2950. Number of Divisible Substrings

Description

Each character of the English alphabet has been mapped to a digit as shown below.

A string is divisible if the sum of the mapped values of its characters is divisible by its length.

Given a string s, return the number of divisible substrings of s.

A **substring** is a contiguous non-empty sequence of characters within a string.

Example 1:

Substring	Mapped	Sum	Length	Divisible?
a	1	1	1	Yes
S	7	7	1	Yes
d	2	2	1	Yes
f	3	3	1	Yes
as	1, 7	8	2	Yes
sd	7, 2	9	2	No
df	2, 3	5	2	No
asd	1, 7, 2	10	3	No
sdf	7, 2, 3	12	3	Yes
asdf	1, 7, 2, 3	13	4	No

Input: word = "asdf"

Output: 6

Explanation: The table above contains the details about every substring of word, and we can see that 6 of them are divisible.

Example 2:

Input: word = "bdh"
Output: 4
Explanation: The 4 divisible substrings

Explanation: The 4 divisible substrings are: "b", "d", "h", "bdh".

It can be shown that there are no other substrings of word that are divisible.

Example 3:

Input: word = "abcd"

Output: 6

Explanation: The 6 divisible substrings are: "a", "b", "c", "d", "ab", "cd". It can be shown that there are no other substrings of word that are divisible.

Constraints:

- 1 <= word.length <= 2000
- word consists only of lowercase English letters.