Making Decisions with Reinforcement Learning

Todd Sierens^{1,2}

¹Perimeter Institute for Theoretical Physics ²University of Waterloo

May 5, 2016

Outline

- 1 Machine Learning
- 2 Neural Networks
 - Simple Perceptron
 - Multilayer Perceptron
 - Convolutional Neural Network
- 3 Reinforcement Learning
 - Temporal Difference Method
 - Stochastic Gradient Descent
- 4 Results
- 5 Future Directions

Supervised Learning vs Reinforcement Learning

- Supervised Learning
 - Have access to a large set of data with known desired results.
 - Adjust model parameters to minimize an objective function.
- Reinforcement Learning
 - Have access to an environment that can be modeled.
 - Typically a reward function is used as a signal for how to adjust model parameters.
 - Board games present a natural environment that is easily modeled and can provide a reward whenever a game completes.

Input

Output

Neural Networks

00

Input Hidden Hidden Output

•o

Value Network

- A value network is a neural network that evaluates an environment and determines a value to associate to it.
- In the case of board games, a value network can be used to determine the probability of winning from any given position.
- Here is an example of a multi-layered neural network in action.
- The network takes a Tic Tac Toe board as input, and through a series of node activations the network outputs a prediction on who will win, in this case: the red player.

Reinforcement Learning

- TD(λ) Equation
 - When a terminal state occurs, the reward propagates to previous states and the targets are updated.

$$T_n = (1 - \lambda) V_n + \lambda r$$

Reinforcement Learning

- TD(λ) Equation
 - When a terminal state occurs, the reward propagates to previous states and the targets are updated.

$$\mathcal{T}_n = \sum_{n=0}^{N_0} (1-\lambda)\lambda^n V_n + \lambda^{N_0} r$$

Stochastic Gradient Descent

Future Directions

- Apply to more games
 - chess, hex, backgammon, go, video games, etc.
- Route finding app
- Traffic prediction analysis
- Control (robots, self-driving cars, etc.)
- Prediction (stock prices, sports betting, etc.)
- Acquire large data sets and compare with supervised learning