OLLSCOIL NA hÉIREANN THE NATIONAL UNIVERSITY OF IRELAND

COLÁISTE NA hOLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK

Autumn 2009 2009 Engineering (Electrical & Electronic) Examination

Microelectronics (UE4008)

Mr. B. O'Neill Prof. C. Delabie Dr S. Lidholm

Time allowed 1 ½ Hours Answer three out of four questions

Approved calculator permitted.

Question 1:

- a) With the aid of diagrams describe how certain elements of a MOS transistor have changed in the shrink from processes with minimum dimensions of about 1.0μm to processes with dimensions in the region of 45-65nm. Give a very brief explanation for the technological reasons for these changes. (Hint: concentrate on the "Gate Stack" and substrate.)
- b) In the shrink from 65nm to 45nm a company changes the gate dielectric to hafnium oxide with a dielectric constant of 25, if the resultant gate capacitance is 3.0 X 10⁻⁶ F/cm² what is the actual new dielectric thickness and the silicon dioxide equivalent?

Given:

The permittivity of free space is 8.86 X 10⁻¹⁴ F/cm The dielectric constant of silicon dioxide is 3.9

Question 2:

- a) Describe a physical model for the thermal oxidation of silicon.
- b) Describe what happens to dopant in the silicon during the thermal oxidation cycle if:
 - i) The segregation co-efficient is less than 1.
 - ii) If the segregation coefficient is greater than 1.
- c) A silicon <100> wafer, which had been patterned for ion implant with 50nm of oxide in the windows to be implanted and $1.0\mu m$ in the other areas to protect against the implant, is put through a thermal oxide process at $1000^{\circ}C$ in pyrogenic steam for 3 hours, what is the final oxide thickness in:
 - i) The areas which had 50nm on the surface prior to oxidation?
 - ii) The areas which had 1.0μm on the surface prior to oxidation?

Question 3:

- a) Describe the Reactive Ion Etch process, outlining parameters that effect the process and describing the equipment used
- b) Describe how polymer formation in RIE can assist the anisotropic etch of aluminium alloys, outline problem(s) associated with this etch.
- c) Using a linear etch model for a silicon etch with Photoresist as a masking material, where;

Etch Rate = \mathbf{R}

$$R = \frac{\left(S_c K_f F_c + K_i F_i\right)}{N}$$

 S_c = Sticking coefficient (.01), K_f = (.02) and K_i = (1) are the relative rate constants for the two processes F_c = (2.5 x 10^{18} atoms cm⁻²s⁻¹) and F_i = (1 x 10^{16} atoms cm⁻²s⁻¹) are the chemical and ion fluxes, N is the density = (5 x 10^{22} atoms/cm³)

How deep is the silicon etched in the vertical direction well away from the mask edge, and in a lateral direction under the mask edge, if the etch time is 5 minutes?

Question 4:

- a) Describe in terms movement of holes and electrons the operation of an NMOS transistor as the gate voltage is swept from 0V to a voltage greater than the threshold voltage. Assume the source is grounded and there is a small positive voltage on the drain. What effect will the application of a reverse bias to the substrate or bulk have on the device?
- b) By how much will the threshold voltage shift in an NMOS transistor if a 1.0V reverse bias is applied to the substrate at a measurement temperature of 27°C?

Given:

Substrate doping =1 x 10^{15} atoms cm⁻³ $\mathcal{E}_o = 8.86 \text{ x } 10^{-14} \text{ F cm}^{-1}$ $k_s = 11.7$ $n_i = 1.45 \text{ x } 10^{10} \text{cm}^{-3}$ $q = 1.602 \text{ x } 10^{-19} \text{ Joule}$ $C_{ox} = 1.4 \text{ x } 10^{-8} \text{ F cm}^{-2}$ $k = 1.38 \text{ x } 10^{-23} \text{ JK}^{-1}$ (Boltzmann's constant)