Αριφμητική Αναλύση

Ασκήσεις Εργαστηρίου 11

1. Υπολογίστε με τη μέθοδο Clenshaw-Curtis το ολοκλήρωμα

$$\int_{-2}^{2} \frac{1}{1+x^2} \, \mathrm{d}x \; .$$

Πόσα σημεία χρειάζονται γα να προσεγγίσετε με 12 ψηφία την ακριβή τιμή $(2\tan^{-1}(2));$

2. Το ολοκλήρωμα

$$\int_{-1}^{1} f(x) \, \mathrm{d}x$$

μπορεί να υπολογιστεί προσεγγιστικά από τύπο της μορφής

$$\int_{-1}^{1} f(x) \, dx \approx \sum_{k=1}^{N} a_k f(x_k) \,, \tag{1}$$

όπου $x_1, x_2, ..., x_N$ διακριτά σημεία της επιλογής μας στο διάστημα [-1, 1].

Έστω ότι επιλέγουμε να είναι το N=7 και τα σημεία x_k τα -0.9, -0.7, -0.4, 0.1, 0.4, 0.8, 0.9. Προσδιορίστε τα a_k $(k=1,\ldots,7)$ ώστε ο τύπος (1) να είναι ακριβής για τις συναρτήσεις $f_0(x)=1$, $f_1(x)=x$, $f_2(x)=x^2$, ..., $f_6(x)=x^6$. Κατόπιν, χρησιμοποιήστε τον για να υπολογίσετε το ολοκλήρωμα

$$\int_{-1}^{1} x^3 \sin(\pi x) \, \mathrm{d}x \, .$$

3. Γράψτε κώδικα που να υλοποιεί τον αλγόριθμο FFT. Θα σας διευκολύνει να χρησιμοποιήσετε αναδρομική συνάρτηση. Μπορείτε να τη γράψετε χωρίς να χρησιμοποιεί νέα διανύσματα;

Εφαρμόστε τον κώδικά σας για να υπολογίσετε το διακριτό μετασχηματισμό Fourier για τον πριονωτό παλμό: f(x)=x-0.5 για $0\leq x\leq 1$. Θεωρούμε ότι η συνάρτηση επαναλαμβάνεται περιοδικά με μετατόπιση. Επιλέξτε 1024 ισαπέχοντα σημεία στο [0,1) (προσέξτε ότι δεν περιλαμβάνεται το δεξί άκρο) και υπολογίστε σε αυτά τη συνάρτηση.

Η ακριβής λύση είναι $C_0=0,\ C_m=rac{\mathrm{i}}{2m\pi}$ με $m=\pm 1,\pm 2,\ldots$

4. Χρησιμοποιήστε τον αλγόριθμο FFT για να υπολογίσετε τους συντελεστές της μεθόδου ολοκλήρωσης Clenshaw–Curtis.