Typing Benefits

Debugging

Fast execution

Auto documentation

Basic Types

Complex Types

Int list, real list, nested list

Tuple Types

General Syntax

represents a tupe with a field, were field i has type Ti.

$$i \in \mathcal{P}$$
 field $i \circ f$ tuple f
$2 (6, 7, \text{``abc''}) => 7$
$3 (6, 7, \text{``abc''}) => \text{``abc''}$

Functions

func: in put type → output type

Square: real → real

list sum
$$[1,2,3] \Rightarrow 1+2+3=6$$

list sum (int list) \rightarrow int
= int list \rightarrow int

add 1: int
$$\rightarrow$$
 int
fun add1 x = x +1;

Ml infers Obat add1 int - int

add 1 hd
$$[1,2,3] \Longrightarrow [2,2,3]$$

Fun add 1 hd $L = (1+hd L) :: (t1 L)$
ML infers add 1 hd: int list \rightarrow int list

All ML functions are Unary, have 1 argument

fun hypot
$$(x, y) = sqxt (x \cdot x + y \cdot y)$$
;

Recursion

fact int - int

fun fact(n)= if
$$n=0$$

then 1

else $n \cdot fact(n-1)$;

fun fib n
= if
$$n = 0$$

then 0
else if $n = 1$
then 1
else fib $(n - 1) + fib(n - 2)$;

then 0

else (hd L)+ list Sum (+1 L);

fun list Sum
$$C3=0$$

list sum $L=(hdL)+list Sum (+1 L);$

list Sum (h:t) = h + list Sum(t);

fun List Sum []=0