Lecture 2: Recursive Algorithms: MergeSort; Binary Search; The Master Theorem; The Recursive Tree Method

1 Reductions and Sub-Routines

- Solving a problem by **reducing** it (or a sub-problem of it) to another problem is the most fundamental technique in algorithm design.
- Specifically, algorithm A may use another algorithm B as a sub-routine.
- This has numerous advantages:
 - \circ Code Verification: the correctness of A is independent of B.
 - o Code Reuse: a great time-saver.
- A simple but very powerful special case of this paradigm is when the algorithm calls itself!
 - This method is called **recursion**.

2 MergeSort

• We can sort n numbers into non-decreasing order using the following algorithm:

```
MergeSort(x_1, x_2, ..., x_n)
If n = 1 then output x_1
Else output Merge{MergeSort(x_1, ..., x_{\frac{n}{2}}), MergeSort(x_{\frac{n}{2}+1}, ..., x_n)}
```


• Two Problems:

- Does the algorithm work? Yes!
 - \rightarrow The algorithm calls itself on smaller instances
 - \star The division process terminates with a set of base cases of size 1.
 - \rightarrow MergeSort trivially works on the base cases.
 - \rightarrow So, given the validity of the Merge Step, the correctness of the algorithm follows by **strong induction**.
 - \star As long as base case is correct and merge step works, everything will be fine.
- If so, is it efficient (polynomial time)? Yes! Look at the recursive formula.
 - \rightarrow To analyze this we represent the running time T (n) via a **recurrence**: Recursive Formula: T(n) = $2 \cdot T(\frac{n}{2}) + c \cdot n$
 - $\star 2 \cdot T(\frac{n}{2})$: Recuse on two problems with half the size.

 \star c · n: It takes linear time to merge two sorted lists.

Base Case:
$$T(1) = 1$$

- * Or we can use T(c) = O(1) for any constant c.
- \rightarrow The Running Time of MergeSort
 - * Theorem: MergeSort runs in time $O(n \cdot \log n)$
 - ★ Proof:
 - 1. By adding dummy numbers, we may assume n is a power of two: $n=2^k$
 - 2. We can unwind the recursive formula as follows:

$$T(\mathbf{n}) = 2 \cdot T(\frac{n}{2}) + \mathbf{c} \cdot \mathbf{n}$$

3 Binary Search

• We can search for a key k in a sorted array of cardinality n using the binary search algorithm:

```
BinarySearch(a_1, a_2, ..., a_n : k)
While n > 0 do:
If a_{\frac{n}{2}} = k output YES
Else if a_{\frac{n}{2}} > k output BinarySearch(a_1, a_2, ..., a_{\frac{n}{2}-1} : k)
Else if a_{\frac{n}{2}} < k output BinarySearch(a_{\frac{n}{2}+1}, ..., a_n : k)
Output NO
```


- Does this work?
 - The validity of the binary search follows simply by strong induction.(The base case is trivially true.)
- Running Time?
 - Recurrence:

Recursive Formula:
$$T(n) = T(\frac{n}{2}) + c$$

Base Case: $T(1) = 1$

- \circ Theorem: Binary Search runs in time $O(\log n)$
 - 1. By adding dummy numbers, we may assume n is a power of two: n = 2^k
 - 2. We can unwind the recursive formula as follows:

$$T(n) = T\left(\frac{n}{2}\right) + c$$

$$= \left(T\left(\frac{n}{4}\right) + c\right) + c$$

$$= T\left(\frac{n}{4}\right) + 2 \cdot c$$

Again this unwinding operation can be repeated:

$$T(n) = T\left(\frac{n}{4}\right) + 2 \cdot c$$

$$= \left(T\left(\frac{n}{8}\right) + c\right) + 2 \cdot c$$

$$= T\left(\frac{n}{8}\right) + 3 \cdot c$$

$$\vdots$$

$$= T\left(\frac{n}{2^k}\right) + k \cdot c$$

· Hence:

$$T(n) = T(1) + k \cdot c$$
 Since $n = 2^k$

$$= 1 + \log n \cdot c$$

This gives the claimed running time:

$$T(n) = O(\log n)$$

4 Divide and Conquer Algorithms

- A divide and conquer algorithm recursively breaks up a problem of size n in smaller sub-problems such that:
 - There are exactly a sub-problems.
 - Each sub-problem has size at most $\frac{1}{h}$ n
 - Once solved, the solutions to the sub-problems can be <u>combined</u> to produce a solution to the original problem in time $O(n^d)$
- So the run-time of a divide and conquer algorithm satisfies the recurrence:

$$T(\mathbf{n}) = \mathbf{a} \cdot T(\frac{n}{b}) + O(n^d)$$

• MergeSort and Binary Search are indeed divide and conquer algorithms.

	Recursion Formula	a	b	d
MergeSort	$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n^1)$	2	2	1
Binary Search	$T(n) = 1 \cdot T\left(\frac{n}{2}\right) + O(n^0)$	1	2	0

5 Non-Military Applications of Divide and Conquer

- Divide and Conquer has many other non-military, practical applications:
 - o Big Data
 - Distributed Algorithms
 - Clustering and Classification
 - MapReduce

6 Dummy Entries

• MergeSort actually has the recurrence:

$$\hat{T}(\mathbf{n}) = \hat{T}(\left[\frac{n}{2}\right]) + \hat{T}(\left[\frac{n}{2}\right]) + \mathbf{c} \cdot \mathbf{n}$$

- Recall we got around this by adding dummy entries:
 - \circ We found \hat{n} the smallest power of 2 greater than n.
 - For this case, MergeSort then does have recurrence:

$$T(\mathbf{n}) = 2 \cdot T(\frac{n}{2}) + \mathbf{c} \cdot \mathbf{n}$$

• But we also have:

$$\hat{T}(n) \le T(\bar{n}) = O(\bar{n} \cdot \log \bar{n}) = O(n \cdot \log n)$$

• Here is another way to solve the recurrence:

$$\hat{T}(n) = \hat{T}([\frac{n}{2}]) + \hat{T}([\frac{n}{2}]) + c \cdot n$$

• As we only want to upper bound the running time, we can use:

$$\hat{T}(n) \le \hat{T}(\frac{n}{2} + 1) + c \cdot n$$

Note: This +1 does not seem to fit with our methodology, but we can fix this by applying a **domain transformation**.

- Domain Tranformation
 - \circ For the domain transformation, simply set: $T(\mathbf{n}) = \hat{T}(\mathbf{n} + 2)$
 - Thus we have: $T(\mathbf{n}) = T(\frac{n}{2}) + \hat{c} \cdot \mathbf{n}$

$$T(n) = \hat{T}(n+2)$$

$$\leq \hat{T}\left(\frac{n+2}{2}+1\right) + c \cdot (n+2)$$

$$\leq \hat{T}\left(\frac{n+2}{2}+1\right) + \hat{c} \cdot n$$

$$= \hat{T}\left(\frac{n}{2}+2\right) + \hat{c} \cdot n$$

$$= T\left(\frac{n}{2}\right) + \hat{c} \cdot n$$

- Of course, we can solve this recurrence as: $T(n) = O(n \cdot \log n)$
- Therefore, $\hat{T}(\mathbf{n}) = T(\mathbf{n} 2) = O(\mathbf{n} \cdot \log n)$
- \circ As well as ceilings and floors, domain transformations can be used to simplify many other recurrences; e.g. removing lower order terms.