

planetmath.org

Math for the people, by the people.

linear erasing

Canonical name LinearErasing

Date of creation 2013-03-22 18:58:54 Last modified on 2013-03-22 18:58:54

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)
Entry type Definition
Classification msc 68Q70
Synonym limited erasing

Related topic RestrictedHomomorphism

It is well-known that, among all of the language families in the Chomsky hierarchy, the family $\mathscr S$ of context-sensitive languages is the only one that is not closed under arbitrary homomorphisms. Nevertheless, $\mathscr S$ is shown to be closed under a more restricted class of homomorphisms, namely the λ -free homomorphisms. Question: can we enlarge this class of homomorphisms so that $\mathscr S$ is still closed under the larger class? The answer is yes.

Definition. Let L be a language over an alphabet Σ , h a homomorphism over Σ , and k a non-negative integer. h is said to be a k-linear erasing on L if for any word $u \in L$, we have

$$|u| \le k|h(u)|,$$

where |u| stands for the length of u.

It is clear that if h is a k-linear erasing on L, then it is a m-linear erasing for any $m \geq k$. Also, if h is a 0-linear erasing on L, then L is either $\{\lambda\}$, or the empty set \emptyset . In addition, if h is a k-linear erasing on L, and $L' \subseteq L$, then it is a k-linear erasing on L'. Consequently, any λ -free homomorphism is a k-linear erasing on any L over Σ , for any $k \geq 1$.

However, the notion of linear erasing is language dependent. For example, let $\Sigma = \{a, b, c\}$. Let $L_1 = \{a^n b^n \mid n \geq 0\}$ and $L_2 = \{a^n c^n \mid n \geq 0\}$. Suppose h is the homomorphism on Σ^* with $h(a) = \lambda$, $h(b) = b^2$ and h(c) = c. Then h is a 1-linear erasing on L_1 , and a 2-linear erasing on L_2 .

Definition Let \mathscr{L} be a family of languages over Σ . Then \mathscr{L} is said to be *closed under linear erasing* if for any $L \in \mathscr{L}$, and any homomorphism h which is a k-linear erasing on L for some $k \geq 0$, then $h(L) \in \mathscr{L}$.

Clearly, if \mathcal{L} is closed under homomorphism, it is closed under linear erasing, and thus the families of http://planetmath.org/RegularLanguageregular, context-free, and type-0 languages are all closed under linear erasing. We also have the following:

Theorem 1. The family $\mathcal S$ of context-sensitive languages is closed under linear erasing.

Remark. The theorem above can be generalized. Call a substitution s over Σ a k-linear erasing on a language L if $|u| \leq k|v|$ for any $v \in s(u)$. If L is context-sensitive such that s(u) is context-sensitive for each $u \in L$, then s(L) is context-sensitive provided that s is a k-linear erasing on L.

References

- [1] A. Salomaa, Formal Languages, Academic Press, New York (1973).
- [2] J.E. Hopcroft, J.D. Ullman, Formal Languages and Their Relation to Automata, Addison-Wesley, (1969).