(a) **Yes.** A Turing machine can write the blank symbol \square on its tape.

According to the definition, a Turing machine is a 7 – tuple $\left(Q, \Sigma, \Gamma, \mathcal{S}, q_0, q_{\text{accept}}, q_{\text{reject}}\right)$

Where Q, Σ, Γ are all finite sets.

 Σ is the input alphabet not containing the blank symbol \square .

But Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subset \Gamma$.

A Turing machine can write any characters in Γ on its tape.

Thus Turing machine can write blank symbol on its tape.

(b) **No.** The tape alphabet Γ never same as input alphabet Σ

Because tape alphabet Γ contains blank symbol \square where as input alphabet does not contain blank symbol.

Always Σ is subset of Γ , but never same as Σ .

(c) Yes. Turing machines head be in the same location in two successive steps.

When the Turing machines head is at the left _end of the tape, if Turing machine again try to move left side then Turing machine's head is in the same location as previous can move.

(d) **No.**

According to definition, A Turing machine is a 7- tuple ($(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$

Where \mathbf{Q} is the set of states.

 $\boldsymbol{q}_{\text{accept}}$ is the accept state and is belongs to $\,\boldsymbol{Q}$

 $\boldsymbol{q}_{\text{reject}}$ is the reject state and is belongs to $\,Q.\,$

But $q_{accept} \neq q_{reject}$

Thus there must be two distinct states $\,q_{\text{accept}}\,$ and $\,q_{\text{reject}}\,$

So, a Turing machine contains at least two states.