

INTERIM SUBMITTAL

ENERGY SURVEY OF

**EISENHOWER ARMY MEDICAL CENTER
FORT GORDON**

AUGUSTA, GEORGIA

VOLUME III

FIELD INVESTIGATION NOTES

CONTRACT NO. DACA01-94-D-0038

PREPARED FOR:

**U.S. ARMY CORPS OF ENGINEERS
SAVANNAH DISTRICT**

PREPARED BY:

DTIC QUALITY INSPECTED 2

**REYNOLDS, SMITH AND HILLS, INC.
AEROSPACE AND DEFENSE PROGRAM
4651 SALISBURY ROAD
JACKSONVILLE, FLORIDA 32256**

PROJECT NO. 6941331005

MARCH 1996

DISTRIBUTION STATEMENT A

**Approved for public release;
Distribution Unlimited**

19971021207

DEPARTMENT OF THE ARMY
CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS
P.O. BOX 9005
CHAMPAIGN, ILLINOIS 61826-9005

REPLY TO
ATTENTION OF: TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited.
Distribution A. Approved for public release.

Marie Wakefield,
Librarian Engineering

TABLE OF CONTENTS

	<u>PAGE</u>
<u>HOSPITAL</u>	
A.	BUILDING
B.	AIR HANDLING UNITS
C.	FAN MOTORS
D.	PUMP MOTORS
<u>HEATING AND COOLING PLANT</u>	
E.	CHILLERS AND AUXILIARIES
F.	BOILERS AND AUXILIARIES

BUILDING DATA SHEET

Building Energy Monitor: Eisenhower AMC Phone: 10/24/95
Building Number: 300 Age 1976

Construction Data:

Number of Floors 13 Areas: Floor 590,629 sf Roof 27,038 sf
Windows: # of panes 1 Storms — Blinds/drapes/tint Blinds & drapes
Condition, caulking, weatherstripping? W/S missing on N-facing ext. doors

Wall construction? _____
Condition, caulking, weatherstripping? _____

Roof construction? _____
Condition? _____

U-Values: Walls _____ Roof _____ Glass _____
Areas: E Wall _____ W Wall _____ N Wall _____ S Wall _____
E Glass _____ W Glass _____ N Glass _____ S Glass _____

Access points: _____

Vestibules? _____

Loading dock door seals? Not necessary - separate doors to open dock

Areas with special requirements: _____

Modifications to original design: Numerous interior changes
Addition of MRI and Family Practice wings on East side of hospital

General Conditions/Comments/Problems: _____
Population 2800 total May 2000 during day 400 for
each of other two shifts.

2nd FLR ceiling 9' - records - hallways 8'
MRI - 8' ceil - Fan Pract Office 8½'

BUILDING DATA SHEET (continued)

Schedules:

By floor or function : 5th - 13th 24 h/day

1st Labs are 24 h/day - remainder 7:30 - 4:00

2nd Radiology, Emergency, Info desk - 24 h/day

3rd SICU, Pharmacy, CMS (sterilization)

4th OR closes at 4PM but does emerg.

Closes at 4PM

1000 AHU's op. continuously

0500 - 1900 All days Cleaning out at 2300

Cafeteria 0545 - 1730 M-F WEH 0630 - 1300 Serving hrs.

Pneumatic tube 24 h/day - pharmacy uses mainly

Power Selectimatic 129 - 2 tube send & receive -

Elevator Ten - 4 service 6 passenger - All solid state

Cleaning 4PM - midnight - supposed to turn off lights

Potential for night setback of space temperatures or AHU shut off

4th Floor

Can emergency generator be used for load shedding? 2100 kW & 800 kW

6:30 AM first Wed. of each month - Already done

800 kW parallel w/ 2100 picks up

what electric loads can be shed?

BUILDING DATA NOTES

Survey by: _____

Date: _____

Notes & Comments: _____

- maintains ~50°F
- Econo - opens at ~50°F? Ask Harold

968 T'STATS

Billy Btl's - Electrician

Booster pumps are in 1A

FIRE ALARM SYSTEM IS FUNCTIONAL

KITCHEN SUPPLY FAN in 3-A tool crib

5th SW corner Attic loc.

~20 new supply fans in 1-3

5E is short on cap.

791-6376/4243 Cert's #

BUILDING DATA NOTES

Survey by: Paul HutchinsDate: 10/23/95Notes & Comments: Jack KeathReviewed approved projectsBoiler economizers - removeChillers - replace + VSD OT Fans + SCWPBeds 720 → 420Will fund EMC's in next 3 mos.Jack Hough at Boiler PlantCeert 791-4241/43/6376 8:00 - 4:30 - 5:00Jack 781-3220/8165 6:00 - 5:00Role CallahanBldg 299 MRI Kenneth Cimrohen - Mech HVAC2 DX Split systems for space cooling#2 - TRANE - Mod # TTA090A300AASer # E3B191755Space Cooling#1 TRANE - Mod # TTA036A300B0Ser # E46295018Liebert - Mod # FH199AU100Ser # 142547AMRI Equip.Reading ModeSet 45% 1% Range 47 Det.69°F 1° Range 71 Olg.MechanicsHarold - ControlsJohn Lilly - SupervisorKen - HVACEconomizers rarely work automatically - usually done manually
Timeclock in Fam Room but runs always because some Drs sleep there
~ 20 extra fans/coils added

BUILDING DATA NOTES

Survey by:

P. Hutchins

Date:

10/24/95

Notes & Comments:

Bob Celloum Johnson Controls Mgr.

800 kW gen. parallel utility can be man. brought on-line
at any time (replaced 300 kW)

2100 kW gen. is used to handle two chillers, elevators
and several AHUs in hoop.

- All TSTATS are pneumatic and control reheat boxes
- No central reporting system

Medical barracks taken off power meter ~ 12/94

Ask J.K. 2000kW gen

JK thinks the 2100 kW has a lot of life left

Not planned to parallel -

Just replace existing one

Newcomb & Boyd Jeff Riser

John Haugeron has boiler water treatment

Humidifiers - 5 MCU, 5th, Ductel

Gordon Griffin -

BUILDING DATA NOTES

Survey by:

Hutchinson

Date:

10/26/95

Notes & Comments:

Panel Reading 2nd FLR Mech Run 8:10 AM

(1) SA 53 OA 44 (act 48) STM APP 80 psig
RA 77 CWR 47 LP 28 psig

(2) SA 51 OA 43 CWS 40 HWS 154
RA 76 CWR 47 HWR 140

OSA Dampers 25% open
RTU " 75% closed

Prob 30 ft of insulation missing on DHW line in 2nd FLR MECHRM.

Float valve still stuck open on Gen. cooling tower

Flow rate - fills small coffee cup in 2 sec.
Weakening since last visit ~1 month earlier

N →

BUILDING DATA NOTES

Survey by: _____

Date: _____

Notes & Comments: (912) 652-5246 Rob Callahan

HW Reheat units

$\frac{1}{2}$ " 3-way control valves

Kneger Detroit Div

Leat-Sieffler

Size CVM-R4

190 cfm

V4054 Urowcoil

Ran 1A-23

BUILDING DATA (continued)

HVAC THERMOSTAT SETPOINTS (F), TEMPS, RELATIVE HUMIDITY (%RH) & LIGHT LEVELS (FC)

	<u>Setpoints</u>	<u>Temps</u>				
	<u>Heat</u>	<u>Cool</u>	<u>Meas'd</u>	<u>RH</u>	<u>Ft Cndl</u>	<u>Location</u>
1.		74	76	55		6TH FLOOR OUTSIDE Rm 6B01
2.		71	76	58		6TH FLOOR 6B56" DR.
3.		69	76	63	40	5TH ELEV. LOBBY (6)
4.			76	63		" 5C-13 (HOT LAST 3 Summers)
5.		74	80	51		4TH FL MAIN LOBBY
6.					55	1ST Pathology Off.
7.					63	1ST Occupational Therapy
8.					13-29	2ND Hallway
9.						
10.						
11.			79		50	3RD Flr Kitchen
12.			72			3RD - Linen
13.					13-21	3RD Warehouse
14.		70	76			3RD - Warehouse office
15.					12	5B-17 Lockers/computers (Patient Rm)
16.					55-60	5B-31 Break Rm
17.					10	5B-53 office (Patient Rm)
18.		55	73/54	28	25-35	5B-46 Conference Rm
19.						
20.						

Lighting Type Examples:

	<u>Fixture</u>	<u>Lamp</u>	<u>Ballast</u>	<u>Lamps/</u>	<u>Hr/</u>	
	<u>Type</u>	<u>Model</u>	<u>Model</u>	<u>Fixt</u>	<u>Wk</u>	<u>Location</u>
1.	1X4 W.R.	F40 CW	Adv. R2S40-1-TP	2		MECH Rm
2.	2X4 Rec. Acryl	F40CW	Merk III Adv	4		Caf Rm - MRT
3.						
4.						
5.						
6.						
7.						
8.						

General Conditions/Comments/Problems:

BUILDING DATA (continued)

HVAC THERMOSTAT SETPOINTS (F), TEMPS, RELATIVE HUMIDITY (%RH) & LIGHT LEVELS (FC)

	<u>Setpoints</u>	<u>Temps</u>				
	Heat	Cool	Meas'd	RH	Ft Cndl	Location
1.					1.5-34	1 st Floor hallways (avg 23 fc)
2.						Some lamps out cause low readings
3.					13	2 nd Flr hallways (every other fixt. out)
4.					25	Other non de-lamped hallways
5.					28	2 nd Flr lobby
6.			72.0		27	5 th hallways
7.					8	" " with delamping
8.			73.5		7-10	6 th hallways " "
9.					38	7 th "
10.					29-30	8 th "
11.					29-30	9 th "
12.					34	10 th " new TB
13.					35	11 th "
14.			74.8		50	11 th elevator lobby
15.					13-15	14 th
16.			71-73		24	12 th lobby & hallways
17.			79		33	13 th Nurse's station
18.			72/53		103	2nd FL Rm 16 Treatment F. Practice
19.			73/54		55-60	Family Practice waiting/reception area
20.					95/48	" " Office area; multi-surface
					4L 2L	77 Ft.Cd w/2L and task lights at desk ~ 1-4 lamp

Lighting Type Examples:

	Fixture	Lamp	Ballast	Lamps/	Hr/	
	Type	Model	Model	Fixt	Wk	Location
1.	Small eggcrate	Optron 350K F32T35		2	168	10 th FLR HALL
2.	2x2 Eggcrate	F40/30 BX/SPX35	M2-RN-T8-40 ⁽¹⁾	2	168	10 th FL ELV. Lobby
3.	2 lamp ind.	F40 CW			168	14 th
4.			Jaff. 300/9708801	2	168	11 th
5.	4- 2x4 w/ACR lens	F40 CW	92 input watts	3pat ~64/65		3D-1 GG
6.						
7.						
8.						

General Conditions/Comments/Problems: ⁽¹⁾ Motorola
 Family Practice - 7:30 am - 9pm M-F, 8-12 sun, ^{closed} Sunday
 Exit signs w/ 2-15w inc. lamps + 2 emergency lamps ~ 24 total
 U-tube lamps are 34-w; 4' T12's are 34-w.
 Office area can use 2 lamps overhead w/ task lights

BUILDING DATA (continued)

HVAC THERMOSTAT SETPOINTS (F), TEMPS, RELATIVE HUMIDITY (%RH) & LIGHT LEVELS (FC)

	<u>Setpoints</u>	<u>Temps</u>				
	<u>Heat</u>	<u>Cool</u>	<u>Meas'd</u>	<u>RH</u>	<u>Ft Cndl</u>	<u>Location</u>
1.		68	65	65	15.2	ELEV. MACH CONTROL RM (14)
2.		68	66	80		ELEV. 1-6 MACH CONT RM CONT (14)
3.		78	75	62	10.3	PLLEV MACH RM (14)
4.			75	70	10.5	ELEV. LOBBY (13)
5.		76				E. NURSE STAT
6.		75				W " "
7.			74	70	15	12 TH FLOOR ELEV - LOBBY
8.		72				12 TH " NURS STAT E
9.		79	75	78		" " " W ALL OFFICE
10.		75	78	74	50	11 TH FL ELEV LOBBY
11.		75			35	" HALLWAY
12.		60	78	82		10 TH , Rm 10C TOILET ANTR RM
13.						2-INCA WID. FIXT AIR RETURN.
14.						10C-1B. 5-B. NEW
15.		75	62			9 TH FL ELEV. LOBBY
16.		74				9 FL. WEST
17.		72	78	60		8TH FL. WEST
18.		73	75	70		" " BD-39.
19.			75/55.5		10-55	2nd FL Records (Desks have task lights)
20.						

Lighting Type Examples:

	<u>Fixture</u>	<u>Lamp</u>	<u>Ballast</u>	<u>Lamps/</u>	<u>Hz/</u>	
	<u>Type</u>	<u>Model</u>	<u>Model</u>	<u>Fixt</u>	<u>Wk</u>	<u>Location</u>
1.	14 BPAR			2		ELEV. MACH
2.	New 2x4 acrylic lens	F40 CW	MARK III Adv.	2		Records - 2 ND FLR
3.	Older 2x4 acrylic lens	F40 CW	-	2		Records. "
4.						
5.						
6.						
7.						
8.						

General Conditions/Comments/Problems:

WEST END 12TH ALL OFFICE SPACE PART. RELOCATED

ALL CORR. LIGHTS ARE ON.

10TH ALL NEW FIXT SEE E-53 / NURSE STAT 4L PRISMATIC

9TH ALL CORR. FIXT ARE ON. 2L-2X4 PRISMATIC K12 LENSE

8TH E thermostat broken

BUILDING DATA NOTES

Survey by: Z.N. Date: 10/25/95

Notes & Comments: Computer center, 1ST FL 68/95 66/97

THERM. SET. @ REAR. GL

THERMOTEC HANG. FROM CEIL. GLB. 27-2X4-2C

Hot water measurements - bathrooms

9th Flr - 117°F

6th Flr - 115°F

5th Flr - 115°F

BUILDING DATA (continued)

Lights on in unoccupied areas?

Locations 14th FL MECH RM - LEFT ON

12th KITCH UNIT, GROUP THERAPY LEFT ON

Need for separate switching?

Locations

Occupancy sensors for lights or HVAC?

Locations 9th FL. 9B-06. LOUNGE 12-2L .2x4,4-2x2- 2LU +TV
9A-54 NURSE MED.PREP. 5-2x4 -2L
9A-53 LINEN 5-2x4- 2L.
10th 10B -06 LOUNGE NEW/2- 2L REC. OCTRON LAMPS

Hot water temperature and flow rate samples:

Locations

Flow restrictor application?

Locations

Automatic shut-off faucet application?

Locations

BUILDING DATA NOTES

Survey by: F. NEW Date: 10-27-95

Notes & Comments: ROOF ELEVATOR MACHINE ROOM ROOF
OUTSIDE A/E UNIT FOR ELEVATOR SOLID STATE CONTROLLER
EQUIPMENT ROOMS. WEST UNIT SERVES ELEV. 1-6
EAST UNIT SERVES ELEV 6-10.

CARRIER DX SER. NO. 2692E17377

MOD. NO. 3BTK8038300

FACT. CHARGE R22 6.38 LBS

COMP. 208/230V 1Φ

1HP 60HZ 17.1A

FAN. 1/4HP 1.4A

" HIGH 450 PSI

" LOW 210 PSI

BUILDING DATA NOTES

Survey by: F. NEW

Date: 10-25-95

Notes & Comments:

1. 2ND FLOOR PHARMACY LOBBY RM 2C-1 175W MER. V
2. 4TH FLOOR LOBBY 4B-23 ALL RECESSED LENSED FIXT. HAVE 52W LAMPS
3. 3RD STORAGE RM 3M-1 SUSP. FIX. 175-LB MER. V.
4. 4TH FLOOR LOBBY 4B-4 + OFFICES ALONG SW + WEST SIDE OF BUILDING HAVE 175W MER. V.
5. NEW PATIENT FIXTURES 1 WALL MOUNTED WILL HAVE 4-40W/T8 LAMPS. (PAIRS SWITCHED SEPARATELY)
6. RM 1C-14 AUDITORIUM
64 - CIRCLINE 2L FIXT. 1-22W, 1-32W
38 - INCAN. STAGE LAMPS
11 -
8 - 52-WALL INCANDESCENT
2 - 2X4-2L F40CW RECESSED

BUILDING DATA NOTES

Survey by: _____

Date: 10/25/95

Notes & Comments: _____

Juin Pawlisek

Spot Cooling
First Flr EAB - 4

BUILDING DATA NOTES

Survey by: _____

Date: 10/27/95

Notes & Comments: Entrance Interview

Atlanta Gas Light Co.

Ian Skelton (706) 481-1484

Georgia Pwr Co (706) 823-4532

Michael Richardson

Col. Frank

New equipment - Growth factor for new elec equip.

Get copy of survey forms to Rob C.

RSH

SUBJECT _____
 DESIGNER Aukhuus
 CHECKER _____

AEP NO _____
 SHEET 1 OF 1
 DATE 1/23/96
 DATE _____

Harmonics Analysis E.T.U.C

1	10 th FLR	Circuit 2	At THW
2	"	Neutral (Large)	2.06 22.6
3	"	Circ 2	9.13 (8.4) 10RPZ & 11RPZ
4	"	Circ 4	5.06 22.8
5	"	#6	1.44 24.3
6	"	Large Neutral (Power feed)	3.64 109.2%
7	"	Small N (Lighting)	3.64 10.9%
8	10 th	Circ 4	6.93 19.0
9	"	Circ 6	4.31 12.7
10	"	Small Neutral	2.04 96.2

10th FLR - 25 2L fixtures 3 at TH 2 stairwell, 1 de closet
 11th 30 2L fixtures

Panel RPZ

T8's Installed in corridors and patient room
 overbed fixtures - Corridors are 2x4 2L T8's (27W)
 Overbed are 4ft box wall-mounted (120V)
 4 lamp with 2 way switch to control 2 lamps
 at a time - Installed summer '95

All fixtures are new - Done ~~8~~ 8 Oct 8th floor
 in Dec. Will do 3 or 4 more floors next cal yr.
 Expect to do all patient floors

Kitchen Equip.

10/26/95

Dishwasher:

Hobart Model FTM 822

First wash at $\sim 120^{\circ}\text{F}$

Final rinse at $\sim 180 - 200^{\circ}\text{F}$

Steam Kettles:

5 Kettles $\sim 30 - 40$ gal each

35 psi steam requirement

Steam Ovens:

4 steamers (all small)

$\sim \frac{1}{2}$ " steam pipe

15 psi steam required

Pots & Pans Washer:

150°F wash

180°F rinse

15 - 25 psi steam required

#1

#1
A234

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: SF-1 Location: 2nd Fl. Date: 10/24Manufacturer Name: P/P Model: P 490AHU Characteristics : ORDER Serial #: AFB448Supply: X Return X Exhaust: X Class: 3Flow control? Constant X VSD Inlet Guide Vanes Other Is motor in airstream? Supply X Return No Smoke detector? Y Smoke damper? O.AHumidifier type None Condition Economizer function? Yes Operating correctly? NO On temp. 55-56°FHeat recovery potential?

 Chilled water valves: 2-way 3-way X Balancing valve 56.1~~Steam~~ Hot water valves: 2-way X 3-way Balancing valve 56.5Coils: Preheat: Cooling: Heat: Reheat: 56.1Air Filter Type: Prefilter 56.0After filter Air Temp's: Design: OSA Rtn Mixed LPrHt LCC LHC Measured: OSA 74.5 Rtn Mixed 78.6 LPrHt LCC 55.1 LHC Air Flows: Nameplate: CFM 69 000 S.P. 6.5 RPM 921?Measured : CFM S.P. 6.4 RPM 1067Cooling capacity Tons: Design Calculated Heating capacity Tons: Design Calculated System description/Set points:
 Operation schedule:/Set points:
 Areas served: Condition/Comments/Problems:

Motor: Lineguard dryproof, 404T, 100 hp, 230/460v, 240/120A.

Code: TV-2734-A1, SN 905764, 1775 RPM

C. Corros., sometimes bent, little missing

Sketch AHU (show measurements)

AH-1

#2

#231

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: SF-2 Location: 3rd Fl. Date: 10-24Manufacturer Name: PEERLESS / PORTER Model: P 542AHU Characteristics : ORDER Serial #: AFB 448Supply: X Return X Exhaust: X Class: 3Flow control? Constant X VSD Inlet Guide Vanes Other Is motor in airstream? Supply X Return No Smoke detector? YES Smoke damper? O.A.Humidifier type None Condition Economizer function? Yes Operating correctly? No On temp. 55-56°FHeat recovery potential?

 Chilled water valves: 2-way 3-way X Balancing valve ~~Steam~~ Hot water valves: 2-way X 3-way Balancing valve Coils: Preheat: X Cooling: X Heat: Reheat: Air Filter Type: Prefilter Roll
After filter BagAir Temp's: Design: OSA Rtn Mixed LPrHt LCC LHC Measured: OSA 65.5 Rtn 81.0 Mixed 78.0 LPrHt NA LCC 54.0 LHC NOPEAir Flows: Nameplate: CFM 74,000 S.P. 6.5 RPM 798Measured: CFM S.P. 5.7 RPM 880Cooling capacity Tons: Design Calculated Heating capacity Tons: Design Calculated System description/Set points:
 Operation schedule:/Set points:
 Areas served: Condition/Comments/Problems: Roll filters(2 of 3) are very dirty, bag filters appear dirty. Coils are fairly clean.Motor: Lincard drip proof, 100 hp, 1775 rpm, 230/460V, 240/120A
Code TV 2734-A1, SN A05733Sketch AHU (show measurements) AH-2

$$\text{CALC OA \%} = 19.4$$

AH 1, 2, 3

AH-3

#3

#3

AIR HANDLING UNIT DATA SHEET

#232

AHU I.D. No.: SF-3

Location: 3rd Fl.

Date: 10/24

Manufacturer Name: P/P

Model: P 490

AHU Characteristics :

ORDER Serial #: AF8448

Supply: X Return X Exhaust: X

Class: 3

Flow control? Constant X VSD ___ Inlet Guide Vanes ___ Other ___

Is motor in airstream? Supply X Return ___ No ___

Smoke detector? Y Smoke damper? O.A.

Humidifier type None Condition ___

Economizer function? Yes Operating correctly? No On temp. ~ 55-56°F

Relay or adjusters not working properly - RA only

Heat recovery potential?

Chilled water valves: 2-way ___ 3-way ___ Balancing valve ___

~~Steam~~ Hot water valves: 2-way ___ 3-way ___ Balancing valve ___

Coils: Preheat: ___ Cooling: ___ Heat: ___ Reheat: ___

Air Filter Type: Prefilter

After filter

Air Temp's: Design: OSA ___ Rtn ___ Mixed ___ LPrHt ___ LCC ___ LHC ___

Measured: OSA ___ Rtn ___ Mixed ___ LPrHt ___ LCC ___ LHC ___

Air Flows: Nameplate: CFM 61000 S.P. 6.5 RPM 886

Measured: CFM ___ S.P. 6.6 RPM 1069

Cooling capacity Tons: Design ___ Calculated ___

Heating capacity Tons: Design ___ Calculated ___

System description/Set points:

Operation schedule:/Set points:

Areas served:

Condition/Comments/Problems:

Motor: Lincoln, LINCGUARD DRIPPROOF, 404T, 100 hp, 230/460v, 238/119A
1770 RPM, SF=1.15, code TV-3420-A1, SN 2243351

Sketch AHU (show measurements)

AH-4

SF-3

AH-5

Return Fan for #1,2 & 3

1-A

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: RA-1 Location: 3RD Fl. Date: 10/24

Manufacturer Name: P/P Model: 60

AHU Characteristics : Order Serial #: AF 8464

Supply: _____ Return: _____ Exhaust: _____

Flow control? Constant VSD _____ Inlet Guide Vanes _____ Other _____

Is motor in airstream? Supply _____ Return _____ No _____

Smoke detector? _____ Smoke damper? _____

Humidifier type _____ Condition _____

Economizer function? _____ Operating correctly? _____ On temp. _____

Heat recovery potential? _____

Chilled water valves: 2-way _____ 3-way _____ Balancing valve _____

Hot water valves: 2-way _____ 3-way _____ Balancing valve _____

Coils: Preheat: _____ Cooling: _____ Heat: _____ Reheat: _____

Air Filter Type: Prefilter _____
After filter _____

Air Temp's: Design: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____

Measured: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____

Air Flows: Nameplate: CFM 61000 S.P. 2.0 RPM 784

Measured : CFM _____ S.P. 1.4 RPM _____

Cooling capacity Tons: Design _____ Calculated _____ \rightarrow 1.4 - 0.4 =

Heating capacity Tons: Design _____ Calculated _____

System description/Set points: _____

Operation schedule:/Set points: _____

Areas served: _____

Condition/Comments/Problems: Dampers at closed position

Sketch AHU (show measurements) _____ AH-6

Return Fan for #1, 2 & 3

1-B

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: RA-1 Location: 3rd fl Date: _____Manufacturer Name: P/P Model: 60AHU Characteristics : PROER Serial #: AF B464Supply: Return Exhaust: Flow control? Constant VSD Inlet Guide Vanes Other Is motor in airstream? Supply Return No Smoke detector? Smoke damper?

Humidifier type _____ Condition _____

Economizer function? Operating correctly? On temp. Heat recovery potential? Chilled water valves: 2-way 3-way Balancing valve Hot water valves: 2-way 3-way Balancing valve Coils: Preheat: Cooling: Heat: Reheat:

Air Filter Type: Prefilter _____

After filter _____

Air Temp's: Design: OSA Rtn Mixed LPrHt LCC LHC Measured: OSA Rtn Mixed LPrHt LCC LHC Air Flows: Nameplate: CFM 61000 S.P. AE2.0 BE RPM 784Measured: CFM _____ S.P. +.65 / 1.27 RPM _____Cooling capacity Tons: Design _____ Calculated _____ \rightarrow 1400 $1.27 - 0.65 =$

Heating capacity Tons: Design _____ Calculated _____

System description/Set points: _____

Operation schedule:/Set points: _____

Areas served: _____

Condition/Comments/Problems: Dampers ~ 25% open

Sketch AHU (show measurements) _____ AH-7

SF-4A

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: 236 Location: 14TH (EAST) Date: 10/24/95Manufacturer Name: Peerless Model: P 542 SF-4AHU Characteristics : Serial #: AF 8448Supply: X Return X Exhaust: XFlow control? Constant X VSD Inlet Guide Vanes Other Is motor in airstream? Supply Return X No Smoke detector? Smoke damper? Humidifier type None Condition Economizer function? Yes Operating correctly? No On temp. 50°FHeat recovery potential?

 Chilled water valves: 2-way 3-way X Balancing valve ~~Steam~~ Hot water valves: 2-way X 3-way Balancing valve Coils: Preheat: ✓ Cooling: ✓ Heat: Reheat: Air Filter Type: Prefilter ROLL; 2" thick
After filter BAG. } $\Delta P = 0.40$ Air Temp's: Design: OSA Rtn Mixed LPrHt LCC LHC Measured: OSA 64.8 Rtn 75.6 Mixed 72.5 LPrHt LCC 56.5 LHC Air Flows: Nameplate: CFM 83000 S.P. 7.0 RPM 847Measured: CFM S.P. 5.5 RPM 890Cooling capacity Tons: Design Calculated Heating capacity Tons: Design Calculated System description/Set points:
 Operation schedule:/Set points:
 Areas served: Condition/Comments/Problems: Cooling coils fairly clean - some dust, ^{some} bent finsMotor 1/25 hp, 292/146A, 230/460V, 1779 RPM, SF=1.15contr., Dripproof1 damper blade missing from O.A. & Relief air dampersSketch AHU (show measurements) See back

SF 4A

CALC DA = 28.7%

AH-9

RECD.
AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: RA-2A Location: 14th Fl EAST Date: 10-24-95

Manufacturer Name: PEERLESS Model: 60

AHU Characteristics : Serial #: _____

Supply: _____ Return: _____ Exhaust: _____

Flow control? Constant _____ VSD _____ Inlet Guide Vanes Manual Other _____

Is motor in airstream? Supply _____ Return _____ No

Smoke detector? _____ Smoke damper? _____

Humidifier type _____ Condition _____

Economizer function? _____ Operating correctly? _____ On temp. _____

Heat recovery potential? _____

Chilled water valves: 2-way _____ 3-way _____ Balancing valve _____

Hot water valves: 2-way _____ 3-way _____ Balancing valve _____

Coils: Preheat: _____ Cooling: _____ Heat: _____ Reheat: _____

Air Filter Type: Prefilter _____

After filter _____

Air Temp's: Design: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____

Measured: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____

Air Flows: Nameplate: CFM _____ S.P. -1.0/-0.2 RPM _____

Measured : CFM _____ S.P. _____ RPM _____

Cooling capacity Tons: Design _____ Calculated _____

Heating capacity Tons: Design _____ Calculated _____

System description/Set points: _____

Operation schedule:/Set points: _____

Areas served: _____

Condition/Comments/Problems: _____

Manual VIV's are on ~~maximum~~ setting.

Sketch AHU (show measurements) _____ AH-10

SF-4B

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: #235 Location: 14-HA-West Date: 10-24-95

Manufacturer Name: PEERLESS Model: P542 ; CL#3

AHU Characteristics : Serial #: AF8448

Supply: X Return X Exhaust: X

Flow control? Constant X VSD Inlet Guide Vanes Other

Is motor in airstream? Supply X Return No

Smoke detector? Yes Smoke damper?

Humidifier type None Condition

Economizer function? Yes Operating correctly? No On temp. 20°F

Heat recovery potential?

Chilled water valves: 2-way _____ 3-way X Balancing valve _____

~~Steam~~ Hot water valves: 2-way X 3-way _____ Balancing valve _____

Coils: Preheat: ✓ Cooling: ✓ Heat: _____ Reheat: _____

Air Filter Type: Prefilter ~~4x6 2" thick Roll~~ After filter Bag } $\Delta P = 0.45$ Air Temp's: Design: OSA _____ Rtn ~~74.0~~ Mixed _____ LPrHt _____ LCC _____ LHC _____

Measured: OSA 71.9 Rtn 76.0 Mixed 74.5 LPrHt _____ LCC 55.6 LHC _____

Air Flows: Nameplate: CFM 83000 S.P. 7.0 RPM 847

Measured: CFM _____ S.P. 5.75 RPM 876

Cooling capacity Tons: Design _____ Calculated _____

Heating capacity Tons: Design _____ Calculated _____

System description/Set points: _____

Operation schedule:/Set points: _____

Areas served: _____

Condition/Comments/Problems: cooling coils are dusty, some bent fins

motor Lincoln, 125 hp, 1770 rpm, 280/144 A, 230/460V

vema nom off = 93.6, 405T, LINCGUARD DRIPPROOF

Relief Air damper linkage is coming loose from wall - will not open

O.A. dampers will not fully open

Sketch AHU (show measurements) same as east unit but opposite hand

VIV max open

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: RA-2B Location: 14th Fl. West Date: 10-24-95

Manufacturer Name: PEERLESS Model: 60; P.N. 165001/RA-2

AHU Characteristics : Serial #: ORDER # AF 8464

Supply: Return Exhaust:

Flow control? Constant VSD Inlet Guide Vanes X manual Other

Is motor in airstream? Supply Return No

Smoke detector? Smoke damper?

Humidifier type Condition

Economizer function? Operating correctly? On temp.

Heat recovery potential?

Chilled water valves: 2-way 3-way Balancing valve

Hot water valves: 2-way 3-way Balancing valve

Coils: Preheat: Cooling: Heat: Reheat:

Air Filter Type: Prefilter

After filter

Air Temp's: Design: OSA Rtn Mixed LPrHt LCC LHC

Measured: OSA Rtn Mixed LPrHt LCC LHC

Air Flows: Nameplate: CFM 6500 S.P. 1.75 RPM 771

Measured: CFM S.P. -1.0/0.0 RPM

Cooling capacity Tons: Design Calculated

Heating capacity Tons: Design Calculated

System description/Set points:

Operation schedule:/Set points:

Areas served: Toshiba

80304VLFIUD

Condition/Comments/Problems: 80/40 A

Motor: 30 hp, 286T, 3ph, 1760 RPM, 230/460v, 1.15 SF
Fan Dampers were open; rpm measured ~1690 - 1730

relief dampers above RA unit slightly overactuated

Sketch AHU (show measurements)

#233

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: SF-5 Location: 5th Fl. Date: 10/25

Manufacturer Name: Covered w/ insulation Model: _____

AHU Characteristics : Serial #: _____

Supply: Return _____ Exhaust: _____

Flow control? Constant VSD _____ Inlet Guide Vanes _____ Other _____

Is motor in airstream? Supply _____ Return _____ No

Smoke detector? _____ Smoke damper? _____

Humidifier type _____ Condition _____

Economizer function? _____ Operating correctly? _____ On temp. _____

Heat recovery potential? _____

Chilled water valves: 2-way _____ 3-way Balancing valve _____

~~Steam humidifier~~ Hot water valves: 2-way _____ 3-way Balancing valve _____

Coils: Preheat: _____ Cooling: Heat: _____ Reheat:

Air Filter Type: Prefilter ROLL

After filter BAG

Air Temp's: Design: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____

Measured: OSA 66 Rtn NA Mixed 73.1 LPrHt _____ LCC 52.0 LHC 55.8

Air Flows: Nameplate: CFM _____ S.P. _____ RPM _____ Covered w/

Measured: CFM _____ S.P. 5.6 RPM 1731 Insulation

Cooling capacity Tons: Design _____ Calculated _____

Heating capacity Tons: Design _____ Calculated _____

System description/Set points: multi zone (13 zones?)

Operation schedule:/Set points: _____

Areas served: ICU & ORAL SURGERY

Condition/Comments/Problems: _____

Motor: 20hp, 1755 rpm, 230/460v, 50.2/25.1A,

Sketch AHU (show measurements) _____

AH-13

234

AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: SF-6 Location: 3rd Fl. Date: 10/25
 Manufacturer Name: P/P Model: P330 DWDI

AHU Characteristics : Serial #: _____

Supply: X Return _____ Exhaust: X

Flow control? Constant X VSD _____ Inlet Guide Vanes _____ Other _____

Is motor in airstream? Supply X Return _____ No _____

Smoke detector? _____ Smoke damper? _____

Humidifier type Steam Condition OK

Economizer function? No Operating correctly? _____ On temp. _____

100% outside air

Heat recovery potential? _____

Steam preheat: 2-way _____

Chilled water valves: 2-way _____ 3-way X Balancing valve _____

Steam Humidifier Hot water valves: 2-way X 3-way X Balancing valve _____

Coils: Preheat: X Cooling: X Heat: _____ Reheat: X

Air Filter Type: Prefilter Roll

After filter Bag → 97% after humidifiers

Air Temp's: Design: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____

Measured: OSA 78.7 Rtn NA Mixed 77.3 LPrHt NA LCC 57.3 LHC _____

Air Flows: Nameplate: CFM 27000 S.P. 6.75 RPM 1363

Measured: CFM _____ S.P. 5.5 RPM 1467

Cooling capacity Tons: Design _____ Calculated _____

Heating capacity Tons: Design _____ Calculated _____

System description/Set points: _____

Operation schedule:/Set points: humidity controls set to ~ 40% RH.

Areas served: Surgical Suite

Condition/Comments/Problems: Planned renovations include: rebuild fan, new fan motor, new VFD for fan/motor, new cooling coils, new preheat coils to be located at AHU instead of OA intake.

Sketch AHU (show measurements) _____ AH-14

Renovation to surgical suite AHU

Rebuild Fan ✓

New motor ✓

New FD on motor ✓

New cooling coils ✓

New preheat coils (cat unit) ✓

Kitchen Makeup air
AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: MVA Location: 3rd Fl. Date: 10/25
 Manufacturer Name: P/P Model: P 490 SWSI
 AHU Characteristics :
 Supply: Return _____ Exhaust: _____
 Flow control? Constant VSD Inlet Guide Vanes Other _____
 Is motor in airstream? Supply _____ Return _____ No Part No: MAKE UP AIR
 Smoke detector? _____ Smoke damper? _____
 Humidifier type _____ Condition _____
 Economizer function? _____ Operating correctly? _____ On temp. _____

Heat recovery potential? _____

Chilled water valves: 2-way _____ 3-way _____ Balancing valve _____
Steam
Hot water valves: 2-way 3-way _____ Balancing valve _____
 Coils: Preheat: Cooling: _____ Heat: _____ Reheat: _____
 Air Filter Type: Prefilter Roll → filters very dirty
 After filter Bag

Air Temp's: Design: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____
 Measured: OSA _____ Rtn _____ Mixed _____ LPrHt _____ LCC _____ LHC _____ 66°F
 Air Flows: Nameplate: CFM 32000 S.P. 2.5 RPM 684
 Measured : CFM _____ S.P. 2.8 RPM 795

Cooling capacity Tons: Design _____ Calculated _____

Heating capacity Tons: Design _____ Calculated _____

System description/Set points: Field erected unit, draw through, heating
only, w steam coil (12 psi, red on gage)

Operation schedule:/Set points: _____

Areas served: Kitchen

Condition/Comments/Problems: Some dampness at base of htg coil may have a leak
 Motor: Lincoln TEFC, 20 hp 1750 RPM, 230/460V, 50/25 A
 $\text{eff} = 86.5$, 2BBT → bearings bad replaced with Magnatek, 230/460V
 $49.2/24.6 \text{ A}$, 1740 RPM, PF = 88.0, eff = 87.5

heating coils are dirty, some fins missing where leaks were

Sketch AHU (show measurements) repaired - overall condition = Fair +
 AH-16

KITCHEN MAU

#219

Kitchen Exhaust Air
AIR HANDLING UNIT DATA SHEET

AHU I.D. No.: EF-7 Location: 3rd Fl. Date: 10/25

Manufacturer Name: AAF Model: TYPE W ROTO-CLONE

AHU Characteristics : EXHAUST/DUST COLLECTOR Serial #: W 720108

Supply: Return Exhaust: X Arrangement: A
SIZING: 36

Flow control? Constant X VSD Inlet Guide Vanes Other

Is motor in airstream? Supply Return No X

Smoke detector? Smoke damper?

Humidifier type Condition

Economizer function? Operating correctly? On temp.

Heat recovery potential?

Chilled water valves: 2-way 3-way Balancing valve

Hot water valves: 2-way 3-way Balancing valve

Coils: Preheat: Cooling: Heat: Reheat:

Air Filter Type: Prefilter

After filter

Air Temp's: Design: OSA Rtn Mixed LPrHt LCC LHC

Measured: OSA Rtn Mixed LPrHt LCC LHC

Air Flows: Nameplate: CFM S.P. RPM

Measured : CFM S.P. 445 RPM 615

Cooling capacity Tons: Design Calculated

Heating capacity Tons: Design Calculated

System description/Set points:

Operation schedule:/Set points:

Areas served:

Condition/Comments/Problems: WATER/DUST COLLECTOR APPEARS TO BE OFF

MOTOR: 100hp, Louis Allis/Page maker, 230/460V, 234/117A, 1730 rpm

ELECTRIC MOTOR DATA SHEET

(234)

Equipment ID. SF-1 Location: Rm 24-1 Function: AHU Date: 10/24

Nameplate Data: HP 100 Frame 404T

Volts 460 Amps 120 Phases 3 PF 0.8 kW (1) _____ Eff ~93.5 RPM 1775

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

(231)

Equipment ID. SF#2 Location: 2nd fl. RM #2A-1 Function: AHU Date: 10/24Nameplate Data: HP 100 Frame 404TVolts 460 Amps 120 Phases 3 PF .8 kW (1) 93.5 Eff ~ 93.5 RPM 1800

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

(232)

Equipment ID. SF#3 Location: 2nd fl. RM #2A-1 Function: AHU Date: 10/24Nameplate Data: HP 100 Frame 404TVolts 460 Amps 120 Phases 3 PF .8 kW (1) 93.5 Eff 93.5 RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. 1A Location: 3A01 Function: RETURN Date: 10/25/95

Nameplate Data: HP _____ Frame _____
 Volts 460 Amps 37 Phases 3 PF 0.85 kW (1) 25.1 Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases 3 kW 15.8 RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW
 Hours of Operation: Cont. Hrs/Wk _____

General condition/comments/Problems: _____

$$\text{Reading A} = 5.6 + \text{Reading B} = 10.2 \quad \Sigma = 15.8$$

Equipment ID. 1B Location: 3A-1 Function: Rtn Fan Date: 10/25

Nameplate Data: HP 30 Frame 286T
 Volts 460 Amps 40 Phases 3 PF 0.85 kW (1) Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases 3 kW 23.4 RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

$$\text{Reading A} = 7.2 \text{ kW} + \text{B} = 16.2 \text{ kW} = 23.4 \text{ kW}$$

ELECTRIC MOTOR DATA SHEET

SF-6
 Equipment ID. #234 Location: Rm 30-2 Function: FAN Supply Date: 10/25

Nameplate Data: HP 40 Frame 234T

Volts 460 Amps 52 Phases 3 PF 0.8 kW (1) _____ Eff _____ RPM 1775

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

SF-5
 Equipment ID. #154 Location: Rm 5B-22 Function: FAN Supply Date: 10/25

Nameplate Data: HP 20 Frame 256T

Volts 460 Amps 25.2 Phases 3 PF 0.8 kW (1) _____ Eff _____ RPM 1755

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

SF-4A (EAST)

Equipment ID. #236 Location: 14th FLR. E Function: AHU Supply
Nameplate Data: HP 125 Frame 405T E. Tower Date: 10/25

Volts 460 Amps 146 Phases 3 PF .8 kW (1) Eff 93.6 RPM 1775

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

SF-4B (WEST)

Equipment ID. #235 Location: 14th FLR W Function: AHU Supply
Nameplate Data: HP 125 Frame 405T W. Tower Date: 10/25

Volts 460 Amps 144 Phases 3 PF .8 kW (1) Eff 93.6 RPM 1770

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

(WEST)

Equipment ID. RF-2B Location: 14th FL WEST Function: Return Date: 10/25

Nameplate Data: HP 30 Frame 28GT

Volts 460 Amps _____ Phases 3 PF _____ kW (1) _____ Eff _____ RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) 1690-1730

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. Exch #15 Location: 3rd FL Warehouse Function: Exhaust Date: 10/25

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW 2.55 RPM _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

$$A = 1.15 + B = 1.4 = 2.55 \text{ kW}$$

Equipment ID. Exch #13 Location: 3rd FL Warehouse Function: Exhaust Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW 3.7 RPM _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

$$1.2 + 2.5 = 3.7 \text{ kW}$$

ELECTRIC MOTOR DATA SHEET

Equipment ID. Exh #14 Location: 3rd Flr Whse Function: Exhaust Date: 10/25

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases 3 PF _____ kW (1) 0.75 Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Reading A = 0.55 + Reading B = 0.75 kW

Equipment ID. Exh #16 Location: 3rd Flr Wrcb. Function: Exhaust Date: 10/25

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases 3 kW 4.0 RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: Cont. Hrs/Wk _____

General condition/Comments/Problems: _____

Read A = 1.2 + Read. B = 2.8 = 4.0 kW

ELECTRIC MOTOR DATA SHEET

Equipment ID. _____ Location: Rm 3A-1 Function: KIT.EKN Date: 10/25/95
Nameplate Data: HP 100 Frame 405T

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: Rm 3t-1 Function: K. MAKE-UP Date: 10/25/95

Nameplate Data: HP 20 Frame 256T

Volts 460 Amps 25 Phases 3 PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. EF-4 Location: 14TH fl. TOP AHU Function: EXHAUST Date: 10/25

Nameplate Data: HP 15 Frame 254T

Volts 460 Amps 21 Phases 3 PF .8 kW (1) _____ Eff 87.5 RPM 1750

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

EF-1 (WEST)

Equipment ID. #173 Location: Top of AHU 14th fl. Function: Exh. Fan Date: 10/25

Nameplate Data: HP 5 Frame 184T

Volts 460 Amps 6.8 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. EF-3 Location: Top of AHU 14th fl. Function: Exh. Fan Date: 10/25

Nameplate Data: HP 2 Frame 145T

Volts 460 Amps 2.8 Phases _____ PF _____ kW (1) _____ Eff _____ RPM 1740

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. EF-2 (EAST) Location: 14TH FL. TOP AHU Function: EXH. FAN Date: 10/25

Nameplate Data: HP 7.5 Frame 213T

Volts 460 Amps 10.2 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. RF-2A (EAST) Location: 14TH FL. TOP AHU Function: INLINE RETURN Date: 10/25

Nameplate Data: HP 30 Frame 286T

Volts 460 Amps 40 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1765

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: Nema C motor

ELECTRIC MOTOR DATA SHEET

EF-8

Equipment ID. 162 Location: 2nd fl, Rm. 2A1 Function: Exh. Fan Date: 10/25

Nameplate Data: HP 15 Frame 184T

Volts 460 Amps 7 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1730

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

(WEST)

Equipment ID. EF-1 Location: Roof Function: Exhaust Date: 10/25

Nameplate Data: HP 3/4 Frame 48Z

Volts 115 Amps 5 Phases 3 PF 0.8 kW (1) _____ Eff _____ RPM 1725

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. #250 Location: 1st FL. M/E Rm Function: Booster P. Date: 10/25

Nameplate Data: HP 50 Frame 326T Code g
 Volts 460 Amps 59.5 Phases 3 PF .8 kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: Discharge press. - no gauge

Equipment ID. #251 Location: 1st FL. M/E Rm Function: Booster P. Date: 10/25

Nameplate Data: HP 50 Frame 326T Code g
 Volts 460 Amps 59.5 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1765

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

PUMP DATA:

- #249 Peerless, M# 6AD 11, Pump # 343069, S.O.# 4HD4352,
 Impeller # 2671258, 2100 gpm, 1760 RPM, 65' TDH,
 50 hp motor, DIA = 10 $\frac{1}{4}$, SP = 56 psi, DP = 104 psi
- #250 Name plate painted over, looks just like #249.
 Peerless, 50 hp motor, SP = 56 psi, No gage for DP
- #251 Peerless, all data same as #249.
 SP = 56 psi, DP = 100 psi

CHILLED WATER PUMPS

PLAN VIEW

1st FLOOR MECH. RM.

ELECTRIC MOTOR DATA SHEET

Equipment ID. P#254 Location: 1ST FL. M/E RM Function: Rtn Condensate Date: 10/26

Nameplate Data: HP 5 Frame 184T

Volts 460 Amps 6.6 Phases 3 PF .8 kW (1) _____ Eff 88% RPM 1725

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: 1ST FL. M/E RM Function: Rtn Condensate Date: 10/26

Nameplate Data: HP 5 Frame 184T

Volts 460 Amps 6.8 Phases 3 PF .8 kW (1) _____ Eff 88% RPM 1754

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

(158)

Equipment ID. HWSP#1 Location: Room #2A1 Function: Hot water supply Date: 10/26
 Nameplate Data: HP 25 Frame 284T

Volts 460 Amps 30.5 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: Suction pressure 111
 Discharge pressure 115

(157)

Equipment ID. HWSP#2 Location: Rm 2A-1 Function: Hot Water Supply Date: 10/26
 Nameplate Data: HP 25 Frame 284T

Volts 460 Amps 30.5 Phases 3 PF .80 kW (1) _____ Eff _____ RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: SUCTION pressure 111
 DISCHARGE pressure 118

ELECTRIC MOTOR DATA SHEET

(156)

Equipment ID. HWSP#3 Location: Rm 2A-1 Function: HW Supply Date: 10/26
Nameplate Data: HP 25 Frame 284T

Volts 460 Amps 30.5 Phases 3 PF 0.8 kW (1) _____ Eff 88.5 RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

No pressure gauge

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Rm

Equipment ID. #1 Location: ZA1 Function: DHW Circ. Date: 10/25

Nameplate Data: HP 1 1/2 Frame 56J

Volts 460 Amps 2.35 Phases 3 PF 0.8 kW (1) _____ Eff _____ RPM 3450

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. #2 Location: Rm ZA-1 Function: DHW Circ. Date: 10/25

Nameplate Data: HP 1 1/2 Frame 56J

Volts 460 Amps 2.2 Phases 3 PF 0.8 kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. Vac. P#256 Location: 2nd fl. rm. #2A-1 Function: Vacuum Date: 10/25

Nameplate Data: HP 15 Frame 254T

Volts 460 Amps 18.7 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1750

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. Vac.P. #257 Location: 2nd fl. rm. #2A-1 Function: Vacuum Date: _____

Nameplate Data: HP 15 Frame 1

Volts 460 Amps 19.3 Phases 3 PF .8 kW (1) _____ Eff _____ RPM _____

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. 271 Location: Rm 2A-1 Function: _____ Date: 10/25

Nameplate Data: HP 15 Frame 254T

Volts 460 Amps 19.8 Phases 3 PF 0.8 kW (1) Eff _____ RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: Located on booster pump skid
Discharge pressure 120 #

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. #274 Location: 2nd Fl.rm, 2A-1 Function: _____ Date: 10/21

Nameplate Data: HP 15 Frame 254T

Volts 460 Amps 19.8 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: LOCATED ON BOOSTER PUMP SKID
Disch. Press. 79#

Equipment ID. _____ Location: 2nd fl.rm #2A-1 Function: _____ Date: 10/24

Nameplate Data: HP 10 Frame 215T Code H

Volts 460 Amps _____ Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: Nema design B motor
LOCATED ON BOOSTER PUMP SKID
Discharge Press. 80#

ELECTRIC MOTOR DATA SHEET

Equipment ID. _____ Location: _____ Function: _____ Date: 10/24

Nameplate Data: HP 15 Frame 254T Code g

Volts 460 Amps 20 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1750

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: Located on Booster Pump SKID
545, Press. Pump P ~~SKID~~ #108
DISCHARGE line press. #76

Equipment ID. _____ Location: _____ Function: _____ Date: 10/24

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: Nema design B MOTOR

ELECTRIC MOTOR DATA SHEET

Rm 3Φ - 2

Equipment ID. _____ Location: 3rd FLR Function: Booster CWP Date: 10/25
 Nameplate Data: HP 1 1/2 Frame 213T

Volts 400 Amps 11 Phases 3 PF .8 kW (1) 1.15 SF Eff 1.15 RPM 1750

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: 82 PSI - Suction Line

EXIT 92 PSI DISCHARGE LINE

Temp. 44 Suction side

Server OR, AHU6

Rm 3Φ - 2

Equipment ID. _____ Location: 3rd FLR Function: Booster HWP Date: 10/25

Nameplate Data: HP 1 1/2 Frame 145T Conn J

Volts 400 Amps 2.4 Phases 3 PF .8 kW (1) 1.15 SF Eff 1.15 RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: Server OR, AHU-6

ELECTRIC MOTOR DATA SHEET

220 + 221

Equipment ID. AIR. COMP Location: 3A-1 Function: MFD. AIR Date: 10-26-95

Nameplate Data: HP 7.5 Frame 213T

Volts 460 Amps 4.6 Phases 3 PF .85 kW (1) _____ Eff _____ RPM 1750

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000 NEMA B

Measured: Phases _____ kW _____ RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. _____ Location: 3A-1 Function: MEDICAL AIR Date: 10-26-95
Nameplate Data: HP 1/2 Frame 215B

Volts 460 Amps 17.5 Phases 3 PF _____ kW (1) _____ Eff _____ RPM 3505

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000 NEMA B

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Run 5B-22 Booster
 Equipment ID. #252 Location: 5TH FL. Function: CW P Date: 10/25
 Nameplate Data: HP 5 Frame 184T
 Volts 460 Amps 6.60 Phases 1 PF 0.8 kW (1) 1.15 SF Eff 1.15 RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases 1 kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: SERVES ICU, AHU 5

Run 5B-22 Booster
 Equipment ID. #154 Location: 5B-22 Function: HWP Date: 10/25
 Nameplate Data: HP 1 Frame 143T
 Volts 460 Amps 1.8 Phases 3 PF 0.8 kW (1) 1.15 SF Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases 3 kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: Serves ICU, AHU 5

CHILLER DATA SHEET

Equipment ID: #1 Location: Plant (West) Date: 10/26
 Operator Name: _____ Phone: _____
 Manufacturer Name: YORK Model: YTLG M6 F2-CB C
 Chiller Type: Electric Centrifugal, R11
 Condenser Type: Air Water X
 Service Area: Hospital and "the hill", Capacity ≈ 1000 tons

Operating Data:

Evaporator Water Temps: Design: Supply	_____ F	PSI	Return	_____ F	PSI
Measured: Supply	51 F	56	Return	58 F	52
Condenser Water Temps: Design: Supply	_____ F	PSI	Return	_____ F	PSI
Measured: Supply	72 F	5	Return	72 F	5

Pump Data:

Mfg	Model	HP	GPM	Suction Press	Discharge Press
Condenser: Peerless	16PXB	125	3210	_____	_____
Ch. Water:				_____	_____

Are multiple chillers manifolded? Yes

Are pumps constant flow? Yes

Potential for conversion to variable flow? Good

Control System/Set points:

Maintenance Schedule:

O&M log available: Yes No Copies Obtained: Yes No

Heat Recovery Potential: (Condenser accessible, heat load nearby)

General Condition/Comments/Problems: Not running during survey.

Compressor model: YTK 144, SN: YCSM 075592

Sketch Chilled Water System _____
 Sketch Condenser Water System _____

CHILLER LAYOUT

Summer max load for chillers 1 & 3 is ~ 170% x 2000 tons ✓

current project will
replace the two cent.
chillers.

#2 Will run on ~~low~~ ^{vert} load ✓
trips off on High cond temp at 102 to 105°F ✓
10" recommended have 8" to cond/CT ✓
run CT for old 470 ton steam turbine chiller. ✓

Upper floor scenario

CA-3

CHILLER DATA SHEET

Equipment ID: #2 Location: Plant (Carter) Date: 10/26
 Operator Name: Phone: 706-791-6093
 Manufacturer Name: TRANE Model: ABDL500 OFFBOGAGBNBLJ00 (THERMCHILL)
 Chiller Type: GAS ABSORPTION (or oil) MODEL: ABDL500 , SN: L94M12443
 Condenser Type: Air Water X
 Service Area: Hospital and "the hill" Capacity = 500 tons

Operating Data:

Evaporator Water Temps:	Design: Supply	F	PSI	Return	F	PSI
	Measured:	Supply 72 F	0 PSI	Return 57 F	63 F	PSI
Condenser Water Temps:	Design: Supply	F	PSI	Return	F	PSI
	Measured:	Supply	F	PSI	Return 76 F	0 PSI

Pump Data: Suction Discharge

Mfg	Model	HP	GPM	Press	Press
Condenser: Peerless	14LC1516	40	1500		
Ch. Water:					

Are multiple chillers manifolded? Yes

Are pumps constant flow? Yes

Potential for conversion to variable flow? No

Control System/Set points:

Cooling tower water temp must be $\geq 72^{\circ}\text{F}$; set tower fans to come on at 84°F and off at 78°F or $(84/81 \leq 82/78)$

Maintenance Schedule: Trane O&M manual ABDL-M-1

File # SV-RF-ABS-ABDL-M-1-791

Thermochill direct-fired absorption chiller

O&M log available: Yes No Copies Obtained: Yes No

Heat Recovery Potential: (Condenser accessible, heat load nearby)

Cool/Heat Input (HHV) gas 5.917 MBH \uparrow MAX 19.72 MBH \downarrow MIN
 oil 42.26 GPH \uparrow 14.09 GPH \downarrow MIN

General Condition/Comments/Problems: CHTW supply connected to CHW return line;

Elec: 180-220v : Hi Temp SOL pump 2.2 kw / 12.0A

Lo " " " "

Refrigerant Pump 0.2 kw / 2.0 A

Purge pump 0.4 kw / 2.0 A

Cooling tower #2 was designed for 470 ton steam turbine chiller,
 cond line is 8" dia, mfg recommends 10" dia.

Sketch Chilled Water System

Sketch Condenser Water System

CHILLER #2

BUILDING DATA NOTES

Survey by: W. T. Todd

Date: 10-26-95

Notes & Comments: According to operator: Condenser water pump, piping, and cooling tower #2 are not adequately sized according to chiller specs.

This chiller will run at very low loads but then trips off on high condenser temperature at 102°F to 105°F.

Cooling tower #2 was designed for the old 470 ton steam turbine (125 psi) centrifugal chiller.

Condenser water piping is 8" diameter. Chiller condenser water supply inlet diameter is 10".

From Mfg. data: 500 tons

Catalog Performance Data for ABDL-500

- Minimum entering cooling water temp. = 72°F
- Condenser/Absorber flow rates (1) Min = 1157 gpm, Max = 2453 gpm
(2) 2117 gpm @ 54/44 chw & 85/95 cw
- Chilled water flow rates (1) min = 584 gpm, max = 1466 gpm
(2) 1152 gpm @ 54/44 chw & 85/95 cw

Gas Abs. Chiller Test

3pm

CWS	25 psi	25	78F	25 psi	82°
CWR	11 psi	11	98F	11 psi	104°
CHWS	43 psi	46	53F	48 psi	53°
CHWR	72 psi	73	64F	75 psi	60°

OAT = 58/47 *subtract ~2°F for bubble*

4:10 pm 11/16/95

CWS	50 ps	52
CWR	76 psi	60
CHWS	25 psi	84
CHWR	11 psi	105

OAT = 58

3445 cfm net gas flow

$$3445 \frac{\text{CFM}}{\text{hr}} \times 1030 \frac{\text{Btu}/\text{cfm}}{\text{hr}} \Rightarrow 3458350 \frac{\text{Btu}/\text{hr}}{\text{input}}$$

$$3.458 / 5.917 \Rightarrow 60\% \text{ Full load fuel input}$$

CHILLER DATA SHEET

OAT ~ 48-50°F

Equipment ID: #3 Location: Plant (East) Date: 10/26

Operator Name: _____ Phone: _____

Manufacturer Name: YORK Model: YT LB MG F2-CBC

Chiller Type: Electric Centrifugal

Condenser Type: Air Water

Service Area: Hospital and "the hill", Capacity ≈ 1000 tons

Operating Data:

Evaporator Water Temps: Design: Supply 43°F PSI Return 55°F PSI

Measured: Supply 42°F 61 PSI Return 46°F 64 PSI

Condenser Water Temps: Design: Supply _____ F PSI Return _____ F PSI

Measured: Supply 64.5°F 26 PSI Return 66.5°F 14 PSI

Pump Data: Design ΔP = 23.6' = 10.3 psig Suction Discharge

Mfg	Model	HP	GPM	Press	Press	Power
Condenser: AURORA	VBS72429	125	3200			
on Ch. Water: Peerless	NA	100		30-35		120
Are multiple chillers manifolded? off	YES	"	"	80		100

Are pumps constant flow? Yes

Potential for conversion to variable flow?

Control System/Set points: Leaving CHW set to 41.5°F; Panel readings - 73.9°F FLA, CHWS @ 41.8°F, CHWR @ 52.3°F

Maintenance Schedule: - oil and filters changed by plant crew
(ALL CHILLERS).
- tubes cleared ~1/year by plant crew
- major repairs done by contractor

O&M log available: Yes No Copies Obtained: Yes No

Heat Recovery Potential: (Condenser accessible, heat load nearby)

General Condition/Comments/Problems: Only chiller running during survey;

Compressor model: YTK 144, SN YCSM 075593.

Operator said chws picks up about 2°F before it enters the hospital. Operating at 48% FLA when OAT was 47°F this morning; at 10am OAT was 77°F, FLA = 95%, CHWS = 43.0°F, CHWR = 55.4°F, gages read 44.2°F / 59psi, 53.5°F / 61psi

Sketch Chilled Water System Sketch Condenser Water System

CENTRAL PLANT
CHILLED WATER PUMP LAYOUT

run #1 pump when cool (like today)
run #1+2 pumps when hot

also have 3 booster pumps in bosp. to
get ^{cool} to 14th floor

Lower floor schematic

Chillers 1,2+3 1 & 2 Peerless w/ 100 hp motor ✓

Chiller #2 3 Peerless #14FAE.11 w/ 30 hp motor ✓
CHWR+S set 485667
(06642 stamped on NP)

All chillers to "the tree"
4 AURORA # 75-1413B-1 w/ 20 HP motor ✓
TYPE 411 BF
size 4 x 11c

N ↑

UPPER FLOOR SCHEMATIC

LOWER FLOOR SCHEMATIC

CHILLED WATER FLOW DIAGRAM

Notes: CHW Pump #1 runs when it is cool outside (like today). Pumps #1 and #2 run when the weather is hot. There are also 3 more CHW booster pumps in the hospital.

CHILLERS

BUILDING DATA NOTES

Survey by: _____

Date: 10/26

Notes & Comments: _____

2 CHW lines to Hosp ✓

Pump #4 Small pump for "the Hill" Barracks ✓

Control Setting: LCHW T 41.5 setpoint ✓
(73% FLA) ✓

control panel reading } LCHW S 41.8 °F picks up ~2°F before entering hospital ✓
reading } CHWR 52.3 °F ✓

- fill in generator CT is "gone", made from asbestos ✓
~~generator bypass test~~

at 47°F OAT this morning 1 chiller was ~ 48% ✓

Gas Chiller: pump, pipe + tower are not adequately sized according to chiller specs. ✓

2100 kw gen at plant - chiller, ID fans, hospital ✓
800 kw gen in hospital turn off elevator motors + fans ✓

- CHW pumps + CT's are not wired to generator so on power failure - can not provide cooling ✓

Trans O&M manual ABDL-M-1 ✓

File # SV-RF-ABS-ABDL-M-1-791 ✓

Thermochill direct-fired absorption chiller ✓

1/22/96

CHW · p#1		R ^o CHWP1 P2		Control		Chiller #3	
Suc.	DISC	Suc.	DISC	inlet	outlet	CHW	CHWR
28	95	64	~58 ~58	45	58/55②	58/53	41.5 52.1
28	100	64	68 69	40	50	48	41.5 49.4
28	105	64	79 81	40	61	59	41.2 49.0

① CHW also flowing through Chiller #1

② CHW to Chiller #1 valved off

Operator said 2nd pumps running in hospital basement

Chiller & CHW pumps off

25+ 84 64 59 59 49 47

CHP#2 69 90

1/23/96

Control Run gages

Return pressure = 64 psi

#1 disch. press = 49 psi

#2 " " = 51 psi

CA-11

800-741-2014

- 3pm

CHAW Pump #1

Pump

#1

Discharge $P \approx 100$ psi

chiller

#3

outlet $P \approx 58$ psi

45% FLA

CHWS 41.5°F

CHWR $52.1^{\circ}\text{F} \rightarrow$

Control Rm

63-64 psi

68-69 psi

Pump #2 is off

Inlet $P \approx 58$ psi (w/ water going through #1) $\rightarrow 55$ psi

(w/ chiller #2
valve off) $\rightarrow 50$

40% FLA

41.5

49.4

2 pumps running in hospital basement

- hooked up dp gage \rightarrow went off scale of 200 in H_2O

- Switched gages (use 1 gage to read both ports)

read 46 psi outlet + 56 psi inlet for about

1 minute then inlet dropped to 46 psi

CENTRAL PLANT

BUILDING DATA NOTES

Survey by: W. T. Todd Date: 10-26-95

Notes & Comments: They have a 2100 kw generator in the plant and there is an 800 kw generator in the hospital.

The plant generator is wired to the chillers, ID fans and the hospital. The CHW pumps, and cooling tower fans, and condenser water pumps are not wired to the generator so when there is a power failure they can not provide chilled water to the hospital.

When Georgia Power requests them to curtail their demand, they run the chillers and some of the hospital on the generator. They are asked to shed loads many times during the hottest times of the summer. The hospital turns off some elevator motors and some fans.

The operator said the fill for the generator cooling tower is "gone". It is made of asbestos. They have not had overheating problems but he "does not want it to happen on his shift".

CHILLERS

Summer max load for the two elec. chillers (#1 & #3) is about 170% of a total of 2000 tons.

Chilled water pumps:

Pumps #1 & #2 serve all three chillers, for the hospital Peerless pumps with 100 hp motors

Pump #3 serves chiller #2

Peerless, M# 4AE11, SN 485667, 106642 stamped on NP
30 hp motor

Pump #4 serves all chillers, for the "hill"

Aurora, M# 75-1413 8-1, TYPE 411 BF, SIZE 4x11C
20 hp motor

COOLING TOWER LAYOUT

GP: Very often during hottest time of summer calls and tells plant to shed loads to stay under a certain kw. They run the chillers on the generator, pumps and CT's only wired to GP.

1 Peerless SIZE 12x12x20 ✓
 320 gpm ✓
 TOH = 101 ft ✓
 Model 16 HXB ✓
 1760 RPM ✓
 SN 235803 ✓
 125 hp MOTOR (GE) ✓

2 PEERLESS SIZE 10x10x16½ ✓
 40 hp GE MOTOR ✓
 1750 RPM ✓
 SN: 343055 ✓
 85 ft TOH ✓
 14 LC 1 STG (SIZE?) ✓
 1500 GPM ✓

3 AURORA V85 72429 - VERTI-LINE ROTATION ✓
 125 HP GE MOTOR -
 3200 GPM -
 100 FT HD -
 1780 RPM ✓ CA-14

Cooling Towers

Equipment ID: CT #1 Location: See sketch Date: 10-27-95

Manufacturer: Marley 2 Cell Model: # 457-202 Double Flow

Type: Crossflow or Counterflow? _____

Percent Loaded: Summer: _____ Fall/Spring: _____ Winter: _____

Describe condition of:

Fill: Poor condition - algae growth - broken slats

Drift eliminators: Poor large amount of drift - raining

Water distribution: Basin supply valve broken - always flows
Multiple holes

Control System/Set points: ~80F Return water temp. to chiller

See operating log

Basin temp. heated by steam coils

Maintenance Schedule: _____

O&M log available: Yes No Copies Obtained: Yes No

Heat Recovery Potential: (Condenser accessible, heat load nearby)

Check BFW temp.

General Condition/Comments/Problems: SN 457-7-1286-71, Cust. order #3
Marley Order #7-1286-71

PUMP DATA: Peerless model 16HXB, size 12x12x20, SN 235803
3210 gpm, 101 ft TDH, 1760 RPM, 125 HP MOTOR (GE)

CT #1 has 2 Cells

Typ:

Cooling Towers

Equipment ID: CT#2 Location: See Sketch Date: 10-27-95

Manufacturer: Marley / Doubleflow Model: #372-101, 1 Cell

Type: Crossflow or Counterflow?

Percent Loaded: Summer: Fall/Spring: Winter:

Describe condition of:

Fill: Good - few breaks

Drift eliminators: Good

Water distribution: Distributed on deck well - many drain holes partially blocked with pipe scale - portions uncovered - large flow down sides and corners bypassing fill and raising basin/cells temp. - One large hole over drain well at NE corner

Control System/Set points: Fan runs continuously now since absorber has trouble staying on line

Maintenance Schedule: Reworked Spring of 95 when absorber installed

O&M log available: Yes No Copies Obtained: Yes No

Heat Recovery Potential: (Condenser accessible, heat load nearby)

Check boiler FW temp.

General Condition/Comments/Problems: SN 372-7-1287-71, Cust Order #3, Marley Order # 7-1287-71, 96" fan diameter, 464 rpm, 25 hp fan motor, 44° final pitch angle. Designed for 470 ton Steam (125 psi) turbine centrifugal chiller. Leaking severely

PUMP DATA: Peerless model 14LC 1 STG ?, size 10 x 10 x 16½, SN 343055, 1500 gpm, 85 ft TDH, 1750 rpm, 40 hp motor (GE)

Leads good, but water temps. to chillers is higher than expected - see log

Cooling Towers

Equipment ID: CT#3 Location: See sketch Date: 10-27-95

Manufacturer: Marley Model: 374-101?, 2 Cells

Type: Crossflow or Counterflow? Crossflow

Percent Loaded: Summer: _____ Fall/Spring: _____ Winter: _____

Describe condition of:

Fill: Fair to poor - little breakage - moderate algae buildup

Drift eliminators: Fair - Several major breaks - No ext fins
Sides not angled

Water distribution: Basin make-up continuous flow -
Fair distribution

Control System/Set points: ~80F

Maintenance Schedule: _____

O&M log available: Yes No Copies Obtained: Yes No

Heat Recovery Potential: (Condenser accessible, heat load nearby)

Clock BtuW temp

General Condition/Comments/Problems: SN 374-7-1288-71, Cust Order #3, 27
Marley Order # 7-1288-71, 120" fan dia, 318 rpm, 40 hp, 55° FPA J-

SN 7-1141-86, GRDR # 16770 (cell 2) & 16778 (cell 1)
Face D " & B "

Pump Data: Aurora, Verli-line Rotatron, # V85 72429, 3200 gpm,
100 ft HD, 1780 rpm, 125 hp GE motor
Pump leaks severely

ELECTRIC MOTOR DATA SHEET

Equipment ID. _____ Location: Cert. Plant Function: Chiller Comp. Date: 10/26
 Nameplate Data: HP 870 Frame 5B80 Y

Volts 4160 Amps 106 Phases 3 PF _____ kW (1) _____ Eff _____ RPM 3600

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

York Part # 024-24021-490
1-5119-51499-1-2

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. # 1 Location: Cen. Plant Function: Chilled water supply Date: 10/26
 Nameplate Data: HP 100 Frame 404 TS

Volts 460 Amps 123 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1770

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000 code F

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

DISCHARGE WTR. PRESS. 120 (at Pump)
SUPPLY WTR. PRESS. 33

SERVES CENTRIFUGALS

Equipment ID. 42 Location: Cen. Plant Function: CWS Date: 10/26

Nameplate Data: HP 100 Frame 404 TS

Volts 460 Amps 122 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1775

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000 code F

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

DISCHARGE Press. Water at Pump 100
SUCTION Press Water 80

SERVES CENTRIFUGALS

ELECTRIC MOTOR DATA SHEET

Equipment ID. #3 Location: Cent. Plant Function: CWS Date: 10/26

Nameplate Data: HP 30 Frame 286T

Volts 460 Amps 37.3 Phases 3 PF .8 kW (1) Eff _____ RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

code G

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

SUCTION 60 PSI

SERVES ABSORPTION (CH + Z)

Equipment ID. _____ Location: Cent. Plant Function: Compressor Date: 10/26

Nameplate Data: HP 30 Frame 286T

Volts 460 Amps 38 Phases 3 PF _____ kW (1) Eff _____ RPM 1760

Air

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

code F

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. #4 Location: Cent Plant Function: CWS Date: 10/26

Nameplate Data: HP 20 Frame 25bT Code G

Volts 460 Amps 25 Phases 3 PF 0.8 kW (1) _____ Eff _____ RPM 1700

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: Discharge P 100
Suction P 59

SERVES MEDICAL BARRACKS

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

*Cooling Tower*Equipment ID. _____ Location: CT #2 Function: _____ Condenser
W. P. Date: 10/26Nameplate Data: HP 40 Frame B324TP16Volts 460 Amps 50 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1760

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

_____*Condenser*Equipment ID. _____ Location: CT #1 Function: Water P. Condenser Date: 10/26Nameplate Data: HP 125 Frame B405TP20 Code GVolts 460 Amps 144 Phases _____ PF _____ kW (1) _____ Eff _____ RPM 1770

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. _____ Location: CT#3 Function: Condenser Pump Date: 10/26
 Nameplate Data: HP 125 Frame 1405TP20

Volts 460 Amps 148 Phases 3 PF .8 kW (1) 92.4 Eff 92.4 RPM 1780

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Code G

Measured: Phases _____ kW _____ RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: CT#3 Function: CT. FAN Date: 10/26

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

Fans inaccessible

ELECTRIC MOTOR DATA SHEET

*Cooling Tur*Equipment ID. Cell 1 Location: #1 Function: CT FAN Date: 10/26Nameplate Data: HP 40 Frame 324TVolts 460 Amps 52 Phases 3 PF kW (1) Eff RPM

(1) $kW = \text{volts} * \text{amps} * \sqrt{\text{# phases}} * 0.85 / 1000$ CODE G

Measured: Phases kW RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk as needed, always available

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

(1) $kW = \text{volts} * \text{amps} * \sqrt{\text{# phases}} * 0.85 / 1000$

Measured: Phases kW RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Cooling Tower #1

Equipment ID. CELL #2 Location: TOP TOWER Function: FAN Date: 10/26/95
 Nameplate Data: HP 40 Frame 324T

Volts 460 Amps 48 Phases 3 PF 18 kW (1) _____ Eff _____ RPM 1760

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Code G

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Cooling

Equipment ID. Twr 2 Location: CT 2 Function: CT FAN Date: 10/26

Nameplate Data: HP 25 Frame 284T

Volts 460 Amps 32 Phases 3 PF 18 kW (1) _____ Eff _____ RPM 1750

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

GENERATOR SCHEMATIC

CA-26

STEAM
SYSTEM
LAYOUT

BA-1

BOILER DATA SHEET

Boiler ID: 310/1 Location: FORT GORDON Date: 10/26/95
Operator Name: _____ Phone: 706 - 791-6093
Area or Loads: HOSPITAL & BAR RACKS

Boiler Specifications:

Mfg. & Model No.: INTERNATIONAL; Ma. No. 1BD91; Ser. No. 113709
Fuel(s) Type Used: GAS / #2 OIL Input: 20MMBTU/HR. GAS, 19MMBTU/HR OIL
Capacity (~~MMBTU~~ lbs/hr): 15,400 GAS, 14,600 OIL Pressure (psig): 125 DESIGN; 75 OPER.
Stack Gas Temperature: 390 F Excess Air (%): NOT MEASURED
Boiler Efficiency: 78-82 % Source: MPWR PERFORMANCE (ATTACHED)
Burner Type: PEABODY ENGINEERING - GAS RING, OIL GUN, SPINNER VANE
Soot blower ?: COPES VULCAN - 1 PER BOILER - ROTARY TYPE
FD Fans ?: 1 Size SEE DATA SHEET Motor Data 10 HP.
ID Fans ?: 1 Size _____ Motor Data _____
Variable Speed Drives ?: NO
Economizer ?: YES SOOT BLOWER INCLUDED
Air preheater?: NO
O2 trim controls?: YES - DEACTIVATED
Steam-driven aux's?: NONE

Blowdown frequency and amount: ONCE PER DAY FOR ONE MIN.

Heat recovery potential? _____

Condensate return %: HIGH - SEE MAKE-UP DATA SHEETS

Condition of boiler/piping insulation, lines and traps?: GENERALLY GOOD

VALVE JACKET REQUIRED ON MAIN STEAM VALUE. INSULATE ATOM. STM. PIPING

Operation Schedule: hr/da: _____ da/wk: _____ mn/yr: _____

Percent Loaded - Summer: _____ Fall/Spring: _____ Winter: _____

Is Boiler Plant Capacity Adequate ?: _____

Automatic Control System/Set points ?: _____

Maintenance Schedule: AS NEEDED - WELL MAINTAINED

Condition of tubes?: REPORTED AS EXCELLENT - NO HISTORY OF TUBE LEAKS - MINIMAL SCALE REPORTED.

Operating Log Available ? Y Copies obtained ? Y

O & M Log Available ? N Copies Obtained ?: N

Chemical Treatment ? SO₂, PO₄, NaOH, DESCALING AGENT

Feed Water Preheated ? Y How? DEAIRATOR - 5-10 psig

General Condition/Comments/Problems : O₂ CONTROLS SHOULD BE RE-CONNECTED.

ECONOMIZER TO BE REMOVED - BAD INSTALLATION.

BOILER DATA SHEET

Boiler ID: 310/2 Location: FORT GORDON Date: 10/26/95
 Operator Name: _____ Phone: 706-791-6093
 Area or Loads: HOSPITAL & BARRACKS

Boiler Specifications:

Mfg. & Model No.: INTERNATIONAL; MOD. NO. IBD91; SER. NO. M37082 m3710
 Fuel(s) Type Used: GAS / OIL (#2) Input: 20 MMBTU/Hr GAS; 19 MMBTU/Hr OIL
 Capacity (~~Water~~ lbs/hr): 15,400 925 Pressure (psig): 125 DESIGN, 75 OPER.
 Stack Gas Temperature: 390 F Excess Air (%): NOT MEASURED
 Boiler Efficiency: 78-82 % Source: MFGR. PERFORMANCE (ATTACHED)
 Burner Type: PEABODY ENGINEERING - GAS RING, OIL GUN, SPINNER VANE
 Soot blower ?: COPES VULCAN - 1 PER BOILER - ROTARY TYPE
 FD Fans ?: 1 Size DATA SHEET Motor Data 10
 ID Fans ?: 1 Size _____ Motor Data _____
 Variable Speed Drives ?: NO
 Economizer ?: YES - SOOT BLOWER INCLUDED - POOR ECON INSTALLATION
 Air preheater?: NO
 O2 trim controls?: YES - DEACTIVATED
 Steam-driven aux's?: NO

Blowdown frequency and amount: ONCE PER DAY - 1 min.

Heat recovery potential?

Condensate return ?: HIGH - SEE MAKEUP DATA SHEETS.

Condition of boiler/piping insulation, lines and traps?: SOOT BLOWER SUPPLY VALVE MISSING; ATOMIZING STEAM PIPING - INSULATE; GENERALLY GOOD CONDITION.

Operation Schedule: hr/da: _____ da/wk: _____ mn/yr: _____

Percent Loaded - Summer: _____ Fall/Spring: _____ Winter: _____

Is Boiler Plant Capacity Adequate ?: YES

Automatic Control System/Set points ?: _____

Maintenance Schedule: AS NEEDED - WELL MAINTAINED

Condition of tubes?: REPORTED AS EXCELLENT - NO HISTORY OF TUBE LEAKS. MINIMAL SCALE REPORTED.

Operating Log Available ? YES copies obtained ? YES

O & M Log Available ? NO Copies Obtained ?: NO

Chemical Treatment ? SO3, PO4, NaOH, DE SCALING AGENT.

Feed Water Preheated ? YES How? DEAERATING HEATER - 5-10 PSIG

General Condition/Comments/Problems : OR CONTROLS SHOULD BE RECONNECTED ECONOMIZERS TO BE REMOVED - BAD INSTALLATION

BOILER DATA SHEET

Boiler ID: 310/3 Location: FOOT GORDON Date: 10/26/95
 Operator Name: _____ Phone: 706-791-6093
 Area or Loads: HOSPITAL & BARRACKS

Boiler Specifications:

Mfg. & Model No.: INTERNATIONAL; MOD. NO. IBD91; SER. NO. M3711
 Fuel(s) Type Used: GAS / OIL (#2) Input: 20 MMBTU/HR GAS; 19MMBTU/HR OIL
 Capacity (~~Mbh~~ lbs/hr): 15,400 GAS Pressure (psig): 125 DESIGN - 75 OPER.
 Stack Gas Temperature: 390 F Excess Air (%): NOT MEASURED
 Boiler Efficiency: 78-82 % Source: MFGR PERFORMANCE (ATTACHED)
 Burner Type: PEABODY ENGINEERING - GAS RING, OIL GUN, SPINNER VANE
 Soot blower ?: COPES VULCAN - 1 PER BOILER
 FD Fans ?: 1 Size DATA SHEET Motor Data 10 HP
 ID Fans ?: 1 Size _____ Motor Data _____
 Variable Speed Drives ?: NO
 Economizer ?: YES - SOOTBLOWER INCLUDED - POOR INSTALLATION - REMOVED ECON. TO BE
 Air preheater?: NO
 O2 trim controls?: YES DEACTIVATED
 Steam-driven aux's?: NO

Blowdown frequency and amount: ONCE PER DAY - 1 min.

Heat recovery potential?

Condensate return %: HIGH SEE MAKEUP DATA

Condition of boiler/piping insulation, lines and traps?: GENERALLY GOOD
INSULATE ATOMIZING STEAM PIPING.

Operation Schedule: hr/da: _____ da/wk: _____ mn/yr: _____

Percent Loaded - Summer: _____ Fall/Spring: _____ Winter: _____

Is Boiler Plant Capacity Adequate ?: YES

Automatic Control System/Set points ?: _____

Maintenance Schedule: AS NEEDED

Condition of tubes?: REPORTED EXCELLENT - NO TUBE LEAK HISTORY -
MINIMAL SCALE REPORTED

Operating Log Available ? YES copies obtained ? YES

O & M Log Available ? NO Copies Obtained ?: NO

Chemical Treatment ? SO₃, PO₄, NaOH, DESCALING AGENT

Feed Water Preheated ? YES How? DEAERATING HEATER 5-10 PSIG.

General Condition/Comments/Problems : O₂ CONTROLS SHOULD BE RE-CONNECTED.

ECONOMIZERS TO BE REMOVED - BAD INSTALLATION.

ELECTRIC MOTOR DATA SHEET

Equipment ID. 1 Location: Cert. Plant Function: Boiler Date: 10/26
Nameplate Data: HP 15 Frame 254T FW Pump

Volts 460 Amps 20.0 Phases 3 PF 0.8 kW (1) _____ Eff _____ RPM 1750

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. 2 Location: Cent. Plant Function: Boiler
 Nameplate Data: HP 15 Frame 254T FW Pump Date: 10/26

Volts 460 Amps 20.0 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1750

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000 \quad \text{code G}$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

BLR FDWTR.

Equipment ID. Pump #3 Location: Cent. PLANT Function: Boiler
 Nameplate Data: HP 15 Frame 254T FW Pump Date: 10/26

Volts 460 Amps 20.0 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1750

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. #1 Location: Cent. Plant Function: Bld.
Condensate Pump Date: 10/26

Nameplate Data: HP 5 Frame 184T

Volts 460 Amps 7.1 Phases 3 PF kW (1) Eff RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases kW RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Duplicate for 52 condensate pump
Skid

Equipment ID. #2 Location: Cent PLT. Function: Bld.
Condensate Pump Date: 10/26

Nameplate Data: HP 5 Frame 184T

Volts 460 Amps 7.1 Phases 3 PF kW (1) Eff RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases kW RPM (2)

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

Duplicate for 52 condensate pump
Skid

ELECTRIC MOTOR DATA SHEET

Equipment ID. 1 Location: Central Plant Function: BFW XFR Pump Date: 10/26

Nameplate Data: HP 3 Frame 182T

Volts 460 Amps 4.3 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1725

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000 code J

Measured: Phases _____ kW _____ RPM 12)

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. 2 Location: Central Plant Function: BFW XFR Pump Date: 10/26

Nameplate Data: HP 3 Frame 182T

Volts 460 Amps 4.3 Phases 3 PF .8 kW (1) _____ Eff _____ RPM _____

(1) kW = volts * amps * sqrt(# phases) * 0.85 / 1000 code J

Measured: Phases _____ kW _____ RPM 12)

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. _____ Location: CentPlant Function: Boiler ID FAN Date: 10/26

Nameplate Data: HP 10 Frame 215T

Volts 400 Amps 13.2 Phases 3 PF .8 kW (1) _____ Eff _____ RPM 1750

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. _____ Location: Cent. Plant Function: Shop Air Date: 10/26
Nameplate Data: HP 1/2 Frame 56P
Volts 230 Amps 4.1 Phases 1 PF .8 kW (1) _____ Eff _____ RPM 1725

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: _____

Equipment ID. _____ Location: _____ Function: _____ Date: _____

Nameplate Data: HP _____ Frame _____

Volts _____ Amps _____ Phases _____ PF _____ kW (1) _____ Eff _____ RPM _____

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Measured: Phases _____ kW _____ RPM (2) _____

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: _____

ELECTRIC MOTOR DATA SHEET

Equipment ID. #1 Location: Cent Plant Function: Air Compressor Date: 10/26
 Nameplate Data: HP 3 Frame 184T

Volts 460 Amps 6.8 Phases 3 PF 1 kW (1) 1.5 Eff 1 RPM 1745

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Code J

Measured: Phases 3 kW 1.5 RPM 1745

(2) Not necessary to measure RPM unless measured kW < 50% of calculated kW

Hours of Operation: _____ Hrs/Wk _____

General condition/comments/Problems: Duplex Air Compressor

Equipment ID. _____ Location: Cent Plant Function: Air Compressor Date: 10/26

Nameplate Data: HP 5 Frame 184T

Volts 460 Amps 6.9 Phases 3 PF 1 kW (1) 1.5 Eff 1 RPM 1740

$$(1) \text{ kW} = \text{volts} * \text{amps} * \text{sqrt}(\# \text{ phases}) * 0.85 / 1000$$

Code J

Measured: Phases 3 kW 1.5 RPM 1740

(2) Not necessary to measure RPM unless measured kW < 50% of nameplate kW

Hours of Operation: _____ Hrs/Wk _____

General condition/Comments/Problems: Duplex Air Compressor

Duplex Air Compressor

~~REMARKS~~ NOTES

Survey by: _____ Date: 10/25/95

Notes & Comments: Missing Insulation in Boiler Area

<u>LINE</u>	<u>SIZE</u>	<u>LENGTH</u>	<u>LOCATION</u>
1"		18'	BOILER FRONT - STEAM
2"		10'	FEED WATER
2"		6'	BFP DISCHARGE
2 1/2"		10'	SOOT BLOWER LINE
3"		10'	BFP SUCTION

Generators pick up hospital automatically, but not the plant. Chillers and some aux's can be manually switched to 2100 kw generator

Rob Callehan

#25910 Post Heat & Cool Plant

Current contract to install VSD - pumping
Would like PF correcting capability

#25330 Newer, smaller one has auto - PF correction