Jonas Umlauft

Mohnweg 13 − 86391 Stadtbergen − Germany

- ☐ +49 (178) 134 7603 ☑ jumlauft@gmail.com
- www.github.com/jumlauft www.ei.tum.de/itr/umlauft

Education

Dr.-Ing. Electrical Engineering, Technical University of Munich

05/2015 - 07/2020

- o Combined control engineering and machine learning to ensure safety of self-learning autonomous systems
- o Title of dissertation: "Safe Learning Control for Gaussian Process Models", Grade: "summa cum laude"

M. Sc. Electrical Engineering, Technical University of Munich

10/2013 - 03/2015

- o Specialized in control theory, robotics and optimization
- o Grade: 1.1 "with high distinction" (1.0 is best, 5.0 is worst, best 6 %)

Semester Abroad, National University of Singapore, Singapore

08/2014 - 12/2014

Specialized in machine learning and information theory

Semester Abroad, University of Cambridge, UK

02/2014 - 08/2014

- o Master's Thesis: "Probabilistic Models for Nonlinear System Identification and Control", Grade: 1.0
- Worked on model-based reinforcement learning algorithms supervised by Carl Rasmussen

B. Sc. Electrical Engineering, Technical University of Munich

04/2011 - 09/2013

- o Bachelor's Thesis: "Dynamic Movement Primitives for Cooperative Robotic Manipulation", Grade: 1.0
- o Grade: 1.4 "with distinction" (1.0 is best, 5.0 is worst, best 5 %)

Studies Electrical Engineering, University of Hawaii, USA

08/2009 - 05/2011

Received scholarship as student athlete volleyball

Working Experience

Research Associate, Technical University of Munich

05/2015 – present

- o Contributed to research project "Control based on Human Models" at Chair for Information-oriented Control
- o Took responsibility for lectures, lab courses, tutorials, exams and supervised over 20 student projects
- o Coauthored grant proposal for an international project funded by the EU with over 7 million €

Working Student, BMW Group, Munich

10/2012 - 03/2013

o Designed test specification, prepared experimental setups and analyzed test results for high voltage batteries

Working Student, Siemens AG, Munich

10/2011 - 09/2012

o Implemented prototype and researched on HTML5 for the department System Architectures and Platforms

Commitments

Graduate Council Speaker, Technical University of Munich

10/2016 - 09/2017

- o Chaired the council consisting of approx. 50 doctoral representatives with a budget of over 20,000€
- Represented the university political interests of over 5000 doctoral candidates
- o Joined the Board of the TUM Graduate School, the TUM Senate, and the TUM Board of Trustees

Doctoral Representative, Technical University of Munich

08/2015 - 07/2020

- o Joined the Graduate Council and led the working group supervision (3-4 people)
- o Founded the "TUM Supervisory Award" which awards 5,000€ for outstanding supervision of PhD students
- o Organized a network event for all doctoral candidates of TUM (approx. 800 participants)

Participant at Manage&More, UnternehmerTUM GmbH, Munich

10/2012 - 03/2014

- o Improved my project management skills and gained a product-driven mindset
- Led a team of 5 people in an innovation project with BMW

Athlete Volleyball

12/2004 - 04/2011

- o Played for the German national team and was selected to the NCAA All-American team (USA)
- Qualified as volleyball trainer and club manager C-level

Awards

Kurt-Fischer PhD Award

2020

Awarded by the Department of Electrical and Computer Engineering for an exceptional thesis

IEEE Conference on Decision and Control Outstanding Student Paper Award

2018

Selected from over 2000 submissions (with two others) by an expert committee

Scholar of the Max Weber-Programm

10/2013 - 03/2015

Granted based on excellent grades (best 3% of cohort) and a personal interview

University of Hawaii College of Engineering Dean's List

08/2009 - 05/2011

Awarded for excellent grades (best 20% of cohort)

Skills

Languages: German (native language), English (fluent), French (conversational)

IT: Matlab, Python (Tensorflow, PyTorch), C, C++, git, CUDA, Jenkins, Docker, ROS, Latex

Publications

Journal Articles.....

- [1] **J. Umlauft**, L. Pöhler, and S. Hirche. "An Uncertainty-Based Control Lyapunov Approach for Control-Affine Systems Modeled by Gaussian Process". In: *IEEE Control Systems Letters* 2.3 (2018), pp. 483–488.
- [2] **J. Umlauft** and S. Hirche. "Feedback Linearization based on Gaussian Processes with event-triggered Online Learning". In: *IEEE Transactions on Automatic Control (TAC)* (2020), pp. 1–16.
- [3] **J. Umlauft** and S. Hirche. "Learning Stochastically Stable Gaussian Process State-Space Models". In: *IFAC Journal of Systems and Control* 12 (2020), p. 100079.
- [4] A. Capone, A. Lederer, **J. Umlauft**, and S. Hirche. "Data Selection for Multi-Task Learning Under Dynamic Constraints". In: *IEEE Control Systems Letters* 5.3 (2021), pp. 959–964.
- [5] A. Lederer, A. Capone, **J. Umlauft**, and S. Hirche. "How Training Data Impacts Performance in Learning-Based Control". In: *IEEE Control Systems Letters* 5.3 (2021), pp. 905–910.

Conference Proceedings.

- [6] J. Umlauft, D. Sieber, and S. Hirche. "Dynamic Movement Primitives for cooperative manipulation and synchronized motions". In: *International Conference on Robotics and Automation (ICRA)*. IEEE. 2014, pp. 766–771.
- [7] Y. Fanger, **J. Umlauft**, and S. Hirche. "Gaussian processes for dynamic movement primitives with application in knowledge-based cooperation". In: *International Conference on Intelligent Robots and Systems (IROS)*. IEEE. 2016, pp. 3913–3919.
- [8] J. Umlauft, Y. Fanger, and S. Hirche. "Bayesian Uncertainty Modeling for Programming by Demonstration". In: *International Conference on Robotics and Automation (ICRA)*. 2017, pp. 6428–6434.
- [9] **J. Umlauft**, T. Beckers, M. Kimmel, and S. Hirche. "Feedback linearization using Gaussian processes". In: *Conference on Decision and Control (CDC)*. IEEE. 2017, pp. 5249–5255.
- [10] **J. Umlauft**, A. Lederer, and S. Hirche. "Learning Stable Gaussian Process State Space Models". In: *American Control Conference (ACC)*. IEEE. IEEE, 2017, pp. 1499–1504.
- [11] J. Umlauft and S. Hirche. "Learning Stable Stochastic Nonlinear Dynamical Systems". In: International Conference on Machine Learning (ICML). Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine Learning Research. International Convention Centre, Sydney, Australia: PMLR, 2017, pp. 3502–3510.
- [12] T. Beckers, **J. Umlauft**, D. Kulic, and S. Hirche. "Stable Gaussian process based tracking control of Lagrangian systems". In: *Conference on Decision and Control (CDC)*. IEEE. 2017, pp. 5180–5185.
- [13] T. Beckers, **J. Umlauft**, and S. Hirche. "Stable Model-based Control with Gaussian Process Regression for Robot Manipulators". In: *World Congress of the International Federation of Automatic Control (IFAC)*. Vol. 50. 1. Toulouse, France: Elsevier, 2017, pp. 3877–3884.
- [14] **J. Umlauft**, T. Beckers, and S. Hirche. "A Scenario-based Optimal Control Approach for Gaussian Process State Space Models". In: *European Control Conference (ECC)*. 2018, pp. 1386–1392.
- [15] T. Beckers, J. Umlauft, and S. Hirche. "Mean Square Prediction Error of Misspecified Gaussian Process Models". In: Conference on Decision and Control (CDC). 2018, pp. 1162– 1167.
- [16] L. Pöhler, **J. Umlauft**, and S. Hirche. "Uncertainty-based Human Trajectory Tracking with Stable Gaussian Process State Space Models". en. In: *IFAC Conference on Cyber-Physical & Human Systems (CPHS)*. IFAC. Miami, 2018.
- [17] A. Lederer, J. Umlauft, and S. Hirche. "Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control". In: Advances in Neural Information Processing Systems (NeurIPS). 2019.
- [18] A. Capone, G. Noske, **J. Umlauft**, T. Beckers, A. Lederer, and S. Hirche. "Efficient online closed loop exploration using receding horizon control". In: *Learning for Dynamics and Control (L4DC)*. Proceedings of Machine Learning Research, 2020.
- [19] J. Umlauft, T. Beckers, A. Capone, A. Lederer, and S. Hirche. "Smart Forgetting for Safe Online Learning with Gaussian Processes". In: Learning for Dynamics and Control (L4DC). Proceedings of Machine Learning Research, 2020.