INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO, 2018/05/04 Computação Paralela e Distribuída - MAC5742/MAC0219 2018-1 Prof. Alfredo Goldman

Exercício de Programação: Gestão de seção crítica

- Pelos programas fornecidos, entendeu-se que os algorítmos bakery e gate foram implementados de forma a demonstrar o seu funcionamento. Para tanto são colocados processos por meio de threads que fazem acessos a uma região crítica um número de vezes especificadas (30), tirando a média e o desvio padrão.
- Para observar os efeitos da contenção fiz um script adicional 'this.sh', que rodará o programa 'main' com valores de potências de 2 para o argumento do número de threads, indo de 2º a 2¹³, e argumento de tempo total com valores (potências de 2) de 2¹6 a 2³². Modifiquei também os arquivos fornecidos para imprimir os resultados das execuções em somente uma linha, facilitando a análise posterior. Os resultados obtidos foram colocados em um arquivo
- 'ep4-data.csv' com colunas 'Algorithm, Execution_Number, Elapsed_Time_ns, Access_Avg, Access_StdDev, Total_Time, Num_Threads'.
- Com isso, conforme o gráfico 1, podemos observar o comportamento dos algorítmos em função do número de threads sendo controladas e o tempo total de execução. Não foi possível aguardar o termino do meu script 'this.sh', pois deixei o computador rodando por mais de 10 horas sem atingir o final da execução.
- Os resultados obtidos foram:
 - Gate teve medias e desvios menores para um número de threads menor que 16, mas apresentou maiores índices de starvation.
 - Infelizmente, não pude esperar a execução finalizar e com isso não observei efeitos de um número de threads maior que 32, mas estimo com o que foi observado, que os padrões de fairness serão mantidos com perda de performance proporcional.
 - O aumento do número de threads melhorou a performance nos dois algoritmos, sendo o 'bakery' o com melhores resultados.
 - O sumário das variáveis obtidas no arquivo '.csv' foram:

Algorithm Ex	<pre>kecution_Number</pre>	Elapsed_Ti	ime_ns	Access_Avg	Access_StdDev	Total_Time	Num_Threads
bakery:2956 Mi	n. : 1.00	4069981311.000000 :	2	Min. : 0.000	Min. : 0.00	Min. :16.00	Min. :0.000
gate :2940 1s	t Qu.: 8.00	1000135020335545.250000:	1	1st Qu.: 7.719	1st Qu.:10.07	1st Qu.:20.00	1st Qu.:1.000
Me	edian :15.00	100045701311.687500 :	1	Median :10.528	Median :11.12	Median :24.00	Median :2.000
Me	ean :15.48	1000847907335545.250000:	1	Mean : 8.474	Mean :10.63	Mean :23.75	Mean :2.405
31	d Qu.:23.00	100157126920972.500000 :	1	3rd Qu.:11.449	3rd Qu.:11.70	3rd Qu.:28.00	3rd Qu.:4.000
Ma	x. :30.00	1001992971335545.250000:	1	Max. :12.033	Max. :12.15	Max. :32.00	Max. :5.000
		(Other) :5	889				

Gráficos:

Gráfico 1: Relação entre variáveis duas-a-duas, das informações obtidas. 'Access_Avg, Access_StdDev, Num_Threads, Total_Time, Per_Thread_Min' em logarítmo de base 2 (note aqui como diferem as relações das médias e desvio padrão para cada algorítmo).

Gráfico 2: Semelhante ao acima, mas com dados somente do algoritmo 'bakery'.

Gráfico 3: Semelhante ao acima, mas com dados somente do algoritmo 'gate'. Observe a maior starvation com 'gate' pelo padrão entre 'Total_time', 'PerThread_Min' e 'Access_Avg'.

Apendice:

- this.sh

#!/usr/bin/bash