Cheat sheet

Last updated: March 3, 2020

EVENTS, PROBABILITIES _____

January 15th: Probability spaces

Def. Sample space S: set of all possible outcomes (ex: $S = \mathbb{R}$ for the temperature tomorrow).

Def. Event A: subset of A (ex: $A = [50, +\infty)$ for the temperature being too hot).

Logic connectors \leftrightarrow set operations (ex: "A and B" \leftrightarrow A \cap B; "not A" \leftrightarrow S \setminus A = A^{\complement}).

Def. A and B disjoint: $A \cap B = \emptyset$ (\leftrightarrow "A and B cannot occur simultaneously").

 $A_1, A_2, \ldots, A_n, \ldots$ pairwise disjoint: A_n and A_m disjoint for $n \neq m$.

Def. Probability space (S, \mathbb{P}) : sample space S and probability $\mathbb{P}(A)$ for every event $A \subset S$, with

- $0 \le \mathbb{P}(A) \le 1$,
- $\mathbb{P}(\bigcup_{n>0} A_n) = \sum_{n>0} \mathbb{P}(A_n)$ for A_1, A_2, \ldots pairwise disjoints.

January 17th: Operations on events

Rk. For a finite sample set S, it suffices to know $\mathbb{P}(\{x\})$ for all $x \in S$.

Rk. Motto: the sample space is less important than the events.

Def. A is included in B: $A \subset B \ (\leftrightarrow "A \text{ implies } B")$.

Prop. $\mathbb{P}(A^{\complement}) = 1 - \mathbb{P}(A)$.

Prop. $\mathbb{P}(A \cup B) = 1 - \mathbb{P}(A^{\complement} \cap B^{\complement}).$

Prop. $\mathbb{P}(A \cap B) = 1 - \mathbb{P}(A^{\complement} \cup B^{\complement}).$

Prop. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$.

Prop. $\mathbb{P}(A) \leq \mathbb{P}(B)$ whenever $A \subset B$.

January 22nd: Operations on events / Conditional probability

Prop(Inclusion-Exclusion Principle).

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

Def. A_0, A_1, A_2, \ldots increasing: $A_0 \subset A_1 \subset A_2 \subset \cdots$.

 A_0, A_1, A_2, \dots decreasing: $A_0 \supset A_1 \supset A_2 \supset \dots$

Prop. $\mathbb{P}(\bigcup_{n>0} A_n) = \lim_{n\to\infty} \mathbb{P}(A_n)$ for $(A_n)_{n\geq 0}$ increasing;

Counting

Rk. Tuples are ordered sequences, sets are unordered sequences.

They are denoted by (a_1, \ldots, a_k) and $\{a_1, \ldots, a_k\}$ respectively.

Def. Conditional probability $\mathbb{P}(A|B)$ of A knowing B: probability of A happening considering only outcomes where B holds.

 $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Def. A and B independent: $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

January 24th: Product and uniform probability spaces

Def. Product set: $S_1 \times S_2 = \{(a, b), a \in S_1, b \in S_2\}$ (\leftrightarrow experience S_1 , then experience S_2).

Prop. For finite sets, $\#(A \times B) = (\#A) \times (\#B)$.

Def. Product probability space (for finite spaces): $S_1 \times S_2$ with $\mathbb{P}(\{(a,b)\}) = \mathbb{P}_1(\{a\})\mathbb{P}_2(\{b\})$ $(\leftrightarrow \text{ experience } S_1, \text{ then experience } S_2 \text{ independently}).$

Def. Uniform probability (finite set): all outcomes equally likely, i.e. $\mathbb{P}(\{a\}) = \mathbb{P}(\{b\})$. **Prop.** For (S, \mathbb{P}) uniform, $\mathbb{P}(A) = \frac{\#A}{\#S}$ for every event $A \subset S$. **Thm.** The product of two uniform probability spaces is again uniform.

Ex. Sampling with replacement: $U = \{1, ..., n\}$ an urn with n elements,

 $S = U^k \leftrightarrow \text{draw } k \text{ elements with replacement.}$

January 27th: Sampling without replacement

Def. kth falling factorial: $(n)_k = n^{\underline{k}} = n \times (n-1) \times \cdots \times (n-k+1)$ (k terms).

Prop. If U has n elements, $\#\{k\text{-tuples of distinct elements of } U\} = (n)_k$.

Rk. The notation $U^{\underline{k}} = \{k \text{-tuples of distinct elements of } U\}$ is sometimes used.

January 29th: Permutations, combinations

Def. Permutations: $\mathfrak{S}(U) = \{\text{Permutations of } U\} = \{\text{Bijections } f: U \to U\}.$

Def. $\mathfrak{S}_n = \mathfrak{S}(\{1,\ldots,n\})$ (\leftrightarrow orderings of $\{1,\ldots,n\}$ via f(element) = position).

Def. Factorial: $n! = n \times (n-1) \times \cdots \times 1$.

Prop. If U has n elements, $\#\mathfrak{S}(U) = n!$; e.g. $\#\mathfrak{S}_n = n!$.

Def. Binomial coefficient "n choose k": $\binom{n}{k} = \frac{(n)_k}{k!} = \frac{n!}{k!(n-k)!}$

Prop. If U has n elements, $\#\{\text{subsets of } U \text{ with } k \text{ elements}\} = \binom{n}{k}$.

Rk. The notation $\binom{U}{k} = \{\text{subsets of } U \text{ with } k \text{ elements}\}\$ is sometimes used.

January 31st: Multinomials

Def. Multinomial coefficient: for $k_1 + \cdots + k_\ell = n$, $\binom{n}{k_1, \dots, k_\ell} = \frac{n!}{k_1! \times \dots \times k_\ell!}$. **Def.** Partition of $U: S_1, \dots, S_\ell \subset U$ such that $S_1 \cup \dots \cup S_\ell = U$ and $S_i \cap S_j = \emptyset$.

Prop. If U has n elements, $\#\{\text{partitions } S_1, \ldots, S_\ell \text{ of } U \text{ such that } \#S_i = k_i\} = \binom{n}{k_1, \ldots, k_\ell}$.

Rk. The notation $\binom{U}{k_1,\ldots,k_\ell} = \{\text{partitions } S_1,\ldots,S_\ell \text{ of } U \text{ such that } \#S_i = k_i\}$ is sometimes used.

February 5th: Conditioning

Def. Conditional probability $\mathbb{P}(A|B)$ of A knowing B: probability of A happening considering only outcomes where B holds.

 $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$

Prop. $\mathbb{P}(A \cap B) = \mathbb{P}(A \mid B)\mathbb{P}(B)$.

Prop. $\mathbb{P}(-|B)$ is a probability function, hence $\mathbb{P}(A^{\complement}|B) = 1 - \mathbb{P}(A^{\complement}|B)$, $\mathbb{P}(C \cup D|B) = \mathbb{P}(C|B) + \mathbb{P}(D|B) - \mathbb{P}(C \cap D|B)$, etc.

Prop. If \mathbb{P} is uniform on S, then $\mathbb{P}(A|B) = \frac{\#(A \cap B)}{\#B}$.

February 7th: Independence 1

Def. Independence: A, B independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$.

Rk. If $\mathbb{P}(B) \neq 0$, it is equivalent to $\mathbb{P}(A|B) = \mathbb{P}(A)$, i.e. B has no influence on A.

Def. Geometric distribution: $N \sim \mathcal{G}eom(p)$ if $\mathbb{P}(N=n) = (1-p)^{n-1}p$ for $n \in \mathbb{N}^*$ (\leftrightarrow first success in a sequence of independent experiments with a probability p of success).

Def. Binomial distribution: $N \sim \mathcal{B}in(n,p)$ if $\mathbb{P}(N=k) = \binom{n}{k}(1-p)^{n-k}p^k$ for $0 \le k \le n$ (\leftrightarrow number of successes in a sequence of n independent experiments with a probability p of success).

February 10th: Independence 2, Law of total probability

Rk. When dealing with independent experiments, try to transform 'or' to 'and':

 $\mathbb{P}(A \cup B) = 1 - \mathbb{P}(A^{\complement} \cap B^{\complement}) = 1 - \mathbb{P}(A^{\complement})\mathbb{P}(B^{\acute{\complement}}) = 1 - (1 - \mathbb{P}(A))(1 - \mathbb{P}(B)).$ **Prop.** $\mathbb{P}(A \text{ before } B) = \frac{\mathbb{P}(A)}{\mathbb{P}(A) + \mathbb{P}(B)}$ (see the notes for a precise statement).

Def. Partition: $B_0, B_1, \ldots \subset S$ such that $S = \bigcup_{k=0}^{\infty} B_k, B_k \cap B_\ell = \emptyset, \mathbb{P}(B_k) \neq 0.$

Thm(law of total probability). If B_0, B_1, \ldots is a partition, then

$$\mathbb{P}(A) = \mathbb{P}(A|B_0)\mathbb{P}(B_0) + \mathbb{P}(A|B_1)\mathbb{P}(B_1) + \cdots$$

February 12th: Bayes' law

Thm(Bayes' law). If A and B have positive measure, then $\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$. If A has positive measure and B_0, B_1, \ldots is a partition, then

$$\mathbb{P}(B_k|A) = \frac{\mathbb{P}(A|B_k)\mathbb{P}(B_k)}{\mathbb{P}(A|B_0)\mathbb{P}(B_0) + \mathbb{P}(A|B_1)\mathbb{P}(B_1) + \cdots}$$

DISCRETE RANDOM VARIABLES

- **Def.** Random variable: function $X: S \to \mathbb{R}$, with (S, \mathbb{P}) a probability space $(\leftrightarrow \text{ random number deduced from the outcome } x \in S \text{ of an experiment}).$
- **Def.** Discrete random variable: random variable with values in a countable set $\{x_0, x_1, \ldots\}$.
- **Def.** Uniform distribution: $N \sim Unif(S)$ if $\mathbb{P}(N = x) = \frac{1}{\#S}$ for $x \in S$.

February 14th: Usual distributions 1, cumulative distribution function 1

- **Def.** Probability mass function: for N discrete, $x \mapsto \mathbb{P}(N = x)$.
- **Def.** Bernoulli distribution: $N \sim \mathcal{B}er(p)$ if $\mathbb{P}(N=1) = 1 \mathbb{P}(N=0) = p$.
- **Def.** Geometric distribution: $N \sim \mathcal{G}eom(p)$ if $\mathbb{P}(N=n) = (1-p)^{n-1}p$ for $n \in \mathbb{N}^*$.
- **Def.** Binomial distribution: $N \sim \mathcal{B}in(n,p)$ if $\mathbb{P}(N=k) = \binom{n}{k}(1-p)^{n-k}p^k$ for $0 \le k \le n$.
- **Def.** Cumulative distribution function of $N: F_N: x \mapsto \mathbb{P}(N \leq x)$.
- **Prop.** F_N is non-descreasing, tends to zero (resp. one) as $-\infty$ (resp. $+\infty$), and is right continuous.

February 16th: Usual distributions 2

- **Def.** Negative binomial distribution: $N \sim \mathcal{N}eg\mathcal{B}in(k,p)$ if $\mathbb{P}(N=n) = \binom{n-1}{k-1}(1-p)^{n-k}p^k$ for $n \in \mathbb{N}, n \geq k$
 - $(\leftrightarrow k {\rm th~success~in~a~sequence~of~independent~experiments~with~a~probability~p~of~success}).$
- **Def.** Hypergeometric distribution: $N \sim \mathcal{H}yper\mathcal{G}eom(w,b,n)$ if $\mathbb{P}(N=k) = \frac{\binom{w}{k}\binom{b}{n-k}}{\binom{w+b}{n}}$

for $k \in \mathbb{N}, k \ge n - b, k \le w, k \le n$.

(\leftrightarrow number of whites out of n balls sampled without replacement from a pool of w white and b black balls).

February 19th: Cumulative distribution function, quantiles

- **Prop.** The cumulative distribution function of a discrete random variable N consists in horizontal steps satisfying the conditions of monotonicity, convergence and right-continuity.
- **Prop.** The x-coordinate x of a jump of F_N corresponds to a possible value of N. The height of the jump is $\mathbb{P}(N=x)$.
- **Def.** Quartile: the *p*-quantile of N is the smallest x such that $\mathbb{P}(N \leq x) \geq p$.
- **Def.** Percentile: the q-percentile of N is its $\frac{q}{100}$ -quantile.
- **Def.** Quartile: the lower, or first quartile, is the 1/4-quantile;

the upper, or third quartile, is the 3/4-quantile.

Def. Median: the median, or second quartile, is the 1/2-quantile.

February 26th: Poisson distributions

Def. Poisson distribution $\mathcal{P}oi(\lambda)$: $N \sim \mathcal{P}oi(\lambda)$ if $\mathbb{P}(N=k) = \mathrm{e}^{-\lambda} \cdot \frac{\lambda^k}{k!}$. (\leftrightarrow number of successes for an experiment conducted continuously, for an average of λ successes during that time period).

February 28th: Independence of random variables

Def. Independence: N, M are independent random variables

if
$$\mathbb{P}(N \in A \cap M \in B) = \mathbb{P}(N \in A) \cdot \mathbb{P}(M \in B)$$
 for all A, B .

Prop. If $N \sim \mathcal{B}in(n,p)$, $M \sim \mathcal{B}in(m,p)$ are independent, then $N + M \sim \mathcal{B}in(n+m,p)$.

If $N \sim NegBin(k, p)$, $M \sim NegBin(\ell, p)$ are independent, then $N + M \sim NegBin(k + \ell, p)$.

If $N \sim Poi(\lambda)$, $M \sim Poi(\mu)$ are independent, then $N + M \sim NegBin(\lambda + \mu)$.

Rk. If N_1, \ldots, N_n are independent with distribution $\mathcal{B}er(p)$, then $N_1 + \cdots + N_n \sim \mathcal{B}in(n,p)$.

If N_1, \ldots, N_k are independent with distribution $\mathcal{G}eom(p)$, then $N_1 + \cdots + N_k \sim \mathcal{N}eg\mathcal{B}in(k,p)$.

STATISTICAL INVARIANTS OF DISCRETE RANDOM VARIABLES

March 2nd: Expectation

Def. Expectation: For N a discrete random variable with values in $\{x_0, x_1, x_2, \ldots\}$, $\mathbb{E}[N] = \sum_{k=0}^{\infty} x_k \cdot \mathbb{P}(N = x_k)$.

If N is a non-negative integer, $\mathbb{E}[N] = \sum_{k=0}^{\infty} k \cdot \mathbb{P}(N=k) = \sum_{k=1}^{\infty} k \cdot \mathbb{P}(N=k)$.

Prop. For $N \sim \mathcal{B}er(p)$, $\mathbb{E}[N] = p$.

For $N \sim Unif(\{a, \dots, b\})$, $\mathbb{E}[N] = \frac{a+b}{2}$.

For $N \sim \mathcal{G}eom(p)$, $\mathbb{E}[N] = 1/p$.

For $N \sim \mathcal{P}oi(\lambda)$, $\mathbb{E}[N] = \lambda$.

Prop. For X, Y random variables, and a a deterministic real number,

$$\mathbb{E}[aN] = a\mathbb{E}[N], \qquad \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y], \qquad \mathbb{E}[1] = 1.$$

Prop. For $N \sim \mathcal{B}in(n,p)$, $\mathbb{E}[N] = np$.

For $N \sim \mathcal{N}eg\mathcal{B}in(k, p)$, $\mathbb{E}[N] = k/p$.

For $N \sim \mathcal{H}yper\mathcal{G}eom(w,b,n)$, $\mathbb{E}[N] = \frac{nw}{w+b}$.