

# **UESTC4019: Real-Time Computer Systems and Architecture**

**Lecture 20 Multicore Computers** 

### **Alternative Chip Organizations**



(a) Superscalar



(b) Simultaneous multithreading



(c) Multicore

## **Power and Memory Considerations**

Power density (watts/cm<sup>2</sup>)



Feature size  $(\mu m)$ 

## Performance Effect of Multiple Cores



(a) Speedup with 0% , 2% , 5% , and 10% sequential portions



(b) Speedup with overheads

# Scaling of Database Workloads on Multiple-Processor Hardware



## Effective Applications for Multicore Processors (1 of 2)

#### Multi-threaded native applications

- Thread-level parallelism
- Characterized by having a small number of highly threaded processes

#### Multi-process applications

- Process-level parallelism
- Characterized by the presence of many singlethreaded processes

## Effective Applications for Multicore Processors (2 of 2)

#### Java applications

- Embrace threading in a fundamental way
- Java Virtual Machine is a multi-threaded process that provides scheduling and memory management for Java applications

#### Multi-instance applications

 If multiple application instances require some degree of isolation, virtualization technology can be used to provide each of them with its own separate and secure environment

## **Hybrid Threading for Rendering Module**



## **Multicore Organization Alternatives**



(a) Dedicated L1 cache



(b) Dedicated L2 cache



(c) Shared L2 cache



(d) Shared L3 cache

### Heterogeneous Multicore Organization

- Refers to a processor chip that includes more than one kind of core
- The most prominent trend is the use of both CPUs and graphics processing units (GPUs) on the same chip
  - This mix however presents issues of coordination and correctness
- GPUs are characterized by the ability to support thousands of parallel execution trends
- Thus, GPUs are well matched to applications that process large amounts of vector and matrix data

### **Heterogenous Multicore Chip Elements**



## Heterogeneous System Architecture (HSA) (1 of 2)

- Key features of the HSA approach include:
  - The entire virtual memory space is visible to both CP U and GPU
  - The virtual memory system brings in pages to physical main memory as needed
  - A coherent memory policy ensures that CPU and GPU caches both see an up-to-date view of data
  - A unified programming interface that enables users to exploit the parallel capabilities of the GPUs within programs that rely on CPU execution as well

## Heterogeneous System Architecture (HSA) (2 of 2)

 The overall objective is to allow programmers to write applications that exploit the serial power of CPUs and the parallel-processing power of GPUs seamlessly with efficient coordination at the OS and hardware level

## Texas Instrument 66AK2H12 Heterogenous Multicore Chip



Figure 18.8 Texas Instruments 66AK2H12 Heterogenous Multicore Chip

### **Big Litte Chip Components**

