Изпит по "Дискретни структури" за КН, първи поток, 03. 02. 2016 г., СУ, ФМИ

Име: _____ ФН: ____ Група: ____

Задача	1	2	3	4	Общо
получени точки					
максимум точки	20	30	30	30	110

Забележка: За отлична оценка са достатъчни 100 точки!

Задача 1. Може ли матрица 2016×2016 да се попълни с числата +1, -1 и 0 така, че всички сборове по редове, по стълбове и по двата диагонала да са различни?

Задача 2. Числовата редица $(a_n)_{n=1}^{\infty}$ удовлетворява уравнението $a_{n+2}=56$ a_n-a_{n+1} , $\forall n\!\geq\!1$.

- а) Намерете формулата за общия член (с неопределени коефициенти). (15 точки)
- б) Ако членовете на редицата са положителни числа, докажете, че тя е геометрична прогресия и намерете нейното частно. (15 точки)

Задача 3. Даден е ориентиран граф G с шест върха v_1 , v_2 , v_3 , v_4 , v_5 , v_6 . Между всеки два различни върха v_i и v_j (i < j) има ребро от v_i към v_j с тегло $(i-j)^2$.

- а) Постройте дървото на най-късите пътища в G от върха v_1 . Кой алгоритъм прилагате? Начертайте дървото и опишете реда на включване на ребрата. (10 точки)
- б) Хамилтонов граф ли е G ? (Отговорът да се обоснове!) (10 точки)
- в) Планарен граф ли е G? (Отговорът да се обоснове!) (10 точки)

Задача 4. За двоичната функция f(x, y, z), определена с таблицата по-долу, намерете:

- а) съвършената дизюнктивна нормална форма; (5 точки)
- б) минималната дизюнктивна нормална форма; (15 точки)
- в) полинома на Жегалкин. (10 точки)

БОНУС: Шеферова функция ли е f?

(15 точки)

\boldsymbol{x}	y	z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

РЕШЕНИЯ

Задача 1. Матрицата не може да се попълни по описания начин, защото редовете, стълбовете и диагоналите са общо 2. 2016 + 2 = 4034 на брой, а възможните стойности на сборовете са от -2016 до +2016, т.е. 4033 броя. Тъй като 4034 > 4033, от принципа на Дирихле следва, че поне два от сборовете ще бъдат равни.

Задача 2. Дадената числова редица е определена с хомогенно линейно-рекурентно уравнение. Съответното характеристично уравнение е $x^{n+2}=56$ x^n-x^{n+1} , което е равносилно (при $x\neq 0$) на квадратното уравнение $x^2+x-56=0$ с корени $x_1=7$ и $x_2=-8$. Оттук получаваме формулата за общия член: $a_n=C_1$. 7^n+C_2 . $(-8)^n$.

От |-8|>|7| следва, че ако $C_2>0$, то $a_n<0$ за всички достатъчно големи нечетни n; ако пък $C_2<0$, то $a_n<0$ за всички достатъчно големи четни n. Следователно, ако всички членове на редицата са положителни числа, то $C_2=0$ (и $C_1>0$); тогава $a_n=C_1\cdot 7^n$, т.е. редицата е геометрична прогресия с частно 7.

- Задача 3. а) Дървото на най-късите пътища в G от върха v_1 съдържа единствен клон пътя $v_1 \longrightarrow v_2 \longrightarrow v_3 \longrightarrow v_4 \longrightarrow v_5 \longrightarrow v_6$, образуван от всички ребра с тегло 1. Дървото се получава по алгоритъма на Дейкстра, а ребрата се включват в следния ред: $(v_1\ ,\ v_2)\ ,\ (v_2\ ,\ v_3)\ ,\ (v_3\ ,\ v_4)\ ,\ (v_4\ ,\ v_5)\ ,\ (v_5\ ,\ v_6)\ .$
- б) По условие всички ребра сочат от връх с по-малък номер към връх с по-голям номер. Затова графът G не съдържа никакъв цикъл, в това число и хамилтонов цикъл. Следователно G не е хамилтонов граф.
 - в) Тъй като $G \equiv K_6 \supset K_5$, то G не е планарен граф.

Задача 4. а) От таблицата на f съставяме съвършената дизюнктивна нормална форма: $f = \overline{x} \ \overline{y} \ \overline{z} \lor \overline{x} \ \overline{y} \ z \lor \overline{x} \ y \ z \lor x \ \overline{y} \ z \lor x \ \overline{y} \ \overline{z}$.

в) За да получим полинома на Жегалкин, преобразуваме дизюнтивната нормална форма: първо заместваме включващата дизюнкция с изключваща (понеже тази дизюнктивна форма е съвършена), после заместваме отрицанието със събиране с 1 (истина) и разкриваме скобите:

$$f = (x+1)(y+1)(z+1) + (x+1)(y+1)z + (x+1)yz + x(y+1)z + xy(z+1) = xyz + xy + yz + xz + x + y + z + 1 + xyz + xz + yz + z + xyz + xz + xyz + xy.$$

След като унищожим еднаквите събираеми по двойки, получаваме полинома на Жегалкин:

$$f = xyz + xz + yz + x + y + 1.$$

Бонус: Функцията f е шеферова, защото сама образува пълно множество. За да докажем това, ще изразим чрез f отрицанието и конюнкцията (за които знаем, че образуват пълно множество):

$$\overline{x} \ = \ f\left(x\,,\,x\,,\,x\right); \qquad \quad x\,y \ = \ \overline{f\left(x\,,\,x\,,\,y\right)} \ = \ f\left(\,f\left(x\,,\,x\,,\,y\right) \,\,,\,\, f\left(x\,,\,x\,,\,y\right) \,\,,\,\, f\left(x\,,\,x\,,\,y\right) \,\,\right).$$

Тези тъждества се проверяват по табличния метод или чрез полинома на Жегалкин.

Твърдението, че f е шеферова функция, може да се докаже и с критерия на Пост.

б) Най-напред по алгоритьма на Куайн—Маккласки намираме простите импликанти на f (те са обозначени със звездички). След това решаваме задачата за минималното покритие, за да определим кои от тях са задължителни.

Таблица на истинност:

Импликанти (от ред 0):

Импликанти (от ред 1):

	x	y	Z	f
0:	0	0	0	1
1:	0	0	1	1
2:	0	1	0	0
3:	0	1	1	1
4:	1	0	0	0
5:	1	0	1	1
6:	1	1	0	1
7:	1	1	1	0

	x	y	Z	
0:	0	0	0	\rightarrow
1:	0	0	1	\rightarrow
3:	0	1	1	\rightarrow
5:	1	0	1	\rightarrow
6:	1	1	0	*

	\boldsymbol{x}	y	Z	
0, 1:	0	0		*
1, 3:	0		1	*
1, 5:	_	0	1	*

Таблица на простите импликанти:

	x	y	Z	0	1	3	5	6	
0, 1:	0	0	_	•	0				$\bar{x}\bar{y}$
1, 3:	0		1		0	•			$\bar{x}z$
1, 5:	_	0	1		0		•		$\bar{y}z$
6:	1	1	0					•	$xy\bar{z}$

Задължителни прости импликанти: $\bar{x}\bar{y}$, $\bar{x}z$, $\bar{y}z$, $xy\bar{z}$.

Минимална дизюнктивна нормална форма:

$$f = \bar{x}\bar{y} \vee \bar{x}z \vee \bar{y}z \vee xy\bar{z}.$$