Lecture 2- Hocks ale valued Gal reps for GLa (Q)

Cen orse ses this granstorcally. Say 1=2. Then

H²(T, T) = H¹(Y(T), T) whom Y(T) = T H

(uses N 3 4)

L'holds for other coeffs

Det Wa say m is non-Eisenstein of On is als word.
Prop II m is non-Eisenstein, the H1(17, Symbol) m is a finte free O-module.
Since $T(\Gamma, L)_m \subset End_o(H^1(\Gamma, Sym^{4-2}O^2)_m)$, we get
Cer m nen-Eisenstein => T(T, k)m is O-Plat
Proof of Prop (when $h=2$) WTS that $H^1(\Gamma, O)_m$ is p -torsion from Taking cohom of the exoch sequence $O = O \xrightarrow{\Sigma_3} O \to \Gamma \to O$ and localizing at m , we get
$H^{\circ}(\Gamma, F)_{m} \to H^{1}(\Gamma, O)_{m} \xrightarrow{\mathcal{D}} H^{1}(\Gamma, O)_{m}$
A double coset on [ras] acts a H°(r, F) by H°(r, F) = H°(raira, F) = H°(arains, F) = H°(r, F) N II II II II II II II II II
For any 1\$5, Te acts a H°(P, IF) by 1+l
For any l\$5, Te acts a H°(I;IF) by 1+l $S_{\varrho} = 1$
By Cheboterar pm = 100, E = med p cyclotenic cher, certradice the Post that m is non-Eisenstein.
the fast that m is non-Eisenstein.

Than $T^s(\Gamma, L)_m \longrightarrow T^s(\Gamma, L)_m \otimes_{\mathcal{O}} \overline{\mathbb{Q}} = \overline{\Gamma} \overline{\mathbb{Q}}$
50 We hove $ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $
$p = \overline{\mathcal{U}}_{p_i} : G_{ex} \to GL_{i}(T^s(\Gamma, L), \bullet \overline{\mathcal{Q}}_{i})$
sh cherpoly p(Fiolo) = X2- To X+ lSe C T (T, le)m [X]
This rep descends to $P_m: G_{ex,s} \to G_{Lx}(T^s(\Gamma, k)_m)$ by a
$\rho_m: G_{e_{3}s} \to GL_{s}(T^{s}(\Gamma, k)_m)$
by a
The (Covayod) Lot A bs a local they with resids fled F
such that the Brown group of Fis Arrival, and 1st R be on A-alg.
(e.g. fe- us, A = TS(P, b)m, F = finte, R = the group algebra TS(P, b)m [Go,s])
Let ACA = IT A; be a semilecal ext with A; local with
Such that the Brower group of F is drived, and Ist R be on A-alg. (e.g. fe- us, A = T s(r, b) m, F = finte, R = the group algebra T s(r, b) m [Go,s]) Let A C A' = TT A; bs a semilecal ext with A; local with max ideals m; and res flds F; (A' = T s(r, b) m or Zp)
Assume we have an A-alg sop
Assume we have an A -alg sep $Q' = \overline{II} Q'_i : R \otimes_A A \rightarrow M_n(A') = \overline{II} M_n(A'_i)$
₹, \
1. trp(r⊗1) ∈A YreR
2. $5: R \otimes F_{i} \rightarrow M_{n}(F_{i})$ are all also irred and s.t.
top; (rol) EF and melsp of i
The p'is can to the scalar ext & A' of a sep
1. $trp(r\otimes 1) \in A \ \forall r\in R$ 2. $f: R\otimes F: \to M_n(F:)$ are all also insed and s.t. $trp: (r\otimes 1) \in F$ and under of i Then p' is car; to the scalar ext $\otimes_A A'$ of a rep $p: R \to M_n(A)$.