Business Analytics and Emerging Trends

Instructor: Dr. Murat Tunc

Internet of Things

Instructor: Dr. Murat Tunc

Module 5 November 23rd, 2021

What is Internet of Things?

• A system involving connected devices that gather data, connect with the Internet, generate analytics, and adapt behavior based on the analytics

Internet of Things - Layers

Sensors Collecting data

Connectivity
Sending data to cloud

Data Processing

Making data useful

User Interface

Delivering information to user

Internet of Things Architecture

Data gathering

Connectivity

Data processing

How do devices gather data?

- Sensors / Actuators
 - Detect the feature quantity of a measurement object and convert this quantity into a readable signal

Five senses	Sight	Hearing	Smell	Taste	Touch
As behavior	-See the thing -Feel the light	-Listen the sound -Feel the shaking -Take the balance	-Smell the thing	-Feel the taste	-By touching, feel the heat, force, or texture
Sensory organ as human	Eye 쥯	Ear 🦻	Nose 🔝	Tongue	Skin
Typical sensors as machinery	-Image sensor -Light intensity sensor	-Acoustic sensor -Ultrasonic sensor	-Gas component sensor	-Liquid component sensor	-Tactile sensor -Pressure sensor -Temperature sensor -Humidity sensor -Displacement sensor

Sensors on smart phones

Accelerometer

- Gyroscope
 - Measures orientation
- Magnetometer
 - Detects magnetic fields
- GPS
 - communicate with the satellites
 - determine our location on Earth
- Light sensor
 - Measures the light in the vicinity
 - Adjusts the display's brightness
- Barometer
 - measures atmospheric pressure
 - how high we are above the sea level
- Thermometer, Microphone, Pedometer...

Vehicle Sensors

Vehicle Sensors Lane departure system -Rear object monitor CCD camera Night vision -Rear camera Side curtain sensor Front object CCD camera Blind spot detection Front airbag sensors Cross traffic alert ASCD -Central computer Nightime pedestrian warning Rear object laser radar **Drowsiness sensors** Wheel speed sensor Tire pressure sensor Front object Collision sensor laser radar Side airbag SRS Adaptive cruise control Nightime pedestrian warning IR sensor Steering Angle sensor Active park assist -Automatic brake actuator Tire pressure sensor -Wheel speed sensor ©Beaudaniels.com

Internet of Things Architecture

Data gathering

Connectivity

Data processing

Wireless Sensor Networks

Communication Protocols

- Options for connectivity are various
 - Cellular, satellite, WiFi, Bluetooth, RFID, NFC, LPWAN, Zigbee
- Four models for connectivity
 - 1) Device to Device
 - 2) Device to Cloud
 - 3) Device to Gateway
 - 4) Backend Data Sharing

Device to Device

- Direct communication with each other
 - Via IP network, hardwire or bluetooth
 - Example: Smart watch and pacemaker
- Low power consumption
 - Ideal for products to have a long battery life

Device to Cloud

- Via ethernet, WiFi or cellular
 - Example: Webcams to watch home while on vacation
 - Tag on an animal to find where it is
- Difficulty for inter product compatibility
 - Due to the differences in manufacturer design

Device to Gateway

- Intermediary between IoT device and a cloud service
 - Fitness device connects to the cloud through Nike+ app
 - Home appliance connects to a hub like Samsung SmartThings

Backend Data Sharing

- Extends single device to cloud model
 - Sensor data can be accessed by authorized third parties
- Export, analyze smart object data from a cloud service
 - Combine with data from other sources
 - Map My Fitness: Data from Fitbit, Adidas miCoach, etc.

Communication Protocols

- Tradeoff between
 - Power consumption
 - Range
 - Bandwidth

IoT Network Topology

- IoT Network Topology
 - Point-to-Point
 - Star
 - Mesh
 - Hybrid

Internet of Things Architecture

Data gathering

Connectivity

Data processing

Data Processing

- Once the sensor data gets to the cloud
 - Software performs **processing** on data
- Numerous algorithms and data processing elements
 - Ultimately become information
- Considerations
 - Storage
 - Frequency of updates
 - Desired output type

Data Processing

Edge Computing

- The round-trip time can take too long
 - Sending data, processing, analyzing, returning instructions
- Edge computing
 - A smart edge device
 - Aggregate data, analyze it and fashion responses if necessary
 - All within relatively close physical distance
 - Reducing delay
- Edge devices also have upstream connectivity for sending data to be further processed and stored

Edge Computing

Internet of Things Architecture

Data gathering

Connectivity

Data processing

- Information is made useful to the end-user
- Ways to interact
 - Alert (email, text)
 - Automatic notifications
 - Monitoring information proactively
 - Controlling system remotely
- Considerations
 - Connectivity
 - Real-time information or not, when the last update was received
 - Performance
 - Massive data to be presented, pagination (only a part of the data is loaded)
 - Simplicity
 - What the user needs to see, visualization

IoT Platforms

What is an IoT Platform?

• Middlemen that connects the hardware to the cloud

Elements of IoT Platform

- An IoT platform can be decomposed into several layers
- Infrastructure level
 - Enables the functioning of the platform
 - Internal messaging, orchestration of IoT solution clusters
- Communication layer
 - Where devices connect to the cloud
- Core layer for IoT features
 - Data collection, device management, configuration management, messaging
- Analytics layer
 - Data processing, visualization, rule engine, reporting

Elements of IoT Platform

IoT Interoperability Permutations

- App #1 can improve the performance by using data from sensor #2
 - 3 possibilities
- 1) App #1 might be able to access App #2
 - a) Over-the-top interoperability (horizontal)
 - Via an external data exchange
 - b) Platform enabled interoperability (horizontal)
 - Through the middleware platform
- 2) App #1 might be able to access Sensor #2
 - Platform enable interoperability (vertical)
 - Through the middleware platform

- Interoperability
 - Apps able to discover other resources
 - Other apps, other middleware platforms, other sensors, etc.
 - Apps able to discover other services
 - Published data stream, usage tracking, etc.
- Horizontal vs vertical
 - Positioning based definition
 - Similar positioning in terms of structure (horizontal)
 - Lower (or higher) positioned devices (vertical)
 - Quality based definition
 - Similar quality, but better fit in terms of taste (horizontal)
 - Increased quality (vertical)

- App #1 can improve the performance by finding a better sensor #1 from another vendor
- Better sensor #1
 - Better **performance**
 - Low cost
 - Greater reliability
- Technology and **vendor** interoperability
 - In the vertical sense (replace with a **higher quality sensor**)

Now and beyond

Applications

- Household appliances
 - Smart washing machine, dryer
- Automobiles
 - Autonomous vehicles
- Factories
 - Efficient production lines
- Healthcare
 - Heart-rate tracking, fitness, smartwatches
- Cities
 - Traffic control

IoT Distrupting Traditional Business

THE INTERNET OF THINGS REQUIRES A MINDSET SHIFT

Because you'll create and capture value differently.

		TRADITIONAL PRODUCT MINDSET	INTERNET OF THINGS MINDSET
VALUE CREATION	Customer needs	Solve for existing needs and lifestyle in a reactive manner	Address real-time and emergent needs in a predictive manner
	Offering	Stand alone product that becomes obsolete over time	Product refreshes through over-the-air updates and has synergy value
	Role of data	Single point data is used for future product requirements	Information convergence creates the experience for current products and enables services
VALUE CAPTURE	Path to profit	Sell the next product or device	Enable recurring revenue
	Control points	Potentially includes commodity advantages, IP ownership, & brand	Adds personalization and context; network effects between products
	Capability development	Leverage core competencies, existing resources & processes	Understand how other ecosystem partners make money

SOURCE SMART DESIGN

Current Issues

- Standards and Regulations
- Privacy
- Security
- Interoperability

Future of IoT – 5G

Readings

- Haller, S., Karnouskos, S., & Schroth, C. (2008). The internet of things in an enterprise context. In FutureInternet Symposium (pp. 14-28). Springer, Berlin, Heidelberg.
- Niyato, D., Lu, X., Wang, P., Kim, D. I., & Han, Z. (2016). Economics of Internet of Things: An information market approach. IEEE Wireless Communications, 23(4), 136-145.

References

- Tschofenig, H., Arkko, J., Thaler, D., & McPherson, D. (2015). Architectural considerations in smart object networking. RFC 7452.
- Pacelle, M. (2014). 3 topologies driving IoT networking standards. O'Reilly Media Inc.
- Hui, G. (2014). How the internet of things changes business models. Harvard Business Review, 92(7/8), 1-5.

