Name: Ayithapu Sai Mahathi Data analytics Trainee

Task 3: Operation Analytics and Investigating Metric Spike

Analysis done on the following points:-

Case Study 1: Job Data

- A. Number of jobs reviewed: Amount of jobs reviewed over time.
 Your task: Calculate the number of jobs reviewed per hour per day for November 2020?
- **B. Throughput:** It is the no. of events happening per second.

 Your task: Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?
- **C. Percentage share of each language:** Share of each language for different contents.

Your task: Calculate the percentage share of each language in the last 30 days?

D. Duplicate rows: Rows that have the same value present in them.
Your task: Let's say you see some duplicate rows in the data. How will you display duplicates from the table?

Software used: MySQL Workbench 8.0 CE

Case Study 2: <u>Investigating metric spike</u>

A. User Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service.

Your task: Calculate the weekly user engagement?

B. User Growth: Amount of users growing over time for a product. **Your task:** Calculate the user growth for product?

C. Weekly Retention: Users getting retained weekly after signing-up for a product. Your task: Calculate the weekly retention of users-sign up cohort?

D. Weekly Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.

Your task: Calculate the weekly engagement per device?

E. Email Engagement: Users engaging with the email service. Your task: Calculate the email engagement metrics?

Software Used: MySQL Workbench 8.0 CE

Number of jobs reviewed:

Amount of jobs reviewed over time.

Calculate the number of jobs reviewed per hour per day for November 2020?

To find the number of jobs reviewed per hour per day of November 2020:

- 1. We will use the data from **job_id** columns of the job_data table.
- 2. Then we will divide the total count of job_id (distinct and non-distinct) by (30 days * 24 hours) for finding the number of jobs reviewed per day

select count(job_id)/(30*24) as number_of_jobs_reviewed_per_day_non_distinct from job_data;

Output /Result

number_of_jobs_reviewed_per_day_non_distinct 0.0111

Number of jobs reviewed:

Amount of jobs reviewed over time.
Calculate the number of jobs reviewed per hour per day for November 2020?

select count(distinct job_id)/(30*24) as number_of_jobs_reviewed_per_day_distinct from job_data;

Output /Result

number_of_jobs_reviewed_per_day_distinct 0.0083

Throughput: It is the no. of events happening per second.

Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?

For calculating the throughput we will be using the 7-day rolling because 7-day rolling gives us the average for all the days right from day 1 to day 7 Whereas daily metric gives us average for only that particular day itself. For calculating the 7-day rolling daily metric average of throughput:-

- 1. We will be first taking the count of job_id(distinct and non-distinct) and ordering them w.r.t ds (date of interview)
- 2. Then by using the ROW function we will be considering the rows between 6 preceding rows and the current row
- 3. Then we will be taking the average of the jobs_reviewed

Throughput: It is the no. of events happening per second.

Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?

```
SELECT ds as date_of_review, jobs_reviewed, AVG(jobs_reviewed)

OVER(ORDER BY ds ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS
throughput_7_rolling_average

FROM

(
SELECT ds, COUNT( DISTINCT job_id) AS jobs_reviewed

FROM job_data

GROUP BY ds ORDER BY ds
) a;
```

date_of_review	jobs_reviewed	throughput_7_rolling_average
25-11-2020	1	1
26-11-2020	1	1
27-11-2020	1	1
28-11-2020	2	1.25
29-11-2020	1	1.2
30-11-2020	2	1.3333

Throughput: It is the no. of events happening per second.

Let's say the above metric is called throughput. Calculate 7 day rolling average of throughput? For throughput, do you prefer daily metric or 7-day rolling and why?

```
SELECT ds as date_of_review, jobs_reviewed, AVG(jobs_reviewed)

OVER(ORDER BY ds ROWS BETWEEN 6 PRECEDING AND CURRENT ROW) AS throughput_7_rolling_average_non_distinct_job_id

FROM

(
SELECT ds, COUNT(job_id) AS jobs_reviewed

FROM job_data

GROUP BY ds ORDER BY ds
) a;
```

date_of_review	jobs_reviewed	throughput_7_rolling_average_non_distinct_job_id
25-11-2020	1	
26-11-2020	1	
27-11-2020	1	:
28-11-2020	2	1.25
29-11-2020	1	1.2
30-11-2020	2	1.3333

<u>Percentage share of each language:</u> Share of each language for different contents.

Calculate the percentage share of each language?

To calculate the percentage share of each language (distinct and non-distinct):-

- 1. We will first divide the total number of languages (distinct/non-distinct) by the total number of rows presents in the table
- 2. Then we will do the grouping based on the languages.

select

job_data.job_id, job_data.language, count(job_data.language) as total_of_each_language, ((count(job_data.language)/(select count(*) from job_data))*100) as percentage_share_of_each_language

from job_data group by job_data.language;

<u>Percentage share of each language:</u> Share of each language for different contents.

Calculate the percentage share of each language?

job_id	language	total_of_each_language	percentage_share_of_each_language
21	English	1	12.5
22	Arabic	1	12.5
23	Persian	3	37.5
25	Hindi	1	12.5
11	French	1	12.5
20	Italian	1	12.5

<u>Percentage share of each language:</u> Share of each language for different contents.

Calculate the percentage share of each language?

select

job_data.job_id, job_data.language, count(distinct job_data.language) as total_of_each_language, ((count(job_data.language)/(select count(*) from job_data))*100) as percentage_share_of_each_distinct_language

from job_data group by job_data.language;

<u>Percentage share of each language:</u> Share of each language for different contents.

Calculate the percentage share of each language?

job_id	language	total_of_each_language	percentage_share_of_each_distinct_language
22	Arabic	1	12.5
21	English	1	12.5
11	French	1	12.5
25	Hindi	1	12.5
20	Italian	1	12.5
23	Persian	1	37.5

Duplicate rows: Rows that have the same value present in them.

Let's say you see some duplicate rows in the data. How will you display duplicates from the table?

To view the duplicate rows having the same value we will:-

- 1. First decide in which do we need to find the duplicate row values
- 2. After deciding the column(parameter) we will use the ROW_NUMBER function to find the row numbers having the same value
- 3. Then we will portioning the ROW_NUMBER function over the column (parameter) that we decided i.e. job_id
- 4. Then using the WHERE function we will find the row_num having value greater than 1 i.e. row_num > 1 based on the occurrence of the job_id in the table.

Duplicate rows: Rows that have the same value present in them.

Let's say you see some duplicate rows in the data. How will you display duplicates from the table?

```
SELECT *
FROM
(
SELECT *, ROW_NUMBER()OVER(PARTITION BY job_id) AS row_num
FROM job_data
) a
WHERE row_num>1;
```

Output /Result	ds		job_id	actor_id	event	language	time_spent	org	row_num
		28-11-2020	23	1005	transfer	Persian	22	D	2
		26-11-2020	23	1004	skip	Persian	56	Α	3

GitHub Link for Query of Case Study 1:

<u>Trainity Data Analytics Trainee/Trainity Data Analytics Trainee task 3.sql at main ADVAIT135/Trainity Data Analytics Trainee (github.com)</u>

<u>User Engagement:</u> To measure the activeness of a user. Measuring if the user finds quality in a product/service.

Your task: Calculate the weekly user engagement?

To find the weekly user engagement:-

- We will extract the week from the occurred_at column of the events table using the EXTRACT function and WEEK function
- 2. Then we will be counting the number of distinct user_id from the events table
- Then we will use the GROUP BY function to group the output w.r.t week from occurred_at

SELECT

```
extract (week from occurred_at) as week_number, count(distinct user_id) as number_of_users FROM tutorial.yammer_events group by week number;
```

User Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service.

Your task: Calculate the weekly user engagement?

week_number		number_of_users
	18	791
	19	1244
	20	1270
	21	1341
	22	1293
	23	1366
	24	1434
	25	1462
	26	1443
	27	1477
	28	1556
	29	1556
	30	1593
	31	1685
	32	1483
	33	1438
	34	1412
	35	1442

<u>User Engagement:</u> To measure the activeness of a user. Measuring if the user finds quality in a product/service.

Your task: Calculate the weekly user engagement?

User Growth: Amount of users growing over time for a product.

Your task: Calculate the user growth for product?
User Growth = Number of active users per week

To find the user growth (number of active users per week):-

- First we will the extract the year and week for the occurred_at column of the users table using the extract, year and week functions
- 2. Then we will group the extracted week and year on the basis of year and week number
- 3. Then we ordered the result on the basis of year and week number
- Then we will find the cumm_active_users using the SUM, OVER and ROW function between unbounded preceding and current row

<u>User Growth</u>: Amount of users growing over time for a product.
Your task: Calculate the user growth for product?
User Growth = Number of active users per week

```
Program/Query:
select
 year num,
week num,
 num active users,
 SUM(num_active_users)OVER(ORDER BY year_num, week_num ROWS BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW) AS cum active users
from
select
extract (year from a.activated_at) as year_num,
 extract (week from a.activated_at) as week_num,
 count(distinct user id) as num active users
from
tutorial.yammer_users a
WHERE
state = 'active'
group by year_num,week_num
order by year num, week num
) a;
```

<u>User Growth</u>: Amount of users growing over time for a product. Your task: Calculate the user growth for product?
User Growth = Number of active users per week

year_num		week_num	num_active_users		cum_active_users	year_num	week_num			cum_active_users	
	2013		1	67	67		3	45	97		256
	2013		2	29	96	201	3	46	94		265
	2013		3	47	143	201	3	47	82		274
	2013		4	36	179	201	3	48	103		284
	2013		5	30	209	201	3	49	96		293
	2013		6	48	257	201	3	50	117		305
	2013		7	41	298	201	3	51	123		3179
	2013		8	39	337	201	3	52	104		328
	2013		9	33	370	201	4	1	91		337
	2013		10	43	413	201	4	2	122		349
	2013		11	33	446	201	4	3	112		360
	2013		12	32	478	201	4	4	113		372
	2013		13	33	511	201	4	5	130		3851
	2013		14	40	551	201	4	6	132		3983
	2013		15	35	586	201	4	7	135		4118
	2013		16	42	628	201	4	8	127		4245
	2013		17	48	676	201	4	9	127		4372
	2013		18	48	724	201	4	10	135		4507
	2013		19	45	769	201	4	11	152		4659
	2013		20	55	824	201	4	12	132		479
	2013		21	41	865	201	4	13	151		4942
	2013		22	49	914	201	4	14	161		5103
	2013		23	51	965	201	4	15	166		5269
	2013		24	51	1016	201	4	16	165		543
	2013		25	46	1062	201	4	17	176		5610
	2013		26	57	1119	201	4	18	172		578
	2013		27	57	1176	201	4	19	160		594
	2013		28	52	1228	201	4	20	186		6128
	2013		29	71	1299	201	4	21	177		6305
	2013		30	66	1365	201	4	22	186		6493
	2013		31	69	1434	201	4	23	197		6688
	2013		32	66	1500	201	4	24	198		6886
	2013		33	73	1573	201	4	25	222		7108
	2013		34	70	1643	201	4	26	210		731
	2013		35	80	1723	201	4	27	199		751
	2013		36	65	1788	201	4	28	223		774
	2013		37	71	1859	201	4	29	215		795
	2013		38	84	1943	201	4	30	228		818
	2013		39	92	2035	201	4	31	234		8417
	2013		40	81	2116	201	4	32	189		860
	2013		41	88	2204	201	4	33	250		885
	2013		42	74	2278	201	4	34	259		911
	2013		43	97	2375	201	4	35	266		9383
	2013		44	92							

<u>User Growth</u>: Amount of users growing over time for a product.
Your task: Calculate the user growth for product?
User Growth = Number of active users per week

select count(*) from tutorial.yammer_users
where state = 'active';

Output /Result

c o u n t 9 3 8 1

Hence, there are in total 9381 active users from 1st week of 2013 to the 35th week of 2014

Weekly Retention: Users getting retained weekly after signing-up for a product. Your task: Calculate the weekly retention of users-sign up cohort?

The weekly retention of users-sign up cohort can be calculated by two means i.e. either by specifying the week number (18 to 35) or for the entire column of occurred_at of the events table.

- Firstly we will extract the week from occurred_at column using the extract, week
 functions
- Then, we will select out those rows in which event_type = 'signup_flow' and event_name = 'complete_signup'
- 3. If finding for a spectifc week we will spectify the week number using the **extract** function
- 4. Then using the left join we will join the two tables on the basis of user_id where event_type = 'engagement'
- 5. Then we will use the **Group By** function to group the output table on the basis of user_id
- Then we will use the **Order By** function to order the result table on the basis of user_id

Weekly Retention: Users getting retained weekly after signing-up for a product. Your task: Calculate the weekly retention of users-sign up cohort?

Program/Query(Without Specifying the week number):

```
SELECT
distinct user id,
COUNT(user_id),
SUM(CASE WHEN retention week = 1 Then 1 Else 0 END) as per week retention
FROM
SELECT
a.user_id,
a.signup week,
b.engagement_week,
b.engagement_week - a.signup_week as retention week
FROM
(SELECT distinct user_id, extract(week from occurred_at) as signup week from tutorial.yammer events
WHERE event type = 'signup flow'
and event_name = 'complete signup'
)a
LEFT JOIN
(SELECT distinct user id, extract (week from occurred at) as engagement week FROM tutorial.yammer events
where event type = 'engagement'
)b
on a.user_id = b.user_id
)d
group by user_id
order by user id;
```

Weekly Retention: Users getting retained weekly after signing-up for a product. Your task: Calculate the weekly retention of users-sign up cohort?

Output /Result
(Without
Specifying week
number)

Link for the saved result

Trainity task 3 case stuy 2 question c.csv - Google Drive

Weekly Retention: Users getting retained weekly after signing-up for a product. Your task: Calculate the weekly retention of users-sign up cohort?

Program/Query(Specifying the week number as 18):

```
SELECT
distinct user_id,
COUNT(user id),
SUM(CASE WHEN retention week = 1 Then 1 Else 0 END) as per_week_retention
FROM
SELECT
a.user id,
a.signup_week,
b.engagement_week,
b.engagement week - a.signup week as retention week
FROM
(SELECT distinct user id, extract(week from occurred at) as signup week from tutorial.yammer events
WHERE event type = 'signup flow'
and event name = 'complete signup'
and extract(week from occurred_at) = 18
)a
LEFTJOIN
(SELECT distinct user id, extract (week from occurred at) as engagement week FROM tutorial.yammer events
where event type = 'engagement'
)b
on a.user id = b.user id
)d
group by user_id
order by user_id;
```

Weekly Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.

Your task: Calculate the weekly engagement per device?

To find the weekly user engagement per device:-

- Firstly we will extract the year_num and week_num from the occurred_at column
 of the events table using the extract, year and week function
- Then we will select those rows where event_type = 'engagement' using the WHERE clause
- 3. Then by using the **Group By** and **Order By** function we will group and order the result on the basis of year_num, week_num and device

Weekly Engagement: To measure the activeness of a user. Measuring if the user finds quality in a product/service weekly.

Your task: Calculate the weekly engagement per device?

```
SELECT
extract(year from occurred_at) as year_num,
extract(week from occurred_at) as week_num,
device,
COUNT(distinct user_id) as no_of_users
FROM
tutorial.yammer_events
where event_type = 'engagement'
GROUP by 1,2,3
order by 1,2,3;
```

Email Engagement: Users engaging with the email service. Your task: Calculate the email engagement metrics?

To find the email engagement metrics(rate) of users:-

- We will first categorize the action on the basis of email_sent, email_opened and email_clicked using the CASE, WHEN, THEN functions
- 2. Then we select the sum of category of **email_opened** divide by the sum of the category of **email_sent** and multiply the result by 100.0 and name is as **email_opening_rate**
- 3. Then we select the sum of category of **email_clicked** divide by the sum of the category of **email_sent** and multiply the result by 100.0 and name is as **email_clicking_rate**
- 4. email_sent = ('sent_weekly_digest','sent_reengagement_email')
- 5. email_opened = 'email_open'
- 6. email_clicked = 'email_clickthrough'

Email Engagement: Users engaging with the email service. Your task: Calculate the email engagement metrics?

```
SELECT
 100.0*SUM(CASE when email_cat = 'email_opened' then 1 else 0 end)/SUM(CASE when
email_cat = 'email_sent' then 1 else 0 end) as email_opening_rate,
 100.0*SUM(CASE when email cat = 'email clicked' then 1 else 0 end)/SUM(CASE when
email cat = 'email sent' then 1 else 0 end) as email clicking rate
FROM
SFLECT
 CASE
  WHEN action in ('sent_weekly_digest','sent_reengagement_email')
   then 'email_sent'
  WHEN action in ('email_open')
   then 'email_opened'
  WHEN action in ('email_clickthrough')
   then 'email_clicked'
 end as email cat
from tutorial.yammer_emails
) a;
```

Email Engagement: Users engaging with the email service. Your task: Calculate the email engagement metrics?

Output /Result

Question E email engagement metrics.csv - Google Drive