# METODE DE INTEGRARE NUMERICĂ A ECUAȚIILOR DIFERENȚIALE CU DERIVATE PARȚIALE

În diferite aplicații din electromagnetism este necesar studiul câmpurilor potențiale, ceea ce necesită rezolvarea unor ecuații de forma:

$$\nabla^2 V = -\frac{\rho_v}{\varepsilon}$$
 unde  $\varepsilon$  este permitivitatea mediului.

Considerând cazul câmpurilor cu simetrie plan paralelă, ecuația devine:

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = -\frac{\rho_v(x, y)}{\varepsilon}$$

În continuare vor fi prezentate două metode numerice de rezolvare a ecuației  $\nabla^2 V = -\frac{\rho_v}{\epsilon}$  pentru un domeniu dat.

Aceste metode au drept scop determinarea valorii funcției necunoscute V (potențial) în orice punct al domeniului dat, pentru care este satisfăcută ecuația și condițiile specificate pentru frontiera domeniului.

### Condițiile de frontieră pot fi:

- •Condiții de *specia întâi*, sau condiții de tip Dirichlet, dacă pe frontieră sunt date valorile funcției necunoscute.
- •Condiții de *specia a doua*, sau condiții de tip Neumann, dacă pe frontieră sunt date valorile derivatei funcției necunoscute după direcția normală.
- •Condiții de *specie mixtă* dacă în unele zone ale frontierei sunt date condiții de specia întâi iar în celelalte zone condiții de specia a doua.

În ambele metode rezolvarea ecuației diferențiale, pe domeniul dat, este redusă la rezolvarea unui sistem de ecuații liniare ale cărui necunoscute sunt valorile potențialului în puncte ale domeniului dat.

### METODA DIFERENȚELOR FINITE

În aceasta metodă stabilirea coordonatelor punctelor domeniului, pentru care se vor determina valorile potențialului, se determină prin acoperirea domeniului dat, D, cu o rețea de drepte paralele. Pentru simplificarea expresiei ecuațiilor care urmează a fi determinate rețeaua de drepte se va duce paralel cu axele de coordonate.



În funcție de valorile utilizate pentru distanțele  $\Delta x$  și  $\Delta y$  pot fi definite diferite tipuri de rețele.

În cazul din figura:  $\Delta x = \Delta y = h$ , caz în care rețeaua are *pas constant* 

în caz contrar rețeaua are pas variabil.

Rețeaua trasată va determina în interiorul domeniului D un număr n de noduri.

Valorile funcției necunoscute (potențialul) în aceste noduri vor constitui necunoscutele sistemului de ecuații liniare echivalent ecuației diferențiale de rezolvat.

Pentru fiecare nod urmează a fi determinată o ecuație obținându-se în final un sistem de *n* ecuații cu *n* necunoscute.

Nodurile determinate de rețeaua trasată se împart în două categorii:

- •Noduri <u>interioare</u> domeniului D, de tip  $A_0$ , care au toate punctele vecine,  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$ , în interiorul domeniului.
- •Noduri <u>în apropierea frontierei</u> domeniului D, care au cel puțin unul dintre punctele vecine,  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$ , în afara domeniului.

Ecuația corespunzătoare unui **nod interior domeniului** D, se determină utilizând dezvoltarea în serie Taylor a unei funcții de două variabile:

$$V(x_0 + \Delta x, y_0 + \Delta y) = V(x_0, y_0) + \Delta x \cdot \frac{\partial V}{\partial x} \Big|_{(x_0, y_0)} + \Delta y \cdot \frac{\partial V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta x)^2}{2!} \cdot \frac{\partial^2 V}{\partial x^2} \Big|_{(x_0, y_0)} + \frac{\Delta x \cdot \Delta y}{2!} \cdot \frac{\partial^2 V}{\partial x \partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y^2} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta y)^2}{2!} \cdot \frac{\partial^2 V}{\partial y} \Big|_{(x_0, y_0)} + \frac{(\Delta$$

$$+\frac{(\Delta x)^3}{3!} \cdot \frac{\partial^3 V}{\partial x^3}\bigg|_{(x_0, y_0)} + \frac{(\Delta x)^2 \cdot \Delta y}{3!} \cdot \frac{\partial^2 V}{\partial x^2 \partial y}\bigg|_{(x_0, y_0)} + \frac{\Delta x \cdot (\Delta y)^2}{3!} \cdot \frac{\partial^2 V}{\partial x \partial y^2}\bigg|_{(x_0, y_0)} + \frac{(\Delta y)^3}{3!} \cdot \frac{\partial^3 V}{\partial y^3}\bigg|_{(x_0, y_0)} + \cdots$$

Pentru o rețea de drepte paralele cu axele, coordonatele a două puncte alăturate vor diferi fie prin valoarea  $\Delta x$  fie prin valoarea  $\Delta y$ .

Ca urmare particularizarea relației conduce la relații de o formă mai simplă.

### Rețele cu pas constant

#### a) Determinarea ecuației corespunzătoare unui nod interior domeniului

Prin particularizarea ecuației succesiv pentru nodurile  $A_1$ ,  $A_2$ ,  $A_3$ ,  $A_4$  se obține:

$$V_{1} = V\left(x_{0} - \Delta x, y_{0}\right) = V\left(x_{0}, y_{0}\right) - \Delta x \cdot \frac{\partial V}{\partial x}\Big|_{\left(x_{0}, y_{0}\right)} + \frac{\left(\Delta x\right)^{2}}{2!} \cdot \frac{\partial^{2} V}{\partial x^{2}}\Big|_{\left(x_{0}, y_{0}\right)} - \frac{\left(\Delta x\right)^{3}}{3!} \cdot \frac{\partial^{3} V}{\partial x^{3}}\Big|_{\left(x_{0}, y_{0}\right)}$$

$$V_2 = V\left(x_0 + \Delta x, y_0\right) = V\left(x_0, y_0\right) + \Delta x \cdot \frac{\partial V}{\partial x}\Big|_{\left(x_0, y_0\right)} + \frac{\left(\Delta x\right)^2}{2!} \cdot \frac{\partial^2 V}{\partial x^2}\Big|_{\left(x_0, y_0\right)} + \frac{\left(\Delta x\right)^3}{3!} \cdot \frac{\partial^3 V}{\partial x^3}\Big|_{\left(x_0, y_0\right)}$$

$$V_{3} = V\left(x_{0}, y_{0} - \Delta y\right) = V\left(x_{0}, y_{0}\right) - \Delta y \cdot \frac{\partial V}{\partial y}\bigg|_{\left(x_{0}, y_{0}\right)} + \frac{\left(\Delta y\right)^{2}}{2!} \cdot \frac{\partial^{2} V}{\partial y^{2}}\bigg|_{\left(x_{0}, y_{0}\right)} - \frac{\left(\Delta y\right)^{3}}{3!} \cdot \frac{\partial^{3} V}{\partial y^{3}}\bigg|_{\left(x_{0}, y_{0}\right)}$$

$$V_{4} = V(x_{0}, y_{0} + \Delta y) = V(x_{0}, y_{0}) + \Delta y \cdot \frac{\partial V}{\partial y}\Big|_{(x_{0}, y_{0})} + \frac{(\Delta y)^{2}}{2!} \cdot \frac{\partial^{2} V}{\partial y^{2}}\Big|_{(x_{0}, y_{0})} + \frac{(\Delta y)^{3}}{3!} \cdot \frac{\partial^{3} V}{\partial y^{3}}\Big|_{(x_{0}, y_{0})}$$

Notând 
$$V_0 = V(x_0, y_0)$$

și ținând seama că  $\Delta x = \Delta y = h$ , prin însumarea celor patru relații se obține ecuația:

$$V_{1} + V_{2} + V_{3} + V_{4} = 4 \cdot V_{0} + \left( \frac{\partial^{2} V}{\partial x^{2}} \Big|_{(x_{0}, y_{0})} + \frac{\partial^{2} V}{\partial y^{2}} \Big|_{(x_{0}, y_{0})} \right) \cdot h^{2}$$

Deoarece pe domeniul D este satisfăcută relația  $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = -\frac{\rho_v(x, y)}{\varepsilon}$ 

rezultă în final

$$V_1 + V_2 + V_3 + V_4 - 4 \cdot V_0 = -\frac{\rho_v(x_0, y_0)}{\varepsilon} \cdot h^2$$

Coeficientul necunoscutei  $V_0$  este egal în modul, cu suma celorlalți patru coeficienți ai necunoscutelor din membrul stâng al ecuației.

## b) Determinarea ecuației corespunzătoare unui nod în apropierea frontierei domeniului

Pentru această categorie de noduri ecuația se determină în funcție de tipul condițiilor de frontieră, după cum urmează:

### Condiții de frontieră de specia întâi. Pot interveni următoarele situații.

### - <u>Frontiera nu intersectează rețeaua</u>:

În această situație rețeaua conține noduri ale rețelei.

Ca urmare pentru nodul  $A_0$  se va utiliza o ecuație de forma

$$V_1 + V_2 + V_3 + V_4 - 4 \cdot V_0 = -\frac{\rho_v(x_0, y_0)}{\varepsilon} \cdot h^2$$

în care se înlocuiesc valorile cunoscute ale potențialului în punctele aflate pe frontieră  $A_2$  și  $A_4$ . Aceste valori vor fi trecute în membrul drept al ecuației.



### Frontiera intersectează rețeaua



Pentru nodul  $A_0$  din figura, se va utiliza tot o ecuație de forma:

$$V_1 + V_2 + V_3 + V_4 - 4 \cdot V_0 = -\frac{\rho_v(x_0, y_0)}{\varepsilon} \cdot h^2$$

alegând una din următoarele trei posibilități:

- ➤ Utilizarea unei <u>rețele cu un pas mai mic</u>, până se ajunge la situația din cazul precedent.
- $\triangleright$ Utilizarea, pentru punctele  $A_2$  și  $A_4$  a unor valori ale potențialului rezultate prin aplicarea unor <u>relații de interpolare</u>.
- ightharpoonupUtilizarea unei <u>rețele cu pas variabil</u> astfel încât punctele  $A_2$  și  $A_4$  să aparțină frontierei

### ➤ Condiții de frontieră de <u>specia a doua</u>.

Această situație este reprezentată în figura:

Deoarece pasul rețelei este în general mic se poate aproxima că potențialele punctelor  $A_2$  și N sunt egale.



Pe frontieră fiind specificate condiții de specia a doua, rezultă că este cunoscută valoarea

$$\left. \frac{\partial V}{\partial n} \right|_N$$

Ecuația corespunzătoare punctului  $A_2 \cong N$  se va deduce plecând de la relația de definiție a derivatei în raport cu normala:

$$\frac{\partial V}{\partial n} = \nabla V \cdot \vec{n} = \left( \vec{i} \cdot \frac{\partial V}{\partial x} + \vec{j} \cdot \frac{\partial V}{\partial y} \right) \cdot \vec{n} \quad \text{in care: } \vec{n} = \vec{i} \cdot n_x + \vec{j} \cdot n_y$$

Dezvoltând funcția V(x, y) în jurul punctului N și neglijând derivatele de ordin mai mare decât unu, se obține succesiv:

$$\left. \frac{\partial V}{\partial n} \right|_{N} = \left( \overline{i} \cdot \frac{V_{N} - V_{0}}{h} + \overline{j} \cdot \frac{V_{N} - V_{M}}{h} \right) \cdot \left( \overline{i} \cdot n_{x} + \overline{j} \cdot n_{y} \right)$$

$$\frac{V_N - V_0}{h} \cdot n_x + \frac{V_N - V_M}{h} \cdot n_y = \frac{\partial V}{\partial n} \bigg|_{N}$$

$$\left| \left( n_x + n_y \right) \cdot V_N - n_x \cdot V_0 - n_y \cdot V_M \right| = h \cdot \frac{\partial V}{\partial n} \Big|_{N}$$

O relație de aceeași formă se obține și pentru alte configurații posibile.

Referitor la relația obținută poate fi făcută observația:

Coeficientul necunoscutei  $V_N$  este egal în modul, cu suma celorlalți doi coeficienți. Deoarece în sistemul de ecuații final coeficientul corespunzător necunoscutei  $V_N$  se află pe diagonala principală a sistemului rezultă că relațiile obținute conduc la un sistem având matricea diagonal dominantă și ca urmare rezolvabil și prin metode iterative.