Statistical Learning and Machine Learning Lecture 11 - Linear Models for Regression 1

October 3, 2021

Course overview and where do we stand

Objectives of the lecture

- Introduction to the linear models for regression
 - Maximum likelihood and least squares method
 - Geometry of least squares
 - regularized/weighted least squares

Goal of Regression

- The goal of regression is to predict the value of one or more continuous target variables t given the value of a D-dimensional vector x of input variables.
- Supervised learning: Training data consisting of N observations $\{x_n\}$ for n = 1, ..., N along with target values $\{t_n\}$ are available.
- Output: A function y(x) whose values for new inputs x constitute the predictions t.

Linear Basis Function Models

Two ways to define linear models:

• Linear w.r.t. to both input **x** and parameters **w**

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots, + w_D x_D = w_0 + \sum_{j=1}^D w_j x_j = \mathbf{w}^T \mathbf{x}$$

where $\mathbf{x} = (x_0, x_1, \dots, x_D)^T$ and $x_0 = 1$ in the final form.

• Non-linear functions $\phi_j(\cdot), j=1,\ldots,M-1$ (basis functions) w.r.t. to the input, with $\phi_0(\mathbf{x})=1$

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

where $\phi = (\phi_0, \dots, \phi_{M-1})^T$ and $\mathbf{w} = (w_0, \dots, w_{M-1})^T$

Linear basis function in both \boldsymbol{w} and \boldsymbol{x}

$$\phi_j(\mathbf{x}) = x_j$$
, for $j = 1, \dots, D$

with $\phi_0(\mathbf{x}) = 1$.

In vector form, we get

$$\phi(\mathbf{x}) = (\phi_0, \dots, \phi_{M-1})^T = \mathbf{x}$$

In this case, the output function becomes

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

Example basis functions

Polynomial basis function:

$$\phi_j(x)=x^j$$

Example basis functions

Radial basis function:

$$\phi_j(x) = exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

Example basis functions

Sigmoidal basis function:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where $\sigma(a) = 1/(1 + exp(-a))$.

Least Squares

- Goal: Given a set of i.i.d. data points $\mathcal{D} = \{x_1, \dots, x_N\}$ and the corresponding $t_n, n = 1, \dots, N$, we want to estimate the parameters \boldsymbol{w} of the regression model.
- Which model?

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

Least Squares

 Cost function to be minimized: Sum of the squares of the individual errors:

$$E_D(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(\boldsymbol{x}_n, \boldsymbol{w}) - t_n \right)^2 = \frac{1}{2} \sum_{n=1}^{N} \left(\boldsymbol{w}^T \phi(\boldsymbol{x}_n) - t_n \right)^2$$

• Minimization: By setting $\frac{\partial E_D(\mathbf{w})}{\partial \mathbf{w}} = 0$:

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

where $\Phi \in \mathbb{R}^{N \times M}$ is formed by using the vectors $\phi(\mathbf{x}_n)$ as rows and $\mathbf{t} = [t_1, \dots, t_N]^T$.

Regression using polynomial basis function with varying order M.

Error of regression using polynomial basis function with varying order M.

Regression using polynomial basis function of order M=9 and varying number of data points N.

Overfitting explained

Insight into **Over-fitting** phenomenon for large values of M.

- For M = 9, the values of calculated parameters w are very large
- Those large values lead to massive oscillations that are undesirable.

	M=0	M = 1	M = 6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
$w_{\scriptscriptstyle A}^{\star}$				-231639.30
w_5^*				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

Regularized Least Squares

It is possible to *augment* the error function with a regularization term $E_W(\mathbf{w})$, which allows to:

- overcome over-fitting to the training data
- avoid problems related to the inversion of singular matrices.

Generic form of a regularization term:

$$E_W(\mathbf{w}) = \sum_{j=1}^M |w_j|^q$$

Then, the error function takes the form:

$$E(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

 λ is the regularization coefficient.

Regularized Least Squares

We usually use the l_2 regularization term (which corresponds to q=2):

$$E_W(\mathbf{w}) = \frac{1}{2} \mathbf{w}^T \mathbf{w}.$$

Then, using $\lambda \geq 0$ the error function becomes:

$$E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\boldsymbol{w}^{T} \phi(\boldsymbol{x}_{n}) - t_{n} \right)^{2} + \frac{\lambda}{2} \boldsymbol{w}^{T} \boldsymbol{w}$$

Minimization: Setting $\frac{\partial E(w)}{\partial w} = 0$ and rearranging yields

$$\boldsymbol{w} = \left(\Phi^T \Phi + \lambda \boldsymbol{I}\right)^{-1} \Phi^T \boldsymbol{t}$$

Regularized regression using polynomial basis function of order M=9, number of data points N=10 and different regularization parameter values λ .

Error of regularized regression using polynomial basis function of order M=9, number of data points N=10 and varying regularization parameter values λ .

We assume that the target variable t takes the following form

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

where ϵ expresses a noise factor.

Gaussian Noise Assumption: We model $\epsilon \in \mathcal{N}(0, \beta^{-1})$. Then predictive distribution of t given the observation x and w becomes

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Can you justify the above predictive distribution?

Given a set of i.i.d. data points $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ and the corresponding $t_n, n = 1, \dots, N$, joint predictive distribution of \mathbf{t} is

$$p(\boldsymbol{t}|\boldsymbol{X},\boldsymbol{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\boldsymbol{w}^T \phi(\boldsymbol{x}_n),\beta^{-1}).$$

The log-likelihood function is:

$$\ln p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^T \phi(\mathbf{x}_n), \beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w})$$

where:

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^T \phi(\mathbf{x}_n) - t_n \right)^2.$$

Minimizing $E_D(\mathbf{w})$ w.r.t \mathbf{w} corresponds to the ML solution, assuming Gaussian distribution for ϵ . How does this link with the least squares solution?

Setting
$$\frac{\partial \ln p(t|X,w,\beta)}{\partial w} = 0$$
, we get

$$\mathbf{w}_{ML} = \left(\Phi^{T}\Phi\right)^{-1}\Phi^{T}\mathbf{t} = \Phi^{\dagger}\mathbf{t}$$

where $\Phi^{\dagger} = (\Phi^T \Phi)^{-1} \Phi^T$ is the *pseudo-inverse* of the matrix Φ .

There exist two versions of Φ^{\dagger} :

- $\Phi^{\dagger} = (\Phi^T \Phi)^{-1} \Phi^T$ requiring the inversion of $(\Phi^T \Phi) \in \mathbb{R}^{M \times M}$
- $\Phi^{\dagger} = \Phi(\Phi\Phi^T)^{-1}$ requiring the inversion of $(\Phi\Phi^T) \in \mathbb{R}^{N \times N}$

We can choose one of them, depending on the values of N and M.

Interpretation of w_0 parameter:

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - w_0 - \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x}_n) \right)^2$$

Setting $\frac{\partial E_D(\mathbf{w})}{\partial w_0} = 0$:

$$w_0 = \bar{t} - \sum_{j=1}^{M-1} w_j \bar{\phi}_j$$

where:

$$\bar{t} = \frac{1}{N} \sum_{n=1}^{N} t_n$$
 and $\bar{\phi}_j = \frac{1}{N} \sum_{n=1}^{N} \phi_j(\mathbf{x}_n)$.

Interpretation of β parameter:

$$\frac{1}{\beta_{ML}} = \frac{1}{N} \sum_{n=1}^{N} \left(t_n - \boldsymbol{w}_{ML}^T \phi(\boldsymbol{x}_n) \right)^2$$

The inverse of the noise precision expresses the residual variance of the target values around the regression function.

Least Squares: Geometric interpretation

Linear Regression: Sequential updates

We obtain a sequential (or *on-line*) learning algorithm for updating w by applying stochastic gradient descent (SGD):

• If the error function has the form $E(\mathbf{w}) = \sum_n E_n(\mathbf{w})$ then:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

where τ denotes the iteration number, η is a learning rate parameter and ∇ is the gradient operator.

For the least-squares error case:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta \left(t_n - \mathbf{w}^{(\tau)T} \phi(\mathbf{x}_n) \right) \phi(\mathbf{x}_n).$$

The value of η needs to be chosen appropriately to ensure convergence of the algorithm.

