

# AIC8800 蓝牙测试说明

BT\_TEST版本

版本号 v2.0

**2023-12-22** 爱科微半导体(上海)有限公司



| 公司   | 爱科微半导体(上海)<br>AIC Semiconductor (Sha |              |    |
|------|--------------------------------------|--------------|----|
| 版本信息 | 日期                                   | Release note | 0- |
| V1.0 | 2022年4月13日                           |              | 7  |
| V2.0 | 2023年12月22日                          | 补充 LE RX 指令  |    |

AIC Somiconductor Conflidential Anna Marketon



# bt\_test 使用说明

\*\*\* 输入参数均为 16 进制 \*\*\*

#### 1、准备工作

svc wifi disable /dev/tty\*(SDIO) chmod -R 777 /dev/aicbt\_dev (USB) rmmod aic8800\_fdrv rmmod aic\_load\_fw insmod/vendor/lib/modules/aic load fw.ko

# 2、bt\_test help ///查看帮助信息

<-s> to be tool service. ex. "bt\_test -s uart 115200 /dev/ttyS0" or "bt\_test -s usb" or "bt\_test s wlan wlan0"

<-c> to send hci cmd to interface.

<-w> to send wlan cmd to interface.

///打开接口 3, bt\_test -s uart 1500000 /dev/ttyS0 &

以uart bt为例,打开bt dev,波特率为bsp驱动设置值,/dev/ttyS0为当uart bt接口 开启测试,正常输入下面这句后会打开显示successful并返回EVENT打印



#### BT 定频指令

# 4.1 BT TX测试

eg: bt\_test -c 01 06 18 0E 04 01 00 00 00 01 1b 00 7E 96 C6 6B 1C 0A

note: tx DH1 包为例:



note: Package type与 max len、 Pattern、 Tx address对应关系参考图4-1、4-2、4-3

bt tx 非信令测试模式 hci cmd 示例

| bt_tx apid a ky two cond area.                        |      |
|-------------------------------------------------------|------|
| 01 06 18 0e 04 01 00 00 00 01 1B 00 7E 96 C6 6B 1C 0A | DH1  |
| 01 06 18 0e 0B 01 00 00 00 01 B7 00 7E 96 C6 6B 1C 0A | DH3  |
| 01 06 18 0e 0F 01 00 00 00 01 53 01 7E 96 C6 6B 1C 0A | DH5  |
| 01 06 18 0e 04 01 00 00 01 01 36 00 7E 96 C6 6B 1C 0A | 2DH1 |
| 01 06 18 0e 0A 01 00 00 01 01 6F 01 7E 96 C6 6B 1C 0A | 2DH3 |
| 01 06 18 0e 0E 01 00 00 01 01 A7 02 7E 96 C6 6B 1C 0A | 2DH5 |
| 01 06 18 0e 08 01 00 00 01 01 53 00 7E 96 C6 6B 1C 0A | 3DH1 |
| 01 06 18 0e 0B 01 00 00 01 01 28 02 7E 96 C6 6B 1C 0A | 3DH3 |
| 01 06 18 0e 0F 01 00 00 01 01 FD 03 7E 96 C6 6B 1C 0A | 3DH5 |
|                                                       |      |

//STOP bt\_test -c 01 0C 18 01 00 //tx stop



#### 4.2 BT RX 测试

bt\_test -c 01 0B 18 0D 04 01 00 00 1B 00 01 7E 96 C6 6B 1C 0A

note: 以RX DH1包为例



note: Package type与 max len、 Pattern、 Tx address对应关系参考图4<sup>2</sup>1、 4-2、 4-3

| ht | ry 非信為 | 测试模式                      | hci cmd  | 示例      |
|----|--------|---------------------------|----------|---------|
| υL |        | 1771 W/1 <del>12</del> 1/ | HUI UHIU | 715 174 |

| 01 0b 18 0D 04 01 00 00 1B 00 01 7E 96 C6 6B 1C 0A | DH1  |
|----------------------------------------------------|------|
| 01 0b 18 0D 0B 01 00 00 B7 00 01 7E 96 C6 6B 1C 0A | DH3  |
| 01 0b 18 0D 0F 01 00 00 53 01 01 7E 96 C6 6B 1C 0A | DH5  |
| 01 0b 18 0D 04 01 00 01 36 00 01 7E 96 C6 6B 1C 0A | 2DH1 |
| 01 0b 18 0D 0A 01 00 01 6F 01 01 7E 96 C6 6B 1C 0A | 2DH3 |
| 01 0b 18 0D 0E 01 00 01 A7 02 01 7E 96 C6 6B 1C 0A | 2DH5 |
| 01 0b 18 0D 08 01 00 01 53 00 01 7E 96 C6 6B 1C 0A | 3DH1 |
| 01 0b 18 0D 0B 01 00 01 28 02 01 7E 96 C6 6B 1C 0A | 3DH3 |
| 01 0b 18 0D 0F 01 00 01 FD 03 01 7E 96 C6 6B 1C 0A | 3DH5 |
|                                                    |      |

//STOP

bt test -c 01 0C 18 01 01 //rx stop

Note: RX 测试的结果可以在 debug 口查看打印,且会在收到 stop 命令后以 EVT 的形式上报,U02 版本暂时复用 QOS\_SETUP\_CMP\_EVT,evt 的格式如下:

04 0D 15 FF FD 03 00 00 A0 86 01 00 9F 86 01 00 01 00 00 00 06 10 01 00

从 FF 开始是有效的,每 4 个 byte 依次代表 rx\_pk\_len, total rx pkts, total good pkts, total err pkts, total err bits。以上面这组返回值为例,意思是接收包长为 0x03FD,一共收到了 0x000186A0(十进制为 10万)个包、其中有 0x0001869F(十进制为 99999)个包收对了,有 0x00000001 个包收错,一共收错了 0x00011006 个 bits。

误包率需手动计算: PER = total good pkts/ total rx pkts

BER = total err bits/( total rx pkts \* rx pk len \* 8)



4-1 Package type 与 max len 的对应关系如下表所示:

| edr en | mode | Package type | idx | Length (max) | idx   |
|--------|------|--------------|-----|--------------|-------|
|        |      | DH1          | 04  | 27           | 1B 00 |
| 00     | BR   | DH3          | 0B  | 138          | B7 00 |
|        |      | DH5          | 0F  | 339          | 53 01 |
|        |      | 2DH1         | 04  | 54           | 36 00 |
|        |      | 2DH3         | 0A  | 367          | 6F 01 |
| 01     | EDR  | 2DH5         | 0E  | 679          | A7 02 |
|        |      | 3DH1         | 08  | 83           | 53 00 |
|        |      | 3DH3         | 0B  | 552          | 28 02 |
|        |      | 3DH5         | 0F  | 1021         | FD 03 |

**4-2: Pattern:** 

| pattern  | idx |
|----------|-----|
| PRBS9    | 00  |
| 11110000 | 01  |
| 10101010 | 02  |
| PRBS15   | 03  |
| 11111111 | 04  |
| 0000000  | 05  |
| 00001111 | 06  |
| 01010101 | 07  |
| ·        |     |

4-3: Tx address (note:指令里面的地址倒着写)





# 5、BLE 测试

#### 5.1 TX, LE Transmitter Test command

5.0 版本的 LE 的 tx test

带 PHY 的测试模式示例如下:



Packet\_Payload:

| Value         | Parameter Description                                                                                       |  |
|---------------|-------------------------------------------------------------------------------------------------------------|--|
| 0x00 <u>.</u> | PRBS9 sequence '11111111100000111101' (in transmission order) as described in [Vol 6] Part F, Section 4.1.5 |  |
| 0x01          | Repeated '11110000' (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5          |  |
| 0x02          | Repeated '10101010' (in transmission order) sequence as described in [Vol 6] Part F, Section 4.1.5          |  |
| 0x03          | PRBS15 sequence as described in [Vol 6] Part F, Section 4.1.5                                               |  |
| 0x04          | Repeated '11111111' (in transmission order) sequence                                                        |  |
| 0x05          | Repeated '00000000' (in transmission order) sequence                                                        |  |
|               | 图1                                                                                                          |  |

PHY: Size: 1 octet

| Value            | Parameter Description                                        |  |
|------------------|--------------------------------------------------------------|--|
| 0x01             | Transmitter set to use the LE 1M PHY                         |  |
| 0x02             | Transmitter set to use the LE 2M PHY                         |  |
| 0x03             | Transmitter set to use the LE Coded PHY with S=8 data coding |  |
| 0x04             | Transmitter set to use the LE Coded PHY with S=2 data coding |  |
| All other values | Reserved for future use                                      |  |



图 2

Size: 1 octet



# 5.2 RX, LE Receiver Test command

5.0 版本的 LE 的 rx test

第二种带 PHY 和 modulation\_index,示例如下:



PHY: Size: 1 octet

| Value            | Parameter Description                |
|------------------|--------------------------------------|
| 0x01             | Receiver set to use the LE 1M PHY    |
| 0x02             | Receiver set to use the LE 2M PHY    |
| 0x03             | Receiver set to use the LE Coded PHY |
| All other values | Reserved for future use              |

图 3

Modulation Index:

| Value            | Parameter Description                                    |  |
|------------------|----------------------------------------------------------|--|
| 0x00             | Assume transmitter will have a standard modulation index |  |
| 0x01             | Assume transmitter will have a stable modulation index   |  |
| All other values | Reserved for future use                                  |  |

图 4

STOP: 01 1F 20 00 //stop the current test mode

Size: 1 octet



#### BLE 定频指令

#### BLE TX

#### BLE 1m

bt test -c 01 03 0c 00///复位

bt test -c 01 34 20 04 00 FF 00 01///低信道(2402MHz)

bt\_test -c 01 03 0c 00///复位
bt\_test -c 01 33 20 03 27 02 00//高信道(2480MHz)

. 03 0c 00///复位
\_st -c 01 33 20 03 00 01 00 //(低信道(2402MHz)

bt\_test -c 01 03 0c 00///复位
bt\_test -c 01 03 0c 00///复位
t\_test -c 01 03 0c 00///复位
test -c 01 03 0c 00///复位
test -c 01 03 0c 00///复位



# 6、BT 单载波

bt\_test -c 01 0d 18 06 channel txpwr 00 00 00 00 ///start tx tone

# 01 0d 18 06 00 03 00 00 00 00 00 Txpwr:00-07 Channel (0-4e)

Hci 固定格式

ret:04 0e 04 05 0d 18 00 /// start tx tone 返回值

stop: 01 0c 18 01 02 ///stop tx tone

示例:

低信道

bt\_test -c 01 0d 18 06 00 06 00 00 00 (2402MHz,tx power 6) 高信道

bt\_test -c 01 0d 18 06 4e 06 00 00 00 00 (2480MHz, tx power 6)

#### 7、BT DUT 定频指令

bt\_test -c 01 03 0C 00/// reset

bt\_test -c 01 05 0c 03 02 00 02///set filter

bt test -c 01 1a 0c 01 03///enable both scan

bt test -c 01 03 18 00///dut en

bt\_test -c 01 1 0C 01 00///关闭inquiry scan和page scan

# 8、BT TX POWER 读写:

Power 等级: 0x00 – 0x60 递增

rd tx pwr level

bt test -c **01 67 fc 01 00** // **BT** tx power

ret:04 0e 06 05 67 fc 00 aa bb 0xaa:tx pwr in dbm, 0xbb: tx pwr lyl

set tx pwr

bt\_test -c **01 65 fc 02 aa 00** ///写 BT tx power

0xaa: tx pwr lvl(0-6f)

ret:04 0e 04 05 65 fc 00

tx power 6)
x power 6)