

Division IB&S

LIN Driver

Title: SW Component LIN_EA v1.6

Detailed Software Design Document 2-Dec-15

LIN_EA

Project:

Division IB&S

	History				
Issue status (Index)	Maturity/Date (draft/invalid/valid) (dd-mmm-yyyy)	Author Department	Check/Release Department	Description	
1.0	Draft 27-0ct-15	Edgar Escayola	Adrián Zacarías	Creation of the document	
1.1	Draft 28-0ct-15	Edgar Escayola	Adrián Zacarías	Changes at: Purpose, References, and realization constraints and targets.	
1.2	Draft 29-0ct-15	Adrián Zacarías	Edgar Escayola	Addition of abbreviations and definitions, diagrams and descriptions.	
1.3	Draft 30-0ct-15	Adrián Zacarías	Edgar Escayola	Class diagram and functions definitions.	
1.4	Draft 30-0ct-15	Edgar Escayola	Adrián Zacarías	Implementation of traceability in the document.	
1.5	Release 1-Dec-15	Edgar Escayola	Adrián Zacarías	Changes from the review implemented.	
1.6	Draft 2-Dec-15	Edgar Escayola	Adrián Zacarías	Implementation of the comments from the coach: Architecture diagram, use case diagram, sequence diagram, functional decomposition and definitions of new functions.	

Detailed Software Design DocumentDSD_LIN_EA1.6Project: LIN_EA2-Dec-15Page 2 / 22

Division IB&S

Table of Contents

	PURPOSE	5
2	DEFINITIONS AND ABBREVIATIONS	5
2.1	Definitions	5
2.2	Type name definition	5
3	REALIZATION CONSTRAINTS AND TARGETS	6
3.1	TRK-MPC5606B's features	6
4	SW CONCEPTUAL DESIGN	7
4.1	Architecture design	7
4.2	Deployment Diagram	7
4.3	Use case diagram	8
4.4	Sequence diagram	9
5	SW COMPONENT INTERNAL BREAKDOWN	10
5.1	Functional Decomposition	10
5.2	LIN	12
	2.1 Function void TX_ISR (void)	······································
5.2		12
5.2	2.2 Function void RX_ISR (void)	12 14
5.2 5.2		
5.2 5.2	2.2 Function void RX_ISR (void)	
5.2 5.2 5.3	2.2 Function void RX_ISR (void)	
5.2 5.2 5.3 5.3	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA	
5.2 5.2 5.3 5.3	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void)	
5.2 5.2 5.3 5.3 5.3 5.3	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE)	
5.2 5.2 5.3 5.3 5.3 5.4 5.4	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE) TASKS	
5.2 5.2 5.3 5.3 5.3 5.4 5.4	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE) TASKS 4.1 Function void Task0_SlaveState (void) 4.2 Function void Task1_LED (void)	
5.2 5.2 5.3 5.3 5.3 5.4 5.4 5.4 5.4	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE) TASKS 4.1 Function void Task0_SlaveState (void) 4.2 Function void Task1_LED (void)	
5.2 5.2 5.2 5.3 5.3 5.3 5.4 5.4 5.4 5.5 5.5 5.6	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE) TASKS 4.1 Function void Task0_SlaveState (void) 4.2 Function void Task1_LED (void) Init_Tasks 5.1 Function void Global_Init (void).	
5.2 5.2 5.2 5.3 5.3 5.3 5.4 5.4 5.4 5.5 5.6 5.6	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE) TASKS 4.1 Function void Task0_SlaveState (void) 4.2 Function void Task1_LED (void) Init_Tasks 5.1 Function void Global_Init (void) TIMER 6.1 Function void InitPIT (void)	
5.2 5.2 5.2 5.3 5.3 5.3 5.4 5.4 5.4 5.5 5.5 5.5 5.6 5.0	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE) TASKS 4.1 Function void Task0_SlaveState (void) 4.2 Function void Task1_LED (void) Init_Tasks 5.1 Function void Global_Init (void) TIMER 6.1 Function void InitPIT (void) 6.2 Function void InitPITChannel (T_UBYTE)	
5.2 5.2 5.2 5.3 5.3 5.3 5.4 5.4 5.4 5.4 5.6 5.6 5.6 5.6	2.2 Function void RX_ISR (void) 2.3 Function void Init_LIN (void) 2.4 Function void Error_handler (void) LIN_EA 3.1 Function void LED_status (void) 3.2 Function void Set_SlaveState (T_UBYTE) TASKS 4.1 Function void Task0_SlaveState (void) 4.2 Function void Task1_LED (void) Init_Tasks 5.1 Function void Global_Init (void) TIMER 6.1 Function void InitPIT (void)	

Division IB&S

5.7.2	Function T_UBYTE Get_LED_Status (void)	20
5.7.3	Function void Set_LED_Status (T_UBYTE)	20
5.8 (GPIO	20
5.8.1	Function void Set_Pin_State (T_UBYTE, T_UBYTE)	
5.8.2	Function void Set_Pin_Mode (T_UBYTE, T_UBYTE)	
5.8.3	Function T_UBYTE Get_Pin_State (T_UBYTE)	21
5.9 I	KERNEL	21
5.9.1	KERNELFunction void Tick_ISR (void)	21
5.9.2	Function void main_Scheduler (void)	21
- 10 - 3	Main	••
5.10 N	Main	22
5.10.1	Function void main (void)	22
5 11 6	System_Initialization	22
5 1 1 1	Function void System_Init (void)	22
	Function void ModeEntry (void)	
5 117	Hungtion void Modelintry (void)	

Division IB&S

1 Purpose

This document has been created to describe the design specifications of the application LIN Driver. It consists on the implementation of the LIN protocol in the TRK-MPC5606B development board and an application, which will be a slave number 1 in a group of one master and four slaves.

Req. Id. 1.0, 1.1, 1.2

2 Definitions and abbreviations

2.1 Definitions

Cmd_NONE Command to do nothing.
Cmd_LED_on Cmd_LED_off Command to turn the LED on.
Command to turn the LED off.

Cmd_LED_togglingCmd_disable_slvCommand to trigger the blinking LED of the sequence.Command to disable the slave mode in the slave node.

Data The response of a frame carries one to eight data bytes, collectively

called data.

Dominant A cero value in the LIN bus.

Frame A frame consists of a header and a response. The reply frame for a

node configuration or a diagnostic request is a response.

Header A header is the first part of a frame; it is always sent by the master task.

ISR Interrupt Service Routine
LED Light Emitting Diode
Local interconnect Network

LIN_EAName of the system designed in this project. **LINFlex**Local Interconect Network Flexible controller.

Node A node is an ECU (electronic control unit). However, a single ECU may

be connected to multiple LIN clusters.

PIT Periodic Interrupt Timer
Recessive A one value in the LIN bus.

Rx Reception.

Slave node A node that contains a slave task only, i.e. it does not contain a master

task.

TOGGLING Status where the LED blinks.

Tx Transmission. Req. Id. 1.13, 1.14, 1.15, 1.17, 1.18

2.2 Type name definition

Type Name	Elements	Elements				
	0	1	2	3	4	5
t_cmdType	cmd_NONE	cmd_LED_on	cmd_LED_off	cmd_LED_toggling	cmd_disable_slv	cmd_enable_slv
t_LEDstat	OFF	ON	TOGGLING			
t_boolean	FALSE	TRUE				
array	AZSEEV					
Scalar	1					

Req. Id. 1.12, 1.16, 1.19, 1.20, 1.21

Detailed Software Design Document		sign Document	DSD_LIN_EA	1.6
Project:	LIN_EA	2-Dec-15		Page 5 / 22

Division IB&S

References

N°	Document name	Reference	Revision
1	LIN Specification Package	LIN/Documents/LIN-Spec_2-2A.pdf	2.2A
2	Traceability Matrix – LIN_EA	LIN/Documents/1.0 Requirements/Traceability Matrix – LIN EA.xls	1.7
3	MPC5607B Microcontroller Reference Manual	LIN/Documents/MPC5607BRM_Reference_M anual.pdf	7.2
4	Quick Start Guide TRK- MPC5606B	LIN/Documents/Quick_Start_Guide.pdf	3
5	LIN Network Definition	LIN/Documents/LIN_Network_Database.xls	1.0

3 Realization constraints and targets

3.1 TRK-MPC5606B's features

- MPC5606B MCU (144-pin LQFP).
- On-board JTAG connection via open source OSBDM circuit using the MPC9S08JM MCU.
- MCZ3390S5EK system basis chip with advanced power management and integrated CAN transceiver and LIN 2.0 interface.
- CAN interface.
- LIN interface.
- Analog interface with potentiometer.
- High-efficency green LEDs.
- 4 PushButtons.
- Serial communication interface.
- External power 9V DC to 12V DC regulated down to 5V DC.

Req. Id. 3.3

Division IB&S

4 SW Conceptual design

4.1 Architecture design

The architecture diagram show the layers in which the system is divided. In the Microcontroller Abstraction Layer, there are the modules where the interrupts, timers, GPIO, LIN interface and general configurations are handled. In the Hardware Abstraction Layer, the system manages the external modules as LEDs. In the Application layer, there is the main software and the tasks from the scheduler. Parallel to every layer there is the scheduler, which communicates with each of the layers.

4.2 Deployment Diagram

The deployment diagram shows the interaction of the LIN_EA system with external systems. There is a bidirectional communication with a LIN master node and an output to a LED. The master node sends commands, which can affect the system and LED state.

4.3 Use case diagram

Users	Description
LIN – Master Node	The master node sends data to the slave in
	order to affect the system.
LED	There is a LED which is controlled by the
	system.

Case	Description
Send a command	This case triggers a transmission by the master in order to communicate a command to be executed.
Trigger a change	This case evaluates the command sent.
Send a request	This case triggers a transmission by the master to communicate a request to receive status information.
Answer	This case triggers the transmission to the LIN – Master Node of the solicited information.

Detailed Software Design Document			DSD_LIN_EA	1.6
Project:	LIN_EA	2-Dec-15		Page 8 / 22

LIN_EA DSD LIN EA

Division IB&S

4.4 Sequence diagram

This diagram describes the interaction between different modules of the software and the microcontroller. The LINFLEX controller from the microcontroller is in charge of receiving the messages that arrive to the system through the LIN protocol. It sends them to one of the two interrupts depending on whether it matches for transmission or reception.

If it matches for transmission, the LIN_TX_interrupt fills the buffer and triggers the transmission of the data. LINFLEX sends the data and checksum, and then sends an aknowledge to the LIN_TX_interrupt in order to change the state. If it matches for reception, the LIN_RX_interrupt sets the length of the data that will be received. After the reception is done, the data is taken by the LIN_RX_interrupt and mark them as available for task0_SlaveState and task1_LED.

5 SW Component internal breakdown

5.1 Functional Decomposition

File	Description
Main	Main module that runs the main function. It is divided in system initialization and execution of the scheduler.
System_Initialization	The function of the module is to call the functions that initializes the mode of operation, peripherals, and the scheduler.
LIN_EA	It is in charge of executing the main application of the program. It contains two functions, which also contain the state machines to control the LED status and the slave state.
Kernel	The scheduler is being executed here. It handles the main configurations and the tick interrupt.
TASKS	This module contains the periodic tasks that are executed by the

Detailed Software Design Document		gn Document	DSD_LIN_EA	1.6
Project:	LIN_EA	2-Dec-15		Page 10 / 22

Division IB&S

	scheduler.
Init_Tasks	This module contains the global initializations which are needed for the correct execution of the scheduler.
LIN	This module contains the LIN driver. It consists of an initialization of the LIN controller, an error handler, and an interrupt for transmission and reception.
TIMER	This file contains the configurations that must be done to achieve the periodic interrupt that gives the Ticks to the scheduler.
GPIO	This module handles the registers needed to configure ports and change state of pins.
LED	This module configures and handles the state of the LED.

Division I B&S

Function Description and Dynamic Behavior

5.2 LIN

5.2.1 Function void TX_ISR (void)

Description	This function is called every time a transmission interrupt is generated from the LINFlex controller. It implements a state machine which controls the response's transmission after a valid command is received.
Parameter 1	Void
Return Value	Void
Precondition	Basic configuration of LINFlex must be done and the interrupts must
	be initialize in order to run this function.
Post condition	Does not apply
Error Conditions	Does not apply

Dynamic Behavior

State Chart

State	Description
Idle	State that waits for a valid command to send information using the LIN protocol. Once the id has been received the signal is considered transmitted by the master and it is ready to be readable to the filter. Req. Id. 2.3
Transmission	In this state, the corresponding data for the Filter Match Index is sent using the LIN protocol.

Detailed Software Design Document		sign Document	DSD_LIN_EA	1.6
Project:	LIN_EA	2-Dec-15		Page 12 / 22

Division IB&S

The following messages ID are considered valid. They should trigger a change of state to transmission:

Message name	Msg ID	Msg Data Length (byte)	Message publisher	Message subscriber	Signal length (bits)	Signal type	Signal Description
SLAVE1_RSP	0x20	2	Slave 1	Master	2	T_LEDstat	Return LED status
					1	T_boolean	Return node status
SLAVE1_ID	0xF0	7	Slave 1	Master	8	Scalar	Return team number
					48	Array	Return initials of team members

Req. Id. 1.3, 1.8, 1.9, 1.10, 1.11, 2.0, 2.1.

Division IB&S

5.2.2 Function void RX_ISR (void)

Description	This function is called every time a reception interrupt is generated from the LINFlex controller. It has a state machine, which controls the response's reception after a valid command is received.
Parameter 1	Void
Return Value	Void
Precondition	Basic configuration of LINFlex must be done and the interrupts must
	be initialize in order to run this function.
Post condition	Does not apply
Error Conditions	Does not apply

Dynamic Behavior

State Chart

State	Description
Idle	State that waits for a valid command to send information using the LIN protocol. Once the break/sync field sequence and the id arrives, the filter compares the value of the id with the ones configured. If the id is found in the registers, an interrupt is triggered. Req. Id. 2.4, 2.5, 2.8
Transmission	In this state, a response of a communication using the LIN protocol is received and the enhance checksum is calculated and compared to the received one. Then, the signal is considered received and available. Req. Id. 2.2, 2.6, 2.9, 2.10

Detailed Software Design Document		sign Document	DSD_LIN_EA	1.6
Project:	LIN_EA	2-Dec-15		Page 14 / 22

Division IB&S

The following messages ID are considered valid. They should trigger a change of state to reception:

Message name	Msg ID	Msg Data Length (byte)	Message publisher	Message subscriber	Signal length (bits)	Signal type	Signal Description
MASTER_CMD_ALL	0xCF	1	Master	Slave 1, 2, 3, 4.	4	T_cmdType	Command for all nodes
MASTER_CMD_SLV1	0x50	1	Master	Slave 1	4	T_cmdType	Command for node 1.

Req. Id. 1.3, 1.4, 1.5, 1.6, 1.7, 2.0, 2.1.

5.2.3 Function void Init_LIN (void)

Description	This function initializes the LIN controller of the board.
Parameter 1	Void
Return Value	Void
Precondition	Does not apply
Post condition	Does not apply
Error Conditions	Does not apply

The LIN controller must be set to initialization mode in order to set its configurations. The break detection threshold is set to 11 dominant local slave bit times. Another configuration is to set the endianness to Little Endian. Then the filters must be set to the following values: 0xCF, 0x50, 0x20, and 0xF0. Before leaving the function, the software sets the LIN controller to normal mode.

Req. Id. 1.3, 1.30, 2.0, 2.1, 2.7.

5.2.4 Function void Error_handler (void)

Description	This function handles the flags of error coming from the LIN	
	controller.	
Parameter 1	Void	
Return Value	Void	
Precondition	Does not apply	
Post condition	Does not apply	
Error Conditions	Does not apply	

Division I B&S

5.3 LIN_EA

5.3.1 Function void LED_status (void)

Description	This function is called every time the task 1 is executed. It has a state machine, which controls the response's reception after a valid command is received.
Parameter 1	Void
Return Value	Void
Precondition	Basic configuration of LINFlex must be done and the interrupts must
	be initialize in order to run this function.
Post condition	Does not apply
Error Conditions	Does not apply

Req. Id. 3.0, 3.1

Dynamic Behavior

State Chart

State	Description
OFF	State in which the LED is OFF. Req. Id. 1.24
ON	State in which the LED is ON. Req. ld. 1.23
Toggling	State in which the LED toggles. Req. id. 1.25

Detailed Software Design Document DSD_LIN_EA		1.6		
Project:	LIN_EA	2-Dec-15		Page 16 / 22

Division IB&S

5.3.2 Function void Set_SlaveState (T_UBYTE)

Description	This function is executed every 20 milliseconds in the task 0. It has a state machine, which controls the response's reception after a valid command is received.
Parameter 1	T_UBYTE. Flag which might trigger a change in the internal state
	machine.
Return Value	Void
Precondition	Does not apply
Post condition	Does not apply
Error Conditions	Does not apply

Req. Id. 3.2

Dynamic Behavior

State Chart

State	Description
Enabled	State in which the slave node acts fully in slave mode. The state transition is triggered by the command cmd_disable_slv. The command cmd_none shall not trigger any change. Req. Id. 1.26, 1.28
Disabled	State in which the system will not accept any other command than the command cmd_enable_slv. The command cmd_none shall not trigger any change. Req. Id. 1.29
Dan Id 4 00	- ·

Req. Id. 1.22

Division IB&S

5.4 TASKS

5.4.1 Function void Task0_SlaveState (void)

Description	This task is executed every 20 milliseconds. Its main function is to
	call the state machine that handles the slave status of the system.
Parameter 1	Void
Return Value	Void
Precondition	Does not apply
Post condition	Does not apply
Error Conditions	Does not apply

5.4.2 Function void Task1_LED (void)

Description	This task is executed every 200 milliseconds. Its main function is to
	call the state machine that handles the status of the LED.
Parameter 1	Void
Return Value	Void
Precondition	Does not apply
Post condition	Does not apply
Error Conditions	Does not apply

5.5 Init_Tasks

5.5.1 Function void Global_Init (void)

Description	This function initializes the scheduler.
Parameter 1	Void
Return Value	Void
Precondition	This function should be called before executing the scheduler.
Post condition	The scheduler's functionalities can be used.
Error Conditions	Does not apply.

Detailed Software Design DocumentDSD_LIN_EA1.6Project: LIN_EA2-Dec-15Page 18 / 22

5.6 TIMER

5.6.1 Function void InitPIT (void)

Description	PIT is initialized.
Parameter 1	Void
Return Value	Void
Precondition	This function is called in the beginning of the main program to
	initialize the PIT.
Post condition	The interrupts every 10ms will be generated.
Error Conditions	Does not apply

Dynamic Behavior

Activity diagram

5.6.2 Function void InitPITChannel (T_UBYTE)

Description	This function configures the given channel of the PIT timer.
Parameter 1	T_UBYTE PIT channel which must be configured.
Parameter 2n Does not apply	
Return Value	Void
Precondition	This function should be called in the beginning of the main
	application.
Post condition	The initialized channel of the PIT will be ready to use.
Error Conditions Does not apply.	

Detailed Software Design Document DSD_LIN_EA		1.6		
Project:	LIN_EA	2-Dec-15		Page 19 / 22

Division I B&S

5.7 LED

5.7.1 Function void Init_LED (void)

Description	This function initializes the pin used for the LED.
Parameter 1	Void
Return Value	Void
Precondition	Does not apply
Post condition	The LED will be able to be changed.
Error Conditions	Does not apply

5.7.2 Function T_UBYTE Get_LED_Status (void)

Description	This function returns the state of the LED.
Parameter 1 Void	
Return Value	T_UBYTE. Corresponds to the logic state of the LED. It can be either
	0 or 1, meaning off or on, respectively.
Precondition Does not apply	
Post condition	Does not apply
Error Conditions	Does not apply

5.7.3 Function void Set_LED_Status (T_UBYTE)

Description	This function changes the LED status depending on the parameter received.
Parameter 1	T_UBYTE. It can receive either 0 or 1 to turn it off or on respectively.
Return Value	Void
Precondition	The function Init_LED should be executed before.
Post condition	The LED status will change to the one received in the parameter.
Error Conditions	Does not apply

5.8 **GPIO**

5.8.1 Function void Set_Pin_State (T_UBYTE, T_UBYTE)

Changes the logic level of the output pin selected.	
T_UBYTE. Corresponds to the pin number that should be affected.	
2 T_UBYTE. It can receive either 0 or 1 to turn the pin off or on	
respectively.	
• Void	
n The mode of the pin selected should be OUTPUT.	
The logic level for the selected pin, will be the one selected in the	
second parameter.	
Does not apply	

Detailed Software Design Document DSD_LIN_EA			1.6	
Project:	LIN_EA	2-Dec-15		Page 20 / 22

Division I B&S

5.8.2 Function void Set_Pin_Mode (T_UBYTE, T_UBYTE)

Description	This function changes the pin mode of the selected pin to the selected mode.
Parameter 1 T_UBYTE. Corresponds to the pin number that should be affect	
Parameter 2 T_UBYTE. It can receive a value according to the following	
	definitions: 0 -> OUTPUT, 1 -> INPUT, 2 -> LIN_TX, 3 -> LIN_RX.
Return Value Void	
Precondition Does not apply	
Post condition The selected pin will act as the selected pin mode.	
Error Conditions Does not apply	

5.8.3 Function T_UBYTE Get_Pin_State (T_UBYTE)

Description	n This function returns the state of the given pin.	
Parameter 1	T_UBYTE. Corresponds to the pin number which state is unknown.	
Return Value T_UBYTE. Corresponds to the logic state of the pin. It can be either		
	or 1, meaning off or on, respectively.	
Precondition	Does not apply	
Post condition Does not apply		
Error Conditions	Does not apply	

5.9 KERNEL

5.9.1 Function void Tick_ISR (void)

Description	This function is the one that handles the clock Ticks in order to trigger the tasks. This interrupt runs periodically every 10 milliseconds according to the configuration of the PIT.	
Parameter 1	Void	
Return Value	Void	
Precondition This function is called when a PIT interrupt is generated.		
Post condition It will literally interrupt the flow of the program to implement i		
Error Conditions	Does not apply	

5.9.2 Function void main_Scheduler (void)

Description	This function contains the main function of the scheduler which controls the timing for each of the tasks.
Parameter 1 Void	
Return Value Void	
Precondition The Global_Init function should be executed before.	
Post condition Does not apply	
Error Conditions Does not apply	

Detailed Software Design Document DSD_LIN_EA			1.6	
Project:	LIN_EA	2-Dec-15		Page 21 / 22

Division IB&S

5.10 Main

5.10.1 Function void main (void)

Description	This function runs first by default. It is divided in system initialization and execution of the scheduler.
Parameter 1	Void
Parameter 2 Does not apply.	
Return Value	Void
Precondition	Does not apply.
Post condition Does not apply.	
Error Conditions	Does not apply.

5.11 System_Initialization

5.11.1 Function void System_Init (void)

Description	This function calls the functions that initializes the mode of operation, peripherals, and the scheduler.	
Parameter 1	Void	
Parameter 2	Parameter 2 Does not apply.	
Return Value	Value Void	
Precondition	dition This should be the first function called in the main program.	
Post condition	ition It will be possible to use the microcontroller with the configurations	
	done.	
Error Conditions	ns Does not apply.	

5.11.2 Function void ModeEntry (void)

Description	It initializes the mode of operation.
Parameter 1	Void
Parameter 2	Does not apply.
Return Value	Void
Precondition This should be the first function called in the main program.	
Post condition	It will be possible to use the microcontroller with the configurations
	done.
Error Conditions	Does not apply.