Einführung in die Geometrie und Topologie - Mitschrieb -

Übung im Wintersemester 2011/2012

Sarah Lutteropp

14. November 2011

Inhaltsverzeichnis

1	24.10.2011		
	1.1	Induzierte Topologie	2
	1.2	Offen und abgeschlossen	2
	1.3	Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten	
		Topologie	3
	1.4	Teilraumtopologie	3
	1.5	Homotopieäquivalenz	3
2	31.10.2011		Ę
	2.1	Universelle Eigenschaft der Teilraumtopologie	Ę
	2.2	Homöomorphismen	(
	2.3	Die Peano-Kurve	(
3	07.11.2011		8
	3.1	Nachträge und Wiederholungen zur Vorlesung	8
4	14.11.2011		
	4.1	Beispiele für Beweise im Kontext von Hausdorffräumen	11
	4.2	Beispiele für Mannigfaltigkeiten	11

Vorwort

Dies ist ein Mitschrieb der Übung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Frau Dipl.-Math. Sandra Lenz gehalten wird.

24.10.2011

1.1 Induzierte Topologie

Definition 1.1 (Induzierte Topologie). Sei X eine Menge. Sei $d: X \times X \to \mathbb{R}$ eine Metrik. Diese Metrik d definiert durch folgende Bedingung eine Topologie \mathcal{O} auf X:

 $O \subseteq X$ ist genau dann offen (d.h. $O \in \mathcal{O}_d$), wenn für alle $x \in O$ ein $\epsilon > 0$ existiert mit

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \} \subseteq O.$$

 $(B_{\epsilon} nennt man offenen \epsilon - Ball.)$

1.2 Offen und abgeschlossen

Sei X eine Menge.

• Mengen können sowohl offen als auch abgeschlossen (zugleich) sein.

Beispiel 1.1. Betrachte \emptyset und X in der trivialen Topologie $\mathcal{O} = \{X, \emptyset\}.$

Es gilt: $X \in \mathcal{O}, \emptyset \in \mathcal{O}$ nach Definition, d.h. X und \emptyset sind offen. Außerdem gilt: $X^c = \emptyset \in \mathcal{O}$, ebenso: $\emptyset^c = X \in \mathcal{O}$, d.h. die Komplemente von X und \emptyset sind offen und somit X und \emptyset abgeschlossen.

- Mengen können weder offen noch abgeschlossen sein.
 - Beispiel 1.2. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie. Es ist [0,1[nicht offen in dieser Topologie, denn für den Punkt 0 finden wir kein $\epsilon > 0$, so dass $B_{\epsilon}(0)$ in [0,1[liegt. Die Menge [0,1[ist aber auch nicht abgeschlossen, da ihr Komplement $\mathbb{R}\setminus[0,1[=]-\infty,0[\cup[\underline{1},\infty[$ nicht offen ist.
- Bilder offener Mengen unter stetigen Abbildungen müssen nicht notwendigerweise offen sein.

Beispiel 1.3. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie.

Definiere $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Es gilt für die in \mathbb{R} offene Menge]-1,1[:f(]-1,1[)=[0,1[und [0,1[ist nicht offen in \mathbb{R} .

1.3 Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten Topologie

$$\mathcal{B} = \{ B_{\frac{1}{m}}(x) \mid x \in \mathbb{Q}^n, m \in \mathbb{N} \}$$

Diese Basis ist abzählbar.

1.4 Teilraumtopologie

Es sei (X, \mathcal{O}) ein topologischer Raum, $A \subseteq X$. Die Teilraumtopologie (oder Spurtopologie) ist definiert durch

$$\mathcal{O}|_{A} := \{ U \cap A \mid U \in \mathcal{O} \}$$

Satz 1.1. In der Tat definiert $\mathcal{O}|_A$ eine Topologie auf A.

Beweis. •<u>z.z.</u>: Für jede Indexmenge I gilt: $\forall i \in I : O_i \in \mathcal{O}|_A \Rightarrow \bigcup_{i \in I} O_i \in \mathcal{O}|_A$.

Sei I beliebige Indexmenge. Für alle $i \in I$ mit $O_i \in \mathcal{O}|_A$ gilt: Es existieren $\mathcal{U}_i \in \mathcal{O}$ mit $O_i = \mathcal{U}_i \cap A$. Es gilt:

$$\bigcup_{i \in I} O_i = \bigcup_{i \in I} (\mathcal{U}_i \cap A) = (\bigcup_{i \in I} \mathcal{U}_i) \cap A \in \mathcal{O}|_A$$

 $(\mathrm{da} \bigcup_{i \in I} \mathcal{U}_i \in \mathcal{O}).$

 $\bullet \ \underline{\mathbf{z.z.}} \colon \forall O_1, O_2 \in \mathcal{O}\big|_A \colon O_1 \cap O_2 \in \mathcal{O}\big|_A.$

Seien $O_1, O_2 \in \mathcal{O}|_A$. Dann ex. $\mathcal{U}_1, \mathcal{U}_2 \in \mathcal{O}$ mit $O_i = \mathcal{U}_i \cap A, i \in \{1, 2\}$. Es gilt: $O_1 \cap O_2 = (\mathcal{U}_1 \cap A) \cap (\mathcal{U}_2 \cap A) = (\mathcal{U}_1 \cap \mathcal{U}_2) \cap A \in \mathcal{O}|_A$, da $\mathcal{U}_1 \cap \mathcal{U}_2 \in \mathcal{O}$.

• $\underline{\mathbf{z}}.\underline{\mathbf{z}}.$: $A, \emptyset \in \mathcal{O}|_A$.

Es gilt: $A = X \cap A \in \mathcal{O}|_A$, da $X \in \mathcal{O}$ nach Definition von \mathcal{O} .

Es gilt: $\emptyset = \emptyset \cap A \in \mathcal{O}|_A$, da $\emptyset \in \mathcal{O}$ nach Definition von \mathcal{O} .

1.5 Homotopieäquivalenz

Definition 1.2. Seien X, Y topologische Räume. X heißt homotopieäquivalent zu Y, falls es stetige Abbildungen $f: X \to Y$ und $g: Y \to X$ gibt, so dass $f \circ g \simeq id_Y$ und $g \circ f \simeq id_X$.

Satz 1.2. $\mathbb{R}^n \setminus \{0\}$ ist homotopieäquivalent zur Sphäre S^{n-1} .

Beweis. Sei $f\colon S^{n-1}\hookrightarrow \mathbb{R}^n\backslash\{0\}, x\mapsto x$ (Inklusions abbildung). Dann ist f stetig.

Sei weiter $g \colon \mathbb{R}^n \setminus \{0\} \to S^{n-1}, x \mapsto \frac{x}{||x||}$. Dann ist auch g stetig und es gilt: $g \circ f = id_{S^{n-1}}$, also insbesondere $g \circ f \simeq id_{S^{n-1}}$.

Für $f \circ g$ betrachte folgende Abbildung:

$$H \colon \mathbb{R}^n \backslash \{0\} \times [0,1] \to \mathbb{R}^n \backslash \{0\}, (x,t) \mapsto (1-t) \frac{x}{||x||} + t \cdot x$$

Dann ist H stetig und es gilt für alle $x \in \mathbb{R} \setminus \{0\}$:

$$H(x,1) = x = id_{\mathbb{R}^n \setminus \{0\}}(x)$$

$$H(x,0) = \frac{x}{||x||} = (f \circ g)(x)$$

Dann ist H Homotopie von $f \circ g$ nach $id_{\mathbb{R}^n \setminus \{0\}}$ (in Zeichen: $f \circ g \simeq id_{\mathbb{R}^n \setminus \{0\}}$).

31.10.2011

2.1 Universelle Eigenschaft der Teilraumtopologie

Es sei (X, \mathcal{O}_X) ein topologischer Raum und $A \subseteq X$ versehen mit der Teilraumtopologie $\mathcal{O}_A = \{O \cap A \mid O \in \mathcal{O}_X\}$. Weiter sei $\iota \colon A \hookrightarrow X$ die Inklusionsabbildung und (Y, \mathcal{O}_Y) ein weiterer topologischer Raum.

Satz 2.1. Behauptung Eine Abbildung $\phi: Y \to A$ ist genau dann stetig, wenn die Komposition $\iota \circ \phi: Y \to X$ stetig ist.

Beweis. '⇒': Es sei $\phi: Y \to A$ stetig. [<u>z.z.</u>: $\iota \circ \phi$ ist stetig, d.h. $\forall O \in \mathcal{O}_X$: ($\iota \circ \phi$)⁻¹(O) $\in \mathcal{O}_Y$]

Sei $O \in \mathcal{O}_X$. Dann gilt $(\iota \circ \phi)^{-1}(O) = \phi^{-1}(\iota^{-1}(O))$ und es ist $\iota^{-1}(O) \in \mathcal{O}_A$, da ι stetig ist.

Es gilt somit $\phi^{-1}(\iota^{-1}(O)) \in \mathcal{O}_Y$, da ϕ stetig ist (nach Voraussetzung).

'⇐': Es sei ϕ : $Y \to A$ eine Abbildung, so dass $\iota \circ \phi$: $Y \to X$ stetig ist. [z.z.: ϕ ist stetig, d.h. $\forall O \in \mathcal{O}_A$: $\phi^{-1}(O) \in \mathcal{O}_Y$.]

Sei also $O \in \mathcal{O}_A$. Dann existiert $O' \in \mathcal{O}_X$, so dass $O = O' \cap A$. Es gilt: $\iota^{-1}(O') = O' \cap A = O$.

$$\phi^{-1}(O) = \phi^{-1}(O' \cap A) = \phi^{-1}(\iota^{-1}(O')) = (\iota \circ \phi)^{-1}(O') \in \mathcal{O}_Y, \text{ da } \iota \circ \phi \text{ stetig}$$
 (nach Voraussetzung).

Bemerkung 2.1. (Bemerkung in der Vorlesung)

Die Teilraumtopologie ist die gröbste Topologie, bezüglich der die Inklusionsabbildung $\iota \colon A \hookrightarrow X$ stetig ist.

Beweis. Stetigkeit der Inklusionsabbildung: [z.z.: $\forall O \in \mathcal{O}_X : \iota^{-1}(O) \in \mathcal{O}_A$] Sei $O \in \mathcal{O}_X$. Dann gilt $\iota^{-1}(O) = O \cap A \in \mathcal{O}_A$.

Beweis. Nichtstetigkeit in gröberen Topologien: [z.z.: $\mathcal{O}_A \not\subseteq \tilde{\mathcal{O}} \Rightarrow \exists O' \in \mathcal{O}_X : \iota^{-1}(\overline{O'}) \notin \tilde{\mathcal{O}}$]

Sei $\mathcal{O}_A \nsubseteq \tilde{\mathcal{O}} \Rightarrow \exists O \in \mathcal{O}_A \colon O \notin \tilde{\mathcal{O}}$. Dann $\exists O' \in \mathcal{O}_X \colon O = O' \cap A$. Damit ist aber $\iota^{-1}(O') = O' \cap A = O \notin \tilde{\mathcal{O}} \Rightarrow \iota \colon (A, \tilde{\mathcal{O}}) \to (X, \mathcal{O}_X)$ ist nicht stetig. \square

2.2Homöomorphismen

Zeigen Sie, dass für $a, b \in \mathbb{R}$ mit a < b das Intervall (a, b) homöomorph zum Intervall (0,1) ist, sowie dass (0,1) homöomorph ist zu \mathbb{R} .

Definiere $f:(a,b) \rightarrow (0,1), x \mapsto \frac{a-x}{a-b}, \text{ und } g:(0,1) \rightarrow (a,b), x \mapsto$ $(1-x)\cdot a + x\cdot b.$

Es gilt für alle $x \in (a, b)$:

Es gilt für alle
$$x \in (a, b)$$
:
$$(g \circ f)(x) = g\left(\frac{a-x}{a-b}\right) = \left(1 - \frac{a-x}{a-b}\right)a + \frac{a-x}{a-b}b = \left(\frac{a-b-a+x}{a-b}\right)a + \frac{a-x}{a-b}b = \frac{x-b}{a-b}a + \frac{a-x}{a-b}b = \frac{ax-ab+ab-bx}{a-b} = x.$$
Es gilt für alle $x \in (0, 1)$:

 $(f \circ g)(x) = f((1-x) \cdot a + x \cdot b) = \frac{a - ((1-x)a + bx)}{a - b} = \frac{a - a + ax - bx}{a - b} = x$. Somit ist f bijektiv. Da f und $g = f^{-1}$ stetig sind, gilt damit: f ist ein Homöomorphismus, d.h. $(a, b) \equiv (0, 1)$.

Definiere $h: (0,1) \to \mathbb{R}, x \mapsto \tan\left((x-\frac{1}{2})\pi\right)$.

 $f: [0,1) \to S^1, t \mapsto e^{2\pi i t} (= (\cos 2\pi t, \sin 2\pi t))$ ist kein Homöomorphismus (da die Umkehrabbildung nicht stetig ist).

2.3 Die Peano-Kurve

(Guiseppe Peano, ~ 1890)

Satz 2.2. Es gibt eine surjektive, stetige Abbildung $I = [0,1] \rightarrow I \times I$.

Verallgemeinerung

- Es gibt eine surjektive, stetige Abbildung $I \to I^n = I \times I \times ... \times I(n \in$ \mathbb{N}).
- Es gibt eine surjektive, stetige Abbildung $\mathbb{R} \to \mathbb{R}^n$.

2.3 Die Peano-Kurve 7

Abbildung 2.1: Prinzip der Peano-Kurve

Zugang mit Hilfe der Cantor-Menge $\mathcal C$ 2.3.1

Definiere $f: \mathcal{C} \to I, f\left(\sum\limits_{i=1}^{\infty} \frac{a_i}{3}\right) = \sum\limits_{i=1}^{\infty} \frac{\frac{a_i}{2}}{2^i}$ für $a_i \in \{0,2\}$. Dann ist f surjektiv und stetig. Definiere $g: \mathcal{C} \to \mathcal{C} \times \mathcal{C}, g\left(\sum\limits_{i=1}^{\infty} \frac{a_i}{3}\right) = \left(\sum\limits_{i=1}^{\infty} \frac{a_{2i}}{3^i}, \frac{a_{2i+1}}{3^i}\right) =: (g_1, g_2)$ für $a_i \in \{0, 2\}$ $\{0,2\}.$

Dann ist g surjektiv und stetig.

Es ist auch $h: \mathcal{C} \to I \times I, x \mapsto (f(g_1(x)), f(g_2(x)))$ surjektiv und stetig.

Setze die Abbildung h durch lineare Fortsetzungen stetig auf I fort.

07.11.2011

3.1 Nachträge und Wiederholungen zur Vorlesung

3.1.1 Überdeckung, Teilüberdeckung und Kompaktheit

Sei X ein topologischer Raum.

- **Definition 3.1.** Eine Familie $\{U_{\alpha} \mid \alpha \in A\}$ von Teilmengen von X heißt $\underline{\ddot{U}berdeckung}$ von X, falls gilt: $X = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$.
 - Eine Überdeckung heißt offen (bzw. <u>abgeschlossen</u>), falls alle $\mathcal{U}_{\alpha}(\alpha \in A)$ offen (bzw. abgeschlossen) sind.
 - Es heißt X kompakt, falls jede offene Überdeckung $\mathcal{U} = \{U_{\alpha}, \alpha \in A\}$ eine endliche Teilüberdeckung \mathcal{U}' besitzt, d.h. es existiert $A' \subset A$ endlich, so dass $\mathcal{U}' = \{\mathcal{U}_{\alpha} \mid \alpha \in A'\}$ eine offene Überdeckung von X ist.
- Beispiel 3.1. Endliche Räume und mit der trivialen Topologie versehene Räume sind kompakt.
 - Diskrete Räume sind genau dann kompakt, wenn sie aus endlich vielen Elementen bestehen.
 - \mathbb{R} (versehen mit der Standardtopologie) ist <u>nicht</u> kompakt, $\mathbb{R}_{\mathcal{T}_1}$ schon. $(\mathcal{T}_1 = {\mathbb{R} \setminus E \mid E \text{ endliche Teilmenge von } \mathbb{R}}) \cup {\emptyset})$
- **Definition 3.2.** Eine <u>kompakte Menge</u> ist eine Teilmenge eines vom Kontext her klaren topologischen Raumes, die bezüglich der Teilraumtopologie kompakt ist.
- **Beispiel 3.2.** $[0,1)(\subseteq \mathbb{R})$ ist nicht kompakt, <u>denn:</u> Die Überdeckung $\{(-1,1-\frac{1}{n})\mid n\in\mathbb{N}\}\ von\ [0,1)$ enthält keine endliche Teilüberdeckung.
- Bemerkung 3.1. <u>Satz von Heine-Borel:</u> Teilmengen euklidischer, endlich dimensionaler Räume sind genau dann kompakt, wenn sie abgeschlossen und beschränkt sind.

- Abgeschlossene Teilmengen kompakter Räume sind kompakt.
- Stetige Bilder kompakter Mengen sind kompakt, d.h. ist X eine kompakte Menge, Y topologischer Raum, $f: X \to Y$ stetig, dann ist f(X) kompakt.
- Ist X kompakt, $f: X \to \mathbb{R}$ stetig, so ist f(X) kompakt und f nimmt auf X Maximum und Minimum an.
- <u>Lebesque-Lemma</u>: Ist $f: X \to Y$ stetige Abbildung topologischer Räume und X metrisch und kompakt, so gilt: Ist \mathcal{U} eine offene Überdeckung von Y, so existiert $\delta \in \mathbb{R}_{>0}$, sodass für alle $A \subseteq X$ mit diam $A < \delta$ ein $U' \in \mathcal{U}$ mit $f(A) \subseteq U'$ existiert.

3.1.2 Wegzusammenhang

- **Definition 3.3.** Ein Weg in X ist eine stetige Abbildung γ : $I(=[0,1]) \rightarrow X$ mit Anfangspunkt $\gamma(0)$ und Endpunkt $\gamma(1)$.
 - Man nennt X wegzusammenhängend, falls für alle $x, y \in X$ ein Weg $\gamma \colon [0,1] \to X$ in X existiert mit $\gamma(0) = x, \gamma(1) = y$.
 - Eine Wegzusammenhangskomponente von X ist eine wegzusammenhängende Teilmenge von X, die in keiner echt größeren solchen Teilmenge enthalten ist.
- Bemerkung 3.2. Jeder Punkt von X liegt in genau einer Wegzusammenhangskomponente von X, und zwei solche Komponenten sind entweder gleich oder disjunkt.
 - Stetige Bilder wegzusammenhängender Mengen sind wegzusammenhängend.

Korollar 3.1. Wegzusammenhang bleibt unter Homöomorphismen erhalten, ebenso die Anzahl der Wegzusammenhangskomponenten.

Wegzusammende topologische Räume sind zusammenhängend (Übungsaufgabe), die Umkehrung gilt im Allgemeinen nicht.

Beispiel eines Raumes, der zusammenhängend, aber nicht wegzusammenhängend ist (TODO: Bild)

Definiere
$$A = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y = \sin\left(\frac{1}{x}\right)\}, X := A \cup \{(0,0)\}.$$
 Es gilt:

• Es ist A wegzusammenhängend, denn: $A \cong (0, +\infty) \cong \mathbb{R}$, und \mathbb{R} ist wegzusammenhängend.

 \bullet Es ist X zusammenhängend, denn:

Es gilt: $\bar{A} = A \cup \{(0, y) \mid y \in [-1, 1]\}$ ist als Abschluss einer zusammenhängenden Menge wieder zusammenhängend (siehe Bemerkung in der Vorlesung).

Außerdem gilt: $A \subseteq X \subseteq \bar{A}$, und X ist als Teilmenge des Abschlusses eines zusammenhängenden Raumes wieder zusammenhängend. (Allgemein: Es sei A zusammenhängend, $A \subseteq B \subseteq \bar{A}$. Dann ist auch B zusammenhängend.)

• Es ist X <u>nicht wegzusammenhängend</u>, denn: Es lässt <u>sich</u> (0,0) nicht über einen Weg in X mit einem beliebigen anderen Punkt aus X verbinden¹.

Bemerkung 3.3. Der Abschluss wegzusammenhängender Räume ist im Allgemeinen nicht wegzusammenhängend!

Beispiel 3.3 (Beispiel von oben). Der Abschluss von A $\underline{in\ X}$ - nicht in \mathbb{R}^2 - ist X, und X ist (s.o.) nicht wegzusammenhängend.

Bemerkung 3.4. Besitzt jeder Punkt eines topologischen Raumes X eine wegzusammenhängende Umgebung, so sind alle Wegzusammenhangskomponenten offen in X, und X ist genau dann wegzusammenhängend, wenn X zusammenhängend ist.

Beispiel 3.4. Offene Teilmengen von \mathbb{R}^n sind genau dann wegzusammenhängend, wenn sie zusammenhängend sind, denn:

Jeder Punkt $x \in \mathbb{R}^n$ besitzt dann als offene Umgebung einen offenen Ball, und offene Bälle sind wegzusammenhängend.

 $^{^1\}mathrm{Formale}$ Begründung: Jeder in (0,0) startende Weg ist konstant.

14.11.2011

4.1 Beispiele für Beweise im Kontext von Hausdorffräumen

Satz 4.1. Behauptung Ist X ein Hausdorffraum, so besitzt jede Folge $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ höchstens einen Grenzwert.

Beweis. Sei Xein Hausdorffraum.

Annahme: Es existiert eine Folge $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ mit $x=\lim_{n\to\infty}(x_n)=x'$ und $x\neq x'$.

Da X Hausdorffsch ist, existieren offene Teilmengen $U, V \subseteq X$, mit $U \cap V = \emptyset$ und $x \in U, x' \in V$. Dann existieren $n_0, n'_0 \in \mathbb{N}$ mit $x_n \in U, x_m \in V$ für alle $n \in \mathbb{N}_{\geq n_0}, m \in \mathbb{N}_{\geq n'_0}$. Dann gilt also für alle $k \geq \max\{n_0, n'_0\}: x_k \in U \cap V$. \not

Satz 4.2. Jeder metrische Raum ist Hausdorffsch.

 $\underline{z.z.:} \ \forall x,y \in X \exists U_x, U_y \subseteq X \colon U_x \cap U_y = \emptyset.$ Seien $x,y \in X.$ Wähle $U_x := B_{\frac{d(x,y)}{3}}(x), U_y := B_{\frac{d(x,y)}{3}}(y).$ Dann gilt: $U_x \cap U_y = \emptyset.$

4.2 Beispiele für Mannigfaltigkeiten

- 1. Was sind 0-dimensionale Mannigfaltigkeiten?
 - Abzählbare diskrete Mengen.
- 2. 1-dimensionale glatte Mannigfaltigkeiten (TODO: Bild 1)
 - Offene Intervalle in \mathbb{R} sind 1-dimensionale glatte Mannigfaltigkeiten, denn: Seien $a, b \in \mathbb{R}$ mit a < b.
 - -(a,b) ist als metrischer Raum Hausdorffsch.

- Es ist $\mathcal{B} = \{B_{\frac{1}{n}}(x) \mid x \in \mathbb{Q}, n \in \mathbb{N}\}$ eine abzählbare Basis der Topologie.
- -(a,b) ist lokal homöomorph zu \mathbb{R} , <u>denn</u>: Es gilt: $id:(a,b) \mapsto (a,b) \subseteq \mathbb{R}$ ist ein Homöomorphismus einer offenen Menge in eine offene Teilmenge von \mathbb{R} . Somit ist ((a,b),id) eine (globale)¹ Karte.
- Für den Kartenwechsel gilt: $id \circ id^{-1}$: $(a,b) \to (a,b), x \mapsto x$, ist eine glatte Abbildung.
- $S^1 = \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$ ist eine 1-dimensionale glatte Mannigfaltigkeit (TODO Bild 2), denn:
 - Es ist S^1 als Teilmenge des metrischen Raumes \mathbb{R}^2 Hausdorffsch.

Ebenso besitzt S^1 eine abzählbare Basis der Topologie.

Definiere

$$U_1 := \{(x, y) \in S^1 \mid y \neq 1\} = S^1 \setminus \{N\} \quad (N = (0, 1))$$

und

$$U_2 := \{(x, y) \in S^1 \mid y \neq -1\} = S^1 \setminus \{S\} \quad (S = (0, -1)).$$

Dann gilt:

- $-U_1 \cup U_2 = S^1,$
- Es sind U_1 und U_2 offene Teilmengen von S^1 , denn sie sind jeweils Komplement einer einpunktigen und damit abgeschlossenen Menge.
- Definiere

$$\varphi_1 \colon U_1 \to \mathbb{R}, (x,y) \mapsto \frac{x}{1-y},$$

$$\varphi_2 \colon U_2 \to \mathbb{R}, (x,y) \mapsto \frac{x}{1+y}.$$

Im Folgenden zeigen wir, dass (U_1, φ_1) eine Karte ist. Analoges gilt auch für (U_2, φ_2) mit analoger Rechnung.

- Definiere

$$\psi \colon \mathbb{R} \to S^1, u \mapsto (\frac{2u}{u^2 + 1}, \frac{u^2 - 1}{u^2 + 1}).$$

Dann gilt:

$$\varphi_1 \circ \psi = id_{\mathbb{R}},$$

$$\psi \circ \varphi_1 = id_{U_1}$$
.

Damit ist φ_1 bijektiv.

Da φ_1 und ψ stetig sind, ist φ_1 damit ein Homöomorphismus.

¹Global, da für die ganze Mannigfaltigkeit gleich.

- Die Kartenwechsel sind glatt, denn es gilt:

$$\varphi_1(U_1 \cap U_2) = \mathbb{R} \setminus \{0\} = \varphi_2(U_1 \cap U_2).$$

Für alle $u \in \mathbb{R} \setminus \{0\}$ gilt:

$$(\varphi_2 \circ \varphi_1^{-1})(u) = (\varphi_2 \circ \psi)(u) = \frac{1}{u},$$

und dies ist tatsächlich ein C^{∞} -Diffeomorphismus² $\mathbb{R}\setminus\{0\}\to\mathbb{R}\setminus\{0\}$.

- 3. Es ist \mathbb{R}^n eine *n*-dimensionale glatte Mannigfaltigkeit, denn:
 - \mathbb{R}^n ist Hausdorffsch und besitzt eine abzählbare Basis der Topologie.
 - (\mathbb{R}^n, id) ist eine globale Karte.

Bemerkung 4.1. Jeder Atlas, der aus nur einer Karte besteht, ist glatt.

Beweis. Es sei $\mathcal{A} = \{(\varphi, U)\}$ dieser Atlas. Dann gilt: Es gibt nur genau einen Kartenwechsel:

$$\varphi \circ \varphi^{-1} = id \colon \varphi(U) \to \varphi(U)$$

und dieser ist natürlich glatt.

Satz 4.3. Offene Teilmengen von C^k -Mannigfaltigkeiten sind wieder C^k -Mannigfaltigkeiten.

Beweis. Es sei M eine C^k -Mannigfaltigkeit, $N \subseteq_{offen} M$.

- ullet Als Teilmenge von M ist N Hausdorffsch und auch die abzählbare Basis der Topologie überträgt sich.
- Es sei $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}$ (Λ Indexmenge) ein C^k -Atlas von M. Für alle $\alpha \in \Lambda$ ist $U_k \cap N$ offen in N und es gilt:

$$\varphi_{\alpha}|_{U_{\alpha}\cap N} \colon U_{\alpha}\cap N \to \varphi_{\alpha}(U_{\alpha}\cap N) \subseteq \mathbb{R}^n$$

und $\varphi_{\alpha}(U_{\alpha} \cap N)$ ist als stetiges Bild der offenen Menge $U_{\alpha} \cap N$ wieder offen.

Somit ist $\{(\varphi_{\alpha}|_{U_{\alpha}\cap N}, U_{\alpha}\cap N)\mid \alpha\in\Lambda\}$ ein Atlas für N.

Da die Kartenwechsel weiterhin \mathbb{C}^k -Abbildungen sind, ist dieser Atlas ein \mathbb{C}^k -Atlas für N.

Beispiel 4.1. Es gilt: $GL(n,\mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\}) \subseteq_{offen} \mathbb{R}^{n^2}$

 $^{^2}$ d.h. bijektiv und unendlich oft differenzierbar und mit unendlich oft differenzierbarer Umkehrabbildung