

OFFICE OF NAVAL RESEARCH CONTRACT N00014-82-K-0322 Task No. NR P00 007

TECHNICAL REPORT NO. 30

NON-POLYMERIC BINDERS FOR CERAMIC POWDERS: UTILIZATION OF NEUTRAL AND IONIC SPECIES DERIVED FROM DECABORANE(14)

by

William S. Rees, Jr. and Dietmar Seyferth

THE CHAY

Published in

Journal of Materials Science

Department of Chemistry

Massachusetts Institute of Technology

Cambridge, MA 02139

May 13, 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited

89 .

UNCLASSIFIED

3.4				

25013 AN (1722 E CY LON DE 17 2 37 75	REPORT DOCUM	MENTATION	PAGE	<u> </u>		
'a REPORT SECURITY CLASSIFICATION		to RESTRICTIVE	MARKINGS			
Unclassified Za SECURITY CLASSIFICATION AUTHORITY	3 DISTRIBUTION AVAILABILITY OF REPORT					
		Approved for public release.				
26 DECLASSIFICATION DOWNGRADING SCHEDU	LĒ		ion unlimited			
4 PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5 MONITORING	ORGANIZATION RE	PORT NUM	MBER(S)	
30						
6a NAME OF PERFORMING ORGANIZATION Massachusetts Institute of	78 NAME OF MONITORING ORGANIZATION					
Technology	<u> </u>	ONR				
6c. ADDRESS (City, State, and ZIP Code) Department of Chemistry			y, State, and ZIP C Navv	(ode)		
77 Massachusetts Avenue Cambridge, MA 02139		Office of Navy Arlington, VA 22217				
8a NAME OF FUNDING SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
ONR						
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF F	PROJECT	TASK	In any man	
Office of Navy Arlington, VA 22217		ELEMENT NO	NO.	NO	WORK UNIT ACCESSION NO	
		N-00014-82	K-0322	P00-00)7	
11 TITLE (Include Security Classification) NON-POLYMERIC BINDERS FOR CERAMIC PONDERS: UTILIZATION OF NEUTRAL AND IONIC SPECIES DERIVED FROM DECABORANE(14) 12 PERSONAL AUTHOR(S)						
	es, Jr. and Die	tmar Seyfert	h			
13a TYPE OF REPORT 136 TIME CO	OVERED	14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT 1989-5-13				
16 SUPPLEMENTARY NOTATION						
Paper in "Journal of Materials						
COSATI CODES	18 SUBJECT TERMS (-			
THEE GROUP SUB-GROUP	boron carbide organophosphorus compounds decaborane(14) adducts					
19 ABSTRACT (Continue on reverse if necessary	and identify by block r	umber)	1 1	5.14	/	
The pyrolytic conversion of b	is-Lewis base ad	ducts of dec	The state of the s	•		
monophsophine) and phosphonium	resalts of the [$B_{10}H_{10}]^{2^{-}}$ an	ion (e.g., [Phy P	,, etc.), to	
ceramic materials has been studied. All species examined served as binders for a variety						
of non-oxide refractory ceramic powders (e.g., B ₄ C, BN, BP, B ₁₃ P ₂ , SiC, Si ₃ N ₄ , B, C, AlN).						
				-		
				,		
· / ·						
20 DISTRIBUTION AVAILABILITY OF ABSTRACT	RPT DTIC USERS		ECURITY CLASSIFIC	ATION		
22a NAME OF RESPONSIBLE INDIVIDUAL Dr. S. Fishman		(Include Area Code) 22c OF	FICE SYMBOL		
	22 - 12 - 12 - 12 - 12 - 12	**************************************	<u> </u>	_		

Non-Polymeric Binders for Ceramic Powders: Utilization of Neutral and Ionic Species Derived From Decaborane(14)

William S. Rees, Jr. and Dietmar Seyferth

Department of Chemistry

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

The pyrolytic conversion of bis-Lewis base adducts of decaborane(14), L·B₁₀H₁₂·L (L = neutral monophosphine) and phosphonium salts of the $[B_{10}H_{10}]^{2-}$ anion (e.g., $[Ph_4P^+]_2$, etc.), to ceramic materials has been studied. All species examined served as binders for a variety of non-oxide refractory ceramic powders (e.g., B₄C, BN, BP, B₁₃P₂, SiC, Si₃N₄, B, C, AIN).

1,00m NO	n For	L_				
NTIS ETIC Unione	TAB schoold	(1) (1) A				
By Date by too 1						
A	vuluu i tv	೦೯ರಂಬ				
Oist	Azu ib Shed					
A-1						

Non-Polymeric Binders for Ceramic Powders: Utilization of Neutral and Ionic Species Derived From Decaborane(14)

William S. Rees, Jr. and Dietmar Seyferth

Department of Chemistry

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

1. INTRODUCTION

Binders are used primarily to help ceramic particles adhere to one another [1]. Both the green strength of a ceramic body and its green density are affected by the binder used. Although many types of materials have been employed as binders in ceramic powder processing, organic polymers (e.g., polyvinyl alcohol, polyvinyl butyral, polyethylene, acrylic resins, wax emulsions, etc.) have traditionally played an important role as binder formulations. While the use of such materials as binders often results in the achievement of high green body strength and/or high green body density, there also can be some drawbacks resulting from their use. Major problems can be encountered upon firing of the ceramic body due to binder burnout. Cracking of the part results when the temperature range of the binder burnout is narrow, so that most of the volatiles are released practically simultaneously. Not necessarily always a drawback is that during the non-oxidative firing of the ceramic body there can be substantial retention of carbon either due to polymer binder pyrolysis (giving nonvolatile, highly carbonaceous residues) or due to polymer-ceramic surface bond

formation, preventing degradative volatilization of the binder [2]. In order to avoid these problems, ceramists more recently have become interested in "low loss" inorganic or organometallic polymeric binders [3]. The polymers of choice are those whose pyrolysis gives a high yield of ceramic residue with the release of a minimum quantity of potentially destructive volatiles. Preferably, this ceramic residue also will be the same material of which the powder is composed, but this is not an essential requirement. By use of such "low loss" binders, one may hope to achieve not only the desired high green body strength and density that organic binders bring, but also one may hope to obtain ceramic parts of high strength and density. To date, most of the "low loss" organometallic binders that have been investigated have been organosilicon polymers which are used as binders for silicon carbide and silicon nitride powders [4].

In our laboratories we have initiated a program aimed at the development of polymeric precursors for boron-containing ceramic materials: the carbide, nitride and "carbonitride". Successful systems based on known [5] and new [6] polymers involving difunctional Lewis base adducts of decaborane(14) have been developed (Fig. 1). During the course of this research we also prepared and investigated some non-polymeric decaborane(14) derivatives and we report here concerning these and their applications as binders for a variety of non-oxide ceramic powders. As far as binder applications were concerned, we were interested to find out if these non-polymeric boron-containing species might be useful binders for the boron-containing ceramics mentioned above, as well as for elemental boron powder.

2. EXPERIMENTAL

2.1. General Comments.

All manipulations were carried out in oven-dried glassware under an inert atmosphere (argon or nitrogen) following standard techniques [7]. All solvents were distilled from appropriate drying agents [8] under a nitrogen atmosphere prior to use. All reagents employed were available commercially and were used as received. All B₁₀H₁₂·2L complexes and [B₁₀H₁₀]²⁻ salts were prepared by published methods (L = Ph₃P, Ph₂PH, (*n*-Bu)₃P and (NMe₂)₂PCI [9], L = Ph₂POH, Ph₂PN₃ and Ph₂PNHNH₂ [10], all [B₁₀H₁₀]²⁻ salts [11]). Twice sublimed decaborane(14) was purchased from Callery Chemical Co., Callery, PA and used as received. All compounds prepared were characterized on the basis of their melting points and spectroscopic (IR; ¹¹B, ¹³C, ³¹P, ¹H NMR) properties and comparison with literature values [9-11]. NMR spectra were obtained using a Varian XL-300 NMR spectrometer, IR spectra on a Perkin-Elmer Model 1430 spectrophotometer. Ceramic analyses were obtained from Galbraith Laboratories, Knoxville, TN.

A hardened stainless steel die in a Carver laboratory press was used for forming 3.75 cm x 1.25 cm bars. Isostatic bar compaction was carried out in a pneumatically-driven oil press with the bars wrapped in "Saran Wrap" and contained in evacuated, sealed rubber bags. Lindberg tube furnaces with Eurotherm controllers were used for all preparative scale (>1 g) pyrolyses (powder and bulk). For pyrolyses to 1000°C, 3.75 cm o.d. quartz tubes and fused silica boats were used; for ones to 1500°C, 6.50 cm o.d. mullite tubes and boron nitride boats supported on alumina dee tubes were used. All pyrolyses were carried out under an atmosphere of flowing argon. For experiments to 1000°C the flow rate was ~6-8 L/h and for experiments to 1500°C it was ~16-20 L/h.

X-ray diffraction patterns were obtained either on a Charles Supper detector and Diano generator instrument or on a Rigaku rotating-anode system. TGA measurements were made on a Perkin-Elmer model TGS2 instrument equipped with a Thermal Analysis System 4 controller. For TGA data, in situ data was obtained for powdered samples from ambient to 950°C and mass change data for higher temperatures were collected on bulk samples after they had been heated to the desired temperature and then cooled to ambient conditions.

2.2. General Procedure for the Preparation of B₁₀H₁₂·2L Complexes [9].

The preparation of $B_{10}H_{12}\cdot 2Ph_3P$ is given as a representative example: A 250 mL Schlenk flask equipped with a stir-bar, gas-inlet tube and a septum was charged under argon with 5.0 g (41 mmol) of $B_{10}H_{14}$, 35 mL of Et_2O and a solution of 25.0 g (95 mmol) of Ph_3P in 150 mL of Et_2O , with vigorous stirring during and for 5 min after addition. The precipitate which had formed was filtered, washed with Et_2O and dried at $100^{\circ}C/0.1$ mm Hg to give a nearly quantitative yield of $B_{10}H_{12}\cdot 2Ph_3P$. The complexes where $L = Ph_2PH$, Ph_2PCI , $(n-Bu)_3P$, and $(Me_2N)_2PCI$ were all prepared by this general procedure. Those where $L = Ph_2POH$, Ph_2PN_3 and Ph_2PNHNH_2 were prepared by nucleophilic substitution at phosphorus in $B_{10}H_{12}\cdot 2Ph_2PCI$ [10]. The results of their pyrolyses (i.e., their ceramic yields and compositions) are given in Table I.

2.3. General Procedure for the Preparation of $[B_{10}H_{10}]^{2-}$ Salts [11].

The preparation of $[Ph_4P]_2[B_{10}H_{10}]$ is given as a representative example: A solution of 2.00 g of $[Et_3NH]_2[B_{10}H_{10}]$ (6.2 mmol) in 30 mL of 9/1 water/ethanol was added to a solution of $[Ph_4P][Br]$ (6.00 g, 14.3 mmol) in 50 mL of the same solvent mixture in a 125 mL Erlenmeyer flask. After the mixture had been stirred for 5 min, the precipitate was filtered, washed with water, 5 mL of cold (ca. -10°C) acetone and,

finally, with Et₂O. Drying at 60° C/0.1 mm Hg for 5 h gave a white solid in nearly quantitative yield. The following salts were all prepared by the above general metathesis route: [Ph₃PMe]₂[B₁₀H₁₀], [n-Bu₃PMe]₂[B₁₀H₁₀] and [Ph₃P(CH₂)₃PPh₃][B₁₀H₁₀]. The results of their pyrolyses (i.e., their ceramic yields and compositions) are given in Table I.

2.4. General Procedure for the Preparation of Ceramic Composite Bars Using $B_{10}H_{12}\cdot 2L$ Complexes and $[B_{10}H_{10}]^2$ - Salts as Binders for Ceramic Powders (Scheme 1).

One of the three following procedures were used for sample preparation:

- A. Weighed quantities (See Table II) of B₁₀H₁₂-2L or of a [B₁₀H₁₀]²⁻ salt and the ceramic powder were mixed and ground for 15 min in a mortar and pestle in an inert atmosphere box.
- B. The $B_{10}H_{12}$ -2L or $[B_{10}H_{10}]^{2-}$ salt (0.5 g) was dissolved in 50 mL of a solvent (usually acetone) and 2.5 g of ceramic powder was added. The stoppered flask was immersed into a Branson B-220 ultrasonicator containing ~7.5 cm of ambient temperature water and vibrated for 15 min. Afterwards, the solvent was removed at 100° C and 0.1 mm Hg.
- C. The B₁₀H₁₂·2L or [B₁₀H₁₀]²⁻ salt (0.5 g) and the ceramic powder (2.5 g) were suspended in ~75 mL of a non-solvent (usually pentane) in a 100 mL stoppered round bottomed flask. Further processing was carried out as described in B, above.

The samples thus prepared were placed in a 1.25 cm x 3.75 cm rectangular die and formed into bars in a Carver laboratory press at 2,250 kg ($4.6 \times 10^7 \text{ nt/m}^2$ uniaxially), wrapped in "Saran Wrap", placed in an evacuated, sealed rubber bag, removed to an ambient temperature isostatic press and further compacted to 3.45 x 10^8 nt/m^2 . The uniaxial pressing time duration was ~5 min and the isostatic pressing

time duration was ~15 min. The resulting bar was pyrolyzed in a stream of argon to 1000°C (10°C/min heating rate, hold at 1000°C for 30 min) and subsequently allowed to cool to ambient temperature over a period of ~3.5 h. The pyrolyzed sample was handled in an inert atmosphere box. The results of the individual experiments are given in Table II.

For the purposes of this initial screening test, a ceramic composite bar was considered to be "excellent" if it met both the criteria of being a uniform, rectangular monolithic body that had retained its shape (vs. the polymer composite bar before pyrolysis) in all three dimensions without undergoing any discernable shrinkage or bloating above the detectable level of 3-5%, as well as having a strength such that it could not be broken manually without mechanical means (e.g., a vise and pliers).

3. RESULTS AND DISCUSSION

We began this investigation with the preparation and a study of the pyrolysis of several known monomeric decaborane(14)-Lewis base adducts in which the Lewis base was a trivalent phosphorus compound and also of some phosphonium salts of the [B₁₀H₁₀]²⁻ anion. This initial thrust was due to the fact that the known processable decaborane(14) polymers involved diphosphines as the difunctional Lewis base [12]. Both of these classes of compounds have a high boron content, and this is what is needed in a B₄C precursor. The B₁₀H₁₂-Lewis base compounds, written as B₁₀H₁₂·2L or, to better indicate their structure, as L·B₁₀H₁₂·L, are readily prepared by the reaction of B₁₀H₁₄ with two molar equivalents of the Lewis base in a suitable organic solvent such as diethyl ether or benzene (Eq. 1). 9 Among the Lewis bases

$$B_{10}H_{14} + 2 : L \longrightarrow L \cdot B_{10}H_{12} \cdot L + H_2$$
 (1)

that react with $B_{10}H_{14}$ in this way are amines, phosphines, organic sulfides and nitriles. When an $R_3N\cdot B_{10}H_{12}\cdot NR_3$ adduct is heated, proton transfer from boron to nitrogen occurs and salts of the very stable $[B_{10}H_{10}]^{2-}$ anion, $[R_3NH]_2[B_{10}H_{10}]$, are formed. A wide variety of $[B_{10}H_{10}]^{2-}$ salts can be prepared by cation exchange reactions [11]. Such proton transfer processes had not been demonstrated for phosphine adducts, $R_3P\cdot B_{10}H_{12}\cdot PR_3$, but we have found that they do occur. Thus, when a sample of $B_{10}H_{12}\cdot 2Ph_3P$ was heated to 250°C at 10°C/min under a stream of argon, transformation to $[Ph_3PH]_2[B_{10}H_{10}]$ took place as evidenced by the IR spectrum of the sample after it had cooled to room temperature. A medium intensity spectrum of the sample after in the neutral adduct, was observed. This band may be assigned to v (P-H) of the $[Ph_3PH]^+$ cation [13].

The L·B₁₀H₁₂·L compounds and [B₁₀H₁₀]²- salts that we prepared and studied are shown in Table I. Of initial interest were the yield and elemental composition of the ceramic residue obtained when they were pyrolyzed to 1000°C in a stream of argon. According to the results in Table I, the precursors can be divided into two classes: (1) those having phenyl groups attached to phosphorus, whose pyrolysis gives a high (> 70%) yield of ceramic residue that contains a large fraction of the carbon present in the precursor, and (2) those that do not contain phenyl groups, whose pyrolysis gives lower yields of ceramic residue. As Table I shows, pyrolysis of powder samples of the various phosphorus-containing compounds or salts under the stated conditions resulted in retention of phosphorus in the residue. However, on further heating to 2350°C under argon, nearly total loss of phosphorus occurred when polymeric precursors such as -[-B₁₀H₁₂·Ph₂POPPh₂-]-x were pyrolyzed [5].

In all examples studied, the ceramic residue from the pyrolysis under argon to 1000°C was amorphous. Firing at 1500°C for 10 h resulted in materials whose powder X-ray diffraction (XRD) pattern showed broad lines indicative of weakly crystalline B₄C-containing material. The ceramic residues derived from the precursors in Table I are all black solids. Those precursors in class (1) above gave freely flowing powders that were quite hard, often scoring the agate mortar used to prepare XRD samples. The precursors in class (2) gave brittle, foamy solids, as might be expected when there is more substantial evolution of volatiles.

The determination of a nominal composition of amorphous materials is merely an accounting game using elemental analysis data. At that point no identifiable crystalline phases are present. Further firing at higher temperatures, as already noted, does cause crystallization, but also can cause changes in elemental composition. By elemental accounting, we assume that all phosphorus in the amorphous material is present as BP. The remaining boron then is assigned to B₄C. This leaves unbound carbon that we assume to be present in its elemental form. Such an accounting gives a molar formulation of 1 B₄C + 0.94 BP + 16 C to the pyrolysis product of B₁₀H₁₂·2Ph₃P, or, on a weight percent basis, 21.2% B₄C, 13.3% BP and 65.5% C. However, we stress that this is only a *nominal* formulation for this material. It is possible that these elements are randomly bound in the amorphous product. A more detailed study of the *crystalline* phases obtained by firing to higher temperatures was made for the -[-B₁₀H₁₂·Ph₂POPPh₂-]-x polymer [5]. One fact, however, is a certainty in the case of the ceramic products of the pyrolysis of the class (1) precursors in Table I: they contain a substantial amount of free carbon.

The B₁₀H₁₂·2L adducts and [B₁₀H₁₀]²⁻ salts listed in Table I proved to be useful as binders for B₄C and other ceramic powders such as BN, SiC, B₁₃P₂, Si₃N₄ and elemental boron (Table II). Scheme I shows the procedure used. The best results were obtained when the phosphorus-containing ligand had phenyl substituents on phosphorus. This very likely is due to the high ceramic yields obtained in the pyrolysis of the class (1) precursors. Since, in this application, the compounds used as binders are present in the green body to the extent of about 17% by weight (Table II), the excess of carbon in their pyrolysis residue is less of a disadvantage than when the pure precursors are pyrolyzed. Other weight ratios of binder to ceramic powder were investigated, but, in general, the 17% binder content gave the best results. Of the various systems studied (Table II), the one in which B₁₀H₁₂·2Ph₃P was used as binder for elemental boron powder should be the best in terms of potential useful application. Firing at higher temperature should result in reaction of elemental boron with the free carbon to form boron carbide, a process that is known to take place at around 1600°C [14]. It should be noted that our evaluation of binders as "excellent", "good" and "fair" is based on the degree of shape retention of a fired composite bar as compared to the unfired, pressed composite bar, as well as on a qualitative estimate of strength. Quantitative strength tests were not undertaken for every sample in this orientational study [15].

Covalent, unimolecular compounds, in general, would not be expected to be suitable "low loss" binders due to their volatility at temperatures prior to complete thermal decomposition. In the L·B₁₀H₁₂·L adducts, however, we are dealing with covalent, unimolecular compounds which are converted to nonvolatile salts, $[LH^+]_2[B_{10}H_{10}^{2-}]$, by relatively mild heating, so that on further heating no material is

lost except for the volatiles released in the pyrolysis itself. This unique chemistry makes these materials unexpectedly good binders.

ACKNOWLEDGEMENT. We gratefully acknowledge Contract No. N00014-85-K-0645 (SDIO/IST) for support of this work.

REFERENCES AND COMMENTS

- 1. a) A. C. Pincus and L. A. Shipley, Ceramics Industry, 92, 106 (1969).
 - b) T. Morse, Handbook of Organic Additives for use in Ceramic Body Formulation, (Montana Energy and NHD Research and Development Institute, Butte, MT, 1979).
- 2. R. J. Higgins, W. E. Farneth, W. E. Rhine and H. K. Bowen, in press.
- 3. a) K. J. Wynne and R. W. Rice, Ann. Rev. Mater. Sci. 14, 297 (1984).
 - b) R. W. Rice, Amer. Ceram. Soc. Bull. 62, 889 (1983)
- 4. a) B. C. Mutsuddy, Ceram. Int. 13, 41 (1987); Mater. Sci. Monogr. 38A, 571 (1987).
 - b) K. B. Schwartz and D. J. Rowcliffe, J. Am. Ceram. Soc., 69, C-106 (1986).
 - c) G. Saiki, N. Hirai and J. Kondo, Jpn. Kokai Tokkyo Koho JP 63 21,253 [88, 21,253], Jan. 28, 1988; Chem. Abstr. 108, 172382r; Jpn. Kokai Tokkyo Koho, JP 63 25,276 [88, 25,276], Feb. 2, 1988; Chem. Abstr. 108, 172384.
 - d) K. Saeki and M. Hirano, Jpn. Kokai Tokkyo Koho JP 62, 113,771 [87, 113,771]; Chem. Abstr. 107, 160168a.
- 5. a) Seyferth, D.; Rees, Jr., W. S.; Lightfoot, A.; Haggerty, J. S. Chem. of Materials, 1989, 1(1), in the press.
 - b) Lightfoot, A.; Rees, Jr., W. S.; Haggerty, J. S. Ceram. Eng. and Sci. Proc. 1988, 9, 1021.
 - c) Rees, Jr., W. S.; Seyferth, D. Ceram. Eng. and Sci. Proc. 1988, 9, 1009.
- 6. a) Rees, Jr., W. S.; Seyferth, D. J. Am. Ceram. Soc. 1988, 71, C-194.
 - b) Seyferth, D.; Rees, Jr., W. S. In Better Ceramics Through Chemistry III, Brinker,
 C. J.; Clark, D. E.; Ulrich, D. R., Eds.; Materials Research Society: Pittsburgh,
 PA, 1988; pp. 449-454.
- 7. D. F. Shriver and M. A. Drezdzon, *Manipulation of Air Sensitive Compounds, 2nd ed.* (Wiley, New York, 1986).
- 8. A. J. Gordon and R. A. Ford, *The Chemist's Companion* (Wiley, New York, 1977).
- 9. For a discussion of B₁₀H₁₂·2L complexes see: *Gmelin Handbook of Inorganic Chemistry, 8th Ed., Vol. 54*, edited by K. Niedenzu and K.-C. Buschbeck (Springer-Verlag, Berlin, 1979) pp. 151-165.
- 10. H. A. Schroeder, J. R. Reiner and T. L. Heying, Inorg. Chem. 1, 618 (1962).

- 11. For a discussion of salts of the B₁₀H₁₀²- anion, see: E. L. Muetterties and W. A. Knoth, *Polyhedral Boranes* (Dekker, New York, 1968).
- 12. a) G. W. Parshall, U.S. patent 3,035,949 (May 22, 1962).
 - b) H. A. Schroeder, J. R. Reiner and T. A. Knowles, Inorg. Chem., 2, 393 (1963).
 - c) J. R. Reiner and H. A. Schroeder, U.S. patent 3,141,856 (July 21, 1964).
 - d) H. A. Schroeder, U.S. patent 3,155,630 (Nov. 3, 1964).
- 13. J. Weidlein, U. Mueller and K. Dehnicke, Schwingungsfrequenzen I, (G. Thieme Verlag, Stuttgart, 1981).
- 14. R. H. Wentorf, Jr., Kirk-Othmer Encyclopedia of Chemical Technology, 3rd Ed., Vol. 4; (Wiley, New York, 1978) pp. 126-127.
- 15. A fired composite bar produced as described in Scheme 1 from B₄C and B₁₀H₁₂·2Ph₃P gave a strength of ~1 x 10⁸ nt/m². We thank Mr. Garry Garvey of the MIT Dept. of Matls. Sci. for this measurement.

FIGURE 1 STRUCTURE OF -[- $B_{10}H_{12}$ -diamine-]- $_{\chi}$ POLYMERS.

SCHEME 1 PREPARATION OF CERAMIC COMPOSITES UTILIZING DERIVATIVES OF B₁₀H₁₄ AS BINDERS FOR CERAMIC POWDERS.

^aTypical binder/ceramic powder ratio is 16.7 wt % binder (matrix)/83.3 wt % ceramic powder (reinforcement).

TABLE I. PYROLYSIS OF B₁₀H₁₂·2L ADDUCTS AND [B₁₀H₁₀]²⁻ SALTS.

Compound	Ceramic	Cera	mic Comp	osition,%	•
	Yield, % ^a	В	С	P	Other
B ₁₀ H ₁₂ ·2Ph ₂ PH	83	23.17	60.75	13.71	
B ₁₀ H ₁₂ ·2Ph ₃ P	86	18.20	69.59	9.88	
B ₁₀ H ₁₂ ·2Ph ₂ PCl	73	20.62	57.09	13.17	CI, 0.02
B ₁₀ H ₁₂ ·2Ph ₂ POH	77	21.38	55.65	11.93	O, 10.57
B ₁₀ H ₁₂ ·2Ph ₂ PN ₃	₇₂ b				
B ₁₀ H ₁₂ ·2Ph ₂ PNHNH ₂	71	27.69	43.80	8.20	N, 16.56
B ₁₀ H ₁₂ ·2(<i>n</i> -Bu) ₃ P	58	35.94	46.43	15.34	
B ₁₀ H ₁₂ ·2(NMe ₂) ₂ PCl	55 ^b				
[Ph ₃ PMe] ₂ [B ₁₀ H ₁₀]	83b				
[Ph ₄ P] ₂ [B ₁₀ H ₁₀]	93	6.87	73.06	13.01	
[Ph3P(CH2)3PPh3][B10H1	0] 91	15.96	69.33	8.33	
$[(n-Bu)_3PMe][B_{10}H_{10}]$	68	30.10	49.03	11.96	

^aYield to 1000°C at a rate of 10°C/min under an argon atmosphere as determined in a tube furnace on ~1 g samples as follows:

Ceramic Yield = [(wt. residue)/(wt. sample pyrolyzed)] x 100

bcomposition not determined

TABLE II.

B₁₀H₁₂·2L BINDER EXPERIMENTS WITH 16.7 WEIGHT % BINDER.

Ĺ	Ceramic Powder	Mixture Method ^a	Shape Retention ^b	Color
Ph ₂ PH	B ₄ C	Α	E	Black
Ph ₂ PCI	B ₄ C	Α	E	Black
Ph2PNHNH2	B ₄ C	Α	G	Black
Ph2POH	B ₄ C	Α	G	Black
Ph2PN3	B ₄ C	Α	G	Black
(NMe ₂) ₂ PCI	B ₄ C	Α	F	Black
(<i>n</i> -Bu) ₃ P	B ₄ C	В	G	Black
Ph ₃ P	B ₄ C	В	E	Black
Ph ₃ P	B ₄ C	С	E	Black
Ph ₂ PH	B ₄ C	В	Ε	Black
Ph ₂ PH	B ₄ C	С	Ε	Black
Ph ₃ P	В	Α	E	Dark Red
Ph ₃ P	Si ₃ N ₄	Α	E	Gray
Ph ₃ P	α-SiC	Α	G	Dark Gray
Ph ₃ P	β-SiC	Α	G	Dark Gray
Ph ₃ P	BN	A	G	Gray
Ph ₃ P	AIN	Α	G	Silver/Gray
Ph ₃ P	BP	Α	F	Gray
Ph ₃ P	B ₁₃ P ₂	A	Ε	Dark Gray
Ph ₃ P	Rayon	В	G	Black

^aSee experimental section; method A: without solvent; method B: in acetone; method C: in pentane.

^bBased on the fired ceramic composite bar as compared to the unfired, pressed composite bar. Qualitative order: E = excellent > G = good > F = fair.