DSC 255 - MACHINE LEARNING FUNDAMENTALS

THE SOFT-MARGIN SUPPORT VECTOR MACHINE

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING

HALICIOĞLU DATA SCIENCE INSTITUTE

Recall: Maximum-Margin Linear Classifier

Given: training data $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

Find: the linear separator w that perfectly classifies the data and has maximum

margin.

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

The solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

Recall: Maximum-Margin Linear Classifier

Given: training data $(x^{(1)}, y^{(1)}), ..., (x^{(n)}, y^{(n)}) \in \mathbb{R}^d \times \{-1, +1\}$

Find: the linear separator w that perfectly classifies the data and has maximum

margin.

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \|w\|^2$$
 s.t.: $y^{(i)}(w \cdot x^{(i)} + b) \ge 1$ for all $i = 1, 2, ..., n$

The solution $w = \sum_{i=1}^{n} \alpha_i y^{(i)} x^{(i)}$ is a function of just the support vectors.

What if data is not separable?

The Non-Separable Case

Allow each data point $x^{(i)}$ some **slack** ξ_i .

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \quad ||w||^2 + C \sum_{i=1}^n \xi_i$$
 s.t.: $y^{(i)} (w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, ..., n$ $\xi \ge 0$

Wine Data Set

Here C = 1.0

Wine Data Set

Here C = 1.0

The Tradeoff Between Margin & Slack

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, \xi \in \mathbb{R}^n} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

s.t.: $y^{(i)} (w \cdot x^{(i)} + b) \ge 1 - \xi_i$ for all $i = 1, 2, ..., n$
 $\xi \ge 0$

$$C = 10$$

$$C = 10$$

$$C = 3$$

$$C = 2$$

$$C = 1$$

$$C = 0.5$$

$$C = 0.1$$

$$C = 0.01$$

