Nama : Dhanar Agastya Rakalangi

NRP : 5002221075

1. Misal $A := [0, \infty)$, perhatikan barisan fungsi $(f_n(x))$ yang didefinisikan dengan

$$f_n(x) := nx/(1 + nx^2)$$

untuk $x \in A$

(a) Tunjukkan bahwa (f_n) terbatas pada A untuk semua $n \in \mathbb{N}$.

Jawab:

Perhatikan $f_n(x) = \frac{nx}{1 + nx^2}$ dengan $x \in A$, maka x > 0, $nx \ge 0$ dan $1 + nx^2 \ge 1$. Selanjutnya dengan definisi, terdapat M > 0 sedemikian hingga $|f_n| \le M$, maka $f_n(x) \le \frac{nx}{1}$. Dengan demikian, $f_n(x)$ terbatas pada A untuk semua $n \in \mathbb{N}$.

(b) Tunjukkan bahwa (f_n) konvergen titik-demi-titik ke suatu fungsi f, tetapi tidak terbatas.

Jawab:

- Untuk x = 0, kita punya $f_n(0) = 0$ untuk setiap $n \in \mathbb{N}$. Sehingga $f_n(x)$ konvergen ke 0.
- Untuk x > 0, kita punya $f_n(x) = \frac{nx}{1 + nx^2} = \frac{1}{1/nx + x} \implies \frac{1}{x}$. Sehingga $f_n(x)$ konvergen ke 1/x.

Jadi, dapat disimpulkan (f_n) konvergen titik-demi-titik ke suatu fungsi f yaitu

$$f(x) = \begin{cases} 0 & \text{jika } x = 0\\ 1/x & \text{jika } x > 0 \end{cases}$$

Selanjutnya akan ditunjukkan bahwa ftidak terbatas, kita gunakan kontradiksi. Asumsikan fterbatas, maka ada M>0sehingga $|f(x)|\leq M$ untuk setiap $x\in A$. Kita ambil $x=\frac{1}{(3M)},$ maka $f\left(\frac{1}{(3M)}\right)=3M$, jelas ini kontradiksi dengan asumsi bahwa fterbatas.

 $\therefore f$ tidak terbatas.

(c) Apakah (f_n) konvergen seragam pada A? Jelaskan! **Jawab**:

Recall **Teorema**: Misalkan $f_n(x)$ adalah sebuah barisan fungsi kontinu pada suatu himpunan $A \subseteq \mathbb{R}$. Jika (f_n) konvergen seragam pada A ke fungsi $f: A \to \mathbb{R}$, maka f kontinu pada A.

Jelas bahwa $f_n(x)$ kontinu untuk $n \in \mathbb{N}$, hal ini diperoleh dari $g_n(x) = nx$ dan $h_n(x) = 1 + nx^2 \neq 0$ dimana kedua fungsi tersebut adalah fungsi polinom yang jelas kontinu pada $A \subseteq \mathbb{R}$, sehingga $f_n(x) = g_n(x)/h_n(x)$ kontinu pada A juga.

2. Diberikan deret fungsi $\sum f_n$ dengan $f_n(x) = \sin(\frac{x}{n^2})$. Apakah deret tersebut konvergen seragam pada $[0, \pi]$? Jelaskan! (Petunjuk: Gunakan Weierstrass M-Test)

Jawab:

Recall **Teorema** (Weierstrass M-Test): Misalkan $f_n: A \to \mathbb{R}$ adalah fungsi pada himpunan $A \subseteq \mathbb{R}$. Jika ada barisan bilangan real positif M_n sehingga $|f_n(x)| \leq M_n$ untuk setiap $x \in A$ dan $n \in \mathbb{N}$, dan deret $\sum M_n$ konvergen, maka deret $\sum f_n$ konvergen seragam pada A.

Perhatikan ketaksamaan $\sin(\frac{x}{n^2}) \leq \frac{x}{n^2}$ untuk $x \in [0, \pi] \subseteq \mathbb{R}$ dan $n \in \mathbb{N}$. Jika kita definisikan $f_n(x) = \sin(\frac{x}{n^2})$ dan $M_n(x) = \frac{x}{n^2}$, maka

$$|f_n(x)| \le M_n(x)$$
 untuk $x \in [0, \pi]$ dan $n \in \mathbb{N}$.

Selanjutnya perhatikan deret $\sum M_n = \sum \frac{x}{n^2}$. Dengan menggunakan sifat notasi sigma kita dapatkan $\sum \frac{x}{n^2} = x \sum \frac{1}{n^2}$. Karena deret $\sum \frac{1}{n^2}$ konvergen dengan nilai konvergennya adalah $\frac{\pi^2}{6}$ (Deret Basel), maka deret $\sum M_n$ konvergen pada $[0, \pi]$. Sehingga, dari teorema kita peroleh bahwa deret $\sum f_n$ konvergen seragam pada $[0, \pi]$.

3. Tunjukkan bahwa $A = \{1/n : n \in \mathbb{N}\}$ bukan himpunan tertutup. **Jawab**:

Recall **Teorema** : Himpunan $A \subseteq \mathbb{R}$ adalah tertutup jika dan hanya jika A mengandung semua titik klusternya.

Recall **Definisi titik klaster** : Misalkan $A \in \mathbb{R}$. Titik $c \in \mathbb{R}$ dikatakan sebagai titik klaster dari A apabila untuk semua $\varepsilon > 0$ berlaku $(V_{\varepsilon}(c) \setminus \{c\}) \cap A \neq \emptyset$

Recall Sifat Archimedean : Jika t>0,maka ada $n_t\in\mathbb{N}$ sedemikian hingga $0<\frac{1}{n_t}< t$.

Pilih sebarang titik dan cek apakah merupakan titik kluster dari A. Untuk titik 0 , Ambil sebarang $\varepsilon > 0$. Perhatikan bahwa $V_{\varepsilon}(0) \setminus \{0\} = (-\varepsilon, 0) \cup (0, \varepsilon)$. **Sifat Archimedean** memastikan bahwa sebarang $\varepsilon > 0$ ada $n_{\varepsilon} \in \mathbb{N}$ sedemikian hingga $0 < \frac{1}{n_{\varepsilon}} < \varepsilon$. Dengan demikian , $(V_{\varepsilon}(0) \setminus \{0\}) \cap A \neq \emptyset$. Jadi , 0 adalah titik klaster dari A.

Namun $0 \notin A$, sehingga A tidak mengandung semua titik klusternya. Jadi, A bukan himpunan tertutup.

4. Tunjukkan bahwa (-2,1) tidak kompak di \mathbb{R} .

Jawab:

Recall **Teorema** (Heine-Borel) : Himpunan $A \subseteq \mathbb{R}$ adalah kompak jika dan hanya jika A tertutup dan terbatas.

Recall **Teorema** : Himpunan $A \subseteq \mathbb{R}$ adalah tertutup jika dan hanya jika A mengandung semua titik klusternya.

Akan ditunjukkan (-2,1) tidak tertutup, dengan membuktikan ada titik klaster yang di luar (-2,1). Ambil $x=1\notin (-2,1)$, maka untuk setiap $\varepsilon>0$ berapapun mengakibatkan $V_{\varepsilon}(1)\cap (-2,1)\neq\emptyset$. Jadi (-2,1) tidak tertutup. Sehingga dengan Teorema (Heine-Borel) didapat (-2,1) tidak kompak di $\mathbb R$

5. Diberikan fungsi $d:\mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ yang didefinisikan oleh

$$d\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) := |x_1 - x_2| + |y_1 - y_2|, \quad \text{untuk } x_1, x_2, y_1, y_2 \in \mathbb{R}.$$

Buktikan bahwa pasangan (\mathbb{R}^2, d) adalah ruang metrik.

Jawab:

Misalkan
$$v_1 = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, v_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} \in \mathbb{R}^2.$$

(a) $d(v_1, v_2) = |x_1 - x_2| + |y_1 - y_2|$. Karena nilai mutlak selalu positif, maka $|x_1 - x_2| \ge 0$ dan $|y_1 - y_2| \ge 0$. Sehingga $|x_1 - x_2| + |y_1 - y_2| \ge 0$. (kepositifan)

(b) Dari kiri

$$\implies d(v_1, v_2) = 0 \iff |x_1 - x_2| + |y_1 - y_2| = 0 \iff |x_1 - x_2| = 0 \text{ dan } |y_1 - y_2| = 0 \iff x_1 = x_2 \text{ dan } y_1 = y_2 \iff v_1 = v_2.$$

Dari kanan

$$\iff v_1 = v_2 \iff x_1 = x_2 \text{ dan } y_1 = y_2 \implies d(v_1, v_2) = |x_1 - x_2| + |y_1 - y_2| = |x_1 - x_1| + |y_1 - y_1| = 0.$$
 (definit)

(c)
$$d(v_1, v_2) = |x_1 - x_2| + |y_1 - y_2| = |x_2 - x_1| + |y_2 - y_1| = d(v_2, v_1)$$
. (simetri)

(d) Misalkan
$$v_3 = \begin{bmatrix} x_3 \\ y_3 \end{bmatrix} \in \mathbb{R}^2$$
.

$$\begin{split} d(v_1,v_2) &= |x_1-x_2| + |y_1-y_2| \\ &= |(x_1-x_3) + (x_3-x_2)| + |(y_1-y_3) + (y_3-y_2)| \\ &\leq |x_1-x_3| + |x_3-x_2| + |y_1-y_3| + |y_3-y_2| \\ &= d(v_1,v_3) + d(v_3,v_2) \quad \text{(ketaksamaan segitiga)} \end{split}$$

Karena terpenuhi semua sifat, Maka (\mathbb{R}^2, d) adalah ruang metrik.