(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 5 June 2003 (05.06.2003)

PCT

(10) International Publication Number WO 03/045955 A 1

- (51) International Patent Classification⁷: C07D 495/04, 513/04, A61K 31/542, A61P 3/10, 5/48, A61K 31/54
- (21) International Application Number: PCT/DK02/00798
- (22) International Filing Date:

28 November 2002 (28.11.2002)

(25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data:
 PA 2001 01773 30 November 2001 (30.11.2001) DK
- (71) Applicant: NOVO NORDISK A/S [DK/DK]; Novo Allé, DK-2880 Bagsværd (DK).
- (72) Inventor: STURIS, Jeppe; Åkandevej 60, DK-3500 Værløse (DK).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

03/045955 A1

(54) Title: USE OF SELECTIVE POTASSIUM CHANNEL OPENERS

(57) Abstract: The present invention relates to a use of SUR1/Kir6.2 selective potassium channel openers for the preparation of a pharmaceutical composition for the prevention or the treatment of diabetes in women with prior Gestational Diabetes Mellitus (GDM) as well as a pharmaceutical composition for use in the treatment of diabetes in women with prior GDM.

USE OF SELECTIVE POTASSIUM CHANNEL OPENERS

FIELD OF INVENTION

10

20

The present invention relates to a use of SUR1/Kir6.2 selective potassium chan-5 nel openers for the preparation of a medicament for the prevention or the treatment of diabetes in women with prior Gestational Diabetes Mellitus (GDM) as well as a pharmaceutical composition for use in the treatment of diabetes in women with prior GDM.

BACKGROUND OF THE INVENTION

Potassium channels play an important role in the physiological and pharmacological control of cellular membrane potential. Amongst the different types of potassium channels are the ATP-sensitive (KATP-) channels, which are regulated by changes in the intracellular concentration of adenosine triphosphate. The KATP-channels have been found in cells from various tissues such as cardiac cells, pancreatic cells, skeletal muscles, smooth muscles, central neurons and adenohypophysis cells. The channels have been associated with diverse cellular functions for example hormone secretion (insulin from pancreatic beta cells, growth hormone and prolactin from adenohypophysis cells), vasodilation (in smooth muscle cells), cardiac action potential duration, neurotransmitter release in the central nervous system.

Modulators of the KATP-channels have been found to be of importance for the treatment of various diseases. Certain sulphonylureas, which have been used for the treatment of non-insulin-dependent diabetes mellitus, act by stimulating insulin release through an inhibition of the KATP-channels on pancreatic beta-cells.

The potassium channel openers (PCOs), which comprise a heterogeneous group of compounds, have been found to be able to relax vascular smooth muscles and have therefore been used for the treatment of hypertension.

Potassium channel openers hyperpolarize neurons and inhibit neurotransmitter release and it is expected that PCOs can be used for the treatment of various diseases of the central nervous system, e. g. epilepsia, ischemia and neurodegenerative diseases, 30 such as Alzheimer's disease, and for the management of pain.

It has been shown that diazoxide (7-chloro-3-methyl-2H-1,2,4-benzothiadiazine 1,1-dioxide) and certain 3- (alkylamino)-4H-pyrido [4,3-e]-1,2,4-thiadiazine 1,1-dioxide derivatives inhibit insulin release by an activation of KATP-channels on pancreatic beta-cells (Pirotte B. et al. Biochem. Pharmacol, 47, 1381-1386 (1994); Pirotte B. et al., J.

35 Med.Chem., 36, 3211-3213 (1993)).

Recently it has been shown that women with former Gestational Diabetes Mellitus (GDM) have a reduced conversion rate to diabetes when treated with troglitazone (Buchanan TA et al., 2001, Diabetes 50 (suppl 2):A81. The observed effect was greatest for those women in whom troglitazone therapy resulted in the greatest reduction in insulin secretion after an intravenous glucose tolerance test. It has also been suggested that treatment of with diazoxide (a non-selective potassium channel opener) may work in the same way as troglitazone in "resting" the beta-cell (Buchanan TA et al., 2001, JCEM 86: 989-993).

Normally an increase in the blood sugar level results in insulin secretion by the pancreatic ß-cells. This is the result of an increase in the intracellular ATP/ADP ratio, causing ATP-sensitive K⁺ channels to close, which depolarizes the plasma membrane and promotes Ca²⁺ influx leading to insulin release. A low blood sugar level on the other hand will decrease the intracellular ATP/ADP ratio, causing ATP-sensitive K⁺ channels to open, which hyperpolarizes the plasma membrane and inhibits Ca²⁺ influx, preventing insulin release. Insulin release leads to a decrease in the amount of glucose in the blood by promoting glucose uptake by cells and increasing the capacity of the liver to synthesize glucogen. Therefore a reduction in the release of insulin normally would lead to an increase in blood sugar levels and thus a decrease in glucose tolerance.

It is known that SUR1/Kir6.2 channels are involved in the release of insulin as
described above and that potassium channel openers therefore will affect release of insulin. However, it has now surprisingly been found that treatment with SUR1/Kir6.2 selective potassium channel openers at the same time can reduce hyperinsulinaemia without resulting in a deterioration of glucose tolerance.

25 SUMMARY OF THE INVENTION

The present invention relates to a use of SUR1/Kir6.2 selective potassium channel openers for the preparation of a medicament for the treatment or the prevention of diabetes in women with prior GDM.

More specifically, the present invention relates to the use of compounds of the general formula (I):

$$\begin{array}{c|c}
R^1 \\
R^4 \\
R^2 \\
R^3
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
R^3
\end{array}$$
(I)

wherein

B represents $>NR^5$ or $>CR^5R^6$, wherein R^5 and R^6 independently are hydrogen; hydroxy; C_{1-6} -alkoxy; or C_{1-6} -alkyl, C_{3-6} -cycloalkyl, C_{2-6} -alkenyl or C_{2-6} -alkynyl optionally mono- or poly substituted with halogen; or R^5 and R^4 together represent one of the bonds in a double bond between the atoms 2 and 3 of formula (I);

D represents - S(=O)₂- or -S(=O)-; or

D-B represents -S(=O)(R⁷)=N-

wherein R⁷ is C₁₋₆-alkyl; or aryl or heteroaryl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, aryloxy, arylalkoxy, nitro, amino, C₁₋₆-monoalkyl- or dialkyl-amino, cyano, acyl, or C₁₋₆-alkoxycarbonyl;

R¹ is hydrogen; hydroxy; C₁₋₆-alkoxy; or C₁₋₆-alkyl, C₃₋₆-cycloalkyl, C₂₋₆- alkenyl or C₂₋₆alkynyl optionally mono- or poly substituted with halogen and R⁴ is hydrogen; or R⁴ together with R⁵ represent one of the bonds in a double bond between the atoms 2 and 3 of
formula (I); or R¹ together with R⁴ represent one of the bonds in a double
bond between the atoms 3 and 4 of formula (I);

 R^2 is hydrogen; hydroxy; C_{1-6} -alkoxy; or C_{1-6} -alkyl, C_{3-6} -cycloalkyl, C_{2-6} - alkenyl or C_{2-6} - alkynyl optionally mono- or poly substituted with halogen

R³ is R³; -OR³; -C(=X)R⁵; -NR⁵R⁵; bicycloalkyl, aryl, heteroaryl, arylalkyl or heteroarylalkyl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, aryloxy, arylalkoxy, nitro, amino, C₁₋₆-monoalkyl- or dialkylamino, cyano, oxo, acyl or C₁₋₆-alkoxycarbonyl; or aryl substituted with C₁₋₆-alkyl;

wherein R⁸ is hydrogen; C₃₋₆-cycloalkyl or (C₃₋₆-cycloalkyl)C₁₋₆-alkyl, the C₃₋₆-cycloalkyl group optionally being mono- or poly substituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; a 3-6 membered saturated ring system comprising one or more nitrogen, oxygen or sulfur atoms; or straight or branched C₁₋₁₈-alkyl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkylthio, C₃₋₆-cycloalkyl, aryl, aryloxy, arylalkoxy, nitro, amino, C₁₋₆- monoalkyl- or dialkylamino, cyano, oxo, formyl, acyl, carboxy, C₁₋₆-alkoxy-carbonyl, or carbamoyl;

35

 R^9 is hydrogen; C_{1-6} -alkyl; C_{2-6} -alkenyl; C_{3-6} -cycloalkyl optionally mono- or poly substituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; or

R⁸ and R⁹ together with the nitrogen atom form a 3-12 membered mono- or bicyclic system, in which one or more of the carbon atoms may be exchanged with nitrogen, oxygen or sulfur, each of these ring systems optionally being mono- or poly substituted with halogen, C₁₋₆-alkyl, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkoxy-C₁₋₆-alkyl, nitro, amino, cyano, trifluoromethyl, C₁₋₆-monoalkyl- or dialkylamino, oxo; or

10 R3 is

$$C_{\mathfrak{m}}$$
 or $C_{\mathfrak{m}}$

wherein n, m, p independently are 0,1,2,3 and R^{10} is hydrogen; hydroxy; $C_{1.6}$ -alkoxy; $C_{3.6}$ -cycloalkyl optionally mono- or poly substituted with $C_{1.6}$ -alkyl, halogen, hydroxy or $C_{1.6}$ -alkoxy; $C_{1.6}$ -alkyl, $C_{2.6}$ -alkenyl or $C_{2.6}$ -alkynyl optionally mono- or poly substituted with halogen; or

R² and R³ together with the nitrogen atom forms a 3-12 membered mono- or bicyclic system, in which one or more of the carbon atoms may be exchanged with nitrogen, oxygen or sulfur, each of these ring systems optionally being mono- or poly substituted with halogen, C₁₋₆-alkyl, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkoxy-C₁₋₆-alkyl, nitro, amino, cyano, trifluoromethyl, C₁₋₆-monoalkyl- or dialkylamino or oxo;

A together with carbon atoms 5 and 6 of formula (I) represents a 5 or 6 membered heterocyclic system comprising one or more nitrogen-, oxygen- or sulfur atoms, the heterocyclic systems optionally being mono- or poly substituted with halogen; C₁₋₁₂-alkyl; C₃₋₆-cycloalkyl; hydroxy; C₁₋₆-alkoxy; C₁₋₆-alkoxy-C₁₋₆-alkyl; nitro; amino; cyano; cyanomethyl; perhalomethyl; C₁₋₆-monoalkyl- or dialkylamino; sulfamoyl; C₁₋₆-alkylthio; C₁₋₆-alkylsulfonyl; C₁₋₆-alkylsulfinyl; C₁₋₆-alkylcarbonylamino; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; C₁₋₆-alkoxycarbonyl; C₁₋₆-alkoxycarbonyl; C₁₋₆-alkyl; carbamyl; carbamyl- methyl; C₁₋₆-monoalkyl- or dialkylaminocarbonyl; ureido; C₁₋₆-monoalkyl- or dialkylaminocarbonyl; ureido; C₁₋₆-monoalkyl- or dialkylaminocarbonylamino, thioureido; C₁₋₆-monoalkyl- or dialkylaminocarbonylamino

nothiocarbonyl- amino; C_{1-6} -monoalkyl- or dialkylaminosulfonyl; carboxy; carboxy- C_{1-6} alkyl; acyl; aryl, arylalkyl, aryloxy, the aryl group optionally being mono- or polysubstituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)- C_{1-6} -alkyl the oxadiazolyl group optionally being substituted with C_{1-6} -alkyl or C_{3-6} -5 cycloalkyl; or a 5 - 6 membered nitrogen containing ring, optionally substituted with phenyl or C₁₋₆-alkyl; or a pharmaceutically acceptable salt thereof, for the preparation of a pharmaceutical composition for the treatment or the prevention of diabetes in women with prior Gestational Diabetes Mellitus (GDM).

In a further aspect the present invention relates to a pharmaceutical composition for use in the treatment or prevention of diabetes in women with prior GDM, comprising a compound of the formula (I) or (Ia) or a pharmaceutically acceptable salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers including a racemic mixture, or any tautomeric form together with one or more 15 pharmaceutically acceptable carriers or diluents.

In a still further aspect the present invention relates to a method for treating or preventing diabetes in women with prior GDM comprising administering an effective amount of a compound of the formula (I) or (Ia) to said subject.

20 BRIEF DESCRIPTION OF DRAWINGS

Figure 1 shows an oral glucose tolerance test in panel A and perfused pancreas in panel B.

DEFINITIONS

25

10

Prior to a discussion of the detailed embodiments of the invention, a definition of specific terms related to the main aspects of the invention is provided.

The following is a detailed definition of the terms used to describe the compounds of the invention.

The term "prevention" in the context of "the treatment or the prevention of diabe-30 tes" means that the development of diabetes in women with prior GDM can be delayed or attenuated. Women with prior GDM have an increased risk of developing diabetes but the onset of the disease can be delayed and/or the severity of the disease attenuated by administration of a compound according to the present invention.

The term "halogen" designates an atom selected from the group consisting of F, 35 Cl, Br and I.

35

The terms " C_{1-6} -alkyl", " C_{1-12} -alkyl" and " C_{1-18} -alkyl" as used herein, alone or in combination, designates a straight or branched, saturated hydrocarbon chain having the indicated number of carbon atoms. Representatives examples include, but are not limited to methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 2-methylbutyl, 3-methylbutyl, 4-methylpentyl, neopentyl, n-hexyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1,2,2-trimethylpropyl and the like. The term " C_{1-18} -alkyl" as used herein also includes secondary C_{3-6} -alkyl and tertiary C_{4-6} -alkyl.

The term "C₁₋₆-alkoxy" as used herein, alone or in combination, refers to a straight or branched monovalent substituent comprising a C₁₋₆-alkyl group linked through an ether oxygen having its free valence bond from the ether oxygen and having 1 to 6 carbon atoms. Representatives groups include, but are not limited to methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentoxy, neopentoxy, tert-pentoxy, n-hexoxy, isohexoxy and the like.

The term "C₂₋₆-alkenyl" as used herein refers to a straight or branched, unsaturated hydrocarbon chain having 2-6 carbon atoms and one double bond. Examples of such groups include, but are not limited to vinyl, 1-propenyl, 2-propenyl, allyl, isopropenyl, n-butenyl, n-pentenyl, n-hexenyl and the like.

The term "C₂₋₆-alkynyl" as used herein refers to a straight or branched, unsaturated hydrocarbons which contain triple bonds. Examples of such groups include, but are not limited to -C \equiv CH, -C \equiv CCH₃, -CH₂C \equiv CH, -CH₂CC \equiv CH, -CH(CH₃)C \equiv CH and the like.

The term "C₁₋₆-alkylthio" as used herein, alone or in combination, refers to a straight or branched monovalent substituent comprising a lower alkyl group linked through a divalent sulfur atom having its free valence bond from the sulfur atom and having 1 to 6 carbon atoms. Representative examples include, but are not limited to, methylthio, ethylthio, n-propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, n-pentylthio, isopentylthio, neopentylthio, tert-pentylthio, n-hexylthio, isohexyl and the like.

The term "C₃₋₆-cycloalkyl" as used herein refers to a radical of a saturated cyclic hydrocarbon with the indicated number of carbons. Representative examples are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohetyl, cyclobetyl and the like.

The term " C_{1-6} -alkoxy- C_{1-6} -alkyl" as used herein refers to a group of 2-12 carbon atoms interrupted by an O. Representative examples are CH_2 -O- CH_3 , CH_2 -O- CH_2 - CH_3 , CH_2 -O- $CH(CH_3)_2$ and the like.

The term "perhalomethyl" means trifluoromethyl, trichloromethyl, tribromomethyl or triiodomethyl.

The term "C₁₋₆-monoalkylamino" as used herein refers to an amino group wherein one of the hydrogen atoms is substituted with a straight or branched, saturated

WO 03/045955

hydrocarbon chain having the indicated number of carbon atoms such as e.g. methylamino, ethylamino, propylamino, n-butylamino, sec-butylamino, isobutylamino, tertbutylamino, n-pentylamino, 2-methylbutylamino, n-hexylamino, 4-methylpentylamino, neopentylamino, n-hexylamino, 2,2-dimethylpropylamino and the like.

7

The term "C₁₋₆-dialkylamino" as used herein refers to an amino group wherein the two hydrogen atoms independently are substituted with a straight or branched, saturated hydrocarbon chain having the indicated number of carbon atoms; such as dimethylamino, N-ethyl-N-methylamino, diethylamino, dipropylamino, N-(n-butyl)-N-methylamino, di(npentyl)amino, and the like.

The term "acyl" as used herein refers to a monovalent substituent comprising a C₁₋₆-alkyl group linked through a carbonyl group; such as e.g. acetyl, propionyl, butyryl, isobutyryl, pivaloyl, valeryl, and the like.

10

The term "C₁₋₆-alkoxycarbonyl" as used herein refers to a monovalent substituent comprising a C_{1-6} -alkoxy group linked through a carbonyl group; such as e.g. methoxycarbonyl, carbethoxy, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, secbutoxycarbonyl, tert-butoxycarbonyl, 3-methylbutoxycarbonyl, n-hexoxycarbonyl and the like.

The term "3-12 membered mono- or bicyclic system" as used herein refers to a monovalent substituent of formula -NR²R³ or -NR⁸R⁹ where R² and R³, or R⁸ and R⁹ 20 together with the nitrogen atom form a 3-12 membered mono- or bicyclic system, in which one or more of the carbon atoms may be exchanged with nitrogen, oxygen or sulfur, such as 1-pyrrolidyl, piperidino, morpholino, thiomorpholino, 4-methylpiperazin-1-yl, 7-azabicyclo[2.2.1]heptan-7-yl, tropanyl and the like.

The term "3-6 membered saturated ring system" as used herein refers to a monovalent substituent comprising a monocyclic saturated system containing one or more hetero atoms selected from nitrogen, oxygen and sulfur and having 3-6 members and having its free valence from a carbon atom, e.g. 2-pyrrolidyl, 4-piperidyl, 3-morpholinyl, 1,4-dioxan-2-yl, 5-oxazolidinyl, 4-isoxazolidinyl or 2-thiomorpholinyl.

The term "bicycloalkyl" as used herein refers to a monovalent substituent 30 comprising a bicyclic structure made of 6-12 carbon atoms such as e.g. 2-norbornyl, 7norbornyl, 2-bicyclo[2.2.2]octyl and 9-bicyclo[3.3.1]nonanyl.

The term "aryl" as used herein refers to phenyl, 1-naphthyl or 2-naphthyl.

The term "heteroaryl" as used herein, alone or in combination, refers to a monovalent substituent comprising a 5-6 membered monocyclic aromatic system or a 9-10 35 membered bicyclic aromatic system containing one or more heteroatoms selected from nitrogen, oxygen and sulfur, e.g. pyrrole, imidazole, pyrazole, triazole, pyridine, pyrazine,

35

pyrimidine, pyridazine, isothiazole, isoxazole, oxazole, oxadiazole, thiadiazole, quinoline, isoquinoline, quinazoline, quinoxaline, indole, benzimidazole, benzofuran, pteridine and purine.

8

The term "arylalky!" as used herein refers to a straight or branched saturated 5 carbon chain containing from 1 to 6 carbons substituted with an aromatic carbohydride; such as benzyl, phenethyl, 3-phenylpropyl, 1-naphtylmethyl, 2-(1-naphtyl)ethyl and the like.

The term "aryloxy" as used herein refers to phenoxy, 1-naphthyloxy or 2naphthyloxy.

The term "arylalkoxy" as used herein refers to a C₁₋₈-alkoxy group substituted with an aromatic carbohydride, such as benzyloxy, phenethoxy, 3-phenylpropoxy, 1naphthylmethoxy, 2-(1-naphtyl)ethoxy and the like.

The term "heteroarylalkyl" as used herein refers to a straight or branched saturated carbon chain containing from 1 to 6 carbons substituted with a heteroaryl group; such as (2-furyl) methyl, (3-furyl)methyl, (2-thienyl)methyl, (3-thienyl)methyl, (2pyridyl)methyl, 1-methyl-1-(2-pyrimidyl)ethyl and the like.

The term "C₁₋₈-alkylsulfonyl" as used herein refers to a monovalent substituent comprising a C_{1-6} -alkyl group linked through a sulfonyl group such as e.g. methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, sec-butylsulfonyl, isobutylsulfonyl, tert-butylsulfonyl, n-pentylsulfonyl, 2-methylbutylsulfonyl, 3methylbutylsulfonyl, n-hexylsulfonyl, 4-methylpentylsulfonyl, neopentylsulfonyl, nhexylsulfonyl and 2,2-dimethylpropylsulfonyl.

The term "C₁₋₈-monoalkylaminosulfonyl" as used herein refers to a monovalent substituent comprising a C₁₋₆-monoalkylamino group linked through a sulfonyl group such 25 as e.g. methylaminosulfonyl, ethylaminosulfonyl, n-propylaminosulfonyl, isopropylaminosulfonyl, n-butylaminosulfonyl, sec-butylaminosulfonyl, isobutylaminosulfonyl, tert-butylaminosulfonyl, n-pentylaminosulfonyl, 2methylbutylaminosulfonyl, 3-methylbutylaminosulfonyl, n-hexylaminosulfonyl, 4methylpentylaminosulfonyl, neopentylaminosulfonyl, n-hexylaminosulfonyl and 2,2-30 dimethylpropylaminosulfonyl.

The term "C₁₋₆-dialkylaminosulfonyl" as used herein refers to a monovalent substituent comprising a C₁₋₆-dialkylamino group linked through a sulfonyl group such as dimethylaminosulfonyl, N-ethyl-N-methylaminosulfonyl, diethylaminosulfonyl, dipropylaminosulfonyl, N-(n-butyl)-N-methylaminosulfonyl, di(n-pentyl)aminosulfonyl, and the like.

The term "C₁₋₆-alkylsulfinyl" as used herein refers to a monovalent substituent comprising a straight or branched C₁₋₆-alkyl group linked through a sulfinyl group (-S(=O)-); such as e.g. methylsulfinyl, ethylsulfinyl, isopropylsulfinyl, butylsulfinyl, pentylsulfinyl, and the like.

The term "C₁₋₆-alkylcarbonylamino" as used herein refers to an amino group wherein one of the hydrogen atoms is substituted with an acyl group, such as e.g. acetamido, propionamido, isopropylcarbonylamino, and the like.

The term "(C_{3.6}-cycloalkyl)C_{1.6}-alkyl" as used herein, alone or in combination, refers to a straight or branched, saturated hydrocarbon chain having 1 to 6 carbon atoms and being monosubstituted with a C_{3.6}-cycloalkyl group, the cycloalkyl group optionally being mono- or polysubstituted with C_{1.6}-alkyl, halogen, hydroxy or C_{1.6}-alkoxy; such as e.g. cyclopropylmethyl, (1-methylcyclopropyl)methyl, 1-(cyclopropyl)ethyl, cyclopentylmethyl, cyclohexylmethyl, and the like.

The term "arylthio" as used herein, alone or in combination, refers to an aryl group linked through a divalent sulfur atom having its free valence bond from the sulfur atom, the aryl group optionally being mono- or polysubstituted with C₁₋₈-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; e.g. phenylthio, (4-methylphenyl)- thio, (2-chlorophenyl) thio, and the like.

The term "arylsulfinyl" as used herein refers to an aryl group linked through a sulfinyl group (-S(=O)-), the aryl group optionally being mono- or polysubstituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; such as e.g. phenylsulfinyl, (4-chlorophenyl)sulfinyl, and the like.

The term "arylsulfonyl" as used herein refers to an aryl group linked through a sulfonyl group, the aryl group optionally being mono- or polysubstituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; such as e.g. phenylsulfonyl, tosyl, and the like.

20

30

35

The term "C₁₋₆-monoalkylaminocarbonyl" as used herein refers to a monovalent substituent comprising a C₁₋₆-monoalkylamino group linked through a carbonyl group such as e.g. methylaminocarbonyl, ethylaminocarbonyl, n-propylaminocarbonyl, isopropylaminocarbonyl, n-butylaminocarbonyl, sec-butylaminocarbonyl, isobutylaminocarbonyl, tert-butylaminocarbonyl, n-pentylaminocarbonyl, 2-methylbutylaminocarbonyl, 3-methylbutylaminocarbonyl, n-hexylaminocarbonyl, 4-methylpentylaminocarbonyl, neopentylaminocarbonyl, n-hexylaminocarbonyl and 2-2-dimethylpropylaminocarbonyl.

The term "C₁₋₆-dialkylaminocarbonyl" as used herein refers to a monovalent substituent comprising a C₁₋₆-dialkylamino group linked through a carbonyl group such as dimethylaminocarbonyl, N-ethyl-N-methylaminocarbonyl, diethylaminocarbonyl, dipropylaminocarbonyl, N-(n-butyl)-N-methylaminocarbonyl, di(n-pentyl)aminocarbonyl, and the like.

The term " C_{1-6} -monoalkylaminocarbonylamino" as used herein refers to an amino group wherin one of the hydrogen atoms is substituted with a C_{1-6} -monoalkylaminocarbonyl

WO 03/045955 PCT/DK02/00798

10

5

10

group, e.g. methylaminocarbonylamino, ethylamino-carbonylamino, n-propylaminocarbonylamino, isopropylaminocarbonylamino, n-butylaminocarbonylamino, secbutylaminocarbonylamino, isobutylaminocarbonylamino, tert-butylaminocarbonylamino, and 2-methylbutylaminocarbonylamino.

The term "C₁₋₆-dialkylaminocarbonylamino" as used herein refers to an amino group wherein one of the hydrogen atoms is substituted with a C₁₋₆-dialkylaminocarbonyl group, such as dimethylaminocarbonylamino, N-ethyl-N-methylaminocarbonylamino, diethylaminocarbonylamino, dipropylaminocarbonylamino, N-(n-butyl)-Nmethylaminocarbonylamino, di(n-pentyl) aminocarbonylamino, and the like.

The term "5- or 6-membered heterocyclic system" as used herein refers to: a monocyclic unsaturated or saturated system containing one, two or three hetero atoms selected from nitrogen, oxygen and sulfur and having 5 members, e.g. pyrrole, furan, thiophene, pyrroline, dihydrofuran, dihydrothiophene, imidazole, imidazoline, pyrazole, pyrazoline, oxazole, thiazole, isoxazole, isothiazole, 1,2,3-oxadiazole, furazan, 1,2,3triazole, 1,2,3-thiadiazole or 2,1,3-thiadiazole; an aromatic monocyclic system containing one or more nitrogen atoms and having 6 members, e.g. pyridine, pyrazine, pyrimidine, pyridazine, 1,2,4-triazine, 1,2,3-triazine or tetrazine; a non-aromatic monocyclic system containing one or more hetero atoms selected from nitrogen, oxygen and sulfur and having 6 members, e.g. pyran, thiopyran, piperidine, dioxane, oxazine, isoxazine, dithiane, 20 oxathine, thiazine, piperazine, thiadiazine, dithiazine or oxadiazine.

The term "5- or 6-membered nitrogen containing ring" as used herein refers to a monovalent substituent comprising a monocyclic unsaturated or saturated system containing one or more nitrogen atoms and having 5 or 6 members, e.g. pyrrolidinyl, pyrrolinyl, imidazolidinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, pyrrolyl, 2H-pyrrolyl, 25 imidazolyl, pyrazolyl, triazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, morpholino, thiomorpholino, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, thiadiazolyl, 1,3-dioxolanyl and 1.4-dioxolanyl.

The term "4- to 12-membered bicyclic or tricyclic carbocyclic system" as used herein refers to a a monovalent substituent comprising a bicyclic or a tricyclic structure made of 4-12 carbon atoms such as e.g. bicyclo[2.1.1]hexane, bicyclo[2.2.1]heptane, bicyclo [2.2.2]octane, octahydrovpentalene, bicyclo[2.2.0]hexane, adamantane, noradamantane or tricyclo-(4.3.1.1 (3,8))undecane.

The term "treatment" as used herein is defined as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the 35 administration of the active compounds to prevent the onset of the symptoms or complica-

15

tions, or alleviating the symptoms or complications, or eliminating the disease, condition, or disorder.

DETAILED DESCRIPTION OF THE INVENTION

It is known that SUR1/Kir6.2 channels are involved in the release of insulin as described above and that potassium channel opener therefore will affect release of insulin. However, it has now surprisingly been found that treatment with SUR1/Kir6.2 selective potassium channel openers at the same time can reduce hyperinsulinaemia without resulting in a deterioration of glucose tolerance as shown in example 1. The result of such 10 treatment is a workload reduction ("resting") of pancreatic ß-cells which can prevent or delay the onset of Type 2 diabetes in women who have previously had GDM.

In one embodiment, the present invention therefore relates to a use of SUR1/Kir6.2 selective potassium channel openers for the preparation of a pharmaceutical composition for the treatment or the prevention of diabetes in women with (prior) GDM.

Examples of such potassium channel agonists are compounds, which activate K_{ATP}-channels of the ß-cell type (SUR1/Kir6.2).

Potassium channel agonists can readily be determined by those skilled in the art. Methods therefore has been described in e.g. WO 97/26264, WO 97/26265, WO 99/03861, WO 00/37474, and recently reviewed: McClenaghan: Diabetes, Obesitas and 20 Metabolism, 1, 137-150, (1999); Yokoshiki: Am. J. Physiol. . 274. C25-C37, (1998); Aguliar-Bryan: Endocrine Reviews, 20, 101-135, (1999).

In a further embodiment the present invention relates to the use of compounds of the general formula (I):

$$\begin{array}{c|c}
R^1 \\
R^4 \\
R^2 \\
R^3
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
R^3
\end{array}$$
(I)

25 wherein

30

B represents >NR⁵ or >CR⁵R⁶, wherein R⁵ and R⁶ independently are hydrogen; hydroxy; C₁₋₆-alkoxy; or C₁₋₆-alkyl, C₃₋₆-cycloalkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl optionally mono- or poly substituted with halogen; or R5 and R4 together represent one of the bonds in a double bond between the atoms 2 and 3 of formula (1);

D represents $-S(=O)_2$ - or -S(=O)-; or

D-B represents -S(=O)(R⁷)=N-

wherein R⁷ is C₁₋₆-alkyl; or aryl or heteroaryl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, aryloxy, arylalkoxy, nitro, amino, C₁₋₆-monoalkyl- or dialkylamino, cyano, acyl, or C₁₋₆-alkoxycarbonyl;

R¹ is hydrogen; hydroxy; C₁₋₆-alkoxy; or C₁₋₆-alkyl, C₃₋₆-cycloalkyl, C₂₋₆- alkenyl or C₂₋₆- alkynyl optionally mono- or poly substituted with halogen and R⁴ is hydrogen; or R⁴ together with R⁵ represent one of the bonds in a double bond between the atoms 2 and 3 of formula (I); or R¹ together with R⁴ represent one of the bonds in a double bond between the atoms 3 and 4 of formula (I);

 R^2 is hydrogen; hydroxy; C_{1-6} -alkoxy; or C_{1-6} -alkyl, C_{3-6} -cycloalkyl, C_{2-6} - alkenyl or C_{2-6} -alkynyl optionally mono- or poly substituted with halogen;

R³ is R⁸; -OR⁸; -C(=X)R⁸; -NR⁸R⁹; bicycloalkyl, aryl, heteroaryl, arylalkyl or heteroarylalkyl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, aryloxy, arylalkoxy, nitro, amino, C₁₋₆-monoalkyl- or dialkylamino, cyano, oxo, acyl or C₁₋₆-alkoxycarbonyl; or aryl substituted with C₁₋₆-alkyl;

wherein R⁸ is hydrogen; C₃₋₆-cycloalkyl or (C₃₋₆-cycloalkyl)C₁₋₆-alkyl, the C₃₋₆-cycloalkyl group optionally being mono- or poly substituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; a 3-6 membered saturated ring system comprising one or more nitrogen-, oxygenor sulfur atoms; or straight or branched C₁₋₁₈-alkyl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkylthio, C₃₋₆-cycloalkyl, aryl, aryloxy, arylalkoxy, nitro, amino, C₁₋₆- monoalkyl- or dialkylamino, cyano, oxo, formyl, acyl, carboxy, C₁₋₆-alkoxy-carbonyl, or carbamoyl;

X is O or S;

20

30

 R^9 is hydrogen; C_{1-6} -alkyl; C_{2-6} -alkenyl; C_{3-6} -cycloalkyl optionally mono- or poly substituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; or

R⁸ and R⁹ together with the nitrogen atom form a 3-12 membered mono- or bicyclic system, in which one or more of the carbon atoms may be exchanged with nitrogen, oxygen or sulfur, each of these ring systems optionally being mono- or poly substituted

with halogen, C_{1-6} -alkyl, hydroxy, C_{1-6} -alkoxy, C_{1-6} -alkoxy- C_{1-6} -alkyl, nitro, amino, cyano, trifluoromethyl, C_{1-6} -monoalkyl- or dialkylamino, oxo; or R^3 is

$$C_m$$
 or C_m C_m C_m C_m C_m C_m

- wherein n, m, p independently are 0,1,2,3 and R¹⁰ is hydrogen; hydroxy; C_{1.6}-alkoxy; C_{3.6}-cycloalkyl optionally mono- or poly substituted with C_{1.6}-alkyl, halogen, hydroxy or C_{1.6}-alkoxy; C_{1.6}-alkyl, C_{2.6}-alkenyl or C_{2.6}-alkynyl optionally mono- or poly substituted with halogen; or
- R² and R³ together with the nitrogen atom forms a 3-12 membered mono- or bicyclic system, in which one or more of the carbon atoms may be exchanged with nitrogen, oxygen or sulfur, each of these ring systems optionally being mono- or poly substituted with halogen, C₁₋₆-alkyl, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkoxy-C₁₋₆-alkyl, nitro, amino, cyano, trifluoromethyl, C₁₋₆-monoalkyl- or dialkylamino or oxo;

15

A together with carbon atoms 5 and 6 of formula (I) represents a 5 or 6 membered heterocyclic system comprising one or more nitrogen-, oxygen- or sulfur atoms, the heterocyclic systems optionally being mono- or poly substituted with halogen; C₁₋₁₂-alkyl; C₃₋₆cycloalkyl; hydroxy; C₁₋₆-alkoxy; C₁₋₆-alkoxy-C₁₋₈-alkyl; nitro; amino; cyano; cyanomethyl; 20 perhalomethyl; C₁₋₆-monoalkyl- or dialkylamino; sulfamoyl; C₁₋₆-alkylthio; C₁₋₆-alkylsulfonyl; C_{1.6}-alkylsulfinyl; C_{1.6}-alkylcarbonylamino; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C_{1.6}-alkyl, halogen, hydroxy or C_{1.6}-alkoxy; C₁₋₆-alkoxycarbonyl; C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl; carbamyl; carbamyl- methyl; C₁₋₆monoalkyl- or dialkylaminocarbonyl; C_{1.6}-monoalkyl- or dialkylaminothiocarbonyl; ureido; 25 C₁₋₆-monoalkyl- or dialkylaminocarbonylamino, thioureido; C₁₋₆-monoalkyl- or dialkylaminothiocarbonyl- amino; C_{1.6}-monoalkyl- or dialkylaminosulfonyl; carboxy; carboxy-C_{1.6}alkyl; acyl; aryl, arylalkyl, aryloxy, the aryl group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)-C₁₋₆-alkyl the oxadiazolyl group optionally being substituted with C₁₋₆-alkyl or C₃₋₆-30 cycloalkyl; or a 5 - 6 membered nitrogen containing ring, optionally substituted with phenyl or C₁₋₅-alkyl; or a pharmaceutically acceptable salt thereof, for the preparation of a pharmaceutical composition for the treatment or the prevention of diabetes in women with prior GDM.

35

Within its scope the invention includes all optical isomers of compounds of the present invention, some of which are optically active, and also their mixtures including racemic mixture thereof.

14

The scope of the invention also includes all tautomeric forms of the compounds of the present invention as well as metabolites or prodrugs.

A "metabolite" of a compound disclosed in this application is an active derivative of a compound disclosed herein which is produced when the compound is metabolized.

10 Metabolites of compounds disclosed herein can be identified either by administration of a compound to a host and an analysis of blood samples from the host, or by incubation of compounds with hepatic cells in vitro and analysis of the incubant.

A "prodrug" is a compound that either is converted into a compound disclosed in the application in vivo or has the same active metabolite as a compound disclosed in this application.

The salts include pharmaceutically acceptable acid addition salts, pharmaceutically acceptable metal salts or optionally alkylated ammonium salts, such as hydrochloric, hydrobromic, hydroiodic, phosphoric, sulfuric, trifluoroacetic, trichloroacetic, oxalic, maleic, pyruvic, malonic, succinic, citric, tartaric, fumaric, mandelic, benzoic, cinnamic, methanesulfonic, ethane sulfonic, picric and the like, and include acids related to the pharmaceutically acceptable salts listed in Journal of Pharmaceutical Science, 66, 2 (1977) and incorporated herein by reference, or lithium, sodium, potassium, magnesium and the like.

In another embodiment of the invention B of formula (I) is >NR⁵ and R⁵ and R⁴ together represent one of the bonds in a double bond between the atoms 2 and 3 of formula (I).

In another embodiment of the invention D is -S(=O)₂-.

In another embodiment of the invention R^2 is hydrogen or C_{1-8} -alkyl.

In another embodiment of the invention R³ is R8, -OR8, NR8R9 or aryl, the aryl groups optionally being substituted with C₁₋₆-alkyl; wherein R8 is hydrogen; C₃₋₆-cycloalkyl; 30 ₆-cycloalkyl)C₁₋₆-alkyl; a 3 - 6 membered saturated ring system comprising one, two or three nitrogen-, oxygen- or sulfur atoms; or straight or branched C₁₋₁₈-alkyl optionally substituted with halogen, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkylthio, C₃₋₆-cycloalkyl or aryl, R9 is hydrogen, C₁₋₆-alkyl or C₃₋₆-cycloalkyl; or R8 and R9 together with the nitrogen atom form a 4 - 6 membered ring.

In another embodiment of the invention wherein R^3 is secondary C_{3-6} -alkyl, tertiary C_{4-6} -alkyl, C_{3-6} -cycloalkyl or $(C_{3-6}$ -cycloalkyl)methyl.

WO 03/045955 PCT/DK02/00798

15

In another embodiment of the invention A together with carbon atoms 5 and 6 of formula (I) forms a 5 membered heterocyclic system containing one hetero atom selected from nitrogen and sulfur, the heterocyclic system optionally being mono- or disubstituted with halogen; C₁₋₁₂-alkyl; C₃₋₆-cycloalkyl; cyano; cyanomethyl; perhalomethyl; sulfamoyl; C₁₋₆-alkylthio; C₁₋₆-alkylsulfonyl; C₁₋₆-alkylsulfinyl; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl; carbamylmethyl; carboxy-C₁₋₆-alkyl; aryloxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)C₁₋₆-alkyl, the oxadiazolyl group optionally being substituted with C₁₋₆-alkyl or C₃₋₆-cycloalkyl; acyl or a 5 - 6 membered nitrogen containing ring, optionally substituted with phenyl or C₁₋₆-alkyl.

In another embodiment of the invention A together with carbon atoms 5 and 6 of formula (i) forms a 5 membered heterocyclic system containing two hetero atoms selected from nitrogen, oxygen and sulfur, the heterocyclic system optionally being substituted with halogen; C₁₋₁₂-alkyl; C₃₋₆-cycloalkyl; cyano; cyanomethyl; perhalomethyl; sulfamoyl; C₁₋₆-alkylsulfonyl; C₁₋₆-alkylsulfonyl; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl; carbamylmethyl; carboxy-C₁₋₆-alkyl; aryloxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)C₁₋₆-alkyl, the oxadiazolyl group optionally being substituted with C₁₋₆-alkyl or C₃₋₆-cycloalkyl; acyl; or a 5 - 6 membered nitrogen containing ring, optionally substituted with phenyl or C₁₋₆-alkyl.

In another embodiment of the invention A together with carbon atoms 5 and 6 of formula (I) forms a 6 membered aromatic heterocyclic system containing one, two or three nitrogen atoms, the heterocyclic system optionally being substituted with halogen; C₁₋₁₂-alkyl; C₃₋₆-cycloalkyl; cyano; cyanomethyl; perhalomethyl; sulfamoyl; C₁₋₆-alkylthio; C₁₋₈-alkylsulfinyl; arylthio, arylsulfinyl, arylsulfonyl, the aryll group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl; carbamylmethyl; carboxy-C₁₋₆-alkyl: aryloxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)C₁₋₆-alkyl, the oxadiazolyl group optionally being substituted with C₁₋₆-alkyl or C₃₋₆-cycloalkyl; acyl; or a 5 - 6 membered nitrogen containing ring, optionally substituted with phenyl or C₁₋₆-alkyl.

Examples of specific compounds of formula (I) to be used according to this invention are: 6-Chloro-3-(1,2-dimethylpropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-ethylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-6-Chloro-3-(1-phenylethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Allylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-cyclopropylamino-4H-

thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-hexylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-tetradecylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-methylamino-4H-thieno[3,2,e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-octylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-isobutylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(4-phenyl-butyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1,5-dimethyl hexyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-propylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (6)-6-Chloro-3-(2-hydroxy-1-methylethyl) amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (S)-6-Chloro-3-(2-hydroxy-1-methylethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Butylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Butylamino-6-chloro-4H-t

Another example of a specific compound of formula (I) to be used according to this invention is 6-Chloro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide.

15

Other examples of specific compounds of formula (I) to be used according to this invention are: 3-Hydrazino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Benzylamino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(R)-(1-Phenylethylamino)-4Hpyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(S)-(1-Phenylethylamino)-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Benzylamino-7-chloro-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3-(R)-(1-phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1dioxide; 7-Chloro-3-(S)-(1'-phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1dioxide; 3-Benzylamino-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(R)-(1-25 Phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(S)-(1-Phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(Hexylamino)-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3-hexylamino-4H- pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Octylamino-4H- pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3octylamino-4H- pyrido [2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Allylamino-4H- pyrido[4,3-30 e]-1,2,4-thiadiazine 1,1-dioxide; 3-Allylamino-7-chloro-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1.1-dioxide; 7-Chloro-3-(2-methoxy-1-methylethyl)amino-4H-pyrido[2,3-e]-1,2,4thiadiazine 1,1-dioxide; 3-(2-Methoxy-1-methylethyl)amino-4H-pyrido[4,3-e]-1,2,4thiadiazine 1,1-dioxide; 3-(2-Hydroxy-1-methylethyl)amino-4H-pyrido[4,3-e]-1,2,4thiadiazine 1,1-dioxide; 3-Benzylamino-2-methyl-2H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-35 dioxide; 2-Isopropylamino-3,3-dimethoxy-3H-pyrido [2,3-b][1,4]thiazine 4,4-dioxide.

Other examples of specific compounds of formula (I) to be used according to this invention are: 7-Cyano-3-isopropylamino-6-methyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1dioxide; 7-Cyano-6-methyl-3-propylamino-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-isopentylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-5 methylheptyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-ethylpentyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2-methylbutyl) amino- 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylhexyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-cyclopentylamino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-cyclohexylmethylamino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; Ethyl 3-(6-chloro-1,4-dihydro-1,1dioxothieno[3,2-e]-1\(\lambda^6\),2,4-thiadiazin-3-ylamino) -butanoate; 3-(6-Chloro-1,4-dihydro-1,1dioxothieno[3,2-e]- $1\lambda^6$,2,4-thiadiazin-3-ylamino)butanoic acid; 6-Chloro-3-(3-hydroxy-1methylpropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-6-Chloro-3-(1phenyethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (S)-3-sec-Butylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-isopropylamino-4Hthieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-cyclopentylamino-4H-thieno[2,3e]-1,2,4-thiadiazine 1,1-dioxide; 6-Bromo-3-isopropylamino-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide; 3-Isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Fluoro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-20 Cyclobutylamino-5,6-dimethyl-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Cyclopentylamino-5,6-dimethyl-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3lsopropylamino-6,7-dimethyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Cyclobutylamino-6,7-dimethyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Cyclopentylamino -6,7-dimethyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-3isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-3-propylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-3-cyclopentylamino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-6-methyl-3-isopropylamino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-chloro-3-isopropylamino-5-methyl-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-chloro-3-cyclopentylamino-5-methyl-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Fluoro-3-propylamino-4H-thieno[3,2-e]-1.2.4-thiadiazine 1,1-dioxide; 6-Fluoro-3-cyclopentylamino-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide; 5-Fluoro-3-propylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1dioxide; 5-Fluoro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Isopropylamino-7-methyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-35 cyclobutylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2hydroxyethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (±)-3-exoPCT/DK02/00798

Bicyclo[2.2.1]hept-2-ylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-6-Chloro-3-(2-hydroxypropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Bromo-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5,6-Dibromo-3isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-

18

5 cyclohexylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide;6-Chloro-3-(furan-2vlmethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-ethylpropyl) amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Bromo-3-cyclopentylamino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2-methylallyl)amino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Cyano-3-isopropylamino-4H-thieno[3,2-e]-10 1,2,4-thiadiazine 1,1-dioxide.

In another embodiment of the invention the general formula (I) is selected from

wherein

15

30

X and Y independently are hydrogen, halogen, perhalomethyl, C_{1.6}-alkyl or C_{1.6}-alkoxy;

R¹¹, R²¹ and R³¹ independently are C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₆-cycloalkyl, carboxy, C_{1.6}-alkoxycarbonyl or aryl, all of which are optionally being mono- or polysubstituted with halogen, hydroxy, oxo, or aryl; or

20 R¹¹ is as defined above and R²¹-C-R³¹ form a C₃₋₆-cycloalkyl group, optionally being mono- or polysubstituted with C₁₋₆-alkyl, perhalomethyl, halogen, hydroxy or aryl; or

-CR¹¹R²¹R³¹ form a 4- to 12-membered bicyclic or tricyclic carbocyclic system, optionally being mono- or polysubstituted with C₁₋₆-alkyl, perhalomethyl, halogen, hydroxy or aryl; or 25 a salt thereof with a pharmaceutically acceptable acid or base including all optical isomers of compounds of formula (la).

In another embodiment of the invention, in formula (Ia) X is halogen and Y is hydrogen.

In another embodiment of the invention, in formula (la), X is chloro. In another embodiment of the invention, in formula (Ia), R¹¹, R²¹ and R³¹ all are C₁₋₆-alkyl.

In another embodiment of the invention, in formula (Ia), R¹¹ is methyl.

WO 03/045955

30

In another embodiment of the invention, in formula (Ia), R21-C-R31 forms a C3-6cycloalkyl group.

In another embodiment of the invention, in formula (Ia), -CR¹¹R²¹R³¹ forms a tricyclic carbocyclic system.

Examples of specific compounds of formula (Ia) to be used according to this 5 invention are: 3-tert-Butylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1,1-dimethylpropylamino)-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2-hydroxy-1,1-dimethylethylamino)-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1dioxide; 6-Chloro-3-(1,1,3,3-tetramethylbutylamino)-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(1-Adamantyl)amino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1dioxide: 1-(6-Chloro-1,4-dihydro-1,1-dioxo-thieno[3,2-e]-1λ⁶,2,4-thiadiazin-3-ylamino)cyclopropanecarboxylic acid ethyl ester; 6-Chloro-3-(1-methyl-1-phenylethyl)amino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-hydroxymethyl-15 cyclopentyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 1-(6-Chloro-1,4dihydro-1,1-dioxo-thieno[3,2-e]-1λ⁶,2,4-thiadiazin-3-ylamino)-cyclopropanecarboxylic acid; 6-Chloro-3-(1-methylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylcyclohexyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylcyclopentyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-20 Chloro-3-(1-ethylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide.

Another example of a specific compound of formula (Ia) to be used according to this invention is 6-Chloro-3-(1-methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide.

The compounds of formula (I) and (Ia) of the present invention may be prepared 25 by using the methods taught in e.g. WO 97/26264, WO 97/26265, WO 99/03861 and WO 00/37474, which are hereby incorporated by reference.

In addition the compounds of the present invention may be used in combination with compounds that are used for the treatment of type 2 diabetes, obesitas or hypertension.

In such embodiments, the pharmaceutical composition of the invention may comprise a compound of formula (I) or (Ia) combined with one or more other pharmacologically active compounds, e.g. an antidiabetic or other pharmacologically active material. Suitable antidiabetics comprise short and long acting insulins, insulin analogues, insulin sensitizers, insulin secretagogues as well as orally active hypoglycaemic agents such as 35 sulphonylureas, e.g. glibenclamide and glipizide; biguanides, e.g. metformin; benzoic acid derivatives, e.g. repaglinide; thiazolidinediones, e.g. rosiglitazone, pioglitazone and cigliWO 03/045955 PCT/DK02/00798

tazone; glucagon like peptide 1 (GLP-1), GLP-1 derivatives and GLP-1 analogues; peroxisome proliferating activated receptor (PPAR) ligands including the PPAR-alpha, PPAR-gamma and PPAR-delta subtypes; inhibitors of α-glucosidase, e.g. acarbose and voglibose, inhibitors of hepatic enzymes responsible for the biosynthesis of glucose, e.g. glycogen phosphorylase inhibitors.

20

PHARMACEUTICAL COMPOSITIONS

The present invention also relates to pharmaceutical compositions comprising, as an active ingredient, at least one of the compounds of the present invention or a pharmaceutically acceptable salt thereof and, usually, such compositions also contain a pharmaceutically acceptable carrier or diluent.

Pharmaceutical compositions comprising a compound of the present invention may be prepared by conventional techniques, e.g. as described in Remington: The Science and Practise of Pharmacy, 19th Ed., 1995. The compositions may appear in conventional forms, for example capsules, tablets, aerosols, solutions or suspensions.

Typical compositions include a compound of the present invention or a pharmaceutically acceptable acid addition salt thereof, associated with a pharmaceutically acceptable excipient which may be a carrier or a diluent or be diluted by a carrier, or enclosed within a carrier which can be in form of a capsule, sachet, paper or other container. 20 In making the compositions, conventional techniques for the preparation of pharmaceutical compositions may be used. For example, the active compound will usually be mixed with a carrier, or diluted by a carrier, or enclosed within a carrier, which may be in the form of a ampoule, capsule, sachet, paper, or other container. When the carrier serves as a diluent, it may be solid, semi-solid, or liquid material, which acts as a vehicle, excipient, or 25 medium for the active compound. The active compound can be adsorbed on a granular solid container for example in a sachet. Some examples of suitable carriers are water, salt solutions, alcohols, polyethylene glycols, polyhydroxyethoxylated castor oil, syrup, peanut oil, olive oil, gelatine, lactose, terra alba, sucrose, cyclodextrin, amylose, magnesium stearate, talc, gelatin, agar, pectin, acacia, stearic acid or lower alkyl ethers of cellulose, 30 silicic acid, fatty acids, fatty acid amines, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, polyoxyethylene, hydroxymethylcellulose and polyvinylpyrrolidone.

The formulations may also include wetting agents, emulsifying and suspending agents, preserving agents, sweetening agents or flavouring agents.

The pharmaceutical preparations can be sterilized and mixed, if desired, with auxiliary agents, emulsifiers, salt for influencing osmotic pressure, buffers and/or coloring substances and the like, which do not deleteriously react with the active compounds.

The route of administration may be any route, which effectively transports the ac-5 tive compound to the appropriate or desired site of action, such as oral, nasal, pulmonary, transdermal or parenteral e.g. rectal, depot, subcutaneous, intramuscular or intranasal, the oral route being preferred.

If a solid carrier is used for oral administration, the preparation may be tabletted, placed in a hard gelatin capsule in powder or pellet form or it can be in the form of a troche or 10 lozenge. If a liquid carrier is used, the preparation may be in the form of a syrup, emulsion, soft gelatin capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.

For nasal administration, the preparation may contain a compound of the present invention dissolved or suspended in a liquid carrier, in particular an aqueous carrier, for 15 aerosol application. The carrier may contain additives such as solubilizing agents, e.g. propylene glycol, surfactants, absorption enhancers such as lecithin (phosphatidylcholine) or cyclodextrin, or preservatives such as parabenes.

Tablets, dragees, or capsules having talc and/or a carbohydrate carrier or binder or the like are particularly suitable for oral application. Preferable carriers for tablets, dra-20 gees, or capsules include lactose, corn starch, and/or potato starch. A syrup or elixir can be used in cases where a sweetened vehicle can be employed.

The compounds of the invention may be administered to a mammal, especially a human, in need of such reducing or lowering of the intake of fat food. Such mammals include also animals, both domestic animals, e.g. household pets, and non-domestic 25 animals such as wildlife.

The compounds of the invention may be administered in the form of an alkali metal or earth alkali metal salt thereof, concurrently, simultaneously, or together with a pharmaceutically acceptable carrier or diluent, especially and preferably in the form of a pharmaceutical composition thereof, in an effective amount.

30

Pharmaceutical compositions containing a compound according to the invention may be administered one or more times per day or week, conveniently administered at mealtimes. An effective amount of such a pharmaceutical composition is the amount that provides a clinically significant effect against consumption of fat food. Such amounts will depend, in part, on the particular condition to be treated, age, weight, and general health of the patient, and other factors evident to those skilled in the art.

A convenient daily dosage can be in the range from 0.001-500 mg/kg/day. In another embodiment from 0.01-100 mg/kg/day. In a further embodiment from 0.05-50 mg/kg/day, and in yet another embodiment from 0.1-20 mg/kg/day. If the body weight of the subject changes during treatment, the dose of the compound might have to be ad-5 justed accordingly.

Any novel feature or combination of features described herein is considered essential to this invention.

The present invention is further illustrated by the following example, which, however, are not to be construed as limiting the scope of protection. The features disclosed in 10 the foregoing description and in the following examples may, both separately and in any combination thereof, be material for realising the invention in diverse forms thereof.

EXAMPLES

Example 1.

15

A study was performed in a colony of diabetic Zucker rats housed in Vancouver, Canada. This is a model of hyperinsulinemia and impaired glucose tolerance/mild type 2 diabetes. The aim was to investigate whether treatment with the test compound 6-chloro-3-(1-methylcylodopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide could lead to a reduction in hyperinsulinemia and an improvement in insulin secretory responsive-20 ness to glucose in the perfused pancreas. Male diabetic Zucker rats were dosed for 3 weeks with either 1.5 mg/kg 6-chloro-3-(1-methylcylodopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide bid (n=8) or vehicle (n=16). Oral glucose tolerance was assessed in the animals the day after the last dose was given. In animals that had received 6-chloro-3-(1-methylcylodopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide, oral glucose tolerance was significantly improved and the improvement in glucose tolerance was associated with a significant reduction in hyperinsulinemia. Evaluation of perfused pancreas two days later revealed that pancreata from animals treated with 6-chloro-3-(1-methylcylodopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide displayed reduced hyperinsulinemia and an improved insulin secretory responsiveness to glucose when the data are expressed relative to baseline. The results are shown in Figure 1.

The results demonstrate that it is possible to reduce hyperinsulinemia with 6chloro-3-(1-methylcylodopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide without a deterioration of glucose tolerance and they furthermore demonstrate that the perfused pancreas is more responsive to a glucose challenge, analogously with the improved 35 beta-cell compensation of for insulin resistance observed by Buchanan in women with

WO 03/045955 PCT/DK02/00798

23

former GDM treated with troglitazone. These features in combinations are claimed to be able to prevent or delay the onset of diabetes in women with prior GDM.

CLAIMS

- 1. A use of SUR1/Kir6.2 selective potassium channel openers for the preparation of a pharmaceutical composition for the treatment or the prevention of diabetes in women with prior GDM.
- 2. A use of a compound of the general formula (I):

$$\begin{array}{c|c}
R^{1} \\
R^{4} \\
R^{2}
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
R^{3}
\end{array}$$

$$\begin{array}{c|c}
R^{3} \\
R^{3}
\end{array}$$
(I)

wherein

- B represents >NR⁶ or >CR⁵R⁶, wherein R⁵ and R⁶ independently are hydrogen; hydroxy; C₁₋₆-alkoxy; or C₁₋₆-alkyl, C₃₋₆-cycloalkyl, C₂₋₆-alkenyl or C₂₋₆-alkynyl optionally mono- or poly substituted with halogen; or R⁵ and R⁴ together represent one of the bonds in a double bond between the atoms 2 and 3 of formula (I);
- 15 D represents S(=O)2- or -S(=O)-; or

D-B represents $-S(=O)(R^7)=N$ -

wherein R⁷ is C₁₋₆-alkyl; or aryl or heteroaryl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, aryloxy, arylalkoxy, nitro, amino, C₁₋₆-monoalkyl- or dialkylamino, cyano, acyl, or C₁₋₆-alkoxycarbonyl;

R¹ is hydrogen; hydroxy; C₁₋₆-alkoxy; or C₁₋₆-alkyl, C₃₋₆-cycloalkyl, C₂₋₆- alkenyl or C₂₋₆- alkynyl optionally mono- or poly substituted with halogen and R⁴ is hydrogen; or R⁴ to25 gether with R⁵ represent one of the bonds in a double bond between the atoms 2 and 3 of formula (I); or R¹ together with R⁴ represent one of the bonds in a double bond between the atoms 3 and 4 of formula (I);

R² is hydrogen; hydroxy; C₁₋₆-alkoxy; or C₁₋₆-alkyl, C₃₋₆-cycloalkyl, C₂₋₆- alkenyl or C₂₋₆
alkynyl optionally mono- or poly substituted with halogen;

 R^3 is R^8 ; $-OR^8$; $-C(=X)R^8$; $-NR^8R^9$; bicycloalkyl, aryl, heteroaryl, arylalkyl or heteroarylalkyl optionally mono- or poly substituted with halogen, hydroxy, C_{1-6} -alkoxy, aryloxy, arylalkoxy, nitro, amino, C_{1-6} -monoalkyl- or dialkylamino, cyano, oxo, acyl or C_{1-6} -alkoxycarbonyl; or aryl substituted with C_{1-6} -alkyl;

wherein R⁸ is hydrogen; C₃₋₆-cycloalkyl or (C₃₋₆-cycloalkyl)C₁₋₆-alkyl, the C₃₋₆-cycloalkyl group optionally being mono- or poly substituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; a 3-6 membered saturated ring system comprising one or more nitrogen, oxygen or sulfur atoms; or straight or branched C₁₋₁₈-alkyl optionally mono- or poly substituted with halogen, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkylthio, C₃₋₆-cycloalkyl, aryl, aryloxy, arylalkoxy, nitro, amino, C₁₋₆- monoalkyl- or dialkylamino, cyano, oxo, formyl, acyl, carboxy, C₁₋₆-alkoxy-carbonyl, or carbamoyl;

X is O or S:

15

 R^9 is hydrogen; C_{1-6} -alkyl; C_{2-6} -alkenyl; C_{3-6} -cycloalkyl optionally mono- or poly substituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; or

R⁸ and R⁹ together with the nitrogen atom form a 3-12 membered mono- or bicyclic system, in which one or more of the carbon atoms may be exchanged with nitrogen, oxygen or sulfur, each of these ring systems optionally being mono- or poly substituted with halogen, C₁₋₆-alkyl, hydroxy, C₁₋₆-alkoxy, C₁₋₆-alkoxy-C₁₋₆-alkyl, nitro, amino, cyano, trifluoromethyl, C₁₋₆-monoalkyl- or dialkylamino, oxo; or R³ is

$$C_{\mathfrak{m}}$$
 or $C_{\mathfrak{m}}$

25

wherein n, m, p independently are 0,1,2,3 and R^{10} is hydrogen; hydroxy; C_{1-6} -alkoxy; C_{3-6} -cycloalkyl optionally mono- or poly substituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; C_{1-6} -alkyl, C_{2-6} -alkenyl or C_{2-6} -alkynyl optionally mono- or poly substituted with halogen; or

30

R² and R³ together with the nitrogen atom forms a 3-12 membered mono- or bicyclic system, in which one or more of the carbon atoms may be exchanged with nitrogen, oxygen

WO 03/045955 PCT/DK02/00798

26

or sulfur, each of these ring systems optionally being mono- or poly substituted with halogen, C_{1-6} -alkyl, hydroxy, C_{1-6} -alkoxy, C_{1-6} -alkoxy- C_{1-6} -alkyl, nitro, amino, cyano, trifluoromethyl, C_{1-6} -monoalkyl- or dialkylamino or oxo;

- 5 A together with carbon atoms 5 and 6 of formula (I) represents a 5 or 6 membered heterocyclic system comprising one or more nitrogen-, oxygen- or sulfur atoms, the heterocyclic systems optionally being mono- or poly substituted with halogen; C₁₋₁₂-alkyl; C₃₋₆cycloalkyl; hydroxy; C_{1-6} -alkoxy; C_{1-6} -alkoxy- C_{1-6} -alkyl; nitro; amino; cyano; cyanomethyl; perhalomethyl; C₁₋₆-monoalkyl- or dialkylamino; sulfamoyl; C₁₋₆-alkylthio; C₁₋₆-alkylsulfonyl; $_{10}$ C₁₋₆-alkylsulfinyl; C₁₋₆-alkylcarbonylamino; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C₁₋₈-alkyl, halogen, hydroxy or C₁₋₈-alkoxy; C_{1-6} -alkoxycarbonyl; C_{1-6} -alkoxycarbonyl- C_{1-6} -alkyl; carbamyl; carbamyl- methyl; C_{1-6} monoalkyl- or dialkylaminocarbonyl; C₁₋₈-monoalkyl- or dialkylaminothiocarbonyl; ureido; $C_{\text{1-e}}$ -monoalkyl- or dialkylaminocarbonylamino, thioureido; $C_{\text{1-e}}$ -monoalkyl- or dialkylami-15 nothiocarbonyl- amino; C₁₋₆-monoalkyl- or dialkylaminosulfonyl; carboxy; carboxy-C₁₋₆alkyl; acyl; aryl, arylalkyl, aryloxy, the aryl group optionally being mono- or polysubstituted with C_{1-6} -alkyl, halogen, hydroxy or C_{1-6} -alkoxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)-C₁₋₆-alkyl the oxadiazolyl group optionally being substituted with C₁₋₆-alkyl or C₃₋₆cycloalkyl; or a 5 - 6 membered nitrogen containing ring, optionally substituted with phenyl 20 or C₁₋₆-alkyl; or a pharmaceutically acceptable salt thereof, for the preparation of a pharmaceutical composition for the treatment or the prevention of diabetes in women with prior Gestational Diabetes Mellitus (GDM).
- 3. The use according to claim 2 wherein B is >NR⁵ and R⁵ and R⁴ together represent one of the bonds in a double bond between the atoms 2 and 3 of formula (I).
 - 4. The use according to claims 2 or 3 wherein D is -S(=O)₂-.

30

- 5. The use according to any of the claims 2-4 wherein R² is hydrogen or C₁₋₆-alkyl.
- 6. The use according to any of the claims 2-5 wherein R³ is R³, -OR³, NR³R³ or aryl, the aryl groups optionally being substituted with C₁-β-alkyl; wherein R³ is hydrogen; C₃-β-cycloalkyl; (C₃-β-cycloalkyl)C₁-β-alkyl; a 3 6 membered saturated ring system comprising one, two or three nitrogen, oxygen or sulfur atoms; or straight or branched C₁-۱β-alkyl optionally substituted with halogen, hydroxy, C₁-β-alkoxy, C₁-β-alkylthio, C₃-β-cycloalkyl or aryl; R³ is hydrogen, C₁-β-alkyl or C₃-β-cycloalkyl; or R³ and R³ together with the nitrogen

 R^9 is hydrogen, C_{1-6} -alkyl or C_{3-6} -cycloalkyl; or R^8 and R^9 together with the nitrogen atom form a 4 - 6 membered ring.

- 7. The use according to any of the claims 2-6 wherein R³ is secondary C₃-₅-alkyl, tertiary C₄-₅-alkyl, C₃-₅-cycloalkyl or (C₃-₅-cycloalkyl)methyl.
- 8. The use according to any of the claims 2-7 wherein A together with carbon atoms 5 and 6 of formula (I) forms a 5 membered heterocyclic system containing one hetero atom selected from nitrogen and sulfur, the heterocyclic system optionally being mono- or disubstituted with halogen; C₁₋₁₂-alkyl; C₃₋₆-cycloalkyl; cyano; cyanomethyl; perhalomethyl; sulfamoyl; C₁₋₆-alkylsulfonyl; C₁₋₆-alkylsulfinyl; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl; carbamylmethyl; carboxy-C₁₋₆-alkyl; aryloxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)C₁₋₆-alkyl, the oxadiazolyl group optionally being substituted with C₁₋₆-alkyl or C₃₋₆-cycloalkyl; acyl or a 5 6 membered nitrogen containing ring, optionally substituted with phenyl or C₁₋₆-alkyl.
- 9. The use according to any of the claims 2-8 wherein A together with carbon atoms 5 and 6 of formula (I) forms a 5 membered heterocyclic system containing two hetero atoms selected from nitrogen, oxygen and sulfur, the heterocyclic system optionally being substituted with halogen; C₁₋₁₂-alkyl; C₃₋₆-cycloalkyl; cyano; cyanomethyl; perhalomethyl; sulfamoyl; C₁₋₆-alkylsulfonyl; C₁₋₆-alkylsulfinyl; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl; carbamylmethyl; carboxy-C₁₋₆-alkyl; aryloxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)C₁₋₆-alkyl, the oxadiazolyl group optionally being substituted with C₁₋₆-alkyl or C₃₋₆-cycloalkyl; acyl; or a 5 6 membered nitrogen containing ring, optionally substituted with phenyl or C₁₋₆-alkyl.
- The use according to any of the claims 2-9 wherein A together with carbon atoms and 6 of formula (I) forms a 6 membered aromatic heterocyclic system containing one, two or three nitrogen atoms, the heterocyclic system optionally being substituted with halogen; C₁₋₁₂-alkyl; C₃₋₆-cycloalkyl; cyano; cyanomethyl; perhalomethyl; sulfamoyl; C₁₋₆-alkylthio; C₁₋₆-alkylsulfonyl; C₁₋₆-alkylsulfinyl; arylthio, arylsulfinyl, arylsulfonyl, the aryl group optionally being mono- or polysubstituted with C₁₋₆-alkyl, halogen, hydroxy or C₁₋₆-alkoxy; C₁₋₆-alkoxycarbonyl-C₁₋₆-alkyl; carbamylmethyl; carboxy-C₁₋₆-alkyl: aryloxy; (1,2,4-oxadiazol-5-yl)- or (1,2,4-oxadiazol-3-yl)C₁₋₆-alkyl, the oxadiazolyl group optionally being

WO 03/045955 PCT/DK02/00798

substituted with C_{1-6} -alkyl or C_{3-6} -cycloalkyl; acyl; or a 5 - 6 membered nitrogen containing ring, optionally substituted with phenyl or C_{1-6} -alkyl.

- The use of a compound of the formula (I) according to any of the claims 2-10 11. 5 selected from the group consisting of: 6-Chloro-3-(1,2-dimethylpropyl)amino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-ethylamino-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide; 6-Chloro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-6-Chloro-3-(1-phenylethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1dioxide; 3-Allylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-cyclopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3hexylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-tetradecylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-methylamino-4H-thieno[3,2,e]-1,2,4-thiadiazine 1,1-dioxide; 3-Benzylamino-6-chloro-4H-thieno[3,2,e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-octylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-15 Chloro-3-isobutylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(4phenylbutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1,5dimethylhexyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-propylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-6-Chloro-3-(2-hydroxy-1methylethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (S)-6-Chloro-3-(2-20 hydroxy-1-methylethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-3-sec-Butylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Butylamino-6chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Isopropylamino-7-methyl-4,7dihydro-pyrazolo[4,3-e][1,2,4]thiadiazine 1,1-dioxide.
- The use of a compound of the formula (I) according to any of the claims 2-10 selected from the group consisting of: 3-Hydrazino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Benzylamino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(R)-(1-Phenylethylamino)-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Benzylamino-7-chloro-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3-(R)-(1-phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3-(S)-(1'-phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Benzylamino-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(R)-(1-Phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(S)-(1-Phenylethylamino)-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(Hexylamino)-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3-hexylamino-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Octylamino-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Octylamino-4H-pyrido[2,3-e]-1,2,4-thiad

pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3-octylamino-4H- pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Allylamino-4H- pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Chloro-3-(2-methoxy-1-methylethyl)amino-4H-pyrido[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(2-Methoxy-1-methylethyl)amino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(2-Hydroxy-1-methylethyl)amino-4H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Benzylamino-2-methyl-2H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxide; 2-Isopropylamino-3.3-dimethoxy-3H-pyrido[2,3-b][1,4]thiazine 4,4-dioxide.

- The use of a compound of the formula (I) according to any of the claims 2-10 se-10 13. lected from the group consisting of: 7-Cyano-3-isopropylamino-6-methyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 7-Cyano-6-methyl-3-propylamino-4H-thieno[2,3-e]-1,2,4thiadiazine 1,1-dioxide; 6-Chloro-3-isopentylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylheptyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1dioxide; 6-Chloro-3-(1-ethylpentyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2-methylbutyl) amino- 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylhexyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-cyclopentylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3cyclohexylmethylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; Ethyl 3-(6-chloro-20 1,4-dihydro-1,1-dioxothieno[3,2-e]-1λ⁶,2,4-thiadiazin-3-ylamino) -butanoate; 3-(6-Chloro-1.4-dihydro-1.1-dioxothieno[3,2-e]-1λ⁶,2,4-thiadiazin-3-ylamino)butanoic acid; 6-Chloro-3-(3-hydroxy-1-methylpropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-6-Chloro-3-(1-phenyethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (S)-3-sec-Butylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-25 isopropylamino-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3cyclopentylamino-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Bromo-3isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Isopropylamino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Fluoro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-Cyclobutylamino-5,6-dimethyl-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide; 3-Cyclopentylamino-5,6-dimethyl-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide; 3-Isopropylamino-6,7-dimethyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1.1-dioxide: 3-Cyclobutylamino-6,7-dimethyl-4H-thieno[2,3-el-1,2,4-thiadiazine 1,1dioxide; 3-Cyclopentylamino -6,7-dimethyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-3-
- propylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-3-cyclopentylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Chloro-6-methyl-3-

isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3isopropylamino-5-methyl-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3cyclopentylamino-5-methyl-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Fluoro-3propylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Fluoro-3-cyclopentylamino-5 4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Fluoro-3-propylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5-Fluoro-3-isopropylamino-4H-thieno[3,2-e]-1,2,4thiadiazine 1,1-dioxide; 3-Isopropylamino-7-methyl-4H-thieno[2,3-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-cyclobutylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2-hydroxyethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; ()-3exo-Bicyclo[2.2.1]hept-2-ylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; (R)-6-Chloro-3-(2-hydroxypropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Bromo-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 5,6-Dibromo-3isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3cyclohexylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide;6-Chloro-3-(furan-2ylmethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-ethylpropyl) amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Bromo-3-cyclopentylamino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2-methylallyl)amino-4Hthieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Cyano-3-isopropylamino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide.

20

14. The use of a compound of the formula (I) according to claim 2 having the general formula (Ia):

(la)

25 wherein

X and Y independently are hydrogen, halogen, perhalomethyl, C₁₋₆-alkyl or C₁₋₆-alkoxy;

R¹¹, R²¹ and R³¹ independently are C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, C₃₋₆-cycloalkyl, carboxy, C₁₋₆-alkoxycarbonyl or aryl, all of which are optionally being mono- or polysubstituted with halogen, hydroxy, oxo, or aryl; or

 R^{11} is as defined above and R^{21} -C- R^{31} form a C_{3-6} -cycloalkyl group, optionally being mono- or polysubstituted with C_{1-6} -alkyl, perhalomethyl, halogen, hydroxy or aryl; or

-CR¹¹R²¹R³¹ form a 4- to 12-membered bicyclic or tricyclic carbocyclic system, optionally being mono- or polysubstituted with C₁₋₆-alkyl, perhalomethyl, halogen, hydroxy or aryl; or a salt thereof with a pharmaceutically acceptable acid or base including all optical isomers of compounds of formula (Ia) for the preparation of a pharmaceutical composition for the prevention or the treatment of diabetes in women with prior Gestational Diabetes Mellitus (GDM).

- 15. The use of a compound according to claim 14 wherein X is halogen and Y is hy-10 drogen.
 - 16. The use of a compound according to claims 14 or 15 wherein in formula (Ia), X is chloro.
- 15 17. The use of a compound according to any of the claims 14 16 wherein in formula (Ia), R¹¹, R²¹ and R³¹ all are C₁₋₆-alkyl.
 - 18. The use of a compound according to any of the claims 14 17 wherein in formula (Ia), R¹¹ is methyl.
 - 19. The use of a compound according to any of the claims 14 18 wherein in formula (Ia), R^{21} -C- R^{31} forms a C_{3-6} -cycloalkyl group.
- 20. The use of a compound according to any of the claims 14 19 wherein in formula 25 (Ia), -CR¹¹R²¹R³¹ forms a tricyclic carbocyclic system.
- 21. The use of a compound according to any of the claims 14 20 selected from the group consisting of 3-tert-butylamino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1,1-dimethylpropylamino)-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(2-hydroxy-1,1-dimethylethylamino)-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1,1,3,3-tetramethylbutylamino)-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 3-(1-Adamantyl)amino-6-chloro-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 1-(6-Chloro-1,4-dihydro-1,1-dioxo-thieno[3,2-e]-1λ⁶,2,4-thiadiazin-3-ylamino)-cyclopropanecarboxylic acid ethyl ester; 6-Chloro-3-(1-methyl-1-phenylethyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-hydroxy-1)-dioxide; 6-Chloro-3-(1-hydroxy-1)-dioxi

WO 03/045955

10

32

methylcyclopentyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 1-(6-Chloro-1,4-dihydro-1,1-dioxo-thieno[3,2-e]-1λ⁶,2,4-thiadiazin-3-ylamino)-cyclopropanecarboxylic acid; 6-Chloro-3-(1-methylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylcyclopentyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-methylcyclopentyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide; 6-Chloro-3-(1-ethylcyclobutyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide.

- 22. The use of a compound according to any of the claims 14 21 which is 6-chloro-3-(1-methylcyclopropyl)amino-4H-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxide.
- 23. A pharmaceutical composition for use in the treatment or prevention of diabetes in women with prior GDM, comprising a compound of the formula (I) or (Ia) or a pharmaceutically acceptable salt thereof with a pharmaceutically acceptable acid or base, or any optical isomer or mixture of optical isomers including a racemic mixture, or any tautomeric form together with one or more pharmaceutically acceptable carriers or diluents.
 - 24. The pharmaceutical composition according to claim 23 in the form of an oral dosage unit or parental dosage unit.
- 25. The pharmaceutical composition according to claim 23 wherein said compound of the formula (I) or (Ia) is administered as a dose in the range from about 0.001 to 500 mg/kg/day, particularly from about 0.01 to 100 mg/kg/day and especially in the range from 0.05 to 50 mg/kg/day.
- 25. A method for treating or preventing diabetes in women with prior GDM comprising administering an effective amount of a compound of the formula (I) or (Ia) to said subject.

Fig. 1

Inter()nal Application No PCT/DK 02/00798

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D495/04 C07D513/04 A61K31/542 A61P5/48 A61P3/10 A61K31/54 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, MEDLINE, CHEM ABS Data, BIOSIS, EMBASE, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with Indication, where appropriate, of the relevant passages WO 00 37474 A (NOVONORDISK AS) 29 June 2000 (2000-06-29) 1-26 χ page 3, line 28 - line 30 page 9, line 27 -page 10, line 7 page 11, line 5 - line 23 examples, claims 1-26 WO 99 03861 A (NOVONORDISK AS) Χ 28 January 1999 (1999-01-28) page 3, line 1 - line 3 page 20, line 10 - line 22 page 21, line 20 -page 22, line 2 examples, claims WO 97 26264 A (NOVONORDISK AS) 24 July 1997 (1997-07-24) page 16, line 33 -page 17, line 20 1 - 26Х examples, claims Patent family members are listed in annex. Further documents are listed in the continuation of box C. lx i *T* later document published after the International filing date or priority date and not in conflict with the application but clied to understand the principle or theory underlying the invention Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the International "X" document of particular relevance; the dalmed invention cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 2 4 03. 2003 5 March 2003 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Per Renström

Intermal Application No
PCT/DK 02/00798

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category °	Citation of document, with indication, where appropriate, of the relevant passages	TICIOVALIE TO GIAIRI 140.
X	WO 97 26265 A (NOVONORDISK AS) 24 July 1997 (1997-07-24) page 20, line 9 - line 34 examples, claims	1-26
Р,Х	WO 02 00665 A (NOVO NORDISK AS) 3 January 2002 (2002-01-03) the whole document	1-26
X	PIROTTE B ET AL: "3-Alkylamino-4H-pyrido[2,3-e]-1,2,4-thiad iazine 1,1-Dioxides Structurally Related to Diazoxide and Pinacidil as Potassium Channel Openers Acting on Vascular Smooth Muscle Cells: Design, Synthesis, and Pharmacological Evaluation." J MED CHEM, vol. 43, no. 8, 2000, pages 1456-1466, XP002233546 the whole document	23-25
Α	PIROTTE B ET AL: "3-(Alkylamino)-4H-pyrido [4,3-e]-1,2,4-th iadiazine 1,1-dioxides as powerful inhibitors of insulin release from rat pancreatic B-cells: A new class of potassium channel openers?" JOURNAL OF MEDICINAL CHEMISTRY. UNITED STATES 15 OCT 1993, vol. 36, no. 21, 15 October 1993 (1993-10-15), pages 3211-3213, XP002233547 ISSN: 0022-2623 the whole document	1-26
A	PIROTTE B ET AL: "A pyridothiadiazine (BPDZ 44) as a new and potent activator of ATP-sensitive K+ channels." BIOCHEMICAL PHARMACOLOGY. ENGLAND 20 APR 1994, vol. 47, no. 8, 20 April 1994 (1994-04-20), pages 1381-1386, XP002233548 ISSN: 0006-2952 the whole document	1-26

Inter nal Application No
PCT/DK 02/00798

		PCT/DK 02/00798
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	NEVILE H MC CLENAGHAN ET AL: "Physiological and pharmacological regulation of insulin release: insights offered through exploitation of insulin-secreting cell lines." DIABETES, OBESITY & METABOLISM. ENGLAND MAY 1999, vol. 1, no. 3, May 1999 (1999-05), pages 137-150, XP002233549 ISSN: 1462-8902 the whole document	1-26
A	YOKOSHIKI H ET AL: "ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells." THE AMERICAN JOURNAL OF PHYSIOLOGY. UNITED STATES JAN 1998, vol. 274, no. 1 Pt 1, January 1998 (1998-01), pages C25-C37, XP002233550 ISSN: 0002-9513 the whole document	1-26
Α .	BUCHANAN T A: "Pancreatic B-cell defects in gestational diabetes: implications for the pathogenesis and prevention of type 2 diabetes." THE JOURNAL OF CLINICAL ENDOCRINOLOGY AND METABOLISM. UNITED STATES MAR 2001, vol. 86, no. 3, March 2001 (2001-03), pages 989-993, XP002233551 ISSN: 0021-972X the whole document	1-26

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: see FURTHER INFORMATION sheet PCT/ISA/210
Claims Nos.: See FURTHER INFORMATION sheet PCT/ISA/210 Claims Nos.: 1 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Claims Nos.: 26

Claim 26 relates to a method of treatment of the human or animal body by surgery or by therapy/a diagnostic medhod practised on the human or animal body/Rule 39.1(iv). Nevertheless, a search has been executed for this claim. The search has been based on the alleged effects of the compound/composition.

Continuation of Box I.2

Claims Nos.: 1

Present claim 1 relates to a use of compounds defined only by reference to a desirable property, namely agonist activity at SUR1/Kir6.2 potassium channels. The claim covers the use of all compounds having this property, whereas the application provides support within the meaning of Article 6 PCT and disclosure within the meaning of Article 5 PCT for only a limited number of such compounds.

Independent of the above reasoning, the claim also lack clarity (Article 6 PCT), since an attempt is made to define compounds by reference to a result to be achieved. This lack of clarity is such as to render a meaningful search over the whole of the claimed scope impossible. The term "SUR1/Kir6.2 selective potassium channel openers" apparently refer to a very large number of compounds, which aren't necessarily reported together with the mentioning of their function as SUR1/Kir6.2 potassium channel openers/agonists and may have completely dissimilar structures, thus making a complete search impossible.

In the present case, the claim so lacks support and clarity, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of claim 1 which appear to be clear, supported and disclosed, namely those parts relating to the compounds of formula (I) in claim 2.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

mformation on patent family members

nal Application No PCT/DK 02/00798

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 0037474	A	29-06-2000	AU BR CA CN CZ WO EP HU JP NO PL US	1649900 A 9916279 A 2353907 A1 1330655 T 20011831 A3 0037474 A1 1140945 A1 0104646 A2 2002533347 T 20012966 A 348237 A1 2002086861 A1	12-07-2000 16-10-2001 29-06-2000 09-01-2002 17-10-2001 29-06-2000 10-10-2001 29-04-2002 08-10-2002 15-06-2001 20-05-2002 04-07-2002
WO 9903861	Α	28-01-1999	US AU BR CN WO EP HU JP NO PL US ZA	6329367 B1 8101898 A 9810592 A 1264384 T 9903861 A1 1000066 A1 0003999 A2 2001510195 T 20000185 A 338013 A1 6225310 B1 9806326 A	11-12-2001
WO 9726264	A	24-07-1997	AU AU BR CA CN CZ WO EP JP NO PL RU US ZA	727905 B2 1437097 A 9707004 A 2241565 A1 1208418 A 9802205 A3 9726264 A1 0877748 A1 2000503651 T 983285 A 327927 A1 2193564 C2 5792764 A 9700353 A	04-01-2001 11-08-1997 20-07-1999 24-07-1997 17-02-1999 16-12-1998 24-07-1997 18-11-1998 28-03-2000 16-09-1998 04-01-1999 27-11-2002 11-08-1998 18-02-1998
WO 9726265	A	24-07-1997	AU AU BR CA CN CZ WO EP HU JP NO PL US ZA	727775 B2 1437197 A 9707003 A 2241567 A1 1208417 A 9802204 A3 9726265 A1 0876379 A1 9902056 A2 3071832 B2 10508881 T 983286 A 327938 A1 6225310 B1 5889002 A 9700352 A	21-12-2000 11-08-1997 20-07-1999 24-07-1997 17-02-1999 11-11-1998 24-07-1997 11-11-1998 28-10-1999 31-07-2000 02-09-1998 16-09-1998 04-01-1999 01-05-2001 30-03-1999 10-11-1997

II	INTERNATIONAL SEARCH REPORT				Intermal Application No PCT/DK 02/00798	
Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO 0200665	A	03-01-2002	AU WO US US	658410 020066 200219330 200203219	55 A1 58 A1	08-01-2002 03-01-2002 19-12-2002 14-03-2002
	, , , , , , , , , , , ,					
		•				

		-	*. A 1 ,	· •••
		,		
*				