

电磁场数值计算

邢庆子

Tel: 62781684(o), 13661226717

E-mail: xqz@tsinghua.edu.cn

清华大学工物系加速器实验室 刘卿楼309

3.9 现代通用程序介绍

● 一些通用程序

国外: Superfish, Mafia, CST 电磁工作室 (上海软波工程软件有限公司) 等程序;

国内: DE3D, DE2D, FEMA2D等。

3.9 现代通用程序介绍

● 电磁场计算程序的典型结构 前处理(pre-processing)

- ① 数据定义;几何尺寸;材料性质参数;边界条件。
- ② 空间剖分; 网格自动产生及节点形成。
- ③ 网格图形显示。

后处理(post-processing)

- ①计算结果输出。
- ② 力线和位函数图形输出。
- ③铁区饱和情况显示。
- ④力、损耗的计算。
- ⑤局部场分布的细致计算。

数据处理(data-processing)

③ 非线性迭代。

一. Poisson / Superfish 程序简介

- 1.1 Poisson / Superfish 的发展与获取
- 1.2 软件包中程序流程及使用
- 1.3 Poisson / Superfish 磁场源文件的编制
- 1.4 例子
- 二. Mafia 程序简介
- 2.1 Mafia 程序简介
- 2.2 Mafia S 模块介绍
- 2.3 Mafia S 模块背景知识
- 2.4 Mafia S 模块菜单介绍
- 2.5 S 模块具体例子一静磁场问题
- 2.6 Mafia S 模块总结

1.1 Poisson / Superfish 的发展与获取

● Poisson / Superfish 源代码是由 Los Alamos 的 Ron F. Holsinger 和 Klaus Halbach 合作开发的。

最新版本: PoissonSuperfish_7.19 for Windows

- Poisson / Superfish 程序由 Los Alamos Accelerator Code Group (LAACG)维护。
- 下载:
 http://laacg1.lanl.gov/laacg/services/download_sf.phtml

需要注册。

Poisson Superfish

James H. Billen and Lloyd M. Young

Documentation by James H. Billen

1.1 Poisson / Superfish 的发展与获取

- 主要包括两个软件包:
 - 1) POISSON 程序包: 计算静态电磁场问题;
 - 2) SUPERFISH 软件包: 计算交变电磁场问题。
- 使用坐标系:
 - 二维直角坐标系,或轴对称柱坐标系。
- 采用方法:

用矢量磁位计算场分布;

在位函数求解中采用三角形网格和差分法(积分法进行离散),对方程离散形成方程组后采用超松驰迭代求解。

1.1 Poisson / Superfish 的发展与获取

● 主要功能

- ✓ 采用等势剖分自动生成适合边界条件和材料条件的三角形网格,并对生成的数据进行优化;
- ✓ 可以解决静态电场问题和静态磁场问题,特别是永磁问题和各向异性问题; 对 RF 问题可以搜索谐振频率并计算场值;
- ✓ 考虑了对称性问题,以缩小计算区域,节省内存和计算时间;
- ✓ 可进行谐波分析,给出非均匀场中的各次谐波;
- ✓ 可计算二维直角坐标与柱坐标(rz)系统;
- ✓ 可以用图形及文本方式输出计算的结果;
- ✓ 后处理程序可以对各种类型的腔进行自动调谐,计算功率损失、表面阻抗、 渡越时间因子积分等;可以对场的计算值进行插值,计算问题结构中各构件之 间的作用力;还有为 EGUN 程序和PARMELA 程序提供输入文件等功能。

● 程序运行流程:

1.1 Poisson / Superfish 的发展与获取

● Poisson / Superfish 安装目录:

● Autofish – Integrated mesh and RF solver 求解射频问题。

$$\begin{array}{c} \textbf{Automesh} \\ \textbf{Fish} \\ \textbf{SFO} \end{array}$$

不能用于求解 Poisson 和 Pandira 问题。

● Automesh – mesh generator 计算静态电场、磁场或射频问题前需要首先运行的程序。 读入问题的几何结构和材料属性。

- Cfish complex RF solver 对射频场、介电常数(permittivity)和磁导率(permeability)使用 复数变量的一个Fish版本。
- Fish real RF solver 对 KPROB=1的射频问题,在 Automesh 之后执行求解。 在二维直角坐标和三维柱坐标中求解RF腔的频率和场分布。
- Force Magnet postprocessor 是 Poisson 和 Pandira 的后处理程序,可计算作用于磁轭和线包上的磁场力和力矩。

● Pandira – Static (direct) field solver,可计算永磁材料。与Poisson类似,主要可以计算各向异性介质磁场问题。

● Poisson – Static (SOR) field solver 对于非线性、各向同性磁介质和电介质,用连续超松驰迭代求解离散后的方程组。

- Quikplot Plot multi-XY sets,并可对区间积分。
- SF7 Field interpolator,是后处理程序。
- SFO Post processor 根据Fish和Cfish的计算结果计算腔的特性,如品质因数、分路阻抗、渡越时间因子等参数。
- Tablplot Plot columns in table 以一维曲线的形式作出图形。
- WSFpot Plot mesh and solution 可以显示问题的几何结构、网格剖分情况及求解的磁场, 对于静态电磁场问题可以画出等势线。

● Poisson Superfish 程序中使用 到的文件:

∙Program∂	In <u>put:files</u> ₽	Output files -
∙Automesh, <i>•</i>	XXXX.AM,XXXXX.T364	OUTAUT.TXT XXXX.T35 (TAPE36,
		TAPE37)₽
∙Autofish∂	XXXX.AF, XXXX.T36,	OUTAUT.TXT, OUTFIS.TXT, XXXX.T35,
	XXXX.SEG@	XXXX SFO, XXXX PMI, (TAPE36, TAPE37,
		<u>TAPE40</u>)₽
∙Fish₽	XXXX.T35₽	OUTFIS.TXT, FishScan.TBL, XXXX.T35,
		(<u>TAPE40</u>)₽
∙CFish₽	XXXX.T35₽	OUTFIS.TXT, FishScan.TBL, XXXX.T35,
		(TAPE40)₽
∙Poisson∂	(XXXX.T35)	OUTPOLTXT OUTPOLTBL XXXX.T35
		XXXX.PO7, EFLD.QKP, BFLD.QKP
∙Pandira₽	XXXX.T35,₽	OUTPAN.TXT, OUTPAN.TBL, XXXX.T35,
		XXXX.PA7, EFLD.QKP, BFLD.QKP,
		(TAPE40)₽
∙SFO₽	XXXX.SEG, XXXX.T35	Transit TBL, TBETA TBL, XXXX T35,
		XXXX SFO, XXXX PMI, TBETAnn TBL
∙SF7₽	XXXX.IN7, XXXX.T35	OUTSF7.TXT, XXXX.nn.TBL, XXXXnn.EGN,
		XXXXnn.T7₽
∙Force∂	XXXX.FCE, XXXX.T35	OUTFOR.TXT₽
∙WSFplot₽	(XXXX.T35)(WSFplot.PRF),	OUTWSF.TXT, WSFplot.PRF, numerous
	CurveFile₽	hardcopy graphics file types
∙SegField₽	Filename SGF, Filename SFO as	Tablplot-file-named in the input SGF-file
	named-in-SGF-file₽	
∙SFOtable₽	Filename SFT, series of files	Tablplot-file-named in the input SFT-file-
	Filename SFO as named in SFT file	
∙SF8₽	Filename IN8, two T35 solution	OUTSF8.TXT₽
	files as named in IN8 file	
∙List35₽	XXXX.T35¢	XXXX.TXT·₽
•Quikplot₽	Filename.QKP₽	numerous hardcopy graphics file types
∙Tablplot∂	Filename.TBL₽	numerous hardcopy graphics file types
ABCfish	Filename00.ABC, where ABC	Filename01.ABC, Filename00.LOG, plus files
(tuning codes)₽	stands for CCL, DTL, etc.	XXXX.AM, XXXX.T35, XXXX.SFO for each
		problem solved. May also include XXXX.PMI
		files. ₽

● Poisson / Superfish帮助文件

SFTOC.DOC (Table of contents)

SFINTRO.DOC	Introduction, problem variables, SF.INI settings, technical support
SFFILES.DOC	Descriptions of input and output files
SFCODES.DOC	Autofish, Automesh, Fish, CFish, Poisson, Pandira
SFPOSTP.DOC	WSFplot, SFO, SF7, Force
SFCODES2.DOC	Cavity tuning programs XXXfish (CCLfish, DTLfish, etc.)
SFCODES3.DOC	Plotting programs Quikplot, Tablplot, and utility programs
SFEXMPL1.DOC	Example files for Fish, CFish, and Autofish
SFEXMPL2.DOC	Example files for Poisson and Pandira
SFEXMPL3.DOC	Example files for tuning programs
SFPHYS1.DOC	Theory of electrostatics and magnetostatics
SFPHYS2.DOC	Properties of static magnetic and electric fields
SFPHYS3.DOC	Boundary conditions and symmetries
SFPHYS4.DOC	Numerical methods in Poisson and Pandira
SFPHYS5.DOC	RF-cavity-theory.

H-Shaped Magnet

&po x=0..v=13. &

Including harmonic analysis for H type dipole magnet Field output is requested along the X axis [Originally appeared in 1987 Reference Manual B.2.1] ® kprob=0. ; Declares a POISSON problem dx=.3; Mesh interval ; Use fixed gamma for material 2 mode=0 xminf=0,xmaxf=22, ; X range for field interpolation vminf=0,vmaxf=0, ; Y range (along line y = 0) ; The next 6 terms refer to the harmonic analysis: ; H dipole symmetry ktype=6, nterm=7, ; Number of coefficients ; Number of arc points for nptc=11, interpolation rint=1.5, ; Radius of the arc ; Angular extent of arc (default start = angle=90, 0) rnorm=1.5 & ; Aperture radius &po x=0..y=0. & ; Start of the air-region points &po x=22.,y=0. & &po x=22.,y=13. &

&po x=0.,y=0. & ® mat=2 & : Start of the iron region &po x=0., y=2. &&po x=5.1,y=2. & &po x=5.5,y=2.4 & &po x=5.5,y=6. & &po x=15.,y=6. & &po x=15.,y=0. & &po x=22.,y=0. & &po x=22.,y=13. & &po x=0.,y=13. & &po x=0.,y=2. & ® mat=1,cur=-25455.791 & ; Start of the coil region &po x=6.,y=0. & &po x=14.5,y=0. & &po x=14.5, y=5.5 & &po x=6.0,y=5.5 & &po x=6..v=0. & 17

- 常用的表格:
- 1) Problem variables: Superfish variables & Poisson variables
- 2) REG namelist variables 每个REG namelist 后面有其相
- 3) PO namelist variables 应的 PO namelist
- 4) MT namelist variables 相互独立,出现次序可以变化。
- 5) POA namelist variables
- 输入文件的开始可最多写10行标题行(每行不超过80个字 母)。
- 源文件后缀为.am,以 ®, &PO, &MT或 &POA开始, 以 & 或 &END 结束, 注释用 "!" 或 ";"。

● Automesh可以划分不同精度的网格区,用XREGi(YREGi)、 KREGi(LREGi)实现。

kprob

kprob = 0 表示是 Poisson or Pandira 问题(PP) kprob = 1 表示是 Superfish 问题(SP)

mode

mode = 0表示有的材料具有可变磁导率(permeability)

mode = -1 表示材料具有有限、固定磁导率

(mode = -2 (默认值) 表示 MAT>1 的所有材料具有无限磁导率)

• mat

mat = 0是具有 $\epsilon_r = \infty$ and $\mu_r = \infty$ 材料 mat = 1 具有 $\epsilon_r = 1$ and $\mu_r = 1$ 的材料(如空气、真空和线包区) $mat \ge 2$ 用户定义的非线性材料

MAT	Radio frequency problem	Electrostatic problem	Magnetostatic problem
0	Unmeshed metal region $(\epsilon_r = \infty \text{ and } \mu_r = \infty).$	Unmeshed metal region $(\epsilon_r = \infty)$.	Unmeshed region.
1	Air or vacuum ($\epsilon_r = 1$ and $\mu_r = 1$).	Air or vacuum ($\epsilon_r = 1$).	Air, vacuum, and coil regions ($\mu_r = 1$).
≥2	User defined ε and μ .	User defined ε.	User defined µ.

• MTID

Material Table ID number, 把该区的材料指向MT namelist中相同的MTID的MT table。

```
&REG MAT=2, MTID=6, MSHAPE=-1&
                                        ; Region 1
; PO namelist entries for this region would appear here.
&REG MAT=2, MTID=7, MSHAPE=-1 &
                                        : Region 2
; PO namelist entries for this region would appear here.
&REG MAT=3, MTID=6, MSHAPE=-1&
                                        ; Region 3
: PO namelist entries for this region would appear here.
&REG MAT=4, MTID=6, MSHAPE=0 &
                                        ; Region 4
: PO namelist entries for this region would appear here.
&MT MTID = 6 MU = 20
BGAM = 0.000E+00.00175
0.114E+04
               0.00175
; lines of this material table have been omitted here.
0.280E+05
               0.2518 &
&MT MTID = 7 MU = 10
BGAM = 0.000E+000.00275
0.134E+04
               0.00275
; lines of this material table have been omitted here.
0.310E+05
               0.2905 &
```


B — Gauss

H — Oersteds

磁阻率 γ — Dimensionless

相对磁导率 μ_r — Dimensionless

$$\mu_{\rm r} = \frac{\mu}{\mu_0}$$

高斯制:

$$\mu_0 = 1 \implies \mu_r = \frac{\mu}{\mu_0} = \mu$$

高斯制与国际单位制的换算

量的名称	高斯制	换算倍数	国际单位制
长度	厘米	10-2	米
电场强度 E	静伏/厘米	3×10 ⁴	伏/米
电感应强度 D	静伏/厘米	$(\frac{1}{12\pi})\times 10^{-5}$	库仑/米2
磁场强度 H	奥斯特	$(\frac{1}{4\pi})\times 10^3$	安培/米
磁感应强度 B	高斯	10-4	特斯拉
磁化强度	高斯或奥斯特	103	安培/米

如何将国际单位制的 μ 换算成高斯单位制?即乘以10⁷/(4π)则变为高斯制(Gauss/Oe)

$$\mu = B/H \sim T/(A/m) \sim 10^4 \text{ Gauss/}(4 \text{ m} \times 10^{-3} \text{Oe}) \sim 10^{7}/(4 \text{ m}) \text{ Gauss/Oe}$$

• MSHAPE

Table VI-8. Values of MSHAPE when MODE = 0.

MSHAPE	Description
-1	Isotropic material with finite, but fixed, permeability.
0	Isotropic material with variable permeability.
1	Anisotropic material with straight-line BH curves.
2	Anisotropic material with variable permeability for the easy axis.

® MAT=2, MTID=6, MSHAPE=-1&

; Region 1

; PO namelist entries for this region would appear here.

® MAT=2, MTID=7, MSHAPE=-1 &

; Region 2

; PO namelist entries for this region would appear here.

® MAT=3, MTID=6, MSHAPE=-1&

; Region 3

; PO namelist entries for this region would appear here.

® MAT=4, MTID=6, MSHAPE=0 &

; Region 4

; PO namelist entries for this region would appear here.

&MT MTID = 6 MU = 20

 $BGAM = 0.000E+00\ 0.00175$

0.114E+04 0.00175

; lines of this material table have been omitted here.

0.280E+05 0.2518 &

具有相同MAT的区域,具有相同的材料属性。如果多个区域的MAT相同,但具有不同的MTID,则最后一个设置该MAT的区域,其MTID将设置其他所有具有相同MAT的区域。

&MT MTID = 7 MU = 10

 $BGAM = 0.000E+00\ 0.00275$

0.134E+04 0.00275

; lines of this material table have been omitted here.

0.310E+05 0.2905 &

Figure VI-1

- 边界点定义 以&PO开始,以&结束。一般以逆时针封闭形式设定。 要紧跟它所定义的区域(®)。后定义的区域将覆盖前面定 义的区域。
- nt -设定线型方式
 nt = 1 直线
 nt = 2 圆 (椭圆) 弧
 nt = 3 双曲线
 theta = 极坐标旋转角度
 r = 极坐标半径 (nt=1,2), (x-x0)(y-y0)=r²/2 (nt=3)
 x0,y0: 缺省值 (x0,y0) = 0,0, NT = 2, x0,y0 是弧 (圆) 中心, NT = 3, x0,y0是双曲线中心,必须给出。

- 磁力线与表面平行: (对矢量磁位A)第一类边界条件(Dirichlet boundary conditions)
- 磁力线与表面垂直: 第二类边界条件(Neumann boundary)
- ◆ & reg ibound 设定边界条件。
 IBOUND = 1 Neumann boundary
 IBOUND = 0 Dirichlet boundary。

Default values in:	Poisson/Pandira	Superfish
First region	IBOUND = 0	IBOUND = 1
Other regions	IBOUND = 1	IBOUND = 1

● 默认边界条件

IBOUND = 0 — Dirichlet boundary

IBOUND = 1 — Neumann boundary.

Variable	Superfish	Poisson
NBSUP	1	0
NBSLO	0	1
NBSRT	1	0
NBSLF	1	0

1.4 例子_Quadrupole

```
&po x=0.0, y=0.0&
This is an example for one quadrupole.
                                                         &po x=33.080, y=0.0&
&reg kprob=0,
                    ; Poisson or Pandira problem
                                                         &po x=33.080,y=33.080&
mode=0.
                ; Materials have variable permeability
                                                         &po x=0.0,y=0.0&
;xmin=0.0,xmax=33.08, ; X limits of the geometry
;ymin=0.0,ymax=33.08, ; Y limits of the geometry
                                                         &reg mat=3,mtid=3&
;新版本的程序不用再定义xmin, xmax, ymin, ymax。以
                                                         &po x=5.837,y=5.837&
   Region 1中的定义决定结构的边界。
                                                         &po nt=3,r=8.255,x=13.507,y=2.523&
dx = .30, dy = .30,
                   ; Mesh intervals
                                                         &po x=14.214, y=3.230&
yminf=0,ymaxf=0, ; Fixed Y for field interpolation
                                                         &po x=22.470,y=11.486&
xminf=0,xmaxf=15,
                    X range for field interpolation
                                                         &po x=25.700,y=8.256&
             ; The next 6 terms refer to the harmonic
                                                         &po x=25.700,y=0.0&
   analysis:
                                                         &po x=33.080,y=0.0&
                ; Quadrupole symmetry
Ktype=4,
                                                         &po x=33.080,y=33.080&
nterm=10,
                  ; Number of coefficients
                                                         &po x=5.837,y=5.837&
                 ; Number of arc points for interpolation
nptc=10,
                                                         &reg mat=1,cur=11416.4&
                 ; Radius of the arc for interpolation
rint=7.0,
                                                         &po x=14.214, y=3.230&
angle=45,
                 ; Angular extent of arc (default start =
                                                         &po x=22.470,y=11.486&
   0)
rnorm=1.0&
                   ; Aperture radius for normalization
                                                         &po x=25.700,y=8.256&
                                                         &po x=17.444, y=0.0&
```

&po x=14.214, y=3.230&

1.4 例子_Quadrupole

® ibound=0&

&po x=33.080,y=33.080&

&po x=5.837,y=5.837&

&po x=0.0,y=0.0&

&mt mtid=3

bgam=0.00000E+00 0.0017513135 ! Start of B,Gamma data

0.11420E+04 0.0017513135

0.29530E+04 0.0010159504

0.51140E+04 0.0007821666

0.84760E+04 0.0007078644

0.96670E+04 0.0007241130

0.10578E+05 0.0007562580

0.11319E+05 0.0007951022

0.11940E+05 0.0008375209

0.12451E+05 0.0008834703

0.12912E+05 0.0009293680

0.13313E+05 0.0009764671

0.13654E+05 0.0010253255

0.13935E+05 0.0010764263

0.14216E+05 0.0011254924

0.14447E+05 0.0011767475

0.14618E+05 0.0012313603

0.14789E+05 0.0012846865

0.15020E+05 0.0013315579

0.15131E+05 0.0013879251

0.15252E+05 0.0014423770

0.15432E+05 0.0014912019

0.15594E+05 0.0015389351

0.15705E+05 0.0015918497

0.16180E+05 0.0018542555

0.16840E+05 0.0023752969

0.17150E+05 0.0029154519

0.17360E+05 0.0034566194

0.17620E+05 0.0039729837

0.17830E+05 0.0044863167

0.18200E+05 0.0054945055

0.18950E+05 0.0079176564

0.19500E+05 0.0102564103

0.20200E+05 0.0148588410

0.20650E+05 0.0193798450

0.20950E+05 0.0238663484

0.21600E+05 0.0370370370

0.21900E+05 0.0456621005

0.23000E+05 0.0869565217

0.23386E+05 0.1002810000

0.23850E+05 0.1181630000

0.24408E+05 0.1387420000

0.25079E+05 0.1622460000

0.25885E+05 0.1888580000

0.26854E+05 0.2186950000

0.28019E+05 0.2517840000 &

二、Mafia 程序使用简介

多用途的ECAD系统, 在工业和实验室研究中 应用了20多年,可以解 决从静态到高频的电磁 场问题。

MAFIA建立在有限积分 (Finite Integration) 方法基础上。

MAFIA包括不同的求解 模块和预处理、后处理 程序。统一的图形界面 实现了从常数结构、计 算到后处理等模块的转 换。

M: 预处理模块,建立求解问题的几何模型(包括计算区域、形

状等)

P: 进行图形显示,给出计算结果等。

S: 能处理由泊松方程描述的各种物理问题: 静电、磁场, 恒流 场,稳态温度场等。

W3: 在频域求解Maxwell方程组,可以计算包括涡流的低频到高

频的电磁场问题。

Flux density distribution of permanent magnet motor

Temperature fields of energy transformers and power semi-conductors

Current field of a circuit breaker

Eddy current sensor

-2.1 Mafia 程序简介

E: 计算2D、3D结构的谐振腔、波导中的相关问题。

Resonant Cavity (E)

2.1 Mafia 程序简介

T2、T3:在时域中求解Maxwell方程组,如辐射和散射问题。天线、微带线、连接器、功分器、耦合器等的静态参数(S参数、阻抗)计算;瞬态问题计算。

Patch Antenna (T3)

Horn Antenna (T2)

TS2、TS3: 粒子在静态、高频场作用下的行为; 电子枪、阴极、聚焦偏转设备、高功率管等设计(使用PIC方法)

2.1 Mafia 程序简介

2.1 Mafia 程序简介

● Mafia中的数值计算方法

采用有限积分法解Maxwell方程组,直接得到电场和磁场。

有限积分技巧 FIT — Finite Integral Technique

将Maxwell方程组离散成一系列自洽的矩阵方程组。

● MAFIA中的FIT数值计算方法

- ä 网格的划分(空间离散化)
- ä 物理量在网格单元上的定义(物理量的离散化)
- ä 麦氏方程组在网格上的表示(麦氏方程的离散化)
- ä 电磁场在网格中边界条件的解决方法(双网格)

-2.1 Mafia 程序简介

● 离散麦氏方程组

$$\oint_{\delta A} \mathbf{E} \ d\mathbf{s} =$$

$$e_i + e_j - e_k$$

$$Real \, Space \quad \Leftrightarrow \quad Grid \, Space \\ R^3 \otimes R_+ \qquad R^{3N} \otimes R_+ \\ \int_{\partial A} \mathbf{E} \cdot d\mathbf{s} = -\int \int_A \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{A} \Leftrightarrow \quad C \mathbf{D_s} \mathbf{e} = -\mathbf{D_A} \dot{\mathbf{b}} \\ \int_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \int \int_A \left(\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \right) \cdot d\mathbf{A} \Leftrightarrow \quad \tilde{\mathbf{C}} \tilde{\mathbf{D}_s} \mathbf{h} = \tilde{\mathbf{D}_A} (\dot{\mathbf{d}} + \mathbf{j}) \\ \int \int_V \mathbf{B} \cdot d\mathbf{A} = \mathbf{0} \Leftrightarrow \quad S \mathbf{D_A} \mathbf{b} = \mathbf{0} \\ \int \int_V \left(\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \right) \cdot d\mathbf{A} = \mathbf{0} \Leftrightarrow \quad \tilde{\mathbf{S}} \tilde{\mathbf{D}_A} (\dot{\mathbf{d}} + \mathbf{j}) = \mathbf{0} \\ \mathbf{D} = \epsilon \mathbf{E} \Leftrightarrow \quad \mathbf{d} = \tilde{\mathbf{D}_\epsilon} \mathbf{e} \\ \mathbf{B} = \mu \mathbf{H} \Leftrightarrow \quad \mathbf{b} = \mathbf{D}_\mu \mathbf{h} \\ \mathbf{J} = \kappa \mathbf{E} + \rho \mathbf{v} \Leftrightarrow \quad \mathbf{j} = \tilde{\mathbf{D}}_\kappa \mathbf{e} + \mathbf{D}_\rho \mathbf{v} \\ \mathbf{div} \, \mathbf{curl} \equiv \mathbf{0} \Leftrightarrow \quad \tilde{\mathbf{C}}^t \, \tilde{\mathbf{S}}^t = \mathbf{C}^t \, \mathbf{S}^t = \mathbf{0} \\ \mathbf{curl} \, \mathbf{grad} \equiv \mathbf{0} \Leftrightarrow \quad \tilde{\mathbf{C}}^t \, \tilde{\mathbf{S}}^t = \mathbf{C}^t \, \mathbf{S}^t = \mathbf{0} \\ \end{aligned}$$

2.1 Mafia 程序简介

● 双网格

- ä电场分量在面的边上。
- ä磁场分量在面的中心。
- \ddot{a} 磁场与电场在不同的网格上,即磁场网格 \tilde{G} 和电场网格G。

三维网格单元中的双网格

- S 模块简介
- S 模块背景知识
- S 模块菜单介绍
- S 模块的具体例子
- S 模块总结

- MAFIA的S模块是MAFIA众模块的组成部分 之一,它可以解决静场问题,也有许多与静场相 类似的问题,例如稳态温度场问题、恒流问题等 也可以用S模块解决。
- S 模块可以解决的问题:
 - 1) 静电场问题
 - 2) 静磁场问题
 - 3) 恒流问题
 - 4) 稳态温度场问题
 - 5) 准静电场问题

-2.2.1 Mafia S模块简介

S 模块采用的坐标系统 (直角坐标或圆柱坐标系统)

- \bullet (x, y, z)
- \bullet (x, y)
- \bullet (r, f, z)
- (r, z)

激励静场的源

- 电压源
- 电流源
- 电荷密度源

几种可以选择的边界条件:

- 封闭的边界条件 (例如 Dirichlet 或 Neumann 边界条件)
- 周期性的边界条件
- 开放的边界条件
- 混合型的边界条件(温度场问题)

每个部分都有独立的等式系统并且需要分别求解。

静磁场

$$curl\stackrel{
ightarrow}{B} = \stackrel{
ightarrow}{J}$$

$$\overrightarrow{div} \stackrel{\rightarrow}{B} = 0$$

恒流场

$$curl\vec{E} = 0$$

$$div(k\vec{E}) = q$$

静电场

$$curl\vec{E} = 0$$

$$div(\varepsilon \stackrel{\rightarrow}{E}) = q$$

稳态温度场问题

$$div(k \bullet gradT) = w$$

$$curl(gradT) = 0$$

2.3 Mafia S模块菜单介绍

主菜单窗口

Plot 窗口

2.3 Mafia S模块菜单介绍

选择 Module 窗口

2.3 Mafia S模块菜单介绍

S模块窗口

S模块特性窗口

● C型磁铁形成的静磁场(非线性问题) 我们在本例子中将计算一个非线性磁铁的静态磁场,下图显示了该磁铁的形状。

2.4 S模块具体例子-

- ·新建一个MAFIA文件
- 设定结构参数

~2.4 S模块具体例子

• 建立结构模型

• 建立结构模型

• 建立结构模型

第四条导线定义可以同第二条导线定义一样,不过我们不需要重新定义转型了,只需要用导线二定义好的转型即可。步骤如下:

- 1. 将filament 4输入到Name of the filament文本域中
- 2. 按Modify...键
- 3. 选择Name of the transformation 文本域中的transfrm_1
- 4. 按OK键.
- 5. 按Add键
- 6. 按Close键关闭对话框

• 划分结构网格

• 画出结构图形

•精确划分网格

Automesh				
Remodel	Axis		❖ Z	
Auto remodel	y-Coordinate/Density	0.0	1.0	
Show		y-Coordinate	Density	Modified only
Reset automesh		0.0 0.1 0.3	1.0 1.0 0.5	
Delete shapes	Mesh points	25000	Set	
Delete all	Smoothness	3	Set	
Close Iconify				Help
Set maximum number of p	oints and update mesh		Remodelling done	

• 绘制精确划分网格后作图

• 定义计算类型

• 定义非线性表

• 定义材料特性

Set the Material Properties					
Material number		Material type	◆ normal ◇		
		Relative permeat	ility		Polarization
	Set	◆ isotrope	xyz-mu 1.0		x-pol 0.0
		anisotrope			y-pol 0.0
					z-pol 0.0
	Show		,		
	Show all	◆ total			Fillfactor
			<u></u>		x-fill 1.0
					y-fill 1.0
					z-fill 1.0
Close Iconify Help					
Accept input and set values done					

• 定义边界条件

First symmetry plane66

• 设置导线特性

• 开始解场计算

• 显示计算结果—二维

• 显示计算结果—二维导磁率分布

按Contour...后将出现Change style of 2D-Contour Plots对话框:

• 重新显示计算结果—二维导磁率分布

● 静磁场问题 总结:

步骤	动作
建立一个新 MAFIA 文件	File/New
设定结构参数	Controls/Modify Variables
建立结构	Shapes/brick Shapes/filaments Shapes/filaments->Modify -转换一根导线形状
划分网格	Mesh/Automesh Mesh/Remodel meshfill -检验元素顺序
画出结构图	Plot3D Plot (material + filaments)
改变网格密度	MeshAutomesh -设置密度值
画出结构图	Plot2D Plot -设置绘图平面
场解计算	Module /S - the static solver Properties/Define problem type Properties/Non-linear characteristics - 也可以写命令文件 Properties/Material properties Properties/Boundary conditions Properties/Filament properties Solver /Field solver -开始场计算
绘制 B 场	Plot2D Plot -symbol "b" -Plotstyle Arrows
用轮廓图绘制 mue (area averaging)	Plot2D Plot -symbol "mue" Plotstyle: contour
用轮廓图绘制 mue (cell averaging)	Plot2D Plot Contour Style: cell

S模块利用有限积分技巧(FIT)将麦克斯韦方程转化成一系列自洽的离散矩阵方程组,然后解场分布;对于满足泊松方程的稳态问题(温度场问题等)也可以解决。

所采用的坐标系可以多样化,激励静场的源也可以是多样化,边界条件也可以多样化,是解决静场问题的有力工具。

➤ CST专有技术之1: PBA-理想边界拟合

	Geometry Approximation	Calculation Speed
FE	+	-
FDTD, TLM, FI (MAFIA 4)	-	+
FI+PBA (CST MWS+EMS)	+	+

From: CST China, CST高级三维电磁场仿真软件

➤ CST专有技术之2: TST-薄片技术

	Geometry Approximation	Calculation Speed
FE	+	-
FDTD, TLM, FI (MAFIA 4)	-	+
FI+PBA (CST MWS+EMS)	++	+

From: CST China, CST高级三维电磁场仿真软件

- > CST中三维结构的创建
- 1) 自带基本三维结构创建功能
- 2) 可读入 AUTOCAD、 SOLIDWORKS等程序 创建的结构

#cadmesh action=read filename='9cell' filetype=stl name=cad_1 material=1 fillmode=diagonal figurefill=solid flip=no transform=unity execute

➤ CST对网格数量的要求

From: CST China, CST高级三维电磁场仿真软件

