Uczenie nienadzorowane algorytmy grupowania wykład 12

Jerzy Stefanowski Instytut Informatyki PP 2021

Akademia Innowacyjnych Zastosowań Technologii Cyfrowych (AI-TECH) projekt finansowany z środków Programu Operacyjnego Polska Cyfrowa POPC.03.02.00-00-0001/20

Plan wykładu

- Rozszerzenia klasycznych algorytmów grupowania
 - Algorytm k-średnich
 - K-medoid, PAM, ...
 - Algorytmy hierarchiczne
 - BIRCH
- Algorytymy gęstościowe
 - DBSCAN
- ----- druga część wykładu -----
- Podejścia wykorzystujące modele statystyczne
 - Algorytm mieszanin rozkładów (EM)
- Ocena jakości grupowania
- Podsumowanie

Przypomnienie podziału metod

- Podziałowo-optymalizacyjne: Znajdź podział na zadaną liczbę skupień wg. zadanego kryterium.
- Metody hierarchiczne: Zbuduj drzewiastą strukturę skupień.
- <u>Gęstościowo (Density-based)</u>: Poszukuj obszarów o większej gęstości występowania obserwacji
- <u>Grid-based</u>: wykorzystujące wielowymiarowy podział przestrzeni siatką ograniczeń
- <u>Model-based</u>: hipoteza co do własności modelu pewnego skupienia i procedura jego estymacji.

Czym jest skupienie?

- 1. Zbiorem najbardziej podobnych obiektów
- Podzbiór obiektów, dla których odległość jest mniejsza niż ich odległość od obiektów z innych skupień.
- 3. Podobszar wielowymiarowej przestrzeni zawierający odpowiednio dużą gęstość obiektów, oddzielony od innych podobszarów o dużej gęstości strefą rzadkiego występowania obiektów

Różne sposoby reprezentowania skupisk

(c)		1	2	3
	a	0.4	0.1	0.5
	b	0.1	0.8	0.1
	c	0.3	0.3	0.4
	d	0.1	0.1	0.8
	e	0.4	0.2	0.4
	f	0.1	0.4	0.5
	g	0.7	0.2	0.1
	h	0.5	0.4	0.1

(d)

Algorytmy podziałowo – optymalizacyjne

- Zadanie: Podzielenie zbioru obserwacji na K zbiorów elementów (skupień C), które są jak najbardziej jednorodne
- Jednorodność funkcja oceny
- Intuicja → zmienność wewnątrzskupieniowa wc(C)
 i zmienność międzyskupieniowa bc(C)

Możliwe są różne sposoby zdefiniowania

- np. wybierzmy środki skupień \mathbf{r}_k (centroidy) $\mathbf{r}_k = \frac{1}{n_k} \sum_{\mathbf{x} \in C_k} \mathbf{x}$
- Co prowadzi do

$$wc(C) = \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d(\mathbf{x}, \mathbf{r}_k)^2$$

$$bc(C) = \sum_{1 \le j < k \le K} d(\mathbf{r}_j, \mathbf{r}_k)^2$$

Algorytm k średnich (k – means)

- Cel: k- średnich \rightarrow minimalizacja wc(C)
- Przeszukiwanie przestrzeni możliwych przypisań → bardzo kosztowne (oszacowanie w ks. Koronackiego)
- Problem optymalizacji kombinatorycznej → systematyczne przeszukiwanie metodą iteracyjnego udoskonalania:
 - Rozpocznij od rozwiązania początkowego (losowego).
 - Ponownie przypisz punkty do skupień tak, aby otrzymać największą zmianę w funkcji oceny.
 - Przelicz zaktualizowane środki skupień, ...
 - Postępuj aż do momentu, w którym nie ma już żadnych zmian w funkcji oceny lub w składzie grup.
- Zachłanne przeszukiwanie → proste i prowadzi do co najmniej lokalnego minimum. Różne modyfikacje, np. rozpoczynania od kilku rozwiązań startowych
- Złożoność algorytmy K średnich $\rightarrow O(KnI)$

Ilustracja k-średnich

Trudność określenia liczby skupisk, ...

Ustalanie liczby skupień

Liczbę skupień wybiera się na podstawie przesłanek merytorycznych albo szacuje się je metodami hierarchicznymi. Można dokonać obliczeń dla wszystkich wartości k z ustalonego przedziału:

$$k_{\min} \le k \le k_{\max}$$

Możliwe są różne podejścia:

- 1. Wybór kryterium oceny skupisk
- 2. Uruchomienie algorytmu k-średnich dla różnych k
- 3. Propozycja podziału dla najlepszego k

Alternatywnie: - użyj innego algorytmy (np. hierarchicznego) do identyfikacji możliwej liczby skupisk na podstawe dendrogramu

Niezależnie:

K-średnich dość czułe na obecność obserwacji samotniczych (ang. outliers) – mogą tworzyć pojedyncze skupiska i zakłócać grupowanie pozostały przykładów -> warto wykryć i "odłożyć" ze zbioru do niezależnej

Preferencja dla tworzenia sferycznych kształtów skupisk

Dobór k w algorytmie k-średnich

- X-means popularne w implementacjach (WEKA, Python)
- Stosowane kryteria oceny podziału na skupiska:
 - Bayesian Information Criterion (BIC)
 - Akaike Information Criterion (AIC)
- Operacja "improve structure" podział wybranego skupiska na dwa.
- D. Pelleg and A. Moore (2000) X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In Proceedings of the 17th International Conf. on Machine Learning, 727--734.

X-means

Figure 1. The result of running K-means with three centroids.

Figure 2. Each original centroid splits into two children.

Pewne ukierunkowanie K-średnich

Tworzy się "kuliste" kształty skupień

 Co z obserwacjami odstającymi i nieregularnymi kształtami skupień?

K-means krótkie podsumowanie

Zalety

- Proste i łatwe do zrozumienia
- Reprezentacja skupień jako centroidy

Wady

- Jawne podanie liczby skupień
- Wszystkie przykłady muszą być przydzielone do skupień
- Problem z outliers (za duża wrażliwość)
- Ukierunkowanie na jednorodne "sferyczne" kształty skupień

Dalsze rozszerzenia k-średnich

- Rozmyte k-means (Fuzzy ISODATA)
- Wersja k-medoids
- Rozszerzenia dla przetwarzania dużych wolumenów danych, np. PAM
- Inspiracje dla modeli statystycznych (EM)
- Odniesienia do grupowania spektralnego

Obszerne omówienie w pracy:

Warto zapoznać sie z książką S.Wierzchoń, M.Kłopotek: Algorytmy analizy skupień. WNT 2015

Inne spojrzenie na skupiska

Crisp vs. soft clusters (ang. fuzzy clustering)

Obiekt \mathbf{x}_i może należeć do wielu skupisk \mathbf{C}_j w różnym stopniu przynależności z zakresu [0;1]

Najbardziej znany algorytm Fuzzy c-mean [Bezdek]

Figure 5. A Simple Clustering of the Loan Data Set into Three Clusters.

Note that original labels are replaced by a +.

Algorytm *k*-medoids

- Ograniczenie standardowego k-średnich, m.in.:
 - Czuły na obserwacje odstające i tzw. szum
 - Konieczność przeliczania macierzy odległości w każdej iteracji
- Algorytm k-medoids (PAM)
 - Zastąpienie reprezentanta skupiska średniego obiektu (na ogół sztuczne położonego) poprzez rzeczywisty obiekt z danych położony najbliżej centrum
 - Zmiany w algorytmie inny sposób oceny wymiany obiektów (medoidów) w kolejnych iteracjach -> najbardziej znana wersja PAM (Partitioning Around Medoid) - Kaufman i Rousseeuw 1987

Przykład wpływu outliers

- Dla standardowego k-średnich i jednego atrybutu x rozważ skupisko:
 - średnia z obserwacji o wartościach 1,3,5,7,9 wynosi 5
 - Jeśli ostatnia obserwacja ulegnie zmianie na 1,3,5,7, 1009 to średnia będzie 205

Dla k-medoid (obiekt najbliży centrum) – dla 1,3,5,7, 1009 będzie to 7, a w kolejnych iteracjach przesunie się na 5

PAM – algorytm k-medoids

- Wybierz (losowo) k rzeczywistych obiektów jako zalążki skupisk
- Przydziel każdy obiekt do tego skupiska, gdzie jest najbliższy medoid
- W kolejnym kroku aktualizuje się położenia centroidów

 medoidów i powtarzany jest przydział obiektów do
 najbliższego skupiska
- Wymiana obiektów z medoidami na podstawie oszacowanie specjalnej funkcji kosztu wymiany (SWAP) – uwaga analizuje się wszystkie pary (obiekt vs. medoid)
- Zaproponowano specjalne funkcje niepodobieństwa dla atrybutów jakościowych

K-medoids przykład

- Można przeanalizować prosty przykład dwuwymiarowy opisany na blogu https:// www.geeksforgeeks.org/ml-k-medoidsclustering-with-example/
- Lub podręczniki J.Han i inni Data Mining.

PAM – ograniczenia dla zbyt masywnych danych

- Wada PAM słaba skalowalność dla relatywnie dużych wolumenów danych
 - Ocena złożoność PAM O(k(n-k)²) , gdzie n liczba obiektów, k liczba skupisk
- CLARA (ang. Clustering Large Applications)

 próba poprawy skalowalności
 - Losowana reprezentatywna próba danych z całych danych
 - PAM poszukuje zbioru dobrych medoidów
 - Jeśli dobrze dobrana próba, to będą także odzwierciedlać rozkład całych danych
 - Możliwe powtórzenie losowania i wybór najlepszego zbioru medoidów
 - Przydział wszystkich obiektów do skupisk wg. wybranych medoidów
- Inne próby modyfikacji dla przyspieszenia obliczeń kosztów wymiany O(k) – Schubert i in. Fast and eager k-medoids clustering 2020.

Ograniczenia k-mean i motywacje dla innych algorytmów

Ograniczenia K-średnich: Niesferyczne kształty

Oryginalny zestaw danych

K-means (2 skupienia)

Inne algorytmy grupowania

Wykorzystują inne paradygmaty, np.

- Gęstość obiektów w przestrzeni cech
- Strukturę sieci komórek tzw. grid

Skupisko – obszar charakteryzujący się dużą gęstością obiektów. Skupiska obiektów odseparowane od siebie obszarami o małej gęstości występowania obiektów

Modelowanie dowolnych kształtów

Metody gestościowe

- Wykorzystują pojęcie gęstości (ang. density) lokalne sąsiedztwo punktu/skupienia, a także "gęsto" połączonych punktów
- Podstawowy pomysł przyrostowe tworzenie skupiska poprzez dołączanie obiektów należących do najbliższego sąsiedztwa tego skupiska pod warunkiem, że spełniają pewne minimalne parametry
- Właściwości metod gęstościowych:
 Wykrywanie skupień o dowolnych kształtach (niesferycznych)
 Odporność na "szum informacyjny" i obs. "outliers"
 Samodzielne określanie liczby potrzebnych skupisk
 Potrzebna parametryzacja oceny gęstości i warunków zatrzymania
- Znane algorytmy:
 - DBSCAN: Ester, et al. (KDD'96)
 - OPTICS: Ankerst, et al (SIGMOD'99).
 - DENCLUE: Hinneburg & D. Keim (KDD'98)
 - CLIQUE: Agrawal, et al. (SIGMOD'98)
 - Liczne rozszerzanie

Metody gęstościowe – ang. Density-Based Clustering

- Skupiska grupują gęste punktu, obszary i są odległe od innych gęstych obszarów lub "rzadkich" punktów
- Jak oceniać gęstość i jakość skupiska?
- DBSCAN grupowanie wykorzystujące ocenę gęstości rozkładu (lokalne kryterium – sąsiedztwo punktu), parametry oczekiwanej gęstości (minimalna liczba punktów) oraz wielkości sąsiedztwa

DBSCAN: Algorytm gęstościowy

- DBSCAN: <u>Density Based Spatial Clustering of Applications with Noise</u> (Ester et al.'96)
 - Wprowadza pojęcie "density-based cluster": Skupienie będące największym zbiorem punktów gęsto połączonych "densityconnected points" (ze względu na parametry sąsiedztwa punktów)
 - Skupienie to zbiór obiektów wzajemnie osiągalnych lub połączonych z pewną zadaną gęstością
 - Wykorzystuje ε-sąsiedztwo punktu i możliwość podziały obiektów na typy (wg. liczby sąsiadów) oraz zasady przemieszczania się pomiędzy nimi (idea osiągalności)
 - Możliwość wykrywania skupień o dowolnym kształcie w obecności szumu informacyjnego (ang noise) i obserwacji samotniczych

DBSCAN: Podstawowe pojęcia

- Parametry:
 - Eps (ε): Maksymalny promień sąsiedztwa
 - MinPts: minimalna liczba punktów (obiektów) w Eps-sąsiedztwie badanego punktu
- D dany zbiór obiektów do pogrupowania; wybrana miara odległości dist(p,q)
- ε sąsiedztwo obiektu p to zbiór innych punktów q spełniających

 $N_{Eps}(p)$: {punkt q należy do D | dist(p,q) <= Eps}

W zależności od liczby sąsiadów w otoczeniu obiektu p:

Obiekt rdzenia

Obiekt graniczny

Obiekt oddalony / Szum (ang. noise point(

MinPts = 5

Eps = 1 cm

Typy obiektów

- Obiekt centralny rdzeń (ang. core point) = obiekt, który ma co najmniej MinPts sąsiednich obiektów w swoim ε sąsiedztwie (są to zalażki do budowy gęstych skupisk)
- Obiekt brzegowy (ang. border point) = obiekt mający mniej niż MinPts sąsiednich obiektów w swoim ε sąsiedztwie, lecz należący do sąsiedztwa co najmniej jednego punktu rdzenia
- Obiekt oddalony / szum (ang. noise point) = obiekt z liczbą sąsiadów niż MinPts nie należący do sąsiedztwa innych punktów rdzeniowych (odległy o więcej niż ε od innych potencjalnych skupisk)

DBSCAN – ilustracja typów obiektów

DBSCAN: Podstawowe pojęcia (2)

- Osiągalność obiektów (niezbędna do tworzenia skupisk)
- $N_{eps}(q)$: {punkt p należy do D | $dist(p,q) \le Eps$ }
- Bezpośrednia osiągalność gęstościowa
- Mówimy, że obiekt p jest bezpośrednio osiągalny z punktu q (ze względu na parametry Eps, MinPts), jeśli
 - 1) p należy do ϵ sąsiedztwa $N_{Eps}(q)$
 - 2) Obiekt q jest centralny:

$$|N_{Eps}(q)| >= MinPts$$

DBSCAN: Podstawowe pojęcia (3)

- Gęstościowa osiągalność (Densityreachable):
 - Obiekt p jest gęstościowo osiągalny z punktu q jeśli istnieje łańcuch punktów pośrednich $p_1, ..., p_n, p_1 = q, p_n = p$, takich że p_{i+1} jest bezpośrednio osiągalny z p_i

- Połączeniowa gęstości (Density-connected)
 - Obiekt p jest gęstościowo połączony z obiektem q (wrt. Eps, MinPts) jęsli istnieje punkty o taki, że obiekty p oraz q są z niego gęstościowo osiągalne
- Połączenia / osiągalność pozwalają na określenie skupiska zaczynając z jednego z obiektów centralnych

DBSCAN: Zarys algorytmu

- Wybierz punkt startowy p
- Odnajdź wszystkie punkty do gęstościowego osiągnięcia z p
 (density-reachable from p wrt Eps and MinPts).
- Jeśli p jest rdzeniem (core point), utwórz skupienie.
- Jeśli p jest punktem granicznym (border point) i żadne punkty nie są z niego gęstościowo osiągalne, DBSCAN wybiera następny punkt z bazy danych
- Proces jest kontuowany dopóki żaden nowy punkt nie może być dodany to dowolnego skupienia
- Punkty które nie są rdzeniem lub graniczne i nie mogą być zaliczone do skupisk – stają się punktami oddalonymi (noise)
- Złożoność: $O(n \log n)$ w przypadku użycia specjalnego "spatial index", w przeciwnym razie $O(n^2)$.

DBSCAN trudności parametryzacji

Algorytm jest dość czuły na dobór parametrów Eps (ε) i MinPts Autorzy zaproponowali heurystykę:

- Niech d będzie odległością obiektu p do jego k-tego najbliższego sąsiada, sąsiedztwem obiektu p będzie dokładnie k +1 obiektów
- Należy dobrać k dla danych D
- Określić funkcję k-dist, która odwzorowuje każdy obiekt p w danych D na odległość do jego k-tego najbliższego sąsiada
- Uporządkuj wartości k-dist dla obiektów (wykres gęstości)
 - Dla obiektu p ustawiając wartość parametru Eps na k-dist(p), a wartość parametru MinPts na k, wszystkie obiekty z mniejszą lub równą wartością k-dist staną się obiektami wewnętrznymi sąsiedztwa/ skupiska / inne są kandydatami na punkty oddalone
- Znajdź punkt progowy przegięcia wykresu

DBSCAN: Wykres k-sasiedztwa

- Punkty w gęstym skupiski, większość ich kth najbliższych sąsiadów ma podobną wartość odległości
- Obiekty oddalone oraz szum (ang. noise points) isch kth najbliższy sąsiąd jest dużo bardziej odległy (odległość wyraźnie rosnie)
- Posortuj obiekty wg. ich odległości od kth najbliższego sąsiada i zrób wykres
- Znajdź odległość d odpowiadającej przegięciu kształtu wkresu (ang. "knee" in the curve)
 - Eps = d, MinPts = k

Przykłady porównania algorytmów

Więcej w blogu pt. An introduction to the DBSCAN algorithm and its Implementation in Python [Nagesh Singh Chauhan] KDnuggets

DBSCAN: przykład użycia

Oryginalne dane

Typy obiektów: core, border and noise

Eps = 10, MinPts = 4

Skupiska DBSCAN

- Radzi sobie z szumem informacyjnym
- Tworzy skupiska o różnych kształtach

Liczne implementacje DBSCAN

Scikt learn - cluster

Także inne języki i środowiska, WEKA + DBSCAN. Lightweight Java

Przykład DBSCAN -sklearn

```
import numpy as np
    from sklearn.cluster import DBSCAN
    from sklearn import metrics
    from sklearn.datasets import make_blobs
    from sklearn.preprocessing import StandardScaler
 6
    # Generate sample data
    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
 9
10
                                 random_state=0)
11
12
    X = StandardScaler().fit_transform(X)
13
14
    # Compute DBSCAN
15
    db = DBSCAN(eps=0.3, min_samples=10).fit(X)
16
    core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
17
    core_samples_mask[db.core_sample_indices_] = True
18
     labels = db.labels
19
    # Number of clusters in labels, ignoring noise if present.
20
    n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
21
```

Grupowanie z wykorzystaniem modeli prawdopodobieństwa

- Podejścia oparte na założeniu, że danych są generowanie w wyniku realizacji pewnego procesu statystycznego
- Zakłada się pewien model rozkładu prawdopodobieństwa występowanie obserwacji
- Każdemu potencjalnemu skupisku odpowiada model, w postępowaniu (algorytmie) weryfikuje się stopień dobrego dopasowania oryginalnych danych do przyjętego modelu
- Celem grupowania jest znalezienie zbioru (mieszaniny) modeli opisujących skupiska oraz estymacja parametrów tych modeli
- Obiekty przydziela się do skupisk zgodnie ze sparametryzowanymi modelami i zasadą klasyfikacji Bayesowskiej
- Patrz kolejny wykład

Pytanie i komentarze?

Dalszy kontakt:

jerzy.stefanowski@cs.put.poznan.pl

http://www.cs.put.poznan.pl/jstefanowski/

