

BMS COLLEGE OF ENGINEERING

(Autonomous Institute, Affiliated to VTU, Belagavi)

DEPARTMENT OF MACHINE LEARNING

(UG Program: B.E. in Artificial Intelligence and Machine Learning)

Course: MOOC with Project

Course Code: 22AM6PWMWP

Event Feedback Analysis

Phase - 1 Presentation
Date: 12th June, 2023

Presented By,

Student Name & USN:

MONESH S 1BM20AI039

PRABHAT G P 1BM20AI043

SANKETH P 1BM20AI048

SIDDARTH A 1BM20AI049

Semester & Section: 6A

Batch Number:5

Faculty In-Charge: Dr. Monika P

Assistant Professor Department of Machine Learning BMS College of Engineering

Agenda

- Introduction
- Literature Review
- Open Issues
- Problem Statement
- Proposed Methodology
- Functional & Non-Functional Requirements
- Expected Outcome
- Conclusion
- About MOOC (Details : Title, number of hours)
- References

Introduction

- Understanding the sentiments and preferences of event attendees is crucial for organizers to make data driven decisions.
- Clustering and comparing each class of audience against each feature helps us to give a broad idea about different audience.

- Our projects to aims to extract valuable insights from the event feedback dataset by employing unsupervised learning techniques such as K-means and PCA decomposition.
- Creating a detailed Power BI dashboard which can be used by the stakeholders to properly analyze every class of audience with any feature they want.

Literature review

AUTHOR / TITLE / YEAR	APPLIED METHODOLOGY / ALGORITHM USED	FINDINGS	RESULTS	LIMITATIONS
"Analyzing Event Feedback Data Using Sentiment Analysis and Clustering Techniques" by A. Smith and B. Johnson.	Using SVM with Linear Kernel	Sentiment Analysis	Clusters with optimal inertia	More number of features
"Clustering Event Attendees based on Feedback and Social Media Data" by C. Lee and D. Kim	Crowd Characterization	Influencing pedestrian behavior in Social media	Social Media Proxy	Privacy Concerns
"Event Feedback Analysis: A Machine Learning Approach for Understanding Attendee Preferences"	carning for Clustering Clustering datasets Attendee Clustering Clustering datasets		Combining large number of columns without losing much variance	Majority of the dataset doesn't have numerical values

Open Issues

• **Data Quality and Quantity:** There may be many incomplete and biased feedbacks by the attendees.

- Subjectivity and Sentiment Analysis: Acknowledge the potential for misinterpretation of the user feedback.
- Ethical Consideration: Address any privacy concerns related to the collection of the feedback data.

Open Issues

• Scalability and Performance: Potential challenges in analyzing large datasets on real-time feedback

- **Dashboard Customization and User Interface:** Limitations regarding the dashboard customization and User interface design.
- Cluster Interpretation: Complexity involved in interpreting and labelling the generated clusters

Problem Statement

Suppose we have the feedback data from most of the attendees

 The event organizer wants to analyze each feedback and group similar users so that it can help the organizer to target important customers.

Looking at the raw data it is difficult to extract useful insights.

Workflow

- 1. Collected the raw data
- 2. Cleaned the data by **removing null values**, converting the **categorical data to numerical data**, adding dummies
- 3. Calculating the **inertia** for different number of clusters
- 4. Reducing the features using **PCA**
- 5. Again running **k-means** for different number of clusters to compare the inertia
- 6. Exporting the data with cluster variables to Power BI
- 7. Extracting useful **Key Performance Indicators** in **Power BI** using DAX
- 8. Creating a detailed report in Power BI to better understand the different classes of audience

Data Cleaning

Dealing with Null values - We remove these rows which has 5 null value rows. As the number of rows are much greater than these missing value rows it is feasible to remove the entire null value rows. Otherwise we need to fill them using mean or any other statical parameters.

CUSTOMER	6
Age	6
Gender	0
Postcode	6
District	0
Constituency	0
latitude	0
longitude	0
Current_Status	0
Total_Household_Income	5
How often you attend Entertaining events in a year?	5
Social_Media	5
How many hours are you willing to travel to attend an event?	5
Do you enjoy adrenaline-rush activities?	5
Are food areas, coffee areas, bars & toilets important to you?	5 5
What is your favourite attraction from below:	5
Were you satisfied with the last event you attended with us?	5
Would you recommend our events to other people?	5
Did you find our events value for money?	5
dtype: int64	

Data Cleaning

Categorical to Numerical Data - There are many categorical variables in our dataset. We convert those into numerical values using the **get_dummies()** function of **pandas** which uses **One-Hot Encoding** technique.

Age_ young	or ^ge_'	8- Age_21- 20 25	Age_26- 32	Age_33- 39	Age_40- 49	Age_50- 59	Age_60- 64	Age_65 or older	Gender_Female	 recommend our events to other people? _Somewhat Unlikely	recommend our events to other people? _Very Likely	recommend our events to other people? _Very Unlikely
0	0	0 0	0	0	1	0	0	0	1	 1	0	0
1	0	0 0	0	0	0	0	1	0	0	 0	0	0
2	0	0 0	0	0	0	1	0	0	0	 0	0	0
3	0	0 0	0	0	0	1	0	0	1	 0	0	0
4	0	0 0	0	0	0	0	1	0	0	 0	0	1

K-Means

Running K-means clustering algorithm using scikit-learn api from 2 clusters to 19 clusters and check their inertia

```
The innertia for: 2 Clusters is: 125619.02972065727
The innertia for: 3 Clusters is: 114905.38684266701
The innertia for: 4 Clusters is: 106337.17594801627
The innertia for : 5 Clusters is: 100865,16529237546
The innertia for: 6 Clusters is: 96432.53526396505
The innertia for: 7 Clusters is: 93814.4989763171
The innertia for: 8 Clusters is: 91696.57513876252
The innertia for : 9 Clusters is: 89725.00222083351
The innertia for: 10 Clusters is: 88493.22915979216
The innertia for: 11 Clusters is: 87581.06059954726
The innertia for: 12 Clusters is: 86617.6660888009
The innertia for: 13 Clusters is: 85829,38420440158
The innertia for: 14 Clusters is: 85014.85271668163
The innertia for: 15 Clusters is: 84434.74381493333
The innertia for: 16 Clusters is: 83662.83564950572
The innertia for: 17 Clusters is: 82854.33711923643
The innertia for: 18 Clusters is: 82485.74994726645
The innertia for: 19 Clusters is: 82187.9337203959
```

K-Means

Using elbow method we decide the number of clusters

PCA

There are total 86 columns present in our dataset. We need to reduce the number of features. This can be done using Principal Component Analysis(PCA)

Trying PCA with 2 components we get explained variance as 0.167 and 0.078

respectively.

PCA

There total variance of our data is 9.78. We want to have 95% of the total explained variance ratio. Checking the explained variance for different number of components

Combining Similar Features

- There are many similar features in our dataset such as
- → attending the events once a year and twice a year are similar
- → attending the events 4 times a year and 5+ times a year are similar

Combining such many similar features to produce new features and removing the old features reduces the columns without any loss in explained variance.

After this step we again run PCA for different principal components to check how many number of components gives approximately 95% of the total variance.

PCA

Total Variance in our dataset is: 9.180531774162311
The 95% variance we want to have is: 8.721505185454195

Variance explain with 30 n_components: 8.014406502568583
Variance explain with 35 n_components: 8.396329813160833
Variance explain with 36 n_components: 8.461635629287185
Variance explain with 40 n_components: 8.7003816381161
Variance explain with 41 n_components: 8.751274630760921
Variance explain with 50 n_components: 9.095245791501771

K-Means

We again run K-means from 2 clusters to 20 clusters to check the inertia score for 36 features (reduced by PCA). Our main aim will be to reduce the inertia score for 5 clusters.

```
The inertia for: 2 Clusters is: 105238.43299446018
The inertia for: 3 Clusters is: 92911.46030532804
The inertia for: 4 Clusters is: 85693.70472771939
The inertia for: 5 Clusters is: 80703.38891729043
The inertia for: 6 Clusters is: 78454.8178005808
The inertia for: 7 Clusters is: 76375.07916565801
The inertia for: 8 Clusters is: 74776.12378369166
The inertia for : 9 Clusters is: 72886.30338685188
The inertia for: 10 Clusters is: 71630.15404372885
The inertia for: 11 Clusters is: 70619.78080730671
The inertia for : 12 Clusters is: 69346.65797379437
The inertia for: 13 Clusters is: 68735.61953260798
The inertia for: 14 Clusters is: 67708.56865301062
The inertia for: 15 Clusters is: 66931.86574392965
The inertia for: 16 Clusters is: 66238.52071892508
The inertia for: 17 Clusters is: 65647.88198639416
The inertia for: 18 Clusters is: 65232.472137144294
The inertia for: 19 Clusters is: 64482.44337332091
The inertia for: 20 Clusters is: 64072.60290522323
```

Previously obtained inertia for 5 clusters
The innertia for: 5 Clusters is: 100865.16529237546

Functional and Non-Functional Requirements

Functional	Non Functional				
Data Import and Processing	Performance(Speed)				
Machine Learning Model Training	Accuracy				
Data Visualization	User Interface and User interaction				
Model Evaluation and Interpretation	Maintainability				
Reporting and Exporting	Security and Privacy				

Expected Outcome

clusters using K-means clustering unsupervised ML algorithm

PCA of Items

Cluster 0
Cluster 1
Cluster 3
Cluster 3
Cluster 4

10
-1.5
-1.0
-1.5

Before PCA

After PCA

Expected Outcome

Conclusion

The integration of Excel, Machine Learning (ML), and Power BI offers a powerful suite of tools for data analysis and visualization. This project has demonstrated the capabilities and advantages of leveraging these technologies to extract insights, make data-driven decisions, and drive business growth.

- → Excel: Excel is a widely used spreadsheet software that offers powerful data analysis and manipulation capabilities. It allows data storing, cleaning, transformation, and modeling. With its wide range of functions and formulas.
- → <u>Machine Learning (ML)</u>: ML algorithms provide the ability to discover patterns and insights from large datasets and automate predictions. By applying **K-means clustering**, we can uncover hidden trends and relationships in reduced data using **Principal Component Analysis(PCA)**, leading to improved decision-making and predictive capabilities.
- → <u>Power BI</u>: Power BI is a business intelligence tool that enables the creation of interactive dashboards and reports.

By integrating data from Excel spreadsheets, ML models and Power BI enables data-driven storytelling and empowers decision-makers with real-time information.

About MOOC

Monesh S
IBM Data Science Specialization
3 Months
Coursera IBM Data Science

Prabhat G P
IBM Data Analyst
2 Weeks
Coursera IBM Data Analyst Capstone

About MOOC

Siddarth A

CodeBasics Power BI

17 Hours

Sanketh P
Mathematics for ML and Data Science Specialization
3 Months
Coursera Maths for ML and Data Science

Power BI Data Analytics

Suggestions / Questions Please ...

Thank you!