Санкт-Петербургский политехнический университет Петра Великого

Физико-механический институт Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторной работе №3 по дисциплине "Интервальный анализ"

Обработка константы

Выполнил студент:

Кромачев Максим Александрович группа: 5030102/10201

Проверил:

доцент

Баженов Александр Николаевич

Содержание

6	Итоги	8
5	Результаты 5.1 Графики	4 5
4	Описание алгоритма	4
3	Описание работы	4
2	Постановка задачи	3
1	Теоретическое обоснование	2

1 Теоретическое обоснование

Необходимые формулы:

• Выборочная медиана

$$med \ x = \begin{cases} x_{(l+1)} & \text{при } n = 2l+1 \\ \frac{x_{(l)} + x_{(l+1)}}{2} & \text{при } n = 2l \end{cases}$$

• Ширина интервала:

$$\mathrm{wid} = \overline{a} - \underline{a}, \quad \mathrm{гдe} \ [\underline{a}, \overline{a}] - \mathrm{интервал}. \tag{1}$$

• Середина интервала:

$$\operatorname{mid} = \frac{\underline{a} + \overline{a}}{2}, \quad \operatorname{где} \ [\underline{a}, \overline{a}] - \operatorname{интервал}.$$
 (2)

• Радиус интервала:

$$rad = \frac{wid}{2} = \frac{\overline{a} - \underline{a}}{2}.$$
 (3)

• Минимум по включению:

$$a \wedge b := \inf \subseteq \{a, b\} = [\max\{\underline{a}, \underline{b}\}, \min\{\overline{a}, \overline{b}\}] \tag{4}$$

• Максимум по включению:

$$a \wedge b := \sup \subseteq \{a, b\} = [\min\{\underline{a}, \underline{b}\}, \max\{\overline{a}, \overline{b}\}] \tag{5}$$

• *Модой* интервальной выборки назовём совокупность интервалов пересечения наибольших совместных подвыборок рассматриваемой выборки. Пусть имеется интервальная выборка

$$\mathbf{X} = {\mathbf{x}_i}.$$

Сформируем массив интервалов ${f z}$ из концов интервалов ${f X}$.

Для каждого интервала \mathbf{z}_i подсчитываем число μ_i интервалов из выборки \mathbf{X}_i , включающих \mathbf{z}_i . Максимальные $\mu_i = \max \mu$ достигаются для индексного множества K. Тогда можно найти интервальную моду как мультиинтервал

$$\mathrm{mode}\;\mathbf{X}=\bigcup_{k\in K}\mathbf{z}_k.$$

• Интервальная медиана Крейновича

Пусть дана выборка $\mathbf{X} = \{\mathbf{x}_i\}$. Пусть $\underline{c} = \{\underline{\mathbf{x}}_i\}$, $\overline{c} = \{\overline{\mathbf{x}}_i\}$ — конфигурация точек, составленные, соответственно, из левых и правых концов интервалов из \mathbf{X} .

Тогда медианой Крейновича $\operatorname{med}_K \mathbf{X}$ интервальной выборки \mathbf{X} — это интервал

$$\operatorname{med}_K = [\operatorname{med} \underline{c}, \operatorname{med} \overline{c}].$$

Сложность вычисления $\operatorname{med}_k X$ составляет O(N). При определении медианы для интервальных данных мы руководствуемся принципом соответствия. Этот принцип можно сформулировать так: если ширина интервалов стремится к нулю, то значения медианы, рассчитанные для интервальных данных, будут приближаться к значениям медианы для точечных данных, к которым стремятся эти интервалы.

• Интервальная медиана Пролубникова

Для того, чтобы распространить определение медианы точечных данных на интервальные данные, требуется задать для них линейный порядок (\leq) и частоту. Возможные способы задания отношения порядка на IR определены стандартом 1788 IEEE. Говорят, что неравенство ($\mathbf{a} \leq \mathbf{b}$) выполняется:

- 1. в сильном смысле, если $(\forall a \in \mathbf{a})(\forall b \in \mathbf{b})(a < b)$;
- 2. в слабом смысле, если $(\exists a \in \mathbf{a})(\exists b \in \mathbf{b})(a \leq b)$;
- 3. в $\forall \exists$ -смысле, если ($\forall a \in \mathbf{a}$)($\exists b \in \mathbf{b}$)($a \leq b$);
- 4. в $\exists \forall$ -смысле, если $(\exists a \in \mathbf{a})(\forall b \in \mathbf{b})(a \leq b)$;
- 5. в центральном смысле, если $\frac{\underline{a}+\overline{a}}{2} \leq \frac{\underline{b}+\overline{b}}{2}.$

Для элементов выборки $\tilde{\mathbf{X}}$, сформированной на основе выборки $X=\{x_i\}_{i=1}^N$ и содержащей данные с интервальными неопределённостями, возникшими в результате группировки, можно определить линейный порядок, используя любое из пяти вышеуказанных отношений порядка на IR. То есть, если $i\neq j$, то либо $\tilde{x}_i\leq \tilde{x}_j$, либо $\tilde{x}_i\geq \tilde{x}_j$ для любого из этих отношений порядка. Это позволяет рассматривать множество $\tilde{\mathbf{X}}$ для сгруппированных данных как интервальный вариационный ряд.

Медиана Пролубникова $\operatorname{med}_P \mathbf{X}$ выборки $\mathbf{X}-$ это интервал \mathbf{x}_m , для которого половина интервалов из \mathbf{X} лежит слева, а половина — справа.

В ситуации, когда имеются два элемента подинтервала \mathbf{x}_m и \mathbf{x}_{m+1} , расположенных посередине вариационного ряда, $\mathbf{x}_m \neq \mathbf{x}_{m+1}$ медиана может быть определена естественным обобщением взятия полусуммы точечных значений, расположенных посередине ряда из точечных значений, в случае интервальной выборки взятие полусуммы интервалов \mathbf{x}_m и \mathbf{x}_{m+1} :

$$\mathrm{med}_{P}\mathbf{X} = (\mathbf{x}_{m} + \mathbf{x}_{m+1})/2.$$

• Коэффициент Жаккара: Коэффициент Жаккара для двух интервалов $\mathbf{x} \in IR$ и $\mathbf{y} \in IR$:

$$\operatorname{Ji}(\mathbf{x}, \mathbf{y}) = \frac{\operatorname{wid}(x \wedge y)}{\operatorname{wid}(x \vee y)} = \frac{\min\{\overline{\mathbf{x}}, \overline{\mathbf{y}}\} - \max\{\underline{\mathbf{x}}, \underline{\mathbf{y}}\}}{\max\{\overline{\mathbf{x}}, \overline{\mathbf{y}}\} - \min\{\underline{\mathbf{x}}, \underline{\mathbf{y}}\}}.$$

Коэффициент Жаккара для множества интервалов $\mathbf{X} \in IR^n$:

$$\operatorname{Ji}(\mathbf{X}) = \frac{\min \overline{\mathbf{x}_i} - \max \underline{\mathbf{x}_i}}{\max \overline{\mathbf{x}_i} - \min \mathbf{x}_i}.$$

Коэффициент Жаккара для двух множеств интервалов $\mathbf{X} \in IR^n$ и $\mathbf{Y} \in IR^n$:

$$\operatorname{Ji}_k(\mathbf{X}, \mathbf{Y}) = \frac{\min\{\overline{\mathbf{x}_k}, \overline{\mathbf{y}_k}\} - \max\{\underline{\mathbf{x}_k}, \underline{\mathbf{y}_k}\}}{\max\{\overline{\mathbf{x}_k}, \overline{\mathbf{y}_k}\} - \min\{\mathbf{x}_k, \overline{\mathbf{y}_k}\}}, \ k \in 1, 2, \dots, |\mathbf{X}|.$$

2 Постановка задачи

Даны 2 интервальных выборки

$$\mathbf{X} = \{x_i\},\tag{6}$$

$$\mathbf{Y} = \{y_k\},\tag{7}$$

Взять X, Y из файлов данных, задав rad $x=\mathrm{rad}\ y=\frac{1}{2^N},\,\mathrm{N=}14.$ Файлы данных:

 Φ ормат файлов — Save to BIN.pdf.

Связь кодов данных и В:

$$V = Code/163840.5.$$

Сделать оценки констант a, t в уравнениях.

$$a + \mathbf{X} = \mathbf{Y},\tag{8}$$

$$t * \mathbf{X} = \mathbf{Y},\tag{9}$$

Метод решения:

$$\hat{a} = \operatorname{argmax} F(a, \mathbf{X}, \mathbf{Y}), \tag{10}$$

где F — функционал.

В качестве функционала взять варианты:

$$Ji(a, \mathbf{X}, \mathbf{Y}), \tag{11}$$

$$Ji(a, mode \mathbf{X}, mode \mathbf{Y}),$$
 (12)

$$\operatorname{Ji}(a, \operatorname{med}_K \mathbf{X}, \operatorname{med}_K \mathbf{Y}),$$
 (13)

$$\operatorname{Ji}(a, \operatorname{med}_{P}\mathbf{X}, \operatorname{med}_{P}\mathbf{Y}),$$
 (14)

где ${\rm Ji- Ko}$ эффициент Жаккара, mode — интервальная мода, ${\rm med}_{P}$ — интервальные медианы Крейновича и Пролубникова.

Сделать точечные и интервальные оценки, задавшись уровнем α .

3 Описание работы

Лабораторная работа выполнена на языке программирования Python в среде разработки VSCode. В ходе работы были использованы следующие библиотеки: numpy, intvalpy, pandas. GitHub репозиторий: https://github.com/kromachmax/Intervalka

4 Описание алгоритма

Для поиска максимума функционалов будем использовать метод дихотомии для интервала, где функционал унимодален

Вход:

f(x)-унимодальная на $[a_0, b_0]$ функция;

 a_0, b_0 - крайние точки интервала неопределенности;

 ε - точность, с которой необходимо найти максимум функции f(x)

Выход:

 x_* - точка максимума функции f(x);

 $f(x_*)$ - значение функции f(x) в точке максимума

5 Результаты

Дальше в таблице const - это константа, для которой ищем оценку. Возъмём уровень $\alpha=0.001$

$\mathrm{Ji}(a/t,\mathbf{X},\mathbf{Y})$				
const	Оценка	Значение функционала		
â	0.3409 ± 0.001	-0.7867		
\hat{t}	-1.0502 ± 0.001	-0.8610		
$\mathrm{Ji}(a/t,\mathrm{mode}\mathbf{X},\mathrm{mode}\mathbf{Y})$				
const	Оценка	Значение функционала		
â	0.3402 ± 0.001	-0.25437		
\hat{t}	-0.9987 ± 0.001	-0.92750		
$\mathrm{Ji}(a/t,\mathrm{med}_K\mathbf{X},\mathrm{med}_K\mathbf{Y})$				
const	Оценка	Значение функционала		
â	0.3436 ± 0.001	0.1351		
\hat{t}	-1.0144 ± 0.001	0.7746		
$\mathrm{Ji}(a/t,\mathrm{med}_P\mathbf{X},\mathrm{med}_P\mathbf{Y})$				
const	Оценка	Значение функционала		
â	0.3436 ± 0.001	0.1351		
\hat{t}	-1.0144 ± 0.001	0.7746		

5.1 Графики

Продемонстрируем результаты вычислений на графиках.

Рис. 1: Коеффициент Жаккара для а, функционал (6)

Рис. 2: Коеффициент Жаккара для t, функционал (6)

Рис. 3: Коеффициент Жаккара для а, функционал (7)

Рис. 4: Коеффициент Жаккара для а, функционал (8)

Рис. 5: Коеффициент Жаккара для t, функционал (8)

Рис. 6: Коеффициент Жаккара для а, функционал (9)

Рис. 7: Коеффициент Жаккара для t, функционал (9)

6 Итоги

В процессе выполнения лабораторной работы мы ознакомились с методами получения интервальных оценок для констант. Фокусировались на четырех различных функционалах ((6), (7), (8), (9)), основанных на вычислении коэффициента Жаккара, но применяемых к различным интервальным множествам. Мы пришли к следующим выводам:

- 1. Важно тщательно подбирать функционал для поиска оценок. Разные функционалы могут приводить к несовместимости интервалов, как это наблюдалось при использовании функционала $Ji(const, \mathbf{X}, \mathbf{Y})$. В то же время, для функционалов $Ji(const, med_K \mathbf{X}, med_K \mathbf{Y})$ и $Ji(const, med_P \mathbf{X}, med_P \mathbf{Y})$ интервалы оказались совместимыми.
- 2. Можно отметить, что использование функционалов, зависящих от медиан (8), (9), приводит к коэффициенту Жаккара, близкому к 1 (значение 0.7746) для оценки t, что указывает на высокую степень совпадения выборок $t * \mathbf{X}$ и Y.
- 3. В ходе исследования мы также обнаружили, что функционал, зависящий от моды (7), требует значительно больше времени на вычисление оценок по сравнению с другими функционалами. Это свидетельствует о том, что для больших интервальных выборок использование коэффициента Жаккара, основанного на модах (7), нежелательно. Предпочтительнее использовать коэффициент Жаккара, основанный на одной из медиан (Крейновича или Пролубникова).
- 4. Кроме того, при нахождении медианы Пролубникова, если мы вводим порядок в алгебре IR в центральном смысле $((\overline{\bf a} + \underline{\bf a})/2 \le (\overline{\bf b} + \underline{\bf b})/2)$, оценки, полученные с использованием функционала медианы Крейновича и медианы Пролубникова, совпадают.