Pendolo reversibile - Caduta libera analisi dei dati

Ali Matteo, Broggi Diana, Cantarini Giulia

Pendolo reversibile di Kater

La posizione di m_A è stata tenuta costante:

distanza di m_A dal coltello 2 in m

0.159	0.16	0.159	0.159	0.16
000	00	000	000	00

riportiamo le diverse distanze dal coltello 2 in metri in cui abbiamo posizionato m_B , e i relativi periodi in secondi:

distanza 1:

0.294	0.294	0.293	0.294	0.295	

Periodo 1	1.9485	1.9483	1.9488	1.9489	1.9483	1.9484	1.9487	1.9487	1.9482	
Periodo 2	1.8306	1.83	1.8295	1.8286	1.8292	1.8298	1.8288	1.8287	1.829	1.8289

distanza 2:

0.235	0.235	0.235	0.236	0.234	

Periodo1	1.9637	1.9638	1.9636	1.9636	1.9635	1.9633	1.9632	1.963	1.9634	
Periodo2	1.8614	1.8612	1.861	1.8612	1.8608	1.8606	1.8608	1.8611	1.8612	1.8612

distanza 3:

0.168	0.169	0.168	0.168	0.168	

Periodo1	1.9827	1.9824	1.9826	1.9822	1.9828	1.9825	1.9826	1.9828	1.9825	
Periodo2	1.9264	1.9274	1.9264	1.9263	1.927	1.9258	1.9258	1.9257	1.9271	1.927

${\rm distanza}\ 4:$

0.158	0.159	0.158	0.158	0.159	

Periodo1	1.9884	1.9887	1.9879	1.9877	1.9877	1.9876	1.9876	1.9876	1.988	·
Periodo2	1.9378	1.9381	1.9369	1.9379	1.9366	1.9386	1.9374	1.9357	1.9357	1.9367

distanza 5:

0.102	0.103	0.102	0.102	0.103	

Periodo1	2.0279	2.0265	2.0271	2.0256	2.0244	2.0251	2.0241	2.0232	2.0226	2.0226
Periodo2	2.0075	2.0074	2.0071	2.0061	2.0065	2.0063	2.0065	2.0061	2.0061	

distanza 6:

0.063	0.062	0.064	0.062	0.063	

Periodo1	2.0227	2.0222	2.0221	2.0228	2.0221	2.0217	2.0218	2.0217	2.0217	
Periodo2	2.1072	2.1046	2.1035	2.1046	2.1032	2.1034	2.1043	2.1025	2.1039	2.1024

dist $m_A {=}\ 0.159$ metri

dist m_B (m)	Periodo 1 (s)	Perido 2 (s)
1: 0.2940	1.949	1.82931
2: 0.2350	1.963	1.86105
3: 0.1682	1.983	1.92649
$4:\ 0.1584$	1.988	1.93714
5: 0.1024	2.007	2.02491
6: 0.0628	2.022	2.10396

2

calcolo di g

Selezioniamo la distanza 4 e la distanza 5 per il calcolo di T^* :

$$\left| T^* = \frac{T_2(x_4)T_1(x_5) - T_1(x_4)T_2(x_5)}{T_1(x_5) - T_2(x_5) - T_1(x_4) + T_2(x_4)} \right|$$

$$\sigma_{T^*} = \sqrt{\left(\frac{\partial T^*}{\partial T_2(x_4)}\right)^2 + \left(\frac{\partial T^*}{\partial T_2(x_5)}\right)^2 + \left(\frac{\partial T^*}{\partial T_1(x_4)}\right)^2 + \left(\frac{\partial T^*}{\partial T_1(x_5)}\right)^2} \right|$$

$$\rightarrow T^* = 2.0017 \pm 0.0002$$

attraverso questo risultato abbiamo calcolato una prima stima di g:

$$g = \frac{4\pi^2 D}{(T^*)^2}$$
 $\sigma_g = \frac{4\pi^2 D}{(T^*)^3} \sigma_T$
 $g = 9.794 \pm 0.002$

stima dell'errore sistematico

correzione di T^* per angoli di oscillazione finiti: $T^*_{vero}=2\pi\sqrt{\frac{D}{g}}(1+\frac{\theta^2}{16})$ con $\theta=0.086rad$.

$$\begin{split} \sigma_{sistematico} &= T_{osservato} - T_{vero} = 2.0017 - 2.00097 = 0.0007 \\ \sigma_{Ttotale} &= \sqrt{\sigma_{Tcasuale}^2 + \sigma_{Tsistematico}^2} = 0.00073 \\ &\Rightarrow T_{vero}^* = 2.00097 \pm 0.00073 \end{split}$$

da questo valore abbiamo ottenuto una nuova stima per g tramite le formule indicate sopra:

$$g = 9.801 \pm 0.004$$

•

Caduta libera

Riportiamo le diverse altezze,in metri, da cui abbiamo fatto cadere la sferetta ed i relativi tempi di caduta in secondi:

•	16779	-1

altezza	1:								
			0.603	0.602	0.602	0.603			
0.316	0.307	0.320	0.315	0.323	0.318	0.315	0.308	0.310	0.318
altezza	2:								
		:	0.584	0.583	0.583	0.584			
0.310	0.323	0.307	0.311	0.317	0.311	0.309	0.308	0.294	0.303
altezza	3:								
		:	0.556	0.557	0.558	0.557			
0.296	0.304	0.299	0.304	0.289	0.275	0.301	0.294	0.294	0.297
altezza	4:								
		:	0.504	0.505	0.504	0.505			
0.290	0.287	0.298	0.290	0.280	0.290	0.278	0.289	0.281	0.291

altezza 5:

0.450 0.451 0.450 0.451

0.267 0.263 0.281 0.279 0.280 0.262 0.268 0.268 0.261 0.272

altezza 6:

0.395	0.396	0.397	0.395

0.257	0.238	0.253	0.243	0.249	0.249	0.258	0.249	0.240	0.245

Tabella1

altezza (m)	tempo di caduta (s)
1: 0.603 ± 0.0003	0.315 ± 0.002
$2: 0.584 \pm 0.0003$	0.309 ± 0.002
$3: 0.557 \pm 0.0004$	0.295 ± 0.003
$4: 0.505 \pm 0.0003$	0.287 ± 0.002
$5:0.451 \pm 0.0003$	0.270 ± 0.002
$6: 0.396 \pm 0.0005$	0.248 ± 0.002

Abbiamo eseguito l'interpolazione lineare dei dati in Tabella2 con il metodo dei minimi quadrati pesati(i pesi utilizzati sono $w_i=\frac{1}{\sigma_{xi}^2}$ poichè $\sigma_{xi}>>\sigma_{yi}$)

 ${\bf Tabella 2.a}$

y: altezza (m)	x: tempo di caduta ² (s^2)
1: 0.603 ± 0.0003	0.099 ± 0.001
$2: 0.584 \pm 0.0003$	0.096 ± 0.001
$3: 0.557 \pm 0.0004$	0.087 ± 0.002
4: 0.505 ± 0.0003	0.083 ± 0.001
$5: 0.451 \pm 0.0003$	0.073 ± 0.001
$6:\ 0.396 \pm 0.0005$	0.062 ± 0.001

$$\sigma_{t^2} = 2t\sigma_t$$

$$\Delta = \sum (w_i y_i^2) \sum w_i - (\sum w_i y_i)^2$$

$$B = \frac{\sum w_i \sum w_i x_i y_i - \sum w_i y_i \sum w_i x_i}{\Delta} \pm \sqrt{\frac{\sum w_i}{\Delta}} = 0.17 \pm 0.006$$

$$A = \frac{\sum w_i y_i^2 \sum w_i x_i - \sum w_i y_i \sum w_i x_i y_i}{\Delta} \pm \sqrt{\frac{w_i y_i^2}{\Delta}} = -0.008 \pm 0.003$$

Infine, abbiamo calcolato l'accelerazione di gravità come $g=\frac{2}{B}\pm\frac{2}{B^2}\sigma_B=11.3\pm0.4.$

La stima di g così ottenuta non è particolamente accurata, come ci aspettavamo dal grafico di h_t . In seguito a considerazioni motivate nella relazione di laboratorio, abbiamo corretto i dati nel modo seguente:

la funzione che descrive il fenomeno è stata corretta per $v_0 \neq 0$

Tabella2.b

y: altezza- v_0 t (m)	x: tempo di caduta ² (s^2)
1: 0.4639 ± 0.0003	0.099 ± 0.001
$2: 0.4474 \pm 0.0003$	0.096 ± 0.001
$3: 0.4270 \pm 0.0004$	0.087 ± 0.002
4: 0.3781 ± 0.0003	0.083 ± 0.001
$5: 0.3317 \pm 0.0003$	0.073 ± 0.001
$6:\ 0.2865 \pm 0.0005$	0.062 ± 0.001

$$con v_0 = 0.44 \frac{m}{s}$$

L'interpolazione dei dati che considerano una velocità iniziale diversa da 0 porta ad una stima per g
 molto più accurata: $9.759\pm0.348\frac{m}{s^2}$.

