LE9: Axisymmetric branched shell under pressure

LE9: Axisymmetric branched shell under pressure

This problem provides evidence that Abaqus can reproduce the result from the benchmark defined by NAFEMS and cited as the reference solution.

This page discusses:

- Elements tested
- Problem description
- Reference solution
- Results and discussion
- Input files

ProductsAbaqus/Standard

Elements tested

SAX2

Problem description

Mesh:

A coarse and a fine mesh are tested.

Material:

Linear elastic, Young's modulus = 210 GPa, Poisson's ratio = 0.3.

Boundary conditions:

 $ur=uz=\phi=0$ at point A.

Loading:

Uniform internal pressure of 1.0 MPa along edge BCD.

General:

Gauss integration is used for the shell cross-section in input file nle9xa3f.inp.

Reference solution

This is a test recommended by the National Agency for Finite Element Methods and Standards (U.K.): Test LE9 from NAFEMS Publication TNSB, Rev. 3, "The Standard NAFEMS Benchmarks," October 1990.

Target solution: Axial stress, $\sigma zz = -319.9$ MPa on the outer surface of the upper cylinder at point C.

Results and discussion

The results are shown in the following table. The values enclosed in parentheses are percentage differences with respect to the reference solution.

Element σzz, Coarse Mesh σzz, Fine Mesh SAX2 -307.24 MPa (-4.0%) -314.81 MPa (-1.6%)

Input files

nle9xa3c.inp

Coarse mesh analysis.

nle9xa3f.inp

Fine mesh analysis.