## Report for PEP Section in mzTab File example\_4

The PEP section of the mzTab file contains 1,335 quantified peptide features measured in 54 samples.

|                              | number of peptides |        |  |
|------------------------------|--------------------|--------|--|
| quantified                   | 1,335              | 100%   |  |
| quantified (any zero)        | 0                  | 0%     |  |
| quantified (any NaN)         | 0                  | 0%     |  |
| identified (total)           | 1,335              | 100%   |  |
| identified (unique modified) | 1,221              | 91.46% |  |
| identified (unique stripped) | 1,212              | 90.79% |  |

Table 1: Total number of quantified and identified peptides. (any zero) corresponds to peptides which are absent in one or more samples. (any NaN) corresponds to peptides which could not be quantified due to overlapping peptide features.

| mod                   | specificity  | number |
|-----------------------|--------------|--------|
| Oxidation             | M            | 179    |
| Methylthio            | $\mathbf{C}$ | 150    |
| Label: $13C(6)15N(2)$ | K            | 6      |
| Label: $13C(6)15N(4)$ | R            | 4      |

Table 2: Statistics of modifications.



Figure 1: Charge distribution of peptide quantifications.



Figure 2: Frequency plot of peptide quantifications.



Figure 3: (modified sequence, charge) pair multiplicity vs frequency plot. Each peptide feature (characterised by a (possibly) modified peptide sequence and a charge state) should ideally occur only once in the analysis. In other words, peptides of multiplicity 1 should have a very high frequency. The plot below should show a significant spike on the left and can be used as QC of the analysis.



Figure 4: Number of quantified peptides per protein.



Figure 5: Fold changes of peptide abundances 1 and 2. For proteins with the largest number of quantified peptides.





(a) peptide abundances 1, median (intensity) = 1,605,469,952

ısıty



(b) peptide abundances 2, median (intensity) = 3,819,539,968

density



(c) peptide abundances 3, median (intensity) = 2,497,959,936

Figure 6: peptide abundance distributions.



Figure 7: Kendrick nominal fractional mass plot



Figure 8: Fold changes of peptide abundances 1 and 2.  $\mathrm{median}(\mathrm{fc}) = -1.3328 \qquad \mathrm{sd}(\mathrm{fc}) = 1.5445$ 



Figure 9: Fold changes of peptide abundances 1 and 3.  $median(fc) = -0.6641 \qquad sd(fc) = 1.1804$ 



Figure 10: Fold changes of peptide abundances 2 and 3.  $\mathrm{median(fc)} = 0.6958 \qquad \mathrm{sd(fc)} = 0.9636$ 





Figure 11: Fold changes of the same peptide in charge 2+ and 3+ are expected to be identical. Here we plot the difference of the 2+ and 3+ fold changes of sample 1 vs. sample 2 of all peptides which were identified and quantified in both charge states.



Figure 12: Fold changes of the same peptide in charge 2+ and 3+ are expected to be identical. Here we plot the difference of the 2+ and 3+ fold changes of sample 1 vs. sample 3 of all peptides which were identified and quantified in both charge states.



Figure 13: Fold changes of the same peptide in charge 2+ and 3+ are expected to be identical. Here we plot the difference of the 2+ and 3+ fold changes of sample 2 vs. sample 3 of all peptides which were identified and quantified in both charge states.



Figure 14: Pearson correlation of all peptide abundances. (min correlation = 0.1622, median correlation = 0.5936, max correlation = 1)



Figure 15: Boxplot of all peptide abundances.



Figure 16: Standard deviation of all principal components.



Figure 17: Principal Component Analysis of all peptides with complete quantifications. Any peptides with one or more missing values are ignored. The numbers in the upper right panels correspond to the sample IDs.



Figure 18: Most important contributions to the first principal component.

| row index | modified sequence         | accession | charge | retention time | m/z    |
|-----------|---------------------------|-----------|--------|----------------|--------|
| 856       | LVPFDHAESTYGLYR           | O95336    | 3      | 6753.43        | 589.96 |
| 807       | TTPPVLDSDGSFFLYSK         | P01857    | 2      | 9523.72        | 937.46 |
| 1037      | VLKQVHPDTGISSK            | P62807    | 2      | 1911.32        | 754.92 |
| 736       | LYSILGTTLKDEGK            | O75083    | 2      | 6063.81        | 769.43 |
| 240       | FLPSELRDEH                | Q9Y490    | 2      | 3804.75        | 621.81 |
| 1353      | YGFIEGHVVIPR              | P16070    | 3      | 6095.82        | 462.92 |
| 1213      | TPAQYDASELK               | P07355    | 2      | 3190.51        | 611.80 |
| 380       | TSASIILR                  | P17987    | 2      | 3663.84        | 430.76 |
| 940       | ILYSQC(Methylthio)GDVM(Ox | P14649    | 2      | 5333.98        | 673.80 |
| 1094      | ERQEAEEAKEALLQASR         | P26038    | 3      | 4365.68        | 653.34 |

Table 3: Most important contributions to the first principal component.



Figure 19: Most important contributions to the second principal component.

| row index | modified sequence  | accession | charge | retention time | m/z    |
|-----------|--------------------|-----------|--------|----------------|--------|
| 770       | GAVDGGLSIPHSTK     | P46777    | 2      | 3445.54        | 669.85 |
| 1087      | AIVAIENPADVSVISSR  | P08865    | 2      | 8158.61        | 870.98 |
| 81        | NVHGINFVSPVR       | P53634    | 3      | 4626.45        | 446.91 |
| 1070      | SKDIVLVAYSALGSQR   | P42330    | 3      | 7358.33        | 569.65 |
| 1006      | IAQSDYIPTQQDVLR    | P04899    | 2      | 6684.21        | 873.95 |
| 412       | LM(Oxidation)VALAK | P07355    | 2      | 3119.97        | 381.23 |
| 47        | LLDAVDTYIPVPAR     | P49411    | 2      | 9218.90        | 771.93 |
| 1112      | TPALVNAAVTYSKPR    | O75964    | 3      | 4964.94        | 529.97 |
| 572       | IKIGDPLLEDTR       | P49189    | 3      | 5956.77        | 457.26 |
| 1321      | SGDSEVYQLGDVSQK    | Q04837    | 2      | 5178.78        | 806.38 |

Table 4: Most important contributions to the second principal component.



Figure 20: Most important contributions to the third principal component.

| row index | modified sequence     | accession | charge | retention time | m/z    |
|-----------|-----------------------|-----------|--------|----------------|--------|
| 139       | VTAPDVDLHLKAPK        | Q09666    | 3      | 4409.15        | 501.96 |
| 127       | KDDLGDTNLHDYLR        | Q9NUV9    | 3      | 5318.69        | 558.94 |
| 518       | GFGFVLFK              | Q14103    | 2      | 9123.27        | 457.76 |
| 71        | IFVGGLSPDTPEEK        | Q14103    | 2      | 6171.10        | 744.88 |
| 1078      | TFVNITPAEVGVLVGKDR    | P07737    | 3      | 8764.50        | 639.03 |
| 19        | TIISYIDEQFER          | Q15019    | 2      | 9451.35        | 757.38 |
| 1053      | DREVGIPPEQSLETAK      | P61158    | 2      | 4599.94        | 884.96 |
| 869       | LAQAAQSSVATITR        | Q9Y490    | 2      | 3767.92        | 708.89 |
| 1037      | VLKQVHPDTGISSK        | P62807    | 2      | 1911.32        | 754.92 |
| _568      | HIYYITGETKDQVANSAFVER | P07900    | 4      | 5448.50        | 611.06 |

Table 5: Most important contributions to the third principal component.



Figure 21: Logarithmic peptide abundances for all peptides of interest.

| row index | modified sequence                  | accession   | charge | retention time | m/z    |
|-----------|------------------------------------|-------------|--------|----------------|--------|
| 1061      | SSAAPPPPPR(Label:13C(6)15          | STD_01      | 2      | 1659.92        | 493.77 |
| 266       | HVLTSIGEK(Label:13C(6)15N          | $STD_03$    | 2      | 2127.71        | 496.29 |
| 1130      | IGDYAGIK(Label:13C(6)15N(          | $STD\_05$   | 2      | 3096.71        | 422.74 |
| 1261      | TASEFDSAIAQDK(Label:13C(6          | $STD_{-}06$ | 2      | 4266.53        | 695.83 |
| 891       | SAAGAFGPELSR(Label:13C(6)          | $STD_{-}07$ | 2      | 4457.27        | 586.80 |
| 979       | ELGQSGVDTYLQTK(Label:13C(          | $STD_{-}08$ | 2      | 5741.14        | 773.90 |
| 306       | GLILVGGYGTR(Label:13C(6)1          | $STD_09$    | 2      | 6431.53        | 558.33 |
| 1193      | GILFVGSGVSGGEEGAR(Label:1          | P52209      | 2      | 6781.34        | 801.41 |
| 392       | GILFVGSGVSGGEEGAR                  | P52209      | 2      | 6780.92        | 796.41 |
| 735       | SFANQPLEVVYSK(Label:13C(6          | $STD_{-}11$ | 2      | 6787.30        | 745.39 |
| 415       | ${\bf ELASGLSFPVGFK(Label: 13C(6}$ | STD_14      | 2      | 9083.08        | 680.37 |

Table 6: Peptides of interest. Please note that the script requires a vector of stripped peptides sequences, but in the above table we list the modified peptide sequences.

| row index | modified sequence | accession | charge | retention time | m/z    |
|-----------|-------------------|-----------|--------|----------------|--------|
| 5         | DYLHLPPEIVPATLRR  | P46783    | 3      | 8103.29        | 630.69 |

 ${\bf Table~7:~Proteins~of~interest.}$ 

Figure 22: Logarithmic peptide abundances for all proteins of interest.



Figure 23: Fold changes of peptide abundances 1 and 2 for first protein of interest.