Name:

Enrolment No: P110217 145

Course: MATH 1002 - Mathematics I

Programme: B.Tech. (All SoCSE Branches)

Semester: I (ODD-2017-18)

Time: 02 hrs.

Max. Marks: 100

Instructions:

	pt all questions from Section A (each carrying 4 marks); attempt all questions from Section Section A (each carrying 4 marks);	ction B (e	each
carryii	ng 10 marks); attempt all questions from Section C (each carrying 20 marks).		
	Section A		
	(Attempt all questions)		
У	If $V = \frac{x^3 y^3}{x^3 + y^3}$, prove that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} = 3V$.	[4]	CO1
2.	Evaluate $\iint_R y dx dy$, where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.	[4]	CO1
2.	Find the n^{th} derivative of $\frac{1}{1-5x+6x^2}$.	[4]	CO1
J.	If p be "He is rich" and q be "He is Generous". Write in simple sentences the meaning of the following: $(i) \sim p \qquad (ii) \sim (p \vee q) \qquad (iii) p \rightarrow q \qquad (iv) \sim p \wedge \sim q$	[4]	CO2
15.	Use truth table to show that $p \to q \equiv p \lor q$	[4]	CO2
	SECTION B		
	(Q6-Q8 are compulsory and Q9 has internal choice)		
4 6.	If $\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{m}\right)^m$, then prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+m^2)y_n = 0$	[10]	COI
7.	Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes $y + z = 4$ and $z = 0$	[10]	CO1
8	If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$, $u + v + w = x^2 + y^2 + z^2$, then show that $\frac{\partial (u, v, w)}{\partial (x, y, z)} = \frac{(x - y)(y - z)(z - x)}{(u - v)(v - w)(w - u)}$.	[10]	COI

<i>J</i> 9.	Using the truth table, obtain the principal disjunctive normal form of the following: (i) $p \land (p \rightarrow q)$ (ii) $q \lor (p \lor \sim q)$ OR	[10]	CO2
	Show that the following statement is a tautology using truth table $((p \lor q) \land (p \to r) \land (q \to r)) \to r$ SECTION C (Q10 is compulsory and Q11A, Q11B have internal choice)		
10.A	A rectangular box, open at the top, is to have a volume of 32 cc. Find the dimensions of the box requiring the least material for its construction.	[10]	CO1
10 B	Use truth table to prove the distributive law $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	[10]	CO2
1 J.A	Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy \ dy \ dx$ and hence evaluate the same. OR Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} \frac{dz \ dy \ dx}{\sqrt{1-x^2-y^2-z^2}}$	[10]	CO1
11.B	Transform to Cartesian coordinates and hence evaluate $\int_0^\pi \int_0^a r^3 \sin \theta \cos \theta dr d\theta$ OR Evaluate $\iint_R [x+y] dx dy$ over the rectangle $R = [0, 1; 0, 2]$ where $[x+y]$ denotes greatest integer less than or equal to $(x+y)$.	[10]	CO1

Scanned by CamScanner

Roll No: -110217145

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

Mid-Term Examination - October, 2017

Program/Course: B.Tech (CIT: CCVT, GG, MFT, MC, OSS, SCF, IOT, OG, CYBER LAW, BIG

DATA, DevOps)

Semester : I

Subject: Basic Electronics Engineering

Max. Marks : 100

Code: PHYS1003

Duration : 2 Hrs

No. of page/s: 02

Instructions:

1. Draw suitable circuit diagrams wherever required to justify your answer.

2. Your answer should be concise and to the point.

	Section A (All questions are compulsory)		
V.	Write a brief note on charge neutrality equation in semiconductors.	[4]	CO1
·2.	Briefly explain the effect of biasing on the width of depletion layer of PN junction diode.	[4]	COI
3.	A silicon p-n junction diode having internal forward resistance $R_f = 20\Omega$ is used for half-wave rectification. If the applied input voltage is $V = sin\omega t$ and load resistance $R_L = 2000\Omega$, find the d.c. output current (I_{dc}) and the effective output current (I_{rms}).		CO2
4.7	Draw the energy band diagram of intrinsic and extrinsic semiconductor with fermi level.	[4]	CO1
<i>\$</i> .	Calculate the base current if direct current gain (a) in common base circuit of transistor is 0.96 and emitter current is 2 mA.		CO3
	Section B (All questions are compulsory. Question no. 9 has internal choice)		
,6. _{UP}	l advantages over center tanned full wave rectifiers		CO2
2.4	a) The diode current is 0.5 mA at 340 mV and 15 mA at 440 mV. Determine the value of η (ideality factor) assuming kT/q = 25 mV. b) Find the intrinsic carrier concentration of Germanium if its intrinsic resistivity at 300K is 0.47 Ω .m. It is given that the electronic charge is 1.6 x 10 ⁻¹⁹ Coulomb and the electron and hole mobilities at 300K are 0.39 and 0.19 m ² /volt.sec respectively.	[5+5]	CO1
Ø. _▽	Discuss the action of a n-p-n transistor as in common-emitter configuration with the help of a circuit diagram. Also draw the input and output characteristics and derive a relation between the two current gains.		CO3
9.	Solve the given clamper network to draw its output waveform. v_i v	[10]	CO2

Roll No: 110217 175

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES Mid Semester Examination, March, 2017

Program Name: B. Tech- CS

OCTOBER, 2011

Course Name : CCVT, OGI, Big Data, OSS

Course Code: PHYS 1002

No. of page/s: 2

Max. Marks: 100 : 2 Hrs Duration

All qu	ctions: estions are compulsory. ion numbers to be written very clearly.		
	SECTION A (All parts are compulsory)		
1.	Discuss essential features for lasing action	[4]	CO1
2.	Differentiate between ordinary photography and holography.	[4]	CO1
3	The numerical aperture of a fiber is 0.25 and relative refractive index is 0.02. Determine the refractive indices of the core and cladding of a fiber.	[4]	COI
4. ⊁	Find the divergence of vector $\vec{A} = \rho^3 \sin \varphi \hat{a}_\rho + \rho^2 z \hat{a}_\varphi + \rho z^2 \cos \varphi \hat{a}_z$ in cylindrical coordinates.	[4]	CO2
5.	Write four Maxwell's equations in differential and integral form for static fields.	[4]	CO3
No. o comment and the department	SECTION B (Question 9 has internal choice)		
6 (a)	In holography, explain the process of reconstruction of image.	[5]	COI
6 (b);	Given the potential $V = \frac{10}{r^2} \sin \theta \cos \varphi$, find the electric flux density \vec{D} at $(2, \pi/2, 0)$.	[5]	CO2
7. ⊬	In a certain region, $\vec{J} = 3r^2 \cos \theta \ \hat{a}_r - r^2 \sin \theta \hat{a}_\theta$ A/m, find the current crossing the surface defined by $\theta = 30^\circ$, $0 < \phi < 2\pi$, $0 < r < 2$ m.	[10]	CO2
8 (a)	Explain Biot Savart's law showing magnetic field intensity generated by an electric current and show the direction of field with a suitable diagram.	[5]	CO3
3(b) & ∕	Given the magnetic flux density $\vec{B} = \frac{\rho}{2} \hat{a}_{\phi}$ Wb/m, calculate the total magnetic flux crossing the surface $\varphi = \frac{\pi}{2}$, $1 < \rho < 3$ meters and $0 < z < 3$ meters.	[5]	CO3
) (a)	Discuss five differences between Ruby laser and Helium Neon Laser. OR Explain the working of He-Ne laser with suitable energy level diagram.	[5]	CO1
(b) ~ \mathcal{V}	Differentiate between different types of optical fibers. OR Discuss the propagation mechanism in graded index multimode fiber.	[5]	COI
	SECTION C (Question 11 has internal choice)		

10 (a)	Explain the terms absorption, spontar	neous emission and stimulated emission of	[6+4]	CO1
/	radiation. Obtain a relation between transition probabilities of spontaneous and			
7	stimulated Emission.			
,	Calculate the ratio of stimulated to spontaneous emission at a temperature of 300° C			
	for Sodium D line.			
10 (b)	A multimode step index fiber has a core diameter of 80 µm and relative refractive index			CO1
_	difference of 1.5% is operating at a wave length of 0.85 µm. If the core refractive index			
	is 1.48, calculate:-			
(i) The normalized frequency of the fiber.				
	(ii) The maximum number of guided modes.			44 4
11 (a)	Point charges Q_1 and Q_2 are, respectively, located at $(4, 0, -3)$ and $(2, 0, 1)$. If $Q_2 = 4nC$,			CO2
	find Q_I such that			
	(i) The E at (5, 0, 6) has no z-component			
	(ii) The force on a test charge at			
	Show that the expression for bound surface and volume charge densities for a polarized			
	dielectric are			
	$\rho_{\rm op} = \overrightarrow{P} \cdot \overrightarrow{a}_{\rm op}$	$\rho_{\rho\nu} = -\nabla.\overrightarrow{P}$		
	$\rho = 100 \eta$	$\rho = \rho v - V \cdot I$		
11(b)	State and explain Ampere's circuital la	w. Find the magnetic field intensity due to an	[10]	CO3
1	infinite line current using Ampere's circ	mital law	լւսյ	003
	OR Deduce the expression for displacement current density J _d .			
	Calculate displacement current density	in free space where		
	$\vec{E} = 20 \cos(\omega t - 50x) \hat{a}_v \text{ V/m}.$			
	- 20 000(wt 30x) u _y v/III.			
Values of constants:			ļ	
	Constant	Standard Values		
	Planck's Constant (h)	6.63 x 10 ⁻³⁴ Joule-sec		
	Permittivity of free space (ε_0)	8.854 x 10 ⁻¹² Farad/meter		
	Velocity of Light c	3 x 10 ⁸ m/sec		
	Boltzmann constant (k _B)	1.38×10^{-23} , K ⁻¹		-