NANYANG TECHNOLOGICAL UNIVERSITY

SEMESTER 1 EXAMINATION 2019-2020

MH1812 - DISCRETE MATHEMATICS

TIME ALLOWED: 2 HOURS

INSTRUCTIONS TO CANDIDATES

December, 2019

- This examination paper contains SEVEN (7) questions and comprises SIX
 printed pages.
- 2. Answer **ALL** questions. The marks for each question are indicated at the end of each question.
- 3. Answer each question beginning on a **FRESH** page of the answer book.
- 4. This **IS NOT** an **OPEN BOOK** exam.
- 5. Candidates may use calculators. However, they should write down systematically the steps in the workings.

MH1812

QUESTION 1.

(10 marks)

Decide whether the following argument is valid:

$$T \to (E \lor M);$$

$$S \to \neg E;$$

$$T \land S;$$

$$\therefore M.$$

Solution: This is a valid argument. Since $T \wedge S$ is true, it follows both T and S are true.

Since S and $S \to \neg E$ are true, it follows $\neg E$ is true. Hence E is false.

Since T and $T \to (E \vee M)$ are true, it follows $(E \vee M)$ true.

But E is false and $(E \vee M)$ is true, M must be true. Therefore the conclusion is true.

Hence the argument is valid.

Alternatively, one can use the truth table and look at the critical rows. \Box

QUESTION 2.

(a) Find the solution of the recurrence relation $a_n = 2a_{n-1} + 1$ with $a_1 = 1$. (10 marks)

Solution:

$$a_{n} = 2a_{n-1} + 1$$

$$= 2(2a_{n-2} + 1) + 1$$

$$= 2^{2}a_{n-2} + 2 + 1$$

$$= 2^{2}(2a_{n-3} + 1) + 2 + 1$$

$$= 2^{3}a_{n-3} + 2^{2} + 2 + 1$$

$$\vdots$$

$$= 2^{i}a_{n-i} + 2^{i-1} + 2^{i-2} + \dots + 2 + 1$$

$$\vdots$$

$$= 2^{n-1}a_{1} + 2^{n-2} + \dots + 2 + 1$$

$$= 2^{n-1} + 2^{n-2} + \dots + 2 + 1$$

$$= \frac{2^{n} - 1}{2 - 1}$$

$$= 2^{n} - 1.$$

(b) For all $n \ge 1$, prove the following by mathematical induction:

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}.$$

(10 marks)

Solution: Let $P(n): \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$.

For n = 1. LHS = RHS = 1/2.

Assume P(k) is true, that is, $\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{k}{2^k} = 2 - \frac{k+2}{2^k}$. We prove P(k+1) is also true.

$$LHS = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{k}{2^k} + \frac{k+1}{2^{k+1}}$$

$$= 2 - \frac{k+2}{2^k} + \frac{k+1}{2^{k+1}}$$

$$= 2 - \left(\frac{2(k+2) - (k+1)}{2^{k+1}}\right)$$

$$= 2 - \frac{k+3}{2^{k+1}}$$

$$= 2 - \frac{(k+1) + 2}{2^{k+1}}$$

$$= RHS.$$

This proves that P(k+1) is also true.

QUESTION 3.

In how many ways can a committee of 5 be formed from a group of 11 people consisting of 4 teachers and 7 students if

(a) there is no restriction in the selection? (5 marks)

Solution: If no restriction, the number of ways is $\binom{11}{5} = 11!/(5!6!) = 462$.

(b) the committee must include exactly 2 teachers? (5 marks)

Solution: We first select 2 teachers from 4 and then (5-2) students from 7. The number of ways is

$$\binom{4}{2} \binom{7}{3} = 6 \times 35 = 210.$$

(c) the committee must include at least 3 teachers? (5 marks)

Solution: There are two cases: either 3 teachers or 4 teachers are in the comittee. In the former case, the number of ways is

$$\binom{4}{3} \binom{7}{2} = 4 \times 21 = 84,$$

while in the latter, the number of ways is

$$\binom{4}{4}\binom{7}{1} = 7.$$

Thus, the total number of ways is 84 + 7 = 91.

(d) a particular teacher and a particular student cannot be both in the committee? (5 marks)

Solution:Let T be the particular teacher and S the particular student. We first find the number of ways to form a committee of 5 which includes both T and S. Such a committee of 5 can be formed by taking $\{T, S\}$ and a subset of 3 from the remaining 9 people. Thus, the number of ways to from a committee of 5 including T and S is $\binom{9}{3} = 84$. Hence the number of ways to form a committee of 5 which does not include both T and S is

$$\binom{11}{5} - \binom{9}{3} = 462 - 84 = 378.$$

QUESTION 4. (12 marks)

Prove for three sets A, B, and C, if $A \cap C = B \cap C$ and $A \cup C = B \cup C$, then A = B.

Solution:

$$A = A \cap (A \cup C)$$
 (absorption law)

$$= A \cap (B \cup C)$$
 (since $A \cup C = B \cup C$)

$$= (A \cap B) \cup (A \cap C)$$
 (distributive law)

$$= (B \cap A) \cup (B \cap C)$$
 (associative law, $A \cap C = B \cap C$)

$$= B \cap (A \cup C)$$
 (distributive law)

$$= B \cap (B \cup C)$$
 (since $A \cup C = B \cup C$)

$$= B$$
 (absorption law)

QUESTION 5. (16 marks)

The relation R is defined on the set of integers \mathbb{Z} as follows. For all $x, y \in \mathbb{Z}$,

$$x R y \iff 3 \mid (x^2 - y^2).$$

Determine if R is an equivalence relation, and if so, show the equivalence classes.

Solution:

- Reflexive: $\forall x \in \mathbb{Z}, 3 \mid x^2 x^2 = 0$, hence $(x, x) \in R$
- Symmetric: $\forall x, y \in \mathbb{Z}$, if $(x, y) \in R$, then $3 \mid x^2 y^2$, this implies $x^2 y^2 = 3k$ for some $k \in \mathbb{Z}$, and $y^2 x^2 = -3k$ multiple of 3, i.e., $3 \mid y^2 x^2 \Longrightarrow (y, x) \in R$.
- Transitive: $\forall x, y, z \in \mathbb{Z}$, if $(x, y), (y, z) \in R$, then $3 \mid x^2 y^2$ and $3 \mid y^2 z^2$, this implies $x^2 y^2 = 3k_1$ and $y^2 z^2 = 3k_2$ for some $k_1, k_2 \in \mathbb{Z}$, hence $x^2 z^2 = (x^2 y^2) + (y^2 z^2) = 3k_1 + 3k_2 = 3(k_1 + k_2)$ multiple of 3, i.e., $3 \mid x^2 z^2 \Longrightarrow (x, z) \in R$.

Hence R is an equivalence relation, and the equivalence classes are:

$$[0] = \{3k \mid k \in \mathbb{Z}\}, \text{ and } [1] = \{3k+1, 3k+2 \mid k \in \mathbb{Z}\}$$

QUESTION 6.

Let $A = \{1, 2, 3, 4\}, B = \{a, b, c\}, \text{ and } f : A \to B.$

- (a) How many such functions f are there? (4 marks)
- (b) How many such onto functions f are there? (6 marks)
- (c) How many such one-to-one functions f are there? (4 marks)

Solution:

- (a) $3^4 = 81$.
- (b) $\binom{4}{2} \cdot 3! = 36.$
- (c) 0.

QUESTION 7. (8 marks)

In Sam's messy dresser drawer, there is a jumble of 6 red socks, 7 blue socks, 9 green socks, and 5 yellow socks. If Sam grabs a handful of socks without looking at what he's taking, what is the minimum number of socks Sam has to grab in order to guarantee that he has at least 4 socks of the same color?

Solution: $3 \cdot 4 + 1 = 13$.

END OF PAPER