ImpactDataViz 241 Final Project

```
# load packages
library(data.table)
library(foreign)
library(sandwich)
library(stargazer)
##
## Please cite as:
   Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
library(lmtest)
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.6.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(tidyr)
## Warning: package 'tidyr' was built under R version 3.6.2
library(knitr)
library('ggplot2')
library(fastDummies)
```

Common functions

```
# function to return confidence intervals with bust se
get_confint_robust = function(model, vcovCL) {
  t<-qt(.975, model$df.residual)
  ct<-coeftest(model, vcovCL)</pre>
  est<-cbind(ct[,1], ct[,1]-t*ct[,2], ct[,1]+t*ct[,2], ct[,4])
  colnames(est)<-c("Estimate","LowerCI","UpperCI","pValue")</pre>
 return(est)
}
# parse out the regression results using robust standard errors
get_regression_results_robust_se = function(model, df, variable_names, showAsTibble) {
  model$vcovHC = vcovHC(model,type="HC1")
 robust_se_all
                  <- sqrt(diag(model$vcovHC))
  est = get_confint_robust(model,model$vcovHC)
  robust_se = c(rep(0, length(variable_names)))
  i = 1
  for (variable_name in variable_names) {
   robust_se_single <- sqrt(diag( model$vcovHC))[variable_name]</pre>
   robust se[i] = robust se single
   i = i + 1
  }
  coef = est[variable_names, 'Estimate']
  ci_lower_robust = est[variable_names, 'LowerCI']
  ci_lower_robust = est[variable_names, 'LowerCI']
  ci_upper_robust = est[variable_names, 'UpperCI']
  p_value = est[variable_names, 'pValue']
  results = data.table(id = variable_names)
  results[, coef := round(coef,4)]
  results[, ci_lower := round(ci_lower_robust,4)]
  results[, ci_upper := round(ci_upper_robust,4)]
  results[, p_value := signif(p_value, 5)]
  results[, robust_se := round(robust_se,4)]
  if (showAsTibble) {
   print(as tibble(results))
 return( list('estimates'=results, 'robust_se_all'=robust_se_all))
}
# Multiple plot function
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects)
# - cols: Number of columns in layout
# - layout: A matrix specifying the layout. If present, 'cols' is ignored.
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE),
# then plot 1 will go in the upper left, 2 will go in the upper right, and
# 3 will go all the way across the bottom.
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {</pre>
```

```
library(grid)
  # Make a list from the ... arguments and plotlist
  plots <- c(list(...), plotlist)</pre>
  numPlots = length(plots)
  # If layout is NULL, then use 'cols' to determine layout
  if (is.null(layout)) {
    # Make the panel
    # ncol: Number of columns of plots
    # nrow: Number of rows needed, calculated from # of cols
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),</pre>
                    ncol = cols, nrow = ceiling(numPlots/cols))
 }
 if (numPlots==1) {
    print(plots[[1]])
  } else {
    # Set up the page
    grid.newpage()
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
    # Make each plot, in the correct location
    for (i in 1:numPlots) {
      # Get the i,j matrix positions of the regions that contain this subplot
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))</pre>
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
                                       layout.pos.col = matchidx$col))
    }
 }
}
```

1. Parse the survey data into a data.table

```
parse_survey_data = function(filename, treatment_only=FALSE) {
  cat(filename, "\n")
  raw <- fread(filename)

# covariates
setnames(raw, 'Q3', 'state')
setnames(raw, 'Q4', 'gender')
setnames(raw, 'Q5', 'age')
setnames(raw, 'Q6', 'ethnicity_multi')
setnames(raw, 'Q7', 'political_party')
setnames(raw, 'Q8', 'education')
setnames(raw, 'Q9', 'covid_sick')
setnames(raw, 'Q10', 'covid_hospitalized')
setnames(raw, 'Q11', 'covid_died')</pre>
```

```
# duration of survey time
  setnames(raw, 'Duration (in seconds)', 'duration_of_survey')
  # which block was active? (did the user see the treatment or
  # control data viz)
  setnames(raw, 'Q15', 'treatment_viz_is_accurate')
  if (!treatment_only) {
   setnames(raw, 'Q17', 'control viz is accurate')
  }
  # outcome questions about COVID attitudes
  setnames(raw, 'Q18', 'outcome_spread')
  setnames(raw, 'Q19', 'outcome_death')
  # which block was active determines if
  # subject received treatment data viz or control
  # data viz
  cat(" number of responses", nrow(raw), '\n')
  raw[, treatment := ifelse(is.na(treatment_viz_is_accurate), 0, 1)]
  cleaned = raw[!is.na(outcome spread) & !is.na(outcome death),]
  cat(" number of responses after dropping na", nrow(cleaned), '\n')
  # ethnicity allows for multiple choice
  # for covariates, just grab the first one
  ethnicity_single = rep(0,nrow(cleaned))
  i = 1
  for (eth_entry in cleaned[,ethnicity_multi]) {
   eth_tokens = unlist(strsplit(eth_entry, ","))
   ethnicity_single[i] = as.numeric(eth_tokens[1])
    i = i + 1
  cleaned[, ethnicity := ethnicity_single ]
  # counts in control vs treatment
  n control = nrow(cleaned[treatment == 0, ])
  n_treatment = nrow(cleaned[treatment == 1, ])
  cat(" number in treatment", n treatment, "\n")
  cat(" number in control", n_control, "\n\n")
 return(cleaned)
}
# A large run of 260 subjects run on 7/21
run1 <- parse_survey_data("data/run1.2020.07.21.csv")</pre>
## data/run1.2020.07.21.csv
## number of responses 265
## number of responses after dropping na 259
## number in treatment 131
## number in control 128
```

```
run1 = run1[, run := 0]
run1[, condition := treatment]
# One small run was done in evening 7/24 treatment only
run2_small <- parse_survey_data("data/run2.small.2020.07.24.csv", TRUE)
## data/run2.small.2020.07.24.csv
## number of responses 33
## number of responses after dropping na 30
## number in treatment 30
## number in control 0
run2_small[, run := 1]
run2_small[, condition := treatment]
run2_small[, control_viz_is_accurate := ""]
# A large run of 270 run on 7/25 treatment and control
run2_large <- parse_survey_data("data/run2.2020.07.25.csv")</pre>
## data/run2.2020.07.25.csv
## number of responses 270
## number of responses after dropping na 262
## number in treatment 130
## number in control 132
run2_large = run2_large[, run :=1]
run2_large[, condition := treatment]
run2 = rbind(run2_small, run2_large)
# Combine the runs on 7/21 and 7/25
combined = rbind(run1, run2)
```

2. EDA

2.1 Check Duration of Survey

```
show_duration = function(d) {
  cat('duration for control ', mean(d[condition == 0,duration_of_survey]), '\n')
  cat('duration for treatment', mean(d[condition == 1,duration_of_survey]), '\n\n')
}
show_duration(run1)

## duration for control 153.1875
## duration for treatment 172.2061
```

```
## duration for control 136.7955
## duration for treatment 205.5813

show_duration(combined)

## duration for control 144.8654
## duration for treatment 190.5567
```

3. Covariate balance

3.1 Compare distributions using violin plote

```
check_covariate_balance = function(d) {
  options(repr.plot.width = 14, repr.plot.height = 8)
 p1 = ggplot(d, aes(x=as.factor(condition), y=gender, fill=as.factor(condition))) +
   geom_violin()
  p2 = ggplot(d, aes(x=as.factor(condition), y=age, fill=as.factor(condition))) +
   geom_violin()
  p3 = ggplot(d, aes(x=as.factor(condition), y=as.numeric(ethnicity), fill=as.factor(condition))) +
   geom violin()
  p4 = ggplot(d, aes(x=as.factor(condition), y=political_party, fill=as.factor(condition))) +
   geom_violin()
  p5 = ggplot(d, aes(x=as.factor(condition), y=education, fill=as.factor(condition))) +
   geom_violin()
  p6 = ggplot(d, aes(x=as.factor(condition), y=covid_sick, fill=as.factor(condition))) +
   geom_violin()
  p7 = ggplot(d, aes(x=as.factor(condition), y=covid_hospitalized, fill=as.factor(condition))) +
   geom_violin()
 p8 = ggplot(d, aes(x=as.factor(condition), y=covid_died, fill=as.factor(condition))) +
   geom_violin()
 multiplot(p1, p2, p3, p4, p5, p6, p7, p8, cols=2)
check_covariate_balance(run1)
```


check_covariate_balance(run2)

check_covariate_balance(combined)

4. Estimate ATE

outcome_death

4.1 Estimate the ATE for both outcomes

```
estimate ate = function(d, outcome field) {
 g <- d[ , .(group_mean = mean(get(outcome_field))), keyby = .(condition)]
 ate <- g[ , diff(group_mean)]
 res <- NA
  for (i in 1:10000) {
     res[i] <- d[ , .(group_mean = mean(get(outcome_field))), keyby = .(sample(condition))][ , diff(gr</pre>
 dist_sharp_null <- res</pre>
  #hist(dist_sharp_null)
  #abline(v=ate, lwd=3, col='blue')
  #abline(v=abs(ate), lwd=3, col='blue')
  p_value_one_tailed <- mean(dist_sharp_null >= ate)
  p_value_two_tailed <- mean(abs(dist_sharp_null) >= abs(ate))
  cat(outcome_field, '\n')
  cat(' mean control ', g[condition == '0', group_mean], '\n')
  cat(' mean treatement ', g[condition == '1', group_mean], '\n')
              ', ate, '\n')
  cat(' ATE
 cat(' p_value 1-tailed', p_value_one_tailed, '\n')
  cat(' p_value 2-tailed', p_value_two_tailed, '\n\n')
cat('run1', '\n')
## run1
cat('****************, '\n')
## **********
estimate_ate(run1, 'outcome_spread')
## outcome_spread
## mean control
                    3.132812
## mean treatement 3.473282
## ATE
                    0.3404699
## p_value 1-tailed 0.0011
## p_value 2-tailed 0.0017
estimate_ate(run1, 'outcome_death')
```

```
## mean control 2.398438
## mean treatement 2.656489
                   0.258051
## p_value 1-tailed 0.0016
## p_value 2-tailed 0.0022
cat('run2', '\n')
## run2
cat('***************, '\n')
## ***********
estimate_ate(run2, 'outcome_spread')
## outcome_spread
## mean control 3.151515
## mean treatement 3.30625
## ATE
                    0.1547348
## p_value 1-tailed 0.0851
## p_value 2-tailed 0.1597
estimate_ate(run2, 'outcome_death')
## outcome_death
## mean control
                   2.5
## mean treatement 2.60625
## ATE
                    0.10625
## p_value 1-tailed 0.1081
## p_value 2-tailed 0.1988
cat('combined', '\n')
## combined
cat('******************************, '\n')
## *********
estimate_ate(combined, 'outcome_spread')
## outcome_spread
## mean control
                   3.142308
## mean treatement 3.381443
## ATE
                    0.2391356
## p_value 1-tailed 7e-04
## p_value 2-tailed 0.0025
```

```
## outcome_death
## mean control 2.45
## mean treatement 2.628866
## ATE 0.178866
## p_value 1-tailed 0.0013
## p_value 2-tailed 0.0019
```

5. Linear Regression

5.1 Perform linear regression the two outcomens (concern about COVID-19 spread, concern about COVID-19 deaths)

```
run_regression_outcome1 = function(d, control_for_run=FALSE) {
  model_spread = lm(outcome_spread ~ condition, d)
  if (control_for_run) {
    model_spread_adv = lm(outcome_spread ~ condition
                       + run
                       + as.factor(gender)
                       + as.factor(age)
                       + as.factor(ethnicity)
                       + as.factor(political_party)
                       + as.factor(education)
                       + as.factor(covid_sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  } else {
    model_spread_adv = lm(outcome_spread ~ condition
                       + as.factor(gender)
                       + as.factor(age)
                       + as.factor(ethnicity)
                       + as.factor(political_party)
                       + as.factor(education)
                       + as.factor(covid sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  }
  est_spread
                 = get_regression_results_robust_se(model_spread, d, c('condition'), FALSE)
  est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('condition'), FALSE)
  return ( list('model' = model_spread,
                'model_adv'=model_spread_adv,
                'est'=est_spread,
                'est_adv'=est_spread_adv))
}
run_regression_outcome2 = function(d, control_for_run) {
```

```
model_spread = lm(outcome_spread ~ condition, d)
  if (control_for_run) {
   model_spread_adv = lm(outcome_death ~ condition
                       + run
                       + as.factor(gender)
                       + as.factor(age)
                       + as.factor(ethnicity)
                       + as.factor(political party)
                       + as.factor(education)
                       + as.factor(covid sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  } else {
   model_spread_adv = lm(outcome_death ~ condition
                       + as.factor(gender)
                       + as.factor(age)
                       + as.factor(ethnicity)
                       + as.factor(political_party)
                       + as.factor(education)
                       + as.factor(covid sick)
                       + as.factor(covid_hospitalized)
                       + as.factor(covid_died), d)
  }
  est spread
                 = get_regression_results_robust_se(model_spread, d, c('condition'), FALSE)
  est_spread_adv = get_regression_results_robust_se(model_spread_adv, d, c('condition'), FALSE)
  return ( list('model' = model_spread,
                'model_adv'=model_spread_adv,
                'est'=est_spread,
                'est_adv'=est_spread_adv))
regression_labels_run = c('Treatment',
      'Run',
      'Female', 'Non-binary', 'Gender not answered',
      '20-29', '30-39', '40-49', '50-59', '60-69', '70-79',
      'Black/African American', 'Caucasian', 'Hispanic/Latinx',
       'Native American', 'Pacific Islander', 'Ethnicity not answered',
      'Democrat', 'Independent', 'Party other',
      'High school', 'Some college', 'Associates', 'Bachelors', 'Masters', 'Doctoral', 'JD/MD',
      'Sick from COVID-19',
      'Hospitalized from COVID-19',
      'Died COVID-19')
mi_spread_run1 = run_regression_outcome1(run1, TRUE)
mi_spread_run2 = run_regression_outcome1(run2, TRUE)
mi_spread_combined_run = run_regression_outcome1(combined, TRUE)
stargazer(mi_spread_run1$model, mi_spread_run1$model_adv,
```

	Response to COVID-19 Spread		
	July 21, 2020	July 21, 2020	July 25, 2020
Treatment	0.340	0.339	0.172
	(0.107)	(0.106)	(0.095)
	p = 0.002***	p = 0.002***	p = 0.071*
Run			
Female		-0.063	0.187
		(0.105)	(0.107)
		p = 0.550	p = 0.081*
Non-binary		0.886	1.742
Non Dinary		(0.420)	(0.409)
		p = 0.035**	p = 0.00003***
		r	P
Gender not answered		0.646	0.629
		(0.192)	(0.292)
		p = 0.001***	p = 0.032**
		-	-
20-29		0.323	-0.454
		(0.380)	(0.234)
		p = 0.395	p = 0.053*
30-39		0.295	-0.209
		(0.381)	(0.264)
		p = 0.440	p = 0.428
40.40			
40-49		0.181	-0.460
		(0.402)	(0.272)
		p = 0.654	p = 0.092*
50.50		0.070	2 242
50-59		0.370	-0.246

##	(0.412)	(0.255)
##	p = 0.370	p = 0.337
##	•	•
## 60-69	0.393	0.096
##	(0.441)	(0.267)
##	p = 0.373	p = 0.720
##		
## 70-79	1.156	-0.458
##	(0.437)	(0.336)
##	p = 0.009***	p = 0.174
## Dlask/African American		1.121
<pre>## Black/African American ##</pre>		(0.463)
## ##		p = 0.016**
##		p = 0.010**
## Caucasian	0.195	-0.100
##	(0.201)	(0.217)
##	p = 0.333	p = 0.644
##	•	1
## Hispanic/Latinx	-0.087	0.060
##	(0.165)	(0.187)
##	p = 0.597	p = 0.750
##		
## Native American	0.230	0.184
##	(0.205)	(0.252)
##	p = 0.264	p = 0.466
##	0.474	0.400
<pre>## Pacific Islander ##</pre>	-0.471 (0.513)	0.482 (0.316)
## ##	p = 0.359	p = 0.127
##	p - 0.555	p - 0.127
## Ethnicity not answered	-2.519	
##	(0.232)	
##	p = 0.000***	
##	-	
## Democrat	0.715	-0.121
##	(0.304)	(0.585)
##	p = 0.019**	p = 0.837
##		
## Independent	0.675	1.118
##	(0.141)	(0.134)
##	p = 0.00001***	p = 0.000***
## ## Party other	0.357	0.602
## raity other	(0.171)	(0.162)
##	p = 0.037**	p = 0.0003***
##	p 0.001	p 0.0000
## High school	-0.222	-0.318
##	(0.370)	(0.376)
##	p = 0.550	p = 0.398
##	-	-
## Some college	-0.050	
##	(0.800)	
##	p = 0.950	

```
(0.791)
##
                                                                               (0.191)
##
                                                         p = 0.806
                                                                               p = 0.480
##
                                                          0.017
                                                                                -0.020
## Bachelors
                                                          (0.795)
                                                                                (0.207)
##
                                                         p = 0.983
                                                                               p = 0.925
##
                                                          0.188
                                                                                0.125
## Masters
                                                                                (0.174)
                                                          (0.781)
##
                                                         p = 0.810
                                                                               p = 0.473
##
                                                          0.337
                                                                                0.223
## Doctoral
##
                                                          (0.786)
                                                                                (0.195)
##
                                                         p = 0.669
                                                                               p = 0.253
##
## JD/MD
                                                         -0.166
                                                                                0.029
                                                          (0.780)
                                                                               (0.337)
##
##
                                                         p = 0.832
                                                                               p = 0.931
##
## Sick from COVID-19
                                                          0.502
                                                                                0.842
##
                                                          (0.778)
                                                                                (0.339)
                                                                            p = 0.013**
##
                                                         p = 0.519
##
## Hospitalized from COVID-19
                                                          -0.200
                                                                               -0.162
                                                          (0.119)
                                                                                (0.117)
##
                                                        p = 0.093*
                                                                               p = 0.167
##
##
## Died COVID-19
                                                         -0.166
                                                                               -0.056
##
                                                          (0.165)
                                                                                (0.161)
##
                                                         p = 0.313
                                                                             p = 0.726
                                                          0.092
                                                                               -0.110
## as.factor(covid_died)2
##
                                                          (0.158)
                                                                                (0.157)
##
                                                         p = 0.563
                                                                               p = 0.483
##
## Constant
                                    3.133
                                                         2.450
                                                                                2.660
##
                                   (0.085)
                                                          (0.896)
                                                                                (0.321)
                                                      p = 0.007***
##
                                p = 0.000***
                                                                            p = 0.000***
## Observations
                                     259
                                                           259
                                                                                  292
                                    0.038
## R2
                                                          0.314
                                                                                 0.351
## Adjusted R2
                                    0.034
                                                          0.227
                                                                                 0.282
                             0.858 \text{ (df = } 257) 0.768 \text{ (df = } 229) 0.796 \text{ (df = } 263)
## Residual Std. Error
                          10.183*** (df = 1; 257) 3.614*** (df = 29; 229) 5.084*** (df = 28; 263) 7
## F Statistic
## Note:
                                                                                           *p<0.
mi death run1 = run regression outcome2(run1, TRUE)
mi_death_run2 = run_regression_outcome2(run2, TRUE)
```

0.194

0.135

##

Associates

mi_death_combined_run = run_regression_outcome2(combined, TRUE)

	Response to COVID-19 Death		
	July 21, 2020	July 21, 2020	July 25, 2020
Treatment	0.340	0.250	0.109
	(0.107)	(0.090)	(0.072)
	p = 0.002***	p = 0.006***	p = 0.134
Run			
Female		0.050	0.082
remare		(0.085)	(0.079)
		p = 0.554	p = 0.303
		р 0.004	р 0.000
Non-binary		0.573	0.899
•		(0.308)	(0.308)
		p = 0.063*	p = 0.004***
		-	-
Gender not answered		0.437	0.454
		(0.159)	(0.207)
		p = 0.007***	p = 0.029**
20-29		-0.371	-0.083
		(0.191)	(0.175)
		p = 0.052*	p = 0.638
30-39		-0.323	0.071
		(0.186)	(0.190)
		p = 0.084*	p = 0.711
40-49		-0.345	0.142
TO TO		(0.209)	(0.195)
		p = 0.099*	p = 0.468

##	50-59	-0.258	0.153
##		(0.211)	(0.195)
##		p = 0.221	p = 0.433
##		<u>-</u>	-
##	60-69	-0.279	0.370
##		(0.260)	(0.213)
##		p = 0.284	p = 0.082*
##			
##	70-79	0.170	-0.288
##		(0.254)	(0.295)
##		p = 0.503	p = 0.329
##			
	Black/African American		0.873
##			(0.256)
##			p = 0.001***
##	2	0.044	0.000
	Caucasian	0.041	-0.022
##		(0.168)	(0.147)
## ##		p = 0.809	p = 0.883
	Hispanic/Latinx	-0.103	-0.016
##	HISPANIC/Latinx	(0.134)	(0.118)
##		p = 0.442	p = 0.893
##		p 0.112	р 0.000
	Native American	-0.019	0.193
##		(0.212)	(0.160)
##		p = 0.929	p = 0.227
##		<u>-</u>	-
##	Pacific Islander	-0.261	-0.020
##		(0.289)	(0.218)
##		p = 0.367	p = 0.927
##			
	Ethnicity not answered	-1.667	
##		(0.176)	
##		p = 0.000***	
##	D	0.074	0.400
	Democrat	0.374	-0.169
## ##		(0.239)	(0.291)
##		p = 0.119	p = 0.561
	Independent	0.543	0.811
##	independent	(0.117)	(0.108)
##		p = 0.00001***	p = 0.000***
##		P OWNER	P 0.000
	Party other	0.340	0.414
##	·	(0.134)	(0.132)
##		p = 0.012**	p = 0.002***
##		-	-
##	High school	-0.107	0.141
##		(0.302)	(0.291)
##		p = 0.724	p = 0.629
##			
	Some college	0.233	
##		(0.530)	

	0.216 (0.516) p = 0.676 0.135 (0.524) p = 0.797 0.088 (0.512) p = 0.864 0.263 (0.517)	0.040 (0.137) p = 0.773 -0.095 (0.166) p = 0.569 -0.071 (0.133) p = 0.594 -0.036 (0.142)
	(0.516) p = 0.676 0.135 (0.524) p = 0.797 0.088 (0.512) p = 0.864 0.263 (0.517)	(0.137) p = 0.773 -0.095 (0.166) p = 0.569 -0.071 (0.133) p = 0.594 -0.036
	p = 0.676 0.135 (0.524) p = 0.797 0.088 (0.512) p = 0.864 0.263 (0.517)	p = 0.773 -0.095 (0.166) p = 0.569 -0.071 (0.133) p = 0.594 -0.036
	0.135 (0.524) p = 0.797 0.088 (0.512) p = 0.864 0.263 (0.517)	-0.095 (0.166) p = 0.569 -0.071 (0.133) p = 0.594 -0.036
	(0.524) p = 0.797 0.088 (0.512) p = 0.864 0.263 (0.517)	(0.166) p = 0.569 -0.071 (0.133) p = 0.594 -0.036
	p = 0.797 0.088 (0.512) p = 0.864 0.263 (0.517)	p = 0.569 -0.071 (0.133) p = 0.594 -0.036
	0.088 (0.512) p = 0.864 0.263 (0.517)	-0.071 (0.133) p = 0.594 -0.036
	(0.512) p = 0.864 0.263 (0.517)	(0.133) p = 0.594 -0.036
	(0.512) p = 0.864 0.263 (0.517)	(0.133) p = 0.594 -0.036
	p = 0.864 0.263 (0.517)	p = 0.594 -0.036
	0.263 (0.517)	-0.036
	(0.517)	
		(0.142)
	n = 0.610	(/
	p = 0.612	p = 0.802
	-0.475	0.041
		(0.141)
	p = 0.354	p = 0.773
		0.469
		(0.239)
	p = 0.572	p = 0.051*
	-0.102	-0.097
		(0.084)
	p = 0.298	p = 0.246
	0.004	0.000
		0.003
		(0.116)
	p = 0.500	p = 0.978
	0.067	-0.090
	(0.128)	(0.118)
	p = 0.603	p = 0.444
2 122	0 207	0.017
		2.017 (0.239)
p = 0.000***	p = 0.00003***	p = 0.000***
		292
		0.325
		0.254
1	259 0.038 0.034 0.858 (df = 257) 10.183*** (df = 1; 257)	0.290 (0.513) p = 0.572 -0.102 (0.098) p = 0.298 -0.084 (0.125) p = 0.500 0.067 (0.128) p = 0.603 3.133 (0.085) p = 0.00005***