Boudjémâa Salah & Max Fillere Encadrant: Johan Arcile

Travail d'Étude et de Recherche

Identification d'états se répétant infiniment souvent dans les structures de Kripke

Sommaire

- 1 Structure de Kripke
- ² Directed Feedback Vertex Set
- 3 Implémentation
- 4 Calcul des cycles
- ⁵ État infini
- Groupe d'états infinis
- 7 Résultat et Conclusion

K = (Q, q0, T, AP, L)

$$K = (Q, q0, T, AP, L)$$

 $Q = \{1, 2, 3\}$

$$K = (Q, q0, T, AP, L)$$

$$Q = \{1, 2, 3\}$$

$$q0 = 1$$

$$K = (Q, q0, T, AP, L)$$

$$Q = \{1, 2, 3\}$$

$$q0 = 1$$

$$T = \{(1,2),(2,1),(2,3),(3,3)\}$$

$$K = (Q, q0, T, AP, L)$$

$$Q = \{1, 2, 3\}$$

$$q0 = 1$$

$$T = \{(1,2),(2,1),(2,3),(3,3)\}$$

$$AP = \{e,b\}$$


```
K = (Q, q0, T, AP, L)
Q = {1, 2, 3}
q0 = 1
T = {(1,2),(2,1),(2,3),(3,3)}
AP = {e,b}
L = {1 : ø, 2 : {e}, 3 : {e,b} }
```

Graphe orienté

Chaque état possède au moins une transition sortante

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver $S \subseteq V$ minimal tel que $G \setminus S$ soit acyclique

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver S ⊆ V minimal tel que G\S soit acyclique

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver $S \subseteq V$ minimal tel que $G \setminus S$ soit acyclique

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver $S \subseteq V$ minimal tel que $G \setminus S$ soit acyclique

1 est présent infiniment souvent

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver $S \subseteq V$ minimal tel que $G \setminus S$ soit acyclique

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver S ⊆ V minimal tel que G\S soit acyclique

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver S ⊆ V minimal tel que G\S soit acyclique

Dans un graphe G=(V,E)

V : ensemble des sommets

E: ensemble des arcs

Trouver $S \subseteq V$ minimal tel que $G \setminus S$ soit acyclique

Dans un graphe G=(V,E)

V : ensemble des sommets

E : ensemble des arcs

Trouver $S \subseteq V$ minimal tel que $G \setminus S$ soit acyclique

1 et 2 sont présents infiniment souvent

Graphe([1,2,3], {1:[2],2:[3],3:[1]},1)

Calcul des cycles

Calcul des cycles

Calcul des cycles


```
Chemin = [etat_initial]
                             (E, i):
Pile = [(etat_initial,0)]
                              E: état étudié.
Tant que pile non vide :
                              i: rang de son voisin V
   Dépiler
                              dans sa liste de voisins
   (E,i) = élément dépilé
   Si E à au moins i voisins :
       Empiler (E,i+1)
       Si V dans le chemin : # cycle détecté
           Si cycle inconnu:
             Cycles += sous liste du chemin [V:fin]
        Sinon:
          Ajouter V au chemin
          Empiler (V,0)
    Sinon:
     Dépiler le chemin
Retourner Cycles
```


Calcul des cycles


```
Chemin = [etat_initial]
                              (E, i):
Pile = [(etat_initial,0)]
                              E: état étudié.
Tant que pile non vide :
                              i: rang de son voisin V
   Dépiler
                              dans sa liste de voisins
   (E,i) = élément dépilé
    Si E à au moins i voisins :
       Empiler (E,i+1)
       Si V dans le chemin : # cycle détecté
           Si cycle inconnu:
             Cycles += sous liste du chemin [V:fin]
        Sinon:
          Ajouter V au chemin
          Empiler (V,0)
    Sinon:
     Dépiler le chemin
Retourner Cycles
```


Calcul des cycles


```
Chemin = [etat_initial]
                              (E, i):
Pile = [(etat_initial,0)]
                              E: état étudié.
Tant que pile non vide :
                              i: rang de son voisin V
   Dépiler
                              dans sa liste de voisins
   (E,i) = élément dépilé
    Si E à au moins i voisins :
       Empiler (E,i+1)
       Si V dans le chemin : # cycle détecté
           Si cycle inconnu:
             Cycles += sous liste du chemin [V:fin]
        Sinon:
          Ajouter V au chemin
          Empiler (V,0)
    Sinon:
     Dépiler le chemin
Retourner Cycles
```


Calcul des cycles


```
Chemin = [etat_initial]
                              (E, i):
Pile = [(etat_initial,0)]
                              E: état étudié.
Tant que pile non vide :
                              i: rang de son voisin V
   Dépiler
                              dans sa liste de voisins
   (E,i) = élément dépilé
    Si E à au moins i voisins :
       Empiler (E,i+1)
       Si V dans le chemin : # cycle détecté
           Si cycle inconnu:
             Cycles += sous liste du chemin [V:fin]
        Sinon:
          Ajouter V au chemin
          Empiler (V,0)
    Sinon:
     Dépiler le chemin
Retourner Cycles
```


État infini

État infini

État infini

État infini

Groupe d'états infinis

Groupe d'états infinis

Groupe d'états infinis

Objectif: Trouver un groupe d'états présents infiniment souvent

Tant que graphe cyclique:

Choisir état parmi états dans cycles Supprimer les cycles contenant cet état

> L'état choisi est celui avec le plus de transitions sortantes

Groupe d'états infinis

Objectif: Trouver un groupe d'états présents infiniment souvent

Tant que graphe cyclique :

Choisir état parmi états dans cycles Supprimer les cycles contenant cet état

> L'état choisi est celui avec le plus de transitions sortantes

Cycles: [123456, 12756, 567, 12]

t	1	
états		
choisis	2	
cycles	[567]	
restants	[507]	
groupe retourné	[2]	

Groupe d'états infinis

Objectif: Trouver un groupe d'états présents infiniment souvent

Tant que graphe cyclique :

Choisir état parmi états dans cycles Supprimer les cycles contenant cet état

> L'état choisi est celui avec le plus de transitions sortantes

Cycles: [123456, 12756, 567, 12]

t	1	2
états		6
choisis	2	6
cycles	[567]	П
restants		L.J
groupe	[2]	ra 61
retourné		[2, 6]

Groupe d'états infinis

Objectif: Trouver un groupe d'états présents infiniment souvent

Cycles : [123456, 12756, 567, 12]

t	1	2
états choisis	2	6
cycles restants	[567]	[]
groupe retourné	[2]	[2, 6]

Résultats & Conclusion

Solution répondant à la problématique

Meilleure que le brute-force

Améliorations possibles

