

Universidad Nacional de Colombia Facultad de Ciencias Topología General Taller II

Nateo Andrés Manosalva Amaris	
ergio Alejandro Bello Torres	

- 1. a) Un G_{δ} -conjunto en un espacio X es un conjunto A que es igual a una intersección numerable de conjuntos abiertos de X. Demuestra que en un espacio T_1 de primera numerabilidad, cada conjunto unitario es un G_{δ} -conjunto.
 - b) Existe un espacio familiar en el cual cada conjunto unitario es un G_δ-conjunto, pero que no satisface el axioma de primera numerabilidad. ¿Cuál es?
 La terminología proviene del alemán. La "G" representa "Gebiet," que significa "conjunto abierto," y la "δ" representa "Durchschnitt," que significa "intersección."
- 2. Demuestra que si X tiene una base numerable $\{B_n\}$, entonces toda base $\mathscr C$ de X contiene una base numerable para X. [Sugerencia: Para cada par de índices n,m para los cuales sea posible, elige $C_{n,m} \in \mathscr C$ tal que $B_n \subset C_{n,m} \subset B_m$.]

Demostración. Sea $x \in X$, ya que \mathscr{B} es base, existe $m \in \mathbb{N}$ tal que $x \in B_m$, como \mathscr{C} también es base, existe C tal que $x \in C \subseteq B_m$, aplicando nuevamente la definición de base, llegamos a que existe n tal que $x \in B_n \subseteq C \subseteq B_m$, denotemos entonces a este C por $C_{n,m}$, así, para $n, m \in \mathbb{N}$ podemos escoger $C_{n,m}$ de tal manera que $B_n \subseteq C_{n,m} \subseteq B_m$.

Veamos que $\mathscr{C}':=\{C_{n,m}\in\mathscr{C}:n,m\in\mathbb{N},B_n\subseteq C_{n,m}\subseteq B_m\}$ es una base contable para X. La primera propiedad se sigue directamente de como construimos \mathscr{C}' . Ahora sean $x\in X$, C_{n_1,m_1} y C_{n_2,m_2} tales que $x\in C_{n_1,m_1}\cap C_{n_2,m_2}$, como $C_{n_1,m_1}\cap C_{n_2,m_2}$ es abierto en X, existe B_{m_3} tal que $x\in B_{m_3}\subseteq C_{n_1,m_1}\cap C_{n_2,m_2}$, siguiendo el razonamiento anterior encontramos C_{n_3,m_3} tal que $x\in B_{n_3}\subseteq C_{n_3,m_3}\subseteq B_{m_3}$ de ésta manera $x\in C_{n_3,m_3}\subseteq C_{n_1,m_1}\cap C_{n_2,m_2}$, por lo tanto \mathscr{C}' es una base para X.

3. Sea *X* un espacio con una base numerable; sea *A* un subconjunto no numerable de *X*. Demuestra que incontablemente muchos puntos de *A* son puntos de acumulación de *A*.

Demostración. Primero probaremos que el conjunto de puntos de acumulación A' de A es no vacío: Asuma que A' es vacío, luego dado $x \in X$ existe una vecindad V_x de x tal que $V_x \cap (A - \{x\}) = \emptyset$, de ésta manera la colección $\{V_a\}_{a \in A}$ es una colección no contable de abiertos disyuntos dos a dos, ya que X es 2-contable, tiene un subconjunto denso contable E, luego existe $x_a \in E$ tal que $x_a \in V_a$, pero como los V_a son disyuntos dos a dos, cada x_a debe ser distinto, es decir E es no contable, lo cual contradice que E es contable. Así, $A' \neq \emptyset$. Ahora asuma que A' es contable, ya que X es 2-contable, en particular es 1-contable, luego por cada $y \in A'$ existe una sucesión $\{x_n^{(y)}\}\subseteq A$ que converge a y. De esta manera tenemos que

$$B = \bigcup_{y \in A'} \{x_n^{(y)}\} \subseteq A$$

es contable, pues es unión contable de conjuntos contables, por lo tanto A-B es no contable, lo cual implica que tiene un punto de acumulación.

4. Demuestra que todo espacio métrico compacto X tiene una base numerable. [Sugerencia: Sea \mathcal{A}_n un recubrimiento finito de X por bolas de radio 1/n.]

- 5. *a*) Demuestra que todo espacio métrico con un subconjunto denso numerable tiene una base numerable.
 - b) Demuestra que todo espacio métrico de Lindelöf tiene una base numerable.
- 6. Demuestra que \mathbb{R}_{ℓ} e I_0^2 no son metrizables.

Demostración. Ya que \mathbb{R}_{ℓ} es separable, pero no 2-contable, no puede ser métrico, pues en un espacio métrico estas dos propiedades son equivalenetes.

Ahora, consideremos I_0^2 , por el punto anterior tenemos que en un espacio métrico ser Lindelöf y 2-contable son propiedades equivalentes. De esta manera, si I_0^2 fuera metrizable, como es Lindelöf, sería 2-contable, luego todo subespacio de I_0^2 sería 2-contable y por lo tanto Lindelöf. Sin embargo, el subespacio $[0,1]\times(0,1)$ no es Lindelöf, luego I_0^2 no puede ser metrizable.

- 7. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface S_{Ω} ? ¿Qué ocurre con \bar{S}_{Ω} ?
- 8. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface \mathbb{R}^{ω} con la topología uniforme? Ya que \mathbb{R}^{ω} es métrico, es 1-contable. No es separable pues el conjunto $\{0,1\}^{\omega}$ es discreto en \mathbb{R}^{ω} . Como en espacios métricos ser 2-contable, separable y Lindelöf son equivalentes, éste esapcio solo cumple el primer axioma.
- 9. Sea *A* un subespacio cerrado de *X*. Demuestra que si *X* es Lindelöf, entonces *A* es Lindelöf. Muestra con un ejemplo que si *X* tiene un subconjunto denso numerable, *A* no necesariamente tiene un subconjunto denso numerable.
- 10. Demuestra que si X es un producto numerable de espacios con subconjuntos densos numerables, entonces X tiene un subconjunto denso numerable.
- 11. Sea $f: X \to Y$ una función continua. Demuestra que si X es Lindelöf, o si X tiene un subconjunto denso numerable, entonces f(X) satisface la misma condición.
- 12. Sea $f: X \to Y$ una aplicación continua y abierta. Demuestra que si X satisface el primer o segundo axioma de numerabilidad, entonces f(X) satisface el mismo axioma.
- 13. Demuestra que si X tiene un subconjunto denso numerable, entonces toda colección de conjuntos abiertos disjuntos en X es numerable.
- 14. Demuestra que si X es Lindelöf y Y es compacto, entonces $X \times Y$ es Lindelöf.
- 15. Considera \mathbb{R}^I con la métrica uniforme, donde I = [0,1]. Sea $\mathscr{C}(I,\mathbb{R})$ el subespacio de funciones continuas. Demuestra que $\mathscr{C}(I,\mathbb{R})$ tiene un subconjunto denso numerable, y por lo tanto una base numerable.

[Sugerencia: Considera aquellas funciones continuas cuyos gráficos consisten en un número finito de segmentos de línea con extremos racionales.]

- 16. *a*) Demuestra que el espacio producto \mathbb{R}^I , donde I = [0, 1], tiene un subconjunto denso numerable.
 - b) Demuestra que si J tiene cardinalidad mayor que $\mathscr{P}(\mathbb{Z}_+)$, entonces el espacio producto \mathbb{R}^J no tiene un subconjunto denso numerable.

[Sugerencia: Si D es denso en \mathbb{R}^{J} , define $f: J \to \mathcal{P}(D)$ por la ecuación $f(\alpha) = D \cap \pi_{\alpha}^{-1}((a,b))$, donde (a,b) es un intervalo fijo en \mathbb{R} .]

*17. Considera \mathbb{R}^{ω} con la topología de la caja. Sea \mathbb{Q}^{∞} el subespacio que consiste en secuencias de racionales que terminan en una cadena infinita de ceros. ¿Cuáles de nuestros cuatro axiomas de numerabilidad satisface este espacio?

*18. Sea G un grupo topológico de primera numerabilidad. Demuestra que si G tiene un subconjunto denso numerable, o es Lindelöf, entonces G tiene una base numerable.

[Sugerencia: Sea $\{B_n\}$ una base numerable en e. Si D es un subconjunto denso numerable de G, demuestra que los conjuntos dB_n , para $d \in D$, forman una base para G. Si G es Lindelöf, elige para cada G un conjunto numerable G tal que los conjuntos G para G0. Demuestra que cuando G0 recorre G1, estos conjuntos forman una base para G1.