

IIT School of Applied Technology

ILLINOIS INSTITUTE OF TECHNOLOGY

information technology & management

526 Data Warehousing

March 9, 2016

Week 8 Presentation

Week 08 Topic: Dealing with Hierarchies

- > We will cover
 - Mini Dimensions Revisited
 - Resolving Multivalued Relationships using Bridge Tables
 - Design Workshop #3: Design Review Exercise
 - Post-Spring Break Agenda Preview

Dealing with Monster Dimensions: Mini-Dimension to the Rescue

Income Band

Break off the hot attributes into their own separate mini dimension

It has one row for each possible combination of the attributes

Value bands are used to reduce the number of rows overall

Dealing with Rapidly Changing Monster Dimensions: Monster Dimensions (cont'd)

Customer dimension sample row:

Customer Key	Customer Name	Date of Birth
123456	John Smith	1984-02-10

Demographics mini-dimension sample row:

Demographics Key	Age Group	Income Band
1	25-29	\$50,000 - \$59,999
2	30-34	\$50,000 - \$59,999
3	30-34	\$60,000 - \$69,999

Fact table sample row:

Transaction Date Key	Customer Key	Demographics Key
20140131	123456	1
20140228	123456	2
20140331	123456	2
20140430	123456	3

Dimension Value Band Example

Sugar Level	Daily Calories Burned	Age Group	
50-65	0-500	0 to 10	
66-80	501-1000	11 to 20	
81-95	1001-1500	21 to 30	
96-100	1501-2000	31 to 40	
101-115	2001-2500	41 to 50	
116-130	2501-3000	51 to 60	
131-145	3001-3500	61 to 70	
146-160	3501-4000	71 to 80	

Source: http://www.webdetails.pt/pentaho/api/repos/BioMe/webapp/index.html? userid=pentaho&password=demo#/analytics/refine

Resolving Multivalued Relationships Using Bridge Tables

- In a classic dimensional schema, each dimension attached to a fact table has a single value consistent with the fact table's grain
- ➤ But there are a number of situations in which a dimension is legitimately *multivalued*

Resolving Multivalued Relationships Using Bridge Tables Multivalued Dimension Examples

- ➤ Many sales reasons on a single transaction
- > Many customers in a bank account
- ➤ Many diagnoses at the time of a treatment
- > Many witnesses to an accident
- > Many options on a car

2 Promotion

3 Convenient Location

Resolving Multivalued Relationships Using Bridge Tables Multivalued Sales Reasons Bridge

The Sales Reason Group table may be required by your modeling tool to relationships. It provides no useful information at query time and is often omitted 8

Resolving Multivalued Relationships Using Bridge Tables Multivalued Diagnosis Bridge

- > The weighting factor is an explicit allocation
- Records in the Diagnosis Group Dimension can be made for each patient, but in this case it seems reasonable to re-use diagnosis groups, especially for out patient treatments where many groups would be repeated

Resolving Multivalued Relationships Using Bridge Tables Bank Account to Customer Bridge

Monthly Account Snapshot Fact	1				
Month End Date Key (FK)		Account Dimension	Account to Customer Bridge 🔽		Customer Dimension
Account Key (FK)		Account Key (PK)	 Account Key (FK)	-	Customer Key (PK)
Branch Key (FK)		Primary Holder	Customer Key (FK)		Customer Name
Household Key (FK)		Primary Address	Weighting Factor		Customer Address
Month Ending Balance		Account Type	Begin Date		Customer Date of Birth
Average Daily Balance		Open Date	End Date		
Number of Transactions					
Interest Paid					
Fees Charged					

- Associate customers to accounts where these have a many-to-many relationship
- Query account balances by individual customer or groups of customers
- Show account balances correctly weighted (prorated) by individual customers to avoid double counting
- ➤ Show account balances by customer "impact" (un-10 weighted)

Dealing with Hierarchies

Fixed Depth Positional Hierarchies

- > A series of many-to-one relationships
- The hierarchy levels become separate positional attributes in a dimension table

A dimension can have multiple fixed depth hierarchies in it

Date Dimension

Day

Week

Month

Quarter

Year

Fiscal Month

Fiscal Quarter

Fiscal Year

Dealing with Hierarchies

Ragged/Variable Depth Hierarchies

Ragged hierarchies of indeterminate depth are

difficult to model and query in a relational database

 A specially constructed bridge table to the rescue

Parent Key	Child Key	Depth From Parent	Highest Parent Flag	Lowest Child Flag
9	9	0	FALSE	FALSE
9	10	1	FALSE	FALSE
9	11	2	FALSE	TRUE
9	12	2	FALSE	TRUE
9	13	1	FALSE	TRUE
10	10	0	FALSE	FALSE
10	11	1	FALSE	TRUE
10	12	1	FALSE	TRUE
11	11	0	FALSE	TRUE
12	12	0	FALSE	TRUE
13	13	0	FALSE	TRUE

Dealing with Hierarchies (cont'd)

Ragged/Variable Depth Hierarchies

- > Child element references to the fact
- > Parent element references to the dim

```
Org Key (PK)
Org Name

...

Dept from Parent
Highest Parent Flag
Lowest Child Flag
Percent Ownership

Org Map Bridge

CAL Fact

Date Key (FK)

Org Key (FK)

Account Key (FK)

...
```

Design Workshop #3: Design Review Exercise Identify Potential Design Flaws

- > Guidelines to Identify Design Flaws
 - What's the Grain?
 - Mixed-Grain or Textual Facts?
 - Dimension Descriptors and Decodes?
 - Explicit Date Dimension?
 - Surrogate Keys?
 - Handling of Hierarchies?
 - Slowly Changing Dimension Strategies?
 - Well-Understood Business Requirements?

Design Workshop #3: Design Review Exercise Identify Potential Design Flaws (cont'd)

Business Process: Student/Course snapshot

Grain: 1 row per course registered by student for on each term

Sample fact rows:

											Course	Student
Academic	Term	Student	Student	Student	Course	Course	Instructor	Instructor	Instructor	Couse	Credit	Cum Grade
Year	Code	ID	Gender	Ethnicity	Code	Format	1 Eml ID	2 Eml ID	3 Eml ID	Count	Hours	Point
2014-2015	FALL	1234	F	Н	ECON101	LECT	SR123			1	4	3.50
2014-2015	FALL	1234	F	Н	GOVT201	LECT	PW456	BB789		1	4	3.50
2014-2015	FALL	1234	F	Н	CHEM103	LAB	KS246	NR468		1	6	3.50
2014-2015	FALL	1234	F	Н	YOGA101	SEM	KV680			1	2	3.50
2014-2015	SPRING	1234	F	Н	GOVT102	LECT	SR123	PW456		1	4	3.55

Kimball Lifecycle Approach

What to Expect After Spring Break

- ➤ More Dimensional Modeling Tips & Exercises
- ➤ SQL Optimization for DW/BI
- ➤ BI Reporting and Analytics Development (Mondrian, Saiku, Tableau, Pentaho BI Server, etc.)
- ➤ The Future of DW/BI
- > Assignment 02
- Final Exam
 - Important: Revisit past weeks' Readings & Glossary on BB

Week 08 Topic: Dealing with Hierarchies

Questions?