# 가상 머신 관리

#### 학습내용

- 1.템플릿 및 클론 생성
- 2.가상 머신 수정
- 3.가상 머신 마이그레이션
- 4.가상 머신 스냅샷 생성
- 5.vApp 생성 및 가상 머신 제거

가상 머신 관리

# 레슨 1: 템플릿 및 클론 생성

#### 템플릿 사용



템플릿은 가상 머신의 마스터 복제본입니다. 이것은 새 가상 머신을 생성하고 프로비저닝하는 데 사용.

템플릿은 일반적으로 게스트 운영 체제, 애플리케이션 세트 및 특정 가상 머신 구성을 포함하는 이미지



#### 템플릿 생성



#### 템플릿 보기

#### 템플릿을 볼 수 있는 방법은 다음 두 가지입니다.

- VM 및 템플릿 인벤토리 보기를 사용합니다.
- Hosts(호스트) 및 Clusters(클러스터) 인벤토리 보기의 Virtual Machines (가상 머신) 탭을 사용합니다.



#### 템플릿을 통한 가상 머신 배포

가상 머신을 배포하려면 가상 머신 이름, 인벤토리 위치, 호스트, 데이터 스토어 및 게스트 운영 체제 사용자 지정 데이터와 같은 정보를 제공해야



#### 템플릿 업데이트

#### 템플릿을 업데이트하려면

- 템플릿을 가상 머신으로 변환합니다.
- 2. 가상 머신을 분리된 네트 워크에 지정하여 사용자 액세스를 방지합니다.
- 3. 가상 머신을 적절하게 변 경합니다.
- 4. 가상 머신을 템플릿으로 변환합니다.



#### 가상 머신 복제

복제는 가상 머신 배포의 대안입니다.

클론은 가상 머신과 똑같 은 복제본을 말합니다.

복제한 가상 머신 전원을 켜거나 끌 수 있습니다.



#### 게스트 운영 체제 사용자 지정

VMware®는 클론의 게스트 운영 체제를 사용자 지정하여 소프트웨어 및 네트워크 충돌을 방지할 것을 권장합니다.

템플릿에서 복제하거나 배포하는 동안 Guest Customization(게스트 사용자 지정) 마법사를 실행할 수 있습니다.

- 가상 머신의 게스트 운영 체제를 준비하는 데 사용할 수 있는 사용자 지정 규격을 만들 수 있습니다.
- 사용자 지정 규격은 데이터베이스에 저장할 수 있습니다.
- Customization Specifications Manager(사용자 지정 규격 관리자)에서 사용자 지정 규격을 편집할 수 있습니다.

### 여러 데이터 센터에 가상 머신 배포

여러 데이터 센터에 가상 머신을 배포할 수 있습 니다.

- 한 데이터 센터에서 다른 데이터 센터로 가상 머신을 복제합 니다.
- 한 데이터 센터의 템 플릿에서 다른 데이 터 센터의 가상 머신 으로 배포합니다.



#### 실습 9

본 실습에서는 템플릿을 통해 가상 머신을 배포하고 가상 머신을 복제합니다.

- 1. vCenter Server 인스턴스에 Sysprep 파일을 복사합니다.
- 2. 템플릿을 생성합니다.
- 3. Customization Specifications(사용자 지정 규격)를 생성합니다.
- 4. 템플릿을 통해 가상 머신을 배포합니다.
- 5. 전원이 켜진 가상 머신을 복제합니다.

#### 학습 목표 검토

#### 다음을 수행할 수 있게 됩니다.

- 템플릿을 생성합니다.
- 템플릿을 통해 가상 머신을 배포합니다.
- 가상 머신을 복제합니다.
- vCenter Server를 통한 게스트 운영 체제의 사용자 지정을 허용합니다.

레슨 **2:** 가상 머신 수정

#### 학습 목표

#### 이 과정을 마치고 나면 다음을 수행할 수 있습니다.

- 가상 머신 설정 및 옵션을 설명합니다.
- 핫 플러그 가능 디바이스를 추가합니다.
- 가상 디스크 크기를 동적으로 늘립니다.
- 원시 디바이스 매핑(RDM)을 가상 머신에 추가합니다.

#### 가상 머신 설정 수정

Properties(속성) 대화 상자에서 가상 머신의 구성을 수정할 수 있습 니다.

- 가상 하드웨어를 추가합니다.
   일부 하드웨어는 가상 머신 전원이 켜져 있는 동안 추가될 수 있습니다.
- 가상 하드웨어를 제거합니다.
- 가상 머신 옵션을 설정합니다.
- 가상 머신의 CPU 및 메모리 리 소스를 제어합니다.
- RDM을 만듭니다.



#### 핫 플러그 가능 디바이스

핫 플러그 가능 디바이스의 예: USB 컨트롤러, 이더넷 어댑 터 및 하드 디스크 디바이스

또한 가상 머신 전원이 켜져 있는 동안 **CPU** 및 메모리를 추가할 수 있습니다.



#### RDM 만들기

#### RDM을 만들려면,

- Settings(설정)를 편집하여 가상 머신 구성을 수정합니다.
- Add(추가) **버튼을 클릭하여** 디바이스를 추가합니다.
- Hard Disk(하드 디스크)를 클릭합니다.
- Raw Device Mappings(원시 디바이스 매핑)을 선택하고 다음 항목을 정의하여 Add Hardware(하드웨어 추가) 마법사 정보를 완료합니다.
  - 대상 LUN RDM에서 매핑할 LUN
  - 매핑된 데이터스토어 RDM 파일을 가상 시스템 또는 다른 데이터스토어에 저장합니다.
  - 호환성 모드
  - Virtual Device Node (가상 디바이스 노드)

#### 🚰 Add Hardware

#### Ready to Complete

Review the selected options and click Finish to add the hardware.

Device Type

Select a Disk

Select Target LUN

Select Datastore

Compatibility Mode

Advanced Options

Ready to Complete

#### Options:

Hardware type: Hard Disk

Create disk: Use mapped system LUN

Virtual Device Node: SCSI (0:1)
Disk mode: Persistent

Target LUN: LEFTHAND iSCSI Disk (naa.6000et

Compatibility mode: Virtual

Mapped datastore: Store with VM

### 가상 디스크의 크기를 동적으로 늘리기



#### 씬 프로비저닝된 디스크 확장

씬 형식으로 가상 디 스크를 생성하면 나 중에 가상 디스크를 전체 크기로 확장할 수 있습니다.

씬 프로비저닝된 디 스크를 확장하려면,

■ 가상 머신의 .vmdk 파일을 마우스 오른쪽 버 튼으로 클릭하고 Inflate(확장)를 선 택합니다.



#### 가상 머신 옵션



VM 디스플레이 이름 .vmx 파일 위치 VM 디렉토리

#### 옵션: VMware Tools



#### 고급: 부팅 옵션

#### 고급 옵션은 설정할 필요가 거의 없습니다.



#### 실습 10

본 실습에서는 가상 머신의 하드웨어를 수정하고 원시 LUN을 가상 머신에 추가합니다.

- 1. VMDK 파일 크기를 늘립니다.
- 2. 가상 머신의 메모리 할당을 조정합니다.
- 3. vCenter Server 인벤토리의 가상 머신 이름을 바꿉니다.
- 4. 원시 LUN을 가상 머신에 추가하고 게스트 운영 체제에서 인식할 수 있는지 확인합니다.
- 5. 씬 프로비저닝된 가상 디스크를 확장합니다.

#### 학습 목표 검토

#### 다음을 수행할 수 있게 됩니다.

- 가상 머신 설정 및 옵션을 설명합니다.
- 핫 플러그 가능 디바이스를 추가합니다.
- 가상 디스크 크기를 동적으로 늘립니다.
- RDM을 가상 머신에 추가합니다.

# 레슨 3: 가상 머신 마이그레이션

#### 학습 목표

#### 이 과정을 마치고 나면 다음을 수행할 수 있습니다.

- 마이그레이션 유형을 설명합니다.
- vMotion®의 중요성을 설명합니다.
- vMotion 요구 사항(가상 머신, 호스트)을 식별합니다.
- vMotion 요구 사항(CPU 제한 사항 및 지침)을 확인합니다.
- vMotion 마이그레이션을 수행합니다.
- Storage vMotion® 마이그레이션을 수행합니다.
- 향상된 vMotion 마이그레이션을 수행합니다.

#### 가상 머신 마이그레이션

### 마이그레이션 — 한 호스트 또는 데이터스토어의 가상 머신을 또 다른 호 스트 또는 데이터스토어로 옮깁니다. 마이그레이션 유형:

- 콜드 전원이 꺼진 가상 머신을 마이그레이션합니다.
- 일시 중단 일시 중단된 가상 머신을 마이그레이션합니다.
- vMotion 전원이 켜진 가상 머신을 마이그레이션합니다.
- Storage vMotion 가상 머신 전원이 켜져 있는 동안 가상 머신의 파일을 다른 데이터스토어로 마이그레이션합니다.

#### 동시 마이그레이션이 가능합니다.

■ 5.x버전 기준 데이터스토어에 대한 최대 8개의 동시 vMotion, 목제, 배포 또는 Storage vMotion 액세스가 지원됩니다.

# 마이그레이션 유형 비교

| 마이그레이션<br>유형       | 가상 머신 전원<br>상태 | 호스트/데이터<br>스토어를 변경<br>합니까?   | 가상 데이터 센터<br>간에 작업합니까? | 공유 스토리<br>지가 필요합<br>니까 <b>?</b> | CPU 호환성?                    |
|--------------------|----------------|------------------------------|------------------------|---------------------------------|-----------------------------|
| 콜드                 | 꺼짐             | 호스트 또는 데<br>이터스토<br>어 또는 둘 다 | Yes                    | No                              | 다른 CPU 제품군<br>허용            |
| 일시 중단              | 일시 중단          | 호스트 또는 데<br>이터스토<br>어 또는 둘 다 | Yes                    | No                              | CPU 호환성 요구<br>사항을 충족해야<br>함 |
| vMotion            | 켜짐             | 호스트                          | No                     | Yes                             | CPU 호환성 요구<br>사항을 충족해야<br>함 |
| Storage<br>vMotion | 켜짐             | Datastore<br>(데이터스<br>토어)    | No                     | No                              | 해당 사항 없음                    |
| 향상된 vMotion        | 켜짐             | 둘 다                          | No                     | No                              | CPU 호환성 요구<br>사항을 충족해야<br>함 |

#### vMotion 마이그레이션

vMotion 마이그레이션에서는 한 호스트에서 다른 호스트로 전원이 켜진 가상 머신을 이동 할 수 있습니다.

vMotion은 다음 작업에 사용 할 수 있습니다.

- 전체 하드웨어 활용도 향상
- 예약된 하드웨어 다운타임을 조정하면서 지속적인 가상 머신 작업 가능
- vSphere DRS(Distributed Resource Scheduler)를 사 용하여 호스트 간의 가상 머신 밸런싱



### vMotion 마이그레이션 작업 방식



#### vMotion 마이그레이션의 가상 머신 요구 사항

#### 가상 머신은 다음 요구 사항을 충족해야 합니다.

- 가상 머신은 내부 표준 가상 스위치가 연결되어 있지 않아야 합니다(업 링크 어댑터 없는 vSwitch).
- 가상 머신은 로컬 이미지가 마운트된 가상 디바이스(예: CD-ROM 또는 플로피 드라이브)에 연결되어 있지 않아야 합니다.
- 가상 머신은 CPU 선호도가 구성되어 있지 않아야 합니다.
- 가상 머신의 스왑 파일이 대상 호스트에 액세스할 수 없는 경우, 마이 그레이션이 시작되려면 vMotion은 대상 호스트에 액세스할 수 있는 스 왑 파일을 생성할 수 있어야 합니다.
- 가상 머신이 RDM을 사용할 경우 해당 RDM을 대상 호스트에서 액세 스할 수 있어야 합니다.

#### vMotion 마이그레이션의 호스트 요구 사항

#### 소스 및 대상 호스트에는 다음 사항이 있어야 합니다.

- 가상 머신에서 사용하는 모든 스토리지(Fibre Channel, iSCSI 또는 NAS)에 대한 가시성
  - VMFS 데이터스토어당 128개의 동시 vMotion 마이그레이션
- 최소 하나의 기가비트 이더넷(GigE) 네트워크
  - 1Gbps 네트워크에서 네 개의 동시 vMotion 마이그레이션
  - 10Gbps 네트워크에서 여덟 개의 동시 vMotion 마이그레이션
- 동일한 물리적 네트워크에 연결된 동일한 이름의 포트 그룹
- 호환 가능한 CPU:
  - 소스 및 대상 호스트 모두의 CPU 기능 세트는 호환 가능해야 합니다.
  - 일부 기능은 EVC(Enhanced vMotion Compatibility) 또는 호환성 마스크를 사용하여 숨길 수 있습니다.

## vMotion 마이그레이션의 CPU 제한 사항

| CPU 특성                                                  | 정확히 일치해야 하는가?              | 일치해야 하거나 아닌 이유는?                       |  |
|---------------------------------------------------------|----------------------------|----------------------------------------|--|
| 클럭 속도, 캐시 크기, 하이퍼<br>스레딩 및 코어 수                         | No                         | VMkernel로 가상화                          |  |
| 제조업체 <i>(Intel 또는 AMD</i> )<br>제품군 <i>(P4, Opteron)</i> | Yes                        | 인스트럭션 세트에는 작은 차<br>이점이 많이 있음.          |  |
| SSE3, SSSE3 또는 SSE4.1<br>지침의 존재 또는 부재                   | Yes                        | 애플리케이션에서 바로<br>사용 가능한 멀티미디어 인스<br>트럭션  |  |
| 기사를 린트에서 되어                                             | 32비트 VM의 경우: No            | VMkernel로 가상화                          |  |
| 가상화 하드웨어 지원                                             | Intel의 64비트 VM의 경우:<br>Yes | VMware Intel 64비트 구현은<br>VT를 활용합니다.    |  |
| Execution-disable (NX/XD비트)                             | Yes(사용자 지정은 가능함)           | 감지된 경우 게스트 운영 체제<br>는 NX/XD 비트를 사용합니다. |  |

#### NX/XD 숨기기 또는 노출



#### CPU 특성 확인

```
Random_Init: Using random seed: 2044292605 (0x79d96dfd)
Reporting CPUID for 2 logical CPUs...
All CPUs are identical
    Family: 06 Model: 17 Stepping: 6
    ID1ECX
              ID1EDX ID81ECX
                                  ID81EDX
    0x00082201 0x0febfbff 0x00000001 0x20100000
Vendor
                         : Intel
Brand String
                         : "Intel(R) Xeon(R) CPU
                                                       X5482 @ 3.20GHz"
SSE Support
                         : SSE1, SSE2, SSE3, SSSE3, SSE4.1
Supports NX / XD
                         : Yes
Supports CMPXCHG16B
                         : Yes
Supports RDTSCP
                         : No
                         : No
Hyperthreading
Supports Flex Migration : Yes
Supports 64-bit Longmode : Yes
                                    CPU 특성을 확인하려면 서버 및 CPU
Supports 64-bit UMware : No
                                    사양을 사용하거나 VMware CPU 식별
Supported EVC modes : None
                                    유틸리티를 사용하십시오.
PASS: Test 56983: CPUID
Press any key to reboot.
```

# vMotion 레이아웃 확인 가상 머신 맵



# vMotion 오류 확인



### **Storage vMotion**

### Storage vMotion으로 할 수 있는 작업

- 스토리지 유지 관리 및 재구성 수행
- 스토리지 로드의 재분산
- 사용하지 않을 물리적 스토리지 제거
- 스토리지 계층화 수행
- 가상 머신의 다운타임 없이 ESXi 호스트 업그레이드

### Storage vMotion은 스토리지 유형에 독립적입니다.

 소스 및 대상의 스토리지 유형이 서로 달라도 상관 없습니다.



# Storage vMotion 작업 과정

- 스토리지 마이그레이션을 시작합니다.
- VMkernel Data Mover 또는 VMware VAAI(vSphere® Storage API - Array Integration) 를 사용하여 데이터를 복사합니다.
- 3. 새 가상 머신 프로세스를 시작합니다.
- 4. 대상 데이터스토어에서 가상 디스 크에 이미 복사된 파일 블록에 대한 I/O 호출을 미러링합니다.
- 5. 대상 VM 프로세스를 횡단하여 가상 디스크 복제본 액세스를 시작합니 다.



# Storage vMotion 병렬 디스크 마이그레이션

Storage vMotion은 Storage vMotion 작업당 최대 4개의 **병렬 디스크 마이** 그레이션을 수행합니다.

- 이전 버전에서는 Storage vMotion을 사용하여 가상 디스크를 순차적으로 복사했습니다.
- 호스트당 2개의 동시 Storage vMotion 작업으로 제한합니다.



# Storage vMotion 요구 사항 및 제한 사항

### 지침:

- 관리자와 함께 계획하고 조정합니다.
- 사용량이 적을 때 수행합니다.
- 호스트에는 소스 데이터스토어 및 대상 데이터스토어 모두에 대한 액세스 권한이 있어야 합니다.

#### 제한 사항:

■ 가상 머신 디스크는 영구 모드에 있거나 RDM이 되어야 합니다.

# 향상된 vMotion

### 향상된 vMotion

- vMotion 및 Storage vMotion을 하나의 작업으로 결합
- 공유 스토리지 없이 호스트와 클러스터 간 마이그레이션



# 향상된 vMotion 및 vSphere Client

향상된 vMotion은 vSphere Web Client에서만 사용할 수 있습니다.



Windows vSphere Client

vSphere Web Client

### 향상된 vMotion 고려 사항

### 호스트 및 데이터스토어를 모두 변경하는 단일 마이그레이션

- 동일한 vCenter Server 인스턴스에서 호스트를 관리해야 합니다.
- 호스트가 동일한 데이터 센터에 속해야 합니다.
- 호스트가 동일한 레이어 2 네트워크에 있어야 합니다(VDS를 사용하는 경우 동일한 스위치에도 있어야 함).

#### 운영 고려 사항:

- 향상된 vMotion은 수동 프로세스임
  - DRS 및 SDRS에서는 향상된 vMotion을 활용하지 않습니다.
- 호스트당 최대 2개의 향상된 vMotions 작업 동시 수행
  - 향상된 vMotion은 vMotion 및 Storage vMotion 모두에 대해 동시 수행 제한 사항을 고려하여 개수를 카운트합니다.
- 향상된 vMotion은 가능한 경우 다중 NIC를 활용합니다.

### 실습 11

본 실습에서는 vMotion 및 Storage vMotion을 사용하여 가상 머신을 마이그레이션합니다.

- Storage vMotion을 사용하여 가상 머신 파일을 마이그레이션합니다.
- vMotion 마이그레이션을 위해 가상 스위치 및 VMkernel 포트 그룹을 생성합니다.
- ESXi 호스트가 vMotion 요구 사항을 충족하는지 확인하십시오.
- 가상 머신이 vMotion 요구 사항을 충족하는지 확인하십시오.
- 공유 데이터스토어에서 가상 머신의 vMotion 마이그레이션을 수행합니다.
- 프라이빗 데이터스토어로 vMotion 마이그레이션을 수행합니다.

### 학습 목표 검토

### 다음을 수행할 수 있게 됩니다.

- 마이그레이션 유형을 설명합니다.
- vMotion의 중요성을 설명합니다.
- vMotion 요구 사항(가상 머신, 호스트)을 식별합니다.
- vMotion 요구 사항(CPU 제한 사항 및 지침)을 확인합니다.
- vMotion 마이그레이션을 수행합니다.
- Storage vMotion 마이그레이션을 수행합니다.
- 향상된 vMotion 마이그레이션을 수행합니다.

# 레슨 **4:** 가상 머신 스냅샷 만들기

### 학습 목표

### 이 과정을 마치고 나면 다음을 수행할 수 있습니다.

- 가상 머신의 스냅샷을 생성하고 여러 스냅샷을 관리합니다.
- 가상 머신 스냅샷을 삭제합니다.
- 스냅샷을 통합합니다.

### 가상 머신 스냅샷

스냅샷을 사용하면 가상 머신의 상태를 보존할 수 있기 때문에 반복해서 동 일한 상태를 복구할 수 있습니다.

예를 들어, 소프트웨어 테스트 중 변경 사항이 있는 경우 스냅샷을 사용하여 해당 변경 내용을 취소할 수 있습니다.



### 가상 머신 스냅샷 파일

스냅샷 파일 세트의 구성: 메모리 상태 파일(.vmsn), 설명 파일 (-00000#.vmdk) 및 델타 파일(-00000#-delta.vmdk).

스냅샷 목록 파일(.vmsd)은 가상 머신의 스냅샷을 추적합니다.

| Show all Virtual Machine Files |                                                 |                        |           |           |
|--------------------------------|-------------------------------------------------|------------------------|-----------|-----------|
| ivanie .                       | Fadi                                            | Tile type              | Datastore | Size      |
| Carla02-2-003cc039.vsvvp       | [cocaloz] Carlaoz-z/Carlaoz-z-oooccooo, vsvvp   | Эмар                   | Localo2   | J04.00 MD |
| Cariaoz-z-onapshocr, vilish    | [cocaloz] Cariaoz-z/Cariaoz-z-onapshoct.vinsn   | onapsinot pata         | LUCAIUZ   | 309.13 MD |
| Carla02-2-000001-delta.vmdk    | [Local02] Carla02-2/Carla02-2-000001-delta.vmdk | Disk Extent            | Local02   | 48.01 MB  |
| Carla02-2.vmdk                 | [Local02] Carla02-2/Carla02-2.vmdk              | Disk Descriptor        | Local02   | 520.00 B  |
| Carla02-2-000001.vmdk          | [Local02] Carla02-2/Carla02-2-000001.vmdk       | Disk Descriptor        | Local02   | 320.00 B  |
| viiiware-2.log                 | [cocal02] Carla02-2/vniware-2.log               | Log                    | Local02   | 07.22 KD  |
| vniware-1.log                  | [cocaloz] cariaoz-z/vniware-1.iog               | Log                    | Lucaiuz   | 130.13 KB |
| Carla02-2.nvram                | [Local02] Carla02-2/Carla02-2.nvram             | NVRAM                  | Local02   | 8.48 KB   |
| vmware.log                     | [Local02] Carla02-2/vmware.log                  | Log                    | Local02   | 58.15 KB  |
| Carla02-2.vmsd                 | [Local02] Carla02-2/Carla02-2.vmsd              | Snapshot List          | Local02   | 398.00 B  |
| Carla02-2.vmxf                 | [Local02] Carla02-2/Carla02-2.vmxf              | Extended Configuration | Local02   | 264.00 B  |
| Carla02-2.vmx                  | [Local02] Carla02-2/Carla02-2.vmx               | Configuration          | Local02   | 2.74 KB   |
| Carla02-2-flat.vmdk            | [Local02] Carla02-2/Carla02-2-flat.vmdk         | Disk Extent            | Local02   | 1.02 GB   |

### 스냅샷 생성





가상 머신의 전원이 켜져 있거나 꺼져 있거나 일시 중지되어 있는 동안에도 스냅샷을 만들 수 있습니다.

스냅샷은 가상 머신의 상태를 캡처합니다.

■ 메모리 상태, 설정 상태 및 디스크 상태

스냅샷은 백업이 아닙니다.

### 스냅샷 관리

# Snapshot Manager를 사용하면 가상 머신에 대한 모든 스냅샷을 살펴보고 다음 작업을 수행할 수 있습 니다.

- 특정 스냅샷으로 복구 (Go to(이동))합니다.
- 하나 또는 모든 스냅샷을 삭제합니다.



# 가상 머신 스냅샷 삭제(1)



# 가상 머신 스냅샷 삭제(2)



# 가상 머신 스냅샷 삭제(3)



# 모든 가상 머신 스냅샷 삭제



### 스냅샷 통합

### 스냅샷 통합이란?

 Snapshot Manager에서 스냅샷은 없지만 델타 파일이 아직 데이터스 토어에 있다고 표시되는 경우 원래 가상 머신으로 일련의 스냅샷을 커 밋하는 데 사용되는 방법

스냅샷 통합은 스냅샷 관리와 관련된 다음과 같은 알려진 문제를 해결하기 위해 만들어짐

- 스냅샷 설명자 파일을 올바르게 커밋했지만 Snapshot Manager가 모 든 스냅샷이 삭제되었다고 잘못 표시하는 경우
- 스냅샷 파일(-delta.vmdk)이 여전히 가상 머신에 속하는 경우
- 가상 머신에 데이터스토어 공간이 부족해질 때까지 스냅샷 파일이 계속 확장하는 경우

### 통합시기 파악

Snapshot Manager에 스냅샷이 표시되지는 않지만, 가상 머신의 Summary(요약) 탭에 경고가 표시되어 사용자에게 통합이 필요함을 알려줍니다.



### 스냅샷 통합 수행

Consolidate(통합)을 선택하여 스냅샷을 통합합니다.

검색된 모든 스냅샷이 가상 머신으로 커밋됩니다.



### 가상 머신 제거

### 가상 머신을 제거하는 두 가지 방법:

- 인벤토리에서 가상 머신 제거
  - 이 유형의 제거 작업은 가상 머신의 등록 을 해제합니다.
  - 가상 머신의 파일이 디스크에 보관됩니다.
  - 가상 머신은 나중에 인벤토리에 등록(추가)할 수 있습니다.
- 디스크에서 가상 머신을 삭제합니다.
  - 가상 머신은 인벤토리에서 제거되며 해당 파일은 디스크에서 영구적으로 삭제됩니다.



### 실습 12

#### 본 실습에서는 여러 가상 머신 관리 작업을 수행합니다.

- 1. vCenter Server 인벤토리의 가상 머신을 등록 해제합니다.
- 2. vCenter Server 인벤토리에 가상 머신을 등록합니다.
- 3. 디스크에서 가상 머신을 등록 해제 및 삭제합니다.
- 4. 가상 머신의 스냅샷을 생성합니다.
- 5. 스냅샷으로 복구합니다.
- 6. 개별 스냅샷을 삭제합니다.
- 7. Snapshot Manager의 **Delete All(모두 삭제)** 버튼 사용.

### 학습 목표 검토

### 다음을 수행할 수 있게 됩니다.

- 가상 머신의 스냅샷을 생성하고 여러 스냅샷을 관리합니다.
- 가상 머신 스냅샷을 삭제합니다.
- 스냅샷을 통합합니다.

# 레슨 5: vApp 생성 및 가상 머신 제거

### 학습 목표

### 이 과정을 마치고 나면 다음을 수행할 수 있습니다.

- vSphere vApp을 설명합니다.
- vApp을 빌드합니다.
- vApp을 사용하여 가상 머신을 관리합니다.
- vCenter Server 인벤토리에서 가상 머신을 제거합니다.
- 디스크에서 가상 머신을 완전히 삭제합니다.

# vApp으로 가상 머신 관리

### vApp이란,

- 하나 이상의 가상 머신을 위 한 컨테이너입니다.
- 관련 애플리케이션을 패키징 및 관리하는 데 사용할 수 있 습니다.
- vCenter Server 인벤토리의 객체입니다.



# vApp 특징

vAPP으로 다음을 구성할 수 있습니다.

- CPU 및 메모리 할당
- IP 할당 정책
- 고급 설정

또한 가상 머신 시 작 및 종료 순서를 구성할 수 있습니다.



### 실습 13

# 본 실습에서는 vApp 관리 작업을 수행합니다.

- 1. vApp을 생성합니다.
- 2. vApp의 전원을 켭니다.
- 3. vApp을 제거합니다.

### 학습 목표 검토

#### 다음을 수행할 수 있게 됩니다.

- vApp을 설명합니다.
- vApp을 빌드합니다.
- vApp을 사용하여 가상 머신을 관리합니다.
- vCenter Server 인벤토리에서 가상 머신을 제거합니다.
- 디스크에서 가상 머신을 완전히 삭제합니다.

### 정리

- vCenter Server는 템플릿 및 복제와 같은 가상 머신 프로비저닝에 유용한 기능을 제공합니다.
- 템플릿으로 가상 머신을 배포하면 많은 가상 머신을 쉽고 빠르게 생성 할 수 있습니다.
- vMotion을 사용하여 전원이 켜져 있는 가상 머신을 이동할 수 있습니다.
- Storage vMotion을 사용하여 가상 머신을 데이터스토어 간에 이동할 수 있습니다.
- 향상된 vMotion을 사용하면 공유 스토리지를 사용할 수 없는 경우 실시 간 가상 머신 마이그레이션을 수행할 수 있습니다.
- 가상 머신 스냅샷을 사용하면 가상 머신의 상태를 보존했다가 반복해서 동일한 상태로 복구할 수 있습니다.
- vApp은 하나 이상의 가상 머신을 보관하는 컨테이너입니다. vApp은 관련 애플리케이션을 패키징 및 관리하는 데 사용할 수 있습니다.