CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Parsing - Roadmap

- Parser:
 - decision procedure: builds a parse tree
- Top-down vs. bottom-up
- LL(1) Deterministic Parsing
 - recursive-descent
 - table-driven
- LR(k) Deterministic Parsing
 - LR(0), SLR(1), LR(1), LALR(1)
- Parsing arbitrary CFGs Polynomial time parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow AB$ Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/le	eftmost	Bottom-Up/rightmost					
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c				
⇒cB	A→c	← AcbB	B→ca B→cbB				
⇒ ccbB	B→cbB	←AB					
⇒ ccbca	B→ca	\Leftarrow S	S→AB				

10/22/10

Bottom-up parsing overview

- Start from terminal symbols, search for a path to the start symbol
- Apply shift and reduce actions: postpone decisions
- LR parsing:
 - L: left to right parsing
 - R: rightmost derivation (in reverse or bottom-up)
- $LR(0) \rightarrow SLR(1) \rightarrow LR(1) \rightarrow LALR(1)$
 - o or 1 or k lookahead symbols

Actions in Shift-Reduce Parsing

- Shift
 - add terminal to parse stack, advance input
- Reduce
 - If α w on stack, and $A \rightarrow$ w, and there is a $\beta \in T^*$ such that $S \Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ then we can prune the handle w; we reduce α w to αA on the stack
 - $-\alpha w$ is a viable prefix
- Error
- Accept

Questions

- When to shift/reduce?
 - What are valid handles?
 - Ambiguity: Shift/reduce conflict
- If reducing, using which production?
 - Ambiguity: Reduce/reduce conflict

Rightmost derivation for

$$E \rightarrow E + E$$

$$E \rightarrow E * E \Rightarrow E * id$$

$$E \rightarrow (E)$$

$$E \rightarrow -E$$

$$E \rightarrow id$$

$$E \Rightarrow E * E$$

$$\Rightarrow$$
 E * id

$$\Rightarrow$$
 E + E * id

$$\Rightarrow$$
 E + id * id

$$\Rightarrow$$
 id + id * id

reduce with
$$E \rightarrow id$$

$$E \Rightarrow^*_{rm} E + E \setminus^* id$$

LR Parsing

- Table-based parser
 - Creates rightmost derivation (in reverse)
 - For "less massaged" grammars than LL(1)
- Data structures:
 - Stack of states/symbols {s}
 - Action table: $action[s, a]; a \in T$
 - Goto table: $goto[s, X]; X \subseteq N$

Productions

1 $T \rightarrow F$ 2 $T \rightarrow T*F$ 3 $F \rightarrow id$ 4 $F \rightarrow (T)$

Action/Goto Table

→ (T)		*	()	1d	\$	T	F
	0		S5		S 8		2	1
	1	R1	R1	R1	R1	R1		
	2	S 3				Acc!		
	3		S5		S 8			4
	4	R2	R2	R2	R2	R2		
	5		S5		S 8		6	1
	6	S 3		S 7				
	7	R4	R4	R4	R4	R4		
10/	8	R3	R3	R3	R3	R3		

9

Trace "(id)*id"

Stack	Input	Action
0	(id) * id \$	Shift S5
0 5	id)*id\$	Shift S8
058) * id \$	Reduce 3 F→id,
		pop 8, goto [5,F]=1
051) * id \$	Reduce 1 $T \rightarrow F$,
		pop 1, goto [5,T]=6
056) * id \$	Shift S7
0567	* id \$	Reduce 4 $F \rightarrow (T)$,
		pop 7 6 5, goto [0,F]=1
0 1	* id \$	Reduce $1 T \rightarrow F$
		pop 1, goto [0,T]=2

	F	Produ	ctions					*	()	id	\$	T	F	
1	$T \rightarrow F$						0		S5		S8		2	1	
2	,	T →	T*F	66/;	d)*id"		1	R1	R1	R1	R1	R1			
3		F →	id	L	u) iu		2	S 3				A			
4		$F \rightarrow$			Input	A	3		S5		S8			4	
4	l	<u>r</u> →	`		1		4	R2	R2	R2	R2	R2			
			0		(id) * id \$)		S5		S8		6	1	
			0 5		id) * id \$	Sh	6	S 3		S7					
			058) * id \$	Re	7	R4	R4	R4	R4	R4			
						po	8	R3	R3	R3	R3	R3			
			051) * id \$	Reduce $1 T \rightarrow F$,									
								pop 1, goto [5,T]=6							
								Shift S7							
					Reduce 4 $F \rightarrow (T)$,										
								pop 7 6 5, goto [0,F]=1							
							Reduce $1 T \rightarrow F$								
		I '													
						po	pop 1, goto [0,T]=2								

Trace "(id)*id"

	Action	Input	Stack
	Reduce 1 T→F,	* id \$	0 1
	pop 1, goto [0,T]=2		
	Shift S3	* id \$	0 2
	Shift S8	id \$	023
	Reduce 3 F→id,	\$	0238
	pop 8, goto [3,F]=4		
	Reduce 2 T→T * F	\$	0234
2	pop 4 3 2, goto [0,T]=2		
	Accept	\$	0 2
	Shift S8 Reduce 3 F→id, pop 8, goto [3,F]=4 Reduce 2 T→T * F pop 4 3 2, goto [0,T]=2	id \$ \$	0 2 3 0 2 3 8 0 2 3 4

				Ī										
	Pro	oduc1	tions					*	()	id	\$	T	F
1	$1 T \to F$						0		S5		S 8		2	1
2	T	[→]	[*F	66/;	d)*id"		1	R1	R1	R1	R1	R1		
3		io	h		u) iu		2	S 3				A		
4		$\Gamma \rightarrow ($					3		S5		S 8			4
4	Г) - 			Input	Actio	4	R2	R2	R2	R2	R2		
			Stack		Input	Actio	5		S5		S8		6	1
			01		* id \$	Reduc	6	S 3		S7				
						pop 1,	7	R4	R4	R4	R4	R4		
	0 2		* id \$			R3	R3	R3	R3	R3				
			023		id \$	Shift S								
			0238	3	\$	Reduc	e 3	F→	id,					
							got	о [3	.F]=	-4				
	0 2 3 4					_	_	<i>,</i> –						
		pop 4									= 2			
	0 2 \$ Accep						•	500	o Lo	, - J ⁻				
	Accept						L							

Tracing LR: action[s, a]

- case **shift** u:
 - push state u
 - read new a
- case **reduce** r:
 - lookup production $r: X \rightarrow Y_1...Y_k$;
 - pop k states, find state u
 - push **goto**[*u*, *X*]
- case accept: done
- no entry in action table: error

Configuration set

- Each set is a parser state
- We use the notion of a dotted rule or item:

$$T \rightarrow T * \bullet F$$

 The dot is before F, so we predict all rules with F as the left-hand side

$$T \rightarrow T * \bullet F$$
 $F \rightarrow \bullet (T)$
 $F \rightarrow \bullet id$

This creates a configuration set (or item set)

Closure

Closure property:

- If $T \rightarrow X_1 \dots X_i$ $X_{i+1} \dots X_n$ is in set, and X_{i+1} is a nonterminal, then $X_{i+1} \rightarrow Y_1 \dots Y_m$ is in the set as well for all productions $X_{i+1} \rightarrow Y_1 \dots Y_m$
- Compute as fixed point
- The closure property creates a configuration set (item set) from a dotted rule (item).

10/22/10

Starting Configuration

- Augment Grammar with S'
- Add production S' → S
- Initial configuration set is

 $closure(S' \rightarrow \bullet S)$

Example: $I = closure(S' \rightarrow \bullet T)$

$$S' \rightarrow \bullet T$$
 $T \rightarrow \bullet T * F$
 $T \rightarrow \bullet F$
 $F \rightarrow \bullet id$
 $F \rightarrow \bullet (T)$

$$S' \rightarrow T$$
 $T \rightarrow F \mid T * F$
 $F \rightarrow id \mid (T)$

Successor(I, X)

Informally: "move by symbol X"

- move dot to the right in all items where dot is before X
- remove all other items (viable prefixes only!)
- 3. compute closure

Successor Example

$$I = \{S' \rightarrow \bullet T, \\ T \rightarrow \bullet F, \\ T \rightarrow \bullet T * F, \\ F \rightarrow \bullet id, \\ F \rightarrow \bullet (T) \}$$

$$S' \to T$$

$$T \to F \mid T * F$$

$$F \to id \mid (T)$$

Compute **Successor**(I, "(")

$$\{ F \rightarrow (\bullet T), T \rightarrow \bullet F, T \rightarrow \bullet T * F,$$

$$F \rightarrow \bullet id, F \rightarrow \bullet (T) \}$$

Sets-of-Items Construction

```
Family of configuration sets

function items(G')

C = { closure({S' → • S}) };

do foreach I ∈ C do

foreach X ∈ (N ∪ T) do

C = C ∪ { Successor(I, X) };

while C changes;
```


LR(o) Construction

- 1. Construct $F = \{l_0, l_1, \dots l_n\}$
- 2. a) if $\{A \rightarrow \alpha \bullet\} \in I_i$ and A != S'then action[i, _] := reduce $A \rightarrow \alpha$
 - b) if $\{S' \rightarrow S^{\bullet}\} \in I_i$ then action[i,\$] := accept
 - c) if $\{A \rightarrow \alpha \bullet a\beta\} \in I_i$ and Successor $(I_i,a) = I_j$ then action[i,a] := shift j
- 3. if Successor(I_i ,A) = I_j then goto[i,A] := j

LR(o) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(0) always reduces if $\{A \rightarrow \alpha \bullet\} \in I_i$, no lookahead
- Shift and reduce items can't be in the same configuration set
 - Accepting state doesn't count as reduce item
- At most one reduce item per set

Set-of-items with Epsilon rules

LR(o) conflicts:

```
S' \rightarrow T
T \rightarrow F
T \rightarrow T * F
T \rightarrow id
F \rightarrow id \mid (T)
F \rightarrow id = T;
```

```
11: F \rightarrow id \bullet
F \rightarrow id \bullet = T
Shift/reduce conflict
```

```
1: F → id •

T → id •

Reduce/Reduce conflict
```

Need more lookahead: SLR(1)

LR(o) Grammars

- An LR(o) grammar is a CFG such that the LR(o) construction produces a table without conflicts (a deterministic pushdown automata)
- $S \Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ and $A \rightarrow w$ then we can prune the handle w
 - pruning the handle means we can reduce αw to αA on the stack
- Every viable prefix αw can recognized using the DFA built by the LR(o) construction

LR(o) Grammars

- Once we have a viable prefix on the stack, we can prune the handle and then restart the DFA to obtain another viable prefix, and so on ...
- In LR(o) pruning the handle can be done without any look-ahead
 - this means that in the rightmost derivation,
 - $S \Rightarrow^*_{rm} \alpha A \beta \Rightarrow_{rm} \alpha w \beta$ we reduce using a unique rule $A \rightarrow w$ without ambiguity, and without looking at β
- No ambiguous context-free grammar can be LR(o)

LR(o) Grammars ⊂ Context-free Grammars

SLR(1): Simple LR(1) Parsing

```
0: S' \rightarrow \bullet T
                                                           S' \rightarrow T
     T \rightarrow \bullet F
                                                           T \rightarrow F \mid T * F \mid C (T)
     T \rightarrow \bullet T * F
    T \rightarrow \bullet C (T)
                                                          F \rightarrow id \mid id ++ \mid (T)
                                          id
    F \rightarrow \bullet id
                                                           C \rightarrow id
    F \rightarrow \bullet id ++
    F \rightarrow \bullet (T)
                                        1: F \rightarrow id \bullet
                                                                            Follow(F) = \{ *, ), \$ \}
     C \rightarrow \bullet id
                                            F \rightarrow id \bullet ++
                                                                            Follow(C) = \{ ( \} 
                                            C \rightarrow id \bullet
```

action[1,*]= action[1,)] = action[1,\$] = Reduce
$$F \rightarrow id$$

action[1,(] = Reduce $C \rightarrow id$
 $10/22/10$ action[1,++] = Shift

30

SLR(1) Construction

```
    Construct F = {I₀, I₁, ... Iո}
    a) if {A → α•} ∈ Iᵢ and A!= S'
        then action[i, b] := reduce A → α
        for all b ∈ Follow(A)
    b) if {S' → S•} ∈ Iᵢ
        then action[i, $] := accept
    c) if {A → α•aβ} ∈ Iᵢ and Successor(Iᵢ, a) = Iᵢ
        then action[i, a] := shift j
    if Successor(Iᵢ, A) = Iᵢ then goto[i, A] := j
```

SLR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: SLR(1) only reduces
 {A → α•} if lookahead in Follow(A)
- Shift and reduce items or more than one reduce item can be in the same configuration set as long as lookaheads are disjoint

SLR(1) Conditions

- A grammar is SLR(1) if for each configuration set:
 - For any item {A → α •x β : x ∈ T} there is no {B → γ •: x ∈ Follow(B)}
 - For any two items {A → α •} and {B → β •} Follow(A) ∩ Follow(B) = \emptyset

LR(o) Grammars ⊂ SLR(1) Grammars

Is this grammar SLR(1)?

SLR limitation: lack of context

$$S' \rightarrow S$$

 $S \rightarrow L = R \mid R$
 $L \rightarrow *R \mid id$
 $R \rightarrow L$

$$Follow(R) = \{ =, \$ \}$$

2:
$$S \rightarrow L \bullet = R$$

 $R \rightarrow L \bullet$

Find all lookaheads for reduce $R \rightarrow L$ •

No! $R \rightarrow L \bullet$ reduce and $S \rightarrow L \bullet = R$ do not co-occur due to the $L \rightarrow *R$ rule

\$

Solution: Canonical LR(1)

- Extend definition of configuration
 - Remember lookahead
- New closure method
- Extend definition of Successor

LR(1) Configurations

• [A $\rightarrow \alpha$ • β , a] for a \in T is valid for a viable prefix $\delta \alpha$ if there is a rightmost derivation $S \Rightarrow * \delta A \eta \Rightarrow * \delta \alpha \beta \eta$ and $(\eta = a\gamma)$ or $(\eta = \epsilon)$

- Notation: [A $\rightarrow \alpha$ • β , a/b/c]
 - if [A → α•β, a], [A → α•β, b], [A → α•β, c] are valid configurations

LR(1) Configurations

$$S \rightarrow B B$$

 $B \rightarrow a B \mid b$

$$S \Rightarrow BB \Rightarrow BaB \Rightarrow Bab$$

 $\Rightarrow aBab \Rightarrow aaBab \Rightarrow aaaBab$

- $S \Rightarrow^*_{rm} aaBab \Rightarrow_{rm} aaaBab$
- Item [B → a B, a] is valid for viable prefix
- $S \Rightarrow^*_{rm} BaB \Rightarrow_{rm} BaaB$
- Also, item [B → a B, \$] is valid for viable prefix Baa

 $S \Rightarrow BB \Rightarrow BaB \Rightarrow BaaB$

10/22/10

LR(1) Closure

Closure property:

- If $[A \rightarrow \alpha \bullet B\beta, a]$ is in set, then $[B \rightarrow \bullet \gamma, b]$ is in set if $b \in First(\beta a)$
- Compute as fixed point
- Only include contextually valid lookaheads to guide reducing to B

Starting Configuration

- Augment Grammar with S' just like for LR (o), SLR(1)
- Initial configuration set is

 $I = closure([S' \rightarrow \bullet S, \$])$

Example: closure($[S' \rightarrow \bullet S, \$]$)

$$[S' \rightarrow \bullet S, \$]$$

$$[S \rightarrow \bullet L = R, \$]$$

$$[S \rightarrow \bullet R, \$]$$

$$[L \rightarrow \bullet * R, =]$$

$$[L \rightarrow \bullet id, =]$$

$$[R \rightarrow \bullet L, \$]$$

$$[L \rightarrow \bullet * R, \$]$$

$$[L \rightarrow \bullet id, \$]$$

$$S' \rightarrow S$$

 $S \rightarrow L = R \mid R$
 $L \rightarrow *R \mid id$
 $R \rightarrow L$

LR(1) Successor(C, X)

- Let $I = [A \rightarrow \alpha \bullet B\beta, a]$ or $[A \rightarrow \alpha \bullet b\beta, a]$
- Successor(I, B) = closure($[A \rightarrow \alpha B \bullet \beta, a]$)
- Successor(I, b) = closure([A $\rightarrow \alpha b \cdot \beta, a]$)

LR(1) Example

LR(1) Example (contd)

10/22/10

LR(1) Example (contd)

Productions					
1	$S \rightarrow L = R$				
2	$S \rightarrow R$				
3	L → * R				
4	L → id				
5	$R \rightarrow L$				

	id	=	*	\$	S	L	R
0	S 1		S10		7	2	13
1		R4		R4			
2		S 3		R5			
3	S 4		S 8			5	6
4				R4			
5				R5			
6				R1			
7				Acc			
8	S 4					5	9
9				R3			
10	S 1		S10			11	12
11		R5		R5			
12		R3		R3			
13				R2			

LR(1) Construction

```
    Construct F = {I₀, I₁, ... Iո}
    a) if [A → α•, a] ∈ Iᵢ and A!= S'
        then action[i, a] := reduce A → α
        b) if [S' → S•, $] ∈ Iᵢ
        then action[i, $] := accept
        c) if [A → α•aβ, b] ∈ Iᵢ and Successor(Iᵢ, a)=Iᵢ
        then action[i, a] := shift j
    if Successor(Iᵢ, A) = Iᵢ then goto[i, A] := j
```

LR(1) Construction (cont'd)

- 4. All entries not defined are errors
- 5. Make sure I_0 is the initial state
- Note: LR(1) only reduces using A $\rightarrow \alpha$ for [A $\rightarrow \alpha$ •, a] if a follows
- LR(1) states remember context by virtue of lookahead
- Possibly many states!
 - LALR(1) combines some states

LR(1) Conditions

- A grammar is LR(1) if for each configuration set holds:
 - For any item [A $\rightarrow \alpha \bullet x \beta$, a] with $x \in T$ there is no [B $\rightarrow \gamma \bullet$, x]
 - For any two complete items [A $\rightarrow \gamma \bullet$, a] and [B $\rightarrow \beta \bullet$, b] it follows a and a != b.
- Grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) \subset LR(k)$
- Languages expressible by grammars:
 - $LR(0) \subset SLR(1) \subset LR(1) = LR(k)$

Canonical LR(1) Recap

- LR(1) uses left context, current handle and lookahead to decide when to reduce or shift
- Most powerful parser so far
- LALR(1) is practical simplification with fewer states

Merging States in LALR(1)

- $S' \rightarrow S$ $S \rightarrow XX$ $X \rightarrow aX$ $X \rightarrow b$
- Same CoreSet
- Different lookaheads

R/R conflicts when merging

•
$$B \rightarrow d$$

 $B \rightarrow f X g$
 $X \rightarrow ...$

4:
$$B \rightarrow d \bullet, g$$

 $B \rightarrow f X g \bullet, c$

 If R/R conflicts are introduced, grammar is not LALR(1)!

LALR(1)

- LALR(1) Condition:
 - Merging in this way does not introduce reduce/ reduce conflicts
 - Shift/reduce can't be introduced
- Merging brute force or step-by-step
- More compact than canonical LR, like SLR(1)
- More powerful than SLR(1)
 - Not always merge to full Follow Set

S/R & ambiguous grammars

- Lx(k) Grammar vs. Language
 - Grammar is Lx(k) if it can be parsed by Lx(k) method
 according to criteria that is specific to the method.
 - A Lx(k) grammar may or may not exist for a language.
- Even if a given grammar is not LR(k), shift/ reduce parser can sometimes handle them by accounting for ambiguities
 - Example: 'dangling' else
 - Preferring shift to reduce means matching inner 'if'

Dangling 'else'

- 1. $S \rightarrow if E then S$
- 2. S \rightarrow if E then S else S
- Viable prefix "if E then if E then S"
 - Then read else
- Shift "else" (means go for 2)
- Reduce (reduce using production #1)
- NB: dangling else as written above is ambiguous
 - NB: Ambiguity can be resolved, but there's still no LR (k) grammar

Precedence & Associativity

 $E \rightarrow E - E \mid E * E \mid id$ Consider Reduce Shift Reduce E E - E•* E - E•* E E - E - E $\int_{10/2} \frac{1}{2} d - id * id$ id - id - id id - id * id

Precedence Relations

- Let $A \rightarrow w$ be a rule in the grammar
- And b is a terminal
- In some state q of the LR(1) parser there is a shift-reduce conflict:
 - either reduce with A \rightarrow w or shift on b
- Write down a rule, either:

$$A \rightarrow w$$
, $< b \text{ or } A \rightarrow w$, $> b$

Precedence Relations

- A → w, < b means rule has less precedence and so we shift if we see b in the lookahead
- A → w, > b means rule has higher precedence and so we reduce if we see b in the lookahead
- If there are multiple terminals with shiftreduce conflicts, then we list them all:

$$A \rightarrow w, > b, < c, > d$$

Precedence Relations

- Consider the grammar $E \rightarrow E + E | E * E | (E) | a$
- Assume left-association so that E+E+E is interpreted as (E+E)+E
- Assume multiplication has higher precedence than addition
- Then we can write precedence rules/relns:

$$E \rightarrow E + E, > +, < *$$

 $E \rightarrow E * E, > +, > *$

Precedence & Associativity

Handling S/R & R/R Conflicts

- Have a conflict?
 - No? Done, grammar is compliant.
- Already using most powerful parser available?
 - No? Upgrade and goto 1
- Can the grammar be rearranged so that the conflict disappears?
 - While preserving the language!

Conflicts revisited (cont'd)

- Can the grammar be rearranged so that the conflict disappears?
 - No?
 - Is the conflict S/R and does shift-to-reduce preference yield desired result?
 - Yes: Done. (Example: dangling else)
 - Else: Bad luck
 - Yes: Is it worth it?
 - Yes, resolve conflict.
 - No: live with default or specified conflict resolution (precedence, associativity)

Compiler (parser) compilers

- Rather than build a parser for a particular grammar (e.g. recursive descent), write down a grammar as a text file
- Run through a compiler compiler which produces a parser for that grammar
- The parser is a program that can be compiled and accepts input strings and produces user-defined output

Compiler (parser) compilers

- For LR parsing, all it needs to do is produce action/goto table
 - Yacc (yet another compiler compiler) was distributed with Unix, the most popular tool. Uses LALR(1).
 - Many variants of yacc exist for many languages
- As we will see later, translation of the parse tree into machine code (or anything else) can also be written down with the grammar
- Handling errors and interaction with the lexical analyzer have to be precisely defined

Parsing - Summary

- Top-down vs. bottom-up
- Lookahead: FIRST and FOLLOW sets
- LL(1) Parsing: O(n) time complexity
 - recursive-descent and table-driven predictive parsing
- LR(k) Parsing : O(n) time complexity
 - LR(0), SLR(1), LR(1), LALR(1)
- Resolving shift/reduce conflicts
 - using precedence, associativity