

CSE 554 Lecture 2: Shape Analysis (Part I)

Fall 2018

Review

- Binary pictures
 - Tresholding grayscale images
 - Basic operations
 - Connected component labeling
 - Morphological operators

Shape analysis

- Questions about shapes:
 - Metrics: length? Width? orientation?
 - What are the parts?
 - How similar are two shapes?

Microtubules on the cell surface

Sperms of fruit flies

Cerebral artery aneurysms

Monkey skulls

Skeletons

- Geometry at the center of the object
 - Compact, and capturing protruding shape parts

Skeleton of 2D shapes: 1D curves

Skeleton of 3D shapes: 1D curves and 2D surfaces

Applications

- Computer graphics and vision
 - Optical character recognition (a)
 - Shape retrieval (b)
 - Animating articulated shapes (c)

- Bio-medical image analysis
 - Vessel network analysis (d)
 - Virtual colonoscopy (e)
 - Protein modeling (f)

Interior points with multiple closest points on the boundary

- Grassfire analogy:
 - Let the object represent a field of grass. A fire starts at the field boundary, and burns across the field at uniform speed.
 - MA are where the fire fronts meet.

- Grassfire analogy:
 - Let the object represent a field of grass. A fire starts at the field boundary, and burns across the field at uniform speed.
 - MA are where the fire fronts meet.

- Properties
 - ✓ Thin
 - MA are curves (1D) in a 2D object, and surfaces (2D) in a 3D object.

- Properties
 - ✓ Preserves object's shape
 - The object can be reconstructed from MA and its distances to the boundary

Properties

- ✓ Preserves object's topology
 - 2D: # of connected components of object and background
 - 3D: # of connected components of object and background, and # of tunnels

A 2D shape with 1 object component and 2 background components

A 3D shape with 5 tunnels

- Properties
 - Not stable under boundary perturbation

Original shape and medial axis

After adding a bump

- Properties
 - Not stable under boundary perturbation

Skeletons

- Approximation of medial axes
 - Roughly corresponds to the stable parts of the medial axes
 - No unique or precise definition (e.g., application dependent)

Applications using curve skeletons

Applications using curve+surface skeletons

Computing Skeletons

- A classical method: thinning
 - Mimics the grassfire analogy
 - Can create curve or surface skeletons
- What we will cover:
 - Thinning on binary pictures (this lecture)
 - Simple to implement in 2D, but harder in 3D
 - Noise has to be dealt with separately
 - Thinning on cell complexes (next lecture) [Module 2]
 - Same implementation in any dimension
 - Noise removal as part of the algorithm

- Grassfire analogy:
 - Let the object represent a field of grass. A fire starts at the field boundary, and burns across the field at uniform speed.
 - MA are where the fire fronts meet.

- Discrete fire-burning on a binary picture
 - Repeated erosion while keeping track of where "erosion fronts" meet

Repeated erosion eventually removes all object pixels

- Repeated erosion eventually removes all object pixels
 - Need to identify and keep pixels where the (discrete) erosion fronts quench

- Repeated erosion eventually removes all object pixels
 - Need to identify and keep pixels where the (discrete) erosion fronts quench
 - These are object pixels that form digital curves (one-pixel-wide strands)

- Identifying object pixels on digital curves
 - Curve-end pixel: connected to only one object pixel
 - Choose and fix the connectivity rule (4 or 8)

- Pixels in the middle of a digital curve are harder to detect (ambiguity at curve junctions)
 - Instead, check to see if removal of the pixel changes the topology of the object

Is c on a digital curve?

Simple pixels

 Object pixels whose removal from the object does not change topology (i.e., # of components of object and background)

Simple pixels

- Object pixels whose removal from the object does not change topology (i.e., # of components of object and background)
- Sufficient to check # of components just in the 3x3 neighborhood!

Simple pixels

- Object pixels whose removal from the object does not change topology (i.e., # of components of object and background)
- Sufficient to check # of components just in the 3x3 neighborhood!

All simple pixels

- Removable pixels during erosion
 - Border pixels (i.e., those connected to some background pixel) that are simple and not curve-end

- Algorithm (attempt) 1
 - Simultaneous removal of all removable points ("Parallel thinning")

```
// Parallel thinning on a binary image I
1. Repeat:
    1. Collect all removable pixels as S
    2. If S is empty, Break.
    3. Set all pixels in S to be background in I
2. Output I
```


- Algorithm (attempt) 1
 - Simultaneous removal of all removable points ("Parallel thinning")

- Why does parallel thinning breaks topology?
 - Simple pixels, when removed together, may change topology

Algorithm 2

 Sequentially visit each removable pixel and check its simple-ness before removing the pixel. ("Serial Thinning")

```
// Serial thinning on a binary image I
1. Repeat:
    1. Collect all border pixels as S
    2. If S is empty, Break.
    3. Repeat for each pixel x in S (in certain order):
        1. If x is currently simple and not curve-end, set x to be background in I
2. Output I
```


Algorithm 2

 Sequentially visit each removable pixel and check its simple-ness before removing the pixel. ("Serial Thinning")

Serial thinning

Algorithm 2

- Sequentially visit each removable pixel and check its simple-ness before removing the pixel. ("Serial Thinning")
- Result is affected by the order that the border pixels are visited

Serial thinning using two different visiting orders of border pixels

Identifying removable voxels

- Border voxels
 - Similar to 2D: object voxels connected to at least one background voxel
- Simple voxels
 - Similar to 2D: only needs to check 3x3x3 neighborhood (but needs to count # of tunnels besides # components of obj/bg)
- Curve-end and surface-end voxels
 - Curve-end criteria same as in 2D
 - Surface-end criteria are much harder to describe (e.g., requires a table look-up)

Setting voxel x to background creates a "tunnel" in the object (using 26-conn for object)

Two kinds of skeletons

- Curve skeletons: only curve-end voxels are preserved during thinning
- Surface skeletons: both curve-end and surface-end voxels are preserved

(see further readings)

Method of [Palagyi and Kuba, 1999]

Skeleton Pruning

- Thinning is sensitive to boundary noise
 - Due to the instability of medial axes
- Skeleton pruning
 - During thinning
 - E.g., using more selective criteria for end pixels (voxels)
 - After thinning
 - E.g., based on branch length
 - See Further Readings

Object with boundary noise

Resulting skeleton

Further Readings on: Binary Pictures, MA and Thinning

Books

- "Digital Geometry: geometric methods for digital picture analysis", by Klette and Rosenfeld (2004)
- "Medial representations: mathematics, algorithms and applications", by Siddiqi and Pizer (2008)

Papers

- "Digital topology: introduction and survey", by Kong and Rosenfeld (1989)
 - Theories of binary pictures
- "Thinning methodologies a comprehensive survey", by Lam et al. (1992)
 - A survey of 2D methods
- "A Parallel 3D 12-Subiteration Thinning Algorithm", by Palagyi and Kuba (1999)
 - Includes a good survey of 3D thinning methods
- "Pruning medial axes", by Shaked and Bruckstein (1998)
 - A survey of MA and skeleton pruning methods