Lagrange 插值多项式外推时的误差公式与数值实验

谷正阳¹ (1.学号18308045)

摘 要: 拉格朗日插值法是一种常用于外推的方法,但是教材中并未给出其误差项的证明,所以给出*证明*。并直接验证,和通过大 O 表示,含测量误差的误差项推论间接验证。

关键词: 拉格朗日外推估计; 误差项; 大〇表示; 含测量误差的误差项

Error Formula and Numerical Experiment of Lagrange Interpolation

Polynomial Extrapolation

Zhengyang Gu¹ (1.Student ID 18308045)

Abstract: Lagrange interpolation is a method commonly used for extrapolation, but the textbook does not give a proof of its error term, so the proof is given here. And directly verify it and indirectly verify it using corollaries related to big O notation and error term involving measure error.

Key words: Lagrange extrapolation; error term; big O notation; error term involving measure error

引言

在数值计算领域中,外推法是一类用于根据变量之间 的关系,估计超出原始观察范围值的估计。其中拉格朗日插 值法是一种常用于外推的方法。

1 拉格朗日插值法

在数值分析领域中,拉格朗日插值法是以法国十八世纪数学家约瑟夫·拉格朗日命名的一种多项式插值方法。

1.1 拉格朗日系数多项式

假设 (x_i, y_i) , $0 \le i \le N$ 为已知的 N+1 个点,并且假设 $(x, P_N(x))$ 为待估计的点,则拉格朗日系数多项式[2]有如下形式:

$$P_{N}(x) = \sum_{k=0}^{N} y_{k} L_{N,k}(x)$$
(1.1.1)

其中:

$$L_{N,k}(x) = \frac{\prod_{i=0, i \neq k}^{N} (x - x_i)}{\prod_{i=0, i \neq k}^{N} (x_k - x_i)}$$
(1.1.2)

可以利用该多项式,进行插值估计或外推估计[2]。

1.2 拉格朗日多项式估计

应用(1.1.1)和(1.1.2)进行插值估计或外推估计,有如下定理[2]。

定理1. 假设
$$f \in C^{N+1}[a,b]$$
, 且有:

$$x_0, x_1, \dots, x_N \in [a,b]$$
.

如果
$$x \in [a,b]$$
, 那么有:

$$f(x) = P_{N}(x) + E_{N}(x)$$
 (1.2.1)

这里 $P_N(x)$ 是一个可以被用来估计f(x)的多项式:

$$f(x) \approx P_N(x) = \sum_{k=0}^{N} f(x_k) L_{N,k}(x)$$
 (1.2.2)

误差项 $E_N(x)$ 有如下形式:

$$E_N(x) = \frac{\prod_{i=0}^{N} (x - x_i) f^{(N+1)}(c)}{(N+1)!}$$
 (1.2.3)

下面着重对于误差项 $E_N(x)$ 进行证明。

1.2.1 拉格朗日估计误差项在 N=1 且插值情况下的证明

由于拉格朗日插值误差项 $E_N(x)$ 在 N=1 的情况[2] 比较简单,可能可以对一般的情况做出启发,所以先考虑这种特殊的情况。

证明1. 考虑 N=1 的情况, 定义如下特殊的函数 g(t):

$$g(t) = f(t) - P_1(t) - E_1(x) \frac{(t - x_0)(t - x_1)}{(x - x_0)(x - x_1)}$$
(1.2.4)

注意,其中x,x₀,x₁对于t是常数,且这x,x₀,x₁分别是g(t)的零点:

$$g(x) = f(x) - P_1(x) - E_1(x) \frac{(x - x_0)(x - x_1)}{(x - x_0)(x - x_1)}$$
$$= f(x) - P_1(x) - E_1(x)$$
$$= 0$$

(1.2.

$$g(x_0) = f(x_0) - P_1(x_0) - E_1(x) \frac{(x_0 - x_0)(x_0 - x_1)}{(x - x_0)(x - x_1)}$$
$$= f(x_0) - P_1(x_0)$$
$$= 0$$

(1.2.6)

$$g(x_1) = f(x_1) - P_1(x_1) - E_1(x) \frac{(x_1 - x_0)(x_1 - x_1)}{(x - x_0)(x - x_1)}$$
$$= f(x_1) - P_1(x_1)$$
$$= 0$$

(1.2.7)

假设 x 在开区间 (x_0,x_1) 中。对 g(t) 在区间 $[x_0,x]$ 应用罗尔定理,产生一个值 d_0 ,满足 $x_0 < d_0 < x$ 且有:

$$g'(d_0) = 0 (1.2.8)$$

对 g(t) 在区间 $[x,x_1]$ 应用罗尔定理,则可以得到存在一个 d_1 , 满足 $x < d_1 < x_1$ 且有:

$$g'(d_1) = 0 (1.2.9)$$

(1.2.8)(1.2.9)表示 g'(t) 有零点 d_0 和 d_1 。对 g'(t) 在区间 $[d_0,d_1]$ 应用罗尔定理,得到存在一个值 c 满足 $d_0 < c < d_1$ 且有:

$$g''(c) = 0 (1.2.10)$$

利用(1.2.4)计算 g'(t) 和 g''(t):

$$g'(t) = f'(t) - P_1'(t) - E_1(x) \frac{(t - x_0) + (t - x_1)}{(x - x_0)(x - x_1)}$$
(1.2.11)

求解 g''(t) 时,考虑一个隐含条件 $P_1(t)$ 是次数为

N=1的多项式,因此其二阶导数 $P_1''(t)=0$ 。

$$g''(t) = f''(t) - 0 - E_1(x) \frac{2}{(x - x_0)(x - x_1)}$$
(1.2.12)

(1.2.12)带入t = c 并联立(1.2.10)得:

$$0 = f''(c) - E_1(x) \frac{2}{(x - x_0)(x - x_1)}$$
 (1.2.13)

(1.2.13)解出 $E_1(x)$ 得到与(1.2.3)对应的误差项形式:

$$E_1(x) = \frac{\prod_{i=0}^{1} (x - x_i) f^{(2)}(c)}{2!}$$
 (1.2.14)

1.2.2 拉格朗日估计误差项在一般情况下的证明

根据上面特殊情况的启发,发现每次对一个函数的若干区间使用罗尔定理,得到该函数导数的零点数是原函数零点数减 $\mathbf{1}$,考虑也可以多次使用罗尔定理,最终剩下一个零点,来求得 $E_N(x)$ 。

定义如下特殊的函数 g(t):

$$g(t) = f(t) - P_N(t) - E_N(x) \frac{\prod_{i=0}^{N} (t - x_i)}{\prod_{i=0}^{N} (x - x_i)}$$
(1.2.15)

设m是 x, x_0, x_1, \dots, x_N 中的最小值,M是最大值。

引理1. 对自然数 $n \perp n \leq N+1$ 存在 N+2-n 个数 $\xi_0, \xi_1, \dots, \xi_{N+1-n} \in [m, M]$,且是 $g^{(n)}(t)$ 的零点。证明2. 对 n 作归纳证明。

归纳基 当n=0时,有:

$$g(x) = f(x) - P_N(x) - E_N(x) \frac{\prod_{i=0}^{N} (x - x_i)}{\prod_{i=0}^{N} (x - x_i)} \qquad \qquad \frac{d^{n+1}(\prod_{i=0}^{n} (t - x_i))}{dt^{n+1}} = (n+1)!$$

$$= f(x) - P_N(x) - E_N(x) = 0$$

$$(1.2.16) \qquad \qquad \prod_{i=0}^{n} (t - x_i) = a_0 t^{n+1} + a_1 t^n + a_1$$

对任意整数 j,满足 $0 \le j \le N$,有:

当且仅当连乘中每一项贡献
$$t$$
 ,才能凑出 t^{n+1} ,因而易
$$g(x_j) = f(x_j) - P_N(x_j) - E_N(x) \frac{\displaystyle\prod_{i=0}^N (x_j - x_i)}{\displaystyle\prod_{i=0}^N (x - x_i)}$$
 得 $a_0 = 1$,而其他含 t 项 t 的次数均为正整数因而有:
$$d^{n+1}(\prod_{i=0}^n (t - x_i)) - d^{n+1}(\prod_{i=0}^n (t - x_i)) = 1 \times (n+1) \times n \times \cdots \times 1 = (n+1)!$$

$$= 0$$
 (1.2.21)

(1.2.17)

即存在 N+2 个数 $x, x_0, x_1, \dots, x_N \in [m, M]$ 是 g(t)的零点。

归纳步 对自然数 $k \perp k \leq N$, 假设 n = k 时存在 $g^{(k)}(t)$ 的零点

对于 n = k + 1 , 对 $a_0, a_1, \dots, a_{N+1-k}$ 从小到大排序 产生一个新的序列 $c_0, c_1, \dots, c_{N+1-k}$ 。则这 N+2-k 个 零点可以把区间 $[c_0, c_{N+1-k}]$ 分成 N+1-k 个区间 N 的多项式,因此其 N+1 阶导数 $P^{(N+1)}(t)=0$ 。在 $[c_i, c_{i+1}]$, 其中自然数 $i \le N - k$ 。 对 $g^{(k)}(t)$ 每个区间 (1.2.22)中代入 $t = \xi_0$: $[c_i,c_{i+1}]$ 应用罗尔定理,产生N+1-k个数 d_i ,满足 $c_i < d_i < c_{i+1}$ 且有:

$$g^{(k+1)}(d_i) = 0 (1.2.18)$$

存在 N+1-k 个数 $d_0, d_1, \dots, d_{N-k} \in [m, M]$ 是 $g^{(k+1)}(t)$ 的零点。

引理2. 对自然数 n ,有:

$$\frac{\mathrm{d}^{n+1}(\prod_{i=0}^{n} (t - x_i))}{\mathrm{d}t^{n+1}} = (n+1)!$$
 (1.2.19)

$$\prod_{i=0}^{n} (t - x_i) = a_0 t^{n+1} + a_1 t^n + \dots + a_n \qquad (1.2.20)$$

当且仅当连乘中每一项贡献t,才能凑出 t^{n+1} ,因而易

$$\frac{d^{n+1}(\prod_{i=0}^{n} (t - x_i))}{dt^{n+1}} = 1 \times (n+1) \times n \times \dots \times 1 = (n+1)!$$
(1.2.21)

下面通过引理 1 引理 2 证明 $E_N(x)$ 满足(1.2.3)形式。

证明4. 由引理 $1 \leq n = N + 1$ 时,存在 $1 \wedge 2$ 个数: $\xi_0 \in [m,M]$, $\xi_0 \in [m,M]$, $\xi_0 \in [m,M]$

现在回到(1.2.15)计算 $g^{(N+1)}(t)$, 由引理 2:

$$g^{(N+1)}(t) = f^{(N+1)}(t) - 0 - E_N(x) \frac{(N+1)!}{\prod_{i=0}^{N} (x - x_i)}$$
(1.2.22)

在(1.2.22)中,我们使用了隐含条件 $P_N(t)$ 是次数为

$$0 = f^{(N+1)}(\xi_0) - E_N(x) \frac{(N+1)!}{\prod_{i=0}^{N} (x - x_i)}$$
(1.2.23)

(1.2.23)解出 $E_N(x)$ 得到(1.2.3)对应的误差项形式:

$$E_N(x) = \frac{\prod_{i=0}^{N} (x - x_i) f^{(N+1)}(\xi_0)}{(N+1)!}$$
(1.2.24)

1.2.3 拉格朗日估计误差项的验证

考虑 (1.2.3) $E_N(x)$ 的形式中,存在不确定的 $f^{(N+1)}(\xi_0)$ 。所以为了便于验证,将实验中被估计的函数设为 N+1 次多项式,给 N+1 个已知点,这样 $f^{(N+1)}(\xi_0)$ 是一个可知的常数。以下结果均保留四位小数。

表1. 拉格朗日估计误差项的验证

	f(x)	$P_N(x)$	$E_N(x)$
Test1	-0.0492	-0.3352	0.2860
Test2	-0.8809	-0.8817	8.6758e-04
Test3	0.5866	-13.2286	13.8152
Test4	-0.3605	-0.0663	-0.2941
Test5	-1.2095	-1.2088	-6.1920e-04

可以看出,满足 $f(x) \approx P_N(x) + E_N(x)$ 。

2 拉格朗日估计误差项的性质及推论

2.1 拉格朗日多项式误差的大 O 表示

观察(1.2.3)的形式,可以发现用拉格朗日估计在一定条件下, $E_{\scriptscriptstyle N}(x)=O(x^{\scriptscriptstyle N+1})$ 。

性质1. 若 $x\in[a,b]$,且对任意整数 i,满足 $0\leq i\leq N$, 有 $x,x_i\in[a,b]$,且在 $\left[a,b\right]$ 内 $f^{^{(N+1)}}(\xi_0)$ 有界,则有:

$$E_N(x) = O(x^{N+1})$$
 (2.1.1)

2.1.1 拉格朗日多项式误差的大 O 表示证明

证明5. 设 x_i 中最小值为m,最大值为M,所以有:

$$|x-x_i| \le \max\{|x-m|, |x-M|\}$$

 $\le |x| + \max\{|m|, |M|\}$

所以有当|x|≥1时:

$$\left| \prod_{i=0}^{N} (x - x_i) \right| \le (|x| + \max\{|m|, |M|\})^{N+1}$$

$$\le \max\{|m|, |M|, 1\}^{N+1} (|x| + 1)^{N+1}$$

$$\le (2 \max\{|m|, |M|, 1\})^{N+1} |x|^{N+1}$$

又因为 $f^{(N+1)}(\xi_0)$ 有界,设其中一个界B。所以有:

$$|E_N(x)| \le \frac{(2\max\{|m|,|M|,1\})^{N+1}B}{(N+1)!} |x|^{N+1}$$

$$\mathbb{P} E_N(x) = O(x^{N+1}) \ .$$

2.1.2 拉格朗日多项式误差的大 O 表示验证

因为余弦函数 $\cos x$ 的 n 阶导数为 $\cos(x + n\pi/2)$,

其有界1,方便运算,所以选用 $\cos x$ 进行验证。

图1. N=4 时的 x - $(E_4(x))^{(1/5)}$ 图像

图2. N=5 时的 x - $(E_5(x))^{(1/6)}$ 图像

图3. N = 6 时的 $x - (E_r(x))^{(1/7)}$ 图像

可以看出,都是很接近线性的次线性,验证了大O表示的正确性。

2.2 含测量误差的点进行拉格朗日估计的误差项

考虑到拉格朗日估计的使用场景,有的时候是通过测量值获得测量得到,可能会有测量误差。所以在此引入误差。 **推论1.** 若 N+1 个点有 M+1 个点函数值精确知道,剩下点 不精确知道。即设 $M \le N$,且设 N+1 个点 $(x_0,y_0),\cdots,(x_M,y_M),(x_{M+1},y_{M+1}),\cdots,(x_N,y_N)$,且有:

$$f(x_k) = \begin{cases} y_k, & 0 \le k \le M \\ y_k + y_k, & M+1 \le k \le N \end{cases}$$
 (2.2.1)

则有:

$$f(x) = \sum_{k=0}^{N} y_k L_{N,k}(x) + \sum_{k=M+1}^{N} {}_{k} L_{N,k}(x) + E_{N}(x)$$
(2.2.2)

设:

$$P_N'(x) = \sum_{k=0}^{N} y_k L_{N,k}(x)$$
 (2.2.3)

$$E'_{N}(x) = \sum_{k=M+1}^{N} {}_{k}L_{N,k}(x) + E_{N}(x)$$
 (2.2.4)

川右.

$$f(x) = P'_{N}(x) + E'_{N}(x)$$
 (2.2.5)

证明6. 结合(1.2.1)(1.2.2)(2.2.1),易证。

2.2.1 含测量误差进行拉格朗日估计的误差项验证

为验证该推论,可以找一个导数易算且易算界的函数。 在此选用 $\ln x$,其 n 阶导数是 $(-1)^{(n-1)}(n-1)!/x^n$,其为单调函数,存在界在 $\min\{\min_{0\leq i\leq N}x_i,x\}$ 和 $\max\{\max_{0\leq i\leq N}x_i,x\}$ 之中取。假设测量相对误差不超过0.001。假设 E_{11} 和 E_{22} 为考虑了测量误差的边界, E_1 和 E_2 是未考虑测量误差的边界。

考虑 $-0.001 \le e = (y - f(x)) / f(x) \le 0.001$,根据(2.2.1)就有:

$$_{i} = \frac{y_{i}}{\varrho + 1} - y_{i}$$

所以 $_i$ / $y_i \in [1/1.001-1,1/0.999-1]$ 。根据 (2.2.4),可知考虑了误差的边界应为:

$$E_{11} = \sum_{k=M+1}^{N} e_{11}^{k} + E_{1}$$

$$E_{22} = \sum_{k=M+1}^{N} e_{22}^{k} + E_{2}$$

其中.

$$e_{11}^{k} = \begin{cases} (1/1.001 - 1)y_{k}L_{N,k}, & y_{k}L_{N,k} > 0\\ (1/0.999 - 1)y_{k}L_{N,k}, & y_{k}L_{N,k} \le 0 \end{cases}$$

$$e_{22}^{k} = \begin{cases} (1/0.999 - 1)y_{k}L_{N,k}, & y_{k}L_{N,k} > 0\\ (1/1.001 - 1)y_{k}L_{N,k}, & y_{k}L_{N,k} \leq 0 \end{cases}$$

表2. 不考虑测量误差

	f(x)	$P_N'(x) + E_1$	$P_N'(x) + E_2$
Test1	3.1189	1.1958e+03	1.2444e+03
Test2	3.0603	3.7799	5.5529
Test3	2.7875	2.7704	2.8213

表3. 考虑测量误差

	f(x)	$P_N'(x) + E_{11}$	$P_N'(x) + E_{22}$
Test1	3.1189	-9.9691e+03	1.2409e+04
Test2	3.0603	0.2483	9.0845
Test3	3.2015	2.5235	3.0682

结果发现,Test2,Test3表明不考虑测量误差给出范围可能是错的也可能是对的,而考虑测量误差则真实值在其范围内。Test1表明细微的测量误差,可能造成极大的影响。

3 结论

通过直接的验证,和用推论间接验证,均符合推导出的误差公式(1.2.3)。所以验证误差公式结果是没有错误的。

参考文献:

- [1] Varga R S . Extrapolation methods: theory and practice[J]. Numerical Algorithms, 1993, 4(2):305-305.
- [2] Mathews J H, Fink K D. Numerical methods using MATLAB[M]. Upper Saddle River, NJ: Pearson prentice hall, 2004.