

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé muni d'une sous-tribu de \mathcal{F} notée \mathcal{G} et $\{\mathcal{F}_t\}_{t>0}$ une filtration sur Ω .

Dans tout ce qui suit, $(B_t, t \ge 0)$ désigne un mouvement brownien réel. On note (\mathcal{F}_t) sa filtration naturelle.

Dans certains exercices, il sera précisé que B part de x. On rappelle que B et $(B_t^2 - t, t \ge 0)$ sont des martingales.

Exercice 1:

- 1. Calculer pour tout couple (s,t) les quantités $\mathbb{E}(B_sB_t^2)$, $\mathbb{E}(B_t|\mathcal{F}_s)$ et $\mathbb{E}(B_t|B_s)$.
- 2. Déterminer la loi de $B_t + B_s$.

Exercice 2:

Parmi les processus suivants, quels sont ceux qui sont des martingales. (On pourra utiliser, sans démonstration, que $\mathbb{E}[\int_0^t B_u du | \mathcal{F}_s] = \int_0^t \mathbb{E}[B_u | \mathcal{F}_s] du$.)

1.
$$M_t = B_t^3 - 3 \int_0^t B_s \, ds$$
.

2.
$$M_t = B_t^3 - 3tB_t$$
.

3.
$$M_t = tB_t - \int_0^t B_s \, ds$$
.

4.
$$M_t = \sin(B_t) - \int_0^t B_s(\cos s) \, ds$$
.

5.
$$M_t = \sin(B_t) + \frac{1}{2} \int_0^t \sin(B_s) ds$$
.

6.
$$M_t = t^2 B_t - 2 \int_0^t B_s \, ds$$
.

Exercice 3:

$$dX_t = -aX_t dt + e^{bt} dB_t.$$

- 1. Trouver la solution de l'équation.
- 2. Calculer $\mathbb{E}(X_t)$.
- 3. Calculer $Var(X_t)$.

Exercice 4:

Soit $Y_t = tB_t$.

- 1. Calculer dY_t .
- 2. Calculer l'espérance de Y_t .
- 3. Calculer $\mathbb{E}(Y_tY_s)$.

Exercice 5:

Soit la variable aléatoire $X_t = \int_0^t (\sin s) dB_s$.

- 1. Montrer que X_t est définie.
- 2. Montrer que X est un processus gaussien. Calculer son espérance et la covariance $\mathbb{E}(X_sX_t)$.
- 3. Calculer $\mathbb{E}[X_t|\mathcal{F}_s]$.
- 4. Montrer que

$$X_t = (\sin t)B_t - \int_0^t (\cos s)B_s \, ds.$$

Exercice 6:

Écrire les processus suivants comme des processus d'Itô en précisant leur drift et le coefficient de diffusion :

- 1. $X_t = B_t^2$.
- 2. $X_t = t + e^{B_t}$.
- 3. $X_t = B_t^3 3tB_t$.
- 4. $X_t = 1 + 2t + e^{B_t}$.
- 5. $X_t = (B_t + t) \exp(-B_t \frac{1}{2}t)$.
- 6. $X_t = \exp(\frac{t}{2})\sin(B_t)$.

Exercice 6:

Soit $Y_t = tX_1(t)X_2(t)$ où :

- $dX_1(t) = f(t) dt + \sigma_1(t) dB_t$,
- $dX_2(t) = \sigma_2(t) dB_t$.

Calculer dY_t .