A crossbred algorithm for solving Boolean polynomial systems

eprint.iacr.org/2017/372

(by Antoine Joux and Vanessa Vitse)

Tung Chou

Multivariate polynomial systems

- Field \mathbf{F}_q
- n variables: x_1, \ldots, x_n
- m polynomials: $f_1,\ldots,f_m\in \mathbf{F}_q[x_1,\ldots,x_n]$
- Degree $d = Max(\{Deg(f_i)\})$
- Monomials: $x_1^{e_1} \dots x_n^{e_n}$

Multivariate polynomial systems

• Example of (q, m, n, d) = (7, 3, 3, 4):

$$f_1 = x_1 x_2^3 + 6x_2 x_3 + x_1 x_3 + 2x_1 + 3$$

$$f_2 = x_1 x_2 x_3 + 4x_2 x_3^2 + x_1 x_3 + x_1 + 5$$

$$f_3 = 6x_1^4 + x_2 x_3^2 + 3x_1 x_3 + x_2 + x_3$$

• Example of (q, m, n, d) = (2, 2, 3, 3):

$$f_1 = x_1 x_2 + x_1 x_3 + x_2 x_3 + x_2 + x_3$$

$$f_2 = x_1 x_2 x_3 + x_1 x_3 + x_2 x_3 + x_1 + 1$$

• The task is to find a solution for x_i 's s.t. $f_j = 0 \ \forall j$.

System solving vs. Cryptography

- NP-Hard even when d=2 (quadratic) and q=2 (Boolean)
- Foundation of Multivariate Cryptography.
- Breaking crypto systems can be reduced to system solving
 - ⇒ Algebraic attacks

Exhaustive search

- Highly parallelizable
- Extremely memory efficient
- Complexity: $O(poly \cdot 2^n)$
- Presumably the best algorithm when n is not too large: (d, n) = (2, 48) can be solved in 21 minutes using 1 GPU.

eXtended Linearization (XL)

- Extend: multiply f_i 's by all monomials of degree D-d
- View the extended system as a matrix and "solve" it
 - \Rightarrow Macaulay matrix

- Moderately parallelizable
- Works on sparse matrix: memory-efficient
- Works well for random, $m \gg n$ (small-D) systems

Gröbner basis solvers

- Buchberger's algorithm and it variants (F4, F5, etc)
- Adaptively extend and linearize polynomials
- Not parallelizable?
- Polynomials are much denser: not memory-efficient
- Some algebraic attacks have been carried out using GB solvers
- Appear to be quite efficient when memory fits

Exhaustive search + XL

Determine the parameter k < n, then

- Enumerate all 2^{n-k} solutions for x_{k+1}, \ldots, x_n .
- For each guess, solve the resulting system with XL
- ullet Reducing number of variables results in smaller D

XL + exhaustive search

Determine parameters D, k, then

- Compute the degree-D Macaulay matrix
- (1) Eliminate all monomials that contain x_1, \ldots, x_k .
- (2) Solve the resulting system of n k variables with exhaustive search.

XL + exhaustive search

Macaulay matrix:

After reduction:

XL + exhaustive search + linear algebra (Joux–Vitse)

Determine parameters D, k, then

- (1) Eliminate all monomials of degree > 1 in $x_1, \ldots x_k$.
- (2) Enumerate all 2^{n-k} solutions for x_{k+1}, \ldots, x_n .
- (3) Solve the resulting **LINEAR** systems in x_1, \ldots, x_k .

XL + exhaustive search + linear algebra (Joux–Vitse)

After reduction:

Last 3 equations:

$$\begin{cases} (X_4+1)X_1 + X_2 + X_3 + 1 = 0\\ (X_4+1)X_2 = 0\\ X_1 + X_2 + (X_4+1)X_3 + 1 = 0 \end{cases}$$

Fukuoka MQ challenge

- www.mqchallenge.org
- Joux–Vitse results

Number of Vars	External hybridation	Parameters	Max CPU	Real CPU
(m=2n)	h	(D, n-h-k)	(estimate)	(rounded)
67	9	(4, 36)	6 200 h	3 100 h
68	9	(4, 37)	11 200 h	4 200 h
69	9	(4, 38)	15 400 h	15 400 h
70	13	(4, 34)	33 000 h	16 400 h
71	13	(4, 35)	60 000 h	13 200 h
72	13	(4, 36)	110 000 h	71 800 h
73	13	(4, 37)	190 000 h	14 300 h
74	12	(4, 39)	360 000 h	8 100 h

- D is much smaller than XL degree
- (m, n) = (148, 74) was solved with 448 CPU cores.
- (m,n)=(132,66) was solved in 8 days with 128 FPGAs using exhaustive search.

Open problems

- Complexity of the Joux–Vitse algorithm?
- Can the idea be used for attacking real systems?