MLRG: Bayes. Net. Complexity

Rackground

Definitions

Reduction

Proof

MLRG: The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks

Presented by Kui Tang

20 June 2012

Bayesian belief networks are essential modelling tools

MLRG: Bayes. Net. Complexity

Kui Tang

Background
Definitions

Dad..atiaa

Reductio

Express densities functions of the form

$$p(\mathbf{x}) = \prod_{i=1}^{n} p(x_i|\pi_i)$$

where π_i denotes the parents of x_i in the graph.

- Also called graphical models, causal networks
- Concisely express probabilistic models
 - Visualize, design, and motivate new models.
 - Simplify analysis and insight.
- Examples: HMMs, Kalman filters, medical diagnoses.
- Sum-product algorithm provides exact inference for discrete and Gaussian trees.
- Other distributions can be computed by MCMC.

A Bayesian belief network

MLRG: Bayes. Net. Complexity

Background

Definitions

. . .

Reduction

Inference in general discrete graphs is NP-complete.

MLRG: Bayes. Net. Complexity

Kui Tang

Background

Definition

Reduction

Reductio

• Definition: *inference* in a belief network means calculating $p(S_1|S_2)$ where S_1 and S_2 are two sets of variables.

• Example: $p(u_1 = T | Y = F, u_2 = T)$.

- The most restricted form of inference is computing p(Y = T).
- If we show this form of inference is NP-hard, then all other forms of inference are also NP-hard. (Why?)

Reduce from 3SAT

MLRG: Bayes. Net. Complexity

Background

Definitions

Reduction

Proo

- To show decision problem L_2 is NP-complete, find an NP-complete problem L_1 .
- Let x be a binary encoding for some input to problem L_1 .
- Give a polynomial-time algorithm f to convert all instances of L_1 into an instance of L_2 such that for all strings x, $x \in L_1 \Leftrightarrow f(x) \in L_2$.

The definition of 3SAT

MLRG: Baves. Complexity

Definitions

- Let $C = c_1, \ldots, c_m$ be a set of clauses on a finite set of Uboolean variables
- A clause is a disjunction of three literals.
 - Given a variable u, a *literal* is either u or $\neg u$. If u = T, then $\neg u = F$.
 - Example clause: $(\neg u_2 \lor u_3 \lor \neg u_4)$.
- C is satisfiable ⇔ there exists some truth assignment for U that satisfies each clause in C.
- 3SAT returns YES if C is satisfiable and NO otherwise.

The definition of a Bayesian network

MLRG: Baves. Net. Complexity

Definitions

A Bayesian network is a tuple (V, A, P) where V is a set of variables (vertices), A is a set of arcs (edges), and P is a set of conditional probability tables, one for each vertex.

Bayesian network inference as decision problem

MLRG: Baves. Complexity

Definitions

- Inference (IBN; inference in Bayesian network) is a computation problem. We need a decision problem to do the reduction.
- Define IBND (IBN decision) to
 - Return YES if P(Y = T) > 0
 - Return NO otherwise.
- Clearly IBND \leq IBN: if we had a solver for IBN, we simply compare the output to 0 as above to get a solver for IBND.
- Conversely, if we show IBND is NP-complete, then IBN must also be NP-complete.

Constructing a Bayesian network from 3SAT, overview

MLRG: Bayes. Net. Complexity

Kui Tang

- ...

 ${\sf Reduction}$

Constructing a Bayesian network from 3SAT

MLRG: Bayes. Net. Complexity

Kui Tang

Definitions

Reduction

• A truth setting component adds one node u_i for each boolean variable in U and sets $p(u_i = T) = \frac{1}{2}$.

- A clause-satisfaction-testing subcomponent adds one node C_j for each clause and drawns an arc from edge variable to its clause. $p(C_j = T | \pi_{C_j}) = 1$ if and only if C_j is satisfied.
 - Consider (again) $C_j = (\neg u_2 \lor u_3 \lor \neg u_4)$.
 - $p(C_j = T | u_2 = T, u_3 = F, u_4 = F) = 1$
 - $p(C_j = T | u_2 = T, u_3 = F, u_4 = T) = 0.$
- An overall-satisfaction-testing component adds one node D_j for each clause and adds the arcs (C_j, D_j) and (D_{j-1}, D_j) . $p(D_j = T | \pi_{D_j}) = 1$ if and only if all of its parents are T.
- Define $D_n = Y$. Then equivalently, $P(Y = T | C_1, ..., C_m) = 1$ if and only if each $C_j = T$. For the rest of the proof, we ignore the D_i .

Proof

- We want P(Y), but the graph defines $P(Y, C_1, \ldots, C_m, u_1, \ldots, u_n)$
- So define α and β to be binary strings representing particular instantiations of u_1, \ldots, u_n and C_1, \ldots, C_m .
 - E.g. $\alpha = 5 = 0101 \Rightarrow u_1 = F, u_2 = T, u_3 = F, u_4 = T$.
 - Enumerating α and β enumerates each assignment of the variables.
- For notation, define $U_{\alpha} = \{u_i = \alpha_i | 1 \le i \le n\}$ and C_{β} similarly.
- We can then marginalize the C_i and the u_i :

$$p(Y = T) = \sum_{\alpha=0}^{2^{n}-1} \sum_{\beta=0}^{2^{m}-1} p(Y = T | C_{\beta}) p(C_{\beta} | U_{\alpha}) p(U_{\alpha})$$

MLRG: Bayes. Net. Complexity

Kui Tang

Definitions

Reduction

Proof

• If C is satisfiable, then there exists a satisfying assignment U_s .

• This results in clause assignment C_1 , i.e. $c_i = T$ for $1 \le i \le m$, and appears a term in the sum, so

$$p(Y=T) \geq p(Y=T|C_1)p(C_1|U_s)p(U_s).$$

- Show each term is > 0:
 - Since C_1 satisfies each clause, $p(Y = T | C_1) = 1$.
 - By construction, $p(U_s) = (\frac{1}{2})^n$.
 - Since U_s satisfies each clause, $p(C_s|U_s) = 1$ by construction.
- Thus p(Y = T) > 0. \Box

$p(Y = T) > 0 \Rightarrow C$ is satisfiable

MLRG: Bayes. Net. Complexity

rtui rung

D. C. 11.

Reduction

Proof

• Prove the contrapositive: suppose *C* is not satisfiable.

- Then for any truth assignment U_{α} , some clause c_j is not satisfied. Thus $p(C_1 = T | U_{\alpha}) = 0$, so p
- So any nonzero term in the sum must have $\beta \neq 1$.
- But if $\beta \neq 1$, we have $p(Y = T | C_{\beta}) = 0$.
- So each term is 0, so p(Y = T) = 0.

The form of our constructed network provides strong corollaries

MLRG: Baves. Complexity

Proof

- Each node has indegree no larger than 3 (conditioned on more than 3 variables) \Rightarrow even graphs of simple topology are intractable.
- Planar 3SAT is NP-hard, so even planar bipartite belief networks are NP-hard.
- Arguably, our construction relies on probabilities of 0 or 1 in the C_i and D_i , so is a pathological case. Real-world cases are unlikely to resemble this reduction.