UMINT GA Projekt 1 Dokumentácia

Ladislav Rajcsányi a Daniel Malenka Marec 2020

Obsah

1.	<u>Nasa uiona</u>	.პ
2.	Použité funckie	.3
	Vlastné funkcie	.3
	coord dots input	.3
	<u>center</u>	.3
	calculate obstacles	.4
	draw obstacles	.5
	custom_converter	.6
	calculate t and u	.7
	collision_check	.8
	fitness test	.8
	display_indiv	.9
	Funkcie z Genetického toolboxu	LO
	genrpop1	10
	crossov	LO
	<u>mutx</u>	
	<u>muta</u>	
	<u>selbest</u>	۱2
	<u>seltourn</u>	L2
3.	Zakódovanie reťazca v populácii 1	
4.	Výpočet a realizácia účelovej (fitness) funkcie	L3
5.	Genetický algoritmus 1	L3
6.	Dosiahnuté výsledky po 10 spustení	L6
7.	Dosiahnuté výsledky pri modifikácii GA	L8

1. Naša úloha

Riešili sme **2. úlohu.** Mali sme **navrhnúť genetický algoritmus, ktorý nájde optimálnu dráhu mobilného robota v 2D prostredí s prekážkami.** Počiatočný bod (start) sme mali v ľavom dolnom rohu a cieľový bod (stop) v pravom hornom rohu priestoru. Mali sme navrhnúť priestor tak, aby sme tam mali tri prekážky, ktoré mohli byť čísla alebo písmená. Veľkosť prostredia a písmen bola ľubovoľná. Dráha mala byť čo najkratšia a bez kolízií.

Riešenia sú priložené vo forme spustiteľných programov v Matlabe, v priečinku Figures sa nachádzajú grafy, ktoré sme vytvorili pomocou programu.

2. Použité funkcie

Vlastné funkcie

coord_dots_input - načítanie súradníc

Charakteristika:

Táto funkcia nám umožní načítať súradnice počiatočného a cieľového bodu. Okrem toho môžeme aj načítať aj počet prechodových bodov.

Syntax:

```
[start,stop,dots]= coord_dots_input();

start – súradnice počiatočného bodu (Robot) [ start_x , start_y]

stop – súradnice cieľového bodu (Robot) [ stop_x , stop_y]

dots – počet prechodových bodov
```

Príklad:

```
Start x: 0
Start y: 0
Stop x: 1000
Stop y: 1000

fx Dots: 5
```

center - výpočet počiatočného bodu prvej prekážky

Charakteristika:

Táto funkcia je schopná v prípade načítania súradníc vypočítať počiatočný bod prvej prekážky (L) a veľkosť prekážok, takým spôsobom, že po vykreslení, písmená budú v strede priestoru a ich veľkosť bude závisieť od načítaných hodnôt.

Syntax:

```
[x,y,s] = center(start,stop)
```

```
x– x-ová súradnica počiatočného bodu prvej prekážky y – y-ová súradnica počiatočného bodu prvej prekážky
```

```
s – size – veľkosť prekážok
start – súradnice počiatočného bodu (Robot) [ start_x , start_y]
stop – súradnice cieľového bodu (Robot) [ stop_x , stop_y]
```

Príklad:

(Pre výpočty otvorte zložku center.m)

start =[0 0] stop = [1000 1000]

[x,y,s]=center(start,stop)

x=150 y = 600 s = 200

calculate_obstacles - výpočet prekážok

Charakteristika:

Z hodnôt čo nám vrátila funkcia center nám vypočíta, kde sa nachádzajú prekážky

Syntax:

[L,U,C] = calculate_obstacles(start,stop)

L – Matica, ktorá obsahuje body prekážky L

U – Matica, ktorá obsahuje body prekážky U

C – Matica, ktorá obsahuje body prekážky C

start – súradnice počiatočného bodu (Robot) [start_x , start_y]

stop – súradnice cieľového bodu (Robot) [stop_x , stop_y]

Príklad:

```
start =[0 0]
stop = [1000 1000]
[L,U,C] = calculate_obstacles(start,stop)
L=[ 150 600
   150 400
   350 400]
U=[ 400 600
    400 400
    600 400
    600 600]
C=[850560
    850 600
    650 600
    650 400
    850 400
    850 440]
```

draw_obstacles – vykreslenie prekážok

Charakteristika:

Vykreslí nám prekážky, ktoré nám vypočítala funkcia calculate_obstacles.

Syntax:

```
draw_obstacles(start,stop)

start – súradnice počiatočného bodu (Robot) [ start_x , start_y]

stop – súradnice cieľového bodu (Robot) [ stop_x , stop_y]
```

Príklad:

```
start =[0 0]
stop = [1000 1000]
draw_obstacles(start,stop)
```


draw_obstacles(start,stop)

custom_converter - funkcia na usporiadanie súradníc jedinca do matice

Charakteristika:

Pre l'ahšie overenie kolízie a vykreslenie trasy sme potrebovali funkciu, ktorá nám usporiada súradnice jedinca do matice typu N x 2 , kde N je polovica prvkov z jedinca.

Syntax:

a = custom_converter(indiv)

a – Súradnice jedinca usporiadané do matice

indiv – Jedinec, ktorého chceme usporiadať

Príklad:

Povedzme, že budeme mať 5 prechodových bodov, potom náš jedinec po vygenerovaní bude vyzerať :

indiv =

a = custom_converter(indiv)

a =

X	у	
0	0	Start
103,6	36,8	Bod1
288,5	823	Bod2
497,4	37,6	Bod3
966	195,2	Bod4
677,2	219,9	Bod5
1000	1000	Stop

calculate_t_and_u - implementácia vzorca potrebné na overenie kolízie

Charakteristika:

Na stránke, ktorú sme mali ako pomôcku bol vzorec na výpočet t a u:

$$t = egin{array}{c|ccc} x_1 - x_3 & x_3 - x_4 \ y_1 - y_3 & y_3 - y_4 \ \hline x_1 - x_2 & x_3 - x_4 \ y_1 - y_2 & y_3 - y_4 \ \hline \end{array} = rac{(x_1 - x_3)(y_3 - y_4) - (y_1 - y_3)(x_3 - x_4)}{(x_1 - x_2)(y_3 - y_4) - (y_1 - y_2)(x_3 - x_4)}$$

$$u = -rac{egin{array}{c|ccc} x_1 - x_2 & x_1 - x_3 \ y_1 - y_2 & y_1 - y_3 \ \hline x_1 - x_2 & x_3 - x_4 \ y_1 - y_2 & y_3 - y_4 \ \hline \end{array}}{egin{array}{c|ccc} x_1 - x_2 & (x_1 - x_2)(y_1 - y_3) - (y_1 - y_2)(x_1 - x_3) \ \hline (x_1 - x_2)(y_3 - y_4) - (y_1 - y_2)(x_3 - x_4) \ \end{array}},$$

Syntax:

 $[t,u] = calculate_t_and_u(x1,y1,x2,y2,x3,y3,x4,y4)$

t – Hodnota t, ktorú sme dostali zo vzorca

u - Hodnota u, ktorú sme dostali zo vzorca

x1,y1 – počiatočný bod aktuálnej časti trasy robota

x2,y2 – cieľový bod aktuálnej časti trasy robota

x3,y3 – počiatočný bod aktuálnej časti prekážky

x4,y4 – cieľový bod aktuálnej časti prekážky

Príklad:

$$x2=112,1$$

x3=150

y3 = 600

x4=150

y4=400

 $[t,u] = calculate_t_and_u(x1,y1,x2,y2,x3,y3,x4,y4)$

t= 0,9411

u=-1,4406

collision_check - funkcia na overenie kolízie

Charakteristika:

Pomocou calculate_obstacles vypočítame polohy prekážok a po usporiadaní jedinca s custom_converter, prekontrolujeme jednotlivé časti trasy so všetkými prekážkami a overujeme, či nedošlo ku kolízii . To dosiahneme porovnaním hodnoty t a u , čo sme dostali z calculate_t_and_u. Ak $0.0 \le t \le 1.0$ a $0.0 \le u \le 1.0$, potom to znamená, že je tam kolízia.

Syntax:

[collision] = collision_check(start, stop,indiv)

collision - počet kolízií

start - súradnice počiatočného bodu (Robot) [start_x , start_y]

stop - súradnice cieľového bodu (Robot) [stop_x , stop_y]

indiv - Jedinec, ktorého prekontrolujeme

Fitnes funkcia:

fitness_test - fitness funkcia, ktorá vypočíta dĺžku trasy

Charakteristika:

Funguje podobne, ako testfn3, čo sme používali naposledy, ale museli sme ju trošku modifikovať. Používali sme vzorec :

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

Ktorý slúži na výpočet vzdialenosti dvoch bodov. Ak nastala kolízia, čo overujeme funkciou **collision_check** , daného jedinca penalizujeme metódou mŕtvej pokuty. To znamená, že

v prípade kolízie pripočítame veľké číslo k "fitness hodnote" daného jedinca. Tým pádom pri výbere bude mať menšiu šancu ako ostatní .

Syntax:

[Fit] = fitness_test(Pop)

Fit - obsahuje "fitness hodnoty" jedincov

Pop – populácia s ktorými pracujeme

display_indiv - vykreslenie jedinca

Charakteristika:

Túto funkciu používame na zobrazenie jedinca. **Custom_converter** nám uľahčí robotu, a môžeme uložiť vykreslené prechodové body (a) a vykreslené prechody (b), môžeme ich vrátiť, a potom keď potrebujeme môžeme výkres vymazať aby sme mohli vykresliť druhého/lepšieho jedinca. Týmto spôsobom je zabezpečený vizuálny rozvoj jedinca.

Syntax:

[a,b]=display_indiv(indiv);

a – vykreslené prechodové body jedinca

b – vykreslené prechody jedinca

indiv – jedinec, ktorého chceme zobraziť

Príklad:

display_indiv(indiv)

Funkcie z Genetického toolboxu

genrpop - vygenerovanie náhodnej reálnečíselnej populácie1

Charakteristika:

Funkcia vygeneruje populáciu zvoleného počtu reťazcov. Jednotlivé gény reťazcov obsahujú náhodné reálne čísla z definovaného rozsahu. Rozsah sa definuje pre každý gén samostatne pomocou matice Space. Prvý riadok tejto matice určuje dolné ohraničenia a druhý riadok horné ohraničenia jednotlivých génov.

Syntax:

Newpop=genrpop(popsize,Space)

Newpop - nová, zmutovaná populácia

popsize - počet reťazcov generovanej populácie

Space - matica obmedzení, ktorej 1. riadok je vektor minimálnych a 2. riadok je vektor maximálnych prípustných hodnôt génov

crossov - kríženie 2

Charakteristika:

Funkcia vytvorí novú populáciu reťazcov, ktorá vznikne skrížením všetkých reťazcov starej populácie 1- až 4-bodovým krížením. Krížené sú všetky reťazce (ak je ich párny počet, ak nie tak len jedince ktoré vytvorili páry). Výber párov je buď náhodný alebo sú vybrané susedné reťazce v populácii podľa voľby parametra sel.

Syntax:

Newpop=crossov(Oldpop,num,sel)

Newpop - matica skríženej (výstupnej) populácie

Oldpop - pôvodná (vstupná) populácia

num - počet bodov kríženia (miest rozdelenia) od 1 do 4

sel - spôsob výberu dvojíc: 0 - náhodný 1 - susedné dvojice v populácii

^{1,2} TOOLBOX - GENETICKÉ ALGORITMY pre riešenie optimalizačných problémov v prostredí Matlab - POUŽÍVATEĽSKÁ PRÍRUČKA Ivan Sekaj

mutx - obyčajná mutácia (globálna mutácia) 3

Charakteristika:

Funkcia zmutuje populáciu reťazcov s intenzitou úmernou parametru rate (z rozsahu od 0 do 1). Mutovaných je len niekoľko génov v rámci celej populácie. Mutované hodnoty sú zmenené na náhodné hodnoty z priestoru definovaného ohraničeniami pomocou dvojriadkovej matice. Prvý riadok matice určuje dolné ohraničenia jednotlivých génov reťazcov a druhý riadok ich horné ohraničenia.

Syntax:

Newpop=mutx(Oldpop,rate,Space)

Newpop - nová, zmutovaná populácia

Oldpop - stará populácia

Space - matica obmedzení, ktorej 1.riadok je vektor minimálnych a 2. riadok je vektor maximálnych prípustných mutovaných hodnôt

rate - miera početnosti mutovania génov v populácii (od 0 do 1)

muta - aditívna mutácia (lokálna mutácia)4

Charakteristika:

Funkcia zmutuje populáciu reťazcov s intenzitou úmernou parametru rate (z rozsahu od 0 do 1). Mutovaných je len niekoľko génov v rámci celej populácie. Mutácie vzniknú pripočítaním alebo odpočítaním náhodných čísel ohraničených veľkostí k pôvodným hodnotám náhodne vybraných génov celej populácie. Absolútne hodnoty prípustných veľkostí aditívnych mutácií sú ohraničené hodnotami vektora Amp. Po tejto operácii sú ešte výsledné hodnoty génov ohraničené (saturované) na hodnoty prvkov matice Space. Prvý riadok matice určuje dolné ohraničenia a druhý riadok horné ohraničenia jednotlivých génov.

Syntax:

Newpop=muta(Oldpop,rate,Amp,Space)

Newpop - nová, zmutovaná populácia

Oldpop - stará populácia

Amp - vektor ohraničení prípustných aditívnych hodnôt mutácií

Space - matica obmedzení, ktorej 1. riadok je vektor minimálnych a 2. riadok je vektor maximálnych prípustných mutovaných hodnôt

rate - miera početnosti mutovania génov v populácii (od 0 do 1)

^{3,4} TOOLBOX - GENETICKÉ ALGORITMY pre riešenie optimalizačných problémov v prostredí Matlab - POUŽÍVATEĽSKÁ PRÍRUČKA Ivan Sekaj

selbest - výber najlepších jedincov⁵

Charakteristika:

Funkcia skopíruje zo vstupnej populácie do výstupnej populácie určené počty reťazcov v závislosti od ich hodnôt účelovej funkcie. O tom, ktoré reťazce budú kopírované, rozhoduje vektor Nums, ktorého prvky určujú počty vybraných reťazcov nasledovne: prvá hodnota určuje koľkokrát sa skopíruje najúspešnejší reťazec do výstupnej populácie, druhá hodnota určuje koľkokrát sa skopíruje 2. najúspešnejší reťazec do výstupnej populácie atď. Najúspešnejšími reťazcami sú chápané jedince s najmenšími hodnotami účelovej funkcie.

Syntax:

Newpop=selbest(Oldpop,Objpop,Nums);

Newpop - nová (výstupná) populácia

Oldpop - stará (vstupná) populácia

Objpop - vektor hodnôt účelovej funkcie starej populácie

Nums - vektor, ktorého prvky určujú, koľkokrát sa reťazec na príslušnom poradí úspešnosti skopíruje do cieľovej populácie

seltourn – turnajový výber⁶

Charakteristika:

Funkcia vyberie zo vstupnej populácie do výstupnej populácie určený počet reťazcov. Z populácie sa vyberú dva náhodné jedince a lepší z nich sa zapíše do novej populácie. Obidva jedince sa vrátia naspäť do starej populácie a výber sa opakuje až kým nie je vybraný potrebný počet reťazcov.

Syntax:

Newpop=seltourn(Oldpop,Objpop,Num);

Newpop - nová (výstupná) populácia

Oldpop - stará (vstupná) populácia

Objpop - vektor hodnôt účelovej funkcie starej populácie

Num – počet vybraných reťazcov

^{5,6} TOOLBOX - GENETICKÉ ALGORITMY pre riešenie optimalizačných problémov v prostredí Matlab - POUŽÍVATEĽSKÁ PRÍRUČKA Ivan Sekaj

3. Zakódovanie reťazca v populácii

Pomocou **coord_dots_input** načítame súradnice počiatočného a cieľového bodu. A podľa toho môžeme zadefinovať Space, ktorú budeme používať na generovanie jedincov. Riešili sme to takým spôsobom, že počet génov bude závisieť od počtu prechodových bodov, takže náš Space vyzeralo následne:

Pomocou neho sme zabezpečili, že počiatočný aj cieľový bod bude vo všetkých prípadoch rovnaký a už sme boli schopný pri používaní funkcie **genrpop** vygenerovať 50 jedincov. V prípade, že sme mali 5 prechodových bodov, jedinci obsahovali 14 súradníc:

Start_x	Start_y	Bod1_x	Bod1_y	Bod2_x	Bod2_y	Bod3_x	Bod3_y	Bod4_x	Bod4_y	Bod5_x	Bod5_y	Stop_x	Stop_y
0	0	103,6	36,8	288,5	823	497,4	37,6	966	195,2	677,2	219,9	1000	1000

4. Výpočet a realizácia účelovej (fitness) funkcie

Ako sme už spomínali vyššie, naša účelová (fitness) funkcia sa podobá na fitness funkciu testfn3, čo sme použili pri hľadaní globálneho minima Schwefelovej funkcie. Ale trošku sme ju museli modifikovať. Po prvé sme museli zistiť súradnice počiatočného a cieľového bodu, pretože vo funkcii **fitness_test** (naša fitness funkcia) sme chceli zavolať **collision_check**, ktorý berie ako vstupný parameter tieto súradnice, aby nám otestoval, či nedošlo ku kolízií. Ak tam bola kolízia (collision (čo nám vrátil **collision_check**)>0) penalizovali sme jedinca metódou mŕtvej pokuty, teda k "fitness" hodnote sme pripočítali obrovské číslo (v našom prípade 1000000) až potom sme vypočítali dĺžku trasy pomocou vzorca:

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

5. Genetický algoritmus

V každej iterácii sme vždy najprv vybrali 15 najlepších (používali sme **selbest** s nastavením [8,4,3] , čo znamená, že najlepšieho jedinca sem prekopírovali 8-krát, 2. najlepšieho 4-krát a 3. najlepšieho 3-krát). Do "best15" sme ich prekopírovali preto , lebo nechceli by sme ich stratiť pri mutácii a krížení. 35 jedincov, ktorí nám chýbali k tomu, aby sme mali tých pôvodných 50 jedincov sem vybrali pomocou **seltourn**. Nazvali sme ich skupina "work". Urobili sme na nich kríženie pomocou **crossov** (work,**1,0**). Kde "1" sme nastavili preto, aby sme mali len jeden bod kríženia, a "0" aby sme vybrali dvojice náhodne. Na jednoduchom príklade môžeme ukázať ako to vyzeralo:

	Before CROSSOV													
	Start_x	Start_y	Bod1_x	Bod1_y	Bod2_x	Bod2_y	Bod3_x	Bod3_y	Bod4_x	Bod4_y	Bod5_x	Bod5_y	Stop_x	Stop_y
R1	0	0	103,6	36,8	288,5	823	497,4	37,6	966	195,2	677,2	219,9	1000	1000
R2	0	0	451,9	47	468,7	223	364,8	428,9	591,3	187,8	416,4	43	1000	1000
							After CF	ROSSOV						
	Start_x	Start_y	Bod1_x	Bod1_y	Bod2_x	Bod2_y	Bod3_x	Bod3_y	Bod4_x	Bod4_y	Bod5_x	Bod5_y	Stop_x	Stop_y
P1	0	0	103,6	47	468,7	223	364,8	428,9	591,3	187,8	416,4	43	1000	1000
P2	0	0	451,9	36,8	288,5	823	497,4	37,6	966	195,2	677,2	219,9	1000	1000

R1,R2 – sú rodičia (pôvodný stav) P1,P2 – sú potomkovia (nový stav)

Po crossov naša "work" skupina vyzerala nasledovne :

0	0	103,6	47	468,7	223	364,8	428,9	591,3	187,8	416,4	43	1000	1000
0	0	509	216,9	939,1	742,9	857	164,4	51,5	682,6	448,2	58,2	1000	1000
0	0	472,7	71	484,3	490,7	903,6	434,9	427,3	762,8	366,3	641,2	1000	1000
0	0	23,3	453,1	347,6	430,5	230,4	824,7	465,5	512,2	164,9	544,2	1000	1000
0	0	538,1	773,3	534,7	721,7	864,4	196	952,4	293,1	839,1	291,7	1000	1000
0	0	70,2	384,8	113	201,4	857	134,4	738,4	892,8	874,9	323,9	1000	1000
0	0	540,5	822	873,1	498,8	434,9	573	220	882,9	172,8	180,1	1000	1000
0	0	888,8	570,1	954,2	30,8	299,3	251,9	271	541,7	103,6	809,7	1000	1000
0	0	451,9	47	303,9	617,8	54,8	800,9	440,8	393,7	66,2	717,4	1000	1000
0	0	137,1	962,5	867,3	532,6	738,8	37,6	966	195,2	677,2	219,9	1000	1000
0	0	299,9	13,8	160,4	843,7	528,6	540,4	387,4	36,4	87,7	712	1000	1000
0	0	103,6	36,8	288,5	823	497,4	868,4	804,5	436,6	451,6	941,9	1000	1000
0	0	924,4	564,8	872,7	175,8	599,3	497,2	504,7	369,4	174,8	2,7	1000	1000
0	0	268,3	716,2	47,1	451,7	173,7	950	564,3	576,2	560	651,6	1000	1000
0	0	70,2	384,8	113	201,4	86,3	859,2	781,4	983	874,2	976,6	1000	1000
0	0	538,1	773,3	534,7	721,7	864,4	196	952,4	293,1	839,1	291,7	1000	1000
0	0	23,3	453,1	347,6	430,5	230,4	824,7	465,5	512,2	164,9	641,2	1000	1000
0	0	538,1	773,3	534,7	175,8	599,3	497,2	504,7	369,4	174,8	2,7	1000	1000
0	0	44,1	639,2	778,2	437,7	309,7	167,1	51,5	682,6	448,2	58,2	1000	1000
0	0	991,7	956,6	503,1	168,1	989,4	256,8	776,5	657,1	578,9	623,2	1000	1000
0	0	870,5	822	873,1	498,8	434,9	573	317,4	595,7	65,9	543,5	1000	1000
0	0	967,8	693,8	47,1	451,7	869,1	675	832,2	76,1	480	136,5	1000	1000
0	0	924,4	564,8	872,7	721,7	864,4	196	952,4	293,1	839,1	291,7	1000	1000
0	0	343,5	867,7	635,2	234,6	350,8	439	440,7	862,6	377,7	895,4	1000	1000
0	0	268,3	716,2	50,2	797,4	173,7	950	564,3	576,2	560	651,6	1000	1000
0	0	145,6	560	468,7	223	364,8	428,9	591,3	187,8	416,4	43	1000	1000
0	0	384,2	139,9	520,3	575,1	165,2	723	987,9	798,6	128,3	616,3	1000	1000
0	0	845,4	667,3	497,3	753,9	247,5	881,8	317,4	595,7	65,9	543,5	1000	1000
0	0	268,3	716,2	50,2	797,4	869,1	675	832,2	76,1	677,2	219,9	1000	1000
0	0	967,8	693,8	50,2	797,4	869,1	675	832,2	76,1	480	136,5	1000	1000
0	0	206,9	770,7	850,6	489,6	697,8	268,2	929,7	346,1	880,9	200,2	1000	1000
0	0	451,9	36,8	288,5	823	497,4	37,6	966	195,2	677,2	219,9	1000	1000
0	0	248,8	795,9	206,9	232,5	296,6	941,8	625,7	276,1	66,6	577,1	1000	1000
0	0	103,6	36,8	288,5	823	497,4	37,6	966	195,2	480	136,5	1000	1000
0	0	268,3	716,2	50,2	797,4	869,1	675	832,2	76,1	480	136,5	1000	1000

Potom sme spustili - mutx(work,**0.1**,**space**), čo je globálna mutácia, ktorá nám umožní veľké modifikácie, teda veľké skoky v priestore. <u>0.1</u> na rate sme si vybrali preto , lebo maximálna odporúčaná mutácia je 10% (a keďže rate je definovaný medzi 0 a 1 , potom 0.1 = 10%). Space sme tam potrebovali kvôli tomu, aby nová mutovaná hodnota neprekročila interval zadefinovaný v space .

						Work af	ter MUTX						
0	0	768	47	468,7	223	364,8	428,9	591,3	187,8	416,4	43	1000	1000
0	0	509	216,9	146,9	742,9	857	164,4	51,5	682,6	448,2	58,2	1000	1000
0	0	472,7	71	484,3	490,7	467,4	238,6	427,3	762,8	366,3	641,2	1000	1000
0	0	23,3	453,1	347,6	430,5	230,4	984,3	465,5	512,2	164,9	544,2	1000	1000
0	0	538,1	773,3	534,7	721,7	864,4	196	952,4	293,1	839,1	291,7	1000	1000
0	0	70,2	384,8	113	201,4	408,4	164,4	738,4	892,8	874,9	323,9	1000	1000
0	0	870,5	822	873,1	498,8	434,9	573	220	882,9	172,8	180,1	1000	1000
0	0	888,8	570,1	954,2	30,8	299,3	251,9	271	541,7	103,6	809,7	1000	1000
0	0	451,9	47	303,9	617,8	54,8	800,9	440,8	154,3	66,2	717,4	1000	1000
0	0	137,1	962,5	867,3	532,6	738,8	37,6	966	195,2	677,2	219,9	1000	1000
0	0	299,9	13,8	453,4	843,7	528,6	540,4	387,4	36,4	87,7	712	1000	1000
0	0	103,6	36,8	288,5	823	497,4	868,4	804,5	436,6	451,6	941,9	1000	1000
0	0	924,4	564,8	872,7	175,8	599,3	497,2	504,7	369,4	174,8	2,7	1000	1000
0	0	268,3	716,2	47,1	816,4	173,7	950	504,9	576,2	901,8	651,6	1000	1000
0	0	70,2	384,8	57,6	201,4	86,3	859,2	781,4	983	874,2	976,6	1000	1000
0	0	538,1	773,3	534,7	721,7	864,4	196	952,4	293,1	839,1	19,3	1000	1000
0	0	23,3	453,1	347,6	430,5	230,4	824,7	465,5	512,2	164,9	641,2	1000	1000
0	0	538,1	773,3	534,7	808,7	599,3	497,2	504,7	369,4	174,8	2,7	1000	1000
0	0	363	639,2	778,2	437,7	309,7	167,1	51,5	682,6	448,2	58,2	1000	1000
0	0	991,7	956,6	375,2	168,1	989,4	256,8	776,5	657,1	578,9	623,2	1000	1000
0	0	870,5	822	873,1	498,8	434,9	573	950,3	595,7	65,9	543,5	1000	1000
0	0	967,8	693,8	47,1	451,7	869,1	675	832,2	76,1	480	136,5	1000	1000
0	0	924,4	564,8	872,7	721,7	864,4	196	952,4	293,1	839,1	291,7	1000	1000
0	0	343,5	867,7	635,2	878,8	350,8	439	440,7	862,6	377,7	895,4	1000	1000
0	0	571	716,2	50,2	797,4	173,7	950	564,3	576,2	560	651,6	1000	1000
0	0	145,6	560	468,7	223	364,8	428,9	591,3	187,8	416,4	43	1000	1000
0	0	384,2	139,9	520,3	575,1	165,2	723	987,9	798,6	128,3	895	1000	1000
0	0	845,4	667,3	497,3	753,9	247,5	881,8	317,4	595,7	65,9	543,5	1000	1000
0	0	217,1	716,2	50,2	797,4	869,1	33,9	832,2	76,1	677,2	451,9	1000	1000
0	0	967,8	693,8	50,2	111	869,1	675	832,2	76,1	480	136,5	1000	1000
0	0	206,9	770,7	850,6	489,6	697,8	320,6	929,7	346,1	880,9	200,2	1000	1000
0	0	451,9	36,8	288,5	823	233,1	601,5	966	328,1	677,2	219,9	1000	1000
0	0	248,8	795,9	206,9	232,5	296,6	941,8	927,4	276,1	66,6	577,1	1000	1000
0	0	103,6	36,8	288,5	823	497,4	37,6	966	195,2	776,2	684,8	1000	1000
0	0	268,3	716,2	50,2	797,4	869,1	675	832,2	76,1	480	136,5	1000	1000

Aby sme dostali čo najbližšie k najkratšej trase a čo najrýchlejšie sme potrebovali spustiť aj muta(work,**0.1,Amp,space**), čo je lokálna mutácia, ktorá nám umožní menšie modifikácie, teda, aby sme sa dostali čo najbližšie k prekážkam (bez kolízií) pre kratšiu trasu. Takisto ako v prípade mutx, preto sme si vybrali 0.1, lebo je to maximálna odporúčaná mutácia.

Amp sme nastavili na [0,0,50*ones(1,dots),50*ones(1,dots),0,0], aby sa nám súradnice počiatočného a cieľového bodu nezmenili, ale okrem toho bol schopný aj pracovať ľubovoľným počtom prechodových bodov. Space je tam z toho istého dôvodu ako v prípade mutx.

	Before MUTA													
Start_x	Start_y	Bod1_x	Bod1_y	Bod2_x	Bod2_y	Bod3_x	Bod3_y	Bod4_x	Bod4_y	Bod5_x	Bod5_y	Stop_x	Stop_y	
0	0	363	639,2	778,2	437,7	309,7	167,1	51,5	682,6	448,2	58,2	1000	1000	
						After	MUTA							
Start_x	Start_x Start_y Bod1_x Bod1_y Bod2_x Bod2_y Bod3_x Bod3_y Bod4_x Bod4_y Bod5_x Bod5_y Stop_x Stop_y													
0	0	363	639,2	817,4	437,7	309,7	167,1	128,3	682,6	448,2	58,2	1000	1000	

6. Dosiahnuté výsledky po 10 spustení

Figures – Fittrend_10_Amp_50

Po 10 spustení sme dostali takýto fittrend, čo nám moc neprezradí, ale, keď ju trošku zväčšíme:

Figures – Fittrend_10_Amp_50

Môžeme zistiť, že najlepší jedinec má dĺžku <u>1459</u> a je značení modrou farbou,(túto hodnotu sme dosiahli v **10280. generácii**) a vidíme nad ním je žltá farba, čo znamená, že z desiatich spustení sme tam dostali dvakrát dĺžku <u>1459</u>.

Figures – Robot_10_Amp_50

Keďže sme už videli ktorá bola najlepšia dĺžka bolo dobré vedieť aj to, ktorá trasa z desiatich je tá najlepšia .

Figures - Best_of_10_Amp_50

A teda táto trasa bola úplne najlepšia z desiatich a mala dĺžku:

Najlepšie riešenie má dĺžku 1.4591e+03

7. Dosiahnuté výsledky pri modifikácii GA

Keby sme Amp zmenili na [0,0,100*ones(1,dots),100*ones(1,dots),0,0] dostali by sme trasy:

Figures - Robot_10_Amp_100

 ${\sf Figures-Fittrend_10_Amp_100}$

Po zväčšení sme zistili, že najlepšie riešenie v tomto prípade je okolo 1459 presnejšie:

Túto hodnotu sme dosiahli v **6231**. generácii, a "najhoršie" riešenie mala dĺžku <u>1559</u>. Na rozdiel od predchádzajúceho príkladu, sme dostali do najkratšej dĺžky rýchlejšie , ale dĺžku <u>1459</u> sme dosiahli trikrát.

Figures - Best_of_10_Amp_100

- Najlepšia trasa v prípade Amp=[0,0,100*ones(1,dots),100*ones(1,dots),0,0]

Keby sme tam nemali crossov dostali by sme tieto trasy:

 $Figures-Robot_10_No_Crossov$

Fittrend v prípade, že nepoužívame crossov .

Figures - Fittrend_10_No_Crossov

Najlepšie riešenie bolo okolo <u>1459.3</u>, čo je trochu horšie ako sme dosiahli v normálnom prípade.

Figures – Best_of_10_No_Crossov

Najlepší jedinec bez použitia crossov s dĺžkou:

Najlepšie riešenie má dĺžku 1.4593e+03

Figures – Robot_10_No_Muta

Figures – Fittrend_10_No_Muta

Všetky riešenia , ktoré sme dostali mali dĺžku nad $\underline{1460}$, to znamená, že bez muta nevieme dosiahnuť úplne najkratšiu trasu .

Figures – Best_of_10_No_Muta

Najlepšie riešenie bez používania muta má dĺžku <u>1462</u>.

Najlepšie riešenie má dĺžku 1.4617e+03