a) silicon wafer with BLM

b) apply first underfill layer

c) pattern first layer

Bi-Layer Wafer Level Underfill

Fig 2

a) apply solder in cavities

b) apply thin flux-adhesive layer

Bi-Layer Wafer Level Underfill

Fig 3

a) Diced chip with bi-layer wafer level underfill before join

b) Flip, align to substrate pads & join

c) solder reflow and flux-adhesive activation

Solder penetrates thru flux-adhesive layer and wets pads

a) bumped silicon wafer

b) apply first underfill layer

c) polish or etch first underfill layer

d) apply thin flux-adhesive layer

Created By: Last Modified By:

Created On:

1 Last Modified On:

*** IBM Confidential **

Required fields are marked with the asterisk (*) and must be filled in to complete the form .

Summary

Status	Under Evaluation
Processing Location	YOR .
Functional Area	700 Isaac-Systems, Technology & Science
Attorney/Patent Professional	
IDT Team	
Submitted Date	
Owning Division	RES
PVT Score	35
Lab	•
Technology Code	

Inventors with Lotus Notes IDs

Inventors:

Inventor Name
> denotes primary contact

Inventor

Div/Dept S

Manager Serial

Manager Name

Inventors without Lotus Notes IDs

IDT Selection

Main Idea

*Title of disclosure (in English)
Bi-Layer Wafer Level Underfill

tidea of disclosure

1. Describe your invention, stating the problem solved (if appropriate), and indicating the advantages of

using the invention.

Flip chip technology has grown quickly in recent years as a means of decreasing the chip footprint while simultaneously increasing the number of possible I/O's. This is because it takes advantage of the chip area for I/O's instead of just the chip periphery as does wire-bonding. Various methods exist for solder bumping wafers, such as evaporation, plating, solder paste screening and more recently, injection molding solder or IMS.

Regardless of how wafers are bumped, typically they are thereafter diced into chips. For DCA or direct chip attach, these silicon chips are bonded directly to a laminate substrate. Since there is significant mismatch of CTE (coefficient of thermal expansion) between silicon and laminate materials, these chips are thereafter underfilled. This greatly increases the fatigue life of the solder bumps. However, underfilling is associated with several manufacturing problems.

- First, the process is somewhat slow. This is due to the typical dispensing method of applying the liquid underfill along at least 2 sides of the chip and letting capillary action pull the liquid completely under the chip.
- Secondly, incomplete underfills may occur. Since it is difficult to determine underfill uniformity, this could lead to excess mechanical stresses on affected bumps. This in turn leads to shortened fatigue life for the affected chip.
- Thirdly, underfilling is yet another packaging process step. Ideally, this step would be eliminated to accelerate the path from wafer to packaged chip.
- 2. How does the invention solve the problem or achieve an advantage, (a description of "the invention", including figures inline as appropriate)?

This invention describes a process and structure that addresses all three problems mentioned previously. In effect, a bi-layer wafer level underfill completely eliminates the separate underfilling process as practiced now. Thus, a time-consuming and somewhat problematic manufacturing step is removed. The following description with the aid of the figures serves to outline the key concepts of this invention.

As seen in Fig. 1a, a silicon wafer is at the point where solder bumps are required to prepare it for a flip-chip application. This wafer contains the appropriate BLM Ball Limiting Metallurgy covering the pads which will receive the solder. Fig. 1b shows the application of a patternable dielectric to the wafer front side containing the pads. This material may be applied by a spin coating or similar process. Unlike typical passivation layers though, this material is applied to a thickness roughly ranging between 25 and 75 microns, thicker than usual. The reason for this is its additional function as described shortly. Fig. 1c shows the dielectric layer after the patterning step. The patterning may be done by laser ablation, reactive ion or wet etching. It opens up the areas above the wafer pads.

Fig. 2a shows the key additional functionality of the thicker dielectric layer, namely as a solder mask. Solder is applied into the cavities formed after the dielectric is patterned. The method for this application is IMS Injection Molded Solder, which scans a head containing molten solder over the wafer and fills the cavities. Thereafter the wafer is cooled and the solder solidifies. In effect, this solder mask also serves as the major portion of the underfill as will be seen in the figure 3 descriptions. As seen in Fig. 2b, after the solder is applied, a very thin layer combining flux and adhesive is applied uniformly over the wafer. This again may be done with a spin coating or similar process. Once this layer has hardened, te wafer is ready to be diced into individual IC Integrated Circuit chips.

Fig. 3a shows such a diced chip containing in effect everything required to bond and underfill it to the laminate substrate. Fig. 3b shows the flipped chip being aligned and placed on the laminate substrate. Thus, the solder filled cavities align to the solder receiving pads on the substrate. The chip adheres to the laminate substrate by the step shown in Fig. 3c. Here the assembly is heated to the solder reflow temperature which serves two purposes. One, it activates the fluxing agent in the thin secondary layer thus allowing the solder to penetrate through it and wet (metallurgically bond) to the metallized pad on the laminate substrate. Two, it activates the adhesive in this same layer which mechanically bonds the chip to the same substrate. Since this secondary layer is very thin (typically below 12 microns) compared to the

primary layer which serves as the solder mask, there is very little solder volume needed to penetrate through it. Also, during this heating step, this layer thins still further as it bonds to the substrate. Thus most of the solder volume stays within the cavities and is surrounded by the walls of each cavity as is the case with underfill materials.

Thus, we have described a process and structure which eliminates the separate underfilling step. The details of each process step in this invention as outlined above should not be regarded as limiting, but merely as examples. To those skilled in the art, other methods may also be used to accomplish these steps without changing the novel aspects of this invention.

3. If the same advantage or problem has been identified by others (inside/outside IBM), how have those others solved it and does your solution differ and why is it better?

No flow underfills have more recently become popular. While they eliminate the capillary dispensing time, these must still be applied to te laminate substrate in a separate manufacturing step.

- 4. If the invention is implemented in a product or prototype, include technical details, purpose, disclosure details to others and the date of that implementation.

 Not implemented yet.
- *Critical Questions (Questions 1 7 must be answered)

Question 1	
Table 19 to	lease format the date as MM/DD/YYYYY
Workable means i.e. when you know that your design	will solve the problem)

•	•		
Question 2			- S P Yes
Is there any planned or actual publicatio	n or disclosure of your in	vention to anyone outside	e iz O No∷ ⊬e
DIVI:			ASSESSED SELECTION
If yes, Enter the name of each publicatio	n or patent and the date	published halour	
Publication/Patent: None yet, but we would preser	it it at a NIST quarterly review r	oossibly o	
Date Published or Issued:	in the training in quantony regions to	3	
	***	75×	-20 among the contract of the
Are you aware of any publications, produ	icts or patents that relate	to this invention?	Yes .
			● No
	<u> </u>		(\$65.50) AND RESIDEN
If yes, Enter the name of each publication	n or patent and the date	published below.	
Publication/Patent:			
Date Rublished or Issued:			Karaga Banya Palan.

Question 3 Has the subject matter o	f the invention or	a product incom	orating the inve	ention been so	O Yes old. ■ No
used internally in manuf		•	_		
s a sale, use in manufac	cturing, product a	rnouncement, o	r proposal planr	ned?	^:v.□ OYes
					No com
If Yes, identify the produ proposal and to whom the					uncements, or
Product:	e sale, armounce	ement of proposa	ai nas been oi v	viii be illaue.	
Version/Release:					
Code Name Date:					
To Whom:					
f more than one, use cu	t and paste and a	append as neces	sary in the field	provided.	

Question 5 Have you ever discussed your invention with others not employed at IBM'						
If yes identify individuals and date discussed. Fill in the text area with the	follo	wing	informa	ition,	the r	iames
of the individuals, the employer, date discussed, under CDA, and CDA #.	1 14 3					
	4714					

'Question 7				◯ Yes 🙄
Was the invention made in t	he course of any alliance, joint of	levelopment or	r other contract	● No
activities?				Not Sure
If Yes, enter the following :N	lame of Alliance, Contractor or J	loint Developei		
	Contract ID number			
	Relationship contact name			
	Relationship contact E-mail			
	Relationship contact phone			WANTED SE

Question 9			
What type of companies do you expe	ct to compete with inve	entions of this type?	Check all that apply
Manufacturers of enterprise servers			
Manufacturers of entry servers			
Manufacturers of workstations			
Manufacturers of PC's			
Non-computer manufacturers			
Developers of operating systems			
Developers of networking software		•	
Developers of application software	· · · .		
Integrated solution providers			
Service providers			
Other (Please specify below)			

Patent Value Tool (Optional - this may be used by the inventor and attorney to assist with the evalu

(The Patent Value tool can be used by you or the evaluation team to determine the potential licensing

value of your invention.)

These are the answers which were entered into the Patent Value Tool.

<u>Market</u>

What is the anticipated annual market size (in dollars) that will be captured by your invention? \$1B to \$5B

Question 1 - How new is the technical field?

Emerging

Question 2 - How central is the invention to the product(s) which might be expected to contain the invention?

Essential

Question 3 - What is the scope of the claim?

Moderate

PORTFOLIO NEED View P.P.M.Needs List

What are the portfolio needs in the area of your invention? Listed in PPM Needs

EXPLOITATION & ENFORCEMENT

Question 1 - How easily can the use of the invention by a competitor be detected?

With work

Question 2 - How easily can the use of the invention be avoided by a competitor? With work

BUSINESS VALUE

Question 1 - What percentage of the companies producing products in the field of this invention might use this invention?

Broadly cloned

Question 2 - What is the value of this patent to current or anticipated Alliance Activity between IBM and other companies?

Some value

Question 3 - What is the value of this patent to current or anticipated Technology Transfer Activity between IBM and other companies?

Some value

Question 4 - Does it result in prestige to IBM?

External

Post Disclosure Text & Drawings

Enter any additional information relating to this disclosure below:

Wafer Level Underfill Project

IBM Research

National Starch and Chemical Corp.

NIST-ATP

T.J. Watson Research Center

Wafer-level Underfill

- Concept: applying interconnect and underfill at wafer level
- Reduce chip assembly to one step
 Eliminate two manufacturing bottle
- Eliminate two manufacturing bottlenecks: underfill post-cure underfill flow
- Lead-free
- Reworkable

Industry Trends and Assumptions

- Strong growth in flip chip market
- Strong semiconductor growth
- Lowest cost solution consistent with electrical performance and form factor requirements will be rewarded in marketplace
- Lead-free interconnects will be required
- semiconductors Low cost packaging solutions will increase marketshare for IBM
- BAT is a major part of packaging cost

Wafer-level Underfill - IBM Milestones

- Develop WLUF process schemes;
- Select underfill deposition process on bumped wafers with unitorm coating of correct thickness;
- Select approach that has highest likelihood of success, is cheapest, and easiest to integrate in current process flow;
- Ensure compatibility of wafer-level underfill material and process with Pb-free wafer bumping processes
- Evaluate feasibility of potential reworkable underfill materials;
- Adapt, as necessary, existing wafer dicing process parameters and correlate them to dicing-induced underfill defects

WLUF Project:

WLUF apply processes: screening curtain coating etc. spin coating

WLUF Project

heat, pressure

Hierarchy for joining: then bump softens underfill softens

Wafer-level Underfill - IBM Milestones

- Develop WLUF process schemes;
- Select underfill deposition process on bumped wafers with unitorm coating of correct thickness;
- Select approach that has highest likelihood of success, is cheapest, and easiest to integrate in current process flow;
- Ensure compatibility of wafer-level underfill material and process with Pb-free wafer bumping processes
- Evaluate feasibility of potential reworkable underfill materials;
- Adapt, as necessary, existing wafer dicing process parameters and correlate them to dicing-induced underfill defects

Film Thicknesses

Too much

Too little

Just right

Test Structure

National Starch 19A 220 C Hot Plate 3 minutes Dwell time

No Pressure

National Starch 19A 200 °C 3 minutes

With Pressure

WLUF Project **Bumps First Issues**

bump/pad

incomplete

contact

fillet formation

Cure/Bond Study - Polyimide Adhesive

B-staged at 90C and 120C

Bonded to glass at 220C using pressure

Major voids / bubbles

Cure/Bond Study - Polyimide Adhesive

B-staged at 90C, 100C and 120C

Bonded to glass at 220C using pressure

No voids, good wetting of underfill

WLUF Project Bumps Second Conductive Adhesive

WLUF patterning processes: laser ablation RIE etching wet etching

photodefinable underfill

Bump fill with conductive adhesive

Join with underfill softening before conductive adhesive

WLUF Project

Bumps Second Bi-layer/Solder

WLUF patterning

Bump fill with molten solder (IMS)

Apply fluxing adhesive

adhesive Join through soft, b-staged

WLUF Project Bumps Second

issues are essentially same as for bump first

Bumps Second - Hole Fill and Bonding

Patterned polyimide adhesive

Conductive paste in vias

(w/pressure) Bonded to glass at 220C

Good adhesion to glass

Conductive paste flush with glass

Development Schedule

- demonstrate feasibility on test vehicles
- workable flip chip attach and reliable flip chip interconnects
- NIST-ATP Support jointly with National Starch:
- 3 Research H/C + post-doc
- National Starch & Chemical team
- Georgia Tech

Two fundamentally different approaches:

Bumps first: more packaging oriented (receive bumped wafers) Bumps second: more wafer fab oriented (change bumping

process flow)

by using decision flow charts Demonstrate proof of concept for each approach and prioritize

Gather info on pros and cons

cheapest, easiest to integrate into current process flow Choose approach that has highest likelihood of success, is

development Work with Endicott and E.Fishkill to guide process

Wafer Level Underfill Decision Chart

Package topography	Underfill structura aspect	Underfill post-dispense process	Undefill	Bumps	Bumping	Dispense Process	ltem
Planar or protruding bumps	l Single layer or bilayer	Laser ablation Photoresist & etch, or photo- imageable	NS&C, other, reworkable, non-reworkable	Pb-free solder	Bumps first or Bumps second	Spinning, Screening, Laminating	Choices 1 - 1
(In play) (Patent disclosure	in play	In play	In play	∃entatively Bumps 2nd	Spinning	Status - 4
	O						Flargekdate for decision
							*Leád person

Confidential