ECSE-211 Design Principles and Methods

Lecture 5: From Requirements to a System Model and beyond...

Date: 25 January 2023

1

Last Lecture Review

- Communication in a design team why it is important
- How the company organization can impact the EDP —
- Information recording and transmission /
- The concept of a document and a rationale for effective documentation
- The Requirements Document

Document Structure

- To be useful a document needs to convey basic information about itself
 - · This is required for context
- Without structure, a document is of little use
- Typical header information common to all documents :
 - A Title what is the document about?
 - Who is responsible for it?
 - An individual who can be contacted in the event of questions related to information in the document
 - · Who has edited it?
 - Who has been involved in changing the information

3

Document Structure

- Typical header information common to all documents (cont'd):
 - Date: When was the document created?
 - Revision Date: When was the document last revised?
 - When put in the context of the EDP, this date can indicate when certain decisions were made
 - Version Number:
 - · The current version number
 - Edit History:
 - · A list of changes that were made
 - · For each change:
 - · Why was it made
 - · Who made it
 - · When was it made

Document Structure

- Following the Header, the main body of the document addresses the information related to the title
- For example, for the Requirements Document, the main body should include:
 - What is the system meant to do (Purpose and Scope)?_
 - List any performance data you have and desired capabilities
 - What can you use to solve the design problem (Constraints)?
 - List any items that are explicitly specified, or limitations imposed by the client
 - Are there tolerances on performance or limits on user interaction?
 - List them
 - Is there a deadline?
 - List it
 - Do you know everything? (Unknowns)
 - •
 - When is the Requirements <u>Document</u> complete? What is the next step?

5

Question 1

 When is the Requirements Document complete? What is the next step?

> At the and of the project. Systems model

Question 2

• What went wrong in the Tree Swing design process?

No communication

7

Question 3

• Why can the Company Organization have an impact on the EDP?

information flow.

Question 4

• How is the Design Process controlled?

Communication forkbade intergroup information transfer

9

Contents

- What is a System Model?
- Inputs to the System Model Creation
- The Team Capabilities
- Generating the System Model
- Identifying Possible Design Implementations

What is a System Model?

- What is the goal of the Model?
- Models provide a way of testing (or validating) ideas...
 - Simple algebraic models might allow the prediction of the navigation performance of a robot
 - A free body diagram might allow a prediction of how the various mechanical forces will behave
 - ...
- So a System Model should allow a validation of a possible structure that would meet the user description expressed in the Requirements Document

13

The System Model

- The Requirements lead to the development of a System Model
- What is a System?
 - A collection of interdependent functional elements that, when brought together as a single unit combine to meet a set of common objectives.

The System Model

• A sketch showing how the subsystems address the requirements

• Combined with the previous diagram, we now have a System Model

Front motor drive

Image courtesy of Morgan Jenkins, Siemens DISW

Inputs to the System Model Creation

- The V-Cycle illustrates the <u>States</u> of the design process and the validation that occurs for each State.
- Moving from state to state requires a process
- Arriving at the System Model requires a process which acts on the Requirements Document and "transforms" it

17

Inputs to the System Model Creation

- The previous slides showed examples of a System Model, i.e. the outputs of the model generation process.
- What are the Inputs?
- Are the User Requirements the only inputs?
- What else might contribute to the generation of a System Model?

Inputs to the System Model Creation

- The Process is implemented by the Design Team
- The Design Team has Capabilities

19

Team Capabilities

- The process to generate the System Model is implemented by the Design Team
- Each member has knowledge which can be used to map the Requirements onto a System Design
- There is a need to know who can do what
 - · Who is a software engineer?
 - · Who understands mechanics?
 - Who has knowledge about systems?
- This information needs to be acquired before the system generation process can happen

The Team Capabilities Document

- What is the team capable of? What is your knowledge/capability base?
 - Create an inventory of capabilities these may constrain your solution...
 - · Document what you can do:
 - E.g. John has worked with Mindstorms before he knows how to program it
 - E.g. Mary has been involved in a robotics project before McGill and understands the concept of a System

Create a document – Write it down – who has expertise in what?

21

The Capabilities Document

- This document needs to be generated before the system model can be created
 - In fact, it is required for the entire design process

 the team is the entity that implements each of the processes necessary to move through the states of the V-Cycle

The Capabilities Document

- This is the knowledge/skill base of the team
 - · Who can program?
 - Who understands mechanics?
 - Who understands systems?
 - · Who can manage?
 -
- As with the Requirements Document, the Capabilities Document has a similar Header block and a structured contents.
- It may also be modified during the Design Process since it may also contain information such as availabilities

23

The Design Team

- The Capabilities Document is relatively unique to DPM
- In an industrial environment, the Design Team might be generated as a result of the Requirements Document
 - For example, the Requirements suggest that there will be electrical systems in the device so include an electrical engineer in the team
 - Maybe there is to be a software component so a software engineer would be needed
- So the Design Team is often structured specifically to solve the given problem... the jobs/roles are defined and then filled.

The System Model

- For a Lego Robot, the "Product" is the robot
 - The System is the Hardware and Software structures and their interconnections that implement the Requirements
 - The subsystems are the sensors, the motor drives, the Lego structures, the software components, etc.
- In the following slides, consider the problem of the stranded vehicle discussed a few lectures ago – the specifications are on MyCourses

25

The Stranded Vehicle Problem

The game is played in a constrained space:

Generating the System Model

- So for the DPM problem A State Diagram
 - The System model could start as a simple diagram derived from the Requirements showing the various states that the system could find itself in
 - Each state could lead on to one or more states depending on the inputs to the system
 - For Example
 - · once the system is started, the first state would be to wait for information from the server
 - The next state would be to localize
 - · Then navigate
 - From navigation, it could move to obstacle avoidance or it might reach its destination
 - · This set of states can be validated against the Requirements Document

27

Generating the System Model

- For the DPM Problem A Mechanical-Electrical Diagram
 - To implement each state will require a physical structure so a simple mechanical and electrical system can be described
 - · Wheels and electric motors are needed to drive
 - These are electrically connected to the control brick
 - Sensors are needed to identify lines, walls, objects and are electrically connected to the brick
 - In the case of the problem described, a mechanism for connecting to the stranded vehicle is needed.. this is mechanically connected to a chassis
 - All the components are connected to the chassis
 - From this list, a diagram could be constructed showing the necessary mechanical and electrical structures
 - Note that the actual implementations have not been described here we are still at the Systems Level

Generating the System Model

- For the DPM Problem A Software Diagram
 - The control system for the robot is to be implemented in software
 - The software blocks can be identified and the data flow from inputs (sensors) and to outputs (motors) can be detailed
- Note there is no implementation of the software here just a list of the blocks needed
- The three components of the System Model can be used to generate a list of requirements for each area
 - A new set of more specific Requirements Documents

29

Increasing the Detail

- The System Model provides an overview of the proposed solution to meet the Requirements
- · Once it has been verified, the subsystems can be defined
- The requirements of each subsystem can be specified
- Each subsystem can be implemented a set of components
- The requirements for each component can be specified
- Now and only NOW each component can be designed and verified (tested)

Identifying Possible Design Implementations

- Now that there are Requirements on the Components of the System
 - Can we start with a conceptual design of the components?
 - Do we have all the inputs?

31

Identifying Possible Design Implementations

- What are the inputs to this process?
- First what is it we want to achieve?
 - Possible implementations of components to satisfy the System Model
- Inputs
 - Requirements
 - Team Capabilities
 - · Anything Else?

Identifying Possible Design Implementations • These will be Physical Structures (mechanical and software) • The conceptual design will need two more inputs... • Input 1: • What can the solutions be constructed from? • Lego Mindstorms components • Java/Python based code • ... • Input 2: • Are there constraints (other than those listed already)? • BUDGET! • Delivery date

33

Inputs to the Component Conceptual Design

- · So
 - Two more documents need to be created....
 - 1. The Systems Document
 - Identify the capabilities needed to construct the system defined in the System Model
 - · Determine the tools available
 - Software and Hardware
 - · Identify the basic building blocks that can be used
 - Determine if existing components (e.g. from the labs) can be re-used or re-purposed

35

Inputs to the Component Conceptual Design

- · So
 - Two more documents need to be created....
 - 2. The Constraints Document
 - Is there a budget involved with the project?
 - · Is there a delivery deadline?
 - · Can components outside of those provided directly (e.g. Lego) be used?
 - Are there limitations on tools such as shared files, authoring systems, etc., that can be used?
 - ...
- As before, these documents must have the standard header block and then content related to their purpose.

Summary

- We have:
 - Reviewed the concept of a System Model and how it is a critical first step in the EDP
 - Considered the System Model generation process and the required inputs
 - Discussed how the capabilities of the Design Team can affect both the EDP and the process outcomes
 - Stepped through the process for the generation of a System Model
 - Considered the inputs needed to enable to creation of basic component designs
 - Described 4 main documents which form the inputs to the EDP for DPM

37

