Assignment Project Exam Help Logistic Regression https://powcoder.com

Add Wechat powcoder

What is logistic regression?

• It is a linear model for classification (contrary to its name!)

Assignment Project Exam Help

Recall the difference:

- https://powcoder.com
 In regression, the targets are real values
- In classification, the targets are categories, and they are called labels

Logistic regression - outline

We will go through the same conceptual journey as before:

Assignment Project Exam Help

1) Model formulation

https://powcoder.com

- 2) Cost function
- 3) Learning algorithm by gradient descent coder

1) Model

- We want to put a boundary between 2 classes
- If x has a single attribute, we can do it with a point Assignment Project Exam Help
- If x has 2 attributes, we can do it with a line Add WeChat powcoder
- If x has 3 attributes, we can do it with a plane
- If x has more than 3 attributes, we can do it with a hyperplane (can't draw it anymore)
- If the classes are linearly separable, the training error will be 0.

Q: Can you plug classification data into linear regression?

A: Yes. But it might not perform very well. No ordering between categories, like there is between real numbers. We need a better model

Model

We change the linear model slightly by passing it through a nonlinearlity

- If
$$x$$
 has 1 attribute, we will have Project Exam Help
$$h(x; \mathbf{w}) = \sigma(w_0 + w_1 x) = \frac{1}{\sqrt{powooderx}}$$

The function $\sigma(u) = \frac{1}{1+e^{-u}}$ is called the **sigmoid function** or **logistic function**

Sigmoid function

It is a smoothed version of a step function – note the step function would make optimisation difficult.

Play around with the logistic model

- Go to https://www.desmos.com/calculator
- Type: $y = \frac{1}{1 + \exp(-(w_0 + w_1 x))}$ Project Exam Help
- Change the values of thetree/parameters to see their effect
- Imagine how this function could fit this data better than a line did.
- What if your data happens to have class 1 on the left, and class 0 on the right?
 - w_1 can be negative, so the same model works.

Model

- If \mathbf{x} has d attributes, that is $\mathbf{x} = \mathbf{x}_{e}$ to jest Exam Well write $h(\mathbf{x}; \mathbf{w}) = \sigma(w_0 + w_1 x_0 + y_1) + w_0 x_0$, $= \frac{1}{\mathbf{x}_{e}}$, where: all components of \mathbf{w} are free parameters \mathbf{x}_{e} and \mathbf{x}_{e} are that powcoder

$$\mathbf{w} = \begin{pmatrix} \mathbf{w_0} \\ \mathbf{w_1} \\ \mathbf{w_2} \\ \dots \\ \mathbf{w_d} \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{pmatrix} \in R^d$$

Meaning of the sigmoid function

- The sigmoid function takes a single argument (note, $w^T x$ is one number).
- It always returns a value between 0 and 1. The meaning of this value is the probability that the label is 1. Project Exam Help

$$\sigma(\mathbf{w}^{T}\mathbf{x}) = P(y = 1|\mathbf{x}; \mathbf{w})
\text{https://powcoder.com}$$

- If this is smaller than 0.5 therewas predict placed older
- if this is larger than 0.5 then we predict label 1.
- There is a slim chance that the sigmoid outputs exactly 0.5. The set of all possible inputs for which this happens is called the decision boundary.

Check your understanding

Can you express the probability that the label is 0 using sigmoid?

$$\Rightarrow 1 - \sigma(\mathbf{w}^T \mathbf{x}) = 1 - P(y = 1 | \mathbf{x}; \mathbf{w}) = P(y = 0 | \mathbf{x}; \mathbf{w})$$
Add WeChat powcoder

• In fact we can write both in 1 line as:

$$P(y|x;w) = \sigma(w^Tx)^y(1-\sigma(w^Tx))^{1-y}$$
 //y given x has a Bernoulli distribution

Worked example

- Suppose we have 2 input attributes, so our model is $h(x; w) = \sigma(w_0 + w_1 x_1 + w_2 x_2).$
- Suppose we know that growent Proyect Exam Help
- When do we predict 1? What is the decision boundary?
 - We predict 1 precisely when P(y = 1|x; w)>0.5. That is, when h(x; w)>0.5.
 This happens precisely when the argument of the sigmoid is positive!

 - Decision boundary: $-1 + x_1 + x_2 = 0$ This is a line
- Q: Is the decision boundary of logistic regression always linear? A: Yes.

2) Cost function

- We need a new cost function, because the Mean Square Error used in linear regression produces a very wiggly function with the new hypothesis function, which would be difficult to optimise.
- But as before we will stillthavepthatoder.com
 - each data point contributes a cost, and the overall cost function is the average of these Add WeChat powcoder
 - the cost is a function of the free parameters of the model

Logistic cost function

For each (x, y) pair, $Cost(h(x; w), y) = \begin{cases} -\log(h(x; w)), & if \ y = 1 \\ -\log(1 - h(x; w)), & if \ y = 0 \end{cases}$ Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Overall cost:
$$g(\mathbf{w}) = \frac{1}{N} \sum_{n=0}^{N} Cost(h(\mathbf{x}^{(n)}; \mathbf{w}), y^{(n)})$$
 convex (easy to minimise)

Writing the cost function in a single line

$$g(w) = \frac{1}{N} \sum_{n=0}^{N} Cost(h(x^{(n)}; w), y^{(n)})$$
Assignment Project Exam Help
$$https://powcoderucom \left\{ \begin{array}{l} -\log(h(x; w)), & if \ y = 1 \\ -\log(1 - h(x; w)), & if \ y = 0 \end{array} \right.$$
Add WeChat powcoder

$$g(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} (y^{(n)} \log h(\mathbf{x}^{(n)}; \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}; \mathbf{w})))$$

This is also called the cross-entropy.

Logistic regression – what we want to do

Given training data

$$(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(N)}, y^{(N)})$$

Assignment Project Exam Help

• Fit the model

https://powcoder.com

Add Wecket $p\overline{v}$

By minimising the cross-entropy cost function

$$g(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} (y^{(n)} \log h(\mathbf{x}^{(n)}; \mathbf{w}) + (1 - y^{(n)}) \log(1 - h(\mathbf{x}^{(n)}; \mathbf{w})))$$

3) Learning algorithm by gradient descent

 We use gradient descent (again!) to minimise the cost function, i.e. to find the best weight values.

Assignment Project Exam Help

• The gradient vector is*:

$$\nabla g(\mathbf{w}) = -(\mathbf{y^{(n)}} - \mathbf{h(x^{(n)}; w)}) \cdot \mathbf{x^{(n)}}$$
Add WeChat powcoder
$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_d \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{pmatrix} \in \mathbb{R}^d$$

$$\mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_d \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_d \end{pmatrix} \in R^d$$

We plug this into the general gradient descent algorithm given last week.

^{*} This follows after differentiating the cost function w.r.t. weights – we omit the lengthy math!

Learning algorithm for logistic regression

```
While not converged ment Project Exam Help

For n = 1,...,N // each example in the training set https://powcoder.com

\mathbf{w} = \mathbf{w} + \alpha (\mathbf{y_0^{(n)}} - \mathbf{h}(\mathbf{x_0^{(n)}} \cdot \mathbf{w})) \cdot \mathbf{x_0^{(n)}}

Add We Chat powcoder
```

Learning algorithm for logistic regression

The same, written component-wise:

```
While not converged ment Project Exam Help

For n = 1,...,N // each example in the training set https://powcoder.com

w_0 = w_0 + \alpha(y^{(n)} - h(\mathbf{x}^{(n)}; \mathbf{w}))

For i=1,...,d

w_i = w_i + \alpha(y^{(n)} - h(\mathbf{x}^{(n)}; \mathbf{w}))x_i^{(n)}
```


Extensions

- We studied logistic regression for linear binary classification
- There are extensions such as: Project Exam Help
 - Nonlinear logistic regression: instead of linear function inside the exp in the sigmoid, we can use polytopsn/apfuvctioles of the input attributes
- Multi-class logistic regression: uses a multi-valued version of sigmoid
 Add WeChat powcoder
 Details of these extensions are beyond of our scope in this module

Examples of application of logistic regression

- Face detection: classes consist of images that contain a face and images without Afacenment Project Exam Help
- Sentiment analysis: dasses/ponsistef written product-reviews
 expressing a positive or a negative opinion
 Add WeChat powcoder
- Automatic diagnosis of medical conditions: classes consist of medical data of patients who either do or do not have a specific disease