Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum odevzdání:				

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Posuzoval:	dne:

Pracovní úkoly

- 1. Proveď te energetickou kalibraci α -spektrometru a určete jeho rozlišení.
- 2. Určete absolutní aktivitu kalibračního radioizotopu ²⁴¹Am.
- 3. Změřte závislost ionizačních ztrát α -částic na tlaku vzduchu $\Delta T = \Delta T(P)$.
- 4. Určete specifické ionizační ztráty α -částic ve vzduchu při normálním tlaku $-\frac{dT}{dx} = f(T)$. Srovnejte tuto závislost se závislostí získanou pomocí empirické formule pro dolet α -částic ve vzduchu za normálních podmínek.
- 5. Určete energie α -částic vyletujících ze vzorku obsahujícím izotop 239 Pu a příměs izotopu 238 Pu a porovnejte je s tabelovanými hodnotami. Stanovte relativní zastoupení izotopu 238 Pu ve vzorku s přesností lepší než 10 %, jsou-li $T_{1/2}(^{238}$ Pu) = 87,71 yr a $T_{1/2}(^{239}$ Pu) = 24,13 · 10³ yr.

Teoretická část

Absolutní aktivita vzorku A je celkový počet částic, který ze vzorku vyletí za jednotku času. Pokud naměříme ve spektrometru aktivitu a, pak platí

$$A = a \frac{4\pi}{\Omega} = a \frac{r^2 4\pi}{S_v} = a \frac{2r}{r - \sqrt{r^2 - S/\pi}},$$
 (1)

kde Ω je pokrytý prostorový úhel, r je vzdálenost terčíku od vzorku a S_v je povrch pokrytého vrchlíku, který jsme určili z povrchu kruhového terčíku S

$$S_v = 2\pi r (r - \sqrt{r^2 - S/\pi}) \tag{2}$$

Předpokládáme, že hustota vzduchu je přímo úměrná tlaku. Potom ionizační ztráty při tlaku P na vzdálenosti r jsou stejné jako ionizační ztráty při atmosférickém tlaku P_0 a na vzdálenosti

$$x = r \frac{P}{P_0} \,. \tag{3}$$

Specifické ionizační ztráty definujeme [1]

$$f(T) := -\frac{dT}{dx} = -\frac{P_0}{r}\frac{dT}{dP}.$$
 (4)

Derivaci dT/dP budeme počítat numericky jako rozdíl dvou vedlejších bodů

$$\frac{dT}{dP} = \frac{T_{i+1} - T_i}{P_{i+1} - P_i} \,. \tag{5}$$

Zdroj [1] udává (po derivaci doletu částic R) teoretickou závislost

$$f(T) = \frac{2}{3} \frac{1}{\xi \sqrt{T}},\tag{6}$$

kde $\xi = 0.31 \,\mathrm{cm} \,\mathrm{MeV}^{-\frac{3}{2}}$ a T v rozmezí 4–7 MeV.

Standardní nejistotu středu píku σ_T určíme jako

$$\sigma_T = \frac{\text{FWHM}}{2\sqrt{2\log 2}\sqrt{N}}\,,\tag{7}$$

kde N je celkový výtěžek náležící píku ($net\ count$) a FWHM je pološířka píku.

Pokud máme vzorek dvou radioaktivních izotopů, u kterých známe poločasy rozpadu $T_{1/2}$, můžeme ze změřených aktivit určit jejich relativní molární podíl

$$\frac{N(1)}{N(2)} = \frac{A(1)T_{1/2}(1)}{A(2)T_{1/2}(2)},$$
(8)

kde A jsou aktivity. Pokud měříme stejný čas, je podíl aktivit rovný podílu výtěžků. Z jejich poměru už můžeme snadno určit relativní zastoupení

$$\eta(1) = \frac{1}{1 + \frac{N(2)}{N(1)}}, \qquad \eta(2) = \frac{1}{1 + \frac{N(1)}{N(2)}}.$$
(9)

Výsledky měření

Kalibraci jsme provedli pomocí 241 Am při vyčerpané komoře. Pík na $5485,74 \,\mathrm{keV}$ měl pološířku $110 \,\mathrm{keV}$. Rozlišení spektrometru v okolí tohoto píku je tedy $(110,0\pm0,5) \,\mathrm{keV}$, tedy $2\,\%$.

Aktivitu a jsme naměřili $(83.5\pm0.5)\,\mathrm{cps}$. Kruhový terčík byl od vzorku vzdálen $r=(3.0\pm0.5)\,\mathrm{cm}$ a měl plochu $S=(452\pm40)\,\mathrm{mm}^2$ Podle (1) jsme určili absolutní aktivitu vzorku

$$A = (2000 \pm 200) \,\mathrm{Bg}$$

Měření při všech tlacích probíhala $300\,\mathrm{s}$ a celkový výtěžek byl vždy v rozmezí $24\,800-25\,400$. Pomocí (7) jsme vypočetli nejistotu každého středu píku a pohybuje se v rozmezí $0.25-0.50\,\mathrm{keV}$, takže je zcela zanedbatelná pro naše účely. Nejistotu tlaku odhadujeme na $10\,\mathrm{hPa}$.

Do grafu 1 jsme vykreslili závislost ionizačních ztrát $\Delta T(P) = T(0) - T(P)$, závislost T(P) je pouze posunutá a s opačným znamínkem. Tuto závislost jsme nafitovali funkcí $ax + bx^2 + cx^3$ (bez absolutního členu, aby bylo splněno $\Delta T(0) = 0$)

$$\Delta T(P) = -3.27 \cdot P + 0.0016 \cdot P^2 - 1.7 \cdot 10^{-6} \cdot P^3$$

pokud dosazujeme P v jednotkách hPa a T v keV.

Dále jsme spočítali f(T) podle (4) a (5), výsledky jsou v grafu 2.

P (hPa)	$T ext{ (keV)}$	FWHM (keV)
0	5485,74	110,07
100	5157,09	$109,\!15$
200	4885,78	106,8
300	4608,68	112,43
400	4339,77	$107,\!47$
500	4031,14	$122,\!11$
600	3733,13	123,86
700	3394,79	$135,\!83$
800	3038,95	$145,\!19$
900	2593,76	164,2
960	2317,31	178,31

Tabulka 1: Naměřené píky při různých tlacích

Měřili jsme spektrum vzorku $^{239}{\rm Pu}$ s příměs
í $^{238}{\rm Pu},$ výsledky jsou v tabulce 2. Podle (8) jsme spočítali je
jich poměr

$$\frac{N(^{238}\text{Pu})}{N(^{239}\text{Pu})} = (3.8 \pm 0.3) \cdot 10^{-5}.$$

Graf 1: Ionizační ztráty v závislosti na tlaku

Graf 2: Specifické ionizační ztráty

Z toho máme relativní zastoupení

$$\eta(^{238}\text{Pu}) = (0.0038 \pm 0.0003) \%, \qquad \qquad \eta(^{239}\text{Pu} = (99.996 \pm 0.001) \%$$

izotop	$T ext{ (keV)}$	FWHM (keV)	výtěžek (cps)	$T_{1/2} (yr)$	$T_{\rm tab}~({\rm keV})$
²³⁹ Pu	$5136,0 \pm 0,4$	110,07	16910 ± 130	24 130	5142,90
238 Pu	5475 ± 3	$109,\!15$	178 ± 14	87,71	$5499,\!21$

Tabulka 2: Naměřené píky plutonia

Diskuze

Funkci f(T) jsme určili až na škálovací faktor způsobený nepřesným r. Přesto závislost přibližně odpovídá teoretické závislosti (6), což napovídá, že jsme vzdálenost r odhadli správně.

V numerické derivaci (5) odčítáme ve jmenovateli blízká čísla, což způsobuje chybu, pokud jsme tlak nezměřili přesně.

Tlak vzduchu byl $P_0 = 960\,\mathrm{hPa}$, což bylo způsobeno jinou teplotou a vlhkostí než je normální ($P_0 = 1013\,\mathrm{hPa}$). Proto jsme i specifické ionizační ztráty f vztahovali ve vzorci 4 k tlaku 960 hPa a dostali jsme funkci, jejíž teoretický tvar se může lišit od (6).

Píky ²³⁹Pu
a ²³⁸Puse poměrně dobře shodují s tabelovanými hodnotami, jsou ale nižší, což bylo pravdě
podobně způsobeno nedokonalým vakuem nebo kalibrací.

Ke kalibraci jsme použili pouze dva body (jeden pík a nulový kanál) a omezili jsme se tedy jen na lineární závislost čísla kanálu a energie. Nejsme tedy schopni posoudit kvalitu kalibrace.

Závěr

Zkalibrovali jsme spektrometr a určili jeho rozlišení $\Gamma=(110,0\pm0,5)\,\mathrm{keV}$. Určili jsme absolutní aktivitu vzorku ²⁴¹Am (viz *Diskuze*)

$$A = (2000 \pm 200) \,\mathrm{Bq}$$
.

Změřili jsme závislost $\Delta T(P)$ ionizačních ztrát na tlaku (viz graf 1). Z ní jsme určili specifické ionizační ztráty f(t) (viz graf 2).

Změřili jsme relativní zastoupení izotopů Pu ve vzorku

$$\eta(^{238}\text{Pu}) = (0.0038 \pm 0.0003) \%, \qquad \eta(^{239}\text{Pu} = (99.996 \pm 0.001) \%.$$

Seznam použité literatury

1. Spektrometrie záření alfa—Základní fyzikální praktikum [online]. [cit. 2017-12-12]. Dostupný z WWW: (http://physics.mff.cuni.cz/vyuka/zfp/zadani/405).