- Examen de 2ème session -

- Durée : 2 heures - Aucun document n'est autorisé - Juin 2016

Le barême est indicatif. Les exercices peuvent être traités dans un ordre quelconque. Toutes les réponses doivent être claires et justifiées.

- Exercice 1 - Parcours en profondeur - (4 points)

Pour un entier $p \geq 2$, le graphe CD_p a pour sommets $\{1,2,\ldots,2p\}$ et pour arêtes $\{\{i,i+1\}: i=1,\ldots,2p-1\}\cup\{\{2p,1\}\}\cup\{\{i,i+p\}: i=1,\ldots,p\}$. On suppose que le graphe CD_p est codé par liste de voisins. Pour $i\in\{1,\ldots,2p\}$, on notera L(i) la liste des voisins du sommet i. On souhaite effectuer un parcours en profondeur de CD_p avec la règle (*) suivante : en cas de choix pour le successeur d'un sommet i, on choisira un sommet non déjà visité de L(i) ayant la même parité que i si un tel sommet existe, sinon on choisira un sommet non déjà visité de L(i) de numéro de sommet le plus grand possible.

- a. Représenter le graphe CD_4 .
- b. Effectuer un parcours en profondeur de CD_4 en respectant la règle (*) et en partant du sommet 1. Indiquer pour chaque sommet, son père, sa date de première visite (début) et sa date de dernière visite (fin).
- c. Pour $p \ge 2$ quelconque, donner la liste des sommets de CD_p par date de **début** croissante après un parcours en profondeur respectant (*) et de racine le sommet 1.
- d. L'arbre de parcours obtenu possède une propriété spéciale, quelle est-elle ? Comment nomme-t-on une telle structure ?

- Exercice 2 - Parcours en largeur, détection de cycle - (6 points)

On s'interesse à la détection de cycle dans un graphe.

a. On se donne l'algorithme CYCLE suivant, fonctionnant sur un graphe G = (V, E):

```
Algorithme: CYCLE

pour tous les x \in V faire

pour tous les y \in V avec y \neq x faire

si (x \text{ et } y \text{ sont voisins et ont un voisin en commun}) ou (x \text{ et } y \text{ ont deux voisins distincts en commun}) alors

retourner vrai;

retourner faux;
```

Appliquer cet algorithme sur le graphe CD_4 de l'exercice précédent.

- b. L'algorithme CYCLE appliqué à un graphe G quelconque renvoie-t-il vrai si, et seulement si, G contient un cycle? Justifier votre réponse (c-à-d donner une preuve ou un contre exemple).
- c. Effectuer un parcours en largeur du graphe CD_4 de l'exercice précédent en partant du sommet 1 comme racine. Indiquer pour chaque sommet, son père ainsi que son niveau.
- d. Démontrer qu'un graphe G connexe est sans cycle si, et seulement si, pour toute arête xy de G, on a x = pere(y) ou y = pere(x), où pere est la fonction pere retournée par un parcours en largeur de G.

- e. En déduire un algorithme qui, pour un graphe G connexe fourni en entrée, détecte si G contient un cycle et le cas échéant écrit les sommets du cycle détecté (on pourra faire appel à un algorithme PL(G, pere, niveau) qui effectue un parcours en profondeur de G et remplit les tableaux pere et niveau correspondants). Préciser la complexité de votre algorithme.
- f. Écrire un algorithme qui prend en entrée un graphe G connexe et un sommet x de G et qui retourne un cycle de G de longueur impaire contenant x ou une information signifiant qu'un tel cycle n'existe pas (vous pourrez encore faire appel à PL(G, pere, niveau)). Préciser la complexité de votre algorithme et prouver sa validité.

- Exercice 3 - Moins chers chemins - (4 points)

- 1. Question de cours. Rappeler le déroulement de l'algorithme de Bellman-Ford (permettant de calculer des plus courts chemins depuis une racine dans un graphe orienté dont les arcs sont valués positivement ou négativement), ainsi que sa complexité. Quelle condition faut-il imposer sur le graphe d'entrée pour assurer le fonctionnement de l'algorithme?
- 2. Un transporteur doit livrer des marchandises dans différentes villes depuis la ville origine s. Chaque trajet possible d'une ville x vers une ville y a un coût associé c(xy). Le transporteur profite toutefois du trajet de x à y pour ré-équilibrer ses entrepots en transportant des marchandises pour son compte, générant ainsi un gain g(xy). Les coûts et gains des trajets possibles entre les villes s, a, b, c, d et e sont donnés ci-dessous (en $k \in$). Le trajet de x à y est noté xy.

trajet xy	sa	sb	bc	bd	ad	ca	ce	de
coût c(xy)	5	6	4	6	4	2	3	7
gain g(xy)	0	0	3	4	5	6	5	1

On souhaite calculer pour chaque ville l'itinéraire le moins cher depuis la ville s. Modéliser le problème.

3. Résoudre le problème.

- Exercice 4 - Hypercube - (6 points)

L'hypercube H_n de dimension n est le graphe dont les sommets sont $\{0,1\}^n$ (un tel sommet est un mot de n lettres sur l'alphabet $\{0,1\}$, on le notera $x_1 \dots x_n$ ou $y_1 \dots y_n$). Deux sommets $x_1 \dots x_n$ et $y_1 \dots y_n$ sont reliés dans H_n si il existe $i \in \{1, \dots, n\}$ tel qu'on aît $x_i \neq y_i$ et que pour tout $j \neq i$ on aît $x_j = y_j$. Une telle arête sera dite de dimension i.

- a. Montrer qu'il existe un chemin de $0^n = 00 \dots 0$ à $1^n = 11 \dots 1$ dans H_n .
- b. Plus généralement, montrer que \mathcal{H}_n est connexe.
- c. On munit chaque arête de dimension i d'un poids égal à i. À l'aide de l'algorithme de Kruskal, calculer un arbre couvrant de poids minimum de H_3 muni du poids précédent.
- d. Un code de Gray de dimension n est une suite de mots de $\{0,1\}^n$ formant un chemin hamiltonien de H_n . Proposer un code de Gray de dimension 3.
- e. Montrer que pour tout $n \ge 1$, il existe un code de Gray de dimension n (on pourra procéder par récurrence sur n).
- f. Hors barême. Proposer un poids sur les arêtes de H_n afin qu'un arbre couvrant de H_n muni de ce poids corresponde à un code de Gray.