Geometric Spanning Trees and Hypergraphs that Minimizes the Wiener Index

Atishaya Maharjan

University of Manitoba Geometric, Approximation, and Distributed Algorithms (GADA) lab

June 23, 2025

Wiener Index in Graphs

• Let G = (V, E) be a weighted undirected graph and let $\delta_G(u, v)$ denote the **shortest** (minimum-weight) path between vertices u and v in G.

Wiener Index in Graphs

- Let G = (V, E) be a weighted undirected graph and let $\delta_G(u, v)$ denote the **shortest** (minimum-weight) path between vertices u and v in G.
- The Wiener index is defined as:

$$W(G) = \sum_{u,v \in V} \delta_G(u,v)$$

Wiener Index in Graphs

- Let G = (V, E) be a weighted undirected graph and let $\delta_G(u, v)$ denote the **shortest** (minimum-weight) path between vertices u and v in G.
- The Wiener index is defined as:

$$W(G) = \sum_{u,v \in V} \delta_G(u,v)$$

Problem Statement: Geometric Spanning Trees

Reference: WADS 2023 [Abu-Affash et al., 2023]

 \bullet Input: A set P of n points in the plane.

Problem Statement: Geometric Spanning Trees

Reference: WADS 2023 [Abu-Affash et al., 2023]

- Input: A set P of n points in the plane.
- Q Goal: Construct a spanning tree on P that minimizes the Wiener index.

Problem Statement: Geometric Spanning Trees

Reference: WADS 2023 [Abu-Affash et al., 2023]

- **1** Input: A set P of n points in the plane.
- Q Goal: Construct a spanning tree on P that minimizes the Wiener index.
- The weight function is defined as the Euclidean distance between points.

 \bullet Spanning tree of P that minimizes the Wiener index is planar.

- Spanning tree of P that minimizes the Wiener index is planar.
- When P is in convex position, this can be solved in polynomial time.

- \bullet Spanning tree of P that minimizes the Wiener index is planar.
- When P is in convex position, this can be solved in polynomial time.
- The hamiltonian path of *P* that minimizes the Wiener index is not necessarily planar.

- ullet Spanning tree of P that minimizes the Wiener index is planar.
- When P is in convex position, this can be solved in polynomial time.
- The hamiltonian path of P that minimizes the Wiener index is not necessarily planar.
- Computing such a hamiltonian path is NP-Hard.

Minimum Spanning Tree (MST)

Minimum Spanning Tree (MST)

A minimum spanning tree of a weighted undirected graph is a spanning tree that has the minimum total edge weight.

- The MST connects all vertices with the minimum total edge weight.
- It is unique if all edge weights are distinct.

Euclidean Minimum Spanning Tree

Euclidean Minimum Spanning Tree

The Euclidean minimum spanning tree (EMST) of a set of points in the Euclidean space is the minimum spanning tree where the edge weights are the Euclidean distances between points.

- The EMST can be computed in $O(n \log n)$ time.
- The EMST is unique if all points are distinct.

Euclidean Minimum Spanning Tree

Euclidean Minimum Spanning Tree

The Euclidean minimum spanning tree (EMST) of a set of points in the Euclidean space is the minimum spanning tree where the edge weights are the Euclidean distances between points.

- The EMST can be computed in $O(n \log n)$ time.
- The EMST is unique if all points are distinct.

Note: It can be shown that the EMST is a subgraph of special geometric graphs called **Delaunay triangulations** which are a dual of **Voronoi Diagrams** [de Berg et al., 2000].

Euclidean Minimum Spanning Tree VS Wiener Index

Question: Is the EMST a good approximation for the spanning tree that minimizes the Wiener index?

• **Answer:** No, see the code examples.

Divide and Conquer Algorithm for Approximating Hamiltonian Paths

Algorithm 1 DivideAndConquerWiener(P) 1: **procedure** DivideAndConquerWiener(P, depthmaxDepth = 10if |P| < 4 or depth > maxDepth then 2: return BruteForceHamiltonianPath(P)3: end if 4: $(a,b,c) \leftarrow \text{FINDBISECTINGLINE}(P)$ 5: $(P_L, P_R) \leftarrow \text{PARTITIONPOINTS}(P, a, b, c)$ 6: $\pi_L \leftarrow \text{DIVIDEANDCONQUERWIENER}(P_L, depth + 1)$ 7: $\pi_R \leftarrow \text{DIVIDEANDCONQUERWIENER}(P_R, depth + 1)$ 8: return ConnectPaths(π_L, π_R) 9: 10: end procedure

Supporting Procedure: FindBisectingLine

Algorithm 2 FindBisectingLine(P)

```
1: procedure FINDBISECTINGLINE(P)
        minX \leftarrow \min_{p \in P} p.x, \ maxX \leftarrow \max_{p \in P} p.x
 2:
        minY \leftarrow \min_{p \in P} p.y, maxY \leftarrow \max_{p \in P} p.y
 3:
        width \leftarrow maxX - minX, height \leftarrow maxY - minY
4:
        if width > height then
 5.
            midX \leftarrow (minX + maxX)/2
 6:
            return (1.0, 0.0, -midX)
                                                       \triangleright Vertical line: x = midX
 7:
        else
 8:
            midY \leftarrow (minY + maxY)/2
 9:
            return (0.0, 1.0, -midY)
                                                    \triangleright Horizontal line: y = midY
10:
        end if
11:
12: end procedure
```

Supporting Procedure: PartitionPoints

Algorithm 3 PartitionPoints(P, a, b, c)

```
1: procedure PartitionPoints(P, a, b, c)
        L \leftarrow [\ ], R \leftarrow [\ ]
        for each p \in P do
 3:
             v \leftarrow ap.x + bp.y + c
 4:
 5:
            if v \leq 0 then
                L \leftarrow L \cup \{p\}
 6:
             else
 7:
                 R \leftarrow R \cup \{p\}
 8:
             end if
 9:
        end for
10:
        if L = \emptyset then
11:
             Move one point from R to L
12:
        else if R = \emptyset then
13:
             Move one point from L to R
14:
        end if
15:
```

Supporting Procedure: ConnectPaths

Algorithm 4 ConnectPaths (π_1, π_2)

- 1: **procedure** ConnectPaths (π_1, π_2)
- 2: $options \leftarrow empty list$
- 3: Append $(\pi_1 + \pi_2, W(\pi_1 + \pi_2))$ to options
- 4: Append $(\pi_1 + \text{reverse}(\pi_2), W(\pi_1 + \text{reverse}(\pi_2)))$ to options
- 5: Append (reverse(π_1) + π_2 , W(reverse(π_1) + π_2)) to options
- 6: Append (reverse(π_1) + reverse(π_2), W(reverse(π_1) + reverse(π_2))) to options
- 7: **return** path with minimum Wiener index from *options*
- 8: end procedure

Approximation Quality and Efficiency

#	\mathbf{Pts}	Approx Ratio	Range	D&C Time (s)	Speedup
	6	1.0206 ± 0.0501	[1.0000, 1.3021]	0.0001	72.4x
	7	1.0212 ± 0.0480	[1.0000, 1.3014]	0.0001	481.8x
	8	1.0427 ± 0.0731	[1.0000, 1.3307]	0.0002	2800.6x
	9	1.0625 ± 0.0873	[1.0000, 1.3318]	0.0003	6785.5x
	10	1.0520 ± 0.0776	[1.0000, 1.4271]	0.0003	80249.2x

Table 1: Approximation quality and speed comparison with optimal algorithm.

References I

Abu-Affash, A. K., Carmi, P., Luwisch, O., and Mitchell, J. S. B. (2023).

Geometric spanning trees minimizing the wiener index.

de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O. (2000).

Computational Geometry: Algorithms and Applications. Springer-Verlag, second edition.

The end. maharjaa@umanitoba.ca