

206 Discrete Structures II

Konstantinos P. Michmizos

Computational Brain Lab
Computer Science | Rutgers University | NJ, USA

Quiz 1

- What will Quiz 1 cover?
 - Sets (Lecture 2)
 - Venn (Lecture 2)
 - Functions (Lecture 3)
 - Proofs (Lectures 3-5)
 - + What we will cover today (Sum and Product rules)

Reading for Quiz 1

Recap and Basics of Counting

Chapters 1, 2 and 5 of Rosen

Basics of Counting

Chapters 1, 2 and 5 of Rosen Chapter 15 of Lehman

Basics of Counting

Chapters 6 of Rosen Chapter 15 of Lehman

What we will cover today

Combinatorics

- Recap
 - Proofs (Direct, Contrapositive, Case Analysis, Contradiction, Induction)
- Today
 - Counting
 - Product Rule
 - Bijection Rule
- Next
 - Permutations/Combinations
 - Pigeonhole Principle

Direct Proof

• To prove: $P \Rightarrow Q$

The sum of two even numbers is even.

• Assume that *P* is true.

$$x = 2m, y = 2n$$

 $x+y = 2m+2n$

• Show that Q logically follows = 2(m+n)

The product of two odd numbers is odd.

Proof
$$x = 2m+1, y = 2n+1$$

 $xy = (2m+1)(2n+1)$
 $= 4mn + 2m + 2n + 1$
 $= 2(2mn+m+n) + 1$

Example of Proof by Contrapositive

• Theorem: *If* r *is irrational, then* \sqrt{r} *is irrational.*

Proof:

We shall prove the contrapositive – "if \sqrt{r} is rational, then r is rational."

Since \sqrt{r} is rational, $\sqrt{r} = a/b$ for some integers a,b.

So $r = a^2/b^2$. Since a,b are integers, a^2,b^2 are integers.

Therefore, r is rational. Q.E.D.

(Q.E.D.)

"which was to be demonstrated", or "quite easily done". © quod erat demonstrandum

Example of Proof by Case Analysis

• Theorem: For all $x \in \mathbb{R}$, $-5 \le |x+2| - |x-3| \le 5$

$$|X+2| = X+2$$
, if $X+27/0$ or $X7/-2$
 $|X+2| = -(X+2)$, if $X+27/0$ or $X2/-2$
 $|X+2| = -(X+2)$, if $X=3$
 $|X-3| = X-3$ if $X=3$
 $|X-3| = -(X-3)$ if $X<3$
 $|X-3| = -(X-3)$ if $X<3$

Example of Proof by Case Analysis

• Theorem: For all $x \in \mathbb{R}$, $-5 \le |x + 2| - |x - 3| \le 5$

Example of Proof by Contradiction

• Theorem: *There are infinitely many primes*

Assume: There are finitely many primes – And let $p_1, p_2, ..., p_N$ be all the primes.

Now we construct a new number, $p = p_1 p_2 \dots p_N + 1$

Clearly, *p* is larger than any of the primes, so it does not equal one of them. Therefore it cannot be prime and must be **composite**, i.e., <u>divisible</u> by at least one of the primes.

But our assumption was that *p* is not prime and therefore divisible by any prime number.

On the other hand, we know that any number must be divisible by *some* prime (*fundamental theorem* of arithmetic or the unique factorization theorem or the unique-prime-factorization theorem)

This leads to a **contradiction**, and therefore the assumption must be false.

So there must be infinitely many primes.

Example of Induction

• Theorem: $For \ all \ n \in \mathbb{N}$,

•
$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
 $P(n)$

Base (ase: $P(o)$ is three, for $P(o)$ $P(o)$

Inductive $P(o)$ $P(o)$ $P(o)$

Assume $P(o)$ is three. $P(o)$

Want: $P(o)$ $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$
 $P(o)$

Intuition: During induction, my goal is to construct what I have assumed as true

Course Outline

• Part I

- Recap of basics sets, function, proofs, induction
- Basic counting techniques
 - Pigeonhole principle
 - Generating functions

• Part II

- Sample spaces and events
- Basics of probability
- Independence, conditional probability
- Random variables, expectation, variance
- Moment generating functions

• Part III

- Graph Theory
- Machine learning and statistical inference

Counting

- Basic Question: What is the size of a given set?
- Easy when the set is explicitly defined.
 - $X = \{1,2,3,4\}$, what is |X|?
- Tricky when set is implicit or a defined via set operations.
 - How many ways to get flush in the game of poker?
 - How many ways to assign time slots to courses at Rutgers?
 - How many operations before my algorithm terminates?

Counting

- In the next few lectures
 - Fundamental tools and techniques for counting
 - Sum Rule
 - Product Rule
 - Difference Method
 - Bijection Method
 - Permutations/Combinations
 - Inclusion Exclusion
 - Binomial/Multinomial coefficients

> Intermediate

- Advanced

Sum Rule

- There are 60 students in section 5 of 206.
- There are 71 students in section 6 of 206.
- How many students are there in total in both sections?

Sum Rule:

If A and B are **disjoint** sets, then $|A \cup B| = |A| + |B|$

Example: Sum Rule

- There are 60 students in section 5 of 206.
- There are 71 students in section 6 of 206.
- There are 80 students in section 1 of 206.
- There are 80 students in section 2 of 206.
- How many students are there in total?

```
60+71+80+80=291
```

Example: Sum Rule

- There are 60 students in section 5 of 206.
- There are 71 students in section 6 of 206.
- There are 80 students in section 1 of 206.
- There are 80 students in section 2 of 206.
- How many students are there in total?

Sum Rule: If $A_1, A_2, ... A_n$ are **disjoint** sets, then $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$

Partition Method – How to

- To find the size of a set A,
 - Partition it into a union of disjoint sets $A_1, A_2, ..., A_n$
 - Use sum rule
- Example: How many students are there in total in 206?

Partition Method – Example

- To find the size of a set A,
 - Partition it into a union of disjoint sets $A_1, A_2, ..., A_n$
 - Use sum rule

• If I roll a white and black die, how many possible outcomes do I see?

$$S = \left(\frac{(1,1)}{(2,1)}, \frac{(1,2)}{(2,2)}, -\frac{(1,6)}{(2,6)} \right)$$

$$\frac{(2,1)}{(6,1)}, \frac{(2,2)}{(6,2)}, -\frac{(2,6)}{(6,6)}$$

$$|S| = 36$$

Partition Method

• If I roll a white and black die, how many possible outcomes do I see?

Take a Break

Partition Method

• Possible outcomes where white and black die have different values?

$$A_1 = all$$
 sut(omes with black die=1)
 $A_2 = black$ die=2
 $A_6 = black$ die=6
 $A_6 = black$ die=6
 $A_6 = 5 + 5 + 5 + 5 = 36$

Partition Method

• Possible outcomes where white die has a larger value then the black die?

$$A_1 = all$$
 sut(omes with black die=1)

 $A_6 = b \ln a \ln a = 6$
 $A_6 = b \ln a \ln a = 6$
 $A_1 = 5 \quad |A_2| = 4 \quad |A_3| = 3$
 $|A_4| = 2 \quad |A_5| = 1 \quad |A_6| = 6$
 $|S| = 5 + 4 + 3 + 2 + 1 = 5 (5 + 1)$
 $= 15$

Difference Method

- To find the size of a set A,
 - Find a larger set *S* such that $S = A \cup B$ and
 - A and B are disjoint.
 - |A| = |S| |B|

Difference Method

- To find the size of a set A,
 - Find a larger set S such that $S = A \cup B$ and
 - *A* and *B* are disjoint.
 - |A| = |S| |B|
- Possible outcomes where white and black die have different values?
 - Find S with all possible outcomes |S| = 36
 - Subtract B with the same values |B|=6

•
$$|A| = |S| - |B| = 36 - 6 = 30$$

Partition Method

• Possible outcomes where white and black die have different values?

$$A_1 = all$$
 sut(omes with black die=1)
 $A_2 = black$ die=2
 $A_6 = black$ die=6
 $A_6 = black$ die=6
 $A_6 = 5 + 5 + 5 + 5 = 36$

...or we can use the Difference Method

• Possible outcomes where white and black die have different values?

