Concours Communs Polytechniques - Session 2009

Corrigé de l'épreuve d'analyse

Équations différentielles, Intégarle de Gaus et théorème du point fixe.

Corrigé par M.TARQI

EXERCICE 1

- 1. L'équation différentielle (E) s'écrit encore sous la forme $(xy)' = \frac{2x}{\sqrt{1-x^4}}$, donc $xy = \arcsin(x^2) + c$ où $c \in \mathbb{R}$. Donc les solutions de (E) sur]-1,0[sont de la forme $y_1(x) = \frac{c_1}{x} + \frac{\arcsin(x^2)}{x}$ et sur]0,1[sont de la forme $y_2 = \frac{c_2}{x} + \frac{\arcsin(x^2)}{x}$.
- 2. Soit y une solution de (E), donc sa restriction sur]-1,0[coïncide avec y_1 et sur]0,1[avec y_2 , par argument de contitinuité, on aura nécessairement $c_1=c_2=0$

$$\lim_{x\to 0} \frac{\arcsin(x^2)}{x} = 0), \text{ ainsi } y(x) = \begin{cases} \frac{\arcsin(x^2)}{x} & \text{si } x \in]-1, 0[\cup]0, 1[0] \\ 0 & \text{si } x = 0. \end{cases}$$

Réciproquement, cette fonction vérfie l'équation (E).

EXERCICE 2

- 1. La fonction $\varphi: t \longmapsto e^{-t^2}$ étant continue sur $[0, +\infty[$ et $\lim_{t \to +\infty} t^{2009} \varphi(t) = 0$, donc elle est intégrable sur $[0, +\infty[$.
- 2. (a) Puisque la fonction φ est continue sur \mathbb{R}^+ , alors f est de classe \mathcal{C}^1 sur \mathbb{R}^+ et $f'(x)=e^{-x^2}$.

La fonction $(t,x) \longmapsto \frac{e^{-(t^2+1)x^2}}{t^2+1}$ étant continue sur $[0,1] \times [0,+\infty[$ et admettant une dérivée partielle par rapport à $x:(t,x) \longmapsto -2xe^{-x^2(1+t^2)}$ qu'est continue sur $[0,1] \times [0,+\infty[$, donc la fonction g, d'après le théorème de dérivation sous le signe intégrale, est de classe \mathcal{C}^1 sur $[0,+\infty[$ et

$$g'(x) = -2x \int_0^1 e^{-(t^2+1)x^2} dt.$$

(b) En utilisant le changement de variable t=ux, on obtient $f(x)=\int_0^1 xe^{-(ux)^2}du$. On a $\forall x\geq 0$, $g'(x)=-2x\int_0^1 e^{-(t^2+1)x^2}dt=-2xe^{-x^2}\int_0^1 e^{-(tx)^2}dt$, ce qui donne

$$g'(x) = -2f'(x)f(x)$$

En intégrant, on en déduit

$$\forall x \ge 0, \ g(x) - g(0) = -(f^2(x) - f^2(0))$$

donc $g(x) = \frac{\pi}{4} - f^2(x)$.

- (c) Il est clair que $0 \le \frac{e^{-x^2(1+t^2)}}{1+t^2} \le \frac{e^{-x^2}}{1+t^2} \le e^{-x^2}$, donc $0 \le g(x) \le e^{-x^2}$.
- (d) Les dernières inégalités entraînent $\lim_{x\to +\infty}g(x)=0$, et la fonction f étant positive, on en déduit que

$$\lim_{x \to +\infty} f(x) = \sqrt{\frac{\pi}{4}}$$

ce qui s'écrit aussi :

$$I = \lim_{x \longmapsto +\infty} \int_0^x e^{-t^2} dt = \frac{\sqrt{\pi}}{2}.$$

PROBLÈME: THÉORÈME DU POINT FIXE ET APPLICATIONS

PARTIE I. Le théorème du point fixe de PICARD

- 1. (a) $\forall n \in \mathbb{N}$, $\|u_{n+1}\| = \|f(x_{n+1}) f(x_n)\| \le k\|x_{n+1} x_n\| = k\|u_n\|$, donc cette inégalité écrite entre 0 et n-1, donne $\|u_n\| \le k^n\|u_0\| = k^n\|f(a) a\|$. Puisque la série géométrique $\sum_{n \in \mathbb{N}} k^n$ converge ($k \in [0,1[$), alors la série $\sum_{n \in \mathbb{N}} \|u_n\|$ converge et comme l'espace est de Banach, alors la série $\sum_{n \in \mathbb{N}} u_n$ converge.!!!
 - (b) la somme des n premiers termes de la série $\sum_{n\geq 0} u_n$ est

$$S_n = x_0 - x_1 + x_1 - x_2 + \dots + x_{n-1} - x_n = x_0 - x_n.$$

Donc si la série $\sum u_n$ converge, alors $(S_n)_{n\in\mathbb{N}}$ et par conséquent la suite $(u_n)_{n\in\mathbb{N}}$ aura une limite $l\in E$ (E complet).

- (c) Comme est f est contractante sur E, alors elle est continue sur E, et l'égalité $x_{n+1} = f(x_n)$, entraı̂ne, par passage à la limite, l = f(l).
- (d) Si f admet un autre point fixe $l' \neq l$, alors on aura

$$||l - l'|| \le k||l - l'||$$

ce qui est absurde. Donc le point fixe est unique.

PARTIE II. Exemples et contre-exemples

- 2. Sur la nécessité d'avoir une contraction stricte
 - (a) $\forall t \in \mathbb{R}, \ g'(t) = 1 \frac{1}{1+t^2} < 1$. D'autre d'après l'inégalité des accroissements fins, il existe c compris entre x et y tel que |g(x) g(y)| = |g'(c)||x-y| < |x-y|.
 - (b) Supposons qu'il existe $a \in \mathbb{R}$ tel que g(a) = a, alors $\frac{\pi}{2} = \arctan(a)$, ce qui est impossible. La fonction g ne peut pas être une contraction stricte, sinon il y aura des points fixes.

3. Un exemple

- (a) La relation de récurrence $u_{n+1}=\frac{u_n}{5}+1$ s'écrit sous la forme $u_{n+1}=g(u_n)$, avec g une contraction stricte car $|g(x)-g(x)|=\frac{1}{5}|x-y|$. Donc elle admet un point fixe $l=\frac{5}{4}$ et par conséquent la suite $(u_n)_{n\in\mathbb{N}}$ converge $\frac{5}{4}$.
- (b) La relation $f(g^n(x)) = f(x)$ est vraie pour n = 0 et pour tout $x \in \mathbb{R}$, supposons qui elle est vraie à l'ordre n, alors $f(g^{n+1}(x)) = f(g^n(g(x))) = f(g(x)) = f(x)$. Ainsi $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(g^n(x)) = f(x)$.
- (c) D'après (a), pour tout $x \in \mathbb{R}$, $\lim_{n \to +\infty} g^n(x) = \frac{4}{5}$ et comme f est continue sur \mathbb{R} , alors $f(x) = f(\lim_{n \to \infty} g^n(x)) = f\left(\frac{4}{5}\right)$. Donc f est bien constante.

4. Un système non linéaire dans \mathbb{R}^2

- (a) $(\mathbb{R}^2, \|.\|_1)$ est un espace vectoriel normé de dimension finie, donc il est complet.
- (b) Les deux inégalités se démenèrent en utilisant, par exemple, l'égalité des accroissements finis.
- (c) Soit (x, y), (x', y') deux éléments de \mathbb{R}^2 , on a :

$$\|\psi(x,y) - \psi(x',y')\|_{1} = \left\| \left(\frac{1}{4} \left(\sin(x+y) - \sin(x'+y') \right), \frac{2}{3} \left(\arctan(x-y) - \arctan(x'-y') \right) \right) \right\|_{1} = \left\| \frac{1}{4} \left(\sin(x+y) - \sin(x'+y') \right) \right\|_{1} + \left| \frac{2}{3} \left(\arctan(x-y) - \arctan(x'-y') \right) \right\|_{1} + \left| \frac{1}{4} \left((x+y) - (x'+y') \right) \right|_{1} + \left| \frac{2}{3} \left((x-y) - (x'-y') \right) \right|_{1} + \left| \frac{1}{4} \left((x-x') + (y-y') \right) \right|_{1} + \left| \frac{2}{3} \left((x-x') - (y-y') \right) \right|_{1} + \left| \frac{1}{4} \left((x-x') + (y-y') \right) \right|_{1} + \left| \frac{2}{3} \left((x-x') + (y-y') \right) \right|_{1} +$$

- (d) ψ étant une contraction stricte, donc admet un point fixe unique (a,b): $(a,b)=\psi(a,b)$, ce point ni autre que la solution du système (S).
- (e) On a $\left\|\psi\left(\frac{1}{2},\frac{-1}{2}\right),\psi(0,0)\right\|_{\infty} = \max\left(0,\frac{\pi}{6}\right) = \frac{\pi}{6}$, et $\left\|\left(\frac{1}{2},\frac{-1}{2}\right),(0,0)\right\|_{\infty} = \frac{1}{2}$. Supposons qu'il existe $k \in [0,1[$ tel que la fonction ψ soit une contraction stricte de $(\mathbb{R}^2,\|\|\|_{\infty})$, alors on aura en particulier :

$$\left\| \psi\left(\frac{1}{2}, \frac{-1}{2}\right), \psi(0, 0) \right\|_{\infty} \le k \left\| \left(\frac{1}{2}, \frac{-1}{2}\right), (0, 0) \right\|_{\infty}$$

c'est-à-dire $\frac{\pi}{6} \leq \frac{k}{2}$ ou encore $2\pi \leq 6k < 6$, inégalité qui est impossible. Conclusion : La contraction stricte est une condition suffisante pas nécessaire pour qu'une fonction ait un point fixe.

PARTIE III: Une équation intégrale

5. (a) Si $f \in F$ tel que $||f||_{\infty} = 0$, alors |f(x)| = 0 pour tout $x \in [0, 1]$ et donc f est nulle sur [0, 1].

Si $\lambda \in \mathbb{R}$ et $f \in F$, alors $|\lambda f(x)| = |\lambda| |f(x)|$ et par suite

$$\sup_{x \in [0,1]} |\lambda f(x) = |\lambda| \sup_{x \in [0,1]} |f(x)|$$

c'est-à-dire $\|\lambda f\| = |\lambda| \|f\|$.

Si f et g sont dans F et $x \in [0, 1]$, alors

$$|(f+g)(x)| = |f(x) + g(x)| \le |f(x)| + |g(x)|$$

et par conséquent

$$\sup_{x \in [0,1]} |(f+g)(x)| \le \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |g(x)|$$

donc

$$||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{8}.$$

- (b) Toute fonction sur [0,1] est bornée sur [0,1], donc $E \subset F$.
- (c) Soit $\varepsilon > 0$, $\forall x_0, x \in G$, on a :

$$||g(x) - g(x_0)|| = ||g(x) - g_n(x) + g_n(x) - g_n(x_0) + g_n(x_0) - g(x_0)||,$$

d'où

$$||g(x) - g(x_0)|| \le ||g(x) - g_n(x)|| + ||g_n(x) - g_n(x_0)|| + ||g_n(x_0) - g(x_0)||.$$

Comme la convergence est uniforme, il existe $n_0 \in \mathbb{N}$ tel que $\forall x \in G, \forall n \geq n_0$,

$$||g(x) - g_n(x)|| \le \frac{\varepsilon}{3} \text{ et } ||g(x_0) - g_n(x_0)|| \le \frac{\varepsilon}{3}$$

Fixons maintenant n en prenant par exemple $n=n_0$ de façon que les deux dernières inégalités soient vérifiées. Alors, la fonction f_n étant continue au point x_0 , il existe $\alpha>0$ tel que :

$$||x - x_0|| < \alpha \Longrightarrow ||g_n(x) - g_n(x_0)|| \le \frac{\varepsilon}{3}.$$

Donc, en posant $||x - x_0|| < \alpha$, il est certain que

$$||g(x) - g(x_0)|| \le \varepsilon$$

ce qui montre la continuité de g au point x_0 .

- (d) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy d'éléments de $(E,\|\|_{\infty})$, donc c'est une suite de Cauchy de $(F,\|\|_{\infty})$ et comme ce dernier est complet alors elle converge dans $(F,\|\|_{\infty})$ vers un élément f de F. La convergence dans $(F,\|\|_{\infty})$ se traduit par la convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ vers f et comme les f_n sont continues, alors f aussi, donc $f \in E$ et par suite $(E,\|\|_{\infty})$ est complet.
- 6. (a) L'application $K:[0,1]^2\longrightarrow \mathbb{R}$ étant continue sur la partie compacte $[0,1]^2$ de \mathbb{R}^2 , donc bornée et atteint ses bornes.
 - (b) Comme K est continue sur $[0,1]^2$, alors pour chaque $y \in [0,1]$, l'application $x \longmapsto K(x,y)f(y)$ est continue, donc d'après le théorème de continuité sous le signe intégrale, la fonction $x \longmapsto \int_0^1 K(x,y)f(y)dy$ est continue, ainsi $\Phi(f)$ apparaît comme somme de deux fonctions continues sur [0,1], donc elle est continue sur [0,1].
 - (c) Soient f et h deux éléments de E. On a, pour tout $x \in [0,1]$:

$$|\Phi(f)(x) - \Phi(h)(x)| = |\lambda \int_0^1 K(x, y)(f(y) - h(y))dy|$$

$$\leq |\lambda|M||f - h||_{\infty} \int_0^1 dy$$

$$\leq |\lambda|M||f - h||_{\infty}$$

et par conséquent : $\|\Phi(f) - \Phi(h)\|_{\infty} \le \lambda |M\|f - h\|_{\infty}$, et comme $M|\lambda| < 1$, alors Φ est une contraction stricte de $(E, \|\|_{\infty})$ et par suite elle admet un point fixe unique $f \in E$ tel que $f = \Phi(f)$ ou encore, $\forall x \in [0, 1]$,

$$f(x) = g(x) - \lambda \int_0^1 K(x, y) f(y) dy.$$

PARTIE IV. Une application géométrique

7. (a) Les droites (MP_M) et $(M'P_{M'})$ sont parallels, donc d'après le théorème de Thales, appliqué dans le triangle (MP_MC) , on a

$$\frac{P_M P_{M'}}{MM'} = \frac{P_M C}{MC} = |\cos c|$$

(b) Si $M \neq M'$, alors $P_M \neq P_{M'}$ et $Q_M \neq Q'_M$, en considérant les triangles (AP_MQ_M) et (BQ_MR_M) on aura aussi :

$$\frac{Q_M Q_{M'}}{P_M P_{M'}} = |\cos a| \quad \text{et} \quad \frac{R_M R_{M'}}{Q_M Q_{M'}} = |\cos b|$$

Donc $R_M R_{M'} = |\cos a| |\cos b| |\cos c| MM' \le kMM'$ avec $k = |\cos a| |\cos b| |\cos c| \in [0, 1[$ (car $a, b, c \in]0, \pi[$), cette inégalité se traduit à l'aide de φ par l'inégalité :

$$|\varphi(x) - \varphi(x')| \le k|x - x'|,$$

autrement dit, la fonction φ est une contraction stricte, donc admet un point fixe unique x, c'est-à-dire il existe un unique point M d'abscisse x tel que $M=R_M$.

•••••

M.Tarqi-Centre Ibn Abdoune des classes préparatoires-Khouribga. Maroc E-mail : medtarqi@yahoo.fr