Machine Methods

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the "Work"), you agree that this license grants permission to use the contents contained herein, but does not give you the right of ownership to any of the textual content in the book or ownership to any of the information or products contained in it. *This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher*. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION ("MLI" or "the Publisher") and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs ("the software"), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to insure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs. The Work is sold "as is" without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book, and only at the discretion of the Publisher. The use of "implied warranty" and certain "exclusions" vary from state to state, and might not apply to the purchaser of this product.

Machine Methods

A Self-Teaching Introduction

M. Adithan, PhD

MERCURY LEARNING AND INFORMATION

Dulles, Virginia Boston, Massachusetts New Delhi Copyright ©2019 by Mercury Learning and Information LLC. All rights reserved. Original title and copyright: *Mechanical Engineering 4/E*. Copyright ©2014 by Khanna Publishers. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai Mercury Learning and Information 22841 Quicksilver Drive Dulles, VA 20166 info@merclearning.com www.merclearning.com (800) 232-0223

M. Adithan. Machine Methods: A Self-Teaching Introduction.

ISBN: 978-1-683921-32-5

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2018943743

181920 321

Our titles are available for adoption, license, or bulk purchase by associations, universities, corporations, etc. Digital versions of this title may be purchased at www.authorcloudware. com or other e-vendors. For additional information, please contact the Customer Service Dept. at 1-(800) 232-0223 (toll free) or info@merclearning.com.

The sole obligation of Mercury Learning and Information to the purchaser is to replace the disc, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

CONTENTS

Chapter 1	Mechanical Engineering Drawing	1
Chapter 2	Applied Mechanics, Strength of Materials, and Fluid Mechanics	5
Chapter 3	Ferrous Materials and Metallurgy	19
Chapter 4	Non-Ferrous Materials	29
Chapter 5	Foundry Technology	35
Chapter 6	Heat Treatment of Steels	47
Chapter 7	Soldering	57
Chapter 8	Brazing	61
Chapter 9	Welding Technology	65
Chapter 10	Hand Tools and Sawing Practice	77
Chapter 11	Shapers	79
Chapter 12	Turning and Lathe Work	85
Chapter 13	Drilling, Reaming, Threading, and Boring Practice	99
Chapter 14	Milling Machines	109

Chapter 15	Cutting Tool Materials115
Chapter 16	Grinding Practice119
Chapter 17	Lapping, Honing, and Super Finishing129
Chapter 18	Gears
Chapter 19	Jigs and Fixtures
Chapter 20	Broaching
Chapter 21	Machine Tool Technology143
Chapter 22	Numerically Controlled Machine Tools
Chapter 23	Modern Machining Methods153
Chapter 24	Non-Ferrous Materials
Chapter 25	Workshop Measuring Instruments (Metrology)167
Chapter 26	Thermal Engineering
Chapter 27	Refrigeration and Air-conditioning191
Chapter 28	Automobile Engines
Chapter 29	Automobile Electrical Equipment211
Chapter 30	Automotive Chassis
Chapter 31	Supervisory Development221
Chapter 32	Work Study and Industrial Engineering 229

Chapter 33	CAD/CAM/CIM (Computer Aided Design,
	Computer Aided Manufacturing, and
	Computer Integrated Manufacturing)239
Chapter 34	Manufacturing Systems

Mechanical Engineering Drawing

Choose the correct alternative:

- (a) 15 degrees with the horizontal
- (b) 30 degrees with the horizontal
- (c) 60 degrees with the horizontal
- (d) 120 degrees with the horizontal
- 2. The device most often used in measuring cross-sectional areas shown on an engineering drawing is a:
 - (a) Pantograph

(c) Geodimeter

(b) French curve

(d) Planimeter

- **3.** For a sphere:
 - (a) any section will be an ellipse
 - (b) auxiliary views are necessary to fully describe the figure
 - (c) a bottom view will be necessary to adequately represent the object
 - (d) all views of the object are similar
- **4.** The system of presenting views of an object generally used in engineering drafting is:
 - (a) Trimetric projection

(c) Isometric projection

(b) Oblique projection

(d) Orthographic projection

5.	Of the following items, the block of an engineering dra (a) number of hours require	wing	g is the	:	be found	in the title
	(b) name of the designer					
	(c) scale of the drawing					
	(d) date of completion of the	he di	rawing			
6.	On a drawing of an object,	the l	neavies	t lines would u	isually be:	
	(a) invisible lines		(c)	the outline		
	(b) main dimension lines		(d)	the centerline	es	
7.	If the front and top views of then the object would be a:		olid obj	ect are circles	of the same	e diameter,
	(a) Torus		(c)	Parallelopipe	d	
	(b) Ellipsoid		(d)	Sphere		
8.	A pictorial drawing, two of horizontal, is known as: (a) a diametric drawing (b) an isometric drawing	of the	(c)	of which are a perspective an oblique dra	drawing	s with the
9.	In the part drawing of a con	npoi	nent, th	ne symbol ∇ re	efers to the	:
	(a) class of fit					
	(b) finish on that surface					
	(c) type of knurl to be mad	hine	ed on th	at surface		
	(d) class of steel to be used	for	the cor	nponent.		
10.	A detailed drawing of comp is known as a:				mponent is	fabricated
	(a) perspective drawing		(c)	trilinear draw	ing	
	(b) contour drawing		(d)	shop drawing		
11.	The name of the instrumen	t use	ed to fin	nd the areas of	f irregular s	shapes is:
	(a) Planimeter	(c)	Pertho	ometer	(e)	Indicator
	(b) Micrometer	(d)	Vernie	er caliper		

12.	An instrument consisting of four jo for copying drawings or maps to a	ointed pins forming a parallelogram used my desired scale is called a:
	(a) Proportional divider	(c) Planimeter
	(b) Beam compass	(d) Pantograph
13.	On a drawing showing front, rear, a views are most likely to be:	and side elevations and plan, the projected
	(a) isogonic	(c) isographic
	(b) orthographic	(d) isometric
14.	Of the following, the most impordrawing is to:	tant reason for checking an engineering
	(a) check accuracy of the scaling(b) eliminate unnecessary section	ns
	(c) rectify the errors or mistakes(d) check for the time taken to co	omplete the drawing
15.	An approved method of obtaining means of a:	ng the area of an irregular figure is by
	(a) Slide caliper	(c) Planimeter
	(b) Micrometer	(d) Pantograph
16.	On the part drawings of component ∇ denotes:	nts which require machining, the symbol
	(a) type of steel to be used for the	e component
	(b) finish required on that surface	e
	(c) class of fit	
	(d) tolerance value on the dimens	sion
	(e) welding is to be done	
17.	On a production drawing, the de $M20 \times 1.0$. In this 1.0 represents:	tails of a Metric thread are specified as:
	(a) the depth of the thread in mm	n
	(b) the pitch of the thread in mm	

4 • MACHINE METHODS

- (c) the diameter of the wire (in mm) used to measure the thread characteristics
- (d) the diameter of the thread, in mm
- **18.** Surface roughness on a drawing is represented by:
 - (a) Triangle

(c) Square

(b) Rectangle

- (d) Parallelogram
- **19.** RMS value stands for:
 - (a) Root minimum square value
 - (b) Root mean square value
 - (c) Root maximum square value
- **20.** CLA value is used to represent:
 - (a) Surface dimensions
 - (b) Surface hardness
 - (c) Surface roughness.

1. Answer Key

1. (b)	6. (c)	11. (a)	16. (b)
2. (d)	7. (d)	12. (d)	17. (b)
3. (d)	8. (b)	13. (b)	18. (a)
4. (d)	9. (b)	14. (c)	19. (b)
5. (a)	10. (d)	15. (e)	20. (c)

Applied Mechanics, Strength of Materials, and Fluid Mechanics

Choose the correct alternative:

1.	The hydrostatic pressure in a 60 cm diameter ductile iron water main is
	5 kg/cm ² . If the thickness of the pipe is 12.5 mm, then the tension in the
	pipe material due to the hydrostatic pressure, is most nearly equal to:

(a) 30 kg/cm^2

(c) 90 kg/cm²

(e) 5 kg/cm² only

(b) 60 kg/ cm²

(d) 120 kg/ cm²

- **2.** The compressibility of a substance may be found from:
 - (a) the modulus of elasticity (E)
 - (b) the reciprocal of the modulus of elasticity
 - (c) the bulk modulus of elasticity (K)
 - (d) the reciprocal of the bulk modulus of elasticity
 - (e) the Poisson's modulus
- **3.** Within the elastic limit the ratio as defined by *Unit lateral contraction* is called:

Unit axial elongation

(a) the modulus of elasticity (E) (d) Young's modulus

(b) the modulus of rigidity (N) (e) an imaginary ratio

(c) Poisson's ratio

4.	4. In a 6×20 wire rope, the No.6	6 indicat	tes the:		
	(a) diameter of the wire rope:	in mm			
	(b) number of strands				
	(c) number of wires				
	(d) gauge number of the wire				
5.	5. A spring has a constant of 5 kg/through a distance of 6 cm is:	A spring has a constant of 5 kg/cm. The total energy required to elongate it through a distance of 6 cm is:			
	(a) 30 kg. cm (c)	360 kg	, em	(e) 150 kg. cm	
	(b) 180 kg. cm (d)	90 kg.	em		
6.	5. Sleeves are used around anchoings primarily to:	or bolts	that connect ste	eel columns to foot-	
	(a) allow for minor lateral adju	ustment	s of anchor bolts	}	
	(b) provide better bearing of b	base pla	te on the footing	, ,	
	(c) provide greater bond betw	veen and	chor bolt and foo	ting	
	(d) allow the proper setting of	the col	umn as to elevat	ion	
7.	7. A round rod with a right han rod of the same diameter but attachments, the one which is	with a l	eft handed threa	ad. Of the following	
	(a) Turnbuckle	(c)	wing nut		
	(b) Thimble	(d)	eyebolt		
8.	3. A spring with a uniform scale 600 kg applied to it. The work			ession has a force of	
	(a) 3000 kg. cm	(c)	$1500 \mathrm{\ kg.\ cm}$		
	(b) 6000 kg. cm	(d)	72,000 kg. cm		
9.	9. A 100 kg block resting on a hotion of 0.30 and is acted on by tance under the above condition	a horizo			
	(a) 20 kg (c)	50 kg		(e) 100 kg	
	(b) 30 kg (d)	10 kg			

10.	A flywheel is used on rotating machinery to:			
	(a) allow rapid acceleration			
		store and release energy as re	quir	ed
	(c) decrease the weight of the equipment			
		balance the rotating parts	•	
11.	Ste	el columns are tied to concrete	e fou	ndations by:
	(a)	grouting	(c)	cement paste
	(b)	anchor bolts	(d)	gunite
12.	AC	C.H.U (Centigrade-Heat-Unit)	is aı	n unit of:
	(a)	force	(c)	power
	(b)	energy		temperature
13.		If two objects are weighed in plant Mercury and it is found that they both lose the same weight, then the two objects must have identical:		
	(a)	specific gravities	(d)	densities
	(b)	weights in air	(e)	weights in Mercury
	(c)	volumes		
14.	The	e law of conservation of mome	ntun	n states that:
	Ι	the linear momentum of the s	syste	m remains constant
	II	the angular momentum of the	e sys	tem remains constant
	III	the sum of the linear and a constant	ngul	ar momenta of the system remain
	Which of the above statement (s) is/are true?			re true?
	(a)	Only I		
	(b)	Only II		
	(c)	Only III		
	(d)	Only I and II		
	(e)	All three statements are corre	ect	

15	An anchor block at a hand in a	ning line must be designed primarily to	
13.	An anchor block at a bend in a pipe line must be designed primarily to resist forces due to:		
	(a) friction and acceleration		
	(b) friction and pressure		
	(c) pressure and acceleration du	e to gravity	
	(d) static head		
	(e) pressure and velocity		
16.	A pilot in an airplane observes that objects in the cabin are just floating when he is at the top of a loop. The radius of curvature of the loop is 100 meters. The speed of the plane is closest to:		
	(a) 32 meters/sec	(d) 640 meters/sec	
	(b) 64 meters/sec	(e) none of these	
	(c) 320 meters/sec		
17.	• Two bodies of identical shape are dropped from a helicopter. If the density of the two bodies is not the same then:		
	(a) because of Stoke's law they we reach the ground at the same	rill achieve the same terminal velocity and e time	
	(b) the less dense one will arrive	first	
	(c) the more dense one will arrive first		
	(d) it is not possible to predict w	hich will arrive first	
	(e) they will become attracted to	each other and arrive at the same time	
18.	If you double the speed of a cent	rifugal pump,	
	I twice as much power is requ	ired to operate it	
	II the volumetric discharge is i	ncreased 4 times	
	III the head becomes 4 times as	great	
	Which of the above statement(s)	is/are true?	
	(a) all of the above statements ar	re true	
	(b) only II and III	(d) only I	
	(c) only III	(e) only II	

19.	In a	loaded	horizonta	l, hom	ogenous	rectar	ngular	beam,	the	horizontal
	shear	ring stre	ss at any c	ross-se	ction per	pendic	ular to	the ne	utral	axis

- (a) has a maximum value at the outer fibers of the beam
- (b) is equal to zero
- (c) has a maximum value at the neutral axis and is equal to 1.5 times the average shearing stress at that section
- (d) is constant across that section
- (e) equals 2/3 the bending stress at the outer fibers
- 20. Which of the following is true concerning St. Venant's Principle?
 - (a) Deformations of all materials must be equal
 - (b) It is a method for determining the stress conditions at the end of the plates
 - (c) Stress conditions approach uniformity as the distance from the point of application of the force increases
 - (d) If left long enough, the stresses will tend to relieve themselves
- **21.** Under atmospheric conditions, the maximum height through which a fluid of specific gravity *x* may be siphoned is:
 - (a) x/10 meters

(d) 10/x meters

(b) (1-x)/10 meters

(e) (1 + x)/10 meters

- (c) 10/(1-x) meters
- **22.** What unbalanced torque will produce an angular acceleration of 2 rad/sec² in a 120-kg disc having a radius of gyration of 2 meters?
 - (a) 960 m-kg
- (c) 48 m-kg

(e) 480 m-kg

(b) 240 m-kg

(d) 96 m-kg

- **23.** If a longitudinal wave of frequency 1000 vibrations per second has a wave length of 10 meters, its speed of propagation is:
 - (a) 100 meters/second

(d) 10,000 meters/second

(b) 2500 meters/second

(e) 20,000 meters/second

(c) 5000 meters/second

24.	An impulse is a product of:					
	(a) force and displacement (d) force and time					
	(b) force and velocity (e) mass and acceleration					
	(e) mass and velocity					
25.	A model airplane is made to an exact scale of 1/6 that of the prototype aircraft. If the model is to be flown in the same atmospheric conditions as the prototype, then the model must be flown—as fast as the prototype.					
	(a) Twice (c) One-sixth (e) Thirty-six times					
	(b) One-half (d) Six times					
26.	A Newton is the force required to give:					
	(a) one kg mass an acceleration of 1 meter/ \sec^2					
	(b) one kg mass a velocity of 1 meter/sec					
	(c) one kg mass a velocity of 1 cm/sec					
	(d) one kg mass an acceleration of 10 meters/ sec ²					
27.	If a power screw is being turned at 10 R.P.M. by a constant applied torque of 50 kg-cm, then the work done in one revolution is most nearly equal to—kg-cm.					
	(a) 25π (c) 100π (e) 200π					
	(b) 50π (d) 150π					
28.	A lift cable will have its greatest tension when the lift cabin is moving:					
	(a) down and is coming to rest (d) downward at a constant speed					
	(b) upward at a constant speed (e) when it is at rest					
	(c) upward and is coming to rest					
29.	The frequency of a vibrating string is:					
	(a) inversely proportional to the square of the length					
	(b) directly proportional to the square of the tension					
	(c) inversely proportional to the square root of the mass per unit length					
	(d) inversely proportional to the diameter of the string					
	(e) directly proportional to the square root of the tension and inversely proportional to the mass per unit length					

30.	In a system consisting of a equilibrant consists of:	any number of concurrent,	coplanar forces, the
	(a) a couple	(d) all of the above	е
	(b) a single force	(e) none of the ab	
	(c) a single force plus a co		
31.	A body moves from rest w distance covered in 5 seco	ith a constant acceleration on the desired of the constant acceleration accelerati	of 5 meters/sec². The
	(a) 125 meters	(c) 250 meters	(e) 31.25 meters
	(b) 62.5 meters	(d) 36 meters	. ,
32.		natic viscosity, and density ationship between these pa	
	(a) $v = pu$	(c) $v^2 = pu$	(e) none of these
	(b) $u = pv$	(d) $u^2 = pv$	
33.	A flywheel on a motor go number of revolutions ma	es from rest to 1000 R.P.M de is:	M. in 6 seconds. The
	(a) 1000	(c) 250	(e) 25
	(b) 500	(d) 50	
34.	Which statement is true cor	ncerning the laws of affinity f	or centrifugal pumps?
	(a) At constant impeller di of the R.P.M.	ameter the capacity is prop	ortional to the square
	(b) At constant impeller d	iameter the H.P. is proport	ional to the R.P.M.
	(c) At constant R.P.M. the diameter	head is proportional to the	cube of the impeller
	(d) At constant R.P.M. the ler diameter	e H.P. is proportional to the	square of the impel-
	(e) None of these		
35.	A flywheel is accelerated for The time taken is:	rom 220 R.P.M. to 380 R.P.M	M. in 100 revolutions.
	(a) 20 seconds	(c) 16 seconds	(e) 12 seconds
	(b) 18 seconds	(d) 14 seconds	

36.	A plough-ox works at the up is closest to:	rate of 1/10 H.P. for 10 he	ours. The calories used				
	(a) 640×10^3	(c) 3.20×10^3	(e) 64.0				
	(b) 6.40×10^3	(d) 640					
37.	If a ball moves in a straig increasing speed, then wh						
	I Its acceleration is inc	ereasing					
	II Its acceleration is constant						
	III Its kinetic energy is increasing						
	IV Its potential energy is decreasing						
	(a) All four are correct	(c) II, III and IV	(e) I, II and III				
	(b) I and II only	(d) I, III and IV					
38.	A pipe 180 cm in diamet pipe wall is 12 mm thick.						
	(a) 112.5 kg/cm^2	(c) 1125 kg/ cm^2	(e) 4500 kg/cm^2				
	(b) 225 kg/cm^2	$(d)~2250~kg/~cm^2$					
39.	• An electric vehicle is driven by a D.C. motor which receives power from a 100 Volt battery. The vehicle is required to exert a constant tractive force of 90 kg at 12 km.p.h. The overall efficiency is 75%. The current drawn from the battery is:						
	(a) 2.70 Amp.	(c) 40.0 Amp.	(e) 400.0 Amp.				
	(b) 27.0 Amp.	(d) 270.0 Amp.					
40.	A rope is wrapped two further hung on one end. The pull is which of the following? the log is $1/\pi$):	l on the other end necessa	ary to keep equilibrium				
	(a) $W/e^2 \pi$	(c) 1000	(e) none of these				
	(b) W/e^4	(d) 4000					

41.	The	e expression $\frac{bd^3}{12}$ refers to
	(a)	The M of I of a rectangle
	(b)	the M of I of a rectangle
	(c)	the product of inertia of
	(d)	the section modulus of a
	(e)	the M of I of a triangle a
		_

- e about its base
- about an axis through its centroid
- a rectangle about a diagonal
- symmetrical channel
- lbout an axis through its centroid
- **42.** How is the frequency (f) of a vibrating string is related to the mass/unit length of the string (m)?
 - (a) f is proportional to m
- (d) f is proportional to $1/\sqrt{m}$
- (b) f is proportional to 1/m
- (e) none of these
- (c) f is proportional to \sqrt{m}
- **43.** Two men carry a log 20 m long weighing 300 kg and with its center of gravity 6 m from one end. One man is at the heavy end. Where must the other man be placed from the other end if each man carries 150 kg?
 - (a) 12 m

(c) 6 m

(e) 9 m

(b) 8 m

- (d) 11 m
- **44.** The formula for the extreme fiber stress in a cylindrical shaft of radius R is S = TR/I. The term I is:
 - (a) the *M* of *I* of the cross section about a diameter
 - (b) the polar *M* of *I* of the cross section about the longitudinal axis
 - (c) the polar M of I of the cross section about a diameter
 - (d) the product of inertia of the cross section about a diameter
 - (e) none of these
- **45.** In the formula $\frac{P}{A} = \frac{\pi^2 E^2}{(L/R)^2}$ for the design of columns, L/K is:
 - (a) the stiffiness ratio
- (d) Poisson's ratio
- (b) the rigidity factor
- (e) Young's modulus
- (c) the slenderness ratio

46.	A long steel pipe 120 cm 7 kg/cm2. The pipe wall is			
	(a) 1400 kg/cm^2	(e) 350 kg	g/cm ²	(e) 2800 kg/cm^2
	(b) 700 kg/cm ²	(d) 175 kg	g/cm ²	Ü
47.	The size or diameter of a sl	naft in any p	ower transmissi	on is proportional to:
	(a) speed of the shaft			
	(b) torque to be transmitte	ed		
	(c) horse power to be tran	smitted		
	(d) allowable shear stress		material	
48.	In riveted structural steel a beam to a column is:	work, the ty	ype of member	that usually connects
	(a) an angle	(c)	a gusset plate	
	(b) a channel		a tee	
49.	The experimental discover tional to the force causing	•	0	n of a solid is propor-
	(a) Maxwell's law	(c)	Hooke's law	
	(b) Boyle's law	(d)	Charles's law	
50.	The ratio of stress to strai and is called:	n within th	e elastic limit is	s given the symbol E
	(a) the shear modulus	(d)	the reversible	range
	(b) the modulus of rigidity	(e)	Hooke's consta	ant
	(c) Young's modulus			
51.	A vertical rectangular stee carries a load of 8000 kg. T is closest to (Assume $E=2$	The elongat	ion in the bar in	
	(a) 0.01 mm	(c) 0.10 n	nm	(e) 1.00 mm
	(b) 0.02 mm	(d) 0.20 n	nm	

52.	In the design of riveted jo	oints, Unwin's Rule gives	the relationship between:
	(a) diameter of the rivet	and the load	
	(b) thickness of the plat	e and the load	
	(c) thickness and crushi		
	(d) diameter of rivet and		
	(e) number of rivets and	l size of rivet	
53.	The joints used on unde	rground CI pipes are ge	nerally:
	(a) Tongue and groove j	oints (c) Bell and s	spigot joints
	(b) Flanged joints	(d) Coupling	joints
54.	The Brinell number refe	ers to a material's:	
	(a) Malleability	(d) Elasticity	
	(b) Melting point	(e) Hardness	
	(c) Piezo-electric consta	nt	
55.	The property of steel that	makes it suitable for use	e in cables is its strength in
	(a) compression	(c) shear	
	(b) tension	(d) torsion	
56.	The Rockwell number o	f a metal generally meas	ures its:
	(a) hardness	(e) ductility	
	(b) tensile strength	(d) malleabili	ty
57.	Of the following metals,	the one that has the gre	atest specific gravity is:
	(a) Zinc	(e) Iron	
	(b) Lead	(d) Mercury	
58.	The densest metal is:		
	(a) Lead	(c) Uranium	(e) Titanium
	(b) Osmium	(d) Tungsten	

59.	Strain	is	expressed	lin	terms	of:
-----	--------	----	-----------	-----	-------	-----

(a) N/mm2

(c) kg/m2

(b) a %

(d) a ratio

60. *Statement*: For a very tough material the Izod hammer moves in a large swing after breaking the sample specimen. *Because*

Reason: A large amount of energy is used up in breaking tough specimen.

Statemen	at Reason	Reason Explains Statement
(a) True	True	Yes
(b) True	True	No
(c) True	False	No
(d) False	True	No

- **61.** Toughness of a material can be measured with the help of:
 - (a) Rockwell Hardness Tests
- (c) Standard Spiral Tests
- (b) Notched-bar Tests
- (d) Brinell Hardness Tests
- **62.** Notched-bar tests are frequently used for testing:
 - (a) the impact strength of a material
 - (b) the hardness of a material
 - (c) the machinability of a metal
 - (d) the corrosion resistance of the material
- **63.** Lack of toughness in material is usually referred to as:
 - (a) ductility
- (c) malleability
- (e) continuity.

- (b) brittleness
- (d) plasticity
- **64.** In material testing laboratory, Izod's test measures the. characteristics of the material tested.
 - (a) Hardness

(c) Tensile strength

(b) Toughness

(d) Shear strength

- **65.** Steel reinforcing bars (reinforcements) are used in R.C.C. (Reinforced Cement Concrete) primarily because:
 - (a) the concrete is weak in compression
 - (b) the concrete is weak in tension
 - (c) it increases the density of the concrete
 - (d) the quality of the cement used in concrete is uncertain
- **66.** Highway roads are banked around a curve because:
 - (a) it facilitates the design of the road
 - (b) it aids in landscaping
 - (c) it prevents centrifugal force from throwing the vehicle away from the road
 - (d) it provides good visibility to the driver of the vehicle

2. Answer Key

1. (d)	15. (e)	29. (c)	43. (b)	57. (d)
2. (d)	16. (a)	30. (b)	44. (b)	58. (b)
3. (c)	17. (a)	31. (b)	45. (c)	59. (d)
4. (b)	18. (c)	32. (b)	46. (b)	60. (d)
5. (d)	19. (c)	33. (d)	47. (c)	61. (b)
6. (a)	20. (c)	34. (e)	48. (a)	62. (a)
7. (a)	21. (d)	35. (a)	49. (c)	63. (b)
8. (c)	22. (d)	36. (a)	50. (c)	64. (b)
9. (a)	23. (d)	37. (c)	51. (d)	65. (b)
10. (b)	24. (d)	38. (c)	52. (d)	66. (c)
11. (b)	25. (d)	39. (c)	53. (e)	
12. (b)	26. (a)	40. (b)	54. (e)	
13. (c)	27. (c)	41. (b)	55. (b)	
14. (d)	28. (a)	42. (d)	56. (a)	

Ferrous Materials and Metallurgy

Choose the correct alternative:

- **1.** A ferrous metal is one which:
 - (a) dose not contain iron
 - (b) is an alloy
 - (c) is a mixture of copper and brass
 - (d) contains iron
 - (e) contains aluminium
- **2.** An alloy is:
 - (a) any article made of pure metal
 - (b) a metal which has not yet been refined
 - (c) a mixture of two or more metals
 - (d) a mixture of two metals one of which must be aluminium
 - (e) a mixture of two metals one of which must be iron
- **3.** Mild steel belongs to the category of:
 - (a) Low-carbon steel
- (c) High-carbon steel
- (b) Medium-carbon steel
- (d) Tool steel
- **4.** Steels whose Carbon content ranges from 0.05 to 0.30% are classified as:
 - (a) Low-Carbon steels
- (c) High-Carbon steels
- (b) Medium-Carbon steels
- (d) Tool steels

5.	Inv	white cast iron, the Carb	on is	s present in the form of:		
	(a)	Austenite	(c)	Eutectic	(e)	Graphite
	(b)	Cementite	(d)	Ferrite		
6.	The	e important property of l	nigh	Silicon (12-18%) cast iron	is its	:
		high brittleness	0	(d) high malleability		
		high ductility		(e) high corrosion resis	tanc	e
	(c)	high hardness				
7.		the following types of pirosion resistant is:	pes	of the same diameter, the	one	that is least
	(a)	Copper		(c) Wrought iron		
		Steel		(d) Brass		
8.	Mil	d steel has got the follow	ving	metallic structure:		
		Face Centered Cubic s	_			
	(b)	Body Centered Cubic s	truc	ture		
		Close packed hexagona				
		Orthorhombic crystallin				
9.	Alp	ha Iron has got:				
	(a)	B.C.C. crystalline struc	ture			
		F.C.C. crystal structure				
	(c)	H.C.P. structure				
	(d)	Orthorhombic crystallin	ne st	ructure		
10.	Car	rbon present in the chen	nical	ly combined form in cast in	on is	s known as:
	(a)	Austenite	(c)	Ferrite	(e)	Pearlite
	(b)	Cementite	(d)	Martensite		
11.		e temperature and Carbo C equilibrium diagram a		ontent at which eutectic re	actic	on occurs in
	(a)	723°C and 0.02%C		(d) 1130°C and 2.00%C	3	
	(b)	723°C and 0.80%C		(e) 1130°C and 4.30%C	3	
	(c)	738°C and 0.69%C				

12.	The temperature and Carbon content at which eutectoid reaction occurs in Fe-C equilibrium diagram are:							
	(a) 723°C and 0.02%C	(c) 1130°C and 2.00	0%C					
	(b) 723° C and 0.80% C	(d) 1130°C and 4.30	0%C					
13.	In grey cast iron, the Carbon	is in the form of:						
	(a) Cementite	(d) Spheroids						
	(b) Flakes	(e) Austenite						
	(c) Nodular aggregates of gra	phite						
14.	The property of a high Silicon	a cast iron is:						
	(a) its high brittleness							
	(b) its high freezing tempera	ture						
	(c) its high hardness							
	(d) its malleability							
15.	Malleable cast iron possesses	than ordinary gr	ey cast iron.					
	(a) higher compressive stren	gth (d) higher ductility						
	(b) higher % C	(e) lower ductility						
	(c) higher ductility							
16.	The majority of Grey Iron ca from:	stings will have a total %	of Carbon varying					
	(a) $6.0 - 8.0\%$	(c) $0.5 - 1.0\%$						
	(b) 2.5 – 4.5%	(d) 0.02 – 0.04%						
17.	Gibb's phase rule is given by	the expression F is equal to	0:					
	(a) $C + P$	e) $C-P-2$	(e) $C - P + 2$					
	(b) $C-P$	d) $C + P - 2$						
	where $F = \text{no. of degres of Fi}$	eedom						
	C = no. of Component	s, and						
	P = no. of Phases							

18.	An important product manufactured by the rolling process is:								
	(a)	Rollers	(c)	Metallic cans	(e) I-sections				
	(b)	Discs	(d)	Metal rolls					
19.		umless tubes in mass p cess:	rodi	action are manufactured	by the				
	(a)	Metal rolling		(d) Spinning					
	(b)	Extrusion		(e) Longitudinal weldi	ng				
	(c)	Wire drawing							
20.	In	malleable iron, the Carbo	on is	present in the form of:					
	(a)	nodular aggregates of g	raph	ite					
		flakes	1						
	(c)	spikes							
	(d)	cementite							
21.	Ste	el is made from cast iron	by:	removing all excess:					
	(a)	Ferrous carbide	(c)	Silicon	(e) Oxygen				
	(b)	Carbon	(d)	Sulphur					
22.		e most important eleme el is:	ent v	which controls the physic	al properties of				
	(a)	Silicon	(c)	Tungsten	(e) Chromium				
	(b)	Manganese	(d)	Carbon					
23.		chine steel or mild steel el containing:	are	the terms commonly used	l to describe the				
	(a)	more than 0.40% Carbo	n	(c) more than 0.50% C	Carbon				
	(b)	lees than 0.30% Carbon	l	(d) more than 1.00% C	Carbon				
24.		ge amounts of Silicon wh perties of the steel.	nen a	added to steel will increase	the				
	(a)	Mechanical		(c) Corrosive					
	(b)	Refractory		(d) Magnetic					

25.	5. The steel used in cutting tools of high quality have a grain structure						n structure.
	(a) fin	ne		(c)	coarse		
	(b) m	edium		(d)	brittle		
26.	Steels classifi	containing low perce ied as:	entag	ges of 1	Nickel, Tung	gsten, or Ch	romium are
	(a) pla	ain carbon steels		(c)	tool steels		
	(b) all	oy steels		(d)	stainless ste	els	
27.	Steels sified	containing high perce as:	entag	ges of e	elements oth	er than Carl	oon are clas-
	(a) all	loy steels		(c)	structural st	eels	
		ainless steels		(d)	high carbon	steels	
28.		carbon tool steels are to shock.	allo	yed wi	th	. to increase	e their resis-
	(a) Ca	arbon	(c)	Nicke	1	(e) Chro	mium
	(b) Tu	ıngsten	(d)	Vanad	lium		
29.		commonly applied tess is the:	to st	eel of	unknown q	uality for ic	lentification
	(a) Ac	eid-etch test		(c)	fracture test	t	
	(b) sp	ark test		(d)	dye-penetra	ınt test	
30.	Two all	lloying elements of st	eel	commo	only used as	purifiers or	as cleaning
	/ \ > 1						
	(a) M	anganese and Silicon		(c)	Molybdenu	m and Nick	el
		anganese and Silicon madium and Chromiu			Molybdenu Tungsten ar		
31.	(b) Va	O	ım	(d)	Tungsten ar	nd Chromiu	m
31.	(b) Va	nadium and Chromiu	ım only	(d)	Tungsten ar	nd Chromiu ntrol its prop	m

32.	Hot working steels are alloy steels having a relatively:							
	(a)	Low Carbon content		(c)	Low Sulphur conte	ent		
	(b)	High Carbon content		(d)	High Oxygen conte	ent		
33.	The	e element most promine	nt is	H.S.S	. (High Speed Steel)) is:		
	(a)	Carbon		(c)	Chromium			
	(b)	Tungsten		(d)	Vanadium			
34.	-	gh Sped Steel (H.S.S.) which ting tools belongs to the			•	nanufacturing of	ŗ.	
	(a)	Low-carbon steel		(d)	Alloy steel			
	(b)	Medium-carbon steel		(e)	Stainless steel			
	(c)	High-carbon steel						
35		Thich one of the follow.	ing	metals	would you use to	make a pair of		
		H.S.S.	(c)	Mild	steel	(e) Brass		
	(b)		. ,	Alum		· /		
36.	Wh	nich one of the following	met	als is u	used to makes cold c	hisel?		
	(a)	Nickel silver	(c)	Zinc		(e) CI		
	(b)	Mild steel	(d)	High-	Carbon steel			
37.	Go	od quality twist drills are	ma	de of:				
	(a)	CI						
	(b)	Mild steel						
	(c)	Stainless steel						
	(d)	H.S.S (High Sped Steel	l)					
	(e)	Zine						
38.	Wh	nich one of the following	met	als cou	ıld not be forged?			
	(a)	Wrought Iron		(d)	High-Carbon steel			
	(b)	Mild steel		(e)	CI			
	(c)	High Speed Steel (H.S.	S.)					

39.	Stainless steel contains:							
	(a) Chromium, Iron, and Nickel							
	(b) Chromium and Nickel							
	(c) Iron and Carbon							
	(d) Chromium, Nickel, Iron	n, an	d Carl	oon				
40.	What is the material of the	cutti	ng too	l generally used	on a lath	.e?		
	(a) Cast Iron		(d)	High Speed Ste	el (H.S.5	S.)		
	(b) Mild steel		(e)	Brass				
	(c) Low-Carbon steel							
41.	An engineer's hammer shou	ıld b	e mad	e from:				
	(a) Cast Iron		(d)	Case hardened	mild stee	el		
	(b) High-Carbon steel		(e)	H.S.S.(High Spe	eed Stee	1)		
	(c) Mild steel							
42.	When observed unetched to	he C	Carbon	in gray cast iron	will be	seen in the		
		/ \	. .		/ \	o 1.		
	(a) Austenite		Ferrit		(e)	Graphite		
	(b) Cementite	(d)	Marte	ensite				
43.	Reinforcing steel used in F made of:	R.C.0	C.:(Rei	nforced-Cement	-Concre	ete) work is		
	(a) medium carbon steel		(c)	wrought iron				
	(b) alloy steel			tool steel				
44.	Lead is poured into the join of each pipe is most likely to			two pipes. The m	aterial c	omposition		
	(a) Cast iron		(c)	Asbestos cemen	t			
	(b) Vitrified clay		(d)	Concrete				
45.	Some of the elements found	d in (ordina	ry structural stee	l are:			
	(a) Silicon, Boron, and Nic	kel						
	(b) Carbon, Manganese, an	nd Sc	dium					

	(c) Carbon, Fluorine, and Tungsten								
	(d) Carbon, Silicon, and Manganese								
46.	The frame and cover of a sewer man-hole is usually make of:								
	(a)	Stainless steel	(c)	Mone	el metal	(e)	Mild steel		
	(b)	Cast iron	(d)	Struc	tural steel				
47.	The hardness of carbon tool steel will be increased when alloyed with and Vanadium.								
	(a)	Tungsten	(c)	Silico	n	(e)	Silver		
		Chromium	(d)	Mang	anese				
48.		e element when added to ghness is:	o ste	el that	will give the stee	el high s	strength and		
	(a)	Magnesium		(c)	Phosphorous				
	(b)	Manganese		(d)	Sulphur				
49.		nong the following mater ock and vibration withou				ial for v	vithstanding		
	(a)	Chilled cast iron		(c)	Malleable iron				
	(b)	Gray cast iron		(d)	White cast iron				
50.		e maximum number of c ne is:	ubic	struct	ures which crysta	ılline so	olids may as-		
	(a)	10	(c)	8		(e)	5		
	(b)	2	(d)	3					
51.	Fer	rrites are most likely to b	e fo	und in	which of the follo	owing?			
	(a)	Analogue computers		(d)	Key-punch macl	hines			
	(b)	Computer programs		(e)	Computer mem	ories			
	(c)	Computer output print	ers						
52.		e property of material by mown as:	y virt	tue of	which it can be d	rawn in	nto fine wire		
	(a)	Elasticity		(c)	Ductility				
		Malleability			Rigidity				

53.	. Which one of the following metals will readily fracture if hit with a hammer?						
	(a)	Mild steel	(c)	Bras		(e)	Lead
	(b)	Nickel silver	(d)	Cast i	ron		
54.	Fre	om which one of the follo	win	g mate	erials is a found	dry crucible	e made?
	(a)	Wood	(c)	Graph	nite	(e)	Lead
	(b)	Polystyrene	(d)	Alumi	nium		
55.	On	e of the following is not a	ı str	uctura	l steel shape?		
	(a)	Н		(c)	V		
	(b)	T		(d)	I		
56.		special steel which has a ich is widely used for ma					
	(a)	Stainless steel		(d)	Invar steel		
	(b)	Platinum steel		(e)	Nickel-Chron	ne steel	
	(c)	Cobalt steel					
57.	The	e unique property of cast	iro	n is its:			
	(a)	high tensile strength		(d)	good damping	g charactei	ristics
	(b)	high ductility		(e)	good surface	finish	
	(c)	high density					
58.	Pea	arlite is a combination of:					
	(a)	Ferrite and Austenite		(d)	Ferrite and C	ementite	
	(b)	Ferrite and Graphite		(e)	Cementite an	d Austenit	е
	(c)	Graphite and Austenite					
59.	In	nodular iron, graphite is i	in th	ne form	of:		
	(a)	flakes		(c)	stars		
	(b)	spikes		(d)	spheroids		
60.	Aus	stenite consists of:					
	(a)	Cementite and Alpha-In	on	(d)	Cementite an	d Pearlite	
	(b)	Cementite and Beta-Iro	n	(e)	Graphite and	Ferrite	
	(0)	Compatite and Commo	Iro	n			

3. Key

1. (d)	13. (b)	25. (a)	37. (d)	49. (c)
2. (c)	14. (c)	26. (a)	38. (e)	50. (d)
3. (a)	15. (d)	27. (a)	39. (d)	51. (e)
4. (a)	16. (b)	28. (d)	40. (d)	52. (c)
5. (b)	17. (e)	29. (b)	41. (b)	53. (d)
6. (e)	18. (e)	30. (a)	42. (e)	54. (c)
7. (b)	19. (b)	31. (b)	43. (a)	55. (c)
8. (b)	20. (a)	32. (b)	44. (a)	56. (d)
9. (a)	21. (b)	33. (b)	45. (d)	57. (d)
10. (b)	22. (d)	34. (d)	46. (b)	58. (d)
11. (e)	23. (b)	35. (e)	47. (a)	59. (d)
12. (b)	24. (d)	36. (d)	48. (b)	60. (c)

Non-Ferrous Materials

Choose the correct alternative:

 $\textbf{1.} \ \ Brass is an alloy of two metals. They are:$

	(a)	Chromium and Carbon	1	(d)	Copper and Zinc	
	(b)	Tin and Aluminium		(e)	Zinc and Tin	
	(c)	Copper and Tin				
2.	The	e crystal structure of bra	ass is	S:		
	(a)	F.C.C.				
	(b)	B.C.C.				
	(c)	H.C.P.				
	(d)	Orthorhombic crystalli	ne s	tructur	е	
	(e)	None of the above				
3.		nich one of the following others?	g me	etals wo	uld work-harden mo	ore quickly than
	(a)	Copper	(c)	Lead	(e)	Aluminium
	(b)	Brass	(d)	Silver		
4.	Bro	onze is an alloy of:				
	(a)	Brass and Tin		(d)	Copper and Zinc	
	(b)	Zinc and Tin		(e)	Copper and Tin	
	(c)	Sulphur and Tin				

5.	Babbitt metal is used primarily in:	
	(a) Ball bearings	(d) Thermocouples
	(b) Roller bearings	(e) Bridge construction
	(c) Sleeve bearings	
6.	A specimen of Aluminium metal v	when observed under microscope shows
	(a) B.C.C.crystalline structure	
	(b) F.C.C. crystal structure	
	(c) H.C.P. structure	
	(d) A complex cubic structure	
	(e) Orthorhombic crystalline stru	cture
7.	Which one of the following metal drawn into wire?	s is sufficiently ductile to enable it to be
	(a) Tin	(c) Lead
	(b) Copper	(d) Zinc
8.	Zinc has got the following crystal s	tructure:
	(a) Face Centered Cubic structur	e
	(b) Body Centered Cubic structu	e
	(c) Hexagonal Close Packed struc	ture
	(d) Orthorhombic crystalline stru	cture
9.	Powder Metallurgy (PM) techniqu	nes are used in the production of:
	(a) High Carbon Steel	(c) Tungsten carbide tool bits
	(b) HSS tools	(d) Twist drills
10.	Asbestos is a:	
	(a) mineral fiber	(c) mixture of fiber and glass wool
	(b) fiber reinforced plastic	(d) mixture of mica and fiber
11.	Mica is:	
	(a) a conductor of current	(c) a mixture of plastic and rubber
	(b) an insulator	(d) a petroleum by-product
		· · · · · · · · · · · · · · · · · · ·

(a)	plastic products	(c)	mixture of plastic and rubber			
			1			
Pol	y-Vinyl-Chloride (PVC) is:					
(a)	a compact form of mica	(d)	a thermo-setting plastic material			
(b)	a mixture of wool and cork	(e)	a rubber product			
(c)	a thermo-plastic material					
		d, w	hich one of the following statements			
I.	Polystyrene	II.	Poly-Vinyl-Chloride			
III.	Phenol formaldehyde		Tetra fluor-ethylene			
V.	Polyethylene					
(a)	All are thermoplastic material	S				
(b)	All are thermosetting material	ls				
(c)	I and II are both thermoplasti	c ma	aterials			
(d) Only III is thermosetting material						
(e)	I and III are both thermosetti	ng n	naterials			
The	e plastic material "teflon" is kno	own	primarily for its:			
(a)	great mechanical strength					
(b)	extreme low coefficient of fric	tion				
(c)	great heat resistance					
(d)	great hardness					
(e)	good electrical conductivity					
Wh	nich statement best describes th	nerm	noplastic materials?			
	(b) Pol (a) (b) (c) With is to I. III. V. (a) (b) (c) (d) (e) The (a) (b) (c) (d) (e)	is true? I. Polystyrene III. Phenol formaldehyde V. Polyethylene (a) All are thermoplastic material (b) All are thermosetting material (c) I and II are both thermoplasti (d) Only III is thermosetting mate (e) I and III are both thermosetti The plastic material "teflon" is known as a great mechanical strength (b) extreme low coefficient of frical great heat resistance (d) great hardness (e) good electrical conductivity	(b) rubber products Poly-Vinyl-Chloride (PVC) is: (a) a compact form of mica (d) (b) a mixture of wool and cork (e) (c) a thermo-plastic material With reference to the plastics listed, w is true? I. Polystyrene II. III. Phenol formaldehyde IV. V. Polyethylene (a) All are thermoplastic materials (b) All are thermosetting materials (c) I and II are both thermoplastic material (d) Only III is thermosetting material (e) I and III are both thermosetting m The plastic material "teflon" is known (a) great mechanical strength (b) extreme low coefficient of friction (c) great heat resistance (d) great hardness			

(a) they soften when cooled and harden when heated(b) they become permanently hard when heated(c) they relate to one particular trade name

(d) they soften when heated and harden when cooled

(e) they are phenol formaldehydes

12. Vulcanizing is usually applied to:

17.	In specifications containing the st P.V.C." the term P.V.C. refers to:	tateı	ment "Scrubbers are constructed of
	(a) Plain Vitrified Clay	(c)	Patented Vanadium Copper
	(b) Poly Vinyl Chloride		Pliable Varnished Canvas
18.	The soft material placed between the leakage is called:	wo	flanges of a CI water pipe to prevent
	(a) Gasket	(c)	Plinth
	(b) Shim	(d)	Spelter
19.	A process commonly used to prese	erve	wood against decay is:
	(a) Anodizing	(c)	Grouting
	(b) Creosoting		Guniting
20.	Joints in cast iron water lines are g		
	(a) mortar	(c)	couplings
	(b) lead and jute fibers	(d)	quick setting cement mixture
21.	The two important Copper base al	lloys	are:
	(a) Monel and Brass	(d)	Cupronickel and Bell metal
	(b) Brass and Bronze	(e)	Tin and Phosphor bronze
	(c) Monel and Bronze		
22.	The Babbitt metals are used:		
	(a) for dies and cutting tools	(c)	in the manufacture of gears
	(b) for high speed shafts		as bearing metals
23.	Aluminium is extracted from:		
	(a) Anthracite ores	(b)	Bauxite ores
	(c) Hematite ores		Magnesite ores
		,	O
24.	Monel metal is an alloy of:		
	(a) Molybdenum and Aluminium		
	(b) Chromium and Silicon		

	 (c) Nickel and Chromium (d) Nickel and Copper Gun metal is an alloy of: (a) Copper and Zinc (b) Copper and Tin (c) Copper, Tin, and Phosphor (d) Copper, Tin, and Silicon (e) Copper, Zinc, and Tin Phosphorus Bronze is an alloy (a) Phosphorus and Copper (b) Phosphorus, Copper, and T 	of:		
	 (c) Phosphorus, Copper, and Z (d) Phosphorus, Tin, and Zine A process of applying outside of (a) oxidizing (b) anodizing A process of coating zine by ho 	coating on a	vanizing	own as:
	(a) anodizing(b) galvanizing	(c) bra	zing	
 2. 3. 4. 5. 	(a) 8. (c) 14 (b) 9. (c) 15 (e) 10. (a) 16 (c) 11. (b) 17	(c) (d) (b) (d) (b)	19. (b) 20. (b) 21. (b) 22. (d) 23. (b) 24. (d)	25. (e) 26. (b) 27. (b) 28. (b)

FOUNDRY TECHNOLOGY

Choose the correct alternative:

1.	. The purpose of providing a draft allowance on the patterns is:						
	(a) to provide good draft of a	ir in the sand mould	ing				
	(b) to provide for distortion that might take place						
	(c) to remove the pattern eas	sily from the mouldin	ng				
	(d) to increase the strength of	of the mould walls					
	(e) to push the pattern easily	into the moulding					
2.	Among the following material	ls the shrinkage allov	vance is more for:				
	(a) cast iron	(c) lead	(e) steel				
	(b) brass	(d) aluminium all	loy				
3.	One of the important advants is that:	ages of metal patterr	ns over wooden patterns				
	(a) it is readily available	(c) it is useful	in machine moulding				
	(b) it is easy to make	(d) it is less cos	stly				
4.	is an added project and locate the core in the mo		l forms a seat to support				
	(a) Mould print	(c) Drag	(e) Chaplet				
	(b) Core print	(d) Cope					

 $(b) \ \ top \ half \ of \ molding \ box$

5.	The casting process which is probably responsible for the largest volume of castings produced is the process.					
	(a)	Permanent mould casti	ng			
		Die casting				
		Centrifugal casting				
	(d)	Sand casting				
	(e)	Ceramic moulding				
6.	The	e advantage of synthetic	sanc	l is		
	(a)	It is less costly				
	(b) Its properties can be controlled easily					
	(c)	It possesses high moistr	ıre			
	(d)	It possesses high % of o	elay			
7.	The	1	mois	sture content in	the moulding sand can be	
	(a)	20%		(c) 8%		
	(b)	14%		(d) 2%		
8.		e sand which is used to k	eep	the green sand f	rom sticking to the pattern	
	(a)	Moulding sand	(c)	Pattern sand	(e) Permeable sand	
	(b)	Core sand	(d)	Parting sand		
9.	Dil	atometer is used to find:				
	(a)	permeability of molding	g sar	nd		
		green compression stre				
		fineness number of mo	_			
		hot strength of molding	`			
		moisture content of mo				
١٥.	Co	pe in foundry practice re	efers	to:		
	(a)	bottom half of molding	box			

- (c) middle portion of the molding box
- (d) coating on the mold face

11. The purpose of chaplets is:

- (a) just like chills to ensure directional solidification
- (b) to provide efficient venting
- (c) to support the cores
- (d) same as that of cores
- (e) to support the pattern
- **12.** Chills are metal inserts of steel that are placed at appropriate locations in the mold walls to:
 - (a) decrease the freezing rate
 - (b) increase the freezing rate
 - (c) help directional solidification
 - (d) prevent directional solidification
 - (e) help progressive solidification
- 13. In machine moulding, patterns are mounted on:
 - (a) follow boards
- (c) plastic plates
- (e) cope and drag

- (b) moulding boards
- (d) match plates
- 14. Two casting processes which normally use metal moulds are:
 - (a) permanent moulding and investment casting
 - (b) investment casting and die casting
 - (c) permanent moulding and die casting
 - (d) sand casting and die casting
- **15.** The chief advantage of die casting is:
 - (a) thick sections in small castings are possible
 - (b) casting of inserts are possible
 - (c) wide tolerances are possible
 - (d) high production rates are possible
 - (e) any material can be die cast easily

16.	The	e main advantage of shell moul	ding	is:		
	 (a) that a metallic pattern is used (b) that the moulds are stronger (c) that thin sections can be easily obtained (d) that thick sections can be easily obtained 					
17.	In	investment casting the pattern	mate	erial is:		
	(a)	Metal	(c)	Wood	(e)	Synthetic sand
	(b)	Thermosetting resin	(d)	Wax		
18.	The	e pouring temperature for gray	cast	iron is:		
	(a)	1600°C	(c)	1200°C		
	(b)	1400°C	(d)	1000°C		
19.	The	e purpose of inoculation in fou	ndry	practice is:		
	 (a) to clean the casting (b) to decrease the melting temperature of a cast metal (c) to alter the chemical composition of a cast metal (d) to modify the structure and properties of cast metal (e) to improve the finish of the castings 					
20.		e length of spiral to which mol ication of:	ten 1	metal flows in	a stai	ndard mold is an
	(b)(c)(d)	Shrinkage of the metal Segregation of the metal Fluidity of the metal Melting temperature of the metal Shrinkage allowance to be pro-		ed		
21.	The	e important factor which affect	s flu	idity is:		
	(a)	C content of molten metal				
	(b)	Melting temperature of molte	en m	etal		
	(c)	Inoculant addition				

	(d)	Pouring temperature of molte	an matal			
	(e) Finish on the mold					
	(0)	r mish on the mold				
22.	The	ere are several factors which af	fect fluidity. Two important factors are:			
	(a)	C content and melting tempe	rature			
	(b) Inoculant addition and pouring temperature					
	(c) Metal composition and melting temperature					
	(d)	Melting temperature and pour	ring temperature			
	(e)	Metal composition and pouring	ng temperature			
23.	Alu	uminium has got a tendency to	absorb—at high temperature.			
	(a)	Nitrogen	(c) Carbon-dioxide			
	(b)	Silicon	(d) Hydrogen			
24.	Coj	pper has got tendency to absor	b—at high temperature.			
	(a)	Nitrogen	(c) Carbon-dioxide			
	(b)	Ammonia	(d) Hydrogen			
25.		the melting of aluminum and cobserved is:	opper alloys the important precaution to			
	(a)	to avoid deoxidation				
	(b)	removal of dross from the mo	lten metal			
	(c) to maintain correct melting and pouring temperature					
	(d)	prevention of hydrogen pick-	ıp by the molten metal			
	(e)	prevention of iron pick-up by	the molten metal			
26.	Dre	ossing in foundry practice refe	rs to:			
	(a)	a method of cleaning the cast	ngs			
		an inspection method for cast				
		a method of deoxidation of m	9			
	(d)	the formation of oxides on the	e molten metal surface			

27.	The chief advantage of induction furnace is:
	(a) alloys of exact composition can be melted
	(b) vacuum can be set up if necessary
	(c) it is less costly
	(d) melting takes place slowly
	(e) electromagnetic forces are set up in the bath
28.	During the freezing of a pure metal, the possible casting structure is:
	(a) columnar structure
	(b) dendritic structure
	(c) equiaxed grains structure
	(d) partly columnar and partly equiaxed
	(e) none of the above
29.	When an alloy solidifies over a short range of temperature, the resulting casting structure is:
	(a) dendritic
	(b) partially columnar and partially equiaxed
	(c) wholly columnar
	(d) wholly equiaxed
	(e) dendritic and columnar
30.	When an alloy solidifies over a wide range of temperature, the resulting casting structure is:
	(a) wholly equiaxed
	(b) wholly columnar
	(c) partially columnar and partially equi-axed
	(d) dendritic
31.	The process in which the casting is removed from the mold is called:
	(a) dump out (c) vibrating
	(b) shake out (d) trimming

32.	Flo	gging in foundry practic	e ref	fers to:		
	(a)	a type of moulding met	hod			
	(b)	removal of sprues and a	isers	S		
	(c)	a non-destructive testin	ıg m	ethod		
	(d)	removal of slag during	pour	ing		
33.	The	e most frequently used n	neth	od of repairing the def	fects of ca	stings is by:
	(a)	drawing	(c)	welding	(e)	soldering
	(b)	metal spraying	(d)	brazing		
34.	X-r	ay inspection of castings	wou	ıld be considered as	te	sting.
	(a)	destructive	(c)	non-destructive	(e)	visual
	(b)	final	(d)	magnetic		
35.		the method ofily found out,	t	esting, the internal cra	acks in cas	sting can be
	(a)	Magnetic particle inspe	ectio	n		
	(b)	Fluorescent penetrant				
	(c)	Ultrasonic				
	(d)	Dye-penetrant				
36.	Ma	gnetic particle test is ap	plica	ble to ma	aterials on	nly.
	(a)	Ferrous	(c)	Steel	(e) Non-	magnetic
	(b)	Non-ferrpous	(d)	Magnetic		
37.		locate and detect surface following inspection me			ı non-mag	metic alloys
	(a)	X-ray testing				
	(b)	Ultrasonic testing				
	(c)	Magnetic particle inspe	ectio	n testing		
	(d)	Dye-penetrant testing.				

38.	"D	Prag" in foundry practice refers to:	
	(a)	the top-half of the molding box	
	(b)	the middle portion of the molding box	
	(c)	the bottom-half of the molding box	
	(d)	the coating on the molding surface	
39.	Spi	origs in a mold are used to:	
	(a)	give a cushioning effect to the mold	
	(b)	increase the hardness of the castings	
	(c)	provide a good surface finish to the casting	
	(d)	prevent solidification of the molten metal	
	(e)	strengthen the weak portions of the mold	
40.	Bla	ackings in foundry practice refers to:	
	(a)	materials of the mold	
	(b)	color of the castings	
	(c)	methods of heat treatment of the castings	
	(d)	painting of mold surfaces so as to get smooth surface on t	he casting
41.	The	ne most effective inoculant used for production of ductile ir	on is
	(a)	Graphite (c) Freon gas (e) Iron
	(b)) Ferrosilicon alloy (d) Oxygen	
42.	In	foundry practice Shrink Rule is used for providing:	
	(a)	contraction allowance	
	(b)	draft allowance	
	(c)	distortion allowance	
	(d)	rapping allowance	
	(e)	machining allowance	

- ${f 43.}$ In salvage repair of casting, the most satisfactory method of rectifying the defect is by:
 - (a) brazing and soldering
 - (b) metal spraying

	(d)	painting galvanizing welding.		
44.		at is the most suitable size for nace?	the	coke that is charged into the blast-
	(a)	8 to 25 mm	(c)	75 to 150 mm
	(b)	25 to 75 mm	(d)	over 150 mm
45.	The	cheapest method of disposing	the	blast-furnace slag is to pour it into:
		a stream of water for granulati		
		ladles and allow it to cool into		balls
		ladles and tip into slag pits	8	, 2000
		pits at the furnace		
16	Mol	lton iron is doculaburized by a	ldin	a to the ledle.
40.		lten iron is desulphurized by a		
		Carbon		Ferrosilicon
	(b)	Ferromanganese	(d)	Soda ash
47.		e instrument which is used for all in the furnace is the:	· me	easuring the temperature of molten
	(a)	Expansion Thermometer		
	(b)	Dilatometer		
	(c)	Carbon Analyzer		
	(d)	Thermocouple		
	(e)	Spectrometer		
48.	The	e metal after processing from it	s or	e is in the form of:
	(a)	slabs	(c)	ingots
	(b)	billets		castings
49.	The	long, thin, finger like crystals	four	nd in ingots are called:
	(a)	chills	(c)	equi-axed crystals
	(b)	columnar crystals	(d)	eutectic crystals

50.	The length of the pipe formed in a killed steel ingot is minimized by the use of:				
	(a) a feeder head (hot top)		(c)	a circular mould	
	(b) an intricate mould		(d)	screens and filters	
51.	For casting a metal, the me	tal is	heate	d to:	
	(a) above its melting temperature	eratu	re		
	(b) its melting temperature	only	7		
	(c) red hotness				
	(d) white hotness				
52.	is the flux add	ded w	ith cu	pola charge to form	slag.
	(a) Lime	(c)	Coke		(e) Scrap
	(b) Sand	(d)	Pig iro	on	
53.	In an integrated iron and scharged to the steel furnace		plant	the cheapest form o	of iron and steel
	(a) cold pig iron				
	(b) molten pig iron				
	(c) purchase scrap				
	(d) process scrap				
54.	Which one of the following	is no	t used	l to deoxidize steel?	
	(a) Aluminium				
	(b) Manganese				
	(c) Phosphorus				
	(d) Silicon				
55.	The normal ratio of scrap to	hot r	netal i	in an L.D. (Linz-Do	nawitz) vessel is:
	(a) 5% scrap, 95% metal				
	(b) 10% scrap, 90% metal				
	(c) 25% scrap, 75% metal				
	(d) 40% scrap, 60% metal				

56. *Statement*: In continuous casting, slabs must be completely solid before they reach the cut-off section. *Because*

Reason: Cutting a slab with a molten core would result in discontinuity.

0		
Statement	Reason	Reason Explains
		Statement
(a) True	True	Yes
(b) True	True	No
(c) True	False	No
(c) False	True	No

- **57.** Chills are often incorporated in molds so that they can:
 - (a) provide reinforcement for the sand
 - (b) provide an accurate position for the pattern in the mold
 - (c) balance the rate of cooling between thin and thick sections of the casting
 - (d) cool the molds
- **58.** The effect of inoculation in foundry practice is to:
 - (a) clean the casting
 - (b) improve the surface finish on the castings
 - (c) decrease the melting temperature of the molten metal
 - (d) increase the melting temperature of the molten metal
 - (e) refine the grain size of the cast metal
- **59.** In foundry technology, hollows casting are mass produced by:
 - (a) using hollow patterns
 - (b) using cores
 - (c) drilling out the inside portion of the casting
 - (d) using light weight metals
- **60.** Long C.I. sewer line pipes are most commonly produced by:
 - (a) CO2 moulding method
- (c) Pressure die casting method
- (b) Sand casting method
- (d) Centrifugal casting method

5. Answer Key

1. (e)	13. (d)	25. (d)	37. (d)	49. (b)
2. (c)	14. (c)	26. (d)	38. (c)	50. (a)
3. (c)	15. (d)	27. (a)	39. (e)	51. (a)
4. (b)	16. (c)	28. (a)	40. (d)	52. (a)
5. (b)	17. (d)	29. (c)	41. (d)	53. (d)
6. (b)	18. (b)	30. (d)	42. (a)	54. (c)
7. (c)	19. (d)	31. (b)	43. (b)	55. (c)
8. (d)	20. (c)	32. (b)	44. (b)	56. (a)
9. (d)	21. (d)	33. (b)	45. (d)	57. (c)
10. (d)	22. (e)	34. (c)	46. (b)	58. (e)
11. (c)	23. (d)	35. (c)	47. (d)	59. (b)
12. (e)	24. (d)	36. (b)	48. (c)	60. (d)

HEAT TREATMENT OF STEELS

Choose the correct alternative:

(a) cooled slowly(b) cooled rapidly

(d) quenched in oil

1.	1. The main purpose of heat treat	nent is to change the:	
	(a) chemical composition of the	e metal	
	(b) mechanical properties of th	e metal	
	(c) corrosion properties of the	metal	
	(d) surface finish on the materi	al	
2.	2. An important process used in ca	ase-hardening steel is:	
	(a) Tempering	(c) Annealing	
	(b) Cyaniding	(d) Spherodizing	
3.	3. All parts which have been harded ening strains and to increase the		
	(a) Annealed (c)	Tempered	(e) Galvanized
	(b) Carburized (d)	Anodized	
4.	4. To anneal hard steel so that it cabove its critical temperature as		steel must be heated

(c) left in the furnace itself at the same temperature

5.	It is necessary to temper all parts	afte	r hardening:	
	(a) to reduce the hardening strains			
	(b) to increase the hardness			
	(c) to reduce the hardness			
	(d) to increase the tensile strengt	h		
	(e) to reduce the scale formation	11		
	(c) to reduce the scale formation			
6.	can be hardened of	only	by carburizing or cyaniding.	
	(a) Low carbon steel	(d)	Alloy steel	
	(b) Medium carbon steel		Tool steel	
	(c) High carbon steel			
7.	Carbon steels are hardened by he and then:	atin	g the steel to its critical temperature	
	(a) cooling it slowly			
	•			
	(b) quenching it in water(c) leaving it in the furnace itself at the same temperature			
	(d) leaving it in the furnace itself	at ti	ie same temperature	
	(d) leaving it outside the furnace			
8.	The element in steel which direct steel to be heat-treated is:	tly a	ffects the critical temperature of the	
	(a) Sulphur	(c)	Carbon	
	(b) Phosphorus	(d)	Chromium	
9.	The highest rate of heat transfer, is obtained in:	or tl	ne ability to heat metal most rapidly,	
	(a) Molten baths	(c)	Electric furnaces	
	(b) A fuel-fired furnace	(d)	Pit furnace	
10.	High alloy steels must be heated avoid:	slov	wly and uniformly for hardening, to	
	(a) Scaling	(c)	Warpage	
	(b) Shrinkage		Segregation	

11.	Overheating high alloy steel when pack hardening must be avoided to prevent:
	(a) Low hardness and shrinkage
	(b) Extreme hardness and shrinkage
	(c) Distortion
	(d) Scale formation
12.	Localized hardening of jobs which require that only a small selected portion of the job be hardened, can be accomplished only by:
	uon or the job be naruened, can be accomplished only by:

14. When hardening steel by the carburizing process, after the steel has been heated to the correct temperature and for the correct amount of time, the

15. Hardening strains created in steel after it has been heated and quenched

(c) Normalizing

(d) Spherodizing

(a) Flame and induction hardening

furnace is shut off and the steel is:

(c) removed and cooled in air(d) removed and quenched in oil

must be removed by:

(a) Tempering

(b) Annealing

(a) removed and quenched in water(b) retained in the furnace itself to cool

13. Case hardening is the only method suitable for hardening:

(b) Pack hardening

(a) High alloy steel(b) High-carbon steel(c) Low-carbon steel(d) High speed steel

(c) Cyaniding(d) Nitriding

16.	The heat-treatment process used to soften hard alloy and tool steels so that they can be more easily machined is called:		
	(a) Carburizing	(c)	Normalizing
	(b) Annealing	(d)	Tempering
17.	Carbon steels are generally classif	ied a	as:
	(a) Air-hardening steels		
	(b) Oil-hardening steels		
	(c) Water-hardening steels		
	(d) Hydrogen-hardening steels		
18.	Proper control of the is prevent excessive scaling of parts l		heat-treating furnace is necessary to g hardened.
	(a) Atmosphere	(d)	Air-fuel ratio
	(b) Temperature	(e)	Draft
	(c) Fuel		
19.	The temperature of furnace used controlled by an instrument called		heat-treating steel is measured and
	(a) Hydrometer	(d)	Pyrometer
	(b) Thermometer	(e)	Orsat-Apparatus
	(c) Dilatometer		
20.	The product which results from an	nnea	ling white cast iron is called:
	(a) Malleable iron	(c)	Spheroidal iron
	(b) Nodular iron	(d)	Grey cast iron
21.	A more scientific and reliable method of measuring furnace temperatures is by an instrument called:		
	(a) Thermometer		
	(b) Voltmeter		
	(c) Pyrometer		
	(d) Planimeter		

22.	The element in steel which determines whether or not steel will harde when heated to its critical temperature and then quenched in oil or water is			
	(a) Iron(b) Carbon	(c) Vanadium(d) Tungsten	(e) Oxygen	
23.	The surface hardness in a the heat treatment process	_	merally improved by	
	(a) Hardening(b) Nitriding	(c) Carburizing(d) Tempering	(e) Normalizing	
24.	is a procest emperature above the upprocoled in air.	ss in which an iron based per critical temperature ran		
	(a) Hardening(b) Tempering	(c) Annealing(d) Quenching	(e) Normalizing	
25.	A process involving heating ing in steel is called:	g and cooling, usually appli	ed to induce soften-	
	(a) Hardening(b) Tempering	(c) Austempering(d) Quenching	(e) Anealing	
26.	In nitriding steel compone in the furnace:	nts, the following atmosphe	ere is generally used	
	(a) Inert(b) Nascent Nitrogen(c) Liquid Nitrogen(d) Carbon(e) Ammonia			
27.	Galvanizing is the name of	a process by which:		
	(a) steel is coated with mo(b) steel is coated with mo(c) copper is electroplated(d) mild steel is coated with	lten tin with silver		
	(e) soldering irons are coa	ted with solder		

(b) annealed

(d) forged

(c) work hardened

28.	After anealing a non-ferrous metal, surface oxides formed on the metal are: (a) removed with coarse emery cloth (b) left on the metal to protect the surface (c) pickled in acid and then removed (d) hammered into the surface (e) polished to give a good color
29.	Case hardening of mild steel is carried out in order to:
	 (a) color the surface (b) enable it to resist wear (c) render it stainless (d) use it for cutting tools (e) make it malleable
30.	Tempering is carried out on a part of high-carbon steel to:
	 (a) color the metal (b) make the metal less brittle (c) make the metal harder (d) convert the metal to mild steel (e) allow the metal to be forged
31.	When a part of high-carbon steel is made red hot, then plunged into cold water it will be:
	(a) Tempered(b) Hardened(c) Unaffected(d) Normalized(e) Case-hardened
32.	To eliminate the brittleness which occurs due to welding of saw blades, the weld must be: (a) toughened

33.	Slow-cooling of high carbon steels prevents the formation of and the phase composition at room temperature is almost entirely pearlite.		
	(a) Martensite	(c) Ferrite	(e) Carbide
	(b) Cementite	(d) Austenite	
34.	If a high carbon steel (0.85 temperature, it will consist		
	(a) Pearlite	(c) Ferrite	(e) Martensite
	(b) Austenite	(d) Cementite	
35.	The softening of a metal of by heating the metal to its slowly is called:		
	(a) Anealing	(c) Planishing	
	(b) Burnishing	(d) Spheroidizing	Ţ,
36.	After heating, carbon steel	s are generally quenched	in the medium of:
	(a) water	(c) air	
	(b) oil	(d) Hydrogen	
37.	The temperature to which quenched is called the		
	(a) Eutectic	(e) Critical	
	(b) Eutectoid	(d) Melting	
38.	If steel is galvanized, it is o	oated with:	
	(a) Copper	(c) Tin	
	(b) Zinc	(d) Lead	
39.	Galvanized iron is iron coa	ted with:	
	(a) Copper		
	(b) Aluminium		
	(e) Zinc		
	(d) Tin		

	(a)	Copper Sulphate dip	(c)	Reverse bend test
	(b)	Hydrochloric Acid dip	(d)	Wrapping test
41.		e following list comprises indivi bon steel in a batch furnace:	dual	steps in a Spheroidizing cycle for a
	1.	Load the furnace and install in	nner	cover
	2.	Heat to desired soak temperat	ure	
	3.	Cool to desired unloading tem	pera	ature and unload
	4.	Fast cool followed by slow coo	ol	
	5.	Purge with atmosphere gas		
	6.	Soak for desired time		
		The correct order of operation	is:	
	(a)	152643	(c)	126453
	(b)	124643	(d)	152463
42.		ds used in pickling tanks after the emptied into an open tank to p		usage must be before they ent environmental pollution.
	(a)	agitated with hot steam		
	(b)	cooled to room temperature		
	(c)	neutralized with iron sulphate		
	(d)	neutralized with lime		

40. Which test is used to check the evenness of the coating on galvanized wire?

(c) Reverse bend test

6. Key

1. (b)

12. (a)

23. (c)

34. (a)

2. (b)

13. (c)

24. (e)

35. (a)

3. (c)

14. (b)

25. (e)

36. (a)

4. (a)

15. (a)

26. (e)

37. (c)

5. (a)

16. (b)

27. (a)

38. (b)

6. (a)

17. (c)

28. (c)

39. (b)

7. (b)

18. (b)

29. (b)

40. (a)

8. (c)

19. (d)

30. (b)

41. (a)

9. (c)

20. (a)

31. (b)

42. (d)

10. (c)

21. (c)

32. (b)

11. (c)

22. (b)

33. (a)

SOLDERING

Choose the correct alternative:

	(a) silver, tin, nickel	(d) mild steel	, silver, zinc
	(b) silver, lead, zinc	(e) aluminium	n, copper, silver
	(c) silver, copper, zinc		
2.	Binding wire is used to su out. From which one of th		
	(a) aluminium	(c) soft iron	(e) tin
	(b) copper	(d) mild steel	
3.	The fluxes used in silver so (a) must be able to dissolt (b) should fill up any gap (c) must vitrify after the so (d) must help the formation	ve oxides formed on the in the joint older has become mol	ten
4.	Which of the following ha	s the lowest melting po	pint?
	(a) brazing spelter	(d) silver sold	ler
	(b) copper	(e) aluminium	m
	(c) soft solder		

1. Which one of the following groups of metals combines to form silver solder?

5.	Flux is used in soldering because the flux: (a) melts after the solder (b) fills up gaps left in a bad joint (c) prevents oxides forming (d) lowers the melting temperature of the solder (e) washes away surplus solder 							
6.	A soldering iron "bit" is ma	ade of:						
	(a) brass	(c) steel	(e) iron					
	(b) tin	(d) copper						
7.	The soldering iron should	be heated in a gas flame un	til:					
	(a) the "bit" is red hot							
	(b) the handle begins to fe	eel warm						
	(c) the "bit" will burn a pi							
	(d) the gas flame appears							
	(e) the coating of borax or	n the "bit" turns black						
8.	An alloy of copper, zinc, as called:	nd silver, often used in fabr	ication technique, is					
	(a) nickel silver	(c) soft solder	(e) silver solder					
	(b) bronze	(d) pewter						
9.	Which one of the following making a silver soldered jo	0	metal in place when					
	(a) galvanized iron wire	(c) aluminium wir	e					
	(b) soft iron wire	(d) copper wire						
10.	The usual composition of a	a soldering alloy is						
	(a) Tin and lead only							
	(b) Tin, lead, and small pe	ercentage of Antimony occa	sionally					
	(c) Tin, copper, and lead							
	(d) Tin and copper only							
	(e) Tin, lead, and silver							

(e) Soft soldering

	7. K ey	
1. (c)	6. (d)	11. (e)
2. (c)	7. (d)	12. (b)
3. (a)	8. (e)	13. (b)
	0 /1)	
4. (c)	9. (b)	

11. Zinc chloride is used to carry out the following process:

(a) the soldering iron bit must first be made red hot(b) the joint area must be clean and close-fitting(c) Aluminium wire must be placed along the joint

(c) Brazing

(d) Hardening

12. Which one of the following precautions is necessary to produce a good

(d) a thin film of lubricating oil must be applied to the joint edges

(c) 600°C to 700°C

(d) Around 1000°C

13. The temperature range in which soldering process is carried out is:

(a) Tempering

soldered joint?

(a) 30°C to 100°C

(b) 180°C to 250°C

(b) Anealing

BRAZING

Choose the correct alternative:

1.	Entrapped fluxes, during brazing result in						
	(a)	presence of gas pocket	:S	(c)	cracking		
	(b)	corrosion		(d)	distortion of jo	ints	
2.	Spe	elter is same as:					
	(a)	Tin	(c)	Lead		(e)	Brass
	(b)	Zinc	(d)	Silver			
3.	A b	razed joint may be satis	facto	orily us	ed on an article	mad	e from:
	(a)	tinplate	(c)	pewter	r	(e)	aluminium
	(b)	brass	(d)	coppe	r		
4.	Bra	zing is the name given	to th	e proce	ess of:		
	(a)	heating a flat sheet of l	orass	;			
	(b) hard soldering using brass spelter						
	(c)	easting in brass		_			
	(d)	making steel look like l	brass	3			
	(e)	working with brass in a	any f	orm			

5.	When brazing is carried out: (a) a joint is made between two parts by molten spelter (b) the edges of the joint melt and run together (c) spelter forms an alloy with the flux (d) flux prevents the work from melting (e) flux acts as a cement					
6.	Wh	nich one of the following	g me	tals is a constitue	ent of brazing spelter?	
		Mercury	,	(c) Iron	0.1	
		Lead		(d) Zinc		
7.	(a)(b)(c)	rax is used when brazing instead of flux to dissolve oxides when to accelerate the formato prevent the spelter to	n hea	of oxides on the		
8.	Wh	ich of the following pai	rs of	metals can be b	razed together?	
	(a)	brass and tin		(c) copper a	nd steel	
	(b)	copper and lead		(d) aluminiu	m and aluminium	
9.	(a) (b)	vter is an alloy of: copper and lead silver and copper copper and zinc		(d) tin and le (e) tin and c		
10.	The	e commonly used flux fo	or br	azing is:		
	(a)	resin		(e) borax		
	(b)	pewter		(d) soft iron		
11.	The	e brass used for making	the	joint in brazing i	s generally called:	
	(a)	Resin	(c)	Spelter	(e) Tinning	
	(b)	Borax	(d)	Pewter		

(e) Br

	8. Key	
1. (b)	6. (d)	11. (e)
2. (b)	7. (b)	12. (c)
3. (d)	8. (e)	13. (c)
4. (b)	9. (d)	

12. The temperature range in which brazing process is carried out is:

(c) Zn

(d) Sp

(c) 700°C to 900°C

(d) Above 1000°C

(a) 180° C to 250° C

(b) 350°C to 500°C

(a) Cu

(b) Sn

13. The chemical symbol for spelter (pewter) is:

Welding Technology

Choose the correct alternative:

1.	It is specified that "The steel framework for the addition to an existing hos-
	pital building shall be all welded." Of the following, the best reason for this
	requirement is that welding:

requirement is that welding:	
(a) is easier to perform in the field than riveting	
(b) produces a more rigid structure than riveting	

- (c) is quieter than riveting
- (d) is a more flexible method, when tieing into an existing structure

2.	 The weld most commonly us 	ed to permanent	tly connect the	end of a struc-
	tural steel angle to a vertical	plate is a:		

	O .	-	
(a) t	tack weld	(c) butt weld
(b) f	fillet weld	(d) plug weld

3. The holes in a light steel beam are generally made in a steel fabrication shop by:

shop by:	
(a) punching	(c) burning
(b) drilling	(d) broaching

4. In—welding the parts are heated to welding temperature and then the ends are forced to untie by mechanical pressure:

(a) T.I.G.	(c) rivet	(e) Forge
(b) M.I.G.	(d) Atomic Hydrogen	

(a) ruin the coating of paint

(b) warp the piece thereby making it difficult to fit in place

5.	Post-heating in the control of weld quality is not desirable because:		
	(a) it affects the properties of the base metal of the parts		
	(b) it leads to warping and distortion		
	(c) it increases the cost of welding		
	(d) it decreases the fatigue strength of weldments		
6.	The welding of stainless steels is generally difficult because		
	(c) of the formation of oxide film		
	(d) of the formation of chromium carbide		
	(e) powerful fluxes have to be used		
7.	The most frequently used method of repairing the defects of castings is by		
	(a) drawing (c) welding (e) soldering		
	(b) metal spraying (d) brazing		
8.	Distortion in welding is generally due to		
	(a) use of low hydrogen electrodes		
	(b) improper clamping methods		
	(c) use of wrong electrodes		
	(d) oxidation of weld pool		
	(e) improper welding current values		
_	· ·		
9.	The distinguishing characteristic of Welder's safety shoes is:		
	(a) their color (c) the use of spikes on the sole		
	(b) their height (d) the use of a steel toe box		
10.	• A specification for steel erection prohibits the use of heat in straightening material that was bent in transport. Of the following, the best reason for this requirement is that heating the steel may:		

		affect the strength of the steel necessitate the use of special of the job	equipment thereby increasing the cost of
11.		eliminate the brittleness which ld must be:	occurs due to welding of saw blades, the
	(a)	Toughened	
	(b)	Annealed	
	(c)	Work hardened	
	(d)	Forged	
12.	Ace	etylene gas used in gas welding	is produced by
	(a)	petroleum refining	
	(b)	the action of alcohol on calciu	m carbide
	(c)	adding water to calcium carbi	de
	(d)	adding acetone to carbides	
13.	Fil	ler material should have	
	(a)	the same composition as the p	arent metal to be welded
	(b)	the same melting temperature	e as the parent metal to be welded
	(c)	the same composition and the metal to be welded	same melting temperature as the parent
	(d)	different composition and me	lting temperature
14.	Flu	ixes protect the molten metal a	nd the surfaces to be joined from:
	(a)	oxidation	(c) dirt
	(b)	carburizing	(d) distortion
15.		joining brass metal by gas weldi tt the flame is	ng, the flame adjustment should be such
	(a)	a reducing one	
	(b)	an oxidizing one	
	(c)	a neutral one	
	(d)	none of the above: since brass	can be welded only by arc welding

16.	Oxidizing flame is used normally for welding the following metal:					
	(a)	brass		(c)	stainless steel	
	(b)	mild steel		(d)	copper	
17.	Fla	me cutting of stainless s	steel	plates	are performed b	y
	(a)	using more fuel gas				
	(b)	increasing the length o	f fla	me		
	(c)	addition of iron powde	r			
	(d)	addition of stainless ste	eel p	owder		
18.	In e	electric arc welding, the	arc	is appr	oximately at a te	mperature of:
	(a)	800°C—1000° C	(c)	3000°C	C	(e) 5000°C
	(b)	2000°C	(d)	4000°C	C	
19.		-polarity, the electrodes ms the negative termina		ns the	positive terminal	and the workpiece
	(a)	direct	(c)	positiv	e	(e) zero
	(b)	reversed	(d)	negativ	ve	
20.		en the electrode is cogative, the arrangement				work connected at
	(a)	straight polarity				
	(b)	reverse polarity				
	(c)	resistance welding				
	(d)	negative welding				
21.	Me	tal deposited on to the	work	piece f	From the electrod	le:
	(a)	is forced across the arc				
	(b)	falls because of gravity				
	(c)	is attracted towards th workpiece	e wo	orkpiec	e due to the pos	itive polarity of the
	(d)	is attracted towards the workpiece	e wo	orkpiec	e due to the neg	ative polarity of the

22.	In arc welding operations the current value (Amperes) to be set depends on: $ \\$
	(a) polarity of work material
	(b) polarity of electrode
	(c) voltage across the arc
	(d) speed of travel
	(e) size of the electrode
23.	In electric arc welding, the voltage at the start of the welding is
	(a) higher than the arc voltage during welding
	(b) lower than the arc voltage during welding
	(c) same as the arc voltage during welding
	(d) zero only
2.4	
24.	Weaving in arc welding refers to
	(a) side to side motion of electrode at right angles to the direction of the welding
	(b) side to side motion of the electrode along the direction of the welding
	(c) spiral motion given to electrode
	(d) a technique of striking the arc
25.	Are blow occurs in
	(a) gas welding
	(b) arc welding when straight polarity is used
	(c) are welding when reverse polarity is used
	(d) welding cast iron only
26.	Arc blow in electric arc welding is due to:
	(a) the high velocity flow of inert gas used
	(b) the straight polarity used

(c) the reverse polarity used

 $(d) \ \ the \ improper \ skill \ of \ the \ welder$

27.	Low-hydrogen electrodes are baked prior to use, so that the welding	
	(a) is not shabby	
	(b) is free from arc blow	
	(c) is free form moisture pick up	
	(d) current required is minimum	
28.	The type of joint required for welding depends on:	
	(a) the type of electrode available	
	(b) the load conditions	
	(c) the cost of preparation of joint	
	(d) the diameter of the electrodes	
	(e) the flux to be used	
29.	Stud welding belongs to the category of	
	(a) gas welding (d) pressure welding	
	(b) arc welding (e) thermit welding	
	(c) resistance welding	
30.	Projection welding belongs to the category of	
	(a) gas welding	
	(b) arc welding	
	(c) spot welding	
	(d) resistance welding	
	(e) pressure welding	
31.	Flash butt welding belongs to the category of	
	(a) gas welding	
	(b) arc welding with straight polarity	
	(c) arc welding with reverse polarity	
	(d) resistance welding	
	(e) projection welding	

32.	In resistance welding, the electrode material is			
	(a) mild steel	(d) same as the work material		
	(b) stainless steel	(e) brass		
	(c) copper			
33.	The electrodes commonly used in submerged arc welding are:			
	(a) bare rods	(d) copper electrodes		
	(b) coated electrodes	(e) stainless steel rods		
	(c) core wires			
34.	In submerged arc welding, the flu	ax is in the form of		
	(a) coating on the electrodes	(c) granules		
	(b) core wires	(d) an inert gas		
35.	In atomic hydrogen welding, the	arc is between		
	(a) the parent metals			
	(b) consumable tungsten electrode and workpiece			
	(c) non-consumable tungsten electrode and workpiece			
	(d) consumable tungsten electrode and filler rod			
	(e) two tungsten electrodes			
36.	36. In Tungsten-Inert-Gas (TIG) welding process, the following gas is			
	(a) Acetylene			
	(b) Oxygen			
	(c) Hydrogen			
	(d) Argon			
	(e) Helium			
37.	Thermit welding is generally used	l for:		
	(a) welding brass only			
	(b) welding aluminium and alumi	inium alloys		
	(c) welding steel only			
	(d) welding magnesium only			

(a) parent metals

38. In Argon arc welding, the arc is between the

(b) consumable tungsten electrode and workpiece(c) non-consumable tungsten electrode and filler rod

	(d) non-consumable tungsten electrode and workpiece
	(e) consumable tungsten electrode and filler rod
39.	Tungsten Inert Gas (TIG) welding belongs to the category of
	(a) gas welding
	(b) are welding
	(c) resistance welding
	(d) pressure welding
	(e) thermit welding
40.	In certain welding processes inert gases are used to:
	(a) bring the desired chemical reaction in the weld pool
	(b) protect the weld pool from atmospheric contamination
	(c) cool the joint
	(d) strengthen the joint
	(a) ottongator the joint
41.	By the method of testing, the internal cracks in a welding can be easily
	found out.
	(a) Magnetic particle inspection
	(b) Fluorescent penetrant
	(c) Ultrasonic
	(d) Dye penetrant
	• •
42.	To locate and detect surface and sub-surface cracks in non-magnetic alloys
	the following inspection method can be used:
	(a) X-ray testing
	(b) ultrasonic testing
	(c) magnetic particle inspection testing
	(d) dye penetrant testing

43.	Magnetic particle test is applicable to materials only.				
	(a) Ferrous	(c)	Steel	(e) Non-magnetic	
	(b) Non-ferrous	(d)	Magnetic		
44.	X-ray inspection of welding	g wou	ıld be considered as	testing.	
	(a) destructive	(c)	non-destructive	(e) visual	
	(b) final	(d)	magnetic		
45.	Surface defects in weldme	ents o	of magnetic materials	can be detected by	
				_	
	(a) X-ray method		(c) Magnaflux met		
	(b) Ultrasonic flaw detecti	on	(d) Dye penetrant	method	
46.	Leaks in gas piping may be	e best	located by the use of a	a:	
	(a) cigarette lighter		(c) heated filament	t	
	(b) miner's lamp		(d) soapy water sol	ution	
47.	Undercuts in weldments a	re caı	used due to:		
	(a) low welding current				
	(b) excessive welding current				
	(c) wrong selection of wel	ding	rods		
	(d) use of powerful fluxes				
48.	A good welded joint should	l hav	e		
	(a) a good penetration		(d) no cracks in the	e weld	
	(b) welds of correct shape		(e) all the above		
	(c) no inclusion of slag				
49.	While testing for the streweld is denoted when:	ngth	of welded joint by ter	nsile testing, a good	
	(a) fracture occurs on the	weld	ed joint		
	(b) fracture occurs outside	the	weld in parent metal		
	(c) no fracture occurs at a	11			
	(d) the specimen is subject	ted to	o eccentric loading		

50.	Non-destructive testing of welds are done by			
	(a) Magnaflux method			
	(b) Conducting a standard Tensile Test			
	(c) Conducting an Hardness test			
	(d) Conducting a shear test			
51.	To locate surface cracks in the weldments of non-magnetic alloys the method used is:			
	(a) X-ray test (c) Magnaflux method			
	(b) Ultrasonic flaw detection (d) Fluorescent test			
52.	Destructive testing of welds are done by:			
	(a) Magnaflux method			
	(b) Conducting a standard tensile test			
	(c) X-ray testing			
	(d) Ultrasonic testing			
53.	. The color code for a high-pressure Oxygen cylinder used in gas welding operations is:			
	(a) Grey with a black color band			
	(b) Black with a grey color band			
	(c) Black without any color band			
	(d) Grey without a color band			
54.	Spot welding and seam welding are good examples of:			
	(a) Oxy-acetylene gas welding			
	(b) Electric arc welding			
	(c) Sub-merged arc welding			
	(d) Electric resistance welding			

9. **Key**

1. (c)	15. (b)	29. (c)	43. (d)
2. (b)	16. (a)	30. (d)	44. (c)
3. (a)	17. (c)	31. (d)	45. (c)
4. (e)	18. (d)	32. (c)	46. (d)
5. (a)	19. (b)	33. (a)	47. (b)
6. (c)	20. (b)	34. (c)	48. (e)
7. (b)	21. (a)	35. (e)	49. (b)
8. (b)	22. (e)	36. (d)	50. (a)
9. (d)	23. (a)	37. (c)	51. (d)
10. (c)	24. (a)	38. (d)	52. (b)
11. (b)	25. (b)	39. (b)	53. (c)
12. (c)	26. (b)	40. (b)	54. (d)
13. (e)	27. (c)	41. (c)	
14. (a)	28. (b)	42. (d)	

HAND TOOLS AND SAWING PRACTICE

Choose the correct alternative:

- **1.** The proper type of file to be used when filing metals such as brass or bronze is:
 - (a) the smooth-cut file
 - (b) the second-cut file
 - (c) the coarse-cut or rough-cut file
 - (d) the double-cut file
 - (e) the single-cut file
- **2.** The no. of teeth per inch on an hacksaw blade is called \dots of the blade.
 - (a) the finish
- (d) the pitch
- (b) the module
- (e) the cut
- (c) the twist
- 3. A wrench which has one solid jaw and one movable jaw is called:
 - (a) a torque wrench
 - (b) a power wrench
 - (c) a screw wrench
 - (d) an Allen wrench
 - (e) an adjustable wrench

line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c)	4.	 A power saw which employs a continuous looped blade which is driven two wheels or pulleys is called: 			
 5. The no. of teeth/inch in a band saw blade is called as: (a) module of the blade (b) pitch of the blade (c) finish of the blade 6. The cutting action of power-hacksaw blade is described as: (a) an oscillating motion (b) a reciprocating motion (c) a continuous circular motion (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 		a) a power hacksaw machine (c) a filing machine			
 (a) module of the blade (b) pitch of the blade (c) finish of the blade (d) twist of the blade 6. The cutting action of power-hacksaw blade is described as: (a) an oscillating motion (b) a reciprocating motion (c) a continuous circular motion (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 		b) a circular saw machine (d) a band saw machine			
(b) pitch of the blade (d) twist of the blade 6. The cutting action of power-hacksaw blade is described as: (a) an oscillating motion (b) a reciprocating motion (c) a continuous circular motion (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal.	5.	The no. of teeth/inch in a band saw blade is called as:			
 6. The cutting action of power-hacksaw blade is described as: (a) an oscillating motion (b) a reciprocating motion (c) a continuous circular motion (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 		a) module of the blade (c) finish of the blade			
 (a) an oscillating motion (b) a reciprocating motion (c) a continuous circular motion (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 		b) pitch of the blade (d) twist of the blade			
 (a) an oscillating motion (b) a reciprocating motion (c) a continuous circular motion (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 	6.	The cutting action of power-hacksaw blade is described as:			
 (b) a reciprocating motion (c) a continuous circular motion (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 					
 (d) a simple Harmonic Motion 7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 					
7. Band sawing of the parts to some irregular shape or form following line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c)		c) a continuous circular motion			
line is called: (a) In-line sawing (b) Out-line sawing (c) Contour sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c)		d) a simple Harmonic Motion			
(b) Out-line sawing (d) Multiple sawing 8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c)	7.	Band sawing of the parts to some irregular shape or form following a layout ine is called:			
8. Chipping is an operation wherein: (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c)		a) In-line sawing (c) Contour sawing			
 (a) a reciprocating motion of a file is used (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 		b) Out-line sawing (d) Multiple sawing			
 (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 	8.	Chipping is an operation wherein:			
 (b) a chisel is used for metal removal (c) a mark is made with a center punch (d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c) 		a) a reciprocating motion of a file is used			
(d) a scraper is used for metal removal. 10. Key 1. (c) 4. (d) 7. (c)		•			
10. Key 1. (c) 4. (d) 7. (c)		c) a mark is made with a center punch			
1. (c) 4. (d) 7. (c)		d) a scraper is used for metal removal.			
1. (c) 4. (d) 7. (c)					
1. (c) 4. (d) 7. (c)					
1. (c) 4. (d) 7. (c)					
		10. Key			
2. (d) 5. (b) 8. (b)		1. (c) 4. (d) 7. (c)			
2. (a) 3. (b)		2. (d) 5. (b) 8. (b)			

3. (e) **6.** (b)

11

SHAPERS

Choose the correct alternative:

	(a) feed movement	(d) middle
	(b) forward	(e) end
	(c) return or backward	
2.	The primary function of the shape	er is to:
	(a) produce slots	(d) produce a flat machined surface
	(b) cut angles	(e) cut dovetail
	(c) cut key ways	
3.	Shaper size is determined by the:	
	(a) Maximum weight of the work	piece that can be mounted
	(b) H.P. of the motor	-
	(c) Diameter of the bull wheel	
	(d) Maximum stroke length of the	e ram
4.	For proper seating of the work is should be supported on:	n a shaper vise for machining, the work
	(a) jaws	(d) parallels
	(b) clamps	(e) flats
	(c) shims	

1. The cutting action of the shaper occurs only on the ... stroke of the ram.

5.	Vee blocks are commonly used as work holding devices for \dots shafts which require shaping:			
	(a) square	(c) elliptical		
	(b) splined	(d) cylindrical		
6.	To obtain an equal spacing of splines around the circumference of a shaft by shaping, the shaft is mounted between			
	(a) live centers	(c) differentials		
	(b) dead centers	(d) indexing centers		
7.	Shapers equipped with a table the referred to as	at can be swivelled for angle cutting are		
	(a) Vertical shapers	(d) Hydraulic shapers		
	(b) Universal shapers	(e) Rotary shapers		
	(c) Gear shapers			
8.	Rotary tables for circular cuts are	standard equipment on a:		
	(a) Vertical shaper	(c) Rotary shaper		
	(b) Universal shaper	(d) Hydraulic shaper		
9.	Shapers equipped with universa operations such as:	l table are preferred when performing		
	(a) vertical shaping	(c) slotting		
	(b) angle cutting	(d) form cutting of gear teeth		
10.	The hinged part on the front face of a shaper tool head on which the tool post is mounted is called a:			
	(a) Box tool	(c) Parallel		
	(b) Clapper box	(d) Vise		
11.	To prolong the life of shaper too	ls after they are ground, they should be		
	(a) Lapped	(c) Stoned		
	(b) Sanded (d) Hardened			

12.	The smoothly finished square or rectangular bars used as work seat support when shaping work in a vise are called:			
	(a) Clamps	(c) Jaws		
	(b) Height adjusters	(d) Parallels		
13.	What work holding device would l key-way in a cylindrical shaft?	pe recommended for use when shaping a		
	(a) a V-block	(c) a dividing head		
	(b) an angle plate	(d) a shaper vise		
14.	To shape splines in a shaft which mounted:	must be accurately spaced, the work is		
	(a) in a shaper vise	(d) in a special fixture		
	(b) between indexing centers	(e) in an independent chuck		
	(e) in V-blocks	-		
15.	The factor to be considered in det	termining shaper size is:		
	(a) The overall height of the machine			
	(b) The table size with which the machine is equipped			
	(c) The maximum table feed movement			
	(d) The maximum stroke length of the ram			
16.	Whitworth mechanism is used in:			
	(a) a shaping machine (Mechanic	al type)		
	(b) an hydraulic shaper			
	(c) a milling machine			
	(d) a grinding machine			
	(e) a broaching machine			
17.	In the case of a shaper equipped v	vith Whitworth mechanism:		
	(a) The cutting stroke is faster than the return stroke			

(b) the return stroke is faster than the cutting stroke

(d) the return stroke is slower than the cutting stroke

(c) both the cutting stroke and the return stroke take the same time

18. The cutting speed of the tool in mechanical shaper is:
(a) maximum at the beginning of the cutting stroke

(b) maximum at the end of the cutting stroke(c) maximum at the middle of the cutting stroke(d) minimum at the middle of the cutting stroke

the cutting stroke in the case of:

	(b) an hydraulic shaper	
20.	0. The feeding of the job in a shaper is do	ne by:
	(a) movement of the clapper box	
	(b) table movement	
	(e) V-block	
	(d) ram movement	
	(e) tool movement	
21.	1. In the case of a shaping machine, feeding	ng of the job is done:
	(a) at the beginning of the cutting strok	re
	(b) at the middle of the cutting stroke	
	(c) at the end of the cutting stroke	
	(d) at the end of the return stroke	
22.	2. The feed rate in a shaping operation is u	isually expressed as:
	(a) mm/stroke (d) r	nm
	(b) mm/double stroke (e) r	n/minute
	(c) mm/treble stroke	
23.	3. In a mechanical shaper, the lifting of ensured by:	the tool during the idle stroke is
	(a) tool head	
	(b) ram adjustment	

19. The velocity of the cutting tool (or cutting speed) is uniform throughout

(a) a mechanical shaper equipped with Whitworth mechanism

- (c) bull wheel movement
- (d) ratchet and pawl mechanism
- (e) clapper box mechanism
- **24.** More than one tool head can be put into operation in the case of:
 - (a) a planing machine
 - (b) a shaping machine
 - (c) a slotting machine

11. Key

1. (b)	7. (b)	13. (a)	19. (b)
2. (d)	8. (a)	14. (b)	20. (b)
3. (d)	9. (b)	15. (d)	21. (d)
4. (d)	10. (b)	16. (a)	22. (b)
5. (d)	11. (a)	17. (b)	23. (e)
6. (d)	12. (d)	18. (c)	24. (a)

Turning and Lathe Work

Choose the correct alternative:

1.	Turning of metals in a machine she	op i	s usually performed on a:
	(a) radial drill press	(d)	shaper
	(b) lathe	(e)	cylindrical grinding machine
	(c) milling machine		
2.	A lathe bed is usually made of:		
	(a) mild steel	(c)	cast iron
	(b) high-carbon steel	(d)	aluminium
3.	With HSS tools, highest cutt machining	ing	speed can be employed while
	(a) Cast iron	(d)	Bronze
	(b) Mild steel	(e)	Aluminium
	(c) Brass		
4.	The cutting speed in any machinir	ng o	peration is usually expressed in:
	(a) revolutions per minute of work	kpie	ce
	(b) mm/min.		
	(c) surface meters/min.		
	(d) mm/revolution of job		
	· ·		

	rotating at N R.P.M. is given by	
	(a) π DN	(d) DN/1000
	(b) π DN/1000	(e) 1000/DN
	(c) $1000/\pi \ DN$	
6.	The form of chip produced when cast iron is the:	machining a hard and brittle metal like
	(a) Continuous chip	
	(b) Discontinuous chip	
	(c) Continuous chip with built-up	o-edge (B.U.E)
	(d) No chips are produced.	
7.	Powdery chips are produced while	e machining or drilling:
	(a) Mild steel	(d) Stainless steel
	(b) Hardened Tool Steel	(e) High Speed Steel (HSS)
	(e) Cast Iron	
8.	The "feed rate" in lathe operation	s is usually expressed in:
	(a) R.P.M. of workpiece	(c) surface meters/minute
	(b) mm/minute	(d) mm/revolution of job
9.		ed such that long turning cuts are made edways of the machine are classified as:
	(a) drum type turret lathes	
	(b) ram type turret lathes	
	(c) saddle type turret lathes	
	(d) automatic screw machines	
10.	External and internal tapers are m	nachined on turret lathes:
	(a) by using formed tools	
	(b) by using taper turning attachr	nent
	(c) by off-setting the tailstock cen	ter

(d) by setting the compound rest at an angle

5. The surface speed in meters/minute of a workpiece of diameter D mm

11	On automatic caray machines havi	ng vertical and cross slides, the vertical
11.	slide is normally used for operat	
	(a) thread cutting	(c) drilling
	0	(d) parting-off
12.	Turret lathes equipped with spindl 3-jaw chuck are referred to as	es which can be fitted with a universal machines
	(a) drum type(b) saddle type(c) chucking(d) universal lathe	
13.	The important difference between is that:	ordinary center lathes and turret lathes
	 (a) center lathes are cheaper and s (b) turret lathes are costly and very (c) tungsten carbide tools are used (d) turret lathes are constructed operations can be performed at 	complicated in turret lathes and tooled so that several different
14.	On bar-type turret lathes, work t	o be machined is held or gripped in
	(a) three-jaw	
	(b) four-jaw	
	(c) pneumatic	
	(d) collet	
15.	Automatic screw machines capable at a time are classified as:	of machining more than one workpiece
	(a) single spindle automatic machi	
	(b) multi-spindle automatic machin	nes
	(c) drum type machines	
	(d) ram-type machines	
	(e) bar turners	

(a) mild steel, aluminium, brass(b) mild steel, brass, aluminium(c) brass, mild steel, aluminium(d) aluminium, brass, mild steel

(a) a lower cutting speed(b) a medium cutting speed(c) a higher cutting speed(d) any cutting speed

speed selection is called a:

(a) head stock

(a) Headstock(b) Tool post(c) Tailstock(d) Carriage(e) Gear box

(b) tail stock(c) feed box

18. When taking a finish cut, the lathe should be operated at:

16.	Angles which are ground on the top surface or face of a lathe tool bit and which slant downward from the side cutting edge of the tool are called:
	 (a) Positive side rake angles (b) Negative side rake angles (c) Side clearance angles (d) End cutting edge angles
17.	Which one of the following arrangements places the metals in correct order of turning speeds, starting with the slowest?

19. The unit of a lathe which houses the lathe spindle and control levers for

20. During drilling work on a lathe, mount the drill in the spindle of the:

(d) carriage(e) tool post

21.	Work which cannot be held mounted on the	in a lathe chuck can be clamped to: a ne headstock spindle.
	(a) Camplate(b) Faceplate(c) Carriage	(d) Tailstock(e) Surface plate
22.	To take up wear on the cros	s slide or compound rest, the adjustable atened.
	(a) jigs(b) plates(c) gibs	(d) pins (e) screws
23.	The angle on the face or top su from the side cutting edge is ca	rface of a lathe tool which slants downward illed:
	 (a) Side rake angle (b) Back rake angle (c) Front clearance angle (d) Side clearance angle (e) Side cutting edge angle 	
24.	The angle on the face of a tool tool is called: (a) Side rake angle (b) Back rake angle (c) Side clearance angle (d) Front clearance angle (e) End Cutting Edge Angle (1)	which slants backward from the nose of the
25.	The angles which are ground of (a) Rake angles (b) Clearance angles or relief at (c) Cutting edge angles (d) Point angles	n the sides of a lathe tool bit are called:

26.	During facing work in a lathe, it is	important that the point of the tool be set:
	(a) on the exact center of the wor	rkpiece
	(b) below the center of the work	piece
	(c) above the center of the work	piece
	(d) any where on the workpiece	
27.	A round nose tool ground without right or left hand tool	at an can be used as a
	(a) Back rake angle	
	(b) Side rake angle	
	(c) Front clearance angle	
	(d) Side clearance angle	
	(e) End cutting edge angle	
28.	Work which cannot be chucked b for facing.	ecause of its shape can be mounted on a
	(a) collet	(c) V-block
	(b) vise	(d) faceplate
29.	For a turning operation, the tool	bit should be set:
	(a) slightly below the center of the	ne workpiece
	(b) slightly above the center of the	ne workpiece
	(c) exactly at the center of the wo	orkpiece
	(d) at an angle	
30.	Which one of the lathe parts me feed?	ntioned below is provided with a power
	(a) Carriage	(c) Cross slide
	(b) Compound rest	(d) Feed screw
31.	Parts having a square or irregular be mounted in:	shape to be machined on a lathe can only
	(a) Universal chucks	(c) collet chucks
	(b) independent chucks	(d) Cam lock chucks
	•	

32.	The preferred chuck for n	nounting small cylindrical v	vork to be turned is
	(a) the Cam lock chuck(b) the Universal chuck(c) the 4-jaw chuck(d) the collet chuck		
33.	Tail stock centers which do as	o not revolve with the work	piece are referred to
	(a) Revolving centers		
	(b) Dead centers		
	(c) Live centers		
	(d) Independent centers		
	(e) Magnetic centers.		
34.	To refinish the points of them to an included angle	lathe centers which have b	pecome worn, grind
	(a) 30°	(d) 120°	(c) 90°
	(b) 60°	(e) 118°	
35.		he compound rest, the car ustable to ta	
	(a) screws	(d) jigs	(c) gibs
	(b) plates	(e) pins	
36.	Work to be faced in a lathe	e chuck requires that:	
	$(a) \ \ the \ compound \ rest \ be$	set at a certain angle	
	(b) the tip of the tool is set	t exactly on the work center	line
	(c) the tip of the tool be se	et below the work centerline	е
	(d) the tool be set slightly	above the work center	

37. During plain turning of a shaft mounted between lathe centers:

(a) Set the compound rest parallel to the work axis

(b) Use a lubricant

 38. The included thread angle of a standard form of thread is: (a) 30 degrees (b) 45 degrees (c) 60 degrees 39. The width of the tool bit point for cutting a	read
 (b) 45 degrees (c) 60 degrees 39. The width of the tool bit point for cutting a	read
(c) 60 degrees 39. The width of the tool bit point for cutting a	read
39. The width of the tool bit point for cutting a	ead
should be ground to half-the-pitch of the thread. (a) ACME- (b) SQUARE- (c) V- (d) STANDARD- 40. Taper turning on a lathe can be done by: (a) One method only (b) Two different methods (c) Three different methods (d) Four different methods	read
 (b) SQUARE- (d) STANDARD- 40. Taper turning on a lathe can be done by: (a) One method only (b) Two different methods (c) Three different methods (d) Four different methods 	
 40. Taper turning on a lathe can be done by: (a) One method only (b) Two different methods (c) Three different methods (d) Four different methods 	
(a) One method only(b) Two different methods(c) Three different methods(d) Four different methods	
(a) One method only(b) Two different methods(c) Three different methods(d) Four different methods	
(b) Two different methods(c) Three different methods(d) Four different methods	
(d) Four different methods	
41. Tanger turning can be performed an a lather when work is mounted between	
41. Taper turning can be performed on a lathe when work is mounted between centers by off-setting the center.	een
(a) Headstock (c) Live	
(b) Tail stock (d) Drill	
42. To machine a 60-degree included angle on a lathe center with the compound rest, the compound rest must be set at to work centerline.	
(a) 15 degrees (c) 60 degrees	
(b) 30 degrees (d) 120 degrees	
43. The operation of producing an accurately-sized hole in a lathe using a bit is called:	tool
(a) Drilling (a) Paring	
(a) Drilling (c) Boring	

44.		eed to reverse the		when large size holes are threaded, ation of the lathe spindle when with-
	(a) Square(b) Solid			Hand Collapsible
45.	"The lead of any ment is true:	thread is always t	he s	same as the pitch." The above state-
	(b) in the case o	f single-thread scr f double-thread sc f multiple-thread a ditions	erew	v only
46.	•	atic screw machin itudinally is the Sv		aving slidingwhich can s-type.
	(a) Carriage(b) Tailstock			Compound rest Spindle
47.		e lathe gear box le	ever	rs in thread-cutting operations is de-
	(a) Pitch of thre(b) Material bein			
		e thread to be cut		
48.		tandard V-thread		compound rest of the lathe must be
	(a) 14.5 degrees(b) 29 or 30 deg			45 degrees 60 degrees
49.		to use in thread-o	(c)	ing operations is: Mineral Lard oil Water soluble oil

50.	A lubricant is not needed	when cuttii	ng threads in:	
	(a) Tungsten carbide			
	(b) Mild steel			
	(c) Titanium			
	(d) Brass or cast iron			
	(e) High Speed Steel (H.S	S.S.)		
51.	What would be the finish of	lepth of a s	quare thread hav	ing a pitch of 4 mm?
	(a) 16 mm	(c) 2 mm		(e) 8 mm
	(b) 4 mm	(d) 1 mm		
52.	Short or sharp angle taper	s are mach	ined using:	
	(a) a taper attachment			
	(b) the compound rest			
	(c) the tailstock set over n	nethod		
	(d) a form tool ground to	the taper a	ngle	
53.	On single-spindle automa formed from the		cut off operation	as are normally per-
	(a) Vertical tool slide	(d)) Hexagonal turr	et
	(b) Rear tool post	(e)	Cross slide	
	(c) Square Turret			
54.	The movement of the varietirely automatic on screw action.			
	(a) gear	(d)	spring	
	(b) collet) cam	
	(c) roller			
55.	Long turning cuts are mad tudinal movement of the s			
	(a) Drum	(e)	Universal	
	(b) Saddle	(d)) Chucking	
			0	

56.	A tool which is mounted in the her cuts at high speeds is called a	xagonal turret when taking heavy turning
	(a) Box type of tool(b) Bar turner(c) Chaser(d) Heavy turning attachment.	
57.	Square or irregular shaped workp	iece for turning is usually mounted in:
	(a) Three jaw chuck(b) Independent chuck(c) Collet chuck	(d) Bar chuck (e) Mandrel
58.	A device which is fastened to the between centers is called a:	ne headstock end of work to be turned
	(a) face plate	(d) work-steady
	(b) lathe dog	(e) independent chuck
	(c) vise	
59.	Previously drilled and reamed p mounting such parts on a:	arts can be turned between centers by
	(a) Three jaw chuck	(d) Mandrel
	(b) Four jaw chuck	(e) Faceplate
	(c) Steady	
60.	The angles ground into the face or to as:	top surface of lathe tool bits are referred
	(a) Clearance angles	
	(b) Relieving angles	
	(c) Rake angles	
	(d) Side/Face Cutting Edge Angl	es
61.	The angles which are ground on t	he sides of a lathe tool bit are called:
	(a) Rake angles	(c) Side Cutting Edge Angles (SCEA)
	(b) Clearance angles	(d) Point angles

62.	Which of the following lathe operatool bit be placed exactly on the w	nations requires that the cutting edge of a work centerline?
	(a) Boring	(d) Turning
	(b) Drilling	(e) Chamfering
	(c) Facing	
63.	All moving elements used in a mac positioned for cuts automatically be	hining operation on a screw machine are by action.
	(a) Gear	(d) Roller
	(b) Collet	(e) Cam
	(c) Spring	
64.	On screw machines having cross a are usually performed from the	and vertical slides, cutting off operations
	(a) Horizontal slide	(c) Cross-slide
	(b) Vertical slide	(d) Cross-drilling attachment
65.	Drill chucks when used for drilling	operations in a lathe are mounted in the
65.	spindle	operations in a lathe are mounted in the (c) Head stock
65.		-
	spindle (a) Tool post (b) Carriage	(c) Head stock
	spindle (a) Tool post (b) Carriage The automatic performance of	(c) Head stock (d) Tailstock
	spindle (a) Tool post (b) Carriage The automatic performance of obtained by:	(c) Head stock(d) Tailstockall operations on screw machines is
66.	spindle (a) Tool post (b) Carriage The automatic performance of obtained by: (a) Dowels (b) Cams	(c) Head stock(d) Tailstockall operations on screw machines is(c) Bushes
66.		 (c) Head stock (d) Tailstock all operations on screw machines is (c) Bushes (d) Fillets
66.	spindle (a) Tool post (b) Carriage The automatic performance of obtained by: (a) Dowels (b) Cams When machining internal oris used.	 (c) Head stock (d) Tailstock all operations on screw machines is (c) Bushes (d) Fillets
66.	spindle (a) Tool post (b) Carriage The automatic performance of obtained by: (a) Dowels (b) Cams When machining internal oris used. (a) Face turning attachment	 (c) Head stock (d) Tailstock all operations on screw machines is (c) Bushes (d) Fillets

68.	• In lathe work, the cutting speed is usually expressed in:			
	(a) R.P.M.	(d) cm/min.		
	(b) mm/min.	(e) mm/rev.		
	(c) m/min.			
69.	In lathe work, the cutting tool feed is expressed in:			
	(a) R.P.M.	(d) inches/min.		
	(b) m/min.	(e) mm/rev.		
	(c) m/rev.			
70.	Discontinuous chips are normally obtained when turning metals such as			
	(a) Mild steel	(c) Cast Iron		
	(b) Aluminium	(d) High Speed Steel (H.S.S.)		
71.	1. Continuous chips are normally produced when turning:			
	(a) Ductile metals	(c) Brass		
	(b) Brittle metals	(d) Diamond		
72.	72. In a taper turning exercise on a lathe, the following details are given component drawing:			
	(i) The amount of taper is 1/2	0		
(ii) The difference in the diameters of big end and small end tapered portion is 8 mm.				
	What is the length of the tapered portion?			
	(a) 160 mm	(d) 2.5 mm		
	(b) 320 mm	(e) 5 mm		
	(c) 80 mm			
73.	A lathe tool is considered as a:			
	(a) single point cutting tool			
	(b) multi-point cutting tool			
	(c) single edged cutting tool			
	(d) multi-edged cutting tool			

- **74.** A shaft 1000 mm long has a taper of 1 : 100 for a length of 300 mm. The maximum diameter of the tapered portion is 75 mm. What is the minimum diameter of the tapered portion?
 - (a) 81 mm

(d) 69 mm

(b) 78 mm

(e) 66 mm

(c) 72 mm

12. key

(Please try to answer the questions/test items on your own before looking at the answers given below).

1. (b)	16. (a)	31. (b)	46. (d)	61. (b)
2. (c)	17. (b)	32. (d)	47. (a)	62. (c)
3. (e)	18. (c)	33. (b)	48. (a)	63. (e)
4. (c)	19. (a)	34. (b)	49. (c)	64. (b)
5. (b)	20. (c)	35. (c)	50. (d)	65. (d)
6. (b)	21. (b)	36. (b)	51. (c)	66. (b)
7. (c)	22. (c)	37. (a)	52. (b)	67. (b)
8. (d)	23. (a)	38. (c)	53. (a)	68. (c)
9. (c)	24. (b)	39. (b)	54. (e)	69. (e)
10. (b)	25. (b)	40. (c)	55. (b)	70. (c)
11. (d)	26. (a)	41. (b)	56. (b)	71. (a)
12. (c)	27. (b)	42. (b)	57. (b)	72. (a)
13. (d)	28. (d)	43. (e)	58. (b)	73. (a)
14. (d)	29. (b)	44. (d)	59. (d)	74. (c)
15. (b)	30. (b)	45. (a)	60. (c)	

13

Drilling, Reaming, Threading, and Boring Practice

Choose the correct alternative:

1.	The tool used to scribe a circle in laying out a hole is called:		
	(a) a scriber	(c) a compass	
	(b) a divider	(d) a combination set	
2.	Center punches are used in layout work to locate and mark the centers of		
	(a) shafts	(c) slides	
	(b) holes	(d) bearings	
3.	The most common method of originating a hole in a metallic workpiece is by		
	(a) shearing		
	(b) punching		
	(c) countersinking		
	(d) drilling		
	O		
	(e) boring		
4.	Cylindrical job should always be clamped on a for drilling.		
	(a) collet	(d) vise	
	(b) socket	(e) V-block	
	(c) jaw		

5.	The cutting edges of a standard twist drill are called					
	(a) flutes	(c) wedges	(e) conical points			
	(b) lips	(d) flanks				
6.	The helical grooves which extend to the full length of the drill body are called:					
	(a) Lips	(c) Margins	(e) Shanks			
	(b) Cutting edges	(d) Flutes				
7.	The number of helical grooves which are present in a standard twist drill is usually:					
	(a) one	(c) three				
	(b) two	(d) four				
8.	The important purpose of flutes in a drill is:					
	(a) they enable the cutting fluid to enter the working zone					
	(b) they enable the chips to come out					
	(c) they increase the strength of the drill at the cutting point					
	(d) they reduce the weight of the drill used					
	(e) they enable the cutting edges to be formed					
9.	The "depth-of-cut" in a dri	lling operation is equal to:				
	(a) length of hole drilled					
	(b) the feed rate used					
	(c) diameter of the drill used					
	(d) 1/2 the diameter of the drill used					
	(e) 1/4 the diameter of the	e drill used				
10.	The usual point angle of the	The usual point angle of the drill is:				
	(a) 90°					
	(b) 98°					
	(c) 118°					
	(d) 135°					
	(e) same as the helix angle of the drill					

11.	The point angles and clear depending on the:	ance angles of drills must b	e varied by grinding						
	(a) Drill Diameter								
	(b) Material to be drilled								
	(c) R.P.M. of the drill								
	(d) Depth of the hole to b	e drilled							
12.	To drill free machining sta with a 15 mm diameter dri	ainless steel at a cutting sp ll, the drill must rotate at a							
	(a) 320 R.P.M.	(c) 1000 R.P.M.	(e) 32 R.P.M.						
	(b) 640 R.P.M.	(d) 3.1416 R.P.M.							
13.	A hole which does not go e shop as:	ntirely through a workpiece	e is referred to in the						
	(a) an inclined hole	(c) a through hole	(e) a pilot hole						
	(b) a blind hole	(d) a countersink hole	· / I						
14.	4. All straight-shanked drills used in drill press work must be held								
	(a) directly into the spindl	-							
	(b) in a key type drill chuc	k							
	(c) in a tapers sleeve								
	(d) in a vise								
15.	To provide a positive drive to prevent the	e, all tapershanked drills a m from slipping under a cu							
	(a) sleeve								
	(b) socket								
	(c) tang								
	(d) neck								
16.	The purpose of theo and to ensure a positive dr		prevent drill slipping						
	(a) sleeve	(c) neck	(e) flutes						
	(b) socket	(d) tang							

17.	• To reduce the feeding pressure needed for drilling larger holes, it is a good practice first to								
	(a) anneal the workpiece		(e)	drill a small pil	ot hole				
	(b) drill a countersink hole	е	(d)	drill a stepped	hole				
18.	A drill having flat sides as called a	nd tv	vo cutti	ng edges for d	lrilling large holes is				
	(a) Micro-drill		(c)	Boring tool					
	(b) Spade drill		(d)	Counter-borin	g tool				
19.	A cutting fluid need not be	a cutting fluid need not be used when drilling or reaming							
	(a) Aluminium	(c)	Bronze	- :	(e) Cast Iron				
	(b) Brass		Mild S		. ,				
20.	Kerosene is a good cutting	Kerosene is a good cutting fluid to use when drilling							
	(a) Cast Iron		Alumin	_	(e) Bronze				
	(b) Mild steel		Brass	num	(C) DIONZC				
	(b) What steel	(u)	Diass						
21.	The taper usually employe	ed in	drill sle	eves in known	as:				
	(a) Girlling Taper		(c)	Brown & Shar	p taper				
	(b) Morse Taper		(d)	1: 1 Taper					
22.	A taper shank drill is remo	ved i	from the	e drill spindle b	py:				
	(a) tapping the drill by a h	namn	ner						
	(b) a screw driver								
	(c) a draft								
	(d) a drift								
	(e) a tang								
23.	Oversized holes in drilling	are o	caused l	oy:					
	(a) equal lengths of lips		(d)	smaller helix a	ngle				
	(b) unequal length of lips		(e)	wornout drills					
	(c) larger helix angle								

24.	4. The operation of providing a smooth seat or bearing surface around a previously drilled hole for a washer or nut is called:						
	(a) boring	(c) counter sinking					
	(b) counterboring	(d) spot-facing					
25.	5. The operation of making a recess at the top of a drilled hole for a flat-head machine screw is called:						
	(a) Boring	(c) Micro-boring					
	(b) Counter sinking	(d) Reaming					
26.	A cutting tool used to make a rec head machine screw is called	ess at the top of a drilled hole for a flat					
	(a) a Core drill	(d) an end mill					
	(b) a Spade drill	(e) a countersink tool					
	(c) a reamer						
27.	is the only drilling mac	hine not equipped with power feeds:					
	(a) The Sensitive drill press						
	(b) The Multiple spindle drilling	machine					
	(c) The Radial drilling machine						
	(d) The Gang drilling machine						
28.	When a number of single spindle of by side on a common work table,	drilling machine columns are placed side the machine is known as:					
	(a) Radial drilling machine						
	(b) Gang drilling machine						
	(c) Multiple-spindle drilling macl	nine					
	(d) Universal drilling machine						
	(e) Pillar type drilling machine						
29.	The machine which is used to dril tractor engine housing is called:	l a number of holes simultaneously on a					
	(a) Sensitive drilling machine						

(b) Radial drilling machine

	(d)	Universal drilling machine Gang drilling machine Multi-spindle drilling r									
30.	(a)	aming is done for making a hole initia	•								
	(c)	to enlarge the diamete to improve the finish in to achieve correct diam	n the hol								
31.	1. When reaming holes with solid reamers, mount the reamer in										
		a rigid holder a floating holder		(c) a semi-ri (d) a Collet	igid holder						
32.	A to	ool used to finish drilled	l holes a	ecurately to	size is called:						
		an end mill a tap	(c) a di (d) a tw		(e) a	reamer					
33.		is the operation	on of siz	ing and finis	hing a hole a	ccurately with					
		Drilling Tapping	(c) Pier (d) Rea	0	(е) Т	Turning					
34.		provide a close toleran st be	ce and a	a fine finish	in a drilled	hole, the hole					
		drilled again tapped		(c) sheared (d) reamed							
35.	The	e cutting speed to be us	ed in rea	ming a hole							
	(b) (c) (d)	should be same as the should be more than the should be less than the could be any speed should be as large as possible.	ne cuttin	g speed used	l in drilling t	hat hole					

36.	. The operation of threading a drilled hole is called:							
	(a) Lapping	(c) Broaching						
	(b) Reaming	(d) Tapping						
37	A fluted tool used to cut internal t	threads is called:						
37.								
	(a) a tap	(c) a die						
	(b) a drill	(d) an end mill						
38.	• Hand-tapping is an operation for generation of internal threads. The number of taps generally used for completing this operation is:							
	(a) 1							
	(b) 2							
	(c) 3							
	(d) 4							
	(e) depends on the diameter of the	he hole						
39.	A tool used in threading a hole is	called:						
	(a) a tap	(c) an end mill						
	(b) a die	(d) a twist drill						
	(b) a die	(a) a twist arm						
40.	Taps are used for:							
	(a) generating internal threads							
	(b) generating external threads							
	(c) drilling holes							
	(d) enlarging the holes							
41.	A tool used in cutting an external	thread is called a:						
	(a) twist drill	(c) die						
	(b) tap	(d) nut						
42.	Dies are used for:							
	(a) generating internal threads	(e) drilling holes						
	(b) generating external threads	(d) enlarging the holes						

- **43.** In a double-start thread the lead is equal to
 - (a) 12 pitch
 - (b) pitch
 - (c) twice the pitch
 - (d) Thrice the pitch
 - (e) 4 times the pitch
- **44.** "Point thinning" a drill:
 - (a) reduces the point angle of the drill
 - (b) makes the drill to produce an oversize hole
 - (c) reduces the effort needed to make the drill cut
 - (d) help the chips to come out easily
- **45.** A twist drill has been ground so that the cutting edges are of unequal length. The effect of this in use will be to produce:
 - (a) a hole larger in diameter than the drill
 - (b) an increase in the life of the drill
 - (c) breakage due to the over loading of the longer cutting edge
 - (d) softening due to overheating the drill
- **46.** A drill is found to machine always an "oversize" hole. Which one of the following is the cause of this fault?
 - (a) the drill is too large in diameter
 - (b) the cutting edges are of unequal length
 - (c) the drill has been allowed to get hot
 - (d) considerable amount of wear has occured on the drill
- **47.** For which one of the following purposes are screw-cutting taps used?
 - (a) to cut internal threads
 - (b) to clean out blind holes
 - (c) for light riveting
 - (d) to cut external threads
 - (e) to enlarge undersize holes

	(a) a circular split die(b) a set of taps	(c) a drill and a reamer(d) knurling tool							
49.	The machining process which makes a cone-shaped recess at the top of a drilled hole for a flathead machine screw is called:								
	(a) counter-boring	(d) taper drilling							
	(b) die-sinking	(e) micro-boring							
	(c) counter-sinking								
50.	The groove in the body of the driknown as:	ll which allows the chips to come out is							
	(a) the chip breaker								
	(b) the lip								
	(c) the flute								
	(d) the margin								
	(e) chip follower								
51.	For a given work material, a large sized drill to maintain the same cu	sized drill must rotatethan a small atting speed (surface speed).							
	(a) faster								
	(b) at a lower R.P.M.								
	(c) at an higher R.P.M.								
52.	A standard twist drill may be cons	idered as a:							
	(a) single point cutting tool								
	(b) multi-point cutting tool								
	(c) single edged cutting tool								
53.	The workpiece motion and tool m tal boring machine are:	otion required respectively, in a horizon-							
	(a) rotational and translational								
	(b) stationary and rotational								
	(c) stationary and rotational with	translation							

48. Screw threads may be cut on a 10 mm dia, steel rod by using:

- **54.** A boring tool used for boring a hole over a large length should have:
 - (a) one tool bit on a bar
 - (b) 2 tool bits fitted on diametrically opposite sides
 - (c) 4 tool bits

55. Boring is:

- (a) enlargement of an existing hole
- (b) finishing of an existing hole
- (c) changing the shape of a hole

56. A Jig boring machine resembles in appearance to:

- (a) vertical milling machine
- (b) vertical boring machine
- (c) horizontal boring machine

13. **Key**

1. (b)	15. (c)	29. (e)	43. (c)
2. (b)	16. (d)	30. (c)	44. (c)
3. (d)	17. (c)	31. (b)	45. (a)
4. (e)	18. (b)	32. (e)	46. (b)
5. (b)	19. (e)	33. (d)	47. (a)
6. (d)	20. (c)	34. (d)	48. (a)
7. (b)	21. (b)	35. (a)	49. (c)
8. (e)	22. (d)	36. (d)	50. (c)
9. (d)	23. (b)	37. (a)	51. (b)
10. (c)	24. (d)	38. (c)	52. (b)
11. (b)	25. (b)	39. (a)	53. (c)
12. (a)	26. (e)	40. (a)	54. (b)
13. (b)	27. (a)	41. (c)	55. (a)
14. (b)	28. (b)	42. (b)	56. (a)

MILLING MACHINES

Choose the correct alternative:

- 1. To produce a smooth, flat surface on a workpiece you will generally use a:
 - (a) lathe
 - (b) arbor press
 - (c) milling m/c
 - (d) drill press.
- **2.** A milling machine which has a table that can be swivelled and set at any angle to the column face is called a:
 - (a) plain knee-and-column type milling machine
 - (b) universal knee-and-column type milling machine
 - (c) bed-type milling machine
 - (d) drum-type milling machine
- 3. The operation of milling two sides of a workpiece simultaneously is called:
 - (a) gang milling
 - (b) climb milling
 - (c) square milling
 - (d) straddle milling
 - (e) end milling

4.	A must be used in spacing of teeth in gear blank.	gea	ar milling operations to obtain equal
	(a) Index plate	(c)	Pitch gauge
	(b) Gear tooth vernier		Dividing head
5.	parts because the hard surface sca	le o	r be used when milling n the parts will dull the cutter.
	(a) Magnesium	. ,	
	(b) Cast Iron	(a)	Non-ferrous
6.	When milling the teeth of a spur g held between dividing head cente		the gear blank is mounted on
	(a) a chuck	(c)	a mandrel
	(b) a face plate	(d)	a collet
7.	The position of the is chine as to horizontal or vertical ty		nsidered in classifying a milling ma-
	(a) spindle	(c)	milling cutter
	(b) workpiece	(d)	work table or bed
8.	When performing angular indexing index the work through	_	ne complete crank turn is required to
	(a) 360°	(c)	90°
	(b) 180°	(d)	9°
9.	To obtain fine finish cuts in milling	g	
	(a) the cutting speed should be de(b) the cutting speed should be in		
	(c) both the cutting speed and fee		
	(d) both the cutting speed and fee		
10.	The rigidity and the power rating of when the milling operation is perf		e milling machine must be adequate led using
	(a) carbide-tipped milling cutters(b) cast-alloy milling cutters		

	(d)	High carbon steel cutte	ers			
11.	(a)(b)(c)	lical gear milling operation Plain horizontal milling Vertical milling maching Universal milling mach Drum type milling mach	g mach le ine		performed only o	on a:
12.	be (a) (b) (c) (d)	cut 20 teeth on a gear b turned, to rota 1/2 a turn one complete turn two complete turns 1/40 of a turn (or 9 deg 80 turns	nte the			0
13.	als (a)	scontinuous or powdery such as: Mild steel Tungsten	chips a	(c)	ormally obtained Cast Iron (CI) High Speed Stee	
14.	(a)	ntinuous chips are norm Ductile materials Brittle materials	ally pr	(c)	ed when milling: Brass Diamond	
15.	(a)	e attachment used on mi Face plate V-block	lling m	(c)	nes for indexing p Dial indicator Dividing head.	ourposes is called a:
16.	spa	e number of index crank ced slots in a round sha 320		requ		ut to mill 8 equally (e) 21½
	(b)	40	(d) 5			

(c) H.S.S. milling cutters

17.	A universal dividing head must be	e used to perform a milling operation by:
	(a) Plain indexing	(c) Differential indexing
	(b) Direct indexing	(d) Compound indexing
18.	To rotate the work mounted on a d the index crank must be rotated the	lividing head through one complete turn, hrough:
	(a) 40 complete turns	(d) 1 complete turns
	(b) 20 complete turns	(e) 1/40th of turn
	(c) 10 complete turns	
19.	While sharpening milling cutters lareduced, by grinding a:	by grinding, the width of the land can be
	(a) Primary clearance angle	(c) Rake angle
	(b) Secondary clearance angle	(d) Suitable nose radius
20.	The cutters designed for straddle cutters.	milling operations are called
	(a) Side milling	(c) Plain milling
	(b) Face milling	(d) Dovetail milling
21.	The operation of a dovetail milli	ng cutter is similar to the operation of
	(a) a plain milling cutter	(c) an end milling cutter
	(b) a side milling cutter	(d) a shaping tool
22.		a perfect square on the end of a round so that the shaft can be indexed.
	(a) a differential	(c) an index plate
	(b) a compound rest	(d) a dividing head
23.	The cutting tool material capab speeds is the:	le of withstanding the highest cutting
	1	
	(a) Stellite tipped cutters	

	(c) High-speed steel cutters							
	(d) High carbon steel milling cutt	ers.						
24.	4. In helical milling, the ratio of the circumference of the gear blank to the lead of the helix gives the:							
	(a) angle setting of the machine t	able						
	(b) speed to use							
	(c) feed and depth of cut require	d						
	(d) no. of teeth to be cut							
25.	of the index crank is/ar workpiece one complete turn.	re required when indexing, to rotate the						
	(a) 1/40 turn (9 degrees)							
	(b) 1 turn							
	(c) 40 turns							
	(d) depends on the no. of holes in	the index plate						
26.	One complete turn of the index cr	ank will turn the workpiece by:						
	(a) 9 degrees	(d) 180 degrees						
	(b) 18 degrees	(e) 1/40th of a degrees						
	(c) 90 degrees							
27.	The accurate spacing of teeth in a	gear blank requires the use of:						
	(a) a dividing head	(c) a gear tooth vernier						
	(b) an index plate	(d) a differential mechanism						
28.	The cutting of helical gears require	es the use of a milling machine.						
	(a) vertical	(c) universal						
	(b) horizontal	(d) drum-type						
29.	How is the feed rate expressed in	the case of milling operation?						
	(a) mm/tooth	(c) meters/minute						
	(b) R.P.M. of the milling cutter	(d) strokes/minute						

30.	Milling cutter	are	mounted	on	a	part	called	the	 of	the	milling	ŗ
	machine.					1						

(a) Bracket or Brace

(d) Horizontal support

(b) Arbor

(e) Table

(c) Shaft

31. Milling cutters are considered as:

- (a) single point cutting tools
- (b) multi-point cutting tools
- $(c) \ \ single-edged\ cutting\ tools$

14. Key

1. (c)	9. (b)	17. (c)	25. (c)
2. (b)	10. (a)	18. (c)	26. (a)
3. (d)	11. (c)	19. (c)	27. (a)
4. (d)	12. (e)	20. (a)	28. (c)
5. (b)	13. (a)	21. (c)	29. (c)
6. (c)	14. (a)	22. (d)	30. (b)
7. (a)	15. (d)	23. (b)	31. (b)
8. (d)	16. (d)	24. (a)	

CUTTING TOOL MATERIALS

(c) Bakelilte(d) Stellites

Cha	ose	the correct alternative:			
1.		are harder and weaker in tension.	moı	re wear resistant than	tungsten carbide but
	(a)	low carbon steel tools		(c) H.S.S. tools	
	(b)	high carbon steel tools		(d) Ceramic tools	
2.	Ste	llite tools are formed by	/	process.	
	(a)	Sintering	(c)	Machining	(e) Casting
	(b)	Forging	(d)	Cold rolling	
3.	Cei	rmic tips are prepared f	rom	powder.	
	(a)	Tungsten		(d) Silicon carbide	е
	(b)	Carbon		(e) any metal	
	(c)	Aluminium Oxide		,	
4.		are cast alloys c trix of cobalt and chrom		0 0	romium carbides in a
	(a)	Mechanites			
	(b)	Tungsten Carbides			

5.	Car	rbide tips are fixed to th	e sh	anks of	cutting tools	by:
	(a)	forging	(c)	weldin	g	(e) brazing
	(b)	sintering	(d)	solderi	ing	
6.		e most wear-resistant g aight	grad	e of ca	rbide used f	or cutting tools is the
		Iron carbide Calcium carbide			Tungsten ca Nickel carbi	
7.		nich one of the following de of carbide tool to use		ıst be co	onsidered wh	ile selecting the proper
	(a)	the type of operation to	be	done		
	(b)	the type of work mater	ial t	o be ma	achined	
		the finish requirement				
	(d)	the speeds to be used i	n tu	rning tl	ne part	
8.	Du	ring grinding of carbide	too	l bits,	whe	el is generally used.
	(a)	Aluminium Oxide		(d)	Cobalt	
	(b)	Silicon Carbide		(e)	High Speed	Steel. (HSS)
	(c)	Diamond				
9.	Pov	wder Metallurgy (PM) t	echi	niques a	are used in th	e production of:
	(a)	High carbon steel tools	;	(c)	Tungsten ca	rbide tools
	(b)	HSS tools		(d)	Twist drills	
10.	Wh	nat is the material of the	cut	ting too	ol generally us	sed on a lathe?
	(a)	C.I		(d)	High Speed	Steel (H.S.S.)
	(b)	Mild steel		(e)	Brass	
	(c)	Low-carbon steel				
11.	Am	ong the following abras	ives	, the ha	rdest one is .	
	(a)	Al ₂ O3 (Aluminium Ox	ide)	(d)	CBN (Cubic	e Boron Nitride)
	(b)	Si C (Silicon Carbide)		(e)	Diamond	
	(c)	$\operatorname{B_4}\operatorname{C} (\operatorname{Boron}\operatorname{Carbide})$				

12.	The hardness of carbon tool steels will be increased when alloyed with and vanadium.			
	(a) Tungsten(b) Chromium	(c) Silicon(d) Manganese	(e) Silver	
13.	The type of wear which occ	eurs on the rake face of too	ol bits is referred to as:	
	(a) Flank wear(b) Crater wear	(c) Tip wear(d) End wear	(e) Radius wear	
14.	What is the approximate of Steel (H.S.S.) tool material		nt in the High Speed	
	(a) 0.6 - 1.0%	(c) 10 - 18%		
	(b) 4 - 6%	(d) 18 - 42%		
15.	What is the approximate of Steel) cutting tool material		n H.S.S. (High Speed	
	(a) 16	(c) 0.1		
	(b) 4	(d) 1		
16.	The usual % of Tungsten content in the High Speed Steel (H.S.S.) cuttin tool material is:			
	(a) 18%	(c) 1%		
	(b) 4%	(d) 0.6%		
17.	The approximate percenta Steel) cutting tool material	9	n H.S.S. (High Speed	
	(a) 1%	(c) 18%		
	(b) 4%	(d) 0.6%		
18.	In metal cutting operation of the cutting tool:	s, when the cutting speed	l is increased, the life	
	(a) remains the same	(e) increases		
	(b) decreases	(d) gets doubled		

15. Key

1.	(\mathbf{d})
2	(e)

2. (e) **3.** (c)

4. (d) **5.** (e)

6. (c)

7. (b)

8. (e)

9. (c)

10. (d) **11.** (e)

12. (b)

13. (b) **14.** (e)

15. (a)

16. (d)

17. (a)

18. (b)

19. (b)

a:

GRINDING PRACTICE

(c) cylindrical grinding machine(d) centerless grinding machine(e) internal grinding machine

the(a) work table

(b) wheel head

(c) workpiece

Choose the correct alternative:

	(a) resin
	(b) abrasives
	(c) rubber
	(d) void spaces
	(e) steel
2.	The grinder which is used to produce flat ground surfaces is called
	(a) flexible shaft grinder
	(b) surface grinding machine

3. The depth of cut on a surface grinder is regulated by raising or lowering

(d) magnetic base

(e) Diamond dresser

1. In grinding operation, the actual cutting action is done by:

4.	In centerless grinding operation wheel:	the regulating wheel and the grinding
	(a) must always rotate at the same(b) must always rotate at different(c) must always rotate at the same(d) must always rotate at different	t speeds, but in the same direction e speed, but in opposite direction
5.	Grinding machines equipped with (a) tool and cutter grinders(b) cylindrical grinders(c) surface grinders	rotating work tables are classified as: (d) centerless grinding machines (e) internal grinding machines
6.	The operation of sharpening a grid	nding wheel is called:
	(a) truing	(c) aligning
	(b) dressing	(d) wheel balancing
7.	Surface grinders are usually equip be ground.	ped with a for holding the work to
	(a) pneumatic chuck	
	(b) fluid chuck	
	(c) mechanical chuck (three-jaw o(d) magnetic chuck	chuck)
8.	In centerless grinding operation, t	he workpiece is made to rotate:
	(a) by the grinding wheel	(c) by the work rest
	(b) by the regulating wheel	(d) directly by the electric motor
9.	Among the following abrasives, th	e hardest one is:
	(a) aluminium oxide	(c) diamond
	(b) silicon carbide	(d) cubic boron nitride
10.	When grinding wheels become lo restore sharpness, with a:	aded or glazed, they may be dressed, to
	(a) pumice stone dresser	(c) diamond dresser
	(b) tool steel dresser	(d) sharp edged H.S.S. cutter

		0 0 1 7		0 01
	(a)	plain grinding wheels	(c)	Dished or saucer wheels
	(b)	cup wheels	(d)	grinding points
12.		center-type cylindrical grinding ween centers, the work is made		erations when the work is mounted rotate by:
	(a)	using a live or rotating center	in tł	ne head stock spindle
	(b)	the frictional drive of a regular	ting	wheel
	(c)	the same general method u centers on a lathe	sed	to rotate work mounted between
	(d)	the movement of the grinding	who	eel itself
13.	Wł	nen grinding wheels become lo	adec	l or glazed, they must be:
	(a)	balanced properly	(c)	trued
	(b)	aligned accurately	(d)	dressed
14.		center-type cylindrical grinder I head stock at an angle to the t		permits swivelling the wheel head ways is called a:
	(a)	Tool and cutter grinder	(d)	Bench grinder
	(b)	Surface grinder	(e)	Universal grinder
	(c)	Internal grinding machine		
15.	In	cylindrical grinding operations,	the	work is always rotated:
	(a)	at a much slower speed than t	hat (of the grinding wheel
		at a much faster speed than th		9 9
		at the same speed as the grind	ling	wheel
	(d)	at 30 R.P.M.		
16.		e peripheral speed of a 150 m O R.P.M. is:	nm (liameter grinding wheel rotating at
	(a)	20 m/min.		
	(b)	1415 m/min.		
	(c)	450 m/min.		
	(d)	ϖ (150) (3000)/60 m/min.		

11. The grinding wheels employed in surface grinding operations are classified as:

(b) regulated wheel

17.	A slight taper is to be ground on the between centers on a universal cyl- plished by:	e full length of a long shaft mounted indrical grinder. This can be accom-
	(a) Off-setting the tail stock	
	(b) Swivelling the table on its base	
	(c) Swivelling the wheel head	
	(d) Swivelling the workpiece	
18.	3. To grind the 60 $^{\circ}$ on the end of a cylindrical grinder:	machine center point on a universal
	(a) the table is swivelled to 30°	
	(b) the headstock is swivelled to 60°	
	(c) the headstock is swivelled to 30°	
	(d) the work piece is swivelled to 30	0
	(e) the headstock is swivelled to 120	0
19.	Plunge cut grinding is accom	plished on a cylindrical grinder by:
	(a) Traversing the table	
	(b) Using the table cross feed	
	(c) Feeding the grinding wheel in stationary	to the work while the table remains
	(d) Feeding the workpiece into the wheel remains stationary	e grinding wheel while the grinding
20.	The correct setting of the height obtained by the setting of the work r	*
	(a) cylindrical grinding (d) internal grinding
	(b) surface grinding (e	ball grinding
	(c) centerless grinding	
21.	• In centerless grinding operations, the of the grinding wheel by the	
	(a) work rest (c	table

(d) electric motor directly

- **22.** Holes in parts which have been hardened by heat treatment can be finished to accurate size only by:
 - (a) Drilling
 - (b) Boring
 - (c) Internal grinding
 - (d) Reaming
- **23.** The surface speed of the smaller grinding wheels used for internal grinding operations ranges from:
 - (a) 15–30 meters/min.
 - (b) 300–1000 meters/min.
 - (c) 1200–2000 meters/min.
 - (d) 10,000-20,000 meters/min.
- **24.** The approximate cutting speed for surface grinding operations is generally:
 - (a) 15 meters/min.
 - (b) 100 meters/min.
 - (c) 600 meters/min.
 - (d) 1800 meters/min.
 - (e) 20,000 meters/min.
- **25.** The grit size of the abrasives used in the grinding wheels is usually specified by:
 - (a) the Hardness number
 - (b) the size of the wheel
 - (c) the softness or hardens of the abrasive
 - (d) the Mesh number
- **26.** In grinding practice, the term "grade of the wheel" refers to:
 - (a) the fineness of the abrasives used
 - (b) the strength of the bond of the wheel
 - (c) the finish that can be obtained
 - (d) the hardness of the abrasives used in the manufacturing of the wheel
 - (e) the structure of the wheel

- **27.** In the standard marking system used for specifying the grinding wheel, the grade of the wheel is usually represented by:
 - (a) a Number
 - (b) a Letter of the English Alphabet
 - (c) the Hardness of the abrasives
 - (d) the finish of the wheel
- **28.** In grinding practice, the term "Hardness of the wheel" refers to:
 - (a) the hardness of the abrasives used
 - (b) the strength of the bond of the wheel
 - (c) the finish of the wheel
 - (d) the hardness of the workpiece that can be machined with the grinding wheel
- 29. In Centerless grinding operation, the regulating wheel is usually:
 - (a) bigger than the grinding wheel
 - (b) smaller than the grinding wheel
 - (c) of the same size as the grinding wheel
 - (d) smaller than the diameter of the workpiece.
- **30.** Lapping, honing, and superfinishing are basically:
 - (a) slow speed abrasive machining processes
 - (b) high speed abrasive machining processes
 - (c) grinding processes
 - (d) material removal processes wherein large quantity of material is machined
- **31.** Which one of the following processes removes maximum amount material out of a workpiece?
 - (a) honing
 - (b) lapping
 - (c) grinding
 - (d) superfinishing

32.	For achieving extremely smooth surface finish at bearing surfaces, the process of machining generally employed is:		
	(a) milling	(c) drilling	
	(b) shaping	(d) grinding	
33.	Grinding operation is used for:		
	(a) forming	(c) dressing	
	(b) shaping	(d) finishing	
34.	For grinding shafts, spindles, and	bolts use:	
	(a) tool and cutter grinding	(c) thread grinding	
	(b) cylindrical grinding	(d) surface grinding	
35.	For grinding flat surfaces use:		
	(a) internal grinding	(c) cylindrical grinding	
	(b) thread grinding	(d) surface grinding	
36.	The highest cutting speed is used	in:	
	(a) surface grinding	(c) internal grinding	
	(b) centerless grinding	(d) cylindrical grinding	
37.	Grinding ratio may be defined as:		
	(a) Wear of grinding wheel/Volum	ne of metal removed	
	(b) Volume of metal removed/We	ar of grinding wheel	
	(c) Wear of grinding wheel [.dotn	nath] Volume of metal removed	
	(d) None of the above		
38.	Surface speed (in m/min) of the g	rinding wheel in centerless grinding is:	
	(a) 15–16	(c) 1000–1500	
	(b) 100–500	(d) 1500–1800	
39.	Workpiece is supported as follows	in centerless grinding:	
	(a) on magnetic chuck	(c) in collet chuck	
	(b) in universal chuck	(d) none of the above	

		1	. 1. 1		
40.	The workpiece advances in centerless grinding due to:				
	(a) Machine drive				
	(b) Effort applied by operator				
	(c) Force exerted by regulating w		\mathbf{l}		
	(d) Force exerted by grinding who	eel			
41.	Artificial abrasives are:				
	(a) Sandstone, Emery, Diamond,	Qua	artz		
	(b) Silicon carbide, Aluminium ox	xide,	Boron carbide		
	(c) Garnet				
	(d) Corundum				
42.		bro	nze, brass, copper, aluminium, etc.,		
	the abrasives used is:				
	(a) Silicon carbide	(c)	Aluminium oxide		
	(b) Garnet	(d)	Corundum		
43.	for softer materials, the grain of al	oras	ives used is:		
	(a) Coarse grain	(c)	Medium grain		
	(b) Fine grain	(d)	Both (b) and (c)		
44.	If condition of machine is such that	at it	produces vibrations, then use:		
	(a) Hard grade abrasive	(c)	Both (a) and (b)		
	(b) Soft grade abrasive	(d)	Something else		
45.	For harder materials, the grain of	abra	asives used is:		
	(a) Coarse grain	(c)	Medium grain		
	(b) Fine grain	(d)	Both (a) and (c)		
46.	Majority of the grinding wheels us	se th	ne following type of bond:		
	(a) Resinoid				
	(b) Silicate				
	(c) Rubber				
	(d) Vitrified				

47.	In finish grinding, the grinding rat	tio is	s kept as:
	(a) 5–10	(c)	25–50
	(b) 10–25	(d)	50-100
48.	Grade of a wheel, i.e., strength of	a bo	nd is designated from A to Z, where:
	(a) A is very soft	(c)	Z is very soft
	(b) Z is very hard	(d)	both (a) and (b) are true
49.	If a grinding wheel is designated H indicates:	d as	30 A 36 H 6 VB then the letter
	(a) Grade of bond	(c)	Structure
	(b) Type of bond	(d)	Abrasive
50.	In the above question, the letter	V' in	dicates:
	(a) Type of abrasive	(c)	Type of structure
	(b) Type of bond	(d)	Grade of bond
51.	A grinding wheel is said to be glaz	ed:	
	(a) when it becomes unbalanced		
	(b) when the abrasive grains have	bee	en replaced
	(c) when the abrasive grains beco	me	dull and stop cutting
	(d) when some lubricant is added	to t	he abrasive grains
52.	Truing of grinding wheel is done h	oy:	
	(a) Glazing the wheel		
	(b) Dressing the wheel		
	(c) Loading the wheel		
	(d) Balancing the wheel		
53.	Grinding wheels are balanced flange of the wheel mount.	••••	by shifting weights on one
	(a) Statically		
	(b) Dynamically		
	(c) Both statically and dynamicall	V	

- **54.** Which operation should be performed in the last in connection with grinding wheel?
 - (a) Balancing

(c) Truing

(b) Dressing

(d) Glazing

- **55.** Which of the following grinding processes has highest possible speeds?
 - (a) Internal grinding

(c) Cylindrical grinding

(b) Surface grinding

(d) Cutting off operations

16. Key

1. (b)	15. (a)	29. (b)	43. (a)
2. (b)	16. (b)	30. (a)	44. (a)
3. (b)	17. (c)	31. (c)	45. (b)
4. (b)	18. (c)	32. (d)	46. (d)
5. (c)	19. (c)	33. (d)	47. (c)
6. (b)	20. (c)	34. (b)	48. (d)
7. (d)	21. (b)	35. (d)	49. (a)
8. (b)	22. (c)	36. (d)	50. (b)
9. (c)	23. (c)	37. (b)	51. (c)
10. (c)	24. (d)	38. (d)	52. (b)
11. (a)	25. (d)	39. (d)	53. (a)
12. (c)	26. (b)	40. (c)	54. (a)
13. (d)	27. (b)	41. (b)	55. (d)
14. (e)	28. (b)	42. (a)	

17

Lapping, Honing, and Super Finishing

Chose the correct alternative:

1. Ball bearing races are

	(a) lapped	(c) buffed
	(b) honed	(d) ground
2.	In which of the following processes	es, least material is removed?
	(a) grinding	(c) honing
	(b) lapping	(d) superfinishing
3.	The process of precision grinding sive is known as:	of workpiece with loose dust type abra
	(a) honing	(c) buffing
	(b) lapping	(d) polishing
4.	Pressure applied on workpiece in	case of lapping operation is:
	(a) 0.05 kg/cm^2	(c) 1.0 kg/cm^2
	(b) 0.1 kg/cm ²	(d) 5 kg/cm ²
5.	Which of the following process is	used for finishing cylindrical holes?
	(a) lapping	(c) polishing
	(b) honing	(d) buffing

6.	Wł	nich abrasive partic	le is held in	the f	orm of sticks in ho	ning process?
	(a)	Al ₂ O3 or SiC		(c)	Quartz	
	(b)	Corundum		(d)	Diamond	
	Buffing is: (a) a finishing operation after honing (b) a process of electroplating (c) the process of bringing out the luster (d) process of covering a metal with soft material Honing is used to correct:					
		Ovality				
		Waviness of axis				
	. ,	Non-parallelism o	f cylindrical	feati	ires	
		All of the above	r cymnaricai	1Cati	ares	
	(4)	This of the upove				
9.	Но	ning operation pro	duces a qua	lity o	f finish (CLA value	e) of the order of:
	(a) 0.01–0.08 micron (c) 0.2–0.4 micron					
	(b) 0.08–0.2 micron (d) 0.4–0.8 micron					
10.	Which of the following processes would remove least material?					
	(a)	honing		(c)	superfinishing	
	(b) lapping					
11.	Honing operation:					
	(a) cannot be used to change the location of hole or correct shaped condition of a hole					
	(b) cannot correct ovality					
	(c) cannot correct waviness of axis					
			17.	Key	7	
		1. (a)	4. (b)		7. (c)	10. (c)
		2. (d)	5. (b)		8. (d)	11. (a)
		3. (b)	6. (a)		9. (c)	

GEARS

Choose the correct alternative

Cno	oose tne correct aiternative:				
1.	In the case of a spur gear, if N is number of teeth and D is the diameter of the pitch circle, then the diametral pitch is given by				
	(a) D/N	(c)	N/D		
	(b) π D/N	(d)	ND/π		
2.	The working depth or the depth of	of en	gagement of two gears is equal to:		
	(a) sum of their addendums	(c)	addendum – dedendum		
	(b) sum of their dedendums	(d)	dedendum + clearance		
3.	The height by which a gear tooth line is known as:	proj	ects beyond the pitch circle or pitch		
	(a) circular pitch	(c)	dedendum		
	(b) addendum	(d)	clearance		
4.	Bevel gears are used to transmit r whose axes intersect at:	otar	y motion from one shaft to the other		
	(a) right angles				
	(b) any angle				
	(c) 45 degrees only				
	(d) 180 degrees only				

5.	Theoretical minimum nu	mber of teeth on a p	vinion for avoiding interfer-	
	ence in any gearing device could be:			
	(a) 10–12	(c) 25–30	(e) around 50	
	(b) 18–20	(d) 32–40		
	_ , , , , ,			
6.	Pitch circle diameter (in	mm) of a gear wheel	l is given by the expression	
	(a) $\frac{m}{z}$	(c) mz	(e) $\frac{m+1}{z}$	
	(b) $\frac{z}{m}$	(d) $mz + 1$		
	where $m = module$ of gear	r and z = number of t	eeth in the gear wheel	
7.	The term "module" in gea	ar technology refers to	O:	
	(a) diametral pitch	0,		
	(b) no. of teeth/pitch circle diameter			
	(c) pitch circle diameter/no. of teeth			
	(d) pitch of gear teeth			
	(e) no. of teeth			
8.			ar tooth vernier caliper, the from the of the	
	(a) Vertical scale	(e) Circular	scale	
	(b) Horizontal scale	(d) Counter	r	
9.	The module of a gear, hav	ving 36 teeth and a pit	tch diameter of 225 mm, is:	
	(a) 0.16 mm	(c) 12.50 m	m	
	(b) 25.00 mm	(d) 6.25 mn	n	
	, ,			
10.	To find the module of a	a gear, divide the pit	ten circle diameter by the	
10.		a gear, divide the pit (d) number		
10.		(d) number		

(a) Circular pitch	(c) Dia	1 1
•		ametral pitch
(b) Chordai pitch		oth thickness
A gear-tooth vernier caliper thickness of gear teeth.	r is used to	measure theand chorda
(a) Addendum	(d) Mo	odule
(b) Dedendum	(e) Dia	ametral pitch
(c) circular pitch		
The common pressure angles	s in involute g	gears are
(a) 14 1 2, 21 1 2 degrees	(d) 14,	20 degrees
(b) 14 1 2, 20 degrees	(e) 14,	21 degrees
(c) 14 1 2, 20 1 2 degrees		
	18. Key	
 (c) (a) (b) (b) (b) 	6. (c) 7. (c) 8. (b) 9. (d) 10. (d)	11. (a) 12. (a) 13. (b)
	thickness of gear teeth. (a) Addendum (b) Dedendum (c) circular pitch The common pressure angles (a) 14 1 2, 21 1 2 degrees (b) 14 1 2, 20 degrees (c) 14 1 2, 20 1 2 degrees 1. (c) 2. (a) 3. (b)	A gear-tooth vernier caliper is used to thickness of gear teeth. (a) Addendum (b) Dedendum (c) circular pitch The common pressure angles in involute general (a) 14 1 2, 21 1 2 degrees (a) 14 1 2, 20 degrees (b) 14 1 2, 20 degrees (c) 14 1 2, 20 1 2 degrees 1. (c) 4 1 2, 20 1 2 degrees 1. (c) 5 6 (c) 7 (c) 8 (b) 8 (b) 4 (b) 9 (d)

JIGS AND FIXTURES

Choose the correct alternative:

 (a) an angle plate (b) a vise (c) a V-block (d) a mandrel (e) Metal pins (f) Jig bushes (g) Metal pins (h) Jig bushes (h) V-blocks <li< th=""><th>1.</th><th colspan="3">The work holding device commonly used when machining a keyway in a cylindrical shaft on a shaper is:</th></li<>	1.	The work holding device commonly used when machining a keyway in a cylindrical shaft on a shaper is:		
 2		(a) an angle plate	(c)	a V-block
reamers and counter boring cutters. (a) Drill jigs (c) Metal pins (b) Jig bushes (d) V-blocks 3. A can hold the work, locate the work and guide the drill at desired position. (a) drill bush (c) metal locator (b) drill fixture (d) drill jig 4. Typical locating devices used in Jigs and Fixtures construction are: (a) Drill Jigs (b) V-blocks (c) Mandrels		(b) a vise	(d)	a mandrel
 (b) Jig bushes (d) V-blocks 3. A can hold the work, locate the work and guide the drill at desired position. (a) drill bush (b) drill fixture (c) metal locator (d) drill jig 4. Typical locating devices used in Jigs and Fixtures construction are: (a) Drill Jigs (b) V-blocks (c) Mandrels 	2.		_	de cutting tools such as twist drills,
 3. A can hold the work, locate the work and guide the drill at desired position. (a) drill bush (c) metal locator (b) drill fixture (d) drill jig 4. Typical locating devices used in Jigs and Fixtures construction are: (a) Drill Jigs (b) V-blocks (c) Mandrels 		(a) Drill jigs	(c)	Metal pins
desired position. (a) drill bush (b) drill fixture (c) metal locator (d) drill jig 4. Typical locating devices used in Jigs and Fixtures construction are: (a) Drill Jigs (b) V-blocks (c) Mandrels		(b) Jig bushes	(d)	V-blocks
 (b) drill fixture (d) drill jig 4. Typical locating devices used in Jigs and Fixtures construction are: (a) Drill Jigs (b) V-blocks (c) Mandrels 	3.		ite t	he work and guide the drill at the
 4. Typical locating devices used in Jigs and Fixtures construction are: (a) Drill Jigs (b) V-blocks (c) Mandrels 		(a) drill bush	(c)	metal locator
(a) Drill Jigs(b) V-blocks(c) Mandrels		(b) drill fixture	(d)	drill jig
(b) V-blocks(c) Mandrels	4.	Typical locating devices used in Jig	gs ar	nd Fixtures construction are:
(c) Mandrels		(a) Drill Jigs		
		(b) V-blocks		
(d) Angle plates		(c) Mandrels		
		(d) Angle plates		

5.	Cylindrical job should always be clamped in a for drilling.		
	(a) Collet	(c) Jaw	(e) V-block
	(b) Socket	(d) Vise	
6.			ed in the selection of a suitable ag pins used in Jigs and Fixtures
	(a) Shear strength	(d) We	ear resistance
	(b) Tensile strength(c) Elasticity	(e) Sh	arpness of the locating pins.
7.	In the selection of a suital bush, the critical property		the manufacturing of a drill jig
	(a) Tensile strength	(c) We	ear Resistance
	(b) Elasticity	(d) Sh	ear strength
8.	The device in which a component is held and located for a specific machining operation in such a way that it will guide one or more cutting tools during machining is known as:		
	(a) Jig	(c) Fig	kture
	(b) Gauge	(d) Te	mplate
9.			locates and holds the component aide the cutting tool) is knows as:
	(a) Template	(c) Fig	xture
	(b) Gauge	(d) Jig	
10.	Devices designed for locat	ing and holding	g cutting tools are usually called:
	(a) Gauges	(c) Te	mplates
	(b) Fixtures	(d) To	ol-holders
11.	A workpiece in space free	to move in any	direction can have:
	(a) 3 degrees of freedom	(c) 9 d	legrees of freedom
	(b) 6 degrees of freedom	(d) 12	degrees of freedom
11.	(a) 3 degrees of freedom	(c) 9 d	legrees of freedom
	(b) 6 degrees of freedom	(α) 12	degrees of freedom

12.	The application of jigs and fixture (a) Increases the production (b) Widens the technological cap (c) Either fully or partly automa (d) All of the above	pacity of machine tools
13.	The work holding device commo cylindrical shaft on a shaper is:	only used while machining a key way in a
	(a) A vice	(e) V-block
	(b) A mandrel	(d) An angle plate
14.	Most of the locating and clampin	g devices are made up of:
	(a) H.S.S.	(c) C.I
	(b) Aluminium	(d) Hardened Steel
15.	Clamping should always be arranged. (a) Directly above the points support (b) Directly above the points support (c) Directly below the points support (d) None of the above	oporting the work oporting the tool
16.	If the diameter of the hole is sub (a) Conical location (b) Vee-block (c) Cylindrical Pin	ject to considerable variation, then use:
17.	For drilling holes in a long strip,	use:
	(a) Channel jig	(c) Leaf jig
	(b) Plate jig	(d) Box jig
18.	The simplest type of jig is:	
	(a) Leaf jig	(c) Template jig
	(b) Plate jig	(d) Box jig

19.	To dri	ll a serie	es of ho	oles on a	circul	ar f	ace of the	work	piece, ı	ıse:
	(a) Le						Pot jig		1	
	(b) Bo						Index jig			
20.	Cylino	drical jo	b shoul	d always	be cl	amp	oed in a		for 0	drilling:
	(a) Co	ollet				(c)	Vice			
	(b) Ja	.W				(d)	V-block			
					19.	Ke	y			
		1	1. (c)		8.	(a)		15.	(a)	
		2	2. (b)		9.	(c)		16.	(a)	
			3. (d) 4. (b)		10. 11.			17. 18.		
			5. (e)		12.			19.		
		ϵ	6. (d)		13.	(c)		20.		
		7	7. (c)		14.	(d)				

Broaching

Tick the most correct response:

(a) 8 microns

	(b) 0.8 micron	(d) 0.008 micron				
2.	The maximum depth of cut which	n the tooth of a broach cuts is:				
	(a) 1 mm	(c) 0.01 mm				
	(b) 0.15 mm	(d) 0.5 mm				
3.	A broach has:					
	(a) roughing teeth, semifinishing	teeth, and finishing teeth				
	(b) roughing teeth, and finishing teeth only					
	(c) only finishing teeth					
	(d) normally 30 teeth					
4.	The pitch for teeth of internal bro	oaches is given by the relation:				
	(a) 0.35 times length of cut in mi	n.				

(b) 1.25 to 1.5 times length of cut in mm

(c) 4 times length of cut in mm

(d) None of the above

1. The surface finish obtained in broaching operation is of the order of:

(c) 0.08 micron

5.	For proper broaching, at least the following number of teeth should be engaged in the work at a time:				
	(a) 1	(c) 3			
	(b) 2	(d) 4			
6.	In broaching:				
	(a) the job is completed in one stro	oke of the machine			
	(b) the tooling cost is high				
	(c) the rate of production is very sl	low			
7.	The finishing teeth of a broaching t	tool are provided with:			
	(a) large amount of land				
	(b) smaller amount of land				
	(c) no land				
8.	The range of hardness of the mater	rial which can be broached is:			
	(a) 10 to 20 Rockwell C				
	(b) 25 to 40 Rockwell C				
	(c) 60 to 80 Rockwell C				
9.	Broaching is primarily done for:				
	(a) better finish	(c) mass production			
	(b) cylindrical jobs	(d) hard materials			
10.	The broaching operation in which work is:	th the tool moves past the stationary			
	(a) push broaching				
	(b) pull broaching				
	(c) continuous broaching				
	(d) surface broaching				
11.	Broaching operation is frequently u	used in automobile industry as:			
	(a) it is less costly machine				
	(b) it is a mass production machine				

 $(c) \ \ operation \ is \ completed \ in \ one \ stroke$

12. The front teeth of a broach:

- (a) remove minimum metal
- (b) remove maximum metal
- (c) remove no metal

20. Key

1. (b)	5. (c)	9. (c)
2. (b)	6. (b)	10. (d)
3. (a)	7. (b)	11. (b)
4. (b)	8. (b)	12. (b)

21

MACHINE TOOL TECHNOLOGY

Choose the correct alternative:

1.	. Norton type gear box is an example	of:
	(a) Speed gear box	(c) Infinitely variable drive
	(b) Feed gear box	(d) Mechanical friction drive
2.	. The chief advantage of stepless driv	ves in machine tools is:
	(a) the drive is positive without slip)
	(b) the speed change from one spe	ed to another is very smooth
	(c) limited speed variation	
	(d) they are very cheap	
3.	• For lathes, boring machines and range ratio is	milling machines the desirable speed
	(a) between 5–10	(c) between 50–100
	(b) between 10–30	(d) between 100–200
4.	. Gear boxes used in turret lathes pro	ovide
	(a) No variation of speed	
	(b) Stepped variation of speed	
	(c) Stepless variation of speed	
	(d) Infinite variation of speed	

5.	The <i>synchronous speed</i> of a motor having 2 pairs of poles in the stator at a supply frequency of 50 Hz is				
	(a) 500 R.P.M. (c) 1500 R.P.M. (e) 2500 R.P.M. (b) 1000 R.P.M. (d) 2000 R.P.M.				
6.	Stepless regulation of speed for machine tools is usually achieved by				
7.	Ward-Leonard system of speed regulation used in machine tools is: (a) basically an hydraulic system (b) basically an electronic system (c) basically an electrical system (d) essentially a mechanical friction drive system. 				
8.	The spindle speeds available in machine tools are usually arranged in				
	 (a) Arithmetic progression (b) Geometric progression (c) Logarithmic progression (d) Harmonic progression 				
9.	Very large speed ranges are required for				
١0.	The phenomenon of stick-slip is more predominant when the sliding speed is:				
	 (a) zero (b) low (c) high (d) equal to the cutting speed 				

- **11.** The range of speed regulation in a machine tool is defined as:
 - (a) max. speed/min. speed
 - (b) min. speed/max. speed
 - (c) max. speed min. speed
 - (d) (max. speed/min. speed) 1
 - (e) No. of speeds obtainable between min. and max. speed
- **12.** The use of elastic rubber supports in machine tool foundations is mainly:
 - (a) to increase the speed of the machine
 - (b) to increase the capacity of the machine
 - (c) to prevent electrical shocks
 - (d) to suppress the vibrations
- **13.** An important disadvantage of broaching process is:
 - (a) the broaching tools are always longer in length
 - (b) that only simple shapes can be obtained
 - (c) the return stroke is always idle
 - (d) the process is suitable only for high volume production
- 14. Broaching tools are usually made of:
 - (a) high carbon steel
 - (b) High Speed Steel (H.S.S.)
 - (c) ceramics
 - (d) tungsten carbide
- **15.** The person who is responsible for listing the sequence of operations or machine movements needed to complete the machining of a part on a numerically controlled machine tool (NCMT) is called a:
 - (a) machine operator
 - (b) set-up man
 - (c) tooling assistant
 - (d) programmer
 - (e) job analyzer

16.	A knowledge of is essential for any one wanting to learn how to service or maintain numerically controlled machine tools (NCMT) $$				
	(a) Chemistry	(d) Electronics			
	(b) Thermodynamics	(e) Automobile Engineering			
	(c) Psychology				
17.	The full load speed of a 12 pole sy	nchronous motor operating at 50 Hz is:			
	(a) Just less than 500 R.P.M.	(d) Exactly 600 R.P.M.			
	(b) Exactly 500 R.P.M.	(e) just less than 1000 R.P.M.			
	(c) Just less than 600 R.P.M.				
18.	The rotor speed of a 12 pole <i>indu</i> full rated load is:	uction motor operating at 50 cps and at			
	(a) just less than 1000 R.P.M.	(d) exactly 500 R.P.M.			
	(b) exactly 1000 R.P.M.	(e) exactly 600 R.P.M.			
	(c) Just less than 500 R.P.M.				
19.	The machining operation of cut known as:	ting a key-way inside a drilled hole is			
	(a) reaming	(c) boring			
	(b) broaching	(d) tapping			
20.	The machine tool in which the poapplied is the:	int-to-point numerical control system is			
	(a) Drilling machine	(d) Lathe			
	(b) Grinding machine	(e) Shaping machine.			
	(c) Milling Machine				
21.	The machine tool in which the sy trol is applied is the:	stem of continuous path numerical con-			
	(a) Shaping machine				
	(b) Grinding machine				
	(c) Milling machine				
	(d) Drilling machine				

22.	The numerical control system which is applicable to a milling machine is called the: $ \\$			
	(a) Point-to-point system	(c) Zig-Zag machining system		
	(b) Continuous path system	(d) Straight-cut-system		
23.		am which shows the sequence of opera- (Numerically Controlled Machine Tool)		
	(a) machine tool setter	(d) tool designer		
	(b) part programmer	(e) skilled machinist		
	(c) design-assistant			
24.	The point-to-point system of num	erical control can be applied only to:		
	(a) conventional drilling machine	or jig boring operations		
	(b) conventional milling operation	ns		
	(c) conventional shaper operation	ns		
	(d) conventional lathes			
25.		ork table on a conventional milling masian Coordinate System as a movement		
	(a) the X-axis	(c) the O-axis		
	(b) the Y-axis	(d) the Z-axis		
26.		e system as a movement parallel to the:		
	(a) X-axis	(c) Z-axis		
	(b) Y-axis	(d) O-axis		
27.		em, the longitudinal table movement of n be considered as a movement in the:		
	(a) O-axis	(c) Y-axis		
	(b) Z-axis	(d) X-axis		

when a is used.

	(a) pun	ched tape		(d) compu	ıter	
	(b) tabu	ılator		(e) punch	ed card	
	(c) desl	k calculator				
29.		face speed in mete at N R.P.M. is give		ute of a w	orkpiece	of diameter D mm
	(a) πD	N	(c) 100	00/π DN		(e) 1000/DN
	(b) π D	N/1000	(d) D1	N/1000		
30.		in the main gear bo	_			st likely to be incor- Preferred Number
	(a) 50,	100, 150, 200, 250,	300, 35	0, 400, 450	R.P.M.	
	(b) 63,	127, 254, 381, 512 1	R.P.M.			
	(c) 14,	20, 28, 40, 56, 80, 1	12, 160	, 224, 320,	448 R.P.I	М.
	(d) 17, 51, 102, 204, 408, 512 R.P.M.					
	(e) 36,	72, 288, 1728 R.P.M	Л.			
31.	The phe	enomenon of stick-s	slip is p	redominan	t:	
	(a) at lo	ow speeds				
	(b) at h	igh speeds				
	(c) whe	en the sliding speed	is zero			
	(d) whe	en the sliding speed	exceed	s cutting s _l	peed	
	(e) whe	en the sliding speed	is less	than the cu	tting spee	ed
32.	The har	dening of machine	tool gu	ideways is	usually do	one by:
	(a) Ind	uction hardening		(c) Salt ba	th furnac	ees
	(b) Vac	uum hardening		(d) Flame	hardenir	ng process

28. Programming a contouring cut on a milling machine is accomplished faster

- **33.** The main advantage of the plastic guideways is:
 - (a) their low coefficient of friction
 - (b) their high coefficient of friction
 - (c) their better appearance
 - (d) the reduction in the self-weight of the machine tool

21. Key

1. (d)	10. (b)	19. (b)	28. (d)
2. (b)	11. (a)	20. (a)	29. (b)
3. (b)	12. (d)	21. (c)	30. (e)
4. (b)	13. (d)	22. (b)	31. (a)
5. (c)	14. (b)	23. (b)	32. (d)
6. (b)	15. (d)	24. (a)	33. (a)
7. (c)	16. (d)	25. (d)	
8. (b)	17. (b)	26. (b)	
9. (d)	18. (c)	27. (d)	

Numerically Controlled Machine Tools

Choose the correct alternative:

- 1. The instruction on the tape of the NC machine is prepared in:
 - (a) numeric form
 - (b) coded form
 - (c) binary coded decimal form
- 2. Numerical control machine tool is operated by:
 - (a) Feedback system
 - (b) Numerical controls
 - (c) A series of code instructions
- **3.** Numerical control can be applied to:
 - (a) lathe
 - (b) drilling machine
 - (c) milling machine
 - (d) all of the above
- **4.** The numerical control machines are controlled by the tape where width is:
 - (a) 20 mm
 - (b) 30 mm
 - (c) 50 mm

- **5.** In an NC machine, programmed instructions are stored on:
 - (a) punched tape
 - (b) head box
 - (c) graphic terminal
- **6.** Which of the following term is associated with NC machines?
 - (a) Machining center
 - (b) Precision
 - (c) Mass production
- 7. Based on control system features, NC machines can be classified as:
 - (a) point-to-point system and straight-line system
 - (b) straight-line system and continuous-path system
 - (c) point-to-point system, straight-line system, and continuous-path system
- **8.** The machine tool in which point-to-point numerical control system is applied is the:
 - (a) Drilling machine
 - (b) Grinding machine
 - (c) Milling machine

22. Key

1. (c)

4. (a)

7. (c)

2. (c)

5. (a)

8. (a)

3. (d)

6. (a)

Modern Machining Methods

Choose the correct alternative:

1.	Spark erosion	machining	method can	be used	for the	machining	of
----	---------------	-----------	------------	---------	---------	-----------	----

- (a) Conducting materials only:
- (b) Non-conducting materials only
- (c) Semi-conductors only
- (d) Both conducting and non-conducting materials
- 2. In spark erosion machining, for drilling deep holes of small diameters, the tool material should preferably be made of:
 - (a) Copper wire

(c) Tungsten Carbide wire

(b) Brass wire

(d) Tungsten wire

- **3.** For machining to take place in spark erosion:
 - (a) the tool must be immersed in the dielectric fluid
 - (b) the work must be immersed in the dielectric fluid
 - (c) both tool and work must be immersed in the dielectric fluid
 - (d) no dielectric fluid is to be used
- **4.** In spark erosion machining process, removal of metal takes place during:
 - (a) Charging of the capacitor
- (c) all times
- (b) Discharging of the capacitor (d) alternate cycles only

5.	In spark erosion machining if the dielectric is air: (a) the work piece particles will adhere to the tool (b) the tool particles will adhere to the work piece (c) the adherence of particles do not occur (d) no machining takes place			
6.	In spark machining, erosion takes	place:		
	(a) on the job(b) on the tool	(c) on both job and tool(d) on the dielectric itself		
7.	Electro-discharge machining and electro-chemical machining processes be used for machining ceramics and plastics. (a) can (b) cannot			
8.		niece is considerably for electron compared to that of electro-chemical		
	(a) poor	(c) very good		
	(b) good	(d) excellent		
9.	In Electro-chemical machining process metal is removed by (a) highly accelerated electron flow owing to ionization of the fluid medium (b) anodic dissolution (c) etchant solution (d) stimulated emission of radiation			
10.	Tooling cost is for Electroto that of Electro-discharge machine	o-chemical machining process compared ining process.		
	(a) very high(b) very low	(c) medium(d) practically nil		
11.	In Electro-chemical machining, m (a) The hardness of tool materials (b) The hardness of job material	• •		

		Independent of the hardness of The difference between the h		
	, ,			
12.	In.	Electro-chemical machining, th	ne m	etal is removed:
	(a)	By the mechanical pressure of	f too	l on job
	(b)	By the mechanical pressure of	f job	on tool
	(c)	By atom by atom-dissolving of	me	tal from the job
	(d)	By the stimulated emission of	radi	ation
13.	In	Electro-chemical machining, b	est s	urface finish is obtained:
	(a)	with low current density		
	(b)	with high current density		
	(c)	with slow rate of metal remov	al	
	(d)	with high rate of metal remove	al	
14.	$\mathrm{El}\epsilon$	ectrolyte used in Electro-chemi	cal 1	nachining process is:
	(a)	Brine solution	(d)	Water
	(b)	Kerosene	(e)	Air
	(c)	Transformer oil		
15.		r the machining of tungsten crasive is used for maximum mac		ide by ultrasonic machining whiching rate?
	(a)	Silicon carbide	(c)	Aluminium oxide
	(b)	Boron carbide	(d)	Glass
16.	In	Ultrasonic drilling process, the	tool	is usually given:
	(a)	the Rotary motion		
		the Reciprocating motion		
		the Linear motion		
		Both the rotary motion and th	e re	ciprocating motion
17.	Dia	amond powder is mostly used in	ı ult	rasonic machining for the cutting of:
	(a)	Glass	(c)	Boron carbide
	(b)	Germanium	(d)	Diamond

18.		ultrasonic machining pr				achine converts elec-
	tric	impulses to mechanica	l vik	rations	?	
	(a)	The trunk	(c)	The tra	ansducer	(e) The workpiece
	(b)	The oscillator	(d)	The ab	orasives	
19.		nich is the most suitable ic Machining?	wo	rk mate	rial that can be	machined by Ultra-
	(a)	Mild steel		(c)	Cast Iron	
	(b)	Brass		(d)	Glass	
20.	ces	e work material that car ses (viz. Spark erosion : emical Machining) is	mac	hining,		
	(a)	Glass		(d)	Diamond	
	(b)	Tungsten carbide		(e)	High Speed St	eel (HSS)
		Ceramic			0 1	
21.		e electrodes used in the	Ele	ectro-Cl	nemical Machir	ning process must be
	(a)	Semi-conductor		(d)	an insulating m	naterial
	(b)	an anodic material			O	conducting material
	(c)	a dielectric				
22.		th the electrodes and the				nerged in a dielectric
	(a)	USM process		(d)	AJM process	
	(b)	ECM process		(e)	LBM process	
	(c)	EDM process				
		(Note. USM refers to	Ultr	asonic l	Machining	
		ECM refers to	Elec	etro-che	emical Machinir	ng
		EDM refers to				
		AJM refers to A	bra	sive Jet	Machining	
	LBM refers to Laser Beam Machining.)					

23.	The electrodes used in the electro-chemical machining process differ from those used in the EDM process in that the ECM electrodes:		
	(a) are hollow		
	(b) are made of conducting mater	ials	
	(c) are made of insulating materia		
	(d) are insulated at the sides		
	(a) the instituted at the sides		
24.		g is accomplished by feedingelectrically charged electrode and the	
	(a) a dielectric fluid	(d) Water	
	(b) an electrolytic solution	(e) plasma effluent	
	(c) Kerosene	•	
25.	The part of an ultrasonic machine rate of 20,000 cycles/second is call	tool which causes the tool to vibrate at a led the:	
	(a) Workpiece holder	(d) Transducer	
	(b) Abrasive slurry pump	(e) Feeding Device	
	(c) Water Jacket		
26.	In spark erosion machining proce is filled with:	ss, the gap between tool and workpiece	
	(a) a photo etchant		
	(b) brine solution		
	(c) acid solution		
	(d) a liquid dielectric		
	(e) an electrolytic solution		
27.	In the electro-discharge machining trode are submerged in:	ng process, the workpiece and the elec-	
	(a) a dielectric fluid	(d) vacuum	
	(b) an abrasive slurry	(e) chemical reagents	
	(c) an electrolytic solution		

28.	The cutting tool used in t	the spark erosion mach	ining process is called:
	(a) an Arc	(c) an Electrode	(e) a Servo
	(b) a Capacitor	(d) a Dielectric	
29.	an electrolyte solution is	called	orkpiece is dissoloved into
	(a) electro-discharge ma	0	
	(b) ultrasonic machining	•	
	(c) electro-chemical mad	chining	
	(d) chemical machining		
	(e) Laser machining		
30.	The machining method is	s which an abrasive slu	rry is used is called:
	(a) Electro-discharge ma	achining	
	(b) Laser machining		
	(c) Plasma Arc Machinir	ng	
	(d) Ultrasonic Machining	g	
	(e) Chemical machining		
31.	In the electrolytic grinding	ng process generally	is used
	(a) an aluminium oxide g	grinding wheel	
	(b) a silicon carbide grin	ding wheel	
	(c) a tungsten carbide gr	rinding wheel	
	(d) a diamond grinding v	wheel	
	(e) a buffing wheel		
32.	Chemical reagents and e	tchants are used in	machining method
	(a) Electrochemical	(e) Ultrasonie	(e) Laser
	(b) Plasma Arc	(d) Chemical	
33.	In spark erosion machini tool material is:	ng process which is use	ed for diesinking, the usual
	(a) High Speed Steel	(c) Tungsten	Carbide
	(b) Brass	(d) Diamond	l

34.	The modern machining process v is known as:	vork	ing on Faraday's laws of electrolysis
	(a) EDM	(c)	ECM
	(b) EBM	(d)	LBM
35.	In ECM, the current density in th	e di	scharge of channel is of the order of:
	(a) $10,000 \text{ Amperes per cm}^2$	(c)	100 Amperes per cm ²
	(b) 1000 Amperes per cm ²	(d)	10 Amperes per/cm ²
36.	A complicated contour is to be a process will be used?	mad	e exactly in a carbide plate. Which
	(a) ECM	(c)	LBM
	(b) EDM	(d)	USM
37.	Dielectric is a must in:		
	(a) EDM process	(c)	USM process
	(b) ECM process	(d)	LBM process
38.	In EDM process the workpiece is	gen	erally connected to:
	(a) positive terminal	(c)	earth
	(b) negative terminal	(d)	any of the above.
39.	Metal removal rate (MRR) in US	M is	more for:
	(a) larger grain size of abrasives		
	$\ (b)\ smallergrain size of abrasives$		
	${\rm (c)}\ \ medium\ grain\ size\ of\ abrasive}$	S	
	(d) none of the above		

23. Key

11. (c)	21. (e)	31. (d)
12. (c)	22. (c)	32. (d)
13. (d)	23. (d)	33. (b)
14. (a)	24. (b)	34. (c)
15. (b)	25. (d)	35. (c)
16. (b)	26. (d)	36. (b)
17. (d)	27. (a)	37. (a)
18. (c)	28. (c)	38. (a)
19. (d)	29. (c)	39. (a)
20. (b)	30. (d)	
	12. (c) 13. (d) 14. (a) 15. (b) 16. (b) 17. (d) 18. (c) 19. (d)	12. (c) 22. (c) 13. (d) 23. (d) 14. (a) 24. (b) 15. (b) 25. (d) 16. (b) 26. (d) 17. (d) 27. (a) 18. (c) 28. (c) 19. (d) 29. (c)

Non-Ferrous Materials

Choose the correct alternative:

1. Brass is an alloy of two metals. They	are:
---	------

- (a) Chromium and Carbon
- (b) Tin and Aluminium
- (c) Copper and Tin
- (d) Copper and Zinc
- (e) Zinc and Tin
- **2.** The crystal structure of brass is:
 - (a) F.C.C.
 - (b) B.C.C.
 - (c) H.C.P.
 - (d) Orthorhombic crystalline structure
 - (e) None of the above
- **3.** Which one of the following metals would work-harden more quickly than the others?
 - (a) Copper

(d) Silver

(b) Brass

(e) Aluminium

(c) Lead

4.	Bronze is an alloy of: (a) Brass and Tin(b) Zinc and Tin(c) Sulphur and Tin	(d) Copper and Zinc(e) Copper and Tin
5.	Babbitt metal is used primarily in(a) Ball bearings(b) Roller bearings(c) Sleeve bearings	: (d) Thermocouples (e) Bridge construction
6.	 A specimen of Aluminium metal v (a) B.C.C.crystalline structure (b) F.C.C. crystal structure (c) H.C.P. structure (d) A complex cubic structure (e) Orthorhombic crystalline structure 	when observed under microscope shows:
7.	Which one of the following metal drawn into wire? (a) Tin (b) Copper	(c) Lead (d) Zinc
8.	Zinc has got the following crystal (a) Face Centered Cubic structu (b) Body Centered Cubic structu (c) Hexagonal Close Packed structu (d) Orthorhombic crystalline structu	re re cture
9.	Powder Metallurgy (PM) techniq (a) High Carbon Steel (b) HSS tools	ues are used in the production of: (c) Tungsten carbide tool bits (d) Twist drills
10.	Asbestos is a: (a) mineral fiber(b) fiber reinforced plastic	(c) mixture of fiber and glass wool(d) mixture of mica and fiber

11. Mica is:

- (a) a conductor of current
- (b) an insulator
- (c) a mixture of plastic and rubber
- (d) a petroleum by-product

12. Vulcanizing is usually applied to:

- (a) plastic products
- (b) rubber products
- (c) mixture of plastic and rubber

13. Poly-Vinyl-Chloride (PVC) is:

- (a) a compact form of mica
- (b) a mixture of wool and cork
- (c) a thermo-plastic material
- (d) a thermo-setting plastic material
- (e) a rubber product
- **14.** With reference to the plastics listed, which one of the following statements is true? I. Polystyrene II. Poly-Vinyl-Chloride III. Phenol formaldehyde IV. Tetra fluor-ethylene V. Polyethylene
 - (a) All are thermoplastic materials
 - (b) All are thermosetting materials
 - (c) I and II are both thermoplastic materials
 - (d) Only III is thermosetting material
 - (e) I and III are both thermosetting materials

15. The plastic material "teflon" is known primarily for its:

- (a) great mechanical strength
- (b) extreme low coefficient of friction
- (c) great heat resistance
- (d) great hardness
- (e) good electrical conductivity

16.	Which statement best describes	thermoplastic materials?			
	(a) they soften when cooled and harden when heated				
	(b) they become permanently hard when heated				
	(c) they relate to one particular trade name				
	(d) they soften when heated and	harden when cooled			
	(e) they are phenol formaldehyd	es			
17.	In specifications containing the P.V.C." the term P.V.C. refers to:	statement "Scrubbers are constructed of			
	(a) Plain Vitrified Clay				
	(b) Poly Vinyl Chloride				
	(c) Patented Vanadium Copper				
	(d) Pliable Varnished Canvas				
18.	The soft material placed between leakage is called:	two flanges of a CI water pipe to prevent			
	(a) Gasket	(c) Plinth			
	(b) Shim	(d) Spelter			
19.	A process commonly used to pre	serve wood against decay is:			
	(a) Anodizing	(c) Grouting			
	(b) Creosoting	(d) Guniting			
20.	Joints in cast iron water lines are	generally sealed with:			
	(a) mortar	(c) couplings			
	(b) lead and jute fibers	(d) quick setting cement mixture			
21.	The two important Copper base	alloys are:			
	(a) Monel and Brass				
	(b) Brass and Bronze				
	(c) Monel and Bronze				
	(d) Cupronickel and Bell metal				
	(e) Tin and Phosphor bronze				

- **22.** The Babbitt metals are used:
 - (a) for dies and cutting tools
- (c) in the manufacture of gears
- (b) for high speed shafts
- (d) as bearing metals

23. Aluminium is extracted from:

- (a) Anthracite ores
- (b) Bauxite ores
- (c) Hematite ores
- (d) Magnesite ores

24. Monel metal is an alloy of:

- (a) Molybdenum and Aluminium
- (b) Chromium and Silicon
- (c) Nickel and Chromium
- (d) Nickel and Copper

25. Gun metal is an alloy of

- (a) Copper and Zinc
- (b) Copper and Tin
- (c) Copper, Tin, and Phosphorus
- (d) Copper, Tin, and Silicon
- (e) Copper, Zinc, and Tin

26. Phosphorus Bronze is an alloy of:

- (a) Phosphorus and Copper
- (b) Phosphorus, Copper, and Tin
- (c) Phosphorus, Copper, and Zinc
- (d) Phosphorus, Tin, and Zinc

27. A process of applying outside coating on aluminium is known as:

- (a) oxidizing
- (b) anodizing
- (c) galvanizing

- **28.** A process of coating zinc by hot dipping is called:
 - (a) anodizing
 - (b) galvanizing
 - (c) brazing

24. Answer Key

1. (d)	8. (c)	15. (b)	22. (d)
2. (a)	9. (c)	16. (d)	23. (b)
3. (b)	10. (a)	17. (b)	24. (d)
4. (e)	11. (b)	18. (a)	25. (e)
5. (c)	12. (b)	19. (b)	26. (b)
6. (b)	13. (c)	20. (b)	27. (b)
7. (b)	14. (d)	21. (b)	28. (b)

Workshop Measuring Instruments (Metrology)

Choose the correct alternative:

1.	Layout work for drilling operation must be performed on a to ensure an accurate layout.		
	(a) work bench	(c) surface plate	
	(b) milling machine table	(d) wooden block	
2.	can be used to scribe lines parallel to the edges of a part.		
	(a) Vernier calipers	(d) Hermaphrodite caliper	
	(b) Screw gauge	(e) Combination set	
	(c) Divider		
3.	A surface gauge is used:		
	(a) in levelling the surface plate		
	(b) in finding the surface finish		
	(c) in laying out the work accurately		
	(d) in finding the depth of the su	rface	
4.	Work which must be held in a v clamped to:	ertical position for laying out should be	
	(a) surface plate	(c) a V-block	
	(b) an angle plate	(d) a machine bed	

5.	A precision instrument used in minutes is called a	meas	uring angles to an accuracy of five
	(a) Taper gauge	(d)	Vernier Bevel protractor
	(b) Combination set		Indexing head
	(c) Vernier Caliper		
6.	To check accurately whether the jaw chuck, a is used.	work	piece is properly centered in a four-
	(a) Combination Set	(d)	Vernier caliper
	(b) Dial indicator	(e)	Slip gauge
	(c) Micrometer		
7.	The accuracy of a Vernier bevel p is usually:	rotra	actor used in machine shop practice
	(a) One second	(d)	Five minutes
	(b) Five seconds	(e)	One degree
	(c) One minute		
8.	The diameter of a finish turned sh	naft n	must be checked for size with:
8.	The diameter of a finish turned sl (a) a Combination Set		nust be checked for size with: a micrometer
8.		(d)	
8.	(a) a Combination Set	(d)	a micrometer
	(a) a Combination Set(b) Slip gauges(c) a taper gauge	(d) (e)	a micrometer a dial indicator easurements used in machine shop
	(a) a Combination Set(b) Slip gauges(c) a taper gaugeThe metric system of engineering	(d) (e) g me	a micrometer a dial indicator easurements used in machine shop
	(a) a Combination Set(b) Slip gauges(c) a taper gaugeThe metric system of engineerin practice is based on a length unit	(d) (e) ag me calle (d)	a micrometer a dial indicator easurements used in machine shop d the:
	(a) a Combination Set(b) Slip gauges(c) a taper gaugeThe metric system of engineerin practice is based on a length unit(a) millimeter	(d) (e) ag me calle (d)	a micrometer a dial indicator easurements used in machine shop d the: micron
9.	 (a) a Combination Set (b) Slip gauges (c) a taper gauge The metric system of engineerin practice is based on a length unit (a) millimeter (b) centimeter (c) meter 	(d) (e) ag macalle (d) (e) (e)	a micrometer a dial indicator easurements used in machine shop d the: micron
9.	 (a) a Combination Set (b) Slip gauges (c) a taper gauge The metric system of engineering practice is based on a length unit (a) millimeter (b) centimeter (c) meter Extremely accurate centering of second se	(d) (e) g me calle (d) (e) (e)	a micrometer a dial indicator easurements used in machine shop d the: micron decimal system
9.	 (a) a Combination Set (b) Slip gauges (c) a taper gauge The metric system of engineering practice is based on a length unit (a) millimeter (b) centimeter (c) meter Extremely accurate centering of can be determined only by using an engineering of the can be determined only by the can be dearly an engineering of the can be determined only by the can be d	(d) (e) g me calle (d) (e) work a: (d)	a micrometer a dial indicator easurements used in machine shop d the: micron decimal system mounted in an independent chuck

11.	The protractor head on a combination set is designed to measure or check in the machine shop.		
	(a) Length	(c) Thickness	
	(b) Diameter	(d) Angles	
12.	To determine the size of a bored gauge setting must be checked wi	l hole by using a telescopic gauge, the	
	(a) a Vernier Caliper	(c) slip gauges	
	(b) a micrometer	(d) an alignment telescope	
13.	A precision measuring instrument ment of holes, slots, and recesses	designed especially for depth measures called a:	
	(a) vernier caliper	(c) depth gauge	
	(b) micrometer	(d) radius gauge	
14.	Internal tapers are checked for ac	curacy using:	
	(a) slip gauges	(d) a Taper plug gauge	
	(b) a Micrometer	(e) a Surface gauge	
	(c) a Telescopic gauge		
15.	To check the diameter of a twist d must be taken across	rill with a micrometer, the measurement 	
	(a) the margins of the drill	(d) the lips of the drill	
	ĕ	(e) the web of the drill	
	(c) the cutting edges of the drill		
16.	To check accurately the run-out or	f a lathe spindle, a is used.	
	(a) slip gauge	(c) dial indicator	
	(b) micrometer	(d) spirit level	
17.	To find the straightness of the la required.	the spindle bore, a is	
	(a) slip gauge	(c) spirit level	
	(b) feeler gauge	(d) test mandrel	

(d) Micrometer

18.	Circumferential error of spindle location in center lathes can be checked with the help of:		
	(a) a spirit level	(c) a dial gauge	
	(b) a block level	(d) a micrometer	
19.	To obtain an accurate measurement using, the machinist must develop a keen sense of touch.		
	(a) Vernier Calipers	(c) Slip gauges	
	(b) Micrometer	(d) Vernier Bevel Protractor	
20.	Dial indicators can be used only to):	
	(a) Determine the actual size of a	part	
	(b) Determine the maximum size	of a part	
	(c) Determine the minimum size	of a part	
	(d) Determine the variation in siz		
21.	A micrometer is usually used to:		
	(a) Measure an outside diameter		
	(b) Measure the distance between	n two points on a plane surface	
	(c) Check a class of thread		
	(d) Determine the center of a circ	ele	
22.	The finish depth of an extern measured by:	al V-thread form is most accurately	
	(a) the 3-wire system	(d) a thread plug gauge	
	(b) the 2-wire system	(e) a thread micrometer	
	(c) a thread ring gauge		
23.	The thickness of light gauge sheet	steel can be best checked with a:	
	(a) finely divided steel scale		
	(b) depth gauge		
	(c) hermaphrodite caliper		

25.	A vernier having a least count of $0.01~\text{mm}$, has a zero error of + $0.03~\text{mm}$ while measuring shows a reading of $24.08~\text{mm}$. The actual value of measurement will be:		
	(a) 24.08 mm	(c) 24.05 mm	
	(b) 24.11 mm	(d) 24.24 mm	
	(b) 24.11 mm	(u) 24.24 mm	
26.	The least count of an external micrometer (range 0—25 mm) having 50 divisions on circular scale and pitch 0.5 mm is:		
	(a) 0.01 mm	(c) 0.05 mm	
	(b) 0.02 mm	(d) 0.001 mm	
	(8) 0.02 mm	(4) 0.001 11111	
27.	Dial gauge used in Metrology Lab	oratories is:	
	(a) a direct measuring instrument	_	
	(b) a comparing instrument		
	(c) both a direct and an indirect i	e	
	(d) same as a Micrometer and a V	ernier Calliper	
28.	The minimum reading on a comm	only used dial gauge is	
	(a) 0.025 mm	(c) 0.01 mm	
	(b) 0.001 mm	(d) 0.05 mm	
	(8) 0.001	(d) oros min	
29.	While using a dial gauge for check should be:	ing the run-out on a shaft, the dial gauge	
	(a) held in the hand		
		l gauge plunger is resting on the job	
	(c) fixed on a stand and the plunger is slightly loaded on the job, and the needle reading zero on the dial		
	(d) fitted securely to any fixed par reading zero	t and plunger slightly preloaded and dial	

24. The least count of a metric vernier calliper having 25 divisions on vernier scale, matching with 24 divisions of main scale (1 m.s. division =

(c) 0.02 mm

(d) 0.001 mm

0.5 mm) is:
(a) 0.05 mm

(b) 0.01 mm

30.	Sin	e bar can be used for measuring taper
	(a)	with the help of height gauge
	(b)	with the help of V-calliper
	(c)	with the help of bevel protractor

- (d) without any accessory
- 31. The thread micrometer measures:(a) the major diameter of the thread
 - (b) the minor diameter of the thread
 - (c) the effective diameter of the thread
 - (d) the root diameter of the thread
- **32.** In the case of Vernier Callipers which one of the following statements is True?
 - (a) the Vernier has 10 equal divisions with a total length equal to 10 divisions on the main scale
 - (b) the Vernier has 9 equal divisions with a total length equal to 10 divisions on the main scale
 - (c) the Vernier has 10 equal divisions with a total length equal to 9 divisions on the main scale
 - (d) there is no relationship between the divisions on the two scales
- **33.** Which one of the following Instruments is suitable for measuring the diameter of a steel wire?
 - (a) Vernier Gauge
 - (b) Vernier Callipers
 - (c) Micrometer Gauge
 - (d) Meter rule
- **34.** The overall magnification of a microscope that has an objective magnification of 30 X and an eyepiece magnification of 10 X is:
 - (a) 3 X (b) 30 X (c) 300 X (d) 3000 X

35.	Good quality scales for use in made of:	fitting shop measurements are usually
	(a) Low Carbon Steel(b) Plastic sheets(c) Good quality Aluminium	(d) Stainless steel(e) Wood
36.	Vernier calliper is commonly used (a) smithy shop for measurement (b) foundry shop for measurement (c) machine shop for measurement (d) welding shop for marking and	of finished jobs nt of dimensions of mould cavity
37.	Vernier callipers are made from:	
	(a) mild steel	(c) CI
	(b) stainless steel	(d) Cast steel
38.	Vernier callipers are used for: (a) measuring angles (b) taking linear measurements (c) checking surface finish (d) checking surface irregularities 	;
39.	Height gauges are used for measu	ring:
	(a) Depth and height	(c) Internal taper
	(b) External taper	(d) Surface finish
40.	Height gauges and depth gauges a (a) micrometer (b) vernier calliper (c) nut and bolt (d) sliding friction	are based on the principle of:
	(e) Bevel protractor	

41.	For taking measurements of the height of a job with the help of an height gauge the following item is normally required in addition to the height gauge and the job:		
	(a) V-block	(c) Surface plate	
	(b) Angle plate	(d) Sine bar	
42.	Micrometers are manufactured from:		
	(a) mild steel	(c) CI	
	(b) stainless steel	(d) cast steel	
43.	Micrometers are used for		
	(a) checking angles		
	(b) taking linear measurement	ents	
	(c) checking surface finish		
	(d) marking jobs on a surface	e plate	
44.	Circular scale of the microm	eter is marked on the part known as the:	
	(a) shaft	(d) thimble	
	(b) barrel	(e) spindle	
	(c) ratchet		
45.		a part called is attached easuring pressure during clamping of different	
	(a) locknut	(d) spanner	
	(b) magnifying glass	(e) ratchet	
	(c) spindle		
46.	Millimeter scale in a micron	neter is marked on the part called:	
	(a) barrel		
	(b) thimble		
	(c) spindle		
	(d) anvil		
	(c) spindle		

47.	Combination set is basically a:		
	(a) Precision measuring instrument		
	(b) Marking device		
	(c) Checking and marking device	e	
	(d) Vernier Bevel Protractor		
48.	The center head in a combinatio	n set is used for:	
	(a) locating the center of a bar s	tock	
	(b) measuring the diameter of a		
	(c) measuring the center-to-cen		
	(d) measuring the angles		
10	While using a combination set t	he squareness of the given job is checked	
Τ).	by the:	ne squareness of the given job is encered	
	(a) center head	(c) square head	
	(b) graduated protractor	(d) scale	
50.		ractor having 12 divisions on Vernier scale nain scale is: (1 main scale division corre-	
	(a) 5 minutes	(c) 12 minutes	
	(b) 10 minutes	(d) 5 degrees	
51.	The joining of two slip gauges fo	r building up a size combination is called:	
	(a) fixing	(c) wringing	
	(b) assembling	(d) pasting	
52.	The taper of internal dovetail car	n be measured with the help of:	
	(a) sinebar	r	
	(b) combination set		
	(c) balls of standard dimensions	and slin gauges	
	(d) vernier callipers	and sup gauges	
	(a) vermer campers		

	(a) sine bar and slip gauges (c) micrometer		
	(b) vernier calliper (d) combination set		
54.	A sine bar is specified by:		
	(a) its total length		
	(b) the center distance between the two rollers of the sine bar		
	(c) the minimum angle that can be measured		
	(d) the maximum angle that can be measured		
	(e) the accuracy with which the angular measurements can be made		
55.	Gear tooth calliper is used to find the chordal thickness of gear tooth of:		
	(a) spur gears (c) worm gears		
	(b) helical gears (d) bevel gears		
56.	For correct and precise measurements of thread characteristics we use:		
	(a) screw pitch gauge		
	(b) micrometer with accessories		
	(c) tool room microscope		
	(d) thread gauge		
57.	Dial gauge measures:		
	(a) circular dimensions as needle rotates on the dial		
	(b) linear dimensions as contact pointer moves up and down		
	(c) angular divisions		
	(d) surface roughness of finished jobs		
58.	Which part of the combination set can be used to lay out the centerlines on the end of a round bar stock?		
	(a) The center head		
	(b) The square head		
	(c) The Bevel Protractor		
	(d) The bubble		

53. External taper can be accurately measured with the help of:

- **59.** In Metrology Laboratory, the joining of two slip gauges for purposes of precision measurement is known as:
 - (a) assembly

(d) wringing

(b) welding

(e) slipping

- (c) adhesion
- 60. In manufacturing industries, Plug Gauges are used to:
 - (a) measure the diameter of the workpieces
 - (b) measure the diameter of the holes in the workpieces
 - (c) check the diameter of the holes in the workpieces
 - (d) check the length of the holes in the workpieces
- **61.** In production shops, snap gauges are used to:
 - (a) check the length of the workpieces
 - (b) check the diameter of the workpieces
 - (c) check the diameter of the holes in the workpieces
 - (d) measure the diameter of the holes in the workpieces
- **62.** In Limits, Fits, and Tolerances, the term "allowance" is usually referred to as:
 - (a) Minimum clearance between shaft and hole
 - (b) Maximum clearance between shaft and hole
 - (c) Tolerance of hole or shaft
 - (d) Difference between maximum size and minimum size of the hole
 - (e) Difference between maximum size and minimum size of the shaft
- **63.** In the case of a clearance fit between a shaft and a hole, the *minimum clearance* is obtained when:
 - (a) the shaft is of minimum diameter and the hole is of maximum diameter
 - (b) the shaft is of maximum diameter and the hole is of minimum diameter
 - (c) both the shaft and hole are of minimum diameter
 - (d) both the shaft and hole are of maximum diameter

- **64.** The condition of the assembly between a shaft and a hole is such that there is always a clearance fit. The *maximum clearance* between shaft and hole is obtained when:
 - (a) both the shaft and hole are of minimum diameter
 - (b) both the shaft and hole are of maximum diameter
 - (c) the shaft is of minimum diameter and the hole is of maximum diameter
 - (d) the shaft is of maximum diameter and the hole is of minimum diameter
- **65.** The distance between the corresponding points of any two adjacent screw threads is known as:
 - (a) pitch of the screw thread
 - (b) accuracy of the screw thread
 - (c) start of the screw thread
 - (d) diameter of the screw thread at the pitch line.

25. Key

1. (c)	18. (c)	35. (d)	52. (c)
2. (d)	19. (a)	36. (c)	53. (a)
3. (c)	20. (d)	37. (b)	54. (b)
4. (b)	21. (a)	38. (b)	55. (a)
5. (d)	22. (e)	39. (a)	56. (c)
6. (b)	23. (d)	40. (b)	57. (b)
7. (d)	24. (c)	41. (c)	58. (a)
8. (d)	25. (c)	42. (b)	59. (d)
9. (c)	26. (a)	43. (b)	60. (c)
10. (c)	27. (c)	44. (d)	61. (b)
11. (d)	28. (c)	45. (e)	62. (a)
12. (b)	29. (d)	46. (a)	63. (b)
13. (c)	30. (a)	47. (c)	64. (c)
14. (d)	31. (c)	48. (a)	65. (a)
15. (a)	32. (c)	49. (c)	
16. (c)	33. (c)	50. (a)	
17. (d)	34. (c)	51. (c)	

THERMAL ENGINEERING

Choose the correct alternative:

1.	Orsat apparatus is used in:			
	(a) measuring turbulent flow in pipes			
	(b) the determination of flue gas of	composition		
	(c) determining the working stres	ses in a beam		
	(d) vibrating the membranes			
	(e) solving differential equations			
2.	A device that is sensitive to the de	gree of moisture in the air is:		
	(a) An aquastat	(d) An hygrostat		
	(b) a theostat	(e) A thermostat		
	(c) A damperstat			
3.	A bi-metallic element is made up be When subjected to high temperat	by riveting a brass and iron strip together. ure, the element will:		
	(a) vibrate	(c) remain the same length		
	(b) bend	(d) shorten		
4.	A device that is used to convert mousually called a:	echanical energy into electrical energy is		
	(a) battery	(c) motor		
	(b) generator	(d) transformer		

5.	. Sheet metal ducts in a building would most likely to carry:		
	(a) electric cables	(c) steam	
	(b) water	(d) air	
6.	The engines of bulldozers are mo	ostly:	
	(a) steam engines	(c) diesel engines	
	(b) petrol engines	(d) kerosene engines	
_	•		
/.	Wind velocity is usually measured		
	(a) Altimeter	(c) Psychrometer	
	(b) Tachometer	(d) Anemometer	
8.		regulation of temperature by means of a and expansion of the metals due to tem-	
	(a) hydrostat	(c) retort	
	(b) thermostat	(d) solenoid	
9.	The Stefan-Bolztmann law states	that $O = \sigma eAT^4 CHU/hr$.	
	(a) <i>Q</i> is the net rate of heat transfer from a black body		
	(b) Q is the net rate of heat transfer for any body		
	(c) Q represents the total radiant energy absorbed by a black body		
	(d) Q will change with the rate of energy which the black body receives from the surroundings		
	(e) Q is the total radiated energy	y of a black body regardless of the rate of he surroundings at the same time	
10.	An increase in evaporation is mos	st likely to take place when air:	
	(a) is stagnant	(d) is saturated	
	(b) becomes warmer	(e) is expanding	
	(c) becomes cooler		
11.	The convective heat transfer coef	fficient is analogous to:	
	(a) the viscosity of a fluid	~	
	(b) the heat capacity of a fluid		

	(c) the skin friction coefficient of a fluid					
	(d) the coefficient of mechanical friction					
	(e) none of the above					
12.	The ratio of Cp/C closest to:	v for air and mo	st common gase	es below 500 °C is		
	(a) 0.79	(c) 1.00		(e) 1.40		
	(b) 1.04	(d) 1.70				
13.	The value of the r specific heat at a co		c heat at a cons	tant volume to the		
	(a) is a function on	ly of the molecular	r density of the g	as		
	(b) varies as the squ	uare of the Mach 1	Number			
	(c) must always be	greater than unity				
	(d) cannot be great	•				
	(e) varies inversely	as the specific vol	ume			
14.	A hot body will radi	iate heat most rapi	dly if its surface i	is:		
	(a) Rough and whi	te (d)	Black and rough	ı		
	(b) White and polis	shed (e)	Black and polisl	hed		
		(c) Grey				
15.			is most nearly e	qual to the specific		
15.	(c) Grey The specific heat of	when:	is most nearly e	qual to the specific		
15.	(c) Grey The specific heat of heat of an ideal gas	when: zero	is most nearly e	qual to the specific		
15.	(c) Grey The specific heat of heat of an ideal gas (a) the pressure is	when: zero e is zero	is most nearly e	qual to the specific		
15.	(c) Grey The specific heat of heat of an ideal gas (a) the pressure is (b) the temperature	when: zero e is zero infinite	is most nearly e	qual to the specific		
15.	(c) Grey The specific heat of heat of an ideal gas (a) the pressure is (b) the temperatur (c) the pressure is	when: zero e is zero infinite ume is zero	is most nearly e	qual to the specific		
	(c) Grey The specific heat of heat of an ideal gas (a) the pressure is (b) the temperatur (c) the pressure is (d) the specific volume	when: zero e is zero infinite ume is zero ume is infinite				
	(c) Grey The specific heat of heat of an ideal gas (a) the pressure is (b) the temperatur (c) the pressure is (d) the specific volution (e) the specific volution	when: zero e is zero infinite ume is zero ume is infinite				

(c) Diesel

- 17. Which statement concerning the specific heats of a gas is false?
 - (a) C_p is greater than C_p for any gas.
 - (b) C_n/C_n is about 1.4 for air
 - (c) C_n/C_n is used in the theory of sound
 - (d) Hydrogen has small values of C_{v} and C_{v}
 - (e) The expression $2/C_p$ C_v gives a good approximation to the molecular wt. of a gas.
- **18.** According to the Stefan-Boltzmann equation, the ratio of heat radiated from a body at 100°C to that radiated from a body at 10°C is:
 - (a) $(100/10)^4$

(d) $(100/10)^3$

(b) (373/283)³

(e) (373/283)³

- (e) (373/273)³
- **19.** The quality of steam at any point under the dome of a Mollier diagram:
 - (a) is greater than 100% because the steam is superheated
 - (b) is negative
 - (c) is zero since the steam is superheated
 - (d) is between 0 and 100%
 - (e) is less than 50%
- **20.** Which of the following statements concerning a mixture of gases is (are) true?
 - (I) The total pressure equals the sum of the partial pressures of the components.
 - (II) The partial pressure of any component is the pressure that the gas would exert, if it alone were to occupy the entire volume
 - (III) At pressures of a few atmospheres or less, gas mixtures may be regarded as ideal gases:
 - (a) all are true
 - (b) only I is true
 - (c) only I and III are true
 - (d) only II is true
 - (e) only I and II are true

21. Brick and glass have coefficients of thermal conductivity 0.0015 and 0.0025 Cal/cm³ -sec-°C. cm respectively. The ratio of heat lost through 10 square meters of 3 mm thick glass to that lost through an equal area of 20 cm thick brick is:

(a) 1: 40

(d) 1: 110

(b) 40: 1

(e) 3: 200

(c) 110: 1

22. If a plate of Nickel 0.2 cm thick has a 40° difference in temperature between its faces and transmits 600 kilo Calories/hr. through an area of 5 cm², the thermal conductivity of Nickel in Cal/cm³ - sec °C. cm is most nearly:

(a) 0.16

(c) 1.30

(e) 0.13

(b) 1.67

(d) 0.14

- 23. Which one of the following terms is true in respect of the term "Convection"?
 - (a) It is highest for dull black and rough bodies
 - (b) It applies to the transfer of heat through solids
 - (c) It is important in the transfer of heat between solids and fluids
 - (d) It is lowest for shiny surfaces
 - (e) None of these
- 24. In calculating the heat transfer through insulated circular pipes where the outside diameter is more than about twice the inside diameter, the area A to be used is:

(a) $\sqrt{A_{OD} \times A_{ID}}$

(d) $(3A_{OD} + A_{ID})/2$

(b) $(A_{OD} - A_{ID})/2.3 \text{ Log} 10 \frac{A_{OD}}{A_{ID}}$ (e) None of these

- (c) $(A_{OD} + A_{ID})/2$
- **25.** The gravimetric analysis of a flue gas gave the following data:

Gas	%by weight	Specific heat
W	15	0.30
X	60	0.25
Y	10	0.20
Z	15	0.15

(a) 0.225

(b) 0.238

The overall specific heat of the flue gas is:

	According to the equation C + H2O \rightarrow CO + H ₂ , how many kg. of CO are produced per kg of coke containing 90% Carbon?			
(a) 2.10 kg	(c) 4.20 kg	(e) 4.66 kg		
(b) 2.33 kg	(d) 4.50 kg			
27. In the expression $P_1 V$	$\frac{1}{1}^{k} = P_{2} V_{2}^{k} $ for an isentropi	ic expansion, K is:		
(a) $(C_p - C_v) / C_p$	(d) C_p/C_v (e) $I-C_p/C_v$			
(b) $(C_v - C_p) / C_v$	(e) $I - C_p / C$	$\frac{7}{v}$		
(c) $C_v - C_p$				
28. The Carnot cycle cons	ists of:			
(a) two isothermals, o	ne isentropic, and one iso	barie		
(b) two isothermals, o	ne isentropic, and one po	lytropic		
(c) two isothermals, to	vo polytropics			
(d) one isothermal, or	e isobaric, and two isentr	ropics		
(e) none of these				
29. In the expression for h	the eat flow $Q = \frac{I}{R}$, $R =$			
(a) $\frac{L}{K}$	(c) $\frac{K}{LA}$	(e) $\frac{I}{KLA}$		
(b) $\frac{L}{KA}$	(d) KLA			
*	30. The statement "Equal volumes of different gases at the same temperature contain the same number of molecules" is:			
(a) Le Chatelier's Prir	nciple (c) Dulong a	and Petit's Law		
(b) Avogadro's Law	(d) Archime	de's Principle		
31. The Mollier diagram is	s a plot of:			
(a) T and S	(c) P and V (e)	H and S		
(b) <i>T and H</i>	(d) T and P			

(c) 0.228

(d) 0.215

(e) 0.248

whe	ere T is the temperature S is the Entropy H is the total Heat or enthalpy P is the pressure V is the volume	
32.	When a solid changes directly to liquid, the process is called:	the gaseous form without ever being a
	(a) Sublimation(b) Freezing(c) Condensation	(d) Crystallization (e) Evaporation
33.	Which of the following is an energy (a) Newton (b) Centigrade-Heat-Unit (C.H.U) (c) Watt (d) kg-m. (e) Horse Power	
34.	A substance that absorbs moisture	from the air is said to be:
	(a) Autogenous(b) hygroscopic	(c) Effervescent (d) saprophytic
35.	With increase in temperature, the (a) decreases (b) increases (c) do not change (d) becomes zero 	viscosity of the lubricating oil:
36.	(a) sufficient vapor is produced to(b) the liquid will be spontaneousl(c) the vapor will be spontaneousl	y flammable

37.	Ca	Carnot cycle consists of two isothermal processes and:			
	(a)	one constant volume ar	nd o	ne constant pressure pr	ocess
	(b)	one adiabatic process a	nd o	one isobaric process	
	(c)	two constant volume p	roce	sses	
	(d)	two constant pressure j	proc	esses	
	(e)	two adiabatic processes	5		
38.		e most efficient therm mperatures is:	odyı	namic cycle operating	between two fixed
	(a)	Rankine cycle	(c)	Dual cycle	(e) Carnot cycle
		Otto cycle		Diesel cycle	
39	No	engine can be more eff	iciei	nt than the engine work	ing on:
٠,٠		<u> </u>		_	
		Diesel cycle		Carnot cycle	(e) Joule cycle
	(D)	Dual cycle	(u)	Otto cycle	
40.	In	thermodynamics, Carno	t cy	ele is also called as:	
	(a)	Constant pressure cycle	е		
	(b)	Constant volume cycle			
	(c)	Constant temperature	cycl	e	
	(d)	Constant heat cycle			
41.	Ott	o cycle used in petrol ei	ngin	es is also known as	
		Constant pressure cycle	_		
		Constant volume cycle			
		•		•	
42.	The air standard efficiency of an I.C. Engine working on the Otto cycle is a function of:				
	(a)	Clearance volume only			
	(b)	Volume of cylinder onl	y		
	(c)	Ratio of volume of cylin ratio)	nder	to the clearance volum	e (viz. Compression
	(d)	the quality of fuel used	in t	he engine	

43. Otto	cycle	consists	of:
-----------------	-------	----------	-----

- (a) Two isothermal processes, and two adiabatic processes
- (b) Two constant volume processes, and two adiabatic processes
- (c) Two constant volume processes, and two constant pressure processes
- (d) Two constant pressure processes, and two adiabatic processes
- (e) One isothermal process, one adiabatic process, one constant volume process, and one constant pressure process
- **44.** The constant volume cycle is used in:
 - (a) Refrigerators

(c) Diesel Engines

(b) Steam Engines

- (d) Petrol Engines
- **45.** In an Otto cycle engine the working medium *viz*. the air is compressed or expanded adiabatically according to the law:
 - (a) pv is a constant
 - (b) $pv^{0.4}$ is a constant
 - (c) $pv^{1.4}$ is a constant
 - (d) $pv^{2.0}$ is a constant
 - (e) p/v is a constant where p is pressure and v is volume of the working medium.
- **46.** In Otto cycle, both heat addition and heat rejection occur at:
 - (a) constant pressure
- (c) constant temperature
- (b) constant volume
- (d) constant entropy
- **47.** Which *one* of the following statements is true in respect of an ideal Diesel cycle?
 - (a) Heat is added to the working medium at constant volume
 - (b) Heat is added to the working medium at constant pressure
 - (c) Heat is rejected from the working medium at constant pressure
 - (d) Both heat addition and heat rejection occur at constant volume
 - (e) Both heat addition and heat rejection occur at constant pressure

- **48.** In an I.C. engine operating on an ideal Diesel cycle:
 - (a) Both heat addition and heat rejection occur at constant pressure
 - (b) Both heat addition and heat rejection occur at constant volume
 - (c) Heat is added to the working medium at constant volume
 - (d) Heat is rejected from the working medium at constant volume
 - (e) Heat is rejected from the working medium at constant pressure
- **49.** In Diesel cycle, the compression and expansion of the working medium is according to the Law:
 - (a) pv is a constant

- (d) $pv^{\text{cp/cv}}$ is a constant
- (b) p/v is a constant
- (e) p is constant.
- (c) v/p is a constant

where p is pressure, v is the volume and C_p is the specific heat of the working medium at constant pressure and C_v is the specific heat of the working medium at constant volume.

- **50.** In Diesel cycle, during heat supply:
 - (a) Pressure remains constant
 - (b) Volume remains constant
 - (c) Both pressure and volume remain constant
 - (d) Temperature remains constant
- **51.** In Diesel cycle, when heat is rejected from the working medium:
 - (a) Temperature remains constant
 - (b) Pressure remains constant
 - (c) Volume remains constant
 - (d) Both pressure and volume remain constant
- **52.** In Diesel cycle:
 - (a) Compression ratio and expansion ratio are the same
 - (b) Compression ratio is less than the expansion ratio
 - (c) Compression ratio is greater than the expansion ratio
 - (d) Compression ratio + Expansion ratio = 1

53.	. In Diesel engines, injection of fuel continues till:			
	(a) the spark plug gives out a spa	rk		
	(b) the compression is complete			
	(c) the clearance volume is filled with the fuel oil			
	(d) the cut off point is reached			
54.	The thermodynamic cycle in which pressure and partly under constant	ch heat is supplied partly under constant nt volume is known as:		
	(a) Carnot cycle	(d) Otto cycle		
	(b) Diesel cycle	(e) Rankine cycle		
	(c) Dual cycle			
55.	The principle of Joules cycle is ap	plied in:		
	(a) Petrol Engines	(d) Gas turbines		
	(b) Diesel Engines	(e) Compressors		
	(c) Refrigerators			
56.	Joule cycle consists of:			
	(a) two isobaric processes and two isothermal processes			
	(b) two isothermal processes and two adiabatic processes			
	(c) two constant pressure processes and two constant volume processes			
	(d) two adiabatic processes and to	wo isobaric processes		
	(e) four isothermal processes			

26. Key

1. (b)	15. (a)	29. (b)	43. (b)
2. (d)	16. (a)	30. (b)	44. (d)
3. (b)	17. (d)	31. (e)	45. (c)
4. (b)	18. (b)	32. (a)	46. (b)
5. (d)	19. (d)	33. (b)	47. (b)
6. (c)	20. (a)	34. (b)	48. (d)
7. (d)	21. (c)	35. (a)	49. (d)
8. (b)	22. (a)	36. (a)	50. (a)
9. (e)	23. (c)	37. (e)	51. (c)
10. (b)	24. (b)	38. (e)	52. (c)
11. (c)	25. (b)	39. (c)	53. (d)
12. (e)	26. (a)	40. (d)	54. (c)
13. (d)	27. (d)	41. (b)	55. (d)
14. (d)	28. (e)	42. (e)	56. (d)

27

Refrigeration and Air-conditioning

Choose the correct alternative:

1.	A sling psychrometer is used to me	easu	re:
	(a) volume	(c)	pressure
	(b) humidity	(d)	gas velocity.
2.	The type of control valve in a refrig the circuit discharge line, evaporate	/	nt circuit which may be connected to condenser, and suction line is:
	(a) a pilot-operated expansion val-	ve	
	(b) an externally equalized expans	sion	valve
	(c) a reverse cycle refrigerant valv	vе	
	(d) a hot gas refrigerant by-pass va	alve	
3.	Refrigerant enters the condenser	of a	mechanical refrigeration system as a
	(a) low pressure gas		
	(b) high pressure gas		
	(c) low pressure liquid		
	(d) high pressure liquid		
4.	During its passage through a simp the refrigerant used changes its sta		rect expansion refrigeration system,
	(a) once	(c)	three times
	(b) twice	(d)	four times

- **5.** When foodstuffs are kept in a refrigerator, it is essential that:
 - (a) the coldest foods are placed at the top of the cabinet
 - (b) the coldest foods are placed at the bottom of the cabinet
 - (c) space is left for air to circulate around the packages
 - (d) space is left for packages to expand and contract
- **6.** One of the main advantages of a serviceable hermetically-sealed type compressor over an open type is that:
 - (a) no shaft seal is required
 - (b) cylinder lubrication is easier
 - (c) any refrigerant can be used
 - (d) mechanical efficiency is greater
- **7.** A capillary tube is often used to control refrigerant flow and expansion in a domestic refrigerator system instead of an expansion valve because it is:
 - (a) simple and economical to manufacture
 - (b) less likely to become blocked
 - (c) able to control the flow more accurately
 - (d) easier to replace in the system
- **8.** Which is the most efficient of the following insulating materials?
 - (a) Corkboard

- (c) Mineral fiber sheet
- (b) Glass fiber sheet
- (d) Foamed urethane sheet
- **9.** In the construction of drinking water coolers, the water chilling circuit is normally:
 - (a) of the tube-in-tube type
 - (b) made with the refrigerant coiled wound outside a water tank
 - (c) made with the refrigerant coiled wound outside a water storage tank
 - (d) of the shell-and-tube type
- **10.** Hot-wall condensers, with the condensing tubing attached to the inside surface of the cabinet's outer shell, are most often used in:
 - (a) domestic refrigerators
 - (b) food freezers

- (c) drinking water coolers
- (d) domestic dehumidifiers
- **11.** When moisture is present in a refrigerant, it can lead to the formation of:
 - (a) hydrochloric acid
- (c) peroxide

(b) hydrogen

- (d) carbon dioxide
- 12. Many bubbles in the liquid line sight glass are a sign that the system is:
 - (a) properly charged
 - (b) contaminated with air
 - (c) overcharged
 - (d) undercharged
- **13.** The first action to be taken when a domestic air-conditioner has a large amount of its refrigerant charge is to:
 - (a) recharge the system
 - (b) test for presence of moisture in the system
 - (c) test for presence of acids in the system
 - (d) find and repair any leaks
- **14.** When installing a compressor type domestic refrigerator, it should be levelled carefully in order to:
 - (a) avoid spillage of the condensate
 - (b) maintain the correct oil levels
 - (c) reduce vibrations when switched on
 - (d) ensure correct flow of the refrigerant
- **15.** A refrigeration system is leak tested, and pressure tested over a period of one full day as a final precaution, and it is found to be entirely free of leaks. If the gauge is operating properly, the gauge pressure will vary if:
 - (a) the system contains moisture
 - (b) the refrigerant charge is increased
 - (c) there are marked changes in the surrounding temperatures
 - (d) the pressure gauge valve is closed

16.	The relief valve is a better safety device than the fusible plug because:
	(a) its action can be seen by a plant operator
	(b) it can be set to work at a lower pressure
	(c) it can be set to work at a higher pressure
	(d) if it operates, only part of the refrigerant charge is lost

- **17.** A dual purpose gauge may show refrigerant pressure on one scale and on the other scale:
 - (a) refrigerant temperature(b) latent heat(c) sensible heat(d) ambient temperature
- **18.** The boiling point of a refrigerant can be varied by altering the:
 - (a) superheat setting of the expansion valve
 - (b) pressure within the refrigeration system
 - (c) setting of the thermostat in the system
 - (d) moisture content of the refrigerant
- 19. Refrigerant leaves the condenser of a mechanical refrigeration system as a
 - (a) low pressure liquid
 - (b) high pressure liquid
 - (c) low pressure gas
 - (d) high pressure gas
- **20.** A sling psychrometer is used to read:
 - (a) dry bulb temperature
 - (b) wet bulb temperature
 - (c) wet and dry bulb temperatures
 - (d) dew point temperature
- **21.** A heat exchanger may be installed in a system between the:
 - (a) hot gas and the suction lines
 - (b) hot gas and the liquid lines
 - (c) suction and the liquid lines
 - (d) suction and the discharge lines

- **22.** The purpose of fitting a fan to a finned coil evaporator is to:
 - (a) increase the refrigerating capacity
 - (b) prolong the life of the refrigerant
 - (c) ease the load on the compressor on starting
 - (d) increase the frequency of the refrigerator cycle
- **23.** Finned evaporators are used in air-conditioning applications to:
 - (a) equalize air flow over the cooling coil surface
 - (b) prevent moisture carry-over
 - (c) extend the effective area of the cooling surface
 - (d) increase the dehumidifying capacity
- **24.** When empty cartons are stacked against the static type condenser at the back of the cabinet of a domestic refrigerator:
 - (a) the evaporator will become frosted too heavily
 - (b) the unit will cut out on the thermostat
 - (c) the condensing efficiency will fall and compressor will feel hot
 - (d) the unit will defrost and refreeze
- **25.** Two identical condenser coils, with the same internal and external temperatures are placed, one in still air and the other in the tank of water. The maximum refrigeration capacities are:
 - (a) greater for the coil in the air
 - (b) both the same
 - (c) greater for the coil in water
 - (d) dependent on the refrigerant used
- **26.** In a domestic, compressor-operated refrigerator the correct operation of the capillary tube depends upon:
 - (a) its internal dimensions
 - (b) the atmospheric pressure
 - (c) the refrigerant temperature
 - (d) the Relative Humidity (RH)

- **27.** The type of installation in which an automatic expansion valve is most suitable for use is a:
 - (a) small high-temperature cold room
 - (b) domestic refrigerator
 - (c) large air-conditioning installation
 - (d) two temperature cabinet with two evaporators
- **28.** The liquid line of refrigeration system may be insulated, to minimize:
 - (a) condensation
 - (b) heat loss
 - (c) heat gain
 - (d) heat transfer
- **29.** After a hermetic compressor has burned out, and been replaced, it is good practice to include in the system a large drier/strainer in the:
 - (a) liquid line
 - (b) suction line
 - (c) hot gas line
 - (d) discharge line
- **30.** If a refrigerant drier has been opened and recharged with silica gel, it should then be:
 - (a) dehydrated and sealed
 - (b) re-installed immediately
 - (c) sealed and kept in stock for three months
 - (d) re-used on high temperature circuits only
- **31.** The effect of using refrigerant-22 in a system is that the compressor lubricating oil charges is circulated:
 - (a) in the compressor sump only
 - (b) throughout the system at all times
 - (c) around the low temperature system only
 - (d) around the high temperature only

32. With a leak-free systomatical systematical systomatical systomatical systematical systemat	em, insulation of th	e suction line is carried	out to:
(a) prevent condens	ation		
(b) exclude heat from	n outside		
(c) separate adjacen	t suction and liquid	lline	
(d) avoid heat losses	to surrounding air		
33. When installing a do to avoid:	mestic refrigerator,	levels should be checked	ed carefully
(a) noise from unlub	oricated moving par	rts	
(b) noise resulting fr	om vibrations		
(c) noise resulting fr	om pipe touching t	the cabinet	
(d) liquid refrigerant	t draining into the o	compressor	
34. A plate type evaporation	tor is often used in	a:	
(a) domestic air-con-	ditioner (c) d	lomestic dehumidifier	
(b) drinking water co	ooler (d) t	wo-compartment refrig	gerator
35. The butter comparts	nent of a domestic	refrigerator is normally	located:
(a) at the top of the	cabinet (c) a	it a central height	
(b) at the bottom of	the cabinet (d) a	at the rear side or the do	oor
-1 0.7 1	2		

- **36.** The purpose of flushing out a refrigerant system with inert gas, after replacing a burnt out sealed unit motor, is to:
 - (a) dehydrate the system
 - (b) move the carbonized oil
 - (c) pressure test the system
 - (d) drive out air from the system
- **37.** When installing any new electrical plant it is necessary to check that:
 - (a) concrete foundations are available
 - (b) provision is made for extension
 - (c) overhead cranes are available
 - (d) mains voltage and frequency are correct

- **38.** The normal operation of the electric circuit of a refrigerator is best tested by:
 - (a) a clip-on Ammeter
- (c) a bulb type tester

(b) an Ohm meter

- (d) a Voltmeter
- **39.** When switched on, a domestic refrigerator compressor does not start. The first point which should be checked is that the:
 - (a) compressor motor is not burned out
 - (b) thermostat is not jammed in the open position
 - (c) compressor safety device is not opened by the overload
 - (d) power is available at the power point
- **40.** If a motor starting winding has burned out, the first action is to:
 - (a) replace the defective winding
 - (b) see if both the windings of the motor have been burnt out
 - (c) check whether motor turns freely off load
 - (d) isolate completely from the mains
- **41.** After replacing a blown mains fuse for a domestic air conditioner, and before running the unit continuously it is essential first to:
 - (a) switch off and then restart the unit
 - (b) check that the unit is free from noise
 - (c) check the air filter for cleanliness
 - (d) check the value of the current drawn from the mains while the equipment is running
- **42.** Once connected to the mains and switched on, a domestic air conditioner can be best tested for its correct performance by the use of:
 - (a) a Voltmeter
 - (b) an hermetic unit analyser
 - (c) a clip-on Ammeter
 - (d) an ordinary Ammeter

43.	An electric motor driving a centrifugal air fan is found to be running hot. The most likely cause is:
	(a) slack driving belts
	(b) fan starting load is too heavy
	(e) heavy deposits of dust or/and oil
	(d) bent fan blades
44.	A domestic air conditioner may suffer from low voltage, even though the correct supply voltage is present at the power point, if:
	(a) the power cable has over-sized conductors
	(b) the power cable has undersized conductors
45.	A capacitor start electric motor is better suited for refrigerant compressor use than a shaped pole motor of the same H.P. because:
	(a) it is able to withstand voltage fluctuations better
	(b) it can start against a heavier load
	(c) it does not run so hot
46.	An hermetically-sealed compressor does not start when switched on and its motor does not hum. This could be due to:
	(a) faulty starting capacitor
	(b) open-circuit motor windings
	(c) low supply voltage
	(d) a seized up compressor
47.	The number of electrical connections on the capacitor block for use with a capacitor start and run electric motor is:
	(a) 2 (c) 4
	(b) 3 (d) 5
48.	The most probable cause of failure of a motor safety device on the hermetically scaled compressor in a domestic air conditioner is:

(a) excessive current due to low mains voltage(b) too high a refrigeration duty at evaporator

(c) suction line pressure too low

- **49.** The contacts of a current-operated relay on a single phase capacitor-start compressor motor got stuck in the closed position. As a result the compressor
 - (a) will not start
 - (b) will start and run in reverse
 - (c) overload cut-out will operate
 - (d) motor winding will burn out
- **50.** When making a 90° bend with 12 mm outside diameter soft copper tubing, it is advisable to use a bending spring and a pipe bender to:
 - (a) avoid flattening of the tubing
 - (b) save effort:
 - (c) ensure a constant radius
 - (d) avoid hardening of the tubing
- **51.** When working with large diameter pipe work, flanged fittings are more often used than welded joints, because:
 - (a) good welding or brazing needs constant practice
 - (b) flanged fittings are less likely to leak
 - (c) flanged fittings are very cheap
 - (d) control valves and fittings with flanged joints are more easily removed and replaced
- **52.** Which of the following actions is the most important before any heat is applied when welding or brazing refrigerant lines to replace fittings?
 - (a) clean the tubing
 - (b) remove any insulation
 - (c) pump out all refrigerant
 - (d) put on welding mask

27. Key

1. (b)	14. (c)	27. (b)	40. (b)
2. (a)	15. (c)	28. (c)	41. (d)
3. (a)	16. (b)	29. (b)	42. (c)
4. (b)	17. (a)	30. (a)	43. (a)
5. (a)	18. (b)	31. (b)	44. (b)
6. (a)	19. (a)	32. (a)	45. (b)
7. (a)	20. (c)	33. (b)	46. (b)
8. (d)	21. (b)	34. (d)	47. (b)
9. (c)	22. (a)	35. (d)	48. (a)
10. (b)	23. (c)	36. (d)	49. (c)
11. (d)	24. (c)	37. (d)	50. (a)
12. (b)	25. (c)	38. (a)	51. (d)
13. (d)	26. (a)	39. (d)	52. (d)

AUTOMOBILE ENGINES

(a) Mechanical fuel pump

(b) Injector

Choose the correct alternative: 1. Petrol used in automobile engines is mainly composed of Carbon and (a) Nitrogen (d) Air (b) Oxygen (e) Water molecules (c) Hydrogen **2.** Spark ignition engines operate on (a) Auto cycle (d) Carnot cycle (b) Otto cycle (e) Rankine cycle (c) Diesel cycle **3.** Compression ignition engines operate on (a) Rankine cycle (d) Otto cycle (e) Diesel cycle (b) Carnot cycle (c) Auto cycle **4.** What is the device which supplies correct mixture of air and petrol to an I.C. engine?

(d) 1: 16 (e) 15: 1

	(e) Carburettor(d) Electrical fuel pump(e) Fuel injection pump	
5.	_	k ignition engine varies from
	(a) 1: 1 to 4: 1	(d) 20: 1 to 50: 1
	(b) 4: 1 to 8: 1	(e) 20: 1 to 120: 1
	(c) 10: 1 to 16: 1	
6.	The air-fuel ratio in a comp	pression ignition engine varies from:
	(a) 1: 1 to 10: 1	(d) 20: 1 to 120: 1
	(b) 10: 1 to 20: 1	(e) 20: 1 to 200: 1
	(c) 20: 1 to 60: 1	
7.	The maximum pressure of petrol engines varies from:	f air fuel mixture at the end of compression in
	(a) $6-10 \text{ kg/cm}^2$	(c) $30-100 \text{ kg/cm}^2$
	(b) 10 — 30 kg/cm^2	(d) $100-1000 \text{ kg/cm}^2$
8.	The maximum pressure of is about:	air at the end of compression in diesel engines
	(a) 10 kg/cm ²	(d) 300 kg/cm^2
	(b) 30 kg/cm ²	(e) 1000 kg/cm ²
	(c) 100 kg/cm ²	
9.	For an ordinary petrol eng	ine used in cars, the compression ratio is:
	(a) 1:1	(c) 16: 1 (e) 1: 7
	(b) 7: 1	(d) 160: 1
10.	The compression ratio gen	erally used in diesel engines is:
	(a) 7: 1	
	(b) 16: 1	
	(c) 1·7	

11.	With increase in compression ratio, thermal efficiency:			
	(a) decreases	(c)	becomes zero	
	(b) increases	(d)	do not vary at all	
12.	Injection of fuel in diesel e	engines is de	one at a pressure o	f about:
	(a) 10 kg/cm^2 — 20 kg/cm^2			
	(b) $50 \text{ kg/cm}^2 - 80 \text{ kg/cm}^2$			
	(c) 100 kg/cm^2 — 120 kg/c	m^2		
	(d) $150 - 200 \text{ kg/cm}^2$			
	(e) $1000 \text{ kg/cm}^2 - 2000 \text{ kg}$	/cm ²		
13.	is added as fuel petrol.	additive fo	r reducing the kno	cking tendency in
	(a) Metal activator	(d)	Tetra-ethyl lead	
	(b) Phosphorus compound	d (e)	Amino acid	
	(c) Antioxidant inhibitor			
14.	The ability of petrol to resi	st detonatio	on during combust	ion is given by:
	(a) Cetane number	(d)	Iso-octane number	er
	(b) Tripane number	(e)	Performance nun	nber
	(c) Octane number			
15.	In the case of a four cylin mance the firing order is:	der in-line	engine, for the be	est engine perfor-
	(a) 1234	(c) 1324	1 (6	e) 1432
	(b) 1342	(d) 1423	3	
16.	The best firing order for a	six cylinder	in-line engine is:	
	(a) 123456			
	(b) 234561			
	(c) 1 4 2 6 3 5			
	(d) 153246			
	(e) 142653			

17.	In multi-cylinder engines a particular sequence in the firing order is necessary:			
	 (a) to give good distribution of fuel to all the cylinders (b) to give better balance of the engine (c) to provide the best engine performance (d) to operate the ignition system smoothly 			
18.	As the number of cylinders to-weight ratio:	s in multi-c	ylinder engines i	increases the power-
	(a) remains the same(b) decreases		increases becomes zero	
19.	To connect piston to the co	onnecting r	od the	are used:
	(a) rod caps(b) cap bolts(c) small end bearings	(d)	big end bearing gudgeon pins	
20.	For each crankshaft revolution (a) one-half turn (b) one turn (c) two turns (d) four turns (e) as many turns as the number of the content of			
21.	The ratio between the spe shaft is:	ed of the c	amshaft and the	speed of the crank-
	(a) 1: 1(b) 1: 2	(c) 1: 4 (d) 1: 12		(e) 1: 14
22.	Fuel injection pumps in compression ignition engines are driven with the help of:			
	(a) crankshaft(b) fanbelt(c) flywheel		cam shaft propeller shaft	

23.	The clearance between the valve and tappet of an I.C. Engine is measure by using			
	(a) snap gauge (d) internal micrometer		
	(b) slip gauge ((e) vernier scale		
	(c) feeler gauge			
24.	. Vibration damper:			
	(a) reduces the speed of the flywheel			
	(b) drives the pulley			
	(c) controls the torsional vibrations			
	(d) dampens the engine speed			
	(e) increases the engine vibrations			
25.	5. Engine decoking refers to the operation of:			
	(a) applying carbon coating on valv	e ports		
	(b) adding fuel additives to ensure complete combustion of hydrocar			
	(c) preventing the formation of carbon deposits			
	(d) removing carbon deposits			
	(e) increasing the compression rational	o in the engine		
26.	26. A sooty deposit on the insulator around the center electrode in a sparmeans that the:(a) spark plug is running too cold			
	(b) spark plug is running too hot			
	(c) air-fuel mixture is lean			
	(d) air-fuel mixture is rich			
	(e) sealing gaskets in the spark plug are worn out			
27.	Engine misfiring is likely to result from:			
	(a) spark plug gap too narrow (d) vapor lock in fuel line		
	(b) spark plug gap too wide	(e) clogged exhaust		

(c) incorrect mixture

28.	Thick smoke	emitted by an	engine is a	sign of:
	I IIICK SIIIOKC	Cillica by all	CII SIII C IS U	DIGII OI.

- (a) burning of lubricating oil in the combustion chamber
- (b) defective brake system
- (c) very lean mixture of air and petrol
- (d) very rich mixture of air and petrol

29. Tuning up of an engine usually means:

- (a) checking the ignition timing for obtaining maximum performance
- (b) checking the carburettor for maximum engine performance
- (c) replacing the defective valves and defective piston rings
- (d) checking the spark plugs and replacing them if necessary
- (e) checking and adjusting all the different components of an engine for maximum performance
- **30.** The most frequent cause for engine overheating is:
 - (a) slipping of fan belt
 - (b) defective fuel pump
 - (c) weak battery
 - (d) use of improper exhaust pipe
- **31.** The device located in the exhaust system to reduce the exhaust noise is called the:
 - (a) exhaust valve

(c) tail pipe

(b) exhaust pipe

(d) muffler

- **32.** The Brake Horse Power (BHP) of an engine is given by the expression:
 - (a) $2\pi NT$
 - (b) $2\pi NT/450$
 - (c) $2\pi NT/1000$
 - (d) 2πNT/4500
 - (e) $2\pi NT/33000$

where N is the R.P.M. of crankshaft and T is the torque in kg.m.

33.		eated Horse Power (IF ession:	IP) for a single cy	dinder engine is given by the
	(a) P	PLAN/1000	(c) PLAN	1/9000
	(b) P	PLAN/4500	(d) PLAN	1/2
	where	e P is the indicated me	ean effective press	sure (kg/cm²)
		L is the length of the	stroke (m)	
		A is the area of cross	section of cylinde	$er(em^2)$
		N is the number of v	orking strokes/m	in T is the torque (kg. m)
34.	The l	Morse test on a multi-	cylinder auto-engi	ne gave the following results:
		BHP with all cylinde	rs working = 32	
		BHP with first cylind	ler cut out = 22	
		BHP with second cyl	inder cut out = 2	2
		BHP with third cylin	der cut out = 23	
		BHP with fourth cyli		
		IHP of the engine is		
	(a) 6		(c) 38	(e) 90
	(b) 3	2	(d) 58	
35.		ur stroke engines used of the engine fly		here is one working stroke for
	(a) e	each revolution		
	(b) e	very two revolutions		
	(c) e	every four revolutions		
	(d) e	very six revolutions.		
36.		enclosed by the incesents:	licator diagram	used in I.C. engine testing
		he work done by the e he heat absorbed by th	O	
		he heat rejected by the	O	
		he thermodynamic eff		ine
		he volume of the engir	•	
	(-/		. ,	

1. (c)	10. (b)	19. (e)	28. (d)
2. (b)	11. (b)	20. (a)	29. (e)
3. (e)	12. (d)	21. (b)	30. (b)
4. (c)	13. (d)	22. (d)	31. (d)
5. (c)	14. (c)	23. (e)	32. (d)
6. (d)	15. (b)	24. (c)	33. (b)
7. (a)	16. (c)	25. (d)	34. (c)
8. (b)	17. (c)	26. (a)	35. (b)
9. (b)	18. (c)	27. (b)	36. (a)

Automobile Electrical Equipment

Choose the correct alternative:

1.	The density of Sulphuric Acid (H ₂ SO4) in a fully charged lead acid auto-
	mobile battery is:
	(a) 0.125 gms/m^3

- (b) 1.000 gms/cm³
- $(c) 1.250 \ gms/cm^3$
- (d) 12.50 gms/cm³
- (e) same as that of the water added in topping-up operation
- **2.** A 12 Volt auto-battery of internal resistance 2.50 Ohms supplies power to a parallel connected bank of twenty 250 Ohms lamps. The voltage across any lamp is:

(d) 9

- (a) 12/20
- (b) 11 (e) 8
- (c) 10
- **3.** Capacitors used in automobile electrical system provide a means of:
 - (a) storing electrical charge
 - (b) increasing the resistance of circuit
 - (c) providing a power supply
 - (d) decreasing the resistance of a circuit

4.	In t	he case of new spark pl	ugs,	the gap is usually	
	(a)	0.01 mm	(c)	0.10 mm	(e) 1.00 mm
	(b)	0.06 mm	(d)	0.60 mm	
5.		en a spark is produced proximatelyV			age across the gap is
	(a)	6 — 8		(d) 12,000 — 16,00	00
	(b)	12 — 16		(e) 20,000 — 30,00	00
	(c)	1200 — 1600			
6.	Wit	h continuous usage of t	he s	park plug, the spark plu	ıg gap size:
	(a)	decreases		(c) remains the sar	me
	(b)	increases		(d) becomes zero	
7.	Ma	gneto in an automobile	elec	trical system is basically	y a:
	(a)	transformer		(d) a.c. generator	
	(b)	condenser		(e) magnetic circui	t
	(c)	d.c. generator			
8.	A se	eries wound D.C. moto	r wo	uld be most extensively	used for a:
	(a)	Drilling machine			
	(b)	Milling machine			
	(c)	Starter for an automob	ile		
		Planer			
	(e)	Lathe			
9.	The	e speed of an I.C. Engi ed:	ne is	s measured with the he	elp of an instrument
	(a)	Pyrometer			
	(b)	Speedometer			
	(c)	Viscometer			
		Dynamometer			
	(e)	Tachometer			

10.	A cold plug has got a:(a) medium duty cycle(b) shorter heat path(c) longer heat path	(d) shorter insulator length(e) longer insulator length
11.	A hot plug is generally used for:(a) Heavy duty engines(b) Hot operating conditions(c) Low speed engines	(d) Medium speed engines(e) High speed engines
	A hot plug has got a: (a) longer heat path (b) shorter heat path (c) longer insulator nose	(d) shorter insulator nose(e) heavy duty cyclewhich one of the following electrical
10.	devices stores electricity? (a) Transformer (b) Solenoid (c) Relay	(d) Condenser (e) Spark plug
	29.	Key
	1. (e) 6 2. (e) 7	(b) 11. (c) (c) 12. (a) (c) 13. (d)

9. (e)

5. (e) **10.** (b)

4. (d)

AUTOMOTIVE CHASSIS

1. It is preferable to mount the engine on the frame at

Choose the correct alternative:

(a) one or two points

(b) four wheel drive(c) six wheel drive

(d) front-engine-rear wheel drive(e) rear engine-rear wheel drive

(b) three points	(e) as many points as possible
(c) four points	
2. Clutch slip at the mating sur	rfaces is mainly due to:
(a) New linings	
(b) Dry friction surfaces	
(c) Improper pedal adjustm	nent
(d) Tight pressure springs	
3. Tractive effort in a passenge	er car is maximum in:
(a) First gear	(c) Third gear
(b) Second gear	(d) Top gear
4. In jeeps is genera	ally provided
(a) two wheel drive	

(d) six points

5.	Under normal circumstar steeper grade? (a) Car with the front-whee (b) Car with the rear-whee (c) It is difficult to tell	eel drive	car is capable	e of ascending the
6.	The passenger car steering	gears are u	ısually made	
	(a) reversible	(c)	semi-reversible	
	(b) non-reversible	(d)	irreversible	
7.	The steering ratio in the ca	se of mode	rn automobiles	varies between:
	(a) 1: 1 and 4: 1		12: 1 and 24: 1	
	(b) 4: 1 and 2: 1	, ,	24: 1 and 48: 1	
0		C.1	1 11	
8.	The maximum possible rota from straight ahead positio		steering knuckle	is up to
	(a) 5°	(c) 25°		(e) 45°
	(b) 15°	(d) 35°		(0) 10
•		,	.1 C . 1:	1 .1 1·. C
9.	When the rear slip angle is the steering is known as:	greater th	an the front slip	angle, the quality of
	(a) over steering	(d)	neutral steering	<u> </u>
	(b) under steering		zero steering	3
	(c) normal steering			
10.	The angle between the verknown as:	rtical line a	nd the center li	ne of the king pin is
	(a) toe angle	(d)	camber angle	
	(b) king pin angle		pressure angle	
	(c) caster angle	,	1 0	
11.	Tilting of the front wheels	away from	the vertical is ca	lled:
	(a) caster	(3)	toe-out	
	(b) camber	` '	king-pin inclina	ation
	(c) toe-in	,	01	

12.	The inward tilt of the king	-pin is called:		
	(a) caster angle	(d) toe-in a	angle	
	(b) camber angle	(e) toe-out	angle	
	(c) king pin angle			
13.	Positive Caster on cars wil	l cause the car to:		
	(a) Roll-in on turns	(c) Lean-ir	n on turns	
	(b) Roll-out on turns	(d) Bank-ir	n on turns	
14.	Positive caster tends to ma	ake the front wheels	:	
	(a) to skid	(c) to slide	(e) to toe-out	
	(b) to roll out	(d) to toe-in		
15.	If the front wheels have no	egative caster, the ca	ar would tend to:	
	(a) Lean-in on turns	(c) Roll-in	on turns	
	(b) Bank out on turns	(d) Roll-ou	it on turns	
16.	The differential gear ensubetween the two wheels w			
	(a) equally distributed			
	(b) unequally distributed			
	(c) randomly distributed			
17.	The pressure of air insid	e the pneumatic ti	res in modern automobil	es
	varies up to: (a) 10 atmosphere	(c) 40 atmo	ospheres	
	(b) 20 atmospheres	(d) 1000 at	•	
	•		•	
18.	The most usual cause of ex	cessive tire wear is:		
	(a) less air pressure inside	the tire		
	(b) excessive air pressure			
	(c) excessive speed of veh			
	(d) improper braking syste	em used		

19. Girling brake system is basical	lу	7:
-------------------------------------	----	----

- (a) a mechanical type of brake
- (b) an electrical type of brake
- (c) an electro-mechanical type of brake
- (d) a vacuum type of brake
- (e) an air brake

20. The brake efficiency is 100 percent when:

- (a) all the brakes are in excellent condition
- (b) the driver brings the vehicle to a dead stop in 1 second
- (c) the stopping distance is 10 meters at a speed of 10 km/hr.
- (d) the rate of deceleration is 1m/sec^2
- (e) the rate of deceleration is 10 m/sec²
- **21.** Automobile propeller shafts are provided with to take care of the difference in the driving angle as rear axle moves up and down due to irregularities in the road surface.
 - (a) Pin and cotter joints
 - (b) Butt joints
 - (c) Pivot joints
 - (d) Universal joints
 - (e) Clutch joints
- **22.** The primary purpose of the clutch in automobiles is to:
 - (a) act like a brake in case of emergency
 - (b) give high speed to the road wheel
 - (c) take up the drive smoothly
 - (d) decelerate the engine

1. (b)

7. (e)

13. (b)

19. (a)

2. (c) **3.** (a)

8. (d) **9.** (a)

14. (d) **15.** (a)

20. (e) **21.** (d)

4. (b) **5.** (b)

10. (c) 11. (b)

16. (a) **17.** (a)

22. (c)

6. (c)

12. (c)

18. (a)

Supervisory Development

Choose the correct alternative:

good job is to:

(b) praise his work

(a) tell him to take it easy

1.	Of the following behavior characteristics of a supervisor, the one that is most likely to lower the morale of the men he supervises is:		
	(a) enthusiasm	(c) punctuality	
	(b) favouritism	(d) thoroughness	
2.	The ability of an employee to tak job is known as:	e the first step and follow through on a	
	(a) manners	(c) initiative	
	(b) laziness	(d) individuality	
3.	The best method of getting an ecapacity to produce more work is	employee who is not working up to his to:	
	(a) have another employee critici	ze his production	
	(b) privately criticize his producti	on but encourage him to produce more	
	(c) criticize his production before his associates		
	(d) criticize his production and the	reaten to dismiss him	
4.	The best thing for a supervisor to	do when a subordinate has done a very	

- (c) reduce his work load
- (d) say nothing because he may feel proud
- **5.** If a design staff cannot possibly complete a drawing on time, then the best action for him to take is:
 - (a) work during lunch time
- (c) ask an employee to assist him

(b) work overtime

- (d) notify the supervisor
- 6. The best way to correct a mistake made by your subordinate is to:
 - (a) correct the mistake yourself and privately explain the correction to subordinate
 - (b) correct the mistake yourself and say nothing to subordinate
 - (c) give it to another subordinate to correct
 - (d) insult him and then have him correct the mistake
- **7.** The best method of allocating the job to the technicians would be to allocate them according to the technician's:
 - (a) seniority
 - (b) desire to do the work
 - (c) ability to do the work
 - (d) attitude towards other employees
- **8.** The most important factor that an individual must fulfill in order to ensure his own safety in a plant or on a construction job is to:
 - (a) work slowly
 - (b) be familiar with the specifications
 - (c) wear clothing to suit climatic conditions
 - (d) be alert
- **9.** Two subordinates under your supervision dislike each other to the extent that production is cut down. Your best action as a supervisor is to:
 - (a) ignore the matter and hope for the best
 - (b) transfer the more aggressive man
 - (c) cut down on the work-load
 - (d) talk to them together about the matter

- **10.** A design staff doing drawing work complains that the lighting at his desk is poor. Of the following, the best action to take is to:
 - (a) exchange seats with another staff
 - (b) tell him to have his eyes checked
 - (c) do nothing about it
 - (d) check the light intensity with a meter, and improve the lighting, if necessary
- **11.** A subordinate who continuously by-passes his immediate supervisor for technical information should be:
 - (a) reprimanded by his immediate supervisor
 - (b) ignored by his immediate supervisor
 - (c) given more difficult work to do
 - (d) given less difficult work to do
- 12. Of the following, the best way to handle an over talkative subordinate is to:
 - (a) have your superior talk to him about it
 - (b) have a subordinate talk to him about it
 - (c) talk to him about it in a group conference
 - (d) talk to him about it in private
- **13.** A supervisor from another shop asks you to assist him on a job which would require a full day of your time. Of the following, the best immediate action for you to take is to:
 - (a) refuse to assist him
 - (b) ask for compensation before doing it
 - (c) assist him promptly
 - (d) notify his Department head.
- **14.** Of the following, the best way to develop a subordinate's potential is to:
 - (a) give him a fair chance to learn by doing
 - (b) give him more than his share of work
 - (c) criticize only his work
 - (d) urge him to do his work rapidly

15.	For best execution of work, the person's:	work should be assigned according to a		
	(a) attitude towards the work	(c) salary		
	(b) ability to do the work	(d) seniority		
16.	One of the following characterist while explaining a job to a subord	ics which a supervisor should <i>not</i> display linate is:		
	(a) enthusiasm	(c) self-pity		
	(b) confidence	(d) determination		
17.	When a worker feels he has been satisfied with general working co	unfairly treated, or handicapped or is dis- nditions, he is likely to submit a:		
	(a) suggestion	(c) complaint		
	(b) argument	(d) grievance		
18.	Complicated instructions should	not be written:		
	(a) accurately	(c) factually		
	(b) clearly	(d) verbosely		
19.	The purpose of "earthing" in elec-	etrical devices and equipment is:		
	(a) to eliminate interference from adjacent electrical equipment			
	(b) to complete the necessary ele	ectrical circuit		
	(c) to secure the mains cable t apparatus or equipment	o the chassis (metal framework) of the		
	(d) to provide a means of making a fault occurs	g the apparatus or equipment safe in case		
20.	The following component (s) is/ar	re required to initiate and to sustain a fire:		
	(a) a source of heat			
	(b) a source of any combustible a	material		
	(c) a supply of Oxygen or air			
	(d) all the above components			

21.	Which of the following can minimize the occurrence of accidents factories?			
	 (a) Proper and thorough training schemes (b) A proper attitude towards Safety, Health, and Welfare (c) A strict adherence to Safety rules and procedures (d) Wearing of the appropriate safety clothing (e) All the above factors 			
22.		is your mental ponse to anxiety-producing eve		motional, physical, and behavioral or situations.
	(a)	Technology	(d)	Information
	(b)	Stress	(e)	Sensitivity
	(c)	Environment		
23.		is the science add	dres	ssing the compatibility of people and
	(a)	Ergonomics		
	(b) CNC programming(c) HRD (Human Resource Development)			
	(d)	Robotics		
24.	div		and	dependent on the strength of an in- the likelihood that a specific type of tof the individual's goals.
	(a)	Differentiation model of moti	vatio	ion
	(b)	Needs model of motivation		
	(c)	Expectancy model of motivati	on	
	(d)	All the above		
25.		e theory of exp hin a group.	lain	as the forces and behavior that occur
	(a)	Information systems	(c)	Change
(b) Barriers (d) Group dynamics				Group dynamics

(d) Good and bad(e) All the above

staff is:

(a) True(b) False

26. Two facets in any process of change are:

(a) Technological and social(b) Behavioral and psychological(c) Familiar and unfamiliar

	(a) Fail safe(b) Soft Skills(c) Value added(d) All the above
28.	Machine-paced work does not cause stress among the workers.
	(a) True
	(b) False
29.	Behavior differences between individuals are produced by physical differences, mental capabilities, life experiences, culture, and perception of a situation.
	(a) True
	(b) False
30.	According to the needs model of motivation, money remains important only to the extent that it contributes to the fulfillment of social or ego needs.
	(a) True
	(b) False
31.	If half the potential of human resources could be used, the productivity increase would exceed that possible from technology.

27. The term used to justify automated systems for professional or management

- 32. The highest need in the needs hierarchy is the need for self-fulfillment.(a) True
 - (b) False
- **33.** The feasibility study implies the practicability of a proposed project and involves an analysis of the total requirements for a evaluation of a proposed solution.
 - (a) Operator
 - (b) Economic
 - (c) Technical
 - (d) Environment
 - (e) All the above
- **34.** A feasibility study can result in:
 - (a) A recommendation to do the system analysis
 - (b) Management asking for additional information
 - (c) The project's being dropped or shelved
 - (d) All the above

1. (b)	10. (d)	19. (d)	28. (b)
2. (c)	11. (a)	20. (d)	29. (a)
3. (b)	12. (d)	21. (e)	30. (a)
4. (b)	13. (c)	22. (b)	31. (a)
5. (d)	14. (a)	23. (a)	32. (a)
6. (a)	15. (b)	24. (c)	33. (e)
7. (c)	16. (c)	25. (d)	34. (d)
8. (d)	17. (d)	26. (a)	
9. (d)	18. (d)	27. (c)	

Work Study and Industrial Engineering

Choose the correct alternative:

- 1. It is generally recognized that the "Father of Scientific Management" is:
 - (a) Frank Gilbreth
 - (b) Lilian Gilbreth
 - (c) F.W. Taylor (Frederick Winslow Taylor)
 - (d) Peter F. Drucker
- **2.** The Scientific study of the relationship between man and his working environment is known as:
 - (a) Industrial Psychology
 - (b) Ergonomics
 - (c) Industrial Engineering
 - (d) Work study
 - (e) Industrial Management
- **3.** By which *one* of the following methods, productivity of an enterprise can be increased?
 - (a) by buying additional equipment
 - (b) by working for an additional shift
 - (c) by better utilization of existing plant and equipment
 - (d) by increasing the sales price of the products

(a) Two handed process chart(b) Outline Process chart(c) Fiow Process chart

(d) SIMO chart

4.	In Outline Process Chart, the following symbols are used:		
	(a) O, [], and \rightarrow	(d) O, \rightarrow and ∇	
	(b) O, []	(e) D, O, [], and ∇	
	(c) $[\], \nabla, \text{ and } \rightarrow$		
5.	In the construction of a flow proce	ess chart the following symbols are used:	
	(a) O, [], and \rightarrow	(d) \rightarrow , D, O, ∇ and []	
	(b) \rightarrow , D, and []	(e) X, D, O, \rightarrow , and []	
	(c) \rightarrow , D and O		
6.	In the construction of two hande are used:	ed process chart, the following symbols	
	(a) O, \rightarrow , D, and []	(c) O, [], and \rightarrow	
	(b) \rightarrow , [], and ∇	(d) O, \rightarrow , D , and ∇	
	(O stands for Operation, \rightarrow stands for Inspection, and ∇ stands	s for Transport, D stands for Delay, [] s for Storage)	
7.	In Time and Motion study, the fu	indamental motions of human body are	
	(a) Therbligs	(d) Sequence of operations	
	(b) M.T.M. units	(e) "B" units	
	(c) Sequence of steps		
8.	The "THERBLIGS" have been fin	est introduced by:	
	(a) Frank Gilbreth	(d) L.H.C. Tippet	
	(b) F.W.Taylor	(e) L.H. Gantt	
	(c) SIMO		
9.	"Therbligs" are extensively used in	the construction of:	

10.	 (a) F.W. Taylor (b) F.B. Gilbreth and L.M. Gilbreth (c) Charles E. Bedaux (d) L.H. Gantt 		
11.	Methods Time Measurement (M.	T.M.) was first developed by:	
	(a) L.H. Gantt(b) H.B. Maynard	(c) L.H.C. Tippet(d) Gilbreth	
12.	Work Sampling (or Activity Samment was first introduced by:	pling) as a technique of work measure-	
	(a) Gilbreth	(d) Anne G. Shaw	
	(b) L.H. Gantt	(e) H.B. Maynard	
	(c) L.H.C. Tippet		
13.	Which one of the following is <i>not</i>	an Incentive Scheme?	
	(a) Monthly Salary		
	(b) Halsey 50—50 Plan(c) 100% Bonus Plan		
	(c) 100% Bonus Plan (d) Straight Piece-Work with Guaranteed Minimum Base		
	(e) Rowan Premium Plan		
14.	Greater flexibility in plant layout	s achieved in the case of	
	(a) Layout by fixed position	(c) Product Layout	
	(b) Process Layout	(d) Group Layout	
15.	The important objective of using facturing concerns is:	materials handling equipment in manu-	
	(a) to increase the cost of the pro	duct	
	(b) to improve the operators' safe	•	
	(c) to improve the cleanliness of	-	
	(d) to improve the overall produc	cuvity of the concern	

16.	Conveyors as materials handling equipment are extensively used in the case of: $ \\$			
	(a)	Process Layout	(c)	Layout by fixed position
	(b)	Product Layout		Group Layout
17.	The	e concept of "ABC" analysis is a	appli	ied mostly in:
	(a)	Plant Layout and Materials H	andl	ing
	(b)	Ergonomics		
	(c)	Methods Time Measurement		
	(d)	Inventory Control		
	(e)	Process Planning		
18.	3. A batch of 500 components is produced on a capstan lathe. The piece work rate/piece is 20 Paise, and the direct material cost/piece is 40 Paise. Overheads are 500% of direct labor cost. What is the total cost of the entire batch of the components?			
	(a)	Rs. 100/-	(d)	Rs. 800/-
	(b)	Rs. 200/-	(e)	Rs. 1600/-
	(c)	Rs. 500/-		
19.	The	e method often used to keep a	reco	rd of the progress of a Project is a
	(a)	Bar Chart	(d)	Mollier Chart
	(b)	P-chart	(e)	Polar chart
	(c)	PERT chart		
20.	The	e most important aspect in a go	$od \epsilon$	engineering report is:
	(a)	its shortness	(c)	its accuracy
	(b)	its promptness	(d)	its good grammar
21.	Wh	ich <i>one</i> of the following indicat	tes a	n increase in productivity?
	(a)	increased output as a result of	was	te reduction
	(b)	increased output as a result of	wor	king for an additional shift
	(c)	increased production owing to	ado	lition of machines and equipment

	(a) 1.0 minute	(d) 0.001 minute
	(b) 0.1 minute	(e) 0.0001 minute
	(c) 0.01 minute	
23.	Job evaluation is:	
	(a) Same as Merit Rating	
	(b) Evaluating the worth of the p	erson who is holding the job.
	(c) A system for determining the an organization.	worth, in monetary terms, of jobs within
24.	Determining and comparing the to the individuals performing the	content of particular jobs without regard jobs is the function of:
	(a) Job evaluation	(c) Incentive schemes
	(b) Merit Rating	(d) Method study
25.	Work measurement is determining	og.
	vvoir measurement is determini	·8·
	(a) the basis for introducing wag	Ŭ
		e incentive plan
	(a) the basis for introducing wag	e incentive plan
	(a) the basis for introducing wag(b) the employee performance st	e incentive plan andards
	(a) the basis for introducing wag(b) the employee performance st(c) the costs	e incentive plan andards
26.	(a) the basis for introducing wag(b) the employee performance st(c) the costs(d) the production schedules and(e) all the above	e incentive plan andards
26.	 (a) the basis for introducing wag (b) the employee performance st (c) the costs (d) the production schedules and (e) all the above The most traditional and most oft (a) the work sampling technique 	e incentive plan andards I standards
26.	 (a) the basis for introducing wag (b) the employee performance st (c) the costs (d) the production schedules and (e) all the above The most traditional and most oft (a) the work sampling technique (b) the stop-watch time study 	e incentive plan andards I standards en used work measurement technique is:
26.	 (a) the basis for introducing wag. (b) the employee performance st. (c) the costs. (d) the production schedules and e. (e) all the above. The most traditional and most oft. (a) the work sampling technique. (b) the stop-watch time study. (c) the Predetermined Motion T. 	e incentive plan andards I standards en used work measurement technique is: ime System (PMTS)
26.	 (a) the basis for introducing wag (b) the employee performance st (c) the costs (d) the production schedules and (e) all the above The most traditional and most oft (a) the work sampling technique (b) the stop-watch time study 	e incentive plan andards I standards en used work measurement technique is: ime System (PMTS)

27. The work of a lathe machine operator producing a large number of compo-

nents/day can be timed accurately by using:

(b) the stop-watch time study method

(a) the work sampling method

22. In a decimal minute stop watch the minimum reading is:

- (c) the P.M.T. system
- (d) the analytical estimating method
- **28.** Work Sampling Technique is based on the application of statistical sampling principles to work Measurement. This technique:
 - (a) Utilizes observations made at regular intervals of time
 - (b) Utilizes observations made at random intervals of time
 - (c) Utilizes observations made at equal intervals of time
- **29.** Work sampling technique (one of the work measurement techniques) can be used most effectively:
 - (a) for measuring long cycle operations
 - (b) for measuring short-cycle operations
 - (c) for situations involving a series of short, complex operations
- **30.** Which *one* of the following techniques is most suitable when standards are needed by an office manager who does not have the time to measure each individual's work?
 - (a) Work sampling
 - (b) Time study using a stop watch
 - (c) Analytical estimating
 - (d) Methods-Time Measurement (MTM)
- **31.** Under the technique, tables of standard unit times for various body motions are used to arrive at the time standards for a given operation.
 - (a) Analytical Estimating
 - (b) PMT (Pre-determined Motion Times)
 - (c) Work sampling
 - (d) stop watch time study
- **32.** The most scientific of all the work measurement techniques is:
 - (a) the stop-watch Time Study
 - (b) the Work-Sampling technique

(d) the Analytical Estimating **33.** Which *one* of the following work measurement techniques is most suitable when a new assembly process is being introduced: (a) Analytical Estimation (d) Activity sampling (b) PMT system (e) Work sampling (c) Time study using a stopwatch **34.** is perhaps the only way to set time standards in advance in new work situations not tried before. (a) The PMT method (c) The work sampling technique (b) The Stopwatch study (d) Analytical estimation **35.** The basic objective of introducing wage incentive systems and wage incentive plans is: (a) to reduce the employee's actual earnings (b) to increase the unit cost of the item produced (c) to increase the worker effectiveness and to reduce the unit labour cost

(c) the PMT (Predetermined Motion Times) technique

- **36.** In "Taylor Differential Piece Rate System":
 - (a) one piece rate is established for each job
 - (b) two different piece rates are established for each job
 - (c) three different piece rates are established for each job
 - (d) No piece rates are established for the jobs
- **37.** The Merrick Multiple wage plan is a wage incentive system very similar to the Taylor Differential Piece Rate incentive system. In Merrick Multiple wage plan:
 - (a) no piece rates are established for the jobs
 - (b) three different piece rates are established for each job
 - (c) two different piece rates are established for each job
 - (d) only one fixed piece rate is established for a job

38.	The time required to complete a task is established and a bonus is paid to the worker for every hour he saves from the established time required. This type of incentive plan is known as:		
	(a) Rowan Plan		
	(b) Bedaux Plan		
	(c) Taylor Differential Piece rate	syst	em
	(d) Halsey Premium plan		
	(e) Day work plan		
39.	1 1		is established and a bonus is paid to me saved. This type of incentive plan
	(a) Day work plan	(d)	Bedaux Plan
	(b) Halsey Premium Plan	(e)	Rowan Plan
	(c) Taylor plan		
40.	Which one of the following repres	sents	a group incentive plan?
	(a) Scanlon Plan		
	(b) Rowan Plan		
	(c) Bedaux Plan		
	(d) Taylor Differential Piece Rate system		
	(e) Halsey Premium Plan		
41.	Which one of the following repres	sents	a group incentive plan?
	(a) Halsey Premium Plan	(d)	Rowan Plan
	(b) Bedaux plan	(e)	Taylor Plan
	(c) Lincoln Plan		•
42.	In Lincoln plan (one type of group incentive plan), the amount of the profit which an employee receives, in addition to the guaranteed basic pay/wages, is based on:		
	(a) a Standard rating system	(c)	a job evaluation system
	(b) a Merit rating system	(d)	his individual performance

1. (c)	12. (c)	23. (c)	34. (a)
2. (b)	13. (a)	24. (a)	35. (c)
3. (c)	14. (b)	25. (e)	36. (b)
4. (b)	15. (d)	26. (b)	37. (b)
5. (d)	16. (b)	27. (b)	38. (d)
6. (d)	17. (d)	28. (b)	39. (e)
7. (a)	18. (d)	29. (a)	40. (a)
8. (a)	19. (a)	30. (a)	41. (c)
9. (d)	20. (c)	31. (b)	42. (b)
10. (c)	21. (a)	32. (e)	
11. (b)	22. (c)	33. (b)	

33

CAD/CAM/CIM (COMPUTER AIDED DESIGN, COMPUTER AIDED MANUFACTURING, AND COMPUTER INTEGRATED MANUFACTURING)

- **1.** The function(s) of CAD is (are):
 - (a) geometric modeling
- (c) documentation

(b) drafting

- (d) all of the above
- **2.** The function(s) of CAM is (are):
 - (a) numerical control
 - (b) robotics use and their programming
 - (c) process planning
 - (d) all of the above
- **3.** Robot is basically a(n):
 - (a) machining device
 - (b) inspection device
 - (c) material handling device
 - (d) machine tool
- **4.** Group technology brings together and organizes:
 - (a) common parts, problems, and tasks
 - (b) automation and tool production
 - (c) parts and simulation analysis

5.	Flexible manufacture (a) quick and inext (b) tool design and (c) automated des	pensive produc l tool productio	t changes	
6.	The benefit(s) of C (a) Shorter lead tit (b) Minimum tran (c) Improved design (d) All the above	me scription error		
7.				of parts, machines or pro- l productivity of the manu-
8.	in the operations,	control, and ma ect or indirect	anagement of	e of computer technology the manufacturing facility h the physical and human
	(a) CAD		(c) CAI	
	(b) CAM		(d) CAPP	
9.	ration and generat operations and ma	ion of route sh	eets. (Route	are involved in the prepa- sheets list the sequence of part or a component.)
	(a) CAD	(c) CA	ΑI	(e) CAD/CAM
	(b) CAM	(d) CA	APP	
10.				uses computers to assist in sis, validation, or optimiza-
	(a) CAD	(c) CA	AM	(e) CIM
	(b) CAPP	(d) CA	AD/CAM	

11.	11. Cutting speeds and feed rates are selected on the basi	s of the:				
	(a) Type of machining operation					
	(b) Machine tool and cutting tool used					
	(c) Work material and operating parameters					
	(d) All the above					
12.	CIM (Computer Integrated Manufacturing) involves:					
	(a) All the engineering functions of CAD/CAM					
	(b) All the business functions such as marketing and o	customer support				
	(c) Design, manufacturing planing, and manufacturing	ng				
	(d) All the above					
13.	refers to production management techniques for collecting data from factory operations and using the data to help in monitoring and control of production and inventory in the factory.					
	(a) Process control					
	(b) Shop floor control					
	(c) Manufacturing control					
	(d) Items (b) and (c) above					
14.	14effectively uses the computer technology management and control of the manufacturing function					
	(a) CAE (c) CAM					
	(b) CAD (d) CAPP					
15.	15. CAD/CAM involves the use of digital computers to functions in:	accomplish certain				
	(a) Product Design (c) Production/Ma	ınufacturing				
	(b) Process Planning (d) All the above					
16.	16involves interrelated operations, begin creation and ending with product despatching.	ning with product				
	(a) Manufacturing engineering (c) CAD/CAM					
	(b) Production planning (d) CIM					

17.	V	vill provide the technological base for the computer-inte-		
	grated factory of the future.			
	(a) CAD	(c) CAPP		
	(b) CAM	(d) CAD/CAM		
18.	p	repares a listing of the operation sequence required to pro-		
	cess a particula	r product or component.		
	(a) CAD	(c) CAD/CAM		
	(b) CAPP	(d) CIM		
19.	duction cycle.	rovide(s) computer assistance to all functions in the pro-		
	(a) CAD	(c) CIM		
	(b) CAM	(d) All the above		
		(4)		
20.	involves the use of computer systems to plan, manage ar control the operations of a manufacturing/production plant through eith direct or indirect computer interface with the plant's resources.			
	(a) CAD	(c) CAPP		
	(b) CAM	(d) CAI		
21.	Computer proc	ess control involves:		
	(a) Direct com	puter interface with the manufacturing process		
		the capabilities of the manufacturing process		
	O	of the manufacturing process		
	(d) All the above	⁄e		
22.		version of raw materials and shapes into end products of afiguration, and performance specifications is accomplished chnology.		
	(a) Computer			
	(b) Engineerin	g		
	(c) Industrial			
	(d) Production			

23.	Raw factory data is converted into real value for management after the have been:		
	(a) Examined	(d) Classified	
	(b) Analyzed(c) Compared	(e) All the above	
24.	Product designs are documented and preserved by means of:		
	(a) Component drawings	(c) Bill of materials	
	(b) Specifications	(d) All the above	
25.	A major factor in the use of microfor communication among the var	computers in control systems is the need rious parts of the system.	
	(a) True		
	(b) False		
26.	A Flexible Manufacturing System (FMS) consists of a group of processing work stations (usually CNC machines) connected by automated part handling systems.		
	(a) True		
	(b) False		
27.	Engineering department is the pr floor/shop floor is the principal us	incipal user of CAD, whereas the factory er of CAM.	
	(a) True		
	(b) False		
28.	In CNC Machine, the computer manages the various processing of	serves as the control mechanism and perations.	
	(a) True		
	(b) False		
29.	The translation phase of product manufacturing engineering depart	manufacturing is the responsibility of the tment.	
	(a) True		
	(b) False		

will be better achieved by top-down design of an hierarchical of chitecture. (a) True (b) False 31. The sequence of events that take place from the beginning until the product is dispatched is often referred to as: (a) A production cycle (b) A production planning and control cycle (c) Flow cycle (d) Product cycle 32 is a system in which the computer develops process a part that are based on information stored in a data base. (a) CAPP (c) MIS (b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different wor (a) CNC Machines (b) Work stations (c) Robots (d) All the above						
(b) False 31. The sequence of events that take place from the beginning untithe product is dispatched is often referred to as	W	Successful implementation of the FOF (Factories Of the Future) concerwill be better achieved by top-down design of an hierarchical control a chitecture.				
the product is dispatched is often referred to as						
 (b) A production planning and control cycle (c) Flow cycle (d) Product cycle 32 is a system in which the computer develops process a part that are based on information stored in a data base. (a) CAPP (c) MIS (b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different wor (a) CNC Machines (c) Robots (b) Work stations (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase prates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between of and increase production rates 	1. The sequence of events that take place from the beginning until the the product is dispatched is often referred to as:					
(c) Flow cycle (d) Product cycle 32 is a system in which the computer develops process a part that are based on information stored in a data base. (a) CAPP (c) MIS (b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different work (a) CNC Machines (c) Robots (b) Work stations (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase prates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations (d) Reduce labour cost, minimize distances moved between operations	(a	on cycle				
(d) Product cycle 32 is a system in which the computer develops process a part that are based on information stored in a data base. (a) CAPP (c) MIS (b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different wor (a) CNC Machines (c) Robots (b) Work stations (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase prates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations (d) Reduce labour cost, minimize distances moved between operations	(l:	on planning and control cycle				
is a system in which the computer develops process a part that are based on information stored in a data base. (a) CAPP (b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different work (a) CNC Machines (b) Work stations (c) Robots (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase parts (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations (d) Reduce labour cost, minimize distances moved between operations	(c					
a part that are based on information stored in a data base. (a) CAPP (c) MIS (b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different wor (a) CNC Machines (c) Robots (b) Work stations (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase prates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations (d) Reduce labour cost, minimize distances moved between operations	(0	rcle				
(b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different wor (a) CNC Machines (b) Work stations (c) Robots (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase parates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations (d) Reduce labour cost, minimize distances moved between operations		a system in which the computer develops process plans for based on information stored in a data base.				
(b) FMS (d) FMC 33. An automated flow line consists of several linked to work-handling devices that transfer parts between different wor (a) CNC Machines (b) Work stations (c) Robots (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase parates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations (d) Reduce labour cost, minimize distances moved between operations	(a	(e) MIS				
work-handling devices that transfer parts between different wor (a) CNC Machines (b) Work stations (c) Robots (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase parties (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations and increase production rates	(ł	(d) FMC				
 (b) Work stations (d) All the above 34. The objective(s) of using the flow line automation is(are) (a) Reduce labor cost, integration of operations, and increase prates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations and increase production rates 						
 (a) Reduce labor cost, integration of operations, and increase prates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations 	(a	hines (c) Robots				
 (a) Reduce labor cost, integration of operations, and increase prates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations 	(ł	ons (d) All the above				
rates (b) Minimize distance moved between operations, integration tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between operations	. T	s) of using the flow line automation is(are)				
 tions, and reduce work in progress (c) Specialization of operations, integration of operations, and distances moved between operations (d) Reduce labour cost, minimize distances moved between or and increase production rates 	(a	oor cost, integration of operations, and increase production				
distances moved between operations (d) Reduce labour cost, minimize distances moved between of and increase production rates	(ł	1 0				
and increase production rates	(c					
(e) all the above	(0					
(c) an the above	$(\epsilon$	ve				

35.	The primary technique to create interest in CIM (Computer Integrated
	Manufacturing) amongst all the staff in the company is to get in-
	volved.
	(a) CEO (Chief Evecutive Officer) of the Company

- (a) CEO (Chief Executive Officer) of the Company.
- (b) Management Teams
- (c) Employees
- (d) All of the above
- **36.** CIM implementation team leader should have the following quality/ qualities:
 - (a) Hard working, respected by all team members, knows everything about CIM, and good decision maker
 - (b) Good leadership skills, respected by all team members, good at generating ideas, and ability to communicate well
 - (c) Highly placed in the organization, good leadership skills, good understanding of systems, and procedures and respected by all team members
 - (d) All the above
- **37.** Area (s) of concern in the implementation of CIM at the enterprise level is (are):
 - (a) Motivation of the employees
 - (b) Know-how skills
 - (c) Necessary tools and good organization structure
 - (d) All the above
- **38.** An important "early" strategy in the CIM solutions process is the establishment of an organization structure that reflects the three levels of management (i.e. top, middle, and lower levels)
 - (a) True
 - (b) False
- **39.** The justification of CIM projects is always a major stumbling block in implementing an effective CIM strategic plan.
 - (a) True
 - (b) False

- **40.** Common justification factors in implementing a CIM strategy are:
 - (a) Improved system throughput, advancemnt of technology, and improved productivity
 - (b) A reduction in the manufacturing cycle, reduced overhead expenses, and improved product quality
 - (c) Competitively priced products and improved product quality
 - (d) All the above
- **41.** The framework for a CIM proposal and the elements of the proposal will vary from enterprise to enterprise.
 - (a) True
 - (b) False
- **42.** Poor prior planing for CIM is one of the major factors for unsuccessful implementation of the system in the firm.
 - (a) True
 - (b) False
- **43.** The management team is a decision-making team with representation form each of the involved departments that are most likely to be affected by the implementation of a CIM strategy.
 - (a) True
 - (b) False
- **44.** Constraint(s) that may limit the scope of a CIM development project may be:
 - (a) Financial
 - (b) Legal
 - (c) Human resources
 - (d) Economic
 - (e) All the above

33. **Key**

1. (d)	12. (d)	23. (e)	34. (e)
2. (d)	13. (d)	24. (d)	35. (d)
3. (c)	14. (c)	25. (a)	36. (d)
4. (a)	15. (d)	26. (a)	37. (d)
5. (a)	16. (d)	27. (a)	38. (a)
6. (d)	17. (d)	28. (a)	39. (a)
7. (a)	18. (b)	29. (a)	40. (d)
8. (b)	19. (d)	30. (a)	41. (a)
9. (d)	20. (b)	31. (a)	42. (a)
10. (a)	21. (d)	32. (a)	43. (a)
11. (d)	22. (d)	33. (d)	44. (e)

Manufacturing Systems

parameters.

	(a) True	(b) False
2.	The most important concepts of a of the individual parts to the whole	manufacturing system is the relationship e system.
	(a) True	(b) False
3.	<u> </u>	process in which raw materials are conthat have value in the marketplace.
	(a) True	(b) False
4.		fined as a closed-loop communications "no. of jobs across "M" no. of machines.
	(a) True	(b) False
5.	A manufacturing cycle may be de operations from product design to	efined as system involving activities and delivery and product service.
	(a) True	(b) False
6.	~ ·	ufacturing engineering department progn department on the producibility or
	(a) True	(b) False

1. A Manufacturing System may be viewed as a "production system" wherein a set of "input" parameters are transformed into some desirable "output"

(a) True

		Terro	/ l a)	False
	(a)	True	(D)	raise
8.		D/CAM is a closed loop system/manufacturing cycle.	n re	eflecting all activities in the produc-
	(a)	True	(b)	False
9.	Imj	portant CAM applications are:		
	(a)	Computer-aided line balance CAPP, and process monitoring	_	process control, cost estimating,
	(b)			systems, computer-assisted NC part ork standards, and production and in-
	(c)	Shop floor control, process c ning, and cost estimating	ontr	rol, production and inventory plan-
	(d)	All the above		
10.	Gro	oup Technology (GT) is a manu	ıfact	turing philosophy in which:
	(a)	Similar parts are identified an their similarities in design and	_	rouped together to take advantage of oduction
	(b)	Product design features and together	mai	nufacturing aspects are considered
	(c)	Similar parts are arranged into	fan	milies of parts
	(d)	All the above		
11.		ist of the sequence of moves ed a:	betv	ween operations or work centers is
	(a)	Route sheet		
	(b)	Production schedule		
	(c)	Work-in-process sheet		
	(d)	Capacity requirements planni	ng	
12.		e system development cycle beds of the organization.	egin	ns with the concept of meeting the

(b) False

7. An integrated CAD/CAM database system is known as the manufacturing

13.	System implementation should enable the seamless integration of products, services, and sub-systems.	
	(a) True	(b) False
14.	Involvement of top management implementation of a system.	is not a pre-requisite for the successful
	(a) True	(b) False
15.	Contract negotiation is the final γ system developer.	phase of the procurement from the CIM
	(a) True	(b) False
16.	Common methods of procuring chasing, leasing, or renting them.	computer hardware systems are by pur-
	(a) True	(b) False
17.	The staff involved in a CIM system the system and how the system w	m must be trained on their role in using ill help them.
	(a) True	(b) False
18.	The type of training method used learning experiences you would li	is determined by the kind of training or ke to have.
	(a) True	(b) False
19.	When the new component replace replaces the old system, this is con-	es the old component or the new system nsidered as the maintenance.
	(a) True	(b) False
20.	The more sophisticated or more i er the probability of failure.	nnovative the system becomes, the high-
	(a) True	(b) False
21.	The general practice is to make the	ne system 100% secure and fool-proof.
	(a) True	(b) False

22.		are a major source	of data collection.	
		Interviews		
	(b)	Observations		
	(c)	Inspection of documents and	records	
	(d)	Questionnaires		
23.	Ob	servations are generally made t	to determine	
	(a)	Work flow		
	(b)	Physical location of work static	ions	
	(c)	Who does what task		
	(d)	How each task is performed		
	(e)	All the above		
24.	obj els,	ectives: develop a model, evalu	following steps are taken; review of the ate constraints, develop alternative mode aduct cost/benefit analysis, and prepare	-
	(a)	Need analysis	(d) Implementation	
	(b)	Design	(e) Review	
	(c)	Evaluation		
25.		addressing the human side of ould be considered.	using computer systems,	_
	(a)	Providing for employees' well-	l-being	
	(b)	Providing a safe and healthy w	work environment	
	(c)	Providing a comfortable work	environment	
	(d)	All the above		
26.	Ch	anges take place in organization	ns just for the sake of change.	
	(a)	True	(b) False	
27.		e feasibility study is designed ertain its nature and scope if it	to determine if a problem exists and to exists.	Э
	(a)	True	(b) False	

28.	Another term for "feasibility study" is "preliminary investigation."			
	(a)	True	(b)	False
29.		nagement officials, users, and letermining the objectives for t		ysts should not be directly involved need for CIM.
	(a)	True	(b)	False
30.	ren			present system is to survey the cur- to understand what the system does
	(a)	True	(b)	False
31.		studying books, periodicals, arding trends, alternatives, and		brochures, insight can be gained duct specifications.
	(a)	True	(b)	False
32.		e results of the systems analysisten or oral presentation.	s are	e not presented to management in a
	(a)	True	(b)	False
33.	In t	the system design phase, the fo	cus	is on studying the current system.
	(a)	True	(b)	False
34.		e purpose of the system implemented operational system.	enta	ation phase is to achieve a fully docu-
	(a)	True	(b)	False
35.	Suc		epen	dent on the people who will actually
	(a)	True	(b)	False
36.		e internal and external environr I systems followed in a compan		affects the maintenance procedures
	(a)	True	(b)	False

37.		e methods generally nponents and service		s vendor claims	s for their products,
	(a)	Performance during	trial periods		
		Testing against indu	-	rk	
	(c)	Vendor rating	•		
	(d)	All the above			
38.	То	share maximum info			r of individuals, the
	(a)	Simulation	(c) Lectur	re	(e) On-the-job
	. ,	Video	(d) Hands		, , , , , , , , , , , , , , , , , , ,
39.		ere should be 100% l data removal.	security again	nst data transfe	r, data modification,
	(a)	True	(b)	False	
40.	Info	ormation systems sho	uld have:		
	(a)	Proper planning and	lintegrity		
		Proper maintenance	· .	documentation,	and cost control
		Proper planning and			
	(d)	Integrity and contro	llability		
		All the above	·		
41.		is the abi	lity to continu	ie performance	even if one or more
	(a)	Integrity	(c)	Controllability	
		Fail-safe	(d)	Security	
42.	of e	is an ong efficiency and effectiv			m at its highest level of the organization.
	(a)	Documentation	(c)	Security	
	(b)	Testing		Maintenance	

43.	External environmare:	mental factor(s) that can affect the r	need for maintenance
	(b) Economic cor	regulations and introduction of new nditions and competitive market intenance personnel are not availab	. ,
44.		an integral part of the system since anding of the system.	e it provides transpar-
	(a) Planning	(c) Testing	(e) Training
	(b) Documentation	on (d) Maintenance	
45.	Two basic models	s used in database management a	re and
	(d) Network, nod	erarchical ture, horizontal structure les	
46.		ol" refers to a set of established rule d orderly transfer of information.	s and procedures that
	(a) True	(b) False	
47.	products and ser	anning involves forecasting the dervices and translating this forecasus factors of production.	
	(a) Product(b) Process		
	(c) Production		
	(d) Works		
48.	A CIM system mu team approach.	ust be carefully planned in advance	by a multi-functional
	(a) True	(b) False	

49.	The correct sequence of the three basic operations of an information system are:
	(a) Processing, input, output
	(b) Input, processing, output
	(c) Output, processing, input
	(d) Input, output, processing
50.	Which is the best example of a real-time processing?
	(a) Printing of payroll cheques
	(b) Summarizing daily transactions
	(c) Calculating weekly inventory lends
	(d) Requesting an airline reservation
51.	The "paperless factory" is often cited as the ultimate goal in the world of manufacturing.
	(a) True (b) False
52.	In a real CIM system, some parts required on an urgent basis can be manufactured and dispatched on the same day and order is received.
	(a) True (b) False
53.	A CIM system usually requires an organizational approach to manufacturing in order to:
	(a) Bring the different automated work centers together through a common data-link system $$
	(b) Provide a frame work for design and implementing CIM
	(c) Share data between different automated work centers
	(d) All these
54.	Measures of CIM performance include factors such as
	(a) Development lead time for new products
	(b) Manufacturing lead time

(c) Inventory level maintained(d) Quality levels maintained

(e) All the above

55.	MRP-II stands for:
	(a) Materials Requirements Planning
	(b) Materials Resource Planning
	(c) Manufacturing Resource Planning
	(d) Manufacturing Requirements Planning
56.	A Manufacturing Information System (MIS):
	(a) Consists primarily of technology and equipment
	(b) Consists of persons, rules and procedures, data, hardware, and software
	(c) Is a tool for taking correct decisions
	(d) A tool for processing of information
57.	and form the hub of a typical CIM system.
	(a) Computers, machines
	(b) Procedures, computers
	(c) Communication, database
	(d) All the above
58.	should be actively involved in all CIM development
	processes.
	(a) Management (d) Customers
	(b) Production Staff (e) All the above
	(c) Design Engineers
59.	The application of Computer-aided production and control systems enables us to:
	(a) Increase Productivity
	(b) Reduce Waste
	(c) Produce complex parts
	(d) All the above
50.	Integrated engineering and production systems are required to take products from concept stage to manufacturing lines.
	(a) True (b) False

involving:

(a) True

	(a) Data communication
	(b) Data base management
	(c) Running production lines
	(d) All the above
62.	A physical path of a LAN consists of:
	(a) Coaxial communication cables
	(b) Optical fibers
	(c) Microwaves
	(d) All the above
63.	Distributed computer control implies decentralization of computer functions.
	(a) False
	(b) True
64.	Automation is the key to:
	(a) A shorter work week
	(b) Safer working conditions for the worker
	(c) Lower prices and better product
	(d) Means of increasing the standard of living of our people
	(e) All the above
65.	Flexible inspection system involves the use of Coordinate Measuring Machines (CMM).
	(a) True
	(b) False
66.	The purpose of automated materials handling equipment/systems in a factory is to move raw materials, work in process, finished parts, tools, and supplies from one location to another to facilitate the overall manufacturing operation.

(b) False

61. Computer-controlled systems operate over the entire manufacturing cycle

	is moved along defined pathways in the shop floor between different wor stations.			
	(a)	True	(b) False	
68.	Materials Requirements Planning (known as MRPI) system starts with the company's business plan.			
	(a)	True	(b) False	
69.	• Flexible Manufacturing Systems (FMS) incorporate automation concept such as:			
	(a) CNC machines, group technology, and automatic material hand between machines			
	(b) Computer control over the materials handling systems, Direct nume cal machine tools, group technology; and CNC machines			
		Equipment maintenance and Items (a) and (b) above	repair; tool changing and tool setting	
70.	Manufacturing Resource Planning (known as MRP-II) is a method of top down scheduling of all the manufacturing resources required in the production of a product.			
	(a)	True	(b) False	
71.	1. Adaptive Control (AC) has attributes (i.e. features) of both feedback tems and optimal control systems.			
	(a)	True	(b) False	
72.	• Shop Floor Control (SFC) is concerned with the release of the production orders the factory, controlling the processing of the orders through the various working centers, and acquiring current information on the state of the orders.			
	(a)	True	(b) False	
73.		f-line inspection is achieved bring the production operation.	y performing the inspection procedure	
	(a)	True	(b) False	

67. An AGV (Automated Guided Vehicle) is a materials handling system that

74.	CIM follows the path of defining the system, funding, managing and coordinating all the improvement projects in the company.			
	(a) True	(b) False		
75.	. The financial function of an organization is mainly concerned with the money or cash flow.			
	(a) True	(b) False		
76.	The marketing function of an organization determines what products and services should flow from the firm to the customers.			
	(a) True	(b) False		
77.	Demand-based marketing policy establishes a price compatible with the value that the customer/buyer places on the product or service.			
	(a) True	(b) False		
78.	3. Pricing models should consider both internal and external influences.			
	(a) True	(b) False		
79.	• Computer-Integrated Production Management Systems (CIPMS) have traditionally been called production planning and control (PPC) in industrial engineering.			
	(a) True	(b) False		
80.	MRP (Materials Requirements Planning) interacts with two subsystems- viz. production sheduling and capacity requirements planning.			
	(a) True	(b) False		
81.	MRP and MRP-II are one and the	e same concept.		
	(a) True	(b) False		
82.	The orientation of the company's objectives to satisfy the needs and wants of customers for a profit or service is considered as the			
	(a) Planning concept	(c) Manufacturing concept		
	(b) Marketing concept	(d) Control concept		

83. Strategies that enable the resources to be used judiciously in market company's products and service are called the:			
	(a) Marketing mix	(c) Financial mix	
	(b) Production mix	(d) All the above	
84.	The marketing mix includes:		
	(a) Product	(d) Price	
	(b) Sales Promotion Strategy	(e) All the above.	
	(c) Place		
85.	Major subsystems of CIPMS (Coment System) include:	Computer-Integrated Production Manage-	
	(a) Production and inventory m(b) Plant shop scheduling	nanagement	
	(c) Shop monitoring and control		
	(d) Plant maintenance	,,	
	(e) All the above		
86.	•	toring the status of production activities in e to management so that effective controls	
	(a) Shop floor control	(c) Scheduling control	
	(b) Production control	(d) Financial control	
87.	is a technique of mana consideration the specific timin	aging production inventories that takes into g of material requirements.	
	(a) CIPMS	(c) CAD	
	(b) CAM	(d) MRP	
88.		of manpower, company's materials, bought production processes in the manufacturing	
	(a) Production control	(c) Operations management	
	(b) Forecasting	(d) All the above	

- **89.** _____ minimizes the inventory cost by ordering and manufacturing smaller quantities.
 - (a) JIT
 - (b) Push system
 - (c) Mass production
 - (d) Flexible Manufacturing System,(FMS)

34. **Key**

1. (a)	24. (b)	47. (a)	70. (a)
2. (a)	25. (d)	48. (a)	71. (a)
3. (a)	26. (b)	49. (b)	72. (a)
4. (a)	27. (a)	50. (d)	73. (b)
5. (a)	28. (a)	51. (a)	74. (b)
6. (a)	29. (b)	52. (a)	75. (a)
7. (a)	30. (a)	53. (d)	76. (a)
8. (a)	31. (a)	54. (e)	77. (a)
9. (d)	32. (b)	55. (c)	78. (a)
10. (d)	33. (b)	56. (b)	79. (a)
11. (a)	34. (a)	57. (c)	80. (a)
12. (a)	35. (a)	58. (e)	81. (b)
13. (a)	36. (a)	59. (d)	82. (b)
14. (b)	37. (d)	60. (a)	83. (a)
15. (a)	38. (e)	61. (d)	84. (e)
16. (a)	39. (a)	62. (d)	85. (e)
17. (a)	40. (e)	63. (b)	86. (a)
18. (a)	41. (b)	64. (e)	87. (d)
19. (b)	42. (d)	65. (a)	88. (c)
20. (a)	43. (d)	66. (a)	89. (a)
21. (a)	44. (b)	67. (a)	
22. (a)	45. (b)	68. (a)	
4 4	4 4	/ 3	

23. (e) **46.** (a) **69.** (d)