

planetmath.org

Math for the people, by the people.

product topology preserves the Hausdorff property

Canonical name ProductTopologyPreservesTheHausdorffProperty

Date of creation 2013-03-22 13:39:40 Last modified on 2013-03-22 13:39:40 Owner archibal (4430) Last modified by archibal (4430)

Numerical id 7

Author archibal (4430)

Entry type Theorem Classification msc 54B10 Classification msc 54D10 **Theorem** Suppose $\{X_{\alpha}\}_{{\alpha}\in A}$ is a collection of Hausdorff spaces. Then the generalized Cartesian product $\prod_{{\alpha}\in A}X_{\alpha}$ equipped with the product topology is a Hausdorff space.

Proof. Let $Y = \prod_{\alpha \in A} X_{\alpha}$, and let x, y be distinct points in Y. Then there is an index $\beta \in A$ such that $x(\beta)$ and $y(\beta)$ are distinct points in the Hausdorff space X_{β} . It follows that there are open sets U and V in X_{β} such that $x(\beta) \in U, y(\beta) \in V$, and $U \cap V = \emptyset$. Let π_{β} be the projection operator $Y \to X_{\beta}$ defined http://planetmath.org/GeneralizedCartesianProducthere. By the definition of the product topology, π_{β} is continuous, so $\pi_{\beta}^{-1}(U)$ and $\pi_{\beta}^{-1}(V)$ are open sets in Y. Also, since the http://planetmath.org/InverseImageCommutesWithS commutes with set operations, we have that

$$\pi_{\beta}^{-1}(U) \cap \pi_{\beta}^{-1}(V) = \pi_{\beta}^{-1}(U \cap V)$$

= \emptyset .

Finally, since $x(\beta) \in U$, i.e., $\pi_{\beta}(x) \in U$, it follows that $x \in \pi_{\beta}^{-1}(U)$. Similarly, $y \in \pi_{\beta}^{-1}(V)$. We have shown that U and V are open disjoint neighborhoods of x respectively y. In other words, Y is a Hausdorff space. \square