					1)		~J
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} +^{lphaeta}$	$\sigma_1^{\#_2} +^{lpha eta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

Massive particle

Pole residue:

Polarisations:

Square mass:

Spin: Parity: $-\frac{t_1}{2r_1} > 0$

Odd

density
Lagrangian

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

 $\frac{1}{2}t_1\partial^{\alpha}f^{\lambda}$

 $t_1 \, \partial_\kappa f^\lambda$

(No massless particles)

	$\sigma_{2^{+}lphaeta}^{\sharp1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}\dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

 $\alpha^{\alpha} \partial^{\lambda} \omega^{\theta \kappa}$

 $_{\kappa}^{\kappa} + 2 r_{1} \partial_{\theta} \omega_{\lambda}^{\alpha}$

Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$

Ī	$\sigma_{2}^{\#1}$	αβ	$ au_{2}^{\#1}$	αβ	$\sigma_2^{\#1}$	αβχ			$\omega_0^{\sharp 1}$	$f_{0^{+}}^{\#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\#}$
$\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)}$	$\frac{1}{(t_1)^2 t_1}$	$-\frac{2i\sqrt{1+2k^2}}{(1+2k^2)}$		0		$\omega_{0}^{\sharp 1}$ †		-t ₁	$i \sqrt{2} kt_1$	0	0
$+^{lphaeta}$	2 i √2		$4k^2$		0		$f_{0^{+}}^{#1}\dagger$	- [$\sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
αβχ	$(1+2k^2)$	$)^2 t_1$	$(1+2k^2)$	$(t_1)^2 t_1$	2		$f_{0^{+}}^{#2}$ †		0	0	0	0
αρχ	0		0		$\frac{1}{2k^2r_1}$	+t1	$\omega_0^{\sharp 1}$ †		0	0	0	$-t_1$
0	0	0	kt_1	0	0	0						

$f_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$i k t_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$
$f_{1}^{\#1}_{+}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\!$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{+}\alpha\beta$	_ <u>t1</u> _2	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_1^{\#1} +^\alpha$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} +^{\alpha}$

Source constraints	
SO(3) irreps	#
$\tau_{0+}^{#2} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	(1)
$\tau_{1}^{\#1}{}^{\alpha} == 0$	(1)
$\tau_{1+}^{\#1}{}^{\alpha\beta} + ik \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	(1)
$\tau_{2+}^{\#1\alpha\beta} - 2\bar{\imath}k\sigma_{2+}^{\#1\alpha\beta} == 0$	5
Total #:	1

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$							
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$	0				
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$				

	$\sigma_0^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$