Prihang Ideal: abeQ, $aeQ \implies b^n eQ$ for some $n \ge 1$.

[primes one pinnows]

Q = R prinny = in R/Q zero divisors = nilpotents.

Ex: R=Z>(0) is prinary. If $I\neq (0)$, $I\subsetneq Z$ is prinary than $I=p^kZ$ for some $K\geqslant 1$.

Pf I=nZ. $n\geq 2$. Z/nZ: "Zero divisor" \iff "divious n"

nilpotent means $n|t^{K}$ for some $K\Rightarrow$ $\forall d < t \cdot d|n$, $\exists k \text{ s.t. } n|d^{K}$. $\forall k \in d=p$ which dividus n.

So p|n, $n|p^{K}\Rightarrow n=p'$.

Ex. $(4, t) \subset \mathbb{Z}[t]$. $\mathbb{Z}^{(t)} = \mathbb{Z}_{4\mathbb{Z}}$ which has all zerolivisors nilpotent.

 $| N Z_j \qquad n = P_1^{k_1} \cdots P_\ell^{k_\ell}$

Want to say: in R noetherism, even ideal $I=Q, nQ_2, \dots, Q_k$ This representation is unique up to $k \in \mathbb{R}$.

Preducible ideal: ICR is irreducible if I=I, n12 => I=I, or I=I2.

Lema: In a noetherian vivy, every ideal is a finite intersection of irreducible ideals.

I = { I Cannot be written as a finite intersection of irred. ideals}

If Σ is non-empty tuen Σ has a max'l element say $J \in \Sigma$. $J = J \Rightarrow J$ is not irreducible. $J = J_1 \cap J_2 = I_1 \cap J_2 = J_1 = I_2 = I_2 \cap I_2 = I_2 \cap I_2 = I_2 \cap I_2 \cap I_2 = I_2 \cap I_2 \cap I_2 \cap I_2 = I_2 \cap I_2 \cap I_2 \cap I_2 = I_2 \cap I_2 \cap$

Lemma: R: Noetherian I&R irreducible => I is primary-

Pf (Replace R by R/I)

Given: (0) $\subset R$ is irreducible. To prove: (0) is privary $(ab = 0, a \neq 0 \implies b^m = 0)$

Form a cham of ideals: Ann(bi) = {reR: rbi=0}.

 $A_{NN}(b) \subset A_{NN}(b^2) \subset \cdots \subset A_{NN}(b^4) = A_{NN}(b^{471})$ $R_{NN}(b) \subset A_{NN}(b^2) \subset \cdots \subset A_{NN}(b^4) = A_{NN}$

Clum: $(0) = (a) \cap (b^{\ell})$

If $\xi \in (a) \Rightarrow b\xi = 0$ $\xi \in (b^{\ell}) \Rightarrow \xi = cb^{\ell}$ $\Rightarrow cb^{\ell+1} = 0$ $\Rightarrow c \in A_{NN}(b^{\ell+1})$ $\Rightarrow c \in A_{NN}(b^{\ell})$ $\Rightarrow \xi = cb^{\ell} = 0$.

So (a) \neq (0) \Rightarrow (b) =(0) so b=0.

If $I \subset R$ is an ideal trun $Rad(I) = \{x \in R : x^n \in I \text{ for some } n \ge 1\}$

Uniqueness. Rad(Q;) is prime & {P,,..., P, } is uniquely determined by I.

$$(x^2, xz, z^2) = (x, z)^2$$
 and (x, z) is prime.