دالة اللوغاريتم

<u>I- دالة اللوغاريتم النيبيري</u>

ربير - نعلم أن كل دالة متصلة على مجال I تقبل دوال أصلية على I

$$x o rac{x^{r+1}}{r+1} + k$$
 هي $]0;+\infty[$ هي $x o x^r$ تقبل دوال أصلية على $]0;+\infty[$ هي $x o x^r$ عدد حقيقي ثابت حيث $x o x^r$

المتصلة على $]0;+\infty[$ ومنه تقبل دوال أصلية $x o rac{1}{r}$ المتصلة على $]0;+\infty[$ ومنه تقبل دوال أصلية -*وبالتالي الدالة $x o \frac{1}{x}$ تقبل دالة أصلية وحيدة تنعدم في 1.

الدالة الأصلية لدالة $x o rac{1}{r}$ على $]0;+\infty[$ التي تنعدم في النقطة 1 تسمى دالة اللوغاريتم النيبيري و يرمز لها بالرمز ln أو Log

$$\begin{cases} x > 0 \\ f'(x) = \frac{1}{x} \Leftrightarrow f(x) = \ln(x) \\ f(1) = 0 \end{cases}$$

*- مجموعة تعريف الدالة ln هي]0;+∞[ln(1)=0

 $]0;+\infty[$ الدالة $]0;+\infty[$

 $\ln'(x) = \frac{1}{x}$ g $\forall x \in]0; +\infty[$ $]0;+\infty[$ الدالة $]0;+\infty[$ على ا $]0;+\infty[$

*- الدالة nl تزايدية قطعا على]0;+∞[

نتائج

لکل عددین حقیقیین موجبین قطعا x و y

 $\ln x = \ln y \Leftrightarrow x = y$

 $\ln x > \ln y \Leftrightarrow x > y$

ملاحظة

$$\ln x = 0 \Leftrightarrow x = 1$$

$$\ln x > 0 \Leftrightarrow x > 1$$

$$\ln x \prec 0 \Leftrightarrow 0 \prec x \prec 1$$

 $g: x \to \ln(x^2 - 3x)$ $f: x \to \ln(x - 1) + \ln(4 - x)$ تمرين 1- حدد مجموعة تعريف الدالتين

$$\ln\left(x^2-3\right)=\ln\left(2x\right)$$
 حل في \mathbb{R} المعادلتين $\ln\left(x^2+2x\right)=0$ -2

$$\ln\left(x^2-2x\right) \le \ln\left(x\right)$$
 -3 المتراجحتين $\ln\left(x^2-x-2\right) < 0$ المتراجحتين 3

 $F(x) = \ln(ax)$ ب $= \ln(ax)$ ب

$$]0;+\infty[$$
 علی $x o rac{1}{x}$ علی F و استنتج ان F دالة أصلية لدالة $x o [$ علی T علی T -1

$$\ln(ab) = \ln a + \ln b$$
 ثم استنتج $\forall x \in \left]0; +\infty\right[F(x) = \ln(ax) = \ln a + \ln x \right]$ 2 -2

الجواب

$$u(x)=ax$$
 حيث $F(x)=\ln\circ u(x)$ حيث -1 $\forall x\in]0;+\infty[$ $F'(x)=u'(x) imes(\ln)'(u(x))=a\cdot \frac{1}{ax}=\frac{1}{x}$ $]0;+\infty[$ علی $x\to \frac{1}{x}$ علی F علی $F(x)=u'(x)$ علی $F(x)=u'(x)$ علی $F(x)=a$ و منه $F(x)=a$ دالة أصلية لدالة $x\to \frac{1}{x}$ علی $F(x)=a$ علی $F(x)=a$

$$x$$
 $\forall x \in \]0; +\infty[$ $F(x) = k + \ln x$ اذن $k = \ln a$ و منه $F(1) = k$ و منه $F(1) = \ln (a)$ لدينا $f(x) = \ln (a)$ و $f(x) = \ln (ax) = \ln a + \ln x$ إذن

 $\ln(ab) = \ln a + \ln b$ نحصل على x = b

<u>خاصية أساسية</u>

$$\forall (a;b) \in (]0;+\infty[)^2$$
 $\ln(ab) = \ln a + \ln b$

<u>ج- خاصیات</u>

$$\forall x \in]0; +\infty[\qquad \ln \frac{1}{x} = -\ln x$$

$$\forall (x, y) \in]0; +\infty[^2 \qquad \ln \frac{x}{y} = \ln x - \ln y$$

$$\forall (x_1; x_2;; x_n) \in]0; +\infty[^n \qquad \ln (x_1 \times x_2 \times \times x_n) = \ln x_1 + \ln x_2 + + \ln x_n$$

$$\forall x \in]0; +\infty[\qquad \forall r \in \mathbb{Q}^* \qquad \ln x^r = r \ln x$$

<u>البرهان</u>

$$\ln\left(x \times \frac{1}{x}\right) = \ln 1 \iff \ln x + \ln \frac{1}{x} = 0 \iff \ln \frac{1}{x} = -\ln x$$

$$\ln x^r = \ln \underbrace{\left(x \times x \times \dots \times x\right)}_{r \quad facteurs} = \underbrace{\ln x + \ln x + \dots + \ln x}_{r \quad termes} = r \ln x$$
 فان $r \in \mathbb{N}^*$

$$\ln x^r = \ln x^{-n} = \ln \frac{1}{x^n} = -\ln x^n = -n \ln x = r \ln x$$
 ومنه $r = -n$ ومنه $r \in \mathbb{Z}_+^*$

$$y=x^{rac{p}{q}}\Leftrightarrow x^p=y^q$$
 نعلم أن $q\in\mathbb{N}^*$ $p\in\mathbb{Z}^*$ / $rac{p}{q}=r$ إذا كان

$$\ln x^{\frac{p}{q}} = \frac{p}{q} \ln x$$
 و منه $\ln x = \frac{p}{q} \ln x$ و بالتالي $\ln x = q \ln y$ أي $\ln x = q \ln y$ اذن

$$\ln x = r \ln x$$
 أي $\forall x \in]0;+\infty[$ $\ln \sqrt{x} = \frac{1}{2} \ln x$

تمرين هل الدالتان f و g متساويتين في الحالتين التاليتين

$$f(x) = \ln(x-1)^2$$
 $g(x) = 2\ln|x-1|$ (a
 $f(x) = \ln x (x-1)$ $g(x) = \ln x + \ln(x-1)$ (b
 $\ln \sqrt{\sqrt{2}+1} + \ln \sqrt{\sqrt{2}-1}$ أحسب

$$\ln 2 \simeq 0.7$$
 $\ln 3 \simeq 1.1$ أحسب قيمة مقربة ل 10×10^{-2} ادا علمت أن 10×10^{-2} (2

4<u>- دراسة دالة In</u>

$$[0;+\infty]$$
 دالة $[0;+\infty]$ دالة ا

$$\lim_{x\to 0^+} \ln x = -\infty$$

$$\lim_{x \to 0^+} \ln x = \lim_{t \to +\infty} \ln \frac{1}{t} = \lim_{t \to +\infty} -\ln t = -\infty$$

$$x = \frac{1}{t}$$
 نضع

<u>البرهان</u>

c) <u>العددe</u>

لدينا الدالة In تزايدية قطعا على $]0;+\infty[$ ومتصلة و $\ln[0;+\infty[$ و منه المعادلة $\ln[x=1]$ تقبل حلا $\ln e = 1$ ادن e ويرمز له بالحرف وحيدا في $0; +\infty$

 $e \simeq 2,71828$ هي عددا جذريا و قيمته المقربة هي e نقبل أن

d) جدول تغيرات الدالة ln

ا الدالة ال $\sin \ln x = -\infty$ بما أن $\sin \ln x = -\infty$ بما أن

e) <u>الفروع اللانهائية</u>

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

اذن المنحنى الممثل لدالة ln يقبل فرعا شلجميا في اتجاه محور الأفاصيل

ا مقعر ln اذن منحنى الدالة
$$\forall x \in]0;+\infty[$$

$$(x) = -\frac{1}{x^2}$$

 (\ln) "(x)=- $\frac{1}{r^2}$ دراسة التقعر (f

g) التمثيل المبياني

منحنى الدالة ln

-2

h) <u>نهايات هامة أخرى</u> تأمية

$$n \in \mathbb{N}^*$$
 $\lim_{x \to 0^+} x^n \ln x = 0$ $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$ $\lim_{x \to 0} \frac{\ln (1+x)}{x} = 1$ $\lim_{x \to 1} \frac{\ln x}{x-1} = 1$ $\lim_{x \to 0^+} x \ln x = 0$

$$\lim_{x \to 0^-} x \ln\left(x^2 - x\right)$$
 $\lim_{x \to +\infty} x \ln\left(\frac{x - 2}{x}\right)$ $\lim_{x \to +\infty} x - \ln x$ مرین

<u> – مشتقة الدالة اللوغارىتمىة</u>

<u>مىرھنة</u>

. u دالة قابلة للاشتقاق على مجال I و لا تنعدم على هذا المجال I

$$\forall x \in I$$
 $\left(\ln\left|u\left(x\right)\right|\right)' = \frac{u'(x)}{u(x)}$

I لا تنعدم على و منه ${f u}$ إما موجبة قطعا على ${f I}$ أو سالبة قطعا على ${f I}$

$$\forall x \in I$$
 $f'(x) = u'(x)\ln u(x) = \frac{u'(x)}{u(x)}$ ومنه $f(x) = \ln u(x)$ فان I موجبة قطعا على U اذا كانت U موجبة

ومنه $f(x) = \ln(-u(x))$ فان I ومنه u اذا كانت u ادا

$$\forall x \in I \qquad f'(x) = -u'(x)\ln'(-u(x)) = \frac{-u'(x)}{-u(x)} = \frac{u'(x)}{u(x)}$$

تمرين حدد مجموعة تعريف الدالة f و أحسب مشتقتها في الحالتين التاليتين $f(x) = \ln(x^2 + 2x)$ (b $f(x) = \ln|x^2 - 4|$ (a

<u>ں- تعریف</u>

_ u دالة قابلة للاشتقاق على مجال I و لا تنعدم على المجال I

الدالة $\frac{u'}{u}$ تسمى المشتقة اللوغاريتمية للدالة u على المجال

<u>ج- نتىحة</u>

u دالة قابلة للاشتقاق على مجال I و لا تنعدم على المجال I

الدوال الأصلية لدالة
$$c$$
 عدد c على $x \to \ln \left| u(x) \right| + c$ الدوال الأصلية لدالة $x \to \frac{u'(x)}{u(x)}$ عدد ثابت

مرين1 أوجد دالة أصلية لدالة f على المجال I في الحالات التالية

$$\begin{cases} f(x) = \frac{x-1}{x+1} \\ I =]-1; +\infty [\end{cases} \qquad \begin{cases} f(x) = \tan(x) \\ I =]\frac{-\pi}{2}; \frac{\pi}{2} [\end{cases} \qquad \begin{cases} f(x) = \frac{x-1}{x^2 - 2x} \\ I =]2; +\infty [\end{cases}$$

 $f(x) = \frac{\sqrt{x^3 + 1}}{(x+2)^2}$ حيث $]-1;+\infty[$ حيث f على $]-1;+\infty[$ حيث أحسب الدالة المشتقة لدالة f

<u>II- دالة اللوغاريتم للأساس a</u>

<u>1- تعریف</u>

عدد حقيقي موجب قطعا و مخالف للعدد 1 a

 Log_a المعرفة على $]0;+\infty[$ تسمى دالة اللوغاريتم للأساس $x o \frac{\ln x}{\ln a}$

$$\forall x \in]0; +\infty[$$
 $Log_a(x) = \frac{\ln x}{\ln a}$

ملاحظات

$$\forall x \in \left]0; +\infty\right[$$
 $\log_e\left(x\right) = \frac{\ln x}{\ln e} = \ln x$ e دالة اللوغاريتم النيبيري هي دالة اللوغاريتم للأساس *

$$\forall a \in \mathbb{R}^{+*} - \{1\} \qquad \forall r \in \mathbb{Q} \qquad Log_a(a) = 1 \qquad Log_a(a^r) = r \quad -*$$

 Log_a حيث k عدد حقيقي ثابت فان الدالة $\log_a(x)=k\,\ln x$ حيث k عدد حقيقي ثابت فان الدالة $\log_a(x)=k\,\ln x$ تحقق جميع الخاصيات التي تحققها الدالة In

$$\forall (x; y) \in (]0; +\infty[)^{2} \quad \forall r \in \mathbb{Q} \qquad Log_{a}(xy) = Log_{a}(x) + Log_{a}(y)$$

$$Log_{a}\left(\frac{x}{y}\right) = Log_{a}(x) - Log_{a}(y) \quad ; \quad Log_{a}(x^{r}) = rLog_{a}(x)$$

3- دراسة دالة اللوغاريتم للأساس <u>a</u>

$$\forall x \in]0; +\infty[Log_a'(x) = \frac{1}{x \ln a}$$

$$]0;+\infty[$$
 و منه $a\prec 0$ و منه b $a\prec 0$ اذن b $a\prec 0$ اذن b $a\prec 0$ اذن b $a\prec 0$ اذا کان b $a\prec 0$ اذا کان b $a\prec 0$ اذن b $a\prec 0$ اذا کان b $a\prec 0$ اذا کان b

$$\lim_{x \to +\infty} Log_a x = -\infty \qquad \lim_{x \to 0^+} Log_a x = +\infty$$

$$\lim_{x \to +\infty} Log_a x = +\infty \qquad \lim_{x \to 0^+} Log_a x = -\infty$$

. الدالة اللوغاريتمية التي أساسـها 10 تسـمي دالة اللوغاريتم العشـري و يرمز لها بـ log

$$\forall x \in]0; +\infty[\qquad \log x = Log_{10}x = \frac{\ln x}{\ln 10}$$

ملاحظات

$$\left(M \simeq 0,434 \right)$$
 $\forall x \in \left] 0;+\infty \right[$ $\log x = M \ln x$ فاننا نحصل على $M = \frac{1}{\ln 10}$ اذا وضعنا $M = \frac{1}{\ln 10}$

$$\forall m \in \mathbb{Z} \qquad \log 10^m = m \qquad -*$$

$$\log(x-1) + \log(x+3) = 2$$
 -2 حل في -2

$$\begin{cases} x + y = 65 \\ \log x + \log y = 3 \end{cases}$$
 R² حل في