Theme 1 Introductory Material

Module T1M1:

The Predictable Universe

If you have questions or want to learn more about physics programs, summer research, or physics-related careers please contact:

Laura Parker ABB 350

<u>Iparker@mcmaster.ca</u>

www.physics.mcmaster.ca

Lab sections:

- Better when the TA/student ratio is higher:
- We are encouraging students to migrate:
 - only from sections L01-L05, L08, L10
 - to sections L09, L13-L18.
- First come first serve basis.
- Email our Senior Lab Supervisor, Dr. Vorobyov voroby@mcmaster.ca
- Email with: name, student ID number, your current section, and the one you would like to switch to
- Dr. Vorobyov will then respond to you to let you know if the switch was possible.

T1M1 – Learning Objectives

- Identify the approach taken by physicists to understanding complex phenomena.
- Recognize that measurements are really comparisons with a standard unit of measure, and that different standard units can be related to each other.
- Distinguish between the specific units of a measured quantity, and the more general statement of the dimensions of the quantity.
- Recognize that the dimensions of a quantity are helpful at predicting the relationships that govern a system.
- Understand the idea of *proportionality* to describe the specific way in which quantities are related.

Now that you have had a chance to review the entire first module, T1M1, here is your first

module quiz!

Dimensional analysis (120 seconds)

• In the following formula, what are the dimensions of the variable *E*?

$$U = \frac{AE}{X^2}$$

A.
$$\left[\frac{L^2}{M^2 T}\right]$$

C.
$$\left[\frac{1}{L^2T}\right]$$

B.
$$\left[\frac{M}{L^2T}\right]$$

D.
$$\left[\frac{L^2}{T}\right]$$

Proportionality (120 seconds)

 For the formula given, which relationships, when plotted on a graph, would yield a straight line, as shown:

$$U=\frac{AE}{X^2}$$

- A. E vs. A (U, X held constant)
- **B.** A vs. X^2 (U, E held constant)
- C. U vs. X (E, A held constant)
- **D.** U vs. X^2 (E, A held constant)
- E. I don't know

Unit conversion (120 seconds)

- As you learn physics, your brain gets more massive (unverified). If your brain grows 1 kg in 12 weeks, what is the growth rate in grams per hour?
- A. 0.50 g/hr
- B. 3.5 g/hr
- C. 12 g/hr
- D. 24 g/hr
- E. I don't know

Answers to Module Clicker Quiz

- Dimensional analysis
- Proportionality
- Unit conversion

Proportionality

- The natural world rarely provides us with access to all the details to put together a complete picture!
- The trends and relationships that we observe allow us to infer general rules that we incorporate into a model

Proportionality: $x \propto y$ implies that

- If we double x, then y also doubles
- If y is reduced to $1/7^{th}$ of it's value, so is x.
- We would incorporate into our model

$$x = ay$$

where *a* is a constant of proportionality, independent of the actual values of *x* and *y*

Geometric proportionalities

• <u>Isometric</u> = same geometry, different size

- For a simple cube, various properties can be related to the side length:
 - If you double every dimension, how does area change?
 Volume?
 - area $\propto d^2$
 - volume $\propto d^3$
- Does this change for a sphere (radius r)?

Using ratios to solve problems

 From previous slide: How many times more volume of large cube compared to small cube?

$$\frac{V_{big}}{V_{small}} = \frac{(2d)^3}{d^3} = 2^3 = 8$$

• What about two spheres of radii r and 2r?

$$\frac{V_{big}}{V_{small}} = \frac{\frac{4}{3}\pi(2r)^3}{\frac{4}{3}\pi r^3} = \frac{(2r)^3}{r^3} = 2^3 = 8$$

- In both cases, when length scale increases 2x, the volume increases by factor $(2)^3 = 8!$
- ***The details of the shape don't matter (i.e. the $4/3\pi$ prefactors cancel when you take a ratio)

12

How do other quantities scale?

- Let's define a general length scale, L.
 - Could be side length, radius, diameter any linear measurement of object's size

We know that:

• Area $\propto L^2$

• Volume $\propto L^3$

- What about Mass? ∞ Volume ∞L^3
 - Assume that two objects have the same density

Practical application: Clothing your clone

Mini me weighs exactly 1/8th of Dr. Evil's mass. How much more material is needed for Dr. Evil's suit than for mini me's?

$$\frac{M_{DE}}{M_{mm}} = 8 = \left(\frac{L_{DE}}{L_{mm}}\right)^3$$

$$\frac{L_{DE}}{L_{mm}} = 8^{\frac{1}{3}} = 2$$

$$\frac{A_{DE}}{A_{mm}} = \left(\frac{L_{DE}}{L_{mm}}\right)^2 = 2^2 = 4$$

So, four times more material $\frac{A_{DE}}{A_{max}} = \left(\frac{L_{DE}}{L_{max}}\right)^2 = 2^2 = 4$ is needed for Dr. Evil's suit than for mini me's.

How do other quantities vary with size?

- Start by defining a length scale, L.
- We know that:

• Area $\propto L^2$

• Volume $\propto L^3$

• What about Mass? \propto Volume $\propto L^3$

- What about:
 - flow into/out of an object for example, heat flow?
 - Production of heat/energy/waste by an object?

Clicker Quiz

How would you expect the amount of **body heat generated (G)** to scale with the linear dimension, **L**, of an organism?

A.
$$G \propto L^{2/3}$$

B.
$$G \propto L^2$$

C.
$$G \propto L^{3/2}$$

D.
$$G \propto L^3$$

Clicker Quiz

How would you expect the amount of **body heat lost (H)** to scale with the linear dimension, **L**, of an organism?

A.
$$H \propto L^{2/3}$$

B.
$$H \propto L^2$$

C.
$$H \propto L^{3/2}$$

D.
$$H \propto L^3$$

E. I have no idea

Example: Rate of heat loss

 A grown adult weighs 70 kg while a newborn baby weighs 5 kg.

Compare the

- (a) rate of heat loss, and
- (b) heat loss rate per kg of each.

Example: Rate of heat loss

 A grown adult weighs 70 kg while a newborn baby weighs 5 kg.

$$\frac{M_{Big}}{M_{Small}} = \frac{70}{5} = 14$$

 The adult is 14 times as massive. Let's relate mass to a characteristic length (height, for example)

$$\frac{M_B}{M_S} = \left(\frac{L_B}{L_S}\right)^3 \longrightarrow \frac{L_B}{L_S} = \left(\frac{M_B}{M_S}\right)^{\frac{1}{3}} = 14^{\frac{1}{3}} = 2.41$$

This tells us that the adult is roughly 2.5 times taller

Example: Rate of heat loss

 A grown adult weighs 70 kg while a newborn weighs 5 kg.

Since we now have a ratio of lengths, we can use to learn about:

(a) rate of heat loss

$$\frac{H_B}{H_S} = \left(\frac{L_B}{L_S}\right)^2 = 2.41^2 = 5.81$$

(b) heat loss rate per kg of each.

$$\frac{G_B}{G_S} = \left(\frac{L_B}{L_S}\right)^3 = 2.41^3 = 14$$

Heat loss is 6x greater for the adult.

BUT, heat generated by adult is 14x greater!

a) Rate of heat loss (H):

- The 3-step process to solving scaling problems:
 - 1. Start with a known ratio: $\frac{M_{Big}}{M_{Small}} = \frac{70}{5} = 14$
 - 2. Get ratio of length scales: $\frac{M_B}{M_S} = \left(\frac{L_B}{L_S}\right)^3 \longrightarrow \frac{L_B}{L_S} = \left(\frac{M_B}{M_S}\right)^{\frac{1}{3}} = 14^{\frac{1}{3}} = 2.41$
 - 3. Use this to find ratio of new quantity (H): $\frac{H_B}{H_S} = \left(\frac{L_B}{L_S}\right)^2 = 2.41^2 = 5.81$

So, the big guy loses heat 5.81 times faster

b) Heat Generated:

1. This depends on mass $\frac{G_B}{G_S} = \frac{M_B}{M_S} = 14$

$$H \propto L^2$$
, $M \propto L^3 \Rightarrow \frac{H}{M} = \frac{L^2}{L^3} = \frac{1}{L} \Rightarrow \frac{(H/M)_B}{(H/M)_S} = \frac{1/L_B}{1/L_S} = \frac{L_S}{L_B} = \frac{1}{2.41} = 0.415$

The adult loses more heat, the rate of heat loss per kilogram is greater for the baby. Remember the heat generation is proportional to mass (L³), so this is exactly what we talked about in class.

Are we blowing this out of proportion?

Where do we see this in the 'real world'?

Cell size (from module) – surface area to volume

there is a practical limit to the size of a cell

<u>Allometry:</u> The study of the relationship of body size to other characteristics of organisms (shape, anatomy, behaviour...)

- Metabolic rate \propto (Mass)^{3/4}
- Breathing, heart rate \propto (Mass)^{-1/4}
- Optimal cruising speed (flight) \propto (Mass)^{1/6}

Societal implications

- Density of gas stations vs. city size
- Types of employment, wages vs. city size

What can we infer from these relationships?

 Understanding how two quantities are connected helps us to understand the nature of the relationship!

What can this tell us about brain mass and intelligence?

Inferences using proportionality

Of course, it's not enough to just have a proportionality;
 there's more to modeling than that!!

MY HOBBY: EXTRAPOLATING

How do other quantities vary with size?

- Start by defining a length scale, L.
- We know that:
 - Area $\propto L^2$
 - Volume $\propto L^3$
 - Mass? \propto Volume $\propto L^3$
- Flow (heat, chemical, electrical) $\propto L^2$
- Heat production $\propto L^3$

What about strength?

Limitations on animal size, and mobility

Skeleton of a house cat and an elephant

What does this illustration tell you?

Something to think about

Could King Kong exist as shown in the movies?

Gorilla: 180 kg, 1.7 m tall, (eats ~25 kg food/day)

King Kong – 7x scaled up version of a gorilla

Vectors

- Scalars
 - Answers a question like:
 - How hot?
 - How heavy?
 - How far can you throw the person sitting next to you?
- Vectors
 - Used when a number doesn't give enough info
 - Velocity $\vec{v} = 20 \, m/s$ [north]

You will want to become comfortable with vector addition & subtraction, and in particular, working with vector components

Vector Addition

When adding vectors, line them up 'tip-to-tail'

$$\vec{A} + \vec{B} = \vec{B} + \vec{A}$$

Vector Subtraction

- What about $\vec{A} \vec{B}$?
 - Let's create a vector $-\vec{B}$
- Now we can simply add:

$$\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$$

Clicker Quiz

• For the two vectors shown, what is $\vec{A} + \vec{B}$

Clicker Quiz

• For the two vectors shown, what is $\vec{A} - \vec{B}$

Vector Notation

1)
$$\vec{R} = (R, \theta)$$

- $R = |\vec{R}|$ is the 'magnitude'
- θ is the direction, relative to the +x axis

$$2. \quad \vec{R} = (R_{\chi}, R_{\gamma})$$

- "vector components"
- Sometimes also write $\vec{R} = R_x \hat{\imath} + R_v \hat{\jmath}$

where \hat{i} and \hat{j} indicate the +x and +y directions

1.
$$(R, \theta) \rightarrow (R_{\chi}, R_{\gamma})$$

•
$$R_{\chi} = R \cos(\theta)$$

$$x \bullet R_{y} = R \sin(\theta)$$

2.
$$(R_x, R_y) \rightarrow (R, \theta)$$

•
$$R = \sqrt{(R_x)^2 + (R_y)^2}$$

•
$$tan(\theta) = \frac{R_y}{R_X}$$

Vector Notation – Can you express these vectors in terms of (R, θ) and (R_x, R_y) ?

$$(R_x, R_y)$$
 (R, θ)

Adding two vectors using components

Adding two vectors using components

$$F_{2x} = F_2 \cos \alpha$$

$$F_{2y} = F_2 \sin \alpha$$

$$F_{1x} = F_1 \cos \beta$$

$$|F_{1y}| = |F_1| \sin \beta$$

$$R_{x} = F_{1x} + F_{2x}$$

$$R_{y} = F_{1y} + F_{2y}$$

$$R = \sqrt{R_x^2 + R_y^2}$$

$$\tan \varphi = R_y / R_x$$

Vector Components

$$\vec{F} = \vec{A} + \vec{B}$$

$$|\vec{A}| = F \cos \theta$$

$$\left| \vec{B} \right| = F \sin \theta$$

$$\vec{F} = \vec{C} + \vec{D}$$

$$\left| \vec{C} \right| = F \cos \beta$$

$$\left| \vec{D} \right| = F \sin \beta$$

Vector Components

Referring to previous slide:

- Vector components are two perpendicular vectors, which add to give the total vector ("F")
- There are an infinite number of pairs that will do this
 - i.e. components are **NOT** just a horizontal/vertical pair!
- However, for specified values of (F, θ) there is one corresponding set of components (F_x, F_y) , and vice versa
- It will be very helpful later in the course to be comfortable with finding the values of components!

$sin(\theta)$ or $cos(\theta)$?

SOH CAH TOA

- Sin = Opposite/Hypoteneuse
- Cos = Adjacent/Hypoteneuse
- Tan = Opposite/Adjacent

PEN SWIPE

- Swipe over θ gives 'cos'
- Swipe away from θ gives 'sin'

 $\mathbf{F}_{\mathbf{X}} = \mathbf{F}\mathbf{cos}(\mathbf{\theta})$

poop θ

Theme 1 Introductory Material

Module T1M2:

Precision and Estimation

Learning Objectives

- Recognize that the presentation of a numerical quantity, using significant figures and scientific notation, reflects the accuracy of a measurement.
- Carry the appropriate significant figures through simple arithmetic calculations.
- Appreciate the importance of estimating unknown quantities as a means of understanding a system and predicting outcomes.
- Develop the skill of making an estimate and performing 'order of magnitude' approximations.

Significant Figures

 When expressing a quantity, we want to communicate how precisely we know its value

• Example: My height is 16.705423 TP-sheets

Is this a trustworthy statement?

- We usually count as "significant" all digits up to the first uncertain one
 - Based on how the measurement was made
 - Could be statistically determined (result of variations observed over successive measurements)

Significant Figures

For a properly written quantity

How many sig figs?

Assuming these quantities have been properly expressed, how many significant figures does each have?

• 26.38

(4 sig figs),

• 27

(2 sig figs),

• 0.00500

(3 sig figs),

• 0.03**040**

(4 sig figs),

• 3.**0**88**0**

(5 sig figs),

• 0.00418

(3 sig figs),

• 3.2088×10⁶

(5 sig figs).

Sig Figs & Arithmetic

 When adding/subtracting quantities which have a specific number of significant figures

the number of decimal places in our answer must match that of the least reliable measurement

• Examples:

a)
$$2.54 \text{ cm} + 1.2 \text{ cm} = ?$$
 = $3.7 \text{ cm} (Not 3.74)$

b)
$$7.432 \text{ cm} + 2 \text{ cm} = ?$$
 = $9 \text{ cm} (\text{Not } 9.432)$

Don't forget to round!

c)
$$7.632 \text{ cm} + 2 \text{ cm} = ?$$
 = $10 \text{ cm} (Not 9.632)$

Sig Figs & Arithmetic

 When multiplying/dividing quantities which have a specific number of significant figures

the number of significant figures in our answer must match that of the least reliable measurement

• Example:

```
a) 56.78 \text{ cm} \times 2.45 \text{ cm} = ?
= 139 \text{ cm}^2 \text{ (Not } 139.111 \text{ cm}^2\text{)}
```

Sig Figs & Scientific Notation

What about this one?

```
a) 8132 \text{ m} \div 35 \text{ s} = ?
= 232 \text{ m/s}?
= 230 \text{ m/s}?
```

Use Scientific Notation: $8132 \text{ m} \div 35 \text{ s} = 2.3 \times 10^2 \text{ m/s}$

Clicker Quiz

 How many significant figures should be written in the sum of:

14.65 g +9.023 g + 850.0078 g + 26540.4390 + 0.80 g?

- A. 3
- B. 4
- C. 5
- D. 6
- E. 7

Clicker Quiz

 A parking lot is 134.3 m long and 37.66 m wide. The parking lot area is

- A. $5.05774 \times 10^3 \text{ m}^2$
- B. $5.0577 \times 10^3 \text{ m}^2$
- C. $5.058 \times 10^3 \text{ m}^2$
- D. $5.06 \times 10^3 \text{ m}^2$
- E. $5.1 \times 10^3 \text{ m}^2$

Answers to Clickers

• Addition of terms: E

Calculation of area: