Final Project Report

109061229 電機系 24級 曾旭廷

Hsuting22822@gmail.com

2022/6/6

壹、簡介

本次期末專題是設計一台能夠跟隨提前繪製好之黑線地圖之自走車,加上一整學期以來學習的各項電子零件,組合馬達零件 Servo、測距離零件 Ping、無線控制零件 XBee、輪速偵測光圈零件 Optical Encoder、偵測黑線零件 QTI Sensor。

貳、零件

甲、伺服馬達

本次期末專題我使用的是 Parallax High Speed Continuous Rotation Servo,可以經過調變脈衝寬度來調整旋轉角度,擁有比一般伺服馬達三倍的轉速。

- Calibration 校正:1500 之脈衝寬度,整體馬達應處以停止狀態,若有轉動的情況發生,需轉動馬達後方的校準螺絲,如發生抖動的情況,有可能導致內部齒輪磨損。

乙、超音波距離感測器

本次期末專題我使用的是 Parallax PING Ultrasonic Sensor,藉由發出超聲波,到目標的距離通過計算波遇到目標反射後再次接收的時間。

丙、無線控制零件

本次期末專題我使用的是 Digi International XBee-S2C Module,藉由建立 UART 溝通管道,使用兩個 XBee,一個連接電腦,一個裝置在自走車上,以此即時回傳自走車速度及行走距離。

丁、輪速偵測光圈零件

本次期末專題我使用的是 Parallax Boe Bot Digital Encoder Kit, 裝置在輪圈後方,偵測每次亮暗輪圈上的洞間距,來測量總共旋轉幾 圈。

戊、黑線偵測裝置

本次期末專題我使用的是 Parallax QTI Sensor,裝置上有紅外線發射器及接收器,藉由電路設計搭配電容來區別黑線與白地,黑線會吸掉發出的能量,白地則會完全返回,就能夠區別電容的放電時間。

參、零件安裝配置

Servo Motor Left	D10
Servo Motor Right	D11
Optical Encoder	D3
PING Ultrasonic module	D9
XBee	D1, D0, 9600
QTI Sensor	D4, D5, D6, D7

肆、Check point design

甲、Line Following using QTI

QTI Sensor 在一開始比較不容易上手,我參考了 youtube 影片, https://youtu.be/eEpd7MirKEg,來設計我的 QTI 軟件。QTI signal 的 data type 需設計成 Digital In/Out,在過程當中此 pin 需要先當 成 output,再轉為 input。QTI 設計原理,一開始先讓其充電,約待 Ims後,將 pin 轉為輸入,然後間隔「特定時間」測量其輸入。

特定時間:需自行測量,與實驗所設計之地板材質、顏色有關,以我的白色 PP 板為例,時間約需要落在 400 微秒左右。

→ Function qti_sensing

て、Servo Motor Module

QTI 需搭配 Servo Motor 的設計,來達到 Line Following 的功能。 考量到右轉、左轉、原地迴轉,需要考慮到地板材質以及整體車子重量、旋轉角度,需要設計不同的時間來達成,故本函數希望能設計暨能調控左輪速度、右輪圈速度、以及持續時間。

```
// 輸入訊號為 1000,需要大幅度的左轉
           else if (Sensor1 == 1 && Sensor2 == 0 && Sensor3 == 0 && Se
nsor4 == 0){
              wL = velocity * 0.05;
              wR = -velocity;
              time = 1;
           }
// 輸入訊號為 1100, 需要中幅度的左轉
           else if (Sensor1 == 1 && Sensor2 == 1 && Sensor3 == 0 && Se
nsor4 == 0){
              wL = velocity * 0.2;
              wR = -velocity;
              time = 1;
           }
// 輸入訊號為 1110,這是左轉訊號,持續 40000 個 machine cycle.
           else if (Sensor1 == 1 && Sensor2 == 1 && Sensor3 == 1 && Se
nsor4 == 0){
              time = 40000;
              WL = 100 * 0.1;
              WR = -100;
// 輸入訊號為 0111,這是右轉訊號,持續 40000 個 machine cycle.
           else if (Sensor1 == 0 && Sensor2 == 1 && Sensor3 == 1 && Se
nsor4 == 1){
              time = 40000;
              WL = 100;
              WR = -100 * 0.1;
           }
// 輸入訊號為 0110,代表車子走在正確的路上,故繼續前進。 Velocity = 60
           else if (Sensor1 == 0 && Sensor2 == 1 && Sensor3 == 1 && Se
nsor4 == 0){
              wL = velocity;
              wR = -velocity;
              time = 1;
// 輸入訊號為 0011, 需要中幅度的右轉
```

```
else if (Sensor1 == 0 && Sensor2 == 0 && Sensor3 == 1 && Se
nsor4 == 1){
               wL = velocity;
               wR = -velocity * 0.2;
               time = 1;
           }
// 輸入訊號為 0100,需要小幅度的左轉
           else if (Sensor1 == 0 && Sensor2 == 1 && Sensor3 == 0 && Se
nsor4 == 0) {
               wL = velocity * 0.8;
               WR = -velocity;
               time = 1;
           }
// 輸入訊號為 0010, 需要小幅度的右轉
           else if (Sensor1 == 0 && Sensor2 == 0 && Sensor3 == 1 && Se
nsor4 == 0) {
               wL = velocity;
               WR = -velocity * 0.8;
               time = 1;
// 輸入訊號為 0001,需要大幅度的右轉
           else if (Sensor1 == 0 && Sensor2 == 0 && Sensor3 == 0 && Se
nsor4 == 1){
               wL = velocity;
               wR = -velocity * 0.05;
               time = 1000;
           }
// 輸入訊號為 0000,代表完全出界,車子停止。
           else if (Sensor1 == 0 && Sensor2 == 0 && Sensor3 == 0 && Se
nsor4 == 0) {
               WL = 0;
               WR = 0;
               time = 1;
           }
// 輸入訊號為 1111,代表終止線,車子停止。
           else if (Sensor1 == 1 && Sensor2 == 1 && Sensor3 == 1 && Se
nsor4 == 1) {
                  WL = 0;
```

丙、XBee

本次期末專題需要搭配遠端控制功能,所以我們需要先加入 RPC 相關的 Header file,把 erpc service function 以 thread 的方式 Run,但因為 service 是一個無限迴圈,就算是以 thread 的方式也會導致其他 thread 無法正確運行,所以就必須再適當的時間才開啟 thread。亦可以使用 EventQueue 來達到間隔一段時間才開啟的功能,但是因為我們回傳的資料應該是即時性的,所以時間頻率應該要能配合,否則就會讓車子變成走一步停一步的感覺,停一步的原因即是等待 service 開關的時間。

使用 ERPC 藉由接收遠距指令,我在程式中另設一變數,用來開關 service,而 XBee 傳輸資料可以直接使用 UART 的溝通橋樑,當然也可以設計 ERPC 功能來傳送資料。但本次設計我以 ERPC 功能來控制傳送資料的開關。一旦開始接收 XBee 訊號,旋即關掉 Erpc 的 service,這樣做就不會有衝突,當每次要傳資料的時候再打開,就不會一直開啟而影響到其他執行緒的運行。

伍、地圖設計

本次地圖設計須含有一個頭尾相接的封閉圓形以及一個分支路口,個人選擇以最簡潔的方式設計地圖。

陸、實拍

影片連結:https://drive.google.com/file/d/1TuC36W-

4JihVcrF4FJaFk1Ey7bcNT3y1/view?usp=sharing Github: https://github.com/hsuting0627/final

Code package:

https://drive.google.com/file/d/1U1aQzE8mom6O4qhhBQPVqsas9JMpjEMr/vie

w?usp=sharing