Wasserstein stability for the *p*-Dowker nerve

May 29, 2023

1 Setting

We fix a real number $p \ge 1$ and endow the interval $[0, \infty]$ with the binary operation $\otimes : [0, \infty]^2 \to [0, \infty]$ defined by $t \otimes s := (t^p + s^p)^{\frac{1}{p}}$.

Definition 1.1. Given a Dowker dissimilarity $\Lambda: L \times W \to [0, \infty]$, define the *p-Dowker nerve* $D^p \Lambda$ of Λ by letting

$$D^{p}\Lambda_{t} := \left\{ \sigma \subseteq L \mid \exists w \in W \text{ such that } \bigotimes_{l \in \sigma} \Lambda(l, w) \leq t \right\} \text{ for } t \in [0, \infty).$$

We sometimes allow ourselves to suppress the p and just write $D\Lambda$.

Let $W = \mathbb{R}^d$ be equipped with the Euclidean distance $d(x,y) = \|x-y\|_2$, and let L and L' be finite subsets of W with $|L| = |L'|^1$. Define the Dowker dissimilarity $\Gamma: W \times W \to [0,\infty]$ by letting $\Gamma(w,w') = d(w,w')$, and let $\Lambda = \Gamma \mid_{L\times W}$ and $\Lambda' = \Gamma \mid_{L'\times W}$. Setting $p = \infty$ we have that $D\Lambda$ and $D\Lambda'$ are the ambient Čech filtrations of the point clouds L and L', respectively. In this case, we have classical stability, i.e., the bottleneck distance between the persistence diagrams are upper-bounded by the Hausdorff distance between the two point clouds. In this note, we apply the Cellular Wasserstein Stability Theorem of [2] to establish an analogous stability result for the case $1 \le p < \infty$.

2 Definitions

Let D and D' be two persistence diagrams. A *matching* M between D and D' is a set of pairs (x, y) with $x \in X \cup \Delta$, $y \in Y \cup \Delta$ and every $x \in X$ and $y \in Y$ is

 $[\]ensuremath{^{1}\text{It}}$ would be nice if we could drop this assumption.

used exactly once. Here Δ denotes the diagonal.

Definition 2.1 (*p*-Wasserstein distance). Given $p \ge 1$, the *p*-Wasserstein distance between D and D' is defined as

$$\mathbf{W}_{p}(D, D') := \inf_{M} \left(\sum_{(x,y) \in M} \|x - y\|_{p}^{p} \right)^{\frac{1}{p}}$$

where M ranges over all matchings between the two diagrams. If $D = (D_k)_k$ and $D' = (D'_k)_k$, which is the case when we consider different homological dimensions, we define the *total p-Wasserstein distance* by

$$\mathbf{W}_p(D,D') := \left(\sum_k W_p(D_k,D'_k)^p\right)^{\frac{1}{p}}.$$

Definition 2.2 (L^p norm). Let K be a finite CW-complex. The L^p norm of a function $f: K \to \mathbb{R}$ is given by $||f||_p = (\sum_{\sigma \in K} |f(\sigma)|^p)^{\frac{1}{p}}$. Given two monotone functions $f, g: K \to \mathbb{R}$, the L^p distance between f and g is the distance induced by the L^p norm. That is,

$$||f - g||_p = \left(\sum_{\sigma \in K} |f(\sigma) - g(\sigma)|^p\right)^{\frac{1}{p}}.$$

The following definition of the point set Wasserstein distance appears in [2].

Definition 2.3 (p-Wasserstein point set distance). Given $p \ge 1$ and two point sets L and L' with |L| = |L'|, we define the p-Wasserstein distance between L and L' by

$$\mathbf{WP}_{p}(L, L') := \inf_{\phi} \left(\sum_{l \in I} \|l - \phi(l)\|_{2}^{p} \right)^{\frac{1}{p}}$$

where $\phi: L \to L'$ ranges over all bijections.

3 Stability

Theorem 3.1 (Cellular Wasserstein Stability Theorem [2]). Let K be a finite CW complex and let f, $g: K \to \mathbb{R}$ be monotone functions. Then

$$\mathbf{W}_p(\mathrm{Dgm}(f), \mathrm{Dgm}(g)) \le \|f - g\|_p.$$

For a fixed homological dimension k, we have

$$\mathbf{W}_p(\mathrm{Dgm}_k(f),\mathrm{Dgm}_k(g))^p \le \sum_{k \le \dim(\sigma) \le k+1} |f(\sigma) - g(\sigma)|^p.$$

For the rest of this section, let L and L' be finite subsets of $W = \mathbb{R}^d$ with n = |L| = |L'|. Define the Dowker dissimilarity $\Gamma \colon W \times W \to [0, \infty]$ by letting $\Gamma(w, w') = d(w, w')$, and let $\Lambda = \Gamma \mid_{L \times W}$ and $\Lambda' = \Gamma \mid_{L' \times W}$. Let $\operatorname{Dgm}(\Lambda)$ denote the persistence diagram corresponding to the sublevel set homology of the filtration function $D\Lambda \to \mathbb{R}$ defined by

$$\sigma \mapsto \inf\{t \in [0, \infty] \mid \sigma \in D\Lambda_t\} = \inf_{w \in W} \bigotimes_{l \in \sigma} \Lambda(l, w) = \inf_{w \in W} \left(\sum_{l \in \sigma} \|l - w\|_2^p \right)^{\frac{1}{p}}. \tag{1}$$

Corollary 3.1.1 (Stability of the *p*-Dowker nerve). Let Λ and Λ' be defined as above. Then

$$\mathbf{W}_p(\mathrm{Dgm}(\Lambda), \mathrm{Dgm}(\Lambda')) \leq C \cdot \mathbf{WP}_p(L, L').$$

where $C = (2^n - 1)^{\frac{1}{p}}$.

Proof. Let $\phi: L \to L'$ be a bijection minimizing the point set p-Wasserstein distance $\mathbf{WP}_p(L, L')$. Let $f: D\Lambda \to \mathbb{R}$ be the filtration function defined in Equation (1). Similarly, let $f': D\Lambda' \to \mathbb{R}$ be the filtration function for $D\Lambda'$ and define $g:=f'\circ \varphi: D\Lambda \to \mathbb{R}$. For $\sigma\in D\Lambda$, we have

$$\begin{split} |f(\sigma) - g(\sigma)| &= \left| \inf_{w \in \mathbb{W}} \bigotimes_{l \in \sigma} \Lambda(l, w) - \inf_{w \in \mathbb{W}} \bigotimes_{l \in \sigma} \Lambda(\varphi(l), w) \right| \\ &\leq \sup_{w \in \mathbb{W}} \left| \bigotimes_{l \in \sigma} \Lambda(l, w) - \bigotimes_{l \in \sigma} \Lambda(\varphi(l), w) \right| \\ &= \sup_{w \in \mathbb{W}} \left| \left(\sum_{l \in \sigma} \|l - w\|_2^p \right)^{\frac{1}{p}} - \left(\sum_{l \in \sigma} \|\varphi(l) - w\|_2^p \right)^{\frac{1}{p}} \right| \\ &\leq \sup_{w \in \mathbb{W}} \left| \left(\sum_{l \in \sigma} \|l - w\|_2 - \|\varphi(l) - w\|_2 |^p \right)^{\frac{1}{p}} \right| \\ &\leq \sup_{w \in \mathbb{W}} \left(\sum_{l \in \sigma} \|l - \varphi(l)\|_2^p \right)^{\frac{1}{p}} = \left(\sum_{l \in \sigma} \|l - \varphi(l)\|_2^p \right)^{\frac{1}{p}} \leq \mathbf{WP}_p(L, L') \end{split}$$

In (1) we used the inequality $|\inf f - \inf g| \le \sup |f - g|$. In (2) and (3) we used the reverse triangle inequality $|||x|| - ||y|| \le ||x - y||$ for the L^p norm and the L^p norm, respectively. Applying Theorem 3.1 we then get

$$\mathbf{W}_{p}(\mathrm{Dgm}(\Lambda), \mathrm{Dgm}(\Lambda')) \leq \|f - g\|_{p} = \left(\sum_{\sigma \in D\Lambda} |f(\sigma) - g(\sigma)|^{p}\right)^{\frac{1}{p}}$$

$$\leq \left(\sum_{\sigma \in D\Lambda} \mathbf{W} \mathbf{P}_{p}(L, L')^{p}\right)^{\frac{1}{p}}$$

$$= \left(\sum_{k=1}^{n} \binom{n}{k}\right)^{\frac{1}{p}} \mathbf{W} \mathbf{P}_{p}(L, L')$$

$$= (2^{n} - 1)^{\frac{1}{p}} \mathbf{W} \mathbf{P}_{p}(L, L')$$

Similarly, if we fix the homological dimension $k \ge 0$, we get that

$$\mathbf{W}_{p}(\mathrm{Dgm}_{k}(\Lambda),\mathrm{Dgm}_{k}(\Lambda')) \leq \left(\binom{n}{k} + \binom{n}{k+1} \right)^{\frac{1}{p}} \mathbf{WP}_{p}(L,L') = \binom{n+1}{k+1}^{\frac{1}{p}} \mathbf{WP}_{p}(L,L').$$

4 Duplicating points

The Čech nerve $N^{\infty}\Lambda$ does not change, up to homotopy, if we duplicate a point that is already in the point set. This is however not the case for the *p*-nerve in general as the following example shows.

Example 4.0.1 (Duplicating a point can change the Wasserstein distance between persistence diagrams). Let p=2 and consider the point set $L=\{x,y\}\subset\mathbb{R}^2$ with $x\neq y$. Clearly, the Dowker p-nerve $D\Lambda$ has trivial 1-homology. Now, suppose we duplicate the point x. That is, let $L'=\{x,x',y\}$ with x=x'. The 2-simplex $\sigma=\{x,x',y\}$ is born at time $d=\sqrt{\frac{2}{3}}\|x-y\|_2$. However, the faces of σ are born at time 0 or $b=\sqrt{\frac{1}{2}}\|x-y\|_2$, meaning that we have a non-trivial persistent 1-cycle in $D\Lambda'$. Note that in the $p=\infty$ case, the 2-simplex will have the same birth time as its faces, killing any new cycles. The 2-Wasserstein distance between the persistence diagrams (in homological dimension 1) corresponding to Λ and Λ' can then be computed to be $\frac{d-b}{\sqrt{2}}$ which is proportional to the distance between x and y.

	t = 0	t = b	t = d
$N^2\Lambda_t$	x • y	x y	x v
$N^2\Lambda_t'$	<i>x x' y</i>	y	y

Figure 1: Duplicating a point can lead to the birth of a new non-trivial cycle. In the $p = \infty$ case, the triangle would already be filled in at t = b.

5 Network distance

A correspondence between two sets X and X' is a subset $C \subseteq X \times X'$ such that the projection maps to X and X' are onto. A non-negatively weighted network ω_X consists of a set X together with a function $\omega_X \colon X \times X \to [0, \infty)$. We will typically be interested in weighted networks on the form $\omega_L = \Lambda = d \colon L \times L \to [0, \infty)$.

Definition 5.1. Let $\omega: X \times X \to [0, \infty)$ and $\omega': X' \times X' \to [0, \infty)$ be weighted networks and let $C \subseteq X \times X'$. We define the *p-distortion of C* as

$$\operatorname{dis}^{p}(C) = \left(\sum_{(x,x'),(y,y') \in C} |\omega(x,y) - \omega'(x',y')|^{p}\right)^{\frac{1}{p}}.$$

Definition 5.2. Let $\mathcal{R} = \mathcal{R}(X, X')$ denote the set of all correspondences $C \subseteq X \times X'$ and let ω and ω' be weighted networks as in the above definition. Define the *p-network distance* between X and X' as

$$d_N^p(X, X') = \frac{1}{2} \inf_{C \in \mathcal{R}} \operatorname{dis}^p(C).$$

Note that if (M, d_M) and (N, d_N) are metric spaces, and $\omega(x, y) = d_M(x, y)$, $\omega'(x', y') = d_N(x', y')$, then the p-network distance agrees with the Gromov-Hausdorff distance when $p = \infty$.

Example 5.2.1 (Duplicating points does not change the network distance). Let $X = \{x_1, x_2, ..., x_n\}$ be finite point set in \mathbb{R}^d , and let X' be X with one of the

points $x' = x_i$ duplicated. We consider the weighted networks with the weight function ω being the L_2 distance on \mathbb{R}^d . Let $C \subseteq X \times X'$ be the correspondence consisting of all pairs on the form (x_j, x_j) for $1 \le j \le n$, and the pair (x_i, x') . Then, clearly $\operatorname{dis}^p(C) = 0$ and hence $d_N^p(X, X') = 0$.

6 Computing witnesses

In this section, suppose $L \subseteq W = \mathbb{R}^d$ and $\Lambda \colon L \times W \to [0, \infty]$ is given by $\Lambda(l, w) = \|l - w\|_q$ for some fixed q. Fix some p and consider the p-nerve $D\Lambda = D^p\Lambda$ of Λ . Given a simplex $\sigma \in L$, we want to know at what time t the simplex σ appears in the p-nerve. In other words, we want to compute the infimum

$$\inf_{w \in W} \left(\sum_{l \in \sigma} \Lambda(l, w)^p \right)^{\frac{1}{p}}.$$

In this section, we give a description of $w^* \in W$ minimizing the above sum for different values of p and q. Let $g_{\sigma} \colon W \to [0, \infty]$ be given by $g_{\sigma}(w) = \sum_{l \in \sigma} \Lambda(l, w)^p$. The partial derivatives of g_{σ} are

$$\frac{\partial g_{\sigma}}{\partial w_i}(w) = p \sum_{l \in \sigma} \left\| l - w \right\|_q^{p-q} (w_i - l_i) |l_i - w_i|^{q-2}$$

so any extremal point $w \in W$ must satisfy

$$w_i = \frac{\sum_{l \in \sigma} l_i ||l - w||_q^{p-q} |l_i - w_i|^{q-2}}{\sum_{l \in \sigma} ||l - w||_q^{p-q} |l_i - w_i|^{q-2}}$$

for all $i=1,2,\ldots,d$. For simplicity, we set q=2 to get rid of the factors $|l_i-w_i|^{q-2}$. In the case p=2, w is the centroid of the points in σ . In the case p=1, w is the geometric median of σ .² We are looking for roots of the functions $G_{\sigma}:W\to W$ defined by

$$G_{\sigma}(w) = \frac{\sigma D(w)}{\mathbf{1}^{\mathsf{T}} D(w)} - w.$$

where σ is the $d \times (k+1)$ matrix with $\sigma_{ij} = l_i^j$ representing the k-simplex $\sigma = \{l^0, \ldots, l^k\}$, and D(w) is the column vector with $D(w)_i = ||l^i - w||_2^{p-2}$.

 $^{^2}$ The geometric median has many names, including the Fermat-Weber point, L_1 -median, spatial median, Euclidean minisum point and Torricelli point.

Show that the minimizer w is global. We need to show that the Hessian of g_{σ} is positive semi-definite. This is equivalent with convexity (as g_{σ} is twice differentiable). Then, for a differentiable convex function g, w^* is a global minimizer iff $\nabla f(w^*) = 0$. Or maybe we can just show convexity directly from definition.

7 Comments

- 1. We use q = p in the Wasserstein distance. Can we generalize for other choices of q? (See definition in [2] for example.)
- 2. In the definition of the point set p-Wasserstein distance and the dissimilarities we use q = 2. Other choices of q are probably interleaved with ours.
- 3. What about the case when $|L| \neq |L'|$?
- 4. Could be interesting to look at the part about stability in [1][p. 14-16].

References

- [1] Morten Brun and Nello Blaser. "Sparse Dowker nerves". In: *Journal of Applied and Computational Topology* 3.1-2 (2019), pp. 1–28. DOI: 10.1007/s41468-019-00028-9. URL: https://doi.org/10.1007%2Fs41468-019-00028-9.
- [2] Primoz Skraba and Katharine Turner. Wasserstein Stability for Persistence Diagrams. 2022. arXiv: 2006.16824 [math.AT].