

复旦微电子

FM1702/1704/1705 通用读卡机芯片

技术手册

2011.07

本资料是为了让用户根据用途选择合适的上海复旦微电子集团股份有限公司(以下简称复旦微电子)的产品而提供的参考资料,不转让属于复旦微电子或者第三者所有的知识产权以及其他权利的许可。在使用本资料所记载的信息最终做出有关信息和产品是否适用的判断前,请您务必将所有信息作为一个整体系统来进行评价。由于本资料所记载的信息而引起的损害、责任问题或者其他损失,复旦微电子将不承担责任。复旦微电子的产品不用于化学、救生及生命维持系统。未经复旦微电子的许可、不得翻印或者复制全部或部分本资料的内容。

许可、不得翻印或者复制全部或部分本资料的内容。 今后日常的产品更新会在适当的时候发布,恕不另行通知。 在购买本资料所记载的产品时,请预先向复旦微电子在当地的销售办事处确认最新信息,并请您通过各种方式关注复旦微电子公布的信息,包括复旦微电子的网站(http://www.fmsh.com/)。

如果您需要了解有关本资料所记载的信息或产品的详情,请与上海复旦微电子集团股份有限公司在当地的销售办事处联系。

商标

上海复旦微电子集团股份有限公司的公司名称、徽标以及"复旦"徽标均为上海复旦微电子集团股份有限公司及其分公司在中国的商标或注册商标。

上海复旦微电子集团股份有限公司在中国发布, 版权所有。

上海复旦微电子集团股份有限公司

版本列表

日期	版本号	简要描述	
2011-07	1.0.00	1. 公司更名为"上海复旦微电子集团股份有限公司"	
2008-11	0.0.02	1. 修改格式	
2008-09	0.0.01	1. 修改笔误	
2005-11	0.0.00	1. 初始版本	

HANNE TINIE TO THE REPORT OF THE PARTY OF TH

目 录

版	饭本列表	3
E	目 录	4
1	l 概述	8
2	** -	×^ X
3		
	3.1 管脚配置 3.2 管脚描述	10
	11	
4		12
	4.1 支持的微处理器接口概述	12
	4.2 自动侦测微处理器接口类型 4.3 不同类型微处理器接口连接关系	12
	4.3 不同类型微处理器接口连接关系	12
	4.3.1 独立的读/ 与达进模式	
	4.3.2 通用的读/写选通模式	
	4.3.3 握手联络方式下的通用读/写选通模式(EPP)	
_		
5	5 FM1702/1704/1705 寄存器组	17
	5.1 FM1702/1704/1705 寄存器组概述	17
	5.1.1 寄存器位权限	
	5.2 寄存器描述	19
	5.2.1 PAGEO: 指令和状态寄存器组	
	5.2.2 PAGE1: 控制和状态寄存器组	
	5.2.3 PAGE2:发射及编码控制寄存器红	23 28
	5.2.5 PAGE4: 时间及校验控制寄存器组	
	5.2.6 PAGE5: FIFO, Timer 及IRO控制寄存器组	
	5.2.7 预留寄存器组	36
	5.2.8 预留寄存器组	
	5.3 寄存器寻址方式	
	5.3.1 独文地址总线	
	5.3.2 复用地址总线	37
6	6 EEPROM结构	38
	6.1 EEPROM存储器结构	38
	6.2	
1	62.1 寄存器复位初始值存放区	
	6.2.2 寄存器复位初始值	
	6.2.3 寄存器初始值	
	6.3 密钥存放区	
	6.3.1 密钥格式 6.3.2 密钥的存放	
_		
7	-	
	7.1 概述	42
上	上海复旦微电子集团股份有限公司)) h
Sh	Shanghai Fudan Microelectronics Group Company Limited	一 <i>技术手册</i>

	7.2	访问规则		. 42
	7.3			
	7.4	FIFO状态信息		. 43
	7.5	FIFO相关寄存器		. 43
8	中迷	请求系统		. 4 4
	8.1			- 4
	8.1.			
	8.2 8.2.			
	8.2.			
	8.3			
	8.4			. 45
•				
9	TIN			
	9.1	概述		. 46
	9.2	TIMER应用		. 46
	9.2.	I 控制TIMER		. 46
	9.2.	2 TIMER时钟周期		. 47
	9.2	3 TIMER状态		. 47
	9.3	TIMER用涂	A 14 '	47
	9.3.	<i>I TIMER-OUT ₹IWATCH-DOG-COUNTER</i> .		. 47
	9.3.	2 STOP WATCH		. 47
	9.3	8 PROGRAMMABLE ONE-SHOTTIMER		47
	0.4	TO COURT 4 学生型	A 17	47
	2. 4	TIVIEIC作人可行证	Y/V	
10	0 省	TIMER相大奇仔器		, 49
	10.1	HARD POWER DOWN 模式		. 49
	10.2			
	10.3	STAND BY 模式		. 50
	10.4			
11	1 E			
1.				
	11.3	初始化阶段		. 51
	11.4			
12	2 排	表		. 53
1.	3 发	s射管脚TX1和TX2		. 54
	-	7		
_				
1	4	专收电路		. 56
	14.1	概述		.56
1	14.2			
	14.3			
	14.3			
	14.3	~		
	14.3			
	14.3	.4 求值及数字化电路		. 57
Н	- 海复 E	微电子集团股份有限公司		
Sh	anghai Fuda	n Microelectronics Group Company Limited		E#

1.0

15	盽	自行信	·号开关	58
15	1	概述		58
15			信号开关的相关寄存器	
15		• • •	N及MFOUT的使用	
	.5 15.3		有源天线的概念	
	15.3		驱动两个RF部分	
1.0	1=0	 •/4=0		
10	170	2/17/04	4/1705 指令集	60
16	.1			
16	.2		行为简介	
16	5.3	FM1	702/1704/1705 命令简介	60
	16.3		基本说明	60
	16.3		STARTUP COMMAND 3FHEX	
	16.3		IDLE COMMAND 00HEX	,62
	.4 16.4		命令 TRANSMIT COMMAND 1AHEX	
	16.4		RECEIVE COMMAND 16HEX	65
	16.4	1.3	TRANSCEIVE COMMAND 1FHFX	68
16	.5	E2Pl	ROM访问命令	70
	16.5		WRITEE2 COMMAND 01HEX	70
	16.5	5.2	READE2 COMMAND 03HEX	71
16	.6	其他	命令	71
	16.6		LOADCONFIG COMMAND 07HEX	71
	16.6	5.2	CALCCRC COMMAND 12HEX执行过程中的错误处理	72
	5.7	前令	· 你令	73
16		安至 3. <i>1</i>	TOADVEYER COMMAND OBLIEV	73
	16.8	0.1 2.2	LOADKEYE2 COMMAND 0BHEXLOADKEY COMMAND 19HEXLOADKEY COMMAND 19HEX	
	16.8	3.3	AUTHENTI COMMAND OCHEX.	74
	16.8	3.4	AUTHENT1 COMMAND 0CHEXAUTHENT2 COMMAND 14HEX	74
17	31	江花花	数据加密传输	76
1/	V			
17	.1	概述		76
17	.2	密钥	处理	76
17	.3		三重认证指令	76
17	.4	认证	算法	76
18	#	电型应	·用	78
		,		
18		电路		
18			描述	
	18.2		EMC 低通滤波器	
	18.2		<i>接收电路</i>	
18			天线线圈的电感	
1	18.3		直接连接天线的阻抗匹配	
19	须	训试信	[·] 号	81
10		■ 概述		Q1
19	. 1	,,,,,,	串行信号切换开关进行测试	
	 19.2		中11信与切换并关近行例以	
	19.2 19.2		RX控制	
20	Ħ	1性能		84
20	.1	极限	参数	84
20			·条件	
			子集团股份有限公司	
			J 条四放 D 有限 ム 円 lectronics Group Company Limited	技术手册

	作电流	
20.4 管 20.4.1	脚特性	
	<i>撒八目肸行住数字输出管脚特性</i>	
	天线驱动管脚输出特性	
	流电性能	
20.5.1	····	
	交流工作说明	
20.5.3	时钟频率	90
21 E ² PRO	M 特性	91
22 封装		92
上海复旦微	电子集团股份有限公司销售及服务网点	94
2		
N. W.		
F 海 复 日 徴	由子集团股份有限公司	

1 概述

FM1702/1704/1705 是复旦微电子股份有限公司设计的基于 ISO14443 标准的非接触卡读卡机专用芯片,采用 0.6 微米 CMOS EEPROM 工艺,支持 13.56MHz 频率下的 typeA 非接触通信协议,支持多种加密算法,兼容 Philips 的 MF RC500 读卡机芯片

产品特点:

- 高集成度的模拟电路,只需最少量的外围线路
- 操作距离可达 10cm
- 支持 ISO14443 typeA 协议
- 内部带有加密单元
- 支持六种接口模式
- 包含 512byte 的 EEPROM
- 包含 64byte 的 FIFO
- 数字电路具有 TTL/CMOS 两种电压工作模式
- 软件控制的 power down 模式
- 一个可编程计时器
- 一个中断处理器
- 一个串行输出输入口
- 启动配置可编程
- 数字,模拟和发射模块都有独立的电源供电,电压范围从 3V 到 5.5V

FM1702/1704/1705 不同之处是支持不同的认证算法:

型号		支持的认证算法
FM1702	支持 M1	标准三重认证算法
FM1704	友持 SH	标准的三重认证算法
FM1705	支持 M1	和 SH 标准的三重认证算法,通过 31 寄存器进行配置

表 1-1 FM1702/1704/1705 区别

2 结构图

图 2-1 FM1702/1704/1705 结构图

3 管脚信息

3.1 管脚配置

粗体字标识的管脚由 AVDD 和 AVSS 电源组供电粗体框标识的管脚由 TVDD 和 TVSS 电源组供电其他管脚由 DVDD 和 DVSS 电源组供电

图 3-1 FM1702/1704/1705 管脚配置 (SOP32 封装)

3.2 管脚描述

1 OSCIN I 晶振輸入: fosc = 13.56MHz 2 IRQ O 中断请求: 输出中所源请求信号 3 MFIN 1 申行輸出: 输出海足 ISO14443A 协议的数字申行信号 4 MFOUT O 申行輸出: 输出海足 ISO14443A 协议的数字申行信号 5 TX1 O 发射口: 输出经过调制的 13.56MHz 信号 6 TVDD PWR 发射器电源: 提供 TX1 和 TX2 的输出信号 7 TX2 O 发射口2: 输出经过调制的 13.56MHz 信号 8 TVSS PWR 发射器电源: 提供 TX1 和 TX2 的输出信号 9 NCS I 方选信号: 选择并激活微处理器和 FM1702/1704/1705 的技力 10 R/NW I 读写信号: 选择读/写周期 (EPP 并行接口读写信号线分开的 NWR I 读写信号线分开的 1	引脚序号	引脚名称	类型	引脚描述
3 MFIN I 申行輸入:接收満足 ISO14443A 协议的数字中行信号 4 MFOUT O 申行輸出:結出満足 ISO14443A 协议的数字中行信号 5 TX1 O 发射工 :输出经过调制的 13.56MHz 信号 6 TVDD PWR 发射器电源 提供 TX1 和 TX2 的输出能量 7 TX2 O 发射器地 9 NCS I 广选信号:选择注户高周期 (13.56MHz 信号 8 TVSS PWR 发射器地 9 NCS I 广选信号:选择设写周期 (17.5公司模定) 10 R/NW I 读/写信号:选择设写周期 (EPP 并行接口读写信户、企业模式) NWR I 读/写信号:选择读/写周期 (EPP 并行接口读写信户、企业模式) NRD I 读/写信号:选择读/写周期 (EPP 并行接口读写信号线共用) NRD I 读/写信号:选择读/写周期 (EPP 并行接口读写信号线共用) NRD I 读/写局期选通:选择读/写周期 (EPP 并行接口读写信号线共用) NBD I 读/写信号:选择评/写周期 (EPP 并行接口或证实写信号线共用) NBD I 数许通知的数据通 12 DVSS PWR 数空地 13 DO — D7 I/O 8 位取的数据通 13 DO — D7 I/O 8 位取的数据通	1	OSCIN	I	晶振输入: fosc = 13.56MHz
4 MFOUT O	2	IRQ	0	中断请求:输出中断源请求信号
5 TX1 O	3	MFIN	I	串行输入 :接收满足 ISO14443A 协议的数字串行信号
 6 TVDD PWR 发射器电源:提供TX1和TX2的输出能量 7 TX2 O 发射口2:输出经过调制的 13.56MHz 信号 8 TVSS PWR 发射器地 9 NCS I 片选信号:选择并激活微处理器和 FM1702/1704/1705 的核D 1 F选信号:选择产资活微处理器和 FM1702/1704/1705 的核D 10 R/NW I 读/写信号:选择读/写周期(并行按口读写信》 6处用模式)	4	MFOUT	0	串行输出 :输出满足 ISO14443A 协议的数字串行信号
	5	TX1	0	发射口 1:输出经过调制的 13.56MHz 信号
NCS	6	TVDD	PWR	发射器电源: 提供 TX1 和 TX2 的输出能量
9 NCS I 片选信号: 选择并激活微处理器和 FM1702/1704/1705 的核厂写信号: 线数据从 D0-D7 口写入 FM1702/1704/1705 的内部寄存器(行接口读写信号线分开模式) 10 R/NW I 读写信号: 终数据从 D0-D7 口写入 FM1702/1704/1705 的内部寄存器(行接口读写信号线分开模式) 10 R/NW I 读写信号: 选择读/写周期(并行接口读写信号线共用) NRD I 读信号: 从 D0-D7 口读出 FM1702/1704/005 内部寄存器的数据(并行接口读写信号线分开) 11 NDS I 读写周期选通: 选择读/写周期(任PP 光介接口) 12 DVSS PWR 数字地 13 D0 O 主入从出(MISO): SPI接口下数据输出 13 D0 - D7 I/O 8 位双向数据总线 20 AD0- AD7 I/O 8 位双向数据/地址总线 21 加土 通知分析时将 AD0-AD5 锁入内部地址锁存器(是PP 并行接口) 21 加名1 地址选通。通生时将 AD0-AD5 锁入内部地址锁存器(EPP 并行接口) 22 加名2 加土 通知条件时将 AD0-AD5 锁入内部地址锁存器(EPP 并行接口) 23 A1 地址线 pife: 地址寄存器 2 位 24 在 地址线 pife: 地上寄存器 2 位 25 DVDD PWR 模拟电源 26 AVDD PWR 模拟电源 27 AUX O 模拟型设置 26 AVDD	7	TX2	0	发射口 2: 输出经过调制的 13.56MHz 信号
NWR	8	TVSS	PWR	发射器地
接口读写信号线分开模式 按/写信号:选择读写周期(并行接口读写信人使更用模式)	9	NCS	I	片选信号: 选择并激活微处理器和 FM1702/1704/1705 的接口
NRD		NWR	I	
NRD	10	R/NW	I	读/写信号:选择读/写周期(并行接口读写信号线共用模式)
NRD		nWrite	I	
DStrb		NRD	I	接口读写信号线分开)
12 DVSS PWR 数字地 13 D0 O 主入从出(MISO): SPI 接口下数据输出 13 D0 D7 I/O 8 位双向数据总线 AD0 AD7 I/O 8 位双向数据/地址总线 AD0 AD7 I/O 8 位双向数据/地址总线 ALE I 地址锁存使能: 高电平时将 AD0 AD5 锁入内部地址锁存器 AS I 地址选通。高电平时将 AD0 AD5 锁入内部地址锁存器(通用读/写接口) nAStrb I 地址选通。低电平时将 AD0 AD5 锁入内部地址锁存器(连PP 并行接口) NSS I 接口选通。选通 SPI 接口模式 A0 I 地址线 bft0: 地址寄存器 0位 nWait O 等待信号输出: 低电平时数据输出,高电平结束(EPP 并行接口) 并出从入: SPI 接口下数据输入 地址线 bit1: 地址寄存器 1位 地址线 bit2: 地址寄存器 2位 名2	11	NDS		读写周期选通:选择读/写周期(并行变口读写信号线共用)
13 D0 O 主入从出(MISO): SPI 接口下数据输出 D0-D7 I/O 8 位双向数据总线 AD0- AD7 I/O 8 位双向数据/地址总线 ALE 地址锁存使能: 高电平时将 AD0-AD5 锁入内部地址锁存器 AS 地址选通 点电平时将 AD0-AD5 锁入内部地址锁存器(通用读/写接口) nAStrb 地址选通 成电平时将 AD0-AD5 锁入内部地址锁存器(通用读/写接口) NSS 接口选通 选通 SPI 接口模式 A0 地址线 bif0: 地址寄存器 0 位 22 nWait O 等待信号输出: 低电平时数据输出, 高电平结束(EPP 并行接口) MOSI 五从入: SPI 接口下数据输入 23 A1 地址线 bit1: 地址寄存器 1 位 24 A2 地址线 bit2: 地址寄存器 2 位 最仅限		nDstrb	I	数据选通:选择读/写周期(EPP)并行接口)
13	12	DVSS	PWR	
ADO	13	D0	0	主入从出(MISO): SPI 接口下数据输出
AD7	13	D0-D7	I/O	8 位双向数据总线
AS			I/O	• / •
NAStrb		ALE	I	地址锁存使能: 高电平时将 AD0-AD5 锁入内部地址锁存器
NSS		AS	I	地址选通、高电平时将 AD0-AD5 锁入内部地址锁存器(通用读/写接口)
A0	21	nAStrb	I	地址选通: 瓜电平时将 AD0-AD5 锁入内部地址锁存器(EPP 并行接口)
22 nWait O 等待信号输出: 低电平时数据输出,高电平结束(EPP 并行接口) MOSI I 主出从入: SPI 接口下数据输入 23 A1 地址线 bit1: 地址寄存器 1位 24 A2 地址线 bit2: 地址寄存器 2位 26 I 串行时钟: SPI 接口下时钟信号 26 AVDD PWR 模拟电源 27 AUX O 模拟测试信号输出: 输出模拟测试信号 28 AVSS PWR 模拟地 29 RX I 接收口: 接收外部天线耦合过来的 13.56MHz 卡回应信号 30 VMID PWR 模拟电信号,高电平时复位内部电路、晶振停止工作、内部输入管期		NSS		接口选通·选通 SPI 接口模式
MOSI 主出从入: SPI接口下数据输入 地址线 bit1: 地址寄存器 1 位 地址线 bit2: 地址寄存器 2 位 地址线 bit2: 地址寄存器 2 位 B行时钟: SPI接口下时钟信号 25		A0	I	地址线 bit0: 地址寄存器 0 位
23	22	nWait	0	等待信号输出: 低电平时数据输出,高电平结束(EPP 并行接口)
24 A2 I 地址线 bit2: 地址寄存器 2 位 SCK I 串行时钟: SPI接口下时钟信号 25 DVDD PWR 数字电源 26 AVDD PWR 模拟电源 27 AUX O 模拟测试信号输出: 输出模拟测试信号 28 AVSS PWR 模拟地 29 RX I 接收口: 接收外部天线耦合过来的 13.56MHz 卡回应信号 30 VMID PWR 内部参考电压: 输出内部参考电压 注意: 该管脚必须外接 68nF 电容 复位及护电信号・高电平时复位内部电路、晶振停止工作、内部输入管脚		MOSI		主出从入: SPI 接口下数据输入
24 SCK	23	A1		地址线 bit1: 地址寄存器 1 位
SCK	24		M	地址线 bit2: 地址寄存器 2 位
26 AVDD PWR 模拟电源 27 AUX O 模拟测试信号输出:输出模拟测试信号 28 AVSS PWR 模拟地 29 RX I 接收口:接收外部天线耦合过来的 13.56MHz 卡回应信号 30 VMID PWR 内部参考电压:输出内部参考电压 注意: 该管脚必须外接 68nF 电容 复位及护电信号:高电平时复位内部电路、晶振停止工作、内部输入管期	24	SCK	1	串行时钟: SPI 接口下时钟信号
27 AUX O 模拟测试信号输出:输出模拟测试信号 28 AVSS PWR 模拟地 29 RX I 接收口:接收外部天线耦合过来的 13.56MHz 卡回应信号 30 VMID PWR 内部参考电压:输出内部参考电压 注意:该管脚必须外接 68nF 电容 复位及掉电信号:高由平时复位内部电路、晶振停止工作、内部输入管期	25	DVDD	PWR	数字电源
AVSS PWR 模拟地 接收口:接收外部天线耦合过来的 13.56MHz 卡回应信号 接收口:接收外部天线耦合过来的 13.56MHz 卡回应信号 内部参考电压:输出内部参考电压 注意:该管脚必须外接 68nF 电容 复位及掉电信号・高电平时复位内部电路、品振停止工作、内部输入管脚	26	AVDD	PWR	模拟电源
29 RX I 接收口:接收外部天线耦合过来的 13.56MHz 卡回应信号 30 VMID PWR 内部参考电压:输出内部参考电压 注意:该管脚必须外接 68nF 电容 复位及掉电信号:高电平时复位内部电路、昂振停止工作、内部输入管期	27	AUX	0	模拟测试信号输出 :输出模拟测试信号
730 VMID PWR 内部参考电压: 输出内部参考电压 注意: 该管脚必须外接 68nF 电容 复位及掉电信号・ 高电平时复位内部电路、品振停止工作、内部輸入管脚	28	AVSS	PWR	模拟地
YMID PWR 注意: 该管脚必须外接 68nF 电容 复位及掉电信号・ 高电平时复位内部电路、昂振停止工作、内部輸入管脚	29	RX	I	接收口:接收外部天线耦合过来的 13.56MHz 卡回应信号
复价及指由信号。 高由平时复位内部由路、品振停止工作、内部输入管脚	30 VMII) PWR I I I I		PWR	
31 RSTPD T 和外部电路隔离;下沿触发内部复位程序	31	RSTPD	I	复位及掉电信号: 高电平时复位内部电路,晶振停止工作,内部输入管脚
32 OSCOUT O 晶振输 出	32	OSCOUT	0	

表 3-1 FM1702/1704/1705 管脚描述

4 数字接口

4.1 支持的微处理器接口概述

FM1702/1704/1705 支持不同的微处理器接口,且可以和个人电脑的高速增强型接口(EPP)直接相连,下表列出 FM1702/1704/1705 支持的并行接口信号:

总线控制信号	总线	独立的地址/数据总线	复用的地址/数据总线
	control	NRD, NWR, NCS	NRD, NWR, NCS, ALE
独立的读/写选通模式	address	A0, A1, A2	AD0AD5
	data	D0D7	AD0AD7
	control	R/NW, NDS, NCS	R/NW, NDS, NCS, AS
通用的读/写选通模式	address	A0, A1, A2	AD0AD5
	data	D0D7	AD0AD7
握手联络方式的通用读/写选	control		nWrite, nDStrb, nAStrb, nWait
進行联络刀式的應用與/与應通信号(EPP)	address		A D0AD5
週日 7(ロー)	data		AD0AD7

表 4-1 支持的微处理器接口信号

4.2 自动侦测微处理器接口类型

在每一次上电或硬件复位后,FM1702/1704/1705 会复位并行微处理器接口模式,并且通过检测控制管脚上的电平来侦测当前的微处理器接口模式。

4.3 不同类型微处理器接口连接关系

和不同微处理器接口的连接见下表:

	EN4700	并行接口类型				
	FM1702 FM1704	独立的读/2	号选通模式	通用的读/写选通模式		
	FM1704	独立的地址/	复用的地址/	独立的地址/数据	复用的地址/数据	握手联络方式下复
		数据总线	数据总线	总线	总线	用地址/数据总线
	ALE	HIGH	ALE	HIGH	AS	nAStrb
	A2	A2	LOW	A2	LOW	HIGH
	A1	A1	HIGH	A1	HIGH	HIGH
	A0	A0	HIGH	A0	LOW	nWait
	NRD	NRD	NRD	NDS	NDS	nDStrb
	NWR	NWR	NWR	R/NW	R/NW	nWrite
ľ	NCS	NCS	NCS	NCS	NCS	LOW
	D7D0	D7D0	AD7AD0	D7D0	AD7AD0	AD7AD0

表 4-2 并行接口连接关系

4.3.1 独立的读/写选通模式

读写时序参照 20.5.2.1

4.3.2 通用的读/写选通模式

读写时序参照 20.5.2.2

4.3.3 握手联络方式下的通用读/写选通模式(EPP)

图 4-3 EPP 模式下与微处理器的连接

读写时序参照 20.5.2.3

4.4 SPI兼容接口

在 SPI 通信方式下,FM1702/1704/1705 只能作为 slave 端,SCK 时钟需由 master 端 提供。

FM1702/1704/1705	SPI Interface
ALE	NSS
A2	SCK
A1	LOW
A0	MOSI
NRD	HIGH
NWR	HIGH
NCS	LOW
D7D1	不连接
D0	MISO

表 4-3 SPI 兼容接口

图 4-4 SPI 模式下与微处理器的连接

5 FM1702/1704/1705 寄存器组

5.1 FM1702/1704/1705 寄存器组概述

FM1702/1704/1705的内部寄存器按功能不同分成8组,每组为一页,包含8个寄存器:

Page0: 指令和状态寄存器组 Page1: 控制和状态寄存器组 Page2: 发射及编码控制寄存器组 Page3: 接收及解码控制寄存器组 Page4: 时间及校验控制寄存器组

Page5: FIFO, Timer 及 IRQ 控制寄存器组

Page6: 预留寄存器组 Page7: 预留寄存器组

Page7: 预留寄存器组			
Page	地址 (hex)	寄存器名	功能
	0	Page	选择寄存器组
	1	Command	指令寄存器
	2	FIFOData	64byte FIFO 的输入输出寄存器
0	3	PrimaryStatus	发射器,接收器及FIFO的标识位寄存器
U	4	FIFOLength	当前 FIFO 内 byte 数
	5	SecondaryStatus	各种状态标识等存器
	6	InterruptEn	中断使能禁上控制寄存器
	7	InterruptRq	中斯请求标识寄存器
	8	Page	选择寄存器组
	9	Control	各种控制标识寄存器
	Α	ErrorFlag	上一条指令结束后错误标识
1	В	CollPos	侦测到的第一个冲突位的位置
ı	С	TimerValue	当前 Timer 值
	D	CRCResultLSB	CRC 协处理器低 8 位
	Е	CRCResultMSB	CRC 协处理器高 8 位
	F .	BitFraming	调整面向 bit 的帧格式
	10	Page	选择寄存器组
	11	TxControl	发射器控制寄存器
	12	CWConductance	选择发射脚 TX1 和 TX2 发射天线的阻抗
2	13	PreSet13	预设寄存器,不要改变内容
127	14	PreSet14	预设寄存器,不要改变内容
	15	ModWidth	选择载波调制宽度
7	16	PreSet16	预设寄存器,不要改变内容
	17	PreSet17	预设寄存器,不要改变内容
	18	Page	选择寄存器组
	19	RXControl1	接收器控制寄存器
3	1A	DecoderControl	解码控制寄存器
	1B	BitPhase	调整发射器和接收器时钟相差
	1C	Rxthreshold	选择 bit 解码的阈值

17

Page	地址 (hex)	寄存器名	功能
	1D	PreSet1D	预设寄存器,不要改变内容
	1E RxControl2		解码控制及选择接收源
	1F	ClockQControl	时钟产生控制寄存器
	20	Page	选择寄存器组
	21	RxWait	选择发射和接收之间的时间间隔
	22	ChannelRedundancy	选择数据校验种类和模式
4	23	CRCPresetLSB	CRC 预置寄存器低 8 位
7	24	CRCPresetMSB	CRC 预置寄存器高 8 位
	25	PreSet25	预设寄存器,不要改变内容
	26	MFOUTSelect	选择 MFOUT 信号源
	27	PreSet27	预设寄存器,不要改变内容
	28	Page	选择寄存器组
	29	FIFOLevel	定义 FIFO 溢出级别
	2A	TimerClock	选择 Timer 时钟的分频
5	2B	TimerControl	选择 Timer 启动/停止条件
3	2C	TimerReload	Timer 预置值
	2D	IRQPinConfig	IRQ 输出配置
	2E	PreSet2E	预设寄存器,不要改变内容
	2F	PreSet2F	预设寄存器,不要改变内容
	30	Page	选择寄存器组
	31	CryptoSelect	认证模式选择
	32	RFU	预留寄存器
6	33	RFU	预留寄存器
0	34	RFU	预留寄存器
	35	RFU -	预留寄存器
	36	RFU	预留寄存器
	37	RFU	预留寄存器
	38	Page	选择寄存器组
	39	RFU	预留寄存器
	3A	TestAnaSelect	预留寄存器
7	3B	RFU	预留寄存器
'	3C	RFU	预留寄存器
	3D	TestDigiSelect	预留寄存器
	3E	RFU	预留寄存器
	3F	RFU	预留寄存器

表 5-1 FM1702/1704/1705 寄存器组

5.1.1 寄存器位权限

每一个寄存器里的每一位按其功能都有不同的读写权限

缩写	权限	描述
r/w	读和写	这些位可以被微处理器读出和写入,他们只是用作控制,所以不会被内部状态机改写
dy	动态	这些位可以被微处理器读出和写入,并且他们可以被内部状态机自动改写
r	只读	这些位由内部状态机控制,只能被微处理器读出
W	只写	这些位用作控制,只能被微处理器写入。读取这些位得到的没有意义的数值

表 5-2 寄存器位的权限及描述

5.2 寄存器描述

5.2.1 PAGE0: 指令和状态寄存器组

5.2.1.1 Page寄存器

名字				Pa	ige		\Diamond						
功能		选择寄存器组											
地址		0x00, 0x08, 0x10, 0x18, 0x20, 0x28, 0x30, 0x38											
复位值				1000000	0, 0x80		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
位	7	6	5	4	3	2	1 0						
位名	UsePage Select	0	0	0	0		PageSelect						
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w r/w						

位描述

	–	
位	位名	功能
7	UsePageSelect	指定是否使用 PageSelect 作为寄存器地址. 1:表示 PageSelect 的值做为寄存器地址 A5, A4 和 A3, 低三位寄存器地址 A2-A0 由外部地址线 A2-A0 决定 0:表示寄存器地址 A5-A0 全部由外部复用地址/数据总线决定
6-3	0000	预留值 / / / / / / / / / / / / / / / / / / /
2-0	PageSelect	仅在 UsePageSelect 为 1 时起作用,在这种情况下指定寄存器高 3 位地址 A5-A3

5.2.1.2 Command寄存器

		-//>								
名字	Command									
功能	开始或结束指令的执行									
地址	0x01									
复位值	X0000000, 0xX0									
位	7 6	5	4	3	2	1	0			
位名	IFDetect Busy		Command							
位权限	r r	dy	dy	dy	dy	dy	dy			

位描述

位	位名	功能
	IFDetectBusy	接口检测的状态: 0: 表示接口检测结束 1: 表示接口检测正在进行
6	0	预留值
5-0	Command	运行并保存当前的指令

5.2.1.3 FifoData寄存器

名字	FIFOData
功能	64byte FIFO 的输入输出寄存器

地址		0x02											
复位值		XXXXXXXX, 0xXX											
位	7	7 6 5 4 3 2 1 0											
位名		FIFOData											
位权限	dy	dy	dy	dy	dy	dy	dy	dy					

位	位名	功能	
7-0	FIFOData	64byte FIFO 数据接口,通过该寄存器将数据写入或读出 FIFO	

5.2.1.4 Primary Status寄存器

名字		PrimaryStatus												
功能		表示发射器,接收器及 FIFO 的状态												
地址		0x03												
复位值				XXXXXX	XX, 0xXX	N/A	T.							
位	7	6	5	4	3	2	V 1	0						
位名	0	0 ModemState IRQ En HiAlert LoAlert												
位权限	r	r	r	r	r 🥎	L	r	r						

位描述

	.1mxr.				
位	位名			功能	
7	0	预留值		♦ 1 /	
		显示当	前发射器或接收	的状态:	
		状态	状态名	描述	
		000	Idle	发射器和接收器空闲	
		001	TXSOF	正在发射数据帧帧头	
		010	TxData	正在发射数据	
6.4	MadamCtata	011	TXEOF	正在发射数据帧帧尾	
6-4	ModemState	100	GoToRx1	接收器开始的中间状态	
		N.	GoToRx2	接收器开始的中间状态	
		101	PrepareRx	接收器工作前等待 RxWait 寄存器	
				定义的时间	
		110	AwaitingRx	接收器打开,准备接收数据	
		111	Receiving	正在接收数据	
3	IRQ	表示 In	terrupEn 寄存器例	吏能的任何一个中断源是否有请求	
2	Ērr	1:表示	FErrorFlag 寄存器	器里有错误状态位置 1	
1	HiAlert	1:表示	F FIFO 中的数据数	数满足下列公式:	
	HIAIEIL		= (64-FIFOLengt	•	
	LoAlert		F FIFO 中的数据数		
1	Lo/ tion	LoAlert	= FIFOLength ≤	WaterLevel	

5.2.1.5 FIFOLength寄存器

名字		FIFOLength										
功能		FIFO 中数据的 byte 数										
地址		0x04										
复位值				0000000	00, 0x00							
位	7	6	5	4	3	2	1	0				

位名	0		FIFOLength							
位权限	r	r	r	r	r	r	r	r		

位	位名	功能
7	0	预留值
6-0	FIFOLength	标识 FIFO 中数据的 byte 数,每写一个数据到 FIFO,FIFOLength 加 1,每 读出一个数据,FIFOLength 减 1

5.2.1.6 Secondary Status寄存器

	1									
名字		SecondaryStatus								
功能		不同的状态位								
地址		0x05								
复位值	01100000, 0x60									
位	7	6	5	4	3	2 1 0				
位名	TRun- ning	E2- Ready	CRC- Ready	0	0	RxLastBits				
位权限	r	r	r	r	r	rr				

位描述

位	位名	_功能
7	TRunning	1: 表示 Timer 正在运行
6	E2Ready	1:表示 EEPROM 擦写过程结束
5	CRCReady	1: 表示 CRC 计算结束
4-3	00	预留值
2-0	RxLastBits	表示接收到的最后一 byte 数据中正确的 bit 数。若 0,表示整个 byte 都是正确的

5.2.1.7 InterruptEn寄存器

			VA					
名字		InterruptEn						
功能		使能或禁止中断请求						
地址		0x06						
复位值		00000000, 0x00						
位	7	6	5	4	3	2	1	0
位名	SetlEn	0	TimerlEn	TxlEn	RxlEn	IdlelEn	HiAlertIE	LoAlertIE
		1					n	n
位权限	W	r/w	r/w	r/w	r/w	r/w	r/w	r/w

位描述

位	位名	功能
7	SetlEn	1: 使能 InterruptEn 寄存器里置 1 的中断源 0: 禁止 InterruptEn 寄存器里置 1 的中断源 如: 写 0xA0 到 InterruptEn,表示使能 Timer 中断,若有 Timer 中断请求,Timer 中断请求会反应到 primaryStatus 寄存器的 IRQ 位 写 0x20 表示禁止 Timer 中断,Timer 中断请求不会反应到 PrimaryStatus 寄存器的 IRQ 位
6	0	预留值
5	TimerlEn	1:表示允许 Timer 中断请求(标识位为 TimerlRq)反应到 IRQ 管脚。这一位不能

位	位名	功能
		直接置成 1 或 0,只能通过 SetlEn 来置
4	TxlEn	1: 表示允许发射器中断请求(标识位为 TxlRq)反应到 IRQ 管脚。这一位不能直接置成 1 或 0,只能通过 SetlEn 来置
3	RxlEn	1:表示允许接收器中断请求(标识位为 RxlRq)反应到 IRQ 管脚。这一位不能直接置成 1 或 0,只能通过 SetlEn 来置
2	IdlelEn	1表示允许 idle 中断请求(标识位为 ldlelRq)反应到 IRQ 管脚。这一位不能直接置成 1 或 0,只能通过 SetlEn 来置
1	HiAlertlEn	1:表示允许 high alert 中断请求(标识位为 HiAlertlRq)反应到 IRQ 管脚。这一位不能直接置成 1 或 0,只能通过 SetlEn 来置
0	LoAlertlEn	1:表示允许 low alert 中断请求(标识位为 LoAlertIRq)反应到 IRQ 管脚。这一位不能直接置成 1 或 0,只能通过 SetIEn 来置

5.2.1.8 InterruptRq寄存器

	-	•							
名字		InterruptRq							
功能		中断源请求标识							
地址		0x07							
复位值		00000000, 0x00							
位	7	6	5	4	3	2	1	0	
位名	SetlRq	0	TimerIRq	TxlRq	RxIRq	IdlelRq	HiAlertIR	LoAlertIR	
	•		•	<u> </u>		<u> </u>	q	q	
位权限	W	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

位描述

	7.1田文正	
位	位名	功能
7	SetlRq	1: 将 InterruptRq 寄存器 里置 1 的标识位置 1 0: 将 InterruptRq 寄存器 里置 1 的标识位清 0 如:
		写 0xA0 到 InterruptRq,表示将 Timer 中断源标识初始为 1 写 0x20 表示将 Timer 中断源标识初始为 0
6	0	预留值 🗸 💮
5	TimerlRq	1: 表示 Timer Value 寄存器里的值已经减为 0
4	TxlRq	1. 表示有不列事件发生: Transceive 指令: 所有的数据都发送了 Auth1 和 Auth2 指令: 所有数据都发送了 WriteE2 指令: 所有数据都擦写结束 CalcCRC 指令: 所有数据都计算结束
3	RxIRq	1: 表示接收数据结束,接收器停止
2	IdlelRq	1: 表示指令寄存器被内部状态机清 0 如果任何未知的指令写入指令寄存器,该位也置 1 但是微处理器写 Idle 指令到指令寄存器不影响该位
1	HiAlertIRq	1:表示 HiAlert 置 1。和 HiAlert 不同,HiAlertlRq 保存这个状态并只能被 SetlRq 复位
0	LoAlertIRq	1:表示 LoAlert 置 1。和 LoAlert 不同,LoAlertlRq 保存这个状态并只能被 SetlRq 复位

5.2.2 PAGE1: 控制和状态寄存器组

5.2.2.1 Page寄存器

选择寄存器组,见 5.2.1.1Page寄存器

5.2.2.2 Control寄存器

名字		Control								
功能		各种控制标识								
地址		0x09								
复位值		00000000, 0x00								
位	7	6	5	4	3	2	1	0		
位名	0	0	Stand-By	PowerDo	Crypto1O	TStop-No	TStart-No	Flush-		
14.47	U	U	Startu-Dy	wn	n	W	W	FIFO		
位权限	r/w	r/w	dy	dy	dy	W	*	W		

位描述

	- 1 T	
位	位名	功能
7-6	00	预留值
5	StandBy	置 1 则进入软件 PowerDown 模式。这种模式下,内部电路停止工作,晶振不停振
4	PowerDown	置 1 则进入软件 PowerDown 模式。这种情况下,内部电路和晶振都停止工作
3	Crypto1On	1: 表示加密单元打开,并且所有的数据/卡输都经过加密 这一位只有在 Authent2 指令通过后才被内部状态机置 1
2	TStopNow	置 1 则立刻停止 Timer 读该位返回 0
1	TStartNow	置 1 则立即启动 Timer 读该位返回 0
0	FlushFIFO	置 1 则清空 FIFO 以及读写指针(FIFOLength 置 0),并且清 FIFOOvfl 标识位读该位返回 0

5.2.2.3

		评 该位 区	ED O					
5.2.2.3	ErrorFl	ag寄存器	\\					
名字				Erro	orFlag			
功能				上一条指令组	吉東后错误材	示识		
地址	17			0	x0A			
复位值				010000	00,0x40			
位	7	6	5	4	3	2	1	0
位名	0	KeyErr	AccessErr	FIFO-Ovfl	CRC-Err	FramingErr	Parity-Err	CollErr
位权限	r	r	r	r	r	r	r	r

位	位名	功能							
7	0	预留值							
6	KeyErr 1:表示 LoadKeyE2 或 LoadKey 指令中输入的数据不符合规定的密钥格式								
O	Key⊑⊓	0: 开始 LoadkeyE2 或 LoadKey 指令							
_	AccessErr	1: 违反 PROM 读写权限							
5	5 AccessErr	0: 开始 EEPROM 相关指令							
4	FIFOOvfl	1:表示 FIFO 数据已满,微处理器或内部状态机仍然往 FIFO 里写数据,FIFO 溢							

位	位名	功能
		出
3	CRCErr	1: 表示 RxCRCEn 置 1 的情况下 CRC 校验出错。这一位在接收器开始(PrepareRx 状态) 时自动清 0
2	FramingErr	1:表示 SOF 出错。这一位在接收器开始(PrepareRx 状态)时自动清 0
1	ParityErr	1:表示数据奇偶校验出错。这一位在接收器开始(PrepareRx 状态)时自动清 0
0	CollErr	1:表示有冲突位。这一位在接收器开始(PrepareRx 状态)时自动清 0

5.2.2.4 CollPos寄存器

名字		CollPos						
功能		侦测到的第一个冲突位的位置						
地址		0x0B						
复位值		00000000, 0x00						
位	7	6	5	4	3	2 1 0		
位名		CollPos						
位权限	r	r	r	r	r	r r		

位描述

位	位名	功能
7-0	CollPos	表示接收数据过程中侦测到的第一个冲突位的位置

5.2.2.5 TimerValue寄存器

名字		TimerValue							
功能		Timer 当前值							
地址		0x0C							
复位值		XXXXXXXX, 0xXX							
位	7	7 6 5 4 3 2 1 0							
位名		TimerValue							
位权限	r	r) f	r	r	r	r	r	

位描述

位	位名	功能
7-0	Timer\/alue	值

5.2.2.6 CRCResultLSB寄存器

		-								
	名字		CRCResultLSB							
	功能	CRC 协处理器低 8 位								
	地址		0x0D							
<	复位值				XXXXXX	〈X, 0xXX				
	位	7	6	5	4	3	2	1	0	
	位名		CRCResultLSB							
	位权限	r	r	r	r	r	r	r	r	

位描述

位	位名	功能

7-0	CRCResultLSB	显示 CRC 寄存器低 8 位,该寄存器的数据仅在 CRCReady 为 1 时有效
1-0	CINCINCINEDE	

5.2.2.7 CRCResultMSB寄存器

名字		CRCResultMSB							
功能		CRC 协处理器高 8 位							
地址		0x0E							
复位值		XXXXXXXX, 0xXX							
位	7	6	5	4	3	2	1	0	
位名		CRCResultMSB							
位权限	r	r r r r r r							

位描述

位	位名	功能
7-0	CRCResultMSB	显示 CRC 寄存器高 8 位,该寄存器的数据仅在 CRCReady 为 1 时有效

5.2.2.8 BitFraming寄存器

	1								
名字		BitFraming							
功能		调整面向 bit 的帧格式							
地址		0x0F							
复位值		00000000, 0x00							
位	7	7 6 5 4 3 2 1 0							
位名	0	0 RxAlign 0 TxLastBits							
位权限	r/w	dy	dy	dy	r/w	dy	dy	dy	

位描述

位	位名	功能
7	0	预留值
6-4	RxAlign	定义收到的第一个 bit 在 FIFO 中存放的位置,接收结束后,RxAlign 自动清 0 如: RxAlign = 0: 收到的第一个 byte 的最低位存放在 FIFO 中的第 0 位 RxAlign = 1: 收到的第一个 byte 的最低位存放在 FIFO 中的第 1 位
3	0	预留值
2-0	TxLastBits	定义了最后一个 byte 中要发送出去的 bit 数,000 表示最后一个 byte 中所有 bit 都发送出去。 发送结束后,TxLastBits 自动清 0

5.2.3 PAGE2: 发射及编码控制寄存器组

5.2.3.1 Page寄存器

选择寄存器组,见 <u>5.2.1.1Page寄存器</u>

5.2.3.2 TxControl寄存器

7											
	名字		TxControl								
	功能		控制发射器逻辑行为								
	地址		0x11								
	复位值				0101100	00, 0x58					
	位	7 6 5 4 3 2 1 0									
	位名	0	0 ModulatorSource 1 TX2Inv TX2Cw TX2RFE TX1RFE								

							n	n
位权限	r/w							

位	位名	功能
7	0	预留值,不要更改
6-5	ModulatorSouce	选择调制源: 00: LOW 01: HIGH 10: 内部编码器 11: MFIN 管脚
4	1	预留值,不要更改
3	TX2Inv	1: TX2 管脚输出 13.56MHz 反相能量载波
2	TX2Cw	1: TX2 管脚输出持续的 13.56MHz 非调制能量载波 0: TX2 管脚输出持续的 13.56MHz 调制能量载波
1	TX2RFEn	1: TX2 管脚输出 13.56MHz 经发送数据调制过的能量载波 0: TX2 管脚输出固定的电平
0	TX1RFEn	1: TX1 管脚输出 13.56MHz 经发送数据调制过的能量载波 0: TX1 管脚输出固定的电平

5.2.3.3 CwConductance寄存器

名字		CwConductance									
功能		选择发射脚 TX1 和 TX2 发射天线的电导									
地址		0x12									
复位值		001(1111, 0x3F									
位	7	6	5 4	3	2	1	0				
位名	0	0 0 GsCfgCW									
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w				

位描述

位	位名	功能	
7-6	00	烦 留值,不要更改	
5-0	GsCfgCW	定义了输出电导,用来调整输出能量以及电流消耗和操作距离 注意:详细信息见 <u>13.3</u>	

5.2.3.4

名字 🗡		PreSet13								
功能		预留寄存器								
地址		0x13								
复位值		00111111,0x3F								
位	7	6	5	4	3	2	1	0		
位名		PreSet13								
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w		

位描述

位	位名	功能
7-0	PreSet13	预留值,不要更改

上海复旦微电子集团股份有限公司 Shanghai Fudan Microelectronics Group Company Limited

26

5.2.3.5 PreSet14 寄存器

名字		PreSet14									
功能		预留寄存器									
地址		0x14									
复位值				0001100	1, 0x19						
位	7	6	5	4	3	2	1	0			
位名		PreSet14									
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			

位描述

位	位名	功能	
7-0	PreSet14	预留值,不要更改	

5.2.3.6 ModWidth寄存器

名字		ModWidth									
功能		定义调制宽度									
地址		0x15									
复位值				00010011, 0x13	2						
位	7	6	5	4 3	2	1	0				
位名		ModWidth									
位权限	r/w	r/w	r/w	r/w r/w	r/w	r/w	r/w				

位描述

位	位名	功能
7-0	ModWidth	定义调制宽度 7 mod = 2 (ModWidth+1) /fc

5.2.3.7 PreSet16 寄存器

名字		PreSet16							
功能		预留寄存器							
地址		0x16							
复位值				0000000	0, 0x00				
位	7	6	5	4	3	2	1	0	
位名		PreSet16							
位权限	r/w								

位描述

位	位名	功能
7-0	PreSet16	预留值,不要更改

5.2.3.8 PreSet17 寄存器

名字	PreSet17
功能	预留寄存器
地址	0x17
复位值	00000000, 0x00

位	7	6	5	4	3	2	1	0
位名		PreSet17						
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

位	位名	功能	
7-0	PreSet17	预留值,不要更改	7

5.2.4 PAGE3: 接收及解码控制寄存器组

5.2.4.1 Page寄存器

选择寄存器组,见 <u>5.2.1.1Page寄存器</u>

5.2.4.2 RxControl1 寄存器

名字		RxControl1						
功能		控制接收器行为						
地址		0x19						
复位值		01110011, 0x73						
位	7	6	5	4	3	2	1	0
位名	0	1	1	1	0	0	Ga	ain
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

位描述

位	位名	功能
7-2	011100	预留值,不要更改
1-0	Gain	定义接收器放大器增益: 00: 27 dB- 01: 30 dB 10: 38 dB 11: 42dB

5.2.4.3 DecoderControl寄存器

名字	DecoderControl								
功能		(())	控制解码器行为						
地址				0x	0x1A				
复位值	<i>/ 11/ /</i>	00001000, 0x08							
位	7	6	5	4	3	2	1	0	
位名	0	0	ZeroAfer Coll	0	1	0	0	0	
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

位描述

位	位名	功能
7-6	00	预留值,不要更改
5	ZeroAferColl	1: 所有接收到的冲突位之后的数据都置 0
4-0	01000	预留值,不要更改

5.2.4.4 BitPhase寄存器

名字		BitPhase						
功能		调整发射器和接收器时钟相差						
地址		0x1B						
复位值		10101101, 0xAD						
位	7	6	5	4	3	2	1	0
位名	BitPhase							
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

位描述

位	位名	巧	力能	
7-0	BitPhase	定义发射器和接收器时钟的相位差,该	值影响数据接收质量	$\langle \rangle$

RxThreshold寄存器 5.2.4.5

5.2.4.5	RxThres	hold寄存	足				117	
名字		RxThreshold						
功能		选择 bit 解码的阈值						
地址		0x1C						
复位值		11111111, 0xFF						
位	7	6	5	4	3	2	1	0
位名	MinLevel CollLevel							
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

位描述

位	位名	功能
7-4	MinLevel	定义解码器能够接收的最小信号,若信号强度低于该值,则不被处理
3-0	CollLevel	定义 Manchester 编码的信号里弱半 bit 相对强半 bit 产生冲突必须达到的最小值

5.2.4.6 PreSet1D寄存器 🔏

名字		PreSet1D									
功能		预留寄存器									
地址		0x1D									
复位值		//>>		0000000	0, 0x00						
位	7	6	5	4	3	2	1	0			
位名		PreSet1D									
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			

位 位名	功能
7-0 PreSet1D	预留值,不要更改

5.2.4.7 RxControl2 寄存器

名字	RxControl2					
功能	解码控制及选择接收源					
地址	0x1E					
复位值	01000001, 0x41					

位	7	6	5	4	3	2	1	0
位名	RcvClkSell	RxAutoPD	0	0	0	0	Decode	rSource
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

位	位名	功能
7	RcvClkSell	1:选择 I 时钟作为接收器时钟 0:选择 Q 时钟作为接收器时钟
6	RxAutoPD	1:接收器在接收数据前自动打开和接受数据后自动关闭,用于节省功长 0:接收器始终打开
5	0000	预留值,不要更改
1-0	DecoderSource	选择解码器源: 00: LOW 01: 内部解调器 10: MFIN 输入的 Manchester 编码的副载波 11: MFIN 输入的 Manchester 编码的基带信号

5.2.4.8 ClockQControl寄存器

	名字		ClockQControl											
	功能	控制 Q 时钟产生												
	地址		0x1E											
复	夏位值			0	00XXXXX,	0xXX								
	位	7	6	5	4	3	2	1	0					
	位名	ClkQ180Deg	ClkQ180Deg ClkQCalib ClkQDelay											
亿	立权限	r	r/w	r/w	dy	dy	dy	dy	dy					

位描述

位	位名	功能
7	clkQ180Deg	若 I-Q 时钟相位差超过 180 度,该位置 1,否则为 0
6	ClkQCalib	0: 复位及接收过程结束后自动校正 Q 时钟相位 1: 不校正 Q 时钟相位
5	0	预留值,不要更改
4-0	ClkQDelay	用于产生Q时钟的预置值

PAGE4: 时间及校验控制寄存器组 5.2.5

Page寄存器

存器组,见 <u>5.2.1.1Page寄存器</u>

RxWait寄存器

· · · · ·											
名字	RxWait										
功能	选择发射和接收之间的时间间隔										
地址		0x21									
复位值				0000011	0, 0x06						
位	7	6	5	4	3	2	1	0			
位名		RxWait									
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			

位	位名	功能
7-0	RxWait	数据发送后,接收器等待 RxWait 定义的 bit 时钟数,在这段时间内,Rx 上收到的任何信号都被忽略

5.2.5.3 ChannelRedundancy寄存器

名字		ChannelRedundancy										
功能		选择数据校验种类和模式										
地址		0x22										
复位值				0000001	1, 0x03		^	N				
位	7	6	5	4	3	2	1///	0				
位名	0	CRCMS	CRC	CRC8	RxCRCE	TxCRCE	Parity-Od	Parity-En				
12.71	3	BFirst 3309 CRCo n n d Panty-t										
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				

位描述

位	位名	功能
7	0	预留值,不要更改
6	CRCMSBFirst	1: 数据流高位先进 CRC 协处理器 0: 数据流低位先进 CRC 协处理器
5	CRC3309	1: CRC 算法切换为 ISO/IEC3309 0: CRC 算法切换为 ISO1443A
4	CRC8	1: 计算 8bit CRC 0: 计算 16bit CRC
3	RxCRCEn	1: 对接收数据进行 CRC 校验,接收数据最后两 byte CRC 不送入 FIFO。如果校验出错,CRCErrFlag 置 1 0: 接收过程不进行 CRC 校验
2	TxCRCEn	1: 对发射数据计算 CRC 校验码,并附加在数据流尾一起发送 0: 不发送 CRC 校验码
1	ParityOdd	1: 选择奇校验 0: 选择偶校验
0	ParityEn	1: 每个发送的数据 byte 后都插入 1bit 校验位,同样每个接收到的数据 byte 都 进行奇偶校验

5.2.5.4 CRCPresetLSB寄存器

名字	CRCPresetLSB												
功能		CRC 预置值低 8 位											
地址一	0x23												
复位值		01100011, 0x63											
位	7 6 5 4 3 2 1 0												
位名	CRCPresetLSB												
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w					

位描述

位	位名	功能
7-0	CRCPresetLSB	CRC 协处理器预置值低 8 位

5.2.5.5 CRCPresetMSB寄存器

名字		CRCPresetMSB										
功能		CRC 预置值高 8 位										
地址		0x24										
复位值				0110001	1, 0x63							
位	7	6	5	4	3	2	1	0				
位名		CRCPresetMSB										
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w				

位描述

位	位名	功能	
7-0	CRCPresetMSB	CRC 协处理器预置值高 8 位	

5.2.5.6 PreSet25 寄存器

名字		PreSet25									
功能		预留寄存器									
地址		0x25									
复位值				00000	0000, 0x00						
位	7	6	5	4	3	2	1	0			
位名		PreSet25									
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			

位描述

位	位名	功能
7-0	PreSet25	预留值,不要更改

5.2.5.7 MFOUTSelect寄存器

名字	MFOUTSelect								
功能		Al	选择 MFO	UT 信号源					
地址		0x26							
复位值			0000000	00, 0x00					
位	7 6	5	4	3	2	1	0		
位名	0 0 0 0 MFOUTSelect								
位权限	/w r/w r/w r/w r/w r/w r/w								

位描述

存	Ž	位名	功能
7-	3	00000	预置值,不要更改
			选择 MFOUT 输出的信号:
			000: LOW
1			001: HIGH
2-	.0	MFOUTSelect	010: Miller 编码并调制过的内部信号
		WII OO TOCICCI	011: 未经编码的串行信号
			100: 能量载波解调器的输出
			101: 副载波解调器的输出
			110: RFU

111: RFU

5.2.5.8 PreSet27 寄存器

名字		PreSet27									
功能		预留寄存器									
地址		0x27									
复位值				XXXXXX	XX, 0xXX						
位	7	6	5	4	3	2	1	0			
位名		PreSet27									
位权限	W										

位描述

				_	
位	位名		功能	L	
7-0	PreSet27	预留值,不要更改	^		

5.2.6 PAGE5: FIFO, Timer及IRQ控制寄存器组

5.2.6.1 Page寄存器

选择寄存器组,见 5.2.1.1Page寄存器

5.2.6.2 FIFOLevel寄存器

名字		FIFOLevel									
功能		定义FIFO溢出级别									
地址		0x29									
复位值		00000100,0x08									
位	7	6	-5	4	3	2	1	0			
位名	0	0 0 WaterLevel									
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			

位描述

位	位名	功能
7-6	00	预留值,不要更改
		定义了 FIFO 向上或向下溢出的级别:
5-0	WaterLevel	若 FIFO 里剩下的空间小于等于 WaterLevel,则 HiAlert 置 1
		若 FIFO 里已有的数据小于等于 LoAlert,则 LoAlert 置 1

5.2.6.3 TimerClock寄存器

名字		TimerClock									
功能	选择 Timer 时钟的分频										
地址		0x2A									
复位值	00000111, 0x07										
位	7	6	5	4	3	2	1	0			
位名	0 0 TAutoRestart TPreScaler										
位权限	r/w										

位	位名	功能
7-6	00	预留值,不要更改
5-4	TAutoRestart	1: Timer 递减到 0 后,自动重新从 TReloadValue 开始递减
3-0	TPreScaler	定义 Timer 时钟频率 f _{Timer} ,范围从 0 到 21: f _{Timer} = 13.56MHz/2 ^{TPreScaler}

5.2.6.4 TimerControl寄存器

名字		TimerControl								
功能			Ì	选择 Timer 后	自动/停止条件	+				
地址				0x	2B					
复位值				0000011	0, 0x06					
位	7	6	5	4	3	2	1,1	0		
位名	0	0	0	0	TStop-Rx	TStopRx	TStartTx	TStartTx		
					End	Begin	End	Begin		
位权限	r/w	r/w	r/w	r/w	r/w	r/w	🗸 r/w	r/w		

位描述

位	位名	功能
7-4	0000	预留值,不要更改 -
3	TStopRxEnd	1: 数据接收完毕后 Timer 自动停止 0: Timer 不受该条件影响
2	TStopRxBegin	1: 第一个正确的 bit 接收完 Timer 自动停止 0: Timer 不受该条件影响
1	TStartTxEnd	1:数据发送结束后 Timer 自动启动。若此时 Timer 已经在运行,则 Timer 重新启动,从 TReloadValue 开始递减 0: Timer 不受诊象件影响
0	TStartTxBegin	1: 第一个 bit 发送后 Timer 自动启动。若此时 Timer 已经在运行,则 Timer 重新启动,从 TReloadValue 开始递减 0: Timer 不受该条件影响

5.2.6.5 TimerReload寄存器

名字		TimerReload							
功能		定义 Timer 预置值							
地址				0x	2C				
复位值				0000101	0, 0x0A				
位	7	6	5	4	3	2	1	0	
位名		TReloadValue							
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

位描述

_			
	位	位名	功能
	7-0	TReloadValue	Timer 若启动,则从该值开始倒计数。改变该寄存器值只能影响下一次 Timer 启动的初值

5.2.6.6 IRQPinConfig寄存器

名字		IRQPinConfig									
功能				配置 IRQ	输出行为						
地址				0x	2D						
复位值				0000001	0, 0x02						
位	7	6	5	4	3	2	1	0			
位名	0	0	0	0	0	0	IRQInv	IRQPush Pull			
位权限	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w			

位描述

位	位名	功	能
7-3	000000	预留值,不要更改	
1	IRQInv	1: IRQ 管脚为 IRq bit 的反相输出 0: IRQ 管脚为 IRq bit 的同相输出	
0	IRQPushPull	1: IRQ 管脚为标准 CMOS 输出 0: IRQ 管脚为开漏输出	186

5.2.6.7 PreSet2E寄存器

名字		PreSet2E								
功能		预留寄存器								
地址				0x	2E					
复位值				XXXXXX	X, 0xXX					
位	7	6	5	4	3	2	1	0		
位名		PreSet2E								
位权限	W	W	W	W	W	W	W	W		

位描述

位	位名		功能
7-0	PreSet2E	预留值,	木 要更改

5.2.6.8 PreSet2F寄存器

_									
	名字	PreSet2F							
	功能	1/1/1		预留寄存器					
	地址		•		0x	2F			
	复位值				XXXXXX				
	位	7	6	5	4	3	2	1	0
	位名				PreS	Set2F			
	位权限	W	W	W	W	W	W	W	W

台描述

位	位名	功能
7-0	PreSet2F	预留值,不要更改

5.2.7 预留寄存器组

5.2.7.1 Page寄存器

选择寄存器组,见 5.2.1.1Page寄存器

5.2.7.2 CryptoSelect寄存器(FM1705)

名字		CryptoSelect									
功能				选择认	证模式						
地址				0x	:31						
复位值				0000000	00, 0x00						
位	7	6	5	4	3	2	1 0				
位名	0	0	0	0	0	0	0 CryptoSe lect				
位权限	W	W	W	W	W	W	WW				

位描述

位	位名		功能
7-1	0000000	预留值,不要更改	X
0	CryptoSelect	1: 兼容 SH 标准的认证模式 0: 兼容 M1 标准的认证模式	

5.2.7.3 RFU寄存器

名字	RFU /								
功能	放留寄存器								
地址	0x32, 0x33, 0x34, 0x35, 0x36, 0x37								
复位值	XXXXXXXX, 0xXX								
位	7	6	5	4	3	2	1	0	
位名	RFU								
位权限	W	W	W	W	W	W	W	W	

位描述

位	位名	V	功能
7-0	RFU	页留值	

5.2.8 预留寄存器组

5.2.8.1 Page寄存器

选择寄存器组,见 5.2.1.1Page寄存器

5.2.8.2 - RFU寄存器

4										
	名字	RFU								
	功能	预留寄存器								
	地址	0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F								
	复位值	XXXXXXXX, 0xXX								
ſ	位	7	6	5	4	3	2	1	0	
	位名	RFU								
ſ	位权限	W	w	W	W	W	W	W	w	

位描述

位	位名	功能
7-0	RFU	预留值

5.3 寄存器寻址方式

FM1702/1704/1705 寄存器组分为 8 组,每组 8 个。Page 寄存器可以随时访问,而不用关心当前选中的是哪一组。

5.3.1 独立地址总线

在独立地址总线模式下,微处理器提供低三位地址 A0-A2,决定了组内寻址。要切换不同的寄存器组则要使用 Page 寄存器,合成的 6 位寄存器地址如下:

UsePageSelect	寄存器地址					
1	PageSelect2	PageSelect1	PageSelect0	A2	A1	A0

表 5-3 独立地址总线模式下寄存器地址

5.3.2 复用地址总线

在复用地址总线模式下,微处理器可以通过复用地址/数据总线一次性提供 6 位寄存器地址,在这种模式下既可以使用 Page 寄存器页可以使用直接地址:

总线类型	UsePage- Select	XX		寄存器	器地址		
复用地址/数据总线 (使用 page 寄存器)	1	page- Select2	page- Select1	page- Select0	AD2	AD1	AD0
复用地址/数据总线 (不使用 page 寄存器)	0	AD5	AD4	AD3	AD2	AD1	AD0

表 5-4

6 EEPROM结构

6.1 EEPROM存储器结构

块号	块地址	byte地址	读写权限	内容
0	0	000F	r	产品信息区
1	1	101F	r/w	寄存器复位初始值存放区
2	2	202F	r/w	可付益友世初如但什邡位
3	3	303F	r/w	
4	4	404F	r/w	
5	5	505F	r/w	寄存器初始值存放区
6	6	606F	r/w	^ \\\Z
7	7	707F	r/w	
8	8	808F	W	1812
9	9	909F	W	
10	Α	A0AF	W	~ (K/?
11	В	B0BF	W	
12	С	C0CF	w _	X
13	D	D0DF	W	
14	E	E0EF	w	
15	F	F0FF	W	
16	10	10010F	V	
17	11	11011F	W	
18	12	12012F	w	
19	13	130 - 13F	w	密钥存放区
20	14	14014F	W	雷 切 行
21	15	15015F	W	
22	16	16016F	W	
23	17	17017F	W	
24	18	18018F	W	
25	19	19019F	W	
26	1A	1A01AF	W	
27	1B	1B01BF	W	
28	1C	1C01CF	W	
29	1D	1D01DF	W	
30	1E	1E01EF	W	
31	1F	1F01FF	W	

表 6-1 EEPROM 存储器结构

6.2 寄存器初始值存放区

10hex 到 2Fhex 寄存器在*初始阶段* (见 11.3 章) 会被自动初始成*寄存器复位初始值存放* \varnothing 内的值。用户也可以使用 LoadConfig 指令(见 16.6.1 章) 将这些寄存器初始化成*寄存器*

初始值存放区里的值。

注意:

- Page 寄存器(10_{hex}, 18_{hex}, 20_{hex}, 28_{hex})不会被初始化
- 不要更改任何 PreSet 寄存器的内容
- 所有预留的寄存器或寄存器位都为'0',不要更改内容

6.2.1 寄存器复位初始值存放区

EEPROM 第一和第二块存放初始阶段 10_{hex} 到 $2F_{hex}$ 寄存器的初始值,默认值见 6.3.2。对应关系如下:

EEPROM Byte地址	寄存器地址	注释
10 _{hex} (块1,Byte0)	10 _{hex}	跳过
11 _{hex}	11 _{hex}	复制
2F _{hex} (块2,Byte15)	2F _{hex}	复制

表 6-2 寄存器地址对应表

6.2.2 寄存器复位初始值

寄存器复位初始值在产品测试过程中被初始化,在每次上电或复位过程中,这些值被用来初始化内部寄存器 10_{hex} 到 2F_{hex}。

EEPROM Byte地址	寄存器地址	值 ◀	描述
10	10	00	Page
11	11	58	TxControl
12	12	3F	CwConductance
13	13	3F	PreSet13
14	14	19	PreSet14
15	15	13	ModWidth
16	16	00	PreSet16
17	17	00	PreSet17
18	(8)	00	Page
19	19	73	RxControl1
1A	1A	80	DecoderControl
1B	1B	AD	BitPhase
10	1C	FF	RxThreshold
(D	1D	00	PreSet1D
1E	1E	41	RxControl2
TF TF	1F	00	ClockQControl
20	20	00	Page
21	21	06	RxWait
22	22	03	ChannelRedundancy
23	23	63	CRCPresetLSB
24	24	63	CRCPresetMSB
25	25	00	PreSet25
26	26	00	MFOUTSelect
27	27	00	PreSet27

EEPROM Byte地址	寄存器地址	值	描述
28	28	00	Page
29	29	08	FIFOLevel
2A	2A	07	TimerClock
2B	2B	06	TimerControl
2C	2C	0A	TimerReload
2D	2D	02	IRQPinConfig
2E	2E	00	PreSet2E
2F	2F	00	PreSet2F

表 6-3 寄存器复位初始值地址对应表

6.2.3 寄存器初始值

EEPROM 块 3 到块 7 保存着寄存器初始化值,用户可以用 LoadConfig 指令(见 16.6.1) 将内部寄存器 10hex 到 20hex 初始化为这些值。对应关系如下:

E²PROM Byte 地址	寄存器 Address	注释
EEPROM起始byte地址	10hex	跳过
EEPROM起始byte地址 + 1	11hex	复制
	, - ,	
EEPROM起始byte地址 + 31	2Fhex	复制

表 6-4 寄存器初始值地址对应表

<u>注意</u>: 寄存器初始值模块是可读+可写权限,用户可以用它来初始化寄存器,同样也可以用来来存放数据

6.3 密钥存放区

6.3.1 密钥格式

密钥必须以规定的格式存放在 EEPROM 内。每一 byte 的密钥分为低四位(k0 到 k3)和高四位(k4 到 7),每四位按位及位反存放在一个 byte 内。LoadKeyE2 和 LoadKey 指令会按此来检查密钥是否满足这种格式。使用这种格式,6byte 的 key 需存放在 12byte EEPROM 内:

KEY Byte	0 (L	SB)	1		 5 (M	SB)
KEY	k7k6k5k4k7k6k5k4	<u>k3k2k1k0</u> k3k2k1k0	k7k6k5k4k7k6k5k4	k3k2k1k0k3k2k1k0	 k7k6k5k4k7k6k5k4	k3k2k1k0k3k2k1k0
E ² PROM Byte 地址	n	n+1	n+2	n+3	 n+10	n+11
例子	5A _{hex}	F0 _{hex}	5A _{hex}	E1 _{hex}	5A _{hex}	A5 _{hex}

表 6-5 KEY 存放格式

例子: key 为 A0A1A2A3A4A5,则在 EEPROM 中存放格式为: 5AF05AE15AD25AC35AB45AA5hex

6.3.2 密钥的存放

FM1702/1704/1705 保留了 384byte EEPROM 空间用于保存密钥。密钥可以在这些 byte 中任意位置开始存放。

例子: 如果一条密钥的 byte0 存放在 $12F_{hex}$,则 byte1 存放在 130_{hex} ,byte2 存放在 131_{hex} ,一直到 byte11 存放 在 $13A_{hex}$

7 FIFO

7.1 概述

FM1702/1704/1705 包含一个 8x64 的并行 FIFO,保存微处理器和 FM1702/1704/1705 之间通信的数据

7.2 访问规则

FIFO 通过 FIFOData 寄存器输入和输出数据。向这个寄存器里写一 byte 数据即向 FIFO 里添加一 byte 数据,同时 FIFO 写指针加一。从这个寄存器读一 byte 数据即从 FIFO 里读出一 byte 数据,同时 FIFO 读指针加一。FIFOLength 寄存器记录读/写指针之间的长度。

当 FM1702/1704/1705 执行一条指令时,内部状态机可能会对 FIFO 进行内部读/写操作,所以除了指令本身要求外,微处理器在 FM1702/1704/1705 指令执行过程中不要对 FIFO 执行不正确的访问

			VALUE	
- 		705 指令执行过程). シコ L士 ハロ
	LN/11 /(1):2/11 /(1)/1/1	/// L TO //\TH (P-1T tO)		五 同 小半 /品
1 '9 H AV /87 6m 1 h	- FIVI I / U / I I / U 4/ I /	' () ,) , 1 		// IHI IH (/) •

下列农稻组出 FWI1702/1704/1703 指令 执行过程与决计 170 的协同情况:						
指令	微处理	器允许	注释			
1日 文	写数据到FIFO	从FIFO读数据				
StartUp	-	- X/V				
Idle	-	N				
Transmit	\checkmark	\	写指令参数或追加发射数据			
Receive	-		读取接收数据			
Transceive	\checkmark		写指令参数,接收过程中读接收到的数据			
WriteE2	√	-	写指令参数或追加要写入EEPROM的数据			
ReadE2	1		写指令参数,在指令执行过程中读取从			
RCauLZ	`Y	,	EEPROM读出的数据			
LoadKeyE2		-	写指令参数			
LoadKey		-	写指令参数			
Authent1		-	写指令参数			
Authent2	-	-				
LoadConfig	1	-	写指令参数			
CalcCRC	1	-	写指令参数			

表 7-1 FIFO 访问规则

控制FIFO

除了读写 FIFO 外,用户可以通过设置 FlushFIFO 位来复位 FIFO 指针。在这种情况下,FIFO 被清空,FIFOLength 置 0,FIFOOvfl 标识位被清除,FIFO 内原有的数据不再有效。

7.4 FIFO状态信息

微处理器可以通过下列寄存器获得 FIFO 状态:

FIFO 中数据长度: FIFOLength

FIFO 渐满警告: HiAlert FIFO 渐空警告: LoAlert

FIFO 溢出 (FIFO 满的情况下继续写数据到 FIFO): FIFOOvfl

FIFO 可以产生两个中断请求:

如果 LoAlertRq 置 1 且 LoAlert 变为 1, 会激活 IRQ 管脚 如果 HiAlertRg 置 1 且 HiAlert 变为 1, 会激活 IRQ 管脚

LoAlert 变为 1 的条件:

LoAlert = FIFOLength ≤ WaterLevel

HiAlert 变为 1 的条件:

HiAlert = (64−FIFOLength) ≤ WaterLevel

7.5 FIFO相关寄存器

标识	寄存器	地址寄存器,bit位
FIFOLength	FIFOLength	0x04, bits 6-0
FIFOOvfl	ErrorFlag	0x0A, bit 4
FlushFIFO	Control	0x09, bit 0
HiAlert	PrimaryStatus	0x03, bit 1
HiAlertIEn	InterruptlEn	0x06, bit 1
HiAlertIRq	InterruptiRq	0x07, bit 1
LoAlert	PrimaryStatus	0x03, bit 0
LoAlertIEn	InterruptIEn	0x06, bit 0
LoAlertIRq	InterruptIRq	0x07, bit 0
WaterLevel	FIFOLevel	0x29, bits 5-0

表 7-2 FIFO 相关寄存器

8 中断请求系统

8.1 概述

如果有中断请求事件发生,FM1702/1704/1705 会将 PrimaryStatus 寄存器里的 IRq 位置 1,同时激活 IRQ 管脚。IRQ 上的信号可以用来向微处理器发出中断请求。

8.1.1 中断源概述

下表列出了各个中断标识对应的中断源及其标识建立的条件。

TimerIRq 表明 TIMER 有中断请求。当 TIMER 自减到 0(TAutoRestart 置 0)或 TpreLoad 值(TautoRestart 置 1)时 TimerIRq 标识建立

TxIRq 标识在三种情况下会被建立:

- 1. 所有数据发送完毕
- 2. CRC 协处理器将 FIFO 中所有数据计算完毕,此时 CRCReady 也被置 1
- 3. 所有 FIFO 中的数据都被写入 EEPROM, 此时 E2Ready 也被置 1

RxIRq 表明接收器接收数据完毕

IdleIRq 表明指令执行完毕

HiAlerIRq表明HiAlert被置 1, 见 7.4 章

LoAlertIRq表明LoAlert被置 1, 见 7.4 章

中断标识	中断源	建立条件
TimerlRq	TIMER	Timer下減到0或TpreLoad值
	发射器	数据发送结束
TxlRq	CRC协处理器 🗽	FIFO中所有数据CRC计算结束
	E²PROM -	FIFO中所有数据已被写入EEPROM
RxIRq	接收器	接收器接收数据结束
IdleIRq	指令寄存器	指令执行结束
HiAlertIRq	FIFO	HIAlert置1,FIFO渐满
LoAlertIRq	PIFO	LoAlert置1,FIFO渐空

表 8-1 中断源

8.2 中断应用

8.2.1 控制中断请求及其标识

FM1702/1704/1705 通过设置 InterrupRq 寄存器中的 bit 向微处理器指明相应的中断请求、并且通过 InterrupEn 寄存器来打开或禁止这些中断请求。

寄存器	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
InterruptEn	SetlEn	rfu	TimerlEn	TxlEn	RxIEn	IdleIEn	HiAlertIEn	LoAlertIEn
InterruptRq	SetIRq	rfu	TimerIRq	TxIRq	RxIRq	IdleIRq	HiAlertIRq	LoAlertIRq

表 8-2 中断控制寄存器

只要有任何一个中断请求标识被置1并且相应的中断使能位打开,则PrimaryStatus寄存器中的IRq位被置1。如果有多个中断标识同时置1,则所有的中断请求位做"或"运算后激活IRq标识及IRQ管脚

上海复旦微电子集团股份有限公司

8.2.2 访问中断寄存器

中断请求位由内部状态机来设置。此外微处理器也可以使用 SetlEn 或 SellRq 位来设置或清除他们。如果想要某个特定的中断位要置 1,则将该位置 1 并置 Setlxx 位为 1。如果想要没个特定的中断位置 0,则将该位置 1 并置 Setlxx 位为 0。

8.3 IRQ管脚配置

用户可以通过 IRQPinConfig 寄存器来控制 IRQ 管脚的输出行为

IRQInv: 若置 0,则 IRQ 管脚电平与 IRq bit 位电平相同

若置 1,则 IRQ 管脚电平与 IRq bit 位电平相反

IRQPushPull: 若置 1, IRQ 管脚为标准 CMOS 输出特性

若置 0, IRQ 管脚为开漏输出,且必须外接上拉电阻

注意: 在复位过程(见 11.2 章)IRQInv置 1 且IRQPushPull置 9、此时IRQ管脚为高阻状态

8.4 中断相关寄存器

标识	寄存器	地址寄存器,bit位
HiAlertIEn	InterruptEn	0x06, bit 1
HiAlertIRq	InterruptRq	0x07, bit 1
IdleIEn	InterruptEn	0x06, bit 2
IdleIRq	InterruptRo	0x07, bit 2
IRq	PrimaryStatus	0x03, bit 3
IRQInv	IRQPinConfig	0x07, bit 1
IRQPushPull	NRQPinConfig	0x07, bit 0
LoAlertIEn	InterruptEn	0x06, bit 0
LoAlertIRq	InterruptRq	0x07, bit 0
RxIEn	∕InterruptEn	0x06, bit 3
RxIRq	InterruptRq	0x07, bit 3
SetlEn	InterruptEn	0x06, bit 7
SetIRq	InterruptRq	0x07, bit 7
TimerlEn	InterruptEn	0x06, bit 5
TimerlRq	InterruptRq	0x07, bit 5
TxlEn	InterruptEn	0x06, bit 4
TxIRq	InterruptRq	0x07, bit 4

表 8-3 中断相关寄存器

9 TIMER

9.1 概述

FM1702/1704/1705 包含一个 TIMER,选择芯片 13.56MHz 时钟的不同分频作为计时时钟。微处理器可以按需要将其配置为:

- Timeout—Counter
- Watch—Dog Counter
- Stop Watch
- Programmable One—Shot
- Periodical Trigger

TIMER 可以用来计算两个事件的时间间隔或标识某一事件在某一精确的时间后发生。 TIMER 可以被若干事件触发,但不会影响任何事件的进行。TIMER 相关的标识位也可以被 用来产生中断请求

9.2 TIMER应用

9.2.1 控制TIMER

TIMER 的主要部分是一个自减计数器。只要该计数器值不为 0,就会在时钟控制下做自减操作。如果 AutoRestart 置 1,则 TIMER 不会自减到 0。当 TIMER 计数到 1 时会在下一个时钟自动加载 TimerReolad 寄存器的值

TIMER 将 TimerReload 寄存器的信加载后自动开始运行,这可由下列事件触发:

- 开始发送第一个 bit (TxBegin 事件) 并且 TStartTxBegin 置 1
- 发送完最后一个 bit(TxEnd 事件)并且 TStartTxEnd 置 1
- TStartNow 被微处理器置

注意: TIMER 被触发后都会从 TimerReload 寄存器装载初始值, 重新开始倒计数

TIMER 可以被下列事件停止:

- 收到第一个 bit (RxBegin 事件) 并且 TStopRxBegin 置 1
- 接收器接收结束(RxEnd 事件)并且 TStopRxEnd 置 1
- ▼IMER 自减到 0 并且 TAutoRestart 置 0
- 【IStopNow 被微处理器置 1

写一个新的数据到 TimerReload 寄存器并不立即影响计数器,TimerReload 寄存器只在 TIMER 下一次重新开始时改变 TIMER 的初始值。所以 TimerReload 寄存器可以在 TIMER 运行过程中被赋值。

如果 TIMER 是被 TstopNow 位停止的,则不会发出 TimerIRq 请求

9.2.2 TIMER时钟周期

TIMER 时钟由芯片 13.56MHz 时钟分配得到。由 TPreScaler 寄存器决定分频数:

$$T_{\text{\tiny TimerClock}} = \frac{1}{f_{\text{\tiny TimerClock}}} = \frac{2^{T \text{PreScaler}}}{13.56 MHz}$$

TPreScaler 寄存器范围从 0 到 21,对应 TrimerClock 从 74ns 到 150ms

从上一个开始事件到目前的时间范围为 74ns 到 40s, 计算公式如下:

$$T_{Timer} = \frac{T \; \text{Re} \, loadValue - TimerValue}{f_{TimerClock}}$$

9.2.3 TIMER状态

SecondaryStatus 寄存器里的 TRunning bit 位标识了当前 TIMER 的状态。任何事件触发 TIMER 启动后,TRunning 标识置 1,TIMER 停止后,TRunning 置 0、Running 标识置 1 的下一个时钟起 TimerValue 开始自减。当前 TIMER 值可从 TimerValue 寄存器读出。

9.3 TIMER用途

9.3.1 TIMER-OUT和WATCH-DOG-COUNTER

TIMER 启动后自动从 TimerValue 开始递减,如果定义好的结束事件(如接收到第一个bit)发生,TIMER 就停止,没有 TIMER 中断产生。

另一方面,如果结束事件没有发生(如卡在规定的时间内没有回发数据),则 TIMER 一直计数到 0 并产生中断请求,这个中断可以通知微处理器预期的事件没有在规定的时间内发生

9.3.2 STOP WATCH

微处理器可以计算 TIMER 开始到结束之间的时间:

$$T = (T \text{Re} load_{value} - T imer_{value}) * T_{T imer}$$

9.3.3 PROGRAMMABLE ONE-SHOT TIMER

微处理器启动 TIMER 后等待 TIMER 的中断,在规定的时间后中断会出现

9.3.4 PERIODICAL TRIGGER

若微处理器将 TAutoRestart 置 1,则会周期性(T_{Timer})的产生中断请求

9.4 TIMER相关寄存器

标识	寄存器	地址 寄存器,bit位
TautoRestart	TimerClock	0x2A, bit 5

标识	寄存器	地址 寄存器, bit 位
TimerValue	TimerValue	0x0C, bits 7-0
TimerReloadValue	TimerReload	0x2C, bits 7-0
TpreScaler	TimerClock	0x2A, bits 4-0
Trunning	SecondaryStatus	0x05, bit 7
TstartNow	Control	0x09, bit 1
TstartTxBegin	TimerControl	0x2B, bit 0
TstartTxEnd	TimerControl	0x2B, bit 1
TstopNow	Control	0x09, bit 2
TstopRxBegin	TimerControl	0x2B, bit 2
TstopRxEnd	TimerControl	0x2B, bit 3

10 省电工作模式

10.1 Hard Power Down 模式

在 RSTPD 上加高电平就进入到 Hard Power Down 模式。这将关闭所有的内部电流消耗包括振荡器。所有的数字输入驱动器与输入管脚分离而由内部决定电平(RSTPD 自身除外)。所有输出管脚电平被固定在某一值。

1		-	-	_	_	
IJΠ		表	Þh	1	┌ •	
ᄱ		1X	171		۱ N	

符号	管脚位置	类型	描述
OSCIN	1	I	没有与输入分离,被拉到 AVSS
IRQ	2	0	高阻
MFIN	3	I	与输入分离
MFOUT	4	0	低
TX1	5	0	高
TX2	7	0	低
NWR	9	I	与输入分离
NRD	10	I	与输入分离
NCS	11	I	与输入分离
D0 to D7	13 to 20	I/O	与输入分离
ALE	21	I	与输入分离
A0	22	I/O	与输入分离
A1	23	I	与输入分离
A2	24	3	与输入分离
AUX	27	7/0/	高阻
RX	29	X	不变
VMID	30	А	拉到 AVDD
RSTPD	31		不变
OSCOUT	32	0	高

表 10 在 Hard Power Down 方式下管脚信号

10.2 Soft Power Down模式

当 Control 寄存器的 PowerDown 位被置为 1 之后,芯片立即进入 Soft Power Down 模式。所有的内部电流都被关断(包括振荡器驱动)。

与 Hard Power Down 模式不同,数字输入驱动没有与输入管脚分离,依然保持工作状态。数字输出管脚保持原有状态。

当 Control 寄存器的 PowerDown 位复位之后,需要 512 个时钟周期退出 Soft Power Down 模式,由 PowerDown 标志来标示。对这一位复位并不能立即清除它,当退出 Soft Power Down 模式后它会自动清零。

<u>注意</u>:如果使用内部振荡器,必须考虑到它由 AVDD 供电,到振荡器稳定且时钟周期能被内部逻辑电路检测到必定会有一定的延迟 tOSC。

10.3 Stand By 模式

当 Control 寄存器的 StandBy 位被置为 1 之后,芯片立即进入 Stand By 模式。所有的内部电流都被关断(包括除振荡器驱动外所有的内部时钟驱动)。

与 Hard Power Down 模式不同,数字输入驱动没有与输入管脚分离,依然保持工作状态数字输出管脚保持原有状态。

与 Soft Power Down 模式不同,振荡器不需要恢复时间。

当 Control 寄存器的 StandBy 位复位之后,OSCIN 管脚上需要经过4 个时钟周期才能退出 Stand By 模式,由 StandBy 标志来标示。对这一位复位并不能立即清除它,当退出 Stand By 模式后它会自动清零。

10.4 接收器关闭

在不需要的时候关闭接收器,在数据接收之前打开接收器可以降低功耗。在将 RxAutoPD 设置成 1 之后可以自动实现这一功能。如果将这一位设置成 0,则接收器一直处于工作状态。

11 启动过程

启动过程如下图所示:

图 11-1 启动过程

11.1 Hard Power Down 阶段

在下列情况下会进入 Hard Power Down 阶段

- 由于 DVDD 管脚上加电引起的上电复位(在 DVDD 低与数字电路复位阀值电压时启动)
- 由于 AVDD 管脚上加电引起的上电复位(在 AVDD 低与模拟电路复位阀值电压时启动)
 - 在 RSTPD 管脚上加高电平(当 RSTPD 管脚上电平为高时启动)

11.2 复位阶段

复位阶段自动跟随Hard Power Down阶段。一旦振荡器工作稳定,需要 512 个时钟周期完成该状态。在复位阶段,一些奇存器的值由硬件预置。相应的寄存器复位值在介绍寄存器时已经给出(见 5.2 章)。

<u>注意</u>:如果使用内部振荡器,必须考虑到它由 AVDD 供电,到振荡器稳定且时钟周期能被内部逻辑电路检测到必定会有一定的延迟 tOSC。

11.3 初始化阶段

初始化阶段自动跟随复位阶段,需要 128 个时钟周期。在初始化阶段, EEPROM 的第 1和第 2 扇区内容被复制到 10hex 至 2Fhex 寄存器。

<u>注意</u>:在产品测试时,FM1702/1704/1705被初始化成默认值,这有助于最大限度的减少微处理器对芯片的配置工作。

11.4 初始化并行接口方式

为了配合不同微处理器的不同接口方式(参见 <u>4.3</u>),必须进行一次初始化程序以便相应的微处理器接口能够被探测到,而且可以同步微处理器和FM1702/1704/1705的启动工作。

在整个启动过程中,Command 寄存器的值始终为 3Fhex。在初始化阶段结束后:FM1702/1704/1705 自动进入 Idle 状态,Command 寄存器的值随之变成 00hex。

执行下列程序确保能够准确探测微处理器接口:

- 读 Command 寄存器,直到 6 比特值变成 00hex。此时内部初始化阶段已经结束,芯片准备好接收外部指令。
 - 往 Page 寄存器写 80hex 初始化微处理器接口
 - 读 Command 寄存器,如果它的值为 00hex,则微处理器的接口已经成功探测。

完成接口初始化之后,可以通过往 Page 寄存器写 00hex 切换到线性寻址方式。

12 振荡器电路

图 12-1 晶振连接方法

在同步时序电路中,提供给 FM1702/1704/1705 的时钟作为编码和解码的时基。因此,稳定的时钟频率对于正常的工作至关重要。最好使用内部时钟振荡器以及推荐的电路来满足这一要求。如果使用外部时钟源,时钟信号必须加到 OSCIN 管脚。在这种情况下,必须注意时钟的占空比以及抖动,时钟信号的品质必须得到保证。时钟信号应该满足 22.5.3 中所要求的。

注意: 我们不推荐使用外部时钟源。

13 发射管脚TX1 和TX2

从TX1 和TX2 发射出去的是调制过的 13.56MHz载波信号。辅以几个无源器件来匹配和滤波,它就可以直接驱动天线(见 18章)。为此,输出电路的内部阻抗被设计得非常小。通过配置TxControl寄存器可以控制TX1 和TX2 的输出信号。

13.1 配置TX1 和TX2

下表说明了 TX1 的可能配置情况:

TxControl 配置情况	包络信号	TX1 上的信号
TX1RFEn	日本日日ユ	17.1 7.13.11.3
0	X	人但
1	0	低
1	1	13.56 MHz 载波

表 13-1 配置管脚 TX1

下表说明了 TX2 的可能配置情况:

Register Configuration i	Register Configuration in TxControl			TVO I. C	
TX2RFEn	TX2CW	InvTX2	包络信节	TX2 上信号	
0	Х	Х	X	低	
			0	调制后 13.56 MHz 的信号	
		0	1	13.56 MHz 载波	
	0.		0	调制后 13.56 MHz 的信号,与	
	-	1	U	TX1 有 180° 相移	
1		. <>>		1	13.56 MHz 载波,与 TX1 有
	\times)	ı	180° 相移	
	0 X	X	13.56 MHz 载波		
	7 1	1	X	13.56 MHz 载波,与 TX1 有	
		l l	^	180° 相移	

表 13-2 TX2 管脚的配置

13.2 工作距离与功耗的关系

用户可以通过调整天线驱动电压 TVDD,在最大工作距离和使用不同的天线匹配电路的功能之间找到一个平衡点。

13.3 脉冲宽度

通过将数据按照 Miller 码编码,数据信息包含在包络中传输到卡。而且,Miller 码的每一个停顿也被编码成特定长度的脉冲。通过配置 ModWidth 寄存器可以调整这一脉冲的宽度。参考下面的公式:

$$T_{Pulse} = 2\frac{ModWidth + 1}{f_c}$$

其中, fc=13.56MHz。

14 接收电路

14.1 概述

FM1702/1704/1705 采用了正交解调电路来解调 RX 脚上的 ISO 14443 标准的副载波信号。ISO 14443-A 副载波信号是 Manchester 编码、ASK 调制信号。正交解调器使用两个不同的时钟: Q 时钟和 I 时钟(相差 90 度)。两路副载波信号被放大、滤波后经相关/求值/数字化电路解调后送入数字模块。

在信号处理过程中可以进行各种调整获得最佳性能。

14.2 信号接收过程

接收过程包括以下几个步骤:

首先对 13.56MHz的载波信号进行正交解调,建议Q时钟进行自动校准(见 14.3.1)获得最佳效果,解调后的信号被增益可调的放大器放大。相关电路计算了接收信号与预期值的相似度,Bit phase寄存器决定了发射器和接收器时钟的相差。在求值和数字化电路中检测有效比特且把结果送入FIFO寄存器。

14.3 接收器操作

通常,缺省设置可以使 FM1702/1704/1705 与卡进行数据传输。然而,在一些特定环境 里用户设置可以获得更好的效果。

14.3.1 Q时钟自动校准

接收器正交解调的概念是产生 I 时钟和与之相差 90 度的 Q 时钟。为了获得最佳的解调性能,Q 时钟和 I 时钟必须相差 90 度。FM1702/1704/1705 复位后自动进行校准。

ClkQCalib 值为 0 时、Transceive 命令结束后可以进行自动校准; ClkQCalib 值为 1 时,禁止了除复位外所有的自动校准。也可以由软件通过设置 ClkQCalib 为 1 来进行自动校准。

Q 时钟自动校准持续 65 个振荡周期(约 4.8μs), *ClkQDelay* 值正比于 Q 时钟与 I 时钟的相差, 状态标识 *ClkQ180Deg* 表明 Q 时钟与 I 时钟的相差超过 180 度。

注意:

- ▶ 复位初始值设置了复位后 Q 时钟为自动校准。
- ClkQCalib 设置为 1 可以永久禁止自动校准。
- 可以通过微处理器向 ClkQDelay 写数据,目的是为了禁止自动校准且通过软件进行预设置。注意,通过软件设置延迟值时 ClkQCalib 必须已经被设置为 1 且至少经过了 4.8µs 的时间间隔。如果 ClkQCalib 为 0 时,设置的延迟值将在下一个自动校准阶段被刷新。

14.3.2 放大器

解调信号经过可调放大器的放大可以进行性能优化。通过 Gain[1:0]寄存器调整放大器的增益,下面是可选的增益因子:

寄存器设置	增益因子 [dB] (模拟结果)
0	20
1	24
2	31
3	35

表 14-1 内部放大器的增益因子

14.3.3 相关电路

相关电路计算了接收信号与期望信号之间的匹配度,包括Q和I两路通道。对于每一路输入信号,相关器有两路输出,所以共有四个输出信号。相关电路需要卡信号的相位信息来进行性能优化,该信息由微处理器通过寄存器*BitPhase [7:0]*来设置,该值确定了发射器与接收器时钟的相位关系(tBitPhase =1/13.56 MHz的倍数)。

14.3.4 求值及数字化电路

对 Manchester 码信号的每个 bit-half,相关结果被求值。求值及数字化电路从两个 bit-half 的信号强度确定该比特是否有效,如果有效则确定它的值或是否包含冲突。

为了优化,用户可以选择下面的标准:

- *MinLevel*:确定了强 bit-half 有效的最低信号强度。
- *CollLevel*:确定了弱 bit-half 产生冲突的最低信号强度。如果信号强度低于该值,1和0可以确定。

CollLevel 确定了相应于强 half-bit 幅度的最低信号强度。

数据传输结束后,卡必须要在一定时间间隔(帧保护时间, ISO14443 标准)后才可以发送响应,通过 RxWait 寄存器设置该时间长度, RxWait 寄存器确定数据传输给卡后几个比特时间打开接收机。

如果 RcvClkSell 寄存器设置为 1,相关器和求值电路采用 I 时钟;如果设置为 0,则采用 Q 时钟。

注意: 建议使用默认的Q时钟。

15 串行信号开关

15.1 概述

FM1702/1704/1705 包括两个主要模块:数字模块(包括状态机、编码器和解码逻辑等)模拟模块(包括调制器、天线驱动器、接收机和放大电路)。这两模块的接口设计可以将接口信号送入 MFIN 和 MFOUT 脚。

该结构可以将 FM1702/1704/1705 的模拟部分连接到另一个器件的数字部分

注意: 根据 ISO14443A 标准, MFIN 脚只能加载 106 kbaud 的信号: MFOUT 脚只能输出 106 kbaud 的 Manchester 副载波和 Manchester 信号

串行信号开关也可以在设计期间使用或用来测试检查发射及接收的数据。**21.2** 节描述了模拟测试信号及在该开关上的测试。

下面几节描述了用来配置和控制时序信号开关的相关等存器。

15.2 时序信号开关的相关寄存器

DecoderSource 标识确定内部 Manchester 解码器输入信号的方式:

DecoderSource	解码器输入信号
0	常数 0
1	模拟部分的输出,缺省配置。
2	直接连接到MFIN, Manchester 码信号调制的847.5 kHz副载波信号。
3	直接连接到MFIN, Manchester 码信号。

表 15-1 DecoderSource 值

ModulatorSource 确定了所发射的 13.56MHz 载波的调制信号,该信号驱动 TX1 及 TX2 脚:

ModulatorSource	调制器的输入信号
g l	常数 0 (TX1及TX2脚无载波).
1	常数 1 (TX1及TX2脚有持续的载波).
2	内部编码器的调制信号(包络), 缺省配置.
3	直接连接到MFIN, Miller 码信号.

表 15-2 ModulatorSource 值

MFOUTSelect 选择输出到 MFOUT 脚的信号:

MFOUTSelect	输出到MFOUT脚的信号	
0	低电平	
1	高电平	
2	内部编码器的调制信号 (包络).	
3	发射的时序数据流 (与MFOUTSelect= 2相同, 但是还没有Miller编码).	

MFOUTSelect	输出到MFOUT脚的信号	
5	副载波解调器的输出信号 (Manchester 编码的卡信号).	
6	备用	
7	备用	

表 15-3 MFOUTSelect 值

注意: 若要使用 MFOUTSelect, 测试信号控制位 SignalToMFOUT 必须设置为 0.

15.3 MFIN及MFOUT的使用

15.3.1 有源天线的概念

FM1702/1704/1705 模拟模块可以通过 MFIIN 及 MFOUT 脚来使用, 相关的寄存器设置为:

寄存器	赋值	信号	FM1702/1704/1705 脚
ModulatorSource	3	Miller编码	MFIN
MFOUTSelect	4	副载波Manchester编码	MFOUT
DecoderSource	X	-	

表 15-4 使用 FM1702/1704/1705 模拟模块的寄存器设置

另一方面, FM1702/1704/1705 数字模块可以通过 M FHIN 及 MFOUT 脚来使用, 相关的寄存器设置为:

寄存器	赋值	信号	FM1702/1704/1705 脚
ModulatorSource	Х	W Y-	-
MFOUTSelect	2	Miller编码	MFOUT
DecoderSource	2	副载波Manchester编码	MFIN

表 15-5 只使用 FM1702/1704/1705 数字模块的寄存器设置

用上述方式配置的两个 FM1702/1704/1705 器件可以通过 MFOUT 及 MFIN 脚相互连接起来。

注意:根据 ISO14443A,有源天线概念只有在 106kbaud 波特率下才可以使用。

15.3.2 驱动两个RF部分

可以将一个有源天线连接到 TX1、TX2 及 RX 脚(通过合适的滤波及匹配电路),同时将另个有源天线连接到 MFOUT 及 MFIN 脚。

在此结构下,一个微处理器依此驱动两个 RF 部分。

16 1702/1704/1705 指令集

16.1 概述

FM1702/1704/1705的行为由一个内部状态机决定,该状态机可执行一组专门的指令集将某条指令代码写入指令寄存器可启动一个相应的命令的执行。

某些指令执行需携带参数和(或)数据,这些参数和数据主要通过 FIFO 进行交换

16.2 命令行为简介

- 需要将数据流作为输入的命令会直接处理它在 FIFO 缓存找到的数据。
- 需要特定数量的参数的命令只有在接收到数量正确的参数后、才会开始执行。
- 在开始执行命令时 FIFO 缓存不会自动清空,因而,可以先将部分参数和(或)数据 写入 FIFO 缓存,然后再开始命令的执行,同时写入剩余的参数和(或)数据。
- 由微处理器写入指令寄存器新的指令代码例如: *Idle* Command 可以中断当前正在执行的除了 *StartUp-Command* 之外的任何命令.

16.3 FM1702/1704/1705 命令简介

16.3.1 基本说明

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的 参数和数据	返回的 数据	见相关 的章节
StartUp	3F	运行复位和初始化过程 注意: 软件不能执行这条命令,只能 通过上电或冷复位来做。	-	-	<u>16.3.2</u>
Idle	00	空指令,用来取消当前命令执行。	-	-	<u>16.3.3</u>
Transmit	1A	发送 FIFO 缓存数据	数据流	-	<u>16.4.1</u>
Receive	116	激活接收电路。 <u>注意</u> :内部状态机等待配置在 RxWait 寄存器中的时间过去后,才能真正启 动接收 <u>注意</u> :这条命令和 Transmit-Command 没有时序关系, 所以可以单独用于测试目的。	-	数据流	<u>16.4.2</u>
Transceive	1E	发送 FIFO 缓存数据,发送完后自动激活接收电路。 注意: 内部状态机等待配置在 RxWait 寄存器中的时间过去后,才能真正启动接收 注意: 这条命令是发送和接收的组合。	数据流	数据流	<u>16.4.3</u>
WriteE2	01	从 FIFO 缓存读取数据,并且写入内 部 E ² PROM。	起始地址 LSB 起始地址 MSB 数据流	-	<u>16.5.1</u>

上海复旦微电子集团股份有限公司

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的 参数和数据	返回的 数据	见相关 的章节
ReadE2	03	从内部 E ² PROM 读取数据,并且写入 FIFO 缓存。 <u>注意</u> :密钥不能读出。	起始地址 LSB 起始地址 MSB 字节数	数据流	<u>16.5.2</u>
LoadKeyE2	0B	将密钥从 E ² PROM 复制到 key 缓存。	起始地址 LSB 起始地址 MSB	-	<u>16.8.1</u>
LoadKey	19	将密钥从 FIFO 缓存复制到 key 缓存。	Byte0(LSB) Byte1 Byte10 Byte11(MSB)	-	18.9.2
Authent1	0C	执行 Crypto1 算法的认证过程的第一步。	卡认证命令 卡的块地址 卡序列号的 LSB 卡序列号的 Byte1 卡序列号的 Byte2 卡序列号的 MSB	V	16.8.3
Authent2	14	执行 Crypto1 算法的认证过程的第二步。	7.KV	-	<u>16.8.4</u>
LoadConfig	07	从 E ² PROM 读取数据,用于初始化寄存器。	起始地址 LSB 起始地址 MSB	-	<u>16.6.1</u>
CalcCRC	12	激活 CRC 协处理器。 注意: CRC 计算结果可从 CRCResultLSB 和 CRCResultMSB 寄存器中读到。	数据流	-	16.6.2

表 16-1 FM1702/1704/1705 命令说明

16.3.2 STARTUP COMMAND 3FHEX

命令	指令代码 功能	通过 FIFO 传递 的参数和数据	返回的数据
StartUp	运行复位和初始化过程。 3F <u>注意</u> :软件不能执行这条命令,只能通过上 电或硬件复位来做。	-	-

StartUp-Command 运行复位和初始化过程,无需发送或接收数据。不能被微处理器激活,只能在发生下对事件后自动启动:

- DVDD 管脚上引起上电复位
- DVDD 管脚上引起上电复位
- RSTPD 管脚上下降沿

在复位过程中,异步复位定义特定寄存器位;初始化过程中,用 E²PROM 中的值定义特定寄存器。

当 StartUp-Command 结束后, Idle-Command 自动插入。

注意:

● 微处理器不准在FM1702/1704/1705 正在执行StartUp-Command时进行写入操作。

上海复旦微电子集团股份有限公司

技术手册

微处理器需读取命令寄存器(Command-Register)中是否为Idle-Command以确保 StartUp-Command操作结束。(见 11.4 章)

- 当 StartUp-Command 执行时,只能读 page0 中的寄存器。
- *StartUp-Command* 不能被微处理器中断。

16.3.3 IDLE COMMAND 00HEX

命令	\$	指令代码 (16 进制)	功能	通过 FIFO 传递 的参数和数据	返回的数据
Idle	е	00	空指令,用来取消当前命令执行。	-	

Idle-Command 将 FM1702/1704/1705 切换到空闲状态,在这个状态中等待下一条命令。 无需发送或接收数据。当前指令执行完成后,FM1702/1704/1705 自动进入空闲状态,同时将 IdleIRq 位置起来发出中断申请。如果由微处理器执行,可以取消当前正在执行的除了 StartUp-Command 之外的任何命令,但此时中断申请不会发出。

注意:用 Idle-Command 中断命令不会同时清 FIFO 中数据

16.4 通讯命令

FM1702/1704/1705 全兼容 ISO14443,因此该读卡机芯片指令集非常灵活和全面。以下几个章节会讨论和卡通讯的命令,最后是三重认证过程。

16.4.1 TRANSMIT COMMAND 1AHEX

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的参 数和数据	返回的数据
Transmit	1A	发送 FIFO 缓存数据	数据流	-

Transmit-Command 从 FIFO 缓存中去数据然后传递到发送器。无需返回数据。只能由 微处理器启动

16.4.1.1 使用Transmit-Command

从下列中选择发送数据的顺序:

1. 当处于空闲状态时,将所有需要发送的数据写入 FIFO,而后,将 *Transmit-Command* 的指令码写入命令寄存器,启动发送。

注意:这种方法最大可传输 64 字节。

2 先将 *Transmit-Command* 的指令码写入命令寄存器。由于 FIFO 中无数据,则虽然发送使能,但发送过程只有等 FIFO 中写入第一字节数据才被启动。微处理器必须及时写入下数据以保证在 RF 界面上有数据流传递。

注意:此方法可以传递任意长度数据流,不过要求数据及时写入 FIFO 缓存。

3. 当处于空闲状态时,将部分需要发送的数据写入 FIFO,而后,将 *Transmit-Command* 的指令码写入命令寄存器,启动发送。如果当前 FM1702/1704/1705 处于 *Transmit-Command*

上海复旦微电子集团股份有限公司

工作状态中,则可以由微处理器向 FIFO 写入数据,发送器则可以将这些数据添加到发送的数据流中。

注意:此方法可以传递任意长度数据流,不过要求数据及时写入 FIFO 缓存。

如果发送器为保证 RF 界面上数据流的连续性,请求发送下一数据,但 FIFO 中为空,则 *Transmit-Command* 自动停止,内部状态机由发送状态跳回空闲状态。

<u>注意</u>:如果微处理器将写入 *Idle-Command* 和其他命令写入命令寄存器,覆盖 *Transmit-Command*,下一个时钟发送即停止。这会导致不符合 ISO14443-A 的信号 ...

16.4.1.2 RF通道冗余校验及帧格式

每次发送的帧由 SOF (帧头)、数据流、EOF (帧尾) 三个阶段依次构成,可以通过 PrimaryStatus-Register 的 ModemState (见 16.4.4 章)来观察这些不同阶段。

如果 ChannelRedundancy-Register 的 TxCRCEn 位被置起,则 FM1702/1704/1705 计算出 CRC 添加到数据流后。CRC 计算方法由 ChannelRedundancy-Register 中设置决定。产生奇偶校验也由 ChannelRedundancy-Register 中的设置(ParityEn 位和 ParityOdd 位)决定。

16.4.1.3 发送面向位的帧

通过将 TxLastBits 位设为非 0 值,发送器可以配置成最后发送一个不完整的字节。见下图:

图 16-1 发送面向位的帧

上图也同时展示了如果如果 ChannelRedundancy-Register 的 ParityEn 位被置起,所由完整传送的字节都由奇偶校验位,但最后一个不完整的字节没有。发送结束后,TxLastBits 位被自动清成 0。

注意:如果 TxLastBits 位不为 0,则必须通过清 ChannelRedundancy-Register 的TxCRCEn 位来禁止 CRC 产生。

16.4.1.4 发送长于 64 字节的帧

为发送长于 64 字节的帧, 微处理器需在 *Transmit-Command* 执行时向 FIFO 继续写入数据, 内部状态机在开始发送数据流的最后一前时会检查 FIFO 的状态。如下图:

图 16-2 发送面向字节的帧的时序

只要内部信号'Accept Further Data'为 1,写入 FIFO 的数据就会被添加到发送数据流后。如果为 0,则发送结束,此时才写入的数据不会被发送,而只保留在 FIFO 缓存中。

注意: 如果使能奇偶校验位的产生(即 *ParityEn* 位被置起)、奇偶校验位时是最后一位被发送的,这样会使'Accept Further Data'信号多持续一位时间

如果 *TxLastBits* 位不为 0,最后一字节不被完整发送,而只发送 *TxLastBits* 位定义的起始于最低有效位的位数。

这样,内部状态机会提前检查 FIFO 状态,如下图:

图 16-3 发送面向位的帧的时序

在上图的例子中,发送 Bit 3 后停止。如果经过配置,会加上 EOF。

上图还显示了在 FIFO 状态在被检测前 *FIFOData-Register* 正好有一个写操作,这就造成了'FIFO empty'信号再次跳为 0,由此内部信号'Accept Further Data'维持为 1,刚写的一个字节则通过 RF 界面被发送出去。

信号'Accept Further Data'只能由'Check FIFO empty'功能改变。这个功能作用是在预期发送的最后一位前一位检测'FIFO empty'信号。

帧定义	检测位置
8位. 带奇偶校验	第8位
8位、不带奇偶校验	第7位
x 位、不带奇偶校验	第(x - 1)位

表 16-2

16.4.2 RECEIVE COMMAND 16HEX

命令	指令代码(16 进制)	功能	通过 FIFO 传递的参数和数据	返回的数据
Receive	16	激活接收电路。	-	数据流

Receive-Command 激活接收电路,所有从 RF 界面接收的数据可通过 FIFO 返回。可由 微处理器启动,也可由执行 Transceive-Command 自动启动。

注意: 这条命令和 Transmit-Command 没有时序关系, 所以可以单独用于测试目的。

上海复旦微电子集团股份有限公司

16.4.2.1 使用Receive-Command

Transmit-Command 启动后,每一个位时钟会使 RxWait-Register 中的值减一。当从 3 减到 1 使,模拟部分的接收电路准备好并被激活。当计数值到 0,接收电路开始监视从 RF 界面接收的信号。如果信号电平超过 MinLevel-Register 中定义的水平时,接收电路于是开始译码。如果在接收电路探测到输入管脚 Rx 再也没有信号,则结束接收,译码器会置起 RxIRq位表示申请中断。

检测 PrimaryStatus-Register 的 ModemState,可监视发送过程的不同阶段。(见 16.4.4 章)

<u>注意</u>:由于 *RxWait-Register* 中必须计数从 3 到 0 以有时间初始化模拟部分的接收电路,所以该寄存器至少置 3。

16.4.2.2 RF通道冗余校验及帧格式

译码器在开始接收数据流等待 SOF。当检测到,它就激活串变并转换器并收集输入的数据位。每一个完整的字节都被传递到 FIFO。如果检测到 EOF 或者输入信号电平低于 RxThreshold-Register 中定义的 MinLevel 值时,接收和译码停止 Idle-Command 自动插入,随之产生给微处理器的中断申请并置起相应状态标志。

如果 ChannelRedundancy-Register 的 RxCRCEn 位被置起,接收到的数据中应包括 CRC 块,块的大小由 ChannelRedundancy-Register 的 CRC8 位决定是一个或两个字节。

注意:如果接收到的 CRC 块正确,就不会将它传递到 FIFO 缓存。这通过将收到的数据串行移过一个一字节或两字节(由定义的 CRC 方法决定)长的内部缓存实现。CRC 块将保留在内部缓存中,最后在延迟一个或两个字节时间后,FIFO 中含有除了 CRC 块的所有数据。如果 CRC 校验失败,则将所有数据包括错误的 CRC 块送入 FIFO。

ChannelRedundancy-Register中的 ParityEn 位置起,收到的每一字节后应当跟一个奇偶校验位。如果 ParityOdd 位置起,预期的校验为奇校验,否则为偶校验。

16.4.2.3 冲突检测

在选卡阶段、如果有不止一张的卡,就会同时应答。FM1702/1704/1705 支持 ISO14443-A 规定的算法,通过所谓防冲突循环来解决卡序列号的数据冲突问题。该算法的基础是检测位冲突。

现在使用的位编码机制即 Manchester-coding 支持位冲突检测。如果在某位的前半和后半部分都检测到副载波调制,就会发送不是一个 1 或一个 0 而是一位冲突信号。 FM1702/1704/1705 使用 CollLevel 的设置来区分 1 或 0 和一个位冲突,即当一位收到的数据中较小的半位大于 CollLevel 的定义,则说明检测到一个位冲突。

如果数据位检测到一个位冲突,则错误标志 *CollErr* 置起;如果检测到奇偶校验有一个位冲突,则错误标志 *ParityErr* 置起。

接收电路不受检测到的冲突位的制约,继续接收输入的数据,译码器会发送 1 给检测到冲突的位。

上海复旦微电子集团股份有限公司

注:作为例外,如果 ZeroafterColl 位置起,所有第一个冲突位后接收到的位无论冲突或不冲突,都被强制为 0。这个特点可以简化软件实现兼容 ISO14443-A 防冲突机制。

当帧的第一位冲突被检测到,该位位置会存放在 CollPos-Register。

冲突位对应值如下:

冲突位	CollPos-Register 的值
SOF	0
LSByte 的 LSBit	1
LSByte 的 MSBit	8
第二个 Byte 的 LSBit	9
第二个 Byte 的 MSBit	16
第二个 Byte 的 LSBit	
	5.0

表 16-3 位冲突位置的返回值

由于奇偶校验位的冲突根据定义跟随在数据位的冲袭后,所以奇偶校验位不包括在 CollPos 中。如果在 SOF 中检测到位冲突,则报告帧错误,而且没有数据传递到 FIFO,在 这种情况下,接收电路继续监视输入信号直到收到错误输入数据流的结尾,产生正确的通知信号给微处理器。这将帮助微处理器决定什么时候允许发送数据给卡。

16.4.2.4 接收面向位的帧

接收电路可以处理含有不完整字节的数据流,支持面向位的帧需使用以下值:

- RxAlign 给第一个输入字节选择一个位偏移量,例如:如果 RxAlign 被设为 3,前 5 位被传递到 FIFO 缓存、接下来的位按字节打包并传递。完成接收后,RxAlign 被自动清空。
- TxLastBits 位返回最后接收一字节的有效位数,例如:如果在接收命令结束后 TxLastBits 位等于 5. 说明最低 5 位有效。

只有帧错误标志 FrameErr 没有置起,TxLastBits 位才有效;如果 RxAlign 不为 0 且 ParityEn 有效,第一个奇偶校验位会被忽略而不被校验。

16.4.2.5 通讯错误

下表列出了错误标志建立条件:

	原因	置起的标准位
V	接收的数据没有 SOF	FramingErr
	CRC 块不等于计算值	CRCErr
	接收到数据长度小于 CRC 块	CRCErr
	奇偶校验位不等于计算值	ParErr
	检测到冲突	CollErr

表 16-4 通讯错误

16.4.3 TRANSCEIVE COMMAND 1EHEX

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的参 数和数据	返回的数据
Transceive	1E	发送 FIFO 缓存数据,发送完后自动激活接收电路。	数据流	数据流

Transceive-Command 先执行Transmit-Command (见 <u>16.4.1</u>章),然后自动启动 Receive-Command (见 <u>16.4.2</u>章),所有需发送的数据传递到FIFO缓存,所有接收的数据也传递到FIFO缓存。它只能由微处理器启动。

<u>注意</u>: RxWait 寄存器定义发送最后一位到激活接收电路的时间,可用来调整发送和接收 之间的时序关系,此外,BitPhase 寄存器定义发送电路和接收电路时钟之间的相移。

16.4.3.1 与卡通讯的状态

发送器和接收器的实际状态可从通过 *PrimaryStatus-Register* 的 *ModemState* 得知。下列是 *ModemState* 内部状态分配如下表:

1 / 4/0	0 0.01.1.010.10	1 1 Hr M. C. C. M. J. C.	
ModemState	状态名	描述	
000	ldle	由于发送器和接收器被启动或接收器没有输入数据,所有都不在工作状态。	
001	TxSOF	发送 SOF	
010	TxData	发送 FIFO 里的数据(或冗余检查位)	
011	TxEOF	发送 EOF	
100	GotoRx1	当接收器启动,通过中间状态	
100	GotoRx2	当接收器结束, 通过中间状态	
101 PrepareRx 等待 RxWait 寄存器定义的时间。		等待 RxWait 寄存器定义的时间。	
110	AwaitingRx	接收器激活、在Rx引脚等待输入信号	
111	Receiving	接收数据	

表 16-5 ModemState 含义

16.4.3.2 与卡通讯的状态机

图 16-4 与卡通讯的状态机

16.5 E2PROM访问命令

16.5.1 WRITEE2 COMMAND 01HEX

16.5.1.1 概述

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的参数和数据	返回的数据
WriteE2	01	从 FIFO 缓存读取数据, 并且 写入内部 E ² PROM。	起始地址 LSB 起始地址 MSB 数据流	VIEW P

WriteE2-Command 将 FIFO 中前两个字节看作 E^2 PROM 开始地址,余下的任何数据被看作数据并对 E^2 PROM 从给定的开始地址开始编程。该命令不返回数据。它只能由微处理器启动,而且不能自动停止,只能用微处理器插入 *Idle-Command* 中止。

16.5.1.2 编程过程

在一个编程周期内可对 E^2 PROM 的一个到 16 个字节进行编程。一个编程周期所需时间为 8ms。

内部状态机将在 FIFO 中准备的数据复制到 E^2 PROM 数据缓存, E^2 PROM 数据缓存为 16 个字节,正好等于 E^2 PROM 块的大小。当 E^2 PROM 数据缓存写满或 FIFO 中数据全部读出,启动一个编程周期。

只要在FIFO缓存中有未处理的字节或处于一个编程周期中,标志*E2Ready*为0。如果FIFO中所有数据都编程进E²PROM,*E2Ready*置为1,同时中断申请标志*TxIRq*也置1,用来产生编程结束的中断。

E2Ready 置为 1,可用用微处理器插入 Idle-Command 中止 WriteE2-Command。

<u>注意</u>: 当*E2Ready*为0时,E²PROM还处在编程过程中,*WriteE2-Command*不可以被任何命令中断。

16.5.1.3 时序图

下图以写5个字节为例说明了编程过程:

图 16-5 E²PROM 编程的时序图

解释: 假定 FM1702/1704/1705 在微处理器写入 Byte 1 之前只读到 Byte $0(t_{prog,del} = 300 \, ns)$,FM1702/1704/1705 开始了一次 8ms 的编程过程,同时微处理器将 Byte 1 到 Byte 4 写入 FIFO。假定开始地址 $16C_{HEX}$,Byte 0 存放在此;然后 FIFO 中的数据再复制到 E^2PROM 数据缓存,拷贝到 Byte 3 时,FM1702/1704/1705 发现此时 E^2PROM 地址为 $16F_{HEX}$,已经到了 E^2PROM 块的最后一字节了。所以下次,Byte 4 被编程至地址 170_{HEX} 。最后一个字节编程完后,标志位 E2Ready 和 TxIRq 置起,表示当前编程过程结束。

虽然所有数据都已写入 E²PROM,但 WriteE2-Command 不会自动退出。如果此时写。新的数据到 FIFO,编程过程就会在地址 171_{HEX} 继续。使用 Idle-Command 可以使其退品。

16.5.1.4 WriteE2-Command相关错误标志

 E^2 PROM 第 0 块(地址 $00_{HEX} \sim 0F_{HEX}$)禁止编程,如果对这些地址编程就会造成错误标志AccessErr置起,也不会有编程过程启动。若地址超过 $1FF_{HEX}$,则将其和 $1FF_{HEX}$ 相与后作为实际的操作地址(要了解 E^2 PROM组织结构,参见第 6 章)。

16.5.2 READE2 COMMAND 03HEX

16.5.2.1 概述

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的参数和数据	返回的数 据
ReadE2	03	从内部 E ² PROM 读取数据, 并且写入 FIFO 缓存。	起始地址 LSB 起始地址 MSB 字节数	数据流

ReadE2-Command 将 FIFO 中前两字节作为 E²PROM 读操作的起始地址。下一个字节指定要读出的字节数。

当在 FIFO 中有以上三个参数后,从起始地址开始指定字节数从 E²PROM 读出到 FIFO 缓存。

ReadE2-Command 只能由微处理器启动,当指定数据读出后自动中止执行。

16.5.2.2 READE2-Command相关错误标志

禁止读 E^2 PROM地址 $08_{HEX} \sim 1F_{HEX}$ (密钥key保存区),如果读这些地址,就会造成错误标志AccessErr置起。。若地址超过 $1FF_{HEX}$,则将其和 $1FF_{HEX}$ 相与后作为实际的操作地址(要了解 E^2 PROM组织结构,参见第 6 章)。

16.6 4 其他命令

46.6.1 LOADCONFIG COMMAND 07HEX

16.6.1.1 概述

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的参数和 数据	返回的数据
LoadConfig 07		从 E ² PROM 读取数据,用于初始 化寄存器。	起始地址 LSB 起始地址 MSB	-

LoadConfig-Command 将 FIFO 中前两个字节作为 E^2 PROM 读操作的起始地址,当 FIFO 中的两个参数有效时,从 E^2 PROM 该起始地址开始的 32 字节会复制到 FM1702/1704/1705 控制和配置寄存器内。LoadConfig -Command 只能由微处理器启动,当所有相关寄存器配置后自动中止执行。

16.6.1.2 寄存器分配

从E²PROM该起始地址开始的 32 字节会复制到FM1702/1704/1705 地址为 10_{HE} 2F_{HEX}的寄存器内(要了解E²PROM组织结构,参见第 6 章)。

<u>注意</u>:寄存器分配的过程和芯片初始化的过程是相同的(见 $\underline{11.3}$ 章)。不同点在于,芯片初始化时E²PROM起始地址固定为 10_{HEX} (第 1 块,Byte 0),而 *LoadConfig-Command*可以选择起始地址。

16.6.1.3 LOADCONFIG-Command相关错误标志

合法的 E^2 PROM 起始地址为 $10_{HEX} \sim 60_{HEX}$ 。

禁止复制E²PROM块 08_{HEX} ~ 1F_{HEX}(密钥key保存区)的内容,如果读这些地址,就会造成错误标志AccessErr置起。若地址超过 1FF_{HEX},则将其和 1FF_{HEX}相与后作为实际的操作地址(要了解E²PROM组织结构,参见第 6 章)。

16.6.2 CALCCRC COMMAND 12HEX

16.6.2.1 概述

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的 返回的数据	
CalcCRC	12	激活 CRC 协处理器。	数据流	-

CalcCRC-Command 把 FIFO 中所有数据作为 CRC 协处理器输入字节,所有在命令启动前存放在 FIFO 中的数据都会被处理。该命令不返回通过 FIFO 任何数据,CRC 寄存器的内容可从 CRCResultLSB 和 CRCResultMSB 寄存器中读到。它只能由微处理器启动,而且不能自动停止,只能用微处理器插入 Idle-Command 中止。如果 FIFO 中没有数据,在停止前 CalcCRC-Command 会一直等待有新的数据写入 FIFO 作为输入。

16.6.2.2 CRC协处理器设置

使用 CRC 协处理器前,需配置下列参数:

参数	值	位	寄存器
CRC 寄存器长度	8 位或 16 位 CRC	CRC8	ChannelRedundancy
CRC 算法	符合 ISO14443-A 或 ISO/IEC3309 的算法	CRC3309	ChannelRedundancy
CRC 复位值	任意	CRCPresetLSB CRCPresetMSB	CRCPresetLSB CRCPresetMSB

表 16-6 CRC 协处理器相关参数

8 位 CRC 多项式为: $x^8 + x^4 + x^3 + x^2 + 1$ 。 16 位 CRC 多项式为: $x^{16} + x^{12} + x^5 + 1$ 。

上海复旦微电子集团股份有限公司

16.6.2.3 CRC协处理器的状态标志

状态标志 *CRCReady* 表示 CRC 协处理器已处理完所有 FIFO 中的数据。当 *CRCReady* 置起,*TxIRq* 会置起产生中断申请,支持 CRC 协处理器的中断驱动的使用方法。

当 CRCReady 和 TxIRq 置为 1, CRCResultLSB、CRCResultMSB 寄存器和标志 CRCErr 分别有效。

CRCResultLSB、CRCResultMSB 寄存器保存 CRC 寄存器的内容,标志 CRCErr 指示处理数据的正确性。

16.7 命令执行过程中的错误处理

如果命令执行中产生错误,通过将 *PrimaryStatus* 寄存器内的状态标志 *Err* 置起来表示,微处理器通过读 *ErrorFlag* 中的状态标志可以知道错误产生的原因

W.A.
相关命令
LoadKeyE2, LoadKey
WriteE2, ReadE2, LoadConfig
没有特定的命令
Receive, Transceive, CalcCRC
Receive, Transceive
Receive, Transceive
Receive, Transceive

表 16-7 错误标志纵览

16.8 安全命令

16.8.1 LOADKEYE2 COMMAND 0BHEX

16.8.1.1 概述

命令 指令代码 (16 进制)	功能	通过 FIFO 传递的参 数和数据	返回的数 据
LoadKeyE2 0B	将密钥从 E ² PROM 复制到 key 缓存。	起始地址 LSB 起始地址 MSB	-

LoadKeyE2-Command 将 FIFO 中前两字节作为 E²PROM 读操作的起始地址。E²PROM 起始地址开始的字节作为密钥,需符合 6.4.1 规定的正确密钥格式。当 FIFO 中有两个字节数据后,该命令则启动。 **LoadKeyE2-Command** 只能由微处理器启动,当整个密钥复制从 E²PROM 到密钥缓存区后自动中止执行。

16.8.1.2 LOADKEYE2-Command相关错误标志

如果密钥的格式不正确(见6.4.1),密钥缓存区保存的是一个未定义的值,同时KeyError置起。

上海复旦微电子集团股份有限公司

16.8.2 LOADKEY COMMAND 19HEX

16.8.2.1 概述

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的参 数和数据	返回的数 据
LoadKey	19	将密钥从 FIFO 缓存复制到 key 缓存。	Byte0(LSB) Byte1 Byte10	-6
			Byte11(MSB)	XAX

LoadKey-Command将FIFO中前十二个字节作为密钥,需符合 <u>6.4.1</u>规定的正确密钥格式。

当FIFO中有十二个字节后,如果检查后格式合法则被拷贝到密钥缓存区。(见 <u>17.2</u>)。 LoadKey-Command 只能由微处理器启动,当整个密钥复制从 FIFO 到密钥缓存区后自 动中止执行。

16.8.2.2 LOADKEY-Command相关错误标志

所有所需的数据被从FIFO复制到密钥缓存区后,如果密钥的格式不正确(见 <u>6.4.1</u>章),密钥缓存区保存的是一个未定义的值,同时*KeyError*置起。

16.8.3 AUTHENT1 COMMAND OCHEX

16.8.3.1 概述

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的参数 和数据	返回的数据
Authent1	0C	执行 Crypto1 算法的认证过程的第一步。	卡认证命令 卡的块地址 卡序列号的 LSB 卡序列号的 Byte1 卡序列号的 Byte2 卡序列号的 MSB	-

Authent1-Command 是一条特殊的 Transceive-Command: 它需要 6 个参数,前两个参数 被发送到卡、卡的回发不传递给微处理器,而用作检验卡的真实性和证明 FM1702/1704/1705 对卡的真实性。

Authent1-Command只能由微处理器启动,该命令状态转换同Transceive-Command (见 18.4.3 章)。

16.8.4 AUTHENT2 COMMAND 14HEX

16.8.4.1 概述

命令	指令代码 (16 进制)	功能	通过 FIFO 传递的 参数和数据	返回的数据
Authent2	14	执行 Crypto1 算法的认证过程的第二步。	-	-

Authen2-Command 是一条特殊的 Transceive-Command。 无需任何参数,FM1702/1704/1705内部产生需发送给卡的数据。卡的回发不传递给微处理器,而用作检验卡的真实性和证明 FM1702/1704/1705 对卡的真实性。

Authent2-Command只能由微处理器启动,该命令状态转换同Transceive-Command (见 16.4.3 章)。

16.8.4.2 AUTHENT2-Command的作用

如果 Authen2-Command 通过,卡和 FM1702/1704/1705 的认证都通过,于是控制位 Crypto1On 自动置位。该位置起后,所有与卡的通讯都使用 Crypto1 算法加密后进行、如果 Authen2-Command 失败,Crypto1On 自动清零。

注:标志 *Crypto1On* 不能用软件置位,只有通过 *Authen2-Command* 后硬件置位才行。软件可以清该位使以后的通讯恢复成明文。

<u>注意</u>: *Authen2-Command*必须在*Authent1-Command*成功通过后执行(见 <u>16.8.3</u>章), 此外,密钥缓存区的密钥必须和卡上的相同。

17 认证及数据加密传输

17.1 概述

FM1702/1704/1705 使用的认证算法称为三重认证。它基于密钥长度为 48 比特的私有加密数据流。如欲获取标准卡片的数据,有关相应密要的知识是必需的。为了能够成功进行本的认证以及后续对储存于卡EEPROM中的数据进行操作,FM1702/1704/1705 必须能够获得正确的密钥。当一张卡按照ISO14443A协议被选中后,用户可以按照标准协议继续操作。这种情况下,必须执行卡片认证。这一过程在执行Authent1(参考 16.8.3)和Authent2(参考 16.8.4)指令时自动完成。在卡认证的过程中,加密算法被初始化,在成功认证之后与卡的通讯处于加密状态。

17.2 密钥处理

在认证指令执行过程中,FM1702/1704/1705 从内部密钥缓冲器中读取密钥。密钥总是从密钥缓冲器中获取。因此认证指令无需指明密钥存储地址。当然,在认证指令开始之前,用户必须保证在密钥缓冲器中已经准备好了密钥。

密钥缓冲器可以通过一下方式加载:

- 用LoadKeyE2指令从E2PROM中加载
- 直接由外部处理器通过LoadKey指令从FIFO中加载

17.3 操作三重认证指令

三重加密算法被用于执行标准认证。在密钥缓冲器中必须储存准确的密钥以便能够进行成功的认证操作。

步骤 1: 通过LoadKeyE2 参见 <u>16.8.1</u>) 或者LoadKey (参见 <u>16.8.2</u>) 加载密钥到内部密 钥缓冲器:

步骤 2: 启动Authent1 指令(参见 16.8.3),结束以后,检查错误标志来判断执行结果;

步骤 3: 启动Authent2 指令(参见 <u>16.8.4</u>),结束以后,检查错误标志以及Crypto1On标志来判断执行结果。

FM1702/1704/1705 分别支持不同的三重认证算法:

9					
	型号	支持的认证算法			
	FM1702	支持 M1 标准三重认证算法			
	FM1704	支持 SH 标准的三重认证算法			
	FM1705	支持 M1 和 SH 标准的三重认证算法,通过 31 寄存器进行配置			

表 17-1 FM1702/1704/1705 支持的认证算法

对于 FM1705 芯片,用户可以通过 31_{hex} 寄存器来切换认证算法:

31 _{hex}	认证算法
00	兼容 M1 标准的三重认证算法
01	兼容 SH 标准的三重认证算法

表 17-2 FM1705 认证算法选择

18 典型应用

18.1 电路图

下面是典型应用电路图,天线直接连接到 FM1702/1704/1705

图 18-1 应用电路示例:直接天线连接

匹配电路包含一个 EMC 低通滤波器,一个接收电路,天线匹配电路以及天线

18.2 电路描述

18.2.1 EMC低通滤波器

FM 1702/1704/1705 系统工作于 13.56MHz 频率下,这一频率产生于一个石英晶体振荡器,果于驱动 FM1702/1704/1705 并且提供给天线 13.56MHz 的载波。但是除了 13.56MHz 以外,还会有能量以高次谐波的方式往外发射。国际 EMC 规则规定了在一个宽频范围内发射能量的大小,因此,必须要有一个合适的滤波器过滤输出信号以满足此规定。

我们强烈推荐使用多层板来实现上述电路的滤波器。低通滤波器由 L0 和 C0 组成,它们的值由下表给出。

注意: 为了得到最好的效果, 所有器件的质量至少要达到下表所推荐的范围。

18.2.2 接收电路

FM1702/1704/1705 的内部接收电路利用卡的回应信号在副载波的双边带上都有调制这一概念来进行工作。我们推荐时用芯片内部产生的 VMID 作为 RX 管脚输入信号的偏置。为了稳定 VMID 的输出,必须在 VMID 和 GND 之间连接一个电容 C4。接收电路需要在 RX 和 VMID 之间连接一个分压电路。上面的电路图展示了一个推荐的接收电路。这个接收电路由 R1、R2、C3 和 C4 组成。其值由下表给出。

器件	值	备注
L0	1.0uH±10%	如 TDK 1R0J
C0	136pF±2%	NPO 材料
R1	1kΩ±5%	
R2	820Ω±5%	
C3	68nF±2%	电源电压 3.6V-5.0V 时, NP0 材料
CS	10nF±2%	电源电压 2.9V-3.6V 时 NPO 材料

表 18-1 EMC 滤波器和接收电路元件值

注意: 不推荐适用 X7R 材料的电容

18.3 计算天线线圈的电感

精确计算天线线圈的电感值在实践上石非常困难的。但是可以用下面的公式估算。我们建议天线采用圆环状或者矩形设计。

$$L_1[nH] = 2 \left(\frac{l_1}{l_2} - K \right) N_1^{1.8}$$

 l_1

...... 一圈导线的长度

 $D_{\scriptscriptstyle 1}$

...... 导线直径或者 PCB 板敷铜的宽度

K

...... 天线形状系数 (圆环状: K=1.07; 矩形: K=1.47)

In 自然对数

18.3.1 直接连接天线的阻抗匹配

我们推荐使用图 20-1 所示的电路设计天线直接连接的匹配电路。电容 C1 和 C2a、C2b 的取值依赖于天线的电性能以及环境影响。

下表所示电容值只是一个参考。事实上,它们只是用于调试时的起始值。

天线线圈电感 [uH]	C1 [pF]	C2a [pF]	C2b [pF]
0.8	15	270	330
0.9	15	270	270
1.0	15	220	270
1.1	15	180//22	220
1.2	15	180	180//22

上海复旦微电子集团股份有限公司

天线线圈电感 [uH]	C1 [pF]	C2a [pF]	C2b [pF]
1.3	15	180	180
1.4	15	150	180
1.5	15	150	150
1.6	15	120//10	150
1.7	15	120	150
1.8	15	120	120

表 18-2 匹配电路的电容取值

然而, 为了优化性能, 准确地取值必须通过调试来获得。

上面的表格假设天线线圈的分布电容有 15pF。电容 C1、C2a 和 C2b 应该采用 NP0 电介质而且误差在±2%之内。

实际的天线电感和电容值取决于很多情况比如:

- 天线的电阻 (PCB 类型)
- 导体的厚度
- 线与线之间的距离
- 保护层材料
- 附近的金属或者铁氧体

19 测试信号

19.1 概述

FM1702/1704/1705 提供各种信号测试,这些测试可以通过 15 章中所述的一系列信号选择开关来检查内部产生的和接收到的信号。

此外,用户通过配置相应的寄存器,可以在 AUX 管脚上观察相应的芯片内部的模拟信号, 也可以在 MFOUT 管脚上观察相应的芯片内部的数字信号。这些测试方法有益于设计阶段优化接收器的工作状况或者仅仅为了测试。

19.2 利用串行信号切换开关进行测试

通过串行信号切换开关,用户可以在 MFOUT 管脚上观测到发送到卡和从卡接收到的数据。下表列出了可观测到的信号。

SignalToMFOUT	MFOUTSelect	连接到 MFOUT 管脚的信号
0	0	低电平
0	1	高电平
0	2	包络信号
0	3	发射出去的 NRZ 编码
0	4	带载波的 Manchester 编码
0	5	Manchester 编码
0	6	保留
0	7	保留
1	**/	数字测试信号

表 19-1 连接到 MFOUT 管脚的信号

<u>注意</u>: 只有在 106k 波特率,符合 ISO14443A 标准的情况下,MFOUT 管脚才能输出 Manchester 编码和带载波的 Manchester 编码。

19.2.1 TX控制

下图显示了利用串行信号切换来控制 MFOUT 上测量的发送到卡的信号。将 MFOUTSelect 设置为 3,则发送到卡的信号以 NRZ 的形式表现; MFOUTSelect 设置为 2,则发送到卡的信号以米勒编码的形式表现。

直接在天线上测得的 RF 信号显示了 RF 信号的波形

图 19-1 TX 控制信号

19.2.2 RX控制

下图显示了卡回应 REQUEST 指令的开始部分。RF 信号直接从天线上测量,从上面可以看到调制信号。MFOUTSelect 设置成 4 显示带载波的 Manchester 解调信号;MFOUTSelects 设置成 5 显示 Manchester 解调信号。

82

图 19-2 RX 控制信号

20 电性能

20.1 极限参数

符号	参数	MIN	MAX	单位
Tamb,abs	存储温度	-40	+150	°C
DVDD AVDD TVDD	直流供电电压	-0.5	6	V
Vin,abs	所有数字管脚对 DVSS 绝对电压	-0.5	DVDD + 0.5	V
VRX,abs	RX 管脚对 AVSS 绝对电压	-0.5	AVDD + 0.5	V

表 20-1 极限参数

20.2 工作条件

工作电压必须满足: DVDD<=AVDD<=TVDD

符号	参数	条件	MIN	TYP	MAX	单位
Tamb	环境温度	-	-25	+25	+85	°C
DVDD	数字电路供电电压	DVSS = AVSS = TVSS = 0V	2.9	5.0	5.5	V
AVDD	模拟电路供电电压	DVSS = AVSS = TVSS = 0V	2.9	5.0	5.5	V
TVDD	发射电路供电电压	DVSS = AVSS = TVSS = 0V	2.9	5.0	5.5	V

表 20-2 工作条件

20.3 工作电流

符号	参数	条件	MIN	TYP	MAX	单位
	^^	Idle 指令		6	9	mA
IDVDD	数字电路工作电流	Stand By 模式		3	5	mA
טטעטו	数于电路上作电 加	Soft Power Down 模式		800	1000	μΑ
	1/11/1	Hard Power Down 模式		1	10	μΑ
		Idle 指令,接收器打开		25	40	mA
7	-1	Idle 指令, 接收器关闭		8	12	mA
IAVDD	模拟电路工作电流	Stand By 模式		6.5	9	mA
1XX		Soft Power Down 模式		1	10	μΑ
NY-		Hard Power Down 模式		1	10	μΑ
7.		发射连续载波			150	mA
TVDD	发射电路工作电流	TX1 和 TX2 悬空 TX1RFEn, TX2RFEn= 1		4.5	6	mA
		TX1 和 TX2 悬空 TX1RFEn, TX2RFEn= 0		65	130	μA

表 20-3 工作电流

20.4 管脚特性

20.4.1 输入管脚特性

管脚 D0 到 D7, A0 和 A1 有 TTL 输入特性,如下表所示

符号	参数	条件	MIN	MAX	单位
ILeak	输入漏电流		-1.0	+1.0	μΑ
VT	阀值	CMOS: DVDD < 3.6 V	0.35 DVDD	0.65 DVDD	V
VI	14111111111111111111111111111111111111	TTL: 4.5 < DVDD	0.8	2.0	V

表 20-4 典型输入管脚特性

管脚 NCS, NWR, NRD, ALE, A2 和 MFIN 具有 Schmitt 触发器特性, 如下表所示

符号	参数	条件	MIN	MAX	单位
ILeak	输入漏电流		-1.0	+ 1.0	μA
VT+	正向阀值	TTL: 4.5 < DVDD	1.4	2.0	V
VIT	正円関狙	CMOS: DVDD < 3.6 V	0.65 DVDD	0.75 DVDD	V
VT	负向阀值	TTL: 4.5 < DVDD	0.8	1.3	V
VT-	火門 阿恒	CMOS: DVDD < 3.6 V	0.25 DVDD	0.4 DVDD	V

表 20-5 具有 Schmitt 触发器的输入管脚特性

RSTPD 具有 CMOS Schmitt 特性。此外,它内部有一个 RC 低通滤波器,因此输入的 复位信号有相应延迟。

符号	参数	条件	MIN	MAX	单位
ILeak	输入漏电流	V/A''	-1.0	+1.0	μA
VT+	正向阀值	CMOS: DVDD < 3.6 V	0.65 DVDD	0.75 DVDD	V
VT-	负向阀值	CMOS. DVDD < 3.6 V	0.25 DVDD	0.4 DVDD	V
tRSTPD,p	传输延迟			20	μs

表 20-6 RSTPD 输入特性

模拟输入管脚RX具有如下的电容特性

符号	参数	条件	MIN	MAX	单位
CRX	输入电容			15	pF

表 20-7 RX 输入电容

20.4.2 数字输出管脚特性

●脚 D0 到 D7, MFOUT 和 IRQ 具有 TTL 输出特性,如下表所示

17.7						
符号	参数	CONDITIONS	MIN	TYP	MAX	单位
VOH	OH 输出高电平	DVDD = 5 V, IOH= -1 mA	2.4	4.9		V
VOП		DVDD = 5 V, IOH= -10 mA	2.4	4.2		V
VOL	VOL 输出低电平	DVDD = 5 V, IOL= 1 mA		25	400	mV
VOL		DVDD = 5 V, IOL= 10 mA		250	400	mV
IO	输出电流或灌电流	DVDD = 5 V			10	mA

表 20-8 数字输出管脚特性

20.4.3 天线驱动管脚输出特性

天线驱动管脚 TX1 和 TX2 的输出电阻在输出高电平时可以通过配置 CwConductance 寄存器的 GsCfgCW 来更改,而在输出低电平时,输出阻抗是固定的。

在默认配置下,输出特性如下表所示

符号	参数	CONDITIONS	MIN	TYP	MAX	单位
VOU 松山岩	松山百山亚	TVDD = 5.0 V, IOL = 20 mA		4.97		V
VOH	输出高电平	TVDD = 5.0 V, IOL = 100 mA		4.85		V
VOL	输出低电平	TVDD = 5.0 V, IOL = 20 mA		30		mV
VOL	制 出 似 电 十	TVDD = 5.0 V, IOL = 100 mA		150	^	mV
ITX	输出电流	连续载波			200	mApeak

表 20-9 天线驱动管脚输出特性

20.5 交流电性能

20.5.1 交流符号

每一个交流符号由五个字母组成。第一个总是"**t**"表示时间,另外的字母表示信号的名称 或者那个信号逻辑状态(取决于所处的位置):

标示	信号	标示	逻辑电平
Α	地址	AH 7	高
D	数据	, D	低
W	NWR 或者 nWait	Z	高阻
R	NRD 或者 R/NW 或者 nWrite	Х	任意电平或者数据
L	ALE 或者 AS	V	任意有效电平或数据
С	NCS	N	NSS
S	NDS 或者 nDStrb 或者 nAStrb, SCK		

表 20-10 交流符号

例如: tAVLL=从地址有效到 ALE 变低的时间

20.5.2 交流工作说明

20.5.2.1 独立读/写信号的总线时序

符号	参数	MIN	MAX	单位
t _{LHLL}	ALE 宽度	20		ns
t _{AVL}	复用地址信号有效到 ALE 变低(地址建立时间)	15		ns
t _{LLAX}	ALE 变低到复用数据信号有效 (地址保持时间)	8		ns
tLLWL	ALE 变低到 NRD,NWR 变低	15		ns
t _{CLWL}	NCS 变低到 NRD, NWR 变低	0		ns
twhch	NRD, NWR 变高到 NCS 变高	0		ns
t _{RLDV}	NRD 变低到 DATA 有效		65	ns
t _{RHDZ}	NRD 变低到 DATA 高阻		20	ns
t _{WLDV}	NWR 变低到 DATA 有效		35	ns
t _{WHDX}	NWR 变高后 DATA 保持时间(数据保持时间)	80		ns
t _{WLWH}	NRD, NWR 信号宽度	80		ns

上海复旦微电子集团股份有限公司

nanghai Fudan Microelectronics Group Company Limited

符号	参数	MIN	MAX	单位
t _{AVWL}	独立地址总线有效到 NRD, NWR 变低 (建立时间)	30		ns
t _{WHAX}	NWR 变高后独立地址总线有效时间 (保持时间)	80		ns
t _{WHWL}	两次读/写之间的间隔时间	150		ns

表 20-11 独立读/写信号的时序说明

图 20-1 独立读/写信号线时序图

<u>注意</u>: 对于独立的地址数据总线, **ALE** 是无关信号且不关心地址数据是否复用; 对于复用的地址数据总线, **AU** 到 **A2** 必须按照 **4.3** 所述连接。

20.5.2.2 共用读/写信号线的总线时序

符号	参数	MIN	MAX	单位
t _{LHLL}	AS 信号宽度	20		ns
t _{AVLL}	复用地址数据总线有效到 AS 变低 (地址建立时间)	15		ns
t_{LLAX}	AS 变低后到复用地址数据总线有效(地址保持时间)	8		ns
t _{LLSL}	AS 变低到 NDS 变低	15		ns
t _{CLSL}	NCS 变低到 NDS 变低	0		ns
tshch	NDS 变高到 NCS 变高	0		ns
t _{SLDV} R	NDS 变低到 DATA 有效 (读周期)		65	ns
t _{SHDZ}	NDS 变低到 DATA 高阻 (读周期)		20	ns
t _{SLDV} ,W	NDS 变低到 DATA 有效 (写周期)		35	ns
tshdx	NDS 变高后数据有效时间(写周期, 保持时间)	80		ns
t _{SHRX}	NDS 变高后 R/NW 保持时间	80		ns
t _{SLSH}	NDS 信号宽度	80		ns
t _{AVSL}	独立地址有效到 NDS 变低 (建立时间)	30		ns
t _{SHAX}	NDS 变高后独立地址有效时间 (保持时间)	80		ns
t _{SHSL}	连续两次读/写的间隔时间	150		ns
t _{RVSL}	R/NW 有效到 NDS 变低	8		ns

表 20-12 共用读/写信号时序说明

图 20-2 共用读/写总线时序图

注意: 对于独立的地址数据总线, ALE 是无关信号且不关心地址数据是否复用; 对于复用的地址数据总线, A0 到 A2 必须按照 4.3 所述连接。

20.5.2.3 EPP总线时序

符号	参数	MIN	MAX	单位
t _{LLLH}	nAStrb 信号宽度	20		ns
t _{AVLH}	复用地址数据总线有效到 nAStrb 变高 (建立时间)	15		ns
t_{LHAX}	nAStrb 变高后复用地址数据总线有效时间(保持时间)	8		ns
t_{CLSL}	NCS 变低到 nDStrb 变低	0		ns
t _{SHCH}	nDStrb 变高到 NCS 变高	0		ns
t _{SLDV,R}	nDStrb 变低到数据有效 (读周期)		65	ns
t _{SHDZ}	nDStrb 变低到数据高阻 (读周期)		20	ns
t _{SLDV,W}	nDStrb 变低到数据有效 (写周期, 建立时间)		35	ns
t _{SHDX}	nDStrb 变高后数据保持事件 (写周期, 保持时间)	80		ns
t _{SHRX}	nDStrb 变高后 nWrite 保持时间	80		ns
tsish	nDStrb 信号宽度	80		ns
t _{RVSL}	nWrite 有效到 nDStrb 变低	8		ns
tsıwн	nDStrb 变低到 nWait 变高		75	ns
t _{SHWL}	nDStrb 变高到 nWait 变低		75	ns

表 20-13 EPP 总线时序说明

图 20-3 EPP 总线时序图

注意: 上图没有区分写地址周期和写数据周期。应该多虑到地址周期和写数据周期是有所不同的。在 EPP 方式下 A0 到 A2 必须按照 4.3 中所述连接。

20.5.2.4 SPI接口时序

符号	参数	MIN	MAX	单位
t _{SCKL}	SCK 低电平宽度	100		ns
t _{SCKH}	SCK 高电平宽度	100		ns
t _{SHDX}	SCK 高到数据改变	20		ns
t _{DXSH}	d 数据改变到 SCK 变高	20		ns
t _{SLDX}	SCK 低到数据改变		15	ns
t _{SLNH}	SCK 低到 NSS 变高	20		ns

表 20-14 SPI 时序说明

图 20-4 SPI 时序图

说明:如果要在一个数据流里传输更多 byte 的数据, NSS 必须始终为低。在传输多于一个的数据流时, 在数据流之间 NSS 必须为高。

20.5.3 时钟频率

1号管脚为时钟输入管脚,OSCIN

参数	符号	MIN	TYP	MAX	单位
时钟频率 (由时钟滤波器检测)	foscin		13.56		MHz
占空比	dFEC	40	50	60	%
时钟沿波动	tjitter			10	ps

表 20-15

21 E²PROM 特性

E²PROM 大小为 32x16x8 = 4096 bit.

符号	参数	条件	MIN	MAX	单位
t _{EEEndurance}	数据擦写次数		100.000		擦/写次数
t _{EERetention}	数据保存时间	Tamb ≤55°C	10		年
t _{EEErase}	擦时间			4	ms
t _{EEWrite}	写时间			4	ms

表 21-1 E²PROM 特性

22 封装

芯片采用 SOP32 封装。其中,又分为 SOP32 宽封装和窄封装

	MILLIMETER			INCH			
Symbol	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
А		(1)	2.997			0.118	
A1	0.102	7,		0.004			
A2	2.565	2,692	2.819	0.101	0.106	0.111	
b	0.356	0.406	0.608	0.014	0.016	0.020	
С	0.152	0.203	0.305	0.006	0.008	0.012	
D	20.142	20.447	20.752	0.793	0.805	0.817	
E	11.176	11.303	11.430	0.440	0.445	0.450	
е	1.118	1.270	1.422	0.044	0.050	0.056	
Н	13.868	14.122	14.376	0.546	0.556	0.566	
XX	0.584	0.787	0.991	0.023	0.031	0.039	
U	1.194	1.397	1.600	0.047	0.055	0.063	
Y			0.102			0.004	
θ	0°		10°	0°		10°	

图 22-1 SOP32 宽封装外形图和尺寸

SOP32 窄封装外形图和宽封装图相同,尺寸中只有一项不同:

E	N	MILLIMETER			INCH		
-	min	typ	max	min	typ	max	
SOP32 宽封装							
FM1702	11.198	11.303	3 11.430	0. 440	0.445	0.450	
FM1704	11.190						
FM1705							
SOP32 窄封装							
FM1702N	7.40	7.50	7.60	0.291	0.295	0.200	
FM1704N	7.40	7.50	7.00	0.291	0.295	0.299	
FM1705N						N'A	

上海复旦微电子集团股份有限公司销售及服务网点

上海复旦微电子集团股份有限公司

地址:上海市国泰路 127 号 4 号楼

邮编: 200433

电话: (86-021) 6565 5050 传真: (86-021) 6565 9115

上海复旦微电子(香港)股份有限公司

地址:香港九龙尖沙咀东嘉连威老道 98 号东海商业中心 5 楼 506 室

电话: (852) 2116 3288 2116 3338

传真: (852) 2116 0882

北京办事处

地址:北京市东城区东直门北小街青龙胡同 1 号歌华大厦 B座 423 室

邮编: 100007

电话: (86-10) 8418 6608 8418 7486

传真: (86-10) 8418 6211

深圳办事处

地址:深圳市华强北路圣廷苑酒店世纪楼 1301 室

邮编: 518028

电话: (86-0755) 8335 3211 8335 6511

传真: (86-0755) 8335 9011

公司网址: http://www.fmsh.com/