

Thermodynamik III

3 – Gasarbeitsprozesse Kombinierte Zyklen

HS 2021 Prof. Reza S. Abhari

Overview

Vorlesung		Übung/Beispiel	
Datum	Thema	Datum	Thema
09.11	Prozess des Energieaustausches	09.11	Geschwindigkeitsdreiecke
16.11	Dampfkraftprozesse	16.11	Rankine Zyklus
23.11	Gasarbeitsprozesse - Verbrennungsmotoren	23.11	Diesel / Otto Zyklus
30.11	Gasarbeitsprozesse - Gasturbinenprozesse	30.11	Brayton Zyklus
07.12	Gasarbeitsprozesse - Kombinierten Zyklen	07.12	Kombinierter Zyklus
14.12	Kältemaschinen und Wärmepumpen	14.12	Kältemaschine/Wärmepumpe
21.12	Kältemaschinen Oxyfuel, Carbon Capture and Storage	21.12	Wärmepumpe

4.5 Kombinierter Gas-Dampf Zyklus

 Wärme des Abgases des Gaszyklus zwischen Punkt 4 und 5 wird in einem Dampferzeuger auf einen Dampfzyklus übertragen

4.5.1 Ideale Analyse

- Annahme: die ganze Wärme im Abgas kann durch eine Reihe von Carnot-Zyklen genutzt werden
- Leistung eines Carnot-Zyklus: $dW = \dot{m}c_p(1 \frac{T_1}{T})dT$

- Diese Mini-Zyklen stellen die Grenze der Wärme-Rückgewinnung dar
- Totale Leistung des Dampfzyklus (bottoming cycle)

$$W_{bot} = \dot{m}\overline{c}_{p14} \int_{T_1}^{T_4} (1 - \frac{T_1}{T}) dT$$

$$\begin{aligned} \max. W_{bot} &= \dot{m}c_p T_1 \left[\frac{T_4}{T_1} - 1 - \ln \left(\frac{T_4}{T_1} \right) \right] \\ &= \dot{m}c_p T_1 \left[\frac{T_4}{T_3} \frac{T_3}{T_1} - 1 - \ln \left(\frac{T_4}{T_3} \frac{T_3}{T_1} \right) \right] = \dot{m}c_p T_1 \left[\frac{t}{\lambda} - 1 - \ln \left(\frac{t}{\lambda} \right) \right] \\ \text{wobei } t &= \frac{T_3}{T_1} \text{ und } \lambda = \left(\frac{p_2}{p_1} \right)^{\frac{\gamma - 1}{\gamma}} = \left(\frac{p_3}{p_4} \right)^{\frac{\gamma - 1}{\gamma}} = \frac{T_3}{T_4} \end{aligned}$$

Leistung der Gasturbine:

$$W_{gas} = \dot{m}c_{p}T_{1}\left[\left(\frac{T_{3}}{T_{1}}\right)\left(1 - \frac{T_{4}}{T_{3}}\right) - \left(\frac{T_{2}}{T_{1}} - 1\right)\right]$$
$$= \dot{m}c_{p}T_{1}\left[t\left(1 - \frac{1}{\lambda}\right) - (\lambda - 1)\right]$$

- Totale Leistung, $W = W_{gas} + W_{bot}$

$$\frac{W}{\dot{m}c_{p}T_{1}} = t\left(1 - \frac{1}{\lambda}\right) - (\lambda - 1) + \frac{t}{\lambda} - 1 - \ln\left(\frac{t}{\lambda}\right)$$
$$= t - \lambda - \ln\left(\frac{t}{\lambda}\right)$$

– Thermischer Wirkungsgrad:

$$\eta_{th} = \frac{\frac{W}{mc_p T_1}}{\frac{Q}{mc_p T_1}} = \frac{t - \lambda - \ln\left(\frac{t}{\lambda}\right)}{\frac{T_3}{T_1} - \frac{T_2}{T_1}} = 1 - \frac{\ln\left(\frac{t}{\lambda}\right)}{t - \lambda}$$

- Kombinierter Zyklus ist weniger stark abhängig vom Druckverhältnis als der einfache Gas-Zyklus
- In Wirklichkeit lässt sich nicht die gesamte Wärme zurückgewinnen und der Wirkungsgrad ist kleiner

4.5.2 Realer Kombinierter Zyklus

Voraussetzung für Wärmerückgewinnung:
 Temperaturdifferenz zwischen Punkt 4
 und 1 muss grösser sein als zwischen a und c

$$T_5 - T_b = \Delta T_b > 0$$

$$und \quad T_4 - T_c = \Delta T_s > 0$$

- Für gegebene Temperaturen T_3 und T_1 können verschiedene T_5 und T_b gewählt werden:
 - hohes T₅ und T_b: guter Dampfkreislauf
 - tiefes T₅ und T_b: guter Gaszyklus
 - Wärmebilanz im Boiler/Überhitzer:

$$\dot{m}_{H20}(h_c - h_b) = \dot{m}_{Gas}c_{pt}(T_4 - T_5)$$

$$\frac{\dot{m}_{H20}}{\dot{m}_{Gas}} = \frac{c_{pt}(T_4 - T_5)}{h_c - h_b}$$

Source: GE

Verhältnis der Massenströme:

$$\frac{\dot{m}_{H20}}{\dot{m}_{Gas}} = \frac{c_{pt}(T_4 - T_5)}{h_c - h_b} = \frac{c_{pt}(T_c + \Delta T_s - T_b - \Delta T_b)}{h_c - h_b}$$

Im Gaszyklus gilt für gegebenes T₃:

$$T_4 = T_c + \Delta T_s$$
 oder $\frac{T_4}{T_3} = \frac{T_c + \Delta T_s}{T_3}$

Druckverhältnis der Turbine

$$\frac{p_3}{p_4} = \left[1 - \left(1 - \frac{T_4}{T_3}\right)\eta_t\right]^{\frac{\gamma_t}{\gamma_t - 1}} \qquad \frac{p_2 \cdot p_3 \cdot p_4}{p_1 \cdot p_2 \cdot p_3} = \frac{p_2}{p_1} \cdot (1 - \varepsilon) \cdot \frac{p_4}{p_3} = 1$$

Mit bekanntem Verbrennungs-Druckverlust folgt für p₃/p₁

$$\frac{p_2}{p_1} = \left(\frac{1}{1-\varepsilon}\right) \left[1 - \left(1 - \frac{T_c + \Delta T_s}{T_3}\right) \eta_t\right]^{\frac{\gamma_t}{\gamma_t - 1}} = \Pi_c$$

$$\frac{T_2}{T_1} = 1 + \frac{\Pi_c^{\gamma_c - 1}}{\eta_c}$$

Arbeit der Gasturbine:

$$\begin{split} W_{Gas} &= \dot{m}_{Gas} \left[c_{p34} T_3 \left(1 - \frac{T_4}{T_3} \right) - c_{p12} T_1 \left(\frac{T_2}{T_1} - 1 \right) \right] \\ Q_{in} &= \dot{m}_{Gas} c_{p23} (T_3 - T_2) \end{split}$$

Der Wirkungsgrad des kombinierten Zyklus wird dann:

$$\eta = \frac{c_{p34}}{c_{p23}} \frac{\left[1 - \frac{T_c + \Delta T_s}{T_1 \cdot t} + \left(\frac{T_c + \Delta T_s}{T_1} - \frac{T_b + \Delta T_b}{T_1}\right) \left(\frac{h_c - h_{d'}}{h_c - h_b}\right) - \left(\frac{\Pi_c^{\frac{\gamma_c - 1}{\gamma_c}} - 1}{\eta_c}\right) \frac{c_{p12}}{c_{p34}}\right]}{t - 1 - \Pi_c^{\frac{\gamma_c - 1}{\gamma_c}} - 1}$$

Effekt des Druck- und Temperaturverhältnisses auf den Gesamtwirkungsgrad

In der Praxis sind maximal 60% Wirkungsgrad möglich

4.5.3 Kombinierter Zyklus mit Organic Rankine Cycle

- Organic Rankine Cycle: Rankine Zyklus mit anderem Arbeitsmedium als Wasserdampf (z.B. Ammoniak, Ethanol)
- Anwendung: Bei niedrigem Temperaturgefälle zwischen Wärmequelle und Wärmesenke (z.B. Geothermie)
- Betrieb des Zyklus bei niedrigeren Temperaturen als im klassischen Rankine-Zyklus
- Beispielkraftwerk: Geothermiekraftwerk Landau, 3 MW

- Heisses Wasser wird mit 70 Liter/s bei 160°C aus der Erde gepumpt, und gibt bis auf 70°C die Wärme an den Organic Rankine Cycle ab
- Wärmeabgabe des Thermalwassers:

$$\begin{aligned} & \overset{\bullet}{Q} = V/\upsilon_f \times (h_{F\"{o}rderung} - h_{Injektion}) \\ & h_{F\"{o}rderung} = h_f @ 160°C = 675.55kJ/kg \\ & h_{Injektion} = h@ 70°C = 293.63kJ/kg \\ & \overset{\bullet}{Q} = 24.3MW \end{aligned}$$

Source: BINE Informationsdienst

Ammoniak-Zyklus zwischen 140°C @ 20 bar und 14°C @ 7 bar

Zustand 1:
$$T_1 = 140^{\circ}C, p_1 = 20bar$$

 $h_1 = 1737.98kJ/kg$
 $s_1 = 5.5012kJ/kgK$

Zustand 2, mit
$$\eta_{turb} = 0.95$$

$$p_2 = 7bar$$

$$s_{2s} = s_1 = 5.5012kJ/kgK$$

$$h_{2s} = 1559.78kJ/kg$$

$$h_2 = h_1 - \eta_{turb}(h_1 - h_{2s}) = 1568.9kJ/kg$$

Zustand 3:
$$p_3 = 7bar$$

$$h_3 = h_f @ 7bar = 244.69kJ / kg$$

$$v_3 = v_f @ 7bar = 0.00161 \text{ m}^3/\text{ kg}$$

Zustand 4:
$$p_A = 20bar$$

$$h_4 = h_3 + v_3(p_4 - p_3) = 246.79kJ/kg$$

Massenstrom Ammoniak:
$$m = Q/(h_1 - h_4) = 0.0163kg/s$$

Elektrische Leistung:
$$W_{el} = m \times ((h_1 - h_2) - (h_4 - h_3)) = 2.76MW$$

Effizienz:
$$\eta_{net} = W_{el}/Q = 0.11$$

Effizienz vergleichsweise niedrig, weil die Wärmezufuhr bei niedriger Temperatur (14-140°C) stattfindet

4.5.4 Turbolader / Intercooler

- Leistungssteigerung durch Erhöhung des Massenstroms / der Dichte
 - Druckerhöhung und Kühlung der Frischluft
 - Turbolader: Verwendung der kinetischen Energie des Abgases zur Komprimierung von Frischluft

4.5.5 Cheng Zyklus

- Mit der Wärme des Abgases wird Dampf erzeugt, der in die Brennkammer geleitet wird
- Wirkungsgrad wird stark verbessert
- Spitzentemperatur in der Brennkammer und deshalb Emissionen werden reduziert
- Nachteil: Komponenten sind schwieriger zu designen, kompliziertes
 Kontrollsystem
- Vorteil: Man kann mittels der Speisewasserzufuhr die Produktion von Elektrizität oder Wärme anpassen

Schaubild des Cheng Zyklus

BMW Turbosteamer

BMW Turbosteamer

- Abwärme wird in Antriebsleistung umgewandelt
- Prinzip Dampfmaschine
 - Geschlossener Dampfkreislauf
 - Expansionsmaschine (Kolbenmaschine)
 - Arbeit wird direkt an die Kurbelwelle abgegeben
- 1.8 I BMW Vierzylinder: + 10 kW, + 20 Nm
- Verbrauch: 15%
- Über 80% der Abwärme kann genutzt werden