambda L(E) = C\lambda E$$

Теорема 4. C из прошлой теоремы равно $|\det[L]|$.

<+тут декомпозиция на ортогональный и диагональные операторы и 2 леммы+>

Билет № 22: Мера образа при гладком отображении

Обозначение. $J_F(x) \equiv \det F'(x)$

Теорема 1. Пусть $E \in \mathcal{M}$, $F: G \subset \mathbb{R}^n \to R^n$, гладкая биекция. Тогда $F(E) \in \mathcal{M}$ и $\lambda F(E) = \int_E |\det F'(x)| \mathrm{d}x$.

$$\square \langle \stackrel{\sim}{\sim} \rangle \langle \stackrel{\bullet}{\sim} \rangle \blacksquare$$

Билет № 23: Глакая замена переменной в интеграле

Теорема 1. Пусть $F: G \subset \mathbb{R}^n \to R^n$, гладкая биекция. Пусть к тому же $E \subset F(G) \in \mathcal{M}, f: E \to \mathbb{R}$ с обычными условиями. Тогда

$$\int_{E} f(y) \, dy = \int_{F^{-1}(E)} f(F(x)) \cdot |J_{F}(x)| \, dx$$

Пример 1 (Полярные координаты). $\langle \mathbf{x} \rangle |J| = r$

Пример 2 (Сферические координаты). $\left\langle \mathbf{X}\right\rangle \left|J\right|=r^{2}\cos\psi$

Билет № 24: Предельный переход под знаком интеграла

Определение 1 (Всякие сходимости). Пусть $(f_n): X \to \mathbb{R}, f: X \to \mathbb{R}, \mu$ — мера на X.

$$\begin{array}{lll} f_n \to f & := & \forall \, x \in X \, :: \, f_n(x) \to f(x) \\ f_n \overset{X}{\to} f & := & \sup_X |f_n - f| \to 0 \\ f_n \to f \text{ п.в.} & := & \exists \, N \subset X \colon \mu(N) = 0 \, :: \, \forall \, x \in X \setminus N \, :: \, f_n(x) \to f(x). \\ f_n \overset{\mu}{\to} f & := & \forall \, \sigma > 0 \, :: \, \mu X[|f_n - f| \geqslant \sigma] \to 0 \end{array}$$

Замечание 1. $f \stackrel{X}{\rightrightarrows} f \Rightarrow f_n \rightarrow f \Rightarrow f_n \rightarrow f$ п.в. .

Замечание 2. Пусть $\mu X < \infty$, тогда $f_n \to f$ п.в. $\Rightarrow f_n \stackrel{\mu}{\to} f$.

Замечание 3 (Теорема Рисса). $f_n \xrightarrow{\mu} f$ п.в. $\Rightarrow \exists (n_k) :: f_{n_k} \to f$ п.в. .

Теорема 1.
$$f_n \stackrel{X}{\Longrightarrow} f, \mu X < \infty \Rightarrow \int_{Y} f_n d\mu \to \int_{Y} f$$

Теорема 2. см теорему Беппо-Леви (1.8.1) или её вариацию 1.19.2.

Теорема 3 (Фату). Пусть заданы $(X, \mu), f_n \geqslant 0$, измеримы. Тогда

$$\int_{X} \underline{\lim} f_n \, \mathrm{d}\mu \leqslant \underline{\lim} \int_{X} f_n \, \mathrm{d}\mu$$

Билет № 25: Теорема Лебега об ограниченной сходимости

Теорема 1. Пусть снова заданы (X, μ) , (f_n) измерима, $f_n \to f$ n.s. . K тому жее

$$\exists \varphi \in \mathcal{L} :: \forall n :: |f_n| \leqslant |\varphi|$$

Tог ∂a

$$\lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu$$

Обозначение. (\mathcal{L}) — условия теоремы Лебега об ограниченной сходимости.

Следствие 1. Пусть $f: T \times X \to \mathbb{R}, \ T \subset \mathbb{R}^k, \ f_t \xrightarrow[t \to t_0]{} f$ n.s., u

$$\exists V(t^0), \varphi \in \mathcal{L} :: \forall t \in \overset{\circ}{V} \cap T :: |f_t| \leqslant |\varphi|$$

Tог ∂a

$$\int_X f_t \, \mathrm{d}\mu \xrightarrow[t \to t_0]{} \int_X f \, \mathrm{d}\mu$$

Обозначение. (\mathcal{L}_{loc}) — условия локальной теормемы Лебега об ограниченной сходимости.

Следствие 2. Непрерывность интеграла по параметру при выполнении (\mathcal{L}_{loc}) и непрерывности f_t .

§* Интеграл по меме с параметром

Здесь часто придётся подчёркивать, что является параметром, а что — определяет функцию В таких случаях параметр будет записан, как индекс

Определение 1 (Собственный интеграл с параметром). Пусть $f: X \times T \to \mathbb{R}$, $f_t(x) \in \mathcal{L}([a,b],\mu) \ \forall t \in T$. Тогда,

$$I(t) = \int_{a}^{b} f(x, t) \, \mathrm{d}x$$

Мы здесь определяем некоторую функцию от t, как видно $\mathcal{D}_I = T$.

По идее, надо здесь переформулировать все-все утверждения про последовательности функций. Надо бы узнать, что с этим делать. $\langle : set aflame \rangle Y$ нас в конспекте этот кусок почему-то написан про несобственные интегралы, но всюду полагается (\mathcal{L}_{loc}). Так что по сути они — просто интегралы по меме.

Здесь тоже есть непрерывность, дифференциируемость и интегрирование по параметру, но все тривиально 1 следует из 1.25.1 и 1.20.2.

Билет № 26: Равномерная сходимость несобственного параметрического интеграла. Признаки

Определение 1 (Несобственный интеграл с параметром). Пусть $f: X \times T \to \mathbb{R}$, $f \in \mathcal{L}([a, B], \mu) \, \forall \, B < b$. Тогда,

$$I(t) = \int_{a}^{b} f(x,t) dx := \lim_{B \to b-0} \int_{a}^{B} f(x,t) dx = \lim_{B \to b-0} I^{B}(t)$$

Предполагается, что $\forall t \in T$ интеграл сходится поточечно. А вот суммируемость никто не обещал.

 $^{^{1}}$ ну..

Определение 2. Говорят, что $I^B(t) \stackrel{T}{\rightrightarrows} I(t)$ (сходится равномерно относительно $t, t \in T$), если ¹

$$\sup_{t \in T} \left| \int_{B}^{\to b} f(x, t) \right| \xrightarrow{B \to b} 0$$

Здесь дальше всюду предполагается поточечная сходимость интеграла $\forall t \in T$.

Теорема 1 (Признак Больцано-Коши).

$$I^{B}(t) \stackrel{T}{\Longrightarrow} I(t) \Leftrightarrow \sup_{T} \left| \int_{B_{1}}^{B_{2}} f(x,t) \, \mathrm{d}x \right| \xrightarrow{B_{1},B_{2} \to b} 0$$

Теорема 2 (Признак Вейерштрасса). Пусть $\exists \varphi \in \mathcal{L}([a;b)) :: |f(x,t)| \leqslant \varphi(x) \ \forall t. \ Torda \ I^B(t) \overset{T}{\Longrightarrow} I(T).$

Теорема 3 (Признак Дирихле). Пусть $I(t) = \int_{a}^{b} f(x,t) \cdot g(x,t) \, \mathrm{d}x \ u$

a)
$$f(x,t) \stackrel{T}{\Longrightarrow} 0$$
, $f(x,t) \searrow^x (x \to b - 0)$

b)
$$G(x,t) = \int_a^x g(\xi,t) d\xi$$

$$\exists M : \forall x \in [a; b), t \in T :: |G(x, t)| \leqslant M$$

Тогда $I^B(t) \stackrel{T}{\Longrightarrow} I(T)$.

Теорема 4 (Признак Абеля). Пусть $I(t) = \int_a^{\to b} f(x,t) \cdot g(x,t) \, \mathrm{d}x \ u$

$$a) \exists M : \forall t \in T :: f(x,t) \leq M, f(x,t) \searrow^{x}.$$

b)
$$\int_{a}^{B} g(x,t) dx \underset{B \to b}{\overset{T}{\Longrightarrow}} \int_{a}^{\to b} g(x,t) dx$$

Тогда $I^B(t) \stackrel{T}{\Longrightarrow} I(T)$.

Билет № 27: Несобственные интегралы с параметром и операции анализа над параметром $\langle \mathfrak{R} \rangle$

Теорема 1. Пусть $f(x,t) \to f(x,t_0)$ для $n.s.x \in [a;b)$ и $I^B(t) \stackrel{V(t^0)}{\Longrightarrow} I(t)$. 2 Тогда $I \xrightarrow[t \to t_0]{} I(t_0)$.

Теорема 2. Пусть для n.в. $x \exists f'_t(x,t)$, непрерывна на $[a;b) \times \underbrace{[c;d)}_x$. Допустим,

a)
$$I(t) = \int_{a}^{b} f(x,t) dx \ cxo \partial umc \ \forall t \in T$$

 $^{^1 \}mbox{H}\mbox{икто}$ же не любит $\varepsilon\mbox{-}\delta\mbox{-}\mbox{определения}?$

 $^{^2}$ Это не очень докажется без конечности меры $V(t_0)$,а то интеграл может сходится, а функция не быть суммируемой

b)
$$\int_a^{\to b} f_t'(x,t) \, \mathrm{d}x$$
 равномерно сходится относительно $t \in T$

Тогда
$$\exists I'(t_0) = \int_a^{\to b} f'_t(x, t_0) \, \mathrm{d}x$$

Замечание. Здесь нужна сходимость I, чтобы хоть где-то были конечные значения I(t), нам их разность считать.

Теорема 3. Пусть для n.s. $x \exists f(x,t)$, непрерывна на $[a;b) \times \underbrace{[c;d)}_{T}$. Допустим,

$$I(t)=\int_a^{\to b}f(x,t)\,\mathrm{d}x$$
 равномерно сходится относительно $t\in T$

$$\int_{c}^{d} I(t) dt = \int_{a}^{b} dx \int_{c}^{d} f(x, t) dt$$

Билет № 28: Г-функция Эйлера

Определение 1.
$$\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$$

Свойства

 1° Определена для всех t > 0.

$$2^{\circ} \Gamma(1) = 1$$

$$3^{\circ} \ \forall t\Gamma(t+1) = t\Gamma(t)$$

$$4^{\circ} \ n \in \mathbb{N} \ \Gamma(n+1) = n!$$

6°
$$\Gamma \sim \frac{1}{t}$$
 при $t \rightarrow 0$

$$7^{\circ}$$
 $\Gamma(t+1) \sim \sqrt{2\pi} \sqrt{t} t^t e^{-t}$ при $t \to \infty$.

8°
$$\Gamma(t)\cdot\Gamma(1-t)=\frac{\pi}{\sin\pi t}$$
. (формула отражения)

Гамма-функцию можно продолжить на отрицательную область, через формулу отражения. И на комплексную, там будет сходимость при ${\rm Im}\, z>0.$

Билет № 29: В-функция

Определение 1.
$$B(y,z) = \int_0^1 x^{y-1} (1-x)^{z-1} dx$$
.

Свойства

1°
$$B(y, z) = B(z, y)$$
.

$$2^{\circ} \ B(y,z) = \frac{\Gamma(y)\Gamma(z)}{\Gamma(y+z)}.$$

Билет № 30: Объём п-мерного шара

Теорема 1. Пусть $B_n(R) = \{x \in \mathbb{R}^n \mid ||x|| \leqslant R\}$ – n-мерный шар. Тогда

$$\lambda_n B_n(R) = \frac{\pi^{n/2} R^n}{\frac{n}{2} \cdot \Gamma(\frac{n}{2})}$$

Глава 2: Дифференциальная геометрия (*\)

Билет № 31: Регулярная кривая и её естественная параметризация

Определение 1 (Кривая, как отображение). Пусть задано гладкое отображение $t \in [a;b] \mapsto r(t) \in \mathbb{R}^3$, регулярное, то есть $\operatorname{rk} r'(t) \equiv 1$. t — параметр, само отображение ещё можно называть параметризацией.

Определение 2 (Кривая, как класс отображений). Введём отношение эквивалентности отображений:

$$r(t) \sim \rho(\tau) \Leftrightarrow \exists \, \delta \colon [a; b] \leftrightarrow [\alpha, \beta] \, :: \, \rho(\delta(t)) = r(t)$$

А теперь будем их путать. (:set aflame)Ещё веселье с многообразиями.

Определение 3 (Естественная параметризация). Пусть $[a;b]=[t_0,t_1]$. Рассмотрим $\widetilde{s}(t)=\int_{t_0}^t |r'(t)|\,\mathrm{d}\tau$. Она, как видно, является пройденным путём и неубывает \Rightarrow годится на роль δ .

Так что можно рассматривать s как параметр, это собственно и есть естественная (натуральная) параметризация.

Утверждение 1. Пусть есть две разных параметризации: r(t) и r(s) одной кривой. Тогда

$$\dot{r} \equiv \frac{\partial r(s)}{\partial s} = \left(r'(t) \cdot (s'(t))^{-1}\right)(t) = \frac{r'}{|r'|}$$

Как видно, натуральная почему-то обозначается точкой.

Билет № 32: Кривизна кривой

Определение 1 (Касатальный вектор). $\tau := \dot{r}(s)$.

Определение 2 (Кривизна). $k_1 = |\dot{\tau}|$

Определение 3 (Радиус кривизны). $R = k_1^{-1}$

Лемма 1. Пусть $v(s) \in \mathbb{R}^n$, $|v| \equiv R \in \mathbb{R}$. Тогда $\dot{v} \perp v$.

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} |v|^2 = \frac{\mathrm{d}}{\mathrm{d}t} (\langle v, v \rangle) = 2 \langle v, \dot{v} \rangle$$
. Так что $\langle v\dot{v} \rangle = 0 \Rightarrow v \perp \dot{v}$.

Утверждение 2. $\tau \perp \dot{\tau}$

Теорема 3. Пусть r(t) — неестественная параметризация кривой. Тогда $k_1 = \frac{|r' \times r''|}{|r'|^3}$

$$k_{1} = |\dot{\tau}| = \left| \frac{d}{ds} \frac{r'}{|r'|} \right| = \left| \frac{d}{dt} \left(\frac{r'}{|r'|} \right) \frac{dt}{ds} \right| = \left| \frac{d}{dt} \left(\frac{r'}{|r'|} \right) \frac{1}{|r'|} \right|$$

$$\frac{d}{dt} \left(\frac{r'}{|r'|} \right) = \frac{r''|r'| - r'|r'|'}{|r'|^{2}}, \quad |r'|' = \left(\sqrt{r'^{2}} \right)' = \frac{\langle r', r'' \rangle}{|r'|}$$

$$\frac{d}{dt} \left(\frac{r'}{|r'|} \right) = \frac{r''|r'|^{2} - r'\langle r', r'' \rangle}{|r'|^{3}} = \frac{r''\langle r', r' \rangle - r'\langle r', r'' \rangle}{|r'|^{3}} = \frac{r' \times (r'' \times r')}{|r'|^{3}} (A = C)$$

 $r' \perp r' \times r''$, так что

$$k_1 = \left| \frac{r' \times (r'' \times r')}{|r'|^3} \right| \frac{1}{|r'|} = \frac{|r' \times r''|}{|r'|^3}$$

Билет № 33: Кручение и нормаль

Определение 1 (Нормаль). Пусть $k_1 \neq 0$. Тогда $\nu := \frac{\dot{\tau}}{k_1}$.

из геометрии, она лежит в плоскости кривой и направлена в сторону «поворота».

Определение 2 (Бинормаль). $\beta = \tau \times \nu$.

3амечание. (τ, ν, β) — хороший кандидат для репера в какой-нибудь точке P.

Определение 3 (Соприкасающаяся плоскость). Пусть $k_1 > 0$, $P = r(s_0)$, T - плоскость, $T \ni P$, $N \perp T$ — нормаль к ней. Допустим, $\langle \Delta r, N \rangle = h$, $h = o(\Delta s^2)$. Тогда T — соприкасающаяся плоскость.

Утверждение 1. $\tau, \nu \perp N$; $(r - r_0, \dot{r}_0, \ddot{r}_0) = 0 - e\ddot{e}$ уравнение

▼

$$\Delta r = \dot{r} \, \mathrm{d}s + \frac{\dot{r}}{2} \, \mathrm{d}s^2 + o(\Delta s^2) = \tau \, \mathrm{d}s + \frac{1}{2} \, k_1 \nu \, \mathrm{d}s^2 + o(s^2)$$
$$\langle \Delta r, N \rangle = o(\Delta s^2)$$

Так что скалярные произведения $\langle \tau, N \rangle$, $\langle \nu, N \rangle$ равны нулю.

Вторая часть — из свойств смешанного произведения.

 \blacktriangle

Определение 4 (Абсолютное кручение). $|k_2| := |\dot{\beta}|$

Теорема 2.
$$|k_2| = \left| \frac{(\dot{r}, \ddot{r}, \ddot{r})}{k_1^2} \right|$$

 \square Взять определение β и посчитать производную.

$$\dot{\beta} = \dot{\tau} \times \nu + \tau \times \dot{\nu} = k_1 \nu \times \nu + \tau \times \dot{\nu} = \tau \times \dot{\nu}$$

Производная au ничем не отличается от 2.32.3, только au заместо r. Так что

$$\dot{\beta} = \tau \times (\dot{\tau} \times (\ddot{\tau} \times \dot{\tau})) \frac{1}{k_1^3} = \frac{\dot{\tau}(\tau, \ddot{\tau}, \dot{\tau}) - (\ddot{\tau} \times \dot{\tau}) \cdot 0}{k_1^3} = -\frac{\nu \cdot (\tau, \dot{\tau}, \ddot{\tau})}{k_1^2}$$

Определение 5 (Кручение). $k_2:=rac{-(\dot{r},\ddot{r},\ddot{r})}{k_{\tau}^2}$

Билет № 34: Формулы Френе

Теорема 1.

$$\begin{pmatrix} \dot{\tau} \\ \dot{\nu} \\ \dot{\beta} \end{pmatrix} = \begin{pmatrix} 0 & k_1 & 0 \\ -k_1 & 0 & -k_2 \\ 0 & k_2 & 0 \end{pmatrix} \cdot \begin{pmatrix} \tau \\ \nu \\ \beta \end{pmatrix}$$
(2.1)

 \square Осталось доказать лишь второе, но оно очевидно следует из 1 и 3 и соотношения $\nu=\beta\times\tau.$ \blacksquare

Теорема 2. Пусть r(s) — гладкая кривая с заданными k_1 и k_2 , $k_1 > 0$. Тогда система (2.1) определит её с точностью до движения.

 \square Система (2.1) вообще линейна. Так что решение задачи Коши у неё — единственно. А положение кривой как раз задается начальными значениями τ, ν, β .

Правда ниоткуда не следует, что кривизна и кручение будет какими надо, но это скучно. Из формул для них докажется. ■

В бумажном конспекте здесь ещё рассуждения, что полученные векторы единичны и ортональны, но это тоже скучно.

Билет № 35: Регулярная поверхность. Касательная плоскость. Первая квадратичная форма

Определение 1 (Поверзность (двумерная)). Пусть задано гладкое отображение

$$\varphi \colon (u,v) \in D \subset \mathbb{R}^2 \mapsto r = (x,y,z) \in \mathbb{R}^3$$

Добавим условие регулярности $\operatorname{rk} \varphi' \equiv 2$ и условимся путать отображение и класс оных.

Определение 2.

$$r_u := (x'_u, y'_u, z'_u)$$

$$r_v := (x'_v, y'_v, z'_v)$$

$$n := \frac{r_u \times r_v}{|r_u \times r_v|} = \frac{N}{|N|}$$

Отметим, что условие регулярности не дает векторному произведению обращаться в 0.

Касательную плоскость можно было бы здесь определить через нормаль, но лучше пока ещё подумать. Может, абстракций добавить.

Просто утащил определеньки из № 41

Определение 3. Пусть $M \subset \mathbb{R}^n$. Выберем на нем произвольную точку x и рассмотрим $V(x) = V_{\mathbb{R}^n}(x) \cap M$. Допустим,

$$\exists f \in C^1 :: V(x) \leftrightarrow^f \mathbb{R}^k$$
 (или \mathbb{H}^k).

Тогда M — гладкое подмногообразие \mathbb{R}^n , а f — локальная карта многообразия. Набор всех карт называется атласом. $t \in \mathbb{R}^k$ — локальные координаты в V.

Атлас : $A(M) = \{(\varphi_k, V_k)_k\}$ — все окрестности и карты на них. Если

$$\exists x \in M :: V \leftrightarrow \mathbb{H}(\mathbb{H} = \{x \in \mathbb{R}^k \mid x^1 \leqslant 1\},\$$

тогда это многообразие с краем. Край обычно обозначается как ∂M .

По идее, в атлас ещё надо включать информацию, карта на \mathbb{R}^k или на \mathbb{H}^k . Так что

$$A(M) = \{(\mathbb{H}^k, \varphi_i, V_i)_i\} \cup \{(\mathbb{R}^k, \varphi_j, V_j)_j\}$$

Определение 4 (Касательное пространство в точке x). Пусть M — гладкое многообразие. Допустим, φ_i — карта в V(x). Тогда

$$T_x M = (\mathrm{d}\varphi_i(x))(\mathbb{R}^k)$$

Определение 5 (Первая квадратичная форма).

$$I := |dr|^2 = r_u^2 du^2 + 2r_u r_v du dv + r_v^2 dv^2$$

= $E du^2 + 2F du dv + G dv^2$

Плохое определение, надо сказать. Сделаем получше.

Определение 6. Первая квадратичная форма поверхности M — единичная квадратичная форма на его касательном пространстве.

Скаляряное произведение на $T_x M$ можно перенести из $\mathbb{R}^m \supset M$.

Утверждение 1. Пусть φ : $D \subset M$ — карта на M. Тогда первая квадратичная форма в координатах пространства параметров имеет вид

$$L^T L$$
, $L = \varphi'(x)$

Мы вроде можем спокойно рассматривать φ' как линейное отображение. Так что по идее первое определение — следствие отсюда, но $\langle ? \rangle$.

Определение 7. $g_{ij} = L^T L$. Хотелось бы сказать, что это метрический тензор, но не стоит.

Билет № 36: Вычисление длин и площадей на поверхности

Теорема 1. Пусть $M-nоверхность, \gamma \colon t \to r \in M$. Тогда

$$\ell(\gamma) = \int_{t_0}^{t_1} \sqrt{I}. \ (\mathrm{d}s = I)$$

 \square Пусть $r \in M$, $u \in D$. Тогда $ds^2 = \langle dr, dr \rangle = dr^T dr = du^T L^T L du = I$. А дальше можно параметризовать кривую, так что u, v — функции от t.

Некое пояснение к определению.

Здесь можно сказать, что мера на касательном многообразии задаётся как образ лебеговой меры в \mathbb{R}^k . Они вроде как имеют одну размерность. Правда его надо как-то повернуть для этого, иначе якобиан не посчитать.

Зафиксируем какие-то базисы в D и $T_x M$. Соорудим вот такое ортогональное преобразование: $O = \left(\sqrt{I}\right)^{-1} L^T, \ O \colon \mathbb{R}^m \to \mathbb{R}^m,$ скалярное произведение в них одинаковое.

Здесь неявно сконструировали отображение $I \colon \mathbb{R}^k \to \mathbb{R}^k$ взяв матрицу I.

Тогда пусть $F=O\circ L=\left(\sqrt{I}\right)^{-1}L^TL=\sqrt{I}$. Пользуясь теоремой из теории меры, $\lambda_T=\det F=\det\sqrt{I}=\sqrt{\det I}$.

А теперь можно приближать параллелепипеды на самом многообразии похожими из касательного пространства.

Определение 1. Пусть M — подмногообразие \mathbb{R}^n . Тогда

$$\lambda_k := \int_D \sqrt{\det g(t)} \, dt, \quad g(t)_{ij} = \left(\frac{\partial x}{\partial t_i} \cdot \frac{\partial x}{\partial t_j}\right) (t)$$

Теорема 2. Определение выше не зависит от параметризации.

Теорема 3. Пусть M- поверхность, $u,v\in D,\ I=E\,\mathrm{d} u^2+2F\,\mathrm{d} u\,\mathrm{d} v+G\,\mathrm{d} v^2.$ Тогда

 $S(M) = \iint_D \sqrt{EG - F^2} \, \mathrm{d}u \, \mathrm{d}v$

Определение 2. Пусть M_1, M_2 — пара поверхностей. Допустим, $\exists F \colon M_1 \to M_2$, сохраняющее длины кривых. Тогда они называются изометричными.

Теорема 4. Пусть M_1 , M_2 — пара поверхностей. Допустим, что существуют их параметризации, при которых $I_1 = I_2$. Тогда они изометричны.

Билет № 37: Вторая квадратичная форма

Определение 1. Снова рассмотрим поверхность с какой-то параметризацией. Тогда II := $-\mathrm{d}r\,\mathrm{d}n = L\,\mathrm{d}u^2 + 2N\,\mathrm{d}u\,\mathrm{d}v + M\,\mathrm{d}v^2$.

Утверждение 1. II = $n \cdot d^2r$

Утверждение 2 (Типы точек на поверхности). Здесь названия связаны с типом соприкасающегося параболоида. Его можно добыть, рассматривая $\Delta r \cdot n$.

II > 0: Эмиптический

II < 0: Он же

 $II \leq 0$: Гиперболический

 $II \geqslant 0 \lor II \leqslant 0$: Параболический (вроде цилиндра)

II = 0: Точка уплощения

Билет № 38: Нормальная кривизна в данном направлении. Главные кривизны

Определение 1. Нормальное сечение поверхности — сечение плоскостью, содержащей нормаль к поверхности (в точке).

Лемма 1. *Нормальное сечение* — κ *ривая.*

Сначала рассмотрим несколько более общий случай

Теорема 2 (Менье). Пусть
$$\gamma - \kappa puвая \subset M$$
, $\gamma \ni P$. Тогда $k_0 = k_1 \cos(\underbrace{\nu \, \hat{;} n}_{\theta}) = \frac{\Pi}{1}$.

Замечание 1. Ещё можно сформулировать так: для всякой кривой на повехности, проходящей через точку в заданном направлении $k_0 = {
m const}$

а теперь сузим обратно.

Определение 2. Нормальная кривизна — кривизна нормального сечения.

Для нормального сечения $\cos \theta = \pm 1$.

Если немного переписать и ввести параметр t = dv/du

$$k_1(t) = |k_0(t)| = \left| \frac{L + 2Nt + Mt^2}{E + 2Ft + Gt^2} \right|$$

Этот параметр t и задаёт «направление» нормального сечения. Так что $k_0(t)$ и есть та самая «кривизна в данном направлении».

Теперь найдем экстремумы $\frac{\mathrm{II}}{\mathrm{I}}(t)$.

Теорема 3. $\exists k_{\min}, k_{\max}, k_{\min} \cdot k_{\max} = \frac{LM - N^2}{EG - F^2}$.

Определение 3. k_{\min}, k_{\max} — главные кривызны.

Билет № 39: Гауссова кривизна поверхности. Теорема Гаусса

Определение 1 (Гауссова кривизна). $K = k_{\min} \cdot k_{\max}$.

Определение 2 (Гауссово отображение). Пусть M — поверхность, n — нормаль к ней в точке P, S — единичная сфера. Тогда $G: n \mapsto C \in S$ (C — точка на сфере).

Теорема 1. Пусть U — окрестность $P \subset M$, M — поверхность, \mathcal{N} — поле нормалей на U. Допустим, что $V = G(\mathcal{N})$, она вроде как окрестность $G(n_P)$. Тогда

$$|K| = \lim_{U \to P} \frac{\iint_V |n_u \times n_v|}{\iint_U |r_u \times r_v|}$$

Билет № 40: Геодезическая кривизна. Теорема Гаусса-Бонне.

Определение 1 (Геодезическая кривизна). Пусть M — поверхность, T — касательная к ней в точке P. Допустим, $\gamma \subset M$ проходит через P. Рассмотрим проекцию γ на T. Тогда $\varkappa := k_{\gamma}$ — и есть геодезическая кривизна.

Определение 2. Если для кривой $\varkappa(s) \equiv 0$, то она называется геодезической.

Теорема 1 (Гаусса-Бонне). Пусть M- гладкая поверхность, P_1, \ldots, P_n- вершины криволинейного многоугольника, $P_i, P_{i+1}=\gamma, \ \alpha_i-$ углы при вершинах. Тогда

$$\sum_{i} \alpha_{i} + \sum_{i} \int_{\gamma_{i}} \varkappa \, \mathrm{d}s = 2\pi - \iint_{P} K \, \mathrm{d}s$$

Билет № 41: Ориентация кривой и поверхности

Здесь сначала введём всякие конкретные определения, потом абстрактное, потом конкретные примеры.

Определение 1 (Векторное поле). Пусть $G \subset \mathbb{R}^n$, V — векторное пространство. Тогда $f: G \to V$ и есть векторное поле.

Пример 1. $V = \mathbb{R}^k$.

Замечание 1. Если захотеть гладкого векторного поля, то нужно уметь вводить на V норму¹. Но как правило имеют дело с $V = \mathbb{R}^n$ где это всё уже есть.

 $^{^{1}}o(\|h\|)$

Определение 2. Ориентация на кривой — непрерывное поле $\tau(x(t))$. Они все единичные, так что варианта выбрать $\tau(x)$ всего 2. Соответсвенно, и ориентаций две.

Замечание 1. Регулярность избавит от изломов, а все пересечения разделяются по t.

Замечание 2 ($\langle : set aflame \rangle$). В нашем понимании кривая — не многообразие. У многообразия были бы проблемы с окрестностью пересечения. Это можно показать рассмотрев 4 точки в окрестности пересечения и устремив ту, что с самым далёким прообразом к пересечению. 1

Определение 3. Ориентация на кривой — класс эквивалентности параметризаций по отношению $r(t) \sim \rho(\tau) \Leftrightarrow \delta' > 0$ (всегда).

Утверждение 1. Определения 2.41.2 и 2.41.3 эквиваленты.

▼

банан.

▲

Определение 4. Если на кривой вводится ориентация, то она ориентируемая.

Тут нужно отметить, что подход выше совсем ломается, когда дело заходит о поверхностях. Обобщив рассуждения выше на поверхности, мы придём к тому, что лента Мёбиуса окажется ориентируемой. Ну, в самом деле, если привязать нормали к параметрам, а не к координатам пространства содержащего поверхность, то окажется, что нормаль всегда «вращается» непрерывно.

Так что надо сейчас заняться ориентацией многообразий.

Определение 5. Пусть $M \subset \mathbb{R}^n$. Выберем на нем произвольную точку x и рассмотрим $V(x) = V_{\mathbb{R}^n}(x) \cap M$. Допустим,

$$\exists\,f\in C^1\ ::\ V(x)\leftrightarrow^f\mathbb{R}^k$$
 (или \mathbb{H}^k).

Тогда M — гладкое подмногообразие \mathbb{R}^n , а f — локальная карта многообразия. Набор всех карт называется атласом. $t \in \mathbb{R}^k$ — локальные координаты в V.

Атлас : $A(M) = \{(\varphi_k, V_k)_k\}$ — все окрестности и карты на них. Если

$$\exists x \in M :: V \leftrightarrow \mathbb{H}(\mathbb{H} = \{x \in \mathbb{R}^k \mid x^1 \leqslant 1\},\$$

тогда это многообразие с краем. Край обычно обозначается как ∂M .

По идее, в атлас ещё надо включать информацию, карта на \mathbb{R}^k или на \mathbb{H}^k . Так что

$$A(M) = \{(\mathbb{H}^k, \varphi_i, V_i)_i\} \cup \{(\mathbb{R}^k, \varphi_j, V_j)_j\}$$

Теперь про ориентацию.

Определение 6. Две карты называются согласованными, если отображение $t_1 \mapsto x \in V_1 \cap V_2 \mapsto t_2$ имеет положительный якобиан.

Определение 7. Если все карты попарно согласованы, то атлас называется ориентирующим. Многообразие тогда называется ориентированным.

¹я же тот ещё велосипедостроитель?

Представить все это проще всего на примере города, покрытого точками сотовой связи. Пересечение границы области покрытия одной вышки не приводит к потере связи.

Нетрудно понять, что ориентирующих атласов много. Город может покрывать хорошее количество сотовых операторов.

Определение 8. Атласы эквивалентны, если составленный из них атлас — тоже ориентирующий.

Утверждение 2. Если многообразие связно, то они линейно связно.

Утверждение 3. *Классов эквивалентности атласов для связного многообра-* $3us - \partial ba$.

 \mathbf{v} ($\langle ? \rangle$)

Пусть какая-нибудь точка M содержится в пересечении двух карт из разных атласов.

Пусть в её окрестности репараметризация между атласами происходит с положительным якобианом. До любой другой точки можно добраться по цепочке карт из одного атласа (из линейной связности).

Так что в её окрестности переход между атласами происходит с тем же знаком, что и в окрестности исходной точки. От выбора карт по дороге ничего не зависит, так как они из одного атласа.

▲

Определение 9. Пусть на M задан ориентирующий атлас. Тогда сужение этого атласа на край задаёт ориентацию края.

А теперь минутка конкретики.

Определение 10. Поверхность (регулярная) — связное $\langle ? \rangle$ подмногообразие \mathbb{R}^3 с рангом карт 2.

Утверждение 4. Ориентация на поверхности задаётся непрерывным векторным полем нормалей. «Сторона» поверхности задаётся им же.

$$n = \frac{r_u \times r_v}{|r_u \times r_v|}$$

▼

Связка бананов. Бананы тут ни при чём, но они кончились.

lack

Замечание 1. С кривыми наверное тоже стоит иметь дело, как с многообразиями, но вот тут $\langle ? \rangle$. Дальше я так буду делать, но не очень законно.

Билет № 42: Интеграл второго рода

3десь всюды ds — мера на многообразии.

Определение 1. Интеграл второго рода по кривой Γ от векторного поля F определяется, как

$$\int_{\Gamma} \langle F, \tau \rangle \, \mathrm{d}s$$

Определение 2. Интеграл второго рода по поверхности M от векторного поля F определяется, как

$$\int_{\Gamma} \langle F, n \rangle \, \mathrm{d}s$$

Определение 3 (Касательное пространство в точке x). Пусть M — гладкое многообразие. Допустим, φ_i — карта в V(x). Тогда

$$T_x M = (\mathrm{d}\varphi_i(x))(\mathbb{R}^k)$$

Кокасательное пространство — сопряжённое к нему. Собственно, пространство линейных форм, действующих из T_xM .

Определение 4. Дифференциальная форма p-го порядка на многообразии M в точке x — кососимметрическая линейная функция

$$\omega^p \colon \underbrace{T_x M \times \cdots \times T_x M}_{p} \to \mathbb{R} \in (T_x^* M)^p$$

Умножение векторных пространств тут на самом деле тензорное, как я понял, так что очевидно следущее

Утверждение 1. ω^p разложится по базису $\bigwedge_{i_k} dx^{i_k} \in (T_x^*M)^p$

А ещё $(T_x M)^p$ надо бы обозначать как-то так, подчёркивая, что это внешняя степень: $\Lambda^p(T_x M)$

Пример 1. Поскольку эта ерунда косокоммутативна, надо думать что засунуть в базис. Вот давайте все для \mathbb{R}^3 напишем.

$$\omega^{1} = a_{x} dx + a_{y} dy + a_{z} dz$$

$$\omega^{2} = a_{yz} dy \wedge dz + a_{zx} dz \wedge dx a_{xy} dx \wedge dy$$

$$\omega^{3} = a_{xyz} dx \wedge dy \wedge z$$

Ещё одно маленькое

Определение 5 (Внешний дифференциал). Введём линейный император : $(T_x^*M)^p \to (T_x^*M)^{p+1}$

- 1. Для функции $f: \mathbb{R}^k \to M$ совпадает с обычим дифференциалом.
- 2. $\mathrm{d}(\omega^p\wedge\omega^q)=\mathrm{d}\omega^p\wedge\omega^q+(-1)^p\omega^p\wedge\mathrm{d}\omega^q$ Это вместо правила Лейбница.
- 3. $d(d\omega) = 0$.

Вообще, можно было бы определить 1, 3 правило и как дифференцировать 1-формы. Тогда 2 правило ясно следует оттуда. Соберём обе формы в одну, здоровую. После того как продифференцировали коэффициент, вылезет ещё какой-то $\mathrm{d}x^{i_l}$. Если он из второй формы, его надо переставить через все первые p дифференциалов. Как раз и вылезет $(-1)^p$.

⟨❖⟩ <+понять меры Хаара. Когда-нибудь...+>

Положим, все формы имеют гладкие коэффициенты. Тогда пока интеграл от гладкой дифференциальной формы на многообразии определим так:

Определение 6. Пусть M — простое n-мерное многообразие (покрывается одной картой $f \colon D \to M$), $u \in D$, а ω^n — дифференциальная форма с коэффициентами $a_{i_1,\ldots,i_n}(x)$. Давайте её поподробней напишем

$$\omega = \sum_{i_1 < \dots < i_n} a_{i_1, \dots, i_n}(x) dx^{i_1} \wedge \dots \wedge dx^{i_n}$$

Тогда можно написать такое определение:

$$\int_{M} \omega^{n} := \int_{D} a_{i_{1},\dots,i_{n}} \left(x \right) \bigwedge_{i=1}^{n} \mathrm{d}x^{i_{j}} := \int_{D} a_{i_{1},\dots,i_{n}} \left(f(u) \right) \frac{\partial x^{i_{1}\dots i_{k}}}{\partial u^{i_{1}\dots i_{k}}} \, \mathrm{d}\lambda_{n}(u)$$

Здесь на самом деле обычный интеграл Римана, все функции под интегралом непрерывны.

Замечание 1. Здесь нужно и можно вспомнить, что в интеграле 1 рода был $\sqrt{g(u)} = \left| (\frac{\partial x}{\partial u})^T \frac{\partial x}{\partial u} \right|$. Те есть, корень из суммы квадратов тех миноров, что здесь.

Общее определение требует понимания разбиения единицы, а я пока так не умею.

Теперь минутка конкретики

Утверждение 2. Пусть $F=(P,Q,R),\ \omega_F^1=P\,\mathrm{d} x+Q\,\mathrm{d} y+R\,\mathrm{d} y.$ Положим, $G-\kappa pu$ вая (одномерное многообразие). Тогда

$$\int_{\Gamma} \langle F, \tau \rangle \, \mathrm{d}s = \int_{\Gamma} \omega_F^1$$

Заметим, что ds = |r'| dt, тогда $\tau ds = (dx, dy, dz)$. Кажется, всё.

Утверждение 3. Пусть ω_F^1 точна, то есть $\omega = \mathrm{d}\Phi$. Тогда

$$\int_{\Gamma} \omega_F^1 = \Phi(B) - \Phi(A).$$

Физический смысл этого дела — работа.

Определение 7. Форма ω точна, если $\Gamma \int_{\Gamma} \omega = 0$

Определение 8. Форма ω замкнута, если $d\omega = 0$.

Утверждение 4. Пусть M-2-мерная гадкая ориентируемая поверхность, $F=(P,Q,R),\ \omega_F^2=P\,\mathrm{d} y\wedge\mathrm{d} z+Q\,\mathrm{d} z\wedge\mathrm{d} x+R\,\mathrm{d} x\wedge\mathrm{d} y.$ Тогда

$$\int_{M} \omega_F^2 = \int_{M} \langle F, n \rangle \, \mathrm{d}s$$

Пусть N = (A, B, C). dS можно расписать получше.

$$L = \frac{\partial r}{\partial (u, v)} = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix}$$

При умножении на транспонированную воспольземся известной формулой с суммой миноров:

$$q = L^{T}L = I_{1}^{2} + I_{2}^{2} + I_{3}^{2} = A^{2} + B^{2} + C^{2} \Rightarrow dS = \sqrt{q} = |N|$$

Тогда $Fn \, \mathrm{d}S = (PA + QB + RC) \, \mathrm{d}u$. А теперь смотрим на определение 2.42.6 и понимаем что там ровно то же самое.

Билет № 43: Дифференцирование векторных полей

по методичке Лодкина Здесь — основные утверждения

Определение 1. Пусть f — скалярное поле, F = (P, Q, R) — векторное. Тогда

$$\begin{split} \nabla f &= \operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \\ \nabla \times F &= \operatorname{rot} F = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \\ \langle \nabla, F \rangle &= \operatorname{div} F = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \end{split}$$

Утверждение 1. При обратимом гладком преобразовании координат $\Psi \colon x \mapsto \widetilde{x}$ ротор и дивергенция изменяются следующим образом.

$$\operatorname{div} \widetilde{F}(\widetilde{r}) = \operatorname{div} F(r)$$
$$\operatorname{rot} \widetilde{F}(\widetilde{r}) = \Psi(\operatorname{rot} F(r))$$

Теорема 2. Пусть F -гладкое поле. Тогда

$$\operatorname{rot} F(r) = \operatorname{rot} \left(dF_r(h) \right)$$
$$\operatorname{div} F(r) = \operatorname{div} \left(dF_r(h) \right)$$

□ Ну, если отображение линейно, то его матрица Якоби равна его матрице. А дальше очевидно ■

Теорема 3. Пусть $a, b \in \mathbb{R}^3$. Тогда

$$\begin{array}{lll} F(r) = r & \Rightarrow & \operatorname{rot} F = 0 & \operatorname{div} F = 3 \\ F(r) = a \times r & \Rightarrow & \operatorname{rot} F = 2a & \operatorname{div} F = 0 \\ F(r) = \langle a, r \rangle b & \Rightarrow & \operatorname{rot} F = a \times b & \operatorname{div} F = \langle a, b \rangle \end{array}$$

Билет № 44: Формула Грина

Теорема 1. Пусть D- связное двумерное ориентируемое гладкое компактное подмногообразие \mathbb{R}^2 с краем, $\omega=P\,\mathrm{d} x+Q\,\mathrm{d} y-$ гладкая дифференциальная форма. Тогда

$$\int_{\partial D} \omega = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \wedge \mathrm{d}y$$

 \square Здесь почти нигде не пользуются явным определением формы на многообразии. Ну, а зачем, пространство двумерное. Так что можно сразу сказать, что нормаль лишь повлияет на знак $\mathrm{d}x \wedge \mathrm{d}y$ и не думать особо про то что x,y не очень совпадает с пространством параметров.

Много пунктов. Сначала разбить на области типа y (с вертикальными краями). И ещё занулить Q, например.

Произвольная область легко 1 режется на области типа y. Склеивать их можно, так как интеграл по вертикальным сторонам 0.

А потом сложить это с областями типа x.

Билет № 45: Классическая формула Стокса

Теорема 1. Пусть M- компактная ориентируемая поверхность в \mathbb{R}^3 с краем, F- гладкое векторное поле. Тогда

$$\iint_{M} \langle \operatorname{rot} F, n \rangle \, \mathrm{d}S = \oint_{\partial M} \langle F, \tau \rangle \, \mathrm{d}s$$

□ Поскольку всё еще непонятно, что есть интеграл от формы по непростому многообразию, придётся ограничиться простыми.

Пусть F = (P, Q, R), N = (A, B, C). Здесь можно снова занулить Q, R. Тогда

rot
$$Fn = \frac{1}{|N|} \langle (0, P_z, -P_y), N \rangle = \frac{1}{|N|} (P_z B - P_y C)$$

Тперь про вторую половину.

$$\oint_{\Gamma} \langle F, \tau \rangle \, \mathrm{d}s = \oint_{\widetilde{\Gamma}} Px_u \, \mathrm{d}u + Px_v \, \mathrm{d}v = \oint_{\widetilde{\Gamma}} \widetilde{\omega}$$

Здесь мы довольно коварно перешли от границы многообразия к границе пространства параметров. И ещё одна проблема как будто возникает из-за того, что в определении многообразия с границей граница вроде не замкнута. Да и вообще прямая. Впрочем, это лечится инверсией. А вот что делать бесконечностью — непонятно. Разве что сказать, что одна точка имеет меру ноль.

Ладно, тут пользуемся теоремой 2.44.1, и получим первую половину.

Билет № 46: Формула Гаусса-Остроградского

Теорема 1. Пусть V — компактное тело в \mathbb{R}^3 с гладкой границей (гладким подмногообразием \mathbb{R}^3). Нормаль выберем «наружу». Тогда

$$\iint_{M} \langle F, n \rangle \, \mathrm{d}S = \iiint_{V} \mathrm{div} \, F \, \mathrm{d}V$$

 $^{^{1}}$ $\rm HeT$

□ Идейно мало чем отличается от теоремы Грина. Тоже разбиваем всё на области с вертикальными гранями, а потом складываем. ■

Все равно все эти теоремы никому не нужны, а лучше пользоваться абстрактной формулой Стокса

$$\int_{\partial M} \omega = \int_{M} \mathrm{d}\omega$$

Билет № 47: Физический смысл дивергенции и ротора

Дивергенция — удельный (по объему) поток через через бесконечно малую поверхность. С ротором — сложно. Можно представить себе как-то так. Выделим контур (в жидкости) и заморизим всё, кроме него. Тогда средняя скорость (усреднённая по площади!) будет чем-то вроде ротора.

См Фейнмановские лекции по физике, том 5 или 6. Который про магнетизм.

Билет № 48: Разные векторные поля

Попробуем в красивые таблички: 2.1

Из нечетных условий следуют чётные. Наоборот работает лишь там, где любая петля стягивается в точку.

Билет № 49: Примеры полей с разными свойствами

вот тут уже точно по методичке Лодкина.

Таблица 2.1: Разные поля

Название	F	ω_F	$\int \omega_F$
Потенциальное	$F = \operatorname{grad} \Phi$	точна, $p = 1$	ноль для любой петли. Следует хоть из Ньютона- Лейбница.
Безвихревое	$\operatorname{rot} F = 0$	замкнута, $p=1$	ноль для петель, что граница какойнибудь поверхности. Можно проверить через формулу Стокса (2.45.1)
Соленоидальное	$F = \operatorname{rot} B$	точна, $p=2$	$\iint_{M} \omega = 0,$ $M - 3a$ - мкнута. Проверя- ется тоже через Сток- са, но в другую сторону.
Безвихревое	$\operatorname{div} F = 0$	замкнута, $p=2$	ноль, для поверхностей, являющихся краем трехмерных многобразий. Проверяется через Гаусса-Остроградско (2.46.1)

Глава 3: Анализ Фурье 🛠

Билет № 50: Гильбертово пространство. \mathcal{L}_2

Определение 1. Пусть H — линейное пространство над полем \mathbb{C} . Введём на нём (эрмитово) скалярное произведение, связанную с ним норму и метрику. Допустим, оно полно по введённой метрике. Тогда H — гильбертово пространство.

Замечание 1. Если полноты нет, то пространство называется предгильбертовым.

Утверждение 1. Скалярное произведение — непрерывно.

Пример 1. Пусть (X,μ) — пространство с мерой. Рассмотрим пространство \widetilde{L}

$$\widetilde{L}:=\left\{f\; \left|\; f\colon X o\mathbb{C},\; \text{измерима}, \int_X|f|^2\,\mathrm{d}\mu<\infty
ight\}$$

Скалярное произведение зададим так:

$$\langle f, g \rangle = \int_X f \cdot \overline{g} \, \mathrm{d}\mu$$

Введем теперь отношение эквивалентности $f \sim g := f = g$ п.в. . Тогда $\mathcal{L}_2 = \widetilde{L}/_{\sim}$.

Теорема 2. \mathcal{L}_2 полно по мере, введённой выше.

Билет № 51: Ортогональные системы. Ряд Фурье в гильбертовом пространстве.

Определение 1.
$$\delta_{ij} \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Определение 2. Пусть H — гильбертово. Рассмотрим $f_1, \ldots, f_n \in H$. Допустим, $\langle f_i, f_j \rangle = \delta_{ij}$. Тогда (f_i) — ортогональная система.

Теорема 1 (Пифагора $\langle \stackrel{\sim}{\sim} \rangle$). Пусть (f_i) — ортогональная система. Допустим, $f = \sum_k f_k$. Тогда

$$||f||^2 = \sum_k ||f_k||^2$$

Определение 3. Пусть (e_i) — ортогональная система, $f \in H$. Тогда

$$c_n = \left\langle f, \frac{e_n}{\|e_n\|} \right\rangle$$
 — коэффициенты Фурье f $f = \sum_k c_k e_k$ — ряд Фурье f

Теорема 2 (Неравенсто Бессля). Пусть $f \in H$, (e_i) — ортогональная система. Тогда

$$\sum_{n} |c_n|^2 ||e_n||^2 \leqslant ||f||^2$$

Определение 4. Пусть (e_i) — ортогональная система. Допустим

$$\forall f \in \mathcal{L}_2 :: f \sim \sum_n c_n e_n$$

Тогда (e_i) — полная система.

Утверждение 3. Разложение в ряд Фурье по полной ортогональной системе — $e \partial u$ нственно.

Билет № 52: Тригонометрические системы

Определение 1. $\mathcal{L}_2^{2\pi} = \mathcal{L}_2((0; 2\pi), \mu) \cap \{2\pi$ -периодичные функции $\}$.

Утверждение 1. $1, \cos x, \sin x, \cos 2x, \ldots$ – ортогональная система

Утверждение 2. $1, e^x, e^{2x}, \ldots - opmoгoнальная система$

Теорема 3. Тригонометрические системы выше — полны.

□ ⟨?⟩Вообще, тут большой кусок теории. ■

Определение 2. Будем понимать

$$\sum_{-\infty}^{\infty} a_n := V. p. \sum_{-\infty}^{\infty} a_n = \lim_{N \to +\infty} \sum_{-N}^{N} a_n$$

Утверждение 4. Коэффициенты разложения по синусам и косинусам:

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos nx \, dx \ (n \ge 1)$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin nx \, dx \ (n \ge 1)$$

$$a_0 = \frac{1}{2\pi} \int_0^{2\pi} f(x) \, dx$$

$$\widetilde{a_0} = \frac{1}{\pi} \int_0^{2\pi} f(x) \, dx = 2a_0$$

$$\infty$$

$$f(x) \sim a_0 + \sum_{k=1}^{\infty} a_k \cos nx + \sum_{k=1}^{\infty} b_k \sin nx$$

Утверждение 5. Коэффициенты разложения по экспонентам:

$$c_n = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx$$
$$f(x) \sim \sum_{k=-\infty}^{\infty} c_n e^{inx}$$

Билет № 53: Ядро Дирихле. Лемма Римана-Лебега

Определение 1 (Ядро Дирихле). $\mathcal{D}_n(x) := \sum_{-n}^n e^{ikx}$

Лемма 1 (Свойства ядра Дирихле).

1.
$$\mathcal{D}_n(-x) = \mathcal{D}(x)$$

2.
$$\mathcal{D}_n(x) = \frac{\sin(n+1/2)x}{\sin\frac{x}{2}}$$

3. всякие следствия отсюда

Определение 2 (Ядро Фейера). $\mathcal{F}_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} \mathcal{D}_k(x)$

Лемма 2 (Свойства ядра Фейера).

1.
$$\mathcal{F}_n(-x) = \mathcal{F}(x)$$

2.
$$\mathcal{F}_n(x) = \frac{1}{n} \cdot \frac{\sin^2\left(\frac{nx}{2}\right)}{\sin^2\frac{x}{2}}$$

3. всякие следствия отсюда

Лемма 3 (Римана-Лебега). Пусть $f \in \mathcal{L}(\mathbb{R})$. Тогда

$$\int_{-\infty}^{+\infty} f(x) \sin nx \, x \xrightarrow[n \to \infty]{} 0$$

$$\int_{-\infty}^{+\infty} f(x) \cos nx \, x \xrightarrow[n \to \infty]{} 0$$

$$\int_{-\infty}^{+\infty} f(x) e^{-inx} \, x \xrightarrow[n \to \infty]{} 0$$

Билет № 54: Теорема Дини о поточечной сходимости

Теорема 1 (Дини). Пусть $f \in \mathcal{L}_2^{2\pi}$, $x \in \mathbb{R}$. Допустим, f удовлетворяет условию Дини:

$$\exists L \in \mathbb{C}, \delta > 0 :: u \in \mathcal{L}((0; \delta)), u(t) = \frac{f(x+t) + f(x-t) - 2L}{t}$$

Tог ∂a

$$S_n(x) = \sum_{k=-n}^{n} c_n e^{ikx} \xrightarrow[n \to \infty]{} L$$

Утверждение 2. Частные случаи условия Дини:

- 1. $\exists \ конечные \ f(x \pm 0), \ f'(x \pm 0). \ \Pi pu \ этом \ L = \frac{1}{2}(f(x + 0) + f(x 0)).$
- 2. f непрерывна в x, \exists конечные $f'(x\pm 0)$. При этом L=f(x).
- 3. f дифференцируема в x. При этом L = f(x).

Билет № 55: Свойства коэффициентов Фурье

Обозначение. $\widehat{f}(n) := c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, e^{-inx} \, \mathrm{d}x$

Утверждение 1. $f \in \mathcal{L}_2^{2\pi} \Rightarrow \widehat{f}(n) \xrightarrow[n \to \infty]{} 0$

Утверждение 2. Пусть $\exists f' \in \mathcal{L}_2^{2\pi}$. Тогда

• $\widehat{f}'(n) = in\widehat{f}(n)$

• $\widehat{f}(n) = o\left(\frac{1}{n}\right), n \to \infty$

Утверждение 3. Пусть $\exists f^{(p)} \in \mathcal{L}_2^{2\pi}$. Тогда

• $\widehat{f^{(p)}}(n) = (in)^p \cdot \widehat{f'}(n)$

• $\widehat{f}(n) = o\left(\frac{1}{n^p}\right), n \to \infty$

Утверждение 4. Пусть $c_n = O\left(\frac{1}{n^{p+2}}\right)$. Тогда $\exists \, \varphi \in C^p_{2\pi} \, :: \, \varphi \sim f$.

Билет № 56: Сходимость рядов Фурье..

1°
$$f \in \mathcal{L}_1^{2\pi} \Rightarrow \forall \Delta \subset [-\pi, \pi] :: \int_{\Delta} f(x) \, \mathrm{d}x = \sum_{-\infty}^{\infty} \widehat{f}(n) \int_{\Delta} e^{inx} \, \mathrm{d}x.$$

 $2^{\circ} f \in \mathcal{L}^{2\pi}_{1} \Rightarrow c_{n}$ определены.

 $3^{\circ} \ f \in \mathcal{L}_{2}^{2\pi} \Rightarrow ||S_{n} - f|| \to 0.$

 $4^{\circ} \ f \in C^{(p)} \Rightarrow c_n$ быстро убывают.

5° c_n быстро убывают $\Rightarrow f \in C^{(p)}$.

 6° теорема Дини 3.54.1

 7° теорема Фейера 3.56.1

Теорема 1 (Фейера). Пусть $f \in C^{2\pi}$. Тогда $\sigma_n \stackrel{\mathbb{R}}{\Longrightarrow} f$, где $\sigma_n = \frac{1}{n} \sum_{k=0}^{n-1} S_k$. (сходимость по Чезаро).

Билет № 57: Преобразование Фурье

Определение 1. Пусть $f \in \mathcal{L}_1(\mathbb{R})$. Тогда

$$\widehat{f}(s) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} f(x) e^{-isx} \, \mathrm{d}x$$

38

1. $|\widehat{f}(s)| \leq \frac{1}{2\pi} ||f||_1$.

2. $\hat{f}(s) \in C^0$.

3. $\left(g(x) = x^n f(x) \in \mathcal{L}_1\right) \Rightarrow \widehat{f}(s) \in C^{(n)}$.

4.
$$\widehat{f}(s) \xrightarrow[s \to \infty]{} 0$$
.

5.
$$\left(f \in C^{(p)}, f^{(p)} \in \mathcal{L}_1 \right) \Rightarrow \widehat{f}(s) = o\left(\frac{1}{|s|^p} \right)$$
.

6.
$$f \in \mathcal{L}_1, a \in \mathbb{R}, g(x) = f(x - a) \Rightarrow \widehat{g}(s) = e^{-isa} \widehat{f}(s)$$

7. $f,g \in \mathcal{L}_1$. Тогда

$$\widehat{f * g}(s) = 2\pi \left(\widehat{f}(s) \cdot \widehat{g}(s)\right)$$

8. Интегральная формула Фурье 3.57.1

Теорема 1 (формула восстановления Дини). Пусть $f \in \mathcal{L}_1(\mathbb{R}), x \in \mathbb{R}, L \in \mathbb{C}$ 1. Допустим f удовлетворяет условию Дини в точке x c константой L. Тогда

$$\dot{\hat{f}}(x) = L$$

Для непрерывных функций

$$f(x) = V. p. \int_{-\infty}^{+\infty} \widehat{f}(s) e^{isx} dx$$

Билет № 58: Решение уравнения теплопроводности

Само уравнение теплопроводности выглядит так:

$$\frac{\partial u}{\partial t} = a^2 \cdot \frac{\partial^2 u}{\partial x^2}$$

Но к нему ещё есть пара начальных условий:

$$u(x,0) = f(x)$$
$$f \in \mathcal{L} \qquad f \in C_x^2$$

⟨❤⟩: <+решить что-ли..+>

В итоге получится что-то вроде

$$u(x,t) = \frac{1}{2a\sqrt{\pi t}} \cdot \int_{-\infty}^{+\infty} \exp\left(-\frac{(x-y)^2}{4a^2t}\right) \cdot f(y) \,\mathrm{d}y$$

 $^{^1\}mathrm{Тут}$ по идее все можно в $\mathbb C$

Глава А: Обозначения

Обозначения с лекции

a := b — определение a.

$$\bigsqcup_k A_k$$
 — объединение дизъюнктных множеств.

 \mathcal{A} — Алгебра множеств

 \overline{A} — Замыкание A.

 $A^c - X \setminus A$.

Нестандартные обозначения

- $\langle \mathbf{x} \rangle$ ещё правится. Впрочем, относится почти ко всему.
- $\square \cdots \blacksquare$ начало и конец доказательства теоремы
- lacktriangledown начало и конец доказательства более мелкого утверждения
- $\langle \ddot{\sim} \rangle$ кривоватая формулировка

⟨:set aflame⟩ — набирающему зело не нравится билет

<+что-то+> — тут будет что-то, но попозже

$$a \dots b - [a;b] \cap \mathbb{Z}$$

- штуки эквивалентны. Часто используется в этом смысле в определениях, когда вводится два разных обозначения одного и того же объекта.
- :: В кванторах, «верно, что»
- $\mathcal{A}_{\!\sigma}$ Сигма-алгебра множеств

 $f \colon A \leftrightarrow B$ —биекция