EE7401 Probability and Random Processes Practice

1.

Two discrete random variables X and Y have possible values of 4, 5 and 6. Table 1 specifies one of their probability-mass functions (PMFs): $p_{X,Y}(x,y)$, $p_{Y|X}(y|x)$ or $p_{X|Y}(x|y)$.

Table 1					\[\frac{1}{2} P(x,y) = \]
y x	4	5 -	6		71,4
4	a	0.1	0.5	-	0
5	0.2	b	0.4		9,6,670
6	0.3	0.2	c		, , , , ,
	٠,				

Give the conditions (values of a, b, and c), under which the Table 1 specifies PMFs, $p_{Y|X}(y|x)$, $p_{X|Y}(x|y)$ and $p_{X,Y}(x,y)$, respectively.

$$P_{Y|X}(y|x)$$
: $\alpha = 0.5$, $b = 0.7$, $c = 0.1$
 $P_{X|Y}(x|y)$: $\alpha = 0.4$, $b = 0.4$, $c = 0.5$
 $P_{X|Y}(x|y)$: not possible.

$$f_{x}(x) = \begin{cases} \lambda e^{-\lambda x}, x 7,0 \end{cases}$$

2. Let $X \sim \operatorname{Exp}(\lambda)$ be an exponential random variable with parameter λ and $Y = \lfloor X \rfloor$ be the integer part of X, i.e., Y = k for $k \le X < k + 1$, $k = 0, 1, \ldots$

(i) Find the pmf of Y.

(ii) Let Z = X - Y be the quantization error. Find the pdf of Z.

(i)
$$P_{Y}(k) = P(Y=k)$$
, $k=0,1,2,...$
= $P(k \in X < k+1)$

$$= \int_{\mathbf{k}}^{\mathbf{k}+1} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x}$$

$$= \int_{\mathbf{k}}^{\mathbf{k}+1} f_{\mathbf{x}}(\mathbf{x}) d\mathbf{x} = -e^{-\lambda \mathbf{x}} |_{\mathbf{k}}^{\mathbf{k}+1}$$

total prob. law $SZ = U Aie = e^{-\lambda k} - e^{-\lambda (k+1)}$

$$\mathbb{P}(B) = \sum_{k=0}^{\infty} \mathbb{P}(B \cap A_k) = e^{-\lambda h} \left(1 - e^{-\lambda} \right)$$

(ii)
$$\frac{1-e^{-\lambda 3}}{0 \le 3 \le 1} = \frac{1-e^{-\lambda 3}}{1-e^{-\lambda}} = \frac{\lambda e^{-\lambda 3}}{1-e^{-\lambda}}$$

$$f_{z}(z) = \frac{d}{dz} \left(\frac{1 - e^{-z}}{1 - e^{-z}} \right)$$

$$\frac{0 \leq 3 < 1}{\mathbb{P}(Z \leq 3)} = \frac{\mathbb{P}(X - Y \leq 3)}{\mathbb{P}(X - Y \leq 3)}$$

$$=\sum_{k=0}^{\infty}P(k \leq X) \leq z+k$$

3.

(a)

Two continuous random variables X and Y have joint probability density function (pdf)

$$p_{X,Y}(x,y) = \lambda y^2 e^{-xy}, \quad x \ge 0, \ 1 \le y \le 5,$$

where λ is a constant.

given Y

E[O|Y

Express the minimal mean square error estimation of X as a function of the random (a) variable Y. If we observed that Y=2, what is the estimate of X that has the minimal mean square error?

For Linknown value of X, find the estimate of Y that has the minimal mean square (b) error. What is the mean square error of the estimate?

E[X |Y

x710, 15455

 $\lambda y^{2} \left[-\frac{e^{-\lambda y}}{y} \right]_{0}^{\infty}$

for x Pxxx(xly) dx

 $E[Y] = \int_{1}^{5} y \cdot \lambda y \, dy = \lambda \left(\frac{y^{3}}{3}\right)^{5} = \frac{1}{12} \cdot 0$ MSE = Var (Y) = (E[Y]) (E[Y]) $=\lambda \int_{1}^{5} y^{3} dy - \left(\frac{31}{9}\right)^{2}$ ~ 1.136 : mean squered error = FEC (\$). MMSE = minimun maan squared error = Minimum MSE (X= ECXIY) MMSE estimator MMSE: Minimum MSE estimate