# Forecasting by Traditional and ML Methods:

Implementing Competing Supervised Learning Models to Forecast the Logarithmic Fraction of All Outstanding Shares, a Project Overview

**Tanner Woods** 

21 March 2023 ECON 425T

# Table of Contents

| Initial Analysis of Dataset                                             | 3  |
|-------------------------------------------------------------------------|----|
| Statement of Purpose                                                    | 3  |
| Variable Definitions                                                    | 3  |
| Visualization: Autocorrelation (ACF) and Partial Autocorrelation (PACF) | 3  |
| ACF and PACF of Log Trading Volume                                      | 3  |
| ACF and PACF of Log Dow Jones Returns                                   | 3  |
| ACF and PACF of Log Volatility                                          | 4  |
| Baseline (Strawman) Model                                               | 5  |
| Defining the Strawman                                                   | 5  |
| Model Performance                                                       | 5  |
| Autoregressive Model with Elastic Net Regularization                    | 5  |
| Hyperparameters                                                         | 5  |
| Visualization: Cross-Validation Results                                 | 5  |
| Tuned Model Performance                                                 | 6  |
| Autoregressive Model with Multilayer Perceptron Tuning                  | 6  |
| Hyperparameters                                                         | 6  |
| Visualization: Cross-Validation Results                                 | 7  |
| Tuned Model Performance                                                 | 8  |
| Random Forest Algorithm Model                                           | 8  |
| Hyperparameters                                                         | 8  |
| Visualization: Cross-Validation Results                                 | 8  |
| Tuned Model Performance                                                 | 9  |
| Boosting Algorithm Models                                               | 9  |
| Boosting Algorithm Model with XGBoost                                   | 9  |
| Hyperparameters                                                         | 9  |
| Visualization: Cross-Validation Results                                 | 10 |
| Tuned Model Performance                                                 | 10 |
| Boosting Algorithm Model with Scikit-learn                              | 10 |
| Hyperparameters                                                         | 10 |
| Visualization: Cross-Validation Results                                 | 10 |
| Tuned Model Performance                                                 | 10 |
| Long/Short-Term Memory Model                                            | 10 |

|    | Hyperparameters                         | 10 |
|----|-----------------------------------------|----|
|    | Visualization: Cross-Validation Results | 10 |
|    | Tuned Model Performance                 | 10 |
| Αŗ | opendix                                 | 11 |

## Initial Analysis of Dataset

Statement of Purpose

{}

Variable Definitions

{}

Visualization: Autocorrelation (ACF) and Partial Autocorrelation (PACF)

ACF and PACF of Log Trading Volume

## **TEXT HERE**

Figure 1. ACF and PACF of Log Trading Volume



ACF and PACF of Log Dow Jones Returns

## **TEXT HERE**

Figure 2. ACF and PACF of Log Dow Jones Returns



## ACF and PACF of Log Volatility

## **TEXT HERE**

Figure 3. ACF and PACF of Log Volatility



## Baseline (Strawman) Model

## Defining the Strawman

Implementing a process for forecasting of  $v_t$  by letting  $\widehat{v_t} = \beta_0 + v_{t-1}$  — that is, predicting the current log volume via the previous period log volume, with an intercept term to catch the remainder.

#### Model Performance

Two methods of model performance were implemented here: extracting the R-squared score from the regression of  $v_t \sim \hat{v_t}$ , and raw computation of the score. This results in the following scores:

$$R_{regression}^2 \approx 0.348$$

$$R_{computation}^2 = 1 - \frac{\sum (v_t - \widehat{v_t})^2}{\sum (v_t - E(v_t)^2)} \approx 0.334$$

## Autoregressive Model with Elastic Net Regularization

## Hyperparameters

For the baseline autoregressive model, the hyperparameters passed through to the pipeline model search are as follows:

- 1. Learning rate,  $\alpha = [a_1 = 0.01, a_2 = 0.02, ..., a_{100} = 1.00]$
- 2. L1 penalty,  $L1 = [l1_1 = 0.01, l1_2 = 0.02, ..., l1_{100} = 1.00]$

Fixed values for parameters are the lag of L = 5 and number of cross-validation folds of CVFolds = 10.

#### Visualization: Cross-Validation Results

Figure 4. Cross-Validation Results for AR Model with EN Regularization



## **Tuned Model Performance**

From the tuning process, the most optimal hyperparameter values appear to be  $a^* = 0.01$  and  $L1^* = 0.01$ . Under these hyperparameters, we obtained the following metrics:

 Table 2. Performance of AR Model with Elastic Net Regularization

| Cross-Validation |        | Test           |        |  |
|------------------|--------|----------------|--------|--|
| $R^2$            | RMSE   | R <sup>2</sup> | RMSE   |  |
| 0.5989           | 0.1495 | 0.1781         | 0.4487 |  |

With saved predictions constructed from the model, we can also visualize the performance of our model by comparing the value of true test values against predicted test values:

Figure 5. True vs. Predicted Values for the AR Model with EN Regularization

## Autoregressive Model with Multilayer Perceptron Tuning

## Hyperparameters

For the autoregressive model with multilayer perceptron tuning, the hyperparameters passed through to the pipeline model search are as follows:

1. Hidden layer size, 
$$HLS = \begin{bmatrix} 1 & (1,1) & \dots & (1,10) \\ 2 & (2,1) & \dots & (2,10) \\ 3 & (3,1) & \dots & (3,10) \end{bmatrix}$$

2. Batch size, 
$$B = [b_1 = 1, b_2 = 2, ..., b_{10} = 10]$$

Attempts at tuning for a three-layer perceptron network were frustrated by insufficient computing power. Fixed values for parameters are the lag of L = 5 and number of cross-validation folds of CVFolds = 10.

Visualization: Cross-Validation Results

(See next page)

Figure 6. Cross-Validation Results for AR Model with MLP Tuning



#### Tuned Model Performance

From the tuning process, the most optimal hyperparameter values appear to be  $hls^* = (3,3)$  and  $b^* = 1$ . Under these hyperparameters, we obtained the following metrics:

**Table 3.** Performance of AR Model with MLP Tuning

| Cross-Validation |        | Test   |        |  |
|------------------|--------|--------|--------|--|
| R <sup>2</sup>   | RMSE   | $R^2$  | RMSE   |  |
| 0.6342           | 0.1450 | 0.1667 | 0.5170 |  |

With saved predictions constructed from the model, we can also visualize the performance of our model by comparing the value of true test values against predicted test values:

Figure 7. True vs. Predicted Values for the AR Model with MLP Tuning

## Random Forest Algorithm Model

#### Hyperparameters

For the random forest algorithm model, the hyperparameters passed through to the pipeline model search are as follows:

- 1. Max features,  $MF = [mf_1 = "sqrt", mf_2 = "log_2", mf_3 = 1]$
- 2. Max estimators,  $BS = [bs_1 = 40, bs_2 = 80, ..., bs_{50} = 2000]$

Fixed values for parameters are the lag of L = 5 and number of cross-validation folds of CVFolds = 10.

## Visualization: Cross-Validation Results

Over the cross-validation process for this model, the CV RMSE for the max features hyperparameter values of  $log_2$  and sqrt are approximately equal. This is why **Figure 7** appears to omit the values for the latter: they are effectively the same as the former.

Figure 7. Cross-Validation Results for RF Algorithm Model



#### Tuned Model Performance

From the tuning process, the most optimal hyperparameter values appear to be  $mf^* = "sqrt" = "log_2"$  and  $bs^* = 1360$ . Under these hyperparameters, we obtained the following metrics:

Table 4. Performance of RF Algorithm Model

| Cross-Validation |        | Test   |        |  |
|------------------|--------|--------|--------|--|
| $R^2$            | RMSE   | $R^2$  | RMSE   |  |
| 0.9482           | 0.1498 | 0.1757 | 0.4631 |  |

# **Boosting Algorithm Models**

Boosting Algorithm Model with XGBoost

#### Hyperparameters

For the autoregressive model with multilayer perceptron tuning, the hyperparameters passed through to the pipeline model search are as follows:

- 1. Max tree depth,  $D = [d_1 = 1, d_2 = 2, ..., d_6 = 6]$
- 2. Learning rate,  $\alpha = [a_1 = 0.01, ..., a_{100} = 1.0]$
- 3. Max estimators,  $BS = [bs_1 = 40, bs_2 = 80, ..., bs_{50} = 2000]$

Fixed values for parameters are the lag of L = 5 and number of cross-validation folds of CVFolds = 10.

Visualization: Cross-Validation Results

Tuned Model Performance

Boosting Algorithm Model with Scikit-learn

Hyperparameters

Visualization: Cross-Validation Results

Tuned Model Performance

## Long/Short-Term Memory Model

Hyperparameters

Visualization: Cross-Validation Results

Tuned Model Performance

## **Summary of Model Performances**

From the table below, we can determine that X model performs the most optimally in forecasting the

Table 8. Summary of Model Performance in Cross-Validation and Testing

| Model                    | Cross-Validation |        | Test   |        |
|--------------------------|------------------|--------|--------|--------|
|                          | $R^2$            | RMSE   | $R^2$  | RMSE   |
| Baseline (Straw.) Model  |                  |        |        |        |
| AR Model with EN Reg.    | 0.5989           | 0.1495 | 0.1781 | 0.4487 |
| AR Model with MLP Tuning | 0.6342           | 0.1450 | 0.1667 | 0.5170 |
| RF Algorithm Model       | 0.9482           | 0.1498 | 0.1757 | 0.4631 |
| BoostSL Algo. Model      |                  |        |        |        |

| BoostXG Algo. Model |  |  |
|---------------------|--|--|
| LSTM Model          |  |  |

# **Appendix**

Figure 3.

Figure X. Pipelines for All Non-Strawman Models

**Pipeline:** AR Model with EN Regularization **Pipeline:** AR Model with MLP





Pipeline: RF Algorithm Model



Pipeline: BoostingSL Model



Pipeline: BoostingXG Model Pipeline: LSTM Model

