WUOLAH

Recu-2016-soluciones.pdf

Exámenes resueltos

- 2° Geometría III
- **⊗** Grado en Matemáticas
- Facultad de Ciencias
 Universidad de Granada

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad

Soluciones del Examen de Geometría III Grado en Matemáticas, septiembre de 2016 Universidad de Granada

1.− Para cada $t \in \mathbb{R}$, se considera la cuádrica de ecuación:

$$2xz + ty^2 + 2ty + 2z + 1 = 0.$$

Clasificarla en función del valor del parámetro t.

Solución: En primer lugar, escribimos las matrices asociadas a la ecuación:

$$M = \begin{pmatrix} 0 & 0 & 1 \\ 0 & t & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \tilde{M} = \begin{pmatrix} \frac{1}{0} & \frac{t}{0} & \frac{1}{0} \\ 0 & 0 & 0 & 1 \\ t & 0 & t & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix}.$$

Calculamos el polinomio característico de *M*:

$$P_M(\lambda) = \begin{vmatrix} -\lambda & 0 & 1 \\ 0 & t - \lambda & 0 \\ 1 & 0 & -\lambda \end{vmatrix} = (t - \lambda) \begin{vmatrix} -\lambda & 1 \\ 1 & -\lambda \end{vmatrix} = (t - \lambda)(\lambda^2 - 1).$$

Por tanto, los valores propios de M son

$$\lambda_1 = +1, \quad \lambda_2 = -1, \quad \lambda_3 = t.$$

Calculamos el determinante de \tilde{M} ,

$$\det \tilde{M} = t^2 - t$$
.

Como las raíces son t=0 y t=1, hay que estudiar estos dos casos y los 3 intervalos en los que queda dividida \mathbb{R} .

<u>Caso t < 0</u>. M tiene dos valores propios negativos y uno positivo; $\det \tilde{M} > 0$. Como $0 < \det \tilde{M}$ es igual al producto de sus cuatro valores propios y ya sabemos el signo de 3 de ellos (los de M), entonces el cuarto valor propio es positivo. Así,

$$\tilde{M} \sim \begin{pmatrix} + & & & \\ & + & & \\ & & - & \\ & & & - \end{pmatrix}$$

La ecuación reducida queda $1 + x^2 - y^2 - z^2 = 0$. Cambiando el signo y permutando variables, queda $x^2 + y^2 - z^2 - 1 = 0$, que es equivalente a $z^2 = x^2 + y^2 - 1$. Esto es un hiperboloide de 1 hoja.

<u>Caso t=0</u> Ya sabemos que det $\tilde{M}=0$ y que un valor propio de M es cero, así que no tenemos información del signo del cuarto valor propio. Por tanto, calculamos el polinomio característico de \tilde{M} :

$$P_{\tilde{M}}(\lambda) = \begin{vmatrix} 1 - \lambda & 0 & 0 & 1 \\ 0 & -\lambda & 0 & 1 \\ 0 & 0 & -\lambda & 0 \\ 1 & 1 & 0 & -\lambda \end{vmatrix} = -\lambda \begin{vmatrix} 1 - \lambda & 0 & 1 \\ 0 & -\lambda & 1 \\ 1 & 1 & -\lambda \end{vmatrix} = -\lambda(-\lambda^3 + \lambda^2 + 2\lambda - 1).$$

Como det $\tilde{M}=0$, $\lambda=0$ ha de ser valor propio, como así sale del polinomio característico. Los otros tres valores propios vienen del segundo factor, $-\lambda^3 + \lambda^2 + 2\lambda - 1$, que tiene 2

Tu academiia de idiomas Online y tu centro examinador de Cambridge.

Cursos súper-intensivos online de preparación de B1, B2, C1 y C2.

Comienzo 1 de Junio. Fin 30 de Junio. 1.5 horas de Lunes a Viernes.

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Soluciones examen de septiembre 2016, Miguel Ortega Titos

valores propios positivos por la Regla de Descartes. Por tanto, el último valor propio es negativo. Así,

$$\tilde{M} \sim \begin{pmatrix} + & & & \\ & + & & \\ & & - & \\ & & & 0 \end{pmatrix}$$

La ecuación reducida queda $x^2 - y^2 + 1 = 0$. Es un cilindro hiperbólico.

Caso 0 < t < 1. Ahora det $\tilde{M} = t^2 - t < 0$ y M tiene dos valores propios positivos y uno negativo. El cuarto valor propio ha de ser positivo. Así,

$$\tilde{M} \sim \begin{pmatrix} + & & & \\ & + & & \\ & & + & \\ & & - \end{pmatrix}$$

La ecuación reducida queda $x^2 + y^2 - z^2 + 1 = 0$, que equivale a $z = \pm \sqrt{x^2 + y^2 + 1}$. Es un hiperboloide de 2 hojas.

Caso t = 1 M tiene ahora dos valores propios positivos y uno negativo. Como det $\tilde{M} = 0$, ahora el cuarto valor propio de \tilde{M} es cero.

$$\tilde{M} \sim \begin{pmatrix} 0 & & & \\ & + & & \\ & & + & \\ & & - \end{pmatrix}$$

La ecuación reducida queda $x^2 + y^2 - z^2 = 0$. Es un cono.

<u>Caso t > 1</u> M tiene ahora dos valores propios positivos y uno negativo, y det $\tilde{M} =$ $t^2 - t > 0$. Ahora el cuarto valor propio de \tilde{M} es negativo.

$$\tilde{M} \sim \begin{pmatrix} - & & & \\ & + & & \\ & & + & \\ & & - & \end{pmatrix}$$

La ecuación reducida queda $x^2 + y^2 - z^2 - 1 = 0$. Es un hiperboloide de 1 hoja. □

2. Sea \mathcal{A} un plano afín Euclídeo, y sea $T = \{a, b, c\}$ un triángulo equilátero en A. Probar que el grupo de movimientos rígidos de A que deja invariante el triángulo T consta de seis elementos. Describir dicho grupo.

Solución: Este problema consta de dos partes: existencia y unicidad.

Para ver la existencia, vamos a construir 6 movimientos rígidos que dejen el triángulo *T* invariante:

- 1. La identidad en \mathcal{A} .
- 2. Dado un lado del triángulo, sea m su punto medio. Sea R la recta perpendicular a dicho lado que pasa por m. El vértice opuesto pertenece a R por ser el triángulo equilátero. Sea $f_R: \mathcal{A} \to \mathcal{A}$ la simetría de eje la recta R. Claramente, f_R deja fijo el vértice opuesto e intercambia los vértices del segmento. Por tanto, f_R es un movimiento rígido que deja invariante a T. Como hay tres lados, tenemos tres simetrías de este tipo.
- 3. Consideremos O el ortocentro del triángulo T. Por ser equilátero, coincide con el circuncentro. Sea $g_1:\mathcal{A}\to\mathcal{A}$ el giro de ángulo 120 y centro O. Claramente,

este giro lleva cada vértice en otro vértice, luego deja invariante el triángulo T. Igualmente, el giro de 240 y centro O deja invariante el triángulo T.

Para ver la unicidad, hemos de comprobar que no existen más movimientos rígidos que dejen invariante a T. Así, todo movimiento rígido de $\mathcal A$ que deje invariante T se puede restringir a los vértices, obteniendo una aplicación biyectiva de un conjunto de tres elementos en sí mismo. Ahora bien, el conjunto

$$G = \{f : T \rightarrow T / f \text{ biyectiva}\}\$$

es biyectivo al conjunto de las permutaciones de orden 3. Como existen exactamente 3!=6 permutaciones, habrá 6 elementos en G. Así, dado un movimiento rígido g de $\mathcal A$ que deje invariante T, su restricción $g|_T$ será uno de los 6 elementos de G. Por tanto, $g|_T$ coincide con la restricción de uno los 6 movimientos ya descritos en la parte de existencia. Pero recordemos que si dos aplicaciones afines coinciden en un sistema de referencia afín, entoces son iguales en todo $\mathcal A$. Como $\mathcal A$ es un plano, el triángulo T se puede ver como un sistema de referencia afín. Por tanto, g será igual a uno de los 6 movimientos ya descritos en la parte de existencia. \square

3.– Encontrar una proyectividad en \mathbb{P}^3 distinta de la identidad que deje invariante el hiperplano proyectivo de ecuación homogénea $x_0 + x_1 + x_2 + x_3 = 0$.

Solución: Sea $H = \{p = (x_0 : x_1 : x_2 : x_3) \in \mathbb{P}^3 : x_0 + x_1 + x_2 + x_3 = 0\}$. Consideramos su levantamiento usando la proyección $\pi : \mathbb{R}^4 \setminus \{0\} \to \mathbb{P}^3$, que es $\hat{H} = \pi^{-1}(H) \cup \{0\} = \{(x_0, x_1, x_2, x_3) \in \mathbb{R}^4 : x_0 + x_1 + x_2 + x_3 = 0\}$.

<u>Primera forma:</u> Sea $\hat{f}: \mathbb{R}^4 \to \mathbb{R}^4$ la simetría ortogonal respecto de \hat{H} . Como \hat{f} es biyectiva y lineal, existe una única proyectividad $f: \mathbb{P}^3 \to \mathbb{P}^3$ tal que $f \circ \pi = \pi \circ \hat{f}$. Como \hat{f} deja invariante \hat{H} , entonces f deja invariante H. Y además, f ha de ser distinta de la identidad porque en ese caso, \hat{f} sería proporcional a la identidad y no es el caso.

Segunda forma: Consideramos una base de \hat{H} , por ejemplo

$$B_{\hat{H}} = \{u_1 = (1, -1, 0, 0), u_2 = (1, 0, -1, 0), u_3 = (1, 0, 0, -1)\}.$$

La ampliamos a una base de \mathbb{R}^4 , por ejemplo

$$B = \{u_1 = (1, -1, 0, 0), u_2 = (1, 0, -1, 0), u_3 = (1, 0, 0, -1), u_4 = (0, 0, 0, 1)\}.$$

Definimos el isomorfismo lineal mediante las siguientes condiciones (u otras parecidas):

$$\hat{f}: \mathbb{R}^4 \to \mathbb{R}^4, \quad f(u_i) = u_i, \ i = 1, 2, 3; \quad \hat{f}(u_4) = (0, 0, 1, 0).$$

Las tres primeras condiciones nos aseguran que $\hat{f}(\hat{H}) = \hat{H}$. La cuarta nos asegura que $\hat{f} \neq Id$. Comprobamos que \hat{f} es un isomorfismo: Si B_u es la base usual de \mathbb{R}^4 , entonces

$$\det\left(M_{B,B_u}(\hat{f})\right) = \begin{vmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{vmatrix} = 1.$$

Como \hat{f} es biyectiva y lineal, existe una única proyectividad $f:\mathbb{P}^3\to\mathbb{P}^3$ tal que $f\circ\pi=\pi\circ\hat{f}$. Como \hat{f} deja invariante \hat{H} , entonces f deja invariante H. Y además, f ha de ser distinta de la identidad porque en ese caso, \hat{f} sería proporcional a la identidad y no es el caso. \square

