超巨大ブラックホール研究推進連絡会@筑波大学平成26年11月4日(火)

初期宇宙における超大質量星形成過程の計算

東京大学 理学系研究科 物理学専攻 宇宙理論研究室 吉田研M2 櫻井祐也

共同研究者:細川隆史、吉田直紀

z~7におけるSMBHの存在

 遠方宇宙の観測で、宇宙7.8億歳で20億M_☉ 程度のSMBH ULAS J1120+0641の存在を 確認(Mortlock et al.2011)

SMBH形成の理論と問題点

 PopⅢ星の重力崩壊でできた100M_☉ほどの BHが降着や合体により10億太陽質量のSM BHに成長

このBH成長のe-folding時間 t_{acc} から、 $z\sim20$ から $z\sim7$ までで14 e-foldingsであるが、 $\ln(2\times10^9/100)=17$ e-foldingsなので、成長時間が足りない($L=L_{Edd}$) $_{2/2}$

SMBH形成の理論と問題点

主な解決案

- 1. Seed BHとしてより大きなもの $\sim 10^5 \, M_{\odot}$ を考える (direct collapse理論)
- 2. Super Eddington 降着を考える

このBH成長のe-folding時間 t_{acc} から、 $z\sim20$ から $z\sim7$ までで14 e-foldingsであるが、 $\ln(2\times10^9/100)=17$ e-foldingsなので、成長時間が足りない($L=L_{Edd}$) $_{3/2}$

Direct Collapse理論(概略)

Atomic cooling halo中の始原 ガス雲の中で、降着が始まった 原始星(+円盤) 急速降着 (~0.1 M_®yr⁻¹) 電力前様 ~10⁵ M_®

考える状況、研究のmotivation

Atomic cooling halo中の始原ガス雲の中で降着する原始星

考える状況、研究のmotivation

Atomic cooling halo中の始原ガス雲の中で降着する原始星

超大質量星ができるためには、降着が続いて星質量が増え続ける 必要があるが、実際は星からの電離光子により周辺ガスが電離さ れ、それにより降着が抑制される(**フィードバック**)

Ral 星の進化の過程で、フィードバックが起き ずに降着が続いて超大質量性ができるかど うか、知りたい!

Protostar Optically thick Optically thin

Accretion shock

6/23

従来の超大質量星形成過程の計算

 一定降着率のもとで星の進化の1次元計算 (Hosokawa et al. 2013)

従来の超大質量星形成過程の計算

-定降着率のもとで星の進化の1次元計算 (Hosokawa et al. 2013) $S_{\rm EUV,crit}$ $\sim 3 \times 10^{48} \ {\rm sec}^{-1}$ 数 ヾバック効く可能性あり 10 10^{48} 星からの電離光子放出率 (太陽半径) 単調膨張 10⁴⁴ 10² $0.1 M_{\odot}/\text{yr}$ 10⁴⁰ 断熱進化 ZAMS 半径 KH収縮 10⁰ 10³⁶ 10² 10³ 10⁵ 10⁴ 10¹ 臨界降着率~0.04 M_☉/yr 時間(年) 时间

8/23

本研究と従来研究との違い

- 従来: 一定降着率下で星進化計算 (Hosokawa et al. 2013)
- 本研究:時間変動降着率のもとで星進化計算

究との違い

率下で星進化計算 I. 2013)

降着率のもとで星進化計算

円盤の不安定性による降着率の変化

数値計算コード(Stellar)

• もともと星形成のコード(Yorke氏作成、細 川氏改良&提供)、Henyey法利用

• 星内部の進化を決める4つの式を同時に解く

連続の式

$$\frac{\partial r}{\partial m} = \frac{1}{4\pi r^2 \rho}$$

運動方程式

$$\frac{\partial P}{\partial m} = -\frac{Gm}{4\pi r^4}$$

エネルギー保存則

$$\frac{\partial l}{\partial m} = E_{\text{nuc}} - c_P \frac{\partial T}{\partial t} + \frac{\delta}{\rho} \frac{\partial P}{\partial t}$$

エネルギー輸送の式

$$\frac{\partial T}{\partial m} = -\frac{GmT}{4\pi r^4 P} \nabla^{2} \nabla_{\text{rad}} = \frac{3}{16\pi acG} \frac{\kappa l P}{mT^4}$$

輻射優勢なら

$$\nabla_{\rm rad} = \frac{3}{16\pi acG} \frac{\kappa l P}{mT^4}$$

数値計算コード(Stellar)

・境界条件は星の中心で

$$m = 0, l = 0$$

• 表面の境界条件は

$$P \simeq 0, \tau \simeq 0$$

となるところから内側へ、 $l=L_*$ として積分することにより得られる

降着の効果を考える時、質量は星表面のグリッド(一番外)に、物理量はそのグリッドのものと同じとして加える

数値計算コード(Stellar)

- $2M_{\odot}$ の星から計算。初期条件はn=1.5ポリトロープ星
- 考えている物理
 - 対流: Mixing length theoryにより計算 (対流優勢の時、エネルギー輸送の式の ▽を計算する際に使う)
 - 核反応: ヘリウム燃焼まで考えている (E_{nuc}の計算に必要)
 - 他、Opacityなど

降着のモデル化

低降着率期 1080年 高降着率期 100年 高降着率期の時間 100yr 平均降着率 0.1 M_☉/yr 高降着率 降着率 低降着率 低降着率期の時間 1080yr

平均降着率0.1 M_☉yr⁻¹

時間

14/23

星の進化過程でのフィードバック

星の半径の進化

Kelvin-Helmholtz時間

熱緩和の時間スケール

星表面のKH時間

積分範囲は0.01R_{*}~R_{*}

$$t_{\rm KH, surf} = \frac{\int sT dm}{\int dL}$$

(平均の) KH時間

$$t_{\rm KH} = \frac{GM^2}{RL}$$

熱緩和時間と星半径

星が収縮する条件

結論

- 一定降着率では $0.1~M_{\odot}$ yr $^{-1}$ でフィードバックが効かない一方で、時間変動降着率の場合ではフィードバックが効く可能性が分かった
- 低降着率の期間が長いほど、星の表面が熱緩 和するのに十分時間が取れるため、星が収縮 しやすく電離光子が出やすいことが分かった
 - 低降着率の期間が長いと、星の進化の途中でフィード バックが効き、超大質量星ができない可能性がある

これからのこと

- 運動方程式に加速項を加える
 - 降着率が急激変化する時加速項は本当に重要でないか?

$$\left(\frac{1}{4\pi r^2} \frac{\partial^2 r}{\partial t^2}\right) = -\frac{\partial P}{\partial m} - \frac{Gm}{4\pi r^4}$$

- エネルギー保存則の書き換え
 - もとの式だと、右辺第2項と第3項がcomparable→桁落ち?→数値的に不安定?

$$\frac{\partial l}{\partial m} = E_{\text{nuc}} \left(-c_P \frac{\partial T}{\partial t} \right) + \left(\frac{\delta}{\rho} \frac{\partial P}{\partial t} \right) + \left(\frac{\delta$$

まとめ (ほぼ結論のスライドと同じ)

- フィードバックの影響を明らかにする目的で、 時間変動降着率のもと1次元の星進化計算を 行った
- ・ 一定降着率では $0.1~M_{\odot}$ yr $^{-1}$ でフィードバックが 効かない一方で、時間変動降着率の場合では フィードバックが効く可能性が分かった
- 低降着率の期間が長いほど、星の表面が熱緩和するのに十分時間が取れるため、星が収縮しやすく電離光子が出やすいことが分かった