ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
доц., канд. техн. наук, доц.		О. О. Жаринов
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
	<u> </u>	
ОТЧЕ	Т О ЛАБОРАТОРНОЙ РА	АБОТЕ
		,
	ЛЯ СЧЁТНОГО УСТРОЇ МОМ РАБОТЫ, В СРЕДІ	, ,
	,,	
	CVEMOTEVIIII	- _A
П	ю курсу: СХЕМОТЕХНИК	A
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. № 4143	подпись, дата	А. М. Гридин инициалы, фамилия
	подпись, дата	инициалы, фамилия

1. Цель работы

Разработать проект модуля счетного устройства, работающего по заданному алгоритму, в среде программирования Quartus.

2. Вариант задания

Вариант № 8, подчёркнут синим цветом.

.№	порядковый номер входного импульса счетного модуля																	
варианта	0	1	2		M-2	M-1	M	M+1	M+2		2M-1	2M	2M+1	2M+2	 3M-1	3M	3M+1	3M+2
1	0	1	2		M-2	M-1	M	M-1	M-2		1	0	1	2	 M-1	M	M-1	M-2
2	0	1	2		M-2	M-1	M	M	M		M	0	1	2	 M-1	M	M	M
3	0	1	2		M-2	M-1	M	M	M	•••	M	M	M-1	M-2	 1	0	1	2
4	0	1	2		M-2	M-1	0	0	0		0	0	1	2	 M-1	0	0	0
5	0	1	2		M-2	M-1	M	M-1	M-2		1	0	0	0	 0	0	1	2
6	0	1	2		M-2	M-1	0	0	0		0	0	0	0	 0	0	1	2
7	0	0	0		0	0	0	1	2		M-1	M	M-1	M-2	1	0	0	0
8	0	1	2		M-2	M-1	M	M	M		M	0	0	0	 0	0	1	2
9	0	0	0		0	0	0	1	2	•••	M-1	M	0	0	 0	0	0	0
10	0	1	2		M-2	M-1	0	1	2	•••	M-1	0	0	0	 0	0	1	2

Рисунок 1 – Варианты

3. Обобщенная структурная схема формирователя и описание концепции проектирования.

Идею подсказали вы на лабораторной работе.

В счётном модуле есть 3 фазы работы: когда он работает как простой счётчик, когда он выводит константу М, и когда он выводит 0. После этого всё по новой.

Берется счётчик с основанием М (согласно моим предыдущим работам, М=10). Счётчик считает не останавливаясь. Когда он доходит до максимального значения, то сбрасывается и даёт импульс на выходе переполнения. Эти импульсы считает второй счётчик с основанием 3, согласно количеству фаз работы. Далее используется мультиплексор. Он будет выдавать либо значения первого счётчика либо константу М либо константу 0. Фазами по адресным входам будет управлять второй счётчик.

На выходе переполнения могут образоваться игольчатые импульсы, которые могут доставить проблемы с счётом. Для решения проблемы импульсы с этого выхода будут идти на вход разрешения работы, а на тактовый вход будем подавать тактовые импульсы. Таким образом, счётчик будет работать только

тогда, когда с тактовым импульсом будет ещё импульс от переполнения первого счётчика.

4. Схема устройства в графическом формате в среде Quartus

Рисунок 2 – Схема модуля счётного устройства

Рисунок 3 – Назначение выводов ПЛИС

5. Временная диаграмма работы схемы в среде Quartus.

		Value at	0 ps	40.0 ns	80.0 ns	120,0 ns	160,0 ns	200 _, 0 ns	240,0 ns	280 _, 0 ns	320,0 ns	360,0 ns
	Name	28.08 ns	28.0)75 ns ⊒l								
 0	clk	U1										
→ 1	data2x	U O								0		
₽ 6	■ data1x	U 10								10		
		U 2	O (1)(2 (3)(4 (5)	6 (7 X 8 (9	K .	10	X	0		X1 X2 X3	4 (5 X 6
16 16	R	U O										

Рисунок 4 (а, б) – Временная диаграмма работы счётчика

6. Перечисление ошибок, творческих идей, приводящих в тупик, если таковые появлялись в процессе работы, и методов, применённых для их устранения.

Первоначально из-за отсутствия идей с помощью lpm модулей (по причине отсутствия практического опыта с ними), придумал вариант с помощью jk-триггеров, похожий на ЛР4. После вашей подсказки всё сразу стало понятно.

7. Выводы.

Был разработан проект модуля счетного устройства, работающего по заданному алгоритму, в среде программирования Quartus.на основе ПЛИС EP2S15F484C3.

8. Список используемых источников.

1 Лекция по схемотехнике от 16 октября 2023г. [Электронный ресурс], URL

https://bbb1.guap.ru/playback/presentation/2.3/23412a71232f44e828ecad8b475524b7c72ca4a0-1697460042019

2 Лабораторная работа от 22 ноября 2023г. [Электронный ресурс], URL - https://bbb2.guap.ru/playback/presentation/2.3/a9febfcc68c9d1548e0cf428efe165bee 5ee2486-1700647532294