4.3. Cuerpos finitos

Sean $p \in \mathbb{N}$ primo y $h \in \mathbb{Z}_p[x]$ polinomio irreducible de $\mathbb{Z}_p[x]$.

Si
$$\operatorname{gr}(h) = m \Rightarrow \mathbb{Z}_p[x]/(h)$$
 es un cuerpo con p^m elementos.

Cuerpo de Galois

Para cada $p \in \mathbb{N}$ primo y cada $m \in \mathbb{N}$ existe, salvo isomorfismos, un único cuerpo de orden $p^m \in \mathbb{N}$, que se denomina **Cuerpo de Galois** y nota por \mathbb{F}_{p^m} . $\mathbb{F}_{p^m} \approx \mathbb{Z}_p[x]/(h)$, siendo $h \in \mathbb{Z}_p[x]$ polinomio irreducible en $\mathbb{Z}_p[x]$, de grado m.

Estructura del grupo aditivo de un cuerpo finito

 $(\mathbb{K},+,\cdot)$ cuerpo finito de característica $p\in\mathbb{N}$ primo \Rightarrow El grupo aditivo $(\mathbb{K},+)$ es isomorfo a un producto directo de grupos cíclicos de orden p:

$$\mathbb{K} \approx \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$$

El orden de \mathbb{K} es p^m para algún $m \in \mathbb{N}$

Estructura del grupo de unidades de un cuerpo finito

 $(\mathbb{K}, +, \cdot)$ cuerpo finito de característica $p \in \mathbb{N}$ primo \Rightarrow

El grupo de unidades
$$(\mathbb{K}^*,\cdot)$$
 es cíclico: $\mathbb{K}^* \approx \mathbb{Z}_{p^m-1}$

Polinomio primitivo

Un polinomio $h \in \mathbb{Z}_p[x]$ irreducible, es un **polinomio primitivo** si el polinomio x es un generador del grupo de unidades (\mathbb{K}^*, \cdot) , siendo

$$\mathbb{K} = \mathbb{Z}_p[x]/(h)$$

4.3.8. Problemas

- 1. En cada uno de los siguientes casos, demostrar que el anillo $(\mathbb{F}, +, \cdot)$ es un cuerpo, describir sus elementos, indicar el número de elementos y determinar el resultado de las operaciones indicadas:
 - a) $\mathbb{F} = \mathbb{Z}_2[x]/(x^2 + x + 1)$
 - 1) $x^3(x+1) + x + 1$
 - 2) $x^2(x+1)+1$
 - 3) $x^3(x+1) + x^2 + 1$
 - b) $\mathbb{F} = \mathbb{Z}_3[x]/(x^2 + x + 2)$
 - 1) (x+2)(2x+2) + x + 1
 - 2) (2x+1)-(x+1)(2x+1)
 - 3) (2x+1)(x+2)
 - 4) $x^{-1} (2x+2)^{-1}$
 - c) $\mathbb{F} = \mathbb{Z}_2[x]/(s)$ siendo $s = x^4 + x^3 + 1 \in \mathbb{Z}_2[x],$
 - 1) $(x^2 + x + 1)^{-1}$
 - 2) $(x^3 + x + 1)(x^2 + 1)$
 - d) $\mathbb{F} = \mathbb{Z}_5[x]/(x^2 + x + 2)$
- 1) $(2x+3)^{-1}$
- 2. Demostrar que $k = x^3 + x^2 + 1 \in \mathbb{Z}_2[x]$ es irreducible en $\mathbb{Z}_2[x]$ y usarlo para construir un cuerpo de orden 8. Estudiar si $k \in \mathbb{Z}_2[x]$ es un polinomio primitivo.
- 3. Sea $\mathbb{F} = \mathbb{Z}_3[x]/(x^2 + 2x + 2)$
 - a) Comprobar que el grupo de unidades (\mathbb{F}^* , ·) es cíclico. ¿Qué elementos de \mathbb{F} son generadores del grupo de unidades? ¿Es el polinomio $x^2 + 2x + 2$ primitivo?
 - b) ¿Qué elementos de \mathbb{F} admiten raíz cuadrada en \mathbb{F} ?
 - c) Comprobar que el producto de todos los elementos del grupo de unidades (\mathbb{F}^*,\cdot) es 2.