THÉORIE DE GROTHENDIECK-MESSING, THÉORÈME DE SERRE-TATE ET CLASSIFICATION DE KISIN

OLIVIER BRINON

Table des matières

1.	Théorie de Dieudonné et déformation des groupes de Barsotti-Tate	1
2.	Le théorème de Serre-Tate	8
3.	Cristaux et groupes de Barsotti-Tate	10
4.	Groupes de Barsotti-Tate et représentations p-adiques	16
Références		20

1. Théorie de Dieudonné et déformation des groupes de Barsotti-Tate

Soient p un nombre premier et X un schéma. Si $n \in \mathbb{N}_{>0}$ et G est un préfaisceau en groupes abéliens sur X pour la topologie fppf, on pose $G(n) = \operatorname{Ker}(p^n \colon G \to G)$.

Définition 1.1. Un groupe p-divisible (ou encore de Barsotti-Tate) sur X est un faisceau en groupes abéliens G sur X pour la topologie fppf tel que :

- (1) G est p-divisible, c'est à dire $p: G \to G$ est un épimorphisme;
- (2) G est de p-torsion, i.e. $G = \underset{\longrightarrow}{\lim} G(n)$;
- (3) G(1) est représentable par un schéma en groupes fini et plat sur X.

Un morphisme de groupes p-divisibles sur X est un morphisme de faisceaux en groupes sur X. Les groupes p-divisibles sur X forment une catégorie qu'on note $\mathbf{BT}(X)$. Lorsque R est un anneau, on pose $\mathbf{BT}(R) = \mathbf{BT}(\operatorname{Spec}(R))$.

Remarque 1.2. Soit $G \in \mathbf{BT}(X)$.

- (1) Il résulte de la théorie des schémas en groupes finis et plats sur un corps algébriquement clos que le rang de G(1) sur X est de la forme p^h , où $h: X \to \mathbf{N}$ est une fonction localement constante, qu'on appelle la hauteur de G.
- (2) Si $n, m \in \mathbb{N}_{>0}$, on a la suite exacte

$$0 \to G(n) \to G(n+m) \xrightarrow{p^n} G(m) \to 0.$$

Il en résulte par récurrence que pour tout $n \in \mathbb{N}_{>0}$, le groupe G(n) est représentable par un schéma en groupes fini et plat sur X de rang p^{nh} où h est la fonction du (1).

(3) Réciproquement, si $(G_n)_{n\in\mathbb{N}_{>0}}$ est un système inductif de schémas en groupes finis et plats sur X tel que pour tout $n\in\mathbb{N}_{>0}$, le groupe G_n est de rang p^{nh} (où $h\colon X\to\mathbb{N}$ est une fonction localement constante) et $G_n\stackrel{\sim}{\to} \mathrm{Ker}(p^n\colon G_{n+1}\to G_{n+1})$, alors $\varinjlim G_n\in\mathbf{BT}(X)$.

1.3. Extension universelle d'un groupe de Barsotti-Tate.

Définition 1.4. Si \mathscr{L} est un \mathcal{O}_X -module quasi-cohérent, alors il définit un faisceau sur le site fppf de X par $\mathscr{L}(X') = \Gamma(X', f^*\mathscr{L})$ pour tout $f: X' \to X$. Si \mathscr{L} est supposé localement libre de rang fini, alors le faisceau fppf ainsi défini est représentable par un schéma en groupes, localement isomorphe à un produit fini de \mathbf{G}_a . Un tel schéma en groupes s'appelle un groupe vectoriel sur X.

• <u>Construction A</u> Soit G un préfaisceau en groupes abéliens sur X pour la topologie fppf, dont le dual de Cartier $G^{\mathsf{D}} := \underline{\mathrm{Hom}}_{\mathrm{gr}}(G, \mathbf{G}_{\mathrm{m}})$ est représentable. Notons $e \colon X \to G^{\mathsf{D}}$ la section unité et $e_1 \colon X \to G^{\mathsf{D}} = \mathrm{Inf}^1(G^{\mathsf{D}})$ le premier voisinage infinitésimal de e. On a un isomorphisme

$$\underline{\operatorname{Hom}}_{X\text{-point\'es}}(G_1^{\mathtt{D}},\mathbf{G}_{\mathrm{m}}) \overset{\sim}{\to} e^*\Omega^1_{G^{\mathtt{D}}/X}.$$

C'est un faisceau quasi-cohérent sur X qu'on note $\omega_{G^{\mathbb{D}}}$ (remarquons qu'on a $G_1^{\mathbb{D}} \simeq \mathbf{Spec} (\mathcal{O}_X \oplus \omega_{G^{\mathbb{D}}})$). On note $\alpha \colon G \to \omega_{G^{\mathbb{D}}}$ le composé

$$G \to \underline{\mathrm{Hom}}_{\mathrm{gr}}(G^{\mathtt{D}}, \mathbf{G}_{\mathrm{m}}) \to \underline{\mathrm{Hom}}_{X\text{-point\'es}}(G^{\mathtt{D}}_{1}, \mathbf{G}_{\mathrm{m}}) = \omega_{G^{\mathtt{D}}}.$$

On peut montrer (cf [23, I Proposition 1.4]) que α est un morphisme universel de G vers les \mathcal{O}_X modules quasi-cohérents : le foncteur $\underline{\mathrm{Hom}}_{\mathrm{gr}}(G,-)$ est représenté, sur la catégorie des \mathcal{O}_X -modules
quasi-cohérents, par $\omega_{G^{\mathbb{D}}}$. La formation de α commute aux changements de base.

- \bullet Construction B Soit G un préfaisceau en groupes abéliens sur X pour la topologie fppf, tel que
 - (i) $\underline{\text{Hom}}_{gr}(G, \mathbf{G}_a) = 0$;
- (ii) $\underline{\operatorname{Ext}}_{\operatorname{gr}}^1(G, \mathbf{G}_a)$ est un faisceau de \mathcal{O}_X -modules localement libre pour la topologie de Zariski. On pose

$$V(G) = \underline{\operatorname{Hom}}_{\mathcal{O}_X} (\underline{\operatorname{Ext}}_{\operatorname{gr}}^1(G, \mathbf{G}_a), \mathcal{O}_X)$$

Si \mathscr{L} est un faisceau de \mathcal{O}_X -modules localement libre, alors $\operatorname{\underline{Ext}}^1_{\operatorname{gr}}(G,\mathscr{L}) = \operatorname{\underline{Ext}}^1_{\operatorname{gr}}(G,\mathbf{G}_a) \otimes_{\mathcal{O}_X} \mathscr{L}$ et donc

$$\underline{\operatorname{Hom}}_{\mathcal{O}_X}(V(G), \mathscr{L}) \xrightarrow{\sim} \underline{\operatorname{Ext}}_{\operatorname{gr}}^1(G, \mathscr{L}).$$

Cela signifie qu'il existe une extension

$$0 \to V(G) \to E(G) \to G \to 0$$

qui est universelle (initiale) parmi les exensions de G par un groupe vectoriel sur X.

Supposons maintenant que p est nilpotent sur X et $G \in \mathbf{BT}(X)$. Soit $n \in \mathbb{N}$ est tel que p^n est nul sur X. Alors $\omega_{G^{\mathbb{D}}} = \omega_{G^{\mathbb{D}}(n)}$, et c'est un \mathcal{O}_X -module localement libre de rang fini ([24, Remark 3.3.1]).

Soit \mathscr{L} un \mathcal{O}_X -module localement libre de rang fini. Alors $\underline{\mathrm{Hom}}_{\mathrm{gr}}(G,\mathscr{L})=0$. En effet, si $f\in \underline{\mathrm{Hom}}_{\mathrm{gr}}(G,\mathscr{L})$, on a $f\circ p^n=p^n\circ f=0$, donc f=0 vu que p^n est un épimorphisme. En particulier, l'hypothèses (i) est vérifiée. Appliquons maintenant le foncteur $\underline{\mathrm{Hom}}_{\mathrm{gr}}(-,\mathscr{L})$ à la suite exacte $0\to G(n)\to G\xrightarrow{p^n} G\to 0$: on a la suite exacte

$$\underline{\mathrm{Hom}}_{\mathrm{gr}}(G,\mathscr{L}) \to \underline{\mathrm{Hom}}_{\mathrm{gr}}(G(n),\mathscr{L}) \xrightarrow{\delta} \underline{\mathrm{Ext}}_{\mathrm{gr}}^1(G,\mathscr{L}) \xrightarrow{p^n} \underline{\mathrm{Ext}}_{\mathrm{gr}}^1(G,\mathscr{L}).$$

Comme $\underline{\mathrm{Hom}}_{\mathrm{gr}}(G,\mathscr{L})=0$ et la multiplication par p^n est nulle sur \mathscr{L} , on a un isomorphisme $\delta\colon \underline{\mathrm{Hom}}_{\mathrm{gr}}(G(n),\mathscr{L})\stackrel{\sim}{\to} \underline{\mathrm{Ext}}^1_{\mathrm{gr}}(G,\mathscr{L})$, et donc $\underline{\mathrm{Hom}}_{\mathcal{O}_X}(\omega_{G^0(n)},\mathscr{L})\stackrel{\sim}{\to} \underline{\mathrm{Ext}}^1_{\mathrm{gr}}(G,\mathscr{L})$ en vertu de la propriété universelle de $\alpha\colon G(n)\to\omega_{G^0(n)}$. En particulier, avec $\mathscr{L}=\mathbf{G}_a$, on a

$$\underline{\mathrm{Ext}}_{\mathrm{gr}}^{1}(G,\mathbf{G}_{a}) = \underline{\mathrm{Hom}}_{\mathcal{O}_{X}}(\omega_{G^{\mathtt{D}}},\mathcal{O}_{X})$$

de sorte que l'hypothèse (ii) est vérifiée. On dispose donc de l'extension universelle et on a le diagramme

$$0 \longrightarrow G(n) \longrightarrow G \xrightarrow{p^n} G \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

de sorte qu'ici, $V(G) = \omega_{G^{\mathbb{D}}(n)}$ et $E(G) = \omega_{G^{\mathbb{D}}(n)}$ II G. Tout ce qui précède reste vrai lorsque p est seulement supposé localement nilpotent sur X (par unicité, on a les conditions de recollement adéquates). Par ailleurs, ces constructions commutent aux changements de base. Elles sont aussi

fonctorielles (cf [24, Proposition 4.1.5]): si $G, H \in \mathbf{BT}(X)$ et $u \in \mathrm{Hom}_{\mathbf{BT}(X)}(G, H)$, il existe un unique morphisme $\mathrm{E}(u)\colon \mathrm{E}(G)\to \mathrm{E}(H)$ qui fait commuter le diagramme

$$0 \longrightarrow V(G) \longrightarrow E(G) \longrightarrow G \longrightarrow 0$$

$$\downarrow^{V(u)} \qquad \downarrow^{E(u)} \qquad \downarrow^{u}$$

$$0 \longrightarrow V(H) \longrightarrow E(H) \longrightarrow H \longrightarrow 0$$

où V(u) est l'application $\omega_{D^{\mathbb{D}}} \to \omega_{H^{\mathbb{D}}}$ déduite de u. L'unicité de E(u) résulte de $\underline{\operatorname{Hom}}_{\operatorname{gr}}(G,\omega_{H^{\mathbb{D}}})=0$ (vu que ω_{H^p} est un \mathcal{O}_X -module localement libre de rang fini). Pour l'existence, on a les diagrammes

$$0 \longrightarrow V(G) \longrightarrow E(G) \longrightarrow G \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$0 \longrightarrow \omega_{H^{\mathsf{D}}} \longrightarrow \omega_{H^{\mathsf{D}}} \stackrel{\omega_{G^{\mathsf{D}}}}{\coprod} E(G) \longrightarrow G \longrightarrow 0$$

et

il suffit de montrer que la deuxième ligne du premier diagramme est isomorphe à la première du deuxième. Cela résulte du diagramme suivant :

$$\underbrace{\operatorname{Hom}_{\mathcal{O}_X}(\omega_{H^{\mathbb{D}}(n)},\omega_{H^{\mathbb{D}}(n)}) \xrightarrow{\sim} \underbrace{\operatorname{Hom}_{\operatorname{gr}}(H(n),\omega_{H^{\mathbb{D}}}) \xrightarrow{\delta} \underbrace{\operatorname{Ext}}^1_{\operatorname{gr}}(H,\omega_{H^{\mathbb{D}}(n)})}_{\qquad \qquad \downarrow}}_{\qquad \qquad \downarrow} \underbrace{\operatorname{Hom}_{\mathcal{O}_X}(\omega_{G^{\mathbb{D}}(n)},\omega_{H^{\mathbb{D}}(n)}) \xrightarrow{\sim} \underbrace{\operatorname{Hom}_{\operatorname{gr}}(G(n),\omega_{H^{\mathbb{D}}}) \xrightarrow{\delta} \underbrace{\operatorname{Ext}}^1_{\operatorname{gr}}(G,\omega_{H^{\mathbb{D}}(n)})}_{\sim}}_{}$$

et les deux lignes correspondent aux deux chemins pour envoyer $\mathrm{Id}_{\omega_{H^{\mathrm{D}}(n)}}$ dans $\mathrm{\underline{Ext}}_{\mathrm{gr}}^{1}(G,\omega_{H^{\mathrm{D}}(n)})$.

1.5. Le site cristallin.

Définition 1.6. Soient A un anneau et I un idéal de A. On dit que I est muni de puissances divisées lorsqu'on dispose d'une famille d'applications $(\gamma_n: I \to I)_{n \in \mathbb{N}_{>0}}$ vérifiant les conditions suivantes:

- (1) $(\forall n \in \mathbf{N}_{>0})$ $(\forall \lambda \in A)$ $(\forall x \in I)$ $\gamma_n(\lambda x) = \lambda^n \gamma_n(x)$;
- (2) $(\forall n, m \in \mathbb{N}_{>0})$ $(\forall x \in I)$ $\gamma_n(x)\gamma_m(x) = \frac{(n+m)!}{n!m!}\gamma_{n+m}(x);$
- (3) $(\forall n \in \mathbf{N}_{>0})$ $(\forall x, y \in I)$ $\gamma_n(x+y) = \gamma_n(x) + \sum_{i=1}^{n-1} \gamma_i(x) \gamma_{n-i}(y) + \gamma_n(y);$ (4) $(\forall n, m \in \mathbf{N}_{>0})$ $(\forall x \in I)$ $\gamma_n(\gamma_m(x)) = \frac{(nm)!}{n!(m!)^n} \gamma_{nm}(x).$

On pose $\gamma_0(x) = 1$ pour tout $x \in I$. Les puissances divisées sont dites nilpotentes lorsqu'il existe un entier $N \in \mathbb{N}_{>0}$ tel que pour tout $k \in \mathbb{N}_{>0}$, tout $x_1, \ldots, x_k \in I$ et tout $n_1, \ldots, n_k \in \mathbb{N}_{>0}$ tels

que $n_1 + \cdots + n_k \ge N$, on a $\gamma_{n_1}(x_1) \cdots \gamma_{n_k}(x_k) = 0$ (en particulier, on a $I^N = 0$). Soient (A, I, γ) et (A', I', γ') comme ci-dessus. Un morphisme à puissances divisées $f: (A, I, \gamma) \to I$ (A', I', γ') est un morphisme $f: A \to A'$ tel que $f(I) \subseteq I'$ et $\gamma'_n \circ f = \gamma_n$ sur I pour tout $n \in \mathbb{N}_{>0}$.

Moralement, les applications γ_n correspondent à l'opération $x \mapsto \frac{x^n}{n!}$. En particulier, lorsque A est une \mathbf{Q} -algèbre, on a existence et unicité des structures de puissances divisées sur les idéaux (ce n'est pas du tout le cas en général). Bien sûr, ces définitions s'étendent à des faisceaux d'idéaux sur des schémas.

Définition 1.7. Soit X un schéma. On note $X_{\text{N-cris}}$ le site dont les objets sont les couples ($U \hookrightarrow$

- U est un ouvert de X;
- $U \hookrightarrow T$ est une immersion localement nilpotente;
- ullet γ est une structure de puissance divisées localement nilpotentes sur l'idéal de l'immersion $U \hookrightarrow T$.

Les morphismes de $(U \hookrightarrow T, \gamma)$ vers $(U' \hookrightarrow T', \gamma')$ sont les diagrammes commutatifs

$$U \xrightarrow{f} T$$

$$f \downarrow g$$

$$U' \xrightarrow{f} T'$$

où $f\colon U\to U'$ est une inclusion et $g\colon T\to T'$ un morphisme à puissances divisées. La topologie sur $X_{\text{N-cris}}$ est définie par la prétopologie pour laquelle les familles couvrantes de $(U\hookrightarrow T,\gamma)$ sont les familles $\{(U_i\hookrightarrow T_i,\gamma_i)\}_{i\in I}$ telles que T_i est un ouvert de T pour tout $i\in I$ et $U=\bigcup_{i\in I}U_i$.

Remarque 1.8. La donnée d'un faisceau \mathscr{F} sur le site $X_{\text{N-cris}}$ équivaut à la donnée, pour tout $(U \hookrightarrow T, \gamma) \in X_{\text{N-cris}}$, d'un faisceau $\mathscr{F}_{(U \hookrightarrow T, \gamma)}$ sur T_{Zar} , de sorte que pour tout $(f, g) \colon (U \hookrightarrow T, \gamma) \to (U' \hookrightarrow T', \gamma') \in X_{\text{N-cris}}$, on a un morphisme $g^{-1}\mathscr{F}_{(U' \hookrightarrow T', \gamma')} \to \mathscr{F}_{(U \hookrightarrow T, \gamma)}$ (qui est un isomophisme lorsque T est un ouvert de T'), ces morphismes vérifiant la propriété de cocycle évidente.

Par exemple, on dispose du faisceau structural $\mathcal{O}_{X_{N-cris}}$ défini par $\mathcal{O}_{X_{N-cris}}(U \hookrightarrow T, \gamma) = \mathcal{O}_T$.

Définition 1.9. Soit $\mathscr C$ une catégorie fibrée sur la catégorie des schémas qui est un champ pour la topologie de Zariski (c'est-à-dire telle que les objets et les morphismes se recollent). Un cristal M à valeurs dans $\mathscr C$ sur X est la donnée, pour tout $(U \hookrightarrow T, \gamma) \in X_{\text{N-cris}}$, d'un objet $M_{(U \hookrightarrow T, \gamma)} \in \mathscr C_T$ tel que pour tout $(f,g): (U \hookrightarrow T, \gamma) \to (U' \hookrightarrow T', \gamma') \in X_{\text{N-cris}}$, on a un isomorphisme

$$u_g: M_{(U \hookrightarrow T, \gamma)} \xrightarrow{\sim} g^* M_{(U' \hookrightarrow T', \gamma')}$$

de sorte que $g^*(u_{g'}) \circ u_g = u_{g' \circ g}$.

1.10. Le cristal de Dieudonné d'un groupe de Barsotti-Tate.

Définition 1.11. (cf [24, III Definition 2.1]) Soit X un schéma et \mathscr{A} une \mathcal{O}_X -cogèbre quasicohérente et cocommutative. On appelle cospectre de \mathscr{A} le foncteur contravariant sur $\operatorname{\mathbf{Sch}}/X$ défini par

$$\mathbf{Cospec}(\mathscr{A}) \colon X' \mapsto \big\{ x \in \Gamma(X', \mathscr{A}_{X'}), \ \eta(x) = 1, \ \Delta(x) = x \otimes x \big\}$$

Cela définit un faisceau pour la topologie fpqc qui commute aux changements de base.

Par exemple, si A est \mathcal{O}_X -algèbre localement libre de rang fini, alors $\mathbf{Cospec}(A^{\vee}) \xrightarrow{\sim} \mathrm{Spec}(A)$ où $A^{\vee} = \underline{\mathrm{Hom}}_{\mathcal{O}_X}(A, \mathcal{O}_X)$.

L'intérêt du cospectre est qu'il commute aux limites inductives : on peut interpréter un groupe de Barsotti-Tate, ou son extension universelle, comme un cospectre (alors qu'on ne peut pas le voir comme un spectre).

Définition 1.12. Soient X un schéma et $\mathscr A$ une cogèbre sur X, munie d'une augmentation $\varepsilon \colon \mathcal O_X \to \mathscr A$.

- (1) Une section x de \mathscr{A} est dite *primitive* lorsque $\Delta(x) = x \otimes 1 + 1 \otimes x$. Si $\eta \colon \mathscr{A} \to \mathscr{A}$ désigne l'application opposé, on a alors $\eta(x) = 0$ (car $(\operatorname{Id}_{\mathscr{A}} \otimes \eta) \circ \Delta = \operatorname{Id}_{\mathscr{A}}$, de sorte que $x\eta(1) + \eta(x)1 = x$ et donc $\eta(x)1 = 0$ vu que $\eta(1) = 1_{\mathcal{O}_X}$, soit $0 = \eta(\eta(x)1) = \eta(x)\eta(1) = \eta(x)$).
- (2) On note $\underline{\text{Lie}}(\mathscr{A})$ le faisceau de \mathcal{O}_X -modules dont les sections sur U sont les éléments primitifs de $\Gamma(U,\mathscr{A}_U)$, où les applications sont induites par celles module sous-jacent à \mathscr{A} .
- (3) Si \mathscr{A} est limite inductive de \mathcal{O}_X -algèbres finies localement libres, $G = \mathbf{Cospec}(\mathscr{A})$, alors on pose $\underline{\mathrm{Lie}}(G) = \underline{\mathrm{Lie}}(\mathscr{A})$.

 $\textbf{Remarque 1.13.} \qquad (1) \ \underline{\text{Lie}}(G) \ \text{ne dépend que de la variété de Lie formelle } \overline{G} := \varinjlim \text{Inf}^k \, G.$

(2) En fait, on a une définition générale (et intuitive) du faisceau de \mathcal{O}_X -modules $\underline{\text{Lie}}(\mathscr{F})$ sur X_{fppf} pour tout faisceau \mathscr{F} sur X_{fppf} par la formule

$$\underline{\operatorname{Lie}}(\mathscr{F})(X') = \operatorname{Ker}\left(f_* f^* \mathscr{F} \xrightarrow{\varepsilon \mapsto 0} \mathscr{F}\right)$$

où $f: \operatorname{Spec}(\mathcal{O}_X[\varepsilon]/(\varepsilon^2)) \to X$. C'est cohérent avec les définitions qui précèdent, car si $G = \operatorname{\mathbf{Cospec}}(\mathscr{A})$, le module $\operatorname{\underline{Lie}}(G)(X')$ est égal à

$$\operatorname{Ker}\left(\left\{x = x_0 + \varepsilon x_1 \in \Gamma\left(X', \mathscr{A}_{\mathcal{O}_X'}[\varepsilon]/(\varepsilon^2)\right), \ \eta(x) = 1, \ \Delta(x) = x \otimes x\right\}$$

$$\xrightarrow{\varepsilon \mapsto 0} \left\{x \in \Gamma(X', \mathscr{A}_{X'}), \ \eta(x) = 1, \ \Delta(x) = x \otimes x\right\}.$$

Mais comme $\eta(x_0 + \varepsilon x_1) = \eta(x_0) + \varepsilon \eta(x_1)$ et $\Delta(x_0 + \varepsilon x_1) = \Delta(x_0) + \varepsilon \Delta(x_1)$, on a $x_0 + \varepsilon x_1 \in \underline{\text{Lie}}(G)(X')$ si et seulement si $x_0 = 1 \in G(X')$, $\eta(x_1) = 0$ et $\Delta(x_1) = x_1 \otimes x_0 + x_0 \otimes x_1$. On a donc $\underline{\text{Lie}}(G)(X') \simeq \{x_1 \in \Gamma(X', \mathscr{A}_{\mathcal{O}_X'}, \ \eta(x_1) = 0, \ \Delta(x_1) = x_1 \otimes 1 + 1 \otimes x_1\}$ et on retrouve la définition précédente.

Proposition 1.14. (cf [24, Proposition IV.1.21]) Soient X un schéma sur lequel p est localement nilpotent et $G \in \mathbf{BT}(X)$. Alors la suite

$$0 \to V(G) \to \underline{\operatorname{Lie}}(E(G)) \to \underline{\operatorname{Lie}}(G) \to 0$$

est exacte.

Définition 1.15. Soit X un schéma sur lequel p est localement nilpotent et $G \in \mathbf{BT}(X)$. Soit $(U \hookrightarrow T, \gamma) \in X_{\text{N-cris}}$. Alors, localement sur U, le groupe de Barsotti-Tate G se relève à T en $\widetilde{G} \in \mathbf{BT}(T)$ (cf. [16, Théorème 4.4]). On pose

$$\mathbf{E}(G)_{(U \hookrightarrow T, \gamma)} = \mathbf{E}\left(\widetilde{G}\right) \quad \text{et} \quad \mathbf{D}(G)_{(U \hookrightarrow T, \gamma)} = \underline{\text{Lie}}\left(\mathbf{E}\left(\widetilde{G}\right)\right).$$

Cela ne dépend pas des relèvements, ce qui fait que c'est bien défini (pas seulement localement), et ce sont des cristaux sur X (cf [24, 2.5.3]).

L'ingrédient clé pour le montrer est l'énoncé suivant.

Théorème 1.16. Soient A un anneau dans lequel p est nilpotent, $I \subseteq A$ un idéal muni de puissances divisées nilpotentes et $G, H \in \mathbf{BT}(A)$. Soient G_0 et H_0 les restrictions de G et H à $\mathrm{Spec}(A/I)$, et $u_0 \in \mathrm{Hom}_{BT(A/I)}(G_0, H_0)$. On a le diagramme :

$$0 \longrightarrow V(G_0) \longrightarrow E(G_0) \longrightarrow G_0 \longrightarrow 0$$

$$\downarrow^{V(u_0)} \qquad \downarrow^{E(u_0)} \qquad \downarrow^{u_0}$$

$$0 \longrightarrow V(H_0) \longrightarrow E(H_0) \longrightarrow H_0 \longrightarrow 0$$

Alors il existe un unique homomorphisme de groupes $v \colon E(G) \to E(H)$ (qui n'est pas forcément un morphisme d'extensions), tel que

- (1) v relève $E(u_0)$;
- (2) Étant donné $w: V(G) \to V(H)$ relevant $V(u_0)$, tel que $d := i \circ w v_{|V(G)}: V(G) \to E(H)$ est nul modulo I (où $i: V(H) \hookrightarrow E(H)$), alors d est une exponentielle (cf ci-dessous).

Remarque 1.17. Un petit calcul montre que v est indépendant de w.

Soient A un anneau et $I \subseteq A$ un idéal muni de puissances divisées nilpotentes. Posons $X = \operatorname{Spec}(A)$ et $X_0 = \operatorname{Spec}(A/I)$. Soient \mathscr{M} un \mathcal{O}_X -module quasi-cohérent et \mathscr{A} une bialgèbre plate sur X. Posons $E = \operatorname{Cospec}(\mathscr{A})$ et $\overline{\mathscr{M}} \colon X' \mapsto \operatorname{Ker}\left(\Gamma(X', \mathscr{M}_{X'}), \Gamma(X'_{\operatorname{red}}, \mathscr{M}_{X'_{\operatorname{red}}})\right)$ (il s'agit de la variété de Lie formelle associée au groupe associé à \mathscr{M}). Alors on dispose d'un homomorphisme injectif $(cf \ [24, \operatorname{III} \ 2.3.3])$

$$\underline{\mathrm{Hom}}_{\mathcal{O}_X}(\mathscr{M},\underline{\mathrm{Lie}}(E)\cap I\mathscr{A})\xrightarrow{\mathrm{exp}}\mathrm{Ker}\left(\underline{\mathrm{Hom}}_{X\text{-}\mathrm{gr}}(\overline{\mathscr{M}},E)\to\underline{\mathrm{Hom}}_{X_0\text{-}\mathrm{gr}}(\overline{\mathscr{M}}_0,E_0)\right)$$

défini de la façon suivante : si $\theta \in \underline{\mathrm{Hom}}_{\mathcal{O}_X}(\mathcal{M}, \underline{\mathrm{Lie}}(G) \cap I\mathcal{A})$ et x une section de $\overline{\mathcal{M}}$, alors

$$\exp(\theta)(x) = \sum_{n=0}^{\infty} \gamma_n(\theta(x)).$$

Comme $\theta(x) \in \underline{\text{Lie}}(E) \cap I \mathscr{A}$, chaque terme de la somme est bien défini, et il n'y en a qu'un nombre fini.

Si on suppose $\mathcal{M} = V$ fini localement libre et G tel que pour tout $k \in \mathbb{N}_{>0}$, le k-ième voisinage infinitésimal $\operatorname{Inf}^k G$ est localement libre de rang fini, on peut remplacer $\overline{\mathcal{M}}$ par V dans le morphisme qui précède (cf [24, III (2.4)]) : on a un homomorphisme injectif

$$\underline{\mathrm{Hom}}_{\mathcal{O}_X}(V, I\,\underline{\mathrm{Lie}}(E)) \xrightarrow{\mathrm{exp}} \mathrm{Ker}\left(\underline{\mathrm{Hom}}_{X^-\mathrm{gr}}(V, E) \to \underline{\mathrm{Hom}}_{X_0^-\mathrm{gr}}(V_0, E_0)\right)$$

(remarquons que $\underline{\text{Lie}}(E) \cap I \mathscr{A} = I \underline{\text{Lie}}(E)$ par platitude de \mathscr{A}). Dans la suite, on appliquera ceci avec V = V(G) et E = E(H) pour $G, H \in \mathbf{BT}(X)$.

Remarque 1.18. La théorie de Dieudonné qui vient d'être présentée coïncide avec la théorie classique lorsque $X = \operatorname{Spec}(k)$ où k est un corps parfait de caractéristique p (il est facile de voir que la donné d'un cristal sur $\operatorname{Spec}(k)$ équivaut à celle d'un $\operatorname{W}(k)$ -module, parce que $\operatorname{W}(k)$ est un épaississement à puissances divisées universel de k). Cela nécessite une vérification, faite dans [23, II §15].

1.19. Déformation des groupes de Barsotti-Tate.

Soit X un schéma sur lequel p est localement nilpotent et $\mathscr{I}\subseteq\mathscr{O}_X$ un idéal quasi-cohérent, muni de puissances divisées localement nilpotentes. Soit $X_0\hookrightarrow X$ l'immersion fermée qu'il définit. C'est un objet de $(X_0)_{\text{N-cris}}$

Soit $G_0 \in \mathbf{BT}(X_0)$. On dispose de $\mathbf{D}(G_0)_{X_0 \hookrightarrow X}$ et de $\mathbf{E}(G_0)_{X_0 \hookrightarrow X}$.

Définition 1.20. (1) Une filtration $\operatorname{Fil}^1\left(\mathbf{D}(G_0)_{X_0\hookrightarrow X}\right)\subseteq \mathbf{D}(G_0)_{X_0\hookrightarrow X}$ est dite admissible si Fil^1 est un sous-groupe vectoriel localement facteur direct qui relève

$$V(G_0) \subseteq \underline{Lie}(E(G_0))$$

sur X_0 .

(2) On note $\mathbf{DefBT}(X/X_0)$ la catégorie dont les objets sont les couples $(G_0, \operatorname{Fil}^1(\mathbf{D}(G_0)_{X_0 \hookrightarrow X}))$ où $G_0 \in \mathbf{BT}(X_0)$ et $\operatorname{Fil}^1(\mathbf{D}(G_0)_{X_0 \hookrightarrow X}) \subseteq \mathbf{D}(G_0)_{X_0 \hookrightarrow X}$ est une filtration admissible. Un morphisme $(G_0, \operatorname{Fil}^1(\mathbf{D}(G_0)_{X_0 \hookrightarrow X})) \to (H_0, \operatorname{Fil}^1(\mathbf{D}(H_0)_{X_0 \hookrightarrow X}))$ dans $\mathbf{DefBT}(X/X_0)$ est un couple (u_0, ξ) où $u_0 \in \operatorname{Hom}_{\mathbf{BT}(X_0)}(G_0, H_0)$ et

$$\xi \in \operatorname{Hom}_{\mathcal{O}_X} \left(\operatorname{Fil}^1 \left(\mathbf{D}(G_0)_{X_0 \hookrightarrow X} \right), \operatorname{Fil}^1 \left(\mathbf{D}(H_0)_{X_0 \hookrightarrow X} \right) \right)$$

donnant lieu au diagramme

$$\operatorname{Fil}^{1}\left(\mathbf{D}(G_{0})_{X_{0}\hookrightarrow X}\right) \hookrightarrow \mathbf{D}(G_{0})_{X_{0}\hookrightarrow X}$$

$$\xi \downarrow \qquad \qquad \downarrow \mathbf{D}(u_{0})_{X_{0}\hookrightarrow X}$$

$$\operatorname{Fil}^{1}\left(\mathbf{D}(H_{0})_{X_{0}\hookrightarrow X}\right) \hookrightarrow \mathbf{D}(H_{0})_{X_{0}\hookrightarrow X}$$

qui relève

$$V(G_0) \xrightarrow{} \underline{\operatorname{Lie}}(E(G_0))$$

$$V(u_0) \downarrow \qquad \qquad \downarrow \underline{\operatorname{Lie}}(E(u_0))$$

$$V(H_0) \xrightarrow{} \underline{\operatorname{Lie}}(E(H_0))$$

Théorème 1.21. [Grothendieck-Messing, [24, Theorem 1.6]] Le foncteur

$$\mathbf{BT}(X) \to \mathbf{DefBT}(X/X_0)$$

$$G \mapsto \big(G \otimes_X X_0, \mathcal{V}(G) \hookrightarrow \underline{\mathrm{Lie}}(\mathcal{E}(G))\big)$$

est une équivalence de catégories.

 $D\acute{e}monstration$. Si $G, H \in \mathbf{BT}(X)$, et $u \in \mathrm{Hom}_{\mathbf{BT}(X)}(G, H)$, on notera G_0, H_0 et u_0 leurs restrictions à X_0 .

Le foncteur est fidèle Il s'agit de montrer que si $G, H \in \mathbf{BT}(X)$ et $u \in \mathrm{Hom}_{\mathbf{BT}(X)}(G, H)$ sont tels que $u_0 \colon G_0 \to H_0$ et $\underline{\mathrm{Lie}}(\mathrm{E}(u)) \colon \underline{\mathrm{Lie}}(\mathrm{E}(G)) \to \underline{\mathrm{Lie}}(\mathrm{E}(H))$ sont nuls, alors u est nul. Montrons que $\mathrm{E}(u) = 0$. La question est locale sur X: on peut supposer $X = \mathrm{Spec}(A)$ affine. Commençons par remarquer que $v_1 = \mathrm{E}(u)$ et $v_2 = 0$ relèvent tous les deux $\mathrm{E}(u_0) = 0 \colon \mathrm{E}(G_0) \to \mathrm{E}(H_0)$ (car

 $u_0 = 0$). Par ailleurs, on a V(u) = 0 (car <u>Lie</u>(E(u)) = 0), de sorte que tant v_1 que v_2 font commuter le diagramme

$$V(G) \longrightarrow E(G)$$

$$V(u) \downarrow v$$

$$V(H) \xrightarrow{i} E(H)$$

En particulier, si $w=\mathrm{V}(u)=0\colon \mathrm{V}(G)\to \mathrm{V}(H),$ alors $d=i\circ w-v_{j|\mathrm{V}(G)}=0$ est une exponentielle pour $j\in\{1,2\}.$ Par unicité dans le théorème 1.16, on a $v_1=v_2,$ *i.e.* $\mathrm{E}(u)=0,$ et donc u=0.

Le foncteur est plein Il s'agit de montrer que si $G, H \in \mathbf{BT}(X), u_0 \in \mathrm{Hom}_{\mathbf{BT}(X_0)}(G_0, H_0)$ et $\xi \colon V(G) \to V(H)$ sont tels que $\xi_0 = V(u_0)$ et

$$V(G) \longrightarrow \underline{\operatorname{Lie}}(E(G)) = \mathbf{D}(G_0)_{X_0 \hookrightarrow X}$$

$$\xi \downarrow \qquad \qquad \qquad \downarrow \mathbf{D}(u_0)_{X_0 \hookrightarrow X}$$

$$V(H) \longrightarrow \underline{\operatorname{Lie}}(E(H)) = \mathbf{D}(G_0)_{X_0 \hookrightarrow X}$$

alors il existe $u \in \operatorname{Hom}_{\mathbf{BT}(X)}(G,H)$ relevant u_0 et tel que $V(u) = \xi$. Grâce à la fidélité prouvée plus haut, on a unicité pour u, de sorte que la question est locale : on peut supposer $X = \operatorname{Spec}(A)$ affine. D'après le théorème 1.16, il existe un unique homomorphisme de groupes $v \colon \operatorname{E}(G) \to \operatorname{E}(H)$ qui relève $\operatorname{E}(u_0)$ et tel que $d := v_{|V(G)} - i \circ \xi \colon V(G) \to \operatorname{E}(H)$ est une exponentielle (où $i \colon V(H) \hookrightarrow \operatorname{E}(H)$). Rappelons que v est indépendant de ξ . Comme $\operatorname{\underline{Lie}}(v) = \operatorname{D}(u_0)_{X_0 \hookrightarrow X}$ (par définition de $\operatorname{D}(v)$), on a $\operatorname{\underline{Lie}}(v) = 0$. Cela implique que $v \in V(v) = 0$ i.e. $v_{|V(G)} = v \circ \xi$: en passant au quotient, on en déduit $v \in \operatorname{Hom}_{\operatorname{BT}(X)}(G,H)$

$$0 \longrightarrow V(G) \longrightarrow E(G) \longrightarrow G \longrightarrow 0$$

$$\xi \downarrow \qquad \qquad \downarrow v \qquad \qquad \downarrow u$$

$$0 \longrightarrow V(H) \longrightarrow E(H) \longrightarrow H \longrightarrow 0$$

On a alors nécessairement v = E(u) (toujours par unicité dans le théorème 1.16), donc $V(u) = \xi$.

Le foncteur est essentiellement surjectif Soit $(G_0, \operatorname{Fil}^1(\mathbf{D}(G_0)_{X_0 \hookrightarrow X})) \in \mathbf{DefBT}(X/X_0)$: on doit construire $G \in \mathbf{BT}(X)$ qui relève G_0 tel que $\operatorname{Fil}^1(\mathbf{D}(G_0)_{X_0 \hookrightarrow X}) \simeq V(G) \subseteq \underline{\operatorname{Lie}}(E(G))$. Si G existe, c'est nécessairement

$$(*) G = \mathbf{E}(G_0)_{X_0 \hookrightarrow X}/V$$

(où Fil¹ ($\mathbf{D}(G_0)_{X_0 \hookrightarrow X}$). Il s'agit essentiellement de prouver que le groupe défini par (*) est de Barsotti-Tate (c'est fait dans [24, p.155-157]). Par universalité, on a le diagramme

$$0 \longrightarrow V(G) \longrightarrow E(G) \longrightarrow G \longrightarrow 0$$

$$\downarrow v \qquad \qquad \parallel$$

$$0 \longrightarrow V \longrightarrow E(G_0)_{X_0 \hookrightarrow X} \longrightarrow G \longrightarrow 0$$

Comme les deux lignes se restreignent en l'extension universelle de G_0 sur X_0 , le morphisme $V(G) \to V$ est un isomorphisme modulo $\mathscr I$ donc un isomorphisme (par Nakayama vu que $\mathscr I$ est nilpotent). L'application entre extensions est donc un isomorphisme. On en déduit que

$$(G_0, \operatorname{Fil}^1(\mathbf{D}(G_0)_{X_0 \hookrightarrow X})) \simeq (G_0, \operatorname{V}(G) \subseteq \underline{\operatorname{Lie}}(\operatorname{E}(G))).$$

2. LE THÉORÈME DE SERRE-TATE

Soient $N \in \mathbb{N}_{>0}$, R un anneau tué par N et $I \subseteq R$ un idéal nilpotent. Posons $R_0 = R/I$. On note $\mathscr{A}(R)$ la catégorie des schémas abéliens sur R et $\mathbf{Def}(R, R_0)$ la catégorie dont les objets sont les triplets (A_0, G, ε) où $A_0 \in \mathscr{A}(R_0)$, $G \in \mathbf{BT}(R)$ et $\varepsilon \colon G \otimes_R R_0 \xrightarrow{\sim} A_0(\infty)$ est un isomorphisme dans $\mathbf{BT}(R_0)$.

Théorème 2.1. (Serre-Tate, [17, Theorem 1.2.1]) Si $N = p^n$, le foncteur

$$\mathscr{A}(R) \to \mathbf{Def}(R, R_0)$$

 $A \mapsto (A \otimes_R R_0, A(\infty), \varepsilon \text{ naturel})$

est une équivalence de catégories.

On suit fidèlement la preuve de Drinfeld, telle qu'elle est presentée dans [17]. Supposons $I^{\nu+1}=0$ dans R. Si \mathscr{G} est un foncteur sur la catégorie des R-algèbres, on note \mathscr{G}_I et $\widehat{\mathscr{G}}$ les sous-foncteurs définis par $\mathscr{G}_I(R')=\mathrm{Ker}\left(\mathscr{G}(R')\to\mathscr{G}(R'/IR')\right)$ et $\widehat{\mathscr{G}}(R')=\mathrm{Ker}\left(\mathscr{G}(R')\to\mathscr{G}(R'^{\mathrm{red}})\right)$ respectivement.

Lemme 2.2. Si \mathscr{G} est un faisceau abélien pour la topologie fppf sur R tel que $\widehat{\mathscr{G}}$ est localement représentable par un groupe de Lie formel, alors \mathscr{G}_I est tué par N^{ν} .

Démonstration. Comme I est nilpotent, on a $\mathscr{G}_I \subseteq \widehat{\mathscr{G}}$, de sorte que $\mathscr{G}_I = \widehat{\mathscr{G}}_I$: quitte à remplacer \mathscr{G} par $\widehat{\mathscr{G}}$ et à localiser, on peut supposer que \mathscr{G} est un groupe de Lie formel sur R. Si X_1,\ldots,X_n sont les coordonnées de \mathscr{G} , on a $([N](\underline{X}))_i = NX_i + \text{ termes de degré} \geq 2$ en X_1,\ldots,X_n . Mais comme un point de $\mathscr{G}(R')$ est à coordonnées dans IR' et comme R' est tué par N (car c'est le cas pour R), on a $[N]\mathscr{G}_I \subseteq \mathscr{G}_{I^2}$. On a donc $[N]\mathscr{G}_{I^m} \subseteq \mathscr{G}_{I^{2m}} \subseteq \mathscr{G}_{I^{m+1}}$ pour tout $m \in \mathbb{N}_{>0}$, et donc $[N]^{\nu}\mathscr{G}_I = 0$.

Lemme 2.3. Soient \mathcal{G} , \mathcal{H} des faisceaux abéliens pour la topologie fppf sur R vérifiant les conditions suivantes :

- (i) \mathscr{G} est N-divisble;
- (ii) $\widehat{\mathscr{H}}$ est localement représentable par un groupe de Lie formel;
- (iii) \mathcal{H} est formellement lisse.

Notons \mathscr{G}_0 et \mathscr{H}_0 les images inverses de \mathscr{G} et \mathscr{H} sur R_0 . Alors :

- (1) les groupe $\operatorname{Hom}_{R-\operatorname{gr}}(\mathscr{G},\mathscr{H})$ et $\operatorname{Hom}_{R_0-\operatorname{gr}}(\mathscr{G}_0,\mathscr{H}_0)$ n'ont pas de N-torsion;
- (2) l'application de réduction modulo I

$$\operatorname{Hom}(\mathscr{G},\mathscr{H}) \to \operatorname{Hom}(\mathscr{G}_0,\mathscr{H}_0)$$

 $et\ injective\ ;$

- (3) pour tout homomorphisme $f_0: \mathcal{G}_0 \to \mathcal{H}_0$, il existe un unique homomorphisme " $N^{\nu}f$ ": $\mathcal{G} \to \mathcal{H}$ qui relève $N^{\nu}f_0$;
- (4) pour que $f_0: \mathscr{G}_0 \to \mathscr{H}_0$ se relève en $f: \mathscr{G} \to \mathscr{H}$, il faut et suffit que l'homomorphisme " $N^{\nu}f$ " annihile le sous-groupe $\mathscr{G}[N^{\nu}] = \operatorname{Ker}(N^{\nu}: \mathscr{G} \to \mathscr{G})$.

 $D\acute{e}monstration.$ Remarquons tout d'abord qu'en vertu des hypothèses, le faisceau \mathscr{H}_I est tué par N^ν (cf lemme 2.2).

- (1) Résulte de ce que $\mathcal G$ (et donc aussi $\mathcal G_0)$ est N-divisible.
- (2) On a Ker $(\operatorname{Hom}(\mathcal{G}, \mathcal{H}) \to \operatorname{Hom}(\mathcal{G}_0, \mathcal{H}_0)) = \operatorname{Hom}(\mathcal{G}, \mathcal{H}_I)$, qui est nul parce que \mathcal{G} est N-divisible alors que \mathcal{H}_I est tué par N^{ν} .
- (3) Notons déjà que d'après le point (2), si $N^{\nu}f$ existe, il est unique. Pour toute R-algèbre A, il est donné par le composé

$$\mathcal{G}(A) \xrightarrow{N^{\nu} f^{n}(A)} \mathcal{H}(A)
\mod I \qquad \qquad \uparrow N^{\nu} \sigma
\mathcal{G}(A/IA) \xrightarrow{f_{0}(A/IA)} \mathcal{H}(A/IA)$$

où $\sigma \colon \mathscr{H}(A/IA) \to \mathscr{H}(A)$ est n'importe quelle section du morphisme $\mathscr{H}(A) \to \mathscr{H}(A/IA)$ (qui est surjectif en vertu de la formelle lissité de \mathscr{H} et de la nilpotence de I). L'application $N^{\nu}\sigma$ est alors bien définie, parce que deux sections ont une différence à valeurs dans $\mathscr{H}_I(A)$, qui est tué par N^{ν} .

(4) Supposons que $f \in \text{Hom}(\mathcal{G}, \mathcal{H})$ relève f_0 . Alors par unicité dans (3), on a nécessairement $N^{\nu}f = "N^{\nu}f"$, et ce dernier tue $\mathcal{G}[N^{\nu}]$ (par unicité dans (3)).

Réciproquement, supposons que " $N^{\nu}f$ " dernier tue $\mathscr{G}[N^{\nu}]$. Comme \mathscr{G} est N-divisible, on a la suite exacte

$$0 \to \mathscr{G}\big[N^\nu\big] \to \mathscr{G} \xrightarrow{N^\nu} \mathscr{G} \to 0$$

de sorte que " $N^{\nu}f$ " se factorise par N^{ν} , *i.e.* " $N^{\nu}f$ " = $N^{\nu}f$ pour un certain homomorphisme $f: \mathscr{G} \to \mathscr{H}$. Il s'agit de voir que f relève f_0 . Mais modulo I, on a $N^{\nu}f = N^{\nu}f_0$ et $\operatorname{Hom}(\mathscr{G}_0, \mathscr{H}_0)$ n'a pas de N-torsion d'après (1).

Démonstration du théorème 2.1. Pleine fidélité Soient $A, B \in \mathcal{A}(R), g: A(\infty) \to B(\infty)$ un morphisme dans $\mathbf{BT}(R)$ et $f_0: A_0 \to B_0$ un morphisme dans $\mathcal{A}(R_0)$ tel que $f_0(\infty)$ coïncide avec g_0 . Il s'agit de montrer qu'il existe un unique morphisme $f: A \to B$ dans $\mathcal{A}(R)$ qui induit g et f_0 .

Commençons par remarquer que les schémas abéliens et les groupes p-divisibles vérifient les conditions du lemme 2.3. L'unicité de $f \in \operatorname{Hom}(A,B)$, s'il existe, résulte donc de l'injectivité de $\operatorname{Hom}(A,B) \to \operatorname{Hom}(A_0,B_0)$ (cf lemme 2.3 (2)). Pour son existence, on doit vérifier que le morphisme " $N^{\nu}f$ " (dont l'existence et l'unicité sont données par le lemme 2.3 (3)) tue $A[N^{\nu}]$. Mais comme " $N^{\nu}f$ " relève $N^{\nu}f_0$, le morphisme " $N^{\nu}f$ "(∞) relève $N^{\nu}f_0(\infty)$. Un autre relèvement est donné par $N^{\nu}g$: par injectivité de $\operatorname{Hom}(A(\infty),B(\infty)) \to \operatorname{Hom}(A_0(\infty),B_0(\infty))$ (cf lemme 2.3 (2)), on a nécessairement " $N^{\nu}f$ "(∞) = $N^{\nu}g$. Il en résulte bien que " $N^{\nu}f$ " tue $A[N^{\nu}]$, de sorte que " $N^{\nu}f$ " avec $f \in \operatorname{Hom}(A,B)$ un relèvement de f_0 . Le morphisme $f(\infty)$ est alors un relèvement de $f_0(\infty)$, tout comme g: par injectivité encore, on a $f(\infty) = g$.

Essentielle surjectivité Soit $(A_0, G, \varepsilon) \in \mathbf{Def}(R, R_0)$. Comme R est un epaississement nilpotent de R_0 , le schéma abélien A_0 se relève en $B \in \mathcal{A}(R)$ (cf [12, Exposé III] et [14, Exposé III]). On dispose alors d'un isomorphisme $\alpha_0 \colon B_0 \xrightarrow{\sim} A_0$, qui induit un isomorphisme

$$\alpha_0(\infty) \colon B_0(\infty) \xrightarrow{\sim} A_0(\infty) \xrightarrow{\varepsilon^{-1}} G \otimes_R R_0$$

dans $\mathbf{BT}(R_0)$. On dispose donc (cf lemme 2.3 (3)) d'un unique morphisme " $N^{\nu}\alpha(\infty)$ ": $B(\infty) \to G$ dans $\mathbf{BT}(R)$ qui relève $N^{\nu}\alpha_0(\infty)$. Le morphisme " $N^{\nu}\alpha(\infty)$ " est une isogénie. En effet, on dispose d'un unique " $N^{\nu}\alpha(\infty)^1$ " relevant $N^{\nu}\alpha_0(\infty)^{-1}$, de sorte que (par unicité), les composés " $N^{\nu}\alpha(\infty)$ " o " $N^{\nu}\alpha(\infty)^{-1}$ " " $N^{\nu}\alpha(\infty)^{-1}$ " o " $N^{\nu}\alpha(\infty)$ " sont la multiplication par $N^{2\nu}$.

$$B(\infty) \xrightarrow[N^{\nu}\alpha(\infty)^{-1}]{N^{\nu}\alpha(\infty)^{-1}} G$$

On a donc une suite exacte

(1)
$$0 \to K \to B(\infty) \xrightarrow{"N^{\nu}\alpha(\infty)"} G \to 0$$

où $K \subseteq B[N^{2\nu}]$. Montrons que K est un sous-groupe fini et plat de $B[N^{2\nu}] = B[p^{2n\nu}]$. Remarquons déjà que d'après le critère de platitude fibre par fibre (rappelé plus bas; on peut l'appliquer parce que $B(\infty)$ est ind-plat sur R), le morphisme " $N^{\nu}\alpha(\infty)$ ": $B(\infty) \to G$ est plat car sa réduction modulo I l'est (étant la multiplication par N^{ν} composée avec un isomorphisme). Comme $K \to \operatorname{Spec}(R)$ se déduit de " $N^{\nu}\alpha(\infty)$ " par changement de base, il est plat. On peut donc former le schéma abélien quotient $A := B/K \in \mathscr{A}(R)$ (cf [13, Théorème 6.1]). Comme K relève $\operatorname{Ker}(N^{\nu}\alpha_0(\infty)) = B_0[N^{\nu}]$, A relève $B_0/B_0[N^{\nu}] \simeq B_0 \overset{\sim}{\to} A_0$, et la suite exacte (1) induit un isomorphisme $A(\infty) \simeq B(\infty)/K \overset{\sim}{\to} G$.

Rappel 2.4. Le critère de platitude par fibres (cf [15, Corollaire 11.3.11]). Soient S un schéma, $g\colon X\to S$ et $h\colon Y\to S$ deux morphismes de schémas et $f\colon X\to Y$ un morphisme de S-schémas. Alors les conditions suivantes sont équivalentes :

- (1) g est plat et pour tout $s \in S$, le morphisme $f_s: X_s \to Y_s$ est plat;
- (2) h est plat en tous les points de f(X) et f est plat.

Cas d'une variété abélienne ordinaire sur un corps algébriquement clos.

Soit k un corps algébriquement clos de caractéristique p et A une variété abélienne ordinaire sur k, de dimension g. cela signifie le groupe p-divisible $A(\infty)$ est canoniquement isomorphe au produit $\widehat{A} \times \mathrm{T}_p(A) \otimes_{\mathbf{Z}_p} (\mathbf{Q}_p / \mathbf{Z}_p)$ où $\widehat{A} = \mathrm{Hom}_{\mathbf{Z}_p}(\mathrm{T}_p(A^t), \widehat{\mathbf{G}}_m)$ est un groupe formel toroidal (où A^t désigne la variété abélienne duale de A). Dans ce contexte, si R est un anneau local artinien de corps résiduel k, le théorème 2.1 se traduit de la façon suivante.

Théorème 2.5. À toute déformation A de A à R, on peut associer une forme bilinéaire

$$q(\mathbb{A}/R) \in \operatorname{Hom}_{\mathbf{Z}_p} \left(\operatorname{T}_p A(k) \otimes_{\mathbf{Z}_p} \operatorname{T}_p A^t(k), \widehat{\mathbf{G}}_m(R) \right)$$

(on a $\widehat{\mathbf{G}}_m(R) = 1 + \mathfrak{m}_R$), et cela établit une bijection entre l'ensemble des classes d'isomorphismes de déformations de A à R et $\operatorname{Hom}_{\mathbf{Z}_p}\left(\operatorname{T}_p A(k) \otimes_{\mathbf{Z}_p} \operatorname{T}_p A^t(k), \widehat{\mathbf{G}}_m(R)\right)$

En particulier, si $\widehat{\mathfrak{M}}_{A/k}$ désigne l'espace de module formel de A/k, alors on a un isomorphisme

$$\widehat{\mathfrak{M}}_{A/k} \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{Z}_n} \left(\operatorname{T}_p A(k) \otimes_{\mathbf{Z}_n} \operatorname{T}_p A^t(k), \widehat{\mathbf{G}}_{\mathrm{m}} \right).$$

3. Cristaux et groupes de Barsotti-Tate

Soit K un corps de valuation discrète complet, de caractéristique mixte (0,p), à corps résiduel parfait k. Soient ϖ une uniformisante de K, \overline{K} une clôture algébrique de K et $\mathcal{G}_K = \operatorname{Gal}(\overline{K}/K)$. On note v la valuation de \overline{K} , normalisée par v(p)=1. On note C le complété de \overline{K} pour la topologie p-adique. C'est un corps algébriquement clos. La valuation v et l'action de \mathcal{G}_K s'étendent à C par continuité. Pour tout sous-corps F de C, on note \mathcal{O}_F l'anneau des entiers de F et $\mathcal{G}_F = \operatorname{Gal}(\overline{K}/F)$ si $K \subseteq F \subseteq \overline{K}$.

Posons W=W(k) l'anneau des vecteurs de Witt à coefficients dans k et notons σ l'endomorphisme de Frobenius sur W. On pose $K_0=W[p^{-1}]$: on a alors $\mathcal{O}_K=W[\varpi]$ et le polynôme minimal de ϖ sur K_0 est un polynôme d'Eisenstein $E(u)\in W[u]$ de degré e. On se donne $\widetilde{\varpi}=\left(\varpi^{(n)}\right)_{n\in\mathbb{N}}\in\mathcal{O}_K^{\mathbb{N}}$ une suite cohérente de racines p^n -ièmes de ϖ : on a $\varpi^{(0)}=\varpi$ et $\left(\varpi^{(n+1)}\right)^p=\varpi^{(n)}$ pour tout $n\in\mathbb{N}$. On pose $K_\infty=\bigcup_{n\in\mathbb{N}}K\left[\varpi^{(n)}\right]$. C'est une extension totalement ramifiée de K.

3.1. Un épaississement à puissances divisées de \mathcal{O}_K .

Soit $D_{W[u]}(E(u))$ l'enveloppe à puissances divisées de W[u] relativement à l'idéal (E(u)), compatibles aux puissances divisées sur l'idéal (p).

On note S le séparé complété de $D_{W[u]}(E(u))$ pour la topologie p-adique, et on note $Fil^1(S)$ l'adhérence dans S de l'idéal à puissances divisées engendré par E(u). C'est encore un idéal à puissances divisées et on a un isomorphisme

$$S/\operatorname{Fil}^1(S) \simeq W[u]/(E(u)) \simeq \mathcal{O}_K$$

induit par $u \mapsto \varpi$.

- **Remarque 3.2.** (1) L'anneau S est local complet, d'idéal maximal $\mathfrak{m}=uS+\mathrm{Fil}^1(S)$. En effet, on a déjà $S/\mathfrak{m}\simeq \mathcal{O}_K/\varpi\mathcal{O}_K=k$. Par ailleurs, on a $\mathfrak{m}^{(e+1)p}\subseteq pS$ (car $u^{ep}=p!(u^e)^{[p]}\in pS$ et $x^p=p!x^{[p]}\in pS$ pour tout $x\in \mathrm{Fil}^1(S)$) et S est complet pour la topologie p-adique.
 - (2) L'anneau S ne dépend que de W et de l'entier e: comme $E(u) \equiv u^e \mod pW[u]$, on a $D_{W[u]}(E(u)) = D_{W[u]}(u^e)$, d'où l'égalité en passant aux complétés p-adiques. Par contre, l'idéal Fil¹(S) dépend bien sûr de E(u).
- **3.3.** On munit S d'un opérateur de Frobenius prolongeant σ sur W en posant $\sigma(u) = u^p$. Comme $\sigma(E(u)) \equiv E(u)^p \mod pW[u]$ d'où $\sigma(E(u)) \in pD_{W[u]}(E(u))$, on a encore $\sigma(E(u)^{[n]}) \in pD_{W[u]}(E(u))$

 $pD_{W[u]}(E(u))$ pour tout $n \in \mathbb{N}_{>0}$, et donc $\sigma(\operatorname{Fil}^1(S)) \subseteq pS$ en passant aux complétés p-adiques. On pose

$$\sigma_1 \colon \operatorname{Fil}^1(S) \longrightarrow S$$

$$x \longmapsto \sigma(x)/p$$

Définition 3.4. On note $\mathbf{MF}_S^{\mathbf{BT}}(\varphi)$ la catégorie dont les objets sont les S-modules libres de rang fini M munis d'un sous-S-module $\mathrm{Fil}^1(M)$ et d'une application σ -linéaire $\varphi_1 \colon \mathrm{Fil}^1(M) \to M$ tels que

- (a) $\operatorname{Fil}^1(S).M \subseteq \operatorname{Fil}^1(M)$ et $M/\operatorname{Fil}^1(M)$ est un \mathcal{O}_K -module libre;
- (b) l'application linéarisée $\sigma^* \operatorname{Fil}^1(M) \xrightarrow{1 \otimes \varphi_1} M$ est surjective (les morphismes étant les applications S-linéaires respectant toutes les structures).

Remarque 3.5. (1) Si $M \in \mathbf{MF}_S^{\mathbf{BT}}(\varphi)$, on peut le munir de l'opérateur de Frobenius φ défini par

$$\varphi(m) = \sigma_1(E(u))^{-1}\varphi_1(E(u)m)$$

pour tout $m \in M$. Cette formule a bien un sens, car $\sigma_1(E(u)) \in S^{\times}$. En effet, écrivons

$$E(u) = p\lambda_e + \dots + p\lambda_1 u^{e-1} + u^e$$

avec $\lambda_1, \ldots, \lambda_{e-1} \in W$ et $\lambda_e \in W^{\times}$. On a alors

$$\sigma_1(E(u)) = \sigma(\lambda_e) + \sigma(\lambda_{e-1})u^p + \dots + \sigma(\lambda_1)u^{(e-1)p} + (p-1)!(u^e)^{[p]} \in W^{\times} + \mathfrak{m} \subseteq S^{\times}$$

(cf. remarque 3.2). En outre, pour $m \in \operatorname{Fil}^1(M)$, on a

$$\varphi(m) = \sigma_1(E(u))^{-1}\varphi_1(E(u)m) = \sigma_1(E(u))^{-1}\sigma(E(u))\varphi_1(m) = p\varphi_1(m).$$

(2) En général, le linéarisé $\sigma^* \operatorname{Fil}^1(M) \xrightarrow{1 \otimes \varphi_1} M$ n'est pas injectif, comme le montre déjà le cas $(S, \operatorname{Fil}^1(S), \sigma_1)$: on a $z = 1 \otimes E(u)^{[p]} - \sigma_1(E(u)) \otimes E(u)^{[p-1]} \mapsto 0 \in S$, mais $z \neq 0$.

3.6. Lemmes techniques.

3.7. Soit $f: A \to A_0$ une surjection de \mathbb{Z}_p -algèbres locales séparées et complètes pour la topologie p-adique, de corps résiduel k. On suppose A sans p-torsion, munie d'un endomorphisme σ relevant le Frobenius de A/pA et que $\mathrm{Fil}^1(A) := \mathrm{Ker}(f)$ est muni de puissances divisées.

Si $a \in \operatorname{Fil}^1(A)$, on a $\sigma(a) \equiv a^p \mod pA$, mais comme $a^p = p! \gamma_p(a)$ pour $a \in \operatorname{Fil}^1(A)$, on a $\sigma(a) \in pA$ pour tout $a \in \operatorname{Fil}^1(A)$: on pose $\sigma_1 = \sigma/p$: $\operatorname{Fil}^1(A) \to A$. On suppose en outre que l'application $\sigma^* \operatorname{Fil}^1(A) \xrightarrow{1 \otimes \sigma_1} A$ est surjective (ce qui signifie que $\sigma_1(\operatorname{Fil}^1(A))A = A$).

Lemme 3.8. (cf [21, Lemma A.2]) Pour $G \in \mathbf{BT}(A_0)$, on note $\mathrm{Fil}^1(\mathbf{D}(G)(A)) \subseteq \mathbf{D}(G)(A)$ la préimage de (Lie(G)) $^{\vee} \subseteq \mathbf{D}(G)(A_0)$. Alors :

- (1) la restriction de φ : $\mathbf{D}(G)(A) \to \mathbf{D}(G)(A)$ à $\mathrm{Fil}^1(\mathbf{D}(G)(A))$ est divisible par p (on pose alors $\varphi_1 = \varphi/p$: $\mathrm{Fil}^1(\mathbf{D}(G)(A)) \to \mathbf{D}(G)(A)$);
- (2) l'application $\sigma^* \operatorname{Fil}^1(\mathbf{D}(G)(A)) \xrightarrow{1 \otimes \varphi_1} \mathbf{D}(G)(A)$ est surjective.

Démonstration. Posons $M = \mathbf{D}(G)(A)$, et soit $\widetilde{G} \in \mathbf{BT}(A)$ un relèvement de G à A.

- (1) On a $\operatorname{Fil}^1(M) = \left(\operatorname{Lie}\left(\widetilde{G}\right)\right)^{\vee} + \operatorname{Fil}^1(A)M$: comme $\sigma(\operatorname{Fil}^1(A)) \subseteq pA$ il suffit de voir que $\varphi\left(\left(\operatorname{Lie}\left(\widetilde{G}\right)\right)^{\vee}\right) \subseteq pM$, ce qui résulte du fait que φ induit l'application nulle sur $\left(\operatorname{Lie}\left(\widetilde{G} \otimes_A (A/pA)\right)\right)^{\vee}$.
- (2) Il s'agit que montrer que $\varphi_1(\operatorname{Fil}^1(M))$ engendre M. Comme $\sigma_1(\operatorname{Fil}^1(A))A = A$, on a $\varphi(M) = \sigma_1(\operatorname{Fil}^1(A))A\varphi(M) \subseteq \varphi_1(\operatorname{Fil}^1(M))A$: il suffit de montrer que $\varphi_1(\operatorname{Fil}^1(M)) + \varphi(M)$ i.e. $(\varphi/p)(\operatorname{Fil}^1(M) + pM)$ engendre M.

Cas où A = W = W(k). Dans ce cas, M est le module de Dieudonné de \widetilde{G} sur W (cf [23, II $\S15$]): on dispose du Frobenius $F = \varphi$ et du Verschiebung V. On a alors $\mathrm{Fil}^1(M) = V(F/p)(\mathrm{Fil}^1(M)) \subseteq V(M)$ d'où $\left(\mathrm{Lie}\left(\widetilde{G} \otimes_W k\right)\right)^\vee \subseteq V\left(\mathbf{D}\left(\widetilde{G} \otimes_W k\right)(k)\right)$. Mais ces deux

espaces s'identifient à $\mathbf{D}\left(\widetilde{G} \otimes_W k\right)(k)/F\left(\mathbf{D}\left(\widetilde{G} \otimes_W k\right)(k)\right)$: ils ont même dimension et sont donc égaux. Il en résulte que $\mathrm{Fil}^1(M) + pM = V(M)$: comme $(F/p)V = \mathrm{Id}_M$, on a fini.

<u>Cas général.</u> La projection $A \to k$ se relève en un homomorphisme $A \to W(k)$ compatible aux Frobenius. En effet, il existe un unique homomorphisme $s_{\sigma} \colon A \to W(A)$ qui est compatible aux Frobenius et telle que $\Phi_0 \circ s_{\sigma} = \operatorname{Id}_A$. Il suffit de composer s_{σ} avec le morphisme $W(A) \to W(k)$ obtenu par fonctorialité.

Si $H = \widetilde{G} \otimes_A W$, alors $\mathbf{D}(H)(W) = M \otimes_A W$ (le foncteur de Dieudonné commute aux changements de base) et donc $(\varphi/p)(\mathrm{Fil}^1(M) + pM) \otimes_A W$ engendre $M \otimes_A W$ d'après le cas traité précédemment. Comme M est fini sur A, on peut appliquer le lemme de Nakayama.

Remarque 3.9. (D'après [4, §1, Exercice 14]) Notons F_A le morphisme de Frobenius de W(A) et Φ_n le n-ème polynôme de Witt. Il existe un unique homomorphisme $s_{\sigma} \colon A \to W(A)$ tel que $\Phi_0 \circ s_{\sigma} = \operatorname{Id}_A$ et $F_A \circ s_{\sigma} = s_{\sigma} \circ \sigma$.

On dispose de l'application composantes fantômes Φ_A : W(A) $\to A^{\mathbf{N}}$, où $\Phi_A = (\Phi_n)_{n \in \mathbf{N}}$ sont les polynômes de Witt. C'est un morphisme d'anneaux. D'après [4, §1, Proposition 2.2], il est injectif (car A n'a pas de p-torsion) d'image le sous-anneau

$$A' = \{(a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} / (\forall n \in \mathbb{N}) \, \sigma(a_n) \equiv a_{n+1} \mod p^{n+1} A\}$$

(car A est muni d'un endomorphisme σ tel que $\sigma(a) \equiv a^p \mod pA$). Notons encore Φ_A l'isomorphisme induit $W(A) \xrightarrow{\sim} A'$. Si $s_{\sigma} \colon A \to W(A)$, posons $s'_{\sigma} = \Phi_A \circ s_{\sigma} \colon A \to A^{\mathbf{N}}$.

$$A \xrightarrow{s_{\sigma}} W(A)$$

$$\downarrow^{\Phi_{A}}$$

$$A^{\mathbf{N}}$$

On a $\Phi_0 \circ s_\sigma = s'_\sigma \circ \operatorname{pr}_0$ (où $\operatorname{pr}_0 \colon A^\mathbf{N} \to A$ est la projection sur la composante d'indice 0). En outre, on a $F_A \circ s_\sigma = s_\sigma \circ \sigma \Leftrightarrow \Phi_a \circ F_A \circ s_\sigma = \Phi_a \circ s_\sigma \circ \sigma$ (car Φ_A est injective). Comme $\Phi_a \circ F_A = f_A \circ \Phi_A$ (où $f_A(a_0, a_1, \ldots) = (a_1, a_2, \ldots)$), on a $F_A \circ s_\sigma = s_\sigma \circ \sigma \Leftrightarrow f_A \circ s'_\sigma = s'_\sigma \circ \sigma$. Mais il existe un unique homomorphisme s'_σ tel que $s'_\sigma \circ \operatorname{pr}_0 = \operatorname{Id}_A$ et $f_A \circ s'_\sigma = s'_\sigma \circ \sigma$: il est défini par $s'_\sigma(a) = (a, \sigma(a), \sigma^2(a), \ldots)$. Cela implique l'existence et l'unicité de s_σ .

- **3.10.** Dans ce qui suit, un anneau spécial désigne une \mathbb{Z}_p -algèbre locale A séparée et complète pour la topologie p-adique, sans p-torsion, de corps résiduel k et munie d'un endomorphisme σ qui relève le Frobenius sur A/pA. On définit alors la catégorie \mathscr{C}_A de la façon suivante. Les objets sont les triplets $(M, \operatorname{Fil}^1(M), \varphi)$ où
 - (1) M est un A-module libre de rang fini;
 - (2) $\operatorname{Fil}^1(M)$ est un sous-A-module de M;
 - (3) $\varphi \colon M \to M$ est une application σ -linéaire telle que $\varphi(\operatorname{Fil}^1(M)) \subseteq pM$ et telle que l'application $\sigma^* \operatorname{Fil}^1(M) \xrightarrow{1 \otimes (\varphi/p)} M$ est surjective.

Les morphismes $(M, \operatorname{Fil}^1(M), \varphi) \to (M', \operatorname{Fil}^1(M'), \varphi')$ sont les applications A-linéaires $f \colon M \to M'$ telles que $f(\operatorname{Fil}^1(M)) \subseteq \operatorname{Fil}^1(M')$ et $f \circ \varphi = \varphi' \circ f$. Comme d'habitude, on désignera par abus les objets de \mathcal{C}_A par le A-module sous-jacent.

Étant donné un morphisme d'anneaux spéciaux $A \to B$ (c'est-à-dire \mathbb{Z}_p -linéaire et compatible aux Frobenius), on a un foncteur $\mathscr{C}_A \to \mathscr{C}_B$ obtenu en associant à $M \in \mathscr{C}_A$ le module $M \otimes_A B$ muni du sous-B-module $\mathrm{Fil}^1((M \otimes_A B)$ image de $\mathrm{Fil}^1(M) \otimes_A B$ et de $\varphi_M \otimes \sigma_B$.

Lemme 3.11. Soint A un anneau spécial et $M \in \mathscr{C}_A$. Alors l'application A-linéaire $1 \otimes \varphi \colon \sigma^*M \to M$ est injective.

Démonstration. L'application $1 \otimes (\varphi/p) : \sigma^* M_1 \to M$ est surjective par hypothèse : il en est de même de $1 \otimes \varphi : \sigma^* M_1[p^{-1}] \to M[p^{-1}]$ et donc a fortiori de $1 \otimes \varphi : \sigma^* M[p^{-1}] \to M[p^{-1}]$. Mais $\sigma^* M[p^{-1}]$ et $M[p^{-1}]$ sont des $A[p^{-1}]$ -modules libres de même rang. L'application $1 \otimes \varphi : \sigma^* M[p^{-1}] \to M[p^{-1}]$ est décrite dans des bases par une matrice inversible : elle est injective. Mais comme A est sans p-torsion et M libre sur A, on a $\sigma^* M \subseteq \sigma^* M[p^{-1}]$, ce qui permet de conclure. \square

Soit $A \to B$ un morphisme surjectif d'anneaux spéciaux. Notons J son noyau et supposons que pour tout $n \in \mathbb{N}_{>0}$, on a $\sigma^n(J) \subseteq p^{n+j_n}J$ où $(j_n)_{n \in \mathbb{N}_{>0}}$ est une suite d'entiers telle que $\lim_{n \to \infty} j_n = \infty$.

Remarque 3.12. C'est en particulier le cas lorsque J est topologiquement engendré par une famille d'éléments x_1, \ldots, x_r et leurs puissances divisées et que $\sigma(x_i) = x_i^p$ pour tout $i \in \{1, \ldots, r\}$ (on peut alors prendre $j_n = v_p(p^n!) - n = \frac{p^{n-1}-1}{p-1} - n$.

Lemme 3.13. Soient $M, M' \in \mathscr{C}_A$ et $\theta_B \colon M \otimes_A B \to M' \otimes_A B$ un isomorphisme dans \mathscr{C}_B . Alors il existe un unique isomorphisme $\theta_A \colon M \to M'$ qui relève θ_B et tel que $\theta_A \circ \varphi = \varphi' \circ \theta_A$.

Démonstration. Soit $\theta_0 \colon M \to M'$ une application A-linéaire quelconque qui relève θ_B . On construit θ_A à partir de θ_0 par approximations successives. Comme $\sigma(J) \subseteq pA$, on peut supposer (quitte à remplacer $\mathrm{Fil}^1(M)$ par $\mathrm{Fil}^1(M) + JM$ et $\mathrm{Fil}^1(M')$ par $\mathrm{Fil}^1(M') + JM'$, ce qui n'affecte pas l'énoncé) que $JM \subseteq \mathrm{Fil}^1(M)$ et $JM' \subseteq \mathrm{Fil}^1(M')$. On a alors $\theta_0(\mathrm{Fil}^1(M)) \subseteq \mathrm{Fil}^1(M')$ (car $\theta_0(\mathrm{Fil}^1(M)) \subseteq \mathrm{Fil}^1(M') + JM'$ vu que modulo J on a $\theta_B(\mathrm{Fil}^1(M) \otimes_A B) \subseteq \mathrm{Fil}^1(M') \otimes_A B$).

Montrons qu'étant donnée une application A-linéaire $\theta \colon M \to M'$ qui relève θ_B et telle que $\theta(\operatorname{Fil}^1(M)) \subseteq \operatorname{Fil}^1(M')$, alors il existe une application A-linéaire $\widetilde{\theta} \colon M \to M'$ faisant commuter le diagramme suivant :

$$\sigma^* \operatorname{Fil}^1(M) \xrightarrow{\sigma^*(\theta_{|\operatorname{Fil}^1(M)})} \sigma^* \operatorname{Fil}^1(M')$$

$$1 \otimes (\varphi/p) \downarrow \qquad \qquad \downarrow 1 \otimes (\varphi'/p)$$

$$M \xrightarrow{\widetilde{\theta}} M'$$

Comme $1 \otimes (\varphi/p) \colon \sigma^* \operatorname{Fil}^1(M) \to M$ est surjective, il s'agit de montrer que

$$\operatorname{Ker}(1 \otimes (\varphi/p) \colon \sigma^* \operatorname{Fil}^1(M) \to M) \subseteq \operatorname{Ker}((1 \otimes (\varphi'/p)) \circ \sigma^*(\theta_{0|\operatorname{Fil}^1(M)})).$$

Soit $x \in \sigma^* \operatorname{Fil}^1(M)$ avec $(1 \otimes (\varphi/p))(x) = 0$. Notons $i : \operatorname{Fil}^1(M) \hookrightarrow M$ (resp. $i' : \operatorname{Fil}^1(M') \hookrightarrow M'$) l'inclusion. On a $(1 \otimes \varphi) \circ (\sigma^*i)(x) = (1 \otimes (\varphi/p))(px) = 0 :$ d'après le lemme 3.11, on a donc $(\sigma^*i)(x) = 0$ dans σ^*M . On a donc $(1 \otimes \varphi') \circ (\sigma^*\theta) \circ (\sigma^*i)(x) = (1 \otimes \varphi') \circ (\sigma^*\theta_{|M_1})(x) = 0$ i.e. $px \in \operatorname{Ker} \left((1 \otimes (\varphi'/p)) \circ \sigma^*(\theta_{0|M_1}) \right)$. Comme M' est sans p-torsion, on a fini.

L'application $\widetilde{\theta}$ relève elle aussi θ_B (cela résulte de la surjectivité de $1 \otimes (\varphi/p) \colon M_1 \otimes_A B \to M \otimes_A B$ en réduisant l'égalité $\widetilde{\theta} \circ (1 \otimes (\varphi/p)) = (1 \otimes (\varphi'/p)) \circ (\sigma^* \theta_{|M_1})$ modulo J). Comme $JM \subseteq \operatorname{Fil}^1(M)$ et $JM' \subseteq \operatorname{Fil}^1(M')$, on a en outre $\widetilde{\theta}(\operatorname{Fil}^1(M)) \subseteq \operatorname{Fil}^1(M')$.

Grâce à ce qui précède, on fabrique de proche en proche une suite $(\theta_n)_{n\in\mathbb{N}}$ de relèvements de θ_B à partir de θ_0 en posant $\theta_{n+1}=\widetilde{\theta}_n$ pour tout $n\in\mathbb{N}$. Par construction, cette suite vérifie $\theta_{n+1}\circ(\varphi/p)=(\varphi'/p)\circ\theta_n$ et donc $(\theta_{n+1}-\theta_n)\circ(\varphi/p)^n=(\varphi'/p)^n\circ(\theta_1-\theta_0)$ sur $\mathrm{Fil}^1(M)$ pour tout $n\in\mathbb{N}$. Comme $(\varphi/p)(\mathrm{Fil}^1(M))$ engendre M et $\mathrm{Im}(\theta_1-\theta_0)\subseteq JM'$ (vu que θ_0 et θ_1 relèvent θ_B), on a $(\theta_{n+1}-\theta_n)(M)\subseteq (\sigma/p)^n(J)M'\subseteq p^{j_n}M'$. La suite $(\theta_n)_{n\in\mathbb{N}}$ est donc convergente, vers une application $\theta_A\colon M\to M'$ qui relève θ_B et telle que $\theta_A\circ(\varphi/p)=(\varphi'/p)\circ\theta_A$ sur $\mathrm{Fil}^1(M)$. On a alors

$$\theta_A \circ \varphi \circ (\varphi/p) = \theta_A \circ (\varphi/p) \circ \varphi = (\varphi'/p) \circ \theta_A \circ \varphi = \varphi' \circ \theta_A \circ (\varphi/p)$$

sur $\operatorname{Fil}^1(M)$ et donc $\theta_A \circ \varphi = \varphi' \circ \theta_A$ sur M vu que $(\varphi/p)(\operatorname{Fil}^1(M))$ engendre M.

Si $\theta'_A: M \to M'$ est un autre relèvement de θ_B tel que $\theta'_A \circ \varphi = \varphi' \circ \theta'_A$, on a $(\theta_A - \theta'_A) \circ (\varphi/p)^n = (\varphi'/p)^n \circ (\theta_A - \theta'_A)$ sur $\mathrm{Fil}^1(M)$ et donc $(\theta_A - \theta'_A)(M) \subseteq (\sigma/p)^n(J)M' \subseteq p^{j_n}M'$ pour tout $n \in \mathbf{N}$: on a $\theta'_A = \theta_A$.

3.14. Construction d'un foncteur de Dieudonné.

Comme $S/\operatorname{Fil}^1(S) \xrightarrow{\sim} \mathcal{O}_K$ et comme $p^n S + \operatorname{Fil}^1(S)$ est un idéal à puissances divisées de S, pour tout $n \in \mathbb{N}_{>0}$, on dispose de l'épaississement à puissances divisées $S \to \mathcal{O}_K/p^n \mathcal{O}_K$.

Soit $G \in \mathbf{BT}(\mathcal{O}_K)$. Il correspond (cf [9, Lemma 2.4.4]) à un groupe de Barsotti-Tate sur $\mathrm{Spf}(\mathcal{O}_K)$, *i.e.* à un système $(G_n)_{n>0}$, où G_n est un groupe de Barsotti-Tate sur $\mathcal{O}_K/\varpi^n\mathcal{O}_K$ et $G_{n+1|\mathcal{O}_K/\varpi^n\mathcal{O}_K} \simeq G_n$ pour tout $n \in \mathbf{N}_{>0}$. On peut alors évaluer le cristal de Dieudonné $\mathbf{D}(G_n)$ en l'épaississement $S \to \mathcal{O}_K/\varpi^n\mathcal{O}_K$, et on pose

$$\mathbf{M}(G) = \mathbf{D}(G)(S \to \mathcal{O}_K) := \varprojlim_{n>0} \mathbf{D}(G_n)(S \to \mathcal{O}_K/\varpi^n \mathcal{O}_K).$$

Proposition 3.15. Cela définit un foncteur contravariant

$$\mathbf{M} \colon \mathbf{BT}(\mathcal{O}_K) \longrightarrow \mathbf{MF}_S^{\mathbf{BT}}(\varphi).$$

Démonstration. Cela définit déjà un foncteur contravariant de la catégorie $\mathbf{BT}(\mathcal{O}_K)$ dans la catégorie des S-modules M libres de rang fini (S est local) munis d'un opérateur de Frobenius σ -linéaire $\varphi \colon M \to M$.

Il s'agit de voir que le foncteur \mathbf{M} est à valeurs dans $\mathbf{MF}_S^{\mathbf{BT}}(\varphi)$. Le seul point délicat est le fait qu'il est muni d'un sous-S-module $\mathrm{Fil}^1\mathbf{M}(G)$ tel que $\mathrm{Fil}^1(S)$. $\mathbf{M}(G) \subseteq \mathrm{Fil}^1\mathbf{M}(G)$ et tel que l'opérateur φ est divisible par p sur $\mathrm{Fil}^1\mathbf{M}(G)$ induisant $\varphi_1 := \varphi/p$: $\mathrm{Fil}^1\mathbf{M}(G) \to \mathbf{M}(G)$ dont le linéarisé est surjectif. Mais cela résulte du lemme 3.8 appliqué à $S \to \mathcal{O}_K/\varpi^n\mathcal{O}_K$ pour $n \in \mathbf{N}_{>0}$ en passant à la limite.

Exemples : on a $\mathbf{M}(\mathbf{Q}_p / \mathbf{Z}_p) = (S, \mathrm{Fil}^1(S), \sigma_1)$ et par dualité $\mathbf{M}(\mathbf{G}_{\mathrm{m}}(\infty)) = (S, S, \sigma)$.

Remarque 3.16. Comme le foncteur de Dieudonné commute aux changements de base (cf. [2]), pour tout $n \in \mathbb{N}_{>0}$, on a

$$\mathbf{D}(G \otimes_{\mathcal{O}_K} k)(W) = \mathbf{D}(G_n)(S \to \mathcal{O}_K/\varpi^n \mathcal{O}_K) \otimes_S W$$

et donc

$$\mathbf{D}(G \otimes_{\mathcal{O}_K} k)(W) = \mathbf{M}(G) \otimes_S W = \mathbf{M}(G)/I_u \mathbf{M}(G)$$

en passant à la limite, où I_u est l'adhérence, pour la topologie p-adique, de l'idéal engendré par u et les puissances divisées de u^e .

Théorème 3.17. (Kisin [21, Proposition A.6]) Si p > 2, le foncteur \mathbf{M} est une anti-équivalence. Si p = 2, le foncteur \mathbf{M} induit une équivalence entre les catégories à isogénie près.

Démonstration. On construit un foncteur **G**, quasi-inverse si $p \neq 2$, quasi-inverse à isogénie près si p = 2. Soit $(M, \operatorname{Fil}^1(M), \varphi) \in \mathbf{MF}_S^{\mathbf{BT}}(\varphi)$.

Construction de
$$G$$
 modulo p

Pour $i \in \{1, ..., e\}$, posons $R_i = W[u]/(u^i)$. On munit l'anneau R_i de l'endomorphisme de Frobenius défini par $\sigma(u) = u^p$. Posons

$$f_i \colon R_i \to \mathcal{O}_K / \varpi^i \mathcal{O}_K$$

 $u \mapsto \varpi$

c'est un homomorphisme surjectif de W-algèbres et $\operatorname{Ker}(f_i) = pR_i$, de sorte que f_i est un épaississement à puissances divisées de $\mathcal{O}_K/\varpi^i\mathcal{O}_K$. Par ailleurs, on a un morphisme (compatible aux Frobenius)

$$S \to R_i$$

$$u \mapsto u$$

$$(u^e)^{[j]} \mapsto 0 \quad \text{si } j > 0$$

On pose $M_i = R_i \otimes_S M$, que l'on munit de la filtration image $R_i \otimes_S \operatorname{Fil}^1(M)$ et de l'endomorphisme de Frobenius induit par $\sigma \otimes \varphi$. L'application S-linéaire surjective $1 \otimes \varphi_1 : \sigma^* \operatorname{Fil}^1(M) \to M$ induit un application R_i -linéaire surjective $1 \otimes \varphi_1 : \sigma^* \operatorname{Fil}^1(M_i) \to M_i$. Cela fait de M_i un objet de la catégorie \mathscr{C}_{R_i} .

Supposons i=1. on a $R_1=W$: notons F l'application $\varphi\colon M_1\to M_1$. Munissons M_1 d'une structure de cristal de Dieudonné sur $\operatorname{Spec}(k)$: il s'agit de construire le morphisme de Verschiebung. Commençons par remarquer que M étant libre de rang fini sur S, il est de même de M_1 sur W. Par ailleurs, $\operatorname{Fil}^1(M_1)$ étant un sous-W-module de M_1 , il est lui aussi libre de rang $\leq \operatorname{rg}_W(M_1)$. Mais comme l'homomorphisme $1\otimes \varphi_1\colon \sigma^*\operatorname{Fil}^1(M_1)\to M_1$ est surjectif, on a en fait $\operatorname{rg}_W(\operatorname{Fil}^1(M_1))=\operatorname{rg}_W(M_1)$ et comme $1\otimes \varphi_1\colon \sigma^*\operatorname{Fil}^1(M_1)\to M_1$ est un isomorphisme. L'homomorphisme linéarisé du morphisme de Verschiebung V est alors défini comme le composé

$$M_1 \xrightarrow{(1 \otimes \varphi_1)^{-1}} \sigma^* \operatorname{Fil}^1(M_1) \subseteq \sigma^* M_1.$$

Comme le foncteur de Dieudonné est une équivalence entre $\mathbf{BT}(k)$ et la catégorie des modules de Dieudonné sur $\mathrm{Spec}(k)$, on dispose de $G_1 \in \mathbf{BT}(k)$ fonctoriellement associé à M_1 . En particulier, on a un isomorphisme de φ -modules $\mathbf{D}(G_1)(W) \xrightarrow{\sim} M_1$, et via cet isomorphisme, $V \mathbf{D}(G_1)$ s'identifie à Fil¹ (M_1) (cf preuve du lemme 3.8).

Supposons i > 1. Supposons en outre qu'on dispose de $G_{i-1} \in \mathbf{BT}(\mathcal{O}_K/\varpi^{i-1}\mathcal{O}_K)$ et d'un isomorphisme de R_{i-1} -modules filtrés avec Frobenius $\theta_{i-1} \colon \mathbf{D}(G_{i-1})(R_{i-1}) \overset{\sim}{\to} M_{i-1}$. Le noyau $\mathrm{Ker}\left(R_i \to \mathcal{O}_K/\varpi^{i-1}\mathcal{O}_K\right) = (p,u^{i-1})$ est muni de puissances divisées : on peut évaluer le cristal $\mathbf{D}(G_{i-1})$ en R_i . Notons $\mathrm{Fil}^1\left(\mathbf{D}(G_{i-1})(R_i)\right)$ la préimage de

$$\left(\operatorname{Lie}(G_{i-1})\right)^{\vee} \subseteq \mathbf{D}(G_{i-1})(\mathcal{O}_K/\varpi^{i-1}\mathcal{O}_K)$$

dans le R_i -module $\mathbf{D}(G_{i-1})(R_i)$. D'après le lemme 3.8 (avec $A \to A_0 = R_i \to \mathcal{O}_K/\varpi^{i-1}\mathcal{O}_K$), cela fait de $\mathbf{D}(G_{i-1})(R_i)$ un objet de \mathscr{C}_{R_i} . Par hypothèse, on dispose de l'isomorphisme

$$\theta_{i-1}$$
: $\mathbf{D}(G_{i-1})(R_{i-1}) \stackrel{\sim}{\to} M_{i-1} = M_i \otimes_{R_i} R_{i-1}$

dans la catégorie $\mathscr{C}_{R_{i-1}}$. D'après le lemme 3.13 (avec $A \to B = R_i \to R_{i-1}$), il se relève de façon unique en un isomorphisme θ'_i : $\mathbf{D}(G_{i-1})(R_i) \overset{\sim}{\to} M_i$ compatible avec les Frobenius.

Mais d'après le théorème 1.21, il existe un unique $G_i \in \mathbf{BT}(\mathcal{O}_K/\varpi^i\mathcal{O}_K)$, fonctoriel en G_{i-1} et en M tel que

- (1) G_i relève G_{i-1} ;
- (2) $\left(\operatorname{Lie}(G_i)\right)^{\vee} \subseteq \mathbf{D}(G_{i-1})(\mathcal{O}_K/\varpi^i\mathcal{O}_K)$ est égal à l'image du composé

$$\operatorname{Fil}^{1}(M_{i}) \subseteq M_{i} \xrightarrow{\theta_{i}^{'-1}} \mathbf{D}(G_{i-1})(R_{i}) \to \mathbf{D}(G_{i-1})(\mathcal{O}_{K}/\varpi^{i}\mathcal{O}_{K}).$$

Comme le foncteur ${\bf D}$ commute aux changements de base, on a un isomorphisme

$$\theta_i \colon \mathbf{D}(G_i)(R_i) \simeq \mathbf{D}(G_{i-1})(R_i) \xrightarrow{\theta_i'} M_i$$

compatible aux Frobenius. Il est aussi compatible aux filtrations, car $\operatorname{Fil}^1\left(\mathbf{D}(G_i)(R_i)\right)$ est la préimage de $\left(\operatorname{Lie}(G_i)\right)^{\vee}\subseteq\mathbf{D}(G_{i-1})(\mathcal{O}_K/\varpi^i\mathcal{O}_K)$, et c'est l'image de $\operatorname{Fil}^1(M_i)$.

Passage de
$$\mathcal{O}_K/p\mathcal{O}_K$$
 à \mathcal{O}_K

Le noyau du morphisme $S \to \mathcal{O}_K/p\mathcal{O}_K$ est $pS + \mathrm{Fil}^1(S)$: il est muni de puissances divisées. On peut donc évaluer le cristal $\mathbf{D}(G_e)$ et S. D'après le lemme 3.8, il est naturellement muni d'une filtration qui en fait un objet de \mathscr{C}_S . De même, M est un objet de la catégorie \mathscr{C}_S par hypothèse. En outre, on dispose de l'isomorphisme θ_e : $\mathbf{D}(G_e)(R_e) \overset{\sim}{\to} M_e = M \otimes_S R_e$ dans \mathscr{C}_{R_e} . En appliquant le lemme 3.13 (ce qui est licite vu que le noyau du morphisme surjectif $S \to R_e$ est l'adhérence de l'idéal à puissances divisées engendré par u^e), l'isomorphisme θ_e se relève de façon unique en un isomorphisme θ : $\mathbf{D}(G_e)(S) \overset{\sim}{\to} M$ compatible aux Frobenius.

Premier cas : p > 2. Pour tout $n \in \mathbb{N}_{>1}$, le noyau de $\mathcal{O}_K/p^n\mathcal{O}_K \to \mathcal{O}_K/p\mathcal{O}_K$ est à puissances divisée nilpotentes. En appliquant le théorème 1.21, le groupe p-divisible $G_e \in \mathbf{BT}(\mathcal{O}_K/p\mathcal{O}_K)$ se

relève de façon unique (et fonctorielle en M) en $G_{ne} \in \mathbf{BT}(\mathcal{O}_K/p^n\mathcal{O}_K)$ de sorte que $\left(\mathrm{Lie}(G_{ne})\right)^{\vee} \subseteq \mathbf{D}(G_e)(\mathcal{O}_K/p^n\mathcal{O}_K)$ coïncide avec l'image du composé

$$\operatorname{Fil}^{1}(M) \subseteq M \xrightarrow{\theta^{-1}} \mathbf{D}(G_{e})(S) \to \mathbf{D}(G_{e})(\mathcal{O}_{K}/p^{n}\mathcal{O}_{K}).$$

Mais la donnée d'une telle suite compatible de groupes p-divisibles $(G_{ne})_{n \in \mathbb{N}_{>0}}$ équivaut à celle d'un groupe p-divisible $G = \mathbf{G}(M) \in \mathbf{BT}(\mathcal{O}_K)$ (cf [9, Lemma 2.4.4]). D'après ce qui précède,

$$G: \mathbf{MF}_S^{\mathbf{BT}}(\varphi) \to \mathbf{BT}(\mathcal{O}_K)$$

est un foncteur. Par construction, on a $\mathbf{M}(\mathbf{G}(M)) \xrightarrow{\sim} M$. Par ailleurs, à chaque étape de la construction, on a unicité pour le relèvement, de sorte que $G \xrightarrow{\sim} \mathbf{G}(\mathbf{M}(G))$ modulo ϖ^n pour tout $n \in \mathbf{N}_{>0}$ et donc $G \xrightarrow{\sim} \mathbf{G}(\mathbf{M}(G))$.

Deuxième cas : p = 2.

Comme les puissances divisées sur le noyau de $\mathcal{O}_K \to \mathcal{O}_K/p\mathcal{O}_K$ ne sont pas topologiquement nilpotentes, les choses se compliquent un peu. On munit $\operatorname{Ker}\left(\mathcal{O}_K/p^2\mathcal{O}_K \to \mathcal{O}_K/p\mathcal{O}_K\right)$ de la structure de puissances divisées donnée par $p^{[j]} = 0$ si $j \geq 2$. Celles-ci sont nilpotentes, le groupe G_e se relève de façon unique (et fonctorielle en M) en $G'_{2e} \in \mathbf{BT}(\mathcal{O}_K/p^2\mathcal{O}_K)$ tel que $\left(\operatorname{Lie}(G_{2e})\right)^{\vee} \subseteq \mathbf{D}(G_e)(\mathcal{O}_K/p^2\mathcal{O}_K)$ est égal à l'image du composé

$$\operatorname{Fil}^1(M) \subseteq M \xrightarrow{\theta^{-1}} \mathbf{D}(G_e)(S) \to \mathbf{D}(G_e)(\mathcal{O}_K/p^2\mathcal{O}_K).$$

Par la suite, exactement comme dans le cas p > 2, le groupe p-divisible G'_{2e} se relève de façon unique (et fonctorielle en M) en $G = \mathbf{G}(M) \in \mathbf{BT}(\mathcal{O}_K)$ tel que $\left(\operatorname{Lie}(G)\right)^{\vee}$ est égal à l'image de $\operatorname{Fil}^1(M) \subseteq M \xrightarrow{\theta^{-1}} \mathbf{D}(G_e)(S) \to \mathbf{D}(G'_{2e})(\mathcal{O}_K)$, et par construction, on a $\mathbf{M}(\mathbf{G}(M)) \xrightarrow{\sim} M$. Par contre, il n'y a pas de raison que pour $G \in \mathbf{BT}(\mathcal{O}_K)$, on ait $\mathbf{G}(\mathbf{M}(G)) \xrightarrow{\sim} G$, parce que les puissances divisées qu'on a considéré sur $\operatorname{Ker}\left(\mathcal{O}_K/p^2\mathcal{O}_K \to \mathcal{O}_K/p\mathcal{O}_K\right)$ ne sont pas compatibles aux puissances divisées canoniques. En fait, les groupes p-divisibles $G_{2e} := G \otimes_{\mathcal{O}_K} (\mathcal{O}_K/p^2\mathcal{O}_K)$ et $G'_{2e} := \mathbf{G}(\mathbf{M}(G)) \otimes_{\mathcal{O}_K} (\mathcal{O}_K/p^2\mathcal{O}_K)$ ne sont par isomorphes en général. Mais ils le sont modulo p: d'après le lemme 2.3 (3) (avec $N = p^2$ et $\nu = 1$), il existe des applications uniques $G_{2e} \xrightarrow{u_{2e}} G'_{2e}$ et $G'_{2e} \xrightarrow{v_{2e}} G_{2e}$ qui relèvent la multiplication par p^2 . En appliquant de nouveau le théorème 1.21 (mais la pleine fidélité cette fois), ces applications se relèvent de façon unique en $G \xrightarrow{u} \mathbf{G}(\mathbf{M}(G))$ et $\mathbf{G}(\mathbf{M}(G)) \xrightarrow{v} G$. Par unicité, les composés $u \circ v$ et $v \circ u$ sont la multiplication par p^4 , et on a fini

4. Groupes de Barsotti-Tate et représentations p-adiques

4.1. Rappels sur les représentations cristallines.

Définition 4.2. Un φ -module filtré sur K est un K_0 -espace vectoriel de dimension finie D muni des structures supplémentaires suivantes :

- (1) un opérateur de Frobenius $\varphi_D \colon D \to D$ qui est σ -linéaire et dont le linéarisé $\sigma^*D \to D$ est un isomorphisme;
- (2) une filtration decroissante séparée exhaustive $\operatorname{Fil}^{\bullet} D_K$ sur $D_K := K \otimes_{K_0} D$. Les φ -modules filtrés sur K forment une catégorie additive \mathbf{Q}_p -linéaire qu'on dénote par $\mathbf{MF}_K(\varphi)$.

Remarque 4.3. Cette catégorie est équivalente à la catégorie des F-isocristaux sur k dont l'évaluation en un $(\mathcal{O}_K, p\mathcal{O}_K)$ est munie d'une filtration décroissante séparée exhaustive.

Définition 4.4. Soit $D \in \mathbf{MF}_K(\varphi)$. On dit que D est effectif si Fil⁰ $D_K = D_K$. On note $\mathbf{MF}_K^{\mathrm{eff}}(\varphi)$ la sous-catégorie pleine de $\mathbf{MF}_K(\varphi)$ constituée des φ -modules filtrés sur K relativement à K_0 qui sont effectifs.

On désigne par $\mathbf{MF}_K^{\mathbf{BT}} \varphi$ la sous-catégorie pleine de $\mathbf{MF}_K^{\mathrm{eff}} \varphi$ constituée des φ -modules D tels que $\mathrm{Fil}^2 D_K = 0$.

4.5. Si $D \in \mathbf{MF}_K(\varphi)$ est de dimension 1, on a $D = K_0x$ et il existe $\alpha \in K_0$ et $i \in \mathbf{Z}$ tels que $\varphi(x) = \alpha x$, $Fil^i D_K = D_K$ et $Fil^{i+1} D_K = 0$. On pose $t_N(D) = v(\alpha)$ (cela ne dépend pas

du choix de x) et $t_H(D) = i$. Si $D \in \mathbf{MF}_K(\varphi)$ est de dimension h, on a une structure de φ module filtré sur K sur le K_0 espace vectoriel $\det(D) = \bigwedge^h D$, et on pose $t_N(D) = t_N(\det(D))$ et $t_H(D) = t_H(\det(D))$. On définit ainsi des fonctions additives sur la catégorie $\mathbf{MF}_K(\varphi)$.

Définition 4.6. Soit $D \in \mathbf{MF}_K(\varphi)$. On dit que D est faiblement admissible si

- (1) $t_N(D) = t_H(D)$;
- (2) $t_N(D') \ge t_H(D')$ pour tout sous-objet D' de D dans $\mathbf{MF}_K(\varphi)$.

On note $\mathbf{MF}_K^{\mathrm{fa}} \varphi$ (resp. $\mathbf{MF}_K^{\mathrm{fa,eff}} \varphi$, resp. $\mathbf{MF}_K^{\mathrm{fa,BT}} \varphi$) la sous-catégorie pleine de $\mathbf{MF}_K(\varphi)$ (resp. $\mathbf{MF}_K^{\mathrm{eff}} \varphi$, resp. $\mathbf{MF}_K^{\mathrm{BT}} \varphi$) constituée des φ -modules filtrés sur K faiblement admissibles.

4.7. Rappelons la construction des anneaux A_{cris} et B_{cris} , et l'équivalence de catégories entre la catégorie des représentations cristallines de \mathcal{G}_K et celle des φ -modules filtrés sur K.

On note $\mathcal R$ la limite projective du système

$$\mathcal{O}_{\overline{K}}/p\mathcal{O}_{\overline{K}} \leftarrow \mathcal{O}_{\overline{K}}/p\mathcal{O}_{\overline{K}} \leftarrow \mathcal{O}_{\overline{K}}/p\mathcal{O}_{\overline{K}} \leftarrow \cdots$$

les morphismes de transition étant donnés par le Frobenius. On a une bijection (compatible à la multiplication)

$$\left\{x = \left(x^{(n)}\right)_{n \in \mathbf{N}} \in \mathcal{O}_C^{\mathbf{N}}, \ (\forall n \in \mathbf{N}) \ \left(x^{(n+1)}\right)^p = x^{(n)}\right\} \to \mathcal{R}$$

donnée par la réduction modulo p. Par exemple, la suite $\widetilde{\varpi} = (\varpi^{(n)})_{n \in \mathbb{N}}$ définit un élément de \mathcal{R} . L'anneau \mathcal{R} est une \mathbf{F}_p -algèbre parfaite, valuée par $v_{\mathcal{R}}(x) = v(x^{(0)})$ et munie d'une action de \mathcal{G}_K . On dispose d'un homomorphisme surjectif et \mathcal{G}_K -équivariant d'anneaux

$$\theta \colon W(\mathcal{R}) \to \mathcal{O}_C$$

$$(x_0, x_1, \ldots) \mapsto \sum_{n=0}^{\infty} p^n x_n^{(n)}.$$

admettant pour noyau l'idéal principal engendré par $\xi = [\widetilde{p}] - p$ où $\widetilde{p} \in \mathcal{R}$ est tel que $\widetilde{p}^{(0)} = p$. L'anneau A_{cris} est alors le séparé complété, pour la topologie p-adique, de l'enveloppe à puissances divisées de $W(\mathcal{R})$ relativement à l'idéal $\text{Ker}(\theta)$, compatibles aux puissances divisées canoniques sur l'idéal engendré par p. C'est une W-algèbre munie d'une action de \mathcal{G}_K et d'un opérateur de Frobenius φ . L'opérateur de Frobenius commute à l'action de \mathcal{G}_K . En outre, θ induit un homomorphisme surjectif θ : $A_{\text{cris}} \to \mathcal{O}_C$ dont le noyau admet des puissances divisées. Enfin, on dispose de $t = \log([\varepsilon]) \in A_{\text{cris}}$ où $\varepsilon \in \mathcal{R}$ est tel que $\varepsilon^{(0)} = 1$ et $\varepsilon^{(1)} \neq 1$. On a $\varphi(t) = t^p$ et $\nabla(t) = 0$. On pose $B_{\text{cris}} = A_{\text{cris}}[t^{-1}]$, c'est une K_0 -algèbre munie d'une action de \mathcal{G}_K et d'un opérateur de Frobenius φ .

L'homomorphisme θ induit un homomorphisme de K-algèbres $\theta \colon W(\mathcal{R})[p^{-1}] \to C$ et on note B^+_{dR} le séparé complété de $W(\mathcal{R})[p^{-1}]$ pour la topologie $\operatorname{Ker}(\theta)$ -adique. C'est une K-algèbre (et même une \overline{K} -algèbre) munie d'une action de \mathcal{G}_K . On a $A_{\operatorname{cris}} \subset B^+_{dR}$ et B^+_{dR} est un anneau de valuation discrète complet, admettant t comme uniformisante et son corps résiduel s'identifie à C via θ . On pose $B_{dR} = B_{dR}[t^{-1}]$: on a une inclusion $B_{\operatorname{cris}} \subset B_{dR}$ compatible à l'action de \mathcal{G}_K . Elle induit un homomorphisme de K-algèbres $K \otimes_{K_0} B_{\operatorname{cris}} \to B_{dR}$. Ce dernier est injectif, et on a $B^{\mathcal{G}_K}_{\operatorname{cris}} = K_0$ et $B^{\mathcal{G}_K}_{dR} = K$.

4.8. Si $V \in \mathbf{Rep}_{\mathbf{Q}_n}(\mathcal{G}_K)$, on pose

$$D_{cris}(V) = (B_{cris} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$$
 et $D_{dR}(V) = (B_{dR} \otimes_{\mathbf{Q}_p} V)^{\mathcal{G}_K}$.

D'après ce qui precède, $D_{cris}(V)$ est un K_0 -espace vectoriel muni d'un opérateur de Frobenius σ -linéaire, et $D_{dR}(V)$ est muni d'une filtration (décroissante séparée exhaustive). En outre, on a une application K-linéaire injective

$$K \otimes_{K_0} \mathcal{D}_{\mathrm{cris}}(V) \to \mathcal{D}_{\mathrm{dR}}(V).$$

Cela munit $D_{cris}(V)$ d'une structure de φ -module filtré sur K (en munissant $D_{cris}(V)_K$ de la filtration induite par celle de $D_{dR}(V)$.

On dispose des applications de périodes

$$\alpha_{\operatorname{cris}}(V) \colon \operatorname{B}_{\operatorname{cris}} \otimes_{K_0} \operatorname{D}_{\operatorname{cris}}(V) \to \operatorname{B}_{\operatorname{cris}} \otimes_{\mathbf{Q}_p} V$$
$$\alpha_{\operatorname{dR}}(V) \colon \operatorname{B}_{\operatorname{dR}} \otimes_{K} \operatorname{D}_{\operatorname{dR}}(V) \to \operatorname{B}_{\operatorname{dR}} \otimes_{\mathbf{Q}_p} V$$

dont on montre qu'elles sont toujours injectives ([8, Proposition 3.22]), de sorte que $\dim_{K_0}(\mathcal{D}_{cris}(V)) \leq \dim_{\mathbf{Q}_p}(V)$ et $\dim_{\mathbf{Q}_p}(V)$ et $\dim_{\mathbf{Q}_p}(V)$. On dit que V est cristalline (resp. de de Rham) lorsque $\alpha_{cris}(V)$ (resp. $\alpha_{dR}(V)$) est un isomorphisme (i.e. lorsque $\dim_{K_0}(\mathcal{D}_{cris}(V)) = \dim_{\mathbf{Q}_p}(V)$ (resp. $\dim_{K}(\mathcal{D}_{dR}(V)) = \dim_{\mathbf{Q}_p}(V)$)). La sous-catégorie pleine de $\mathbf{Rep}_{\mathbf{Q}_p}(\mathcal{G}_K)$ dont les objets sont les représentations cristallines (resp. de de Rham) est notée $\mathbf{Rep}_{cris}(\mathcal{G}_K)$ (resp. $\mathbf{Rep}_{dR}(\mathcal{G}_K)$). Si V est une représentation cristalline, alors V est de de Rham et l'homomorphisme $K \otimes_{K_0} \mathcal{D}_{cris}(V) \to \mathcal{D}_{dR}(V)$ est un isomorphisme ([8, Proposition 3.30]).

On peut en outre montrer ([8, Proposition 4.27 & Corollaire 4.37]) que si $V \in \mathbf{Rep}_{cris}(\mathcal{G}_K)$, alors $D_{cris}(V) \in \mathbf{MF}_K^{fa}(\varphi)$, et que la restriction du foncteur D_{cris} à $\mathbf{Rep}_{cris}(\mathcal{G}_K)$ induit une équivalence de catégories

$$D_{cris}: \operatorname{\mathbf{Rep}}_{cris}(\mathcal{G}_K) \xrightarrow{\sim} \operatorname{\mathbf{MF}}_K^{fa}(\varphi),$$

dont un quasi-inverse est donné par

$$V_{\text{cris}}(D) = (B_{\text{cris}} \otimes_{K_0} D)^{\varphi=1} \cap \text{Fil}^0(B_{dR} \otimes_K D_K).$$

4.9. Groupes de Barsotti-Tate et représentations cristallines.

4.10. Si $G \in \mathbf{BT}(\mathcal{O}_K)$, on note $T_p(G) = \mathrm{Hom}_{\mathbf{BT}(\mathcal{O}_{\overline{K}})}(\mathbf{Q}_p / \mathbf{Z}_p, G \otimes_{\mathcal{O}_K} \mathcal{O}_{\overline{K}})$ son module de Tate. C'est un \mathbf{Z}_p -module libre de rang h (où h est la hauteur de G), muni d'une action linéaire continue de \mathcal{G}_K . On définit ainsi un foncteur de $\mathbf{BT}(\mathcal{O}_K)$ dans la catégorie des \mathbf{Z}_p -modules munis d'une action linéaire continue de \mathcal{G}_K . Comme \mathcal{O}_K est un anneau de valuation discrète dont le corps des fractions est de caractéristique 0, ce foncteur est pleinement fidèle (cf. [25, Corollary 1 of Theorem 4]).

On pose alors $V_p(G) = \mathbf{Q}_p \otimes_{\mathbf{Z}_p} T_p(G)$: on a $V_p(G) \in \mathbf{Rep}_{\mathbf{Q}_p}(\mathcal{G}_K)$. D'après ce qui précède, on obtient ainsi un foncteur pleinement fidèle

$$V_p \colon \mathbf{BT}(\mathcal{O}_K) \otimes_{\mathbf{Z}} \mathbf{Q} \to \mathbf{Rep}_{\mathbf{Q}_p}(\mathcal{G}_K).$$

Le but de cette partie est de montrer que V_p est à valeurs dans la catégorie $\mathbf{Rep}_{\mathrm{cris}}^{\mathbf{BT}}(\mathcal{G}_K)$ des représentations cristallines à poids de Hodge-Tate dans $\{0,1\}$ (corollaire 4.14).

Lemme 4.11. Si $G \in \mathbf{BT}(\mathcal{O}_K)$, alors $\mathbf{M}(G)[p^{-1}]$ ne dépend (en tant que $S[p^{-1}]$ -module muni d'un opérateur de Frobenius) que de la fibre spéciale $G_k := G \otimes_{\mathcal{O}_K} k$, i.e. on a

$$\mathbf{M}(G)[p^{-1}] = \mathbf{D}(G_k)(W) \otimes_W S[p^{-1}].$$

Démonstration. En effet, on a $\mathcal{O}_K/p\mathcal{O}_K = k \oplus k\overline{\varpi} \oplus \cdots \oplus k\overline{\varpi}^{e-1}$, avec $\overline{\varpi}^e = 0$, et donc

$$\sigma^N(\mathcal{O}_K/p\mathcal{O}_K)\subseteq k$$

pour $N \gg 0$. On a donc

$$\varphi^N(\mathbf{D}(G_e)(S \to \mathcal{O}_K/p\mathcal{O}_K)) \subseteq \mathbf{D}(G_k)(W) \otimes_W S$$

pour $N \gg \log(e)/\log(p)$ (rappelons que pour $n \in \mathbb{N}_{>0}$, on a $G_{ne} = G \otimes_{\mathcal{O}_K} (\mathcal{O}_K/p^n\mathcal{O}_K)$). Mais comme ce sont des cristaux de Dieudonné, le Frobenius est une isogénie, si bien que

$$\mathbf{D}(G_e)(S \to \mathcal{O}_K/p\mathcal{O}_K)[p^{-1}] = \mathbf{D}(G_k)(W) \otimes_W S[p^{-1}].$$

Mais comme p a des puissances divisées dans \mathcal{O}_K , on a

$$\mathbf{D}(G_{ne})(S \to \mathcal{O}_K/p^n\mathcal{O}_K) = \mathbf{D}(G_e)(S \to \mathcal{O}_K/p\mathcal{O}_K)$$

pour tout $n \in \mathbb{N}_{>0}$, et donc $\mathbf{M}(G) = \mathbf{D}(G_e)(S \to \mathcal{O}_K/p\mathcal{O}_K)$.

4.12. Comme A_{cris} est une W-algèbre telle que $E([\widetilde{\varpi}])$ a des puissances divisées $(\operatorname{car} \theta(E([\widetilde{\varpi}])) = E(\varpi) = 0 \in \mathcal{O}_C)$, on a un plongement naturel

$$S \to A_{cris}$$

 $u \mapsto [\widetilde{\varpi}].$

Ce dernier est compatible aux filtrations et aux Frobenius.

On dispose d'un accouplement

$$T_p(G) \times_{\mathbf{Z}_p} \mathbf{M}(G) \to A_{\mathrm{cris}}$$

défini de la façon suivante. Si $x \in T_p(G)$ et $m \in \mathbf{M}(G)$, alors

$$x \in \operatorname{Hom}_{\mathbf{BT}(\mathcal{O}_{\overline{K}})}(\mathbf{Q}_p / \mathbf{Z}_p, G \otimes_{\mathcal{O}_K} \mathcal{O}_{\overline{K}})$$

induit

$$x \in \operatorname{Hom}_{\mathbf{BT}(\mathcal{O}_C)}(\mathbf{Q}_p / \mathbf{Z}_p, G \otimes_{\mathcal{O}_K} \mathcal{O}_C)$$

et comme $A_{cris} \to \mathcal{O}_C$ est un épaississement à puissances divisées, x induit une application A_{cris} -linéaire compatible aux filtrations, aux Frobenius et à l'action de $\mathcal{G}_{K_{\infty}}$

$$\mathbf{D}(x)_{\mathbf{A}_{\mathrm{cris}}} \in \mathrm{Hom}_{\mathbf{A}_{\mathrm{cris}},\mathrm{Fil}^{\bullet},\varphi}(\mathbf{A}_{\mathrm{cris}} \otimes_{S} \mathbf{M}(G),\mathbf{A}_{\mathrm{cris}})$$

(on a $\mathbf{M}(\mathbf{Q}_p / \mathbf{Z}_p) = (S, \mathrm{Fil}^1(S), \sigma_1, \mathrm{d})$), où $\mathbf{D}(x)_{\mathrm{A}_{\mathrm{cris}}}$ désigne l'évaluation du morphisme $\mathbf{D}(x)$ en l'épaississement $\mathrm{A}_{\mathrm{cris}} \to \mathcal{O}_C$, et l'image de (x, m) par l'accouplement est $\mathbf{D}(x)_{\mathrm{A}_{\mathrm{cris}}} (1 \otimes m)$.

Cet accouplement donne lieu à une application A_{cris} -linéaire, compatible aux filtrations et aux Frobenius

$$\rho_G \colon \operatorname{A}_{\operatorname{cris}} \otimes_S \mathbf{M}(G) \to \operatorname{A}_{\operatorname{cris}} \otimes_{\mathbf{Z}_p} \operatorname{T}_p(G)^{\vee}$$

où $T_p(G)^{\vee}$ désigne le \mathbf{Z}_p -module dual de $T_p(G)$, muni de l'action naturelle de \mathcal{G}_K . D'après le lemme 4.11, ρ_G induit

$$\rho_G[p^{-1}]: A_{\operatorname{cris}} \otimes_{K_0} \mathbf{D}(G_k)(W)[p^{-1}] \to A_{\operatorname{cris}} \otimes_{\mathbf{Z}_p} T_p(G)^{\vee}.$$

Par fonctorialité, cette application est \mathcal{G}_K équivariante, il en est donc de même de ρ_G . Remarquons que ce n'est pas vraiment clair avec $\mathbf{M}(G)$, parce que c'est un S-module et \mathcal{G}_K agit non trivialement sur S, vu que u correspond à $[\widetilde{\varpi}]$ dans A_{cris} .

Proposition 4.13. ([11, Theorem 7]) Le conoyau de ρ_G est tué par t.

Rappelons l'idée de la preuve. On traite d'abord explicitement le cas où $G = \mathbf{G}_{\mathrm{m}}(\infty)$, pour lequel $\mathbf{M}(G) = (S, S, \sigma)$ et $T_p(G) = \mathbf{Z}_p(1)$, l'application ρ_G n'étant alors autre que l'inclusion $A_{\mathrm{cris}} \subset A_{\mathrm{cris}}(-1) = t^{-1} A_{\mathrm{cris}}$.

Le cas général s'en déduit de la façon suivante. Soit $y \in T_p(G)^{\vee}$, alors $ty \in T_p(G)^{\vee}(1) \simeq T_p(G^{\mathbb{D}})$ (où $G^{\mathbb{D}}$ désigne le dual de Cartier de G) correspond à un morphisme de groupes de Barsotti-Tate $\mathbf{Q}_p / \mathbf{Z}_p \to G^{\mathbb{D}}$ sur $\mathcal{O}_{\overline{K}}$, donc (en passant au dual) à un morphisme de groupes de Barsotti-Tate $(ty)^{\mathbb{D}}: G \to (\mathbf{Q}_p / \mathbf{Z}_p)^{\mathbb{D}} = \mathbf{G}_{\mathrm{m}}(\infty)$, tel que $T_p((ty)^{\mathbb{D}})^{\vee}: \mathbf{Z}_p t^{-1} = T_p(\mathbf{G}_{\mathrm{m}}(\infty))^{\vee} \to T_p(G)^{\vee}$ envoie t^{-1} sur y.

Par ailleurs, comme \mathcal{O}_C est une $\mathcal{O}_{\overline{K}}$ -algèbre et A_{cris} un épaississement à puissances divisées de \mathcal{O}_C , on en déduit une application A_{cris} -linéaire

$$\mathbf{M}\left((ty)^{\mathbf{D}}\right)_{\mathbf{A}_{\mathrm{cris}}} \colon \mathbf{A}_{\mathrm{cris}} \otimes_{S} \mathbf{M}(\mathbf{G}_{\mathrm{m}}(\infty)) \to \mathbf{A}_{\mathrm{cris}} \otimes_{S} \mathbf{M}(G).$$

On a alors un diagramme commutatif

$$\begin{array}{ccc} \mathbf{A}_{\mathrm{cris}} \otimes_{S} \mathbf{M}(G) & \xrightarrow{\rho_{G}} & \mathbf{A}_{\mathrm{cris}} \otimes_{\mathbf{Z}_{p}} \mathbf{T}_{p}(G)^{\vee} \\ \mathbf{M}((ty)^{\mathtt{D}})_{\mathbf{A}_{\mathrm{cris}}} & & & & & & & & \\ \mathbf{M}((ty)^{\mathtt{D}})_{\mathbf{A}_{\mathrm{cris}}} & & & & & & & \\ \mathbf{A}_{\mathrm{cris}} \otimes_{S} \mathbf{M}(\mathbf{G}_{\mathrm{m}}(\infty)) & \xrightarrow{\rho_{\mathbf{G}_{\mathrm{m}}(\infty)}} & \mathbf{A}_{\mathrm{cris}} \otimes_{\mathbf{Z}_{p}} \mathbf{T}_{p}(\mathbf{G}_{\mathrm{m}}(\infty))^{\vee} \end{array}$$

de sorte que si $x = \mathbf{M}((ty)^{\mathbb{D}})_{A_{\mathrm{cris}}}(1 \otimes 1) \in A_{\mathrm{cris}} \otimes_S \mathbf{M}(G)$, on a

$$\rho_G(x) = (\operatorname{Id}_{A_{\operatorname{cris}}} \otimes \operatorname{T}_p((ty)^{\mathsf{D}})^{\vee})(t \otimes t^{-1}) = t \otimes y,$$

et $t \otimes y \in \operatorname{Im}(\rho_G)$.

Corollaire 4.14. Si $G \in \mathbf{BT}(\mathcal{O}_K)$, alors $V_p(G) \in \mathbf{Rep}^{\mathbf{BT}}_{\mathrm{cris}}(G_K)$ et

$$D_{cris}(V_p(G)^{\vee}) = \mathbf{D}(G_k)(W)[p^{-1}]$$

comme φ -modules sur K_0 .

 $D\acute{e}monstration$. En inversant t, l'homomorphisme ρ_G induit un homomorphisme surjectif de B_{cris} -modules

$$\rho_G[t^{-1}]: \operatorname{B}_{\operatorname{cris}} \otimes_{S[p^{-1}]} \mathbf{M}(G)[p^{-1}] \to \operatorname{B}_{\operatorname{cris}} \otimes_{\mathbf{Q}_n} \operatorname{V}_p(G)^{\vee}.$$

Comme les B_{cris} -modules $B_{cris} \otimes_{S[p^{-1}]} \mathbf{M}(G)[p^{-1}]$ et $B_{cris} \otimes_{\mathbf{Q}_p} V_p(G)^{\vee}$ sont tous les deux libres de rang h (où h est la hauteur de G), l'homomorphisme $\rho_G[t^{-1}]$ est un isomorphisme. En outre, d'après le lemme 4.11, on a $\mathbf{M}(G)[p^{-1}] = \mathbf{D}(G_k)(W) \otimes_W S[p^{-1}]$: on dispose donc d'un isomorphisme B_{cris} -linéaire, compatible aux filtrations, aux Frobenius et à l'action de \mathcal{G}_K

$$B_{\operatorname{cris}} \otimes_{K_0} \mathbf{D}(G_k)(W)[p^{-1}] \xrightarrow{\sim} B_{\operatorname{cris}} \otimes_{\mathbf{Q}_p} V_p(G)^{\vee}.$$

En prenant les invariants sous \mathcal{G}_K , on a donc

$$D_{cris}(V_p(G)^{\vee}) = \mathbf{D}(G_k)(W)[p^{-1}]$$

et $\dim_{K_0}(\mathrm{D_{cris}}(\mathrm{V}_p(G)^\vee)) = h = \dim_{\mathbf{Q}_p}(\mathrm{V}_p(G)^\vee)$: la représentation $\mathrm{V}_p(G)^\vee$ est donc cristalline, et il en est de même de la représentation $\mathrm{V}_p(G)$. Enfin, le fait que les poids de Hodge-Tate de $\mathrm{V}_p(G)$ sont dans $\{0,1\}$ résulte de $[25,\S4,\mathrm{Corollary}\ 2]$.

Références

- [1] P. Berthelot, Théorie de Dieudonné sur un anneau de valuation parfait, Annales Scientifiques de l'ENS 4ème série, t. 13, p. 225-268, Gauthier-Villars (1980).
- [2] P. Berthelot, L. Breen, W. Messing, Théorie de Dieudonné cristalline II, Lecture Notes in Mathematics 930, x+261, Springer-Verlag (1982).
- [3] P. Berthelot, W. Messing, Théorie de Dieudonné cristalline III. Théorèmes d'équivalence et de pleine fidélité, The Grothendieck Festschrift, Vol. I, p. 173-247, Progress in Mathematics 86, Birkhäuser (1990).
- [4] N. BOURBAKI, Algèbre commutative, Chapitre 9: Anneaux locaux noethériens complets, Masson (1983).
- [5] C. Breuil, Représentations p-adiques semi-stables et transversalité de Griffiths, Math. Ann. 307, no. 2, p. 191-224 (1997).
- [6] C. Breull, Schémas en groupes et corps des normes (non publié) 13p, (1998).
- [7] C. Breull, Groupes p-divisibles, groupes finis et modules filtrés, Ann. Math. (2) 152, no.2, 489-549 (2000).
- [8] O. Brinon, Représentations cristallines dans le cas d'un corps residuel imparfait, Annales de l'Institut Fourier 56, no. 4, p. 919-999, (2006).
- [9] A.J. DE JONG, Crystalline Dieudonné module theory via formal and rigid geometry, Publ. Math. de l'IHES 82, p. 5-96, (1995).
- [10] A.J. DE JONG, Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, Invent. Math. 134, no. 2, p. 301-333, Springer Verlag (1998).
- [11] G. Falttings, Integral crystalline cohomology over very ramified valuation rings, JAMS 12, no. 1, p. 117-144, (1999).
- [12] A. GROTHENDIECK, Revêtements étales et groupe fondamental (SGA1), Séminaire de Géométrie Algébrique du Bois-Marie 1960/1961, Documents Mathématiques 3, SMF (2003).
- [13] A. GROTHENDIECK, Techniques de construction et théorèmes d'existence en Géométrie Algébrique III : préschemas quotients, Séminaire Bourbaki, $13^{\rm ème}$ année, exposé **212**, (1961).
- [14] A. Grothendieck, Schémas en groupes 1 (SGA3), Séminaire de Géométrie Algébrique du Bois-Marie 1962/1964, LNM ${\bf 151},$ p. 83-158, (1970).
- [15] A. GROTHENDIECK, J. DIEUDONNÉ, Éléments de Géométrie Algébrique IV. Étude locale des schémas et des morphismes de schémas (Troisième partie), Publ. Math. de l'I.H.E.S. 28, p. 3-255, (1966).
- [16] L. ILLUSIE, Déformation des groupes de Barsotti-Tate, Séminaire sur les pinceaux arithmétiques : la conjecture de Mordell, Astérisque 127, p. 151-196, SMF (1985).
- [17] N. KATZ, Serre-Tate local moduli, Surfaces algébriques (Séminaire de Géométrie Algébrique d'Orsay 1976-1978), LNM 868, p. 138-202, Springer (1981).
- [18] N. KATZ, Slope filtration of F-crystals, Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. I, Astérisque 63, p. 113-163, SMF (1979).
- [19] K. Kedlaya, A p-adic local monodromy theorem, Ann. of Math. 160 no. 1, p. 93-184 (2004).

THÉORIE DE GROTHENDIECK-MESSING, THÉORÈME DE SERRE-TATE ET CLASSIFICATION DE KISIN21

- [20] K. Kedlaya, Slope filtrations revisited, Doc. Math. 10, p. 447-525 (2005).
- [21] M. KISIN, Crystalline representations and F-crystals, in Algebraic Geometry and Number Theory, in Honor of Vladimir Drinfeld's 50th Birthday, Progeress in Math. **253**, Birkhäuser, (2006).
- [22] H. Matsumura, Commutative ring theory, xiii+320, Cambridge university Press, (1986).
- [23] B. MAZUR, W. MESSING, Universal extensions and one dimensional crystalline cohomology, Lecture notes in Mathematics 370, vi+134, Springer Verlag, (1974).
- [24] W. Messing, Crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture notes in Mathematics **264**, 190, Springer Verlag, (1972).
- [25] J. Tate, p-divisible groups, Proceedings of a conference on local fields, p. 158-183, Springer Verlag (1967).

Institut Galilée, Université Paris 13, 99 avenue J.B. Clément 93430 Villetaneuse, France $E\text{-}mail\ address$: brinon@math.univ-paris13.fr