Pengantar Mikroprosesor

Disalin dari materi kuliah mikroprosesor yang diampu oleh Pak Imam Suharjo, ST, dosen fakultas teknik Mercu Buana Yogyakarta.

Oleh:

Danny Kurnianto, ST,.M.Eng ST3 Telkom Purwokerto

Pengantar Mikroprosesor

Mikroprosesor: merupakan suatu alat digital yang bekerja:

- menerima data dari sejumlah masukan,
- memproses data menurut ketentuan-ketentuan program yang disimpan dan
- menghasilkan sejumlah sinyal keluaran sebagai akibat dari pemrosesan data tersebut.

Program: suatu kumpulan dari serangkaian perintah yang berurutan yang menentukan bagaimana suatu data masukan diproses dan informasi apa yang harus dikirmkan ke saluran-saluran keluaran akibat data dari masukan ini.

Masukan (N) dan keluaran (M) dihubungkan ke perangkat/alat → Logika biner 1/0.

Contoh Aplikasi:

- Sistem Komputer
- MP untuk mengendalikan lampu lalulintas dengan sistem cerdas. ☺
- MP untuk pengendali Robot

SISTEM MIKROPROSESOR

BUS DATA

- MP pada kenyataanya tidak seperti MP ideal, ada keterbatasan saluran N, M dan program/serta memori yang simpan.
- Biasanya N=M
 → Lebar jejak data (ukuran kata = word size)
- Saluran N dan M, untuk mengangkut data ke dan dari MP → Bus Data (satuan = bit)
- 8 bit = 1 byte
- 4 bit = 1 nyble

GAMBAR 1-2 Mikroprosesor 8-bit. Masing-masing kata data mengandung 8 bit atau 1 byte.

M

Contoh sebuah MP 4 bit

- 4 saluran masukan dan 4 saluran keluaran.
- Simbol bisa dilihat pada gambar.

GAMBAR 1-3
Mikroprosesor 4-bit. Masing-masing kata data mengandung 4 bit atau 1 nybble.

Pengenalan Biner, Octal dan

Hexadesimal

MSB dan LSB.

Pada gambar 1-4:

- D7 → MSB
- D0 \rightarrow LSB

MSB ←1110 1011 → LSB

ditulis degan cara:

11101011 B atau 11101011₂

Konversi biner ke desimal atau sebaliknya?

GAMBAR 1-4

Suatu bus data dari mikroprosesor 8 bit. D7 adalah bit yang paling berarti (most significant bit; disingkat MSB) dan DO adalah bit yang paling kurang berarti (least significant bit; disingkat LSB).

Angka Oktal

Oktal: bilangan berbasis 8

Mengenal \rightarrow 0 - 7

Konversi ke Biner :

Contoh: 11101011 B?

11 101 011 biner

3 5 3 oktal

Akan ditulis:

353 Q atau 353₈

TABEL 1-1 Angka Oktal

Bilangan biner	Angka Oktal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Heksadesimal

Bilangan berbasis 16 0 – 9, A – F

Konversi Biner ke Hexa 1110 1011 Biner

E B Heksadesimal

Akan ditulis:

- → EB H atau EB₁₆
- → Lebih ringkas dan efisien dalam pemulisan daripada binernya

TABEL 1-2 Angka-angka heksadesimal

Bilangan	Angke
biner	heksadesimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α .
1011	В
1100	С
1101	D
1110	E
1111	F

Bus Data 2 arah

Mengapa 2 arah:

 Efisiensi ruang/ bentuk sebuah MP dan penyemat (pin)

DBIN →pengontrol

- DBIN = 1 → Mode masukan
- DBIN = 0 → Mode keluaran

BUS ALAMAT

Memori dalam MP akan terbatas, perlu penyimpanan di luar MP → Bus Alamat

Proses:

- Penulisan memori
- Pembacaan memori

Informasi disimpan dalam memori pada suatu kumpulan lokasi memori.

Setiap lokasi memori mempunyai

Alamat memori tertentu

(ditulisa dalam notasi Heksa)

Memori

MP dengan p saluran alamat maka dia bisa dihubungkan dengan 2^P alamat tertentu.

MP Z80 dengan 16 saluran alamat, maka memori yang secara langsung bisa dihubungi:

 $2^{16} = 65636$ Bytes = 64 KB)

1 KByte = 1024 Byte

TAPEL 1-3 Pangkat dari 2

P	2"
G	
τ	2
2	4
3	8
4	16
5	32
6	64
7	128
9	256
9	5,12
10	102≉
3 1	2048
12	4096
13	8:97
14	16384
15	32768
16	65536
1.7	131072
18	262144
13	524288
20	1048576

Address Word

Kata alamat (address word)
dalam suatu MP biasa
dinyatakan dalam
Hexadesimal (lebih simpel
daripada biner-nya).

Contoh: Bus alamat 16 bit (dari A0 – A15) dengan alamat bus-nya 1110001111111111 akan ekivalen dengan:

1110 0011 1111 1111 biner E 3 F F hexa

Ruang Memori

- Seluruh kumpulan dari lokasi memori suatu MP yang dapat dihubungi.
- Menggunakan notasi Heksa
- Pada bus alamat 16 bit alamat 0000 H – FFFF H (65536 ruang memori)

GAMBAR 1-9

Ruang memori untuk sebuah mikroprosesor dengan bus alamat 16-bit dapat dibayangkan sebagai peta memori dari 65.536 alaman-alamat. Alamat yang terendah adalah 0000H; alamat yang tertinggi adalah FFFFH.

Ruang Memori

Pemahaman tentang Ruang Memori.

Misalnya:

- 0000 0FFF → 4 KByte
- 1000 1FFF → 4 KByte
- 0000 FFFF → 64 KByte

GAMBAR 1-10

Angka yang paling penting dari kenaikan-kenaikan alamat hexadesimal memori perbatasan ruang memori 4K.

Ruang Memori

Pemahaman tentang Ruang Memori

Misalnya:

0000 - 03FF → 1 KB

 $0400 - 07FF \rightarrow 1 KB$

 $0800 - 0BFF \rightarrow 1 KB$

0C00 - 0FFF → 1 KB

0000 – 00FF → 1 halaman (1 page) → ¼ KB

Bus Pengendali

- Mengendalikan 2 Bus yang lain, pengendali masukan dan keluaran u/ meyerempakan dengan perangkat luar.
- Misalnya : DBIN (Pengendali Bus data 2 arah)

kroprosesor.

Mikroprosesor secara Umum

Terdiri dari:

- **1.**????
- **2**, ????
- **3**. ????

Proses kerjanya bagaimana?

Perlu Memori (bisa internal/ekstenal).

http://jurnalblog.com

