Algebra: Chapter 0 Exercises Chapter 2, Section 7

David Melendez

July 23, 2017

Problem 7.4. Prove that the relation defined in Exercise 5.10 on a free abelian group $F = F^{ab}(A)$ by

$$f \sim f' \Leftrightarrow (\exists g \in G): f' - f = 2g$$

is compatible with the group structure. Determine the quotient F/\sim as a better known group.

Solution. The relation \sim is compatible with the group structure on F if and only if, considering Proposition 7.3,

$$(\forall f, f', a \in F): f \sim f' \implies a + f \sim a + f'$$

(since F is abelian). Suppose then, we have $f \sim f'$, that is f' - f = 2g. We then have (f' + a) - (f + a) = 2g, and hence $a + f' \sim a + f$.

To determine F/\sim as a better known group, we will establish an isomorphism between the group F and the abelian group $G:=(\mathbb{Z}/2\mathbb{Z})^A$.

Define the set function $\kappa:A\to G$ as follows:

$$(\forall a, a' \in A) : \kappa(a)(a') = [\delta_{a'a}]_2,$$

where δ is the kronecker delta function. We then use this function and the universal property for free (abelian) groups to induce a group homomorphism $\varphi: F \to G$ that makes the following diagram commute:

where $j:A\to F$ is the usual inclusion. We will now prove two lemmas essential to constructing the desired isomorphism.

Lemma 1. The homomorphism φ is surjective.

Proof. Suppose $f \in (\mathbb{Z}/2\mathbb{Z})^A$, let $\bar{a} = j(a) \in F$, and allow f(x)y to be "multiplication" by a coset representitive of f(x), i.e. $[0]_2y = 0y$ and $[1]_2y = 1y$. We then have, with the symbol at the top of each sigma representing for clarity the abelian group in which the sum is taking place,

$$(\forall a, a' \in A)\varphi\left(\sum_{a \in A}^{F} f(a)\bar{a}\right)(a') = \sum_{a \in A}^{G} (\varphi(f(a)\bar{a}))(a')$$

$$= \sum_{a \in A}^{G} (f(a)(\varphi(\bar{a})(a')))$$

$$= \sum_{a \in A}^{\mathbb{Z}/2\mathbb{Z}} (f(a)([\delta_{a'a}]_2))$$

$$= f(a')$$

Hence every $f \in G$ is in the image of φ .

Lemma 2. The homomorphism φ agrees with the relation \sim ; that is,

$$f \sim f' \implies \varphi(f) = \varphi(f')$$

Proof. Suppose $f, f' \in F$ and $f \sim f'$. We then have, for all $a \in A$ and for some $g \in (\mathbb{Z}/2\mathbb{Z})^A$:

$$(\varphi(f') - \varphi(f))(a) = \varphi(f' - f)(a)$$

$$= (2g)(a)$$

$$= 2(g(a))$$

$$= [0]_2$$

(as $\mathbb{Z}/2\mathbb{Z}$ has order 2); hence $\varphi(f') = \varphi(f)$, as desired.

Lemma 3. If we define $H = [e_F]_{\sim}$ then we have $F/H = F/\sim$, and $\ker(\varphi) = H$.

Proof. The first statement follows from Proposition 7.4, Proposition 7.7, and the definition of quotient by a normal subgroup.

For the second statement, first suppose that $h \in H$. It then follows, since $h \sim e_F$, that $\varphi(h) = \varphi(e_F) = e_G$, so $h \subseteq F$. For the other direction, suppose $f \in \ker(\varphi)$, and

$$f = \sum_{a \in A} n_a \bar{a}$$

We then have, for all $a' \in A$,

$$\varphi(f)(a') = \varphi\left(\sum_{a \in A} n_a \bar{a}\right)(a')$$

$$= \sum_{a \in A} (n_a \varphi(\bar{a})(a'))$$

$$= \sum_{a \in A} (n_a \kappa(a)(a'))$$

$$= \sum_{a \in A} (n_a [\delta_{a'a}]_2)$$

$$= [n_{a'}]_2$$

Since $\varphi(f) = e_G$, we know that each $n_{a'}$ is congruent to 0 modulo two; that is, even. Hence, we have:

$$f - e_F = f$$
$$= 2\sum_{a \in A} \frac{n_a}{2}\bar{a}$$

This shows that $f \sim e_f$ and thus $f \in H$, giving us $\ker(\varphi) \subseteq H$. Therefore $\ker(\varphi) = H$, as desired.

With this all established, we can finally find our isomorphism. We now construct a homomorphism $\widetilde{\varphi}: F/H \to G$ using the universal property for quotient by an equivalence relation:

Here, π is the quotient map $\pi(f) = [f]_{\sim}$, and $\widetilde{\varphi}$ is the unique homomorphism making the diagram commute. The first isomorphism theorem shows that $\widetilde{\varphi}$ is an isomorphism, and so $F/\sim\cong(\mathbb{Z}/2\mathbb{Z})^A$.