Dr. N. Zerf

1. Übungsblatt

Abgabe in den Tutorien 24.10.2016 Besprechung in den Tutorien 31.10.2016

Aufgabe 1.1 (6 Punkte):

Berechnen Sie jeweils die erste Ableitung der folgenden Funktionen und vereinfachen Sie die Resultate so weit wie möglich:

a)
$$f(x) = \ln(1 + x^2)$$

b)
$$f(x) = \sqrt{x^2 + a}, \quad a \in \mathbb{R}$$

c)
$$f(x) = \frac{x^2}{\sqrt{x^2 + 1} + 1}$$

$$d) f(x) = \arcsin x$$

e)
$$f(x) = (x^x)^x$$
, $x \in \mathbb{R}^+$

f)
$$f(x) = x^{(x^x)}, x \in \mathbb{R}^+$$

Aufgabe 1.2 (10 Punkte):

Bestimmen Sie eine Stammfunktion von

a)
$$f(x) = 2x^2 + \sqrt{x} + \frac{1}{x} + e^{7x}$$

$$f(x) = x^2 \sin x$$

c)
$$f(x) = x \cos(x^2)$$

d)
$$f(x) = \frac{1}{a^2 + x^2}$$
, $a \in \mathbb{R}$

e)
$$f(x) = \arctan x$$

Hinweis: Zu Aufgabe e): Integrieren Sie zunächst einmal partiell. Danach können Sie durch eine einfache Substitution der Variablen das Integral lösen.

Aufgabe 1.3 (4 Punkte):

Die Beschleunigung eines Teilchens sei gegeben durch

$$a(t) = a_0 \cos(\omega t)$$

Zum Zeitpunkt $t_0 = 0$ habe das Teilchen eine Geschwindigkeit $v_0 = 0$ und befinde sich am Ort x_0 .

- a) Berechnen Sie Geschwindigkeit und Ort des Teilchens als Funktion von t.
- b) Berechnen Sie die mittlere Geschwindigkeit $\overline{v}(T)$ und die mittlere Position $\overline{x}(T)$ des Teilchens im Zeitintervall $t=0\ldots T$ als Funktion von T. $\overline{v}(T)$ ist dabei definiert durch $\overline{v}(T)=\frac{1}{T}\int_0^T v(t)\,\mathrm{d}t$ und analog für $\overline{x}(T)$. Was ist der Grenzwert von $\overline{v}(T)$ und $\overline{x}(T)$ für $T\to\infty$? Hinweis: Eine sorgfältige Skizze von x(t) und v(t) hilft bei der physikalischen Intuition für die zeitliche Mittelung.