Question 1:

Find the path from S to G using the UCS algorithm for the graph below. Please show the transformation of *fringe* and the path found.

UCS expands the node n with the <u>lowest path cost</u>. Its implementation: frontier is a <u>priority queue</u> ordered by cost.

```
Fringe = {(S;0)}

Fringe = {(D;2), (A;3)}

Fringe = {(A;3), (B;3), (E;6)}

Fringe = {(B;3), (E;6), (G;13)}

Fringe = (E;4), (C;5), (G;13)}

Fringe = {(C;5), (G;7)}

Fringe = {(G;7)}

Fringe = Ø
```

Path =
$$\{(S;0), (D;2), (B;3), (E;4), (G;7)\}$$

Question 2

Given the maze as shown below. Bold lines represent impassable wall.

			a	b	
			c	d	e
f	s	h	k	m	n
p	q	r	t	g	

Find your way from s to g with the search strategies as below. Show the expanded order of each cells according to format $\langle b_1, b_2, ..., b_n \rangle$, with b_i is the expanded cell. a. BFS

BFS expands <u>shallowest unexpanded node</u>. Its implementation: frontier is a FIFO <u>queue</u>.

Expanded cell =
$$\langle s, f, h, p, k, q, c, r, a, t, b \rangle$$

Path = $\{s, f, p, q, r, t, g\}$

b. DFS with state checks along the way to avoid loops. The expansion order is Right-> Bottom -> Left -> Top

			a	b		
			c	d	e	
f	S	h	k	m	n	
p	q	r	t	g		

DFS expands <u>deepest unexpanded node</u>. Its implementation: frontier is a LIFO <u>Stack</u>.

Expanded cell =
$$<$$
s, h, k, c, a, b, d, e, n, m $>$ Path = $\{$ s, h, k, c, a, b, d, e, n, m, g $\}$

Question 3:

Find the way from A to G. Show the transformation steps of fringe (stack, queue).

a. BFS

BFS expands <u>shallowest unexpanded node</u>. Its implementation: frontier is a FIFO <u>queue</u>.

```
Fringe = {A}
Fringe = {B, C}
Fringe = {C, D}
Fringe = {D}
Fringe = {E, F, G}
Expanded cell = <A, B, C, D>
Path = {A, B, D, G}
```

b. DSF

DFS expands <u>deepest unexpanded node</u>. Its implementation: frontier is a LIFO Stack.

```
Fringe = {A}
Fringe = {B, C}
Fringe = {B, D}
Fringe = {B, E, F, G}
Expanded cell = <A, C, D>
Path = {A, C, D, G}
```

c. UCS

UCS expands the node n with the <u>lowest path cost</u>. Its implementation: frontier is a <u>priority queue</u> ordered by cost.

```
Fringe = {(A;0)}

Fringe = {(B;1), (C;4)}

Fringe = {(C;2), (D;6)

Fringe = {(D;5)}

Fringe = {(F;8), (E;13), (G;14)}
```

```
\begin{split} & Fringe = \{(E;13), (G;13)\} \\ & Fringe = \{(G;13)\} \\ & Fringe = \varnothing \\ & Expanded cell = \{(A;0), (B;1), (C;2), (D;5), (F;8), (E;13), (G;13)\} \\ & Path = \{(A;0), (B;1), (C;2), (D;5), (F;8), (G;13)\} \end{split}
```