Stability

Chong-Jin Ong

Department of Mechanical Engineering, National University of Singapore

Outline

- Introduction
- 2 Input-Output Stability
- 3 Internal Stability
- 4 Lyapunov Stability

Introduction

- Stability of a system is an important concept in the study of linear dynamical system.
- Every working system must be stable, no unstable can be used in practice.
- The concept of Stability can take different forms depending on its definitions.

Introduction

We begin with the standard input-output stability

Recall that for a LTI s.s. system,

$$y(t) = Ce^{At}x_0 + \int_0^t Ce^{A(t-\tau)}Bu(\tau)d\tau$$

- Input-output stability considers just the input-output representation and this means $x_0 = 0$.
- In the case of a SISO system, the output expression can also be represented as

$$y(t) = \int_0^t g(t - \tau)u(\tau)d\tau = \int_0^t g(\tau)u(t - \tau)d\tau$$

• In Laplace domain, it becomes Y(s) = G(s)U(s) and hence $y(t) = \mathcal{L}^{-1}[G(s)]$, the impulse response of the system when u(t) is an impulse.

BIBO Stability

• Definition: An input u(t) is said to be bounded if u(t) does not grow to positive or negative infinity or, equivalently, there exists a constant m such that

$$|u(t)| \le m < \infty$$
 for all $t \ge 0$.

• A system is Bounded-Input-Bound-Output (BIBO) stable if for any bounded input, the output is bounded, i.e.,

For all
$$|u(t)| \le k_1 < \infty \forall t \ge 0, |y(t)| \le k_2 < \infty$$

• Theorem 5.1: A SISO system is BIBO stable if and only if

$$\int_0^\infty |g(t)|dt \le k < \infty \tag{1}$$

for some constant k.

• (1) is also known as absolute integrable.

BIBO Stability

Proof: (\Rightarrow) Suppose $\int_0^\infty |g(t)|dt \le k < \infty$, then

$$|y(t)| = |\int_0^t g(\tau)u(t-\tau)d\tau| \le \int_0^t |g(\tau)||u(t-\tau)|d\tau$$

$$\le \int_0^\infty |g(\tau)||u(t-\tau)|d\tau \le k_1 \int_0^\infty |g(\tau)|d\tau \le k_1 k$$

Thus, output is bounded for all $t \geq 0$.

(\Leftarrow) Suppose $\int_0^\infty |g(t)|dt = \infty$, we show that a bounded input exists for which the output goes unbounded. Choose the bounded input according to

$$u(t - \tau) = \begin{cases} 1, & \text{if } g(\tau) > 0; \\ 0, & \text{if } g(\tau) = 0; \\ -1, & \text{if } g(\tau) < 0. \end{cases}$$

Then $|y(t)| = |\int_0^t g(\tau)u(t-\tau)d\tau| = \int_0^t |g(\tau)|d\tau$ and $\int_0^\infty |g(\tau)|d\tau = \infty$. This means output is unbounded under a bounded input \Rightarrow system is not BIBO stable.

BIBO Stability

- Theorem 5.2: The SISO system with proper rational transfer function G(s) is BIBO stable if and only if all the poles of G(s) are in the open left-half s-plane, or equivalently, all poles of G(s) have negative real parts.
- Proof: If G(s) is a proper transfer function, it can be expressed as

$$G(s) = \gamma + \sum_{i,j} \frac{\beta_{ij}}{(s - \lambda_i)^{k_j}}$$

This means that the impulse response g(t) is a sum of finite number of terms $t^{k_j-1}e^{\lambda_i t}$ and possibly the δ function (corresponding to the inverse Laplace of a constant). Since $t^{k_j-1}e^{\lambda_i t}$ is absolutely integrable if and only if λ_i has negative real part. Hence, the system is BIBO stable if and only if all poles of G(s) have negative real parts.

- The above is easily extended to MIMO system.
- The MIMO transfer function G(s) of dimension $p \times m$ is BIBO stable if and only if all poles of every entry of G(s) have negative real parts.

- Internal Stability deals with zero-input response while BIBO stability deals with zero-state response.
- Hence, the easiest is to consider the stability of

$$\dot{x} = Ax, \quad x(0) = x_0 \tag{2}$$

To start, consider the concept an equilibrium point

• The equilibrium point x_e is defined as those states that satisfy

$$Ax_e = 0 (3)$$

If A is a non-singular matrix, the only equilibrium point is $x_e = 0$. Otherwise, there is an infinite number of equilibrium points.

• (Shifting of origin) It is convenient to shift the origin of the state-space representation of the system to the equilibrium. This is done by letting

$$\hat{x}(t) = x(t) - x_e \Rightarrow \dot{\hat{x}} = \dot{x}(t) - \dot{x}_e = \dot{x}(t)$$
(4)

$$\Rightarrow \dot{\hat{x}} = Ax(t) = A(\hat{x}(t) + x_e) = A\hat{x}(t) \tag{5}$$

Hence, Internal Stability is done with the equilibrium point as the origin.

• Definition: The origin (or the equilibrium point) of the system

$$\dot{x} = Ax, \quad x(0) = x_0$$

is stable in the sense of Lyapunov (i.s.L.) if, for every real number $\epsilon > 0$, there exists a $\delta(\epsilon) > 0$, such that if $||x(0)|| \le \delta$ then $||x(t)|| \le \epsilon$ for all $t \ge 0$.

• This has the equivalent notion of boundedness in the response.

Figure: Stability in the sense of Lyapunov

• Definition: The origin (or the equilibrium point) of the system

$$\dot{x} = Ax, \quad x(0) = x_0$$

is asymptotically stable in the sense of Lyapunov (i.s.L.) if

(i) the origin is stable in the sense of Lyapunov and (ii) every initial state x(0) results in

$$||x(t)|| \to 0 \text{ as } t \to \infty$$

• Asymptotic stability ensures that every motion will eventually approach the origin.

Figure: Asymptotic Stability in the sense of Lyapunov

• Definition: (Instability in the sense of Lyapunov) The origin is said to be unstable if for some real number $\epsilon > 0$ and any real number $\delta > 0$ no matter how small, there is always an initial state x(0) inside $S(\delta) = \{x | ||x|| \le \delta\}$ such that the trajectory x(t) starting at x(0) will leave $S(\epsilon)$ at some time $t < \infty$.

Figure: Instability in the sense of Lyapunov

Lyapunov Theorem

- The concept of Lyapunov Stability is general can be extended to general nonlinear system.
- In fact, it is the most common tool for ensuring stability for general nonlinear system.
- We now introduce the Lyapunov Direct Method for general nonlinear autonomous system of the form

$$\dot{x} = f(x)$$

- It uses a scalar function V(x), commonly known as the Lyapunov Function.
- Can be seen as a generalized energy function.

Lyapunov Theorem

- Properties of a candidate V(x) are
 - V(x) is continuous with respect to x and has continuous $\frac{dV}{dx}$ in a domain $D \subset \mathbb{R}^n$.
 - V(0) = 0.
 - V(x) > 0 in D except at x = 0.
- **Theorem 5.3**: If V(x) satisfy the three properties above and that $\frac{dV}{dt} \leq 0$ in D. Then, the origin is stable in the sense of Lyapunov. In addition, if $\frac{dV}{dt} < 0$ in D except at x = 0, then the origin of $\dot{x} = f(x)$ is asymptotically stable in the sense of Lyapunov.
- Proof: Not done here.
- For the case of LTI system, more specific and stronger results are known.

Lyapunov Theorem for LTI System

- Theorem 5.4: Given $\dot{x} = Ax$. The system is said to be stable i.s.L. if and only if all eigenvalues of A have zero or negative real parts and those with zero real parts has no Jordan block of order 2 or higher. The system is Asymptotically Stable i.s.L. if and only if all the eigenvalues of A have negative real parts.
- Proof: Since stability is independent of coordinate representation, consider A in Jordan form. In this form, the solution is $x(t) = e^{\Lambda t} x(0)$. To show that A is stable i.s.L., we need only to show that $e^{\Lambda t}$ is bounded. (This follows because if $||e^{\Lambda t}|| \le m$ for all t, then $||x(t)|| < ||e^{\Lambda t}|| ||x(0)|| < \epsilon$ if $||x(0)|| < \delta := \frac{\epsilon}{m}$). Consider 3 cases: (i) If all eigenvalues of A have negative real parts, then $e^{\Lambda t}$ consists of sum of terms like $t^{k-1}e^{\lambda_i}$ for $k=1,2,\cdots$. These terms goes toward zero as t approaches infinity. Hence, the origin is asymptotically stable i.s.L. (ii) If there is one λ_i having $Re(\lambda_i) > 0$, the corresponding term will grow without bound for some x(0). (iii) If $\lambda_i = 0 + j\omega_i$, the $e^{\lambda_i t}$ term will have terms that are either a constant (when $\omega_i = 0$) or proportional to $t^{k-1}sin(\omega_i t)$ or $t^{k-1}cos(\omega_i t)$. These terms are not bounded unless k=1. The k=1 case corresponds to A having no Jordan block of order 2 or higher.

Lyapunov Theorem for LTI System

• Theorem 5.5 Given

$$\dot{x} = Ax + Bu \tag{6}$$

$$y = Cx + Du (7)$$

Then asymptotic stability i.s.L. implies BIBO stability

• Proof: Since asymptotic stability i.s.L. is for

$$\dot{x} = Ax$$

and from Theorem 5.4, this implies that all eigenvalues of A have negative real parts. On the other hand, BIBO stability is defined for the transfer matrix of (6)

$$y(s) = G(s)u(s) = [C(sI - A)^{-1}B + D]u(s)$$

and the poles of G(s) are eigenvalues of A. Hence, all poles of G(s) have negative real parts and this establishes that (6) is BIBO stable.

Lyapunov Theorem for LTI System

Example: Given

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$
$$y = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

(1) Is the system asymptotically stable?

Answer: No, since eigenvalues of A are 1 and -2.

(2) Is the system BIBO stable?

Answer: Yes, since the T.F. is

$$y(s) = C(sI - A)^{-1}B + D = \begin{pmatrix} -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{s-1} & 0 \\ 0 & \frac{1}{s+2} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{s+2}.$$

• **Theorem 5.6**: The linear system

$$\dot{x}(t) = Ax, \quad x(0) = x_0$$

is asymptotic stability i.s.L. if and only if for any $Q \in \mathbb{R}^{n \times n}$ which is positive definite (and symmetric), there exists a $P \in \mathbb{R}^{n \times n}$ which is symmetric and positive definite satisfying the equation

$$A^T P + PA = -Q, (8)$$

known as the Lyapunov equation.

• Proof: (\Rightarrow) Suppose the exist $P = P^T \succ 0$ and $Q = Q^T \succ 0$ satisfying (8). We now show that A is asymptotically stable. Let

$$V(x) = x^T P x \Rightarrow \dot{V}(x) = \frac{dV(x)}{dt} = \dot{x}^T P x + x^T P \dot{x}$$
$$= x^T A^T P x + x^T P A x = x^T (A^T P + P A) x = -x^T Q x$$

Note that since $Q \succ 0$, we have $\dot{V}(x) = 0$ if and only if x = 0 and $\dot{V}(x) < 0$ for all $x \neq 0$, or

$$\dot{V}(x) = -x^{T} Q x \le -\lambda_{min}(Q) x^{T} x \le -\frac{\lambda_{min}(Q)}{\lambda_{max}(P)} x^{T} P x = -\alpha V(x)$$

where
$$\alpha = \frac{\lambda_{min}(Q)}{\lambda_{max}(P)} \succ 0$$
. (since $P, Q \succ 0$) $\Rightarrow V(t) = e^{-\alpha t}V(0)$, or $V(t) \rightarrow 0$ exponentially.

• Proof: (\Leftarrow) Suppose the system is asymptotically stable. We want to show that there exists a $P \succ 0$ that satisfy (8). Let

$$P = \int_0^\infty e^{A^T t} Q e^{At} dt \tag{9}$$

Since all eigenvalues of A have negative real parts, (9) exists and is finite. Using this choice of P,

$$A^{T}P + PA = \int_{0}^{\infty} A^{T} e^{A^{T}t} Q e^{At} dt + \int_{0}^{\infty} e^{A^{T}t} Q e^{At} A dt$$
$$= \int_{0}^{\infty} \frac{d}{dt} (e^{A^{T}t} Q e^{At}) dt = e^{A^{T}t} Q e^{At}|_{0}^{\infty} = -Q$$

Thus, P is a solution of equation (8).

• To show that $P \succ 0$, consider

$$x^{T}Px = \int_{0}^{\infty} x^{T} e^{A^{T}t} Q e^{At} x dt = \int_{0}^{\infty} x^{T} e^{A^{T}t} D^{T} D e^{At} x dt = \int_{0}^{\infty} \|D e^{At} x\|^{2} dt$$

where the property $Q = D^T D$ is used.

- Since D and e^{At} are both nonsingular matrices, $\|De^{At}x\|^2$ is zero if and only if x=0 and is greater than zero for all $x\neq 0$. Hence $P\succ 0$.
- It can also be shown that the choice of P of (9) is unique (see Kailath pg. 179).

Example:

$$\left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array}\right) = \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

Applying the A matrix into the Lyapunov Equation, we have

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} p_{11} & p_{12} \\ p_{21} & p_{22} \end{array}\right) + \left(\begin{array}{cc} p_{11} & p_{12} \\ p_{21} & p_{22} \end{array}\right) \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array}\right) = \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$$

Collecting the individual elements of the above,

$$-2p_{12} = -1$$
, or $p_{12} = 0.5$
 $p_{11} - p_{12} - p_{22} = 0$, and $2p_{12} - 2p_{22} = -1$
 $\Rightarrow p_{11} = 1.5$ and $p_{22} = 1$

Hence,
$$p = \begin{pmatrix} 1.5 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$
. Checking for $P > 0$:

$$p_{11} = 1.5 > 0, \quad \begin{vmatrix} 1.5 & 0.5 \\ 0.5 & 1 \end{vmatrix} = \frac{5}{4} > 0.$$

Solving the Lyapunov Equation

• The above example shows that $A^TP + PA = -Q$ can be solved as a linear equation

$$Mx = b (10)$$

where x corresponds the elements of P.

- Since P is symmetric, there are $\frac{n(n-1)}{2}$ number of variables.
- Solving using (10) is expensive $(O(n^6))$, especially when n is large.
- In practice, other more efficient methods are used.