Prof. Dr. Cisinski, Dr. Hoang-Kim Nguyen, Sebastian Wolf

Exercises for the course Higher Category Theory (return:21.11.20, 16:00)

Exercise 1 (4 points+6 points). Let $F : \mathcal{C} \to \mathcal{D}$ and $G : \mathcal{D} \to \mathcal{C}$ be a adjoint functor with functorial bijection

$$\operatorname{Hom}_{\mathcal{D}}(F(X),Y) \cong \operatorname{Hom}_{\mathcal{C}}(X,G(Y))$$
.

Assume that the functor G is fully faithful.

- 1. Prove that the functor G is conservative (i.e. that it detects isomorphisms).
- 2. Let $F: \mathcal{I} \to \mathcal{D}$ be functor such that $G \circ F$ has a colimit in \mathcal{C} . Prove that F has a colimit in \mathcal{D} .
- 3. *Optional question:* Let $F: \mathcal{I} \to \mathcal{D}$ be functor such that $G \circ F$ has a limit in \mathcal{C} . Prove that F has a limit in \mathcal{D} .

Exercise 2 (4 points). We consider the category Δ of simplices $[n] = \{0, \ldots, n\}, n \ge 0$.

1. Observe that there is a unique isomorphism $[n] \simeq [n]^{op}$ for each $n \geq 0$, and conclude that there is a unique functor $\mathcal{C} \mapsto \mathcal{C}^{op} i : \Delta \to \Delta$ which sends the map $\delta_k^n : [n-1] \to [n]$ to $\delta_{n-k}^n : [n-1] \to [n]$. This induces a functor $sSet \to sSet$ by $X \mapsto X^{op} = i^*(X)$ (i.e. X^{op} is the composition of X and of $i^{op} : \Delta^{op} \to \Delta^{op}$). Show that, for any small category \mathcal{C} , we have a functorial isomorphism

$$N(\mathfrak{C})^{op} \cong N(\mathfrak{C}^{op})$$
.

2. Prove that, if *X* is an ∞ -category, so is X^{op} .

Exercise 3 (groupoids as generalized equivalence relations; 12 points). Let Cat be the category of small categories, and $Gpd \subset Cat$ its full subcategory spanned by small groupoids (that are those categories in which all morphisms are invertible).

1. If \mathcal{C} is a category, then we denote by \mathcal{C}^{\simeq} the subcategory with the same objects as \mathcal{C} and the invertible morphisms of \mathcal{C} as morphisms. Prove that the assignment $\mathcal{C} \mapsto \mathcal{C}^{\simeq}$ defines a right adjoint to the inclusion functor $Gpd \subset Cat$, i.e. that

$$\operatorname{Hom}_{Cat}(\mathfrak{G}, \mathfrak{C}) \cong \operatorname{Hom}_{Gpd}(\mathfrak{G}, \mathfrak{C}^{\simeq})$$

for any small groupoid \mathcal{G} and any small category \mathcal{C} .

2. If X is a (small) set, let EX be the unique groupoid with X as set of objects and with

$$\operatorname{Hom}_{EX}(x,y) = \{(x,y)\}$$

(the composition law is given by $(y, z) \circ (x, y) = (x, z)$). What are the subgroupoids of EX?

3. Prove that the assignment $X \mapsto EX$ is right adjoint to the functor $Cat \to Set$ defined by $\mathcal{C} \mapsto \mathrm{Ob}(\mathcal{C})$:

$$\operatorname{Hom}_{Set}(\operatorname{Ob}(\mathcal{C}), X) \cong \operatorname{Hom}_{Cat}(\mathcal{C}, EX)$$
.

- 4. Given a small category \mathcal{C} , let $\pi_0(\mathcal{C})$ be the colimit of the constant diagram indexed by \mathcal{C} with value the one point set. Show that this construction provides a left adjoint $\pi_0: Cat \to Set$ to the functor which sends a set X to the corresponding discrete category (i.e. with the elements of X as objects, and only identities as maps).
- 5. Give an explicit description of $\pi_0(\mathfrak{G})$ in the case where \mathfrak{G} is a groupoid.
- 6. Prove that $\pi_0(\mathcal{C})$ is canonically isomorphic to the colimit of the constant diagram indexed by $\Delta_{/N(\mathcal{C})}$ with value the one point set.