Data Mining (EECS 4412)

Assignment Project Exam Help

https://powcoder.com Bayesian Classification Add WeChat powcoder

Parke Godfrey

EECS

Lassonde School of Engineering
York University

Thanks to

Professor Aijun An

Assignment Project Exam Help

for creation & use of these slides.

Add WeChat powcoder

Outline

- 1. Introduction
- 2. Bayes Theograment Project Exam Help
- 3. Naïve Bayestoslassificater.com
- 4. Bayesian BeliefWetworkscoder

Introduction

▶ Goal:

- Determine the most probable hypothesis (class)
- E.g., Given new instance x, what is its most probable classification?

Probabilistichten ning & derechtetion:

- Estimate explicit photologistics forced hypotheses (classes)
- Predict multiple hypotheses, weighted by their probabilities
- Can combine prior knowledge (such as prior probabilities, probability distributions, causal relationships between variables in belief networks) with observed data

Introduction (Cont'd)

- Incremental learning:
 - ▶ Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Assignment Project Exam Help
- **flexible** in handling *inconsistency* https://powcoder.com
 Provides a Standard:
- - provides a standard of Spithal Poevision making against which other methods can be measured

Bayes Theorem

$$P(h \mid x) = \frac{P(x \mid h)P(h)}{P(x)}$$

Assignment Project Exam Help

- P (h) = prior probability of hypothesis h https://powcoder.com
 P (x) = probability that example x is observed
- $P(h \mid x) = posterior graden x$
- Arr P(x | h) = conditional probability of x given h(often called the *likelihood* of h given x)

Finding Maximum a posteriori Hypothesis

$$P(h \mid x) = \frac{P(x \mid h)P(h)}{P(x)}$$

- ▶ **Goal**: Find the most probable hypothesis *h* from a set *H* of *candidate* hypotheses, given an example x.
- The most probabile hypothesis is called maximum a posteriori (MAP) hypothesis h_{MAP} ; powcoder.com $h_{MAP}(x) = \arg\max_{n \in \mathbb{N}} P(h \mid x)$

$$h_{MAP}(x) = \underset{h \in H}{\operatorname{arg max}} P(h \mid x)$$

$$= \underset{h \in H}{\operatorname{Add}} \frac{P(x \mid h)P(h)}{P(x)} \quad \text{all hypotheses})$$

$$= \underset{h \in H}{\operatorname{arg max}} P(x \mid h)P(h)$$

If assume P (h_i) = P (h_j) (classes are *equally* likely), then can further simplify, and choose the *Maximum likelihood* (ML) hypothesis: $h_{ML}(x) = \arg \max_{h \in H} P(x | h)$

Example

- Does patient have cancer or not?
 - A patient takes a lab test and the result comes back positive.
 - The test returns a correct positive result in only 98% of the cases in which the clist also jiscachially pledent,
 - The test returns a correct negative result in only 97% of the cases in which the disease 18 for speech.
 - Furthermore, 208 of the entire population have this cancer.

$$P(cancer) = P(\neg cancer) =$$
 $P(+ | cancer) = P(- | cancer) =$
 $P(+ | \neg cancer) = P(- | \neg cancer) =$

Our goal is to find the maximum between:

$$P(cancer \mid +)$$
 and $P(\neg cancer \mid +)$

Learning Probabilities from Data

- ▶ Suppose we do not know the probabilities used in the example in the last slide.
- ▶ But we are given a set of data.
- In order to conduct the Project in Equipment of the MAP hypothesis h_{MAP} , we can estimate the probabilities us the the weathing from the data.
- Suppose there are k possible bypotheses (i.e., classes):

$$h_1, h_2, \ldots h_k$$

- We need to estimate:
 - $P(h_1), P(h_2), ..., P(h_k),$
 - ▶ $P(x|h_1)$, $P(x|h_2)$, ..., $P(x|h_k)$ for each possible instance x, in order to find:

$$h_{MAP}(x) = \arg \max_{h_i \in H} P(x \mid h_i) P(h_i)$$

Practical Problem with Finding MAP Hypothesis

Suppose instance x is described by attributes values $\langle x_1, x_2, ..., x_n \rangle$ and there is a set C of classes: $c_1, c_2, ...$

Assignment Project Exam Help
$$c_{MAP}(x) = \arg \max_{c_j \in C} P(c_j \mid x_1, x_2, ..., x_n)$$

$$\text{https://powcoder.com}_{P(x_1, x_2, ..., x_n \mid c_j) P(c_j)}$$

$$= \arg \max_{c_j \in C} P(x_1, x_2, ..., x_n \mid c_j) P(c_j)$$

$$= \arg \max_{c_j \in C} P(x_1, x_2, ..., x_n \mid c_j) P(c_j)$$

Given data set with many attributes, it is infeasible to estimate $P(x_1, x_2, ..., x_n | c_j)$ for all possible x values, unless we have a very, very large set of training data. It is also computationally expensive.

Naïve Bayes Classifier

Naïve assumption: values of attributes are conditionally independent given a class

$$P(x_1, x_2, ..., x_n|r_0)$$
 Example Project E

which gives: Add WeChat powcoder
$$c_{NB}(x) = \arg\max_{c_j \in C} P(x_1, x_2, ..., x_n \mid c_j) P(c_j)$$

$$= \arg\max_{c_j \in C} P(c_j) \prod_i P(x_i \mid c_j)$$

Probabilities can be estimated from the training data.

Estimating Probabilities

• Estimate $P(c_i)$:

$$P(c_j) = \frac{\text{Assign for training examples of training examples}}{\text{https://powcoder.com}}$$

- Estimate $P(x_i|c_j)$ for each class c_j attribute A_i and each class c_j
 - If attribute A_i is categorical,

$$P(x_i \mid c_j) = \frac{\text{# of training examples of class } c_j \text{ with } x_i \text{ for } A_i}{\text{# of training examples of class } c_j}$$

Estimating Probabilities

▶ If attribute A_i is continuous, can assume normal distribution,

Assignment Project Exam Help
$$\frac{1}{2\sigma_{c_{j}}^{2}}$$

where μ_{c_j} and σ_{c_j} are the mean and standard deviation of the values of A_i the Waisington posterior class c_i

$$\sigma_{c_j} = \sqrt{\frac{1}{n-1} \sum_{x_i \in c_j} (x_i - \mu_{c_j})^2}$$

Naïve Bayes Algorithm

- ▶ Naïve Bayes Learning (from examples)
 - For each class c_i

For each attribute for which x_i is a value

$$\hat{P}(x_i | c_j^{\text{ddd}} \text{WeChat powerder}_j)$$

ightharpoonup Classifying new instance (x)

$$c_{NB}(x) = \arg\max_{c_j \in C} \hat{P}(c_j) \prod_{x_i \in x} \hat{P}(x_i \mid c_j)$$

Example

Training dataset

Classes:

C1: buys_computer='yes'

c2:buys_computer='no'

Classify new example:

X =(age<=30, Income=medium, Student=yes Credit_rating=Fair)

age	income	student	credit rating	buys_computer
<=30	high	no	fair	no
<=30	high	no _	excellent xam Help	no
438512m 1	ngat Pr	oject E	xam Heip	yes
>40	medjum	no	fair	yes
>40 ntt]	ps://pov	vcoder	.com	yes
>40	low	yes	excellent	no
3140 ⁰	ф WeC	nat _e gov	YESSEMEN t	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example (cont'd)

• Learning:

ightharpoonup Compute $P(c_i)$

```
P(buy_computer="yes") = 9/14
P(buy_computer="no") = 5/14
```

Compute $P(x_i|c_i)$ for each class and each attribute value pair: $P(age \le 30 \mid buys_computer="yes") = 2/9 = 0.222$ $P(age \leq 30 \mid buys somputer = "not" - 265 \overline{m} = 0.6$ P(income="nadidniv|euhatopovveodyers") = 4/9 = 0.444P(income="medium" | buys computer="no") = 2/5 = 0.4P(student="yes" | buys computer="yes") = 6/9 = 0.667P(student="yes" | buys computer="no") = 1/5 = 0.2P(credit rating="fair" | buys computer="yes") =6/9 =0.667 P(credit rating="fair" | buys computer="no") = 2/5 = 0.4

Example (cont'd)

Classification: to classify:

```
x = (age \le 30, income = medium, student = yes, credit_rating = fair)
```

```
P(x \mid c_i):
     P(x|buys computer="yes")
   = P(age≤30 | buys_computer=yes)×P(income=medium | buys_computer=yes) ×
     P(student=yes buys computer=yes) × P(credit=fair buys computer=yes)
   = 0.222 x 0.444 x 0.667 x 0.0.667 https://powcoder.com
   =0.044
     P(x | buys_computer="no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
P(c_i | x) \propto P(x | c_i) * P(c_i):
    P(buys computer="yes" |x| \propto
         P(x|buys computer="yes") * P(buys_computer="yes")=0.028
   P(buys computer="yes"|x) \propto
         P(x|buys computer="no") * P(buys computer="no")=0.007
```

Naïve Bayesian Classifier: Comments

- Advantages :
 - Easy to implement
 - ▶ Good results obtained in most of the cases
- Disadvantagignment Project Exam Help
 - Assumption: class conditional independence of attributes, therefore loss of accuracy
 - Practically, dependences extinamong attributes
 - ► For example, *headache* and *body temperature* are dependent attributes for *flu* dataset.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- ▶ How to deal with these dependencies?
 - Bayesian Belief Networks

Bayesian Belief Networks

- Naive Bayes assumption of conditional independence is too restrictive.
- But it's intractable without such assumptions...
- Bayesian Belief networks provide an intermediate approach which
 - ▶ allows dependencies among attributes
 - but assumes conditional independence among subsets of attributes.

Bayesian Belief Networks

A graphical model of causal relationships. Two components:

▶ A directed acyclic graph (DAG): represents dependency among variables

(attributes)

B

Nodes: variables (including class attribute)

Links: dependencies (e.g., A dependes on E)

Parents: immediate predecessors. E.g., A,B are the

parents of C. B is the parent of D

ent Project Exam Help

Descendant: X is a descendant of Y if there is a direct

Add Wedshime; each variable is conditionally independent of its nondescendants given its parents.

- Definition: X is *conditionally independent* of Y given Z iff P(X | Y, Z)=P(X | Z)
- E.g.: C is conditional independent of D given A and B. Thus, $P(C \mid A, B, D) = P(C \mid A, B)$
- Acyclic: has no loops or cycles
- A conditional probability table (CPT) for each variable X: specifies the conditional probability distribution $P(X \mid Parents(X))$.

Example of CPT

Suppose each variable is binary (contain two values: X and $\neg X$)

► There is a conditional probability table (CPT) for each variable

Inference Rule in Bayesian Networks

The joint probability of any tuple $(x_1, ..., x_n)$ corresponding to the variables or attributes $(X_1, ..., X_n)$ is computed by

Inference in Bayesian Networks

- A Bayesian network can be used to infer the (probabilities of) values of one or more network variables, given observed values of others.
- ► Example: Assignment Project Exam Help
 - Given Storm= 0, BusTourGroup=1, Lightning=0, https://powcoder.com/Campfire=1, Thunder=0, we want to know ForestFire=?

Add WeChat powcoder

Tour Group Compute two probabilities:

(1)
$$P(F \mid \neg S, B, \neg L, C, \neg T) = P(F \mid \neg L, \neg S, C)$$

(2)
$$P(\neg F \mid \neg S, B, \neg L, C, \neg T) = P(\neg F \mid \neg L, \neg S, C)$$

• ForestFire = True if (1) > (2)

Inference in Bayesian Networks

- Another example:
 - ▶ Given Storm=1, Campfire=0, ForestFire=1, what is the probability distribution of Thunder?
 - Compute two probabilities:

(1)
$$P(T \mid S, \neg C, F) = P(T, L \mid Assignment - Project F)$$
 xam Help

$$= P(T \mid L, S, \neg C, F) P(L \mid S, \neg C, F) + P(T \mid \neg L, S, \neg C, F) P(\neg L \mid S, \neg C, F)$$

$$= P(T \mid L) P(L \mid S, -C, F) + P(T \mid \neg L, S, \neg C, F) P(\neg L \mid S, \neg C, F)$$
where $P(L \mid S, \neg C, F) = \frac{P(L, F \mid S, \neg C)}{P(F \mid S, \neg C)}$ $P(F \mid L, S, \neg C) P(L \mid S, \neg C)$

$$= \frac{P(F \mid L, S, \neg C) P(L \mid S)}{P(F, L \mid S, \neg C) + P(F, \neg L \mid S, \neg C)} = \frac{P(F \mid L, S, \neg C) P(L \mid S)}{P(F \mid L, S, \neg C) P(L \mid S)}$$

$$= \frac{P(F \mid L, S, \neg C) P(L \mid S)}{P(F \mid L, S, \neg C) P(L \mid S)}$$
and similarly $P(\neg L \mid S, \neg C, F) = \frac{P(F \mid \neg L, S, \neg C) P(\neg L \mid S)}{P(F \mid L, S, \neg C) P(L \mid S) + P(F \mid \neg L, S, \neg C) P(\neg L \mid S)}$

- (2) $P(\neg T \mid S, \neg C, F)$ can be calculated similarly.
 - ▶ Thunder = True if (1) > (2)

Learning of Bayesian Networks

- Several scenarios of this learning task
 - ▶ Network structure might be *known* or *unknown*.
 - Training examples might provide values of all network variables, or just some.
- Scenario 1: If https://pewpowncand observe all variables:

 Add WeChat powcoder
 - ▶ Then it's easy as training a Naïve Bayes classifier.
 - Learn only CPTs (estimate the conditional probabilities from training data)

Learning of Bayesian Networks

- ► Scenario 2: Suppose structure known, variables partially observable
 - For examples phanten Fprest Eire Starm Bus Tour Group, Thunder, but not Lightning, Campfire...
 - Similar to training neural network with hidden units. In fact, can learn network conditional probability tables using gradient ascent method!
- ▶ Scenario 3: When structure unknown
 - ▶ Use heuristic search or constraint-based technique to search through potential structures.
 - K2 algorithm

Summary: Bayesian Belief Networks

- Combine prior knowledge with observed data
- Intermediate approach that allows both Assignment Project Exam Help dependencies and conditional independencies
- Other issues https://powcoder.com
 - Extend from A alter Write a http://www.alter.com/a alter a lever a lev
 - Parameterized distributions instead of tables
 - More effective inference and learning methods

...

Next Class

Neurakignetworksject Exam Help

https://powcoder.com

Add WeChat powcoder