Bayesian Data Analysis CHAPTER 17:

Metric Predicted Variable with One Metric Predictor

Contents

Overview of Chapter 17	1
17.1 Simple Linear Regression	2-3
17.2 Robust Linear Regression	4-9
17.3 Hierarchical Regression on Individuals Within Groups	10-12
17.4 Quadratic Trend and Weighted Data	13-16
17.5 Procedure and Perils for Expanding a Model	17-19

M2 Yuki Kajihara

Overview of Chapter 17

Purpose

✓ Predict one metric variable from one metric predictor

weight height ex.) ■ Outline Specific Model Hierarchical Nonhierarchical Linear Nonlinear Nonlinear Regression

17.1 Simple Linear Regression

Assumption

- √ Homogeneity of variance At every value of x, the variance of y is the same
- Note
- Simple Linear Regression describes tendencies, not causality

■ Figure

Both assumes Homogeneity of variance

But hard to see it on the right figure because there is an area which x is sparse

17. 2 Robust Linear Regression

Goal

✓ Determine what combinations of θa , $\theta 1$, σ , ν are credible, given the data The answer (from Bayes' rule):

$$p(\beta_0,\beta_1,\sigma,\nu|D) = \frac{p(D|\beta_0,\beta_1,\sigma,\nu) p(\beta_0,\beta_1,\sigma,\nu)}{\iiint d\beta_0 d\beta_1 d\sigma d\nu p(D|\beta_0,\beta_1,\sigma,\nu) p(\beta_0,\beta_1,\sigma,\nu)}$$

→ Complicated... Use JAGS or Stan!

■ What we have to do

- ✓ Specify sensible priors
- ✓ Make sure that the MCMC process generates a trustworthy sample that is converged and well mixed
 - → Talk about it later

17.1 Simple Linear Regression

■ Step

- ✓ Generate any random x
- ✓ Compute the mean predicted value of y by $\mu = 60 + 61x$
- Generate random variable for datum y from a normal distribution (μ : mean, σ : standard deviation)

■ Figure

Generate x from

a uniform distribution a bimodal distribution

Both shows data from the same model

17. 2 Robust Linear Regression

- Object
- ✓ Data which have outliers
- Assumption
- The datum yr is a t-distributed random value around the central tendency $\mu i = 60 + 61xi$
- Diagram

17. 2 Robust Linear Regression

■ Figure

■ Problem with using raw data

✓ Parameter-correlation problem The credible slopes and intercepts trade off When the slope is small, the intercept is big When the slope is big, the intercept is small

→ MCMC sampling is difficult Two parameter values change slowly

■ Ways to make the sampling more efficient

- Change the sampling algorithm → Stan : HMC
- Transform the data → JAGS : Standardization

$=\frac{(\gamma - M_{\gamma})}{SD_{\gamma}}$

Standardize data

Mean centering

✓ Slide the axis

Re-scaling the data relative to their mean(M) $z_{x} = \frac{(x - M_{x})}{SD_{x}}$ and standard deviation(*SD*):

→ Solve parameter-correlation problem(???)

Linear Regression using standardized data

so that zero falls under the mean

changes on the intercept

→ The Slope changes without any big

ζο: the slope with the data

ζ1: the intercept with the data

17. 2 Robust Linear Regression

Interpreting the posterior distribution

- Compare N=30 regression and N=300 one
- The slope, intercept and scale are about the same
- The certainty of the estimate for N=300 is tighter than for N=30
- ✓ The normality parameter for N=300 is bigger than for N=30

■ Object

✓ Data that each individual contributes multiple observations ex.) Reading-ability scores of children across several years Family income for different size of the family, for different regions

17. 3 Hierarchical Regression on Individuals Within Groups

Assumption

- ✓ Each individual is representative of the group
 - → Every individual informs the estimate of the group slope and intercept Get sharing of information across individuals

■ Goal

- ✓ describe each individual with a linear regression
- ✓ Estimate the typical slope and intercept of the group overall

17. 3 Hierarchical Regression on Individuals Within Groups

■ The model and implementation in JAGS

 μ_{θ} : typical slope of the individuals σ₀: variability of those individual

17. 3 Hierarchical Regression on Individuals Within Groups

■ The posterior distribution : Shrinkage and prediction

- ✓ Overall : Clearly positive by integrating each individual slope
- ✓ Individual : Notable shrinkage of the estimates of the individuals
- ✓ The estimates are tightly constrained by each data

17. 4 Quadratic Trend and Weighted Data

Object

✓ Diagram

slopes

 \checkmark Data that y appears to have a **nonlinear** trend as x increases

Family size and family income for each state in the U.S

■ Model

 $\mu i = b_0 + b_1 x + b_2 x^2$

✓ If b2 = 0 → linear model

✓ If |b2| is big

→ nonlinear model is reasonable

17. 4 Quadratic Trend and Weighted Data

Nonlinear Regression using standardized data

Weighting data

The data report the median income based on different numbers of families at each size → every median has a different amount of sampling noise

✓ Consider "margin of error" If margin of error is high, noise parameter should be increased If margin of error is small, noise parameter should be decreased

■ Results and interpretation

- ✓ The quadratic coefficient is -2200 ~ -1700
 - → Nonlinear model is reasonable
- ✓ Hawaii (the amount of data is not big)
 - → The trend is **upward**, but the curve is **downward curvature**
 - → Shrinkage from the group
- ✓ California
 - → a narrow spread at family size 2 a large spread at family size 7
 - → the most of the data for large family sizes have

large standard errors

17. 5 Procedure and Perils for Expanding a Model

1

19

Posterior predictive check

- ✓ Visualize the data and the posterior predictions
 - → If the prediction doesn't seem to fit the data, change the model
- → New model should be both meaningful and computationally tractable
- ✓ Create a posterior predictive sampling distribution
 - → measure of discrepancy between the predictions and the data

■ Ways to extend a model

✓ Add a parameter

ex.) $\mu i = 60 + 61x$ \rightarrow $\mu i = 60 + 61x + 62x^2$

You can check the validity of the model by considering 62

✓ Try a completely different model

■ Perils of adding parameters

- → Compare models by Bayesian model comparison
- ✓ "double dipping": data are used to change the prior distribution

17. 5 Procedure and Perils for Expanding a Model

- ✓ Increase in uncertainty of a parameter estimate
 - → The curvature and slope trade-off strongly
 - → Even if curvature is 0, the certainty of slope decreases
- ✓ The one of the ways to solve the problem is standardizing the data

Quadratic trend

Linear trend

■ Further extensions

	An example of family income and family size	Extensions
Trend	linear quadratic	higher-order polynomial Sinusoidal exponential
Noise distribution	a single lying noise for all individuals	vary among individuals
Distribution for parameters	normal distribution	t distribution
Considering Covariation	No	Use a multivariate normal prior on the intercept and slope

17. 4 Quadratic Trend and Weighted Data

17. 5 Procedure and Perils for Expanding a Model

18

Steps to extend a JAGS or Stan model

- ✓ Carefully specify the model with its new parameters
 - → Draw a diagram
- ✓ Be sure all the new parameters have sensible priors
- ✓ Define initial values for all the new parameters
 - → You can let JAGS initialize parameters automatically
- ✓ Tell JAGS to track the new parameters
 - → Stan automatically tracks
- Modify the summary and graphics output to properly display the extended model
 - → You should write R code because graphics are displayed by R