Assignment Piris Jeict Exam Help

https://eduassistpro.github.

Add WeChatedu_assist_pr

DFA Minimisation

Assignment Project Exam Help

• if two states are equivalent, one can be eliminated

Elimina https://eduassistpro.github.

• if a sta eliminated.

 $\underset{\textbf{Example.}}{\textbf{Add}} \underset{\textbf{Not reachable}}{\textbf{WeChat}} \underset{\textbf{Chau}}{\textbf{edu_assist_properties}}$

The Standard Minimisation Algorithm

Main Idea.

• aggregate states into groups (of possibly equivalent states)

As in the group of possibly equivalent states if we have evidence that the

https://eduassistpro.github.

• repeat until no more groups can be split.

• The working data structure for the algorithm is a li

- The working data structure for the algorithm ("groups") of states
- On each iteration, we test one of the groups with a symbol from the alphabet.
- If we notice differing behaviour, we split the group.

The Algorithm Details

- Input: A list containing two "groups". (a group is represented as a Set of saids) of the Filal Xales and the policy of the Filal Xales and t consists of the non-final states.
 - Da gro https://eduassistpro.gith@b.
 - **Loop:** Pick a group, $\{s_1,...s_i\}$ and a symbol, x.
 - If the states $\{N(s_i,x)\mid i=1,\ldots,j\}$ of the states $\{N(s_i,x)\mid i=1,\ldots,j\}$ by the states $\{N(s_i,x)\mid i=1,\ldots,j\}$ WDS, then the group $\{s_1,...s_i\}$ should be split accordingly.
 - Continue until we cannot, by any choice of letter, split any group.

Our Previous Example

Assignment Project Exam Help https://eduassistpro.github. $\overset{(s_2)^0}{\text{WeChat}}$ edu_assist_pr

Minimisation: Second Example

Q. What is the language of this automaton? Can you find a simpler Automaton with the same dan Page? ject Exam Help https://eduassistpro.github.

Add WeChat edu_assist_pr

a.b

Minimisation Step by Step

Assignment it Property and Help check [0, 4]: don't split roup, so split check [1, 2, 3]: * check [1, 2, 3]: * check [1, 2, 3]: * onext split: [[0, 4] * Add We check [0, 4]: do * of final split: [[0, 4], split [1] assist_property. * of final split: [[0, 4], split [

as no more splits did occur in the last round

Non-Deterministic Finite State Automata — NFAs

Assignment Project Exam Help

https://eduassistpro.github.

- Q. Is it intuitively clear what it does?
- Q. Is it a Add the Weet Curhentio edu_assist_pr

Is it legal, i.e. a "proper" DFA?

Differen https://eduassistpro.github.

• For some states, there is **not an edge**

Formally AFA the ve Was tion hat n edu_assist_production.

- transition relation $R(s_1, x, s_2)$ obtains if there's an x-labelled edge from s_1 to s_2
- there can be no x-labelled edge between s_1 and any state
- there can be *many* states s_2, s_3, \ldots that are connected to s_1 via an x-labelled edge.

Is it clear what it does?

Assignment Project Exam Help Some states don't have an outgoing edge with a certain letter, so the

- NF
 In square and the control of th
- In shttps://eduassistpro.github.

Acceptance condition for NFAs given string

- can ga frenchit wo en slate make the "righassist_producessor state"
- without getting stuck

Example. $\alpha = aaabcc$

- need to "look ahead" to make the right choice
- (alternatively, try to backtrack if wrong choice has been made)

DFAs vs NFAs

Sex Siferences ent Project Exam Help For each state in a DFA and for each input symbol, there is a unique successor state.

- ំ NF https://eduassistpro.github. inp
- NFAs have a transition relation.
 An impatGenuence V₁, E. Last cecu_assists of some sequence of transitions that leads from the i state.

Why NFAs?

Example. NFAs are simpler.

Assignment of Petroject "Exam Help (S is the Patin alphabet)

-https://eduassistpro.github.

Add WeChat edu_assist_pr

Note.

- two transitions from S_0 for the letter "m"
- no transition from S_1 for (e.g.) the letter "n"

An Equivalent DFA

Example. DFAs are (often) more complex.

ASES LIGHT REPORT OF LETTER TO THE PROPERTY OF THE PROP

```
https://eduassistpro.github.
```

NFAs: Formal Definition

A Nondeterministic Finite State Automaton (NFA) consists of five parts:

Assignment Project Exam Help

- a sehttps://eduassistpro.github.
- an "initial" state $s_0 \in S$ (we start here)
- a set of "final" ttates F hat edu_assist_pr

Aside. The transition relation is what makes the automaton nondeterministic. It can be seen as a function $\delta: S \times \Sigma \to \mathcal{P}(S)$, where $\mathcal{P}(S)$ is the set of subsets of S.

Another Example

automaton?

Acceptance for NFAs

Given. An NFA
$$A = (\Sigma, S, F, s_0, R)$$
. Then A accepts a word $A = a_1 a_2 \dots a_n$ (in symbols: $P \in L(A)$) if there exists a sequence of states $S = a_1 a_2 \dots a_n = a_1 a_1$

where s_0 https://eduassistpro.github.

Aside. This is like for deterministic automata, the o

or Add WeChat edu_assist_properties the extensistion

(that is, the automaton can make a transition)

• deterministic automata we have $s \xrightarrow{a} t$ if N(s, a) = t (that is, the automaton makes the transition)

Eventual State Relation for NFAs

Basic Idea. The eventual state relation $R^*(s, w, s')$ is true if s' is a state $A_1 = A_2 = A_3 = A_4 =$

https://eduassistpro.github.

$$R^*(s, x\alpha, s') = \exists s''.R(s, x, s'') \land R^*(s'', \alpha, s')$$

Eventual State Relation: Example

The "double digits" automaton

Assignment Project Exam Help https://eduassistpro.github.

Eventual State Relation.

- (so, Add We Chat edu_assist_pr
- $S_0 \stackrel{0}{\to} S_0 \stackrel{0}{\to} S_0 \stackrel{1}{\to} S_0$, hence $(S_0,$ "001", $S_0) \in R$.
- $S_0 \stackrel{0}{\rightarrow} S_1 \stackrel{0}{\rightarrow} S_2 \stackrel{1}{\rightarrow} S_2$, hence $(S_0, \text{``001''}, S_2) \in R^*$.
- $S_1 \stackrel{0}{\to} S_2 \stackrel{0}{\to} S_2 \stackrel{1}{\to} S_2$, hence $(S_1, \text{``001''}, S_2) \in R^*$.

An Important (but Unsurprising) Theorem about R^*

Assignment Project Exam Help

For all stat

https://eduassistpro.github.

The proof is similar to the corresponding result for

Add WeChat edu_assist_pr

Language of a NFA

Let $A = (\Sigma, S, s_0, F, R)$ be a NFA.

Abssignment Project Exam Help

(Comparhttps://eduassistpro.github.

The language accepted by A is the set of all string

Adda We Chat edu_assist_pr

Informally. That is, $w \in L(A)$ iff there exists a path through the diagram for A, from s_0 to a final state s ($s \in F$), such that the symbols on the path match the symbols in w

Power of Nondeterminism?

Q. Is there a language that is accepted by an NFA for which we *cannot* find a DFA that (also) accepts it?

Assignment Project Exam Help

A. A simp https://eduassistpro.github. which accepts the same language.

Moreover, Anico Control Contro

 just like the minimal automaton can be compute equivalence

Drawback. The resulting DFA may have exponentially many states

Have to record a set of states that the NFA could be in.

Constructing the Equivalent DFA from an NFA

Assumption. We have an NFA with state set $\{q_0, \ldots, q_n\}$.

Assisting nment Project Exam Help

as a co

Construe https://eduassistpro.github.

- e.g. {q3, q7} or Ø
 significa the gate Water entropy edu_assist_pr
- transition function: records possible next stat
- e.g. from $\{q_3, q_7\}$ with letter x, take union of transitions (with x) from q_3 and q_7
- final states are state sets that contain a final state.

Subset Construction: The Finer Points

Assignment, Project Exam Help Subset Construction.

- stat
- tranhttps://eduassistpro.github.

$$N(Q,a) = \{s_1 \in S \mid s \stackrel{a}{\rightarrow} s_1$$

Add WeChatedu_assist_pr

Determinisation: Example

Subset Construction: transition table

Note.

- don't Addres Wee shatusedu_assist_property
- all others are not relevant (cf. elimination of unreachable states)
- having all states would require $2^4 = 16$ entries.

Determinisation Example, as Diagrams

Double Digits, as NFA.

Assignment Project Exam Help

https://eduassistpro.github.

Double Digits as DFA.

Recall Minimisation . . .

A. Can there be a simpler Dip (with fewer state) that recognites the lp

More Expressive Power: ϵ -transitions

Extra Ingredient: Spontaneous transitions that don't "eat" a letter

Assessment and change state without consuming a symbol. Help

ullet can convert NFAs with $\epsilon\text{-transitions}$ to (standard) NFAs

Formal https://eduassistpro.github.

$Add\ We^{R\subseteq \mathcal{S}\times \Sigma\cup \{\epsilon\}} edu_assist_pr$

- ullet cf. NFAs with transition relation $R\subseteq S imes \Sigma imes S$
- $R(s, \epsilon, s')$ is a spontaneous transition (without reading input symbol)
- \bullet is *not* an element of the alphabet!

ϵ -NFA: Example

General Pattern. ϵ -transitions say "or"

Assignment Project Exam Help

https://eduassistpro.github.

Interpret And WeChat edu_assist_pr

- ullet "top" automaton (with start state s_1
- ullet "bottom" automaton (with start state s_3) requires even number of 1's
- entire automaton (with start state s_0) accepts either an even number of 1's or an even number of 0's

Example and Acceptance

Language of this Automaton?

Assignment Project Exam Help

Accepta sequence https://eduassistpro.github.

$$s_0 \xrightarrow{\epsilon^*} r_1 \xrightarrow{a_1} r_1' \xrightarrow{\epsilon^*} r_2 \xrightarrow{a_2} r \qquad a \qquad \epsilon$$
where s_0 Addtin Wae Chath edu_assist_pr

- $s \xrightarrow{a} t$ if there is an a-transition from s to t, i.e $(s, a, t) \in R$
- $s \xrightarrow{\epsilon^*} t$ if there is a sequence of ϵ -transitions (only!) from s to t.

In particular: the empty string $\epsilon \in L(A)$ if $s_0 \xrightarrow{\epsilon^*} f$ for a final state $f \in F$.

Eventual State Relation for ϵ -NFAs

Given. An ϵ -NFA (Σ, S, s_0, F, R) (i.e. $R \subseteq Q \times (\Sigma \cup {\epsilon}) \times Q$) then the ϵ -closure of a state $s \in S$ is given by

Assignmentere roject & Frankling of Participant of

https://eduassistpro.github. $s_0 \in eclose(s), (s_0, a)$

As for DFAs d NFAW e Chat edu_assist_properties as string w is accepted by an ϵ -NFA A (in s

$$(s_0, w, f) \in R^*$$
 for some final state $f \in F$, that is

$$L(A) = \{ w \in \Sigma^* \mid \exists f \in F.(s_0, w, f) \in R^* \}$$

Q. How does this relate to the notion of acceptance earlier?

Relationship Between NFAs and ϵ -NFAs

Q. Are there languages only accepted by ϵ -NFAs?

Constru

* https://eduassistpro.github.

$$F' = \{ s \in S \mid \text{eclos}$$

 $F' = \{s \in S \mid eclos\}$ Put And And Ante-Cifhat edu_assist_ith properties and the second seco $s' \in \operatorname{eclose}(s)$:

$$R' = \{(s, a, t) \mid (s', a, t) \in R \text{ for some } s' \in eclose(s)\}$$

(and convince yourself that A and A' accept the same strings!)

Regular Expressions

Challenge. Understand the computational power of DFAs / NFAs.

Approach. Characterise the languages that can be accepted by an NFA in Assirgnment Project Exam Help One Characterisation. Regular expressions (cf. Perl, Ruby, grep)

• vert https://eduassistpro.github.

- Kleene star: repeat strings from an expression
- \bullet ϵ , the empty string, and every letter of the alphabet
- concannel of for grouping for grouping parentheses, for grouping

Example.

- a* indicates 0 or more as.
- yes | no is the language with just the 2 given strings.
- (0 | 1)* indicates the set of binary numerals.

Regular Expressions — More Examples

Assignment Project Exam Help

- $(a \mid b)^*c(a \mid b)^*$ is the set of strings over a, b, c with just one c.
- of ohttps://eduassistpro.github.
- adjacent.
- 1 | (Add | W) is that raedu_assist_property with no trailing zeroes. (e.g. 0.1, 0

The Definition of Regular Expressions

Key Concept.

• regular expressions are purely syntactical – just like formulae

As by: convences on the Prose Cutting The requirement position. The regular expressions over alphabet Σ and the sets that they deno

- ំនៃ្ខាំ https://eduassistpro.github.
- for each $a \in \Sigma$, a is a regular expression an

If α and β are legilar expressions Henoting land u_assist_prespectively, then,

- $\alpha \mid \beta$ denotes $R \cup S$
- $\alpha \beta$ denotes *RS* which is $\{xy \mid x \in R \land y \in S\}$
- α^* denotes R^* , ie, the set of *finitely* many $r_i \in R$, concatenated

 R^* is (inductively) defined as $\{\epsilon\} \cup RR^*$

Regular Expressions and DFAs

Assignment Project Exam Help Regular expressions and NFAs / DFAs are equivalent.

- for e https://eduassistpro.github.
 - so th expressions.

Q. Can we Add te Whore Charles to a constant expressions?

Regular Expressions to ϵ -NFAs

Key Insight.

• regular expressions are an inductively defined structure

Assi genresentable by an Phycrive determination of the Help as a corr

Construction https://eduassistpro.github.

is $\{a\}$) the automaton is

• When the regular expression is equal edu_assist_pr

• When the regular expression is \emptyset (language is \emptyset) the automaton has no edges

Regular Expressions to NFAs, ctd

Suppose the NFA corresponding to some R is:

Assignment Project Exam Help

Then NFAs corresponding to composite regular expressions are defined as follows:

https://eduassistpro.github.

Add WeChat edu_assist_pr

Example

Aignstigening entite properties with the properties of the propert

https://eduassistpro.github. Add WeChat edu_assist_pr

Closing the Loop

Aissignment Project Examinelp

- 1 c
- : https://eduassistpro.github.
- L can be recognised by a DFA ...

as we can convert regular expressions into edu_assist_properties. Construction of regular expressions into edu_assist_properties.

covered in this course)

Summary.

Starting Point. Finite Automata

As solving simple problems: is string accepted? Xam Help

Limitati

• • https://eduassistpro.github.

Characterisation of expressive power

- · can gAback and With between automate and reg assist_pr
- Q. Are finite automata a "good" model of computati
 - if yes, why?
 - if not, why not? What is missing?

Literature. Project ExamuHelp Hopcroft, Motwani, and Ullman.

• Intr https://eduassistpro.github.

The part on Automata and Languages covers (m

Add WeChat edu_assist_pr