$$m_A v_A' + m_B v_B' = m_A v_A + m_B v_B$$
 より、 (運動量保存の法則) $m = m_A = m_B$, $v_A = 0^m/_S$, $v_B = 10^m/_S$ を代入して、 $m \cdot v_A' + m \cdot v_B' = m \cdot 0 + m \cdot 10$ …①

《ここまで共通》

(1)
$$\frac{v_A'-v_B'}{v_B-v_A}=e \ \text{より}, \qquad (反発係数の公式)$$
 $v_A=0^m/_S \ , \ v_B=10^m/_S \ , \ e=1$ を代入して、
$$\frac{v_A'-v_B'}{10-0}=1$$
 $v_A'-v_B'=10$ …②
式①,②より、
$$\vdots \ v_A'=10^m/_S \\ \vdots \ v_B'=0^m/_S$$

(2)
$$\frac{v_A'-v_B'}{v_B-v_A} = e \text{ より、 } (反発係数の公式)$$
 $v_A = 0^m/_S$, $v_B = 10^m/_S$, $e = 0$ を代入して、
$$\frac{v_A'-v_B'}{10-0} = 0$$
 $v_A'-v_B' = 0$ …③

(3)
$$\frac{v_A'-v_B'}{v_B-v_A}=e$$
 より、 (反発係数の公式)
$$v_A=0^{m}/_S \ , \ v_B=10^{m}/_S \ , \ e=0.6$$
 を代入して、
$$\frac{v_A'-v_B'}{10-0}=0.6$$
 $v_A'-v_B'=6.0$ …④

式①,④より、

$$\dot{v}_A' = 8 \frac{m}{s}$$

$$\dot{v}_B' = 2 \frac{m}{s}$$