

Linguagens Formais e Autômatos (LFA)

Aula de 28/08/2013

Reconhecedores × Gramáticas Aceitação (decisão) × Derivação (geração)

Programas em Ruby da Aula Passada

Reconhecedores

- Recebem cadeias de entrada
- Decidem se elas pertencem ou não a uma linguagem

Como?

- Transicionando entre um conjunto finito de estados, de acordo com regras de transição especificadas.
- Condição de aceitação: Fita totalmente lida (esgotada) e reconhecedor em um dos estados finais especificados.

Gramáticas

Geram cadeias terminais de símbolos.

Como?

- Substituindo (ou reescrevendo) cadeias de símbolos, de acordo com regras de derivação (ou reescrita) especificadas.
 O processo de substituições consecutivas, guiadas pelas regras de uma gramática, se chama derivação (ou geração).
- Condição de "gramaticalidade" de uma cadeia: haver pelo menos um caminho de derivação que leve do símbolo raiz da gramática ("S") até tal cadeia.

Exemplos de Derivação

Regras de Produção de uma Gramática já vista

GSC

S -> aSBC

 $S \rightarrow abC$

CB -> BC

bB -> bb

bC -> bc

cC -> cc

 $S \rightarrow abC \rightarrow abc$

Podemos designar o processo inteiro de derivação através de uma forma abreviada:

 $\alpha \overset{\textit{G}}{\Rightarrow} \textbf{w} \;\; \textbf{para}$

 α = símbolo inicial de G

w = cadeia de terminais resultante de uma derivação válida

($w \in \Sigma^*$ ou então $w \in \Sigma^+$)

Exercício

Seja o autômato A =

Utilizando o seguinte formalismo simplificado:

A: Q = <conjunto completo de estados>

I = <conjunto unitário de estados iniciais>

F = <conjunto completo de estados finais>

 Σ = <alfabeto reconhecido>

 δ = tuplas de transição (qi, α , qj) onde qi = estado corrente

 α = símbolo lido pelo cabeçote

qj = estado-alvo da transição

defina formalmente o autômato A.

Exercício

q0 b q1 b

Seja o autômato A =

- 2. Que tipos de cadeias este autômato aceita?
- 3. Utilizando tuplas (qi,α,qj) para representar (estado corrente, símbolo lido, próximo estado), apresente a sequência completa de reconhecimento para as seguintes cadeias:
 - ab
 - aaaaab
 - abbbbb
 - b
 - a
 - bb

Exercício

Seja o autômato A =

- 4. Utilizando os programas em Ruby apresentados na aula passada, "implemente" o reconhecedor associado a A.
- 5. Escreva uma gramática regular que gere exatamente as mesmas cadeias aceitas pelo reconhecedor que você implementou.

Lembrete - Uma gramática regular é definida por uma tupla $\{V, \Sigma, P, S\}$ onde: V=vocabulário finito e não vazio com TODOS os símbolos que aparecem à esquerda ou direita de regras de reescrita; Σ é o alfabeto da linguagem (isto é, os símbolos terminais que podem aparecer em cadeias "gramaticais" da linguagem); P é o conjunto de regras de reescrita; e S é o símbolo raiz de todas as derivações.

Exercícios

Sejam as gramáticas G1, G2, G3, G4 e G5, cujas regras de reescrita são as seguintes:

<i>G</i> 1	<i>G</i> 2	<i>G</i> 3	<i>G</i> 4	<i>G</i> 5
S -> a S -> aS	S -> AS bS -> Sb A -> a A -> b A -> aA	S -> AS S -> b A -> a A -> aA	S -> ASB S -> c A -> a A -> aA B -> b B -> bB	5 -> XC X -> x X -> xX xxxX -> xxXx xxC -> ε xxC -> C

- 1. Diga que tipo de gramática é cada uma delas, segundo a Hierarquia de Chomsky.
- Mostre o caminho de derivação de pelos menos duas cadeias diferentes para cada uma delas, usando a notação do slide 5.