CS4236 Assignment 3

October 7, 2022

5 assignment questions, due 5pm 21st October - rules as before

- 1. On page 188 is a description of the $\operatorname{Hiding}_{\mathcal{A},\Pi}(n)$ experiment/game for a commitment scheme. Use the definition (from class) of the scheme $\Pi(n) = (\operatorname{Setup}(1^n), \operatorname{Commit}(a), \operatorname{Open}(c_a))$, where $c_a \leftarrow \operatorname{Commit}(a)$ creates the commitment, and $a \leftarrow \operatorname{Open}(c)$ opens it. Draw the experiment/game using the same shapes and ideas as used in the game descriptions in class. Provide a formal definition of the hiding property. (4 marks)
- 2. Assume that $h_1: \{0,1\}^{2\times n} \to \{0,1\}^n$ is a collision resistant compression function. This is used to define a new compression function with an extra bit b concatenated to x:

$$h_2(x+b) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{ccc} b=1 & \to & b + h_1(x) \\ b=0 & \to & b^{n+1} \end{array} \right.$$

Is $h_2: \{0,1\}^{2\times n+1} \to \{0,1\}^{n+1}$ also collision resistant? Show your reasoning. (2 marks)

3. Given a collision resistant hash function $\mathcal{H}(x) \stackrel{\mathsf{def}}{=} \mathcal{H}_1(\mathcal{H}_1(x))$. Prove that \mathcal{H}_1 is collision resistant. (4 marks)

- 4. The above diagram shows the Merkle Damgård construction to construct collision resistant hashes over longer messages out of compression functions. We write the final hash as $\mathcal{H}^s(x) = Z_{B+1} = h^s(Z_B + L)$. Consider the alternative final hash $\mathcal{H}^s_1(x) = Z_B + L$. Is this still collision resistant? (4 marks)
- 5. (Similar to the situation described in the first paragraphs of 5.6.2, but without a Merkle tree). In a scheme/system, clients upload files to a server. Later, when a client retrieves a file, it wants a "fingerprint" δ -guarantee that it is the original, unmodified file. The signature is $\Pi(n) = (\operatorname{Put}(x_i), \operatorname{Get}(i), \operatorname{Vrfy}(i, x_i, \delta))$, where $\langle x_i, \delta \rangle \leftarrow \operatorname{Get}(i)$ returns the file and a fingerprint, and ok $\leftarrow \operatorname{Vrfy}(i, x_i, \delta)$ returns 1/0 if the fingerprint matches/does-not-match the file.
 - (a) Describe an experiment/game which could be used to define the security of this system i.e. that an adversary cannot verify $Vrfy(i, x, \delta)$ unless $x = x_i$. (2 marks)
 - (b) Formally define the property exposed in the above game. (Π is secure if ... for all ...) (2 marks)
 - (c) Construct a "fingerprint" server, and explain why you think it has the "secure" property. (2 marks)