STANISLAS Exercices

Séries numériques Chapitre II

PSI

2019-2020

I. Natures de séries entières

Indications pour l'exercice 1.

- 1. Calculer un équivalent.
- 2. Calculer un développement limité.
- 3. Comparer à une série géométrique.
- 4. Calculer un équivalent.
- 5. Comparer à une série usuelle.
- 6. Calculer un équivalent.
- 7. Utiliser la forme exponentielle puis calculer un équivalent.
- 8. Comparer à une série de Riemann.
- 9. Théorème des séries alternées.
- 10. Effectuer un développement limité à l'ordre 2.
- **11.** Effectuer un développement asymptotique en $1/n^{3/2}$.

Indications pour l'exercice 2. Étudier $\sum u_n$ en utilisant un équivalent. Montrer que $(2-\sqrt{3})^n+(2+\sqrt{3})^n$ est un entier pair et en déduire une relation entre v_n et u_n .

Indications pour l'exercice 3.

- **1.** Montrer que $u_n \frac{(-1)^n}{n^{3/4}}$ est le terme général d'une série absolument convergente, puis combiner avec le théorème des séries alternées.
- **2.** Pour le cas $\alpha > 0$, utiliser un équivalent. Pour le cas $\alpha \leqslant 0$, déterminer un équivalent de $u_n - \frac{(-1)^n}{\ln(n)}$. Redémontrer ensuite un cas particulier des séries de Bertrand.
- **3.** Montrer que $u_n = (-1)^n \sin\left(\frac{\pi x^2}{2n} + o\left(\frac{1}{n^2}\right)\right)$, puis utiliser un développement limité du sinus.

Indications pour l'exercice 4.

- 1. Découper en termes d'indices pairs et termes d'indices impairs puis regrouper ces termes en une suite $\sum u_n$. Écrire ensuite u_n . Montrer ensuite que $\sum \cos(\ln(2n)) \left(\frac{1}{2n} \frac{1}{2n+1}\right)$ est une série absolument convergente et que $\sum \frac{\cos(\ln(2n)) \cos(\ln(2n+1))}{2n+1}$ est majorable, d'après le théorème des accroissements finis, par une série convergente.
- **2.** Poser $n_k = \lfloor e^{-\pi/3 + 2k\pi} \rfloor$ et $m_k = \lfloor e^{\pi/3 + 2k\pi} \rfloor$ pour montrer que $S_{m_k} S_{n_k-1}$ est minorée par une quantité qui ne tend pas vers 0 lorsque k tend vers $+\infty$.
- 3. Comparer à la série précédente.

Indications pour l'exercice 5.

- 1. Travailler avec les sommes partielles puis utiliser le théorèmpe de la limite montonoe.
- 2. Utiliser la croissance des sommes partielles.
- **3.** Montrer que $\ell = +\infty$.
- 4. Comparaison série / intégrale et théorème d'encadrement.

Indications pour l'exercice 6. Comparaison série / intégrale et intégration par parties pour obtenir le terme dominant.

Indications pour l'exercice 7. Si $\alpha < \beta$, utiliser un équivalent.

Si $\beta < \alpha$, utiliser un développement limité en $1/n^{2\bar{\alpha}-\beta}$ puis distinguer les cas $\alpha \leq 0$, $\alpha > 1$ et $\alpha \in]0,1]$.

Indications pour l'exercice 8. Dénombrer le nombre d'entiers ne contenant aucun 5 compris entre 10^k et $10^{k+1} - 1$.

Indications pour l'exercice 9.

- 1. Dresser un tableau de variations de $f_n: x \mapsto x^3 + \frac{1}{n}x^2 + x 2$.
- **2.** Étudier $f_n(x_{n+1})$ pour étudier la monotonie. Montrer ensuite que l'unique solution de $x^2 + x 2 = 0$ est 1.
- **3.** Noter $x_n = 1 \varepsilon_n$ et reprendre l'équation $f_n(x_n)$.

Indications pour l'exercice 10.

1. Utiliser la monotonie de $f_n: x \mapsto \lambda e^x - \sum_{k=0}^n \frac{x^k}{k!}$.

Chapitre 2 PSI

2. Utiliser le tableau de variations précédent.

3. Si ℓ est un réel tel que $x_n \to \ell$, utiliser que $(1-\lambda) e^{x_n} \leqslant \sum_{k=n+1}^{+\infty} \frac{\ell^k}{k!}$ pour obtenir une contradiction.

II. Calculs de sommes

Indications pour l'exercice 11.

- 1. Distinguer les termes pairs et impairs puis utiliser un développement limité de $H_n \ln(n)$.
- **2.** Étudier $H_{3n+3} \frac{2}{3}H_{n+1}$.
- **3. a)** On intègre $\sum_{k=0}^{N} (x^{4k} x^{4k+2})$ qu'on aura au préalable calculé à l'aide des termes de la somme d'une série géométrique.
- **b)** On majore l'intégrale $\int_0^1 \frac{t^{4n+4}}{1+t^2} dt \leqslant \frac{1}{4N+5}$ et on utilise la fonction arctangente.
- **c)** Étudier (S_{4N+i}) pour i valant 1, 2, 3 puis utiliser une version du théorème des suites extraites.

Indications pour l'exercice 12.

- 1. Pour obtenir la valeur de α , on peut multiplier les deux membres de l'égalité par (n+1) puis évaluer en n=-1. Pour les autres constantes, on procède de manière similaire.
- **2.** La convergence s'établit via un équivalent. Pour la valeur de la somme, on pourra faire apparaître la somme partielle de la série harmonique aux rangs n+1 et n+4. Concernant les termes en 1/(2n+5), un changement de variable dans la somme pourra faire apparaître des simplifications avec les termes en 1/(2n+1).

Indications pour l'exercice 13. Utiliser $\sum 3^{-n}$.

III. Découverte d'autres méthodes

Indications pour l'exercice 14.

1. En notant $S_n = \sum_{k=0}^n a_k$ et $T_n = \sum_{k=0}^n 2^k a_k$ et en posant $2^k \leqslant n \leqslant 2^{k+1} - 1$, proposer un encadrement entre S_n et T_k .

2. En utilisant le critère précédent, on se ramène à des séries géométriques.

 $\bf 3.$ En utilisant le même critère, on se ramène à des séries de Riemann. $\ \Box$

Indications pour l'exercice 15.

1. Si $\beta > 1$, comparer $\frac{u_{n+1}}{u_n}$ à $\frac{v_{n+1}}{v_n}$ où $v_n = \frac{1}{n^{(1+\beta)/2}}$. Si $\beta < 1$, reprendre la même technique avec $v_n = \frac{1}{n}$.

2. Un développement limité permet d'obtenir $\beta = \frac{1}{2}$.

Indications pour l'exercice 16.

1. Effectuer un développement limité puis le théorème des séries alternées et celui de convergence absolue.

2. Reprendre le calcul précédent en utilisant une écriture exponentielle pour u_n .

Indications pour l'exercice 17. Récurrence sur p en utilisant le produit de Cauchy et $\sum_{q=0}^{n} \binom{p+q-1}{q} = \binom{p+n}{n}$.

IV. Avec Python

Indications pour l'exercice 18.

- 1. Utiliser le théorème des séries alternées.
- **2.** On calcule $\sum_{k=0}^{n} (-1)^k x^k$ puis on intègre entre 0 et 1. Enfin, on contrôle l'intégrale qui dépend de n.

3.

4.

5. On exprime T_{3n+2} en fonction de S_{4n+4} . La limite de la somme restante s'obtient par somme de Riemann.

Chapitre 2 PSI

Mathématiciens

EULER Leonhard (15 avr. 1707 à Basel-18 sept. 1783 à St Pétersbourg).
BERTRAND Joseph (11 mar. 1822 à Paris-3 avr. 1900 à Paris).
RIEMANN Georg Friedrich Bernhard (17 sept. 1826 à Breselenz-20 juil. 1866 à Selasca).