EXPERIMENT NO:-6

➤ AIM: To Design and test decoder circuit.

➤ **APPARATUS:** Trainer kit, connecting wires

> THEORY:

Discrete quantities of information are represented in digital systems with binary codes. A binary code of n bits is capable of representing up to 2ⁿ distinct elements of the coded information. A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines. If the n-bit decoded information has unused or don't-care combinations, the decoder output will have less than 2ⁿ outputs.

The decoders presented here are called n-to-m line decoders where m<=2^n. Their purpose is to generate the 2^n (or less) minterms of n input variables. The name decoder is also used in conjunction with some code such as BCD-to seven -segment decoder.

Consider the 3 to 8 line decoder circuit. The three inputs are decoded into eight outputs. Each output representing one of the minterms of the 3-input variables. The three inverters provide the complement of the outputs, and each one of eight AND gates generate one of the minterms. A particular application of this decoder would be a binary to octal conversion. The input variables may represent a binary number, and the outputs will then represent the eight digits in the octal number system. However a 3-to-8-line decoder can be used for decoding and 3-bit code to provide eight outputs, one for each element of the code.

CIRCUIT DIAGRAM OF 3 TO 8 BIT DECODER:

TRUTH TABLE OF 3 TO 8 BIT DECODER:

INPUTS											
ENABLE	ADDRESS LINES			OUTPUTS							
EN	A0	A1	A2	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
1	0	0	0	0	0	0	0	0	0	0	1
1	0	0	1	0	0	0	0	0	0	1	0
1	0	1	0	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	0	1	0	0	0
1	1	0	0	0	0	0	1	0	0	0	0
1	1	0	1	0	0	1	0	0	0	0	0
1	1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

> PROCEDURE:

- (1) First of all apply any combination of 3-bit input.
- (2) Keep the EN1 to high and EN2 to low according to the data sheet.
- (3) Now give all the output Q0 to Q7 to the output indicator LED and verify the truth table.

> CONCLUSION:

Here we can say that when we give 0,0,0 input in output only LED D0 will glow