

VERSION 1

MAR 30, 2023

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocol s.io.n2bvj8oowgk5/v1

Protocol Citation: Antoine Champie, Amélie De Grandmaison 2023. HTTM: Illumina libraries. protocols.io https://dx.doi.org/10.17504/p rotocols.io.n2bvj8oowgk5/v1V ersion created by Antoine Champie

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Oct 27, 2022

Last Modified: Mar 30, 2023

PROTOCOL integer ID:

71943

HTTM: Illumina libraries V.1

Antoine Champie¹, Amélie De Grandmaison¹

¹Université de Sherbrooke

Antoine Champie

ABSTRACT

Part three of the HTTM protocol. A low-cost and high-throughput Tn-seq protocol. This part cover the preparation of Illumina sequencing libraries form genomic DNA.

MATERIALS

Preparation of Nextera adapters:

Nextera (NxT) adapters are prepared by hybridization of the following primers:

A	В
Nxt-XTv2- B-N701-T	CAAGCAGAAGACGGCATACGAGATTCGCCTTAGTCTCGTGGGCTCG GAGATGTGTATAAGAGACAGT
Nxt-XTv2- B-3R-ac3- phos5'	/5Phos/CTGTCTCTATACACATCTCCGAGCCCACGAGAC/3InvdT/

- Preparation of the 5X annealing buffer (5X Tris NaCl buffer : 50 mM
 Tris, pH 7.5-8, 250 mM NaCl) :
- 500 µl Tris-HCl 1M pH 7.5
- 500 µl NaCl 5M
- 9 ml H20 mol.-grade
- Preparation of the adapters (40 μM 50 μL):
- Resuspend both primers in water to obtain 100 µM stocks
- Mix 20 μl of each (Nxt-XTv2-B-N701-T and Nxt-XTv2-B-3R-ac3-phos5')
- Add 10 µl of 5X annealing buffer
- Annealing reaction in a thermocycler (decrease temperature from 98 $^{\circ}$ C to 4 $^{\circ}$ C (-0.1 $^{\circ}$ C/cycle(10s/cycle)))

Primers used for the first PCR:

A	В

A	В
Nxt_A	AATGATACGGCGACCACCGAGATCTACAC
Nxt_B	CAAGCAGAAGACGGCATACGAGAT

Primers template for barcoding PCR:

	A	В
Nxt_i5_barco AATGATACGGCGACCACCGAGATCTACAC [8 Nu Inde		AATGATACGGCGACCACCGAGATCTACAC [8 Nu Index] TCGTCGGCAGCGTCAGATGTGTA
	Nxt_i7_barco ding	CAAGCAGAAGACGGCATACGAGAT [8 Nu Index] GTCTCGTGGGCTCGGAGATGTGTATAAG

Kit used for library preparation:

NEBNext Ultra II DNA Library Prep Kit for Illumina NEB CAT#: E7645S

PCR mix used:

Supermix 2X Homemade

SPRI beads used:

Ampure XP DNA beads Beckman Coulter CAT#: A63882

BEFORE START INSTRUCTIONS

■ All steps and master mixes need to be kept on ice as much as possible. Thermocyclers need to be cooled at 4 ℃ before inserting sample plate.

Libraries

1h 34m

- 1 Transfer \underline{A} 2.5 μL of DNA from the DNA extraction plate to a new PCR plate.
- 2 Prepare a fragmentation master mix with:

A	В
NEB Ultra II FS buffer	77 µl
NEB Ultra II FS enzyme	22 µl

A	В
Molecular grade water	11 µl

- 3 Add I 1 µL of the fragmentation master mix to each well.
- 4 Incubate in a thermocycler with the following protocol:

♦ 00:15:00 at

© 00:30:00 at 65°C

- 5 Add \perp 1 μ L of 4 μ M Nextera (NxT) adaptors to each well.
- 6 Prepare a ligation master mix with:

A	В
NEB Ultra II ligation master mix	377.4 µl
NEB Ultra II ligation enhancer	12.1 µl

- 7 Add \mathbb{Z} 3.5 µL of ligation master mix to each well.
- 8 Incubate in a thermocycler with the following protocol:

★ 00:30:00 at 8 20 °C

■ ③ 00:10:00 at \$ 65°C

9 Prepare a PCR master mix with: 45m

40m

A	В
NxT_A primer 20 μM	880 µl
Nxt_B primer 20 µM	880 µl
Molecular grade water	8360 µl
PCR Supermix 2X	11000 µl

- 10 Add $\underline{\mathbb{Z}}_{192\,\mu L}$ of PCR master mix to each well.
- 11 Split the PCR reaction into 4 different plates (50µl per plate).
- 12 Incubate each plate in a thermocycler with the following cycles:

■ **(**) 00:00:30 at 4 98 °C

■ 00:00:15 at 4 98 °C

■ Repeat from step 2 for 20~25 cycles*

- Pool the 4 PCR replicates together in a PCR plate.
- Transfer \underline{A} 2 μ L of DNA from the pool plate to a new PCR plate.

3m 15s

- Add \underline{A} 2 μ L of each barcoding primer to the DNA :
 - Nxt_i5_barcoding
 - Nxt_i7_barcoding
- Prepare a PCR master mix with:

A	В
Molecular grade water	2090 μΙ
PCR supermix 2X	2750 μΙ

- 17 Add $\underline{\mathbb{Z}}$ 44 μL of the PCR master mix to each well of the plate.
- 18 Incubate in a thermocycler using the following protocol:

3m 45s

- ② 00:00:30 at 3 98 °C
- 👏 00:00:15 at 🖁 98 °C
- © 00:01:00 at 1 72 °C (no anneal step)
- Repeat from step 2 for 5 cycles
- 00:02:00 at \$ 72 °C

- 19 Pool together $\angle 2 \mu L$ of each sample.
- 20 Purify with Ampure XP SPRI beads using a 0.8 ratio. Resuspend with \pm 50 μ L of molecular grade water.

21 Proceed with QC and sequencing.