Question 2

From the task description we get: $P(a \mid r) = 0.3$

$$P(o \mid r) = 0.4$$

 $P(l \mid r) = 0.3$
 $P(a \mid g) = 0.3$
 $P(o \mid g) = 0.3$

$$P(l \mid g) = 0.4$$

$$P(a \mid b) = 0.5$$

$$P(o \mid b) = 0.5$$

$$P(l \mid b) = 0$$

Using Bayes rule we can determine the following probabilities:

$$P(a \cap r) = P(a \mid r) \cdot P(r) = 0.3 \cdot 0.2 = 0.06$$

$$P(o \cap r) = P(o \mid r) \cdot P(r) = 0.4 \cdot 0.2 = 0.08$$

$$P(l \cap r) = P(l \mid r) \cdot P(r) = 0.3 \cdot 0.2 = 0.06$$

$$P(a \cap g) = P(a \mid g) \cdot P(g) = 0.3 \cdot 0.6 = 0.18$$

$$P(o \cap g) = P(o \mid g) \cdot P(g) = 0.3 \cdot 0.6 = 0.18$$

$$P(l \cap g) = P(l \mid g) \cdot P(g) = 0.4 \cdot 0.6 = 0.24$$

$$P(a \cap b) = P(a \mid b) \cdot P(b) = 0.5 \cdot 0.2 = 0.1$$

$$P(o \cap b) = P(o \mid b) \cdot P(b) = 0.5 \cdot 0.2 = 0.1$$

$$P(l \cap b) = P(l \mid b) \cdot P(b) = 0.5 \cdot 0.2 = 0.1$$

(a)

$$P(a) = P(a \cap r) + P(a \cap g) + P(a \cap b) = 0.06 + 0.18 + 0.1 = 0.34$$

$$P(o) = P(o \cap r) + P(o \cap g) + P(o \cap b) = 0.08 + 0.18 + 0.1 = 0.36$$

$$P(l) = P(l \cap r) + P(l \cap g) + P(l \cap b) = 0.06 + 0.24 + 0 = 0.3$$

Thus, the probability of selecting an apple is 0.34.

(b)

$$P(r \mid a) = \frac{P(a \cap r)}{P(a)} = \frac{0.06}{0.34} = 0.176$$

$$P(g \mid a) = \frac{P(a \cap g)}{P(a)} = \frac{0.18}{0.34} = 0.529$$

$$P(b \mid a) = \frac{P(a \cap b)}{P(a)} = \frac{0.1}{0.34} = 0.294$$

$$P(r \mid o) = \frac{P(o \cap r)}{P(o)} = \frac{0.08}{0.36} = 0.222$$

$$P(g \mid o) = \frac{P(o \cap g)}{P(o)} = \frac{0.18}{0.36} = 0.5$$

$$P(b \mid o) = \frac{P(o \cap b)}{P(o)} = \frac{0.1}{0.36} = 0.278$$

$$P(r \mid l) = \frac{P(l \cap r)}{P(l)} = \frac{0.06}{0.3} = 0.2$$

$$P(g \mid l) = \frac{P(l \cap g)}{P(l)} = \frac{0.24}{0.3} = 0.8$$

$$P(b \mid l) = \frac{P(l \cap b)}{P(l)} = \frac{0}{0.3} = 0$$

Thus, if we observe that the selected fruit is in fact an orange, the probability that it came from the green box is 0.5.

Question 3

(a)