## **SVM (Support Vector Machines)**

Aaryan CO21BTECH11001

Let number of features of dataset = n

Let number of training examples = m

Data consists of matrices X and y where  $i^{th}$  column of X represents the  $i^{th}$  feature of dataset and  $i^{th}$  element of y represents the value of variable dependent on set of features listed in  $i^{th}$  row of X.

Labels in y consists of {-1,1} only i.e., it is a binary classifier.

The classifier function h(X) is written as

$$h_{w,b}(x) = g(w^T x + b)$$
 for some  $w \in \mathbb{R}^n$ ,  $b \in \mathbb{R}$ ,  $x \in \mathbb{R}^n$ 

Where

$$g(z) = \left\{ \begin{array}{c} 1 \ if \ z \ge 0 \\ -1 \ otherwise \end{array} \right\}$$

Geometric margin w.r.t  $(X^{(i)}, y_i)$  –

It represents the distance of  $(X^{(i)},y_i)$  from decision surface. It is represented by  $\gamma^{(i)}$ 



$$\gamma^{(i)} = \frac{y_i \left( w^T X^{(i)} + b \right)}{\left| |w| \right|}$$

Geometric margin  $(\gamma)$  w.r.t training set –

$$\gamma = \min_{i} \gamma^{(i)}$$

## Optimal Margin Classifier -

**Objective** – Choose w,b to maximize  $\gamma$ .

i.e. 
$$\max_{\gamma,w,b} \gamma$$
 s.t.  $\frac{y_i(w^T X^{(i)} + b)}{||w||} \ge \gamma$  ... (1)

This problem can be reduced to this problem -

$$\min_{w, b} \frac{1}{2} ||w||^2 \text{ s.t. } y_i (w^T X^{(i)} + b) \ge 1 \qquad \dots (2)$$

Let's suppose 
$$w = \sum_{i=1}^{m} \alpha_i y_i X^{(i)}$$
 ... (3)

Substituting (3) in (2), we can further reduce the problem to –

$$\max_{\alpha} \left( \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} y_i y_j \alpha_i \alpha_j < X^{(i)}, X^{(j)} > \right)$$

 $< X^{(i)}, X^{(j)} >$  is the inner product of  $X^{(i)}$  and  $X^{(j)}$ 

s.t. 
$$\alpha_i \ge 0 \ \forall i \in [1, m]$$
 and  $\sum_{i=1}^m \alpha_i y_i = 0$ 

This is a dual problem which can be solved with **SMO** Algorithm.

To make non-linear decision boundaries, we will introduce the Kernel trick in this algorithm.

We are going to replace  $\langle X^{(i)}, X^{(j)} \rangle$  with a Gaussian Kernel

$$K(X^{(i)}, X^{(j)}) = \exp\left(\frac{-\left|\left|X^{(i)} - X^{(j)}\right|\right|^2}{2\sigma^2}\right)$$

The visualization for function of SVMs can be found <a href="here">here</a>.

## Questions -

**1.** What type of algorithm is SVM?

**Ans.** It is a supervised machine learning algorithm that can be used for both classification and regression problems. However, it is mostly used in classification problems.

**2.** What is the objective of using SVMs?

**Ans.** The objective of the SVMs is to extend the data to a higher dimensional space and find a hyperplane separating the data in that space and then project that hyperplane to original space which results in a non-linear decision surface separating the datasets with different labels.

**3.** What is the advantage of using Kernels in SVM?

**Ans.** The data can be transformed into a very high dimensional (even infinite dimensional) with very little increase in computational cost.

In case of Gaussian Kernel, the feature's vector is being mapped to an infinite dimensional space.

- **4.** What is the disadvantage of using SVM? **Ans.** SVM optimizes for worst-case margin, therefore it is very sensitive to outliers.
- **5.** How to avoid outliers from affecting the optimal decision boundary?

**Ans.** We can use the  $L_1$  norm soft margin SVM.

In this we have to solve

$$\min_{w,b,\zeta} \left( \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \zeta_i \right) \text{ s.t. } y^{(i)} (w^T X^{(i)} + b) \ge 1 - \zeta_i \ \forall \ i \in [1, m]$$

Which reduces to 
$$\max_{\alpha} \left( \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m y_i y_j \alpha_i \alpha_j < X^{(i)}, X^{(j)} > \right)$$

s.t. 
$$\sum_{i=1}^{m} \alpha_i y_i = 0$$
 and  $0 \le \alpha_i \le C \ \forall \ i \in [1, m]$ 

Now we can adjust the value of C and  $\zeta_i$  s.t. the outliers doesn't affect the decision boundaries.