Probabilité et statistiques L2 prépa

William Hodonou

Novembre 2020

Outline

Probabilité conditionnelle et indépendance

2 Indépendance

Nous allons présenter dans ce chapitre l'un des plus importants concepts de la théorie des probabilités, celui de probabilité conditionnelle.

Définition

La notion de probabilité conditionnelle peut être nécessaire à chaque fois que pendant le déroulement d'une expérience aléatoire, on dispose d'une information partielle. Si on sait que l'événement A est réalisé, pour que l'événement B se réalise, on est amené a regarder l'événement $A \cap B$, puis à normaliser. Nous prenons la propriété-définition suivante : si P(B) > 0 la probabilité conditionnelle de A sera

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

exercice

Jeu de 52 cartes

A = « Tirer un Roi »

B = « Tirer une carte > 10 » (V, D, R, As)

Calculer
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Solution

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ or } A \subset B \Rightarrow p(A \cap B) = p(A) \text{ donc}$$

$$P(A \mid B) = \frac{P(A)}{P(B)} = \frac{\frac{4}{52}}{\frac{16}{52}} = \frac{4}{16} = \frac{1}{4}$$

$$\Rightarrow \frac{4}{16} = \frac{(nb \ cas \ favorables)}{nb \ cas \ possibles \ dans \ l'expace \ réduit \ de \ B}$$

Propriété

Si A et B sont des évènements de probabilités non nulles, on a :

$$P(A \cap B) = P(A \mid B) \times P(B) = P(B \mid A) \times P(A)$$

Propriété d'inclusion

Soient deux évènements A,B tels que P(B) > 0 et $A \subset B$, alors

$$P(A \mid B) = \frac{P(A)}{P(B)}$$

Probabilités composées

Formule des probabilités composées pour 3 évènements

Soient A, B et C des évènements tels que A et $A \cap C$ soient de probabilités non nulles. On a :

$$P(A \cap B \cap C) = P(A) \times P(B \mid A) \times P(C \mid A \cap B)$$

Probabilités composées

Formule des probabilités composées

On peut généraliser cette formule à l'intersection de n évènements. Soient $A_1,...,A_n$ des évènements tels que $P(A_1 \cap A_2 \cap ... \cap A_{n-1}) > 0$ on a

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \times P(A_2 \mid A_1) \times P(A_3 \mid A_1 \cap A_2)$$
$$\times ... \times P(A_n) \mid A_1 \cap A_2 \cap ... \cap A_{n-1})$$

Formule des probabilités totales

Formule des probabilités totales (cas particulier)

Soient A et B deux évènements, avec 0 < P(B) < 1. On a :

$$P(B) = P(B \mid A) \times P(A) + P(B \mid A') \times P(A')$$

Théorème de Bayes

• Motivation : Ces formules ont pour but d'exprimer $P(A \mid B)$ en fonction de $P(B \mid A)$.

Cas particulier du théorème de Bayes

Soient A et B deux événements avec $A \neq 0$ et $B \neq 0$, on a :

$$P(A \cap B) = P(A) \times P(B \mid A) = P(B) \times P(A \mid B)$$
 Ce qui donne la formule de Bayes si $A \neq 0$ et $B \neq 0$, alors :

0

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \times P(B \mid A)}{P(B \mid A) \times P(A) + P(B \mid A') \times P(A')}$$

2

$$P(A^{'} \mid B) = 1 - P(A \mid B)$$

()

$$P(A \cup B \mid C) = P(A \mid C) + P(B \mid C) - P(A \cap B \mid C)$$

Outline

1 Probabilité conditionnelle et indépendance

Indépendance

Indépendance entre deux évènements

Définition

Soient A et B deux évènements de probabilités non nulles. On dit que A et B sont indépendants si et seulement si :

$$P(A \cap B) = P(A) \times P(B)$$

Ainsi $P(A \mid B) = P(A)$

Ne pas confondre incompatible et indépendant.

Généralisation

Les évènements sont mutuellement indépendants si

$$P(A \cap ... \cap A_n) = P(A_1) \times ... \times P(A_n)$$