Controle Ótimo com Aplicações em Modelos Biológicos

Resumo dos capítulos do livro de Suzanne Lenhart e John T. Workman.

Lucas Machado Moschen

Escola de Matemática Aplicada Fundação Getulio Vargas

Conteúdo

1	Problemas Básicos de Controle Ótimo		3		
	1.1 Introdução		3		
	1.2 Preliminares		4		
	1.3 Condições necessárias para o problema básico		5		
	1.4 Princípio Máximo de Pontryagin		7		
	1.5 Exemplos		8		
2	Existência e Outras Propriedades		11		
	2.1 Existência e Unicidade		11		
	2.2 Interpretação da Adjunta		13		
	2.3 Princípio da Otimalidade		13		
	2.4 Os Problemas Autônomo e Hamiltoniano		14		
	2.5 Exemplos		15		
3	Condições Finais do Estado		16		
	3.1 Termos Payoff		16		
	3.2 Estados com Pontos Finais Fixos		16		
	3.3 Exemplos		17		
4	Método Backward/Forward				
	4.0.1 Algoritmo		20		
	4.0.2 Runge-Kutta		21		
5	Laboratórios		22		
	5.0.1 Laboratório 1		22		
	5.0.2 Laboratório 2		22		
	5.0.3 Laboratório 3		22		
6	Controles Limitados		23		
	6.0.1 Condições Necessárias:		23		
7	Laboratórios		25		
	7.0.1 Laboratório 4		25		
	702 Laboratório 5 - Cancer		25		

CONTEÚDO	2
----------	---

	7.0.3	Laboratório 6 - Fish Harvesting	25
8	Optimal C	Control of Several Variables	27
	8.0.1	Problemas Linear Quadratic Regulator	28
	8.0.2	Equações Diferenciais de Ordem mais Alta	28
	8.0.3	Limites Isoperimétricos	28
	8.0.4	Soluções Numéricas	28
9	Linear De	pendence on the Control	29
	9.0.1	Controle Bang-Bang	29
	9.0.2	Controles Singulares	29

Problemas Básicos de Controle Ótimo

1.1 Introdução

Procura-se nesse texto estudar o livro de Lenhart and Workman (2007) que estuda os problemas de controle ótimo. O texto terá a mesma estrutura do livro e servirá de guia em português de estudos sobre o tema.

Exemplo 1.1.1. Apresenta-se inicialmente um problema motivador que considera duas equações: uma representa a variação do peso da parte vegetativa, enquanto a outra representa o peso da parte reprodutiva. O crescimento das plantas é modelado pelo modelo de Cohen (1971). Nesse caso, o controle sobre o sistema é a fração da fotossíntese destinada para a parte vegetativa. Queremos maximizar o crescimento da parte reprodutiva, que garante o mantimento da espécie.

Sejam x(t) a parte vegetativa e y(t) a parte reprodutiva no tempo t. Nosso objetivo será maximizar o funcional 1.1 segundo a função u(t) que representa a fração de fotossíntese para o crescimento vegetativo:

$$F(x, u, t) := \int_{0}^{T} \ln(y(t))dt,$$
(1.1)

onde T é o limite superior do intervalo de tempo considerado e tal que o

modelo é um sistema de equações diferenciais com restrições:

$$\begin{cases} x'(t) = u(t)x(t) \\ y'(t) = (1 - u(t))y(t) \\ 0 \le u(t) \le 1 \\ x(0) > 0, \\ y(0) \ge 0 \end{cases}$$
 (1.2)

Um problema como esse é chamado de **problema de controle ótimo**, pois queremos encontrar uma função u, denominada controle, ótima, segundo um funcional objetivo. Nesse exemplo, podemos tirar conclusões interessantes sobre o sistema, como, por exemplo, como a planta distribui seu fotossintato. Outros problemas interessantes que surgem tem aplicações bem mundanas: qual a porcentagem da população deveria ser vacinada em uma epidemia, a fim de que se minimize o número de infectados e o custo de implementação? Qual a quantidade de remédio deve ser ministrado para que se minimize a carga viral e a quantidade administrada de remédio? Nesse caso a carga viral e a quantidade de remédio formariam o sistema. Em um problemas como esse, encontramos:

- 1. variáveis de **estado**: descrevem a dinâmica do sistema.
- 2. variáveis de controle: conduzem o estado segundo uma ação.
- 3. **funcional** ¹ **objetivo**: Procuramos a função de controle de forma que esse funcional seja minimizado (ou maximizado). Ele representa o custo (ou ganho) ao se tomar uma atitude no sistema.

1.2 Preliminares

Alguns conceitos e teoremas básicos de análise que serão utilizados durante o texto e podem ser encontrados em diversos livros:

- Continuidade por partes: Função contínua em cada ponto em que é definida, exceto em uma quantidade finita deles, e igual a seu limite à esquerda ou à direita em cada ponto. Logo, podemos ter finitos saltos, mas não podemos ter pontos isolados.
- 2. **Diferenciável por partes:** Função contínua que é diferenciável em cada ponto em que é definida, exceto em uma quantidade finita deles. Além disso, sua derivada é contínua sempre que definida.

¹Funcional: Mapa entre um conjunto de funções ao conjunto dos números reais

- 3. Convexidade: A função k é convexa se $\forall 0 \leq \alpha \leq 1$ e para qualquer $a \leq t_1, t_2 \leq b, \ \alpha k(t_1) + (1-\alpha)k(t_2) \geq k(\alpha t_1 + (1-\alpha)t_2)$. A definição é equivalente para funções de duas ou mais variáveis. Ela será côncava se -k for convexa.
- 4. **Lipschitz:** Função k em que existe c constante tal que $|k(t_1)-k(t_2)| \le c|t_1-t_2|$, para todos os pontos do domínio de k.
- 5. **Teorema do Valor Médio:** Seja k contínua em [a,b] e diferenciável em (a,b). Então existe $x_0 \in (a,b)$ tal que $k(b) k(a) = k'(x_0)(b-a)$.
- 6. **Teorema da Convergência Dominada:** Considere uma sequência $\{f_n\}$ dominada por uma função Lebesgue integrável g. Suponha que essa sequência converge ponto a ponto para uma função f. Então f é integrável e $\lim_{n\to\infty}\int_S f_n d\mu = \int_S f d\mu$.

Observação. Se x é solução da equação diferencial x'(t) = g(t, x(t), u(t)), em que g é contínua nas três variáveis, então x é diferenciável sempre que u é contínua. Se u for contínua por partes, então x será diferenciável por partes.

Exercício 1.2.1. Se $k:I\subset\mathbb{R}\to\mathbb{R}$ é diferenciável por partes em um intervalo I limitado, k é Lipschitz.

1.3 Condições necessárias para o problema básico

Considere u(t) uma variável de controle e x(t) variável de estado que satisfaz

$$x'(t) = g(t, x(t), u(t)). (1.3)$$

Podemos ver a relação entre essas variáveis como $u(t) \mapsto x = x(u)$. O problema básico do controle ótimo é encontrar uma função de controle contínua por partes 1 u(t) que maximize um dado funcional objetivo

$$J(u) := \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$
 (1.4)

Nos problemas encontrados nesse texto, f e g são sempre continuamente diferenciáveis. Para isso, se $u^*(t)$ e $x^*(t) = x(u^*(t))$ são argumentos ótimos, podemos extrair condições necessárias para o problema. No capítulo 2, são discutidas as condições suficientes.

Função Adjunta: proposta similar aos multiplicadores de Lagrange para o cálculo multivariado. $\lambda: [t_0, t_1] \to \mathbb{R}$ é diferenciável por partes e deve satisfazer algumas condições que serão derivadas posteriormente.

Assuma a existência de u^* e x^* em um problema de maximização. Nesse caso, $J(u) \leq J(u^*) < \infty$, para todo controle u. Seja h(t) uma função contínua por partes e $\epsilon \in \mathbb{R}$. Então:

$$u^{\epsilon}(t) = u^{*}(t) + \epsilon h(t), u^{\epsilon} \mapsto x^{\epsilon},$$

tal que x^{ϵ} satisfaz 1.3 sempre que u^{ϵ} é contínua. Consideramos $x^{\epsilon}(t_0) = x_0$. Para todo t, quando $\epsilon \to 0$, temos que $u^{\epsilon}(t) \to u^*(t)$, pela própria definição. Além disso,

$$\left. \frac{\partial u^{\epsilon}(t)}{\partial \epsilon} \right|_{\epsilon=0} = h(t).$$

Como a função g é continuamente diferenciável, também ocorre que, para todo t fixo,

$$x^{\epsilon}(t) \to x^{*}(t) e \left. \frac{\partial}{\partial \epsilon} x^{\epsilon}(t) \right|_{\epsilon=0}$$
 existe.

Observação. Se for difícil enxergar isso, pense que

$$x^{\epsilon}(t) = x_0 + \int_{t_0}^t g(s, x^{\epsilon}(s), u^{\epsilon}(s)) ds$$

Seja $\lambda(t)$ a função adjunta (1.3) no intervalo $[t_0,t_1]$. Pelo Teorema Fundamental do Cálculo,

$$\int_{t_0}^{t_1} \frac{d}{dt} [\lambda(t)x^{\epsilon}(t)]dt = \lambda(t_1)x^{\epsilon}(t_1) - \lambda(t_0)x^{\epsilon}(t_0),$$

e, portanto, exceto em uma finidade de pontos,

$$J(u^{\epsilon}) = \int_{t_0}^{t_1} [f(t, x^{\epsilon}(t), u^{\epsilon}(t)) + \frac{d}{dt} (\lambda(t)x^{\epsilon}(t))] dt$$

$$+ \lambda(t_0)x_0 - \lambda(t_1)x^{\epsilon}(t_1)$$

$$= \int_{t_0}^{t_1} [f(t, x^{\epsilon}(t), u^{\epsilon}(t)) + \lambda'(t)x^{\epsilon}(t) + \lambda(t)\underbrace{g(t, x^{\epsilon}(t), u^{\epsilon}(t))}_{g(t, x^{\epsilon}(t), u^{\epsilon}(t))}] dt$$

$$+ \lambda(t_0)x_0 - \lambda(t_1)x^{\epsilon}(t_1).$$

Sabemos que

$$0 = \frac{d}{d\epsilon} J(u^{\epsilon}) \bigg|_{\epsilon=0} = \lim_{\epsilon \to 0} \frac{J(u^{\epsilon}) - J(u^*)}{\epsilon},$$

pois $J(u^*)$ é máximo. Desta maneira, como o integrando é diferenciável por partes e o intervalo é compacto, pelo Teorema da Convergência Dominada (6), podemos mover o limite para dentro da integral. Em especial, podemos mover a própria derivada.

$$0 = \frac{d}{d\epsilon} J(u^{\epsilon}) \Big|_{\epsilon=0}$$

$$= \int_{t_0}^{t_1} \frac{\partial}{\partial \epsilon} \left[f(t, x^{\epsilon}(t), u^{\epsilon}(t)) + \lambda'(t) x^{\epsilon}(t) + \lambda(t) g(t, x^{\epsilon}(t), u^{\epsilon}(t)) dt \right] \Big|_{\epsilon=0}$$

$$- \lambda(t_1) \frac{\partial x^{\epsilon}}{\epsilon} (t_1) \Big|_{\epsilon=0}$$

$$= \int_{t_0}^{t_1} \left[(f_x + \lambda(t) g_x + \lambda'(t)) \frac{\partial x^{\epsilon}}{\partial \epsilon} (t) \Big|_{\epsilon=0} + (f_u + \lambda(t) g_u) h(t) \right] dt$$

$$- \lambda(t_1) \frac{\partial x^{\epsilon}}{\epsilon} (t_1) \Big|_{\epsilon=0},$$

onde os termos de f_x , f_u , g_x , e g_u são $(t, x^*(t), u^*(t))$. Para garantir que ocorra a igualdade citada acima, definimos

Definição 1.3.1 (Hamiltoniano).

$$H(t, x, u, \lambda) = f(t, x, u) + \lambda g(t, x, u)$$

Para obter a igualdade acima para qualquer função h, precisamos que as condições abaixo sejam satisfeitas e, em particular estamos maximizando H com respeito a u em u^* e, então:

$$\begin{cases} \left. \frac{\partial H}{\partial u} \right|_{u=u^*} = f_u + \lambda g_u = 0, & \text{(condição de otimalidade)} \\ \left. \frac{\partial H}{\partial x} \right|_{x=x^*} = -\lambda' = -(f_x + \lambda g_x), & \text{(equação adjunta)} \\ \left. \frac{\partial H}{\partial \lambda} \right|_{x=x^*} = x' \\ \lambda(t_1) = 0, & \text{(condição de transversalidade)} \end{cases}$$
(1.5)

1.4 Princípio Máximo de Pontryagin

Teorema 1.4.1. Se $u^*(t)$ e $x^*(t)$ são ótimos para o problema de controle ótimo, então existe $\lambda(t)$ adjunta diferenciável por partes tal que

$$H(t, x^*(t), u(t), \lambda(t)) \le H(t, x^*(t), u^*(t), \lambda(t))$$
 (1.6)

para todas as funções de controle u e cada t, onde

$$H = f(t, x(t), u(t)) + \lambda(t)g(t, x(t), u(t))$$

e

$$\lambda'(t) = \frac{\partial H(t, x^*(t), u^*(t), \lambda(t))}{\partial x}$$
$$\lambda(t_1) = 0$$

Já mostramos que $H_u=0$ em u^* para cada t. De fato existe um ponto crítico em u^* e faltaria provar que ele é máximo. A demonstração para isso é complicada e é omitida do texto.

Teorema 1.4.2. Suponha que f e g sejam continuamente diferenciáveis nos três argumentos e côncava em u. Suponha que u^* seja o controle ótimo associado ao estado x^* e que λ seja uma função diferenciável por partes não negativa. Suponha que $\forall t_0 \leq t \leq t_1$

$$0 = H_u(t, x^*(t), u^*(t), \lambda(t))$$

Então vale 1.6.

Demonstração. Tome uma função u contínua por partes e $t \in [t_0, t_1]$. Então

$$H(t,x^{*}(t),u^{*}(t),\lambda(t)) - H(t,x^{*}(t),u(t),\lambda(t))$$

$$= [f(t,x^{*}(t),u^{*}(t)) + \lambda(t)g(t,x^{*}(t),u^{*}(t))]$$

$$- [f(t,x^{*}(t),u(t)) + \lambda(t)g(t,x^{*}(t),u(t))]$$

$$= [f(t,x^{*}(t),u^{*}(t)) - f(t,x^{*}(t),u(t))]$$

$$+ \lambda(t) [g(t,x^{*}(t),u^{*}(t)) - g(t,x^{*}(t),u(t))]$$

$$\geq (u^{*}(t) - u(t))f_{u}(t,x^{*}(t),u^{*}(t)) + \lambda(t)(u^{*}(t) - u(t))g_{u}(t,x^{*}(t),u^{*}(t))$$

$$= (u^{*}(t) - u(t))H_{u}(t,x^{*}(t),u^{*}(t),\lambda(t)) = 0,$$

onde a desigualdade vem da concavidade de f e g e $\lambda(t) \geq 0$.

Observação. Convertemos o problema de encontrar uma função de controle que maximize um funcional para um problema de maximizar pontualmente o Hamiltoniano com respeito a um controle.

Observação. A concavidade de H nos fala sobre o tipo de problema que está sendo considerado: se a segunda derivada é negativa em u*, tem-se um problema de maximização, enquanto se ela for positiva, o problema é de minimização.

1.5 Exemplos

Exemplo 1.5.1.

$$\min_{u} \int_{1}^{2} tu(t)^{2} + t^{2}x(t)dt$$
sujeito $ax'(t) = -u(t), x(1) = 1$

Primeiro definimos o Hamiltoniano

$$H = [tu(t)^{2} + t^{2}x(t)] + \lambda(-u(t))$$

Agora vamos observar as condições sobre o Hamiltoniano:

- 1. Otimalidade: $H_u = 0 \implies 2tu^*(t) \lambda \implies u^*(t) = \frac{\lambda}{2t}$
- 2. Equação adjunta: $H_x = t^2 = -\lambda' \implies \lambda(t) = -\frac{1}{3}t^3 + C$
- 3. Transversalidade: $\lambda(2) = 0 \implies C = \frac{8}{3} \implies \lambda(t) = -\frac{1}{3}t^3 + \frac{8}{3}$.

Com essas condições, podemos ver que o controle ótimo é dado por

$$u^*(t) = -\frac{1}{6}t^2 + \frac{8}{6}t^{-1}$$

Note que não provamos a existência de tal controle, o que está sendo feito é: supondo a existência de um controle ótimo, usamos os teoremas da seção 1.4 para encontrar a função adjunta e, assim, encontrar as funções ótimas que resolvem o problema. Além disso, podemos observar que as condições do Teorema 1.4.2 são satisfeitas.

Para encontrar o estado, resolvemos x'(t) = -u(t) e temos:

$$x^*(t) = \frac{1}{18}t^3 - \frac{8}{6}\ln(t) + D,$$

tal que $x^*(1) = 1 = \frac{1}{18} + D$ e, portanto

$$x^*(t) = \frac{1}{18}t^3 - \frac{8}{6}\ln(t) + \frac{17}{18}$$

Exemplo 1.5.2 (Efeito Alle). Formule um problema de controle ótimo para uma população com um termo de crescimento de efeito Allee, em que o controle é a proporção da população caçada. Escolha um funcional objetivo que maximize a receita da caça enquanto minimiza o seu custo. A receita é a integral da quantidade caçada no tempo. O custo tem formato quadrático.

O efeito Allee descreve um crescimento conforme a equação

$$x'(t) = rx(t) \left(\frac{x(t)}{x_{min}} - 1\right) \left(1 - \frac{x(t)}{x_{max}}\right)$$
(1.7)

Nessa equação, temos um limiar x_{min} e uma capacidade de carga do ambiente x_{max} . Se $x(0) > x_{min}$, a solução x(t) se aproxima de x_{max} . Se ela começa abaixo, ela decairá para 0. Como o crescimento líquido é negativo em níveis populacionais baixos, a população não consegue se manter e morre. O crescimento per capita também não é monotonicamente decrescente e mostra

Figura 1.1: Efeito Allee

o efeito que chamamos de Allee, figura 1.1. Para entender mais sobre o efeito Allee, sugere-se Kot (2001).

Existe uma certa liberdade em como fazer essa modelagem. Mas uma possível proposta é a seguinte: Se x(t) é o tamanho da população no tempo t e u(t) é a proporção da população caçada, a variação da população é dada por

$$x'(t) = rx(t) \left(\frac{x(t)}{x_{min}} - 1\right) \left(1 - \frac{x(t)}{x_{max}}\right) - u(t)x(t)$$
$$x(0) = \frac{x_{min} + x_{max}}{2}$$

Para definir um objetivo, queremos maximizar a receita, que é dada por, se T for o final do período,

$$R(u) = \int_0^T u(t)x(t)dt$$

E queremos minimizar o custo da caça, que é assumido como quadrático:

$$C(u) = \int_0^T [u(t)x(t)]^2 dt$$

Queremos portanto

$$\max_{u}[R(u) - C(u)]$$

Existência e Outras Propriedades

Após desenvolver as condições necessárias para resolver o problema de controle ótimo inicial, alguns problemas podem surgir. Como assumimos a existência de controle ótimo, podemos encontrar uma função de controle pelas condições mesmo quando não haja. Também pode ser obtido um funcional que tem valor infinito, algo que não desejado. Portanto, se o funcional objetivo tiver valor mais ou menos infinito, o problema não tem solução.

2.1 Existência e Unicidade

Teorema 2.1.1. Seja

$$J(u):=\int_{t_0}^{t_1}f(t,x(t),u(t))dt$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(t_0) = x_0.$$

Suponha que f(t,x,u) e g(t,x,u) sejam continuamente diferenciáveis nos três argumentos e côncavos no segundo e terceiro argumentos. Suponha que u^* é um controle, com estado associado a x^* , a λ uma função diferenciável por partes, tal que $t_0 \leq t \leq t_1$:

$$f_u + \lambda g_u = 0, (2.1a)$$

$$\lambda' = -(f_x + \lambda g_x),\tag{2.1b}$$

$$\lambda(t_1) = 0, \tag{2.1c}$$

$$\lambda(t) \ge 0. \tag{2.1d}$$

Então, para todos os controles $u, J(u^*) \ge J(u)$.

Demonstração. Seja u um controle qualquer. Assim, usando a concavidade de f,

$$J(u^*) - J(u) = \int_{t_0}^{t_1} f(t, x^*, u^*) - f(t, x, u) dt$$

$$\geq \int_{t_0}^{t_1} (x^*(t) - x(t)) f_x(t, x^*, u^*)$$

$$+ (u^*(t) - u(t)) f_u(t, x^*, u^*) dt$$
(2.2)

Aplicando 2.1a e 2.1b ao último termo de 2.2, ele será

$$\int_{t_0}^{t_1} (x^*(t) - x(t))(-\lambda(t)g_x(t, x^*, u^*) - \lambda'(t)) + (u^*(t) - u(t))(-\lambda(t)g_u(t, x^*, u^*))dt.$$

Integrando por partes, com $\lambda(t_1) = 0$ e $x(t_0) = x^*(t_0)$, vemos que

$$\int_{t_0}^{t_1} -\lambda'(t)(x^*(t) - x(t))dt = -(x^*(t) - x(t))\lambda(t) \Big|_{t_0}^{t_1} + \int_{t_0}^{t_1} \lambda(t)(x^*(t) - x(t))'dt$$
$$= \int_{t_0}^{t_1} \lambda(t)(g(t, x^*(t), u^*(t)) - g(t, x(t), u(t)))dt$$

Substituindo e usando tanto a concavidade de q quanto 2.1d,

$$J(u^*) - J(u) \ge \int_{t_0}^{t_1} \lambda(t) [g(t, x^*, u^*) - g(t, x, u) - (x^* - x)g_x(t, x^*, u^*) - (u^* - u)g_u(t, x^*, u^*)] dt$$

$$\ge 0$$

Falta garantir que $J(u^*)$ seja finito. Para isso, algumas restrições sobre f e/ou g são necessárias. O próximo teorema é um exemplo sobre isso.

Teorema 2.1.2. Seja $u \in L([t_0, t_1]; \mathbb{R})$, f é convexa em u, e existam constantes C_4 e $C_1, C_2, C_3 > 0$ e $\beta > 1$, tal que, $\forall t \in [t_0, t_1], x, x_1, u \in \mathbb{R}$.

$$\begin{cases} g(t, x, u) = \alpha(t, x) + \beta(t, x)u \\ |g(t, x, u)| \le C_1(1 + |x| + |u|) \\ |g(t, x_1, u) - g(t, x, u)| \le C_2|x_1 - x|(1 + |u|) \\ f(t, x, u) \ge C_3|u|^{\beta} - C_4 \end{cases}$$

Então existe um controle ótimo u^* maximizando J(u) com $J(u^*)$ finito.

Em problemas de minimização, g seria côncava e a desigualdade de f é revertida. Podemos extender as condições necessárias para funções de controle Lebesgue integráveis, mas isso não é feito aqui. Alguns resultados de existência de controle ótimo podem ser encontrados em Filippov (1962).

Unicidade: Unicidade de soluções do sistema de otimalidade implica unicidade do controle ótimo, se existir. Em geral, podemos provar a unicidade de soluções do sistema de otimalidade em intervalos de tempo curtos. A volta nem sempre é verdadeira, isto é, unicidade do controle ótimo não garante a unicidade do sistema.

Os exemplos e laboratórios satisfazem as condições de existência e unicidade para intervalos de tempo pequenos. Portanto, resolver através das condições necessárias já se torna suficiente.

2.2 Interpretação da Adjunta

Defina

$$V(x_0, t_0) := \max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$
sujeito a $x'(t) = g(t, x, u), x(t_0) = x_0$.

Estabelecemos que

$$\frac{\partial V}{\partial x}(x_0, t_0) = \lim_{\epsilon \to 0} \frac{V(x_0 + \epsilon, t_0) - V(x_0, t_0)}{\epsilon} = \lambda(t_0).$$

Podemos relacionar, então, a função adjunta à variação marginal da função custo/lucro com respeito ao estado. É o valor adicional associado com um incremento adicional da variável de estado. Na verdade, essa aproximação é válida para todo tempo t (Kamien and Schwartz, 2012, 136-139). Podemos aproximar:

$$V(x_0 + \epsilon, t_0) \approx V(x_0, t_0) + \epsilon \lambda(t_0).$$

Se $\epsilon = 1$, podemos ver que ao adicionar um unidade à condição inicial, $\lambda(t_0)$ será adicionado ao lucro resultante.

2.3 Princípio da Otimalidade

É um resultado importante sobre otimizar um sistema sobre um subintervalo do intervalo original e, em particular, como o controle ótimo nesse subintervalo se relaciona com o controle no intervalo inteiro.

Teorema 2.3.1. Considere u^* o controle ótimo associado ao estado x^* para o problema

$$\max_{u} J(u) = \max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(t_0) = x_0.$$

Seja $\hat{t} \in (t_0, t_1)$ fixo. Então as funções \hat{u}^* e \hat{x}^* restritas ao intervalo $[\hat{t}, t_1]$ formam uma solução ótima para o problema

$$\max_{u} \hat{J}(u) = \max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(\hat{t}) = x^*(\hat{t}).$$

Além disso, se u^* é controle ótimo único, então \hat{u}^* é também.

Demonstração. Esta prova se dá por contradição. Suponha que \hat{u}^* não seja ótimo, isto é, exista uma função de controle \hat{u}_1 no intervalo $[\hat{t}, t_1]$ tal que $\hat{J}(\hat{u}_1) > \hat{J}(\hat{u}^*)$. Defina

$$u_1(t) = \begin{cases} u^*(t), & t \in [t_0, \hat{t}] \\ \hat{u}_1(t), & t \in [\hat{t}, t_1] \end{cases}$$

Seja x_1 o estado associado a u_1 . Assim

$$J(u_1) - J(u^*) = \left(\int_{t_0}^{\hat{t}} f(t, x_1, u_1) dt + \hat{J}(\hat{u}_1) \right) - \left(\int_{t_0}^{\hat{t}} f(t, x^*, u^*) dt + \hat{J}(\hat{u}^*) \right)$$
$$= \hat{J}(\hat{u}_1) - \hat{J}(\hat{u}^*) > 0$$

Isso contradiz a hipótese inicial de que u^* é controle ótimo.

Observação. Note que nada pode ser dito sobre o intervalo $[t_0, \hat{t}]$, pois podemos construir contra-exemplos.

2.4 Os Problemas Autônomo e Hamiltoniano

Teorema 2.4.1. O Hamiltoniano é uma função contínua Lipschitz do tempo t no caminho ótimo.

Definição 2.4.1 (Autônomo). Se um problema de controle ótimo não tem dependência explícita do tempo, ele é dito autônomo. Isso significa que f e g, em nossa notação, são funções apenas de x e u.

Teorema 2.4.2. Se um problema de controle ótimo é autônomo, então o Hamiltoniano é uma função constante do tempo ao longo da solução ótima.

2.5 Exemplos

Exemplo 2.5.1. Queremos resolver o problema

$$\min_{u} \int_{t_0}^{t_1} x(t) + \frac{1}{2} u(t)^2 dt$$

sujeito a
$$x'(t) = x(t) + u(t), x(0) = \frac{1}{2}e^2 - 1$$

no intervalo [0, 2] e, posteriormente, no intervalo [1, 2].

Observe inicialmente que f e g são continuamente diferenciáveis e convexos no segundo e terceiro argumentos, dado que o problema é de minimização. Vamos então conferir as condições necessárias e, então, saberemos que $J(u^*) \leq J(u)$ para toda função de controle u, pelo teorema de existência.

O Hamiltoniano é

$$H = x + \frac{1}{2}u^2 + x\lambda + u\lambda$$

A equação adjunta é dada por

$$\lambda' = -H_x = -1 - \lambda, \lambda(2) = 0 \implies \lambda(t) = e^{2-t} - 1 \ge 0,$$

A condição de otimalidade é dada por

$$H_u = u + \lambda = 0 \implies u^*(t) = -\lambda(t) = 1 - e^{2-t}$$

E, portanto

$$x'(t) - x(t) = 1 - e^{2-t} \implies x(t) = Ce^{t} + \frac{1}{2}e^{2-t} - 1$$

Usando a condição inicial

$$\frac{1}{2}e^2 - 1 = C + \frac{1}{2}e^2 - 1 \implies x^*(t) = \frac{1}{2}e^{2-t} - 1$$

Considerando o intervalo em [1,2], vemos que $\hat{u}^* = u^*$ em [1,2]. Se fôssemos resolver fazendo as contas, veja que todos os passos poderiam ser repetidos, com exceção de que $x(1) = \frac{1}{2}e - 1$, o que não mudaria a solução.

Exemplo 2.5.2. Considere o problema acima, mas no intervalo [0, 1].

O Hamiltoniano é o mesmo e $u^*(t) = -\lambda(t)$. Mas a condição de transversalidade é diferente: $\lambda(1) = 0 \implies \lambda(t) = e^{1-t} - 1$ e $u^*(t) = 1 - e^{1-t}$. Ao usarmos a equação do estado, obteremos que

$$x^*(t) = \frac{1}{2}e^{1-t} - 1 + \frac{1}{2}(e^2 - e)e^t$$

Note que a solução é diferente da anterior restrita a [0, 1].

Condições Finais do Estado

3.1 Termos Payoff

Em muitos problemas, também queremos maximizar o valor de uma função em um determinado ponto no tempo, como, por exemplo, no final do intervalo. Assim, o problema é do tipo:

$$\max_{u} \left[\phi(x(t_1)) + \int_{t_0}^{t_1} f(t, x(t), u(t)) dt \right]$$
$$x' = g(t, x(t), u(t)), x(t_0) = x_0$$

O termo $\phi(x(t_1))$ é conhecido como termo payoff. Assim o funcional objetivo se torna

$$J(u) = \int_{t_0}^{t_1} f(t, x(t), u(t)) dt + \phi(x(t_1))$$

A única mudança em relação ao cálculos do Capítulo 1 é a condição de transversalidade.

$$\lambda(t_1) = \phi'(x^*(t_1)).$$

3.2 Estados com Pontos Finais Fixos

Considere o problema

$$\max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)) dt + \phi(x(t_0))$$

sujeito a
$$x'(t) = g(t, x(t), u(t)), x(t_1) = x_1$$

Diferente do problema que estávamos estudando, fixamos o estado no ponto final. Entretanto, o argumento utilizado no Capítulo 1 pode ser replicado aqui. As condições necessárias serão as mesmas, exceto pela condição de transversalidade. Especificamente,

$$\lambda(t_0) = \phi'(x(t_0))$$

Isso sugere que exista uma dualidade entre as condições de fronteira do estado e da adjunta. A maximização é sobre os controles *admissíveis*, no sentido que respeite todas as restrições definidas.

Também podemos fixar os pontos inicial e final de estado. Notamos que estamos considerando a maximização sobre o conjunto de controles admissíveis, que respeitem as condições, inclusive sobre a variável de estado. Porém, nesse caso, uma mudança nas condições necessárias é realizada no seguinte teorema.

Teorema 3.2.1. Se $u^*(t)$ e $x^*(t)$ são ótimos para o problema com pontos inicial e final fixados, então existe uma função $\lambda(t)$ diferenciável por partes e uma contante λ_0 igual a 0 ou 1, tal que

$$H(t, x^*(t), u(t), \lambda(t)) \le H(t, x^*(t), u^*(t), \lambda(t))$$

para todos os controles admissíveis u no tempo t e o Hamiltoniano é

$$H = \lambda_0 f(t, x(t), u(t)) + \lambda(t)g(t, x(t), u(t))$$

e

$$\lambda'(t) = -\frac{\partial H(t, x^*(t), u^*(t))}{\partial x}.$$

A diferença das condições apresentadas no capítulo 1 é que a função adjunta não tem restrições. A demonstração utiliza uma técnica diferente da utilizada até então (Kamien and Schwartz, 2012, 147-153). A constante λ_0 ajusta para problemas degenerados ou problemas onde o funcional objetivo é imaterial.

Definição 3.2.1. O funcional objetivo ser imaterial significa que não depende da condição final do estado.

3.3 Exemplos

Exemplo 3.3.1.

$$\min_{u} \frac{1}{2} \int_{0}^{1} u(t)^{2} dt + 5x(1)^{2}$$
sujeito a $x'(t) = x(t) + u(t), x(0) = 1$

Observe que nesse exemplo estamos lidando com o termo payoff $5x(1)^2$, onde $\phi(x) = 5x^2$. Nesse caso

$$H = \frac{1}{2}u^2 + \lambda(x+u)$$

A condição de otimalidade,

$$0 = H_u = u^* + \lambda \implies u^*(t) = -\lambda(t)$$

A equação adjunta,

$$\lambda'(t) = -H_x = -\lambda \implies \lambda(t) = Ce^{-t}$$

A condição de transversalidade é

$$\lambda(1) = \phi'(x(1)) = 10x(1)$$

Sabemos que $u^*(t) = -Ce^{-t}$. Usando a equação do estado,

$$x' = x - Ce^{-t} \implies x^*(t) = \frac{C}{2}e^{-t} + De^{t}$$

Agora, utilizando as condições de fronteira,

$$\lambda(1) = Ce^{-1} = 10x^*(1) = 10\left(\frac{C}{2}e^{-1} + De\right)$$
$$x(0) = \frac{C}{2} + D = 1 \implies D = 1 - \frac{C}{2}$$

Obtemos a equação

$$e^{-1} = 5e^{-1} + 10e\frac{D}{C} \implies -\frac{4}{10}e^{-2} = \frac{D}{C} \implies 1 - \frac{C}{2} = -\frac{2}{5}Ce^{-2}$$

Assim

$$C = \frac{1}{\frac{1}{2} - \frac{2}{5}e^{-2}} = \frac{10}{5 - 4e^{-2}} \implies D = 1 - \frac{5}{5 - 4e^{-2}} = \frac{-4e^{-2}}{5 - 4e^{-2}}$$

Concluímos, portanto, que

$$u^*(t) = -\frac{10}{5 - 4e^{-2}}e^{-t} e^{-t} = x^*(t) = \frac{5}{5 - 4e^{-2}}e^{-t} - \frac{4e^{-2}}{5 - 4e^{-2}}e^{t}$$

Exemplo 3.3.2.

$$\min_{u} \int_{0}^{1} u(t)dt$$
 sujeito a $x'(t) = u(t)^{2}, x(0) = 0, x(1) = 0$

Observe que $x(t) = \int_0^t u(s)^2 ds$ e, como x(1) = 0, temos que $u \equiv 0$ é o único controle admissível. Portanto ele será o único controle ótimo. Agora, vamos examinar as condições necessárias, para fazer o sanity check.

$$H = \lambda_0 u + u^2 \lambda$$

Assim

$$0 = H_u = \lambda_0 + 2u\lambda \implies u^*(t) = -\frac{\lambda_0}{2\lambda(t)}$$

Pela equação adjunta, $H_x=0 \implies \lambda \equiv C$, para alguma constante C. Isto é, $u^*(t)=-\lambda_0/2C$. Usando a equação do estado, obtemos que

$$x^*(t) = \lambda_0^2 \frac{t}{4C^2} + D$$

tal que D=0 e $\frac{\lambda_0^2}{4C^2}=0 \implies \lambda_0=0$. Checamos então que o Teorema é satisfeito com $\lambda_0=0$ e $u^*\equiv 0$, como já era esperado.

Exemplo 3.3.3. Seja x(t) o número de célular de tumor no tempo t com crescimento exponencial α e u(t) a concentração de drogas. Queremos minimizar o número de células tumorais ao final do tratamento e os efeitos negativos acumulados do tratamento no corpo. Assim, o problema é resumido em

$$\min_{u} x(T) + \int_{0}^{T} u(t)^{2} dt$$
 sujeito a $x'(t) = \alpha x(t) - u(t), x(0) = x_{0} > 0$

Esse é um simples modelo, não realístico, com objetivo ilustrativo apenas. O termo payoff é X(T) e, portanto, $\phi(x)=x$. Podemos calcular as condições necessárias.

$$H = u^{2} + \lambda(\alpha x - u)$$

$$0 = H_{u} = 2u - \lambda \implies u^{*} = \frac{\lambda}{2}$$

$$\lambda' = \frac{\partial H}{\partial x} = -\alpha\lambda \implies \lambda(t) = Ce^{-\alpha t}$$

$$\lambda(T) = \phi'(x(T)) = 1 \implies \lambda(t) = e^{\alpha(T-t)}$$

Portanto o controle ótimo é

$$u^*(t) = \frac{1}{2}e^{\alpha(T-t)},$$

Observando a equação do estado, temos que

$$x' - x = -\frac{1}{2}e^{\alpha(T-t)} \implies x^*(t) = x_0e^{\alpha t} + e^{\alpha T}\frac{e^{-\alpha t} - e^{\alpha t}}{4\alpha}$$

Com esse método, podemos obter a quantidade de droga a ser utilizada a cada tempo t e também saberemos a quantidade de células cancerosas. Todavia é importante notar que esse é um modelo simplificado que não leva em consideração diversos fatores importantes ao processo.

Método Backward/Forward

Queremos agora resolver os problemas de controle ótimo numericalmente. A equação $\frac{\partial H}{\partial u}=0$ deve ser satisfeita em u^* e pode ser de ajuda para encontrar u em função de x e λ . A partir disso, podemos utilizar um método como Runge-Kutta para resolver o sistema ótimo. Ele vai encontrar o controle ótimo se esse existir.

4.0.1 Algoritmo

- 1. Chute inicial para \vec{u} , sendo cada coordenada de u um valor no tempo discreto.
- 2. Resolva x Foward utilizando a condição inicial e utilizando sua equação diferencial
- 3. Use a condição final de λ e resolva Backward de acordo com sua equação diferencial.
- 4. Atualize o vetor de controle.
- 5. Convergência.

É interessante utilizar uma combinação convexa entre o valor do controle anterior e o valor atual para acelerar a convergência.

Combinação Convexa: Combinação Linear de pontos, cuja soma dos coeficientes é positiva e a soma é 1.

O erro no algoritmo é em geral o relativo e ele deve ser menor do que uma tolerância aceitável. A condição que obtemos é que $\delta \|\vec{u}\| - \left\|\vec{u} - o\vec{ldu}\right\| \ge 0$

4.0.2 Runge-Kutta

$$\begin{cases} x(t+h) \approx x(t) + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) \\ k1 = f(t, x(t)) \\ k2 = f(t + \frac{h}{2}, x(t) + \frac{h}{2}k_1) \\ k3 = f(t + \frac{h}{2}, x(t) + \frac{h}{2}k_2) \\ k4 = f(t+h, x(t) + hk_3) \end{cases}$$

O erro é da ordem de h^4 .

Laboratórios

5.0.1 Laboratório 1

Nesse laboratório, o autor explora a utilização do MatLab como ferramenta, devido à facilidade de se trabalhar com essa linguagem matematicamente e pela quanlidade grafica dos resultados.

Além disso, ele resolve um problema de controle ótimo.

5.0.2 Laboratório 2

Aplicação em Biologia. Dada uma população com capacidade máxima (carrying capacity), queremos reduzí-la. Nesse caso, o controle é quantidade adicionada no tempo t. Assim, o problema se reduz a:

$$\begin{cases} \min_{u} \int_{0}^{T} (Ax(t)^{2} + u(t)^{2}) dt \\ s.a. \ x'(t) = r(M - x(t)) - u(t)x(t), x(0) = x_{0} \end{cases}$$
 (5.1)

5.0.3 Laboratório 3

Aplicação sobre Bactéria. Nesse laboratório, o tópico pe sobre o crescimento de uma bactéria quando um nutriente qímico é utilizado para acelerar a reprodução. Nosso problema, então:

$$\begin{cases} \max_{u} Cx(1) - \int_{0}^{1} u(t)^{2} dt \\ s.a. \quad x'(t) = rx(t) + Au(t)x(t) - Bu(t)^{2} e^{-x(t)}, \\ x(0) = x_{0}, A, B, C \ge 0 \end{cases}$$
 (5.2)

Como $\lambda(t) > 0 \forall t$, podemos obter a caracterização do controle como comumente fazemos.

Controles Limitados

Sabemos que, em geral, nossos problemas a serem resolvidos tem limitações no controle. Por exemplo, no uso de um químico, podemos indicar que o controle é necessariamente não negativo e tem, também, uma restrição legal, muitas vezes.

6.0.1 Condições Necessárias:

Esse problema será descrito da seguinte forma

$$\max_{u} \int_{t_0}^{t_1} f(t, x(t), u(t)dt + \phi(x(t_1))$$
s.a. $x'(t) = g(t, x(t), u(t)), x(t_0) = x_0,$

$$a \le u(t) \le b, a < b$$

Seja u^* e x^* o par ótimo. Observe que a derivada do funcional objetivo pode não ser zero no controle ótimo, pois u^* pode estar nos limites do intervalo. Podemos avaliar o sinal da derivada, entretanto. Agora, dizemos que $\epsilon \in (0, \epsilon_0]$. E, mais uma vez, reescrevemos o funcional e derivamos em relação a ϵ , no ponto 0, porém, nesse caso, essa derivada será menor ou igual a 0. Tomando a função adjunta com as restrições já utilizadas anteriormente, reduzo a inequação para $0 \ge \int_{t_0}^{t_1} (f_u + \lambda g_u) h dt$, que vale para todos os valores de h.

Seja s um ponto de continuidade de u^* com $a \le u^*(s) < b$. Teremos que $f_u + \lambda g_u \le 0$. Em contrapartida, se tivermos $a < u^*(s) \le b$, concluiremos que $f_u + \lambda g_u \ge 0$. Os pontos que não há continuidade são irrelevantes. Sumariamente:

$$u^{*}(t) = a \implies f_{u} + \lambda g_{u} \leq 0 \text{ at } t$$

$$a < u^{*}(t) < b \implies f_{u} + \lambda g_{u} = 0 \text{ at } t$$

$$u^{*}(t) = b \implies f_{u} + \lambda g_{u} \geq 0 \text{ at } t$$

$$\iff f_{u} + \lambda g_{u} < 0 \text{ em } t \implies u^{*}(t) = a$$

$$f_{u} + \lambda g_{u} = 0 \text{ em } t \implies a < u^{*}(t) < b$$

$$f_{u} + \lambda g_{u} > 0 \text{ em } t \implies u^{*}(t) = b$$

Laboratórios

7.0.1 Laboratório 4

É um reexame do primeiro laboratório. A primeira análise é de como o controle muda quando há uma restrição (o que faz sentido).

7.0.2 Laboratório 5 - Cancer

Queremos minimizar a densidade do tumor e os efeitos colaterais das drogas. É assumido que o tumor tenha um crescimento Gompertzian. O modelo utilizado no laboratório é Skiper's log-kill hipótese, que afirma que a morte de células devido às drofas é proporcional a população de tumor.

Considere N(t) a densidade normalizada do tumor no tempo t. Assim:

$$N'(t) = rN(t)\ln(\frac{1}{N(t)} - u(t)\delta N(t)$$

r é a taxa de crescimento do tumor, δ a magnitude da dose e u(t) descreve a ação da droga. É a força do efeito da droga. Escolhemos o funcional para ser

$$\min_{u} \int_{0}^{T} aN(t)^{2} + u(t)$$

Além disso, $u(t) \ge 0$ e $N(0) = N_0$.

7.0.3 Laboratório 6 - Fish Harvesting

Suponha que em um tanque em t=0 são adicionados peixes com massa média essencialmente 0. Além, descrevemos a massa do peixe segundo $f(t)=\frac{kt}{t+1}$. Note que $\lim f(t)=k$. Considere um intervalo [0,T], com T pequeno suficiente para que não haja reprodução. Queremos:

$$\max_{u} \int_{0}^{T} A \frac{kt}{t+1} x(t) u(t) - u(t)^{2} dt$$

subject to
$$x'(t) = -(m + u(t))x(t), x(0) = x_0, 0 \le u(t) \le M$$

Mé um limite físico para a taxa de colheita. Note que para qualquer valor de u(t)>0, a tax avai decrescer.

Como nos laboratórios anteriores, o valor T influencia o controle ótimo.

Optimal Control of Several Variables

Agora o problema se resume a:

$$max_{u_1,...,u_m} \int_{t_0}^{t_1} f(t, x_1(t), ..., x_n(t), u_1(t), ..., u_m(t)) dt + \phi(x_1(t_1), ..., x_n(t_1))$$

$$subject \ to \ x_i'(t) = g_i(t, x_1(t), ..., x_n(t), u_1(t), ..., u_m(t))$$

$$x_i(t_0) = x_{i0} \ for \ i = 1, 2, ..., n$$

onde as função f e g_i são continuamente diferenciáveis em cada variável. Podemos usar a expressão em forma de vetores. Considere $\vec{\lambda}(t) = [\lambda_1(t),...,\lambda_n(t)]$ um vetor com funções diferenciáveis por partes. Definimos $H(t,\vec{x},\vec{u},\vec{\lambda}) = f(t,\vec{x},\vec{u}) + \vec{\lambda}(t) \cdot \vec{g}(t,\vec{x},\vec{u})$. Se fizermos o mesmo processo anterior, vamos obter as condições:

$$x_i'(t) = \frac{\partial H}{\partial \lambda_i} = g_i(t, \vec{x}, \vec{u}), x_i(0) = x_{i0} \text{ for } i = 1, ...n$$

$$\lambda_j'(t) = -\frac{\partial H}{\partial x_j}, \lambda_j(t_1) = \phi_{x_j}(\vec{x}(t_1)) \text{ for } j = 1, ..., n$$

$$0 = \frac{\partial H}{\partial u_k} \text{ at } u_k^* \text{ for } k = 1, ..., m$$

Outros ajustes vistos nos capítulos anteriores ocorrem de mesma forma no caso multivariado. Inclusive se os limites das variáveis de controle estiverem presentes, o que altera as condições, também.

8.0.1 Problemas Linear Quadratic Regulator

Considere a equação diferencial do estado linear em x e u e o funcional objetivo na forma quadrática.

$$J(u) := \frac{1}{2} [x^T(T)Mx(t) + \int_0^T x^T(t)Q(t)x(t) + u^T R(t)u(t)dt]$$
$$x'(t) = A(t)x(t) + B(t)u(t)$$

Onde M, Q(t) são positivas semidefinidas e R(t) é positiva definida para garantir invertibilidade. As três são simétricas. Observe que isso garante a diagonalização. Assim: $H = \frac{1}{2}x^TQx + \frac{1}{2}u^TRu + \lambda^T(Ax + Bu)$.

diagonalização. Assim: $H = \frac{1}{2}x^TQx + \frac{1}{2}u^TRu + \lambda^T(Ax + Bu)$. Deste modo $u^* = -R^{-1}B^T\lambda$ e $\lambda' = -Qx - A^T\lambda$, $\lambda(T) = Mx(T)$. Se supormos que $\lambda = Sx$, chegamos que $S'x + Sx' = -Qx - A^T\lambda$. Com as devidas transformações. Obtermos que $-S'x = Qx + A^TSx - SBR^{-1}B^TSx$, com S(T) = M. Isso nos mostra que equação matricial Ricatti, que S(t) deve satisfazer. Basta resolver o problema. Por fim $u^* = -R^{-1}B^TSx$. Essa matriz é chamada de ganho.

8.0.2 Equações Diferenciais de Ordem mais Alta

Quando temos uma equação diferencial de ordem mais alta, podemos definir um sistema com as derivadas, onde $x_1(t) = x(t), x_2(t) = x'(t), ..., x_{n+1}(t) = x^{(n)}(t)$. A partir disso, podemos resolver com o Princípio Máximo de Pontryagin.

8.0.3 Limites Isoperimétricos

Além dos limites inferior e superior que podemos colocar no controle, também podemos querer que o exista limites na integral do controle. Exemplo: Para medicar uma pessoa, podemos querer que a quantidade total de remédia seja um valor B. Assim, a restrição é do tipo $\int_0^T u(t)dt = B$. De forma geral, podemos ter $\int_{t_0}^{t_1} h(t,x(t),u(t))dt = B$, sendo h continuamente diferenciável, como restrição. Desta maneira, não podemos usar o Princípio Máximo de Pontryagin. Para isso, introduzimos $z(t) = \int_{t_0}^t h(s,x(s),u(s))ds$. Desta maneira, nosso problema terá duas variáveis de estado.

8.0.4 Soluções Numéricas

Agora, para cada controle, um valor inicial para o controle é dado. Depois as variáveis de estado são resolvidas simultaneamente. Por fim, as adjuntas.

Linear Dependence on the Control

Vamos considerar problemas especiais em que o problema é linear no controle u(t).

9.0.1 Controle Bang-Bang

Considere o problema de controle ótimo.

$$\max_{t} \int_{t_0}^{t_1} f_1(t, x) + u(t) f_2(t, x) dt$$
s.a. $x'(t) = g_1(t, x) + u(t) g_2(t, x), x(0) = x_0$

$$a \le u(t) \le b$$

Assim $H(t, x, u, \lambda) = f_1(t, x) + \lambda g_1(t, x) + u(t)(f_2(t, x) + \lambda g_2(t, x))$, linear em u(t). Observe a derivada parcial em relação a u não carrega informação sobre u(t). Assim definimos $\psi(t) := f_2(t, x(t)) + \lambda(t)g_2(t, x(t))$, muitas vezes chamada de função de troca. Se $\psi = 0$ não pode ser obtido em um intervalo de tempo, mas ocorre apenas em pontos finitos, o controle é dito "Bing Bang", porque só varia entre os valores mínimo e máximo de u(t). Os valores de u(t) nesses pontos não são de interesse, portanto.

Em contrapartida, se $\psi(t) \equiv 0$ em um intervalo de tempo, dizemos que u^* é singular nesse intervalo. Esse caso será explorado na próxima sessão.

Para resolver esse tipo de problema, primeiro precisamos verificar se de fato o problema é Bang-Bang. Numericamente, o problema é apenas em verificar a positividade ou negatividade da função de troca.

9.0.2 Controles Singulares

O livro explora um exemplo inicial:

$$\max_{u} \int_{0}^{2} (x(t) - t^{2})^{2} dt$$
s.a. $x'(t) = u(t), x(0) = 1$

$$0 \le u(t) \le 4$$

Calculamos o Hamiltoniano e encontramos $u^*(t)$ em função da adjunta. Para sair dessa hipótese, precisamos fazer uma análise mais minunciosa. Ela começa em provar que $x(t) \geq t^2 \to \lambda'(t) \leq 0 \land \lambda(t) \geq 0$. Então, basta encontrar os valores de t em que essa função é positiva ou igual a 0. Dessa forma, teremos descrito o controle e estado ótimos.

No caso numérico, podemos ter que analisar quando nossa função de troca vai ser maior, igual ou menor que zero. Porém, a igualdade a 0 é complicada computacionalmente. Nesse sentido, estabelecemos um intervalo. No exemplo 17.4 do livro, quando o controle é Bang-Bang, houve convergência. Já o contrário não ocorreu. Como a função de troca é identicamente zero, problemas singulares são frequentemente instáveis.

Pesquisa tem sido feita nesse sentido. A condição de Legendre-Clebsch é um exemplo. É uma condição de segunda ordem, porque envolve ordem de derivadas mais altas.

Bibliografia

- D. Cohen. Maximizing final yield when growth is limited by time or by limiting resources. Journal of Theoretical Biology, 33(2):299 - 307, 1971. ISSN 0022-5193. doi: https://doi.org/10.1016/0022-5193(71) 90068-3. URL http://www.sciencedirect.com/science/article/pii/ 0022519371900683.
- A. Filippov. On certain questions in the theory of optimal control. *Journal of The Society for Industrial and Applied Mathematics, Series A: Control*, 1, 01 1962. doi: 10.1137/0301006.
- M. Kamien and N. Schwartz. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. Dover books on mathematics. Dover Publications, 2012. ISBN 9780486488561. URL https://books.google.com.br/books?id=0IoGUn8wjDQC.
- M. Kot. *Elements of Mathematical Ecology*. Elements of Mathematical Ecology. Cambridge University Press, 2001. ISBN 9780521001502. URL https://books.google.sm/books?id=7_IRlnNON7oC.
- S. Lenhart and J. Workman. Optimal control applied to biological models. 01 2007.