Probability and Statistics

3 - Discrete Random Variables

Stefan Heiss

Technische Hochschule Ostwestfalen-Lippe Dep. of Electrical Engineering and Computer Science

October 31, 2023

Lemma (3.12)

Let X be a discrete random variable. Then, every function $g: \mathbb{R} \to \mathbb{R}$ defines a random variable:

$$Y = g(X) := g \circ X$$

(i) The pmf of Y is given by:

$$p_Y(y) = \sum_{x \in g^{-1}(y)} p_X(x)$$
 for all $y \in \mathbb{R}$

(ii) If E(Y) exists, then:

$$E(Y) = \sum_{x \in \mathbb{R}} g(x) \cdot p_X(x)$$

27 / 92

Joint Distributions (Joint Probability Mass Functions)

Definition (3.21)

Let X, Y be discrete random variables with respect to the same probability measure Pr, i.e. with respect to the same triple $(\Omega, \mathcal{A}, \Pr)$. The <u>joint probability</u> mass function of X and Y, $p_{XY}: \mathbb{R}^2 \to [0, 1]$, is defined by:

$$p_{XY}(x,y) := \Pr(X=x,Y=y) = \Pr\left(X^{-1}(x) \cap Y^{-1}(y)\right)$$
 for all $x,y \in \mathbb{R}$

Marginal Distributions

Lemma (3.22)

Let p_{XY} be the joint probability mass function of two random variables X and Y. The probability mass functions of X and Y are determined from the marginal probability mass functions of p_{XY} as follows:

$$(i) p_X(x) = \sum_{y \in \mathbb{R}} p_{XY}(x,y)$$

$$p_Y(y) = \sum_{x \in \mathbb{D}} p_{XY}(x, y)$$

Marginal Distributions

Remark (3.23)

Given two random variables whose probability mass functions are $\neq 0$ for only finitely many numbers, i.e. there are $m, n \in \mathbb{N}$ such that

$$\mathcal{X} := \{x \in \mathbb{R} \mid p_X(x) \neq 0\} = \{x_1, \dots, x_m\}$$

and:

$$\mathcal{Y} := \{ y \in \mathbb{R} \mid p_Y(y) \neq 0 \} = \{ y_1, \dots, y_n \}$$

If $p_{XY}(x,y) \neq 0$ for some $(x,y) \in \mathbb{R}^2$, then $p_X(x) \neq 0$ and $p_Y(y) \neq 0$ by (3), i.e. $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. Hence $p_{XY}(x,y) \neq 0$ may only hold, if $(x,y) \in \mathcal{X} \times \mathcal{Y}$, and p_{XY} is completely determined by the $m \cdot n$ numbers:

$$p_{ii} := p_{XY}(x_i, y_i)$$
 $(i = 1, ..., m, j = 1, ..., n)$

Marginal Distributions

Putting these values in a tabular scheme, the values for the marginal probability mass functions can be calculated by summing up all entries from a row or column of the table, respectively:

	<i>y</i> ₁	<i>y</i> ₂		Уп	
x_1	p_{11}	p_{12}		ρ_{1n}	$\sum_{j=1}^n p_{1j} = p_X(x_1)$
$\frac{x_2}{-}$	p_{21}	p_{22}		p_{2n}	$\sum_{j=1}^{n} p_{1j} = p_X(x_1)$ $\sum_{j=1}^{n} p_{2j} = \underline{p_X(x_2)}$
;	:	:	:	:	:
Xm	p_{m1}	p_{m2}		p_{mn}	$\sum_{j=1}^n p_{mj} = p_X(x_m)$
	$\sum_{i=1}^{m} p_{i1}$ $= p_Y(y_1)$	$\sum_{i=1}^{m} p_{i2}$		$\sum_{i=1}^{m} p_{in}$	
	$=p_Y(y_1)$	$= p_Y(y_2)$		$= p_Y(y_n)$	

$$g: \mathbb{R}^2 \to \mathbb{R}, \quad Z = g(X, Y): \Omega \to \mathbb{R}$$

Lemma (3.24)

Let p_{XY} be the joint probability mass function of two random variables X, Y. Given any function $g: \mathbb{R}^2 \to \mathbb{R}$, a random variable

$$Z = g(X, Y) : \Omega \to \mathbb{R}$$

can be defined by

$$Z(\omega) = g(X,Y)(\omega) := g(X(\omega),Y(\omega))$$
 for all $\omega \in \Omega$

and the following holds:

$$g: \mathbb{R}^2 \to \mathbb{R}, \quad Z = g(X, Y): \Omega \to \mathbb{R}$$

$$p_Z(z) = \sum_{(x,y)\in g^{-1}(z)} p_{XY}(x,y)$$

for all $z\in\mathbb{R}$

$$E(Z) = \sum_{(x,y)\in\mathbb{R}^2} g(x,y) \cdot p_{XY}(x,y)$$

(1) Similar to the proof of (3-12).

$$Z = X + Y$$

E (x,+,-+ xm) = E(x1 +-- + E(x)

Lemma (3.25)

Let X, Y be discrete random variables with respect to the same probability measure Pr, i.e. with respect to the same triple $(\Omega, \mathcal{A}, Pr)$. Then:

$$E(X+Y) = E(X) + E(Y)$$

$$= \sum_{(x,y)} (x,y) + \sum_{(x,y)} (x,y) = \sum_{(x,y) \in M_F} (x,y) = \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = E(x) + E(x)$$

$$= \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = E(x) + E(x)$$

$$= \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = E(x) + E(x)$$

$$= \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = E(x) + E(x)$$

$$= \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y)$$

$$= \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y)$$

$$= \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y) = \sum_{(x,y) \in M_F} (x,y) + \sum_{(x,y) \in M_F} (x,y)$$

Selected Discrete Probability Distributions

- Uniform Distributions
- Bernoulli Distributions
- Binomial Distributions
- Geometric Distributions
- Negative Binomial Distributions
- Poisson Distributions
- Hypergeometric Distributions

Binomial Random Variables

$$= \{(X_A = A) = \{(A_1 \circ A_2) \mid X_A \circ A = A \}$$

$$= \{(A_1 \circ A_2) \mid (A_1 \circ A_1) \mid (A_1 A_2) \mid (A_1 A_2) \}$$

Definition (3.49)

$$- \rho_{X}(z) = 3 \cdot \rho^{2} (A-\rho)^{4} = {3 \choose 2} \rho^{2} (4-\rho)^{3-2}$$

A binomial random variable is a random variable X having a distribution given by:

$$p_X(i) := \binom{n}{i} p^i (1-p)^{n-i}$$
 for $i = 0, 1, ..., n$

where $n \in \mathbb{N}$ and $p \in (0,1)$ are fixed parameters. This may be denoted by $X \sim \operatorname{binomial}(n,p)$.

$$E_{X}: n=3, \quad \mathcal{R} = \left\{ (x_{1}, x_{2}, x_{3}) \mid x_{1} \in \{0\} \right\} \\ A = \sum_{i=0}^{m} P_{X}(i) = \sum_{i=0}^{m} {n \choose i} p^{i} (A-p)^{m-1} = {n \choose p+(A-p)}^{m} = A^{m} = \{ (x_{1}, x_{2}, x_{3}) \mid x_{1} \in \{0\} \} \\ P_{Y}(X) = P_{Y}(\left\{ (A, A_{1}0), (A_{1}0, A_{1}), (O_{1}A_{1}A_{1}) \right\}) \\ P_{Y}(X) = P_{Y}(\left\{ (A, A_{1}0), (A_{2}0, A_{1}), (O_{1}A_{1}A_{1}) \right\}) \\ = P_{Y}(X_{1}=A) P_{Y}(X_{2}=A) P_{Y}(X_{2}=A) P_{Y}(X_{2}=A) \\ P_{Y}(X_{1}=A) P_{Y}(X_{2}=A) P_{Y}(X_{2}=A) P_{Y}(X_{2}=A) \\ P_{Y}(X_{1}=A) P_{Y}(X_{2}=A) P_{Y}(X_{2}=A) P_{Y}(X_{2}=A) \\ P_{Y}(X_{1}=A) P_{Y}(X_{2}=A) P_{Y}($$

Random Experiments with Binomial Distributions

Random Experiment: Perform *n* similar Bernoulli experiments and count the total number of "successes".

- Parameters: $p \in (0,1), n \in \mathbb{N}$
- $\Omega = \{1,0\}^n = \{(\omega_1, \omega_2, \dots, \omega_n) \mid \omega_i \in \{0,1\}\}$

•

$$\Pr(\omega) = p^{wt(\omega)} (1-p)^{n-wt(\omega)}$$

Here, $wt(\omega)$ denotes the weight of $\omega = (\omega_1, \omega_2, \dots, \omega_n)$:

$$wt((\omega_1,\omega_2,\ldots,\omega_n)) := \sum_{i=1}^n \omega_i$$

- $wt : \Omega \to \mathbb{R}$ is a random variable with $wt \sim \operatorname{binomial}(n, p)$.
- https://www.randomservices.org/random/apps/BinomialCoinExperiment.html

Binomial Random Variables

Lemma (3.50)

If $X \sim \text{binomial}(n, p)$, then:

(i)
$$E(X) = \sum_{i=0}^{n} i \cdot \rho_{X}(i) = \sum_{i=0}^{n} i \cdot {n \choose i} \rho^{i} (1-\rho)^{n-i} = \dots = n \cdot \rho$$

(ii)
$$Var(X) = \sum_{i=0}^{n} i^{2} P_{X} i^{3} - (n \cdot p)^{2} = -\cdots = ?$$

(iii)
$$\phi_X(t) = \sum_{i=1}^{n} e^{t \cdot (\frac{\pi}{2})} e^{t \cdot (\frac{\pi}{2})} e^{t \cdot (\frac{\pi}{2})} = \sum_{i=1}^{n} (\frac{\pi}{2}) \cdot (p \cdot e^{t})^{i} (1-p)^{n-i} = (p \cdot e^{t} + 1-p)^{n-i}$$

Stefan Heiss (TH OWL)