Tw. 5 - Dowód:

$$\sum_{n=0}^{\infty} A_n$$
 jest zbieżny i $A_n \ge 0 \ \forall \ n \Rightarrow n$

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n \geq N_0 \, \forall \, p \in \mathbb{N} \, 0 \leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Stąd i z założenia Tw.5

$$\forall \, \varepsilon > 0 \, \exists \, N_0 \, \forall \, n \geq N_0 \, \forall \, p \in \mathbb{N} \, \forall \, x \in E$$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| \le |f_{n+1}(x)| + \ldots + |f_{n+p}(x)| \le$$

$$\leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Tw. 5 - Dowód:

$$\sum_{n=0}^{\infty} A_n$$
 jest zbieżny i $A_n \geq 0 \ \forall \ n \Rightarrow 0$

$$\forall \varepsilon > 0 \exists N_0 \forall n \ge N_0 \forall p \in \mathbb{N} \ 0 \le A_{n+1} + \ldots + A_{n+p} \le \varepsilon$$

Stąd i z założenia Tw.5

$$\forall \, \varepsilon > 0 \; \exists \; N_0 \; \forall \; n \geq N_0 \; \forall \; p \in \mathbb{N} \; \forall \, x \in E$$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| \le |f_{n+1}(x)| + \ldots + |f_{n+p}(x)| \le$$

$$\leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Z Tw. 4 (warunku Cauchy'ego zbieżności jednostajnej szeregu funkcyjnego) otrzymujemy tezę.■

Tw. 5 - Dowód:

 $\sum_{n=0}^{\infty} A_n$ jest zbieżny i $A_n \ge 0 \ \forall \ n \Rightarrow$

$$\forall \varepsilon > 0 \exists N_0 \forall n \geq N_0 \forall p \in \mathbb{N} \ 0 \leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Stąd i z założenia Tw.5

$$\forall \varepsilon > 0 \exists N_0 \forall n \geq N_0 \forall p \in \mathbb{N} \forall x \in E$$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| \le |f_{n+1}(x)| + \ldots + |f_{n+p}(x)| + |f_{n+p}$$

$$\leq A_{n+1} + \ldots + A_{n+p} \leq \varepsilon$$

Z Tw. 4 (warunku Cauchy'ego zbieżności jednostajnej szeregu funkcyjnego) otrzymujemy tezę.
■

Załóżmy, że $f_n \stackrel{E}{\Longrightarrow} g$,

Załóżmy, że $f_n \stackrel{E}{\Longrightarrow} g$,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

Załóżmy, że $f_n \stackrel{E}{\Longrightarrow} g$,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

oraz $\forall n$ istnieje granica właściwa $\lim_{x \to x_0} f_n(x) = A_n$.

Załóżmy, że
$$f_n \stackrel{E}{\Longrightarrow} g$$
,

 x_0 jest punktem skupienia zbioru E (tzn. każde otoczenie punktu x_0 zawiera punkt z E)

oraz $\forall n$ istnieje granica właściwa $\lim_{x \to x_0} f_n(x) = A_n$.

Wówczas istnieje granica właściwa

$$\lim_{x\to x_0} g(x) = \lim_{x\to x_0} \lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \lim_{x\to x_0} f_n(x) = \lim_{n\to\infty} A_n.$$

Tw. 6 - Dowód:

Z Tw. 3
$$f_n \stackrel{L}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \le \varepsilon$

Tw. 6 - Dowód:

Z Tw. 3
$$f_n \stackrel{\mathcal{L}}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \leq \varepsilon$
 $\Rightarrow \forall \varepsilon > 0 \exists N_0 \forall n, m \geq N_0 \quad |A_n - A_m| \leq \varepsilon$
(gdy przejdziemy do granic przy $x \to x_0$)

Tw. 6 - Dowód:

Z Tw. 3
$$f_n \stackrel{E}{\Longrightarrow} g \Leftrightarrow$$

 $\forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \forall x \in E \quad |f_n(x) - f_m(x)| \le \varepsilon$
 $\Rightarrow \forall \varepsilon > 0 \exists N_0 \forall n, m \ge N_0 \quad |A_n - A_m| \le \varepsilon$
(gdy przejdziemy do granic przy $x \to x_0$)

Ciąg $\{A_n\}$ spełnia warunek Cauchy'ego, więc jest zbieżny do pewnej granicy właściwej. Oznaczmy $\lim_{n\to\infty}A_n=A$.