Linear Algebra I Problem Set 6: Orthogonal and Orthonormal Bases

Dr Nicholas Sedlmayr

Friday February 26th 2016

Due: In class, March 4th 2016

1. Prove proposition 4.15, Bessel's inequality. I.e. if $e_1, e_2, \dots e_k$ is an orthonormal set of vectors in a complex inner product space V, and $v \in V$, then

$$\sum_{i=1}^{k} |\langle e_i | v \rangle|^2 \le ||v||^2.$$

Tip: Consider $||w||^2$ with $w = v - \sum_{i=1}^k \langle e_i | v \rangle e_i$. (4)

- 2. Consider $V=\mathbb{C}^3$, with the standard inner product. Starting from the basis $\{(0,i,1)^T,(1+i,0,2)^T,(3,0,0)^T\}$ use Gram-Schmidt to construct an orthonormal basis for V. (4)
- 3. Let V be the vector space over \mathbb{R} of all polynomials of degree less than 3. I.e. $V = \{a_0 + a_1x + a_2x^2 : a_0, a_1, a_2, x \in \mathbb{R}\}$. We can define an inner product on this space as

$$\langle f|g\rangle = \int_{-1}^{1} \mathrm{d}x f(x)g(x) \,.$$

N.B. this is a different inner product space to that on the last problem sheet! 1, x is an orthogonal basis of U, which is a subspace of V. Find the orthogonal complement, U^{\perp} , to U. (4)

- 4. Prove proposition 4.21, which says that if V is an inner product space, and U is a finite dimensional subspace of V, then
 - (a) U^{\perp} is a subspace of V, (2)
 - (b) $U \cap U^{\perp} = \{0\}$, and (2)
 - (c) $U + U^{\perp} = V$. (4)

Tips: For (b) consider the properties of a vector which is in both U and U^{\perp} . For (c) it will help to consider an orthonormal basis of U. Any $v \in V$ can be written as $v = v_S + v_P$ where $v_S \in U$ and therefore has a representation in terms of the orthonormal basis of U. The task is to show that $v_P \in U^{\perp}$ for any $v \in V$.

Total available marks: 20