

Mehrad Ansari

Personal website: https://mehradans92.github.io

Summary:

A detail-oriented chemical engineer with a strong background in computational modeling, machine learning and scientific software development, supported by research and professional work experience in process design and optimization.

Education

Doctor of Philosophy in Chemical Engineering Master of Science in Chemical Engineering

(May 2023) (Oct 2021)

University of Rochester, Rochester, NY

Thesis: "Physics-informed Machine Learning in Chemical Engineering". Advisor: Andrew D White

Master of Science in Environmental Engineering

(May 2018)

Missouri University of Science and Technology (UMR), Rolla, MO

Thesis: "Numerical Modeling of Capillary-driven Flow in Open Microchannels: An Implication of Optimized Wicking Fabric Design"

Bachelor of Science in Chemical Engineering

(July 2015)

University of Tehran, Iran

Thesis: "Experimental Setup and Optimization for Electro-catalytical Generation of Hydroxyl Radicals in Wastewater Treatment"

Work Experience and Practical Training

Postdoctoral Research Fellow Acceleration Consortium, Toronto, ON

(June 2023 - present)

▶ Developing large language model-based tools to accelerate design of materials and catalysts for CO₂ reduction

Research Assistant

(2019 - 2023)

University of Rochester, Rochester, NY

- Developed a HuggingFace app that answers questions from scientific papers using OpenAl's large language models
- Developed a <u>edge-computing cheminformatics tool</u> for semi-supervised classification of the activity of antimicrobial peptides via positive-unlabeled learning
- Developed a <u>disease modeling tool</u> to predict future disease spreads and infer location of patient-zero
- Developed an <u>automated tool</u> in CFD modeling that reduces the number of simulations using active learning and generates a symbolic equation for the system of interest via symbolic regression
- Contributed to development of a <u>simulation-based inference tool</u> via maximum entropy re-weighting
- Contributed to development of a plugin with TensorFlow GPU-accelerated operations combined with HOOMD-Blue molecular dynamics simulation engine (HOOMD-TF)
- Developed a web-app for peptide-based gelator transparency classification using Kernel ridge regression
- > Developed an automated tool on a Raspberry-Pi for real-time monitoring of HPC using Python, JS and HTML
- > Implemented finite difference analysis in Python to study 2D shallow water dynamics
- Implemented Monte Carlo simulations in MATLAB to study evolution of spin configurations of a ferromagnet using the Ising model

Energy & Materials Intern and Research Engineer

(May 2022 - Mar 2023)

Toyota Research Institute, Los Altos, CA

> Developed deep learning tools to predict degradation of used batteries with unknown cycling histories. **US Patent pending**

Teaching Assistant of "Advanced Transport Phenomena"

(Jan - Dec 2020)

University of Rochester, Rochester, NY

> Tutored students on homework related problems and organized laboratory experiments

Lead CFD Analyst at Missouri S&T Solar Car Design Team

(2016 - 2018)

Missouri University of Science and Technology, Rolla, MO

- > Developed validated wind tunnel simulations in STAR-CCM+ for aerodynamic optimization of the solar car
- Improved aerodynamic design efficiency prior to manufacturing

Manufacturing Process Modeling Intern

(May-Dec 2017)

The Goodyear Tire & Rubber Company, Akron, OH

- Phase-change heat transfer modeling and optimization of tire vulcanization process in ANSYS
- Model verification based on plant data and analytical solution
- Utilized assets more efficiently through MATLAB post processing and automating the simulation process using OPTIMUS
- Provided faster simulation results using Adaptive Mesh Refinement and High-Performance Computing
- ► GUI development and coupling ANSYS with MATLAB for time-effective post processing

Teaching Assistant of "Applied Numerical Methods in CFD"

(Jan-May 2017)

Missouri University of Science and Technology, Rolla, MO

Organized CFD and programming workshops for ANSYS and Star-CCM +

Mehrad Ansari

Personal website: https://mehradans92.github.io

Work Experience and Practical Training

Research Assistant Missouri University of Science and Technology, Rolla, MO

- Numerical modeling of multiphase flow in open microfluidics using ANSYS and STAR-CCM +
- Reduced simulation run-time by developing an algorithm for Adaptive Mesh Refinement (AMR)
- Increased solver's stability by developing an algorithm for Adaptive Time Step

Engineering Intern

(July-Sept 2014)

(2016 - 2018)

Emden-Leer University of Applied Sciences, Emden, Germany

Design of experiments in advanced oxidation process (AOP) for wastewater treatment

Computer Skills

Scientific Softwares Developed:

 MaxEnt • AL-CFD

Learning Peptide Properties with Positive Examples Only

Iterative Symbolic Regression for Learning Transport Equations

AIChE Journal, Special Edition for AI M Ansari, HA Gandhi, DG Foster, AD White

Machine Learning in Science and Technology R Barrett, M Ansari, G Ghoshal, AD White

- Py0 • Peptide.bio
- HOOMD-TF
- <u>Decode-ELM</u> Bye-Cycle

Other tools: AWS, TensorFlow, PyTorch, Sk-learn Languages: Python, JavaScript, HTML, CSS

GTP **Honors and Awards**

Acceleration Concertium Percepted Followship	(May 2022)
Acceleration Consortium Research Fellowship University of Toronto, Toronto	(May 2023)
1 st place winner at <u>Battery Informatics & ML Competition</u> Materials Research Society, Boston, MA	(Dec 2022)
Kwang-Yu and Lee-Chien Wang Fellowship Department of Chemical Engineering, University of Rochester	(Nov 2021)
Earl W. Costich Graduate Fellowship Department of Chemical Engineering, University of Rochester	(May 2020)
1 st place winner: 2017 Mike Alizadeh Scholarship American Society of Civil Engineers (ASCE)	(Aug 2017)
Recognized reviewer: Journal of Environmental Chemical Engineering	(May 2016)
MATLAB Programming Contest Sharif Computer-Aided Chemical Engineering Contest (SC ₃), Sharif University of Technology, Iran	(Mar 2014)

1.

Publications and Patents (Google Scholar)

(June 2023)

(Mar 2022)

(Apr 2022)

(Dec 2020)

M Ansari, AD White History-agnostic Battery Degradation Inference and US Patent (Mar 2023) 2. Journal of Applied Energy M Ansari, S Torrisi, A Trewartha, S Sun <u>Serverless Prediction of Peptide Properties with Recurrent Neural Networks</u> (Apr 2023) Journal of Chemical Information and Modeling M Ansari, AD White Assessment of Chemistry Knowledge in Large Language Models that Generate Code (Jan 2023) Digital Discovery AD White, GM Hocky, HA Gandhi, **M Ansari**, S Cox, GP Wellawatte, S Sasmal, Z Yang, K Liu, Y Singh, WJ Peña Ccoa **Book chapter**: Hyper-parameter Optimization in Deep Learning (July 2022) Deep Learning for Molecules and Materials, Living Journal of Computational Molecular Science M Ansari, AD White. Inferring Spatial Source of Disease Outbreaks using Maximum Entropy (July 2022) American Physical Society, Physical Review E M Ansari, D Soriano-Paños, G Ghoshal, AD White.

⊕

Presentations and Talks

Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy

Simulation-based Inference with Approximately Correct Parameters via Maximum Entropy

Advances in Neural Information Processing Systems 33: Workshop on Machine Learning for Structural Biology

1.	Maximum Entropy Inference in Chemical Reaction Networks with Unknown Kinetic Parameters AIChE, Phoenix, AZ	(Nov 2022)
2.	Positive Unlabeled Learning of Peptide Properties Fundamentals of Molecular Modeling and Simulation, Delavan, WI	(July 2022)
3.	Serverless Prediction of Peptide Properties with Recurrent Neural Networks Middle Atlantic Regional Meeting of the American Chemical Society, Ewing Township, NJ	(June 2022)