Wprowadzenie do teorii grup

Jakub Kądziołka

25 lutego 2021

Na grupy możemy patrzeć z dwóch perspektyw. Czysto algebraicznie, grupa to zbiór, oraz działanie na nim określone, która spełnia pewne prawa. Bardziej zmotywowane jest jednak podejście geometryczne.

1 Izometrie płaszczyzny

Definicja 1.1. Izometrią nazywamy funkcję $f: \mathbb{R}^2 \to \mathbb{R}^2$, która zachowuje odległość:

$$|PQ| = |f(P)f(Q)|.$$

Ćwiczenie 1.1. Ile różnych wartości izometrii f musimy znać, aby jednoznacznie określić jej wartość dla każdego innego punktu?

Wniosek. Każda izometria jest połączeniem translacji, obrotu i potencjalnej symetrii osiowej.

Będziemy rozważać izometrie, które nie zmieniają pewnej konkretnej figury. Na przykład, narysujmy trójkąt równoboczny $\triangle ABC$. Obracając go wokół środka o 60° , otrzymujemy dokładnie ten sam trójkąt. Jedynie wierzchołki zamienią się miejscami, lecz figurę rozważamy jako zbiór punktów, więc nie ma to znaczenia.

Pytanie. Jakie możemy określić izometrie, dla których $f(\triangle ABC) = \triangle ABC$?

Ćwiczenie 1.2. Udowodnij, że znalazłeś wszystkie takie izometrie (powinno być ich 6).

Zauważmy, że gdy złożymy dwie z izometrii które znaleźliśmy, $f_1 \circ f_2$, to również otrzymamy izometrię, która już jest w naszym zbiorze.

Pytanie. Spróbujmy więc określić minimalny zestaw izometrii, z których możemy wytworzyć wszystkie inne.

Oznaczmy pewien obrót jako r, pewną symetrię według osi jako s. Nasz zbiór izometrii możemy wtedy określić jako

$$\{id, r, r \circ r, s, s \circ r, s \circ r \circ r\}$$

lub, krócej

$$\{1, r, r^2, s, sr, sr^2\}$$

Gdy na te symetrie patrzymy jako obiekty same w sobie, to otrzymujemy *grupę izometrii* płaszczyznowych trójkąta równobocznego.

2 Grupa jako zbiór i działanie

Definicja 2.1. *Grupą* (G, \star) nazywamy zbiór G (*nośnik grupy*) wraz z dwu-argumentowym działaniem $\star \colon G \times G \to G$, które spełnia następujące warunki:

- 1. Działanie jest łączne dla każdego $a,b,c \in G$ mamy $(a \star b) \star c = a \star (b \star c)$.
- 2. Istnieje *element neutralny* 1_G , który spełnia $a \star 1_G = 1_G \star a = a$.
- 3. Dla każdego $g \in G$ mamy element odwrotny $h \in G$, taki że $g \star h = h \star g = 1_G$.
- 4. Dla każdych $g, h \in G$ mamy $g \star h \in G$.

W naszej grupie trójkąta równobocznego, zbiorem jest

$$D_6 = \{1, r, r^2, s, sr, sr^2\},\$$

a działaniem jest złożenie funkcji o.

Uwaga. Gdy działanie grupy wynika z kontekstu, do grupy (G, \star) możemy się odnosić mówiąc o zbiorze G.

Na przykład na grupę izometrii trójkąta możemy mówić D_6 . Ogólniej, grupę izometrii płaszczyznowych n-kąta foremnego nazywamy grupą diedralną (z ang. dihedral) i oznaczamy... istnieje kilka notacji, takich jak Dih $_n$ lub D_n . My pozostańmy przy D_{2n} , gdzie w indeksie zapisujemy liczbę elementów.

Uwaga. Zbiór, na którym utworzona jest grupa nazywamy *nośnikiem*.

Uwaga. Gdy grupa, w której operujemy jest oczywista, będziemy zapisywać element neutralny 1_G jako 1, nie powtarzając nazwy grupy.

Uwaga. Często działanie grupy traktujemy notacyjnie jak mnożenie, oznaczając $a \star b$ jako ab, a element odwrotny do a jako a^{-1} . Należy jednak pamiętać, że działanie zwykle nie jest przemienne.

Pytanie. Zaproponuj inną grupę niż symetrie wielokąta foremnego.

Pytanie. Czy grupa musi mieć skończoną liczbę elementów?

3 Grupa liczb całkowitych

Pytanie. Czy $(\mathbb{Z}, +)$ tworzy grupę?

Widzimy, że tak. Przytoczona wcześniej notacja może być tutaj myląca, bo przecież 1+x=x wcale nie zachodzi. Dlatego też często możemy spotkać alternatywną notację addytywną, gdzie działanie oznaczmy a+b, element neutralny 0, a element odwrotny -a.

Uwaga. Zwyczajowo, notację addytywną stosujemy tylko dla grup, których działanie jest przemienne. Grupy z działaniem przemiennym nazywamy *przemiennymi* lub *abelowymi*.

4 Przykłady grup i nie-grup

Przykład 4.1. Czy {0, 1, ..., 5} wraz z dodawaniem tworzy grupę?

Nie, chociażby dlatego, że 1 nie ma elementu odwrotnego.

Przykład 4.2. Czy $\{-5, -4, ..., 5\}$ wraz z dodawaniem tworzy grupę?

Nie, bo zbiór wartości działania nie zawiera się w nośniku grupy. Jest to ważna rzecz, gdy sprawdzamy, czy mamy do czynienia z grupą — do tego stopnia, że niektóre podręczniki dodają czwarty warunek:

4. Dla każdych g, $h \in G$ zachodzi $g \star h \in G$ (domknięcie).

Przykład 4.3. Ustalmy pewne *n* i określmy

$$a +_n b = a + b \mod n$$
.

Czy $+_n$ tworzy grupę nad $\{0, 1, \ldots, n-1\}$?

Grupę tę będziemy nazywać $\mathbb{Z}/n\mathbb{Z}$ — później zobaczymy dlaczego.

Przykład 4.4. Czy (\mathbb{Q}, \times) tworzy grupę?

Przykład 4.5. Czy ($\mathbb{Q} \setminus \{0\}, \times$) tworzy grupę?

Grupę tę będziemy oznaczać \mathbb{Q}^{\times} . Ogólniej, dla zbioru $A, A^{\times} \subseteq A$ będzie podzbiorem elementów odwracalnych.¹

Przykład 4.6. Niech *p* będzie liczbą pierwszą i

$$a \cdot_p b = a \cdot b \mod p$$

Czy \cdot_p tworzy grupę nad

$${1, 2, \ldots, p-1}$$
?

Połączenie powyższych notacji sugeruje nazwę $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

Pytanie. Co jeżeli p nie będzie pierwsze?

Przykład 4.7. Niech $n \in \mathbb{Z}_+$. Określmy G jako zbiór liczb $1 \le k < n$ względnie pierwszych z n. Czy (G, \cdot_n) to grupa?

Przykład 4.8. Czy liczby wymierne o nieparzystym mianowniku (oczywiście, w formie skróconej) tworzą grupę, gdy działaniem jest dodawanie? Zaliczamy liczby całkowite, jako n/1, w tym zero.

Przykład 4.9. Liczby wymierne o mianowniku co najwyżej 2, gdzie działaniem jest dodawanie.

Przykład 4.10. Co, gdyby działaniem było mnożenie? (nie, bo zero. Co gdy wywalimy zero?)

 $^{^1}$ Ćwiczenie dla zaawansowanych: udowodnić, że jeżeli (A, \times) to monoid, to (A^{\times}, \times) tworzy grupę.

W powyższych przykładach, działanie grupy jest przemienne. Takie grupy nazywamy przemiennymi lub abelowymi. Nie wszystkie grupy są przemienne, chociażby rozważana na początku grupa diedralna D_6 może służyć jako kontrprzykład (tak jak z resztą grupa izometrii płaszczyznowych dla każdego innego wielokąta foremnego). Poza tym mamy:

Przykład 4.11. (Grupa permutacji) Rozważmy S_n , zbiór permutacji n elementów. Rozważmy te permutacje jako funkcje $\{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$, wtedy zbiór tych funkcji tworzy grupę, gdzie działaniem jest \circ .

Przykład 4.12. (Iloczyn grup) Niech (G, \star) i (H, *) będą pewnymi grupami. Na zbiorze

$$G \times H = \{(g,h) : g \in G \land h \in H\}$$

możemy stworzyć grupę definiując działanie jako

$$(g_1,h_1)\cdot(g_2,h_2)=(g_1\star g_2,h_1*h_2).$$

(jak wygląda element neutralny w iloczynie grup? a elementy odwrotne?)

Przykład 4.13. (Grupa trywialna) Najmniejsza możliwa grupa to taka, która ma tylko element neutralny. Grupę tą możemy oznaczać na kilka sposobów: 0, 1, {1}.

5 Właściwości grup

Niezależnie od tego, jaką grupę zdefiniujemy, będzie ona spełniać pewne proste własności:

Fakt 5.1. Niech *G* będzie grupą.

- W *G* istnieje *dokładnie* jeden element neutralny.
- Dla każdego $g \in G$ istnieje *dokładnie* jeden element odwrotny.
- Jak h jest odwrotnością g, to g jest odwrotnością h, czyli $(g^{-1})^{-1} = g$.
- $(ab)^{-1} = b^{-1}a^{-1}$.

Dowód.

- Jeżeli 1 i 1' to elementy neutralne, to z jednej strony² mamy $1 \cdot 1' = 1'$, bo 1 jest neutralny, a z drugiej strony $1 \cdot 1' = 1$ bo 1' jest neutralny. Stąd, 1 = 1'.
- Niech h i h' będą odwrotne do g. Podobnie to poprzedniego punktu, rozważmy hgh'.

(przerywnik: injekcja, surjekcja, bijekcja)

Lemat 5.2. Ustalmy pewne stałe $g \in G$. Funkcja $f: G \to G$ określona przez $x \mapsto gx$ jest bijekcją.

(dwa dowody: istnieje funkcja odwrotna, albo bezpośrednio injekcja i surjekcja) (przykład: $(\mathbb{Z}/7\mathbb{Z})^{\times}$ i g=3. permutacja)

4

²Wspomniane strony są tutaj dość dosłowne

6 Izomorfizmy

Rozważmy grupy

$$\mathbb{Z} = (\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}, +)$$

 $10\mathbb{Z} = (\{\ldots, -30, -20, -10, 0, 10, 20, 30, \ldots\}, +)$

Są to różne grupy, ale powierzchownie. Wszystko zachowuje się tak samo, jakby nasze elementy różniły się tylko nazwami. Formalnie taką równoważność nazywamy *izomorfizmem*.

Definicja 6.1. Dane są grupy (G,\star) i (H,\star) . Bijekcję $\varphi:G\to H$ nazywamy *izomorfizmem*, jeżeli dla wszystkich $g_1,\ g_2\in G$ zachodzi

$$\varphi(g_1 \star g_2) = \varphi(g_1) * \varphi(g_2).$$

Jeśli istnieje izomorfizm między G a H, to mówimy że grupy te są *izomorficzne*, co zapisujemy $G \cong H$.

Przykład 6.1. $\mathbb{Z} \cong 10\mathbb{Z}$

Przykład 6.2. $G \times H \cong H \times G$, gdzie izomorfizm jest dany przez $(g,h) \mapsto (h,g)$.

Przykład 6.3. Funkcja tożsamościowa id : $G \rightarrow G$ jest izomorfizmem, więc $G \cong G$.

Przykład 6.4. Oprócz tego istnieje inny izomorfizm $\mathbb{Z} \to \mathbb{Z}$ — jaki? $x \mapsto -x$.

Definicja 6.2. Izomorfizm $\varphi: G \to G$ nazywamy *automorfizmem*.

Przykład 6.5. $\mathbb{Z}/6\mathbb{Z}\cong(\mathbb{Z}/7\mathbb{Z})^{\times}$ — jakim wzorem dany jest ten izomorfizm? Co trzeba sprawdzić?

Przykład 6.6. Ogólniej, $\mathbb{Z}/(p-1)\mathbb{Z}\cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ dla dowolnej liczby pierwszej p. Zakładamy tutaj istnienie pierwiastka pierwotnego modulo p.

Przykład 6.7. (Chińskie twierdzenie o resztach) Jeżeli *m* i *n* są względnie pierwsze, to

$$\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
.

7 Podgrupy

Definicja 7.1. Dana jest grupa (G,\star) . Jeżeli pewien podzbiór $H\subseteq G$ tworzy grupę z tym samym działaniem \star , to mówimy że H jest *podgrupą* G, co zapisujemy $H\leq G$.

Jeżeli $H \neq G$ (czyli $H \subsetneq G$), to mówimy że H jest podgrupą właściwą.

Co musimy sprawdzić o danym podzbiorze, aby przekonać się, że jest grupą? Łączność działania otrzymujemy za darmo.

- $a \in H \land b \in H \Longrightarrow a \star b \in H$.
- $a \in H \Longrightarrow a^{-1} \in H$.

Pytanie. Co z elementem neutralnym?

• Podzbiór jest niepusty.

Przykład 7.1. $2\mathbb{Z}$ jest podgrupą \mathbb{Z} , izomorficzną do całego \mathbb{Z} .

Przykład 7.2. W grupie permutacji S_n określmy podzbiór $\{\tau \in S_n : \tau(n) = n\}$. Jest on podgrupą S_n (czemu?), która z resztą jest izomorficzna do S_{n-1} .

Przykład 7.3. W grupie $G \times H$, zbiór $\{(g, 1_H) : g \in G\}$ jest podgrupą. Do czego jest izomorficzna?

Uwaga. Grupy zwykle uznajemy za takie same, jeżeli są izomorficzne. W przypadku podgrup możemy mieć tak, że $H_1 \leq G$, $H_2 \leq G$, $H_1 \cong H_2$, ale $H_1 \neq H_2$. Wtedy podgrupy te uznajemy za różne. (przykład? $G \times G$)

Pytanie. Jakie możemy zdefiniować podgrupy, niezależnie od naszej głównej grupy G?

Przykład 7.4. W każdej grupie $G \leq G$ i $\{1_G\} \leq G$.

Przykład 7.5. (Podgrupa generowana przez element) Oznaczmy

$$\langle g \rangle = \{ \dots, g^{-2}, g^{-1}, 1, g, g^2, g^3, \dots \}.$$

Jest to podgrupa (czemu?). Nazywamy ją podgrupą generowaną przez g.

Pytanie. Jak wygląda $\langle 3 \rangle < \mathbb{Z}$?

Przykład 7.6. W D_6 , $\langle r \rangle \cong \mathbb{Z}/3\mathbb{Z}$.

Ćwiczenie 7.1. Prawda czy fałsz?

- a) Jeżeli A i B są podgrupami, to $A \cap B$ również jest podgrupą.
- b) Jeżeli A i B są podgrupami, to $A \cup B$ również jest podgrupą.
- c) Każdą podgrupę $A < G \times H$ można przedstawić jako $A_1 \times A_2$, gdzie $A_1 < G$ i $A_2 < H$.

8 Rzędy, twierdzenie Lagrange'a

Z podgrupami związane jest ważne twierdzenie, ale najpierw...

W teorii grup występują dwa znaczenia słowa rząd.

Definicja 8.1. Rzędem grupy nazywamy liczbę jej elementów. Liczbę tą oznaczamy |G|.

Definicja 8.2. *Rzędem* elementu g (oznaczanym ord g) nazywamy najmniejszą dodatnią liczbę całkowitą $k \in \mathbb{Z}_+$, dla której $g^k = 1$. Jeżeli taka liczba nie istnieje, to ord $g = \infty$.

Ćwiczenie 8.1. Udowodnij, że w grupie skończonego rzędu wszystkie elementy mają skończony rząd.

Pytanie. Jaki jest związek pomiędzy tymi dwoma definicjami?

ord
$$g = |\langle g \rangle|$$
.

Twierdzenie 8.3 (Lagrange). Jeżeli grupa G jest skończona i $H \leq G$, to |G| dzieli się przez |H|.

Dowód tego twierdzenia zostawimy sobie na następny raz.

Wniosek. $x^{|G|} = 1$

9 Prezentacje

Wróćmy do podgrupy generowanej przez element. W jednym z podręczników zostało to zwizualizowane następująco:

Włóż x do pudełka, szczelnie zamknij i mocno potrząśnij. W rezultacie otrzymamy piękną eksplozję w postaci $\langle x \rangle$.

Tak właściwie, nie musimy się ograniczać do jednego elementu. Jak dorzucimy do naszego pudełka *y*, to otrzymamy... każdą kombinację potęg *x* i *y*.

Definicja 9.1. Niech $S \subset G$. Podgrupa *generowana* przez S, oznaczana $\langle S \rangle$, to zbiór elementów które możemy zapisać jako skończony iloczyn elementów S i ich odwrotności. Jeżeli $\langle S \rangle = G$ to mówimy że S jest zbiorem *generatorów* grupy G.

Pytanie. Jaki element jest generatorem **Z**? (czy tylko 1, czy też -1)

Może dałoby się w ten sposób kompaktowo opisywać nowe grupy, z którymi się spotykamy? Na przykład, Z to grupa generowana przez jeden element:

$$\mathbb{Z} \cong \langle a \rangle$$

Problem jest taki, że nasze generatory mają pewne właściwości. Na przykład, $\mathbb{Z}/100\mathbb{Z}$ jest również generowana przez jeden generator, ale spełnia $a^{100}=1$. Zapisujmy więc też te właściwości (tzw. *relacje*):

$$\mathbb{Z}/n\mathbb{Z} \cong \langle a \mid a^{100} = 1 \rangle$$

Taka kombinacja generatorów i relacji nazywana jest prezentacją grupy.

Ćwiczenie 9.1. Znajdź prezentację dla D_{2n} .

10 Zadania

Zadanie 1. O co chodzi w tym żarcie?

(tłumaczenie: bejbe, moja miłość do ciebie jest izomorficzna do właściwej podgrupy samej siebie)

Zadanie 2. Wykaż, że $D_6 \cong S_3$, ale $D_{24} \ncong S_4$.

Zadanie 3. *Grupą cykliczną* nazywamy grupę G w której istnieje *generator* $g \in G$, taki że $\langle g \rangle = G$. Wykaż że:

- a) Grupy cykliczne równego (skończonego) rzędu są izomorficzne. Podobnie, wszystkie nieskończone grupy cykliczne są izomorficzne.
- b) Każda grupa, której rząd jest liczbą pierwszą jest cykliczna.
- c) Każda podgrupa grupy cyklicznej jest cykliczna.
- d) W grupie cyklicznej skończonego rzędu n istnieje, dla każdego $d \mid n$, dokładnie jedna podgrupa rzędu d.

Ile elementów rzędu *d* jest w grupie cyklicznej rzędu *n*?

Zadanie 4. Zaproponuj figury (tj. zbiory punktów), których grupy izometrii płaszczyznowych są izomorficzne do

- a) $\mathbb{Z}/n\mathbb{Z}$
- b) **Z**

Zadanie 5. Dany jest zbiór G oraz łączne działanie $\star: G \times G \to G$. Ponadto wiadomo, że

- istnieje element $1_G \in G$ (element neutralny od lewej), który spełnia $1_G \star g = g$ dla każdego $g \in G$.
- dla każdego $g \in G$ istnieje $h \in G$ (element odwrotny od lewej), który spełnia $h \star g = e$.

Udowodnij, że (G, \star) to grupa (tj. udowodnij, że elementy odwrotne i neutralny działają też od prawej).

Zadanie 6. Podzbiór $H \subseteq G$ jest skończony, niepusty i sprawdziliśmy już, że działanie grupy jest domknięte — dla $a,b \in H$ mamy $ab \in H$. Udowodnij, że $H \subseteq G$ (w związku z wcześniejszą dyskusją pozostaje udowodnić, że odwrotności będą się zawierać w H).

Zadanie 7. Wykaż, że istnieją tylko dwie grupy rzędu 4.

Zadanie 8.

- a) Udowodnij, że ord ab = ord ba.
- b) Podaj przykład grupy oraz pewnych elementów a, b, c, takich że ord $abc \neq ord bac$.

Zadanie 9. Rodzinę S niektórych podzbiorów zbioru $\{1, \ldots, n\}$ nazywamy *dobrą*, jeżeli dla każdych dwóch zbiorów $A, B \in S$, do S należą również $A \cup B$, $A \setminus B$, $B \setminus A$. Znajdź, w zależności od n, największy możliwy rozmiar *dobrej* rodziny, która nie zawiera *wszystkich* podzbiorów $\{1, \ldots, n\}$.

Zadanie 10. Wykaż, że dla każdej grupy G istnieje liczba n, taka że S_n zawiera podgrupę izomorficzną z G.

Zadanie 11. Na stole położono *n* monet w rzędzie, każda moneta odwrócona orłem do góry. W każdym kroku, jeśli to możliwe, wybieramy jakiegoś orła, usuwamy go z rzędu, a następnie odwracamy monetę bezpośrednio po lewej i po prawej (sąsiadujące monety mogą być reszką, ale muszą być, tj. nie możemy wybrać skrajnej monety).

Udowodnić, że możemy tak wybrać monety w kolejnych krokach aby usunąć wszystkie monety oprócz dwóch, wtedy i tylko wtedy, gdy $n \not\equiv 1 \pmod{3}$.

Zadanie 12. Dana jest liczba pierwsza p. Dodatnią liczbę całkowitą n nazwiemy ladnq wtedy i tylko wtedy, gdy suma reszt z dzielenia liczb n, n^2 , n^3 , ..., n^{p-1} przez p jest równa $\frac{1}{2}p(p-1)$. Udowodnić, że w zbiorze $\{1, \ldots, p-1\}$ liczb ładnych jest nieparzyście wiele.

Zadanie 13. Niech Aut G będzie zbiorem automorfizmów $G \to G$. Sprawdź, że (Aut G, \circ) jest grupą. Wykaż, że jeżeli p jest liczbą pierwszą, to Aut $(\mathbb{Z}/p\mathbb{Z}) \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Zadanie 14. Podgrupą maksymalną H < G grupy G nazywamy taką podgrupę właściwą, która zawiera wszystkie inne właściwe podgrupy G.

- a) Wykaż, że \mathbb{Q}^{\times} nie ma podgrupy maksymalnej.
- b) Znajdź wszystkie grupy, dla których istnieje podgrupa maksymalna.

Zadanie 15. Oblicz rząd grupy

$$\langle a, b, c \mid ab = c^2a^4, bc = ca^6, ac = ca^8, c^{2018} = b^{2019} \rangle$$

11 Wykorzystane materiały

- MIT Lecture Notes Modern Algebra https://ocw.mit.edu/courses/mathematics/18-703-modern-algebra-spring-2013/ lecture-notes/
- Evan Chen An Infinitely Large Napkin https://web.evanchen.cc/napkin.html
- Evan Chen Math 55a Lecture Notes (Honors Abstract and Linear Algebra) https://web.evanchen.cc/notes/Harvard-55a.pdf
- Michael Artin Algebra
- Zadania z Olimpiady Matematycznej
- Jerzy Rutkowski Algebra abstrakcyjna w zadaniach