Analyse Mathématique - SEG - S1

Chapitre 1 : Fonctions d'une seule variable

Pr. Hamza El Mahjour

Faculté
Polydisciplinaire
Larache
Université Abdelmalek Essaâdi

Théorie des ensembles

Logique

Opérateurs
$$\longrightarrow$$
 \overline{et} , \overline{ou} , \neg , \Rightarrow , \Longleftrightarrow "

Quantificateurs
$$\longrightarrow$$
 \forall , \exists et \exists !

Négation de
$$\forall$$
 $\longrightarrow \longleftarrow$ \exists

Négation de
$$\overline{et}$$
 $\longrightarrow \longleftarrow$ \overline{ou}

Raisonnements

On utilise dans les preuves

- 1 Contraposée : $P \implies Q \iff \neg Q \implies \neg P$.
- 2 Absurde : $P(vraie) \implies Q(fausse)$ (contradiction)
- 3 Récurrence : P(0), P(1) vraies $\overline{et}P(n) \implies P(n+1)$.
- 4 Contre-exemple : $\exists x, P(x)$ (vraie) $\implies \forall x, \neg P(x)$ (fausse)

Ensemble → collection d'objets

$$\Lambda = \{a, b, c, \ldots, y, z\}.$$

Appartenance : $a \in \Lambda$

Sous-ensemble : $\{b, x, d\} \subset \Lambda$

Soit E et F sont des sous-ensembles de Λ

Intersection :
$$E \cap F = \{x \in E \ \overline{et} \ x \in F\}$$
.

Union :
$$E \bigcup F = \{x \in E \ \overline{ou} \ x \in F\}$$
.

Difference :
$$E \setminus F = \{x \in E, x \notin F\}$$
.

La droite réelle est composée d'intervalles :

$$[a,b], [a,+\infty[,]a,b] \ldots$$

ou bien d'unions de ces ensembles

$$I = [0,1] \bigcup [2,3]$$

Définition d'une fonction

Une fonction est une application d'une partie de \mathbb{R} vers \mathbb{R} . L'ensemble de départ de la fonction s'appelle **domaine de définition** (noté D_f).

On a le graphe d'une fonction qui est le produit cartésien

$$\{(x, f(x)); x \in D_f\}.$$

Domaine de définition

Le domaine de définition d'une fonction est soit imposé

$$f(x) = \begin{cases} x - 1 & \text{si } x \le 1, \\ \exp(x) & \text{si } 1 < x < 3. \end{cases}$$

Dans l'exemple précédent, RIEN n'empêche d'étendre f sur tout \mathbb{R} .

Que peut restreindre le domaine de définition d'une fonction à partir de son expression algébrique?

- 1 $f(x) =^n \sqrt{...x...}$ (racine *n*-ème)
- $f(x) = \frac{\dots}{\dots x \dots},$ (dénominateur)
- $f(x) = \log(...x...)$ (logarithme)

Limites

$$\forall \varepsilon>0, \exists \delta>0, \quad \mid x-x_0\mid <\delta \implies \mid f(x)-L\mid <\varepsilon.$$

On peut avoir des problèmes à gauche ou à droite!

Opérations sur les limites :

$$\lim_{x \to x_0} f(x) + g(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x),$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)},$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

$$\lim_{x \to x_0} f \circ g(x) = \lim_{x \to x_0} f\left(\lim_{x \to x_0} g(x)\right)$$

$$\lim_{x \to x_0} f(x)^{g(x)} = \lim_{x \to x_0} f(x)^{\lim_{x \to x_0} g(x)}$$

Formes indéterminées $\bar{\infty} - \bar{\infty}, \bar{\infty}^{\bar{0}}, \bar{0}^{\bar{0}}, \bar{\infty} \times \bar{0}, \frac{\bar{\infty}}{\bar{\infty}}, \frac{\bar{0}}{\bar{0}}$ et $\bar{1}^{\bar{\infty}}$.

Autres limites

 $\lim_{x\to x_0} f(x) = +\infty$ c'est à dire

$$\forall A > 0, \exists \eta, |x - x_0| < \alpha \implies f(x) > A$$

 $\lim_{x\to+\infty}f(x)=L$ c'est à dire

$$\forall \epsilon > 0, \exists B > 0, \quad x > B \implies |f(x) - f(x_0)| < \epsilon.$$

 $\lim_{x\to\infty} f(x) = +\infty$ c'est à dire

$$\forall A > 0, \exists B > 0, x > B \implies f(x) > A.$$

Continuité

On dit qu'une fonction est continue en x_0 ssi $\lim_{x\to x_0} f(x) = f(x_0)$.

En pratique, la continuité permet de remplacer par la valeur de $f(x_0)$ lors d'un calcul.

Les fonctions suivantes sont toutes continues sur leur domaines de définition

- Polynômes : $3x^4 + 5x^2 \dots$
- 2 Logarithme et exponentielle : e^x , log(x)
- \square Trigos: sin(x), cos(x), tan x, ...
- 4 Fractions : $\frac{1}{\text{polynome}}$

Dérivabilité et monotonie

La dérivée d'une fonction au point x_0 est la limite

$$L = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Si L existe et est finie alors f est dérivable en x_0 . On écrit $L = f'(x_0)$.

Proposition

Si f est dérivable en x_0 alors f est continue en x_0

Le contraire n'est pas juste!

Opérations usuelles sur les dérivées

- (f-g)'(x) = f'(x) g'(x),
- $(f \cdot g)' = f'g + fg'.$
- 5 $(f(x)^n)' = nf'(x)f(x)^{n-1}$,

Se référer au polycopié pour une liste exhaustive des dérivées de fonctions usuelles (chapitre 1, section).

Théorèmes importants

Théorème

Soit *f* une fonction dérivable sur un intervalle $I \subset \mathbb{R}$ alors *f* est continue.

Théorème (Rolle)

Si f est dérivable sur I = [a, b] et f(a) = f(b) alors il existe $c \in]a, b[$ tel que f'(c) = 0.

Théorèmes importants

Théorème (Accroissements finis)

Soit f une fonction dérivable sur I = [a, b] alors il existe $c \in]a, b[$ tel que

$$f(b)-f(a)=f'(c)(b-a)$$

Pentes et dérivées

21 octobre 2021