GATE-All BRANCHES Engineering Mathematics

Linear Algebra

By- Rahul sir

Recap of previous lecture

Topic

Question based on system of equations

Topic

Span of vector space

Topics to be Covered

Topic

Properties of matrices

Topic

Question based on properties of the matrix

Topic

Concept of eigen values and eigen vectors

Topic

Problems based on eigen values and eigen vectors

Eigen values: λ = Scales quantity Hon to find the eigenvalue

Ergen value Peroblem

A -> Square materix X = vector $\lambda = ergen value / Scalry quantity$

 $|A \times -\lambda \times| = 0$ $|A - \pi \lambda| = 0$ $|A \times M \times M$ $|A-I\lambda|=0$ = charaterstic

 $\lambda'' + a_0 \lambda'' + a_2 \lambda''^2 + - + c_M = D$ Charater stre Polynomer!

$$A = \int 3x3$$

$$\lambda_1 \lambda_2 - \lambda_n = \text{Det } A$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}_{3X}$$

$$\lambda_1 \lambda_2 \lambda_3 = |\det A|$$

-(1/12) 1 + det A =0 SVM of Eigenvalues 4 5 |A-IN=0 2 x 2 STRESS 22-(x+13) x A A2 = 4-10=-6 20000 Inductor Moss SUM 2/12+2=1+3+2=6 Solenodal 1/12/3 = det A core reason

V nt materix

Scaler materi

001

K ,00

ook

Eigen volues = Dragonal elements A) $a,b,c=\lambda$ B))= a,b,c 1, 1/2 hz () $\lambda = d_1, d_2, d_3$ b) $\lambda = 1, 1, 1$ E) N-K,K,X

If
$$A_{NXN} \rightarrow \lambda_{1/\lambda_{2}/\lambda_{3}} - \lambda_{n}$$

A)
$$KA \rightarrow KA_1, KA_2, KA_3 - - KAn$$

$$A \rightarrow 1,2,3$$

 $10A \rightarrow 10X1, 10X2, 10X3 = 10,20,30$

B)
$$A^{-1} \rightarrow \frac{1}{\lambda_1} / \frac{1}{\lambda_2} - \frac{1}{\lambda_n}$$

$$A \rightarrow 1, 2, 3$$
 $A^{-1} \rightarrow \frac{1}{1}, \frac{1}{2}, \frac{1}{3} = 1, \frac{1}{2}, \frac{1}{3}$

C)
$$A^{M} \longrightarrow \lambda_{1}^{M}, \lambda_{2}^{M}, \lambda_{3}^{M} - - \lambda_{n}^{M}$$

$$A \rightarrow 1, 2, 3$$

 $A^{2} \rightarrow (1)^{2}, (2)^{2}, (3)^{2} = 1, 4, 9$
 $A^{3} \rightarrow (1)^{2}, (2)^{3}, (3)^{3} = 1, 8, 27$

$$\int_{-\infty}^{\infty} A^{n} + a_0 A^{n-1} + a_1 A^{n-2} + - + a_{n-1} = 0$$

satisfied
$$A: A=\lambda$$

$$A \rightarrow 1, 2$$

$$A^{2}+2A+1=(1)^{2}+2x+1, (2)^{2}+2x+1$$

$$= 4, 9$$

(E)
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}_{2\times 2}$$

Characterstic Polynomial
$$\lambda^{2} = (\text{Trace}) \lambda + \text{det } A = 0$$

$$\Rightarrow \lambda^{2} = (a+d)\lambda + (ad-bc) = 0$$

$$\frac{\left[\sum_{k=0}^{\infty}A^{2}-\left(1+8\right)\right]}{\lambda^{2}-\left(1+8\right)\lambda+\left(8-30\right)=0}$$
That
$$\frac{\lambda^{2}-\left(1+8\right)\lambda}{\lambda^{2}-\left(3-22\right)}=0$$

(F)
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{3\times3}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 5 & 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 4 & 2 \\ 6 & 3 \end{bmatrix} \begin{bmatrix} 4 & 0 \\$$

$$A = (1)$$
 (2)
 (3)
 (3)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)
 (4)

$$|A| = D$$

(T)
$$A \longrightarrow \lambda_1, \lambda_2, \lambda_3 - - - \lambda_n$$

 $Ady A \longrightarrow |A| |A| - |A|$
 $\lambda_1, \lambda_2, \lambda_3 - - - \lambda_n$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & 0 \end{bmatrix}$$
 ergen values
$$5 & 63$$

$$Ady A = \underbrace{1A1}_{A_1} \underbrace{1A1}_{A_2} \underbrace{1A1}_{A_3} \underbrace{1A1}$$

#Q. The two eigen values of the matrix $\begin{bmatrix} 2 & 1 \\ 1 & p \end{bmatrix}$ have a ratio of 3:1 for p=2.

What is another value of "p" for which the eigen values have the same ratio of 3:1?

- (a) -2
- (b) 1
- (c) 7/3

Slide 5

14/3

#Q. The eigen values of the matrix
$$A = \begin{bmatrix} 0 & 5 \\ 0 & -6 & 5 \end{bmatrix}$$

- A
- -1,5,6

- В
- 1,-5,+6i,-6i

- C
- 1,5,+6i,-6i

- D
- 1,5,5

#Q. Consider the following 2×2 matrix A where two elements are unknown and are marked by a and b. The eigenvalues of this matrix are -1 and 7. What are the values of a and b? $A = \begin{pmatrix} 1 & 4 \\ b & a \end{pmatrix}$

$$a=6,b=4$$

#Q. The smallest and the largest eigen values of the following matrix are:

$$\begin{bmatrix} 3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5 \end{bmatrix}$$

$$N^{3}$$
 (Trane) N^{2} + (A11+A22+A33) N - det N = 0
 N^{3} - N - N

1.5 and 2.5

0.5

0.5 and 2.5

N=1,1,2

1.0 and 3.0

1.0 and 2.0

THANK - YOU