# AAC: Séance 7

# Benjamin Van Ryseghem

#### 19 novembre 2012

# Exercice 7: SAT

# Question 1

forme booléenne  $\nrightarrow$  forme disjonctive  $\to$  test polynomiale de satisfiabilité  $\Rightarrow$  formule booléenne testée en temps polynomiale.

Passer d'une forme booléenne a une forme disjonctive ne peut pas forcement se faire de façon polynomiale.

# 1 Exercice 1 : Vrai ou Faux

#### 1.1 Question 1

| Toute propriété NP est aussi P                     | Vrai si P = NP |
|----------------------------------------------------|----------------|
| Toute propriété P est aussi NP                     | Vrai           |
| Une propriété NP est une propriété non polynomiale | Faux           |
| Il existe une propriété NP polynomiale             | Vrai           |
| Il existe une propriété NP non polynomiale         | Vrai si P≠NP   |
| Une propriété NP-dur n'est pas P                   | Vrai si P≠NP   |

# 1.2 Question 2

| Si P <sub>1</sub> se réduit polynomialement en Q, Q est P       | Faux |
|-----------------------------------------------------------------|------|
| Si Q se réduit polynomialement en P <sub>1</sub> , Q est P      | Vrai |
| Si Q se réduit polynomialement en P <sub>2</sub> , Q est NP-dur | Faux |
| Si P <sub>2</sub> se réduit polynomialement en Q, Q est NP-dur  | Vrai |
| Si Q se réduit polynomialement en P <sub>3</sub> , Q est NP     | Vrai |
| Si $P_3$ se réduit polynomialement en $Q$ , $Q$ est $NP$        | Faux |

# 2 Exercice 2

# 2.1 Question 1 : Montrer que le problème COL est NP-complet

 $\begin{tabular}{ll} \textbf{Certificat} & \textbf{Un certificat pour $G$ est juste un coloriage des noeuds. On peut par exemple le représenter par un tableau de couleurs indexé par les sommets. On a donc : \\ \end{tabular}$ 

taille du certificat  $\Leftarrow$  taille du graphe

(on suppose que la taille d'un graphe est au moins le nombre de sommets plus le nombre d'arcs) La taille d'un certificat est alors bien linéaire, donc polynomialement bornée, par rapport à celle de la donnée.

Algorithme de preuve Un certificat est valide  $\Leftrightarrow$  aucun arc ne relie deux noeuds de même couleur : le vérifier est bien polynomial :

La complexité de l'algorithme est de l'ordre de card(A) donc bien polynomiale.

Conclusion Le problème est bien NP. Il reste à montrer qu'il est NP-dur.

Soit une instance de 3-COL définie par  $G_3=(S_3,A_3)$  un graphe non orienté. On construit une instance de COL de la manière suivante :

- on fixe  $G = G_3$ .
- on fixe k = 3 pour l'instance de COL.
- la transformation est bien polynomiale.

**Montrons que**  $I_3vrai \Leftrightarrow Ivrai$  Montrons que s'il existe une 3-coloration dans  $G_3$  alors dans G aussi et inversement.

Donc 3-COL se réduit polynomialement vers COL. Or comme 3-COL est NP-complet, on en déduit que COL est NP-dur.

Conclusion COL est NP et NP-dur, donc COL est NP-complet.

#### 2.2 Question 2 :



Benjamin Van Ryseghem