Nombres premiers... où se trouvent-ils?

On étudie les entiers naturels $\mathbb{N} = \{1, 2, 3, \ldots\}$

Définition : $a \in \mathbb{N}$ divise $b \in \mathbb{N}$ si et seulement si il existe $n \in \mathbb{N}$ avec b = an.

Notation: $a \mid b$

Définition : $p \in \mathbb{N}$, p > 1 est un <u>nombre premier</u> si et seulement si il existe que deux entiers naturels qui divisent p : 1 et p lui-même.

Exemples: $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, \dots$

Types de preuves

1. Preuve directe:

On montre ce que l'on veut monter.

2. Preuve par induction (par récurrence) :

On veut montrer un énoncé pour chaque $n \in \mathbb{N}$

- initialisation : montrer l'énoncé pour l'exemple le plus petit (n = 1)
- hérédité : monter que si l'énoncé est vrai pour n, alors il est vrai pour n+1
- 3. Preuve par l'absurde :

On veut montrer un énoncé. On suppose que l'énoncé est faux. On arrive à une contradiction, alors l'énoncé doit être vrai.

Théorèmes fondamentaux de l'arithmétique

Théorème : Chaque $n \in \mathbb{N}$, n > 1 s'écrit comme un produit de nombres premiers de manière unique à l'ordre de facteurs près.

Preuve par induction de l'existence d'une décomposition

n = 2 : 2 = 2 (premier)

 $\underline{2,\ldots,n}\leadsto n+1$: On suppose que $2,\ldots,n$ s'écrivent comme un produit de nombres premiers. On veut le montrer pour n+1.

Cas 1: n+1 est premier

Cas 2: n+1 n'est pas premier, alors n+1=ab pour 1 < a, b < n+1

Par hypothèse : $a = p_1 \cdot \ldots \cdot p_k$ $b = q_1 \cdot \ldots \cdot q_m$ pour $p_1 \cdot \ldots \cdot p_k \cdot q_1 \cdot \ldots \cdot q_m$ premiers.

Alors $n+1=p_1\cdot\ldots\cdot p_k\cdot q_1\cdot\ldots\cdot q_m$

Preuve par l'absurde de l'unicité

On suppose qu'il existe des entiers naturels qui s'écrivent de manières différentes comme produit de nombres premiers.

Soit $s \in \mathbb{N}$ le plus petit entier naturel avec cette propriété

Soient $n+1=p_1\cdot\ldots\cdot p_n=q_1\cdot\ldots\cdot q_m$ deux factorisations différentes.

Alors $p_i \neq q_j$ pour tout i, j. (Sinon s n'est pas le plus petit nombre avec la propriété)

On peut supposer $p_1 < q_1$

Soient $P = p_2 \cdot \ldots \cdot p_n$ et $Q = q_2 \cdot \ldots \cdot q_m$.

Alors $s = p_1 P = q_1 Q$ et Q < P (car $p_1 < q_1$)

Donc $p_1(P - Q) = s - p_1Q = (q_1 - p_1)Q < s$

 $p_1 \mid p_1(P-Q) \Rightarrow p_1 \mid (q_1 - p_1)Q$

 $(q_1 - p_1)Q, (q_1 - p_1), Q < s$

et alors se factorisent de manière unique comme produit de nombres premiers.

Alors $p_1 | (q_1 - p_1)$ ou $p_1 | Q$.

 $\underline{\text{Cas } 1}: \quad p_1 \mid (q_1 - p_1) \Rightarrow q_1 - p_1 = np_1 \Rightarrow q_1 = (n+1)p_1 \Rightarrow p_1 \mid q_1 \quad \text{ } 4$

 $\underline{\text{Cas } 2}: \quad p_1 \mid Q \Rightarrow p_1 \in \{q_1, \dots, q_m\} \quad \sharp$

Alors un tel s n'existe pas!

Théorème: Il existe une infinité de nombres premiers.

Preuve

Soient p_1, \ldots, p_n des nombres premiers.

Voilà une stratégie pour trouver un nombre premier p avec $p \notin \{p_1, \ldots, p_n\}$

Soit $P = p_1 \cdot \ldots \cdot p_n$ et q = P + 1

Cas 1: Si q est premier alors p = q

Cas 2 : Si q n'est pas un nombre premier. Alors soit p un nombre premier avec $p \mid q$

Par l'absurde : On suppose $p \in \{p_1, \dots, p_n\}$

Alors $p \mid P \text{ et } p \mid P + 1$

Donc $p \mid (P+1) - P \Rightarrow p \mid 1 \Rightarrow p = 1$ 4

Alors p ne peut pas être dans $\{p_1,\ldots,p_n\}$

Théorème : Soit $p_1 < p_2 < p_3 < \dots$ la suite des nombres premiers. La somme de cette suite est infinie.

$$\sum_{i=1}^{\infty} \frac{1}{p_i} = +\infty$$

Définition : $\sum_{i=1}^{\infty} a_i = +\infty$ si et seulement si pour tout R > 0 on trouve N(R) tel que $\sum_{i=1}^{n} a_i > R$ dès que $n \ge N(R)$

2

Notation alternative: $\sum_{i=1}^{\infty} a_i = \sum_{i \ge 1} a_i$

Preuve par l'absurde

Supposons que $\sum_{i=1}^{\infty} \frac{1}{p_i} \neq +\infty$

Alors il existe $k \in \mathbb{N}$ tel que $\sum_{i \geq k+1} \frac{1}{p_1} < \frac{1}{2}$

Alors pour
$$N \in \mathbb{N}$$
 : $\sum_{i>k+1} \frac{N}{p_1} < \frac{N}{2}$

Notation:
$$p_1, \dots, p_k$$
 premiers petits

$$p_{k+1}, \cdots$$
 premiers grands

Pour $N \in \mathbb{N}$:

$$N_b = \#\{n \leq N : n \text{ est divisible par un premier grand}\}$$

$$N_s = \#\{n \leq N : n \text{ n'est pas divisible par un premier grand}\}$$

Alors
$$N_b + N_s = N$$

Estimons N_b et N_s

1.
$$\left| \frac{N}{p_i} \right| = \#\{n \le N : n = p_i \cdot m \text{ pour } m \in \mathbb{N}\} = \#\{n \le N : p_i \mid n\}$$

Alors
$$N_b \le \sum_{i > k+1} \left\lfloor \frac{N}{p_1} \right\rfloor < \frac{N}{2}$$

- 2. pour $n \leq \mathbb{N}$ avec que des facteurs premiers petits on écrit $n = a_n \cdot b_n^2$ où a_n n'est pas divisible par un carré d'un nombre premier.
 - a_n est un produit de p_1, \ldots, p_k deux-à-deux distincts.

$$\sim 2^k$$
 possibilités pour a_n

$$-b_n < \sqrt{n} \le \sqrt{N}$$

$$\sim \sqrt{N} \text{ possibilités pour } b_n$$

Alors
$$N_s < 2^k \cdot \sqrt{N}$$

Pour
$$N = 2^{2k+2}$$
: $N_b + N_s < \frac{N}{2} + 2^k \cdot \sqrt{2^{2k+2}} = \frac{N}{2} + 2^{2k+1} = \frac{N}{2} + \frac{N}{2} = N$ 4

Alors
$$\sum_{i=1}^{\infty} \frac{1}{p_i} = +\infty$$

Symboles mathématiques

Symbole Nom

Indications supplémentaires