Computer Architecture & Organization

Numerical Problems

Cache Memory

Question 1:

A block-set associative cache memory consists of 128 blocks divided into four block sets. The main memory consists of 16,384 blocks and each block contains 256 eight bit words.

- 1. How many bits are required for addressing the main memory?
- 2. How many bits are needed to represent the TAG, SET and WORD fields?

Solution:

Given-

- Number of blocks in cache memory = 128
- Number of blocks in each set of cache = 4
- Main memory size = 16384 blocks
- Block size = 256 bytes
- 1 word = 8 bits = 1 byte
 - Main Memory Size-

_

- We have-
- Size of main memory
- = 16384 blocks
- = 16384×256 bytes
- = 2^{22} bytes
- Thus, Number of bits required to address main memory = 22 bits

Number of Bits in Block Offset-

We have-

Block size

- = 256 bytes
- $= 2^8$ bytes

Thus, Number of bits in block offset or word = 8 bits

Number of Bits in Set Number-

Number of sets in cache

- = Number of lines in cache / Set size
- = 128 blocks / 4 blocks
- = 32 sets
- $= 2^5 \text{ sets}$

Thus, Number of bits in set number = 5 bits

Number of Bits in Tag Number-

Number of bits in tag

- = Number of bits in physical address (Number of bits in set number + Number of bits in word)
- = 22 bits (5 bits + 8 bits)
- = 22 bits 13 bits
- = 9 bits

Thus, Number of bits in tag = 9 bits

Thus, physical address is-

Question 2:

A 4-way set associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. The number of bits for the TAG field is _____.

Solution-

Given-

- Set size = 4 lines
- Cache memory size = 16 KB
- Block size = 8 words
- 1 word = 32 bits = 4 bytes
- Main memory size = 4 GB

Number of Bits in Physical Address-

We have,

Main memory size

- = 4 GB
- $= 2^{32}$ bytes

Thus, Number of bits in physical address = 32 bits

Number of Bits in Block Offset-

We have,

Block size

- = 8 words
- $= 8 \times 4$ bytes
- = 32 bytes
- $= 2^5$ bytes

Thus, Number of bits in block offset = 5 bits

Number of Lines in Cache-

Number of lines in cache

- = Cache size / Line size
- = 16 KB / 32 bytes
- = 2^{14} bytes / 2^5 bytes
- = 29 lines
- = 512 lines

Thus, Number of lines in cache = 512 lines

Number of Sets in Cache-

Number of sets in cache

- = Number of lines in cache / Set size
- = 512 lines / 4 lines
- = 2^9 lines / 2^2 lines
- = 2⁷ sets

Thus, Number of bits in set number = 7 bits

Number of Bits in Tag-

Number of bits in tag

- = Number of bits in physical address (Number of bits in set number + Number of bits in block offset)
- = 32 bits (7 bits + 5 bits)
- = 32 bits 12 bits
- = 20 bits

Thus, number of bits in tag = 20 bits

Question 3:

A 4-way set associative cache memory unit with a capacity of 16 KB is built using a block size of 8 words. The word length is 32 bits. The size of the physical address space is 4 GB. The number of bits for the TAG field is _____.

Solution-

Given-

- Set size = 4 lines
- Cache memory size = 16 KB
- Block size = 8 words
- 1 word = 32 bits = 4 bytes
- Main memory size = 4 GB

Number of Bits in Physical Address-

We have,

Main memory size

- = 4 GB
- $= 2^{32}$ bytes

Thus, Number of bits in physical address = 32 bits

Number of Bits in Block Offset-

We have,

Block size

- = 8 words
- $= 8 \times 4 \text{ bytes}$
- = 32 bytes
- $= 2^5$ bytes

Thus, Number of bits in block offset = 5 bits

Number of Lines in Cache-

Number of lines in cache

= Cache size / Line size

- = 16 KB / 32 bytes
- = 2^{14} bytes / 2^5 bytes
- $= 2^9$ lines
- = 512 lines

Thus, Number of lines in cache = 512 lines

Number of Sets in Cache-

Number of sets in cache

- = Number of lines in cache / Set size
- = 512 lines / 4 lines
- = 2^9 lines / 2^2 lines
- $= 2^7 \text{ sets}$

Thus, Number of bits in set number = 7 bits

Number of Bits in Tag-

Number of bits in tag

- = Number of bits in physical address (Number of bits in set number + Number of bits in block offset)
- = 32 bits (7 bits + 5 bits)
- = 32 bits 12 bits
- = 20 bits

Thus, number of bits in tag = 20 bits

Ques 4: Consider a direct mapped cache with 8 cache blocks (0-7). If the memory block requests are in the order-

Which of the following memory blocks will not be in the cache at the end of the sequence?

- 1. 3
- 2. 18
- 3. 20
- 4. 30

Also, calculate the hit ratio and miss ratio.

Solution-

We have,

- There are 8 blocks in cache memory numbered from 0 to 7.
- In direct mapping, a particular block of main memory is mapped to a particular line of cache memory.
- The line number is given by-

Cache line number = Block address modulo Number of lines in cache

For the given sequence-

- Requests for memory blocks are generated one by one.
- The line number of the block is calculated using the above relation.
- Then, the block is placed in that particular line.
- If already there exists another block in that line, then it is replaced.

Blocks requests in order Calculation of line number

Line-0	<i>8</i> , <i>8</i> , 18, 24
Line-1	∅ , 1∕7, 2∕5, 17
Line-2	2 , 1 8 , 2 , 82
Line-3	3
Line-4	20
Line-5	5
Line-6	∕ 8, 30
Line-7	63
	Cache Memory

3 % 8 = 3	(Miss)
5 % 8 = 5	(Miss)
2 % 8 = 2	(Miss)
8 % 8 = 0	(Miss)
0 % 8 = 0	(Miss)
6 % 8 = 6	(Miss)
3 % 8 = 3	(Hit)
9 % 8 = 1	(Miss)
16 % 8 = 0	(Miss)
20 % 8 = 4	(Miss)
17 % 8 = 1	(Miss)
25 % 8 = 1	(Miss)
18 % 8 = 2	(Miss)
30 % 8 = 6	(Miss)
24 % 8 = 0	(Miss)
2 % 8 = 2	(Miss)
63 % 8 = 7	(Miss)
5 % 8 = 5	(Hit)
82 % 8 = 2	(Miss)
17 % 8 = 1	(Miss)
24 % 8 = 0	(Hit)

Thus,

- Out of given options, only block-18 is not present in the main memory.
- Option-(B) is correct.
- Hit ratio = 3 / 21
- Miss ratio = 17 / 21

Ques 5.

Consider a fully associative cache with 8 cache blocks (0-7). The memory block requests are in the order-

If LRU replacement policy is used, which cache block will have memory block 7? Also, calculate the hit ratio and miss ratio.

Solution-

We have,

- There are 8 blocks in cache memory numbered from 0 to 7.
- In fully associative mapping, any block of main memory can be mapped to any line of the cache that is freely available.
- If all the cache lines are already occupied, then a block is replaced in accordance with the replacement policy.

Line-0	4 , 45
Line-1	% , 22
Line-2	25
Line-3	8
Line-4	1⁄9, 3
Line-5	% , 7
Line-6	16
Line-7	35

Cache Memory

Thus,

- Line-5 contains the block-7.
- Hit ratio = 5 / 17
- Miss ratio = 12 / 17

Unsolved question:

Consider the cache has 4 blocks. For the memory references-

What is the hit ratio for the following cache replacement algorithms-

1. FIFO

- 2. LRU
- 3. Direct mapping
- 4. 2-way set associative mapping using LRU

Disk Structure & Organization

Q. Consider a (very old) disk with the following characteristics:

block size B=512 bytes

gap size G=128 bytes

20 sectors per track

400 tracks per surface

15 double-sided platters.

Solution:

- 1. What is the total capacity of a track?
- 2. What is its useful capacity of a track (excluding interblock gaps)
- 3. How many cylinders are there?
- 4. What is the total capacity of a cylinder?
- 5. What is the useful capacity of a disk?

3.400

Theory on Disk structure

- Magnetic disk is a storage device that is used to write, rewrite and access data.
- It uses a magnetization process.

Architecture-

- The entire disk is divided into **platters**.
- Each platter consists of concentric circles called as **tracks**.
- These tracks are further divided into **sectors** which are the smallest divisions in the disk.

• A **cylinder** is formed by combining the tracks at a given radius of a disk pack.

- There exists a mechanical arm called as **Read/Write head**.
- It is used to read from and write to the disk.
- Head has to reach at a particular track and then wait for the rotation of the platter.
- The rotation causes the required sector of the track to come under the head.
- Each platter has 2 surfaces- top and bottom and both the surfaces are used to store the data.
- Each surface has its own read / write head.

Disk Performance Parameters-

The time taken by the disk to complete an I/O request is called as **disk service time** or **disk access time**.

Components that contribute to the service time are:

- 1. Seek time
- 2. Rotational latency
- 3. Data transfer rate
- 4. Controller overhead
- 5. Queuing delay

1. Seek Time-

- The time taken by the read / write head to reach the desired track is called as seek time.
- It is the component which contributes the largest percentage of the disk service time.
- The lower the seek time, the faster the I/O operation.

2. Rotational Latency-

The time taken by the desired sector to come under the read / write head is called as rotational latency.

It depends on the rotation speed of the spindle.

Average rotational latency = $1 / 2 \times Time$ taken for full rotation

3. Data Transfer Rate-

- The amount of data that passes under the read / write head in a given amount of time is called as **data transfer rate**.
- The time taken to transfer the data is called as **transfer time**.

It depends on the following factors-

- 1. Number of bytes to be transferred
- 2. Rotation speed of the disk
- 3. Density of the track
- 4. Speed of the electronics that connects the disk to the computer

4. Controller Overhead-

- The overhead imposed by the disk controller is called as **controller overhead**.
- Disk controller is a device that manages the disk.

5. Queuing Delay-

• The time spent waiting for the disk to become free is called as **queuing delay**.

Storage Density-

- All the tracks of a disk have the same storage capacity.
- This is because each track has different storage density.
- Storage density decreases as we from one track to another track away from the center.

Thus,

- Innermost track has maximum storage density.
- Outermost track has minimum storage density.

1. Disk Access Time-

Disk access time is calculated as-

Disk access time

- = Seek time + Rotational delay + Transfer time + Controller overhead + Queuing delay
- 3. Average Seek Time-

Average seek time is calculated as-

Average seek time

- = 1 / 3 x Time taken for one full stroke
- 4. Average Rotational Latency-

Average rotational latency is calculated as-

Average rotational latency = $1 / 2 \times Time$ taken for one full rotation

Average rotational latency may also be referred as-

- Average rotational delay
- Average latency
- Average delay
- 5. Capacity Of Disk Pack-

Capacity of a disk pack is calculated as-

Capacity of a disk pack

= Total number of surfaces x Number of tracks per surface x Number of sectors per track x Storage capacity of one sector

Points to Remember-

- The entire disk space is not usable for storage because some space is wasted in formatting.
- When rotational latency is not given, use average rotational latency for solving numerical problems.
- When seek time is not given, use average seek time for solving numerical problems.
- It is wrong to say that as we move from one track to another away from the center, the capacity increases.
- All the tracks have same storage capacity.