Digital Logic Design:

Lecture 12

Decoders: The basic function of a decoder is to detect the presence of a specified combination of lits (code) on its input and to indicate the presence of that code by a specified output level.

- Determine the logic required to decode the binary number 1010 by producing a HIGH level on the output.
- ans. : Decoding function: A = A3A2A, Ao

2) Determine the logic required to decode the binary numbers 1101 by producing an active-LOW output. ons. : Decoding function: $A = \overline{A_3A_2\overline{A_1}A_0}$

3-line to 8-line decoder

Decimal	Bina	rey In	put	Outputs 1
Digit	Az	Aı	A.	01234567 Decoding function
0	0	0	0	0 1 1 1 1 1 1 Az A, Ao
I	0	0	1	101111 Az A, A6
2	0	ı	0	1 1 0 1 1 1 1 A2 A1 A0
3	0	-1	-1	1 1 1 0 1 1 1 Az A1 A0
4	1	0	0	1 1 1 1 0 1 1 1 Az A, A6
5	1	0	1	1 1 1 1 0 1 1 A2 A1 A0
6	1	1	0	1 1 1 1 1 1 0 1 Az A1 A0
7	ı	1	1	1 1 1 1 1 1 0 A ₂ A ₁ A ₀
				•
			•	

Logic symbol for the 74154 4-line to 16-line decoder

* Design a 5-bit decoder using 74154.

Encoders: An encoder accepts an active level on one of its inputs and converts it to a coded output, such as decimal to BCD.

Fig: Logie symbol for a decimal to BCD encoder.

Decimal Digits	BCD code A3 A2 A, A0	
0	0 0 0 0	
ι	0 0 0 1	A. = 1+3+5+7+9
2	0 0 1 0	A1 = 2+3+6+7
3	0 0 1 1	A2 = 4+5 +6+7
4	0 1 0 0	A4 = 8+9
5	0 1 0 1	
6	0 1 1 6	
7	0 1 1 1	
8	1 0 0 0	
9	001	

Fig : Logic diagram for a decimal to BCD encoder.

The Decimal to BCD priority encoders:

Let priority is given to the higher order digits.

Requirements to activate Ao

1) Ao is HIGH if 1 is HIGH and 2,4,6,8 20ω,

Ao n n n 3 n n n 4,6,8 n,

Ao n n n 5 n n n 6,8 n,

Ao n n n 7 n n n 8 n,

Ao n n n 7 n n n n 8 n,

:. A. = 1.2.4.6.8 + 3.4.6.8 + 5.6.8 + 7.8+9

:
$$A_1 = (2+3) \overline{4,5.8.9} + (6+7) \overline{8.9}$$

Logic equation for Az

the Ao output

4) A3 is HIGH if 8 or 9 is HIGH,

Fig: Logie for A, output
of a decimal to BCD
encoder

Implement a full Adder using a 3bit Decoder and other necessary gates.

Full - Adder Truth table :

A	В	Cin	Ź	Cont
0	0	0	0	0
0	0	1	ı	0
6	ľ	0	1	0
0	1	1	0	
1	0	0	1	0
1	0	1	0	1
ı	1	0	0	1
ı	ī	l	1	1

* Implement the logic function using a 3-bit and other necessary gate,

$$F(A,B,C) = A + BC$$

$$= AB + AB + ABC + ABC$$

$$= ABC + ABC + ABC + ABC + ABC + ABC$$

$$= ABC + ABC + ABC + ABC + ABC + ABC$$

$$= ABC + ABC + ABC + ABC + ABC + ABC$$

$$= ABC + ABC + ABC + ABC + ABC + ABC$$

Common Cathode Display - Active high

To display 4 the input coole is a be def g

- 11	1 11	0		1	_	1 1	
louth	table	tors	BED	to	7-segment	decoder	0

Decimal	13CD inputs	Outputs	<u>a</u>
	ABCD	abedefg	f g b
0	0 0 0 0	1 1 1 1 1 0	e c
ľ	0 0 0 1	0 11 0000	d
2	0 0 10	1 101101	
3	0 0 11	1 1 1 1 0 0 1	
4	0 100	0 1 1 0 0 11	
5	0 1 0 1	1011011	
6	0 1 1 0	1011111	
7	0 1 1 1	1 1 1 0 0 0 0	
8	1 0 0 0	1 1 1 1 1 1 1	
9	1001	1 1 1 10 1	1

K- map for segment a,

	N			
1 -	00	01	_11_	10
00	T,	0	1	
01	04	5	1	1
l(X 12	X X	X	X .
10	1 3	9	X"	X

: Logic for segment 'a' = A+C+BD+BD

7 segment display cc arrangement.