Bài tập LEGv8

Hãy thực hiện các yêu cầu sau cho các bài tập LEGv8 bên dưới:

- Chuyển sang C/LEGv8 tương ứng.
- Cho biết ý nghĩa đoạn code (nếu có).
- Xác định giá trị trường address của tất cả các lệnh nhảy (CBZ, CBNZ, B.COND, B) (nếu có).
- Xác định giá trị thanh ghi PC và LR sau khi thực hiện lệnh BL (nếu có).
- Xác định giá trị thanh ghi PC sau khi thực hiện lệnh BR (nếu có).
- 1. Remember X0, X1 are registers used for procedure arguments / results.

Address			Instruction
10000	FUNC: O)RR X9,	, XZR, XZR
10004	LOOP: C	CBZ X1,	, END
10008	А	ADD X9,	, X9, X0
10012	S	SUBI X1,	, X1, #1
10016	В	3 LOC	OP
10020	END: A	ADDI X9,	, X9, #100
10024	А	ADD X0,	, X9, XZR
10028	В	BR LR	

2. Assume that the C-level integer i is held in register X10, X0 holds the C-level integer called result, and X1 holds the base address of the integer MemArray.

Address	Instruction			
10000	ORR X10, XZR, XZR			
10004	LOOP: LDUR X11, [X1, #0]			
10008	ADD X0, X0, X11			
10012	ADDI X1, X1, #8			
10016	ADDI X10, X10, #1			
10020	SUBIS XZR, X10, 100			
10024	B.LT LOOP			

3. The following code fragment processes two arrays and produces an important value in result register X0. The base addresses of the arrays are stored in X0 and X1 respectively, and their sizes are stored in X2 and X3, respectively.

Address	Instruction		
10000	FUNC: LSL	X2, X2, #2	
10004	LSL	X3, X3, #2	
10008	ADD	X9, XZR, XZR	
10012	ADD	X10, XZR, XZR	
10016	OUTER: ADD	X14, X0, X10	
10020	LDUR	X14, [X14, #0]	
10024	ADD	X11, XZR, XZR	

```
10028
                        X13, X1, X11
            INNER: ADD
                  LDUR X13, [X13, #0]
SUB X12, X13, X14
10032
10036
10040
                  CBNZ X12, SKIP
10044
                  ADDI X9, X9, #1
           SKIP: ADDI X11, X11, #4
10048
10052
                  SUB
                        X12, X11, X3
                        X12, INNER
10056
                  CBNZ
                        X10, X10, #4
10060
                  ADDI
10064
                  SUB
                         X12, X10, X2
10068
                  CBNZ X12, OUTER
10072
                  ORR
                         X0, X9, XZR
10076
                  BR
                         LR
```

4. What's the result of the program in X19?

Address			Instruction
0x00400030	Main:	ADDI	XO, XZR, #10
0x00400034		BL	Function
0x00400038		ADD	X19, X0, XZR
0x0040003C		ADDI	X8, #1 // syscall number for exit
0x00400040		ADDI	XO, #0 // return O status
0x00400044		SVC	#0 // invoke syscall to exit
0x00400048	Func:	SUBI	SP, SP, #32
0x0040004C		STUR	X19, [SP, #24]
0x00400050		STUR	X20, [SP, #16]
0x00400054		STUR	LR, [SP, #8]
0x00400058		STUR	XO, [SP, #0]
0x0040005C		ADDI	X19, XZR, #0
0x00400060		ADDI	X20, XZR, #0
0x00400064	Loop:	SUBS	XZR, X19, X0
0x00400068		B.LT	L1
0x0040006C		В	FinalFunction
0x00400070	L1:	ADDI	•
0x00400074		BL	Check
0x00400078		CBZ	XO, Inc_Loop
0x0040007C		ADD	X19, X19, X20
0x00400080	<pre>Inc_Loop:</pre>	ADDI	X20, X20, #1
0x00400084		LDUR -	XO, [SP, #0]
0x00400088		В	Loop
0x0040008C	Final_Func:		X0, X19, #0
0x00400090		LDUR	LR, [SP, #8]
0x00400094		LDUR	X20, [SP, #16]
0x00400098		LDUR	X19, [SP, #24]
0x0040009C		ADDI	SP, SP, #32
0x004000A0	Check:	BR	LR
0x004000A4 0x004000A8	Check:	ADDI	X9, XZR, #2 X10, X0, X9
0x004000A6		UDIV	X10, X0, X9 X10, X10, X9
0x004000AC 0x004000B0		MUL SUB	X10, X10, X9 X10, X0, X10
0x004000B0 0x004000B4		CBZ	X10, X0, X10 X10, L2
0x004000B4		ADDI	X0, XZR, #0
0x004000B0		В	Final Check
0x004000BC	L2:	ADDI	X0, XZR, #1
0x004000C4	Final Check		LR

5. X0 is procedure argument and X1 is procedure result.

Address		Instruction
10000	FACT: SUBI	SP, SP, #16
10004	STUR	LR, [SP, #8]
10008	STUR	XO, [SP, #0]
10012	SUBI	S XZR, X0, #1
10016	B.GE	L1
10020	ADDI	X1, XZR, #1
10024	ADDI	SP, SP, #16
10028	BR	LR
10032	L1: SUBI	XO, XO, #1
10036	BL	FACT
10040	LDUR	XO, [SP, #0]
10044	LDUR	LR, [SP, #8]
10048	ADDI	SP, SP, #16
10052	MUL	X1, X0, X1
10056	BR	LR

6. Assume that the values of a, b, i, and j are in registers X0, X1, X10, and X11, respectively. Also, assume that register X2 holds the base address of the array D.

```
Instruction

for(i=0; i<a; i++)
    for(j=0; j<b; j++)
    D[4*j] = i + j;
```

7. Assume that the values of i, j, k, and m are in registers X19, X20, X21, and X22, respectively.

```
Instruction

main() {
    int i,j,k,m;
    i = mult(j,k);
    m = mult(i,i);
}

int mult (int mcand, int mlier) {
    int product;
    product = 0;
    while (mlier > 0) {
        product = product + mcand;
        mlier = mlier -1;
    }
    return product;
}
```

8. Assume that the values of i, num are in registers X20, X21 respectively. Also, assume that register X19 holds the base address of the array.

```
Instruction

int array[10];
void main () {
    int num;
    set_array(num);
}

void set_array (int num) {
    for (int i=0; i<10; i++) {
        array[i] = compare(i,num);
        num--;
    }
}
int compare (int a, int b) {
    if (sub(b,a) >= 0)
        return b;
    else
        return a;
}
int sub (int a, int b) {
    return a-b;
}
```

9. Sử dụng sơ đồ mạch xử lý LEGv8 thu gọn như trong bài giảng để trả lời các câu hỏi sau:

- 9.1. Hãy cho biết giá trị các tín hiệu điều khiển khi thực hiện lệnh ADD X9, X10, X11.
- 9.2. Hãy cho biết giá tri các tín hiệu điều khiển khi thực hiện lệnh LDUR X9, [X10, #0].
- 9.3. Hãy cho biết giá trị các tín hiệu điều khiển khi thực hiện lệnh STUR X9, [X10, #0].
- 9.4. Hãy cho biết giá trị các tín hiệu điều khiển khi thực hiện lệnh B L1.
- 9.5. Tập lệnh LEGv8 rút gọn được sử dụng để xây dựng mạch xử lý trong bài giảng không có lệnh EOR. Nếu cần xây dựng thêm để xử lý lệnh EOR này thì cần thay đổi datapath thế nào? Hãy cho biết giá trị các tín hiệu điều khiển khi thực hiện lệnh EOR X9, X10, X11.
- 9.6. Tập lệnh LEGv8 rút gọn được sử dụng để xây dựng mạch xử lý trong bài giảng không có lệnh CBNZ. Nếu cần xây dựng thêm để xử lý lệnh CBNZ này thì cần thay đổi datapath thế nào ? Hãy cho biết giá trị các tín hiệu điều khiển khi thực hiện lệnh CBNZ X9, L1.
- 9.7. Tập lệnh LEGv8 rút gọn được sử dụng để xây dựng mạch xử lý trong bài giảng không có lệnh ADDI. Nếu cần xây dựng thêm để xử lý lệnh ADDI này thì cần thay đổi datapath thế nào? Hãy cho biết giá trị các tín hiệu điều khiển khi thực hiện lệnh ADDI X9, X10, #1.