Roots

Remark 1. Motivating Questions

- Can we find the inverse of a polynomial?
- What does it mean to take the nth root of a value?

Consider the polynomial $p(x) = x^4 + 2x^3 - x^2 - x + 1$. A good question to ask would be whether the function p is invertible. To help us decide, here is the graph of p(x).

Notice that this graph does not pass the Horizontal Line Test, so the function p is not one-to-one, and therefore not invertible.

Our polynomial p(x) has many terms, so to simplify the situation, we'll look only at polynomials of the form x^n , where n is a positive integer.

Odd Roots

Recall that every polynomial $p(x) = x^n$, where n is odd, has the same basic shape. This is demonstrated in the figure below by the graphs of $y = x^n$ for

Learning outcomes:

Author(s): Elizabeth Campolongo

n = 3, 5, 7, 9.

To see more of how these graphs change with n, follow the Desmos link: https://www.desmos.com/calculator/viuyei80a0.

Now, are these functions invertible? Looking at the graphs, we see that these functions pass the Horizontal Line Test. Thus, the functions are one-to-one, and therefore invertible.

Definition 1. When n is an odd positive integer, we define **the** n**th** root function $\sqrt[n]{x}$ to be the inverse of the function defined by x^n . The number n is the **index** of the root, and x is the **radicand**. We call the symbol $\sqrt{\ }$ the **radical**.

Let's delve more deeply into the $p(x) = x^3$ example. We have now established that it is invertible, and it's inverse is $r(x) = \sqrt[3]{x}$.

Exploration 1 Draw both functions on the axes provided, then answer the following questions about the function r(x).

Roots

- (a) What is the x-intercept of r(x)? ($\boxed{0}$, $\boxed{0}$)
- (b) What is the y-intercept of r(x)? (0,0)
- (c) What is the domain of r(x)? $(-\infty)$, ∞
- (d) What is the range of r(x)? $(-\infty)$, ∞
- (e) As x goes to ∞ , y goes to ∞ .
- (f) As x goes to $-\infty$, y goes to $-\infty$.
- (g) Does this function have any vertical asymptotes? (yes/ no ✓)

Example 1. Below, we have an example of the graph of $y = x^5$ and the two functions

Exploration Draw both functions on the axes provided, then answer the following questions about the function r(x).

Recall that a function f is even if f(-x) = f(x) for all x in its domain, and f is odd if f(-x) = -f(x) for all x. Otherwise, the function is neither. Let's consider an example. Given x = 8, $r(x) = \sqrt[3]{8} = 2$ and $r(-x) = \sqrt[3]{-8} = -2$, since $(-2) \cdot (-2) \cdot (-2) = (4) \cdot (-2) = -8$. Based on this example, do you think r(x) is even, odd, or neither?

If you guessed odd, then you are correct! All odd-index root functions are odd functions.

Even Roots

We again begin by recalling the general shape of $p(x) = x^n$, but this time for n even. These functions also have the same basic shape for all even n. This is demonstrated by the graphs of $y = x^n$ for n = 2, 4, 6, 8 given below.

- (a) What is the x-intercept of r(x)? (0,0)
- (b) What is the y-intercept of r(x)? (0, 0)
- (c) What is the domain of r(x)? $(-\infty, \infty)$
- (d) What is the range of r(x)? $(-\infty, \infty)$
- (e) As x goes to ∞ , y goes to $\boxed{\infty}$.
- (f) As x goes to $-\infty$, y goes to $-\infty$.
- (g) Does this function have any vertical asymptotes? (yes/ no ✓)

To see more of how these graphs change with n, follow the Desmos link: https://www.desmos.com/calculator/qpqwtrppqt.

Now, are these functions invertible? All of the graphs in the figure above are symmetric about the y-axis (example $2^2 = 4 = (-2)^2$), so they do not pass the horizontal line test. Thus, these functions are not one-to-one, and therefore not invertible.

So, how can we define an even root function? For example, what does \sqrt{x} really mean, and how is it related to x^2 ?

Consider the polynomial $p(x) = x^2$, graphed below with its inverse relation $\{(x^2, x) : x \text{ is a real number}\}.$

Observe that by restricting the domain of p to $x \ge 0$, we now have a function which passes the horizontal line test, and can thus be inverted. The following picture illustrates the situation.

Now, our inverse relation is actually a function, since it passes the Horizontal Line Test. Therefore, if we let $p(x) = x^2$ for $x \ge 0$, we can then define $r(x) = \sqrt[2]{x} = \sqrt{x}$ as the inverse function of p(x) on this restricted domain.

Definition 2. When n is an even positive integer, we define **the** n**th** root function $\sqrt[n]{x}$ to be the inverse of the function defined by x^n restricted to the domain $x \ge 0$.

Exploration 2 We now repeat Exploration 1 for $r(x) = \sqrt[4]{x}$. Draw both functions on the axes provided, then answer the following questions about the function r(x).

- (a) What is the x-intercept of r(x)? ($\boxed{0}$, $\boxed{0}$)
- (b) What is the y-intercept of r(x)? (0,0)
- (c) What is the domain of r(x)? $[0, \infty)$
- (d) What is the range of r(x)? $[0, \infty)$
- (e) As x goes to ∞ , y goes to ∞ .
- (f) Does this function have any vertical asymptotes? (yes/ no ✓)

One question we might ask is whether $r(x) = \sqrt{x}$ and $p(x) = x^2$ are truly inverses. The answer may seem like an obvious "yes!", but since we restricted the

domain of p in order to define r, we need to check. To check whether r and p are inverses, we need to confirm that $r(p(x)) = \sqrt{x^2} = x$ and $p(r(x)) = (\sqrt{x})^2 = x$. That is, when we plug in a number to $\sqrt{x^2}$ and $(\sqrt{x})^2$, we should get the same number as the output. Let's try plugging in -1 to r(p(x)). This gives us

$$r(p(-1)) = r((-1)^2) = \sqrt{(-1)^2} = \sqrt{1} = 1,$$

which is not the same as -1. If we repeat this process with a few more numbers, we find that $\sqrt{(-2)^2} = 2$, $\sqrt{1^2} = 1$, $\sqrt{(-45)^2} = 45$, and $\sqrt{98^2} = 98$. We can conclude that $\sqrt{x^2}$ is a function that takes its input and returns its absolute value. That is, $\sqrt{x^2} = |x|$. Since $\sqrt{x^2} = r(p(x))$, we conclude that r(p(x)) does not output its input, and therefore, r and p are not inverses. This is something that will be extremely important when solving equations using even roots.

Now, what if we instead restricted our domain to $x \le 0$? Consider $q(x) = x^2$ defined for $x \le 0$. The graph of this function is below.

By the Horizontal Line Test, this restriction is one-to-one, and therefore invertible. The inverse of this function as shown above is $s(x) = -\sqrt{x} = -r(x)$.

Example 2. We demonstrate a few common even and odd n^{th} roots to highlight this distinction.

- (a) $\sqrt[3]{8} = 2$, since $2 \cdot 2 \cdot 2 = 8$.
- (b) $\sqrt[3]{-8} = -2$, since $-2 \cdot (-2) \cdot (-2) = 4 \cdot (-2) = -8$.
- (c) $\sqrt[4]{16} = 2$, since $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 4 \cdot 4 = 16$. However, the 4^{th} root of -16 is not defined.

- (d) $\sqrt[4]{0} = 0$, since zero times any number is always zero. This is the example of an even n^{th} root that has only one solution.
- (e) Likewise, $\sqrt[125]{0} = 0$.

Using Roots to Solve Equations

If we are asked to find all values x such that $x^2 = 4$, then the question is asking which values of x multiplied by themselves give 4. In other words, find x such that $x \cdot x$ is equal to 4. It is simple to see that there are two values which make this true:

$$2 \cdot 2 = 4$$
 and $(-2) \cdot (-2) = 4$.

In solving an equation, it is common to express this as follows.

$$x^{2} = 4$$

$$\sqrt{x^{2}} = \sqrt{4}$$

$$|x| = 2$$

$$x = \pm 2.$$

Since $f(x) = x^2$ is **not** one-to-one, there are two values of x which make it equal to any positive number, as demonstrated in the following graph.

Example 3. (a) Solve the equation $x^3 = 8$.

Taking the cube root on both sides, we find that

$$\sqrt[3]{x^3} = \sqrt[3]{8}$$
$$x = 2.$$

Note that $\sqrt[3]{x^3} = x$, since 3 is odd, and odd roots are really inverses to their corresponding power functions.

(b) Solve the equation $x^3 = -8$.

Taking the cube root on both sides, we find that

$$\sqrt[3]{x^3} = \sqrt[3]{-8}$$
$$x = -2.$$

(c) Solve the equation $x^2 = 16$.

Taking the square root on both sides, we find that

$$\sqrt{x^2} = \sqrt{16}$$
$$|x| = 4$$
$$x = \pm 4.$$

Therefore, there are two solutions to this equation: -4 and 4.

(d) Solve the equation $2x^4 - 4 = 28$.

First, rearrange the equation. Add 4 to both sides to find $2x^4 = 32$. Divide both sides by 2 to find $x^4 = 16$. Taking the 4th root on both sides, we find that

$$\sqrt[4]{x^4} = \sqrt[4]{16}$$
$$|x| = 2$$
$$x = \pm 2.$$

Therefore, there are two solutions to this equation: -2 and 2.

Recall that for any even integer n, $\sqrt[n]{x^n} = |x|$.

(e) Solve the equation $-3x^4 = 32$.

First, rearrange the equation by dividing both sides by -3. This yields $x^4 = -\frac{32}{3}$. Taking the 4th root on both sides, we find that

$$\sqrt[4]{x^4} = \sqrt[4]{-\frac{32}{3}}$$
$$|x| = \sqrt[4]{-\frac{32}{3}}.$$

Since any even-index root of a negative number is not defined, there are no solutions to this equation.

These examples illustrate a general principle that is good to have in your toolbox for solving equations. If $a^3=b$, then we know that $a=\sqrt[3]{b}$. This is true for any odd powers. However, if $a^2=b$, then **either** $a=\sqrt{b}$ **or** $a=-\sqrt{b}$. This is true for any even powers.

Finding x-intercepts of a Quadratic in Vertex Form

Now, we can use our understanding of the squareroot function to find the x-intercepts of a quadratic given in vertex form.

Example 4. Find the x-intercepts of the quadratic $2(x-3)^2 - 5 = 0$ which is written in vertex form.

Explanation. First, rearrange the equation by adding 5 to both sides. This yields

$$2(x-3)^2 = 5.$$

Then divide each side by 2, resulting in

$$(x-3)^2 = \frac{5}{2}.$$

Taking the square root on both sides, we find that

$$\sqrt{(x-3)^2} = \sqrt{\frac{5}{2}}$$
$$|x-3| = \sqrt{\frac{5}{2}}$$
$$x-3 = \pm \sqrt{\frac{5}{2}}$$
$$x = 3 \pm \sqrt{\frac{5}{2}}$$

Notice that this gives us a third method for finding the roots (x-intercepts) of a quadratic in general. We can use any of these methods to solve a quadratic.

- (a) Factor the quadratic and write it in Root Form
- (b) Use the quadratic formula to find the roots
- (c) Write the quadratic in vertex form and then solve using a squareroot

Mathematically, these last two methods are actually related. The quadratic formula is just what happens when you rewrite the general quadratic $f(x) = ax^2 + bx + c$ in vertex form and then solve for x!

Composing
$$f(x) = x^2$$
 and $g(x) = \sqrt{x}$

This final example is going to be a very important one that comes up often so we we will give it its own section.

Example 5. Let $f(x) = x^2$ and let $g(x) = \sqrt{x}$.

- a. Find the domain and range of $f \circ g$ and compare this function to id(x) = x and abs(x) = |x|.
- b. Find the domain and range of $g \circ f$ and compare this function to id(x) = x and abs(x) = |x|.

Explanation. You probably have the idea that the squaring and squarerooting actions undo one another. This is true for nonnegative values of x, but can get tricky when x is allowed to be negative. Let's look at each of these situations closely.

a. First we consider $f \circ g$ and compare this function to id(x) = x and abs(x) = |x|. We have $f(x) = x^2$ and $g(x) = \sqrt{x}$ so

$$(f \circ g)(x) = f(g(x)) = (g(x))^2 = (\sqrt{x})^2.$$

Let's consider the domain of this function. Recall that the domain of a composite function $f \circ g$ is the set of those inputs x in the domain of g for which g(x) is in the domain of f. In this case, this means that the domain of $f(g(x)) = (\sqrt{x})^2$ is the set of those inputs x in the domain of $g(x) = \sqrt{x}$ for which \sqrt{x} is in the domain of $f(x) = x^2$. The implied domain of $g(x) = \sqrt{x}$ is $[0, \infty)$ since we cannot take the square root of a negative number. Therefore, since the domain of the composition has to be only values in the domain of g(x), this means the largest our domain can be is $[0, \infty)$. Now, the only additional limiting factor is that the values \sqrt{x} must be in the domain of f but since the domain of f is all real numbers, that will not limit the domain of the composition. Therefore, the domain of $f \circ g$ is $[0, \infty)$.

Now that we know the domain and we know that squaring and square-rooting undo each other for nonnegative values of x, we can conclude that $f \circ g$ is the identity function, id(x) = x but restricted to the domain $[0, \infty)$. That is,

$$(f \circ g)(x) = (\sqrt{x})^2 = x, x \ge 0$$

Since the absolute value function is the same as the identity function when $x \geq 0$. Therefore, we could also say that

$$(f \circ g)(x) = (\sqrt{x})^2 = |x|, x \ge 0$$

From this information, we also know that the range of $f \circ g$ will also be $[0,\infty)$, since $(f \circ g)(x) = (\sqrt{x})^2$.

Here is a graph of $(f \circ g)(x) = (\sqrt{x})^2$.

b. Now we consider $g \circ f$ and compare this function to id(x) = x and abs(x) = |x|. The domain of $g(f(x)) = \sqrt{x^2}$ is the set of those inputs x in the domain of $f(x) = x^2$ for which x^2 is in the domain of $g(x) = \sqrt{x}$. The domain of $f(x) = x^2$ is all real numbers, so this does not reduce the domain of the composite function. The range of $f(x) = x^2$ is $[0, \infty)$ since the square of every number will be greater than or equal to zero. The implied domain of $g(x) = \sqrt{x}$ is $[0, \infty)$. Therefore, every output from $f(x) = x^2$ is in the domain of $f(x) = \sqrt{x}$. Therefore, the domain of $g \circ f$ is $(-\infty, \infty)$.

Now, let's consider the range of $g \circ f$. We know that the range of $g \circ f$ must be contained in the range of $g(x) = \sqrt{x}$. The range of $g(x) = \sqrt{x}$ is $[0,\infty)$, so that is the largest range possible for $g \circ f$. We know that for values of $x \geq 0$, squaring and squarerooting undo one another so we know that all the values of $[0,\infty)$ are contained in the range of $g \circ f$. More precisely, for any value x_0 in $[0,\infty)$, $g(f(x_0)) = x_0$ so x_0 will be in the range of $g \circ f$. Thus, the range of $g \circ f$ is $[0,\infty)$.

Now, since we know that this function $g \circ f$ only outputs positive numbers, we know it cannot equal the identity function for inputs of x < 0. Let's explore what this function does for values of x < 0 by considering x = -2.

$$g(f(-2)) = \sqrt{(-2)^2} = \sqrt{4} = 2$$

Notice, that we input x=-2 but the output was positive 2. In fact, for all values of x<0, $g(f(x))=\sqrt{x^2}=-x=|x|$.

Since the absolute value function is the same as the identity function when

 $x \ge 0$ but the negative of the identity function for x < 0, we have that

$$(g \circ f)(x) = \sqrt{x^2} = |x|$$

Here is a graph of $(g \circ f)(x) = \sqrt{x^2} = |x|$.

Summary 1. In general, we are not able to simply find the inverse of polynomials.

However, when the polynomial is $p(x) = x^n$ for a positive odd integer n, the polynomial is invertible as the n^{th} root function $r(x) = \sqrt[n]{x}$.

When n is even, it is possible to define an inverse function $r(x) = \sqrt[n]{x}$ on a restricted domain of $[0,\infty)$. The n^{th} root is defined as the inverse of p(x) on the restricted domain $[0,\infty)$.