Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Институт космических и информационных технологий
институт
Кафедра «Информатика»
кафедра

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ

Лабораторная работа №6. Машины Тьюринга

Тема

 Преподаватель
 Д. В. Личаргин

 подпись, дата
 инициалы, фамилия

 Студент
 КИ19-16/16 031939175
 А. Д. Непомнящий

 номер группы, зачетной книжки
 подпись, дата
 инициалы, фамилия

1 Цель работы

Исследование свойств универсальных вычислительных машин на примере абстрактной машины Тьюринга.

2 Задачи

Задачи работы состоят в следующем.

- 1. Ознакомиться с теоретическими сведениями по машинам Тьюринга (далее МТ).
- 2. Используя изученные механизмы, разработать для первого заданного языка в системе JFLAP согласно постановке задачи соответствующую МТ. В случае невозможности создания МТ это должно доказываться формально.
- 3. Используя изученные механизмы, разработать МТ, вычисляющую значение функции для заданных аргументов Невозможность доказывается формально.

Первая МТ предназначена для распознавания языка $L = \{w : |w| - \text{нечетное} \$ число $\}.$

Вторая МТ предназначена для вычисления функции $f(x, y) = x ^ y$, где $^ -$ это операция возведения в степень, а $y \ge 0$.

3 Ход работы

3.1 Машина Тьюринга для распознавания языка

В соответствии с заданием была разработана машина Тьюринга. Машина Тьюринга представлена на рисунке 1, распознавание ею некоторых строчек — на рисунке 2, пошаговое распознавание одной из строчек — на рисунках 3, 4, 5 и 6.

Рисунок 1 — Машина Тьюринга для распознавания языка L

Input	Result	
1	Accept	
11	Reject	
111	Accept	
1111	Reject	
11111	Accept	

Рисунок 2 – Обработка некоторых строк

Рисунок 3 – Пошаговое распознавание строки, шаг 1

Рисунок 4 – Пошаговое распознавание строки, шаг 2

Рисунок 5 – Пошаговое распознавание строки, шаг 3

Рисунок 6 – Пошаговое распознавание строки, шаг 4

3.2 Машина Тьюринга для вычисления функции

В соответствии с заданием была разработана машина Тьюринга. Машина Тьюринга представлена на рисунке 7, обработка ею некоторых строчек — на рисунке 8, вспомогательная машина POW — на рисунке 9.

Рисунок 7 – Машина Тьюринга для вычисления функции f

Output	Result
1	Accept
1	Accept
11	Accept
@11	Accept
111111111	Accept
	@11

Рисунок 8 – Обработка некоторых строк

Рисунок 6 — Вспомогательная машина Тьюринга POW

4 Вывод

В ходе данной лабораторной работы были исследованы свойства универсальных вычислительных машин на примере абстрактной машины Тьюринга, получен опыт построения машин Тьюринга для распознавания языка и вычисления функций.