Polar Coding Status and Prospects

Erdal Arıkan

Electrical-Electronics Engineering Department Bilkent University Ankara, Turkey

1 August 2011 The IEEE International Symposium on Information Theory ISIT'2011 Saint Petersburg, Russia

- lacktriangle input alphabet: $\mathcal{X}=\{0,1\}$
- ▶ output alphabet: Y
- transition probabilities:

$$W(y|x), \quad x \in \mathcal{X}, y \in \mathcal{Y}$$

- ▶ input alphabet: $\mathcal{X} = \{0, 1\}$,
- ightharpoonup output alphabet: \mathcal{Y} ,
- transition probabilities:

$$W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$$

- input alphabet: $\mathcal{X} = \{0, 1\}$,
- ightharpoonup output alphabet: \mathcal{Y} ,
- transition probabilities:

$$W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$$

- input alphabet: $\mathcal{X} = \{0, 1\}$,
- output alphabet: \(\mathcal{Y} \),
- transition probabilities:

$$W(y|x), x \in \mathcal{X}, y \in \mathcal{Y}$$

Symmetry assumption

Assume that the channel has "input-output symmetry."

Symmetry assumption

Assume that the channel has "input-output symmetry."

Examples:

Symmetry assumption

Assume that the channel has "input-output symmetry."

Examples:

Capacity

For channels with input-output symmetry, the capacity is given by

$$C(W) \stackrel{\Delta}{=} I(X; Y)$$
, with $X \sim \text{unif. } \{0, 1\}$

Capacity

For channels with input-output symmetry, the capacity is given by

$$C(W) \stackrel{\triangle}{=} I(X; Y)$$
, with $X \sim \text{unif. } \{0, 1\}$

Use base-2 logarithms:

$$0 \leq C(W) \leq 1$$

- ► Channel coding problem trivial for two types of channels
 - ▶ Perfect: C(W) = 1
 - ▶ Useless: C(W) = 0
- ► Transform ordinary W into such extreme channels

- ► Channel coding problem trivial for two types of channels
 - ▶ Perfect: C(W) = 1
 - ▶ Useless: C(W) = 0
- ► Transform ordinary W into such extreme channels

- ► Channel coding problem trivial for two types of channels
 - ▶ Perfect: C(W) = 1
 - ▶ Useless: C(W) = 0
- ► Transform ordinary W into such extreme channels

- ► Channel coding problem trivial for two types of channels
 - ▶ Perfect: C(W) = 1
 - ▶ Useless: C(W) = 0
- ► Transform ordinary *W* into such extreme channels

The method: aggregate and redistribute capacity

Original channels (uniform)

W

W

W

The method: aggregate and redistribute capacity

The method: aggregate and redistribute capacity

Combining

- ► Begin with *N* copies of *W*,
- ▶ use a 1-1 mapping

$$G_N: \{0,1\}^N \to \{0,1\}^N$$

▶ to create a vector channel

$$W_{\text{vec}}:U^N\to Y^N$$

Combining

- ▶ Begin with *N* copies of *W*,
- ▶ use a 1-1 mapping

$$G_N: \{0,1\}^N \to \{0,1\}^N$$

▶ to create a vector channel

$$W_{\text{vec}}:U^N\to Y^N$$

Combining

- ▶ Begin with *N* copies of *W*,
- ▶ use a 1-1 mapping

$$\textit{G}_{\textit{N}}: \{0,1\}^{\textit{N}} \rightarrow \{0,1\}^{\textit{N}}$$

► to create a vector channel

$$W_{\text{vec}}:U^N\to Y^N$$

Conservation of capacity

Combining operation is lossless:

- ► Take U_1, \ldots, U_N i.i.d. unif. $\{0, 1\}$
- ▶ then, $X_1, ..., X_N$ i.i.d. unif. $\{0, 1\}$
- ▶ and

$$C(W_{\text{vec}}) = I(U^N; Y^N)$$
$$= I(X^N; Y^N)$$
$$= NC(W)$$

Conservation of capacity

Combining operation is lossless:

- ▶ Take $U_1, ..., U_N$ i.i.d. unif. $\{0, 1\}$
- ▶ then, X_1, \ldots, X_N i.i.d. unif. $\{0, 1\}$
- ▶ and

$$C(W_{\text{vec}}) = I(U^N; Y^N)$$
$$= I(X^N; Y^N)$$
$$= NC(W)$$

Conservation of capacity

Combining operation is lossless:

- ▶ Take $U_1, ..., U_N$ i.i.d. unif. $\{0, 1\}$
- ▶ then, X_1, \ldots, X_N i.i.d. unif. $\{0, 1\}$
- ▶ and

$$C(W_{\text{vec}}) = I(U^N; Y^N)$$

= $I(X^N; Y^N)$
= $NC(W)$

$$C(W_{\text{vec}}) = I(U^N; Y^N)$$

$$C(W_{\text{vec}}) = I(U^{N}; Y^{N})$$
$$= \sum_{i=1}^{N} I(U_{i}; Y^{N}, U^{i-1})$$

$$C(W_{\text{vec}}) = I(U^{N}; Y^{N})$$

$$= \sum_{i=1}^{N} I(U_{i}; Y^{N}, U^{i-1})$$

Define bit-channels

$$W_i: U_i \rightarrow (Y^N, U^{i-1})$$

$$C(W_{\text{vec}}) = I(U^{N}; Y^{N})$$

$$= \sum_{i=1}^{N} I(U_{i}; Y^{N}, U^{i-1})$$

$$= \sum_{i=1}^{N} C(W_{i})$$

Define bit-channels

$$W_i: U_i \rightarrow (Y^N, U^{i-1})$$

Polarization is commonplace

- Polarization is the rule not the exception
- ► A random permutation

$$G_N: \{0,1\}^N \to \{0,1\}^N$$

is a good polarizer with high probability

Equivalent to Shannon's random coding approach

Polarization is commonplace

- Polarization is the rule not the exception
- ► A random permutation

$$G_N: \{0,1\}^N \to \{0,1\}^N$$

is a good polarizer with high probability

Equivalent to Shannon's random coding approach

Polarization is commonplace

- Polarization is the rule not the exception
- A random permutation

$$G_N: \{0,1\}^N \to \{0,1\}^N$$

is a good polarizer with high probability

Equivalent to Shannon's random coding approach

Random polarizers: stepwise, isotropic

Random polarizers: stepwise, isotropic

Isotropy: any redistribution order is as good as any other.

The complexity issue

- ► Random polarizers lack structure, too complex to implement
- Need a low-complexity polarizer
- May sacrifice stepwise, isotropic properties of random polarizers in return for less complexity

The complexity issue

- ► Random polarizers lack structure, too complex to implement
- ► Need a low-complexity polarizer
- May sacrifice stepwise, isotropic properties of random polarizers in return for less complexity

The complexity issue

- Random polarizers lack structure, too complex to implement
- Need a low-complexity polarizer
- May sacrifice stepwise, isotropic properties of random polarizers in return for less complexity

Basic module for a low-complexity scheme

Combine two copies of W

Basic module for a low-complexity scheme

Combine two copies of W

Basic module for a low-complexity scheme

Combine two copies of W

and split to create two bit-channels

$$W_1:U_1\to (Y_1,Y_2)$$

$$\textit{W}_2:\textit{U}_2\rightarrow (\textit{Y}_1,\textit{Y}_2,\textit{U}_1)$$

The first bit-channel W_1

$$W_1: U_1 \rightarrow (Y_1, Y_2)$$

The first bit-channel W_1

$$W_1: U_1 \rightarrow (Y_1, Y_2)$$

$$C(W_1) = I(U_1; Y_1, Y_2)$$

The second bit-channel W_2

$$W_2: \textcolor{red}{U_2}
ightarrow (\textcolor{red}{Y_1}, \textcolor{red}{Y_2}, \textcolor{red}{U_1})$$

The second bit-channel W_2

$$W_2: \textcolor{red}{U_2} \rightarrow (\textcolor{red}{Y_1}, \textcolor{red}{Y_2}, \textcolor{red}{U_1})$$

$$C(W_2) = I(U_2; Y_1, Y_2, U_1)$$

Capacity conserved but redistributed unevenly

Conservation:

$$C(W_1) + C(W_2) = 2C(W)$$

Extremization:

$$C(W_1) \leq C(W) \leq C(W_2)$$

with equality iff C(W) equals 0 or 1.

Capacity conserved but redistributed unevenly

Conservation:

$$C(W_1) + C(W_2) = 2C(W)$$

► Extremization:

$$C(W_1) \leq C(W) \leq C(W_2)$$

with equality iff C(W) equals 0 or 1.

Notation

The two channels created by the basic transform

$$(W,W) \rightarrow (W_1,W_2)$$

will be denoted also as

$$W^- = W_1$$
 and $W^+ = W_2$

Notation

The two channels created by the basic transform

$$(W,W) \rightarrow (W_1,W_2)$$

will be denoted also as

$$W^- = W_1$$
 and $W^+ = W_2$

Likewise, we write W^{--} , W^{-+} for descendants of W^{-} ; and W^{+-} , W^{++} for descendants of W^{+} .

For the size-4 construction

... duplicate the basic transform

... obtain a pair of W^- and W^+ each

... apply basic transform on each pair

... decode in the indicated order

... obtain the four new bit-channels

Overall size-4 construction

"Rewire" for standard-form size-4 construction

Size 8 construction

Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

If W is a BEC(ϵ), then so are W^- and W^+ , with erasure probabilities

$$\epsilon^- \stackrel{\Delta}{=} 2\epsilon - \epsilon^2$$

and

$$\epsilon^+ \stackrel{\Delta}{=} \epsilon^2$$

respectively.

Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

If W is a BEC(ϵ), then so are W^- and W^+ , with erasure probabilities $\epsilon^- \stackrel{\triangle}{=} 2\epsilon - \epsilon^2$

and

$$\epsilon^+ \stackrel{\Delta}{=} \epsilon^2$$

respectively.

Demonstration of polarization

Polarization is easy to analyze when W is a BEC.

If W is a BEC(ϵ), then so are W^- and W^+ , with erasure probabilities $\epsilon^- \stackrel{\Delta}{=} 2\epsilon - \epsilon^2$

$$\epsilon^- = 2\epsilon - \epsilon$$

and

$$\epsilon^+ \stackrel{\Delta}{=} \epsilon^2$$

respectively.

Polarization martingale

Polarization martingale

Polarization martingale

Theorem (Polarization, A. 2007)

The bit-channel capacities $\{C(W_i)\}$ polarize: for any $\delta \in (0,1)$, as the construction size N grows

$$\left\lceil rac{ extit{no. channels with } \mathcal{C}(W_i) > 1 - \delta}{ extit{N}}
ight
ceil \longrightarrow \mathcal{C}(W)$$

and

$$\left[rac{\textit{no. channels with } C(W_i) < \delta}{N}
ight] \longrightarrow 1 - C(W)$$

Theorem (Rate of polarization, A. and Telatar (2008)) Above theorem holds with $\delta \approx 2^{-\sqrt{N}}$.

$$1 \\ 1 - \delta$$

· δ -0

Theorem (Polarization, A. 2007)

The bit-channel capacities $\{C(W_i)\}$ polarize: for any $\delta \in (0,1)$, as the construction size N grows

$$\left\lceil rac{\textit{no. channels with } C(W_i) > 1 - \delta}{N}
ight
ceil \longrightarrow C(W)$$

and

$$\left[rac{\textit{no. channels with } C(W_i) < \delta}{\textit{N}}
ight] \longrightarrow 1 - C(W)$$

Theorem (Rate of polarization, A. and Telatar (2008)) Above theorem holds with $\delta \approx 2^{-\sqrt{N}}$.

 $1 \ 1 - \delta$

· δ -0

$C(W_i)$	Rank	
0.0039	8	$U_1 \longrightarrow W \longrightarrow Y_1$
0.1211	7	$U_2 \longrightarrow W \longrightarrow Y_2$
0.1914	6	$U_3 \longrightarrow W \longrightarrow Y_3$
0.6836	4	$U_4 \longrightarrow W \longrightarrow Y_4$
0.3164	5	$U_5 \longrightarrow W \longrightarrow Y_5$
0.8086	3	$U_6 \longrightarrow W \longrightarrow Y_6$
0.8789	2	$U_7 \longrightarrow W \longrightarrow Y_7$
0.9961	1	U_8 W Y_8

$C(W_i)$	Rank		
0.0039	8	frozen 0	<u></u>
0.1211	7	frozen 0 W	<u></u>
0.1914	6	frozen 0 W	<u>/</u> 3
0.6836	4	data U_4 W	4
0.3164	5	frozen 0 W	5
0.8086	3	data U_6	6
0.8789	2	data U_7	7
0.9961	1	data U_8	8

- ► An $\mathcal{O}(N)$ construction algorithm exists that uses density-evolution
 - First proposed by Mori and Tanaka, without finite-precision implementation details
 - Tal and Vardy introduced smart quantization methods for a practical implementation
- The algorithm works well in practice but a precise proof of O(N) complexity still lacking
- Recent work: Pedarsani, Hassani, Tal, and Telatar (ISIT'2011)

- ▶ An $\mathcal{O}(N)$ construction algorithm exists that uses density-evolution
 - First proposed by Mori and Tanaka, without finite-precision implementation details
 - Tal and Vardy introduced smart quantization methods for a practical implementation
- The algorithm works well in practice but a precise proof of O(N) complexity still lacking
- Recent work: Pedarsani, Hassani, Tal, and Telatar (ISIT'2011)

- An $\mathcal{O}(N)$ construction algorithm exists that uses density-evolution
 - First proposed by Mori and Tanaka, without finite-precision implementation details
 - ► Tal and Vardy introduced smart quantization methods for a practical implementation
- ► The algorithm works well in practice but a precise proof of O(N) complexity still lacking
- ► Recent work: Pedarsani, Hassani, Tal, and Telatar (ISIT'2011)

- An $\mathcal{O}(N)$ construction algorithm exists that uses density-evolution
 - First proposed by Mori and Tanaka, without finite-precision implementation details
 - Tal and Vardy introduced smart quantization methods for a practical implementation
- ► The algorithm works well in practice but a precise proof of O(N) complexity still lacking
- ► Recent work: Pedarsani, Hassani, Tal, and Telatar (ISIT'2011)

- An $\mathcal{O}(N)$ construction algorithm exists that uses density-evolution
 - First proposed by Mori and Tanaka, without finite-precision implementation details
 - Tal and Vardy introduced smart quantization methods for a practical implementation
- The algorithm works well in practice but a precise proof of O(N) complexity still lacking
- ► Recent work: Pedarsani, Hassani, Tal, and Telatar (ISIT'2011)

Encoding complexity

Encoding complexity for polar coding is $\mathcal{O}(N \log N)$.

Polarization

Successive cancellation decoding complexity

(A. 2007)

Complexity of successive cancellation decoding for polar codes is $\mathcal{O}(N \log N)$.

Successive cancellation decoding complexity

(A. 2007)

Complexity of successive cancellation decoding for polar codes is $\mathcal{O}(N \log N)$.

Earlier work on similar decoders:

- Kabatiansky (1990)
- Schnabl and Bossert (1996)
- Dumer and co-authors (from 1990s)
- ▶ Burnashev and Dumer (2006-2009)

Performance of SC decoder

(A. and Telatar, 2008)

For any rate R < C(W) and block-length N, the probability of frame error for polar codes under SC decoding is bounded roughly as

$$P_e(N,R) = o\left(2^{-\sqrt{N}}\right)$$

Performance of SC decoder

(A. and Telatar, 2008)

For any rate R < C(W) and block-length N, the probability of frame error for polar codes under SC decoding is bounded roughly as

$$P_{e}(N,R) = o\left(2^{-\sqrt{N}}\right)$$

- ► Prior result (A. 2007): $P_e(N, R) = o(N^{-1/4})$.
- Latest result: A rate-dependent refinement of the "square-root" bound has been given by Tanaka & Mor (2010) and Hassani & Urbanke (2010)

Performance of SC decoder

(A. and Telatar, 2008)

For any rate R < C(W) and block-length N, the probability of frame error for polar codes under SC decoding is bounded roughly as

$$P_{e}(N,R) = o\left(2^{-\sqrt{N}}\right)$$

- ▶ Prior result (A. 2007): $P_e(N, R) = o(N^{-1/4})$.
- ► Latest result: A rate-dependent refinement of the "square-root" bound has been given by Tanaka & Mori (2010) and Hassani & Urbanke (2010)

- ▶ construction complexity O(N) (conjecture),
- encoding complexity $\approx N \log N$,
- decoding complexity $\approx N \log N$
- ▶ and frame error probability $P_e(N,R) \approx o(2^{-\sqrt{N}})$

- ▶ construction complexity $\mathcal{O}(N)$ (conjecture),
- encoding complexity $\approx N \log N$,
- ▶ decoding complexity ≈ N log N,
- ▶ and frame error probability $P_e(N,R) \approx o(2^{-\sqrt{N}})$

- ▶ construction complexity $\mathcal{O}(N)$ (conjecture),
- encoding complexity $\approx N \log N$,
- ▶ decoding complexity $\approx N \log N$,
- ▶ and frame error probability $P_e(N,R) \approx o(2^{-\sqrt{N}})$

- ▶ construction complexity O(N) (conjecture),
- encoding complexity $\approx N \log N$,
- decoding complexity $\approx N \log N$,
- ▶ and frame error probability $P_e(N,R) \approx o(2^{-\sqrt{N}})$

Polar coding in other contexts

- Source coding (lossless)
- Source coding in the presence of memory
- Lossy source coding
- Slepian-Wolf problem
- Wyner-Ziv problem
- Gelfand-Pinsker problem
- MAC
- Degraded-broadcast channel
- Wyner wiretap channel
- Randomness extraction
- ▶ ..

Channel-coding scenarios

Topic	Ref.
Single-user q-ary channels	Şaşoğlu, Telatar, A. (2009)
Multi-access channels	Şaşoğlu, Telatar, Yeh (2010)
<i>m</i> -user MAC	Abbe and Telatar (2010)
Wyner wiretap channel	Mahdavifar and Vardy (2009)
<i>''</i>	Hof and Shamai (2010)
"	Koyluoglu and El Gamal (2010)
<i>"</i>	Andersson et al. (2010)
Relay channel	Andersson et al. (2010)
<i>''</i>	Blasco-Serrano et al. (2010)
//	Karzand (2011)
Compund channel coding	Hassani, Korada, Urbanke (2009)

Source-coding scenarios

Topic	Ref.
Lossless source coding	Hussami, Korada, Urbanke (2009)
Rate-distortion coding	Korada and Urbanke (2009)
q-ary lossless source coding	Karzand and Telatar (2010)
Direct source polarization	A. (2010)
Universal polar coding	Abbe (2010)
Sparse recovery	Abbe (2010)
Randomness extraction	Abbe (2011)
Ergodic source polarization	Şaşoğlu (2011)

Scenarios with side-information

Торіс	Ref.
Wyner-Ziv coding	Korada and Urbanke (2009)
Gelfand-Pinsker coding	Korada and Urbanke (2009)
Slepian-Wolf coding	Hussami, Korada, Urbanke (2009)

Generalized polarization schemes

q: alphabet size

ℓ: dimension of basic transform (kernel)

E: rate of polarization exponent

q	ℓ	Exponent <i>E</i>	Kernel	Ref.
2	2 to 15	≤ 1/2	Any linear	KSU (2009)
2	16	0.51828	BCH	KSU (2009)
2	31	0.52643	BCH	KSU (2009)
4	4	0.573120	Reed-Solomon	MT (2010)
2	14	0.50193	Nonlinear	PSL (2011)
2	15	0.50773	Nonlinear	PSL (2011)
2	16	0.52742	Nonlinear	PSL (2011)

KSU: Korada, Şaşoğlu, Urbanke

MT: Mori and Tanaka

PSL: Presman, Shapira, Litsyn

Performance comparison: Polar vs. Turbo

Turbo code

- ▶ WiMAX CTC
- Duobinary, memory 3
- QAM over AWGN channel
- Gray mapping
- ► BICM
- Simulator: "Coded Modulation Library"

Polar code

- Standard construction
- Successive cancellation decoding
- QAM over AWGN channel
- Natural mapping
- Multi-level PAM
- ► PAM over AWGN channel

- ▶ PAM signals selected by three bits (b_1, b_2, b_3)
- ▶ Three layers of binary channels created
- Each layer encoded independently
- ▶ Layers decoded in the order b_3 , b_2 , b_1

- ▶ PAM signals selected by three bits (b_1, b_2, b_3)
- ► Three layers of binary channels created
- Each layer encoded independently
- ▶ Layers decoded in the order b_3 , b_2 , b_1

- ▶ PAM signals selected by three bits (b_1, b_2, b_3)
- ► Three layers of binary channels created
- ► Each layer encoded independently
- ▶ Layers decoded in the order b_3 , b_2 , b_1

- ▶ PAM signals selected by three bits (b_1, b_2, b_3)
- ► Three layers of binary channels created
- ► Each layer encoded independently
- ▶ Layers decoded in the order b_3 , b_2 , b_1

- ▶ PAM signals selected by three bits (b_1, b_2, b_3)
- ▶ Three layers of binary channels created
- Each layer encoded independently
- ▶ Layers decoded in the order b_3 , b_2 , b_1

- ▶ PAM signals selected by three bits (b_1, b_2, b_3)
- ▶ Three layers of binary channels created
- ► Each layer encoded independently
- ▶ Layers decoded in the order *b*₃, *b*₂, *b*₁

Multi-layering jump-starts polarization

4-QAM, Rate 1/2

16-QAM, Rate 3/4

64-QAM, Rate 5/6

Complexity comparison: 64-QAM, Rate 5/6

Average decoding time in milliseconds per codeword (ms/cw)

E_b/N_0	CTC(576,432)	Polar(768,640)	Polar(384,320)
10 dB	6.23	0.92	0.48
11 dB	1.83	1.01	0.53

Both decoders implemented as MATLAB mex functions. Polar decoder is a successive cancellation decoder. CTC decoder is a public domain decoder (CML). Profiling done by MATLAB Profiler. Iteration limit for CTC decoder was 10; average no of iterations was 10 at 10 dB and 3.3 at 11 dB. CTC decoder used a linear approximation to log-MAP while polar decoder used exact log-MAP.

Complexity comparison: 64-QAM, Rate 5/6

Average decoding time in milliseconds per codeword (ms/cw)

E_b/N_0	CTC(576,432)	Polar(768,640)	Polar(384,320)
10 dB	6.23	0.92	0.48
11 dB	1.83	1.01	0.53

Polar codes show a complexity advantage against CTC codes.

Both decoders implemented as MATLAB mex functions. Polar decoder is a successive cancellation decoder. CTC decoder is a public domain decoder (CML). Profiling done by MATLAB Profiler. Iteration limit for CTC decoder was 10; average no of iterations was 10 at 10 dB and 3.3 at 11 dB. CTC decoder used a linear approximation to log-MAP while polar decoder used exact log-MAP.

Performance improvement for polar codes

- ► Concatenation to improve minimum distance
- ► List decoding to improve SC decoder performance

Performance improvement for polar codes

- Concatenation to improve minimum distance
- ► List decoding to improve SC decoder performance

Concatenation

Method	Ref
Block turbo coding with polar constituents	AKMOP (2009)
Generalized concatenated coding with polar inner	AM (2009)
Reed-Solomon outer, polar inner	BJE (2010)
Polar outer, block inner	SH (2010)
Polar outer, LDPC inner	EP (ISIT'2011)

AKMOP: A., Kim, Markarian, Özgür, Poyraz

GCC: A., Markarian

BJE: Bakshi, Jaggi, and Effros

SH: Seidl and Huber

EP: Eslami and Pishro-Nik

Tal-Vardy list decoder for polar codes

- ► First produce *L* candidate decisions
- ▶ Pick the most likely word from the list
- ► Complexity $\mathcal{O}(LN \log N)$

Tal-Vardy list decoder for polar codes

- First produce L candidate decisions
- Pick the most likely word from the list
- ► Complexity $\mathcal{O}(LN \log N)$

Tal-Vardy list decoder for polar codes

- ► First produce *L* candidate decisions
- Pick the most likely word from the list
- ► Complexity $\mathcal{O}(LN \log N)$

Length n = 2048, rate R = 0.5, BPSK-AWGN channel, list-size L.

List-of-*L* performance quickly approaches ML performance!

- ► Same decoder as before but data contains a built-in CRC
- Selection made by CRC and relative likelihood

- ▶ Same decoder as before but data contains a built-in CRC
- Selection made by CRC and relative likelihood

Length n = 2048, rate R = 0.5, BPSK-AWGN channel, list-size L.

Polar codes (+CRC) achieve state-of-the-art performance!

Advantages

- ► Regular structure simplifies resource reuse
- Lack of randomness helps avoid memory conflicts

Disadvantages

- ► High latency: O(N)
- Throughput bottleneck: 1/2 bits per clock-period

- Advantages
 - Regular structure simplifies resource reuse
 - Lack of randomness helps avoid memory conflicts
- Disadvantages
 - ► High latency: O(N)
 - ▶ Throughput bottleneck: 1/2 bits per clock-period

- Advantages
 - Regular structure simplifies resource reuse
 - Lack of randomness helps avoid memory conflicts
- Disadvantages
 - ► High latency: O(N)
 - Throughput bottleneck: 1/2 bits per clock-period

- Advantages
 - Regular structure simplifies resource reuse
 - Lack of randomness helps avoid memory conflicts
- Disadvantages
 - ▶ High latency: $\mathcal{O}(N)$
 - ► Throughput bottleneck: 1/2 bits per clock-period

- Advantages
 - Regular structure simplifies resource reuse
 - Lack of randomness helps avoid memory conflicts
- Disadvantages
 - ▶ High latency: $\mathcal{O}(N)$
 - ► Throughput bottleneck: 1/2 bits per clock-period

- Advantages
 - Regular structure simplifies resource reuse
 - Lack of randomness helps avoid memory conflicts
- Disadvantages
 - ▶ High latency: O(N)
 - ► Throughput bottleneck: 1/2 bits per clock-period

Summary

- ► Polarization is a commonplace phenomenon almost unavoidable
- ▶ Polar codes are low-complexity methods designed to exploit polarization for achieving Shannon limits
- Polar codes with some help from other methods perform competitively with the state-of-the-art codes in terms of complexity and performance

Summary

- Polarization is a commonplace phenomenon almost unavoidable
- ► Polar codes are low-complexity methods designed to exploit polarization for achieving Shannon limits
- Polar codes with some help from other methods perform competitively with the state-of-the-art codes in terms of complexity and performance

Summary

- Polarization is a commonplace phenomenon almost unavoidable
- Polar codes are low-complexity methods designed to exploit polarization for achieving Shannon limits
- Polar codes with some help from other methods perform competitively with the state-of-the-art codes in terms of complexity and performance

Acknowledgements

Research sponsors

Special thanks to Emre Telatar, Alex Vardy, Ido Tal, and Warren Gross for sharing ideas, software and slides, and to Matthew Valenti for *Coded Modulation Library*.

Thank you!