Assessment submitted. Χ

shashankjagtap8806@gmail.com >

(https://swayam.gov.in/nc_details/NPTEL)

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Geometry Of Vision (course)

Certification exam
(https://examform.nptel.ac. n/2023_10/exam_form/dashboard)

Thank you for taking the Week 2: Assignment 2.

If already registered, click to check your payment status

Course outline

How does an NPTEL online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

- Chapter Two: A Geometry of Coincidence (unit? unit=25&lesson=69)
- Video 4A: incidence relations (unit? unit=25&lesson=70)
- Video 4B: linear spaces (unit?unit=25&lesson=71)
- Video 4C: extending the euclidean plane (unit? unit=25&lesson=72)
- Video 4D: the shape of this extended plane (unit? unit=25&lesson=73)
- Video 4E: incidence relations in the extended plane (unit? unit=25&lesson=74)
- Video 5A: coincidence #1: the harmonic conjugate theorem (unit? unit=25&lesson=75)
- Video 5B: proof of the harmonic conjugate theorem (unit? unit=25&lesson=76)
- Video 5C: coincidence #2: pappus's theorem (unit? unit=25&lesson=77)
- Video 5D: coincidence #3: desargues's theorem (unit?unit=25&lesson=78)
- Video 6A: the extended euclidean space P3 (unit? unit=25&lesson=79)
- Video 6B: desargues's theorem in three

Week 2: Assignment 2

Your last recorded submission was on 2023-09-06, 19:22 IST

1) If a line in \mathbb{P}^2 contains two points at infinity, then the line must be l_{∞} , the line at infinity.

1 point

Due date: 2023-09-06, 23:59 IST.

True

O False

2) When looking at the restriction to \mathbb{R}^2 of a line in \mathbb{P}^2 , it is useful to remember that the line will approach the same point at infinity in **1** point both directions. Let l be a line in \mathbb{P}^2 . Into how many pieces will l divide \mathbb{P}^2 ?

 \bigcirc 1

2

 \bigcirc 3

3) Which of the following depicts the restriction to \mathbb{R}^2 of a triangle in \mathbb{P}^2 with exactly two ordinary points as vertices.

1 point

 \bigcirc

 \bigcirc

4) Which of the following depicts the restriction to \mathbb{R}^2 of a triangle in \mathbb{P}^2 with exactly one ordinary point as a vertex.

1 point

dimensions (unit? Assessment submitted 80)

- Χ
- Video 6C: a shadow drawing challenge (unit? unit=25&lesson=81)
- Video 6D: solution to the shadow drawing challenge (unit? unit=25&lesson=82)
- Video 6E: proving desargues's in three dimensions (unit? unit=25&lesson=83)
- Video 6F: lifting desargues's theorem from the plane (unit? unit=25&lesson=84)
- Video 6G: how to prove the converse (unit? unit=25&lesson=85)
- Lecture Notes (unit? unit=25&lesson=30)
- Practice: Week 2: Assignment 2 (Non Graded) (assessment? name=135)
- Quiz: Week 2: Assignment 2 (assessment? name=134)
- Week 2 Feedback Form: Geometry of Vision (unit? unit=25&lesson=29)

Week 3 ()

0

 \bigcirc

 \bigcirc

5) Into how many pieces does a triangle with three ordinary vertex points divide \mathbb{P}^2 ?

1 point

- \bigcirc 2
- **O**4
- 7
- 8 🔾
- O It depends on the configuration of the lines in the triangle.

6) How many pieces do four lines divide \mathbb{P}^2 into, if no three lines are concurrent?

7) If A, B, and C are collinear points in \mathbb{R}^2 , then $H_{A,C}(B)$ must also be a point in \mathbb{R}^2 .

1 point

- 02
- **4**
- \bigcirc 7
- 8 🔘

O It depends on the configuration of the lines.

1 point

- O True
- False

8) Consider the points 0,1/2 and 1 on the real number line. Which is the value of $H_{0,1}(1/2)$, the harmonic conjugate of 1/2 with $\it 1$ point respect to 0 and 1?

9)

1 point

Assessment submitted.

Using the following diagram, determine $H_{0,1/2}(1)$, the harmonic conjugate of 1 with respect to 0 and 1/2.

 \bigcirc 0 \bigcirc 1/5 \bigcirc 1/4 \bigcirc 1/3 \bigcirc 1/2 \bigcirc 1 \bigcirc \bigcirc

10) Using the same diagram, determine $H_{0,1/3}(1/2)$. (It may be helpful to trace the diagram onto a sheet of paper and draw some additional lines.)

 $\bigcirc 0 \\ \bigcirc 1/5 \\ \bigcirc 1/4 \\ \bigcirc 1/3 \\ \bigcirc 1/2 \\ \bigcirc 1 \\ \bigcirc$

11) Suppose $H_{A,C}(B)=D$, for collinear points $A,B,C,\ {
m and}\ D.$ Determine $H_{A,C}(D).$

1 point

 $\bigcirc B \bigcirc D \bigcirc \infty$

Not enough information to say

12) Define $H_{A,C}(A)$ to be $\lim_{X o A}H_{A,C}(X)$, for any points A and C . Determine $H_{A,C}(A)$.

1 point

 $\stackrel{\bigcirc}{A}$

Assessment submitted. Χ

 $\underset{\infty}{\bigcirc}$ O Not enough information to say

13) Find the value of \boldsymbol{x} in the following picture:

1 point

 $egin{array}{c} locksymbol{\circ} \\ -1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 3/2 \end{array}$

14) Find the coordinates of point \boldsymbol{A} in the following picture:

1 point

 $\stackrel{\bigcirc}{(6,3)}$

(7,3)

 ${\displaystyle \mathop{\bigcirc}\limits_{(6,4)}}$

(7,4)

15) Let π and π' be two planes in $\mathbb{R}^3.$ If $l_{[\pi]}=l_{[\pi']}$, then we can say with certainty that

1 point

 $\begin{array}{l}
\bigcirc \\
\pi = \pi' \\
\bullet \\
\pi \text{ is parallel to } \pi'
\end{array}$

Assessment submitted. X

\bigcirc π and π' are perpendicular to each other \bigcirc $\pi eq \pi'$	
16) If π and π' are two planes in \mathbb{R}^3 , then either $l_{[\pi]}=l_{[\pi']}$, or $l_{[\pi]}$ intersects $l_{[\pi']}$ at a single point.	1 point
True	
○ False	
17) Any two distinct points in \mathbb{P}^3 are incident with exactly one common line in \mathbb{P}^3 .	1 point
○ True	
False	
18) Any two distinct lines in \mathbb{P}^3 are incident with exactly one common point in \mathbb{P}^3 .	1 point
True	
○ False	
19) Suppose π is a plane in \mathbb{P}^3 and \mathbb{I} is a line in \mathbb{P}^3 . Then π and \mathbb{I} are incident.	1 point
True	
○ False	
20) Any two distinct lines in \mathbb{P}^3 are contained in a common plane in \mathbb{P}^3 .	1 point
True	
○ False	
ou may submit any number of times before the due date. The final submission will be considered for grading.	
Submit Answers	