

Networking- Compute (EC2) - Storage

Security Group vs. Network ACL

Security Group	Network ACL
Applied at Instance (ENI) Level	Applied at Subnet Level
Stateful - Response is always allowed	Stateless - Request and Response both have to be allowed
Default Rules (For Default SG) - All inbound is allowed from the same SG - All outbound is Allowed Default Rules (For a new SG) - All Inbound is Deny - All outbound in Allowed	Default Rules (For Default NACL) - All inbound is Allowed - All outbound is Allowed Default Rules (For a new NACL) - All inbound is Deny - All outbound is Deny
1 Instance can have many SG assigned	1 Subnet can have only 1 NACL
Only allow statements	Allow and Deny both statements
Order is not important	Order is important (lower order rule is applied first)
Source - IP / IP Range / Port / SG- <xxxxxxx></xxxxxxx>	Source - IP / Port / IP Range

Site-to-Site VPN vs. Direct Connect

	Site-to-Site VPN	Direct Connect	
Use case	Connecting remote networks to AWS VPC which doesn't require heavy data transfer or doesn't require a consistent connection	Connecting remote networks to AWS VPC which require heavy data transfer or require a consistent connection	
Choose when	Cost is important	Predictable performance is important	
Supported speed	1.25 Gbps per tunnel	1 / 10 / 100 Gbps (sub 1 Gbps connections may be available from some service providers)	
How it works?	Establishes a tunnel over existing internet connection	Establishes a connectivity over a dedicated network. Doesn't use Internet	
High Availability	Highly available on AWS side (VGW is deployed across 2 AZs)	Single connection. No high availability by default	
Encryption	Uses IPSec	Not encrypted by default	
Time to establish	Can be setup in few minutes in a self-service fashion	Requires a Service Provider, may take few hours/days to get established	
Cost dimension	Per connection hour and data transfer out	Variable port fees and data transfer out	

VPC Peering

- VPC Peering is established in a 1:1 fashion and is not transitive.
- You can setup cross-region, cross-account peering.
- Two step process Request Peering and Accept Peering.
- Route Table entries direct the traffic.
- Peering connection uses private IP Address, traffic always stays on the global AWS backbone.
- There is no charge to create a VPC peering connection but there is a charge for data transfer across peering connections.

Transit Gateway

VPC Endpoints

	Gateway Endpoint	Interface Endpoint
Used for	Private connectivity to Amazon S3 and Amazon DynamoDB	Private connectivity to 100+ AWS Services (including Amazon S3)
How it works?	An entry for prefix list (IP addresses) for supported services is added in to the routing table	An ENI(s) is provisioned in the selected subnet(s) which serves as an entry point for traffic destined to a supported service. (powered by AWS PrivateLink)
Provisioned at	VPC Level then entry added to Route Table	Subnet Level (no entry required in Route Table)
Security	Through VPC Endpoint Policy	Through Security Group

Amazon Elastic Compute Cloud (EC2) – Virtual Server in Cloud

Virtualization Approach

AWS Approach

Provisioning an EC2 Instance

- AMI Amazon Machine Image
 - Template of common OS images
 - Quick Start
 - My AMI
 - Marketplace
 - Community

- Instance Type
 - Performance Characteristics
 - Optimized for different workloads
 - Elastic Can be changed later
 - Region Specific

User Data

Customize your instance at launch

```
#!/bin/bash
yum update -y
yum install httpd -y
echo "<html><body><center><h1>Welcome to AWS. Here is my web page!
</h1></center></body></html>" > /var/www/html/index.html
systemctl start httpd
systemctl enable httpd
```

EC2 Purchase Options

Storage Types

	Block Storage	File Storage	Object Storage
Unit of Transaction	Blocks	Files	Objects (files with metadata)
Example	Laptop Disk Boot (C:) 20.2 GB free of 111 GB Data (D:) 745 GB free of 930 GB	Windows Share Drive: Z: ▼ Folder: \\NetworkStorage\SQL\DBBackups\\▼ Example: \\server\share Reconnect at logon	OneDrive / Google Drive / Dropbox OneDrive Google Drive Dropbox
How can you update?	You can directly update the file	You can directly update the file	You cannot update the object directly. You create a new version of the object and replace the existing one or keep multiple versions of the same object.
Protocols	SCSI, Fiber Channel, SATA	SMB, CIFS, NFS	REST/SOAP over HTTP/HTTPs
Support for metadata	No metadata support it stores only file system attributes	No metadata support it stores only file system attributes	Supports custom metadata
AWS Services	Amazon EBS Amazon Instance Store	Amazon EFS Amazon FSX	Amazon S3 Amazon Glacier

EC2 Storage Options – Block Storage

- Instance Store
 - Local Storage
 - Ephemeral
 - Limited Size
 - Not available on all instance types
 - Use case
 - Swap space
 - Temp. Storage

- Elastic Block Store (EBS)
 - Over Network
 - Persistent Storage
 - 64 TB Max Size
 - Choice of volume types
 - EBS Optimized instance type*
 - Use case
 - Any block storage need (OS/DB/Log)

Amazon EBS Volume Types

Amazon EBS Volume

Specific to a AZ

 Choose based on performance/price

 Can be expanded (can't shrink)

 Can be changed while instance is running

Supports Snapshot

 Snapshots can be copied to another Region or account

Supports encryption

Attached to Single EC2
 Instance*

Amazon EBS Snapshot

• EBS Snapshots are a point-in-time copy of your data.

• It can be used to enable disaster recovery, migrate data across regions and accounts, and improve backup compliance.

• The snapshots are automatically saved to Amazon S3 for long-term retention.

• Amazon EBS Snapshots are incremental, storing only the changes since the last snapshot.

Buckets and Objects

- Buckets are containers for data stored in S3.
- Objects are the fundamental entities stored in Amazon S3.
- S3 Name Space is global, Buckets are regional.
- Durability 99.99999999 %
- Availability 99.9x %
- Max object size 5 terabytes

Bucket Policy

• The bucket policy, written in JSON, provides access to the objects stored in the bucket.


```
"Id": "Policy1675378587932",
"Version": "2012-10-17",
"Statement": [
  "Sid": "Stmt1675378555005",
  "Action": [
   "<API Request>"
  "Effect": "<Allow/Deny>",
  "Resource": "<Bucket-ARN>",
  "Principal": "<Identity>"
```

Amazon S3 Storage Pricing

Amazon S3 Storage Class

Access frequency

Frequent

Amazon S3 Storage Class

Storage class	Designed for	
Standard	Frequently accessed data (more than once a month) with milliseconds access	
Intelligent-Tiering	Data with changing or unknown access patterns	
Standard-IA	Infrequently accessed data (once a month) with milliseconds access	
One Zone-IA	Re-creatable, infrequently accessed data (once a month) stored in a single Availability Zone with milliseconds access	У
Glacier Instant Retrieval	Long-lived archive data accessed once a quarter with instant retrieval in milliseconds	
Glacier Flexible Retrieval (formerly Glacier)	Long-lived archive data accessed once a year with retrieval of minutes to hours	
Glacier Deep Archive	Long-lived archive data accessed less than once a year with retrieval of hours	
Reduced redundancy	Noncritical, frequently accessed data with milliseconds access (not recommended as Standard is more cost effective)	S 3

Amazon S3 Intelligent-Tiering

 Optimizes costs by moving objects between four access tiers when access pattern changes

Access patterns are monitored to automate object movement between access tiers

Data Access

Any time an object is accessed, S3
Intelligent-Tiering moves the object
back to the Frequent Access Tier

Frequent Access Tier

Objects uploaded or transitioned to S3 Intelligent-Tiering are automatically stored in the frequent access tier

Infrequent Access Tier

Objects not accessed for 30 consecutive days

Archive Access Tier

Objects not accessed for 90 consecutive days

Deep Archive Access Tier

Objects not accessed for 180 consecutive days

Amazon S3 Life Cycle Policies

• Storing objects cost effectively throughout their lifecycle

Bucket Versioning

• Versioning is a means of keeping multiple variants of an object in the same bucket.

Object
A

Versioning

https://<bucket>.s3.amazonaws.com/ObjectA

https://<bucket>.s3.amazonaws.com/ObjectA?versionId=22222

Replication Rules

 Replication enables automatic, asynchronous copying of objects across Amazon S3 buckets.

• It requires versioning to be enabled.

 You can replicate data from one source bucket to multiple destination buckets.

• Supports cross-account and cross-region replication.

EC2 Auto Scaling feature

EC2 Auto Scaling Group

Scale between min and max

A company runs a public-facing three-tier web application in a VPC across multiple Availability Zones.

Amazon EC2 instances for the application tier running in private subnets need to download software patches from the internet. However, the EC2 instances cannot be directly accessible from the internet.

Which actions should be taken to allow the EC2 instances to download the needed patches? (Select TWO.)

- A) Configure a NAT gateway in a public subnet.
- B) Define a custom route table with a route to the NAT gateway for internet traffic and associate it with the private subnets for the application tier.
- C) Assign Elastic IP addresses to the EC2 instances.
- D) Define a custom route table with a route to the internet gateway for internet traffic and associate it with the private subnets for the application tier.
- E) Configure a NAT instance in a private subnet

A company runs a public-facing three-tier web application in a VPC across multiple Availability Zones.

Amazon EC2 instances for the application tier running in private subnets need to download software patches from the internet. However, the EC2 instances cannot be directly accessible from the internet.

Which actions should be taken to allow the EC2 instances to download the needed patches? (Select TWO.)

- A) Configure a NAT gateway in a public subnet.
- B) Define a custom route table with a route to the NAT gateway for internet traffic and associate it with the private subnets for the application tier.
- C) Assign Elastic IP addresses to the EC2 instances.
- D) Define a custom route table with a route to the internet gateway for internet traffic and associate it with the private subnets for the application tier.
- E) Configure a NAT instance in a private subnet

A solutions architect wants to design a solution to save costs for Amazon EC2 instances that do not need to run during a 2-week company shutdown. The applications running on the EC2 instances store data in instance memory that must be present when the instances resume operation.

Which approach should the solutions architect recommend to shut down and resume the EC2 instances?

- A) Modify the application to store the data on instance store volumes. Reattach the volumes while restarting them.
- B) Snapshot the EC2 instances before stopping them. Restore the snapshot after restarting the instances.
- C) Run the applications on EC2 instances enabled for hibernation. Hibernate the instances before the 2-week company shutdown.
- D) Note the Availability Zone for each EC2 instance before stopping it. Restart the instances in the same Availability Zones after the 2-week company shutdown.

A solutions architect wants to design a solution to save costs for Amazon EC2 instances that do not need to run during a 2-week company shutdown. The applications running on the EC2 instances store data in instance memory that must be present when the instances resume operation.

Which approach should the solutions architect recommend to shut down and resume the EC2 instances?

- A) Modify the application to store the data on instance store volumes. Reattach the volumes while restarting them.
- B) Snapshot the EC2 instances before stopping them. Restore the snapshot after restarting the instances.
- C) Run the applications on EC2 instances enabled for hibernation. Hibernate the instances before the 2-week company shutdown.
- D) Note the Availability Zone for each EC2 instance before stopping it. Restart the instances in the same Availability Zones after the 2-week company shutdown.

A company plans to run a monitoring application on an Amazon EC2 instance in a VPC. Connections are made to the EC2 instance using the instance's private IPv4 address. A solutions architect needs to design a solution that will allow traffic to be quickly directed to a standby EC2 instance if the application fails and becomes unreachable.

Which approach will meet these requirements?

- A) Deploy an Application Load Balancer configured with a listener for the private IP address and register the primary EC2 instance with the load balancer. Upon failure, de-register the instance and register the standby EC2 instance.
- B) Configure a custom DHCP option set. Configure DHCP to assign the same private IP address to the standby EC2 instance when the primary EC2 instance fails.
- C) Attach a secondary elastic network interface to the EC2 instance configured with the private IP address. Move the network interface to the standby EC2 instance if the primary EC2 instance becomes unreachable.
- D) Associate an Elastic IP address with the network interface of the primary EC2 instance. Disassociate the Elastic IP from the primary instance upon failure and associate it with a standby EC2 instance.

A company plans to run a monitoring application on an Amazon EC2 instance in a VPC. Connections are made to the EC2 instance using the instance's private IPv4 address. A solutions architect needs to design a solution that will allow traffic to be quickly directed to a standby EC2 instance if the application fails and becomes unreachable.

Which approach will meet these requirements?

- A) Deploy an Application Load Balancer configured with a listener for the private IP address and register the primary EC2 instance with the load balancer. Upon failure, de-register the instance and register the standby EC2 instance.
- B) Configure a custom DHCP option set. Configure DHCP to assign the same private IP address to the standby EC2 instance when the primary EC2 instance fails.
- C) Attach a secondary elastic network interface to the EC2 instance configured with the private IP address. Move the network interface to the standby EC2 instance if the primary EC2 instance becomes unreachable.
- D) Associate an Elastic IP address with the network interface of the primary EC2 instance. Disassociate the Elastic IP from the primary instance upon failure and associate it with a standby EC2 instance.