Depth-First search VS Breadth-First search

Sárközi Viktor, Oravecz Zsolt

2020. 05. 07

Tartalom

- Breadth-first search
- 2 Depth-first search
- 3 Eredmények
- Megvalósítás

Breadth-first search

BFS

- A szélességi keresés (breadth-first search) egy olyan fabejárási algoritmus, amely a fában a gyökértől kiindulva minden csúcsot bejárja.
- Az algoritmus lényege, hogy a fában igyekszik először a gyökérhez közelebbi csúcsokat átvizsgálni, és csak azután folytatja a keresést a mélyebb csúcsokon.
- Általában Sor (Queue) adatszerkezetet használnak a megvalósításához.

Breadth-first search

Működése

Útvonal: A, B, C, E, D, F, G.

Depth-first search

DFS

- A mélységi keresés (depth-first search) egy olyan fabejárási algoritmus, amely a fában a gyökértől kiindulva minden csúcsot bejárja.
- Az algoritmus lényege, hogy a fában igyekszik először a gyökértől távolabbi (mélyebb) csúcsokat átvizsgálni, és csak azután lép vissza a szomszédos és a korábbi csúcsokhoz.
- Általában Verem (Stack) adatszerkezetet használnak a megvalósításához.

Depth-first search

Működése

Útvonal: A, B, D, F, E, C, G.

Főbb szempontok

- Végrehajtási idő mérése
- Megoldás lépéseinek száma
- Legrövidebb út megtalálása

(Run time)

(Solving steps)

(Optional way)

Különböző labirintusok

- 50x50 labirintus
- Saját labirintus
- Random generált labirintus

(50x50 labyrinth)

(Own labyrinth)

(Own labyllilli)

(Random labyrinth)

	Solving with Breadth-First-Search		
	Solving steps	Optional way	Run time
50x50 labyrinth	156	guaranteed	0:00:00.0016294
Own labyrinth	109	guaranteed	0:00:00.0013517
Random labyrinth	103	guaranteed	0:00:00.0012555

	Solving with Depth-First-Search		
	Solving steps	Optional way	Run time
50x50 labyrinth	194	not guaranteed	0:00:00.0015694
Own labyrinth	129	not guaranteed	0:00:00.009157
Random labyrinth	121	not guaranteed	0:00:00.0008352

Főbb szempontok

Megoldás lépéseinek száma

Rekurzív hívások száma

Sor műveletek száma

(Solving steps)

(Recursieve call)

(Queue operation)

Különböző labirintusok

• 5 Random generált labirintus

(Random labyrinth)

	Random labyrinth solving with BFS			
	Solving steps	Recursive call	Queue operation	
maze1	103	not use	181	
maze2	95	not use	219	
maze3	79	not use	221	
maze4	99	not use	149	
maze5	87	not use	166	
Average	92,6		187,2	

f)	Random labyrinth solving with DFS			
	Solving steps	Recursive call	Queue operation	
maze1	121	233	not use	
maze2	137	177	not use	
maze3	149	215	not use	
maze4	117	129	not use	
maze5	87	228	not use	
Average	122,2	196,4		

C:\Users\O.Zsolt\Desktop\Labirintus\LabirintusTeszt\LabirintusTeszt\LabirintusTeszt\bin\Debug\Labirintus\Debug\Labir

```
Do you want to generate a maze(
G
Enter Start x: (4)
4
Enter Start y: (0)
0
Enter destination x: (33)
33
Enter destination y: (14)
14

C\Users\O.Zsolt\Desktop\Labirintus\Labirintus\Teszt\Labi
Do you want to generate a maze(Press G) or
E
Please tyep a labirint: (for example: labi
labirintus.txt
```

Generálás és manuális labirintus megadása.

```
for (int y = 1; y < Read.Count - 2; y++)
StreamReader sr = new StreamReader(filename):
int counter = 0:
                                                                 int a = Read[y].Length;
while ((line = sr.ReadLine()) != null)
                                                                 for (int x = 0; x < Read[y].Length; x++)
                                                                     string c = Convert.ToString(Read[y][x]);
    if (counter == 0)
                                                                     Palya2[y - 1, x] = Convert.ToString(Read[y][x]);
        for (int i = 0; i < line.Length; i++)
                                                                     if (Palva2[v - 1, x] == "S")
                                                                         Program.start = new Point(y - 1, x);
            Read.Add(Convert.ToString(line[i]));
                                                                         Palya2[v - 1, x] = " ";
                                                                     if (Palya2[y - 1, x] == "C")
        counter++:
                                                                         Program.destination = new Point(y - 1, x);
                                                                         Palva2[v - 1, x] = " ":
        for (int i = 0; i < line.Length; i++)
            Read[i] = Read[i] + Convert.ToString(line[i]);
```

Labirintus beolvasása

```
/* ha meg nem talaltuk meg a Kijaratot... ES ha tudunk jobbra menni...
if (!megtalalt && x < MERETX - 1 && Palya[v, x + 1] == Jarat)
  ha arra van a megfejtes */
    if (megfejt(Palya, x + 1, y, celx, cely)) megtalalt = true;
if (!megtalalt && x > 0 && Palya[y, x - 1] == Jarat)
         if (megfejt(Palya, x - 1, y, celx, cely)) megtalalt = true;
if (!megtalalt && y > 0 && Palya[y - 1, x] == Jarat)
    if (megfejt(Palya, x, y - 1, celx, cely)) megtalalt = true;
if (!megtalalt && y < MERETY - 1 && Palya[y + 1, x] == Jarat)</pre>
    if (megfejt(Palya, x, y + 1, celx, cely)) megtalalt = true;
```

Mélységi bejárás program részlet.

```
while (q.Count != 0)
    curr = q.Peek();
   Point pt = curr.pt;
   // Ha megtaláltuk a célt, akkor készen vagyunk
    if (pt.x == dest.x && pt.y == dest.y)
       return curr.dist:
   // Egyébként kivesszük a sorból az aktuális elemet
   q.Dequeue();
   for (int i = 0; i < 4; i++)
       int row = pt.x + rowNum[i];
        int col = pt.y + colNum[i];
       // Ha a következő elem, érvényes és még nem vizsgált.
        if (isValid(row, col) &&
                mat[row, col] == 1 &&
          !visited[row, col])
           //az elemet vizsgált kulcsszóval jelöljük
           visited[row, col] = true;
           queueNode Adjcell = new queueNode(new Point(row, col),
                                                  curr.dist + 1,curr);
```

Szélességi bejárás program részlet.

Generált és manuálisan megadott labirintus.

Köszönjük a figyelmet!

