UNIDAD 10: Flujo sobre Cuerpos Sumergidos

- Bibliografía
- Franzini 240 (flujo alrededor con ala)
- Franzini 378 (numero mach ondas de choque, prop estancamiento)
- Streeter 324 Idem anterior y semejanza con canales abiertos.

FLUJO SOBRE CUERPOS SUMERGIDOS

DISTRIBUCIÓN DE VELOCIDADES ALREDEDOR DE UN CILINDRO CIRCULAR FLUIDO IDEAL

FLUJO IRROTACIONAL

CILINDRO QUIETO

$$V = 2V_0 \operatorname{sen} \theta$$

FLUJO SOBRE CUERPOS SUMERGIDOS

$$\frac{P_0}{\gamma} + \frac{{V_0}^2}{2g} = \frac{P}{\gamma} + \frac{V^2}{2g}$$

$$\Delta P = \frac{\rho (V_0^2 - 4V_0^2 sen^2 \theta)}{2}$$

$$\Delta P = \frac{\rho (V_0^2 - V^2)}{2}$$

$$\Delta P = \rho V_0^2 (1 - 4sen^2 \theta)$$

Para E y C:

$$\theta = 90^{\circ}$$

$$\theta = 90^{\circ} \qquad \Delta P = -\frac{3\rho V_0^2}{2}$$

$$\theta = 0 \text{ y } 180^{\circ}$$

Para B y D:
$$\theta = 0 \ y \ 180^{\circ}$$
 $\Delta P = \frac{\rho V_0^2}{2}$

DIAGRAMA DE PRESIONES

SOBRE EL SISTEMA NO ACTUA NINGUNA RESULTANTE EL SISTEMA SE ENCUENTRA EN EQUILIBRIO

CILINDRO ROTANDO CON VELOCIDAD ANGULAR

$$\Gamma = \oint V_C dl = \oint_0^{2\pi} V_C r d\theta$$

$$\Gamma = 2\pi r_0 V_0$$

$$V_0 = Vt = \frac{\Gamma}{2\pi r_0}$$

La velocidad final es la suma de la V_t y la velocidad del fluido que circula alrededor del cilindro detenido

1)
$$V = 2V_0 sen\theta + Vt$$

$$\frac{V}{V_t} = 2\frac{V_0}{V_t} sen\theta + 1$$

$$V = 2V_0 sen\theta + \frac{\Gamma}{2\pi r_0}$$

$$\frac{V}{V_t} = 2\frac{V_0}{V_t} sen\theta + 1$$

$$V_t = V_0$$
 Punto de estancamiento $V = 0$

$$V=2V_0\,sen heta+V_0_=$$
0
$$\theta=-30\,\circ\, ext{o}\,-150\,\circ$$

$$V_t = 2 V_0$$
 Punto de estancamiento $V = 0$

$$V = 2V_0 \operatorname{sen}\theta + 2V_0 = 0$$
 $\operatorname{sen}\theta = -1$ $\theta = -90^{\circ}$

 $V_t > 2 V_0$ Punto de estancamiento V = 0

$$V = 2V_0 sen\theta + 2V_0 = 0$$

 $|sen\theta| > 1$

Efecto de las presiones sobre un cilindro rotatorio

 $dFv = \Delta P ds L sen\theta$

 $dFv = \Delta P r_0 d\theta L sen\theta$

 $dFv = \Delta P r_0 d\theta L sen\theta$

$$S=-\int_0^{2\pi}dFv=\int_0^{2\pi}\Delta Pr_0\,d\theta\,L\,sen\theta$$

$$\Delta P=rac{
ho(V_0{}^2-V^2)}{2}\qquad \qquad V=2V_0\,sen\theta+rac{\Gamma}{2\pi r_0}$$

Reemplazando V en ΔP y luego en la sustentación, integrando de 0 a 2π

$$S = L \rho V_0 \Gamma$$

Ecuación de Kutta Jukowsky: para que haya sustentación debe haber circulación, esto se conoce como efecto Magnus

Perfil alar

$$F_L = CL \rho V^2 A/2$$

$$F_d = Cd \rho V^2 A/2$$

FIGURA 9.19

Ajuste de los puntos de remanso para evitar una velocidad infinita en el borde de salida.

FIGURA 9.20

Desarrollo del torbellino de arrangue.

Discontinuidad de

FIGURA 9.23

Curva polar para un ala con alargamiento 5. (Curva de L. Frandtl y O. G. Tietjens, Applied Hydro- and Aeromechanics, pag. 152, McGraw-Hill, New York, 1934.)

Propiedades de remanso en flujo adiabático

$$h_1 + \frac{{V_1}^2}{2} = h_2 + \frac{{V_2}^2}{2}$$

$$\Delta h = Cp \Delta T$$

$$V_2^2 - V_1^2 = 2(h_1 - h_2) = 2Cp(T_1 - T_2)$$

$$C_p = \frac{kR}{k-1} \qquad pv = RT$$

$$V_2^2 - V_1^2 = \frac{2k}{k-1} (p_1 v_1 - p_2 v_2) = \frac{2k}{(k-1)} RT_1 (1 - \frac{T_2}{T_1})$$

$$C_p T_1 + \frac{{V_1}^2}{2} = CpT_2 + \frac{{V_2}^2}{2} = CpT_0$$

Temperatura de remanso

$$\frac{T_0}{T} = 1 + \frac{V^2}{2CpT}$$

$$Cp = \frac{kR}{k-1} \qquad \frac{V^2}{kRT} = Ma^2$$

$$\frac{T_0}{T} = 1 + \frac{k-1}{2} Ma^2$$

Presión y densidad de remanso

$$\frac{P_0}{P} = \left(\frac{T_0}{T}\right)^{\frac{k}{k-1}} \qquad \frac{\rho_0}{\rho} = \left(\frac{T_0}{T}\right)^{\frac{1}{k-1}}$$

$$\frac{P_0}{P} = \left(1 + \frac{k-1}{2}Ma^2\right)^{\frac{k}{k-1}} \qquad \frac{P_0}{P} = \left(1 + \frac{k-1}{2}Ma^2\right)^{\frac{1}{k-1}}$$

Velocidad del sonido

$$\frac{c_O}{c} = \sqrt[2]{\frac{T_0}{T}}$$

$$\frac{c_0}{c} = \sqrt[2]{(1 + \frac{k-1}{2}Ma^2)}$$

LEY DE STOKES

Stokes estudió las partículas en suspensión en un fluido con Re <1 (sedimentación). Trabajó con partículas esféricas

Fuerzas actuantes:

Peso =
$$\rho_e gV = \gamma_e V$$

Empuje de Arquímedes = $\rho_f gV = \gamma_f V$

Fuerza de arrastre =
$$C_d \rho A V^2 / 2$$

En equilibrio P = E + R

$$\left(\frac{4}{3}\right)\pi r_0^3 \gamma_e = \left(\frac{4}{3}\right)\pi r_0^3 \gamma_f + C dA \rho V_0^2 / 2$$

 $C_d = 24/Re$

$$\left(\frac{4}{3}\right)\pi r_0^3 (\gamma_e - \gamma_f) = \left(\frac{24}{Re}\right) A \rho V_0^2 / 2$$

$$\left(\frac{4}{3}\right)\pi r_0^3 (\gamma_e - \gamma_f) = \left(\frac{24\mu}{\rho V_0 D}\right) A \rho V_0^2 / 2$$

$$V_0 = \left(\frac{2}{9}\right) * \frac{Re^2}{\mu} (\gamma_e - \gamma_f)$$