Implementation details

About Dataset

Three types of Iris:

class 0: 'setosa'

class 1: 'versicolor'

• class 2: 'virginica'

Four features:

- 'sepal length (cm)',
- 'sepal width (cm)',
- 'petal length (cm)',
- 'petal width (cm)'

Data:

- #150 items
- ...with equal portion of classes 50/50/50

Our pipeline

Normalized Dataset

	sepal length	sepal width	petal length	petal width	target
4	0.784810	0.536585	0.652174	0.60	1
35	0.632911	0.780488	0.173913	0.08	0
50	0.632911	0.804878	0.202899	0.08	0
46	0.974684	0.682927	0.971014	0.80	2
37	0.810127	0.707317	0.623188	0.52	1
52	0.721519	0.682927	0.594203	0.52	1
40	0.620253	0.585366	0.478261	0.40	1
16	0.569620	0.560976	0.188406	0.12	0

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
115	6.4	3.2	5.3	2.3	2
95	5.7	3.0	4.2	1.2	1
96	5.7	2.9	4.2	1.3	1
75	6.6	3.0	4.4	1.4	1
149	5.9	3.0	5.1	1.8	2
92	5.8	2.6	4.0	1.2	1
148	6.2	3.4	5.4	2.3	2
114	5.8	2.8	5.1	2.4	2

Original Dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
9	4.9	3.1	1.5	0.1	0
65	6.7	3.1	4.4	1.4	1
94	5.6	2.7	4.2	1.3	1
66	5.6	3.0	4.5	1.5	1
6	4.6	3.4	1.4	0.3	0

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
83	6.0	2.7	5.1	1.6	1
54	6.5	2.8	4.6	1.5	1

Train

Test

Our pipeline

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
115	6.4	3.2	5.3	2.3	2
95	5.7	3.0	4.2	1.2	1
96	5.7	2.9	4.2	1.3	1
75	6.6	3.0	4.4	1.4	1
149	5.9	3.0	5.1	1.8	2
92	5.8	2.6	4.0	1.2	1
148	6.2	3.4	5.4	2.3	2
114	5.8	2.8	5.1	2.4	2

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
9	4.9	3.1	1.5	0.1	0
65	6.7	3.1	4.4	1.4	1
94	5.6	2.7	4.2	1.3	1
66	5.6	3.0	4.5	1.5	1
6	4.6	3.4	1.4	0.3	0

Train

Shuffled, Splitted

Original Dataset

Problem statement

```
print('params: ', iris_bc.X_test[0],'class: ', iris_bc.y_test[0])
params: [5.8 2.8 5.1 2.4] class: 2

iris_bc.normalize(iris_bc.X_test[0])
array([0.73417722, 0.68292683, 0.73913043, 0.96 ])

iris_bc.predict(iris_bc.X_test[0], verbose = True)
[(0.7, 0.75), (0.65, 0.7), (0.7, 0.75), (0.95, 1.0)]
```

so, the problem statement:

What's the probability, that **X_test[0]** belongs to **class N**, if:

- F1 is here (0.7, 0.75) and
- F2 is here (0.65, 0.7) and
- F3 is here (0.7, 0.75) and
- **F4** is here **(0.95, 1.0)**

Or...

$$P(C = 0 | x1 = F1, x2 = F2, x3 = F3, x4 = F4) = ?$$
 $P(C = 1 | x1 = F1, x2 = F2, x3 = F3, x4 = F4) = ?$
 $P(C = 2 | x1 = F1, x2 = F2, x3 = F3, x4 = F4) = ?$

$$P(C = 0 \mid x1 = F1, x2 = F2, x3 = F3, x4 = F4) = ?$$

$$P(C = 1 \mid x1 = F1, x2 = F2, x3 = F3, x4 = F4) = ?$$

$$P(C = 2 \mid x1 = F1, x2 = F2, x3 = F3, x4 = F4) = ?$$

$$P(C = 0 \mid x1 = F1) = ?$$

$$P(C = 0 \mid x1 = a) = \frac{P(x1 = a \mid C = 0) * P(C = 0)}{\sum_{i=1}^{\#Classes} P(x1 = a \mid C = i)P(C = i)}$$

Back to complex case:

	Class 0	Class 1	Class	2
F1	[[0.14285	714 0.6666666	7 0.19047	7619]
F2	[0.001	0.4375	0.5625]
F3	[0.001	0.26666667	0.733333	333]
F4	[0.001	0.001	1.]]

```
iris_bc.normalize(iris_bc.X_test[0])
array([0.73417722, 0.68292683, 0.73913043, 0.96 ])
iris_bc.predict(iris_bc.X_test[0], verbose = True)
[(0.7, 0.75), (0.65, 0.7), (0.7, 0.75), (0.95, 1.0)]
```

	Class 0	Class 1	Class	2
F1	[[0.14285]	714 0.6666666	7 0.19047	619]
F2	[0.001	0.4375	0.5625]
F3	[0.001	0.26666667	0.733333	33]
F4	[0.001	0.001	1.]]

Predicted class: 2, Original class: 2

[1.42857143e-10, 7.7777778e-05, 7.85714286e-02]


```
iris_bc.normalize(iris_bc.X_test[0])
array([0.73417722, 0.68292683, 0.73913043, 0.96 ])
iris_bc.predict(iris_bc.X_test[0], verbose = True)
[(0.7, 0.75), (0.65, 0.7), (0.7, 0.75), (0.95, 1.0)]
```

	Class 0	Class 1	Class	2
F1	[[0.142857	14 0.6666666	7 0.19047	7619]
F2	[0.001		0.5625]
F3	[0.001	0.26666667	0.733333	333]
F4	[0.001	0.001	1.]]

Predicted class: 2, Original class: 2
[1.42857143e-10, 7.7777778e-05, 7.85714286e-02]

Let's go to the code...