

2018-2019 Ikasturtea

Irakaslea: Jose Manuel Gonzalez

Teknologia Elektronikoko Saila

5128 – Bilboko Ingeniaritza Eskola (II Eraikina)

josemanuel.gonzalezp@ehu.eus

GAIAREN GAI-ZERRENDA

- 1. Sarrera
- 2. Transistore motak
- 3. Transistore bipolarra (BJT)
- 4. Eremu efektuzko transistorea (FET)
- 5. Diodoen aplikazioak

1. SARRERA

- Bi PN juntura
- Triterminala
- Aktiboa

- Tentsioz edo korrontez kontrolatua
- Funtzionamendu egoera desberdinak

$$i = f(v_{AB}, v_{K.T.})$$
$$i = f(v_{AB}, i_{K.T.})$$

o Ezaugarri grafikoa:

2. Transistore motak

o Transistore bipolarra (BJT)

- Elektroien eta hutsuneen mugimendua
- Kontrol magnitudea: korrontea
- Bi mota: PNP edo NPN

o Transistore unipolarra (FET)

- Eremu efektuzko transistoreak
- Elektroien edo hutsuneen mugimendua
- Kontrol magnitudea: tentsioa
- Bi mota:
 - JFET
 - MOSFET (N kanalekoa edo P kanalekoa)

o Juntura bakarreko transisoreak (UJT)

Oso konplexua → Ez dugu ikusiko

3. Transistore bipolarra (BJT)

o Kontrol magnitudea: Korrontea

Bi PN juntura

PNP transistore bipolarra

NPN transistore bipolarra

3. Transistore bipolarra (BJT)

o Magnitudeak:

- Terminaletako korronteak I_C, I_B, I_E
- Potentzial diferentziak $V_{{\scriptscriptstyle BC}}, V_{{\scriptscriptstyle BE}}, V_{{\scriptscriptstyle CE}}$
- 2 portaera ekuazio
- Hitzarmena

o Transistorearen polarizazioa:

o Transistorearen polarizazioa:

3. Transistore bipolarra (BJT)

o Portaera ekuazioak:

1.
$$I_E = I_B + I_C$$

2.
$$V_{BC} = V_{BE} - V_{CE}$$

$$3. \ \mathbf{V}_{BB} = R_B I_B + V_{BE}$$

3.
$$V_{BB} = R_B I_B + V_{BE}$$
 4. $V_{CC} = R_C I_C + V_{CE}$

$$5. I_C = f(V_{CE}, I_B)$$

6.
$$I_B = g(V_{BE}, V_{CE})$$

- 5 eta 6 dira transistorearen portaera ekuazioak
- Transistorearen funtzionamendu edo operazio puntua:

$$Q(I_B, I_C, I_E, V_{BE}, V_{CE}, V_{BC}) \rightarrow Q(I_B, I_C, V_{BE}, V_{CE})$$

o Ezaugarri kurbak:

o Ezaugarri kurbak:

Sarrera zirkuitua

6.
$$I_B = g(V_{BE}, V_{CE}) \rightarrow I_B = g(V_{BE})$$

o Ezaugarri kurbak:

Irteera zirkuitua

3. Transistore bipolarra (BJT)

NPN

o Funtzionamendu egoerak:

- 2 PN juntura
 - o 2² funtzionamendu egoerak

kolektorea

				♥ E
Egoera	Etendura	Alderantzizko gune aktiboa	Gune aktiboa	Asetasuna
BE juntura	A.P.	A.P.	Z.P.	Z.P.
BC juntura	A.P.	Z.P.	A.P.	Z.P.

- C eta E definituta daude baina oso antzekoak...
- Alderantzizko gune aktiboa ez da asko erabiltzen

3. Transistore bipolarra (BJT)

o Funtzionamendu egoerak:

- Etendura edo kortea:
 - BE juntura A.P. eta BC juntura A.P.

$$\begin{vmatrix} 1. & I_{E} = I_{B} + I_{C} \\ 3. & V_{BB} = R_{B}I_{B} + V_{BE} \\ 5. & I_{C} = f(V_{CE}, I_{B}) \end{vmatrix} \begin{vmatrix} 2. & V_{BC} = V_{BE} - V_{CE} \\ 4. & V_{CC} = R_{C}I_{C} + V_{CE} \\ 6. & I_{B} = g(V_{BE}, V_{CE}) \end{vmatrix}$$

$$V_{BE} \leq 0.7V$$

$$V_{BC} \leq 0.7V$$

Ez da korronterik igarotzen

5.
$$I_C = 0$$
 6. $I_B = 0$

6.
$$I_{R} = 0$$

Baldintza:

$$V_{RF} \le 0.7V$$

Ekuazioak:

$$I_C = 0, \quad I_B = 0$$

o Funtzionamendu egoerak:

- Gune aktiboa:
 - BE juntura Z.P. eta BC juntura A.P.

1.
$$I_{E} = I_{B} + I_{C}$$
 2. $V_{BC} = V_{BE} - V_{CE}$
3. $V_{BB} = R_{B}I_{B} + V_{BE}$ 4. $V_{CC} = R_{C}I_{C} + V_{CE}$
5. $I_{C} = f(V_{CE}, I_{B})$ 6. $I_{B} = g(V_{BE}, V_{CE})$

$$V_{BE} = 0.7V \qquad V_{BC} \le 0.5V$$

- Korrontea bi junturetan I_B<<I_C
 - 5. $I_C = \beta \cdot I_B$ 6. $V_{BE} = 0.7V$

Baldintza: $V_{BC} \le 0.5V$

B

Ekuazioak:

$$V_{BE} = 0.7V, \quad \frac{I_C}{I_B} = \beta$$

o Funtzionamendu egoerak:

- Asetasuna:
 - BE juntura Z.P. eta BC juntura Z.P.

$$V_{BE} = 0.7V \qquad V_{BC} = 0.5V$$

o Korrontea igarotzen da

6.
$$V_{RE} = 0.7V$$

Ekuazioak:

$$V_{BE} = 0.7V,$$

$$V_{CE} = 0.2V \text{ edo } V_{BC} = 0.5V$$

3. Transistore bipolarra (BJT)

o Funtzionamendu egoerak

α irabazia kontzeptua:

$$I_E = I_B + I_C = \frac{I_C}{\beta} + I_C = \frac{1+\beta}{\beta} \cdot I_C \rightarrow \alpha = \frac{I_C}{I_B} = \frac{\beta}{\beta+1}$$

• Funtzionamendu egoerak ezaugarri kurban:

o Funtzionamendu egoerak:

• Hurbilketak (laburpena):

Egoera	Etendura	Gune aktiboa	Asetasuna
Baldintzak	$V_{BE} \leq 0.7V$	$V_{BC} \le 0.5V$	$\frac{I_C}{I_B} \le \beta$
Eredua	I = I = I = 0	$V_{BE} = 0.7V$	$V_{BE} = 0.7V$
	$I_C = I_B = I_E = 0$	$\frac{I_C}{I_B} = \beta$	$V_{BC} = 0.5V$
	↑ C	$ \begin{array}{c} $	$\frac{\uparrow C}{T}$ 0.2V
	B	B + 0.7	B + 0.7

3. Transistore bipolarra (BJT)

o Funtzionamendu egoerak:

• Hurbilketak (grafikoki):

o Funtzionamendu egoerak:

• Hurbilketak (idealak):

Egoera	Etendura	Asetasuna
Eredua		$V_{BE} = 0V$
	$I_C = I_B = I_E = 0$ $V_{CE} = 0V$	
	$\begin{array}{c c} & & & C \\ & & & \\ B & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	$V_{BE} = 0 \text{ V}$ $V_{CE} = 0 \text{ V}$ E

o Zenbakizko ebazpidea:

- Idatzi zirkuituari dagozkion ekuazioak
- 2. Idatzi transistorearen portaera-ekuazioak
- Hipotesia egin: transistorearen egoera funtzionamendua suposatu
- 4. Dagokion hurbilketaz ordezkatu
- 5. Zirkuitua ebatzi
- 6. Hipotesia zuzena den egiaztatu
 - Zuzena ez bada 3. puntura bueltatu eta beste hipotesi bat egin
- 7. Zirkuituaren emaitza eman (polarizazio puntua)

o Ebazpide grafikoa:

- Sarrera zirkuituaren (I_B, V_{BE}) eta irteerako zirkuituaren (I_C, V_{CE}) ezaugarri kurbak ezagunak
- Sarrerako karga-zuzena

KTL:
$$V_{BB} = R_B I_B + V_{BE}$$

Karga zuzena:
$$I_B = \frac{V_{BB}}{R_B} - \frac{1}{R_B} \cdot V_{BE}$$

o Ebazpide grafikoa:

Irteerako karga-zuzena

o Kontrol magnitudea: Potentzial diferentzia

- Eremu elektrikoak funtzionamenduan eragina dauka
- Korrontea: bakarrik elektroien edo zuloen mugimendua, motaren arabera
- JFET
- MOSFET: N kanalekoa edo P kanalekoa

o JFET – Ikurrak:

Ikurrak:

N kanaleko JFET transistorea

D hobia

G
atea

P kanaleko JFET transistorea

N kanaleko JFET transistorea

P kanaleko JFET transistorea

o MOSFET - Motak:

Ugaltze MOSFET: D eta S fisikoki separatuta

Urritze MOSFET : D eta S artean

B: Oinarria/Euskarria ez da terminal bat

o MOSFET - Motak:

• Ugaltze MOSFET:

• Urritze MOSFET:

o MOSFET – Magnitudeak:

- Hiru magnitude portaera analizatzeko (I_D, V_{DS} eta V_{GS})
- I_G=0 beti
- Polarizazioa egokia
 - Ugaltze → Kanala sortu S eta D artean

Urritze → S eta D arteko kanala estutu

o N kanaleko ugaltze MOSFETa – Egitura:

- Atea elektrikoki isolatuta dago gailuan
- Ez dago konexio elektrikorik ate eta oinarriaren artean

N kanaleko ugaltze MOSFETa – Transferentzia kurbak:

N kanaleko ugaltze MOSFETa – Transferentzia kurbak:

- Operazio puntua: Q (I_{DQ}, V_{DSQ}, V_{GSQ})
- I_D , bi tentsioen funtzio: $I_D = f(V_{GS}, V_{DS})$
- Esperimentalki lortzen da
- 1. kurba: V_{DS} mantendu, I_D=f(V_{GS}) (asetasunean)

$$I_{D} = I_{Don} \cdot \left(\frac{V_{GS} - V_{T}}{V_{GSon} - V_{T}}\right)^{2}$$

N kanaleko ugaltze MOSFETa – Transferentzia kurbak:

2. kurba: V_{GS} balio ezberdinentzat, I_D=f(V_{DS})

N kanaleko ugaltze MOSFETa – Funtzionamendu egoerak:

Egoera	Baldintzak	Ekuazioak	Eredua
Etendura	$V_{GSQ} \leq V_T$	$I_D = 0$	G I_S
Gune ohmikoa	$V_{GSQ} \ge V_T$ $V_{DSQ} \le V_{DSsat}$	$I_D = \frac{V_{DSS}}{R_{DS}}$	$ \begin{array}{c} $
Asetasuna	$V_{GSQ} \ge V_T$ $V_{DSQ} \ge V_{DSsat}$	$I_{D} = K \cdot I_{Don}$ $K = \left(\frac{V_{GS} - V_{T}}{V_{GSon} - V_{T}}\right)^{2}$	$G \longrightarrow G$

N kanaleko ugaltze MOSFETa – Funtzionamendu egoerak konmutazioan:

Egoera	Baldintzak	Ekuazioak	Eredua
Etendura	$V_{GSQ} \leq V_T$	$I_D = 0$	G I_S
Kondukzioan	$V_{GSQ} \ge V_T$	$V_{DS}=0$	G D S

o P kanaleko ugaltze MOSFETa:

n-kanalekoa

V_{DS} positiboa
 V_{GS} positiboa
 I_D positiboa (sartzen da)

p-kanalekoa

 V_{DS} negatiboa V_{GS} negatiboa (ateratzen da)

P kanaleko ugaltze MOSFETa – Funtzionamendu egoerak:

Egoera	Baldintzak	Ekuazioak	Eredua
Etendura	$V_{GSQ} \ge V_T$	$I_D = 0$	G I_S
Gune ohmikoa	$\begin{aligned} V_{GSQ} &\leq V_T \\ V_{DSQ} &\leq V_{DSsat} \end{aligned}$	$I_D = \frac{V_{DS}}{R_{DS}}$	$G = \int_{S}^{D}$ RDS
Asetasuna	$V_{GSQ} \leq V_{T}$ $V_{DSQ} \geq V_{DSsat}$	$I_{D} = K \cdot I_{Don}$ $K = \left(\frac{V_{GS} - V_{T}}{V_{GSon} - V_{T}}\right)^{2}$	$G \xrightarrow{D}$

P kanaleko ugaltze MOSFETa – Funtzionamendu egoerak konmutazioan:

Egoera	Baldintzak	Ekuazioak	Eredua
Etendura	$V_{GSQ} \ge V_T$	$I_D = 0$	G I_S
Kondukzioan	$V_{GSQ} \leq V_T$	$V_{DS}=0$	G D S

o Urritze MOSFETa:

- Kanala existitzen tentsio gabe
- V_{DS}>0 aplikatzen bada korrontea eroan
- N kanaleko → Kanala desagerrarazteko V_{GS}<0
- P kanaleko → Kanala desagerrarazteko V_{GS}>0

