#### Probabilistic Program Analysis

Matthew B. Dwyer

Department of Computer Science and Engineering University of Nebraska - Lincoln Lincoln, Nebraska USA

August 2015



### Program Analysis in a nutshell





### Program Analysis in a nutshell







### Imagine a normally distributed integer





#### A trivial program

```
int abs(int x) {
   if (x<0)
     return -x;
   else
     return x;
}</pre>
```



### Here is the output distribution







Let's think in terms of a very coarse division of the input





Input values  $x \ge 0$  appear on the output unchanged.





Input values  $x \geq 0$  appear on the output unchanged. Their mass in the input distribution propagates to the output.





Input values x < 0 are transformed.





Input values x<0 are transformed. Their mass in the input distribution is shifted to -x



Input values x < 0 are transformed. Their mass in the input distribution is shifted to -x





Input values x < 0 are transformed. Their mass in the input distribution is shifted to -x and accumulates in the output distribution





Input values x < 0 are transformed. Their mass in the input distribution is shifted to -x and accumulates in the output distribution



### Here is the output distribution





### Bounding distribution



#### Bounding distribution







How many elements are in the domain? 3 What is the mass of each element?  $\leq 0.21$   $Pr([-1,1]) \leq 0.63 = 3*0.21$ 







How many elements are in the domain?





How many elements are in the domain? 3





How many elements are in the domain? 3 What is the mass of each element?





How many elements are in the domain? 3 What is the mass of each element?  $\leq 0.21$ 





How many elements are in the domain? 3 What is the mass of each element?  $\leq 0.21$   $Pr([-1,1]) \leq 0.63 = 3*0.21$ 





How many elements are in the domain? 5 What is the mass of each element?  $\leq 0.21, \leq 0.185, \leq 0.065$   $Pr([0,5]) \leq 0.92 = 2*0.21 + 2*0.185 + 2*0.065$ 







How many elements are in the domain?





How many elements are in the domain? 5





How many elements are in the domain? 5 What is the mass of each element?





How many elements are in the domain? 5 What is the mass of each element?  $\leq 0.21, \leq 0.185, \leq 0.065$ 





How many elements are in the domain? 5 What is the mass of each element?  $\leq 0.21, \leq 0.185, \leq 0.065$   $Pr([0,5]) \leq 0.92 = 2*0.21 + 2*0.185 + 2*0.065$ 

