References

- [1] Nasteski, Vladimir. "An overview of the supervised machine learning methods." *Horizons. b* 4 (2017): 51-62.
- [2] Celebi, M. Emre, and Kemal Aydin, eds. *Unsupervised learning algorithms*. Berlin: Springer International Publishing, 2016.
- [3] Sutton, Richard S., and Andrew G. Barto, "Reinforcement learning", *Journal of Cognitive Neuroscience* 11.1 (1999): 126-134.
- [4] Sutton, Richard S., and Andrew G. Barto. *Reinforcement learning: An introduction*. MIT press, 2018.
- [5] Le, N., Rathour, V. S., Yamazaki, K., Luu, K., & Savvides, M. (2021). Deep reinforcement learning in computer vision: a comprehensive survey. *Artificial Intelligence Review*, 1-87.
- [6] Watkins, C. J. C. H. (1989). Learning from delayed rewards, PhD Thesis
- [7] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.
- [8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
- [9] Artificial Intelligence, Leonardo Araujo dos Santos, Independent Textbook
- [10] Ayle, M., Tekli, J., El-Zini, J., El-Asmar, B., & Awad, M. (2020). BAR A Reinforcement Learning Agent for Bounding-Box Automated Refinement. *Proceedings of the AAAI Conference on Artificial Intelligence*, 34(03), 2561-2568
- [11] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 770-778).
- [12] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248-255
- [13] Everingham, M., Van Gool, L., Williams, C.K.I. *et al.* The PASCAL Visual Object Classes (VOC) Challenge. *Int J Comput Vis* **88**, 303–338 (2010).

- [14] Howard, Ronald A. "Dynamic programming and markov processes.", Technology Press of Massachusetts Institute of Technology, (1960).
- [15] Blog Post Series by Jake Bennett, (https://randomant.net/reinforcement-learning-concepts/)
- [16] Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*.
- [17] Lee, S., Kwak, S. and Cho, M., 2018, December. Universal bounding box regression and its applications. In *Asian Conference on Computer Vision* (pp. 373-387). Springer, Cham.
- [18] Girshick, R., Donahue, J., Darrell, T. and Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 580-587).
- [19] Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once: Unified, real-time object detection. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 779-788).
- [20] Redmon, J. and Farhadi, A., 2017. YOLO9000: better, faster, stronger. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 7263-7271).
- [21] Redmon, J. and Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
- [22] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, pp.1097-1105.