seaborn

BEGINNER'S CODE GUIDE

Seabern -Stats visuals in Python -Matplotlib + pandas enhancer

import seaborn as sns import matplotlib.pyplot as plt

```
# creating Data
x = [1,2,3]
y = [4,5,6]
```


Figure Styles

-Darkgrid

-Whitegrid

5 Themes: -Dark

-White

-Ticks

Darkgrid

Function set(), set_theme() and set_style("darkgrid") act same

```
sns.set()
sns.lineplot(x=x,y=y)

or

sns.set_theme()

Or

1.00 125 1.50 1.75 2.00 2.25 2.50 2.75 3.00
```

sns.set_style("darkgrid")

Whitegrid

```
sns.set_style("whitegrid")
sns.lineplot(x=x,y=y)
```


Dark

```
sns.set_style("dark")
```

sns.lineplot(x=x,y=y)

White

sns.set style("white")

sns.lineplot(x=x,y=y)

Ticks Extra Structure on x-y-scale

sns.set_style("ticks")

sns.lineplot(x=x,y=y)

removing the top & right spines

despine()

limit the range of the surviving spines

control which spines are removed

sns.lineplot(x=x,y=y)
sns.despine(left=True)

axes_style()

to view all parameters of set_style

```
sns.axes_style()
```

Scaling Plot Elements set_context()

to control on the plot elements and the scale of plot four preset templates: Paper, Notebook, Talk, Poster

Notebook

```
sns.set_context("notebook")
sns.lineplot(x=x,y=y)
```


Paper

```
sns.set_context("paper")
sns.lineplot(x=x,y=y)
```


Talk

```
sns.set_context("talk")
sns.lineplot(x=x,y=y)
```


Poster

```
sns.set_context("poster")
sns.lineplot(x=x,y=y)
```


more parameters in set_context()

fontscale, rc

```
sns.set_context("notebook",
font_scale=2.9,
rc={"lines.linewidth": 6})
sns.lineplot(x=x, y=y)
```


Color palettes color_palette()

used to give colors to plots

```
sns.color_palette()
```

6 palette themes

deep, muted, pastel, bright, dark, and colorblind

palplot() horizontal bar of colors

```
sns.palplot(sns.color_palette())

sns.palplot(["green","blue","red"]
```

Key Palette Groups

1. Qualitative Palettes used for categorical data

it provide distinct colors for each category typically used for bar plots, scatter plots Palettes: Set1, Set2, Set3, Pastel1, and Dark2

```
sns.color_palette("Set2")
```

2. Sequential Palettes

used for data that has a natural order varies from low to high useful for heatmap and line plot

Palettes: Greens, Blues, Reds, viridis, cubehelix

3. Diverging Palettes

used for data that has center point from negative to positive values

it use two distinct colors. for -1 to 1 data, -1 to 0 takes one color and 0 to +1 takes another color.

Palettes: coolwarm, BrBG, RdBu_r and PuOr

```
sns.color_palette("coolwarm",7)
```

set_palette() Define default palette

```
sns.set_palette("Set1")
```

Importing Datasets load_dataset()

Seaborn comes with inbuilt datasets like 'tips'

This dataset loads as Pandas DataFrame by default

```
df = sns.load_dataset('tips')
df.head()
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

get_dataset_names()

to view more all the available data sets in the Seaborn

```
sns.get_dataset_names()
```

Types of Plot in Seaborn

Each category is designed for a specific type of data and serves a different purpose

choose most appropriate visualization technique for data analysis depending on the nature of data and the insights you want to extract

1. Relational Plots relpolt()

used to visualize the relationships between two or more variables, to explore how variables relate to each other.

Plots: Scatter and Line

Scatter plot using relplot()

```
sns.set(style="whitegrid")
# in-built dataset 'tips'
tips = sns.load_dataset("tips")
g = sns.relplot(x="total_bill",
    y="tip", hue="sex",
    data=tips, kind="scatter")
# Customize the plot
g.set(title="Total Bill vs. Tip",
      xlabel="Total Bill ($)",
      ylabel="Tip ($)")
plt.show()
```


Lineplot in replot()

2. Distributional Plots displot()

to visualize variable distributions (normal, skewed, uniform, bimodal), data spread (range), central tendencies(mean median mode), and patterns in datasets, aiding in data exploration before advanced analysis.

Plots: Histogram, Kernel Density Estimation (KDE), and Empirical Cumulative Distribution Function (ECDF)

Kernel Density Estimation (KDE) Plot

```
sns.displot(tips["total_bill"],
    kind="kde", fill=True)
```


Empirical Cumulative Distribution Function (ECDF) Plot

```
# ecdfplot()
sns.ecdfplot(tips["total_bill"])
```


Histogram Plot

3. Categorical Plots catplot()

explore relationships between categorical and numerical data.

Categorical Data (e.g. weeks, fruit types), Numerical Data (e.g. age, price)

Plots: Bar, Box, Violin, Point, Strip, Swarm

Bar Plot()

Box Plot

Violin Plot

Strip Plot

Swarm Plot

Point Plot

4. Matrix Plot

visualize the relationships and patterns between multiple variables explore correlations between pairs of variables in a dataset Plots: Heatmap, Clustermap, Pair

Heatmap

Clustermap

Pair plot

```
sns.pairplot(tips, hue="day")
```


5. Regression Plot regplot()

```
sns.regplot(x="total_bill",
    y="tip",data=tips)
```

Regression Plot: Total Bill vs. Tip

Implot()

Create a linear model plot (Implot) with facets by time category

joinplot()

residplot()

```
# Fit a linear regression model
sns.regplot(x='total_bill',
    y='tip', data=tips,ci=None,
    line_kws={'color': 'red'})
```


Multiple Plots in Seaborn FacetGrid

Create a FacetGrid for multiple plots based on the 'day' variable

```
g = sns.FacetGrid(tips, col="day")
g.map(sns.histplot, "total_bill")
```


Implot

Create a linear model plot with facets based on 'time' variable

```
sns.lmplot(x="total_bill", y="tip"
hue="time", data=tips,
col="time")
```


PairGrid

```
# pairwise scatterplots
g = sns.PairGrid(tips)

# Customize the appearance
g.map_upper(sns.scatterplot)
g.map_diag(sns.histplot)
g.map_lower(sns.kdeplot)
```

