CHAPTER 10

안티 바이러스

- ♥ 바이러스와 악성코드
 - 안티 바이러스의 이해
- 바이러스/악성코드의 탐지 원리

컴퓨터 바이러스

- 컴퓨터 내 다른 프로그램이나 기억장치에 **자기 자신 또는 자기 자신의 변형을** 복제 · 삽입해가며 감염(확산)시키는 컴퓨터 프로그램
- 정보통신망 환경에서는 네트워크 범위로까지 확산 가능하며,
 시대가 지나면서 바이러스의 기능도 점차 진화하는 경향
- 컴퓨터 바이러스의 세대 구분

컴퓨터 바이러스

- 1세대: 원시형 바이러스
 - 컴퓨터 바이러스가 처음 등장했을 때와 같이 원시적인 형태
 - **자기 복제** 기능이 주 기능
 - 악의적인 목적으로 유포된 경우 컴퓨터 내 자료/정보를 **파괴하는 기능**도 포함

부트 바이러스

파일 바이러스

컴퓨터 바이러스

■ 1세대: 원시형 바이러스

부트 바이러스

파일 바이러스

- 과거의 컴퓨터는 하드디스크 용량이 충분치 않았기 때문에 플로피 디스크 등
 외부의 보조기억장치에 운영체제를 보관하고 이를 삽입하여 부팅
- 컴퓨터 사용 중 부트형 바이러스가 실행되면 삽입된 운영체제 디스크에 감염 발생
 - 주로 운영체제의 부팅 영역(Master Boot Record, MBR)을 감염
- 감염된 운영체제 디스크로 컴퓨터를 부팅하면 **운영체제와 함께 바이러스가 실행**되어 임의접근메모리(RAM)에 상시 상주하며, 이후 사용되는 모든 프로그램에도 바이러스가 주입·감염되는 방식

예

브레인

몽키

미젤란젤로 바이러스

• •

컴퓨터 바이러스

■ 1세대: 원시형 바이러스

부트 바이러스

파일 바이러스

- **하드디스크의 사용이 보편화**되면서 등장하여, 오늘날 대부분의 컴퓨터 바이러스는 파일 바이러스
- 주로 실행 파일(EXE, COM 등)에 감염되며, 실행 파일의 앞 부분이나 뒷 부분에 바이러스 코드를 붙이는 방식으로 감염
 - 안티 바이러스가 등장한 이후에는 안티 바이러스에 의한 탐지를 회피하기 위해 실행 파일의 뒷 부분에
 바이러스 코드를 붙이는 방식 유행

예

예루살렘 바이러스 (최초의 파일 바이러스)	선데이	스콜피온	크로우
FCL	CIH(체르노빌) 바이러스	•••	

컴퓨터 바이러스

- 2세대 : 암호형 바이러스
 - 원시형 바이러스는 **안티 바이러스에 의한 탐지가 용이**한 만큼, 이를 회피하기 위해 **바이러스 코드를 암호화하고 복호화 논리와 키를 같이 붙이는 방식으로 감염**시키는 바이러스
 - 단, 바이러스가 실행될 때 복호화 되기 때문에 **임의접근메모리(RAM)에 적재된 바이러스 탐지** 가능
 - 대표적인 예

컴퓨터 바이러스

- 3세대 : 은폐형 바이러스
 - 바이러스에 감염되더라도 일정 기간 잠복기를 갖도록 만든 바이러스
 - 바이러스가 확산되기 전에 활성화되면 **안티 바이러스에서 탐지**할 수 있어 확산이 어렵기 때문
 - 안티 바이러스 내 실시간 감시 기능이 포함되면서 **잠복기 이후 활성화가 될 때 탐지** 가능

• 대표적인 예

컴퓨터 바이러스

- 4세대 : 다형형 바이러스
 - 바이러스가 **자기 자신의 코드를 지속적으로 변형**해나가며 전파시키는 바이러스
 - 안티 바이러스가 탐지하는 **바이러스 고유의 패턴(문자열, 식별자 등)을 변경하는 방식**으로 탐지 원리를 우회
 - 특히, 암호형 바이러스나 은폐형 바이러스의 특성을 같이 갖는 경우
 안티 바이러스에 의한 탐지가 어려워지는 경향
 - 대표적인 예

Polip

컴퓨터 바이러스

- 5세대 : 매크로 바이러스
 - Microsoft Office 제품군에는 **자동화**를 위한 편의 기능으로 매크로 기능을 제공

장점

VBS(Visual Basic Script) 코드에 기반을 두고 있어 컴퓨터 프로그램 수준의 자동화를 구현

단점

이를 악용하여 운영체제의 API를 호출하는 등의 방식으로 컴퓨터에 악영향을 초래

- 사무 현장에서 **매크로가 빈번하게 쓰이는 점을 악용**한 바이러스
 - 이로 인해 보안 정책상 매크로 기능 자체를 금지하던 곳들도 많았으나,
 생산성 측면에서 매크로 기능 제한을 완화하는 경우가 우세해지는 경향
- 대표적인 예

워드 콘셉트 와쭈

엑셀 - 라룩스

멜리사 바이러스

악성코드

- 컴퓨터 바이러스는 태생적으로 자기 자신을 복제해가거나 그렇지 않더라도
 다른 파일들의 무결성을 훼손하는 특성 보유
- 컴퓨터의 사양이 높아지고 정보통신망 환경이 보편화되면서 **전통적인 바이러스의** 특성을 갖지 않으면서도 악성 기능을 수행하는 컴퓨터 프로그램이 등장
 - 전통적인 바이러스의 특성이 도리어 안티 바이러스에 의해 탐지될 수 있는 가능성을 높게 만드는 원인으로 작용
 - 공격자 입장에서는 악성 기능을 통해 악의적 목적을 달성하는 것이 가장 중요하기 때문에 전통적인 바이러스의 특성을 유지해야 할 이유가 없음.

악성코드

악성코드 (Malware)

종래의 컴퓨터 바이러스의 개념을 포함하며, 악의적 목적을 가진 모든 종류의 실행 가능한 컴퓨터 프로그램을 총칭

2

악성코드

- 악성코드의 법령상 정의
 - 정보통신망 이용촉진 및 정보보호 등에 관한 법률(법률, 과학기술정보통신부)

제48조(정보통신망 침해행위 등의 금지)

② 누구든지 정당한 사유 없이 정보통신 시스템, 데이터 또는 프로그램 등을 훼손 · 멸실 · 변경 · 위조하거나 그 운용을 방해할 수 있는 프로그램(이하 "악성프로그램"이라 한다)을 전달 또는 유포하여서는 아니된다.

2

악성코드

■ 악성코드의 종류

악성코드

웜 (Worm)

웜 (Worm)

- 정보통신망 환경이 보편화되면서 등장한 악성코드
- 다른 프로그램에 감염되어 전파되는 컴퓨터 바이러스와는 달리 자체적으로 실행되면서 네트워크를 통해 다른 컴퓨터로 전파가 가능한 악성코드
- 공유 폴더, 특정 네트워크 포트, 운영체제 취약점 등을 악용하여 전파·확산
- 보안 환경이 취약했던 때에는 웜에 의해 대규모 피해가 발생하는 경우가 빈번
 - 2003년 1월, 슬래머 웜에 의한 인터넷 대란(국가적인 정보통신망 마비) 사태
 - 2003년 8월, 블래스터 웜으로 인해 전세계적으로 모든 컴퓨터가 1~2분 간격으로 강제 재부팅되는 피해 발생
- 대표적인 예

모리스 웜

블래스터 웜

코드레드 웜

슬래머 웜

2

악성코드

트로이목마 (Trojan Horse)

트로이목마 (Trojan Horse)

그리스 로마 신화에 등장하는 트로이 전쟁에 등장하는 거대한 목마처럼, 외견상 정상적인 프로그램처럼 보이지만 **악성 기능을 포함하는 악성코드**

악성코드

- 트로이목마 (Trojan Horse)
 - 사용자의 실행을 유도하기 위해 사회공학적 방법으로 유포되는 경향이 있음
 - 불법 소프트웨어나 불법 파일에 포함되는 경우도 상당수
 - 트로이목마에는 **다양한 악성 기능을 포함**시킬 수 있지만, 대부분의 트로이목마 그 자체는 **추후 공격을 위한 백도어(개구멍)을 조성**하는 목적으로 활용
 - 악성 기능을 포함시키는 만큼 악성코드 자체의 용량도 증가하므로 안티 바이러스에 의한 탐지 가능성 증가

2013년 2월

북한발 320사이버테러에 앞서 트로이목마 선 유포

트로이목마에 의해 추가 다운로드 된 악성코드가 실행되며 320사이버테러 발생 (주요 언론사 및 금융사 대상 다수의 자료/정보 파괴)

2 악성코드

스파이웨어 (Spyware)

스파이웨어(Spyware)

개인이나 기업의 정보를 몰래 수집하는 **정보 절취 목적으로 사용**되는 악성코드

키 로거 유형 (Key Logger)

사용자의 **키 입력이나 비밀번호 입력**을 절취

원격 제어 유형 (Remote Control System, RCS)

컴퓨터 내 파일을 절취하거나 웹 캠이나 마이크를 활성화하는 등 컴퓨터 원격 제어

• 합법적인 목적으로 사용하는 원격 제어 소프트웨어가 스파이웨어로 악용되는 경우도 존재

악성코드

- 스파이웨어 (Spyware)
 - 정보수사기관에 의해 범죄 내사/수사 목적으로 악용된 사례
 - 2015년, 국가정보원에서 이탈리아 해킹팀(社)로부터 RCS를 구입하여
 블로그 게시물 열람 시 감염되도록 은닉한 사실이 적발되어 사회적인 파장 발생
 - * 국가정보원은 동일한 스파이웨어를 국군기무사령부 소속 해군 소령이 중국 측에 군사자료를 넘긴 사실을 확인하기 위한 목적으로도 활용

2

악성코드

애드웨어 (Adware)

애드웨어(Adware)

치명적인 악영향을 끼치지는 않지만 **귀찮을 정도로 광고를 보여주는 등**의 행위를 하는 악성코드

- 반복적으로 광고 팝업을 발생시키거나 웹 브라우저의 시작 페이지를 강제로 변경
- 컴퓨터 내 **불필요한 파일 및 서비스가 발생**되면서 컴퓨터의 성능 저하 원인으로도 작용
- 정상적인 소프트웨어, 특히 무료로 배포되는 소프트웨어를 설치할 때 설치 마법사 내 사용자의 동의를 유도하는 방식으로 같이 설치되는 경우가 빈번

2

악성코드

랜섬웨어 (Ransomware)

랜섬웨어(Ransomware)

컴퓨터 내 **파일들을 암호화하거나 화면을 잠그고** 이를 풀어주는 대가로 금전을 요구하는 악성코드

• 기존의 악성코드가 절도, 손괴, 폭행, 스토커라면 랜섬웨어는 인질 강도에 가까운 형태

악성코드

- 랜섬웨어 (Ransomware)
 - 비트코인 등 가상자산이 등장한 이후에 급격히 유행하게 되었으며, 많은 기업 및 개인을 대상으로 막대한 **금전적 손실**을 초래

예

2013년

러시아 국적의 해커 예브게니 미하일로비치 보가체프가 개발한 크립토락커가 유행했고, 다수의 변종 확산

2017년

워너크라이는 웜과 유사한 방식, 즉 운영체제 취약점을 통해 전 세계적으로 급격히 확산되며 대규모 피해 초래

2021년

미국 동부 석유의 절반 이상을 공급하는 송유관 회사인 콜로니얼 파이프라인이 랜섬웨어에 감염되어 석유 부족, 유가 폭등 등 초래

2

악성코드

- 루트킷 (Rootkit)
 - 대부분의 악성코드는 사용자 모드에서 동작하므로 **안티 바이러스에 의한 탐지가 용이**

2

악성코드

- 루트킷 (Rootkit)
 - 루트킷은 커널 모드에서 동작하므로 **컴퓨터의 모든 권한을 장악**하여 안티 바이러스에 의한 탐지를 회피하며 치명적인 영향을 초래할 가능성
 - 다만, **고도의 기술이 요구**되기 때문에 해커 입장에서도 루트킷 개발은 다소 난이도가 높음

II

안티 바이러스의 이해

안티 바이러스 (Anti-Virus, A/V)

안티 바이러스

컴퓨터 바이러스와 악성코드를 탐지하고 방어하는 호스트 기반 정보보호시스템

안티 바이러스

국가 · 공공에서 사용하는 공식 용어

백신(Vaccine)

우리나라에서 **대중적**으로 사용되는 용어

■ 백신(Vaccine)이라는 용어가 널리 사용되는 이유는?

안철수에 의해 우리나라에서 최초 개발된 안티 바이러스의 제품명

시간이 지나면서 보통명사화 됨

1 안티 바이러스 (Anti-Virus, A/V)

전통적인 안티 바이러스

알려진 바이러스/악성코드가 갖고 있는 고유한 패턴(문자열, 식별자, 해시 값 등)을 비교해가며 컴퓨터 내 동일한 패턴의 존재 여부를 **확인**하는 방식으로 진단 및 치료

현대의 안티 바이러스

알려지지 않은 바이러스/악성코드에 능동적으로 대응하기 위해 **휴리스틱 기반 탐지, 루트킷 탐지,** 실시간 감시 등의 기능을 포함

안티 바이러스 (Anti-Virus, A/V)

- 설치 위치
 - 안티 바이러스의 핵심 기능은 커널 모드에서 동작하며, 사용자가 조작 가능한 사용자 환경(UI)은 사용자 모드에서 제공

안티 바이러스 (Anti-Virus, A/V)

■ 설치 위치

커널 모드

사용자 모드

- 드라이버 설치
- 바이러스/악성코드를 원활하게 진단 및 치료하기 위해 안티 바이러스로 하여금 운영체제에 준하는 수준의 강력한 권한을 부여해야 하기 때문
 - 루트킷 등 커널 모드에서 실행되는 바이러스/악성코드 탐지
- 특정 바이러스/악성코드는 안티 바이러스를 강제로 종료하고 무력화하려는 기능이 있음
 - 안티 바이러스 스스로 자가 보호를 하기 위한 우선권을 선점하기 위해 커널 모드에서 동작해야 할 필요성이 있음

안티 바이러스 (Anti-Virus, A/V)

■ 설치 위치

커널 모드

사용자 모드

- 실행 프로그램 및 서비스 설치
- 안티 바이러스의 기능을 조작하거나 각종 환경설정을 손쉽게 변경할 수 있는 사용자 환경(UI) 제공
- 과거에는 실행 프로그램도 커널 모드에서 실행되도록 했으나 바이러스/악성코드가 이를 악용하는 사례가 빈번해지면서 **사용자 모드로 분리**
 - 안티 바이러스가 바이러스/악성코드의 공격 통로로 악용되는 취약성
 - 커널 모드에서 동작되어 운영체제에 중대한 영향을 미칠 수 있는 조작 또는 설정 값 변경은 권한 상승을 요구하도록 동작

- 1
 - 안티 바이러스 (Anti-Virus, A/V)
 - 주요 기능

안티 바이러스 (Anti-Virus, A/V)

- 진단 기능
 - 패턴(시그니처) 기반 탐지
 - 알려진 바이러스/악성코드가 갖고 있는 **고유한 패턴을 시그니처 데이터베이스에 등록**

문자열	바이러스/악성코드로 의심할 만한 파일 내부의 특정 문자열	
식별자	바이러스/악성코드를 특정할 수 있는 파일 내부의 고유값 또는 문자열	
파일 해시 값	파일 그 자체를 일정한 길이의 고유한 문자열로 변환 한 것	

- 시그니처 데이터베이스에 등록된 패턴과 컴퓨터 내 **동일한 패턴의 존재 여부를 비교**하며 확인
 - * 파일의 맨 앞 또는 맨 뒤의 일정 부분 만을 검사하여 문자열 또는 식별자를 찾는 방식
 - * 파일 내용 전체를 검사하여 문자열 또는 식별자를 찾는 방식
 - * 파일 자체의 해시 값을 대조하여 일치 여부를 검사하는 방식

안티 바이러스 (Anti-Virus, A/V)

- 진단 기능
 - 휴리스틱 기반 탐지

패턴(시그니처) 기반 탐지의 한계

알려진 바이러스/악성코드의 변종이나 알려지지 않은 바이러스/악성코드를 탐지하지 못함

- 휴리스틱 기반 탐지를 위해 대부분의 바이러스/악성코드가 가질 수 있는 파일의 구조를 규칙화
- 일반적인 컴퓨터 프로그램이 실행될 때 프로그램 코드가 시작되는 진입점(Entry Point)이 위치하는 보편적인 위치가 있지만, 바이러스/악성코드는 특이한 위치(맨 마지막)에 진입점이 존재하는 경우가 다수
 - 규칙화 된 휴리스틱 데이터베이스와 검사 대상 파일의 구조를 비교하며 확인
 - * 정교하지 못한 규칙이나 검사 방식은 오탐/오진 발생률을 높일 수 있음

도입 초기

오탐/오진율이 높았음

현대

머신러닝 기술의 적용으로 오탐/오진율이 낮아짐

안티 바이러스 (Anti-Virus, A/V)

- 진단 기능
 - 루트킷 탐지
 - 대부분의 악성코드는 사용자 모드에서 동작하므로 안티 바이러스에 의한 탐지가 용이하여
 공격자는 커널 모드에서 동작하는 루트킷을 제작하여 탐지 회피 시도

루트킷

컴퓨터의 **모든 권한을 장악**하여 안티 바이러스에 의한 탐지를 **회피**하며 **치명적인 영향을 초래**할 가능성

- 안티 바이러스 또한 커널 모드에서 동작하는 만큼, 운영체제의 커널에서 불러온
 드라이버 목록이나 발생된 이벤트 목록을 분석하는 방식으로 루트킷의 진단 가능
- 예

운영체제의 커널에서 불러온 드라이버 목록을 모두 나열하고 이 중 특이한 이름을 가졌거나 비정상적인 위치에서 불러온 드라이버를 식별

안티 바이러스 (Anti-Virus, A/V)

■ 실시간 감시 기능

전통적인 안티 바이러스

사용자가 필요할 때마다 **컴퓨터 전체 영역** 또는 **사용자가 선택한 영역**에 대해 **검사 기능을 실행**하는 방법으로 진단

- 과거 멀티 태스킹을 지원하지 않는 운영체제에서는 실시간 감시 기능을 구현하기에 제한
- 멀티 태스킹을 지원하는 운영체제가 보편적으로 널리 사용되면서 실시간 감시 기능이 보편적인 기능으로 자리 잡게 됨
- 실시간 감시를 통해 운영체제에서 발생되는 모든 행위를 모니터링
- 예
- 특정 파일을 실행하려고 할 때 해당 파일만을 검사
- 특정 파일을 인터넷에서 다운로드했을 때 해당 파일만을 검사
- 다만, 실시간 감시 기능은 운영체제 자원을 일정 부분 사용하여 컴퓨터 성능이 저하될 가능성

안티 바이러스 (Anti-Virus, A/V)

■ 자가 보호 기능

- 특정 바이러스/악성코드는 안티 바이러스에 의한 탐지와 치료를 회피하기 위해 안티 바이러스를 강제로 종료하거나 삭제하는 등 **무력화하려는 기능**을 포함
- 안티 바이러스의 실시간 감시 기능에 안티 바이러스 스스로를 보호하는 자가 보호 기능을 같이 포함하는 경향

강제종료 방지

실시간 감시와 치료를 수행하는 프로세스의 강제종료를 방지

삭제 방지

안티 바이러스의 정상적인 동작을 위해 필요한 파일의 삭제 방지

- 1 안티 바이러스 (Anti-Virus, A/V)
 - 치료 기능
 - 진단한 결과를 토대로 컴퓨터를 **감염 이전으로 복구**하는 기능
 - 바이러스/악성코드의 원인 파일을 제거
 - 바이러스에 감염되어 손상된 파일들을 원래 상태로 복구
 - 예 바이러스 감염으로 인해 파일 맨 뒤에 특정 문자열이 삽입된 경우 해당 문자열만을 제거
 - 바이러스/악성코드로 인해 생성된 부산물을 제거
 - 예 악성코드가 실행되면서 시작 프로그램에 동의 없이 등록되었던 서비스를 제거
 - 예 악성코드가 실행되면서 레지스트리에 등록되었던 값을 제거

- 1
- 안티 바이러스 (Anti-Virus, A/V)
- 치료 기능

무료 백신 '알약' 오류로 PC 먹통 속출···"정상화 노력 중", MBN 뉴스(2022.08.30), https://www.youtube.com/watch?v=KYOciflFkpY

- 1
- 안티 바이러스 (Anti-Virus, A/V)
- 치료 기능

무료 백신 '알약' 오류로 PC 먹통 속출···"정상화 노력 중", MBN 뉴스(2022.08.30), https://www.youtube.com/watch?v=KYOciflFkpY

안티 바이러스 (Anti-Virus, A/V)

- 치료 기능
 - 치료 기능이 잘못 동작하는 경우 컴퓨터가 망가질 수 있음
 - **제대로 치료(제거/복구)되지 않아** 바이러스/악성코드가 잔존한 경우
 - 잘못된 치료(파일의 맨 뒤를 제거해야 하는데 맨 앞을 제거해버린 경우)로 인해 정상적인 파일이 훼손되는 경우
 - 치료 이전에 **오탐/오진**으로 인해 정상적인 파일이 훼손되거나 제거되는 경우

바이러스/악성코드 감염 여부 확인 방법

■ 컴퓨터 내 파일 확인

알려진 악성코드가 갖고 있는 고유한 패턴(문자열, 식별자, 해시 값 등)을 비교해가며 컴퓨터 내 동일한 패턴을 갖는 파일의 존재 여부 확인

바이러스에 감염된 파일은 **원래의 파일에 변형이 발생된 것**이므로 **이를 추적·검사하는 방식**으로 감염 사실 확인

바이러스/악성코드 감염 여부 확인 방법

• 운영체제 내 설정값 확인

운영체제의 특정 **설정 파일이나 설정 값을 변형**하는 경우가 있으므로 이를 확인

Windows 운영체제의 경우 **레지스트리, 시작 프로그램, 서비스 목록에 특정 값을 생성하는 경우**가 있으므로 이를 확인

바이러스/악성코드 감염 여부 확인 방법

- 운영체제의 네트워크 상태 확인
 - 컴퓨터는 외부와의 통신이 필요한 경우가 발생하면 네트워크 포트를 개방
 - 예 웹 서비스(80, 443), 파일 전송(20, 21), 메일 전송(25) 등
 - 특정 악성코드는 알려진 포트 이외 자신을 특정할 수 있는 번호의 포트 번호를 사용하는 경향이 있어, 이러한 **포트 번호가 개방된 경우 악성코드 감염**을 의심
 - orion(1150), voodoo doll(1245), sub seven(1999), backorifice 2000(8787)
 - 알려진 포트 번호라 하더라도 자의에 의해 **개방한 사실이 없는 포트 번호라면 악성코드 감염**을 의심
 - 예 웹 서비스(80)를 개방한 적이 없음에도 80번 포트가 개방되어 있는 경우

바이러스/악성코드 감염 여부 확인 방법

- 운영체제의 실행 프로세스 확인
 - 컴퓨터 프로그램이 실행되면 운영체제에 해당 프로그램에 대한 프로세스를 생성
 - 운영체제에서 자원 관리 등을 목적으로 생성하는 운영체제 기본 프로세스
 - 사용자가 설치·실행한 응용 소프트웨어가 생성하는 프로세스
 - 악성코드도 컴퓨터 프로그램이므로 프로세스를 생성
 - 운영체제 기본 프로세스도 아니고 사용자가 설치·실행한 응용 소프트웨어의 프로세스가 아닌 경우
 악성코드 프로세스를 의심
 - 운영체제 기본 프로세스와 혼동을 야기하기 위해 유사한 명칭의 프로세스 이름을 사용하는 경우도 존재
 - 예 csrss(정상 프로세스) cssrs(악성코드 프로세스)
 - ⋒ svchost(정상 프로세스) − svhost(악성코드 프로세스)

2

패턴(시그니처) 기반 탐지 원리

패턴(시그니처) 기반 탐지 원리

- EICAR 표준 안티 바이러스 테스트 파일
 - EICAR에서 테스트 목적으로 고안한 **가짜 바이러스/악성코드**

EICAR(European Institute for Computer Antivirus Research)

컴퓨터 **안티 바이러스를 연구**하기 위해 유럽에서 설립된 **학술 조직**

- 안티 바이러스 개발자는 EICAR 표준 안티 바이러스 테스트 파일을 활용하여, 개발하는 안티 바이러스의 효용성을 검증
 - 개발된 안티 바이러스의 효용성을 검증하기 위해 실제 바이러스/악성코드를 사용할 수도 있겠으나,
 테스트 과정에서 감염될 가능성이 다분하여 위험하기 때문
- 대부분의 상용 안티 바이러스 제품은 **EICAR 표준 안티 바이러스 테스트 파일**을 바이러스/악성코드로 진단

2

패턴(시그니처) 기반 탐지 원리

EICAR 표준 안티 바이러스 테스트 파일

X50!P%@AP[4\PZX54(P^)7CC)7}\$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!\$H+H*

EICAR Test File의 내용을 메모장에 붙여넣고 EXE 파일로 저장

출처

EICAR - Download Anti Malware Testfile, https://www.eicar.org/download-anti-malware-testfile/

2

패턴(시그니처) 기반 탐지 원리

■ EICAR 표준 안티 바이러스 테스트 파일

EXE 파일로 저장한 EICAR Test File을 실행

EICAR Test File의 안티 바이러스 탐지 결과

패턴(시그니처) 기반 탐지 원리

- 고정길이 검사
 - 파일의 맨 앞 또는 맨 뒤의 일정 부분 만을 검사하여 문자열 또는 식별자를 찾는 방식

패턴(시그니처) 기반 탐지 원리

- 고정길이 검사
 - 파일의 맨 앞 또는 맨 뒤의 일정 부분 만을 검사하여 문자열 또는 식별자를 찾는 방식

3 bytes

• 검사 범위가 증가할수록 오탐/오진 확률이 낮아지지만, 검사 속도 또한 저하될 수 있음 (권장 범위: 5~10 bytes)

패턴(시그니처) 기반 탐지 원리

- 가변길이 검사
 - 파일 내용 전체를 검사하여 문자열 또는 식별자를 찾는 방식

 파일 내용 전체를 검사하기 때문에 파일의 크기가 클수록 검사해야 할 범위가 증가하여 검사 속도가 저하될 수 있음

2

패턴(시그니처) 기반 탐지 원리

- 해시값 검사
 - 파일 자체의 해시 값을 대조하여 일치 여부를 검사하는 방식

패턴(시그니처) 기반 탐지 원리

- 해시값 검사
 - 파일 자체의 해시 값을 대조하여 일치 여부를 검사하는 방식

- 검사 대상 파일들의 해시 값 만을 비교하기 때문에 검사 속도가 빠름
- 컴퓨터 내 파일 해시 값들을 미리 색인하여 목록화 해두어야 효과성이 있고 파일들이 변경될 때마다 목록화해 둔 해시 값 정보도 변경 해두어야 함

패턴(시그니처) 기반 탐지 실습 도구 안내

- antivirus.ps1
 - 패턴(시그니처) 기반 탐지 원리를 실습할 수 있도록 자체 제작한 도구
 - 실행 방법
 - ① [Shift] 키를 누른 상태에서 마우스 우측 버튼 클릭
 - ② 메뉴에서 [여기에 PowerShell 창 열기] 항목 선택
 - ③ 다음 명령어를 순차적으로 입력


```
$OutputEncoding = [Console]::OutputEncoding
TYPE .\antivirus.ps1 | PowerShell -noprofile -
```


패턴(시그니처) 기반 탐지 실습

antivirus.ps1

CHAPTER 10 :: 안티 바이러스

• 지금까지 학습한 내용을 정리해보겠습니다.

바이러스와 악성코드

- 컴퓨터 바이러스 (Computer Virus)
 - 컴퓨터 내 다른 프로그램이나 기억장치에 자기 자신 또는 자기 자신의 변형을 복제 · 삽입해가며 감염(확산)시키는 컴퓨터 프로그램
 - **바이러스의 세대 구분**: 1세대(원시형), 2세대(암호형), 3세대(은폐형), 4세대(다형성), 5세대(매크로)

악성코드(Malware)

- 종래의 컴퓨터 바이러스의 개념을 포함하며, 악의적 목적을 가진 모든 종류의 실행 가능한 컴퓨터 프로그램
- 컴퓨터의 사양이 높아지고 정보통신망 환경이 보편화되면서 전통적인 바이러스의 특성을 갖지 않으면서도 악성 기능을 수 행하는 컴퓨터 프로그램 등장
- 악성코드의 종류: 바이러스(Virus), 웜(Worm), 트로이목마(Trojan Horse), 스파이웨어(Spyware),
 애드웨어(Adware), 랜섬웨어(Ransomware), 루트킷(Rootkit)
 - * 루트킷(Rootkit): 운영체제의 커널 모드에서 동작되도록 개발 · 설계된 악성코드

- 안티 바이러스 (Anti-Virus, A/V)
 - 컴퓨터 바이러스와 악성코드를 탐지하고 방어하는 호스트 기반 정보보호시스템
- 안티 바이러스의 주요 기능
 - 진단 기능
 - * 패턴(시그니처) 기반 탐지: 알려진 바이러스/악성코드가 갖고 있는 고유한 패턴을 시그니처 데이터베이스에 등록하고, 시그니처 데이터베이스에 등록된 패턴과 컴퓨터 내 동일한 패턴의 존재 여부를 비교하며 확인
 - * **휴리스틱 기반 탐지**: 대부분의 바이러스/악성코드가 가질 수 있는 파일의 구조를 규칙화하고, 규칙화 된 휴리스틱 데이터베이스와 검사 대상 파일의 구조를 비교하며 확인
 - * **루트킷 탐지**: 운영체제의 커널에서 불러온 드라이버 목록이나 발생된 이벤트 목록을 분석하는 방식으로 확인
 - 실시간 감시 기능: 운영체제에서 발생되는 모든 행위를 모니터링하는 기능
 - 자가 보호 기능 : 안티 바이러스의 강제종료 또는 삭제 등 무력화를 방지하는 기능
 - 치료 기능: 진단한 결과를 토대로 컴퓨터를 감염 이전으로 복구하는 기능

- EICAR 표준 안티 바이러스 테스트 파일
 - EICAR에서 테스트 목적으로 고안한 가짜 바이러스/악성코드로, 안티 바이러스 개발자는 안티 바이러스를 개발하는 과정에서 효용성을 검증하기 위해 EICAR 표준 안티 바이러스 테스트 파일을 활용
- 패턴(시그니처) 기반 탐지 원리
 - 고정길이 검사: 파일의 맨 앞 또는 맨 뒤의 일정 부분 만을 검사하여 문자열 또는 식별자를 찾는 방식
 - * 검사 범위가 증가할수록 오탐/오진 확률이 낮아지지만, 검사 속도 또한 저하될 수 있음.
 - 가변길이 검사: 파일 내용 전체를 검사하여 문자열 또는 식별자를 찾는 방식
 - * 파일 내용 전체를 검사하기 때문에 파일의 크기가 클수록 검사해야 할 범위가 증가하여 검사 속도가 저하될 수 있음.
 - 해시 값 검사: 파일 자체의 해시 값을 대조하여 일치 여부를 검사하는 방식
 - * 검사 대상 파일들의 해시 값 만을 비교하기 때문에 검사 속도가 빠르지만 컴퓨터 내 파일 해시 값들을 미리 색인하여 목록화 해두어야 효과성이 있고 파일들이 변경될 때마다 목록화 해 둔 해시 값 정보도 변경해두어야 함.

- 정보통신기반보호법 (법률)
- **정보통신망 이용촉진 및 정보보호 등에 관한 법률 (법률)**
- ▶ 사이버안보 업무규정 (대통령령)
- 국가사이버안전관리규정 (대통령훈령)
- 국가 정보보안 기본지침 (국가정보원 지침)
- 🗎 보안관제학, 2014, 안성진 등 공저, 이한미디어
- 🗎 2023 국가정보보호백서, 2023, 국가정보원 등 관계기관 합동
- □ 국가사이버안보센터 웹 사이트, http://www.ncsc.go.kr
- 🗎 한국인터넷진흥원 웹 사이트, http://www.kisa.or.kr
- KISA 보호나라 & KrCERT/CC 웹 사이트, http://www.krcert.or.kr
- Common Criteria 웹 사이트, http://commoncriteriaportal.org

- IT보안인증사무국 웹 사이트, http://itscc.kr
- □ 무료 백신 '알약' 오류로 PC 먹통 속출···"정상화 노력중", MBN 뉴스, 2022.08.30, https://www.youtube.com/watch?v=KYOciflFkpY
- EICAR Download Anti Malware Testfile, https://www.eicar.org/download-anti-malware-testfile/
- Test your antivirus with the EICAR test file, https://www.trishtech.com/2010/10/test-your-antivirus-with-the-eicar-test-file/