Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

ОТЧЕТ ПО ДОМАШНЕЙ РАБОТЕ №13 5 ВАРИАНТ

Выполнил студент группы КС-36: Золотухин Андрей Александрович

Ссылка на репозиторий: https://github.com/

CorgiPuppy/

num-methods-eq-math-phys-chem-labs

Приняла: Кольцова Элеонора Моисеевна

Дата сдачи: 19.05.2025

Москва 2025

Оглавление

Описание задачи	. 1
Выполнение задачи	. 3
Задание 1	. 3
Задание 2	. 3
Задание 3	. 3
Задание 4	. 3
Задание 5	. 3
Задание 6	. 3
Задание 7	. 3
Задание 8	. 3
Задание 9	. 3
Задание 10	. 3
Задание 11	. 3
Задание 12	. 3
Задание 13	. 3
Задание 14	. 3
Задание 15	. 3
Задание 16	. 3
Задание 17	. 3
Задание 18	. 3
Задание 19	. 4
Задание 20	. 4
Задание 21	. 4
Задание 22	. 4

Описание задачи

Уравнение	Интервалы	Начальные и граничные условия
	переменных	0.(4 0 0 0) 0
$\frac{\partial u}{\partial t} - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} = y \frac{\partial^2 u}{\partial x^2} + x \frac{\partial^2 u}{\partial y^2} - 3u^2$	$x \in [0, 1]$ $y \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x, y) = 0$ $\begin{cases} u(t, x = 0, y) = ty \\ u(t, x = 1, y) = 0 \\ u(t, x, y = 0) = tx \\ u(t, x, y = 1) = 2 \end{cases}$

Для заданного уравнения:

- 1. записать неявную разностную схему;
- 2. записать схему расщепления;
- 3. привести схемы к виду, удобному для использования метода прогонки;
- 4. проверить сходимость прогонки;
- 5. записать рекуррентное прогоночное соотношение;
- 6. составить алгоритм (блок-схему) расчёта.

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} - \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} - e^{txy}$	$x \in [0, 1]$ $y \in [0, 1]$ $t \in [0, 1]$	$u(t = 0, x, y) = 1$ $\begin{cases} u(t, x = 0, y) = 1\\ u(t, x = 1, y) = e^y\\ u(t, x, y = 0) = 1\\ u(t, x, y = 1) = e^x \end{cases}$

Для заданного уравнения:

- 7. записать неявную разностную схему;
- 8. записать схему переменных направлений;
- 9. записать рекуррентное соотношение;
- 10. составить алгоритм (блок-схему) расчёта.

Уравнение	Интервалы переменных	Начальные и граничные условия
$-\frac{du}{dx} + 2x\frac{d^2u}{dx^2} = 5u$	$x \in [0, 1]$	$\begin{cases} \frac{du}{dx}(x=0) = u(x=0) \\ \frac{du}{dx}(x=1) = 2u(x=1) \end{cases}$

Для заданного уравнения:

- 11. представить задачу в нестационарном виде;
- 12. записать неявную разностную схему;
- 13. привести схемы к виду, удобному для использования метода прогонки;
- 14. проверить сходимость прогонки;
- 15. записать итерационное прогоночное соотношение;
- 16. записать условие для окончания итерационного процесса;
- 17. записать начальное приближение;
- 18. составить алгоритм (блок-схему) расчёта;

Уравнение	Интервалы переменных	Начальные и граничные условия
$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} - 2\frac{\partial u}{\partial y}) = 7t\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2}\right) + t^2$	$x \in [0, 1] \\ y \in [0, 1] \\ t \in [0, 1]$	$u(t = 0, x, y) = y$ $\begin{cases} u(t, x = 0, y) = 0 \\ u(t, x = 1, y) = t \\ u(t, x, y = 0) = 0 \\ u(t, x, y = 1) = x \end{cases}$

Для заданного уравнения:

- 19. записать схему предиктор-корректор;
- 20. записать рекуррентное прогоночное соотношение для предиктора;
- 21. записать рекуррентное прогоночное соотношение для корректора;
- 22. указать порядок аппроксимации разностной схемы;

Выполнение задачи

- Задание 1
- Задание 2
- Задание 3
- Задание 4
- Задание 5
- Задание 6
- Задание 7
- Задание 8
- Задание 9
- Задание 10
- Задание 11
- Задание 12
- Задание 13
- Задание 14
- Задание 15
- Задание 16
- Задание 17
- Задание 18

$$\frac{u_2^{n+1} - u_1^{n+1}}{h} = u_1^{n+1} \Rightarrow u_1^{n+1} = \frac{u_2^{n+1}}{1+h};$$

$$\begin{array}{l} \frac{u_N^{n+1} - u_{N-1}^{n+1}}{h} = 2u_N^{n+1} \Rightarrow \\ \Rightarrow u_N^{n+1} = \frac{\beta_{N-1}}{1 - \alpha_{N-1} - 2h}. \end{array}$$

Задание 19

Задание 20

Задание 21

Задание 22