Partizan games

Peter Rowlett

Sheffield Hallam University p.rowlett@shu.ac.uk

▶ Pick up your colour: Playing on a pile of blue and red counters, Left picks up any number of blue counters and Right picks up any number of red counters. The first player who cannot move loses.

▶ Pick up your colour: Playing on a pile of blue and red counters, Left picks up any number of blue counters and Right picks up any number of red counters. The first player who cannot move loses.

► Note: Left plays bLue and Right plays Red.

▶ This is different to the games we have been playing so far because it is a *partizan* game: Left and Right have their own counters which only they can move, and different goals.

▶ It is a simple game because, e.g. in this position it is a win for Left going either first or second because Left has more counters.

- ► Let's think about the game in terms of the number of counters advantage Left has over Right.
- ightharpoonup So we add +1 for each blue counter and -1 for each red counter.
- ► The game position shown is

$$6 + (-5) = 1.$$

Notation for partizan games

▶ Let

$$G = \{\underbrace{a_1, a_2, a_3, \dots}_{L \text{ positions}} \mid \underbrace{b_1, b_2, b_3, \dots}_{R \text{ positions}} \}$$

be a game where L represents the positions Left can move to and R represents the positions Right can move to.

- ▶ Left must remove between one and six blue counters, so they can move the game to any position in $\{0, -1, -2, -3, -4, -5\}$.
- ▶ Right must remove between one and five red counters, so they can move the game to any position in $\{2, 3, 4, 5, 6\}$.

► So we can write this game position we called 1 as

$$\{0, -1, -2, -3, -4, -5 \mid 2, 3, 4, 5, 6\}.$$

▶ So we can write this game position we called 1 as

$$\{0, -1, -2, -3, -4, -5 \mid 2, 3, 4, 5, 6\}.$$

▶ Notice that a move by either player makes their own position worse.

Conway process

► A strange way of inventing numbers

Conway process

- ► A strange way of inventing numbers
- ▶ On day 0 the number 0 is 'invented'.
- ▶ Then on day n there are 2^n new numbers 'invented'.
- ▶ If on a day we have numbers $a_1 < a_2 < ... < a_k$ then the next day we create:
 - ightharpoonup The largest integer smaller than a_1 ;
 - ▶ The smallest integer larger than a_k ;
 - ▶ for every pair a_i , a_{i+1} with $i \in \{1, ..., k-1\}$:

$$\frac{a_i+a_{i+1}}{2}.$$

What numbers are invented on day 3?

Consider a game

- ► Consider a simple game *G* in which
 - Left can change in one move to any of $\alpha > a_1 > a_2 > \cdots > a_n$;
 - ▶ Right can change in one move to any of $\beta < b_1 < b_2 < \cdots < b_n$.
- ▶ We can write this

$$G = \{\alpha, a_1, a_2, \ldots, a_n \mid \beta, b_1, b_2, \ldots, b_n\}.$$

Consider a game

- ► Consider a simple game *G* in which
 - Left can change in one move to any of $\alpha > a_1 > a_2 > \cdots > a_n$;
 - ▶ Right can change in one move to any of $\beta < b_1 < b_2 < \cdots < b_n$.
- ▶ We can write this

$$G = \{\alpha, a_1, a_2, \dots, a_n \mid \beta, b_1, b_2, \dots, b_n\}.$$

- ► Then there are three options:
 - 1. $\{\alpha, a_1, a_2, \ldots, a_n\} = \{\beta, b_1, b_2, \ldots, b_n\}$:
 - ▶ Then we don't need to distinguish between Left and Right and can just write $G = \{\alpha, a_1, a_2, \dots, a_n\}$.
 - ► Actually, we've seen games likes this and labelled them using the * notation.
 - They are equivalent to Nim heaps.

Consider a game

- ► Consider a simple game *G* in which
 - Left can change in one move to any of $\alpha > a_1 > a_2 > \cdots > a_n$;
 - ▶ Right can change in one move to any of $\beta < b_1 < b_2 < \cdots < b_n$.
- ▶ We can write this

$$G = \{\alpha, a_1, a_2, \ldots, a_n \mid \beta, b_1, b_2, \ldots, b_n\}.$$

- ► Then there are three options:
 - 2. $\alpha < \beta$:
 - G is a number;
 - lt's the 'simplest' number between α and β ;
 - ► That is, the first to be 'invented' by the Conway process.
 - We're going to consider games like this today.

Numbers that are games

- ▶ In a lot of partizan games a move by either Left or Right makes their own position worse.
- ▶ So for a game position $\{a \mid b\}$ with a < b:
 - ▶ a move by Left to position c will have c < a, so we now have position $\{c \mid b\}$ with c < b:
 - ▶ a move by Right to position d will have d > b, so we now have position $\{a \mid d\}$ with a < d.

► We called this game

$$\{0, -1, -2, -3, -4, -5 \mid 2, 3, 4, 5, 6\}.$$

► We called this game

$$\{0, -1, -2, -3, -4, -5 \mid 2, 3, 4, 5, 6\}.$$

▶ Note that 0 < 2.

► We called this game

$$\{0, -1, -2, -3, -4, -5 \mid 2, 3, 4, 5, 6\}.$$

- ▶ Note that 0 < 2.
- ► This game position is the first number between 0 and 2 to be invented by the Conway process.

► We called this game

$$\{0, -1, -2, -3, -4, -5 \mid 2, 3, 4, 5, 6\}.$$

- ightharpoonup Note that 0 < 2.
- ► This game position is the first number between 0 and 2 to be invented by the Conway process.

Peter Rowlett SHU Partizan games 15 / 24

The third option

- Consider a simple game G in which
 - Left can change in one move to any of $\alpha > a_1 > a_2 > \cdots > a_n$;
 - ▶ Right can change in one move to any of $\beta < b_1 < b_2 < \cdots < b_n$.
- ▶ We can write this

$$G = \{\alpha, a_1, a_2, \ldots, a_n \mid \beta, b_1, b_2, \ldots, b_n\}.$$

- ► Then there are three options:
 - 3. $\alpha > \beta$: This is called a 'hot game' or a 'switch'.

▶ This is the same game except if you take the yellow token it places five counters of your colour on the board.

- ► The options for each player are:
 - Left can remove between one and six blue counters, moving to one of $\{0, -1, -2, -3, -4, -5\}$, or take the yellow token, adding five blue counters and so moving the game to 6;
 - ▶ Right can remove between one and five red counters, moving to one of $\{2,3,4,5,6\}$, or take the yellow token, adding five red counters and so moving the game to -4.

► We can write this as

$$G = \{6, 0, -1, -2, -3, -4, -5 \mid -4, 2, 3, 4, 5, 6\}.$$

► We can write this as

$$G = \{6, 0, -1, -2, -3, -4, -5 \mid -4, 2, 3, 4, 5, 6\}.$$

▶ Note that 6 > -4.

We can write this as

$$G = \{6, 0, -1, -2, -3, -4, -5 \mid -4, 2, 3, 4, 5, 6\}.$$

- ▶ Note that 6 > -4.
- ► This is 'hot': everyone wants to play it as quickly as possible.
- ► We call other positions 'cold': each player makes their own position worse by playing.

- Consider the yellow token alone.
- ► This is not *5 because it does not move the game to the same position regardless of who takes it.
- \blacktriangleright It is worth +5 to Left and -5 to Right. We can write this

$$\pm 5 = \{5 \mid -5\}$$

- ► Another way of scoring this game, then, is:
- ► The blue and red dots were 1.
- ► So the blue and red dots with the yellow token are

$$1 \pm 5 = \{6, 0, -1, -2, -3, -4, -5 \mid -4, 2, 3, 4, 5, 6\}.$$

- Same game except in their turn players can:
 - pick up counters that are their colour or grey; and,
 - change counters of their opponent's colour to grey.

- ► Here, Left can move the game to 0 by removing the counter.
- ▶ Right can move the game to *1 by changing the blue counter to grey.

► This game position is therefore

$$G = \{ 0 \mid *1 \}.$$

► This game position is therefore

$$G = \{ 0 \mid *1 \}.$$

► This is called ↑ ('up').

► This game position is therefore

$$G = \{ 0 \mid *1 \}.$$

 \uparrow is infinitesimal but positive $(\uparrow > 0)$.

Back to partizan games that are numbers

► In a game

$$G = \{\alpha, a_1, a_2, \ldots, a_n \mid \beta, b_1, b_2, \ldots, b_n\},\$$

say that $\alpha > a_1 > a_2 > a_3 > \dots$ and $\beta < b_1 < b_2 < b_3 < \dots$, i.e. α is the largest option for Left and β is the smallest option for Right.

▶ Then G is the first number between α and β to be 'invented' by the Conway process.

Back to partizan games that are numbers

► In a game

$$G = \{\alpha, a_1, a_2, \ldots, a_n \mid \beta, b_1, b_2, \ldots, b_n\},\$$

say that $\alpha > a_1 > a_2 > a_3 > \dots$ and $\beta < b_1 < b_2 < b_3 < \dots$, i.e. α is the largest option for Left and β is the smallest option for Right.

- ▶ Then G is the first number between α and β to be 'invented' by the Conway process.
- ▶ If there are only options for Left $\{\alpha, a_1, a_2, a_3, \dots \mid \}$ the game position is the earliest number greater than α .
- ▶ If there are only options for Right $\{ \mid \beta, b_1, b_2, b_3, \ldots \}$ the game position is the earliest number less than β .

Hackenbush

Hackenbush is played on a graph with blue and red edges. Left removes bLue edges and Right removes Red edges. After a removal, any part of the graph not connected to the ground floats away, out of the game. The last player to make a move wins.

