commodore

Multi-Function
Preprogrammed
Rechargeable
Scientific Notation
Calculator

SR 9190R

OWNER'S MANUAL

TABLE OF CONTENTS

DESC	RIPI	TION PA	IGE
	INT	RODUCTION	
		BOARD LAYOUT AND KEY	
•			
	INDI	E X	8
11.	OPE	RATING INSTRUCTIONS ——	
	FUN	DAMENTAL	9
	1	Power on	9
	2.	Display Format	9
	3.	Numerical Entry	10
	4.	F and inv keys	10
	5.	Clearing	11
		a. To Clear an Erroneous Entry	
		ხ. To Clear a Calculation	
		c. To Clear the Memory registers	
		d. To Clear the Calculator	
	6.	Simple Arithmetic	11
	7.	Chained Calculations	12
	8.	Parenthesis	13
	9.	Single Variable Functions	
	×	2 , \sqrt{x} , $1/x$, In, e^x , \log , 10^x , nl	
	si	n, cos, tan, and inverses	1.7
	10.	Functions of Two Variables	18
	γ.	$\mathbf{x} = \mathbf{x} \sqrt{\mathbf{y}}, \mathbf{x} \leftarrow \mathbf{y}$	
	11,	Degree-Radian Conversion and Mod	e 20
	12.	Conversions	20
	13.	Memory Registers and Memory	
		Functions	22
! 	OPE	RATING-INSTRUCTIONS-SPEC	CIAL
	۴U۸	CTIONS	26
	1.	Rectangular/Polar Conversions	2 6
	2.	Hour-Minute Seconds Function	21
	٠.		<u> </u>

III. OPERATING-INSTRUCTIONS-SPECIAL FUNCTIONS

	·	AGE
		28
4.	Hyperbolic Functions and their	
	Inverses	29
	Numerical Integration	30
_	Complex Arithmetic	32
7.	% and ∆%	34
OPE	RATING INSTRUCTIONS —	
STA	TISTICAL FUNCTIONS	34
1.	Permutation and Combination	34
2.	Poisson Density Function	35
3,	Binomial Density Function	36
4.	Gaussian Probability Distribution	37
5.	Linear Regression	37
6.	Mean and Standard Deviation	43
7.	General Curve Fitting	46
APP	LICATIONS - EXAMPLES	47
APP	ENDIX	72
Α.	Error Conditions	72
В.	Operating Accuracy	73
C.	Probability Distribution Laws	74
D.	Useful Formulae and Relationships	75
	International Symbols, Conversions	
Ε,	The state of the s	
E,	& Constants	81
E, F.		B 1
•	& Constants	B1 88
	OPE STA 1. 2. 3. 4. 5. 6. 7. APP A. B. C.	 Natural Log of Gamma Function Hyperbolic Functions and their Inverses Numerical Integration Complex Arithmetic % and Δ% OPERATING INSTRUCTIONS — STATISTICAL FUNCTIONS Permutation and Combination Poisson Density Function Binomial Density Function Gaussian Probability Distribution Linear Regression Mean and Standard Deviation General Curve Fitting APPLICATIONS — EXAMPLES APPENDIX A. Error Conditions Operating Accuracy Probability Distribution Laws

KEYBOARD LAYOUT AND INDEX

KEY		PAGE
ON DFF	Power Switch	9
EE	Exponent Mode	9

KEY	DESCRIPTION	PAGE		KEY	DESCRIPTION	PAGE
MANT	Mantissa Mode	10	•	e×	Anti-logarithm to the	
(<u>x</u> , <u>y</u>)	X Exchange Y	19	' ! !		Basele, or Exponential Function	17
	Factorial	18		Pπι	Permutation	34
In f (x)	Natural Log of Gamma	28		C.U.	Combination	34
hms	Hours Min Sec Mode	27	1	P	Rectangular to Polar	26
(inv)	Inverse Key	10			Conversion	
Sin	Sine	18		·- → [R]	P lar to Rectangular Conversion	27
cos	Cosine	18			Numerical Integration	30
tan	Tangent	18		BINOM	Binomial Density Function	36
sinh	Hyperbolic Sine	29	-	[X	Mean	43
cosh	Hyberolic Cosine	29	r		Unbiased Standard Deviation	43
<u>tanh</u>	Hyperbolic Tangent	29	· ·	广西)		43
Ė.	Opper Function Control Key	10	r r	[8]	Will give fitted value for corresponding Y.	38
[` ×	a number y to the power x.	18	•	Ŷ	Will give fitted value for Corresponding X.	38
<u>* \ Y </u>	a number y to the root x	19	í k	Yi	Y Entry for Linear Regression	38
[<u>x²</u>]	Square of a Number	1 7		[×.]		
\ <u>\</u>	Square Root of a Number	1 7		<u>[^ i]</u>	X Entry for Linear Regression	38
log	Logarithmn to the Base Ten	17		intep	Y Intercept of the Equation Line	41
10 [×]	Anti-Logarithm to the Base ten	17		slope T	The Stope of the Equation Line	41
	Natural Logarithm to the Base e	1 7		Xn	For entering data for mean and Std. Deviation	44
	4				5	

KEY	DESCRIPTION	PAGE	KEY	DESCRIPTION	PAGE
s' r	Biased Standard Deviation	43		Simple Arithmetic (real	1 1
<u>3</u>	Parameter for Binomial and Gaussian Distributions Permutations and Combinations.	35	j	numbers Complex Arithmetic	32
,T	Parameter for Combination Per- mutation, Binomial, Gaussian and Poisson	35	j - , j+ = =	Equals or complete calculation	12
POI\$\$	Distributions Poisson Density Function	35 35	0,1,2,3,	Number Entry	10
GAUSS	Gaussian Distribution Function	37	4,5,6,7, 8,9.		
STOn	Store Display in User Memory	22		Decimal point entry	10
XCH	Exchange User Memory n with Display	22	+/-	Change Sign Key	10
RM _n	Recall User Memory n	22	<u>μ</u>	Automatic entry of Pi	
+ M _n	Sum X _i In User Memory n	22	("F)"C (d) dr	ms Unit Conversions	20
XMn	Product X _i in User Memory n	22	(oz) g (lb)kg		
	Open Parentheses	13	: (ft)m (mi)k	ሆች 	
)))	Close Parentheses	13	(floz) t (in)cr	n BTU(J)	
% —	Percent Discount, Add on	34			
∆% □	Percent Difference	34			
1/X	Reciprocal	17			
□	Degree-Radian Conversion and Mode	20			

KEYBOARD LAYOUT

OPERATING INSTRUCTIONS — FUNDAMENTAL

1. Power On

To switch on the calculator, move the switch to the left, Zero in display indicates that power is on.

2. Display Format

At most, fourteen digits (including signs) can be displayed on your calculator.

Sample display:

The mantissa is a maximum of ten digits with or without a decimal point. The sign of the mantissa is positive if the mantissa field is blank and negative if the mantissa field contains a "-" sign.

The exponent is a maximum of two digits. The sign of the exponent is positive if the exponent field is blank and negative if the exponent field contains a "-" sign.

Your calculator has two display dot indicators, one (left end of display) to indicate the upper function key mode, and the other (right of the second exponent digit) to signify radian mode."

Sample display:

Error Display

If an improper operation is attempted, the word ERROR will appear on your display. To clear the ERROR display, press

[C/CE],

3. Numerical Entry

Enter in a positive number by pressing the digit keys in order, from left to right. When not entered, the decimal point is assumed to be to the right of the least significant digit, which is the last number entered.

To enter negative numbers, simply enter as a positive and then depress $\boxed{+/-}$.

To enter exponents, enter the mantissa (maximum 10 digits) and then depress [EE] and enter in the exponent number (maximum 2 digits). To enter in a negative exponent, depress [+/-] after entering in the exponent number. To modify the mantissa, when the calculator is in an exponent mode depress [F] MANT. This puts

the calculator in mantissa mode. The exponent is cleared when the calculator is put in mantissa mode. Therefore, after modifying the mantissa, depress [EE] and re-enter the exponent.

4. Upper Function Control Key and Inverse Keys F [[inv]]

conversions.

The F key is depressed when an upper case function is required

The (inv) key is required for obtaining the following inverse functions: \sin^{-1} , \cos^{-1} , \tan^{-1} , \sinh^{-1} , \cosh^{-1} , and the inverses of the unit

To obtain the inverse function, say sin⁻¹, simply enter the number followed by [(inv)], [Sin].

NOTE: When requiring the upper case inverse functions (such as the Hyperbolic Functions), the order of entry of the F and [inv] keys is not important.

If the F key is entered accidently, depress it once more to remove it from that mode.

5. Clearing

a. To clear an erroneous entry while keeping prior numerical entries intact, depress

C/CE once.

EXAMPLE: 4 ÷ 2 C/CE 4 = 1

Pressing C/CE once clears the display.

- b. <u>To clear a calculation</u> and allow for the entering of another calculation, depress [C/CE] twice successively.
- c. To clear the memory registers, as well as the display, depress F CA
- d. To clear the calculation as well as the memory registers, switch off the power and switch it on again.

6. Simple Arithmetic

Four Functions [+] [X]

To perform simple addition, subtraction, multiplication or division, simply enter as the problem appears: Example x + y + z

KEY ENTRY DISPLAY EXPLANATION

X [_+]	×	for simple addition*
Y	Y	acomon
+ z	¥ 2	
7	2	

x + y + z

*For simple subtraction, miltuplication or division, simply press the required key (i.e.,
$$\begin{bmatrix} \bot \end{bmatrix}$$
, $\begin{bmatrix} X \end{bmatrix}$, or $\begin{bmatrix} \bot \end{bmatrix}$),

7. Chained Calculations

Chained calculations involving several operations such as the calculation of the sum of products or the product of sums can be carried out by using parantheses, refer to next page. Simple chaining can be carried out as follows:

KEY ENTRY DISPLAY

KEYENTRY DISPLAY

Note: Chaining can be carried out with most functions although it is not available for certain advanced functions.

See the table in the section on parentheses for the limitations on chained calculations.

8. Parentheses

Three levels of parentheses are provided on your calculator. Parentheses allow for straight-forward entry of more complex algebraic expressions such as sum of products.

EXAMPLE: Evaluate:
$$(5 \times 2) + (7 \times 3)$$

 $(4 \times 8) + (9 \times 9)$

KEY ENTRY DISPLAY

(((0
5	5
×	5
2	2
)))	10
+	10

KEYENTRY	DISPLAY	
(((10	
7	7	
×	7	
3	3	
)))	2 1	
<u>+</u>	31	
(((31	
(((31	
4	4	
×	4	
8	8	
)))	32	
+	32	
	32	
9	9	
×	9	
9	9	
)))	81	
)))	113	
= <u>-</u>	274336283	

Trigonometric, logarithmic and exponential functions may be used within parentheses.

$$e^{(\sin 50 + \cos 23)} \times \ln 8$$

KEYENTRY DISPLAY

(((Ω
<u>' ' ' </u>	
50 sin	0.766044443
+	0,766044443
23 cos	.920504853
} } }	1,686549297
F e ^X	5,400811913
' <u> </u>	5,400811913
8 [m	2.079441542
	11,23067265
2	2
₹ ≣` 1	5.615336326

The contents of user memories may also be recalled within parentheses.

Parentheses and Chaining

The three levels of parentheses may not be used when certain advanced functions are being computed. Similarly it is not possible to perform chained calculators with some functions. The table below provides the list of functions in which parentheses or chaining may not be available to the user.

Function	Use of parentheses	Chained Calculation
Rectangular/ Polar Conversion	notallowed	not allowed
Natural log of gamma	allowed	not allowed
Permutations & Combinations	not allowed	allowed
Poisson density function	notaliowed	allowed
Binomial density function	not allowed	allowed
Gaussian probability function	not a lowed	allowed
Linear Regression	not allowed	not allowed
Mean & Standard Deviation	allowed	allowed
Numerical Integration	not allowed	not allowed
Complex Number Arithmetic	not allowed	not allowed

Also. Memory Registers 7,8 & 9 cannot be used when the user is using the three levels of parentheses. The calculator provides great flexibility in that if only one level of parentheses is needed then memories 1 - 8 are available, when two levels are required then memories 1 - 7 are available, and with all these levels of parentheses in use then memories 1 - 6 are available.

Finding square of numbers x^2

To find the square of a number, enter the number, then depress \mathbb{X}^2

Finding square root of numbers XTo obtain the square root of a number, enter the number, then depress F

Note: Valid for X ≥ 0

Finding reciprocal of numbers [1/X]

The reciprocal of a number can be obtained by entering in the number and then depressing the key 1/X

Note: Not valid for $\kappa = 0$

Finding natural logarithm of numbers [In]

To find the natural logarithm of a number, enter the number, then depress [In] .

Note: x ≥o.

Finding e to the power x F ex

To obtain e to the power x, enter the number x, then key in F e^{x} .

Finding common logarithm of numbers log

The common logarithm of a number can be obtained by entering in the number and then depressing log.

Note: x > 0.

Finding common antilog of numbers 10^x

To calculate the common antilog of a number, enter the number, then key in [F] 10×.

Finding trigonometric functions | Sin | ,

tan

inv

To find the sine of a number in degrees enter the number and then depress [Sin] . The cosine and tangent can be obtained similarly. If you want to calculate the Sine of a number in radians, set the calculator in the radian mode by pressing [F] de-r and then enter in the number followed by [Sin]

Cosine and tangent can be found similarly.

To find the inverse sin of a number, sin enter the number then depress [inv] [sin] The inverse of the cosine and tangent can be obtained similarly.

- Note: (1) inverse sine and cosine $\rightarrow 1 \times \leq 1$
 - also tan 90° or tan $_{\pi}/2$ is invalid.

Finding factorials [n]

To obtain the factorial of an integer on display, prest [n1]

Note: ni is obtained if n < 69, For n > 69. use $\ln \Gamma(x)$ (refer to example).

10. Double functions

Finding y to the power x | y x |

To raise a positive number to any power, enter as follows:

KEY ENTRY DISPLAY

Note: x can be an integer or a decimal, negative or positive.

18

Finding y to the root x (F) $\times \sqrt{y}$

To obtain the X root, of any positive number y, enter as follows:

Note: x can be negative or positive, an integer or a decimal. However, y may only be positive. Using the Exchange Register Key ×←→y The exchange key, x(-)y reverses the order of the operands. For instance, x ÷ y will become y 🗄 x. The exchange key can be used as follows:

DISPLAY **KEY ENTRY**

 $x \leftrightarrow y$ X v ÷ x

The exchange register key may be Note: (1) used for the following operations: division, subtraction, power and root.

Note also that the exchange key is used for entering and obtaining calculations. for the following functions:

- a. | | Numerical integration
- b, Complex arithmetic
- c. | -> P | Rectangular to polar conversion
- d. Polar to rectangular conversion
- e. 4% Percent difference

Degree/Radian Conversions & Modes 11.

For either a degree/radian conversion or a change of degree/radian mode, press:

Pressing the above will both do the conversion and reset the mode, in other words, if the calculation is in degree mode. and F d(-)r is pressed, a degree to radian conversion is done and the calculator is put in radian mode. Likewise, if the calculator is in radian mode and F d(-)r is pressed, a radian to degree conversion is done and the calculator is put in degree mode,

Rules for determining the calculator's mode are

- When turned on, the calculator is: initially in degree mode.
- 2) If there is a decimal point in the exponent field of the display, the calculator is in radian mode. If not, the calculator is in degree mode.

12. Conversions

- (a) Rectangular/Polar Coordinates | → P → B
- (b) Degree to Radian Conversion da-51
- (c) Unit Conversions

The unit conversions available on the calculator are as follows:

		Conversio	n Factor
Length		Unit 1 to Unit 2	Unit 2 to Unit 1
(ft) rti	feet to meters	0.3048	3.28839895

192
787
622
0076
2266
1203

joules < 10⁻⁴

4. Miscellaneous Conversions

(d) gra degree to grads

(d) dms degree to degrees (hours) minutes seconds.

To convert the display in UNIT 1 to UNIT 2 enter F(1) 2.

To convert the display in UNIT 2 to UNIT 1 enter \boxed{F} \boxed{INV} (1) 2.

3. User Memories

There are a maximum of nine memories available to the user. The nine memories will be referred to as registers from 1 to 9. All 9 memories may not be available to the user when certain advanced functions are being evaluated. Many of the problems presented provide excellent use of the memory registers. Refer to section 13 f. for limitations in the use of the memories.

- a. Storing the Display in User Memory STO_n

 For storing a number on display in a memory, simply depress: STO_n followed by an arbitrary number from 1 to 9 (these are the 9 memory registers available to the user).

 For example to store 234 into register 2, simply enter 234, then depress STO_n 2.
- b. Recalling the Quantity Stored in User Memory RMn

For recalling a value stored in a memory register, simply depress RM_n followed by the memory register (number 1 to 9) in which the value is stored.

For example To recall the value stored in register 2, simply depress [RM_n] 2; value obtained on the display is 234.

A very important operation available in the calculator is the exchange memory key XCH_n. The effect of XCH_n is to combine the effects of storing a new value and recalling the value stored earlier in one single step. To show how the XCH_n key is used, an example is presented below:

KEY ENTRY	DISPLAY	EXPLANATION
5 STO _n 1	5	5 in register 1
150 🗐	150	
25	25	
+	6	
F XCH _n 1	5	6 in register (new number)
=	11	6 + 5
RM _n	6	

d. Four Function User Memories and Display +Mn n, XMn

Other important operations available in the calculator are simple arithmetic operations that can be carried out directly to the memory without the need to recall the value. This means that a new value a can be added, subtracted, multiplied or divided directly to a value present in any memory register. A new modified value will then occupy the memory register.

- (1) To ADD a to the quantity present in memory register 1, enter a, press +Mn; 1
- (2) To SUBTRACT a from the quantity present in memory register 1, enter a, press +/-i +Mn 1

- (3) To MULTIPLY the quantity present in memory register 1 by the value a, enter a, press[XMn] 1
- (4) To DIVIDE the quantity present in memory register 1 by the value a, enter a, press 1/x XMn 1

Note: The value a can be added/
subtracted to/from a quantity
present in any memory
register, Similarly for
multiplying/dividing the
quantity present in any memory
register by the value a.

To illustrate this, evaluate $P_3^5 = 31 C_3^5$

KEY ENTRY	DISPLAY	EXPLANATION
5 <u>a</u>	5	
3 ß[F] c'm	9,999999	99
STO _n	9.999	Store in memory register 1
3 [F] C _m	9.999	C 5
3 [<u>ui</u>]	6	
X Mn 1	6	
AM _D 1	60	6 × 10

e. Clearing the User Memories CA

To clear all the user memory registers, depress F CA

If you want to clear only the value in one register, depress: O STO_n n (n referring to the memory register that is to be cleared.)

1. User Mamory Register Limitations

All user memory registers are not available under certain conditions. The table below provides the list of the memories not available when using certain functions.

Function	Memory Registers Not available
Polar/ Rectangular Conversions	9
Natural log of gamme	9
Numerical Inegration	8, 9
Complex Numbership	er 8,9
Permutations ধ্ব Combinations	6,7,8,9
Poisson density function	8,9
Binomial density function	6,7,8,9
Gaussian probablity func	8,9 tion
Linear Regressio	n 1.6,8,9
Mean & Standar deviation	d 4.6

OPERATING INSTRUCTIONS —— III. SPECIAL FUNCTIONS

Polar/Rectangular Conversions

The tormulas for converting rectangular coordinates to polar coordinates are:

$$r = \sqrt{x^2 + y^2}$$

$$\theta = \tan^{-1} \frac{y}{x}$$

$$\theta = \tan^{-1} \frac{y}{x}$$

For converting polar to rectangular coordinates, the formulae are:

a. Rectangular to Polar ->P

To convert (x,y,) to (r,9), the following key sequence is used:

KEYENTRY	DISPLAY
×	×
×<->>	0
Y	Υ
	ľ
×<->y	8

b. Polar to Rectangular

To convert (r, θ) to (x,y) the following key sequence can be used:

KEYENTRY	DISPLAY
Γ	r
×<-> Y	0
8	9
→ R	*
×4> ×	Y

Note: (1) User memory register 9 is not available during rectangular/ polar conversion.

- (2) Chaining and Parenthesis are not evailable when using these conversions
- 2. Hour-Minutes-Second Function (Or Degrees-Minute-Second Function)
 - a. Hour-Minute-Second Entry.

To enter numbers in the hour-minutesecond (or degree-minute-second) format, enter the hours or degrees (integer up to 9999) and then depress [HMS]. Minutes can be entered next followed by depressing HMS , then enter the seconds (Both the minutes and the seconds can be entered up to 99, in integer form)

Supposing we want to enter 30 degrees. 45 minutes and 10 seconds) anter as follows:

нмѕ	30.	
45	30-45	
HMS	30-45-	
10	30-45-10	30 degrees-45 minutes - 10 seconom

If the minutes or seconds entered are greater than 60, depressing an arithmetic operator or the equals key will normalize the enswer.

b Hour-Minute-Second Arithmetic

Arithmetic operations such as addition subtraction, multiplication or division can be carried out in the H-M-S format. Arithmetic operations where the first factor is expressed in the HMS mode and the second in decimal, will give results in the HMS mode. Addition or subtraction with both factors in the HMS mode will not change the mode.

However, if multiplication or division is carried out the result will appear in decimal form.

c. HMS/Decimal Conversion

To convert the decimal form into the HMS format (i.e. hours/degrees-minutes-seconds), depress F (d)dms.

To obtain the decimal form when the display is in the HMS mode, depress (inv) F (d)dms.

3. Natural Logarithm of Gamma, Function

The Gamma Function is given by the formula:

$$\int_{0}^{\infty} e^{-t} t^{x-1} dt$$

The natural log of gamma as opposed to gamma is given in order to extend the range of x values for which gamma can be evaluated. To obtain the In(%x), enter the following:

KEY ENTRY	DISPLAY
×	×
F (x)	"In Γ (x)"

- Note: 1. Memory register 9 is not available and the use of parentheses are not allowed when using this function.
 - Applications of the gamma function are found in mathmatical physics and engineering.
 - 3. The natural logarithm of gamma allows you to calculate factorials > 69.

4. The Hyperbolic Functions

The hyperbolic functions are defined as follows:

$$sinh x = \frac{e^{X} - e^{-X}}{2}$$

$$cosh x = \frac{e^{X} + e^{-X}}{2}$$

$$tanh x = \frac{e^{X} - e^{-X}}{e^{X} + e^{-X}}$$

To obtain the hyperbolic sine of x, enter x and then depress F sinh. The hyperbolic cosine and hyperbolic tangent can be obtained similarly.

To calculate the inverse of the hyperbolic functions, enter the number followed by F (inv) sinh. The inverse of tanh and cosh can be obtained similarly.

Note: The Inverse hyperbolic functions are defined as follows:

$$\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

$$\cosh^{-1} x = \ln(x + \sqrt{x^2 + 1})$$

$$\tanh^{-1} x = \ln\ln(\frac{1 + x}{1 - x})$$

5. Numerical Integration

The numerical integration in this calculator uses the trapezoidal rule, which is given by:

$$\int_{X_0}^{X_n} F(x) dx \cong \% h \left[Y_0 + 2Y + ... + 2Y_{n-1} + Y_n \right]$$

its trunction error is approximately -

$$(x_n - x_0) h^2 y^2(\xi)$$

To numerically integrate between two end points, (x_1y_1) and (x_4, y_4) having points (x_2, y_2) (x_3, y_3) in between, enter as follows:

KEYENTRY	DISPLAY	EXPLANATION
F CA		Clear calculator and memories
× 1	× ₁	
× + > V	0	
¥ 1	¥ 1	Simple arithmetic may be used to evaluate y = f (x)
	0	
×2	× 2	
× <→ Y		
Y 2	¥2	
	(×2)×1	A ₁
* 3	× 3	
× ∢> ∨		
¥3	٧з	
	(×3)×1	A 1 + A 2
× 4	× 4	
×<->v		
Y 4	Y ₄	
	(x+ x1	A ₁ + A ₂ + A ₃

- Note: 1, Memory registers 8 & 9 are not available to the user.
 - 2. Chaining and parentheses are not available.
 - 3. Function x is defined by the order in which coordinates are entered.
 - 4. Both the calculator and memory registers must be cleared prior to initial data entries.

6. Complex Arithmetic

Suppose $(x_1 + y_1)$ and $(x_2 + y_2)$ are complex numbers. To perform complex arithmetic, enter the following key sequence.

KEY ENTRY	DISPLAY	EXPLANATION
× 1	×ı	
× 4-> Y	0	
ΥI	ν,	
F + +	Y	or any complex operation (F j · , F j × , F j-)
* 2	* 2	
χ> γ	0	
¥ ₂	y ₂	

For the results, enter the following:

Results may be converted to polar coordinate form, using the ->R ->R conversion keys.

Note: (1) Parentheses are not available when performing complex arithmetic.

- (2) Chained calculations may not be performed.
- (3) Memories 8 and 9 are not available when performing complex arithmetic,

Percent Key %

The percent key displays a number entered as a percentage in decimal form. The percent key can be used with any of the four function keys (+,-,÷,X) to solve problems of mark up/mark down, tax add-on and chain discounts. Refer to the examples in the appendix

The following example shows how the % key may be used.

Find 8% of 210.

KEY ENTRY	DISPLAY
8	8
F %	8-02
×	8-02
210	210
=	16.8

Percent Difference. Δ %

The formula used for evaluating the percent difference is:

$$A \triangle \% B = \underbrace{B \cdot A}_{A} \times 100\%$$

The percent difference key calculates the percent difference between a base A and any number B. The result is given in (%) of the base.

To find the percent difference of A by a number B, enter as follows:

KEYENTRY	DISPLAY
Д	A
× ++ ¥	0
8	В
F _ ^ %	" <u>B-A</u> %

Refer to the appendix for examples of Δ % calculations.

IV. OPERATING INSTRUCTIONS—— STATISTICAL FUNCTIONS

1. Permutation and Combination

These are evaluated using:

$$P_{m}^{n} = \frac{n!}{(n+m)!}$$

$$C^n = n!$$
 Where n, m are integers and $0 < m < n$.

To find $P_{\mathbf{m}}^{\mathbf{n}}$, enter n and m as follows:

To find C_m^n , enter n and m as follows:

DISPLAY
n
Π
רדיו
m
c _u

NOTE 1 Chaining and parentheses are not available for either pm or cm.

2. Poisson Density Function POISS

The Poisson Probability Mass Function is evaluated using:

POISS (k) =
$$\frac{\lambda^k e^{-\lambda}}{n}$$
 Where $\lambda > 0$ and $k = 0,1,2,...$

To obtain the Poisson Probability Mass Function, enter as follows:

KEY ENTRY	DISPLAY
k	k
α	k
A	λ
FOISS	POISS (K)

- Note: 1. Memory registers 8 & 9 are not available when evaluating the Poisson Density function.
 - 2. Parentheses are not available when using this function but chaining is allowed.

3. Binomial Density Function BINOM

The Binomial Density Function is evaluated using:

BIN (Ic) =
$$C_{IC}^{n}$$
, P^{K} , Q^{n-IC} Where n is a positive integar and $Q \leq P \leq 1$ and $Q = 0,1,2,...,n$.

To evaluate the Binomial Density Function enter as follows:

KEY ENTRY	DISPLAY
n	Ŋ
(<u>\alpha</u>)	n
k	k
$ar{eta}$	k
F BINOM	BIN (K)

- Note: 1. Memory registers 6,7,8,9 are not available when evaluating the Binomial Density function.
 - Parentheses are not available when using this function but chaining is allowed.

4. Guassian Probability Distribution GAUSS

The Gaussian Probability Distribution function $\{\overline{\phi}\}$ is evaluated using:

$$\underline{\underline{\mathbf{T}}} (x) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\sqrt{2}}{2}} dy$$

where- $\phi < x < \phi a$

To evaluate b (x), enter x then depress

F GAUSS

Gaussian Distribution curve

Note: 1) Memory registers 8 and 9 are not available when evaluating this function

2) Parentheses are not allowed but chainging can be used.

5. Linear Regression

Before entering data for this function clear all data registers by pressing F CA

A series of points on a graph may be approximated to the straight line $\gamma = mx + c$ where m is the slope and c the intercept. By

entering data points x_i, y_i , the calculator will compute m and c automatically using the following equations.

$$m = n \sum_{j \in I} x_j \sum_{j \in I} y_j - \sum_{i \in I} x_i \sum_{j \in I} y_j$$

$$n = n \sum_{j \in I} x_j \sum_{i \in I} x_i \sum_{j \in I} y_j$$

$$n = n \sum_{j \in I} x_j \sum_{i \in I} x_i \sum_{j \in I} y_j$$

$$n = n \sum_{j \in I} x_j \sum_{j \in I} x_j \sum_{j \in I} y_j$$

$$n = n \sum_{j \in I} x_j \sum_{j \in I} x_j \sum_{j \in I} x_j \sum_{j \in I} y_j$$

and

$$c = \frac{\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}y_{i}}{\sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i}^{2}}$$

$$= \frac{\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}^{2} - \sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2}}$$

where n is the number of data points entered.

This calculator has the ability to preserve the data base during the calculation of m and c allowing the user to add or delete data points at will and recompute the parameters of the best fit straight line.

To enter data

DISPLAY KEY ENTRY F 1st x х, Χ, ×, 1st y ٧, One data point entered 2nd x ×2 [×]2 ×2 2nd y ⁷2 ¥ 2

38

To find the value \hat{y} corresponding to a value x enter x and press \hat{y} and similarly to obtain x corresponding to a value y enter y and press \hat{x}

The data base is preserved in memory registers 1 through 6 as follows.

MEMORY

1	2	3	4	Ç.	6
Σχγ	Σ_{γ}^2	Σγ	Σ×	Σ×	n

DELETION OF POINTS

To defete a point x,y from the data base:

(inv) yi n — number of points left.

New points may be added as before.

- Note: 1) The number of points entered is unrestricted.
 - The data must be entered in pairs, x value entered first.
 - Only memory register 7 is available for independent use,
 - 4) Neither parentheses nor chaining are available when using the linear regression function

5) The values of the data base stored in memories 1 through 6 are available by pressing RM_N followed by the required memory register address.

EXAMPLE

Suppose we have a set of points (x_i, y_i) with which we want to fit a straight line:

 $y + \frac{1}{12} + \frac{1}{12} x$ the data is given below.

×	3	4	6	8
٨	5	7	9	13

- (a) the slope b (the best estimate of (3).
- (b) the intercept, a (the best estimate of ,,).
- (c) littled value of y for a corresponding x, where $\hat{y} = \alpha + \beta \times \text{let } x = 9$
- (d) fitted value of x for a corresponding y, where $\hat{x} = \frac{y + a}{a}$ let y = 15

Then the data may be entered as follows.

KEY ENTRY DISPLAY

KEY ENTRY DISPLAY

	DISFLAT
Υί	2
6	6
×í	6
9	9
Y ;	3
8	8
×;	8
13	13
V;	4
Slope	1.52542372
intcp	0.49152542

9

15

How to obtain the coefficient of correlation (y)

14.22033898

9.51111111

The coefficient of correlation is given by:

$$Y = \frac{\sum x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}}{\left(\sum x_i^2 - (\sum x_i)^2\right)\left(\sum y_i^2 - (\sum y_i)^2\right)}$$

The formula used for evaluating the coefficient of correlation is given by:

r - slope x standard deviation of x.
standard deviation of y.

Using the example given in linear regression, the following key sequence may be used:

KEYENTRY	DISPLAY	EXPLANATION
C/CE	0	
RM _n	34	Σ γ
_ 2	1156	$(\Sigma_{\mathbf{v}_i})^2$
<u>+</u>	1156	
4	4	
<u>-</u> + / -	- 289	
+	-289	
RM _n 2	324	
÷	35	
3	3	
	11.66666667	
F) _Y	3,415650255	Sγ
1/x	0.292770021	
×	0.292770021	
F) s	2.217355783	
×	0.649175301	
Slope	1.525423729	
=	0.990267408	

How to obtain the Residual Sum of Squares (RSS)

The Residual Sum of Squares is evaluated using the following formula:

RSS =
$$\sum y_i^2$$
 — intept x $\sum y_i$ — slope x $\sum x_i y_i$

To obtain the Residual Sum of Squares of the example enter as follows:

KEY ENTRY	DISPLAY	EXPLANATIO
F slope x	1.525423729	$\Sigma \times_i Y_i$
RM _n 1	201	$\Sigma \times_i \vee_i$
+/-	306 6101695	
-	306.6101695	
RM_0 2	324	Σ γ <mark>2</mark>
	17.38983051	
STO _n 7	17.38983051	
Fintee	0.491525423	
×	0.491525423	
BM _n 3	34	Σv;
- + 7	-16.71186441	
⊕ PM _n 7	17.38983051	
	0.677966102	RSS

The standard error of estimate of y on x can be obtained by using the formula:

Sy. x =
$$\sqrt{\frac{RSS}{n-2}}$$

8. Mean and Standard Deviation

Before entering data for mean and standard deviation, memory registers 4,5 and 6 have to be cleared by storing zero in each of the registers 4,5 and 6. Just in linear regression, your data base is preserved, and therefore depressing \overline{X} or \overline{F} S or \overline{F} S does not destroy the data base. The data base is preserved as follows:

MEMORY REGISTER	QUANTITY
6	†1
5	*
4)) \(\sum_{\chi} 2 \) i 1

To retrieve a quantity, press \overline{RM}_n followed by the required memory register,

Values can be detected as in linear regression. To delete a value, enter $\lfloor (mv) \rfloor$ number $\boxed{X_n}$

Supposing we are given a set of numbers 5.1, 5.8, 4.5, 5.5 and we want to evaluate

a, the Mean X

Where
$$\ddot{X} = \frac{p}{i+1} \times_{i}$$

histandard deviation of the sample (unbiased),

Where S
$$\sqrt{\frac{x^2}{x^2}} = \frac{N\dot{x}^2}{N}$$

c standard deviation of the population (biased),

Where S'
$$\sqrt{\frac{2}{x_i^2} \frac{2}{Nx^2}}$$

d. standard error of sample,

Then we can enter as follows:

and for the standard error of sample,

- Remarks: (1) Clear memory registers 4,5 and 6 prior to entering data.
 - (2) Memory registers 4,5 and 5 are not available for user.
 - (3) The number of sample values is unrestricted.
 - (4) N is a positive integer, >1
 - (5) Both chaining and parentheses are allowed.

7. General Curve Fitting

Use transformation for dependent variable y given by $W_{(k)} = \frac{y^k - 1}{b}$

where
$$0 \le k \le 1$$

k = 1 gives a linear fit and k →0 gives an exponential curve fit, K = 0.5 gives a quadratic curve fit and so on. Thus the above transformation gives a wide range of general curve fittings ranging from the linear to the exponential case.

Suggested procedure to be followed for practical examples:

Do a linear regression without using a transformation, Find the Residual Sum of Squares (RSS). Pick a value of k between 0 and 1 and use the above transformation for the y values, Find the RSS, Choose the k which gives the smallest RSS. Usually it is sufficient to enter the data only three to four times to get a good value of k.

V. APPLICATIONS - EXAMPLES

Rectangular to Spherical Conversion

Convert (2,5,8) given in rectangular coordinates to spherical coordinates (\mathbf{r} , $\mathbf{\Theta}$ $\mathbf{\phi}$).

Solution:

Enter as follows:

KEY ENTRY	DISPLAY	EXPLANATION
2	2	enter x
x <> y	0	
5	5	enter y
> P	5.385164807	r sin 🌢
× > Y	68.19859051	get 8
8	8	enter z
× <> ∨	5.385164807	r sin 🛊
-+ P	9,643650761	get r
× + + γ	33,94629503	get þ

the coordinates are (9.64, 68.20, 33.9).

2. Vector Addition

-			
Add the two vectors	X =	(7.27	35" 22")
and (3,42 37' 30")			

Solution

The vectors in rectangular coordinates are given by

$$\chi$$
 (Xx+Xy)

$$y_2 \cdot (y_{x+y_1})$$

and in polar coordinates by

We have to find the resultant vector, \mathbf{Z} .

Enter as follows

KEY ENTRY	DISPLAY	EXPLANATION
7	7	enter Ax
×<-> Y	O	
27 <u>hms</u> 35 hms 22	27.35 22	enter 0x
F →R	6.204022418	get X _k
STOn	6.20402241B	Store X x in memory register
$\times \leftarrow \rightarrow \vee$	3.241929339	get Yx
STO 2	3.241929339	Store Yx in register 2
3	3	enter Ry

KEY ENTRY	DISPLAY	EXPLANATION
X ** Y	6.204022418	
42 <u>hms</u> 37 hms 30	42-37-30	enter 6y
[F] PR	2.207405023	get Xy
[* M] 1	2.207405023	add Xγ + Xx ≃ Xz in register
× + * Y	2.031591265	get Yy
+ M _m 2	2.031591265	
	8.411427441	recall Xz
HM _n		
$\times \leftarrow \rightarrow \vee$	2.207405023	
BMn 2	5,273520603	
{ p	9.927846249	get Az
X • V	32,08553912	get Oz in decimal degrees
F (d) dms	32-05-08	get Oz in degrees-

3. Hour-Minute-Second Arithmetic

Example:

A milkman from a dairy normally takes 2 hours and 35 minutes to go to Daly City and it takes 45 minutes and 50 seconds from there to Palo Alto, How long does it take the milkman to reach Palo Alto?

Solution

Enter as follows:

minutes-seconds

KEYENTRY	DISPLAY
2 HMS	2
35 HMS	2-25-
0	2 35 0
+	2-35-00
0 HMS	0-
45 HMS	0-45-
50	0.45.50
	3-20-50

The trip took 3 hours and 20 minutes and 50 seconds to Palo Alto.

b. Because of an accident on the highway, it took the milkman 4 hours, 10 minutes and 44 seconds. How late was the delivery?

Solution:

Enter as follows:

Therefore, the milkman was late by 49 minutes and 54 seconds,

50

- 4. Example: Hyperbolic Functions on Resonant Circuits
 - a Find the amplitude at resonance of a magnetic field if the terminations are dissipative. The attenumation factors are given by

$$A_0 = 0$$
 $A_s = 1.77$

Also
$$\varphi$$
 gSp = 1.17. Let K = 2.4

- b) Find the efficiency of the transmission, i.e. P_s/P_0 .
- c) Find the decibet loss

Solution:

the amplitude is given by,

$$K_p = \frac{K}{\sinh(\sigma c g S p + A_s + A_o)}$$
.

Enter as follows:

KEYENTRY	DISPLAY	EXPLANATION
1,77	1.77	A _s
	1.77	
1,17	1.17	gSp
	2.94	
Finh	9.431490292	
	0.106027782	
×	0.106027782	
2.4	2.4	
<u>:-</u>	0.254466677	

51

Therefore the amplitude is 0.25 to 2 decimal places.

b) to find the efficiency of the transmission, i.e. P_s we use the relationship P_o Ps sinh 2 As

Po sinh 2(agSp + As)

Enter as follows:

KEY ENTRY 1,77	DISPLAY 1.77	EXPLANATION
+	1.77	
1.17	1, 1 7	
×	2.94	
2	2	
	5.88	
Fsinh	178.9032235	
1 / X	5.58961421	· O 3
STOn	5.58961421	•03
1.77	1.77	
X	1.77	
2	2	
<u>-</u>	3.54	
F sinh	17.21895293	
X Mn	17.21895293	
RM _n t	9.624730398	02

The efficiency is 0.096;

c) We find the decibel loss by

Enter as follows:

KEYENTRY	DISPLAY
[RMn] 1	9.624730398 -02
1 X	10,38990142
[log]	1.016611427
<u>×</u>	1.016611427
10	1 O
	10.16611427

Decibels loss = 10.17 to 2 decimal places.

5. Numerical Integration

Solve
$$\int_{1}^{3} \frac{1}{x} dx = Using the trapezoidal rule.$$

[×	1	1.5	2	2.5	3
ν	٧ ٦	¥ 2	٧3	٧4	٧5

Solution:

Enter as follows:

KEY ENTRY	DISPLAY	EXPLANATION
7	1	× ₁

KEYENTRY	DISPLAY	EXPLANATION
X ~> Y	0	
1	1	Υ .
1 / x	1	
	O	
1.5	1.5	× 2
×4 -5 y	0	
1.5	1.5	
1/x	0.66666666	¥ ₂
	0.41666666	
2	2	×3
x> y	0	
2	2	
1/x	0.5	• У З
	0.708333333	
2.5	2.5	× 4
×·->γ	0	
2.5	2.5	٧4
1/ <u>X</u>	0.4	
	0.93333333	
.	3	× ₅
x <.−> y	0	
3	3	
1/x	0.33333333	Υ ₅
	1 116666667	× ₅ 1/x dx
		* 1

Therefore
$$\int_{1}^{3} 1/x \, dx = 1.12$$
 using the trapezoidal rule,

Note: (1) The correct answer is
$$\begin{bmatrix} \ln x \end{bmatrix} = 1$$

In 3 - 0 = 1.0986

6. Complex Arithmetic

The current in a circuit is given by (5,2 + j13). A when applied voltage is (100 + j150) volts. Determine the impedance stating whether it is inductive or capacitive,

Solution:

impedance = v/amperes

KEY ENTRY	DISPLAY	EXPLANATION
100	100	
×<->v	0	
150	150	
[F] j÷	150	
5.2	5.2	
(× ←→ ∨)	0	
13	ι 3	
=	12.5994695	real part of ≏impedance
×> V	-2,652519894	imaginary part of
		≏ impedance
The impedance	is (12.60 - 2.65j)	ohms,

Since the imaginary part is negative, the impedance is capacitive.

7. Percentage (%) example on Tax Add-on An automobile retails for \$5,200, If the sales tax is 6%, what is the dollar amount of the tax? What is the total cost of the car?

Solution:

Enter as follows:

KEY ENTRY	DISPLAY	EXPLANATION
5200	5200	
+	5200	
6	6	
[F]_%_	312	\$ amount of tax
=	5512	total cost of the car

The amount of sales tax is \$312.
The total cost of the car is \$5,512.

8. Percent Difference

A man invests \$4,500 in the stock market. Six months later he sells his stock for \$6,200. What is the return on his investment.

Solution:

Enter as follows:

KEYENTRY	DISPLAY
4500	4500
× ←→ Y	0
6200	6200
F <u>A</u> %	37.777778

The investor has realized a 37.8% return on his money.

9. Permutation

Given 15 students in a class and 6 deaks in the front row, how many arrangements of students in all front row seats are possible?

Solution:

$$p_{m}^{n}$$
 where $n = 15$ and $m = 6$

Enter as follows:

KEY ENTRY	DISPLAY
15	15
<u>~</u>	15
· <u>6</u> _	6
B	6
Pm	3603600

Therefore, 3,603,600 arrangements are possible.

10. Combination

How many different bridge hands are there? Bridge is played with a 13 card hand dealt from 52 cards.

Solution:

hands =
$$C_m^n$$
 where $n = 52$, $m = 13$

Enter as follows:

KEY ENTRY	DISPLAY
52	52
4	52
13	13
B	13

KEY ENTRY DISPLAY

6.350135594 11

Therefore, there are $6.350135594 \times 10^{11}$ hands in bridge.

Paisson Density Function

A switchboard operator receives 48 calls during 8 hours. What is the probability of getting 2 calls during 10 minutes?

Solution:

Or λ≈ 1 call/10 minutes

The probability is POISS (k)

$$= \frac{e^r \lambda}{k!} \frac{\lambda^k}{k!}$$

where $k \approx 2$ and $\lambda = 1$

Enter as follows:

KEY ENTRY DISPLAY

0.18393972

The probability of getting 2 calls/10 minutes is <u>0.184</u>.

Find the probability of getting exactly 2 heads in 6 tosses of a fair coin.

Solution:

$$P(k) = C_k^n p^k q^{n-k}$$
 where $n = 6, k = 2$ and $p = q = 0.5$

KEYENTRY	DISPLAY
6	6
<u>a</u>	6
2	2
[3]	2
,5	0.5
F BINOM	0,234375

Probability of obtaining 2 heads = 0.234

Exponential Distribution

The probability of failure of an electronic device P = 3% per 6 weeks, operating hours. What is the probability for one device not to fail before 3 years?

Solution:

The probability is given by e^{-np} with n expressed in weeks. The key sequence is:

Enter as follows:

KEY ENTRY	DISPLAY	EXPLANATION
3	3	
×	3	

KEYENTRY 52	DISPLAY 52	EXPLANATION
	156	Π
6	6	
[×]	26	
3	3	
<u>÷</u>	78	
100	100	
	0,78	np
+/.	-0.78	
F e ×	0.458406011	

The probability for one device not to fail before 3 years is 0.458.

14. Gaussian Distribution

Calculate proportions of a normal distribution of sucrose concentrations, where $\mu = 62 \text{ mg/100ml}$ and $\sigma = 21 \text{ mg/100ml}$,

- a) What proportion of the population is greater than 80mg/100ml?
- b) What proportion of the population is less than 47mg/100ml?

- c) What proportion lies Inbetween 47mg/100ml and 80mg/100ml?
- a) Solution:

We have to find z and then find p P(xi > 80mg/100ml) = P(z > using the gaussian distribution.

Enter as follows:

KEY ENTRY DISPLAY

80	80
	80
62	62
<u>+</u>	18
21	21
=	0.857142857
F GAUSS	0.80431703
• /	-0.80431703
+	-0.80431703
1	1
[

STO_n 1

The proportion of the population greater than 80mg/100ml is 0,196.

0.195682969

0,195682969

b) Solution:

to find the proportion that lies less than 47 mg/100 ml, enter as follows: i.e. $P(x_i \le 47 \text{ mg/100 ml})$

KEYENTRY	DISPLAY
47	47
	47
62	62
÷	– 15
21	2 †
	·0.7142B5714
F GAUSS	0.237525262

The proportion of the population less than 47 mg/100 ml is 0.238.

c) <u>Solution:</u>

to find the proportion that lies between 47 mg/100 ml and 80 mg/100 ml)

P(47 mg/100 ml < x < 80 mg/100 ml)= 1 · $P(x_i > 80 \text{ mg}/100 \text{ ml})$ · $P(x_i < 47 \text{ mg}/100 \text{ ml})$

Enter as follows:

KEY ENTRY	DISPLAY	EXPLANATION
0.237525262	0.237525262	result from (b)
+ M _n	0.237525262	
1	1	

KEY ENTRY DISPLAY EXPLANATION

.]

RM_n 1 0.433208231

0.566791768

Therefore, the proportion that lies between 47 mg/100 ml and 80 mg/100 ml is 0.567.

15. Error Function on Heat Conduction Using Gaussian Distribution

A very long insulated iron pipe at -40°C is heated to 100°C at one end so that a constant temperature is maintained at that end, Find the temperature 3 meters from the heated end after 15 hours,

The unknown temperature is a function Θ of distance "x" and time "t".

The initial conditions are:

(1) at time
$$t = 0$$
, $\theta(x,0) = 40^{\circ}$ C

(2) at distance
$$x = 0$$
, $\theta(a,t) = 100^{\circ}$ for $t > 0$

(3) in general,
$$G(x,t) = (100 \cdot Ti) \times \{1 \cdot erf[\frac{72a}{2a}]\} + Ti wher Ti is the initial temperature,$$

Since ert(z) =
$$2\overline{b}(z\sqrt{2}-1)$$

we can use the Gaussian distribution function to find $\Theta(x,t)$ for x=3meters and t = 15 hours. Using the relationship and transforming the data, we obtain:

x = 3 meters

$$\theta(x,t) = 2(100 \cdot Ti) \left[1 \cdot \frac{1}{2} \frac{x}{\sqrt{2t}} \right] + Ti$$
Data: $a = 4.71 \times 10^{-3} \text{ m} / \sqrt{\text{sec for iron}}$

$$Ti = -40^{\circ} \text{C}$$

t = 15 hours Enter as follows:

KEY ENTRY	DISPLAY	EXPLANATION
15 X	15	
60	60	
[<u>×</u>]	900	
60	60	
×	54000	t in seconds
2	2	
=	108000	
	328,6335345	
×	328.6335345	
.477 EE 2+/	.477 -02	a for iron in m/\sqrt{sec}
	1.56758196	
1 X	0.637925177	
X 3	3	

KEY ENTRY	DISPLAY	EXPLANATION	
	1.913775533		
F] <u>GAUSS</u>	0.972175578		
+/-	-0.972175578		
1	1		
X 2	2		
×	5.564884308-02		
(((5.564884308-02		
100	100		
40	40		
1)}	140		
<u>=</u>	7.790838031		
[-] 40	40		
<u>=</u>] 32.20916197			
Answer Temperature =32.20916197			
16. Using the	16. Using the Exchange Key (X4-)Y		
Find 3 ^{In 2 + sin 30}			
KEY ENTRY	DISPLAY 2		
In	0.693	14718	
30	30		
sin	0,5		
—— <u>—</u>			

Using Inf'(x) [natural log of gamma function) to find 120!

Solution: By using the relationship $n! = \Gamma(n + 1)$, we can find

(121) to give 120!

[in[(121) - 10 ⁹⁹ in - 10 ⁵⁰ in]		
KEY ENTRY 121	DISPLAY 121	EXPLANATION
F In (x)	457.812388	
	457.812388	
1 EE 99	1. 99	
וה	227.9559242	
	229,8564638	By trial & error find that it is over-loaded
	229.8564638	
1 EE 50	1. 50	
in	115,1292547	
=	114.7272091	
KEY ENTRY	DISPLAY	EXPLANATION

6.68950291 49

$$120! = 6.6895 \times 10^{49} \times 10^{99} \times 10^{50}$$
$$= 6.69 \times 10^{198}$$

Solving defenite integral of sin⁴u using 18: Gamma function

π/2 Solve: ∫ sin⁴u du

We can solve the problem by the use of the following relationship:

$$\int_{a}^{\frac{\pi}{2}} \sin^{n} u \, du = \sqrt{\frac{\pi}{2}} \left[\frac{\left(\frac{n-1}{2}\right)}{\left(\frac{n+2}{2}\right)} \right] \qquad n > -1$$

in this case n = 4

Enter as follows:

KEY ENTRY	DISPLAY	EXPLANATION
3	3	
L		

0.69314718

0,5

0.5

3,141592654

F

1.772453851

0,886226

0,443113462

STO_n 1

0.443113462

KEY ENTRY	DISPLAY	EXPLANATION
1.5	1,5	
F [n [x)	-0.12078223	3 7
F e×	0,8862269	25
×	0,8862269	25
RMn 1	0.4431134	62
	0.3926990) 81
$\int_0^{\pi/2} \sin^4 u du =$	0.393	
19. Linear Regression Example		ple

The frequency of electrical impuses emitted is measured from fish at different temperatures. Find the slope and intercept relating impulse frequency to temperature. Also, predict the impulse frequency if the temperature of the fish is 15°C.

The following data is provided:

TEMPERATURE (°C), X	iMPULSE FREQUENCY (number/sec), γ
20	222
22	254
23	274
25	292
27	309
28	314
30	328

Solution:

Enter as follo	ows: DISPLAY
20	20
×i	20
222	222
V _i	•
22	22
×	22
254	254
Y i	2
23	23
×i	23
274	274
V;	3
25	25
×i	25
292	292
V _i	4
27 	27
×i	27
3 09	309
Y i	
28	28 60

KEY ENTRY	DISPLAY
×i	28
314	314
V _i	6
30	30
×i	30
328	328
Yi	7
FSlope	10.26315789
Fintop	28.13533835
15 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	182.0827068

Therefore, the regression equation is:

$$\hat{y} = 10.263x + 28.135$$

where b = 10.263 impulses/sec/°C a = 28.135 impulses/sec

The predicted impulse frequency if the temperature is 15°C is 182.08 impulses/sec.

Note: Memory registers must be cleared before entering first datum.

20. Mean and Standard Deviation

A group of 10 experimental animals consists of individuals with the following body weights (in grams): 85.5, 86.5, 82.4, 89.7, 72.2, 78.4, 69.9, 78.9, 77.3, 86.2.

- a) Calculate the mean weight of these animals.
- b) Find the precision of the measurement (i.e. the unbiased standard deviation).

 Solution:

Enter as follows:

EYENTRY	DISPLAY
85.5	85.5
×n	85.5
86.5	86.5
×n	86.5
82.4	82.4
×n	82.4
B9.7	89.7
×n	89.7
72.2	72.2
×	72.2
78.4	78.4
×n	78.4
69.9	69. 9
x n	69.9

KEYENTRY	DISPLAY	
78.9	78.9	
×n	78.9	
77.3	77.3	
×n	77.3	
86.2	86.2	
×n	86.2	
[×	80.7	
F) S	6.496152708	

- a The mean weight of the animals is 80.7 gms.
- b The precision of the measurements is 6.50 gms.

APPENDIX A

Error Conditions

An error condition results when an improper operation is performed or when the result of an operation overflows or underflows the absolute range of the calculator.

When an error condition occurs, the word "ERROR" is displayed on the calculator. To clear ERROR from display, depress [C/CE]

Overflow

Underflow

Underflow occurs when a computed result is less than 1.0 x 10^{-99} .

APPENDIX B

Operating Accuracy

the precision of your calculator depends upon the operation being performed. Basic addition, subtraction, multiplication, division and reciprocal assignments have a maximum error of a one count in the tenth or least significant digit.

While countless computations may be performed with complete accuracy, the accuracy limits of particular operations depend upon the input argument as shown below.

Function	Input Argument	Mantissa Error (Max.)
F ×		2 counts in D ₁₀
in ×		i count in D ₁₀
ieg ×		1 count in D ₁₀
F e ^x		3 counts in D ₁₀
		1 count in D ₉
51(1)		8 counts in D ₁₀
	0 ≤ 4 ≤ 2 11	
c: os	0° ≤ φ ≤ 360° or	8 counts in D ₁₀
	Q ≤ < 2 '	
tan	0 ≤	4 counts in D ₉
	89° ≤ φ ≤ 89.95°	1 count in D ₆
F sin x	10-10 ≼ ≼ ≤	E < 5 x 10 ⁻⁸
E cos 1 x	10 ⁻¹⁰ ≤∫x ≤	E < 5 x 10 ⁻⁸
F tan 1 x		E < 5 x 10 ⁻⁸
Linear regre (alt. linear	ssion	5 counts in D ₁₀
regression p	arameters)	
- + ·	· · · · · · · · · · · · · · · · · · ·	

t or Student's t	F or Smedecor's F	X2 Square or	Normal or			Нурепреоглести	Poisson	Binomial	Name.	
positive integer (degrees of freedom)	and positive integers (degrees of freedom)	(degrees of freedom)	-00 < P < 04		コトン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		ř	integer 0: p:)	Parameters	
「(<u>**</u>) √* √(!***)(v+1)	$\Gamma\left(\frac{(\frac{\sqrt{1}+\sqrt{1}+\sqrt{1}+\sqrt{1}+\sqrt{1}+\sqrt{1}+\sqrt{1}+\sqrt{1}$	2 4/2 - x/2 x > 0 2 4/1 (v/1) 0 Otherwise	√270 €-(x-µ)1/20	Continuous Probab	C*: + 42	CY. CY.	X O Otherwise	C: + (!-*)*-* k-0, !.2	Mass Function	Proba
0 · * •]	V2 V2 V2	€	t	Hity Distribution	¥,+ ¥,	3 <	5 -	4	1	Continuous Proba
¥-2 · v.2	$\frac{2v_1^2(v_1 + v_2 - 2)}{v_1(v_2 - 2)^2(v_2 - 4)}$ $v_2 > 4$		9		$(v_1 + v_2)^2 (v_1 + v_2 - 1)$	V, V, M (V, +V, -M)	3-	np (i-p)	Variance	bility Distribution Laws
		(1-21)-7/2	**** (a*:'/2) 74	F(-nva; vn; e*)	(<,+<,)	C	€× (€t - 1)	(pa ^c + + - p) ⁿ	eni Ge	

Function	Input Argument	Mantissa Error (Max.)
Mean and Standard Deviation		5 counts in D ₁₀
Combination & Permutation Binomial, Po and Gaussian Distributions	isson	1 count in Dg
n İ	n < 69	6 counts in D ₁₀
In [(x)	Positive	6 counts in D ₁₀
Cosh y		
Sinh y		1 count in D ₁₀
tanh y		
Cosh ⁻¹ γ		6 counts in D ₁₀
Sinh ⁻¹ y		
tanh ^{.1} y		
Complex arithmetic		1 count in D ₁₀
Δ% %		1 count in D ₁₀
On = Nth dis	play assuming a left	justified 10 digit
APPENDIX	(D.	
Useful Form	ulas and Topics	
Hyperbolic F	unctions	

sinh (a + jb) = sinh a, cosb + j (cosh a,sinb)

cosh (a + jb) = cosh a,cosb + j (sinh a,sinb)

hyperbolic (jb) = j trigonometric (b)

Arc tanh (a + jb) =
$$\frac{1}{2}$$
 Arc tanh $\frac{2a}{1 + a^2 + b^2}$ + $\frac{J}{2}$ Arc tan $\frac{2b}{1 - a^2 - b^2}$

Factorial of Even Numbers

$$(2n)!! = 2.4.6.....2n = 2^{n} n!$$

Factorial of odd Numbers

$$(2n-1)!! = 1.3.5....(2n-1) = \frac{1}{\sqrt{\pi}} 2^n \Gamma(n+\frac{1}{2})$$

Gamma and Beta Functions

$$\mathbf{r}(n+1)=\mathbf{n}\,\mathbf{r}(n)=\mathbf{n}\,\mathbf{l}$$

$$B(x,y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$$

Error Function

$$E \ rf^{(x)} = \int_{0}^{x} e^{-t^{2}} dt = 2 \, \overline{\Phi} (x \sqrt{2}) \cdot 1$$

Binomial Confficients

$$(1 + x)^{n} = \sum_{r=0}^{n} C_{r}^{n} x^{r} n > 0$$

Combinations with Repetitions

The number of ways in which r indistinguishable particles can be distributed among n calls with no restrictions as to the number of particles permitted in any one cell is in any one cell si: C_r^{n+r-1}

The number of ways in which a set of r elements can be partitioned into an ordered set of k subjects Having r1, r2......rk elements

respectively with $\Sigma_1^k r_1 - n$ is:

$$\frac{-n!}{r_1 | r_2 |r_k|} = C_{r_1}^{n} \times C_{r_2}^{n-r_1} \times C_{r_3}^{n-r_1} + C_{r_3}^{r_4}$$

$$C_{r_k}^{r_k}$$

Matching

The number of ways in which a numbered elements can go into a numbered calls so that no element goes into a cell having the same number as the element is:

$$\frac{n!}{2!} = \frac{n!}{3!} + \frac{n!}{4!} = \frac{1}{n!} + \frac{n!}{n!} = \frac{1}{n!} + \frac{1}{$$

Negative Binomial Distribution

The probability of getting an mth success on the nth trial, each success having the probability p. is:

$$C_{m-1}^{n-1} \times p^m \times (1 - p)^n$$

Hypergeometric Distribution (Sampling Without Replacement)

The probability of getting m success out of n trials out of a set containing a successes and b failures, each with an equal probability of being selected is:

Useful Definite Integrals

$$\int_{0}^{\infty} \frac{\cosh 2yt}{(\cosh t)^{2x}} dt = 2^{2x-2} \frac{\left[\left(x + y\right)\right] \left[\left(x + y\right)\right]}{\left[\left(2x\right)\right]}$$

Real x > 0 Real x > / Real y
$$\int_{a}^{\pi/2} \cosh \Theta d\theta = \int_{a}^{\pi/2} \sin \Theta d\theta = \frac{\sqrt{\pi} \Gamma(\frac{n+1}{2})}{2 \Gamma(\frac{n+2}{2})}$$

$$\int_{a}^{b} \cos^{h} \Theta d\theta = \int_{a}^{b} \sin \Theta d\theta = \frac{\sqrt{\pi} \left[\frac{1 - \frac{1}{2}}{2} \right]}{2 \left[\frac{n}{2} + \frac{1}{2} \right]}$$

Real n > -1

$$\int_{0}^{2} \cos^{m} \Theta \sin^{n} \Theta d\Theta = \frac{1}{2} \frac{\Gamma \left(\frac{m+1}{2} \right) \Gamma \left(\frac{n+1}{2} \right)}{\Gamma \left(\frac{m+n+2}{2} \right)}$$

$$\int_{0}^{\infty} \frac{a dx}{a^{2} + x^{2}} = \frac{\pi}{2} \text{ if } a > 0; = 0 \text{ if } a = 0; = \frac{\pi}{2}.$$

if
$$a < 0$$

$$\int_{0}^{\infty} e^{-nx} \sqrt{x} dx = \frac{1}{2n} = \sqrt{\frac{\pi}{n}}$$

$$\int \frac{\ln^{x}}{1-x} dx = -\frac{\pi^{3}}{6}$$

$$\int_{1}^{\pi} \frac{\ln x}{1 + x} dx = -\frac{\pi^{2}}{12}$$

$$(\ln x)^{n} dx = (-1)^{n}, n!$$

Geometric Formulas

Circumference:

Circle 277

2. Area:

Circle*r2

Ellipse Mab

Sphere 47112

Cylinder $2\pi r^2 + 2\pi rh(r + h)$

Triangle 1/2 ah

3. Volume:

Ellipsoid of Revolution 4/3 b 2 a

Spere

$$4/3\pi r^3$$

Cylinder

$$\pi_r^2h$$

Cone

II LINEAR REGRESSION

The simple linear regression equation is given as:

$$\mathbf{v}_i = \alpha + \beta \mathbf{x}_i$$

let a, b be the estimates of and β respectively.

$$\Sigma \times y = (x_i \cdot \overline{x})'(y_i \cdot \overline{y}) = \Sigma \times_i y_i \cdot (\Sigma \times_i) (\Sigma y_i)$$

$$\Sigma x^2 = \Sigma (x_i - \overline{x})^2 = \Sigma x_i^2 - (\Sigma x_i)^2/N =$$

$$\Sigma_{Y}^{2} = \Sigma(y_{i} \cdot \overline{y}) = \Sigma_{Y}^{2} \cdot (\Sigma_{Y_{i}})^{2}/N = Total SS$$

Stope
$$\frac{\sum xy}{\sum x^2} = \frac{\sum x_i y_i - (\sum x_i) (\sum y_i)}{\sum x_i^2 - (\sum x_i)^2}$$

2) intercept a

a.
$$\overline{V} = \overline{DX}$$
 where $\overline{X} = \frac{\sum_{i=1}^{N} \text{ and } v = \frac{\sum_{i=1}^{N} \sum_{i=1}^{N} v_i}{N}$

3) coefficient of determination r²

$$\Gamma^{2} = \frac{\left[\sum_{x_{i} Y_{i}} \sum_{x_{i} Y_{i}} \sum_{x_{i} Y_{i}}^{2} \sum_{(\sum_{x_{i}} Z_{i})}^{2} \sum_{($$

- 4) estimated value \hat{y} on the regression line for any given x \hat{y} a + bx
- 5) Regression SS " $\frac{(\Sigma \times y)^2}{\Sigma \times^2} = \frac{\sum x_i y_i \cdot (\Sigma \times_i)(\Sigma y_i)}{\sum x_i^2 \frac{N}{N}}$
 - 6) RSS TSS RegSS = $\Sigma(y, \hat{y})^2$
 - 7) standard error of estimate of you x

$$Sv.x = \sum_{N=2}^{\infty} (v_1 - \hat{v})^2 = \sqrt{RSS}$$

$$\frac{1}{N \cdot 2}$$

8) standard error of the regression coefficient, a (the intercept)

$$S_{\overline{a}} = S_{V,x} \frac{\Sigma_{x_{i}^{2}}}{N \Sigma_{x_{i}^{2}} - (\Sigma_{x_{i}})^{2}}$$

$$S^{2}_{V} \times \left[\frac{\Sigma_{x_{i}^{2}}}{N \Sigma_{x_{i}^{2}}} \right]$$

9) standard error of slope, to

$$S_{\overline{h}} = \frac{S_{Y,X}}{\sum_{i=1}^{N} \frac{1}{2}}$$

10) Linear Regression Mean Square

11) Residual Mean Square RSS

Residual df

12) To test for Ho β 0 F = MS regression HA $\beta \neq 0$ MS residual

which is compared with the critical value, $F_{\alpha} v_1, v_2$ where $v_i = df$ regression = 1 and $v_2 = df$ residual = N 2

13) standard deviation of the x values

$$S_{x} = \frac{\sum x_{i}^{2} - N_{x}^{2}}{N - 1}$$

14) standard deviation of the y values

$$S_{y} = \frac{\Sigma v_{i}^{2} \cdot N \overline{v}^{2}}{N \cdot 1}$$

APPENDIX E

INTERNATIONAL SYSTEM OF UNITS (\$1) CONVERSION FACTORS

Conversion to Metric Measures

Symbol Given LENGTH	Multiply by	To Obtain	Symbol	
in inche:	25.4	millimeters	mm	
ti feet	30,48	centimeters	¢П	
yd yards	0.9144*	meters	m	

LENC		Multiply by	To Obtain	Symbol	Symbol Given LENGTH		Multiply by	To Obtain	Symbol
_	atute)	1.609	kilometers	k m	$_{ m Vd}$ 3	cubic yard	0,7646	cubic meters	m ³
	miles Nautical) nicron	1.852° 1.0°	kilometers micrometers	k m um	bbl	barrels {US petro petrol}		cubic meters	3
A° an	gstrom	Q, 1 *	nanometers	(C) (T)		acre feet	0.1590 1233.5	cubic meters	~
AREA	4				cher				4 • •
cmil	circutar mils,	0.0005067	sq. millimete	rs miri ²	SPEE ft/mii	<u>_</u>	5.080	millimeters per second	mm/s
in ²	square inches	6.452	sq. centimete	rs cm ²	ml/h	miles per hour	0.4470	meters per	m/s
ft ² _	square feet	0.09290	sq. meters	_{π\} 2	km/h	kito- meters po hr.	0.2778 er	meters per sec	m/s
yd ²	square yards	0.8361	sq. meters	_m 2	k m	knots	0.5144	meters per sec	m/s
m! ²	sq. miles (statute)	<u>-</u>	sq. kilometer	rs km²		unces	28.35	grams	9
	acres	0.4047	hectares (10 ⁴ m ²)	ha	lb p	ounds	0.4536	kilograms	k g
VOL	JME					ivdp) short	0.9072	metric tons	+
fl.oz.	fluid ounces (US)	29,57	cubic cm (millimeters)	cm ³ or ml	ton	tons (2000 lb		(1000 kg)	
gal	gallons				DEN	SITY			~
gal	(US lig) gallons	3.785	liters		ib/ft	pounds per cubit foot	16.02	kilograms per cubic meter	kg/m ³
	(Canada)	4.546	liters						
in ³	cubic inch es	16,39	cu centi- meters	çm ³	FOR oz,	CE ounces force	0,2780	newtons	N
_{ft} 3	cubic feet	0.02832	cubic meters	m ³	lb.	pounds- force	4.448	newtons	N

Symbol Given LENGTH	Multiply by	To Obtain	Symbol	Symbol Given LENGTH	Multipl	ly by	To Obtai	n Symbol
kg. kilo- grams f	9,807 orce	newtons	N	mm Hg mill meti of H			pascals	Pa
dyn dynes	105	newtons	N		es 0.2491		kilopasea	als kPa
WORK, ENÉP	356 1.356	joules		∠	ater			
pounds force				mH ₂ () feet wate			kilopasca	als kPa
cal calorie (therm	4.184	joules		LIGHT to tootcandle	s 10,76		lu x	l×
chem) Bru British therma	1055	joules	_J	fL footlamber	s 3.426		candelas sq. mete	per cd/m ² r
units(l)				Symbol To (Obtain	Divide	в Бу С	iven Symbol
hp horsepowe	r 746	watts	W	Conversion F	ROM Me	tric Me	easures	
(elec)				TEMPERATU	RE			
it lbs/s foot poun	ds 1.356	watts	W	Symbol Given	Comp	ute by	To Obta	in Symbol
force per				'F É Fahrenhe	it (°F-32	15/9	[†] Celsius	, C
second Btu/h British	0.2931	vvalts.	W	C Celsius	'C\$+	32	"Fehren	heit [*] F
therma units p	· 	*****		*Indicates exa	ct value	5 omi	t when ro	unding
hour(L	ntl)			Symbols for C	luantities			
PRESSURE	s- 6.895	kilopascals	kРа	•	Qty. Symbol	SI Unit	Unit Symbol	Identical Unit
force/	s. 0,09J	KIIOIAACAIA	~. д	length	<i>t</i>	meter	£11	
inch [∠]				(1)35\$	ידי	kilogr	am kg	
b/ft ² pound force/	s- 47.88	pascals	Ра	time	t	sec on	ci s	
foot ²				frequency	f.)	hertz	Нz	i/s
kg/m ² kilo gra	o. 9.807 ms-	pascals	Pa	angular frequency	v	radiar sec	i perrad/s _	
for me	ter ²			area	A.,S	sq, m	eter m ²	
	rs 100.0*	pascals	Pa	volume	V	cubic meter		
		0.4				۶	35	

Quantity	Qty. Symbol		Jnit Symbol	ldentical Unit
velocity	₩	meter per second	m/s	
acceleration (linear)	а	meter p sec	er m/s ²	
force	F	newton	N	
torque	TM	newton	N * m	
pressure	P	pascal	Pa	N/m^2
temperature (absolute)	TO	kelvin	K	
temperature (customary)	to	degree Celsius	~ C	
attenuation coefficient	13	neper pe mtr	er Np/m	
phase coefficient	/ 5	radian p meter	er rad/m	
propagation coefficient $(8 = 4 + 13)$	8	reciproc meter	al m	
radiant intensity		watt per steradia:		
radiant flux irradiance	Pø E	watt watt per sq. mete	W W/m ₁ 2	
lurninous intensity	/	candela	cď	
luminaus flux	ø	lumen	liti	
Hluminance	Ė	lu x	1x lm/	_m 2

MYSICAL CONSTANTS

• • tronic charge
$_{\text{even}}$ of light in vacuum,
⊸/mittivity of vacuum, elec
8.854 x 10 ⁻¹² F/m
meability of vacuum, mag
$\mu_0 = 4^{-7} \times 10^{-7}$ H/m
• nck constant h. 6.626 x 10 ⁻³⁴ J*s
with the noticenstant
• • aday constant F 9.649 x 10 ⁴ C/mo
nandard gravitational
► celeration g 9.807 m/s ²
ormal atmospheric pressure

JACTOR	10 ¹² tera T 10 ¹ deka	dal 10 ⁻⁶ micro 🙏
JNIT PREFIX	10 ⁹ giga G	10 ⁹ nano n
(YMBOL	10 ⁶ mega M10 ⁻¹ deci 10 ³ kilo k 10 ⁻² centi	c 10 ⁻¹⁵ fem to f
	10 ² hectoh 10 ⁻³ milli	m 10 ⁻¹⁸ atto a

APPENDIX F

Rechargeable Battery

AC Operation

Connect the charger to any standard electrical outlet and plug the jack into the Calculator. After the above connections have been made the power switch may be turned "ON". (While connected to AC, the batteries are automatically charging whether the power switch is "ON" or "OFF")

Battery Operation

Disconnect the charger cord and push the power switch to "ON". With normal use a full battery charge can be expected to supply about 2 to 3 hours of working time.

When the battery is low, figures on display will dim. Do not continue battery operation this indicates the need for a battery charge. Use of the calculator can be continued during the charge cycle.

Battery Charging

Simply follow the same procedure as in AC operation. The calculator may be used during the charge period. However, doing so increases the time required to reach full charge. If a power cell has completely discharged the calculator should not be operated on battery power until it has been recharged for at least 3 hours, unless other wise instructed by a notice accompanying your machine. Batteries will reach full efficiency after 2 or 3 charge cycles.

IMPORTANT -- Low Power

if hattery is low.

- a. Display will appear erratic
- b. Display will dun-
- c. Display will fail to accept numbers I one or all of the above condition occur, you may check for a low battery condition by entering a series of 8's. If 8's fail to appear, operations should not be continued on battery power. Unit may be operated on AC power. See battery charging explanation. If machine continues to be inoperative see quarantee section.

CAUTION

A strong static discharge will damage your machine

Shipping Instructions:

A distinctive machine should be returned to the authorized service center nearest you.

See disting of service centers.

Temperature Range

Mode	Temperature C	Temperature ° F
Operating	0° to 50°	32° to 122°
Charging	10' to 40°	50° to 104°
Storage	. 40' to 55°	40° to 131°

Use proper Commodore/CBM adapter-recharger for AC operation and recharging.

Adapter 640 or 707 North America

Adapter 708 England

Adapter 709 Continental Europe