SGN-13000/SGN-13006 Introduction to Pattern Recognition and Machine Learning (5 cr)

Learning Sets of Rules

Joni-Kristian Kämäräinen September 2016

Department of Signal Processing Tampere University of Technology

Material

- Lecturer's slides and blackboard notes
- T.M. Mitchell. Machine Learning. McGraw-Hill, 1997: Chapter 10
- Computer examples

Contents

Introduction

Learning disjunctive sets of rules

Sequential covering algorithms

Learning First-Order Rules

Inverting resolution

FOIL

Introduction

Learning sets of rules

- One of the most expressive and human readable representations for learned hypothesis is a set of IF-THEN rules.
- 2. IF-THEN rules are analog to propositional logic
- 3. Many applications in automatic assessing of chemical agents and biocomputing \rightarrow explaining phenomena!

Deductive decisions from a set of rules: PROLOG

Example (relations.pl)

```
% Literals (kind of training set)
mother(annikki, joni).
mother(annikki, kalle).
mother(helvi,annikki).
mother(alice, robin).
father(robin, joni).
father(teuvo,annikki).
father(john,robin).
father(joni,aaro).
father(joni, reko).
grandmother(helvi, joni).
```

Sequential covering algorithms

Method 1: Learn decision tree, convert to rules

Method 1: Learn decision tree, convert to rules

Method 2: Sequential covering algorithm:

- 1. Learn one rule with high accuracy, any coverage
- 2. Remove positive examples covered by this rule
- 3. Repeat

Sequential covering algorithm

Sequential-

covering(Target_attribute, Attributes, Examples, Threshold)

- 1: Learned_rules $\leftarrow \{\}$
- 2: Rule ← learn-one-rule(Target_attribute, Attributes, Examples)
- 3: **while** performance(Rule, Examples) > Threshold **do**
- 4: Learned_rules ← Learned_rules + Rule
- 5: $Examples \leftarrow Examples \{examples correctly classified by Rule\}$
- 6: Rule ← learn-one-rule(Target_attribute, Attributes, Examples)
- 7: end while
- 8: Learned_rules ← sort Learned_rules accord to performance over Examples
- 9: return Learned_rules

Learning First-Order Rules

Learning first order rules

• Can learn sets of (recursive) rules such as

```
Ancestor(x, y) \leftarrow Parent(x, y)

Ancestor(x, y) \leftarrow Parent(x, z) \land Ancestor(z, y)
```

- Learned rules are PROLOG programs
- Finding rules: Inductive Logic Programming (ILP)

Example: First-order rules in PROLOG

Example (relations.pl (cont.))

```
% Literals (training set)
mother (annikki, joni).
mother(annikki,kalle).
mother(helvi,annikki).
mother(alice, robin).
father (robin, joni).
father(teuvo,annikki).
father(john,robin).
father(joni,aaro).
father(joni,reko).
grandmother(helvi, joni).
% Clauses
grandfather(X,Y) :-
father(X.Z).
father(Z,Y).
grandfather(X,Y) :-
father(X.Z).
mother(Z,Y).
```

Example: Classifying Web pages

[Slattery, 1997]

```
\label{eq:course} \begin{split} & \text{course}(A) \leftarrow \\ & \text{has-word}(A, \, \text{instructor}), \\ & \text{Not has-word}(A, \, \text{good}), \\ & \text{link-from}(A, \, B), \\ & \text{has-word}(B, \, \text{assign}), \\ & \text{Not link-from}(B, \, C) \end{split}
```

Train: 31/31, Test: 31/34

Learning First-Order Rules

Inverting resolution

Inverting Resolution

Learning First-Order Rules

FOIL

FOIL(*Target_predicate*, *Predicates*, *Examples*)

- 1: $Pos \leftarrow positive Examples$
- 2: Neg ← negative Examples
- 3: while Pos do {Learn a NewRule}
- 4: NewRule ← most general rule possible
- 5: $NewRuleNeg \leftarrow Neg$
- 6: **while** NewRuleNeg **do** {Add a new literal to specialize NewRule}
- 7: Candidate_literals ← generate candidates
- 8: $Best_literal \leftarrow argmax_{L \in Candidate_literals} Foil_Gain(L, NewRule)$
- 9: add Best_literal to NewRule preconditions
- 10: $NewRuleNeg \leftarrow subset of NewRuleNeg that satisfies NewRule preconditions$
- 11: end while
- 12: $Learned_rules \leftarrow Learned_rules + NewRule$
- 13: $Pos \leftarrow Pos \{members of Pos covered by NewRule\}$
- 14: end while
- 15: **return** Learned_rules

Specializing Rules in FOIL

Learning rule: $P(x_1, x_2, ..., x_k) \leftarrow L_1 ... L_n$

Candidate specializations add new literal of form:

- $Q(v_1, ..., v_r)$, where at least one of the v_i in the created literal must already exist as a variable in the rule.
- $Equal(x_j, x_k)$, where x_j and x_k are variables already present in the rule
- The negation of either of the above forms of literals

Information Gain in FOIL

$$Foil_Gain(L,R) \equiv t \left(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0} \right)$$

Where

- L is the candidate literal to add to rule R
- p_0 = number of positive bindings of R
- n_0 = number of negative bindings of R
- p_1 = number of positive bindings of R + L
- n_1 = number of negative bindings of R + L
- t is the number of positive bindings of R also covered by R+L

Note

• $-\log_2 \frac{p_0}{p_0+n_0}$ is optimal number of bits to indicate the class of a positive binding covered by R

Summary

Summary

- Can be suitable for some novel application fields of machine learning yet to be exploited: biocomputing, scientific expert systems etc.
- First-order Horn clauses (predicate logic) is a poweful knowledge representation that can be used in logical decision making with the PROLOG language and interpreter
- 3. The clauses can be automatically learnt from examples using the FOIL algorithm