Modular Arithmetic

Definition 1 (Congruence Modulo n). Let n be a positive integer. We say that integers a and b are congruent modulo n, denoted $a \equiv b \mod n$ or $a \equiv_n b$, if n|(b-a).

Proposition 1. If n is a fixed positive integer, then congruence modulo n is an equivalence relation.

Since \equiv_n is an equivalence, it induces a partition on the set \mathbb{Z} of integers, \mathbb{Z}/\equiv_n . We will denote this partition using $\mathbb{Z}/(n)$, and refer to this set as the set of modular integers.

Theorem 2. The elements of $\mathbb{Z}/(n)$ are sets of the form $[r]_n$, where $0 \le r < n$; such r are called residues mod n. Moreover, any two such sets are distinct. In particular, $\mathbb{Z}/(n)$ is a finite set with precisely n elements, which are represented by the set of residues $\{0,1,\ldots,n-1\}$.

Proof. First we show that every class in $\mathbb{Z}/(n)$ has a representative r with $0 \le r < n$. To this end, let $[a] \in \mathbb{Z}/(n)$. By the Division Algorithm, we have a = qn + r, where $0 \le r < n$, and since a - r = qn, we have $a \equiv r \mod n$. Thus [a] = [r] as needed.

Next we show that two such classes are distinct. To this end, suppose we have $[r_1] = [r_2]$, where $0 \le r_1, r_2 < n$. By definition, we have that n divides $r_2 - r_1$; say $r_2 - r_1 = qn$. In particular, $r_2 = qn + r_1$. Note also that $r_2 = 0 \cdot n + r_2$. By the uniqueness of positive remainders given by the Division Algorithm, we have $r_1 = r_2$.

Arithmetic in $\mathbb{Z}/(n)$

Theorem 3. Let n be a positive integer. If a_1 , a_2 , b_1 , and b_2 are integers such that $a_1 \equiv a_2 \mod n$ and $b_1 \equiv b_2 \mod n$, then we have the following.

- 1. $a_1 + b_1 \equiv a_2 + b_2 \mod n$.
- 2. $a_1b_1 \equiv a_2b_2 \mod n$.

Corollary 4. Let n be a positive integer. Then the operations + and \cdot on $\mathbb{Z}/(n)$ given by

$$[a] + [b] = [a + b]$$
 and $[a] \cdot [b] = [ab]$

are well-defined.

Theorem 5 (Modular Arithmetic). Let n be a positive integer. Then $\mathbb{Z}/(n)$, with the operations + and \cdot defined as above, satisfy the following properties.

- A1. ([a] + [b]) + [c] = [a] + ([b] + [c]) for all a, b, and c.
- A2. There is a modular integer 0 with the property that [a] + 0 = 0 + [a] = [a] for all a.

- A3. For every residue [a], there is a unique residue [b] with the property that [a] + [b] = [b] + [a] = 0. We denote this residue by [a].
- A4. [a] + [b] = [b] + [a] for all a and b.
- M. $([a] \cdot [b]) \cdot [c] = [a] \cdot ([b] \cdot [c])$ for all a, b, and c.
- $\begin{array}{l} D. \ [a] \cdot ([b] + [c]) = [a] \cdot [b] + [a] \cdot [c] \ and \ ([b] + [c]) \cdot [a] = [b] \cdot [a] + [c] \cdot [a] \ for \ all \ a, \ b, \ and \ c. \end{array}$
- C. $[a] \cdot [b] = [b] \cdot [a]$ for all a and b.
- U. There is a modular integer 1 with the property that $[a] \cdot 1 = 1 \cdot [a] = [a]$ for all a.