Trabajo Práctico Nº 7: Ejercicios de Repaso.

Ejercicio 1.

Para cada una de las siguientes funciones:

- i. Determinar el dominio de la función.
- ii. Estudiar la continuidad: indicar el conjunto donde la función es continua, señalar y clasificar sus discontinuidades si las hay.
- iii. Estudiar la existencia de asíntotas verticales y horizontales.
- iv. Determinar el conjunto donde es derivable.

(a)
$$f(x) = 4x^3 + 1$$
.

(i) Dominio:

 $Dom_f = \mathbb{R}$.

(ii) Continuidad:

Al ser una función polinómica, f(x) es continua en todo su dominio. Por lo tanto, f(x) es continua en \mathbb{R} .

(iii) Asíntotas verticales y horizontales:

$$\nexists \lim_{x \to a} f(x) = \pm \infty, \forall a \in \mathbb{R}.$$

Por lo tanto, f(x) no tiene asíntotas verticales.

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 4x^3 + 1 = +\infty.$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 4x^3 + 1 = -\infty.$$

Por lo tanto, f(x) no tiene asíntotas horizontales.

(iv) Derivabilidad:

$$\exists \ \mathbf{f}^{'}(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \, \forall \ x_0 \in \mathbb{R}.$$

Por lo tanto, f(x) es derivable en \mathbb{R} .

(b)
$$f(x) = \frac{x^2 - 1}{x - 1}$$
.

(i) Dominio:

$$x - 1 = 0$$

 $x = 1$.

$$Dom_f = \mathbb{R} - \{1\}.$$

(ii) Continuidad:

f (x) es discontinua evitable en x= 1, ya que $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x)$ y, entonces, $\exists \lim_{x\to 1} f(x)$. Por lo tanto, f (x) es continua en \mathbb{R} - {1}.

(iii) Asíntotas verticales y horizontales:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^{2} - 1}{x - 1} = \lim_{x \to 1^{-}} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1^{-}} x + 1 = 1 + 1 = 2.$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} \frac{(x + 1)(x - 1)}{x - 1} = \lim_{x \to 1^+} x + 1 = 1 + 1 = 2.$$

Por lo tanto, f(x) no tiene una asíntota vertical en x=0.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x^2 - 1}{x - 1} = -\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 - 1}{x - 1} = +\infty.$$

Por lo tanto, f(x) no tiene asíntotas horizontales.

(iv) Derivabilidad:

$$\exists \ f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \ \forall \ x_0 \in \mathbb{R} - \{1\}.$$

Por lo tanto, f(x) es derivable en \mathbb{R} - $\{1\}$.

(c)
$$f(x) = \frac{x}{|x|}$$
.

(i) Dominio:

$$|x|=0$$

$$x=0$$
.

$$Dom_f = \mathbb{R} - \{0\}.$$

(ii) Continuidad:

f (x) es discontinua inevitable en x= 0, ya que $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$ y, entonces, $\nexists \lim_{x\to 0} f(x)$. Por lo tanto, f (x) es continua en \mathbb{R} - $\{0\}$.

(iii) Asíntotas verticales y horizontales:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{x}{|x|} = \lim_{x \to 0^{-}} \frac{x}{-x} = \lim_{x \to 0^{-}} -1 = -1.$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x}{|x|} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1.$$

Por lo tanto, f(x) no tiene una asíntota vertical en x=0.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x}{|x|} = -1.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{|x|} = 1.$$

Por lo tanto, f(x) no tiene asíntotas horizontales.

(iv) Derivabilidad:

$$\exists \ \mathbf{f}^{\,\prime}(x_0) = \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h}, \, \forall \ x_0 \in \mathbb{R} - \{0\}.$$

Por lo tanto, f(x) es derivable en \mathbb{R} - $\{0\}$.

(d)
$$f(x) = \frac{x-1}{x^2 - 3x + 2}$$
.

(i) Dominio:

$$x^2 - 3x + 2 = 0.$$

$$x_{1}, x_{2} = \frac{-(-3)\pm\sqrt{(-3)^{2}-4*1*2}}{2*1}$$

$$x_{1}, x_{2} = \frac{3\pm\sqrt{9-8}}{2}$$

$$x_{1}, x_{2} = \frac{3\pm\sqrt{1}}{2}$$

$$x_{1}, x_{2} = \frac{3\pm1}{2}$$

$$x_{1} = \frac{3+1}{2} = \frac{4}{2} = 2.$$

$$x_{2} = \frac{3-1}{2} = \frac{2}{2} = 1.$$

$$x_1, x_2 = \frac{\frac{3 \pm \sqrt{3}}{2}}{\frac{2}{3 \pm \sqrt{3}}}$$

$$x_1, x_2 = \frac{3 \pm \sqrt{1}}{2}$$

$$x_1, x_2 = \frac{3\pm 1}{2}$$

$$x_1 = \frac{3+1}{2} = \frac{4}{2} = 2$$

$$x_2 = \frac{3-1}{2} = \frac{2}{2} = 1$$

$$Dom_f = \mathbb{R} - \{1, 2\}.$$

(ii) Continuidad:

f (x) es discontinua evitable en x= 1, ya que $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x)$ y, entonces, $\exists \lim_{x \to 1} f(x)$. f (x) es discontinua inevitable en x= 2, ya que $\lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x)$ y, entonces, $\nexists \lim_{x \to 2} f(x)$. Por lo tanto, f (x) es continua en \mathbb{R} - {2}.

(iii) Asíntotas verticales y horizontales:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x-1}{x^{2} - 3x + 2} = \lim_{x \to 1^{-}} \frac{x-1}{(x-1)(x-2)} = \lim_{x \to 1^{-}} \frac{1}{x-2} = \frac{1}{1-2} = \frac{1}{-1} = -1.$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x-1}{x^2 - 3x + 2} = \lim_{x \to 1^+} \frac{x-1}{(x-1)(x-2)} = \lim_{x \to 1^+} \frac{1}{x-2} = \frac{1}{1-2} = \frac{1}{-1} = -1.$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} \frac{x-1}{x^{2} - 3x + 2} = \lim_{x \to 2^{-}} \frac{x-1}{(x-1)(x-2)} = \lim_{x \to 2^{-}} \frac{1}{x-2} = \frac{1}{2-2} = \frac{1}{0} = -\infty.$$

$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \frac{x-1}{x^2 - 3x + 2} = \lim_{x \to 2^+} \frac{x-1}{(x-1)(x-2)} = \lim_{x \to 2^+} \frac{1}{x-2} = \frac{1}{2-2} = \frac{1}{0} = +\infty.$$

Por lo tanto, f(x) tiene una asíntota vertical en x=2.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{x-1}{x^2 - 3x + 2} = 0.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x-1}{x^2 - 3x + 2} = 0.$$

Por lo tanto, f(x) tiene una asíntota horizontal en y=0.

(iv) Derivabilidad:

$$\exists \ \mathbf{f}'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \ \forall \ x_0 \in \mathbb{R} - \{1, 2\}.$$

Por lo tanto, f (x) es derivable en \mathbb{R} - {1, 2}.

(e)
$$f(x) = \begin{cases} \frac{1}{x+2}, si \ x \ge -1\\ x^2 + 1, si \ x < -1 \end{cases}$$

(i) Dominio:

 $Dom_f = \mathbb{R}$.

(ii) Continuidad:

f (x) es discontinua inevitable en x= -1, ya que $\lim_{x \to -1^-} f(x) \neq \lim_{x \to -1^+} f(x)$ y, entonces, $\nexists \lim_{x \to -1} f(x)$. Por lo tanto, f (x) es continua en \mathbb{R} - {-1}.

(iii) Asíntotas verticales y horizontales:

$$\exists \lim_{x \to a} f(x) = \pm \infty, \forall a \in \mathbb{R}.$$

Por lo tanto, f(x) no tiene asíntotas verticales.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x^2 + 1 = +\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{1}{x+2} = 0.$$

Por lo tanto, f(x) tiene una asíntota horizontal en y=0.

(iv) Derivabilidad:

$$\exists \ \mathbf{f}^{'}(x_{0}) = \lim_{h \to 0} \frac{f(x_{0} + h) - f(x_{0})}{h}, \, \forall \ x_{0} \in \mathbb{R} - \{-1\}.$$

Por lo tanto, f(x) es derivable en \mathbb{R} - $\{-1\}$.

$$\mathbf{(f)} f(x) = \begin{cases} \frac{x}{e^x}, si \ x \ge 0\\ x^2, si \ x < 0 \end{cases}$$

(i) Dominio:

 $Dom_f = \mathbb{R}$.

(ii) Continuidad:

f (x) es continua en x= 0, ya que $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$ y, entonces, $\exists \lim_{x\to 0} f(x)$. Por lo tanto, f (x) es continua en \mathbb{R} .

(iii) Asíntotas verticales y horizontales:

$$\exists \lim_{x \to a} f(x) = \pm \infty, \forall a \in \mathbb{R}.$$

Por lo tanto, f(x) no tiene asíntotas verticales.

$$\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} x^2 = +\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{e^x} = 0.$$

Por lo tanto, f(x) tiene una asíntota horizontal en y=0.

(iv) Derivabilidad:

$$\exists \ \mathbf{f}'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}, \ \forall \ x_0 \in \mathbb{R}.$$

Por lo tanto, f(x) es derivable en \mathbb{R} .

Ejercicio 2.

Calcular los siguientes límites:

(a)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3}$$
.

$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \frac{3^2 - 3 - 6}{3 - 3} = \frac{9 - 3 - 6}{0} = (\frac{0}{0}).$$

$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 2)}{x - 3}$$

$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3} x + 2 = 3 + 2 = 5.$$
(*)

(*)
$$x_1, x_2 = \frac{-(-1)\pm\sqrt{(-1)^2-4*1(-6)}}{2*1}$$

 $x_1, x_2 = \frac{1\pm\sqrt{1+24}}{2}$
 $x_1, x_2 = \frac{1\pm\sqrt{25}}{2}$
 $x_1, x_2 = \frac{1\pm5}{2}$
 $x_1 = \frac{1+5}{2} = \frac{6}{2} = 3$.
 $x_2 = \frac{1-5}{2} = \frac{-4}{2} = -2$.

(b)
$$\lim_{x \to 2} (2-x)^2 \operatorname{sen} \frac{2}{2-x}$$
.

$$\lim_{x \to 2} (2 - x)^2 \operatorname{sen} \frac{2}{2 - x} = (2 - 2)^2 \operatorname{sen} \frac{2}{2 - 2} = 0^2 \operatorname{sen} \frac{2}{0} = 0 * \operatorname{sen} \frac{2}{0} = 0.$$

(c)
$$\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}}$$
.

$$\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}} = \frac{4*4 - 4^2}{2 - \sqrt{4}} = \frac{16 - 16}{2 - 2} = {0 \choose 0}.$$

$$\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}} = \lim_{x \to 4} \frac{4 - 2x}{\frac{-1}{2\sqrt{x}}}$$

$$\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}} = \lim_{x \to 4} -8\sqrt{x} + 4\sqrt{x^3} = -8\sqrt{4} + 4\sqrt{4^3} = -8*2 + 4\sqrt{64} = -16 + 4*8 = -16 + 32 = 16.$$

(d)
$$\lim_{x\to-\infty}\frac{1-x^4}{3x^3}$$
.

$$\lim_{x \to -\infty} \frac{1-x^4}{3x^3} = -\infty.$$

(e)
$$\lim_{x \to +\infty} \frac{\ln x}{x}$$
.

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0.$$

(f)
$$\lim_{x \to +\infty} \frac{x^2}{e^x}$$
.

$$\lim_{x \to +\infty} \frac{x^2}{e^x} = 0.$$

(g)
$$\lim_{x \to +\infty} \frac{5x^2 + x + 1}{2x^2 - x}$$
.

$$\lim_{x \to +\infty} \frac{5x^2 + x + 1}{2x^2 - x} = \left(\frac{\infty}{\infty}\right).$$

$$\lim_{x \to +\infty} \frac{5x^2 + x + 1}{2x^2 - x} = \frac{x^2 \left(5 + \frac{1}{x} + \frac{1}{x^2}\right)}{x^2 \left(2 - \frac{1}{x}\right)}$$

$$\lim_{x \to +\infty} \frac{5x^2 + x + 1}{2x^2 - x} = \frac{5 + \frac{1}{x} + \frac{1}{x^2}}{2 - \frac{1}{x}} = \frac{5 + 0 + 0}{2 - 0} = \frac{5}{2}.$$

(h)
$$\lim_{x \to -\infty} \frac{3x^6 + 1}{2x^4 - x^2}$$
.

$$\lim_{x \to -\infty} \frac{3x^6 + 1}{2x^4 - x^2} = +\infty.$$

Ejercicio 3.

Calcular las derivadas de las siguientes funciones utilizando reglas de derivación.

(a)
$$a(x) = \tan 2\pi x$$
.

$$a(x) = \frac{sen 2\pi x}{\cos 2\pi x}.$$

$$a'(x) = \frac{\cos 2\pi x * \cos 2\pi x - \sec 2\pi x (-\sec 2\pi x)}{(\cos 2\pi x)^2}$$

$$+(sen 2\pi x)^2$$

a'(x)=
$$\frac{(\cos 2\pi x)^2 + (\sec 2\pi x)^2}{(\cos 2\pi x)^2}$$
a'(x)=
$$\frac{2\pi}{(\cos 2\pi x)^2}$$

$$a'(x) = \frac{2\pi}{(\cos 2\pi x)^2}$$

$$a'(x) = (\sec 2\pi x)^2$$
.

(b)
$$b(x) = e^{x^2+1}$$
.

$$b'(c) = e^{x^2+1} * 2x$$

$$b'(c) = 2xe^{x^2+1}$$
.

(c)
$$c(x) = \frac{3x}{2x+10}$$
.

$$c'(x) = \frac{3(2x+10)-3x*2}{2x+10}$$

$$c'(x) = \frac{6x+30-6x}{(2x+1)^3}$$

$$c'(x) = \frac{3(2x+10)-3x*2}{(2x+10)^2}$$
$$c'(x) = \frac{6x+30-6x}{(2x+1)^2}$$
$$c'(x) = \frac{30}{(2x+10)^2}.$$

(d)
$$d(x) = ln(x^2 + 1)$$
.

$$d'(x) = \frac{1}{x^2 + 1} 2x$$
$$d'(x) = \frac{2x}{x^2 + 1}.$$

$$d'(x) = \frac{x^2 + 1}{x^2 + 1}$$

(e)
$$e(x) = \cos 2x \operatorname{sen} x$$
.

$$e'(x)$$
= -sen 2x * 2 sen x + cos 2x cos x

$$e'(x) = -2 \operatorname{sen} 2x \operatorname{sen} x + \cos 2x \cos x.$$

(f)
$$f(x) = \sqrt{1 + x^4} - 1$$
.

$$f'(x) = \frac{1}{2\sqrt{1+x^4}} 4x^3$$
$$f'(x) = \frac{2x^3}{\sqrt{1+x^4}}.$$

(g)
$$g(x) = \frac{e^{2x}}{x-1}$$
.

$$g'(x) = \frac{e^{2x} * 2(x-1) - e^{2x} * 1}{(x-1)^2}$$

$$g'(x) = \frac{2xe^{2x} - 2e^{2x} - e^{2x}}{(x-1)^2}$$

$$g'(x) = \frac{2xe^{2x} - 3e^{2x}}{(x-1)^2}$$

$$g'(x) = \frac{e^{2x}(2x-3)}{(x-1)^2}.$$

(h)
$$h(x) = \frac{\ln x + 2}{\sec x}$$
.

h'(x)=
$$\frac{\frac{1}{x+2}sen x-\ln(x+2)\cos x}{(sen x)^2}$$
.

Ejercicio 4.

Hallar las ecuaciones de las rectas tangentes de las siguientes funciones en los puntos indicados.

(a)
$$f(x) = e^x + 1 en x = 0$$
.

$$f'(x)=e^x$$
.

$$f(0)=e^0+1$$

$$f(0)=1+1$$

$$f(0)=2.$$

$$f'(0) = e^0$$

$$f'(0)=1$$
.

$$y - 2 = 1 (x - 0)$$

$$y - 2 = 1x$$

$$y - 2 = x$$

$$y = x + 2$$
.

(b)
$$g(x) = -x^4 + 2x + 1$$
 en $x = 2$.

$$g'(x) = -4x^3 + 2.$$

$$g(2) = -2^4 + 2 * 2 + 1$$

$$g(2) = -16 + 4 + 1$$

$$g(2) = -11.$$

$$g'(2) = -4 * 2^3 + 2$$

$$g'(2) = -4 * 8 + 2$$

$$g'(2) = -32 + 2$$

$$g'(2) = -30.$$

$$y - (-11) = -30 (x - 2)$$

$$y + 11 = -30x + 60$$

$$y = -30x + 60 - 11$$

$$y = -30x + 49$$
.

(c)
$$h(x) = 2 \ln(x^2 + 2) en x = 1$$
.

h'(x)=
$$2\frac{1}{x^2+1} * 2x$$

h'(x)= $\frac{4x}{x^2+1}$.

$$h'(x) = \frac{4x}{x^2+1}$$
.

$$h(1)=2 ln(1^2+2)$$

$$h(1)=2 ln(1+2)$$

$$h(1)=2 \ln 3$$
.

$$h'(1) = \frac{4*1}{12+1}$$

$$h'(1) = \frac{4*1}{1^2+1}$$
$$h'(1) = \frac{4}{1+1}$$

$$h'(1) = \frac{4}{2}$$

 $h'(1) = 2$.

$$y - 2 \ln 3 = 2 (x - 1)$$

$$y - 2 \ln 3 = 2x - 2$$

$$y = 2x - 2 + 2 \ln 3$$

$$y=2x+2 (ln 3 - 1).$$

(d)
$$i(x) = sen 2x en x = \pi$$
.

$$i'(x) = \cos 2x * 2$$

$$i'(x)=2\cos 2x$$
.

$$i(\pi) = \text{sen } 2\pi$$

$$i(\pi) = 0.$$

$$i'(\pi)=2\cos 2\pi$$

$$i'(\pi) = 2 * 1$$

$$i'(\pi)=2.$$

$$y - 0 = 2(x - \pi)$$

$$y = 2x - 2\pi$$
.

(e)
$$j(x) = \frac{x^2 + x - 2}{x}$$
 en $x = 1$.

$$j'(x) = \frac{(2x+1)x - (x^2+x-2)*1}{x^2}$$
$$j'(x) = \frac{2x^2+x-x^2-x+2}{x^2}$$
$$j'(x) = \frac{x^2+2}{x^2}.$$

$$j'(x) = \frac{2x^2 + x - x^2 - x + 2}{x^2}$$

$$j'(x) = \frac{x^2 + 2}{x^2}$$

$$j(1) = \frac{1^2 + 1 - 2}{1}$$

$$j(1) = \frac{1 + 1 - 2}{1}$$

$$j(1) = \frac{0}{1}$$

$$j(1) = 0.$$

$$j(1) = \frac{1+1-2}{1}$$

$$j(1) = \frac{0}{1}$$

$$j(1) = 0$$

$$j'(1) = \frac{1^2 + 2}{1^2}$$

$$j'(1) = \frac{1 + 2}{1}$$

$$j'(1) = \frac{3}{1}$$

$$j'(1) = 3.$$

$$j'(1) = \frac{1+2}{1}$$

$$j'(1) = \frac{3}{1}$$

$$j'(1)=3$$

$$y - 0 = 3 (x - 1)$$

 $y = 3x - 3$.

$$y = 3x - 3$$
.

Juan Menduiña

Ejercicio 5.

Graficar las siguientes funciones a trozos. ¿Para qué valores de x las funciones no son derivables?

(a)
$$a(x) = |x|$$
.

La función a (x) no es derivable para x=0.

(b)
$$b(x) = \begin{cases} x - 2, si \ x \le 2 \\ 3x - 3, si \ x > 2 \end{cases}$$

La función b(x) no es derivable para x=2.

(c)
$$c(x) = \begin{cases} x^2, si \ x \le 0 \\ x + 1, si \ x > 0 \end{cases}$$

La función c(x) no es derivable para x = 0.

(d)
$$d(x) = \begin{cases} e^x + 1, si \ x \le -1 \\ \frac{1}{x+2}, si \ x > -1 \end{cases}$$

La función d (x) no es derivable para x=-1.

Ejercicio 6.

Realizar el estudio de las siguientes funciones y graficar.

(a)
$$f(x) = x^3 - 3x$$
.

(1) <u>Determinar el dominio de la función:</u>

$$Dom_f = \mathbb{R}$$
.

(2) <u>Determinar el conjunto donde la función es continua</u>. <u>Donde sea discontinua</u>, <u>clasificar sus discontinuidades:</u>

Las funciones polinómicas son continuas en \mathbb{R} . Por lo tanto, f (x) es continua en \mathbb{R} .

(3) Determinar las asíntotas verticales y horizontales:

$$\exists \lim_{x \to a} f(x) = \pm \infty, \forall a \in \mathbb{R}.$$

Por lo tanto, f (x) no tiene asíntotas verticales.

$$\lim_{x\to-\infty} f(x) = \lim_{x\to-\infty} x^3 - 3x = -\infty.$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^3 - 3x = +\infty.$$

Por lo tanto, f(x) no tiene asíntotas horizontales.

(4) Calcular la primera derivada y determinar los puntos críticos de la función:

$$f'(x)=3x^2-3$$

 $f'(x)=3(x^2-1).$

$$\exists \ f'(x) \ \forall \ x \in Dom_f.$$

f'(x)= 0
3 (
$$x^2$$
 - 1)= 0
 x^2 - 1= $\frac{0}{3}$
 x^2 - 1= 0

$$x^2 = 1$$

$$\sqrt{x^2} = \sqrt{1}$$

$$|x|=1$$

$$x = \pm 1$$
.

Por lo tanto, f (x) tiene puntos críticos en x_1 = -1 y x_2 = 1.

(5) Determinar los intervalos de crecimiento / decrecimiento de la función:

Intervalo	(-∞, -1)	x= -1	(-1, 1)	x= 1	(1, +∞)
VP	-2		0		2
f'(x)	> 0	0	< 0	0	> 0
f(x)	creciente	máximo relativo	decreciente	mínimo relativo	creciente

Por lo tanto, los intervalos de crecimiento y decrecimiento de f(x) son $(-\infty, -1) \cup (1, +\infty)$ y (-1, 1), respectivamente.

(6) <u>Determinar los valores máximos y mínimos relativos:</u>

$$f(-1)=(-1)^3-3(-1)$$

$$f(-1) = -1 + 3$$

$$f(-1)=2.$$

$$f(1)=1^3-3*1$$

$$f(1)=1-3$$

$$f(1) = -2$$
.

Por lo tanto, f (x) tiene puntos máximo y mínimo relativos en (-1, 2) y (-1, -2), respectivamente.

(7) <u>Calcular la segunda derivada y determinar los puntos donde f'' (x)= 0 o donde f''</u> no existe:

$$f''(x) = 6x$$
.

$$\exists f^{\prime\prime}(x) \forall x \in Dom_f$$
.

$$f^{\prime\prime}(x)=0$$

$$6x = 0$$

$$x = \frac{0}{6}$$

$$x=0$$
.

Por lo tanto, f''(x) = 0 en x = 0.

(8) <u>Determinar los intervalos de concavidad:</u>

Intervalo	$(-\infty, 0)$	x= 0	$(0, +\infty)$
VP	-1		1
f''(x)	< 0	0	> 0
f(x)	cóncava hacia abajo	punto de inflexión	cóncava hacia arriba

Por lo tanto, los intervalos de concavidad hacia arriba y hacia abajo de f(x) son $(0, +\infty)$ y $(-\infty, 0)$, respectivamente.

(9) Determinar si la función presenta puntos de inflexión:

$$f(0)=0^3 - 3 * 0$$

 $f(0)=0 - 0$

$$f(0)=0.$$

Por lo tanto, f (x) tiene un punto de inflexión en (0, 0).

(10) <u>Realizar la representación gráfica de la función, utilizando los datos obtenidos en el análisis desarrollado en los puntos anteriores:</u>

(b)
$$h(x) = \frac{x^2 + 1}{x - 1}$$
.

(1) Determinar el dominio de la función:

$$x - 1 = 0$$

$$x=1$$
.

$$Dom_h = \mathbb{R} - \{1\}.$$

(2) <u>Determinar el conjunto donde la función es continua</u>. <u>Donde sea discontinua</u>, <u>clasificar sus discontinuidades:</u>

h (x) es discontinua inevitable en x= 0, ya que $\lim_{x \to 1^-} h(x) \neq \lim_{x \to 1^+} h(x)$ y, entonces, $\nexists \lim_{x \to 1} h(x)$. Por lo tanto, h (x) es continua en \mathbb{R} - $\{1\}$.

(3) Determinar las asíntotas verticales y horizontales:

$$\lim_{x \to 1^{-}} h(x) = \lim_{x \to 1^{-}} \frac{x^{2}+1}{x-1} = -\infty.$$

$$\lim_{x \to 1^{+}} h(x) = \lim_{x \to 1^{+}} \frac{x^{2}+1}{x-1} = +\infty.$$

Por lo tanto, h(x) tiene una asíntota vertical en x=1.

$$\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \frac{x^2 + 1}{x - 1} = +\infty.$$

$$\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{x^2 + 1}{x - 1} = -\infty.$$

Por lo tanto, h (x) no tiene asíntotas horizontales.

(4) Calcular la primera derivada y determinar los puntos críticos de la función:

h'(x)=
$$\frac{2x(x-1)-(x^2+1)}{(x-1)^2}$$

h'(x)= $\frac{2x^2-2x-x^2-1}{(x-1)^2}$
h'(x)= $\frac{x^2-2x-1}{(x-1)^2}$.

$$\exists \ h'(x) \ \forall \ x \in Dom_h.$$

$$h'(x)=0$$

$$\frac{x^2-2x-1}{(x-1)^2}=0$$

$$x^2-2x-1=0 (x-1)^2$$

$$x^2-2x-1=0.$$

$$x_{1}, x_{2} = \frac{-(-2)\pm\sqrt{(-2)^{2}-4*1(-1)}}{2*1}$$

$$x_{1}, x_{2} = \frac{2\pm\sqrt{4+4}}{2}$$

$$x_{1}, x_{2} = \frac{2\pm\sqrt{8}}{2}$$

$$x_{1}, x_{2} = \frac{2\pm\sqrt{4*2}}{2}$$

$$x_{1}, x_{2} = \frac{2\pm\sqrt{4}\sqrt{2}}{2}$$

$$x_{1}, x_{2} = \frac{2\pm2\sqrt{2}}{2}$$

$$x_{1}, x_{2} = \frac{2-2\sqrt{2}}{2} = \frac{2(1-\sqrt{2})}{2} = 1 - \sqrt{2}.$$

$$x_{2} = \frac{2+2\sqrt{2}}{2} = \frac{2(1+\sqrt{2})}{2} = 1 + \sqrt{2}.$$

Por lo tanto, h (x) tiene puntos críticos en $x_1 = 1 - \sqrt{2}$ y $x_2 = 1 + \sqrt{2}$.

(5) Determinar los intervalos de crecimiento / decrecimiento de la función:

Intervalo	$(-\infty, 1 - \sqrt{2})$	$x=1-\sqrt{2}$	$(1 - \sqrt{2}, 1)$	x= 1	$(1,1+\sqrt{2})$	$x=1+\sqrt{2}$	$(1+\sqrt{2},$ $+\infty)$
VP	-1		0		2		3
h'(x)	> 0	0	< 0		< 0	0	> 0
h (x)	creciente	máximo relativo	decreciente	asíntota vertical	decreciente	mínimo relativo	creciente

Por lo tanto, los intervalos de crecimiento y decrecimiento de f (x) son $(-\infty, 1 - \sqrt{2}) \cup (1 + \sqrt{2}, +\infty)$ y $(1 - \sqrt{2}, 1) \cup (1, 1 + \sqrt{2})$, respectivamente.

(6) Determinar los valores máximos y mínimos relativos:

$$\begin{split} h\;(1-\sqrt{2}) &= \frac{(1-\sqrt{2})^2+1}{1-\sqrt{2}-1}\\ h\;(1-\sqrt{2}) &= \frac{1-2\sqrt{2}+2+1}{-\sqrt{2}}\\ h\;(1-\sqrt{2}) &= \frac{2\sqrt{2}-4}{\sqrt{2}}\\ h\;(1-\sqrt{2}) &= \frac{2(\sqrt{2}-2)}{\sqrt{2}}\\ h\;(1-\sqrt{2}) &= \sqrt{2}\;(\sqrt{2}-2)\\ h\;(1-\sqrt{2}) &= \sqrt{2}\;(\sqrt{2}-2)\\ h\;(1-\sqrt{2}) &= 2\cdot2\sqrt{2}\\ h\;(1-\sqrt{2}) &= 2\cdot(1-\sqrt{2}). \end{split}$$

$$h\;(1+\sqrt{2}) &= \frac{(1+\sqrt{2})^2+1}{1+\sqrt{2}-1}\\ h\;(1+\sqrt{2}) &= \frac{1+2\sqrt{2}+2+1}{\sqrt{2}}\\ h\;(1+\sqrt{2}) &= \frac{2\sqrt{2}+4}{\sqrt{2}}\\ h\;(1+\sqrt{2}) &= \frac{2(\sqrt{2}+2)}{\sqrt{2}}\\ h\;(1+\sqrt{2}) &= \sqrt{2}\;(\sqrt{2}+2)\\ h\;(1+\sqrt{2}) &= 2+2\sqrt{2} \end{split}$$

 $h(1 + \sqrt{2}) = 2(1 + \sqrt{2}).$

Por lo tanto, h (x) tiene puntos máximo y mínimo relativos en $(1 - \sqrt{2}, 2(1 - \sqrt{2}))$ y $(1 + \sqrt{2}, 2(1 + \sqrt{2}))$, respectivamente.

(7) Calcular la segunda derivada y determinar los puntos donde f''(x)=0 o donde f'' no existe:

$$h''(x) = \frac{(2x-2)(x-1)^2 - (x^2 - 2x - 1)2(x - 1)}{(x-1)^4}$$

$$h''(x) = \frac{2(x-1)(x^2 - 2x + 1) - 2(x-1)(x^2 - 2x - 1)}{(x-1)^4}$$

$$h''(x) = \frac{2(x-1)[(x^2 - 2x + 1) - (x^2 - 2x - 1)]}{(x-1)^4}$$

$$h''(x) = \frac{2(x^2 - 2x + 1 - x^2 + 2x + 1)}{(x-1)^3}$$

$$h''(x) = \frac{2*2}{(x-1)^3}$$

$$h''(x) = \frac{4}{(x-1)^3}$$
.

$$\exists h^{\prime\prime}(x) \forall x \in Dom_h$$
.

$$h''(x)=0$$

$$\frac{4}{(x-1)^3}=0$$

$$4=0*(x-1)^3$$

$$4\neq 0.$$

Por lo tanto, h'' $(x) \neq 0 \forall x \in Dom_h$.

(8) Determinar los intervalos de concavidad:

Intervalo	(-∞, 1)	x= 1	(1, +∞)
VP	0		2
h''(x)	< 0	0	> 0
h (x)	cóncava hacia abajo	punto de inflexión	cóncava hacia arriba

Por lo tanto, los intervalos de concavidad hacia arriba y hacia abajo de h (x) son $(1, +\infty)$ y $(-\infty, 1)$, respectivamente.

(9) Determinar si la función presenta puntos de inflexión:

Por lo tanto, h (x) no tiene puntos de inflexión.

(10) <u>Realizar la representación gráfica de la función, utilizando los datos obtenidos en el análisis desarrollado en los puntos anteriores:</u>

(c)
$$g(x) = x^2 + \ln x$$
.

(1) <u>Determinar el dominio de la función:</u>

$$Dom_q = (0, +\infty).$$

(2) <u>Determinar el conjunto donde la función es continua</u>. <u>Donde sea discontinua</u>, <u>clasificar</u> sus discontinuidades:

Las funciones logarítmicas son continuas en sus dominios. Por lo tanto, g (x) es continua en $(0, +\infty)$.

(3) Determinar las asíntotas verticales y horizontales:

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} x^2 + \ln x = -\infty.$$

Por lo tanto, g(x) tiene una asíntota vertical en x=0.

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} x^2 + \ln x = -\infty.$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^2 + \ln x = +\infty.$$

Por lo tanto, g(x) no tiene asíntotas horizontales.

(4) Calcular la primera derivada y determinar los puntos críticos de la función:

$$g'(x)=2x+\frac{1}{x}$$

 $g'(x)=\frac{2x^2+1}{x}$.

$$\exists \ g^{'}(x) \ \forall \ x \in Dom_{g}.$$

$$g'(x) = 0$$

$$\frac{2x^2 + 1}{x} = 0$$

$$2x^2 + 1 = 0x$$

$$2x^2 + 1 = 0$$

$$2x^2 = -1$$

$$x^2 = \frac{-1}{2}$$

$$\nexists x \in \mathbb{R} / x^2 = \frac{-1}{2}$$

Por lo tanto, g (x) no tiene puntos críticos.

(5) Determinar los intervalos de crecimiento / decrecimiento de la función:

Intervalo	(0, +∞)
VP	1
g'(x)	> 0
g (x)	creciente

Por lo tanto, g(x) es crece en todo su dominio.

(6) Determinar los valores máximos y mínimos relativos:

Dado que decrece en todo su dominio, g (x) no tiene puntos máximos ni mínimos relativos.

(7) <u>Calcular la segunda derivada y determinar los puntos donde f</u> (x) = 0 o donde f(x) = 0 o donde f(

$$g''(x) = \frac{4x * x - (2x^2 + 1)}{x^2}$$
$$g''(x) = \frac{4x^2 - 2x^2 - 1}{x^2}$$
$$g''(x) = \frac{2x^2 - 1}{x^2}.$$

$$\exists \ g^{\prime\prime}(x) \ \forall \ x \in Dom_g.$$

$$g''(x)=0$$

$$\frac{2x^2-1}{x^2}=0$$

$$2x^2-1=0*x^2$$

$$2x^2-1=0$$

$$2x^2=1$$

$$x^2=\frac{1}{2}$$

$$\sqrt{x^2} = \sqrt{\frac{1}{2}}$$
$$|x| = \frac{1}{\sqrt{2}}$$
$$x = \frac{1}{\sqrt{2}}.$$

Por lo tanto, g''(x)= 0 en x= $\frac{1}{\sqrt{2}}$.

(8) Determinar los intervalos de concavidad:

Intervalo	$(0,\frac{1}{\sqrt{2}})$	$\mathbf{x} = \frac{1}{\sqrt{2}}$	$(\frac{1}{\sqrt{2}}, +\infty)$
VP	$\frac{1}{2}$		1
g''(x)	< 0	0	> 0
g (x)	cóncava hacia abajo	punto de inflexión	cóncava hacia arriba

Por lo tanto, los intervalos de concavidad hacia arriba y hacia abajo de g (x) son $(\frac{1}{\sqrt{2}}, +\infty)$ y $(0, \frac{1}{\sqrt{2}})$, respectivamente.

(9) Determinar si la función presenta puntos de inflexión:

$$g\left(\frac{1}{\sqrt{2}}\right) = \left(\frac{1}{\sqrt{2}}\right)^2 + \ln\frac{1}{\sqrt{2}}$$
$$g\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{2} + \ln\frac{1}{\sqrt{2}}.$$

Por lo tanto, g (x) tiene un punto de inflexión en $(\frac{1}{\sqrt{2}}, \frac{1}{2} + \ln \frac{1}{\sqrt{2}})$.

(10) <u>Realizar la representación gráfica de la función, utilizando los datos obtenidos en el análisis desarrollado en los puntos anteriores:</u>

(d)
$$j(x) = xe^x$$
.

(1) <u>Determinar el dominio de la función:</u>

$$Dom_i = \mathbb{R}$$
.

(2) <u>Determinar el conjunto donde la función es continua. Donde sea discontinua, clasificar</u> sus discontinuidades:

La función identidad (y= x) y las funciones exponenciales son continuas en \mathbb{R} . Por lo tanto, j (x) es continua en \mathbb{R} .

(3) <u>Determinar las asíntotas verticales y horizontales:</u>

$$\nexists \lim_{x \to a} j(x) = \pm \infty, \forall a \in \mathbb{R}.$$

Por lo tanto, j(x) no tiene asíntotas verticales.

$$\lim_{x \to -\infty} j(x) = \lim_{x \to -\infty} x e^x = 0.$$

$$\lim_{x\to+\infty} j(x) = \lim_{x\to+\infty} xe^x = +\infty.$$

Por lo tanto, j (x) tiene una asíntota horizontal en y=0.

(4) Calcular la primera derivada y determinar los puntos críticos de la función:

$$j'(x) = e^{x} + xe^{x}$$
 $j'(x) = e^{x}(x+1)$.

 $\exists j'(x) \forall x \in Dom_{j}$.

 $j'(x) = 0$
 $e^{x}(x+1) = 0$
 $x+1 = \frac{0}{e^{x}}$
 $x+1 = 0$

x = -1.

Por lo tanto, j (x) tiene un punto crítico en x = -1.

(5) Determinar los intervalos de crecimiento / decrecimiento de la función:

Intervalo	(-∞, -1)	x= -1	(-1, +∞)
VP	-2		0
j´(x)	< 0	0	> 0
j (x)	decreciente	mínimo relativo	creciente

Por lo tanto, los intervalos de crecimiento y decrecimiento de j (x) son $(-1, +\infty)$ y $(-\infty, -1)$, respectivamente.

(6) Determinar los valores máximos y mínimos relativos:

$$j(-1) = -1e^{-1}$$

 $j(-1) = \frac{-1}{e}$.

Por lo tanto, j (x) tiene un punto mínimo relativo en $(-1, \frac{-1}{e})$.

(7) <u>Calcular la segunda derivada y determinar los puntos donde f</u> (x) = 0 o donde f(x) = 0 o donde f(

$$j''(x) = e^{x}(x+1) + e^{x}x$$

 $j''(x) = e^{x}x + e^{x} + e^{x}x$
 $j''(x) = 2e^{x}x + e^{x}$
 $j''(x) = e^{x}(2x+1)$.

$$\exists j \tilde{\ } (x) \ \forall \ x \in Dom_i.$$

$$j''(x) = 0$$

$$e^{x} (2x + 1) = 0$$

$$2x + 1 = \frac{0}{e^{x}}$$

$$2x + 1 = 0$$

$$2x = -1$$

$$x = \frac{-1}{2}$$

Por lo tanto, j'''(x)= 0 en x=
$$\frac{-1}{2}$$
.

(8) <u>Determinar los intervalos de concavidad:</u>

Intervalo	$(-\infty, \frac{-1}{2})$	$X = \frac{-1}{2}$	$(\frac{-1}{2}, +\infty)$
VP	-1		1
j''(x)	< 0	0	> 0
j(x)	cóncava hacia abajo	punto de inflexión	cóncava hacia arriba

Por lo tanto, los intervalos de concavidad hacia arriba y hacia abajo de j (x) son $(\frac{-1}{2}, +\infty)$ y $(-\infty, \frac{-1}{2})$, respectivamente.

(9) Determinar si la función presenta puntos de inflexión:

$$j(\frac{-1}{2}) = \frac{-1}{2}e^{\frac{-1}{2}}$$
$$j(\frac{-1}{2}) = \frac{-1}{2\sqrt{e}}.$$

Por lo tanto, j (x) tiene un punto de inflexión en $(\frac{-1}{2}, \frac{-1}{2\sqrt{e}})$.

(10) <u>Realizar la representación gráfica de la función, utilizando los datos obtenidos en el análisis desarrollado en los puntos anteriores:</u>

Ejercicio 7.

En cada caso, realizar el gráfico de una función f(x) que cumpla con los siguientes requisitos:

(a)

- *Dominio de f* (x): ($-\infty$, -3) \cup (-3, $+\infty$).
- Continuidad: $(-\infty, -3) \cup (-3, 2) \cup (2, +\infty)$.
- *Discontinuidad inevitable en x*= 2.
- $\lim_{x \to 3^+} f(x) = +\infty$, $\lim_{x \to 3^-} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -2$.
- f'(x) > 0 en $(-\infty, -3) \cup (-1, +\infty)$.
- f'(x) < 0 en (-3, -1).
- f''(x) > 0 en $(-\infty, -3) \cup (-3, 0) \cup (2, +\infty)$.
- f''(x) < 0 en (0, 2).

Intervalo	(-∞, -3)	(-3, -1)	(-1, 0)	(0, 2)	$(2,+\infty)$
f'(x)	+	-	+	+	+
f''(x)	+	+	+	-	+
f(x)	creciente y convexa	decreciente y convexa	creciente y convexa	creciente y cóncava	creciente y convexa

(b)

- *Dominio de f (x): [-2, 8].*
- Creciente en $(-2, 4) \cup (6, 8)$ y decreciente en el intervalo (4, 6).
- f''(x) > 0 en $(-2, 2) \cup (5, 8)$ y f''(x) < 0 en (2, 5).

• ¿Esta función tiene máximo absoluto? Sí, tiene máximo absoluto (por teorema de Weierstrass).

Intervalo	(-2, 2)	(2, 4)	(4, 5)	(5, 6)	(6, 8)
f'(x)	+	+	-	-	+
f''(x)	+	-	-	+	+
f(x)	creciente y	creciente y	decreciente	decreciente	creciente y
1 (X)	cóncava	convexa	y convexa	y cóncava	cóncava

Ejercicio 8.

Calcular las siguientes integrales indefinidas:

(a)
$$\int \frac{\pi}{2} \cos x \ dx$$
.

$$\int \frac{\pi}{2} \cos x \, dx = \frac{\pi}{2} \int \cos x \, dx$$
$$\int \frac{\pi}{2} \cos x \, dx = \frac{\pi}{2} \sin x + C.$$

(b)
$$\int 2x^8 - \frac{1}{x} dx$$
.

$$\int 2x^{8} - \frac{1}{x} dx = \int 2x^{8} dx + \int \frac{-1}{x} dx$$

$$\int 2x^{8} - \frac{1}{x} dx = 2 \int x^{8} dx - \int \frac{1}{x} dx$$

$$\int 2x^{8} - \frac{1}{x} dx = 2 \frac{x^{9}}{9} - \ln x$$

$$\int 2x^{8} - \frac{1}{x} dx = \frac{2}{9} x^{9} - \ln x + C.$$

(c) $\int \cos 3x \, dx$.

$$\int \cos 3x \, dx = \int \cos u \, \frac{du}{3}$$

$$\int \cos 3x \, dx = \frac{1}{3} \int \cos u \, du$$

$$\int \cos 3x \, dx = \frac{1}{3} \sin u$$

$$\int \cos 3x \, dx = \frac{1}{3} \sin 3x + C.$$
(*)

(*) u = 3x; du = 3 dx.

(d) $\int x \operatorname{sen} x \, dx$.

$$\int x \operatorname{sen} x \, dx = x \left(-\cos x \right) - \int -\cos x \, dx \tag{*}$$

$$\int x \operatorname{sen} x \, dx = -x \cos x + \int \cos x \, dx$$

$$\int x \operatorname{sen} x \, dx = -x \cos x + \sin x + C.$$

(*) u= x; du= dx; dv= sen x dx; v= -cos x.

(e)
$$\int x^2 e^x dx$$
.

Juan Menduiña

$$\int x^{2}e^{x} dx = x^{2}e^{x} - \int e^{x}2x dx$$

$$\int x^{2}e^{x} dx = x^{2}e^{x} - 2 \int xe^{x} dx$$

$$\int x^{2}e^{x} dx = x^{2}e^{x} - 2 (xe^{x} - \int e^{x} dx)$$

$$\int x^{2}e^{x} dx = x^{2}e^{x} - 2 (xe^{x} - e^{x})$$

$$\int x^{2}e^{x} dx = x^{2}e^{x} - 2xe^{x} + 2e^{x} + C.$$
(**)

(*)
$$u = x^2$$
; $du = 2x dx$; $dv = e^x dx$; $v = e^x$.
(**) $u = x$; $du = dx$; $dv = e^x dx$; $v = e^x$.

(f)
$$\int x^2 (1 + x^3) dx$$
.

$$\int x^{2}(1+x^{3}) dx = \int x^{2} + x^{5} dx$$

$$\int x^{2}(1+x^{3}) dx = \int x^{2} dx + \int x^{5} dx$$

$$\int x^{2}(1+x^{3}) dx = \frac{x^{3}}{3} + \frac{x^{6}}{6} + C.$$

$$\int x^{2}(1+x^{3}) dx = \frac{1}{3}x^{3} + \frac{1}{6}x^{6} + C.$$

(g)
$$\int (e^x - 3x^3)^5 (e^x - 9x^2) dx$$
.

$$\int (e^{x} - 3x^{3})^{5} (e^{x} - 9x^{2}) dx = \int u^{5} du$$

$$\int (e^{x} - 3x^{3})^{5} (e^{x} - 9x^{2}) dx = \frac{u^{6}}{6}$$

$$\int (e^{x} - 3x^{3})^{5} (e^{x} - 9x^{2}) dx = \frac{1}{6} (e^{x} - 3x^{3})^{6} + C.$$
(*)

(*)
$$u = e^x - 3x^3$$
; $du = (e^x - 9x^2) dx$.

(h) $\int sen x cos x dx$.

$$\int sen x \cos x \, dx = \int u \, du$$

$$\int sen x \cos x \, dx = \frac{u^2}{2}$$

$$\int sen x \cos x \, dx = \frac{1}{2} (sen x)^2 + C.$$
(*)

(*) u = sen x; du = cos x dx.

(i)
$$\int \frac{x}{x+1} dx$$
.

$$\int \frac{x}{x+1} dx = \int \frac{u-1}{u} du$$

$$\int \frac{x}{x+1} dx = \int 1 - \frac{1}{u} du$$
(*)

$$\int \frac{x}{x+1} dx = \int du + \int \frac{-1}{u} du$$

$$\int \frac{x}{x+1} dx = u - \int \frac{1}{u} du$$

$$\int \frac{x}{x+1} dx = u - \ln |u|$$

$$\int \frac{x}{x+1} dx = x + 1 - \ln |x+1| + C.$$

(*) u = x + 1; du = dx.

$$(\mathbf{j}) \int \frac{2x+1}{x^2+x+1} dx.$$

$$\int \frac{2x+1}{x^2+x+1} dx = \int \frac{1}{u} du \qquad (*)$$

$$\int \frac{2x+1}{x^2+x+1} dx = \ln |u|$$

$$\int \frac{2x+1}{x^2+x+1} dx = \ln |x^2+x+1| + C.$$

(*) $u = x^2 + x + 1$; du = (2x + 1) dx.

$$(\mathbf{k}) \int \frac{4}{(\ln x)^3 x} dx.$$

$$\int \frac{4}{(\ln x)^3 x} dx = \int \frac{4}{u^3} du \tag{*}$$

$$\int \frac{4}{(\ln x)^3 x} dx = 4 \int \frac{1}{u^3} du$$

$$\int \frac{4}{(\ln x)^3 x} dx = 4 \int u^{-3} du$$

$$\int \frac{4}{(\ln x)^3 x} dx = 4 \frac{u^{-2}}{-2}$$

$$\int \frac{4}{(\ln x)^3 x} dx = \frac{-2}{u^2}$$

$$\int \frac{4}{(\ln x)^3 x} dx = \frac{-2}{(\ln x)^2} + C.$$

(*) u= ln x; du= $\frac{1}{x}$ dx.

Ejercicio 9.

Calcular las siguientes integrales definidas:

(a)
$$\int_{1}^{3} (2x+3)^2 dx$$
.

$$\int_{1}^{3} (2x+3)^{2} dx = \int_{1}^{3} u^{2} \frac{du}{2} \tag{*}$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{2} \int_{2*1+3}^{2*3+3} u^{2} du$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{2} \frac{u^{3}}{3} |_{2*3+3}^{2*3+3}$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{6} (2x+3)^{3} |_{1}^{3}$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{6} [(2*3+3)^{3} - (2*1+3)^{3}]$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{6} [(6+3)^{3} - (2+3)^{3}]$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{6} (729-125)$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{6} * 604$$

$$\int_{1}^{3} (2x+3)^{2} dx = \frac{1}{6} * 604$$

(*)
$$u = 2x + 3$$
; $du = 2 dx$.

(b)
$$\int_0^{\pi} \sin x \, dx$$
.

$$\int_{0}^{\pi} sen x \, dx = -\cos x \mid_{0}^{\pi}$$

$$\int_{0}^{\pi} sen x \, dx = -(\cos \pi - \cos 0)$$

$$\int_{0}^{\pi} sen x \, dx = -(-1 - 1)$$

$$\int_{0}^{\pi} sen x \, dx = -(-2)$$

$$\int_{0}^{\pi} sen x \, dx = 2.$$

(c)
$$\int_{-1}^{1} x^{\frac{1}{3}} dx$$
.

$$\int_{-1}^{1} x^{\frac{1}{3}} dx = \frac{x^{\frac{4}{3}}}{\frac{4}{3}} \Big|_{-1}^{1}$$

$$\int_{-1}^{1} x^{\frac{1}{3}} dx = \frac{3}{4} [1^{\frac{4}{3}} - (-1)^{\frac{4}{3}}]$$

$$\int_{-1}^{1} x^{\frac{1}{3}} dx = \frac{3}{4} (1 - 1)$$

$$\int_{-1}^{1} x^{\frac{1}{3}} dx = \frac{3}{4} * 0$$

$$\int_{-1}^{1} x^{\frac{1}{3}} dx = 0.$$

(d)
$$\int_0^{\pi} \cos x + 3x^4 dx$$
.

$$\int_{0}^{\pi} \cos x + 3x^{4} dx = \int_{0}^{\pi} \cos x dx + \int_{0}^{\pi} 3x^{4} dx$$

$$\int_{0}^{\pi} \cos x + 3x^{4} dx = \sin x \Big|_{0}^{\pi} + 3 \int_{0}^{\pi} x^{4} dx$$

$$\int_{0}^{\pi} \cos x + 3x^{4} dx = (\sin \pi - \sin 0) + 3 \frac{x^{5}}{5} \Big|_{0}^{\pi}$$

$$\int_{0}^{\pi} \cos x + 3x^{4} dx = (0 - 0) + \frac{3}{5} (\pi^{5} - 0^{5})$$

$$\int_{0}^{\pi} \cos x + 3x^{4} dx = (0 - 0) + \frac{3}{5} (\pi^{5} - 0)$$

$$\int_{0}^{\pi} \cos x + 3x^{4} dx = 0 + \frac{3}{5} \pi^{5}$$

$$\int_{0}^{\pi} \cos x + 3x^{4} dx = \frac{3}{5} \pi^{5}.$$

(e)
$$\int_{1}^{e} \frac{2x}{x^2+1} dx$$
.

$$\int_{1}^{e} \frac{2x}{x^{2}+1} dx = \int_{1^{2}+1}^{e^{2}+1} \frac{1}{u} du$$

$$\int_{1}^{e} \frac{2x}{x^{2}+1} dx = \ln |u| |_{1^{2}+1}^{e^{2}+1}$$

$$\int_{1}^{e} \frac{2x}{x^{2}+1} dx = \ln |x^{2}+1| |_{1}^{e}$$

$$\int_{1}^{e} \frac{2x}{x^{2}+1} dx = \ln (e^{2}+1) - \ln (1^{2}+1)$$

$$\int_{1}^{e} \frac{2x}{x^{2}+1} dx = \ln (e^{2}+1) - \ln (1+1)$$

$$\int_{1}^{e} \frac{2x}{x^{2}+1} dx = \ln (e^{2}+1) - \ln 2$$

$$\int_{1}^{e} \frac{2x}{x^{2}+1} dx = \ln \frac{e^{2}+1}{2}.$$

(*)
$$u = x^2 + 1$$
; $du = 2x dx$.

(f)
$$\int_0^4 e^x x^3 dx$$
.

$$\int_{0}^{4} e^{x}x^{3} dx = (x^{3}e^{x} - \int e^{x}3x^{2} dx) |_{0}^{4} \qquad (*)$$

$$\int_{0}^{4} e^{x}x^{3} dx = (x^{3}e^{x} - 3 \int x^{2}e^{x} dx) |_{0}^{4}$$

$$\int_{0}^{4} e^{x}x^{3} dx = [x^{3}e^{x} - 3 (x^{2}e^{x} - \int e^{x}2x dx)] |_{0}^{4}$$

$$\int_{0}^{4} e^{x}x^{3} dx = [x^{3}e^{x} - 3 (x^{2}e^{x} - 2 \int xe^{x} dx)] |_{0}^{4}$$

$$\int_{0}^{4} e^{x}x^{3} dx = \{x^{3}e^{x} - 3 [x^{2}e^{x} - 2 (xe^{x} - \int e^{x} dx)]\} |_{0}^{4}$$

$$\int_{0}^{4} e^{x}x^{3} dx = \{x^{3}e^{x} - 3 [x^{2}e^{x} - 2 (xe^{x} - e^{x})]\} |_{0}^{4}$$

$$\int_{0}^{4} e^{x}x^{3} dx = [x^{3}e^{x} - 3 (x^{2}e^{x} - 2xe^{x} + 2e^{x})] |_{0}^{4}$$

$$\int_{0}^{4} e^{x}x^{3} dx = (x^{3}e^{x} - 3x^{2}e^{x} + 6xe^{x} - 6e^{x})|_{0}^{4}$$

$$\int_{0}^{4} e^{x}x^{3} dx = (4^{3}e^{4} - 3 * 4^{2}e^{4} + 6 * 4e^{4} - 6e^{4}) - (0^{3}e^{0} - 3 * 0^{2}e^{0} + 6 * 0e^{0} - 6e^{0})$$

$$\int_{0}^{4} e^{x}x^{3} dx = (64e^{4} - 3 * 16e^{4} + 24e^{4} - 6e^{4}) - (0 * 1 - 3 * 0 * 1 + 6 * 0 * 1 - 6 * 1)$$

$$\int_{0}^{4} e^{x}x^{3} dx = (64e^{4} - 48e^{4} + 24e^{4} - 6e^{4}) - (0 - 0 + 0 - 6)$$

$$\int_{0}^{4} e^{x}x^{3} dx = 34e^{4} - (-6)$$

$$\int_{0}^{4} e^{x}x^{3} dx = 34e^{4} + 6.$$

(*)
$$u = x^3$$
; $du = 3x^2 dx$; $dv = e^x dx$; $v = e^x$.
(**) $u = x^2$; $du = 2x dx$; $dv = e^x dx$; $v = e^x$.
(***) $u = x$; $du = dx$; $dv = e^x$; $v = e^x$.

(g)
$$\int_{1}^{4} \sqrt{2x+3} \, dx$$
.

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \int_{2*1+3}^{2*4+3} \sqrt{u} \, \frac{du}{2} \tag{*}$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{2} \int_{2*1+3}^{2*4+3} u^{\frac{1}{2}} \, du$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{2} \frac{u^{\frac{3}{2}}}{\frac{3}{2}} |_{2*1+3}^{2*4+3}$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} (2x+3)^{\frac{3}{2}} |_{1}^{4}$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} [(2*4+3)^{\frac{3}{2}} - (2*1+3)^{\frac{3}{2}}]$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} [(8+3)^{\frac{3}{2}} - (2+3)^{\frac{3}{2}}]$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} (11^{\frac{3}{2}} - 5^{\frac{3}{2}})$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} (11^{\frac{3}{2}} - 5^{\frac{3}{2}})$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} (11^{\frac{3}{2}} - 5^{\frac{3}{2}})$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} (11^{\frac{3}{2}} - 5^{\frac{3}{2}})$$

$$\int_{1}^{4} \sqrt{2x+3} \, dx = \frac{1}{3} (11^{\frac{3}{2}} - 5^{\frac{3}{2}})$$

(*)
$$u = 2x + 3$$
; $du = 2 dx$.

$$(h) \int_1^3 \frac{1}{\sqrt{x}} dx.$$

$$\int_{1}^{3} \frac{1}{\sqrt{x}} dx = \int_{1}^{3} x^{\frac{-1}{2}} dx$$

$$\int_{1}^{3} \frac{1}{\sqrt{x}} dx = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} |_{1}^{3}$$

$$\int_{1}^{3} \frac{1}{\sqrt{x}} dx = 2 (3^{\frac{1}{2}} - 1^{\frac{1}{2}})$$

$$\int_{1}^{3} \frac{1}{\sqrt{x}} dx = 2 (\sqrt{3} - 1).$$

Ejercicio 10.

Graficar las curvas y hallar el área de la región encerrada entre las gráficas de esas curvas.

(a)
$$y = x^2$$
; $y = 2x$.

f (x)= g (x)

$$x^2 = 2x$$

 $x^2 - 2x = 0$
x (x - 2)= 0.

$$x_1 = 0; x_2 = 2.$$

Intervalo	(0,2)
VP	1
f (x)	1
g (x)	2

$$A = \int_0^2 g(x) - f(x) dx$$

$$A = \int_0^2 2x - x^2 dx$$

$$A = \int_0^2 2x dx + \int_0^2 -x^2 dx$$

$$A = 2 \int_0^2 x dx - \int_0^2 x^2 dx$$

$$A = 2 \frac{x^2}{2} \Big|_0^2 - \frac{x^3}{3} \Big|_0^2$$

$$A = (2^2 - 0^2) - \frac{1}{3} (2^3 - 0^3)$$

A=
$$(2^2 - 0^2) - \frac{1}{3}(8 - 0)$$

A= $(4 - 0) - \frac{1}{3} * 8$
A= $4 - \frac{8}{3}$
A= $\frac{4}{3}$.

(b)
$$y = 2x^3$$
; $y = 2x$.

f (x)= g (x)

$$2x^3 = 2x$$

 $x^3 = x$
 $x^3 - x = 0$
x $(x^2 - 1) = 0$.

$$x_1 = 0; x_2 = -1; x_3 = 1.$$

Intervalo	(-1, 0)	(0,1)
VD	-1	1
VF	2	$\frac{1}{2}$
f ()	-1	1
1 (x)	4	$\frac{\overline{4}}{}$
g (x)	-1	1

$$A = \int_{-1}^{0} f(x) - g(x) dx + \int_{0}^{1} g(x) - f(x) dx$$
$$A = \int_{-1}^{0} 2x^{3} - 2x dx + \int_{0}^{1} 2x - 2x^{3} dx$$

$$A = \int_{-1}^{0} 2 (x^{3} - x) dx + \int_{0}^{1} 2 (x - x^{3}) dx$$

$$A = 2 \int_{-1}^{0} x^{3} - x dx + 2 \int_{0}^{1} x - x^{3} dx$$

$$A = 2 (\int_{-1}^{0} x^{3} - x dx + \int_{0}^{1} x - x^{3} dx)$$

$$A = 2 (\int_{-1}^{0} x^{3} dx + \int_{-1}^{0} -x dx + \int_{0}^{1} x dx + \int_{0}^{1} -x^{3} dx)$$

$$A = 2 (\frac{x^{4}}{4} \Big|_{-1}^{0} - \int_{-1}^{0} x dx + \frac{x^{2}}{2} \Big|_{0}^{1} - \int_{0}^{1} x^{3} dx)$$

$$A = 2 \{\frac{1}{4} [0^{4} - (-1)^{4}] - \frac{x^{2}}{2} \Big|_{-1}^{0} + \frac{1}{2} (1^{2} - 0^{2}) - \frac{x^{4}}{4} \Big|_{0}^{1} \}$$

$$A = 2 \{\frac{1}{4} (0 - 1) - \frac{1}{2} [0^{2} - (-1)^{2}] + \frac{1}{2} (1 - 0) - \frac{1}{4} (1^{4} - 0^{4}) \}$$

$$A = 2 [\frac{1}{4} (-1) - \frac{1}{2} (0 - 1) + \frac{1}{2} * 1 - \frac{1}{4} (1 - 0)]$$

$$A = 2 [\frac{-1}{4} - \frac{1}{2} (-1) + \frac{1}{2} - \frac{1}{4} * 1]$$

$$A = 2 (\frac{-1}{4} + \frac{1}{2} + \frac{1}{2} - \frac{1}{4})$$

$$A = 2 \frac{1}{2}$$

$$A = 1.$$

(c)
$$y = \frac{-x^2}{2} + 2$$
; $y = 0$ -

f (x)= g (x)

$$\frac{-x^2}{2}$$
 + 2= 0
 $\frac{x^2}{2}$ = 2
 x^2 = 2 * 2
 x^2 - 4

$$\sqrt{x^2} = \sqrt{4}$$
$$|x| = 2$$
$$x = \pm 2.$$

Intervalo	(-2, 2)
VP	0
f (x)	2
g (x)	0

$$A = \int_{-2}^{2} f(x) - g(x) dx$$

$$A = \int_{-2}^{2} \frac{-x^{2}}{2} + 2 - 0 dx$$

$$A = \int_{-2}^{2} \frac{-x^{2}}{2} + 2 dx$$

$$A = \int_{-2}^{2} \frac{-x^{2}}{2} dx + \int_{-2}^{2} 2 dx$$

$$A = \frac{-1}{2} \int_{-2}^{2} x^{2} dx + 2 \int_{-2}^{2} dx$$

$$A = \frac{-1}{2} \frac{x^{3}}{3} \Big|_{-2}^{2} + 2x \Big|_{-2}^{2}$$

$$A = \frac{-1}{6} [2^{3} - (-2)^{3}] + 2 [2 - (-2)]$$

$$A = \frac{-1}{6} [8 - (-8)] + 2 (2 + 2)$$

$$A = \frac{-1}{6} (8 + 8) + 2 * 4$$

$$A = \frac{-1}{6} * 16 + 8$$

$$A = \frac{-16}{6} + 8$$

$$A = \frac{16}{3}.$$

(d)
$$y = 2x^3 - x$$
; $y = x^3$.

f (x)= g (x)

$$2x^3 - x = x^3$$

 $2x^3 - x - x^3 = 0$
 $x^3 - x = 0$
x ($x^2 - 1$)= 0.

$$x_1 = 0$$
; $x_2 = -1$; $x_3 = 1$.

Intervalo	(-1, 0)	(0,1)
VP	$\frac{-1}{2}$	$\frac{1}{2}$
f(x)	$\frac{1}{4}$	$\frac{-1}{4}$
g (x)	$\frac{-1}{8}$	$\frac{1}{8}$

$$A = \int_{-1}^{0} f(x) - g(x) dx + \int_{0}^{1} g(x) - f(x) dx$$

$$A = \int_{-1}^{0} 2x^{3} - x - x^{3} dx + \int_{0}^{1} x^{3} - (2x^{3} - x) dx$$

$$A = \int_{-1}^{0} x^{3} - x dx + \int_{0}^{1} x^{3} - 2x^{3} + x dx$$

$$A = \int_{-1}^{0} x^{3} - x dx + \int_{0}^{1} -x^{3} + x dx$$

$$A = \int_{-1}^{0} x^{3} dx + \int_{-1}^{0} -x dx + \int_{0}^{1} -x^{3} dx + \int_{0}^{1} x dx$$

$$A = \frac{x^{4}}{4} \Big|_{-1}^{0} - \int_{-1}^{0} x dx - \int_{0}^{1} x^{3} dx + \frac{x^{2}}{2} \Big|_{0}^{1}$$

$$A = \frac{1}{4} \Big[0^{4} - (-1)^{4} \Big] - \frac{x^{2}}{2} \Big|_{-1}^{0} - \frac{x^{4}}{4} \Big|_{0}^{1} + \frac{1}{2} (1^{2} - 0^{2})$$

$$A = \frac{1}{4} (0 - 1) - \frac{1}{2} \Big[0^{2} - (-1)^{2} \Big] - \frac{1}{4} (1^{4} - 0^{4}) + \frac{1}{2} (1 - 0)$$

$$A = \frac{1}{4}(-1) - \frac{1}{2}(0 - 1) - \frac{1}{4}(1 - 0) + \frac{1}{2} * 1$$

$$A = \frac{-1}{4} - \frac{1}{2}(-1) - \frac{1}{4} * 1 + \frac{1}{2}$$

$$A = \frac{-1}{4} + \frac{1}{2} - \frac{1}{4} + \frac{1}{2}$$

$$A = \frac{1}{2}.$$