

### ABC Call Volume Trend

By Yash Shinde

Excel Worksheet :- Click Here to Download

Video Presentation: - Click Here to Watch Video Presentation

## Project Description!

In this CX analytics project, we will delve into the world of customer experience by analyzing a dataset spanning 23 days, focusing on the inbound calling team of a company. The dataset contains essential details such as agent information, queue times, call timestamps, call durations, and call statuses. Specifically, we'll spotlight the pivotal role of customer service representatives in managing inbound customer support, aiming to engage and delight customers and foster their loyalty to the business.

### **Table of Contents**

I Introduction
Project description and
Tech Stack Used

# 3 Insights Summarize the insights and knowledge gained during the project.

### 2 Analysis

- A. Average Call Duration
- B. Call Volume Analysis
- C. Manpower Planning
- D. Night Shift Manpower Planning

### 4 Conclusion

Described what I have achieved through the project

### **Tech Stack Used:-**

- -> Excel
- -> PowerPoint
- -> Github
- -> Google Drive

### A Average Call Duration

Determine the average duration of all incoming calls received by agents.



### **Average Call Duration**

- To find the Average Call Duration first I created a new pivot table using the raw data.
- Then, I added Time Bucket to the rows.
- I used Call\_Status as a filter for filtering data. Since we have only asked for the call that are answered.
- And in values area I have added Call\_seconds. And calculated the Average value of Call seconds.
- Then finally I got the Average Call Duration of all incoming calls received by agents.
- This duration is calculated for each time bucket.

| Call_Status   | answered                    |   |
|---------------|-----------------------------|---|
|               |                             |   |
| Time_Bucket 🔻 | Average of Call_Seconds (s) |   |
| 10_11         | 203.3                       | 3 |
| 11_12         | 199.3                       | 3 |
| 12_13         | 192.9                       | 9 |
| 13_14         | 194.7                       | 7 |
| 14_15         | 193.7                       | 7 |
| 15_16         | 198.9                       | 9 |
| 16_17         | 200.9                       | ) |
| 17_18         | 200.2                       | 2 |
| 18_19         | 202.6                       | 5 |
| 19_20         | 203.4                       | 1 |
| 20_21         | 202.8                       | 3 |
| 9_10          | 199.3                       | l |
| Grand Total   | 198.0                       | 5 |

- Thus, we have calculated the duration of calls for each time bucket.
- ➤ Bar Graph of the result table is given below
- ➤ Average duration of calls between 9am 21pm is 198.6 seconds.

### Bar Graph of Average Call Duration



## Call Volume Analysis

Visualize the total number of calls received.



### Call Volume Analysis

- To perform Call Volume Analysis first I created a new pivot table using the raw data.
- Then, I added Time\_Bucket to the rows.
- For columns I used Values of Time and Customer\_Phone\_No.
- And in the values area, I have added Time and Customer\_Phone\_No. And calculated the Count of those variables.
- Then finally I got how many calls I made for each time\_bucket and what percentage it represents.
- > This duration is calculated for each time bucket.
- Lastly, I have represented the result in the form of Bar Chart.

### Count of Customer\_Phone\_No 9\_10 10\_11 11\_12 12\_13 13\_14 14\_15 15\_16 16\_17 17\_18 18\_19 19\_20 20\_21

➤ Highest number of calls (i.e., 14626) are received between 11 am - 12 p.m.

### Line Graph of Percentage of Calls



- Thus, we have calculated the percentage of calls received in each time bucket.
- ➤ Here, we can easily see the highest percentage(12%) of calls received between 11am 12 p.m.

# Manpower Planning

To calculate the minimum number of agents required in each time bucket to ensure that at least 90 out of 100 calls are answered.



### **Manpower Planning**

- > First, I have calculated how many hours an agent works on Average daily.
- ➤ I got that an agent on average works 4.5 hours daily. And they work for a minimum of 20 days in a month.
- > Then, I created a new pivot table by selecting all the raw data.
- > Then, I added Time Bucket to the rows.
- > For columns I used Values of Sum of Queue Time and Sum of Call Seconds.
- Then I calculated the Total\_Average\_Call\_Time by taking addition of Sum\_of\_Queue\_Time and Sum\_of\_Call\_Seconds.
- Then I calculated the Agents\_Required to Answer 90% of the call using the following formula.
- $\triangleright = ROUND(J36*0.9/1800, 0)$
- Lastly, to find the total number of working persons required per day. I divided the total working hours into two shifts 9am and 12pm
- Then total number of agents required to answer 90% of the calls is calculated by finding the max agents needed in between each shift.

### Number of agents needed in each time bucket.

| Time_Bucket ▼ | Sum_of_Queue_Time 🔽 | Sum_of_Call_Second:▼ | Total_Average_Call_Time▼ | Agents_Required <b>▼</b> |
|---------------|---------------------|----------------------|--------------------------|--------------------------|
| 9_10          | 794488              | 882195               | 72899.26087              | 36                       |
| 10_11         | 1108373             | 1297006              | 104581.6957              | 52                       |
| 11_12         | 1057814             | 1708079              | 120256.2174              | 60                       |
| 12_13         | 527125              | 1831061              | 102529.8261              | 51                       |
| 13_14         | 483286              | 1728843              | 96179.52174              | 48                       |
| 14_15         | 460446              | 1552143              | 87503.86957              | 44                       |
| 15_16         | 273704              | 1556085              | 79556.04348              | 40                       |
| 16_17         | 206853              | 1594489              | 78319.21739              | 39                       |
| 17_18         | 202644              | 1533769              | 75496.21739              | 38                       |
| 18_19         | 246724              | 1261762              | 65586.34783              | 33                       |
| 19_20         | 379340              | 934437               | 57120.73913              | 29                       |
| 20_21         | 414407              | 583250               | 43376.3913               | 22,                      |

### Result

| Average Time Taken to<br>Answer a Call                  | 198.6       |  |
|---------------------------------------------------------|-------------|--|
| Time Requirement to Answer<br>90% of the call (in hour) | 254.7001826 |  |
| Current Manpower or no of agents                        | 65          |  |
| How many seconds agent<br>Attend calls each hour        | 1800        |  |
| Agents Needed in 9am - 6pm<br>shift                     | 60          |  |
| Agents Needed in 12pm -<br>9pm Shift                    | 51          |  |
| Total manpower needed for answering 90% of calls        | 111         |  |
| New agents needed                                       | 46          |  |

- Thus, we have calculated the total manpower needed for answering 90% of calls. i.e., 111
- ➤ Here, I have calculated the current manpower using the unique function of excel. i.e., 65
- Thus, we need to add 46 new agents to answer 90% of the calls.

## Night Shift Man power Planning

Creating a manpower plan for each time bucket throughout the day, keeping the maximum abandon rate at 10%.



### Night Shift Manpower Planning

- > This is the extended question to the previous question.
- > Thus, I duplicated the previous sheet and calculated the Night Shift manpower planning.
- $\triangleright$  Then, as we know about 30% of calls are Call Volume at Night(9 PM 9 AM).
- I calculated it by taking 30% of total calls daily.
- Then I calculated the Additional Hours Required using the following formula.
- > =B69\*198.6\*0.9/3600
- Lastly, to find the total number of working persons required for the Night Shift. I divided the additional hours required to answer the calls by the total hours of calls attended by the agents.
- Then by using the total calls distribution table given in the question by time\_buckets. I calculated the Total Additional hours using the following formula.
- > =\$B\$70\*B81/30
- And Lastly calculated the Required\_Agents using =D81/0.6 as each agent can be active on call only for 60% of time.

### Distribution of Required\_Agents across each Time\_Bucket

| Time_Bucket ▼ | Sum_of_Queue_Time - | Sum_of_Call_Seconds - | Total_Call_Time - | Agents_Required • |
|---------------|---------------------|-----------------------|-------------------|-------------------|
| 9_10          | 794488              | 882195                | 72899.26087       | 36                |
| 10_11         | 1108373             | 1297006               | 104581.6957       | 52                |
| 11_12         | 1057814             | 1708079               | 120256.2174       | 60                |
| 12_13         | 527125              | 1831061               | 102529.8261       | 51                |
| 13_14         | 483286              | 1728843               | 96179.52174       | 48                |
| 14_15         | 460446              | 1552143               | 87503.86957       | 44                |
| 15_16         | 273704              | 1556085               | 79556.04348       | 40                |
| 16_17         | 206853              | 1594489               | 78319.21739       | 39                |
| 17_18         | 202644              | 1533769               | 75496.21739       | 38                |
| 18_19         | 246724              | 1261762               | 65586.34783       | 33                |
| 19_20         | 379340              | 934437                | 57120.73913       | 29                |
| 20_21         | 414407              | 583250                | 43376.3913        | 22                |
| 21_22         | N/A                 | N/A                   | 29743.01624       | 15                |
| 22_23         | N/A                 | N/A                   | 29743.01624       | 15                |
| 23_24         | N/A                 | N/A                   | 19828.6775        | 10                |
| 00_01         | N/A                 | N/A                   | 19828.6775        | 10                |
| 01_02         | N/A                 | N/A                   | 9914.338748       | 5                 |
| 2_3           | N/A                 | N/A                   | 9914.338748       | 5                 |
| 3_4           | N/A                 | N/A                   | 9914.338748       | 5                 |
| 4_5           | N/A                 | N/A                   | 9914.338748       | 5                 |
| 5_6           | N/A                 | N/A                   | 29743.01624       | 15                |
| 6_7           | N/A                 | N/A                   | 39657.35499       | 20                |
| 7_8           | N/A                 | N/A                   | 39657.35499       | 20                |
| 8_9           | N/A                 | N/A                   | 49571.69374       | 25,               |
|               |                     |                       |                   |                   |

### Result

| Average Time Taken to Answer a<br>Call           | 198.6       |  |
|--------------------------------------------------|-------------|--|
| Current Manpower or no of agents                 | 65          |  |
| Total Queue Time                                 | 6155204     |  |
| Total Time agents needed to<br>answer the calls  | 991433.8748 |  |
| How many seconds agent Attend calls each hour    | 1800        |  |
| Agents Needed in 6am - 3pm shift                 | 60          |  |
| Agents Needed in 3pm - 12am<br>Shift             | 40          |  |
| Agents Needed in 12am - 6am                      | 15          |  |
| Total manpower needed for answering 90% of calls | 115         |  |
| New agents needed                                | 50          |  |

- Here I have performed Night Shift Manpower Planning.
- ➤ Thus, I have calculated the total manpower needed for answering 90% of calls. for all 24 hours. i.e., 115
- Here, I have calculated the current manpower using the unique function of excel. i.e., 65
- Thus, we need to add 50 new agents to answer 90% of the calls.

## Conclusion

- Thus, I have completed a Call Volume Trend Analysis.
- Given key findings and all meaningful trends or patterns I have discovered.
- ❖ I have learned to use Excel formulas and Pivot tables to analyze the dataset.
- GitHub Repository and drive links are given as follows.

GitHub Repository:- https://github.com/ShindeYash/ABC\_Call\_Volume\_Trend.git

### **Excel Worksheet:-**

https://docs.google.com/spreadsheets/d/1hWG8c6Sn37MUcVyXZuUwGw8Fmu5qy9FS/edit?usp=sharing&ouid=104957742252162470359&rtpof=true&sd=true

#### **Drive Link:-**

https://drive.google.com/drive/folders/1JyZV5MwtrUY1I9D\_W0g3Z9wZqXSnaz4G?usp=sharing

### Video Presentation:-

https://www.loom.com/share/4eaf16e829744f149b0a6bcca5ee9f47?sid=4e1f71fa4cab-4cc9-8576-3501fcc95af4



## Thanks!

Do you have any questions? yashpradeepshinde@gmail.com Yash Shinde

