

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Computação Natural 2019/2020

Paulo Novais, Cesar Analide, Filipe Gonçalves

Computação Natural@ 2019/2020

- Paulo Novais pjon@di.uminho.pt
- Cesar Analide <u>cesar.analide@di.uminho.pt</u>
- Filipe Gonçalves <u>fgoncalves@algoritmi.uminho.pt</u>
- Departamento de Informática Escola de Engenharia Universidade do Minho
- Grupo ISLab (Synthetic Intelligence Lab)
- Centro ALGORITMI
 Universidade do Minho

Exercise 1: Digit Recognizer / MNIST

- The dataset consists of handwritten digits images:
- Images (28 pixels x 28 pixels = 784 pixels)
- Class (integer): [0-9]
- Dataset: https://www.kaggle.com/c/digit-recognizer/data
- Target: Classify the number that represents the handwritten digits images by applying ANN (on tensorflow)
 - Use Jupyter Notebook for a step-by-step Support (found in e-learning)
 - Code Support: https://www.kaggle.com/ngbolin/mnist-dataset-digit-recognizer

Exercise 2: Bank Note Authentication

- The dataset consists of 5 columns:
- Variance of Wavelet Transformed image (continuous)
- Skewness of Wavelet Transformed image (continuous)
- Curtosis of Wavelet Transformed image (continuous)
- Entropy of image (continuous)
- Class (integer): [0-1]
- Dataset: Found in e-learning
- Target: Classify if the Bank Note is authentic (or not) by applying ANN (on tensorflow)
 - Use Jupyter Notebook for a step-by-step Support (found in e-learning)

Exercise 3: Iris Plants Recognition

- The dataset consists of several flower species and their respective characteristics:
- Sepal Length/Width (continuous)
- Petal Length / Width (continuous)
- Class (String): Type of Flower (1 of 3)
- Dataset: https://www.kaggle.com/uciml/iris
- Target: Classify the plant species by applying ANN (on tensorflow)
 - Code Support:
 https://www.kaggle.com/mchirico/tensorflow-on-iris

Exercise 4: Clothes Recognizer / Fashion MNIST

- The dataset consists of black and white clothes images:
- Images
- Class (integer): [0-9]
- Dataset: https://www.kaggle.com/zalando-research/fashionmnist
- Target: Classify the cloth type by applying ANN (on tensorflow)
 - Convolution Neural Networks: https://www.youtube.com/watch?v=FmpDlaiM
 https://watch?v=FmpDlaiM
 https://watch?v=FmpDlaiM
 https://watch?v=FmpDlaiM
 https://watch?v=FmpDlaiM
 https://www.youtube.com/watch?v=
 - Code Support: https://www.tensorflow.org/tutorials/keras/cl assification

Label	Description
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Mestrado Integrado em Engenharia Informática Mestrado em Engenharia Informática Computação Natural 2019/2020

Paulo Novais, Cesar Analide, Filipe Gonçalves