Lesson 2.1 Computing the En	ergy in Food
• The modern metric unit of energy is the	_joule
• An older unit of energy is the <u>calorie</u>	<u>_</u> .
• To convert use: 1 calorie =	4.2 joules
• A food calorie = 1000 energy calories = 1 k	kilocalorie = 1 kcal
Find the grams per serving	
Find the food calories per serving on the abel - remember that these are actually keal	Nutrition Facts Serving Size 1/2 cup (102g) Servings Per Container 4
of energy.	Amount Per Serving
	Calories 300 Calories from Fat 160
Compute the kcal per gram:	% Daily Values* Total Fat 18g 28%
	Saturated Fat 9g 45%
$calories\ per\ serving = \underline{\qquad} 300 \underline{\qquad} kcal$	Trans Fat 0g
	Cholesterol 45mg 15%
$grams\ per\ serving = \underline{\qquad 102} g$	Sodium 250mg 10%
	Total Carbohydrate 33g 11% Dietary Fiber 1g 4%
calories per serving	Sugars 30g
$rac{calories\ per\ serving}{grams\ per\ serving} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Protein 7g
grame per serving	Vitamin A 15% • Vitamin C 0%
	Calcium 15% • Iron 4%
Lab Safety	* Percent Daily Values are based on a 2,000 calorie diet.
1. You should always plan for the <u>best</u>	_, but prepare for theworst
2. What should you do first if you get chemical	ls in your eyes? <u>call for help</u>
3. What should you hold open while rinsing you	ur eyes? <u>eye lids</u>
4. How long should you rinse your eyes? <u>15 - 2</u>	20 minutes
5. What should you do if you get chemicals on	your skin? rinse with water
6. How long should you rinse in the shower? 1	5 minutes
7. What are the three parts of the fire triangle? _	fuel , oxygen , heat
8. What should you do to a small lab fire? _sm	nother it
9. What do you do if your clothing is on fire?	stop , drop and roll
0. What is the cardinal rule in an emergency?	

period:____

name:_____

Unit 2: Combustion

Lesson 2.2 Bio-fuel Lab

Materials

Procedure

Measurements

	Variable	value (unit)
1	Volume of water (ml)	100 ml
2	Initial mass of food and paper (g)	
3	Final mass of food and paper (g)	
4	Δm line 2 - line 3 (g)	
5	Final temperature of the water (°C)	
6	Initial temperature of the water (°C)	
7	ΔT line 5 - line 6 (°C)	

Error Analysis

Human Errors

1. Human errors are caused by mistakes people make. What do you think could be a human error that would affect the data obtained in this lab?

Experimental Errors

1. Experimental errors are caused by the equipment or material being used. What do you think could be an experimental error that would affect the data obtained in this lab?

Lesson 2.3 Combustion Conference

1. What happened to the atoms and molecules in the nut when it burned?

2. Where did the energy for the fire come from and where did it go?

3. What happened to the water molecules when the water temperature increased

Lesson 2.4 Combustion Video

Watch the YouTube What is Combustion? and answer the questions below:

- 1. <u>wood</u> is a fuel used a lot in the past, and even today.
- 2. The three most widely used fuels today are <u>coal</u>, <u>oil</u>, and <u>natural gas</u>.
- 3. A newer fuel often used in rockets is <u>hydrogen</u>.
- 4. When a fuel is burned it always combines with <u>oxygen</u>.
- 5. Other products released during combustion are <u>carbon dioxide</u> and <u>water</u> that are emitted as a <u>gas</u>.
- 6. A very fast combustion reaction is called an <u>explosion</u>.
- 7. We use fast reactions in <u>car engines</u>.
- 8. Combustion reactions are used for: <u>cooking</u>, <u>manufacturing</u>, <u>produce electricity</u>, <u>heating water</u>, <u>motor vehicles</u>, and <u>heating</u>.

Word Bank

car engines	carbon dioxide	coal
cooking	explosion	gas
heating	heating water	hydrogen
manufacturing	motor vehicles	natural gas
oil	oxygen	produce electricity
water	wood	