Endterm (Set B)

SIAS, Krea University (AY 2025-26)

Mathematical Methods for Economics (Course Code: ECON211) 25 September 2025

Short Answer Questions-I

1. (1 point) Let $f(x) = x^{x-2}$. Find f'(x).

Solution: Let $y = x^{x-2}$. $\ln y = (x-2) \ln x$ (using the property of $\log a = b^c \implies \ln a = c \ln b$) $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} ((x-2) \ln x)$ (differentiating both sides w.r.t. x) $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \ln x \frac{d}{dx} (x-2) + (x-2) \frac{d}{dx} (\ln x)$ (applying the product rule to the RHS) $\Rightarrow \frac{1}{y} \frac{dy}{dx} = \ln x + \frac{x-2}{x}$ $\Rightarrow \frac{dy}{dx} = y \left(\ln x + \frac{x-2}{x} \right)$ $\Rightarrow \frac{dy}{dx} = x^{x-2} \left(\ln x + \frac{x-2}{x} \right)$

Answer: $\frac{dy}{dx} = x^{x-2} \left(\ln x + \frac{x-2}{x} \right)$

2. (1 point) Determine if the function $f(x) = x^2 - 8x + 15$ is increasing or decreasing in [3, 5].

Solution: First derivative tells us whether (or where) a function is increasing or decreasing.

$$f'(x) = 2x - 8$$

Condition for increasing function : $2x - 8 \ge 0$

 \therefore the function is increasing when $x \ge 4$

Condition for decreasing function : 2x - 8 < 0

 \therefore the function is decreasing when $x \leq 4$

Answer: f(x) is decreasing in [3, 4] and increasing in [4, 5].

3. (1 point) Let $x^2y^3 + x^3y^2 = 7$. Find $\frac{dy}{dx}$.

Solution: Let $u = x^2y^3$, $v = x^3y^2$, and c = 7.

Applying the product rule, we get:

$$u' = 2xy^3 + 3x^2y^2\frac{dy}{dx}$$

$$v' = 2x^3y\frac{dy}{dx} + 3x^2y^2$$

$$c' = 0$$

$$u' + v' = c'$$

$$\therefore \left[2xy^3 + 3x^2y^2\frac{dy}{dx}\right] + \left[2x^3y\frac{dy}{dx} + 3x^2y^2\right] = 0$$

$$\Rightarrow (2xy^3 + 3x^2y^2) + (3x^2y^2 + 2x^3y)\frac{dy}{dx} = 0$$

$$\Rightarrow (3x^2y^2 + 2x^3y)\frac{dy}{dx} = -(2xy^3 + 3x^2y^2)$$

$$\Rightarrow \frac{dy}{dx} = -\frac{(2xy^3 + 3x^2y^2)}{(3x^2y^2 + 2x^3y)}$$

$$\Rightarrow \frac{dy}{dx} = -\frac{y}{x}\frac{(3x + 2y)}{(2x + 3y)}$$

Answer: $\frac{dy}{dx} = -\frac{y}{x} \frac{(3x+2y)}{(2x+3y)}$

4. (1 point) Let $f(x) = \sqrt{x} + 5$ and $g(x) = f^{-1}(x)$. Find g'(7).

Solution: We know that:
$$g'(a) = \frac{1}{f'(g(a))}$$

$$\therefore g'(7) = \frac{1}{f'(g(7))}$$
Let $g(7) = k \implies f(k) = 7$.

$$\sqrt{k} + 5 = 7$$

$$\Rightarrow \sqrt{k} = 7 - 5$$

$$\Rightarrow \sqrt{k} = 2$$

$$\Rightarrow k = 4$$

$$f'(x) = \frac{1}{2\sqrt{x}}$$

$$\Rightarrow f'(4) = \frac{1}{2\sqrt{2}}$$

$$\Rightarrow f'(4) = \frac{1}{4}$$

$$\Rightarrow g'(7) = 4$$

Answer: g'(7) = 4

5. (1 point) Suppose that f and g are continuous on [0,4] and that $\int_0^4 (f(x)-g(x))dx=4$ and $\int_0^4 (3f(x)-4g(x))dx=11$. Find $\int_0^4 (f(x)+g(x))dx$.

Solution: Let $\int_0^4 f(x)dx = a$ and $\int_0^4 g(x)dx = b$. Then,

$$a - b = 4$$

$$3a - 4b = 11$$

$$3a - 3b = 12$$

(multiplying the first equation by 3)

$$\implies b = 1$$

(differencing the previous two equations to eliminate a)

$$\implies a = 5$$

$$\int_0^4 (f(x)+g(x))dx = \int_0^4 f(x)dx + \int_0^4 g(x)dx \qquad \text{(applying the sum rule)}$$

$$\implies \int_0^4 (f(x)+g(x))dx = 6$$

Answer:
$$\int_0^4 (f(x) + g(x))dx = 6$$

6. (1 point) Compute: $\int (6x^2 + \frac{3}{x} + e^{4x}) dx$

Solution:

$$\int (6x^2 + \frac{3}{x} + e^{4x})dx = \int 6x^2 dx + \int \frac{3}{x} dx + \int e^{4x} dx$$
 (applying the sum rule)
$$\Rightarrow \int (6x^2 + \frac{3}{x} + e^{4x})dx = 2x^3 + 3\ln|x| + \frac{e^{4x}}{4} + C$$

Answer:
$$\int (6x^2 + \frac{3}{x} + e^{4x})dx = 2x^3 + 3\ln|x| + \frac{e^{4x}}{4} + C$$

7. (1 point) Is $\lim_{x\to 0} |x-3| = \lim_{x\to 0} |x| - 3$? Explain briefly.

Solution: Consider f(x) = |x - 3|.

$$f(x) = \begin{cases} 3 - x & x < 3 \\ x - 3 & x > 3 \end{cases}$$

LHL:
$$\lim_{x \to 0^-} |x - 3| = 3$$

(since
$$|x - 3| = 3 - x$$
 when $x < 3$)

RHL:
$$\lim_{x \to 0^+} |x - 3| = 3$$

(since
$$|x - 3| = 3 - x$$
 when $x < 3$)

$$\therefore \lim_{x \to 0} |x - 3| = 3$$

Let
$$g(x) = |x| - 3$$
.

$$g(x) = \begin{cases} -x - 3 & x < 0 \\ x - 3 & x > 0 \end{cases}$$

LHL:
$$\lim_{x \to -2} |x| - 3 = -3$$

(since
$$|x| = -x$$
 when $x < 0$)

RHL:
$$\lim_{x \to 0^+} |x| - 3 = -3$$
$$\therefore \lim_{x \to 0} |x| - 3 = -3$$

(since
$$|x| = x$$
 when $x > 0$)

$$\therefore \lim_{x \to 0} |x| - 3 = -$$

Answer:
$$\lim_{x \to 0} |x - 3| \neq \lim_{x \to 0} |x| - 3$$

8. (1 point) Let $f(x) = \frac{9}{3+x}$. Find $f^{-1}(x)$.

Solution: Let
$$y = f(x)$$
.

$$y = \frac{9}{x+3}$$

$$\Rightarrow y(x+3) = 9$$

$$\Rightarrow xy + 3y = 9$$

$$\Rightarrow xy = 9 - 3y$$

$$\Rightarrow x = \frac{9 - 3y}{y}$$

$$\Rightarrow f^{-1}(x) = \frac{9 - 3x}{x}$$

Answer:
$$f^{-1}(x) = \frac{9 - 3x}{x}$$

Short Answer Questions-II

- 9. (3 points) Let $f(x,y) = 6x^{2/3}y^{1/3}$.
 - (a) (1 point) Determine the degree of homogeneity.

Solution: The degree of homogeneity can be calculated using:

$$f(tx, ty) = 6(tx)^{2/3}(ty)^{1/3}$$

$$= 6t^{2/3}x^{2/3}t^{1/3}y^{1/3}$$

$$= (t^{1/3+2/3})6(x^{2/3}y^{1/3})$$

$$= t^{1}f(x, y)$$

$$\Rightarrow k = 1$$

 $f(tx, ty) = t^k f(x, y)$

Answer: f(x,y) is homogeneous of degree 1.

(b) (2 points) Compute all first and second order partial derivatives.

Solution:

	$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(6x^{2/3} y^{1/3} \right)$
f_x	$=6 \cdot \frac{2}{3}x^{-1/3}y^{1/3}$
	$=4x^{-1/3}y^{1/3}$ $(y)^{1/3}$
	$=4\left(\frac{y}{x}\right)^{1/3}$
	$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \left(6x^{2/3} y^{1/3} \right)$
f_y	$=6x^{2/3} \cdot \frac{1}{3}y^{-2/3}$
v g	$=2x^{2/3}y^{-2/3}$
	$=2\left(\frac{x}{y}\right)^{2/3}$
	$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left[4 \left(\frac{y}{x} \right)^{1/3} \right]$
	$=4y^{1/3} \cdot \left(-\frac{1}{3}\right)x^{-4/3}$
f_{xx}	$= -\frac{4}{3}x^{-4/3}y^{1/3}$
	$= -\frac{4}{3} \left(\frac{y}{x^4} \right)^{1/3}$
	$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left[2 \left(\frac{x}{y} \right)^{2/3} \right]$
f_{yy}	$=2x^{2/3}\cdot\left(-\frac{2}{3}\right)y^{-5/3}$
v 99	$= -\frac{4}{3}x^{2/3}y^{-5/3}$
	$= -\frac{4}{3} \left(\frac{x^2}{y^5}\right)^{1/3}$
	$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left[4 \left(\frac{y}{x} \right)^{1/3} \right]$
	$ \frac{\partial x \partial y}{\partial y} = \frac{\partial y}{\partial y} \left[\frac{\partial x}{\partial y} \right] \\ = 4x^{-1/3} \cdot \frac{1}{3}y^{-2/3} $
f_{xy}	$= \frac{4}{3}x^{-1/3}y^{-2/3}$ $= \frac{4}{3}x^{-1/3}y^{-2/3}$
	$=\frac{4}{3}\left(\frac{1}{xy^2}\right)^{1/3}$
	$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial x} \left[2 \left(\frac{x}{y} \right)^{2/3} \right]$
0	$=2y^{-2/3}\cdot\frac{2}{3}x^{-1/3}$
f_{yx}	$=\frac{4}{3}x^{-1/3}y^{-2/3}$
	$=\frac{4}{3}\left(\frac{1}{xy^2}\right)^{1/3}$
	$3 \left\langle xy^2 \right\rangle$

Solution:

$$MU_{x} = 1$$

$$MU_{y} = \frac{1}{\sqrt{y}}$$

$$MRS_{x,y} = \frac{MU_{x}}{MU_{y}}$$

$$MRS_{x,y} = \sqrt{y}$$

- 11. (3 points) Given the demand function for comedy shows on *Ruinmyshow*: $p = \frac{25}{q+4} 4$,
 - (a) $(\frac{1}{2} \text{ points})$ Compute the total revenue.

Solution: Total revenue, $TR = p \cdot q$.

$$p = \frac{25}{q+4} - 4$$

$$\implies TR = \frac{25q}{q+4} - 4q$$

(b) $(\frac{1}{2} \text{ points})$ Compute the marginal revenue.

Solution: We know that $MR = \frac{d}{dq}(TR)$.

$$TR = \frac{25q}{q+4} - 4q$$

$$Let u = 25q, \quad v = q+4$$

$$\Rightarrow u' = 25, \quad v' = 1$$

$$MR = \frac{vu' - uv'}{v^2} - 4$$

$$\Rightarrow MR = \frac{25(q+4) - 25q}{(q+4)^2} - 4$$

$$\Rightarrow MR = \frac{100}{(q+4)^2} - 4$$

$$\Rightarrow MR = \frac{100 - 4(q+4)^2}{(q+4)^2}$$

Answer: $MR = \frac{100 - 4(q+4)^2}{(q+4)^2}$

(c) (2 points) Compute the revenue-maximizing price and quantity.

Solution: We know that the revenue is maximized when MR = 0.

$$100 - 4(q+4)^2 = 0$$
 (note that the denominator can't be zero.)
 $\Rightarrow 4(q+4)^2 = 100$
 $\Rightarrow (q+4)^2 = 25$
 $\Rightarrow (q+4) = \pm 5$ (discarding the negative value.)
 $\Rightarrow q=1$

Plugging the value into the demand equation, we get $p = \frac{25}{1+4} - 4$

$$\Rightarrow p = \frac{25}{5} - 4$$

$$\Rightarrow p = 5 - 4$$

$$\Rightarrow p = 1$$

Answer: The revenue-maximizing price is p = 1 and the quantity is q = 1.

12. (2+1 points) The total cost of producing *Phantom cigarettes* is $C(q) = 2q^2 + 10q + 50$. Find the value of q which minimizes the average cost. Show that the marginal cost is equal to the average cost at this point (where the average cost is being minimized).

Solution: We know that the average cost is:

$$AC(q) = \frac{C(q)}{q}$$

The average cost of producing *Phantom cigarettes* is:

$$AC(q) = 2q + 10 + \frac{50}{q}$$

We need to find the first derivative and set it to zero.

$$\frac{d(AC(q))}{dq} = \frac{d}{dq} \left(2q + 10 + \frac{50}{q} \right)$$

$$= 2 - \frac{50}{q^2}$$
FOC:
$$\frac{d(AC(q))}{dq} = 0$$

$$\Rightarrow 2 - \frac{50}{q^2} = 0$$

$$\Rightarrow 2q^2 = 50$$

$$\Rightarrow q^2 = 25$$

$$\Rightarrow q^* = 5$$
SOC:
$$\frac{d^2(AC(q))}{dq^2} > 0$$
 (for minimum)
$$\frac{d^2(AC(q))}{dq^2} = \frac{100}{q^3}$$

$$\frac{100}{q^3} > 0 \text{ when } q = 5$$

We also need to compute the marginal cost.

$$MC(q) = 4q + 10$$

When
$$q = 5$$
,

Average cost:
$$AC(q = 5) = 2q + 10 + \frac{50}{5}$$

= $10 + 10 + 10$
= 30
Marginal cost: $MC(q = 5) = 4(5) + 10$
= 30

Answer: The quantity that minimizes the average cost is $q^* = 5$. When q = 5, AC = MC = 30.

Long Answer Questions

- 13. (5 points) The demand for robots in *Tatooine* is given by p = 18 2q and the supply of robots is given by p = 2 + 2q.
 - (a) (1 point) Compute the equilibrium price and quantity.

Solution: The equilibrium can be found out by setting demand = supply.

$$18 - 2q = 2 + 2q$$

$$\Rightarrow 4q = 16$$

$$\Rightarrow q^* = 4$$

$$\Rightarrow p^* = 10$$

Answer: The equilibrium quantity is $q^* = 4$ and the equilibrium price is $p^* = 10$.

(b) (1+1 points) Compute the consumer surplus and producer surplus.

Solution: Given inverse demand (D(q)) and inverse supply (S(q)), we know that:

$$CS = \int_{q=0}^{q=q^*} D(q) dq - p^* q^*$$

$$PS = p^* q^* - \int_{q=0}^{q=q^*} (S(q)) dq$$

We also know from the previous calculation that $p^* = 10$ and $q^* = 4$.

$$CS = \int_0^4 (18 - 2q)dq - 40$$

$$= \Big|_0^4 (18q - q^2) - 40$$

$$= 72 - 16 - 40$$

$$= 16$$

$$PS = 40 - \int_0^4 (2 + 2q)dq$$

$$= 40 - \Big|_0^4 (2q + q^2)$$

$$= 40 - (8 + 16)$$

$$= 16$$

Answer: CS = 16, PS = 16

(c) (1+1 points) Now, suppose that the Damiyo (the ruler of Tatooine), sensing that the robots are valuable, announces a price floor of 12. Compute the new consumer surplus and producer surplus.

Solution: When p = 14, we should compute the quantity demanded and the quantity supplied.

$$18 - 2q = 12$$

$$2q = 6$$
Demand: $q = 3$

$$2 + 2q = 12$$

$$2q = 10$$
Supply: $q = 5$

At this price, three robots will be sold in *Tatooine*.

$$CS = \int_0^3 (18 - 2q) - 12 \times 3$$

$$= \Big|_0^3 (18q - q^2) - 36$$

$$= (54 - 9) - 36$$

$$= 9$$

$$PS = 36 - \int_0^3 (2 + 2q) dq$$

$$= 36 - \Big|_0^3 (2q + q^2)$$

$$= 36 - (6 + 9)$$

$$= 21$$

Answer: CS = 9, PS = 21

14. (5 points) Consider
$$f(x,y) = \frac{x^3}{3} + \frac{y^3}{3} + x^2 + \frac{y^2}{2} - 3x - 6y + 3$$
. Find and classify all stationary points.

Solution: To find the stationary points, we first compute the first-order partial derivatives and set them equal to zero.

$$f_x = \frac{\partial f}{\partial x} = (x^2 + 2x - 3) = 0$$
$$f_y = \frac{\partial f}{\partial y} = (y^2 + y - 6) = 0$$

We have two quadratic equations to be solved.

$$(x+3)(x-1) = 0$$

 $(y+3)(y-2) = 0$
 $x = 1, -3$
 $y = 2, -3$

The stationary points are the combinations of these x and y values:

$$(-3, -3)$$
 $(-3, 2)$ $(1, -3)$ $(1, 2)$

To classify the stationary points, we use the second derivative test, which requires the second-order partial

derivatives.

$$f_{xx} = \frac{\partial^2 f}{\partial x^2} = 2x + 2$$
$$f_{yy} = \frac{\partial^2 f}{\partial y^2} = 2y + 1$$
$$f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = 0$$

The determinant of the Hessian matrix is $D=f_{xx}f_{yy}-(f_{xy})^2=(2x+2)(2y+1)$. We evaluate the Hessian determinant $D=f_{xx}f_{yy}-(f_{xy})^2$ at each stationary point:

- If D > 0 and $f_{xx} > 0$: Local Minimum
- If D > 0 and $f_{xx} < 0$: Local Maximum
- If D < 0: Saddle Point
- If D = 0: Test Inconclusive

Stationary Point	f_{xx}	f_{yy}	D	Classification
(-3, -3)	-4	-5	20 (> 0)	Local Maximum
(-3, 2)	-4	5	-20 (<0)	Saddle Point
(1, -3)	4	-5	-20 (<0)	Saddle Point
(1, 2)	4	5	20 (> 0)	Local Minimum