df=pd.read_csv("Iris.csv")
df

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidth(
0	1	5.1	3.5	1.4	0
1	2	4.9	3.0	1.4	0
2	3	4.7	3.2	1.3	0
3	4	4.6	3.1	1.5	0
4	5	5.0	3.6	1.4	0
145	146	6.7	3.0	5.2	2
146	147	6.3	2.5	5.0	1
4)

df.describe()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	75.500000	5.843333	3.054000	3.758667	1.198667
std	43.445368	0.828066	0.433594	1.764420	0.763161
min	1.000000	4.300000	2.000000	1.000000	0.100000
25%	38.250000	5.100000	2.800000	1.600000	0.300000
50%	75.500000	5.800000	3.000000	4.350000	1.300000
75%	112.750000	6.400000	3.300000	5.100000	1.800000
max	150.000000	7.900000	4.400000	6.900000	2.500000

x=df.drop(columns=['Id','Species'],axis=1)
print("\n",x)

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
	• • •	• • •	• • •	• • •
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0

```
148
                    6.2
                                  3.4
                                                  5.4
                                                                2.3
     149
                                  3.0
                    5.9
                                                  5.1
                                                                1.8
     [150 rows x 4 columns]
# x=df.drop('Species',axis=1)
y=df['Species']
print("\n",y)
      0
                Iris-setosa
     1
               Iris-setosa
     2
               Iris-setosa
     3
               Iris-setosa
     4
               Iris-setosa
     145
            Iris-virginica
     146
            Iris-virginica
     147
            Iris-virginica
     148
            Iris-virginica
     149
            Iris-virginica
     Name: Species, Length: 150, dtype: object
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=1)
# print(x_train)
# print(x_test)
# print(y_train)
# print(y_test)
from sklearn.linear_model import LogisticRegression
model1=LogisticRegression()
model1.fit(x_train,y_train)
Pred_y=model1.predict(x_test)
# print(Pred_y)
     c:\Python311\Lib\site-packages\sklearn\linear_model\_logistic.py:458: ConvergenceWarning: lbfgs failed
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       n_iter_i = _check_optimize_result(
from sklearn.metrics import accuracy_score
acc=accuracy_score(y_test,Pred_y)
print(acc)
     0.97777777777777
from sklearn.preprocessing import StandardScaler
std=StandardScaler()
x_test=std.fit_transform(x_test)
x_train=std.fit_transform(x_train)
# print(x_test)
# print(x_train)
```

```
model2=GaussianNB()
NB_model=model2.fit(x_train,y_train)
y_pred=NB_model.predict(x_test)
print(y_pred)
acc2=accuracy_score(y_pred,y_test)
print(acc2)
```

```
['Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-setosa' 'Iris-versicolor' 'Iris-virginica' 'Iris-setosa' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor' 'Iris-virginica' 'Iris-versicolor']

0.955555555555555555
```

from sklearn.metrics import confusion_matrix
from sklearn.metrics import ConfusionMatrixDisplay
cm=confusion_matrix(y_test,Pred_y)
ConfusionMatrixDisplay(cm).plot()

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1ff6206c590>

from sklearn.metrics import classification_report
print(classification_report(y_pred,y_test))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	14
Iris-secosa Iris-versicolor	0.94	0.94	0.94	18
Iris-virginica	0.92	0.92	0.92	13
2661102614			0.96	45
accuracy	0.06	0.06		
macro avg	0.96	0.96	0.96	45
weighted avg	0.96	0.96	0.96	45

```
new_data=[[5.5,3.5,1.2,0.2],[4.2,5.6,3.4,2.8],[6.1,3.9,1.9,2.1]]
new_pred=NB_model.predict(new_data)
print(new_pred)

    ['Iris-virginica' 'Iris-virginica' 'Iris-virginica']

new_data2=[[1.5,1.3,1.2,1.9]]
new_pred2=NB_model.predict(new_data2)
print(new_pred2)
```

▼ Diabetes Dataset

df2=pd.read_csv("diabetes.csv")
df2

['Iris-virginica']

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age
0	6	148	72	35	0	33.6	0.627	50
1	1	85	66	29	0	26.6	0.351	31
2	8	183	64	0	0	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33
763	10	101	76	48	180	32.9	0.171	63
764	2	122	70	27	0	36.8	0.340	27
765	5	121	72	23	112	26.2	0.245	30
766	1	126	60	0	0	30.1	0.349	47
767	1	93	70	31	0	30.4	0.315	23

768 rows × 9 columns

```
x2=df2.drop('Outcome',axis=1)
print(x)
y2=df2['Outcome']
print(y)
```

```
Pregnancies
                Glucose
                       BloodPressure
                                  SkinThickness
                                             Insulin
                                                    BMI
   0
              6
                   148
                               72
                                          35
                                                 0
                                                   33.6
                                          29
   1
              1
                    85
                               66
                                                 0
                                                   26.6
   2
              8
                   183
                                          0
                                                 0
                                                   23.3
   3
                                          23
              1
                    89
                               66
                                                94 28.1
   4
              0
                                          35
                                                  43.1
                   137
                               40
                                                168
                                         . . .
                                                . . .
                                                    . . .
   . .
             . . .
                   . . .
                              . . .
   763
                                          48
                                                180
                                                   32.9
             10
                   101
                               76
   764
              2
                   122
                               70
                                          27
                                                 0 36.8
   765
              5
                   121
                               72
                                          23
                                                112 26.2
   766
                   126
              1
                               60
                                          0
                                                 0
                                                   30.1
                                                   30.4
   767
              1
                    93
                               70
                                          31
                                                 0
       DiabetesPedigreeFunction
                          Age
   0
                     0.627
                           50
   1
                     0.351
                           31
   2
                     0.672
                           32
   3
                     0.167
                           21
   4
                     2.288
                           33
   . .
                      . . .
                          . . .
   763
                     0.171
                          63
   764
                     0.340
                           27
                     0.245
   765
                           30
   766
                     0.349
                           47
   767
                     0.315
                           23
   [768 rows x 8 columns]
        1
   0
   1
        0
   2
        1
   3
        1
   763
        0
   764
        0
   765
        0
   766
        1
   767
        0
   Name: Outcome, Length: 768, dtype: int64
x_train2,x_test2,y_train2,y_test2=train_test_split(x2,y2,test_size=0.3,random_state=1)
model3=LogisticRegression()
model3.fit(x_train2,y_train2)
Pred_y2=model3.predict(x_test2)
print(Pred_y2)
   0 1 0 0 0 0 0 1 0]
acc3=accuracy_score(y_test2,Pred_y2)
print(acc3)
   0.7835497835497836
std2=StandardScaler()
x_test2=std2.fit_transform(x_test2)
x_train2=std2.fit_transform(x_train2)
```

```
model4=GaussianNB()
NB_model2=model4.fit(x_train2,y_train2)
y_pred2=NB_model2.predict(x_test2)
print(y_pred2)
acc4=accuracy_score(y_pred2,y_test2)
print(acc4)
```

cm2=confusion_matrix(y_test2,Pred_y2)
ConfusionMatrixDisplay(cm2).plot()

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1ff6257ab50>

print(classification_report(y_pred2,y_test2))

	precision	recall	f1-score	support
0	0.88	0.80	0.84	160
1	0.62	0.75	0.68	71
accuracy			0.78	231
macro avg	0.75	0.77	0.76	231
weighted avg	0.80	0.78	0.79	231

