Mathematische Bildverarbeitung Vorlesungsskript

Institut für Mathematik Vorlesung von Prof. Dr. Marko Lindner In LaTeXgesetzt durch Jonas Sattler

Fehlermeldungen an fabian.gabel@tuhh.de

Wintersemester 2018/19

Inhaltsverzeichnis

1	Überblick		
	1.1	Techniken der Bildverarbeitung	2
	1.2	Unser Fokus	2
	1.3	Verwandte Vorlesungen	2
	1.4	Literatur	2
2	2 Was ist ein Bild?		
	2.1	Definition	3
	2.2	Umwandlung	3
	2.3	Beispiel Rotation	4

1 Überblick

1.1 Techniken der Bildverarbeitung

- Kontrastverbesserung
- Entrauschen
- Kantendetektion
- Schärfen
- Inpainting
- Segmentierung (Einzelne Objekte detektieren)
- Registrierung (Bilder des selben Objektes in Einklang bringen)

1.2 Unser Fokus

• Mathematische Beschreibung

1.3 Verwandte Vorlesungen

- 3D Computervision
- Digitale Bildanalyse
- Mustererkennung und Datenkompression
- Medical imaging

1.4 Literatur

- Bredies, Lorenz : Mathematische Bildverarbeitung
- Aubert, Kornprobst : Mathematical Problems in Image Processing
- Modersitzki : Numerical Methods for Image Registration
- Alt : Lineare Funktionalanalysis

2 Was ist ein Bild?

2.1 Definition

Digitale/diskrete Sicht

Abbildung 1: Diskretes Bild Darstellung als Matrix.

Werkzeuge: Lineare Algebra Vorteile: Endlicher Speicher

Nachteile: Probleme bei zoomen und drehen

Kontinuierlich/analoge Sicht

Abbildung 2: Kontinuierliches Bild Darstelllung als Funktion in zwei Veränderlichen

Werkzeuge: Analysis

Vorteile: Mehr Freiheit (z.b. Kante=Linie entlang

einer Unstetigkeit)

Nachteile: Unendlicher Speicher

Definition. Ein <u>Bild</u> ist eine Funktion $u:\Omega\to F$, wobei $\Omega\subset\mathbb{Z}^d$ (im diskreten Fall) oder $\Omega\subset\mathbb{R}^d$ (im kontinuierlichen Fall).

d=2: Typisches 2D Bild

d=3: 3D-Bild bzw. "Körper" <u>oder</u> Video: 2D Ort + Zeit

F ist der Farbraum, Beispiele:

- F = [0, 1] oder $F = \{0, 1, ..., 255\}$, Graustufen
- $\bullet \ \mathsf{F} = \{0,1\} \ \mathsf{schwarz/weiß}$
- $F = [0, 1]^3$ oder $F = \{0, 1, ..., 255\}^3$ Farbbilder

2.2 Umwandlung

Kontinuierlich \rightarrow Diskret:

2.3 Beispiel Rotation Was ist ein Bild?

- ullet Ω in Gitter zerlegen
- Jede Box durch nur einen Farbwert approximieren
- Etwa durch den Funktionswert im Mittelpunkt der Box
- oder durch den Mittelwert in der Box: $\frac{1}{|B|} \cdot \int u(x) dx$

Diskret → **Kontinuierlich**:

- 1. Idee: Jeder Punkt der Box B_i erhält den Funktionswert von B_i als Farbwert
 - ⇒ Nearest neighbour Interpolation .
- 2. Idee: Mittelpunkt von Box B_i erhält den Wert von Pixel B_i sonst wird interpoliert.

Grauwert g := Gewichtetes Mittel aus Grauwerten a, b, c, d.

$$g = (1-\alpha)(1-\beta)a + \alpha(1-\beta)b + (1-\alpha)\beta c + \alpha\beta d$$
 Dieses wird **Bilineare Interpolation** genannt.

2.3 Beispiel Rotation

1. Fall, kontinuierliches Bild

Sei u das alte Bild und v das neue Bild, dann ist die Drehung gegeben durch eine **Drehmatrix**:

$$D_{\varphi} \in \mathbb{R}^{d \times d}, D_{\varphi} = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$$

Damit folgt, dass $D(u) = D_{\varphi}\Omega$ und $v(x) = u(\underbrace{D_{\varphi}^{-1}x}) = u(D_{-\varphi}x)$. (D(u) ist die $\underline{\mathbf{Domain}}$ von u)

2. Fall, diskretes Bild

2.3 Beispiel Rotation Was ist ein Bild?

Dieses ist problematisch, denn i.A. $x \in \mathbb{Z}^d$, aber $D_{\varphi} x \not\in \mathbb{Z}^d$.

Weiterhin ist $v(x)=u(D_{\varphi}^{-1}x)$, wobei der konkrete Wert durch Interpolation bestimmt wird.

Index

H^1 deblurring, 42	Isotrop, 31		
L^2 deblurring, 42			
öffnen, 14	Kohärentsrichtung, 45		
	Kohärenz verstärkende Diffusion, 46		
Abreißen, 35	Kopplungskonstante, 33		
Absoluter Fehler, 15	Korrelation, 17		
affin-linear, 48	Landmarks, 53		
anisoptrop, 31			
D 1 04	Laplace-Schärfen, 37 Laplacian of Gaußian method, 37		
Banachraum, 24	Lineare Regression, 48		
Beleuchtungsausgleich, 47	Lineare Regression, 40		
Bilateraler Filter, 32	Maß, 7		
Bild, 4	Maske, 17		
Bilineare Interpolation, 5	Masse, 10		
bimodal, 9	Median, 10		
Canny-Algorithmus, 35	Merkmale, 53		
Canny Augorithmus, 55	Mittelwert, 10		
Dichte, 7	Morphographische Operationen, 11		
Diffusionsgleichung, 29	Mumford-Shah-Funktional, 52		
Diffusionstensor, 31			
dilation, 12	Nearest neighbour Interpolation, 5		
Dirac-Impuls, 20	Non-maximum suppression, 35		
Diskreter Laplace Operator, 28	Normalengleichung, 48		
Distributioneller Gradient, 60	Normalized Crosscorrelation, 56		
Distributionen, 58	Otavia Varfahran 10		
Domain, 6	Otsu's Verfahren, 10		
doppelt geglätteter Strukturtensor, 45	Polynomiale Regression, 48		
Drehmatrix, 5	Prewitt-Filter, 34		
Dualraum, 57	,		
5 (1)	Rauschen, 15		
Entfaltung, 39	Relativer Fehler, 15		
erosion, 13	Rudin-Osher-Fatemi-Funktional, 33		
Euler-Lagrange-Gleichung, 34			
Faltung, 18	schließen, 13		
Farbraum, 4	Schwellenwert, 9		
Fixpunktgleichung, 10	Shape based Methods, 9		
Fixpunktiteration, 10	Signal to noise ratio, 16 Sobel-Filter, 35		
Fouriertransformation, 21	Sobolev-Räume, 33		
Frequenzbereich, 25	strengkonvex, 62		
Frequenzraumfilter, 21	Strukturelement, 12		
requenzialimiter, ZI	Sub-Niveaumenge, 62		
Gauß-Kern, 27			
gleitendes Mittel, 19	Toeplitz-Matrix, 39		
Gradientenfilter, 34	Totalvariation, 50		
	Trigonometrisches Polynom, 49		
Hilbertraum, 24			
Histogramm, 6	Untere Halbstatigkeit, 61		
Histogramm - equalization, 9	Varianz 10		
Histogramm thresholding, 46	Varianz, 10		
hysteresis thresholding, 35	Wärmegleichung, 29		
Icadata Algarithmus 10	-0 0,		
Isodata Algorithmus, 10	Zeitbereich, 25		