Математический анализ Конспект лекций Сидорова А.М

Фаизова Алсу

ИВМиИТ

3-й семестр 2-й курс

Темы

 $lue{1}$ Внутренние и внешние меры ранга k и их свойства

Свойства внутренних и внешних мер Жордана

Определение

Произведением множеств $A_1,A_2,...,A_n$ называется множество $A_1*A_2*...*A_n=\prod_{i=1}^nA_i=\{(x_1,...,x_n)|x_i\in A_i,i=\overline{1,n}\}$

Определение

Пусть дано $n \in N, k$ - целое неотрицательное число. n-мерным кубом ранга k называется множество $Q = \prod_{i=1}^n [\frac{m_i}{2^k}, \frac{m_i+1}{2^k}]$, где $m_i \in Z$.

Замечание:

Через Q_n^k обозначим множество n-мерных кубов ранга k.

- Два n-мерных куба ранга k либо не пересекаются, либо пересекаются по общей их границе, то есть не имеют общих внутренних точек. Таким образом, два n-мерных куба ранга k имеют непересекающиеся внутренности.
- ullet Всякий n-мерный куб ранга k состоит из 2^n n-мерных кубов ранга k+1.

Пусть $A \subset R^n$ -ограниченное ограниченное множество. Пусть k — целое неотрицательное число. Через $I_*(k,A)$ обозначим количество всех n-мерных кубов ранга k, которые содержатся во внутренности множества A. Через $I^*(k,A)$ обозначим количество всех n-мерных кубов ранга k, которые пересекаются с замыканием множества A.

Определение

Объемом n-мерного куба ранга k назовем число $V_k=(rac{1}{2^k})^n=rac{1}{2^{kn}}$

Определение

Пусть множество $A\subset R^n$. Внутренней мерой ранга k множества A называется число $\mu_*(k,A)=l_*(k,A)*V_k$. Внешней мерой ранга k множества A называется число $\mu^*(k,A)=l^*(k,A)*V_k$.

Теорема

Пусть множество $A \subset R^n$ ограничено. Тогда

$$0 \le \mu_*(k, A) \le \mu_*(k + 1, A) \le \mu^*(k + 1, A) \le \mu^*(k, A).$$

Доказательство.

Всякий n-мерный куб ранга $k \ Q \in Q_n^k$ состоит из $2^n \ n$ -мерных кубов ранга k+1. $Q_1,...,Q_{2^n}\in Q_n^{k+1}$. Если $Q\subset A$, то все $Q_i\subset A$. Если $Q \cap \overline{A} \neq \emptyset$, то хотя бы один из Q_i пересекается с замыканием. Поэтому

$$0 \le I_*(k,A) * 2^n \le I_*(k+1,A) \le I^*(k+1,A) \le I^*(k,A) * 2^n.(*)$$

Ясно, что $V_{k+1} = \frac{V_k}{2n}$. Умножим все члены равенства (*) на V_{k+1} . Получим

$$0 \leq I_*(k,A) * V_k \leq I_*(k+1,A) * V_{k+1} \leq I^*(k+1,A) * V_{k+1} \leq I^*(k,A) * V_k.$$

Итак,

$$0 \le \mu_*(k,A) \le \mu_*(k+1,A) \le \mu^*(k+1,A) \le \mu^*(k,A).$$

Следствие

Последовательность внутренних мер ранга k, то есть

$$\mu^*(k,A)$$
, является возрастающей и ограниченной сверху $\mu^*(k,A) \leq \mu^*(0,A), \forall k=0,1,2,....$

Последовательность внешних мер ранга k является убывающей и ограниченной снизу

$$\mu * (k, A) \ge 0, \forall k = 0, 1, 2,$$

По теореме Вейерштрасса у этих последовательностей \exists пределы. Это дает основание ввести следующее определение.

Пусть множество $A\subset R^n$ ограничено.

Определение

Внутренней мерой множества А называется число

 $\mu_*(A) = \lim_{k \to +\infty} \mu_*(k,A)$. Внешней мерой множества A называется число $\mu^*(A) = \lim_{k \to +\infty} \mu^*(k,A)$.

Теорема

Пусть множества $A,B\subset R^n$ ограничены. Тогда

- **1** $0 \le \mu_*(A) \le \mu^*(A)$
- ② Если $A \subset B$, то $\mu_*(A) \leq \mu_*(B)$ и $\mu^*(A) \leq \mu^*(B)$
- ullet Если $A \cap B = \emptyset$, то $\mu_*(A) + \mu_*(B) \leq \mu_*(A \cup B)$
- $\mu *(A \cup B) \leq \mu *(A) + \mu *(B)$

Доказательство.

💶 Ясно, что

$$0 \le \mu_*(k, A) \le \mu^*(k, A), \forall k = 0, 1, 2....$$

Перейдём в неравенстве к пределу:

$$0 \leq \lim_{k \to +\infty} \mu_*(k,A) \leq \lim_{k \to +\infty} \mu^*(k,A) \to 0 \leq \mu_*(A) \leq \mu^*(A)$$

Доказательство.

💶 Ясно, что

$$0 \le \mu_*(k, A) \le \mu^*(k, A), \forall k = 0, 1, 2....$$

Перейдём в неравенстве к пределу:

$$0 \leq \lim_{k \to +\infty} \mu_*(k, A) \leq \lim_{k \to +\infty} \mu^*(k, A) \to 0 \leq \mu_*(A) \leq \mu^*(A)$$

② Пусть $A \subset B$, тогда $\dot{A} \subset \dot{B}, \overline{A} \subset \overline{B}$. Поэтому

$$\mu_*(k,A) \le \mu_*(k,B)$$
 in $\mu^*(k,A) \le \mu^*(k,B), \forall k = 0,1,2...$

Перейдём в неравенстве к пределу:

$$\lim_{k \to +\infty} \mu_*(k, A) \leq \lim_{k \to +\infty} \mu_*(k, B) \to \mu_*(A) \leq \mu_*(B)$$

$$\lim_{k \to +\infty} \mu^*(k, A) \leq \lim_{k \to +\infty} \mu^*(k, B) \to \mu^*(A) \leq \mu^*(B)$$

Доказательство.

① Пусть
$$A \cap B = \emptyset$$
. Тогда $\dot{(}A) \cap \dot{(}B) = \emptyset$. Поэтому
$$\mu_*(k,A) + \mu_*(k,B) \leq \mu_*(k,A \cup B).$$
 Перейдём к пределу, учтя что $\dot{(}A) \cup \dot{(}B) \subset \dot{(}A \cup B).$
$$\lim_{k \to +\infty} \mu_*(k,A) + \lim_{k \to +\infty} \mu_*(k,B) \leq \lim_{k \to +\infty} \mu_*(k,A \cup B) \to \mu_*(A) + \mu_*(B) \leq \mu_*(A \cup B).$$

Доказательство.

ullet Пусть $A \cap B = \emptyset$. Тогда $(A) \cap (B) = \emptyset$. Поэтому $\mu_*(k,A) + \mu_*(k,B) < \mu_*(k,A \cup B)$.

Перейдём к пределу, учтя что $(A) \cup (B) \subset (A \cup B)$.

$$\lim_{k \to +\infty} \mu_*(k, A) + \lim_{k \to +\infty} \mu_*(k, B) \le \lim_{k \to +\infty} \mu_*(k, A \cup B) \to \mu_*(A) + \mu_*(B) \le \mu_*(A \cup B)$$

① Справедливо равенство $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Поэтому, если $Q \in Q_n^k \cup \overline{A \cup B}$, то либо $Q \cap \overline{A} \neq \emptyset$, либо $Q \cap \overline{B} \neq \emptyset$. Значит, $\mu^*(k,A \cup B) \leq \mu^*(k,A) + \mu^*(k,B), \forall k = 0,1,2,...$. Осталось перейти к пределу.

$$\lim_{k\to+\infty} \mu_*(k,A\cup B) \leq \lim_{k\to+\infty} \mu_*(k,A) + \lim_{k\to+\infty} \mu_*(k,B) \rightarrow \mu_*(A\cup B) \leq \mu_*(A) + \mu_*(B)$$