Ciencias de la Computación I

Jerarquía de Chomsky

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA – 2012

Jerarquía de Chomsky

Lenguajes	Máquinas	Gramáticas	Equiv. Det. y No det
R	Autómata Finito	Regulares o de Tipo 3	
E G	Determinístico	$G = \langle N, T, P, S \rangle$	
U	$AFD = \langle E, A, \delta, e_0, F \rangle$	Formato de reglas de Tipo 3: - Lineales a derecha	
L	E: conjunto finito de estados	$A \rightarrow aB$ $A \in N \cup \{S\}$	
A	A: alfabeto de entrada	$A \rightarrow a$ $B \in N$	SI
R	δ : función de transición	$S \rightarrow \varepsilon$ $a \in T$	
E	$\delta : \mathbf{E} \times \mathbf{A} \to \mathbf{E}$	- Lineales a izquierda	
S	\mathbf{e}_0 : estado inicial; $\mathbf{e}_0 \in \mathbf{E}$	$A \rightarrow Ba$ $A \in N \cup \{S\}$	
	F : conjunto de estados finales;	$A \rightarrow a$ $B \in N$	
(TIPO 3)	$F \subseteq E$	$S \to \varepsilon$ $a \in T$	

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Lenguajes	Máquinas	Gramáticas	EQ. DET y NO DE
L I B	Autómata de Pila Determinístico o No Determinístico $AP = \langle E, A, P, \delta, e_0, Z_0, F \rangle$	Libres del Contexto o de Tipo 2	
R E S	E: conjunto finito de estados A: alfabeto de entrada	$G = \langle N, T, P, S \rangle$	
D	P : alfabeto de la Pila; $P \cap A = \emptyset$ δ : función de transición	Formato reglas de Tipo 2:	
E L	$\delta: E \times (A \cup \{\epsilon\}) \times P \to E \times P^*$ (deterministico)	$A \rightarrow \omega$	NO
C O	$ δ: E x (A ∪ {ε}) x P → Pf(E x P*) $ (no deterministico)	donde	
N T	(P_f denota los subconjuntos finitos de $E \times P^*$)	$A \in N \cup \{S\};$ $\omega \in (N \cup T)^* - \{\epsilon\}$	
E X T	$\mathbf{e_0}$: estado inicial; $\mathbf{e_0} \in \mathbf{E}$ $\mathbf{Z_0}$:símbolo distinguido; $\mathbf{Z_0} \in P$	Se puede incluir $S \to \epsilon$	
O (TIPO 2)	F : conjunto de estados finales; $F \subseteq E$.		

Lenguajes	Máquinas	Gramáticas	EQ. DET. y NO DET
S E N S I B L E S S A L C O N T E X T O (TIPO 1)	Autómata Linealmente Acotado ALA= < E, A, C, δ, e ₀ , B, F, #, \$> E: conjunto finito de estados A: alfabeto de entrada; A ⊆ C C: alfabeto de la cinta; C=A ∪ {B, #, \$} ∪ Auxiliares δ: función de transición δ: E x C → E x C x {D, I, N} (1 cinta) (*) δ: E x C* → E x (C x {D, I, N})* (k cintas)(*) e ₀ : estado inicial; e ₀ ∈ E B: símbolo blanco; B ∉ A y B ∈ C F: conjunto de estados finales; F ⊆ E #: símbolo de inicio de la/s cinta/s C \$: símbolo de fin de la/s cinta/s C (*) En ninguna de las cintas se permiten movimientos a izquierda de # ni a derecha de \$. Tampoco se permite reescribir los símbolos # y \$.	Sensibles al Contexto o de Tipo 1 $G = \langle N, T, P, S \rangle$ Formato reglas Tipo 1:	SI

Lenguajes	Máquinas	Gramáticas	EQ. DET
E S T F R R U P A C O S T R E U S R A D O S (TIPO 0)	Máquina de Turing Determinística MTD= < E, A, C, δ , e_0 , B, F> E: conjunto finito de estados A: alfabeto de entrada; A⊆ C C: alfabeto de cinta; C=A∪{B}∪Auxiliares δ: función de transición δ: E x C → E x C x {D, I, N} (1 cinta) δ: E x C ^k → E x (C x {D, I, N}) ^k (k cintas) e ₀ : estado inicial; e ₀ ∈ E B: símbolo blanco; B ∉ A y B ∈ C F: conjunto de estados finales; F ⊆ E	Contractivas o de Tipo 0 $G = \langle N, T, P, S \rangle$ Formato reglas Tipo 0: $\gamma A \beta \rightarrow \gamma w \beta$ donde $A \in N \cup \{S\};$ $\gamma, \beta, \omega \in (N \cup T)^*$ (\omega puede ser \varepsilon)	SI

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA – 2012

¿Cómo identificar el tipo más restrictivo del lenguaje?

1) CASO MAS GENERAL:

No existen relaciones entre los símbolos de la cadena

Ejemplos:

 $L = \{a^n b^k c^p / n, k, p > = 0\}$

L= $\{x \mid x \in \{a,b\}^* \ y \ x \ contiene \ cantidad \ par \ de \ a's \ y \ cantidad \ par \ de \ b's\}$

⇒ Lenguaje tipo 3 o REGULAR

- ⇒ RECONOCER las cadenas con AUTÓMATA FINITO DETERMINÍSTICO
- ⇒ GENERAR las cadenas con GRAMÁTICA REGULAR o TIPO 3

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

¿Cómo identificar el tipo más restrictivo del lenguaje?

2) Existen relaciones entre los símbolos de la cadena de a pares (excepto caso "cruzado" que se explica en la próxima filmina)

Eiemplos:

$$L=\{a^n b^n / n \ge 0\}$$

L= $\{x \mid x \in \{a,b\}^* \text{ y la cantidad de a's en } x \text{ es igual a la cantidad de b's}\}$

$$L=\{a^n b^k / n > k y k > 0\}$$

 $L=\{a^nb^nc^md^m/n, m>0\}$ Relación concatenada

 $L=\{\begin{array}{ll} a^n \ c^m \ d^m \ b^n \ / \ n, \ m \geq 0 \} \end{array} \qquad \qquad \text{Relación anidada}$

⇒Lenguaje Tipo 2 o Libre del Contexto

⇒RECONOCER las cadenas con AUTÓMATA DE PILA DETERMINÍSTICO o NO DETERMINÍSTICO (analizar el lenguaje para ver si lo pueden hacer determinístico o no → NO son equivalentes)

⇒GENERAR las cadenas con GRAMÁTICA LIBRE DEL CONTEXTO o TIPO2

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA – 2012

¿Cómo identificar el tipo más restrictivo del lenguaje?

3) Existen relaciones entre los símbolos de la cadena de a tres o más (incluye un caso con relación de a dos cruzado)

Ejemplos: $L=\{a^n b^n c^n /n>0\}$ Caso Cruzado

- ⇒Lenguaje Tipo 1 o Sensible al Contexto
- ⇒RECONOCER las cadenas con ALA DETERMINÍSTICO (en la práctica se permite usar MT)
- ⇒GENERAR las cadenas con GRAMÁTICA SENSIBLE AL CONTEXTO o TIPO1

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Ejercicios de Final

Para cada una de las siguientes gramáticas G = <N, T, P, S>, determine si la afirmación correspondiente es verdadera o falsa, justificando en cada caso.

- i) $G = \langle A, B \rangle$, $\{a, b\}$, $\{S \rightarrow aA, A \rightarrow aA, A \rightarrow aB, B \rightarrow bb \}$, $S > A \rightarrow aB$
- es una gramática de TIPO 3
- ii) G = <{A}, {a, b}, {S \rightarrow ϵ , S \rightarrow A, A \rightarrow aAb, aA \rightarrow aAA, A \rightarrow ab}, S > es una gramática de TIPO 2
- i) Formato tipo 3 Lineales a derecha $A \to aB$, $A \to a$, $S \to \epsilon$ $A \in N \cup \{S\}$ $B \in N$ $a \in T$

Falso. No es una gramática tipo 3

ii) Formato tipo 2 $A \rightarrow W$, $S \rightarrow \epsilon$ $A \in N \cup \{S\}$ $y w \in (N \cup T)^* - \{\epsilon\}$

Falso. No es una gramática tipo 2

Ciencias de la Computación I - Filminas de Clase – Facultad Cs. Exactas – UNCPBA – 2012

Ejercicios de Final

Dado el siguiente AP= < $\{e_0, e_1, ..., e_9\}$, $\{a, b\}$, $\{Z_0, A, B, X\}$, δ , $e_0, Z_0, \{e_9\}$ >, indique si las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso: a) es posible definir $\delta(e_0, a, AA) = (e_1, XAA)$;

b) es posible definir $\delta(e_0, \epsilon, X) = (e_1, \epsilon)$

Definición formal AP= < E, A, P, δ , e₀, Z₀, F> δ :E x (A ∪ {ε}) x P → E x P* (determinístico)

- a) $\delta(e_0, a, AA) = (e_1, XAA)$ $e_0, e_1 \in E$, $a \in A, XAA \in P^*$ $AA \notin P$ FALSA, No cumple definición
- $b) \ \delta(e_{\scriptscriptstyle 0},\,\epsilon,\,X) = (e_{\scriptscriptstyle 1},\epsilon) \qquad e_{\scriptscriptstyle 0},\,e_{\scriptscriptstyle 1} \in\,E,\,\epsilon \in\,(A \cup \{\epsilon\}),\,X \in\,P,\,\epsilon \in P^*$

VERDADERA Cumple definición

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012

Ejercicios de Final

En cada caso dé, si es posible, un lenguaje L que satisfaga la condición correspondiente:

- a) Respuesta posible $L_1=\{a^nb^k/n,k>0\}$ L_1 es regular
- b) Respuesta posible $L_2=\{a^{n+1}b^{2n}c^n d^n/n>0\}$ L₂ es sensible al contexto

Ciencias de la Computación I - Filminas de Clase - Facultad Cs. Exactas - UNCPBA - 2012