Jashore University of Science and Technology

Bachelor of Science Electrical and Electronic Engineering

1st semester of 1st year

Course no.: PHY 1101 Course title: Physics Class test no.: 02 Date: April 05, 2023

Roll:	

1.	Find	the	energy	of	an	x-ray	photon	which	can	impart	a	$\max \mathrm{imum}$	energy	of	50	keV	to	an
elec	ctron.																	[6]

2. Which of the following wave functions cannot be solution of Schrödinger equation for all values of x? [4]

(a)
$$\psi = A \cos x$$

(e)
$$\psi = Ae^{-x}$$

(b)
$$\psi = A \tan x$$

(f)
$$\Psi = Ae^{-i(Et - xp_x)/\hbar}$$

(c)
$$\psi = A(\cos x) \cdot (\tan x)$$

(g)
$$\psi = Axe^{-x^2}$$

(d)
$$\psi = A x \sin(x)$$

(h)
$$\psi = A \ln(1 + 5x)$$

3. A wave function has the value $\psi(x) = A \sin x$ in the region $0 < x < \pi$ and zero elsewhere. (a) Normalize the wave function. (b) Find the probability that the particle is between x = 0 and $x = \pi/2$.