류산동이 담지된 진흙+연재에 의한 류화수소흡착제의 제조에 대한 연구

임 정 길

생물가스를 전력생산에 리용하는데서 나서는 중요한 문제의 하나는 그것에 포함되여 있는 류화수소(H_2S)를 제거하는것이다.

생물가스를 비롯한 기체속에 포함되여있는 H_2S 를 제거하는데 리용할수 있는 흡착제를 개발하기 위한 연구[1-4]가 많이 진행되고있지만 류산동을 담지한 진흙+연재를 흡착제로 리용한 자료는 발표된것이 없다.

론문에서는 류산동이 담지된 진흙+연재에 의한 H_2S 흡착제의 제조방법에 대하여 론의하였다.

실 험 방 법

조성분석 및 시차열분석 조성분석은 주사전자현미경(《JSM-6610A》)으로, 시차열분석은 시차열분석기(《DTA-50》)로 진행하였다.

H₂S 흡착제의 제조 진흙과 연재속의 불순물을 물리적방법으로 제거하고 립도가 0.1mm 이하인것들을 선별한 다음 1:1의 질량비로 혼합하고 100~110℃에서 건조한 후 500~600℃의 마플로에서 3h동안 소성하였다. 그리고 2~3mm의 크기로 분쇄한 혼합물 100g을 3.3% CuSO₄용액 150mL가 들어있는 비커에 넣고 24h동안 방치시킨 다음 100℃에서 20h동안 건조시켜 H₂S 흡착제를 제조하였다.

 H_2S 흡착 30g의 CaC_2 을 H_2S 흡착실험장치(그림 1)의 카바이드분해조에 넣은 다음 2개의 H_2S 흡착탑에 각각 10g의 흡착제를 채웠다. 그리고 장치의 기밀을 철저히 보장한 다음 5% NaCl용액을 적하하면서 발생된 기체를 100mL의 0.005mol/L $CuSO_4$ 용액에서 H_2S 가 검출될 때까지 H_2S 흡착탑으로 통과시켰다.

그림 1. H₂S 흡착실험장치의 구성도 1-5% NaCl용액, 2-카바이드분해조, 3-H₂S 흡착탑, 4-0.005mol/L CuSO₄용액, 5-안전병

실험결과 및 해석

진흙과 연재의 조성 진흙과 연재에 대한 조성분석결과는 표 1, 2와 같다.

표 1. 진흙에 대한 조성분석결과(9	퓨	1.	진흙에	대하	조성분석결과(%	ر,
----------------------	---	----	-----	----	----------	----

분석위치	С	О	Na	Mg	Al	Si	K	Ca	Ti	Fe
1	15.74	48.38	0.10	0.37	5.77	24.05	1.19	0.39	0.41	3.60
2	31.72	45.58	0.11	0.43	5.75	11.71	0.83	0.17	0.25	3.45

표 2. 연재에 대한 조성분석결과(%)

분석위치	С	О	Na	Mg	Al	Si	S	K	Ca	Ti	Fe
1	40.32	33.95	0.25	0.23	5.11	13.94	0.03	1.87	0.28	0.19	3.84
2	66.32	24.94	0.18	0.13	2.73	4.07	0.09	0.50	0.07	0.18	0.79

표 1로부터 진흙의 주성분은 Si, Al, Fe, C의 산화물이며 이밖에 Na, Mg, K, Ca, Ti의 산화물이 적은 량으로 포함되여있다는것을 알수 있다. 한편 표 2로부터 연재의 주성분은 규소 및 알루미니움의 산화물과 탄소이고 이밖에 Na, K, Ti, Fe의 산화물이 적은 량으로 포함되여있으며 특히 류황이 $0.03\sim0.09\%$ 포함되여있다는것을 알수 있다.

진흙과 연재의 열특성 진흙과 연재에 대한 시차열분석결과는 그림 2, 3과 같다.

그림 2. 진흙의 시차열분석결과 시료량 8.90mg, 승온속도 20.0℃/min

그림 3. 연재의 시차열분석결과 조건은 그림 2와 같음

그림 2로부터 진흙은 60~120℃에서 탈수되며 120~480℃에서 진흙속의 탄소가 연소된다는것을 알수 있다. 그리고 그림 3으로부터 연재에서는 900℃까지의 온도에서 발열과정이 일어나며 특히 500~890℃에서는 연재속의 탄소가 연소된다는것을 알수 있다.

H₂S 흡착제의 조성 H₂S 흡착제에 대한 조성분석결과는 표 3과 같다.

표 3. H₂S흡착제에 대한 조성분석결과(%)

분석위치	О	Na	Mg	Al	Si	P	S	K	Ca	Ti	Fe	Cu
1	43.16	0.34	0.66	12.11	28.5	0.19	0.88	2.54	0.07	1.08	7.90	2.56
2	42.05	0.28	0.75	11.31	29.07	0.15	0.62	2.70	0.13	0.62	9.86	2.47

표 3으로부터 H_2S 흡착제의 주성분은 규소와 알루미니움의 산화물이고 Na, S, K, Ca, Ti, Fe의 산화물은 흡착제에 적은 량으로 포함되여있으며 탄소성분은 소성과정에 완전

히 연소된다는것을 알수 있다.

흡착제의 H_2S 흡착용량 H_2S 가 흡착된 흡착제에 대한 조성분석결과는 표 4와 같다.

표 4	1.]	H₂S가	흡착된	흡착제에	대한	조성분석결과(%)
-----	------	------	-----	------	----	-----------

분석위치	О	Na	Mg	Al	Si	P	S	K	Ca	Ti	Fe	Cu
1	44.41	0.18	0.65	11.81	26.17	0.19	1.44	2.89	0.81	0.71	7.57	3.16
2	46.37	1.57	0.62	11.74	25.78	0.10	0.83	2.39	0.49	0.56	7.56	2.00

표 4에서 보는바와 같이 H_2S 가 흡착된 흡착제에서의 류황함량은 흡착전보다 $0.21\sim0.56\%$ 더 높다. 이것은 제조된 흡착제가 H_2S 를 흡착한다는것을 의미한다.

표 4의 자료로부터 계산된 이 흡착제의 H_2S 흡착용량은 616mL/100g이다. 그러므로 류산동을 담지한 진흙+연재흡착제 100g으로는 H_2S 함량이 1.5%인 기체 40.5L를 정제할수 있다.

맺 는 말

류산동을 담지한 진흙+연재흡착제는 진흙과 연재를 1:1의 질량비로 혼합하고 600℃에서 3h동안 소성한 다음 3.3% CuSO₄용액속에서 24h동안 방치시키고 100℃에서 24h동안 건조시켜 제조한다.

이 흡착제의 H₂S흡착용량은 616mL/100g이다.

참 고 문 헌

- [1] S. Ozdemir et al.; Separation and Purification Technology, 16, 225, 1999.
- [2] A. Bouzaza et al.; Chemosphere, 54, 481, 2004.
- [3] J. P. Boudou et al.; Carbon, 41, 1999, 2003.
- [4] T. Abbasi et al.; Biogas Energy, Springer, 155~161, 2012.

주체107(2018)년 1월 5일 원고접수

Manufacture of Hydrogen Sulfide Adsorbent by Clay+Soot Impregnated with Copper Sulfate

Im Jong Gil

The manufacture of clay+soot adsorbent impregnated with copper sulfate goes through the process of baking the mixture of clay and soot at 600° C for 3 hours, and then through the process of leaving it in 3.3% CuSO₄ solution for 24 hours.

The adsorption capacity of this adsorbent for H₂S is 616mL/100g.

Key words: hydrogen sulfide, adsorption