Engineering Portfolio

Matthew Hoeper

Rev. 16 July 2019

Overview

- Current Research at Purdue
- Senior Capstone Project at Oregon State
- Undergraduate Research at Oregon State
- Internship at Innovative Composite Engineering
- Miscellaneous Projects

Current Research

• Coming Fall 2018

- Sounding rocket project for the Spaceport America Cup (formerly ESRA/IREC)
- 18 person team composed of ME, EE, and CS majors
- 3 people per sub team
- Aerodynamics and Recovery, Propulsion, Structures, Payload, Avionics, and Computer Science
- Propulsion was my focus

- A technical report of the entire rocket can be found here:
- A presentation given at the SA Cup Conference can be found here
- And corresponding abstract, here:

- In charge of designing, manufacturing, and testing the propulsion system
- Solid propulsion was chosen early on
- OSU is not ready for hybrid/liquid in this competition and solids were used for the past 4 years
- Design phase starts in September, build phase begins in January

- Version 1.0 was the selected design at the end of Fall term.
- 5.0" ID, 6061-T6 aluminum casing, 40" long
- Graphite Nozzle
- 4x 8" BATES grains made of APCP
- Exact propellant formulation was still TBD, testing required

Senior Capstone

- Performed many sub scale tests to identify and characterize propellants
- First round of testing had "SOS", a slow burning propellant and "RIO" a high metals, fast propellant

Performed many sub scale tests to identify and characterize propellants

9

- SOS was too slow, RIO was too fast
- Removed burn rate enhancer from RIO, called it Bare Bones

- First full scale static fire on March 3rd, 2018
- Plume is grossly under expanded

.... did not end well

- Burn lasted for about ³/₄ of a second.
- Expected pressure: 800 psi
- Failure attributed to improper preparation of the grains during casting and assembly.
- No injures or damage to property
 (except for small patch of grass that was burned)

- The casing was designed to have the snap ring groove fail first so that the nozzle would eject
- We figured the wall got much hotter than the groove so that it became the weakest point.

- Notice how the casting tube burned away.
- The extra surface area that was burning contributed to the over pressure. (more mass combusting = higher pressure)

16

- Needed to add more propellant to achieve necessary altitude. Added a
 5" grain to increase impulse. (Weight of other systems increased)
- Added filets to reduce stress risers and increased wall thickness by 0.015"
- Increased edge length:

 Second full scale static test fire on March 23rd, 2018

- Burn lasted for about 1 second.
- Expected pressure: 600 psi
- Failure attributed to a bonding agent that was added to the formulation based on a recommendation.
- We were told, "No increase in burn rate"
- The team had doubts about that and went back to subscale testing...

Summary of Propellants

- Bare Bones v2 is the exact same as Bare Bones
 except it has a tetra functional polyol bonding
 agent that makes up less than 1 percent of the total
 mass.
- BB2 was used in the 2nd static fire, while BB1 was used in the 1st and previous subscale.
- Beaver Buster is a derivation of RIO that has the bonding agent as well as a catalyst.

- Team decided to move away from Bare Bones and use a propellant that has been well
 characterized by Oregon State in the past called Orange Koolaid.
- Performed a "Mid Scale" test that used the diameter from the full scale but only half the length.
- Test was on April 15th.

Mid Scale Test

Senior Capstone

• And it worked beautifully!

Mid Scale Test

- Expected max pressure was within 10 psi of the actual.
- We were all very happy, to say the least.
- Transitioned back to full scale.

- The next iteration of the design was largely the same as the 2nd.
- Wall thickness was 0.20" and edge length was increased by another ½"
- Testing commenced on May 10th

- The next iteration of the design was largely the same as the 2nd.
- Wall thickness was 0.20" and edge length was increased by another ½"
- Testing commenced on May 10th

Again, it worked great!

- A few mentors said, "That was the best test
 I have ever seen"
- We were very pleased with the test
- Solid Rocket Motor Specs:

30 lb propellant 28,500 Ns 787 psi peak pressure 1570 lbf peak thrust 6 sec burn time

27 Matthew Hoeper

Test Launch

Senior Capstone

 With the support of our advisors, the team gambled on the test succeeding so we already had another motor worth of propellant ready to go.

• On May 13th we had our first test launch at Brothers, OR

Test Launch

Senior Capstone

 The rocket performed well and was recovered with only cosmetic damage.

Test Launch

- Chuff off the rail at test launch (combustion instability)
- •Suspected cause: hardness of cured propellant
 - Several points lower compared to static test
 - Possibly shearing propellant and clogging the nozzle
- •To mitigate, we changed how much curative we added to the propellant mixture for the competition mix.

Competition

Introduction

