دستور کار ۶: ارتباط سریال USART

میکروهای AVR پروتکلهای ارتباط سریال مختلفی را پشتیبانی میکنند. هدف از این آزمایش آشنایی با IVSART و استفاده از آن میباشد. در این پروتکل ارتباطی، دو میکروکنترلر یا میکروکنترلر و PC میتوانند تنها با استفاده از ۳ خط ارتباطی به تبادل داده بپردازند. یکی از این خطوط برای ارسال، خط دوم برای دریافت و خط بعدی زمین مشترک میباشد.

USART ارتباط میکروکنترلر و PC با استفاده از -Y-1

در این بخش از آزمایش، داده توسط کامپیوتر به میکروکنترلر ارسال شده و سپس بر روی LCD نمایش داده خواهد شد.

یک پروژه جدید در نرمافزار ایجاد نموده و برنامه زیر را به آن اضافه نمایید. فرکانس کاری میکروکنترلر را LCD تنظیم نموده و از پورت A برای LCD استفاده نمایید.

```
#include <mega32.h>
#include <delay.h>
#include <alcd.h>
#include <stdio.h>
char Buf[16];
char Din,Count=0;
void main(void) {
  UCSRA=0x00;
  UCSRB=0x10;
  UCSRC=0xA6;
  UBRRH=0x00;
  UBRRL=0x0C;
  lcd init(16);
  lcd clear();
  lcd puts("No Data");
  delay ms(2000);
  while (1){
    Din = getchar();
    lcd clear();
    lcd puts("Input = ");
    lcd putchar(Din);
    lcd gotoxy(0,1);
```

```
sprintf(Buf,"Count = %d",Count);
lcd_puts(Buf);
Count++;}}
```

در برنامه فوق تنطیمات USART برای نرخ ارسال(Baud Rate) ۴۸۰۰، طول داده ۸ بیت، پریتی از نوع زوج و تعداد بیت Stop برابر یک قرار داده شده است. در شبیهسازی از بلوک Stop برابر یک قرار داده شده است. در شبیهسازی از بلوک Virtual Terminal استفاده نموده و بر روی برد TXD بلوک Virtual Terminal را به RXD میکروکنترلر متصل نمایید. سپس برنامه را اجرا نموده و بر روی برد بورد پیاده سازی نمایید.

نحوه اتصال Virtual Terminal به میکروکنترلر در محیط Proteus.

ضمیمه: رجیسترهای ارتباط USART

- St Start bit, always low.
- (n) Data bits (0 to 8).
- P Parity bit. Can be odd or even.
- Sp Stop bit, always high.
- IDLE No transfers on the communication line (RxD or TxD). An IDLE line must be high.

6 5 2 1 0 Bit 7 3 UDRE DOR UCSRA RXC TXC FE PE U2X MPCM Read/Write R/W R/W Initial Value 0 0 0 Bit 6 5 4 3 2 0 RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8 UGSRB Read/Write R/W RW RW R/W R/W RW R/W R Initial Value 0 0 0 0 0 0 تنظيمات تعداد فعالساز فعالساز ىت كاراكتر دريافت ارسال Bit 4 3 2 0 CPOL URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCSRC Read/Write R/W R/W R/W R/W RW RW R/W R/W Initial Value 0 0 تعيين تعداد تعيين نوع بيت Stop ارتباط

شکل ۱: فرمت داده در ارتباط USART.

شكل ۲: تنظيمات ارتباط USART توسط رجيسترهاي UCSRB، UCSRA و UCSRC.

Bit	7	6	5	4	3	2	1	0	
	URSEL	UMSEL	UPM1	UPM0	USBS	UCSZ1	UCSZ0	UCPOL	UCSRC
Read/Write	R/W	R/W	R/W	R/W	RW	R/W	R/W	R/W	
Initial Value	1	0	0	0	0	1	1	0	

UMSEL	Mode		
0	Asynchronous Operation		
1	Synchronous Operation		

UPM1	M1 UPM0 Parity Mode				
0	0	Disabled			
0	1	Reserved			
1	0	Enabled, Even Parity			
1	1	Enabled, Odd Parity			

USBS	Stop Bit(s)	
0	1-bit	
1	2-bit	

شكل الف ٣: جداول تنظيم مود(سنكرون يا آسنكرون)، تنظيم وضعيت بيت پريتي و تنظيم تعداد بيت Stop در ارتباط USART.

Bit	15	14	13	12	11	10	9	8	
	URSEL	21	121	322	3	UBRE	R[11:8]		UBRRH
				UBRI	R[7:0]				UBRRL
	7	6	5	4	3	2	1	0	Tanana Balanca
Read/Write	R/W	R	R	R	R/W	R/W	R/W	R/W	
	R/W	RM	RM	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

شكل ۴: رجيسترهاي UBRRH و UBRRL براي تنظيم نرخ ارسال و دريافت(BaudRate).

Operating Mode	Equation for Calculating Baud Rate ⁽¹⁾	Equation for Calculating UBRR Value		
Asynchronous Normal Mode (U2X = 0)	$BAUD = \frac{f_{OSC}}{16(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{16BAUD} - 1$		
Asynchronous Double Speed Mode (U2X = 1)	$BAUD = \frac{f_{OSC}}{8(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{8BAUD} - 1$		
Synchronous Master Mode	$BAUD = \frac{f_{OSC}}{2(UBRR + 1)}$	$UBRR = \frac{f_{OSC}}{2BAUD} - 1$		

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps).

BAUD Baud rate (in bits per second, bps)

f_{OSC} System Oscillator clock frequency

UBRR Contents of the UBRRH and UBRRL Registers, (0 - 4095)

$$Error[\%] = \left(\frac{BaudRate_{Closest Match}}{BaudRate} - 1\right) \bullet 100\%$$

شکل ۵: نحوه محاسبه عدد رجیسترهای UBRR با استفاده از نرخ ارسال و دریافت و فرمول محاسبه مقدار خطا.

	f _{osc} = 1.0000 MHz							
Baud Rate	U2X	(= 0	U2X = 1					
(bps)	UBRR	Error	UBRR	Error				
2400	25	0.2%	51	0.2%				
4800	12	0.2%	25	0.2%				
9600	6	-7.0%	12	0.2%				
14.4k	3	8.5%	8	-3.5%				
19.2k	2	8.5%	6	-7.0%				
28.8k	1	8.5%	3	8.5%				
38.4k	1	-18.6%	2	8.5%				
57.6k	0	8.5%	1	8.5%				

شکل ۶: نمونه مقادیر رجیسترهای UBRR برای فرکانس کاری 1MHz میکرو.