Algebra liniowa 2

dr Joanna Jureczko

Zestaw zadań nr 5

Ciało Ciało \mathbb{Z}_p Podciała Rozszerzenia ciał Ciało Galois proste i rozszerzone

- **5.1.** Sprawdzić, czy wielomiany są nierozkładalne w podanym pierścieniu:
 - a) $x^8 + x^4 + x^3 + x + 1 \le \mathbb{Z}_2[x],$
 - b) $x^3 + x^2 + 2 \le \mathbb{Z}_3[x]$,
 - c) $4x^3 + 3x^2 + x + 1 \le \mathbb{Z}_5[x]$.
- **5.2.** Znaleźć wszystkie nierozkładalne wielomiany: a) stopnia 5 nad \mathbb{Z}_2 , b) stopnia 2 nad \mathbb{Z}_5 , c) stopnia 3 nad \mathbb{Z}_7 .
- **5.3.** Udowodnić, że liczba a jest liczbą algebraiczną, gdy a) $a=2+\sqrt{3}$, b) $a=\sqrt{2}+\sqrt{5}$.
- **5.4.** Znaleźć wielomian minimalny danej liczby algebraicznej: a) $\sqrt{2}$, b) $4 + \sqrt{3}$, c) $\sqrt[3]{5}$, d) $\frac{\sqrt[4]{5}}{2}$
- **5.5.** Sprawdzić, że wielomian $f = x^2 + x + 1 \in \mathbb{Z}_2[x]$ jest nierozkładalny nad ciałem \mathbb{Z}_2 . Wypisać wszystkie elementy ciała CG(4) rozumianego jako ciało reszt z dzielenia przez $x^2 + x + 1$ w pierścieniu $\mathbb{Z}_2[x]$ i zapisać je w postaci pozycyjnej. Utworzyć tabelę dodawania i mnożenia w CG(4).
- **5.6.** Sprawdzić, że wielomian $f = x^3 + x + 1 \in \mathbb{Z}_2[x]$ jest nierozkładalny nad ciałem \mathbb{Z}_2 . Wypisać wszystkie elementy ciała CG(8) rozumianego jako ciało reszt z dzielenia przez $x^3 + x + 1$ w pierścieniu $\mathbb{Z}_2[x]$ i zapisać je w postaci pozycyjnej. Utworzyć tabelę dodawnia i mnożenia w CG(8).
- **5.7.** Sprawdzić, że wielomian $f = x^2 + 1 \in \mathbb{Z}_3[x]$ jest nierozkładalny nad ciałem \mathbb{Z}_3 . Wypisać wszystkie elementy ciała CG(9) rozumianego jako ciało reszt z dzielenia przez $x^2 + 1$ w pierścieniu $\mathbb{Z}_3[x]$ i zapisać je w postaci pozycyjnej. Utworzyć tabelę dodawania i mnożenia w CG(9).
- **5.8.** a) Znaleźć element pierwotny w ciałach CG(5) oraz CG(7).
- b) Znaleźć element pierwotny w ciałach CG(4) oraz CG(8).
- **5.9.** Elementy ciała CG(4) przedstawić w postaci potęgowej. To samo uczynić dla CG(8) oraz CG(9).
- **5.10.** Utworzyć za pomocą elementu pierwotnego tablice dodawania i mnożenia w CG(4).
- **5.11.** Wiedząc, że wielomian $x^4 + x + 1$ jest nierozkładalny w ciele CG(16) przedstawić jego elementy w postaci wielomianowej, pozycyjnej i potegowej.
- **5.12.*** Dla g=2,3,5,7,11 znaleźć taką liczbę pierwszą p>g, że g jest pierwiastkiem pierwotnym modulo p.
- **5.13.*** Udowodnić, że pierścień klas reszt $\mathbb{Z}/m\mathbb{Z}$ jest ciałem wtedy i tylko wtedy, m jest liczbą pierwszą.

Odpowiedzi:

5.1. a) tak, b) tak, c) tak.

5.2.
$$x^5 + x^3 + 1$$
, $x^5 + x^2 + 1$, $x^5 + x^4 + x^3 + x^2 + 1$, $x^5 + x^4 + x^3 + x + 1$, $x^5 + x^4 + x^2 + x + 1$, $x^5 + x^3 + x^2 + x + 1$,

b) $x^2+2, x^2+3, 2x^2+4, 3x^2+1, 4x^2+3, 2x^2+1, 3x^2+4, 4x^2+2$, dodatkowo sprawdzić, czy ax^2+bx+c dla $c\neq 0$ są jeszcze jakieś, c) x^3+2 .

5.3. $x^2 - 1$.

5.4. a)
$$x^2 - 2$$
, b) $x^2 - 4x + 13$, c) $x^3 - 5$, d) $x^4 - \frac{5}{16}$.

5.5.
$$f(0) = 1, f(1) = 1, CG(4) = CG(2^2) = \{0, 1, x, x + 1\}.$$

5.6.
$$f(0) = 1$$
, $f(1) = 1$, $CG(8) = CG(2^3) = \{0, 1, x, x + 1, x^2, x^2 + x, x^2 + 1, x^2 + x + 1\}$.

5.7.
$$f(0) = 1$$
, $f(1) = 2$, $f(2) = 2$, $CG(8) = CG(2^3) = \{0, 1, 2, x, 2x, x + 1, 2x + 1, 2x + 2, x + 2\}$.

5.8. a)
$$2^0 = 1, 2^1 = 2, 2^2 = 4, 2^3 = 3$$
; $\alpha = 2, \alpha^{-1} = 3$, bo $CG(5) = \mathbb{Z}_5$. $2^1 = 2, 2^2 = 4, 2^3 = 1, 3^1 = 3, 3^2 = 2, 3^3 = 6, 3^4 = 4, 3^5 = 5, 3^6 = 1$; $\alpha = 3, \alpha^{-1} = 5$, bo $CG(7) = \mathbb{Z}_7$. b) analogicznie.

$$\mathbf{5.9.} \ CG(4) = CG(2^2) \frac{\begin{array}{c|c} 0 & 0 \\ \hline 1 & \alpha^0 \\ \hline x & \alpha^1 \\ \hline x+1 & \alpha^2 \end{array}} \text{Analogicznie} \ CG(8) = CG(2^3) \ \text{oraz} \ CG(9) = CG(3^2).$$

	α^0	α^1	α^2		1	x	x+1
	1		α^2				
				X			
α^2	α^2	α^0	α^1	x+1	x+1	1	X

		pozycyjna	potęgowa	wielomianowa
	0	0000	-	0
5.11.	1	1000	α^0	1
	X	0100	α^1	X
	$ \begin{array}{c} x^2 \\ x^3 \\ x^4 \\ x^5 \\ x^6 \end{array} $	0010	α^2	x^2
	x^3	0001	α^3	x^3
	x^4	1100	α^4	1+x
	x^5	0110	α^5	$x + x^2$
	x^6	0011	α^6	$x^2 + x^3$
	x^7	1101	$\frac{\alpha}{\alpha^7}$	$1 + x + x^3$
	x^8	1010	α^8	$1 + x^2$
	x^9	0101	α^9	$x + x^3$
	$ \begin{array}{c} x^7 \\ x^8 \\ x^9 \\ x^{10} \end{array} $	1110	α^{10}	$1 + x + x^2$
	x^{11}	0111	α^{11}	$x + x^2 + x^3$
	x^{12}	1111	α^{12}	$1 + x + x^2 + x^3$
	x^{13}	1011	α^{13}	$1 + x^2 + x^3$
	x^{14}	1001	α^{14}	$1 + x^3$
	x^{15}	1000	α^{15}	1