

AULA 30

Recommender Systems

Instrutor: Raphael Ballet

Background:

- Engenheiro de Controle e Automação (IMT)
- Mestre em Sistemas Aeroespaciais e Mecatrônica (ITA)
- ➤ Lead Data Scientist Elo7

Interesses:

Drones

Robótica

Aprendizado de Máquina

Visão Computacional

Processamento de Linguagem Natural

Planejamento:

- 1. Introdução
- 2. Sistemas de Recomendação: Conteúdo
- 3. Redução de Dimensionalidade
- 4. Topic Analysis
- 5. Filtro Colaborativo

Por que recomendação?

• Existe muita demanda e muita oferta, mas como unir os dois?

- Existe muita demanda e muita oferta, mas como unir os dois?
- Como recomendar produtos que nem mesmo o usuários sabia que queria?

- Existem 3 grandes grupos:
 - > Proximidade de documentos (produtos, músicas, filmes etc)
 - Proximidade entre usuários (filtro colaborativo)
 - ≻ Híbrido → Mistura dos outros 2

- Proximidade de documentos:
 - Distância entre documentos
 - > Similaridade de temas (tópicos)

- Proximidade de documentos:
 - > Distância entre documentos
 - Similaridade de temas (tópicos)

• Exemplo – Recomendação artigos NY Times

- Esporte
- Baseball
- Campeonato

- Esporte
- Baseball

• Case: Recomendação de produtos Elo7

- Problema: Vetores muito esparsos:
 - Distâncias semelhantes
 - > Tempo de cálculo muito alto
 - » Excessivo espaço em memória utilizado

- Solução:
 - Clustering
 - Redução de dimensionalidade
 - Análise de Tópicos

- Dois objetivos principais:
 - > Facilitar visualização e intuição
 - > Amenizar o problema de similaridade entre observações

- Dois objetivos principais:
 - > Facilitar visualização e intuição
 - > Amenizar o problema de similaridade entre observações

Maldição da dimensionalidade

Visualização dos dados – 2D e 3D

Visualização mais do que 3D?

Visualização NLP (>1k dimensões)

- Técnicas principais:
 - > PCA e SVD
 - > Topic Analysis (NMF e LDA)

- Principal Component Analysis:
 - ▶ Encontra atributos de maior variação → "mais importantes"
 - ➢ Elimina atributos de menor variação → "menos explicativos"

- PCA: Componentes principais:
 - Primeiro componente:
 - Direção de maior variação nos dados
 - Segundo componente:
 - » Direção da segunda maior variação e ortogonal ao primeiro (descorrelacionado do primeiro)

. . .

Componentes principais:

Componentes principais:

- Passos do algoritmo PCA:
 - 1) Remove média dos dados
 - 2) Rotaciona os eixos para descorrelacionar os atributos
 - 3) Ordena os componentes principais em nível de variância
 - 4) Remove os componentes menos variantes (Opcional)

1) Remove média amostral dos dados

2) Rotaciona os eixos para descorrelacionar os atributos

3) Ordena os componentes principais em nível de variância

X₁: Primeiro componente principal

X2: Segundo componente principal

4) Remove os componentes menos variantes (Opcional)

X₁: Primeiro componente principal

X₂: Segundo componente principal

- Quando remover componentes principais:
 - Atributos muito correlacionados
 - Componentes secundários pouco variantes
 - → baixa variância explicada
 - Balanço entre precisão e simplificação
 - Encontrar dimensão intrínseca

• Exemplo: notebook

Vantagens:

- » Permite reduzir dimensionalidade do problema sem perder informação
- > Menor dimensionalidade
- > Maior velocidade e menos memória
- > Resultados determinísticos

3. PCA

Desvantagens:

- > Dimensões resultantes (componentes principais) não representam os atributos
- > Perde a "explicabilidade" do algoritmo
- » Má escolha de número de componentes pode prejudicar análise

- Problema já conhecido:
 - Documentos + Palavras = Muitas dimensões

Solução:

- Redução de dimensionalidade
- Clustering

• • •

Solução:

- Redução de dimensionalidade
- Clustering

• Problema:

Perda de interpretabilidade dos dados

Objetivo:

Encontrar estrutura implícita nos documentos – Tópicos / Temas

- Non-Negative Matrix Factorization (NMF)
- Principal objetivo:
 - Decompor a matriz de frequência de palavras em representações de tópicos
 - > Documentos são compostos de combinações de tópicos
 - > Tópicos são compostos de combinações de palavras

NMF: Fatoração → A = WH

Matrizes:

- > A: Matriz de frequência de termos (M) em documentos (N)
- ➤ W: Matriz de pesos → distribuição de tópicos (K) nos documentos
- ≻ H: Matriz de atributos → distribuição de palavras nos tópicos

- Principais características:
 - > Precisa definir o número de tópicos
 - » Matrizes A, W e H não podem ter valores negativos
 - » Matrizes W e H podem reconstruir matriz A (aprox.)

- NMF pode ser utilizado em vários outros cenários:
 - » Segmentação de fontes sonoras do áudio:
 - Documentos: áudio
 - Features: espectograma do áudio
 - > Segmentação de imagens:
 - Documentos: imagem
 - Features: pixels

• Exemplo: notebook

Vantagens:

- > Tópicos são interpretáveis
- Naturalmente agregador (clustering)
- > Pode ser utilizado em outros contextos (ex: imagens, áudio etc)

Desvantagens:

- Solução aproximada
- > Pode causar overfitting
- > Limitação de utilizar apenas features positivas

- Proximidade entre usuários (filtro colaborativo):
 - > Usuários semelhantes consomem documentos semelhantes

Clustering Topic Analysis

- Proximidade entre usuários (filtro colaborativo):
 - > Documentos:
 - → Histórico de consumo do usuário (compra, avaliação etc)
 - > Atributos / Features:
 - → Lista de itens de consumo (produtos, livros, filmes etc)

• Exemplo: Recomendação de filmes

• Exemplo: Recomendação de filmes

		HOUSE OF		America		(C)	
5	HERLOCK	AL.	Princers				
	2			4	5		
	5		4			1	
			5		2		
		1		5		4	
			4			2	
	4	5		1			

• Exemplo: Recomendação de filmes

Recomendação:

- Encontrar items / usuários semelhantes
- → Menor distância entre vetores

• Problema:

• Vetores muito esparsos: muitas dimensões sem valores

• Exemplo: Recomendação produtos Elo7

Histórico de compras

	prod0	prod1	prod2	prod3	• • •
user0	0	1	0	0	• • •
user1	0	0	1	0	• • •
user2	1	0	0	0	• • •

~8 milhões de produtos

30 milhões de acessos por mês!

- Diferentes métodos:
 - Memória:
 - a) Item-Item: "Quem comprou isso também comprou ..."

b) User-Item: "Usuários semelhantes a você compraram ..."

- Diferentes métodos:
 - > Modelo:
 - a) Fatorização de Matrizes: SVD, PCA, NMF etc

>

Recommender Approaches

Collaborative Filtering – Item-Item similarity

(You like Godfather so you will like Scarface - Netflix)

Attribute-based recommendations

(You like action movies, starring Clint Eastwood, you might like "Good, Bad and the Ugly" Netflix)

Collaborative Filtering – User-User Similarity

(People like you who bought beer also bought diapers - Target)

Social+Interest Graph Based (Your friends like Lady Gaga so you will like Lady Gaga,

Model Based

Training SVM,

LDA, SVD for

implicit features

PYMK – Facebook, LinkedIn)

Item Hierarchy

(You bought Printer you will also need ink - BestBuy)

Case MovieLens:

OBRIGADO!