Group Theory

Collapsar

E-mail: matao24@mails.ucas.ac.cn

Contents

1	有限群			 	 	 1
	1.1 群的	的基本知识		 	 	
	1.1.1	类与不变子群.		 	 	 2
	1.1.2	群的同态与同构	j	 	 	 5
	1.1.3	变换群(置换群))	 	 	
	1.1.4	群的直积与半直	积	 	 	 8
	1.2 有图	艮群表示理论		 	 	

第1章

有限群

1.1 群的基本知识

Definition 1.1.1 (群). 设 G 是一些元素的集合, $G = \{\cdots, g, \cdots\} = \{g\}$. 在 G 中定义了乘法运算, 如果 G 对这种运算满足下面四个条件:

- (1). 封闭性. $\forall f, g \in G$, 若 fg = h, 必有 $h \in G$.
- (2). 结合律. $\forall f, g, h \in G$, 都有 (fg)h = f(gh).
- (3). 有唯一的单位元. 有 $e \in G$, $\forall f \in G$, 都有 ef = fe = f.
- (4). 有逆元素. $\forall f \in G$, 有唯一的 $f^{-1} \in G$ 使得 $f^{-1}f = ff^{-1} = e$.

则称 G 为一个群.e 称为群 G 的单位元素, f^{-1} 称为 f 的逆元素.

Theorem 1.1.2 (重排定理). 设 $G = \{g_{\alpha}\}, u \in G, \exists \alpha$ 取遍所有可能值时, 乘积 ug_{α} 给出并且仅仅一次给出 G 的所有元素.

Proof. 设 $g_{\beta} \in G$, 因为 $u^{-1} \in G$, 所以 $u^{-1}g_{\beta} := g_{\alpha} \in G$, 所以 $ug_{\alpha} = u(u^{-1}g_{\beta}) = g_{\beta}$ 给出 G 的所有元素.

设 $\alpha \neq \alpha'$ 时有 $ug_{\alpha} = ug_{\alpha'}$, 两边左乘 u^{-1} 得到 $g_{\alpha} = g_{\alpha'}$. 于是 α, α' 指向群 G 里同一个元素, 与 α 可以唯一标记 G 中的元素矛盾. 所以当 α 改变时, ug_{α} 仅仅一次给出 G 中的所有元素.

Corollary 1.1.3. $g_{\alpha}u$ 在 α 取遍所有可能值时, 也给出且仅仅一次给出群 G 中的所有元素.

Definition 1.1.4 (子群). 设 H 是群 G 的一个子集, 若对于与群 G 同样的乘法运算, H 也构成一个群, 称 H 是 G 的子群, 记作 H \subset G.

Corollary 1.1.5. 群 G 的非空子集 H 是 G 的子群的充要条件是:

- (1). H 满足封闭性: 若 $h_{\alpha}, h_{\beta} \in H$, 则 $h_{\alpha}h_{\beta} \in H$.
- (2). *H* 存在逆元: 若 $h_{\alpha} \in H$, 则 $h_{\alpha}^{-1} \in H$.

Proof. 由于 $H \not\in G$ 的非空子集, 则结合律天然满足. 在保证封闭性和逆元的存在性后, 有 $h_{\alpha}h_{\alpha}^{-1}=e\in H$, 从而 H 存在单位元. 于是 H 满足群定义中的四个要求, 则 H 是一个群.

Note. 对于群 G, 它的单位元素 e 与 G 自身为 G 的子群, 称为显然子群或者平庸子群. 群 G 的非显然子群称为固有子群. 若不作特别说明, 子群一般特指固有子群.

Definition 1.1.6 (循环群). n 阶循环群是由元素 a 的幂 a^k 组成, $k = 1, 2, \dots, n$, 且 $a^n = e$, 记为: $Z_n = \{a, a^2, \dots, a^n = e\}$.

Note. 循环群的乘法可交换, 故循环群为 Abel 群.

Corollary 1.1.7. 从 n 阶有限群 G 的任一个元素 a 出发, 总可以构成群 G 的一个循环子群 $Z_k = \{a, a^2, \dots, a^k = e\}$. 称 a 的阶为 k, Z_k 是由 a 生成的 k 阶循环群.

Proof. 当 a = e 时, $\{e\}$ 为群 G 的一阶循环子群, 这是显然子群. $a \neq e$ 时 $a^2 \neq a$. 若 $a^2 = e$, 则由 a 生成 2 阶循环子群. 如 $a \neq e, a^2 \neq e, \cdots, a^{k-1} = e$, 根据重排定理, $a, a^2, \cdots, a^{k-1}, a^k$ 为 G 中不同元素. 通过增加 k, 利用重排定理, 总可以在 $k \leq n$ 中达到 $a^k = e$. 因此, 从 n 阶有限群的任意一个元素出发, 总可以生成一个 G 的循环子群.

Definition 1.1.8 (陪集或者旁集). 设 $H = \{h_{\alpha}\}$ 是群 G 的子群. 由固定的 $g \in G, g \notin H$, 可以生成子群 H 的左陪集 $gH = \{gh_{\alpha}|h_{\alpha} \in H\}$ 和 H 的右陪集 $Hg = \{h_{\alpha}g|h_{\alpha} \in H\}$.

Note. $\exists H$ 为有限子群时, 陪集元素的个数等于 H 的阶.

Corollary 1.1.9. 陪集中不含有子群 H 的元素, 即陪集不构成子群.

Theorem 1.1.10 (陪集定理). 设群 H 是群 G 的子群, 则 H 的两个左 (右) 陪集或者有完全相同的元素, 或者没有任何公共元素.

Proof. 设 $u,v\in G, u,v\notin H$,考虑由 u,v 生成的 H 的两个左陪集: $uH=\{uh_{\alpha}|h_{\alpha}\in H\},vH=\{vh_{\alpha}|h_{\alpha}\in H\}.$ 设它们有一个公共元素 $uh_{\alpha}=vh_{\beta}$,则 $v^{-1}u=h_{\beta}h_{\alpha}^{-1}\in H$. 根据重排定理, 在 γ 取遍所有可能值时, $v^{-1}uh_{\gamma}$ 给出且仅仅一次给出群 H 的所有元素,所以左陪集 $v(v^{-1}uh_{\gamma})=uh_{\gamma}$ 与左陪集 vh_{γ} 重合. 因此当左陪集 uH 和 vH 有一个公共元素时,uH 就和 vH 完全重合.

右陪集的情况同理可证.

Theorem 1.1.11 (Lagrange 定理). 有限群的子群的阶等于该有限群阶的因子.

Proof. 如图??, 设 G 是 n 阶有限群,H 是 G 的 m 阶子群. 取 $u_1 \in G, u_1 \notin H$,作左陪集 u_1H . 若包括子群 H 的左陪集串 H, u_1H 不能穷尽整个群 G, 则取 $u_2 \in G, u_2 \notin H, u_2 \notin u_1H$,作左陪集 u_2H . 根据陪集定理, u_2H 与 H 以及 u_1H 完全不重合. 继续这种做法,由于 G 为有限群,所以总存在 u_{j-1} 使得包括子群 H 在内的左陪集串 $H, u_1H, u_2H, \cdots, u_{j-1}H$ 穷尽了整个群 G. 群 G 的任一元素被包含在此左陪集串中,而左陪集串中又没有相互重合的元素,所以群 G 的元素被分成了 G 个左陪集,每个左陪集中有 G 个元素. 于是 群G的阶G = 子群G 的所G > G

Corollary 1.1.12. 阶为素数的群没有非平庸子群.

1.1.1 类与不变子群

Definition 1.1.13 (共轭). 对于群 G 中的元素 $f, h, 若 \exists g \in G$, 使得 $gfg^{-1} = h$, 称 $h \vdash f$ 共轭, 记为 $h \sim f$.

Proposition 1.1.14. 共轭的两个元素具有如下两个性质:

- (1). 对称性, 即当 $h \sim f$, 则 $f \sim h$. 且 $f \sim f$.
- (2). 传递性, 即当 $f_1 \sim h, f_2 \sim h$, 则 $f_1 \sim f_2$.

Proof. 因为 $h \sim f$, 所以存在元素 $g \in G$, 使得 $gfg^{-1} = h$, 所以 $f = g^{-1}h(g^{-1})^{-1} = g^{-1}hg$, 即 $f \sim h$.

因为 $f_1 = g_1hg_1^{-1}, f_2 = g_2hg_2^{-1}$,所以 $f_1 = g_1hg_1^{-1} = g_1(g_2^{-1}f_2g_2)g_1^{-1} = (g_1g_2^{-1})f_2(g_1g_2^{-1})^{-1}$.

Definition 1.1.15 (类). 群 G 的所有相互共轭的元素的集合组成 G 的一个类.

Note. 共轭关系的对称性和传递性使得类被其中任意一个元素所决定. 给出类中任意一个元素 f, 可以求出 f 类的所有元素:

$$f$$
类 = $\{f'|f'=g_{\alpha}fg_{\alpha}^{-1},g_{\alpha}\in G\}$.

一个群的单位元素 e 自成一类. 这是因为

$$\forall g_k \in G, g_k g_0 g_k^{-1} = g_0.$$

Abel 群的每个元素自成一类. 这是因为

$$\forall g \in G, g_k g g_k^{-1} = g g_k g_k^{-1} = g.$$

设元素 f 的阶为 m, 即 $f^m = e$, 则 f 类所有元素的阶都是 m. 这是因为

$$\forall g_{\alpha} \in G, (g_{\alpha}fg_{\alpha}^{-1})^{m} = \underbrace{(g_{\alpha}fg_{\alpha}^{-1}) \cdot (g_{\alpha}fg_{\alpha}^{-1}) \cdot \cdots \cdot (g_{\alpha}fg_{\alpha}^{-1})}_{m \uparrow \uparrow} = g_{\alpha}f^{m}g_{\alpha}^{-1} = e.$$

当 g_{α} 取遍群 G 的所有元素时, $g_{\alpha}fg_{\alpha}^{-1}$ 可能会不止一次地给出 f 类中的元素. 如 $f=e,g_{\alpha}fg_{\alpha}^{-1}$ 总是给出单位元素 e.

由共轭关系的传递性知,两个不同类之间没有公共元素.因此可以按照共轭类对群进行分割,此时每个类中元素个数不一定相同,而按照子群的陪集对群进行分割,每个陪集元素的个数都是相同的.

Theorem 1.1.16. 有限群每类元素的个数等于群阶的因子.

Figure 1.1.1. 证明示意图

Proof. 如图1.1.1, 设 G 是 n 阶有限群. $\forall g \in G$, 作 G 的子群 $H^g = \{h \in G | hgh^{-1} = g\}.H^g$ 是由 G 中所有与 g 对易的元素 h 组成的. 设 $g_1,g_2 \in G,g_1,g_2 \notin H^g$. 若有 $g_1gg_1^{-1} = g_2gg_2^{-1},$ 则有

$$(g_1^{-1}g_2)g(g_1^{-1}g_2)^{-1} = (g_1^{-1}g_2)g(g_2^{-1}g_1) = g_1^{-1}(g_2gg_2^{-1})g_1 = g_1^{-1}(g_1gg_1^{-1})g_1 = g \Rightarrow g_1^{-1}g_2 \in H^g$$

即 $g_2 \in g_1H^g$, 又按照定义有, $g_1 \in g_1H^g$, 所以 g_1, g_2 属于 H^g 的同一个左陪集 g_1H^g . 反之, 若 g_1, g_2 属于 H^g 的同一个左陪集 g_1H^g , 必有 $g_2 = g_1h$, $h \in H^g$. 于是

$$g_2gg_2^{-1} = g_1hgh^{-1}g_1^{-1} = g_1gg_1^{-1}$$

因此 g 类中元素的个数等于群 G 按照 H^g 分割陪集的个数, 亦即群 G 的阶的因子.

$$g$$
类元素的个数 = $\frac{G$ 的阶}{ H^g 的阶.

Definition 1.1.17 (共轭子群). 设 H 和 K 是群 G 的两个子群, 若有 $g \in G$ 使得

$$K = gHg^{-1} = \{k = ghg^{-1} | h \in H\},\$$

则称 $H \in K$ 的共轭子群.

Note. 共轭子群也有对称性和传递性.G 的全部子群可以分割为共轭子群类.

Definition 1.1.18 (不变子群). 设 $H \not\in G$ 的子群, 若对任意 $g \in G$, $h_{\alpha} \in H$, 有 $gh_{\alpha}g^{-1} \in H$. 即如果 H 包含 h_{α} , 则它将包含所有与 h_{α} 同类的元素, 称 $H \not\in G$ 的不变子群.

Theorem 1.1.19. 设 $H \not\in G$ 的不变子群, 对任一固定元素 $f \in G$, 在 h_{α} 取遍 H 的所有群元时, 乘积 $fh_{\alpha}f^{-1}$ 一次且仅仅一次给出 H 的所有元素.

Proof. 因为 H 是不变子群, 所以 $f^{-1}h_{\beta}f \in H$, 令 $f^{-1}h_{\beta}f = h_{\alpha}$, 则 $h_{\beta} = fh_{\alpha}f^{-1}$. 所 以 H 的任意元素 h_{β} 具有 $fh_{\alpha}f^{-1}$ 的形式. 当 $h_{\alpha} \neq h_{\gamma}$ 时, 必有 $fh_{\alpha}f^{-1} \neq fh_{\gamma}f^{-1}$.

Note. Abel 群的所有子群都是不变子群.

Corollary 1.1.20. 不变子群的左陪集和右陪集是重合的, 故不必区分, 只说不变子群的 陪集即可.

Proof. 对 G 的不变子群 H, 由 $g \in G, g \notin H$ 生成的 H 的左陪集和右陪集分别是: $gH = \{gh_{\alpha}|h_{\alpha} \in H\}, Hg = \{h_{\alpha}g|h_{\alpha} \in H\}.$ 而由 H 是 G 的不变子群知 $g^{-1}h_{\alpha}g \in H$. 由于 $g(g^{-1}h_{\alpha}g) = h_{\alpha}g \in Hg$,所以左陪集的元素 $g(g^{-1}h_{\alpha}g)$ 也是右陪集的元素. 故 H 的左右陪集重合.

Corollary 1.1.21. 设 H 是 G 的不变子群,考虑没有公共元素的 H 的陪集串 $H, g_1H, g_2H, \cdots, g_iH, \cdots$,假定陪集串穷尽了群 G,两个陪集 g_iH 和 g_jH 中元素的 乘积,必属于另一个陪集.

Proof. 因为 $g_i h_{\alpha} g_j h_{\beta} = g_i g_j g_j^{-1} h_{\alpha} g_j h_{\beta} = g_i g_j h_{\gamma} h_{\beta} = g_k h_{\delta} \in g_k H$, 其中, $h_{\gamma} = g_j^{-1} h_{\alpha} g_j$, $h_{\delta} = h_{\gamma} h_{\beta}$, $g_k = g_i g_j$.

Definition 1.1.22 (商 群). 设 群 G 的 不 变 子 群 H 生 成 的 陪 集 串 为 $H, g_1 H, g_2 H, \cdots, g_i H, \cdots$, 把其中每一个陪集看成一个新的元素, 并由两个陪集

中的元素相乘得到另一个陪集中的元素, 定义新的元素之间的乘法规则. 即

陪集串
$$\longrightarrow$$
 新元素 $H \longrightarrow f_0$ $g_1H \longrightarrow f_1$ $g_2H \longrightarrow f_2$ $g_3H \longrightarrow f_3$ \dots $g_iH \longrightarrow f_i$

乘法规则:

$$g_i h_{\alpha} g_j h_{\beta} = g_k h_{\delta} \longrightarrow f_i f_j = f_k$$

这样得到的群 $\{f_0, f_1, f_2, \dots, f_i, \dots\}$ 称为不变子群 H 的商群, 记为 G/H.

1.1.2 群的同态与同构

Definition 1.1.23 (同构). 若从群 G 到群 F 上存在一个一一对应的满映射 Φ , 而且 Φ 保持群的基本运算规则 (乘法) 不变: 群 G 中的两个元素乘积的映射等于两个元素映射的 乘积. 称群 G 和群 F 同构, 记作 $G \cong F$. 映射 Φ 称为同构映射.

Corollary 1.1.24. 设同构映射 Φ 将群 G 映射为 F, 即 $G \cong F$, 则有:

- (1). G 的单位元素映射为 F 的单位元素. 即 $g_0 \stackrel{\Phi}{\rightarrow} f_0$.
- (2). G 的互逆元素映射为 F 的互逆元素, 即 $g_i, g_i^{-1} \xrightarrow{\Phi} f_i, f_i^{-1}$.
- (3). 群 F 与群 G 同构, 即 $F \cong G$.

Note. 两个同构的群, 不仅群的元素之间存在——对应关系, 而且它们所满足的乘法规则之间也有——对应关系. 从数学角度看, 两个同构的群具有完全相同的群结构, 没有本质区别. 同构的群有完全相同的乘法表.

Definition 1.1.25 (同态). 设存在一个从群 G 到群 F 的满映射 Φ , 保持群的基本运算规则 (乘法) 不变:G 中两个元素乘积的映射等于两个元素映射的乘积, 则称群 G 与群 F 同态. 记作 $G \sim F$. 映射 Φ 称为从 G 到 F 上的同态映射.

Note. 同态映射 Φ 并不是一一对应的, 对于群 F 中的一个元素 f_i , 群 G 中可能有不止一个元素 g_i, g_i' 与之对应. 因此, $G \sim F \Rightarrow F \sim G$. 同构是特殊的同态, 即当同态映射 Φ 是一一映射时, 同态就是同构. 即

$$G \cong F \Rightarrow G \sim F, G \sim F \not\Rightarrow G \cong F.$$

任何群 G 与只有单位元素的群 $Z_1 = \{e\}$ 同态, 一般不考虑这种显然的同态.

Definition 1.1.26 (同态核). 设群 G 与群 F 同态,G 中与 F 的单位元素 f_0 对应的元素集合 $H = \{h_{\alpha}\}$, 称为同态核.

Theorem 1.1.27 (同态核定理). 设群 G 与群 F 同态,则有

- (1). 同态核 $H \neq G$ 的不变子群;
- (2). 商群 G/H 与 F 同构.

Proof. 先证明同态核 H 是 G 的子群. $\forall h_{\alpha}, h_{\beta} \in H$, 有 $\Phi: h_{\alpha} \to f_{0}, h_{\beta} \to f_{0}, h_{\alpha}h_{\beta} \to f_{0}$, 所以 $h_{\alpha}h_{\beta} \in H$. 因此同态核中两个元素 h_{α}, h_{β} 的乘积仍然在 H 中. 由于同态映射将单位元素映射为单位元素, 故 H 含有 G 的单位元素 g_{0} . 因设 $\Phi: g_{0} \to f'_{0}$, 则 $\forall g_{i} \in G$, 有

$$\Phi: g_i \to f_i$$

$$g_0 g_i = g_i g_0 = g_i \to f'_0 f_i = f_i f'_0 = f_i$$

$$f'_0 = f_0$$

 $h_{\alpha} \in H$ 时, 若 $h_{\alpha}^{-1} \notin H$, 则有 $\Phi: h_{\alpha}^{-1} \to f_{0}' \neq f_{0}$, 又有 $\Phi: h_{\alpha}^{-1} h_{\alpha} = g_{0} \to f_{0}' f_{0} = f_{0}$, 这不可能, 因此若 $h_{\alpha} \in H$, 必有 $h_{\alpha}^{-1} \in H$, 这就证明了 $H \notin G$ 的子群. 再证明同态核 $H \notin G$ 的不变子群. $\forall h_{\alpha} \in H$, 与 h_{α} 同类的元素为 $g_{i}h_{\alpha}g_{i}^{-1}$, g_{i} 是群 G 的任意元素. 同态映射 Φ 的作用下有:

$$\Phi: g_i \to f_i$$

$$g_i^{-1} \to f_i^{-1}$$

$$g_i h_{\alpha} g_i^{-1} \to f_i f_0 f_i^{-1} = f_0$$

故所有与 h_{α} 同类的元素 $g_{i}h_{\alpha}g_{i}^{-1} \in H.H$ 是 G 的不变子群.

最后证明商群 G/H 与 F 同构. 包括 H 的陪集串, $H = \{h_{\alpha}\}, g_{1}H = \{g_{1}h_{\alpha}\}, \cdots, g_{i}H = \{g_{i}h_{\alpha}\}, \cdots$ 是商群 G/H 的元素. 因为同态映射 Φ 保持群的乘法规则不变, 故只要证明 陪集串的元素与 F 的元素有一一对应, 这就证明了 G/H 与 F 同构.

首先,H 的一个陪集 $g_iH=\{g_ih_\alpha\}$ 对应 F 的一个元素, 设 $\Phi:g_i\to f_i$, 则 $\forall h_\alpha\in H,\Phi:g_ih_\alpha\to f_i$. 其次,H 的不同陪集 g_iH,g_jH 对应 F 中的不同元素. 因 g_iH 和 g_jH 不同,由陪集定理可知,它们没有公共元素. 设 $\Phi:g_i\to f_i,g_j\to f_j$, 假设 $f_i=f_j$,则

$$\Phi: g_i h_{\alpha} \to f_i f_0 = f_i, g_i^{-1} g_j h_{\alpha} \to f_i^{-1} f_j f_0 = f_0$$

得到 $g_i^{-1}g_jh_\alpha\in H,g_iH$ 和 g_jH 重合, 这与假设矛盾, 故 $f_i\neq f_j$. 因此 H 的陪集与 F 的元素有一一对应关系, 商群 G/H 与 F 同构.

Figure 1.1.2. 同态核定理的示意图

Definition 1.1.28 (自同构映射). 群 G 到自身的同构映射 $\nu: G \to G$ 称为 G 的自同构映射, 即 $\forall g_{\alpha} \in G$, 有 $\nu(g_{\alpha}) = g_{\beta} \in G$, 且保持群的乘法规律不变: $\nu(g_{\alpha}g_{\beta}) = \nu(g_{\alpha})\nu(g_{\beta})$.

Note. 自同构映射 ν 总是将群 G 的单位元素 g_0 映射为 g_0 , 把互逆元素 g_α 和 g_α^{-1} 映射 为互逆元素 g_β 和 g_β^{-1} .

Definition 1.1.29 (自同构群). 定义两个自同构 ν_1 和 ν_2 的乘积 $\nu_1\nu_2$ 为先实行自同构映射 ν_1 . 恒等映射 ν_0 对应于单位元素. 每个自同构映射 ν 有逆 ν^{-1} 存在. 于是群 G 的所有自同构映射 ν 构成一个群, 称为群 G 的自同构群, 记为 A(G) 或者 Aut(G).

Definition 1.1.30 (内 自同构映射). 如果群 G 的自同构映射 μ 是由 $u \in G$ 引起的, 即 $\forall g_{\alpha} \in G, \mu(g_{\alpha}) = ug_{\alpha}u^{-1}$, 称 μ 是 G 的内自同构映射.

Definition 1.1.31 (内自同构群). 定义内自同构的乘法后, 群 G 的所有内自同构 μ 构成一个群, 称为群 G 的内自同构映射群, 记为 I(G) 或者 In(G).

Corollary 1.1.32. 内自同构群 I(G) 是自同构群 A(G) 的一个子群, 而且是 A(G) 的不变子群.

Proof. $\forall \mu \in I(G)$, 与 μ 同类的元素为 $\nu \mu \nu^{-1}$, $\nu \in A(G)$. 设 $\nu^{-1}(g_{\alpha}) = g_{\beta}$, 则 $\nu \mu \nu^{-1}(g_{\alpha}) = \nu \mu(g_{\beta}) = \nu(ug_{\beta}u^{-1}) = \nu(u)\nu(g_{\beta})\nu(u^{-1}) = \nu(u)g_{\alpha}\nu(u^{-1}) = \nu g_{\alpha}\nu^{-1} \in I(G),$ 其中, $\nu = \nu(u) \in G$, 故 I(G) 是 A(G) 的不变子群.

1.1.3 变换群 (置换群)

Definition 1.1.33 (变换 (置换)). 设 $X = \{x, y, z, \dots\}$ 是被变换对象,X 上的置换 f 是将 X 映入自身的一一满映射, $f: X \to X$, 即 $\forall x \in X, f(x) = y \in X$, 且 f 有逆 $f^{-1}: f^{-1}(y) = x$.

Definition 1.1.34 (完全对称群). 定义 X 上两个置换 f 和 g 的乘积 fg 为对 X 先实行置换 g, 再实行置换 f, 即 $\forall x \in X$, fg(x) = f(g(x)).X 的全体置换在此乘法下构成一个群,称为 X 上的完全对称群, 记为 $S_X = \{f,g,\cdots\}$. 恒等置换 e 是 S_X 的单位元素, 置换 f 与其逆置换 f^{-1} 为 S_X 的互逆元素.

Note. 被变换元素 X 的元素个数可以是无限的, 也可以是有限的. 当 X 有无限多个元素时, S_X 是无限群. 当 X 有 n 个元素时,X 的完全对称群 S_X 就是 n 个元素的置换群 S_n , 共有 n! 个元素.

X 的完全对称群 S_X 的任何一个子群是 X 的一个对称群, 又称为 X 上的变换群.

Theorem 1.1.35 (Cayley 定理). 群 G 同构于 G 的完全对称群 S_G 的一个子群. 特别地, 当 G 是 n 阶有限群时, G 同构于 S_n 的一个子群.

Proof. 设 $G = \{f, g, h, \dots\}$. 将 G 本身看作被变换对象 $X = \{f, g, h, \dots\}$, 则 $\forall g \in G$, 把 $h \in X$ 按群 G 的乘法映入 $X : g(h) = (gh) \in X$. 由重排定理知,g 是把 X 映入 X 的 ——满映射, 故 G 是将 $X \in G$ 映入自身的一个变换群. 因此 G 是 G 上完全对称群 S_G 的一个子群.

Definition 1.1.36 (等价). 设 $G=\{f,g,h\cdots\}$ 是 $X=\{x,y,z,\cdots\}$ 的一个变换群, 若 $\forall x,y\in X, \exists g\in G$ 使得 gx=y, 则称元素 x 是 G 等价于元素 y, 或称为 x 点与 y 点等价, 记作 $x\sim y$.

Note. 等价具有如下两个性质:

- 对称性: 若 $x \sim y$, 必有 $y \sim x$.
- 传递性: 若 $x \sim y, y \sim z$, 必有 $x \sim z$.

Proof. 因 gx = y, 有 $g^{-1}y = x$. 因 gx = y, fy = z, 必有 fgx = z.

Definition 1.1.37 (轨道). 由 X 中全部与 x 等价的点组成的轨道称为含 x 的 G 轨道, 即 为 $\{gx|g\in G\}$. 即从点 x 出发, 用 G 中元素 g 作用于 x, 当 g 取遍 G 的所有元素时, gx 给出 X 的一个子集, 这个子集就是含 x 的 G 轨道.

Note. X 的 G 不变子集 Y 是指 X 的子集 Y, 在变换群 G 的作用下, 不会变到 Y 之外, 即 $\forall g \in G, y \in Y$, 有 $g(y) \in Y$.

X 中的每一个 G 轨道是 G 不变的. 几个轨道的和集也是 G 不变的. 当集合 Y 是 G 不变时, G 也是 Y 的对称群.

设 G 是 X 的变换群,则对于 X 的任意子集 Y,总可以找到 G 的一个子群 H 使得任意子集 Y 是 H 不变的,即 $H = \{g \in G | g(Y) = Y\}.Y$ 不变的子群 H 总是存在的,因为 Y 对由单位变换 $\{e\}$ 构成的显然子群总是不变的.

Definition 1.1.38 (迷向子群). 设 G 是 X 上变换群,x 是 X 内一点,G 的子群 G^x 保持 x 不变: $G^x = \{h \in G | hx = x\}$. G^x 称为 G 对 x 的迷向子群.

Theorem 1.1.39. 设 G^x 是 G 对 x 的迷向子群,则 G^x 的每一个左陪集把点 x 映射为 X 中的一个特定的点 y. 亦即, 含有 x 的 G 轨道上的点和 G^x 的左陪集间有一一对应关系.

Proof. 设 y 是含 x 的 G 轨道上的点,即有 $g \in G$,使得 gx = y,则 G^x 左陪集 gG^x 也将 x 映射为 y. 因为 $G^x = \{h_\alpha \in G | h_\alpha x = x\}$, $gG^x = \{gh_\alpha | h_\alpha \in G^x\}$,所以 $gh_\alpha x = gx = y$. 反之,若有 $f \in G$,有 $f \in G$,,即只有左陪集 gG^x 中的元素才可能将 $f \in G$,即只有左陪集 $f \in G$,如此含 $f \in G$,如此含 $f \in G$,如此合 $f \in G$,如此 $f \in G$,如此合 $f \in G$,如此 $f \in G$,如此一 $f \in G$,如此一 $f \in G$,如此, $f \in G$,如此一 $f \in G$,

1.1.4 群的直积与半直积

Definition 1.1.40 (直积群). 设 $g_{1\alpha} \in G_1, g_{2\beta} \in G_2$,则 G_1 和 G_2 直积群 G 的元素 $g_{\alpha\beta}$ 为 $g_{\alpha\beta} = g_{1\alpha}g_{2\beta} = g_{2\beta}g_{1\alpha}$. 对于 $g_{\alpha\beta}, g_{\alpha'\beta'} \in G$,定义直积群的乘法为

$$g_{\alpha\beta}g_{\alpha'\beta'} = (g_{1\alpha}g_{2\beta})(g_{1\alpha'}g_{2\beta'}) = (g_{1\alpha}g_{1\alpha'})(g_{2\beta}g_{2\beta'})$$
$$= (g_{2\beta}g_{2\beta'})(g_{1\alpha}g_{1\alpha'}) = g_{1\alpha''}g_{2\beta''} = g_{2\beta''}g_{1\alpha''},$$

其中 $g_{1\alpha}g_{1\alpha'}=g_{1\alpha''}\in G_1, g_{2\beta}g_{2\beta'}=g_{2\beta''}\in G_2$. 由 $g_{\alpha\beta}$ 并且按照上述乘法规则得到 G_1 与 G_2 的直积群 G, 记为: $G=G_1\otimes G_2$ 或者 $G=G_1\times G_2$.

Definition 1.1.41 (直积). 设群 G 有子群 G_1 和 G_2 , 满足

- (1). G 的每个元素 $g_{\alpha\beta}$ 能够唯一表示成 $g_{\alpha\beta} = g_{1\alpha}g_{2\beta}$, 其中 $g_{1\alpha} \in G_1, g_{2\beta} \in G_2$.
- (2). $G_1 与 G_2$ 的元素按照 G 的乘法规则可交换, 即 $g_{1\alpha}g_{2\beta} = g_{2\beta}g_{1\alpha}$.

则称群 G 是其子群 G_1 和 G_2 的直积, $G = G_1 \times G_2$, $G_1 \subseteq G_2$ 称为群 G 的直积因子.

Corollary 1.1.42. 当群 G_1 和群 G_2 是群 G 的直积因子时,G 的单位元素 e 是 G_1 , G_2 的唯一公共元素,且 G_1 , G_2 都是群 G 的不变子群.

Proof. 假设存在 $e' \neq e \in G_1 \cap G_2$, 则在直积群 $G = G_1 \otimes G_2$ 中有两个不同的元素 ee', e'e 都对应 $e' \in G$, 这与 G 的每个元素 $g_{\alpha\beta}$ 可以唯一表示为 $g_{1\alpha}g_{2\beta}$ 矛盾. $\forall g_{1\alpha} \in G_1$, 与 $g_{1\alpha}$ 同类的元素为:

$$(g_{1\alpha'}g_{2\beta'})g_{1\alpha}(g_{1\alpha'}g_{2\beta'})^{-1} = g_{1\alpha'}g_{2\beta'}g_{1\alpha}(g_{2\beta'})^{-1}(g_{1\alpha'})^{-1} = g_{1\alpha'}g_{1\alpha}g_{1\alpha'}^{-1} \in G_1.$$

故 G_1 是 G 的不变子群. 同理 G_2 也是 G 的不变子群.

Definition 1.1.43 (半直积群). 设群 $G_1 = \{g_{1\alpha}\}, G_2 = \{g_{2\beta}\}, G_1$ 的自同构群为 $A(G_1), \nu \in A(G_1)$. 若存在一个把 G_2 映射为 $A(G_1)$ 的同态映射 $\Phi: G_2 \to A(G_1)$, 即 $\Phi: g_{2\beta} \to \nu_{g_{2\beta}}$,则可定义 G_1 与 G_2 的半直积群 G,记作

G 的元素 $g_{\alpha\beta}$ 可唯一写为 $g_{\alpha\beta} = \langle g_{1\alpha}g_{2\beta} \rangle$, 其中 $g_{1\alpha}$ 和 g_{β} 为有序的. G 的乘法定义为:

$$g_{\alpha\beta}g_{\alpha'\beta'} = \langle g_{1\alpha}g_{2\beta}\rangle\langle g_{1\alpha'}g_{2\beta'}\rangle = \langle g_{1\alpha}\nu_{g_{2\beta}}(g_{1\alpha'})g_{2\beta}g_{2\beta'}\rangle.$$

1.2 有限群表示理论

Theorem 1.2.1 (正交性定理). 设有限群 $G = \{g_1, g_2, \dots, g_n\}$ 有不等价不可约酉表示 $\dots, A^p, \dots, A^r, \dots$, 其维数分别为 $\dots, S_p, \dots, S_r, \dots$, 则有

$$\sum_{i=1}^{n} A_{\mu\nu}^{p} \left(g_{i}\right)^{*} A_{\mu'\nu'}^{r} \left(g_{i}\right) = \frac{n}{S_{p}} \delta_{pr} \delta_{\mu\mu'} \delta_{\nu\nu'},$$

或者用 R_G 中的内积表示为

$$\left(A^p_{\mu\nu}\mid A^r_{\mu'\nu'}\right) = \frac{1}{S_p} \delta_{pr} \delta_{\mu\mu'} \delta_{\nu\nu'}.$$

即不可约表示 A^p 和 A^r 若是不等价的,则它们生成的群函数中 $A^p_{\mu\nu}$ 与 $A^r_{\mu'\nu'}$ 是正交的,而 $A^p_{\mu\nu}$ 与自身的内积等于 $1/S_p$.

Proof. 设 D 为任意 S_p 维矩阵, 作 S_p 维矩阵 C, 满足

$$C = \frac{1}{n} \sum_{i=1}^{n} A^{p}(g_{i}) DA^{p}(g_{i}^{-1}).$$
 (1.2.1)

 $\forall g_i \in G$, 由重排定理可得

$$A^{p}(g_{j}) C = \frac{1}{n} \sum_{i=1}^{n} A^{p}(g_{j}) A^{p}(g_{i}) DA^{p}(g_{i}^{-1}) \left[A^{p}(g_{j}^{-1}) A^{P}(g_{j}) \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[A^{p}(g_{j}) A^{p}(g_{i}) \right] D \left[A^{p}(g_{i}^{-1}) A^{p}(g_{j}^{-1}) \right] A^{p}(g_{j})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \left[A^{p}(g_{j}g_{i}) \right] D \left[A^{p}(g_{j}g_{i})^{-1} \right] A^{p}(g_{j})$$

$$= \frac{1}{n} \sum_{k=1}^{n} A^{p}(g_{k}) DA^{p}(g_{k}^{-1}) A^{p}(g_{j}) = CA^{p}(g_{j}).$$
(1.2.2)

因为 A^p 是群 G 的有限维不可约表示,利用舒尔引理二可得

$$C = \lambda(D)E_{S_n \times S_n},\tag{1.2.3}$$

这里 $E_{S_p \times S_p}$ 是 S_p 维单位矩阵. $\lambda(D)$ 是与 D 有关的一个常数. 假设 D 除了第 ν' 行第 ν 列矩阵元 $D_{\nu'\nu}=1$ 以外,其余矩阵元为零,则有

$$C_{\mu'\mu} = \frac{1}{n} \sum_{i=1}^{n} \sum_{\mu_1 \mu_2} A_{\mu'\mu_1}^p (g_i) D_{\mu_1 \mu_2} A_{\mu_2 \mu}^p (g_i^{-1})$$

$$= \frac{1}{n} \sum_{i=1}^{n} A_{\mu'\nu'}^p (g_i) D_{\nu'\nu} A_{\nu\mu}^p (g_i^{-1})$$

$$= \frac{1}{n} \sum_{i=1}^{n} A_{\mu'\nu'}^p (g_i) A_{\nu\mu}^p (g_i^{-1}) \stackrel{\star}{=} \lambda(D) \delta_{\mu'\mu},$$
(1.2.4)

* 是因为考虑到 $C = \lambda(D)E_{S_n \times S_n}$, 有 $C_{\mu'\mu} = \lambda(D)\delta_{\mu'\mu}$.

假设 $\mu' = \mu$,对上面蓝色的式子两边进行求和,有

$$\sum_{\mu=1}^{S_{p}} C_{\mu\mu} = \sum_{\mu=1}^{S_{p}} \frac{1}{n} \sum_{i=1}^{n} A_{\mu\nu'}^{p} (g_{i}) A_{\nu\mu}^{p} (g_{i}^{-1})$$

$$= \frac{1}{n} \sum_{\mu=1}^{S_{p}} \sum_{i=1}^{n} A_{\nu\mu}^{p} (g_{i}^{-1}) A_{\mu\nu'}^{p} (g_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} A_{\nu\nu'}^{p} (g_{i}^{-1}g_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} \delta_{\nu\nu'} = \delta_{\nu\nu'}.$$
(1.2.5)

又因为

$$\sum_{\mu=1}^{S_p} C_{\mu\mu} = \sum_{\mu=1}^{S_p} \lambda(D) \delta_{\mu\mu} = \lambda(D) S_p, \tag{1.2.6}$$

所以有 $\delta_{
u
u'}=\lambda(D)S_p$. 从而蓝色式子可以进一步改写为

$$\frac{1}{n} \sum_{i=1}^{n} A_{\mu'\nu'}^{p}(g_i) A_{\nu\mu}^{p}(g_i^{-1}) = \frac{1}{S_p} \delta_{\mu\mu'} \delta_{\nu\nu'}.$$
 (1.2.7)

又因为对于西表示 A^p ,有

$$A_{\nu\mu}^{p}\left(g_{i}^{-1}\right) = \left[A_{\nu\mu}^{p}\left(g_{i}\right)\right]^{-1} = \left[A_{\nu\mu}^{p}\left(g_{i}\right)\right]^{\dagger} = \left[A_{\mu\nu}^{p}\left(g_{i}\right)\right]^{*},\tag{1.2.8}$$

所以有

$$\frac{1}{n} \sum_{i=1}^{n} A_{\mu'\nu'}^{p} (g_i) \left[A_{\mu\nu}^{p} (g_i) \right]^* = \frac{1}{S_p} \delta_{\mu\mu'} \delta_{\nu\nu'}. \tag{1.2.9}$$

再取 S_r 行 S_p 列矩阵D',作矩阵C' 满足

$$C' = \frac{1}{n} \sum_{i=1}^{n} A^{r}(g_{i}) D' A^{p}(g_{i}^{-1}).$$
 (1.2.10)

于是就有

$$C'A^{p}(g_{j}) = \frac{1}{n} \sum_{i=1}^{n} A^{r}(g_{i}) D'A^{p}(g_{i}^{-1}) A^{p}(g_{j})$$

$$= \frac{1}{n} \sum_{i=1}^{n} A^{r}(g_{j}) A^{r}(g_{j}^{-1}) A^{r}(g_{i}) D'A^{p}(g_{i}^{-1}) A^{p}(g_{j})$$

$$= A^{r}(g_{j}) \frac{1}{n} \sum_{i=1}^{n} A^{r}(g_{j}^{-1}g_{i}) D'A^{p}((g_{j}^{-1}g_{i})^{-1}) = A^{r}(g_{j}) C',$$
(1.2.11)

由于 A^r 和 A^p 为不等价不可约酉表示, 根据舒尔定理一, 恒有 C'=0.

假设 D' 矩阵只存在第 ν' 行、第 ν 列的非零矩阵元 1,则按照 C' 矩阵的定义,有

$$C'_{\mu'\mu} = \frac{1}{n} \sum_{i=1}^{n} \sum_{\mu_1 \mu_2} A^r_{\mu'\mu_1} (g_i) D'_{\mu_1 \mu_2} A^p_{\mu_2 \mu} (g_i^{-1})$$

$$= \frac{1}{n} \sum_{i=1}^{n} A^r_{\mu'\nu'} (g_i) A^p_{\nu\mu} (g_i^{-1})$$

$$= \frac{1}{n} \sum_{i=1}^{n} A^r_{\mu'\nu'} (g_i) [A^p_{\mu\nu} (g_i)]^*.$$
(1.2.12)

当 $r \neq p$ 时, $C' \equiv 0$,如此则有

$$\frac{1}{n} \sum_{i=1}^{n} A_{\mu'\nu'}^{r} (g_i) \left[A_{\mu\nu}^{p} (g_i) \right]^* = 0.$$
 (1.2.13)

当 r=p 时,就有前面得到的

$$\frac{1}{n} \sum_{i=1}^{n} A_{\mu'\nu'}^{p}(g_i) \left[A_{\mu\nu}^{p}(g_i) \right]^* = \frac{1}{S_p} \delta_{\mu\mu'} \delta_{\nu\nu'}. \tag{1.2.14}$$

综上所述,有

$$\sum_{i=1}^{n} \left[A_{\mu\nu}^{p} \left(g_{i} \right) \right]^{*} A_{\mu'\nu'}^{r} \left(g_{i} \right) = \frac{n}{S_{p}} \delta_{pr} \delta_{\mu\mu'} \delta_{\nu\nu'}. \tag{1.2.15}$$

Theorem 1.2.2 (完备性定理).