# 1	# 2
DTM Deterministische Turing-Maschine	NTM Nichtdeterministische Turing-Maschine
" 2	
# 3 Entscheidungsproblem	# 4 (Un-)Entscheidbarkeit
# 5	# 6
Semi-Entscheidbarkeit	Co-Semi-Entscheidbarkeit
# 7	# 8
Aufzählbarkeit	Abzählbarkeit

 q_0 ...Startzustand $q_0 \in Q$ F...akzeptierende Endzustände $F \subseteq Q$

 $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ Q...Zustandsmenge $\Sigma...$ Eingabealphabet Γ ...Bandalphabet mit $\Gamma \subset \Sigma \cup \{\bot\}$ δ ...Übergangsfkt. $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$ q_0 ...Startzustand $q_0 \in Q$ F...akzeptierende Endzustände $F \subseteq Q$

Antwort

Ob allen Elementen einer Menge eine Eigenschaft eindeutig nachgewiesen (bzw das Gegenteil nachgewiesen) werden kann.

3

1

Antwort

Antwort

Frage nach Entscheidbarkeit

6

Antwort

Ob den Elementen einer Menge, die die Eigenschaft nicht haben, das Gegenteil der Eigenschaft eindeutig nachgewiesen werden kann.

5

Antwort

Ob den Elementen einer Menge, die die Eigenschaft haben, die Eigenschaft eindeutig nachgewiesen werden kann.

Antwort

Menge, die die gleiche Mächtigkeit wie N hat (eindimensional unendlich bzw abzählbar unendlich)

Antwort

Eigenschaft einer Menge, dass es eine "Generatorfunktion"gibt, die alle Elemente aufzählt

# 9	# 10	
Überabzählbarkeit	Halteproblem	
# 11	# 12	
Cantor-Funktion	Cantor-Diagonalisierung	
# 13	# 14	
Cantors erstes Diagonalargument	Cantors zweites Diagonalargument	
# 15 Cantorsche Paarungsfunktion	# 16 Ackermannfunktion	

11		11	
stimmten Einga	ne Maschine (zB eine TM) auf einer beabe hält (oder in eine Endlosschleife geht). bar (semi-, nicht co-semi-), NP-hart	Eigenschaft Bijektion auf	t einer Menge, nicht abzählbar zu sein (keine \mathbb{N})
 # 12		 # 11	- $ -$
Bezeichung d ren	er von Cantor entwickelten Diagonalverfah-	Die Verteil	ungsfunktion der Cantorverteilung
# 14 sei r_i : r_1 =0, b r_1 =0, $b_{21}b_{22}b_{23}$ r_1 =0, $b_{31}b_{32}b_{33}$ \bar{r} =0, $\bar{r}_{11}\bar{r}_{22}\bar{r}_{33}$ \bar{r} ist dann nicht	 		Antwort gkeit zweier Mengen A und B ist genau gleich, jektion zwischen A und B gibt
$\varphi(a,0,n+1) = \alpha($	$=\varphi(a,\varphi(a,b,n+1),n)$ oder ähnlich mit extrem	# 15 Basiert auf N)	$\frac{Antwort}{\text{f dem Diagonal argument von Cantor } (\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N})}$

9

Antwort

10

Antwort

# 17	# 18	
Topologie	Gödelsche Unvollständigkeitssätze	
# 19	# 20	
LOOP-Programm: Definition	LOOP-Programm: ADD-Funktion	
# 21	# 22	
LOOP-Programm: SUB-Funktion	LOOP-Programm: MUL-Funktion	
# 23	# 24	
LOOP-Programm: POT-Funktion	LOOP-Programm: DIV-Funktion	

POT $x_1 \ x_2$: $x_0 := x_1 + 0$;

LOOP x_2 DO MUL x_0 x_1 END

tbd

# 25	# 26	
LOOP-Programm: MAX-Funktion	LOOP-Programm: MIN-Funktion	
# 27	# 28	
LOOP-Programm: MOD-Funktion	LOOP-Programm: GGT-Funktion	
# 29	# 30	
LOOP-Programm: Fallunterscheidung	WHILE-Programm	
# 31	# 32	
Kolmogorov-Komplexität	Many-One-Reduktion	

MIN x_1 x_2 :

MAX x_1 x_2 ;

ADD x_0 x_2 ;

SUB x_0 x_1

 $x_0 = x_1 + 0;$

Antwort

25 Antwort

```
\begin{array}{ll} \text{MAX} \ x_1 \ x_2 \colon \\ x_0 \ := \ x_1 \ + \ 0 \, ; \\ \text{SUB} \ x_0 \ x_2 \, ; \\ \text{ADD} \ x_0 \ x_2 \end{array}
```

```
# 28
```

Antwort

GGT x_1 x_2 : $x_4 = x_1 + 0$; LOOP x_4 DO: LOOP x_2 DO: $x_5 = x_2 + 0$; MOD x_5 x_1 ; $x_1 = x_2 + 0$

END; $x_2 = x_5 + 0$

END; $x_0 = x_1$

30

Antwort

 $P ::= x_i := x_j + c$ $P ::= x_i := x_j - c$ P ::= P; P

 $P ::= LOOP x_i DO P END$

 $P \ ::= \ WHILE \ x_{-}i \ \setminus neq \ 0 \ DO \ P \ END$

27

Antwort

MOD x_1 x_2 : LOOP x_2 DO: LOOP x_1 DO $x_0 = x_1 + 0$ END; SUB x_1 x_2 END

29

Antwort

32

Antwort

Problem A ist auf B many-one-reduzierbar $(A \leq_m B)$, falls es eine berechenbare Funktion $f: A \rightarrow B$ gibt.

31

Antwort

Maß für die Strukturiertheit einer Zeichenkette, gegeben durch die Länge des kürzesten Programms, das diese Zeichenkette erzeugt.

# 33	# 34	
Schubfachprinzip	Satz von Rice	
# 35	# 36	
PKP oder PCP Postsches Korrespondenzproblem	Äquivalenzproblem	
# 37	# 38	
P, NP, coNP, PSPACE	(P,NP,PSPACE)-hart	
# 39	# 40	
(P,NP,PSPACE)-vollständig	Wortproblem Deterministischer Endlicher Automaten	

schaft der erzei	glich, eine beliebige, nicht-triviale Eigenugten Funktion einer Turing-Maschine alentscheiden. Trivial wäre ïmmer akzeptieverwerfen".	und $n>m$ gilt,	n Objekte auf m Mengen $(n,m>0)$ verteilt, gibt es mindestens eine Menge, die mehr als hält. Auch: Taubenschlagprinzip, Dirichlet-
# 36	Antwort	# 35	Antwort
	tbd	1	ein unentscheidbares Problem.
<u># 38</u>	Antwort	# 37	Antwort
	tbd		tbd
# 40	Antwort	# 39	Antwort
	tbd		tbd

Antwort

34

Antwort

# 41	# 42	
SAT Erfüllbarkeitsproblem	Kleene-Stern	
# 43	# 44	
Liste von P-vollständigen Problemen	Liste von NP-vollständigen Problemen	
# 45	# 46	
Formalisieren (Ablauf)	3SAT	
# 47 QBF	LBA Linear Bounded Automaton	

# 42	Antwort	# 41	Antwort
	tbd	Entscheidun erfüllbar ist	ngsproblem, ob eine aussagenlogische Formel
		1 1 1 1 1	
		1 1 1 1 1	
# 44	Antwort	# 43	Antwort
	tbd	1 1 1 1	tbd
		1 1 1	
		1 1 1 1	
		1 1 1	
# 46	-		Antwort
	tbd	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tbd
		1 1 1	
		1 1 1 1	
		1 1 1	
11 40	A 4	 	A
# 48	Antwort	# 47	Antwort
	tbd	1 1 1	tbd
		1 1 1	
		1 1 1	
		1 1 1	

# 49	# 50
Pränexform	${ m Skolemform}$
# 51	# 52
Klauselform	=
# 53	# 54
Resolutionsverfahren	Unifikator
# 55 Allgemeinster Unifikator	# 56 Herbrand-Universum

# 50	Antwort	# 49	Antwort	
	tbd		tbd	
	υσα	1 1 1	oou	
		1 1 1		
# 52	Antwort	# 51	Antwort	
	tbd	1 1 1	tbd	
		1		
		1		
		, 1 1		
	Atout		A t	
# 54	Antwort	# 53	Antwort	
	tbd	1 1 1	tbd	
		1		
		1		
		· 		
		1 1		
		1 1 1		
# 56	Antwort	# 55	Antwort	
		1		
	tbd	1 1 1	tbd	
		1 1 1		
		1 1 1		
		1		
		1 1 1		
		1		

# 57	# 58
Herbrand-Modell	Herbrand-Expansion

58 Antwort # 57 Antwort

tbd tbd