Use Capture-Recapture Method To Estimate Prevalence Of Disease In SAS

Lin Yan^{1,2}; Lisa M Lix^{1,2}

- 1. Department of Community Health Sciences, University of Manitoba, Canada
- 2. George & Fay Yee Centre for Healthcare Innovation, University of Manitoba, Canada

INTRODUCTION

- Capture-recapture (CR) models, originally developed to estimate the size of animal populations, have been adapted for use by epidemiologists to estimate the total size of disease populations for such conditions as cancer, diabetes, and arthritis.
- Two assumptions, independence of capture in each data source and homogeneity of capture probabilities, which underlie conventional CR models, are unlikely to hold in epidemiological studies. Failure to satisfy these assumptions may bias population size estimates.
- Several statistical models have been proposed to incorporate dependency amongst sources and covariates to model heterogeneity in capture probabilities. However, none of these models is optimal and researchers may be unfamiliar with how to use them in practice.

OBJECTIVES

- To demonstrate the implementation of the log-linear (LL), multinomial logit (ML) and conditional logit (CL) CR models in SAS for estimating the number of missed disease cases from incomplete populationbased data sources.
- To review advantages and disadvantages of each of these CR models.

A REAL WORLD EXAMPLE

- We demonstrate CR models for estimating the prevalence of Parkinson's Disease (PD) with administrative health data from the province of Saskatchewan.
- **Data Sources:** Hospital discharge abstracts (H), physician billing claims (P), and prescription drug records (D). All databases can be linked via a unique, anonymized personal health identifier that is found in the population registry.
- **Model:** We adopted a three-source CR model to illustrate each method.

METHODS

Table 1. Comparison of Three Capture-Recapture (CR) Models

	Log-Linear (LL) Model	Multinomial Logit (ML) Model	Conditional Logit (CL) Model
Model Definition	individuals are classified into <i>K</i> mutually-exclusive capture profiles (Figure 1) Figure 1: Capture Profiles for Three-Source CR Model 1	estimated by $\Pi_{ik}=\frac{\exp\{\eta_{ik}\}}{\sum_{r=1}^K\exp\{\eta_{ir}\}}$, where η_{ik} is the log-odds of the k th profile $(\eta_{ik}=Log\frac{\pi_{ik}}{\pi_{iK}})$ from a linear model.	For the i th individual (i =1,, n) define the ith row of the covariate vector \mathbf{X} as \mathbf{x}_i with H elements. Each individual is classified in one of K unique capture profiles. The probability of not being captured by any source is: $\Pi_{0 i} = \frac{1}{1+\sum_{r=1}^K \exp\left(\sum_{h=1}^H \sum_{j=1}^J x_{ih} \lambda_{hj} y_{jr}\right)}, \text{ where } x_{ih} \text{ is the } h\text{th element } (h=1,,H) \text{ of } \mathbf{x}_i, \lambda_{hj} \text{ is the } h\text{th element of the regression parameter matrix } \mathbf{\Lambda} (H \times J), \text{ and } y_{jr} \text{ is the } j\text{th element of the design matrix } \mathbf{Y} (J \times K)$
Dependence	Use interaction terms	interaction terms $m_{0 i} \ {\rm can \ be \ estimated \ based \ on \ the \ assumptions} \\ {\rm of \ sources \ dependency \ (see \ next \ section)}$	
Heterogeneity	Stratify the contingency table	Include covariates in the model	Include covariates in the model
Estimate	Number of missed disease cases	Total population size: $N=\sum_{i=1}^n(\frac{1}{1-\Pi_{0 i}})$, which includes observed and missed cases	Total population size: $N=\sum_{i=1}^n(\frac{1}{1-\Pi_{0 i}})$, which includes observed and missed cases
Strengths and Limitations	Classical CR model. Easy to use. However, stratification by 2+ covariates can lead to small sample sizes and thus increase the variation of the population size estimates. Continuous covariates cannot be included	ification by 2+ covariates can lead to small included. Dependence between sources can be considered. The data structure is simple. However, this method is only applicable to the three-source	

LOG-LINEAR MODEL

Data Preparation

S1	S2	S3	Count
1	0	0	140
0	1	0	1601
0	0	1	2350
1	1	0	84
1	0	1	71
0	1	1	1604
1	1	1	297
0	0	0	•

Create a dataset for LL model analysis:

- S1: Captured by Hospital Data
- **S2: Captured by Physician Claims Data**
- S3: Captured by Drug Data
- For S1, S2 and S3, a code of 1 indicates captured and 0 not captured
- Last row (S1=0 and S2=0 and S3=0) represents the number of missed cases in all sources

Set this cell as a missing value, which will be estimated in the model step

Model includes main effects and two-way interactions (S1 - S2; S1 - S3); the latter are used to account for dependencies bewteen sources

A separate CR model is estimated for each stratum to address heterogeneity of capture probabilities

SAS Code and Output

proc genmod data=pd_nocov_llm; model count = S1 S2 S3 S1*S3 S1*S2/ dist = p obstats; output out=pd_3s_nocov_L predicted=predicted; run;

Observation Statistics								
Observation	count	S1	S2	S3	Predicted Value			
1	140	1	0	0	79.837838			
2	1601	0	1	0	1601			
3	2350	0	0	1	2350			
4	84	1	1	0	144.16216			
5	71	1	0	1	131.16216			
6	1604	0	1	1	1604			
7	297	1	1	1	236.83784			
8	•	0	0	0	2345.6047			

Criteria For Assessing Goodness Of Fit								
Criterion DF Value Value/DF								
Deviance	1	113.8227	113.8227					
Scaled Deviance	1	113.8227	113.8227					
Pearson Chi-Square	1	113.3206	113.3206					
Scaled Pearson X2	1	113.3206	113.3206					
Log Likelihood		38745.6195						
Full Log Likelihood		-84.2719						
AIC (smaller is better)		180.5438						
BIC (smaller is better)		180.2193						

Estimate the number of cases not captured in any data source

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) can be used to compare model fit

MULTINOMIAL LOGIT MODEL

Data Preparation

ID	Sex	Agecat	Source	
1	1	1	1	
2	2	2	2	•
3	1	1	3	
•••	•••	•••	•••	
N _i	2	1	3	

Create a dataset for ML model analysis:

- Contains Individual-level data, one record per person.
- Source: a variable that has K mutually exclusive categories, where K is the number of capture profiles, in three sources analysis, K=7.
- Agecat: age group, 1 for '<65' and 2 for '65+'.
- Sex: 1 for male and 2 for female.

SAS Code And Output

proc logistic data = sgf.sgf_pd_3s; class source (ref = "7") sex / param = ref; model source = sex agecat / link = glogit scale=none; output out=pd cov mlm t p=PROB; run;

Sex and age group are included in the model to address heterogeneity in capture probabilities

Output a dataset which contains probabilities of being captured for each individual

Probability of Being Captured Capture Profile

> _LEVEL_ PROB 0.03764 0.27168 0.20465 0.02425 0.0181 0.36383 0.07986

> > prob7

proc transpose data= pd_cov_mlm_t out=pd_cov_mlm_t1 (drop=_label_ _name_) prefix=prob;

by studyid;

recip_P0=1/(1-P0);

var recip_p0;

var p;

run;

run;

Run;

Convert the dataset from a long to wide format

prob6 prob2 prob4 prob5 prob1 prob3 0.27168 | 0.20465 | 0.02425 0.36383 0.07986 0.0181

Calculate $m_{0|i}$; in this example, we data pd_cov_mlm_t2; assume that sources 1 and 2, and set pd_cov_mlm_t1; sources 1 and 3 are dependent. For m0=(prob2*prob3)/(prob6); calculating $m_{0|i}$ under other p0=m0/(1+m0);assumptions, see Table 2

Calculate the probability of not

proc univariate data=pd_cov_mlm_t2; being captured by any source

The UNIVARIATE Procedure (Variable: recip_P0)								
Moments								
N	6147	Sum Weights	6147					
Mean	1.4675198	Sum Observations	9020.84422					
Std Deviation								

Table 2. Method for Calculating $m_{0|i}$ Under **Different Assumptions of Source Dependency**

Interaction	$m_{0 i}$
S1*S2	$(\pi_{i1} + \pi_{i2} + \pi_{i4}) * \pi_{i3} / (\pi_{i7} + \pi_{i6} + \pi_{i5})$
S1*S3	$\pi_{i1} + \pi_{i3} + \pi_{i5}$)* $\pi_{i2} / (\pi_{i7} + \pi_{i6} + \pi_{i4})$
S2*S3	$(\pi_{i6} + \pi_{i3} + \pi_{i2})^* \pi_{i1} / (\pi_{i7} + \pi_{i5} + \pi_{i4})$
S1*S2; S1*S3	$(\pi_{i2} * \pi_{i3})/(\pi_{i6})$
S1 *S;, S2*S3	$(\pi_{i1} * \pi_{i3})/(\pi_{i5})$
S1*S3; S2*S3	$(\pi_{i1}^* \pi_{i2})/(\pi_{i4})$

Estimated number of cases = Observed + Missed

CONDITIONAL LOGIT MODEL

Data Preparation

Design Matrix

	Capture Profile								
	100	010	001	110	101	011	111		
L1	1	0	0	1	1	0	1		
L2	0	1	0	1	0	1	1		
L3	0	0	1	0	1	1	1		
L1_L2	0	0	0	1	0	0	1		
L1_L3	0	0	0	0	1	0	1		

Structure of Dataset

ID	СР	S_YN	L1	L2	L3	L1_L2	L1_L3	Sex	agecat
1	1	0	1	0	0	0	0	1	1
1	2	0	0	1	0	0	0	1	1
1	3	0	0	0	1	0	0	1	1
1	4	0	1	1	0	1	0	1	1
1	5	0	1	0	1	0	1	1	1
1	6	1	0	1	1	0	0	1	1
1	7	0	1	1	1	1	1	1	1

SAS Code And Output

proc logistic data=pd_data_clm outest=parameters_cov_c;
model S_YN (ref='0')= L1 L2 L3 L1_L2 L1_L3
L1*sex L2*sex L3*sex L1_L2*sex L1_L3*sex
L1*agecat L2*agecat L3*agecat L1_L2*agecat L1_L3*agecat/
link=logit;
strata studyid;
run;

Model include main effects and interaction effects based on assumption of source dependency, as well as covariates for dealing with heterogeneity

Create a Design Matrix based on a model assuming that source 1 and 2 and source 1 and 3 are dependent.

- The labels for the rows: main effects (L1, L2, and L3) and interaction effects (L1_L2 and L1_L3).
- The labels for the columns: capture profiles.
- The design matrix was coded with "L" for discriminating with variables (S1, S2, and S3) that already existed in the original dataset.

Create a dataset for CL model:

- Contains individual-level data; 7 records per person
- Agecat: age group; 1 for '<65' and 2 for '65+'.
- CP: Capture Profiles
- Dependent variable(S_YN): for each capture patterns, 1 = yes; 0 = no

Table of parameter estimates

Analysis o	Analysis of Conditional Maximum Likelihood Estimates							
			Standard	Wald				
Parameter	DF	Estimate	Error	Chi-Square	Pr > ChiSq			
L1	1	-8.6467	0.5423	254.2520	<.0001			
L2	1	-2.8091	0.1373	418.7664	<.0001			
L3	1	-1.1349	0.1499	57.3440	<.0001			
L1L2	1	3.9504	0.5211	57.4789	<.0001			
L1L3	1	1.6622	0.5002	11.0420	0.0009			
L1*sex	1	0.8776	0.1958	20.0888	<.0001			
L2*sex	1	0.8167	0.0680	144.3406	<.0001			
L3*sex	1	0.1494	0.0716	4.3492	0.0370			
L1L2*sex	1	-0.5995	0.1859	10.3944	0.0013			
L1L3*sex	1	-0.2331	0.1856	1.5774	0.2091			
L1*agecat	1	1.9376	0.1903	103.6723	<.0001			
L2*agecat	1	0.8560	0.0514	277.7278	<.0001			
L3*agecat	1	0.4259	0.0552	59.5559	<.0001			
L1L2*agecat	1	-1.1013	0.1826	36.3658	<.0001			
L1L3*agecat	1	-0.4201	0.1756	5.7250	0.0167			

proc iml;

varNames={L1 L2 L3 L1_L2 L1_L3 L1sex L2sex L3sex
L1_L2sex L1_L3sex L1agecat L2agecat L3agecat
L1_L2agecat L1_L3agecat};
use parameters_cov_c; read all var varNames into lambda;
close parameters_cov_c;
matrix_lambda = shape(lambda, 3, 5);

varNames={Intercept sex agecat};
use data_cov; read all var varNames into X; close data_cov;
use Design_M; read all var _all_ into Y; close Design_M;

 $A=X*Matrix_lambda*Y; B=exp(A); P0=1/(1+B[,+]);$

recip_P0=1/(1-P0); nNames="recip_P0"; create cov_clm from recip_P0[colname=nNames]; append from recip_P0; run;

proc univariate data=cov_clm; var recip_p0; run

Create A from estimates of model parameters

-8.64671	-2.8091	-1.13489	3.950435	1.662243
0.877563	0.816662	0.149381	-0.59945	-0.2331
1.937641	0.855977	0.425868	-1.10131	-0.42009

The UNIVARIATE Procedure (Variable: recip_P0)						
Moments						
N	6147	Sum Weights	6147			
Mean	1.467527	Sum Observations	9020.891			
Std Deviation	0.332685	Variance	0.110679			

Estimated number of cases = Observed + Missed

SUMMARY

Table 3. Comparison of Results from Three CR Models

	Estimated Number of Missed Cases					
Interaction	Intercept Only Model			Covariates Model*		
	LL	ML	CL	LL	ML	CL
S2*S3	1720	1720	1720	1718	1692	1679
S1*S3	2065	2065	2065	3301	2586	2560
S1*S2	2174	2174	2174	3433	2681	2669
S1*S3, S2*S3	2668	2668	2668	2608	2617	2617
S1*S2, S2*S3	4633	4633	4633	4677	6007	6009
S1*S2, S1*S3	2345	2345	2345	3744	2873	2874

^{*}Covariates: age group; sex

REFERENCES

Zwane, E. & van der Heijden, P. (2005). Population estimation using the multiple system estimator in the presence of continuous covariates. *Statistical Modelling*, *5*, 39-52. Rossi, G., Pepe, P., Curzio, O., & Marchi, M. (2010). Generalized linear models and Capture-Recapture Method in a closed population: strengths and weaknesses. *Statistica*, *70*(3), 371-390.

- For models without covariates, the estimated number of missed PD cases are the same for LL, ML and CL model
- For models including the covariates of age group and sex, the ML and CL models produced similar estimates of the number of missed PD cases, while the LL model predicted a much higher number of missed cases. This latter result may be due to small sample size in some cells of contingency table due to stratification

<u>ACKNOWLEDGEMENTS</u>

This study was supported by funding from the Canadian Institutes of Health Research (Funding Reference No. 123357) and the Saskatchewan Health Research Foundation. This research is based in part on de-identified data provided by the Saskatchewan Ministry of Health. The interpretation and conclusions contained herein do not necessarily represent those of the Government of Saskatchewan or the Ministry of Health.

For further information: Dr. Lin Yan; lin.yan@umanitoba.ca