Theory of Probability Solutions

Ryan Schumm, PhD

Durrett ed. 4, Problem 1.1.3

Let $\mathcal{S}_d = \{(a_1, b_1] \times \cdots \times (a_d, b_d] : a_i, b_i \in \mathbb{R}, \ 1 \leq i \leq d\}$. Show that $\sigma(\mathcal{S}_d) = \mathcal{R}^d$ where \mathcal{R}^d is the Borel subsets of \mathbb{R}^d .

Solution:

Let \mathcal{U} be the set of all open sets of \mathbb{R}^d and $S \in \mathcal{S}_d$. By definition, we can write

$$S = (a_1, b_1] \times \cdots \times (a_d, b_d], \ a_i, b_i \in (-\infty, \infty).$$

Take $\eta_i > 0$ such that $a_i + \eta_i < b_i$ for all i = 1, ..., d and set

$$U = (a_1, b_1) \times \ldots \times (a_d, b_d), \tag{1}$$

$$V = [a_1 + \eta_1, b_1] \times \ldots \times [a_d + \eta_d, b_d]$$
(2)

It follows that $S = U \cup V \in \sigma(\mathcal{U})$ since the compliment of any open set is a closed set and sigma algebras are closed under unions. By definition of a generated sigma algebra and since S was arbitrary, we have $S_d \subset \sigma(\mathcal{U}) \implies \sigma(S_d) \subset \sigma(\mathcal{U})$.

Now let $U \in \mathcal{U}$ and define

$$S = \{ S = (a_1, b_1] \times \dots \times (a_d, b_d] : a_i, b_i \in \mathbb{Q}, S \subset U \}.$$

$$(3)$$

Note that S is a countable subset of S_d which implies that $\bigcup_{S \in S} S \in \sigma(S_d)$. For any $x \in U$, we have that

$$x \in (c_1, e_1) \times \dots \times (c_d, e_d) \subset U$$
 (4)

since the open sets \mathcal{U} are generated by open boxes. Since \mathbb{Q} is dense in \mathbb{R} , there exists $a_i, b_i \in \mathbb{Q}$ such that $x_i \in (a_i, b_i] \subset (c_i, e_i)$ for all $i = 1, \ldots, d$. It follows that

$$x \in \bigcup_{S \in \mathbb{S}} S \implies U \subset \bigcup_{S \in \mathbb{S}} S \tag{5}$$

since x was arbitrary. By construction, we also have that $\bigcup_{S \in \mathbb{S}} S \subset U \implies U = \bigcup_{S \in \mathbb{S}} S$. Therefore, we have shown that $\mathcal{U} \subset \sigma(\mathcal{S}_d) \implies \sigma(\mathcal{U}) \subset \sigma(\mathcal{S}_d)$. Hence, $\sigma(\mathcal{S}_d) = \sigma(\mathcal{U}) = \mathcal{R}^d$.

Durrett ed. 4, Problem 1.1.4

A sigma field \mathcal{F} is said to be countably generated if there is a countable collection of subsets $\mathcal{C} \subset \mathcal{F}$ so that $\sigma(\mathcal{C}) = \mathcal{F}$. Show that \mathcal{R}^d is a countably generated.

Solution:

Let the countable set C be given by

$$\mathcal{C} = \{ (a_1, b_1] \times \dots \times (a_d, b_d] : a_i, b_i \in \mathbb{Q} \}$$
(6)

and observe that $\mathcal{C} \subset \mathcal{S}_d \Longrightarrow \sigma(\mathcal{C}) \subset \sigma(\mathcal{S}_d) = \mathcal{R}^d$. In the previous problem, we showed that $U = \bigcup_{S \in \mathcal{S}} S \in \mathcal{C}$ for all $U \in \mathcal{U}$ where $S \subset \mathcal{C}$ is defined in (3). It follows that $\mathcal{U} \subset \mathcal{C} \Longrightarrow \sigma(\mathcal{U}) = \mathcal{R}^d \subset \sigma(\mathcal{C})$. Thus, we have shown that \mathcal{R}^d is generated by the countable set \mathcal{C} .

Durrett ed. 4, Problem 1.2.3

Show that a distribution function at most countably many discontinuities.

Solution:

Let X be a random variable with distribution function F and $D \subset \mathbb{R}$ be the set of discontinuities of F. Since \mathbb{Q} is dense in \mathbb{R} and F is an increasing function with $F(d) = F(d^+)$, there exists a $q_d \in \mathbb{Q}$ such that $F(d^-) < q_d < F(d)$ for all $d \in D$. Furthermore, for any $x, y \in D$ with x < y, we have that $F(x^-) < F(x) \le F(y^-) < F(y)$. Therefore, $q_x \ne q_y$. It follows that the function $f: D \to \mathbb{Q}$ where $f(d) = q_d$, $\forall d \in D$ is injective which implies $|D| \le |\mathbb{Q}|$. Since \mathbb{Q} is countable, D is at most countable.

Durrett ed. 4, Problem 1.2.5

Suppose X has continuous density f, $P(\alpha \leq X \leq \beta) = 1$ and g is a function that is strictly increasing and differentiable on (α, β) . Then g(X) has density $f(g^{-1}(y))/g'(g^{-1}(y))$ for $g \in (g(\alpha), g(\beta))$.

Solution:

By the definition of a distribution function and the fact that g is strictly increasing function, we can write

$$P(g(X) \le z) = P(X \le g^{-1}(z)) = F(g^{-1}(z)) = \int_{\alpha}^{g^{-1}(z)} f(x)dx. \tag{7}$$

Set $\xi = g(x) \implies dx = d\xi/g'(g^{-1}(\xi))$ and observe that

$$\int_{\alpha}^{g^{-1}(z)} f(x)dx = \int_{g(\alpha)}^{z} \frac{f(g^{-1}(\xi))}{g'(g^{-1}(\xi))} d\xi$$
 (8)

which yields the desired result.