Universität Würzburg Übungsblätter Bachelor Mathematische Physik

Jun Wei Tan

October 26, 2023

Contents

1	Lineare Algebra 1 1.1 Blatt 1	5 5
2	Lineare Algebra 2 2.1 Blatt 1	11 11
3	Analysis 2 3.1 Blatt 1	1 5 15
4	Vertiefung Analysis 4.1 Blatt 1	21 21
5	Theoretische Mechanik 5.1 Blatt 1	27 27

4 CONTENTS

Chapter 1

Lineare Algebra 1

1.1 Blatt 1

Problem 1. Beweisen Sie folgende Aussage: Gegeben seien zwei Punkte $p,q \in \mathbb{R}^2$ mit $p \neq q$. Dann gibt es genau eine Gerade $g \subseteq \mathbb{R}^2$ mit $p \in g$ und $q \in g$. Diese ist gegeben durch $g_{p,q} = \{x \in \mathbb{R}^2 | x_1(q_2 - p_2) - x_2(q_1 - p_1) = p_1q_2 - p_2q_1\}$.

Proof. Wir nutzen Def. ??. Weil p und q in der Gerade sind, können wir zwei Gleichungen schreiben...

$$a_1 p_1 + a_2 p_2 = b$$
$$a_1 q_1 + a_2 q_2 = b$$

Dann gilt

$$a_1p_1 + a_2p_2 = a_1q_1 + a_2q_2$$

 $a_1(p_1 - q_1) = a_2(q_2 - p_2)$

Daraus folgt die Lösungsmenge

$$a_{1} = t$$

$$a_{2} = t \frac{p_{1} - q_{1}}{q_{2} - p_{2}}$$

$$b = p_{1}t + p_{2} \frac{p_{1} - q_{1}}{q_{2} - p_{2}}t$$

Es ist klar, dass die gegebene Gerade eine Lösung zu die Gleichung ist, mit $t=q_2-p_2$. Was passiert mit andere t? Sei $t=q_2-p_2$ und $t'\in\mathbb{R}$. Vergleich dann die Gleichungen

$$x_1t + x_2t \frac{p_1 - q_1}{q_2 - p_2} = p_1t + p_2 \frac{p_1 - q_1}{q_2 - p_2}t$$
$$x_1t' + x_2t' \frac{p_1 - q_1}{q_2 - p_2} = p_1t' + p_2 \frac{p_1 - q_1}{q_2 - p_2}t'$$

Es ist klar, dass die zweite Gleichung nur die erste Gleichung durch t'/t multipliziert ist. Deshalb habe die zwei Gleichungen die gleiche Lösungsmengen, dann sind die Gerade, die durch die Gleichungen definiert werden, auch gleich.

Wenn $q_1=q_2$ dürfen wir die Lösungemenge nicht so schreiben. Aber wir können den Beweis wiederholen, aber mit a_2 als das freie Parameter. Es darf nicht, dass $(q_1-p_1,q_2-p_2)=(0,0)$, weil $\vec{\mathbf{q}}\neq\vec{\mathbf{0}}$

Problem 2. In Beispiel 1.2.8 wurde der Schnitt von zwei Ebenen bestimmt. Er hatte eine ganz bestimmte Form, die wir für den Kontext dieser Aufgabe als Gerade bezeichnen wollen, formal:

Ist $(v_1,v_2,v_3)\in \mathbb{R}^3\backslash\{(0,0,0)\}$ und $(p_1,p_2,p_3)\in \mathbb{R}^3$ beliebig, dann ist die Menge

$$\{(p_1 + t \cdot v_1, p_2 + t \cdot v_2, p_3 + t \cdot v_3) | t \in \mathbb{R}\}$$

eine Gerade.

- (a) Finden Sie zwei Ebenen, deren Schnitt die Gerade $g = \{(1+3t, 2+t, 3+2t)|t \in \mathbb{R}\}$ ist. Erläutern Sie, wie Sie die Ebenen bestimmt haben und beweisen Sie anschließend, dass Ihr Ergebnis korrekt ist.
- (b) Ist der Schnitt von zwei Ebenen immer eine Gerade? Wenn ja, begründen Sie das, wenn nein, geben Sie ein Gegenbeispiel an.
- (c) Zeigen Sie: Für den Schnitt einer Geraden g mit einer Ebene E gilt genau einer der folgenden drei Fälle:
 - $q \cap E = \emptyset$
 - $|g \cap E| = 1$
 - $q \cap E = q$

Geben Sie für jeden der Fälle auch ein Geraden-Ebenen-Paar an, dessen Schnitt genau die angegebene Form hat.

Proof. (a) Wir suchen zwei Ebenen, also 6 Vektoren $\vec{\mathbf{p}}_1, \vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2, \vec{\mathbf{p}}_2, \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in \mathbb{R}^3$, die zwei Ebenen durch

$$E_1 = \{ \vec{\mathbf{p}}_1 + t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 | t_1, t_2 \in \mathbb{R} \}$$

$$E_2 = \{ \vec{\mathbf{p}}_2 + t_1' \vec{\mathbf{v}}_1 + t_2' \vec{\mathbf{v}}_2 | t_1', t_2' \in \mathbb{R} \}$$

definieren. Einfachste wäre, wenn $p_1 = p_2 \in g$. Sei dann $p_1 = p_2 = (1, 2, 3)^T$. Wenn $\vec{\mathbf{u}}_1 = \vec{\mathbf{v}}_1 = (3, 1, 2)^T$, ist es auch klar, dass der Schnitt g entschließt $(t_2 = t_2' = 0)$. Dann mussen wir $\vec{\mathbf{u}}_2$, $\vec{\mathbf{v}}_2$ finden, für die gelten,

$$(t,t_2') \neq (0,0) \implies t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 \neq t_1' \underbrace{\vec{\mathbf{u}}_1}_{\vec{\mathbf{u}}_1 = \vec{\mathbf{v}}_1} + t_2' \vec{\mathbf{v}}_2 \forall t_1, t_1' \in \mathbb{R},$$

also

$$\xi_1 \vec{\mathbf{u}}_1 \neq t_2' \vec{\mathbf{v}}_2 - t_2 \vec{\mathbf{u}}_2 \qquad (t_2, t_2') \neq (0, 0), \forall \xi_1 \in \mathbb{R}.$$

Das bedeutet

$$\xi_1 = 0 : \vec{\mathbf{v}}_2 \neq k\vec{\mathbf{u}}_2 \qquad \forall k \in \mathbb{R}$$

$$\xi_1 \neq 0 : \vec{\mathbf{u}}_1 \notin \operatorname{span}(\vec{\mathbf{v}}_2, \vec{\mathbf{u}}_2)$$

Remark 1. Wir können uns einfach für solchen $\vec{\mathbf{v}}_2, \vec{\mathbf{u}}_2$ entscheiden. Wir brauchen nur

$$\langle \vec{\mathbf{u}}_2, \vec{\mathbf{v}}_2 \rangle = \langle \vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2 \rangle = \langle \vec{\mathbf{u}}_1, \vec{\mathbf{v}}_2 \rangle = 0.$$

Aber weil das innere Produkt nicht in der Vorlesung nicht diskutiert worden ist, mussen wir es nicht systematisch finden.

Remark 2. Eigentlich braucht man keine spezielle Grunde, um $\vec{\mathbf{u}}_2$ und $\vec{\mathbf{v}}_2$ zu finden. Wenn man irgindeine normalisierte Vektoren aus einer Gleichverteilung auf \mathbb{R}^3 nimmt, ist die Wahrscheinlichkeit, dass die eine Lösung sind, 1.

Daher entscheide ich mich ganz zufällig für zwei Vektoren...

$$\vec{\mathbf{v}}_2 = (1, 0, 0)^T$$

 $\vec{\mathbf{u}}_2 = (0, 1, 0)^T$

Der Schnitt von der Ebenen kann berechnet werden...

$$\vec{p} + t_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 = \vec{p} + t_1' \vec{\mathbf{v}}_1 + t_2' \vec{\mathbf{v}}_2,$$

 $\xi_1 \vec{\mathbf{u}}_1 + t_2 \vec{\mathbf{u}}_2 = t_2' \vec{\mathbf{v}}_2.$

Also

$$\xi_1 \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix} + t_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = t_2' \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$$

oder

$$\begin{pmatrix} 3 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ t_2 \\ t_2' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Remark 3. Hier ist es noch einmal klar, dass die einzige Lösung $\xi_1 = t_2 = t_2' = 0$ ist, weil $\det(\ldots) \neq 0$. Aber wir mussen noch eine langere Beweis schreiben...

$$\begin{pmatrix} 3 & 0 & -1 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 0 & -2 & 0 \\ 0 & 3 & 3 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

also die einzige Lösung ist $\xi_1=t_2=t_2'=0 \implies t_2=t_2'=0, t_1=t_2 \implies E_1\cap E_2=g$

$$E_{1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + u_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + u_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad u_{1}, u_{2} \in \mathbb{R},$$

$$E_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + u_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + u_{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \qquad u_{1}, u_{2} \in \mathbb{R}.$$

Dann ist $E_1 \cap E_2 = \emptyset$

(c)

Theorem 4. Sei $\vec{\mathbf{a}}, \vec{\mathbf{b}} \in \mathbb{R}^n, n \in \mathbb{N}$. Dann gibt es genau eine Gerade g, wofür gilt $\vec{\mathbf{a}} \in g, \vec{\mathbf{b}} \in g$. Es kann als

$$\vec{\mathbf{a}} + t(\vec{\mathbf{b}} - \vec{\mathbf{a}}), t \in \mathbb{R}$$

geschrieben werden.

Proof. Es ist klar, dass

$$\vec{\mathbf{a}} \in g$$
 $(t=0)$ $\vec{\mathbf{b}} \in g$ $(t=1)$

Sei dann eine andere Gerade g', wofür gilt $\vec{\mathbf{a}} \in g'$ und $\vec{\mathbf{b}} \in g'$. g' kann als

$$\vec{\mathbf{u}} + t\vec{\mathbf{v}}, t \in \mathbb{R}$$

geschrieben werden, wobei $\vec{\mathbf{u}}, \vec{\mathbf{v}} \in \mathbb{R}^n$. Es existiert $t_1, t_2 \in \mathbb{R}$, sodass

$$\vec{\mathbf{u}} + t_1 \vec{\mathbf{v}} = \vec{\mathbf{a}}$$
$$\vec{\mathbf{u}} + t_2 \vec{\mathbf{v}} = \vec{\mathbf{b}}$$

Es gilt dann

$$\vec{\mathbf{u}} = \vec{\mathbf{a}} - t_1 \vec{\mathbf{v}}$$
$$\vec{\mathbf{a}} - t_1 \vec{\mathbf{v}} + t_2 \vec{\mathbf{v}} = \vec{\mathbf{b}}$$
$$\vec{\mathbf{v}} = \frac{1}{t_2 - t_1} (\vec{\mathbf{b}} - \vec{\mathbf{a}}) \qquad t_1 \neq t_2 \text{ weil } \vec{\mathbf{a}} \neq \vec{\mathbf{b}}$$

Es gilt dann für g':

$$\begin{split} g' &= \{\vec{\mathbf{u}} + t\vec{\mathbf{v}}| t \in \mathbb{R}\} \\ &= \left\{\vec{\mathbf{a}} - \frac{t_1}{t_2 - t_1} (\vec{\mathbf{b}} - \vec{\mathbf{a}}) + \frac{t}{t_2 - t_1} (\vec{\mathbf{b}} - \vec{\mathbf{a}}) | t \in \mathbb{R}\right\} \\ &= \left\{\vec{\mathbf{a}} + \left(\frac{t}{t_2 - t_1} - \frac{t_1}{t_2 - t_1}\right) \left(\vec{\mathbf{b}} - \vec{\mathbf{a}}\right) | t \in \mathbb{R}\right\} \end{split}$$

Wenn man $t' = \frac{t}{t_2 - t_1} - \frac{t_1}{t_2 - t_1}$ definiert, ist es dann klar, dass g' = g

Es ist klar, dass maximal eines der Fälle gelten kann. Wir nehmen an, dass die erste zwei Fälle nicht gelten. Dann gilt

$$|g \cap E| \geq 2$$
.

Es gibt dann mindestens zwei Punkte in $g \cap E$. Es ist auch klar, dass die Verbindungsgerade zwische die beide Punkte g ist (Pr. 1)

Theorem 5. Sei $\vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2 \in E$. Dann ist die Verbindungsgerade zwischen $\vec{\mathbf{v}}_1$ und $\vec{\mathbf{v}}_2$ auch in E.

Proof. Sei

$$E = {\{\vec{\mathbf{p}}_1 + t_1\vec{\mathbf{u}} + t_2\vec{\mathbf{v}}|t_1, t_2 \in \mathbb{R}\}}.$$

Es wird angenommen, dass a_1, a_2, b_1, b_2 existiert, sodass

$$\vec{\mathbf{v}}_1 = \vec{\mathbf{p}} + a_1 \vec{\mathbf{u}} + a_2 \vec{\mathbf{v}}$$
$$\vec{\mathbf{v}}_2 = \vec{\mathbf{p}} + b_1 \vec{\mathbf{u}} + b_2 \vec{\mathbf{v}}$$

Dann ist

$$\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1 = (b_1 - a_1)\vec{\mathbf{u}} + (b_2 - a_2)\vec{\mathbf{v}},$$

also

$$\vec{\mathbf{v}}_1 + t(\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1) = \vec{\mathbf{p}} + a_1 \vec{\mathbf{u}} + a_2 \vec{\mathbf{v}} + t \left[(b_1 - a_1) \vec{\mathbf{u}} + (b_2 - a_2) \vec{\mathbf{v}} \right]$$
$$= \vec{\mathbf{p}} + \left[a_1 + t(b_1 - a_1) \right] \vec{\mathbf{u}} + \left[a_2 + t(b_2 - a_2) \right] \vec{\mathbf{v}} \in E$$

Deshalb ist $g \subseteq g \cap E$. Weil $g \cap E \subseteq g$, ist $g = g \cap E$

Chapter 2

Lineare Algebra 2

2.1 Blatt 1

Problem 3. (a) Bestimmen Sie alle komplexwertigen Lösungen der Gleichung

$$x^2 = u + iv,$$

in Abhängigkeit von $u, v \in \mathbb{R}$

(b) Führen Sie das Nullstellenproblem

$$ax^2 + bx + c = 0,$$

mit $a\in\mathbb{C}\setminus 0,b\in\mathbb{C},c\in\mathbb{C}$ auf den Fall in (a) zurück. Geben Sie weiterhin eine geschlossene Darstelling aller Lösungen für den Fall a=1 an.

Hat alles geklappt, sollte bei Ihnen speziell für den Fall a=1 und Im(b)=Im(c)=0 die entsprechende Mitternachtsformel dastehen.

Proof. (a)
$$|x^2| = |x|^2 = |u + iv| = \sqrt{u^2 + v^2}$$

Daraus folgt:

$$|x| = (u^2 + v^2)^{1/4},$$

$$x = (u^2 + v^2)^{1/4} e^{i\theta}.$$

Setze es in $x^2=u+iv$ ein und löse die Gleichungen für θ . Sei $\varphi=\mathrm{atan}_2(u,v)$ Dann ist:

$$\theta = \frac{\varphi}{2} \text{ oder } \theta = \frac{\varphi + 2\pi}{2}.$$

(b)
$$ax^2 + bx + c = 0 \implies x^2 + \frac{b}{a}x + \frac{c}{a} = 0,$$

d.h.

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = \left(x + \frac{b}{2a}\right)^{2} + \frac{c}{a} - \frac{b^{2}}{4a^{2}} = 0$$
$$\left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$
$$x = -\frac{b}{2a} \pm p$$

wobei p die Lösung zu $p^2 = \frac{b^2}{4a^2} - \frac{c}{a}$ ist. Im Fall a=1 und Im(b) = Im(c) = 0, daraus folgt:

$$x = -\frac{b}{2} \pm \frac{1}{2}\sqrt{b^2 - 4c}.$$

Problem 4. Finden Sie für die Polynome $p, d \in \mathbb{C}[x]$ jeweils solche $q, r \in \mathbb{C}[x]$ mit $\deg(r) < \deg(d)$, dass p = qd + r gilt.

(a)
$$p = x^7 + x^5 + x^3 + 1, d = x^2 + x + 1$$

(b)
$$p = x^5 + (3-i)x^3 - x^2 + (1-3i)x + 1 + i, d = x^2 + i$$

(c) Wie sehen s, r aus, wenn man in (a) und (b) jeweils die Rollen von p und d vertauscht? D.h. bestimmen Sie $s, r \in \mathbb{C}[x]$ mit $\deg r < \deg p$, sodass d = sp + r gilt.

$$a = sp + r \text{ girt.}$$

$$x^{2} + x + 1) \underbrace{ \begin{array}{c} x^{5} - x^{4} + x^{3} \\ x^{7} + x^{5} + x^{3} + 1 \end{array}}_{-x^{7} - x^{6} - x^{5}} \underbrace{ \begin{array}{c} -x^{6} \\ x^{6} + x^{5} + x^{4} \\ \hline x^{5} + x^{4} + x^{3} \\ -x^{5} - x^{4} - x^{3} \end{array}}_{-x^{5} - x^{4} - x^{3}}$$

Daher

$$q = x^5 - x^4 + x^3, r = 1.$$

(b)
$$q = x^3 + (3-2i)x - x, r = -(1+6i)x + (1+2i)$$

(c)
$$r = d, s = 0$$

Problem 5. Seien

$$A = \begin{pmatrix} 1 & 2 & 1 & 5 \\ 2 & 1 & -1 & 4 \\ 1 & 0 & -1 & 1 \end{pmatrix}, b = \begin{pmatrix} -38 \\ -46 \\ -18 \end{pmatrix}, c = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

gegeben.

- (a) Bestimmen Sie Im(A) und ker(A)
- (b) Bestimmen Sie Lös(A, b) und Lös(A, c).

Proof. (a)

$$\begin{pmatrix} 1 & 2 & 1 & 5 \\ 2 & 1 & -1 & 4 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & -3 & -3 & -6 \\ 1 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & -3 & -3 & -6 \\ 0 & -2 & -2 & -4 \end{pmatrix} \xrightarrow{R_2 \times -\frac{1}{3}} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & -2 & -2 & -4 \end{pmatrix} \xrightarrow{R_3 + 2R_2} \begin{pmatrix} 1 & 2 & 1 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 - 2R_2} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Daraus folgt

$$\operatorname{im}(A) = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\}.$$

Sei dann $(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$. Wenn $(x_1, x_2, x_3, x_4)^T \in \ker(A)$, gilt

$$t_3 := x_3$$

 $t_4 := x_4$
 $x_1 = x_3 - x_4 = t_3 - t_4$
 $x_2 = -x_3 - 2x_4 = -t_3 - 2t_4$

Daraus folgt:

$$\ker(A) = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \right\}$$

(b)

$$\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
2 & 1 & -1 & 4 & | & -46 \\
1 & 0 & -1 & 1 & | & -18
\end{pmatrix}
\xrightarrow{R_2 - 2R_1}
\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
0 & -3 & -3 & -6 & | & 30 \\
0 & -3 & -3 & -6 & | & 30 \\
0 & -2 & -2 & -4 & | & 20
\end{pmatrix}
\xrightarrow{R_2 \times -\frac{1}{3}}
\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
0 & 1 & 1 & 2 & | & -10 \\
0 & -2 & -2 & -4 & | & 20
\end{pmatrix}
\xrightarrow{R_3 + 2R_2}
\begin{pmatrix}
1 & 2 & 1 & 5 & | & -38 \\
0 & 1 & 1 & 2 & | & -10 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\xrightarrow{R_1 - 2R_2}
\begin{pmatrix}
1 & 0 & -1 & 1 & | & -18 \\
0 & 1 & 1 & 2 & | & -10 \\
0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$x_1 - x_3 + x_4 = -18$$
$$x_2 + x_3 + 2x_4 = -10$$

Deswegen ist $L\ddot{o}s(A, b)$

$$\begin{pmatrix} -18 + x_3 - x_4 \\ -10 - x_3 - 2x_4 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -18 \\ -10 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$

(c) $\begin{pmatrix} 1 & 2 & 1 & 5 & 0 \\ 2 & 1 & -1 & 4 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & 2 & 1 & 5 & 0 \\ 0 & -3 & -3 & -6 & 0 \\ 1 & 0 & -1 & 1 & 1 \end{pmatrix} \xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 2 & 1 & 5 & 0 \\ 0 & -3 & -3 & -6 & 0 \\ 0 & -2 & -2 & -4 & 1 \end{pmatrix}$

$$\xrightarrow{R_2 \times -\frac{1}{3}} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 5 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & -2 & -2 & -4 & 1 \end{array} \right) \xrightarrow{R_3 + 2R_2} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 5 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right) \xrightarrow{R_1 - 2R_2} \left(\begin{array}{ccc|c} 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right)$$

П

Es gibt keine Lösungen, weil $0 \neq 1$, also Lös $(A, c) = \emptyset$

Problem 6. Gegeben seien die \mathbb{R} -Vektorräume V mit Basis $B_V = \{v_1, v_2, v_3\}$ und Basis $B_W = \{w_1, w_2, w_3\}$. Wir definieren einen linearen Operator $T: V \to W$ wie folgt:

$$T(v_1) = w_1 + w_3$$
 $T(v_2) = w_1 + w_2, T(v_3) = -w_1 - w_2 - w_3.$

(a) $w_1, w_2, w_3 \in \text{span}\{T(v_1), T(v_2), T(v_3)\}$, weil

$$w_1 = T(v_1) + T(v_2) + T(v_3)$$

$$w_2 = (-1)(T(v_3) + T(v_1))$$

$$w_3 = (-1)(T(v_2) + T(v_3))$$

Daraus folgt:

$$W = \operatorname{span}(w_1, w_2, w_3) = \operatorname{span}(T(v_1), T(v_2), T(v_3)).$$

Daraus folgt:

$$im(T) = \mathbb{R}^3$$
, $ker(T) = \{0\}$.

(b)
$$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}.$$

(c)
$$B_W^* = \{ w_1 + w_3, w_1 + w_2, -w_1 - w_2 - w_3 \}.$$

(d)
$$B_V^* = \{v_1 + v_2 + v_3, -(v_1 + v_3), -(v_2 + v_3)\}.$$

Chapter 3

Analysis 2

Ich habe die Übungen für Analysis 2 mit Lukas Then gemacht.

3.1 Blatt 1

Problem 7. Berechnen Sie Ableitungen der folgenden Funktionen:

(a)
$$f(x) = \frac{\arctan \sin x^2}{e^{1-x}}$$
 für $x \in \mathbb{R}$

(b)
$$g(x) = x^{(x^x)} \text{ für } x > 0$$

(a)

$$f(x) = e^{x-1} \arctan \sin x^2.$$

$$\begin{split} f'(x) = & e^{x-1} \frac{\mathrm{d}}{\mathrm{d}x} \arctan \sin x^2 + \left(\arctan \sin x^2\right) \frac{\mathrm{d}}{\mathrm{d}x} e^{x-1} \\ = & \frac{e^{x-1}}{1 + \sin^2 x^2} \frac{\mathrm{d}}{\mathrm{d}x} \sin x^2 + \left(\arctan \sin x^2\right) e^{x-1} \frac{\mathrm{d}}{\mathrm{d}x} (x-1) \\ = & \frac{e^{x-1}}{1 + \sin^2 x^2} (\cos x^2) (2x) + \left(\arctan \sin x^2\right) e^{x-1} \\ = & \frac{2x \cos x^2 e^{x-1}}{1 + \sin^2 x^2} + \left(\arctan \sin x^2\right) e^{x-1} \end{split}$$

(b)

$$g(x) = x^{(x^x)}$$

$$\ln g(x) = x^x \ln x$$

Lemma 6.

$$h(x) := x^x$$

$$h'(x) = x^x (1 + \ln x)$$

Proof.

$$\ln h(x) = x \ln x.$$

$$\frac{d}{dx} | \ln h(x) = \frac{d}{dx} (x \ln x)$$

$$\frac{h'(x)}{h(x)} = \ln x + 1$$

$$h'(x) = h(x) (1 + \ln x)$$

$$= x^{x} (1 + \ln x)$$

Dann gilt

$$\frac{\mathrm{d}}{\mathrm{d}x} \ln g(x) = \frac{\mathrm{d}}{\mathrm{d}x} (x^x \ln x)$$

$$\frac{g'(x)}{g(x)} = \frac{1}{x} x^x + (\ln x) \frac{\mathrm{d}}{\mathrm{d}x} (x^x)$$

$$= \frac{x^x}{x} + (\ln x) x^x (1 + \ln x)$$

$$g'(x) = g(x) x^x \left[\frac{1}{x} + \ln x + \ln^2 x \right]$$

$$= x^{x^x + x} \left[\frac{1}{x} + \ln x + \ln^2 x \right]$$

$$= x^{x^x + x - 1} \left[1 + x \ln x + x \ln^2 x \right]$$

Problem 8. Untersuchen Sie, für welche Argumente des Definitionsbereiches die folgenden Funktionen differenzierbar sind:

(a)
$$f(x) = |x|, x \in \mathbb{R}$$

(b)
$$g(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

(c)
$$h(z) = \overline{z}, z \in \mathbb{C}$$

(a) Für $x_0 \neq 0$ gibt es eine Umgebung auf x_0 , worin |x| = x oder |x| = -x. Dann ist die Ableitung von |x| gleich mit die Ableitung von entweder x oder -x, also $f'(x_0)$ existiert für $x_0 \neq 0$.

Für $x_0 = 0$ gilt |0| = 0, und auch

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{x}{x} = 1$$

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

Weil die beide ungleich sind, existiert die Grenzwert und daher auch die Ableitung nicht.

(b) Sei $x_0 \neq 0$ und $y_0 = x_0^2$. Dann für $0 < \epsilon < y_0$ existiert keine $\delta > 0$, sodass $|x - x_0| < \delta \implies |g(x) - g(x_0)| < \epsilon$.

Beweis: Es gibt zwei Fälle:

- (i) $x_0 \in \mathbb{Q}$. Dann in jeder offenen Ball $(x_0 \delta, x_0 + \delta)$ gibt es ein Zahl $x \in \mathbb{R} \setminus \mathbb{Q}$, also $|g(x) g(x_0)| = g(x_0) = y_0 > \epsilon$
- (ii) Sei $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Dann in jeder offenen Ball $(x_0 \delta, x_0 + \delta)$ gibt es ein Zahl $x \in \mathbb{Q}$, also $|g(x) g(x_0)| = g(x) > y_0 > \epsilon$

Sei $x_0 = 0$. Dann gilt $g(x_0) = 0$, und auch:

(i) $x \in \mathbb{Q}$, also

$$\frac{g(x) - g(0)}{x - 0} = \frac{x^2}{x}$$
$$= x$$

(ii) oder $x \notin \mathbb{Q}$, also

$$g(x) - g(0) = 0 - 0 = 0 \implies \frac{g(x) - g(0)}{x - 0} = 0.$$

Deshalb ist

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = 0.$$

(c) Zu berechnen:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{\overline{z} - \overline{z_0}}{z - z_0} = \lim_{z \to z_0} \frac{\overline{z - z_0}}{z - z_0}.$$

Sei $z = z_0 + x, x \in \mathbb{R}$. Dann, falls die Grenzwert existiert, ist es gleich

$$\lim_{z \to z_0} \frac{\overline{z - z_0}}{z - z_0} = \lim_{x \to 0} \frac{\overline{z_0 + x - z_0}}{z_0 + x - z_0}$$
$$= \lim_{x \to 0} \frac{\overline{x}}{x}$$
$$= \lim_{x \to 0} \frac{x}{x}$$
$$= 1$$

Sei jetzt $z = z_0 + ix, x \in \mathbb{R}$. Falls die Grenzwert existiert ist es gleich

$$\lim_{z \to z_0} \frac{\overline{z - z_0}}{\overline{z - z_0}} = \lim_{x \to 0} \frac{\overline{z_0 + ix - z_0}}{\overline{z_0 + ix - z_0}}$$
$$= \lim_{x \to 0} \frac{\overline{ix}}{\overline{ix}}$$
$$= \lim_{x \to 0} \frac{-ix}{\overline{ix}}$$
$$= -1$$

Weil das Grenzwert, wenn durch zwei Richtungen berechnet wurde, ungleich ist, existiert das Grenzwert nicht (für alle $z\in\mathbb{C}$)

Problem 9. Man zeige, dass die Gleichung

$$x = \cos\left(\frac{\pi x}{2}\right)$$

auf [0, 1] genau eine Lösung besitzt.

Sei $f(x) = x - \cos\left(\frac{\pi x}{2}\right)$. Dann ist die Gleichung gleich f(x) = 0. f(x) ist auf [0,1] stetig, und auf (0,1) differenzierbar.

$$f(0) = 0 - 1 = -1$$

 $f(1) = 1 - 0 = 1$

Wegen des Zwischenwertsatzes gibt es mindestens eine Lösung zu der Gleichung f(x) = 0. Dann

$$f'(x) = 1 + \frac{\pi}{2}\sin\left(\frac{\pi x}{2}\right) > 0 \text{ für } x \in [0, 1].$$

f is dann monoton wachsend, und es gibt maximal eine Lösung zu f(x) = 0. Deswegen besitzt die Gleichung genau eine Lösung.

Problem 10. Bestimmen Sie die folgenden Grenzwerte:

- (a) $\lim_{k\to\infty} k \ln \frac{k-1}{k}$
- (b) $\lim_{x\to\infty} \frac{x^{\ln x}}{e^x}$
- (a)

$$k\ln\frac{k-1}{k} = \frac{\ln(k-1) - \ln k}{1/k}.$$

Weil $\ln x$ und 1/x auf $x \in (0, \infty)$ differenzierbar sind, kann man den Satz von L'Hopital verwenden:

$$\frac{d}{dk} \left[\ln(k-1) - \ln k \right] = \frac{1}{k-1} - \frac{1}{k} = \frac{1}{k(k-1)}$$
$$\frac{d}{dk} \frac{1}{k} = -\frac{1}{k^2}$$

Dann gilt

$$\lim_{k \to \infty} \frac{\frac{1}{k(k-1)}}{-\frac{1}{k^2}} = \lim_{k \to \infty} \left(-\frac{k}{k-1} \right)$$
$$= \lim_{k \to \infty} \left(-\frac{1}{1 - \frac{1}{k}} \right)$$
$$= -1$$

Weil das Grenzwert auf $\mathbb{R} \cup \{\pm \infty\}$ existiert, ist

$$\lim_{k\to\infty}k\ln\left(\frac{k-1}{k}\right)=-1.$$

(b)
$$\frac{x^{\ln x}}{e^x} = \frac{\left(e^{\ln x}\right)^{\ln x}}{e^x} = \frac{e^{\ln^2 x}}{e^x} = e^{\ln^2 x - x} = e^{x\left(\frac{\ln^2 x}{x} - 1\right)}.$$

Lemma 7.

$$\lim_{x \to \infty} \frac{\ln^p x}{x^q} = 0, \qquad p, q > 0.$$

Proof.

$$\lim_{x \to \infty} \frac{\ln^p x}{x^q} = \left(\lim_{x \to \infty} \frac{\ln x}{x^{p/q}}\right)^q$$

$$= \left(\lim_{x \to \infty} \frac{1}{x(x^{p/q})}\right)^q$$
L'Hopital
$$= 0^q = 0$$

Corollary 8.

$$\lim_{x \to \infty} \left[x \left(\frac{\ln^2 x}{x} - 1 \right) \right] = -\infty.$$

Deswegen ist

$$\lim_{x \to \infty} \frac{x^{\ln x}}{e^x} = \lim_{x \to \infty} e^{x\left(\frac{\ln^2 x}{x} - 1\right)} = 0.$$

Problem 11. Überprüfen Sie die Funktion $f:[-1,+\infty)\to\mathbb{R}$ definiert durch

$$f(x) = \begin{cases} x^2 + 1 & -1 \le x < 1\\ \frac{8}{\pi} \arctan \frac{1}{x} & x \ge 1 \end{cases}$$

auf lokale und globale Extrema.

Es gilt

$$f'(x) = \begin{cases} 2x & -1 < x < 1\\ \frac{8}{\pi} \frac{1}{1 + \frac{1}{x^2}} \left(-\frac{1}{x^2} \right) & x > 1 \end{cases}.$$

Es ist klar, dass x=0 eine Lösung zu f'(x)=0 ist. Weil f''(0)=2>0, ist es ein lokales Minimum. Es gibt auch $a,b\in\mathbb{R},a<1< b$, wofür gilt

$$f'(x) > 0 x \in (a,1)$$

$$f'(x) < 0 x \in (1,b)$$

Falls $f(1) \ge \lim_{x \to 1^-} f(x)$, ist f(1) ein lokales Maximum (sogar wenn f nicht auf 1 stetig ist). Weil

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} + 1) = 2$$

und

$$f(1) = \frac{8}{\pi} \arctan 1 = \frac{8}{\pi} \frac{\pi}{4} = 2$$

ist f(1) ein lokales Maximum. Weil f(x)<2 für x>1 kann kein Punkt x>1 ein globales Maximum sein. Es gilt auch, dass

$$f(-1) = (-1)^2 + 1 = 2.$$

Außer $x \in \{-1,0,1\}$ gibt es keine Möglichkeiten für ein globales Maximum. Daher sind die globale Maxima auf $x \in \{-1,1\}$

Für $x \in [1, 1)$ gilt $f(x) \ge 1$. Dennoch ist

$$\lim_{x \to \infty} \frac{8}{\pi} \arctan\left(\frac{1}{x}\right) = 0.$$

Deswegen gibt es keine globales Maximum auf \mathbb{R} . Wenn man $f(\infty)$ definiert durch $f(\infty) = \lim_{x \to \infty} f(x)$, ist $f(\infty)$ das globale Maximum.

Chapter 4

Vertiefung Analysis

Ich habe die Übungen für Vertiefung Analysis mit Lucas Wollman gemacht.

4.1 Blatt 1

Problem 12. Seien X, Y nichtleere Mengen, $f: X \to Y$ eine Abbildung und \mathcal{A}, \mathcal{S} σ -Algebra über X sowie B eine σ -Algebra über Y. Beweisen oder widerlegen Sie:

- (a) $A \cup S$ ist eine σ -Algebra über X.
- (b) $A \cap S$ ist eine σ -Algebra über X.
- (c) $A \setminus S$ ist eine σ -Algebra über X.
- (d) $f^{-1}(\mathcal{B}) = \{f^{-1}(B) \subseteq X | B \in \mathcal{B}\}$ ist eine σ -Algebra über X.
- (e) $f(A) = \{f(A) \subseteq Y | A \in A\}$ ist eine σ -Algebra über Y.

Proof. (a) Falsch. Sei

$$X = \{a, b, c\}$$
$$\mathcal{A} = \{\emptyset, \{a, b\}, \{c\}, X\}$$
$$\mathcal{S} = \{\emptyset, \{a\}, \{b, c\}, X\}$$

Dann ist

$$A \cup S = \{\emptyset, \{a\}, \{a,b\}, \{c\}, \{b,c\}, X\}.$$

keine σ -Algebra, weil

$${a,b} \cap {b,c} = {b} \notin \mathcal{A} \cup \mathcal{S}.$$

(b) Richtig.

- (1) $X \in \mathcal{A}, X \in \mathcal{S} \implies X \in \mathcal{A} \cap \mathcal{S}$
- (2) Sei $A \in \mathcal{A} \cap \mathcal{S}$. Dann $A \in \mathcal{A}$ und $A \in \mathcal{S}$. Daraus folgt: $A^c \in \mathcal{A}$ und $A^c \in \mathcal{S}$. Deswegen ist $A^c \in \mathcal{A} \cap \mathcal{S}$.
- (3) Sei $(A_j), A_j \in \mathcal{A} \cap \mathcal{S}$. Dann gilt:

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$$

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{S}$$

Daraus folgt

$$\bigcup_{j=1}^{\infty} A_j \in \mathcal{A} \cap \mathcal{S}.$$

- (c) Falsch. $X \in \mathcal{A}, X \in \mathcal{S} \implies X \notin \mathcal{A} \setminus \mathcal{S}$
- (d) Richtig.
 - (1) $f^{-1}(Y) = X \in f^{-1}\mathcal{B}$
 - (2) Sei $A = f^{-1}(B)$

$$X-A=f^{-1}(\underbrace{Y-B}_{\in\mathcal{B}})\in f^{-1}(\mathcal{B}).$$

(3) Es folgt aus

$$\bigcup_{j\in\mathbb{N}} f^{-1}(B_j) = f^{-1}\left(\bigcup_{j\in\mathbb{N}} B_j\right).$$

(e) Falsch. Sei $a \in Y$ und f die konstante Abbildung $f(x) = a \forall x \in X$. Dann gilt

$$f(\mathcal{A}) = \{\varnothing, \{a\}\}\$$

was keine σ -Algebra ist, solange $Y \neq \{a\}$.

Problem 13. (a) Sei $X := \mathbb{Q}$ und $\mathcal{A}_{\sigma}(M)$ die von $M := \{(a, b] \cap Q | a, b \in \mathbb{Q}, a < b\}$ erzeugte σ -Algebra. Zeigen Sie, dass $\mathcal{A}_{\sigma}(M) = \mathcal{P}(\mathbb{Q})$ gilt.

(b) Seien X, Y nichtleere Mengen und $f: X \to Y$ eine Abbildung. Zeigen Sie: Für $\mathcal{M} \subseteq \mathcal{P}(Y)$ gilt

$$f^{-1}(A_{\sigma}(\mathcal{M})) = \mathcal{A}_{\sigma}(f^{-1}(\mathcal{M})).$$

Das Urbild von ${\mathcal M}$ ist hierbei analog zum Urbild einer $\sigma\text{-}\mathsf{Algebra}$ definiert durch

$$f^{-1}(\mathcal{M}) := \left\{ f^{-1}(B) \subseteq X | B \in \mathcal{M} \right\}.$$

Proof. (a) $\{q\} \in \mathcal{A}_{\sigma}(\mathcal{M}) \forall q \in \mathbb{Q}$, weil

$$\{q\} = \bigcap_{n=1}^{\infty} \left(q - \frac{1}{n}, q\right] \in \mathcal{A}_{\sigma}(M).$$

Weil \mathbb{Q} abzählbar ist, sind alle Teilmenge $A \in \mathcal{P}(\mathbb{Q})$ abzählbar, daher

$$\mathcal{P}(\mathbb{Q}) \subseteq \mathcal{A}_{\sigma}\left(\left\{\left\{q\right\} \mid q \in \mathbb{Q}\right\}\right) \subseteq \mathcal{A}_{\sigma}(M)$$

Es ist klar, dass

$$\mathcal{A}_{\sigma}(M) \subseteq \mathcal{P}(\mathbb{Q}).$$

(b) Sei $P = \{A | A \text{ ist eine } \sigma\text{-Algebra}, \mathcal{M} \subseteq A\}$. Per Definition ist $A_{\sigma}(\mathcal{M}) = \bigcap_{A \in P} A$. Dann ist es zu beweisen:

$$f^{-1}\left(\bigcap_{\mathcal{A}\in P}\mathcal{A}\right)=\bigcap_{\mathcal{A}\in P}f^{-1}(\mathcal{A})\stackrel{?}{=}\mathcal{A}_{\sigma}\left(f^{-1}\left(\mathcal{M}\right)\right).$$

Jeder σ -Algebra $f^{-1}(A)$ enthält $f^{-1}(M)$. Daraus folgt, dass

$$\mathcal{A}_{\sigma}\left(f^{-1}\left(\mathcal{M}\right)\right)\subseteq\bigcap_{\mathcal{A}\in P}f^{-1}(\mathcal{A}).$$

Jetzt betrachten wir

$$\mathcal{M}' := f_* \left(\mathcal{A}_\sigma \left(f^{-1}(\mathcal{M}) \right) \right).$$

Es ist schon in der Vorlesung bewiesen, dass \mathcal{M}' eine σ -Algebra ist, die \mathcal{M} und daher auch $\mathcal{A}_{\sigma}(\mathcal{M})$ enthält. Weil $f^{-1}(\mathcal{M}')$ eine σ -Algebra ist, ist $f^{-1}(\mathcal{M}') = \mathcal{A}_{\sigma}(f^{-1}(\mathcal{M}))$. Daraus folgt:

$$f^{-1}\left(\mathcal{A}_{\sigma}\left(\mathcal{M}\right)\right)\subseteq f^{-1}\left(\mathcal{M}'\right)=\mathcal{A}_{\sigma}\left(f^{-1}\left(\mathcal{M}\right)\right).$$

Problem 14. Wir betrachten \mathbb{R}^n mit der Standardmetrik, also ausgestattet mit der Euklidischen Norm $\|\cdot\|$. Für re>0 und $x\in\mathbb{R}^n$ sei $B_r(x):=\{y\in\mathbb{R}^n|\|x-y\|< r\}$. Definiere außerdem $B_\mathbb{Q}:=\{B_r(q)\subseteq\mathbb{R}^n|\mathbb{Q}\ni r>0, q\in\mathbb{Q}^n\}$ und $B_\mathbb{R}:=\{B_r(x)\subseteq\mathbb{R}^n|r>0, x\in\mathbb{R}^n\}$

(a) Zeigen Sie: Für jeder offene Menge $A \subseteq \mathbb{R}^n$ gilt $A = \bigcup_{B_r(q) \in M} B_r(q)$ mit

$$M := \{B_r(q) \in B_{\mathbb{O}} | B_r(q) \subseteq A\}.$$

(b) Folgern Sie nun $\mathcal{A}_{\sigma}(B_{\mathbb{Q}}) = \mathcal{A}_{\sigma}(B_{\mathbb{R}}) = \mathcal{B}^n$

Proof. (a) Es genügt zu beweisen, dass jeder offene Ball eine Vereinigung von Q-Bälle sind. Sei $B_p(x), p \in \mathbb{R}, x \in \mathbb{R}^n$ eine offene Ball. Sei auch $(a_i), a_i \in \mathbb{Q}^n$ eine Folge, für die gilt

$$||x - a_i|| < r \forall i$$
$$\lim_{i \to \infty} a_i = x$$

Sei dann

$$M_i = B_{r-\|x-a_i\|}(a_i) \in B_{\mathbb{Q}}.$$

Es ist klar, dass jeder $M_i \subseteq B_r(x)$ ist. Wir beweisen auch, dass $\bigcup_{i=1}^{\infty} M_i = B_r(x)$.

Sei $y \in B_r(x)$. Es gilt $||y-x|| = r_0 < r$. Sei $\xi = r - r_0$. Weil $\lim_{n \to \infty} a_n = x$, gibt es ein Zahl a_k , wofür gilt

$$||a_k - x|| < \frac{\xi}{2}.$$

(Eigentlich existiert unendlich viel, aber die brauchen wir nicht). Es gilt dann

$$||y - a_k|| \le ||y - x|| + ||x - a_k|| \le r_0 + \frac{\xi}{2} < r - \frac{\xi}{2} < r - ||x - a_i||,$$

also $y \in B_{r-\|x-a_k\|}(a_k)$. Jetzt ist die Ergebnis klar: Weil jeder offene Menge eine Vereinigung von offene Bälle ist, gilt

$$A = \bigcup B_p(x) = \bigcup \bigcup B_r(q),$$

wobei $p \in \mathbb{R}, x \in \mathbb{R}^n$ und $r \in \mathbb{Q}, q \in \mathbb{Q}^n$

(b) $\mathcal{A}_{\sigma}(B_{\mathbb{R}}) = \mathcal{B}^n$ per Definition.

Aus
$$B_{\mathbb{Q}} \subseteq B_{\mathbb{R}}$$
 folgt $\mathcal{A}_{\sigma}(B_{\mathbb{Q}}) \subseteq \mathcal{A}_{\sigma}(B_{\mathbb{R}})$

Aus (a) folgt, dass

$$B_{\mathbb{R}}\subseteq\mathcal{A}_{\sigma}\left(B_{\mathbb{Q}}\right)$$
.

Dann

$$\mathcal{A}_{\sigma}\left(B_{\mathbb{R}}\right) \subseteq \mathcal{A}_{\sigma}\left(\mathcal{A}_{\sigma}\left(B_{\mathbb{Q}}\right)\right) = \mathcal{A}_{\sigma}\left(B_{\mathbb{Q}}\right).$$

Deswegen

$$\mathcal{A}_{\sigma}\left(B_{\mathbb{O}}\right) = \mathcal{A}_{\sigma}\left(B_{\mathbb{R}}\right) = \mathcal{B}^{n}.$$

Problem 15. Sei X eine Menge, \mathcal{A} eine σ -Algebra über X und $\mu: A \to [0, \infty]$ eine Mengenfunktion.

- (a) Sei μ σ -subadditiv, $B \in \mathcal{A}$ und definiere $\mu_B : \mathcal{A} \to [0, \infty], \mu_B(A) := \mu(A \cap B)$. Zeigen Sie, dass μ_B wohldefiniert und eine σ -subadditive Mengenfunktion ist.
- (b) μ erfülle die beiden Eigenschaften

- (1) $\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A, B \in \mathcal{A}$ mit $A \cap B = \emptyset$.
- (2) $\lim_{n\to\infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n)$ für alle $(A_n) \subseteq A$ mit $A_1 \subseteq A_2 \subseteq \dots$

Zeigen Sie, dass μ σ -additiv ist.

Proof. (a) Weil $B \in \mathcal{A}$, ist $B \cap A \in \mathcal{A} \forall A \in \mathcal{A}$. μ_B ist daher wohldefiniert. Sei $(A_j), A_j \in \mathcal{A}, \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$. Sei auch $B_j = A_j \cap B \in \mathcal{A}$. Dann gilt

$$\mu_B\left(\bigcup_{j=1}^{\infty} A_j\right) = \mu\left(B \cap \bigcup_{j=1}^{\infty} A_j\right) = \mu\left(\bigcup_{j=1}^{\infty} B_j\right) \le \sum_{j=1}^{\infty} \mu(B_j) = \sum_{j=1}^{\infty} \mu_B(A_j)$$

(b) Sei $(A_j), A_j \in \mathcal{A}$ paarweise disjunkter Menge. Dann definiere $B_j = \bigcup_{i=1}^j A_j$. Für k endlich ist es klar,

$$\mu(B_k) = \sum_{i=1}^k A_i.$$

Weil $B_i \subseteq B_{i+1}$, (2) gilt auch:

$$\lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \sum_{i=1}^n A_i = \sum_{i=1}^\infty A_i = \mu\left(\bigcup_{n=1}^\infty B_n\right) = \mu\left(\bigcup_{n=1}^\infty A_n\right). \quad \Box$$

Chapter 5

Theoretische Mechanik

5.1 Blatt 1

Problem 16. Betrachten Sie den harmonischen Oszillator in einer Dimension, d. h. das Anfangswertproblem

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = F(x(t)) = -kx(t)$$
$$x(t_0) = x_0 \in \mathbb{R}$$
$$\frac{\mathrm{d}x}{\mathrm{d}t} = v_0 \in \mathbb{R}$$

- 1. Zeigen Sie, daß wenn eine komplexwertige Funktion $z:I\to\mathbb{C}$ mit $t_0\in I\subseteq\mathbb{R}$ die Differentialgleichung (1a) löst, ihr Realteil $x(t)=\operatorname{Re} z(t)$ zur Lösung des reellen Anfangswertproblems (1) benutzt werden kann.
- 2. Was ist die allgemeinste Form der rechten Seite der Differentialgleichung (1a), für die der Realteil einer komplexen Lösung selbst eine Lösung ist? Geben Sie Gegenbeispiele an.
- 3. Machen Sie den üblichen Exponentialansatz für lineare Differentialgleichungen mit konstanten Koeffizienten...

Proof. 1. Sei
$$x(t) = x_r(t) + ix_i(t), x_r, x_i : I \to \mathbb{R}$$
.

Dann gilt

$$m\left(\frac{\mathrm{d}^2 x_r}{\mathrm{d}t^2} + i\frac{\mathrm{d}^2 x_i}{\mathrm{d}t^2}\right) = -k(x_r + ix_i).$$

Weil das eine Gleichung von zwei komplexe Zahlen ist, gilt auch

$$m\frac{\mathrm{d}^2 x_r}{\mathrm{d}t^2} = -kx_r.$$

2. Das passt für alle reelle lineare Kombinationen der Ableitungen von x(t).

$$\sum_{i=0}^{n} a_i \frac{\mathrm{d}^i x}{\mathrm{d} t^i} = 0, \qquad a_i \in \mathbb{R}.$$

Gegenbeispiele

(i) Irgendeine $a_i \notin \mathbb{R}$

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -ikx(t), \qquad k \in \mathbb{R}.$$

Hier ist es klar, dass keine Abbildung $x : \mathbb{R} \to \mathbb{R}$ eine Lösung sein kann, weil die linke Seite reelle wird, aber die rechte Seite nicht reelle wird.

Daraus folgt: Das Realteil der Lösung ist kein Lösung.

(ii) Nichtlineare Gleichung, z.B.

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -k\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2.$$

3.

$$x(t) = \alpha e^{\lambda t}$$
$$\ddot{x}(t) = \lambda^2 \alpha e^{\lambda t}$$

Dann

$$m\omega\lambda^2 e^{\lambda t} = -k\omega e^{\lambda t}$$

$$\lambda^2 = -\frac{k}{m}$$

$$\lambda = \pm i\sqrt{\frac{k}{m}} = \pm i\omega \qquad \omega := \sqrt{\frac{k}{m}}$$

Daraus folgt, für $z_1(t)$:

$$z_{1}(0) = \alpha_{1,+} + \alpha_{1,-} = x_{0}$$

$$z'_{1}(0) = -i\omega\alpha_{1,+} + i\omega\alpha_{1,-} = v_{0}$$

$$-\alpha_{1,+} + \alpha_{1,-} = -\frac{iv_{0}}{\omega}$$

$$2\alpha_{1,-} = x_{0} - \frac{iv_{0}}{\omega}$$

$$2\alpha_{1,+} = x_{0} + \frac{iv_{0}}{\omega}$$

$$z_{1}(t) = \frac{1}{2} \left[\left(x_{0} + \frac{iv_{0}}{\omega} \right) e^{-i\omega t} + \left(x_{0} - \frac{iv_{0}}{\omega} \right) e^{i\omega t} \right]$$

Daraus folgt die andere Formen der Lösungen:

(i)
$$x_2(t)$$

$$\frac{1}{2} \left[\left(x_0 + \frac{iv_0}{\omega} \right) e^{-i\omega t} + \left(x_0 - \frac{iv_0}{\omega} \right) e^{i\omega t} \right]$$

$$= \operatorname{Re} \left[\left(x_0 + \frac{iv_0}{\omega} \right) e^{-i\omega t} \right]$$

$$= \operatorname{Re} \left[\left(x_0 + \frac{iv_0}{\omega} \right) (\cos(\omega t) - i\sin(\omega t)) \right]$$

$$= \operatorname{Re} \left[x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t + i(\dots) \right]$$

$$= x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t$$

(ii) $x_3(t)$ (R-Formula)

$$x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t = \alpha_3 \sin(\omega t + \delta_3)$$
$$\alpha_3 = \sqrt{x_0^2 + \left(\frac{v_0}{\omega}\right)^2}$$
$$\delta_3 = \arctan \frac{v_0}{x_0 \omega}$$

(iii)
$$x_4(t)$$

$$\sin\left(x + \frac{\pi}{2}\right) = \cos x.$$

Daraus folgt:

$$\alpha_4 = \alpha_3 \qquad \delta_4 = \delta_3 + \frac{\pi}{2}.$$

Problem 17. ...

Proof. 1.

$$x(t) = \alpha e^{\lambda t}$$
$$\dot{x}(t) = \alpha \lambda e^{\lambda t}$$
$$\ddot{x}(t) = \alpha \lambda^2 e^{\lambda t}$$

Daraus folgt

$$m\lambda^{2}\alpha e^{\lambda t} = -k\alpha e^{\lambda t} - 2m\gamma\lambda\alpha e^{\lambda t}$$

$$0 = m\lambda^{2} + 2m\gamma\lambda + k$$

$$\lambda = -\gamma \pm \sqrt{\gamma^{2} - \frac{k}{m}}$$

Falls
$$\gamma^2 \neq \frac{k}{m}$$
:

$$x(t) = e^{-\gamma t} \left[A e^{\sqrt{\gamma^2 - \frac{k}{m}}t} + B e^{-\sqrt{\gamma^2 - \frac{k}{m}}t} \right],$$

$$\begin{split} x'(t) &= -\gamma e^{-\gamma t} \left[A e^{\sqrt{\gamma^2 - \frac{k}{m}} t} + B e^{-\sqrt{\gamma^2 - \frac{k}{m}} t} \right] \\ &+ e^{-\gamma t} \left[A \sqrt{\gamma^2 - \frac{k}{m}} e^{\sqrt{\gamma^2 - \frac{k}{m}} t} - B \sqrt{\gamma^2 - \frac{k}{m}} e^{-\sqrt{\gamma^2 - \frac{k}{m}} t} \right] \end{split}$$

und

$$x(0) = A + B = x_0$$

$$x'(0) = \sqrt{\gamma^2 - \frac{k}{m}} (A - B) = v_0$$

$$2A = x_0 + \frac{v_0}{\sqrt{\gamma^2 - \frac{k}{m}}}$$

$$2B = x_0 - \frac{v_0}{\sqrt{\gamma^2 - \frac{k}{m}}}$$

Es ist zu beachten, dass es möglich ist, dass $\gamma^2 < \frac{k}{m}$. In diesem Fall ist $\sqrt{\gamma^2 - \frac{k}{m}} = i\sqrt{\frac{k}{m} - \gamma^2}$, aber der Form der Lösung bleibt.

Für $\gamma^2 = \frac{k}{m}$ ist die Lösung

$$x(t) = Ae^{-\gamma t} + Bte^{-\gamma t}.$$

Es gilt

$$x'(t) = -\gamma A e^{-\gamma t} + B e^{-\gamma t} - B t \gamma e^{-\gamma t}.$$

Dann

$$x(0) = A = x_0$$

$$x'(0) = -\gamma A + B = v_0$$

$$B = v_0 + \gamma x_0$$

$$x(t) = x_0 e^{-\gamma t} + (v_0 + \gamma x_0) t e^{-\gamma t}$$

2. Wir suchen eine Partikularlösung für die Gleichung

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + 2m\gamma\frac{\mathrm{d}x}{\mathrm{d}t} + kx = F_0e^{-i\omega_0t}$$

mit dem Form

$$x(t) = Ae^{-i\omega_0 t}.$$

Es gilt

$$x'(t) = -i\omega_0 A e^{-i\omega_0 t}$$
$$x''(t) = -\omega_0^2 A e^{-i\omega_0 t}$$

Dann ist

$$-\omega_0^2 A m e^{-i\omega_0 t} - 2m\gamma i\omega_0 A e^{-i\omega_0 t} + Ak e^{-i\omega_0 t} = F_0 e^{-i\omega_0 t}$$
$$A = \frac{F_0}{-m\omega_0^2 - 2m\gamma i\omega_0 + k}.$$

3. für verschwindende Dämpfung $\gamma=0$ und äußere Kraft $F_{\rm ext}\equiv 0$ ist die Lösung

$$x(t) = x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t, \qquad \omega = \sqrt{k/m}.$$

Wir berechnen

$$\dot{x} = -x_0 \omega \sin \omega t + v_0 \cos \omega t.$$

Dann gilt

$$\frac{m}{2} \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 = \frac{m}{2} \left(-x_0 \omega \sin \omega t + v_0 \cos \omega t\right)^2$$

$$= \frac{m}{2} \left(x_0^2 \omega^2 \sin^2 \omega t - 2x_0 v_0 \omega \sin \omega t \cos \omega t + v_0^2 \cos^2 \omega t\right)$$

$$= \frac{k/2}{2\omega^2} \left(x_0^2 \sin^2 \omega t - \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t + \frac{v_0^2}{\omega^2} \cos^2 \omega t\right)$$

$$= \frac{k}{2} \left(x_0^2 (1 - \cos^2 \omega t) - \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t + \frac{v_0^2}{\omega^2} \left(1 - \sin^2 \omega t\right)\right)$$

Aus

$$\frac{k}{2}x(t)^2 = \frac{k}{2}\left(x_0^2\cos^2\omega t + \frac{2x_0v_0}{\omega}\sin\omega t\cos\omega t \frac{v_0^2}{\omega^2}\sin^2\omega t\right)$$

folgt

$$\begin{split} E(t) = & \frac{k}{2} \left(x_0^2 (1 - \cos^2 \omega t) - \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t + \frac{v_0^2}{\omega^2} \left(1 - \sin^2 \omega t \right) \right) \\ & + \frac{k}{2} \left(x_0^2 \cos^2 \omega t + \frac{2x_0 v_0}{\omega} \sin \omega t \cos \omega t \frac{v_0^2}{\omega^2} \sin^2 \omega t \right) \\ = & \frac{k}{2} x_0^2 + \frac{k v_0^2}{2\omega^2}, \end{split}$$

was nicht abhängig von t ist.

Wir untersuchen jetzt die Energie für eine harmonische äußere Kraft. Wenn die Dämpfung $\neq 0$ ist, ist

$$\lim_{t \to \infty} (x_h(t) + x_p(t)) = \lim_{t \to \infty} x_p(t).$$

Daher muss man nur die Energie der Partikularlösung berechnen:

$$x(t) = \frac{F_0}{-m\omega_0^2 - 2m\gamma i\omega_0 + k} e^{-i\omega_0 t}$$
$$\dot{x}(t) = -\frac{iF_0\omega_0}{-m\omega_0^2 - 2m\gamma i\omega_0 + k} e^{-i\omega_0 t}$$

Wenn
$$\gamma = 0$$
, kann $x(t) \to \infty$, wenn

$$-m\omega_0^2 + k = 0$$
 (Resonanz).

Das bedeutet $E(t) \to \infty$ auch.