

Screw and Twist

Jiayuan Gu

Slides prepared by Prof. Hao Su with the help of Yuzhe Qin, Minghua Liu, Fanbo Xiang, Jiayuan Gu

Agenda

- Screw (6D representation of rigid motion)
- Twist (6D representation of rigid motion velocity)

Rigid Transformation and SE(3)

The Set of Rigid Transformations

•
$$\mathbb{SE}(3) := \left\{ T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix}, R \in \mathbb{SO}(3), t \in \mathbb{R}^3 \right\}$$

- SE(3): "Special Euclidean Group"
- "Group": closed under matrix multiplication and other conditions of group
- "Euclidean": R and t
- "Special": det(R) = 1
- 6 DoF

- Recall Euler's Theorem about \$O(3):
 - Any rotation in $\mathbb{SO}(3)$ is equivalent to rotation about a fixed axis $\hat{\omega} \in \mathbb{R}^3$ through a positive angle θ
- Similar results for $\mathbb{SE}(3)$: Screw Parameterization

Screw Motion Theorem

- Any rigid body motion is equivalent to rotating about one axis while also translating along the axis
- The axis may not pass the origin

Screw Motion Theorem

- Any rigid body motion is equivalent to rotating about one axis while also translating along the axis
- Recall our question of "canonical" rigid transformation decomposition—by sharing rotation axis and translation direction, we identify the decomposition

Review: Lie algebra of SO(3)

- Motion interpretation
 - $\hat{\omega}$: motion direction
- Exponential coordinate

$$\vec{\theta} = \hat{\omega}\theta \in \mathbb{R}^3$$
 (rot vector)

Exponential map

$$R = \exp([\hat{\omega}]\theta) \in \mathbb{SO}(3)$$

• Tangent space at R = I

$$[\hat{\omega}]\theta \in \mathfrak{so}(3)$$

Goal: The Lie Algebra of $\mathbb{SE}(3)$

- Motion interpretation
 â: motion direction
- Exponential coordinate $\vec{\theta} = \hat{\omega}\theta \in \mathbb{R}^3 \text{ (rot vector)}$
- Exponential map $R = \exp([\hat{\omega}]\theta) \in \mathbb{SO}(3)$
- Tangent space at R=I $[\hat{\omega}]\theta \in \mathfrak{so}(3)$

- Motion interpretation $\hat{\xi}$: 6D motion direction
- Exponential coordinate $\chi = \hat{\xi}\theta \in \mathbb{R}^6 \text{ (screw)}$
- Exponential map

$$T = \exp([\hat{\xi}]\theta) \in \mathbb{SE}(3)$$

• Tangent space at T=I $[\hat{\xi}]\theta \in \mathfrak{Se}(3)$

An Imaged Motion for $T \in \mathbb{SE}(3)$

- Transforming by $T \Longleftrightarrow {\bf rotating}$ about one axis while also **translating** along the axis
- Assume an arbitrary point q on the axis, a **unit** vector $\hat{\omega}$ denoting axis, and the angle θ
- Assume the translation along $\hat{\omega}$ is d_{ω}

Screw Parameterization

• In $\mathbb{SO}(3)$, we have

$$Rot(\hat{\omega}, \theta)x = (I + \theta[\hat{\omega}] + \frac{\theta^2}{2!}[\hat{\omega}]^2 + \frac{\theta^3}{3!}[\hat{\omega}]^3 + \cdots)x$$

• In $\mathbb{SE}(3)$, we have a similar result ($x \in \mathbb{R}^4$ by homogeneous coordinate):

$$\operatorname{Trans}(\hat{\omega}, \theta, q, d_{\omega})x = (I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots)x$$

$$\operatorname{where} A = \begin{bmatrix} [\hat{\omega}\theta] & -[\hat{\omega}\theta]q + d_{\omega} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4\times 4}$$

Screw Parameterization

$$\operatorname{Trans}(\hat{\omega},\theta,q,d_{\omega})x = (I+A+\frac{A^2}{2!}+\frac{A^3}{3!}+\cdots)x, \text{ where } A = \begin{bmatrix} [\hat{\omega}\theta] & -[\hat{\omega}\theta]q+d_{\omega} \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4\times4}$$

• Let
$$A = \begin{bmatrix} [\hat{\omega}] & d \\ 0 & 0 \end{bmatrix} \theta$$
, where $d = \frac{-[\hat{\omega}\theta]q + d_{\omega}}{\theta}$, then $T = \exp\left(\begin{bmatrix} [\hat{\omega}] & d \\ 0 & 0 \end{bmatrix} \theta\right)$

• The following rule introduces $\hat{\xi}$ so that $T = \exp\left(\begin{bmatrix} [\hat{\omega}] & d \\ 0 & 0 \end{bmatrix}\theta\right) \equiv e^{[\hat{\xi}]\theta}$:

$$- \hat{\xi} = \begin{bmatrix} d \\ \hat{\omega} \end{bmatrix} \in \mathbb{R}^6 \text{ and } [\hat{\xi}]\theta = \begin{bmatrix} [\hat{\omega}] & d \\ 0 & 0 \end{bmatrix} \theta$$

Screw Parameterization

•
$$\chi=\hat{\xi}\theta=\begin{bmatrix} d \\ \hat{\omega} \end{bmatrix}\theta=\begin{bmatrix} -[\hat{\omega}]q\theta+d_{\omega} \\ \hat{\omega}\theta \end{bmatrix}$$
 is called **screw**, or exponential coordinate

- Introducing the inverse function of $T=e^{[\chi]}$, $\chi=\log(T)$
- $\hat{\xi}$ is called **unit twist**, which describes **motion direction**

Compute $T \in \mathbb{SE}(3)$ from $\hat{\xi}\theta$

• Recall Rodrigues Formula for rotations:

$$e^{[\hat{\omega}]\theta} = I + [\hat{\omega}]\sin\theta + [\hat{\omega}]^2(1 - \cos\theta)$$

Similarly, using Taylor's expansion definition of exp,

$$e^{[\hat{\xi}]\theta} = I + \theta[\hat{\xi}] + (1 - \cos\theta)[\hat{\xi}]^2 + (\theta - \sin\theta)[\hat{\xi}]^3$$

Further computation gives

$$e^{[\hat{\xi}\theta]} = \begin{bmatrix} e^{[\hat{\omega}\theta]} & (I - e^{[\hat{\omega}\theta]})(\hat{\omega} \times d) + \hat{\omega}\hat{\omega}^T d\theta \\ 0 & 1 \end{bmatrix}$$

Compute $\hat{\xi}\theta$ from $T \in \mathbb{SE}(3)$

- First, determine $\hat{\omega}\theta \in so(3)$ from the SO(3) rotation
- The translation component of T is t, then d in

$$\hat{\xi}\theta = \begin{bmatrix} d \\ \hat{\omega} \end{bmatrix} \theta \text{ can be calculated as follow } (\theta \neq 0):$$

$$d = (\frac{1}{\theta}I - \frac{1}{2}[\hat{\omega}] + (\frac{1}{\theta} - \frac{1}{2}\cot\frac{\theta}{2})[\hat{\omega}]^2)t$$

•
$$t \perp \hat{\omega} \iff \frac{1}{\theta}(I + [\hat{\omega}]^2)t = 0$$
, and there is no $\frac{1}{\theta}$ term in d

Summary

• Exponential map: $T = \text{Trans}(\hat{\omega}, \theta, q, d_{\omega}) = e^{[\chi]}$

. Screw:
$$\chi=\begin{bmatrix} -[\hat{\omega}]q\theta+d_{\omega}\\ \hat{\omega}\theta \end{bmatrix}$$
 is the displacement of the 6D motion

• Unit twist: $\hat{\xi} = \begin{bmatrix} d \\ \hat{\omega} \end{bmatrix} \in \mathbb{R}^6$ so that $\chi = \hat{\xi}\theta$, the direction of the 6D motion

Libraries based on Screw Theory

- https://github.com/NxRLab/ModernRobotics/blob/ master/packages/Python/modern_robotics/core.py
- https://petercorke.github.io/robotics-toolbox-python/ intro.html#

Example of Screw Computation

Q: What is the screw
$$\chi = \hat{\xi}\theta$$
 given $T(\theta) = e^{[\hat{\xi}]\theta}$?
$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & 1 - \cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Q: What is the screw
$$\chi = \hat{\xi}\theta$$
 given $T(\theta) = e^{[\hat{\xi}]\theta}$?
$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & 1 - \cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Recall that given $R \in \mathbb{SO}(3)$, we can compute θ and $[\hat{\omega}]$

Q: What is the screw $\chi = \hat{\xi}\theta$ given $T(\theta) = e^{[\hat{\xi}]\theta}$?

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & 1 - \cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Recall that given $R \in \mathbb{SO}(3)$, we can compute θ and $[\hat{\omega}]$

$$\theta = \alpha t, [\hat{\omega}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \text{ thus } \hat{\omega} = [1,0,0]^T$$

Q: What is the screw $\chi = \hat{\xi}\theta$ given $T(\theta) = e^{[\hat{\xi}]\theta}$?

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & 1 - \cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta = \alpha t, [\hat{\omega}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \hat{\omega} = [1,0,0]^T$$

. Recall that
$$d=(\frac{1}{\theta}I-\frac{1}{2}[\hat{\omega}]+(\frac{1}{\theta}-\frac{1}{2}\cot\frac{\theta}{2})[\hat{\omega}]^2)t$$

• With some calculation, we get $d = [0,1,0]^T$

Q: What is the screw $\chi = \hat{\xi}\theta$ given $T(\theta) = e^{[\hat{\xi}]\theta}$?

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & 1 - \cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\theta = \alpha t, [\hat{\omega}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \hat{\omega} = [1,0,0]^T$$

• With some calculation, we get $d = [0,1,0]^T$

$$\hat{\xi}\theta = \begin{bmatrix} d \\ \hat{\omega} \end{bmatrix} \theta = [0,1,0,1,0,0]^T \alpha t, \text{ so } \chi = \hat{\xi}\theta = [0,\alpha t,0,\alpha t,0,0]^T$$

Assume $T(\theta)$ describes the relative transformation of a body frame relative to spatial frame: $T^s_{s\to b}(\theta)\equiv T(\theta)$

$$T(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & 1 - \cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$\chi_{s \to b}^{s} = \hat{\xi}_{s \to b}^{s} \theta_{s \to b}^{s} = [0, \alpha t, 0, \alpha t, 0, 0]^{T}$$

 $\chi_{s \to b}^{s}$ represents the linear transformation of rotating about a fixed axis

R: x-axis G: y-axis

B: z-axis

Local Structure of SE(3)

Definition of Matrix Exponential:

$$e^{[\hat{\xi}]\theta} = I + \theta[\hat{\xi}] + \frac{\theta^2}{2!} [\hat{\xi}]^2 + \frac{\theta^3}{3!} [\hat{\xi}]^3 + \cdots$$

- When $\theta \approx 0$, $e^{[\hat{\xi}]\theta} = I + \theta[\hat{\xi}] + o(\theta[\hat{\xi}])$
- $\forall T \in \mathbb{SE}(3), e^{\theta[\hat{\xi}]}T \approx T + \theta[\hat{\xi}]T \text{ when } \theta \approx 0$
 - Implies that $\mathbb{SE}(3)$ has a linear local structure (differentiable manifold)

Local Structure of SE(3)

• By $e^{[\hat{\xi}]\theta}=I+\theta[\hat{\xi}]+o(\theta[\hat{\xi}])$ when $\theta\approx 0$,

$$e^{[\chi]} - I = [\chi] + o([\chi])$$

- Interpretation:
 - $[\chi]$ is a linear subspace of $\mathbb{R}^{4\times4}$
 - $e^{[\chi]} \rightarrow I \text{ as } [\chi] \rightarrow 0$

- Any local movement in $\mathbb{SE}(3)$ around I, which is $e^{[\chi]} I$, can be approximated by some small $[\chi]$
- The set of $[\chi]$ forms the tangent space of $\mathbb{SE}(3)$ at I

Lie algebra $\mathfrak{ge}(3)$ of $\mathbb{SE}(3)$

- The set of $[\chi]$ forms the tangent space of $\mathbb{SE}(3)$ at I
 - Ex: What is the tangent space at any $T \in \mathbb{SE}(3)$?
- We give this set a name, the "Lie algebra of $\mathbb{SE}(3)$ "

$$- \mathfrak{ge}(3) := \left\{ \begin{bmatrix} S & t \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{4 \times 4} : S^T = -S \right\}$$

The Lie algebra of SE(3)

- Motion interpretation $\hat{\omega}$: motion direction
- Exponential coordinate

$$\vec{\theta} = \hat{\omega}\theta \in \mathbb{R}^3$$

Exponential map

$$R = \exp([\hat{\omega}]\theta) \in \mathbb{SO}(3)$$

• Tangent space at I

$$[\hat{\omega}]\theta \in \mathfrak{so}(3)$$

Motion interpretation

 $\hat{\xi}$: 6D motion direction

Exponential coordinate

$$\chi = \hat{\xi}\theta \in \mathbb{R}^6$$

Exponential map

$$T = \exp([\hat{\xi}]\theta) \in \mathbb{SE}(3)$$

Tangent space at I

$$[\hat{\xi}]\theta \in \mathfrak{se}(3)$$

Twist (6D Velocity Parameterization)

Setup

- Let us first parameterize the motion of a body frame by time:
 - An observer associated to \mathcal{F}_o records the motion as $T^o_{s'\to b(t)}$, where the body frame is at $\mathcal{F}_{b(t)}$.

Twist

$$T_{s'\to b(t+\Delta t)}^{o} - T_{s'\to b(t)}^{o} = T_{b(t)\to b(t+\Delta t)}^{o} T_{s'\to b(t)}^{o} - T_{s'\to b(t)}^{o}$$

$$= e^{\left[\chi_{b(t)\to b(t+\Delta t)}^{o}\right]} T_{s'\to b(t)}^{o} - T_{s'\to b(t)}^{o}$$

$$\approx \left[\chi_{b(t)\to b(t+\Delta t)}^{o}\right] T_{s'\to b(t)}^{o}$$

• Divided by Δt and take the limit, we have

$$\dot{T}_{s'\to b(t)}^o = \lim_{\Delta t \to 0} \left[\frac{\chi_{b(t)\to b(t+\Delta t)}^o}{\Delta t} \right] T_{s'\to b(t)}^o \\
= [\xi_{b(t)}^o] T_{s'\to b(t)}^o$$

• $\xi_{b(t)}^o:=\lim_{\Delta t \to 0} \frac{\chi_{b(t) \to b(t+\Delta t)}^o}{\Delta t}$ is called "**twist**", the 6D instant velocity

Twist

• Twist:
$$\xi_{b(t)}^o := \lim_{\Delta t \to 0} \frac{\chi_{b(t) \to b(t + \Delta t)}^o}{\Delta t}$$

•
$$[\xi_{b(t)}^o] = \dot{T}_{s' \to b(t)}^o (T_{s' \to b(t)}^o)^{-1}$$

• Note: $\xi^o_{b(t)} \neq \dot{\chi}^o_{s' \to b(t)}$ for general $\chi^o_{s \to b(t)}(t)$ (verify by yourself)

Linear Velocity from Twist

• The linear velocity of p^o caused by $T^o_{s' o b(t)}$ at time t is

$$\mathbf{v}_{p}^{o}(t) = \lim_{\Delta t \to 0} \frac{T_{b(t) \to b(t + \Delta t)}^{o} p^{o} - p^{o}}{\Delta t} = \lim_{\Delta t \to 0} \frac{\exp([\chi_{b(t) \to b(t + \Delta t)}^{o}]) - I}{\Delta t} p^{o}$$

$$= \lim_{\Delta t \to 0} \frac{[\chi_{b(t) \to b(t + \Delta t)}^{o}]}{\Delta t} p^{o} = [\xi_{b(t)}^{o}] p^{o}$$

• Therefore, $\mathbf{v}_p^o(t) = [\xi_{b(t)}^o]p^o$

(Recall that, if a motion is a pure rotation, then $\mathbf{v}_p^o(t) = \omega_{b(t)}^o \times p^o$)

- Consider the example, but now an orange point is fixed to the end-effector frame (blue sphere)
- What is the **velocity of orange point at** t = 0? Given the pose of end effector frame as below:

$$T_{s \to b(t)}^{s} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & 1 + \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & -\cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s$

$$\textbf{By } T^{s}_{s \to b(t)} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & 1 + \sin(\alpha t) \\ 0 & \sin(\alpha t) & \cos(\alpha t) & -\cos(\alpha t) \\ 0 & 0 & 0 & 1 \end{bmatrix}, \dot{T}^{s}_{s \to b(t)} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -\sin(\alpha t) & -\cos(\alpha t) & \cos(\alpha t) \\ 0 & \cos(\alpha t) & -\sin(\alpha t) & \sin(\alpha t) \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

• we have
$$[\xi^s_{s \to b(t)}] = \dot{T}^s_{s \to b(t)} (T^s_{s \to b(t)})^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 0 \\ 0 & \alpha & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s$

$$[\xi_{b(t)}^s] = \dot{T}_{s \to b(t)}^s (T_{s \to b(t)}^s)^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 0 \\ 0 & \alpha & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

At
$$t = 0$$
, $p^s = \begin{bmatrix} 0 \\ 1 \\ -\frac{1}{2} \\ 1 \end{bmatrix}$

- The velocity of yellow point caused by the end-effector motion can be computed via twist
- Recall: $\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s$

$$[\xi_{b(t)}^{s}] = \dot{T}_{s \to b(t)}^{s} (T_{s \to b(t)}^{s})^{-1} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\alpha & 0 \\ 0 & \alpha & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{bmatrix}, p^{s} = \begin{bmatrix} 0 \\ 1 \\ -\frac{1}{2} \\ 1 \end{bmatrix}$$

$$\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s = \begin{bmatrix} 0\\ \frac{\alpha}{2}\\ 0\\ 0 \end{bmatrix}$$

. We can verify this result by taking the derivative of $\frac{d}{dt}p^s(t)$

$$p^{s}(t) = \begin{bmatrix} 0\\ 1 + \frac{1}{2}\sin(\alpha t)\\ -\frac{1}{2}\cos(\alpha t)\\ 1 \end{bmatrix}, \frac{d}{dt}p^{s}(t) = \begin{bmatrix} 0\\ \frac{\alpha}{2}\cos(\alpha t)\\ \frac{\alpha}{2}\sin(\alpha t)\\ 0 \end{bmatrix}$$

$$\mathbf{v}_p^s = [\xi_{b(t)}^s] p^s = \begin{bmatrix} 0 \\ \frac{\alpha}{2} \\ 0 \\ 0 \end{bmatrix} = \frac{d}{dt} p^s(t) \Big|_{t=0}$$

- What is the body twist of the end effector?
- In the body frame of the end effector (blue sphere), the origin of the frame, which is the blue sphere, has a constant linear velocity, which is always $[0,\alpha,0]$. The angular velocity is always $[\alpha,0,0]$.

So,
$$\xi_{b(t)}^{b(t)} = [0, \alpha, 0, \alpha, 0, 0]^T$$

