Variation of fundamental constants:

Search for new physics around a supermassive black hole

Benjamin M. Roberts

University of Queensland, Australia

Current theory of the Universe

Standard Model: Quantum theory of particles + interactions

- Predicted new particles (W/Z bosons, quarks)
- Correctly predicts electron magnetic moment to 15 digits!

General Relativity: Einstein's theory of gravitation, space-time

- From precession of Mercury to gravitational waves at LIGO
- Tested from tiny (10^{-5} m) to extra-galactic length scales

However, all is not well...

Extraordinarily successful, however, several deep problems:

Matter-Anti-matter asymmetry

- The Big Bang should have created equal amounts of matter and antimatter.
- So why is there far more matter than antimatter in the universe?

General Relativity + Quantum Mechanics: incompatible

- Standard Model and general relativity are not compatible
- No working quantum theory of gravitation

Dark matter and dark energy

ullet Make up most ($\sim 95\%$) of the Universe – unexplained

Dark Matter: what we know

- $\sim 80\%$ of matter in the universe
- Rotation curves + velocity dispersion
- Bullet cluster
- Gravitational lensing
- Structure formation

Dark matter: what we don't know

...everything else

• Possible mass range: spans 90(!!) orders-of-magnitude

• Very strong evidence for some kind of new particles/fields – but we have no idea where to look

Search for physics beyond the Standard Model

Search for specific theories

- Other theories make slightly different predictions from SM+GR
- Dedicated experiment to test specific theories
- Targeted and precise: but narrow in scope
- Example: Large Hadron collider, CERN
- So far: no luck

CERN

Search for strange/exotic signals: expect to find zero

- Look for physics not included in SM+GR
- Non-zero measurement is sign of new physics
- Example: Equivalence principal (laws of nature are the same everywhere)

Variation of Fundamental Constants

variation of Fundamental Constants

Are the laws of nature the same everywhere in the Universe?

Fundamental Constants

Not predicted by theory: have to be measured

- Electron masses: $m_e \approx 9.109... \times 10^{-31} \, \mathrm{kg}$
- Electron charge: $-e \approx -1.602... \times 10^{-19}$ C
- Speed of light: c = 299792458 m/s

Some questions

- Why do they take their specific values?
- Fine tuning problem: if even slightly different: no atoms, no life (no one to ask this question)
- Have they always had the same value? Are they the same everywhere?

Fundamental Constants: not so constant?

• Issue: ambiguity from units

Unit-less ratios

- Mass ratio: $m_p/m_e \approx 1836.15267343$
- Fine structure constant
 - Determines strength of electromagnetic interactions

$$\alpha = \frac{e^2}{4\pi\epsilon_0 \, \hbar c} \approx \frac{1}{137}$$

Atomic Transitions

- Atomic electrons occupy specific orbitals
- Electrons can jump between orbitals: absorb/emit photons of light
- Transition only occurs at specific frequency matches energy gap: $f = \Delta E/h$
- Energy, and thus frequency, depend on fundamental constants

JabberWok/Wikipedia

Fundamental Constants – how to observe

- Observe spectra from distant stars
- Compare to measurements on Earth
- Wavelengths (frequencies) differ: variation in α ?

Problem: What about red-shift?

- Universe expansion (+ motion of stars)
- Wavelengths will be different (Doppler effect)

Sensitivity Coefficients

Brad Williams/soundfly.com

ullet Each transition depends on lpha differently

$$\frac{\delta f}{f} = K \frac{\Delta \alpha}{\alpha}$$

- K (sensitivity coeficient) must be calculated
- Need to observe multiple spectra
- K larger for heavy atoms

Wikipedia/Georg Wiora

Fundamental Physics with the Super-massive black hole

Observing super-massive black hole

- with UCLA Galactic Centre Group
 - Observations led by Tuan Do
 - Andrea Ghez: Awarded 2020 Nobel prize for discovery of black hole
- Keck telescope in Hawaii
- Motion of \sim 1000 stars tracked
- Precise spectroscopy for many stars

- High gravitational potential
- Possibly large concentration of dark matter
- Could this affect fundamental constants?

ethantweedie.com/

Search for variation in α close to Black Hole at Galactic Centre

Spectroscopy in high gravity

- Thousands of transitions observed: require clear extraction
- Identified 15 suitable transitions in 6 stars
- Compute K sensitivity coefficients
- Fit for red-shift and variation in α simultaneously

• Hees, Do, Roberts, Ghez et al. Phys. Rev. Lett. 124, 081101 (2020).

Results and future improvements

Didn't find significant deviation from zero:

$$rac{\Deltalpha}{lpha_0}=(1.0\pm5.8) imes10^{-6}$$

• Can constrain specific models (no deviation from GR found):

$$\frac{\Delta \alpha}{\alpha_0} = \beta \frac{\Delta U}{c^2} \quad \Longrightarrow \quad \beta = 3.6 \pm 12$$

- Current: incidental data
- Dedicated measurements: more transitions, better statistics
- Stars closer to the Black Hole (higher gravity)
- More favourable atoms (higher sensitivity)
- Improvements in spectroscopic instruments
- ullet \Longrightarrow up to 4 orders-of-magnitude improvement in future

$$\frac{\Delta \lambda}{\lambda} = \frac{\lambda(z,\alpha) - \lambda(z=0,\alpha_0)}{\lambda(z=0,\alpha_0)} = Z - \underbrace{\kappa}_{\text{sensitivity}} = \underbrace{\lambda(z,\alpha) - \lambda(z=0,\alpha_0)}_{\text{consitivity}} = \underbrace{\kappa}_{\text{sensitivity}} = \underbrace{\kappa}_$$