МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа фотоники, электроники и молекулярной физики

Отчёт о выполнении лабораторной работы 4.1.1

Геометрическая оптика

Автор: Макаров Лев Евгеньевич Б04-306

1 Введение

Цель работы:

- 1. изучение свойств оптических систем: определение фокусных расстояний линз
- 2. определение фокусных расстояний и положения главной и фокальной плоскостей сложной оптической системы
- 3. изучение аббераций оптических систем.

В работе используются: оптическая скамья с набором рейтеров, положительные и отрицательные линзы, экран, осветитель с ирисовой диафрагмой, зрительная труба, кольцевые диафргамы, линейка.

2 Теоретические сведения

Определения фокусных расстояний

Формула тонкой линзы имеет вид

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b},\tag{1}$$

где f — фокусное расстояние, a — расстояния от предмета до линзы, b — расстояние от изображения до линзы.

Для измерения фокусного расстояния тонкой собирающей линзы может использоваться схема с рис. 1. и формула (2).

$$f = \frac{L^2 - l^2}{4L} \tag{2}$$

Также фокусное расстояние тонкой собирабщей линзы можно измерить с помощью зрительной трубы, настроенной на бесконечность. Если расположить линзу между предметом и трубой и найти четкое изображение предмета, то расстояние от линзы до предмета будет равно фокусному.

Для определения расстояние тонкой рассеивающей линзы поспользуемся схемой на рис. 2 и формулой тонкой линзы. Также можно восползоваться зриетльной трубой, настроенной на бесконечность. Если расположить предмет у нее в фокусе, то изображение переместиться в бесконечность, что можно проверить с помощью зрительной трубы.

Для определения фокусного расстояние и положения главных плоскостей сложной оптической системы может использоваться метод Аббе: схема на рис. 3 и формула (3).

$$f = \frac{\Delta x}{y/y_1 - y/y_2} \tag{3}$$

Пусть пучок света, попадающий в объектив, составляет с оптической осью угол φ_1 , а пучок, выходящий из окуляра, — угол φ_2 . Увеличение γ зрительной трубы по определению равно

$$\gamma = \frac{\tan \varphi_2}{\tan \varphi_1},\tag{4}$$

но также из рис. 3 следует, что

$$\gamma_K = \frac{f_1}{f_2} = \frac{D_1}{D_2},\tag{5}$$

где D_1 - ширина пучка, прошедшего через объектив, а D_2 - ширина пучка, вышедшего из окуляра

2.1 Моделирование трубы Галилея

Рис. 1: Схема измерения фокуса тонкой собирающей линзы

Рис. 2: Схема измерения фокуса тонкой рассеивающей линзы

Рис. 3: Схема определения фокусного расстояние и положения главных плоскостей сложной оптической

Рис. 4: Ход лучей в трубе Галилея

2.2 Моделирование микроскопа

Рис. 5: Ход лучей в микроскопе

Ход лучей в микроскопе показан на рис. 6. Увеличение микроскопа вычисляется по формуле

$$\gamma_M = \Gamma_{o_b} \Gamma_{o_c} = \frac{\triangle}{f_1} \frac{L}{f_2},\tag{6}$$

Рис. 6: Схема микроскопа

3 Результаты измерений и обработка данных

0. Подготовка к работе

- 1. Определим какие линзы являются собирающими, а какие рассеивающими.
- собирающие: 3.1, 3.2, 3.3, 3.4, 3.6;
- рассеивающие: 3.5.
- 2. Отцентрируем линзы относительно оптической оси, так чтобы свет источника проходил через центр всех линз.

І. Определение фокусных расстояний линз с помощью подзорной трубы

- 1. Настроим подзорную трубу на бесконечность.
- 2. Расположим одну из линз на оптической скамье на приблизительно фокусном расстоянии. Далее разместим за линзой подзорную трубу. Слегка перемещая линзу добьемся наиболее четкого изображения. Измерим фокусное расстояние линейкой.
- 3. Перевернем линзу обратной стороной и измерим фокусное расстояние еще раз.
- 4. Повторим измерения для остальных линз и результаты измерений запишем в таблицу 1.

Таблица 1: Фокусные расстояния всех линз

линза	f, cm	$f_{\text{обратное}}$, см
3.1	6.4	6.8
3.2	14.5	14.5
3.3	19.0	19.0
3.4	29.3	29.3
3.6	4.0	4.5

5. Повторим измерение для линзы 3.3 несколько раз и измерим среднеквадратичное отклонение $\sigma_f^{\text{кв}}$. Результаты измерений запишем в таблицу 2.

Таблица 2: Фокусные расстояния линзы 3.3

f, cm		l		1	
σ_f , cm	0.5	0.5	0.5	0.5	0.5

Тогда $\sigma_f^{\text{\tiny KB}}=0.07$ см.

6. Измерим фокусное расстояние отрицательной линзы. Разместим вспомогательную положительную линзу и получим на экране четкое изображение источника. Разместим отрицательную линзу между положительной и экраном. Уберем экран и разместим вместо него подзорную трубу. Перемещая отрицательную линзу получим четкое изображение предмета. Для повышения четкости вставим диафрагму. Измерим фокусное расстояние линзы как:

$$f = l - a_0 = 27.2 - 35.8 \approx -8.6 \text{ cm}$$

II. Измерение фокусных расстояний линз по формуле тонкой линзы и методом Бесселя

- 1. Разместим одну из положительных линз на оптической скамье. Разместим экран на расстоянии $L=91~{\rm cm}>4f$ от предмета.
- 2. Разместим исследуемую линзу между источником и экраном и получим на экране четкие изображения: одно увеличенное, а другое уменьшенное. Измерим соответствующие расстояния от источника до линзы s_1 и s_2 .

$$s_1 = 28.5 \text{ cm}; \quad s_2 = 61.7 \text{ cm}$$
 $l = s_2 - s_1 = 33.2 \text{ cm}$

3. Вычислим фокусное расстояние двумя способами:

Формула тонкой линзы:

$$f = \frac{1}{\frac{1}{s} + \frac{1}{L-s}}$$

$$f_1 = \frac{1}{\frac{1}{s_1} + \frac{1}{L-s_1}} = (19.6 \pm 0.4) \text{ cm}$$

$$f_2 = \frac{1}{\frac{1}{s_2} + \frac{1}{L-s_2}} = (19.9 \pm 0.2) \text{ cm}$$

Формула Бесселя:

$$f = \frac{L^2 - l^2}{4L} = (19.7 \pm 0.3) \text{ cm}$$

4. Развернем линзу и повторим измерения

$$f_1 = (19.5 \pm 0.4) \text{ cm}; \quad f_2 = (19.9 \pm 0.2) \text{ cm}; \quad f = (19.7 \pm 0.3) \text{ cm};$$

III. Измерение фокусных расстояний методом Аббе

- 1. Установим линзу между осветителем и экраном. Получим на экране четкое действительное изображение. Измерим линейное изображение предмета y_0 и предмета y_1 .
- 2. Отодвинем осветитель на расстояние $\Delta x = 5$ см от линзы. Передвинем экран к линзе на расстояние $\Delta x' = 57$ см, чтобы получилось четкое изображение. Измерим линейный размер изображения y_2 .
- 3. Рассчитаем фокусное расстояние методом Аббе:

$$f = \frac{\Delta x'}{y_1/y_0 - y_2/y_0} = \frac{\Delta x}{y_0/y_2 - y_0/y_1}$$

Таблица 3: Линейные размеры предмета и изображений

y_0 , cm	2.1	1.4	0.6
y_1 , cm	4.5	3.0	1.5
y_2 , cm	9.0	6.3	3.1
f, cm	21.4	20.4	24.2
f', cm	21.9	19.9	17.6

IV. Сборка и изучение подзорной трубы Кеплера

- 1. В качестве коллиматора возьмем линзу 3.3, окуляра 3.1, объектива 3.4.
- 2. С помощью подзорной трубы установим коллиматорную линзу перед источником, так чтобы он оказался в фокусе.
- 3. Глядя в окуляр трубы, оценим количество ячеек, которое умещается в поле зрения. Угловой размер ячейки: $\alpha_0 = 1/4 = 0.25$.
- 4. Объектив разместим сразу за коллиматором. Окуляр расположим на расстоянии $f_{\rm o6} + f_{\rm ok}$ от объектива.
- 5. При наблюдении глазом через окуляр телескопа наблюдаем увеличенное изображение сетки на поверхности источника. Повысим четкость, разместив диафрагму на коллиматоре.
- 6. Измерим видимый размер изображения ячейки $\alpha = 1/2 = 0.5$.

$$\gamma_{ ext{\tiny 9KCII}} = rac{lpha}{lpha_0} = 2$$

$$\gamma_{ ext{\tiny 9KCII}} = rac{f_{ ext{o6}}}{f_{ ext{oK}}} = rac{29.3}{6.8} pprox 4.3$$

Расхождении теории от эксперимента может быть из-за неточности измерений фокусных расстояний, неточности в сборке телескопа. Неточности в измерении угловых размеров.

7. Измерим увеличение по диаметрам входного и выходного зрачков телескопа. $D_{\rm o6}$ – диаметр светового пятна, падающего на объектив, $D_{\rm ok}$ – диаметр светового пятна за окуляром.

$$\gamma = \frac{D_{\text{o6}}}{D_{\text{or}}} = \frac{1.9}{1} = 1.9$$

V. Сборка и изучение модели микроскопа

1. В качестве объектива используем линзу 3.6, а окуляра – 3.1.

$$\Delta = 4.5$$
 cm:

$$\gamma_{\rm 9kp} = \frac{L - f_{\rm ok}}{f_{\rm ok}} \cdot \frac{\Delta}{f_{\rm o6}} \approx$$

- 2. Разместим линзы согласно рассчетам. Источник разместим вблизи фокуса объектива. Глядя в окуляр и немного смещая предмет, добъемся четкого изображения сетки. Повысим четкость надев диафрагму на объектив.
- 3. Для измерения увеличения установим за микроскопом экран. Слегка смещая предмет, добъемся четкого изображения на экране. Измерим его линейный размер. Рассчитаем линейное увеличение:

$$\gamma = \frac{y_1}{y_0} = \frac{1.8}{1.4} \approx 1.3$$

VI. Изучение составной оптической системы

1. Используем линзы 3.5 и 3.6. Разместим их подставками плотно друг к другу и измерим расстояние между ними l=3.5 см. Оценим фокусное расстояние:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \frac{l}{f_1 f_2}$$
 $f = 4 \text{ cm}$

4 Вывод

Были исследованы различные способы нахождения фокусных расстояний линзы. Наиболее эффективным оказался метод с использованием подзорной трубы — все значения совпали в пределах погрешности. Также неплохо показал себя метод Бесселя. Метод Аббе не получился из-за ошибки в выполнении.

Также были собраны телескоп Кеплера и микроскоп и измерены их увеличения.