Přírodovědecká fakulta Masarykovy univerzity

PRAKTIKUM Z FYZIKY PLAZMATU

Diagnostika plazmatu doutnavého výboje pomocí jednoduché sondy

Zpracovali: Radek Horňák, Lukáš Vrána Naměřeno: 1. 3. 2022

1 Teorie

1.1 Elektrostatická Langmuirova sonda

Langmuirova sonda je vodič malých rozměrů zavedený do plazmatu, pomocí nějž lze měřit nejdůležitější parametry plazmatu jako elektronovou hustotu $n_{\rm e}$, teplotu elektronů $T_{\rm e}$, rozdělovací funkci elektronů f(v) a prostorové rozdělení potenciálu a elektrického pole. Napětí sondy $V_{\rm S}$ určujeme vzhledem k referenční elektrodě. Potenciál plazmatu v místě sondy vůči stejné referenční elektrodě označme $V_{\rm p}$. Pokud je vůči ní plocha sondy velmi malá, můžeme sondu nazvat jednoduchou. Podle tvaru lze dále sondy dělit na válcové, kulové a rovinné. Závislost proudu protékajícího sondou $I_{\rm S}$ na napětí přiloženém na sondu $V_{\rm S}$ tvoří voltampérovou (VA) charakteristiku sondy. Napětí sondy vůči plazmovému potenciálu $U_{\rm S}$ získáme pomocí vztahu

$$U_{\rm S} = V_{\rm S} - V_{\rm p} \tag{1}$$

Pokud sonda není připojena k vnějšímu obvodu a proud elektronů i iontů na ni se ustálí, je výsledný proud nulový a sonda se ustálí na napětí $V_{\rm fl}$, tedy na plovoucím potenciálu.

VA charakteristiku jednoduché sondy můžeme rozdělit na tři části. Tou první je oblast saturovaného iontového proudu označená na obr. 1 jako A. Sonda je záporně nabita vzhledem k potenciálu plazmatu, elektrony jsou odpuzovány a ionty naopak přitahovány. Vizuálně se to projevuje temným prostorem obalujícím sondu.

Druhou část charakteristiky tvoří přechodová oblast, pro kterou lze $U_{\rm S}$ vymezit jako $-2(V_{\rm p}-V_{\rm fl})\leq U_{\rm S}\leq 0$. Na obr. 1 se jedná o oblast B. Celkový proud sondou $I_{\rm S}$ můžeme vyjádřit jako

$$I_{\rm S} = I_{\rm i} + I_{\rm e} \tag{2}$$

kde $I_{\rm i}$ je i
ontový proud a $I_{\rm e}$ elektronový proud, který je dán vz
tahem

$$I_{\rm e} = Sen_{\rm e}\sqrt{\frac{kT_{\rm e}}{2\pi m_{\rm e}}}\exp\left(\frac{-eU_{\rm S}}{kT_{\rm e}}\right) \tag{3}$$

kde Sje povrch sondy, eelementární náboj, $n_{\rm e}$ koncentrace elektronů, k Boltzmanova konstanta a $m_{\rm e}$ hmotnost elektronu.

Oblast saturovaného elektronového proudu je na obr. 1 označená jako C. Sonda je vzhledem k potenciálu plazmatu na kladném napětí a přitahuje tak elektrony. U válcové sondy nejeví tato oblast nasycení, nýbrž parabolicky narůstá.

Nyní je potřeba od charakteristik odečíst i
ontový proud, oblast kde saturuje jsme proložili přímkou. Názorné proložení pro VA charakterist
ku za podmínek p=160 Pa a $I_{\rm v}=40$ mA je na obr. 5. Ve zbylých pří
padech jsme postupovali obdobně. VA charakteristiky s takto odečteným i
ontovým proudem jsou v grafech na obr. 6 a 7.

Obrázek 5: Lineární fit saturovaného i
ontového proudu, p=160 Pa a $I_{\rm v}=40$ mA.

nepodatilo ænden najst nepodatilo ænden najst se s lokalnim minimenn index de quannalisare

(2ishani popusložini tolyanum

(2ishani popusložini)

Potenciál plazmatu V_p přibližně určíme ze zlomu VA charakteristik jako průsečík asymptot k lineárním částem zlogaritmovaných závislostí. Postup je vidět na obrázcích 8 až 15 vlevo a výsledné V_p jsou uvedeny v tab. 1. Pokud máme proměřený dostatečný počet bodů, tak můžem e potenciál plazmatu určit také pomocí provedení druhé derivace, protože sondová charakteristika má v potenciálu plazmatu inflexní bod. Druhé derivace jsou vyneseny na obr. 16 až 23. Takto určený potenciál plazmatu je v tab. 1 označen jako $V_{\rm p,d}$. Vždy platí, že $V_{\rm p}$ je větší než $V_{\rm fl}$. Stejně jako $V_{\rm fl}$, potenciál plazmatu s rostoucím výbojovým proudem roste, při změně tlaku nevykazuje žádný trend. Nyní můžeme ze vztahu (1) dopočítat $U_{\rm S}$. Pokud následně vyneseme do grafů závislosti ln $I_{\rm e}=-\frac{e}{kT_{\rm e}}U_{\rm S}+Q$ pro oblasti $-2(V_{\rm p}-V_{\rm fl})\leq U_{\rm S}\leq 0$, můžeme z elektronového proudu pro $U_{\rm S}=0$ dle vztahu (3) dopočítat koncentraci elektronů. Závislosti $\ln I_{\rm e} = f(U_{\rm S})$ proložené přímkou jsou na ob<mark>y</mark>ázcích 8 až 23 vpravo. Výsledné elektronové teploty a koncentrace elektronů jsou v tab. 2. S rostoucím výbojovým proudem roste i koncentrace elektronů. Metodou průsečíků asymptot teplota elektronů s výbojovým proudem klesá, ale metodou druhé derivace je konstantní. S rostoucím tlakem pozorujeme klesající teplotu a rostoucí koncentrace elektronů při použití obou metod. Rozdílem výsledků metod je hlavně nižší plazmový potenciál a koncentrace elektronů, jejichž závislost je výraznější při použití metody druhé derivace. V obou metodách jsme však ve stejném řádu 10¹⁴ m⁻³.

Tabulka 1: Plovoucí a plazmové potenciály

p = 160 Pa				$I_{\rm v}=40~{\rm mA}$			
$I_{\rm v} [{\rm mA}]$	$V_{\rm fl}$ [V]	$V_{\rm p}$ [V]	$V_{\rm p,d}$ [V]	p [Pa]	$V_{\rm fl}$ [V]	$V_{\rm p}$ [V]	$V_{ m p,d}$
30	-48,0	-47,7	-43,4	8	-45,3	-44,8	-43,8
40	-43,8	-43,4	-39,7	16	-45,8	-45,2	-44,4
50	-42,2	-41,6	-37,5	32	-45,0	-44,6	-43,4
				80	-44,4	-43,9	-42,8
T.				200	-50,9	-49,9	-45,8

Tabulka 2: Teploty a koncentrace elektronů

	p = 160		$I_{\rm v}=40~{ m mA}$			
$I_{\rm v} [{\rm mA}]$	T [eV]	$n_{\rm e}[10^{14}{\rm m}^{-3}]$	p [Pa]	T [eV]	$n_{\rm e}[10^{14}{\rm m}^{-3}]$	
30	3,3	1,0	8	4,6	0,8	
40	2,8	1,6	16	4,3	1,1	
50	2,6	2,3	32	4,0	1,2	
			80	3,7	1,4	
			200	2,2	1,7	
$I_{\rm v} [{\rm mA}]$	$T_{\rm d} [{\rm eV}]$	$n_{\rm e,d}[10^{14}{\rm m}^{-3}]$	p [Pa]	$T_{\rm d} [{\rm eV}]$	$n_{\rm e,d}[10^{14}{\rm m}^{-3}]$	
30	2,4	4,0	8	4,4	1,1	
40	2,4	5,4	16	4,0	1,3	
50	2,5	7,7	32	3,8	1,6	
			80	3,5	2,0	
I e hogon	org geri	gorg greenings	200	2,0	6,0	