Algèbre 3 TD 5 Matrices

Licence 2 MAE 2020-2021 Université Paris Descartes Marc Briant

Dans tout ce TD, $(\mathbb{K}, +, .)$ désigne un corps commutatif.

Applications linéaires, matrices et changement de base

Exercice 1 : Écrire des applications linéaires sous forme de matrices

Dans chacun des cas suivants écrire la matrice de l'application linéaire f relativement aux bases \mathcal{B} et \mathcal{B}' .

- 1) $\forall (x,y,z) \in \mathbb{R}^3$, f(x,y,z) = (x+y,y-2x+z) dans \mathcal{B} et \mathcal{B}' les bases canoniques de \mathbb{R}^3 et \mathbb{R}^2 .
- 2) $\forall (x_1, x_2, x_3) \in \mathbb{R}^3$, $f(x_1, x_2, x_3) = (x_2 + x_3, x_3 + x_1, x_1 + x_2)$ dans $\mathcal{B} = \mathcal{B}'$ la base canonique de \mathbb{R}^3 .
- 3) Soit $A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$, $\forall M \in \mathcal{M}_2(\mathbb{R})$, f(M) = AM dans $\mathcal{B} = \mathcal{B}'$ la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- 4) Soit $A = \begin{pmatrix} -1 & 2 \\ 2 & -4 \end{pmatrix}$, $\forall M \in \mathcal{M}_2(\mathbb{R}), f(M) = MA$ dans $\mathcal{B} = \mathcal{B}'$ la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- 5) Soit $a \in \mathbb{C}^*$, $\forall z \in \mathbb{C}$, $f(z) = z + a\overline{z}$ dans $\mathcal{B} = \mathcal{B}' = (1, i)$ base du \mathbb{R} -ev \mathbb{C} .

Exercice 2

Nous nous plaçons dans $E = \mathbb{R}^3$ pour lequel nous considérons une base $\mathcal{B} = (e_1, e_2, e_3)$ et un endomorphisme f. Dans chacun des cas suivants nous donnons $M_{\mathcal{B}}(f)$ et une nouvelle base \mathcal{B}' . Écrire la matrice de passage de \mathcal{B} à \mathcal{B}' puis $M_{\mathcal{B}'}(f)$.

1)
$$M_{\mathcal{B}}(f) = \begin{pmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{pmatrix}$$
 et $\mathcal{B}' = ((1, 0, -1), (0, 1, 1), (1, 0, 1)).$

2)
$$M_{\mathcal{B}}(f) = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$
 et $\mathcal{B}' = ((1,0,1), (-1,1,0), (1,1,1)).$

3)
$$M_{\mathcal{B}}(f) = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$
 et $\mathcal{B}' = (e'_1, e'_2, e'_3)$ définis par $e'_1 = e_1 + e_2 + e_3$, $e'_2 = e_2$ et $e'_3 = e_3$. Les nombres a, b et c sont réels.

4)
$$M_{\mathcal{B}}(f) = \begin{pmatrix} \beta^2 + \alpha^2 \cos \theta & \alpha \sin \theta & \alpha \beta (1 - \cos \theta) \\ -\alpha \sin \theta & \cos \theta & \beta \sin \theta \\ \alpha \beta (1 - \cos \theta) & -\beta \sin \theta & \alpha^2 + \beta^2 \cos \theta \end{pmatrix}$$
 et $\mathcal{B}' = (e'_1, e'_2, e'_3)$ définis par $e'_1 = \beta e_1 + \alpha e_3, e'_2 = e_2$ et $e'_3 = -\alpha e_1 + \beta e_3$. Les nombres α et β sont des complexes tels que $\alpha^2 + \beta^2 = 1$ tandis que θ est un réel.

Exercice 3 : Matrices simples de projecteurs et symétries

Soient E un \mathbb{K} -ev de dimension n et $u \in L(E)$ non nul.

1) Supposons que u est un projecteur, montrer qu'il existe une base $\mathcal{B} = (e_1, ..., e_n)$ de E et $r \in [0, n]$ tels que

$$\forall i \in [1, r], \ u(e_i) = 0 \quad \text{et} \quad \forall i \in [r+1, n], \ u(e_i) = e_i.$$

Donner la matrice de u dans la base \mathcal{B} .

2) Supposons que u est une symétrie, montrer qu'il existe une base $\mathcal{B} = (e_1, ..., e_n)$ de E et $r \in [0, n]$ tels que

$$\forall i \in [1, r], \ u(e_i) = -e_i \quad \text{et} \quad \forall i \in [r+1, n], \ u(e_i) = e_i.$$

Donner la matrice de u dans la base \mathcal{B} .

Du calcul matriciel bête et méchant

Exercice 4

Dans chacun des cas suivants nous définissons une matrice $A \in \mathcal{M}_{4,3}(\mathbb{K})$. Calculer son rang puis en appelant f l'application linéaire représentée par A dans les bases canoniques de \mathbb{R}^3 et \mathbb{R}^4 déterminer des bases de Ker(f) et Im(f).

1)
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 1 \\ 5 & 6 & 1 \\ 7 & 8 & 1 \end{pmatrix}$$
 2) $A = \begin{pmatrix} 2 & 2 & -1 \\ 4 & 3 & -1 \\ 0 & -1 & 2 \\ 3 & 3 & -2 \end{pmatrix}$

Exercice 5 : Calculer des puissances grâce à la nilpotence

Dans chacun des cas suivants, calculer B^n et en déduire une expression pour A^n .

1)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $B = A - I_3$ 2) $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

Exercice 6: La finesse du pivot de Gauss...

Dans chacun des cas suivants calculer A^{-1} .

1)
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -3 \\ -1 & 0 & 2 \end{pmatrix}$$
 2) $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -1 & 1 \\ -1 & 1 & -1 \end{pmatrix}$

Exercice 7 : Problèmes de commutation

- 1) Trouver toutes les matrices qui commutent avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ où $\lambda_i \in \mathbb{K}$ sont deux à deux distincts.
- 2) Trouver toutes les matrices $A \in \mathcal{M}_n(\mathbb{R})$ telles que AM = MA pour toute matrice $M \in \mathcal{M}_n(\mathbb{R})$.

Des études plus abstraites

Exercice 8

Dans chacun des cas suivants montrer que F est un sous-ev de $\mathcal{M}_n(\mathbb{R})$, en expliciter une base et sa dimension.

1)
$$n=2$$
 et $F\left\{M\in\mathcal{M}_n(\mathbb{R})\mid \exists (a,b)\in\mathbb{R}^2, M=\begin{pmatrix} \frac{a+b}{2} & \frac{a-b}{2}\\ \frac{a-b}{2} & \frac{a+b}{2} \end{pmatrix}\right\}$.

2)
$$n=3$$
 et $F\left\{M \in \mathcal{M}_3(\mathbb{R}) \mid \exists (a,b,c) \in \mathbb{R}^3, M = \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}\right\}.$

Exercice 9

Dans chacun des cas suivants calculer le rang des matrices A et B ainsi que leur trace. Déterminer ensuite si elles sont, ou non, équivalentes puis si elles sont, ou non, semblables

1)
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ -3 & -3 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

2)
$$A = \begin{pmatrix} 1 & 1 & -1 \\ -2 & -2 & 2 \\ -3 & -3 & 3 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 1 & 2 \\ 4 & 3 & 1 \\ 2 & -1 & -3 \end{pmatrix}$.

3)
$$A = \begin{pmatrix} u^2 & uv & uw \\ uv & v^2 & vw \\ uw & vw & w^2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, où u, v et w sont trois complexes non nuls tels que $u^2 + v^2 + w^2 = 1$.

4)
$$A = \begin{pmatrix} 3 & 0 & 0 \\ -2 & 1 & 1 \\ 3 & 1 & -1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cosh(t) & \sinh(t) \\ 0 & \sinh(t) & \cosh(t) \end{pmatrix}$. On discutera suivant les valeurs du réel t .

Exercice 10 : Concluons avec des matrices sur les matrices...

Nous fixons $A \in \mathcal{M}_2(\mathbb{R})$ telle que (A, I_n) soit libre dans $\mathcal{M}_2(\mathbb{R})$. Nous définissons

$$\Phi: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$$

$$M \longmapsto AM - MA$$

- a) Montrer que $\Phi \in L(\mathcal{M}_2(\mathbb{R}))$ et calculer $\operatorname{tr}(\Phi(M))$ pour tout M de $\mathcal{M}_2(\mathbb{R})$.
- b) Déterminer la matrice de Φ dans la base canonique de $\mathcal{M}_2(\mathbb{R})$.
- c) Montrer que dim $Ker(\Phi) \ge 2$ et en déduire $rg(\Phi)$.