

Universidad de Ingeniería y Tecnología Escuela Profesional de Ciencia de la Computación Silabo del curso – Periodo Académico 2017-II

- 1. Código del curso y nombre: XD301. Proyecto Interdisciplinario III
- 2. Créditos: 2
- 3. Horas de Teoría y Laboratorio: 2 HT;
- 4. Docente(s)

Atención previa coordinación con el profesor

5. Bibliografía

[Zob14] Justin Zobel. Writing for Computer Science. Springer, Londres, 2014.

6. Información del curso

(a) Breve descripción del curso Proyectos Interdisciplinarios III es un curso en el que los estudiantes trabajan en equipos en un proyecto de investigación y desarrollo o emprendimiento, con el fin de plantear una solución a un problema relevante. El desarrollo del proyecto se centra en el uso de herramientas de ingeniería, tecnologia y la ciencia de la computación para proponer soluciones a problemas técnicos, tecnológicos, científicos y/o sociales. La integración del conocimiento y aspectos multidisciplinarios e interdisciplinarios es un elemento esencial para el éxito del proyecto. A lo largo del curso, el estudiante aprende sobre el proceso de diseño, a aplicar los contenidos de su carrera a un contexto real; a identificar y adquirir nuevos conocimientos relevantes; y a colaborar interdisciplinariamente. En este tercer curso de Proyectos Interdisciplinarios, el estudiante está expuesto a problemas de complejidad moderada, con bajo nivel incertidumbre en la problemática y la solución, y cuenta con el apoyo y supervisión cercana del asesor del proyecto. El curso enfatiza el desarrollo y reforzamiento de las habilidades de comunicación efectiva y colaboración, para propiciar la formación de equipos de alto rendimiento. Se aprende a gestionar proyectos, aplicando buenas prácticas y estándares internacionales.

(b) **Prerrequisitos:** XD201. Proyecto Interdisciplinario II. (5^{to} Sem)

(c) Tipo de Curso: Obligatorio

7. Competencias

- Identificar problemas
- Diseñar un componente o un proceso para satisfacer las necesidades deseadas dentro de restricciones realistas.
- 8. Contribución a los resultados (Outcomes)
- f) Comunicarse efectivamente con audiencias diversas. (Usar)
- n) Aplicar conocimientos de humanidades en su labor profesional. (Usar)
- 9. Competencias (IEEE)
- C17. Capacidad para expresarse en los medios de comunicación orales y escritos como se espera de un graduado.⇒
 Outcome f
- C19. Capacidad para identificar eficazmente los objetivos y las prioridades de su trabajo / área / proyecto con indicación de la acción, el tiempo y los recursos necesarios.

 Outcome n

10. Lista de temas a estudiar en el curso

1. Proyecto Interdisciplinario III

11. Metodologia y Evaluación Metodología:

Sesiones Teóricas:

El desarrollo de las sesiones teóricas está focalizado en el estudiante, a través de su participación activa, resolviendo problemas relacionados al curso con los aportes individuales y discutiendo casos reales de la industria. Los alumnos desarrollarán a lo largo del curso un proyecto de aplicación de las herramientas recibidas en una empresa.

Sesiones de Laboratorio:

Las sesiones prácticas se desarrollan en laboratorio. Las prácticas de laboratorio se realizan en equipos para fortalecer su comunicación. Al inicio de cada laboratorio se explica el desarrollo de la práctica y al término se destaca las principales conclusiones de la actividad en forma grupal.

Exposiciones individuales o grupales:

Se fomenta la participación individual y en equipo para exponer sus ideas, motivándolos con puntos adicionales en las diferentes etapas de la evaluación del curso.

Lecturas

A lo largo del curso se proporcionan diferentes lecturas, las cuales son evaluadas. El promedio de las notas de las lecturas es considerado como la nota de una práctica calificada. El uso del campus virtual UTEC Online permite a cada estudiante acceder a la información del curso, e interactuar fuera de aula con el profesor y con los otros estudiantes.

Sistema de Evaluación:

12. Contenido

Unidad 1: Proyecto Interdisciplinario III (16) Competences esperadas: C17	
Objetivos de Aprendizaje	Tópicos
• Desarrollo del pensamiento crítico en la toma de decisiones en los procesos de diseño de productos o realización de las investigaciones.	Desarrollar ideas relacionas a las multiples discipi- plinas que aproximen al alumno a una idea real de una empresa.
Lecturas : [Zob14]	

Universidad de Ingeniería y Tecnología Escuela Profesional de Ciencia de la Computación Silabo del curso – Periodo Académico 2017-II

- 1. Código del curso y nombre: CS261. Inteligencia Artificial
- 2. Créditos: 4
- 3. Horas de Teoría y Laboratorio: 2 HT; 4 HP;
- 4. Docente(s)

Atención previa coordinación con el profesor

5. Bibliografía

[De 06] L.N. De Castro. Fundamentals of natural computing: basic concepts, algorithms, and applications. CRC Press, 2006.

[Gol89] David Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, 1989.

[Hay99] Simon Haykin. Neural networks: A Comprehensive Foundation. Prentice Hall, 1999.

[Nil01] Nils Nilsson. Inteligencia Artificial: Una nueva visión. McGraw-Hill, 2001.

[Pon+14] Julio Ponce-Gallegos et al. *Inteligencia Artificial*. Iniciativa Latinoamericana de Libros de Texto Abiertos (LATIn), 2014.

[RN03] Stuart Russell and Peter Norvig. Inteligencia Artifical: Un enfoque moderno. Prentice Hall, 2003.

6. Información del curso

- (a) **Breve descripción del curso** La investigación en Inteligencia Artificial ha conducido al desarrollo de numerosas tónicas relevantes, dirigidas a la automatización de la inteligencia humana, dando una visión panorámica de diferentes algoritmos que simulan los diferentes aspectos del comportamiento y la inteligencia del ser humano.
- (b) **Prerrequisitos:** MA203. Estadística y Probabilidades. (4^{to} Sem)
- (c) Tipo de Curso: Electivo

7. Competencias

- Evaluar las posibilidades de simulación de la inteligencia, para lo cual se estudiarán las técnicas de modelización del conocimiento.
- Construir una noción de inteligencia que soporte después las tareas de su simulación.

8. Contribución a los resultados (Outcomes)

- a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- h) Incorporarse a un proceso de aprendizaje profesional continuo. (Familiarizarse)
- i) Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Familiarizarse)
- j) Aplicar la base matemática, principios de algoritmos y la teoría de la Ciencia de la Computación en el modelamiento y diseño de sistemas computacionales de tal manera que demuestre comprensión de los puntos de equilibrio involucrados en la opción escogida. (Familiarizarse)

9. Competencias (IEEE)

C1. La comprensión intelectual y la capacidad de aplicar las bases matemáticas y la teoría de la informática ($Computer\ Science$). \Rightarrow Outcome a