Натуральная дедукция (естественный вывод)

Математическая логика и теория алгоритмов

Алексей Романов

31 октября 2024 г.

ТЕИМ

- Выражение $A_1, \ldots, A_n \vdash B$ называется секвенцией и читается «из A_1, \ldots, A_n выводится B».
- Удобно считать, что слева множество формул (порядок и повторения неважны).
- Оно может быть пустым.

- Выражение $A_1, ..., A_n \vdash B$ называется секвенцией и читается «из $A_1, ..., A_n$ выводится B».
- Удобно считать, что слева множество формул (порядок и повторения неважны).
- Оно может быть пустым.
- A₁,...,A_n ⊢ В истинна, если

- Выражение $A_1, \dots, A_n \vdash B$ называется секвенцией и читается «из A_1, \dots, A_n выводится B».
- Удобно считать, что слева множество формул (порядок и повторения неважны).
- Оно может быть пустым.
- $A_1,\ldots,A_n \vdash B$ истинна, если на всех тех наборах, на которых A_1,\ldots,A_n истинны,

- Выражение $A_1, ..., A_n \vdash B$ называется секвенцией и читается «из $A_1, ..., A_n$ выводится B».
- Удобно считать, что слева множество формул (порядок и повторения неважны).
- Оно может быть пустым.
- $A_1, ..., A_n \vdash B$ истинна, если на всех тех наборах, на которых $A_1, ..., A_n$ истинны, B тоже истинна.
- Соответственно, $\vdash B$ («B выводится») истинна тогда, когда B

- Выражение $A_1, \dots, A_n \vdash B$ называется секвенцией и читается «из A_1, \dots, A_n выводится B».
- Удобно считать, что слева множество формул (порядок и повторения неважны).
- Оно может быть пустым.
- $A_1, ..., A_n \vdash B$ истинна, если на всех тех наборах, на которых $A_1, ..., A_n$ истинны, B тоже истинна.
- Соответственно, $\vdash B$ («B выводится») истинна тогда, когда B тождественно истинна.

Правила натуральной дедукции

• Для ∧:

$$\frac{A \quad B}{A \wedge B} \ \wedge I \qquad \qquad \frac{A \wedge B}{A} \ \wedge E \qquad \frac{A \wedge B}{B} \ \wedge E$$

• Для \rightarrow :

• Для ¬ и ⊥:

• Для ∨:

• Остальные:

I обозначает правила введения (Introduction), E — правила исключения (Elimination).
 Например, ∧I это правило «введения конъюнкции». Можете также писать как В ∧.

1	$p \wedge q \wedge r$	Дано
2	$p \wedge q$ q r p $q \wedge r$ $p \wedge (q \wedge r)$	∧E, 1
n – 4	q	∧E, 2
<i>n</i> – 3	r	∧E, 1
n – 2	p	∧E, 2
n-1	$q \wedge r$	∧I, $n - 2$, $n - 4$
n	$p \wedge (q \wedge r)$	∧I, $n - 3$, $n - 1$

$$n \qquad \qquad p \rightarrow (q \rightarrow p) \qquad \Rightarrow \mathsf{I.1-(n-1)}$$

Допустимые правила

- Выше доказали $(p \wedge q) \wedge r \vdash p \wedge (q \wedge r)$.
- Это можно превратить в доказательство $(A \wedge B) \wedge C \vdash A \wedge (B \wedge C)$ для любых формул A, B, C. Как?

Допустимые правила

- Выше доказали $(p \land q) \land r \vdash p \land (q \land r)$.
- Это можно превратить в доказательство $(A \wedge B) \wedge C \vdash A \wedge (B \wedge C)$ для любых формул A, B, C. Как?
- Это даёт новое допустимое правило:

$$\frac{(A \wedge B) \wedge C}{A \wedge (B \wedge C)} \wedge A$$

И так для каждой секвенции, которую докажем!
 Например

$$\frac{\neg\neg A}{A}$$
 $\neg\neg E$ $\frac{A}{\neg\neg A}$ $\neg\neg I$ $\frac{A \to B}{A \to C}$ $\to T$ и т.д.

• У каких-то из этих правил есть обозначения, как выше, но можно просто пометить соотвествующей секвенцией.