Utilização da Formulação Linear Generalizada para Estimar Perdas Não Técnicas em uma Distribuidora de Energia Elétrica

Francis de Asevedo francis.asevedo@light.com.br Pedro Ferreira pedro.Guilherme@fgv.br

Agenda

- Introdução
- Problema
- Objetivos
- Desenvolvimento
- Resultados

Introdução

O que é perda de energia elétrica:

- Perda de energia é toda energia injetada no sistema, que não é faturada pelo agente.
- Podem ser de ordem técnica ou não técnica

Perdas Técnicas (PTs)

Energia que se dissipa ao longo do fio por causas físicas.

Perdas Não Técnicas (PNTs)

- Decorrente de fraudes e irregularidades no consumo famoso "GATO".
- Correspondem à 8% de toda energia injetada no sistema brasileiro.
- Prejuízos financeiros da ordem de R\$ 7Bi anuais.
- Tratamento regulatório recente NT 342/2008.

Introdução

Tratamento Regulatório das PNTs

- Perdas gerenciáveis x Perdas não gerenciáveis ?
- ► ANEEL definiu % de perdas reconhecido na NT 342/2008.
- Modelo que compara PNTs realizada entre as distribuidoras e define meta eficiênte de PNTs para cada empresa.

Modelo de Comparação – Yardistick Competition

- Permite comparação entre empresas que atuam em ambientes heterogêneos.
- Controla os fatores exógenos através de modelo de regressão.

$$PNT'_{i} = \alpha' + \beta'x_{i}$$

PNT'_i = Perdas não técnicas estimadas da empresa i.

x = Vetor de variáveis que explicam heterogeneidade.

 α' ; β' = Parâmetros estimados da regressão.

Problema

Modelo bem ajustado - Boa definição do nível eficiênte de PNTs

- ▶ 1) Especificação do modelo
- 2) Variáveis que explicam PNTs

Modelo Nacional - NT 342/2008

- 1) Dados em painel com efeitos aleatórios.
- 2) Variáveis socioeconomicas.

Violência	Óbitos por agressão	
Desigualdade	Percentual de pessoas com baixa renda	
Informalidade	Proporção de pessoas em dom. subnormais	
Infra-estrutura	Cobertura do abastecimento de água	

▶ Ranking das PNTs estimadas → ÍNDICE DE COMPLEXIDADE SOCIOECONÔMICA (ICS).

Objetivos

Do ICS Brasil ao ICS de uma Distribuidora X:

> Divisão por áreas atendidas por alimentadores.

Empresa	Posição	Índice	Desvio Padrão
CELPA	10	0.463	0.047
MANAUS ENERGIA	20	0.456	0.052
LIGHT	30	0.449	0.058
CEA	40	0.379	0.035
ELETROPAULO	5⁰	0.336	0.044
COELCE	6º	0.308	0.027
CEPISA	70	0.274	0.027
CEMAR	80	0.272	0.037
CELPE	90	0.271	0.027
ENERGISA BORBOREMA	10°	0.269	0.027

Objetivos

Diferenças do Modelo Brasil e Modelo para uma Distribuidora.

Modelo Brasil	Modelo p/ uma Distribuidora	
Dados em Painel	A decidir	
Variável Socioeconômicas	VS + V. Específicas da Paraíba	
Sem Interações ou termos²	Com Interações e termos ²	
Análise por área de concessão	Análise por alimentadores	

Distribuição da Variável Explicada - % de PNT.

- ▶ 1) Muitas áreas com baixo% de PNT e poucas áreas com alto% de PNT.
- 2) Distribuição Assimétrica e contínua.

 Os dados são seguem distribuição normal.

Proposta LinearGeneralizada

Modelos Lineares Generalizados

- Fazem face a situações que não são adequadamente explicadas pelo modelo linear normal.
- Variável Resposta pode ser escrita sob a forma da Família Exponencial.

$$f(y, \theta, \phi) = \exp \left\{ \phi^{-1} \left[y \theta - b(\theta) \right] + c(y, \phi) \right\}$$

• Onde $b(\theta)$ é uma função conhecida da média, e ϕ é o parâmetro de dispersão da v.a.

$$E(Y) = \mu = b'(\theta)$$
 e $Var(Y) = \phi b''(\theta)$

Modelos Lineares Generalizados

Algumas distribuições e tipos de dados

Distribuição	Tipos de Dados
Poisson	Contagens
Binomial	Proporções
Normal	Contínuos Simétricos
Gama	Contínuos Assimétricos
Normal Inversa	Contínuos Assimétricos

- Para o problema em estudo foram testadas as distribuições
 Gama e Normal Inversa
- Modelos não alinhados → Escolha do modelo via AIC e BIC; análise dos resíduos e interpretação dos parâmetros.

Modelos Propostos:

▶ Gamma com link Log x Normal Inversa com link log

	Modelo Gam	ia iink iog		
pnt_ei	coef.	z	$\rho > z $	
Próprios	-0,3542	-5,51	0,000	
Renda	-0,0009	-3,86	0,000	
Esgoto	-0,0058	-2,83	0,005	
Gela deira	-0,0111	3,02	0,003	
Imigante	0,2847	2,43	0,000	AIC menor
_cons	4,9393	9,09	0,000	
	Estatíst	icas		
AIC	7,3612	BIC	-612,5132	
og likelihood	-512,9659			_
	Modelo Normal		ρ> z]
pnt_ei Próprios	Modelo Normal	z	ρ > z	
pnt_ei Próprios	Modelo Normal Coef.	z -5,23	0,000	
pnt_ei Próprios Renda	Modelo Normal	z -5,23 -3,16	'''	
pnt_ei Próprios	Modelo Normal 2 coef. -0,3699 -0,0008	z -5,23	0,000 0,002	→ BIC menor
pnt_ei Próprios Renda Esgoto	Modelo Normal 3 coef0,3699 -0,0008 -0,0060	z -5,23 -3,16 -2,59	0,000 0,002 0,009	→ BIC menor
pnt_ei Próprios Renda Esgoto Gela deira	Modelo Normal 2 coef. -0,3699 -0,0008 -0,0060 -0,0127	-5,23 -3,16 -2,59 3,35	0,000 0,002 0,009 0,001	▶ BIC menor
pnt_ei Próprios Renda Esgoto Geladeira Inigante	Modelo Normal I coef0,3699 -0,0008 -0,0060 -0,0127 0,3269	z -5,23 -3,16 -2,59 3,35 2,48 8,46	0,000 0,002 0,009 0,001 0,013 0,000	▶ BIC menor
pnt_ei Próprios Renda Esgoto Geladeira Inigante	Modelo Normal I coef0,3699 -0,0008 -0,0060 -0,0127 0,3269 4,8976	z -5,23 -3,16 -2,59 3,35 2,48 8,46	0,000 0,002 0,009 0,001 0,013	▶ BIC menor

Análise dos Resíduos

QQ Plot dos Resíduos de Anscombe:

▶ Escolha pela GAMA: Resíduos mais aderentes à dist. Normal

Modelos Propostos:

► Gama com link Log + interações e termos quadráticos

	Modelo Final Gamma link log				
	pnt_ei	coef.	z	$\rho > z $	
	Próprios	0,1279	1,61	0,108	
	renda	-0,0010	-4,21	0,000	
	Próprios_2	-0,0011	-2,05	0,040	
	geladeira	0,0114	3,15	0,002	
	irrigante	0,2825	2,46	0,014	
	_cons	-0,8893	-0,31	0,757	
	Estatísticas				
	AIC	7,3667	BIC	-608,781	
	Log likelihood	-512,3576			

▶ Próprios²

> QQ Plot dos Resíduos de Anscombe e Resíduos da Deviance:

Adequação do Modelo

Gráfico PNT's Estimadas x PNT's Observadas:

▶ Relação de linearidade Estimado x Observado → Modelo proposto foi capaz de captar e estimar os efeitos entre as variáveis socioeconômicas e o nível de perda não técnica.

Conclusões

Principais conclusões

Importância de variáveis específicas para cada distribuidora → Variável de irrigação

Inclusão de termos quadráticos → Variáveis que não são encontradas em literaturas prévias.

Adequação dos MLGs no tema das PNTs → Proposta ao Modelo Nacional.

FIM

Francis de Asevedo - <u>francis.asevedo@light.com.br</u>

Pedro Costa Ferreira – pedro.guilherme@fgv.br