Sprawozdanie z listy 3. - Obliczenia naukowe

Jakub Bachanek

22 listopada 2020

1 Zadanie 1.

1.1 Opis problemu

Celem zadania jest napisanie funkcji w języku Julia, która rozwiązuje równanie f(x) = 0 metodą bisekcji. Będziemy wymagać, aby f była ciągła na przedziale [a,b] oraz żeby f(a)f(b) < 0. Jest to wymagane, ponieważ wtedy z twierdzenia Darboux wiemy, że istnieje punkt c w przedziale (a,b), dla którego f(c) = 0.

1.2 Rozwiązanie

Metoda bisekcji (połowienia przedziału) korzysta z wymaganych założeń w następujący sposób. Jeśli f(a)f(b)<0, to obliczamy $c=\frac{1}{2}(a+b)$ i sprawdzamy, czy f(a)f(c)<0. Jeśli tak, to f ma zero w (a,c) i pod b podstawiamy c. W przeciwnym razie jest f(c)f(b)<0 i pod a podstawiamy c. W obu tych przypadkach nowy przedział [a.b], dwa razy krótszy od poprzedniego, zawiera zero funkcji f, więc postępowanie możemy iteracyjnie powtórzyć.

Z uwagi na ograniczenia arytmetyki zmiennoprzecinkowej punkt c obliczamy jako $c=a+\frac{(b-a)}{2}$, stosujemy funkcję sign() do badania znaku oraz używamy skończonych ograniczników dokładności δ ϵ i maksymalnej liczby iteracji M.

```
Dane: f, a, b, \delta, \epsilon
Wynik: r, f(r), it, err
u \leftarrow f(a)
v \leftarrow f(b)
e \leftarrow b - a
if sgn(u) = sgn(v) then
| return (0, 0, 0, 1)
end
for it = 1 to M do
    e \leftarrow e/2
    c \leftarrow a + e
    w \leftarrow f(c)
    if |e| < \delta or |w| < \epsilon then
    | return (c, w, it, 0)
    if sgn(w) \neq sgn(u) then
      b \leftarrow c
     v \leftarrow w
     u \leftarrow w
    \mathbf{end}
  \mathbf{end}
```

2 Zadanie 2.

2.1 Opis problemu

Celem zadania jest napisanie funkcji w języku Julia, która rozwiązuje równanie f(x) = 0 metodą Newtona (stycznych). Będziemy wymagać, aby f była ciągła na przedziale [a,b] oraz żeby miała w nim pochodną.

2.2 Rozwiązanie

Metoda Newtona polega na linearyzacji funkcji f za pomocą stycznych poprowadzonych w punktach $x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$, przy znanym przybliżeniu początkowym x_0 .

Z uwagi na ograniczenia arytmetyki zmiennoprzecinkowej używamy skończonych ograniczników dokładności δ ϵ i maksymalnej liczby iteracji maxit. Ponadto pochodna nie może być bliska zeru, gdyż wtedy styczna byłaby niemal równoległa do osi OX.


```
Dane: f, pf, x0, \delta, \epsilon
Wynik: r, f(r), it, err
v \leftarrow f(x0)
if |v| < \epsilon then
| return (x0, v, 0, 0)
\quad \text{end} \quad
for it = 1 to maxit do
    if |pf(x0)| < \epsilon then
     | return (0, 0, it, 2)
    \mathbf{end}
    x1 \leftarrow x0 - v/pf(x0)
    v \leftarrow f(x1)
    if |x1-x0|<\delta or |v|<\epsilon then
    | return (x1, v, it, 0)
    \mathbf{end}
    x0 \leftarrow x1
end
return (0, 0, maxit, 1)
```

3 Zadanie 3.

3.1 Opis problemu

Celem zadania jest napisanie funkcji w języku Julia, która rozwiązuje równanie f(x)=0 metodą siecznych. Będziemy wymagać, aby f była ciągła na przedziale [a,b] oraz żeby miała w nim niezerową pochodną.

3.2 Rozwiązanie

Metoda siecznych polega na linearyzacji funkcji f za pomocą siecznych poprowadzonych w punktach $f(x_i)$ i $f(x_{i+1})$ $(i \ge 0)$ dla $x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$ $(n \ge 1)$, przy znanych przybliżeniach początkowych x_0 i x_1 .


```
Dane: f, x0, x1, \delta, \epsilon, maxit
Wynik: r, f(r), it, err
fx0 \leftarrow f(x0)
fx1 \leftarrow f(x1)
\mathbf{for}\ it = 1\ \mathbf{to}\ maxit\ \mathbf{do}
     if |fx0| > |fx1| then
         x0 \leftrightarrow x1
         fx0 \leftrightarrow fx1
     \quad \text{end} \quad
     s \leftarrow (x1 - x0)/(fx1 - fx0)
     x1 \leftarrow x0
     fx1 \leftarrow fx0
     x0 \leftarrow x0 - fx0 * s
     fx0 \leftarrow f(x0)
     if |fx0| < \epsilon or |x1 - x0| < \delta then
     | return (x0, fx0, it, 0)
     end
     x0 \leftarrow x1
\mathbf{end}
return (0, 0, maxit, 1)
```

3.3 Testy do trzech metod

Testy dla kilku przykładowych funkcji i różnych parametrów początkowych znajdują się w pliku tests.jl. Wszystkie metody iteracyjne zwracały poprawne wyniki dla zadanych danych, zatem są dobrze zaimplementowane.

4 Zadanie 4.

4.1 Opis problemu

Celem zadania jest wyznaczenie pierwiastka równania $\sin x - (\frac{1}{2}x)^2 = 0$ za pomocą metod:

- bisekcji z przedziałem początkowym [1.5, 2]
- $\bullet\,$ Newtona z przybliżeniem początkowym $x_0=1.5$
- $\bullet\,$ siecznych z przybliżeniem początkowym $x_0=1, x_1=2$

W każdym przypadku ustawić $\delta = \frac{1}{2}10^{-5}$ oraz $\epsilon = \frac{1}{2}10^{-5}$.

4.2 Rozwiązanie

Używamy modułu z zaimplementowanymi metodami.

```
include("../methods/methods.jl")
using .methods
f(x) = \sin(x) - (x/2)^2
pf(x) = \cos(x) - (x/2)
```

4.3 Wyniki i interpretacja

Poniższa tabela przedstawia wyniki dla poszczególnych metod.

metoda	r	f(r)	it	err
bisekcji	1.9337539672851562	-2.7027680138402843e-7	16	0
Newtona	1.933753779789742	-2.2423316314856834e-8	4	0
siecznych	1.933753644474301	1.564525129449379e-7	4	0

Wartość dokładna = 1.933753762827. Najdokładniejsze przybliżenie dała metoda Newtona, wykonała ona tę samą liczbę iteracji co metoda siecznych. Natomiast metoda bisekcji pomimo czterokrotnie większej liczby iteracji dała wynik najmniej dokładny.

4.4 Wnioski

Różnica w wynikach wynika z różnej zbieżności tych metod. Metoda Newtona jest zbieżna kwadratowo, siecznych – nadliniowo, natomiast bisekcji – liniowo. Nie bez znaczenia pozostaje także sama funkcja, a co za tym idzie wybór przedziałów i przybliżeń początkowych.

5 Zadanie 5.

5.1 Opis problemu

Celem zadania jest wyznaczenie wartości zmiennej x, dla której przecinają się wykresy funkcji y=3x i $y=e^x$ za pomocą metody bisekcji. Wymagana dokładność obliczeń wynosi $\delta=10^{-4},~\epsilon=10^{-4}$.

5.2 Rozwiązanie

Z wykresów funkcji odczytujemy przedziały, których użyjemy w metodzie bisekcji. Są to [0,1] oraz [1,2].

Szukamy sytuacji, gdy $3x=e^x$, zatem możemy rozpatrywać funkcję $f(x)=3\ast x-e^x.$

include("../methods/methods.jl")
using .methods

$$f(x) = 3*x - exp(x)$$

5.3 Wyniki i interpretacja

Poniższa tabela przedstawia wyniki.

metoda	r	f(r)	it	err
bisekcji	0.619140625	9.066320343276146e-5	9	0
bisekcji	1.5120849609375	7.618578602741621e-5	13	0

Wartości dokładne = 0.6190612867359 i 1.5121345516578.

Metoda zwróciła poprawne wyniki dla żądanej dokładności. Liczba iteracji jest bezpośrednio związana z długością wybranego przedziału oraz wartościami δ i ϵ .

5.4 Wnioski

Dla funkcji i przedziału spełniającego wymagane założenia metoda bisekcji zwraca poprawne wyniki, jednak z powodu swojej liniowej zbieżności wymaga niemałej liczby iteracji.

6 Zadanie 6.

6.1 Opis problemu

Celem zadania jest znalezienie miejsca zerowego funkcji $f_1(x) = e^{1-x} - 1$ oraz $f_2(x) = xe^{-x}$ za pomocą metod bisekcji, Newtona i siecznych. Wymagane dokładności to: $\delta = 10^{-5}$, $\epsilon = 10^{-5}$. Należy także sprawdzić co się stanie, gdy w metodzie Newtona dla f_1 wybierzemy $x_0 \in (1, \infty)$, a dla f_2 wybierzemy $x_0 > 0$ oraz czy można wybrać $x_0 = 1$ dla f_2 .

6.2 Rozwiązanie

Korzystamy z wykresów funkcji, aby wybrać odpowiednie przedziały.

$$f1(x) = exp(1-x) - 1$$

 $f2(x) = x * exp(-x)$
 $pf1(x) = -exp(1-x)$
 $pf2(x) = exp(-x) * (1-x)$

6.3 Wyniki i interpretacja

Poniższe tabele przedstawiają wyniki kolejno dla f_1 i f_2 .

metoda	dane	r	f(r)	it	err
bisekcji	[0.0, 2.0]	1.0	0.0	1	0
bisekcji	[0.0, 1.01]	0.9999980163574219	1.983644545511254e-6	16	0
bisekcji	[-15.5, 5.5]	0.9999971389770508	2.861027041944908e-6	20	0
Newtona	-3.0	0.9999999998977375	1.0226264279822317e-10	8	0
Newtona	-15.0	0.9999999998780822	1.2191780918158202e-10	20	0
Newtona	2.0	0.9999999810061002	1.8993900008368314e-8	5	0
Newtona	10.0	_	_	128	1
Newtona	15.0	_	_	1	2
siecznych	-3.0 i -6.0	0.9999986631650302	1.3368358633414346e-6	11	0
siecznych	-15.0 i -12.0	0.9999986749587155	1.3250421624366737e-6	24	0

metoda	dane	r	f(r)	it	err
bisekcji	[-1.0, 1.0]	0.0	0.0	1	0
bisekcji	[-15.5, 5.5]	9.5367431640625e-7	9.536734069119819e-7	20	0
Newtona	-1.0	-3.0642493416461764e-7	-3.0642502806087233e-7	5	0
Newtona	-10.0	-3.784424932490619e-7	-3.784426364678097e-7	16	0
Newtona	1.0	_	_	1	2
Newtona	2.0	14.398662765680003	8.036415344217211e-6	10	0
Newtona	10.0	14.380524159896261	8.173205649825554e-6	4	0
Newtona	15.0	15.0	4.588534807527386e-6	0	0
siecznych	-3.0 i -1.0	-3.572147171962902e-8	-3.572147299565259e-8	8	0
siecznych	-13.0 i -8.0	-9.112484125866149e-9	-9.112484208903515e-9	21	0

Miejsce zerowe dokładne dla f_1 to 1, a dla f_2 to 0. Wybranie przedziału, w którym pierwiastek leży po jego środku w metodzie bisekcji daje dokładny wynik w pierwszej iteracji, natomiast dla innych wyborów liczba iteracji rośnie wraz ze wzrostem wielkości przedziału.

Metoda Newtona dała dobre przybliżenie, ale tylko wtedy, gdy wybierzemy odpowiednie przybliżenie początkowe. Dla wartości x większych od 0 pochodne obu tych funkcji dażą do zera, ale mamy też

$$\lim_{x \to \infty} f_1(x) = -1$$

$$\lim_{x \to \infty} f_2(x) = 0$$

Przez to w przypadku f_1 szybko dostajemy NaN lub pochodna jest zbyt bliska zeru, a w przypadku f_2 zbliżamy się wartością blisko zera, jednak nie jest to w pobliżu miejsca zerowego. Gdy wybierzemy $x_0=1$ dla f_2 , to z powodu tego, że pochodna w tym punkcie wynosi zero, algorytm zakończy działanie z błędem. Metoda siecznych daje również dosyć dokładne wyniki, a liczba iteracji tej metody jest mocno zależna od wybranych punktów początkowych.

6.4 Wnioski

Wszystkie trzy metody potrafią dawać wyniki z pożądaną dokładnością, gdy paramatry początkowe są poprawnie zadane. Metoda Newtona oraz siecznych

wykonuje niemal zawsze znacznie mniej iteracji, co wynika z ich zbieżności. Nieprawidłowe przedziały i przybliżenia początkowe skutkują błędnymi wynikami.