High-dimensional logistic regression with random effects
Proximal gradient algorithm
Perturbed proximal gradient
Monte Carlo proximal gradient
Logistic regression with random effect
Conclusion

Stochastic Proximal Gradient Algorithm

Eric Moulines

Institut Mines-Télécom / Telecom ParisTech / Laboratoire Traitement et Communication de l'Information

Joint work with: Y. Atchadé, G. Fort

- 1 High-dimensional logistic regression with random effects
- 2 Proximal gradient algorithm
- 3 Perturbed proximal gradient
- 4 Monte Carlo proximal gradient
- 5 Logistic regression with random effect
- 6 Conclusion

High-dimensional logistic regression with random effects

- lacksquare Observations : N observations $\mathbf{Y} \in \{0,1\}^N$
- lacksquare Random effect : Conditionally to ${f U}$, for all $i=1,\cdots,N$,

Conclusion

$$Y_i \stackrel{\text{ind.}}{\sim} \mathcal{B}\left(\frac{\exp(\eta_i)}{1 + \exp(\eta_i)}\right)$$

where

$$egin{bmatrix} \eta_1 \ \cdots \ \eta_N \end{bmatrix} = \mathbf{X} eta_{\mathsf{true}} + \sigma_{\mathsf{true}} \mathbf{Z} \mathbf{U}$$

- lacktriangle The regressors $\mathbf{X} \in \mathbb{R}^{N imes p}$ and the factor loadings $\mathbf{Z} \in \mathbb{R}^{N imes q}$, known.
- Objective: estimate $\beta_{\text{true}} \in \mathbb{R}^p$, $\sigma_{\text{true}} > 0$.

Penalized likelihood

lacksquare log-likelihood : Taking $\mathbf{U} \sim \mathcal{N}_q(0,I)$, setting

$$\theta = (\beta, \sigma)$$

$$F(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)}$$

the log-likelihood of the observations Y (with respect to θ) is

Conclusion

$$\ell(\theta) = \log \int \prod_{i=1}^{N} \left\{ F\left(\mathbf{X}_{i} \cdot \beta + \sigma(\mathbf{Z}\mathbf{U})_{i}\right) \right\}^{Y_{i}} \left\{ 1 - F\left(\mathbf{X}_{i} \cdot \beta + \sigma(\mathbf{Z}\mathbf{U})_{i}\right) \right\}^{1 - Y_{i}} \phi(\mathbf{u}) d\mathbf{u}$$

Elastic net penalty

$$\begin{split} g_{\lambda,\theta}(\theta) &= \lambda \left(\frac{1-\alpha}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right) \\ \tilde{g}_{\mathcal{C}}(\theta) &= \left\{ \begin{array}{ll} 0 & \text{si } \theta \in \mathcal{C} \\ +\infty & \text{otherwise} \end{array} \right. \end{split}$$

Penalized likelihood

$$\min_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right) , \quad f(\theta) = -\ell(\theta) ,$$

Conclusion

with

$$\ell(\theta) = \log \int \exp\left(\ell_c(\theta|\mathbf{u})\right) \ \phi(\mathbf{u}) d\mathbf{u}$$

$$\ell_c(\theta|\mathbf{u}) = \sum_{i=1}^N \left\{ Y_i \left(\mathbf{X}_{i \cdot \beta} + \sigma(\mathbf{Z}\mathbf{U})_i \right) - \ln\left(1 + \exp\left(\mathbf{X}_{i \cdot \beta} + \sigma(\mathbf{Z}\mathbf{U})_i \right) \right) \right\}$$

Gradient:

$$\nabla \ell(\theta) = \int \nabla \ell_c(\theta|\mathbf{u}) \pi_{\theta}(\mathbf{u}) d\mathbf{u}$$

where $\pi_{\theta}(\mathbf{u})$ is the posterior distribution of the random effect given the observations

$$\pi_{\theta}(\mathbf{u}) = \exp\left(\ell_c(\theta|\mathbf{u}) - \ell(\theta)\right) \phi(\mathbf{u})$$

Penalized likelihood

$$\min_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right) , \quad f(\theta) = -\ell(\theta)$$

Conclusion

where

$$\begin{split} g_{\lambda,\theta}(\theta) &= \lambda \left(\frac{1-\alpha}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right) + \mathbb{I}_{\mathcal{C}}(\theta) \\ \mathbb{I}_{\mathcal{C}}(\theta) &= \begin{cases} 0 & \text{if } \theta \in \mathcal{C} \\ +\infty & \text{otherwise} \end{cases} \quad \mathcal{C} \text{ compact convex set} \end{split}$$

 \hookrightarrow proper convex,

lower-semi continuous, not differentiable.

Wrap-up

Solve

$$\operatorname{argmin}_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right)$$

where

• $f(\theta) = -\ell(\theta)$ not necessarily convex, gradient Lipschitz

$$\|\nabla f(\theta) - \nabla f(\theta')\| \le L\|\theta - \theta'\|$$

- $f, \nabla f$ are intractable (but ∇f is the conditional expectation of the complete data likelihood).
- q is closed convex but non-smooth.

- 1 High-dimensional logistic regression with random effects
- 2 Proximal gradient algorithm
 - Proximal operator
 - Convergence result
- 3 Perturbed proximal gradient
- 4 Monte Carlo proximal gradient
- 5 Logistic regression with random effect
- 6 Conclusion

Definition

■ Definition: Proximal mapping associated with closed convex function g and stepsize γ

Conclusion

$$\operatorname{prox}_{\gamma}(\theta) = \operatorname{Argmin}_{\vartheta \in \Theta} \left(g(\vartheta) + (2\gamma)^{-1} \|\vartheta - \theta\|_2^2 \right)$$

- The uniqueness of the minimizer stems from the strong convexity of the function $\vartheta \mapsto g(\vartheta) + 1/(2\gamma) \|\vartheta \theta\|_2^2$
- \blacksquare If $g=\mathbb{I}_{\mathcal{K}},$ where \mathcal{K} is a closed convex set, then prox_{γ} is the Euclidean projection on \mathcal{K}

$$\operatorname{prox}_{\gamma}(\theta) = \operatorname{Argmin}_{\vartheta \in \mathcal{K}} \|\vartheta - \theta\|_{2}^{2} = P_{\mathcal{K}}(\theta)$$

The proximal operator may be seen as a generalisation of the projection on closed convex sets.

Proximal operator

Lemma

If
$$\theta=(\theta_1,\theta_2,\ldots,\theta_p)$$
 and $g(\theta)=\sum_{i=1}^pg_i(\theta_i)$, then
$$prox_{\gamma g}(\theta)=(prox_{\gamma g_1}(\theta_1),prox_{\gamma g_2}(\theta_2),\ldots,prox_{\gamma g_p}(\theta_p))$$

Proximal operator

Lemma

If
$$\theta = (\theta_1, \theta_2, \dots, \theta_p)$$
 and $g(\theta) = \sum_{i=1}^p g_i(\theta_i)$, then
$$prox_{\gamma g}(\theta) = (\textit{prox}_{\gamma g_1}(\theta_1), \textit{prox}_{\gamma g_2}(\theta_2), \dots, \textit{prox}_{\gamma g_p}(\theta_p))$$

$$\begin{aligned} \operatorname{Argmin}_{(\vartheta_1, \dots, \theta_p)} \sum_{i=1}^p g_i(\vartheta_i) + 2\gamma^{-1} \sum_{i=1}^p \|\vartheta_i - \theta_i\|^2 \\ &= \sum_{i=1}^p \operatorname{Argmin}_{\vartheta_i} g_i(\vartheta_i) + (2\gamma)^{-1} \|\vartheta_i - \theta_i\|^2 \end{aligned}$$

A characterization of the proximal operator

Theorem

Let g be a convex function on Θ , $(\theta, p) \in \Theta^2$,

$$p = \operatorname{prox}_{\gamma g}(\theta) \Longleftrightarrow \operatorname{for \ all} \ \vartheta \in \Theta, \quad g(p) + \gamma^{-1} \left< \vartheta - p, \theta - p \right> \leq g(\vartheta)$$

i.e. p is the unique element of Θ satisfying $\gamma^{-1}(\theta - p) \in \partial g(p)$.

A characterization of the proximal operator

Theorem

Let g be a convex function on Θ , $(\theta, p) \in \Theta^2$,

$$p = \operatorname{prox}_{\gamma g}(\theta) \Longleftrightarrow \text{ for all } \vartheta \in \Theta, \quad g(p) + \gamma^{-1} \left< \vartheta - p, \theta - p \right> \leq g(\vartheta)$$

i.e. p is the unique element of Θ satisfying $\gamma^{-1}(\theta - p) \in \partial g(p)$.

Conclusion

For all $\alpha \in [0,1)$

$$g(p) \le \alpha g(\vartheta) + (1 - \alpha)g(p) + (2\gamma)^{-1} \|\alpha \vartheta + (1 - \alpha)p - \theta\|^2 - (2\gamma)^{-1} \|p - \theta\|^2$$

Conclude by letting $\alpha \to 0$. Follows also from the characterization of the subdifferential, $0 \in \partial g(p) + \gamma^{-1}(p-\theta)$.

Conclusion

Examples

• If $g(\theta) = (1/2)\theta' A\theta + b'\theta + c$ then

$$\mathrm{prox}_{\gamma g}(\theta) = (A + (2\gamma)^{-1}I)^{-1}(\theta - (2\gamma)^{-1}b)$$

 $\blacksquare \text{ If } g(\theta) = \|\theta\| \text{, then }$

$$\operatorname{prox}_{\gamma g}(\theta) = \begin{cases} (1 - (2\gamma)^{-1}/\|\theta\|)\theta & \|\theta\| \ge 2\gamma \\ 0 & \text{otherwise} \end{cases}$$

Proximal operator: LASSO and Elastic net

 \blacksquare If $g(\theta) = \sum_{i=1}^p \lambda_i |\theta_i|$ then prox_g is shrinkage (soft threshold) operation

Conclusion

$$[S_{\lambda,\gamma}(\theta)]_i = \begin{cases} \theta_i - \gamma \lambda_i & \theta_i \ge \gamma \lambda_i \\ 0 & |\theta_i| \le \gamma \lambda_i \\ \theta_i + \gamma \lambda_i & \theta_i \le -\gamma \lambda_i \end{cases}$$

• If $g(\theta) = \lambda ((1 - \alpha)/2 \|\theta\|_2^2 + \alpha \|\theta\|_1)$

$$\left(\operatorname{Prox}_{\gamma}(\tau)\right)_{i} = \frac{1}{1 + \gamma\lambda(1 - \alpha)} \begin{cases} \tau_{i} - \gamma\lambda\alpha & \text{if } \tau_{i} \geq \gamma\lambda\alpha \\ \tau_{i} + \gamma\lambda\alpha & \text{if } \tau_{i} \leq -\gamma\lambda\alpha \\ 0 & \text{otherwise} \end{cases}$$

Fixed points of the proximal operator

Theorem

Let g be a proper convex function on Θ . The fixed points $\{\theta \in \Theta, \operatorname{Prox}_{\gamma g}(\theta) = \theta\}$ coincide with the minimum of g

Fixed points of the proximal operator

Theorem

Let g be a proper convex function on Θ . The fixed points $\{\theta \in \Theta, \operatorname{Prox}_{\gamma g}(\theta) = \theta\}$ coincide with the minimum of g

If
$$p=\operatorname{prox}_{\gamma g}(\theta)$$
, then $\gamma^{-1}(\theta-p)\in\partial g(p)$ which implies that $g(p)+\gamma^{-1}\left\langle \theta-p,\vartheta-p\right\rangle \leq g(\vartheta).$ Then,
$$p=\operatorname{prox}_{\gamma g}(p)$$

$$\iff \text{for all } \vartheta \in \Theta, \gamma^{-1} \left\langle \vartheta - p, p - p \right\rangle + g(p) \leq g(\vartheta)$$

$$\iff \text{for all } \vartheta \in \Theta, g(p) \leq g(\vartheta) \ .$$

Firm non-expansiveness

Theorem

If g is a proper convex function, then $\operatorname{prox}_{\gamma g}$ and $(I - \operatorname{prox}_{\gamma g})$ are firmly non-expansive (or co-coercive with constant 1), i.e. for all $\theta, \vartheta \in \Theta$,

Conclusion

$$||p - q||^2 + ||(\theta - p) - (\vartheta - q)||^2 \le ||\theta - \vartheta||^2,$$

$$\iff \langle p - q, \theta - \vartheta \rangle \ge ||p - q||^2.$$

where $p = \operatorname{prox}_{\gamma q}(\theta)$ and $q = \operatorname{prox}_{\gamma q}(\vartheta)$.

Firm non-expansiveness

Theorem

If g is a proper convex function, then $\operatorname{prox}_{\gamma g}$ and $(I - \operatorname{prox}_{\gamma g})$ are firmly non-expansive (or co-coercive with constant 1), i.e. for all $\theta, \vartheta \in \Theta$,

Conclusion

$$||p - q||^2 + ||(\theta - p) - (\vartheta - q)||^2 \le ||\theta - \vartheta||^2,$$

$$\iff \langle p - q, \theta - \vartheta \rangle \ge ||p - q||^2.$$

where $p = \operatorname{prox}_{\gamma g}(\theta)$ and $q = \operatorname{prox}_{\gamma g}(\vartheta)$.

$$\gamma^{-1} \langle q - p, \theta - p \rangle + g(p) \le g(q) \quad \gamma^{-1} \langle p - q, \vartheta - q \rangle + g(q) \le g(p)$$

Adding these two equations yield

$$\langle p - q, (\theta - p) - (\vartheta - q) \rangle \ge 0$$
.

Conclude by writing
$$\|\theta - \vartheta\|^2 = \|p - q + (\theta - p) - (\vartheta - q)\|^2$$
.

Conclusion

Proximal gradient algorithm

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

where

$$\operatorname{Prox}_{\gamma g}(\tau) = \min_{\theta \in \Theta} \left(g(\theta) + \frac{1}{2\gamma} \|\theta - \tau\|^2 \right)$$

Majorization-Minimization interpretation

 \blacksquare Since f is gradient Lipshitz, for all $\gamma \in (0,1/L]$

Conclusion

$$F(\vartheta) = f(\vartheta) + g(\vartheta) \le f(\theta) + \langle \nabla f(\theta), \vartheta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \vartheta\|^2 + g(\vartheta)$$

Consider the following surrogate function

$$Q_{\gamma}(\vartheta|\theta) = f(\theta) + \langle \nabla f(\theta), \vartheta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \vartheta\|^2 + g(\vartheta)$$

■ For all $\theta \in \Theta$, $\vartheta \mapsto Q_\gamma(\vartheta|\theta)$ is strongly convex and has a unique minimum and

$$F(\vartheta) \le Q_{\gamma}(\vartheta|\theta)$$
 $F(\theta) = Q_{\gamma}(\theta|\theta)$

$$F(\vartheta) \le Q_{\gamma}(\vartheta|\theta_n)$$
 $F(\theta_n) = Q_{\gamma}(\theta_n|\theta_n)$

Majorization-Minimization interpretation

The proximal gradient algorithm is a special instance of the Majorization-Minimization framework!

$$Q_{\gamma}(\vartheta|\theta) \stackrel{\text{def}}{=} f(\theta) + \langle \nabla f(\theta), \vartheta - \theta \rangle + \frac{1}{2\gamma} \|\vartheta - \theta\|^2 + g(\vartheta)$$
$$= f(\theta) + \frac{1}{2\gamma} \|\vartheta - (\theta - \gamma \nabla f(\theta))\|^2 - \frac{\gamma}{2} \|\nabla f(\theta)\|^2 + g(\vartheta) ,$$

The iterates of the proximal gradient algorithms may be rewritten as $\theta_{n+1}=T_{\gamma_{n+1}}(\theta_n)$ with the point-to-point map T_γ defined by

$$T_{\gamma}(\theta) \stackrel{\text{def}}{=} \operatorname{Prox}_{\gamma} (\theta - \gamma \nabla f(\theta))$$
$$= \operatorname{argmin}_{\vartheta \in \operatorname{Dom}(g)} Q_{\gamma}(\vartheta | \theta) .$$

Proximal gradient

lacktriangledown If g(heta)=0, \hookrightarrow gradient proximal = classical stochastic gradient

$$\theta_{n+1} = \theta_n - \gamma_{n+1} \nabla f(\theta_n)$$

Proximal gradient

■ If $g(\theta) = 0$, \hookrightarrow gradient proximal = classical stochastic gradient

Conclusion

$$\theta_{n+1} = \theta_n - \gamma_{n+1} \nabla f(\theta_n)$$

• If $g(\theta)=0$ if $\theta\in\mathcal{C}$ and $g(\theta)=+\infty$ otherwise where \mathcal{C} is a closed convex set,

$$\operatorname{Prox}_{\gamma}(\tau) = \min_{\theta \in \mathcal{C}} \|\tau - \theta\|^{2}$$

 \hookrightarrow gradient proximal = projected gradient

$$\theta_{n+1} = \Pi_{\mathcal{C}} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

Conclusion

Proximal gradient for the elastic net penalty

If
$$g(\theta) = \lambda \left(\frac{1-\alpha}{2} \|\theta\|_2^2 + \alpha \|\theta\|_1 \right)$$

$$\left(\operatorname{Prox}_{\gamma}(\tau)\right)_{i} = \frac{1}{1 + \gamma\lambda(1 - \alpha)} \begin{cases} \tau_{i} - \gamma\lambda\alpha & \text{if } \tau_{i} \geq \gamma\lambda\alpha \\ \tau_{i} + \gamma\lambda\alpha & \text{if } \tau_{i} \leq -\gamma\lambda\alpha \\ 0 & \text{otherwise} \end{cases}$$

→ Proximal gradient = soft-thresholded gradient

$$\theta_{n+1} = S_{\alpha,\lambda,\gamma_{n+1}} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

Assumptions

(P)
$$\min_{\theta \in \Theta} F(\theta)$$
 $F(\theta) = f(\theta) + g(\theta)$,

Conclusion

Assumptions

(A0) Θ finite dimensional euclidean space

(A1) $g: \Theta \to (-\infty, +\infty]$ closed convex

 $f:\Theta\to\mathbb{R}$ is continuously differentiable and ∇f is gradient Lipshitz: for all $\theta,\theta'\in\Theta$.

$$\|\nabla f(\theta) - \nabla f(\theta')\| \le L\|\theta - \theta'\|,$$

Stationary points of the proximal gradient

$$\theta_{n+1} = \operatorname{Prox}_{\gamma g} (\theta_n - \gamma \nabla f(\theta_n)) = T_{\gamma}(\theta_n) ,$$

Conclusion

where T_{γ} is the proximal map,

$$T_{\gamma}(\theta) \stackrel{\text{def}}{=} \operatorname{Prox}_{\gamma} (\theta - \gamma \nabla f(\theta)) = \operatorname{argmin}_{\vartheta \in \operatorname{Dom}(g)} Q_{\gamma}(\vartheta | \theta) .$$

Theorem

Under A0 and A1:

$$\mathcal{L} = \{\theta : \theta = \operatorname{Prox}_{\gamma g}(\theta - \gamma \nabla f(\theta))\} = \{\theta \in \operatorname{Dom}(g) : 0 \in \nabla f(\theta) + \partial g(\theta)\}.$$

If in addition f is convex then \mathcal{L} is the set of the global minimizers of F.

Fixed points of the proximal map

Denote
$$F(\theta) = f(\theta) + g(\theta)$$
. Then
$$0 \in \partial F(\theta) \iff 0 \in \partial \gamma F(\theta) \\ \iff 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta) \\ \iff \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta))$$

Fixed points of the proximal map

Denote
$$F(\theta) = f(\theta) + g(\theta)$$
. Then
$$0 \in \partial F(\theta) \iff 0 \in \partial \gamma F(\theta) \\ \iff 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta) \\ \iff \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta))$$

Conclusion

Recall that, for any ϑ

$$p = \operatorname{prox}_{\gamma g}(\vartheta) \Longleftrightarrow (\vartheta - p) \in \gamma \partial g(p) \Longleftrightarrow \vartheta \in p + \gamma \partial g(p).$$

Fixed points of the proximal map

Denote
$$F(\theta) = f(\theta) + g(\theta)$$
. Then
$$0 \in \partial F(\theta) \iff 0 \in \partial \gamma F(\theta) \\ \iff 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta) \\ \iff \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta))$$

Conclusion

Recall that, for any $\boldsymbol{\vartheta}$

$$p = \operatorname{prox}_{\gamma g}(\vartheta) \Longleftrightarrow (\vartheta - p) \in \gamma \partial g(p) \Longleftrightarrow \vartheta \in p + \gamma \partial g(p).$$

Hence, taking
$$p \leftarrow \theta$$
 and $\vartheta \leftarrow \theta - \gamma \nabla f(\theta)$

$$0 \in \partial F(\theta) \Longleftrightarrow \theta = T_{\gamma}(\theta)$$

Lyapunov function

$$Q_{\gamma}(\vartheta|\theta) = f(\theta) + \left\langle \nabla f(\theta), \vartheta - \theta \right\rangle + \frac{1}{2\gamma} \|\theta - \vartheta\|^2 + g(\vartheta)$$

Conclusion

■ For all $\theta \in \Theta$, $F \circ T_{\gamma}(\theta) \leq F(\theta)$:

$$F \circ T_{\gamma}(\theta) \le Q_{\gamma}(T_{\gamma}(\theta)|\theta) \le Q_{\gamma}(\theta|\theta) = F(\theta)$$

- The function $\vartheta \mapsto Q_{\gamma}(\vartheta|\theta)$ is strictly convex (even if f is not convex !). If $F \circ T_{\gamma}(\theta) = F(\theta) = Q_{\gamma}(\theta|\theta)$, the unique minimum is $\theta = T_{\gamma}(\theta)$.
- \blacksquare Since the proximal operator is non-expansive and ∇f is Lipshitz, there exists $C<\infty$ such that

$$||T_{\gamma}(\theta) - T_{\gamma}(\theta')|| \le C||\theta - \theta'||$$

■ F is a Lyapunov function for the proximal mapping.

Lyapunov function (convex case)

Global convergence result

Theorem $(\cdots; AFM,14)$

Assume A0-A1, and set $\gamma \in (0, 1/L]$. If $\{\theta_n, n \in \mathbb{N}\} \subset \mathcal{K}$ where \mathcal{K} is compact then:

(i) $\mathcal{L} \neq \emptyset$, the limiting points of $\{\theta_n, n \in \mathbb{N}\}$ belong to $\mathcal{L} \cap \mathcal{K}$.

- (ii) there exists $\theta_{\star} \in \mathcal{L} \cap \mathcal{K}$ such that $\lim_{n} F(\theta_{n}) = F(\theta_{\star})$.
- (iii) $\|\theta_{n+1} \theta_n\| \to 0$.
 - Can always enforce that $\{\theta_n, n \in \mathbb{N}\} \subset \mathcal{K}$ (project)
 - If the level set $\mathcal{K} = \{F \leq \theta_0\}$ is compact, then $\{\theta_n, n \in \mathbb{N}\}_i n \mathcal{K}$.
 - Using (iii): either $\{\theta_n, n \in \mathbb{N}\}$ converges or \mathcal{L} is a continuum.
 - Using (ii,iii): $\{\theta_n, n \in \mathbb{N}\}$ converges as soon as $\{\theta \in \mathcal{L} : F(\theta) = f_{\star}\}$ is finite.

The convex case

Theorem (···; AFM,14)

Assume A0-A1 and f convex; set $\gamma \in (0, 1/L]$. Assume that

Conclusion

- (i) $\{\theta_n, n \in \mathbb{N}\} \subset \mathcal{K}$
- (ii) \mathcal{L} is non-empty

Then, there exists $\theta_{\star} \in \mathcal{L}$ such that $\lim_{n} \theta_{n} = \theta_{\star}$. In addition, $F(\theta_{k}) - F(\theta_{\star})$ decreases to zero as 1/k.

Wrap up

(P)
$$(\arg)\min_{\theta\in\Theta}\left\{f(\theta)+g(\theta)\right\}$$
,

• the objective function always converge $\{F(\theta_n), n \geq 0\}$

- f is convex: then $\{\theta_n, n \in \mathbb{N}\}$ converges to θ_{\star} , where θ_{\star} is a minimizer of F.
- $F(\theta_n) F(\theta_*) = O(1/n).$

- 1 High-dimensional logistic regression with random effects
- 2 Proximal gradient algorithm
- 3 Perturbed proximal gradient
- 4 Monte Carlo proximal gradient
- 5 Logistic regression with random effect
- 6 Conclusion

Perturbed proximal gradient

Exact algorithm :

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

■ Pertubed algorithm :

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}} \left(\theta_n - \gamma_{n+1} \frac{H_{n+1}}{H_{n+1}} \right)$$

where H_{n+1} is a proxy for $\nabla f(\theta_n)$.

■ Problem find sufficient conditions on the perturbation $H_{n+1} - \nabla f(\theta_n)$ to preserve convergence.

Convergence (1/2)

■ The Lyapunov condition is no longer satisfied:

$$\begin{split} F(\theta_{n+1}) - F(\theta_n) \\ &= F(\operatorname{Prox}_{\gamma_{n+1}}(\theta_n + \gamma_{n+1}H_{n+1})) - F(\operatorname{Prox}_{\gamma_{n+1}}(\theta_n + \gamma_{n+1}\nabla f(\theta_n))) \\ &+ F(\operatorname{Prox}_{\gamma_{n+1}}(\theta_n - \gamma_{n+1}\nabla f(\theta_n))) - F(\theta_n) \end{split}$$

■ Under A0-A1, for any compact set K

$$\lim_{n \to \infty} \left| F(\theta_{n+1}) - F(\operatorname{Prox}_{\gamma_{n+1}}(\theta_n - \gamma \nabla f(\theta_n))) \right| \mathbb{1}_{\theta_n \in \mathcal{K}} = 0$$

as soon as $\lim_n \{H_{n+1} - \nabla f(\theta_n)\} \mathbb{1}_{\theta_n \in \mathcal{K}} = 0.$

Convergence (2/2)

Résultat de convergence, cas général

Theorem (AFM,14)

Assume A0-A1, and set $\gamma \in (0,1/L]$. If $\mathcal{L} \neq \emptyset$, $\limsup_n \|\theta_n\| < \infty$ et $\lim_n \{H_{n+1} - \nabla f(\theta_n)\} = 0$, then $\{F(\theta_n), n \geq 0\}$ converge to a connected component of $F(\mathcal{L})$. If the interior of $F(\mathcal{L}) = \emptyset$, then there exists $\theta_\star \in \mathcal{L}$ such that

- (a) $\lim_n F(\theta_n) = F(\theta_{\star}),$
- (b) the sequence $\{\theta_n, n \geq 0\}$ converges to $\mathcal{L} \cap \{\theta : F(\theta) = F(\theta_*)\}$.

A basic inequality

Lemma

Assume A0 and A1 and let $\gamma \in (0,1/L]$. Then for all $\theta, \vartheta \in \Theta$,

$$\begin{aligned} -2\gamma \left(F(\operatorname{Prox}_{\gamma}(\theta)) - F(\vartheta) \right) &\geq \left\| \operatorname{Prox}_{\gamma}(\theta) - \vartheta \right\|^{2} \\ &+ 2 \left\langle \operatorname{Prox}_{\gamma}(\theta) - \vartheta, \vartheta - \gamma \nabla f(\vartheta) - \theta \right\rangle \; . \end{aligned}$$

A basic inequality

Lemma

Assume A0 and A1 and let $\gamma \in (0, 1/L]$. Then for all $\theta, \vartheta \in \Theta$,

$$-2\gamma \left(F(\operatorname{Prox}_{\gamma}(\theta)) - F(\vartheta)\right) \ge \|\operatorname{Prox}_{\gamma}(\theta) - \vartheta\|^{2} + 2\left\langle\operatorname{Prox}_{\gamma}(\theta) - \vartheta, \vartheta - \gamma\nabla f(\vartheta) - \theta\right\rangle.$$

Set $p = \text{Prox}_{\gamma g}(\theta)$ and $\theta \in \Theta$.

$$f(p) - f(\vartheta) - \langle \nabla f(\vartheta), p - \vartheta \rangle \le (2\gamma)^{-1} ||p - \vartheta||^2$$
.

On the other hand, $\gamma^{-1}(\theta - p) \in \partial g(\theta)$. Therefore

$$g(p) + \gamma^{-1} \langle \theta - p, \vartheta - p \rangle \le g(\vartheta)$$
.

Combine

The 3 points inequalities

Lemma

Assume A0 and A1, f closed convex and $\gamma \in (0, 1/L]$. Then for all $\theta, \vartheta \in \Theta$,

$$-2\gamma \left(F(\operatorname{Prox}_{\gamma}(\theta)) - F(\vartheta)\right) \ge \|\operatorname{Prox}_{\gamma}(\theta) - \vartheta\|^{2}$$

$$+2\left\langle\operatorname{Prox}_{\gamma}(\theta) - \vartheta, \xi - \gamma \nabla f(\xi) - \theta\right\rangle - \|\vartheta - \xi\|^{2}.$$

The 3 points inequalities

Lemma

Assume A0 and A1, f closed convex and $\gamma \in (0, 1/L]$. Then for all $\theta, \vartheta \in \Theta$,

$$-2\gamma \left(F(\operatorname{Prox}_{\gamma}(\theta)) - F(\vartheta)\right) \ge \|\operatorname{Prox}_{\gamma}(\theta) - \vartheta\|^{2}$$

$$+2\left\langle\operatorname{Prox}_{\gamma}(\theta) - \vartheta, \xi - \gamma \nabla f(\xi) - \theta\right\rangle - \|\vartheta - \xi\|^{2}.$$

$$f(p) - f(\vartheta) \le f(\xi) + \langle \nabla f(\xi), p - \xi \rangle + (2\gamma)^{-1} ||p - \xi||^2 - f(\vartheta)$$

$$\le \{f(\xi) + \langle \nabla f(\xi), \vartheta - \xi \rangle - f(\vartheta)\} + \langle \nabla f(\xi), p - \vartheta \rangle + (2\gamma)^{-1} ||p - \xi||^2$$

Combine with $g(p) + \gamma^{-1} \langle \theta - p, \vartheta - p \rangle \leq g(\vartheta)$ and conclude as before.

The basic inequality

Lemma

Assume A0-A1, f convex; Let θ_{\star} be a minimizer of F and set $F_{\star} \stackrel{\mathrm{def}}{=} F(\theta_{\star})$. Then

$$\|\theta_{n+1} - \theta_{\star}\|^{2} \leq \|\theta_{n} - \theta_{\star}\|^{2} - 2\gamma_{n+1} \left(F(\theta_{n}) - F_{\star}\right) + 2\gamma_{n+1}^{2} \|\eta_{n+1}\|^{2} - 2\gamma_{n+1} \left\langle T_{\gamma_{n+1}}(\theta_{n}) - \theta_{\star}, \eta_{n+1} \right\rangle.$$

The basic inequality

Lemma

Assume A0-A1, f convex; Let θ_{\star} be a minimizer of F and set $F_{\star} \stackrel{\mathrm{def}}{=} F(\theta_{\star})$. Then

$$\|\theta_{n+1} - \theta_{\star}\|^{2} \leq \|\theta_{n} - \theta_{\star}\|^{2} - 2\gamma_{n+1} \left(F(\theta_{n}) - F_{\star} \right) + 2\gamma_{n+1}^{2} \|\eta_{n+1}\|^{2} - 2\gamma_{n+1} \left\langle T_{\gamma_{n+1}}(\theta_{n}) - \theta_{\star}, \eta_{n+1} \right\rangle.$$

The "3 points lemma" applied with $\theta \leftarrow \theta_n - \gamma_{n+1} H_{n+1}$, $\xi \leftarrow \theta_n$, $\vartheta \leftarrow \theta_\star$, $\gamma \leftarrow \gamma_{n+1}$

$$\|\theta_{n+1} - \theta_{\star}\|^{2} \le \|\theta_{n} - \theta_{\star}\|^{2} - 2\gamma_{n+1} \left(F(\theta_{n}) - F_{\star} \right) - 2\gamma_{n+1} \left\langle \theta_{n+1} - \theta_{\star}, \eta_{n+1} \right\rangle.$$

Write $\theta_{n+1} - \theta_{\star} = \theta_{n+1} - T_{\gamma_{n+1}}(\theta_n) + T_{\gamma_{n+1}}(\theta_n) - \theta_{\star}$ and use that $\operatorname{Prox}_{\gamma g}$ is nonexpansive.

Convergence of the parameter

Theorem

Assume A0 and A1, f convex and $\gamma_n \in (0, 1/L]$ for any $n \geq 1$.

Conclusion

(i) For any θ_{\star} in \mathcal{L} and for any $n \geq m \geq 0$,

$$\|\theta_{n+1} - \theta_{\star}\|^{2} \leq \|\theta_{m} - \theta_{\star}\|^{2}$$

$$-2\sum_{k=m}^{n} \gamma_{k+1} \langle T_{\gamma_{k+1}}(\theta_{k}) - \theta_{\star}, \eta_{k+1} \rangle + 2\sum_{k=m}^{n} \gamma_{k+1}^{2} \|\eta_{k+1}\|^{2}.$$

(ii) Assume that for any $\theta_{\star} \in \mathcal{L}$, the two series in the RHS of the previous equation converge. Then, for any θ_{\star} in \mathcal{L} , $\lim_n \|\theta_n - \theta_{\star}\|$ exists. If in addition $\sum_n \gamma_n = +\infty$, then there exists $\theta_{\infty} \in \mathcal{L}$ such that $\lim_n \theta_n = \theta_{\infty}$.

Convergence of the criterion

Theorem

Assume A0 and A1, f convex and $\gamma_n \in (0, 1/L]$ for any $n \geq 1$. For any non-negative sequence $\{a_n, n \in \mathbb{N}\}$, any minimizer θ_* of F and any $n \geq 1$,

Conclusion

$$A_n^{-1} \sum_{k=1}^n a_k F(\theta_k) - F(\theta_\star) \le B_n$$

where

$$B_{n} \stackrel{\text{def}}{=} \frac{1}{2A_{n}} \sum_{k=2}^{n} \left(\frac{a_{k}}{\gamma_{k}} - \frac{a_{k-1}}{\gamma_{k-1}} \right) \|\theta_{k-1} - \theta_{\star}\|^{2} + \frac{a_{1}}{2\gamma_{1}A_{n}} \|\theta_{1} - \theta_{\star}\|^{2} - \frac{1}{A_{n}} \sum_{k=1}^{n} a_{k} \left\{ \langle T_{\gamma_{k}}(\theta_{k-1}) - \theta_{\star}, \eta_{k} \rangle + \gamma_{k} \|\eta_{k}\|^{2} \right\}.$$

- 1 High-dimensional logistic regression with random effects
- 2 Proximal gradient algorithm
- 3 Perturbed proximal gradient
- 4 Monte Carlo proximal gradient
 - Monte Carlo Approximation
- 5 Logistic regression with random effect
- 6 Conclusion

Monte Carlo Approximation(1/2)

$$\nabla f(\theta) = \int H_{\theta}(x) \, \pi_{\theta}(\mathrm{d}x)$$

- Numerical integration OK when the dimension is small (cubature or QMC)
- Importance Sampling

$$\int H_{\theta}(x) \, \pi_{\theta}(x) \mathrm{d}x = \int H_{\theta}(x) \, \frac{\pi_{\theta}(x)}{\pi_{\star}(x)} \, \pi_{\star}(x) \mathrm{d}x \approx \frac{1}{m_{n+1}} \sum_{k=1}^{m_{n+1}} H_{\theta_n}(X_k) \frac{\pi_{\theta_n}(X_k)}{\pi_{\star}(X_k)}$$

MCMC

$$\int H_{\theta}(x) \, \pi_{\theta}(x) \mathrm{d}x \approx \frac{1}{m_{n+1}} \sum_{k=1}^{m_{n+1}} H_{\theta_n}(X_{n,k})$$

where $\{X_{n,k}, k \geq 0\}$ is a Markov chain with stationary distribution $\pi_{\theta_n}(\mathrm{d}x)$.

Monte Carlo Approximation (2/2)

$$\nabla f(\theta) = \int H_{\theta}(x) \, \pi_{\theta}(x) \mathrm{d}x \approx \frac{1}{m_{n+1}} \sum_{k=1}^{m_{n+1}} H_{\theta_n}(X_{n,k})$$

■ Typically the approximation is biased $\mathbb{E}\left[H_{n+1} \mid \mathcal{F}_n\right] \neq \nabla f(\theta_n)$

Conclusion

Nevertheless, in most cases

$$\left| \mathbb{E}\left[\left. H_{n+1} - \nabla f(\theta_n) \, \right| \mathcal{F}_n \right] \right| \leq \frac{C_{\theta_n}}{m_{n+1}} \quad \mathbb{E}\left[\left\| H_{n+1} - \nabla f(\theta_n) \right\|^2 | \mathcal{F}_n \right] \leq \frac{\tilde{C}_{\theta_n}}{m_{n+1}}$$

 \hookrightarrow How to choose the step sizes γ_n , and the size of the batches m_n ?

	$\gamma_n \equiv n^{-c}$	$a_n \equiv n^{a}$	$m_n \equiv n^{b}$	Rate	MC
no bias	0	$(0,\infty)$	1	1/n	$1/\delta^2$
$(C_1 = 0)$	[0, 1/2]	$(-c, +\infty)$	1 - 2c	$1/n^{1-c}$	$1/\delta^2$
	[0,1)	-c	$((1-2c)_+,\infty)$	$1/n^{1-c}$	$1/\delta^{(1+b)/(1-c)}$
with bias	0	$(0,\infty)$	1	1/n	$1/\delta^2$
$(C_1 > 0)$	[0,1)	$(0,\infty)$	1 — c	$1/n^{1-c}$	$1/\delta^{(2-c)/(1-c)}$
	[0,1)	-c	$(1-c,\infty)$	l /	$1/\delta^{(1+b)/(1-c)}$
det.	[0,1)	$(-1,\infty)$	-	$1/n^{1-c}$	-

Conclusion

Table: [Averaged Perturbed Proximal Gradient] Values of (a,b,c) in order to reach the rate of convergence Rate. The column MC reports the number of Monte Carlo samples in this strategy to reach a precision $\mathcal{E}_n = O(\delta)$. As a reference, the last row reports the rate when $\eta_n = 0$.

Perturbed FISTA

Let $\theta_0 \in \text{Dom}(g)$, $\{t_n, n \in \mathbb{N}\}$ and $\{\gamma_n, n \in \mathbb{N}\}$ be positive sequences. For $n \geq 1$, given $(\theta_0, \dots, \theta_n)$:

Conclusion

Compute

$$\vartheta_n = \theta_n + t_n^{-1}(t_{n-1} - 1)(\theta_n - \theta_{n-1}).$$

where

$$t_{n+1} = \frac{1 + \sqrt{1 + 4t_n^2}}{2}.$$

2 Obtain H_{n+1} an approximation of $\nabla f(\vartheta_n)$, and set

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}} \left(\vartheta_n - \gamma_{n+1} H_{n+1} \right) .$$

- 1 High-dimensional logistic regression with random effects
- 2 Proximal gradient algorithm
- 3 Perturbed proximal gradient
- 4 Monte Carlo proximal gradient
- 5 Logistic regression with random effect
 - Simulations
- 6 Conclusion

Wrap-up

Penalized log-likelihood

$$\min_{(\beta,\sigma)\in\mathbb{R}^p\times\mathbb{R}^+} f(\theta) + g(\theta) , \quad f(\theta) = -\ell(\theta) ,$$

lacksquare g closed convex; $-\ell$ is gradient Lipshitz but non convex

Conclusion

 $\nabla f(\theta) = \int H_{\theta}(\mathbf{u}) \pi_{\theta}(\mathbf{u}) d\mathbf{u}$ with

$$H_{\theta}(\mathbf{u}) = -\sum_{i=1}^{N} (Y_i - F(x_i'\beta + \sigma z_i'\mathbf{u})) \begin{bmatrix} x_i \\ z_i'\mathbf{u} \end{bmatrix}$$

MCMC approximation of the gradient

Data augmentation approach

$$\nabla \ell(\theta) = \int_{\mathbb{R}^q \times \mathbb{R}^N} H_{\theta}(\mathbf{u}) \tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) \, d\mathbf{u} d\mathbf{w},$$
$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = \left(\prod_{i=1}^N \bar{\pi}_{PG} \left(w_i; x_i' \beta + \sigma z_i' \mathbf{u} \right) \right) \pi_{\theta}(\mathbf{u}) d\mathbf{u}$$

Conclusion

where $\bar{\pi}_{\mathrm{PG}}$ is the Polya-Gamma density.

- \blacktriangleright Polson algorithm (2012) Given ($\mathbf{u}^t, \mathbf{w}^t$),
 - (i) sample $\mathbf{u}^{t+1} \sim \mathcal{N}_q\left(\mu_{\theta}(\mathbf{w}^t); \Gamma_{\theta}(\mathbf{w}^t)\right)$

(ii) sample
$$\mathbf{w}^{t+1} \sim \prod_{i=1}^N \bar{\pi}_{PG}(w_i; |\mathbf{X}_{i \cdot} \beta + \sigma(\mathbf{Z} \mathbf{u}^{t+1})_i|)$$

$$\Gamma_{\theta}(\mathbf{w}) = \left(I + \sigma^2 \sum_{i=1}^N w_i \mathbf{Z}_{i.}' \mathbf{Z}_{i.}\right)^{-1}, \qquad \mu_{\theta}(\mathbf{w}) = \sigma \Gamma_{\theta}(\mathbf{w}) \sum_{i=1}^N \left((Y_i - 1/2) - w_i \mathbf{X}_{i.} \boldsymbol{\beta} \right) \mathbf{Z}_{.i}.$$

Toy example (1/2)

- ightharpoonup N = 500 observations; p = 1000 regressors.
- Correlated design \mathbf{X} : $\mathbf{X}_{\cdot,n+1} = 0.8\mathbf{X}_{\cdot,n} + \sqrt{1 0.8^2}\mathcal{N}_q(0,I)$.

Conclusion

■ Moderate sparsity: approximately 20 non zeros coefficients β_{true} : .

Figure: (left) Design matrix X. (right) regression coefficient

Conclusion

Toy example (2/2)

- \blacksquare Random effect dimension: q=5 .
- $\mathbf{U} \sim \mathcal{N}_q(0, I).$
- Binary factor **Z**.

Figure: Factor loading **Z**: 1 (white) et 0 (black)

Parameter convergence

■ 150 iterations of the algorithms are performed with $\gamma_n = 5.10^{-2}$ and $m_n = 200 + n$.

Conclusion

 \blacksquare The support of β_{∞} and $\beta_{\rm true}$ are displayed.

Parameter convergence

We investigate the sensitivity and the precision defined as

Conclusion

$$SEN_{n} = \frac{\sum_{i} \mathbb{1}_{|\beta_{n,i}| > 0} \mathbb{1}_{|\beta_{\infty,i}| > 0}}{\sum_{i} \mathbb{1}_{|\beta_{\infty,i}| > 0}}$$

$$PRE_{n} = \frac{\sum_{i} \mathbb{1}_{|\beta_{n,i}| > 0} \mathbb{1}_{|\beta_{\infty,i}| > 0}}{\sum_{i} \mathbb{1}_{|\beta_{n,i}| > 0}}$$

- We consider 3 possible MC proximal gradient with $\gamma_n=\gamma=0.005$, $m_n=200+n$ (Algo 1), $\gamma_n=\gamma=0.001$, $m_n=200+n$ (Algo 2) and $\gamma_n=0.05/\sqrt{n}$ and $m_n=270+\lceil\sqrt{n}\rceil$ (Algo 3).
- 2 MC FISTA with $\gamma_n = \gamma = 0.001$, $m_n = 45 + \lceil n^{3.1}/6000 \rceil$ (Algo F1); $\gamma_n = 0.005 \wedge (0.1/n)$, $m_n = 155 + \lceil n^{2.1}/100 \rceil$ (Algo F2).

Conclusion

The sensitivity SEN_n [left] and the precision PRE_n [right] along a path, versus the total number of Monte Carlo samples up to time n

Objective

Figure: [left] $n\mapsto F(\theta_n)$ for several independent runs. [right] $\mathbb{E}\left[F(\theta_n)\right]$ versus the total number of Monte Carlo samples up to iteration n

Objective with averaging

Figure: [left] Algo W: boxplot of $F(\bar{\theta}_n)$ for n=50,100,150 with - from left to right the decreasing, the uniform and the increasing weight sequence. [right] Boxplot of $F(\theta_n)$ and $F(\bar{\theta}_n)$ with n chosen such that the total number of Monte Carlo samples up to time n is about $10\,500,24\,200,41\,300$.

High-dimensional logistic regression with random effects
Proximal gradient algorithm
Perturbed proximal gradient
Monte Carlo proximal gradient
Logistic regression with random effect
Conclusion

- 1 High-dimensional logistic regression with random effects
- 2 Proximal gradient algorithm
- 3 Perturbed proximal gradient
- 4 Monte Carlo proximal gradient
- 5 Logistic regression with random effect
- 6 Conclusion

Take-home message

- Efficient and globally converging procedure for penalized likelihood inference in incomplete data models are available with convex sparsity-inducing penalty (provided that computing the proximal operator is easy)
- Minibatch algorithms combined to an averaging procedure allow to obtain numerically efficient algorithms.
- Thanks for your attention... and patience!