AGE AND GENDER PREDICTION

Jakkaphob Kongthanarith 6210554725

Flow Chart

Data sets

UTK Face downloaded from Kaggle

Content: Face images

Age range: 0 to 116

Gender: Male and Female

Number of images : 23,708 images

https://www.kaggle.com/datasets/jangedoo/utkface-new

Number of files per gender: 25

Age range: 1-79

Age_Gender_Ethnicity_Filename.jpg.chip.jpg

25_0_0_20170104214616710.jpg .chip

Age = 25 Gender = 0 -> Male

32_1_0_20170105002717213.jpg .chip

Age = 32 Gender = 1 -> Female

Source: https://susanqq.github.io/UTKFace/. https://www.iconfinder.com/icons/4373210/kaggle_logo_logos_icon

Image Augmentation

If the number of Images for each gender did not reach the maximum count (25) perform an augmentation

Augmentation method: Enhance contrast, brightness

Total Samples: 3950

Min Value = 1 | Max value = 79

Image Normalization

Normalize the image to be used for Dataset's features by divide all of pixel values by 255

- Faster processing time
- better accuracy

```
[ 20., 22., 52.]
[ 12., 14., 44.]
[ 8., 10., 40.]
```

Normalization

A part of pixel values before

```
[0.07843138, 0.08627451, 0.20392157]
[0.04705882, 0.05490196, 0.17254902]
[0.03137255, 0.03921569, 0.15686275]
```

A part of pixel values After Normalization

Dataset for Model training

Total images: 3950

Split into Training and Testing Dataset

- Train: 3160

- Test: 790

- Data type: numpy.ndarray

Image

Normalization

Split the

dataset

Image

Augment

Prepare

Dataset

Age and Gender Model (CNN)

Age Model

Input layer : (224,224,1)

Output layer: ReLU

Epoch = 100 Batch size = 80 Gender Model

Input layer : (224,224,1)

Output layer: Sigmoid

Conv2D Layer : 32>64>128

Age Layer : 128>64>32>1

Gender Layer : 128>64>32>16>8>1

Gender Model

Age and Gender Model (Neural Network)

Age Model

Gender Model

Input layer: (224,224,1) Input layer: (224,224,1)

Output layer : Linear

Output layer: Sigmoid

Epoch = 60 Batch size = 32

Age Dense:

128>64>1

Gender Dense:

128>64>1

= Input

= Dropout

= Flatten

= Dense with ReLU

= Output

Age and Gender Model (Pretrained+Finetuned)

Age Model

Input layer : (224,224,3)

Output layer : ReLU

Gender Model

Input layer : (224,224,3)

Output layer: Sigmoid

Epoch = 100

Batch size = 128

Gender Layer : 256>128>1

128>64>1

Neural network Pre-trained = Pretrained model output = Dropout

CNN

= Batch Normalization

= Flatten

= Dense with ReLU

= Output

Age Model Evaluation

Model	Train MAE	Test MAE	Train Loss	Test Loss
CNN	10.5386	15.1492	197.7404	357.4378
Neural Network	18.4853	17.1355	484.3796	406.8231
VGG 16 Pretrained + fine-tuning model	7.4472	9.9541	95.2519	164.0147

Age Model Evaluation Graph

Percentage error of the model

```
def error_count(error):
 error1 = 0
 error2 = 0
 error3 = 0
 error4 = 0
if error < 5:
 error1 = error1+1
 elif error <= 10:
 error2 = error2+1
 elif error <= 15:
 error3 = error3+1
 elif error > 15:
 error4 = error4+1
 return error1, error2, error3, error4
percent_dif = (abs(predicted_age - actual_age))/ max_age) * 100
error_count(percent_dif)
```


Real | Predict 76 | 47 percent difference: 32 %

Real | Predict 44 | 40 percent difference: 4 %

Distribution of percent error

Test size: 400 files Randomly selected from UTK Face Dataset

Error <5 %: 14.56 % Error between 6- 10%: 15.70 % Error between 11-15%: 14.94 %

Error > 15%: 54.81 %

Error <5 %: 14.81 Error between 6- 10%: 17.47 % Error between 11-15%: 12.53 %

Error > 15%: 55.19 %

Error < 5 %: 22.91 %

Error between 6-10%:

Error between 6- 10%: 22.41 % Error between 11-15%: 21.01 %

Error > 15%: 33.67 %

Gender Model Evaluation

Model	Train Accuracy	Test Accuracy	Train Loss	Test Loss
CNN	0.8513	0.8468	0.3507	1.5800
Neural Network	0.8256	0.7709	0.3805	0.4442
VGG-16 Pre-trained model + fine-tuning model	0.8570	0.8494	0.2017	0.7013

Gender model Accuracy Graph

Gender Model Confusion Matrix

Gender Prediction

```
def get_gender(prob):
   if prob < 0.5:return "Male"
   else: return "Female"</pre>
```

- A model make a prediction value of the selected image
- Function 'get_gender()' will check that the value is higher or lower than 0.5
- If the predicted value lover than 0.5, return 'male' as an outcome
- Otherwise, return 'female' as an outcome

Real | Predict Male | Male Prediction Value 0.253399

Real | Predict Female | Female Prediction Value 0.999868

Prediction Result

Real age | Predict age | 56 | Real gender | Predict gender | Male | Male

Real age | Predict age 12 | 1 Real gender | Predict gender Male | Male

Real age | Predict age 25 | 32 | Real gender | Predict gender | Female | Female

Real age | Predict age 12 | 31 Real gender | Predict gender Female | Female

Real age | Predict age 4 | 12 Real gender | Predict gender Male | Female

Real age | Predict age 26 | 18 Real gender | Predict gender Female | Male