CS21 Decidability and Tractability

Lecture 11 January 31, 2014

January 31, 2014

CS21 Lecture 11

Outline

- the Halting Problem
- reductions
- · many-one reductions
- undecidable problems
 - computation histories
 - surprising contrasts between decidable/undecidable

January 31, 2014 CS21 Lecture

CS21 Lecture 11 2

• We will show a natural undecidable L next.

January 31, 2014 CS21 Lecture 11 3

The Halting Problem

- Definition of the "Halting Problem":
 HALT = { <M, x> : TM M halts on input x }
- HALT is recursively enumerable.
 - proof?
- · Is HALT decidable?

January 31, 2014 CS21 Lecture 11

The Halting Problem

<u>Theorem</u>: HALT is not decidable (undecidable).

Proof:

- Suppose TM H decides HALT
- Define new TM H': on input <M>
 - if H accepts <M, <M>> then loop
 - if H rejects <M, <M>> then halt

January 31, 2014 CS21 Lecture 11 5

The Halting Problem

Proof:

- define new TM H': on input <M>
 - if H accepts <M, <M>> then loop
 - if H rejects <M, <M>> then halt
- consider H' on input <H'>:
 - if it halts, then H rejects <H', <H'>>, which implies it cannot halt
 - if it loops, then H accepts <H', <H'>> which implies it must halt
- contradiction.

January 31, 2014 CS21 Lecture 11 6

RE and co-RE · The complement of a RE language is called a co-RE language some language $\{a^nb^n\colon n\geq 0\;\}$ decidable all languages regular languages context free RE languages $\{a^nb^nc^n: n \ge 0\}$ HALT CS21 Lecture 11 January 31, 2014

RE and co-RE **Theorem**: a language L is decidable if and only if L is RE and L is co-RE. (⇒) we already know decidable implies RE - if L is decidable, then complement of L is decidable by flipping accept/reject. - so L is in co-RE.

10

RE and co-RE

Theorem: a language L is decidable if and only if L is RE and L is co-RE.

Proof:

- (⇐) we have TM M that recognizes L, and TM M' recognizes complement of L.
- on input x, simulate M, M' in parallel
- if M accepts, accept; if M' accepts, reject.

January 31, 2014 CS21 Lecture 11 11

A natural non-RE language

CS21 Lecture 11

Theorem: the complement of HALT is not recursively enumerable.

Proof:

Proof:

January 31, 2014

- we know that HALT is RE
- suppose complement of HALT is RE
- then HALT is co-RE
- implies HALT is decidable. Contradiction.

January 31, 2014 CS21 Lecture 11 12

Reductions

- · Given a new problem NEW, want to determine if it is easy or hard
 - right now, easy typically means decidable
 - right now, hard typically means undecidable
- One option:
 - prove from scratch that the problem is decidable, or
 - prove from scratch that the problem is undecidable (dream up a diag. argument)

January 31, 2014 CS21 Lecture 11

Reductions

- A better option:
 - to prove NEW is decidable, show how to transform it into a known decidable problem OLD so that solution to OLD can be used to solve NEW.
 - to prove NEW is undecidable, show how to transform a known undecidable problem OLD into NEW so that solution to NEW can be used to solve OLD.
- called a reduction

January 31, 2014 CS21 Lecture 11

Reductions

Reductions are one of the most important and widely used techniques in theoretical Computer Science.

- especially for proving problems "hard"
 - often difficult to do "from scratch"
 - sometimes not known how to do from scratch
 - reductions allow proof by giving an algorithm to perform the transformation

January 31, 2014 CS21 Lecture 11 16

Example reduction

• Try to prove undecidable:

 $A_{TM} = \{ \langle M, w \rangle : M \text{ accepts input } w \}$

We know this language is undecidable:

 $HALT = \{ \langle M, w \rangle : M \text{ halts on input } w \}$

· Idea:

15

- suppose A_{TM} is decidable
- show that we can use A_{TM} to decide HALT
- conclude HALT is decidable. Contradiction.

January 31, 2014 CS21 Lecture 11

Example reduction

- · How could we use procedure that decides A_{TM} to decide HALT?
 - given input to HALT: <M, w>
- · Some things we can do:
 - check if <M, w $> \in A_{TM}$
 - construct another TM M' and check if <M', w> \in A $_{TM}$

January 31, 2014 CS21 Lecture 11

3

18

Example reduction

- Deciding HALT using a procedure that decides A_{TM} ("reducing HALT to A_{TM}").
 - on input <M, w>
 - check if <M, w> $\in A_{TM}$
 - if yes, the M halts on w; ACCEPT
 - if no, then M either rejects w or it loops on w
 - construct M' by swapping q_{accept}/q_{reject} in M
 - check if <M', w> $\in A_{TM}$
 - if yes, then M' accepts w, so M rejects w; ACCEPT
 - if no, then M neither accepts nor rejects w; REJECT

January 31, 2014 CS21 Lecture 11

Example reduction

· Preceding reduction proved:

Theorem: A_{TM} is undecidable.

Proof (recap):

- suppose A_{TM} is decidable
- we showed how to use A_{TM} to decide HALT
- conclude HALT is decidable. Contradiction.

January 31, 2014 CS21 Lecture 11 20

Another example

• Try to prove undecidable:

 $E_{TM} = \{ \langle M \rangle : L(M) = \emptyset \}$

- which problem should we reduce from?
 - $HALT = \{ < M, w > : M \text{ halts on input } w \}$
 - $-A_{TM} = \{ < M, w > : M \text{ accepts input } w \}$
- Some things we can do:
 - check if <M> \in E_{TM}
 - construct another TM M' and check if $<\!\!M'\!\!>\ \in E_{\mathsf{TM}}$

January 31, 2014

CS21 Lecture 11

Another example

- We are given input <M, w>
- We want to use a procedure that decides E_{TM} to decide if <M, w> \in A_{TM}
- Idea:
 - check if $\langle M \rangle \in E_{TM}$
 - if not?
 - helpful if could make M reject everything except possibly w.

January 31, 2014

CS21 Lecture 11

22

Another example

· Construct TM M':

Is this OK? finite # of states?

21

- on input x, if $x \neq w$, then reject \mathcal{A}
- else simulate M on x, and accept if M does.
- on input <M, w>
 - construct M' from description of M
 - check if $M' \in E_{TM}$
 - if no, M must accept w; ACCEPT
 - if yes, M cannot accept w; REJECT

January 31, 2014

CS21 Lecture 11

Another example

· Preceding reduction proved:

<u>Theorem</u>: E_{TM} is undecidable.

Proof (recap):

- suppose E_{TM} is decidable
- we showed how to use E_{TM} to decide A_{TM}
- conclude A_{TM} is decidable. Contradiction.

January 31, 2014

CS21 Lecture 11

1

Definition of reduction

- Can you reduce co-HALT to HALT?
- · We know that HALT is RE
- Does this show that co-HALT is RE?
 recall, we showed co-HALT is not RE
- our current notion of reduction cannot distinguish complements

January 31, 2014

CS21 Lecture 11

25

Definition of reduction

• function f should be computable

Definition: $f: \Sigma^* \rightarrow \Sigma^*$ is computable if there exists a TM M_f such that on every $w \in \Sigma^* M_f$ halts on w with f(w) written on its tape.

January 31, 2014

CS21 Lecture 11

27