

• Q: How to define probability in a continuous sample space? How to define P. M. for discrete 12 L

- 4 check Example in LNp.3-1 • Monotone Sequences of sets (LNp.3-7)
 - ► <u>Definition</u>: A sequence of events $A_1, A_2, ...$, is called Countably infinite many increasing if $A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots \subseteq \Omega$

$$A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots \subseteq \Omega$$
 and decreasing if

 $A_1 \supset A_2 \supset \cdots \supset A_n \supset A_{n+1} \supset \cdots \supset \emptyset$

The limit of an increasing sequence is defined as

$$\lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i$$
 不一定是 Ω

and the <u>limit</u> of an <u>decreasing sequence</u> is <u>countably infinite</u> $\lim_{n\to\infty}A_n=\underline{\bigcap_{i=1}^\infty A_i}$ $\pi-\underline{\mathbb{R}}$

 $=P(\lim_{n\to\infty}A_n^c)=\lim_{n\to\infty}P(A_n^c)=\lim_{n\to\infty}I-P(A_n)=I-\lim_{n\to\infty}P(A_n)$