1. DOWNLOAD THE DATASET

#importing required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

1. LOADING THE DATA SET

#loading the dataset into the dataflow df=pd.read_csv('Churn_Modelling.csv')

#information about the dataset df

uı														
	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
0	1	1563 4602	Har grav e	619	Fran ce	Fe ma le	4 2	2	0.00	1	1	1	101348. 88	1
1	2	1564 7311	Hill	608	Spai n	Fe ma le	4	1	838 07.8 6	1	0	1	112542. 58	0
2	3	1561 9304	Oni o	502	Fran ce	Fe ma le	4 2	8	159 660. 80	3	1	0	113931. 57	1
3	4	1570 1354	Bon i	699	Fran ce	Fe ma le	3 9	1	0.00	2	0	0	93826.6	0
4	5	1573 7888	Mit chel l	850	Spai n	Fe ma le	4 3	2	125 510. 82	1	1	1	79084.1 0	0
9 9 9 5	9996	1560 6229	Obij iaku	771	Fran ce	Ma le	3 9	5	0.00	2	1	0	96270.6 4	0
9 9 9 6	9997	1556 9892	Joh nsto ne	516	Fran ce	Ma le	3 5	10	573 69.6 1	1	1	1	101699. 77	0
9	9998	1558	Liu	709	Fran	Fe ma	3	7	0.00	1	0	1	42085.5	1

	Row Num ber	Cust omer Id	Sur na me	Cred itSco re	Geo grap hy	Ge nd er	A g e	Te nu re	Bala nce	NumOf Produc ts	Has CrC ard	IsActiv eMemb er	Estima tedSala ry	Ex ite d
9 7		4532			ce	le	6						8	
9 9 9 8	9999	1568 2355	Sab bati ni	772	Ger man y	Ma le	4 2	3	750 75.3 1	2	1	0	92888.5	1
9 9 9	10000	1562 8319	Wal ker	792	Fran ce	Fe ma le	2 8	4	130 142. 79	1	1	0	38190.7 8	0

 $10000 \text{ rows} \times 14 \text{ columns}$

1. Perform below visualization

• Univariate Analysis

 $data = pd.DataFrame(df['NumOfProducts'].value_counts()) \\ data.plot.bar()$

plt.xlabel("Number of products")
plt.ylabel("Number of People")
plt.title("Number of people vs number of Products");

data=pd.DataFrame(df['Geography'].value_counts())
data.plot.pie(subplots='True')
plt.title("Number of people living in each geoagraphy");

Number of people living in each geoagraphy

df['Age'].value_counts().sort_index().plot.line()
plt.vlabel("Age")
plt.ylabel("number of people")
plt.title("Age vs Count of people");

• Bivariate Analysis • Multivariate Analysis

```
df['HasCrCard'] = df['HasCrCard'].astype('category')
df['IsActiveMember'] = df['IsActiveMember'].astype('category')
df['Exited'] = df['Exited'].astype('category')
df = df.drop(columns=['RowNumber', 'CustomerId', 'Surname'])
```

import seaborn as sns

```
categorical = df.drop(columns=['CreditScore', 'Age', 'Tenure', 'Balance', 'EstimatedSalary']) rows = int(np.ceil(categorical.shape[1] / 2)) - 1
```

```
# create sub-plots anf title them
fig, axes = plt.subplots(nrows=rows, ncols=2, figsize=(10,6))
axes = axes.flatten()

for row in range(rows):
    cols = min(2, categorical.shape[1] - row*2)
    for col in range(cols):
        col_name = categorical.columns[2 * row + col]
        ax = axes[row*2 + col]
        sns.countplot(data=categorical, x=col_name, hue="Exited", ax=ax);
plt.tight_layout()
```


#information about the dataset df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 11 columns):

#	Column	Non-Null Count Dtype
0	CreditScore	10000 non-null int64
1	Geography	10000 non-null object
2	Gender	10000 non-null object
3	Age	10000 non-null int64
4	Tenure	10000 non-null int64
5	Balance	10000 non-null float64
6	NumOfProd	ucts 10000 non-null int64
7	HasCrCard	10000 non-null category
8	IsActiveMe	mber 10000 non-null category
9	EstimatedSa	lary 10000 non-null float64

10 Exited 10000 non-null category

dtypes: category(3), float64(2), int64(4), object(2)

memory usage: 654.8+ KB

#statistical analysis

df.describe()

	CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary
count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
mean	650.528800	38.921800	5.012800	76485.889288	1.530200	100090.239881
std	96.653299	10.487806	2.892174	62397.405202	0.581654	57510.492818
min	350.000000	18.000000	0.000000	0.000000	1.000000	11.580000
25%	584.000000	32.000000	3.000000	0.000000	1.000000	51002.110000
50%	652.000000	37.000000	5.000000	97198.540000	1.000000	100193.915000
75%	718.000000	44.000000	7.000000	127644.240000	2.000000	149388.247500
max	850.000000	92.000000	10.000000	250898.090000	4.000000	199992.480000

5. Handle the Missing Values

```
df.isna().sum()
```

CreditScore 0 Geography 0 Gender 0 Age 0 Tenure 0 Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary 0 Exited 0

dtype: int64 **for** i **in** df:

if df[i].dtype=='object' or df[i].dtype=='category':

print("Number of unique values of "+i+" are "+str(len(set(df[i])))+" Values are "+str(set(df[i])))

Number of unique values of Geography are 3 Values are {'Spain', 'France', 'Germany'}

Number of unique values of Gender are 2 Values are {'Male', 'Female'}

Number of unique values of HasCrCard are 2 Values are {0, 1}

Number of unique values of IsActiveMember are 2 Values are {0, 1}

Number of unique values of Exited are 2 Values are {0, 1}

1. Find the outliers and replace the outliers

df.skew()

 CreditScore
 -0.071607

 Age
 1.011320

 Tenure
 0.010991

 Balance
 -0.141109

 NumOfProducts
 0.745568

 EstimatedSalary
 0.002085

dtype: float64

sns.boxplot(df["Age"])

<matplotlib.axes._subplots.AxesSubplot at 0x7f9dab43c410>


```
q1= df["Age"].describe()["25%"]
q3= df["Age"].describe()["75%"]
q1
32.0
q3
44.0
iqr=q3-q1
iqr
12.0
l_b=q1-(1.5*iqr)
```

 $u_b=q3+(1.5*iqr)$

l_b

14.0

 u_b

62.0

 $df[df["Age"] < l_b]$

	CreditS core	Geogra phy	Gen der	A ge	Ten ure	Bala nce	NumOfPro ducts	HasCr Card	IsActiveMe mber	EstimatedS alary	Exit ed	
df[df["Age"]>u_b].head()												
	CreditS core	Geogra phy	Gen der	A ge	Ten ure	Balan ce	NumOfPro ducts	HasCr Card	IsActiveM ember	Estimated Salary	Exit ed	
58	511	Spain	Fem ale	66	4	0.00	1	1	0	1643.11	1	
85	652	Spain	Fem ale	75	10	0.00	2	1	1	114675.75	0	
10 4	670	Spain	Fem ale	65	1	0.00	1	1	1	177655.68	1	
15 8	646	France	Fem ale	73	6	97259 .25	1	0	1	104719.66	0	
18 1	510	France	Male	65	2	0.00	2	1	1	48071.61	0	

df.dtypes

CreditScore int64 Geography object Gender object int64 Age Tenure int64 float64 Balance NumOfProducts int64 HasCrCard category IsActiveMember category EstimatedSalary float64 Exited category

dtype: object

outlier_list=list(df[df["Age"]>u_b]["Age"])

outlier_list

[66,

75,

65,

72,

67,

67,

79,

80,

68,

75,

66,

66, 70,

63,

72,

64,

64, 70,

67, 82,

63,

69,

65,

69, 64,

65,

74,

67, 66,

67,

63,

70, 71,

72,

67,

74,

76,

66, 63,

66, 68,

67,

63,

71,

66, 69,

73,

65,

66,

64,

69,

64, 77,

74,

65,

70,

67,

69,

69,

74,

74,

64,

63,

63,

70,

74,

65,

72,

77,

66, 65,

74,

88,

63,

71,

63,

64,

67, 70,

68,

72,

71, 66,

75,

67,

73, 69,

76,

63,

85,

67,

74,

76,

66, 69,

66,

72, 63,

71,

63,

74,

67, 72,

72,

66,

84,

71,

66, 63,

74, 69,

84,

67,

66,

77,

70,

67,

79,

67,

76,

73,

66,

67,

64,

73,

76, 72,

64,

71,

63,

70,

65, 66,

65,

80, 66,

63,

63,

63,

63, 66,

74,

69,

63,

64,

76, 75,

68,

69,

77,

64,

66,

74,

71, 67,

68,

64,

68,

70, 64,

75,

66,

64,

78,

65,

74,

64, 64,

77, 79,

70,

81,

64,

68,

68,

63,

79,

66,

64,

70, 69,

71,

72,

66,

68,

63,

71, 72,

72,

64,

78, 75,

65,

65, 67,

63, 68,

71,

73,

64, 66,

71,

69,

71,

66,

76, 69,

73,

64,

64,

75, 73,

71,

72,

63,

67,

68,

73,

67,

64,

63,

92, 65,

75,

64,

66,

64,

66,

67, 77,

92,

67,

63, 66,

66,

68,

65,

72, 71,

76,

63, 67,

67,

66, 67,

63,

65,

70, 72,

77, 74,

72, 73,

77,

67, 71,

64,

72, 81,

76,

69, 68,

74,

64, 64,

71,

68,

63,

67, 63,

64,

76,

63,

63,

68,

67,

72, 70,

81,

66,

68,

71,

66,

63,

75,

69,

64,

69,

70,

71,

71,

66, 70,

63,

64,

65,

63, 67,

71,

67, 65,

66,

63,

73, 66,

64,

72, 71,

69,

67,

64,

81,

73,

63, 67,

74, 83,

69,

71, 78,

63, 70,

69,

72, 70,

63,

74,

80,

69,

72, 67,

76,

71,

67, 71,

```
78,
63,
63,
68,
64,
70,
78,
69,
68,
64,
64,
77,
77]
outlier_dict={}.fromkeys(outlier_list,u_b)
outlier_dict
{66: 62.0,
75: 62.0,
65: 62.0,
73: 62.0,
72: 62.0,
67: 62.0,
79: 62.0,
80: 62.0,
68: 62.0,
70: 62.0,
63: 62.0,
64: 62.0,
82: 62.0,
69: 62.0,
74: 62.0,
71: 62.0,
76: 62.0,
77: 62.0,
88: 62.0,
85: 62.0,
84: 62.0,
78: 62.0,
81: 62.0,
92: 62.0,
83: 62.0}
df["Age"] \hbox{--} df["Age"] \hbox{--} replace (outlier\_dict)
sns.boxplot(df["Age"])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f9dab23a9d0>

7. Check for Categorical columns and perform encoding.

```
df.isnull().any()
```

CreditScore False Geography False False Gender Age False Tenure False Balance False NumOfProducts False False HasCrCard IsActiveMember False EstimatedSalary False Exited False

dtype: bool

from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()

for i in df:

if df[i].dtype=='object' or df[i].dtype=='category':
 df[i]=encoder.fit_transform(df[i])

1. Split the data into dependent and independent variables

x=df.iloc[:,:-1]
x.head()

CreditSc	Geogra	Gend	Ag	Tenu	Balanc	NumOfPro	HasCrC	IsActiveMe	EstimatedS
ore	phy	er	e	re	e	ducts	ard	mber	alarv

	CreditSc ore	Geogra phy	Gend er	Ag e	Tenu re	Balanc e	NumOfPro ducts	HasCrC ard	IsActiveMe mber	EstimatedS alary
0	619	0	0	42. 0	2	0.00	1	1	1	101348.88
1	608	2	0	41. 0	1	83807. 86	1	0	1	112542.58
2	502	0	0	42. 0	8	159660 .80	3	1	0	113931.57
3	699	0	0	39. 0	1	0.00	2	0	0	93826.63
4	850	2	0	43. 0	2	125510 .82	1	1	1	79084.10

y=df.iloc[:,-1] y.head()

0 1

1 0

2 1

3 0

4 0

Name: Exited, dtype: int64

1. Scale the independent variables

from sklearn.preprocessing import StandardScaler

```
scaler=StandardScaler()
x=scaler.fit_transform(x)
x
array([[-0.32622142, -0.90188624, -1.09598752, ..., 0.64609167, 0.97024255, 0.02188649],
[-0.44003595, 1.51506738, -1.09598752, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.53679418, -0.90188624, -1.09598752, ..., 0.64609167, -1.03067011, 0.2406869],
```

...,

[0.60498839, -0.90188624, -1.09598752, ..., -1.54776799, 0.97024255, -1.00864308],

 $[\ 1.25683526,\ 0.30659057,\ 0.91241915,...,\ 0.64609167,$

-1.03067011, -0.12523071],

[1.46377078, -0.90188624, -1.09598752, ..., 0.64609167,

-1.03067011, -1.07636976]])

1. Split the data into training and testing

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.28)

 x_train .shape

(7199, 10)

y_train.shape

(7199,)

 $x_test.shape$

(2801, 10)

y_test.shape

(2801,)