Victor Moraes - 2016027600

Quarto trabalho pratico de reconhecimento de padrões

SVM - Máquinas de vetores de suporte

Introdução

Neste trabalho, será aplicado o classificador SVM na resolução de um problema de classificação sintético, analisando aspectos e estratégias de sintonia de hiperparametros.

1- Conjunto de testes.

Inicialmente importaremos as bibliotecas necessárias e em seguida criaremos o conjunto de amostras. O conjunto forma 2 espirais com defasagem entre elas. Apresenta uma dificuldade a classificadores lineares, por se tratar de uma separação não linear.

Criou-se 1000 pontos de amostras com ruido embutido.

In [1]:

```
import numpy as np
from numpy.random import normal, uniform
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.ticker import LinearLocator, ScalarFormatter
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from matplotlib.colors import Normalize
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
```

In [2]:

In [3]:

```
X, y = twospirals(1000, noise=2)

plt.title('Whole set')
plt.plot(X[y==-1,0], X[y==-1,1], '.', label='class 1')
plt.plot(X[y==1,0], X[y==1,1], '.', label='class 2')
plt.legend()
plt.show()
```


Separação de conjuntos de treinamento e testes

Neste ponto é realizada a separação de amostras de treino e validação iniciais.

In [4]:

```
xlim=[-10,10]
ylim=[-10,10]
test_size=0.3
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=0)
```

3 Treinamento inicial do modelo, com parametros a determinar.

Será utilizado a implementação SVC, ou classificação de vetores de suporte. Nesta implementação é permitido que os pontos não sejam necessariamente linearmente separáveis, sendo o desvio tolerável ditado pelo parâmetro C. Outro parametro é o gamma, representado na equação a seguir por sigma. É um parâmetro do kernel que determina a geometria e curvatura do superplano de classificação. Aqui é utilizado o kernel radial: \$K(x_i,x_j)= exp(-\frac{||x_i-x_j||}{2\sigma^2})\$ Foi escolhido pois a distribuição da dispersão dos pontos é radial.

Para a escolha de C e gama, adiante será feita varredura e de forma que evite overfitting e maximize a média de acertos.

In [5]:

```
clf = SVC(kernel='rbf')
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
error = pred-y_test
pred[pred==0]
```

Out[5]:

```
array([], dtype=float64)
```

In [6]:

```
def print_score(x,y):
    score = 100* clf.score(X_test,y_test)
    print("Score de: {:2.2f}%\n".format(score))

print_score(X_test,y_test)
```

Score de: 98.00%

In [7]:

```
def svm_plot(X, f , display_support=False):
    plt.title('training set')
    plt.plot(X[pred==-1,0], X[pred==-1,1], '.', label='class 1')
plt.plot(X[pred==1,0], X[pred==1,1], '.', label='class 2')
    plt.legend()
    ax = plt.gca()
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    xx = np.linspace(xlim[0], xlim[1], 30)
    yy = np.linspace(ylim[0], ylim[1], 30)
    YY, XX = np.meshgrid(yy, xx)
    xy = np.vstack([XX.ravel(), YY.ravel()]).T
    Z = f(xy).reshape(XX.shape)
    # plot decision boundary and margins
    ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '--', '--'])
    # plot support vectors
    if(display_support):
         ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=30,
                      linewidth=1, facecolors='none', edgecolors='k')
    plt.show()
```

In [8]:

svm_plot(X_test,clf.decision_function)

3.b

Os valores padrões do método são C=1 e gamma=1/2X.var() = 0.020

Como foram utilizados argumentos padrões da biblioteca, os ajustes não estão completamente adequados.

Pode-se observar que as margens não seguiram o formateo de espiral, com undefitting.

```
In [9]:
```

```
1/(2*X_train.var())
Out[9]:
0.02074632799816441
```

In [10]:

```
# Metodo de normalizar o heatplot

class MidpointNormalize(Normalize):

    def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
        self.midpoint = midpoint
        Normalize.__init__(self, vmin, vmax, clip)

def __call__(self, value, clip=None):
        x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
        return np.ma.masked_array(np.interp(value, x, y))
```

3.c Definição dos parametros do kernel por meio de grid search

Aqui é realizado pesquisa em rede, para determinação numérica dos parametros com melhor desempenho. Para cada par de parametro C e gamma, é realizado um treinamento com k-fold validation, com 5 grupos, a partir das amostras geradas.

In [19]:

```
C_range = np.logspace(-4, 4, 16)
gamma_range = np.logspace(-4, 4, 16)
param_grid = dict(gamma=gamma_range, C=C_range)
grid = GridSearchCV(SVC(), param_grid=param_grid, n_jobs=3)
grid.fit(X, y)
grid.best_params_
```

Out[19]:

```
{'C': 0.0001, 'gamma': 0.5411695265464638}
```

In [20]:

```
scores_plot = np.reshape(grid.cv_results_['mean_test_score'],(C_range.shape[0],gamma_range.shape[0]))
gamma_plot = grid.cv_results_['param_gamma']
c_plot = grid.cv_results_['param_C']
plt.axvline(0.5, color='gray')
plt.axhline(0.001, color='gray')
X_mesh,Y_mesh=np.meshgrid(C_range,gamma_range)
Z = scores_plot
im = plt.pcolor(X_mesh,Y_mesh,Z, cmap=plt.cm.hot,norm=MidpointNormalize(vmin=0.7, midpoint=0.95))
plt.xscale('log')
plt.yscale('log')
plt.ylabel('G')
plt.ylabel('C')
plt.colorbar(im, orientation='vertical')
plt.title('Validation accuracy')
plt.show()
```


3.d Escolha de modelo

Como pode-se ver a seguir, a biblioteca seleciona o primeiro melhor estimador na métrica de escore, que foi o seguinte: SVC(C=0.001, gamma=0.49238826317067363)

Contudo pode não ser o melhor modelo, como veremos a seguir.

É possivel determinar que há um pouco de overfitting, pois a fronteira de separação está encapsulando as amostras e a margem tendeu a valores altos

In [21]:

```
best_estimator = grid.best_estimator_
final_score = best_estimator.score(X_test, y_test)
print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, final_score))
best_estimator.decision_function

svm_plot(X_test, best_estimator.decision_function)
```

The best parameters are {'C': 0.0001, 'gamma': 0.5411695265464638} with a score of 1.00

3.e Busca de parametros na região de desempenho

Como o modelo determinado automaticamente não é satisfatório, optou-se procurar outros parametros na região de melhor desempenho.

Escolheu-se os parametros: C=10000 Gamma=0.02

Neste é possivel observar a margem de separação entre as duas classificações. Ademais, não há overfitting.

In [22]:

```
im = plt.pcolor(X_mesh,Y_mesh,Z, cmap=plt.cm.hot,norm=MidpointNormalize(vmin=0.7, midpoint=0.95))
plt.axvline(0.02, color='gray')
plt.axhline(1000, color='gray')

plt.yccale('log')
plt.yccale('log')
plt.ylabel('gamma')
plt.ylabel('C')
plt.colorbar(im, orientation='vertical')
plt.title('Validation accuracy')
plt.show()
```


In [23]:

```
choosen_estimator = SVC(C=1000, gamma=0.02).fit(X_train, y_train)
f = choosen_estimator.decision_function
svm_plot(X_test, f)
final_score = choosen_estimator.score(X_test, y_test)
print("The best parameters are C=1000, gamma=0.02 with a score of {:.2f}%".format(100*final_score))
```


The best parameters are C=1000, gamma=0.02 with a score of 100.00%

3. Conclusão

Aqui podemos observar que o classificador apresenta margens e hiperplano de separação razoáveis, e desempenho melhor do que outros modelos apresentados anteriormente.

4. Vetores de Suporte

São as amostras de froteira com maior influência para determinação do problema de otimização de determinação do vetor de pesos.

In [24]:

```
choosen_estimator = SVC(C=1000,gamma=0.02).fit(X_train,y_train)
f = choosen_estimator.decision_function
svm_plot(X_test, f, display_support=True)
```


5. Superficie de separação

Aqui é exibida a superficie de separação que separa os espaços de cada classifacação.

In [25]:

Conclusão

Neste trabalho foi aplicar o algoritmo de vetores de suporte de maquina, que é uma classificação linear, para classificar um problema não linear, por meio de transformação de espaço. Foi transformado em um espaço radial, assim linearizando o problema. O metodo, classificou satisfatoriamente, embora exista ruido e margens pequenas.

Referências:

C support vector classification - SciKitLearn https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC. (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC)

Gridsearch - SciKitLearn https://scikit-learn.org/stable/modules/grid_search.html#grid-search (https://scikit-learn.org/stable/modules/grid_search.html#grid-search)