Wirtschaftsinformatik II – Stuckenschmidt/Meilicke

Die Semantik von (= Bedeutung) von Termen und Formeln Interpretationen und Modelle

PRÄDIKATENLOGIK SEMANTIK

Semantik

- Semantik eines Ausdrucks ≈ Bedeutung eines Ausdrucks
- Bedeutung als Wahrheitsbedingungen (= Tarskis semantische Definition der Wahrheit)
 - "Black Beauty ist ein Pferd" ist wahr, genau dann wenn Black Beauty ein Pferd ist
 - "Black Beauty is a horse" ist wahr, genau dann wenn Black Beauty ein Pferd ist
 - "Black Beauty ist ein Pferd" ist wahr, wenn das, worauf sich "Black Beauty" bezieht, ein Element der Menge ist, auf die sich "Pferd" bezieht

Semantik: Sprache vs. Logik

- Die Semantik der Prädikatenlogik folgt dieser einfachen Idee
 - Man muß zwischen den logischen Ausdrücken und dem worauf sie Bezug nehmen unterscheiden
- In der natürlichen Sprache verwendet man Anführungszeichen, um über Wörter und Sätze zu reden
- In der k\u00fcnstlichen Logiksprache verwendet man das Werkzeug der Interpretation (bzw. Interpretationsfunktion) um \u00fcber Terme und Formeln zu reden

Doppelte Bedeutung

- Wenn wir logische Formeln aufschreiben (um eine Domäne zu modellieren), dann wollen wir damit über die Welt sprechen
- Zugleich benötigen wir das abstrakte Universum um eine formale Semantik zu definieren

Rückblick: Prädikatenlogik - Bausteine

- Logische Junktoren und Quantoren
 - $\land \lor \rightarrow \leftrightarrow \neg \lor \exists$
- Individuenkonstanten
 - a, b, c, paul, anna
- Variablen
 - -x,y,z
- Prädikate (Relationale Ausdrücke)
 - F, G, H, married, human
- Funktionssymbole
 - f, g, age, father

Signatur und Interpretation

- Eine Signatur Σ ist eine Menge von Individuenkonstanten, Variablen, Funktionen und Prädikaten
 - Erinnerung: Dies war in bezug auf AL eine Menge von aussagelogischen Variablen (= Propositionen)
- Gegeben eine nicht leere Menge U und eine Signatur Σ , dann ist eine Interpretation I eine Abbildung für die folgendes gilt:
 - Für jede Individuenkonstante $a \in \Sigma$ gilt $I(a) \in U$
 - Für jede Variable $x \in \Sigma$ gilt $I(x) \in U$
 - Für jedes Prädikat $F \in \Sigma$ mit Stelligkeit n gilt $I(F) \subseteq U^n$

n-faches kartesisches Produkt der Menge U mit sich selbst

- Für jedes Funktionssymbol $f \in \Sigma$ mit Stelligkeit n ist I(f) eine Funktion mit I(f): $U^n \to U$

Hinweis: $U^2 = U \times U = \{(a,b) \mid a \in U, b \in U\}$ $U^1 = U$

Einschub: Unendlichkeit

- Im Kontext der Aussagenlogik gibt es für eine gegebene Signatur Σ eine feste Anzahl an Interpretationen
 - Nämlich $2^{|\Sigma|}$ Interpretationen
- Im Kontext der Prädikatenlogik gibt es unendliche viele Interpretationen
 - Das Universum kann 1, 2, 3, ... oder unendliche viele Elemente haben
 - Demzufolge kann es auch unendlich viele Interpretationen und Modelle geben
 - Dies macht Inferenzverfahren (z.B. Folgerung beweisen) deutlich komplizierter, eine Wahrheitstabelle kann beispielsweise nicht erstellt werden

Interpretation, veranschaulicht I

- horse(blackbeauty)
- horse(joker)
- horse(fatherOf(joker))
- faster(blackbeauty, joker)
- $\forall x (horse(x) \rightarrow animal(x))$
- Signatur \sum der Formelmenge:
 - Einstellige Prädikate: horse, animal
 - Zweistellige Prädikate: faster
 - Individuenkonstanten: joker, blackbeauty
 - Funktionen: fatherOf
- Funktionen und mehrstellige Prädikate lassen sich in dieser Darstellung sich nur schwer veranschaulichen

Interpretation, veranschaulicht II

- Wir machen es uns einfach und bilden Individuenkonstanten auf sich selbst ab
 - -I(mary) = mary
 - -I(john) = john
 - **—** ...
- Oft muss man weitere Individuen ins Universum aufnehmen
- Interpretation => Instanziierung einer Datenbank
- Prädikate und Funktionen werden zu Tabellen

$$U = \{mary, john\}$$

Model und Interpretation

- In den letzten Beispielen wurden Interpretationen gezeigt, bei denen es sich um Modelle handelt
- Interpretationen müssen keine Modelle sein!
 - Die Abbildung in das Universum kann so sein, dass das es "nicht zu der Formel passt"
 - Eine solche Abbildung ist dann kein Modell für die Formel
 - Es handelt sich dennoch um eine mögliche Interpretation

Zurück zum Ernst des Lebens

- Veranschaulichungen erleichtern das Verständnis
 - Mengendiagramme oder
 - Datenbankrelationen
- Aber: Wir benötigen eine formale Definition
 - Funktioniert ähnlich wie die Definition der Syntax
 - Besteht eine logischer Ausdruck xy aus den Teilen x und y, dann muss sich I(xy) ergeben aus I(x) und I(y)
 - Dies müssen wir für alle Regeln, um aus einfachen Ausdrücken komplexe Ausdrücke zu machen, aufschreiben

Interpretation von Termen

- Gegeben ein Term $f(t_1, ..., t_n)$ wobei f eine Funktion ist und $t_1, ..., t_n$ Terme, dann gilt $I(f(t_1, ..., t_n) = I(f)(I(t_1), ..., I(t_n))$
 - Zur Erinnerung
 - Für jede Individuenkonstante $a \in \sum$ gilt $I(a) \in U$
 - Für jede Variable $x \in \sum$ gilt $I(x) \in U$
 - Für jedes Funktionssymbol $F \in \Sigma$ mit Stelligkeit n ist I(F) eine Funktion mit I(F): $U^n \to U$

father	
john	eddy
mary	john

- Beispiel:
 - -I(father(mary)) = I(father)(I(mary)) = john

Interpretation von atomaren Formeln

- Wir führen die Wahrheitwerte \boldsymbol{w} und \boldsymbol{f} ein (wahr und falsch) und erweitern die Interpretation auf Formeln
- Gegeben ein Formel $F(t_1, ..., t_n)$ wobei F ein n-stelliges Prädikatsymbol ist und $t_1, ..., t_n$ Terme, dann gilt:
 - $-I(F(t_1,...,t_n)) = w, \text{g.d.w.} \langle I(t_1),...,I(t_n) \rangle \in I(F)$
 - Ansonsten $I(F(t_1, ..., t_n)) = f$

horse lucky joker blackbeauty

Beispiel:

- I(horse(joker)) = ?
- $-I(horse) = \{lucky, joker, blackbeauty\}, I(joker) = joker$
- $-I(joker) \in I(horse) \Rightarrow I(horse(joker)) = w$

Redeweise und Vorausschau

- Man sagt auch
 - Die Interpretation I bildet die Formel α auf w (das Wahre) ab
 - $-\alpha$ wird unter der Interpretation I wahr
- Für eine Formel α , die keine Tautologie oder Kontradiktion ist, kann man Interpretationen I und I' konstruieren für die gilt
 - $-\alpha$ wird unter der Interpretation I wahr
 - $-\alpha$ wird unter der Interpretation I' falsch
- Bei der logischen Inferenz geht es immer darum Interpretationen zu konstruieren oder systematisch zu durchsuchen!

Mehrstellige Prädikate vs Funktionen

loves	
alice	bob
bob	john
john	alice
alice	alice

fat	her	
alice	bob	
bob	john	Nicht möglich!
john	alice) mone mognem
alice	alice	

- Das Prädikat loves wird durch I auf eine Teilmenge aus $U \times U$ abgebildet
- Die Funktion father wird auf eine Funktion abgebildet, die ein Element aus U auf U abbildet
- I(loves(..., ...)) ist wahr oder falsch
- I(father(...)) referenziert auf ein Individuum aus U

Wiederholung

- Sind α und β Formeln, so sind auch die folgenden Audrücke Formeln
 - $-(\alpha \wedge \beta)$ (und, Konjunktion)
 - $-(\alpha \lor \beta)$ (oder, Disjunktion)
 - $-(\alpha \rightarrow \beta)$ (wenn dann, Subjunktion)
 - $-(\alpha \leftrightarrow \beta)$ (genau dann wenn, Bisubjunktion)
 - $\neg \alpha$ (nicht, Negation)
- Beispiele
 - $hungry(anna) \wedge hungry(father(anna))$
 - $-\neg hungry(anna) \rightarrow \neg (married(alice, bob) \lor \neg rich(bob))$

Interpretation logischer Junktoren

• Sind α und β Formeln, so gilt

```
-I(\alpha \wedge \beta) = w \qquad \text{g.d.w.} \quad I(\alpha) = w, \ I(\beta) = w
-I(\alpha \vee \beta) = f \qquad \text{g.d.w} \quad I(\alpha) = f, \ I(\beta) = f
-I(\alpha \rightarrow \beta) = f \qquad \text{g.d.w} \quad I(\alpha) = w, \ I(\beta) = f
-I(\alpha \leftrightarrow \beta) = w \qquad \text{g.d.w} \quad I(\alpha) = I(\beta)
-I(\neg \alpha) = w \qquad \text{g.d.w} \quad I(\alpha) = f
```

- Kann man auch mittels Wahrheitstafeln (Wahrheitstabellen) veranschaulichen (nächste Folie)
 - Analog zur Aussagenlogik
 - Unterschied: Statt Aussagenvariablen betrachten wir atomare Formeln oder Formeln, die mittels obiger Regeln aus atomaren Formeln gebildet werden

Wahrheitstafeln

α	β	α Λ β
f	f	f
f	W	f
W	f	f
W	W	W

α	β	ανβ
f	f	f
f	W	W
W	f	W
W	W	W

α	β	$\alpha \leftrightarrow \beta$
f	f	W
f	W	f
W	f	f
W	W	W

α	β	$\alpha \rightarrow \beta$
f	f	W
f	W	W
W	f	f
W	W	W

α	$\neg \alpha$
f	W
W	f

Statt f und w wird auch oft O und 1 verwendet (oder f und t)

Wiederholung

- Ist α eine Formel und ist x eine Variable, so sind auch die folgenden Audrücke Formeln
 - $\forall x \alpha$ (für alle, Allquantor)
 - $-\exists x \alpha$ (es existiert, Existenzquantor)
- Beispiele
 - $\forall x (hungry(x) \rightarrow tired(x))$
 - $-\exists x (philosopher(x) \land smart(x))$
- Als letzten Schritt müssen wir nun definieren wie die Interpretation für Formeln dieser Art definiert ist

Interpretation von Quantoren

• Ist α eine Formel, dann gilt

```
\begin{array}{lll} -\ I(\forall x\ \alpha) = w & \text{g.d.w.} & \text{Für jedes } x_u \in U \text{ gilt } I_{|\mathbf{x},\mathbf{x_u}|}(\alpha) = w \\ -\ I(\exists x\ \alpha) = w & \text{g.d.w.} & \text{Es ein } x_u \in U \text{ gibt mit } I_{|\mathbf{x},\mathbf{x_u}|}(\alpha) = w \end{array}
```

- Dabei bezeichnet $I_{|\mathbf{x},\mathbf{x}_{\mathbf{u}}|}$ eine Interpretation, die mit I übereinstimmt bis auf die Zuweisung eines Wertes an die Variable x, die unter I den Wert I(x) unter $I_{|\mathbf{x},\mathbf{x}_{\mathbf{u}}|}$ jedoch den Wert x_u erhält
 - Wir wollen $I_{|\mathbf{x},\mathbf{x}_{\mathbf{u}}|}$ die $\mathbf{x},\mathbf{x}_{\mathbf{u}}$ Variante von I nennen

Interpretation von Quantoren

Nochmal vereinfacht dargestellt:

- Obwohl x eine Variable ist, wird x wie eine Konstante behandelt, wenn x nicht durch einen Quantor gebunden ist
 - Erinnerung
 - Für jede Individuenkonstante $a \in \Sigma$ gilt $I(a) \in U$
 - Für jede Variable $x \in \Sigma$ gilt $I(x) \in U$
- Wenn x durch einen Quantor gebunden wird, dann gilt:
 - Der Ausdruck $\forall x \ \alpha$ ist genau dann wahr, wenn α für jede mögliche Zurordnung von x auf ein Element des Universums wahr wird
 - Der Ausdruck $\exists x \ \alpha$ ist genau dann wahr, wenn es eine Zuordnung gibt für die α wahr wird

Interpretation und Model

- Wird die Formel α unter einer Interpretation I wahr, so nennt man I ein Modell für α
- Gegeben eine Formelmenge M, eine Interpretation I ist ein Modell für M, wenn I ein Modell für jede Formel in M ist
- Modellbegriff in Bedeutung 1 und 2
 - Wir erstellen ein Modell₁ einer Domäne, indem wir eine Menge von Formeln erstellen
 - Wenn wir Inferenz auf die Formeln anwenden, dann beschäftigen wir uns mit Modellen, dieser Formeln
- Wir betrachten im folgenden einige Beispiele, bei denen wir versuchen, Modelle, zu konstruieren

Beispiel I

$$\exists x \ happy(x) \land \neg happy(egon)$$

$$U = \{mary, john, egon\}$$

- I(mary) = mary
- I(john) = john
- I(egon) = egon
- I(x) = egon

Die Interpretation geben wir in Zukunft für Variablen und Individuenkonstanten nicht mehr an

Beispiel II

$$\forall x (happy(x) \land \neg happy(egon))$$

$$U = \{mary, john, egon\}$$

$$U = \{mary, john, egon\}$$

Beispiel III

$$\forall x \exists y (loves(x, y) \land \neg equals(x, y))$$

$$U = \{mary\}$$

equals

$$U = \{mary, john\}$$

$$I = \frac{\text{loves}}{\text{mary mary}}$$

equals	
mary	john
john	mary

Beispiel IV

```
\forall x \ (unicorn(x) \rightarrow \neg dragon(x))

\exists xy \ (unicorn(x) \land dragon(y) \land father(x,y))

\forall x \forall y \ (related(x,y) \rightarrow (dragon(x) \rightarrow \neg unicorn(y)))

\forall x \forall y \ (father(x,y) \rightarrow related(x,y))

\exists x \ dragon(x)
```

Gibt es ein Modell?
Wenn ja, wie sieht das Modell aus?

Beispiel IV - Modell

```
\forall x \ (unicorn(x) \rightarrow \neg dragon(x))
\exists xy \ (unicorn(x) \land dragon(y) \land father(x,y))
\forall x \forall y \ (related(x,y) \rightarrow (dragon(x) \rightarrow \neg unicorn(y)))
\forall x \forall y \ (father(x,y) \rightarrow related(x,y))
\exists x \ dragon(x)
```

$$U = \{u1, d1\}$$

dragon d1

Beispiel IV - Modell

```
\forall x \ (unicorn(x) \rightarrow \neg dragon(x)) \checkmark
\exists x \ \exists y \ (unicorn(x) \land dragon(y) \land father(x,y)) \checkmark
\forall x \forall y \ (related(x,y) \rightarrow (dragon(x) \rightarrow \neg unicorn(y))) \checkmark
\forall x \forall y \ (father(x,y) \rightarrow related(x,y)) \checkmark
\exists x \ dragon(x) \checkmark
```

$$U = \{u1, d1\}$$

unicorn
u1

dragon	
d1	

Beispiel IV (Variante)

```
\forall x \ (unicorn(x) \to \neg dragon(x)) \checkmark
\exists xy \ (unicorn(x) \land dragon(y) \land father(x,y)) \checkmark
\forall x \forall y \ (related(x,y) \to (dragon(x) \to \neg unicorn(y))) \checkmark
\forall x \forall y \ (father(x,y) \to related(x,y)) \checkmark
\exists x \ dragon(x) \checkmark
\forall x \forall y \ (related(x,y) \leftrightarrow related(y,x)) \checkmark
U = \{u1,d1\}
```

unicorn
u1

dragon
d1

related	
u1	d1
d1	u1

Wichtige Begriffe

Zum Teil in diesem Foliensatz eingeführt, zum Teil bereits in dem Foliensatz über Aussagenlogik

Aber: Besser zweimal hören und einmal verstehen, statt einmal hören, und keinmal verstehen

Interpretation und Model

- Wird die Formel α unter der Interpretation I wahr, so nennt man I ein Modell für α
- Ist eine Formelmenge $M=\{m_1,\dots,m_n\}$ gegeben, so betrachtet man diese als Konjunktion $m_1 \wedge \dots \wedge m_n$
- Dass eine Interpretation I ein Modell von M ist, ist somit gleichbedeutend damit, dass I ein Modell für $m_1 \land ... \land m_n$ ist
 - Wir sprechen im folgenden oft über einzelne Formeln und schließen damit Formelmengen mit ein

Kontradiktion, Tautologie, Erfüllbarkeit

- Eine Formel α ist eine Kontradiktion genau dann, wenn es keine Interpretation I gibt, so dass I ein Modell für α ist
 - Man nennt eine solche Formel auch unerfüllbar
- Eine Formel α ist eine Tautologie genau dann, wenn jede Interpretation I ein Modell für α ist
- Eine Formel α ist erfüllbar genau dann, wenn es eine Interpretation I gibt, die ein Modell für α ist

Kontradiktion, Tautologie, Erfüllbarkeit

Die Menge aller Formeln zerfällt in diese drei Gruppen:

Erfüllbar

Kontradiktion, Tautologie, Erfüllbarkeit

Äquivalenz

- Zwei Formeln α und β sind äquivalent, wenn jedes Modell für α auch ein Modell für β ist und umgekehrt
- Man kann eine Formel durch Anwendung syntaktischer Umformungsregeln in eine äquivalente Formel umformen
 - Man nennt eine solche Umformung Äquivalenzumformung
 - Es gibt eine ganze Reihe von Umformungsregeln
 - Aufgrund der Definition von I kann man von jeder Umformungsregeln ihre Korrektheit beweisen
 - Wir schreiben $\alpha \Leftrightarrow \beta$ genau dann, wenn α äquivalent zu β ist

Logisches Schließen

- Es sei KB eine Menge (= Konjunktion) von Formeln
 - KB steht für Knowledge Base
 - Eine Knowledge Base ist eine Sammlung von Formeln, die unser Wissen über einen bestimmten Bereich der Welt repräsentiert
 - Wissen über allgemeine Beziehungen
 - Beobachtungen konkreter Sachverhalte
- Man sagt α folgt aus KB, genau dann wenn jedes Modell für KB auch ein Modell für α ist
- Kurz-Schreibweise: $KB = \alpha$

Mengendarstellung

• $KB \models \alpha$

Beweis durch Widerspruch

- Folgerung kann man zeigen, in dem man beweist, dass jedes Modell für KB auch ein Modell für α ist
 - Aufwendig, da man (eigentlich) alle Modelle für KB durchgehen muss
 - Es gibt in der Regel unendlich viele Modelle da U unendlich viele
 Elemente haben kann
- Oft ist eine indirekte Vorgehensweise einfacher:
 - Beweis durch Widerspruch
- Man zeigt, dass es kein Modell für KB und $\neg \alpha$ gibt
 - Man versucht ein Modell zu konstruieren, und wenn man dabei scheitert, dann weiß man das die Folgerungsbeziehung besteht

Mengendarstellung

• $KB \land \neg \alpha$ ist unerfüllbar

ist äquivalent zu

• $KB \models \alpha$

Alle Interpretationen

Achtung: Unterschied beachten

- $KB = \alpha$
 - $-\alpha$ folgt aus KB
- $KB \models \neg \alpha$
 - ¬α folgt aus KB
- $KB \not\models \alpha$
 - Es ist nicht der Fall, dass α aus KB folgt
- $KB \not\models \neg \alpha$
 - − Es ist nicht der Fall, dass $\neg \alpha$ aus KB folgt

Folgerung: Sonderfälle

- Aus einem Widerspruch folgt alles "ex contradictione sequitur quodlibet"
 - Es sei α eine beliebige Formel und KB sei eine Kontradiktion
 - Jedes Modell für KB ist auch ein Modell für α , bzw. es existiert kein Modell für KB $\wedge \neg \alpha$
 - $-KB \models \alpha$
- Eine Tautologie folgt aus allem
 - Es sei α eine Tautologie und KB eine beliebige Formelmenge
 - Jedes Modell für KB ist auch ein Modell für α , denn jede Interpretation ist ein Modell für α
 - $-KB \models \alpha$

Zusammenfassung

- Semantik = Wie die Bedeutung von komplexem von der Bedeutung seiner Teile abhängt
 - Formal: Die vollständige Definition von der Interpretationsabbildung
 - Interpretation von Termen
 - *I*(*ceo*(*ibm*))
 - Interpretation von atomaren Formeln
 - *I(worksFor(anna,ibm))*
 - Interpretation von logische Junktoren
 - $I(worksFor(anna, ibm) \land Manager(anna))$
 - Interpretation quantifizierte Formel
 - $I(\forall x \ worksFor(x, ibm) \rightarrow Manager(x))$

- Darstellung von Interpretation
- Datenbankrelationen
- Mengen-Diagramme

 Interpretation, Modell, Folgerung, Äquivalenz und relevante Zusammenhänge

Ausblick

- Modellieren und Übersetzen
 - Komplexeres Beispiel, in dem Inferenz angewendet wird
 - Viele Übersetzungsbeispiele
 - Typische Muster
 - Typische Fehler
- Danach geht es dann weiter mit Beschreibungslogik
- Fragen?

