

ЭТИКЕТКА <u>СЛКН.431323.003 ЭТ</u>

Микросхема интегральная 564 ПУ6В Функциональное назначение – Четыре преобразователя уровня

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначение	Назначение вывода	
вывода	вывода	тизна тепие вывода	вывода	вывода		
1	U _{CC 1}	Напряжение питания 1	9	EC	Вход разрешения канала С	
2	EA	Вход разрешения канала А	10	C	Вход канала С	
3	A	Вход канала А	11	G	Выход канала С	
4	Е	Выход канала А	12	NC	Свободный	
5	F	Выход канала В	13	Н	Выход канала D	
6	В	Вход канала В	14	D	Вход канала D	
7	EB	Вход разрешения канала В	15	ED	Вход разрешения канала D	
8	OV	Общий	16	U _{CC 2}	Напряжение питания 2	

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C) Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC1} = 5 B$, $U_{CC2} = 10 B$, $U_{IL} = 1.5 B$, $U_{IH} = 3.5 B$	U _{OL max}	-	1,0
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, U_{IL} = 3.0 \text{ B}, U_{IH} = 7.0 \text{ B}$		-	1,5
2. Минимальное выходное напряжение высокого уровня, В, при:	**	0.0	
$U_{CC1} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, U_{IH} = 3.5 \text{ B}$	U _{OH min}	9,0	-
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, U_{IH} = 7,0 \text{ B}$		13,5	-
3. Выходное напряжение низкого уровня, B, при: $U_{CC1} = U_{CC2} = 5$ B, $U_{IL} = 0$ B, $U_{IH} = 5$ B	11		0,01
$U_{CC1} = U_{CC2} = 3 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 3 \text{ B}$ $U_{CC1} = U_{CC2} = 10 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 10 \text{ B}$	U_{OL}	-	0,01
4. Выходное напряжение высокого уровня, В, при:		-	0,01
U _{CC1} = U _{CC2} = 5 B, U _{IH} = 5 B	U_{OH}	4,99	_
$U_{CC1} = U_{CC2} = 10 \text{ B}, U_{IH} = 10 \text{ B}$	ООН	9.99	_
5. Ток потребления, мкА, при:		-,	
$U_{CC1} = U_{CC2} = 15 \text{ B}, U_{II} = 0 \text{B}, U_{IH} = 15 \text{ B}$		-	4,0
$U_{CC1} = 5 \text{ B}, U_{CC2} = 15 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = 5 \text{ B}$	I_{CC}	-	4,0
$U_{CC1} = 5 B, U_{CC2} = 10 B, U_{IL} = 0 B, U_{IH} = 5 B$		-	2,0
$U_{CC1} = U_{CC2} = 5 \text{ B}, U_{IL} = 0 \text{B}, U_{IH} = 5 \text{ B}$		-	1,0
6. Входной ток низкого уровня, мкА, при:	I_{IL}		/-0,1/
$U_{CC1} = U_{CC2} = 15 \text{ B}, U_{IL} = 0 \text{B}, U_{IH} = 15 \text{ B}$	IIL	-	/-0,1/
7. Входной ток высокого уровня, мкА, при:	T		0.1
$U_{CC1} = U_{CC2} = 15 \text{ B}, U_{IL} = 0 \text{B}, U_{IH} = 15 \text{ B}$	I_{IH}	-	0,1
8. Выходной ток низкого уровня в состоянии «выключено», мкА, при:			
$U_{CC1} = U_{CC2} = 15 \text{ B}, U_{IL} = 0 \text{B}, U_0 = 15 \text{ B}$	I_{OZL}	-	0,4
$U_{CC1} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, U_{IL} = 1,5 \text{ B}, U_0 = 10 \text{ B}$	IOZL	-	0,4
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, U_{IL} = 3.0 \text{ B}, U_O = 15 \text{ B}$		-	0,4
9. Выходной ток высокого уровня в состоянии «выключено», мкА, при:			10.41
$U_{CC1} = U_{CC2} = 15 \text{ B}, U_{IL} = 0 \text{B}, U_{IH} = 15 \text{ B}, U_0 = 0 \text{ B}$	I_{OZH}	-	/-0,4/
$U_{CC1} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, U_{IL} = 1.5 \text{ B}, U_{IH} = 5.0 \text{ B}, U_{O} = 0 \text{ B}$	32	-	/-0,4/
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, U_{IL} = 3,0 \text{ B}, U_{IH} = 10 \text{ B}, U_{O} = 0 \text{ B}$		-	/-0,4/

1

Продолжение таблицы 1			
1	2	3	4
10. Выходной ток низкого уровня, мА, при:			
$U_{CC1} = U_{CC2} = 5 \text{ B}, U_{II} = 0 \text{ B}, U_{IH} = 5 \text{ B}, U_{O} = 0.4 \text{ B}$	*	0,51	-
$U_{CC1} = U_{CC2} = 10 \text{ B}, U_{IL} = 0 \text{B}, U_{IH} = 10 \text{ B}, U_0 = 0.5 \text{ B}$	I_{OL}	1,30	-
$U_{CC1} = U_{CC2} = 15 \text{ B}, U_{IL} = 0 \text{B}, U_{IH} = 15 \text{ B}, U_0 = 1,5 \text{ B}$		3,40	_
11. Выходной ток высокого уровня, мА, при:		,	
$U_{CCI} = U_{CC2} = 5 \text{ B}, U_{IH} = 5 \text{ B}, U_0 = 4,6 \text{ B}$		/-0,51/	_
$U_{CC1} = U_{CC2} = 5 \text{ B}, U_{IH} = 5 \text{ B}, U_0 = 2.5 \text{ B}$	I_{OH}	/-1,6/	_
$U_{CCI} = U_{CC2} = 10 \text{ B}, U_{IH} = 10 \text{ B}, U_0 = 9,5 \text{ B}$	-011	/-1,3/	_
$U_{CC1} = U_{CC2} = 15 \text{ B}, U_{IH} = 15 \text{ B}, U_0 = 13,5 \text{ B}$		/-3,4/	=
12. Время задержки распространения при выключении (от входа А к выходу), нС, при:		Í	
$U_{CCI} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	260
$U_{CC1} = 5 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}\Phi$		-	240
$U_{CCI} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PLH}	-	140
$U_{CCI} = 10 \text{ B}, U_{CC2} = 5 \text{ B}, C_I = 50 \text{ m}\Phi$	TEH	_	500
$U_{CC1} = 15 \text{ B}, U_{CC2} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$		_	560
$U_{CC1} = 15 \text{ B}, U_{CC2} = 10 \text{ B}, C_L = 50 \text{ п}\Phi$		-	160
13. Время задержки распространения при включении (от входа А к выходу), нС, при:			
$U_{CC1} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, C_L = 50 \text{ m}$		_	300
$U_{CCI} = 5 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ п}\Phi$		_	240
$U_{CCI} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PHL}	_	140
$U_{CC1} = 10 \text{ B}, U_{CC2} = 5 \text{ B}, C_L = 50 \text{ n}\Phi$	VI IIL	_	800
$U_{CC1} = 15 \text{ B}, U_{CC2} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$		_	800
$U_{CC1} = 15 \text{ B}, U_{CC2} = 10 \text{ B}, C_L = 50 \text{ п}\Phi$		-	200
14. Время задержки распространения при переходе из состояния высокого уровня в			
состояние «выключено», нС, при:			
$U_{CC1} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, C_L = 50 \text{ n}\Phi$	t_{PHZ}	_	120
$U_{CC1} = 5 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}\Phi$	THE	_	100
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}\Phi$		_	100
15. Время задержки распространения при переходе из состояния низкого уровня в			
состояние «выключено», нС, при:			
$U_{CCI} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, C_L = 50 \text{ п}\Phi$	$t_{\rm PLZ}$	_	300
$U_{CCI} = 5 \text{ B}, U_{CC2} = 15 \text{ B}, C_1 = 50 \text{ m}\Phi$	122	-	200
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}\Phi$		_	200
16. Время задержки распространения при переходе из состояния «выключено» в			
состояние высокого уровня, нС, при:			
$U_{CC1} = 5$ В, $U_{CC2} = 10$ В, $C_L = 50$ пФ	t_{PZH}	_	200
$U_{CCI} = 5 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ n}\Phi$		_	200
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ п}\Phi$		_	200
17. Время задержки распространения при переходе из состояния «выключено» в			
состояние низкого уровня, нС, при:			
$U_{CC1} = 5 \text{ B}, U_{CC2} = 10 \text{ B}, C_L = 50 \text{ n}\Phi$	t_{PZL}	_	200
$U_{CCI} = 5 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}\Phi$	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	_	160
$U_{CC1} = 10 \text{ B}, U_{CC2} = 15 \text{ B}, C_L = 50 \text{ m}$			80

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г,

в том числе:

золото г/мм на 16 выводах, длиной мм.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- 2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В 11~0398-2000~ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65~^{\circ}$ С не менее 100000~ч., а в облегченных режимах, которые приводят в ТУ, при $U_{CC}=5B\pm10\%$ не менее 120000~ч.

 Γ амма — процентный ресурс $(T_{p\gamma})$ микросхем устанавливают в ТУ при γ = 95% и приводят в разделе "Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (T $_{\text{см}}$) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИЙ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- $3.1 \ \Gamma$ арантии предприятия изготовителя по ОСТ В $11 \ 0398 2000$:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы	564 ПУ6В соответствую	от техничес	ким условиям	бК0.347.064 ТУ 24/02	и признаны годными для эксплуатации.
Приняты по		от			
	(извещение, акт и др.)		(дата)		
Место для шт	гампа ОТК			Место для штампа ВП	
Место для штампа «Перепроверка произведена					
				(дата)	
Приняты по		ОТ			
	(извещение, акт и др.)		(дата)		

Цена договорная

Место для штампа ОТК

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуру должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка. Остальные указания по применению и эксплуатации – в соответствии с 6К0.347.064 ТУ/02.

Место для штампа ВП