PROGRAMA DE BOLSAS ITAÚ (PBI)

Edital 1° Semestre de 2021

Modalidade de bolsa	Iniciação Científica				
Título do projeto:	Chatbot Q&A multi-agente				
Tópico abordado no projeto:	Chatbots				
Nome do aluno:	Enzo Bustos Da Silva				
Depto e Unidade do Aluno:	PCS - POLI				
Ano de Ingresso na USP:	2019				
Nome do Orientador:	Anna Helena Reali Costa				
Depto do Orientador:	PCS				
E-mail do Aluno:	enzobustos@usp.br				
E-mail do Orientador:	anna.reali@usp.br				
Link para o CV Lattes do Aluno:	CV Lattes - Enzo Bustos				
Link para o CV Lattes do Orientador:	CV Lattes - Anna Reali				

Chatbot Q&A multi-agente

Enzo Bustos da Silva (aluno de IC) Anna Helena Reali Costa (orientadora)

Resumo

O objetivo deste trabalho de Iniciação Científica é tomar contato com arquiteturas de agentes conversacionais e desenvolver um *chatbot* informativo de Q&A utilizando uma arquitetura multi-agente. Para motivação, como a ONU marcou o ano de 2021 como o início da década dos oceanos e o território marítimo brasileiro é uma verdadeira riqueza nacional que abrange uma posição de destaque em diversos tópicos, como economia, meio ambiente, pesquisa científica e soberania nacional, este tópico foi escolhido para o domínio de aplicação do *chatbot*. Este território recebe o nome de Amazônia Azul por ser comparável em extensão à Amazônia florestal. Como esse tópico é desconhecido por uma vasta parte da população, isso motivou esse trabalho, com o qual dados publicamente disponíveis serão utilizados para o desenvolvimento dos conteúdos das conversas do *chatbot*.

Palavras-Chave: Chatbots, sistemas multi-agente, Q&A

1 Introdução

Atualmente, os simuladores de conversas naturais feitos por humanos são um tipo de *software* que está cada vez mais comum no cotidiano das pessoas por conta de sua vasta aplicabilidade no mercado e facilidade de manuseio pelo usuário. Esses sistemas de diálogo são comumente conhecidos por *chatbots* e, apesar de contarem com diversas terminologias para sua classificação, podem ser agrupados em três grupos majoritários[3][4]:

- Sociais: cujo objetivo consiste em propiciar interação e entretenimento ao usuário. Sendo assim, esses *chatbots* são projetados para manter conversas e interagir de diversas formas com os indivíduos por períodos de longa duração. São classificados como sociais os programas cujo funcionamento é semelhante ao "Robô Ed" e a "XiaoIce" [8].
- Orientados a tarefas: são programados para auxiliar o usuário, da maneira mais eficiente possível, na resolução de uma tarefa específica. Dessa forma, os diálogos seguem uma estrutura definida e têm duração limitada. Esse tipo de *chatbot* é muito utilizado em serviços de atendimento online, como quando há um assistente virtual acompanhando o usuário durante, por exemplo, uma compra de ingressos de cinema.

• Q&A: são majoritariamente aplicados para sanar dúvidas recorrentes dos usuários através de respostas elaboradas autonomamente a partir de coletâneas de textos fornecidos a priori ou da web. São encontrados com frequência nas redes sociais de lojas e empresas que recebem muitas perguntas de vários clientes. Eles são muito úteis, pois além de automatizar o serviço, ainda conseguem funcionar vinte e quatro horas por dia, sete dias por semana, sem queda de produtividade ou qualidade do serviço. Esse tipo de chatbot é amplamente utilizado para facilitar a consulta do usuário às FAQs da empresa[5], disponibilizando respostas de forma rápida e humanizada a perguntas muito frequentes como "Qual o horário de funcionamento da loja?".

Como nosso objetivo é criar um *chatbot* informativo, o modelo Q&A é mais apropriado. A temática escolhida foi a região da Amazônia Azul, uma vez que a Organização das Nações Unidas (ONU) declarou que de 2021 a 2030 como a Década da Ciência Oceânica para o Desenvolvimento Sustentável e, sabendo que o Brasil é dono de uma enorme costa com 7.367 km[2], tão grande que é chamada de Amazônia Azul para chamar a atenção às imensas riquezas da área oceânica sob jurisdição brasileira, equivalentes a 3.539.919 km² [7].

Dessa forma, o objetivo deste trabalho de Iniciação Científica será desenvolver um *chatbot* multi-agentes para que este promova a disseminação de informações e conhecimentos para o público geral acerca dessa área brasileira.

2 Metodologia

A arquitetura escolhida é a de multi-agentes, usando ferramentas disponíveis no *Watson Assistant*, devido à facilidade de criação oferecida por estas ferramentas, permitindo não somente um primeiro contato com *chatbots* mas também desenvolvendo conhecimentos e habilidades do aluno nesta importante área de pesquisa.

Dessa forma, será criado um bot de interface, chamado de Agent Bot que será capaz de reconhecer a intenção do usuário e em seguida encaminhar para o bot especialista apropriado para tratamento e geração de respostas. Um bot especialista é aquele treinado para responder perguntas sobre um determinado tema relacionado a ele, como por exemplo Clima ou Biodiversidade.

Cada um desses bots especialistas é equivalente a uma skill dentro do Watson Assistant, que seria um domínio do chatbot como um todo. Essa arquitetura ainda é eficiente se o usuário usuário quiser transitar entre os diferentes bots; isso seria plasível no nosso estudo por exemplo ao perguntar uma informação geral e depois procurar detalhes sobre essas informações nos bots especialistas. Na arquitetura multi-agentes, cada agente é um bot especialista. A agregação de tópicos de especialidade fica, assim, mais fácil, permitindo uma construção em partes do chatbot.

Um esquema dessa estrutura pode ser visto na Figura 1.

A dinâmica do processo é então definida em passos:

Figura 1: Esquema da arquitetura multi-agentes para o chatbot.

- 1. O usuário acessa a aplicação e envia uma mensagem, constituída por uma pergunta.
- 2. O aplicativo Node.js redireciona a mensagem para o Agent Bot.
- 3. O Agent Bot determina a intenção do usuário e repassa para aquele Skill Bot responsável por diálogos na intenção detectada.
- 4. A conversa do usuário então se passa com esse *Skill Bot*, especialista em um determinado tema no contexto da Amazônia Azul. Ao término da conversa, um novo ciclo se inicia.

A referência [1] dá mais informações básicas sobre o processo, a arquitetura e as ferramentas a serem utilizadas. Um modelo de referência para a pesquisa aqui desenvolvida está detalhada em [6], sobre um outro tema de interesse (Covid-19).

3 Relevância e Potenciais Aplicações

As ideias principais deste projeto são a de propiciar uma nova abordagem para algoritmos de agentes conversacionais, expandindo a capacidade de resposta sobre assuntos específicos. Dessa forma, visa-se contribuir com o desenvolvimento de inovações em *chatbots* com uma real competência em interagir de forma proveitosa com seus usuários. Esses *chatbots* são importantes intermediários para

dar assistência adequada às dúvidas e questões dos usuários. Existe a expectativa que este trabalho propicie publicações em conferências ou periódicos da área, além de compartilhar progressos e conhecimento com os demais membros e pesquisadores vinculados ao ${\rm C^2D}$.

4 Materiais e Infraestrutura

Esse trabalho será baseado na linguagem de programação *Python* e suas principais bibliotecas de machine learning, bem como na ferramenta *Watson Assistant*, técnicas de *Web Scrapping* e uso de *APIs* pertinentes para gerar as informações necessárias para o projeto.

Vale ressaltar que estas ferramentas são de acesso livre e não incorrem em custos adicionais de projeto. Pretende-se usar máquinas e servidores do C^2D para as etapas de projeto, pois é sabido que a busca de hiperparâmetros adequados para o sistema Q&A exigem alto poder computacional. Se necessário, na etapa final do projeto será usada uma infraestrutura de nuvem. O bolsista deverá trabalhar no C^2D e participar de atividades com os demais membros do centro, com o objetivo de fomentar novas colaborações.

5 Atividades e Cronograma

Este projeto foi concebido para ser realizado no período compreendido por um ano. As atividades compreendidas neste período serão listadas abaixo e o cronograma se encontra na tabela 1:

- **Etapa 1** : revisão bibiliográfica, com estudo da literatura de chatbots Q&A.
- Etapa 2 : definição da arquitetura a ser construída.
- Etapa 3: construção e programação do modelo.
- **Etapa 4** : testes preliminares com base de dados existentes e melhoria da arquitetura.
- Etapa 5 : Coleta de dados e criação da base de dados sobre a Amazônia Azul.
- Etapa 6: Testes exaustivos.
- Etapa 7 : Organização e documentação do projeto para uso futuro.
- Etapa 8 : Escrita de artigo para divulgação científica.

Tabela 1: Cronograma

Atividades	Mês 1	Mês 2	Mês 3	Mês 4	Mês 5	Mês 6	Mês 7	Mês 8	Mês 9	Mês 10	Mês 11	Mês 12
Etapa 1												
Etapa 2												
Etapa 3												
Etapa 4												
Etapa 5												
Etapa 6												
Etapa 7												
Etapa 8												

Referências

- [1] Watson assistant multi bot agent. https://github.com/IBM/watson-assistant-multi-bot-agent. Acessado em: 09/01/2021.
- [2] Belmiro M. Castro, Frederico P. Brandini, Marcelo Dottori, and João F. Fortes. A amazônia azul: recursos e preservação. Revista USP, (113):7, June 2017.
- [3] Asbjørn Følstad, Marita Skjuve, and Petter Bae Brandtzaeg. Different Chatbots for Different Purposes: Towards a Typology of Chatbots to Understand Interaction Design. Springer International Publishing, 2019.
- [4] Jianfeng Gao, Michel Galley, and Lihong Li. Neural approaches to conversational AI. Foundations and Trends® in Information Retrieval, 13(2-3):127–298, 2019.
- [5] Bhavika R. Ranoliya, Nidhi Raghuwanshi, and Sanjay Singh. Chatbot for university related FAQs. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, September 2017.
- [6] R. K. W. Tsuzuki and C. N. Asai. Desenvolvimento de um chatbot informacional sobre a covid-19. page 69, 2020.
- [7] Marianne Wiesebron. Amazonia azul: Pensando a defesa do território marítimo brasileiro. Rev. Brasileira de Estratégia e Relações Internacionais, 2(3):107–131, 2013.
- [8] Li Zhou, Jianfeng Gao, Di Li, and Heung-Yeung Shum. The design and implementation of xiaoice, an empathetic social chatbot. *Computational Linguistics*, 46(1):53–93, 2020.

Júpiter - Sistema de Gestão Acadêmica da Pró-Reitoria de Graduação HISTÓRICO ESCOLAR COMPLETO

Quantidade de reingressos: 0

Unidade: Escola Politécnica

Aluno: **11261531/1 - Enzo Bustos da Silva** Ingresso: Vestibular 2 Lista - 01/02/2019 Curso: 3032/3170 - Engenharia

Habilitação: Engenharia Elétrica - Ênfase em Computação

Dados pessoais

Data de nascimento: 16/05/2000 Naturalidade: Não informado

Cédula de identidade: RG 552555526 São Paulo

Nacionalidade: Não informado

Forma de ingresso : Processo seletivo - Vestibular

Data de ingresso : Fev/2019 Classificação na carreira: 247

Endereço da Unidade:

Professor Luciano Gualberto 380 Travessa 3

CEP: 05508-010 São Paulo-SP

Júpiter - Sistema de Gestão Acadêmica da Pró-Reitoria de Graduação HISTÓRICO ESCOLAR COMPLETO

Quantidade de reingressos: 0

Unidade: Escola Politécnica

Aluno: **11261531/1 - Enzo Bustos da Silva** Ingresso: Vestibular 2 Lista - 01/02/2019 Curso: 3032/3170 - Engenharia

Habilitação: Engenharia Elétrica - Ênfase em Computação

		Creditos				Ativida	de		
Sigla	Nome da Disciplina	AU	TR	СН	CE	СР	ATPA	FREQ	NOTA
	2019 1º. Sen	nastra							
4323101	Física I	3		45				100	7.3 A
MAC2166	Introdução à Computação	4		60				100	8.8 A
MAT2453	Cálculo Diferencial e Integral I	6		90				95	8.4 A
MAT3457	Álgebra Linear I	4		60				100	6.3 A
PCC3100	Representação Gráfica para Projeto	3	1	75				100	7.1 A
PQI3102	Introdução à Engenharia Química	3	1	75				90	7.5 A
QFL2129	Química Inorgânica	4		60				100	8.0 A
	2019 2º. Sen	nestre							
4323102	Física II	2		30				90	6.3 A
MAT2454	Cálculo Diferencial e Integral II	4		60				100	7.1 A
MAT3458	Álgebra Linear II	4		60				98	6.0 A
PME3100	Mecânica I	6		90				100	6.5 A
	2020 1º. Sen	nestre							
0303200	Probabilidade	2		30				100	6.6 A
4323201	Física Experimental A	2		30				100	9.2 A
4323203	Física III	4		60				80	7.5 A
MAT2455	Cálculo Diferencial e Integral III	4		60				100	7.5 A
PCS3111	Laboratório de Programação Orientada a Objetos para Engenharia Elétrica	3		45				100	8.8 A
PCS3115	Sistemas Digitais I								Т
PEF3208	Fundamentos de Mecânica das Estruturas								Т
PSI3211	Circuitos Elétricos I								Т
PSI3212	Laboratório de Circuitos Elétricos								Т
	2020 2º. Sen	nestre							
4323202	Física Experimental B	2		30				100	7.2 A
4323204	Física IV	4		60				80	8.3 A
MAT2456	Cálculo Diferencial e Integral IV	4		60				100	7.2 A
PCS3110	Algoritmos e Estruturas de Dados para Engenharia Elétrica	4		60				75	7.9 A
PMR3508	Aprendizado de Máquina e Reconhecimento de Padrões			60				97	6.9 A
PRO3200	Estatística			60				100	5.9 A

Créditos obtidos: aula :80 trabalho : 2 total: 82 Média ponderada: 7.4

Créditos matriculados: aula :80 trabalho : 2 total: 82

Carga Horária Total: 1260 h

Média ponderada com reprovações: 7.4

Os dados abaixo foram processados em : 05/08/2020 Atenção: Valores para seleção das optativas : 3.5054

Média normalizada: 5.8643

Média ponderada de seu curso : 6.0750

Júpiter - Sistema de Gestão Acadêmica da Pró-Reitoria de Graduação HISTÓRICO ESCOLAR COMPLETO

Quantidade de reingressos: 0

Unidade: Escola Politécnica

Aluno: 11261531/1 - Enzo Bustos da Silva Ingresso: Vestibular 2 Lista - 01/02/2019 3032/3170 - Engenharia

Habilitação: Engenharia Elétrica - Ênfase em Computação

Totais de Créditos Acumulados por Tipo de Obrigatoriedade:

	Aula	Trabalho
Obrigatórias	76	2
Opt.Eletivas	0	0
Opt.Livres	4	0

- As notas variarão de zero a dez, podendo ser aproximadas até a primeira casa decimal (Regimento Geral, artigo 83).
- Será aprovado, com direito aos créditos correspondentes, o aluno que obtiver nota final igual ou superior a cinco e tenha, no mínimo, setenta por cento de freqüência na disciplina (Regimento Geral, artigo 84).
- Um crédito aula corresponde a 15 horas de carga horária semestral, e o trabalho a trinta.
- Este Histórico Escolar é completo, mostrando eventuais reprovações e/ou trancamentos de matrícula.

Legenda:

AU = Crédito Aula TR = Crédito Trabalho CH = Carga Horária

MA = Matriculado T = Trancado CE = Carga Horária de Estágio
A = Aprovado RN = Reprovado por Nota AE = Aproveitamento de Estudo
RA = Reprovado por Nota e Frequência DI = Dispensado RF = Reprovado por Frequência

CP = Carga Horária práticas componentes curriculares DS = Dispensado por prova de suficiência (Res. CoG 4844/01)

ATPA = Atividades Teórico-Práticas de Aprofundamento P = Pendente

I = Inscrição em Turma Lotada IP = Inscrição em optativa Preterida IL = Inscrição em Lista de Espera

Média Ponderada das disciplinas em que o aluno obteve aprovação (não inclui notas de AE e DS).

Observações

Curso reconhecido pela Portaria CEE/GP nº 186 de 06/08/2020, D.O.E. de 07/08/2020.

Enzo Bustos da Silva

Endereço para acessar este CV: http://lattes.cnpq.br/2213125912686237

ID Lattes: 2213125912686237

Última atualização do currículo em 06/01/2021

Possui ensino-medio-segundo-graupelo Colégio Agostiniano Mendel(2017). Tem experiência na área de Engenharia Elétrica, com ênfase em Computação. (Texto gerado automaticamente pela aplicação CVLattes)

Identificação

Nome

Nome em citações bibliográficas

Lattes iD

Enzo Bustos da Silva

SILVA, E. B.

http://lattes.cnpq.br/2213125912686237

Endereço

Formação acadêmica/titulação

2019

Graduação em andamento em Engenharia Elétrica - Ênfase em Computação.

Universidade de São Paulo, USP, Brasil.

2015 - 2017 Ensino Médio (2º grau).

Colégio Agostiniano Mendel, CAM, Brasil.

Áreas de atuação

1.

Grande área: Engenharias / Área: Engenharia Elétrica / Subárea: Computação.

Idiomas

Inglês Alemão Compreende Bem, Fala Razoavelmente, Lê Bem, Escreve Razoavelmente.

Compreende Pouco, Fala Pouco, Lê Pouco, Escreve Pouco.

Produções

Produção bibliográfica