Matemáticas/ Ingeniería Informática-Matemáticas

TEORÍA DE GALOIS

Hoja 1.1. Anillos, ideales, cocientes, homomorfismos de anillos.

Suponemos que todos los anillos son conmutativos y con unidad. Suponemos que si $f: R \to T$ es un homomorfismo de anillos entonces $f(1_R) = 1_T$.

- 1. Sea R un anillo finito. Demuestra que todo elemento no nulo de R es o bien un elemento invertible, o bien un divisor de cero. Decide de manera razonada si la afirmación sigue siendo cierta si no suponemos que R sea finito.
- **2.** Demuestra que el conjunto $S = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ con las operaciones suma y producto módulo 10 es un anillo conmutativo con unidad. ¿Es un cuerpo?
- **3.** Demuestra que el anillo de polinomios R[x] es un dominio de integridad si y sólo si R es un dominio de integridad.
- **4.** Demuestra que si R es un dominio de integridad y $f(x), g(x) \in R[x]$ son polinomios no nulos entonces el grado del producto es la suma de los grados. ¿Vale lo mismo si R no es un dominio?
- **5.** Sea R un dominio de integridad. Demuestra que los únicos elementos invertibles de R[x] son los elementos de R que son invertibles. ¿Sucede lo mismo si R no es un dominio?
- **6.** Demuestra que char R = char R[x].
- 7. Decide de manera razonada si los siguientes anillos son cuerpos:
 - a) $\mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}.$
 - **b)** $\mathbb{Z}_3[\xi] := \{a + b\xi : a, b \in \mathbb{Z}_3, \ \xi^2 = -1\}.$
 - c) $\mathbb{Z}_5[\mu] := \{a + b\mu : a, b \in \mathbb{Z}_5, \ \mu^2 = 2\}.$
- 8. Sea $\{J_i\}_{i\in I}$ una familia de ideales en un anillo R. Demuestra que $\cap_{i\in I}J_i$ es también un ideal. ¿Qué puedes decir de $\cup_{i\in I}J_i$?
- **9.** Fijado $a \in R$,
 - a) Demuestra que $\langle a \rangle = R$ si y sólo si $a \in U(R)$.
 - b) Demuestra que R es un cuerpo si y sólo si el único ideal propio es (0).
- 10. Se dice que un elemento $a \in R$ es nilpotente si $a^n = 0$ para algún entero positivo n. Demuestra que el conjunto de los elementos nilpotentes de un anillo es un ideal.
- 11. Demuestra que el ideal $\langle 2, x \rangle \subset \mathbb{Z}[x]$ no es principal.
- 12. ¿Cuántos elementos tiene el anillo $\mathbb{Z}[i]/\langle 2i \rangle$?
- 13. ¿Cuántos elementos tiene el anillo $\mathbb{F}_3[x]/\langle x^2+x+1\rangle$? ¿Se trata de un cuerpo?
- 14. ¿Cuántos elementos tiene el anillo $\mathbb{F}_3[x]/\langle x^2+1\rangle$? ¿Se trata de un cuerpo?
- **15.** Sea $R = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. Considera el anillo S = R/2R.
 - (a) Calcula cuántos elementos tiene S.

- (b) Encuentra todos los subanillos de S.
- (c) Encuentra todos los ideales de S.
- **16.** Sea $f: R \to T$ es un homomorfismo de anillos.
 - a) Demuestra que si $a \in R$ es una unidad, entonces f(a) es una unidad.
 - b) ¿Es cierto el recíproco del enunciado anterior?
 - c) Demuestra que si R es un cuerpo entonces f es necesariamente inyectivo.
- 17. Definimos los números complejos a partir del conjunto $\mathbb{C} := \{z = a + bi : a, b \in \mathbb{R}\}$. Dado que \mathbb{C} es un cuerpo, observa que $U(\mathbb{C})$ es el grupo $(\mathbb{C} \setminus \{0\}, \cdot)$. Fijado z = a + bi definimos el conjugado como $C(z) = \overline{z} = a bi$. Demuestra que la conjugación induce un homorfismo de grupos multiplicativos

$$U(\mathbb{C}) \to U(\mathbb{C}).$$

18. Todo anillo contiene, un subanillo isomorfo a \mathbb{Z} , o un subanillo isomorfo a $\mathbb{Z}/n\mathbb{Z}$ para algún entero positivo n

- a) Sea A un anillo. Demuestra que existe un único homorfismo de anillos $\mathbb{Z} \to A$. Concluye que A contiene un subanillo isomorfo a \mathbb{Z} o a $\mathbb{Z}/n\mathbb{Z}$ para algún n entero positivo.
- **b)** Demuestra que si D es un dominio, entonces o bien tiene característica cero, o bien característica p (primo). En particular $\mathbb{Z} \subset D$ o bien $\mathbb{Z}/p\mathbb{Z} \subset D$.
- c) Prueba que un dominio finito D tiene característica p (primo), y además $\mathbb{Z}/p\mathbb{Z} \subset D$ es una extensión de cuerpos.
 - d) Demuestra que cualquier cuerpo finito tiene p^n elementos para algún primo p.
- e) Demuestra que si un cuerpo K contiene un subanillo isomorfo a \mathbb{Z} entonces contiene un subcuerpo isomorfo a \mathbb{Q} .
- **19. Frobenius.** Prueba que si A es un anillo de característica p, entonces la función $F: A \to A$, $F(a) = a^p$ es un homomorfismo de anillos, y que F(a) = a para todo elemento de $\mathbb{Z}/p\mathbb{Z}$ ($\subset A$).
- **20.** Demuestra que:
 - a) No existe ningún homomorfismo de anillos $f:\mathbb{Q}\to\mathbb{F}_p$ para ningún primo $p\in\mathbb{Z}.$
 - b) No existe ningún homomorfismo de anillos $f: \mathbb{F}_p \to \mathbb{Q}$ para ningún primo $p \in \mathbb{Z}$.
 - c) No existe ningún homomorfismo de anillos $f: \mathbb{Q}[i] \to \mathbb{Q}[\sqrt{2}]$.
 - d) Existen infinitos homomorfismos de anillos $f: \mathbb{Q}[x] \to \mathbb{Q}[\sqrt{2}]$.
 - e) No existe ningún homomorfismo de anillos $f: \mathbb{R} \to \mathbb{Q}$.
- **21.** Sea $R \subset T$ una inclusión de anillos y sea $b \in T$. Consideramos la función:

$$\begin{array}{ccc} f: & R[x] & \to & T \\ & p(x) & \mapsto & p(b). \end{array}$$

- a) Demuestra que f es un homomorfismo de anillos. Nos referiremos a este homomorfismo como homomorfismo de evaluación.
 - **b)** Describe ker(f) en los casos siguientes:
 - (i) $R=\mathbb{Q},\,T=\mathbb{R},\,b=5;$ (ii) $R=\mathbb{Q},\,T=\mathbb{R},\,b=\sqrt[3]{2};$ (iii) $R=\mathbb{R},\,T=\mathbb{C},\,b=i.$

22. Ecuaciones

- a) Sea R un anillo y sea $a \in R$ un elemento tal que $a^2 = a$ (un elemento con esta propiedad recibe el nombre de elemento idempotente). Decide de manera razonada si necesariamente a = 0 ó a = 1. Sugerencia: Analiza el caso $a = \overline{5} \in R = Z_{20}$.
 - **b)** ¿Cuántas soluciones tiene la ecuación 2x = 4 en \mathbb{Z}_{12} ?
- c) Demuestra que si R es un dominio de integridad, entonces la ecuación ax = b con $a, b \in R$ o bien no tiene solución, o bien tiene solución única.
 - d) Encuentra todas las soluciones de la ecuación $x^2 5x + 6 = 0$ en \mathbb{Z}_{12} , en \mathbb{Z}_7 , y en \mathbb{Z}_2 .
- e) Sea k un cuerpo. Demuestra que si $p(x) \in k[x]$ es un polinomio no nulo de grado n entonces la ecuación p(x) = 0 tiene, a lo sumo, n soluciones (no necesariamente distintas). Sugerencia: usa inducción en el grado y el algoritmo de división.
- **23.** Demuestra que $\{(3x,y): x,y\in\mathbb{Z}\}$ es un ideal maximal de $\mathbb{Z}\times\mathbb{Z}$.
- **24.** Demuestra que $\{(a,0): a \in \mathbb{Z}\}$ es un ideal primo pero no maximal en $\mathbb{Z} \times \mathbb{Z}$.
- **25.** Encuentra todos los ideales maximales en \mathbb{Z}_8 , \mathbb{Z}_{10} , \mathbb{Z}_n .
- **26.** Sean $I \subset J$ ideales en un anillo A.
 - a) Demuestra que $J/I \subset A/I$ es un ideal;
 - b) Demuestra que el anillo cociente (A/I)/(J/I) es isomorfo a A/J.
- **27.** Fijado un entero positivo $n \in \mathbb{Z} \geq 2$, demuestra que el anillo cociente $\mathbb{Z}[x]/n\mathbb{Z}[x]$ es isomorfo a $\mathbb{Z}_n[x]$. Concluye que el ideal $n\mathbb{Z}[x]$ es primo si y sólo si n es un número primo.