Homework 2

Student: Joy Jin	Score:

Description

The goal of this assignment is to improve your understanding of **lexical analysis** and **derivations**.

Due Date

Thursday, 10/16/2025 11:59 PM

[35 Points] Question 1: Regular Expression-to-Automaton

For each of the regular expressions, construct a deterministic finite automaton (DFA). You will provide both the diagram and table representations for the DFA. You must show all the steps from generating a nondeterministic finite automaton (NFA) to a DFA. To receive full credit, you must show *all* the workouts of DFA construction (i.e., Move(A, a), ε -closures, etc).

Regular Expressions:

1. [5 Points] $(a|b)^*$

$$\epsilon$$
-closure(1) = {1, 2, 3, 5, 8} : A (1)

$$\epsilon\text{-closure}(\text{move}(A, a)) = \epsilon\text{-closure}(\{4\}) = \{2, 3, 4, 5, 7, 8\} : B \tag{2}$$

$$\epsilon\text{-closure}(\text{move}(A,b)) = \epsilon\text{-closure}(\{6\}) = \{2,3,5,6,7,8\} : C \tag{3}$$

$$\epsilon$$
-closure(move(B, a)) = ϵ -closure({4}) = B (4)

$$\epsilon$$
-closure(move(B, b)) = ϵ -closure($\{6\}$) = C (5)

$$\epsilon$$
-closure(move(C, a)) = ϵ -closure($\{4\}$) = B (6)

$$\epsilon$$
-closure(move(C, b)) = ϵ -closure($\{6\}$) = C (7)

2. [5 Points] $(a^*|b^*)^*$

$$\epsilon$$
-closure(1) = {1, 2, 3, 4, 6, 7, 8, 10, 11, 12} : A (8)

$$\epsilon$$
-closure(move(A, a)) = ϵ -closure($\{5\}$) = $\{2, 3, 4, 5, 6, 7, 8, 10, 11, 12\} : B$ (9)

$$\epsilon\text{-closure}(\text{move}(A,b)) = \epsilon\text{-closure}(\{9\}) = \{2, 3, 4, 6, 7, 8, 9, 10, 11, 12\} : C \tag{10}$$

$$\epsilon$$
-closure(move(B, a)) = ϵ -closure($\{5\}$) = B (11)

$$\epsilon$$
-closure(move(B, b)) = ϵ -closure($\{9\}$) = C (12)

$$\epsilon$$
-closure(move(C, a)) = ϵ -closure($\{5\}$) = B (13)

$$\epsilon$$
-closure(move(C, b)) = ϵ -closure($\{9\}$) = C (14)

We get the same DFA, so we can use the graph earlier:

3. [10 Points] $c(c|d)^*dd$


```
\epsilon\text{-closure}(1) = \{1\} : A \epsilon\text{-closure}(\mathsf{move}(A,c)) = \epsilon\text{-closure}(\{2\}) = \{2,3,4,5,7,10,11\} : B \epsilon\text{-closure}(\mathsf{move}(A,d)) = \epsilon\text{-closure}(\{\}) = \{\} : C \epsilon\text{-closure}(\mathsf{move}(B,c)) = \epsilon\text{-closure}(\{6\}) = \{4,5,6,7,9,10,11\} : D \epsilon\text{-closure}(\mathsf{move}(B,d)) = \epsilon\text{-closure}(\{8,12\}) = \{4,5,7,8,9,10,11,12,13\} : E \epsilon\text{-closure}(\mathsf{move}(C,c)) = \epsilon\text{-closure}(\{\}) = C \epsilon\text{-closure}(\mathsf{move}(C,d)) = \epsilon\text{-closure}(\{\}) = C \epsilon\text{-closure}(\mathsf{move}(D,c)) = \epsilon\text{-closure}(\{6\}) = D \epsilon\text{-closure}(\mathsf{move}(E,c)) = \epsilon\text{-closure}(\{6\}) = D \epsilon\text{-closure}(\mathsf{move}(E,c)) = \epsilon\text{-closure}(\{6\}) = D \epsilon\text{-closure}(\mathsf{move}(F,c)) = \epsilon\text{-closure}(\{8,12,14\}) = F \epsilon\text{-closure}(\mathsf{move}(F,c)) = \epsilon\text{-closure}(\{8,12,14\}) = F
```


4. [15 Points] (a|b)a(a|b)b

Here we removed the ε in concatenation to simplify.

$$\epsilon$$
-closure(1) = {1, 2, 4} : A (16)

$$\epsilon$$
-closure(move(A, a)) = ϵ -closure($\{3\}$) = $\{3, 6\}$: B (17)

$$\epsilon$$
-closure(move(A, b)) = ϵ -closure($\{5\}$) = $\{5, 6\}$: C (18)

$$\epsilon\text{-closure}(\text{move}(B, a)) = \epsilon\text{-closure}(\{7\}) = \{7, 8, 10\} : D$$
(19)

$$\epsilon$$
-closure(move(B, b)) = ϵ -closure($\{\}\}$) = $\{\}$: E (20)

$$\epsilon$$
-closure(move(C, a)) = ϵ -closure($\{7\}$) = D (21)

$$\epsilon$$
-closure(move(C, b)) = ϵ -closure($\{\}\}$) = E (22)

$$\epsilon$$
-closure(move(D, a)) = ϵ -closure($\{9\}$) = $\{9, 12\}$: F (23)

$$\epsilon$$
-closure(move(D, b)) = ϵ -closure($\{11\}$) = $\{11, 12\} = G$ (24)

$$\epsilon$$
-closure(move(E, a)) = ϵ -closure($\{\}$) = E (25)

$$\epsilon$$
-closure(move(E, b)) = ϵ -closure($\{\}\}$) = E (26)

$$\epsilon$$
-closure(move(F, a)) = ϵ -closure($\{\}$) = E (27)

$$\epsilon$$
-closure(move(F, b)) = ϵ -closure({13}) = {13} : H (28)

$$\epsilon$$
-closure(move(G, a)) = ϵ -closure($\{\}$) = E (29)

$$\epsilon$$
-closure(move(G, b)) = ϵ -closure({13}) = H (30)

$$\epsilon$$
-closure(move(H, a)) = ϵ -closure($\{\}\}$) = E (31)

$$\epsilon$$
-closure(move(H, b)) = ϵ -closure($\{\}\}$) = E (32)

Tables:

									Q4:	a	b
						$\mathbf{Q3}$	c	d	A		С
$\mathbf{Q}1$	a	b	$\mathbf{Q2}$	a	b	A	В	С	В		\mathbf{E}
						В	D	\mathbf{E}	\mathbf{C}	D	\mathbf{E}
A		С	A	В	С	\mathbf{C}	С	\mathbf{C}	D	F	G
B C	В	С	В С	В	С	D	D	Ε		Е	
С	В	С	С	В	С	E	D	F	F	E	
						\mathbf{F}	D	F	G	Ε	Η
]		Н	Ε	\mathbf{E}

[15 Points] Question 2: Derivations

For each of the grammar and target string, show all the steps of the leftmost and rightmost derivations. Clearly show each step.

1. [5 Points] Grammar:

$$S \to 0S1 \mid \epsilon$$

String: 0011

$$S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 00\epsilon 11\checkmark \tag{33}$$

Rightmost: identical.

2. [5 Points] Grammar:

$$S \to a \mid (L)$$

$$L \to L; S \mid S$$

String: w = ((a; a); a)

$$S \Rightarrow (L)$$

$$\Rightarrow (L; S)$$

$$\Rightarrow (S; S)$$

$$\Rightarrow ((L); S)$$

$$\Rightarrow ((L; S); S)$$

$$\Rightarrow ((S; S); S)$$

$$\Rightarrow ((a; S); S)$$

$$\Rightarrow ((a; a); S)$$

$$\Rightarrow ((a; a); a)$$

$$(34)$$

Right:

$$S \Rightarrow (L)$$

$$\Rightarrow (L; S)$$

$$\Rightarrow (L; a)$$

$$\Rightarrow (S; a)$$

$$\Rightarrow ((L); a)$$

$$\Rightarrow ((L; S); a)$$

$$\Rightarrow ((L; a); a)$$

$$\Rightarrow ((S; a); a)$$

$$\Rightarrow ((s; a); a)$$

$$\Rightarrow ((a; a); a)$$
(35)

3. [5 Points] Grammar:

$$L \to L, E \mid E$$

$$E \to E + E \mid id$$

String: w = id, id + id

$$\begin{split} L &\Rightarrow L, E \\ &\Rightarrow E, E \\ &\Rightarrow id, E \\ &\Rightarrow id, E + E \\ &\Rightarrow id, id + E \\ &\Rightarrow id, id + id \end{split} \tag{36}$$

Rightmost:

$$L \Rightarrow L, E$$

$$\Rightarrow L, E + E$$

$$\Rightarrow L, E + id$$

$$\Rightarrow L, id + id$$

$$\Rightarrow E, id + id$$

$$\Rightarrow id, id + id$$
(37)