# GEOMETRÍA

Tomo 4

5th

**SECONDARY** 

RETROALIMENTACIÓ N







## 1. En la figura, calcule x.



\* Se traza la altura BD

#### • TEOREMA DE EUCLIDES



$$(2\sqrt{13})^2 = 9^2 + 5^2 - 2(9)(m)$$

$$52 = 81 + 25 - 18m$$

$$18m = 54 \Rightarrow m = 3$$

\* ABD aproximado de 37° y 53°

$$x = 53^{\circ}$$







## Resolución:

\* △ ABC, se traza la mediana BM



△ PBQ:

$$x^2 + y^2 = 2(3)^2 + \frac{(2)^2}{2}$$
  
 $x^2 + y^2 = 18 + 2$ 

$$x^2 + y^2 = 20$$

\* Del gráfico:

AM = MC = BM = 3



3. En un triángulo ABC, se traza la bisectriz interior  $\overline{BD}$ . Si AB = 6, BC = 8 y DC = 4. Halle BD.



## Resolución

Dato:

**BD**: bisectriz interior

 Por teorema de la bisectriz interior

$$\frac{\cancel{6}}{\cancel{8}} = \frac{AD}{4} \Rightarrow AD = 3$$

T. de la longitud de la bisectriz interior



En el △ ABC:

$$x^2 = 6.8 - 3.4$$

$$x^2 = 48 - 12$$

$$x^2 = 36$$

$$x = 6$$

## HELICO | PRACTICE



4. En la figura, AB es diámetro, calcule DH.



5. Desde un punto E exterior a una circunferencia, se trazan los segmentos tangentes  $\overline{ET}$  y  $\overline{EP}$ . Si PT = L<sub>5</sub>, halle la m $\not$ PET.





# 6. Calcule el valor de x, si AB = $L_3$ y CD = $L_{12}$ .





# 7. Si AB = $L_9$ y CD = $L_6$ , calcule la medida del ángulo que forman $\overline{BD}$ y $\overline{AC}$ .



## **HELICO | PRACTICE**



8. Las longitudes de los lados de un triángulo son 13, 13 y 10 cm. Calcule la longitud de su inradio.

13 13 Н C

## Resolución

△ ABC es isósceles

△BHC por T. Pitágoras:

$$13^2 = (BH)^2 + 5^2$$

$$144 = (BH)^2 \Rightarrow 12 = BH$$

$$S_{(\triangle ABC)} = 10.12$$

$$S_{(\Lambda ABC)} = 60u^2$$

$$S_{\triangle ABC} = (13 + 13 + 10).x$$

$$2$$

$$S_{\triangle ABC} = (18).x$$

$$60 = 18x$$

$$\frac{10}{3} = x$$



## 9. En el gráfico, BD = 9 y CE = 8, calcule el área de la región sombreada.



## Resolución

- Se traza la altura CH.
- ∠ CHE es notable de 30° y 60°



• △ BCD, teorema:

$$S\triangle BCD = \frac{9.4}{2}$$

10. En la figura, ABCD es un cuadrado, si m CP = 37º, calcule el área de la región sombreada.



## Resolución

- Se traza OP.
- Se traza PH perpendicular a BC.
- △OHP de 37° y 53°
- Se prolonga HP hasta E.

CDEH es rectángulo

$$HE = CD = 10$$

$$h + 3 = 10 \rightarrow h = 7$$

• Teorema: 
$$S_{AAPD} = \frac{10.7}{2}$$

$$:: S_{APD} = 35 u^2$$