

Optimization on Scanning Ion Conductance Microscopy

Yunong WANG

11510774

Undergraduate, Department of Chemistry

SUSTech

Github: https://github.com/KLDistance

Advisor: Prof. Chongyang Liu

Contents

Fundamental Principle of SICM

Fast SICM Model & Applied Techniques*

Ultra-high Resolution on HSQ Imaging*

Future Work

Fig. 1-1. SICM Simple Sketch (Digital device not shown)

SICM Principle

Fig. 1-2. Downward Motion

Fig. 1-3. Current Decline Feedback

General displacement current decline expression:

$$I(d) = \frac{V_0}{R_p + R_a^{\frac{r_0}{r_i}}(d)} = \frac{R_p + R_a^{\frac{r_0}{r_i}}(d \to \infty)}{R_p + R_a^{\frac{r_0}{r_i}}(d)} I_0 = \frac{R_p + R_a^{\frac{r_0}{r_i}}(d \to \infty)}{R_p + R_a^{\frac{r_0}{r_i}}(d)} \times \frac{\sigma V_0 r_i}{\frac{1}{\pi \tan \alpha} + \frac{1}{4}}$$

Where, R_p is the resistance at inner side of probe, and R_a is the outside resistance, r_o is the outer radius of tip, r_i is the inner radius, α is the angle of pipet tip.

Johannes Rheinlaender, Tilman E. Shaffer. Anal. Chem. 2017. 89. 11875-11880

SICM Control Subsystem

Servo Off for analog control, no microadjustment occurs to raise accuracy and speed.

FPGA is real-time and can generate a voltage -10V ~ 10V interval with 65536 amplitude resolution range.

CPU is a preemptive processor, which can be interrupted by multitasking traps.

Not appropriate for real-time control.

Fig. 1-4. Control Subsystem

1 indiscernible and 2 missed. Poor x-y resolution

Fig. 1-5. Hopping Model with Large x-y Step

2 discernible and 1 indiscernible. Relative good x-y resolution

Fig. 1-6. Hopping Model with Small x-y Step

Resolution – Tip Aperture

Fig. 1-7. $r_i \leq 5 nm$ Tip under TEM

Fig. 1-8. Tip with Large Aperture

Fig. 1-9. Tip with Small Aperture

Fig. 2-1. ITO Confocal Microscopy Imaging

Fig. 2-2. Quartz Tip TEM Size Scaling

Fig. 2-3. SICM Imaging

Area: $10\mu m \times 10\mu m$ region, 500×500 steps

Time Elapsed: 124 min = 2.07 hr (29.8 ms / point)

Probe Aperture: 15 nm

Comparison

Area: $40\mu m \times 40\mu m$ region, 128×128 steps

Time Elapsed: 25 min (91.6 ms / point)

Probe Aperture: **80 nm**

Fig. 2-4. A6 Kidney Epithelial Cell SICM Hopping.

hopping mode and fast SICM. Due to the huge number of points being scanned it is possible to resolve features in fast SICM that are not possible to resolve in the hopping mode in a reasonable time scale for a dynamic, live cell surface. A hopping mode image obtained to the highest resolution possible with the hopping mode software, 512×512 pixels would take around 5 h to complete compared to around 10 min for the 1024×600 pixel image in fast SICM.

David Klenerman, Yuri Korchev. *Ultramicroscopy*. 2012. 10. 1016-1023

Strategy – Nonlinear Scanning

Fig. 2-5. Three Strategies of Single Point Scanning

Strategy – Region Classification

Fig. 2-6. Rough ITO Scanning

25×25 steps in 12×12μm square Mask Matrix

Fig. 2-7. Precise ITO Scanning 500×500 steps in $12 \times 12 \mu m$ square

Strategy – Dynamic DMA FIFO

Fig. 2-8. Data Batch Processing and Transmission (Low Efficiency)

Fig. 2-9. Dynamic DMA FIFO (High Resources Occupying Efficiency)

Ultra-high Resolution Imaging

Fig. 3-1 and 3-2. Inclined-crossed HSQ Nanobeam

3-1.

Area: $300 \text{nm} \times 90 \text{nm}$ region, 600×45 steps

Time Elapsed: 30.15min (67 ms / point)

Discernibility: 20nm width, 14nm height

beam.

Probe Resolution: **Below 10nm**.

3-2.

Area: $1.65\mu m \times 1.5\mu m$ region, 1100×100

steps

Time Elapsed: 2.75 hr (90 ms / point)

Ultra-high Resolution Imaging

Result

Fig. 3-3 and 3-4. SEM Images of HSQ Beams

It is a pity that this became a pending case till now!

Future Work

Ion Channel Scanning

Fig. 4-1. Ion Current Rectification of SICM Scanning Charged Sample

Fig. 4-2. Double Lock-In System Making a Sensitive Bias Tip

David Perry, Rehab AI Botros, Dmitry Momotenko, Sophie L. Kinnear, and Patrick R. Unwin. *ACS. Nano*. **2015**. 10. 1021-1032.

Future Work

Fig. 4-3. Impact of Charged Sample on SICM Tip

Future Work

Ion Channel Scanning

Fig. 4-4. SICM for Cell Imaging

References

- [1] Drake, F. H., Pierce, G. W., Dow, M. T. Measurement of the dielectric constant and index of refraction of water and aqueous solutions of KCl at high frequencies. *Physical Review*, 1930, 35(6): 613.
- [2] Gavish, N., Promislow, K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach[J]. *Physical Review*, 2016, 94(1): 012611.
- [3] John, H. S. Frequency-domain description of a lock-in amplifier. American Journal of Physics, 1994, 62(2): 129-133.
- [4] Mancinelli, R., A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper. Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker[J]. *The Journal of Physical Chemistry B*, 2007, 111(48): 13570-13577.
- [5] Rheinlaender, J., Schäffer, T. E. Image formation, resolution, and height measurement in scanning ion conductance microscopy[J]. *Journal of Applied Physics*, 2009, 105(9): 094905.
- [6] Ruscic, B. Active Thermochemical Tables: Water and Water Dimer[J]. *Journal of Physical Chemistry A*, 2013, 117(46): 11940-11953.
- [7] Shevchuk, A. I., Frolenkov, G. I., Sánchez, D., James, P. S., Freedman, N., Lab, M. J., Korchev, Y. E. Imaging Proteins in Membranes of Living Cells by High-Resolution Scanning Ion Conductance Microscopy. *Angewandte Chemie*, 2006, 118(14): 2270-2274.
- [8] Yang, Z.H. The size and structure of selected hydrated ions and implications for ion channel selectivity. *RSC Advances*, 2015, 5(2): 1213-1219.
- [9] Zhang, Y., Gorelik, J., Sanchez, D., Shevchuk, A., Lab, M., Vodyanoy, I., Klenerman, D., Edwards, C., Korchev, Y. Scanning ion conductance microscopy reveals how a functional renal epithelial monolayer maintains its integrity. *Kidney international*, 2005, 68(3): 1071–1077.

Acknowledgement

A Group Makes it Work!

SICM is a big project, many people in our group have worked for it.

Thanks for Prof. Liu's constructive suggestions and patient guide on our work. I also appreciate Bin Li and Zishan Wu's pioneer explorations on SICM instrument establishment and experience. Senior Shengjie Yang and Yiming Li are excellent coworkers and did much contribution to this work. Also thanks to junior fellow students Liying Shang and Lingjie Zhang, who made strong backup preparations and fancy ideas on SICM.

THANKS FOR LISTENING!

