## Fiber Bundles

A vector field v in Masigns to each PEM, a vector, i.e.,



A bundle, is an structure composed of a manifold E, a manifold M and a map  $T: E \to M$ .



Let  $M=\mathbb{R}$ ,  $E=\mathbb{R}^2$  and  $T:E\longrightarrow M$ , the projection in the x-axis.



The manifold E, is called Total space, M is the base space and IT the projection map.

For each pEM, Ep= }q (E:T(q)=P{ -> Fibers.

Total space 
$$E$$
,  $E = \bigcup_{p \in M} E_p$ 

The tangent bundle of a manifold is an example.

The total space TM is the sum of the tangent spaces to M.  $TM = U T_P M$ ,

and the projection TI:TM—M maps each tangent vector VETPM, PEM.

We must give to TpM the structure of manifold.

M is a manifold of dimension n, locally looks like R.

Specifically a point TM, is to give PEM and UETPM i.e., TM locally looks like R'xR'.

let's define a chart in TM, using the chart of M, l.: Uz - IR^
of M. Let Va be a subset of TM given by

V={VETM, T(V) E CL}



 $\Psi_{*}(v) = \{ \Psi_{*}(\pi(v)), (\Psi_{*})_{*} v \}$ 

Given two manifolds M and F the trivial boundle over M, with fibers in F, 15 simply the contesian product  $E=M\times F=(p,f)$  and projection.

$$\pi(\rho, f) = \rho$$
;  $\forall (\rho, f) \in M \times F$ 

The fivial bundle E=MxF, the bundle over p

$$E_p = \rho \times F$$

The cylinder







Given two fiber bundles  $T: E \rightarrow M$ ,  $T': E' \rightarrow M'$ , a morphism  $Y: E \rightarrow E'$ , with a map  $\Phi: M \rightarrow M'$  such that  $\Psi$  map each fiber Ep in the fibers  $E'_{\Phi(P)}$ .

