Outline for today's class

- Course logistics
- Introductions
- What is numerical analysis?
- lacksquare Working through an example problem: Calculating $\sqrt{}$
- Introduction to the Julia language
- What does it mean to solve a problem?

"Numerical" modifies "analysis"

- "Numerical" modifies "analysis"
- "Analysis" = "mathematical analysis" = calculus
- What is special about calculus?

- "Numerical" modifies "analysis"
- "Analysis" = "mathematical analysis" = calculus
- What is special about calculus?

Used for models in science and engineering

- "Numerical" modifies "analysis"
- "Analysis" = "mathematical analysis" = calculus
- What is special about calculus?

Used for models in science and engineering

How does it differ from computer science?

- "Numerical" modifies "analysis"
- "Analysis" = "mathematical analysis" = calculus
- What is special about calculus?

Used for models in science and engineering

- How does it differ from computer science?
- We will use many concepts from computer science

Alternative / related subject titles

- Numerical methods
- Numerical computation

- Technical computing
- Scientific computing
- Computational science and engineering
- Numerical mathematics
- Experimental mathematics

So what is the course actually about?

- Solving problems
- That arise in science, engineering, economics, mathematics, ...
- Problem: mathematical description of something to calculate

So what is the course actually about?

- Solving problems
- That arise in science, engineering, economics, mathematics, ...
- Problem: mathematical description of something to calculate

Using the computer to solve problems in science, engineering, mathematics...

■ What kind of objects will we be dealing with?

- What kind of objects will we be dealing with?
- lacksquare Functions $\mathbb{R} o \mathbb{R}$
- \blacksquare R is the set of all **real numbers**

- What kind of objects will we be dealing with?
- lacksquare Functions $\mathbb{R} o \mathbb{R}$
- \blacksquare R is the set of all **real numbers**

- Calculus: differentation, integration
- Solution of a differential equation $\dot{x} = f(x)$ is a continuous function $t \mapsto x(t)$ for $t \in \mathbb{R}$

- What kind of objects will we be dealing with?
- lacksquare Functions $\mathbb{R} o \mathbb{R}$
- \blacksquare \mathbb{R} is the set of all **real numbers**

- Calculus: differentation, integration
- \blacksquare Solution of a differential equation $\dot{x}=f(x)$ is a continuous function $t\mapsto x(t)$ for $t\in\mathbb{R}$

Computer science: Discrete objects

Collaborative exercise 1: Is \sqrt{x} an integer?

Let's look at a basic example that you might see in a computer science course:

Is \sqrt{x} of a non-negative integer x an integer?

- In a breakout room, write a program (algorithm) to find whether the square root of an integer x is also an integer.
 - Input: x an integer
 - Output: y a Boolean (true or false)

Collaborative exercise 1: Is \sqrt{x} an integer?

Let's look at a basic example that you might see in a computer science course:

Is \sqrt{x} of a non-negative integer x an integer?

- In a breakout room, write a program (algorithm) to find whether the square root of an integer x is also an integer.
 - Input: x an integer
 - Output: y a Boolean (true or false)

Rules

- Write, in words, the simplest version of this algorithm.
- Use only +, * / (division)
- You may *not* use the sqrt function!
- Variables take only integer values

Coding the algorithm in Julia

■ Live coding in Julia with the Pluto notebook

Collaborative exercise 2: Calculate $y = \sqrt{x}$

Now let's go beyond "computer science"

Collaborative exercise 2: Calculate $y = \sqrt{x}$

Now let's go beyond "computer science"

Calculating the square root

- Modify your algorithm to return information about the value of the square root, whether or not it is an integer.
- 2 Does your new algorithm work if the input is a real number like 17.35?
- 3 How can you extend your method to get a *more accurate* value for \sqrt{x} ?
- 4 Can you think of a better way to get a **first approximation** for the \sqrt{x} , using mathematical properties of the \sqrt{x} function?

Coding the new problem in Julia

What problem have we solved?

- What kind of problem have we solved by calculating \sqrt{x} ?
- What does $y = \sqrt{x}$ satisfy?

What problem have we solved?

- What kind of problem have we solved by calculating \sqrt{x} ?
- What does $y = \sqrt{x}$ satisfy?
- Since $y^2 = x$, we have **solved an equation** numerically!

What problem have we solved?

- What kind of problem have we solved by calculating \sqrt{x} ?
- What does $y = \sqrt{x}$ satisfy?
- Since $y^2 = x$, we have **solved an equation** numerically!
- \blacksquare Can we solve $y^3 = x$?
- \blacksquare Can we solve $\cos(x) = x$?
- \blacksquare Can we solve g(y) = x?

(Computational) problems

- lacktriangle Given **input** data x, calculate an **output** y
- A problem is defined by a function

$$y = f(x)$$

- Our goal is to "solve the problem"
- I.e. given input data x, calculate output y

(Computational) problems

- lacktriangle Given **input** data x, calculate an **output** y
- A problem is defined by a function

$$y = f(x)$$

- Our goal is to "solve the problem"
- I.e. given input data x, calculate output y

- Mathematics often tells us that a solution exists, but not how to calculate it!
- We will be concerned with how sensitive the output is to variations in the input?

How do we solve problems numerically?

- We must first represent the input data in the computer somehow
- How should we deal with real numbers?

How do we solve problems numerically?

- We must first represent the input data in the computer somehow
- How should we deal with real numbers?

Usually must approximate them

How do we solve problems numerically?

- We must first represent the input data in the computer somehow
- How should we deal with real numbers?

Usually must approximate them

- lacktriangle Need to find a **numerical method** or **algorithm** corresponding to the problem f
- Can only calculate approximation to output

How good is our solution?

- $\begin{tabular}{l} \blacksquare & \textbf{Approximate input } x \textbf{ by } \tilde{x} \\ \end{tabular}$
- \blacksquare Approximate problem f by algorithm \tilde{f}
- lacktriangle Get approximate output \tilde{y}

How good is our solution?

- $\blacksquare \ \, \text{Approximate input } x \text{ by } \tilde{x} \\$
- lacksquare Approximate problem f by algorithm \widetilde{f}
- lacktriangle Get approximate output \tilde{y}

- How close is \tilde{y} to the true solution y?
- We need to analyse the approximations to understand how good the solution might be.
- Note that usually we do not have access to the true solution to compare to

Key feature of approximation algorithms

- lacktriangle We are given a **tolerance** ϵ
- \blacksquare We must find an approximation of the true solution within a distance ϵ

Key feature of approximation algorithms

- lacktriangle We are given a **tolerance** ϵ
- We must find an approximation of the true solution within a distance ϵ

- We must be able to do this for any ϵ !
- We will need to do more work as $\epsilon \to 0$. How much?

Summary

- We can only solve problems approximately to within some tolerance
- But we need to be able to do so for any tolerance
- Developing approximation algorithms for solving continuous problems is the heart of numerical analysis