La difficulté et l'originalité de l'exercice sont notées de 1 à 3. Les exercices d'originalité 1 sont des classiques qu'il faut bien comprendre et savoir refaire sans hésitations. Les exercices d'originalité 3 sont des exercices plus éloignés du cours, dans lesquels il est nécessaire de s'adapter à la nouveauté (ou de faire face à des difficultés calculatoires).

Programme d'interrogation orale

- Rappel de première année : démontrer qu'une transformation monobare ou isobare vérifie $\Delta H = Q$.
- Rappeler la définition de Δ_r H et donner son lien avec la variation d'enthalpie du milieu réactionnel lors d'une réaction.
- Démonter qu'à température et pression fixée, on a $dH = \Delta_r H d\xi$.
- Définir l'état standard d'un composé chimique. Définir l'état standard de référence d'un élément chimique.
- Savoir reconnaitre si une réaction est potentiellement une réaction de formation.
- Énoncer la loi de Hess et définir le cycle de transformations virtuelles grâce auquel on calcule $\Delta_r H^\circ$.
- Énoncer l'approximation d'Ellingham.

DONNÉES THERMODYNAMIQUES - Les valeurs de $\Delta_f H^o$ sont indiquées en kJ. mol^{-1} , et celles de $c_{p,m}^o$ en J. K^{-1} . mol^{-1} :

	$CO_2(g)$	CO (g)	$H_2O(g)$	$H_2O(l)$	SO ₂ (g)	SO ₃ (g)	HCl(g)	$0_{2}(\mathbf{g})$	$N_2(g)$	C(s, gr)	$Cl_2(g)$	$H_2(g)$
$\Delta_f H^o$	-393	-110	-242	-286	-297	-396	-92	0	0	0	0	0
$C_{p,m}^{o}$	38,7	29	33,6	75	39,9	51	29	29,4	30			

	CH ₄ (g)	$C_2H_5OH(l)$	CH ₃ OH(g)	CaCO ₃ (s)	SiO ₂ (s)	$Ca_3SiO_5(s)$	ZnS(s)	ZnO(s)
$\Delta_f H^o$	−75 kJ. mol ⁻¹	-276	-201	-1206	-910	-2876	-203	-348
$C_{p,m}^{o}$		110,5			44		58	52

I - RÉVISION DES TABLEAUX D'AVANCEMENT

Cette partie ne doit poser aucun problème. En cas de doutes, il est nécessaire de revoir quelques exercices de première année.

Exercice 1 - Révision tableau d'avancement (réaction totale)

Difficile 1 - Original 1

On considère la réaction de l'ammoniac sur le dioxygène, qui produit du monoxyde d'azote et de l'eau :

$$NH_3 + O_2 = NO + H_2O$$

- 1. Équilibrer la réaction.
- 2. Écrire le tableau d'avancement de la réaction à l'instant initial et un instant quelconque, dans le cas où :
 - On ajoute les réactifs en proportion équimolaire ;
 - On ajoute les réactifs en proportion steochiométriques ;
 - On ajoute deux fois plus d'ammoniac que de dioxygène;
 - Le dioxygène est en large excès.
- 3. Déterminer dans chaque cas l'avancement maximal ξ_{max} , en supposant la réaction totale.

Exercice 2 - État final de la combustion du méthane (réaction équilibrée)

Difficile 1 - Original 1

La réaction de combustion du méthane est une réaction quantitative, et peut être modélisée par l'équation de réaction suivante :

$$CH_4(g) + 2O_2(g) = CO_2(g) + 2H_2O(l)$$

On place le dioxygène en excès, et les autres réactifs tels que $n_0(O_2) = 3 n_0(CH_4) = 3n_0$.

- 4. Écrire l'équation de la réaction avec des coefficients steochiométriques algébriques.
- 5. Écrire le tableau d'avancement, et en déduire l'avancement maximal, puis la composition du milieu à l'équilibre.

On donne K° la constante d'équilibre de cette réaction, qui n'est donc plus supposée quantitative. Le réactif dioxygène est toujours en excès avec $n_0(O_2) = 3 n_0(CH_4) = 3n_0$ et la réaction est faite à pression constante P_0 .

6. Établir l'équation permettant de relier l'avancement réactionnel ξ aux constantes K°, n₀, P°, P₀.

II - ENTHALPIE DE RÉACTION

Exercice 3 - Enthalpie standard de formation et enthalpie standard de réaction

Difficile 1 - Original 1

1. Les équations de réactions suivantes sont elles des réactions de formation ? (elles sont réalisées à température ambiante)

$$C(gr) + \frac{1}{2}O_2(g) = CO(g)$$

$$\frac{1}{2}O_2(g) + H_2(g) = H_2O(l)$$

$$\frac{1}{2}O_2(g) + H_2(g) = H_2O(l) \qquad \qquad \frac{1}{2}H_2O_2(l) + \frac{1}{2}H_2(g) = H_2O(g)$$

$$Pb^{2+}(aq) + CO_3^{2-}(aq) = PbCO_3(s)$$

$$N_2(g) + 2 O_2(g) = 2 NO_2(g)$$

$$Ag(l) + Cl(g) = AgCl(s)$$

Donner l'équation de réaction de formation du bromure d'argent AgBr(s), à température ambiante.

Exercice 4 - Calcul d'enthalpies de réaction grâce à la loi de Hess

Difficile 1 - Original 1

Calculer les valeurs de $\Delta_r H^o$ pour les réactions suivantes : Déterminer ensuite leur thermicité.

$$\begin{cases} CO(g) + 2 H_2(g) = CH_3OH(g) \\ CO_2(g) + H_2(g) = CO(g) + H_2O(g) \\ CH_4(g) + 2 H_2O(g) = 4 H_2(g) + CO_2(g) \end{cases}$$

Exercice 5 - Chaleur de réaction

Difficile 1 – Original 1

La réaction dite de « l'équilibre de Deacon » permet de régénérer du dichlore Cl₂(g) à partir de l'acide chlorhydrique HCl(g) selon la réaction d'équation de réaction :

$$O_2(g) + 4 HCl(g) = 2 H_2O(g) + 2 Cl_2(g) \quad (M(Cl_2) \simeq 35.5 \text{ g. mol}^{-1})$$

- 1. Donner les valeurs de l'enthalpie standard de formation du dioxygène et du dichlore.
- 2. Calculer l'enthalpie standard de réaction de cette réaction. Commenter.
- Calculer l'énergie thermique libérée par la production de 1 kg de dichlore.
- Dans l'industrie, cette réaction est réalisée à plus de 400°C. Pourquoi?

Exercice 6 - Pouvoir calorifique inférieur de l'éthanol

- 1. Écrire l'équation bilan de la réaction de combustion, en présence de dioxygène, d'une mole d'éthanol liquide C₂H₅OH(l) en dioxyde de carbone et en vapeur d'eau.
- Calculer l'enthalpie standard $\Delta_r H^\circ$ de cette réaction à T=25 °C. Commenter.

On appelle pouvoir calorifique inférieur (PCI) d'un combustible, l'énergie thermique libérée, à 25°C et 1 bar, lors de la réaction de combustion d'un kilogramme de ce combustible, quand l'eau est formée à l'état vapeur.

3. Calculer le PCI de l'éthanol exprimé en kJ. kg⁻¹ d'éthanol consommé.

Un brûleur est alimenté à pression constante $p_0=1$ bar et à 25° C par 4 mol d'éthanol liquide et par 100 mol d'air. La réaction de combustion est totale et conduit à la formation de dioxyde de carbone et de vapeur d'eau.

- 4. Calculer le nombre de moles de chaque composé dans le mélange en sortie de brûleur.
- 5. Calculer la pression partielle d'eau dans ce mélange.
- En considérant que l'intégralité de la chaleur de combustion est reçue par les gaz de combustion, déterminer la température T_s des gaz sortant du brûleur.

Exercice 6 – Température de flamme (déjà traité dans le cours !)

Difficile 1 - Original 1

On s'intéresse à la combustion du monoxyde de carbone selon la réaction : $2 CO(g) + O_2(g) = 2 CO_2(g)$

On suppose qu'à l'instant initial les réactifs sont placés, à l'équilibre thermique, dans un réacteur calorifugé à la température ambiante de $T_0 = 298$ K et à la pression P = 1 bar. On considère que, dans un premier temps, à l'instant initial, les réactifs sont seuls présents dans le réacteur et en proportions stœchiométriques. On place $n_0 = 1$ mol de monoxyde de carbone dans le réacteur.

- 1. Calculer l'enthalpie standard de réaction de cette réaction. Commenter.
- Calculer la température atteinte par le système.

On place toujours $n_0 = 1$ mol de monoxyde carbone dans le réacteur, mais cette fois la combustion se fait en proportions stœchiométriques mais en présence d'air.

- 3. Calculer l'enthalpie standard de réaction de cette réaction. Commenter.
- 4. Calculer la température atteinte par le système.

Exercice 7 - Pouvoir calorifique inférieur de l'éthanol

Difficile 2 - Original 2

- 7. Écrire l'équation bilan de la réaction de combustion, en présence de dioxygène, d'une mole d'éthanol liquide C₂H₅OH(l) en dioxyde de carbone et en vapeur d'eau.
- 8. Calculer l'enthalpie standard $\Delta_r H^\circ$ de cette réaction à T=25 °C. Commenter.

On appelle pouvoir calorifique inférieur (PCI) d'un combustible, l'énergie thermique libérée, à 25°C et 1 bar, lors de la réaction de combustion d'un kilogramme de ce combustible, quand l'eau est formée à l'état vapeur.

9. Calculer le PCI de l'éthanol exprimé en kJ. kg⁻¹ d'éthanol consommé.

Un brûleur est alimenté à pression constante $p_0 = 1$ bar et à 25°C par 4 mol d'éthanol liquide et par 100 mol d'air. La réaction de combustion est totale et conduit à la formation de dioxyde de carbone et de vapeur d'eau.

- 10. Calculer le nombre de moles de chaque composé dans le mélange en sortie de brûleur.
- 11. Calculer la pression partielle d'eau dans ce mélange.
- 12. En considérant que l'intégralité de la chaleur de combustion est reçue par les gaz de combustion, déterminer la température T_s des gaz sortant du brûleur.

Exercice 8 - Métallurgie du Zinc

Difficile 2 - Original 2

Industriellement l'obtention du métal zinc se fait en deux étapes : transformation du sulfure de zinc, appelé « blende » ZnS(s) en oxyde de zinc ZnO(s), puis réduction de cet oxyde. La première étape est appelée « grillage » et s'effectue à 1350~K selon la réaction :

$$ZnS(s) + \frac{3}{2}O_2(g) = ZnO(s) + SO_2(g)$$

1. À l'aide des tables thermodynamiques fournies, calculer l'enthalpie standard de réaction à 298 K. du grillage. Quelle est la thermicité de la réaction ?

On cherche à déterminer si la réaction est auto-entretenue, c'est à dire si en la démarrant à 298 K, l'énergie thermique produite est suffisante pour porter le mélange réactionnel à 1350 K. On suppose dans un premier temps que la blende est pure, et on fait réagir 1 mol de blende avec la quantité d'air appropriée pour que ZnS(s) et $O_2(g)$ soient en proportions stœchiométriques. On considère que la transformation est isobare, à $P=P^\circ$ et adiabatique.

2. Calculer la température T_F atteinte par le mélange réactionnel. Que peut-on en conclure sur le caractère auto-entretenu de cette réaction ?

En réalité, la blende n'est pas pure ; le minerai contient d'autres constituants, notamment de la silice $SiO_2(s)$.

- 3. Calculer, pour 1 mol de blende, le nombre de moles maximal n_{max} de $SiO_2(s)$ dans le minerai pour que la réaction de grillage soit auto-entretenue.
- 4. En déduire la fraction massique minimale w du minerai en blende pour que la réaction soit auto-entretenue.

Données:
$$M_{SiO_2} \simeq 60,1 \text{ g. mol}^{-1}$$
 $M_{ZnS} \simeq 97,5 \text{ g. mol}^{-1}$

Exercice 9 - Le calcium dans l'industrie cimentière (PT 2009)

Difficile 3 - Original 2

On étudie dans cette partie quelques aspects de la chimie cimentière. L'élaboration des ciments se fait dans un four à partir d'un mélange de 80 % de calcaire CaCO₃ et de 20 % d'argile, qu'on considère comme un mélange composé d'alumine Al₂O₃ et de silice SiO₂. Le composé majoritaire obtenu est Ca₃SiO₅ (noté C₃S par les cimentiers).

- 1. Écrire l'équation de réaction notée (1) conduisant notamment à la formation de Ca₃SiO₅ solide à partir des seuls réactifs silice et calcaire. Quel sous-produit voit-on apparaître (il s'agit d'un corps pur composé) ?
- 2. On donne les valeurs des enthalpies de formation standard à 298 K notées $\Delta_f H^o$.
 - (a) Calculer l'enthalpie standard de réaction $\Delta_r H_1^0$ de la réaction (1) à 298 K.
 - (b) Calculer la chaleur qu'il faut fournir à pression constante et température constante ($P = P^{\circ}$ et T = 298 K) à une tonne de calcaire CaCO₃ pour le transformer, par la réaction (1), en Ca₃SiO₅(s). Calculer la masse de CO₂(g) ainsi produite.
- 3. Pour alimenter le four on suppose que l'énergie est apportée par la combustion du méthane $CH_4(g)$ avec $O_2(g)$.
 - (a) Quelle masse de méthane faut-il brûler pour apporter l'énergie nécessaire à la transformation d'une tonne de CaCO₃(s) en Ca₃SiO₅ à la pression P° et à la température constante de 298 K ? On donne l'enthalpie standard de la réaction de combustion du méthane, écrite avec le nombre stœchiométrique (-1) pour $CH_4(g)$: $\Delta_r H_2^0 = -690$ kJ. mol^{-1} .
 - (b) Quelle masse de dioxyde de carbone est ainsi produite ?

Données:

 $M_{Ca} \simeq 40.1 \text{ g. mol}^{-1}$

 $M_{Fe} \simeq 55.8 \text{ g. mol}^{-1}$ $M_{O} \simeq 16 \text{ g. mol}^{-1}$ $M_{C} \simeq 12 \text{ g. mol}^{-1}$

III - APPROXIMATION D'ELLINGHAM

Exercice 10 - Combustion du méthane et état physique de l'eau

Difficile 2 - Original 1

On s'intéresse à la combustion du méthane dans le dioxygène selon l'équation de réaction :

$$CH_4 + 2 O_2 = CO_2 + 2 H_2O$$

- 1. Préciser la valeur de l'enthalpie standard de formation de $O_2(g)$ à 298 K en justifiant.
- 2. En déduire la valeur de l'enthalpie standard de réaction de la combustion du méthane à 298 K. Comment peut-on qualifier cette réaction ?
- Rappeler l'hypothèse d'Ellingham (sous laquelle on se placera dans la suite).

On considère une enceinte de volume $V = 1 \text{ m}^3$ de méthane gazeux pris à 298 K sous $p = p^\circ = 1$ bar.

4. Calculer l'énergie libérée par la combustion complète de ce méthane à T, p fixés. Si la combustion se fait dans l'air, le résultat obtenu change-t-il?

La réaction se fait maintenant dans une enceinte adiabatique, à pression constante en présence d'air. L'enthalpie standard de réaction vaut alors : $\Delta_r H^\circ = -805.8 \text{ kJ. mol}^{-1}$ (l'eau est passée sous forme gazeuse).

- En déduire l'enthalpie de formation de $H_2O(g)$.
- La quantité d'air présente étant suffisante pour assurer les proportions stœchiométriques à la réaction, calculer la température de flamme de cette réaction.

Exercice 11 - Chimie du soufre (PT 2012)

Difficile 2 – Original 1

L'oxydation du $\mathrm{SO}_2(g)$ est une étape importante de synthèse industrielle de l'acide sulfurique. On utilise, dans l'industrie, le dioxygène de l'air. Cette réaction (en phase gazeuse) se fait vers T = 700 K sous une pression de 1 bar selon :

$$2 SO_2 + O_2 = 2 SO_3$$

- 1. Calculer, à T = 298 K, l'enthalpie standard de réaction, $\Delta_r H^o(298\, K)$.
- 2. Calculer, à T = 700 K, l'enthalpie standard de réaction, $\Delta_r H^0$ (700 K). Commenter.

On part de 10 mol de SO_2 , 10 mol de O_2 , et 40 mol de N_2 . À T = 700 K, on obtient à l'équilibre 9,0 mol de SO_3 .

- 3. Donner l'avancement ξ de la réaction, et la composition du système à l'équilibre.
- 4. On suppose que la réaction se déroule dans un réacteur monobare adiabatique. Expliquer comment calculer la température finale du système T_f, puis effectuer le calcul.

Données : la température d'ébullition du trioxyde de soufre SO $_3$ est de 45°C. Sa chaleur latente est l $_{
m vap} \simeq 41$ kJ. $m mol^{-1}$