HASHING ~ 02

CSE 122 ~ Algorithms & Data Structures

HASHING: REVIEW

- → Two things you need for hashing
 - Define the hash function
 - Determine how to handle collisions

COLLISIONS: BIRTHDAY EXAMPLE

- → Think of your birthday
 - Format (MM/DD/YYYY)
- → What happens if we have a hash function that uses month and date to determine a storage index?
 - Collisions occur when people have the same month/day
- → How many randomly chosen people in a room before it becomes likely two people will have the same birthday?
 - With just 40 people in a room, there is around a 54% chance that two people will have the same birth month and day.

WHY HASHING?

- → Hashing is restricted to Dictionary Operations
- → Trees do insert, delete, and search(LookUp) in O(logn) time
- → Hashing provides a way to have the best case and average case for insert, delete, and search(LookUp) be 0(1).
 - Worst Case is O(n)

HASH TABLES

- → **Hash table:** a data structure in which keys are mapped to array positions by a hash function
 - Map keys to an array index
- → Formal Definition
 - Let K be a key space, that is a large (possibly infinite) set from which indices can be drawn
 - Let $\{K_0, \ldots K_{n-1}\}$ be a particular set of keys on which dictionary operations insert, lookup, and possibly delete are to be performed
 - Store the members of this set in a hash table T[0, ..., m-1] with the aid of a hash function $h: k \rightarrow \{0, ..., m-1\}$
 - For each j key K_j is to be stored in the table at position $h(K_j)$. If h can be computed quickly then to retrieve a key K one can compute h(K).
 - Cannot be a one-to-one mapping

BASIC PRINCIPLES OF HASH FUNCTIONS

→ Uniform

- A good hash function h tends to spread the keys out uniformly in the table
- If a Key K is drawn at random from the key space K then the probability that h(K) = i should be 1/m that is independent of i

→ Low Cost

- The cost of computing a hash function can't be expensive
- Comparison search takes O(logn), so cost needs to take less time

→ Deterministic

- The same hash value must be generated for a given input value
- No hashing based on memory address or time of day

HASH FUNCTIONS

- → Assume you have numeric keys
- → If you have alphanumeric convert them to numeric by summing the ASCII value of the characters.
 - Example: Take "dog"
 - d = 100, o = 111, g = 103
 - $K = 100 \times 128^{\circ} + 111 \times 128^{1} + 103 \times 128^{2} = 1701860$
 - What about "bat"
 - b = 98, a = 97, t = 116
 - $K = 98 \times 128^{\circ} + 97 \times 128^{1} + 116 \times 128^{2} = 1913058$
- → Now that we have a key, we need to hash it

HASH FUNCTIONS: DIVISION METHODS

- → A simple but good hashing function is
 - $h(K) = K \mod m$
- → Provided that *m* is chosen correctly
 - m is the size of the table
 - Best to choose m to be prime
 - Want to avoid systemic collisions