ローレンツカ — Lorentz force

青木健一郎 日吉物理学教室

2018年度

磁場内の電荷と Lorentz カ

磁場B内で電荷q(速度 \vec{v})はどのような力を受けるか?

ローレンツカ
$$ec{F} = qec{v} imes ec{B}$$

 \vec{v} と \vec{B} の作る平面に垂直な方向に力 \vec{F} が働く。力の大きさは \vec{v} , \vec{B} の作る 平行四辺形の面積。(「外積」:ベクトル同士の掛け算)「フレミングの左手 の法則」

磁場に運動方向が垂直な場合には,力の大きさはF=qvB.

電流とは?

電流は電荷(q)の流れ。電線を 流れる電流(I)は

$$I = qnSv$$

n:電荷の密度,v:電荷の速さ,

S: 電線の断面積.

● 長さℓの電線の中の電荷の数:

 $nS\ell$

長さℓで磁場に垂直な電流にかかるローレンツ力:

$$F_I = nS\ell \times qvB = \ell IB$$

実験の原理

- ブランコに電流を流して、「乗る部分」に磁場をかける。
- 傾いて静止する ⇔ 重力, ローレン ツカ, ブランコの張力が釣り合う.
- てこの原理を使って、釣り合いの条件:

$$\frac{F}{mgr/L} = \frac{x}{L} \quad \Leftrightarrow \quad F = \frac{mgr}{L^2}x$$

(テキストの式, ブランコの傾き小さければ[$L\gg x$], Lはブランコの長さ).

ブランコから求めた磁場の強さと、 測定器で直接測った磁場の強さを比較。

相対性と電場, 磁場

電場 (\vec{E}) と磁場 (\vec{B}) がある場合に電荷が受ける力.

$$\vec{F} = q \left(\vec{E} + \vec{v} \times \vec{B} \right)$$

磁場だけある場合

$$\vec{F} = q\vec{v} \times \vec{B}$$

電荷が静止している系では(電子が静止して見える人からは)? \Rightarrow 磁場からは力を受けない! 力は受けない? それはあり得ない \Rightarrow 電場 \vec{E}' (大きさはvB) が生じているはず

$$\vec{F} = q\vec{E}'$$

動いている人から見ると、磁場が電場に(NSが+一に)見える! \leftarrow 相対性理論

ローレンツカと応用

• モーター

電流が電磁場(電磁石)を生じ、永久磁石から力を受けて回る。図の直流モーターでは電磁石の磁場の向きが常に右側を向くようにできている。

・スピーカー

コイルが電流により(時間的に変化する) 電磁石を作り、永久磁石から受ける力によ り動くことによってコーンが振動.

レール・ガン

弾が回路の一部になり、電磁場を発生. その磁場から受ける力により弾が発射される.

● 粒子加速器 ← 実験「電子の質量と電荷の比」