Corso di Laurea: Ingegneria Informatica

Testo n.xx - Esame di Fisica Generale sessione del 28/06/2023

Nome: Matricola:

Cognome: Anno di Corso:

ESERCIZIO.1 - Meccanica

(Figura qualitativa e non in scala a scopo illustrativo)

Con riferimento alla figura, un impulso orizzontale di intensità I mette in moto un punto materiale di massa m=1~kg, che si trova nella posizione O sulla parte priva di attrito di un piano orizzontale. Nel moto successivo il punto materiale urta e rimbalza su un estremo di una molla elastica a riposo orizzontale, che ha l'altro estremo fisso. La molla ha massa trascurabile e costante elastica $K=10^4~N/m$. Dopo l'urto con la molla, il punto materiale ripassa per il punto O e percorre un tratto di lunghezza L=20~cm nel quale il coefficiente di attrito dinamico vale $\mu_d=0.2$. Infine, esso urta in modo perfettamente anelastico un punto materiale identico e insieme salgono per un tratto s=0.628~m (lunghezza dell'arco) lungo una guida liscia circolare di raggio R=60~cm, prima di invertire il moto. Si determini:

 $1.1\,$ il modulo dell'impulso orizzontale I che mette in moto il punto materiale, che permette al sistema composto dai due punti materiali di percorrere il tratto di lunghezza s

I =

1.2 la massima compressione Δl della molla a seguito dell'impulso I

 $\Delta l = \dots$

1.3 il numero di volte N in cui il sistema costituito dai due punti materiali passa per il tratto L (non necessariamente attraversandolo tutto).

N =

Nota Bene: assumere per i calcoli $g = 9,81 \text{ m/s}^2$

(Figura qualitativa e non in scala a scopo illustrativo)

Con riferimento alla figura, una spira quadrata conduttrice di lato L=20~cm è saldata a una sbarretta anch'essa conduttrice. La sbarretta, di lunghezza pari a L, è disposta nel piano della spira ortogonalmente a una coppia dei lati della spira e passa per il suo centro. Il raggio della sezione dei fili che costituiscono la spira è r=2~mm. La parte superiore ed inferiore della spira hanno, rispettivamente, conducibilità elettriche $\sigma_1=3~\Omega^{-1}m^{-1}$ e $\sigma_2=2\sigma_1$. La sbarretta ha resistenza trascurabile. Il sistema è immerso in un campo di induzione magnetica uniforme $\overrightarrow{B}=0.3\hat{z}~T$. All'istante t=0, quando la normale al piano della spira è parallela al campo, il sistema composto dalla spira e la sbarretta viene posto in rotazione attorno all'asse AB con velocità angolare costante $\omega=0.349~rad/s$. L'induttanza del circuito è trascurabile. Si determini:

2.1	l'espressione	${\rm del~flusso}$	del campo	magnetico	${\it attraverso}$	la	superfice	superiore,	ϕ_1 ,	e inferiore,	ϕ_2 ,	$\operatorname{delimitate}$	dalla
	sbarretta.												

$$\phi_1 = \dots \qquad \phi_2 = \dots \dots \dots$$

2.2 la corrente $I(t^*)$ che scorre nella sbarretta AB all'istante $t^* = 3 s$, e indicare con un disegno il verso della corrente indotta

$$I(t^*) = \dots$$

2.3 La potenza $P(t^*)$ erogata al tempo $t^* = 3$ s per mantenere costante la velocità angolare del sistema

$$P(t^*) = \dots$$

Soluzione Esercizio 1

(a)Figura qualitativa e non in scala a scopo illustrativo)

(b) Figura qualitativa e non in scala a scopo illustrativo)

Domande 1.1 e 1.2

A seguito dell'impulso fornito (fig.a), il punto materiale (PM) acquista la velocità v_i lungo l'asse x essendo la sua velocità iniziale (\overrightarrow{v}_0) nulla:

$$I\hat{x} = m\overrightarrow{v}_i - m\overrightarrow{v}_0 = mv_{ix}\hat{x} = mv_i\hat{x} \implies I = mv_i$$

Nel moto sul piano liscio e nell'urto con la molla si conserva l'energia meccanica in quanto oltre alla gravità e alla forza elastica (entrambe conservative), la reazione vincolare non compie lavoro essendo ortogonale allo spostamento del PM. In particolare, quando la compressione è massima la velocità del punto materiale è nulla. Pertanto applicando la conservazione dell'energia quando la compressione della molla è massima vale:

$$\frac{1}{2}mv_i^2 = \frac{1}{2}K\Delta l^2$$

dove con Δl abbiamo indicato la compressione della molla. Per cui:

$$\Delta l = \frac{I}{\sqrt{mK}}$$

Nel tratto di piano scabro l'energia meccanica non si conserva, ma il modulo della velocità v_1 alla fine del tratto L si ricava dal teorema dell'energia cinetica:

$$\frac{1}{2}mv_1^2 - \frac{1}{2}mv_i^2 = -\mu_d mgL \quad \Rightarrow \quad v_1 = \sqrt{v_i^2 - 2\mu_d gL}$$

Nell'urto che è anelastico si conserva la quantità di moto, per cui:

$$mv_1 = 2mv_2 \quad \Rightarrow \quad v_2 = \frac{\sqrt{v_i^2 - 2\mu_d gL}}{2}$$

dove abbiamo indicato con v_2 il modulo della velocità del sistema dei due PM subito dopo l'urto.

Nel moto lungo la guida circolare successivo all'urto tra i due PM (fig.b) si conserva l'energia meccanica. Pertanto applicando la conservazione dell'energia, e assumendo l'origine per l'energia potenziale gravitazionale al livello del piano orizzontale, si ottiene:

$$\frac{1}{2}2mv_2^2 = 2mgh \text{ con } h = R\left(1 - cos\theta\right)) \text{ e } \theta = \frac{s}{R} \quad \Rightarrow v_2^2 = \frac{v_i^2 - 2\mu_d gL}{4} = 2gR\left(1 - cos\frac{s}{R}\right) \quad \Rightarrow v_i = \sqrt{8gR\left(1 - cos\frac{s}{R}\right) + 2\mu_d gL}$$

Per cui:

$$I = mv_i = 4.93 \ Ns$$
 e $\Delta l = \frac{I}{\sqrt{mK}} = 4.93 \ cm$

Domanda 1.3

L'energia dissipata ad ogni passaggio per il tratto scabro è $E_{diss}=2\mu_d mgL$ mentre quella disponibile (posseduta) dal sistema dei due punti materiali all'inizio è $E_{disp}=\frac{1}{2}2mv_2^2=\frac{v_i^2-2\mu_d gL}{4}m=2mgR\left(1-cos\frac{s}{R}\right)$, per cui $\frac{E_{disp}}{E_{diss}}=7,5$ Pertanto Il sistema costituito dalle sue masse si ferma nel tratto scabro del piano e lo attraversa 8 volte :

$$N = 8$$

Soluzione Esercizio 2

Domanda 2.1

Scegliendo al tempo t=0 la normale a ciascuna delle due sezioni rettangolari delimitate dalla sbarretta orientata come \overrightarrow{B} , l'espressione del flusso del campo magnetico attraverso ciascuna delle due sezioni rettangolari è lo stesso, ed è ottenibile dalle seguenti relazioni:

$$\phi(\overrightarrow{B}) = \phi_1(\overrightarrow{B}) = \phi_2(\overrightarrow{B}) = \int \overrightarrow{B} \cdot \hat{n(t)} dS = B \cos \omega t \int dS = B \frac{L^2}{2} \cos \omega t$$

dove dalla convenzione sulla normale alle due sezioni abbiamo assunto le fem positive quando fanno circolare la corrente in senso antiorario in ciascuna delle due sezioni.

Domanda 2.2

Di conseguenza, anche le forze elettromotrici indotte, ϵ_1 e ϵ_2 , in ciascuna delle due sezioni sono identiche:

$$\epsilon(t) = \epsilon_1(t) = \epsilon_2(t) = -\frac{d\phi_1}{dt} = -\frac{d\phi_2}{dt} = +B\frac{L^2}{2}\omega sin\omega t$$

Applicando le leggi di Kirchoff alle due maglie costituite dalle due sezioni rettangolari con le correnti di maglia I_1 e I_2 scelte positive in verso antiorario, otteniamo:

$$\epsilon(t) = R_1 I_1(t)$$
 $\epsilon(t) = R_2 I_2(t)$

Per cui la corrente che scorre nella sbarretta I(t) è data da:

$$I(t) = I_1 - I_2 = \epsilon(t) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = B \frac{L^2}{2} \omega sin\omega t \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

$$con \quad \frac{1}{R_1} = \sigma_1 \frac{\pi r^2}{2L} \quad e \quad \frac{1}{R_2} = \sigma_2 \frac{\pi r^2}{2L} = 2\sigma_1 \frac{\pi r^2}{2L} \quad \text{per cui} \quad \frac{1}{R_1} - \frac{1}{R_2} = -\frac{\sigma_1 \pi r^2}{2L} \quad e \quad I(t) = -B\pi \frac{L}{4} \sigma_1 r^2 \omega sin\omega t$$

Per cui per al tempo t^* :

 $I(t^*) = -1.71 \times 10^{-7} A$ e la corrente nel tratto AB circola nel verso indicato in figura

Domanda 2.3

La potenza erogata al tempo t^* per mantenere in rotazione con velocità costante il sistema è pari alla potenza complessiva dissipata nelle resistenze R_1 e R_2 dei due settori rettangolari:

$$P(t^*) = I_1^2(t^*)R_1 + I_2^2(t^*)R_2 = \epsilon^2(t)\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = B^2\frac{L^4}{4}\omega^2 sin^2\omega t \left(3\sigma_1\frac{\pi r^2}{2L}\right) = \frac{3}{8}\pi r^2\sigma_1 B^2 L^3\omega^2 sin^2\omega t$$

Per cui:

$$P(t^*) = 9.3 \times 10^{-10} \ W$$

Nota: il segno della corrente indotta per dati differenti da quelli usati nel testo xx può essere positivo o negativo dipendendo dal segno del prodotto $-sin\omega t^*$

(Figura qualitativa e non in scala a scopo illustrativo)