Inference in belief networks

• Basic task: Determine posterior probability of a set of query variables given exact values for some evidence variables:

P(Query | Evidence)

Kinds of probabilistic inference (I)

- Diagnostic inferences
 - inference from effects to causes: P(cause | effect)
 - inference from symptoms to disease: P(disease | symptom)

Kinds of probabilistic inference (II)

Causal inferences

- inference from causes to effects: P(effect | cause)
- inference from diseases to symptoms: P(symptom | disease)

Kinds of probabilistic inference (III)

Intercausal inferences

- between causes of a common effect
- P(cause₁ | cause₂, effect)
- P(disease₁ | disease₂, symptom)

Note: P(B | A) >> P(B | E, A) called "explaining away"

Kinds of probabilistic inference (IV)

- Mixed inferences
 - combining two or all of diagnostic, causal, intercausal

Mixing diagnostic and causal inferences

Examples of probabilistic inference (I)

Prior probabilities (no evidence)

P(Earthquake) = 0.0003

P(Burglary) = 0.0001

P(Radio) = 0.00047

P(Watson) = 0.4

P(Gibbon) = 0.044

Suppose Watson calls

P(Earthquake | Watson) = 0.00036

P(Burglary | Watson) = 0.00019

P(Radio | Watson) = 0.00052

P(Watson | Watson) = 1

P(Gibbon | Watson) = 0.047

Examples of probabilistic inference (II)

Prior probabilities (no evidence)

P(Earthquake) = 0.0003

P(Burglary) = 0.0001

P(Radio) = 0.00047

P(Watson) = 0.4

P(Gibbon) = 0.044

Suppose radio report of earthquake

P(Earthquake | Radio) = 0.57

P(Burglary | Radio) = 0.0001

P(Radio | Radio) = 1

P(Watson | Radio) = 0.45

P(Gibbon | Radio) = 0.083

Examples of probabilistic inference (III)

Prior probabilities	(no evidence)

$$P(E) = 0.0003$$

 $P(B) = 0.0001$

$$P(E | W) = 0.00036$$

 $P(B | W) = 0.00019$

Suppose Watson calls and report of earthquake on radio

$$P(E \mid W, R) = 0.62$$

$$P(B | W, R) = 0.00017$$

Suppose Watson calls and no report of earthquake on radio

$$P(E \mid W, \neg R) = 0.000036$$

$$P(B | W, \neg R) = 0.00019$$

Burglary "explained away"

Example: Nuclear power plant operations

Example: Fire alarms

Report: "report of people leaving building because a fire alarm went off"

Example: Medical diagnosis of diabetes

Example: User needs assistance

