Universidade Federal de Minas Gerais Instituto de Ciências Exatas Programa de Pós Graduação em Matemática

Caracteres de grupos de permutações

Lucas Abraão Mateus de Castro

Course: Grupos e Representações (MAT 889) Professor: Csaba Schneider

28 de novembro de 2019

Seja G um grupo finito e $X=\{x_1,\ldots,x_n\},\ n\geq 1$. Escolhamos um \mathbb{C} -espaço vetorial n-dimensional V de base $\{v_{x_1},\ldots,v_{x_n}\}$, $V=\left\langle v_{x_1},\ldots,v_{x_n}\right\rangle$. Então

- ightharpoonup V é G-módulo pela ação $v_{x_i}g=v_{x_ig}$ para todos $x_i\in X$ e $g\in G$;
- a representação permutacional de G correspondente da ação de G em X é

$$\rho_X : G \longrightarrow GL(V)$$

$$g \longmapsto (g)\rho_X : V \longrightarrow V$$

$$v_{x_i} \longmapsto v_{x_ig}$$

onde $(g)\rho_X$ é estendido linearmente em V;

a representação permutacional de G correspondente da ação de G em X é

$$\rho_X : G \longrightarrow GL(V)$$

$$g \longmapsto (g)\rho_X : V \longrightarrow V$$

$$v_{x_i} \longmapsto v_{x_ig}$$

onde $(g)\rho_X$ é estendido linearmente em V;

▶ para $g \in G$ e $1 \le i \le n$ temos

$$(g\rho_X)_{ii} = \begin{cases} 0 & \text{se } v_{x_ig} \neq v_{x_i} \Leftrightarrow x_ig \neq x_i, \\ 1 & \text{se } v_{x_ig} = v_{x_i} \Leftrightarrow x_ig = x_i; \end{cases}$$

• o caracter π_X de ρ_X é dado por

$$(g)\pi_X = |\{x \in X \mid xg = x\}| = |fix_X(g)|$$

e é dito o caracter permutacional de G correspondente a ação de G em X.

Teorema

[2, 8.4.6] Seja $G \leq Sym(X)$ um grupo de permutações finito com |X| = n. Sejam os \mathbb{C} -caracteres π_X e χ_1 o permutacional e o trivial de G, respectivamente.

$$(1) |orb(G,X)| = \langle \pi_X, \chi_1 \rangle = \frac{1}{|G|} \sum_{g \in G} g \pi_X.$$

(2) Sejam G transitivo em X e G_x := $\{g \in G \mid xg = x\}$ para algum $x \in X$. Então

$$|orb(G_X, X)| = \langle \pi_X, \pi_X \rangle = \frac{1}{|G|} \sum_{g \in G} (g\pi_X)^2.$$

(3) Seja G transitivo em X. Então G é 2-transitivo em X se e só se $\pi_X = \chi_1 + \chi$ onde χ é um caracter irredutível de G.

Exemplo

Sejam
$$G = S_4$$
 e $X = \{1, ..., 4\}$.

	1	(12)	(12)(34)	(123)	(1234)
π_X	4	2	0	1	0
χ_1	1	1	1	1	1

Exemplo

Sejam $G = S_4$ e $X = \{1, ..., 4\}$.

	1	(12)	(12)(34)	(123)	(1234)
π_X	4	2	0	1	0
χ_1	1	1	1	1	1
$\chi_3 = \pi_X - \chi_1$	3	1	-1	0	-1

$$(1) |orb(G,X)| = \langle \pi_X, \chi_1 \rangle = \frac{1}{|G|} \sum_{g \in G} g \pi_X.$$

Demonstração. (1) Se $X=\mathcal{O}_1\cup\cdots\cup\mathcal{O}_t$ é a união disjunta das órbitas da ação de G em X então

$$fix_X(g)=fix_{\mathcal{O}_1}(g)\cup\cdots\cup fix_{\mathcal{O}_t}(g)$$
é uma união disjunta para todo $g\in G$ e logo $\pi_X=\pi_{\mathcal{O}_1}+\cdots+$

e uma uniao disjunta para todo $g \in G$ e togo $\pi_X = \pi_{\mathcal{O}_1} + \cdots + \pi_{\mathcal{O}_t}$. É então suficiente mostrar que $\langle \pi_{\mathcal{O}}, \chi_1 \rangle = 1$ para toda órbita \mathcal{O} . Temos

$$\begin{split} \langle \pi_{\mathcal{O}}, \chi_{1} \rangle &= \frac{1}{|G|} \sum_{g \in G} g \pi_{\mathcal{O}} = \frac{1}{|G|} \sum_{g \in G} |\{i \in \mathcal{O} \mid ig = i\}| \\ &= \frac{1}{|G|} |\{(i,g) \in \mathcal{O} \times G \mid ig = i\}| = \frac{1}{|G|} \sum_{i \in \mathcal{O}} |\{g \in G \mid ig = i\}| \\ &= \frac{1}{|G|} \sum_{i \in \mathcal{O}} |G_{i}|. \end{split}$$

$$(1) |orb(G,X)| = \langle \pi_X, \chi_1 \rangle = \frac{1}{|G|} \sum_{\alpha \in G} g \pi_X.$$

Demonstração.

Como G é transitivo em \mathcal{O} segue do T.O.E. que para todo $i \in \mathcal{O}$ temos $|\mathcal{O}| = [G:G_i]$ e $|\mathcal{O}||G_i| = |G|$. Logo

$$\langle \pi_{\mathcal{O}}, \chi_1 \rangle = \frac{1}{|G|} \sum_{i \in \mathcal{O}} |G_i| = \frac{1}{|G|} |\mathcal{O}| |G_i| = \frac{1}{|G|} |G| = 1.$$

E assim

$$\langle \pi_X, \chi_1 \rangle = \langle \pi_{\mathcal{O}_1}, \chi_1 \rangle + \dots + \langle \pi_{\mathcal{O}_t}, \chi_1 \rangle = |orb(G, X)|.$$

(2) G transitivo em X

$$\Rightarrow |orb(G_X, X)| = \langle \pi_X, \pi_X \rangle = \frac{1}{|G|} \sum_{g \in G} (g\pi_X)^2.$$

Demonstração. (2) Assumimos sem perda de generalidade $X = \{1, ..., n\}$. Seja $S = \bigcup_{i=1}^{n} G_i$. Então

$$\langle \pi_X, \pi_X \rangle = \frac{1}{|G|} \sum_{g \in G} (g\pi_X)^2 = \frac{1}{|G|} \sum_{g \in S} (g\pi_X)^2 = \frac{1}{|G|} \sum_{i=1}^n \left[\sum_{g \in G_i} g\pi_X \right].$$

Como G é transitivo em X então os G_i são conjugados e $\sum_{g \in G_i} g \pi_X$ independe de i. De (1) temos

$$\langle \pi_X, \pi_X \rangle = \frac{1}{|G|} \sum_{i=1}^n \left| \sum_{g \in G_x} g \pi_X \right| = \frac{1}{|G|} n |G_x| |orb(G_x, X)|$$

mas do T.O.E. temos $n|G_x| = |X||G_x| = |G|$ e segue o resultado.

(3) Seja G transitivo em X. Então G é 2-transitivo em X se e só se $\pi_X = \chi_1 + \chi$ onde χ é um caracter irredutível de G.

Demonstração.

(3) Sejam χ_1, \dots, χ_k os caracteres irredutíveis distintos de G. Temos que

$$\pi_X = \alpha_1 \chi_1 + \dots + \alpha_k \chi_k, \qquad \alpha_i \in \mathbb{N}.$$

Como G é transitivo em X segue de (1) que $\alpha_1 = \langle \pi_X, \chi_1 \rangle = orb(G, X) = 1$ e logo

$$\langle \pi_X, \pi_X \rangle = 1 + \sum_{i=2}^k \alpha_i^2$$
 e $\pi_X = \chi_1 + \sum_{i=2}^k \alpha_i \chi_i$

(3) Seja G transitivo em X. Então G é 2-transitivo em X se e só se $\pi_X = \chi_1 + \chi$ onde χ é um caracter irredutível de G.

Demonstração.

$$\langle \pi_X, \pi_X \rangle = 1 + \sum_{i=2}^k \alpha_i^2$$
 e $\pi_X = \chi_1 + \sum_{i=2}^k \alpha_i \chi_i$

Temos que

$$G$$
 é 2-transitivo em $X \Leftrightarrow G_x$ é transitivo em $X \setminus \{x\}$ $\Leftrightarrow |orb(G_x, X)| = 2$ $\Leftrightarrow \langle \pi_X, \pi_X \rangle = 2$ $\Leftrightarrow \exists ! i \geq 2 \text{ tal que } \alpha_i = \delta_{ij} \text{ para } i \geq 2$ $\Leftrightarrow \pi_X = \chi_1 + \chi_j \text{ com } j \geq 2.$

Referências

- [1] G. James, M. Liebeck, Representations and characters of groups. 2nd ed. Cambridge University Press, 2001.
- [2] D. J. S. Robinson, A course in the theory of groups. 2nd ed. Springer, 1996.