

REAL-TIME OBJECT DETECTION SYSTEM

PRESENTED TOMrs Nitila Adnaik

PRESENTED BY
Sentinle Squad

Team Members

Bhakti Ayarekar 01

Ankita Yadav 10

Rohan Chopade 21

Soham Mangore 29

Agenda

1 <u>Introduction</u>

Software Requirement
Specification

2 <u>Problem Definition</u>

6 <u>Flowchart</u>

3 <u>Objective</u>

7 <u>Advantages</u>

4 <u>Methodology</u>

8 <u>Applications</u>

Introduction

The security of our homes is of utmost importance in today's world. Traditional home security systems often rely on static cameras and manual monitoring, which can be time-consuming and prone to human error. To address these limitations, we have developed a real-time video-based home security system that leverages the power of object detection and socket programming.

Problem Statement

To create an intelligent home security system that can actively monitor and analyze video feeds from multiple cameras in real-time. By integrating object detection algorithms into the system, we aim to detect and classify various objects of interest, such as humans, vehicles, and potential intruders.

Objectives

- Implementing real-time video streaming using socket programming to enable clients (home security cameras) to transmit video feeds to the server.
- Developing an object detection model capable of accurately detecting and classifying objects of interest in the video frames received from clients.
- Enabling intrusion detection by analyzing the video frames for potential unauthorized access or suspicious activities.

Methodology

Socket programming in Python enables the communication between clients and the server, while OpenCV is utilized for video frame fetching and processing. Object detection is done by using a pre-trained model, but we can still use ML libraries like TensorFlow or Pytorch for better performance.

Software Requirements Specification

Flowchart

Advantages

- **Real-time Updates**: Socket programming allows real-time updates and notifications about detected objects, ensuring prompt responses to changing situations.
- **Scalability and Flexibility**: Socket programming facilitates communication between multiple devices or systems, making it scalable and flexible.
- Remote Monitoring and Control: Socket programming enables remote monitoring and control of object detection systems. Users can access the system from different locations or devices, allowing for remote surveillance, management, and decision-making.
- Compatibility and Interoperability: Socket programming it is compatible and interoperable with different platforms, programming languages, and operating systems.
- Enhanced User Experience: Socket programming enables the delivery of real-time object detection updates and notifications to end-users, enhancing their overall experience.

Applications

- **Video Surveillance**: The system can analyze live video feeds from cameras and detect objects of interest, such as people, vehicles, or specific objects.
- Industrial Safety: The system can monitor the environment for potential hazards or anomalies, such as unauthorized personnel, misplaced objects, or equipment malfunctions.
- **Traffic Management**: Real-time object detection can be applied to traffic management systems to monitor and optimize traffic flow.
- **Smart Home Applications**: Detect objects like people, pets, or specific items within the home, the system can trigger actions such as sending alerts to homeowners about potential security breaches or unusual activities.
- **Fire and Smoke Detection:** By analyzing the video feed, the system can detect signs of fire or smoke within the monitored area.

Thank You