1 ПРОГРАММИРОВАНИЕ ЛИНЕЙНОГО ВЫЧИСЛИТЕЛЬНОГО ПРОЦЕССА

Цель работы - освоение простейшей структуры программы; приобретение навыков в записи выражений на языке C++ и использовании стандартных функций; получение навыков в организации ввода-вывода информации.

1.1 Подготовка к выполнению задания

При подготовке к работе необходимо изучить стандартные типы данных языка C++, операции и стандартные функции для переменных этих типов, правила вычисления выражений и записи операторов присваивания, способы организации ввода-вывода данных в программах.

1.2 Теоретические сведения

Структура программы. Программа на языке С имеет следующую структуру [11]:

```
#директивы препроцессора
.....
#директивы препроцессора
функция a()
{ тело функции a}
.
.
функция b()
{тело функции b}
```

void main () //функция, с которой начинается выполнение программы {последовательность определений, описаний и исполняемых операторов}

Среди этих функций всегда должна быть функция с именем main. Без нее программа не может быть выполнена. Это точка входа в программу.

Перед именем функции помещаются сведения о типе возвращаемого функцией значения (тип результата): **double sqrt (double arg)**

Если функция ничего не возвращает, то указывается тип void: void main ();

Если функция не объявлена как **void**, она должна возвращать значение. Возвращаемое значение задается инструкцией **return e**; где **e** – выражение, значение которого возвращается в качестве результата работы функции.

В программах на С++ используется два способа комментариев:

- первый способ для многострочных комментариев (начинается с комбинации символов косой черты и звёздочки (/*), и заканчивается обратной комбинацией этих же символов (*/). Не может быть вложенным.),
- второй для коротких замечаний (начинается с двух символов косой черты (//) и заканчивается концом строки).

Правила задания имен объектов (идентификаторов) С-программ. В идентификаторе могут быть использованы латинские буквы, цифры и знак подчеркивания. <u>Первым символом не может быть цифра. Прописные и строчные буквы различаются</u>, (PROG1, prog1 и Prog1 — три различных идентификатора). <u>Пробелы не</u> допускаются.

```
_PROG1, prog_1, P1ro2g1 - правильные идентификаторы. 3PROG1, prog *, №5 Prog1 – ошибка!
```

Стандартные типы данных. Одним из важнейших понятий в программировании является переменная. Переменная — это поименованная область оперативной памяти компьютера, где хранится значение некоторой величины. Переменная обладает такими свойствами: название (имя), значение, тип. Количество переменных и их свойства указывает пользователь. Тип переменной определяет её допустимые значения, а также операции, которые можно над нею выполнять.

Рассмотрим стандартные типа данных

В С++ определены следующие простые типы данных:

int (целый)

char (символьный)

bool (логический)

float (вещественный)

double (вещественный с двойной точностью)

Существует 4 спецификатора типа, уточняющих внутреннее представление и диапазон стандартных типов:

- 1) **short** (короткий)
- 2) **long** (длинный)
- 3) **signed** (знаковый)
- 4) **unsigned** (беззнаковый)

Формат операции простого присваивания:

<переменная>=<выражение>

Действие оператора. Вычисляется <выражение>, и его значение присваивается <переменной>. Выражение служит для описания формул, по которым выполняются вычисления, и может состоять из чисел, имён переменных, констант, функций, соединённых символами операций.

Если выражение формирует целое или вещественное число, то оно *называется* арифметическим. Пара арифметических выражений, объединенная операцией сравнения, называется *отношением*. Если отношение имеет ненулевое значение, то оно – истинно, иначе – ложно. Приоритеты операций в выражениях представлены в табл. 1.1

Таблица 1.1 Приоритеты операций в выражениях

Ранг	Операции
1	()[]->.
2	! ~ - ++ & * (тип) sizeof тип()
3	* / % (мультипликативные бинарные)
4	+ - (аддитивные бинарные)
5	<< >> (поразрядного сдвига)
6	< > <= >= (отношения)
7	==!=(отношения)
8	& (поразрядная конъюнкция «И»)
9	^ (поразрядное исключающее «ИЛИ»)
10	(поразрядная дизъюнкция «ИЛИ»)
11	&& (конъюнкция «И»)
12	(дизъюнкция «ИЛИ»)
13	?: (условная операция)

14	= *= /= %= -= &= ^= = <<= >>= (операция присваивания)	
15	, (операция запятая)	

Операции выполняются с учетом их приоритета (1 – самый высокий). Для изменения естественного порядка выполнения операций используют круглые скобки, например;

```
2*-3-2=-8; 2*(-3-2)=-10; 5*(2+13)=75; 20+100/20*5=45; 20+100/(20*5)=21.
```

Операции присваивания имеют следующие виды:

```
=, +=, -=, *= и т.д.
```

Иногда нужно сделать какое-либо одно арифметическое действие над одной переменной. Для этого используются сокращенные формы арифметических действий.

Например:

```
S=S+32; в сокращенной форме это будет S+=32; F=F-k; в сокращенной форме это будет F-=k; N=N/2; в сокращенной форме это будет N/=2;
```

Операторы инкремента (++) и декремента (--) увеличивают или уменьшают значение операнда на единицу. Операнд может быть целого типа или типа с плавающей точкой, или типа указатель и должен быть модифицируемым. В языке имеется префиксная (++t, увеличивает операнд до его использования) и постфиксная формы (t++, увеличивает операнд после его использования) операторов инкремента и декремента.

Оператор умножения (*) выполняет умножение операндов:

```
int i = 5;
float f = 0.2;
double g;
g = f * i;
```

Тип результата умножения f на i преобразуется к типу double, затем результат присваивается переменной g.

Оператор деления (/) выполняет деление первого операнда на второй. Если две целые величины не делятся нацело, то результатом будет целая часть от деления (дробная часть отбрасывается):

```
int i = 49, j = 10, n, m; n = i/j; // результат 4 m = i/(-j); // результат -4
```

Оператор остаток от деления (%) дает остаток от деления первого операнда на второй (только для целых операндов). Знак результата совпадает со знаком делимого:

```
int \ n = 49, \ m = 10, \ i, \ j, \ k, \ l; i = n \% \ m; // результат 9 j = n \% \ (-m); // результат 9 k = (-n) \% \ m; // результат -9 l = (-n) \% \ (-m); // результат -9
```

Логическое выражение — это способ записи на языке программирования условий для поиска необходимых данных. Логическое выражение может принимать значения **true** (истина) или **false** (ложь). Логические выражения бывают простые и сложные. Простое выражение — это два арифметических выражения, соединённых символом отношения, а сложное — это простые логические выражения, соединённые логическими операциями ! (логическое отрицание НЕ), **&&** (логическое И) или || (логическое ИЛИ). Приоритет выполнения логических операций такой:

1) 1, 2) &&, 3) ||.

В табл. 1.2 приведены определения логических операций.

Таблица 1.2

Логические операции

Выражение	Значение	Выражение	Значение
! true	false	!false	true
true && true	true	true true	true
true && false	false	false true	true
false && true	false	true false	true
false && false	false	false false	false

Пример. Пусть x=3, y=-9. рассмотрим некоторые логические выражения и их значения.

Простые выражения	Значения	Сложные выражения	Значения
x = 3	true	! (y<=-50)	true
x > y	true	(1 <x) &&="" (x<5)<="" td=""><td>true</td></x)>	true
7 % 3=1	true	(x>4) (y<-15)	false
y - 2=4	false	(x>4) (y>-15)	true

Двойное неравенство 1 < x < 5 как сложное логическое выражение записывают так: (1 < x) && (x < 5). Совокупность неравенств вида x < 1; x > 5 так: $(x < 1) \parallel (x > 5)$. Простые логические выражения, из которых состоят сложные в круглые скобки можно не брать.

Математические библиотечные функции, основные из которых перечислены в табл.1, дают возможность выполнять определенные типовые математические вычисления. Как правило, функции из математической библиотеки возвращают как результат числа с плавающей точкой типа *double*.

При использовании функций математической библиотеки в программу нужно включить соответствующий заголовочный файл с помощью директивы препроцессора:

#include <math.h>

Часто используемые математические функции

Прототип функции	Вычисление	Примеры вычислений
double sqrt(double);	Корень квадратный	sqrt(900.0) = 30.0 sqrt(9.0) = 3.0
double exp(double);	Экспоненциальная функция e ^x	exp(1.0) = 2.718282 exp(2.0) = 7.389056
double log(double);	Логарифм натуральный (по основанию e)	$\log(2.718282) = 1.0$ $\log(7.389056) = 2.0$
double log10(double);	Логарифм десятичный (по основанию 10)	log10(1.0) = 0.0 $log10(10.0) = 1.0$ $log10(100.0) = 2.0$
double fabs(double);	Абсолютное значение	если $x > 0$, то fabs $(x) = x$ если $x = 0$, то fabs $(x) = 0.0$ если $x < 0$, то fabs $(x) = -x$
double ceil(double);	Округление аргумента до наименьшего целого, не меньшего чем аргумент	ceil(9.2) = 10.0 ceil(-9.8) = -9.0
double floor(double);	Округление аргумента до наибольшего целого, не большего чем аргумент	floor(9.2) = 9.0 floor(-9.8) = -10.0
double pow(double x, double y);	х в степени у	pow(2, 7) = 128.0 pow(9,0.5) = 3.0
fmod(double x, double y);	Остаток от x/y, как число с плавающей точкой	fmod(13.657, 2.333) = 1.992
double sin(double x);	Синус (х в радианах)	$\sin(0.0) = 0.0$
double cos(double x);	Косинус (х в радианах)	$\cos(0.0) = 1.0$
double tan(double x);	Тангенс (х в радианах)	tan(0.0) = 0.0

Вызов функций:

```
cout <<"Модуль -10: "<<abs(-10)<<" Модуль -10.0: "<<fabs(-10.0)<<"\n"; cout<<"sin(90): "<<sin(3.14/2)<<"\n";
```

Остальные математические функции можно выразить через основные, например, $\log_b a = \ln(a)/\ln(b)$.

Операторы ввода (>>) и вывода (<<) не являются встроенными для языка C++, а обеспечиваются стандартной библиотекой с помощью потоков ввода — вывода. При запуске программы на выполнение автоматически открываются три стандартных потока языка C++:

cin — стандартный поток ввода (с клавиатуры); cout — стандартный поток вывода (на дисплей);

cerr – стандартный поток для выдачи сообщений (на дисплей). Вместо потока cout для вывода сообщений об ошибках может использоваться поток cerr.

При выводе отдельных символов каждый символ должен заключаться в одиночные кавычки в отличие от вывода строк символов, когда выводимая строка заключается в двойные кавычки.

Для выполнения операторов потокового ввода – вывода в программу должна быть включена инструкция препроцессора:

#include <iostream>

$$y = \frac{\sqrt[3]{|a|-x^2|\ln(2+a^2+x^4)}}{2}$$

Схема алгоритма решения задачи приведена на рис. 1.1.

Рис. 1.1. Схема алгоритма решения задачи 1.1

Исходными данными для решения являются значения -a, x. В программе используются переменная y для хранения результата вычисления формулы.

Программа имеет вид:

```
#include "stdafx.h"

#include <iostream>
#include <windows.h>
#include <math.h>
#include <conio.h> // файл, где определена функция getch()
using namespace std;
int main()
{
SetConsoleOutputCP(1251);
double x, a, y;
cout<<"Введите x, a: \n";
cin>>x>>a;
//вычисление формулы
```

```
y=pow(fabs(a-x*x)*log(2+a*a+pow(x,4)),1/3.0)/2;
//вывод значения у
cout<<"\ny="<<y;
getch(); // ждать нажатия любой клавиши
return 0;
}</pre>
```

1.3 Варианты заданий

Вычислить значения переменных, указанных в таблице 1.1, по заданным расчетным формулам и наборам исходных данных. На печать вывести значения вводимых исходных данных и результат вычислений, сопровождая вывод наименованиями выводимых переменных.

Таблица 1.1 – Варианты заданий

$N_{\underline{0}}$	Исходные	
вар	данные	Расчетные формулы
.		1 1 7
1	<i>a</i> 1=2,115	$(\sin a)^2 - \sin^2 a^2)^{l-10}$
	a2 = -0.05	$x = \frac{(\sin a1^2 - \sin^2 a2)^{l-10}}{(\ln g - \ln z)tga1}$
	<i>l</i> =12	$(\ln g - \ln z)tga$
	z=22,142	
	g=20,615	
	x=1,225	$e^{3(x+1)} - e^{-3(x+1)}$
1 ') I	h=2,4	$y = \frac{e^{3(x+1)} - e^{-3(x+1)}}{h + z \cdot f}$
2	<i>f</i> =-3,812	$h + z \cdot f$
	z=1,2	
	a=2,218	$z = (\sqrt{a} + b + \sin a^2)\cos^2 b + \frac{c}{\sqrt{a^2 + b^2 + \sin a^2}}$
	<i>b</i> =1,156	$z = (\sqrt{a} + b + \sin a^2)\cos^2 b + \frac{c}{\sin a + b^3}$
-	c=-10,5	
	a = 1,086	
71 /	b = 1,159	$x = \sin a^2 + \cos^2 b + \sqrt{z^2 + g^2}$
	z = 20,185	$x = \sin a + \cos b + \sqrt{2} + g$
	g = 3,149	
	A = 2,218	
	z = -14,86	$\frac{a+b}{2}$ $12+7^2$
	g = 2,314	$d = e^{\frac{a+b}{a-b}} arctg(\sqrt{\frac{y+z^2}{\sigma+v^2}})$
	<i>b</i> =-1,156	$\sqrt{g+y^2}$
	y = 1,2184	
	x = 6.25	$u = \frac{1 + \sin^2(x+y)}{a + z - \frac{ax}{1 + \sin(x+y) }}$
	y = -3,111	$a+ z-\frac{ax}{}$
	a = 2	$1+ \sin(x+y) $
	z = 71,2	
	<i>x</i> =-7,91	
	y = 0.451	$y = \sin(y - \sqrt{r})(x - y)$
. ,	z = 5,315	$v = \sin\left(y - \sqrt{ x }\right)\left(x - \frac{y}{z^2 + \frac{x^2}{r}}\right)$
	r = 4	

№ вар	Исходные данные	Расчетные формулы
		1 1 7
8	$m_1 = 3,177$ $m_2 = 8,392$ v = -6,613 f = 0,599	$m = \frac{-f(m_1 + m_2)}{(1 - m_1^2 v^2)(1 + m_2^2 v^2)} - \frac{m_1 m_2 v^2}{m_1 + \frac{m_2}{m_1}}$
9	x = 2,048 b = -1,3484 z = 0,25	$y = arctg(\sin^2 b + \cos(x - \pi)) + bz$
10	a = 7,53 d = 0,693 k = 2 f = 4 s = 3 t = 5	$l = d + k\left(\frac{a}{f+a} + \frac{a^3}{s(f+a)^3} + \frac{a^5}{t(f+a)^5}\right)$
11	x = 3,021 z = 12,018 a = 25 k = 3	$y = \frac{e^{\sin kx} + \ln(arctgz)}{\sin a}$
12	a=-12,343 p=2,814 b=-14,6 x=-0,142	$c = \left \frac{x}{a} - \frac{1}{ap} \ln \left (a + be^{px}) \right \right $
13	$x=4,084$ $n_1 = 1$ $n_2 = 2$ $n_3 = 3$	$y = \frac{(x+n_1)^3 \sqrt{x-n_2}}{(x-n_3)^2} + \frac{n_1 - e^x}{n_1 + e^x}$
14	a=5,196 b=1,732 x=0,358 y=18,312 k=2	$z = \frac{\sqrt{a+b}}{k(a-b)}\sin x + x\ln y$
15	x=-8,246 y=-35,67 z=-1,53 h=4	$a = \ln\left(y - \sqrt{ x }\right)\left(x - \frac{y}{z + \frac{x^2}{h}}\right)$
16	a=0,992 b=0,241 c=95	$d = \frac{\sqrt{c}}{\sin a + b \cos b} - e^{a-b}$
17	a=0.035 b=-6.013 d=1.297 z=17	$p = z - \left(\frac{a}{a - b} + da^2\right) \cos^3 a$
18	$p=0,254$ $\cdot 10^{3}$ $x=3,418$ $z=65$ $a=3$ $b=2$	$y = p + \ln z - \sqrt{\cos(\frac{\pi}{b} - \frac{x}{a})}$

NC	17	
$N_{\underline{0}}$	Исходные	
вар	данные	Расчетные формулы
	0.60	
19	a=0,69	C
	c=3	$b = d - \sqrt{\frac{c}{c + \left \cos ah^2 - \sin ah\right }}$
	d=1	$\int c + \cos an - \sin an $
	h=1,71	
20	x=1,7	$s = e^{-ax} \sqrt{x+1} + e^{-bx} \sqrt{x+1.5}$
	a=0,5	•
	b=1,08	
21	a=0,5	$f = e^{2x} \ln(a+x) - b^3 \ln(b-x)$
	b=2,9	
	x=0,3	
22	a=0,3	$r = \sqrt{x^2 + b} - b^2 \sin^3 \frac{x + a}{a}$
	b=0,9	$r = \sqrt{x} + b - b \sin \frac{\pi}{x}$
	x=0,61	
23	<i>a</i> =1	$\vdash arctg(z)$
	b=2	$y = \sqrt{a} - \cos \frac{arctg(z)}{b}$
	z=1,159	b
24	a=0,5	$z = \sqrt{ax\sin 2x + e^{-2x}(x+b)}$
	b=3,1	$2 - \sqrt{ux} \sin 2x + e (x + b)$
	x=1,4	
25	x=-2,485	$c + e^{y-1}$
	y=5	$a = \frac{c + e^{y^{-1}}}{1 + x^2 y - tgz }$
	z=3,5	$1+x^2 y-tgz $
	c=3	
26	x=1,426	$2\cos(x-\frac{\pi}{6})$
	y=-1,22	$b = \frac{2\cos(x - \frac{\pi}{6})}{\frac{1}{2} + \sin^2 y}$
	z=3,5	$\frac{-+\sin y}{2}$
27	a = -0.5	$y = e^{-bt} \sin(at + b) - \sqrt{ bt + a }$
	b=1,7	$y = e^{-\sin(ai + b)} - \sqrt{ bi + a }$
	t=0,44	
28	x=1,825	Z
	y=18,225	$y - \frac{y}{y-x}$
	z=-3,298	$\varphi = \left(y - x\right) \frac{y - \frac{z}{y - x}}{1 + \left(y - x^2\right)}$
29	a=10,2	
	b=9,2	$z = e^{-cx} \frac{x + \sqrt{x + a}}{x - \sqrt{ x - b }}$
	x=2,2	$x-\sqrt{ x-b }$
	c=0,5	
30	a=0,5	$a^2 \mathbf{r} + e^{-x} \cos h \mathbf{r}$
	b=1,8	$u = \frac{a^2x + e^{-x}\cos bx}{bx - e^{-x}\sin bx + 1}$
	x=0,32	
31	m=0.8	$\sin x$
	c=2,3	$z = \frac{\sin x}{\sqrt{1 + m^2 \sin^2 x}} - cm \ln mx$
	x=1,5	$v_1 + m$ SIII λ
32	a=0,7	$_{2}x+1$. $_{2}$
	b=0,05	$r = x^2 \frac{x+1}{h} - \sin^2(x+a)$
	x=0,5	υ
33	<i>a</i> =2,1	1 ,2 1.
	x=5	$g = \frac{1}{\sqrt{x}}e^{x^2} - arctgy + \frac{1}{a^3}\ln z$
	y=-3,12	V.A. U
L	1, 2,12	

No	Исходные	
вар	данные	Расчетные формулы
	z=1,123	
34	a=0,3	2 2 X
	b=0.9	$y = \cos^2 x^3 - \frac{x}{\sqrt{a^2 + b^2}}$
	x=0,61	$\sqrt{a^2+b^2}$
35	<i>a</i> =16,5	$3, 2, (1, 1)^2, a$
	b=3,4	$s = x^{3}tg^{2}(a+b)^{2} + \frac{a}{\sqrt{x+b}}$
	x=0,61	VX 10
36	<i>a</i> =1,5	$a^{2x} + b^{-x}\cos(a+b)r$
	b=15.5	$y = \frac{a^{2x} + b^{-x}\cos(a+b)x}{x+1}$
	x=0,6	x + 1
37	a=3,2	12 a
	b=17,5	$y = btg^2 x - \frac{a}{\sin^2 \frac{x}{}}$
	x=-4.8	$\sin^2 - \frac{1}{a}$
38	a=0,59	
	z=-4.8	$b = atg^{3}x^{2} + \sqrt{\frac{z^{2}}{a^{2} + x^{2}}}$
	x=2,1	$\sqrt{a^2 + x^2}$
39	<i>a</i> =1,1	()2 \[\bar{r} \]
	b=0,004	$z = \sin^3(x^2 + a)^2 - \sqrt{\frac{x}{h}}$
	x=0,2	V B
40	a=0,7	\sqrt{rh}
	b=0.05	$s = \sqrt{\frac{xb}{a} + \cos^2(x+b)^3}$
	x=0,5	v a
	0,0	

1.4 Контрольные вопросы

- 1. Какова структура программы на языке С++?
- 2. Что является точкой входа в программу?
- 3. Какие стандартные типы данных вам известны?
- 4. Каковы правила записи арифметических выражений?
- 5. Укажите порядок выполнения действий в арифметическом выражении.
- 6. Какие существуют виды операций присваивания?
- 7. Для чего предназначены операторы ввода и вывода?
- 8. Какая инструкция препроцессора должна быть включена в программу для выполнения операторов потокового ввода вывода?
- 9. Что такое идентификатор, как он формируется?
- 10. Поясните форму объявления констант и переменных.
- 11. Можно ли менять значения констант?