Lösung 7 (Zyklische Blockcodes)

a)
$$D^N - 1 = g(D) \cdot h(D)$$

$$\Rightarrow \qquad (D^N - 1) \bmod g(D) = 0$$

$$\Rightarrow \qquad D^N \bmod g(D) - 1 \bmod g(D) = 0$$

$$\Rightarrow \qquad D^N \bmod g(D) = 1, \ da \ grad\{g(D)\} \ge 1 \qquad (1)$$

Weiterhin ist p die kleinste positive Zahl für die gilt:

$$D^{p+i} \mod g(D) = D^i \mod g(D)$$

$$\Rightarrow \qquad D^p \mod g(D) = 1, \ f\ddot{u}r \ i = 0 \tag{2}$$

Formeln (1) und (2), zusammen mit der Bedingung, dass p die kleinste Zahl sein muss auf die Formel (2) zutrifft, ergeben schließlich:

$$N = p \cdot k$$
, $f \ddot{u} r \ k > 1$,

d.h. p ist ein Faktor von N.

b)

$$D^{12} - 1 = D^{12} + 1 = (D^3 + 1)^4 , da [f(D)]^{2^l}] = f(D^{2^l})$$
$$= (D+1)^4 (D^2 + D+1)^4 , da D^3 + 1 = (D+1)(D^2 + D+1)$$

Somit haben wir $D^N - 1$ in Faktoren irreduzibler Polynome zerlegt.

$$N - K = 12 - 7 = 5 \Rightarrow qrad\{q(D)\} = 5$$

Es gibt zwei mögliche Kombinationen aus Faktoren von \mathbb{D}^N-1 welche ein Polynom vom Grad 5 erzeugen:

$$g_1(D) = (D+1)(D^2+D+1)^2 = D^5+D^4+D^3+D^2+D+1$$

 $g_2(D) = (D+1)^3(D^2+D+1) = D^5+D^3+D^2+1$

c) Wir benötigen genausoviele unterscheidbare Syndrome wie Fehlermuster die wir korrigieren möchten. Für 1-Fehlermuster entspricht dies der Blockgröße, also N=12. Weiterhin haben diese Fehlermuster die Form $e_i(D)=D^i$, wobei i die Position des Fehlers ist. Daraus ergibt sich, dass die Periode von g(D) N sein muss, da ansonsten die Syndrome nicht eindeutig sind.

Beispiel: Angenommen die Periode von g(D) sei 6. Dann gilt:

$$S_1(D) = e_1(D) \mod g(D) = D^1 \mod g(D)$$

= $D^{1+6} \mod g(D) = e_7(D) \mod g(D) = S_7(D),$

jeweils zwei 1-Fehlermuster führen also zu dem gleichen Syndrom. Um die Periode der beiden Kandidaten zu bestimmen, wenden wir die Bedingung $D^p \mod g(D) = 1$ an. Aus a) wissen wir, dass die Periode $p \in \{1, 2, 3, 4, 6, 12\}$ gelten muss. Die Perioden 1, 2, 3 und 4 können ausgeschlossen werden, da dann die Bedingung $D^p \mod g(D) = 1$ nicht erfüllt werden kann. Überprüfen wir also, ob $g_1(D)$ oder $g_2(D)$ die Periode p = 6 haben könnten:

für $g_1(D)$:

$$\begin{array}{c} D^6 \\ D^6 + D^5 + D^4 + D^3 + D^2 + D \\ \hline D^5 + D^4 + D^3 + D^2 + D \\ D^5 + D^4 + D^3 + D^2 + D \\ \hline D^5 + D^4 + D^3 + D^2 + D + 1 \\ \hline \end{array}$$

für
$$g_2(D)$$
:
$$\frac{D^6}{D^6 + D^4 + D^3 + D} : D^5 + D^3 + D^2 + 1 = D$$
$$\frac{D^6}{D^4 + D^3 + D}$$

Das Generatorpolynom $g_1(D)$ hat also die Periode 6 und ist daher unzureichend. Durch Ausschluss der anderen möglichen Perioden muss $g_2(D)$ die Periode 12 besitzen.

d) Das Checkpolynom h(D) ergibt sich aus den Faktoren von $D^N - 1$, welche nicht für die Konstruktion von $g_2(D)$ verwendet wurden:

$$D^{12} - 1 = (D+1)^4 (D^2 + D + 1)^4$$

$$g_2(D) = (D+1)^3 (D^2 + D + 1)$$

$$\Rightarrow h(D) = (D+1)(D^2 + D + 1)^3 = D^7 + D^5 + D^4 + D^3 + D^2 + 1$$

e)

$$g'(D) = g_1(D) \cdot (D^2 + D + 1) = (D+1)(D^2 + D + 1)^3$$

= $D^7 + D^5 + D^4 + D^3 + D^2 + 1$

Es handelt sich bei g'(D) um eine gültige Erweiterung von $g_1(D)$. Das Generatorpolynom lässt sich aus Faktoren von $D^N - 1$ konstruieren, somit handelt es sich um einen gültigen zyklischen Code.

f)
$$S(D) = e(D) \mod g'(D)$$

e(D)	S(D)	e(D)	S(D)
1	1	D+1	D+1
D	D	$D^2 + D$	$D^2 + D$
D^2	D^2	$D^3 + D^2$	$D^3 + D^2$
D^3	D^3	$D^4 + D^3$	$D^4 + D^3$
D^4	D^4	$D^5 + D^4$	$D^5 + D^4$
D^5	D^5	$D^6 + D^5$	$D^6 + D^5$
D^6	D^6	$D^7 + D^6$	$D^6 + D^5 + D^4 + D^3 + D^2 + 1$
D^7	$D^5 + D^4 + D^3 + D^2 + 1$	$D^8 + D^7$	$D^6 + D^2 + D + 1$
D^8	$D^6 + D^5 + D^4 + D^3 + D$	$D^9 + D^8$	$D^5 + D^4 + D + 1$
D^9	$D^6 + D^3 + 1$	$D^{10} + D^9$	$D^6 + D^5 + D^2 + D$
D^{10}	$D^5 + D^3 + D^2 + D + 1$	$D^{11} + D^{10}$	$D^6 + D^5 + D^4 + 1$
D^{11}	$D^6 + D^4 + D^3 + D^2 + D$	$1 + D^{11}$	$D^6 + D^4 + D^3 + D^2 + D + 1$

Alle Syndrome in der Syndromtabelle sind unterschiedlich \Rightarrow die aufgeführten Fehlermuster können korrigiert werden

$$(D^9 + D^3) \mod g'(D) = D^6 + 1 = (D^6 + 1) \mod g'(D)$$

Die Fehlermuster D^9+D^3 und D^6+1 erzeugen dasselbe Syndrom, somit können sie nicht eindeutig korrigiert werden.