Course in Semantics · Ling 531 / 731 McKenzie · University of Kansas

Key

1. Explain how currying works.¹

Currying involves taking an n-place function and breaking it down into a sequence of n-many 1-place functions.

2. Fill in the blank spots

(1)	$\{\ x\in D\ \ \{\ y\in D\ \ y\ saw\ x\ \}\ \}$	$f:D \rightarrow \{\;g\mid g:D \rightarrow \{\;1,0\;\}\;\}$	$\lambda x \in D.\lambda y \in D. saw(x)(y)$
		for all $x \in D$, $f(x) =$ $g: D \rightarrow \{1, 0\}$ for all $y \in D$, g(y) = 1 iff y saw x	
(2)	$\{\ x\in D\ \ \{\ z\in D\ \ z\ knows\ x\ \}\ \}$	$f:D \rightarrow \{\;g\mid g:D \rightarrow \{\;1,0\;\}\;\}$	$\lambda x \in D.\lambda z \in D. \text{ knows}(x)(z)$
		for all $x \in D$, $f(x) =$	
		$g: D \rightarrow \{1,0\}$	
		for all $z \in D$, g(z) = 1 iff z knows x	
(3)	$\{ x \in D \mid \{ y \in D \mid y \text{ likes } x \} \}$	$\underline{f}: D \rightarrow \{ g \mid g: D \rightarrow \{ 1, 0 \} \}$	$\lambda x \in D.\lambda y \in D. \ likes(x)(y)$
		for all $x \in D$, $f(x) =$	
		$g: D \rightarrow \{1,0\}$	
		for all $y \in D$,	
		g(y) = 1 iff y likes x	

- **3.** β -Convert each of the following λ -expressions (*i.e.* give the result of plugging in these arguments). Then, give the English expression that corresponds to that result.
 - 1. [$\lambda z \in D.\lambda y \in D. hugged(z)(y)$](Asia)(Yolanda)

hugged(Asia)(Yolanda); Yolanda hugged Asia

2. $[\lambda x \in D.\lambda y \in D. called(x)(y)]$ (Imogen)(Barry)

called(Imogen)(Barry) Barry called Imogen

4. Write the denotations of the following English expressions as functions, using the λ -notation.

1. smash $\lambda x \in D.\lambda y \in D. smash(x)(y)$

2. carry $\lambda x \in D.\lambda y \in D. carry(x)(y)$

¹or: Explain how schönfinkelization works.