OBJECTIFS 👌

- Déterminer si un entier est ou n'est pas multiple ou diviseur d'un autre entier.
- Déterminer les nombres premiers inférieurs ou égaux à 100.
- Utiliser les critères de divisibilité par 2, 3, 5, 9, 10.
- Déterminer les diviseurs d'un nombre à la main, à l'aide d'un tableur, d'une calculatrice.
- Décomposer un nombre entier en produit de facteurs premiers (à la main ou à l'aide d'un logiciel).
- Simplifier une fraction pour la rendre irréductible.
- Modéliser et résoudre des problèmes mettant en jeu la divisibilité.

Nombres entiers

1. Multiples et diviseurs

À RETENIR 👀

Définition

On dit qu'un nombre entier est un **multiple** d'un autre, si ce nombre est dans la table de multiplication de l'autre. On dit également que cet autre nombre est un **diviseur** du premier nombre. On a la relation suivante :

multiple = diviseur × quotient

EXERCICE 1

Compléter la phrase suivante.

 $\begin{tabular}{l} \hline \textbf{FVoir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/\#correction-1.} \\ \hline \end{tabular}$

À RETENIR 👀

Méthode

Pour trouver tous les diviseurs d'un nombre entier n, on teste la divisibilité de n par tous les nombres inférieurs ou égaux à \sqrt{n} .

EXERCICE 2

Dresser la liste des diviseurs des nombres suivants.

√Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/#correction-2

À RETENIR 99

Propriété

Tout nombre entier est divisible par 1 et par lui-même.

À RETENIR 99

Propriétés

- 1. Un nombre est divisible par 2 si son chiffre des unités est 0; 2; 4; 6 ou 8.
- 2. Un nombre est divisible par 3 si la somme de ses chiffres est divisible par 3.
- 3. Un nombre est divisible par 5 si son chiffre des unités est 0 ou 5.
- 4. Un nombre est divisible par 9 si la somme de ses chiffres est divisible par 9.
- 5. Un nombre est divisible par 10 si son chiffre des unités est 0.

2. Division euclidienne

À RETENIR 99

Définition

Effectuer la **division euclidienne** d'un nombre entier (le **dividende**) par un autre différent de 0 (le **diviseur**), c'est trouver deux nombres entiers, le **quotient** et le **reste**, tels que :

dividende = diviseur × quotient + reste

Le reste étant toujours inférieur au diviseur.

EXERCICE 3

Compléter la phrase suivante.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/#correction-3.

EXERCICE 4

Poser et effectuer la division euclidienne de 621 par 3.

À RETENIR 99

Propriété

Si, à l'issue de la division euclidienne d'un nombre par un autre, le reste vaut 0; alors, le premier nombre est divisible par le second.

EXERCICE 5
Expliquer de deux manières différentes pourquoi 621 est divisible par 3.
1 2
◆Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/#correction-5
3. Nombres premiers
À RETENIR 99
Définition
Un nombre premier est un nombre entier plus grand que 1 qui n'est divisible que par 1 et par lui-même.
EXERCICE 6
Donner 4 nombres premiers inférieurs à 100.
1
✓ Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/#correction-6
À RETENIR 99
Méthode
Pour montrer qu'un entier naturel n est premier, on vérifie qu'il ne possède aucun diviseur inférieur ou égal à \sqrt{n} .
EXERCICE 7
1. Montrer que 23 est un nombre premier.
2. Montrer que 12 345 678 n'est pas un nombre premier.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/#correction-7.
À RETENIR 30

Propriété

Il existe une infinité de nombres premiers.

4. Décomposition en produit de facteurs premiers

À RETENIR 99

Théorème fondamental de l'arithmétique

Tout nombre entier plus grand que 1 peut s'écrire comme produit de nombres premiers. Il s'agit de la **décomposition en produit de facteurs premiers** de ce nombre.

De plus, cette décomposition est unique (si l'on ne tient pas compte de l'ordre des facteurs).

EXERCICE 8

Décomposer les nombres entiers suivants en produit de facteurs premiers.

✓ Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/#correction-8.

Ш

Fractions irréductibles

À RETENIR 99

Définition

Deux nombres entiers sont dits **premiers entre eux** s'ils n'admettent aucun diviseur commun hormis 1.

EXERCICE 9

Voir la correction : https://mes-cours-de-maths_fr/cours/troisieme/arithmetique/#correction-9

À RETENIR 00

Méthode

Pour montrer que deux nombres sont premiers entre eux, on vérifie qu'ils n'ont aucun facteur commun dans leur décomposition en produit de facteurs premiers.

EXEMPLE •

46 et 5 460 ne sont pas premiers entre eux car $46 = 2 \times 23$ et $5 460 = 2^2 \times 3 \times 5 \times 7 \times 13$.

À RETENIR 99

Définition

Une fraction est **irréductible** lorsque l'on ne peut plus la simplifier (ie. l'écrire avec un numérateur et un dénominateur plus petits).

EXEMPLE 🔋

 $\frac{3}{4}$ est une fraction irréductible mais $\frac{5}{10}$ ne l'est pas (car $\frac{5}{10} = \frac{1}{2}$).

À RETENIR 99

Propriété

Une fraction est irréductible si son numérateur et son dénominateur sont premiers entre eux.

EXERCICE 10

Dire si les fractions suivantes sont irréductibles. Les réduire dans le cas contraire.

Voir la correction: https://mes-cours-de-maths.fr/cours/troisieme/arithmetique/#correction-10.