Daniel Alvarado Espan Curso de Lógica Matemática Teoría de la Computador Janiel Alvarado 30 de octubre de 2024

Cristo Daniel Alvarado ES

Índice general) sign	
3. Conjuntos y Funciones co	mputables	2
3.1. Máquinas de Turing	P	
4. Teoremas de Completud		7

Capítulo 3

Conjuntos y Funciones computables

Todo de lo que se va a tratar esta parte es de: ¿Cómo formalizar la noción de procedimiento mecánico, efectivo o sistemático? Con esto nos referimos a:

- Tener un número finito de instrucciones.
- Terminar el procedimiento en un número finito de pasos.
- Usar únicamente papel y lápiz.
- No requiere razonamiento, solo se siguen reglas.

Básicamente se pretendía que dada una fórmula, encontrar un algoritmo que nos diga si esa fórmula es verdadera o falsa. Básicamente se pretendía formalizar las demostraciones para ver lo que nosotros podemos demostrar únicamente usando los axiomas.

Turing y Alonzo Church eventualmente se hicieron preguntas en la misma dirección. En la Tesis de Church-Turing se probó que estas tres preguntas en realidad se reducen a un mismo problema.

3.1. Máquinas de Turing

Definición 3.1.1

Una máquina de Turing consta de:

- Un alfabeto, un conjunto finito L.
- \blacksquare Un conjunto S de estados.
- \bullet Una función parcial $T:L^*\times S\to L^*\times S\times \{<,-,>\}$ llamada función de transición.

donde $L^* = L \cup \{*\}.$

Intuitivamente, uno debe imaginar que esto es una especie de *computadora rudimentaria*. Generalmente esto se conceptualiza como una cinta.

El cabezal c puede moverse a la derecha, izquierda o no moverse, dependiendo del estado en el que esté. En la Figura 3.1 se muestra que el hay al menos 5 diferentes estados, desde el estado inicial (s_i) hasta el final (s_f) . Dependiendo de la entrada, la función T nos dirá lo que hará el cabezal, si cambia un elemento de la banda, si se mueve o si cambia de estado (o todas a la vez).

En este ejemplo, el alfabeto sería $L = \{0, 1\}$, el conjunto de estados es $S = \{s_i, s_1, ..., s_f\}$ y la función sería representada por lo que sea que haga el cabezal.

Figura 3.1: Ejemplo de Máquina de Turing

```
Ejemplo 3.1.1
Considere L = \{1\}, S = \{s_i, s_1, s_2\} y, T = \{(s_i, *, s_1, *, >), (s_i, 1, s_1, 1, >), (s_1, 1, s_1, 1, >), (s_1, 1, s_2, 1, -)\} La cinta se ve más o menos así:
```

Para los siguientes ejercicios, ir a la página: Simulador Máquina de Turing.

Ejercicio 3.1.1

Codifique una máquina de Turing que sume 1 a un número dado en binario.

```
Sumar
                          uno
            init: s0
            accept: sf
            // Funciones de Transicion
            s0,_
            s0,_,>
            s0,1
12
            s1,1,-
            s0,0
            s1,0,-
17
            s1,1
            s1,0,>
19
            s1,0
            s1,1,>
```

Ejercicio 3.1.2

Codifique una máquina de Turing que dada un número en binario, invierta su orientación, es decir, si la cadena es $(a_1, ..., a_n)$, que la máquina de Turing la convierta en $(a_n, ..., a_1)$.

```
name: invertirCadena
            init: s0
            accept: s1,sf,l,c,u
            //esto para que se empiece a mover
            s0,_
            s0,_,>
9
            s0,0
            x,0,<
            s0,1
13
            x,1,<
14
            s1,2,>
17
            s1,0
            s1,0,>
21
            s1,1
            s1,1,>
24
            //logica cuando encuentre cosas
            s1,_
27
            s2,_,<
            s2,_
            s2,_,<
            s2,0
            c00,_,>
```

```
s2,1
           u00,_,>
           //mueve cosas al inicio
           c00,__
41
           m,0,<
           u00,_
44
           m,1,<
           //ya en ciclo
47
           //mueve derecha
           1,_,<
           1,_
           1,_,<
           1,0
           c0,_,>
                                         Cristo Daniel Alvarado
           1,1
           u0,_,>
61
           c0,_
62
         % c0,_,>
64
65
           //mueve izquierda
67
           u0,_
           u0,_,>
69
           c0,0
           c1,0,>
71
                                                      Cristo Daniel
72
           c0,1
74
           c1,1,>
           u0,0
77
           u1,0,>
79
           u0,1
           u1,1,>
           c1,0
           c1,0,>
           c1,1
```

```
c1,1,>
                   u1,0
                   u1,0,>
                   u1,1
                   u1,1,>
                   c1,_
                   m, 0, <
                   u1,_
                   m, 1, <
                   m, 0
                   m,0,<
                   m, 1
      104
                   m, 1, <
                   1,2
      106
                   sf,_,>
                   sf,_
      110
                   sf,_,>
      111
      112
                   sf,0
      113
                   sff,0,-
      114
      115
               sf,1
                                                        Cristo Daniel Alvarad
Cristo Daniel Alvarado Es
      116
                   sff,1,-
sto Dani
```

Daniel Alvarado ESFM

Cristo

Capítulo 4 Alvarado ESFM Cristo Daniel Alvarado ESFM Teoremas de Completud