REDES NEURONALES

📤 Universidad Nacional Autónoma de México

Tarea No. 02

Realizado por:

Iván Alejandro Ramos Herrera

@arhcoder

- [01]

Demostrar que bajo un conjunto de pesos $\theta^*=\{w^*,b^*\}$ el perceptrón y la regresión logística son clasificadores binarios equivalentes:

Definiciones

Definición del Perceptrón:

$$f_n(x) = sign(w^*x + b^*)$$

Es decir...

$$f_p(x) = egin{cases} 1 & ext{si } w^*x + b^* > 0 \ 0 & ext{si } w^*x + b^* \leq 0 \end{cases}$$

Donde:

- ullet x vector de entradas en \mathbb{R}^d
- ullet w^* es un vector de pesos en \mathbb{R}^d
- b^* es el valor de sesgo.

Definición de la Regresión Logística:

$$f_r(x) = \sigma(w^*x + b^*)$$

Es decir..

$$f_r(x) = P(y = 1|x)$$

$$f_r(x)=rac{1}{1+e^{-(w^*x+b^*)}}$$

En donde para una clasificación binaria (0, 1):

$$f_r(x) = \begin{cases} 1 & \text{si } P(y=1|x) \ge 0.5\\ 0 & \text{si } P(y=1|x) < 0.5 \end{cases}$$

Donde:

- x vector de entradas en \mathbb{R}^d
- w^* es un vector de pesos en \mathbb{R}^d
- b^* es el valor de sesgo.

Demostración

¿Bajo un mismo conjunto de pesos θ , ambos clasificadores tomarán las mismas decisiones?

$$w^*x + b^* = P(y = 1|x) - 0.5$$

Simplificando las definiciones:

$$f_p(x) = egin{cases} 1 & ext{si } w^*x + b^* > 0 \\ 0 & ext{en cualquier otro caso} \end{cases}$$
 $f_r(x) = egin{cases} 1 & ext{si } P(y=1|x) \geq 0.5 \\ 0 & ext{en cualquier otro caso} \end{cases}$

Si se demuestra que se clasifica como 1 en los dos primeros casos de cada función, se deduce que también se clasificará 0 (en cualquier otro caso), por lo que sólo basta con demostrar la equivalencia con las clasificaciones de 1.

Demostrando equivalencia con los casos:

- $w^*x + b^* > 0$
- $P(y=1|x) \ge 0.5$

$$P(y=1|x) \ge 0.5 = w^*x + b^* > 0$$

 $\frac{1}{1+e^{-(w^*x+b^*)}} \ge 0.5$

Resolviendo la desigualdad:

Pasar multiplicando el denominador:

$$1 \geq 0.5(1 + e^{-(w^*x + b^*)})$$

$$1 > 0.5 + 0.5e^{-(w^*x+b^*)}$$

Pasando el 0.5 al lado izquierdo:

$$1 - 0.5 > 0.5e^{-(w^*x + b^*)}$$

$$0.5 > 0.5e^{-(w^*x+b^*)}$$

Eliminando el 0.5:

$$1 \geq e^{-(w^*x+b^*)}$$

Eliminando $e \operatorname{con} ln$:

$$ln(1) \ge -(w^*x + b^*)$$

$$0 \ge -(w^*x + b^*)$$

Eliminando el signo invirtiendo la desigualdad:

$$0 \le w^*x + b^*$$

Esto es igual al caso en el perceptrón:

$$w^*x + b^* > 0$$

٠.

$$f_p = f_r \operatorname{con} \theta^* = \{w^*, b^*\}$$
 bajo las definiciones descritas.

El Modelo de Perceptrón con Función Escalonada y la Regresión Logística son equivalentes bajo la definición de clasificiación binaria.

- [02]

 \bigcirc Definir una Red Neuronal que obtenga cada una de las siguientes funciones de \mathbb{R}^2 a \mathbb{R} :

$$1. f(x,y) = xy$$

2.
$$f(x,y) = xy + \frac{x}{y}$$

3.
$$f(x,y) = 2x^2 + 2xy$$

4.
$$f(x,y) = x^2 + 2xy + y^2$$

xy:

$$\int_{0}^{a} (x, y) = xy :$$

$$\int_{0}^{a} = h(a)$$

$$\int_{0}^{a} = e^{a}$$

$$\int_{0}^{a} = e^$$

$$-xy+\frac{x}{y}$$
:

$$\frac{2}{\int (x, y) = xy + \frac{x}{y}};$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int (a) = e^{a}}$$

$$\frac{3}{\int (a) = \ln(a)} = \frac{2}{\int$$

 $-2x^2 + 2xy$:

$$x^2 + 2xy + y^2$$
:

- [03]
 - Realizar el proceso de derivación para las funciones;
 - Sigmoide
 - · Tangente Hiperberbólica
 - Softplus
- Sigmoide derivada

Derivación:

$$\frac{\delta}{\delta x}(1+e^{-x})^{-1} = \frac{\delta}{\delta x}(1+e^{-x})^{-2} = \frac{\delta}{\delta x}(1+e^{-x})^{-2} = \frac{\delta}{\delta x}(1+e^{-x})^{-2} = \frac{\delta}{\delta x}(1+e^{-x})^{-2} = \frac{\delta}{\delta x}(1+e^{-x})^{-2};$$

$$\frac{\delta \sigma(x)}{\delta x} = \frac{\delta}{\delta x}(\frac{1}{1+e^{-x}}); \qquad \frac{\delta}{\delta x}[\alpha_{u(x)} + b \cdot (x)] = \frac{\delta}{\delta x}(u(x) + b \cdot \frac{\delta}{\delta x}(u(x)) = \frac{\delta}{\delta x}(1+e^{-x})^{-2};$$

$$= \frac{\delta}{\delta x}(1+e^{-x})^{-1}; \qquad \alpha - \frac{\delta}{\delta x}(u(x) + b \cdot \frac{\delta}{\delta x}(u(x)) = \frac{e^{-x}}{(1+e^{-x})(1+e^{-x})};$$

$$= \frac{\delta}{\delta x}(1+e^{-x})^{-1}; \qquad \alpha - \frac{\delta}{\delta x}(u(x) + b \cdot \frac{\delta}{\delta x}(u(x)) = \frac{e^{-x}}{(1+e^{-x})(1+e^{-x})};$$

$$= -(1+e^{-x})^{-2} \cdot (\frac{\delta}{\delta x}(e^{-x});$$

$$= -(1+e^{-x})^{-2} \cdot (e^{-x} \cdot \frac{\delta}{\delta x}(-x));$$

$$= -(1+e^{-x})^{-2} \cdot (e^{$$

Tangente Hiperbólica derivada

Softplus derivada

Derivación:

$$\frac{S(x) = log(1 + e^{x});}{\delta x} = \frac{\frac{\delta}{\delta x} e^{x}}{e^{x} + 1};$$

$$\frac{\delta S(x)}{\delta x} = \frac{\delta}{\delta x} (log(1 + e^{x})); = \frac{e^{x}}{e^{y} + 1};$$

$$\frac{\delta S(x)}{\delta x} = \frac{\delta}{\delta x} (ln(1 + e^{x}));$$

$$\frac{\delta S(x)}{\delta x} = \frac{\delta}{\delta x} (ln(1 + e^{x}));$$

$$\frac{\delta S(x)}{\delta x} = \frac{e^{x}}{e^{y} + 1};$$

$$\frac{\delta S(x)}{\delta x} = \frac{e^{x}}{e^{y} + 1};$$

$$\frac{\delta}{\delta x} = \frac{e^{x} + 1}{e^{x} + 1};$$

$$\frac{\delta}{\delta x} = \frac{\delta}{\delta x} e^{x} + \frac$$

- [04]

Demostrar la identidad:

$$\frac{e^{a_i+c}}{\sum_j e^{a_j+c}} = \frac{e^{a_i}}{\sum_j e^{a_j}}$$

para cualquier constante arbitraria $c \in \mathbb{R}$:

Demostración

$$\frac{e^{a_i+c}}{\sum_j e^{a_j+c}} = \frac{e^{a_i}}{\sum_j e^{a_j}}$$

Utilizando la propiedad:

$$e^{a+b} = e^a e^b$$

Factorizando:

$$\frac{e^{a_i}e^c}{\sum_j e^{a_j}e^c} = \frac{e^{a_i}}{\sum_j e^{a_j}}$$

 $\frac{e^c}{e^c}$ se elimina...

$$\frac{e^{a_{i}}ee}{\sum_{j}e^{a_{j}}ee} = \frac{e^{a_{i}}}{\sum_{j}e^{a_{j}}}$$

٠.

$$\frac{e^{a_i}}{\sum_j e^{a_j}} = \frac{e^{a_i}}{\sum_j e^{a_j}}$$

- [05]

- Utilizar el algoritmo de backpropagation para obtener las derivadas de la siguiente Red Neuronal:
 - Capa de entrada: $x \in \mathbb{R}^3$
 - Primera capa: $h_1 = tanh(W_1x + b_1)$ con 10 unidades
 - Segunda capa: $h_2 = ReLU(W_2h_1 + b_2)$ con 20 unidades
 - Tercera capa: $h_3 = \sigma(W_3 h_2 + b_3)$ con 10 unidades
 - Capa de salida: $f(x) = Softmax(W_4h_3 + b_4)$ con 2 unidades
 - Función de riesgo: $R(\theta) = \sum_x \sum_y \delta_{y,i} \ln(f(x))$

- [06]

- Usar el metodo de backpropagation para obtener las derivadas de la siguiente Red de regresión que utiliza regularización L_2 :
 - Capa de entrada: $x \in \mathbb{R}^2$
 - Primera capa: $h_1 = ReLU(W_1x + b_1)$ con 5 unidades
 - Segunda capa: $h_2 = Softplus(W_2h_1 + b_2)$ con 10 unidades
 - ullet Capa de salida: $f(x)=W_3\,h_2+b_3\,$ con 2 unidades
 - Función de riesgo: $R(heta) = \sum_x \sum_y rac{1}{2} (y f(x))^2 + \gamma L_2(heta)$

[80]

Realizado por:

Iván Alejandro Ramos Herrera

