

ГИБРИДНЫЕ РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ

ПЛАН ЗАНЯТИЯ

план занятия

1

типология гибридных систем 2

lightFM

3

learning-to-rank

ТИПОЛОГИЯ ГИБРИДНЫХ СИСТЕМ

Стекинг (обогащение фич)

- фичи посодержанию:
 - о фильм прозомби
 - снят в 90-х
- предсказания других алгоритмов
 - о вероятность понравиться по ALS 0.8
 - о предсказанная оценка по kNN 4.7

ТИПОЛОГИЯ ГИБРИДНЫХ СИСТЕМ

Блендинг (взвешивание)

	алгоритм А	
0,3 *	item1	5.0
	item2	0.0
	item3	3.0

гибрид		
item1	3.6	
item2	3.5	
item3	3.7	

ТИПОЛОГИЯ ГИБРИДНЫХ СИСТЕМ

Смешивание

алгоритм А		
item1	5.0	
item2	4.0	
item3	3.0	

алгоритм В		
item4	5.0	
item5	4.0	
item6	3.0	

гибрид		
item1	5.0	
item3	5.0	
item2	4.0	
item5	4.0	

Комбинирование фич

- фичи посодержанию:
 - о фильм прозомби
 - снят в 90-х
- коллаборативные фичи
 - а ещё нравится пользователю А
 - о но не нравится пользователю Б

Каскадные рекомендации

отбор кандидатов

ТИПОЛОГИЯ ГИБРИДНЫХ СИСТЕМ

Метарекомендации

алгоритм рекомендует, какой алгоритм лучше выбрать в данной ситуации

Резюме

- гибридизация часто улучшает качество рекомендаций
- иногда положительно сказывается на разнообразии
- не гарантирует решения всех проблем, связанных с тем или инымподходом

ПРАКТИКА

ПРАКТИКА

Гибридная рекомендательная система

Задача - рекомендации на главной странице сервиса в разделе "Персональная подборка"

Что делать?

- 1. Датасет ml-latest
- 2. Вспомнить подходы, которые мы разбирали
- 3. Выбрать понравившийся подход к гибридным системам
- 4. Написать свою:)

Сколько есть времени?

25 минут

LIGHTFM

Действующие лица

$$u \in U$$
 – пользователи $i \in I$ – объекты $(u,i) \in U imes I = S_+ \sqcup S_-$

- положительные и отрицательные взаимодействия

LIGHTFM

Действующие лица

```
F^U – всевозможные свойства пользователей f_u \subset F^U – свойства пользователя и (в том числе id) \mathbf{e}_f^U – вектор скрытых факторов фичи f
```

Действующие лица

```
F^I — всевозможные свойства объектов f_i \subset F^I — свойства объекта і (в том числе іd) \mathbf{e}_f^I — вектор скрытых факторов фичи f
```

Предсказанная релевантность

$$\hat{r}(u,i) = \sigma \left(\left(\sum_{f \in f_u} \mathbf{e}_f^U \right) \cdot \left(\sum_{f \in f_i} \mathbf{e}_f^I \right) + \sum_{f \in f_i} b_f^U + \sum_{f \in f_i} b_f^I \right)$$

скалярное произведение

Сигмоида

LIGHTFM

Функция правдоподобия

$$L\left(\boldsymbol{e}^{U},\boldsymbol{e}^{I},\boldsymbol{b}^{U},\boldsymbol{b}^{I}\right) = \prod_{(u,i)\in S^{+}}\widehat{r}_{ui}\times\prod_{(u,i)\in S^{-}}(1-\widehat{r}_{ui})$$

(максимум находится с помощью SGD)

Негативный сэмплинг

$$\ln L\left(e^{U}, e^{I}, b^{U}, b^{I}\right) = \ln \prod_{(u,i) \in S^{+}} \hat{r}_{ui} \prod_{(u,i) \in S^{-}} (1 - \hat{r}_{ui})$$

$$= \sum_{(u,i) \in S^{+}} \ln \hat{r}_{ui} + \sum_{(u,i) \in S^{-}} \ln (1 - \hat{r}_{ui})$$

$$= \sum_{(u,i) \in S} p_{ui} \ln \hat{r}_{ui} + (1 - p_{ui}) \ln (1 - \hat{r}_{ui})$$

Логарифм правдоподобия

- все наблюдаемые взаимодействия положительные
- часть ненаблюдаемых можно считать отрицательными
- отбирать, какие именно, можно случайно

LIGHTFM

Ничего не напоминает?

$$\sum_{(u,i)\in S} p_{ui} \ln \hat{r}_{ui} + (1 - p_{ui}) \ln (1 - \hat{r}_{ui}) \longrightarrow \min$$

$$\hat{r}_{ui} = \sigma \left(e_f^U \cdot e_f^I + b_f^U + b_f^I \right)$$

LightFM vs ALS (функция ошибок)

$$\sum_{(u,i)\in S} p_{ui} \ln \hat{r}_{ui} + (1 - p_{ui}) \ln (1 - \hat{r}_{ui}) \longrightarrow \min$$

$$\sum_{(u,i)\in S} (p_{ui} - \hat{r}_{ui})^2 \longrightarrow \min$$

LIGHTFM

LightFM vs ALS (релевантность)

$$\hat{r}_{ui} = \sigma \left(e_f^U \cdot e_f^I + b_f^U + b_f^I \right)$$

$$\hat{r}_{ui} = e_f^U \cdot e_f^I + b_f^U + b_f^I$$

ПРАКТИКА

ПРАКТИКА

lightFM

Задача - рекомендации на главной странице сервиса в разделе "Персональная подборка"

Что делать?

- 1. Датасет тот же ml-latest
- 2. Использовать LastFM
- 3. Взять любого пользователя и посмотреть на результаты предсказаний
- 4. Сравнить с рекомендациями из ALS

Сколько есть времени?

20 минут

LEARNING-TO-RANK

Постановка задачи

- фичи: порядок (ранжирование) списка объектов
- таргет: насколько порядок соответствует реальному

Способы решения

- element-wise
- pair-wise
- list-wise (за рамкамиэтого курса)

Element-wise

- определяем функцию "веса" каждого элемента
- сортируем список по весу
- по сути, обычная задача классификации/регрессии

Pair-wise (общая идея)

- для каждой пары элементов определяем функцию "выбора"
- любой список можно упорядочить, переставляя пары
- у функции выбора должны быть дополнительные свойства

Что такое (строгий) порядок?

- неверно, что X > X
- неверно, что x > y и y > x
- если x > y и y > z, то x > z

Примеры функции "выбора"

$$x \succ y \iff f(x) - f(y) > 1$$

 $x \succ y \iff f(x) - f(y) > 0$
 $x \succ y \iff \ln \sigma (f(x) - f(y)) > 0$

ВОПРОСЫ