Comenzado el	jueves, 20 de octubre de 2022, 16:43			
	Finalizado			
Finalizado en	jueves, 20 de octubre de 2022, 16:54			
Tiempo empleado	10 minutos 48 segundos			
Calificación	8,67 de 10,00 (87 %)			
gunta 1 recta				
ountúa 1,00 sobre 1,00				
In algoritmo de cc	oste cúbico, ¿es preferible a uno de cos	te exponencial?		
eleccione una: a. Siempre.				
b. Sí, si el tan	naño de los datos es suficientemente g	rande.		✓ Ciert
c. Podría en	algunos casos, para tamaño de datos p	equeños.		
O d. Nunca				
b. Cierto. c. False. Para ca d. False. Para ta	maños pequeños podría ser mejor el e asos grandes será mejor el cúbico maños grandes será mejor el cúbico cta es: Sí, si el tamaño de los datos es si			
gunta 2 recta				
ountúa 1,00 sobre 1,00				
In algoritmo óptin $oxed{e}$ eleccione una: $oxed{\circ}$ a. $O(n^2)$	no que comprueba si un vector de n el	ementos es estríctamente	decreciente tiene complejida	d en el caso mejor:
b. O(1)			 Cierto. En el caso mejo propiedad y se detieno 	or, el vector no cumple la e inmediatamente.
\bigcirc c. $O(n)$				
O d. Ninguna d	le las anteriores			
	aso mejor, el vector no cumple la propi caso mejor, el vector no cumple la prop			

1

La respuesta correcta es: O(1)

Pregunta **3**Incorrecta
Se puntúa -0,33 sobre 1,00

Un algoritmo óptimo para insertar un elemento en un vector no necesariamente ordenado que admite elementos repetidos tiene complejidad en el caso peor (la más ajustada)

Seleccione una:

- \bigcirc a. $O(n \log n)$
- \odot b. O(n)
- \bigcirc c. $O(\log n)$
- \bigcirc d. O(1)

Basta con añadir el elemento al final en tiempo O(1).

La respuesta correcta es: O(1)

Pregunta **4**

Correcta

Se puntúa 1,00 sobre 1,00

Supongamos una matriz cuadrada v de n filas y columnas, y sea m el número de elementos de la matriz. Indica cuales de las siguientes respuestas representan la complejidad en tiempo del siguiente bucle.

```
int x=0;
for (int i = 0; i < n; ++i)
  for (int j = 0; j < n; ++j)
    x += v[i][j];</pre>
```

Seleccione una o más de una:

- lacksquare a. $\Theta(n^2)$
- lacksquare b. $\Theta(m^2)$
- \square c. $\Theta(n*m)$
- \square d. $\Theta(m)$

 \checkmark Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n^2 y su coste es constante.

 \checkmark Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n^2 y $m=n^2$.

- a. Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n^2 y su coste es constante.
- b. Falso. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n^2 .
- c. Falso. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n^2 .
- d. Cierto. El cuerpo del bucle interno se ejecuta un número de veces proporcional a n^2 y $m=n^2$.

Las respuestas correctas son: $\Theta(n^2)$

 $\Theta(m)$

Indica la complejidad del siguiente algoritmo

Seleccione una:

- \bigcirc a. $\Theta(n \log n)$
- \odot b. $\Theta(n)$
- \bigcirc c. $\Theta(1)$
- od. Ninguna de las anteriores.
 - a. Falso. El número de vueltas es del orden de n.
 - b. Cierto. El número de vueltas es del orden de n y cada vuelta es de coste constante.
 - c. Falso. El número de vueltas es del orden de n.
 - d. Falso. La respuesta correcta es $\Theta(n)$.

La respuesta correcta es: $\Theta(n)$

Pregunta 6

Correcta

Se puntúa 1,00 sobre 1,00

Indica la complejidad del siguiente algoritmo

```
int b = 0;
for (int i = 1; i <= n; i *= 4)
  for (int j = m+4; j >= 0; --j)
    ++b;
```

Seleccione una:

- \bigcirc a. $\Theta(n*m)$
- \bigcirc b. $\Theta(m \log n)$
- \odot c. $\Theta(1)$
- Od. Ninguna de las anteriores.

 Cierto. En los bucles anidados independientes la complejidad se multiplica.

Cierto. El número de vueltas es del orden de n

y cada vuelta es de coste constante.

- a. Falso. El bucle con la variable i no da un número de vueltas proporcional a n.
- b. Cierto. En los bucles anidados independientes la complejidad se multiplica.
- c. Falso. En los bucles anidados independientes la complejidad se multiplica.
- d. Falso. La respuesta correcta es $\Theta(m \log n)$.

La respuesta correcta es: $\Theta(m \log n)$

Pregunta **7**

Correcta

Se puntúa 1,00 sobre 1,00

Indica la complejidad del siguiente algoritmo

Seleccione una:

 \odot a. $\Theta(n)$

 Cierto. El número de vueltas del bucle es proporcional a n y cada vuelta es de coste constante.

- \bigcirc b. $\Theta(1)$
- \bigcirc c. $\Theta(n \log n)$
- d. Ninguna de las anteriores.
 - a. Cierto. El número de vueltas del bucle es proporcional a n y cada vuelta es de coste constante.
 - b. Falso. El número de vueltas del bucle no es constante.
 - c. Falso. El bucle no da un número de vueltas proporcional a $n \log n$.
 - d. Falso. La respuesta correcta es $\Theta(n)$.

La respuesta correcta es: $\Theta(n)$

Pregunta 8

Correcta

Se puntúa 1,00 sobre 1,00

Indica cuál de las siguientes afirmaciones es correcta para todo k tal que $0 \leq k < 2$

Seleccione una:

 ${\color{black} igotimes}$ a. $\Omega(n^2)\subset\Omega(n^k)$

Afirmación correcta según la jerarquía de órdenes de complejidad.

- \bigcirc b. $O(n^k) = O(n^2)$
- igcup c. $\Omega(n^k)\subset\Omega(n^2)$
- igcup d. $\Omega(n^k)\subset\Omega(n)$
 - a. Afirmación correcta según la jerarquía de órdenes de complejidad.
 - b. Afirmación incorrecta, para ambos valores de k $O(n^k) \subset O(n^2)$ pero $n^2 \notin O(1)$ y $n^2 \notin O(n)$.
 - c. Afirmación incorrecta para ambos valores de k, ya que $1 \notin \Omega(n^2)$ y $n \notin \Omega(n^2)$.
 - d. Afirmación incorrecta para k=0 , ya que $1
 ot\in \Omega(n)$.

La respuesta correcta es: $\Omega(n^2)\subset\Omega(n^k)$

Pregunta 9

Correcta

Se puntúa 1,00 sobre 1,00

Indica la complejidad del siguiente algoritmo

Seleccione una:

- \bigcirc a. $\Theta(1)$
- \bigcirc b. $\Theta(n*\log m)$
- \odot c. $\Theta(\max(n,m))$

 \checkmark Cierto. Del bucle se sale en cuanto las dos condiciones se cumplen, por lo que el número de vueltas del bucle es proporcional a $\max(n,m)$, y el cuerpo del bucle es de coste constante.

- d. Ninguna de las anteriores.
 - a. Falso. El número de vueltas del bucle no es constante.
 - b. Falso. El número de vueltas es proporcional a la suma de ambos límites.
 - c. Cierto. Del bucle se sale en cuanto las dos condiciones se cumplen, por lo que el número de vueltas del bucle es proporcional a $\max(n, m)$, y el cuerpo del bucle es de coste constante.
 - d. Falso. La respuesta correcta es $\Theta(\mathbf{max}(n,m))$.

La respuesta correcta es: $\Theta(\mathbf{max}(n,m))$

Pregunta 10

Correcta

Se puntúa 1,00 sobre 1,00

Indica cuál de las siguientes afirmaciones es incorrecta

Seleccione una:

- igcup a. $O(\sqrt{n})\subset O(n^3)$
- lacksquare b. $\Omega(1)\subset\Omega(n^2)$

ullet Afirmación incorrecta. Según la jerarquía de órdenes de complejidad $\Omega(1)\supset\Omega(n^2)$, pero no al revés. En particular, $n\in\Omega(1)$ pero $n
ot\in\Omega(n^2)$.

- igcup c. $\Omega(n!)\subset\Omega(2^n)$
- \bigcirc d. $O(n) \subseteq O(\sqrt{5} \cdot n)$
 - a. Afirmación correcta según la jerarquía de órdenes de complejidad.
 - b. Afirmación incorrecta. Según la jerarquía de órdenes de complejidad $\Omega(1) \supset \Omega(n^2)$, pero no al revés. En particular, $n \in \Omega(1)$ pero $n \notin \Omega(n^2)$.
 - c. Afirmación correcta según la jerarquía de órdenes de complejidad.
 - d. Afirmación correcta según la jerarquía de órdenes de complejidad. De hecho $O(n) = O(\sqrt{5} \cdot n)$.

La respuesta correcta es: $\Omega(1)\subset\Omega(n^2)$

Avisos

Ir a...

Tema 2: Especificacion ►