《数值分析》期末重点

1. 题型

填空: 只接受标准答案和它的化简形式

单选: 可能未必能在课本上找到原话, 如 "注意" 的部分

证明 x 1: 简单

计算 x 4

附加题 x 2

2. 章节重点

2.1 第一章 误差

• 误差、误差限、绝对误差、相对误差、有效数字的定义

2.2 第二章 插值

2.2.1 插值多项式的存在性 (重点)

• 证明: 待定系数法(以单项式为基函数的插值多项式), 线性方程组存在唯一解)

2.2.2 Lagrange 插值 (重点)

- 计算
- 选填: $l_i(x_j) = [i = j]$.
- 插值余项: $\sum_{i=0}^n l_i(x_i)=1$; $\sum_{i=0}^n x_i^m \cdot l(x_i)=x^m$ $\ (0\leq m\leq n)$ (余项为 0 时取等, 有课后习题)

2.2.3 Newton 插值

- 计算
- 差商: 差商的计算、差商与导数的关系 $f[x_0,x_1,\cdots,x_n]=rac{f^{(n)}(\xi)}{n!}$.
- 插值余项

2.2.4 Hermit 插值

• 计算

2.3 第三章 最佳平方逼近

2.3.1 最佳平方逼近多项式

• 计算 (3 阶):

。 若
$$[a,b]=[-1,1]$$
 , 则 $s(x)=\sum_{i=0}^3 lpha_i \cdot P_i(x)$,

- 其中 $\alpha_i=\frac{(f_i,P_i)}{(P_i,P_i)}=\frac{2i+1}{2}(f,P_i)$, $P_n(x)=\frac{1}{2^n\cdot n!}\cdot\frac{\mathrm{d}^n}{\mathrm{d}x^n}(x^2-1)^n$ (记几个常用的系数).
- ullet 若 f 是偶函数, 则 $p_1(x)=p_3(x)\equiv 0$; 若 f 是奇函数, 则 $p_0(x)=p_2(x)\equiv 0$.
- $lacksymbol{ ilde{P}} P_n(x)$ 的正交性: $\int_{-1}^1 P_3(x) \cdot (x^2 7x + 9) = 0$, 拆开考察各项的奇偶性,
 - 其中 $x = P_1(x)$, $P_3(x)$ 与 $P_1(x)$ 正交.
 - [**另解**] $P_3(x)$ 与 $P_2(x)$, $P_1(x)$, $P_0(x)$ 正交, 则与它们的线性组合正交.
 - 任意二次多项式可表示为 $P_2(x)$, $P_1(x)$, $P_0(x)$ 的线性组合, 则 $P_3(x)$ 与任意二次多项式正交.
- Chebyshev 正交多项式: $T_n(x)$ 与 $l_n(x)$ 正交.
- 若 $[a,b] \neq [-1,1]$, 需变换到 [-1,1], 计算后变换回原区间.
- 内积
- 不考带权的最佳平方逼近多项式, 如用 Chebyshev 正交多项式构造.

2.4 第四章 数值积分

2.4.1 插值型求积公式

•
$$\int_a^b f(x)\mathrm{d}x pprox \sum_{i=0}^n A_i \cdot f(x_i)$$
 , 其中 $A_i = \int_a^b l_i(x)\mathrm{d}x$, 余项 $E_n(x) = \int_a^b rac{f^{(n+1)(\xi)}}{(n+1)!} \cdot w_{n+1}(x)\mathrm{d}x$.

- \circ 证明: 已知 (n+1) 个节点 x_i , 则至少有一个有 n 次代数精度的公式.
 - (待定系数法,线性方程组解存在且唯一)
- 。 计算:
- 给节点,确定系数 s.t. 代数精度尽量高. 给插值多项式,求代数精度.

$$\circ \int_a^b x^m \mathrm{d}x pprox \sum_{i=0}^n A_i x^m$$
 , 取 $x=1$, 則 $\sum_{i=0}^n A_i = 1$.

• 求积公式的充分条件: $A_i > 0 \ (0 < i < n)$.

2.4.2 节点均匀分布的 N-C 公式

•
$$(b-a)\sum_{i=0}^n C_i^{(n)}\cdot f(x_i)$$
 , $A_i=(b-a)\cdot C_i^{(n)}$.
$$\circ \ \sum_{i=0}^n C_i^{(n)}=1\,.$$

。 代数精度的判定.

2.4.3 复化梯形法 (重点)

2.4.4 用 Lagrange 插值多项式近似 f(x)

2.4.5 用 Lagrange 插值多项式的导数近似 f(x) 在节点处的导数

2.5 第五章 解线性方程组的直接法

2.5.1 Gauss 列主元消元法

2.5.2 LU 分解 (重点)

- 计算: 算一遍, 验算一遍.
- 选填
- 矩阵可 LU 分解的条件: 各阶顺序主子式非零.

2.5.3 LDL^T 分解、 LL^T 分解

2.5.4 向量、矩阵的范数

- 向量的范数: 1 范数、2 范数、无穷范数
- 矩阵的范数: 无穷范数(行)、1 范数(列)、2 范数($||A||_2 = \sqrt{\lambda_{\max}(A^TA)}$)、
 - 条件数 $\operatorname{cond}(A) = ||A||_2 \cdot ||A^{-1}||_2$, 其中?为 ∞ , 1, 2.
 - \circ 谱半径 $ho(A) = \max_i |\lambda_i|$.

2.6 第六章 解线性方程组的迭代法

2.6.1 迭代收敛的条件

- 充要条件: *ρ* < 1.
- 充分非必要: 某范数 < 1.
- 按行严格对角占优阵、对称正定阵时 3 种迭代方法的收敛性.

2.6.2 Jocabi 迭代

• 计算: 写迭代公式 (建议写分量的形式)

2.6.3 G-S 迭代

• 计算: 写迭代公式 (建议写分量的形式)

2.6.4 SOR 迭代

• 收敛条件

2.7 第七章

• 非线性方程组的 Newton 迭代 (选填)