Comparing two partitions

D= #4141 = #= =		Partition $P^{(t)}$				C
Partitions	cluster	$P_1^{(t)}$	$P_2^{(t)}$	•••	$P_v^{(t)}$	Sums
Partition $P^{(q)}$	$P_1^{(q)}$	n_{11}	n_{12}	•••	n_{1v}	n_{1ullet}
	$P_2^{(q)}$	n_{21}	n_{22}	•••	n_{2v}	$n_{2\bullet}$
	:	:	:	:	:	:
	$P_u^{(q)}$	n_{u1}	n_{u2}	•••	n_{uv}	$n_{u\bullet}$
Sums		$n_{ullet 1}$	$n_{\bullet 2}$	•••	$n_{ullet v}$	$n_{\bullet \bullet} = n$

where: $P^{(t)}$, $P^{(q)}$ partitions t(q) of a finite set of objects A,

 $n_{\bullet \bullet} = n - \text{number of objects},$

 n_{sr} – number of objects belonging simultaneously to clusters r and s,

r = 1, ..., v (s = 1, ..., u) – cluster number in partition $P^{(t)}$ ($P^{(q)}$),

v(u) – number of clusters in partition $P^{(t)}(P^{(q)})$,

 $n_{\bullet r}$ – number of objects in cluster $P_r^{(t)}$ (column r),

 $n_{s\bullet}$ – number of objects in cluster $P_s^{(q)}$ (row s).

$$R = Z/\binom{n}{2} = 1 - N/\binom{n}{2}, R \in [0; 1],$$
 where: $Z = \binom{n}{2} + \sum_{s=1}^{u} \sum_{r=1}^{v} n_{sr}^{2} - \frac{1}{2} (\sum_{s=1}^{u} n_{s \bullet}^{2} + \sum_{r=1}^{v} n_{\bullet r}^{2}),$
$$N = \frac{1}{2} \left(\sum_{s=1}^{u} n_{s \bullet}^{2} + \sum_{r=1}^{v} n_{\bullet r}^{2} \right) - \sum_{s=1}^{u} \sum_{r=1}^{v} n_{sr}^{2}$$

Corrected Rand index (Hubert & Arabie [1985], p. 198)

$$R_{HA} = \frac{\sum_{r,s} \binom{n_{rs}}{2} - \sum_{r} \binom{n_{\bullet r}}{2} \sum_{s} \binom{n_{s \bullet r}}{2} / \binom{n_{\bullet r}}{2} \binom{n_{\bullet r}}{2} / \binom{n_{\bullet r}}{2} /$$

$$S = \frac{1}{v+u} \left(\sum_{s=1}^{u} \max_{r} \left\{ k_{sr} \right\} + \sum_{r=1}^{v} \max_{s} \left\{ k_{sr} \right\} \right), S \in [1/n; 1],$$
 where: $k_{sr} = \frac{n_{sr}}{\max\{n_{s\bullet}; n_{\bullet r}\}}$.

References

Hubert, L., Arabie, P. (1985), Comparing partitions, "Journal of Classification", no. 1, 193-218. Nowak, E. (1985), Wskaznik podobienstwa wynikow podziałow, "Przeglad Statystyczny" ["Statistical Review"], no. 1, 41-48.

Rand, W.M. (1971), Objective criteria for the evaluation of clustering methods, "Journal of the American Statistical Association", no. 336, 846-850.