Automatic Machine Learning?

Andreas Müller

Columbia University, scikit-learn

Why?

Issues with current tools (scikit-learn)

Selecting Hyper-Parameters

Scikit-learn: Explicit is better than implicit

```
make_pipeline(
    OneHotEncoder(),
    Imputer(),
    StandardScaler(),
    SVC())
```

What?

from automl import AutoClassifier clf = AutoClassifier().fit(X_train, y_train)

```
> Current Accuracy: 70% (AUC .65) LinearSVC(C=1), 10sec
> Current Accuracy: 76% (AUC .71) RandomForest(n_estimators=20) 30sec
> Current Accuracy: 80% (AUC .74) RandomForest(n_estimators=500) 30sec
```

Step 1: Automate Parameter Selection

Step 2: Automate Model Selection

Step 3: Automate Pipeline Selection

How?

Formalizing the Search Space

Discrete and Continuous Parameters Conditional Parameters Fixed pipeline vs flexible pipeline

Formalizing the Search Space

Discrete and Continuous Parameters Conditional Parameters Fixed pipeline vs flexible pipeline

Search Methods

Exhaustive Search (Grid Search)

Randomized Search

Randomized Search

Bayesian Optimization (SMBO)

Bayesian Optimization (SMBO)

Common Models

	Discrete Parameters	Scalable	Conditional Parameters	Papers & implementations	Specify parameters
Gaussian Process	?	X	?	many	bounds
Random Forest (SMAC)				few	prior
Non- parametric (TPE)		?		few	prior

Common Models

	Discrete Parameters	Scalable	Conditional Parameters	Papers & implementations	Specify parameters
Gaussian Process	?	X	?	many	bounds
Random Forest (SMAC)				few	prior
Non- parametric (TPE)		?		few	prior

Warm-starting and Meta-learning

Meta-Learning

Meta-Features

Existing Approaches

auto-sklearn

(Hutter, Feurer, Eggensperger) http://automl.github.io/auto-sklearn/stable/

Autoweka

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/

Hyperopt-sklearn

http://hyperopt.github.io/hyperopt-sklearn/

TPot

010101010

SMBO Packages

Spearmint

https://github.com/HIPS/Spearmint

GPyOpt

https://github.com/SheffieldML/GPyOpt

Scikit-optimize

Some Benchmarks

Experiment	# Evals	SMAC	TPE	Spearmint	DNGO
Branin (0.398)	200	0.655 ± 0.27	0.526 ± 0.13	$\boldsymbol{0.398 \pm 0.00}$	0.398 ± 0.00
Hartmann6 (-3.322)	200	-2.977 ± 0.11	-2.823 ± 0.18	-3.3166 ± 0.02	-3.319 ± 0.00
Logistic Regression	100	8.6 ± 0.9	8.2 ± 0.6	$\boldsymbol{6.88 \pm 0.0}$	$\boldsymbol{6.89 \pm 0.04}$
LDA (On grid)	50	1269.6 ± 2.9	1271.5 ± 3.5	$\boldsymbol{1266.2 \pm 0.1}$	$\boldsymbol{1266.2 \pm 0.0}$
SVM (On grid)	100	24.1 ± 0.1	24.2 ± 0.0	24.1 ± 0.1	24.1 ± 0.1

Results below are for n_calls=64:

Method	Average rank (less is better)		
dummy_minimize	4.552		
forest_minimize	2.362	acikit antimiza	
gbrt_minimize	2.172	scikit-optimize	
gp_minimize	1.241		
gpyopt_minimize	1.069	GpyOpt (GP)	
hyperopt_minimize	3.052	Hyperopt (TPE)	
smac_minimize	3.431	SMAC (Random Forest)	

https://github.com/iaroslav-ai/scikit-optimize-benchmarks

Within Scikit-learn

- GridSearchCV
- RandomizedSearchCV
- Searching over Pipelines
- Built-in parameter ranges (coming)

TODO

Clean separation of:

- Model Search Space
- Pipeline Search Space
- Optimization Method
- Meta-Learning
- Exploit prior knowledge better!
- Usability
- Runtime consideration

TODO

Clean separation of:

- Model Search Space
- Pipeline Search Space
- Optimization Method
- Meta-Learning
- Exploit prior knowledge better!
- Usability
- Runtime consideration
- Data subsampling

Criticism

Randomized Search works well

Do we need 100 Classifiers? Do we need Complex pipelines?

I don't want a black-box!

Making it too easy?

Material

- Taking the Human Out of the Loop: A Review of Bayesian Optimization (Shahriari, Swersky, Wang, Adams, de Freitas)
- Random Search for Hyper-Parameter Optimization (Bergstra, Bengio)
- Efficient and Robust Automated Machine Learning (Feurer et al) [autosklearn]
- http://automl.github.io/auto-sklearn/stable/
- Efficient Hyperparameter Optimization and Infinitely Many Armed Bandits (Lie et. al) [hyperband] https://arxiv.org/abs/1603.06560
- Scalable Bayesian Optimization Using Deep Neural Networks [Snoek et al]
- https://github.com/iaroslav-ai/scikit-optimize-benchmarks

O'REILLY'

Andreas C. Müller & Sarah Guido

amueller.github.io

@amuellerml

@amueller

t3kcit@gmail.com

https://github.com/amueller/talks_odt/