Lecture 18

Linear probability model

$$y_i = \alpha + \beta x_i + u_i$$

where $y_i \in \{0,1\}$.

Problems:

- 1. u_i not normal;
- 2. u_i heteroskedastic.

Solution: as usual, re-weight by the reciprocal of the estimated std. deviation.

Probit model

$$y_i^* = \alpha + \beta x_i + u_i$$

where y_i^st is unobservable. What is actually observed is:

$$y_i = \begin{cases} 1, & \alpha + \beta x_i + u_i > 0 \\ 0, & \alpha + \beta x_i + u_i < 0 \end{cases}$$

This has likelihood function:

$$\mathcal{L} = \prod_{y_i=0} Figg(rac{-lpha-eta x_i}{\sigma_i}igg) \prod_{y_i=1} igg[1 - Figg(rac{-lpha-eta x_i}{\sigma_i}igg)igg]$$

Solution: MLE.

Logit model

$$\ln\!\left(rac{p}{1-p}
ight) = lpha + eta x + u$$

where 0 .

Estimate this equation, then find:

$$p=rac{1}{1+e^{-(lpha+eta x+u)}}$$

<u>Advantage</u>: guaranteed that $0<\hat{p}_i<1$.

Lessons:

- 1. If data is such that $0 < y_i < 1$, use OLS to estimate $\ln \left(\frac{y_i}{1-y_i} \right)$.
- 2. If $y_i \in \{0,1\}$, use MLE.

Limited Dependent Variables

Consider the model:

$$y_i = \alpha + \beta x_i + u_i$$

where y_i cannot be negative. In other terms:

$$y_i = \left\{egin{array}{ll} lpha + eta x_i + u_i, & y_i > 0 \ 0, & y_i \leq 0 \end{array}
ight.$$

• The truncation of the data will produce a **biased slope** and a **biased intercept**.

If $u \sim \mathcal{N}(0, \sigma^2)$, use MLE.

Maximum Likelihood Estimation

Suppose that $X \sim \mathcal{N}(\mu, 10)$ (known variance) and one draws a sample of, say, 500 observations.

- Suppose the sample mean is $\bar{X}=24.5$.
- Then, most likely, the data were drawn from $\mathcal{N}(24.5, 10)$.

More generally:

Let X be a random variable with a probability density function depending on unknown parameters θ .

Example:

$$f(x|\mu,\sigma^2) = rac{1}{\sigma\sqrt{2\pi}} \mathrm{exp}igg\{ -rac{(x-\mu)}{2\sigma^2}igg\}$$

If we assume draws are independent, for a random sample x_1, x_2, \ldots, x_n , then $f(x_1|\theta)f(x_2|\theta)\ldots f(x_n|\theta)$ is called the **likelihood function**.

$$\mathcal{L}(oldsymbol{ heta}|x) = \prod_{i=1}^n f(x_i|oldsymbol{ heta})$$

To maximize \mathcal{L} , choose $\boldsymbol{\theta}$ such that $\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}} = 0, \; \frac{\partial^2 \mathcal{L}}{\partial \boldsymbol{\theta}^2} < 0.$

To simplify, take the log (monotonic transformation, i.e., it does not change the maximum).

$$\ln \mathcal{L}(oldsymbol{ heta}|x) = \sum_{i=1}^n \ln f(x_i|oldsymbol{ heta})$$

Then, choose $m{ heta}$ such that $rac{\partial \ln \mathcal{L}}{\partial m{ heta}} = 0, \; rac{\partial^2 \ln \mathcal{L}}{\partial m{ heta}^2} < 0.$

Properties of MLE:

- 1. Consistent, but biased in small samples;
- 2. Asymptotically efficient, that is, for large n, no other consistent estimator has a smaller variance.
- 3. The estimates are asymptotically normal (true even if underlying distribution of X is non-normal).

Example 1:

Assume $X \sim \mathcal{N}(\mu, \sigma^2)$ and a sample x_1, x_2, \dots, x_n .

For individual observations:

$$f(x_i|\mu,\sigma^2) = rac{1}{\sigma\sqrt{2\pi}} \, \expigg\{ -rac{(x_i-\mu)}{2\sigma^2} igg\}$$

The likelihood function:

$$\mathcal{L}(\hat{\mu},\hat{\sigma}^2|x) = \prod_{i=1}^n \left[rac{1}{\sigma\sqrt{2\pi}} \; \expigg\{ -rac{(x_i-\mu)}{2\sigma^2} igg\}
ight]$$

The log-likelihood function:

$$\ln \mathcal{L}(\hat{\mu},\hat{\sigma}^2|x) = -n\ln\hat{\sigma} - rac{n}{2}\ln 2\pi - rac{1}{2\hat{\sigma}^2}\sum_{i=1}^nig(x_i-\hat{\mu}ig)^2$$

Taking the derivative for $\hat{\mu}$:

$$\frac{\partial \ln \mathcal{L}}{\partial \hat{\mu}} = -\frac{2}{2\hat{\sigma}^2} \sum_{i=1}^n (x_i - \hat{\mu})(-\hat{\mu}) := 0$$
$$= \sum_{i=1}^n (x_i - \hat{\mu}) := 0$$
$$\therefore \sum_i x_i = n\hat{\mu} \quad \Rightarrow \quad \hat{\mu} = \frac{1}{n} \sum_i x_i$$

Taking the derivative for $\hat{\sigma}$:

$$\frac{\partial \ln \mathcal{L}}{\partial \hat{\sigma}} = -\frac{n}{\hat{\sigma}} - \left(-\frac{4\hat{\sigma}}{4\hat{\sigma}^4} \right) \sum (x_i - \mu)^2 := 0$$

$$= -\frac{n}{\hat{\sigma}} + \frac{1}{\hat{\sigma}^3} \sum (x_i - \mu)^2 := 0$$

$$\therefore \frac{1}{\sigma^2} \sum (x_i - \mu)^2 = N \quad \Rightarrow \quad \hat{\sigma}^2 = \frac{1}{n} \sum (x_i - \mu)^2$$

For an estimated mean (and <u>unbiased estimator of the variance</u>): $\hat{\sigma}^2 = \frac{1}{n-1} \sum (x_i - \bar{x})$.

Example 2:

Suppose:

$$y_i = x_i \beta + u_i$$

Assuming $u_i \sim \mathcal{N}(0,\sigma^2)$, then:

$$\mathcal{L}(\hat{\beta}, \sigma | x) = \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{\hat{u}_{i}^{2}}{2\sigma^{2}}\right\}$$
$$= \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(y_{i} - x_{i}\beta)^{2}}{2\sigma^{2}}\right\}$$

Taking the log:

$$\ln \mathcal{L}(\hat{eta}, \sigma | x) = -n \ln \sigma - \frac{n}{2} \ln 2\pi - \frac{1}{2\sigma^2} \sum (y_i - x_i \beta)^2$$

Thus, $\max_{\hat{\beta}} \, \ln \mathcal{L}$ is equivalent to $\min_{\hat{\beta}} \, \mathrm{SSE} = \sum_{\hat{\beta}} (y_i - x_i \beta)^2.$