

Program	Semes achelor of Technology (BTech)			
Type of Course	-			
Prerequisite				
Course Objective	-			
Effective From A.Y.	2021-22			

Teaching Scheme (Contact Hours)				Examination Scheme				
			Theory Marks		Practical Marks		Total	
Lecture	Tutorial	Lab	Credit	External Marks (T)	Internal Marks (T)	External Marks (P)	Internal Marks (P)	Marks
-	-	2	1	-	-	60	40	100

SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Cou	se Content	T - Teaching Hours W -	Weig	ghtag
Sr.	Topics		Т	W
1	Experiment-1		2	10
	Design and verificati	ion of truth table of logic gates using Logisim tool		
2	Experiment-2		2	10
	Implemention of Hal	alf Adder and Full Adder using logic gates		
3	Experiment-3		4	10
	Implementation of ha	alf subtractor and full subtractor circuits		
4	Experiment-4		4	10
	Design and verificati	ion of truth table of JK Master-slave flip flop		
5	Experiment-5		4	10
	Design of an n-bit sy	nchronous and asynchronous counters		
6	Experiment-6		4	10
	Write an Assembly la	anguage program to add 8-bit and 16 bit		
7	Experiment-7		2	10
	Write an Assembly la	anguage program to print multiplication of unsigned positive numbers		
8	Experiment-8		2	10
	Write an Assembly la	anguage program to print input String and print it.		
9	Experiment-9		4	10
		ne to determine the contents of AC, E, PC, AR and IR registers in hexadecimal after the execution of ference instructions: CLA CIR SNA CLE CIL SZA CMA INC SZE CME SPA HLT	each	of
10	Expriment-10		2	10
	stored at address 02	ne for the following memory-reference instructions with I= 0 and address part = 082. The instruction 22 in RAM. Initialize the memory word at address 082 with the operand B8F2 and AC with A937. De DR, PC, AR and IR in hexadecimal after the execution. ADD BUN AND BSA LDA ISZ STA		
	•	Total	30	100

Printed on: 01-04-2025 09:38 AM Page 1 of 2

Level	Remembrance	Understanding	Application	Analyze	Evaluate	Create
Weightage	20	20	20	20	10	10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes

At the	At the end of this course, students will be able to:					
	Recall and apply Boolean logic, sequential circuit, and combinational circuit concepts, including logic gates, registers, counters, flip-flops, and arithmetic operations.					
C02	Explain computer arithmetic, register transfer, micro-operations, hardware implementation, and instruction sets.					
CO3	Describe CPU components, memory organization, addressing modes, and program control.					
C04	Explain memory hierarchy, cache memory, and virtual memory.					
C05	Understand I/O organization, peripheral devices, interrupt handling, and parallel processing concepts.					
C06	Analyze multiprocessor characteristics, cache coherence, and interconnection structures.					

Reference Books

1. Computer System Architecture (TextBook)
By M. Morris Mano | Pearson Education

Printed on: 01-04-2025 09:38 AM Page 2 of 2