Appendix

Polynómy, algebraické rovnice, korene a rozklad racionálnej funkcie

A1. Základné vlastnosti polynómov

Polynóm n-tého stupňa premennej x (komplexnej) je definovaný vzťahom

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \sum_{k=0}^{n} a_k x^k$$
(A1)

kde $a_0, a_1, ..., a_k$ sú koeficienty (komplexné) polynómu. *Stupeň polynómu* P(x) označíme

$$deg(P) = n \tag{A2}$$

Nech $\mathcal{P}(x)$ je množina všetkých polynómov premennej x,

$$\mathcal{P}(x) = \{P(x)\}\tag{A2}$$

Nad takto definovanou množinou obsahujúcou všetky možné polynómy premennej x môžeme definovať operácie súčinu skalára s polynómom, súčet, súčin a rozdiel dvoch polynómov. Pripomeňme, že tieto operácie zachovávajú množinu $\mathcal{P}(x)$. Dva polynómy $P(x) = a_0 + a_1 x + ... + a_n x^n$ a $Q(x) = b_0 + b_1 x + ... + b_m x^m$ sú si **rovné** (ekvivalentné, P(x) = Q(x)) vtedy a len vtedy ak platí

(1)
$$deg(P) = n = deg(Q) = m$$
 (A3a)

(2)
$$(\forall k \in \{1, 2, ..., n\})(a_k = b_k)$$
 (A3b)

Jednotlivé operácie nad polynómami sú špecifikované takto:

(a) **Súčin skalára** α s polynómom $P(x) = a_0 + a_1x + ... + a_nx^n$

$$\alpha * P(x) = \sum_{k=0}^{n} (\alpha * a_k) x^k$$
 (A4a)

(b) **Súčet (rozdiel) polynómov** $P(x) = a_0 + ... + a_n x^n$ a $Q(x) = b_0 + ... + b_m x^m$, pričom predpokladáme, že $deg(P) \ge deg(Q)$

$$P(x) \pm Q(x) = \sum_{k=0}^{m} (a_k \pm b_k) x^k + \sum_{k=0}^{n} a_k x^k$$
 (A4b)

(c) **Súčin polynómov** $P(x) = a_0 + ... + a_n x^n$ a $Q(x) = b_0 + ... + b_m x^m$

$$P(x) * Q(x) = \sum_{k=0}^{n} \sum_{k'=0}^{m} a_k b_{k'} x^{k+k'}$$
 (A4c)

Operácia delenia dvoch polynómov je podstatne komplikovanejšia, než ako predchádzajúce operácie, **podiel** polynómov $P(x) = a_0 + ... + a_n x^n$ a $Q(x) = b_0 + ... + b_m x^m$ má tvar

$$\frac{P(x)}{Q(x)} = R(x) + \frac{S(x)}{Q(x)} \tag{A5a}$$

čo môžeme prepísať pomocou vynásobenia polynómom Q(x) do alternatívneho tvaru

$$P(x) = R(x) * Q(x) + S(x)$$
(A5b)

V prípade, že platí $\deg(P) < \deg(Q)$, potom platí S(x) = P(x) a R(x) = 0, t. j. podiel dvoch polynómov je dobre definovaná operácia len ak je splnená táto podmienka

$$\deg(P) \ge \deg(Q) \tag{A6}$$

Potom pre stupne R(x) a S(x) platí

$$deg(R) = deg(P) - deg(Q) \ge 0 \tag{A7a}$$

$$deg(S) < deg(Q) \tag{A7b}$$

Príklad 1. Nech $P(x) = 1 + 2x + x^2 - x^3$ a $Q(x) = 2 + x + x^2$, podľa požadovanej vlastnosti (A5a) spočítame podiel

$$\frac{1+2x+x^2-x^3}{2+x+x^2} = R(x) + \frac{S(x)}{2+x+x^2}$$

alebo

$$1 + 2x + x^2 - x^3 = R(x)(2 + x + x^2) + S(x)$$
 (*)

Predpokladajme, že polynómy R(x) a S(x) majú tvar

$$R(x) = a_0 + a_1 x$$

$$S(x) = b_0 + b_1 x$$

kde a_i a b_j sú neznáme koeficienty, ktoré určíme tak, aby platila podmienka (*). Dosadením týchto dvoch polynómov do (*) dostaneme

$$1 + 2x + x^{2} - x^{3} = (a_{0} + a_{1}x)(2 + x + x^{2}) + (b_{0} + b_{1}x)$$

Porovnaním pravej a l'avej strany dostaneme rovnice, ktoré špecifikujú neznáme koeficienty a_i a b_j

$$1 + 2x + x^{2} - x^{3} = \underbrace{\left(2a_{0} + b_{0}\right)}_{1} + \underbrace{\left(a_{0} + 2a_{1} + b_{1}\right)}_{2} x + \underbrace{\left(a_{0} + a_{1}\right)}_{1} x^{2} + \underbrace{\left(a_{1}\right)}_{-1} x^{3}$$

Riešením týchto rovníc dostaneme

$$a_1 = -1, a_0 = 2, b_1 = -2, b_0 = -3$$

Potom riešenie delenia dvoch polynómov má tvar

$$\frac{1+2x+x^2-x^3}{2+x+x^2} = (2-x) + \frac{-3-2x}{2+x+x^2}$$

Príklad 2. Konštrukcia rozkladu racionálnej funkcie na tvar (A5a) môže byť jednoducho realizovaná pomocou "stredoškolskej" operácia delenie dvoch polynómov, čo ukážeme na príklade dvojice polynómov z predchádzajúceho príkladu

$$(-x^3 + x^2 + 2x + 1): (x^2 + x + 2) = ?$$

1. krok:

$$(\boxed{-x^3} + x^2 + 2x + 1) : (\boxed{x^2} + x + 2) = -x$$

$$\frac{-x^3}{x^2} = -x$$

$$\frac{+x^3 + x^2 + 2x}{2x^2 + 4x + 1}$$

2. krok:

$$(-x^{3} + x^{2} + 2x + 1): (\boxed{x^{2}} + x + 2) = \underbrace{-x + 2}_{podiel}$$

$$\boxed{2x^{2}} + 4x + 1$$

$$\frac{2x^{2}}{x^{2}} = 2$$

$$\underline{-2x^{2} - 2x - 4}_{2bytok}$$

$$2x - 3$$

$$\underline{2bytok}$$

3. krok:

$$(-x^{3} + x^{2} + 2x + 1): (\boxed{x^{2}} + x + 2) = \underbrace{-x + 2 + \frac{2x - 3}{x^{2} + x + 2}}_{podiel\ a\ zbytok}$$

$$\boxed{2x - 3}$$

A2. Algebraická rovnica, korene

C. F. Gauss (1777-1855)

Nech $P(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ je polynóm *n*-tého stupňa, algebraická rovnica priradená tomuto polynómu má tvar

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$$
(A8)

Číslo α sa nazýva *koreň* algebraickej rovnice (A8) práve vtedy ak platí

$$P(\alpha) = 0 \tag{A9}$$

Môžeme si položiť otázku, či každá algebraická rovnica má aspoň jeden koreň, tento problém rieši tzv. Gaussova fundamentálna veta algebry.

Fundamentálna veta algebry. Každá algebraická rovnica má v oblasti komplexných čísel aspoň jeden koreň.

Dôkaz tejto vety je netriviálna záležitosť, pri jej dôkazu sa obvykle využíva sofistikovaný aparát matematickej analýzy v oblasti komplexných čísel.

Ak α_1 je koreňom algebraickej rovnice (A8) potom platí formula

$$P(x) = (x - \alpha_1)S(x)$$
 (A10a)

kde S(x) je polynóm so stupňom o jednotku menším, ako stupeň pôvodného polynómu P(x)

$$deg S(x) = deg P(x) - 1$$
 (A10b)

Lineárny polynóm $(x-\alpha_1)$ sa nazýva *koreňový člen*.

Obráťme našu pozornosť na dôkaz dôležitej formuly (A10). Nech α_1 je koreňom algebraickej rovnice $P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n = 0$ n-tého stupňa, potom platí $P(\alpha_1) = 0$. Pre každé komplexné x potom platí

$$P(x) - P(\alpha_1) = (x - \alpha_1)a_1 + (x^2 - \alpha_1^2)a_2 + \dots + (x^n - \alpha_1^n)a_n$$
 (*)

Pre každé k > 1 platí $(x^k - \alpha_1^k) = (x - \alpha_1)(\alpha_1^{k-1} + \alpha_1^{k-2}x + ... + x^{k-1})$, Potom (*) môžeme upraviť do tvaru $P(x) - P(\alpha_1) = (x - \alpha_1)(\beta_0 + \beta_1 x + ... + \beta_{n-1} x^{n-1})$, kde $\beta_0, \beta_1, ..., \beta_{n-1}$ sú koeficienty nového polynómu $S(x) = \beta_0 + \beta_1 x + ... + \beta_{n-1} x^{n-1}$, týmto sme dokázali (A10a).

Postupným použitím formuly (A10) môžeme každý polynóm P(x) prepísať do tvaru, ktorý obsahuje len koreňové členy

$$P(x) = (x - \alpha_1)(x - \alpha_2)...(x - \alpha_n)$$
 (A11)

kde $\alpha_1, \alpha_2, ..., \alpha_n$ sú korene algebraickej rovnice P(x) = 0.

Predpokladajme, že polynóm $P(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ obsahuje len reálne koeficienty $a_0, a_1, ..., a_n$, potom algebraická rovnica P(x) = 0 rovnica obsahuje buď len reálne korene, ak obsahuje aj komplexné korene, potom tieto sa vyskytujú po komplexne združených dvojiciach $\alpha_{1,2} = a \pm ib$, t. j. $\alpha_2 = \alpha_1^*$. Dôkaz tejto vety je jednoduchý. Nech platí $P(\alpha_1) = a_0 + a_1\alpha_1 + ... + a_n\alpha_1^n = 0$, komplexným združením tejto formuly dostaneme $P(\alpha_1^*) = a_0 + a_1\alpha_1^* + ... + a_n(\alpha_1^*)^n = 0$, t. j. aj α_1^* je koreňom algebraickej rovnice P(x) = 0. Súčin dvoch koreňových členov, ktoré sú priradené navzájom komplexne združeným koreňom má tvar $(x - \alpha_1)(x - \alpha_1^*) = x^2 + px + q$, kde p = -2a, $q = a^2 + b^2$, t. j. $x^2 + px + q = 0$ je kvadratická rovnica s reálnymi koeficientmi, ktorá obsahuje dvojicu navzájom komplexne združených koreňov. To znamená, že polynóm $P(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ s reálnymi koeficietmi môžeme prepísať ako súčin elementárnych členov, ktoré sú priradené reálnym a komplexným koreňom pridruženej algebraickej rovnice P(x) = 0

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = \underbrace{(x - \alpha_1) \dots (x - \alpha_u)}_{re\'{a}lne \ korene} \underbrace{(x^2 + p_1 x + q_1) \dots (x^2 + p_v x + q_v)}_{komplexn\'{e} \ korene}$$
(A12)

Na záver upravíme túto dôležitú formulu rozkladu polynómu s reálnymi koeficientmi pomocou multiplicity (násobnosti) tak reálnych ako aj komplexných koreňov

$$P(x) = \underbrace{(x - \alpha_1)^{r_1} (x - \alpha_2)^{r_2} \dots (x^2 + p_1 x + q_1)^{s_1} (x^2 + p_2 x + q_2)^{s_2} \dots}_{komplexn\'{e} \ korene}$$
(A13)

kde r_i je násobnosť (multiplicita) *i*-teho reálneho koreňa a s_j je násobnosť *j*-tej dvojice komplexne združených koreňov.

A3. Hornerova schéma výpočtu funkčnej hodnoty polynómu

K tomu, aby sme efektívne vypočítali funkčnú hodnotu polynómu $P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$ pre dané číslo x, upravíme polynóm do tvaru

$$a_{0} + a_{1}x + a_{2}x^{2} + \dots + a_{n}x^{n} = a_{0} + \underbrace{\left(a_{1} + \underbrace{\left(a_{2} + \underbrace{\left(a_{3} + \dots \left(a_{n} \times \underbrace{b_{n}}\right)\right)}_{b_{3}}x\right)}_{b_{2}}x\right)}_{b_{1}}x$$
(A14)

Zavedieme rekurentne špecifikované nové koeficienty b_i , pomocou ktorých postupne počítame funkčnú hodnotu polynómu P(x)

$$b_{n} = a_{n}$$

$$b_{n-1} = a_{n-1} + b_{n}x$$

$$b_{n-2} = a_{n-2} + b_{n-1}x$$
......
$$b_{1} = a_{1} + b_{2}x$$

$$P(\alpha) = b_{0} = a_{0} + b_{1}x$$
(A15)

Posledná hodnota koeficientu b_0 sa rovná funkčnej hodnote polynómu P(x) v čísle α . Postupný výpočet týchto koeficientov, od b_n až poi b_0 , nayývame Hornerova schéma a je vizualizovaná pomocou tabuľky

Príklad 3. Majme polynóm $P(x) = 6 + x + 2x^2 + 2x^3 - 4x^4 + x^5$, našou úlohou je vzpočítať funkčnú hodnotu tohto polynómu pre číslo x = 2. Priamočiary prístup (brute force) k tomuto výpočtu má nasledovný tvar

$$P(x) = 6 + 2 + 2(2)^{2} + 2(2)^{3} - 4(2)^{4} + (2)^{5} = 6 + 2 + 2 \times 4 + 2 \times 8 - 4 \times 16 + 32 = 0$$

Podstatne jednoduchší je výpočet založený na predchádzajúcej rekurentnej schéme

$$b_5 = 1$$

$$b_4 = -4 + (1) \times 2 = -2$$

$$b_3 = 2 + (-2) \times 2 = -2$$

$$b_2 = 2 + (-2) \times 2 = -2$$

$$b_1 = 1 + (-2) \times 2 = -3$$

$$b_0 = 6 + (-3) \times 2 = 0 \Rightarrow P(2) = 0$$

Týmto sme aj priamo z definície dokázali, že číslo x=2 je koreňom danej algebraickej rovnice $6+x+2x^2+2x^3-4x^4+x^5=0$. Tento postup môže byť jednoducho reprezentovaný aj tabuľkovou metódou, ktorá sa nazýva Hornerova schéma (alebo algoritmus), pozri obr. A1.

		a_{4}/b_{4}					I
X	1	-4	2	2	1	6	
2	1	-2	-2	-2	-3	0	
1	1	-3	-1	1	2	8	
-1	1	-5	7	-5	6	0	

Obrázok A1. Znázornenie tabuľkovej metódy výpočtu funkčných hodnôt polynómu, pre tri číselné hodnoty argumentu x = 2, 1, -1, v prvom a treťom prípade bolo ukázané, že tieto čísla sú aj koreňom príslušnej algebraickej rovnice $x^5 - 4x^4 + 2x^3 + 2x^2 + x + 6 = 0$.

A4. Konštrukcia delenia polynómov koreňovými členmi pomocou Hornerovej schémy

Hornerova schéma môže byť efektívne použitá aj pre delenie polynómov ich koreňovými členmi. Podľa formuly A10 platí

$$P(x) = (x - \alpha)Q(x) \tag{A16}$$

kde α je reálny koreň algebraickej rovnice $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$, polynóm Q(x) je výsledok delenia polynómu P(x) koreňovým členom, $P(x)/(x-\alpha) = Q(x)$ pričom $\deg Q(x) = \deg P(x) - 1$. Predpokladajme, že polynóm Q(x) má tvar

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-1} + \dots + b_2 x + b_1$$

Z podmienky (A16) dostaneme roznásobením pravej strany tejto rovnice

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = (x - \alpha) (b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1) = b_n x^n + (b_{n-1} - \alpha b_n) x^{n-1} + (b_{n-2} - \alpha b_{n-1}) x^{n-2} + \dots + (b_1 - \alpha b_2) x - \alpha b_1$$

Porovnaním pravej a l'avej strany dostaneme tieto podmienky pre koeficienty dostaneme systém rekurentných rovníc (A15). Týmto sme dokázali, že pomocou Hornerovej schémy môžeme aj deliť polynómy elementárnym koreňovým členom $(x-\alpha)$. V prípade, že α je koreňom rovnice $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$,

potom dostaneme, že koeficient $b_0 = 0$, hovoríme, že polynóm P(x) je deliteľný členom $(x-\alpha)$ bez zbytku; v opačnom prípade, ak $b_0 \neq 0$, potom polynóm P(x) je deliteľný členom $(x-\alpha)$ so zbytkom b_0 .

Príklad 4. Polynóm $P(x) = 6 + x + 2x^2 + 2x^3 - 4x^4 + x^5$ budeme deliť členom $x - \alpha$ pre $\alpha = 1, 2$, Hornerova schéma je znázornená na obrázku A2

	a_5/b_5			a_2/b_2	1		ı
X	1	-4	2	2	1	6	
1	1	-3	-1	1	2	8	
2	1	-2	-2	-2	-3	0	

Obrázok A2. Znázornenie Hornerovej schémy pre výpočet funkčných hodnôt polynómu P(x) pre čísla $\alpha=1,2$. Z druhého riadku schémy vyplýva, že $\alpha=1$ nie je koreňom algebraickej rovnice P(x)=0 (t. j. polynóm P(x) je deliteľný členom x-1 so zbytkom 8, t. j. platí $P(x)/(x-1)=\left(x^4-3x^3-x^2+x+2\right)+8/(x-1)$. V treťom riadku je znázornený výpočet funkčnej hodnoty polynómu P(x) pre čísla $\alpha=2$, ktorá je v tomto prípade nulová. Potom hovoríme, že $\alpha=2$ je koreňom algebraickej rovnice P(x)=0; alebo, že polynóm P(x) je deliteľný členom x-2 bez zbytku, t. j. $P(x)/(x-2)=\left(x^4-2x^3-2x^2-2x-3\right)$.

Znázornený prístup pre výpočet funkčných hodnôt polynómu P(x) pre číslo $x=\alpha$ môže byť efektívne použitý na hľadanie koreňov algebraickej rovnice P(x)=0. Ak pre dané číslo $x=\alpha$ dostaneme v poslednom stĺpci nulovú hodnotu, potom $P(\alpha)=0$, t. j. číslo α je koreňom algebraickej rovnice P(x)=0. Taktiež, prvých (n-1) čísel v danom riadku sú koeficienty nového polynómu Q(x). Tak napríklad, na obr. A2 je v treťom riadku Hornerovej schémy prevedený výpočet funkčnej hodnoty P(2), v poslednom stĺpci je nulová hodnota, t. j. x=2 je koreňom algebraickej rovnice P(x)=0. Čísla z prvého až piateho stĺpca špecifikujú koeficienty nového polynómu Q(x)

$$\frac{P(x)}{(x-2)} = \underbrace{\left(x^4 - 2x^3 - 2x^2 - 2x - 3\right)}_{Q(x)}$$

To znamená, že tento riadok (v poslednom stĺpci s nulou) môžeme použiť pre stanovenie ďalších koreňov s už redukovaným polynómom Q(x), pozri obr. A3

	a_5/b_5	a_4/b_4	a_3/b_3	a_2/b_2	a_1/b_1	a_0/b_0	ı
X	1	-4	2	2	1	6	$x^5 - 4x^4 + 2x^3 + 2x^2 + x + 6$
2	1	-2	-2	-2	-3	0	$(x-2)(x^4-2x^3-2x^2-2x-3)$
-1	1	-3	1	-3	0		$(x-2)(x+1)(x^3-3x^2+x-3)$
3	1	0	1	0			$(x-2)(x+1)(x-3)(x^2+1)$

Obrázok A3. Modifikovaný tvar Hornerovej schémy, kde prvý riadok obsahuje koeficienty polynómu $P(x) = 6 + x + 2x^2 + 2x^3 - 4x^4 + x^5$. V ďalších troch riadkoch sme ukázali, že čísla x = 2, -1, 3 sú korene algebraickej rovnice P(x) = 0. Každý riadok je využitý ako nový redukovaný polynóm Q(x), ktorý vznikol z predchádzajúceho polynómu výpočtom jeho funkčnej hodnoty pre daný koreň.

Na obr. A3 je ukázané, že postupným použitím Hornerovej schémy môžeme vyjadriť polynóm P(x) ako súčin koreňových členov $(x-\alpha_i)$, ktoré sú priradené reálnym koreňom algebraickej rovnice P(x)=0. Určité problémy spôsobuje stanovanie členov (x^2+px+q) so záporným diskriminantom $D=p^2-4q$, ktoré sú priradené komplexným koreňom algebraickej rovnice P(x)=0.

Vychádzajúc z analógie s riešeným príkladom na obr. A3 vyjadríme algebraickú rovnicu P(x)=0 pomocou rozkladu na súčin koreňových členov

$$Q(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} ... (x - \alpha_a)^{k_a} (x^2 + p_1 x + q_1)^{l_1} (x^2 + p_2 x + q_2)^{l_2} ... (x^2 + p_b x + q_b)^{l_b}$$
(A17)

kde α_i je k_i -násobný reálny koreň a kvadratická rovnica $x^2 + p_j x + q_j$ špecifikuje dvojicu komplexne združených l_j -násobných koreňov $-(p/2) \pm \sqrt{(p/2)^2 - q}$.

Príklad 5. Nájdite korene algebraickej rovnice

$$P(x) = x^6 - 5x^5 + 12x^4 - 16x^3 + 17x^2 - 13x + 6 = 0$$

ak poznáme komplexný koreň tejto rovnice $x=1+\sqrt{2}i$. K riešeniu tohto príkladu využijeme vlastnosť, že zo skutočnosti, že rovnica má reálne koeficienty, potom komplexné korene sa vyskytujú po dvojica navzájom komplexne združené, $x_{1,2}=1\pm\sqrt{2}i$. Zostrojíme kvadratickú rovnicu, ktorá má tieto komplexné korene

$$q(x) = (x - x_1)(x - x_2) = (x - 1 - \sqrt{2}i)(x - 1 + \sqrt{2}i) = x^2 - 2x + 3$$

Týmto kvadratickým polynómom podelíme pôvodnú algebraickú rovnicu

$$(x^6 - 5x^5 + 12x^4 - 16x^3 + 17x^2 - 13x + 6): (x^2 - 2x + 3) = x^4 - 3x^3 + 3x^2 - 3x + 2$$

V ďalšom kroku budeme hladať ďalšie štyri korene riešením kvartickej algebraickej rovnice x^4 -3 x^3 +3 x^2 -3x+2=0. Jej kandidáti na racionálne korene sú $\{\pm 1, \pm 2\}$, použitím Hornerovej schémy dostaneme

	a_4/b_4			a_1/b_1		1
X	1	-3	3	-3	2	$x^4 - 3x^3 + 3x^2 - 3x + 2$
1	1	-2	1	-2	0	$(x-1)(x^3-2x^2+x-2)$
2	1	0	1	0		$(x-1)(x-2)(x^2+1)$

To znamená, že kompletný rozklad polynómu má tvar

$$P(x) = x^6 - 5x^5 + 12x^4 - 16x^3 + 17x^2 - 13x + 6 = (x - 1)(x - 2)(x^2 - 2x + 3)(x^2 + 1)$$

A5. Racionálne korene algebraických rovníc

Ukážeme jednoduchú aplikáciu Hornerovej schémy, ako určiť korene algebraickej rovnice s celočíselnými koeficientami za predpokladu, že existujú racionálne korene.

Veta A2.

Ak algebraická rovnica s celočíselnými koeficietami $P(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n = 0$ má racionálne korene $\alpha = p/q$, kde p a q sú celé nesúdeliteľné čísla, potom koeficient a_0 je deliteľný číslom p a koeficient a_n je deliteľný číslom q.

Dôkaz tejto vety je pomerne jednoduchý. Nech algebraická rovnica P(x) = 0 má racionálny koreň $\alpha = p/q$, potom dosadením tohto koreňa do algebraickej rovnice dostaneme

$$a_0q^n + a_1pq^{n-1} + a_2p^2q^{n-2} + \dots + a_np^n = 0$$
 (*)

Túto rovnicu prepíšeme do tvaru

$$\frac{a_0}{n}q^n = -\left(a_1q^{n-1} + a_2pq_{n-2} + \dots + a_np^{n-1}\right)$$
(A17)

Pretože pravá strana tejto rovnice je celé číslo, potom a_0/p musí byť súdeliteľné (pretože p a q sú nesúdeliteľné). Podobným spôsobom prepíšeme (*) do tvaru

$$\frac{a_n}{a}p^n = -\left(a_0q^{n-1} + a_1pq^{n-2} + \dots + a_{n-1}p^{n-1}\right)$$
(A18)

Pretože pravá strana je celé číslo, potom a_n/q musí byť súdeliteľné, QED.

Príklad 6. Hľadajme korene algebraickej rovnice $8x^3 - 36x^2 + 54x - 27 = 0$. Predpokladajme, že táto rovnica má racionálne korene typu p/q. Na základe predchádzajúcej vety vieme, že ak existuje takýto racionálny koreň, potom 27/p a 8/q sú súdeliteľné, potom kandidáti pre p a q majú hodnoty

27/p je deliteľné $\Rightarrow p = \pm 1, \pm 3, \pm 9, \pm 27$, 8/q je deliteľné $\Rightarrow q = \pm 1, \pm 2, \pm 4, \pm 8$ Potom 16 kandidátov na racionálne korene danej algebraickej rovnice sú tieto

$$\alpha = \frac{p}{q} \in \left\{ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm 3, \pm \frac{3}{2}, \pm \frac{3}{4}, \pm \frac{3}{8}, \pm 9, \pm \frac{9}{2}, \pm \frac{9}{4}, \pm \frac{9}{8}, \pm 27, \pm \frac{27}{2}, \pm \frac{27}{4}, \pm \frac{27}{8} \right\}$$

	a_3/b_3	a_{2}/b_{2}	a_1/b_1	a_0/b_0
X	8	-36	54	-27
3/2	8	-24	18	0
3/2	8	-12	0	
3/2	8	0		

To znamená, že pomocou Hornerovej schémy sme ukázali, že číslo x = 3/2 je koreňom algebraickej rovnice $8x^3 - 36x^2 + 54x - 27 = 8(x - 3/2)^3 = 0$

Príklad 7. Majme algebraickú rovnicu $-6+11x-12x^2+12x^3-6x^4+x^5=0$. Nech táto rovnica má racionálne korene, potom

$$\frac{-6}{p} = deliteľn\'e bez zbytku \Rightarrow p = \pm 1, \pm 2, \pm 3, \pm 6$$
$$\frac{1}{q} = deliteľn\'e bez zbytku \Rightarrow q = \pm 1$$

Potom racionálni kandidáti na korene sú z množiny

$$\alpha = \frac{p}{q} \in \{\pm 1, \pm 2, \pm 3, \pm 6\}$$

Pomocou Hornerovej schémy vykonáme verifikáciu, ktorý z 8 kandidátov je koreň

	a_5/b_5	a_4/b_4	a_3/b_3	a_2/b_2	a_1/b_1	a_0/D_0
X	1	-6	12	-12	11	-6
1	1	-5	7	-5	6	0
2	1	-3	1	-3	0	
3	1	0	1	0		

Verifikovali sme, že čísla $\alpha = 1,2,3$ sú korene danej algebraickej rovnice. V poslednom štvrtom riadku schémy sú koeficienty zbytku $(x^2 + 1)$. To znamená, že polynóm $P(x) = -6 + 11x - 12x^2 + 12x^3 - 6x^4 + x^5$ môžeme prepísať do tvaru súčinu koreňových členov

$$P(x) = -6 + 11x - 12x^{2} + 12x^{3} - 6x^{4} + x^{5} = (x-1)(x-2)(x-3)(x^{2}+1)$$

Algebraická rovnica má tri reálne korene $\alpha = 1, 2, 3$ a dva komplexné korene $\alpha = \pm i$.

A6. Rozklad racionálnej funkcie na sumu elementárnych parciálnych zlomkov

Racionálna funkcia R(x) premennej x je definovaná ako podiel dvoch polynómov

$$R(x) = \frac{P(x)}{Q(x)} \tag{A19}$$

pričom predpokladáme, že deg Q(x) > 0 (t. j. menovateľ nie je konštanta, potom by sa polynómy R(x) a P(x) líšili len konštantou). Rozklad racionálnej funkcie rozdelíme do 3 krokov.

1. krok: Racionálnu funkciu delením upravíme tak, aby stupeň čitateľa bol menší ako stupeň menovateľa

$$R(x) = \frac{P(x)}{Q(x)} = U(x) + \frac{S(x)}{Q(x)}$$
(A20)

V prípade, že deg P(x) > deg Q(x), potom pomocou delenia P(x): Q(x) znížime stupeň P(x) tak, aby bol menší ako stupeň Q(x), pričom zbytok delenia je S(x). Tento krok budeme ilustrovať jednoduchým príkladom

$$R(x) = \frac{P(x)}{Q(x)} = \frac{x^5 + x^4 - x^3 + x^2 - x + 1}{x^4 - 3x^3 + 3x^2 - 3x + 2} = \underbrace{x + 4}_{U(x)} + \underbrace{\frac{8x^3 - 8x^2 + 9x - 7}{x^4 - 3x^3 + 3x^2 - 3x + 2}}_{Q(x)}$$
(A21)

2. krok: Pomocou metódy špecifikovanej v kapitole A4 vyjadríme polynóm Q(x) ako súčin elementárnych členov. Najprv odhadneme kandidátov na racionálne korene $\alpha \in \{\pm 1, \pm 2\}$, použitím Hornerovej schémy vykonáme verifikáciu jednotlivých kandidátov na racionálne korene, dostaneme dva korene $\alpha_1 = 1$, $\alpha_2 = 2$, pričom zbytok je $x^2 + 1$, potom

$$Q(x) = x^4 - 3x^3 + 3x^2 - 3x + 2 = (x - 1)(x - 2)(x^2 + 1)$$
(A22)

3. krok. Rozklad S(x)/Q(x) má tvar

$$\frac{S(x)}{Q(x)} = \frac{8x^3 - 8x^2 + 9x - 7}{(x - 1)(x - 2)(x^2 + 1)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{Cx + d}{x^2 + 1}$$

Ak túto rovnicu vynásobíme Q(x) dostaneme

$$8x^3 - 8x^2 + 9x - 7 = A(x-2)(x^2+1) + B(x-1)(x^2+1) + C(x-1)(x-2)(Cx+D)$$

Roznásobením pravej strany a jej porovnaním s ľavou stranou dostaneme systém 4 lineárnych rovníc pre 4 neznáme *A*, *B*, *C* a *D*

$$A+B+C=8$$

 $-2A-B-2C+D=-8$
 $A-B+2C-3D=9$
 $-2A-B+2D=-7$

Riešením tohto systému dostaneme

$$A = -17, B = 19, C = 6, D = -11$$

To znamená, že rozklad racionálnej funkcie S(x)/Q(x) má finálny tvar

$$\frac{S(x)}{Q(x)} = \frac{8x^3 - 8x^2 + 9x - 7}{(x - 1)(x - 2)(x^2 + 1)} = \frac{-17}{x - 1} + \frac{19}{x - 2} + \frac{6x - 11}{x^2 + 1}$$

Kritický krok v zjednodušovaní racionálnej funkcie je 3. krok, kde sa racionálna funkcia S(x)/Q(x), pričom deg S(x) < deg Q(x), rozloží na súčet parciálnych zlomkov. Vo všeobecnosti tento krok môžeme špecifikovať takto: Nech

polynóm Q(x) má tvar (A17), potom racionálnu funkciu S(x)/Q(x) môžeme vyjadriť ako sumu jednotlivých elementárnych racionálnych funkcii, ktoré sú pridané buď

(1) reálnemu členu $(x-\alpha_i)^{k_i}$ (pre $1 \le i \le a$)

$$\frac{A_1^{(i)}}{(x-\alpha_i)} + \frac{A_2^{(i)}}{(x-\alpha_i)^2} + \dots + \frac{A_1^{(k_i)}}{(x-\alpha_i)^{k_i}}$$
(A23a)

(2) alebo komplexnému členu $(x^2 + p_j x + q_j)^{l_j}$

$$\frac{B_{j}^{(1)} + C_{j}^{(1)}x}{\left(x^{2} + p_{j}x + q_{j}\right)} + \frac{B_{j}^{(2)} + C_{j}^{(2)}x}{\left(x^{2} + p_{j}x + q_{j}\right)^{2}} + \dots + \frac{B_{j}^{(l_{j})} + C_{j}^{(l_{j})}x}{\left(x^{2} + p_{j}x + q_{j}\right)^{l_{j}}}$$
(A23b)

Príklad 8. Študujme racionálnu funkciu

$$\frac{x^2 + 2x - 3}{\left(x - 1\right)^3 \left(x - 3\right)^2 \left(x^2 + x + 1\right)^2}$$

Rozklad tejto ravionálnej funkcie na elementárne zlomky má tvar

$$\frac{x^2 + 2x - 3}{\left(x - 1\right)^2 \left(x - 3\right)^2 \left(x^2 + x + 1\right)} = \frac{A_1}{x - 1} + \frac{A_2}{\left(x - 1\right)^2} + \frac{A_3}{\left(x - 1\right)^3} + \frac{B_1}{x - 3} + \frac{B_2}{\left(x - 3\right)^2} + \frac{C_1 + D_1 x}{x^2 + x + 1}$$

Kde konštanty A_1 , A_2 , A_3 , B_1 , B_2 , C_1 , D_1 sú určené tak, aby sa pravá strana rovnala ľavej strane.

$$\frac{x^2 + 2x - 3}{(x - 1)^3 (x - 3)^2 (x^2 + x + 1)^2} = \frac{1}{3(x - 1)} - \frac{34}{169(x - 3)} + \frac{3}{13(x - 3)^2} + \frac{-47 - 67x}{505(x^2 + x + 1)}$$