```
import numpy as np
import pandas as pd
from google.colab import files
uploaded = files.upload()
      Choose Files datafile_02.csv
     • datafile 02.csv(text/csv) - 988 bytes, last modified: 11/9/2022 - 100% done
     Saving datafile_02.csv to datafile_02.csv
import io
df = pd.read csv(io.BytesIO(uploaded['datafile 02.csv']))
print(df)
     0
                                                  9100
     1
                                                  7000
     2
                                                  7100
     3
                                                  8200
     4
                                                  3200
     5
                                                  9700
     6
                                                  8900
     7
                                                  5300
     8
                                                  6800
     9
                                                  8800
     10
                                                  7900
     11
                                                 10000
     12
                                                  9500
         Total Capacity in Eleventh Plan (MT) (2011-12) Proj. \
     0
                                                           3145
     1
                                                          6340
     2
                                                         10640
     3
                                                         10810
     4
                                                           6420
     5
                                                          7230
     6
                                                          6398
     7
                                                           5475
     8
                                                           6050
     9
                                                           6690
     10
                                                           9191
     11
                                                          9560
     12
                                                         12220
         Total Capacity in Eleventh Plan (MT) (2011-12) Ach.
     0
                                                           1635
     1
                                                           5070
     2
                                                          7650
     3
                                                          7293
     4
                                                           3100
     5
                                                          7972
     6
                                                           3334
     7
                                                          4098
     8
                                                           5097
     9
                                                           4190
```

Paradeep

Fnnora

Visakhapatnam

7640

8220

17∩∩

5425

6742

1/06

2

df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12)Proj.':'Traffic_Projected','Traffic ir
df

7100

8200

3000

10640

10810

6/20

7650

7293

2100

7100

6700

1200

[#] Preprocessing the dataset

[#] Renaming the columns

	Port	Traffic_Projected	Traffic_Achieved	Traffic in Eleventh Plan (MT) (2011- 12) %	Total_Capacity_F
0	Kolkata	1343	1223	9100	
1	Haldia	4450	3101	7000	
2	Paradeep	7640	5425	7100	
3	Visakhapatnam	8220	6742	8200	
4	Ennore	4700	1496	3200	
5	Chennai	5750	5571	9700	
6	Tuticorin	3172	2810	8900	
7	Cochin	3817	2010	5300	

Perparing the Calculations:

Traffic_Percent = round((df.Traffic_Achieved/df.Traffic_Projected)*100,2)

Traffic_Percent

0 91.06 1 69.69 2 71.01 3 82.02 4 31.83 5 96.89 6 88.59 7 52.66 8 67.49 9 87.54 10 79.07 99.56 11 12 95.13 dtype: float64

Total_Percent = round((df.Total_Capacity_Achieved/df.Total_Capacity_Projected)*100,2)
Total_Percent

0 51.99 1 79.97 2 71.90 3 67.47 4 48.29 5 110.26 6 52.11 7 74.85 84.25

```
9 62.63
10 48.45
11 66.95
12 71.12
dtype: float64
```

```
# Replacing the existing columns with newly created columns
df.rename(columns = {'Traffic in Eleventh Plan (MT) (2011-12) %':'Traffic_Percent%','Total Capacity
df.iloc[:,3:4] = Traffic_Percent
df.iloc[:,6:] = Total_Percent
df
```

	Port	Traffic_Projected	Traffic_Achieved	Traffic_Percent%	Total_Ca
0	Kolkata	1343	1223	91.06	
1	Haldia	4450	3101	69.69	
2	Paradeep	7640	5425	71.01	
3	Visakhapatnam	8220	6742	82.02	
4	Ennore	4700	1496	31.83	
5	Chennai	5750	5571	96.89	
6	Tuticorin	3172	2810	88.59	
7	Cochin	3817	2010	52,66	
8	NMPT	4881	3294	67.49	
9	Mormugao	4455	3900	87.54	
10	Mumbai	7105	5618	79.07	
11	JNPT	6604	6575	99.56	
12	Kandla	8672	8250	95.13	
4					>

```
df.shape
```

(13, 7)

Checking for null values

df.isnull().sum()

```
Port 0
Traffic_Projected 0
Traffic_Achieved 0
Traffic_Percent% 0
Total_Capacity_Projected 0
Total_Capacity_Achieved 0
Total_Percent% 0
dtype: int64
```

Summary of Dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13 entries, 0 to 12
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Port	13 non-null	object
1	Traffic_Projected	13 non-null	int64
2	Traffic_Achieved	13 non-null	int64
3	Traffic_Percent%	13 non-null	float64
4	Total_Capacity_Projected	13 non-null	int64
5	Total_Capacity_Achieved	13 non-null	int64
6	Total_Percent%	13 non-null	float64

dtypes: float64(2), int64(4), object(1)

memory usage: 856.0+ bytes

df.describe()

	Traffic_Projected	Traffic_Achieved	Traffic_Percent%	Total_Capacity_Proj
count	13.000000	13.000000	13.000000	13.0
mean	5446.846154	4308.846154	77.887692	7705.3
std	2133.280019	2212.894855	19.382398	2570.2
min	1343.000000	1223.000000	31.830000	3145.0
25%	4450.000000	2810.000000	69.690000	6340.0
50%	4881.000000	3900.000000	82.020000	6690.0
75%	7105.000000	5618.000000	91.060000	9560.0
max	8672.000000	8250.000000	99.560000	12220.0
4				•

#Finding Outliers anr replacing the outliers

import seaborn as sns

sns.boxplot(x='Port',y='Traffic_Projected',data=df)

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f7d0587c490>
        8000
# Check For Categorical Columns and do encoding
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
print(df.Port.value_counts())
df.Port = le.fit_transform(df.Port)
print(df.Port.value counts())
     Kolkata
                       1
     Haldia
                       1
     Paradeep
                       1
     Visakhapatnam
     Ennore
     Chennai
                       1
     Tuticorin
     Cochin
     NMPT
                       1
     Mormugao
                       1
     Mumbai
                       1
     JNPT
     Kandla
     Name: Port, dtype: int64
     6
           1
     3
           1
     10
           1
     12
           1
     2
           1
     0
           1
     11
           1
     1
           1
     9
           1
     7
           1
     8
           1
     4
           1
     5
           1
```

Name: Port, dtype: int64

Colab paid products - Cancel contracts here

✓ 0s completed at 7:21 PM

×