

Regresión Logistica Múltiple

Sesión Nº 9
24 octubre 2021
Análisis de datos estadísticos en R

Profesora Valentina Andrade de la Horra **Ayudantes** Dafne Jaime y Nicolás Godoy

Contenidos Sesión 9

Repaso de construcción de modelos

Predictores categóricos

Transformaciones funcionales

Modelamiento con srvyr y glm

Modelos logísticos

En el práctico...

Representación gráfica

Tablas

Gráficos

Repaso

Modelo de regresión lineal

RLM en R con lm()

• lm() es del paquete base

```
lm(formula = ,
data = ,
weights = )
```

• Por lo general, **crearemos objetos** para luego manipularlos

```
modelo1 <- lm(formula = ,
    data = ,
    weights = )</pre>
```

RLM en R con lm()

Modelo sin predictores

```
modelo1 <- lm(y ~ 1,
  data = datos,
  weights = ponderador)</pre>
```

Modelo simple

```
modelo1 <- lm(y ~ x1,
    data = datos,
    weights = ponderador)</pre>
```

RLM en R con lm()

Modelo multiple

```
modelo1 <- lm(y ~ x1 + x2,
    data = datos,
    weights = ponderador)</pre>
```


Transformaciones funcionales

1. Predictores categóricos

- En R los predictores categóricos pueden estar en clase character
 O factor
- Para que la regresión reconozca a estos como predictores categóricos y conserve tanto etiquetas como niveles ocuparemos forcats::as_factor() (es y será un muy buen amigo)

1. Predictores categóricos

- Gracias a este podremos notificar bien *cuál es la categoría de referencia*. De manera adicional con rlvl() podremos re-definir esta categoría.
- Este procedimiento debe ir si o si en su código de procesamiento

2. Modelos log y cuadráticos

- Si queremos transformar una variable a logaritmo, al cuadrado, re-escalarla, hacerla interactuar etc. lo ideal es que creemos esa nueva variable en el procesamiento.
- Ahora bien, en la realidad, vamos a querer ir testeando/explorando
- Una forma "sencilla" es introducir esa transformación al argumento de la formula de lm()

2. Modelos log y cuadráticos


```
# Modelo log-lineal
modelo_log <- lm(log(y) ~ x1 + x2,
              data = datos, weights = fact_cal_esi)
#Modelo log-cuadratico
modelo_log_cuadratico <- lm(log(y) \sim x1 + (x1)^2 + x2,
                  data = datos, weights = fact_cal_esi)
#Modelo log interaccion
modelo_log_interaccion <- lm(log(y) ~ x1 + x2 +x1*x2,</pre>
                              data = datos, weights = fact_cal_
```

Modelamiento con glm y svyglm

Regresiones con glm()

- Modelo lineal generalizado (glm())
- glm() nos permite construir distintos tipos de modelos según la distribución que siguen las variables aleatorias
- Un ejemplo son las que siguen distribuciones normalesgaussianas (como las lineales que se estiman por OLS) o las binomiales (como las logísticas que se estiman por MV).

Family	Default link function	Link options
binomial	link = "logit"	"logit", "probit", "cauchit"
gaussian	link = "identity"	"identity", "log", "inverse"
poisson	link = "log"	"log", "identity", "sqrt"

glm() para regresiones lineales

Al igual que como vimes con survey::svyglm()

Se puede aplicar a regresiones logísticas

regresiones con survey::svyglm()

- El paquete survey contiene una función llamada svyglmque permite incorporar el diseño de muestreo.
- Los pasos adicionales solo implican:
- 1. Crear objeto de diseño de muestra con as_survey_design
- 2. Crear objeto de modelo incorporando el diseño de la muestra. ¡La función svyglm() es muy parecida a las que ya vimos

regresiones logísticas con

Obteniendo información sobre mi modelo

Un breve resumen

Función	Objetivo
summary(modelo)	Resumen general
modelo\$coefficients	Extraer elemento del objeto (coeficiente en este caso)
modelo5\$coefficients[2]	Extraer coeficiente N°2 de objeto
modelo5\$coefficients["x1"]	Extraer coeficiente "x1" del modelo
str(summary(modelo1))	Estructura del resultado del modelo
summary(modelo5)\$fstatistic	Estadístico F (podría ser R cuadrado también)
modelo5\$fitted.values	Valores predichos

De log odds a OR

- Debemos recordar que los coeficientes están en log odds
- Para obtener los valores en *OR* debo hacer un par de procedimientos.
- Cuando representamos las tablas con siplot esto es mucho más fácil

exp() exponenciar


```
# OR del coeficiento N°2
exp(modelo$coefficients[2])

# Crear OR -----
modelo$or <- exp(modelo$coefficients)</pre>
```

• Luego se puede incorporar en tablas hechas en texreg

Regresiones en R con glm(): Paso a paso**

- 1. Buen procesamiento de datos
- 2. Identificar variable dependiente e independientes

No olvidar que los predictores categóricos estén bien trabajados

- 1. Seguir la formula *y ~ x1 + x2 + ...xk*
- 2. Indicar familia, datos y pesos muestrales
- 3. Crear objeto
- 4. Explorar resultado con summary(modelo1)
- 5. Tabla o gráfico

Recursos de la práctica

- Este práctico fue trabajado con datos de Encuesta Suplementaria de Ingresos.
- Manual Metodológico ESI

En sintesis

Repaso de construcción de modelos

Predictores categóricos

Transformaciones funcionales

Modelamiento con srvyr y glm

Modelos logísticos

¡Y a no olvidar el fluje para el análisis!

Nos permite hacernos amigas/os más rápido del programa

Antes de finalizar...

Desafío(0.5 décimas para la tarea N°4)

Construir una tabla única con modelo de regresión lineal y logístico con los datos de la tarea N°4 con el paquete **texreg**. Debe especificar bien todos los predictores Fecha: hasta el día **miércoles a las 20 horas** por canal #04-tareas. Debe entregar el código de texreg y un pantallazo de la tabla

¡Ahora si que si! Nos vemos el próximo lunes

Regresión Logistica Múltiple

Sesión Nº 9
24 octubre 2021
Análisis de datos estadísticos en R

Profesora Valentina Andrade de la Horra **Ayudantes** Dafne Jaime y Nicolás Godoy