Algorithmic Detection of Elemental Biosignatures

Ames Research Center

Jesse Murray^{1,2,3}, Diana Gentry¹

¹NASA Ames Research Center, ²University of Oxford, ³NASA Internships, Fellowships & Scholarships

Introduction

Machine learning models that classify a sample as <u>indicative</u> or <u>non-indicative</u> of life could play an important role in life-detection missions.

- Their predictions add redundancy to judgements based on human expertise.
- Their important features can reveal the most informative measurements within the operational constraints of a life-detection mission.

The Ladder of Life Detection (Neveu 2018) identifies a need to understand how combinations of biosignatures affect overall confidence. The present work provides a starting point to answer this need.

Figure 1: Principal Component Analysis reveals separation between indicative and non-indicative samples

Methods

Data Collection

Elemental abundance was chosen as a set of features due to its availability in diverse sample types:

- 35 non-indicative, e.g., lunar rock, basalt.
- 19 indicative mixed, e.g., seawater, crop soil.
- 46 indicative non-alive, e.g., coal, chalk.
- 10 indicative alive, e.g., biofilm, bacteria.

Standardization

The samples were standardized to the same limit of detection of a simulated mission scenario (1,500 ppm).

Modeling

Four classification models were used: k-nearest neighbors (KNN), logistic regression (LR), linear support vector machines (SVM), and Gaussian naïve Bayes (GNB).

Training and Validation

The performances and feature importances of the six model variants were assessed with Monte Carlo simulations on 40:60 train to validation ratios.

Feature Importances

To obtain feature importances, KNN was run on three principal components of the training data and LR and SVM were run with **L1 and L2 regularization**.

Figure 2: Abundances of indicative elements

Figure 3: Abundances of non-indicative elements

Results

Indicative of Life Elements

- All models had C and Ca as strong, and Cl as medium.
- · Most models had N, K, and P as medium.

Non-Indicative of Life Elements

- All models had Si as strong.
- Most models had Mg, Al, and Ti as medium.

Varied Elements

 Fe (slightly non-indicative), H (slightly indicative), O (varied widely), Na, Mn, and S.

Performance scores ranged from 82% - 94%.

Figure 4: Receiver Operator Characteristics

Future Work

- Expand the data types to obtain even more predictive combinations of features, e.g. isotope fractionation.
- 2. Implement non-linear models, e.g. neural networks.

Acknowledgements

- · Aivaras Vilutis for early data collection.
- · New Jersey Space Grant Consortium for stipend funding.