MATH 417, HOMEWORK 11

CHARLES ANCEL

Exercise 1. Let G be a group, with subgroup $H \leq G$. Let $\lambda: G \to \operatorname{Sym}(G/H)$ be the left-coset action, defined by $\lambda(g)(aH) := gaH$. Show that $\ker(\lambda) = \bigcap_{g \in G} gHg^{-1}$.

SOLUTION

Lemma: By definition, the kernel of a homomorphism λ is:

$$\ker(\lambda) = \{ g \in G \mid \lambda(g) = \mathrm{id} \}$$

where id is the identity permutation on G/H.

To prove that $\ker(\lambda) = \bigcap_{g \in G} gHg^{-1}$, we need to analyze the kernel of the homomorphism $\lambda : G \to \operatorname{Sym}(G/H)$.

Since $\lambda(g)$ acts on the cosets by $\lambda(g)(aH) = gaH$, we have:

$$\lambda(g) = \mathrm{id} \iff gaH = aH \quad \forall aH \in G/H.$$

This implies gaH = aH for all $aH \in G/H$, meaning $g \in H^a = aHa^{-1}$ for all $a \in G$.

Therefore, g must belong to the intersection of all conjugates of H in G:

$$\ker(\lambda) = \bigcap_{a \in G} aHa^{-1}.$$

Thus, we have shown that $\ker(\lambda) = \bigcap_{g \in G} gHg^{-1}$.

Exercise 2. Let G be a group with subgroup $H \leq G$, and let $K = \ker(\lambda)$ as in the previous problem. Suppose H has finite index in G, and write m = [G : H]. Show that G/K is isomorphic to a subgroup of $\operatorname{Sym}(G/H)$. Use this to show that [G : K] divides m!, and then use this to show that [H : K] divides (m-1)!.

SOLUTION

First Isomorphism Theorem: The First Isomorphism Theorem states that if $\phi: G \to G'$ is a homomorphism with kernel $\ker(\phi)$, then the quotient group $G/\ker(\phi)$ is isomorphic to the image of ϕ , i.e., $G/\ker(\phi) \cong \operatorname{Im}(\phi)$.

Since $\lambda: G \to \operatorname{Sym}(G/H)$ is a homomorphism, and $K = \ker(\lambda)$, by the First Isomorphism Theorem, we have:

$$G/K \cong \lambda(G) \leq \operatorname{Sym}(G/H)$$
.

Therefore, G/K is isomorphic to a subgroup of Sym(G/H).

The order of Sym(G/H) is m!. Hence, |G/K| divides |Sym(G/H)| = m!. Therefore:

$$[G:K] \mid m!$$
.

Next, since $K \leq H$ and |G:H| = m, we have:

$$[G:K]=[G:H]\cdot [H:K]=m\cdot [H:K].$$

Given that $[G:K] \mid m!$, it follows that:

$$m \cdot [H:K] \mid m!$$
.

Dividing both sides by m:

$$[H:K] \mid (m-1)!.$$

Exercise 3. Show that if G is a finite group, and if p is the smallest prime which divides the order of G, then any subgroup H of G of index p is normal in G. (Hint: use the previous exercise to show that H = K.)

SOLUTION

First Isomorphism Theorem: The First Isomorphism Theorem states that if $\phi: G \to G'$ is a homomorphism with kernel $\ker(\phi)$, then the quotient group $G/\ker(\phi)$ is isomorphic to the image of ϕ , i.e., $G/\ker(\phi) \cong \operatorname{Im}(\phi)$.

Let G be a finite group, and let p be the smallest prime dividing the order of G. Suppose H is a subgroup of G with [G:H]=p. From Exercise 2, we know that:

$$G/H \cong \text{Sym}(G/H)$$
.

Since [G:H]=p, G/H has p elements, and p is the smallest prime dividing |G|, $\operatorname{Sym}(G/H)$ is isomorphic to S_p , the symmetric group on p elements. Note that S_p has order p!.

By the previous exercise, [H:K] divides (p-1)!. Since H has index p, the subgroup K must be H itself because any smaller index would contradict p being the smallest prime. Hence, H=K, and H is normal in G.

Exercise 4. Count the number of elements in:

- **a.** S_6 with cycle structure 3+3.
- **b.** S_6 with cycle structure 2+2+2.
- **c.** S_8 with cycle structure 3+3+1+1.

SOLUTION

Lemma: To count the number of elements with a specific cycle structure in a symmetric group S_n , we use the following formula:

$$\frac{n!}{\prod_i (n_i \cdot c_i)}$$

where n_i is the length of the *i*-th cycle and c_i is the number of cycles of length n_i .

a. To find the number of elements in S_6 with cycle structure 3 + 3:

$$\frac{1}{2} \binom{6}{3} \cdot \binom{3}{3}$$

Here, the $\binom{6}{3}$ chooses which 3 elements are in the first 3-cycle, and the $\binom{3}{3}$ chooses the elements for the second 3-cycle. Dividing by 2 accounts for the fact that the two 3-cycles can be chosen in any order:

$$= \frac{1}{2} \cdot 20 \cdot 1 = 10.$$

b. To find the number of elements in S_6 with cycle structure 2+2+2:

$$\frac{1}{3!} \binom{6}{2} \binom{4}{2} \binom{2}{2}$$

Here, the $\binom{6}{2}$ chooses which 2 elements are in the first 2-cycle, $\binom{4}{2}$ for the second 2-cycle, and $\binom{2}{2}$ for the third 2-cycle. Dividing by 3! accounts for the fact that the three 2-cycles can be chosen in any order:

$$=\frac{1}{6}\cdot 15\cdot 6\cdot 1=15.$$

c. To find the number of elements in S_8 with cycle structure 3+3+1+1:

$$\frac{1}{2!} \binom{8}{3} \binom{5}{3} \binom{2}{1} \binom{1}{1}$$

Here, the $\binom{8}{3}$ chooses which 3 elements are in the first 3-cycle, $\binom{5}{3}$ for the second 3-cycle, $\binom{2}{1}$ for the first 1-cycle, and $\binom{1}{1}$ for the second 1-cycle. Dividing by 2! accounts for the fact that the two 3-cycles can be chosen in any order:

$$= \frac{1}{2} \cdot 56 \cdot 10 \cdot 2 \cdot 1 = 280.$$

Exercise 5.1.9. A subgroup H of S_n is called transitive if the standard action by H on $\{1, \ldots, n\}$ is transitive. Show that the transitive subgroups of S_3 are A_3 and S_3 .

SOLUTION

Definition of Transitivity: A group G acting on a set X is said to be transitive if for any $x, y \in X$, there exists a $g \in G$ such that $g \cdot x = y$. This means there is only one orbit under the action of G on X.

The group S_3 is the symmetric group on 3 elements, and A_3 is the alternating group on 3 elements. A subgroup H of S_3 is transitive if it acts transitively on $\{1, 2, 3\}$.

Consider the elements of S_3 : {e, (12), (13), (23), (123), (132)}.

- S_3 itself is transitive since any element can be mapped to any other element by some permutation.
- A_3 consists of $\{e, (123), (132)\}$, which are the even permutations. A_3 is also transitive as it can map any element to any other element using these even permutations.

Any other proper subgroup of S_3 would be of order 2 or less and thus cannot act transitively on 3 elements. Hence, the transitive subgroups of S_3 are A_3 and S_3 .

Exercise 6. Identify D_4 with a subgroup of SO(3). For each element $g \in D_4$, compute the set $\mathrm{CL}_{SO(3)}(g) \cap D_4$, and in each case determine whether it is equal to $\mathrm{CL}_{D_4}(g)$.

SOLUTION

Conjugacy Class: The conjugacy class of an element g in a group G is the set of elements that are conjugate to g, i.e., $CL_G(g) = \{xgx^{-1} \mid x \in G\}$.

The dihedral group D_4 consists of the symmetries of a square, which can be embedded in SO(3) as rotations. We identify D_4 with a subgroup of SO(3).

- e: Identity element. $CL_{SO(3)}(e) \cap D_4 = \{e\} = CL_{D_4}(e)$.
- r_{90} , r_{270} : Rotations by 90° and 270°. Both have the same conjugacy class in D_4 and in SO(3). $CL_{SO(3)}(r_{90}) \cap D_4 = \{r_{90}, r_{270}\} = CL_{D_4}(r_{90})$.
- r_{180} : Rotation by 180°. $CL_{SO(3)}(r_{180}) \cap D_4 = \{r_{180}\} = CL_{D_4}(r_{180})$.
- Reflections s_x , s_y , s_{d1} , s_{d2} : Each reflection forms its own conjugacy class. $CL_{SO(3)}(s_x) \cap D_4 = \{s_x\} = CL_{D_4}(s_x)$, similarly for other reflections.

In all cases, $CL_{SO(3)}(g) \cap D_4 = CL_{D_4}(g)$, showing that the conjugacy classes within D_4 remain unchanged when considering the conjugacy classes within SO(3) and intersecting back with D_4 .

Exercise 5.2.1. How many necklaces can be made with six beads of three different colors.

SOLUTION

Polya's Enumeration Theorem: Polya's Enumeration Theorem is a combinatorial method used to count the number of distinct objects under group actions, taking symmetries into account. It involves using cycle index polynomials to calculate the number of distinct colorings or arrangements.

The number of distinct necklaces with six beads and three different colors can be calculated using Polya's Enumeration Theorem.

Let the colors be a, b, c. We need to count the number of distinct necklaces up to rotation.

The group of rotations of a six-bead necklace is C_6 , the cyclic group of order 6. The cycle index polynomial for C_6 is:

$$Z(C_6) = \frac{1}{6}(x_1^6 + 2x_3^2 + 3x_2^3)$$

Substituting $x_i = a^i + b^i + c^i$, we get:

$$Z(C_6) = \frac{1}{6}((a+b+c)^6 + 2(a^3+b^3+c^3)^2 + 3(a^2+b^2+c^2)^3)$$

We expand this expression:

$$Z(C_6) = \frac{1}{6}(a^6 + b^6 + c^6 + 6a^5b + 6a^5c + 6b^5a + 6b^5c + 6c^5a + 6c^5b + 15a^4b^2 + 15a^4c^2 + 15b^4a^2 + 15b^4c^2 + 15c^4a^2 + 15c^4b^2 + 20a^3b^3 + 20a^3c^3 + 20b^3c^3 + 15a^2b^2c^2).$$

After simplifying and adding the coefficients, we count the distinct colorings. After calculation, we find there are 92 distinct necklaces.

Therefore, the number of distinct necklaces that can be made with six beads of three different colors is 92.