TARDEC

TECHNICAL REPORT-

No. 13704

THERMOPLASTIC COMBAT IDENTIFICATION PANEL (CIP) INSERT

JANUARY 1997

Basavaraju B. Raju Lightweight Structures Team US Army Tank-automotive and Armaments Command Warren, MI 48397-5000

NATION'S LABORATORY FOR ADVANCED AUTOMOTIVE TECHNOLOGY APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

U.S. Army Tank-Automotive Research, Development, and Engineering Center Detroit Arsenal Warren, Michigan 48397-5000

19970318 134

DTIC QUALITY INSPECTED 1

MOTICES

Destroy this report when it is no longer needed. Do not seturn it to

the originator.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blan	ok) 12. REPORT DATE		3. REPORT TYPE AN	ODATES	COVERED
1. AGENCY USE ONLY (LESVE DIST	January 1				95-January 1997
A TITLE AND CHOTITLE	January 1	331	rinar, rebru		DING NUMBERS
4. TITLE AND SUBTITLE				S. FUNI	DING NUMBERS
Thermoplastic Combat 1	[dentification	Panel (C	IP) Incerts	l	
Thermoplastic Combat I	Identification	raner (C	It) Inserts	l	
- 1171100/6				l	
6. AUTHOR(S)					
Pasavanaju P Paju		***			
Basavaraju B. Raju					
7. PERFORMING ORGANIZATION N US Army Tank-automotiv			A		ORMING ORGANIZATION ORT NUMBER
					AT HOMOER
Research, Development	and Engineerin	g Center	·		
AMSTA-TR-D					12704
Warren, MI 48397-5000	j.				13704
				,	
9. SPONSORING / MONITORING AGI	ENCY NAME(S) AND AD	DDRESS(ES)			SORING / MONITORING
				AGE	NCY REPORT NUMBER
11. SUPPLEMENTARY NOTES	the second second				
					·
12a. DISTRIBUTION / AVAILABILITY	STATEMENT			12h DIS	TRIBUTION CODE
TEE. DISTRIBUTION AND AND AND AND AND AND AND AND AND AN				120. 013	(
See Distribution Page					
Public Distribution Un	ılimited				•
13. ABSTRACT (Maximum 200 word	c1				
This report describes		only the	work performe	d by t	he Lightweight
					corrugated thermo-
plastic panels for use	as compat ide	ntilicat	Ton paner (CIP) Inse	ided on the
of panel size, shape,	bending stiffing	less and	CIE MISMACCH W	ere st	udied on the
Boltaron ^R corrugated p	paneis inserts.	periorm	ance. The lab	orator	y study simulated
the field temperatures cycle consisted of 160	only and not	the numi	dity and moist	ure.	A typical thermal
cycle consisted of 160) F temperature	held to	r 8 hours and	-40 F	temperature held
for 24 hours in a test	chamber. Fiv	e such t	hermal cycles	were a	pplied to 8
different size panels	made from Bolt	aron ^K 10	50-2079 and Bo	ltaron	× 4050-2103
thermoplastics. Find:	ings of this in	vestigat	ion indicates	that B	oltaron ^R 1050 with
the existing tapes wou					
acquisitions, however,	, it is strongl	y recomm	ended that add	itiona	1 studies be
performed to develop a	a new tape that	exactly	matches the C	TE of	Boltaron ^K 1050
for the ideal and best	t solution.				
14. SUBJECT TERMS					15. NUMBER OF PAGES
	D 1 (OTD)	T D	_		13. NOWINER OF PAGES
Combat Identification					16 00105 0005
Thermoplastic, Therma	l Cycle Tests,	Solar He	ating Tests		16. PRICE CODE
47 66610177 61 466174	0 666110171 61 466161				
17. SECURITY CLASSIFICATION 1 OF REPORT	18. SECURITY CLASSIFIC OF THIS PAGE	CATION 19). SECURITY CLASSIFIC OF ABSTRACT	AHON	20. LIMITATION OF ABSTRACT
Unclassified	Unclassified	1	Unclassified		Limited

PREFACE

This report documents the work performed from February 1995 to December 1996 in the Lightweight Structures Team. Questions regarding this investigation should be referred to the U.S. Army Tank-Automotive Research, Development, and Engineering Center (TARDEC), ATTN: Lightweight Structures Team (AMSTA-TR-D), Building 215, Warren, Michigan, 48397-5000, Telephone: AUTOVON/DSN 786-6065, Commercial (810) 574-6065, FAX (810) 574-8667.

Special thanks goes to Cynthia Motzenbaker for conducting the thermal tests, Martin Rick Agnetti for conducting the solar tests. Special thanks for Boyd Dial for funding this work. Special thanks are due to Steve Sawka and Bob Betley for providing help in thermoforming the plastic sheets and for providing a layout of different size panels. Thanks are due to Ken Greene for help in taping the panels.

TABLE OF CONTENTS

Section	Page
Preface	3
TABLE OF CONTENTS	4
LIST OF FIGURES	5
LIST OF TABLES	7
1.0 INTRODUCTION	8
1.1 NEED/REQUIREMENT OBJECTIVE STATEMENT	8
1.2 OBJECTIVES OF THIS INVESTIGATION	8
2. THERMOPLASTIC SHEET MARKET STUDY	9
3. STUDIES ON 24 INCH LONG AND 12 INCH WIDE	9
THERMOPLASTIC FLAT PANELS	
4. STUDIES ON 46 INCH LONG AND 18 INCH WIDE	10
BOLTARON THERMOPLASTIC FLAT PANELS	
4.1 DISCUSSION AND CONCLUSION OF 46 INCH LONG	10
AND 18 INCH WIDE FLAT PANEL TESTS	
5. STUDIES ON THERMOFORMED BOLTARON	11
THERMOPLASTIC CORRUGATED PANEL INSERTS	
6. RECOMMENDATIONS	13
DISTRIBUTION LIST	79

LIST OF FIGURES

Figure	Title	Page
1-A	Boltaron 1050-2079 Type I PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Tan Colored Tape	30
1-B	Boltaron 1050-2079 Type I PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Green Colored Tape	30
2-A	Boltaron 4050-2103 Type II PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Tan Colored Tape	31
2-B	Boltaron 4050-2103 Type II PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Green Colored Tape	31
3-A	Boltaron 4330 Acrylic/PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Tan Colored Tape	31-A
3-B	Boltaron 4330 Acrylic/PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Green Colored Tape	31-A
4-A	Aluminum Flat Sheet (46 inch x 18 inch) with Tan Colored Tape	32
4-B	Aluminum Flat Sheet (46 inch x 18 inch) with Green Colored Tape	32
4-AA	Thermoformed Boltaron Thermoplastic Corrugated Sheet Segment	33
4-BB	Boltaron Thermoplastic Flat Sheet Segment	33
5-AA	Thermal Cycle Test Chamber	34
5-AB1	Solar Heating Test Set Up	35
5-AB2	Solar Heating Test Set Up	35
5-AB3	Solar Heating Lamps	36
5-A	Test Specimen Insert # 1 at the End of First Thermal Cycle	37
5-B	Test Specimen Insert # 1 at the End of Second Thermal Cycle	38
5-C	Test Specimen Insert # 1 at the End of Third Thermal Cycle	39
5-D	Test Specimen Insert # 1 at the End of Fourth Thermal Cycle	40
5-E	Test Specimen Insert # 1 at the End of Fifth Thermal Cycle	41
5-F	Test Specimen Insert # 1 at the End of 30 Hour Solar Heating	42
6-A	Test Specimen Insert #2 at the End of First Thermal Cycle	43
6-B	Test Specimen Insert # 2 at the End of Second Thermal Cycle	44
6-C	Test Specimen Insert # 2 at the End of Third Thermal Cycle	45
6-D	Test Specimen Insert # 2 at the End of Fourth Thermal Cycle	46
6-E	Test Specimen Insert #2 at the End of Fifth Thermal Cycle	47
7-A	Test Specimen Insert #3 at the End of First Thermal Cycle	48
7-B	Test Specimen Insert #3 at the End of Second Thermal Cycle	49
7-C	Test Specimen Insert #3 at the End of Third Thermal Cycle	50
7-D	Test Specimen Insert #3 at the End of Fourth Thermal Cycle	51
7-E	Test Specimen Insert #3 at the End of Fifth Thermal Cycle	52

8-A	Test Specimen Insert # 4 at the End of First Thermal Cycle	53
8-B	Test Specimen Insert # 4 at the End of Second Thermal Cycle	54
0.2		
8-C	Test Specimen Insert # 4 at the End of Third Thermal Cycle	55 .
8-D	Test Specimen Insert # 4 at the End of Fourth Thermal Cycle	56
8-E	Test Specimen Insert # 4 at the End of Fifth Thermal Cycle	57
8-F	Test Specimen Insert # 4 at the End of 30 Hour Solar Heating	58
9-A	Test Specimen Insert # 5 at the End of First Thermal Cycle	59
9-B	Test Specimen Insert # 5 at the End of Second Thermal Cycle	60
9-C	Test Specimen Insert # 5 at the End of Third Thermal Cycle	61
9-D	Test Specimen Insert # 5 at the End of Fourth Thermal Cycle	62
9-E	Test Specimen Insert # 5 at the End of Fifth Thermal Cycle	63
9-F	Test Specimen Insert # 5 at the End of 30 Hour Solar Testing	64
10-A	Test Specimen Insert # 6 at the End of First Thermal Cycle	65
10-B	Test Specimen Insert # 6 at the End of Second Thermal Cycle	66
10-C	Test Specimen Insert # 6 at the End of Third Thermal Cycle	67
10-D	Test Specimen Insert # 6 at the End of Fourth Thermal Cycle	68
10-E	Test Specimen Insert # 6 at the End of Fifth Thermal Cycle	69
10-F	Test Specimen Insert # 6 at the End of 30 Hour Solar Heating	70
11-A	Test Specimen Insert #7 at the End of First Thermal Cycle	71
11-B	Test Specimen Insert #7 at the End of Second Thermal Cycle	71
11-C	Test Specimen Insert #7 at the End of Third Thermal Cycle	72
11-D	Test Specimen Insert #7 at the End of Fourth Thermal Cycle	72
11-E	Test Specimen Insert #7 at the End of Fifth Thermal Cycle	73
11-F	Test Specimen Insert #7 at the End of 30 Hour Solar Heating	73
12-A	Test Specimen Insert #8 at the End of First Thermal Cycle	74
12-B	Test Specimen Insert #8 at the End of Second Thermal Cycle	74
12-C	Test Specimen Insert #8 at the End of Third Thermal Cycle	75
12-D	Test Specimen Insert #8 at the End of Fourth Thermal Cycle	75
12-E	Test Specimen Insert #8 at the End of Fifth Thermal Cycle	76
12-F	Test Specimen Insert #8 at the End of 30 Hour Solar Heating	76
13	Boltaron 1050-3719 Thermoplastic Pigmented with Tan	77
	Color and Tan Color I. D. Tape	
14	Boltaron 1050-7344 Thermoplastic Pigmented with Green	78
	Color and Green Color I. D. Tape	

LIST OF TABLES

Table	Title	Page
Table 1	Coefficient of Thermal Expansion, Modulus and Thickness of Thermoplastic Materials	15
Table 2	Test Specimen for 24 inch Long, 12 inch Wide Thermoplastic Flat Panels	18
Table 3	Thermal Cycle For Preliminary Laboratory Tests on 24 inch Long and 12 Wide Thermoplastic Flat Panels	19
Table 4	Test Specimen Matrix for 46 Inch Long and 18 Inch Wide Thermoplastic Flat Panels	20
Table 5	Thermal Cycle For Laboratory Tests on 46 Inch Long And 18 Inch Wide Thermoplastic Flat Panels	21
Table 6	Experimental Data on Thermoplastic Flat Panels Test Panel Size 46 Inch Long and 18 Inch Wide	22
Table 7	Thermal and Stiffness Characteristics of Boltaron And Aluminum Sheets	24
Table 8	Test Specimen Matrix For Boltaron Corrugated Panel Inserts	25
Table 9	Thermal Cycle For Laboratory Tests on Boltaron Corrugated Panel Inserts	26
Table 10	Experimental Data For Boltaron Corrugated Panel Inserts	27
Table 11	Panel Temperature Achieved During 30 Hour Solar Heating of Boltaron Corrugated Panel Inserts	29

THERMOPLASTIC COMBAT IDENTIFICATION PANEL (CIP) INSERTS

1. INTRODUCTION

1.1 NEED / REQUIREMENT OBJECTIVE STATEMENT

CIP kits were produced and fielded as a quick fix solution for anti-fratricide. They were deployed to Bosnia and fielded to other contingency forces, but are in short supply thereby necessitating a larger production capability at a lower cost. The integral portion of a kit is a panel insert which is currently made of formed aluminum and covered with tan and green color I.D. tape.

The objective of this project is to reduce the cost per kit by reducing the panel cost. The panel costs can be significantly reduced by changing the material from aluminum to thermoformed plastic. The plastic panel will reduce the material and forming costs, eliminates the CARC painting process, improves the durability of the panel, and reduces the logistic burden by providing a common panel for all insert sizes. The common plastic panel can easily be sheared into the required sizes without producing sharp edges.

There are 72 aluminum panels with their own NSNs at an average aluminum panel cost of \$65 (The range is \$40 -\$165). Commercial procurement of thermoplastic composite material in corrugated configuration is \$25 per panel.

HQDA has forecasted OMA requirement for 28,000 panel inserts for each of FY 1998 and FY 1999.

1.2 OBJECTIVES OF THIS INVESTIGATION

The purpose of this investigation was to evaluate corrugated thermoplastic panel inserts for use as combat identification panel (CIP) inserts. These thermoplastic CIP inserts replace only the existing formed corrugated aluminum panels, but use the existing combat identification tan and green colored I.D. tapes. The existing tapes coefficient of thermal expansion (CTE) closely matches the CTE of aluminum. The current aluminum CIP panels were painted with CARC paint. The tape adhesive was designed to be consistent with the paint system and should be removable if it need to be removed and/ or repaired in the field.

The effects of panel size, shape, bending stiffness and CTE mismatch were studied on the Boltaron thermoplastic corrugated panel insert's performance as well as flat Boltaron panels. The laboratory study conducted here simulates the field temperatures only and not the humidity and moisture. Solar heating laboratory tests were conducted for a week to study solar loading effects on the performance of the I.D. tape on thermoplastic panels.

The field tests on the corrugated panel inserts are in progress and will be reported separately.

2. THERMOPLASTIC SHEET MARKET STUDY

A telemarketing study was conducted to identify the manufacturers and suppliers of thermoplastic sheets in U.S. industries. This study was narrowed to thermoplastic sheets of 0.125 inch thick as this was determined to be the most optimum thickness for CIP inserts. As a result of this market study, a large number of manufacturers and suppliers of different thermoplastic sheets were identified. The market study included information on material properties such as coefficient of thermal expansion (CTE) and elastic modulus and other information such as sizes of commercially available sheets. The details of this market study are presented in Table 1.

3. STUDIES ON 24 INCHES LONG AND 12 INCHES WIDE THERMOPLASTIC FLAT PANELS

Some preliminary tests were conducted using the available thermoplastic flat panels. The test matrix for 24 inches long and 12 inches wide specimens is presented in Table 2. The thermoplastics investigated were: Azdel, ABS-21, Boltaron 4330. The green and tan colored combat I.D. tapes were applied to all specimen types.

Boltaron is the registered trade name of Empire Plastics Inc. for polyvinyl chloride (PVC) or Acrylic/PVC thermoplastics. Azdel is the registered trade name of Azdel Inc. for fiber glass reinforced polypropylene thermoplastic.

The thermal cycle applied on these thermoplastic sheets during laboratory tests is presented in Table 3

Azdel panels produced no tape wrinkles after 5 hours of exposure to 160° F. Boltaron 4330 produced small amounts of tape wrinkles. ABS-21 panels produced large amounts of wrinkles. Besides, ABS-21 panels were badly warped. These results were expected, because of CTE mismatch between tape and thermoplastic panel material.

Specimen	CTE	CTE Mismatch
I.D.	(10*E-5) in/in/Deg F	percent
Combat I.D. Tape	0.95	0
ABS-21	4.2-5.6	77-83
Boltaron 4330	2.5	62
Azdel	1.5	37

Although Azdel produced superior results, further investigations on these laminates were

discontinued, because Azdel is glass reinforced, not easily formable and cost higher than other thermoplastic panels.

ABS-21 was also discarded as there is a large CTE mismatch (77 to 83 percent) between thermoplastic and tape resulting in large amounts of wrinkles and excess panel warping.

Studies on Boltaron 4330 were continued. Boltaron specimens C-1 and C-2 were exposed to - 40° F for 26 hours. There was a dwell period of several days at room temperature after the completion of elevated temperature tests. Both specimens C-1 and C-2 produced a couple more wrinkles. The extreme temperatures programmed in the thermal cycles were expected to represent the temperatures in the field. We do not expect to see these extremes in one day. Therefore, the laboratory experiments were accelerated tests for the panels.

4. STUDIES ON 46 INCHES LONG AND 18 INCHES WIDE BOLTARON THERMOPLASTIC FLAT PANELS

Further studies on Boltaron thermoplastic flat panels were continued to study the effect of specimen size, CTE and bending stiffness on the performance of thermoplastic flat panels. The test matrix for 46 inches long and 18 inches wide specimens is presented in Table 4. This 46 inches represent the maximum length that could be used on a CIP insert and one of the purpose of this investigation was to study the maximum length effects on warping of panel and wrinkle formation by the tape. Here, bending stiffness is defined as the product of elastic modulus of material and area moment of inertia of cross section of flat panels. The bending stiffness controls the amount of warping during thermal cycles applied to the panel. The thermal cycle applied to 46 inches long and 18 inches wide thermoplastic flat panels is presented in Table 5.

Three types of Boltaron thermoplastic sheets, namely, Boltaron 1050-2079 Type I PVC, Boltaron 4050-2103 Type II PVC and Boltaron 4330 acrylic-polyvinyl chloride were investigated along with aluminum panels of same dimensions. The results of aluminum panels served as base line data to compare the performance of Boltaron thermoplastic panels. The photographs of Boltaron thermoplastic and aluminum panels are presented in Figs 1-A, 1-B, 2-A, 2-B, 3-A, 3-B, 4-A and 4-B at the end of thermal cycles. Results of test data on these flat panels is presented in Table 6. As expected, Boltaron 1050-2079 Type I PVC and aluminum panels performed well with both tan and green tapes.

4.1 Discussion and Conclusion of 46 Inches Long and 18 Inches Wide Flat Panel Tests

The wrinkle formation is due to the mismatch of coefficient of thermal expansions of tape and thermoplastic panel material. For Boltaron 1050-2079 Type I PVC, the mismatch of CTE was 42 percent. For this case, formation of wrinkles was the minimum. The mismatch of CTE for Boltaron 4050-2103 Type II PVC was 54 percent. The wrinkles increased due to the slight increase of CTE mismatch. For Boltaron 4330 acrylic PVC, CTE mismatch was 62 percent for which the maximum number of wrinkles were observed. The CTE mismatch for aluminum was 28 percent.

No wrinkles were observed in the case of aluminum panels.

The loss of adhesive bond strength, particularly at 160° F may also be another reason for formation of wrinkles. Due to loss of adhesive bond strength at 160° F, the tape may be separated from the panel. When the panel and tape were subjected to - 40° F temperature, the panel contracted more than the tape, resulting in formation of wrinkles.

Therefore, in order to eliminate wrinkle formation, it was absolutely necessary to eliminate large CTE mismatch between tape and thermoplastic material. Over the temperature range from 160° F to - 40° F, the adhesive should also retain substantial portion of its room temperature strength. Of the two temperatures, 160° F may be more critical for bond strength of adhesives.

In the case of flat panels, warping was observed. Warping in panels depends on modulus of material and moment of inertia of cross section of plastic. The modulus, moment of inertia and bending stiffness are presented in Table 7. Warping in flat panels was solely due to low bending stiffness compared to thermoformed corrugated panel inserts. When the panels were subjected to thermal cycles, due to mismatch of CTE of tape and thermoplastic material, bending moments were introduced in the panel. This caused the panel to bend and warp if panel bending stiffness was low. For example, for Boltaron 1050-2079, Type I PVC material the bending stiffness of flat panel was 230 inch-lbs. The bending stiffness increased to 40,800 inch-lbs for thermoformed corrugated panel insert. Therefore, the warping was completely eliminated in thermoformed corrugated panel inserts which will be reported in next section.

The length of flat panel had an effect on warping of panels. More warping was noticed in 46 inches long and 18 inches wide flat panels when compared to 24 inches long and 12 inches wide panels. The number of wrinkles also increased in long panels when compared to shorter panels.

5. STUDIES ON THERMOFORMED BOLTARON THERMOPLASTIC CORRUGATED PANEL INSERTS

Further studies were conducted to study the effect of panel size, shape, panel bending stiffness and CTE mismatch on Boltaron corrugated panel inserts' performance. One segment of corrugation of Boltaron panel insert is presented in Fig. 4-AA; and an equivalent segment of flat sheet is presented in Fig. 4-BB. These configurations were used to estimate the bending stiffness presented in Table 7. The bending stiffness of corrugated Boltaron panel was 178 times the bending stiffness of an equivalent flat panel. This prevented the warping of corrugated panels during thermal cycle tests due to mismatch of CTE between tape and Boltaron which was 42 percent for Boltaron 1050-2079, 54 percent for Boltaron 4050-2103 and 62 percent for Boltaron 4330. This CTE mismatch produced unequal forces on the tape and panel which caused the bending of the panels.

In the case of Aluminum, corrugated panel's bending stiffness was 176 times the bending stiffness of an equivalent flat aluminum panel (Table 7). However, there was no warping even in

the case of flat aluminum panel because the CTE mismatch between tape and aluminum was only 28 percent.

The test matrix for thermal cycle tests is presented in Table 8. The thermal cycle applied on these Boltaron corrugated panel inserts is presented in Table 9. The inserts were enclosed in the aluminum frame in order to prevent damage due to handling of the panels. All panels together were exposed to the same thermal cycle. Thermal cycle tests were conducted in a test chamber Fig. 5-AA in the Team Power Environmental Laboratory in building 7 at TARDEC by Cynthia S. Motzenbecker.

After applying 5 thermal cycles, the corrugated panel inserts were exposed for a week of solar heating tests in a special set up (Fig.5-AB1, Fig.5- AB2 and Fig. 5-AB3) in the Mobility Test Operations Laboratory in building 212 at TARDEC. These tests were conducted by Martin Rick Agnetti. Forty eight lamps simulated the solar heating on the panels mounted on side of the body of the HMMWV.

Two types of Boltaron corrugated panel inserts: Boltaron 1050-2079 Type I PVC and Boltaron 4050-2103 Type II PVC were investigated. In all 8 different inserts of different sizes and shapes were subjected to 5 thermal cycles presented in Table 9 followed by a week of solar heating tests.

The photographs for test specimens 1 through 8 after subjecting to 5 thermal cycles followed by the solar heating tests are presented in Figs. 5 through 12. The results of thermal cycle and solar heating test data is presented in Table 10.

In general, Boltaron 1050-2079 Type I PVC corrugated panels with tan color tape performed better than other panels. In fact, the Test Specimen 2 exhibited no wrinkles after 5 thermal cycles (Fig. 6-A through 6-E); and Test Specimen 7 exhibited no wrinkles after 5 thermal cycles and 2 wrinkles after 5 thermal cycles followed by a week of solar heating tests (Fig. 11-A through 11-F). Boltaron 4050-2079 Type II PVC developed the maximum of 8 wrinkles after 5 thermal cycles and 10 wrinkles after 5 thermal cycles followed by the solar heating tests.

The reasons for the formation of wrinkles are: First, CTE mismatch between tape and Boltaron material; Second, tape adhesive may not be retaining its room temperature strength over the temperature range from 160° F to - 40° F. Of the 2 temperatures, 160° F temperature is more critical than - 40° F, as adhesives behave poorly at higher temperature than at cryogenic temperatures.

Boltaron 1050-2079 Type I PVC had a CTE mismatch of 42 percent; Boltaron 4050-2103 Type II PVC had CTE mismatch of 54 percent. The aluminum had a CTE mismatch of 28 percent (Table 7).

It appears that the tape adhesive bond tolerates a mismatch of 28 percent as in the case of

aluminum even over a temperature range from 160° F to -40° F (Table 6 and Fig.4-A and 4-B). There were no wrinkles in the aluminum flat panels.

The CTE mismatch of 42 percent in the case of Boltaron 1050-2079 Type I PVC and 54 percent in the case of Boltaron 4050-2103 Type II PVC were perhaps the reasons for formation of wrinkles in these panel inserts.

The panel temperatures achieved during a week of solar heating testing is presented in Table 11. Six hours of solar heating has produced a maximum of 130° F temperature on panel surface. In most cases, the addition of a week of solar heating to 5 thermal cycles produced an increase of 2 to 10 wrinkles. Here, once again CTE mismatch and deterioration of adhesive at 130° F are the reasons for producing additional wrinkles.

The effect of pure solar heating on the performance of panels was not assessed because the panels were subjected to thermal cycling testing prior to being subjected to the solar heating tests.

The size of corrugated panel insert had no effect either on warping of panel or on wrinkle formation. Long panels performed equally well as short panels. The shape of panels also had no effect on warping or wrinkle formation. Oblong panels performed as good as square panels. This is due to the increased bending stiffness of corrugated panels compared to flat panels.

The poor performance with green tape on Boltaron panels is difficult to explain (Figs. 7-A through 7-F, Figs. 8-A through 8-F, Figs. 9-A through 9-F, and Figs. 12-A through 12-F). Without a production buy of material, we were not able to color match the panels with the tape's color. As such, dark gray panels were used to simulate green and light gray panels were used to simulate tan. It was assumed that the dark grey panel would be the worst case over an actual green.

Some preliminary trials were made for pigmenting the thermoplastic with camouflage green and tan colors with complete success in the case of Boltaron 4330 acrylic PVC and Boltaron 1050 Type I PVC (Fig. 13 and Fig.14).

The following are the conclusions for corrugated panel inserts performance after thermal cycle and solar heating tests:

- o Geometry of corrugated Boltaron panel inserts was very stable after they were subjected to thermal cycle and solar heating tests. There was no warping of panels.
- o Boltaron 1050 2079 Type I PVC corrugated panel inserts with tan colored tape performed better than Boltaron 4050-2103 Type II PVC corrugated panel inserts.

6. RECOMMENDATIONS

Based on studies conducted here, following are the recommendations for future investigations:

- o A new tape should be developed with CTE mismatch between the tape and thermoplastic panel insert not to exceed 5 percent over a temperature range from 40° F to 160° F.
- o A new adhesive should be developed for improving the bond strength between the new tape and Boltaron thermoplastic over a temperature range from 40° F to 160° F.
- o There should be no excessive loss of adhesive bond strength between the tape and thermoplastic material particularly at 160° F.
- o Future laboratory tests should be conducted on pigmented Boltaron 1050-3719 tan color Type I PVC and Boltaron 1050-7344 green color Type I PVC thermoplastic panel inserts along with new tape having matching CTE.
- o The effect of humidity and moisture on the performance of the tape-panel bond and the formation of wrinkles was not investigated here. Field tests are being conducted at Fort Campbell, TN and they will include atmospheric humidity and moisture along with the temperature variation on the panel.
- o As an interim solution, pigmented Boltaron 1050-3719 tan color Type I PVC and Boltaron 1050-7344 green color type I PVC thermoplastics may be used along with the existing tan and green I. D. tapes for CIP inserts.

TABLE1	COEFFIECIENT OF THERMAL EXPANSION, MODULUS AND THICKNESSES OF THERMOPLASTIC MATERIALS	CTE MODULUS DIMENSIONS COMPANY BOC BLOXIE	1.0* E-05 LENGTH WIDTH THICKNESS I.D	IN./IN./DEG F PSI FEET FEET INCH	0.95 5.55 L 3 0.001	Associates	at I.D. 1.26-1.37 100 L W 0.04 Alcoa		3.46 2.5 8 4 0.12 CE Direction		3.75 3.25 8 4 0.12 G.E. Plastics Bill Mills 810 351 8566		3.75 3.4 8 4 Otto OT 01.1.	3 2.65 3.6 8 4 0.125 G.F. Plastics Bill Mills 910.251 0.550		A 2.55 3.35 8 4 0.125 G.E. Plastics Bill Mills 810 351 8566		3.75 3.4 8 4 0.125 Sheffield Cindy 900 600 500 1	Plastics		7.1 2.3 8 4 0.125	Plastics	3.8 3.33 8 4 0.125 Describe		56 5.3 1.45 8 4 0.125 Royalite 800 388 7527
	COEFFIECIENT	MATERIAL CTI	10*E-	+	Mylar Polyecter Film	wylar i dyester i illi		Panels- Aluminum	Lexan 8000 3.46	Ф		Polycarbonate	Lexan 9034 3.78		Polyetherimide		Loiseminae	Hyzod GP 3.75	Polycarbonate	ABS Contriv 832			ABS Magnum 3.8	4410	ABS Lustran 456 5.3

	PHONE #		800 388 7527	800 388 7527	800 388 7527	800 388 7527	800 388 7527	800 388 7527	800 388 7527	800 388 7527	800 388 7527	810 358 5544	810 358 5544	810 358 5544
	POC													
	COMPANY	l.D.	Royalite	Royalite	Royalite	Royalite	Royalite	Royalite	Royalite	Royalite	Royalite	Cadillac Plastics	Cadillac Plastics	Cadillac Plastics
(pan	니구	INCH	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125
Table -1 (Continued)	WIDTH	FEET	4	4	4	4	4	4	4	4	4	4	4	4
Table	LENGTH	FEET	8	8	8	ω	80	8	ω	8	8	8	8	8
	MODULUS	1.0*E-5 PSI	3.1	2.3	2.3	2.9		3.2	3.4	2.7	2.3	3.6	3.1	4
	CTE 10*E-05	IN./IN./DEG F	4.2-5.6	4.2-5.6	4.2-5.6	4.2-5.6	4.2-5.6	4.0 - 5.0	4.0 - 5.0	4.6-5.9	4.6-5.9	2.5	2.5	1.64
	Material I.D.		ABS R12	ABS R20	ABS R21	ABS S250	ABS R26	Acrylic/PVC DKE 400	Acrylic/PVC DKE 450	ABS/PVC R 59	R 87/59	Boltaron Acrylic Polyvinyl Chloride 4330	Boltaron 6530	Boltaron 1050

	Tabl	Table 1 (Continued)	(pen				
	9		DIMENSIONS	SNO		0	
MODULUS 1.0* E-05 PSI	ULUS 05 PSI	FEET	WIDIA	INCH	COMPANY I.D.	20	Phone #
er.		α	4	0.125	Cadillac		810.358.5544
					Plastics		
က		8	4	0.125	Cadillac		810 358 5544
					Plastics		
4		8	4	0.125	Cadillac		810 358 5544
					Plastics		
8		8	4	0.125	Azdell Inc.	Phillip	810 356 3000
6.7		8	4	0.125	Azdell Inc.	Phillip	810 356 3000
1.2		1.3	1.3	0.125	Dupont	Romano	810 583 8128
					Automotive		
					Engineering		
					Materials		
4.6		8	4	0.125	Polymer	Overfield	610 320 6660
					Corporation		

			TABLE 2				
	TEST SPECIA	AEN FOR 24 INC	CH LONG, 12 INCH WI	TEST SPECIMEN FOR 24 INCH LONG, 12 INCH WIDE THERMOPLASTIC FLAT PANELS	LAT PANE	S	
SPECIMEN I.D	MATERIAL I.D	COLOR OF	CAMBAT TAPE I.D.	CTE	SPEC	SPECIMEN DIMENSIONS	ENSIONS
		SPECIMEN	COLOR	10.E-05 IN. /IN/ DEG F	LENGTH	WIDTH	THICKNESS
					INCH	INCH	INCH
A-1	AZDEL	WHITE	TAN	1.5	24	12	0.108
A-2	AZDEL	WHITE	GREEN	1.5	24	12	0.108
B-1	ABS-21	BLACK	TAN	4.2-5.6	24	12	0.125
B-2	ABS-21	BLACK	GREEN	4.2-5.6	24	12	0.125
C-1	BOLTARON 4330	BLACK	TAN	2.5	24	12	0.125
C-2	BOLTARON 4330	BLACK	GREEN	2.5	24	12	0.125
D-1	BOLTARON 4330	BLACK	TAN	2.5	24	12	0.125
D-2	BOLTARON 4330	BLACK	GREEN	2.5	24	12	0.125
E-1	ABS-21	BLACK	TAN	4.2-5.6	24	12	0.125
E-2	ABS-21	BLACK	GREEN	4.2-5.6	24	12	0.125

TABLE 3

THERMAL CYCLE FOR PRELIMINARY LABORATORY TESTS

ON 24 INCH LONG AND 12 INCH WIDE THERMOPLASTIC FLAT PANELS

TEMPERATURE	TIME	TEMPERATURE RAMPING RATE
F DEGREES	HOURS	F DEGREES/ MINUTE
72	0.25	
72 to 160	0.5	2.93
160	5	
160 to 72	0.5	2.93
72 to -40	1	1.87
-40	26	
-40 to 70	1	1.87

54	FOR 46 INCH LONG AND 18 INCH WIDE THERMOPLASTIC FLAT PANELS	CTE SPECIMEN DIMENSIONS	05 IN./IN/DEG F LENGTH WIDTH THICKNESS	INCH INCH INCH	1.65 46 18 0.125		1.65 46 18 0.125	2.07 46 18 0.125		2.07 46 18 0.125		2.5 46 18 0.125	2.5 46 18 0.125	1.26 46 18 0.04		1.26 46 18 0.04	
1 1		COMBAT TAPE I.D.			TAN		GHEEN	TAN		LIGHT GREY GREEN 2.07		BLACK TAN 2.5	BLACK GREEN 2.5	TAN CARC TAN 1.26	INT	ARC GREEN	
	TEST SPECIMEN MATRIX	MATERIAL I.D. COLOR OF	SPECIMEN		BOLTARON 1050-2079 DARK GREY	TYPE I PVC	BOLIAHON 1050-2079 DAHK GREY	BOLTARON 4050-2103 LIGHT GREY	TYPE II PVC	BOLTARON 4050-2103 LIGHT	TYPE II PVC	BOLTARON 4330 BLA	BOLTARON 4330 BLA	ALUMINUM TAN C	PAINT	ALUMINUM GREEN	

TABLE 5

THERMAL CYCLE FOR LABORATORY TESTS

ON 46 INCH LONG AND 18 INCH WIDE THERMOPLASTIC FLAT PANELS

TEMPERATURE	TIME	TEMPERATURE RAMPING RATE
F DEGREES	HOURS	F DEGREES / MINUTE
73.4	24	
73.4 to -40	1	1.89
-40	24	
- 40 to 73.4	1	1.89
73.4 to 160	0.5	2.93
160	8	
160 to 73.4	0.5	2.93

MENTAL DATA ON THERMOPLASTIC FLAT PANELS PANEL SIZE 46 INCH LONG AND 18 INCH WIDE	EXPERIMENTAL OBSERVATION			Only one wrinkle stretched across the width of tape and at the center of the panel	Specimen lightly warped and should not be a major concern	A few wrinkles at a few more places and warping remained the same		No wrinkles and light warping		A few wrinkles at a few places and slight increase in warping		6-7 wrinkles spread along the length and specimen lightly warped ;		A large number of wrinkles at several places and warping of sheet also increased		6-7 wrinkles spread along the length and specimen lightly warped		A large number of wrinkles at several places and specimen warping increased		6-7 wrinkles spread along the length and specimen badly warped		Maximum number of wrinkles at several places and specimen warping also increased	8-9 wrinkles stretched along the length and specimen badly warped		Maximum number of wrinkles at several places and maximum specimen warping	
EXPERIMENTA TEST PANE	THERMAL	CYCLE	COMPLETED	2		3		2		က		2		က		2		က		2		က	2		က	
	CTE	10*E-05 IN/IN/F		1.65				1.65				2.07				2.07				2.5			2.5			
	TAPELD	+		TAN				GREEN				TAN				GREEN				TAN			GREEN			
	MATERIAI	Q.		BOLTARON	1050-2079	TYPE I PVC	DARK GREY	BOLTARON	1050-2079	TYPE I PVC	DARK GREY	BOLTARON	4050-2103	TYPE II PVC	LIGHT GREY	BOLTARON	4050-2103	TYPE II PVC	LIGHT GREY	BOLTARON	4330		BOLTARON	4330		

				TABLE 6
				CONTINUED
MATERIAL	TAPE I.D.	CTE	THERMAL	EXPERIMENTAL OBSERVATION
Ü.		10*E-05 IN/IN/F	CYCLES	
			COMPLETED	
ALUMINUM	TAN	1.26	2	No wrinkling and no warping
			ო	Some areas of tape debonded but no wrinkles and no warping of sheet
ALUMINUM	GREEN	1.26	2	No wrinkles and no warping
			3	No wrinkles & no separation of tape and no warping of sheet
MYLAR	TAN &	0.95		
POLYESTER	GREEN			
TAPE				

			TABLE 7			
THE	THERMAL AND STIFFNESS CHARACTERISTICS OF BOLTARON AND ALUMINUM SHEETS	CHARACTER	RISTICS OF BOLTAR	ON AND ALUM	INUM SHEETS	
MATERIAL	INSERT	СТЕ	MISMATCH	MODULUS	MOMENT	BENDING
l.D.	CONFIGURATION		IN CTE OF INSERT		OF.	STIFFNESS
			AND TAPE		INERTIA	
						v
		IN/IN/DEG F	PERCENT	PSI	(INCH*E+4)	LBS-(INCH*E+2)
		X 10*E-05		X 10* E+05	X 10*E-04	X 10 * E+ 02
COMBAT I.D. TAPE		0.95	0	4		
MYLAR POLYESTER TAPE						
BOLTARON 1050-2079	FLAT	1.64	42	4	5.76	2.3
TYPE I PVC DARK GREY						
BOLTARON 1050-2079	THERMOFORMED	1.64	42	4	1020	408
TYPE I PVC DARK GREY						
BOLTARON 4050-2103		2.07	54	3	5.76	1.73
TYPE II PVC LIGHT GREY						
COLO COLO MODAT IOC	THEDWOOD	70.0	7.0		0007	
TYPE II PVC LIGHT GREY		70.7	7	0	0201	300
BOLTARON 4300	FLAT	2.5	62	3	5.76	1.73
BOLTARON 4300	THERMOFORMED	2.5	62	က	1020	306
	-					
ALUMINUM	FLAT	1.32	28	100	0.187	1.87
ALUMINUM	FORMED	1.32	28	100	330	330

			TABLE 8				
	TEST SPECIN	JEN MATRIX FO	R BOLTARON	CORRUGATED	MEN MATRIX FOR BOLTARON CORRUGATED PANEL INSERTS		
SPECIMEN	MATERIAL	COLOR OF	COMBAT	CTE OF TAPE	CTE OF INSERT	SPECIMEN [SPECIMEN DIMENSIONS @
I.D.	I.D.	SPECIMEN	I.D. TAPE	10*E-05	10* E-05	LENGTH	WIDTH
			COLOR	IN/IN/F	IN/IN/F	INCH	INCH
-	BOLTARON 4050-2103	LIGHT GREY	TAN	0.95	2.07	31.5	26.5
	TYPE II PVC						
2	BOLTARON 1050-2079	DARK GREY	TAN	0.95	1.65	31.5	26.5
	TYPE I PVC						
		,					
က	BOLTARON 1050-2079	DARK GREY	GREEN	0.95	1.65	31.5	26.5
	TYPE I PVC						
4	BOLTARON 4050-2103	LIGHT GREY	GREEN	0.95	2.07	31.5	26.5
	TYPE II PVC					•	
5	BOLTARON 1050-2079	DARK GREY	GREEN	0.95	1.65	39.5	15.5
	TYPE I PVC						,
9	BOLTARON 1050-2079	DARK GREY	TAN	0.95	1.65	39.5	15.5
	TYPE I PVC						
2	BOLTARON 1050-2079	DARK GREY	TAN	0.95	1.65	58	12
	TYPE I PVC						
8	BOLTARON 1050-2079	DARK GREY	GREEN	0.95	1.65	58	12
	TYPE I PVC						
NOTE:							
@ = THICK	@ = THICKNESS OF ALL PANELS = 0.125 IN	INCH					

TABLE 9
THERMAL CYCLE FOR LABORATORY TESTS
ON BOLTARON CORRUGATED PANEL INSERTS

TEMPERATURE	TIME	TEMPERATURE RAMPING RATE
F DEGREES	HOURS	F DEGREES/MINUTE
72 (Ambient)	0.08	
72 to 160	0.5	2.93
160	8	
160 to -40	1.62	2.06
-40	24	
-40 to 72	1.12	1.67

	EXPERIMENTAL DATA F		BLE 10	ATED PANEL IN	SERTS
SPECIMEN	MATERIAL	TAPE	THERMAL	SOLAR	EXPERIMENTAL
I.D.	I.D.	I.D.	CYCLES	HEATING	OBSERVATION
1.0.	1.0.	1.0.	COMPLETED	COMPLETED	000000000000000000000000000000000000000
1	BOLTARON 4050-2103	TAN	1	0	NO WRINKLES
	TYPE II PVC	17.1.1	2	0 .	NO WRINKLES
	LIGHT GREY		3	0	3 WRINKLES
	Eldiri dile i		4	0	3 WRINKLES
			5	0	7 WRINKLES
			5	30 HOURS	9 WRINKLES
					· · · · · · · · · · · · · · · · · · ·
2	BOLTARON 1050-2079	TAN	1		NO WRINKLES
	TYPE I PVC	17314	2		NO WRINKLES
	DARK GREY		3		NO WRINKLES
	DARK GRET		4		NO WRINKLES
			5		NO WRINKLES
			3		NO WITHWILLS
	POLTADON 1050 0070	GREEN	1		NO WRINKLES
3	BOLTARON 1050-2079	GREEN	2		1 WRINKLES
	TYPE I PVC DARK GREY		3		3 WRINKLES
	DARK GREY		4		4 WRINKLES
			5		4 WRINKLES
			3		4 WHINKLES
	POLTADON 4050 2102	GREEN	1		NO WRINKLES
4	BOLTARON 4050-2103 TYPE II PVC	GREEN	2		2 WRINKLES
			3		4 WRINKLES
	LIGHT GREY		4		7 WRINKLES
			5		8 WRINKLES
_,~			5 5 ·	30 HOURS	10 WRINKLES
			3	301100113	TO VALUATION LEG
5	BOLTARON 1050-2079	GREEN	1		NO WRINKLES
5	TYPE I PVC	GNEEN	2		3 WRINKLES
	DARK GREY		3		3 WRINKLES
	DANK GRET		4		3 WRINKLES
-			5		3 WRINKLES
			3		8 WRINKLES
					O WITHINKLLO
6	BOLTARON 1050-2079	TAN	1		NO WRINKLES
O	TYPE I PVC	IAIN	2		4 WRINKLES
	DARK GREY		3		6 WRINKLES
	DANK GRET		4		6 WRINKLES
			5		6 WRINKLES
			5	30 HOURS	16 WRINKLES
	1		5	30 HOURS	TO VALUINIVELED
7	BOLTARON 1050-2079	TAN	1		NO WRINKLES
	TYPE I PVC	IAN	2		NO WRINKLES
	DARK GREY		3		NO WRINKLES
	DAIN GRET		4		NO WRINKLES
			5		NO WRINKLES
			5	30 HOURS	2 WRINKLES
			J	JULIOUNG	Z WITHWILLO

		TABLE 10	CONTINUED		
8	BOLTARON 1050-2079	GREEN	1		2 WRINKLES
	TYPE I PVC	<u> </u>	2		8 WRINKLES
	DARK GREY		3		8 WRINKLES
			4		8 WRINKLES
			5		10 WRINKLES
			5	30 HOURS	19 WRINKLES

TABLE 11
PANEL TEMPERATURES ACHEIVED DURING 30 HOUR SOLAR HEATING
OF BOLTARON CORRUGATED PANEL INSERTS

TEST TIME	AMBIENT	SOLAR	EQUIVALENT	AVERAGE
	TEMPERATURE	LOAD	SOLAR	PANEL
			HEATING	TEMPERATURE
	DEGREE F	W/MSQ	W/MSQ	DEGREE F
0:00	95	505	407	97
1:00	101	730	632	103
2:00	106	915	837	111
3:00	110	1040	987	119
4:00	116	1120	1086	125
5:00	116	1120	1086	127
6:00	120	1040	987	130

29

Fig. 1-A Boltaron 1050-2079 Type I PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Tan Colored Tape

Fig. 1-B Boltaron 1050-2079 Type I PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Green Colored Tape

Fig. 2-A Boltaron 4050-2103 Type II PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Tan Colored Tape

Fig. 2-B Boltaron 4050-2103 Type II PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Green Colored Tape

Fig.3-A Boltaron 4330 Acrylic/PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Tan Colored Tape

Fig. 3-B Boltaron 4330 Acrylic/PVC Thermoplastic Flat Sheet (46 inch x 18 inch) with Green Colored Tape

Fig.4-A Aluminum Flat Sheet (46 inch x 18 inch) with Tan Colored Tape

Fig. 4-B Aluminum Flat Sheet (46 inch x 18 inch) with Green Colored Tape

Fig. 4-AA Thermoformed Boltaron Thermoplastic Corrugated Sheet Segment

Fig. 4-BB Boltaron Thermoplastic Flat Sheet Segment

Fig. 5-AA Thermal Cycle Test Chamber

Fig. 5- AB1 Solar Heating Test Set Up

Fig. 5 AB2 Solar Heating Test Set Up

Fig. 5- AB3 Solar Heating Lamps

Fig.5-A Test Specimen Insert #1 at the end of First Thermal Cycle

Fig.5-B Test Specimen Insert #1 at the End of Second Thermal Cycle

Fig.5-C Test Specimen Insert #1 at the End of Third Thermal Cycle

Fig.5-D Test Specimen Insert #1 at the End of Fourth Thermal Cycle

Fig.5-E Test Specimen Insert #1 at the End of Fifth Thermal Cycle

Fig. 5-F Test Specimen Insert # 1 at the End of 30 Hours of Solar Heating

Fig.6-A Test Specimen Insert #2 at the End of First Thermal Cycle

Fig.6-B Test Specimen Insert #2 at the End of Second Thermal Cycle

Fig.6-C Test Specimen Insert #2 at the End of Third Thermal Cycle

Fig.6-D Test Specimen Insert #2 at the End of Fourth Thermal Cycle

Fig.6-E Test Specimen Insert #2 at the End of Fifth Thermal Cycle

Fig. 7-A Test Specimen Insert #3 at the End of First Thermal Cycle

Fig. 7-B Test Specimen Insert #3 at the End of Second Thermal Cycle

Fig. 7-C Test Specimen Insert #3 at the End of Third Thermal Cycle

Fig. 7-D Test Specimen Insert #3 at the End of Fourth Thermal Cycle

Fig. 7-E Test Specimen Insert #3 at the End of Fifth Thermal Cycle

Fig. 8-A Test Specimen Insert #4 at the End of First Thermal Cycle

Fig. 8-B Test Specimen Insert #4 at the End of Second Thermal Cycle

Fig. 8-C Test Specimen Insert #4 at the End of Third Thermal Cycle

Fig. 8-D Test Specimen Insert #4 at the End of Fourth Thermal Cycle

Fig. 8-E Test Specimen Insert #4 at the End of Fifth Thermal Cycle

Fig. 8-F Test Specimen Insert # 4 at the End of 30 Hours of Solar Heating

Fig.9-A Test Specimen Insert # 5 at the End of First Thermal Cycle

Fig.9-B Test Specimen Insert # 5 at the End of Second Thermal Cycle

Fig.9-C Test Specimen Insert # 5 at the End of Third Thermal Cycle

Fig.9-D Test Specimen Insert # 5 at the End of Fourth Thermal Cycle

Fig.9-E Test Specimen Insert # 5 at the End of Fifth Thermal Cycle

Fig. 9-F Test Specimen Insert # 5 at the End of 30 Hours of Solar Heating

Fig. 10-A Test Specimen Insert # 6 at the End of First Thermal Cycle

Fig. 10-B Test Specimen Insert # 6 at the End of Second Thermal Cycle

Fig. 10-C Test Specimen Insert # 6 at the End of Third Thermal Cycle

Fig. 10-D Test Specimen Insert # 6 at the End of Fourth Thermal Cycle

Fig. 10-E Test Specimen Insert # 6 at the End of Fifth Thermal Cycle

Fig. 10-F Test Specimen Insert # 6 at the End of 30 Hours of Solar Heating

Fig.11-A Test Specimen Insert #7 at the end of First Thermal Cycle

Fig.11-B Test Specimen Insert # 7 at the End of Second Thermal Cycle

Fig.11-C Test Specimen Insert # 7 at the end of Third Thermal Cycle

Fig.11-D Test Specimen Insert # 7 at the End of Fourth Thermal Cycle

Fig. 11-E Test Specimen Insert # 7 at the End of Fifth Thermal Cycle

Fig. 11-F Test Specimen Insert # 7 at the End of 30 Hours of Solar Heating

Fig.12-A Test Specimen Insert # 8 at the end of First Thermal Cycle

Fig.12-B Test Specimen Insert # 8 at the End Second Thermal Cycle

Fig.12-C Test Specimen Insert #8 at the end of Third Thermal Cycle

Fig.12-D Test Specimen Insert #8 at the End Fourth Thermal Cycle

Fig. 12-E Test Specimen Insert # 8 at the End of Fifth Thermal Cycle

Fig. 12-F Test Specimen Insert # 8 at the End of 30 Hour Solar Heating

Fig. 13 Boltaron 1050-3719 Thermoplastic Pigmented with Tan Color and Tan Color I.D. Tape

Fig. 14 Boltaron 1050-7344 Thermoplastic Pigmented with Green Color and Green Color I.D. Tape

DISTRIBUTION LIST

	PAGE
ATTN:AMSTA-TR-E/OSCAR/267 (Mr. Richard V. Siorek)	1
AMSTA-IM-JSOT (Mr. Boyd B. Dial)	1
AMSTA-TR-D/208 (Mr. Steven Sawka)	1
AMSTA-TR-D/208 (Mr. Robert J. Betley)	1
AMSTA-IM-SD/208 (Ms. Joni O. Dimare-Kramer)	1
AMSTA-TR-O (Mr. Andrew Scott)	1
AMCRD-AD, HQ AMC (Mr. Abra Leff)	2
Defnese Technical Information Center	2
ATTN: DTIC-BRR	
8725 John J, Kingman Road, STE 0944	
Ft Belvoir VA 22060-6218	