1 Axioms for the natural numbers

Axiom. (Peano Postulates). There exists a set \mathbb{N} with an element $1 \in \mathbb{N}$ and a function $s : \mathbb{N} \to \mathbb{N}$ that satisfy the following three properties.

- a. There is no $n \in \mathbb{N}$ such that s(n) = 1.
- b. The function is injective.
- c. Let $G \subseteq \mathbb{N}$ be a set. Suppose that $1 \in G$ and that if $g \in G$ then $s(g) \in G$. Then $G = \mathbb{N}$.

Definition. The set of natural numbers, denoted \mathbb{N} , is the set the existence of which is given in the Peano Postulates.

Theorem 1. (Definition by Recursion). Let H be a set, and let $e \in H$ and let $k : H \to H$ be a function. Then there is a unique function $f : \mathbb{N} \to H$ such that f(1) = e and that $f \circ s = k \circ f$.

Theorem 2. There is a unique binary operation $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ that satisfies the following two properties for all $n, m \in \mathbb{N}$.

a.
$$n + 1 = s(n)$$

b.
$$n + s(m) = s(n+m)$$

Theorem 3. There is a unique binary operation $\cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ that satisfies the following two properties for all $n, m \in \mathbb{N}$.

$$a. n \cdot 1 = n$$

b.
$$n \cdot s(m) = (n \cdot m) + n$$

Theorem 4. Let $a, b, c \in \mathbb{N}$.

- 1. If a + c = b + c then a = b (Cancellation Law for Addition).
- 2. (a+b)+c=a+(b+c) (Associative Law for Addition).

3.
$$1 + a = s(a) = a + 1$$
.

4.
$$a + b = b + a$$
 (Commutative Law for Addition).

5.
$$a + b \neq 1$$
.

6.
$$a + b \neq a$$
.

7.
$$a \cdot 1 = a = 1 \cdot a$$
 (Identity Law for Multiplication).

8.
$$(a+b)c = ac + bc$$
 (Distributive Law).

9.
$$ab = ba$$
 (Commutative Law for Multiplication).

10.
$$(ab)c = a(bc)$$
 (Associative Law for Multiplication).

11. If
$$ac = bc$$
 then $a = b$ (Cancellation Law for Multiplication).

12.
$$ab = 1$$
 if and only if $a = 1 = b$.

Definition. The relation < on \mathbb{N} is defined by a < b if and only if there is some $p \in \mathbb{N}$ such that a + p = b for all $a, b \in \mathbb{N}$. The relation \le on \mathbb{N} is defined by $a \le b$ if and only if a < b or a = b, for all $a, b \in \mathbb{N}$.

Theorem 5. Let $a, b, c, d \in \mathbb{N}$.

- 1. $a \le a$ and $a \not< a$, and a < a + 1.
- 2. 1 < a.
- 3. If a < b and b < c, then a < c; if $a \le b$ and b < c then a < c; if a < b and $b \le c$ then a < c; if $a \le b$ and $b \le c$ then $a \le c$.
- 4. a < b if and only if a + c < b + c.
- 5. a < b if and only if ac < bc.
- 6. Precisely one of a < b or a = b or a > b holds (Trichotomy Law).
- 7. $a \leq b$ or $b \leq a$
- 8. If a < b and b < a then a = b.
- 9. It cannot be that b < a < b + 1.
- 10. $a \le b$ if and only if a < b + 1.
- 11. a < b if and only if $a + 1 \le b$.

Theorem 6. (Well-Ordering Principle). Let $G \subseteq \mathbb{N}$ be a non-empty set. Then there is some $m \in G$ such that $m \leq g$ for all $g \in G$.

Exercises

1. Fill in the missing details in the proof of Theorem 1.2.6.

Proof. To prove uniqueness, suppose that there are two binary operations \cdot and \times on \mathbb{N} that satisfy the two properties of the theorem. Let

$$G = \{x \in \mathbb{N} | n \cdot x = n \times x \text{ for all } n \in N\}.$$

Then $G \subseteq N$. By part (a) applied to both \cdot and \times we see that $n \cdot 1 = 1 = n \times 1$ for all $n \in \mathbb{N}$, so $1 \in G$. Now let $q \in G$ and $n \in N$. Then $n \cdot q = n \times q$. Then it follows from part (b) that

$$n \cdot s(q) = (n \cdot q) + n = (n \times q) + n = n \times s(q).$$

Then $s(q) \in G$, and therefore we can conclude using part (c) of the Peano Postulates that $G = \mathbb{N}$. Let $q \in \mathbb{N}$. Let $h_q : \mathbb{N} \to \mathbb{N}$ be defined by $h_q(m) = m + q$ for all $m \in \mathbb{N}$. Applying theorem 1.2.4 to the set \mathbb{N} , the element $q \in \mathbb{N}$ and the function $h_q : \mathbb{N} \to \mathbb{N}$ implies that there is a unique function $g_q : \mathbb{N} \to \mathbb{N}$ such that $g_q(1) = q$ and $g_q \circ s = h_q \circ g_q$. Let $\cdot : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be defined by $c \cdot d = g_c(d)$ for all $(c,d) \in \mathbb{N} \times \mathbb{N}$. Let $n,m \in \mathbb{N}$. Then $n \cdot 1 = g_n(1) = n$ which is part (a), and $n \cdot s(m) = g_n(s(m)) = (g_n \circ s)(m) = (h_n \circ g_n)(m) = h_n(g_n(m)) = (n \cdot m) + n$ which is part (b). \square

2. Prove Theorem 1.2.7 (2, 3, 4, 7, 8, 9, 10, 11, 13)

2.
$$(a+b) + c = a + (b+c)$$

Proof. Let

$$G=\left\{z\in\mathbb{N}: \text{ if } x,y\in\mathbb{N}, (x+y)+z=x+(y+z)\right\}.$$

Then (x + y) + 1 = s(x + y) = x + s(y) = x + (y + 1), so $1 \in G$. Now, let $z \in G$. Then

$$(x + y) + s(z) = (x + y) + (z + 1)$$

$$= ((x + y) + z) + 1$$

$$= (x + (y + z)) + 1$$

$$= x + ((y + z) + 1)$$

$$= x + (y + (z + 1))$$

$$= x + (y + s(z))$$

So if $z \in G$ then $s(z) \in G$, and therefore $G = \mathbb{N}$.

3. 1 + a = s(a) = a + 1.

Proof. It follows from the definition of +, that a+1=s(a). Let $G=\{a\in N: 1+a=s(a)\}$. 1+1=s(1), so $1\in G$. Now, let $a\in G$. Then (1+a)+1=s(1+a)=1+s(a)=1+(1+a). So $s(a)\in G$, and therefore $G=\mathbb{N}$.

4. a + b = b + a

Proof. Let

$$G = \{a \in \mathbb{N} : \text{ if } b \in \mathbb{N}, a+b=b+a\}.$$

Let $b \in N$. It follows that 1 + b = b + 1, so $1 \in G$. Now, let $a \in G$. Then

$$(a+1) + b = (1+a) + b = 1 + (a+b) = 1 + (b+a) = (b+a) + 1 = b + (a+1).$$

So $s(a) \in G$, and therefore $G = \mathbb{N}$.

7. $a \cdot 1 = a = 1 \cdot a$

Proof. It follows from the definition of \cdot that $a \cdot 1 = a$. Let $G = \{a \in \mathbb{N} : 1 \cdot a = a\}$. Since $1 \cdot 1 = 1$, we know that $1 \in G$. Let $a \in G$. Then

$$1 \cdot s(a) = (1 \cdot a) + 1 = a + 1 = s(a).$$

So $s(a) \in \mathbb{N}$, and therefore $G = \mathbb{N}$.

8. (a+b)c = ac + bc