

REFLEXIONA Y RESUELVE

A través de una lupa

Mirando un objeto pequeño (un capuchón de bolígrafo, por ejemplo) a través de una lupa situada a 10 cm, este se ve notablemente ampliado. Al variar la distancia se modifica el tamaño. La relación entre ambas variables es (para una cierta lupa):

$$A = \frac{2}{2 - d}$$

d = distancia de la lupa al objeto (en dm)

A = aumento (número por el que se multiplica el tamaño)

- a) Para d = 0, A = 1. ¿Qué significa esto?
- b) Calcula el valor de A para d = 1.
- c) Si damos a d los valores 1,5; 1,9 y 1,99, se obtienen valores de A cada vez más grandes. ¿Por qué?
- d) Para d = 3, se obtiene A = -1. ¿Qué significa el signo menos?
- a) Si se pega la lupa al objeto, el tamaño que se ve es el real. Es decir, no aumenta.

b)
$$d = 1 \rightarrow A = \frac{2}{2 - 1} = 2$$

- c) El denominador se va haciendo cada vez más pequeño. Al dividir 2 por un número cada vez más cercano a cero, el resultado es cada vez mayor.
- d) Significa que la imagen se ha invertido.

Ruido y silencio

La intensidad del sonido que nos llega de un foco sonoro depende de la distancia a la que nos encontremos de él. Supongamos que:

$$I = \frac{100}{d^2}$$
 I = intensidad (en decibelios)
 d = distancia (en m)

Averigua a qué distancia hemos de estar para que la intensidad sea de 16 db.

$$16 = \frac{100}{d^2} \rightarrow d^2 = \frac{100}{16} \rightarrow d = \sqrt{6,25} = 2,5 \text{ m}$$

Debemos estar a 2,5 metros del foco sonoro.

Funciones trozo a trozo

■ Representa gráficamente las siguientes funciones:

a)
$$y = \begin{cases} x+3 & \text{si } x < 1 \\ 5-x & \text{si } x \ge 1 \end{cases}$$

b)
$$y = \begin{cases} x+5 & \text{si } x \le 0 \\ 2x & \text{si } x > 0 \end{cases}$$

c)
$$y = \begin{cases} x + 5 & \text{si } x \le 0 \\ -x + 5 & \text{si } x > 0 \end{cases}$$

1. Halla el dominio de definición de las siguientes funciones:

a)
$$y = \sqrt{x^2 + 1}$$

b)
$$y = \sqrt{x-1}$$

c)
$$y = \sqrt{1-x}$$

d)
$$y = \sqrt{4 - x^2}$$

e)
$$y = \sqrt{x^2 - 4}$$

f)
$$y = 1/\sqrt{x^2 - 1}$$

g)
$$v = 1/\sqrt{x-1}$$

h)
$$v = 1/\sqrt{1-x}$$

i)
$$y = 1/\sqrt{4-x^2}$$

j)
$$y = 1/\sqrt{x^2 - 4}$$

k)
$$y = x^3 - 2x + 3$$

1)
$$y = \frac{1}{x}$$

m)
$$y = \frac{1}{x^2}$$

n)
$$y = \frac{1}{x^2 - 4}$$

$$\tilde{\mathbf{n}}$$
) $y = \frac{1}{x^2 + 4}$

o)
$$y = \frac{1}{x^3 + 1}$$

p) El área de un cuadrado de lado variable, l, es $A = l^2$.

e)
$$(-\infty, -2] \cup [2, \infty)$$
 f) $(-\infty, -1) \cup (1, \infty)$

$$g)(1, \infty)$$

$$i)$$
 $(-\infty, -2) \cup (2, \infty)$

1)
$$|\mathbf{R} - \{0\}|$$

m)
$$|\mathbf{R} - \{0\}$$

n)
$$|\mathbf{R} - \{-2, 2\}$$

o)
$$\mathbb{R} - \{-1\}$$

p)
$$l > 0$$

Página 108

1. Representa la siguiente función:

$$y = -2x + 7, x \in (1, 4]$$

2. Una función lineal f cumple: f(3) = 5, f(7) = -4, Dom(f) = [0, 10]. ¿Cuál es su expresión analítica? Represéntala.

$$m = \frac{-4-5}{7-3} = -\frac{9}{4}$$

$$y = 5 - \frac{9}{4}(x-3) = -\frac{9}{4}x + \frac{47}{4}, \ x \in [0, 10]$$

Página 109

1. En una Universidad, el año 2002 había matriculados 10 400 alumnos, y en el año 2007, 13 200. Estimar cuántos había:

a) En el año 2003.

b) En el 2005.

c) En el 2000.

d) ¿Cuántos cabe esperar que haya en el 2010?

e) ¿Y en el 2040?

$$f(x) = \frac{13200 - 10400}{2007 - 2002}(x - 2002) + 10400 = 560(x - 2002) + 10400$$

a) f(2003) = 560 + 10400 = 10960 alumnos.

b) f(2005) = 1680 + 10400 = 12080 alumnos.

c) f(2000) = -1120 + 10400 = 9280 alumnos.

d) f(2010) = 4480 + 10400 = 14880 alumnos.

e) f(2040) = 21 280 + 10 400 = 31 680 alumnos, aunque la extrapolación es demasiado grande.

2. El consumo de gasolina de cierto automóvil, por cada 100 km, depende de su velocidad. A 60 km/h consume 5,7 *l* y a 90 km/h consume 7,2 *l*.

a) Estima su consumo si recorre 100 km a 70 km/h.

b) ¿Cuánto consumirá a 100 km/h?

c) ¿Y a 200 km/h?

a)
$$f(x) = \frac{7,2-5,7}{90-60}(x-60) + 5,7 = \frac{1,5}{30}(x-60) + 5,7$$

$$f(70) = 0.5 + 5.7 = 6.2 l$$

b) f(100) = 2 + 5.7 = 7.7 l

c) f(200) = 7 + 5.7 = 12.7 l, aunque la extrapolación es demasiado grande.

1. Representa estas parábolas:

a)
$$y = x^2 - 2x + 3$$

b)
$$y = -x^2 - 2x - 3$$

c)
$$y = x^2 - 6x + 5$$

d)
$$y = 2x^2 - 10x + 8$$

e)
$$y = \frac{1}{3} x^2 - x + 3$$

f)
$$y = \frac{1}{4}x^2 + x - 2$$

2. Representa las funciones siguientes:

a)
$$y = x^2 - 6x + 1$$
, $x \in [2, 5)$

b)
$$y = -x^2 + 3x$$
, $x \in [0, 4]$

c)
$$y = x^2 - 4$$
, $x \in (-\infty, -2) \cup (2, +\infty)$

3. Las gráficas de la derecha (roja y verde) tienen por ecuaciones $y = \frac{a}{x}$ e $y = \sqrt{bx}$.

Di qué ecuación corresponde a cada gráfica y averigua los valores de *a* y de *b*.

$$y = \frac{a}{x}$$
 es la roja. $y = \sqrt{bx}$ es la verde.

Basta con fijarse en los dominios.

La roja pasa por (2, 3), luego
$$3 = \frac{a}{2} \rightarrow a = 6$$

La verde pasa por (1, 2), luego $2 = \sqrt{b \cdot 1} \rightarrow b = 4$

4. Representa: $y = \frac{16}{x}$, $1 \le x \le 16$

5. Representa: $y = \sqrt{9x}$, $0 \le x \le 25$

1. Representa $y = \frac{4}{x}$ y, a partir de ella, estas otras:

a)
$$y = \frac{4}{x} + 5$$

b)
$$y = \frac{4}{x} - 2$$

2. Representa $y = \sqrt{4x}$ y, a partir de ella:

a)
$$y = -\sqrt{4x}$$

b)
$$y = -\sqrt{4x} + 2$$

Página 113

3. Llamamos f(x) a $y = \frac{4}{x}$ para x > 1. A partir de ella, representa:

$$a) y = f(x-5)$$

$$b) y = f(x+1)$$

c)
$$y = f(-x)$$

d)
$$y = f(-x + 2)$$

4. Representa:

a)
$$y = \sqrt{x-4}$$

b)
$$y = \sqrt{x+3}$$

c)
$$y = \sqrt{-x}$$

d)
$$y = \sqrt{-x + 4}$$

Página 114

1. Representa:

a)
$$y = \begin{cases} x + 3, & x < 1 \\ 5 - x, & x \ge 1 \end{cases}$$

b)
$$y = \begin{cases} 2x + 1, & x < 1 \\ x^2 - 1, & x \ge 1 \end{cases}$$

2. Representa:

$$y = \begin{cases} 2 & \text{si } x \le -2 \\ x^2 & \text{si } -2 < x < 1 \\ x & \text{si } x \ge 1 \end{cases}$$

Página 115

1. Representa las siguientes funciones relacionadas con la función parte entera:

$$a) y = Ent(x) + 2$$

$$\mathbf{b})y = Ent(x + 0.5)$$

c)
$$y = Ent\left(\frac{x}{4}\right)$$

$$d)y = Ent(3x)$$

a)
$$y = Ent(x) + 2$$

b)
$$y = Ent(x + 0.5)$$

c)
$$y = Ent\left(\frac{x}{4}\right)$$

$$d) y = Ent(3x)$$

2. Representa:

$$a) y = Mant(x) - 0.5$$

b)
$$y = |Mant(x) - 0.5|$$

b)
$$y = |Mant(x) - 0.5|$$
 c) $y = 0.5 - |Mant(x) - 0.5|$

Comprueba que esta última significa la distancia de cada número al entero más próximo. Su gráfica tiene forma de sierra.

a)
$$y = Mant(x) - 0.5$$

b)
$$y = |Mant(x) - 0.5|$$

c)
$$y = 0.5 - |Mant(x) - 0.5|$$

Página 116

1. Representa: $y = |-x^2 + 4x + 5|$

2. Representa gráficamente: $y = \left| \frac{x}{2} - 3 \right|$

EJERCICIOS Y PROBLEMAS PROPUESTOS

PARA PRACTICAR

Dominio de definición

1 Halla el dominio de definición de estas funciones:

a)
$$y = \frac{3}{x^2 + x}$$

b)
$$y = \frac{x}{(x-2)^2}$$

c)
$$y = \frac{x-1}{2x+1}$$

d)
$$y = \frac{1}{x^2 + 2x + 3}$$
 e) $y = \frac{2}{5x - x^2}$

e)
$$y = \frac{2}{5x - x^2}$$

f)
$$y = \frac{1}{x^2 - 2}$$

a)
$$|\mathbf{R} - \{-1, 0\}$$

e)
$$|\mathbf{R} - \{0, 5\}$$

f)
$$\mathbb{R} - \{-\sqrt{2}, \sqrt{2}\}$$

2 Halla el dominio de definición de estas funciones:

a)
$$y = \sqrt{3-x}$$

b)
$$y = \sqrt{2x - 1}$$

c)
$$y = \sqrt{-x-2}$$

d)
$$y = \sqrt{-3x}$$

b)
$$[1/2, +\infty)$$

3 Halla el dominio de definición de estas funciones:

a)
$$y = \sqrt{x^2 - 9}$$

b)
$$y = \sqrt{x^2 + 3x + 4}$$

c)
$$y = \sqrt{12x - 2x^2}$$

d)
$$y = \sqrt{x^2 - 4x - 5}$$

$$e) y = \frac{1}{\sqrt{4-x}}$$

$$f) y = \frac{1}{\sqrt{x^2 - 3x}}$$

a)
$$x^2-9\geq 0 \ \rightarrow \ (x+3)\ (x-3)\geq 0 \ \rightarrow \ Dominio=(-\infty,-3] \ \cup \ [3,+\infty)$$

b)
$$x^2 + 3x + 4 \ge 0 \rightarrow Dominio = \mathbb{R}$$

c)
$$12x - 2x^2 \ge 0 \rightarrow 2x(6-x) \ge 0 \rightarrow Dominio = [0, 6]$$

d)
$$x^2 - 4x - 5 \ge 0 \rightarrow (x + 1)(x - 5) \ge 0 \rightarrow Dominio = (-\infty, -1] \cup [5, +\infty)$$

e)
$$4 - x > 0 \rightarrow 4 > x \rightarrow Dominio = (-\infty, 4)$$

f)
$$x^2 - 3x > 0 \to x(x - 3) > 0 \to Dominio = (-\infty, 0) \cup (3, +\infty)$$

4 Observando la gráfica de estas funciones, indica cuál es su dominio de definición y su recorrido:

Los dominios son, por orden: [-2, 2]; $(-\infty, 2) \cup (2, +\infty)$ y $[-1, +\infty)$.

Los recorridos son, por orden: [0, 2], $(0, +\infty)$ y $[0, +\infty)$.

5 De un cuadrado de 4 cm de lado, se cortan en las esquinas triángulos rectángulos isósceles cuyos lados iguales miden x.

- a) Escribe el área del octógono que resulta en función de x.
- b) ¿Cuál es el dominio de esa función? ¿Y su recorrido?

a)
$$A(x) = 16 - 2x^2$$

- b) Dominio: (0, 2). Recorrido: (8, 16)
- 6 Una empresa fabrica envases con forma de prisma de dimensiones x, x/2 y 2x cm.
 - a) Escribe la función que da el volumen del envase en función de x.
 - b) Halla su dominio sabiendo que el envase más grande tiene 1 l de volumen. ¿Cuál es su recorrido?

a)
$$V(x) = x^3$$

b) Dominio: (0, 10). Recorrido: (0, 1000)

Funciones lineales. Interpolación

7 Di cuál es la pendiente de cada recta:

a)
$$y = 2x - 5$$

b)
$$2x - y + 1 = 0$$

c)
$$x + y - 5 = 0$$

d)
$$y = 5$$

$$c) - 1$$

- 8 | Escribe las ecuaciones de las siguientes rectas:
 - a) Pasa por P(1,-5) y Q(10,11).
 - b) Pasa por (-7, 2) y su pendiente es -0.75.
 - c) Corta a los ejes en (3,5; 0) y (0, -5).
 - d) Es paralela a la recta 3x y + 1 = 0 y pasa por (-2, -3).

a)
$$m = \frac{11 - (-5)}{10 - 1} = \frac{16}{9}$$

$$y = -5 + \frac{16}{9}(x - 1) = \frac{16}{9}x - \frac{61}{9}$$

b)
$$y = 2 - 0.75(x + 7) = -0.75x - 3.25$$

c)
$$\frac{x}{3.5} + \frac{y}{-5} = 1 \rightarrow y = \frac{10}{7}x - 5$$

d)
$$m = 3$$
; $y = -3 + 3(x + 2) = 3x + 3$

9 Elige dos puntos en cada una de estas rectas y escribe su ecuación:

a)
$$y = \frac{5}{3}x + \frac{10}{3}$$

b)
$$y = -\frac{1}{5}x + 8$$

c)
$$y = 0.025x - 0.05$$

d)
$$y = 12x - 30$$

Calcula, mediante interpolación o extrapolación lineal, los valores de y que faltan en cada tabla:

a)

X	0,45	0,5	0,6
у	2	•••	0,25

b)

X	47	112	120
У	18	37	•••

c)

X	3	7	13	15
у	-5		4	•••

d)

x	825	1 000	2015
У	2500	•••	4516

a)
$$y = 2 - 11, \hat{6}(x - 0.45) \rightarrow y_0 = 2 - 11, \hat{6}(0.5 - 0.45) = 1.42$$

b)
$$y = 18 + 0.292(x - 47) \rightarrow y_0 = 18 + 0.292(120 - 47) = 39.32$$

c)
$$y = -5 + 0.9(x - 3) \rightarrow y_0 = -5 + 0.9(7 - 3) = -1.4$$

$$y_1 = -5 + 0.9(15 - 3) = 5.8$$

d)
$$y = 2500 + 1,69(x - 825) \rightarrow y_0 = 2500 + 1,69(1000 - 825) = 2795,75$$

11 Esta tabla muestra la temperatura atmosférica tomada a diferentes alturas:

ALTURA (m)	0	500	1 000	1 500
TEMPERATURA (°C)	15	11,7	8,4	5,1

Calcula la temperatura a 1 200 m y a 2 000 m.

$$y = 15 - 0.0066x \rightarrow f(1200) = 15 - 0.0066 \cdot 1200 = 7.08$$

$$f(2000) = 15 - 0.0066 \cdot 2000 = 1.8$$

Página 124

Gráfica y expresión analítica

12 Dos de estas gráficas no son funciones. Di cuáles son y asocia a cada una de las otras cuatro la expresión analítica que le corresponde.

a)
$$y = \sqrt{2x}$$

b)
$$y = -0.25x^2$$

c)
$$y = \frac{1}{x-4}$$

d)
$$y = x^2 - 2$$

$$d) \rightarrow II$$

- 13 Asocia a cada una de las gráficas una de las siguientes expresiones analíticas:
 - a) $y = \frac{1}{x} + 2$ b) $y = \frac{1}{x+3}$ c) $y = (x+3)^2$ d) $y = \sqrt{x+2}$

- a) \rightarrow III
- b) \rightarrow IV
- $c) \rightarrow I$
- $d) \rightarrow II$

Representación de funciones elementales

14 Representa las siguientes parábolas hallando el vértice, los puntos de corte con los ejes de coordenadas y algún punto próximo al vértice:

a)
$$y = 0.5x^2 - 1$$

b)
$$y = -x^2 + 3$$

c)
$$y = 2x^2 - 4$$

a)
$$y = 0.5x^2 - 3$$
 b) $y = -x^2 + 3$ c) $y = 2x^2 - 4$ d) $y = -\frac{3x^2}{2}$

Vértice: (0, -3). Corte con los ejes: $(-\sqrt{6}, 0), (\sqrt{6}, 0), (0, -3)$

Vértice: (0, 3). Corte con los ejes: $(\sqrt{3}, 0), (-\sqrt{3}, 0), (0, 3)$

Vértice: (0, -4).

Corte con los ejes: $(\sqrt{2}, 0), (-\sqrt{2}, 0), (0, -4)$

Vértice: (0, 0).

Corte con los ejes: (0, 0)

15 Representa las siguientes funciones:

a)
$$y = x^2 + 2x + 1$$

b)
$$y = \frac{x^2}{2} + 3x + 1$$

c)
$$y = -x^2 + 3x - 5$$

d)
$$y = \frac{x^2}{3} + 3x + 6$$

16 En las siguientes parábolas, halla el vértice y comprueba que ninguna de ellas corta el eje de abscisas.

Obtén algún punto a la derecha y a la izquierda del vértice y represéntalas gráficamente:

a)
$$y = 4(x^2 + x + 1)$$

b)
$$y = 5(x+2)^2 + 1$$

c)
$$y = -x^2 - 2$$

d)
$$y = -\frac{3}{4}(x^2 + 2)$$

Vértice: (0, -2)

- Vértice: $\left(0, -\frac{3}{2}\right)$
- Representa gráficamente las siguientes funciones:

a)
$$y = \begin{cases} x-3 & \text{si } x < 1 \\ 2 & \text{si } x \ge 1 \end{cases}$$

a)
$$y = \begin{cases} x-3 & \text{si } x < 1 \\ 2 & \text{si } x \ge 1 \end{cases}$$
 b) $y = \begin{cases} -2 & \text{si } x < 0 \\ x-2 & \text{si } 0 \le x < 4 \\ 2 & \text{si } x \ge 4 \end{cases}$

c)
$$y = \begin{cases} -2x - 1 & \text{si } x < 1 \\ (3x - 15)/2 & \text{si } x \ge 1 \end{cases}$$

d)
$$y = \begin{cases} 2x + 6 & \text{si } x < -1 \\ -x + 3 & \text{si } x > -1 \end{cases}$$

18 Representa las siguientes funciones:

$$a) y = \frac{1}{x+1}$$

b)
$$y = \frac{1}{x-1}$$

c)
$$y = \frac{-1}{x}$$

$$d) y = \frac{-1}{x-3}$$

19 Representa las siguientes funciones:

$$a) y = \sqrt{x-1}$$

b)
$$y = -\sqrt{x+3}$$

c)
$$y = 2 + \sqrt{x}$$

d)
$$y = 1 - \sqrt{x}$$

Transformaciones en una función

20 Representa $f(x) = 4 - x^2$ y, a partir de ella, representa:

$$a) g(x) = f(x) - 3$$

b)
$$h(x) = f(x+2)$$

21 Esta es la gráfica de la función y = f(x):

Representa, a partir de ella, las funciones:

$$a) y = f(x-1)$$

b)
$$y = f(x) + 2$$

22 A partir de la gráfica de f(x) = 1/x, representa:

$$a) g(x) = f(x) - 2$$

b)
$$h(x) = f(x-3)$$

c)
$$i(x) = -f(x)$$

$$\mathbf{d})\, j(x) = \big| f(x) \big|$$

23 Representa la función $f(x) = \sqrt{x}$ y dibuja a partir de ella:

a)
$$g(x) = \sqrt{x+1}$$

b)
$$h(x) = \sqrt{x} - 3$$

c)
$$y = \sqrt{-x}$$

d)
$$y = 1 - \sqrt{x}$$

Valor absoluto de una función

Representa la función y = |x-5| y comprueba que su expresión analítica en intervalos es:

$$y = \begin{cases} -x + 5 & \text{si } x < 5 \\ x - 5 & \text{si } x \ge 5 \end{cases}$$

25 Representa las siguientes funciones y definelas por intervalos:

a)
$$y = |4 - x|$$

b)
$$y = |x + 2|$$

c)
$$y = |x-3|$$

d)
$$y = |-x - 3|$$

a)
$$y = \begin{cases} 4 - x & \text{si } x < 4 \\ -4 + x & \text{si } x \ge 4 \end{cases}$$

b)
$$y = \begin{cases} -x - 2 & \text{si } x < -2 \\ x + 2 & \text{si } x \ge -2 \end{cases}$$

c)
$$y = \begin{cases} -x + 3 & \text{si } x < 3 \\ x - 3 & \text{si } x \ge 3 \end{cases}$$

d)
$$y = \begin{cases} -x - 3 & \text{si } x \le -3 \\ x + 3 & \text{si } x > -3 \end{cases}$$

26 Representa y define como funciones "a trozos":

a)
$$y = \left| \frac{x-3}{2} \right|$$

b)
$$y = |3x + 6|$$

a)
$$y = \left| \frac{x-3}{2} \right|$$
 b) $y = |3x+6|$ c) $y = \left| \frac{2x-1}{3} \right|$ d) $y = |-x-1|$

d)
$$y = |-x-1|$$

Mira el ejercicio resuelto número 8.

a)
$$y =\begin{cases} -\frac{x-3}{2} & \text{si } x < 3 \\ \frac{x-3}{2} & \text{si } x \ge 3 \end{cases}$$
 b) $y =\begin{cases} -3x-6 & \text{si } x < -2 \\ 3x+6 & \text{si } x \ge -2 \end{cases}$

c)
$$y = \begin{cases} \frac{-2x+1}{3} & \text{si } x < \frac{1}{2} \\ \frac{2x-1}{3} & \text{si } x \ge \frac{1}{2} \end{cases}$$
 d) $y = \begin{cases} -x-1 & \text{si } x < -1 \\ x+1 & \text{si } x \ge -1 \end{cases}$

d)
$$y = \begin{cases} -x - 1 & \text{si } x < -1 \\ x + 1 & \text{si } x \ge -1 \end{cases}$$

PARA RESOLVER

27 | La factura de la energía eléctrica de una familia ha sido en noviembre 95 € por 375 kW h de consumo, y en enero 130,4 € por 552 kW h.

¿Cuánto tendrán que pagar si consumen 420 kW h?

$$y = 95 + 0.2(x - 375)$$

$$y(420) = 104 \text{ euros}$$

28 | Las ventas obtenidas por una empresa han sido de 28 000 € con unos gastos en publicidad de 3 000 € y de 39 000 € con unos gastos publicitarios de 5 000 €.

Estima cuáles serán las ventas si se invierte en publicidad 4 000 €.

$$y = 28\,000 + 5,5(x - 3\,000)$$

$$y(4000) = 33500$$
 euros

29 El precio del billete de una línea de cercanías depende de los kilómetros recorridos. Por 57 km he pagado 2,85 euros, y por 168 km, 13,4 euros.

Calcula el precio de un billete para una distancia de 100 km.

$$y = 2,85 + 0,095(x - 57)$$

$$y(100) = 6,94 \text{ euros}$$

30 Un rectángulo tiene 20 cm de perímetro. Escribe la función que da el área de ese rectángulo en función de su base x.

¿Cuál es el dominio de esa función?

$$2x + 2y = 20; \quad A = x \cdot y$$

$$A(x) = 10x - x^2; Dom = (0, 10)$$

Observamos en una farmacia una tabla con los pesos de los niños menores de 12 años, según su edad:

x (años)	1	3	6	9
y (kg)	10	14	20	26

Estima el peso de un niño a los 5 años y a los 10 años.

$$y = 10 + 2(x - 1)$$

$$y = 10 + 2 \cdot 4 = 18 \text{ kg a los 5 años.}$$

$$y = 10 + 2 \cdot 9 = 28 \text{ kg a los } 10 \text{ años.}$$

Los gastos fijos mensuales de una empresa por la fabricación de x televisores son $G = 2\,000 + 25\,x$, en euros, y los ingresos mensuales son $I = 60\,x - 0.01\,x^2$, también en euros. ¿Cuántos televisores deben fabricarse para que el beneficio (ingresos menos gastos) sea máximo?

La función Beneficio viene dada por la expresión:

$$B = I - G = 50x - 0.02x^2 - 3000 - 25x = -0.02x^2 + 25x - 3000$$

Se trata de una parábola con las ramas hacia abajo.

El máximo de la función se encuentra en el vértice:

$$x_0 = \frac{-b}{2a} = \frac{-25}{-0.04} = 625$$

El beneficio máximo se obtendrá para 625 televisores.

- Una pelota es lanzada verticalmente hacia arriba desde lo alto de un edificio. La altura que alcanza viene dada por la fórmula $h = 80 + 64t 16t^2$ (t en segundos y h en metros).
 - a) Dibuja la gráfica en el intervalo [0, 5].
 - b) Halla la altura del edificio.
 - c) ¿En qué instante alcanza su máxima altura?

- b) 80 metros.
- c) 2 segundos.

- 34 El precio de venta de un artículo viene dado por p = 12 0.01x (x = número de artículos fabricados; p = precio, en cientos de euros).
 - a) Si se fabrican y se venden 500 artículos, ¿cuáles serán los ingresos obtenidos?
 - b) Representa la función N^o de artículos-Ingresos obtenidos.
 - c) ¿Cuántos artículos se deben fabricar para que los ingresos sean máximos?
 - a) Si se venden 500 artículos, su precio será:

$$12 - 0.01 \cdot 500 = 7$$
 cientos de euros → Ingresos = 350000 €

$$I(x) = p \cdot x = 12x - 0.01x^2$$

- c) Deben fabricar 600 artículos para obtener los ingresos máximos (360 000 euros).
- Un fabricante vende mensualmente 100 electrodomésticos a 400 euros cada uno y sabe que por cada 10 euros de subida venderá 2 menos.
 - a) ¿Cuáles serán los ingresos si sube los precios 50 euros?
 - b) Escribe la función que relaciona la subida de precio con los ingresos mensuales.
 - c) ¿Qué subida produce ingresos máximos?
 - a) En este caso vendería 90 electrodomésticos a 450 euros cada uno; luego los ingresos serían de 450 \cdot 90 = 40 500 euros.
 - b) $I(x) = (400 + 10x) (100 2x) = -20x^2 + 200x + 40000$
 - c) El máximo se alcanza en el vértice de la parábola:

$$x = \frac{-b}{2a} = \frac{-200}{-40} = 5 \to 5 \text{ euros}$$

- El coste de producción de x unidades de un producto es igual a $\frac{1}{4}x^2 + 35x + 25$ euros y el precio de venta de una unidad es 50 x/4 euros.
 - a) Escribe la función que nos da el beneficio total si se venden las x unidades producidas.
 - b) Halla el número de unidades que deben venderse para que el beneficio sea máximo.
 - Los ingresos por la venta de x unidades son x(50-x/4) euros.

- a) $B(x) = 50x \frac{x^2}{4} \left(\frac{1}{4}x^2 + 35x + 25\right) = -\frac{x^2}{2} + 15x 25$
- b) El máximo se alcanza en el vértice de la parábola: $x = \frac{-15}{-1} = 15$

Deben venderse 15 unidades.

En la base de una montaña de 1 200 m, la temperatura es de 10 °C y sabemos que baja 1 °C por cada 180 m de ascensión. ¿Cuál será la temperatura en la

Representa la función altura-temperatura y busca su expresión analítica.

$$y = 10 - \frac{1}{180}x$$

Si
$$x = 1200 \rightarrow y = 10 - \frac{1200}{180} = 3,\hat{3}$$

La temperatura en la cima será de 3,3 °C.

38 Dibuja las gráficas de las siguientes funciones:

a)
$$y = \begin{cases} x^2 & \text{si } x \le 1 \\ (2x-1)/3 & \text{si } x > 1 \end{cases}$$
 b) $y = \begin{cases} x^2 - 2x & \text{si } x \le 2 \\ 3 & \text{si } x > 2 \end{cases}$

b)
$$y = \begin{cases} x^2 - 2x & \text{si } x \le 2\\ 3 & \text{si } x > 2 \end{cases}$$

c)
$$y =\begin{cases} -x^2 - 4x - 2 & \text{si } x < -1 \\ x^2 & \text{si } x \ge -1 \end{cases}$$
 d) $y =\begin{cases} -x^2 & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$

$$\mathbf{d}) y = \begin{cases} -x^2 & \text{si } x < 0 \\ x^2 & \text{si } x \ge 0 \end{cases}$$

39 Representa:

a)
$$y = \begin{cases} -x-1 & \text{si } x \le -1 \\ 2x^2 - 2 & \text{si } -1 < x < 1 \\ x-1 & \text{si } x \ge 1 \end{cases}$$

b)
$$y = \begin{cases} -x^2/2 + 2 & \text{si } x < 1 \\ x - 3 & \text{si } x \ge 1 \end{cases}$$

40 | Elena va a visitar a su amiga Ana y tarda 20 minutos en llegar a su casa, que está a 1 km de distancia. Está allí media hora y en el camino de vuelta emplea el mismo tiempo que en el de ida.

Representa la función tiempo-distancia y busca su expresión analítica.

$$f(x) = \begin{cases} (1/20)x & \text{si } 0 \le x \le 20\\ 1 & \text{si } 20 < x \le 50\\ -1/20(x - 70) & \text{si } 50 < x \le 70 \end{cases}$$

41 Busca la expresión analítica de estas funciones:

a)
$$f(x) =\begin{cases} -x - 1 & \text{si } x \le 3\\ 2 & \text{si } x > 3 \end{cases}$$
 b) $f(x) =\begin{cases} x^2 & \text{si } x \le 2\\ 4 & \text{si } x > 2 \end{cases}$

b)
$$f(x) = \begin{cases} x^2 & \text{si } x \le 2\\ 4 & \text{si } x > 2 \end{cases}$$

42 Representa y define como funciones "a trozos":

a)
$$y = |x^2 - 4|$$

b)
$$y = |x^2 - 2x - 4|$$

c)
$$y = \left| -\frac{x^2}{2} + 2 \right|$$

d)
$$y = |x^2 + 2x - 2|$$

a)
$$y = \begin{cases} x^2 - 4 & \text{si } x < -2 \\ -x^2 + 4 & \text{si } -2 \le x \le 2 \\ x^2 - 4 & \text{si } x > 2 \end{cases}$$

c)
$$y = \begin{cases} (x^2/2) - 2 & \text{si } x < -2\\ (-x^2/2) + 2 & \text{si } -2 \le x \le 2\\ (x^2/2) - 2 & \text{si } x > 2 \end{cases}$$

Utilizando la relación $\frac{\text{dividendo}}{\text{divisor}}$ = cociente + $\frac{\text{resto}}{\text{divisor}}$ podemos escribir la

función $y = \frac{2x+3}{x+1}$ de esta forma: $y = 2 + \frac{1}{x+1}$. Comprueba que su gráfica coincide con la de y = 1/x trasladada 1 unidad hacia la izquierda y 2 hacia arriba.

$$y = \frac{1}{x}$$

$$y = 2 + \frac{1}{x+1}$$

44 Representa, utilizando el procedimiento del ejercicio anterior:

$$a) y = \frac{3x}{x-1}$$

b)
$$y = \frac{x-2}{x-4}$$

a)
$$y = \frac{3x}{x-1}$$
 b) $y = \frac{x-2}{x-4}$ c) $y = \frac{-x-2}{x+3}$ d) $y = \frac{2x-3}{x-1}$

d)
$$y = \frac{2x-3}{x-1}$$

a)
$$y = \frac{3x}{x-1} = 3 + \frac{3}{x-1}$$

b)
$$y = \frac{x-2}{x-4} = 1 + \frac{2}{x-4}$$

c)
$$y = \frac{-x-2}{x+3} = -1 + \frac{1}{x+3}$$

d)
$$y = \frac{2x-3}{x-1} = 2 - \frac{1}{x-1}$$

CUESTIONES TEÓRICAS

Una parábola corta el eje de abscisas en x = -1 y en x = 3. La ordenada del vértice es y = -4. ¿Cuál es la ecuación de esa parábola?

$$f(x) = k(x+1)(x-3) = k(x^2 - 2x - 3)$$

Vértice
$$\rightarrow x = \frac{3 + (-1)}{2} = 1$$
; $f(1) = -4k = -4 \rightarrow k = 1$

La ecuación de la parábola será, por tanto: $f(x) = x^2 - 2x - 3$

- 46 Encuentra los valores de c para que la función $y = -x^2 + 12x + c$ tenga con el eje de abscisas:
 - a) Dos puntos de corte.
 - b) Un punto de corte.
 - c) Ningún punto de corte.

$$b^2 - 4ac = 144 + 4c$$

a)
$$144 + 4c > 0 \rightarrow c > -36$$

b)
$$144 + 4c = 0 \rightarrow c = -36$$

c)
$$144 + 4c < 0 \rightarrow c < -36$$

47 Esta es la gráfica de una función del tipo:

$$y = a + \frac{1}{x - h}$$

¿Cuáles son los valores de a y b en esa gráfica?

$$a = -2$$
; $b = 3$

PARA PROFUNDIZAR

La distancia que recorre un vehículo desde que se pisa el freno hasta que se para es:

$$d = \frac{v^2}{200} + \frac{v}{6} \quad (d \text{ en metros y } v \text{ en km/h})$$

- a) Representa la función en el intervalo [0, 240].
- b) Si un obstáculo está a 100 m, ¿cuál debe ser la velocidad máxima que puede llevar el automóvil para evitar el accidente?

b)
$$100 = \frac{v^2}{200} + \frac{v}{6}$$

$$120\,000 = 6v^2 + 200v$$

$$6v^2 + 200v - 120\,000 = 0$$

$$v = \frac{-200 \pm \sqrt{2920000}}{12} =$$

=
$$v_1 = -159,07$$
 (no vale)
 $v_2 = 125,73$

La velocidad debe ser menor de 125 km/h.

- 49 Las tarifas de una empresa de transportes son:
 - 40 euros por tonelada de carga si esta es menor o igual a 20 t.
 - Si la carga es mayor que 20 t, se restará, de los 40 euros, tantos euros como toneladas sobrepasen las 20.
 - a) Dibuja la función ingresos de la empresa según la carga que transporte (carga máxima: 30 t).
 - b) Obtén la expresión analítica y represéntala.

b)
$$f(x) = \begin{cases} 40x & \text{si } 0 \le x \le 20\\ [40 - (x - 20)]x & \text{si } 20 < x \le 30 \end{cases}$$

Es decir:

$$f(x) = \begin{cases} 40x & \text{si } 0 \le x \le 20\\ 60x - x^2 & \text{si } 20 < x \le 30 \end{cases}$$

Página 127

AUTOEVALUACIÓN

1. Halla el dominio de definición de las siguientes funciones:

a)
$$y = x^3 - x^2$$

b)
$$y = \frac{3x}{(2x-6)^2}$$

c)
$$y = \sqrt{4 - 2x}$$

d)
$$y = \sqrt{5x - x^2}$$

- b) Su dominio es todo R, salvo los puntos que anulan el denominador.

$$(2x-6)^2 = 0 \rightarrow 2x-6 = 0 \rightarrow x = 3$$

Por tanto: $Dom y = \mathbb{R} - \{3\}$

c) Su dominio son los puntos que hacen que el radicando no sea negativo.

$$4 - 2x \ge 0 \rightarrow 2x \le 4 \rightarrow x \le \frac{4}{2} = 2$$

Por tanto: $Dom y = (-\infty, 2]$

d) Al igual que en el apartado anterior:

$$5x - x^2 \ge 0 \rightarrow x(5 - x) \ge 0$$

Esto ocurre si:

- $x \ge 0$ y $5 x \ge 0$ $\rightarrow x \ge 0$ y $x \le 5$ $\rightarrow x \in [0, 5]$
- $x \ge 0$ y $5 x \le 0 \rightarrow x \le 0$ y $x \ge 5 \rightarrow$ Esto no es posible.

Por tanto: Dom y = [0, 5]

2. Asocia a cada una de las gráficas una de las siguientes expresiones:

a)
$$y = \sqrt{1 - x}$$

b)
$$y = \frac{-x}{2x+6}$$
 c) $y = -\sqrt{x+1}$

c)
$$y = -\sqrt{x+1}$$

d)
$$y = \frac{x-3}{x-2}$$

- b) III
- c) IV
- d) I

3. Representa las siguientes funciones:

a)
$$y = -0.5x^2 + 2x - 2$$
 b) $y = |5 + 2x|$

b)
$$y = |5 + 2x|$$

c)
$$f(x) = \begin{cases} 1 - x^2 & \text{si } x \le 0 \\ x + 3 & \text{si } x > 0 \end{cases}$$

4. Asistir a un gimnasio durante 6 meses nos cuesta 246 €. Si asistimos 15 meses, el precio es 570 €.

¿Cuánto tendremos que pagar si queremos ir durante un año?

Vamos a hacer una interpolación lineal. Hallamos la recta que pasa por los puntos (6, 246) y (15, 570).

Su pendiente es
$$m = \frac{570 - 246}{15 - 6} = \frac{324}{9} = 36.$$

Por tanto, la ecuación de la recta es:

$$y = 36(x - 6) + 246 \rightarrow y = 36x + 30$$

De este modo, si queremos saber cuánto se debe pagar si vamos al gimnasio durante un año (12 meses), hacemos:

$$y(12) = 36 \cdot 12 + 30 = 462$$

Habrá que pagar 462 €.

5. Ponemos al fuego un cazo con agua a 10 °C. En 5 minutos alcanza 100 °C y se mantiene así durante media hora, hasta que el agua se evapora totalmente.

Representa la función que describe este fenómeno y halla su expresión analítica.

- La gráfica pasa por los puntos (0, 10) y (5, 100).
- Hallamos la ecuación de esta recta:

Pendiente: $\frac{570 - 246}{15 - 6} = 18 \rightarrow y = 18(x - 0) + 10$

• Para valores de x mayores que 5, la temperatura se mantiene constante $\rightarrow y = 100$.

Expresión analítica: $f(x) = \begin{cases} 18x + 10 & \text{si } 0 \le x < 5 \\ 100 & \text{si } 5 \le x \le 35 \end{cases}$

6. A partir de la gráfica de y = f(x), representa:

$$a) y = 1 + f(x)$$

b)
$$y = f(x-1)$$

c)
$$y = -f(x)$$

a) La gráfica se desplaza una unidad hacia arriba.

b) La gráfica se desplaza una unidad hacia la derecha.

c) La gráfica es simétrica a la de f(x), respecto al eje X.

