

Χ

Relation between hair and eye color

barplot(..., space= 1.5, axisnames = FALSE)

Death Rates in Virginia

Death Rates in Virginia

Faked upper 2*sigma error bars

Death Rates in Virginia

1:7

abs(stats::rnorm(7))

Comparing boxplot()s and non-robust mean +/- SD

Guinea Pigs' Tooth Growth

Guinea Pigs' Tooth Growth

boxplot.matrix(...., main = ...)

bxp(*, frame= FALSE, outl= FALSE)

boxplot(z, whisklty = 3)

boxplot(*, col.axis=..,main=..)

plot(*, col.axis=..,main=..)

Histogram of x

A Topographic Map of Maunga Whau

help("contour")

<u>at</u>

long

Given: wool help("coplot") I ° Given: tension breaks Σ 0 0 0 00 ွ 0 0

Index

X

Χ

t

Х

Х

Death Rates in Virginia - 1940

Death Rates in Virginia – 1940

help("filled.contour")

Sex: Male

Sex: Female

with(iris, plot(...., panel.first = grid(), ... panel.first = grid(3, lty = 1, lwd = 2)

Histogram of .leap.seconds

Histogram of .leap.seconds

.leap.seconds

Histogram of random.dates

WRONG histogram

Math can be beautiful ...

Maunga Whau Volcano

1 help("layout")

Petal and Sepal Dimensions in Iris Blossoms

legend(..., Ity = c(2, -1, 1), pch = c(NA, 3, 4), merge = TRUE)

Mean and Median of a Skewed Distribution

Χ

points with bg & legend(*, pt.bg)

CALIO	– .	
Α		D
 В		Ε
C		F

text.font = 3

text.font = 4

Stopping Distance versus Speed

matplot(...., pch = 21:23, bg = 2:5)

matplot(,type = "plobcsSh")

Χ

Petal and Sepal Dimensions in Iris Blossoms

S=setosa, C=versicolor, V=virginica

Survival on the Titanic

Class

Titanic

Sex

HairEyeColor

HairEyeColor

mtcars

mtcars

6.0 8.5 CONT -	5 7 9	6.0 8.5	5 7 9	5 7 9	5 8
9.9 INTG	0.96 0.87 0.8	1 0.80 0.88	0.87 0.91	0.91 0.74	0.94
	DMNR 0.84 0.8	1 0.80 0.86	0.84 0.91	0.89 0.79	0.94
5 7 9	DILG 0.9	6 0.96 0.98	0.96 0.95	0.96 0.81	0.93
	CFM	0.98 0.96	0.94 0.95	0.94 0.88	0.93
6.0 8.5		DECI 0.96	0.94 0.95	0.95 0.87	0.92
		PREP	0.99 0.98	0.99 0.85	0.95
5 7 9			FAMI 0.98	0.99 0.84	0.94
			ORAL	0.99 0.89	0.98 - 6
5 7 9				WRIT 0.86	0.97
				PHYS	0.91
6 9	5 8 5.5 8		5 7 9	5 8	RTEN

'fg': axes, ticks and box in gray

		غ غ
solid	solid	
	solid lwd = 2	solid lwd = 2
dashed	44	
	dashed lwd = 2	44 <u>lwd</u> = 2
dotted	13	
	dotted lwd = 2	13 lwd = 2
,		
dotdash	1343	
	dotdash lwd = 2	1343 lwd = 2
, _	· - · - · - ·	
	70	
	longdash lwd = 2	73 <u>lwd = 2</u>
twodash	2262	
	twodasii iwu = Z	2262 lwd = 2

11	
	11 lwd = 2
22	
	22 lwd = 2
33	33 lwd = 2
	33 IWa = 2
44	
	44 lwd = 2
12	
12	12 lwd = 2
13	42 hud - 2
, 	13 lwd = 2
14	
, 	14 lwd = 2
21	
Z1	21 lwd = 2
31	
	31 lwd = 2

pie(*, clockwise = TRUE)

pie(*, labels="", col=rainbow(n), border=NA,...

plot(x, type = "s")

treatment

Factors

Factors

Factors

Factors

Factors Factors

help("plot.factor")

help("plot.raster")

help("plot.raster")

help("plot.raster")

This is my raster

plot(table(rpois(200, lambda = 5)))

plot(Titanic, main= *)

Class

Histogram of women\$weight

Histogram of 15 women's weights

plot(..., type="o", pch=21, bg=par("bg"))

plot symbols: points (... pch = *, cex = 3)

plot symbols: points (... pch = *, cex = 2.5)

Distance Between Brownian Motions

2 x 11 rectangles; 'rect(100+i,300+i, 150+i,380+i)'

density.default(x = eruptions, bw = 0.15)

Χ

Applications at UCB

Admissions at UCB

Motor Trend Cars : stars(*, full = F)

Motor Trend Cars : full stars()

Maserati Bora Volvo 142E

disp

Judge not ...

RTEN

ORALWRIT PHYS

ZARRILLI, K.J.

Judge not ...

US Judges rated

US Judges rated

US Judges 1-10

A Joke -- do *not* use symbols on 2D data!

stripchart(OrchardSprays)

stripchart(OrchardSprays)

Sunflower Plot of Rounded N(0,1)

2nd Sunflower Plot of Rounded N(0,1)

Sunflower plot (marked point process)

Trees' Girth

Stopping Distance versus Speed

Stopping Distance versus Speed

Main Title

Open X-splines

Closed X-splines

