

Thesis of the end-of-study project

TO OBTAIN THE STATE ENGINEERING DIPLOMA

MAJOR: INNOVATION & AMOA

Green IT Integration in DevOps

Authored by:

Mr. Imad EL BOUHATI

Defended on July XX, 2024, before the jury composed of:

Mr. / Mrs. Xxxx XXXX INPT - Examiner

Mr. / Mrs. Xxxx XXXX INPT - Examiner

Mrs. Charifa HANIN INPT - Supervisor

Mr. Amine AJA Orange Business - Supervisor

Agence National de Réglementation des Télécommunications Institut National des Postes et Télécommunications Class of : 2023/2024

Dedicated to

I humbly dedicate this work to my dear mother, who gave me life, love, courage, and a reason to live.

I also wish to express my gratitude to my father for his support and sacrifices.

A big thank you to my two dear sisters, Alae and Samia, whom I love so much, to all my friends with whom I have shared moments of joy and happiness, as well as to my entire extended family and to all those who love me.

Imad

Acknowledgments

Thank your supervisors (INPT and company), the managers and HR, the teachers at INPT and the jury.

Résumé

Ce rapport reflète le travail réalisé chez Orange Business Maroc dans le cadre de mon projet de fin

d'études pour le diplôme d'ingénieur en Télécommunications et Technologies de l'Information.

Dans un contexte où les architectures distribuées et les pratiques de développement agile dominent

la conception des applications, intégrer les principes de Green IT dans les pratiques DevOps est devenu

essentiel. Cette évolution témoigne de l'importance croissante accordée à la durabilité environnementale

dans le secteur de la technologie.

En se concentrant sur la surveillance de la consommation d'énergie et des émissions de CO₂ de

l'infrastructure, nous mettons en lumière une préoccupation croissante pour l'empreinte écologique de

nos systèmes informatiques. Cette prise de conscience a conduit à l'adoption de mesures proactives

telles que l'utilisation de Kepler, Prometheus et Grafana pour surveiller et visualiser ces métriques

environnementales.

Mon projet de fin d'étude vise à mettre en place Kepler pour surveiller la consommation énergétique

et les émissions de CO₂ de Kubernetes, et à l'intégrer dans la chaîne CI/CD.

Mots-clés: Green IT, DevOps, Kepler, Prometheus, Grafana, Kubernetes, CI/CD.

iii

Summary

This report reflects the work carried out at Orange Business Morocco as part of my final project for the

engineering degree in Telecommunications and Information Technologies.

In a context where distributed architectures and agile development practices dominate application

design, integrating Green IT principles into DevOps practices has become essential. This evolution

underscores the increasing importance placed on environmental sustainability in the technology sector.

By focusing on monitoring energy consumption and CO₂ emissions of the infrastructure, we highlight

a growing concern for the ecological footprint of our computer systems. This awareness has led to the

adoption of proactive measures such as using Kepler, Prometheus, and Grafana to monitor and visualize

these environmental metrics.

My final project aims to implement Kepler to monitor energy consumption and CO₂ emissions of

Kubernetes, and integrate it into the CI/CD pipeline.

Keywords: Green IT, DevOps, Kepler, Prometheus, Grafana, Kubernetes, CI/CD.

iv

ملخص

يعكس هذا التقرير العمل الذي قمت به في أورانج بيزنس المغرب في إطار من مشروعي الختامي للحصول على شهادة مهندس دولة في الاتصالات وتكنولوجيا المعلومات.

في سياق تهيمن فيه الهياكل الموزعة وممارسات التطوير السريعة على تصميم التطبيقات، أصبح دمج مبادئ تكنولوجيا الخضراء في ممارسات DevOps أمراً ضرورياً. يؤكد هذا التطور على الأهمية المتزايدة التي تحظى بها الاستدامة البيئية في قطاع التكنولوجيا.

وقد أدى هذا الوعي إلى اعتماد تدابير استباقية مثل استخدام Kepler و Prometheus و Grafana لراقبة هذه المقاييس البيئية وتصورها.

يهدف مشروعي الختامي إلى تطبيق Kepler لمراقبة استهلاك الطاقة وانبعاثات ثاني أكسيد الكربون في Kubernetes و دمجه في سلسلة CI/CD .

Green IT, DevOps, Kepler, Prometheus, Grafana, Kubernetes, CI/CD الكلمات الفتاحية:

List of Figures

1.1	OBS logo	3
1.2	OBS logo	4
1.3	Orange Business key figures	6
1.4	OBS IT customers and partners	7
1.5	OBS Global Presence	7
1.6	OBS IT Morocco's operating entities	9
1.7	OBS IT organization chart	11
1.8	React missions	12
1.9	Cloud & DevSecOps missions	12
1.10	Scrum methodology	14
2.1	Green DevOps	21

List of Tables

1.1	Orange Business Information	5
2.1	Long table 1	23
3.1	Table 1	27
C.1	Table Example	40
C.2	Long table Example	40

Listings

C.1	Bash example	3 9
C.2	Python example	39

Contents

Dec	dica	tion		j
Acl	knov	wledgr	nents	ii
Rés	sum	ıé		iii
Sur	nma	ary		iv
Ara	abic	Abstr	ract	v
List	t of	Figur	es	vi
List	t of	Table	S	vii
List	t of	Listin	${f gs}$	viii
Tak	ole (of Con	tents	xii
Gei	nera	al Intro	oduction	1
1	Ger	neral P	Project Context	2
	1.1	Introd	luction	2
	1.2	Preser	ntation of host organization	3
		1.2.1	Company Overview	3
		1.2.2	Vision of the Orange Group	4
		1.2.3	Introducing Orange Business - Customers and figures	4
		1.2.4	Global Presence, Local Service	7
		1.2.5	Orange Business Morocco	8
		1.2.6	Organization and Organizational Chart	8

Contents x

	1.3	Introducing the DevSecOps team
	1.4	Project presentation
		1.4.1 General project context
		1.4.2 Problematic
	1.5	Project planning and management
		1.5.1 Method adopted
		1.5.2 Project Planning
	1.6	Conclusion
2	Spe	ecification and Needs Analysis 16
	2.1	Introduction
	2.2	Study of the Current State
	2.3	Analysis and criticism of the current state
		2.3.1 Functional needs
		2.3.2 Non-Functional needs
	2.4	DevOps appraoch
	2.5	Definition of CI/CD
	2.6	Definition of Green IT
	2.7	Green DevOps:
		2.7.1 The Fundamental Principles of Green DevOps
		2.7.2 The Benefits of Green DevOps
	2.8	Definition of DevOps Monitoring
		2.8.1 DevOps Monitoring Use Cases
	2.9	
		2.9.1 Subsection1
		2.9.2 Subsection2
		2.9.2.1 Subsubsection1
		2.9.2.2 Subsubsection2
		2.9.2.2.1 Paragraph a
		2.9.2.2. Paragraph b
	2.10	Section 2
		2.10.1 Subsection1
		2.10.2 Subsection2

Contents xi

			2.10.2.1 Subsubsection1
			2.10.2.2 Subsubsection2
			2.10.2.2.1 Paragraph a
			2.10.2.2.2 Paragraph b
3	Cha	apter 3	S title 26
	3.1	Sectio	n1
		3.1.1	Subsection1
		3.1.2	Subsection 2
			3.1.2.1 Subsubsection1
			3.1.2.2 Subsubsection2
			3.1.2.2.1 Paragraph a
			3.1.2.2.2 Paragraph b
	3.2	Sectio	n2
		3.2.1	Subsection1
		3.2.2	Subsection2
			3.2.2.1 Subsubsection1
			3.2.2.2 Subsubsection2
			3.2.2.2.1 Paragraph a
			3.2.2.2.2 Paragraph b
4	Cha	apter 4	title 29
	4.1	Sectio	n1
		4.1.1	Subsection1
		4.1.2	Subsection2
			4.1.2.1 Subsubsection1
			4.1.2.2 Subsubsection2
			4.1.2.2.1 Paragraph a
			4.1.2.2.2 Paragraph b
	4.2	Sectio	n2
		4.2.1	Subsection1
		4.2.2	Subsection2
			4.2.2.1 Subsubsection1

Contents xii

			4.2.2.2	Subsubs	section2	30
			4	.2.2.2.1	Paragraph a	30
			4	.2.2.2.2	Paragraph b	30
5	Cha	pter 5	title			32
	5.1	Section	n1			33
		5.1.1	Subsecti	ion1		33
		5.1.2	Subsecti	ion2		33
			5.1.2.1	Subsubs	section1	33
			5.1.2.2	Subsubs	section2	33
			5	.1.2.2.1	Paragraph a	33
			5	.1.2.2.2	Paragraph b	33
	5.2	Section	n2			33
		5.2.1	Subsecti	ion1		33
		5.2.2	Subsecti	ion2		33
			5.2.2.1	Subsubs	section1	33
			5.2.2.2	Subsubs	section2	33
			5	.2.2.2.1	Paragraph a	33
			5	.2.2.2.2	Paragraph b	33
Ge	enera	al Con	clusion a	and Pers	pectives	35
\mathbf{A}	Glo	ssary				36
В	Acr	onyms				37
\mathbf{C}	Son	ne sub	ject you	want to	expand on	39
Bi	bliog	graphy				41

General Introduction

Modern applications are typically designed with distributed architectures and developed using agile methodologies. These continuous integration and delivery (CI/CD) practices play a crucial role in efficiently managing the software lifecycle in terms of speed and effectiveness. However, despite this efficiency, security is often overlooked in the CI/CD workflow, particularly regarding concerns related to environmental footprint.

After deploying an application in a real production environment, additional security measures are needed to ensure its protection. The use of Green IT practices, such as integrating metrics for energy consumption and CO₂ emissions into the CI/CD pipeline, is becoming increasingly important to ensure the environmental sustainability of technological infrastructures.

My thesis project fits into this context, aiming to automate the monitoring of energy consumption and CO_2 emissions in DevOps infrastructures using Kepler.

This report synthesizes the work done throughout my internship period, structured into four chapters covering various aspects of the project.

The first chapter introduces the project context, objectives, and the approach and planning followed.

The second chapter focuses on the project's requirements analysis, while the third chapter addresses the technological choices.

Finally, the fourth chapter presents the project's final structure in detail, along with an overview of the achievements. The report concludes with a summary and a list of bibliographical references.

Chapter 1

General Project Context

1.1 Introduction

This chapter aims to conduct an initial exploration of the project, in order to better understand the system requirements, and to position the project within its organizational and contextual environment. It provides an overview of the hosting organization Orange Business Morocco, then reveals the general theme of the project by introducing its intentions and specifications, followed by the various approaches applied, including the recommended methodology for project management and the resulting planning.

1.2 Presentation of host organization

1.2.1 Company Overview

Figure 1.1: OBS logo

In 2000, following the opening of the telecommunications market to competition in Europe, France Télécom, the historic French operator, acquired the British brand Orange. At the same time, the Senegalese group Sonatel was created in the late 1980s, resulting from the merger of the Office des Postes et Télécommunications and TéléSenegal. Sonatel was privatized in 1997 and integrated into France Télécom's capital.

In France, France Télécom, quickly becoming a leader thanks to the quality of its networks, gradually unified all the group's subsidiaries under the name Orange. By 2009, Orange had a presence in more than 30 countries and served over 123 million customers.

On July 1, 2013, following a vote at a general meeting, France Télécom officially changed its name to Orange. This transformation marked a new chapter for the company while retaining a cultural heritage inherited from the public service. France Télécom's historic installations played an important role in the French telephone network, paving the way for the rise of mobile telephony and the beginning of a new revolution: the Internet.

Orange operates in several regions, notably in Europe, Africa, and the Caribbean. In 2019, it was considered the leader or second operator in 75

1.2.2 Vision of the Orange Group

In its strategy of development and evolution, the ambition of the Orange Group is based on five action levers and a dynamic of an efficient and responsible digital group. These objectives, which govern the daily work of all its employees, are as follows:

- Ensure enriched, more efficient connectivity at all levels and more eco-friendly, all without borders.
- Give a new look to customer relations by further personalizing them, transforming sales spaces, and digitizing customer interactions.
- Develop a digital and human employer model and offer a unique employee experience fueled by digital and fostering engagement.
- Assist in the transformation of client companies, suggesting new working methods and leveraging technology for transformation projects.
- Diversify by leveraging its assets and future growth markets, such as mobile banking services and connected objects.

1.2.3 Introducing Orange Business - Customers and figures

Figure 1.2: OBS logo

Orange Business operates in 166 countries and serves its customers in 220 countries and territories (Table 1.1).

Date of Establishment	2006
Legal Form	Legal Form
Managara	Christel Heydemann (CEO, Orange S.A) Helmut Reisinger
Management	(CEO, Orange Business Services)
Headquarters	Paris, France
Parent Company	Orange
Activity	Telecommunications Information Technology Services
Subsidiaries	Orange Application for Business, Business et Decision
Website	http://www.orange-business.com

Table 1.1: Orange Business Information

Orange Business Services (Fig. 1.2) aims to be the trusted partner for the digital transformation of its clients, with the objective of transitioning from the network operator model to the service model. It brings together the Business-to-Business activities of the Orange group carried out by various subsidiaries in France and abroad. OBS specializes in the design and development of application services and system integration in various domains for complex enterprises. Orange Business Services 28,500 employees are dedicated to French and multinational companies on five continents, accompanying them daily in their digital transformation (Fig. 1.3). It acts as both an infrastructure operator, technology integrator, and value-added service provider. OBS offers digital solutions to companies for their employees (collaborative spaces and mobile workstations), for their customers (customer relations and development of new services), and for their projects (enhanced connectivity, flexible IT infrastructures, cyber defense) (see Fig. 1.4). In 2016, OBS once again obtained the "Top Employer Europe 2016" certification. This certification recognizes the best policies and practices in terms of human resources programs. Orange Business Services aims to strengthen its global footprint in information technology services by leveraging expertise in areas such as the Internet of Things (IoT), cloud, data, and artificial intelligence (AI), application development, and cybersecurity, following an innovation-based approach to help its clients generate more value.

6

OBS relies on an executive committee composed of 18 members whose ambition is to:

- Design solutions for today and tomorrow, in response to customer needs and expectations.
- Provide daily support by advising, proposing, and facilitating the implementation of selected services, and providing after-sales support worldwide.
- Establish the organizations and processes of Orange Business Services for a strategy of operational excellence serving customers.

Figure 1.3: Orange Business key figures

While developing its activities, OBS IT ensures to maintain a wide diversification of its clientele and the sectors it addresses, in order to contain the risk of concentration on a limited number of clients.

Figure 1.4: OBS IT customers and partners.

1.2.4 Global Presence, Local Service

OBS IT teams are present in more than 65 countries to deploy and supervise networks and digital solutions on a daily basis (see Fig. 1.5).

Figure 1.5: OBS Global Presence.

- 8
- 11 CyberSocs bringing together the best expertise in threat analysis.
- 17 SoCs distributed worldwide monitoring and responding to events 24/7/365.
- 5 Major Service Centers (MSC) spread across all continents for 24/7 support.
- 70 Data Centers.

1.2.5 Orange Business Morocco

Orange Business Morocco is a newly established entity in 2018 in Rabat, specializing in the design and development of application services and system integration in various domains. It works on behalf of various expertise of Orange Business Services. Several companies have provided application services for Orange Business Services, such as Almerys, a health third-party payer operator. OBS IT Morocco is founded to take control of its applications, optimize and rationalize costs, bring development teams closer to business directions, and improve IT solution delivery times for TTM. By following an Agile way of working to deliver functionalities regularly that create the most value and adopting a simple and automated development and production environment to focus on the essentials. OBS IT Morocco uses the cloud, DevSecOps tools, and automated testing and feedback utilization to enrich applications while ensuring a user-centered approach. By guaranteeing versatile, autonomous, and committed teams to manage all activities on their applications (collecting requirements, drafting user stories, development, testing, integration, deployment, support).

1.2.6 Organization and Organizational Chart

OBS Morocco, overseen by a director Mrs. Rym Sahnoun who is the highest authority, is organized into operational poles whose goal is to focus its energies on a daily basis towards customer satisfaction. Teams are organized by Orange business services. I completed my internship in the OBS IT entity managed by Mr. Aarab Abderrahim and specifically Customer Marketing Innovation (Fig. 1.6) in the DevSecOps/TAAS team attached to Mr. Moustachi Mouhcine, IT RUN Manager (see Fig. 1.7).

Figure 1.6: OBS IT Morocco's operating entities

CMI: This is the IT Department of the Orange Group. Its goal is to create efficient software development, entity-oriented, based on the best practices of a software factory (digital factory model). This entity adopts an agile delivery model, possesses a simple and automated development and production environment. It is a versatile, autonomous, and committed team to manage all activities related to the applications entrusted to it: from collecting customer needs and requirements, to writing user stories, through development, testing, and integration, before reaching deployment and support.

- Enrich the relationship between companies and their customers through a digital approach and a 360° customer journey.
- Exploit machines and communicating objects that transmit real-time data to create new sources of revenue and differentiation.
- Make use of the data produced by companies and their customers to innovate and personalize their products and services.

OCWS: This entity is composed of 3 poles with different missions. The first center, internationally / in Morocco, manages the operational part. A pre-sales team provides technical assistance to commercial engineers to help them negotiate contracts. A BUILD team's missions include deploying network

solutions for customers and offering them the best possible connectivity experience through various technologies such as SDWAN, WIFI, LAN, etc.

OCD: This is the entity that designs cybersecurity services that support customers in the Maghreb and West Africa, throughout the life cycle of threats that can impact client companies. They have 5 main missions:

- Anticipate the latest threats.
- Identify the assets and critical data of customers, prepare the security strategy, and ensure its proper functioning.
- Deploy appropriate technology to defend the organization and manage it continuously.
- Monitor, qualify, and analyze security alerts to confirm if there has been an incident.
- Qualify, contain, and remedy attacks. Thanks to their sectoral expertise, they can offer tailor-made services to meet customer challenges.

Orange Connectivity: Entity responsible for marketing OBS Connectivity data offers (Internet, Ethernet, VPN).

Missions in Morocco: Management of pricing for offers marketed in France and internationally (definition and update of standard prices, calculation of custom prices).

OINIS: Orange International Networks Infrastructures & Services' mission is to design, deploy, and operate reliable, secure, and high-quality international network infrastructures and services for businesses, wholesale customers (operators), and subsidiaries.

WIN IC: This is the commercial arm of OINIS. This entity provides international connectivity services to operators and internet service providers worldwide.

The Business Unit EIC (Enriched Interactions and Collaboration): Straddling digital & data and connectivity, its goal is to design and bring to market communication and collaboration offerings from Orange Business Services: voice solutions, conference solutions, unified communications suites, and contact center solutions.

11

Figure 1.7: OBS IT organization chart

1.3 Introducing the DevSecOps team

DevSecOps is a team recently created within the IT RUN entity (Fig. 1.7) to fulfill two main missions:

- Cloud DevOpSec: Design, build, and implement Cloud services and DevSecOps tools (Fig. 1.9).
- REaCT: The goal is to implement the DevOps mindset within the company and support development projects (Fig. 1.8).

12

Figure 1.8: React missions

Figure 1.9: Cloud & DevSecOps missions

1.4 Project presentation

1.4.1 General project context

In today's world, ensuring the sustainability of IT practices is paramount. When it comes to IT professionals, it is imperative to prioritize eco-friendly strategies from the outset of the development process.

As a developer, you may not be required to master the intricacies of environmental impact assessments, as there are several reliable tools available to assess the carbon footprint of IT solutions. By integrating these assessments into the CI/CD pipeline and implementing effective remediation strategies, organizations can significantly reduce the environmental cost associated with IT operations.

This includes not only the direct costs of energy consumption but also the broader environmental impact of resource depletion and pollution. Consequently, IT teams have embraced a new approach known as Green IT, which promotes the integration of sustainability principles into IT practices and encourages close collaboration between environmental experts, developers, and IT engineers.

This approach ensures that environmental considerations are addressed at every stage of the development and delivery process, thereby fostering a more sustainable IT ecosystem.

1.4.2 Problematic

While Orange Business Services Morocco has established efficient CI/CD pipelines using GitLab, there is a lack of focus on environmental sustainability and energy efficiency within their DevOps processes. The current approach prioritizes swift software delivery but overlooks the environmental impact of development and deployment activities. This neglect of Green IT principles hinders efforts to reduce energy consumption and carbon emissions associated with the organization's IT infrastructure, particularly its Kubernetes clusters. The challenge lies in integrating Green IT considerations seamlessly into existing DevOps workflows without compromising efficiency or productivity. Thus, the problematic revolves around balancing the need for rapid software delivery with environmental responsibility, requiring the development of strategies and tools to monitor and optimize energy usage and carbon footprint throughout the CI/CD pipeline

1.5 Project planning and management

1.5.1 Method adopted

To ensure optimal progress of our project, we have chosen to use the agile Scrum method (illustrated in Fig. 1.10).

Figure 1.10: Scrum methodology

This approach will enable us to best meet the needs of the company while minimizing the risk of delays and ensuring the satisfaction of all stakeholders.

Scrum is an agile project management method that was first introduced in an article by Hirotaka Takeuchi and Ikujiro Nonaka in 1986, published in the Harvard Business Review under the title "The New Product Development Game". It was developed in the 1990s and formalized by Ken Schwaber and Jeff Sutherland in 1995.

The fundamental principle of this method is to iteratively focus on the features to be implemented. The project is divided into functional modules that are developed, tested, and delivered in iterative sequences called "sprints". Each sprint aims to achieve a specific goal, from which the features to be implemented are chosen.

We have adapted the Scrum method to our project by dividing it into sprints of two to three weeks. At the end of each sprint, a meeting is organized with the Scrum Master and the Product Owner to review the work done during the period and set the tasks and objectives for the next sprint. If differences are noted during the inspection, we adapt the process in question. To do this, we have set up weekly

1.6. Conclusion 15

meetings led by the Scrum Master, during which each team member presents the status of their tasks, reports any encountered blockers, and outlines the actions to be taken for the next period as well as future prospects. This approach has allowed us to clearly define the objectives for each increment and adapt them as needed, while also allowing us to complete or modify the list of features to be implemented for the upcoming sprints.

1.5.2 Project Planning

Planning is an essential step in project management, as it allows for defining the work to be done, setting objectives, coordinating actions, managing resources, reducing risks, tracking ongoing actions, and reporting the project's progress. In our case, we started by breaking down the project into tasks, then proceeded with a risk assessment before establishing a Gantt chart to have an overview of the project's progress.

1.6 Conclusion

In this chapter, we first introduced Orange Business Morocco, the organization involved in the project. Then, we established the general framework of the project before presenting the specific problem to be addressed. We also explained the working method we adopted and provided an overview of the schedule that was followed throughout the project. In the next chapter, we will move on to the functional and non-functional analysis of our project, as well as detailed design. This phase will define the specifications necessary for the development of the overall project architecture.

Chapter 2

Specification and Needs Analysis

2.1 Introduction

The success of a project heavily relies on the quality of its initiation. Therefore, the functional study phase is crucial for a successful start to the project. This chapter encompasses requirement specifications, including needs analysis involving stakeholder identification, system use cases, and the textual scenarios associated with these use cases.

2.2 Study of the Current State

Orange Business Services Morocco has embraced an approach known as CI/CD to efficiently manage the development and delivery of its projects. They utilize the GitLab platform, which facilitates swift creation, compilation, testing, delivery, and deployment of software.

In their existing solution, they have established continuous integration and delivery pipelines using GitLab CI, Nexus, Docker, and Kubernetes. Here's how it operates:

- Code management and updates are performed using GitLab. Developers push their code changes to the GitLab repository.
- The application is containerized using Docker, a technology enabling the creation of isolated and portable environments for applications.
- The GitLab Runner conducts a check to ensure the YAML code is correct and clean. Then, it triggers pipeline steps such as Docker image generation and their submission to the Nexus repository.
- Kubernetes, aided by Helm (a package manager for Kubernetes), handles the application deployment across various environments. It follows a "Push" deployment model.

This approach enables Orange Business Services Morocco to efficiently manage the development and delivery of their projects by automating processes using GitLab, Docker, Nexus, and Kubernetes. It empowers them to deliver high-quality software more rapidly.

2.3 Analysis and criticism of the current state

While utilizing GitLab accelerates software development and deployment, there's a clear need for enhancements focused on sustainability and reducing environmental impact. An exhaustive study of the existing system was conducted to refine our project's scope and expected functionalities, aiming for a more reliable system than the previous one. Identified areas for improvement include

- The current CI/CD approach relies heavily on resource-intensive technologies like Docker and Kubernetes, which contribute to increased energy consumption and carbon emissions.
- While effective for streamlining development workflows, the pipelines lack mechanisms for tracking and optimizing energy usage.
- Without visibility into the energy consumption and carbon footprint of the Kubernetes cluster, targeted strategies for reducing environmental impact are challenging to implement.

2.3.1 Functional needs

Functional requirements gathering is a crucial step in the project. This stage produces the functional specifications document, during which the expected functionalities are formalized along with all governing management rules. To address the issues identified in the existing study, the principle is to integrate monitoring tools such as Kepler (Kubernetes-based Efficient Power Level Exporter), Prometheus, and Grafana into the CI/CD pipeline. This integration aims to measure the energy consumption and CO₂ emissions of Orange's Kubernetes cluster, providing valuable insights for optimizing Green IT practices within the DevOps workflow.

2.3.2 Non-Functional needs

Non-functional requirements play a crucial role in system design, because they define the attributes, constraints and restrictions to be taken into account.

These requirements, also called system qualities, guarantee the user-friendliness and overall efficiency of the system. If any of these requirements are not met, the system risks not meeting the internal needs of the company, users or the market.

• Accuracy: The system must provide accurate measurements of energy consumption and CO₂ emissions to support informed decision-making.

- 19
- Scalability: Ensure scalability to handle increasing data volumes as the size of the Kubernetes cluster grows.
- Reliability: The solution should be reliable, with minimal downtime, to maintain continuous monitoring and data collection.
- Security: Implement robust security measures to safeguard sensitive energy consumption and emission data from unauthorized access or tampering.
- **Performance**: Ensure efficient performance to deliver timely insights and visualizations, even during peak usage periods.
- Ease of Use: Design an intuitive user interface that allows administrators to easily configure monitoring settings and interpret data visualizations.
- Compatibility: Ensure compatibility with existing infrastructure and tools used within Orange Business Services Morocco, such as Prometheus, Grafana, and Kepler.

2.4 DevOps appraoch

The word DevOps is a combination of the terms development and operations, meant to represent a collaborative or shared approach to the tasks performed by a company's application development and IT operations teams. The DevOps methodology aims to shorten the systems development lifecycle and provide continuous delivery with high software quality. These characteristics help ensure a culture of building, testing, and releasing software that is more reliable and at a high velocity.

2.5 Definition of CI/CD

Continuous Integration (CI) is a software development practice where developers frequently merge their code changes into a central repository, typically multiple times a day. Each merge triggers an automated build and testing process. The primary goal of CI is to detect and address issues early in the development cycle, which helps in maintaining code quality and reducing integration problems. By integrating frequently, developers can identify bugs early, facilitating easier and quicker fixes.

Continuous Delivery (CD) extends CI by automatically preparing code changes for a release to production. It ensures that the software can be reliably released at any time, with the deployment process being automated but requiring manual approval. Continuous Deployment is a further extension

20

of CD where every change that passes all stages of the production pipeline is automatically released to customers without human intervention. This practice reduces the lead time for delivering new features and fixes, thus providing rapid feedback to developers and stakeholders.

2.6 Definition of Green IT

Green IT, also known as Green Information Technology, refers to environmentally sustainable computing practices. It encompasses a broad range of strategies aimed at minimizing the environmental impact of IT operations. This includes optimizing energy consumption, reducing electronic waste, and promoting the use of eco-friendly technologies.

The goal of Green IT is to create more efficient and sustainable systems by implementing practices such as energy-efficient hardware, virtualization, and effective cooling systems in data centers. It also involves the adoption of cloud computing to optimize resource use and the implementation of robust recycling programs for electronic devices.

2.7 Green DevOps:

Green DevOps extends DevOps principles, focusing on resource efficiency while staying agile. It emphasizes sustainability, reducing environmental impact, and integrating eco-friendly strategies into software development. The goal is to balance technological innovation with ecological responsibility.

Figure 2.1: Green DevOps

21

2.7.1 The Fundamental Principles of Green DevOps

Green DevOps is nothing more than an extension of DevOps. It shouldn't be viewed as an upheaval of all DevOps principles. We retain all DevOps principles but adjust them as finely as possible to optimize resource usage.

Green DevOps relies on the following concepts:

- Infrastructure Optimization: Choosing eco-friendly data centers, energy-efficient hardware, and effective resource utilization are pillars of Green DevOps. The goal is to reduce energy consumption while maintaining performance.
- Reduction of E-waste: This involves minimizing over-provisioning of IT resources, properly managing electronic waste, and promoting hardware component recycling.
- Automation and Process Optimization: Automation is at the core of DevOps, but it holds even greater importance in the context of Green DevOps. Automating tasks reduces energy consumption by minimizing unused resources and enabling fine-grained resource management.
- Carbon Impact Assessment: To truly become "green," measurement is necessary. Green DevOps integrates tools and metrics to continuously assess and monitor the carbon footprint of projects. This helps identify areas needing improvement and track progress.
- Reduction of Cycle Times: Shorter development cycles mean less energy consumption and faster time to market. By reducing delays, Green DevOps contributes to the competitiveness of the business while minimizing its environmental impact.
- Awareness: DevOps teams need to be aware of environmental issues. Employee training and engagement are essential to fostering the adoption of sustainable practices.

2.7.2 The Benefits of Green DevOps

- Cost Reduction: Less wasted resources, time saved, and efficient resource utilization result in a significant reduction in operating and infrastructure costs.
- Quality Improvement: Green DevOps practices encourage automation, monitoring, and rigorous testing, leading to better software quality, fewer bugs, and an enhanced user experience.

- 22
- Social Responsibility: Companies adopting Green DevOps demonstrate their commitment to environmental sustainability, which can enhance their brand image and attract new customers and talents.
- Regulatory Compliance: With an increasing number of environmental regulations in place, Green DevOps helps companies comply with standards and avoid potential penalties.

2.8 Definition of DevOps Monitoring

DevOps monitoring is the process of tracking and measuring the performance of applications and systems in order to help software development teams identify and resolve potential issues more quickly. This is typically done via a manual or automated DevOps monitoring solution or a collection of continuous monitoring tools that gather data

2.8.1 DevOps Monitoring Use Cases

The main benefit of DevOps monitoring is its ability to define, track, and measure KPIs across all aspects of DevOps. Here are some specific use cases of DevOps monitoring:

- Detect and Report Errors Earlier: Flagging issues to DevOps teams more quickly means they can resolve them before they impact user experience. Early detection and reporting of errors allow for prompt resolution, minimizing disruptions and maintaining a smooth user experience.
- Reduce System Downtime: DevOps monitoring tools provide continuous oversight of databases, applications, and networks, enabling teams to resolve issues before system downtimes occur. By proactively identifying potential problems, teams can take preemptive actions to avoid outages and ensure system reliability.
- Increase Security: Through data analysis across the entire ecosystem, continuous monitoring in DevOps automates security measures by identifying inconsistencies or triggers that lead to security failures. Teams can respond to threats manually (on-call) or automatically with tools, enhancing the overall security posture and protecting sensitive data.
- Enhance Observability of DevOps Components: Easily identify when various systems and applications in your DevOps stack degrade in performance, cost, security, or other factors to avoid problems down the road. Enhanced observability enables teams to maintain optimal performance and security by monitoring and analyzing system behavior continuously.

• Uncover Root Cause of Issues Faster: Continuous tracking of logs and metrics helps teams identify the root cause — where a problem started or occurred. This allows engineers to detect patterns in system behavior to anticipate and prevent future issues, improving mean time to detection (MTTD), mean time to repair (MTTR), and mean time to isolate (MTTI).

2.9

2.9.1 Subsection1

Table 2.1: Long table 1

Cell	Description
Element11	Element21
Element12	Element22
Element13	Element23
Element14	Element24
Element15	Element25
Element16	Element26
Element17	Element27
Element18	Element28
Element19	Element29
Element110	Element210
Element111	Element211
Element112	Element212
Element113	Element213
Element114	Element214

2.9.2 Subsection2

2.9.2.1 Subsubsection1

2.9.2.2 Subsubsection2

2.9.2.2.1 Paragraph a

2.10. Section2 24

2.9.2.2. Paragraph b

2.10 Section2

- 2.10.1 Subsection1
- 2.10.2 Subsection2
- ${\bf 2.10.2.1} \quad {\bf Subsubsection 1}$
- 2.10.2.2 Subsubsection2
- 2.10.2.2.1 Paragraph a
- 2.10.2.2.2 Paragraph b

2.10. Section2 25

Conclusion

Chapter 3

Chapter 3 title

Introduction

3.1. Section1 27

3.1 Section1

3.1.1 Subsection1

Column1	Column2
Element11	Element21
Element12	Element22
Element13	Element23

Table 3.1: Table 1

3.1.2 Subsection2

- 3.1.2.1 Subsubsection1
- 3.1.2.2 Subsubsection2
- 3.1.2.2.1 Paragraph a
- 3.1.2.2.2 Paragraph b

3.2 Section2

3.2.1 Subsection1

3.2.2 Subsection2

- 3.2.2.1 Subsubsection1
- 3.2.2.2 Subsubsection2
- 3.2.2.2.1 Paragraph a
- 3.2.2.2. Paragraph b

3.2. Section2 28

Conclusion

Chapter 4

Chapter 4 title

Introduction

4.1. Section1 30

4.1 Section1

- 4.1.1 Subsection1
- 4.1.2 Subsection2
- 4.1.2.1 Subsubsection1
- 4.1.2.2 Subsubsection2
- 4.1.2.2.1 Paragraph a
- 4.1.2.2.2 Paragraph b

4.2 Section2

- 4.2.1 Subsection1
- 4.2.2 Subsection2
- 4.2.2.1 Subsubsection1
- 4.2.2.2 Subsubsection2
- 4.2.2.2.1 Paragraph a
- 4.2.2.2. Paragraph b

4.2. Section2 31

Conclusion

Chapter 5

Chapter 5 title

Introduction

5.1. Section1 33

5.1 Section1

5.1.1 Subsection1

5.1.2 Subsection2

- 5.1.2.1 Subsubsection1
- 5.1.2.2 Subsubsection2
- 5.1.2.2.1 Paragraph a
- 5.1.2.2.2 Paragraph b

5.2 Section2

5.2.1 Subsection1

5.2.2 Subsection2

- 5.2.2.1 Subsubsection1
- 5.2.2.2 Subsubsection2
- 5.2.2.2.1 Paragraph a
- 5.2.2.2. Paragraph b

5.2. Section2 34

Conclusion

General Conclusion and Perspectives

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent nec dapibus justo. Donec sagittis vulputate ante sed porttitor. Suspendisse sit amet nisl massa. Curabitur nec nisl condimentum, egestas ex vitae, dapibus enim. Etiam iaculis, erat faucibus pellentesque sagittis, nisi justo sollicitudin nibh, et condimentum augue massa non turpis. Proin commodo enim fermentum suscipit condimentum. Maecenas molestie, dui nec vestibulum rhoncus, arcu nisl faucibus neque, a ornare nisi massa ac eros. Aenean id velit sit amet lacus mattis varius. Donec fringilla massa sed nisi eleifend, a aliquet mi tempus. Nunc posuere euismod est, nec tristique augue lobortis non. Sed sodales sem ut metus tempus ullamcorper.

Nullam fermentum id mauris suscipit varius. Quisque tristique tempor fringilla. Nam porta tincidunt orci in consectetur. Suspendisse nec sem nisi. Suspendisse potenti. Sed sodales aliquam libero, at dapibus ligula accumsan non. Quisque congue et urna a consectetur. Nullam maximus venenatis ornare. Donec in luctus urna, vel rhoncus lectus. Etiam lobortis, lacus nec gravida iaculis, magna nulla iaculis leo, quis congue nunc tortor pellentesque lorem. Sed fermentum vulputate dui, ac malesuada eros molestie sit amet. Proin fringilla elit justo, in posuere urna porttitor et. Curabitur dictum justo vitae metus pellentesque, eget feugiat sem feugiat.

Curabitur in mauris eu felis cursus auctor eget ut massa. Curabitur eleifend consectetur magna in ultrices. Etiam ut semper turpis. Morbi sed ipsum nec sem rutrum blandit sit amet vitae felis. Vestibulum vitae hendrerit diam. Aliquam pellentesque est mi, et tempus nisl laoreet in. Maecenas consequat augue a ante congue dignissim. In condimentum erat in volutpat tempus. Mauris vulputate, enim ut dignissim varius, lorem purus tristique sapien, lobortis accumsan dolor lorem quis eros. Duis vel imperdiet metus, non suscipit tortor.

Appendix A

Glossary

Telnet: Telnet is a network protocol that allows users to establish a remote terminal connection to a computer or network device over a network.

SSH (Secure Shell): SSH is a network protocol used for secure remote administration and secure file transfers.

SNMP (Simple Network Management Protocol): SNMP is a network protocol designed for managing and monitoring network devices and systems.

Appendix B

Acronyms

IP Internet Protocol

CNS Cloud and Network Services

MN Mobile Networks

NI Network Infrastructure

IoT Internet of Things

NFV Network Functions Virtualization

SDN Software-Defined Network

TCP Transmission Control Protocol

7750 SR Nokia 7750 Service Router

OSPF Open short Path First

BGP Border Gateway Protocol

VPN Virtual Private Network

MPLS Multiprotocol Label Switching

EVE-NG Emulated Virtual Environment - Next Generation

VM Virtual Machine

SSH Secure Shell

WinSCP Windows Secure Copy

FTP File Transfer Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

FTPS FTP over SSL/TLS

SFTP Secure File Transfer Protocol

SCP Secure Copy Protocol

CLI Command-line interface

MD-CLI Model-Driven Command Line

API Application Programming Interface

re Regular Expression

IGP Internal Gateway Protocol

IS-IS Intermediate-System Intermediate-System

SPF Shortest Path First

SF Switch Fabric

CPM Control Processing Module

IOM Input/Output Modules

MDA Media Dependent Adapters

QoS Quality of Service

IPsec Internet Protocol Security

VSR Virtual Services Router

DDoS Distributed Denial-of-Service

SROS Service Router Operating System

NETCONF Network Configuration Protocol

YANG Yet Another Next Generation

MP-BGP Multiprotocol Border Gateway Protocol

IPv6 Internet Protocol Version 6

AS Autonomous Systems

iBGP Internal Border Gateway Protocol

eBGP External Border Gateway Protocol

LAG Link Aggregation Group

VPRN Virtual Private Routed Network

SNMP Simple Network Management Protocol

Telnet Telecommunication Network

YAML Yet Another Markup Language

XML eXtensible Markup Language

Appendix C

Some subject you want to expand on

You can add more appendices depending on the subjects.

```
[root@host ~] # You can change the language and caption.
3
```

Listing C.1: Bash example

```
# Solve the quadratic equation ax**2 + bx + c = 0
      # import complex math module
      import cmath
      a = 1
      b = 5
      c = 6
10
      # calculate the discriminant
11
      d = (b**2) - (4*a*c)
12
13
      # find two solutions
      sol1 = (-b-cmath.sqrt(d))/(2*a)
      sol2 = (-b+cmath.sqrt(d))/(2*a)
16
17
      print('The solution are {0} and {1}'.format(sol1,sol2))
19
```

Listing C.2: Python example

Column1	Column2
Element11	Element21
Element12	Element22
Element13	Element23

Table C.1: Table Example

Table C.2: Long table Example

Cell	Description
Element11	Element21
Element12	Element22
Element13	Element23
Element14	Element24
Element15	Element25
Element16	Element26
Element17	Element27
Element18	Element28
Element19	Element29
Element110	Element210
Element111	Element211
Element112	Element212
Element113	Element213
Element114	Element214

Bibliography

- [1] Author name, Book name.
- [2] *Title 1*, **Title 2**