Inducción y Recurrencia (complementaria)

Ejercicio 1. Sean a, b, m números enteros tales que m > 0 y a - b es múltiplo de m. Demuestra por inducción que $a^n - b^n$ es múltiplo de m para todo entero $n \ge 0$.

Ejercicio 2. Sean x_n e y_n las sucesiones siguientes:

$$x_0 = 1$$
 $y_0 = 0$ $x_n = x_{n-1} + 2$ $y_n = y_{n-1} + 4n$

Encuentra una expresión para ambas sucesiones.

Comprueba las siguientes igualdades:

$$1^{2} + 0^{2} = 1^{2}$$
 $7^{2} + 24^{2} = 25^{2}$
 $3^{2} + 4^{2} = 5^{2}$ $9^{2} + 40^{2} = 41^{2}$
 $5^{2} + 12^{2} = 13^{2}$ $11^{2} + 60^{2} = 61^{2}$

Induce una regla general y demuéstrala.

Ejercicio 3. Definimos las sucesiones siguientes:

$$\begin{split} x_1 &= 0 \quad y \quad x_n = n \cdot x_{n-1} + (-1)^n \quad \text{para todo } n \geq 2, \\ y_n &= n! \cdot \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right) \quad \text{para todo } n \geq 1. \end{split}$$

Demuestra que $x_n = y_n$ para todo $n \ge 1$.

Ejercicio 4. Sea la sucesión $x_0 = 1$, $x_n = x_{n-1} + 4\sqrt{x_{n-1}} + 4$ para $n \ge 1$. Encuentra una expresión no recurrente para x_n y demuestra la validez de la misma.

Ejercicio 5. Para cada natural $n \ge 1$, escribimos n veces el número 1 y n veces el número -1 mezclados de forma arbitraria formando un círculo. Demuestra que es posible comenzar en uno de dichos valores y recorrer todo el círculo de modo que en todo momento la suma de todos los números por los que se ha pasado nunca sea negativa.

Ejercicio 6. Sea $x_0 = 1$, $x_1 = 2$ y $x_n = 4 + x_{n-2}$ para todo $n \ge 2$. Demuestra que $x_n = \frac{1}{2}(4n + 1 + (-1)^n)$ para todo $n \ge 0$.

Ejercicio 7. Sea $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Obtén una expresión para A^n . Demuestra que

$$A^{n} = \begin{pmatrix} F_{n+1} & F_{n} \\ F_{n} & F_{n-1} \end{pmatrix}.$$

Utiliza esto para demostrar que $F_{n-1} \cdot F_{n+1} = (F_n)^2 + (-1)^n$

Ejercicio 8. Obtén una fórmula para la suma

$$\sum_{k=1}^{n} \frac{1}{k \cdot (k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n \cdot (n+1)}$$

y demuéstrala por inducción.

Repite lo mismo para la suma

$$\sum_{k=0}^{n} \frac{k}{(k+1)!} = \frac{0}{1!} + \frac{1}{2!} + \frac{2}{3!} + \dots + \frac{n}{(n+1)!}$$

1

Ejercicio 9. Obtén una fórmula reducida para la sucesión $T_n = \sum_{k=1}^n k2^k$ definida para todo $n \ge 1$.

Ejercicio 10. Trazamos n líneas rectas en el plano de forma que cada una de ellas corte a cada una de las restantes exactamente en un punto y no haya tres o más líneas que pasen por un mismo punto. Encuentra una expresión no recurrente para el número de regiones en las que el plano queda dividido por n líneas rectas que verifiquen las condiciones anteriores.

Ejercicio 11. (*Problema de Fibonacci*) Se precisa determinar el número de parejas de conejos adultos resultantes de una pareja de conejos recién nacidos al transcurrir n meses, si cada pareja adulta produce mensualmente una nueva pareja y los recién nacidos adquieren la posibilidad de procrear pasado un mes. Se supone que los conejos no mueren nunca.

Ejercicio 12. (Complejidad de Buble Sort) Si tenemos n números reales, $\alpha_1, \alpha_2, \cdots, \alpha_n$, que queremos ordenar de manera ascendente, podemos utilizar para ello el algoritmo "buble sort": comparamos α_1 con α_2 , si es menor se deja tal cual, y si $\alpha_1 > \alpha_2$ entonces se intercambian estos valores en la lista. Luego se repite el procedimiento con α_2 y después de n-1 comparaciones, el número más grande de la lista está al final. Se repite el proceso para los n-1 restantes hasta conseguir ordenar la lista completa. Calcula la complejidad del algoritmo, basado en el número de comparaciones necesarias para una lista de longitud n.

Ejercicio 13. En una competición en la que participan n personas, cada una debe jugar contra todas las restantes. En cada partido, siempre hay uno que gana y otro que pierde (no puede haber empate).

Dados unos jugadores p_1, p_2, \dots, p_m se dice que forman un ciclo (de longitud m) si p_1 vence a p_2, p_2 vence a p_3, \dots, p_{m-1} vence a p_m y p_m vence a p_1 .

Demuestra que si hay un ciclo de longitud mayor o igual que 3, entonces tiene que haber un ciclo de longitud 3.

Ejercicio 14. Basándose en la identidad $2^{2^n} - 1 = (2^{2^{n-1}} - 1) \cdot (2^{2^{n-1}} + 1)$, válida para todo entero positivo n, demuestra que para todo entero $n \ge 1$ el número $2^{2^n} - 1$ tiene al menos n divisores primos distintos.

Ejercicio 15. Para cada $n \geq 1$, definimos $x_n = \sqrt{n + \sqrt{(n-1) + \sqrt{\dots + \sqrt{2 + \sqrt{1}}}}}$. Obtén una expresión recurrente para x_n y demuestra que $x_n < \sqrt{n} + 1$ para todo $n \geq 1$.

Ejercicio 16. (Septiembre 2011)

Sea la sucesion de números enteros f(n) = f(n-1) + f(n-2) para $n \ge 3$ y f(1) = 8, f(2) = 13. Demuestra que 5 divide a f(5n) para todo $n \ge 1$.

Ejercicio 17. (Septiembre 2011) Sea u_n la sucesión definida por:

$$u_0 = 1$$

 $u_1 = 4$
 $u_n = 4(u_{n-1} - u_{n-2}), \text{ si } n \ge 2.$

Encuentra una expresión para el término general u_n y calcula u_{25} .

Ejercicio 18. (Septiembre 2011)

Sea mul la función dada por:

$$\begin{split} &\text{mul}(\alpha,0)=0,\\ &\text{mul}(\alpha,n)=\left\{\begin{array}{ll} &\text{mul}\left(2\alpha,\frac{\alpha}{2}\right) &\text{si n es par.}\\ &\text{mul}\left(2\alpha,\frac{n-1}{2}\right)+\alpha &\text{si n es impar.} \end{array}\right. \end{split}$$

- a) Calcula mul(5,8), mul(7,10), mul(10,13).
- b) Demuestra por inducción que $\text{mul}(a,n) = a \cdot n$ para cualesquiera $a,n \in \mathbb{N}$.

Ejercicio 19. (Julio 2012)

Sea x_n la sucesión definida por:

$$x_0 = 0;$$
 $x_1 = \frac{4}{3};$ $x_n = x_{n-1} + 2 \cdot x_{n-2} + 2^n.$

1. Calcula los términos x_2 , x_3 , x_4 .

- 2. Encuentra una relación de recurrencia lineal homogénea para la sucesión x_n .
- 3. Calcula una expresión para el término general x_n .
- 4. Calcula x_{10} .

Ejercicio 20. (Septiembre 2012)

Sean x_n e y_n las sucesiones definidas por:

$$\begin{array}{ll} x_0=0, & y_0=0, \\ x_1=2 & \\ x_n=3x_{n-1}-2x_{n-2}+2^n. & y_n=y_{n-1}+n\cdot 2^n. \end{array}$$

Es decir,
$$y_n = \sum_{k=0}^n k \cdot 2^k = 0 \cdot 2^0 + 1 \cdot 2^1 + \dots + n \cdot 2^n$$
.

- 1. Calcula los términos x_2 , x_3 , x_4 , x_5 e y_1 , y_2 , y_3 , y_4 , y_5 .
- 2. Comprueba que $x_n = y_n$ para todo número natural n.
- 3. Calcula una expresión para el término general x_n .

Ejercicio 21. Encuentra una fórmula explícita para la sucesión definida por:

$$\begin{cases} x_0 = 0 \\ x_n = -x_{n-1} + 2^n + 1 \end{cases}$$

Ejercicio 22. (Julio 2016)

1. Encuentra una expresión no recurrente para la sucesión siguiente:

$$x_0 = 2$$
; $x_1 = 2$; $x_n = x_{n-2} + 2^n + (-1)^n$ para $n \ge 2$

2. Demuestra por inducción que para cada número natural $n \ge 1$ se tiene que

$$\prod_{k=1}^{n} \left(1 - \frac{1}{(k+1)^2} \right) = \frac{n+2}{2n+2}$$

Ejercicio 23. (Julio 2016. Incidencias)

1. Encuentra una expresión no recurrente para la sucesión siguiente:

$$y_0 = 2$$
; $x_1 = 6$; $y_n = 3y_{n-1} - 2y_{n-2} + 2 \cdot 3^{n-2} - 1$ para $n \ge 2$

2. Sea x_n la sucesión definida por:

$$x_n = \sum_{k=0}^{n} (k+1) \cdot 2^{n-k}$$

- a) Calcula cuánto vale $x_{n+1} 2x_n$ para $n \ge 1$.
- b) Demuestra por inducción que $x_n = 2^{n+2} n 3$.

Ejercicio 24. (Septiembre 2016)

- 1. Demuestra que para cualquier número natural n el número $n^2 n$ es par. Utiliza esto para demostrar que $n^3 3n^2 4n$ es múltiplo de 6 para todo $n \in \mathbb{N}$.
- 2. Obtén dos soluciones distintas del problema de recurrencia lineal no homogénea siguiente:

$$x_n = 2x_{n-1} - x_{n-2} + (-2)^n$$

Comprueba que si z_n es una solución de dicha recurrencia, entonces también lo es $w_n = z_n + n$.

Ejercicio 25. (Septiembre 2016. Incidencias)

- 1. Sea x_n la sucesión definida como $x_n = \sum\limits_{k=0}^n k \cdot 2^{k+1}.$
 - a) Calcula los 4 primeros términos de la suciesión.
 - b) Calcula una expresión recurrente para x_n .
 - c) Resuelve la recurrencia plantea da en el apartado anterior y calculs x_{22} .
- 2. Sea $n \in \mathbb{N}$. Demuestra que $n^5 n$ es múltiplo de 10.