

Chapter 13: Descriptive Statistics – Thống kê mô tả

Ex3: Students

- Cho dữ liệu students.xls
- Đọc dữ liệu, kiểm tra và loại bỏ các dòng/các cột chứa dữ liệu NA
- Tạo dữ liệu mới từ cột thứ 4 đến hết. In thông tin của dataset
- In thống kê chung của dataset
- Tính phương sai của tất cả các thuộc tính số dữ liệu
- Tính standard deviation của tất cả các thuộc tính số trong dữ liệu
- Tính skewness của tất cả các thuộc tính số trong dữ liệu
- Tính kurtosis của tất cả các thuộc tính số trong dữ liệu
- vẽ histogram cho các cột Age, SAT, Average.score..grade., Height..in.

Gợi ý

```
In [1]: # Load the Library into R workspace.
library("xlsx")
```

Loading required package: rJava

Loading required package: xlsxjars

```
In [2]: df <- read.xlsx("students.xls", sheetName ="Full")
    print("Content of file:")
    head(df)</pre>
```

[1] "Content of file:"

ID	LastÂ.Name First.Name		City	State	Gender	Student.Status	Major	Country	Age
1	DOE01	JANE01	Los Angeles	California	Female	Graduate	Politics	US	30
2	DOE02	JANE02	Sedona	Arizona	Female	Undergraduate	Math	US	19
3	DOE01	JOE01	Elmira	New York	Male	Graduate	Math	US	26
4	DOE02	JOE02	Lackawana	New York	Male	Graduate	Econ	US	33
5	DOE03	JOE03	Defiance	Ohio	Male	Graduate	Econ	US	37
6	DOE04	JOE04	Tel Aviv	Israel	Male	Graduate	Econ	Israel	25
4									•

In [3]: df <- df[colSums(!is.na(df)) > 0]

In [4]: df <- na.omit(df)</pre>

In [5]: df <- df[, 4:14] head(df)</pre>

City	State	Gender	Student.Status	Major	Country	Age	SAT	Average.scoregrade.	F
Los Angeles	California	Female	Graduate	Politics	US	30	2263	67.00000	5.3
Sedona	Arizona	Female	Undergraduate	Math	US	19	2006	63.00000	
Elmira	New York	Male	Graduate	Math	US	26	2221	78.11328	
Lackawana	New York	Male	Graduate	Econ	US	33	1716	77.80859	
Defiance	Ohio	Male	Graduate	Econ	US	37	1701	65.00000	
Tel Aviv	Israel	Male	Graduate	Econ	Israel	25	1786	69.00000	

In [6]: str(df)

```
'data.frame':
              30 obs. of 11 variables:
                                  : Factor w/ 29 levels "Acme", "Amsterdam", ...:
 $ City
17 25 9 14 7 27 6 15 20 22 ...
                                  : Factor w/ 26 levels "Argentina", "Arizon
 $ State
a",..: 4 2 15 15 17 8 16 9 5 15 ...
 $ Gender
                                  : Factor w/ 2 levels "Female", "Male": 1 1 2 2
2 2 2 1 1 1 ...
                                  : Factor w/ 2 levels "Graduate", "Undergraduat
 $ Student.Status
e": 1 2 1 1 1 1 1 2 2 1
                                  : Factor w/ 3 levels "Econ", "Math", ...: 3 2 2
 $ Major
1 1 1 3 3 2 2 ...
 $ Country
                                  : Factor w/ 11 levels "Argentina", "Bulgari
a",..: 10 10 10 10 10 6 10 10 3 10 ...
$ Age
                                         30 19 26 33 37 25 39 21 18 33 ...
                                   : num
 $ SAT
                                   : num 2263 2006 2221 1716 1701 ...
```

: num

\$ Newspaper.readership..times.wk.: num 5 7 6 3 6 5 5 5 6 5 ...

67 63 78.1 77.8 65 ...

: num 61 64 73 68 71 67 70 62 62 66 ...

\$ Average.score..grade.

\$ Height..in.

In [7]: summary(df)


```
City
                                    Gender
                                                   Student.Status
                        State
                                             Graduate
New York
           : 2
                 New York : 5
                                 Female:15
                                                          :15
                 Argentina : 1
                                 Male :15
                                             Undergraduate:15
           : 1
Acme
Amsterdam
                 Arizona
           : 1
Beijing
           : 1
                 Bulgaria : 1
Buenos Aires: 1
                 California: 1
                 Canada
Caracas
           : 1
                           : 1
(Other)
            :23
                  (Other)
                            :20
    Major
                  Country
                                                SAT
                                 Age
             US
                            Min.
                                   :18.0
                                                  :1338
Econ
        :10
                       :20
                                           Min.
Math
        :10
                            1st Qu.:19.0
                                           1st Qu.:1658
             Argentina: 1
Politics:10
             Bulgaria : 1
                            Median :23.0
                                           Median :1817
             Canada
                                   :25.2
                                                  :1849
                            Mean
                                           Mean
              China
                            3rd Qu.:30.0
                      : 1
                                           3rd Qu.:2032
              Holland
                                           Max.
                      : 1
                                   :39.0
                                                  :2309
                            Max.
              (Other)
Average.score..grade. Height..in.
                                     Newspaper.readership..times.wk.
Min.
       :63.00
                     Min.
                            :59.00
                                     Min.
                                            :3.000
1st Qu.:72.00
                     1st Qu.:63.00
                                     1st Qu.:4.000
Median :79.75
                     Median :66.50
                                     Median:5.000
Mean :80.40
                                     Mean :4.867
                     Mean :66.43
                     3rd Qu.:70.75
3rd Qu.:88.00
                                    3rd Qu.:6.000
       :95.88
                            :75.00
                                     Max.
Max.
                     Max.
                                            :7.000
```

```
In [8]: major <- table(df$Major)
    colors1 <- c("red", "yellow", "green")

gender <- table(df$Gender)
    colors2 <- c("blue", "pink")

status <- table(df$Student.Status)
    colors3 <- c("violet", "cyan")</pre>
```

In [9]: pie(major, col=colors1, main="Number of Students per Major")

Number of Students per Major

In [10]: pie(gender, col=colors2, main="Male vs Female")

Male vs Female

In [11]: pie(status, col=colors3, main="Graduate vs Undergraduate")

Graduate vs Undergraduate

In [12]: # calculate variance for all attributes
 sapply(df[7:11], var)

Age 47.2

SAT 75686.7137931035

Average.score..grade. 102.130104261266

Height..in. 21.7022988505747

Newspaper.readershi... 1.6367816091954

In [13]: # calculate sd for all attributes
 sapply(df[7:11], sd)

Age 6.87022561492707

SAT 275.112184014273

Average.score..grade. 10.1059440064383

Height..in. 4.65857261943771

Newspaper.readershi... 1.27936765989898

In [14]: #install.packages("e1071")

skew

In [15]: # calculate skewness for each variable
 library("e1071")
 skew <- apply(df[,7:11], 2, skewness)
 # display skewness</pre>

Age 0.502709664447605

SAT 0.14044712797574

Average.score..grade. -0.101374236291567

Height..in. 0.155085443150385

Newspaper.readershi... -0.0468347397810847

In [16]: kur <- apply(df[,7:11], 2, kurtosis)
 kur</pre>

Age -1.20242842095183

SAT -1.04281692418247

Average.score..grade. -1.15697430829857

Height..in. -1.21584757091849

Newspaper.readershi... -1.14165472583428


```
In [17]: par(mfrow=c(2,2))
         # Create the histogram.
         hist(df$Age, main = "Ages",
              xlab = "Ages",
              xlim = c(min(df\$Age)-5, max(df\$Age)+5),
              col = "orange",
              breaks = 10,
              border = "blue",
              # so Lieu tren y theo hang ngang
              las = 1,
              freq=FALSE
         lines(density(df$Age))
         hist(df$SAT, main = "SAT",
              xlab = "SAT",
              xlim = c(min(df\$SAT)-10, max(df\$SAT)+10),
              col = "orange",
              breaks = 10,
              border = "blue",
              # so lieu tren y theo hang ngang
               las = 1,
              freq=FALSE
         lines(density(df$SAT))
         hist(df$Average.score..grade., main = "Avg Score Grade",
              xlab = "Avg score",
              xlim = c(min(df$Average.score..grade.)-10, max(df$Average.score..grade.)+10
              col = "orange",
              breaks = 10,
              border = "blue",
              # so lieu tren y theo hang ngang
              las = 1,
              freq=FALSE
         lines(density(df$Average.score..grade.))
         hist(df$Height..in., main = "Height in",
              xlab = "Height in",
              xlim = c(min(df$Average.score..grade.)-10, max(df$Average.score..grade.)+10
              col = "orange",
              breaks = 10,
              border = "blue",
              # so lieu tren y theo hang ngang
               las = 1,
               freq=FALSE
         lines(density(df$Height..in.))
```


