PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE MATEMATICAS DEPARTAMENTO DE MATEMATICA

Primer Semestre 2022

Ayudante: Dicgo

; telR

MAT1203 - ÁLGEBRA LINEAL

Clase 7: Conjuntos solución de sistemas lineales

1. Describa todas las soluciones de $A\mathbf{x} = 0$ en forma vectorial paramétrica, donde A es equivalente por filas a la matriz dada

- 2. Suponga que el conjunto solución de un cierto sistema de ecuaciones lineales se describe como $x_1 = 5 + 4x_3$, $x_2 = -2 - 7x_3$, con x_3 libre. Use vectores para describir este conjunto como una recta en \mathbb{R}^3 . $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 + 4 \times 3 \\ -2 & -3 \times 3 \end{pmatrix} = \begin{pmatrix} 5 \\ -2 \\ 0 \end{pmatrix} + \begin{pmatrix} 4 \\ -1 \\ 1 \end{pmatrix} t$; ten 3. Suponga que el conjunto solución de un cierto sistema de ecuaciones lineales se
- describe como $x_1 = 5x_4$, $x_2 = 3 2x_4$, $x_3 = 2 + 5x_4$, con x_4 libre. Utilice vectores para describir este conjunto como una "recta" en \mathbb{R}^4 . $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 5x_1 \\ 3x_2 \\ 2+5x_4 \end{pmatrix} = \begin{pmatrix} 5x_1 \\ 3 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 5x_1 \\ 3$

a)
$$\mathbf{a} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -5 \\ 3 \end{bmatrix}$

$$r_1 \cdot \begin{pmatrix} \mathbf{x} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} + \begin{pmatrix} -5 \\ 3 \end{pmatrix} \mathbf{t}$$
b) $\mathbf{a} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -7 \\ 6 \end{bmatrix}$

$$r_2 \cdot \begin{pmatrix} \mathbf{x} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} + \begin{pmatrix} -7 \\ 6 \end{pmatrix} \mathbf{t}$$

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} + \begin{pmatrix} -7 \\ 6 \end{pmatrix} \mathbf{t}$$

5. Obtenga una ecuación paramétrica de la recta M que pasa a través de \mathbf{p} y \mathbf{q} .

a)
$$\mathbf{p} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$
, $\mathbf{q} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$. $\mathbf{r}_1 : \begin{pmatrix} \times \\ \mathbf{z} \end{pmatrix} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} + \begin{pmatrix} \mathbf{q} \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ -3 \end{pmatrix} + \mathbf{p} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{q} + \mathbf{q} = \mathbf{p} + \mathbf{q} + \mathbf{q} = \mathbf{p} + \mathbf{q} = \mathbf{p} + \mathbf{q} = \mathbf{p} + \mathbf{q} = \mathbf{q}$

[Sugerencia. M es paralela al vector $\mathbf{q} - \mathbf{p}$. Véase la figura que aparece más abajo].

- 6. Marque cada enunciado como verdadero o falso. Justifique sus respuestas.
 - a) Una ecuacion homogénea es consistente. \bigvee
 - b) La ecuación homogénea $A\mathbf{x} = \mathbf{0}$ tiene la solución trivial si y solo si la ecuación tiene al menos una variable libre.
 - c) La ecuación $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ describe una recta que pasa por \mathbf{v} y es paralela a \mathbf{p} .
 - d) El conjunto solución $A\mathbf{x} = \mathbf{b}$ es el conjunto de todos los vectores de la forma $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$ donde \mathbf{v}_h es cualquier solución de la ecuación $A\mathbf{x} = \mathbf{0}$.
 - e) Un sistema homogéneo de ecuaciones puede ser inconsistente. F
 - f) Si \mathbf{x} es una solución no trivial de $A\mathbf{x} = \mathbf{0}$, entonces cada entrada en \mathbf{x} es distinta de cero.
 - g) El efecto de sumar ${f p}$ a un vector es mover a dicho vector en una dirección paralela a ${f p}$. ${f \Box}$
 - h) La ecuación $A\mathbf{x} = \mathbf{b}$ es homogénea si el vector cero es una solución. \bigvee
 - i) Si $A\mathbf{x} = \mathbf{b}$ es consistente, entonces el conjunto solución de $A\mathbf{x} = \mathbf{b}$ se obtiene por traslación del conjunto solución de $A\mathbf{x} = \mathbf{0}$.
- 7. Construya una matriz A de 2×2 tal que el conjunto solución de la ecuación $A\mathbf{x} = \mathbf{0}$ sea la recta en \mathbb{R}^2 que pasa a través de (4,1) y el origen. Luego, encuentre un vector \mathbf{b} en \mathbb{R}^2 tal que el conjunto solución de $A\mathbf{x} = \mathbf{b}$ no sea una recta en \mathbb{R}^2 paralalela al conjunto solución de $A\mathbf{x} = \mathbf{0}$. ¿Por qué esto no contradice al teorema 6 de la página 46 del libro guía?
- 8. Suponga que A es una matriz de 3×3 y \mathbf{b} es un vector en \mathbb{R}^3 tales que la ecuación $A\mathbf{x} = \mathbf{b}$ no tiene solución. ¿Existe un vector \mathbf{y} en \mathbb{R}^3 tal que la ecuación $A\mathbf{x} = \mathbf{y}$ tiene una solución única? Justifique su respuesta.