USED CARS PRICE PREDICTION

Prepared by: Kateryna Kondratovych Claudia Słaboń

INTRODUCTION

ut[6]:			Name	Location	Year K	ilometers_Driven	Fuel_Type	Transmission	Owner_Type	Mileage	Engine	Power	Seats	New_Price	Price
,	ID														
	3509	Hyundai i20 As	sta Option 1.4 CRDi	Coimbatore	2017	24153	Diesel	Manual	Second	22.54	1396.0	88.73	5.0	NaN	9.18
	3332	Mahindra C	Quanto C6	Mumbai	2013	35000	Diesel	Manual	First	17.21	1493.0	100.00	7.0	NaN	3.49
	5383	Tata Indig	o LX BSII	Hyderabad	2005	92000	Diesel	Manual	Second	16.10	1405.0	70.00	5.0	NaN	1.10
	1891	Maruti Swif	t Ldi BSIV	Delhi	2014	62000	Diesel	Manual	First	17.80	1248.0	75.00	5.0	NaN	3.75
	5757	Toyota Innova	Crysta 2.4 VX MT	Kolkata	2017	31000	Diesel	Manual	First	13.68	2393.0	147.80	7.0	21.36 Lakh	16.95
n [7]:	X_trai	in.describe	()												
	X_trai	in.describe Year	() Kilometer	s_Driven	Mileag	e Engine	Power	Seats	Price						
	_		Kilometer		Mileag 814.00000		Power 4702.000000	Seats 4785.000000	Price 4815.000000						
	_	Year	Kilometer			0 4790.000000									
. ,	count	Year 4815.000000	Kilometer 4.815 5.915	5000e+03 4	814.00000	0 4790.000000 4 1619.069102	4702.000000	4785.000000	4815.000000						
. ,	count	Year 4815.000000 2013.369055	4.815 5.915 1.005	5000e+03 4 5726e+04	18.12225	0 4790.000000 4 1619.069102 1 594.356557	4702.000000 112.886918	4785.000000 5.274399	4815.000000 9.429570						
. ,	count mean std	Year 4815.000000 2013.369055 3.286841	4.815 5.915 1.005 1.710	5000e+03 4 5726e+04 5633e+05	18.14.00000 18.12225 4.57685	0 4790.000000 4 1619.069102 1 594.356557 0 624.000000	4702.000000 112.886918 52.919245	4785.000000 5.274399 0.804034	4815.000000 9.429570 11.246342						
n [7]:	count mean std min	Year 4815.000000 2013.369055 3.286841 1998.000000	4.815 5.915 1.005 1.710 3.349	5000e+03 4 5726e+04 5633e+05 0000e+02	4.57685 0.00000	0 4790.000000 4 1619.069102 1 594.356557 0 624.000000 0 1198.000000	4702.000000 112.886918 52.919245 34.200000	4785.000000 5.274399 0.804034 0.000000	4815.000000 9.429570 11.246342 0.440000						
. ,	count mean std min 25% 50%	Year 4815.000000 2013.369055 3.286841 1998.000000 2011.000000 2014.000000	4.815 5.915 1.005 1.710 3.349 5.308	5000e+03 4 5726e+04 5633e+05 0000e+02 9050e+04	18.14.00000 18.12225 4.57685 0.00000 15.17000	0 4790.000000 4 1619.069102 1 594.356557 0 624.000000 0 1198.000000 0 1493.000000	4702.000000 112.886918 52.919245 34.200000 76.000000	4785.000000 5.274399 0.804034 0.000000 5.000000	4815.000000 9.429570 11.246342 0.440000 3.500000						

PLAN:
Introduction
Missing Values
Descriptive Analysis
Variable Selection and
Transformation
Training/test data division,
cross-validation
Usage of Chosen Method
on test data
Summary and
Conclusions

MISSING VALUES

Name	0
Location	0
Year	0
Kilometers_Driven	0
Fuel_Type	0
Transmission	0
Owner_Type	0
Mileage	1
Engine	25
Power	113
Seats	30
New Price	4155
Price	0
dtype: int64	
3.	
Percentage of NA's:	
Name	0.00
Location	0.00
Year	0.00
Kilometers_Driven	0.00
Fuel_Type	0.00
Transmission	0.00
Owner Type	0.00
Mileage	0.02
Engine	0.52
Power	2.35
Seats	0.62
New Price	86.29
Price	0.00
dtype: float64	
>	


```
by_brand3 = X_train.groupby(['Brand','Brand2','Brand3'])
by_brand2 = X_train.groupby(['Brand','Brand2'])
by_brand1 = X_train.groupby(['Brand'])
def impute_mean(series):
    return series.fillna(series.mean())
X_train.Mileage = by_brand3.Mileage.transform(impute_mean)
X_train[X_train['Mileage'].isnull()]
```

DESCRIPTIVE ANALYSIS

VARIABLE SELECTION AND TRANSFORMATION

Skewness: 3.0255877459369818

Year	0.515176				
Transmission	n 0.613594				
Engine	0.684915				
Power	0.766890				
Price	0.856055				
Brand	0.387337				
Price log	1.000000				

LINEAR REGRESSION

In [57]: import random

for z in range(10):

from sklearn.model selection import KFold

```
trainRes = []
    valRes = []
    kf = KFold(n splits=5, shuffle=True, random state=random.randint(0,10000))
    for train, test in kf.split(X_train2.index.values):
        mod = sm.GLM.from formula(formula="Price log ~ Transmission + Power +Year", data=X train f.iloc[train], family=sm.familia
        res = mod.fit()
        predsTrain = res.predict()
        preds = res.predict(X train f.iloc[test])
        trainRes.append(metrics.mean_squared_error(X_train_f.iloc[train].Price_log, predsTrain))
        valRes.append(metrics.mean squared error(X train f.iloc[test].Price log, preds))
    print("Train AUC:", np.mean(trainRes), "Valid MSE:", np.mean(valRes))
Train AUC: 0.1275945720645234 Valid MSE: 0.12831727597437734
Train AUC: 0.12761032812077613 Valid MSE: 0.12818194157573876
Train AUC: 0.1276075343983899 Valid MSE: 0.12821580511469835
                                                                                              import random
Train AUC: 0.12756324668486982 Valid MSE: 0.1285784132328012
                                                                                              from sklearn.model_selection import KFold
Train AUC: 0.12762263267644886 Valid MSE: 0.12806959913901234
                                                                                              for z in range(10):
Train AUC: 0.12757056249161258 Valid MSE: 0.1285375786235907
                                                                                                  trainRes = []
Train AUC: 0.12757353786277217 Valid MSE: 0.1285156784452455
                                                                                                  valRes = []
Train AUC: 0.1276057067005062 Valid MSE: 0.12821169445385755
                                                                                                  kf = KFold(n splits=5, shuffle=True, random state=random.randint(0,10000))
Train AUC: 0.1275354483536078 Valid MSE: 0.12885624213058575
                                                                                                  for train, test in kf.split(X train2.index.values):
Train AUC: 0.12761289075293686 Valid MSE: 0.12815004727379206
                                                                                                      mod = sm.GLM.from formula(formula="Price log ~ Transmission + Power +Year+Fuel Type+Brand", data=X train f.iloc[train],
                                                                                                      res = mod.fit()
                                                                                                      predsTrain = res.predict()
                                                                                                      preds = res.predict(X train f.iloc[test])
                                                                                                      trainRes.append(metrics.mean squared error(X train f.iloc[train].Price log, predsTrain))
                                                                                                      valRes.append(metrics.mean_squared_error(X_train_f.iloc[test].Price_log, preds))
                                                                                                  print("Train AUC:", np.mean(trainRes), "Valid MSE:", np.mean(valRes))
                                                                                             Train AUC: 0.07302763553890937 Valid MSE: 0.1011634980011999
                                                                                             Train AUC: 0.07298551321078126 Valid MSE: 0.10160697994625134
                                                                                             Train AUC: 0.07294813595158618 Valid MSE: 0.10217944142961957
                                                                                             Train AUC: 0.0730209122767681 Valid MSE: 0.10208639132572044
                                                                                             Train AUC: 0.07295204710083966 Valid MSE: 0.10187526789246867
                                                                                             Train AUC: 0.07300728947394422 Valid MSE: 0.10162813289375865
                                                                                             Train AUC: 0.07297449342117264 Valid MSE: 0.1016724216548834
                                                                                             Train AUC: 0.07293803779894117 Valid MSE: 0.10204718696630803
                                                                                             Train AUC: 0.07294829575979596 Valid MSE: 0.18082738300318998
                                                                                             Train AUC: 0.07296784463098271 Valid MSE: 0.10241988786548735
```

KNN

```
kf = KFold(n_splits=5, shuffle=True, random_state=2018)
probs = []
indicies = []
mse = []
r=[]
n_neighbors = 25
clf = neighbors.KNeighborsRegressor(n_neighbors, n_jobs=-1, p=2) #p=2 means Euclidean metrics
for train, test in kf.split(X_train2.index.values):
    clf.fit(X_train2.iloc[train][features].values, X_train_f.iloc[train]["Price_log"].values)
    prob = clf.predict(X_train2.iloc[test][features].values)
    probs.append(prob)
    indicies.append(test)
    mse.append(metrics.mean_squared_error(X_train_f.iloc[test]["Price_log"].values, prob))
    r.append(metrics.r2_score(X_train_f.iloc[test]["Price_log"].values, prob))
print("MSE:")
print(np.mean(mse))
print(mse)
print("\nR_squared:")
print(np.mean(r))
print(r)
0.1007171235197765
[0.09273168946386275, 0.10477214524931174, 0.09160631982743386, 0.10476296344670001, 0.10971249961157416]
R_squared:
0.8664663862072419
[0.8786857079752665, 0.8622284346216833, 0.8825862757616265, 0.8664687179029944, 0.8423627947746393]
Also, we tried n_neighbors =50
kf = KFold(n_splits=5, shuffle=True, random_state=2018)
probs = []
indicies = []
mse = []
r=[]
n_neighbors = 50
clf = neighbors.KNeighborsRegressor(n_neighbors, n_jobs=-1, p=2)
for train, test in kf.split(X_train2.index.values):
    clf.fit(X_train2.iloc[train][features].values, X_train_f.iloc[train]["Price_log"].values)
    prob = clf.predict(X_train2.iloc[test][features].values)
    probs.append(prob)
    indicies.append(test)
    mse.append(metrics.mean_squared_error(X_train_f.iloc[test]["Price_log"].values, prob))
    r.append(metrics.r2_score(X_train_f.iloc[test]["Price_log"].values, prob))
print("MSE:")
print(np.mean(mse))
print(mse)
print("\nR_squared:")
print(np.mean(r))
print(r)
0.1069828207847455
[0.09982755615754128, 0.10968818439624384, 0.09690989012821222, 0.113210916690616, 0.11527755655111413]
R_squared:
0.8582046037599147
[0.8694026888776691, 0.8557640217080957, 0.8757885794678831, 0.8557009237260992, 0.8343668050198262]
```

```
kf = KFold(n splits=5, shuffle=True, random state=2018)
probs = []
indicies = []
mse = []
r=[]
n_neighbors = 25
clf = neighbors.KNeighborsRegressor(n_neighbors, n_jobs=-1, p=1) #p=1 means Manhatan metrics
for train, test in kf.split(X train2.index.values):
    clf.fit(X_train2.iloc[train][features].values, X_train_f.iloc[train]["Price_log"].values)
    prob = clf.predict(X train2.iloc[test][features].values)
    probs.append(prob)
    indicies.append(test)
    mse.append(metrics.mean squared error(X train f.iloc[test]["Price log"].values, prob))
    r.append(metrics.r2 score(X train f.iloc[test]["Price log"].values, prob))
print("MSE:")
print(np.mean(mse))
print(mse)
print("\nR squared:")
print(np.mean(r))
print(r)
MSE:
0.1004278068984125
[0.09387832418601454, 0.10391610765212066, 0.09025277473552533, 0.1048334485134056, 0.10925837940499644]
R squared:
0.8668510088432976
[0.8771856470971237, 0.8633540929682512, 0.8843211426405158, 0.8663788773618696, 0.8430152841487281]
```

SVR

```
LINEAR
from sklearn.svm import SVR
#data have been previously normalized
features = X train2.columns.tolist()
X train2.iloc[test][features]
kf = KFold(n_splits=5)
mses = []
r=[]
clf = SVR(C=1, cache size=500, kernel='linear',
    max iter=-1, tol=0.001, verbose=False)
for train, test in kf.split(X train2.index.values):
    clf.fit(X train2.iloc[train][features].values, X train f.iloc[train]["Price log"].values)
    prob = clf.predict(X train2.iloc[test][features].values)
    mses.append(metrics.mean_squared_error(X_train_f.iloc[test]["Price_log"].values, prob))
    r.append(metrics.r2 score(X train f.iloc[test]["Price log"].values, prob))
print("MSE:")
print(np.mean(mses))
print(mses)
print("\nR_squared:")
print(np.mean(r))
print(r)
MSE:
0.12948012299206738
[0.15874197860758177, 0.11977196275956149, 0.11974562704065317, 0.12674426973800326, 0.12239677681453726]
R_squared:
0.8284736793502641
[0.7797701635591572, 0.838381445566693, 0.8500766896431577, 0.8339830355795458, 0.8401570624027663]
```

MSE: RBF 2
0.10451219617870751
[0.11117407194649125, 0.09760624066298232, 0.09637780353971089, 0.11502580685946663, 0.1023770578848865]

R_squared: 0.8618045064796229 [0.8457632448832985, 0.8682915504082667, 0.8793335530600264, 0.8493325550393995, 0.8663016290071237]

POLYNOMINAL

```
features = X_train2.columns.tolist()
X_train2.iloc[test][features]
kf = KFold(n splits=5)
mses = []
r=[]
clf = SVR(C=1, cache_size=500, degree=2,kernel='poly',
     max_iter=-1, tol=0.001, verbose=False)
for train, test in kf.split(X train2.index.values):
     clf.fit(X_train2.iloc[train][features].values, X_train_f.iloc[train]["Price_log"].values)
     prob = clf.predict(X train2.iloc[test][features].values)
     mses.append(metrics.mean_squared_error(X_train_f.iloc[test]["Price_log"].values, prob))
    r.append(metrics.r2_score(X_train_f.iloc[test]["Price_log"].values, prob))
print("MSE:")
print(np.mean(mses))
print(mses)
print("\nR squared:")
print(np.mean(r))
print(r)
MSE:
0.10769943339359962
[0.11920064214864541, 0.09910466250460317, 0.099796650983007, 0.11543015550171343, 0.1049650558300291]
R_squared:
0.8575350210376651
[0.8346276255700784, 0.8662696016450139, 0.8750531050890122, 0.8488029158352595, 0.8629218570489615]
RBF
features = X_train2.columns.tolist()
X_train2.iloc[test][features]
kf = KFold(n_splits=5)
mses = []
r=[]
clf = SVR(C=1, cache_size=500, degree=3,kernel='rbf',
     max iter=-1, tol=0.001, verbose=False)
for train, test in kf.split(X train2.index.values):
     clf.fit(X_train2.iloc[train][features].values, X_train_f.iloc[train]["Price_log"].values)
     prob = clf.predict(X_train2.iloc[test][features].values)
     mses.append(metrics.mean_squared_error(X_train_f.iloc[test]["Price_log"].values, prob))
    r.append(metrics.r2_score(X_train_f.iloc[test]["Price_log"].values, prob))
print("MSE:")
print(np.mean(mses))
print(mses)
print("\nR_squared:")
print(np.mean(r))
print(r)
0.10472341869806204
[0.11038363397901829, 0.09866005222685807, 0.09694393518208066, 0.11520769738031583, 0.10242177472203728]
R_squared:
0.8615383381404491
[0.8468598547770401, 0.866869552323952, 0.8786247478032547, 0.8490943043303879, 0.8662432314676111]
```

USAGE OF CHOSEN METHOD ON TEST DATA

MSE: 0.0975013790102812

R^2: 0.8727525123577311

```
n_neighbors = 25
clf = neighbors.KNeighborsRegressor(n_neighbors, n_jobs=-I, p=I)
clf.fit(X_test2,Y)
y_pred=clf.predict(X_test2)
print(metrics.mean_squared_error(Y,y_pred))
print(metrics.r2_score(Y,y_pred))
```

Dependent variable: Price_log - logarithm of Price Variable

Independent variables: Transmission, Year, Power

By R^2 and MSE we chose kNN with n_neighbors = 25 and Manhatan metric

CONCLUSIONS

- Best Model: kNN with n_neighbors = 25 and Manhatan metric
- Validation: MSE: 0.1004278068984125 R_squared: 0.8668510088432976
- Final: MSE: 0.0975013790102812 R_squared: 0.8727525123577311