★ANSWER KEY – CONFIDENTIAL★

UIL COMPUTER SCIENCE – 2019 STATE

Questions (+6 points for each correct answer, -2 points for each incorrect answer)

1) <u> </u>	11) <u>E</u>	21) <u>C</u>	31) <u>C</u>
2) <u> </u>	12) <u>D</u>	22) <u>E</u>	32) <u>E</u>
3) <u>E</u>	13) <u>C</u>	23) <u>E</u>	33) <u>D</u>
4) <u>D</u>	14) A	24) <u>A</u>	34) <u>A</u>
5) <u>B</u>	15) <u>E</u>	25) <u>A</u>	35) <u> </u>
6) <u> </u>	16) <u>B</u>	26) <u>C</u>	36) <u>C</u>
7) <u>D</u>	17) <u>D</u>	27) <u>B</u>	37) <u>D</u>
8) <u>C</u>	18) <u>D</u>	28) <u>D</u>	38) <u>E</u>
9) <u>B</u>	19) <u> </u>	29) <u> </u>	*39)228
10) <u>B</u>	20) <u>E</u>	30) <u>E</u>	*40)4

^{*} See "Explanation" section below for alternate, acceptable answers.

Note: Correct responses are based on Java SE Development Kit 8 (JDK 8) from Sun Microsystems, Inc. All provided code segments are intended to be syntactically correct, unless otherwise stated (e.g., "error" is an answer choice) and any necessary Java SE 8 Standard Packages have been imported. Ignore any typographical errors and assume any undefined variables are defined as used.

Explanations:

1.	С	133 ₇ = 73 ₁₀ 122 ₈ = 74 ₁₀ All other answer choices equal 73 ₁₀ .
2.	A	-(5*-7/2+9-4)=
۷.	A	
		-(-35/2+9-4)=
		-(-17+9-4)=
		-(-8-4)=
		-(-12)=
		12
3.	E	3.25 X 12 = 39.00. The format specifier has 3 flags, - which left aligns, + which forces a
		plus sign for positive values and , which requires a comma separator (not used in this
		case). 10.3 specifies the use of 10 spaces and three decimal places.
4.	D	indexOf('a', 2) begins to look for the character 'a' at the index value 2. The first
		'a' in the string is found at index number 1 so that value is not returned. The next
		occurrence of 'a' is at index value 6.
5.	В	T&&!F^T F=
J.		T&&T^T F=
		T&&F F=
		F F=
		F
6.	Α	Math.PI = 3.141592653589793
0.	_ ^	
		Math. E = 2.718281828459045
		Math.floor(3.141592653589793) = 3.0
		Math.ceil(2.718281828459045) = 3.0
		$3.0 \times 3.0 = 9.0$
7.	D	14+14-12*14/3=
		14+14-168/3=
		14+14-56=
		28-56=
		-28
8.	С	510>=-2 is true2*5>0 is false. Print the 22==-10+8 is true. Print the 3. Last
		line is not part of the if else statement so print the 6.
9.	В	Each iteration of the inner loop prints x number of $^{\land}$. x is decremented by the outer loop
		from 5 down to 1.
10.	В	After second line i becomes: 2 4 8 6 9 11 1 3 5
		After fourth line j becomes: 8 12 7 4 3 5 1 2 6
11.	Е	The in object is a reference to the default input stream. System has not been imported
		so it must be included.
12.	D	Here is the value of v for each iteration of the loop:
		3.25
		6.5
		9.75
		13.0
		16.25
		19.5
		22.75
		26.0
13.	С	5^4<<3%2=
10.		5^4<<1=
		5^8=
		13
		158%13=2
14.	Α	Byte.BYTES = 1 and Byte.SIZE = 8.8 + 1 = 9.
15.	E	
15.		az → m r p
		by \rightarrow f n d
		by.addAll(2,az) means insert all of az into by starting at index 2.
	1	by.addAll(2,az) \rightarrow f n m r p d

	1	
16.	В	Answer choice A implements the method. Abstract methods are not implemented. Answer choice C is incorrect because any class containing an abstract method must also be declared as abstract. The method is appropriate D is not abstract therefore it must be implemented (have a
		The method in answer choice D is not abstract therefore it must be implemented (have a body).
17.	D	condition?true:false
		In this example the length of the string is 8 which is less than the ASCII value of 'o', which
18.	D	<pre>is 111, so print s.substring(1,4). The iterator is initially placed between the O and the B. out.print(li.next()) prints</pre>
10.		the B and moves the iterator between the B and the W. li.next() moves the iterator
		between the W and the N. The loop then prints the letters in reverse order starting at W.
19.	Α	The flag CASE INSENSITIVE ignores case. The flag LITERAL ignores all
		metacharacters and escape sequences. Therefore, [abc] is not viewed as a character
		class in a regular expression. The actual string " [abc] " must be present for a match
		with the exception that the characters can be both upper and lower case.
20.	E	Answer choices A and B will compile. Answer choice C will not because Queue does not
		implement Comparable. Answer choice D will not because primitive data types are not objects which in turn do not implement Comparable.
21.	С	The last line in the class makes a static reference to SIZE.
22.	E	DataIterator is an interface and can not implement any methods so it must extend
		Interator. Since DataIterator is an interface it must be implemented by
		SpecialIterator.
23.	Е	Choices A, B and D are all valid.
24.	Α	The call to the Data constructor fills the list array as follows:
		[15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
25		SpecialIterator skips every other element in the array.
25.	A	An inner class is any class that is declared within another class. It is an instance member of the enclosing class just like instance variables and instance methods.
		A local class is defined within a block. Typically local classes are declared within a method. They are not an instance member of the enclosing class. SpecialIterator is not declared within a method.
		Anonymous classes are declared and instantiate at the same time and do not have a name. SpecialIterator clearly has a name.
		SpecialIterator is a class not an interface.
		SpecialIterator is a nested class, however, it has not been declared as static so it is not a a nested static class.
26.	С	"U"+5*2+"V"+4+9=
		"U"+10+"V"+4+9=
07		"U10V49"
27.	В	Class UIL is a partial implementation of a binary search tree. f is the left child and g is the right child for each parent node. m is the root. Within the add method x is a parent
		node and y is the root of this subtree. The while loop moves down the tree searching for
		the proper location to add the element e. When the root becomes null the loop stops
		and the element is added as the appropriate child node.
28.	D	Add the new element as either the left or right child of the current parent.
29.	Α	print is an in order traversal of the this tree:
		m /)
		f r
		b w
		\
20	<u> </u>	C 407
30.	E	See #27

31.	С	Merge_sort is a bottom up implementation of the merge sort algorithm. Here is a print out of each iteration of the outer loop in sort.	
		1 [z, e, r, b, l, a, o, i, n]	
		2 [e, z, b, r, a, l, i, o, n]	
		4 [b, e, r, z, a, i, l, o, n]	
		8 [a, b, e, i, l, o, r, z, n]	
32.	E	If j is greater than hi, then there are no more elements to compare in the right half of aux.	
33.	D	Merge sort is O(n log n) in all cases.	
34.	Α	nextInt(n) returns a random integer between 0 inclusive and n exclusive. 97 is the	
		ASCII value of 'a'.	
35.	В	Example: mtd (1024) returns 10. 2 ¹⁰ = 1024. log ₂ (1024)=10.	
36.	С	10100011 = -93	
		10001010 = -118	
		11011101 = -35	
		11001101 = -51	
		11010110 = -42	
37.	D	The expression diagrammed is !(!(A&&B) !(A^C)).	
		!(!(T&&T) !(T^F))=	
		!(!T !T)=	
		!(F F)= !F=	
		!F- T	
38.	E	$\frac{1}{A*(A+B)+(B+B*A)}$	
00.	_	$\frac{A*(A+B)+(B+B*A)}{A+B}$ Law of absorption	
		$\bar{A} * \bar{B}$ DeMorgan's law	
39.	228	15 8 – 26 5 + + 43 7 / * =	
33.	220	731 + 6 * =	
		38 6 * =	
		228	
		The problem clearly states the integer division should be used. Do not accept an answer	
		that is not a whole number.	
40.	4	A simple cycle is a path whose first and last vertices are the same and that contains no	
		repeated edges or vertices. In this case:	
		053460	
		05460	
		3453	
		9 11 12 9	