CHEM 191

Module 1

Chemical Reactions in Aqueous Solution

Lecture 8

Acid/Base Titrations

Chapter 18.3, 29.2 Brown

1

Module 1 Lecture 8 Learning Objectives:

- Recognise the characteristic shapes of different types of acid-base titration curves
- Understand the chemical reactions occurring at different points during a titration
- Understand how the acid-base chemistry of an amino acid leads to the characteristic shape of its titration curve.

Titrations

- A titration is an experimental technique that allows the determination of the concentration of a solution of some compound A through reaction with a solution of known concentration of a second compound B.
- Need to know the reaction stoichiometry mole ratio between A and B
- Used extensively in all of chemistry
 - determination of metal ions in body fluids
 - determination of CO₂ in seawater
 - determination of contaminants in industrial/food products
 - analysis of wastewater

3

Acid/base titration curves

- We stated in the last lecture that a buffer solution could be prepared by adding NaOH(aq) to a solution of CH₃COOH(aq). How does the pH change during this process?
- Can monitor the pH of the weak acid solution as known volumes of NaOH(aq) are added. This process is called an acid/base titration.
- The behaviour of weak and strong acids in titrations with NaOH(aq) are different. Consider each in turn. In each case, however, the essential reaction is

$$H_3O^+ + OH^- \rightarrow 2H_2O$$

Л

The regions

Initial pH:

• Have a 0.100 mol L⁻¹ solution of CH₃COOH. p K_a = 4.74, so pH can be calculated as 2.89 (lecture 6).

The acidic region, $v < v_e$:

Reaction occurs between CH₃COOH and NaOH to give CH₃COO⁻. pH controlled by dissociation of CH₃COOH in the presence of increasing amounts of CH₃COO⁻. In this region the solution is a buffer solution. When exactly 25 mL of NaOH(aq) has been added, [CH₃COOH] = [CH₃COO⁻], and from the Henderson-Hasselbalch equation

 $pH = pK_a + log \frac{[A^-]}{[HA]}$

this means that pH = pK_a = 4.74 at this point.

The regions

The equivalence point; $nNaOH_{added} = nCH_3COOH_{initial}$; $v = v_e$

- The reaction between CH₃COOH and NaOH has gone to completion. Have a solution of CH₃COO⁻ and Na⁺ at this point.
- The pH is basic (8.34). This is **always** the case in such titrations, due to the reaction of the conjugate base with water to give OH⁻.

In this case, the reaction is

$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$$

pH at the equivalence point

Initially, $n(CH_3COOH) = 0.100 \text{ mol } L^{-1} \times 0.050 \text{ L} = 0.005 \text{ mol}$

There will therefore be 0.005 mol of CH₃COO⁻ formed when the equivalence point is reached.

The total volume of solution at the equivalence point will be

50 mL (initial acid solution) + 50 mL (added base solution) = 100 mL

Therefore $[CH_3COO^-] = 0.005 \text{ mol } / 0.100 \text{ L} = 0.05 \text{ mol } L^{-1}$

9

pH at the equivalence point

Remember that, since CH₃COOH and CH₃COO⁻ are a conjugate acid-base pair,

$$pK_a(CH_3COOH) + pK_b(CH_3COO^-) = 14$$

So
$$pK_b(CH_3COO^-) = 14 - 4.74 = 9.26$$

and
$$K_b = 10^{-9.26} = 5.5 \times 10^{-10}$$

Now, calculate the pH of a weak base solution as in Lecture 6

pH at the equivalence point

$$K_{\rm b} = \frac{{\rm [CH_3COOH]_e \ [OH^-]_e}}{{\rm [CH_3COO^-]_e}} = \frac{{\rm [OH^-]_e}^2}{{\rm [CH_3COO^-]_{initial}}}$$

$$[OH^{-}]_{e} = \sqrt{K_{b} \times [CH_{3}COO^{-}]_{initial}} = \sqrt{5.5\times10^{-10}\times0.050} = 5.2\times10^{-6}$$

$$pOH = -log(5.2 \times 10^{-6}) = 5.28$$

$$pH = 14 - 5.28 = 8.72$$

11

The regions

The alkaline region, $v > v_e$:

 The pH is now determined solely by the amount of excess OH- ions added to the solution after the equivalence point has been reached.

Diprotic Acids

If the acid has two protons that it can donate, then it will do so one at a time.

eg H₃PO₃

15

Amino acids

- Amino acids are biological molecules which are necessary for life. At least 20 naturally occurring amino acids are known.
- All amino acids have both a weak acid and a weak base within the same molecule.

• They differ in the nature of the R group attached to the carbon atom.

Zwitterions

• Neutral amino acids exist primarily as **zwitterions**. This means they contain both a positive and a negative charge, but the overall molecule is neutral.

- This can be thought of in terms of the acidic –COOH proton protonating the basic –NH₂ centre.
- Zwitterions behave like ionic salts rather than organic molecules they are generally involatile solids, they have high melting points, they are water-soluble and they are insoluble in nonpolar solvents.

17

Zwitterions

Under very acidic conditions, both the –COOH and the –NH₃⁺ groups will be protonated.

Under very basic conditions, both the –COO⁻ and the –NH₂ groups will be deprotonated.

Titration curve for glycine

◄ FIGURE 29.18 Titration of glycine with aqueous NaOH solution. pK_{a1} relates to the pK_a of the carboxylic acid, while pK_{a2} relates to the pK_a of the ammonium ion.

19

The regions

Initial pH

 More acidic than a normal weak acid as it is easier to lose a proton from a positively-charged ion than from a neutral molecule.

Region where less than one mole of OH- has been added

 In this region, the more acidic –COOH proton reacts (is being titrated), hence there is a mixture of both

in this region. When half an equivalent of OH^- has been added, the $pH = pK_a$ ($pK_{a1} = 2.35$)

The regions

One mole of OH- has been added.

• At this point, the pH = pI (6.06) and the solution contains the zwitterion essentially exclusively. pI is called the **isoelectric point** and is the point at which most of the molecules in the solution have a net charge of zero.

Region where more than one mole of OH⁻ has been added

In this region, the less acidic –NH₃⁺ proton now reacts (is titrated), hence there
is a mixture of both

21

The regions

Region where more than one mole of OH⁻ has been added

- When 1.5 equivalents of OH⁻ have been added, the pH = p K_a (p K_{a2} = 9.78)
- The titration is complete when two equivalents of OH⁻ have been added. At this point, the solution contains

essentially exclusively.

* Homework *

Brown (15th)

Problems 17.51, 17.70, 17.74, 17.100, 17.103

some problems require K_a from Appendix D, Page 1515

Answers on Blackboard