10

15

20

25

30

NOUVEAUX DENDRIMÈRES À TERMINAISONS MONOPHOSPHONIQUES, LEUR PROCÉDÉ DE PRÉPARATION ET LEUR UTILISATION

Les dendrimères sont des macromolécules constituées de monomères qui s'associent selon un processus arborescent autour d'un cœur central plurifonctionnel.

Les dendrimères, appelées aussi « molécules cascade », sont des polymères fonctionnels hautement ramifiés de structure définie. Ces macromolécules sont effectivement des polymères puisqu'elles sont basées sur l'association d'unités répétitives. Cependant, les dendrimères diffèrent fondamentalement des polymères classiques dans la mesure où ils ont des propriétés propres dues à leur construction en arborescence. Le poids moléculaire et la forme des dendrimères peuvent être précisément contrôlés et toutes les fonctions sont situées à la terminaison des arborescences, formant une surface, ce qui les rend facilement accessibles.

Les dendrimères sont construits étape par étape, par la répétition d'une séquence de réaction permettant la multiplication de chaque unité répétitive et des fonctions terminales. Chaque séquence de réaction forme ce qui est appelé une « nouvelle génération ». La construction arborescente s'effectue par la répétition d'une séquence de réaction qui permet l'obtention à la fin de chaque cycle réactionnel d'une nouvelle génération et d'un nombre croissant de branches identiques. Après quelques générations, le dendrimère prend généralement une forme globulaire hautement ramifiée et plurifonctionnalisée grâce aux nombreuses fonctions terminales présentes en périphérie.

De tels polymères ont notamment été décrits par Launay et al., *Angew. Chem. Int. Ed. Engl.*, 1994, 33, 15/16, 1589-1592, ou encore Launay et al., *Journal of Organometallic Chemistry*, 1997, 529, 51-58.

Le traitement des surfaces, par exemple pour leur protection met en œuvre le phénomène d'adhésion. Celui-ci nécessite souvent la présence de groupes donneurs et accepteurs de liaisons hydrogène, sur la surface et/ou l'agent de protection. Il est donc désirable de mettre à disposition des agents présentant une forte potentialité de liaison hydrogène en tant qu'agent de traitement de surface.

10

15

20

25

30

Du fait de leur structure, les dendrimères présentent une forte densité de terminaisons et donc une forte densité fonctionnelle à leur périphérie. Il a donc été envisagé de préparer des dendrimères fonctionnels permettant la création de liaisons hydrogène dans le but de les utiliser en tant qu'agent de traitement de surface.

La fonction acide phosphonique est particulièrement propice à la formation de liaisons hydrogène. Il est donc souhaitable de préparer des dendrimères présentant des terminaisons à fonction acide phosphonique.

Des dendrimères à diverses fonctions phosphorées (phosphine, phosphinate, phosphorate, phosphorate, phosphorane, spirophosphorane) ont notamment été décrits dans les articles cités ci-dessus ou la demande française FR 95 06 281.

Toutefois, aucun dendrimère présentant des terminaisons acide phosphonique libres, ou éventuellement sous forme de sels ou de l'ester méthylique correspondant n'est décrit. Il a en effet été jusqu'à ce jour impossible de préparer de telles fonctionnalisations sur les dendrimères. Plus précisément, il avait été impossible de préparer des dendrimères présentant la fonction acide phosphonique à partir des esters d'alkyle correspondants. Ceci a maintenant été rendu possible à partir de l'ester méthylique correspondant.

Les inventeurs ont maintenant découvert une réaction permettant d'accéder à ce type de fonctionnalisation terminale de type ester méthylique ou acide phosphonique sur les dendrimères.

Selon un premier objet, la présente invention concerne donc des dendrimères présentant une fonction terminale –PO(OMe)₂, ou –PO(OH)₂ ou les sels correspondants, à la terminaison de chaque arborescence.

Selon un second objet, la présente invention concerne également le procédé de préparation de tels dendrimères.

Selon un autre objet, la présente invention concerne également l'utilisation des dendrimères selon l'invention pour le traitement de surfaces.

La présente invention concerne donc des dendrimères caractérisés en ce qu'ils sont constitués:

- d'un novau central § de valence m;
- éventuellement des chaînes de générations en arborescence autour du noyau;
- une chaîne intermédiaire à l'extrémité de chaque liaison autour du noyau,
 ou éventuellement à l'extrémité de chaque chaîne de génération, le cas échéant; et
- un groupe terminal en arborescence à l'extrémité de chaque chaîne intermédiaire, de formule :

où X représente un radical –Me, -H, ou /M⁺ où M⁺ est un cation, n représente la génération du dendrimère considéré; il représente un entier compris entre 0 et 12.

m représente un entier supérieur ou égal à 1.

Le plus souvent, les dendrimères de l'invention comportent des chaînes intermédiaires terminées par un groupe terminal :

- à l'extrémité de chaque chaîne de génération éventuellement présente ; ou
- à l'extrémité de chaque liaison autour du noyau non reliée à une chaîne de génération.

Les dendrimères de l'invention comprennent ainsi, en général, m bras liés au noyau central §, chacun de ces bras étant :

- un bras de type (1), à savoir un bras constitué par une chaîne intermédiaire terminée par un groupe terminal de formule (T); ou
- un bras de type (2), à savoir un bras constitué par une ou plusieurs chaînes de génération comportant à ses extrémités une chaîne intermédiaire terminée par un groupe terminal de formule (T).

Selon un mode de réalisation particulier, les dendrimères comportent uniquement des bras de type (1) liés au noyau central §.

Selon un autre mode de réalisation, les dendrimères ne comportent que des bras de type (2) liés au noyau central §.

Quel que soit le mode de réalisation, le noyau central § est constitué d'au moins un atome de valence m.

De préférence, le noyau central § présente au moins un atome de phosphore. De préférence le noyau § est choisi parmi les groupes suivants : SPCl₃, P₃N₃Cl₆, P₃N₃Cl₈.

De préférence, le noyau central § est de formule :

De préférence, n est compris entre 0 et 3.

De préférence, m est choisi parmi 3, 4 et 6.

De préférence, les dendrimères selon l'invention correspondent aux dendrimères commerciaux auxquels a été greffé le groupe terminal $-P(=O)(OX)_2$.

Selon l'invention, lesdits dendrimères commerciaux sont notamment choisis parmi les dendrimères de type DAB-AM, PAMAM (Starbust[®] notamment) présentant des fonctions terminales -NH₂, -OH ou -COOH, ou encore parmi les dendrimères de type PMMH, tels que Cyclophosphazène- ou Thiophosphoryl-PMMH, ou encore choisis parmi :

25

20

5

10

15

10

ainsi que les dendrimères de génération ultérieure.

Tous ces dendrimères sont commercialisés par Aldrich.

De préférence, M représente un élément du groupe IA, IIA, IIB ou IIIA de la classification périodique; de préférence, M est choisi parmi les atomes de sodium, potassium, calcium, baryum, zinc, magnésium, lithium et aluminium, encore plus préférentiellement le sodium, le lithium et le potassium.

M⁺ est un cation d'un atome, par exemple un atome de métal, ou un cation dérivé de tout radical susceptible d'être stable sous forme de cation. Ledit cation peut être notamment choisi parmi les sels d'ammonium, seuls ou en mélange, notamment avec les tensio-actifs cationiques.

De préférence, M⁺ représente le cation d'une base azotée, tel que HNEt₃⁺.

Les chaînes de génération sont choisies parmi toute chaîne hydrocarbonée de 1 à 12 chaînons, linéaire ou ramifiée, contenant éventuellement une ou plusieurs double ou triple liaison, chacun desdits chaînons pouvant éventuellement être choisi parmi un hétéroatome, un groupe Aryle, Hétéroaryle, >C=O, >C=NR, chaque chaînon pouvant être éventuellement substitué par un ou

plusieurs substituants choisi(s) parmi -Alkyle, -Hal, -NO₂₇ -NRR', -CN, -CF₃, -OH, -ŌAlkyle, -Aryle, -Aralkyle.

οù

R et R', identiques ou différents, représentent indépendamment un atome d'hydrogène ou un radical -Alkyle, -Aryle, -Aralkyle ;

De préférence, les chaînes de génération, identiques ou différentes, sont représentées par la formule :

10

15

20

25

30

$$-A-B-C(D)=N-N(E)-(P(=G))$$
 (C1)

où:

A représente un atome d'oxygène, soufre, phosphore ou un radical --NR-;

B représente un radical –Aryle-, -Hétéroaryle-, -Alkyle-, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

C représente l'atome de carbone,

D et E, identiques ou différents, représentent indépendamment un atome d'hydrogène, un radical –Alkyle, -OAlkyle, -Aryle, -Aralkyle, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

G représente un atome de soufre, oxygène, soufre, sélénium, tellure ou un radical =NR;

N représente l'atome d'azote;

P représente l'atome de phosphore ;

< représente les 2 liaisons situées à l'extrémité de chaque chaîne de génération.

De préférence, dans la formule générale (C1) ci-dessus, A représente un atome d'oxygène.

De préférence, dans la formule générale (C1) ci-dessus, B représente un noyau phényle, éventuellement substitué par un atome d'halogène ou un radical

-NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle; encore plus préférentiellement, B représente un noyau phényle non substitué.

De préférence, dans la formule générale (C1) citée ci-dessus, D représente un atome d'hydrogène.

De préférence, dans la formule générale (C1) citée ci-dessus, E représente un radical -Alkyle.

De préférence, dans la formule générale (C1) ci-dessus, G représente un atome de soufre.

Selon un autre aspect préféré, les chaînes de génération sont représentées par la formule :

$$-A'-(C=O)-N(R)-B'-N<$$
 (C1')

οù

5

15

20

A' et B' représentent indépendamment un radical -Alkyle, -Alkényle, -Alkynyle, par un ou plusieurs substituants choisi(s) parmi -Alkyle, -Hal, -NO₂, -NRR', -CN, -CF₃, -OH, -OAlkyle, -Aryle, -Aralkyle;

R, R' sont définis comme précédemment.

De préférence, A' représente -Alkyle-, encore plus préférentiellement -Ethyle. De préférence, B' représente -Alkyle-, encore plus préférentiellement -Ethyle.

De préférence, R représente un atome d'hydrogène.

Selon un autre aspect préféré, les chaînes de génération sont représentées par la formule :

25 -A"-N< (C1")

οù

A" représente un radical -Alkyle, -Alkényle, -Alkynyle, par un ou plusieurs substituants choisi(s) parmi -Alkyle, -Hal, -NO₂, -NRR', -CN, -CF₃, -OH, -OAlkyle, -Aryle, -Aralkyle, où RR' sont définis comme précédemment.

De préférence, A" représente -Alkyle-, encore plus préférentiellement -Propyle-.

Selon un autre aspect préféré, les dendrimères selon l'invention de génération 1 ne comprennent pas de chaîne de génération. Notamment, dans le cas où la chaîne de génération est représentée par les formules (C1') ou (C1"), les dendrimères correspondants de génération 1 ne comprennent pas de chaîne de génération.

Les chaînes intermédiaires sont choisies parmi toute chaîne hydrocarbonée de 1 à 12 chaînons, linéaire ou ramifiée, contenant éventuellement une ou plusieurs double ou triple liaison, chacun desdits chaînons pouvant éventuellement être choisi parmi un hétéroatome, un groupe Aryle, Hétéroaryle, >C=O, >C=NR, chaque chaînon pouvant être éventuellement substitué par un ou plusieurs substituants choisi(s) parmi -Alkyle, -Hal, -NO₂, -NRR', -CN, -CF₃, -OH, -OAlkyle, -Aryle, -Aralkyle,

où R, R' sont définis comme précédemment.

De préférence, les chaînes intermédiaires présentent une simple liaison à leur extrémité.

De préférence, les chaînes intermédiaires, identiques ou différentes, sont représentées par la formule :

-J-K-L- (C2)

οù

5

10

15

20

25

30

J représente un atome d'oxygène, soufre, ou un radical –NR- ;

K représente un radical --Aryle-, -Hétéroaryle-, -Alkyle-, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical --NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

L représente une chaîne hydrocarbonée de 1 à 6 chaînons, linéaire ou ramifiée, contenant éventuellement un ou plusieurs hétéroatomes, et/ou contenant éventuellement une ou plusieurs double ou triple liaison, chacun desdits maillons pouvant éventuellement être substitué par un ou plusieurs substituants choisi(s) parmi –OH, -NRR', -OAlkyle, -Alkyle, -Hal, -NO₂,-CN, -CF₃, -Aryle, -Aralkyle.

R et R', identiques ou différents, représentent indépendamment un atome d'hydrogène ou un radical -Alkyle, -Aryle, -Aralkyle.

De préférence, dans la formule (C2) ci-dessus, J représente un atome d'oxygène.

De préférence, dans la formule (C2) ci-dessus, K représente un noyau phényle, éventuellement substitué; encore plus préférentiellement, K représente un noyau phényle non substitué.

De préférence, dans la formule (C2) ci-dessus, L représente un radical -Alkyle-, -Alkényle- ou -Alkynyle-, chacun pouvant être éventuellement substitué par un ou plusieurs substituants choisis parmi -OH, -NRR', -OAlkyle; encore plus préférentiellement, L représente un radical -Alkyle-, éventuellement substitué par un radical -OH, ou un radical -Alkényle-; encore plus préférentiellement, L représente un radical -Alkyle- éventuellement substitué par un radical -OH.

Selon un autre aspect préféré, les chaînes intermédiaires peuvent être représentées par la formule (C2') :

où L" représente une chaîne -Alkyle-de 1 à 6 chaînons, éventuellement substituée par un ou plusieurs substituants choisis parmi -OH, -NRR', -OAlkyle; encore plus préférentiellement, L représente un radical -Alkyle-, de préférence -Méthyle-.

De préférence, les chaînes de génération sont identiques.

De préférence, dans les formules (C1) et (C2) citées ci-dessus, J et K sont respectivement égaux à A, B.

25

20

5

10

De préférence, les dendrimères selon l'invention peuvent être représentés par la formule (I) suivante :

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^{n}[J-K-L-PO_3X_2]_2\}_m$$
 (I-1)

30 dans laquelle:

§, A, B, C, D, E, G, N, P, J, K, L, X, m, n, < sont définis comme précédemment.

Selon un autre aspect préféré, les dendrimères selon l'invention peuvent être représentés par la formule (I-2) suivante :

$$-{A'-(C=O)-N(R)-B'-NH-}^n[L''-PO_3X_2]_m(I-2)$$

dans laquelle:

§, A', B', C, N, P, X, L", m, n sont définis comme précédemment.

Selon un autre aspect préféré, les dendrimères selon l'invention peuvent être représentés par la formule (I-3) suivante :

$$-{A''-NH-}^n[L''-PO_3X_2]_m$$
 (I-3)

10 dans laquelle:

§, A", N, P, X, L", m, n sont définis comme précédemment.

Selon la présente invention, {}ⁿ désigne la structure en arborescence de génération n dudit radical.

15

25

30

5

Selon la présente invention, le radical –Alk, -Alkyle ou –Alkyle- représente un radical alkyle, c'est-à-dire un radical hydrocarboné et saturé, en chaîne droite ou ramifiée, de 1 à 20 atomes de carbone, de préférence de 1 à 5 atomes de carbone.

20 Or

On peut notamment citer, lorsqu'ils sont linéaires, les radicaux méthyle, éthyle, propyle, butyle, pentyle, hexyle, octyle, nonyle, décyle, dodécyle, hexadécyle, et octadécyle.

On peut notamment citer, lorsqu'ils sont ramifiés ou substitués par un ou plusieurs radical alkyle, les radicaux isopropyle, tert-butyl, 2-éthylhexyle, 2-méthylbentyle, 1-méthylpentyle et 3-méthylheptyle.

méthyle, l'éthyle ou le propyle, sont liés à une chaîne alkényle linéaire. Des

-Alkényle ou -Alkényle- désigne un groupe hydrocarboné aliphatique qui contient au moins une double liaison carbone-carbone et qui peut être linéaire ou ramifié ayant environ 2 à environ 15 atomes de carbone dans la chaîne. Des groupes alcényle préférés ont 2 à environ 12 atomes de carbone dans la chaîne; et plus encore de préférence environ 2 à environ 4 atomes de carbone dans la chaîne. Ramifié signifie qu'un ou plusieurs groupes alkyle inférieurs, tels que le

10

15

20

25

30

exemples types de groupes alcényle comprennent l'éthényle, le propényle, le *n*-butényle, l'*i*-butényle, le 3-méthylbut-2-ényle, le *n*-pentényle, l'heptényle, l'octényle, le cyclohexylbutényle et le décényle.

Alkynyle ou –Alkynyle- désigne un groupe hydrocarboné aliphatique qui contient au moins une triple liaison carbone-carbone et qui peut être linéaire ou ramifié ayant 2 à environ 15 atomes de carbone dans la chaîne. Des groupes alcynyle préférés ont 2 à environ 12 atomes de carbone dans la chaîne; et plus encore de préférence environ 2 à environ 4 atomes de carbone dans la chaîne. Ramifié signifie qu'un ou plusieurs groupes alkyle inférieurs, tels que le méthyle, l'éthyle ou le propyle, sont liés à une chaîne alcynyle linéaire. Des exemples types de groupes alcynyle comprennent l'éthynyle, le propynyle, le *n*-butynyle, le 2-butynyle, le 3-méthylbutynyle, le *n*-pentynyle, l'heptynyle, l'octynyle et le décynyle.

Parmi les atomes d'Halogène, on cite plus particulièrement les atomes de fluor, de chlore, de brome et d'iode, de préférence le fluor.

Le radical --Aryle ou --Aryle- représente un radical Aryle, c'est-à-dire un système aromatique hydrocarboné, mono ou bicyclique de 6 à 10 atomes de carbone.

Parmi les radicaux Aryle, on peut notamment citer le radical phényle ou naphtyle, plus particulièrement substitué par un moins un atome d'halogène.

Parmi les radicaux --Aralkyle (-AlkyleAryle), on peut notamment citer le radical benzyle ou phénétyle.

Le terme « Hétéroatome » désigne l'atome d'azote, d'oxygène, silicium, phosphore ou soufre.

-Hétéroaryle ou -Hétéroaryle- désigne un radical Hétéroaryle, c'est-à-dire un système aromatique comprenant un ou plusieurs hétéroatomes choisis parmi l'azote, l'oxygène ou le soufre, mono ou bicyclique, de 5 à 10 atomes de carbone. Parmi les radicaux Hétéroaryles, on pourra citer le pyrazinyle, le thiényle, l'oxazolyle, le furazanyle, le pyrrolyle, le 1,2,4-thiadiazolyle, le naphthyridinyle, le pyridazinyle, le quinoxalinyle, le phtalazinyle, l'imidazo[1,2-a]pyridine, l'imidazo[2,1-b]thiazolyle, le cinnolinyle, le triazinyle, le benzofurazanyle, l'azaindolyle, le benzimidazolyle, le benzothiényle, le thiénopyridyle,

10

15

20

25

thiénopyrimidinyle, le pyrrolopyridyle, l'imidazopyridyle, le benzoazaindole, le 1,2,4-triazinyle, le benzothiazolyle, le furanyle, l'imidazolyle, l'indolyle, le triazolyle, l'isoxazolyle, l'isoquinolinyle. tétrazolyle, l'indolizinyle, l'isothiazolyle. l'oxadiazolyle, le pyrazinyle, le pyridazinyle, le pyrazolyle, le pyridyle, le pyrimidinyle, le purinyle, le quinazolinyle, le quinolinyle, l'isoquinolyle, le 1,3,4thiadiazolyle, le thiazolyle, le triazinyle, l'isothiazolyle, le carbazolyle, ainsi que les groupes correspondants issus de leur fusion ou de la fusion avec le noyau phényle. Les groupes Hétéroaryle préférés comprennent le thiényle, le pyrrolyle, le quinoxalinyle, le furanyle, l'imidazolyle, l'indolyle, l'isoxazolyle, l'isothiazolyle, le pyrazinyle, le pyridazinyle, le pyrazolyle, le pyridyle, le pyrimidinyle, le quinazolinyle, le quinolinyle, le thiazolyle, le carbazolyle, le thiadiazolyle, et les groupes issus de la fusion avec un noyau phényle, et plus particulièrement le quinolynyle, le carbazolyle, le thiadiazolyle.

Selon l'invention, on entend par « dendrimère correspondant » le dendrimère de même génération possédant les mêmes noyaux, chaînes de génération, chaînes intermédiaires et des groupes terminaux distincts.

Les sels des composés selon l'invention font référence aux sels d'addition des composés de la présente invention. Ces sels peuvent être préparés in situ pendant l'isolement final et la purification des composés. Les sels d'addition peuvent être préparés en faisant réagir séparément le composé purifié sous sa forme acide avec une base organique ou inorganique et en isolant le sel ainsi formé. Les sels d'addition comprennent les sels aminés et métalliques. Les sels métalliques adaptés comprennent les sels de sodium, potassium, calcium, baryum, zinc, magnésium et aluminium. Les sels de sodium et de potassium sont préférés. Les sels d'addition inorganiques de base adaptés sont préparés à partir de bases métalliques qui comprennent hydrure de sodium, hydroxyde de sodium, hydroxyde de potassium, hydroxyde de calcium, hydroxyde d'aluminium, hydroxyde de lithium, hydroxyde de magnésium, hydroxyde de zinc.

30

Selon un autre objet, la présente invention concerne également le procédé de préparation des dendrimères cités ci-dessus.

10

15

20

25

Les composés de l'invention peuvent être préparés par application ou adaptation de toute méthode connue en soi de et/ou à la portée de l'homme du métier permettant le greffage de fonctions –PO₃X₂, notamment celles décrites par Larock dans *Comprehensive Organic Transformations*, VCH Pub., 1989, ou par application ou adaptation des procédés décrits dans les exemples qui suivent.

Dans les réactions décrites ci-après, il peut être nécessaire de protéger les groupes fonctionnels réactifs, par exemples les groupes hydroxy, amino, imino, thio, carboxy, lorsqu'ils sont souhaités dans le produit final, pour éviter leur participation indésirable dans les réactions. Les groupes de protection traditionnels peuvent être utilisés conformément à la pratique standard, pour des exemples voir T.W. Green et P.G.M. Wuts dans *Protective Groups in Organic Chemistry*, John Wiley and Sons, 1991; J.F.W. McOmie *in Protective Groups in Organic Chemistry*, Plenum Press, 1973.

Selon l'invention, le procédé de préparation d'un dendrimère selon l'invention comprenant le groupe terminal -P(=O)(OX)₂ comprend :

(i) la réaction du dendrimère correspondant présentant une fonction terminale -CHO, -CH=NR, ou -P(=G)Cl₂

avec un composé correspondant présentant une fonctionnalité -PO₃Me₂;

- (ii) suivie éventuellement, lorsque X représente H ou M, de l'étape consistant à transformer le dendrimère obtenu en (i) présentant une terminaison -PO₃Me₂ en le dendrimère correspondant présentant une terminaison -P(=O)(OH)₂,
- (iii) suivie éventuellement, lorsque X représente M, de l'étape consistant à transformer le dendrimère obtenu en (ii) présentant une terminaison (OH)₂ en le sel du dendrimère correspondant présentant une terminaison P(=O)(OM)₂.

Selon l'invention, l'étape (i) comprend la réaction du dendrimère correspondant de même génération n présentant une fonction terminale –CHO, -CH=NR,ou -(P(=S)Cl₂

30 avec

un composé de formule Z-PO₃Me₂, où Z représente respectivement :

- soit -H lorsque la fonction est -CHO ou -CH=NR,

10

20

25

30

 soit la chaîne intermédiaire précédemment définie lorsque ladite fonction représente -(P(=\$)Cl₂;

Selon une première alternative, l'étape (i) comprend l'action de HPO₃Me₂ sur le dendrimère correspondant présentant une terminaison –CHO ou -CH=NR par application ou adaptation de la méthode décrite dans J.Org.Chem. 1997, 62, 4834.

Plus précisément, cette réaction est effectuée sous agitation, en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, de préférence sans solvant, en présence d'une base organique ou inorganique, de préférence une base azotée, telle que la triéthylamine, à température comprise entre -80°C et 100°C, de préférence à température ambiante.

Le composé de formule HPO₃Me₂ est disponible commercialement (Aldrich) ou peut être préparé selon des méthodes connues en soi.

Selon une seconde alternative, l'étape (i) comprend l'action d'un composé de formule Z-PO₃Me₂, où Z représente la chaîne intermédiaire précédemment définie sur un dendrimère de départ présentant la fonction terminale -(P(=S)Cl₂.

Cette réaction est effectuée sous agitation, en solution dans un solvant polaire, aprotique tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, l'acétone, le DMF, de préférence le THF, en présence d'une base organique ou inorganique, de préférence de type carbonate, telle que le carbonate de césium, à température comprise entre -80°C et 100°C, de préférence à température ambiante.

- (ii) suivie éventuellement, lorsque X représente H ou M, de l'étape consistant à transformer le dendrimère obtenu en (i) présentant une terminaison -PO₃Me₂ en le dendrimère correspondant présentant une terminaison -PO₃H₂,
 - par action d'halogénure de triméthylsilane, de préférence le bromure de triméthylsilane (Me₃SiBr), dans un solvant organique aprotique, polaire, tel que le chloroforme, le dichlorométhane, l'acétonitrile, de préférence

15

20

l'acétonitrile. De préférence, on opère par ajout lent d'halogénure de triméthylsilane, en maintenant le mélange réactionnel à une température comprise entre -80°C et 100°C, de préférence, à environ 0°C.

- suivie de l'action de MeOH anhydre, ajouté au mélange réactionnel ;
- (iii) suivie éventuellement, lorsque X représente M, de l'étape consistant à transformer le dendrimère obtenu en (ii) présentant une terminaison -PO₃H₂ en le sel du dendrimère correspondant présentant une terminaison -PO₃M₂.

l'étape (i) comprend la réaction sur le dendrimère correspondant n de formule $-\{A-B-C(D)=N-N(E)-(P(=G))<\}^n-Y_2\}_m$ (II-1)

où Y représente:

- soit -J-K-L', où L' représente un radical -CHO ou -CH=NR;
- soit -CI:
- d'un composé de formule Z-PO₃Me₂, où Z représente respectivement :
 - soit H- lorsque Y représente -J-K-L';
 - soit H-J-K-L- lorsque Y représente CI;
- (ii) suivie éventuellement, lorsque X représente H ou M, de l'étape consistant à transformer le dendrimère de formule (III-1) obtenu en (i) dans laquelle X représente un radical Méthyle en le dendrimère correspondant de formule (l) dans laquelle X représente un atome d'hydrogène, selon le schéma réactionnel suivant :

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^n[J-K-L-PO_3Me_2]_2}_m$$
 (III-1)

30

 $-{A-B-C(D)=N-N(E)-(P(=G))<}^{n}[J-K-L-PO_3H_2]_2}_{m}$ (IV-1)

20

25

30

dans laquelle §, A, B, C, D, E, G, N, P, J, K, L, n, m, < sont définis comme précédemment,

(iii) suivie éventuellement, lorsque X représente M, de l'étape consistant à transformer le dendrimère de formule (IV) obtenu en (ii) en le sel correspondant.

Le produit de formule (III-1) est obtenu selon l'étape (i) par l'une ou l'autre des méthodes suivantes :

Selon une première alternative de l'étape (i), le produit de formule (III-1) est obtenu selon la réaction suivante :

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^{n}[J-K-L']_{2}_{m}$$
 (V)

$$\downarrow$$
 + H-PO₃Me₂ (VI)

§, A, B, C, D, E, G, N, P, J, K, L, L', m, n, < sont définis comme précédemment.

Cette réaction peut être effectuée par application ou adaptation de la méthode décrite dans *J. Org. Chem.* 1997, 62, 4834.

Plus précisément, cette réaction est effectuée sous agitation, éventuellement en solution dans un solvant polaire, aprotique, tel que le THF, le dichlorométhane, le chloroforme ou l'acétonitrile, de préférence sans solvant, en présence d'une base organique ou inorganique, de préférence azotée, telle que la triéthylamine, à température comprise entre -80°C et 1000°C, de préférence à température ambiante.

Le composé de formule (VI) est disponible commercialement (Aldrich) ou peut être préparé selon des méthodes connues en soi.

Les dendrimères de formule (V-1) sont disponibles commercialement (Aldrich) ou peuvent être préparés selon des méthodes connues en soi.

Selon une seconde alternative, le composé de formule (III-1) est obtenu selon la réaction suivante :

$$\S-\{\{A-B-C(D)=N-N(E)-(P(=G))<\}^n(Cl_2)\}_m \qquad (VII)$$

$$+ H-J-K-L-PO_3Me_2 \qquad (VIII)$$

$$\S-\{\{A-B-C(D)=N-N(E)-(P(=G))<\}^n-[J-K-L-PO_3Me_2]_2\}_m \qquad (III-1)$$

οù

10

15

§, A, B, C, D, E, G, N, P, J, K, L, m, n sont définis comme précédemment.

Cette réaction est effectuée sous agitation, en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, l'acétone, le DMF, de préférence le THF, en présence d'une base organique ou inorganique, de préférence de type carbonate, telle que le carbonate de césium, à température comprise entre -80°C et 100°C, de préférence à température ambiante.

Les dendrimères de formule (VII) sont disponibles commercialement (Aldrich) ou peuvent être préparés selon des méthodes connues en soi.

Les dendrimères de formule (V) et (VII) peuvent notamment être choisis parmi :

$$\begin{array}{c} -18 \\$$

Plus précisément, lorsque les dendrimères selon l'invention sont représentés par la formule (I-2) suivante :

$$- {A'-(C=O)-N(R)-B'-NH-}^n[L"-PO_3X_2]_m(I-2)$$

dans laquelle §, A', B', C, N, P, X, L", m, n sont définis comme précédemment.

Ou la formule (I-3) suivante :

$$-{A''-NH-}^{n}[L"-PO_{3}X_{2}]_{2}m$$
 (I-3)

dans laquelle §, A", N, P, X, L", m, n sont définis comme précédemment,

10 le procédé comprend :

5

l'étape (i) comprenant la réaction sur le dendrimère correspondant n de formule

où R est un radical >Alkyle,

avec un composé de formule H-PO₃Me₂ (VI).

Cette réaction peut être effectuée par application ou adaptation de la méthode décrite dans *J. Org. Chem.* 1997, 62, 4834.

Plus précisément, cette réaction est effectuée sous agitation, éventuellement en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, de préférence sans solvant, en présence d'une base organique ou inorganique, de préférence azotée, telle que la triéthylamine, à température comprise entre -80°C et 100°C, de préférence à température ambiante.

Le composé de formule (VI) est disponible commercialement (Aldrich) ou peut être préparé selon des méthodes connues en soi.

Les dendrimères de formule

10

5

$$-\{A'-(C=O)-N(R)-B'-N=R\}^n\}_m$$
 (II-2)
ou $-\{\{A''-N=R\}^n\}_m$ (II-3)

peuvent être obtenus à partir des dendrimères correspondants de formule

$$-\{A'-(C=O)-N(R)-B'-NH_2\}^n\}_m$$
 (XVI)
ou $-\{A''-NH_2\}^n\}_m$ (XVII)

15

commerciaux, par application ou adaptation de toute réaction connue en soi, permettant de transformer le groupe terminal -NH₂ en la fonction terminale -N=R requise. De telles méthodes, à la portée de l'homme de l'art ont notamment été décrites par Larock et al (supra).

Les dendrimères de formule (XVI) et (XVII) sont disponibles commercialement et peuvent notamment être choisis parmi les dendrimères de type DAB ou PAMAM.

(ii) suivie éventuellement, lorsque X représente H ou M, de l'étape consistant à transformer le dendrimère de formule (III-2) ou (III-3) obtenu en (i) dans laquelle X représente un radical Méthyle en le dendrimère correspondant de formule (I) dans laquelle X représente un atome d'hydrogène, selon le schéma réactionnel suivant :

$$-{A'-(C=O)-N(R)-B'-NH-}^n[L"-PO_3Me_2]_m$$
 (III-2)
ou $-{A''-NH-}^n[L"-PO_3H_2]_m$ (IIII-3)

30

25

$$-{A'-(C=O)-N(R)-B'-NH-}^n[L''-PO_3H_2]_m(IV-2)$$

ou $-{A''-NH-}^n[L''-PO_3H_2]_m$ (IV-3)

10

15

20

25

30

(iii) suivie éventuellement, lorsque X représente M, de l'étape consistant à transformer le dendrimère de formule (IV) obtenu en (ii) en le sel correspondant.

Dans tous les cas, la réaction (ii) est effectuée :

- par action d'halogénure de triméthylsilane, de préférence le bromure de triméthylsilane (Me₃SiBr), dans un solvant organique aprotique, polaire, tel que l'acétonitrile, le chloroforme ou le dichlorométhane, de préférence l'acétonitrile. De préférence on opère par ajout lent d'halogénure de triméthylsilane, en maintenant le mélange réactionnel à une température comprise entre -80°C et 100°C, de préférence, à environ 0°C.
- suivie de l'action de MeOH anhydre, ajouté au mélange réactionnel.

Dans l'étape (iii), les sels d'acides des composés selon l'invention peuvent être obtenus à partir des composés selon l'invention présentant une chaîne terminale dans laquelle Z représente un atome d'hydrogène, par l'application ou l'adaptation de procédés connus, par addition d'une base. De préférence, on opère en solution, sous agitation, dans un solvant convenable protique ou aprotique, apolaire, tel que les alcools, l'eau, le THF, le dichlorométhane, le chloroforme, l'acétonitrile, le DMF, l'eau, de préférence l'eau, en présence d'une base organique ou inorganique, telle que les hydroxydes, les carbonates, les bases azotées, de préférence l'hydroxyde de sodium, de lithium ou de potassium, selon le sel désiré.

Lorsqu'on utilise des dendrimères de départ présentant des groupes terminaux différents des fonctions terminales décrites plus haut pour les dendrimères de formule (II-1), (II-2) ou (II-3), le procédé selon l'invention comprend l'étape préliminaire supplémentaire permettant de transformer lesdits groupes en lesdites fonctions requises. Par exemple, dans le cas de dendrimères présentant des groupes terminaux de type acide carboxylique ou hydroxyle, il suffit d'effectuer toute réaction permettant de convertir lesdits groupes de type acide carboxylique ou hydroxyle en les fonctions de type –NH₂, -CHO, -C=NR ou -PSCl₂ correspondantes aux dendrimères de formule (II-1), (II-2) ou (II-3). De

telles réactions sont connues de l'homme du métier et/ou peuvent être effectuées par application ou adaptation de celles discutées par Larock et al (*supra*).

Pour obtenir un dendrimère selon l'invention de génération 0, les réactions ci-dessus peuvent être effectuée de la même façon en opérant à partir du noyau, présentant la fonctionnalité requise. Par exemple, les réactions de génération peuvent être effectuées en opérant à partir d'un noyau PSCl₃, P₃N₃Cl₆, P₄N₄Cl₈, ou

$$H_2N$$
 NH_2 H_2N NH_2

Les composés de formule (VIII) sont nouveaux et font donc également partie de la présente invention.

La présente invention concerne donc également les composés de formule (VIII) :

15 dans laquelle

20

25

30

5

Z représente H ou un groupe protecteur de la fonction –JH; ces groupes protecteurs sont connus en soi et peuvent être notamment être identifiés dans Greene et al ou McOmie et al. cités ci-avant. De préférence, lorsque J représente un atome d'oxygène, Z représente le groupe TBDMS (radical tertio-butyl-diméthyl-silyle).

J représente un atome d'oxygène, soufre, ou un radical –NR- ;

K représente un radical —Aryle-, -Hétéroaryle-, -Alkyle-, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical —NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

L représente une chaîne hydrocarbonée de 1 à 6 chaînons, linéaire ou ramifiée, chacun desdits chaînons pouvant éventuellement être choisis parmi un hétéroatome, de préférence l'azote, et/ou contenant éventuellement une ou plusieurs double ou triple liaison, chacun desdits maillons pouvant éventuellement être substitué par un ou plusieurs substituants choisi(s) parmi –OH, -NRR', -OAlkyle, -Alkyle, -Hal, -NO₂, -CN, -CF₃, -Aryle, -Aralkyle.

R, R', identiques ou différents, représentent indépendamment l'un de l'autre un atome d'hydrogène ou un radical –Alkyle, -Aryle, -Aralkyle.

De préférence, dans la formule (VIII) ci-dessus, J représente un atome 5 d'oxygène.

De préférence, dans la formule (VIII) ci-dessus, K représente un noyau phényle, éventuellement substitué; encore plus préférentiellement, K représente un noyau phényle non substitué.

De préférence, dans la formule (VIII) ci-dessus, L représente un radical –Alkyle-, éventuellement substitué par un radical -OH, ou un radical –Alkényle-; encore plus préférentiellement, L représente un radical –Alkyle-.

Les composés de formule (VIII) peuvent être obtenus de la façon suivante :

Z-J-K-L-Hal (IX)
$$\rightarrow$$
 Z-J-K-L- PO₃Me₂ (VIII)

15

20

25

30

10

où Z, J, K, L sont définis comme précédemment, Hal représente un atome d'halogène, de préférence le brome.

Dans le cas où, dans la formule (VIII), Z=H, le produit de formule (VIII) est obtenu à partir du produit de formule (VIII) où Z est un groupe protecteur, par application ou adaptation de toute méthode connue de déprotection du groupe protecteur Z, notamment celles décrites dans Greene et al. ou McOmie et al. (supra). Notamment, dans le cas où J=O et Z=TBDMS, on opère par action de fluorure de tétrabutylammonium, de préférence 2 équivalents, sous agitation, en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, le DMF, de préférence le THF, à une température comprise entre -80°C et 100°C, de préférence à température ambiante.

Le produit de formule (VIII) où Z est un groupe protecteur est obtenu à partir du produit de formule (IX) par application ou adaptation de la réaction d'Arbuzow décrite notamment dans B.A. Arbuzow, Pure appl. Chem. 1964, 9, 307, ou toute réaction équivalente. Notamment, on met à réagir le produit de formule (IX) en présence de triméthylephosphite de formule

$$P(OMe)_3$$
 (X)

sous agitation, en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, de préférence sans solvant, à une température comprise entre -80°C et 150°C, de préférence à environ 80°C.

Le produit de formule (IX) peut être obtenu par application ou adaptation de la méthode décrite par Olszewski et al dans *J. Org. Chem.* 1994, 59, 4285-4296.

Notamment, on peut opérer de la façon suivante :

H-J-K-L"-CHO (XI)
$$\rightarrow$$
 Z-J-K-L"-CHO (XII) \rightarrow Z-J-K-L-OH (XIII) \rightarrow Z-J-K-L-COCF₃ (XIV) \rightarrow Z-J-K-L-Hal (IX)

où Z, J, K, L, Hal sont tels que définis plus haut et L" représente un radical correspondant à L où un atome d'hydrogène et de carbone ont été formellement éliminés.

15

20

25

30

10

5

Le produit de formule (IX) est obtenu à partir du produit de formule (XIV) par application ou adaptation de toute réaction connue de substitution du groupe trifluoroacétate par un atome d'halogène, le brome notamment, par exemple par action de LiBr sous agitation, en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, le DMF, de préférence le THF, à reflux, pendant une durée nécessaire à l'obtention d'un rendement acceptable de la réaction, par exemple entre 5 et 20 heures.

Le produit de formule (XIV) est obtenu à partir du produit de formule (XIII) par application ou adaptation de toute réaction connue de substitution de la fonction hydroxy par un radical trifluoroacétate, notamment par action de l'anhydride trifluoroacétique (CF₃CO)₂O sous agitation, en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, le DMF, de préférence le THF, à reflux, pendant une durée nécessaire à l'obtention d'un rendement acceptable de la réaction, par exemple entre 5 minutes et 5 heures.

10

15

25

30

Le produit de formule (XIII) est obtenu à partir du produit de formule (XII) par application ou adaptation de toute réaction connue de réduction de la fonction aldéhyde en fonction hydroxy, notamment par action d'un agent réducteur tel que NaBH₄ ou tout agent équivalent, en solution dans un solvant polaire, protique ou aprotique, tel que l'éther, le THF, les alcools, l'eau, de préférence le mélange THF/EtOH (5/1), à reflux, pendant une durée nécessaire à l'obtention d'un rendement acceptable de la réaction, par exemple entre 1 heure et 10 jours.

Le produit de formule (XII) est obtenu à partir du produit de formule (XI) par application ou adaptation de toute réaction connue de protection de la fonction –JH par un groupe protecteur Z ou tout autre groupe protecteur convenable, par application ou adaptation des méthodes décrites par Green et al. ou Wuts et al. cités ci-avant. Dans les cas de la protection par TBDMS, on opère notamment par action de CI-TBDMS (XV) sous agitation, en solution dans un solvant polaire, aprotique, tel que le THF, le chloroforme, le dichlorométhane, l'acétonitrile, le DMF, de préférence le dichlorométhane, en présence d'une base telle que la triéthylamine (2 équivalents), à température comprise entre -80°C et 100°C, de préférence à température ambiante.

Le produit de formule (XI) est commercial et peut notamment être obtenu auprès de Aldrich.

Dans la description du procédé ci-dessus, deux groupes sont dits « correspondants » lorsque ils sont respectivement inclus dans un produit de départ et d'arrivée, et leur structure est identique et peut se déduire l'une de l'autre.

Eventuellement, ledit procédé peut également comprendre l'étape consistant à isoler le produit obtenu ou le produit final intermédiairement formé à l'issue des étapes (i), (ii) ou (iii).

Le composé ainsi préparé peut être récupéré à partir du mélange de la réaction par les moyens traditionnels. Par exemple, les composés peuvent être récupérés en distillant le solvant du mélange de la réaction ou si nécessaire après

WO 2005/052032 PCT/FR2004/002989

distillation du solvant du mélange de la solution, en versant le reste dans de l'eau suivi par une extraction avec un solvant organique immiscible dans l'eau, et en distillant le solvant de l'extrait. En outre, le produit peut, si on le souhaite, être encore purifié par diverses techniques, telles que la recristallisation, la reprécipitation ou les diverses techniques de chromatographie, notamment la chromatographie sur colonne ou la chromatographie en couche mince préparative.

5

10

15

20

25

30

Il sera apprécié que les composés utiles selon la présente invention peuvent contenir des centres asymétriques. Ces centres asymétriques peuvent être indépendamment en configuration R ou S. Il apparaîtra à l'homme du métier que certains composés utiles selon l'invention peuvent également présenter une isomérie géométrique. On doit comprendre que la présente invention comprend des isomères géométriques individuels et des stéréoisomères et des mélanges de ceux-ci, incluant des mélanges racémiques, de composés de formule (I) cidessus. Ces isomères peuvent être séparés de leurs mélanges, par l'application ou l'adaptation de procédés connus, par exemple des techniques de chromatographie ou des techniques de recristallisation, ou ils sont préparés séparément à partir des isomères appropriés de leurs intermédiaires.

Aux fins de ce texte, il est entendu que les formes tautomériques sont comprises dans la citation d'un groupe donné, par exemple thio/mercapto ou oxo/hydroxy.

Les composés utiles selon la présente invention peuvent être facilement préparés, ou formés pendant le processus de l'invention, sous forme de solvates (par exemple hydrates). Les hydrates des composés utiles selon la présente invention peuvent être facilement préparés par la recristallisation d'un mélange de solvant aqueux/organique, en utilisant des solvants organiques tels que dioxan, tétrahydrofuranne ou méthanol.

Les produits de base ou les intermédiaires peuvent être préparés par l'application ou l'adaptation de procédés connus, par exemple des procédés tels que décrits dans les Exemples de Référence ou leurs équivalents chimiques évidents.

Les inventeurs ont découvert que les dendrimères selon l'invention présentent des propriétés particulièrement avantageuses de traitement de surface, notamment les surfaces métalliques ou à base de silicium ou à base d'oxyde, tels que la silice, les oxydes de titane, zirconium, etc.... Ils peuvent notamment être utilisés à titre d'additif dans toute composition destinée au contact ou au traitement desdites surfaces, par exemple à titre d'agent anti-corrosion, agent de lubrification, agent anti-tartre ou agent retardateur de feu, notamment pour polymères plastiques.

10

15

20

25

EXEMPLES

<u>GÉNÉRALITÉS</u>

Les réactions ont été réalisées sous atmosphère d'argon sec (argon U, Air Liquide). Les solvants suivants ont été séchés et distillés sous argon immédiatement avant usage selon les techniques décrites par Perrin et al, *Purification of Laboratory Chemicals, Third Edition*; Press, P., Ed.: Oxford, 1988 : tétrahydrofuranne, dichlorométhane, acétonitrile, pentane, toluène, éther diéthylique, chloroforme, triéthylamine, pyridine.

Les chromatographies sur couche mince ont été réalisées sur des plaques d'aluminium enduites de silice de type Merck Kieselgel 60F₂₅₄.

Les spectres de RMN ont été enregistrés sur des appareils Brüker (AC200, AM250, DPX 300). Les déplacements chimiques sont exprimés en parties par million (ppm) par rapport à l'acide phosphorique à 85 % dans l'eau pour la RMN ³¹P et par rapport au tétraméthylsilane pour la RMN ¹H et ¹³C. Les abréviations suivantes ont été utilisées pour exprimer la multiplicité des signaux : s (singulet), d (doublet), dl (doublet large), dd (doublet dédoublé), syst.AB (système AB), t (triplet), td (triplet dédoublé), q (quadruplet), hept (heptuplet), m (multiplet non résolu).

30

La spectroscopie vibrationnelle dans l'infrarouge a été réalisée sur un spectromètre Perkin Elmer FT 1725x. La spectroscopie UV-visible a été réalisée

15

sur un appareil HP 4852A. Les mesures thermogravimétriques ont été réalisées sur un appareil Netzch DSC 204 ou Setaram TGA 92-16.18.

Numérotation utilisée pour l'attribution en RMN :

R = Me, H, Na

Exemple de numérotation pour un dendrimère de première génération

Structures des différents dendrimères utilisés comme produit de départ

10 Exemple 1 : Synthèse du dendrimère de première génération (cœur P=S) à extrémités α-hydroxy-diméthylphosphonate

Le dendrimère G'₁ (0,14 mmol, 200 mg) est mis en solution dans 0,2 ml de THF avec de la triéthylamine distillée (0,126 mmol, 4,5 μ L), et du diméthylphosphite (1,26 mmol, 115 μ L). On laisse le mélange pendant 12 heures avec une agitation magnétique. La pâte obtenue est ensuite lavée avec un

mélange THF/Et₂O: 1/1, pour donner une poudre blanche. Le produit final est isolé avec un rendement final de 72%.

RMN ³¹P-{¹H} (DMSO d6): δ = 27,10 (s, P(O)(O-CH₃)₂), 56,10 (s, P₀), 65,91 (s, P₁) ppm.

RMN ¹H (DMSO d6): δ = 3,34 (d, ³ J_{HP} = 9,8 Hz, 9H, CH₃-N-P₁), 3,52 (d, 18H, ³ J_{HP} = 10,3 Hz, P(O)-O-CH₃), 3,57 (d, 18H, ³ J_{HP} = 11,6 Hz, P(O)-O-CH₃), 5,01 (dd, ³ J_{HH} = 4,5 Hz, ² J_{HP} = 13,0 Hz, 6H, CH-P(O)), 6,33 (dd, ³ J_{HH} = 5,6 Hz, ³ J_{HP} = 15,7 Hz, 6H, OH), 7,18-7,93 (m, 39H, H_{arom}, CH=N) ppm.

RMN ¹³C-{¹H} (DMSO d6): δ = 33,9 (d, ² J_{CP} = 12,1 Hz, CH₃-N-P₁), 53,7 (d, ² J_{CP} = 6,8 Hz, CH₃-O-P(O)), 54,2 (d, ² J_{CP} = 7,0 Hz, CH₃-O-P(O)), 70,0 (d, ¹ J_{CP} = 162,8 Hz, C-OH), 121,3 (s large, C₁²), 122,4 (d, ³ J_{CP} = 3,8 Hz, C₀²), 129, 4 (s, C₀³), 129,8 (d, ³ J_{CP} = 5,6 Hz, C₁³), 133,6 (s, C₀⁴), 136,4 (s, C₁⁴), 141,4 (d, ³ J_{CP} = 14,5 Hz, CH=N), 150,3 (dd, ⁵ J_{CP} = 3,4 Hz, ² J_{CP} = 6,6 Hz, C₁¹), 151,4 (d, ² J_{CP} = 8,0 Hz, C₀¹) ppm.

Exemple 2 : Synthèse du dendrimère de première génération (cœur P_3N_3) à extrémités α -hydroxy-diméthylphosphonate

On met 1 g de Gc'₁ (0,35 mmol) en solution dans 1 ml de THF puis on additionne la triéthylamine distillée (10 µl soit 0,84.10⁻³ mol), et le diméthylphosphite (382 µL soit 4,2.10⁻³ mol) (1 équiv par –CHO). On laisse le mélange pendant 12 heures sous agitation. La pâte obtenue est ensuite lavée avec un mélange THF/Et₂O: 1/1, pour donner une poudre blanche. Le produit final est isolé avec un rendement final de 72%.

$$\begin{array}{c|c} \mathsf{P_3N_3} & & \mathsf{O} & & \mathsf{Me} \\ & \mathsf{N-N-P} & & \mathsf{O} & & \mathsf{PO_3Me_2} \\ & \mathsf{S} & & & \mathsf{PO_3Me_2} \\ \end{array} \right)_{\mathbf{2}_{\mathbf{6}}}$$

20

5

15

20

RMN ³¹P-{¹H} (DMSO d6) : δ = 11,46 (s, P₀), 27,10 (s, P(O)(O-CH₃)₂), 66,07 (s, P₁) ppm.

RMN ¹H (DMSO d6): δ = 3,35 (d, ³ J_{HP} = 10,5 Hz, 18H, CH₃-N-P₁), 3,54 (d, ³ J_{HP} = 10,3 Hz, 36H, P(O)-O-CH₃), 3,59 (d, ³ J_{HP} = 10,4 Hz, 36H, P(O)-O-CH₃), 5,01 (dd, ³ J_{HH} = 5,2 Hz, ² J_{HP} = 13,5 Hz, 12H, CH-P(O)), 6,41 (dd, ³ J_{HH} = 5,6 Hz, ³ J_{HP} = 15,5 Hz, 12H, OH), 7,18-7,93 (m, 78H, H_{arom}, CH=N) ppm.

RMN 13 C- 1 H} (DMSO d6) : δ = 32,8 (d, $^{2}J_{CP}$ = 11,9 Hz, CH₃-N-P₁), 52,7 (d, $^{2}J_{CP}$ = 6,9 Hz, CH₃-O-P(O)), 53,2 (d, $^{2}J_{CP}$ = 6,9 Hz, CH₃-O-P(O)), 68,2 (d, $^{1}J_{CP}$ = 162,3 Hz, C-OH), 120,4 (s large, C₁²), 120,8 (s, C₀²), 128,2 (s, C₀³), 128,7 (d, $^{3}J_{CP}$ = 5,7 Hz, C₁³), 132,0 (s, C₀⁴), 135,5 (s, C₁⁴), 140,2 (d, $^{3}J_{CP}$ = 13,8 Hz, CH=N), 149,4 (d, $^{2}J_{CP}$ = 6,3 Hz, C₁¹), 150,5 (s, C₀¹) ppm.

IR: Absence de u(CHO) à 1670 cm⁻¹; u(OH) à 3271 cm⁻¹.

Exemple 3 : Synthèse du dendrimère de deuxième génération à extrémités α-hydroxy-diméthylphosphonate

Le dendrimère Gc'_2 (0,146 mmol, 1g) est mis en solution dans 1 ml de THF avec de la triéthylamine distillée (1,3 mmol, 15 µL), et du diméthylphosphite (3,5 mmol, 319 µL). On laisse le mélange pendant 12 heures avec une agitation magnétique. La pâte obtenue est ensuite lavée avec un mélange THF/Et₂O : 1/1, pour donner une poudre blanche. Le produit final est isolé avec un rendement final de 80%.

$$\begin{array}{c|c} P_3N_3 & & & & \\ & & & \\ N-N-P & & \\ & & & \\$$

RMN ³¹P-{¹H} (DMSO d6) : δ = 11,7 (s, P₀), 27,10 (s, P(O)(O-CH₃)₂), 66,1 (s large, P_{1,2}) ppm.

25 RMN ³H (DMSO d6): δ = 3,29 (d large, ³ J_{HP} = 9,2 Hz, 54H, CH₃-N-P₁, CH₃-N-P₂), 3,49 (d, ² J_{CP} = 10,9 Hz, 72H, P(O)-O-CH₃), 3,55 (d, ² J_{CP} = 10,6 Hz, 72H, P(O)-O-CH₃), 5,00 (dd, ³ J_{HH} = 5,4 Hz, ² J_{HP} = 15,7 Hz, 24H, CH-P(O)), 6,30 (dd, ³ J_{HH} = 5,4 Hz, ² J_{HP} = 15,7 Hz, 24H, OH), 7,0-8,0 (m, 186H, H_{arom}, CH=N) ppm.

10

15

RMN 13 C- 1 H} (DMSO d6): δ = 32,8 (d large, $^{2}J_{CP}$ = 11,3 Hz, CH₃-N-P_{1,2}), 52,7 (d, $^{2}J_{CP}$ = 6,2 Hz, CH₃-O-P(O)), 53,2 (d, $^{2}J_{CP}$ = 6,3 Hz, CH₃-O-P(O)), 68,2 (d, $^{1}J_{CP}$ = 163,0 Hz, C-OH), 120,4 (s large, C_{2}^{2}), 120,8 (s large, C_{0}^{2}), 121,4 (s, C_{1}^{2}), 128,2 (s, C_{0}^{3}), 128,2 (s, C_{1}^{3}), 128,7 (d, $^{3}J_{CP}$ = 3,7 Hz, C_{2}^{3}), 132,1 (s, C_{0}^{4}), 132,1 (s, C_{1}^{4}), 135,4 (s, C_{2}^{4}), 140,2 (s large, <u>CH</u>=N-N(Me)-P_{1,2}), 149,4 (d, $^{2}J_{CP}$ = 3,8 Hz, C_{2}^{1}), 150,4 (s, C_{0}^{1}) 150,7 (d, $^{2}J_{CP}$ = 6,4 Hz, C_{1}^{1}) ppm.

IR: Absence de υ(CHO) à 1670 cm⁻¹; υ(OH) à 3271 cm⁻¹.

Exemple 4 : Synthèse du dendrimère de troisième génération à extrémités αhydroxy-diméthylphosphonate

Le dendrimère Gc'₃ (1,35.10⁻² mmol, 0,2 g) est mis en solution dans 0,2 ml de THF avec de la triéthylamine distillée (0,8 mmol, 10 μ L), et du diméthylphosphite (0,648 mmol, 59 μ L). On laisse le mélange pendant 12 heures avec une agitation magnétique. La pâte obtenue est ensuite lavée avec un mélange THF/Et₂O : 1/1, pour donner une poudre blanche. Le produit final est isolé avec un rendement final de 85%.

RMN 31 P-{ 1 H} (DMSO d6) : δ = 11,7 (s, P₀), 28,6 (s, P(O)(O-CH₃)₂), 66,4 (s large, P_{1,2,3}) ppm.

20 RMN ¹H (DMSO d6): δ = 3,40 (d large, ³ J_{HP} = 10,7 Hz, 126H, CH₃-N-P₁, CH₃-N-P₂, CH₃-N-P₃), 3,60 (d, ² J_{CP} = 13,15 Hz, 144H, P(O)-O-CH₃), 3,65 (d, ² J_{CP} = 13,16 Hz, 144H, P(O)-O-CH₃), 5,10 (dd, ³ J_{HH} = 4,3 Hz, ² J_{HP} = 15,3 Hz, 48H, CH-P(O)), 6,4 (dd, ³ J_{HH} = 4,3 Hz, ² J_{HP} = 15,3 Hz, 48H, OH), 7,0-8,1 (m, 402H, H_{arom}, CH=N) ppm.

25 RMN ¹³C-{¹H} (DMSO d6) : δ = 32,8 (s large, CH₃-N-P_{1,2,3}), 52,7 (d, ²J_{CP} = 6,3 Hz, CH₃-O-P(O)), 53,2 (d, ²J_{CP} = 7,4 Hz, CH₃-O-P(O)), 68,1 (d, ¹J_{CP} = 162,8 Hz, C-OH), 119,5 (s, C₁²), 120,4 (s large, C₃², C₀²), 121,4 (s, C₂²), 128,3 (s large, C₀³, C₁³, C₂³), 128,6 (d, ³J_{CP} = 4,2 Hz, C₃³), 132,1 (s, C₀⁴, C₁⁴, C₂⁴), 135,5 (s, C₃⁴),

15

20

25

140,2 (s large, <u>CH</u>=N-N(Me)-P_{1,2,3}), 149,4 (s, d, ${}^2J_{CP} = 8,3$ Hz, C₃¹), 150,6 (s large, C₀¹, C₁¹, C₂¹) ppm.

IR: Absence de u(CHO) à 1670 cm⁻¹; u(OH) à 3271 cm⁻¹.

5 Exemple 5 : Synthèse du dendrimère de première génération à extrémités acide α-hydroxy-phosphonique

Le dendrimère de première génération (4,78.10⁻² mmol, 200 mg) à extrémités α-hydroxy-diméthylphosphonate est mis en suspension dans l'acétonitrile (4 mL) ainsi que de la triéthylamine (0,575 mmol, 20,5 μL) à 0°C. Puis le bromure de triméthylsilane (1,72 mmol, 229 μL) est additionné lentement à 0°C, l'ensemble revient lentement à température ambiante pendant 6 heures. Puis on ajoute du méthanol anhydre (1 mL). Après 2 heures d'agitation le mélange réactionnel est séché sous pression réduite. Ensuite la poudre est mise en suspension dans un minimum d'eau pendant 30 minutes avec une forte agitation. Après filtration, le produit est séché puis lavé abondamment à l'éther. De préférence, pour obtenir un dendrimère soluble, le dendrimère final ne doit pas être totalement désolvaté. Le produit final est isolé avec un rendement final de 51%.

$$P_3N_3 \xrightarrow{O} \xrightarrow{Me} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{PO_3H_2}_2$$

RMN ³¹P-{¹H} (DMSO d6): $\delta = 11,40$ (s, P₀), 22,0 (m, P(O)(OH)₂), 66,05 (s, P₁) ppm.

RMN ¹H (DMSO d6): δ = 3,29 (d, ³ J_{HP} = 10,5 Hz, 18H, CH₃-N-P₁), 4,67 (d, ³ J_{HP} = 13,9 Hz, 12H, -<u>CH</u>-OH), 4,7-5,7 (m, 36H, -OH), 7,0-8,0 (m, 78H, H_{arom}, CH=N) ppm.

RMN 13 C-{ 1 H} (DMSO d6) : δ = 32,9 (d, $^{2}J_{CP}$ = 15,7 Hz, CH₃-N-P₁), 69,5 (d, $^{1}J_{CP}$ = 163,5 Hz, C-OH), 120,0 (s large, C₁²), 120,7 (s, C₀²), 128,2 (s, C₀³), 128,6 (s, C₁³), 132,0 (s, C₀⁴), 137,1 (s, C₁⁴), 140,2 (s large, CH=N), 148,8 (s, C₁¹), 150,4 (s, C₀¹) ppm.

IR: Absence de u(CHO) à 1670 cm⁻¹; u(OH) à 3271 cm⁻¹.

10

20

Exemple 6 : Synthèse du dendrimère de deuxième génération à extrémités acide α-hydroxy-phosphonique

Le dendrimère de deuxième génération (3,16.10⁻² mmol, 300 mg) à extrémités α-hydroxy-diméthylphosphonate est mis en suspension dans l'acétonitrile (1,5 mL) ainsi que de la triéthylamine (0,86 mmol, 30 μL) à 0°C. Puis le bromure de triméthylsilane (2,3 mmol, 304 μL) est additionné lentement à 0°C, l'ensemble revient lentement à température ambiante pendant 6 heures. Puis on ajoute du méthanol anhydre (1 mL). Après 2 heures d'agitation le mélange réactionnel est séché sous pression réduite. Ensuite la poudre est mise en suspension dans un minimum d'eau pendant 30 minutes avec une forte agitation. Après filtration, le produit est séché puis lavé abondamment à l'éther. De préférence, si un produit soluble est désiré, le dendrimère final ne doit pas être totalement désolvaté. Le produit final est isolé avec un rendement final de 62%.

15 RMN ³¹P-{¹H} (DMSO d6) : δ = 11,9 (s, P₀), 21,5 (m, P(O)(OH)₂), 66,00 (s large, P_{1,2}) ppm.

RMN 1 H (DMSO d6) : δ = 3,06 (s large, 54H, CH₃-N-P_{1,2}), 4,66 (d, $^{3}J_{HP}$ = 14,0 Hz, 24H, -<u>CH</u>-OH), 3,7-5,2 (m, 72H, -OH), 6,7-8,0 (m, 186H, H_{arom}, CH=N) ppm.

RMN 13 C- 1 H} (DMSO d6): δ = 33,6 (s large, CH₃-N-P_{1,2}), 70,2 (d, $^{1}J_{CP}$ = 158,5 Hz, C-OH), 121,0 (s large, C_{2}^{2} , C_{0}^{2}), 122,0 (s, C_{1}^{2}), 129,5 (s large, C_{0}^{3} , C_{1}^{3} , C_{2}^{3}), 132,8 (s, C_{0}^{4} , C_{1}^{4}), 137,4 (s, C_{2}^{4}), 141,0 (s large, CH=N), 149,8 (s large, C_{2}^{1}), 151,2 (s large, C_{0}^{1} , C_{1}^{1}) ppm.

IR: Absence de u(CHO) à 1670 cm⁻¹; u(OH) à 3271 cm⁻¹.

Les dérivés à terminaisons acide phosphonique peuvent être obtenus par application ou adaptation de cette méthode à partir des composés des exemples 1 à 5 et 8 à 10 présentant un groupe diméthyle phosphonate. Cette réaction ne fonctionne pas à partri du composé présentant un groupe diisopropyle phosphonate de l'exemple 7.

10

15

20

25

Exemple 7 : Synthèse du dendrimère de première génération à terminaisons vinyl-diisopropyl-phosphonates

Le tétraisopropyl-méthylène-gem-diphosphonate (3 mmol) ainsi que de l'hydrure de sodium (3 mmol, 75 mg) sont mis en solution dans 2 mL de THF distillé. Cette solution est laissée sous une forte agitation pendant 2 heures à température ambiante. Une fois le dégagement d'hydrogène fini, elle est additionnée lentement sur le dendrimère Gc'₁ (0,17 mmol, 500 mg) qui a été préalablement mis en solution dans 3 mL de THF distillé. L'addition est effectuée à 0°C puis on laisse le mélange revenir à température ambiante pendant une nuit. Le solide blanc est alors lavé avec un mélange pentane / éther 1/1 de manière à retirer l'excès de tétraisopropyl-méthylène-gem-diphosphonate. Ensuite le dendrimère est mis en suspension dans le minimum d'eau, la solution trouble obtenue est centrifugée. Une poudre blanche est récupérée après centrifugation mais il peut parfois être nécessaire de répéter une deuxième fois l'opération (centrifugation) toujours avec le minimum d'eau. Le produit final est isolé avec un rendement final de 55%.

RMN $^{31}P-\{^{1}H\}$ (CDCl₃): $\delta = 11,66$ (s, P₀); 65,73 (s, P₁); 20,31 (s, P=O) ppm.

RMN ¹H (CDCl₃): δ = 1,26 (d, ³J_{HH} = 6,2 Hz, 72H, <u>CH₃-CH</u>); 1,32 (d, ³J_{HH} = 6,2 Hz, 72H <u>CH₃-CH</u>); 3,27 (d, ³J_{HP} = 10,4 Hz, 18H, N-Me); 4,66 (hept, ³J_{HH} = 5,9 Hz, 24H, O-<u>CH</u>-(CH₃)₂); 6,14 (dd, ³J_{HH trans} = ²J_{HP(O)} = 17,1 Hz, 12H, -CH=<u>CH</u>-P(O)); 6,9-7,7 (m, 90H, CH_{arom}, CH=N, -<u>CH</u>=CH-P(O)) ppm.

RMN ¹³C-{¹H} (CDCl₃): δ = 24,0 (d, ³ J_{CP} = 5,0 Hz, <u>CH₃-CH</u>); 32,9 (d, ² J_{CP} = 12 Hz, CH₃-N-P₁); 70,5 (d, ² J_{CP} = 5,0 Hz, -O-<u>CH</u>-CH₃); 116,1 (d, ¹ J_{CP} = 192,52 Hz, -CH=<u>CH</u>-P(O)(OiPr)₂); 121,4 (s large, C₀²); 121,8 (d, ³ J_{CP} = 4,9 Hz, C₁²); 128,3 (s, C₀³); 129,0 (s, C₁³); 132,2 (d, ³ J_{CP} = 18,7 Hz, C₁⁴); 132,7 (s, C₀⁴); 139,0 (d, ³ J_{CP} = 14,46 Hz, CH=N); 146,3 (d, ² J_{CP} = 6,3 Hz, -<u>CH</u>=CH-P(O)(OiPr)₂); 151,3 (s large, C₀¹); 151,6 (d, ² J_{CP} = 5,7 Hz, C₁¹); ppm.

10

15

20

25

Exemple 8 : Synthèse du dendrimère de première génération à terminaisons vinyl-diméthyl-phosphonates

Le tétraméthyl-méthylène-gem-diphosphonate (11,7 mmol, 2,7 g) ainsi que de l'hydrure de sodium (11,7 mmol, 281 mg) sont mis en solution dans 10 mL de THF distillé. Cette solution est laissée sous une forte agitation pendant 2 heures à température ambiante. Une fois le dégagement d'hydrogène fini, elle est additionnée lentement sur le dendrimère Gc'2 (0,7 mmol, 1 g) qui a été préalablement mis en solution dans 5 mL de THF distillé. L'addition est effectuée à 0°C puis on laisse le mélange revenir à température ambiante pendant une nuit. Le solide blanc est alors lavé avec un mélange pentane / éther 1/1 de manière à tétraméthyl-méthylène-gem-diphosphonate. retirer l'excès de dendrimère est mis en suspension dans le minimum d'eau, la solution trouble obtenue est centrifugée. Une poudre blanche est récupérée après centrifugation mais il peut parfois être nécessaire de répéter une deuxième fois l'opération (centrifugation) toujours avec le minimum d'eau. Le produit final est isolé avec un rendement final de 63%.

$$\begin{array}{c|c} P_3N_3 & & & \\ \hline & N-N-P \\ & S \\ & S \\ \end{array} \begin{array}{c} Me \\ PO_3Me_2 \\ 2 \\ \end{array}$$

RMN ${}^{31}P-{}^{1}H}$ (CDCl₃) : δ = 11,7 (s, P₀); 65,5 (s, P₁); 25,43 (s, P=O) ppm. RMN ${}^{1}H$ (CDCl₃) : δ = 3,27 (d, ${}^{3}J_{HP}$ = 9,5 Hz, 18H, N-Me); 3,72 (d, ${}^{3}J_{HP}$ = 10,6 Hz, 72H, O-<u>CH₃</u>); 6,08 (dd, ${}^{3}J_{HH}$ $_{trans}$ = ${}^{2}J_{HP(O)}$ = 16,9 Hz, 12H, -CH=<u>CH</u>-P(O)); 6,9-7,8 (m, 90H, CH_{arom}, CH=N, -<u>CH</u>=CH-P(O)) ppm. RMN ${}^{13}C-{}^{1}H}$ (CDCl₃) : δ = 32,9 (d, ${}^{2}J_{CP}$ = 12,13 Hz, CH₃-N-P₁); 52,4 (d, ${}^{2}J_{CP}$ = 5,6 Hz, -O-<u>CH₃</u>); 112,7 (d, ${}^{1}J_{CP}$ = 191,64 Hz, -CH=<u>CH</u>-P(O)(OMe)₂); 121,3 (s large, C₀²); 121,7 (d, ${}^{3}J_{CP}$ = 3,2 Hz, C₁²); 128,2 (s, C₀³); 129,1 (s, C₁³); 131,9 (s, C₀⁴); 132,1 (d, ${}^{3}J_{CP}$ = 16,9 Hz, C₁⁴); 139,0 (d, ${}^{3}J_{CP}$ = 13,4 Hz, CH=N); 148,03 (d, ${}^{2}J_{CP}$ = 6,8 Hz, -<u>CH</u>=CH-P(O)(OMe)₂); 151,2 (s large, C₀¹); 151,8 (d, ${}^{2}J_{CP}$ = 6,3 Hz, C₁¹) ppm.

10

15

Exemple 9 : Synthèse du dendrimère de seconde génération à terminaisons vinyl-diméthyl-phosphonates

Le tétraméthyl-méthylène-gem-diphosphonate (0,77 mmol, 0,18 g) ainsi que de l'hydrure de sodium (0,78 mmol, 19 mg) sont mis en solution dans 4 mL de THF distillé, cette solution est laissée sous une forte agitation pendant 2 heures à température ambiante. Une fois le dégagement d'hydrogène fini, elle est additionnée lentement sur le dendrimère Gc'2 (2,9.10⁻² mmol, 0,2 mg) qui a été préalablement mis en solution dans 2 mL de THF distillé. L'addition est effectuée à 0°C puis on laisse le mélange revenir à température ambiante pendant une nuit. Le solide blanc est alors lavé avec un mélange pentane / éther 1/1 de manière à l'excès tétraméthyl-méthylène-gem-diphosphonate. Ensuite. dendrimère est mis en suspension dans le minimum d'eau, la solution trouble obtenue est centrifugée. Une poudre blanche est récupérée après centrifugation mais il peut parfois être nécessaire de répéter une deuxième fois l'opération (centrifugation) toujours avec le minimum d'eau. Le produit final est isolé avec un rendement final de 68%.

$$\begin{array}{c} P_3N_3 \neq O - \bigcirc \bigvee_{N-N-P} \stackrel{Me}{\downarrow} \\ S & \bigvee_{N-N-P} O - \bigcirc \bigvee_{N-N-P} O - \bigcirc$$

RMN $^{31}P-\{^{1}H\}$ (CDCl₃): $\delta = 11.8$ (s, P_0); 65.4 (s, P_2); 65.9 (s, P_1); 25.4 (s, P=O) ppm.

20 RMN ¹H (CDCl₃): δ = 3,26 (d large, ³ J_{HP} = 10,2 Hz, 54H, N-Me); 3,66 (d, ³ J_{HP} = 10,4 Hz, 144H, O-<u>CH₃</u>); 6,06 (dd, ³ J_{HH} trans = ² $J_{HP(O)}$ = 16,9 Hz, 24H, -CH=<u>CH-P(O)</u>); 6,9-7,8 (m, 210H, CH_{arom}, CH=N, -<u>CH</u>=CH-P(O)) ppm. RMN ¹³C-{¹H} (CDCl₃): δ = 33,0 (d, ² J_{CP} = 12,5 Hz, CH₃-N-P_{1,2}); 52,5 (d, ² J_{CP} = 5,3 Hz, -O-<u>CH₃</u>); 112,6 (d, ¹ J_{CP} = 192,08 Hz, -CH=<u>CH-P(O)</u>(OMe)₂); 121,4 (s large, C₀²); 121,9 (s large, C₁², C₂²); 128,4 (s large, C₀³, C₁³); 129,2 (s, C₂³); 132,0 (s, C₁⁴); 132,4 (s large, C₀⁴, C₂⁴); 139,2 (d, ³ J_{CP} = 13,6 Hz, CH=N); 148,1 (d, ² J_{CP} = 5,4 Hz, -<u>CH</u>=CH-P(O)(OMe)₂); 151,2 (s, C₀¹); 151,3 (d, ² J_{CP} = 6,9 Hz, C₁¹); 151,8 (d, ² J_{CP} = 6,4 Hz, C₂¹) ppm.

10

15

Exemple 10 : Synthèse du dendrimère de troisième génération à terminaisons vinyl-diméthyl-phosphonates

Le tétraméthyl-méthylène-gem-diphosphonate (0,71 mmol, 165 mg) ainsi que de l'hydrure de sodium (0,71 mmol, 17,1 mg) sont mis en solution dans 5 mL de THF distillé, cette solution est laissée sous une forte agitation pendant 2 heures à température ambiante. Une fois le dégagement d'hydrogène fini, elle est additionnée lentement sur le dendrimère Gc'₃ (1,35.10⁻² mmol, 200 mg) qui a été préalablement mis en solution dans 3 mL de THF distillé. L'addition est effectuée à 0°C puis on laisse le mélange revenir à température ambiante pendant une nuit. Le solide blanc est alors lavé avec un mélange pentane / éther 1/1 de manière à retirer de tétraméthyl-méthylène-gem-diphosphonate. l'excès dendrimère est mis en suspension dans le minimum d'eau, la solution trouble obtenue est centrifugée. Une poudre blanche est récupérée après centrifugation mais il peut parfois être nécessaire de répéter une deuxième fois l'opération (centrifugation) toujours avec le minimum d'eau. Le produit final est isolé avec un rendement final de 72%.

RMN $^{31}P-\{^{1}H\}$ (CDCl₃) : $\delta = 11,7$ (s, P_0); 65,3 (s, P_3); 66,0 (s, $P_{1,2}$); 25,5 (s, P=O) ppm.

20 RMN ¹H (CDCl₃): δ = 3,29 (s large, 126H, N-Me); 3,68 (d, ³ J_{HP} = 7,7 Hz, 288H, O- $\frac{\text{CH}_3}{\text{CH}_3}$); 6,08 (dd, ³ J_{HH} $_{trans}$ = ² $J_{HP(O)}$ = 17,6 Hz, 48H, -CH= $\frac{\text{CH}}{\text{CH}}$ -P(O)); 6,9-7,8 (m, 450H, CH_{arom}, CH=N, - $\frac{\text{CH}}{\text{CH}}$ -CH-P(O)) ppm.

RMN 13 C- 1 H} (CDCl₃): δ = 33,0 (d, 2 J_{CP} = 13,1 Hz, CH₃-N-P_{1,2,3}); 52,5 (d, 2 J_{CP} = 5,5 Hz, -O- 1 CH₃); 112,6 (d, 1 J_{CP} = 192,2 Hz, -CH= 1 CH-P(O)(OMe)₂); 121,9 (d large, 3 J_{CP} = 2,7 Hz, 2 Co², 2 C1, 2 C2, 2 C3); 128,3 (s large, 3 C0, 3 C1, 3 C2, 3 C1, 129,1 (s, 3 C3); 131,9 (s large, 3 C0, 4 C1, 132,1 (s, 4 C1; 132,2 (s, 3 C3); 139,2 (d, 3 J_{CP} = 13,2 Hz, CH=N); 148,3 (s large, - 1 CH=CH-P(O)(OMe)₂); 151,3 (s, 1 C1, 1 C0, 151,8 (s, 3 C3); 152,0 (s, 2 C1) ppm.

10

15

20

25

Exemple 11: Synthèse 4-hydroxybenzyl-diméthyl-phosphonate

Les étapes a) à d) de cette synthèse multi-étapes étaient déjà décrites par J.D. Olsjewski et al J. Org. Chem. 1994, 59, 4285-4296.

a) Synthèse du 4-tertiobutyldiméthylsilyl-benzaldéhyde

Le 4-hydroxy-benzaldéhyde (10g, 0,082 mol) est mis en solution dans 100 mL de dichlorométhane. On additionne à cette solution à température ambiante le chlorotriméthylsilane (11,72g, 0,078 mol) ainsi que de la diméthylaminopyridine (1g, 0,008mol) et de la triéthylamine (23 mL, 0,164 mol). L'ensemble est laissé à température ambiante 48 heures avec une agitation magnétique puis le solvant est évaporé sous pression réduite. Le solide obtenu est agité dans le pentane pur (3x200 mL), et on extrait ainsi le produit silylé.

b) Synthèse du 4-tertiobutyldiméthylsilyl-benzaldéhyde

Le 4-tertiobutyldiméthylsilyl-benzaldéhyde (28g, 0,118 mol) est mis en solution dans un mélange THF/éthanol (50 ml/10ml). On additionne sur cette solution à température ambiante du borohydrure de sodium (9g, 0,237 mol) cette suspension est agitée sous argon et à température ambiante pendant 4 jours. Puis on évapore sous pression réduite tous les solvants du milieu réactionnel et on obtient ainsi un gel blanc très compact. Ce dernier est mis en suspension dans de l'éther puis on ajoute très lentement une solution de chlorhydrate d'ammonium saturée, jusqu'à obtention d'une solution plus homogène dans les deux phases. Lorsque les deux phases sont homogènes on sépare le produit final par simple décantation eau/éther. La phase éthérée est évaporée puis le produit obtenu est repris dans le pentane et lavé une fois à l'eau.

c) Synthèse du 4-tertiobutyldiméthylsilyl-benzaldéhyde

L'alcool benzylique (27g 0,113 mol) est mis en solution dans du THF (100 mL); sur cette solution on additionne l'anhydride trifluoroacétique (19,2 mL, 0,136 mol) à température ambiante. Puis l'ensemble est mis au reflux du THF pendant une heure. On laisse ensuite le mélange revenir lentement à température ambiante, et on évapore 75 % du THF puis on reprend l'ensemble dans de l'éther et on lave dans un premier temps avec une solution d'hydrogénocarbonate de sodium (2x100 mL) et une fois à l'eau (100 mL).

10

15

20

5

d) Synthèse du 4-tertiobutyldiméthylsilyl-benzaldéhyde

Le trifluoroacétate (35 g, 0,105 mol) est mis en solution dans du THF (100 mL), sur cette solution on additionne du bromure de lithium (11g, 0,126 mol) l'ensemble est mis au reflux du THF pendant 18 heures. On évapore le THF sous pression réduite puis on reprend le produit dans 40 mL d'acétonitrile et on fait une décantation à l'hexane (4x100 mL). L'hexane est évaporé et on obtient une huile blanchâtre contenant des cristaux blancs. Il faut alors récupérer l'huile en utilisant à nouveau l'hexane mais en filtrant ces cristaux. Le produit est isolé avec un rendement de 84 %.

e) Synthèse du 4-tertiobutyldiméthylsilyl-benzyl-diméthyl-phosphonate

25

Le bromure de benzyle du 4-tertiobutyldiméthylsiloxane (2,72 mmol, 800 mg), est additionné au triméthylphosphite (4 mmol, 0,47 mL). Le triméthylphosphite est ajouté en plusieurs fois : dans un premier temps le premier équivalent est ajouté

(0,32 mL) puis l'ensemble est porté à 80°C avec agitation et sans solvant. La réaction libère du bromure de méthyle qui doit être retiré pour permettre à la réaction d'être totale. Après 4 heures de reflux l'excès de triméthylphosphite est additionné (0,15 mL). Le mélange réactionnel est à nouveau porté à 80°C pendant 2 heures. Le mélange final contient des traces de triméthylphosphite qui peut être éliminé sous pression réduite à 80°C ainsi que le méthyl-diméthylphosphite, qui est un sous-produit dû à la formation de bromure de méthyle.

RMN $^{31}P-\{^{1}H\}$ (CDCl₃) : $\delta = 32,6$ (s, P) ppm.

RMN ¹H (CDCl₃): δ = 0,17 (s, 6H, Si-CH₃); 0,97 (s, 9H, Si-tBu); 3,09 (d, ²J_{HP} = 21,2 Hz, 2H, -CH₂-); 3,63 (d, ²J_{HP} = 10,7 Hz, 6H, O-Me); 6,78 (d, ³J_{HH} = 8,5 Hz, 2H, CH_{arom}); 7,15 (dd, ³J_{HH} = 8,5 Hz, ⁴J_{HP} = 2,5 Hz, 2H, CH_{arom}) ppm.

f) Synthèse 4-hydroxybenzyl-diméthyl-phosphonate

15

20

25

5

Le 4-hydroxybenzyl-diméthyl-phosphonate (2,72 mmol) est placé en solution dans du THF anhydre 5 mL, puis le fluorure de tétrabutylammonium en solution anhydre à 1 M dans le THF est additionné (5,4 mmol, 5,5 mL). Le mélange est laissé 48 heures à température ambiante. Sur ce mélange réactionnel sont additionnées quelques gouttes d'eau après 1 heure d'agitation le produit est lavé au pentane. Le produit est ensuite purifié par filtration sur silice en utilisant un gradient de solvant : éther pur dans un premier temps puis, avec un mélange Pentane/THF 1/1.

Le produit final est recristallisé dans le dichlorométhane, pour cela on le dissous dans un minimum de dichlorométhane à chaud puis on le laisse revenir très lentement à température ambiante et enfin à -20°C le produit est récupéré totalement pur, sous forme de cristaux blancs.

RMN $^{31}P-\{^{1}H\}$ (CDCI₃) : $\delta = 32,4$ (s, P) ppm.

RMN ¹H (CDCl₃): $\delta = 3,07$ (d, ² $J_{HP} = 22,0$ Hz, 2H, -CH₂-); 3,68 (d, ² $J_{HP} = 10,8$ Hz, 30 6H, O-Me); 6,64 (dd, ³ $J_{HH} = 8,6$ Hz, ⁵ $J_{HP} = 0,78$ Hz, 2H, CH_{arom}); 7,04 (dd, ³ $J_{HH} = 8,6$ Hz, ⁴ $J_{HP} = 2,8$ Hz, 2H, CH_{arom}); 7,68 (s large, 1H, OH) ppm.

15

20

25

RMN 13 C- 1 H} (CDCl₃): δ = 31,7 (d, $^{1}J_{CP}$ = 139,6 Hz, -CH₂-P); 53,1 (d, $^{2}J_{CP}$ = 6,9 Hz, -OMe); 116,0 (s, C₂); 120,8 (d, $^{2}J_{CP}$ = 8,17 Hz, C₄); 130,7 (d, $^{3}J_{CP}$ = 7,54 Hz, C₃), 156,0 (d, $^{5}J_{CP}$ = 3,14 Hz, C₁) ppm.

5 Exemple 12 : Synthèse d'un dendrimère de première génération à extrémités benzyl-diméthyl-phosphonate

Le dendrimère de première génération à extrémités dichlorothiophosphine Gc₁ (0,109 mmol, 200 mg) est mis en solution dans du THF (2 mL); sur cette solution est additionné du carbonate de césium (2,6 mmol, 853 mg). Enfin, le 4-hydroxy-benzyl-diméthyl-phosphonate est ajouté (1,3 mmol, 282 mg). On laisse le mélange sous agitation pendant 24 heures à température ambiante. Puis on place l'échantillon sous vide jusqu'à obtention d'une poudre blanche qui est lavée avec un mélange pentane éther (1/1). Le produit final est isolé avec un rendement final de 73%.

RMN 31 P- 1 H} (CDCl₃) : δ = 66,2 (s, P₁); 31,9 (s, P(O)(OMe)₂); 12,3 (s, P₀) ppm. RMN 1 H ((CD₃)₂CO) : δ = 3,15 (d, 2 J_{HP} = 21,5 Hz, 24H, CH₂); 3,32 (d, 3 J_{HP} = 10,5 Hz, 18H, CH₃-N-P₁); 3,58 (d, 3 J_{HP} = 10,9 Hz, 72H, P(O)-O-CH₃); 6,90-7,90 (m, 78H, H_{arom}, CH=N) ppm.

RMN 13 C- 1 H} ((CD₃)₂CO) : δ = 31,85 (d, 1 J_{CP} = 136,4 Hz, -<u>CH₂</u>-P(O)(OMe)₂); 33,4 (d, 2 J_{CP} = 16,8 Hz, CH₃-N-P₁); 52,8 (d, 2 J_{CP} = 6,8 Hz, -O-CH₃); 121,9 (s large, C₀² et C₁²); 129,1 (s, C₀³); 130,3 (d, 2 J_{CP} = 8,6 Hz, C₁⁴); 131,8 (d, 2 J_{CP} = 6,18 Hz, C₁³); 133,3 (s, C₀⁴); 140,4 (d, 3 J_{CP} = 14,04 Hz, CH=N); 150,3 (d large, 2 J_{CP} = 3,8 Hz, C₁¹); 152,0 (d large, C₀¹) ppm.

Exemple 13 : Synthèse d'un dendrimère de deuxième génération à extrémités benzyl-diméthyl-phosphonate

Le dendrimère de deuxième génération à extrémités dichlorothiophosphine Gc₂ (0,02 mmol, 100 mg) est mis en solution dans du THF (2 mL). Dans cette

solution est additionné du carbonate de césium (1,5 mmol, 490 mg). Enfin, le 4-hydroxy-benzyl-diméthyl-phosphonate est ajouté (0,53 mmol, 113 mg). On laisse le mélange sous agitation pendant 24 heures à température ambiante. Puis on place l'échantillon sous vide jusqu'à obtention d'une poudre blanche qui est lavé avec un mélange pentane éther (1/1). Le produit final est isolé avec un rendement final de 78%.

RMN 31 P- 1 H} (CDCl₃) : δ = 66,0 (s, P₂); 65,9 (s, P₁); 31,8 (s, P(O)(OMe)₂); 11,8 (s, P₀) ppm.

RMN ¹H (CD₃)₂CO) : δ = 3,15 (d, ² J_{HP} = 22,2 Hz, 48H, CH₂); 3,25 (d, ³ J_{HP} = 11,2 Hz, 54H, CH₃-N-P_{1,2}); 3,55 (d, ³ J_{HP} = 10,8 Hz, 144H, P(O)-O-CH₃); 6,70-7,90 (m, 186H, H_{arom}, CH=N) ppm.

RMN 13 C- 1 H} (CDCl₃): δ = 32,1 (d, 1 J_{CP} = 138,6 Hz, $^{-}$ CH₂-P(O)(OMe)₂); 33,0 (d, 2 J_{CP} = 12,2 Hz, CH₃-N-P_{1,2}); 52,9 (d, 2 J_{CP} = 6,3 Hz, -O-CH₃); 121,4 (s, C₀²); 121,5 (s, C₁²); 121,6 (d large, 3 J_{CP} = 3,5 Hz, C₂²); 128,3 (s, C₀³, C₁³); 128,4 (d, 2 J_{CP} = 8,9 Hz, C₂⁴); 130,8 (d, 2 J_{CP} = 6,5 Hz, C₂³); 132,1 (s, C₀⁴); 132,3 (s, C₁⁴); 138,6 (d, 3 J_{CP} = 13,7 Hz, CH=N-N(Me)-P₂); 139,1 (d, 3 J_{CP} = 12,8 Hz, CH=N-N(Me)-P₁); 149,6 (dd, 2 J_{CP} = 6,1 Hz, 5 J_{CP} = 3,8 Hz, C₂¹); 151,1 (s, C₀¹); 151,2 (d, 2 J_{CP} = 7,6 Hz, C₁¹) ppm.

20

25

15

5

Exemple 14 : Synthèse d'un dendrimère de troisième génération à extrémités benzyl-diméthyl-phosphonate

Le dendrimère de troisième génération à extrémités dichlorothiophosphine Gc₃ (0,014 mmol, 150 mg) est mis en solution dans du THF (2 mL). Dans cette solution est additionné du carbonate de césium (1,4 mmol, 460 mg). Enfin, le 4-hydroxy-benzyl-diméthyl-phosphonate est ajouté (0,71 mmol, 153 mg). On laisse le mélange sous agitation pendant 24 heures à température ambiante. Puis on place l'échantillon sous vide jusqu'à obtention d'une poudre blanche qui est

10

20

25

lavée avec un mélange pentane éther (1/1). Le produit final est isolé avec un rendement final de 80%.

RMN 31 P-{ 1 H} (CDCl₃) : δ = 66,0 (s, P_{1,2,3}); 31,9 (s, P(O)(OMe)₂); 11,5 (s, P₀) ppm. RMN 1 H (CDCl₃) : δ = 3,03 (d, 2 J_{HP} = 21,5 Hz, 96H, CH₂); 3,23 (d, 3 J_{HP} = 9,7 Hz, 126H, CH₃-N-P_{1,2,3}); 3,54 (d, 3 J_{HP} = 10,8 Hz, 288H, P(O)-O-CH₃); 6,70-7,90 (m, 402H, H_{arom}, CH=N) ppm.

RMN 13 C- 1 H} (CDCl₃): δ = 31,8 (d, $^{1}J_{CP}$ = 122,5 Hz, $-\underline{CH_2}$ -P(O)(OMe)₂); 33,1 (s, CH₃-N-P_{1,2,3}); 52,9 (d, $^{2}J_{CP}$ = 7,4 Hz, -O-CH₃); 121,2 (s, C₁²); 121,5 (s, C₃²); 121,7 (s large, C₂², C₀²); 128,3 (s, C₀³, C₁³, C₂³); 128,4 (d, $^{2}J_{CP}$ = 10,1 Hz, C₃⁴); 130,5 (s, C₀⁴); 130,6 (s, C₁⁴); 130,8 (d, $^{2}J_{CP}$ = 6,2 Hz, C₃³) 132,2 (s, C₂⁴); 138,7 (d large, $^{3}J_{CP}$ = 13,6 Hz, \underline{CH} =N-N(Me)-P_{1,2,3}); 148,3 (s large, C₀¹); 149,6 (dd, $^{2}J_{CP}$ = 4,3 Hz, $^{5}J_{CP}$ = 4,3 Hz, C₃¹); 151,2 (d, $^{2}J_{CP}$ = 7,1 Hz, C₁¹, C₂¹) ppm.

15 Exemple 15 : Synthèse d'un dendrimère de première génération à extrémités benzyl-phosphonique

Le dendrimère de première génération à extrémités benzyl-diméthyl-phosphonates (400 mg, 0,1 mmol) est mis en solution dans de l'acétonitrile (1 mL). Le mélange est refroidi à 0°C puis on additionne lentement le bromotriméthylsilane (386 µl, 2,9 mmol) soit 1,2 équivalent de silane par extrémités méthyle. Le mélange est laissé pendant 16 heures à température ambiante. Puis on met l'échantillon sous vide pendant deux heures. Après obtention d'une poudre on additionne du méthanol anhydre (1 mL), on agite la suspension pendant 2 heures, enfin on remet le produit sous vide pendant 1 heure. La poudre obtenue est Javée plusieurs fois à l'eau et à l'éther. Le produit final est isolé avec un rendement de 70%.

10

15

20

25

RMN 31 P-{ 1 H} (DMSO d^{6}) : δ = 66,1 (s, P₁); 25,2 (s, P(O)(OH)₂); 11,7 (s, P₀) ppm. RMN 1 H (DMSO d^{6}) : δ = 2,89 (d, 2 J_{HP} = 20,7 Hz, 24H, CH₂); 3,22 (d, 3 J_{HP} = 10,6 Hz, 18H, CH₃-N-P₁); 4,0-5,2 (m, 24H, -PO₃H₂); 6,70-7,90 (m, 78H, H_{arom}, CH=N) ppm.

RMN 13 C- 1 H} (DMSO 6): δ = 32,8 (d, $^{2}J_{CP}$ = 11,3 Hz, CH₃-N-P); 34,3 (d, $^{1}J_{CP}$ = 132,7 Hz, $^{-}$ CH₂-P(O)(OH)₂); 120,4 (s, 1 C₁; 120,9 (s, 1 C₀); 128,2 (s, 1 C₀); 130,9 (d, 1 C₁, $^{2}J_{CP}$ = 6,8 Hz); 131,1 (s, 1 C₁; 132,1 (s, 1 C₀); 139,8 (d large, $^{3}J_{CP}$ = 10,8 Hz, CH=N); 148,3 (d, $^{2}J_{CP}$ = 7,2 Hz, 1 C₁; 150,4 (s, 1 C₀) ppm.

Exemple 16 : Synthèse d'un dendrimère de seconde génération à extrémités benzyl-phosphonique

Le dendrimère de deuxième génération à extrémités benzyl-diméthyl-phosphonates (130 mg, 0,014 mmol) est mis en solution dans de l'acétonitrile (1 mL). Le mélange est refroidi à 0°C puis on additionne lentement le bromotriméthylsilane (101 µl, 0,76 mmol) soit 1,2 équivalent de silane par extrémités méthyle. Le mélange est laissé pendant 16 heures à température ambiante. Puis on met l'échantillon sous vide pendant deux heures. Après obtention d'une poudre on additionne du méthanol anhydre (1 mL), on agite la suspension pendant 2 heures, enfin on remet le produit sous vide pendant une heure. La poudre obtenue est lavée plusieurs fois à l'eau et à l'éther. Le produit final est isolé avec un rendement de 63%.

RMN ³¹P-{¹H} (DMSO d6/D₂O) : δ = 66,1 (s, P_{1,2}); 25,5 (s, P(O)(OH)₂); 11,9 (s, P₀) ppm.

10

15

20

25

RMN ¹H (DMSO d6/D₂O) : δ = 2,95 (s large, 48H, CH₂); 3,40-3,75 (m, 54H, CH₃-N-P_{1,2}); 6,50-7,30 (m, 186H, H_{arom}, CH=N) ppm.

RMN 13 C- 1 H} (DMSO d6/D₂O) : δ = 32,9 (d, $^{2}J_{CP}$ = 11,5 Hz, CH₃-N-P_{1,2}); 34,5 (d, $^{1}J_{CP}$ = 133,7 Hz, -CH₂-P(O)(OH)₂); 119,5 (s, C₀²); 120,4 (s, C₂²); 121,4 (s, C₁²); 128,2 (s, C₀³, C₁³); 131,0 (s large, C₂⁴, C₂³); 132,1 (s, C₀⁴, C₁⁴); 140,3 (d large, $^{3}J_{CP}$ = 11,1 Hz, CH=N); 148,3 (d, $^{2}J_{CP}$ = 3,6 Hz, C₂¹); 150,3 (s, C₀¹); 150,7 (s, $^{2}J_{CP}$ = 6,0 Hz, C₁¹) ppm.

Exemple 17 : Synthèse d'un dendrimère de troisième génération à extrémités benzyl-phosphonique

Le dendrimère de troisième génération à extrémités benzyl-diméthyl-phosphonates (200 mg, 0,01 mmol) est mis en solution dans de l'acétonitrile (1 mL). Le mélange est refroidi à 0°C puis on additionne lentement le bromotriméthylsilane (146 µl, 1,09 mmol) soit 1,1 équivalent de silane par extrémités méthyle. Le mélange est laissé pendant 16 heures à température ambiante. Puis, on met l'échantillon sous vide pendant deux heures. Après obtention d'une poudre on additionne du méthanol anhydre (1 mL), on agite la suspension pendant 2 heures, enfin on remet le produit sous vide pendant une heure. La poudre obtenue est lavée plusieurs fois à l'eau et à l'éther. Le produit final est isolé avec un rendement de 81%.

RMN $^{31}P-\{^{1}H\}$ (DMSO d6) : δ = 66,1 (s, $P_{1,2,3}$); 25,1 (s, $P(O)(OH)_2$); 11,7 (s, P_0) ppm.

RMN ¹H (DMSO d6): δ = 2,94 (d, ² J_{HP} = 23,1 Hz, 96H, CH₂); 3,10-3,40 (m, 126H, CH₃-N-P_{1,2,3}); 5,2-6,2 (m, 96H, -PO₃H₂); 7,00-8,10 (m, 402H, H_{arom}, CH=N) ppm. RMN ¹³C-{¹H} (DMSO d6): δ = 32,9 (d, ² J_{CP} = 12,2 Hz, CH₃-N-P_{1,2,3}); 34,5 (d, ¹ J_{CP} = 132,1 Hz, -CH₂-P(O)(OH)₂); 119,5 (s, C₀²); 120,4 (s, C₃²); 120,6 (s, C₂²); 121,4 (s, C₁²); 128,3 (s, C₀³, C₁³, C₂³); 131,0 (s large, C₃⁴, C₃³); 132,1 (s large, C₀⁴, C₁⁴,

10

15

20

25

 C_2^4); 140,3 (d large, $^3J_{CP} = 10,4$ Hz, CH=N); 148,3 (d, $^2J_{CP} = 6,2$ Hz, C_3^1); 150,6 (d large, $^2J_{CP} = 7,2$ Hz, C_0^1 , C_1^1 , C_2^1) ppm.

Exemple 18 : Synthèse du dendrimère génération zéro (cœur P_3N_3) à extrémités α -hydroxy-diméthylphosphonate

A 301 mg de $P_3N_3(OC_6H_4-CHO)_6$ (0,35 mmol) en solution dans 1 ml de THF on additionne de la triéthylamine distillée (5 µl soit 0,42.10⁻³ mol), et du diméthylphosphite (196 µL soit 2,1.10⁻³ mol) (1 équiv par –CHO). On laisse le mélange pendant 12 heures sous agitation. La pâte obtenue est ensuite lavée avec un mélange THF/Et₂O : 1/1, pour donner une poudre blanche. Le produit final est isolé avec un rendement de 78%.

$$P_3N_3$$
 O OH PO_3Me_2

RMN ³¹P-{¹H} (DMSO d6) : δ = 11,5 (s, P₀), 27,2 (s, P(O)(O-CH₃)₂) ppm.

Exemple 19: Synthèse du dendrimère génération zéro à extrémités acide α-hydroxy-phosphonique

Le dendrimère de génération zéro de l'exemple 18 (4,78.10⁻² mmol, 72 mg) à extrémités α-hydroxy-diméthylphosphonate est mis en suspension dans l'acétonitrile (4 mL) avec de la triéthylamine (0,288 mmol, 10,25 μL) à 0°C. Puis le bromure de triméthylsilane (0,86 mmol, 115 μL) est additionné lentement à 0°C, l'ensemble revient lentement à température ambiante pendant 6 heures, puis on ajoute du méthanol anhydre (1 mL). Après 2 heures d'agitation le mélange réactionnel est séché sous pression réduite. Ensuite la poudre est mise en suspension dans un minimum d'eau pendant 30 minutes avec une forte agitation. Après filtration, le produit est séché puis lavé abondamment à l'éther. De préférence, pour obtenir un dendrimère soluble, le dendrimère final ne doit pas être totalement désolvaté. Le produit final est isolé avec un rendement de 60%.

$$P_3N_3$$
 O OH PO_3H_2

10

20

25

RMN $^{31}P-\{^{1}H\}$ (DMSO d6) : $\delta = 11,3$ (s, P_0), 22,0 (m, $P(O)(OH)_2$) ppm. IR: Absence de v(CHO) à 1670 cm $^{-1}$; v(OH) à 3271 cm $^{-1}$.

Exemple 20 : Synthèse d'un dendrimère de génération zéro à extrémités benzyl-diméthyl-phosphonate

A une solution d'hexachlorocyclotriphosphazène (0,109 mmol, 38 mg) dans 2 mL de THF sont ajoutés du carbonate de césium (1,3 mmol, 427 mg) et du 4-hydroxy-benzyl-diméthyl-phosphonate (0,65 mmol, 141 mg). On laisse le mélange sous agitation pendant 24 heures à température ambiante. Après filtration, on place l'échantillon sous vide jusqu'à obtention d'une poudre blanche qui est lavée avec un mélange pentane / éther (1/1). Le produit final est isolé avec un rendement de 61%.

15 RMN ³¹P-{¹H} (CDCl₃): δ = 12,2 (s, P₀); 31,8 (s, P(O)(OMe)₂) ppm.

Exemple 21 : Synthèse d'un dendrimère de génération zéro à extrémités benzyl-phosphonique

Le dendrimère de génération zéro à extrémités benzyl-diméthyl-phosphonate de l'exemple 20 (126 mg, 0,1 mmol) est mis en solution dans de l'acétonitrile (1 mL). Le mélange est refroidi à 0°C puis on additionne lentement le bromotriméthylsilane (198 µl, 1,45 mmol) soit 1,2 équivalents de silane par extrémité méthyle. Le mélange est laissé pendant 16 heures à température ambiante, puis on met l'échantillon sous vide pendant deux heures. Après obtention d'une poudre on additionne du méthanol anhydre (1 mL), on agite la suspension pendant 2 heures, enfin on remet le produit sous vide pendant 1 heure. La poudre obtenue est lavée plusieurs fois à l'eau et à l'éther. Le produit final est isolé avec un rendement de 79%.

RMN $^{31}P-\{^{1}H\}$ (DMSO d^{6}) : $\delta = 11.8$ (s, P_{0}); 25.1 (m, $P(O)(OH)_{2}$) ppm.

5 Exemple 22 : Synthèse du (4-hydroxy-2-nitrophénylamino)methyldiméthylphosphonate

A température ambiante sont mélangés 500 mg de 2-nitro-4-hydroxy-aniline, 1 mL de formaldéhyde en solution à 37% dans l'eau et 1,2 mL de diméthylphosphite. La solution rouge résultante est agitée à température ambiante pendant 96 heures. Le résidu brut est directement purifié par chromatographie sur gel de silice (éluant: diéthyl éther puis acétate d'éthyle). Le résidu rouge obtenu après chromatographie sur colonne est dilué dans 300 mL d'acétate d'éthyle puis lavé avec 50 mL d'eau. La phase organique est ensuite séchée sur sulfate de magnésium puis évaporée à sec pour donner le produit attendu sous forme d'une poudre rouge avec un rendement de 71%.

RMN $^{31}P-\{^{1}H\}$ (Acétone) : $\delta = 28,7$ (s, P(O)(OMe)₂) ppm.

RMN ¹H (Acétone) : $\delta = 3.8$ (d, ³ $J_{HP} = 10.8$ Hz, 6H, -OMe); 3,90 (d, ² $J_{HP} = 12.6$ Hz, 2H, N-CH₂-P); 5,9 (s large, 1H, -NH); 7,0-8,0 (m, 3H, CH_{arom}) ppm.

RMN 13 C- 1 H} (Acétone) : δ = 38,5 (d, 1 J_{CP} = 154,7 Hz, CH₂); 52,9 (d, 2 J_{CP} = 6,0 Hz, OMe); 110,1 (s, C_{arom}); 116,5 (s, C_{arom}); 126,8 (s, C_{arom}); 132,6 (s, C_{arom}); 139,8 (s, C_{arom}); 148,3 (s, C_{arom}) ppm.

 $[M+Na]^{+} = 299,2 \text{ g.mol}^{-1}.$

20

10

Exemple 23 : Synthèse du dendrimère de première génération à cœurcyclotriphosphazène et à surface 2-nitrophénylaminométhyldiméthylphosphonate

10

25

A une suspension de NaH (7 mg) dans le THF est additionnée à température ambiante 90 mg de phénol (4-hydroxy-2-nitrophénylamino)méthyl-diméthyl-phosphonate de l'exemple 22. Après une heure d'agitation, 30 mg de dendrimère de Gc₁ en solution dans 5 mL de THF anhydre sont additionnés. On laisse le mélange sous agitation pendant 24 heures à température ambiante puis on filtre sur célite et on centrifuge le mélange final de manière à séparer les sels. Enfin le produit final est lavé par précipitation dans du pentane et isolé avec un rendement de 82 %.

15 RMN ³¹P-{¹H} (CDCl₃): δ = 66,1 (s, P₁); 28,6 (s, P(O)(OMe)₂); 11,9 (s, P₀) ppm. RMN ¹H (CDCl₃): δ = 3,6 (d, ³J_{HP} = 14,6 Hz, 18H, CH₃-N-P₁); 3,78 (d, ³J_{HP} = 10,7 Hz, 72H, -P(O)(O-<u>CH₃)₂</u>); 3,9 (d, ²J_{HP} = 12,6 Hz, 24H, -<u>CH₂</u>-P(O)(OCH₃)₂); 7,0-8,1 (m, 66H, CH_{arom}, CH=N) ppm.

20 Exemple 24 : Synthèse du dendrimère à cœur Cyclotriphosphazène de première génération à surface Aza-Mono-Phosphonique dérivé de l'allylamine

a) synthèse du dendrimère à surface allylimine.

A une solution de 230 mg (80 μ mol) de Gc'₁ dans le THF ou le CH₂Cl₂ (5 mL) sont ajoutés un large excès d'allyl amine (10 équivalents / CHO) puis du MgSO₄ (environ 2 grammes). La suspension est agitée 2 jours à température ambiante

15

20

puis contrôlée par RMN ³¹P. Le mélange est filtré, (deux fois si besoin) et un large volume de pentane est ajouté. Le solvant est éliminé puis le solide est dissous dans un minimum de THF et précipité au pentane. La purification est réitérée 2 fois. Le solide obtenu est séché sous pression réduite. Le dendrimère à terminaison allyle imine est obtenu pur avec un rendement de 90 % sous la forme d'un solide blanc (240 mg).

$$N_3P_3$$
 $N-N$
 $N-N$

RMN $^{31}P-\{^{1}H\}$ (CDCl₃) : $\delta = 12,3$ (s); 65,6 (s)

RMN ¹H (CDCl₃): δ = 3,23 (d, ³J_{HP} = 10,5 Hz, 18H); 4,18 (d, ³J_{HH} = 5,6 Hz, 24H); 5,21 (m, 24H), 6,01 (m, 12H); 6,98 (d, ³J_{HH} = 8,5 Hz, 12H); 7,21 (m, 26H); 7,60 (m, 40 H); 8,17 (s, 12H).

b) synthèse du dendrimère Aza-mono-Phosphonate Dérivé de l'allylamine.

Le dendrimère obtenu dans l'étape (a) est solubilisé dans un large excès de diméthyl phosphite. La solution homogène est agitée 72 heures à température ambiante. 10 mL d'éther distillé sont ajoutés à la solution. Après décantation, le solvant est éliminé et le solide est lavé par 3 fois avec 10 mL d'éther. Le solide est solubilisé dans un minimum de THF puis précipité par ajout de pentane. Le solide résiduel est séché sous pression réduite et le dendrimère à terminaison N-(allyl)-méthylphosphonate de diméthyle est obtenu pur avec un rendement de 80 % (poudre blanche).

RMN ³¹P-{¹H} (CDCl₃) : δ = 11,5 (s); 28,9 (s); 65,5 (s).

10

15

20

25

RMN 1 H (CDCl₃): δ = 2,00 (sf, NH); 2,99 (m, 12H); 3,21 (m, 12H); 3,30 (d, 3 J_{HP} = 8,11 Hz, 18H); 3,45 (d, 3 J_{HP} = 10,8 Hz, 36H); 3,64 (d, 3 J_{HP} = 10,6 Hz, 36H); 4,02 (d, 2 J_{HP} = 19,7 Hz, 12H); 5,01 (m, 24H); (,69 (m, 12H); 7,04 (d, 3 J_{HH} = 6,7 Hz, 12H); 7,19 (d, 3 J_{HH} = 6,3 Hz, 24H); 7,31 (d, 3 J_{HH} = 5,5 Hz, 36H); 7,60 (d, 3 J_{HP} = 6,2 Hz, 18H).

c) Synthèse du dendrimère Aza-Mono-Phosphonique Dérivé de l'allylamine.

A une solution de 120 mg (25,8 µmol) de dendrimère N-(allyl)-méthylphosphonate de diméthyle de l'étape b) dans l'acétonitrile (5 mL) sont ajoutés lentement à 0°C 46 équivalents de BrTMS (160 µL). La solution est alors agitée 20 heures à température ambiante. Le solvant est évaporé sous pression réduite et le résidu est traité par 10 mL de méthanol. Après 1 heure de vigoureuse agitation dans le méthanol, le solide est séché sous pression réduite et lavé avec 2 fois 20 mL d'éther distillé. Le solvant est éliminé et une solution aqueuse de soude 0,1955 M (1,6 mL) est additionnée lentement. La solution homogène est lyophilisée et le dendrimère à terminaison N-(allyl)-acide méthylphosphonique (mono sel de sodium) est isolé sous forme d'une poudre blanche avec un rendement quantitatif.

RMN ³¹P-{¹H} (CD₃CN/D₂O): δ = 8,9 (s); 10,3 (s); 65,2 (sl)

Exemple 25 : Synthèse du dendrimère à cœur Cyclotriphosphazene de première génération à surface Aza-Mono-Phosphonique dérivé de la Benzylamine

a) Synthèse du dendrimère à surface benzylimine.

A une solution de 160 mg (56 μmol) de Gc'₁ dans le CH₂Cl₂ (5 mL) sont ajoutés un large excès de benzylamine (10-12 équivalents / CHO) puis du MgSO₄ (environ 2-3 grammes). La suspension est agitée 24 heures à température

10

15

ambiante. Le mélange est filtré, et un large volume de pentane est ajouté. Le solvant est éliminé puis le solide est dissous dans un minimum de THF et précipité au pentane. Le résidu est lavé avec deux fois 5 mL d'éther distillé et le solide obtenu est séché sous pression réduite. Le dendrimère à terminaison Benzylimine est obtenu pur avec un rendement de 90 % sous la forme d'un solide blanc.

$$N_3P_3$$
 $N-N$
 $N-N$
 Me
 $N-Bn$
 $N-Bn$

RMN ³¹P-{¹H} (CDCl₃) : δ = 12,1 (s); 65,6 (s).

b) Dendrimère Aza-Mono-Phosphonate Dérivé de la Benzylamine

Le dendrimère précèdent à terminaisons imines est solubilisé dans un large excès de diméthyl phosphite (1 mL). La solution homogène est agitée 72 heures à température ambiante puis 10 mL d'éther distillé sont ajoutés à la solution. Après décantation, le solvant est éliminé et le solide est lavé avec 3 fois 10 mL d'éther. Le résidu est solubilisé dans un minimum de THF puis précipité par ajout de pentane. Le solide obtenu est séché sous pression réduite et le dendrimère à terminaison N-(benzyl)-méthylphosphonate de diméthyle est obtenu pur avec un rendement de 70 % (poudre blanche).

20 RMN ³¹P-{¹H} (CDCl₃) : δ = 11,5 (s); 28,7 (s); 65,6 (s) RMN ¹H (CDCl₃) : δ = 2,33 (sl, NH); 3,28 (d, ³J_{HP} = 10,2 Hz, 18H); 3,46 (d, ³J_{HP} = 10,6 Hz, 36H); 3,44 (m, 12H); 3,64 (d, ³J_{HP} = 10,5 Hz, 36H); 3,74 (m, 12H); 3,98 (d, ²J_{HP} = 20,0 Hz, 12H); 7,03 (d, ³J_{HH} = 8,5 Hz, 12H); 7,23 (m, 78H); 7,35 (m, 30H); 7,61 (d, ³J_{HH} = 8,4 Hz, 18H).

10

15

20

25

30

c) Dendrimère Aza-Mono-Phosphonique Dérivé de la Benzylamine

A une solution de 160 mg (30,5 μmol) de dendrimère N-(Benzyl)-méthylphosphonate de diméthyle dans l'acétonitrile de l'étape précédente (5 mL) sont ajoutés lentement à 0°C 46 équivalents de BrTMS (190 μL). La solution est alors agitée 20 heures à température ambiante. Le solvant est évaporé sous pression réduite et le résidu est traité par 10 mL de méthanol. Après 1 heure de vigoureuse agitation dans le méthanol, le solide est séché sous pression réduite. L'acide phosphonique est lavé avec 2 fois 20 mL d'éther distillé. Le solvant est éliminé et le dendrimère à extrémités acide phosphonique pur est traité lentement par une solution aqueuse de soude 0,1955 M (1,9 mL). La solution homogène est lyophilisée et le dendrimère à terminaison N-(Benzyl)-acide méthylphosphonique (mono sel de sodium) est isolé avec un rendement quantitatif sous forme d'une poudre blanche.

RMN ³¹P-{¹H} (CD₃CN/D₂O): δ = 8,8 (s); 10,3 (s); 65,1 (sl).

Exemple 26 : Synthèse du dendrimère à cœur Cyclotriphosphazene de première génération à surface Aza-Mono-Phosphonique dérivé de la Méthylamine

a) Dendrimère à surface méthylimine

A une solution de 200 mg (70 μmol) de Gc'₁ dans le THF (5 mL) sont ajoutés un large excès (10-12 équivalents / CHO) de méthylamine (en solution 8M dans l'éthanol) puis du MgSO₄ (environ 2 à 3 grammes). La suspension est agitée 20 heures à TA. Le mélange est filtré, et un large volume de pentane est ajouté. Le solvant est éliminé puis le solide est dissous dans un minimum de THF et précipité au pentane. Le résidu est lavé deux fois avec 5 mL d'éther distillé et le solide obtenu est séché sous pression réduite. Le dendrimère à terminaison méthylimine est obtenu pur avec un rendement de 85 % sous la forme d'un solide blanc.

10

15

20

$$N_3P_3$$
 O N-Me N-Me N-Me

RMN $^{31}P-^{1}H$ } (CDCl₃): $\delta = 12.1$ (s); 65.5 (s)

RMN ¹H (CDCl₃): δ = 3,23 (d, ³J_{HP} = 10,4 Hz, 18H); 3,44 (s, 36H); 6,98 (d, ³J_{HH} = 8,5 Hz, 12H); 7,20 (d, ${}^{3}J_{HH}$ = 7,2 Hz, 24H); 7,58 (m, 42H); 8,15 et 8,16 (2s, 12H).

b) Dendrimère Aza-Mono-Phosphonate Dérivé de la Méthylamine

Le dendrimère à terminaisons imine de l'étape précédente est solubilisé dans un large excès de diméthyl phosphite. La solution homogène est agitée 72 heures à température ambiante puis 10 mL d'éther distillé sont ajoutés. Après décantation, le solvant est éliminé et le solide est lavé avec 3 fois 10 mL d'éther. Le résidu est solubilisé dans un minimum de THF puis précipité par ajout de pentane. Le solide obtenu est séché sous pression réduite et le dendrimère à terminaison N-(méthyl)-méthylphosphonate de diméthyle est obtenu pur avec un rendement de 80 % (poudre blanche).

RMN ³¹P-{¹H} (CDCl₃) : δ = 11,5 (s); 29,0 (s); 65,2 (s).

c) Dendrimère Aza-Mono-Phosphonique Dérivé de la Méthylamine

A une solution de 160 mg (37 µmol) de dendrimère N-(méthyl)méthylphosphonate de diméthyle de l'étape précédente dans l'acétonitrile (5 mL) sont aioutés lentement à 0°C 46 équivalents de BrTMS (230 uL). La solution est alors agitée 20 heures à température ambiante. Le solvant est évaporé sous pression réduite et le résidu est traité par 10 mL de méthanol. Après 1 heure de vigoureuse agitation dans le méthanol, le solide est séché sous pression réduite. 25 L'acide phosphonique est lavé avec 2 fois 20 mL d'éther distillé. Le solvant est éliminé et le dendrimère à extrémités acide phosphonique pur est traité lentement

10

15

par une solution aqueuse de soude 0,1955 M (2,3 mL). La solution homogène est lyophilisée et le dendrimère à terminaison N-(méthyl)-acide méthylphosphonique (mono sel de sodium) est isolé avec un rendement quantitatif sous forme d'une poudre blanche.

RMN ³¹P-{¹H} (CD₃CN/D₂O): δ = 8.9 (s); 10,5 (s); 65,1 (sl).

Exemple 27 : Propriétés lubrifiantes

Les composés selon l'invention ont été testés dans un test de lubrification Falex (test de rupture) en contact acier/acier. Ce test a permis de mettre en évidence que les dendrimères fonctionnalisés bisphosphonates de l'invention peuvent être utilisés en tant qu'additif extrême pression de lubrification. Ces additifs dilués à hauteur de 1 % permettent d'obtenir un niveau de lubrification égal ou supérieur à un alkylester phosphate, souvent utilisé en tant qu'additif de lubrification.

25

REVENDICATIONS

- 1. Dendrimères de génération n constitués :
- d'un noyau central de valence m;
- éventuellement des chaînes de générations en arborescence autour du noyau;
 - une chaîne intermédiaire à l'extrémité de chaque liaison autour du noyau, ou à l'extrémité de chaque chaîne de génération, le cas échéant ; et
 - un groupe terminal à l'extrémité de chaque chaîne intermédiaire,
- où m représente un entier compris entre 3 et 8 ; n représente un entier compris entre 0 et 12,

caractérisés en ce que le groupe terminal est constitué du groupe de formule :

$$-P$$
 OX

où chacun des X, identique ou différent représente un radical –Me, -H, et/ou –M⁺ où M⁺ est un cation,

à l'exclusion du composé de formule :

$$CH_3-CH_2-C[CH_2O-C(OSiMe_3)=CH-CH_2-P(=O)-(OH)_2]_3$$

- 2. Dendrimères selon la revendication 1 tels que le noyau central contient 20 au moins un atome de phosphore.
 - 3. Dendrimères selon la revendication 1 ou 2 tels que le noyau central est choisi parmi les groupes suivants :

4. Dendrimères selon l'une quelconque des revendications précédentes tels que le noyau central est de formule:

- 5. Dendrimères selon l'une quelconque des revendications précédentes tels qu'ils possèdent une structure de DAB-AM, PAMAM, PMMH.
- 6. Dendrimères selon l'une quelconque des revendications précédentes tels que M⁺ représente le cation d'un élément du groupe IA, IIA, IIB ou IIIA de la classification périodique ou M⁺ représente HNEt₃⁺.
- 7. Dendrimères selon l'une quelconque des revendications précédentes tels que M est choisi parmi les atomes de sodium et de potassium.
 - 8. Dendrimères selon l'une quelconque des revendications précédentes tels que n est compris entre 0 et 3.
 - 9. Dendrimères selon l'une quelconque des revendications précédentes tels que m est choisi parmi 3, 4 ou 6.
- 10. Dendrimères selon l'une quelconque des revendications précédentes tels que les chaînes de génération sont choisies parmi toute chaîne hydrocarbonée de 1 à 12 chaînons, linéaire ou ramifiée, contenant éventuellement une ou plusieurs double ou triple liaison, chacun desdits chaînons pouvant éventuellement être choisi parmi un hétéroatome, un groupe Aryle, Hétéroaryle, >C=O, >C=NR, chaque chaînon pouvant être éventuellement substitué par un ou plusieurs substituants choisi(s) parmi -Alkyle, -Hal, -NO₂, -NRR', -CN, -CF₃, -OH, -OAlkyle, -Aryle, -Aralkyle.
 - R et R', identiques ou différents, représentent indépendamment un atome d'hydrogène ou un radical -Alkyle, -Aryle, -Aralkyle;

οù

5

11. Dendimères selon l'une quelconque des revendications précédentes tels que les chaînes de génération, identiques ou différentes, sont représentées par la formule :

$$-A-B-C(D)=N-N(E)-(P(=G)) < (C1)$$

5 où:

10

15

20

A représente un atome d'oxygène, soufre, phosphore ou un radical -NR- :

B représente un radical –Aryle-, -Hétéroaryle-, -Alkyle-, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

C représente un atome de carbone ;

D et E, identiques ou différents, représentent indépendamment un atome d'hydrogène, un radical –Alkyle, -OAlkyle, -Aryle, -Aralkyle, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

G représente un atome de soufre, oxygène, sélénium, tellure ou un radical =NR;

R et R', identiques ou différents, représentent indépendamment un atome d'hydrogène ou un radical -Alkyle, -Aryle, -Aralkyle;

< représente les deux liaisons à l'extrémité de chaque chaîne de génération.

- 12. Dendrimères selon la revendication 11 tels que A représente un atome d'oxygène.
- 13. Dendrimères selon l'une quelconque des revendications 11 ou 12 tels que B représente un noyau phényle, éventuellement substitué par un atome d'halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle.
- 14. Dendrimères selon l'une quelconque des revendications 11 à 13 tels que B représente un noyau phényle non substitué.
 - 15. Dendrimères selon l'une quelconque des revendications 11 à 14 tels que D représente un atome d'hydrogène.

- 16. Dendrimères selon l'une quelconque des revendications 11 à 15 tels que E représente un radical -Alkyle.
- 17. Dendrimères selon l'une quelconque des revendications 11 à 16 tels que G représente un atome de soufre.
 - 18. Dendrimères selon l'une quelconque des revendications 1 à 10 tels que les chaînes de génération sont représentées par la formule :

$$-A'-(C=O)-N(R)-B'-N<$$
 (C1')

10 où

A' et B' représentent indépendamment un radical -Alkyle, -Alkényle, -Alkynyle, par un ou plusieurs substituants choisi(s) parmi -Alkyle, -Hal, -NO₂, -NRR', -CN, -CF₃, -OH, -OAlkyle, -Aryle, -Aralkyle;

R, R' sont définis comme précédemment.

15

19. Dendrimères selon l'une quelconque des revendications 1 à 10 tels que les chaînes de génération sont représentées par la formule :

οù

- A" représente un radical -Alkyle, -Alkényle, -Alkynyle, par un ou plusieurs substituants choisi(s) parmi -Alkyle, -Hal, -NO₂, -NRR', -CN, -CF₃, -OH, -OAlkyle, -Aryle, -Aralkyle, où RR' sont définis comme précédemment.
- 20. Dendrimères selon l'une quelconque des revendications précédentes 25 tels que les chaînes de génération sont identiques.
 - 21. Dendrimères selon l'une quelconque des revendications précédentes tels que les chaînes intermédiaires, identiques ou différentes, sont représentées par la formule :

οù

J représente un atome d'oxygène, soufre, ou un radical -NR-;

10

15

30

K représente un radical –Aryle-, -Hétéroaryle-, -Alkyle-, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

- L représente une chaîne hydrocarbonée de 1 à 6 chaînons, contenant éventuellement un ou plusieurs hétéroatomes, et/ou contenant éventuellement une ou plusieurs double ou triple liaison, chacun desdits maillons pouvant éventuellement être substitué par un ou plusieurs substituants choisi parmi –OH, -NRR', -OAlkyle;
- R et R', identiques ou différents, représentent indépendamment un atome d'hydrogène ou un radical -Alkyle, -Aryle, -Aralkyle
 - 22. Dendrimères selon l'une quelconque des revendications 11 à 21 tels que J et K sont respectivement égaux à A, B.
 - 23. Dendrimères selon la revendication 21 tels que J représente un atome d'oxygène.
- 24. Dendrimères selon la revendication 21 ou 23 tels que K représente un noyau phényle, éventuellement substitué par un atome d'Halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle, -Alkyle, -Hal, -NO₂, -CN, -CF₃, -Aryle, -Aralkyle.
- 25. Dendrimères selon l'une quelconque des revendications 21, 23, 24 tels que K représente un noyau phényle non substitué.
 - 26. Dendrimères selon l'une quelconque des revendications 21, 23 à 25 tels que L représente un radical —Alkyle-, -Alkènyle- ou —Alkynyle-, chacun pouvant être éventuellement substitué par un ou plusieurs substituants choisis parmi —OH, -NRR', -OAlkyle.

- 27 Dendrimères selon l'une quelconque des revendications 21, 23 à 26 tels que L représente un radical –Alkènyle- ou un radical –Alkyle-, éventuellement substitué par un radical –OH.
- 28. Dendrimères selon l'une quelconque des revendications 21, 23 à 27 tels que L représente un radical –Alkyle- éventuellement substitué par un radical –OH.
 - 29. Dendrimères selon l'une quelconque des revendications 1 à 20, tels que les chaînes intermédiaires sont représentées par la formule (C2') :

10 -L"- (C2')

5

20

25

- où L" représente une chaîne –Alkyle-de 1 à 6 chaînons, éventuellement substituée par un ou plusieurs substituants choisis parmi –OH, -NRR', -OAlkyle.
- 30. Dendrimères selon l'une quelconque des revendications précédentes, tels qu'ils sont représentés par la formule (I) :

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^n-[J-K-L-PO_3X_2]_2}_m$$
 (I)

dans laquelle:

- §, A, B, C, D, E, G, N, P, J, K, L, X, m, n, < sont tels que définis selon les revendications précédentes.
- 31. Dendrimères selon l'une quelconque des revendications 1 à 29, tels qu'ils sont représentés par la formule (I-2) suivante :

$$-{A'-(C=O)-N(R)-B'-NH-}^n[L''-PO_3X_2]_m(I-2)$$

dans laquelle:

- §, A', B', C, N, P, X, L", m, n sont définis comme précédemment.
- 32. Dendrimères selon l'une quelconque des revendications 1 à 29, tels qu'ils sont représentés par la formule (I-3) suivante :

$$-{A''-NH-}^n[L''-PO_3X_2]_m$$
 (I-3)

30 dans laquelle:

§, A", N, P, X, L", m, n sont définis comme précédemment.

- 33. Procédé de préparation d'un dendrimère selon l'une quelconque des revendications précédentes comprenant :
- (i) la réaction du dendrimère correspondant présentant une fonction terminale –CHO, -CH=NR,ou (P(=S)Cl₂
- 5 avec

un composé de formule Z-PO₃Me₂, où Z représente respectivement :

- soit -H lorsque la fonction est -CHO ou -CH=NR,
- soit la chaîne intermédiaire précédemment définie lorsque ladite fonction représente -(P(=S)Cl₂;

10

25

- (ii) suivie éventuellement, lorsque X représente H ou M, de l'étape consistant à transformer le dendrimère obtenu en (i) présentant une terminaison -PO₃Me₂ en le dendrimère correspondant présentant une terminaison -PO₃H₂;
- 15 (iii) suivie éventuellement, lorsque X représente M, de l'étape consistant à transformer le dendrimère obtenu en (ii) présentant une terminaison -PO₃H₂ en le sel du dendrimère correspondant présentant une terminaison -PO₃M₂.
- 34. Procédé de préparation des dendrimères selon l'une quelconque des revendications 28 à 30 de formule (I)

$$\{A-B-C(D)=N-N(E)-(P(=G))<\}^n[J-K-L-PO_3X_2]_2\}_m$$
 (I)

dans laquelle:

- §, A, B, C, D, E, G, N, P, J, K, L, X, m, n, < sont définis comme dans l'une quelconque des revendications précédentes, caractérisé en ce que ledit procédé comprend :
 - (i) l'étape consistant à faire agir sur le dendrimère correspondant de formule $-\{A-B-C(D)=N-N(E)-(P(=G))<\}^nY_2\}_m$ (II-1)

où Y représente:

- soit -J-K-L', où L' représente un radical -CHO ou -CH=NR;
- 30 soit -Cl;

un composé de formule Z-PO₃Me₂, où Z représente respectivement :

- soit H- lorsque Y représente -J-K-L';
- soit H-J-K-L- lorsque Y représente CI;

pour obtenir le dendrimère de formule (III-1) :

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^{n}[J-K-L-PO_{3}Me_{2}]_{2}_{m}$$
 (III-1)

dans laquelle:

10

15

- §, A, B, C, D, E, G, N, P, J, K, L, R, m, n, < sont définis comme précédemment,
 - (ii) suivie éventuellement, lorsque X représente H ou M, de l'étape consistant à transformer le dendrimère de formule (III-1) obtenu en (i) en le dendrimère correspondant de formule (I) dans laquelle X représente un atome d'hydrogène, selon le schéma réactionnel suivant :

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^n[J-K-L-PO_3Me_2]_2}_m$$
 (III-1)

 \downarrow

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^{n}[J-K-L-PO_3H_2]_2}_{m}$$
 (IV)

dans laquelle §, A, B, C, D, E, G, N, P, J, K, L, n, m, < sont définis comme précédemment,

- 20 (iii) suivie éventuellement, lorsque X représente M, de l'étape consistant à transformer le dendrimère de formule (IV) obtenu en (ii) en le sel correspondant de formule (I) où M représente un atome de métal.
- 35. Procédé selon la revendication 34 selon lequel l'étape (i) comprend la réaction suivante :

$$-{A-B-C(D)=N-N(E)-(P(=G))<}^n-[J-K-L']_2}_m$$
 (V)

$$\downarrow$$
 + H-PO₃Me₂ (VI)

 $\S-\{\{A-B-C(D)=N-N(E)-(P(=G))<\}^n[J-K-L-PO_3Me_2]_2\}_m \qquad (III-1)$ où \S , A, B, C, D, E, G, N, P, J, K, L, L', m, n, < sont définis comme précédemment,

- où ladite réaction est effectuée en présence d'une base organique ou inorganique, à une température comprise entre -80°C et 100°C.
 - 36. Procédé selon la revendication 35 où la base est la triéthylamine.

37. Procédé selon la revendication 34, selon lequel l'étape (i) comprend la réaction suivante :

$$-\{A-B-C(D)=N-N(E)-(P(=G))<\}^n(Cl_2)\}_m$$
 (VII)

$$\downarrow$$
 + H-J-K-L-PO₃Me₂ (VIII)

10

15

30

$$-\{A-B-C(D)=N-N(E)-(P(=G))<\}^n[J-K-L-PO_3Me_2]_2\}_m$$
 (III-1)

οù

- §, A, B, C, D, E, G, N, P, J, K, L, m, n sont définis comme précédemment, où ladite réaction est effectuée en solution dans un solvant polaire, aprotique, en présence d'une base organique ou inorganique, à température comprise entre -80°C et 100°C.
- 38. Procédé selon la revendication 37 où la base est le carbonate de césium.
- 20 39. Procédé de préparation d'un dendrimère selon l'une quelconque des revendications 31 ou 32 de formule (I-2)

$$-{A'-(C=O)-N(R)-B'-NH-}^{n}[L''-PO_3X_2]_{m}(I-2)$$

Ou de formule (I-3) suivante :

$$-{A''-NH-}^n[L''-PO_3X_2]_2$$
_m (I-3)

25 dans laquelle §, A', B', C, A", N, P, X, L", m, n sont définis comme précédemment,

comprenant

l'étape (i) comprenant la réaction sur le dendrimère correspondant n de formule

$$-{A'-(C=O)-N(R)-B'-N=R}^n}_m$$
 (II-2)
ou $-{A''-N=R}^n}_m$ (I-3)

où R est un radical >Alkyle,

avec un composé de formule H-PO₃Me₂ (VI).

(ii) suivie éventuellement, lorsque X représente H ou M, de l'étape consistant à transformer le dendrimère de formule (III-2) ou (III-3) obtenu en (i) dans laquelle X représente un radical Méthyle en le dendrimère correspondant de formule (I-2) ou (I-3) dans laquelle X représente un atome d'hydrogène, selon le schéma réactionnel suivant :

$$-{A'-(C=O)-N(R)-B'-NH-}^n[L''-PO_3Me_2]_m$$
 (III-2)
ou $-{A''-NH-}^n[L''-PO_3Me_2]_m$ (IIII-3)

10

5

$$-{A'-(C=O)-N(R)-B'-NH-}^n[L''-PO_3H_2]_m(IV-2)$$

ou $-{A''-NH-}^n[L''-PO_3H_2]_m$ (IV-3)

- (iii) suivie éventuellement, lorsque X représente M, de l'étape consistant à 15 transformer le dendrimère de formule (IV-2) ou (IV-3) obtenu en (ii) en le sel correspondant.
 - 40. Procédé selon la revendication 39 tel que l'étape (i) est effectuée en présence d'une base organique ou inorganique, à une température comprise entre -80°c et 100°C.
 - 41. Procédé selon l'une quelconque des revendications 33 à 40 selon lequel la réaction (ii) est effectuée :
 - par action d'halogénure de triméthylsilane, dans un solvant organique aprotique, polaire,
 - suivie de l'action de MeOH anhydre, ajouté au mélange réactionnel.
 - 42. Procédé selon la revendication 41 pour lequel l'halogénure de triméthylsilane est Me₃SiBr.

20

- 43. Procédé selon l'une quelconque des revendications 33 à 42, dans lequel l'étape (iii) comprend la réaction consistant à faire agir les composés de formule (IV) en présence d'une base.
- 5 44. Procédé selon la revendication 43 selon lequel la base est choisie parmi l'hydroxyde de soude ou de potassium.
 - 45. Composés de formule (VIII) :

10 dans laquelle

15

20

25

Z représente H ou un groupe protecteur de la fonction –JH;

J représente un atome d'oxygène, soufre, ou un radical -NR-;

K représente un radical –Aryle-, -Hétéroaryle-, -Alkyle-, chacun pouvant être éventuellement substitué par un atome d'Halogène ou un radical –NO₂, -NRR', -CN, -CF₃, -OH, -Alkyle, -Aryle, -Aralkyle;

L représente une chaîne hydrocarbonée de 1 à 6 chaînons, linéaire ou ramifiée, chacun desdits chaînons pouvant éventuellement être choisis parmi un hétéroatome, et/ou contenant éventuellement une ou plusieurs double ou triple liaison, chacun desdits maillons pouvant éventuellement être substitué par un ou plusieurs substituants choisi parmi –OH, -NRR', -OAlkyle, -Alkyle, -Hal, -NO₂, -CN, -CF₃, -Aryle, -Aralkyle.

- 46. Composés selon la revendication 45, dans laquelle J représente un atome d'oxygène.
- 47. Composés selon la revendication 45 ou 46, dans laquelle K représente un noyau phényle, éventuellement substitué.
- 48. Composés selon l'une quelconque des revendications 45 à 47, dans laquelle K représente un noyau phényle non substitué.

- 49. Composés selon l'une quelconque des revendications 45 à 48, dans laquelle L représente un radical —Alkyle-, éventuellement substitué par un radical -OH, ou un radical -Alkényle-.
- 5 50. Composés selon l'une quelconque des revendications 45 à 49, dans laquelle L représente un radical –Alkyle-.
 - 51. Procédé de préparation des composés de formule (VIII) selon l'une quelconque des revendications 45 à 50, dans laquelle Z représente un atome d'hydrogène comprenant l'étape comprenant la réaction suivante :

$$Z-J-K-L-PO_3Me_2$$
 (VIII) $\rightarrow H-J-K-L-PO_3Me_2$ (VIII)

où J, K, L sont définis comme dans l'une quelconque des revendications précédemment et Z représente un groupe protecteur de la fonction –JH,

par déprotection du groupe protecteur Z.

15

10

- 52. Procédé selon la revendication 51, dans laquelle Hal représente le brome.
- 53. Procédé selon la revendication 51 ou 52, comprenant l'étape consistant 20 à faire agir du fluorure de tétrabutylammonium sur le composé de formule (X) correspondant, lorsque J représente un atome d'oxygène, Z représente le groupe TBDMS (radical tertio-butyl-diméthyl-silyle).
- 54. Procédé de préparation des composés de formule (VIII) selon l'une quelconque des revendications 51 à 53, dans laquelle le composé de formule (VIII) où Z représente le groupe protecteur de la fonction –JH, est obtenu par l'étape comprenant la réaction suivante :

$$Z$$
-J-K-L-Hal (IX) \rightarrow Z-J-K-L- PO₃Me₂ (VIII)

où J, K, L, Z sont définis comme dans l'une quelconque des revendications 30 51 à 53, où Hai représente un atome d'halogène,

par application ou adaptation de la réaction d'Arbuzow.

- 55. Procédé selon la revendication 54, dans laquelle le produit de formule (IX) est mis à réagir en présence de triméthylephosphite de formule P(OMe)₃ (X), à une température comprise entre -80°C et 150°C.
- 5 56. Utilisation des dendrimères selon l'une quelconque des revendications 1 à 32 pour traiter les surfaces ou être au contact de surfaces.
 - 57. Utilisation selon la revendication 56, pour laquelle lesdites surfaces sont métalliques ou à base de silicium, ou d'oxydes.

- 58. Utilisation selon la revendication 56 ou 57 pour laquelle lesdits dendrimères sont utilisés comme additif dans une composition destinée au contact ou au traitement de ladite surface.
- 15 59. Utilisation selon l'une quelconque des revendications 56 à 58 selon laquelle lesdits dendrimères sont utilisés comme agent anti-corrosion, agent de lubrification, agent anti-tartre ou agent retardateur de feu.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/FR2004/002989

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 CO8G83/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ CO8G$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	US 4 783 500 A (WEBSTER OWEN W) 8 November 1988 (1988-11-08) example 7A	1-44, 56-59
X	DD 144 264 A (INST PRZEMYSLU ORGANICZEGO) 8 October 1980 (1980-10-08) page 2, line 1 - line 3	44–55
X	PATENT ABSTRACTS OF JAPAN vol. 0175, no. 91 (C-1125), 28 October 1993 (1993-10-28) & JP 05 178710 A (KAIYO KAGAKU KK), 20 July 1993 (1993-07-20) abstract	44–55
X	KR 9 602 224 B (KOREA CHEMICALS CO LTD) 13 February 1996 (1996-02-13) abstract	44–55

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.			
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family			
Date of the actual completion of the international search	Date of mailing of the International search report			
7 April 2005	19/04/2005			
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Authorized officer			
Fax: (+31-70) 340-3016	Müller, M			

INTERNATIONAL SEARCH REPORT

International Application No PCT/FR2004/002989

	ENDING OF CONSIDERED TO BE RELEVANT	
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
\	US 4 871 779 A (KILLAT GEORGE R ET AL) 3 October 1989 (1989-10-03) column 7, line 17 - line 44	1-59
	WO 00/64975 A (BJOERNBERG HAAKAN; PERSTORP AB (SE); PETTERSSON BO (SE)) 2 November 2000 (2000-11-02) page 3, line 20 - line 24	1-59
	`	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No PCT/FR2004/002989

_	·		<u> </u>				<u> </u>
	itent document in search report		Publication date		Patent family member(s)		Publication date
US	4783500 -	A	08-11-1988	US		A	08-12-1987
				ΑT	62698	T	15-05-1991
				ΑU	587568	B2	24-08-1989
				ΑU		Α	16-05-1985
				CA		A1	16-02-1988
				DE		D1	23-05-1991
				DK	527884		08-05-1985
				EP		A1	19-06-1985
				ES	8607367		01-11-1986
				ES	8706330		01-09-1987
				ES	8706331		01-09-1987
				HK	46891		21-06-1991
				JP	2000606		05-01-1990
				JP		B2	13-11-1996
				KR		B1	12-06-1991
				KR	9108316		12-10-1991
				NO	844417		08-05-1985
				SG	46191	G	26-07-1991
				ZW 	17584 	—————	30-01-1985
DD	144264	Α	08-10-1980	PL	207639		14-01-1980
				BG	30328		15-05-1981
			•	CS	207796		31-08-1981
				DD	144264		08-10-1980
				HU	176401		28-02-1981
			·	SU	814280	A3	15-03-1981
JP	05178710	Α	20-07-1993	NONE			
KR	9602224	В	13-02-1996	KR	9602224	B1	13-02-1996
US	4871779	Α	03-10-1989	NONE			
WO	0064975		02-11-2000	SE	514075	C2	18-12-2000
		••		ĀŪ	4631800		10-11-2000
				WO		A1	02-11-2000
				SE	9901517	٨	28-10-2000

RAPPORT DE RECHERCHE INTERNATIONALE

Demande Internationale No
PCT/FR2004/002989

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C08G83/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 C086

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, PAJ, WPI Data

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
Χ .	US 4 783 500 A (WEBSTER OWEN W) 8 novembre 1988 (1988-11-08) exemple 7A	1-44, 56-59
X	DD 144 264 A (INST PRZEMYSLU ORGANICZEGO) 8 octobre 1980 (1980-10-08) page 2, ligne 1 - ligne 3	44-55
X	PATENT ABSTRACTS OF JAPAN vol. 0175, no. 91 (C-1125), 28 octobre 1993 (1993-10-28) & JP 05 178710 A (KAIYO KAGAKU KK), 20 juillet 1993 (1993-07-20) abrégé	44–55
X	KR 9 602 224 B (KOREA CHEMICALS CO LTD) 13 février 1996 (1996-02-13) abrégé	44–55

Υοίτ la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe				
 Catégories spéciales de documents cités: "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international ou après cette date "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée 	 "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention "X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métler "&" document qui fait partie de la même famille de brevets 				
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale				
7 avril 2005	19/04/2005				
Nom et adresse postale de l'administration chargée de la recherche internatio Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Müller, M				

RAPPORT DE RECHERCHE INTERNATIONALE

Demarke Internationale No PCT/FR2004/002989

atégorie °	OCUMENTS CONSIDERES COMME PERTINENTS	
ategorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
·	US 4 871 779 A (KILLAT GEORGE R ET AL) 3 octobre 1989 (1989-10-03) colonne 7, ligne 17 - ligne 44	1-59
	WO 00/64975 A (BJOERNBERG HAAKAN; PERSTORP AB (SE); PETTERSSON BO (SE)) 2 novembre 2000 (2000-11-02) page 3, ligne 20 - ligne 24	1-59
ŀ		
-		
	•	
}		

RAPPORT DE RECHERCHE INTERNATIONALE

Rensei gnements relatifs aux membres de familles de brevets

Demande Internationale No
PCT/FR2004/002989

	cument brevet cité apport de recherche		Date de publication	1	Membre(s) de la famille de brevet(s)	- ;; : ;	Date de publication
US	4783500	A	08-11-1988	US	4711942 A		- 08-12-1987
				ΑT	62698 T		15-05-1991
				ΑU	587568 B	2	24-08-1989
				AU .	. 3515284 A		16-05-1985
				CA	1232998 A		16-02-1988
			•	DE	3484460 D		23-05-1991
				DK	527884 A		08-05-1985
				ΕP	0145263 A		19-06-1985
				ES	8607367 A		01-11-1986
				ES	8706330 A		01-09-1987
				ES	8706331 A		01-09-1987
				HK	46891 A		21-06-1991
				JP	2000606 A		05-01-1990
				JP	2554369 B		13-11-1996
				KR	9103839 B		12-06-1991
				KR	9108316 B		12-10-1991
				NO		,В,	08-05-1985
				SG	46191 G		26-07-1991
				ZW 	17584 A	1 	30-01-1985
DD	144264	Α	08-10-1980	PL	207639 A		14-01-1980
				BG	30328 A		15-05-1981
	``			CS	207796 B		31-08-1981
				DD	144264 A		08-10-1980
				HU	176401 B		28-02-1981
				SU	814280 A	3 	15-03-1981
JP	05178710	Α	20-07-1993	AUCUN	ı		
KR	9602224	В	13-02-1996	KR	9602224 B	1	13-02-1996
US	4871779	Α	03-10-1989	AUCUN	1		
WO	0064975	Α	02-11-2000	SE	514075 C	2	18-12-2000
				AU	4631800 A		10-11-2000
				WO	0064975 A		02-11-2000
			,	SE	9901517 A		28-10-2000

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

•
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.