Probability Theory Exercise 3

- 1. Suppose that $\{X_n\}_{n=1}^{\infty}$ is a sequence of non-decreasing random variables, i.e., $X_{n+1}(\omega) \geq X_n(\omega)$ for all $n \geq 1$ and all $\omega \in \Omega$. Define another (possibly extended-valued) random variable X as the pointwise limit of $\{X_n\}_{n=1}^{\infty}$, i.e., let $X(\omega) = \lim_{n \to \infty} X_n(\omega)$ for all $\omega \in \Omega$. Do these conditions guarantee that $E[X] = \lim_{n \to \infty} E[X_n]$? If your answer is yes, prove this statement. If your answer is no, give a counterexample.
- 2. Let X be a random variable with probability density function:

$$f_X(x) = \begin{cases} c\sqrt{4-x^2}, & \text{for } -2 \le x \le 2\\ 0, & \text{otherwise} \end{cases}$$

for some constant c.

- (a) Find the constant c.
- (b) Find $E[X^k]$ for all k = 1, 2, ...
- 3. Let X_1, \ldots, X_n be n independent Bernoulli random variables. (We don't assume that X_1, \ldots, X_n have the same distribution!) Let Y_1, \ldots, Y_n be another n independent Bernoulli random variables. (We don't assume that Y_1, \ldots, Y_n have the same distribution, either!) Let $X = X_1 + \cdots + X_n$ and $Y = Y_1 + \cdots + Y_n$. Suppose that $P(X_i = 1) \geq P(Y_i = 1)$ for all $i = 1, 2, \ldots, n$. Does this guarantee that $P(X \geq k) \geq P(Y \geq k)$ for all $k = 1, 2, \ldots, n$? If your answer is yes, prove this statement. If your answer is no, give a counterexample.
- 4. Let U and V be independent random variables, such that U is uniformly distributed over the interval [0,1], and V is a exponential random variable with parameter 1
- (a) Calculate $E\left[\frac{V^2}{1+U}\right]$
- (b) Calculate $P\{U \leq V\}$.
- (c) Find the joint probability density function of Y and Z, where $Y=U^2$ and Z=UV. Be sure to indicate where the joint pdf is zero.
- 5. Let X_1, X_2, X_3 be three i.i.d. exponential random variables with the same parameter $\lambda > 0$. Find the value of $P(X_1 > X_2 + X_3)$.
- 6. Let X_1, X_2, X_3 be three independent Gaussian random variables. Suppose that both X_1 and X_2 have mean 0 and variance 2, and suppose that X_3 is a standard Gaussian random variable (mean 0 and variance 1). Let Y_1 and Y_2 be the two eigenvalues of the random matrix

$$\left[\begin{array}{cc} X_1 & X_3 \\ X_3 & X_2 \end{array}\right].$$

Find the joint probability density function of Y_1 and Y_2 . (You don't need to calculate the normalizing constant.)