$$ENT(D) = -\sum_{i=1}^{k} P(D = d_{k}) \cdot log_{2} P(D = d_{k})$$

$$= -\frac{10}{2z} \cdot log_{2} \frac{10}{2z} - \frac{12}{2z} \cdot log_{2} \frac{12}{2z}$$

$$= 0.9940$$

ENT(D|B) =
$$-\frac{14}{27}(\frac{8}{14}\log_{\frac{1}{14}} + \frac{6}{14}\log_{\frac{1}{14}} - \frac{8}{22}(\frac{2}{8}\log_{\frac{2}{8}} + \frac{6}{5}\log_{\frac{1}{8}})$$

= 0.9220

ENT(D|C) =
$$-\frac{7}{22}(\frac{4}{7}l_{327}^{4} + \frac{3}{7}l_{327}^{3}) - \frac{15}{25}(\frac{1}{15}l_{31}, \frac{1}{15} + \frac{9}{15}l_{31}, \frac{9}{15})$$

= 0.9755

We see the conditional entropy ENT(D|A) is minimized, so we should choose A as the first branch.

1) when A=t:

$$(A \lor \neg B) \oplus (\neg C \lor D) = (A \lor \neg B \lor \neg C \lor D) \land (\neg (A \lor \neg B) \lor \neg (\neg C \lor D))$$

$$= (A \lor \neg B \lor \neg C \lor D) \land ((\neg A \land B) \lor (C \land \neg D))$$

$$= (A \lor \neg B \lor \neg C \lor D) \land (\neg A \lor (C \land \neg D)) \land (B \lor C \land \neg D))$$

$$= (A \lor \neg B \lor \neg C \lor D) \land (\neg A \lor C) \land (\neg A \lor \neg D) \land (B \lor C) \land (B \lor \neg D)$$

Now we have converted the NNF into CNF, and there are 5 clauses.

Thus, the structure is:

For	neumn	N, :	(AV-BV-CVD))
-----	-------	------	-------------	---

ABCD	AVOBVOCVD	A-B-C+D	
0 0 0 0 0 0 0 1	[[0 	let Wa=1, Wg=-1, Wc=-1, Wp=1,
0 0 0 0	1	-1 0	we see for (Av-Bv-CVD) to be
0 1 0 0	[[~ 1 0	0, we need (A-B-C+D)=-2.
0 1 1 0	0 1	-2 -1	for (Av-Bv-CVD) to be 1, we
1 0 0 0	1	1 2	need (A-B-C+D)>-1
1 0 1 0	 	0 1	So we choose threshold two, to be -1.5
1 1 0 1	l I	0	the step function is $g_{N_1}(x) = \int_0^\infty 1 dx < -1.5$
1 1 1 0	1	- 0	if x > -1.5

For new	n $N_2: ($	-Avc)	
			let Wa=-1, Wc=1. we see for (-AVC) to be 0,
0 0	1	0 	we need $(-A+C)=-1$.
0	7AVC 1 0	-1 0	for (-AVC) to be 1, we need (-A+C)>0.
			So we choose threshold this to be -0.5
			the step function is gn (x) = [0 if x < -0.5
			the step function is $g_{N_2}(x) = \begin{cases} 0 & \text{if } x < -0.5 \\ 1 & \text{if } x \ge -0.5 \end{cases}$

For neuron Nq: (BVC)	
	let WB=1, Wc=1. we see for (BVC) to be 0,
0 0 0 0	we need $(B+C)=0$.
B C B V C B + C 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 2	for (BVC) to be 1, we need (B+C) >1.
	50 me choose threshold the to be 0.5
	the step function is $g_{N_4}(x) = \begin{cases} 0 & \text{if } x < 0.5 \\ 1 & \text{if } x > 0.5 \end{cases}$
For neuron Ns: (BV-D)	
	let WB=1, WD=-1. we see for (BV-D) to be 0.
B D B V - D B - D	we need $(B-D)=-1$.

For output layer output: $(N_1 \wedge N_2 \wedge N_3 \wedge N_4 \wedge N_5)$: Let $W_{N_1} = W_{N_2} = W_{N_3} = W_{N_4} = W_{N_5} = 1$: For it to be 1, we need $N_1 + N_2 + N_3 + N_4 + N_5 = 5$. For it to be 0, we need $N_1 + N_2 + N_3 + N_4 + N_5 = 4$.

So we choose threshold to to be 4.5

the step function is $g_0(x) = \begin{cases} 0 & \text{if } x < 4.5 \\ 1 & \text{if } x > 4.5 \end{cases}$

(a)
$$\theta_{a} = 0.9$$
 $\theta_{b|a} = 0.2$ $\theta_{b|a} = 0.5$ $\theta_{c|a} = 0.7$ $\theta_{c|a} = 0.4$

	19 = 0.1	$\theta_{b a} = 0.5$	Oc12 = 0.6	
Evidence: A, C Query: B		OLIK = 0.5	9c1= =0.4	
Query. B	$\theta_{\alpha} = 0.9$		00 la = 0.3	
B		$\theta_{bla} = 0.2$	Oc1a = 0.7	
	•			1

0 evidence
$$e_1 = \overline{a}, C \Rightarrow \lambda_a = 0, \lambda_{\overline{c}} = 0$$

Hence, by evidence
$$e_1 = \overline{a}.c$$
, we have $P^*(\overline{b}) = 0.02$, $P^*(b) = 0.02$

Hence, by evidence $e_2 = \overline{a}.\overline{c}$, we have $P^*(\overline{b}) = 0.03$, $P^*(b) = 0.03$

Θ evidence $e_3 = \overline{a} \Rightarrow \lambda_a = 0$

Hence, by evidence $e_3 = \overline{a}$, we have $P^*(\overline{b}) = 0.05$, $P^*(b) = 0.05$

(b).
For e_i , $p^*(\overline{b} e_i)$ represents the unnormalized probability of \overline{b} given \overline{a} and \overline{c} . $p^*(\overline{b} e_i)$ represents the unnormalized probability of \overline{b} given \overline{a} and \overline{c} .
P*(ble,) represents the unnormalized probability of b given a and c
For ez, px(blez) represents the unnormalized probability of 5 given a and c.
For e_2 , $p^*(\overline{b} e_2)$ represents the unnormalized probability of \overline{b} given \overline{a} and \overline{c} . $p^*(b e_2)$ represents the unnormalized probability of \overline{b} given \overline{a} and \overline{c} .
For e, px(ble) represents the unnormalized probability of 5 given a.
For e_3 , $p^*(\overline{b} e_3)$ represents the unnormalized probability of \overline{b} given \overline{a} . $p^*(b e_3)$ represents the unnormalized probability of b given \overline{a} .

$$P_r(\bar{b}|e_i) = \frac{P_r^*(\bar{b}|e_i)}{P_r^*(\bar{b}|e_i) + P_r^*(\bar{b}|e_i)} = \frac{0.02}{0.02 + 0.02} = \frac{1}{2}$$

$$P_r(\bar{b}|e_1) = \frac{P_r^*(\bar{b}|e_2)}{P_r^*(\bar{b}|e_2) + P_r^*(\bar{b}|e_2)} = \frac{0.03}{0.03 + 0.03} = \frac{1}{2}$$

$$Pr(b|e_3) = \frac{Pr(b|e_3)}{Pr(b|e_3) + Pr(b|e_3)} = \frac{0.05}{0.05 + 0.05} = \frac{1}{2}$$