Analysis 2 Hausaufgabenblatt Nr. 10

Jun Wei Tan* and Jonas Hack

Julius-Maximilians-Universität Würzburg

(Dated: January 22, 2024)

Problem 1. Der Laplace-Operator Δ ist für $f \in C^1(\mathbb{R}^n)$ definiert durch

$$\Delta f = \sum_{i=1}^{n} \partial_i^2 f.$$

Allgemeiner ist ein (homogener) Differentialoperator P zweiter Ordnung für $f \in C^2(\mathbb{R}^n)$ definiert durch

$$Pf = \sum_{i,j=1}^{n} a_{ij} \partial_i \partial_j f.$$

Zeigen Sie, dass die einzigen rotationsinvarianten Differentialoperatoren, d.h. solche, welche

$$P(f(Qx)) = (Pf)(Qx).$$

für alle $x \in \mathbb{R}^n$ und alle orthogonalen Matrizen $Q \in \mathbb{R}^{n \times n}$ erfüllen, Vielfache des Laplace-Operators darstellen.

Proof. Sei Q orthogonal und beliebig mit Elemente $Q_{ij}, i, j \in \{1, ..., n\}$. Sei auch $x \in \mathbb{R}^n$ beliebig. Die Voraussetzung ist dann Es gilt (Kettensregel)

$$\partial_i f(Qx) = \sum_{j=1}^n (\partial_j f)(Qx)Q_{ji}.$$

Dann ist

$$\sum_{i,j=1}^{n} a_{ij} \partial_i \partial_j f(Qx) = \sum_{i,j=1}^{n} a_{ij} \partial_i \left(\sum_{k=1}^{n} (\partial_k f)(Q_{kj}) \right)$$

$$= \sum_{i,j=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} a_{ij} (\partial_l \partial_k f)(Qx) Q_{kj} Q_{li}$$

$$= \sum_{k,l=1}^{n} (\partial_l \partial_k f) \sum_{i,j=1}^{n} Q_{li} a_{ij} Q_{kj}$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

$$= \sum_{k,l=1}^{n} (\partial_l \partial_k f) \sum_{i,j=1}^{n} Q_{li} a_{ij} (Q^T)_{jk}$$

$$\stackrel{?}{=} \sum_{i,j=1}^{n} a_{ij} (\partial_i \partial_j f) (Qx)$$

Sei $B:=QAQ^T$. Offensichtlich muss dann, für alle orthogonale Matrizen $Q,\ QAQ^T=A$ gelten.

Problem 2. Beweisen Sie: Ist $f \in \mathcal{C}([a,b],\mathbb{R})$, so existiert für jedes $\epsilon > 0$ ein Polynom $p:[a,b] \to \mathbb{R}$ mit

$$||f - p||_{\infty} \le \epsilon.$$

Die Menge der Polynome auf dem Intervall [a, b] ist also dicht im Raum der stetigen Funktionen bzgl. der Supremumsnorm.

Gehen Sie wie folgt vor:

(a) (Hutfunktionen) Es sei

$$h_{a,b}(x) = \max\left\{0, 1 - \frac{|x-a|}{b}\right\}, x \in \mathbb{R}$$

für $a \in \mathbb{R}, b > 0$. Begründen Sie, dass auf jedem kompakten Intervall I für jedes ϵ ein Polynom p existiert mit $||h_{a,b} - p||_{\infty,I} \le \epsilon$.

(b) (Lineare Interpolante) Zu einer gegebenen Partition von [a,b] mit Stützstellen $x_0=a < x_1 < \cdots < x_N=b$ definieren wir die lineare Interpolante von f durch

$$H(x) = \sum_{i=0}^{N} h_{x_i, \Delta x_i}(x) f(x_i),$$

wobei $\Delta x_i = x_i - x_{i-1}$ für i = 1, ..., n und $\Delta x_0 = x_1 - a$. Bestimmen Sie zu gegebenem $\epsilon > 0$ eine Partition von [a, b], sodass $||H - f||_{\infty} \le \epsilon$ gilt.

- (c) Beweisen Sie den Approximationssatz von Weierstraß.
- *Proof.* (a) Wir brauchen hier die Aufgaben

Zeigen Sie, dass die Funktion

$$f: [-1, 1] \to \mathbb{R}$$
 $f(x) = \max\{x, 0\}$

gleichmäßig durch Polynome approximiert werden kann.

Problem 3. Zeigen Sie, dass die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

in (0,0) zweimal partiell differenzierbar ist und dass

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$$

gilt. Ist f in \mathbb{R}^2 stetig differenzierbar?

Proof. Wir berechnen die Ableitung auf der Gerade (x,0), also y=0. Es gilt f(x,0)=0. Daraus folgt

$$\frac{\partial f(x,y)}{\partial y}\bigg|_{y=0} = \lim_{y \to 0} \frac{1}{y} f(x,y)$$
$$= \lim_{y \to 0} \frac{x(x^2 - y^2)}{x^2 + y^2}$$
$$= x$$

Dies ist genug, um die partielle Ableitung $\frac{\partial^2 f}{\partial x \partial y}$ zu berechnen. Es gilt $\frac{\partial x}{\partial x} = 1$, also

$$\left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(0,0)} = 1.$$

Ähnlich berechnen wir die Ableitung auf der Gerade (0, y), also x = 0. Es gilt

$$\frac{\partial f(x,y)}{\partial x} \Big|_{x=0} = \lim_{x \to 0} \frac{1}{x} f(x,y)$$
$$= \lim_{x \to 0} \frac{y(x^2 - y^2)}{x^2 + y^2}$$
$$= -y$$

Dann ist

$$\left. \frac{\partial^2 f}{\partial y \partial x} \right|_{(0,0)} = -1.$$

Die sind ungleich, also f kann in (0,0) nicht stetig differenzierbar sind, sonst wären die Ableitungen gleich.

Problem 4. Betrachten Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = (y - x^2)(y - 2x^2).$$

Zeigen Sie:

- (a) Für jede Richtung $v \in \mathbb{R}^2 \setminus \{0\}$ nimmt $f_v(t) = f(tv), t \in \mathbb{R}$ ein striktes lokales Minimum in t = 0 an.
- (b) Die Funktion f besitzt in (0,0) kein lokales Minimum

Proof. (a) Sei $v = (a, b)^T$. Es gilt

$$f_v(t) = f(tv)$$

$$= (bt - a^2t^2)(bt - 2a^2t^2)$$

$$= b^2t^2 + 2a^4t^4 - 2ba^2t^3 - ba^2t^3$$

$$= b^2t^2 + 2a^4t^4 - 3ba^2t^3$$

$$= t^2(2a^4t^2 - 3ba^2t + b^2)$$

Die Ableitungen sind

$$f'_v(t) = t(8a^4t^2 - 9a^2bt + 2b^2)$$

$$f'_v(0) = 0$$

$$f''_v(t) = 2(12a^4t^2 - 9a^2bt + b^2)$$

$$f''_v(0) = 2b^2 > 0$$

Da $f''_v(0) > 0$ und $f'_v(0) = 0$, ist $f'_v(0)$ ein lokales Minimum. Weil $f_v(t)$ ein Polynom vom Grad 4 ist, besitzt $f_v(t)$ maximal 4 Nullstellen, also $f_v(0)$ ist ein strikt lokales Minimum.

(b) Offensichtlich ist f(0,0) = 0. Sei x fest. Wir wählen $x^2 < y < 2x^2$. Damit ist

$$f(x,y) = \underbrace{(y-x^2)}_{>0} \underbrace{(y-2x^2)}_{<0} < 0,$$

also f(x,y) < 0. Da

$$||(x,y)|| = \sqrt{x^2 + y^2}$$

$$\leq \sqrt{x^2 + (2x^2)^2}$$

$$= \sqrt{x^2 + 4x^4}$$

$$= |x|\sqrt{1 + 4x^2}$$

was wir beliebig klein wählen kann, gibt es für jedes $\epsilon > 0$ ein Punkt $p \in B_{\epsilon}((0,0))$ so dass f(p) < f((0,0)), also f besitzt kein lokales Minimum in (0,0).