Esame di Logica

4 Settembre 2024

Questo è un esame a libro aperto: gli studenti possono portare e usare liberamente libri, appunti, fogli stampati e così via, ma non possono usare dispositivi elettronici come tablet o cellulari (o comunicare).

1 Logica Sillogistica

- Scrivete una teoria in logica sillogistica che rappresenti le seguenti affermazioni:
 - Tutte le carote sono tuberi;
 - Nessuna carota è una patata;
 - Tutte le patate sono tuberi;
 - Tutti i tuberi sono vegetali;
 - Qualche vegetale non è un tubero;
 - Nessuna farfalla è un tubero.
- Per ognuna di queste affermazioni, verificate se è una conseguenza della vostra teoria. Se lo è, scrivetene una dimostrazione nel sistema di deduzione visto a lezione (usando dimostrazioni dirette o indirette); se non lo è, descrivete un modello che soddisfa tutte le formule della vostra teoria ma non l'affermazione data.
 - 1. Qualche carota non è una farfalla;
 - 2. Qualche patata è un vegetale;
 - 3. Qualche tubero non è una patata;
 - 4. Nessuna farfalla è un vegetale.

SOLUZIONE:

• Siano c = carota, t = tubero, p = patata, v = vegetale, f = farfalla.

Allora la teoria è

- $-\mathbf{A}(c,t);$
- $-\mathbf{E}(c,p);$
- $-\mathbf{A}(p,t);$
- $-\mathbf{A}(t,v);$
- $-\mathbf{O}(v,t);$
- $-\mathbf{E}(f,t).$
- Consideriamo le quattro affermazioni:
 - 1. $\mathbf{O}(c, f)$ segue per dimostrazione indiretta:
 - (1) $| \mathbf{A}(c,t) |$ Ipotesi
 - (2) $\mathbf{E}(f,t)$ Ipotesi
 - (3) $\mathbf{A}(c,f)$ $\mathbf{O}(c,f)$
 - (4) $\mathbf{E}(c,t)$ PS2, da (2) e (3)
 - (5) $\mathbf{I}(c,t)$ C2, da (1)

e visto che $\mathbf{I}(c,t)$ è la contraddizione di $\mathbf{E}(c,t),$ la formula è dimostrata.

- 2. $\mathbf{I}(p,v)$ segue per dimostrazione diretta:
 - $(1) \mid \mathbf{A}(p,t)$ Ipotesi
 - (2) $\mathbf{A}(t,v)$ Ipotesi
 - (3) $\mathbf{A}(p,v)$ PS1, da (2) e (1)
 - (4) $\mathbf{I}(p,v)$ C2, da (3)
- 3. $\mathbf{O}(t,p)$ segue per dimostrazione diretta:
 - (1) $\mid \mathbf{A}(c,t) \mid$ Ipotesi
 - (2) $\mid \mathbf{E}(c,p) \mid$ Ipotesi
 - (3) $| \mathbf{I}(c,t) |$ C2, da (1)
 - (4) $| \mathbf{I}(t,c) |$ C3, da (3)
 - (5) | $\mathbf{O}(t,p)$ PS4, da (2) e (4)
- 4. $\mathbf{E}(f,v)$ non segue dalla teoria. Infatti, consideriamo il modello $M=(\Delta,\iota)$ dove
 - $-\ \Delta = \{1, 2, 3\};$
 - $-\iota(c) = \{1\};$
 - $-\iota(t) = \{1, 2\};$
 - $-\iota(p) = \{2\};$
 - $\iota(v) = \{1, 2, 3\};$
 - $-\iota(f) = \{3\}.$

Allora $\mathbf{A}(c,t)$ è soddisfatta, perchè $\iota(c) \subseteq \iota(t)$; $\mathbf{E}(c,p)$ è soddisfatta, perchè $\iota(c) \cap \iota(p) = \emptyset$; $\mathbf{A}(p,t)$ è soddisfatta, perchè $\iota(p) \subseteq \iota(t)$; $\mathbf{A}(t,v)$ è soddisfatta, perchè $\iota(t) \subseteq \iota(v)$; $\mathbf{O}(v,t)$ è soddisfatta, perchè $3 \in \iota(v)$ ma $3 \notin \iota(t)$; $\mathbf{E}(f,t)$ è soddisfatta, perchè $\iota(f) \cap \iota(t) = \emptyset$. Quindi il modello soddisfa la teoria; ma non soddisfa $\mathbf{E}(f,v)$, perchè

Quindi il modello soddisfa la teoria; ma non soddisfa $\mathbf{E}(f,v)$, perchè $\iota(f) \cap \iota(v) = \{3\} \neq \emptyset$, e quindi $\mathbf{E}(f,v)$ non è una conseguenza della teoria.

2 Logica Proposizionale

- Scrivete una teoria di logica proposizionale che descriva il seguente scenario:
 - Se sono a Pavia, non sono a Bologna;
 - Se non sono nè a Pavia nè a Bologna, sono a Roma;
 - Se sono a Roma, non sono a Pavia.
- Usando una tabella di verità, trovate tutti gli assegnamenti di valori di verità che soddisfano la teoria;
- Per ognuna delle seguenti affermazioni, verificate se è una conseguenza della vostra teoria oppure no, usando le tavole di verità:
 - Se sono a Bologna, non sono a Roma;
 - Non sono a Bologna o non sono a Pavia.
- Verificate se la teoria ha "Se non sono a Bologna, sono a Pavia o sono a Roma" come conseguenza logica oppure no usando il metodo dei tableau (potete chiudere un ramo non appena trovate due letterali in contraddizione, senza espandere gli altri).

ATTENZIONE: Non è consentito applicare trasformazioni per semplificare formule prima di applicare il metodo del tableau (non porterebbe a conclusioni sbagliate, ma non è parte della procedura). Per esempio, se una delle formule iniziali del tableau fosse un'espressione del tipo $\neg(X \lor (Y \lor Z))$, non potete riscriverla come $\neg X \land (\neg Y \land \neg Z)$ (anche se le due formule sono logicamente equivalenti).

SOLUZIONE:

 $\bullet\,$ Siano X="Sono a Pavia", "Y="Sono a Bologna" e Z="Sono a Roma". Allora la teoria è

$$X \to \neg Y;$$

 $(\neg X \land \neg Y) \to Z$
 $Z \to \neg X.$

• La tabella di verità è

X	Y	Z	$X \rightarrow \neg Y$	$\neg X \land \neg Y$	$(\neg X \wedge \neg Y) \to Z$	Z o eg X
0	0	0	1	1	0	1
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	1	0	1	1
1	0	0	1	0	1	1
1	0	1	1	0	1	0
1	1	0	0	0	1	1
1	1	1	0	0	1	0

Quindi le valutazioni che soddisfano la teoria sono quelle che assegnano a $X, Y \in Z$ i valori (0,0,1), (0,1,0), (0,1,1) o (1,0,0).

• Le due affermazioni corrispondono a $Y \to \neg Z$ e a $\neg Y \vee \neg X$.

X	Y	Z	$Y \to \neg Z$	$\neg Y \lor \neg X$
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	1

Quindi la prima formula non segue dalla teoria, ma la seconda sì.

• La formula $(\neg Y) \to (X \vee Z)$ segue dalla teoria secondo il seguente tableau chiuso:

3 Risoluzione Proposizionale

Considerate la teoria proposizionale

$$\Gamma := \{ (X \land (Y \lor Z)) \to \neg W, Y \to (Z \lor \neg W) \}.$$

- Convertite tutte le formule della teoria in formule equivalenti in Forma Normale Congiuntiva;
- Utilizzando la Procedura di Davis-Putnam, verificate se Γ ha come conseguenza $(X \wedge W) \to \neg Y.$

SOLUZIONE:

• Abbiamo che

$$\begin{split} (X \wedge (Y \vee Z)) &\to \neg W \equiv \neg (X \wedge (Y \vee Z)) \vee \neg W \\ &\equiv \neg X \vee \neg (Y \vee Z) \vee \neg W \\ &\equiv \neg X \vee (\neg Y \wedge \neg Z) \vee \neg W \\ &\equiv ((\neg X \vee \neg Y) \wedge (\neg X \vee \neg Z)) \vee \neg W \\ &\equiv (\neg X \vee \neg Y \vee \neg W) \wedge (\neg X \vee \neg Z \vee \neg W) \end{split}$$

e che

$$Y \to (Z \vee \neg W) \equiv \neg Y \vee Z \vee \neg W$$

• Convertiamo in CNF anche la negazione di $(X \wedge W) \rightarrow \neg Y$:

$$\neg((X \land W) \to \neg Y) \equiv \neg(\neg(X \land W) \lor \neg Y)$$
$$\equiv \neg\neg(X \land W) \land \neg\neg Y$$
$$\equiv X \land W \land Y$$

Quindi, la formula segue dalla teoria se e solo se l'insieme di clausole

$$S = \{ \{\neg X, \neg Y, \neg W\}, \{\neg X, \neg Z, \neg W\}, \{\neg Y, Z, \neg W\}, \{X\}, \{W\}, \{Y\}\} \}$$

è insoddisfacibile. Applichiamo la procedura di Davis-Putnam:

- 1. $\{\{\neg X, \neg Y, \neg W\}, \{\neg X, \neg Z, \neg W\}, \{\neg Y, Z, \neg W\}, \{X\}, \{W\}, \{Y\}\}\}$: Non ci sono tautologie o formule sussunte. Scegliamo come pivot X.
- 2. $\{\{\neg Y, Z, \neg W\}, \{W\}, \{Y\}, \{\neg Y, \neg W\}, \{\neg Z, \neg W\}\}: \{\neg Y, Z, \neg W\}$ è sussunta da $\{\neg Y, \neg W\}$, quindi eliminiamola.
- 3. $\{\{W\}, \{Y\}, \{\neg Y, \neg W\}, \{\neg Z, \neg W\}\}:$ Scegliamo come pivot Y.
- 4. $\{\{W\}, \{\neg Z, \neg W\}, \{\neg W\}\}$. $\{Z, \neg W\}$ è sussunta da $\{\neg W\}$, quindi eliminiamola.
- 5. $\{\{W\}, \{\neg W\}\}\$. Scegliamo come pivot W.
- $6. \{\square\}$

Visto che aabbiamo trovato la clausola vuota \Box , l'insieme di clausole iniziale è insoddisfacibile e quindi la formula segue dalla teoria.