

Restaurant Recommendation System

NLP Project - Group 24

Table of Contents

O1 Introduction

O2 Dataset

03 Objectives

04 Data Pre-processing

Table of Contents

05 Predict Ratings

Recommend Restaurants

07 GUI Integration

08 Result

01

Introduction

Introduction

- We aim to build a recommendation system that will enable us to make sophisticated restaurant recommendations for users by applying learning algorithms to develop a predictive model of customers' restaurant ratings.
- This will retrieve restaurants based given cuisine as the input.

02

Dataset

Dataset

- Primary Dataset : Yelp Open Dataset
- The Yelp dataset is a subset of Yelp's businesses, reviews, and user data that has been made publicly available for use for personal, educational, and academic purposes.
- This dataset contains 5,200,000+ reviews, 174,000+ businesses and 11 metropolitan areas.
- Yelp Dataset Source

Dataset

File Name	Description	
business.csv	Details about all the business ids	
business_hours.csv	Details about the weekly timings of the businesses	
reviews.csv	User reviews for the businesses	
users.csv	List of all the users and their details	
tip.csv	Details about small compliments given by the users	
checkin.csv	Mapping of business with date	

Business Data

Field	Description		
business_id	business_id		
name	business name		
city	City located in		
state	State located in		
latitude	latitude		
longitude	longitude		
stars	Star rating		
is_open	Open or not		
categories	List of categories of business		

Review Data

Field	Description		
review_id	review_id		
user_id	user_id		
business_id	Business_id		
stars	Star Rating		
text	Review text		
date	Review given on this date		
useful	No of useful votes received		
funny	No of votes received for the review being funny		

Objectives

Predict Ratings

To predict rating of restaurants listed in the Yelp dataset based on the reviews given by the users.

Recommend Restaurants

Recommending restaurants to the users using the predicted stars and sentiment polarity values.

Graphical User Interface

A GUI using Tkinter which takes cuisine as input from the user to predict 10 best restaurants.

O4 Pre-processing

Open & Closed businesses

- Total 1,74,567 businesses
- Open 1,46,702 businesses
- Closed 27,865 businesses

Thus, consider only the businesses that are open.

Fig 1. Plot to show no of open and closed businesses

Restaurants in States

 ON - Ontario State is having the highest number of food/restaurant related businesses.

Thus we consider only the restaurants located in ON.

Fig 2. Plot to show the count of food businesses or restaurants in each state

Cuisine related restaurants

 Considering only the top cuisine related restaurants

Fig 3. Plot to show the count of each cuisine based businesses

Categories split

- The categories column in each business consists of a minimum of one category and a maximum of 10 categories.
- Thus, have split the categories into category1, category2, etc for analysis.

Fig 4. Plot to show the count of different categories

Categories split

Review Counts of cities

- Top 20 cities by reviews
- Toronto city in Ontario has the highest number of food or restaurant related reviews.

Fig 5. Plot to show the count of user reviews in top 20 cities of ON (Ontario)

Process the text

- Convert all the text in the categories, reviews and cities to lowercase.
- Also, pre-process the reviews
 - Perform case normalization
 - Remove punctuations and stopwords
 - Return cleaned text as list of words

```
y=preprocess('My hubby likes the apple pies there; crust is delicious.')
y
```

'hubby likes apple pies crust delicious'

Fig 6. Processed text output for a given string

WordCloud

Fig 7. Word cloud for the most frequently used words in the user reviews.

Predict Ratings

Data Preparation

- To predict the ratings of the reviews, we need to take the text of each review and stars rating.
- So load them into two different lists maintaining their corresponding index.
- Vectorize the complete data using CountVectorizer
- Split it into train and test data.

Gaussian Naive Bayes

- P("food was great") = P("food")*P("was")*P("great")
- For each class c,

$$P("food was great" | c) = P("food" | c)*P("was" | c)*P("great" | c)$$

The class with maximum posterior probability is considered

$$P(x_i \mid y) = rac{1}{\sqrt{2\pi\sigma_y^2}} \exp\Biggl(-rac{(x_i - \mu_y)^2}{2\sigma_y^2}\Biggr)$$

Classifier and Predictions

- Gaussian Naive Bayes classifier was used to classify reviews into the five star ratings.
- The model gives an accuracy of 0.40

C→	precision	recall	f1-score	support
1	1.00	0.44	0.62	9
2	0.00	0.00	0.00	6
3	0.24	0.18	0.21	22
4	0.41	0.74	0.53	62
5	0.40	0.12	0.18	52
accuracy			0.40	151
macro avg	0.41	0.30	0.31	151
weighted avg	0.40	0.40	0.35	151

06

Recommend Restaurants

Compute Sentiment Polarity

- For each of the processed reviews, sentiment polarity value was computed.
- These were grouped by business_id and the mean of it were appended as a new field in the dataframe.
- The polarity values range between -1.0 to 1.0.
- Then, joined the updated data frame to the restaurants data on business_id.

Sentiment Polarity vs Ratings

Sentiment Polarity vs Ratings

- Stars more than 3.5 are all distributed between the range 0 and 0.5 of sentiment polarity values.
- Consider only those business_ids that have values greater than
 3.5 stars and polarity values greater than 0.
- This data can be used to recommend the restaurants to the users.

Indexer

- A term to document index was maintained.
- Here, cuisine to list of business_ids were stored.
- All the business_ids were sorted in descending order of their sentiment polarity values.
- Thus, given a cuisine (term), related restaurants were retrieved efficiently.

07

Results

Highest Rated Restaurant

Irrespective of the cuisine, the restaurant with maximum positive reviews (highest sentiment polarity values) is **SunnySide Grill**

Fig 8. Plot for top 40 restaurants alongside polarity values

Best Restaurants for Indian cuisine

For Indian cuisine, Roti
 Palace, is the best
 recommendation.

Fig 9. Plot for top 20 Indian restaurants alongside ratings

Best Restaurants for Italian cuisine

Fig 10. Plot for top 20 Italian restaurants alongside ratings

For Italian cuisine, Terra
 Cotta Inn, is the best
 recommendation.

Top 10 Restaurants for Thai Cuisine

	name	address	city	state	senti_polarity
100	"bangkok saigon noodle"	"136 holland street e, unit 1"	bradford	on	0.550298
4635	"thai wok n roll"	"30 broadleaf ave"	whitby	on	0.480556
3881	"thai cuisine experts"	"6970 lisgar drive, unit 2a"	mississauga	on	0.416845
3902	"bolton thai cuisine"	"18 king street e, unit I5"	caledon	on	0.396744
1887	"feng wok 'n' roll"	"28 dundas street e, unit 4"	mississauga	on	0.383282
4549	"thai express"	"178-200 windflower gate"	vaughan	on	0.378685
2766	"silk restaurant"	"446 parliament street"	toronto	on	0.359119
1530	"pho tai loi"	"1550 s gateway road, suite 1b"	mississauga	on	0.359035
538	"river tai restaurant"	"92 harbord street"	toronto	on	0.358654
4234	"bach yen"	"738 gerrard street e"	toronto	on	0.343499

When a user enters a cuisine (**Thai**, here) top 10 restaurants are displayed in descending order of their ratings.

Fig 11. Final recommendation of restaurants for thai as input

GUI Integration

GUI (Tkinter)

This is the start point of the UI. It first asks for the city as the input.

Since the city exists in Ontario, we can continue.

GUI (Tkinter)

Then we give Thai as the cuisine for input. Since, the cuisine exists in our list, we proceed to view the top 10 restaurants.

GUI (Tkinter)

The top 10 restaurants.

	name	address	city	state	senti_polarity
100	"bangkok saigon noodle"	"136 holland street e, unit 1"	bradford	on	0.550298
4635	"thai wok n roll"	"30 broadleaf ave"	whitby	on	0.480556
3881	"thai cuisine experts"	"6970 lisgar drive, unit 2a"	mississauga	on	0.416845
3902	"bolton thai cuisine"	"18 king street e, unit I5"	caledon	on	0.396744
1887	"feng wok 'n' roll"	"28 dundas street e, unit 4"	mississauga	on	0.383282
4549	"thai express"	"178-200 windflower gate"	vaughan	on	0.378685
2766	"silk restaurant"	"446 parliament street"	toronto	on	0.359119
1530	"pho tai loi"	"1550 s gateway road, suite 1b"	mississauga	on	0.359035
538	"river tai restaurant"	"92 harbord street"	toronto	on	0.358654
4234	"bach yen"	"738 gerrard street e"	toronto	on	0.343499

Contributions

Our Contributions

Suma Shreya

- Data cleaning & filter based on cuisines
- GUI using Tkinter

Hemanth Pasupuleti

- Indexer using tf-idf
- Naive Bayes Classifier

Rukmini Meda

 Recommending restaurants using polarity values

10

Team Members

Our Team

Suma Shreya S20180010170 Hemanth Pasupuleti S20180010131 Rukmini Meda S20180010102

Thanks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**.

Please keep this slide for attribution

