E4 — Robustheit via Homotopie $\mathcal{G}(\theta)$: Sierpiński-Tetraeder \to Baum

antaris

18. August 2025

Ziel

Wir prüfen die Stabilität der in E1–E3 gefundenen Kinematik gegen Mikrodeformationen der Bühne: eine kontinuierliche Familie gewichteter Graphen $\mathcal{G}(\theta)$, die von der ST-Geometrie ($\theta=0$) zu einer baumartigen Struktur ($\theta=1$) homotopiert. Erwartung: der on-diagonale Heat-Kernel zeigt einen Trend von Potenzgesetz (pcf/Fraktal) zu nicht-polynomialer (exponentieller) Abnahme im Baum-Limit; die Frontgeschwindigkeit $v_*(\theta)$ bleibt endlich.

1 Konstruktion $\mathcal{G}(\theta)$ und Messgrößen

Sei G_{ST} der ST-Ball (Level 6, Radius 7) um ein zentriertes Vertex und G_{tree} der BFS-Spannbaum desselben Balls. Für $\theta \in [0, 1]$ definieren wir die gewichtete Adjazenz

$$A(\theta) = \frac{(1 - \theta)A_{\text{ST}} + \theta A_{\text{tree}}}{\|(1 - \theta)A_{\text{ST}} + \theta A_{\text{tree}}\|_{1}}, \qquad L(\theta) = D(\theta) - A(\theta),$$

wobei durch die Normierung die Zeitskalen vergleichbar bleiben. Messgrößen:

- (E1) Spektral-Dimensions-Proxy $\widehat{d}_s(\theta)$: Fit von $\overline{p}_t(\theta) = \frac{1}{|V|} \text{tr } e^{-tL(\theta)}$ gegen t (mittleres Diagonalelement). Power-Law-Fit liefert $\widehat{d}_s(\theta) = -2\frac{\mathrm{d}}{\mathrm{d}(\log t)} \log \overline{p}_t$.
- (E2) Frontgeschwindigkeit $\hat{v}_*(\theta)$: CTQW auf $H(\theta) = -A(\theta)$ mit Quelle im Zentrum; erste Ankunftszeiten von Schalen r (Schwellwert) und Fit $r \sim \hat{v}_* t$.

2 Simulationsergebnisse

Level 6, Radius 7, $\theta \in \{0, 0.25, 0.5, 0.75, 1\}, t \in [0.6, 10]$ (E1), $t \in [0, 140]$ (E2).

Zusammenfassung (CSV: E4_homotopy_summary.csv): $\hat{d}_s(\theta)$ fällt von ≈ 1.67 (ST) auf ≈ 0.80 (Baum-Spannung), während $\hat{v}_*(\theta)$ moderat ansteigt (ca. $0.51 \to 0.55$). Hinweis: im Baum-Limit ist *nicht* strikt ein Potenzgesetz zu erwarten (vgl. Theorie unten); die obige \hat{d}_s ist daher als *Proxy* zu interpretieren, und der ergänzende Exponential-Fit auf $\log \bar{p}_t$ zeigt zunehmende Raten $\alpha(\theta)$.

3 Formalisierung und Erwartungen

Proposition 1 (Lieb-Robinson-Beschränktheit entlang der Homotopie). Für die Familie $H(\theta) = -A(\theta)$ auf einem Graphen mit beschränktem Grad existieren LR-Konstanten $C, \mu, v(\theta)$ und damit eine effektive Kausalstruktur. Bei einheitlicher Normierung von $A(\theta)$ ist $v(\theta)$ gleichmäßig endlich. Folglich ist eine einheitliche operative Frontgeschwindigkeit $v_*(\theta) \leq v(\theta)$ definiert.

Bemerkung 2. Dies folgt aus Standard-LR-Bounds für lokale Gitterdynamiken mit endlichreichweitigen (oder exponentiell fallenden) Kopplungen und beschränktem Grad; die Konstante hängt linear vom Kopplungsnormmaß ab, welche hier durch die Skalierung kontrolliert ist.

Proposition 3 (Fraktal \rightarrow Baum: Heat-Kernel-Regime). Für pcf-Fraktale (wie ST-Approximanten) gelten sub-gaußsche Heat-Kernel-Schrankungen mit Power-Law-On-Diagonal $p_t(x,x) \approx t^{-d_s/2}$ (bis auf log-periodische Modulationen). Auf regulären Bäumen (Cayley/Bethe) ist der einfache Random Walk transient, und der Heat Kernel zeigt exponentielle Abnahme in t (keine reine Potenz).

Bemerkung 4. Damit ist entlang $\theta \uparrow 1$ kein konstanter effektiver Exponent zu erwarten; stattdessen verschiebt sich das Kurvenbild von einer linearen Log-Log-Skala (Fraktal) zu einer linearen Semi-Log-Skala (Baum). Unsere Messung ergänzt daher einen Exponential-Fit, dessen Rate $\alpha(\theta)$ zunimmt.

4 Akzeptanzkriterien und Ergebnis

(K1) Glatter Trend in $\hat{d}_s(\theta)$ bzw. wachsender Exponentialrate $\alpha(\theta)$ – erfüllt. (K2) $v_*(\theta)$ bleibt endlich und mäßig variierend – erfüllt. (K3) Konsistenz mit Theorie: Fraktal-Powerlaw vs. Baum-Exponential – erfüllt.

Artefakte

E4_homotopy_summary.csv, E4_ds_theta.png, E4_vstar_theta.png.

Literatur (Kurzhinweise): LR-Bounds (Kliesch-Gogolin-Eisert); Random Walks/Heat Kernel auf Bäumen (Woess); Quanten-Suche/Fraktale (Sato *et al.*, PRA 101:022312).