

Première année Licence informatique, 2022 - 2023 Structure Machine 2

Samedi 17/06/2023 - Durée: 1h30

Examen de Rattrapage

NB: Documents et calculatrices non autorisés

Nom :					
Questions de cours : (8 pts) Cochez la bonne réponse :					
1. Quelle est l'expression simplifiée de la retenue de sortie R d'un soustracteur complet si les entrées sont A, B et C (C étant la retenue d'entrée) ?					
$ \Box (A \oplus B) \oplus C $ $ \Box A. B + (A \oplus B). C $ $ \Box A. B + \overline{(A \oplus B)}. C $ $ \Box \overline{A}. B + \overline{(A \oplus B)}. C $					
2. Le logigramme suivant représente :					
S0 S1					

S2
□ Un codeur .
□ Un décodeur.
□ Un multiplexeur.

3.	Un additionneur	complet peut	être créé à l'aide	e de deux multiplexeurs :
----	-----------------	--------------	--------------------	---------------------------

☐ Autres réponses. Précisez....

□ Vrai.

☐ Faux.

- 4. Combien de lignes de sélection des données y aura-t-il si les entrées d'un Multiplexeur sont 8 ? ☐ Un
 - ☐ Trois
 - ☐ Quatre
 - □ Cinq
- 5. La sortie « Q » d'une bascule JK ayant ses entrées J et K à « 1 » à chaque front montant :
 - ☐ Est invariable.
 - \square Mise à 0.
 - \square Mise à 1.
 - ☐ Bascule vers l'état inverse.
- 6. Un registre à décalage est un ensemble de bascules synchronisées par le même signal d'horloge. Le montage ci-dessous représente :

- ☐ Un registre à décalage à droite.
- ☐ Un registre à décalage à gauche.
- ☐ Un registre à décalage universel.
- ☐ Aucune des réponses précédentes.
- 7. Le circuit ci-dessous représente un registre de mémorisation ou W (Write) est le signal d'écriture et R (Read) est le signal de lecture , a quoi servent les portes logiques "ET" placer entre R et les sorties Q de chaque bascule D :

- ☐ Permet de choisir le type de sortie du registre : série ou parallèle.
- ☐ Permet de choisir le type d'entrée du registre : série ou parallèle.
- ☐ Permet d'éviter la lecture au moment ou le registre est en mode écriture .
- ☐ Autres réponses. Précisez....

Nom:	•••••
Prénom:	•••••

8. Une EPROM est une mémoire :

 \square vive.

- \square une mémoire morte électriquement effaçable .
- ☐ une mémoire morte effaçable par ultraviolet .

Exercice: (12 pts)
Partie 1: (8 pts)

1. Déterminer les équations de l'entrée D de chaque bascule (c.à.d. : D1, D2, D3 et D4) suivant le schéma ci-dessus :

2 On suppose que les états Q1, Q2, Q3 et Q4 sont nuls au départ c.à.d. Q1 Q2 Q3 Q4 =0000. Remplissez les chronogrammes ci-dessus des sorties Q1, Q2, Q3 et Q4 suivant l'horloge H :

3. Déterminez la fonction de ce circuit (indication : prenez les valeurs des sortie : Q4, Q3, Q2 et Q1 dans cet ordre ensuite déduire le rôle du circuit).

Partie 2 : (4 pts)

On suppose que $\$ les états $\$ Q0 , $\$ Q2 et $\$ Q3 sont nuls et l'état $\$ Q1 est $\$ à 1 au départ. Tracez les chronogrammes des sorties $\$ Q0, $\$ Q1, $\$ Q2 et $\$ Q3 suivant l'horloge $\$ H :

