Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 14

26 stycznia 2016 r.¹

M14.1. 0,5 punktu Niech x_1, x_2, \ldots, x_n będą niezerowymi liczbami zmiennopozycyjnymi. Podać oszacowanie z góry błędu

$$\left| \frac{\mathrm{fl}(x_1 x_2 \cdots x_n) - x_1 x_2 \cdots x_n}{x_1 x_2 \cdots x_n} \right|.$$

M14.2. 1 punkt Rozważmy

$$Q_n := \sum_{k=0}^n A_k f(x_k),$$

gdzie A_k i x_k $(k=0,1,\ldots,n)$ są liczbami zmiennopozycyjnymi. Załóżmy, że

$$fl(f(x_k)) = f(x_k)(1 + \varepsilon_k),$$

gdzie $|\varepsilon_k| \leq p$ u $(k=0,1,\ldots,n)$ dla pewnego małego p. Sumując składniki w naturalnym porządku obliczyć $\hat{Q}_n \coloneqq \mathrm{fl}(Q_n)$, a następnie oszacować błąd $|Q_n - \hat{Q}_n|$.

- **M14.3.** 0,5 punktu r-krotne zero α funkcji f(x) jest pojedynczym zerem funkcji $g(x) := \sqrt[r]{f(x)}$. Jaką postać ma wzór opisujący metodę Newtona zastosowaną do funkcji g(x)?
- **M14.4.** I punkt Załóżmy, że wielomian p(z), o współczynnikach rzeczywistych, ma czynnik kwadratowy $z^2 uz v$, którego pierwiastki są pojedynczymi zerami wielomianu p. Udowodnić, że w punkcie (u, v) jakobian w metodzie Bairstowa jest różny od zera.
- **M14.5.** O,5 punktu Niech L_n będzie wielomianem interpolującym funkcję $f(x) = \exp x$ w zerach wielomianu Czebyszewa T_{n+1} . Jaka wartość n gwarantuje, że zachodzi nierówność

$$\max_{-1 \le x \le 1} |f(x) - L_n(x)| \le 10^{-5} ?$$

M14.6. 0,5 punktu Udowodnić, że w klasie funkcji F mających ciągłą drugą pochodną w przedziale [a,b] i takich, że

(1)
$$F(x_k) = y_k \qquad (k = 0, 1, \dots, n)$$

najmniejszą wartość całki

(2)
$$\int_a^b \left[F''(x) \right]^2 dx$$

daje naturalna funkcja sklejana trzeciego stopnia, interpolująca funkcję f.

M14.7. O,5 punktu Normę jednostajną funkcji $f \in C[a,b]$ podaje wzór $||f||_{\infty} \equiv ||f||_{\infty}^{[a,b]} := \max_{a \leqslant x \leqslant b} |f(x)|$. Sprawdzić, że n-ty błąd aproksymacji optymalnej funkcji f z przestrzeni C[a,b], określony wzorem

$$E_n(f) \equiv E_n(f; [a, b]) := \inf_{w_n \in \Pi_n} ||f - w_n||_{\infty}^{[a, b]},$$

ma następujące własności:

¹ zajęcia 1 lutego 2016 r.

- a) $E_n(\alpha f) = |\alpha| E_n(f);$
- b) $E_n(f+g) \le E_n(f) + E_n(g);$
- c) $E_n(f + w) = E_n(f);$
- d) $E_n(f) \leq ||f||_{\infty}$,

gdzie f, g są dowolnymi funkcjami z C[a, b], w jest dowolnym wielomianem stopnia $\leq n$, natomiast α – dowolną liczbą rzeczywistą.

- **M14.8.** 0,5 punktu Niech f będzie funkcją ciągłą w przedziałe [a,b]. Wykazać, że dla dowolnego podprzedziału [c,d] tego przedziału zachodzi nierówność $E_n(f;[c,d]) \leq E_n(f;[a,b])$.
- **M14.9.** 0,5 punktu Wykazać, że kwadratura Q_n ma rząd $\geqslant n+1+m$, gdzie $m \in \{1, 2, ..., n+1\}$, wtedy i tylko wtedy, gdy spełnione są następujące dwa warunki:
 - (i) Q_n jest kwadraturą interpolacyjną,
 - (ii) dla każdego wielomianu $u \in \Pi_{m-1}$ zachodzi równość $I_p(\omega u) = 0$, gdzie $\omega(x) = \prod_{k=0}^n (x x_k)$.
- **M14.10.** 0,5 punktu Do obliczenia przybliżonej wartości całki $I := \int_0^2 \cos x^2 \, \mathrm{d}x$ użyto złożonego wzoru trapezów T_{200} . Bez odwoływania się do wartości całki I podać oszacowanie błędu $|I T_{200}|$.
- **M14.11.** 1 punkt Macierz B_{ω} , związana z metodą nadrelaksacji (SOR), określona jest wzorem

$$B_{\omega} := (D + \omega L)^{-1} [(1 - \omega)D - \omega U],$$

gdzie ω jest parametrem. Wykazać, że promień spektralny macierzy B_ω spełnia nierówność

$$\varrho(B_{\omega}) \geqslant |\omega - 1|.$$

Jaki stąd wniosek?

M14.12. I punkt Niech $q_j \in \mathbb{R}^m$ oznaczają wektory uzyskiwane w metodzie ortogonalizacji Gramma-Schmidta, dla danego układu liniowo niezależnych wektorów $a_j \in \mathbb{R}^m$ (j = 1, 2, ..., n). Udowodnić, że zachodzi równość

$$I - P_k = (I - \boldsymbol{q}_k \boldsymbol{q}_k^T) \cdots (I - \boldsymbol{q}_2 \boldsymbol{q}_2^T)(I - \boldsymbol{q}_1 \boldsymbol{q}_1^T),$$

gdzie P_k jest macierzą rzutu prostopadłego:

$$P_k \coloneqq \sum_{j=1}^k oldsymbol{q}_j oldsymbol{q}_j^T.$$

M14.13. 1 punkt Znaleźć rozkład QR macierzy

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

za pomocą metody Householdera. Wskazać kolejne wektory v_1, v_2, \ldots określające odbicia Householdera. Uwaga: chodzi o rozkład, w którym $Q \in \mathbb{R}^{3\times 3}$.