- **49.** Demuestre que la circunferencia de radio 1 centrado en el origen (la *circunferencia unitaria*) es el conjunto de puntos en el plano complejo que satisfacen |z| = 1.
- **50.** Para cualquier número complejo z_0 y cualquier número real positivo a describa $\{z: |z-z_0|=a\}$.
- **51.** Describa $\{z: |z-z_0| \le a\}$, donde z_0 ya está definido igual que en el problema 50.
- **52.** Describa $\{z: a \le |z-z_0| \le A\}$, donde z_0 es cualquier número complejo y a < A.
- *53. Sea $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + a_{n-2}\lambda^{n-2} + \cdots + a_1\lambda + a_0$, donde $a_0, a_1, \ldots, a_{n-1}$ son números reales. Demuestre que si p(z) = 0, entonces $p(\overline{z}) = 0$. Esto es: las raíces de polinomios con coeficientes reales ocurren en pares complejos conjugados. [Sugerencia: $0 = \overline{0}$; calcule $\overline{p(z)}$.]
 - **54.** Derive expresiones para $\cos 4\theta$ y sen 4θ comparando la fórmula de De Moivre y la expansión de $(\cos \theta + i \sin \theta)^4$.
 - 55. Demuestre la fórmula de De Moivre por inducción matemática. [Sugerencia: Recuerde las identidades trigonométricas $\cos(x + y) = \cos x \cos y \sin x \sin y y \sin(x + y) = \sin x \cos y + \cos x \sin y$.]