

Fundação Universidade Federal do ABC Pró reitoria de pesquisa

Av. dos Estados, 5001, Santa Terezinha, Santo André/SP, CEP 09210-580 Bloco L, 3ºAndar, Fone (11) 3356-7617 iniciacao@ufabc.edu.br

Projeto de Iniciação Científica submetido para avaliação no Edital 04/2022

Título do projeto: Estudo de Técnicas de Pré-Processamento e Remoção de Artefatos em EEG para BCI

Palavras-chave do projeto: BCI; pré-processamento; remoção de artefatos; EEG; imagética motora; filtros; frequência.

Área do conhecimento do projeto: Processamento de sinais

Sumário

1 Resumo	2
2 Introdução e Justificativa	3
3 Objetivos	5
4 Metodologia	6
5 Cronograma de atividades	7
Referências	8

1 Resumo

Este projeto de Iniciação Científica (IC) se insere no contexto de pré-processamento de de eletroencefalografia (EEG), visando a sua utilização em interfaces cérebro-computador baseados em imagética motora (alterações nos sinais cerebrais que ocorrem quando uma pessoa imagina estar fazendo um movimento). A atividade cerebral pode ser captada de forma não invasiva através de eletrodos colocados no escalpo. A partir do processamento desses dados captados é possível identificar padrões associados a uma intenção do usuário, e assim comandar sistemas físicos e/ou computacionais, caracterizando assim a BCI. As possibilidades de aplicação de BCIs são diversas, com maior foco em reabilitação e melhora da qualidade de vida de pessoas com deficiências severas, mas a técnica também possui promissora aplicação na área de entretenimento, como em jogos em realidade virtual. Porém, os potenciais medidos no escalpo são de baixíssima intensidade e facilmente distorcidos por sinais não oriundos da atividade cerebral, como o piscar de olhos e seu movimento de sacada, movimento dos músculos da face, do escalpo e também o batimento cardíaco. Esses sinais indesejados são chamados artefatos, e precisam primeiramente ser removidos do sinal bruto de EEG para que seja possível aplicar os algoritmos de classificação e assim realizar, efetivamente, a interação cérebro-máquina. É justamente nesta etapa que este projeto visa focar, já que essa fase de pré-processamento exige diversos conhecimentos específicos sobre as diversas técnicas disponíveis no que diz respeito a seus efeitos, melhores aplicações e funcionamento.

2 Introdução e Justificativa

A interação cérebro-computador (do inglês, *Brain Computer Interface – BCI*) ocorre quando o cérebro se comunica com um dispositivo externo sem o uso de suas vias normais, que são os nervos e músculos periféricos (MÜLLER-PUTZ et al., 2011). Essa comunicação então passa a ser direta, sem a mediação de hardwares como teclados e mouses. BCIs possuem diversas possibilidades de aplicações, estando entre elas a classificação de doenças mentais, o uso terapêutico através do *neurofeedback*, a reabilitação motora após acidente vascular cerebral, o controle de dispositivos do dia a dia para pacientes com dificuldades motoras não passíveis de reabilitação, e desenvolvimento de próteses neurais que possibilitam algum tipo de *feedback* sensorial para pessoas com alguns tipos de deficiência. Além disso, outra aplicação em evidência explora a BCI na área do entretenimento, como input para jogos de computador, dando ao jogador mais uma forma de interação (KEROUS et al., 2017)(ZHANG, 2020).

A técnica mais utilizada em BCIs para captar a atividade cerebral é a eletroencefalografia (EEG), e a transformação da atividade neural captada por ela em um comando interpretável pelo computador é feita por uma inteligência artificial (IA) treinada para isso. Diferentes abordagens para implementar uma BCI já foram propostas na literatura (SCOPEL, 2020), e um dos principais paradigmas se baseia na imagética motora.

A imagética motora é a tarefa mental na qual o sujeito imagina que está fazendo uma ação motora. Nesse momento em que está sendo imaginado o movimento de uma parte do corpo, a atividade cerebral é muito similar a quando o movimento realmente está sendo realizado, e não apenas imaginado (ALOTAIBY et al., 2015). Dessa forma, seria possível identificar, a partir dos registros do EEG, uma mudança no padrão cerebral do indivíduo, associando o padrão identificado a um comando específico a ser realizado pela BCI.

A caracterização da imagética motora a partir do sinal de EEG pode ser feita explorando-se a chamada sincronização relacionada a evento (event-related synchronization - ERS) e dessincronização relacionada a evento (event-related desynchronization - ERD). Essas ERS e ERD são variações do sinal nas bandas alfa e beta (faixas de frequências entre 7.5-13 Hz e 13-26 Hz, respectivamente), que podem ser detectadas principalmente nos sinais captados na região do córtex motor (SCOPEL, 2020). O aumento e a diminuição da atividade nessas bandas e a janela de tempo em que ocorrem podem ser representantes de um movimento corporal específico, e assim serem explorados em sistemas BCI (GREGORY; GEORGE; GEORGE, 2018)

De qualquer forma, seja qual for o processo mental explorado para implementar a interface, a extração da informação relevante para a BCI a partir os sinais de EEG é normalmente dividida em cinco estágios: aquisição do sinal, processamento/melhoramento do sinal, extração da característica, classificação, e a interface de controle (NICOLAS-ALONSO; GOMEZ-GIL, 2012), conforme ilustrado na Figura 1.

Sinais
Cerebrais

Feedback

Feedback

Feedback

Opurumo Opurum

Figura 1: Diagrama em blocos de uma interface cérebro-computador.

Fonte: SCOPEL apud ZHANG (2020)

O uso do EEG como forma de aquisição dos sinais relacionados à atividade cerebral tem suas vantagens, como ser uma técnica não invasiva e também menos custosa do que a magnetoencefalografia (MEG) ou a imagem por ressonância magnética funcional (do inglês, Functional Magnetic Resonance Imaging - fMRI). O EEG também possui uma boa resolução temporal (KEROUS et al., 2017), porém sua resolução espacial e a razão entre sinal e ruído são baixas (HUANG et al., 2012).

Os potenciais medidos pelo EEG possuem amplitudes baixas, e está sujeito à contaminação por sinais não oriundos da atividade cerebral, como o piscar de olhos e seu movimento de sacada, movimento dos músculos da face, do escalpo e também o batimento cardíaco. Esses sinais indesejados são chamados artefatos, e precisam primeiramente ser removidos do sinal bruto de EEG. Por esse motivo, a etapa de pré-processamento dos sinais é essencial para que se garanta que as etapas subsequentes tenham acesso apenas à informação relevante relacionada à atividade cerebral.

Para identificar a intenção do usuário, o sistema deve realizar uma classificação dos sinais, a fim de associar um determinado padrão mental do indivíduo a um comando específico a ser realizado. Para isso, em geral, a interface extrai um conjunto de valores a partir dos sinais brutos que caracterizam o estado mental, denominadas *features* ou características, que são posteriormente classificados para determinar qual comando foi escolhido.

Cabe ressaltar que a qualidade dos sinais captados tem grande impacto na capacidade da interface realizar corretamente a classificação do estado mental do indivíduo, e dessa forma, realizar adequadamente o pré-processamento dos sinais é fundamental. Operações tipicamente associadas à etapa de pré-processamento são: divisão das amostras coletadas em janelas de dados, com ou sem sobreposição, para análise de trechos de interesse do sinal; filtragem para remoção de ruído e também realce da faixa de frequências de interesse; interpolação de dados faltantes ou ruidosos; e a remoção de artefatos (GREGORY; GEORGE;

GEORGE, 2018). Para esta última tarefa, diferentes técnicas de processamento já foram desenvolvidas (RAHMAN et al., 2015), e mesmo assim, trabalhos recentes apontam que ainda há pesquisa sendo realizada na área (XIE; ONIGA, 2020).

Assim, este projeto de iniciação científica tem como foco as técnicas de pré-processamento, em especial as técnicas de remoção de artefatos, de sinais de EEG, visando a utilização em sistemas BCI. O período da iniciação científica deverá proporcionar um momento de aprendizado e treinamento em técnicas de processamento de sinais, utilizando materiais e carga horária adequada para que esse conhecimento possa ser adquirido e aplicado em futuras pesquisas, colaborando para o desenvolvimento da área como um todo.

3 Objetivos

Este projeto tem como objetivo investigar técnicas de pré-processamento de sinais de EEG, visando o uso posterior dos sinais em interfaces cérebro-máquina. O conhecimento adquirido pelo aluno será também usado em seus próprios projetos, visto que o mesmo possui interesse em dar continuidade aos estudos em nível de mestrado e doutorado, também inseridos na área de BCI.

Como objetivos específicos, temos:

- Realizar um estudo sobre o EEG: suas bases fisiológicas, forma de aquisição, e as suas limitações;
- Realizar um estudo sobre processamento de sinais de tempo discreto, visando a compreensão das técnicas de projeto de filtros digitais e sua implementação computacional;
- Implementar técnicas básicas de pré-processamento de sinais de EEG, como o
 janelamento e remoção de ruído por meio de filtragem digital, e aplicá-los a sinais
 proveniente de bases de dados disponíveis online;
- Estudar, implementar e comparar técnicas para remoção de artefatos, baseadas, por exemplo, em filtros adaptativos e análise por componentes independentes;
- Implementar blocos de extração de características e classificação simples, a fim de verificar a efetividade das técnicas de remoção de artefatos em termos de erros de classificação.

3.1 Viabilidade de execução do projeto:

Os dados de EEG que serão utilizados estão disponíveis digitalmente, não sendo necessário a aquisição dos mesmos (e consequentemente, a necessidade do aval do Comitê de Ética). A capacitação será feita usando materiais bibliográficos disponíveis na internet, livros e cursos. O processamento dos dados poderá ser feito em qualquer computador que possua especificações mínimas para tal (tanto o *notebook* pessoal do aluno quanto os computadores do laboratório são mais do que suficientes), assim, não serão necessários outros materiais para que esta pesquisa seja realizada.

4 Metodologia

O projeto será executado seguindo as etapas abaixo, relacionadas com os objetivos específicos apresentados anteriormente.

4.1 Capacitação em sinais de EEG

Em um primeiro momento, o aluno deverá realizar um estudo dirigido sobre a natureza dos sinais de EEG e a forma de sua aquisição. Isso envolve não apenas a compreensão das bases fisiológicas do EEG, mas também aspectos práticos relacionados ao registro dos sinais. A UFABC conta com alguns equipamentos de EEG, que podem ser utilizados nesta etapa do estudo. Cabe destacar que não está prevista a aquisição de sinais de voluntários, já que este não é o escopo deste projeto. Isso, entretanto, não impede que o aluno acompanhe o processo de aquisição de EEG de participantes em outras pesquisas ocorrendo concomitantemente.

4.2 Estudo sobre ferramentas computacionais

Ferramentas computacionais também serão utilizadas nesta capacitação em EEG. Para isso, o aluno também deverá realizar um estudo sobre linguagem de programação e pacotes computacionais adequados (no caso, duas opções viáveis são Python e Matlab) para que possa manipular os dados de EEG disponibilizados em bases de dados abertas. O aluno deverá, por exemplo, ser capaz de: importar dados de EEG já coletados e visualizar esses dados para compreender suas características e identificar artefatos intensos, como os causados pelo piscar dos olhos; realizar manipulações simples com os sinais.

O estudo das ferramentas computacionais também será útil para avaliar simuladores para geração de sinais de EEG sintéticos, incluindo a simulação de ruídos e artefatos, para que esses sinais possam ser utilizados na fase de avaliação da eficiência das diferentes técnicas de pré-processamento.

4.3 Capacitação em técnicas de pré-processamento de sinais de EEG

Após a familiarização com os sinais de EEG, o aluno passará a estudar sobre as técnicas de pré-processamento. Serão utilizados livros, artigos científicos da área, cursos online, vídeos e também reuniões com o professor orientador, para que seja possível uma compreensão robusta das diferenças entre as técnicas e suas aplicações e efeitos.

Diferentes técnicas estão fortemente embasadas na teoria de processamento de sinais, e dessa forma se faz necessário realizar um estudo dirigido sobre o processamento de sinais de tempo discreto, englobando conceitos como: relação entre o sinal de tempo contínuo e de tempo discreto por meio da amostragem, representação no domínio da frequência e estruturas de filtros digitais.

4.4 Comparação de técnicas de remoção de artefatos

As técnicas estudadas na etapa anterior para identificação e remoção de artefatos serão implementadas e serão comparadas utilizando os sinais gerados artificialmente e bases de dados disponíveis. O desempenho das diferentes técnicas serão avaliados em termos de métricas apropriadas, como o erro quadrático médio e a probabilidade de detecção dos artefatos.

4.5 Avaliação das técnicas de remoção de artefatos em termos da performance de classificação dos sinais

Para que seja possível avaliar as técnicas estudadas no contexto de BCIs, verificando o impacto dos diferentes métodos no erro de classificação dos sinais, serão implementados métodos simples de extração de características (e.g., energia em diferentes bandas dos sinais de cada eletrodo) e classificação (e.g., análise de discriminante linear - LDA), cobrindo assim os blocos fundamentais de um sistema BCI, conforme ilustrado na Figura 1.

5 Cronograma de atividades

As atividades descritas na metodologia devem ocorrer seguindo o cronograma proposto na Tabela 1.

Tabela 1 - Cronograma previsto

				0								
Atividade	Mês											
	1	2	3	4	5	6	7	8	9	10	11	12
Capacitação em sinais de EEG	Х	Х	Х	Х								
Estudo sobre ferramentas computacionais		Х	Х	Х	Х	Х						
Capacitação em técnicas de pré-processamento				Х	Х	Х	Х	Х				
Comparação de técnicas de remoção de artefatos						Х	Х	Χ	Х	Х		
Avaliação das técnicas de remoção de artefatos em termos da performance de classificação dos sinais							X	X	X	X	X	
Relatório final										Х	Х	Χ

Referências

ALOTAIBY, T. et al. A review of channel selection algorithms for EEG signal processing. *Eurasip Journal on Advances in Signal Processing*, v. 2015, n. 1, 6 dez. 2015.

GREGORY, Kalogiannis; GEORGE, Kapsimani; GEORGE, Hassapi. An EEG pre-processing technique for the fast recognition of motor imagery movements. In: *2016 IEEE biomedical circuits and systems conference (BioCAS)*. IEEE, 2016.

HUANG, Dandan, et al. Electroencephalography (EEG)-Based Brain-Computer Interface (BCI): A 2-D Virtual Wheelchair Control Based on Event-Related Desynchronization/Synchronization and State Control. *IEE Transactions on neural systems and rehabilitation engineering*. Volume 20, número 3, 2012.

KEROUS, Bojan; SKOLA, Filip; LIAROKAPIS, Fotis. EEG-based BCI and video games: a progress report. *Springer-Verlag*. Reino Unido, 2017.

LUCCAS, et al. Guidelines for recording/analyzing quantitative EEG and evoked potentials. *Part II: Clinical aspects*. Arquivos De Neuro-Psiquiatria, 1999.

MÜLLER-PUTZ, Gernot R. Et al. Tools for brain-computer interaction: a general concept for a hybrid BCI. *Frontiers in neuroinformatics*. 2011.

NICOLAS-ALONSO, Luis Fernando; GOMEZ-GIL, Jaime. Brain Computer Interfaces, a Review. *Sensors*. Espanha, 2012.

RAHMAN, F. A.; OTHMAN, M. F.; SHAHARUDDIN, N. A. A review on the current state of artifact removal methods for electroencephalogram signals. 2015 10th Asian Control Conference: Emerging Control Techniques for a Sustainable World, ASCC 2015. Institute of Electrical and Electronics Engineers Inc., 8 set. 2015.

SCOPEL. Maurício Mussato. Reconhecimento de imagéfica motora eletroencefalografia. Orientador: Prof. Dr. André Gustavo Adami. 2020. 111 f. TCC (Graduação) - Curso de Ciência da Computação, área de Conhecimentos de Ciências Exatas e Engenharias, Universidade Caxias do Sul. Caxias do Sul, 2020. Disponível https://repositorio.ucs.br/xmlui/bitstream/handle/11338/9690/TCC%20Mauricio%20Mussatto %20Scopel.pdf?sequence=1&isAllowed=y. Acesso em: 1 maio 2022.

XIE, Y.; ONIGA, S. A Review of Processing Methods and Classification Algorithm for EEG Signal. Carpathian Journal of Electronic and Computer Engineering, v. 13, n. 1, p. 23–29, 1 set. 2020.

ZHANG, R. Virtual reality games based on brain computer interface. In: *Proceedings - 2020 International Conference on Intelligent Computing and Human-Computer Interaction, ICHCI 2020.* Institute of Electrical and Electronics Engineers Inc., 1 dez. 2020.