SBML Model Report

Model name: "Curto1998 - purine metabolism"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Nicolas Le Novre¹ and Tomas Radivoyevitch² at March sixth 2005 at 1:52 p.m. and last time modified at July second 2014 at 4:48 p.m. Table 1 provides an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	18
events	0	constraints	0
reactions	37	function definitions	0
global parameters	0	unit definitions	2
rules	0	initial assignments	0

Model Notes

Curto1998 - purine metabolism

This is a purine metabolism model that is geared toward studies of gout.

The model uses Generalized Mass Action (GMA; i.e. power law) descriptions of reaction rate laws.

¹EMBL-EBI, lenov@ebi.ac.uk

²CASE western research university, txr24@po.cwru.edu

Such descriptions are local approximations that assume independent substrate binding. This model is described in the article: Mathematical models of purine metabolism in man. Curto R, Voit EO, Sorribas A, Cascante M.Math Biosci 1998 Jul; 151(1): 1-49

Abstract:

Experimental and clinical data on purine metabolism are collated and analyzed with three mathematical models. The first model is the result of an attempt to construct a traditional kinetic model based on Michaelis-Menten rate laws. This attempt is only partially successful, since kinetic information, while extensive, is not complete, and since qualitative information is difficult to incorporate into this type of model. The data gaps necessitate the complementation of the Michaelis-Menten model with other functional forms that can incorporate different types of data. The most convenient and established representations for this purpose are rate laws formulated as power-law functions, and these are used to construct a Complemented Michaelis-Menten (CMM) model. The other two models are pure power-law-representations, one in the form of a Generalized Mass Action (GMA) system, and the other one in the form of an S-system. The first part of the paper contains a compendium of experimental data necessary for any model of purine metabolism. This is followed by the formulation of the three models and a comparative analysis. For physiological and moderately pathological perturbations in metabolites or enzymes, the results of the three models are very similar and consistent with clinical findings. This is an encouraging result since the three models have different structures and data requirements and are based on different mathematical assumptions. Significant enzyme deficiencies are not so well modeled by the S-system model. The CMM model captures the dynamics better, but judging by comparisons with clinical observations, the best model in this case is the GMA model. The model results are discussed in some detail, along with advantages and disadvantages of each modeling strategy.

This model is hosted on BioModels Database and identified by: BIOMD0000000015.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name micromole (default)

Notes Default unit of substance redefined to micromole by comparison with the article. Nicolas Le Novere

Definition µmol

2.2 Unit time

Name minute (default)

Notes Default unit of time redefined to minute by comparison with the article. Nicolas Le Novere

Definition 60 s

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
cell			3	1	litre	Z	

3.1 Compartment cell

This is a three dimensional compartment with a constant size of one litre.

4 Species

This model contains 18 species. The boundary condition of two of these species is set to true so that these species' amount cannot be changed by any reaction. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
PRPP	phosphoribosylpyrophosphate	cell	μmol		
IMP	inosine monophosphate	cell	μmol		\Box
SAMP	adenylosuccinate	cell	μmol		\Box
ATP	ATP_ADP_AMP_Ado	cell	μmol		\Box
SAM	s-adenosyl-L-methionine	cell	μmol		
Ade	adenine	cell	μmol		
XMP	xanthosine monophosphate	cell	μmol		
GTP	GTP_GDP_GMP	cell	μmol		
dATP	dATP_dADP_dAMP_dAdo	cell	μmol		
dGTP	$dGTP_dGDP_dGMP$	cell	μmol		
RNA		cell	μmol		
DNA		cell	μmol		
НХ	dIno_Ino_HX	cell	μmol		
Хa	xanthine	cell	μmol		
Gua	guanine	cell	μmol		
UA	uric acid	cell	μmol		
R5P	ribose-5-phosphate	cell	μmol		
Pi	phosphate	cell	μmol		$\overline{\mathbf{Z}}$

5 Reactions

This model contains 37 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	ada		$ATP \longrightarrow HX$	
2	ade		$Ade \longrightarrow \emptyset$	
3	adna		$dATP \xrightarrow{dGTP} DNA$	
4	adrnr		$ATP \xrightarrow{dGTP, dATP} dATP$	
5	ampd		$ATP \xrightarrow{GTP, \ Pi} IMP$	
6	aprt		$PRPP + Ade \xrightarrow{ATP} ATP$	
7	arna		$ATP \xrightarrow{GTP} RNA$	
8	asuc		$IMP \xrightarrow{ATP, GTP, Pi} SAMP$	
9	asli		$SAMP \xrightarrow{ATP} ATP$	
10	dada		$\mathrm{dATP} \longrightarrow \mathrm{HX}$	
11	den		$PRPP \xrightarrow{dGTP, IMP, ATP, GTP, Pi} IMP$	
12	dgnuc		$dGTP \longrightarrow Gua$	
13	dnaa		$DNA \longrightarrow dATP$	
14	dnag		$DNA \longrightarrow dGTP$	
15	gdna		$dGTP \xrightarrow{dATP} DNA$	
16	gdrnr		$GTP \xrightarrow{dATP, dGTP} dGTP$	
17	gmpr		$GTP \xrightarrow{XMP, ATP, IMP} IMP$	
18	gmps		$XMP \xrightarrow{ATP} GTP$	

N⁰	Id	Name	Reaction Equation	SBO
19	gnuc		$\operatorname{GTP} \xrightarrow{\operatorname{Pi}} \operatorname{Gua}$	
20	gprt		$Gua + PRPP \xrightarrow{GTP} GTP$	
21	grna		$\operatorname{GTP} \xrightarrow{\operatorname{ATP}} \operatorname{RNA}$	
22	gua		$Gua \longrightarrow Xa$	
23	hprt		$HX + PRPP \xrightarrow{IMP} IMP$	
24	hx		$HX \longrightarrow \emptyset$	
25	hxd		$HX \longrightarrow Xa$	
26	impd		$IMP \xrightarrow{GTP, \ XMP} XMP$	
27	inuc		$IMP \xrightarrow{\mathbf{Pi}} HX$	
28	mat		$ATP \xrightarrow{SAM} SAM$	
29	polyam		$SAM \longrightarrow Ade$	
30	prpps		R5P $\xrightarrow{ATP, GTP, Pi, PRPP}$ PRPP	
31	pyr		$PRPP \longrightarrow \emptyset$	
32	rnaa		$RNA \longrightarrow ATP$	
33	rnag		$RNA \longrightarrow GTP$	
34	trans		$SAM \longrightarrow ATP$	
35	ua		$\mathrm{UA} \longrightarrow \emptyset$	
36	x		$Xa \longrightarrow \emptyset$	
37	xd		$Xa \longrightarrow UA$	

5.1 Reaction ada

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$ATP \longrightarrow HX \tag{1}$$

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Product

Table 6: Properties of each product.

Id	Name	SBO
НХ	dIno_Ino_HX	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{aada} \cdot \text{ATP}^{\text{fada4}}$$
 (2)

Table 7: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
aada		0.001	Ø
fada4		0.970	\checkmark

5.2 Reaction ade

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$Ade \longrightarrow \emptyset \tag{3}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
Ade	adenine	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{aade} \cdot \text{Ade}^{\text{fade6}}$$
 (4)

Table 9: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
aade		0.01	
fade6		0.55	

5.3 Reaction adna

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$dATP \xrightarrow{dGTP} DNA \tag{5}$$

Reactant

Table 10: Properties of each reactant.

	to receive or each react	
Id	Name	SBO
dATP	dATP_dADP_dAMP_dAdo	

Modifier

Table 11: Properties of each modifier.

Table 11. I Toperties of each infoamer.				
Id	Name	SBO		
dGTP	dGTP_dGDP_dGMP			

Product

Table 12: Properties of each product.

Id	Name	SBO
DNA		

Kinetic Law

Derived unit contains undeclared units

$$v_3 = aadna \cdot dATP^{fdnap9} \cdot dGTP^{fdnap10}$$
 (6)

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
aadna		3.279	Ø
fdnap9		0.420	
fdnap10		0.330	

5.4 Reaction adrnr

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$ATP \xrightarrow{dGTP, dATP} dATP \tag{7}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Modifiers

Table 15: Properties of each modifier.

	ruere reverseperates or euch mountain		
Id	Name	SBO	
	dGTP_dGDP_dGMP dATP_dADP_dAMP_dAdo		

Product

Table 16: Properties of each product.

Id	Name	SBO
dATP	dATP_dADP_dAMP_dAdo	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{aadrnr} \cdot \text{ATP}^{\text{fadrnr}4} \cdot \text{dATP}^{\text{fadrnr}9} \cdot \text{dGTP}^{\text{fadrnr}10}$$
 (8)

Table 17: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
aadrnr		0.060		
fadrnr4		0.100		
fadrnr9		-0.300		\square
fadrnr10		0.870		

5.5 Reaction ampd

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$ATP \xrightarrow{GTP, Pi} IMP \tag{9}$$

Reactant

Table 18: Properties of each reactant.

	Nama	SBO
10	Name	200
ATP	ATP_ADP_AMP_Ado	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
GTP	GTP_GDP_GMP	_
Pi	phosphate	

Product

Table 20: Properties of each product.

Id	Name	SBO
IMP	inosine monophosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{aampd} \cdot \text{ATP}^{\text{fampd4}} \cdot \text{GTP}^{\text{fampd8}} \cdot \text{Pi}^{\text{fampd18}}$$
 (10)

Table 21: Properties of each parameter.

Name	SBO Value	Unit	Constant
	0.027		\overline{Z}
	0.800		
	-0.030		
	-0.100		
	Name	0.027 0.800 -0.030	0.027 0.800 -0.030

5.6 Reaction aprt

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

Reaction equation

$$PRPP + Ade \xrightarrow{ATP} ATP$$
 (11)

Reactants

Table 22: Properties of each reactant.

PRPP phosphoribosylpyrophosphate		Name	SBO
Ade adenine	PRPP Ade		520

Modifier

Table 23: Properties of each modifier.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Product

Table 24: Properties of each product.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Kinetic Law

$$v_6 = aaprt \cdot PRPP^{faprt1} \cdot ATP^{faprt4} \cdot Ade^{faprt6}$$
 (12)

Table 25: Properties of each parameter.

Id	Name	SBO Value	Unit Constant
aaprt		233.80	a
faprt1		0.50	
faprt4		-0.80	
faprt6		0.75	\square

5.7 Reaction arna

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$ATP \xrightarrow{GTP} RNA \tag{13}$$

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Modifier

Table 27: Properties of each modifier.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Product

Table 28: Properties of each product.

Id	Name	SBO
RNA		

Kinetic Law

$$v_7 = aarna \cdot ATP^{frnap4} \cdot GTP^{frnap8}$$
 (14)

Table 29: Properties of each parameter.

		.	
Id	Name	SBO Value Unit	Constant
aarna		614.50	$lue{oldsymbol{arkappa}}$
frnap4		0.05	\square
frnap8		0.13	\checkmark

5.8 Reaction asuc

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Reaction equation

$$IMP \xrightarrow{ATP, GTP, Pi} SAMP$$
 (15)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
IMP	inosine monophosphate	

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	_
GTP	GTP_GDP_GMP	
Pi	phosphate	

Product

Table 32: Properties of each product.

	1	
Id	Name	SBO
SAMP	adenylosuccinate	

Kinetic Law

$$v_8 = aasuc \cdot IMP^{fasuc2} \cdot ATP^{fasuc4} \cdot GTP^{fasuc8} \cdot Pi^{fasuc18}$$
 (16)

Table 33: Properties of each parameter.

Id	Name	SBO Val	ue Unit	Constant
aasuc		3.5	93	

Id	Name	SBO Value Unit	Constant
fasuc2		0.400	\overline{Z}
fasuc4		-0.240	
fasuc8		0.200	
fasuc18		-0.050	

5.9 Reaction asli

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$SAMP \xrightarrow{ATP} ATP \tag{17}$$

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
SAMP	adenylosuccinate	

Modifier

Table 35: Properties of each modifier.

Id Name		SBO
ATP	ATP_ADP_AMP_Ado	

Product

Table 36: Properties of each product.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Kinetic Law

$$v_9 = \text{aasli} \cdot \text{SAMP}^{\text{fasli3}} \cdot \text{ATP}^{\text{fasli4}}$$
 (18)

Table 37: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
aasli			66544.00		$ \sqrt{} $
fasli3			0.99		
fasli4			-0.95		\square

5.10 Reaction dada

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$dATP \longrightarrow HX \tag{19}$$

Reactant

Table 38: Properties of each reactant.

Id Name		SBO
dATP	dATP_dADP_dAMP_dAdo	

Product

Table 39: Properties of each product.

Id	Name	SBO
НХ	dIno_Ino_HX	-

Kinetic Law

$$v_{10} = adada \cdot dATP^{fdada9}$$
 (20)

Table 40: Properties of each parameter.

		1	
Id	Name	SBO Value Unit	Constant
adada		0.033	\overline{Z}
fdada9		1.000	$ \overline{\mathscr{L}} $

5.11 Reaction den

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Reaction equation

$$PRPP \xrightarrow{dGTP, IMP, ATP, GTP, Pi} IMP$$
 (21)

Reactant

Table 41: Properties of each reactant.

Id	Name	SBO
PRPP	phosphoribosylpyrophosphate	

Modifiers

Table 42: Properties of each modifier.

Id	Name	SBO
dGTP	dGTP_dGDP_dGMP	
IMP	inosine monophosphate	
ATP	ATP_ADP_AMP_Ado	
GTP	GTP_GDP_GMP	
Pi	phosphate	

Product

Table 43: Properties of each product

Table 43. Properties of each product.			
Id	Id Name		
IMP	inosine monophosphate		

Kinetic Law

$$v_{11} = aden \cdot PRPP^{fden1} \cdot IMP^{fden2} \cdot ATP^{fden4} \cdot GTP^{fden8} \cdot Pi^{fden18}$$
 (22)

Table 44: Properties of each parameter.

		<u> </u>	
Id	Name	SBO Value Unit	Constant
aden		5.273	lacksquare
fden1		2.000	
fden2		-0.060	
fden4		-0.250	
fden8		-0.200	
fden18		-0.080	\mathbf{Z}

5.12 Reaction dgnuc

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$dGTP \longrightarrow Gua \tag{23}$$

Reactant

Table 45: Properties of each reactant.

Id	Name	SBO
dGTP	$dGTP_dGDP_dGMP$	

Product

Table 46: Properties of each product.

Id	Name	SBO
Gua	guanine	

Kinetic Law

$$v_{12} = adgnuc \cdot dGTP^{fdgnuc10}$$
 (24)

Table 47: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
adgnuc			0.033		
fdgnuc10			1.000		

5.13 Reaction dnaa

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$DNA \longrightarrow dATP \tag{25}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
DNA		

Product

Table 49: Properties of each product

Table 47. I Toperties of each product.		
Id	Name	SBO
dATP	dATP_dADP_dAMP_dAdo	

Kinetic Law

$$v_{13} = adnaa \cdot DNA^{fdnan12}$$
 (26)

Table 50: Properties of each parameter.

		1 1	
Id	Name	SBO Value Unit	Constant
adnaa		0.002	\overline{Z}
fdnan12		1.000	\checkmark

5.14 Reaction dnag

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$DNA \longrightarrow dGTP \tag{27}$$

Reactant

Table 51: Properties of each reactant.

Id	Name	SBO
DNA		

Product

Table 52: Properties of each product.

	1 1	
Id	Name	SBO
dGTP	dGTP_dGDP_dGMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = adnag \cdot DNA^{fdnan12}$$
 (28)

Table 53: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
adnag		0.001	$ \mathbf{Z} $
fdnan12		1.000	\checkmark

5.15 Reaction gdna

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$dGTP \xrightarrow{dATP} DNA \tag{29}$$

Reactant

Table 54: Properties of each reactant.

racio e il rioperties er caen reactanti		
Id	Name	SBO
dGTP	dGTP_dGDP_dGMP	

Modifier

Table 55: Properties of each modifier.

Id	Name	SBO
dATP	dATP_dADP_dAMP_dAdo	

Product

Table 56: Properties of each product.

Id	Name	SBO
DNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = agdna \cdot dATP^{fdnap9} \cdot dGTP^{fdnap10}$$
 (30)

Table 57: Properties of each parameter.

		r P P	
Id	Name	SBO Value Unit	Constant
agdna		2.230	
fdnap9		0.420	
fdnap10		0.330	

5.16 Reaction gdrnr

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$GTP \xrightarrow{dATP, dGTP} dGTP$$
 (31)

Reactant

Table 58: Properties of each reactant.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Modifiers

Table 59: Properties of each modifier.

Id	Name	SBO
dATP	dATP_dADP_dAMP_dAdo	
dGTP	dGTP_dGDP_dGMP	

Product

Table 60: Properties of each product.

Id	Name	SBO
dGTP	dGTP_dGDP_dGMP	

Kinetic Law

22

$$v_{16} = agdrnr \cdot GTP^{fgdrnr8} \cdot dATP^{fgdrnr9} \cdot dGTP^{fgdrnr10} \tag{32}$$

Table 61: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
agdrnr		0.120	
fgdrnr8		0.400	
fgdrnr9		-1.200	
fgdrnr10		-0.390	Ø

5.17 Reaction gmpr

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Reaction equation

$$GTP \xrightarrow{XMP, ATP, IMP} IMP$$
 (33)

Reactant

Table 62: Properties of each reactant.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Modifiers

Table 63: Properties of each modifier.

Id	Name	SBO
XMP ATP	ATP_ADP_AMP_Ado	
IMP	inosine monophosphate	

Product

Table 64: Properties of each product.

	1 1	
Id	Name	SBO
IMP	inosine monophosphate	

Kinetic Law

$$v_{17} = \text{agmpr} \cdot \text{IMP}^{\text{fgmpr2}} \cdot \text{ATP}^{\text{fgmpr4}} \cdot \text{XMP}^{\text{fgmpr7}} \cdot \text{GTP}^{\text{fgmpr8}}$$
 (34)

Table 65: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
agmpr			0.301		

Id	Name	SBO Value Unit	Constant
fgmpr2		-0.150	$ \overline{\checkmark} $
fgmpr4		-0.070	\square
fgmpr7		-0.760	\square
fgmpr8		0.700	

5.18 Reaction gmps

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$XMP \xrightarrow{ATP} GTP \tag{35}$$

Reactant

Table 66: Properties of each reactant.

Id	Name	SBO
XMP	xanthosine monophosphate	

Modifier

Table 67: Properties of each modifier.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Product

Table 68: Properties of each product.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Kinetic Law

24

$$v_{18} = agmps \cdot ATP^{fgmps4} \cdot XMP^{fgmps7}$$
 (36)

Table 69: Properties of each parameter.

		* *	
Id	Name	SBO Value Unit	Constant
agmps		0.374	
fgmps4		0.120	$ \overline{\checkmark} $
fgmps7		0.160	\mathbf{Z}

5.19 Reaction gnuc

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$GTP \xrightarrow{\mathbf{Pi}} Gua \tag{37}$$

Reactant

Table 70: Properties of each reactant.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Modifier

Table 71: Properties of each modifier.

Id	Name	SBO
Pi	phosphate	

Product

Table 72: Properties of each product.

Id	Name	SBO
Gua	guanine	

Kinetic Law

$$v_{19} = agnuc \cdot GTP^{fgnuc8} \cdot Pi^{fgnuc18}$$
 (38)

Table 73: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
agnuc fgnuc8			0.251 0.900		\overline{Z}
fgnuc18			-0.340		☑ ☑

5.20 Reaction gprt

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

Reaction equation

$$Gua + PRPP \xrightarrow{GTP} GTP$$
 (39)

Reactants

Table 74: Properties of each reactant.

Id	Name	SBO
Gua PRPP	guanine phosphoribosylpyrophosphate	

Modifier

Table 75: Properties of each modifier.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Product

Table 76: Properties of each product.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Kinetic Law

$$v_{20} = agprt \cdot PRPP^{fgprt1} \cdot GTP^{fgprt8} \cdot Gua^{fgprt15}$$
 (40)

Table 77: Properties of each parameter.

Name	SBO V	Value U	nit	Constant
	30	61.69		
		1.20		
	-	-1.20		
		0.42		\square
	Name	3	361.69 1.20 -1.20	361.69 1.20 -1.20

5.21 Reaction grna

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$GTP \xrightarrow{ATP} RNA \tag{41}$$

Reactant

Table 78: Properties of each reactant.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Modifier

Table 79: Properties of each modifier.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Product

Table 80: Properties of each product.

Id	Name	SBO
RNA		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \operatorname{agrna} \cdot \operatorname{ATP}^{\operatorname{frnap4}} \cdot \operatorname{GTP}^{\operatorname{frnap8}} \tag{42}$$

Table 81: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
agrna		409.60	
frnap4		0.05	
frnap8		0.13	

5.22 Reaction gua

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Gua \longrightarrow Xa$$
 (43)

Reactant

Table 82: Properties of each reactant.

Id	Name	SBO
Gua	guanine	

Product

Table 83: Properties of each product.

Id	Name	SBO
Хa	xanthine	

Kinetic Law

$$v_{22} = agua \cdot Gua^{fgua15} \tag{44}$$

Table 84: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
agua		0.492	
fgua15		0.500	\checkmark

5.23 Reaction hprt

This is an irreversible reaction of two reactants forming one product influenced by one modifier.

Reaction equation

$$HX + PRPP \xrightarrow{IMP} IMP$$
 (45)

Reactants

Table 85: Properties of each reactant.

	1	
Id	Name	SBO
HX PRPP	dIno_Ino_HX phosphoribosylpyrophosphate	

Modifier

Table 86: Properties of each modifier.

Id	Name	SBO
IMP	inosine monophosphate	

Product

Table 87: Properties of each product.

Id	Name	SBO
IMP	inosine monophosphate	

Kinetic Law

$$v_{23} = ahprt \cdot PRPP^{fhprt1} \cdot IMP^{fhprt2} \cdot HX^{fhprt13}$$
 (46)

Table 88: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
ahprt		12.569	$ \mathcal{A} $
fhprt1		1.100	\square
fhprt2		-0.890	\square
fhprt13		0.480	

5.24 Reaction hx

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$HX \longrightarrow \emptyset$$
 (47)

Reactant

Table 89: Properties of each reactant.

Id	Name	SBO
НХ	dIno_Ino_HX	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{ahx} \cdot \text{HX}^{\text{fhx}13} \tag{48}$$

Table 90: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
ahx		0.004	
fhx13		1.120	\square

5.25 Reaction hxd

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$HX \longrightarrow Xa$$
 (49)

Reactant

Table 91: Properties of each reactant.

Id	Name	SBO
НХ	dIno_Ino_HX	

Product

Table 92: Properties of each product.

Id	Name	SBO
Хa	xanthine	

Kinetic Law

Derived unit contains undeclared units

$$v_{25} = \text{ahxd} \cdot \text{HX}^{\text{fhxd13}} \tag{50}$$

Table 93: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
-	1 (01110		
ahxd		0.275	
fhxd13		0.650	$ \overline{\mathbf{Z}} $

5.26 Reaction impd

This is an irreversible reaction of one reactant forming one product influenced by two modifiers.

Reaction equation

$$IMP \xrightarrow{GTP, XMP} XMP \tag{51}$$

Reactant

Table 94: Properties of each reactant.

	Name	SBO
IMP	inosine monophosphate	

Modifiers

Table 95: Properties of each modifier.

Id	Name	SBO
GTP	GTP_GDP_GMP	
XMP	xanthosine monophosphate	

Product

Table 96: Properties of each product.

Id	Name	SBO
XMP	xanthosine monophosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = aimpd \cdot IMP^{fimpd2} \cdot XMP^{fimpd7} \cdot GTP^{fimpd8}$$
 (52)

Table 97: Properties of each parameter.

		I	
Id	Name	SBO Value U	Jnit Constant
aimpd		1.282	lacksquare
fimpd	2	0.150	\square
fimpd	7	-0.090	\square
fimpd	8	-0.030	

5.27 Reaction inuc

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$IMP \xrightarrow{Pi} HX \tag{53}$$

Reactant

Table 98: Properties of each reactant.

Table 70. I Toperties of each reactant.			
Id	Name	SBO	
IMP	inosine monophosphate		

Modifier

Table 99: Properties of each modifier.

Id	Name	SBO
Pi	phosphate	

Product

Table 100: Properties of each product.

Id	Name	SBO
НХ	dIno_Ino_HX	

Kinetic Law

$$v_{27} = \operatorname{ainuc} \cdot \operatorname{IMP}^{\operatorname{finuc2}} \cdot \operatorname{Pi}^{\operatorname{finuc18}}$$
 (54)

Table 101: Properties of each parameter.

	•			
Name	SBO	Value	Unit	Constant
		0.914		
		0.800		\square
		-0.360		
	Name	Name SBO	0.914 0.800	Name SBO Value Unit 0.914 0.800

5.28 Reaction mat

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Reaction equation

$$ATP \xrightarrow{SAM} SAM \tag{55}$$

Reactant

Table 102: Properties of each reactant.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Modifier

Table 103: Properties of each modifier.

Id	Name	SBO
SAM	s-adenosyl-L-methionine	

Product

Table 104: Properties of each product.

Id	Name	SBO
SAM	s-adenosyl-L-methionine	

Kinetic Law

$$v_{28} = \operatorname{amat} \cdot \operatorname{ATP}^{\operatorname{fmat4}} \cdot \operatorname{SAM}^{\operatorname{fmat5}} \tag{56}$$

Table 105: Properties of each parameter.

		I	
Id	Name	SBO Value Unit	Constant
amat		7.207	
${ t fmat4}$		0.200	\square
fmat5		-0.600	

5.29 Reaction polyam

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$SAM \longrightarrow Ade$$
 (57)

Reactant

Table 106: Properties of each reactant.

Id	Name	SBO
SAM	s-adenosyl-L-methionine	

Product

Table 107: Properties of each product.

Id	Name	SBO
Ade	adenine	

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{apolyam} \cdot \text{SAM}^{\text{fpolyam5}} \tag{58}$$

Table 108: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
apolyam		0.29	lacksquare
fpolyam5		0.90	\checkmark

5.30 Reaction prpps

This is an irreversible reaction of one reactant forming one product influenced by four modifiers.

Reaction equation

$$R5P \xrightarrow{ATP, GTP, Pi, PRPP} PRPP$$
 (59)

Reactant

Table 109: Properties of each reactant.

Id	Name	SBO
R5P	ribose-5-phosphate	

Modifiers

Table 110: Properties of each modifier.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	
GTP	GTP_GDP_GMP	
Pi	phosphate	
PRPP	phosphoribosylpyrophosphate	

Product

Table 111: Properties of each product.

Id	Name	SBO
PRPP	phosphoribosylpyrophosphate	

Kinetic Law

$$v_{30} = aprpps \cdot PRPP^{fprpps1} \cdot ATP^{fprpps4} \cdot GTP^{fprpps8} \cdot R5P^{fprpps17} \cdot Pi^{fprpps18}$$
 (60)

Table 112: Properties of each parameter.

Id	Name	SBO Value	Unit	Constant
aprpps		0.90		
fprpps1		-0.03		\square
fprpps4		-0.45		\square
fprpps8		-0.04		
fprpps17		0.65		
fprpps18		0.70		

5.31 Reaction pyr

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$PRPP \longrightarrow \emptyset \tag{61}$$

Reactant

Table 113: Properties of each reactant.

Id	Name	SBO
PRPP	phosphoribosylpyrophosphate	

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = apyr \cdot PRPP^{fpyr1} \tag{62}$$

Table 114: Properties of each parameter.

		•	•	
Id	Name	SBO Valu	e Unit	Constant
apyr		1.29:	5	\overline{Z}
fpyr1		1.270	0	\square

5.32 Reaction rnaa

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$RNA \longrightarrow ATP \tag{63}$$

Reactant

Table 115: Properties of each reactant.

Id	Name	SBO
RNA		

Product

Table 116: Properties of each product.

10010	Troi Troperines or each p	
Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \operatorname{arnaa} \cdot \operatorname{RNA}^{\operatorname{frnan11}} \tag{64}$$

Table 117: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
arnaa		0.069	
frnan11		1.000	\square

5.33 Reaction rnag

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$RNA \longrightarrow GTP \tag{65}$$

Reactant

Table 118: Properties of each reactant.

Id	Name	SBO
RNA		

Product

Table 119: Properties of each product.

Id	Name	SBO
GTP	GTP_GDP_GMP	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = \operatorname{arnag} \cdot \operatorname{RNA}^{\operatorname{frnan11}} \tag{66}$$

Table 120: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
arnag		0.046	
frnan11		1.000	

5.34 Reaction trans

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$SAM \longrightarrow ATP \tag{67}$$

Reactant

Table 121: Properties of each reactant.

Id	Name	SBO
SAM	s-adenosyl-L-methionine	-

Product

Table 122: Properties of each product.

Id	Name	SBO
ATP	ATP_ADP_AMP_Ado	

Kinetic Law

$$v_{34} = atrans \cdot SAM^{ftrans5}$$
 (68)

Table 123: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
atrans		8.854	\checkmark
ftrans5		0.330	$ \overline{\mathscr{L}} $

5.35 Reaction ua

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$UA \longrightarrow \emptyset \tag{69}$$

Reactant

Table 124: Properties of each reactant.

Id	Name	SBO
UA	uric acid	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{aua} \cdot \text{UA}^{\text{fual6}} \tag{70}$$

Table 125: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
aua			$8.744 \cdot 10^{-5}$	5	
fua16			2.210		

5.36 Reaction x

This is an irreversible reaction of one reactant forming no product.

Reaction equation

$$Xa \longrightarrow \emptyset$$
 (71)

Reactant

Table 126: Properties of each reactant.

Id	Name	SBO
Хa	xanthine	

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \mathbf{a}\mathbf{x} \cdot \mathbf{X}\mathbf{a}^{\mathbf{f}\mathbf{x}\mathbf{1}\mathbf{4}} \tag{72}$$

Table 127: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
ax		0.001	\square
fx14		2.000	

5.37 Reaction xd

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Xa \longrightarrow UA$$
 (73)

Reactant

Table 128: Properties of each reactant.

Id	Name	SBO
Хa	xanthine	

Product

Table 129: Properties of each product.

Id	Name	SBO
UA	uric acid	

Kinetic Law

Derived unit contains undeclared units

$$v_{37} = \operatorname{axd} \cdot \operatorname{Xa}^{\operatorname{fxd} 14} \tag{74}$$

Table 130: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
axd		0.949	
fxd14		0.550	\mathbf{Z}

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

6.1 Species PRPP

Name phosphoribosylpyrophosphate

Initial amount 5.01742 µmol

This species takes part in seven reactions (as a reactant in aprt, den, gprt, hprt, pyr and as a product in prpps and as a modifier in prpps).

$$\frac{d}{dt}PRPP = |v_{30}| - |v_{6}| - |v_{11}| - |v_{20}| - |v_{23}| - |v_{31}|$$
(75)

6.2 Species IMP

Name inosine monophosphate

Initial amount 98.2634 µmol

This species takes part in ten reactions (as a reactant in asuc, impd, inuc and as a product in ampd, den, gmpr, hprt and as a modifier in den, gmpr, hprt).

$$\frac{d}{dt}IMP = |v_5| + |v_{11}| + |v_{17}| + |v_{23}| - |v_8| - |v_{26}| - |v_{27}|$$
(76)

6.3 Species SAMP

Name adenylosuccinate

Initial amount 0.198189 µmol

This species takes part in two reactions (as a reactant in asli and as a product in asuc).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SAMP} = v_8 - v_9 \tag{77}$$

6.4 Species ATP

Name ATP_ADP_AMP_Ado

Initial amount 2475.35 µmol

This species takes part in 17 reactions (as a reactant in ada, adrnr, ampd, arna, mat and as a product in aprt, asli, rnaa, trans and as a modifier in aprt, asuc, asli, den, gmpr, gmps, grna, prpps).

$$\frac{d}{dt}ATP = |v_6| + |v_9| + |v_{32}| + |v_{34}| - |v_1| - |v_4| - |v_5| - |v_7| - |v_{28}|$$
(78)

6.5 Species SAM

Name s-adenosyl-L-methionine

Initial amount 3.99187 µmol

This species takes part in four reactions (as a reactant in polyam, trans and as a product in mat and as a modifier in mat).

$$\frac{d}{dt}SAM = v_{28} - |v_{29}| - |v_{34}| \tag{79}$$

6.6 Species Ade

Name adenine

Initial amount 0.98473 µmol

This species takes part in three reactions (as a reactant in ade, aprt and as a product in polyam).

$$\frac{d}{dt}Ade = |v_{29}| - |v_2| - |v_6| \tag{80}$$

6.7 Species XMP

Name xanthosine monophosphate

Initial amount 24.793 µmol

This species takes part in four reactions (as a reactant in gmps and as a product in impd and as a modifier in gmpr, impd).

$$\frac{\mathrm{d}}{\mathrm{d}t} XMP = |v_{26}| - |v_{18}| \tag{81}$$

6.8 Species GTP

Name GTP_GDP_GMP

Initial amount 410.223 µmol

This species takes part in 14 reactions (as a reactant in gdrnr, gmpr, gnuc, grna and as a product in gmps, gprt, rnag and as a modifier in ampd, arna, asuc, den, gprt, impd, prpps).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GTP} = |v_{18}| + |v_{20}| + |v_{33}| - |v_{16}| - |v_{17}| - |v_{19}| - |v_{21}| \tag{82}$$

6.9 Species dATP

Name dATP_dADP_dAMP_dAdo

Initial amount 6.01413 µmol

This species takes part in seven reactions (as a reactant in adna, dada and as a product in adrnr, dnaa and as a modifier in adrnr, gdna, gdrnr).

$$\frac{d}{dt}dATP = |v_4| + |v_{13}| - |v_3| - |v_{10}|$$
(83)

6.10 Species dGTP

Name dGTP_dGDP_dGMP

Initial amount 3.02581 µmol

This species takes part in eight reactions (as a reactant in dgnuc, gdna and as a product in dnag, gdrnr and as a modifier in adna, adrnr, den, gdrnr).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{dGTP} = |v_{14}| + |v_{16}| - |v_{12}| - |v_{15}| \tag{84}$$

6.11 Species RNA

Initial amount 28680.5 µmol

This species takes part in four reactions (as a reactant in rnaa, rnag and as a product in arna, grna).

$$\frac{d}{dt}RNA = |v_7| + |v_{21}| - |v_{32}| - |v_{33}|$$
(85)

6.12 Species DNA

Initial amount 5179.34 µmol

This species takes part in four reactions (as a reactant in dnaa, dnag and as a product in adna, gdna).

$$\frac{d}{dt}DNA = v_3 + v_{15} - v_{13} - v_{14}$$
 (86)

6.13 Species HX

Name dIno_Ino_HX

Initial amount 9.51785 µmol

This species takes part in six reactions (as a reactant in hprt, hx, hxd and as a product in ada, dada, inuc).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HX} = |v_1| + |v_{10}| + |v_{27}| - |v_{23}| - |v_{24}| - |v_{25}| \tag{87}$$

6.14 Species Xa

Name xanthine

Initial amount 5.05941 µmol

This species takes part in four reactions (as a reactant in x, xd and as a product in gua, hxd).

$$\frac{\mathrm{d}}{\mathrm{d}t} X a = |v_{22}| + |v_{25}| - |v_{36}| - |v_{37}| \tag{88}$$

6.15 Species Gua

Name guanine

Initial amount 5.50638 µmol

This species takes part in four reactions (as a reactant in gprt, gua and as a product in dgnuc, gnuc).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Gua} = |v_{12}| + |v_{19}| - |v_{20}| - |v_{22}| \tag{89}$$

6.16 Species UA

Name uric acid

Initial amount 100.293 µmol

This species takes part in two reactions (as a reactant in ua and as a product in xd).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{UA} = |v_{37}| - |v_{35}| \tag{90}$$

6.17 Species R5P

Name ribose-5-phosphate

Initial amount 18 μmol

This species takes part in one reaction (as a reactant in prpps), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}R5P = 0\tag{91}$$

6.18 Species Pi

Name phosphate

Initial amount 1400 µmol

This species takes part in six reactions (as a modifier in ampd, asuc, den, gnuc, inuc, prpps), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Pi} = 0\tag{92}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany