第四章 机器人运动学

- 4.1 数学基础
- 4.2 机器人运动学
- 4.3 逆运动学求解
- 4.4 机器人运动学仿真

4.1 数学基础

- 空间任意点的位姿描述,坐标系描述
- 坐标变换,齐次变换,物体坐标变换与逆变换

4.1.1 位置和姿态描述

位置描述:一旦建立了坐标系,就能用一个3×1位置矢量对世界坐标系中的任何点进行定位。

注意:位置矢量必须附加信息,标明是在哪一个坐标系被定义的 ^{A}P 这个前置的上标A标明此位置矢量是在坐标系 $\{A\}$ 中定义的

姿态描述: 对于一个刚体来说,不仅经常需要表示它在空间中的位置,还需要描述空间中物体的姿态。

为了描述刚体的姿态,可用固定在刚体上的坐标系描述方位 (orientation)。

坐标系{B}三个方向轴的单位矢量,把它们在坐标系{A}中表

达出来

$$\begin{bmatrix} \hat{X}_B & \hat{Y}_B & \hat{Z}_B \end{bmatrix}$$
 坐标系 $\{B\}$ 的单位矢量
$$\begin{bmatrix} ^A\hat{X}_B & ^A\hat{Y}_B & ^A\hat{Z}_B \end{bmatrix}$$
 与成在 $\{A\}$ 中的表达

$$A\hat{X}_B = \begin{bmatrix} r_{11} \\ r_{21} \\ r_{31} \end{bmatrix}$$
 } 矢量 \hat{X}_B 在坐标系{A}三个轴方向的投影

$$A\hat{Y}_{B} = \begin{bmatrix} r_{12} \\ r_{22} \\ r_{32} \end{bmatrix}$$
 } 矢量 \hat{Y}_{B} 在坐标系{A}三个轴方向的投影

这三个单位矢量按照顺序排列组成一个3×3的矩阵

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix}$$

$$= \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

刚体的姿态用这个旋转矩阵来表示

旋转矩阵器 的各个分量可用一对单位矢量的点积来表示:

$$= \begin{bmatrix} \hat{A}\hat{X}_{B} & \hat{A}\hat{Y}_{B} & \hat{A}\hat{Z}_{B} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} & \hat{Y}_{B} \cdot \hat{Y}_{A} & \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{A}\hat{Y}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \end{bmatrix}$$

$$= \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{A} & \hat{X}_{B} \cdot \hat{X}_{$$

两个单位矢量的点积可得到

在旋转矩阵中,虽然有9个元素,但独立的元素只有3个。

那么坐标系{A}在坐标系{B}的表达又是什么样的?

进一步观察上页的式子,可以看出矩阵的行是单位矢量{A}在{B}中的表达;即

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} {}^{A}\hat{Y}_{B} {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} {}^{B}\hat{X}_{A}^{T} \\ {}^{B}\hat{Y}_{A}^{T} \\ {}^{B}\hat{Z}_{A}^{T} \end{bmatrix}$$

因此, $_{A}^{B}R$ 为坐标系 $\{A\}$ 相对于 $\{B\}$ 中的表达;即

除了用<mark>旋转矩阵</mark>描述姿态以外,还可以用<mark>欧拉角</mark>,或利用横滚(R)、俯仰(P)、偏转(Y)角的姿态描述。

刚体描述:

相对参考系 $\{A\}$,坐标系 $\{B\}$ 的原点位置和坐标轴的方位,分别由位置矢量 $^{A}P_{Bo}$ 和旋转矩阵 $_{B}^{A}R$ 描述。这样,刚体的位姿(位置和姿态)可由描述为

$$\{B\} = \left\{ {}_{B}^{A}R \quad {}^{A}\boldsymbol{p}_{Bo} \right\} \tag{4.2}$$

4.1.2 坐标变换

(1) 平移变换

两个坐标 系具有相 同的姿态

(2) 旋转变换

包含三个单位矢量的旋转矩阵被用来描述姿态

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} {}^{B}\hat{X}_{A}^{T} \\ {}^{B}\hat{Y}_{A}^{T} \\ {}^{B}\hat{Z}_{A}^{T} \end{bmatrix}$$

旋转变换公式

$$R(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\theta & -s\theta \\ 0 & s\theta & c\theta \end{bmatrix}$$

$$R(y,\theta) = \begin{bmatrix} c\theta & 0 & s\theta \\ 0 & 1 & 0 \\ -s\theta & 0 & c\theta \end{bmatrix}$$

$$R(z,\theta) = \begin{bmatrix} c\theta & -s\theta & 0 \\ s\theta & c\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (4.4c)

标在A系的

绕χ轴旋转θ

下图中表示坐标系 $\{B\}$ 相对于坐标系 $\{A\}$ 绕 \hat{Z} 轴旋转30度。这 里Ź轴指向为由纸面向外。

$$R(z,\theta) = \begin{bmatrix} c\theta & -s\theta & 0 \\ s\theta & c\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $\{B\}$ 绕 \hat{Z} 轴旋转30度

$${}_{B}^{A}R = \begin{bmatrix} 0.866 & -0.500 & 0.000 \\ 0.500 & 0.866 & 0.000 \\ 0.000 & 0.000 & 1.000 \end{bmatrix}$$

$${}^{B}P = \begin{bmatrix} 0.0 \\ 2.0 \\ 0.0 \end{bmatrix}$$

这里, ^{A}R 的作用是将相对于

坐标系 $\{B\}$ 描述的 BP 映射到 AP

注意:从映射的角度看,原矢量P在空间并没有改变,只不过求出了这个矢量相对于另一个坐标系的新的描述。

(3) 复合变换

$$^{A}\boldsymbol{p}=_{B}^{A}R^{B}\boldsymbol{p}+^{A}\boldsymbol{p}_{Bo}$$

(4.5)

4.1.3 齐次坐标变换

已知一直角坐标系中的某点坐标,则该点在另一直角坐标 系中的坐标可通过**齐次坐标变换**求得。

所谓**齐次坐标**就是将一个原本是 n 维的向量用一个 n+1 维向量来表示。一个向量的齐次表示是不唯一的,比如齐次坐标 [8,4,2]、[4,2,1]表示的都是二维点[2,1]。

齐次坐标提供了用**矩阵运算**把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法。

$$p = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \qquad p = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ wz \\ w \end{bmatrix}$$

$$^{A}\boldsymbol{p}=_{B}^{A}\boldsymbol{R}^{B}\boldsymbol{p}+^{A}\boldsymbol{p}_{Bo}$$

Homogeneous Transformation Matrix Form:

$$\begin{bmatrix} {}^{A}\boldsymbol{p} \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{A}\boldsymbol{R} & | {}^{A}\boldsymbol{p}_{Bo} \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix} \begin{bmatrix} {}^{B}\boldsymbol{p} \\ 1 \end{bmatrix}$$

$$^{A}\boldsymbol{p}=_{B}^{A}T^{B}\boldsymbol{p}$$

(4.7)

上式称为齐次变换矩阵 AT

■ **例4.2** 已知坐标系{**B**}的初始位姿与{**A**}重合,首先{**B**}相对于坐标系{**A**}的 z_A 轴转30°,再沿{**A**}的 x_A 轴移动12单位,并沿{**A**}的 y_A 轴移动6单位。假设点p在坐标系{**B**}的描述为^Bp=[3,7,0]^T,用齐次变换方法求它在坐标系{**A**}中的描述^Ap。

解:

$${}_{B}^{A}T = \begin{bmatrix} {}_{B}^{A}R & {}^{A}\boldsymbol{p}_{Bo} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.866 & -0.5 & 0 & 12 \\ 0.5 & 0.866 & 0 & 6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{T}^{B}\boldsymbol{p} = \begin{bmatrix} 0.866 & -0.5 & 0 & 12 \\ 0.5 & 0.866 & 0 & 6 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 11.098 \\ 13.562 \\ 0 \\ 1 \end{bmatrix}$$

$$Trans(a,b,c) = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (4.8) **a.b. c是X、Y Z轴的平移量**

对已知矢量 $\mathbf{u}=[x,y,z,w]^{\mathsf{T}}$ 进行平移变换所得的矢量 \mathbf{v} 为:

$$v = Trans(a,b,c) \cdot u = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x+aw \\ y+bw \\ z+cw \\ w \end{bmatrix} = \begin{bmatrix} x/w+a \\ y/w+b \\ z/w+c \\ 1 \end{bmatrix}$$

旋转齐次变换矩阵

$$Rot(x,\theta) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & c\theta & -s\theta & 0 \\ 0 & s\theta & c\theta & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$Rot(y,\theta) = \begin{bmatrix} c\theta & 0 & s\theta & 0 \\ 0 & 1 & 0 & 0 \\ -s\theta & 0 & c\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Rot(z,\theta) = \begin{bmatrix} c\theta & -s\theta & 0 & 0 \\ s\theta & c\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

■ **例4.3** 已知点 u=7i+3j+2k,将u 绕 z 轴旋转90° 得到点v,再将点 v 绕 y 轴旋转90° 得到点w,求点v、w的坐标。

解:

$$v = Rot(z, 90^{\circ}) \cdot u = \begin{bmatrix} c90^{\circ} - s90^{\circ} & 0 & 0 \\ s90^{\circ} & c90^{\circ} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 7 \\ 2 \\ 1 \end{bmatrix}$$

$$w = Rot(y, 90^{\circ}) \cdot v = \begin{bmatrix} c90^{\circ} & 0 & s90^{\circ} & 0 \\ 0 & 1 & 0 & 0 \\ -s90^{\circ} & 0 & c90^{\circ} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 7 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ 3 \end{bmatrix}$$

如果把上述两变换组合在一起

$$w = Rot(y,90^{\circ})Rot(z,90^{\circ})u$$

$$= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ 3 \\ 1 \end{bmatrix}$$

■ 若改变旋转次序,首先使 u 绕 y 轴旋转90°,再绕 z 轴旋转90°,会使 u 变换至与 w 不同的位置 w_1 。

图1 旋转次序对变换结果的影响

■ **例4.4** 已知点 *u*=7*i*+3*j*+2*k*,将 *u*绕 *z* 轴旋转90°得到点 *v*,再将点 *v*绕 *y*轴旋转90°得到点 *w*,最后进行平移变换4*i*-3*j*+7*k*,求最终的坐标。

解: 把上述三变换组合在一起 *Trans*(4,-3,7)*Rot*(y,90°)*Rot*(z,90°)

$$= \begin{vmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

 $t = Trans(4, -3, 7)Rot(y, 90^{\circ})Rot(z, 90^{\circ}) \cdot u$

$$= \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 10 \\ 1 \end{bmatrix}$$

图2 平移变换与旋转变换的组合

4.1.4 物体的变换及逆变换

Description of position of an object

可用描述空间一点的变换方法来描述物体在空间的位置和方向。如下图所示物体可由坐标系内固定该物体的六个点来表示。

如果首先让物体绕 z 轴旋转90°,接着绕 y 轴旋转90°,再沿x轴方向平移4个单位,则该变换可描述为:

$$T = Trans(4,0,0)Rot(y,90)Rot(z,90) = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

上述楔形物体的六个点变换如下:

$$\begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ \end{bmatrix} = \begin{bmatrix} 4 & 4 & 6 & 6 & 4 & 4 \\ 1 & -1 & -1 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 4 & 4 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Compound Transformation

给定坐标系 $\{A\}$, $\{B\}$ 和 $\{C\}$,若已知 $\{B\}$ 相对 $\{A\}$ 的描述为 $\{T\}$, $\{C\}$ 相对 $\{B\}$ 的描述为 $\{T\}$,则

$${}^{B}\boldsymbol{p}={}^{B}_{C}T^{C}\boldsymbol{p} \tag{4.9}$$

$${}^{A}\boldsymbol{p} = {}^{A}\boldsymbol{T}^{B}\boldsymbol{p} = {}^{A}\boldsymbol{T}^{B}\boldsymbol{T}^{C}\boldsymbol{p} \tag{4.10}$$

定义复合变换:

$${}_{C}^{A}T = {}_{B}^{A}T {}_{C}^{B}T = \begin{bmatrix} {}_{B}^{A}R & {}^{A}\boldsymbol{p}_{Bo} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} {}_{B}^{B}R & {}^{B}\boldsymbol{p}_{Co} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} {}_{A}^{A}R {}_{C}^{B}R & {}_{B}^{A}R {}_{C}^{B}R & {}_{B}^{A}R {}_{Co}^{B} + {}^{A}\boldsymbol{p}_{Bo} \\ 0 & 1 \end{bmatrix}$$

Inverse Transformation

从坐标系 $\{B\}$ 相对 $\{A\}$ 的描述 T ,求得坐标系 $\{A\}$ 相对 $\{B\}$ 的描述 T ,是下次变换求逆问题。

对于给定的 ${}^{A}\!\!T$, 求解 ${}^{B}\!\!T$, 等价于给定 ${}^{A}\!\!R$ 和 ${}^{A}\!\!p_{Bo}$, 计算 ${}^{B}\!\!R$ 和 ${}^{B}\!\!p_{Ao}$ 。

$${}_{B}^{A}T = \begin{bmatrix} {}^{A}R & | {}^{A}\boldsymbol{p}_{Bo} \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix} \Rightarrow {}_{A}^{B}T = \begin{bmatrix} {}^{B}R & | {}^{B}\boldsymbol{p}_{Ao} \\ \hline 0 & 0 & 0 & | & 1 \end{bmatrix} = ?$$

$${}^{B}({}^{A}\boldsymbol{p}_{Bo}) = {}^{B}_{A}R^{A}\boldsymbol{p}_{Bo} + {}^{B}\boldsymbol{p}_{Ao}$$

$$\Rightarrow {}^{B}\boldsymbol{p}_{Ao} = -{}^{B}_{A}R^{A}\boldsymbol{p}_{Bo} = -{}^{A}_{B}R^{TA}\boldsymbol{p}_{Bo}$$

$$= > \frac{{}_{B}^{B}T}{{}_{A}T} = \begin{bmatrix} {}_{B}^{A}R^{T} & |-{}_{B}^{A}R^{A}\boldsymbol{p}_{Bo} \\ \hline 0 & | & 1 \end{bmatrix}$$

例4.6

Given a transformation matrix:

$${}_{B}^{A}T = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & c\theta & -s\theta & 2 \\ 0 & s\theta & c\theta & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Find ${}^{B}_{A}T$

Solution:

$${}_{A}^{B}T = \begin{bmatrix} {}_{A}^{A}R^{T} & | - {}_{B}^{A}R^{A}\boldsymbol{p}_{Bo} \\ \hline 0 & | & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & c\theta & s\theta & -2c\theta - 3s\theta \\ 0 & -s\theta & c\theta & 2s\theta - 3c\theta \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transform Equations

(a) 机械手与环境间的运动关系

(b) 对应的有向变换图

图3变换方程及其有向变换图

$${}_{T}^{B}T = {}_{S}^{B}T {}_{G}^{S}T {}_{T}^{G}T \qquad (4.11)$$

4.1.5 欧拉角表示位姿

机械手的运动姿态往往由

一个绕轴x,y和z的旋转

序列来规定。这种转角序列,

称为欧拉(Euler)角。

欧拉角: 用一个绕 z 轴

旋转 ϕ 角,再绕新的 y轴

y旋转 θ 角,最后绕新的z

轴Ζ'旋转 ψ角来描述任何

可能的姿态。

图4欧拉角定义

这一旋转<mark>可由基系中相反的次序</mark>来解释,因此欧拉变换 Euler 可由连乘三个旋转矩阵来求得,即

 $Euler(\phi, \theta, \psi) = Rot(z, \phi)Rot(y, \theta)Rot(z, \psi)$ (4.19)

这确是不太直观结果,大家可画出旋转关系图来理解

Roll, Pitch, Yaw to represent motion pose

另一种常用的旋转集合是横滚(roll)、俯仰(pitch)和偏转(yaw)。

图3.3 用横滚、俯仰和偏转表示机械手运动姿态

对于旋转次序,规定:

$$RPY(\varphi, \theta, \psi) = Rot(z, \varphi)Rot(y, \theta)Rot(x, \psi)$$
 (4.20)

式中,RPY表示横滚、俯仰和偏转三旋转的组合变换。也就是说,先绕 x 轴旋转角 ψ ,再绕 y 轴旋转角 θ ,最后绕 z 轴旋角 ϕ 。

小结:

- Representation of Position and Attitude
- Coordinate and Homogeneous Transformation
- Transformation of Object
- > 欧拉角及其它变换表示姿态

4.2 机器人运动学

- 机械手是一系列由关节连接起来的连杆构成。
- 每一个连杆建立一个坐标系,并用齐次变换描述坐标系之间的相对位置和姿态。
- A 矩阵: 一个连杆和下一个连杆坐标系间的相对关系的齐 次变换。
- •••
- 对于六连杆机械手:

$$T_6 = A_1 A_2 A_3 A_4 A_5 A_6$$

4. 2. 1 关节与连杆

在机器人中,通常有两类关节:转动关节和移动关节。

自由度: 物体能够相对于坐标系进行独立运动的数目

不同于人类的关节,一般机器人关节为一个自由度的关节,其目的是为了简化力学、运动学和机器人的控制。

人类关节是软骨连接,有一定弹性变形。

转动关节提供了一个转动自由度,移动关节提供一个移动自由度,各 关*

4.2.2 连杆变换矩阵

■ **关节轴线**:对于旋转关节,其转动轴的中心线作为关节轴线。对于平移关节,取移动方向的中心线作为关节轴线。

■ 连杆参数:

- 连杆长度:两个关节的关节轴线<mark>L与L</mark>的公垂线距离为连杆长度,记为a_i。
- ho 杆扭转角: 由 J_i 与公垂线组成平面P, J_{i+1} 与平面P的夹角为连杆 扭转角,记为 α_i 。

- 连杆偏移量:除第一和最后连杆外,中间的连杆的两个关节轴 线 J_i 与 J_{i+1} 都有一条公垂线 a_i ,一个关节的相邻两条公垂线 a_i 与 a_{i-1} 的距离为连杆偏移量,记为 d_i 。
- 关节角:关节 J_i 的相邻两条公垂线 a_i 与 a_{i-1} 在以 J_i 为法线的平面上的投影的夹角为关节角,记为 θ_i 。
- a_i, α_i, d_i, θ_i 这组参数称为 Denavit-Hartenberg(D-H)参数。

连杆变换矩阵

D-H参数

连杆本身的参数	连杆长度	a _n	连杆两个轴的公垂线距离(x方向)
	连杆扭转角	α_{n}	连杆两个轴的夹角(x轴的扭转角)
连杆之间的参数	连杆之间的距离	d _n	相连两连杆公垂线距离(z方向平移距)
	连杆之间的夹角	θ_{n}	相连两连杆公垂线的夹角(z轴旋转角)

连杆坐标系:

> 为描述相邻杆件间平移和转动的关系。

Denavt和Hartenberg (1955)提出了一种为关节链中的每一杆件建立附体坐标系的矩阵方法。

▶ D-H方法是为每个关节处的杆件坐标系建立4× 4齐次变换 矩阵,表示它与前一杆件坐标系的关系。

这样逐次变换,用"手部坐标"表示的末端执行器可被变换并用机座坐标表示。

- > 坐标系的建立有两种方式:
 - Paul定义法
 - Craig定义法

Craig定义法

对于相邻两个连杆 C_i 和 C_{i+1} ,有三个关节 J_{i-1} 、 J_i 和 J_{i+1} 。

- 中间连杆C_i坐标系的建立:
 - > 原点 O_i : 取<mark>关节轴线 J_i 与 J_{i+1} 的公垂线</mark>在与 J_i 的交点为坐标系原点。
 - Z_i 轴: 取 J_i 的方向为 Z_i 轴方向。
 - $> X_i$ 轴: 取公垂线从 0_i 指向 J_{i+1} 的方向为 X_i 轴方向。
 - > Y_i轴:根据右手定则由X_i轴和Z_i轴确定Y_i轴的方向。

■ 第一连杆C₁坐标系的建立:

 \triangleright 原点 0_1 : 取 J_1 和 J_2 公垂线 J_1 的交点

 $ightharpoonup Z_1$ 轴: 取 J_2 的方向为 Z_1 轴方向。

▶ X₁轴: X₁轴方向任意选取。

▶ Y₁轴: 根据右手定则,由X₁轴和Z₁轴确定Y₁轴的方向。

■ 最后连杆Cn坐标系建立: 最后一个连杆一般是抓手

- ➤ 原点O_n: 取抓手末端中心 点为坐标系原点。
- Z_n轴: 取抓手的朝向,即 指向被抓取物体的方向为Z_n 轴方向。
- X_n轴:取抓手一个指尖到 另一个指尖的方向为X_n轴方 向。
- ➤ Y_n轴:根据右手定则由X_n 轴和Z_n轴确定Y_n轴的方向。

Craig定义法的连杆变换矩阵:

- $lackbox{C}_{i-1}$ 坐标系经过<mark>两次旋转</mark>和<mark>两次平移</mark>可以变换到 C_i 坐标系。
 - 第一次: X_{i-1} 轴 $P8a_{i-1}$, PPa_{i-1} 移动到 PPa_{i-1}
 - 第二次:以X_{i-1}轴为转轴,旋转α_{i-1}角度,使新Z_{i-1}(Z_{i-1}) 轴与Z_i轴同向。
 - 第三次: Z_i 轴平移 d_i , 使新的 O_{i-1} 移动到 O_i 。
 - 第四次:_以 Z_i 轴为转轴,旋转 θ_i 角度,使新的 X_{i-1} (X_{i-1}) 轴与 X_i 轴同向。
- lacktriangle至此,坐标系 $O_{i-1}X_{i-1}Y_{i-1}Z_{i-1}$ 与坐标系 $O_iX_iY_iZ_i$ 已经完全重合。

Paul 定义法:

中间连杆C:坐标系的建立:

■原点 O_i : 取关节轴线 J_i 与 J_{i+1} 的公垂线在与 J_{i+1} 的交点为坐标系原点。

■ Zi轴: 取Ji+1的方向为Zi轴方向。

■ X_i轴:取公垂线指向O_i的方向为X_i轴方向。

■Y_i轴:根据右手定则由X_i轴和Z_i轴确定Y_i轴的方向。

第一连杆C₁坐标系的建立:

▲原点01: 取基坐标系原点为坐标系原点。

■ Z₁轴:取J₁的方向为Z₁轴方向。

■ X₁轴: X₁轴方向任意选取。

■ Y₁轴: 根据右手定则由X₁ 轴和Z₁ 轴确定Y₁ 轴的方向。

最后连杆C_n坐标系的建立:最 后一个连杆一般是抓手。

- 原点On: 取抓手末端中心 点为坐标系原点。
- Z_n轴:取抓手的朝向,即 指向被抓取物体的方向为 Z_n轴方向。
- Xn轴:取抓手一个指尖到 另一个指尖的方向为Xn轴 方向。
- Yn轴:根据右手定则由Xn 轴和Zn轴确定Yn轴的方向。

Paul定义法的连杆变换矩阵:

- C_{i-1}坐标系经过两次旋转和两次平移可以变换到 C_i坐标系
 - 第一次、以 Z_{i-1} 轴为转轴,旋转 θ_i 角度,使新的 X_{i-1} 轴与 X_i 轴同向。
 - 第二次: $P(I_{i-1})$ 華子 $P(I_{i-1})$ 華子 $P(I_{i-1})$ 中 $P(I_{i-1$
 - 第三次: 沿新的 X_{i-1} 轴(Xi轴)平移 a_i ,使新的 O_{i-1} 移 动到 O_i 。
 - 第四次:以X_i轴为转轴,旋转α_i角度,使新的Z_{i-1}轴与 Z_i轴同向。
- 至此,坐标系 $O_{i-1}X_{i-1}Y_{i-1}Z_{i-1}$ 与坐标系 $O_{i}X_{i}Y_{i}Z_{i}$ 已经完全重合。

可以用连杆 C_i 到连杆 C_{i-1} 的4个齐次变换来描述。总的变换矩阵(D-H矩阵)为:

$$A_i = \text{Rot}(z, \theta_i) \text{Trans}(0, 0, d_i) \text{Trans}(a_i, 0, 0) \text{Rot}(x, \alpha_i)$$

 $A_i = \text{Rot}(z, \theta_i) \text{Trans}(0, 0, d_i) \text{Trans}(a_i, 0, 0) \text{Rot}(x, \alpha_i)$

$$= \begin{bmatrix} c\theta_{i} & -s\theta_{i} & 0 & 0 \\ s\theta_{i} & c\theta_{i} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_{i} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

4.2.3 机器人正向运动学

n个自由度的工业机器人所有连杆的位置和姿态,可以用一组<mark>关节变量(d_i或θ_i)</mark>以及杆件几何常数来表示。这组变量通常称为关节矢量或关节坐标,由这些矢量描述的空间称为关节空间。

一旦确定了机器人各个关节的<mark>关节坐标</mark>,机器人末端的位姿也就随之确定。因此由机器人的关节空间到机器人的末端笛卡尔空间之间的映射,是一种<mark>单射关系</mark>。

机器人的正向运动学,描述的就是机器人的关节空间到机器人的末端笛卡尔空间之间的映射关系。

■ 对于具有n个自由度的串联结构工业机器人,各个连杆坐标系之间属于联体坐标关系。若各个连杆的D-H矩阵分别为A_i,则机器人末端的位置和姿态为:

$$T=A_1A_2A_3...A_n$$

■ 相邻连杆C_i和C_{i-1},两连杆坐标系之间的变换矩阵即为连杆变换矩阵位姿:

$$^{ extbf{i-1}} extbf{T}_{ extbf{i}} extbf{=} extbf{A}_{ extbf{i}}$$

■ 机器人的末端相对连杆C_{i-1}的位置和姿态为:

由于坐标系的建立不是唯一的,不同的坐标系下D-H矩阵是不同的,末端位姿T不同。但对于相同的基坐标系,不同的D-H矩阵下的末端位姿T相同。

$$^{i-1}T_n=A_iA_{i+1}...A_n$$

4. 2. 4 PUMA560机器人的正向运动学

PUMA 560是属于关节式机器人,6个关节都是转动关节。前3个关节确定手腕参考点的位置,后3个关节确定手腕的方位。

连杆及关节参数表

连杆i	变量 θ _i	a_{i-1}	a_{i-1}	d_i	变量范围
1	θ ₁ (90°)	0°	0	0	-160°~160°
2	$\theta_2(0^\circ)$	-90°	0	d_2	-225°~45°
3	θ ₃ (-90°)	0°	a_2	0	-45°~225°
4	θ ₄ (0°)	-90°	a_3	d_4	-110°~170°
5	θ ₅ (0°)	90°	0	0	−100°~100°
6	$\theta_6(0^\circ)$	-90°	0	0	-266°~266°

(a) 结构图 图5 PUMA 560机器人的连杆坐标系

PUMA560每 个关节均有角度 零位与正负方向 限位开关;

机器人的回转 机体实现机器人 机体绕 Z_0 轴的回 转($\mathbf{f}\mathbf{\theta_1}$),它由 固定底座和回转 工作台组成。

安装在轴中心 的驱动电机经传 动装置,可以实 现工作台的回转。

(a) 结构图

图6 PUMA 560机器人的连杆坐标系

大臂、小臂的 平衡由机器人中的 平衡装置控制;

在机器人的回 转工作台上安装有 大臂台座,将大臂 大臂台座,将大臂 下端关节支承在台 座上,大臂的上端 关节用于支承小臂。

大臂臂体的下端 安有直流伺服电机, 可控制大臂上下摆 动(\mathbf{f} \mathbf{f} ₂)。

小臂支承于大 臂臂体的上关节 处, 其驱动电机 可带动小臂做: 上下俯仰(角 θ_3),以及小臂 的回转 (θ₄)。

(a) 结构图 图7 PUMA 560机器人的连杆坐标系

机器人的腕部 位于小臂臂体前 端,通过伺服电 动机传动,可实 现

腕部摆动(θ_5) 和转动(θ_6)。

(a) 结构图

图8 PUMA 560机器人的连杆坐标系

连杆 <i>i</i>	变量 θ _i	α_{i-1}	a_{i-1}	d_i	变量范围
1	θ ₁ (90°)	0°	0	0	-160°~160°
2	$\theta_2(0^\circ)$	-90°	0	d_2	−225°~45°
3	θ ₃ (-90°)	0°	a_2	0	-45°~225°
4	θ ₄ (0°)	-90°	a_3	d_4	-110°~170°
5	θ ₅ (0°)	90°	. 0	0	-100°~100°
6	θ ₆ (0°)	-90°	0	0	-266°~266°

Paul坐标系的连杆变换矩阵:

□ 基坐标系 $OX_0Y_0Z_0$ 与 $O_1X_1Y_1Z_1$: 原点重合,连杆长度和连杆偏移量为零。关节角为 θ_1 ,连杆扭角为 -90° .

$$\boldsymbol{A}_{1} = \begin{bmatrix} \cos\theta_{1} & 0 & -\sin\theta_{1} & 0 \\ \sin\theta_{1} & 0 & \cos\theta_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{i} = \begin{bmatrix} c\theta_{i} & -s\theta_{i}c\alpha_{i} & s\theta_{i}s\alpha_{i} & a_{i}c\theta_{i} \\ s\theta_{i} & c\theta_{i}c\alpha_{i} & -c\theta_{i}s\alpha_{i} & a_{i}s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 1 \end{bmatrix}$$

□ 坐标系 *O₁X₁Y₁Z₁与* 角为零。

坐标系
$$O_1X_1Y_1Z_1$$
与 $O_2X_2Y_2Z_2$: 连杆长度 为 a_2 , 连杆偏移量为 d_2 , 并角为 θ_2 , 连杆扭转 角为零。
$$A_2 = \begin{bmatrix} \cos\theta_2 & -\sin\theta_2 & 0 & a_2\cos\theta_2 \\ \sin\theta_2 & \cos\theta_2 & 0 & a_2\sin\theta_2 \\ 0 & 0 & 1 & d_2 \\ 0 & 0 & 1 \end{bmatrix}$$

□ 坐标系 O₂X₂Y₂Z₂ 与

□ 坐标系 *O₃X₃Y₃Z₃与*

■ 坐标系 O₄X₄Y₄Z₄ 与

$$O_5X_5Y_5Z_5$$
: 连杆长度 和连杆偏移量为 O , 关 节角为 O 5, 连杆扭转角 为 O 90. O 6. O 7
$$A_5 = \begin{bmatrix} \cos\theta_5 & 0 & -\sin\theta_5 & 0 \\ \sin\theta_5 & 0 & \cos\theta_5 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

□坐标系 $O_5X_5Y_5Z_5$ 与 $O_6X_6Y_6Z_6$: 连杆长度和连杆偏移量为0, 关节角为 θ 6, 连杆扭转角为0°。

$$\boldsymbol{A}_{6} = \begin{bmatrix} \cos\theta_{6} & -\sin\theta_{6} & 0 & 0\\ \sin\theta_{6} & \cos\theta_{6} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

□ 由六个连杆的D—H矩阵,可以<mark>求取机器人末端在基坐标</mark> 系下的位置和姿态:

$$T = A_1 A_2 \dots A_6$$

$$= \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

□ 上述即为PUMA560机器人的运动学方程。

$$\begin{split} n_x &= c_1 \big[c_{23} (c_4 c_5 c_6 - s_4 s_6) - s_{23} s_5 c_6 \big] + s_1 (s_4 c_5 c_6 + c_4 s_6), \\ n_y &= s_1 \big[c_{23} (c_4 c_5 c_6 - s_4 s_6) - s_{23} s_5 c_6 \big] - c_1 (s_4 c_5 c_6 + c_4 s_6), \\ n_z &= -s_{23} (c_4 c_5 c_6 - s_4 s_6) - c_{23} s_5 c_6; \\ o_x &= c_1 \big[c_{23} (-c_4 c_5 s_6 - s_4 c_6) + s_{23} s_5 s_6 \big] + s_1 (c_4 c_6 - s_4 c_5 s_6), \\ o_y &= s_1 \big[c_{23} (-c_4 c_5 s_6 - s_4 c_6) + s_{23} s_5 s_6 \big] - c_1 (c_4 c_6 - s_4 c_5 c_6), \\ o_z &= -s_{23} (-c_4 c_5 s_6 - s_4 c_6) + c_{23} s_5 s_6, \\ a_x &= -c_1 (c_{23} c_4 s_5 + s_{23} c_5) - s_1 s_4 s_5, \\ a_y &= -s_1 (c_{23} c_4 s_5 + s_{23} c_5) + c_1 s_4 s_5, \\ a_z &= s_{23} c_4 s_5 - c_{23} c_5; \\ p_x &= c_1 \big[a_2 c_2 + a_3 c_{23} - d_4 s_{23} \big] - d_2 s_1, \\ p_y &= s_1 \big[a_2 c_2 + a_3 c_{23} - d_4 s_{23} \big] + d_2 c_1 \\ p_z &= -a_3 s_{23} - a_2 s_2 - d_4 c_{23}. \end{split}$$

(4.21)

4.3 逆向运动学求解

- •运动学研究的问题:
 - 运动学正问题: 机器人运动学正问题是已知机器人名关节、各连杆参数及各关节变量,求机器人手端坐标在基础坐标中的位置和姿态。

运动学逆问题:机器人运动学逆问题,是已知满足某工作要求时末端执行器的位置和姿态,以及各连杆的结构参数,求关节变量。

- 正向运动学:关节空间→末端笛卡儿空间,单射
- 逆向运动学: 末端笛卡儿空间→关节空间, 复射

- ① 所谓逆运动学方程的解,就是已知机械手直角坐标空间的位姿 (pose) Tn, 求出各节变量θ, or d, 。
- ② 机器人逆运动学是机器人控制的基础

4.3.1 运动学逆问题基本概念

一、解的存在性和工作空间

反解关心的问题是:对于给定的位置矢量(x,y),由运动学方程求出相应的关节矢量。

求解之前最关心的问题是,对于给定的值(x,y),相应的关节矢量是否存在。

通常, 把反解存在的区域称为该机器人的工作空间。

- (1) 灵活空间,指机器人手爪能以任意方位到达的目标点的集合;
- (2) 可达空间, 系指机器人手爪至少能以一个方位到达的目标点的集合。

灵活空间是可达空间的子集,在灵活空间的各点上,抓手的指向可以任意规定。

1) 可解性

可把解分成2种形式: 封闭解(解析解)、数值解

- 研究表明,所有具有转动和移动关节的系统,在一个单一串联中总共有6个自由度时,是可解的。
 - 一般是数值解,不是解析表达式。

当关节机器人小于6个自由度时,在有些点上可能无解。

- Pieper封闭解存在的条件:
 - 1) 三个相邻关节轴交于一点;
 - 或 2) 三个相邻关节轴相互平行或垂直。

2) 工作空间

定义: <mark>机器人空间</mark>是指<mark>机器人末端执行器运动描述参考点所能达到的空间点的集合</mark>,一般用水平面和垂直面的投影表示

a) 串联多关节机器人 MOTOMAN MH3F

b) 串联多关节机器人 MOTOMAN MPP3S

6关节工业机器人的工作空间示意

二、逆解的唯一性和最优解

机器人操作臂运动学逆解的数目决定于关节数目 和关节变量的活动范围。实际上,由于关节活动范围的限制, PUMA560的8组逆解中可能有些解达不到。

一般而言,非零连杆参数愈多,到达某一目标的方式也愈多。 即运动学反解的数目愈多。

表 3-3	反解数目	与连杆长	度非零的数	自之间关系
-------	------	------	-------	-------

a_i	反解数目	
$a_1 = a_3 = a_5 = 0$	€4	
$a_3 = a_5 = 0$	≪8	
$a_3 = 0$	≤16	
所有 u.≠0	≤16	

如何从多重解中选择其中的一组?

根据具体情况而定,在避免碰撞的前提下,通常按"最短 行程"准则来择优,即使每个关节的移动量为最小。遵循" 移动小关节,少移动大关节"的原则。

由于工业机器人前面三个连杆的尺寸较大,后面三个较小。故应加权处理,遵循"多移动小关节、少移动大关节"的原则。

图 3-9 PUMA 560 机器人的四种运动学反解

图 3-10 手腕"翻转"对应的两种反解 (a)反解 1; (b)反解 2

4.3.2 求解方法

- 操作臂在进行反解时总是<mark>力求得到封闭解。因为封闭解的计算速度快,效率高,便于实时控制。</mark>而数值法不具有些特点为。
- 操作臂的运动学反解封闭解可通过两种途径得到: 代数解和几何解。

(1) 代数解法与几何解法

- 代数解法
- 以三连杆平面操作臂为例,其坐标和连杆参数如下

i	$ \alpha_{i-1} $	a_{i-1}	d_{i}	θ_{i}
1	0	0	0	θ_{1}
2	0	L_1	0	θ_2
3	0	L_2	0	θ_3

应用这些连杆参数可以求得这个机械臂的运动学方程:

$${}_{W}^{B}T = {}_{3}^{0}T = \begin{bmatrix} c_{123} & -s_{123} & 0 & l_{1}c_{1} + l_{2}c_{12} \\ s_{123} & c_{123} & 0 & l_{1}s_{1} + l_{2}s_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4-21)

为了集中讨论逆运动学问题,我们假设<mark>腕部坐标系相对于基坐标系的变换,即 $_{w}^{B}T$ 已经完成。</mark>

这个操作臂通过三个量x,y和 ϕ (连杆3在平面上的方位角,相对于基坐标系的x轴正方向)很容易确定这些目标点。如下给出的 $_{w}^{B}T$ 就确定了目标点的位姿,这个变换矩阵如下。

$$c_{\phi} = c_{123} \tag{4-23a}$$

$$S_{\phi} = S_{123} \tag{4-23b}$$

$$x = l_1 c_1 + l_2 c_{12} (4-23c)$$

$$y = l_1 s_1 + l_2 s_{12} (4-23d)$$

将 (4-23c) 和 (4-23d) 同时平方, 然后相加, 得到

$$x^{2} + y^{2} = l_{1}^{2} + l_{2}^{2} + 2l_{1}l_{2}c_{2}$$
 (4-24)

解得:

$$c_2 = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2} \tag{4-25}$$

上式有解的条件是上式右边的值必须在-1和1之间.

s₂的表达式为

$$s_2 = \pm \sqrt{1 - c_2^2} \tag{4-26}$$

最后利用双变量的反正切公式计算的。

机器人中采用双变量反正切函数atan2(y,x),而不用反正/余弦函数asin(x)和acos(x)

$$\operatorname{atan2}(y,x) = egin{cases} rctan(rac{y}{x}) & ext{if } x > 0, \ rctan(rac{y}{x}) + \pi & ext{if } x < 0 ext{ and } y \geq 0, \ rctan(rac{y}{x}) - \pi & ext{if } x < 0 ext{ and } y < 0, \ +rac{\pi}{2} & ext{if } x = 0 ext{ and } y > 0, \ -rac{\pi}{2} & ext{if } x = 0 ext{ and } y < 0, \ ext{undefined} & ext{if } x = 0 ext{ and } y = 0. \end{cases}$$

理由:

(1) 反正弦函数asin(x)的值域为[$-\pi/2$, $\pi/2$],反余弦函数acos(x)的值域为[$0,\pi$],而双变量反正切函数atan2(y,x)的值域为[$-\pi,\pi$].

机器人关节角度范围一般在[$-\pi$, π],采用atan2(y,x)更加方便、直接,避免了额外的角度范围判断。

(2) atan2(y,x)相对于asin(x)或acos(x),对输入变量x、y具有更好精度。 对于函数y=f(x),x的误差 Δ x引起y的误差为 Δ y \approx f'x) Δ x 若f(x)=asin(x),当x \in (-1,1)时,f'(x)= $\frac{1}{\sqrt{1-x^2}}$ \in [1,+ ∞)

若
$$f(x)=a\cos(x)$$
,当 $x \in (-1,1)$ 时, $f'(x)=\frac{-1}{\sqrt{1-x^2}} \in (-\infty,-1]$
若 $f(x)=a\tan(x)$,当 $x \in (-\infty,+\infty)$ 时, $f'(x)=\frac{1}{1+xx^2} \in (0,1]$

求解θ2

$$\theta_{2} = a \tan 2(s_{2}, c_{2})$$

$$x = l_{1}c_{1} + l_{2}c_{12}$$

$$= l_{1}c_{1} + l_{2}c_{1}c_{2} - l_{2}s_{1}s_{2}$$

$$= (l_{1} + l_{2}c_{2})c_{1} - (l_{2}s_{2})s_{1}$$
and
$$y = l_{1}s_{1} + l_{2}s_{12}$$

$$= l_{1}s_{1} + l_{2}s_{1}c_{2} + l_{2}c_{1}s_{2}$$

$$= (l_{1} + l_{2}c_{2})s_{1} + (l_{2}s_{2})c_{1}$$

$$\begin{cases} x = k_{1}c_{1} - k_{2}s_{1} \\ y = k_{1}s_{1} + k_{2}c_{1} \end{cases}$$

$$\begin{cases} k_{1} = l_{1} + l_{2}c_{2} \\ k_{2} = l_{2}s_{2} \end{cases}$$

Step 4. Define

$$\begin{cases} r = \sqrt{k_1^2 + k_2^2} \\ \gamma = A \tan 2(k_2, k_1) \end{cases}$$

$$\begin{cases} k_1 = r \cos(\gamma) \\ k_2 = r \sin(\gamma) \end{cases}$$

We have

$$\begin{cases} \frac{x}{r} = \cos(\gamma)\cos(\theta_1) - \sin(\gamma)\sin(\theta_1) \\ \frac{y}{r} = \cos(\gamma)\cos(\theta_1) + \sin(\gamma)\sin(\theta_1) \end{cases}$$

$$\begin{cases} \cos(\gamma + \theta_1) = \frac{x}{r} \\ \sin(\gamma + \theta_1) = \frac{y}{r} \end{cases}$$

$$\gamma + \theta_1 = A \tan 2(\frac{y}{r}, \frac{x}{r}) = A \tan 2(y, x)$$

$$\theta_1 = A \tan 2(y, x) - A \tan 2(k_2, k_1)$$

$$(4-28)$$

注意: 如果x=y=0,则是(4-28) 不确定,此时 θ_1 可取任意值。由上面式子能够求出 θ_1 , θ_2 , θ_3 的和:

$$\theta_2 + \theta_2 + \theta_3 = A \tan 2(s_{\varphi}, c_{\varphi}) = \varphi$$

(4-29)

由于 θ_1 , θ_2 已知,从而可以解出 θ_3 。

用代数方法求解运动学方程是求解操作臂的基本方法之一。

4.3.3 PUMA560 运动学逆解---解析法

根据机械关节变量和参数确定

$$T_6 = A_1 A_2 A_3 A_4 A_5 A_6$$

根据任务确定机械手的位姿。T₆为机械手末端在直角坐标系(参考坐标或基坐标)中的位姿,由任务确定。

由 T_6 和 A_i (i=1, 2, ..., 6),可求出相应的关节变量 θ_i 或 d_i 。

(1) 基本步骤

$$T_6 = A_1 A_2 A_3 A_4 A_5 A_6$$

分别用A; (i=1, 2, ..., 5) 的逆左乘上式有

$$A_{1}^{-1}T_{6} = {}^{1}T_{6} \qquad ({}^{1}T_{6} = A_{2}A_{3}A_{4}A_{5}A_{6})$$

$$A_{2}^{-1}A_{1}^{-1}T_{6} = {}^{2}T_{6} \qquad ({}^{2}T_{6} = A_{3}A_{4}A_{5}A_{6})$$

$$A_{3}^{-1}A_{2}^{-1}A_{1}^{-1}T_{6} = {}^{3}T_{6} \qquad ({}^{3}T_{6} = A_{4}A_{5}A_{6})$$

$$A_{4}^{-1}A_{3}^{-1}A_{2}^{-1}A_{1}^{-1}T_{6} = {}^{4}T_{6} \qquad ({}^{4}T_{6} = A_{5}A_{6})$$

$$A_{5}^{-1}A_{4}^{-1}A_{3}^{-1}A_{2}^{-1}A_{1}^{-1}T_{6} = {}^{5}T_{6} \qquad ({}^{5}T_{6} = A_{6})$$

根据上述五个矩阵方程对应元素相等,可得到若干个可解的代数方程,便可求出关节变量 θ_i 或 d_i 。

■ PUMA机器人按照Craig定义法建立的坐标系:

$$A_{1} = {}^{0}\mathbf{1}\mathbf{T} = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{2} = {}^{1}\mathbf{T} = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 1 & d_{2} \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{3} = {}^{1}\mathbf{T} = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{4} = {}^{3}\mathbf{T} = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{6} = {}^{5}\mathbf{G}\mathbf{T} = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{5} = {}^{4}\mathbf{S}\mathbf{T} = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; A_{6} = {}^{5}\mathbf{G}\mathbf{T} = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

连杆i	θί	α i-1	a _{i-1}	d _i
1	θ ₁ (90°)	0°	0	0
2	θ ₂ (0°)	-90°	0	d_2
3	θ ₃ (-90°)	0°	a ₂	0
4	θ ₄ (0°)	-90°	a ₃	d_4
5	θ ₅ (0°)	90°	0	0
6	θ ₆ (0°)	-90°	0	0

1. 首先解出 θ₁

$$A_1^{-1}T = A_2 A_3 A_4 A_5 A_6$$

$$\mathbf{A}_{1}^{-1}T = \begin{bmatrix} \cos\theta_{1} & \sin\theta_{1} & 0 & 0 \\ -\sin\theta_{1} & \cos\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} & \cos\theta_{1}p_{x} + \sin\theta_{1}p_{y} \\ t_{12} & t_{22} & t_{32} & -\sin\theta_{1}p_{x} + \cos\theta_{1}p_{y} \\ t_{13} & t_{23} & t_{33} & p_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} m_{11} & m_{21} & m_{31} & a_2 \cos\theta_2 + a_3 \cos(\theta_2 + \theta_3) - d_4 \sin(\theta_2 + \theta_3) \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} & -a_2 \sin\theta_2 - a_3 \sin(\theta_2 + \theta_3) - d_4 \cos(\theta_2 + \theta_3) \\ 0 & 0 & 0 \end{bmatrix}$$

$$-\sin\theta_1 p_x + \cos\theta_1 p_y = d_2$$

2. 求θ。

令上述矩阵方程两端的元素(1,4)和(3,4)分别对应相等,则有:

平方和为: $a_3c_3-d_4s_3=k$

其中
$$k = \frac{p_x^2 + p_y^2 + p_z^2 - d_2^2 - d_4^2 - a_2^2 - a_3^2}{2a_2}$$

解得

$$A_{1}^{-1}T = \begin{bmatrix} \cos\theta_{1} & \sin\theta_{1} & 0 & 0 \\ \sin\theta_{1} & \cos\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} t_{11} & t_{21} & t_{31} & \cos\theta_{1}p_{x} + \sin\theta_{1}p_{y} \\ t_{12} & t_{22} & t_{32} & -\sin\theta_{1}p_{x} + \cos\theta_{1}p_{y} \\ t_{13} & t_{23} & t_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{2}A_{3}A_{4}A_{5}A_{6} = \begin{bmatrix} m_{11} & m_{21} & m_{31} & a_{2}\cos\theta_{2} + a_{3}\cos(\theta_{2} + \theta_{3}) - d_{4}\sin(\theta_{2} + \theta_{3}) \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} & -a_{2}\sin\theta_{2} - a_{3}\sin(\theta_{2} + \theta_{3}) - d_{4}\cos(\theta_{2} + \theta_{3}) \end{bmatrix}$$

$$\begin{cases} c\theta_{1}p_{x} + s\theta_{1}p_{y} = a_{2}c\theta_{2} + a_{3}c(\theta_{2} + \theta_{3}) - d_{4}s(\theta_{2} + \theta_{3}) \\ p_{z} = -a_{2}s\theta_{2} - a_{3}s(\theta_{2} + \theta_{3}) - d_{4}c(\theta_{2} + \theta_{3}) \\ -s\theta_{1}p_{x} + c\theta_{1}p_{y} = d_{2} \end{cases} \rightarrow \begin{cases} -s\theta_{3}d_{4} + c\theta_{3}a_{3} = k \\ k = \frac{p_{x}^{2} + p_{y}^{2} + p_{z}^{2} - a_{2}^{2} - a_{3}^{2} - d_{2}^{2} - d_{4}^{2}}{2a_{2}} \end{cases}$$

$$\theta_3 = a \tan 2(a_3, d_4) - a \tan 2(k, \pm \sqrt{d_4^2 + a_3^2 - k^2})$$

3. 求 θ₂

$$A_3^{-1} A_2^{-1} A_1^{-1} T = A_4 A_5 A_6$$

$$A_{3}^{-1}A_{2}^{-1}A_{1}^{-1}T = \begin{bmatrix} c\theta_{1}c(\theta_{2}+\theta_{3}) & s\theta_{1}c(\theta_{2}+\theta_{3}) & -s(\theta_{2}+\theta_{3}) & -a_{2}c\theta_{3} \\ -c\theta_{1}s(\theta_{2}+\theta_{3}) & -s\theta_{1}s(\theta_{2}+\theta_{3}) & -c(\theta_{2}+\theta_{3}) & a_{2}s\theta_{3} \\ -s\theta_{1} & c\theta_{1} & 0 & -d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} m_{111} & m_{112} & -c\theta_4 s\theta_5 \\ m_{121} & m_{122} & c\theta_5 \\ m_{131} & m_{132} & s\theta_4 s\theta_5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{cases} c\theta_1 c(\theta_2 + \theta_3) p_x + s\theta_1 c(\theta_2 + \theta_3) p_y - s(\theta_2 + \theta_3) p_z - a_2 c\theta_3 = a_3 \\ -c\theta_1 s(\theta_2 + \theta_3) p_x - s\theta_1 s(\theta_2 + \theta_3) p_y - c(\theta_2 + \theta_3) p_z + a_2 s\theta_3 = d_4 \end{cases}$$

$$\theta_2 = a \tan 2((-a_3 - a_2 c \theta_3) p_z + (c \theta_1 p_x + s \theta_1 p_y)(a_2 s \theta_3 - d_4), (-d_4 - a_2 s \theta_3) p_z - (c \theta_1 p_x + s \theta_1 p_y)(-a_2 c \theta_3 - a_3)) - \theta_3$$

4. 求 θ₄

$$A_3^{-1} A_2^{-1} A_1^{-1} T = A_4 A_5 A_6$$

令两边元素分别对应相等,则可得

$$c\theta_1 c(\theta_2 + \theta_3) a_x + s\theta_1 c(\theta_2 + \theta_3) a_y - s(\theta_2 + \theta_3) a_z = -c\theta_4 s\theta_5$$
$$-s\theta_1 a_x + c\theta_1 a_y = s\theta_4 s\theta_5$$

$$\theta_{41} = a \tan 2(-s \theta_1 a_x + c \theta_1 a_y, -c \theta_1 c(\theta_2 + \theta_3) a_x - s \theta_1 c(\theta_2 + \theta_3) a_y + s(\theta_2 + \theta_3) a_z)$$

$$\theta_{42} = \theta_{41} + \pi$$

当 s_5 =0时,操作臂处于奇异位形。在奇异位形时,可以任意选取 θ_a 的值,再计算相应 θ_6 。

5. 求 θ₅

$$A_{4}^{-1}A_{3}^{-1}A_{2}^{-1}A_{1}^{-1}T = A_{5}A_{6}$$

$$A_{5}A_{6} = \begin{bmatrix} c\theta_{5}c\theta_{6} & -c\theta_{5}s\theta_{6} & -s\theta_{5} & 0\\ s\theta_{6} & c\theta_{6} & 0 & 0\\ s\theta_{5}s\theta_{6} & -s\theta_{5}c\theta_{6} & c\theta_{5} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} [c\theta_1c(\theta_2+\theta_3)c\theta_4+s\theta_1s\theta_4]a_x+[s\theta_1c(\theta_2+\theta_3)c\theta_4-c\theta_1s\theta_4]a_y-s(\theta_2+\theta_3)c\theta_4a_z=-s\theta_5\\ -c\theta_1s(\theta_2+\theta_3)a_x-s\theta_1s(\theta_2+\theta_3)a_y-c(\theta_2+\theta_3)a_z=c\theta_5 \end{cases}$$

$$\theta_5 = a \tan 2(s \theta_5, c \theta_5)$$

6. 求 θ₆

$$A_{5}^{-1}A_{4}^{-1}A_{3}^{-1}A_{2}^{-1}A_{1}^{-1}T = A_{6}$$

$$A_{6} = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0\\ 0 & 0 & 1 & 0\\ -s\theta_{6} & -c\theta_{6} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} -[c\theta_1c(\theta_2+\theta_3)s\theta_4-s\theta_1c\theta_4]n_x-[s\theta_1c(\theta_2+\theta_3)s\theta_4+c\theta_1c\theta_4]n_y+s(\theta_2+\theta_3)s\theta_4n_z=s\theta_6\\ \{[c\theta_1c(\theta_2+\theta_3)c\theta_4+s\theta_1s\theta_4]c\theta_5-c\theta_1s(\theta_2+\theta_3)s\theta_5\}n_x+\{[s\theta_1c(\theta_2+\theta_3)c\theta_4-c\theta_1s\theta_4]c\theta_5\\ -s\theta_1s(\theta_2+\theta_3)s\theta_5\}n_y-[s(\theta_2+\theta_3)c\theta_4c\theta_5+c(\theta_2+\theta_3)s\theta_5]n_z=c\theta_6 \end{cases}$$

$$\theta_6 = a \tan 2(s \theta_6, c \theta_6)$$

问题讨论:

■ 逆向运动学共有8组解:

PUMA560的运动反解可能存在8种解。

4.4 机器人运动学仿真

(1) Robotics Toolbox介绍

Robotics Toolbox是Peter Corke教授团队为MATLAB开发的机器人工具箱。

- ◆代码成熟,提供多种对比算法;
- ◆函数简明易懂,可重写函数进一步提 升效率;
- ◆代码开源,便于学习。

访问以下网址可获取工具箱及其文档: https://petercorke.com/toolboxes/robotics-toolbox/

a. 建立关节机器人

◆ Link/SerialLink: 建立和连接连杆

参数形式一:输入D-H参数矩阵 L=Link([theta,d,a,alpha,sigma,offset]) 其中sigma为1表示移动副,为0表示旋转副; offset表示初始偏移量。

```
例:
L1 = Link([ 0 0 0 -pi/2 ]
                          0 0]);
L2 = Link([ 0 5 0 pi/2 0 0]);
L3 = Link([ 0 5 0 0 1 0]);%移动副
L4 = Link([ 0 0 0 -pi/2 ]
                          0
                           0]);
L5 = Link([ 0 0 0 pi/2 ]
                           0]);
L6 = Link([ 0 5 0 ]
                         0
                             0]);
L3.qlim = [5 15]; %移动副需限定最大运动范围
robot = SerialLink([L1, L2, L3, L4, L5, L6]);
robot.name = 'Stanford Robot';
robot.plot([0 0 10 0 0 0]);
```


斯坦福机器人模型

参数形式二: 关键字形式输入D-H参数

L1 = Link('revolute','d',5,'a',0,'alpha',-pi/2);

其中revolute/prismatic表示建立旋转或移动副,也可以使

用revolute/prismatic函数替代,如:

L1 = Revolute('d',5,'a',0,'alpha',-pi/2);为建立旋转副

L2 = Prismatic('theta',0,'a',0,'alpha',0); 为建立移动副

例:

L(1) = Revolute('d', 0, 'a', 0, 'alpha', pi/2);

L(2) = Revolute('d', 0, 'a', 0.43, 'alpha', 0);

L(3) = Revolute('d', 0.15, 'a', 0.02, 'alpha', -pi/2)

L(4) = Revolute('d', 0.43, 'a', 0, 'alpha', pi/2);

L(5) = Revolute('d', 0, 'a', 0, 'alpha', -pi/2);

L(6) = Revolute('d', 0, 'a', 0, 'alpha', 0);

robot = SerialLink(L, 'name', 'Puma 560');

robot.plot([0 0 0 0 0 0]);

PUMA560机器人模型

b. 正运动学

◆fkine: 求解正运动学

T = robot.fkine(q)

其中: robot为建立的机器人模型

q表示广义关节坐标

函数输出笛卡尔位姿的齐次矩阵

```
例:
>> mdl_puma560; %读取内置puma560机器人模型
>> q = [0 0 0 0 0 0];
>> T = p560.fkine(q)
输出:
T =

1 0 0 0.4521
0 1 0 -0.15
0 0 1 0.4318
```

c.逆运动学

◆ikine: 求解逆运动学

```
q = robot.ikine(T)
```

其中: robot为建立的机器人模型

T表示笛卡尔坐标下的齐次矩阵

函数输出关节变量矩阵

d.关节轨迹规划

◆ jtraj: 求关节轨迹规划

[q, qd, qdd] = jtraj(q0, qf, m)

其中: q0和qf分别表示起点和终点关节坐标

m表示轨迹插值次数

输出q、qd、qdd表示轨迹关节坐标、速度、加速度

例: mdl_puma560; q0 = [0 0 0 0 0 0]; qf = [pi/2 pi/3 pi/4 pi pi/5 pi/6]; [q, qd, qdd] = jtraj(q0, qf, 50); p560.plot(q);

e.笛卡尔轨迹规划

p560.plot(q);

◆ ctraj: 求笛卡尔轨迹规划

T = ctraj(T0, Tf, m)

其中: TO和Tf分别表示起点和终点齐次坐标矩阵

m表示轨迹插值次数

输出T表示一些列轨迹点的齐次坐标矩阵

例: mdl_puma560; T0 = p560.fkine([0 0 0 0 0 0]); Tf = p560.fkine([pi/2 pi/3 pi/4 pi pi/5 pi/4]); T = ctraj(T0, Tf, 50); q = p560.ikine(T);

(2) 机器人正逆运动学仿真实验

1) 构建puma560机器人

构建机器人对象主要在于构建各个关节,而构建关节时,需要用到工具箱中的LINK函数。

- L = LINK([alpha A theta D])
- L =LINK([alpha A theta D sigma])
- L =LINK([alpha A theta D sigma offset])
- L =LINK([alpha A theta D], CONVENTION)
- L =LINK([alpha A theta D sigma], CONVENTION)
- L =LINK([alpha A theta D sigma offset], CONVENTION)

2) 机器人正运动学仿真实验

利用Robotics Toolbox中的fkine函数可以实现机器人运动学正问题的求

解。

TR = FKINE(ROBOT, Q)

定义关节坐标系的零点qz=[00000],那fkine(p560,qz)将返回最后一个 关节的平移的齐次变换矩阵。

a. 利用Robotics Toolbox中的ikine函数可以实现机器人运动学逆问题的求解。

其中ikine函数的调用格式:

Q = IKINE(ROBOT, T)

Q = IKINE(ROBOT, T, Q)

Q = IKINE(ROBOT, T, Q, M)

参数ROBOT为一个机器人对象,Q为初始猜测点(默认为0), T为要变换矩阵。

b. 运动轨迹规划

利用Robotics Toolbox提供的ctraj、jtraj和trinterp函数可以实现笛卡尔规划、关节空间规划和变换插值。

其中ctraj函数的调用格式:

TC = CTRAJ(T0, T1, N)

TC = CTRAJ(T0, T1, R)

```
其中jtraj函数的调用格式:
[Q QD QDD] = JTRAJ(Q0, Q1, N)
[Q QD QDD] = JTRAJ(Q0, Q1, N, QD0, QD1)
[Q QD QDD] = JTRAJ(Q0, Q1, T)
```

[Q QD QDD] = JTRAJ(Q0, Q1, T, QD0, QD1)

具体例子:

利用Robotics Toolbox提供的ctraj、jtraj和trinterp函数,进行笛卡尔规划、运动学仿真。

```
答案: 其中ctraj函数的调用格式:
    TC = CTRAJ(T0, T1, N)
    TC = CTRAJ(T0, T1, R)
    其中jtraj函数的调用格式:
    [Q QD QDD] = JTRAJ(Q0, Q1, N)
    [Q QD QDD] = JTRAJ(Q0, Q1, N, QD0, QD1)
    [Q QD QDD] = JTRAJ(Q0, Q1, T)
    [Q QD QDD] = JTRAJ(Q0, Q1, T, QD0, QD1)
```

程序:

1) 首先构建机器人,构建机器人的程序如下:

L1=link([0 0 pi 0 0], 'modified');

L2=link([-pi/2 0 0 0.1491 0], 'modified');

L3=link([0 0.4318 -pi/2 0 0], 'modified');

L4=link([-pi/2 0.0203 0 0.4318 0], 'modified');

L5=link([pi/2 0 0 0 0], 'modified');

L6=link([-pi/2 0 0 0 0],'modified');

r=robot({L1 L2 L3 L4 L5 L6});

r.name='PUMA560';%模型的名称

drivebot(r)

2)显示结果

3) 机器人正解:

```
qA=[0,0,0,0,0,0]; %起始点关节空间矢量
qB=[2,-1,-0.25,0,0,0]; %终止点关节空间矢量
t=[0:0.1:10]; %仿真时间
[q,qd,qdd]=jtraj(qA,qB,t); %关节空间规划
plot(r,q) %关节 3 的角速度、角速度和角加速度曲线
figure
subplot(1,3,1)
plot(t,q(:,3)) %关节 3 的位移曲线
subplot(1,3,2)
plot(t,qd(:,3)) %关节 3 的位移曲线
subplot(1,3,3)
plot(t,qdd(:,3)) %关节 3 的位移曲线
%机器人末端轨迹图像
T=fkine(r,q);
x(1,1:101)=T(1,4,:); y(1,1:101)=T(2,4,:); z(1,1:101)=T(2,4,:);
figure; plot3(x,y,z,'ko') %轨迹图像
axis([-1 1 -1 1 -1 1])
grid on
```

小结:

- 掌握机器人运动学逆解的基本概念
- 握机器人运动学逆解的常用方法
- 了解PUMA560机器人运动学逆解方法

实验1作业:

使用Matlab的Robotics Toolbox,对PUMA560机器人进行正运动学和逆运动学仿真实验分析:

- (1)在笛卡尔坐标系中进行轨迹规划,对正运动学进行仿真实验分析;
- (2) 在关节坐标系中进行轨迹规划,对逆运动学进行仿真实验分析。

4.4 移动机器人的运动学

□ 导向驱动方式的运动学模型

运动速度:

$$\begin{cases} \dot{x} = v \cos \theta \\ \dot{y} = v \sin \theta \\ \dot{\theta} = (v/L) \tan \varphi \end{cases}$$

前后轮约束:

$$\begin{cases} \dot{x}\sin(\theta+\varphi) - \dot{y}\cos(\theta+\varphi) - L\dot{\theta}\cos\varphi = 0\\ \dot{x}\sin\theta - \dot{y}\cos\theta = 0 \end{cases}$$

称为非完整性约束

□ 拖挂式移动机器人的运动学模型

图 3.4 具有一节拖车的拖挂式移动机器人

$$\dot{x}_1 = v \cos \theta_1$$

$$\dot{y}_1 = v \sin \theta_1$$

等式约束:

$$x_2 = x_1 - L_t \cos \theta_1 - L_2 \cos \theta_2$$

$$y_2 = y_1 - L_t \sin \theta_1 - L_2 \sin \theta_2$$

拖挂式移动机器人的运动学模型

$$\dot{x}_{1} = v \cos \theta_{1}$$

$$\dot{y}_{1} = v \sin \theta_{1}$$

$$\dot{\theta}_{1} = \frac{v \tan \varphi}{L_{1}}$$

$$\dot{x}_{2} = \left(v \cos(\theta_{1} - \theta_{2}) + L_{t} \frac{v \tan \varphi}{L_{1}} \sin(\theta_{1} - \theta_{2})\right) \cos \theta_{2}$$

$$\dot{y}_{2} = \left(v \cos(\theta_{1} - \theta_{2}) + L_{t} \frac{v \tan \varphi}{L_{1}} \sin(\theta_{1} - \theta_{2})\right) \sin \theta_{2}$$

$$\dot{\theta}_{2} = \frac{v}{L_{2}} \left(\sin(\theta_{1} - \theta_{2}) - \frac{L_{t}}{L_{1}} \tan \varphi \cos(\theta_{1} - \theta_{2})\right)$$

$$\dot{\varphi} = \omega$$