Apellidos	Nombre
Apellidos	Nompre

1) .- (2 puntos/12)

- a) Razonar, sin usar ecuaciones, que el diodo LED estará encendido en el circuito de la figura.
- b) Si el LED puede disipar una potencia máxima de 350mW y presenta una tensión umbral de $V_{\gamma}=2.8$ V, calcular el valor mínimo que debe tener la resistencia R_{E} para no sobrepasar su máxima potencia.

Datos:
$$V_{CC}=15~{\rm V}, R_C=20~\Omega, R_B=5~{\rm k}\Omega, R_1=20k\Omega, R_2=500\Omega, V_{BE,\gamma}=0.7~{\rm V}, V_{\gamma}^{LED}=2.8~{\rm V}, \beta=99$$

Grupo_

2) .- (2 puntos/12) Representar el diagrama de Bode del módulo de la ganancia en voltaje v_o/v_i para el circuito de la figura.

$$L_1=10~\mathrm{H}, L_2=40~\mathrm{H}, R_1^\cdot=R_2=1~k\Omega, \beta=100$$

Apellidos	Nombre_	
		Grupo

3) .- (2 puntos/12) En el circuito de la figura:

- a) ¿A qué elementos corresponden Z1 y Z2? En ambos casos determinar el valor de las magnitudes a las que corresponde.
- b) Determinar la tensión en el punto A del circuito.
- c) ¿Cuál es la caída de tensión en los extremos de la resistencia?

- 4) .- (2 puntos/12) Calcular la característica de transferencia (V_0 frente a V_i) del siguiente circuito considerando que los casos posibles son:
- D_z en corte y D conduce
- D_z conduce en directa y D conduce
- D_z conduce en directa y D en corte
- D_z conduce en inversa y D conduce

Para los dos diodos V_{γ} = 0V, y V_{z} = 3V para el zener

Apellidos	·	Nombre	
tpemaes			

- 5) .- (2 puntos/12)
- a) Obtener las tensiones a la salida de cada amplificador operacional, siendo conocidas las entradas v_1 y v_2 .
- b) Tomando R_1 = R_3 = $10k\Omega$, R_2 = R_4 = $100k\Omega$, alimentaciones simétricas de $\pm 15V$, y una tensión v_1 de 1V, determinar los valores entre los que puede variar v_2 para que ambos amplificadores se encuentren simultáneamente trabajando en la región lineal.

Grupo_

6) - (2 puntos/12) Determinar la corriente I_1 en el circuito de la figura aplicando el principio de superposición

