

日本国特許庁
PATENT OFFICE
JAPANESE GOVERNMENT

JC658 U.S. PTO
09/558588
04/26/00

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。
This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日
Date of Application: 1999年 4月27日

出願番号
Application Number: 平成11年特許願第120121号

出願人
Applicant(s): 日立電線株式会社

2000年 1月14日

特許庁長官
Commissioner,
Patent Office

近藤 隆彦

出証番号 出証特平11-3093218

【書類名】 特許願
【整理番号】 HD110345
【提出日】 平成11年 4月27日
【あて先】 特許庁長官 殿
【国際特許分類】 H01L 33/00
【請求項の数】 14
【発明者】
【住所又は居所】 茨城県日立市日高町5丁目1番1号 日立電線株式会社
日高工場内
【氏名】 柴田 勝治
【発明者】
【住所又は居所】 茨城県土浦市木田余町3550番地 日立電線株式会社
アドバンスリサーチセンタ内
【氏名】 柴田 真佐知
【発明者】
【住所又は居所】 茨城県土浦市木田余町3550番地 日立電線株式会社
アドバンスリサーチセンタ内
【氏名】 今野 泰一郎
【発明者】
【住所又は居所】 茨城県土浦市木田余町3550番地 日立電線株式会社
アドバンスリサーチセンタ内
【氏名】 金田 直樹
【発明者】
【住所又は居所】 茨城県日立市日高町5丁目1番1号 日立電線株式会社
日高工場内
【氏名】 野口 雅弘
【特許出願人】
【識別番号】 000005120
【氏名又は名称】 日立電線株式会社

【代理人】

【識別番号】 100068021

【弁理士】

【氏名又は名称】 絹谷 信雄

【手数料の表示】

【予納台帳番号】 014269

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 A₁G_aI_nP系発光素子用エピタキシャルウェハ及び発光素子

【特許請求の範囲】

【請求項1】 導電性を有する基板上に、少なくともA₁G_aI_nP系化合物半導体からなるn型クラッド層と、該n型クラッド層よりバンドギャップエネルギーが小さい組成のA₁G_aI_nP系化合物半導体からなる活性層と、該活性層よりバンドギャップエネルギーが大きい組成のp型A₁G_aI_nP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層したA₁G_aI_nP系発光素子用エピタキシャルウェハにおいて、上記p型クラッド層と上記p型ウインドウ層との間に、バンドギャップエネルギーが上記p型クラッド層よりも小さい材料からなる介在層が設けられていることを特徴とするA₁G_aI_nP系発光素子用エピタキシャルウェハ。

【請求項2】 導電性を有する基板上に、少なくともA₁G_aI_nP系化合物半導体からなるn型クラッド層と、該n型クラッド層よりバンドギャップエネルギーが小さい組成のA₁G_aI_nP系化合物半導体からなる活性層と、該活性層よりバンドギャップエネルギーが大きい組成のp型A₁G_aI_nP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層したA₁G_aI_nP系発光素子用エピタキシャルウェハにおいて、上記p型クラッド層と上記p型ウインドウ層との間に、バンドギャップエネルギーが上記活性層よりも大きく、上記p型クラッド層よりも小さい材料からなる介在層が設けられていることを特徴とするA₁G_aI_nP系発光素子用エピタキシャルウェハ。

【請求項3】 上記介在層の導電型がp型である請求項1または2に記載のA₁G_aI_nP系発光素子用エピタキシャルウェハ。

【請求項4】 上記介在層のキャリア濃度が $5 \times 10^{17} \text{ cm}^{-3}$ 以上 $5 \times 10^{18} \text{ cm}^{-3}$ 以下である請求項3に記載のA₁G_aI_nP系発光素子用エピタキシャルウェハ。

【請求項5】 上記介在層が上記p型クラッド層と格子整合する材料からなる請求項1または2に記載のA₁G_aI_nP系発光素子用エピタキシャルウェハ

【請求項6】 上記介在層がAlGaInP、GaInP、AlInP、GaAs、AlGaAs、GaAsP、InGaAsPの中でp型導電性クラッド層よりもバンドギャップが小さい混晶比のものからなる請求項1または2に記載のAlGaInP系発光素子用エピタキシャルウェハ。

【請求項7】 上記GaPからなるp型ウインドウ層の代わりに、 $Ga_x In_{1-x} P$ ($0 < x \leq 1$)、 $Al_y In_{1-y} P$ ($0 < y \leq 1$) あるいは $Al_z Ga_{1-z} P$ ($0 < z \leq 1$) が用いられている請求項1または2に記載のAlGaInP系発光素子用エピタキシャルウェハ。

【請求項8】 導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、該n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなる活性層と、該活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層した積層体に電極を設けた発光素子において、上記p型クラッド層と上記p型ウインドウ層との間に、バンドギャップエネルギーが上記p型クラッド層より小さい材料からなる介在層が設けられていることを特徴とする発光素子。

【請求項9】 導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、該n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなる活性層と、該活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層した積層体に電極を設けた発光素子において、上記p型クラッド層と上記p型ウインドウ層との間に、バンドギャップエネルギーが上記活性層よりも大きく、上記p型クラッド層よりも小さい材料からなる介在層が設けられていることを特徴とする発光素子。

【請求項10】 上記介在層の導電型がp型である請求項8または9に記載の発光素子。

【請求項11】 上記p型介在層のキャリア濃度が $5 \times 10^{17} \text{ cm}^{-3}$ 以上 $5 \times 10^{18} \text{ cm}^{-3}$ 以下である請求項10に記載の発光素子。

【請求項12】 上記介在層が上記p型クラッド層と格子整合する材料からなる請求項8または9に記載の発光素子。

【請求項13】 上記介在層がAlGaInP、GaInP、AlInP、GaAs、AlGaAs、GaAsP、InGaAsPの中でp型導電性クラッド層よりもバンドギャップが小さい混晶比のものからなる請求項8または9に記載の発光素子。

【請求項14】 上記GaPからなるp型ウインドウ層の代わりに、 $\text{Ga}_x\text{In}_{1-x}\text{P}$ ($0 < x \leq 1$)、 $\text{Al}_y\text{In}_{1-y}\text{P}$ ($0 < y \leq 1$) あるいは $\text{Al}_z\text{Ga}_{1-z}\text{P}$ ($0 < z \leq 1$) が用いられている請求項8または9に記載の発光素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、AlGaInP系発光素子（波長としては650nm（赤色）から550nm（黄緑）の領域）用エピタキシャルウェハ及び発光素子に関する。

【0002】

【従来の技術】

最近、AlGaInP系エピタキシャルウェハを用いて製造する発光素子としての高輝度の赤色及び黄色発光ダイオードの需要が大幅に伸びている。主な需要は、交通信号、自動車のテールランプ、フォグランプ、屋外表示板、フルカラーディスプレイ等である。

【0003】

図4は発光波長590nmのAlGaInP系発光ダイオード用エピタキシャルウェハの構造図である。

【0004】

同図に示すエピタキシャルウェハは、n型GaAs基板1の上に、n型GaAsバッファ層2、n型($\text{Al}_{0.7}\text{Ga}_{0.3}$) $_{0.5}$ In $_{0.5}$ Pクラッド層3、アンドープ($\text{Al}_{0.1}\text{Ga}_{0.9}$) $_{0.5}$ In $_{0.5}$ P活性層4、p型($\text{Al}_{0.7}\text{Ga}_{0.3}$

) $\text{In}_{0.5}\text{P}$ 層5及びp型GaPウインドウ層6を順次エピタキシャル成長させたものである。

【0005】

全てのエピタキシャル層2～6は有機金属気相成長法（以下「MOVPE」という。）によって成長させたものである。発光ダイオードのウインドウ層としては、AlGaAs層（Al組成0.6以上）が用いられることがあるが、光の取り出し効率及び劣化しやすさの観点で考えると、バンドギャップが大きく、酸化され難いGaP層の方がウインドウ層として適している。

【0006】

【発明が解決しようとする課題】

しかしながら、GaPウインドウ層には以下のようないわゆる問題がある。

【0007】

図5は図4に示したAlGaInP系発光ダイオード用エピタキシャルウェハのp型GaPウインドウ層6とp型AlGaInPクラッド層5のヘテロ界面付近のバンド構造の説明図である。なお、図中矢印Aは順方向電圧を印加したときの正孔の移動方向を示している。

【0008】

p型GaPウインドウ層6とp型($\text{Al}_{0.7}\text{Ga}_{0.3}$) $0.5\text{In}_{0.5}\text{P}$ クラッド層5とでは、電子親和力の差（バンド不連続）に起因して、ヘテロ界面に大きな電位障壁（破線円B内の電位障壁が正孔の移動の妨げとなる）が発生する。この電位障壁は、発光ダイオード通電時に、p型GaPウインドウ層6からp型($\text{Al}_{0.7}\text{Ga}_{0.3}$) $0.5\text{In}_{0.5}\text{P}$ クラッド層5への正孔の移動を妨げる要因になる。その結果、発光ダイオードの順方向電圧（動作電圧：20mA通電時の電圧）が高くなってしまう。一般に順方向電圧が高い発光ダイオードは信頼性が低い。p型GaPウインドウ層6を用いた発光ダイオードにおいては、順方向電圧を低減させることが大きな課題である。

【0009】

そこで、本発明の目的は、上記課題を解決し、順方向電圧の低い発光素子が得られるAlGaInP系発光素子用エピタキシャルウェハ及び発光素子を提供す

ることにある。

【0010】

【課題を解決するための手段】

上記目的を達成するために本発明のAlGaInP系発光素子用エピタキシャルウェハは、基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなる活性層と、活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層したAlGaInP系発光素子用エピタキシャルウェハにおいて、p型クラッド層とp型ウインドウ層との間に、バンドギャップエネルギーがp型クラッド層よりも小さい材料からなる介在層が設けられているものである。

【0011】

また本発明のAlGaInP系発光素子用エピタキシャルウェハは、導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなる活性層と、活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層したAlGaInP系発光素子用エピタキシャルウェハにおいて、p型クラッド層とp型ウインドウ層との間に、バンドギャップエネルギーが活性層よりも大きく、p型クラッド層よりも小さい材料からなる介在層が設けられているものである。

【0012】

上記構成に加え本発明のAlGaInP系発光素子用エピタキシャルウェハは、介在層の導電型がp型であるのが好ましい。

【0013】

上記構成に加え本発明のAlGaInP系発光素子用エピタキシャルウェハは、介在層のキャリア濃度が $5 \times 10^{17} \text{ cm}^{-3}$ 以上 $5 \times 10^{18} \text{ cm}^{-3}$ 以下であるのが好ましい。

【0014】

上記構成に加え本発明のAlGaInP系発光素子用エピタキシャルウェハは、介在層がp型クラッド層と格子整合する材料からなるのが好ましい。

【0015】

上記構成に加え本発明のAlGaInP系発光素子用エピタキシャルウェハは、介在層がAlGaInP、GaInP、AlInP、GaAs、AlGaAs、GaAsP、InGaAsPの中でp型導電性クラッド層よりもバンドギャップが小さい混晶比のものが用いられるのが好ましい。

【0016】

上記構成に加え本発明のAlGaInP系発光素子用エピタキシャルウェハは、GaPからなるp型ウインドウ層の代わりに、 $Ga_x In_{1-x} P$ ($0 < x \leq 1$)、 $Al_y In_{1-y} P$ ($0 < y \leq 1$) あるいは $Al_z Ga_{1-z} P$ ($0 < z \leq 1$) を用いてもよい。

【0017】

本発明の発光素子は、導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなる活性層と、活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層した積層体に電極を設けた発光素子において、p型クラッド層とp型ウインドウ層との間に、バンドギャップエネルギーがp型クラッド層より小さい材料からなる介在層が設けられているものである。

【0018】

また本発明の発光素子は、導電性を有する基板上に、少なくともAlGaInP系化合物半導体からなるn型クラッド層と、n型クラッド層よりバンドギャップエネルギーが小さい組成のAlGaInP系化合物半導体からなる活性層と、活性層よりバンドギャップエネルギーが大きい組成のp型AlGaInP系化合物半導体からなるクラッド層と、GaPからなるp型ウインドウ層とを積層した積層体に電極を設けた発光素子において、p型クラッド層とp型ウインドウ層と

の間に、バンドギャップエネルギーが活性層よりも大きく、p型クラッド層よりも小さい材料からなる介在層が設けられているものである。

【0019】

上記構成に加え本発明の発光素子は、介在層の導電型がp型であるのが好ましい。

【0020】

上記構成に加え本発明の発光素子は、p型介在層のキャリア濃度が $5 \times 10^{17} \text{ cm}^{-3}$ 以上 $5 \times 10^{18} \text{ cm}^{-3}$ 以下であるのが好ましい。

【0021】

上記構成に加え本発明の発光素子は、介在層がp型クラッド層と格子整合する材料からなるのが好ましい。

【0022】

上記構成に加え本発明の発光素子は、介在層がAlGaInP、GaInP、AlInP、GaAs、AlGaAs、GaAsP、InGaAsPの中でp型導電性クラッド層よりもバンドギャップが小さい混晶比のものが用いられるのが好ましい。

【0023】

上記構成に加え本発明の発光素子は、GaPからなるp型ウインドウ層の代わりに、 $\text{Ga}_x \text{In}_{1-x} \text{P}$ ($0 < x \leq 1$)、 $\text{Al}_y \text{In}_{1-y} \text{P}$ ($0 < y \leq 1$)あるいは $\text{Al}_z \text{Ga}_{1-z} \text{P}$ ($0 < z \leq 1$)を用いてもよい。

【0024】

本発明によれば、p型AlGaInPクラッド層とp型GaPウインドウ層との間に、p型AlGaInP層よりもバンドギャップの小さい介在層を設けることによって、p型AlGaInPクラッド層とp型GaP層とのヘテロ界面の電位障壁の発生が抑制され、発光ダイオードの順方向電圧が低下する。

【0025】

【発明の実施の形態】

以下、本発明のAlGaInP系発光素子用エピタキシャルウェハ及び発光素子の一実施の形態を説明する。なお、図4に示した従来例と同様の部材について

は同様の符号を用いた。

【0026】

本発明のAlGaInP系発光素子用エピタキシャルウェハの特徴は、p型AlGaInPクラッド層5とp型GaPウインドウ層6との間に、p型AlGaInP層よりもバンドギャップの小さい介在層を設けた点にある。

【0027】

図2は本発明のAlGaInP系発光素子用エピタキシャルウェハ及び発光素子による発光ダイオードの順方向電圧が低減できる理由の説明図である。

【0028】

p型($Al_{0.7}Ga_{0.3}$)_{0.5}In_{0.5}Pクラッド層5とp型GaPウインドウ層6との間に、介在層を設けることによって、p型($Al_{0.7}Ga_{0.3}$)_{0.5}In_{0.5}Pクラッド層5とp型GaPウインドウ層6とのヘテロ界面の電位障壁の発生が抑制される(図2の破線円Cで示した電位障壁は図5の破線円Bで示した電位障壁よりも小さくなっている。)。このAlGaInP系発光素子用エピタキシャルウェハを用いて発光ダイオードを形成することにより、順方向電圧を低下させることができる。

【0029】

【実施例】

図1は本発明のAlGaInP系発光素子用エピタキシャルウェハの一実施例を示す構造図である。本実施例では発光波長625nm付近の赤色発光ダイオード用エピタキシャルウェハの場合で説明する。

【0030】

図1に示すAlGaInP系発光素子用エピタキシャルウェハは、n型GaAs基板1上に、MOVPE法で、n型(Seドープ)GaAsバッファ層2、n型(Seドープ)($Al_{0.7}Ga_{0.3}$)_{0.5}In_{0.5}Pクラッド層3、アンドープ($Al_{0.1}Ga_{0.9}$)_{0.5}In_{0.5}P活性層(以下「活性層」という。)4、p型(Znドープ)($Al_{0.7}Ga_{0.3}$)_{0.5}In_{0.5}Pクラッド層(以下「p型クラッド層」という。)5を順次成長させ、このp型クラッド層5の上に、本発明の主要部である介在層としてのp型($Al_{0.1}Ga_{0.9}$)_{0.5}In_{0.5}P層

(以下「順方向電圧低減層」という。) 7をMOVPE法により100nm成長させ、p型(Znドープ)GaPウインドウ層6を10μm成長させたエピタキシャル層2~7からなるものである。なお比較例として、順方向電圧低減層を形成せずp型(Znドープ)GaPを10μm成長させたものを作製した。

【0031】

全てのエピタキシャル層2~7の成長は、成長温度700°C、成長圧力50Torr、各エピタキシャル層2~7の成長速度は0.3~3.0nm/s、V/III比は100~600で行った。その後、エピタキシャルウェハを加工して、発光ダイオードを作製した。

【0032】

発光ダイオードのチップの大きさは、300μm角で、チップ下面全体にn型電極を形成し、チップ上面に直径150μmの円形のp型電極を形成した。n型電極は、金ゲルマニウム、ニッケル、金をそれぞれ60nm、10nm、500nmの順に蒸着し、p型電極は、金亜鉛、ニッケル、金をそれぞれ60nm、10nm、1000nmの順に蒸着した。さらに、このチップをシステム組して、樹脂モールドまでを行い、発光ダイオードの発光特性、電圧-電流特性を調べた。

【0033】

図3は本発明の発光素子の発光特性図であり、横軸が順方向電圧を示し、縦軸が順方向電流を示す。

【0034】

同図において実線が本発明の発光素子((Al_{0.1}Ga_{0.9})_{0.5}In_{0.5}Pからなる順方向電圧低減層7を設けたもの)の発光特性を示し、破線が従来の発光素子の発光特性を示している。

【0035】

本発明のAlGaN系発光素子用エピタキシャルウェハを用いた発光ダイオードの順方向電圧は、従来の発光ダイオードの順方向電圧2.40Vに対して1.80Vと大きく低減することができた。

【0036】

発光ダイオードの順方向電圧の最低値は活性層4のバンドギャップで決まるも

のであり、この順方向電圧1.80Vという値は、本発明のAlGaInP系発光素子用エピタキシャルウェハの活性層4のバンドギャップでの最低値に近い値である（つまりAlGaAsウインドウ層を用いた場合の順方向電圧と略等しい。）。順方向電圧低減層7を介在させることによって、p型GaPウインドウ層6とp型クラッド層5とのヘテロ界面の電位障壁の発生を十分に抑制できた。また、順方向電圧低減層7を設けることで、従来の発光素子に対して輝度が低下することはなかった。

【0037】

（最適条件についての根拠）

p型クラッド層5とp型GaPウインドウ層6との間の、バンド不連続に起因する電位障壁を低減するためには、p型クラッド層5よりもバンドギャップが小さい介在層を設ければよいが、バンドギャップが活性層4よりも小さい順方向電圧低減層7を設けると、活性層4からの光が順方向電圧低減層7により吸収され、LEDの光取り出し効率が極端に悪くなってしまう。したがって、順方向電圧低減層7のバンドギャップは、p型クラッド層5よりもバンドギャップが小さく、かつ、活性層4よりも大きいことが好ましい。

【0038】

順方向電圧低減層7の導電型は、p型クラッド層5及びp型GaPウインドウ層と同じp型であることが好ましく、そのキャリア濃度は $5 \times 10^{17} \text{ cm}^{-3}$ 以上 $5 \times 10^{18} \text{ cm}^{-3}$ 以下であることが好ましい。順方向電圧低減層7のキャリア濃度が $5 \times 10^{17} \text{ cm}^{-3}$ 以下になると、順方向電圧低減層7の抵抗率が高くなってしまい、順方向電圧が高くなってしまう。またキャリア濃度が $5 \times 10^{18} \text{ cm}^{-3}$ 以上になると、結晶中の欠陥が増加し、発光効率の低下が見られるようになってしまう。

【0039】

順方向電圧低減層7は、下地となるp型クラッド層5と格子整合していることが好ましい。格子整合していないと、エピタキシャル層に欠陥が発生し、発光効率の低下や、p型GaPウインドウ層6の表面の曇りといった問題が発生する。

【0040】

なお、本実施例ではn型導電性を有する基板を用いたエピタキシャルウェハ及び発光素子の場合で説明したが、これに限定されずp型GaAs基板を用いたエピタキシャルウェハ及び発光素子でも同様の効果が得られる。

【0041】

【発明の効果】

以上要するに本発明によれば、次のような優れた効果を発揮する。

【0042】

順方向電圧の低い発光素子が得られるAlGaN系発光素子用エピタキシャルウェハ及び発光素子の提供を実現できる。

【図面の簡単な説明】

【図1】

本発明のAlGaN系発光素子用エピタキシャルウェハの一実施例を示す構造図である。

【図2】

本発明のAlGaN系発光素子用エピタキシャルウェハ及び発光素子による発光ダイオードの順方向電圧が低減できる理由の説明図である。

【図3】

本発明の発光素子の発光特性図である。

【図4】

発光波長590nmのAlGaN系発光ダイオード用エピタキシャルウェハの構造図である。

【図5】

図4に示したAlGaN系発光ダイオード用エピタキシャルウェハのp型GaNウインドウ層とp型AlGaNクラッド層のヘテロ界面付近のバンド構造の説明図である。

【符号の説明】

- 1 基板 (n型GaAs基板)
- 2 n型GaAsバッファ層

- 3 n型 ($\text{Al}_{0.7}\text{Ga}_{0.3}$)_{0.5} In_{0.5} Pクラッド層
- 4 アンドープ ($\text{Al}_{0.1}\text{Ga}_{0.9}$) In_{0.5} P活性層（活性層）
- 5 p型 AlGaInPクラッド層（p型クラッド層）
- 6 p型 GaPウインドウ層
- 7 介在層（順方向電圧低減層）

【書類名】 図面

【図 1】

【図2】

【図3】

【図4】

【図5】

【書類名】 要約書

【要約】

【課題】 順方向電圧の低い発光素子が得られるAlGaInP系発光素子用エピタキシャルウェハ及び発光素子を提供する。

【解決手段】 p型AlGaInPクラッド層5とp型GaPウインドウ層6との間に、p型AlGaInP層5よりもバンドギャップの小さい介在層としての順方向電圧低減層7を設けることによって、p型AlGaInPクラッド層5とp型GaPウインドウ層6とのヘテロ界面の電位障壁の発生が抑制され、発光ダイオードの順方向電圧が低下する。

【選択図】 図1

出願人履歴情報

識別番号 [000005120]

1. 変更年月日 1990年 8月21日

[変更理由] 新規登録

住 所 東京都千代田区丸の内二丁目1番2号

氏 名 日立電線株式会社

2. 変更年月日 1999年11月26日

[変更理由] 住所変更

住 所 東京都千代田区大手町一丁目6番1号

氏 名 日立電線株式会社