Travaux dirigés d' Optimisation

Master 2 — Mathématiques pour les sciences du vivant

Joon Kwon

jeudi 7 octobre 2021

EXERCICE 1. — Résoudre le problème suivant :

minimiser
$$x^2 - 14x + y^2 - 6y - 7$$

soumis à $x + y \le 2$
 $x + 2y \le 3$.

Exercice 2 (*Projection orthogonale sur le simplexe*). — Soit $d \ge 2$ un entier. On considère le simplexe de \mathbb{R}^d :

$$\Delta_d = \left\{ x \in \mathbb{R}^d_+, \ \sum_{i=1}^d x_i = 1 \right\}.$$

Soit $y \in \mathbb{R}^d$ fixé.

- 1) Montrer qu'il existe un unique minimiseur global $x^* \in \Delta_d \det f(x) = \frac{1}{2} \|y x\|^2 \sin \Delta_d$.
- 2) Écrire ce problème sous forme standard.
- 3) Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $x_i^* = \max(0, y_i \lambda)$ pour tout $1 \leqslant i \leqslant d$.

4) Proposer un algorithme qui donne un calcul exact de la solution x^* .

EXERCICE 3 (Optimisation de portefeuille). — Soit $d \geqslant 2$ un entier, $a \in \mathbb{R}^d$, $b \in \left[\min_{1 \leqslant i \leqslant d} a_i, \max_{1 \leqslant i \leqslant d} a_i\right]$, et A une matrice symétrique semi-définie positive de taille $d \times d$. On note $\mathbb{1} = (1, \dots, 1)^\top \in \mathbb{R}^d$.

$$\begin{array}{ll} \text{minimiser} & \frac{1}{2}x^\top\! A x\\ \text{soumis à} & \mathbb{1}^\top\! x = 1\\ & x_i \geqslant 0 \quad (1 \leqslant i \leqslant d)\\ & a^\top\! x = b. \end{array}$$

- 1) Écrire le problème sous forme standard.
- 2) Écrire les conditions d'optimalité pour une solution x^* du problème.
- 3) Écrire le problème dual et montrer qu'il y a dualité forte.
- 4) Écrire l'algorithme d'Uzawa associé.

