PEAS & Problem Formulation

- Performance Measure: Parameters used to measure the performance/efficacy of an AI model (e.g. safety of a self-driving car)
- Environment: Surrounding of an agent

- Litvironinient. Surrounding of an a	Bent
Fully Observable	Partially Observable
Agent has access to complete	Agent does not have complete
state of the environment at each	info about the current state of the
point in time (e.g. chess board)	environment (e.g. self-driving cars)
Deterministic	Stochastic
Next state can be determined fully	Next state has some randomness
based on current state and action	that cannot be completely
(e.g. chess)	determined by the agent (e.g. self
	driving cars)
Episodic	Sequential
The choice of an agent's action is	The choice of an agent's action is
independent of other actions (e.g	dependent on previous actions
pick and place robot)	(e.g. chess and self-driving cars)
Static	Dynamic
Environment is unchanged while	Environment constantly changes,
an agent is still deciding on an	even when agent is still deciding
action (e.g. chess with no clock)	on an action (e.g. self-driving cars)
Semi-Dynamic	
Environment does not change, but	
agent's performance score does	
Discrete	Continuous
Actions and percepts are clearly	Actions and percepts cannot be
defined and of finite in number	clearly defined (e.g. self-driving
(e.g. chess)	cars)
Single Agent	Multi-Agent
Single agent operating by itself in	Multiple agents operating in an
an environment (e.g pick and	environment (e.g. self-driving cars
place robot)	on a busy road)

- Actuator: The part of an agent that delivers the output of an action to the environment (e.g. steering wheel of a self-driving car)
- Sensor: Parts of an agent that receives the input (e.g. camera & speedometer of a self-driving car)

Problem Formulation

- State/State Space: State/Set of all states reachable from initial state (e.g. all cities reachable from starting city)
- Initial State: e.g. starting city
- Goal State(s)/Test: Desired outcome (e.g. destination city)
- **Actions**: Things an agent can do (e.g. move to neighbouring city)
- Transition Model: The effect of performing an action on a state (e.g. arrive at next city)
- Action Cost Function: Cost of performing an action (e.g. distance)

Uninformed Search Algorithms

Breadth-First Search (BFS)

- Time:
 - $1 + b + b^2 + \cdots + b^d$ $= O(b^d)$
- Space: $O(b^d)$ (expand last child)
- Complete: Yes, if b is finite. If d is infinite, then yes if \exists
- Optimal: Yes, if step cost is uniform
- In this module, next successor is at the start of the queue

Uniform-Cost Search

- Tier: Group of paths with the same cost.
- # Tiers ("depth") = C^*/ϵ , C^* = cost of optimal solution, while frontier is not empty: ε = min. edge cost
- Time: $O(b^{C^*/\varepsilon})$
- Space: $O(b^{C^*/\varepsilon})$
- Complete: Yes, if # tiers is finite i.e. $\varepsilon > 0$ and C^* is finite
- Optimal: Yes, if $\varepsilon > 0$
- Goal test is performed after POP, because the priority queue "reshuffles" priority after PUSH

Depth-First Search (DFS)

- Time: $O(b^m)$, $m = \max$ depth
- Space: O(bm) (everytime we traverse down one level, b nodes are added)
- is infinite
- In this module, next the stack

create frontier: queue create visited

insert initial state to queue and visited while frontier is not empty:

state = frontier.pop()

for action in actions(state):

next state = transition(state, action) if next state in visited: continue if next state is goal: return solution frontier.add(next state) visited.add(next state)

return failure

create frontier: priority queue (PATH-COST) create visited

insert initial state to queue and visited

state = frontier.pop() if state is goal: return solution

visited.add(state) for action in actions(state):

> next state = transition(state, action) if next state in visited: continue

if next state not in frontier frontier.add(next state)

else if next state has lower COST: update state in frontier

return failure

create frontier: stack

Complete: No, when depth

- Optimal: No
- successor is at the top of

create visited

insert initial state to queue and visited while frontier is not empty: state = frontier.pop()

for action in actions(state):

next state = transition(state, action) if next state in visited: continue if next state is goal: return solution frontier.add(next state) visited.add(next state)

return failure

Depth-Limited Search (DLS)

- Variant of DFS: backtracks whenever d = depth limit (l)
- Time: $b^0 + b + b^2 + \dots + b^l = \mathbf{O}(b^l)$
- Space: O(bm)
- Complete: No, solution may lie in greater depths
- Optimal: No

Iterative-Deepening Search (IDS)

- Perform DLS with depth limit $l = 0 \dots N$ until solution is found
- Time: $b^0 + (b^0 + b^1) + (b^0 + b^1 + b^2) + \cdots + (b^0 + b^1 + \cdots + b^n)$ b^{d}) = $(d+1)b^{0} + db^{1} + (d-1)b^{2} + \cdots + b^{d} = \mathbf{O}(b^{d})$, d = depthwhere solution is found
- Space: **0**(**bd**)
- Complete: Yes
- Optimal: Yes, if step cost is uniform. IDS is like "BFS-ing" a DFS
- Generates overhead = $\frac{N_{IDS} N_{DLS}}{N_{IDS}}$

Bidirectional Search

- Perform BFS from each goal state, and BFS from start until the searches both search trees contain some common node(s)
- Operators need to be reversible (i.e. need to know what is the parent of each state)
- Time: $O(b^{d/2}) + O(b'^{d/2})$, b = branching factor for forward BFS, <math>b'= branching factor for backward BFS
- Space: max{ $O(b^{d/2}), O(b'^{d/2})$ }
- Complete: Yes
- Optimal: Yes

Informed Search Algorithms

Greedy Best-First Search

- Evaluation function only considers the heuristic, i.e. f(n) = h(n)
- Time: $O(b^m)$ with good heuristic
- Space: O(bm) with good heuristic
- Complete: No
- Optimal: No

create frontier: priority queue

insert initial state to queue and visited while frontier is not empty:

state = frontier.pop()

if state is goal: return solution

for action in actions(state):

next state = transition(state, action)

frontier.add(next state)

return failure

A* Search

- Evaluation function considers the cost so far, g(n), together with heuristic, i.e. f(n) = g(n) + h(n)
- Time: $O(b^m)$ with good heuristic
- Space: O(bm) with good heuristic
- Complete: Yes. g(n) monotonically increases along a path \rightarrow if loop back to visited node, it won't explore that node again
- Optimal: Yes, depending on heuristics

Heuristics

- Admissibility: $h(n) \le h^*(n)$ for all n
 - o If h(n) is **admissible**, A* using **tree** search is optimal
 - o How?: relax the problem by removing certain restrictions
- Consistency: $h(n) \le cost(n, n') + h^*(n')$
 - o If h(n) is consistent, A* is optimal
 - Dominance: If $h_1(n) \ge h_2(n)$ for all n, then $h_1(n)$ dominates $h_2(n)$
 - o A dominant heuristic is better; assuming it is admissible, it is closer to the true cost

Variants of A* Search

- **Iterative Deepening A***: Cutoff using f(n) cost (instead of depth)
- **Simplified Memory Bound A***: Drop nodes in PQ with worst f(n) if PQ is full

Local Search

 Starting with initial solution, move from one solution to another in solution space by applying local changes until an optimal solution is found

Trivial Algorithms

- Random Sampling: Generate states randomly until solution is found
- Random Walk: Randomly pick a neighbour from current state

Hill Climbing Algorithm

- Simulated Annealing
 - With some probability P, pick a random neighbour instead of the best one

 - If T decreases slowly enough, simulated annealing will find global optimum with high probability

```
Can get stuck at local optimum current = initial state
                                       neighbour = successor with highest value
                                       if value(current) ≥ value(neighbour):
                                         return current
                                       current = neighbour
```

```
curr = initial state
for t = 1 ∞
   T = schedule(t)
   if T = 0: return current
   nxt = random successor of current
   if value(nxt) > value(curr) or P(nxt, curr, T):
       curr = next
```

minimax(S, α , β , maximizer):

if maximizer:

else:

return v

if terminal(S): return utility(S)

if $\alpha \ge \beta$: break

 $\alpha = \max(\alpha, v)$

if $\alpha \ge \beta$: break

 $\beta = \min(\beta, v)$

for each action in actions(S):

for each action in actions(S):

S' = transition(action, S)

S' = transition(action, S)

 $v = max(v, minimax(S', \alpha, \beta, False))$

 $v = min(v, minimax(S', \alpha, \beta, True))$

Beam Search

- Perform k hill-climbing in parallel. i.e. there will be k successors selected
- **Local Beam Search**: Choose k successors deterministically (i.e. best k values)
- **Stochastic Beam Search**: Choose k successors probabilistically

Adversarial Search

Minimax

- Alternate min-max at each level Max nodes pick max successor; Min nodes pick min successor
- Time: $O(b^m)$
- Space: O(bm)
- Optimal: Yes, if players are playing optimally

Minimax with alpha-beta pruning

- α: min score the max player can guarantee
- β: max player the min player can guarantee
- At max level: update α only.
- At min level: update β only.
- Initially, $(\alpha, \beta) = (-\infty, \infty)$
- Branches are pruned whenever $\alpha \ge \beta$
- Ordering at the leaves can affect pruning efficiency
 - With perfect ordering time is reduced to : $O(b^{\frac{m}{2}})$

Supervised Learning

- Learns from labelled data
- Formal definition: Find a hypothesis $h: x \to \hat{y}$ from a hypothesis class H s.t. $h \approx f$, where $f: x \rightarrow y$ is a true mapping function
- Classification: predict discrete output
- Regression: predict continuous output

Performance Measure

- Split data into training set and test set
 - o Training set: Train learning algorithm to generate hypothesis
 - Test set: Apply hypothesis on test set to analyse performance

Regression

- Absolute Error = $|\hat{y} y|$
- Squared Error = $(\hat{y} y)^2$
- Mean Squared Error = $\frac{1}{N}\sum_{i=1}^{N} (\hat{y}_i y_i)^2$

Classification

- Accuracy = $\frac{1}{N} \sum_{i=1}^{N} 1_{\hat{y}_i = y_i}$
- Confusion Matrix

Decision Tree

- A tree-tike structure with each internal node as a decision, each branch is an outcome of the decision and each leaf is the final prediction/decision
- Recursively pick an attribute to split remaining data until no more attributes to split OR all rows accounted for
- "Best" attributes are greedily chosen first

Chosing "best" attribute

- Entropy I
 - Indicates the "purity" of a decision lower entropy indicates less noise and increased certainty
 - $O I(P(v_1), ..., P(v_n)) = -\sum_{i=1}^n P(v_i) \log_2 P(v_i)$
 - If binary decisions, then

$$I\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n}\log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n}\log_2\left(\frac{n}{p+n}\right)$$

- - Difference in I between current and remainder
 - Remainder = sum of I of children nodes
 - This is used to decide the best attribute to use for splitting
 - **Gain Ratio & Split Information**
 - o Attributes with very specific values (e.g. HP number) can result in very high IG → overfitting
 - $\circ \quad GainRatio(A) = \frac{IG(A)}{SplitInformation(A)}$
 - $\circ \quad SplitInformation(A) = -\sum_{i=1}^{d} \frac{|E_i|}{|E_i|} log_2\left(\frac{|E_i|}{|E_i|}\right)$

Cost-Normalized-Gain

- o Factor in the cost of attributes and choosing low-costs onces
- Cost-Normalized-Gain = $\frac{IG^2(A)}{Cost(A)}$ or $\frac{2^{IG(A)}-1}{(Cost(A)+1)^w}$, $0 \le w \le 1$
 - w is adjusted on how important the cost is (larger $w \rightarrow$ more impt)

Continues-Values Attributes

- Can be discretised into a set of intervals
- Attributes with missing values
 - Assign most common value, drop the attribute, drop the rows

- DTs performance is perfect on training data
- Occam's Razor
 - Prefeer short/simple hypotheses
 - Prefer shorter decision trees
- Min-sample Pruning
 - All leafs must have sample size greater than the min-sample
 - If sample size is smaller, then prune the parent decision node by making it a leaf with the majority decision as the value

Max-depth Pruning

- Depth = # decisions in one traversal
- Prune all decision nodes exceeding the max-depth, picking majority

Linear Regression

- H is a set of line formulas
- Regression: Predicts a value with discrete inputs

Loss Function

- Notations:
 - Given a set of m (x, y) examples $\{(x^{(1)}, y^{(1)}), ..., (x^{(m)}, y^{(m)})\}$
 - $x^{(i)} = (x_1, ..., x_n)$, each x_i is a feature. Sometimes, we can prepend with the bias, x_0
 - o h_w is a hypothesis $\in H$,

$$h_w(x^{(i)}) = w_0 x_0 + w_1 x_1^{(i)} + \dots + w_n x_n^{(i)} = \hat{y}^{(i)}$$

o w_0x_0 forms the y-intercept, so that the line does not always need to intersect at y = 0

Mean Squared Error (MSE)

Mean Absolute Error (MAE)

$$J_{MSE} = \frac{1}{2m} \sum_{i=1}^{m} (h_w(x^{(i)}) - y^{(i)})^2$$

 $J_{MAE} = \frac{1}{2m} \sum_{i=1}^{m} |h_w(x^{(i)}) - y^{(i)}|$

Gradient Descent

- Minimizes J_{MSE}
- Main Idea: Update each weight w_i in $w = (w_1, w_2, ..., w_k)$ iteratively until $J_{MSE}(w)$ is minimum (local/global)
 - How do update? Check the slope of J(w) against each w_i (using derivative), then update each w_i

$$\mathbf{w}_{j} \leftarrow w_{j} - \gamma \frac{\delta f(w_{0}, w_{1}, ...)}{\delta w_{j}} = \mathbf{w}_{j} - \gamma \frac{1}{m} \sum_{i=1}^{m} (h_{w}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

	Batch GD	Mini-batch GD	Stochastic GD
# samples	All	Random subset	One <u>random</u>
Speed	Slow	Faster	Fastest
May escape	Less likely	Yes	Yes
local minima			
(for non-LR)?			

- MSE is <u>convex</u> for linear regression: it only has 1 minima (the global)
 Features of different scales
- Features with large scales can dominate learning process → GD may not converge
- Mean Normalization: Normalize each feature i of input x to

$$x_i \leftarrow \frac{x_i - \mu_i}{\sigma_i}$$

 Different learning rate for each weight (smaller for features with larger scales)

Non-Linear Relationships

- Polynomial Regression: $h_w(x^{(i)}) = w_0 + w_1 f_1(x_1^{(i)}) + \cdots + w_n f_n(x_n^{(i)})$
- Max degree: n-1; any larger can lead to overfitting
- Requires appropriate scaling otherwise it can lead to the same issues encountered by features of different scales

Normal Equation

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \dots & x_n^{(1)} \\ 1 & x_1^{(2)} & \dots & x_n^{(2)} \\ 1 & \dots & \dots & \dots \\ 1 & x_n^{(m)} & \dots & x_n^{(m)} \end{bmatrix} \quad w = \begin{bmatrix} w_0 \\ w_1 \\ \dots \\ w_n \end{bmatrix} \quad \gamma = \begin{bmatrix} \gamma^{(1)} \\ \gamma^{(2)} \\ \dots \\ \gamma^{(m)} \end{bmatrix}$$

$$h_w(X) = Xw = w^T X^T$$

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$
, assuming $\mathbf{X}^T \mathbf{X}$ is invertible

- We can compute the weights using Normal Equation without going through gradient descent if X^TX is invertible
- Advantage(s)
 - \circ Directly finds w that minimises I_{MSE}
 - \circ No feature scaling and playing around with γ is required
- Disadvantage(s)
 - Very slow with large number of features $(O(n^3))$
 - Requires X^TX to be invertible

Logistic Regression

- Binary Classification with continuous, based on some probability Logistic Function
- $h_{uv}(x)$ outputs the probability of x being part of the positive class
- $h_w(x) = \sigma(w_0 + w_1x_1 + \dots + w_nx_n)$, where σ is the logistic function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

- A decision threshold (of usually 0.5) is used as a cut-off for classification
- The <u>decision boundary</u> separates the set of points in the negative and positive class on the plane. It intersects the decision threshold
 - Decision boundary is perpendicular to the vector w

Loss Function

- Not ideal to use J_{MSE} it will be non-convex
- Cross-entropy (CE) for C classes, \hat{y} = predicted, y = actual

Cross-entropy (CE) Binary Cross-entropy (BCE) $CE(y,\hat{y}) = \sum_{i=1}^{C} -y_i log(\hat{y_i}) \qquad BCE(y,\hat{y}) = -y log(\hat{y}) - (1-y) log(1-\hat{y})$

- BCE is CE but with only 2 classes (1 or 0)
- Use BCE J_{BCE} Loss as the loss function: sum BCE acoss all samples

$$J_{BCE} = \frac{1}{m} \sum_{i=1}^{m} BCE(y^{(i)}, h_w(x^{(i)}))$$

• J_{BCE} is **convex** for logistic regression

Gradient Descent

- Minimizes J_{BCE}
- Weight update: (exactly the same as that in Linear Regression)

$$\mathbf{w}_{j} \leftarrow w_{j} - \gamma \frac{\delta J(w_{0}, w_{1}, \dots)}{\delta w_{j}} = \mathbf{w}_{j} - \gamma \frac{1}{m} \sum_{i=1}^{m} (h_{w}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Non-Linear Decision Boundaries

Transform features: $h_w(x^{(i)}) = \sigma(w_0 + w_1 f_1(x_1^{(i)}) + \cdots + w_n f_n(x_n^{(i)}))$

Performance Measure

- Receiver Operator Characteristic (ROC) Curve
 - o TPR against FPR graph
 - TPR = TP / (TP + FN)
 - FPR = FP / (FP + TN)
 - o TPR against FPR graph
- Area Under Curve (AUC) of ROC Curve
 - o 0 ≤ AUC ≤1
 - AUC = $0.5 \rightarrow$ random chance; The closer to 1, the better

Multi-class Classification

- Run logistic regression multiple times, each on different classes
 One-vs-All
- For each class C_i, run logistic regression on C_i and C C_i
- Pick class with <u>highest</u> probability

One-vs-One

- For each pair of classes (C_i, C_j), run logistic regression on C_i and C_j
- Pick class with most wins

Model Evaluation

• Given dataset D and an error function (e.g. MSE, CE), $J_D(h)$ is the expected error of a model/hypothesis h

$$J_{D}(h) = \frac{1}{N} \sum_{i=1}^{N} error(h(x^{(i)}), y^{(i)})$$

• The lower the J_D , the better

Train-Validation-Test sets

- Training set D_{train} : Used to train the models $h_1, h_2, ... h_k$
- Validation set D_{val}: Used to run on each of the models h₁ to h_k after training, then pick the best model h_i, that is, the model with least I_{D-v}
- **Test** set D_{test} : Used to run on chosen h_i to report h_i 's performance =

Underfitting & Overfitting

- If $J_{Dval} \approx J_{Dtrain}$: High bias \rightarrow Underfit and high training error
- If $J_{D_{val}} \gg J_{D_{train}}$: High variance \rightarrow Overfit and low training error