Полифазный дециматор

Порты:

Название	Направление	Назначение	
clk	I	Тактирующий сигнал	
nrst	I	Сигнал сброса: сброс при переходе из 1 в 0	
valid_in	I	Когда сигнал в "1", считаем, что на вход поступают	
		валидные данные	
valid_out	O	Когда на выход поступают валидные данные сигнал в "1"	
din	I	Отсчеты входной последовательности	
dout	O	Отсчеты отфильтрованной последовательности	
c_we	I	Разрешение записи в памяти коэффициентов с остановкой	
		работы фильтра.	
c_in	I	Значение коэффициента фильтра	
c_addr	I	Номер коэффициента	

Структура фильтра:

Фильтр построен на использовании блоков МАС (для реализации фильтра с данными параметрами используется 1 блок) на которые в зависимости от фазы подаются коэффициенты и отсчеты. В свою очередь, поступающие отсчеты распределяются по М памятям отсчетов (также в зависимости от фазы). На выходе присутствует аккумулятор, суммирующий выходы на всех М фазах.

Ниже представлена структура фильтра для коэффициента децимации M=8, порядка 255, рабочей частоты 100 МГц для децимации с 1 МГц до 125 кГц:

Рис.1 – Структура фильтра с размерностями для заданной задачи

Рис.2 – Что содержит в себе этот memory block

Ресурсы и тайминги:

При тактовом сигнале с частотой 100 МГц фильтр имеет следующие характеристики:

Setup			Hold		Pulse Width	
	Worst Negative Slack (WNS):	0.591 ns	Worst Hold Slack (WHS):	0.067 ns	Worst Pulse Width Slack (WPWS):	3.750 ns
	Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
	Total Number of Endpoints:	1914	Total Number of Endpoints:	1914	Total Number of Endpoints:	529

Следовательно, максимальная рабочая частота $F_{max} = \frac{1}{10-0.591} \cdot 10^3 \approx 106.28 \ \text{М} \Gamma$ ц

Затраты ресурсов:

Resource	Utilization	Available	Utilization %
LUT	424	53200	0.80
LUTRAM	192	17400	1.10
FF	336	106400	0.32
DSP	1	220	0.45
Ю	45	125	36.00

Работа фильтра:

Характеристики: Данный фильтр имеет коэффициент децимации равный 8 (понижение частоты дискретизации с 1 МГц до 125 кГц). Построен на основе фильтра нижних частот с подавлением 80 дб.

Примеры работы:

Импульсная характеристика фильтра (отклик на единичный импульс):

Отклик на сигнал $x = 0.5 \sin(2\pi \cdot 8\kappa\Gamma \mathbf{q} \cdot t) + 0.3 \sin(2\pi \cdot 80\kappa\Gamma \mathbf{q} \cdot t)$:

Отклик на сигнал $x = square(2\pi \cdot 1 \kappa \Gamma \mathbf{u} \cdot t)$:

АЧХ:

АЧХ фильтра с исходными коэффициентами:

АЧХ фильтра с квантованными коэффициентами

