Quantitative and qualitative computational analysis of language and text similarities, clustering and classification

Damir Ćavar CLS 2010, August 2010 University of Zadar

Agenda

- Dimensionality Reduction
- Naive Bayesian classifier

- List of tokens
 - Peter reads a book . John and Mary read some newspaper .
 - Two tokens with the same meaning, type etc.: reads, read
 - Normalization via lemmatization
 - reads → read

- Removing stop-words
- Stemming
- Lemmatization
- Thesaurus-based mapping to hypernyms (e.g. WordNet)

• ...

- Term-based models become large:
 - N-gram models
 - Vector matrix
- Goal:
 - Reduce model size with maximized performance.

- Document frequency thresholding
- X2
- Mutual Information
- Information Gain

Document Frequency

- DF: Number of documents in which a term x occurs
 - Threshold
 - Calculate DF for each term in DC_{tr}
 - Assumption: rare terms not informative for category prediction
 - contrary to Zipf

Document Frequency

- DF: Number of documents in which a term x occurs
 - low-DF terms are rather informative

Dimension Reduction

- Identify terms with no contribution to a class or all classes.
 - Selection of significant terms
 - Elimination of noise

- Literature:
 - Manning, Raghavan & Schütze (2009)

- Observation:
 - Number of documents: IDCI = 801948
 - Documents labeled as c_i or not, containing t_j or not:

	Ci	¬Ci	total
t _j	49	27652	27701
¬ t _j	141	774106	774247
total	190	801758	801948

- Research hypothesis: The term and the class label are dependent variables
 - $P(t_jc_i) \neq P(t_j)P(c_i)$
- Null hypothesis: The term and the class label are independent variables
 - $P(t_j c_i) = P(t_j) P(c_i)$

- Observation, Expectation (Null Hypothesis)
 - Expectation: P(c) * P(t) = Row-total *
 Column-total / Total

	Ci	¬Ci	total
t _j	49 6.56	27652 27694.44	27701
¬t _j	141 183.44	774106 774063.56	774247
total	190	801758	801948

$$\chi^2 = \sum \frac{(observation - expectation)^2}{expectation}$$

$$\chi^2 = \frac{(49 - 6.56)^2}{6.56} + \frac{(27652 - 27694.44)^2}{27694.44} + \frac{(141 - 183.44)^2}{183.44} + \frac{(774106 - 774063.56)^2}{774063.56} = 284.45$$

Degree of freedom: (rows - 1) * (columns - 1) = 1

р	χ2 critical value	
0.1	2.71	
0.05	3.84	
0.01	6.63	
0.005	7.88	
0.001	10.83	

• See online table

- For $P(\chi^2 > 6.63) < 0.01$, i.e. the Null Hypothesis (independence assumption) can be rejected with 99% confidence.
 - The class label and token seem to be dependent.

- Dimension reduction:
 - Apply the χ² test to all tokens for all classes and eliminate tokens that appear to be independent of the class label.

- Problems
 - Iterative use of the χ^2 test increases the error.
 - 1000 rejections with 0.05 error probability lead to an average of 50 wrong decisions.
 - Here: The test is meant to be for "relative" importance of features.

For a term t and category c:

$$I(t,c) = log \frac{P(tc)}{P(t)P(c)}$$

- How much information does t provide about c?
 - Compare to χ²: log ratio of Research and Null hypothesis, or observation and expectation.

 For a term t and category c (Yang & Pederson 1997):

	Ci	¬Ci	total
t _j	A 49	B 27652	27701
¬ t _j	C 141	D 774106	774247
total	190	801758	N 801948

$$I(t,c) \approx \frac{A \times N}{(A+C) \times (A+B)}$$

For a term t and category c (Manning ea. 2009):

	Ci	¬Ci	total
4	A	В	$N_{\rm I}$
t _j	49	27652	27701
¬t _j	C	D	774247
	141	774106	
total	N ₂	801758	N
	190		801948

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

Example:

- P(1,1) = 49 / 801948
- P(U=1)=27701 / 801948
- P(C=1)=190 / 801948

- Bias for terms with low frequencies
 - Score not comparable between terms with varying frequency
- Equivalent to Information Gain (Manning et al. 2009)

Algorithms 1

$$P(c|d) \propto P(c) \prod_{1 \le k \le n_d} P(t_k|c)$$

- document d
- class c
- conditional probability of term t_k
 occurring in a document class c: P(t_k|c)

- After tokenization and stop-word removal:
- "Germany won the world championship."
 - {Germany, won, world, championship}
 - $n_d = 4$

Find best class: maximum a posteriori
 (MAP) class c_{map}:

$$c_{map} = \arg\max_{c \in C} \hat{P}(c|d) = \arg\max_{c \in C} \hat{P}(c) \prod_{1 \le k \le n_d} \hat{P}(t_k|c)$$

 P-cap is the estimated probability using a training corpus.

- High number of float multiplications can result in a floating point underflow.
 - We add the logs of the probabilities, maintaining the relative order:
 - highest is most probable (log is monotonic)

Sums of logs:

$$c_{map} = \arg\max_{c \in C} \left[log \hat{P}(c) + \sum_{1 \le k \le n_d} log \hat{P}(t_k|c) \right]$$

- Estimation:
 - N_c is the number of documents in class C in the training corpus

$$\hat{P}(c) = \frac{N_c}{N}$$

 T_{ct} is the frequency of token t in the documents in c, (T_{ct}, all t)

$$\hat{P}(t|c) = \frac{T_{ct}}{\sum_{t' \in V} T'_{ct'}}$$

- To avoid 0 probabilities:
 - Smoothing: e.g. add-one

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T'_{ct'} + 1)}$$

```
TrainNB(C, D)
  V \leftarrow ExtractVocabulary(D)
  N \leftarrow CountDocs(D)
  for each c in C
  do N_c <- CountDocsInClass(D, c)
     prior[c] <- Nc/N
     text_c <- ConcatenateTextOfAllDocsInClass(D, c)</pre>
    for each t in V
     do Tct <- CountTokensOfTerm(text_c, t)</pre>
    for each t in V
     do\ condprob[t][c] \rightarrow (T\_ct + 1)/(sum\ (T\_ct' + 1))
return V, prior, condprob
ApplyNB(C, V, prior, condprob, d)
  W \rightarrow ExtractTokensFromDoc(V, d)
  for each c in C
  do\ score[c] \rightarrow log\ prior[c]
    for each t in W
     do score[c] += log condprob[t][c]
  return arg max_c_in_C score[c]
```

- Example:
 - model generator: make-docmodel.py
 - classifier: BM1.py
 - command line: python BM1.py my.txt

Manipulations

- Weighting of terms
- Dimension reduction
 - Elimination of stop-words
 - MI, Chi², frequency-based, etc.