

Specification for E-Paper AES200200A00-1.54ENRS

Revision 1.3

Α	Orient Display
ES	E-Paper
200200	Resolution 200 x 200
A00	Revision A00
1.54	Diagonal: 1.54", Module: 31.80×37.32×0.98 mm
E	EPD - Electrophoretic Display (Active Matrix)
N	Normal, Top: 0~+50°C; Tstr: -25~+70°C
R	Reflective Polarizer
S	3-/4-wire SPI Interface
/	Controller SSD1681 Or Compa ble
/	ZIF FPC
/	Ultra Wide Viewing Angle
/	Ultra Low Power Consumption

REVISION HISTORY

Rev	Date	Item	Page	Remark
1.0	JUN.04.2020	New Creation	ALL	
1.1	NOV.23.2020	Update DC Characteristics Add Packaging	P20 P31	
1.2	JUN.16.2022	Update Mechanical Drawing of EPD module Update Input /Output Pin Assignment Update Reliability test Delete Block Diagram Update Inspection method and condition Update Packaging	P5 P6 P27 P28 P28-31 P32	
1.3	OCT.16.2023	Update Mechanical Drawing of EPD module Update Input /Output Pin Assignment	P5 P6	

LIST

1. Over View	(4)
2. Features	(4)
3. Mechanical Specifications	(4)
4. Mechanical Drawing of EPD module	(5)
5. Input /Output Pin Assignment	(6-7)
6.Command Table	(8-19)
7. Electrical Characteristics	(20-24)
8. Operation Flow and Code Sequence	(25)
9. Optical Characteristics	(26)
10. Handling, Safety and Environment Requirements	(26)
11. Reliability test	(27)
12. Inspection method and condition	(28-31)
13. Packaging	(32)

1. Over View

AES200200A00-1.54ENRS is a TFT active matrix electrophoretic display, with interface and a reference system design. The 1.54" active area contains 200×200 pixels, and has 1-bit black/white full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.

2.Features

- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable
- Commercial temperature range
- Landscape, portrait mode
- Antiglare hard-coated front-surface
- Low current sleep mode
- On chip display RAM
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and source driving voltage
- I²C Signal Master Interface to read external temperature sensor
- Available in COG package IC thickness 300um

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.54	Inch	
Display Resolution	200(H)×200(V)	Pixel	Dpi:188
Active Area	$27.0(H) \times 27.0(V)$	mm	
Pixel Pitch	0.135×0.135	mm	
Pixel Configuration	Square		
Outline Dimension	$31.80(H) \times 37.32(V) \times 1.0(D)$	mm	
Weight	2.18 ± 0.5	g	

4. Mechanical Drawing of EPD module

5. Input /Output Pin Assignment

5-1) Pin out List

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC		Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage	
6	TSCL	0	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave. When not in use: Open	
7	TSDA	I/O	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave. When not in use: Open	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	Power Supply for OTP Programming.	
20	VSH1	C	Positive Source driving voltage	
21	VGH	C	Positive Gate driving voltage.	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Negative Gate driving voltage.	

24	VCOM	С	VCOM driving voltage	
----	------	---	----------------------	--

- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled Low.
- Note 5-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled High, the data will be interpreted as data. When the pin is pulled Low, the data will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin (BUSY) is Busy state output pin. When Busy is Low, the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin

Low when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor
- Note 5-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected. Please refer to below Table.

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) - 8 bits SPI
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6.Command Table

	man	-	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on		
0	0	01		0	0	0	0	0	0		A CONTRACTOR OF THE CONTRACTOR	Gate setti	-		
770	- 33	UT	0	- 50	100	373	200		3333	1	Driver Output control			, 200 MUX	C
0	1	- 6	A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao				tting as (A	
0	1		0	0	0	0	0	0	0	A ₈	-	The second			Asserted P.A.
0	1		0	0	0	0	0	B ₂	B ₁	Во		B[2]: GD Selects th GD=0 [P0 G0 is the output ser GD=1, G1 is the output ser B[1]: SM Change s SM=0 [P0	nning sequence is together the control of the contr	uence and	nnel, gate 2, G3, nnel, gate 53, G2, te driver.
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	B[0]: TB TB = 0 [P TB = 1, so	OR], scar can from o		to G199
0	1		0	0	0	A4	Аз	A ₂	A ₁	Ao	Control	A[4:0] = 0			8
														0V to 20V	M. C. CANDELLINO
												A[4:0] 00h	VGH 20	A[4:0] 0Dh	VGH 15
												03h	10	0Eh	15.5
												03h	10.5	0 10000 10000	A COUNTY OF THE PERSON NAMED IN COUN
												04h	10.5	0Fh 10h	16 16.5
												200000000000000000000000000000000000000		0.000	17
												06h	11.5	11h	
			I									07h	12	12h	17.5
						1						08h	12.5	13h	18
												11 (1/16)	12	14h	
												07h	-	(2) (2) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	18.5
												08h	12.5	15h	19
												08h 09h	12.5 13	15h 16h	19 19.5
												08h 09h 0Ah	12.5 13 13.5	15h 16h 17h	19 19.5 20
												08h 09h	12.5 13	15h 16h	19 19.5

	D/C#	d Tal	D7	D6	D5	D4	D3	D2	D1	DO	Comm	nand		Description
0	0	04	0	0	0	0	0	1	0	0	COMPANIE OF THE PARTY OF THE PA	100000000000000000000000000000000000000		
		04	-	-	10.00		0.50		-	-	Contro	e Driving	voilage	Set Source driving voltage A[7:0] = 41h [POR], VSH1 at 15V
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	·	1,		B[7:0] = A8h [POR], VSH2 at 5V.
0	1		B ₇	B ₆	B ₅	B₄	Вз	B_2	B ₁	B ₀				C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C_2	C ₁	Co				Remark: VSH1>=VSH2
A[7]	/B[7]	= 1.	Ali Tal					Aſ	7]/B[7	1 = 0),			C[7] = 0,
	H1/VS		oltag	e se	tting	from	2.4V					e setting	from 9V	VSL setting from -5V to -17V
	V8.								17V			in the second second		35-55-5 (CC 5000000000000 CC 00000000000000000
A/	B[7:0]	VSH	I/VSH2	A/B	[7:0]	VSH1	/VSH2		A/B[7:0]	VS	H1/VSH2	A/B[7:0]	VSH1/VSH2	2 C[7:0] VSL
_	8Eh	_	2.4	-	Fh	5			23h	-	9	3Ch	14	0Ah -5
_	8Fh 90h	-	2.5	. 10	0h 1h	5.90	.8	-	24h 25h	- 10	9.2	3Dh 3Eh	14.2	0Ch -5.5
	91h	_	2.7	-	2h	-	$\overline{}$	\$ \$ 	26h		9.6	3Fh	14.6	0Eh -6
	92h	_	2.8	_	3h	6	$\overline{}$		27h	55	9.8	40h	14.8	10h -6.5
	93h	1 18	2.9		4h	-	.2		28h	- 10	10	41h	15	12h -7
	94h		3	-	5h	_	.3		29h		10.2	42h	15.2	14h -7.5
_	95h 96h	_	3.1	_	6h 7h	6	.4	- 	2Ah 2Bh		10.4	43h 44h	15.4 15.6	16h -8 18h -8.5
_	90n 97h	_	3.3		8h	_	.6		2Ch	1/2	10.8	44n 45h	15.8	18h -8.5
_	98h	_	3.4		9h	6	200.00		2Dh	7	11	46h	16	1Ch -9.5
-	99h	_	3.5	_	Ah	_	.8		2Eh	200	11.2	47h	16.2	1Eh -10
_	9Ah	_	3.6	_	Bh	-	.9		2Fh		11.4	48h	16.4	20h -10.5
_	9Bh 9Ch	_	3.7 3.8		Ch Dh	7		;	30h 31h	100	11.6	49h 4Ah	16.6 16.8	22h -11
_	9Dh	_	3.9		Eh		.2	9 9	32h	-	12	4Bh	17	24h -11.5
	9Eh		4	-	Fh		.3	9 9	33h		12.2	Other	NA NA	26h -12
	9Fh	. 0	1.1	С	0h	7	.4		34h		12.4			28h -12.5
_	AOn	_	1.2	_	1h	-	.5		35h	- 0	12.6			2Ah -13
	A1h	_	1.3	_	2h 3h	_	.6	-	36h 37h	-	12.8			2Ch -13.5
	A2h A3h	_	4.4 4.5	-	4h	7	.7	-	38h	- 4	13.2			2Eh -14
_	A4h	_	1.6	_	5h	_	.9		39h	-	13.4			30h -14.5
,	A5h] 19	1.7		6h	8		8	3Ah		13.6			32h -15
	A6h	-	1.8		7h	- 8			3Bh		13.8			34h -15.5
_	A7h A8h	10	1.9 5	_	8h 9h	-	.2							36h -16
_	A9h	A 50	5.1	_	Ah	8								38h -16.5 3Ah -17
	AAh	_	5.2	_	Bh		.5							Other NA
- /	ABh	. 18	5.3	С	Ch	8	.6							Culoi IV
	ACh	_	5.4	_	Dh	8	_							
_	ADh AEh	_	5.5		Eh ther	8 N	.8 A							
	e dust	200			,,61	1 10								
					0	0	1	0	0	0	Initial (O O		r
0	0	08	0	0	0	U						Jode Set	ting	Program Initial Code Setting
0	0	08	0	0	U	U					OTP P		ting	Program Initial Code Setting
0	0	80	0	0	U	U					OTP P	rogram	ting	The command required CLKEN=1.
0	0	08	0	0	U	U					OTP P		ting	The command required CLKEN=1. Refer to Register 0x22 for detail.
0	0	08	0	0	U	U					OTP P		ting	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during
0	0	08	0	0	U	U					OTP P		ting	The command required CLKEN=1. Refer to Register 0x22 for detail.
												rogram		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
	0	08	0	0	0	0	1	0	0	1	Write I	Program		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting
0								0 A ₂	0 A ₁	1 A ₀	Write I	rogram		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection
0	0 1		0 A ₇	0 A ₆	0 A ₅	0 A ₄	1 A ₃	A ₂	A ₁	A ₀	Write I	Program		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved
0 0 0	0 1 1		0 A ₇ B ₇	0 A ₆ B ₆	0 A ₅ B ₅	0 A ₄ B ₄	1 A ₃ B ₃	A ₂	A ₁	A ₀	Write I	Program		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Init
0 0 0 0	0 1 1 1 1		0 A ₇ B ₇ C ₇	0 A ₆ B ₆ C ₆	0 A ₅ B ₀ C ₅	0 A ₄ B ₄ C ₄	1 A ₃ B ₃ C ₃	A ₂ B ₂ C ₂	A ₁ B ₁ C ₁	A ₀ B ₀ C ₀	Write I	Program		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved
0 0 0 0	0 1 1		0 A ₇ B ₇	0 A ₆ B ₆	0 A ₅ B ₅	0 A ₄ B ₄	1 A ₃ B ₃	A ₂	A ₁	A ₀	Write I	Program		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0 0 0 0	0 1 1 1 1		0 A ₇ B ₇ C ₇	0 A ₆ B ₆ C ₆	0 A ₅ B ₀ C ₅	0 A ₄ B ₄ C ₄	1 A ₃ B ₃ C ₃	A ₂ B ₂ C ₂	A ₁ B ₁ C ₁	A ₀ B ₀ C ₀	Write I	Program		The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0 0 0 0 0	0 1 1 1 1		0 A ₇ B ₇ C ₇	0 A ₆ B ₆ C ₆	0 A ₅ B ₀ C ₅	0 A ₄ B ₄ C ₄	1 A ₃ B ₃ C ₃	A ₂ B ₂ C ₂	A ₁ B ₁ C ₁	A ₀ B ₀ C ₀	Write I	Register :	for Initial	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation. Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial

2000	DICE	1012	p	- 00	-	100000	Do	-	D.4	De	Character 1	D. C.	
***********	A STATE OF THE PARTY OF THE PAR	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	Strong and Section Company of the Co
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start	Booster Enable with I for soft start current a	Phase 1, Phase 2 and Phase and duration setting.
0	1		1	A ₆	A5	A ₄	Аз	A ₂	A ₁	A ₀	Control		
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	Bı	Bo		A[7:0] -> Soft start se = 8Bh [POI	
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		B[7:0] -> Soft start se	
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	Do		= 9Ch [PO	
	1.50		19818	187	375-20	575480	-	777.50	100 M			C[7:0] -> Soft start se = 96h [POF	
												D[7:0] -> Duration se	
												= 0Fh [POI	4]
												Bit Description	
												A[6:0] / B[6:0] /	O[6:0]: Driving Strength
												Bit[6:4]	Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												I F Mi	n Off Time Setting of GDR
												Bit(3:0]	[Time unit]
												0000	NA
												0011	NA
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8
												1101	11.5
												1110	13.8
												1111	16.5
												D[5:4]: duratio D[3:2]: duratio	setting of phase n setting of phase 3 n setting of phase 2 n setting of phase 1
												Bit[1:0]	Duration of Phase
													[Approximation]
												00	10ms
												01	20ms
												10	30ms
				J.	17	Ju						11	40ms
0	0	10	0	0	0	1	0	0	0	0 [eep Sleep mode	Deep Sleep mode	Control:
0	1	10	0	0	0	0	0	- 3	-	A ₀	cop cloop mode	A[1:0]: Descri	
U	- A.		U	V	U	U	U	0	1	~ 10			Mode [POR]
													Deep Sleep Mode 1
												ARCHARIA	ENDONES INCRESOME I CONTRACTOR IN
												After this commar enter Deep Sleep keep output high. Remark:	Deep Sleep Mode 2 nd initiated, the chip wi Mode, BUSY pad will
												To Exit Deep Slee	ep mode, User require
	ı			- 1	- 1					- 1		to send HWRESE	1 to

D/C# 0	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Cammana	
0		00039	872	7.00		2240			1.72	Command	Description
	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
1		0	A ₆	A ₅	A4	0	A ₂	Aı	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.
0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
1	15	0	0	0	0	0	A2	A ₁	Ao	VCI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] : VCI level Detect A[2:0] : VCI level 011
0	18	0	0	n	1	1	0	n	n	Temperature Sensor	Temperature Sensor Selection
1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor
0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
1		A ₁₁	A ₁₀	A ₉	Aa	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
1		Аз	A ₂	Aı	A ₀	0	0	0	0	temperature register)	
n	1B	n	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.
1	10	220		1100	0 0	7.07	- 1	200	_	Control (Read from	Toda irom temperature register.
1		Аз	A ₂	Aı	A ₀	0	0	0	0	temperature register)	
0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this
	0 1 1 0 1 1	0 15 1 0 1A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 15 0 1 0 1 A7	0 15 0 0 1 0 0 1 A7 A6 0 1A 0 0 1 A11 A10 1 A3 A2 0 1B 0 0 1 A11 A10 1 A3 A2	0 15 0 0 0 0 1 0 0 1 A ₁₁ A ₁₀ A ₉ 1 A ₃ A ₂ A ₁	0 15 0 0 0 1 1 0 0 0 0 0 1 1 A7 A6 A5 A4 0 1A 0 0 0 1 1 A1 A10 A9 A8 1 A3 A2 A1 A0 0 1B 0 0 0 1 1 A11 A10 A9 A8 1 A3 A2 A1 A0	0 15 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0	0 15 0 0 0 1 0 1 1 0 0 0 0 0 0 0 A2 0 18 0 0 0 0 1 1 0 1 A7 A6 A5 A4 A3 A2 0 1A 0 0 0 1 1 0 1 A3 A2 A1 A0 0 0	0 15 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 A2 A1 0 18 0 0 0 1 1 0 0 A2 A1 0 18 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 <t< td=""><td>0 15 0 0 0 1 0 1 0 1 1 0</td><td>0 15 0 0 0 1 0 1 0 1 VCI Detection 1 0 0 0 0 0 0 0 A2 A1 A0 0 18 0 0 0 1 1 0 0 0 Temperature Sensor 1 A7 A6 A5 A4 A3 A2 A1 A0 Control 0 1A 0 0 0 1 1 0 1 0 Temperature Sensor 1 A11 A10 A3 A6 A7 A6 A5 A4 1 A3 A2 A1 A0 0 0 0 0 1 Temperature Sensor Control Temperature Sensor Control (Write to temperature register)</td></t<>	0 15 0 0 0 1 0 1 0 1 1 0	0 15 0 0 0 1 0 1 0 1 VCI Detection 1 0 0 0 0 0 0 0 A2 A1 A0 0 18 0 0 0 1 1 0 0 0 Temperature Sensor 1 A7 A6 A5 A4 A3 A2 A1 A0 Control 0 1A 0 0 0 1 1 0 1 0 Temperature Sensor 1 A11 A10 A3 A6 A7 A6 A5 A4 1 A3 A2 A1 A0 0 0 0 0 1 Temperature Sensor Control Temperature Sensor Control (Write to temperature register)

	man D/C#	-		D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1	10	A ₇	Α _δ	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	Control (Write Command	sensor.
0	1		B ₇	Be	Bs	B ₄	Вз	B ₂	Bı	Bo	to Exte <mark>rnal</mark> temperature sensor)	A[7:0] = 00h [POR], B[7:0] = 00h [POR].
0	1	3	C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co	Selisor)	C[7:0] = 00h [POR],
												A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1st parameter C[7:0] - 2nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature senso starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
												The Display Update Sequence Option is located at R22h.
												BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
0	1	21	0 A ₇	0 A ₆	1 A ₅	0 A ₄	0 A ₃	0 A₂	0 A ₁	A ₀	Display Update Control 1	RAM content option for Display Update A[7:0] = 00h [POR] B[7:0] = 00h [POR]
												A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 Inverse RAM content
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1		0	0	0	0	0	A2	Aı	Ao		A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper an lower bit of the address. 00 —Y decrement, X decrement, 10 —Y decrement, X increment, 10 —Y increment, X increment, 11 —Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after dare written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM= 1, the address counter is updated in

Com	man	d Ta	ble									·	
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0 A ₇	0 A ₆	1 A ₂	0 A ₄	0 A ₃	0 A ₂	1 A ₁	0 A ₀	Display Update Control 2	Display Update Sequence Opti Enable the stage for Master Ad A[7:0]= FFh (POR)	
												Operating sequence	Parameter (in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal → Enable Analog	CO
												Disable Analog → Disable clock signal	03
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal	91
												Enable clock signal → Load LUT with DISPLAY Mode 2 → Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 2 → Disable clock signal	B9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
									F 0			Enable clock signal Enable Analog Load temperature value DISPLAY with DISPLAY Mode 2 Disable Analog Disable OSC	FF
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entrice written into the BW RAM until a command is written. Address padvance accordingly	another
												For Write pixel: Content of Write RAM(BW) = For Black pixel: Content of Write RAM(BW) =	

	helical state in the	d Ta				NO.	1	I Was a second	1 000000	1 10000	1 200	The second secon
/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly.
	1 2				į.				9			For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly.
	ļ.,											The 1st byte of data read is dummy data.
0	0	28	0	0	4	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1
												Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	29	0	1	0	0	A ₃	A ₂	A ₁	Ao	VCOM Sense Duration	sensing mode and reading acquired.
												A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
86	1		0	0	0	0	0	1	0	0	Control	when ACVCOM toggle. Two data bytes
0												D04h and D63h should be set for this

	man			De	DE	D4	Da	Da	D4	DO	Cammand	December			
Marie Bright	D/C#	(CONTROL)	SERVICE.	D6	D5	D4	D3	D2	D1	D0	Command	Descript	The second second		
0	1	2C	0 A ₇	0 A ₆	1 A ₅	0 A ₄	1 A ₃	1 A ₂	0 A ₁	O Ao	Write VCOM register		OM regist 00h [POR]		ICU interface
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												40h	-1.6	Other	NA
1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1		B ₇ C ₇ D ₇ E ₇ F ₇ G ₇ H ₇ I ₇ J ₇ K ₇	B6 C6 D6 E6 F6 G6 H6 J6 K6	B ₅ C ₅ D ₅ E ₅ F ₅ G ₅ H ₅ I ₅ J ₅ K ₅	B ₄ C ₄ D ₄ E ₄ F ₄ G ₄ H ₄ I ₄ J ₄	B ₃ C ₃ D ₅ E ₃ F ₃ G ₃ H ₃ I ₃ J ₃ K ₃	B ₂ C ₂ D ₂ E ₂ F ₂ G ₂ H ₂ I ₂ J ₂ K ₂	B ₁ C ₁ D ₁ E ₁ F ₁ G ₁ H ₁ I ₁ J ₁ K ₁	Bo Co Do Eo Fo Go Ho Jo Ko		(Comm B[7:0]: (Comm C[7:0]~ (Comm [5 bytes H[7:0]~	K[7:0]: Wa and 0x37,	Byte A) gister splay Mod Byte B to	le Byte F) ersion
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10	Byte Use	r ID store	ed in OTP:
1	1		A ₇	A ₆	A ₅	A4	A ₃	A ₂	A ₁	Ao		A[7:0]]~.	J[7:0]: Use	rID (R38,	Byte A and
1	1	7 - 8	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	Bo		Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co					
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	Do	OP .				
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	Eo	Ti di				
1	1	0 7	F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F₁	Fo					
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	Go	8				
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	Ho					
1	1		17 17		⊓5 I 5	П4 I4	l ₃	I ₂	I ₁	I ₀					
		_			400				119411		3				
1	1		J ₇	J 6	J 5	J ₄	J ₃	J ₂	J ₁	Jo					

		Hex		D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1	25	0	0	As	A4	0	0	A ₁	Ao	otatus Bit Redu	A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Wounfarm Satting
U	· · ·	30	U	U	1	1	U	U	U	U	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command.
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
U	U	31	U	U		1	U	U	U	1	Load WS OTP	The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	1	32	0	0 A ₆	1 As	1 A ₄	0 A ₃	0 A ₂	1 A ₁	0	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of
0	1		A ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	A ₀	-	VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		:	:	:		:		:	:	100	and FR[n] Refer to Session 6.7 WAVEFORM
0	1		•	**	114	*	23 5 32		**	1060		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
U	O	54	U	U		1	0	¥1	0	U	O CO Calculation	For details, please refer to SSD1681 application note.
												BUSY pad will output high during operation.
					-	1	0	1	0	1	CRC Status Read	CRC Status Read
0	0	35	0	0	1						CRC Status Read	OING Glatus Incad
0	0	35	0 A ₁₅	201	102.00	2.0	555	A ₁₀	A ₉	As	CRC Status Read	A[15:0] is the CRC read out value

manufacture.	D/C#	d Ta	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0289///		MARKET IN	200		17965	232	2.1	F-40	1000	12.0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail.
	V 3			6					(e) -).			BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A ₇	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B₁	Bo		0: Default [POR] 1: Spare
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C2	C ₁	Co		1. Opare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	Fo		D[7:0] Display Mode for WS[23:16] E[7:0] Display Mode for WS[31:24]
0	1		G ₇	G ₆	G ₅	G ₄	Gз	G ₂	G ₁	Go		F[3:0 Display Mode for WS[35:32]
0	1		H ₇	He	H ₅	H ₄	Нз	H ₂	H₁	Ho		0: Display Mode 1
0	1		17	I ₆	15	14	l ₃	12	I ₁	lo		1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		F[6]: PingPong for Display Mode 2
	100			HE 408	55875	2440	311	\$0.88	097040	1000000		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform
												version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP
												2) RAM Ping-Pong function is not support of Display Mode 1
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID	Write Register for User ID
0	1		A ₇	A6	As	A ₄	Аз	Az	A ₁	A ₀		A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	Bo		Remarks: A[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	Co		OTP
0	1	1	D ₇	D ₆	D ₅	D ₄	Dз	D ₂	D ₁	D ₀		
0	1		E ₇	E ₆	E ₅	E ₄	Ез	E ₂	E ₁	Εo		
0	1		F ₇	F ₆	F ₅	F ₄	Fз	F ₂	F ₁	F ₀		
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G₀		
0	1		H ₇	Нв	Hэ	H ₄	Нз	H ₂	H ₁	Ho		
0	1		17	l ₆	l ₅	14	l ₃	l ₂	l ₁	lo		
0	1		J ₇	J 6	J ₅	J ₄	J ₃	J ₂	J ₁	J ₀		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences

	and the last of th	d Ta		D6	D5	D4	D3	D2	D1	DO	Command	Description	
_										_		Description	1
0	1	3C	0 A ₇	0 A ₆	1 A ₅	1 A ₄	0	1 A ₂	0 A ₁	0 Ao	Border Waveform Control	A[7:0] = C01	n [POR], set VBD as HIZ.
													ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition, Defined in A[2] and
												01	A[1:0] Fix Level, Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
													evel Setting for VBD
												A[5:4]	VBD level
												00	VSS
												01	VSH1
												10	VSL
												11	VSH2
													VOITZ
												AI2I GS Tra	nsition control
													GS Transition control
													Follow LUT
													Output VCOM @ RED)
													Follow LUT
												A [1:0] GS 1	Γransition setting for VBD
												A[1:0]	VBD Transition
												00	LUT0
												01	LUT1
												10	LUT2
												11	LUT3
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for L	UT end
0	1		A 7	Ae	A ₅	A4	Аз	A ₂	Aı	Ao		A[7:0] = 02h	[POR]
			1.6:34	7.40	r. na		7.0		10.00	1.00		22h Nor	
													rce output level keep vious output before power off
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM	
0	1		0	0	0	0	0	0	0	Ao	9:11	A[0] = 0 [PO	
			55.00	6 6					6.383				M corresponding to RAM0x2 M corresponding to RAM0x2
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address		start/end positions of the
0	1		0	0	A ₅	A4	Аз	A ₂	A ₁	Ao	Start / End position		ress in the X direction by an
0	1	(C)	0	0	Вэ	B ₄	Вз	B ₂	B ₁	Bo		address uni	
													[5:0], XStart, POR = 00h [5:0], XEnd, POR = 15h
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address		start/end positions of the
0	1		A ₇	A ₆	As	A ₄	Аз	A ₂	A ₁	Ao	Start / End position		ress in the Y direction by an
•	1		0	0	0	0	0	0	0	Aδ		address uni	t for RAM
2950	1 4		-		1151	253	1852	B ₂		111111111111111111111111111111111111111		A 10 01 1/0 A	
0	1		R-	R.	I Re	H.	H						10.01 Vetort DOD - 0005
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	0	B ₁	B₀ B₀	-		[8:0], YStart, POR = 000h [8:0], YEnd, POR = 127h

	Section 1	d Ta	Contract Contract	De	D5	D/	D2	D2	D1	DO	Cammand	Descripti				
	100000	10000000	10 Tel (n)	D6	12000	D4	D3	[HA999]		D0	Command	Descripti		M for Da	ular Datter	
0	1	46	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	O Ao	Auto Write RED RAM for Regular Pattern		Auto Write RED RAM for Regular Patte A[7:0] = 00h [POR]			
												A[6:4]: Ste	1st step v ep Height, ter RAM ir	POR= 00	R = 0 00 on acc <mark>ord</mark> ing	
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	200	
												010	32	110	200	
												011	64	111	200	
															0 on according	
												A[2:0]	Width	A[2:0]	Width	
												000	8	100	128	
												000	16	101	200	
												010	32	110	200	
												010	64	111	200	
												011	04	4111	200	
												BUSY par operation	d will outp	ut high du	ring	
0	0	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	1 A ₀	Auto Write B/W RAM for Regular Pattern	Auto Write A[7:0] = 0		M for Reg	ular Pattern	
												A[6:4]: Ste	1st step v ep Height, ter RAM ir	POR= 00		
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	16	101	200	
												010	32	110	200	
												011	64	111	200	
															on according	
												A[2:0]	Width	A[2:0]	Width	
												000	8	100	128	
												001	16	101	200	
												010	32	110	200	
												011	64	111	200	
	,											During op	eration, B	USY pad	will output	
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address		al settings			
0	1		0	0	A ₅	A4	Aa	A ₂	A ₁	A ₀	counter		n the addr			
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address		al settings			
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	A ₀	counter		n the addr 0h [POR].		er (AC)	
0	1		0	0	0	0	0	0	0	A ₈		~[0.0]. 00	on [FOR].	(C)		
0	0	7 F	0	1	1	1	1	1	1	1	NOP	does not module. However		effect on t used to ter		
												Comman		, , , ,	parent.	

7. Electrical Characteristics

7-1) Absolute maximum rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +6.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	° C
Storage Temp range	TSTG	-25 to+70	° C
Optimal Storage Temp	TSTGo	23±2	° C
Optimal Storage Humidity	HSTGo	55±10	%RH

7-2) Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C

Parameter	Symbol	Conditions	Applica ble pin	Min.	Typ.	Max	Units
Single ground	V_{SS}	-		-	0	-	V
Logic supply voltage	V_{CI}	-	VCI	2.2	3.0	3.7	V
Core logic voltage	$V_{ m DD}$		VDD	1.7	1.8	1.9	V
High level input voltage	V_{IH}	-	-	$0.8~\mathrm{V_{CI}}$	-	-	V
Low level input voltage	$V_{\rm IL}$	-	-	-	-	$0.2~\mathrm{V_{CI}}$	V
High level output voltage	V_{OH}	IOH = -100uA	-	0.9 VCI	-	-	V
Low level output voltage	$ m V_{OL}$	IOL = 100uA	-	-	-	$0.1~\mathrm{V_{CI}}$	V
Typical power	P_{TYP}	$V_{CI} = 3.0 V$	-	-	4.5	-	mW
Deep sleep mode	P _{STPY}	$V_{CI} = 3.0 V$	-	-	0.003	-	mW
Typical operating current	Iopr_V _{CI}	$V_{CI} = 3.0 V$	-	-	1.5	-	mA
Image update time	-	25 °C	-	-	3	-	sec
Sleep mode current	Islp_V _{CI}	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_V _{CI}	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

- The Typical power consumption is measured with following pattern transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern.(Note 7-1)
- The standby power is the consumed power when the panel controller is in standby mode.
- The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by ODNA.
- Vcom is recommended to be set in the range of assigned value $\pm\,0.1V$.

Note 7-1

The Typical power consumption

7-3) Panel AC Characteristics 7-3-1) MCU Interface

7-3-1-1) MCU Interface selection

The module can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 7-1.

	Pin Name									
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA				
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA				
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA				

Table 7-1: Interface pins assignment under different MCU interface

Note

(1) L is connected to V_{SS} and H is connected to V_{DDIO}

7-3-1-2) MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 7-2

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	<u></u>	Data bit	Н	L

Table 7-2: Control pins status of 4-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 7-1: Write procedure in 4-wire SPI mode

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 7-2: Read procedure in 4-wire SPI mode

7-3-1-3) MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Table 7-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

Figure 7-3: Write procedure in 3-wire SPI

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 7-4 shows the read procedure in 3-wire SPI.

Figure 7-4: Read procedure in 3-wire SPI mode

7-3-2)Serial Peripheral Interface

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)	170	137-1	20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	60	-	(+)	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	65	-	9-1	ns
tсsнісн	Time CS# has to remain high between two transfers	100	-		ns
tsclhigh	Part of the clock period where SCL has to remain high	25	-	. 19	ns
tscllow	Part of the clock period where SCL has to remain low	25	-	64	ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	32	ns
tsihld	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40	77 <u>=</u> :	12.1	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Read Mode)	1 1 <u>2</u> 9	2	2.5	MHz
tossu	Time CS# has to be low before the first rising edge of SCLK	100	22	120	ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50	_ D	-	ns
tсsнівн	Time CS# has to remain high between two transfers	250	- 5		ns
tscluigh	Part of the clock period where SCL has to remain high	180		170	ns
tscllow	Part of the clock period where SCL has to remain low	180	- 5	152	ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	15-51	ns
tsohld	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Table 7-4: Serial Peripheral Interface Timing Characteristics

Figure 7-5: SPI timing diagram

7-4) Reference Circuit

Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating: 6V or 25V
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
C8	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
R1	2.2 ohm	0402/0603/0805; 1% variation, ≥ 0.05W
D1-D3	Diode	MBR0530 1) Reverse DC voltage ≥ 30V 2) lo ≥ 500mA 3) Forward voltage ≤ 430mV
Q1	NMOS	Si1304BDL/NX3008NBK 1) Drain-Source breakdown voltage ≥ 30V 2) Vgs(th) = 0.9V (Typ), 1.3V (Max) 3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC lo= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

Remarks:

- 1) The recommended component value and reference part in Table is subject to change depending on panel loading.
- 2) Customer is required to review if the selected component value and part is suitable for their application.

8. Operation Flow and Code Sequence

8-1) General operation flow to drive display panel

9. Optical Specifications

9-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degree, the detection

is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ.	Max	Units	Notes
R	White Reflectivity	White	30	35	ı	%	9-1
CR	Contrast Ratio	Indoor	8:1		-		9-2
GN	2Grey Level	-		DS+(WS-DS)*n(m-1)			9-3
T update	Image update time	at 25 °C		3	-	sec	
Life		Topr		1000000times or 5years			

Notes: 9-1. Luminance meter: Eye-One Pro Spectrophotometer.

9-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

9-3 WS: White state, DS: Dark state

10. Handling, Safety and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status				
Product specification	This data sheet contains final product specifications.			
	Limiting values			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.				
Application information				
Where application information is given	ven, it is advisory and does not form part of the specification.			

11.Reliability test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern

2	High-Temperature Storage	T=60° C, RH=35%, 240h Test in white pattern
3	High-Temperature Operation	T=40°C, RH=35%, 240h
4	Low-Temperature Operation	T=0°C, 240h
5	High-Temperature, High-Humidity Operation	T=40°C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50° C, RH=90%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25° C 30min]→[+60° C 30 min]: 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

12. Inspection method and condition

12. 1 Inspection condition

Item	Condition
Illuminance	800~1500 lux
Temperature	22°C ±3°C
Humidity	55±10 %RH
Distance	≥30cm
Angle	Vertical fore and aft 45
Inspection method	By eyes

12. 2 Zone definition

A Zone: Active area

B Zone: Border zone

C Zone: From B zone edge to panel edge

12. 3 General inspection standards for products

12.3.1 Appearance inspection standard

Inspection item		Fi	gure	A zone inspection standard	B/C zone	Inspection method	MAJ/ MIN
Spot defects	Spot defects such as dot, foreign matter, air bubble, and dent etc.	Diameter D=(L+W)/2 (L-length, W-width) Measuring method shown in the figure below D=(L+W)/2	The distance between the two spots should not be less than 10mm	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Foreign matter D≤1mm Pass	Check by eyes Film gauge	MIN

Insp	ection item	F	igure	A zone inspection standard	B/C zone	Inspection method	MA J/ MI N
Line defects	Line defects such as scratch, hair etc.	L-Length, W-Width, (W/L)<1/4 Judged by line, (W/L)≥1/4 Judged by dot	The distance between the two lines should not be less than 5mm	7.5"-13.3"Module (Not include 7.5"): L>10mm,N=0 W>0.8mm, N=0 5mm≤L≤10mm, 0.5mm≤W≤0.8mm N≤2 L≤5mm, W≤0.5mm Ignore 4.2"-7.5"Module (Not include 4.2"): L>8mm,N=0 W>0.2mm, N=0 2mm≤L≤8mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore Module below 4.2": L>5mm,N=0 W>0.2mm, N=0 2mm≤L≤5mm, 0.1mm≤W≤0.2mm N≤4 L≤2mm, W≤0.1mm Ignore	Ignore	Check by eyes Film gauge	MIN

Inspect	ion item Figure		Inspection standard	Inspection method	MA J/ MIN
Panel chipping and crack defects	TFT panel chipping	X the length, Y the width, Z the chipping height, T the thickness of the panel	Chipping at the edge: Module over 7.5" (Include 7.5"): $X \le 6mm, Y \le 1mm$ $Z \le T$ $N = 3$ Allowed Module below 7.5" (Not include 7.5"): $X \le 3mm, Y \le 1mm$ $Z \le T$ $N = 3$ Allowed Chipping on the corner: IC sideX $\le 2mm$ $Y \le 2mm$, Non-IC sideX $\le 1mm$ $Y \le 1mm$. Allowed Note: Chipping should not damage the edge wiring. If it does not affect the display, allowed	Check by eyes. Film gauge	MIN
	Crack	玻璃製紋	Crack at any zone of glass, Not allowed	Check by eyes. Film gauge	MIN
	Burr edge	†T_A,	No exceed the positive and negative deviation of the outline dimensions $X+Y\leq 0.2mm$ Allowed	Calliper	MIN
S	Curl of panel	H Curl height	Curl height H≤Total panel length 1% Allowed	Check by eyes	MIN

Inspec	tion item	Figure	Inspection standard	Inspecti on method	MAJ / MIN
PS defect	Water proof film		Waterproof film damage, wrinkled, open edge, not allowed Exceeding the edge of module(according to the lamination drawing) Not allowed Edge warped exceeds height of technical file, not allowed	Check by eyes	MIN
RTV defect	Adhesive effect		Adhesive height exceeds the display surface, not allowed 1 .Overflow, exceeds the panel side edge, affecting the size, not allowed 2 .No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3. No adhesive at edge and corner1*1mm, no exposure of wiring, allowed	Check by eyes	MIN
	Adhesive re-fill		Protection adhesive, coverage width within W≤1.5mm, no break of adhesive, allowed Dispensing is uniform, without obvious concave and breaking, bubbling and swell, not higher than the upper surface of the PS, and the diameter of the adhesive re-filling is not more than 8mm, allowed	Check by eyes	MIN
EC defect	Adhesive bubble	防水胶涂布区 封边敷边缘 PS边缘 Border外缘 (PPL边缘)	Effective edge sealing area of hot melt products ≥1/2 edge sealing area; Bubble a+b≥1/2 effective width, N≤3, spacing≥5mm, allowed No exposure of wiring, allowed	Check by eyes	MIN

Inspection item		Figure Inspection standard		Inspection method	MAJ/ MIN
EC defect	Adhesive effect		1.Overflow, exceeds the panel side edge, affecting the size, not allowed 2.No adhesive at panel edge≤1mm, mo exposure of wiring, allowed 3.No adhesive at edge and corner 1*1mm, no exposure of wiring, allowed 4. Adhesive height exceeds the display surface, not allowed	Visual, caliper	MIN
Silver dot adhesive defect	Silver dot adhesive		1. Single silver dot dispensing amount ≥1mm, allowed 2. One of the double silver dot dispensing amount is ≥1mm and the other has adhesive (no reference to 1mm) Allowed	Visual	MIN
			Silver dot dispensing residue on the panel ≤0.2mm, allowed	Film gauge	MIN
FPC defect	FPC wiring		FPC, TCP damage / gold finger peroxidation, adhesive residue, not allowed	Visual	MIJ
	FPC golden finger		The height of burr edge of TCP punching surface ≥ 0.4mm, not allowed	Caliper	MIN
	FPC damage/cr ease		Damage and breaking, not allowed Crease does not affect the electrical performance display, allowed	Check by eyes	MIN

Inspection item		Figure	Inspection standard	Inspection method	MAJ/ MIN
Protective film defect	Protective film	Scratch and crease on the surface but no affect to protection function, allowed		Check by eyes	MIN
		Adhesive at edge L≤5mm, W≤0.5mm, N=2, no entering into viewing area		Check by eyes	MIN
Stain defect	Stain	If stain can be normally wiped clean by > 99% alcohol, allowed		Visual	MIN
Pull tab defect	Pull tab	The position and direction meet the document requirements, and ensure that the protective film can be pulled off.		Check by eyes/ Manual pulling	MIN
Shading tape defect	Shading tape	Tilt≤10°, flat without warping, completely covering the IC.		Check by eyes/ Film gauge	MIN
Stiffener	Stiffener	Flat without warping, Exceeding the left and right edges of the FPC is not allowed. Left and right can be less than 0.5mm from FPC edge		Check by eyes	MIN
Label	Label/ Spraying code	The content meets the requirements of the work sheet. The attaching position meets the requirements of the technical documents.		Check by eyes	MIN

13. Packaging

TBA