TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

G.165

(03/93)

GENERAL CHARACTERISTICS OF INTERNATIONAL TELEPHONE CONNECTIONS AND INTERNATIONAL TELEPHONE CIRCUITS

ECHO CANCELLERS

ITU-T Recommendation G.165

(Previously "CCITT Recommendation")

FOREWORD

The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the International Telecommunication Union. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, established the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

ITU-T Recommendation G.165 was revised by the ITU-T Study Group XV (1988-1993) and was approved by the WTSC (Helsinki, March 1-12, 1993).

NOTES

As a consequence of a reform process within the International Telecommunication Union (ITU), the CCITT ceased to exist as of 28 February 1993. In its place, the ITU Telecommunication Standardization Sector (ITU-T) was created as of 1 March 1993. Similarly, in this reform process, the CCIR and the IFRB have been replaced by the Radiocommunication Sector.

In order not to delay publication of this Recommendation, no change has been made in the text to references containing the acronyms "CCITT, CCIR or IFRB" or their associated entities such as Plenary Assembly, Secretariat, etc. Future editions of this Recommendation will contain the proper terminology related to the new ITU structure.

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

© ITU 1994

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

CONTENTS

Gener	al
Defini	tions relating to echo cancellers
2.1	echo canceller
2.2	echo loss (A _{ECHO})
2.3	pure delay (t_r)
2.4	(near-end) echo path or end delay (t_d)
2.5	cancellation (A _{CANC})
2.6	residual echo level ($L_{\rm RES}$)
2.7	nonlinear processor (NLP)
2.8	nonlinear processing loss (A _{NLP})
2.9	returned echo level ($L_{ m RET}$)
2.10	combined loss (A _{COM})
2.11	convergence
2.12	convergence time
2.13	leak time
Chara	eteristics of echo cancellers
3.1	General
3.2	Purpose, operation and environment
3.3	External enabling/disabling
3.4	Tests and requirements for performance with inputs signals applied to the send and receive paths
Chara	cteristics of an echo canceller tone disabler
	General
4.2	Disabler characteristics
4.3	Guardband characteristics
4.4	Holding-band characteristics
4.5	Operate time
4.6	False operation due to speech currents
4.7	False operation due to data signals
4.8	Release time
4.9	Other considerations
Nonlir	near processors for use in echo cancellers
	Scope
	General principles and guidelines
	Echo cancellers without nonlinear processing
	Description of an echo canceller reference tone disabler
	General
	Disabler characteristics
	Guardband characteristics
	Holding-band characteristics Operate time
	Operate time
B.5	
B.5 B.6 B.7	False operation due to speech currents
	Defini 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 Characa 3.1 3.2 3.3 3.4 Characa 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Nonlir 5.1 5.2 x A - I

i

		Page
Annex C -	Description of a reference nonlinear processor	23
C.1	General	23
C.2	Suppression threshold ($T_{ m SUP}$)	24
C.3	Static characteristics of activation control	24
C.4	Dynamic characteristics of activation control	24
C.5	Frequency limits of control paths	24
C.6	Testing	24

ECHO CANCELLERS

(Geneva, 1980; amended at Malaga-Torremolinos, 1984; at Melbourne, 1988 and at Helsinki, 1993)

1 General

- 1.1 Echo cancellers are voice operated devices placed in the 4-wire portion of a circuit (which may be an individual circuit path or a path carrying a multiplexed signal) and are used for reducing the echo by subtracting an estimated echo from the circuit echo. They may be characterized by whether the transmission path or the subtraction of the echo is by analogue or digital means (see Figures 1, 2 and 3).
- 1.2 This Recommendation is applicable to the design of echo cancellers using digital or analogue techniques, and intended for use in an international circuit. Echo cancellers designed to this Recommendation will be compatible with each other and with echo suppressors designed in accordance with Recommendation G.164. Compatibility is defined in 1.4/G.164. Freedom is permitted in design details not covered by the requirements.

Echo cancellers may be used for purposes other than network echo control on international or mobile telephony circuits, e.g. in active 2-wire/4-wire hybrids or 2-wire repeaters, but this Recommendation does not apply to such echo cancellers.

 $\begin{array}{ll} R_{in} & \text{Receive-in port} \\ R_{out} & \text{Receive-out port} \\ S_{in} & \text{Send-in port} \\ R_{out} & \text{Send-out port} \end{array}$

FIGURE 1/G.165 **Type A echo canceller**

NOTE – Functionally, a type C digital echo canceller (DEC) interfaces at 64 kbit/s. However, 24 or 30 digital echo cancellers for example may be combined corresponding to the primary digital hierarchy levels of 1544 kbit/s or 2048 kbit/s, respectively.

FIGURE 2/G.165 **Type C echo canceller**

FIGURE 3/G.165 **Type D echo canceller**

1.3 The tests in this Recommendation focus on band-limited noise performance. Echo cancellers passing these tests may nevertheless perform poorly on speech. It is recommended that designers and/or users of echo cancellers ensure adequate speech performance as recommended in 3.4.2.

Furthermore, network echo cancellers must perform adequately on many non-speech signals as well, e.g. voice-band data, and that performance is not dealt with at all in this Recommendation. Tests have shown that not all echo cancellers passing the tests in clause 3 are guaranteed to perform correctly on voice-band data traffic, in particular on Group 3 facsimile signals. Additional tests to address this problem are under study but it is recommended that designers and/or users of echo cancellers ensure adequate voice-band data performance in addition to passing tests in clause 3.

Definitions relating to echo cancellers¹⁾

In the definition and text, L will refer to the relative power level of a signal, expressed in dBm0 and A will refer to the attenuation or loss of a signal path expressed in dB.

2.1 echo canceller

- F: annuleur d'écho
- S: compensador de eco; cancelador de eco

A voice operated device placed in the 4-wire portion of a circuit and used for reducing near-end echo present on the send path by subtracting an estimation of that echo from the near-end echo (see Figure 4).

FIGURE 4/G.165
Echo canceller

2.2 echo loss (A_{ECHO})

- F: affaiblissement d'écho (AECHO)
- S: atenuación del eco (A_{ECHO})

The attenuation of a signal from the receive-out port (R_{out}) to the send-in port (S_{in}) of an echo canceller, due to transmission and hybrid loss, i.e. the loss in the (near-end) echo path.

NOTE – This definition does not strictly adhere to the echo loss definition given in 2.2/G.122 which applies to loss of the *a-t-b* path viewed from the virtual switching point of the international circuit. The echo canceller may be located closer to the echo reflection point.

2.3 pure delay (t_r)

- F: retard pur (t_r)
- S: retardo puro (t_r)

The delay from the R_{out} port to the S_{in} port due to the delays inherent in the (near end) echo path transmission facilities. In this case, the transit time directly across the hybrid is assumed to be zero.

 $^{^{1)}}$ These definitions assume that non linearities are not present in the (near-end) echo path and that the signal at S_{in} is purely echo.

2.4 (near-end) echo path or end delay (t_d)

F: retard de trajet d'écho (proche), ou retard d'extrémité (t_d)

S: retardo de trayecto de eco (cercano); o retardo de extremo (t_d)

The sum of pure delay (t_r) and dispersion time is the time required to accommodate the band-limiting, multiple reflection, and hybrid transit effects. This is illustrated in Figure 5. It should be noted that this definition assumes a single echo path. If there are multiple echo paths, the overall echo path delay is the maximum of the individual echo path delays. Since dispersion time varies with different national networks, echo canceller echo path delay capacity is given per this definition. With 8 kHz sampling and an FIR (finite impulse response) version of echo canceller, the number of taps an echo canceller has for a given t_d in msecs is 8 times t_d .

2.5 cancellation (A_{CANC})

F: annulation (ACANC)

S: compensación; cancelación (A_{CANC})

The attenuation of the echo signal as it passes through the send path of an echo canceller. This definition specifically excludes any nonlinear processing on the output of the canceller to provide for further attenuation.

2.6 residual echo level (L_{RES})

F: niveau d'écho résiduel (LRES)

S: nivel de eco residual (LRES)

The level of the echo signal which remains at the send-out port of an operating echo canceller after imperfect cancellation of the circuit echo. It is related to the receive-in signal L_{Rin} by

$$L_{\text{RES}} = L_{\text{Rin}} - A_{\text{ECHO}} - A_{\text{CANC}}$$

Any nonlinear processing is not included.

2.7 nonlinear processor (NLP)

F: processeur non linéaire (NLP)

S: procesador no lineal (NLP)

A device having a defined suppression threshold level and in which:

- a) signals having a level detected as being below the threshold are suppressed, and
- signals having a level detected as being above the threshold are passed although the signal may be distorted.

NOTES

- 1 The precise operation of a nonlinear processor depends upon the detection and control algorithm used.
- 2 An example of a nonlinear processor is an analogue centre clipper in which all signal levels below a defined threshold are forced to some minimum value.

2.8 nonlinear processing loss (A_{NLP})

F: affaiblissement par traitement non linéaire (ANLP)

S: atenuación por procesamiento (o tratamiento) no lineal (ANLP)

Additional attenuation of residual echo level by a nonlinear processor placed in the send path of an echo canceller.

NOTE – Strictly, the attenuation of a nonlinear process cannot be characterized by a loss in dB. However, for purposes of illustration and discussion of echo canceller operation, the careful use of $A_{\rm NLP}$ is helpful.

4 **Recommendation G.165** (03/93)

2.9 returned echo level (L_{RET})

F: niveau de retour d'écho (LRET)

S: nivel del eco devuelto (L_{RET})

The level of the signal at the send-out port of an operating echo canceller which will be returned to the talker. The attenuation of a nonlinear processor is included, if one is normally present. L_{RET} is related to L_{Rin} by

$$L_{\text{RET}} = L_{\text{Rin}} - (A_{\text{ECHO}} + A_{\text{CANC}} + A_{\text{NLP}})$$

If nonlinear processing is not present, note that $L_{RES} = L_{RET}$.

2.10 combined loss (A_{COM})

F: affaiblissement combiné (A_{COM})

S: atenuación combinada (A_{COM})

The sum of echo loss, cancellation loss and nonlinear processing loss (if present). This loss relates L_{Rin} to L_{RET} by:

$$L_{\text{RET}} = L_{\text{Rin}} - A_{\text{COM}}$$
, where $A_{\text{COM}} = A_{\text{ECHO}} + A_{\text{CANC}} + A_{\text{NLP}}$

2.11 convergence

F: convergence

S: convergencia

The process of developing a model of the echo path which will be used in the echo estimator to produce the estimate of the circuit echo.

2.12 convergence time

F: temps de convergence

S: tiempo de convergencia

For a defined echo path, the interval between the instant a defined test signal is applied to the receive-in port of an echo canceller with the estimated echo path impulse response initially set to zero, and the instant the returned echo level at the send-out port reaches a defined level.

2.13 leak time

F: temps de fuite

S: tiempo de fuga

The interval between the instant a test signal is removed from the receive-in port of a fully-converged echo canceller and the instant the echo path model in the echo canceller changes such that, when a test signal is reapplied to R_{in} with the convergence circuitry inhibited, the returned echo is at a defined level.

This definition refers to echo cancellers employing, for example, leaky integrators in the convergence circuitry.

3 Characteristics of echo cancellers

3.1 General

This Recommendation is applicable to the design of echo cancellers. The echo cancellers are assumed to be "half" echo cancellers, i.e. those in which cancellation takes place only in the send path due to signals present in the receive path.

3.2 Purpose, operation and environment

Echo, in any 2-wire or combination 2- and 4-wire telephone circuit, is caused by impedance mismatches. An echo canceller can be used to reduce this echo to tolerable levels.

The echo present at the send-in port of an echo canceller is a distorted and delayed replica of the incoming speech from the far end, i.e. the echo is the incoming speech as modified by the echo path. The echo path is commonly described by its impulse response (see Figure 5). This response of a typical echo path shows a pure delay t_r , due to the delays inherent in the echo path transmission facilities, and a dispersed signal due to band limiting and multiple reflections. The sum of these is the echo path delay, t_d . The values of delay and dispersion will vary depending on the properties of the echo paths, e.g. they may vary for different national networks. Note that the echo path can still include more than one source of echo; many network configurations exist in which multiple 2-wire to 4-wire conversions exist in the end path of an echo canceller.

It is assumed that the echo paths are basically linear and not continuously $varying^2$, e.g. have no phase roll (see Recommendation G.164). The performance of the echo canceller is critically dependent on the linearity of the echo path between R_{out} and S_{in} (see Figure 4). A signal with peak clipping, presented at R_{in} , will cause minimal degradation in canceller performance. This is because the identical peak clipped signal is presented to both the echo estimator and the real echo path. If peak clipping occurs in either only the branch to the echo estimator or only in the real echo path, the difference in the two signals will cause the canceller performance to degrade. This is because the linear processing used in the canceller cannot develop a model to accurately represent the non-linearity introduced by peak clipping.

The echo path may include both analogue and digital links. The digital links introduce a peak clipping level defined in Recommendation G.711 as the level of the peak of a +3.1 dBm0 sine wave. Application of the clipping level to the $R_{\rm in}$ signal prior to the location of the internal branch point to the echo estimator will minimize the degradation of canceller performance for high level signals.

In addition, the loss of the echo path in dB (see 2.2) is likely to be such that the minimum loss from R_{out} to S_{in} of the echo canceller will be equal to the difference between relative levels at these two ports plus 6 dB. Echo cancellers designed to this Recommendation will perform properly for echo loss (A_{ECHO}) of 6 dB or greater. For (A_{ECHO}) less than 6 dB they may still work but with degraded performance. It is not possible to quantify this degraded performance.

An echo canceller must be able to synthesize a replica of the echo path impulse response. Many echo cancellers model the echo path using a sampled data representation, the sampling being at the Nyquist rate (8000 Hz). Such an echo canceller, to function properly, must have sufficient storage capacity for the required number of samples³⁾. Typically, too few storage locations will prevent adequate synthesis of all echo paths: too many storage locations will create undesirable additional noise due to the unused locations which, because of estimation noise, are generally not zero. It should be recognized that an echo canceller introduces an additional parallel echo path. If the impulse response of the echo path model is sufficiently different from the echo path impulse response, the total returned echo may be larger than that due to the echo path only.

The echo paths change as the echo canceller is used in successive connections. When speech first arrives at R_{in} , the echo canceller must adapt or converge to the new echo path, and it is desirable that this be fairly rapid, e.g. about one-half second. Also the residual echo should be small regardless of the level of the receive speech and the characteristics of the echo path. Some Administrations feel that a slightly higher residual echo level may be permitted provided it is further reduced using a small amount of nonlinear processing (see 5).

²⁾ Echo cancellers designed specifically for echo paths which are nonlinear and/or time variant are likely to be much more complex than those not so designed. It is felt that insufficient information exists to include such echo cancellers in this Recommendation. Echo cancellers conforming to this Recommendation are adaptive and will cope with slowly varying echo paths when only a receive signal is present.

³⁾ Echo cancellers having storage capacities of 8 ms to 64 ms have been successfully demonstrated. Maximum echo path delay t_d , in the network in which the canceller will be used will determine the required storage capacity.

FIGURE 5/G.165

Example of an impulse response of an echo path

When there is receive speech and the near party begins to double talk, an echo canceller may interpret the transmit signal as a new echo signal and attempt to adapt to it. This can seriously degrade the subjective quality of the connection. Not only is the echo cancellation reduced but distortion of the double talking speech may occur as the echo canceller dynamically attempts to adapt. Two common approaches are taken as a solution. The first is to use an algorithm which causes slow adaptation during periods of double talk. The second is to employ a double talk detector, similar to that used in echo suppressors. The echo canceller double talk detector, however, generally should favour break-in at the expense of false operation on echo. This differs from the double talk detector in an echo suppressor.

Thus, echo cancellers have the following fundamental requirements:

- 1) rapid convergence;
- 2) subjective low returned echo level during single talk;
- 3) low divergence during double talk.

Echo cancellers may remain active for several non-voice signals as well, in particular, Group 3 facsimile. As noted in 1.3, tests for adequate performance are required but not defined. Test 10, in 3.4.2.10, will eventually address this gap.

It is increasingly common to have echo cancellers operate in tandem, especially in cellular applications. Tests for adequate performance are not defined. Test 11, in 3.4.2.11, is under study for this purpose.

When echo cancellers are located on the subscriber side of the international signalling equipment, signalling tones do not pass through the cancellers so no special action is necessary. When cancellers are on the international side of the signalling equipment they are normally disabled by the switch during the active signalling exchange intervals in order to prevent distortion of the signalling tones by the echo canceller. When signalling tones simultaneously appear at the canceller receive and send ports (double talk) the receive signal will be processed through the echo path model contained in the canceller. The signal estimate produced by the canceller may sufficiently distort the send side signal so that it will not be properly recognized by the signalling receive unit (Note 1).

An echo canceller must be disabled during the transmission of the CCITT No. 6 and No. 7 continuity check tone (Note 2). If an echo canceller conforming to this Recommendation is located on the international side of a circuit with CCITT No. 6 or No. 7 signalling and is not externally disabled by the switch, it will not corrupt the return of the continuity check tone only if it is able to pass the optional tests No. 6 and No. 7 of this Recommendation. Similarly, if an echo canceller conforming to this Recommendation is located on the international side of CCITT No. 5 signalling units and is not disabled by the switch, it will not corrupt the continuously compelled line signalling exchange only if it is able to pass the optional tests No. 6 and No. 7 of this Recommendation.

NOTES

- 1 For some echo cancellers this problem may not occur when the send and receive frequencies are different.
- 2 Recommendation Q.271 on CCITT No. 6 and Recommendation Q.724 on CCITT No. 7 both include the following statement: "As the presence of active echo suppressors in the circuit would interfere with the continuity check, it is necessary to disable the suppressors during the check and to re-enable them, if required, after the check has been completed."

3.3 External enabling/disabling

An interface should be included in Type A and D echo cancellers to provide for enabling or disabling by an externally derived ground (earth) from the trunk circuit and controlled by the associated switch or ISC. The enabler should function to permit or prevent normal echo canceller operation. Certain Type C echo cancellers may be disabled directly by a digital signal. Type C echo cancellers should provide 64 kbit/s bit sequence integrity (i.e. if integrated, the A-law/ μ -law conversion will also be disabled) in the externally disabled state.

3.4 Tests and requirements for performance with inputs signals applied to the send and receive paths

3.4.1 Transmission performance

The appropriate transmission performance requirements of Recommendation G.164 also apply to echo cancellers except as noted below.

3.4.1.1 Delay distortion – Type A

The delay distortion relative to the minimum delay shall not exceed the values given in Table 1.

Frequency band (Hz)	Delay distortion (μs)
500-600	300
600-1000	150
1000-2600	50
2600-3000	250

TABLE 1/G.165

3.4.1.2 Attenuation distortion – Type A

The attenuation distortion shall be such that if Q dB is the attenuation at 800 Hz (or 1000 Hz) the attenuation shall be within the range (Q + 0.5) dB to (Q - 0.2) dB at any frequency in the band 300 - 3400 Hz and at 200 Hz, within the range of (Q + 1.0) dB to (Q - 0.2) dB.

3.4.1.3 Group delay – Type C

The group delay in the send path should be kept to a minimum and should not exceed 1 ms. No significant delay should occur in the receive path.

NOTE – The creation of frame slips in the echo path can lead to an occasional degradation of the echo cancellation. If a delay is necessary to synchronize the digital send and receive paths, the global admissible delay on the send path, including the group delay mentioned above, must not exceed 1 ms and on the receive path 250 μ s.

3.4.1.4 Group delay – Type D

The group delay in the send and receive paths shall meet the requirements of 3.4.1.3 for Type C echo cancellers with the addition of the delay allowed for codecs as given in Recommendation G.712.

3.4.1.5 Overload – Type A and Type D

The insertion loss of a 1004 Hz sine wave shall not increase by more than 0.1 dB for levels from 0 to +3.1 dBm0. For signals at R_{in} whose peaks are greater than the peaks of a +3.1 dBm0 sine wave, the peak signals at R_{out} shall remain unchanged as the R_{in} signal is increased above +3.1 dBm0. In a similar manner the peak signal at the echo estimator input, for a +3.1 dBm0 sine wave at R_{in} , shall remain unchanged as the R_{in} signal is increased above +3.1 dBm0.

3.4.2 Echo canceller performance

The performance requirements which follow are for echo cancellers which include nonlinear processors (see Annex A for echo cancellers which do not include a nonlinear processor).

In the tests, it is assumed that the nonlinear processor can be disabled, that the echo path impulse response store (H register) can be cleared (set to zero) and that adaptation can be inhibited.

The requirements are described in terms of tests made by applying signals to R_{in} and S_{in} of an echo canceller, and measuring the S_{out} signals. The test set-up is as shown in Figure 6. The ports are assumed to be at equal relative level points. Band-limited noise is used as the receive input test signal. The echo loss is independent of frequency.

NOTE – The requirements in 3.4.2 are based on the use of band-limited white noise (300-3400 Hz) as the test signal. Noise shaped in accordance with Recommendation G.227 may also be used. However, the applicability of the requirements in 3.4.2 requires confirmation and is under study.

The use of alternative test signals more representative of real speech and possible changes in test procedures and requirements are also under study.

FIGURE 6/G.165

Test for echo canceller performance

The primary purpose of an echo canceller is to control the echo of a speech signal. This is done by synthesizing a replica of the echo path impulse response and using it to generate an estimate of the echo which is subtracted from the actual circuit echo. The synthesis must be accomplished using a speech input signal. Because of the difficulty of defining a speech test signal, the following tests are type tests and rely upon the use of a band-limited noise test signal primarily for measurement convenience and repeatability. These tests should be performed on an echo canceller only after the design has been shown to properly synthesize a replica of the echo path impulse response from a speech input signal and its corresponding echo. Speech signals are not used in the tests in this subclause. Additionally, the nonlinear processor in the echo canceller should be designed to minimize and potentially avoid the perceptible effects of double-talk clipping and background noise contrast (see test 9 described later in this Recommendation). Tests to ensure proper operation are under study.

3.4.2.1 Test No. 1 – Steady state residual and returned echo level test

This test is meant to ensure that the steady state cancellation (A_{CANC}) is sufficient to produce a residual echo level which is sufficiently low to permit the use of nonlinear processing without undue reliance on it.

The H register is initially cleared and a receive signal is applied for a sufficient time for the canceller to converge producing a steady state residual echo level.

Requirement (provisional)

With the H register initially set to zero, the nonlinear processor disabled for all values of receive input signal level such that $L_{\rm Rin} \ge -30~{\rm dBm0}$ and $\le 0~{\rm dBm0}$ and for all values of echo loss $\ge 6~{\rm dB}$ and echo path delay, $t_{\rm d} \le \Delta {\rm ms^4}$), the residual echo level should be less than or equal to that shown in Figure 7. (Extension of the mask for $L_{\rm Rin}$ values between – 10 dBm0 and 0 dBm0 under study). When the nonlinear processor is enabled, the returned echo level must be less than –65 dBm0 for all values of $L_{\rm Rin}$ between –30 and 0 dBm0.

NOTE – Recommendation G.113 allows for up to 5 PCM codecs in the echo path. Meeting the requirement of Figure 7 under those conditions has not been verified. This is under study.

FIGURE 7/G.165

⁴⁾ Different echo cancellers may be designed to work satisfactorily for different echo path delays depending on their application in various networks. Thus Δ , whenever it appears in this Recommendation, represents the echo path delay, t_d , for which the echo canceller is designed.

3.4.2.2 Test No. 2 – Convergence test

This test is meant to ensure that the echo canceller converges rapidly for all combinations of input signal levels and echo paths and that the returned echo level is sufficiently low. The H register is initially cleared and adaption is inhibited. The double talk detector, if present, is put in the double talk mode by applying signals to S_{in} and R_{in} . The signal at S_{in} is removed and simultaneously adaption is enabled. The degree of adaption, as measured by the returned echo level, will depend on the convergence characteristics of the echo canceller and the double talk detection hangover time.

The test procedure is to clear the H register and inhibit adaption. Signal N is applied at a level -10 dBm0 and a signal is applied at $R_{\rm in}$. Then N is removed and simultaneously adaption is enabled (see Figure 8). After 500 ms inhibit adaption and measure the returned echo level. The nonlinear processor should be enabled.

FIGURE 8/G.165

Requirement

With the H register initially set to zero, for all values $L_{\rm Rin} \ge -30$ dBm0 and ≤ 0 dBm0 and present for 500 ms and for all values of echo loss ≥ 6 dB and echo path delay, $t_d \le \Delta$ ms, the combined loss ($A_{\rm COM} = A_{\rm ECHO} + A_{\rm CANC} + A_{\rm NLP}$) should be ≥ 27 dB.

3.4.2.3 Test No. 3 – Performance under conditions of double talk

The two parts of this test are meant to test the performance of the canceller under various conditions of double talk. The tests make the assumption that, upon detection of double talk, measures are taken to prevent or slow adaption in order to avoid excessive reduction in cancellation.

3.4.2.3.1 Test No. 3a is meant to ensure that the double talk detection is not so sensitive that echo and low level near-end speech falsely cause operation of the double talk detector to the extent that adaption does not occur. The test procedure is to clear the H register; then for some value of echo delay and echo loss, a signal is applied to R_{in} . Simultaneously (see Figure 9) an interfering signal which is sufficiently low in level to not seriously hamper the ability of the echo canceller to converge, is applied at S_{in} . This signal should not cause the double talk detector to be activated, and adaption and cancellation should occur. After 1 s the adaption is inhibited and the residual echo measured. The nonlinear process should be *disabled*.

FIGURE 9/G.165

Requirement

With the H register initially set to zero for all values of $L_{\rm Rin} \ge -25$ dBm0 and ≤ -10 dBm0, $N = L_{\rm Rin} -15$ dB, $A_{\rm ECHO} \ge 6$ dB and echo path delay, $t_d \le \Delta$ ms, convergence should occur within 1.0 s and $L_{\rm RES}$ should be $\le N$.

3.4.2.3.2 Test No. 3b is meant to ensure that the double talk detector is sufficiently sensitive and operates fast enough to prevent large divergence during double talking.

The test procedure is to fully converge the echo canceller for a given echo path. A signal is then applied to R_{in} . Simultaneously (see Figure 10) a signal N is applied to S_{in} which has a level at least that of R_{in} . This should cause the double talk detector to operate. After any arbitrary time, $\delta t > 0$, the adaption is inhibited and the residual echo measured. The nonlinear processor should be *disabled*.

FIGURE 10/G.165

Requirement

With the echo canceller initially in the fully converged state for all values of $L_{\rm Rin} \ge -30$ dBm0 and ≤ -10 dBm0, and for all values of $N \ge L_{\rm Rin}$ and for all values of echo loss ≥ 6 dB and echo path delay $t_d \le \Delta$ ms, the residual echo level after the simultaneous application of $L_{\rm Rin}$ and N for any time period should not increase more than 10 dB over the steady state requirements of Test No. 1.

3.4.2.4 Test No. 4 – Leak rate test

This test is meant to ensure that the leak time is not too fast, i.e. that the contents of the H register do not go to zero too rapidly.

The test procedure is to fully converge the echo canceller for a given echo path and then to remove all signals from the echo canceller. After two minutes the contents of the H register are frozen, a signal applied to R_{in} and the residual echo measured (see Figure 11). The nonlinear process is used in normal operation, it should be *disabled*.

FIGURE 11/G.165

Requirement

With the echo canceller initially in the fully converged state for all values of $L_{\rm Rin} \ge -30$ dBm0 and ≤ -10 dBm0, two minutes after the removal of the $R_{\rm in}$ signal, the residual echo level should not increase more than 10 dB over the steady state requirement of Test No. 1.

3.4.2.5 Test No. 5 – Infinite return loss convergence test

This test is meant to ensure that the echo canceller has some means to prevent the unwanted generation of echo. This may occur when the H register contains an echo path model, either from a previous connection or the current connection, and the echo path is opened (circuit echo vanishes) while a signal is present at R_{in}.

The test procedure is to fully converge the echo canceller for a given echo path. The echo path is then interrupted while a signal is applied to R_{in} . 500 ms after interrupting the echo path the returned echo signal at S_{out} should be measured (see Figure 12). The nonlinear processor should be *disabled*.

FIGURE 12/G.165

Requirement (provisional)

With the echo canceller initially in the fully converged state for all values of echo loss ≥ 6 dB, and for all values of $L_{\rm Rin} \geq -30$ dBm0 and ≤ -10 dBm0, the returned echo level at $S_{\rm out}$, 500 ms after the echo path is interrupted, should be ≤ -37 dBm0.

3.4.2.6 Test No. 6 – Nondivergence on narrow-band signals (optional)

This test has the object of verifying that the echo canceller will stay stable for narrow-band signals. The residual echo level is measured before and after the application of a sinusoidal wave or a wave composed of two frequencies.

The method consists of completely converging the echo canceller as in Test No. 1. A mono or bifrequency signal is then applied to $R_{\rm in}$. After three minutes the adaptation is inhibited and the returned echo is measured. The nonlinear processor is disabled for this test.

Requirement

With the echo canceller first fully converged as in Test No. 1 and then after application at R_{in} for three minutes of a mono or bifrequency signal $(f_1 + f_2 \text{ with } | f_1 - f_2 | \ge 170 \text{ Hz})$ such that $L_{Rin} \ge -30 \text{ dBm0}$ and $\le -10 \text{ dBm0}$ and for all values of echo return loss $\ge 6 \text{ dB}$ and echo path delay $t_d \le \text{tail}$ path capacity, the residual echo level should be less than or equal to that shown in Figure 7.

3.4.2.7 Test No. 7 – Nonconvergence of echo cancellers on mono or bifrequency signals transmitted in a handshaking protocol (optional)

Echo cancellers which are not externally disabled, and which are located on the line side of Signalling System No. 5, 6 and 7 in international exchanges or are associated with national exchanges, must operate properly with signalling tones. This test is meant to ensure that echo cancellers will not dump a mono or bifrequency signal transmitted in a handshaking protocol on the transmit direction either before receiving or after receiving an identical signal (except for level and phase) on the receive direction. This is intended to allow correct transmission of certain types of signalling tones without externally disabling echo cancellers.

Requirement

With the echo canceller initially in any convergence state (for simplification, the fully converged state for an echo return loss of 6 dB may be chosen), the level of a mono or bifrequency signal $(f_1 + f_2 \text{ with } | f_1 - f_2 | \ge 170 \text{ Hz})$ applied at the send in port within 90 msecs (either before or after) of having applied the same signal (except for level and phase) at the receive in port, should not vary by more than 2 dB when compared to the nominal level of the injected signal. The level "N" of each frequency applied is such that the peak level of the mono or bifrequency signal should be in the range $-18 \text{ dBm0} \le N \le 3 \text{ dBm0}$ and the echo return loss is infinite for the bulk of the test.

3.4.2.8 Test No. 8 – Overload test for Type A and Type D cancellers

NOTE – The numbers enclosed by [] are provisional and under study.

This test is meant to ensure that the peak clipping level of the echo estimating path as well as the transmission paths R_{in} to R_{out} and S_{in} to S_{out} are consistent with the peak clipping levels of Recommendation G.711 in order to minimize degradation of the canceller's performance for high level signals.

The test procedure is to first independently test the send and receive paths and the echo estimating path.

3.4.2.8.1 Send and receive paths

The send and receive paths are tested by observing that signals less than [+3.05 dBm0] do not exhibit peak clipping and that signals greater than [+3.25 dBm0] do exhibit peak clipping. Measurements are made on a 1004 Hz test tone with a distortion analyser for signal levels beginning at 0 dBm0 which are gradually increased in level until the clipping level is reached.

Requirement

The clipping level is defined as the level at which the total distortion is found to increase by [1 dB] with respect to the total distortion measured for a 1004 Hz tone at 0 dBm0. The clipping level shall fall within the range $[+3.15 \pm 0.1 \text{ dBm0}]$.

3.4.2.8.2 Echo estimating path

The echo estimating path is tested by developing a model of a known echo path, disabling adaptation, disabling the nonlinear processor, opening the echo path, applying a test tone to R_{in} and measuring the distortion on the signal at S_{out} .

For an echo path, having a flat frequency response over the voice band, with a 6 dB echo loss, converge the echo canceller using a [-10 dBm0 (noise/artificial speech)] signal applied to R_{in} for at least 3 seconds. Then disable the adaptation, disconnect the echo path and disable the nonlinear processor. Apply a 1004 Hz test tone at 0 dBm0 and measure the total distortion at S_{out} . Gradually increase the level of the test tone at R_{in} until peak clipping is observed as indicated by an increase in the distortion measured at S_{out} .

Requirement

The clipping level is defined as the level at which the total distortion is found to increase by [1 dB] with respect to the total distortion measured for a 1004 Hz tone at 0 dBm0. The clipping level shall fall within the range $[+3.15 \pm 0.1 \text{ dBm0}]$.

3.4.2.9 Test No. 9 – Comfort noise test (provisional, all values under study)

3.4.2.9.1 Part 1 (matching)

- 1) Set N to -60 dBm0 to -40 dBm0.
- 2) Set L_{Rin} to silence (< -40 dBm0) and hold for x minutes (x under study).
- 3) Set L_{Rin} to -10 dBm0 and set the echo loss to 8 dB.
- 4) Measure L_{Sout} .

Requirement

 L_{Sout} shall be within y dB of N (y under study, recommended value is 0.5 dB to 2.0 dB). Also, this value shall hold as long as noise level N remains constant.

3.4.2.9.2 Part 2 (adjustment down)

- 1) Lower N by 10 dB.
- 2) Measure L_{Sout} within 2 seconds.

Requirement

 $L_{\rm Sout}$ shall be within y dB of N (y under study, recommended value is 0.5 dB to 2.0 dB) or, if N < -60 dBm0, $L_{\rm Sout}$ shall also be < -60 dBm0.

3.4.2.9.3 Part 3 (adjustment up)

- 1) Raise *N* by 10 dB.
- 2) Measure L_{Sout} within z seconds (z under study, recommended value is greater than 2 seconds).

Requirement

 L_{Sout} shall be within y dB of N (y under study, recommended value is 0.5 dB to 2.0 dB) or, if N < -60 dBm0, L_{Sout} shall also be < -60 dBm0.

3.4.2.10 Test No. 10 – Facsimile test

Under study.

3.4.2.11 Test No. 11 – Tandem echo canceller test

Under study.

4 Characteristics of an echo canceller tone disabler

4.1 General

The echo cancellers covered by this Recommendation shall be equipped with a tone detector that conforms to this subclause. This tone detector responds to a disabling signal which is different from that used to disable the echo suppressor as described in 5/G.164 and consists of a 2100 Hz tone with periodic phase reversals inserted in that tone. The tone disabler should respond only to the specified in-band signal. It should not respond to other in-band signals, e.g. speech, or a 2100 Hz tone without a phase reversal. The tone disabler should detect and respond to a disabling signal which may be present in either the send or the receive path.

The requirements for echo canceller disabling to ensure proper operation with ATME No. 2 equipment that transmits the 2100 Hz tone with phase reversals could be met by using either the tone disabler specified in this subclause, or the echo suppressor tone disabler specified in 5/G.164. However, use of the 5/G.164 disabler does not assure proper operation with all currently specified V-Series modems.

The term disabled in this subclause refers to a condition in which the echo canceller is configured in such a way as to no longer modify the signals which pass through it in either direction. Under this condition, no echo estimate is subtracted from the send path, the nonlinear processor is made transparent, and the delay through the echo canceller still meets the conditions specified in 3.4.1. However, no relationship between the circuit conditions before and after disabling should be assumed. For one thing, the operation of echo cancellers with tonal inputs (such as the disabling tone) is unspecified. Additionally, the impulse response stored in the echo canceller prior to convergence (and prior to the disabling tone being sent) is arbitrary. This can lead to apparent additional echo paths which, in some echo canceller implementations, remain unchanged until the disabling tone is recognized. Also note that echo suppressors could be on the same circuit and there is no specified relationship between their delay in the enabled and disabled states. In spite of the above, it is possible, for example, to measure the round-trip delay of a circuit with the disabling tone but the trailing edge of the tone burst should be used and sufficient time for all devices to be disabled should be allotted before terminating the disabling tone and starting the timing.

It should be noted that this condition does not necessarily fulfil the requirements for 64 kbit/s bit sequence integrity, for which case other means of disabling in line with 3.4 will apply.

A reference tone disabler is described in Annex B.

4.2 Disabler characteristics

The echo canceller tone disabler requires the detection of a 2100 Hz tone with phase reversals of that tone. The characteristics of the transmitted signal are defined in Recommendation V.25. Phase variations in the range of $180^{\circ} \pm 25^{\circ}$ must be detected while those in the range of $0^{\circ} \pm 110^{\circ}$ must not be detected.

The frequency characteristics of the tone detector are the same as the characteristics of the echo suppressor tone detector given in 5.2/G.164.

The dynamic range of this detector should be consistent with the input levels as specified in Recommendations V.2 and H.51 with allowances for variation introduced by the public switched telephone network.

4.3 Guardband characteristics

Similar to that defined in 5.3/G.164, consistent with the dynamic range given in 4.2 with the following exception. The detector should operate perfectly with white noise less than or equal to 11 dB below the level of the 2100 Hz signal. No definitive guidelines can be given for the range between 5 and 11 dB because of the variations in the test equipment used. In particular, performance may vary with the peak-to-average ratio of the noise generator used. As a general guideline, however, the percentage of correct operation (detection of phase variations of $180^{\circ} \pm 25^{\circ}$ and non-detection of phase variations of $0^{\circ} \pm 110^{\circ}$) should fall by no more than 1% for each dB reduction in signal-to-noise below 11 dB. The Administration of the Federal Republic of Germany mentions the possibility of designing a detector capable of operating perfectly at 5 dB signal-to-noise ratio.

4.4 Holding-band characteristics

Same as defined in 5.4/G.164.

4.5 Operate time

The operate time must be sufficiently long to provide immunity from false operation due to voice signals, but not so long as to needlessly extend the time to disable. The tone disabler is required to operate within one second of the receipt of the disabling signal.

4.6 False operation due to speech currents

Same as in 5.6/G.164.

4.7 False operation due to data signals

It is desirable that the tone disabler should rarely operate falsely on data signals from data sets that would be adversely affected by disabling of the echo canceller. To this end, a reasonable objective is that, for an echo canceller installed on a working circuit, usual data signals from such data sets should not, on the average, cause more than 10 false operations during 100 hours of data transmissions.

4.8 Release time

Same as in 5.7/G.164.

4.9 Other considerations

Both the echo of the disabling tone and the echo of the calling tone may disturb the detection of the echo canceller disabling tone. As such, it is not recommended to add the receive and transmit signal inputs together to form an input to a single detector.

Careful attention should be given to the number of phase reversals required for detection of the disabling tone. Some Administrations favour relying on 1 to improve the probability of detection even in the presence of slips, impulse noise, and low signal-to-noise ratio. Other Administrations favour relying on 2 to improve the probability of correctly distinguishing between non-phase-reversed and phase-reversed 2100 Hz tones.

5 Nonlinear processors for use in echo cancellers

5.1 Scope

For the purpose of this Recommendation the term "nonlinear processor" is intended to mean only those devices which fall within the definition given in 2.5 and which have been proven to be effective in echo cancellers. It is possible to implement such nonlinear processors in a number of ways (centre clippers being just one example), with fixed or adaptive operating features, but no recommendation is made for any particular implementation. General principles and guidelines are given in 5.2. More detailed and concrete information requires reference to specific implementations. This is done in Annex C for the particular case of a "reference nonlinear processor". The use of this term denotes an implementation given for guidance and illustration only. It does not exclude other implementations nor does it imply that the reference nonlinear processor is necessarily the most appropriate realization on any technical, operational or economic grounds.

5.2 General principles and guidelines

5.2.1 Function

5.2.1.1 General

The nonlinear processor is located in the send path between the output of the subtractor and the send-out port of the echo canceller. Conceptually, it is a device which blocks low level signals and passes high level signals. Its function is to further reduce the residual echo level (L_{RES} as defined in 2.4) which remains after imperfect cancellation of the circuit echo so that the necessary low returned echo level (L_{RET} as defined in 2.7) can be achieved.

5.2.1.2 Network performance

Imperfect cancellation can occur because echo cancellers which conform to this Recommendation may not be capable of adequately modelling echo paths which generate significant levels of nonlinear distortion (see 3.2). Such distortion can occur, for example, in networks conforming to Recommendation G.113 in which up to five pairs of PCM codecs (conforming to Recommendation G.712) are permitted in an echo path. The accumulated quantization distortion from these codecs may prevent an echo canceller from achieving the necessary $L_{\rm RET}$ by using linear cancellation techniques alone. It is therefore recommended that all echo cancellers capable only of modelling the linear components of echo paths but intended for general network use should incorporate suitable nonlinear processors.

5.2.1.3 Limitations

This use of nonlinear processors represents a compromise in the circuit transparency which would be possible by an echo canceller which could achieve the necessary $L_{\rm RET}$ by using only modelling and cancellation techniques. Ideally, the nonlinear processor should not cause distortion of near-end speech. In practical devices it may not be possible to sufficiently approach this ideal. In this case it is recommended that nonlinear processors should not be active under double-talk or near-end single-talk conditions. From this it follows that excessive dependence must not be placed on the nonlinear processor and that $L_{\rm RES}$ must be low enough to prevent objectionable echo under double-talk conditions.

5.2.1.4 Data transmission

Nonlinear processors may affect the transmission of data through an enabled echo canceller. This is under study.

5.2.2 Suppression threshold

5.2.2.1 General

The suppression threshold level (T_{SUP}) of a nonlinear processor is expressed in dBm0 and is equal to the highest level of a sine-wave signal at a given moment that is just suppressed. Either fixed or adaptive suppression threshold levels may be used.

5.2.2.2 Fixed suppression threshold

With a fixed suppression threshold level, the appropriate level to use will depend upon the cancellation achieved and the statistics of speech levels and line conditions found in the particular network in which the echo canceller is to be used. It is therefore recommended that the actual level should be field selectable to permit the user to adjust it for the actual network environment. Values of fixed suppression threshold levels to be used are under study – see Notes 1 and 2.

NOTES

- As an interim guide, it is suggested that the suppression threshold level should be set a few decibels above the level that would result in the *peaks* of L_{RES} for a " 2σ -talker" and a " 2σ -echo return loss" being suppressed.
- 2 Results of a field trial reported by one Administration indicated that a fixed suppression threshold level of -36 dBm0 gave a satisfactory performance. A theoretical study, by another Administration, of an echo path containing five pairs of PCM codecs showed that for an L_{Rin} of -10 dBm0, the quantization noise could result in an L_{RES} of -38 dBm0.

5.2.2.3 Adaptive suppression threshold

A good compromise can be made between using a high T_{SUP} to prevent it being exceeded by loud talker residual echo and using a low T_{SUP} to reduce speech distortion on break-in by making T_{SUP} adaptive to the actual circuit conditions and speech levels. This may be achieved in a number of ways and no recommendation is made for any particular implementation. General guidelines applicable to the control algorithm and suppression threshold levels are under study.

5.2.3 Control of nonlinear processor activation

5.2.3.1 General

To conform to the recommendation made in 5.2.1.3, it is necessary to control the activation of the nonlinear processor so that it is not active when near-end speech is likely to be present. When "active", the nonlinear processor should function as intended to reduce L_{RES} . When "inactive", it should not perform any nonlinear processing on any signal passing through the echo canceller.

5.2.3.2 Control guidelines

It is recommended that the following two guidelines should govern control of the activation of a nonlinear processor. First, because they are intended to further reduce L_{RES} , they should be active when L_{RES} is at a significant level. Second, because they should not distort near-end speech, they should be inactive when near-end speech is present. Where these two guidelines conflict the control function should favour the second.

5.2.3.3 Static characteristics

A conceptual diagram showing the two operational states of a nonlinear processor is shown in Figure 13. The $L_{\rm Sin}$ $L_{\rm Rin}$ plane is divided into two regions, W and Z by the threshold WZ ($T_{\rm WZ}$). In the W region the nonlinear processor is inactive while in the Z region it is active. Proper control of the nonlinear processor to ensure operation in the appropriate region requires recognition of the double-talk condition or the presence of near-end speech. Imperfect detection of double-talk combined with a high suppression threshold level will result in distortion of near-end speech. The echo canceller then exhibits some of the characteristics of an echo suppressor. A low suppression level will permit easy double-talking, even if a detection error is made because the near-end speech will suffer only a low level of nonlinear distortion. If the suppression threshold level is too low, then peaks of residual echo may be heard.

FIGURE 13/G.165

Nonlinear processor operating regions

5.2.3.4 Dynamic characteristics

The dynamic characteristics can be specified by stating the time that elapses when the signal conditions pass from a point in one area to a point in the other area before the state appropriate to the second area is established. Four such transitions are shown by arrows in Figure 13.

Transition No. 1 – W to Z, L_{Sin} constant, L_{Rin} increasing

In this case the L_{Sin} signal occurred first and the L_{Rin} is increasing to a sufficiently high level to override the L_{Sin} signal in the control path and cause the nonlinear processor to change from the inactive to the active state. Since this will cause distortion of the L_{Sin} signal (near talker speech in this case) the action should not be initiated too quickly.

Transition No. 2 – Z to W, L_{Sin} constant, L_{Rin} decreasing

In this case the L_{Rin} signal has overridden the L_{Sin} signal in the control path and the nonlinear processor is in the active state. The L_{Rin} signal is now decreasing. The nonlinear processor should remain in the active state sufficiently long to prevent echo, which is stored in the echo path, from being near by the far talker.

Transition No. 3 – Z to W, L_{Rin} constant, L_{Sin} increasing

This transition is replicating the onset of double-talk. As soon as possible after the L_{Sin} signal is detected the nonlinear processor should be switched to the inactive state in order to minimize any distortion of the near talker speech.

Transition No. 4 – W to Z, L_{Rin} constant, L_{Sin} decreasing

In this case L_{Sin} has been recognized but is decreasing. Any action which is taken should favour continuing to permit the L_{Sin} signal to pass. This implies there should be some delay in switching the nonlinear processor back to the active state.

5.2.4 Frequency limits of control paths

Under study.

NOTE – Depending on the particular implementation of the nonlinear processor, the considerations and frequency response limits given in 3.2.4.2/G.164 for the suppression and break-in control paths of echo suppressors may also be applicable to similar control paths used in nonlinear processors. These control paths may include the activation control and adaptive suppression threshold level control.

5.2.5 Signal attenuation below threshold level

The attenuation of signals having a level below that of the suppression threshold level of a nonlinear processor in the active state must be such that the requirements of 3.4.2.1 are met.

5.2.6 Testing of nonlinear processors

The nonlinear processor may be considered as a special case of an echo suppressor which is limited to suppressing only low level signals. The types of test required to determine the nonlinear processor performance characteristics are very similar to the echo suppressor tests given in Recommendation G.164. However, depending on the specific implementation of a nonlinear processor, the transitions between areas W and Z of Figure 13 may not be as sharply defined as is the case for echo suppressors. Signals observed at the send-out port of the echo canceller may be distorted for short periods when transitions between the W and Z operating regions occur. Although Recommendation G.164 may be used as a guide to the testing of nonlinear processors, it may be necessary to introduce unique test circuit modifications in order to make measurements on some specific nonlinear processor implementations. No recommendation can be given for a universal test circuit appropriate for all nonlinear processor implementations.

Annex A

Echo cancellers without nonlinear processing

(This annex forms an integral part of this Recommendation)

It may be possible to implement echo cancellers without the inclusion of nonlinear processing. For these echo cancellers the total echo loss is provided by echo cancellation. The achievable echo cancellation is limited by the characteristics of the echo path and by the method of implementing the echo canceller. In particular, if one pair of codecs conforming to Recommendation G.712 is used in the echo path or in the echo canceller, the maximum echo cancellation (considering quantizing errors in the echo canceller and other impairments) is that shown by the solid line in Figure A.1.

Echo cancellers conforming to the solid line in Figure A.1 have been tested and found to provide acceptable performance in Japan. Other tests, however, suggest that the echo cancellation required in echo cancellers for general application is at least that shown by the broken line in Figure A.1. Further study is needed. Pending the results of that study, echo cancellers which do not include nonlinear processors are not yet recommended for general application.

All the provisions and tests in the body of this Recommendation apply to these echo cancellers except as follows:

- a) Subclause 3.4.2.1: The residual echo level requirement is that shown by the solid line of Figure A.1.
- b) For all other tests, any reference to nonlinear processing should be ignored.

FIGURE A.1/G.165

Annex B

Description of an echo canceller reference tone disabler

(This annex forms an integral part of this Recommendation)

B.1 General

This annex describes the characteristics of an echo canceller reference tone disabler. The use of the term reference denotes a disabling implementation given for guidance only. It does not exclude alternative implementations of a tone disabler which responds to the signal as defined in Recommendation V.25, and which also meets all of the criteria for reliability of operation and protection from false operation by speech signals.

B.2 Disabler characteristics

The echo canceller reference tone disabler described in this annex detects a 2100 Hz tone with periodic phase reversals which occur every 450 ± 25 ms. The characteristics of the transmitted signal are defined in Recommendation V.25.

B.2.1 Tone detection

The frequency characteristics of the tone detector used in this reference tone disabler are the same as the characteristics of the echo suppressor tone detector given in 5.2/G.164, except that the upper limit of the dynamic range is -6 dBm0.

B.2.2 Phase reversal detection

The reference tone disabler responds to a signal which contains phase reversals of $108^{\circ} \pm 10^{\circ}$ at its source (as specified in Recommendation V.25) when this signal has been modified by allowable degradations caused by the network, e.g. noise, phase jitter, etc. This disabler is insensitive to phase jitter of \pm 15° peak-to-peak in the frequency range of 0 - 120 Hz. This accommodates to the phase jitter permitted by Recommendations H.12 and G.229. In order to minimize the probability of false disabling of the echo canceller due to speech currents and network-induced phase changes, this reference tone disabler does not respond to single phase changes of the 2100 Hz tone in the range $0^{\circ} \pm 110^{\circ}$ occurring in a one second period. This number has been chosen since it represents the approximate phase shift caused by a single frame slips in a PCM system.

B.3 Guardband characteristics

Meets requirements in 5.3/G.164.

 ${
m NOTE}$ – The possibility of interference during the phase reversal detection period has been taken into account. One potential source of interference is the presence of calling tone as specified in Recommendation V.25. If the calling tone interferes with the detection of the phase reversal, the entire disabling detection sequence is restarted, but only one time. Recommendation V.25 ensures at least one second of quiet time between calling tone burst.

B.4 Holding-band characteristics

Meets requirements in 5.4/G.164.

B.5 Operate time

The reference tone disabler operates within one second of the receipt, without interference, of the sustained 2100 Hz tone with periodic phase reversals, having the level in the range -6 to -31 dBm0. The one second operate time permits the detection of the 2100 Hz tone and ensures that two phase reversals will occur (unless a slip or impulse noise masks one of the phase reversals).

B.6 False operation due to speech currents

Meets requirements in 5.6/G.164.

22

B.7 False operation due to data signals

Meets the requirement in 4.7. To this end, the tone disabler circuitry becomes inoperative if one second of clear (i.e. no phase reversals or other interference) 2100 Hz tone is detected. The detected circuit remains inoperative during the data transmission and only becomes operative again 250 ± 150 ms after a signal in the holding band falls at least 3 dB below the maximum holding sensitivity. Thus the possibility of inadvertent disabling of the echo canceller during data transmission is minimized.

B.8 Release time

Meets requirements in 5.7/G.164.

Annex C

Description of a reference nonlinear processor

(This annex forms an integral part of this Recommendation)

C.1 General

This annex, which is for the purposes of illustration only and not intended as a detailed design (see 5.1), describes a reference nonlinear processor based upon concepts that are as simple as possible but having included in it a sufficient number of features to give guidance for a wide range of possible implementations. To this end two variants of the reference nonlinear processor are included. Both are based on a centre clipper having either of the idealized transfer functions illustrated in Figure C.1. The suppression threshold level (determined, in this case by the clipping level) in the first variant is adaptive, adaptation being by reference to $L_{\rm Rin}$. Activation control is by reference to the difference between $L_{\rm Rin}$ and $L_{\rm Sin}$. In the second variant the suppression threshold is fixed. It is assumed that the reference nonlinear processor is used in an echo canceller which can achieve a cancellation of the linear components of any returned echo of at least N dB. The value of N is under study.

 $\label{eq:FIGURE} FIGURE~C.1/G.165$ Two examples of idealized centre clipper transfer functions

C.2 Suppression threshold (T_{SUP})

Adaptive $T_{SUP} = (L_{Rin} - x \pm 3) \text{ dBm0 for } -30 \le L_{Rin} \le -10 \text{ dBm0}$

Fixed $T_{SUP} = x' dBm0$

NOTE – Values of x and x are under study. Values of 18 for x and x and x have been suggested but confirmation is required that these values are appropriate for use in all networks.

C.3 Static characteristics of activation control

 $T_{WZ} = (L_{Rin} - y \pm 3) \text{ dBm0 for } -30 \le L_{Rin} \le -10 \text{ dBm0}$

NOTES

- 1 T_{WZ} is as defined in 5.2.3.3.
- 2 The value of y may be different for each variant, and this is under study. Values of x dB in the case of the adaptive T_{SUP} and \geq 6 dB for y in the case of the fixed T_{SUP} seem reasonable.

C.4 Dynamic characteristics of activation control

Dynamic characteristics of the activation control are given in Tables C.1 and C.2. Also see Figure 13.

C.5 Frequency limits of control paths

See Recommendation 5.2.4.

C.6 Testing

Tables C.1 and C.2 indicate, by reference to Recommendation G.164, how the dynamic performance of nonlinear processor activation control may be checked using sine wave signals. Figures C.2 and C.3 show the traces obtained on an oscilloscope for these tests.

- α Operate time
- β Hangover time
- t_d Time interval in which the distorted signal may be observed

FIGURE C.2/G.165

Traces for NLP operate and hangover times, $L_{\mathbf{R}_{\mathrm{in}}}$ constant

- Operate time
- $egin{array}{l} lpha \ eta \ t_d \end{array}$
- Hangover time
 Time interval in which the distorted signal may be observed

FIGURE C.3/G.165 Traces for NLP operate and hangover times, $L_{\rm S_{\rm in}}\,$ constant

TABLE C.1/G.165

Nonlinear processor hangover times

Boundary		Initial signal		Final signal		Recommen-	Test No.	Excursion	Test circuit,	Oscilloscope
		Send L _{Sin} (dBm0)	Receive L _{Rin} (dBm0)	Send L _{Sin} (dBm0)	Receive L _{Rin} (dBm0)	ded value (ms)	(Rec. G.164)	(see Fig. 13)	Figure:	trace
	Fixed	-25	-10	-25	-30	15-64				
Z/W	Adapive	-55 -40 -30	-20 -15 - 5	-55 -40 -30	-40 -40 -30	$\Delta^{\mathrm{a})}$	5	Transition 2	14/G.164	Trace 1 and trace 2 of Figure C.3 (β)
	Fixed	-15	-25	-40	-25	16-120				
W/Z	Adaptive	-40 -40 -25	-50 -30 -15	-55 -55 -40	-50 -30 -15	30-50	6	Transition 4	17/G.164	Trace 1 and trace 2 of Figure C.2 (β)
^{a)} Δ is defined in 3.4.2.1 [footnote ⁴⁾].										

TABLE C.2/G.165

Nonlinear processor operate times

Boundary		Initial signal		Final signal		Recommen-	Test No.	Excursion	Test circuit,	Oscilloscope
		Send L _{Sin} (dBm0)	Receive L _{Rin} (dBm0)	Send L _{Sin} (dBm0)	Receive L _{Rin} (dBm0)	ded value (ms)	(Rec. G.164)	(see Fig. 13)	Figure:	trace
	Fixed	-25	-30	-25	-10	16-120				
W/Z	Adaptive	-55 -40 -30	-40 -40 -30	-55 -40 -30	-20 -15 - 5	15-75	4	Transition 1	14/G.164	Trace 2 of Figure C.3 (α)
	Fixed	-40	-25	-15	-25	≤ 1				
Z/W	Adaptive	-55 -55 -40	-50 -30 -15	-40 -40 -25	-50 -30 -15	≤ 5	6	Transition 3	17/G.164	Trace 2 of Figure C.2 (α)