VITMO

Анализ графовых данных и глубокое обучение

Азимов Рустам Высшая школа цифровой культуры

В предыдущих сериях

Классический ML для анализа графов

Классический подход

• Разработать правила получения признаков для вершин/рёбер/графов

• Заполнить данные для тренировочного набора и обучить модель

Hand-crafted features

 Выбор признаков для описания вершин/рёбер/графов является ключевым для качественного решения задачи

- В этой лекции рассмотрим варианты таких признаков
- Для простоты работаем только с неориентированными графами

Постановка задачи

• Задача: предсказать некоторые значения на новых объектах

- **Признаки**: d-мерные вектора
- Объекты: вершины/рёбра/графы
- Функция потерь: зависит от задачи

Node classification

Признаки для вершин

• Степень вершины

- Показатель центральности
- Коэффициент кластеризации
- Графлеты

Степень вершины

ullet Пусть A - матрица смежности графа, тогда **степень** вершины $\, u \,$

$$d_u = \sum_{v \in V} A[u, v]$$

Центральность

• Степень вершин не учитывает важность соседей

• Это можно сделать, например, с помощью показателя

центральности

- Eigenvector centrality
- Betweenness centrality
- Closeness centrality

Eigenvector centrality

• Важность вершины v зависит от важности соседей N(v)

$$c_v = \frac{1}{\lambda} \sum_{u \in N(v)} c_u$$

- В матричной форме $\lambda c = Ac$
- ullet Для центральности используется c_{max} , который соответствует наибольшему собственному значению λ_{max}

Betweenness centrality

 Важность вершины зависит от количества кратчайших путей, которые проходят через неё

$$c_v = \sum_{s \neq v \neq t} \frac{\text{number of shortest paths between s and t that contain v}}{\text{number of shortest paths between s and t}}$$

Closeness centrality

• Вершина важна, если от неё можно быстро добраться до других

$$c_v = \frac{1}{\sum_{u \neq v} \text{length of the shortest path between u and v}}$$

Clustering coefficient

• Измеряет степень связности соседей вершины v

Graphlets

• **Графлеты** - небольшие подграфы для описания структуры соседей вершины

- **Graphlet Degree Vector (GDV)** вектор из подсчитанного количества графлетов для конкретной вершины
 - Для графлетов размера от 2 до 5, GDV вектор размера 73
- GDV может использоваться в качестве hand-crafted признака вершины и описывает локальную топологию
- Сравнение GDV двух вершин более детально чем сравнение степеней вершин или коэффициента кластеризации

Graphlets

Пример

VİTMO

Предсказание связей

• Удалить случайные рёбра в графе и попытаться их предсказать

- Или граф меняется с течением времени, предсказать какие рёбра появятся
 - Для каждой пары вершин считаем score
 - Отранжировать предсказания и сравнить с реально появившимися рёбрами

Признаки рёбер

VİTMO

- Distance-based
- Local neighborhood overlap
- Global neighborhood overlap

Distance-based

• Длина кратчайшего пути

- Не различает окружения вершин, например есть ли общие соседи
- Может быть несколько кратчайших путей

Local neighborhood overlap

ullet Смотрит на общих соседей у двух вершин v_1 и v_2

- \circ Общие соседи $|N(v_1) \cap N(v_2)|$
- \circ Jaccard's coefficient $rac{|N(v_1)\cap N(v_2)|}{|N(v_1)\cup N(v_2)|}$
- Adamic-Adar index

$$\sum_{u \in N(v_1) \cap N(v_2)} \frac{1}{\log(k_u)}$$

Local neighborhood overlap

• Если вершины не имеют общих соседей, то все эти показатели равны нулю, хотя в будущем вероятность появления ребра имеется

Нужно рассмотреть граф целиком

Global neighborhood overlap

Katz index - количество путей между парой вершин

Можно подсчитать с помощью возведения в степень матрицы смежности над стандартным полукольцом

$$S[v_1, v_2] = \sum_{l=1}^{\infty} \beta^l A^l[v_1, v_2]$$

Признаки графов

• Хотим характеризовать граф целиком

- Из простого можно агрегировать признаки вершин и рёбер
- ullet Graph Kernels K(G,G') оценивают схожесть графов и можно перейти к SVM
 - Graphlet Kernel
 - Weisfeiler-Lehman Kernel

Graph Kernel

 Основная идея - использовать для описания графа вектор наподобие Bag-of-Words

- "Bag of nodes"
- "Bag of node degrees"

Graphlet Features

• "Bag of graphlets": есть отличия от GDV для вершин

- Не все вершины графлета обязаны быть связанными
- Нет выделенной вершины (корня)
 - For k = 3, there are 4 graphlets.

• For k = 4, there are 11 graphlets.

Graphlet Features

Example for k = 3.

 g_1

 g_2

 g_3

 \mathcal{G}

(

4

$$f_G = (1,$$

9/27/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph Kernel

$$K(G,G') = \langle f_G, f_{G'} \rangle = f_G^T f_{G'}$$

- Графы могут быть существенно разных размеров, так что лучше нормализовать каждый вектор (поделить на сумму значений в нём)
- Дорого для вычисления на больших графах

• Хотим ядровую функцию, которую можно вычислить быстрее

- Обобщаем идею "Bag of node degrees"
- Итеративно раскрашиваем граф и рассматриваем всё более далеких соседей

$$c^{(k+1)}(v) = \mathsf{HASH}\left(\left\{c^{(k)}(v), \left\{c^{(k)}(u)\right\}_{u \in N(v)}\right\}\right)$$

Через К итераций получим информацию о K-hop соседстве в графе

Example of color refinement given two graphs

Assign initial colors

Aggregate neighboring colors

Example of color refinement given two graphs

Aggregated colors

Hash aggregated colors

Hash table

1,1	>	2
1,11	>	3
1,111	>	4
1,1111	>	5

Example of color refinement given two graphs

Aggregated colors

Hash aggregated colors

Example of color refinement given two graphs

Aggregated colors

Hash aggregated colors

Hash table

2,4	>	6
2,5	>	7
3,44	>	8
3,45	>	9
4,245	>	10
4,345	>	11
5,2244	>	12
5,2344	>	13

Graph Kernel

После раскраски вычисляется вектор, содержащий информацию сколько вершин каждого цвета

- Ядровая функция опять же скалярное произведение векторов двух графов
- Линейная сложность по количеству рёбер в графах

Заключение

