Hybrid Information Extraction Systems Class 4: Statistical IE

Pablo Ariel Duboue, PhD

30va Escuela de Ciencias Informaticas (ECI) Facultad de Cs. Exactas y Naturales UBA

Why Statistical IE?

- Cost reduction
- Measurable quality
- Learning analog
- Generalize over training

Statistical IE Sequence Tagging Conditional Random Fields

Example Training Data

Type of Models

- Maximum Entropy
- Conditional Random Fields
- Generalized Graphical Models
- Deep Learning

Sequence Tagging

Begining-Inside-Out revisited

Statistical | E Sequence Tagging Conditional Random Fields

Features

- lexical the actual lexical item for the current and contextual words
- dictionary whether the word is in certain word lists (names of companies, countries, states, cities, common first names)
 - shape the ortographic form of the token (all lower case, capitalized, all caps, numeric, etc)
- part-of-speech features related

Relation Extraction

- Classification given two entities. Features: (from "Information Extraction: Capabilities and Challenges" by Ralph Grishman)
 - their heads
 - their types (person, organization, ...)
 - their the distance in words
 - the words in between
 - the dependency path between them
 - the words on the dependency path
- Output:
 - true (there's a given relation) or false
 - relation-1 ... relation-n or no-relation (multi-label classification)

Generative vs. Discriminative ML

- For ML using statistical methods
 - We want the probability (likelihood) of the target given the input features
 - If we have modeled the joint distribution of input features and target class we can obtain this
 - However, that is not required to model the conditional probability
 - Simulation vs. emulation

Generative Models

- Compute $P(y|x_1,...,x_n)$ via $P(x_1,...,x_n,y)$
- The joint probability enables reversible systems
 - Any variable can be made the target class
- Requieres a "generative story" of how the data came to be and its inter relations
 - Dependencies between variables
- More parameters, therefore needs more data and/or make less efficient use of the data
 - If we only care about the target class, we are modeling too much
 - Modeling a predictive keyboard and an information extraction system

Discriminative Models

- Just model $P(y|x_1,...,x_n)$
- Many times not even model the probability but unnormalized probabilities
 - Likelihoods
 - Enough to distinguish among different values of the target class
- Better in practice
- Less theoretical advantages

Conditional Random Fields

- Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data by John Lafferty, Andrew McCallum, Fernando Pereira (ICML 2001)
- Cited by 9083

Nomenclature

- X = observations (e.g., sentences, i.e., a sequence of words)
- Y = labels (e.g., POS)
- Assume a one-to-one correspondance between states and labels

HMMs

from Lafferty et al. (2001), Figure 2 (a)

- HMMs and stochastic grammars assigns a joint probability to paired observation and label sequences
 - Trained to maximize the joint likelihood of the training examples
 - Because it isjoint needs to enumerate all observation sequences

HMMs Tasks: Probability of Observations

• The probability of observing a sequence of length L:

•
$$Y = y(0), y(1), ..., y(L-1)$$

is given by :

•
$$P(Y) = \sum_{X} P(Y \mid X) P(X)$$

• that sums over all possible hidden-node sequences:

•
$$X = x(0), x(1), ..., x(L-1)$$

HMMs Tasks: Most Likely Explanation

Viterbi decoding

https://en.wikipedia.org/wiki/Viterbi_algorithm#/media/File:Viterbi_an

Conditional Models

- Model the probability of labels given the observations
 - No modeling effort for fixed observations
- Observations can be correlated and refer to different levels of abstraction
 - Words and characters, for example

MEMMs

from Lafferty et al. (2001), Figure 2 (b)

- Maximum Entropy Markov Models: exponential models at each state trained by iterative scaling Maximum Entropy
- Belong to the general class of "next state classifiers"

Problem: Label bias

from Lafferty et al. (2001), Figure 1

- In next state classifiers the Markov assumption can lead to dead ends
 - You shouldn't be in a given state but if you want to estimate
 what would happen if you are there, there's only one way out
 and it'll be "highly likely" (i.e., misleading)

CRFs

from Lafferty et al. (2001), Figure 2 (c)

 CRFs have a single exponential model for the joint probability of the sequence

CRF Graph

Definition. Let G = (V, E) be a graph such that $\mathbf{Y} = (\mathbf{Y}_v)_{v \in V}$, so that \mathbf{Y} is indexed by the vertices of G. Then (\mathbf{X}, \mathbf{Y}) is a conditional random field in case, when conditioned on \mathbf{X} , the random variables \mathbf{Y}_v obey the Markov property with respect to the graph: $p(\mathbf{Y}_v | \mathbf{X}, \mathbf{Y}_w, w \neq v) = p(\mathbf{Y}_v | \mathbf{X}, \mathbf{Y}_w, w \sim v)$, where $w \sim v$ means that w and v are neighbors in G.

from Lafferty et al. (2001), Page 3

- Markov property given a graph: only connected nodes in the graph are dependent
- In IE, graph = simple chain

https://github.com/factorie/factorie

Vertex and Edge Features

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y}|_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y}|_v, \mathbf{x}) \right)$$

from Lafferty et al. (2001), Eq 1

Conditional Probability at State

$$M_{i}(y', y \mid \mathbf{x}) = \exp(\Lambda_{i}(y', y \mid \mathbf{x}))$$

$$\Lambda_{i}(y', y \mid \mathbf{x}) = \sum_{k} \lambda_{k} f_{k}(e_{i}, \mathbf{Y}|_{e_{i}} = (y', y), \mathbf{x}) +$$

$$\sum_{k} \mu_{k} g_{k}(v_{i}, \mathbf{Y}|_{v_{i}} = y, \mathbf{x}),$$

from Lafferty et al. (2001), page 4

 In a chain, the conditional probability is a square matrix the size of the label vocabulary

Using M to compute p

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{\prod_{i=1}^{n+1} M_i(\mathbf{y}_{i-1}, \mathbf{y}_i \mid \mathbf{x})}{\left(\prod_{i=1}^{n+1} M_i(\mathbf{x})\right)_{\text{start,stop}}}$$

from Lafferty et al. (2001), page 4

- Assumes two extra elements, start and stop have been added to the sequence
- The notation $()_{i,j}$ indicates the entry at position i,j in a matrix

Iterative Scaling

- ullet Training involves calculating λ_k and μ_k given the training data
- Iterative scaling transforms this into a weight update problem for suitable deltas:
 - $\lambda_k \leftarrow \lambda_k + \delta \lambda_k$
 - $\mu_k \leftarrow \mu_k + \delta \mu_k$

ClearTk

- ClearTK was originally developed by the University of Colorado's Center for Computational Language and Education Research (CLEAR).
- Most of it is available under a BSD license
- "ClearTK 2.0: Design Patterns for Machine Learning in UIMA." by Bethard, Ogren, and Becker (LREC 2014)
- Requires a contributor agreement

ClearTk Architecture

- Annotations
- Annotators
- ML Engines

UIMA Feature vs. ML features

- UIMA Feature:
 - A particular aspect of an annotation
 - Lives in the CAS
- ML Feature:
 - An entry in the feature vector
 - Used as input to a ML problem (either as train or test data)
 - Many times lives in text files in the file system or as arrays in RAM at runtime

ClearTk Feature Extractors

 $https://cleartk.github.io/cleartk/docs/tutorial/feature_extraction.html \\$

IOB Tagging

```
public class NamedEntityChunker extends CleartkSequenceAnnotator<String> {
  private BioChunking<Token, NamedEntityMention> chunking = new BioChunking<>(
      Token.class, NamedEntityMention.class, "mentionType");
  public void process (JCas iCas) throws AnalysisEngineProcessException {
    for (Sentence sentence : JCasUtil.select(jCas, Sentence.class)) {
      // extract features for each token in the sentence
      List<Token> tokens = JCasUtil.selectCovered(iCas, Token.class, sentence);
      List<List<Feature>> featureLists = new ArrayList<>();
      for (Token token : tokens) (
        List<Feature> features = new ArrayList<>();
        features.addAll(this.extractor.extract(iCas. token));
        features.addAll(this.contextExtractor.extract(jCas, token));
        featureLists.add(features);
      // during training, convert NamedEntityMentions in the CAS into expected classifier outcomes
      if (this.isTraining()) (
        // extract the gold (human annotated) NamedEntityMention annotations
        List<NamedEntityMention> namedEntityMentions = JCasUtil.selectCovered(
            jCas, NamedEntityMention.class, sentence);
        // convert the NamedEntityMention annotations into token-level BIO outcome labels
        List<String> outcomes = this.chunking.createOutcomes(jCas, tokens, namedEntityMentions);
        // write the features and outcomes as training instances
        this.dataWriter.write(Instances.toInstances(outcomes, featureLists));
      // during classification, convert classifier outcomes into NamedEntityMentions in the CAS
      else (
        // get the predicted BIO outcome labels from the classifier
        List<String> outcomes = this.classifier.classify(featureLists);
        // create the NamedEntityMention annotations in the CAS
        this.chunking.createChunks(jCas, tokens, outcomes);
```

from Bethard et al. (2014), Fig. 1

IOB Tagging (cont.)

https://cleartk.github.io/cleartk/docs/tutorial/chunking_classifier.html

Annotating Training Data with RuTA Workbench

- Quick annotation
- Keyboard interface

ReasonAnnotator

- CRF using CleartkSequenceAnnotator
- Features: same as tutorial POS (+ under amount or under company)