Answers:

Separation Of Variables

1 Questions

1. Solve the following differential questions for y(x):

(a)
$$\frac{dy}{dx} = 2\left(\frac{y}{x}\right)$$

(b)
$$\frac{dy}{dx} = (1-x)y$$

$$(c) \frac{dy}{dx} = \frac{x^2}{y(1+x^3)}$$

(d)
$$\cos x \frac{dy}{dx} = y^2$$

(e)
$$\frac{dy}{dx} = xy + x + y + 1$$

(f)
$$\frac{dy}{dx} = x^2 \sec 2y$$

(g)
$$\frac{dy}{dx} = \cos^2 y \sin x$$

(h)
$$\frac{dy}{dx} = \sec y \csc y \tan x$$

2. Solve the following initial value problems:

(a)
$$\frac{dy}{dx} = \frac{1-2x}{y}$$
, $y(1) = -2$

(b)
$$\frac{dy}{dx} = \frac{2x + \sec^2 x}{2y}$$
, $y(0) = -5$

(c)
$$\frac{dy}{dx} = \cos x e^{y + \sin x}, y(0) = 0$$

(d)
$$\frac{dy}{dx} = \frac{\arcsin x}{y^2 \sqrt{1-x^2}}, y(0) = 0$$

2 Answers

1. (a) Separating the variables gives $\frac{1}{y}\frac{dy}{dx} = \frac{2}{x}$. Integrating both sides with respect to x results in $\int \frac{1}{y}dy = 2\int \frac{1}{x}dx$. Therefore, $\ln |y| = 2\ln |x| + C$. Raising e to the power of both sides gives $|y| = Ae^{2\ln |x|}$. Note that $e^{2\ln |x|} = |x|^2$. This can further be simplified to x^2 . This gives $|y| = Ax^2$. Since $x^2 \geq 0$, the sign of y is determined entirely by the sign of y. Because of this, we can drop the absolute value, giving the final answer of $y(x) = Ax^2$, where $y(x) = Ax^2$ is a constant.

We can check this by taking the derivative with respect to x, which gives $\frac{dy}{dx} = 2Ax$. Note that $x = \frac{x^2}{x}$, meaning that $\frac{dy}{dx} = 2\left(\frac{Ax^2}{x}\right)$. Finally, substituting out Ax^2 for y, we get $\frac{dy}{dx} = 2\left(\frac{y}{x}\right)$, and thus $y(x) = Ax^2$ satisfies the differential equation.

(b) Separating the variables gives $\frac{1}{y}\frac{dy}{dx}=1-x$. Integrating both sides with respect to x gives $\int \frac{1}{y}dy=\int (1-x)dx$. Therefore $\ln |y|=x-\frac{1}{2}x^2+C$. Raising e to the power of both sides results in $|y|=Ae^{x-\frac{1}{2}x^2}$. $e^k>0$, and so the sign of y is constant (determined by A) and thus the absolute value can be dropped. This gives a final answer of $y(x)=Ae^{x-\frac{1}{2}x^2}$.

We can check this by taking the derivative with respect to x, which can be done via the Chain Rule. Let $u=x-\frac{1}{2}x^2$, meaning that $\frac{du}{dx}=1-x$. Writing y as a function of u gives $y(u)=Ae^u$, meaning that $\frac{dy}{du}=Ae^u=y(u)$. Applying the Chain Rule gives $\frac{dy}{dx}=\frac{du}{dx}\frac{dy}{du}$. Substituting in our values of $\frac{du}{dx}$ and $\frac{dy}{du}$ gives $\frac{dy}{dx}=(1-x)Ae^u$. Substituting $x-\frac{1}{2}x^2=u$ leads to $\frac{dy}{dx}=(1-x)Ae^{x-\frac{1}{2}x^2}$. Substituting in our solution for $y(x)=Ae^{x-\frac{1}{2}x^2}$ gives $\frac{dy}{dx}=(1-x)y$, and thus $y=Ae^{x-\frac{1}{2}x^2}$ satisfies the differential equation.

(c) Separating the variables gives $y\frac{dy}{dx}=\frac{x^2}{1+x^3}$. Integrating both sides with respect to x gives $\int ydy=\int \frac{x^2}{1+x^3}dx$. To find the right side we can apply the substitution $u=1+x^3$, meaning that $\frac{1}{3}du=x^2dx$. Making this substitution gives $\int ydy=\frac{1}{3}\int \frac{1}{u}du$. That gives $\frac{1}{2}y^2=\frac{1}{3}\ln|u|+C$. Substituting back in $u=1+x^3$ gives $\frac{1}{2}y^2=\frac{1}{3}\ln|1+x^3|+C$. Rearranging for y gives $y(x)=\pm\sqrt{\frac{2}{3}\ln|1+x^3|+A}$.

We can check this by taking the derivative with respect to x, which can be done via the Chain Rule. Let $u=\frac{2}{3}\ln|1+x^3|+A$, meaning that $\frac{du}{dx}=\frac{2}{3}\frac{d}{dx}\left[\ln|1+x^3|\right]$. This derivative also has to be computed with Chain Rule. Let $v=1+x^3$ and therefore $\frac{dv}{dx}=3x^2$ and $w=\ln|v|$, meaning that $\frac{dw}{dv}=\frac{1}{v}$. Applying the Chain Rule, $\frac{dw}{dx}=\frac{dv}{dx}\frac{dw}{dv}$ and so $\frac{dw}{dx}=\frac{3x^2}{1+x^3}$. Substituting this into the equation for $\frac{du}{dx}$ gives $\frac{du}{dx}=\frac{2x^2}{(1+x^3)}$. $y=\pm\sqrt{u}$ which implies that $\frac{dy}{du}=\pm\frac{1}{2\sqrt{u}}$. Applying the Chain Rule $(\frac{dy}{dx}=\frac{du}{dx}\frac{dy}{du})$ gives $\frac{dy}{dx}=\frac{x^2}{(1+x^3)(\pm\sqrt{\frac{2}{3}\ln|1+x^3|+A)}}$. The second bracket of the denominator is the equation y(x) and thus $\frac{dy}{dx}=\frac{x^2}{y(1+x^3)}$, meaning that $y(x)=\pm\sqrt{\frac{2}{3}\ln|1+x^3|+A}$ satisfies the differential equation.

(d) Separating the variables gives $\frac{1}{y^2}\frac{dy}{dx} = \sec x$. Integrating with respect to x gives $\int \frac{1}{y^2}dy = \int \sec x dx$. The right side is a difficult integral. To solve it, multiply $\sec x$ by $\frac{\sec x + \tan x}{\sec x + \tan x}$ (= 1). This gives $\int \frac{1}{y^2}dy = \int \frac{\sec x(\sec x + \tan x)}{\sec x + \tan x} dx$, which simplifies to $\int \frac{1}{y^2}dy = \int \frac{\sec^2 x + \tan x \sec x}{\sec x + \tan x} dx$. Let $u = \sec x + \tan x$, $du = (\tan x \sec x + \sec^2 x) dx$. Substituting this into the right integral gives $\int \frac{1}{y^2}dy = \int \frac{1}{u}du$. Evaluating the integral gives $\frac{-1}{y} = \ln|u| + C$, or $\frac{-1}{y} = \ln|\sec x + \tan x| + C$. Rearranging for y(x)

gives
$$y(x) = \frac{-1}{\ln|\sec x + \tan x| + C}$$
.

This solution can be checked by differentiating with respect to x with the Quotient Rule. Recall that the Quotient Rule states that $\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right) = \frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$. Letting u=-1 and $v=\ln|\sec x+\tan x|+C$, we get $\frac{dy}{dx} = \frac{v\frac{d}{dx}(-1)-(-1)\frac{d}{dx}(\ln|\sec x+\tan x|+C)}{(\ln|\sec x+\tan x|+C)^2}$. Note that $\frac{d}{dx}(-1)=0$ and so the left term on the numerator is zero. To calculate the remaining derivative on the top, we use the Chain Rule. Let $m=\sec x+\tan x, \frac{dm}{dx}=\tan x \sec x+\sec^2 x$. Let $w=\ln|m|+C$, so $\frac{dw}{dm}=\frac{1}{m}$. Combining these via the Chain Rule gives $\frac{d}{dx}(\ln|\sec x+\tan x|+C)=\frac{\tan x \sec x+\sec^2 x}{\sec x+\tan x}$ which simplifies to $\frac{d}{dx}(\ln|\sec x+\tan x|+C)=\sec x$. Substituting this into $\frac{dy}{dx}$ gives $\frac{dy}{dx}=\frac{\sec x}{(\ln|\sec x+\tan x|+C)^2}$. Noting that $y(x)^2=\frac{1}{(\ln|\sec x+\tan x|+C)^2}, \frac{dy}{dx}=\sec xy^2$. Alternatively, to fit the format of the original differential equation, $\cos x\frac{dy}{dx}=y^2$, and thus $y(x)=\frac{-1}{\ln|\sec x+\tan x|+C}$ satisfies the differential equation.

(e) The differential equation can be factorised to $\frac{dy}{dx}=(x+1)(y+1)$. Separating the variables gives $\frac{1}{y+1}\frac{dy}{dx}=(x+1)$. Integrating with respect to x gives $\int \frac{1}{y+1}dy=\int (x+1)dx$. This gives $\ln|y+1|=\frac{1}{2}x^2+x+C$. Raising e to the power of both sides gives $|y+1|=Ae^{\frac{1}{2}x^2+x}$. Since $e^k>0$, we can drop the absolute value, giving $y(x)=-1+Ae^{\frac{1}{2}x^2+x}$.

To verify this, differentiate with respect to x. $\frac{dy}{dx} = A\frac{d}{dx}\left(e^{\frac{1}{2}x^2+x}\right)$. Let $u = \frac{1}{2}x^2 + x$, $\frac{du}{dx} = x + 1$. $z = e^u$ and so $\frac{dz}{du} = e^u$. Applying the Chain Rule gives $\frac{dz}{dx} = (x+1)e^{\frac{1}{2}x^2+x}$. This gives $\frac{dy}{dx} = (x+1)Ae^{\frac{1}{2}x^2+x}$, which can be rewritten as $\frac{dy}{dx} = (x+1)(y+1)$, and thus $y(x) = -1 + Ae^{\frac{1}{2}x^2+x}$ solves the differential equation.

- (f) Separating the variables, $\cos 2y \frac{dy}{dx} = x^2$. Integrating with respect to x gives $\int \cos 2y dy = \int x^2 dx$. Therefore $\frac{1}{2} \sin 2y = \frac{1}{3} x^3 + \frac{1}{2} C$. Rearranging for y gives $y(x) = y = \frac{1}{2} \arcsin\left(\frac{2}{3} x^3 + C\right)$. Verify this by graphing the differential equation.
- (g) Separating the variables, $\sec^2 y \frac{dy}{dx} = \sin x$. Integrating with respect to x results in $\int \sec^2 y dy = \int \sin x dx$. This means that $\tan x = C \cos x$. Rearranging for y, $y(x) = \arctan(C \cos x)$.
- (h) Separating the variables, $\sin x \cos x \frac{dy}{dx} = \tan x$. Integrating with respect to x results in $\int \sin x \cos x dx = \int \tan x dx$. This implies that $\frac{1}{2} \int \sin 2y dx = \ln|\sec x| + C$ (by applying the double angle formula). Therefore, $-\frac{1}{4} \cos 2y = \ln|\sec x| + C$. Rearranging for y gives $y(x) = \frac{1}{2} \arccos\left(4\ln\cos x + C\right)$.
- 2. (a) Separating the variables, $y\frac{dy}{dx}=1-2x$. Integrating with respect to x gives $\int ydy=\int 1-2xdx$, and thus $\frac{1}{2}y^2=x-x^2+\frac{1}{2}C$. Rearranging for y results in $y=\pm\sqrt{2x-2x^2+C}$.

To solve for C, we have to consider the initial condition. Letting $y(1)=-2, -2=\pm\sqrt{C}$. Since square roots are greater than or equal to zero, the sign in front of the root is -. This means that $2=\sqrt{C}$ and thus C=4. This means that the equation satisfying both the initial condition and the differential equation is $y(x)=-\sqrt{2x-2x^2+4}$. To check that it does fit the differential equation, take the derivative with respect to x. This gives $\frac{dy}{dx}=\frac{2-4x}{-2\sqrt{2x-2x^2+4}}$ which can be reduced to $\frac{dy}{dx}=\frac{1-2x}{y}$, as expected.

- (b) Separating the variables, $2y\frac{dy}{dx} = 2x + \sec^2 x$. Integrating with respect to x, $\int 2ydy = \int 2x + \sec^2 x dx$. Therefore $y^2 = x^2 + \tan x + C$. Rearranging for y, $y = \pm \sqrt{x^2 + \tan x + C}$.
 - Applying the initial condition, y(0) = -5 and so $-5 = \pm \sqrt{C}$. Since square roots are always greater than or equal to zero, the sign in front of the root must be -. This means that 25 = C and thus the equation satisfying both the differential equation and initial condition is $y(x) = -\sqrt{x^2 + \tan x + 25}$. To verify this, differentiate with respect to x, giving $\frac{dy}{dx} = \frac{2x + \sec^2 x}{-2\sqrt{x^2 + \tan x + 25}}$. The denominator can be replaced with 2y, giving $\frac{dy}{dx} = \frac{2x + \sec^2 x}{2y}$, as expected.
- (c) Separating the variables, $e^{-y}\frac{dy}{dx}=\cos x e^{\sin x}$. Integrating both sides with respect to x, $\int e^{-y}dy=\int \cos x e^{\sin x}dx$. Let $u=\sin x$, $du=\cos x dx$. Making this substitution into the right integral gives $\int e^{-y}dy=\int e^{u}du$ and thus $-e^{-y}=e^{\sin x}-C$. Rearranging for y, $y(x)=-\ln{(C-e^{\sin x})}$.
 - To solve for C, consider the initial condition, y(0)=0. $0=-\ln{(C-1)}$, and thus C=2. This gives a solution of $y(x)=-\ln{2}-e^{\sin{x}}$. This satisfies the initial condition. To check that it satisfies the differential equation, take the derivative with respect to x, $\frac{dy}{dx}=-\frac{d}{dx}[C-e^{\sin{x}}]\frac{d}{du}[\ln{u}]$ by the Chain Rule, where $u:=C-e^{\sin{x}}$. For the first derivative, applying the Chain Rule gives $\frac{d}{dx}[C-e^{\sin{x}}]=-\cos{x}e^{\sin{x}}$. The second derivative is simply $\frac{1}{u}$ $(\frac{1}{C-e^{\sin{x}}})$. Substituting these into the equation for $\frac{dy}{dx}=-\frac{(-\cos{x}e^{\sin{x}})}{C-e^{\sin{x}}}$. Note that $e^y=\frac{1}{C-e^{\sin{x}}}$, and thus $\frac{dy}{dx}=\cos{x}e^{\sin{x}}e^y$. Combining the powers of e, $\frac{dy}{dx}=\cos{x}e^{y+\sin{x}}$, and thus $y(x)=-\ln{(C-e^{\sin{x}})}$ satisfies the differential equation.
- (d) Separating the variables, $y^2 \frac{dy}{dx} = \frac{\arcsin x}{\sqrt{1-x^2}}$. Integrating with respect to x, $\int y^2 dy = \int \frac{\arcsin x}{\sqrt{1-x^2}} dx$. Let $u = \arcsin x$, and so $du = \frac{1}{\sqrt{1-x^2}} dx$. Substituting this into the right integral gives $\int y^2 dy = \int u du$. Therefore $\frac{1}{3}y^3 = \frac{1}{2}(\arcsin x)^2 + \frac{1}{3}C$. Rearranging for y, $y(x) = \sqrt[3]{\frac{3}{2}(\arcsin x)^2 + C}$.

To check that the equation satisfies the differential equation, take the derivative with respect to x. $\frac{dy}{dx} = \frac{d}{dx} \left[\frac{3}{2} (\arcsin x)^2 + C \right] \frac{d}{du} \left[\sqrt[3]{u} \right]$, where $u := \frac{3}{2} (\arcsin x)^2 + C$. Applying the Chain Rule to the left integral gives $\frac{d}{dx} \left[\frac{3}{2} (\arcsin x)^2 + C \right] = \frac{3 \arcsin x}{\sqrt{1-x^2}}$. The right integral is $\frac{1}{3\sqrt[3]{u}} \left(\frac{1}{3\sqrt{\frac{3}{2} (\arcsin x)^2 + C^2}} \right)$. Substituting these into the equation for $\frac{dy}{dx} = \frac{\arcsin x}{\sqrt{1-x^2}\sqrt[3]{\frac{3}{2} (\arcsin x)^2 + C^2}}$. Substituting back in $y(x) = \sqrt[3]{\frac{3}{2} (\arcsin x)^2 + C}$, $\frac{dy}{dx} = \frac{\arcsin x}{y^2 \sqrt{1-x^2}}$, as expected.

To solve for C, consider the initial condition, y(0) = 0. $0 = \sqrt[3]{C}$, and thus C = 0. This means the final solution is $y(x) = \sqrt[3]{\frac{3}{2}(\arcsin x)^2}$