DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Hamiltonov graf

Tema 1

Hamiltonov graf

Hamiltonova kontura

Definicija

Hamiltonov put u grafu G je put koji sadrži svaki čvor grafa tačno jednom.

Za graf koji sadrži Hamiltonov put kažemo da je polu Hamiltonov graf.

Definicija

Hamiltonova kontura u grafu G je kontura koji prolazi kroz svaki čvor grafa tačno jednom i vraća se u početni čvor.

Za graf koji sadrži Hamiltonovu konturu kažemo da je Hamiltonov graf.

Tema 2

Dovoljni uslovi

• Da li je K_5 Hamiltonov graf?

Dovoljni uslovi

Lemma

Neka je G prost graf sa $n, n \geq 3$ čvorova u kojem postoje nesusedni čvorovi $u, v \in V(G)$ sa osobinom

$$d_G(u) + d_G(v) \ge n$$

Tada je G Hamiltonov ako i samo ako je G + uv Hamiltonov.

Dovoljni uslovi

Teorema (Ore, 1960)

Ako je G prost graf sa $n \geq 3$ čvorova i važi $d_G(u) + d_G(v) \geq n$ za svaki par nesusednih čvorova $u, v \in G$, onda G ima Hamiltonovu konturu.

Dokaz.

G je Hamiltonov ako i samo ako je K_n Hamiltonov.

Dovoljni uslovi

Teorema (Dirac, 1952)

Ako je G prost graf sa $n, n \geq 3$, čvorova, u kojem je stepen svakog čvora bar $\frac{n}{2}$, onda G ima Hamiltonovu konturu.

Dokaz. Ako je stepen svakog čvora bar $\frac{n}{2}$, onda za svaka dva nesusedna čvora u,v važi

$$d_G(u) + d_G(v) \ge \frac{n}{2} + \frac{n}{2} = n.$$

Odatle je graf Hamiltonov na osnovu tvrđenja Orea.

• Da li je $K_{3,3}$ Hamiltonov graf?

Teorema (Ore)

Ako je G prost graf sa $n \ge 3$ čvorova i važi $d_G(u) + d_G(v) \ge n - 1$ za svaki par nesusednih čvorova $u, v \in G$, onda je G polu Hamiltonov graf.

Teorema (Dirac)

Ako je G prost graf sa $n, n \geq 3$, čvorova, u kojem je stepen svakog čvora bar $\frac{n-1}{2}$, onda je G polu Hamiltonov graf.

Tema 3

Potrebni uslovi

Teorema

Ako je G Hamiltonov graf, onda za svaki neprazan podskup čvorova $S \subset V(G)$ važi

$$\omega(G-S) \le |S|.$$

Dokaz. Neka je

$$v_1v_2\ldots v_mv_1$$

Hamiltonova kontura.

Ako je |S| = l onda je $\omega(C - S) \le l$.

Kako je $C\subset G$, to je $C-S\subseteq G-S$ i odatle je $\omega(G-S)\leq \omega(C-S)$.

Znači

$$\omega(G-S) \le \omega(C-S) \le |S|.$$

- Da li je $K_{2,3}$ Hamiltonov?
- Da li je $K_{2,3}$ polu Hamiltonov?

Teorema

Ako je G polu Hamiltonov graf, onda za svaki neprazan podskup čvorova $S\subset V(G)$ važi

$$\omega(G-S) \le |S| + 1.$$

Dokaz. Neka je

$$v_1v_2\ldots v_m$$

Hamiltonov put. Tada je

$$\omega(G - S) \le \omega(C - S) \le |S| + 1.$$

Ispitati da li je graf na slici Hamiltonov i da li je polu Hamiltonov.

