- Introduction Complexity classes
 - o P, NP, NP-Hard, NP-Complete
 - o Cook's theorem, SAT is NP-Hard
 - NP-Hard reductions
 - o NP: Polynomial time certification
- Directions for solving NP-Hard problems
 - Approximation Algorithms
 - Randomized Algorithms
 - Heuristics
 - o Polynomial time algorithms for restricted inputs
 - o Parameterized algorithms
 - Exact exponential algorithms
- Text Books:

Book-1: Parameterized Algorithms: Marek Cygan, Fedor V. Fomin, Lukasz

Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michael

Pilipczuk and Saket Saurabh

Book-2: Advanced Graph Algorithms: T. Kloks

- Vertex Cover problem is NP-Hard
 - o Vertex cover, Minimum vertex cover, decision version of the problem
 - NP: A certification algorithms
 - o NP-Hard: reduction from 3-SAT

http://cgm.cs.mcgill.ca/~athens/cs507/Projects/2001/CW/npproof.html

- Graph Representations:
 - Adjacency matrix
 - Incidence matrix
 - Adjacency list
 - Edge list
 - Forward/Reverse star
- Approximation Algorithms:
 - \circ α -approximation
 - 2-approximation for vertex cover

http://tandy.cs.illinois.edu/dartmouth-cs-approx.pdf

- Randomized Algorithms
 - Las Vegas, Monte Carlo
 - Karger's min-cut algorithms

https://www.cs.princeton.edu/courses/archive/fall13/cos521/lecnotes/lec2final.pdf

- Review of basic graph traversals
 - o DFS, BFS, post order, pre-order traversals

- Linear time algorithms for trees Dynamic programming on trees
 - o Maximum independent set
 - Minimum dominating set

https://people.eecs.berkeley.edu/~vazirani/s99cs170/notes/dynamic2.pdf

- Parameterized Algorithms
 - o FPT, XP algorithms
 - o FPT algorithms for maximum clique, vertex cover
 - o Independent set problem not FPT
 - Bounded search tree technique
 - o Kernelization techniques
 - o Iterative compression
 - Crown decomposition

References:

- Chapter- 2,3,4, Book-1
- o Chapter-3, Book-2
- Tree decomposition
 - Nice tree decomposition
 - o Dynamic programming on nice tree decomposition
 - o Maximum independent set, minimum dominating set

References:

- Chapter-7, Book-1
- Chapter-4, Book-2
- Graph classes
 - Chordal graphs, cographs, perfect graphs, series parallel graphs, interval graphs, circular arc graphs, split graphs, threshold graphs, distance hereditary graphs, line graphs and grid graphs
 - o Algorithms for Chordal graphs
 - Perfect elimination ordering
 - o Maximum clique, coloring problems on chordal graphs

Reference: Chapter 2, Book-2

- Exact Algorithms
 - Travelling salesman problem
 - o Maximum independent set
 - Graph coloring
 - Dominating set problem
 - Set cover problem

Reference: Chapter-1, Book-2