

Plano para esta aula

Introdução ao modelo de Grafo ou Rede

• Grafos: conceitos elementares

2022/2023

SCC Berestino

Grafos e Redes

5

The memoria

Breve Introdução – Grafos e Redes

Na sua forma mais simples grafos são representações de objetos que se relacionam entre si. Formalmente a teoria dos grafos é uma área da Matemática discreta, com uma terminologia precisa.

É fácil de ver que uma rede pode ser representada por um grafo: a rede de amigos, da família, das ligações na rede social, das chamadas telefónicas...

Cada um destes exemplos é um grafo, em que os nós e as ligações ganham atributos semânticos, representando objetos reais ou abstratos.

SCLE UNFESTIGNE

Qualquer que seja o sistema considerado, é possível encontrar uma rede (grafo) que define as interacções entre os seus componentes.

Source: Albert Báràbasi: Network Science: Introduction

- O modelo de Grafo, ou Rede, representa conhecimento sobre iconetividade e interligações num sistema.
- Por exemplo, a rede elétrica é modelada através de um modelo de grafo, que é necessário para entender, por exemplo, como a **estrutura da rede real** afeta a robustez do sistema.
- O uso de *ferramentas* que avaliem o nível de interacção entre estrutura (e os processos dinâmicos que nela ocorrem) e o impacto de um corte na rede é uma área crítica para avaliação da robustez e escalabilidade.
- As "falhas de transporte" em redes (de transportes, de comunicação, infraestruturas)
 seguem leis que podem ser quantificadas, e até previstas, usando a Teoria de Grafos.

9

SCLe unresente

O facto de modelar sistemas reais como grafos é extremamente útil. Muitas aplicações necessitam representar conjuntos de ligações/relações entre pares de objetos, de modo a responder a questões tais como:

- Existe um caminho para ir de A para B? E qual o "melhor" caminho?
- Qual a menor distância entre 2 objetos?
- Quantos servidores são alcançáveis a partir deste?
- Qual é a minha rede de amigos?

Com o tipo abstrato de dados **Grafo/Rede**, conseguimos modelar os conjuntos de ligações, de modo a responder a estas e muitas outras situações.

11

Grafos - Introdução

Conceitos elementares:

- Definição de grafo e tipos de grafos
- Algumas das principais propriedades dos grafos

SCLe menteur

Definição de Grafo

- Um grafo G = (V, E) é um par ordenado, onde:
 - V é o conjunto dos vértices (ou nós)
 - E é o conjunto das arestas (ou arcos)

- Os vértices representam os objetos ou entidades que podem estar em ligação.
- As arestas representam a ligação entre os vértices.
- Uma aresta pode ter uma direção, indicando que a ligação se estabelece do nó origem para o nó destino.

2022/2023

14

Exemplos de grafos ou redes reais

graph	node	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	street intersection, airport	highway, airway route
internet	class C network	connection
game	board position	legal move
social relationship	person, actor	friendship, movie cast
neural network	neuron	synapse
protein network	protein	protein-protein interaction
molecule	atom	bond

17

Definições básicas

• Grafo não pesado (non-weighted)

 Neste caso, as arestas (ou arcos) podem ser representadas por uma variável lógica (se não forem permitidas arestas paralelas) Grafo pesado (weighted)

Já neste caso, as arestas/arcos (ou os vértices/nós) podem possuir informação associada, representando um "peso" da ligação (ou do nó).

Definições Básicas

 Grau de um vértice: número de arestas incidentes no vértice

- Adjacência: o nó a diz-de adjacente ao nó b sse existe uma aresta (a,b)
- Denomina-se de laço ou lacete (tadpole ou selfloop) uma aresta com os seus extremos a iniciar e terminar no mesmo nó.
- Multiarestas: arestas paralelas que ligam os mesmos vértices (no mesmo sentido, no caso de um grafo dirigido).
- Um grafo que contém arestas paralelas chama-se um multigrafo.

Num grafo orientado, podemos definir **grau de entrada** e **grau de saída**

19

INSTITUTO UNIVERSITATION

Conceitos Básicos

• Grafo **completo**: cada vértice está ligado **a todos** os outros

 O número máximo de arestas num grafo não orientado, sem laços nem arestas paralelas, é n(n-1)/2.

 O número máximo de arcos num grafo orientado, sem laços nem arcos paralelos, é n(n - 1).

 K_5

SCLe service

Definições básicas

- Em grafos <u>não dirigidos</u>, sem lacetes nem arestas paralelas, a **densidade** é a razão entre o **número real de arestas** e o **número máximo possível de arestas** dado o número de vértices, logo, um valor em [0, 1].
- Se n for o número de vértices e m for o número de arestas, a densidade de um grafo não orientado é dada por:

 $d = \frac{m}{\frac{n(n-1)}{2}}$ quantidade de arestas real

possívell

Exemplo:

23

Conceitos importantes

Conetividade, caminhos, ciclos e travessias Representações matemáticas

SCLe service

Conceitos importantes: caminho

• Caminho: sequência de vértices

caminho descrito pelas suas arestas

caminho descrito pelos seus vértices

• P₂ = {u, w, x, y, w, v}

Note que:

• $P_2 = \{u, w, x, y, w, v\} \equiv \{(u,w), (w,x), (x,y), (y,w), (w,v)\}$ $\equiv \{c, e, g, f, d\}$

 Caminho simples: caminho onde todos os vértices são distintos

• $P_1 = \{v, x, z\}$ é um caminho simples

Grafo G=(V, E) com: $V=\{U, V, X, Y, W, Z\}$ e $E=\{a, b, c, d, e, f, g, h, i, j\}$

27

27

Conceitos importantes: ciclo

- Ciclo: caminho fechado (começa e termina no mesmo vértice)
 - C₂ = {u, w, x, y, w, u}
- Ciclo simples: ciclo cujos vértices são todos diferentes (à excepção do inicial, que é também o final)
 - C₁ = {v, x, y, w, u, v}

28

Conceitos Básicos: conetividade e árvore

• Grafo conexo: grafo não orientado onde qualquer vértice é atingível a partir de outro outro (existe caminho entre qualquer par de nós no grafo)

- Árvore: grafo conexo e acíclico
- Subgrafo de G: Qualquer grafo H = (V', E') tal que,

30

Conceitos importantes: árvore de cobertura

 $T_1 = (V, E_1) \operatorname{com} E_1 \subseteq E$

• Árvore de cobertura do grafo G: subgrafo conexo e acíclico, cujo conjunto de vértices contém (cobre) todos os vértices do grafo original G

