Universidade Federal de Goiás Curso de Sistemas de Informação Introdução à Programação- 2022-2 Prova P4

Prof. Thierson Couto Rosa

Sumário

1	Imprimindo as Diagonais - 3,0 pontos	2
2	Matriz Identidade - 3,0 pontos	3
3	Matriz Simétrica Esquisita - 4,0 pontos	4

1 Imprimindo as Diagonais - 3,0 pontos

Escreva um programa para ler matrizes quadradas e imprimir a diagonal principal e a diagonal secundária de cada matriz, ambas de baixo para cima nas matrizes.

Entrada

A primeira linha da entrada contém um número inteiro n que corresponde ao número casos de teste. A seguir há n casos de teste. Cada um é formado por uma linha contendo um número inteiro d, $1 \le d \le 40$ que corresponde à dimensão de uma matriz quadrada. A seguir há d linhas, cada uma com d números inteiros separados entre si por um espaço.

Saída

A saída é composta por duas linhas. A primeira linha contém a sequência de números inteiros que estão na diagonal principal, listados de baixo para cima e separados entre si por um espaço. A segunda linha contém a sequência de números inteiros que formam a diagonal secundária, também listados de baixo para cima e separados entre si por um espaço.

Exemplo

Ent	rada	a		
3				
3 2 2 1				
2 1	L			
1 2	2			
1 2 4 5	2 3			
4 5	5 6			
7 8				
5				
1 2	2 3	4	5	
6 7	7 8	9	10	
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25
Saío				
2 2	2			
1 1 9 5	L			
9 5	5 1			
7 5	5 3			
25	19	13	7	1
21	27	13	9	5

2 Matriz Identidade - 3,0 pontos

Escreva um programa para ler matrizes quadradas e verificar se elas são matrizes identidade ou não. Uma matriz quadrada é denominada matriz identidade se: a) a sua diagonal principal contém apenas o número 1 e, b) todos os elementos da matriz que não estão na diagonal principal são iguais a zero.

Entrada

A primeira linha da entrada contém um número inteiro n que corresponde ao número casos de teste. A seguir há n casos de teste. Cada um é formado por uma linha contendo um número inteiro d, $1 \le d \le 40$ que corresponde à dimensão de uma matriz quadrada. A seguir há d linhas, cada uma com d números inteiros separados entre si por um espaço.

Saída

A saída é composta por uma linha que pode conter uma das seguintes frases: "Nao identidade"ou "Identidade".

Exemplo

Entrada						
3						
1						
1						
3						
1	0	0				
0	1	0				
0	0	1				
5						
1	0	0	0	0		
0	4	0	0	0		
0	0	0	0	0		
0	0	0	0	0		
0	0	0	0	0		
Sa	Saída					
Id	Identidade					
Id	Identidade					
Ná	Nao identidade					

3 Matriz Simétrica Esquisita - 4,0 pontos

Uma matriz quadrada $A = (a_{i,j})_{n \times n}$ é denominada *matriz simétrica* se e somente se $a_{i,j} = a_{j,i}$, para todo i, j no intervalo [1,n]. Isso significa que um elemento da matriz é igual ao seu elemento simétrico em relação à diagonal principal da matriz.

Antônio, que gosta de Matemática e de programar usando matrizes fez rapidamente um programa para verificar se uma matriz é simétrica. Entretanto, ele ficou pensando em como seria um programa capaz de verificar se os elementos de uma matriz quadrada são idênticos aos seus elementos simétricos em relação à diagonal secundária da matriz. Na falta de um nome para denominar uma matriz quadrada com essa característica, Antônio a denominou *Matriz Simétrica Esquisita*.

Escreva um programa para ler uma matriz quadrada e indicar se ela é ou não Simétrica Esquisita.

Entrada

A primeira linha da entrada contém o número de casos de teste. A entrada de cada caso de teste é composta por:

- Uma linha contendo um número inteiro $n(1 \le n \le 40)$ correspondendo às dimensões da matriz quadrada.
- Outras n linhas, cada uma contendo n números inteiros separados entre si por um espaço.

Saída

Para cada caso de teste deve ser emitida a expressão: **ESQUISITA** se a matriz for simétrica, ou a expressão **NAO ESQUISITA**, em caso contrário.

Exemplo

Eı	Entrada				
2					
4					
3	4	1	2		
9	7	6	1		
3	5	7	4		
4	3	9	3		
3					
1	2	3			
2	4	5			
3	3	1			
Saída					
ESQUISITA					
NZ	NAO ESQUISITA				