Лабораторная работа №1 «Дискретизация аналоговых сигналов»

Радиофизическая лаборатория 2020-2021 уч. год., понедельник 17:05-20:00

Группы Б01-818, С01-819 ФРКТ МФТИ, УЛК-1 4.22 (Физтех.Цифра) / онлайн

Даты	Разделы
1 февраля 2021 г.	Занятие 1. Классификация сигналов:
	аналоговые, дискретные, цифровые.
8 февраля 2021 г.	Занятие 2. Спектры импульсных и
	периодических сигналов.
15 февраля 2021 г.	Занятие 3. Эффект наложения спектров при
	дискретизации сигналов.
22 февраля 2021 г.	План занятия будет уточнен.
1 марта 2021 г.	Сдача лабораторной работы.

Для организации занятий используется Google Класс

https://classroom.google.com/c/MjU5OTE4NzU0NTk3?cjc=ucm3du4

Также необходимо подключиться к Google Классу по лекционному курсу «Дискретные преобразования сигналов»

https://classroom.google.com/c/MjQ3NzMwMzgzNzg2?cjc=aemjutx

Для доступа к Google Классу потребуется авторизация со своим аккаунтом в домене @phystech.edu . Информацию о получении доступа к своему аккаунту @phystech.edu можно найти на сайте УИТ МФТИ. Если возникла ошибка «Неверный аккаунт. У этого аккаунта нет доступа к данному курсу. Смените аккаунт или свяжитесь с преподавателем», то Вы авторизовались не под аккаунтом в домене @phystech.edu.

Занятие 1. Классификация сигналов: аналоговые, дискретные, цифровые.

Теоретическая часть

Классификация сигналов: аналоговые, дискретные, цифровые.

Под *сигналом* обычно понимают величину, отражающую состояние физической системы. Поэтому естественно рассматривать сигналы как функции, заданные в физических координатах. Примером могут служить одномерные сигналы, заданные как функции времени x(t), двумерные сигналы заданные на плоскости I(x,y). В качестве сигналов могут выступать различные величины. Пример одномерного сигнала — зависимость напряжения в сети от времени $U(t) = A \cdot \cos(2\pi f_0 t)$. Далее мы будем рассматривать в основном одномерные сигналы.

Аналоговые или континуальные сигналы x(t) описываются непрерывными и кусочнонепрерывными функциями, причем как сама функция, так и ее аргумент могут принимать любые значения в пределах некоторого интервала.

Дискретные сигналы, могут быть описаны в виде счетного набора отсчетов (значений) в заданные моменты времени $k\Delta t$, $k\in Z$, где Δt — шаг дискретизации. Частота дискретизации $f_{_{\pi}}$ (размерность в Гц) — это величина, обратная шагу дискретизации $f_{_{\pi}}=1/\Delta t$.

Цифровые сигналы, помимо того, что они являются дискретными, могут принимать лишь конечное число значений, соответствующих уровням квантования. Процесс преобразования аналогового сигнала в цифровой состоит из дискретизации и квантования, которые осуществляются аналого-цифровым преобразователем (АЦП). Обычно число уровней квантования 2^m , где m — разрядность АЦП.

Для дискретных сигналов будем использовать следующие описания.

1) Функция дискретного времени k .

Это описание дискретного сигнала в виде последовательности отсчетов x[k] в заданные моменты времени $k\Delta t$, $k\in\mathbb{Z}$, где Δt — шаг дискретизации. Далее мы будем использовать квадратные скобки для обозначения функций дискретного аргумента.

2) Функция непрерывного времени t (континуальная запись).

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t)$$

В этой записи дискретный сигнал представляет собой последовательность дельта-функций с площадями x[k].

Далее мы вернемся к этим двум формам записи и покажем, как связь между x[k] и $x(k\Delta t)$ влияет на соотношение между спектрами дискретизованного и исходного сигнала.

Дискретный сигнал	Описание в виде функции дискретного	Описание в виде функции
Единичный	времени	непрерывного времени
импульс в	$1[k] = \begin{cases} 1, & \text{при } k = 0, \\ 0, & \text{при } k \neq 0. \end{cases}$	$\delta(t)$
точке 0	0 , при $k \neq 0$.	
TOAKE O	1 [k] — единичный импульс	$\delta(t)$ —дельта-функция Дирака
		$\uparrow \delta(t)$
	1 1 [k] •	
	$ \qquad \qquad $	$0 \xrightarrow{t}$
	0	0
	-2 -1 0 1 2	
Единичный	1г k — 1 1 , при $k=m$,	$\delta(t-m\Delta t)$
импульс в	$1[k-m] = \begin{cases} 1, & \text{при } k = m, \\ 0, & \text{при } k \neq m. \end{cases}$	
точке т	`	$\delta(t-m\Delta t)$
	1 - 1[k-m]	(1)
	$ \qquad \qquad $	$ $ $ $
	0	$0 \xrightarrow{1 \atop k\Delta t}$
	m	$\mathcal{K}\Delta t$
Дискретная	(1 How k > 0)	
функция	$u[k] = \begin{cases} 1, & \text{при } k \ge 0, \\ 0, & \text{при } k < 0. \end{cases}$	$\sum_{m=0}^{\infty} \delta(t - m\Delta t)$
включения	[0, при k < 0.	$\overline{m=0}$
	$\uparrow u[k]$	$\uparrow u(t)$
		(1) (1) (1) (1)
	1 -	
		$0 \xrightarrow{l}$
	-4 -3 -2 -1 0 1 2 3 4 5 6 7	$0 \Delta t 2\Delta t 3\Delta t$
Дискретная	$x[k] = \begin{cases} a^k, \text{ при } k \ge 0, \\ 0, \text{ при } k < 0. \end{cases}$	$\sum^{\infty} a^m \delta(t - m\Delta t)$
экспонента	$x[k] = \begin{cases} 0, \text{ при } k < 0. \end{cases}$	$\sum_{m=0}^{\infty} a^{n} O(t - m\Delta t)$
	^	
	x[k]	x(t) (1) (a)
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 -	
		$0 \xrightarrow{1} \xrightarrow{t} \xrightarrow{t}$
	-4-3-2-101234567 k	
	случай 0 <a<1< th=""><th>случай 0<a<1< th=""></a<1<></th></a<1<>	случай 0 <a<1< th=""></a<1<>
Последовате	N-1	N- <u>1</u>
льность из	$x[k] = \sum_{m=0}^{\infty} 1[k-m]$	$x(t) = \sum_{m=0}^{N-1} \delta(t - m\Delta t)$
N	$\overline{m=0}$	$\overline{m=0}$
единичных		
импульсов		

Задание

Задание расположено в файле **Lab1_task.ipynb**. Первому занятию соответствуют следующие задачи.

- Задача 1.1. Дискретизация и квантование.
- Задача 1.2. Декодирование .wav файла

Контрольные вопросы

Вопрос 1.1. Объясните, в чем заключается отличие между аналоговым, дискретным и цифровым сигналом.

Вопрос 1.2. Имеется одноканальная (моно) аудиозапись с битовой глубиной 16 бит на отсчёт (разрядность АЦП равна 16), представленная в виде .wav файла. Частота дискретизации 44100 Гц. Определите число уровней квантования АЦП и шаг дискретизации Δt . Оцените длительность сигнала, если объем файла составляет 280 КБ и никакое дополнительное сжатие не производится.

(такой файл доступен по ссылке https://freesound.org/people/xserra/sounds/219759/)

Bonpoc 1.3. Привести континуальную запись (в виде последовательности дельта-функций) для следующих сигналов:

а) единичного импульса, задержанного на семь тактом дискретизации

$$x[k] = 1[k-7],$$

б) дискретизованной синусоиды с относительной частотой $\, {m
u}_0 = {1\over 4} \,$

$$y[k] = \sin\left(2\pi \frac{1}{4}k\right),\,$$

в) последовательности из пяти единичных импульсов

$$x[k] = \sum_{m=0}^{4} \mathbf{1}[k-m],$$

г) дискретной экспоненты вида

$$x[k] = \begin{cases} (-0.5)^n, \text{ при } k \ge 0, \\ 0, \text{ при } k < 0. \end{cases}$$

Занятие 2. Спектры импульсных и периодических сигналов.

Теоретическая часть

Преобразование Фурье

Все реальные сигналы имеют конечную удельную энергию:

$$\int_{-\infty}^{\infty} \left| x(t) \right|^2 dt < \infty.$$

Например, если x(t) — напряжение (или ток), действующее на единичном сопротивлении, то интеграл представляет собой энергию, выделяемую на единичном сопротивлении, и эта энергия конечна. В этом случае x(t) — функция с интегрируемым квадратом на всей оси. По теореме Планшереля для функции x(t) существует функция X(t) также с интегрируемым квадратом на всей оси, связанна с x(t) соотношением:

$$\lim_{T \to \infty} \int_{-T}^{T} \left| X(f) - \int_{-T}^{T} x(t) e^{-j2\pi f t} dt \right|^{2} df = 0.$$

Если функции x(t) и X(f) абсолютно интегрируемы, то

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt,$$

$$x(t) = \int_{-\infty}^{\infty} X(f) e^{j2\pi f t} df.$$

Эти формулы представляют собой пару преобразования Фурье (FT), где частота f измеряется в Герцах (Гц). Для частоты циклической частоты $\omega = 2\pi f$, измеряемой в рад/с (радианы в секунду) пара преобразования Фурье имеет вид:

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt,$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega.$$

Первый интеграл называется спектральной плотностью, а второй - интегралом Фурье. Далее будем использовать запись вида $x(t) \stackrel{FT}{\longleftrightarrow} X(f)$, что означает, что для сигнала x(t) преобразование Фурье будет X(f).

Свойства преобразования Фурье

Предположим, что $x(t) \overset{FT}{\longleftrightarrow} X(f)$ и $y(t) \overset{FT}{\longleftrightarrow} Y(f)$. Тогда справедливы следующие свойства преобразования Фурье.

1. Свойство линейности.

Для заданных чисел $\alpha \in \mathbf{C}$ и $\beta \in \mathbf{C}$ $\alpha x(t) + \beta y(t) \overset{\mathit{FT}}{\longleftrightarrow} \alpha X(f) + \beta Y(f)$.

2. Теорема запаздывания.

Для заданной задержки по времени au (или опережения в случае $au\!<\!0$)

$$x(t-\tau) \stackrel{FT}{\longleftrightarrow} e^{-j2\pi f\tau} X(f).$$

3. Теорема смещения.

$$x(t)e^{-j2\pi f_0 t} \stackrel{FT}{\longleftrightarrow} X(f+f_0);$$

4. Теорема Парсеваля-Релея.

$$\int_{-\infty}^{\infty} x(t) y^*(t) dt = \int_{-\infty}^{\infty} X(f) Y^*(f) df.$$

5. Теорема о спектре произведения.

$$x(t)y(t) \stackrel{FT}{\longleftrightarrow} X(f) \otimes Y(f),$$

$$x(t)y(t) \stackrel{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} X(\tilde{f})Y(f-\tilde{f})d\tilde{f}.$$

6. Теорема о спектре свертки.

$$x(t) \otimes y(t) \stackrel{FT}{\longleftrightarrow} X(f)Y(f).$$

$$\int_{-\infty}^{\infty} x(\tau)y(t-\tau)d\tau \stackrel{FT}{\longleftrightarrow} X(f)Y(f);$$

7. Теорема об изменении масштаба.

$$x(at) \stackrel{FT}{\longleftrightarrow} \frac{1}{a} X\left(\frac{f}{a}\right).$$

8. Теорема о спектре производной.

$$\frac{dx(t)}{dt} \stackrel{FT}{\longleftrightarrow} j2\pi f X(f)$$

9. Теорема о производной спектра:

$$t \cdot x(t) \stackrel{FT}{\longleftrightarrow} \frac{1}{j2\pi} \frac{dX(f)}{df}.$$

Спектры гармонических сигналов

Вычислим обратное преобразование Фурье для $X(f) = \delta(f-f_0)$, т.е. от дельта-функции в точке f_0 оси частот.

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft} df = \int_{-\infty}^{\infty} \delta(f - f_0)e^{j2\pi ft} df = e^{j2\pi f_0 t}.$$

Тогда с учетом того, что $\cos(2\pi f_0 t) = (e^{j2\pi f_0 t} + e^{-j2\pi f_0 t})/2$ и $\sin(2\pi f_0 t) = (e^{j2\pi f_0 t} - e^{-j2\pi f_0 t})/2j$, получаем

$$\begin{split} 1 & \stackrel{FT}{\longleftrightarrow} \delta(f), \\ e^{j2\pi f_0 t} & \stackrel{FT}{\longleftrightarrow} \delta(f - f_0), \\ \cos(2\pi f_0 t) & \stackrel{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0), \\ \sin(2\pi f_0 t) & \stackrel{FT}{\longleftrightarrow} \frac{1}{2j} \delta(f - f_0) - \frac{1}{2j} \delta(f + f_0). \end{split}$$

Спектры импульсных сигналов

Симметричный прямоугольный импульс длительностью т

$$x_{1}(t) = \begin{cases} E, & \text{если } |t| < \tau/2, \\ 0, & \text{если } |t| \ge \tau/2. \end{cases}$$

Спектр

$$X_1(f) = \int_{-\tau/2}^{\tau/2} E e^{-j2\pi f t} = \frac{E}{-j2\pi f} e^{-j2\pi f t} \Big|_{-\tau/2}^{\tau/2} = E \frac{\sin(\pi f \tau)}{\pi f} = E \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Симметричный треугольный импульс длительностью τ .

$$x_2(t) = \begin{cases} |t| - \frac{1}{2}\tau, & \text{если } |t| < \tau/2, \\ 0, & \text{если } |t| \ge \tau/2. \end{cases}$$

$$X_{2}(f) = \frac{1}{j2\pi f} \left(e^{j\pi f \tau/2} - e^{-j\pi f \tau/2} \right) \frac{2}{\pi f \tau/2} = \frac{\sin^{2}(\pi f \tau/2)}{(\pi f \tau/2)^{2}} = \frac{E\tau}{(\pi f \tau/2)^{2}}$$

Косинусоидальный импульс длительностью τ .

$$x_3(t) = egin{cases} E\cosigg(rac{\pi t}{ au}igg), & ext{ если } |t| < au/2, \ 0, & ext{ если } |t| \ge au/2. \end{cases}$$

$$x_3(t) = x_1(t)\cos(2\pi \frac{1}{2\tau}t) = \frac{1}{2}x_1(t)\left(e^{j2\pi \frac{1}{2\tau}t} + e^{-j2\pi \frac{1}{2\tau}t}\right)$$

а значит

$$X_3(f) = \frac{1}{2}X_1(f - \frac{1}{2\tau}) + \frac{1}{2}X_1(f + \frac{1}{2\tau})$$

$$X_3(f) = X_1(f) \otimes \left(\frac{1}{2}\delta(f - \frac{1}{2\tau}) + \frac{1}{2}\delta(f + \frac{1}{2\tau})\right) = \frac{1}{2}X_1(f - \frac{1}{2\tau}) + \frac{1}{2}X_1(f + \frac{1}{2\tau})$$

Спектр пачки равноотстоящих импульсов

Найдём спектр пачки равноотстоящих импульсов. Для определённости возьмём пачку из $\,N\,$ прямоугольных импульсов

Обозначим через $X_1(\omega)$ спектральную плотность первого импульса. Тогда для группы из N равноотстоящих импульсов в соответствии с теоремой запаздывания будем иметь

$$X(\omega) = X_1(\omega)[1 + e^{-j\omega T} + e^{-j\omega 2T} + \dots + e^{-j\omega(N-1)T}] = X_1(\omega) \sum_{k=0}^{N-1} e^{-j\omega kT}.$$

На частотах $\omega = n2\pi/T$, где n — целое, каждое слагаемое в квадратных скобках равно единице, следовательно:

$$X(\omega = n2\pi/T) = NX_1(\omega = n2\pi/T).$$

Таким образом, на частотах $\omega = n2\pi/T$ модуль спектра пачки в N раз больше модуля спектра одиночного импульса. Это объясняется тем, что на частотах $\omega = n2\pi/T$ спектральные компоненты различных импульсов складываются с фазовыми сдвигами, кратными 2π .

Суммируя $\,N\,$ членов геометрической прогрессии, получаем

$$X(\omega) = X_1(\omega) \frac{1 - e^{-j\omega NT}}{1 - e^{-j\omega T}} = X_1(\omega) \frac{e^{-j\omega NT/2} [e^{j\omega NT/2} - e^{-j\omega NT/2}]}{e^{-j\omega T/2} [e^{j\omega T/2} - e^{-j\omega T/2}]} = X_1(\omega) e^{-j\omega(N-1)T/2} \frac{\sin \omega NT/2}{\sin \omega T/2}.$$

Видно, что на частотах $\omega = m2\pi/NT$, где m – целое, $X(\omega) = 0$. Подставляя сюда значение

$$X_1(\omega) = E\tau \frac{\sin \omega \tau / 2}{\omega \tau / 2} e^{-j\omega \tau / 2},$$

где τ – длительность отдельного импульса, получаем окончательно для спектра пачки из N равноотстоящих прямоугольных импульсов:

$$X(\omega) = e^{-j\omega[(N-1)T/2+\tau/2]} E \tau \frac{\sin \omega \tau / 2}{\omega \tau / 2} \frac{\sin \omega NT / 2}{\sin \omega T / 2}.$$

Для иллюстрации на рис. 1.8.14a изображён модуль спектра пачки из трёх прямоугольных импульсов, а на рис. 1.8.14b — из четырёх. При этом интервал между соседними импульсами $T=3\tau$. Пунктиром изображён модуль спектра одиночного импульса. С увеличением числа импульсов в пачке спектральная плотность $X(\omega)$ при $N\to\infty$ принимает дискретную структуру спектра периодической функции. Нетрудно обобщить этот результат на произвольную форму одиночного импульса.

Модуль спектра пачки прямоугольных импульсов: а — три импульса в пачке, б — четыре импульса в пачке

Примеры решения задач

Задача 1.

Определить спектр X(f) гармонического сигнала

$$x(t) = \cos(2\pi f_1 t) + 3\cos(2\pi f_2 t)$$

где $f_1 = 100$ Гц, $f_2 = 200$ Гц. Какой вид будет иметь спектр для x(t)w(t) , где w(t) — некоторая оконная функция.

Решение

По свойствам преобразования Фурье

$$\exp(j2\pi f_0 t) \overset{FT}{\longleftrightarrow} \delta(f - f_0),$$

$$\cos(2\pi f_0 t) \overset{FT}{\longleftrightarrow} \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0).$$

Тогда по свойству линейности преобразования Фурье

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2)$$

Ограничение сигнала по длительности.

Ограничение сигнала по длительности эквивалентно умножению на прямоугольную оконную функцию.

$$y(t) = w(t)x(t) \text{. Пусть } x(t) \overset{FT}{\longleftrightarrow} X(f), \ w(t) \overset{FT}{\longleftrightarrow} W(f), \ y(t) \overset{FT}{\longleftrightarrow} Y(f) \text{.}$$

$$w(t)x(t) \overset{FT}{\longleftrightarrow} W(f) \otimes X(f),$$

$$w(t)x(t) \overset{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f})X(f-\tilde{f})d\tilde{f} \text{.}$$

В нашем примере

$$X(f) = \frac{1}{2}\delta(f - f_1) + \frac{1}{2}\delta(f + f_1) + \frac{3}{2}\delta(f - f_2) + \frac{3}{2}\delta(f + f_2).$$

$$w(t)x(t) \stackrel{FT}{\longleftrightarrow} \int_{-\infty}^{\infty} W(\tilde{f})X(f - \tilde{f})d\tilde{f}.$$

$$Y(f) = \frac{1}{2}W(f - f_1) + \frac{1}{2}W(f + f_1) + \frac{3}{2}W(f - f_2) + \frac{3}{2}W(f + f_2).$$

Спектр прямоугольного окна длиной τ соответствует спектру прямоугольного импульса длиной τ с высотой E=1

$$W(f) = \int_{-\tau/2}^{\tau/2} E e^{-j2\pi f t} = \frac{1}{-j2\pi f} e^{-j2\pi f t} \Big|_{-\tau/2}^{\tau/2} = \frac{\sin(\pi f \tau)}{\pi f} = \tau \frac{\sin(\pi f \tau)}{\pi f \tau}.$$

Для окна Ханна

$$W_H(f) = \frac{\sin(\pi f \tau)}{2\pi f (1 - \tau^2 f^2)}.$$

Задача 2.

Определите спектр $W_{\!\scriptscriptstyle H}(f)$ аналогового окна Ханна длительностью τ .

$$w_{\!\scriptscriptstyle H}(t) = \begin{cases} \frac{1}{2} \bigg(1 + \cos \bigg(\frac{2\pi t}{\tau} \bigg) \bigg), & \text{если } |t| < \frac{\tau}{2}, \\ 0, & \text{если } |t| \geq \frac{\tau}{2}. \end{cases}$$

Приведем два способа решения, отличные от непосредственного вычисления преобразования Фурье по формуле.

Решение 1.

Пусть w(t) — прямоугольное окно той же длительности.

$$w_H(t) = \frac{1}{2}w(t) + \frac{1}{4}w(t)\exp\left(j2\pi t\frac{1}{\tau}\right) + \frac{1}{4}w(t)\exp\left(-j2\pi t\frac{1}{\tau}\right).$$

Тогда по теореме смещения для преобразования Фурье

$$W_{H}(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

Далее остается подставить W(f).

Решение 2.

Рассмотрим сигнал
$$x(t) = \frac{1}{2} \left(1 + \cos\left(\frac{2\pi t}{\tau}\right) \right).$$

Efo chektp
$$X(f) = \frac{1}{2}\delta(f) + \frac{1}{4}\delta\bigg(f - \frac{1}{\tau}\bigg) + \frac{1}{4}\delta\bigg(f + \frac{1}{\tau}\bigg).$$

При этом
$$w_{\!\scriptscriptstyle H}(t) = w(t)x(t)$$
 и $W_{\!\scriptscriptstyle H}(f) = W(f) \otimes X(f)$.

Использую фильтрующее свойство δ -функции, получаем

$$W_{H}(f) = \frac{1}{2}W(f) + \frac{1}{4}W\left(f - \frac{1}{\tau}\right) + \frac{1}{4}W\left(f + \frac{1}{\tau}\right).$$

$$W_{H}(f) = \frac{\sin(\pi f \tau)}{2\pi f(1 - \tau^{2} f^{2})}.$$

Задание

Задание расположено в .ipynb файле. Второму занятию соответствуют следующие задачи.

- Задача 2.1. Спектры симметричных импульсов
- Задача 2.2. Теорема запаздывания для преобразования Фурье
- Задача 2.3. Спектр отрезка синусоиды
- Задача 2.4. Спектр пачки равноотстоящих импульсов

Контрольные вопросы

Вопрос 2.1. Определите спектр X(f) аналогового гармонического сигнала $x(t)=\sin(2\pi f_1 t)+\cos(2\pi f_2 t)$, $f_1=100$ кГц, $f_2=250$ кГц.

Вопрос 2.2. Определите спектр W(f) аналогового симметричного окна Ханна длительностью au .

$$w(t) = \begin{cases} \frac{1}{2} \left(1 + \cos\left(2\pi \frac{t}{\tau}\right) \right), & \text{если } |t| \leq \tau/2, \\ 0, & \text{если } |t| > \tau/2. \end{cases}$$

Вопрос 2.3. Вычислите спектр $X_1(f)$ одностороннего экспоненциального импульса для случая lpha>0

$$x_1(t) = egin{cases} E \exp(-lpha t), & ext{ если } t \geq 0, \ 0, & ext{ если } t < 0. \end{cases}$$

Найдите амплитудный $\mid X_{\mathbf{l}}(f) \mid$ и фазовый $\varphi_{\mathbf{l}}(f) = \mathrm{acrtg}\left(\frac{\mathrm{Im}\,X(f)}{\mathrm{Re}\,X(f)}\right)$ спектры этого сигнала.

Воспользовавшись этим результатом, определите спектральную плотность для двухстороннего экспоненциального импульса $x_2(t) = E \exp(-\alpha \mid t \mid) = x_1(t) + x_1(-t)$.

Вопрос 2.4. Показать, что спектральная плотность гауссова импульса $x(t) = \exp(-\beta^2 t^2)$ является гауссовой функцией частоты¹

$$X(f) = \frac{\sqrt{\pi}}{\beta} e^{-\left(\frac{\pi f}{\beta}\right)^{2}}.$$

Вопрос 2.5. Воспользовавшись свойством преобразования Фурье — теоремой о производной спектра, определить для случая $\alpha > 0$ спектральную плотность сигнала

$$x_3(t) = \begin{cases} t \exp(-\alpha t), & \text{если } t \ge 0, \\ 0, & \text{если } t < 0. \end{cases}$$

Вопрос 2.6. Пусть X(f) — спектр некоторого сигнала x(t) конечной длительности. Определить спектр сигнала $x(t)\cos(2\pi f_0 t)$, где $f_0=10$ к Γ ц.

Занятие 3. Эффект наложения спектров при дискретизации сигналов.

Теоретическая часть

Спектр дискретизованного сигнала

Рассмотрим способы описания дискретизованного сигнала, т.е. дискретного сигнала, получаемого из аналогового с помощью дискретизации.

1) Функция дискретного времени.

Это описание дискретного сигнала в виде последовательности отсчетов x[k] в заданные моменты времени $k\Delta t$, $n\in Z$, где Δt — шаг дискретизации:

$$x[k] = Tx(k\Delta t), T \in \{1; \Delta t\}$$

где $\mathrm{T}\;-$ константа с размерностью времени, равная единице или Δt . Выбор этой константы, как будет показано далее, влияет на связь между спектром дискретизованного и исходного сигнала.

2) Функция непрерывного времени (континуальная запись).

$$x_{\mu}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t) \delta(t - k\Delta t) = \sum_{k=-\infty}^{\infty} x[k] \delta(t - k\Delta t)$$

¹ Возможно, что в решении потребуется табличный интеграл $\int_{-\infty}^{\infty} e^{\xi} d\xi = \sqrt{\pi}$. Отдельно его определять не нужно.

В этой записи дискретизованного сигнала представляется как результат умножения исходного аналогового сигнала x(t) на идеальную функцию дискретизации, представляющую собой периодическую последовательность дельта-функций Дирака с площадями ${\rm T}$

$$D(t) = T\delta(t - k\Delta t)$$
.

В таком случае дискретизованный сигнал описывается последовательностью дельта-функций с площадями (весами) $x[k] = Tx(k\Delta t)$:

$$x_{_{\mathrm{I\!I}}}(t) = \sum_{k=-\infty}^{\infty} \mathrm{T} x(k\Delta t) \delta(t - k\Delta t).$$

$$x_{_{\mathrm{I}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t)$$

Определим спектр дискретизованного сигнала $X_{_{\rm I\!I}}(f)$, зная спектр исходного аналогового сигнала до дискретизации X(f). Воспользуемся континуальной формой записи дискретизованного сигнала

$$X_{A}(t) = T \sum_{k=-\infty}^{\infty} x(k\Delta t)\delta(t - n\Delta t) = D(t)x(t)$$

$$D(t) = T \sum_{n=-\infty}^{\infty} \delta(t - n\Delta t).$$

Ряд Фурье для идеальной функции дискретизации

$$D(t) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} \exp(jm \frac{2\pi}{\Delta t} t).$$

$$X_{_{\mathrm{I}}}(f) = \frac{\mathrm{T}}{\Delta t} \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I}}}).$$

При непосредственном взятии отсчетов $x[k] = x(k\Delta t)$ константа T = 1, и спектр перед периодическим повторением масштабируется.

При $T=\Delta t$ (когда $x[k]=\Delta t\;x(k\Delta t)$) дискретизация аналогового сигнала x(t) по времени с шагом Δt приводит к периодическому повторению его спектра с периодом (по частоте), равным частоте дискретизации $f_{\pi}=1/\Delta t$

$$X_{_{\mathrm{I\hspace{-.1em}I}}}(f) = \sum_{m=-\infty}^{\infty} X(f - mf_{_{\mathrm{I\hspace{-.1em}I}}}).$$

Заметим, что при этом интервал $\left[-\frac{f_{_{\rm A}}}{2},\frac{f_{_{\rm A}}}{2}\right]$ является одним периодом функции $X_{_{\rm A}}(f)$. Если спектр аналогового сигнала лежит в этом интервале, то он периодически повторяется без наложения.

Эффект наложения

Если спектр аналогового сигнала до дискретизации не был ограничен интервалом $\left[-\frac{f_\pi}{2},\frac{f_\pi}{2}\right]$, то возникает **эффект наложения** (англ. **aliasing,** элайзинг, алиасинг). В таком случае спектр аналогово и дискретизованного на этом интервале не совпадают. Частично устранить этот эффект можно примирением фильтра нижних частот с частотой среза $f_c = f_\pi/2$, при этом информация о высокочастотных спектральных компонентах $|f| > f_c$ не сохраняется.

Теорема Котельникова во временной области

Теорема отсчетов для сигнала с финитным спектром (Котельников 1933 г., Шеннон 1949 г.). Если сигнал x(t) имеет спектр, ограниченный интервалом $[-f_{_{\rm B}},f_{_{\rm B}}]$, и не содержит гармонических компонент на частотах $\pm f_{_{\rm B}}^{-2}$, то он представим с помощью своих дискретных отсчетов $x(k\Delta t)$, взятых с шагом $\Delta t = \frac{1}{2\,f_{_{\rm B}}}$:

$$x(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin(2\pi f_{\rm B}(t-k\Delta t))}{2\pi f_{\rm B}(t-k\Delta t)}.$$

Приведем две различные интерпретации этой теоремы.

- 1) Если сигнал x(t) дискретизован с частотой f_{π} , а его спектр ограничен интервалом $\left[-\frac{f_{\pi}}{2},\frac{f_{\pi}}{2}\right]$, его можно представить с помощью дискретных отсчетов $x(k\Delta t)$. Частота $f_{\pi}/2$, равная половине частоты дискретизации, называется частотой Найквиста.
- 2) Отсчеты $x(k\Delta t)$ являются коэффициентами Фурье разложения сигнала x(t) по базису из функций отсчетов:

$$\varphi_k(t) = \frac{\sin(2\pi f_{\rm B}(t - k\Delta t))}{2\pi f_{\rm B}(t - k\Delta t)}, \ \Delta t = \frac{1}{2f_{\rm B}}.$$

В пространстве сигналов из $L_2(-\infty,\infty)$ с спектром, ограниченным интервалом $\left[-\frac{f_\pi}{2},\frac{f_\pi}{2}\right]$, система функций $\{\phi_k(t)\}_{k\in Z}$ полна и ортогональна.

 $^{^2}$ Без этой оговорки теорема Котельникова не выполняется, например, для случая дискретизации сигнала $x(t)=\sin(2\pi f_{_{
m B}}t)$ с шагом $\Delta t=rac{1}{2f_{_{
m B}}}.$

Для сигнала x(t) с финитным спектром X(f) запишем представление по функциям отсчетов:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k \frac{\sin(2\pi f_{\rm B}(t-k\Delta t))}{2\pi f_{\rm B}(t-k\Delta t)},$$

где

$$c_k = \frac{(\mathbf{x}, \mathbf{\phi}_k)}{(\mathbf{\phi}_k, \mathbf{\phi}_k)} = \frac{1}{\Delta t} \int_{-\infty}^{\infty} x(t) \frac{\sin(2\pi f_{\text{B}}(t - k\Delta t))}{2\pi f_{\text{B}}(t - k\Delta t)} dt$$

есть коэффициенты Фурье и $\Delta t = 1/2f_{s}$. Спектр функции отсчётов

$$\int_{-\infty}^{\infty} \varphi_k(t) e^{-j2\pi f t} dt = \Pi_{2f_{\mathbf{B}}}(f) \exp(-j2\pi f k \Delta t)$$

имеет фазовый множитель из-за сдвига по времени на $k\Delta t$. Модуль этого спектра $\Pi_{2f_{\rm B}}(f)$ является прямоугольной функцией с единичной площадью. С учётом обобщённого равенства Парсеваля

$$\int_{-\infty}^{\infty} x(t)y^*(t)dt = \int_{-\infty}^{\infty} X(f)Y^*(f)df$$

выражение для коэффициента $\,c_k\,$ можем записать в виде

$$c_k = \frac{1}{\Delta t} \int_{-\infty}^{\infty} X(f) \Pi_{2f_6}(f) e^{j2\pi f k \Delta t} df.$$

Произведение под интегралом при $-f_{\scriptscriptstyle g} < f < f_{\scriptscriptstyle g}$

$$X(f)\Pi_{2f_{g}}(f) = X(f)\frac{1}{2f_{g}} = X(f)\Delta t,$$

Поэтому $c_k = x(k\Delta t)$. Отсюда вывод: если сигнал имеет спектр, ограниченный интервалом $\left[-f_{e},\,f_{e}\right]$ и шаг дискретизации $\Delta t = 1/2f_{e}$, то коэффициенты Фурье c_k разложения сигнала по функциям отсчётов $\phi_k(t)$ являются выборками сигнала $x(k\Delta t)$ и для x(t) имеет место представление рядом Котельникова:

$$x(t) = \sum_{k=-\infty}^{\infty} x(k\Delta t) \frac{\sin 2\pi f_e(t - k\Delta t)}{2\pi f_e(t - k\Delta t)}.$$

Алгоритм передачи непрерывного сигнала с помощью его отсчетов.

- Взять отсчеты $x(k\Delta t)$, $k = 0, \pm 1, \pm 2, ...$
- Передать величины этих отсчетов.
- ullet На приемном конце сформировать короткие импульсы с площадями $\Delta t x(k\Delta t)$.
- Восстановить сообщение с помощью фильтра нижних частот с полосой пропускания $[-f_{\kappa},f_{\kappa}]$, подавая на вход сформированные короткие импульсы

Недостатки подхода.

- Спектры реальных сигналов ограничены по частоте приближено.
- Невозможно измерить отсчеты сигнала за бесконечно малый промежуток времени.
- Реальные фильтры восстановления отличаются от идеального фильтра нижних частот.
- Короткие импульсы отличны от дельта-функций.

Теорема отсчетов в частотной области

Реально все сигналы наблюдаются в течение конечного интервала времени, например, $[-T,\ T]$. Поэтому можно считать, что x(t) является финитной функцией. Спектр такого сигнала имеет бесконечную протяжённость и записывается в виде

$$X(f) = \int_{-T}^{T} x(t)e^{-j2\pi f t} dt.$$

Для периодического продолжения x(t) с периодом 2T (без наложения) справедливо представление рядом Фурье:

$$x_{\Pi}(t) = \sum_{n} c_{n} \exp(j2\pi n \Delta f t),$$

где $\Delta f = 1/2T$ и коэффициенты Фурье

$$c_n = (1/2T) \int_{-T}^{T} x(t) \exp(-j2\pi n \Delta f t) dt = \Delta f X(n \Delta f).$$

Для спектральной функции можем записать

$$X(f) = \int_{-T}^{T} \left[\sum_{n} \Delta f X(n\Delta f) \exp(j2\pi n\Delta f t) \right] \exp(-j2\pi f t) dt = \Delta f \sum_{n} X(n\Delta f) \int_{-T}^{T} \exp(j2\pi (n\Delta f - f) t) dt.$$

Интеграл в этом выражении легко находится

$$\int_{-T}^{T} \exp(j2\pi(n\Delta f - f)t) dt = \frac{1}{j2\pi(n\Delta f - f)} \exp(j2\pi(n\Delta f - f)t)\Big|_{-T}^{T} = \frac{2\sin 2\pi T(n\Delta f - f)}{2\pi(n\Delta f - f)}.$$

Для X(f) окончательно получаем

$$X(f) = \sum_{n=-\infty}^{\infty} X(n\Delta f) \frac{\sin 2\pi T (f - n\Delta f)}{2\pi T (f - n\Delta f)}; \ \Delta f = 1/2T.$$

Это интерполяционная формула Котельникова (теорема отсчётов) в частотной области. Функция X(f) на любой частоте f однозначно представляется последовательностью своих отсчётов, взятых через равные интервалы $\Delta f = 1/2T$.

Дискретизация спектральной функции с шагом $\Delta f = 1/2T$ приводит к периодическому повторению сигнала по оси времени с периодом 2T. При этом эффекта наложения отдельных периодов друг на друга не будет, поскольку шаг дискретизации по частоте выбран в соответствии с теоремой отсчётов в спектральной области. Выделив один из периодов, например, при $t \in [-T,T]$, можно точно восстановить спектральную функцию X(f), взяв преобразование Фурье для x(t).

Эффект наложения спектров при дискретизации синусоидальных сигналов

Дискретизация сигнала x(t) по времени с шагом Δt приводит к периодическому повторению исходного спектра X(f) с периодом, равным частоте дискретизации $f_{\rm g}=1/\Delta t$. Полезная информация содержится в полосе $[-f_{\rm g}/2,\,f_{\rm g}/2]$. Если не принять специальных мер, возникает эффект наложения, в результате которого все частоты в спектре сигнала, превышающие

половинную частоту дискретизации, как бы отражаются от этой частоты и переносятся на более низкие частоты, искажая исходный спектр. Для устранения этого эффекта сигнал перед дискретизацией предварительно пропускают через низкочастотный фильтр, частота среза которого равна $f_{\rm c}=1/2\Delta t$. Частота $f_{\rm g}/2$ в зарубежной литературе называется частотой Найквиста.

Дискретизация сигнала x(t) по времени с шагом Δt приводит к периодическому повторению исходного спектра X(f) с периодом, равным частоте дискретизации $f_{\rm g}=1/\Delta t$. Полезная информация содержится в полосе $[-f_{\rm g}/2,\,f_{\rm g}/2]$. Если не принять специальных мер, возникает эффект наложения, в результате которого все частоты в спектре сигнала, превышающие половинную частоту дискретизации, как бы отражаются от этой частоты и переносятся на более низкие частоты, искажая исходный спектр. Для устранения этого эффекта сигнал перед дискретизацией предварительно пропускают через низкочастотный фильтр, частота среза которого равна $f_{\rm c}=1/2\Delta t$. Частота $f_{\rm g}/2$ в зарубежной литературе называется частотой Найквиста.

При дискретизации синусоидальных сигналов необходимо следить за тем, чтобы частоты синусоид не превосходили половину частоты дискретизации, как того требует теорема Котельникова. Несоблюдение этого условия приводит к парадоксальным результатам, например, при наблюдении восстановленных синусоид в цифровом осциллографе.

Пусть сигнал $x(t) = \sin \pi f_0 t$ дискретизуется с частотой f_{π} отсчетов в секунду, т. е. через равные интервалы времени $\Delta t = 1/f_{\pi}$. Для последовательности отсчетов можем записать

$$x[k] = \sin(2\pi f_0 k \Delta t) = \sin(2\pi f_0 k \Delta t + 2\pi m) = \sin 2\pi (f_0 + m/k \Delta t) k \Delta t.$$

Если выберем m кратным k, $m\!=\!n\!k$, мы можем заменить отношение m/k целочисленной переменной n , так что

$$x[k] = \sin(2\pi f_0 k \Delta t) = \sin 2\pi (f_0 + n / \Delta t) k \Delta t = \sin 2\pi (f_0 + n f_{\pi}) k \Delta t.$$

Следовательно, частоты f_0 и $f_0+nf_{\rm Д}$ дают одинаковый результат. Это выражение показывает, что последовательность цифровых отсчетов x(k), представляющая синусоиду с частотой f_0 Гц, точно так же представляет синусоиды с другими частотами $f_0+nf_{\rm Д}$. Это одно из важнейших соотношений в области цифровой обработки сигналов.

Вывод. При дискретизации с частотой $f_{\rm I\!I}$ отсчетов в секунду мы не можем различить дискретизованные значения синусоиды частотой f_0 Гц и синусоиды частотой $(f_0+nf_{\rm I\!I})$ Гц, если n- любое положительное или отрицательное целое число.

Оценка спектра сигнала по последовательности его отсчетов

Пусть есть последовательность выборок $x(k\Delta t), k\in Z$ некоторого аналогового сигнала x(t), где Δt — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов, $k\in Z$ — номер отсчета. $f_{\rm H}=1/\Delta t$ — частота дискретизации — величина, обратная шагу дискретизации (размерность [Гц]=[c $^{-1}$]). Будем считать, что спектр исходного аналогового сигнала ограничен интервалом $\left[-f_{\rm H}/2;\,f_{\rm H}/2\right]$, а соответственно при дискретизации не наблюдается эффект наложения спектров ($f_{\rm H}>2f_{\rm B}$).

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = Tx(k\Delta t),$$

где $T=\Delta t$. Как ранее было установлено, при $T=\Delta t$ спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра $X_{\rm a}(f)$ аналогового сигнала x(t) с периодом, равным частоте дискретизации $f_{\rm g}$:

$$X_{_{\mathrm{I}}}(f) = \sum_{n=-\infty}^{\infty} X_{_{\mathrm{a}}}(f - nf_{_{\mathrm{II}}}).$$

Необходимая спектральная информация будет содержаться в полосе $\left[-f_{_{\rm I\! I}}/2;f_{_{\rm I\! I}}/2\right]$. Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{_{\Pi}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t).$$

Вычислим его спектр (преобразование Фурье)

$$\begin{split} X_{\pi}\left(f\right) &= \int_{-\infty}^{\infty} x_{\pi}(t) \exp(-j2\pi f t) dt = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t-k\Delta t) \exp(-j2\pi f t) dt = \\ &= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t-k\Delta t) \exp(-j2\pi f t) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k\Delta t), \end{split}$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{\pi}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t). \tag{1}$$

Эта формула определяет прямое дискретное во времени преобразование Фурье (ДВПФ). Учитывая, что (1) представляет собой ряд Фурье для периодической функции $X_{_{\rm II}}(f)^3$, получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$
 (2)

В итоге получаем пару формул (1) и (2), определяющих прямое и обратное дискретное во времени преобразование Фурье (ДВПФ). ДВПФ в свою очередь показывает, каким является спектр дискретного сигнала x[k], который на отрезке оси частот $\left[-f_{\pi}/2; f_{\pi}/2\right]$ в отсутствии наложения совпадает со спектром исходного аналогового сигнала. При этом важно помнить, что в данном случае выборки аналогового сигнала связаны с дискретной последовательностью как $x[k] = \Delta t x(k\Delta t)$.

Задание

Задание расположено в .ipynb файле. Третьему занятию соответствуют следующие задачи.

- Задача 3.1. Эффект наложения при дискретизации прямоугольного импульса
- Задача 3.2. Эффект наложения при прореживании сигнала¶

Контрольные вопросы

Вопрос 3.1. Определить аналоговый сигнал $x_a(t)$, после дискретизации без наложения с шагом Δt которого получается единичный импульс $x[k] = \mathbf{1}[k] = \Delta t \, x_a(k \Delta t)$ ($T = \Delta t$):

а) используя ряд Котельникова

$$x_a(t) = \sum_{k=-\infty}^{\infty} x_a(k\Delta t) \frac{\sin 2\pi f_e(t - k\Delta t)}{2\pi f_e(t - k\Delta t)};$$

б) восстановив аналоговый сигнал, используя значения ДВПФ последовательности x[k] на периоде $\left[-f_{_{\pi}}/2,\ f_{_{\pi}}/2\right]$.

Вопрос 3.2. Воспользовавшись равенством Парсеваля для преобразования Фурье, показать, что функции отсчетов

$$\varphi_k(t) = \frac{\sin 2\pi f_e(t - k\Delta t)}{2\pi f_e(t - k\Delta t)}, \ \Delta t = \frac{1}{2f_B},$$

имеют конечную удельную энергию $\int_{-\infty}^{\infty} ig|x(t)ig|^2 dt$, и доказать их ортогональность в $L_2(-\infty;\infty)$.

³ Напоминание. Для 2l - периодической функции f(x), абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций $\phi_m(x) = \exp(jm\frac{\pi}{l}x)$, $m \in Z$: $f(x) = \sum_{l=0}^{+\infty} c_m \exp(jm\frac{\pi}{l}x)$, где коэффициенты Фурье $c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$

Вопрос 3.3. Определить, будут ли различимы синусоиды с частотами $f_1 = 20\,$ кГц и $f_2 = 80\,$ кГц при их дискретизации с частотой $f_{_{\rm I}} = 60\,$ кГц. Будет ли наблюдаться эффект наложения?

Список литературы

В качестве литературы рекомендуются учебные пособия [1]–[3]. Эти книги есть в библиотеке МФТИ.

- 1. Романюк Ю.А. Основы цифровой обработки сигналов. В 3-ч ч. Ч.1. Свойства и преобразования дискретных сигналов. Изд. 2-Е, . М.: МФТИ, 2007. 332 с.
- 2. Романюк Ю.А. Дискретное преобразование Фурье в цифровом спектральном анализе. Учебное пособие. М.: МФТИ, 2007. 120 с.
- 3. Солонина А.И. Цифровая обработка сигналов в зеркале Matlab. СПб.: БХВ-Петербург, 2018. 560 с.