Dostępna pamięć: 256MB

WWI 2022 - grupa 3

Manhattan

Dane jest n punktów w układzie współrzędnych, numerowanych kolejnymi liczbami całkowitymi od 1 do n. Dla każdego z nich należy znaleźć odległość w metryce manhattańskiej do najbliższego innego punktu.

Odległość w metryce manhattańskiej pomiędzy punktami (x_1, y_1) oraz (x_2, y_2) wynosi $|x_1 - x_2| + |y_1 - y_2|$.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba całkowita n ($2 \le n \le 2 \cdot 10^5$). Każdy z kolejnych n wierszy zawiera po dwie liczby całkowite x_i oraz y_i ($-10^9 \le x_i, y_i \le 10^9$) oznaczające współrzędne i-tego punktu.

Wyjście

Na wyjście należy wypisać n wierszy. W i-tym z nich powinna być odległość w metryce manhattańskiej punktu numer i do najbliższego punktu o numerze różnym niż i.

Przykład

Wejście	Wyjście
6	3
-2 -1	
3 3	4
-3 2	3
0 0	1
4 3	2
2 2	

Wyjaśnienie do przykładu

Na rysunku obok przedstawiono układ punktów z testu przykładowego. Odległość punktu pierwszego do czwartego wynosi |-2-0|+|-1-0|=3. Odległość punktu drugiego do piątego wynosi |3-4|+|3-3|=1. Odległość punktu trzeciego do pierwszego wynosi |-3-(-2)|+|2-(-1)|=4. Odległość punktu czwartego do pierwszego wynosi |0-(-2)|+|0-(-1)|=3. Odległość punktu piątego do drugiego wynosi |4-3|+|3-3|=1. Odległość punktu szóstego do drugiego wynosi |2-3|+|2-3|=2.

Ocenianie

Podzadanie	Ograniczenia	Limity czasowe	Punkty
1	$n \leqslant 2000$	2 s	10
2	$1 \leqslant x_i, y_i \leqslant 2 \cdot 10^5$	4 s	40
3	brak dodatkowych ograniczeń	4 s	50

1/1 Manhattan