

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ CURSO DE GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO

SIN110 - ALGORITMOS E GRAFOS RESOLUÇÃO DOS EXERCÍCIOS E07 DO DIA 02/10/2015

ITAJUBÁ 2015

Exercícios E07 – 02/10/15

Aluna: Karen Dantas **Número de matrícula:** 31243

1) <u>Dígrafo:</u>

Algoritmo de Dijkstra com início no vértice 1:

Vértice	Predecessores	d[v]
0	5- / 2	∞ / 5 / 4
1	-	0
2	5	∞ /3
3	2/4	∞/ 9 /8
4	2/0	∞ / 8 /7
5	1	∞ / 1

Árvore de caminhos mínimos com origem 1:

2) a) Algoritmo de Dijkstra com início no vértice S:

$$\begin{array}{c} \underline{Filas \ Q:} & S - U - X - V - Y \\ & X - U - V - Y \\ & Y - U - V \\ & U - V \\ & V \end{array}$$

Vértice	Predecessores	d[]
S	-	0
U	S / X	∞ / 10 / 8
X	S	∞/5
V	X/Y/U	∞ / 14 / 13 / 9
Y	X	∞/7

Árvore de caminhos mínimos com origem S:

b) O peso da aresta (X, U) passa a ser -3.

Algoritmo de Bellmann-Ford com início no vértice S:

A tabela abaixo possui todos os arcos presentes no dígrafo e seus respectivos pesos e também representa a ordem em que o dígrafo será percorrido.

Arco (u, v)	Peso
S-U	10
S-X	5
U-X	2
U-V	1
X-U	-3
X-V	9
X-Y	2
Y-S	7
Y-V	6
V-Y	4

<u>1ª iteração</u>			
Vértice	Predecessores	d[v]	
S	-	0	
U	S / X	∞ / 10 / 2	
X	S	∞ / 5	
V	U	∞ / 11	
Y	X	∞/7	

<u>2ª iteração</u>			
Vértice	Predecessores	d[v]	
S	-	0	
U	X	2/1	
X	S/U	5/4	
V	U	11/3	
Y	X	7/6	

<u>3ª iteração</u>			
Vértice	Predecessores	d[v]	
S	-	0	
U	X	1/0	
X	U	4/3	
V	U	3/2	
Y	X	6 /5	

<u>4ª iteração</u>			
Vértice	Predecessores	d[v]	
S	-	0	
U	X	0 / -1	
X	U	3/2	
V	U	2 /1	
Y	X	5/4	

Verifica existência de ciclo negativo			
Arco (u, v)	Peso	d[v] > d[u] + w(u, v)	Resposta
S-U	10	-1 > 10	Não
S-X	5	2 > 5	Não
U-X	2	2 > 1	Sim
U-V	1	1 > 0	Sim
X-U	-3	-1 > -1	Não
X-V	9	1 > 11	Não
X-Y	2	4 > 4	Não
Y-S	7	0 > 11	Não
Y-V	6	1 > 10	Não
V-Y	4	4 > 5	Não

A partir da análise da tabela acima verificou-se que foram encontrados dois ciclos negativos nos arcos (U, X) e (U, V). <u>Vale ressaltar</u>, que o algoritmo ao identificar o primeiro ciclo negativo em (U, X) ele terminaria sua execução, mas continuei a verificação para ver em quais outros arcos seriam identificados outros ciclos negativos caso a execução continuasse.

Como foi identificado ciclo negativo, quer dizer que não há solução e, consequentemente, não é possível produzir a árvore de caminhos mínimos.

3) Algoritmo:

```
RotaTotal_MenorCusto (n, m, c, k, R)
        G \leftarrow ConstroiDigrafo(R, 3, m, n)
1.
2.
        IniciaOrigemÚnica (G, 0)
3.
        Q \leftarrow Cria-Fila(c)
4.
        enquanto Q \neq \emptyset faça
5.
               u \leftarrow Retire-Minimo(Q)
6.
               para cada v em Adj[u] faça
7.
                        Relaxa (u, v, w)
8.
        devolve MenorCusto_CidadeConserto (pred, c, k, G)
MenorCusto_CidadeConserto (pred, c, k, G)
1.
        total \leftarrow 100000
2.
        para cada v em Adj[k] faça
3.
               se total < d[v] + w (v, k)
4.
                       total \leftarrow d[v] + w(v, k)
5.
                        vert\_custo\_menor \leftarrow v
6.
        encontrou \leftarrow -1
7.
        para i \leftarrow 0 até c-1 faça
8.
               se vert_custo_menor = pred [i]
9.
                       encontrou \leftarrow 1
10.
                        custo ← Calcula_CustoRota (vert_custo_menor, G)
11.
        se encontrou =1
12.
               devolve custo
13.
        Relaxa (k, vert custo menor, w)
14.
        devolve MenorCusto_CidadeConserto (pred, c, vert_custo_menor, G)
```

Os algoritmos acima funcionam da seguinte forma: Primeiramente, é executado o algoritmo RotaTotal_MenorCusto no qual, na linha 1, é chamada a função ConstroiDigrafo que transforma a matriz R em um dígrafo que possui todas as rotas possíveis e seus custos quais são representados pelos pesos dos arcos entre os vértices. O número 3 que é passado para essa função se refere ao número de colunas da matriz. Na linha 2, é chamada a função IniciaOrigemÚnica que cria a origem da rota e é passado para o ela o dígrafo gerado e o vértice de origem que é 0. Na linha 3, é criada uma fila com as cidades na rota de serviço. Nas linhas 4, 5, 6, 7, é descoberto o caminho que percorre todas as cidades e com menor custo definindo assim, a rota. Na linha 8, é retornado o resultado da função MenorCusto CidadeConserto.

Na função MenorCusto_CidadeConserto, na linha 1 a variável 'total' é iniciada com um número muito grande para quando ela for ser utilizada, seu valor não interfira na descoberta do menor peso. Na linha 2, é realizado um *loop* que irá percorrer todos os vértices adjacentes ao vértice 'k' que representa a cidade (vértice) onde o veículo foi consertado. Nesse *loop* é buscado um vértice adjacente 'vert_custo_menor' o qual, seu peso somado ao peso da aresta (k, v), possui menor total

em relação aos outros vértices adjacentes de 'k'. Na linha 7, é realizado outro *loop* no qual irá ser percorrido o vetor de predecessores 'pred', que foi gerado na função RotaTotal_MenorCusto, e irá ser verificado se o vértice 'vert_custo_menor' está presente nesse vetor. Se estiver, quer dizer que a cidade onde o veículo foi consertado pertence a rota, assim, é chamada a função Calcula_CustoRota a qual calculará o custo gerado pelo percurso a partir do vértice 'vert custo menor' até o destino.

Caso contrário, se o vértice 'vert_custo_menor' não estiver presente em 'pred' significa que a cidade onde o veículo foi consertado está fora da rota. Assim, é chamada a função Relaxa para atualizar o peso do vértice 'k'. Logo após, a função MenorCusto_CidadeConserto é chamada recursivamente passando o 'vert_custo_menor' como parâmetro e para ele será verificado o menor caminho para seus adjacentes e se o adjacente encontrado faz parte da rota e, assim, sucessivamente.