

COMET: Commonsense Transformers for Automatic Knowledge Graph Construction

Autorzy artykułu: Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz, Yejin Choi

Wstęp

Dotychczasowe podejścia do automatycznej konstrukcji bazy wiedzy (KB) działają w oparciu o encyklopedyczną wiedzę z dobrze zdefiniowaną przestrzenią encji i relacji. Niestety, Wiedza zdroworozsądkowa nie jest dostosowana do schematu wiązania dwóch encji przez znane relacje. Dlatego aktualne rozwiązania w problemie konstrukcji KB modelują encje jako frazy w języku naturalnym, a relacje jako dowolne koncepcje je wiążące. To podejście też ma ograniczone zastosowanie w modelowaniu wiedzy zdroworozsądkowej, ponieważ ta jest często pozostawiona w domyśle. Prezentowane podejście COMET próbuje rozwiązać ten problem przez uczenie się reprezentacji przez modele językowe dużej skali. Celem COMET jest identyfikacja nowych wierzchołków w bazie wiedzy i relacji pomiędzy nimi (zgodnych z podanym zbiorem krotek). Następnie opracowano sposób uczenia modeli NLP dużej-skali aby tworzyły krotki wiedzy zdroworozsądkowej.

Architektura COMET

COMET bazuje na architekturze modelu językowego GPT, który jest oparty na transformerze, który w zamian używa mechanizmu atencji w wariancie multi-head. Wspomniane mechanizmy są przedstawione na poniższym diagramie i równaniach.

Rysunek 1: Architektura COMET

$$\begin{split} \text{Attention}(Q,K,V) &= \text{softmax}\bigg(\frac{QK^T}{\sqrt{d_k}}\bigg)V \\ \text{Multih}(Q,K,V) &= [H_1;...;H_b]W^O \\ H_i &= \text{Attention}(QW_i^Q,KW_i^K,VW_i^V) \\ \text{Multiattn}(h_t^{l-1}) &= \text{Multih}(h_t^{l-1},\mathbf{h}_t^{l-1},\mathbf{h}_t^{l-1}) \end{split}$$

Równania 1, 2, 3, 4: Mechanizm atencji

ATOMIC Input Template and ConceptNet Relation-only Input Template

s tokens	mask tokens	r token	o tokens
PersonX goes to	the mall [MASK	1 <xintent></xintent>	to buy clothes

ConceptNet Relation to Language Input Template

		s tokens	mask tokens	r tokens	mask tokens	o tokens
--	--	----------	-------------	----------	-------------	----------

go to mall [MASK] [MASK] has prerequisite [MASK] have money

Rysunek 2: Wejście modelu (word + position embedding)

Proces uczenia

Dla podmiotu S i relacji R, COMET przewiduje możliwe dopełnienie O. Jako wejście podawane są wektory słów (Glove) wraz z kodowaniem pozycyjnym. Dla zbioru ATOMIC, specjalne słowo "[MASK]" oddziela podmiot od relacji i orzeczenia. Relacje to słowa w formacie "<name>". Parametry takie same jak w oryginalnym GPT. Funkcja celu: maksymalizacja log-likelihood wystąpienia słowa x(t) po słowie x(t-1).

$$\mathcal{L} = -\sum_{t=|s|+|r|}^{|s|+|r|+|o|} \log P(x_t|x_{< t})$$

Równanie 5: Funkcja celu max (warunkowy log-likelihood)

Eksperymenty

Wykonano eksperymenty na dwóch zbiorach danych: ATOMIC i ConceptNet. Pierwszy składający się z 877 tysięcy krotek opisujących społeczną wiedzę zdroworozsądkową dla danych wydarzeń (np. dla "X goes to the store" zachodzi "X needs to drive there", "to get food", itd.). Podział (710K/80K/87K). Miara jakości BLEU-2, perplexity, % wygenerowanych krotek z nową wiedzą (tabela 1) i ludzkie oceny uzyskane z Amazon Mechanical Turk (tabela 2). Wyniki na drugim zbiorze pominięte dla zwięzłości.

Model	PPL^5	BLEU-2	$N/T sro^6$	N/T o	N/U o
9ENC9DEC (Sap et al., 2019)	-	10.01	100.00	8.61	40.77
NearestNeighbor (Sap et al., 2019)	_	6.61	_	1=	-
Event2(IN)VOLUN (Sap et al., 2019)	-	9.67	100.00	9.52	45.06
Event2PERSONX/Y (Sap et al., 2019)	-	9.24	100.00	8.22	41.66
Event2PRE/POST (Sap et al., 2019)	-	9.93	100.00	7.38	41.99
COMET (- pretrain) COMET	15.42 11.14	13.88 15.10	100.00 100.00	7.25 9.71	45.71 51.20

Tabela 1: Wartości wybranych miar dla zbioru ATOMIC

Model	Avg	
9Enc9Dec (Sap et al., 2019)	45.32	
Event2(In)voluntary (Sap et al., 2019)	47.93	
Event2PersonX/Y (Sap et al., 2019)	46.41	
Event2Pre/Post (Sap et al., 2019)	46.76	
COMET (- pretrain)	49.50	
COMET	56.45	

Tabela 2: Średnie wyniki ludzkiej ewaluacji

Seed Concept	Relation	Generated	Plausible	
X holds out X's hand to Y	xAttr	helpful	✓	
X meets Y eyes	xAttr	intense	✓	
X watches Y every	xAttr	observant	✓	
X eats red meat	xEffect	gets fat	✓	
X makes crafts	xEffect	gets dirty	✓	
X turns X's phone	xEffect	gets a text		
X pours over Y's head	oEffect	gets hurt	✓	
X takes Y's head off	oEffect	bleeds	✓	
X pisses on Y's bonfire	oEffect	gets burned		
X spoils somebody rotten	xIntent	to be mean		
X gives Y some pills	xIntent	to help	✓	
X provides for Y's needs	xIntent	to be helpful	✓	

Tabela 3: Losowo wybrane dopełnienia (novel) dla krotek ze zbioru walidacyjnego (ATOMIC)