Documentação pyFirewall

JUAN CARLOS BINDEZ Versão v1.1.1 Quarta, 24 de Agosto de 2022

Versão Atual pyFirewall v1.1.1

"This project is licensed under the MIT License."

Detalhes de lançamento

"Este projeto está licenciado nos termos da licença MIT."

v1.1.1:
adiconado regras de bloqueios e liberação de iPs especificos correção de bugs
v1.0.4:
alterações na interface do usuario
v1.0.3:
correção de bugs reestruturação de código adicionado recursos de melhorias de navegação pelo menu.
v1.0.2:
adicionado recurso para salvar as alterações do firewall deletar regras
v1.0.1:
reestruturação de código correção de falhas
v1.0.0:
- versão inicial
Objetivo do software:

facilitar a configuração de firewall (iptables) diminuir a quantidade de comandos digitados facilitar a visualização das regras diminur o tempo de configuração de firewall

o que é o pyFirewall:

O pyFirewall é um software escrito em Python na versão 3.10.4, que visa manipular os comandos do iptables (https://g.co/kgs/9ZJDYt), este programa pode te ajudar a entender as regras de firewall e facilitar as configurações.

Como usar?

Faça um git clone:

git clone https://github.com/JuanBindez/pyFirewall-v1.1.1

Acesse a pasta:

cd pyFirewall-v1.1.1/

Agora é só rodar o software:

python3 pyfirewall.py

Índice dos namespaces

Lista dos namespaces com uma breve de	lescrição	:
---------------------------------------	-----------	---

banner	5
colors	E
ipv4	
ipv4.logica_ipv4	
ipv6	
pyfirewall	

Índice dos componentes

Lista de componentes

Lista de classes, estruturas, uniões e interfaces com uma breve descrição:

colors.Color	14
ipv4.logica_ipv4.DeleteRegra	15
ipv4.logica_ipv4.IpRegras	15
ipv4.logica_ipv4.LogicasMenu1	
ipv4.logica_ipv4.RegrasList	19
ipv4.logica_ipv4.SaveTable	20

Índice dos ficheiros

Lista de ficheiros

Lista de todos os ficheiros com uma breve descrição:

pyFirewall-v1.1.1/banner.py	21
pyFirewall-v1.1.1/colors.py	
pyFirewall-v1.1.1/pyfirewall.py	
pyFirewall-v1.1.1/ipv4/initpy	
pyFirewall-v1.1.1/ipv4/logica_ipv4.py	
pyFirewall-v1.1.1/ipv6/ init .pv	

Documentação dos namespaces

Referência ao namespace banner

Funções

def header_banner ()

Descrição detalhada

Copyright (c) 2022 Juan Carlos Bindez "This project is licensed under the MIT License."

Documentação das funções

def banner.header_banner ()

```
9 def header_banner():
10
         print(Color.AMARELO +
11
12
13
14
15
                                              `7MM"""YMM
                                                             db
`7MM
       7MM
16
                                                MM
MM
      MM
                                                      `7MM
                                                              `7Mb, od8
17
               7MMpdMAo.
                                    MF
                                          ММ
                                                 d
                                                                          .gP"Ya
                                                                                   `7M'
,Α
             ,6"Yb.
                        MM
18
                        `Wb
                               VA
                                             MM""MM
                                                                                  Yb
                                                                                         VA
, VAA
        , V
                    MM
                          MM
                                MM
                                                                             8M"""""
                                    , v
                         M8
19
                 MM
                                             MM
                                                            MM
                                                                    MM
VA,V
        VA,V
                   ,pm9MM
                                    MM
20
                 MM
                        , AP
                                                                              YM.
VVV
        VVV
                 8M
                        MM
                 MMbmmd'
                                           .JMML.
                                                         .JMML..JMML.
                                                                            `Mbmmd'
21
                  `Moo9^Yo.JMML.
W
         W
                                 JMML.
                                       v1.1.1
22
                 MM
                            00b"
23
              .JMML.
24
                                                      Copyright (c) 2022 Juan Carlos
25
Bindez
26
                                                         *[Ctrl + C] Para Sair do
27
Programa
28
29
         + Color.RESET)
```

Referência ao namespace colors

Componentes

class Color

Descrição detalhada

Copyright (c) 2022 Juan Carlos Bindez "This project is licensed under the MIT License."

Referência ao namespace ipv4

Namespaces

logica_ipv4

Referência ao namespace ipv4.logica_ipv4

Componentes

class **LogicasMenu1** class **RegrasList** class **DeleteRegra** class **SaveTable** class **IpRegras**

Descrição detalhada

Copyright (c) 2022 Juan Carlos Bindez "This project is licensed under the MIT License."

Referência ao namespace ipv6

Descrição detalhada

Copyright (c) 2022 Juan Carlos Bindez "This project is licensed under the MIT License."

Referência ao namespace pyfirewall

Funções

```
def menu_main_ipv4 ()

INCIO DO BLOCO DE MENU IPV4 ####.
```

Variáveis

```
ver_regras = LogicasMenu1("sudo iptables -L --line-numbers")
delete = LogicasMenu1("sudo iptables -D INPUT")
```

Descrição detalhada

```
Copyright (c) 2022 Juan Carlos Bindez "This project is licensed under the MIT License."
```

Documentação das funções

def pyfirewall.menu_main_ipv4 ()

```
INCIO DO BLOCO DE MENU IPV4 ####.
```

```
def menu_main_ipv4():
21
22
              def Ver_regras_firewall():
23
                   # ve regras existentes no firewall
24
25
                    os.system("clear")
                    ver_regras.start_command()
27
                   menu_main_ipv4()
28
29
30
              def deletar_regras_firewall():
                   os.system("clear")
ver_regras.start_command()
31
32
33
                    header_banner()
34
                    # deleta id de regra no firewall
35
                    print(Color.AMARELO +
36
                         111
37
                                                           Deletar de qual tabela?
38
39
                                               *[0]Voltar
40
                                               *[1]INPUT
41
                                               *[2]FORWARD
42
43
                                               *[3]0UTPUT
44
                         1.1.1
45
46
                    + Color.RESET)
47
48
                    choice_delete = str(input(">>"))
49
                    if choice_delete == "0":
50
                         os.system("clear")
51
52
                         menu_main_ipv4()
53
54
                    elif choice_delete == "1":
55
                         DeleteRegra.delete_INPUT.delete_id()
                         os.system("clear")
                         ver_regras.start_command()
```

```
menu_main_ipv4()
58
59
                    elif choice_delete == "2":
60
                          DeleteRegra.delete_FORWARD.delete_id()
61
                          os.system("clear")
ver_regras.start_command()
62
63
64
                          menu_main_ipv4()
65
66
                    elif choice_delete == "3":
67
                          DeleteRegra.delete_OUTPUT.delete_id()
                          os.system("clear")
68
69
                          ver_regras.start_command()
70
                          menu_main_ipv4()
71
72
                    else:
                          os.system("clear")
73
                          print("ops, digite apenas os numeros listados!")
74
75
                          menu_main_ipv4()
76
                    os.system("clear")
ver_regras.start_command()
77
78
79
                    delete.delete_id()
80
                    menu_main_ipv4()
81
82
83
84
              def regras_de_ports_firewall():
85
86
                    def regra_port_INPUT():
87
88
                          header_regra_port()
89
                          choice_regra = str(input(">>"))
90
                          if choice_regra == "0":
91
                                os.system("clear")
92
93
                                menu_main_ipv4()
94
95
                          elif choice_regra == "1":
                                RegrasList.ports_tab_input_accept.port_change()
96
97
                                os.system("clear")
98
                                ver_regras.start_command()
                                menu_main_ipv4()
99
100
                           elif choice_regra == "2":
101
102
                                 RegrasList.ports_tab_input_drop.port_change()
                                os.system("clear")
ver_regras.start_command()
103
104
105
                                menu_main_ipv4()
106
107
                           else:
108
                                 os.system("clear")
                                 print("ops, digite apenas os numeros listados!")
109
110
                                 menu_main_ipv4()
111
112
                     def header_regra_port():
    os.system("clear")
113
114
115
                           header_banner()
                           print(Color.AMARELO +
116
117
118
                                                  *[0]Voltar
                                                  *[1]ACCEPT
119
120
                                                  *[2]DROP
121
122
                           + Color.RESET)
123
124
125
126
                     def regra_port_FORWARD():
127
128
                           header_regra_port()
129
                           choice_regra = str(input(">>"))
130
                           if choice_regra == "1":
131
                                 RegrasList.ports_tab_forward_accept.port_change()
132
133
                                 os.system("clear")
134
                                 ver_regras.start_command()
```

```
135
                                menu_main_ipv4()
136
                           elif choice_regra == "2":
137
                                RegrasList.ports_tab_forward_drop.port_change()
138
                                os.system("clear")
ver_regras.start_command()
139
140
141
                                menu_main_ipv4()
142
143
                           else:
144
                                os.system("clear")
145
                                print("ops, digite apenas os numeros listados!")
146
                                menu_main_ipv4()
147
148
149
                     def regra_port_OUTPUT():
150
                          header_regra_port()
                           choice_regra = str(input(">>"))
151
152
153
                           if choice_regra == "1":
                                RegrasList.ports_tab_output_accept.port_change()
os.system("clear")
154
155
                                ver_regras.start_command()
156
157
                                menu_main_ipv4()
158
                           elif choice_regra == "2":
159
160
                                RegrasList.ports_tab_output_drop.port_change()
161
                                os.system("clear")
162
                                ver_regras.start_command()
163
                                menu_main_ipv4()
164
165
                           else:
166
                                os.system("clear")
                                print("ops, digite apenas os numeros listados!")
menu_main_ipv4()
167
168
169
170
171
                     os.system("clear")
172
                     ver_regras.start_command()
173
174
                     header_banner()
175
                     print(Color.AMARELO +
176
                                                             Escolha a Tabela
177
178
179
                                                 *[0]Voltar
180
                                                 *[1]INPUT
                                                 *[2]FORWARD
181
                                                 *[3]0UTPUT
182
183
                          1.1.1
184
185
                     + Color.RESET)
186
                     choice_tab = str(input(">>"))
187
188
                     if choice_tab == "0":
189
190
                           os.system("clear")
191
                           menu_main_ipv4()
192
193
                     elif choice_tab == "1":
194
                           regra_port_INPUT()
195
                     elif choice_tab == "2":
196
197
                           regra_port_FORWARD()
198
                     elif choice_tab == "3":
199
                           regra_port_OUTPUT()
200
201
203
204
205
206
                def salva_regras_firewall():
207
                     os.system("sudo service netfilter-persistent save")
208
                     time.sleep(2)
209
                     os.system("sudo systemctl restart netfilter-
persistent.service")
210
                     time.sleep(2)
211
                     os.system("sudo systemctl status netfilter-persistent.service")
```

```
os.system("clear")
212
213
                      menu_main_ipv4()
214
215
216
                def netfilter_install():
                      os.system("sudo apt-get install netfilter-persistent.service")
217
                      os.system("sudo apt-get install iptables-persistent")
218
219
                      time.sleep(2)
220
                      os.system("clear")
221
                      menu_main_ipv4()
222
223
224
                def exclui_tab_firewall():
225
                      os.system("clear")
226
                      ver_regras.start_command()
227
                      header_banner()
228
229
                      print(Color.AMARELO +
230
                            111
231
                                                              Escolha a Tabela a ser
232
Excluída
233
234
                                                  *[0]Voltar
235
                                                   *[1]INPUT
                                                   *[2]FORWARD
236
237
                                                  *[3]0UTPUT
238
                                                   *[4]Todas as tabelas
239
                           1.1.1
240
241
                      + Color.RESET)
242
243
                      escolha = str(input(">>"))
244
                      if escolha == "0":
245
246
                           os.system("clear")
                           menu_main_ipv4()
247
248
                      elif escolha == "1":
249
                            os.system("sudo iptables -F INPUT")
250
                           os.system("clear")
ver_regras.start_command()
251
252
253
                           menu_main_ipv4()
254
255
                      elif escolha == "2":
                           os.system("sudo iptables -F FORWARD")
os.system("clear")
256
257
258
                            ver_regras.start_command()
259
                           menu_main_ipv4()
260
                     elif escolha == "3":
    os.system("sudo iptables -F OUTPUT")
    os.system("clear")
261
262
263
264
                            ver_regras.start_command()
265
                           menu_main_ipv4()
266
                      elif escolha == "4":
267
                            os.system("sudo iptables -F")
268
                           os.system("clear")
ver_regras.start_command()
269
270
271
                           menu_main_ipv4()
272
273
                      else:
274
                            os.system("clear")
275
                            print("ops, digite apenas os numeros listados!")
                            menu_main_ipv4()
276
277
278
279
280
281
                def ip_regras():
282
283
                      def header_escolha7():
284
                            os.system("clear")
285
                           header_banner()
286
287
                            print(Color.AMARELO +
```

```
1.1.1
288
289
                                                        *[0]Voltar
                                                        *[1]ACCEPT
290
                                                        *[2]DROP
291
292
293
                                 1.1.1
294
295
                           + Color.RESET)
296
297
298
                     def ip_regra_INPUT_ACCEPT():
                           IpRegras.ip_ACCEPT_tab_INPUT.ip_func_regra()
os.system("clear")
299
300
                           ver_regras.start_command()
301
302
                           menu_main_ipv4()
303
304
305
                      def ip_regra_FORWARD_ACCEPT():
                           IpRegras.ip_ACCEPT_tab_FORWARD.ip_func_regra()
306
307
                           os.system("clear")
308
                           ver_regras.start_command()
309
                           menu_main_ipv4()
310
311
312
                      def ip_regra_OUTPUT_ACCEPT():
313
314
                           IpRegras.ip_ACCEPT_tab_OUTPUT.ip_func_regra()
315
                           os.system("clear")
316
                           ver_regras.start_command()
317
                           menu_main_ipv4()
318
319
320
                      def ip_regra_INPUT_DROP():
321
322
                           IpRegras.ip_DROP_tab_INPUT.ip_func_regra()
                           os.system("clear")
ver_regras.start_command()
323
324
325
                           menu_main_ipv4()
326
327
328
                      def ip_regra_FORWARD_DROP():
                           TpRegras.ip_DROP_tab_FORWARD.ip_func_regra()
os.system("clear")
329
330
331
                           ver_regras.start_command()
332
                           menu_main_ipv4()
333
334
335
                      def ip_regra_OUTPUT_DROP():
                           IpRegras.ip_DROP_tab_OUTPUT.ip_func_regra()
os.system("clear")
336
337
338
                           ver_regras.start_command()
339
                           menu_main_ipv4()
340
341
                      os.system("clear")
342
                      header_banner()
343
344
                      print(Color.AMARELO +
345
346
347
                                                             Escolha a Tabela
348
                                                   *[0]Voltar
349
350
                                                   *[1]INPUT
                                                   *[2]FORWARD
351
                                                    *[3]0UTPUT
352
353
354
                      + Color.RESET)
355
                     escolha7 = str(input(">>"))
356
357
                      if escolha7 == "0":
358
359
                           os.system("clear")
360
                           menu_main_ipv4()
361
                      elif escolha7 == "1":
362
363
                           header_escolha7()
364
                           escolha = str(input(">>"))
```

```
365
366
                          if escolha == "0":
                                os.system("clear")
367
368
                               menu_main_ipv4()
369
                          elif escolha == "1":
370
371
                                ip_regra_INPUT_ACCEPT()
372
373
                          elif escolha == "2":
374
                                ip_regra_INPUT_DROP()
375
376
                     elif escolha7 == "2":
377
378
                          header_escolha7()
379
                          escolha = str(input(">>"))
380
                          if escolha == "0":
381
382
                                os.system("clear")
383
                               menu_main_ipv4()
384
                          elif escolha == "1":
385
386
                                ip_regra_FORWARD_ACCEPT()
387
                          elif escolha == "2":
388
389
                               ip_regra_FORWARD_DROP()
390
391
                     elif escolha7 == "3":
                          header_escolha7()
392
                          escolha = str(input(">>"))
393
394
                          if escolha == "0":
395
396
                               os.system("clear")
397
                               menu_main_ipv4()
398
                          elif escolha == "1":
399
400
                                ip_regra_OUTPUT_ACCEPT()
401
402
                          elif escolha == "2":
                                ip_regra_OUTPUT_DROP()
403
404
405
                    else:
406
                          os.system("clear")
407
                          print("Ops, Digite apenas os numeros listados!")
408
                          ip_regras()
409
410
411
412
414
415
416
417
418
               header_banner()
               print(Color.AMARELO +
419
420
                                                *[1]Ver regras
*[2]Delete regra
421
422
423
                                                *[3]Ports
424
                                                *[4]Salvar
425
                                                *[5]Instalar o netfilter-
persistent.service
426
                                                *[6]Excluir tabelas
427
                                                *[7]Ip (regras para IPs especificos)
428
                    1.1.1
429
               + Color.RESET)
430
431
432
               choice = str(input(">>"))
433
               if choice == "1":
434
435
                    Ver_regras_firewall()
436
437
               elif choice == "2":
438
                  deletar_regras_firewall()
439
440
               elif choice == "3":
441
                     regras_de_ports_firewall()
```

```
442
443
                elif choice == "4":
444
                      salva_regras_firewall()
445
                elif choice == "5":
    netfilter_install()
446
447
448
                elif choice == "6":
449
                      exclui_tab_firewall()
450
451
                elif choice == "7":
452
453
                      ip_regras()
454
455
                else:
456
                     os.system("clear")
                     print("Digite Apenas os Números Listados!")
menu_main_ipv4()
457
458
459
460
461
```

Documentação das variáveis

```
pyfirewall.delete = LogicasMenu1("sudo iptables -D INPUT")
```

pyfirewall.ver_regras = LogicasMenu1("sudo iptables -L --line-numbers")

Documentação da classe

Referência à classe colors.Color

```
Atributos Públicos Estáticos
string VERDE = \sqrt{033[92m]}
string VERDE CLARO = '\033[1;92m'
string VERMELHO = '\033[91m'
string AMARELO = '\033[93m'
string AZUL = '\033[1;34m'
string MAGENTA = '\033[1;35m'
string NEGRITO = '\033[;1m'
string CYANO = '\033[1;36m'
string CYANO_CLARO = '\033[1;96m'
string CINZA_CLARO = '\033[1;37m'
string CINZA_ESCURO = '\033[1;90m'
string PRETO = '\033[1;30m'
string BRANCO = '\033[1;97m'
string INVERTE = '\033[;7m'
string RESET = '\033[0m'Documentação dos dados membro
string colors.Color.AMARELO = '\033[93m'[static]
string colors.Color.AZUL = '\033[1;34m'[static]
string colors.Color.BRANCO = '\033[1;97m'[static]
string colors.Color.CINZA_CLARO = '\033[1;37m'[static]
string colors.Color.CINZA ESCURO = '\033[1;90m'[static]
string colors.Color.CYANO = '\033[1;36m'[static]
string colors.Color.CYANO_CLARO = '\033[1;96m'[static]
string colors.Color.INVERTE = '\033[;7m'[static]
string colors.Color.MAGENTA = '\033[1;35m'[static]
string colors.Color.NEGRITO = '\033[;1m'[static]
string colors.Color.PRETO = '\033[1;30m'[static]
string colors.Color.RESET = '\033[0m'[static]
string colors.Color.VERDE = '\033[92m'[static]
string colors.Color.VERDE_CLARO = '\033[1;92m'[static]
string colors.Color.VERMELHO = '\033[91m'[static]
```

A documentação para esta classe foi gerada a partir do seguinte ficheiro:

pyFirewall-v1.1.1/colors.py

Referência à classe ipv4.logica_ipv4.DeleteRegra

Atributos Públicos Estáticos

delete_INPUT = LogicasMenu1("sudo iptables -D INPUT {}")
delete_FORWARD = LogicasMenu1("sudo iptables -D FORWARD {}")
delete_OUTPUT = LogicasMenu1("sudo iptables -D OUTPUT {}")

Documentação dos dados membro

ipv4.logica_ipv4.DeleteRegra.delete_FORWARD = LogicasMenu1("sudo iptables -D FORWARD {}")[static]

ipv4.logica_ipv4.DeleteRegra.delete_INPUT = LogicasMenu1("sudo iptables -D INPUT
{}")[static]

ipv4.logica_ipv4.DeleteRegra.delete_OUTPUT = LogicasMenu1("sudo iptables -D
OUTPUT {}")[static]

A documentação para esta classe foi gerada a partir do seguinte ficheiro:

pyFirewall-v1.1.1/ipv4/logica_ipv4.py

Referência à classe ipv4.logica_ipv4.lpRegras

Atributos Públicos Estáticos

ip_ACCEPT_tab_INPUT = LogicasMenu1("sudo iptables -A INPUT -s {} -j ACCEPT")
ip_DROP_tab_INPUT = LogicasMenu1("sudo iptables -A INPUT -s {} -j DROP")
ip_ACCEPT_tab_FORWARD = LogicasMenu1("sudo iptables -A FORWARD -s {} -j ACCEPT")
ip_DROP_tab_FORWARD = LogicasMenu1("sudo iptables -A FORWARD -s {} -j DROP")
ip_ACCEPT_tab_OUTPUT = LogicasMenu1("sudo iptables -A OUTPUT -s {} -j ACCEPT")
ip_DROP_tab_OUTPUT = LogicasMenu1("sudo iptables -A OUTPUT -s {} -j DROP")

Documentação dos dados membro

ipv4.logica_ipv4.lpRegras.ip_ACCEPT_tab_FORWARD = LogicasMenu1("sudo iptables -A FORWARD -s {} -j ACCEPT")[static]

ipv4.logica_ipv4.lpRegras.ip_ACCEPT_tab_INPUT = LogicasMenu1("sudo iptables -A
INPUT -s {} -j ACCEPT")[static]

ipv4.logica_ipv4.lpRegras.ip_ACCEPT_tab_OUTPUT = LogicasMenu1("sudo iptables -A
OUTPUT -s {} -j ACCEPT")[static]

ipv4.logica_ipv4.lpRegras.ip_DROP_tab_FORWARD = LogicasMenu1("sudo iptables -A FORWARD -s {} -j DROP")[static]

ipv4.logica_ipv4.lpRegras.ip_DROP_tab_INPUT = LogicasMenu1("sudo iptables -A INPUT -s {} -j DROP")[static]

ipv4.logica_ipv4.lpRegras.ip_DROP_tab_OUTPUT = LogicasMenu1("sudo iptables -A OUTPUT -s {} -j DROP")[static]

A documentação para esta classe foi gerada a partir do seguinte ficheiro:

Referência à classe ipv4.logica_ipv4.LogicasMenu1

Membros públicos

```
def __init__ (self, command)
def start_command (self)
def delete_id (self)
def port_change (self)
def ip_func_regra (self)
```

Atributos Públicos

command

Descrição detalhada

Executa Comandos.

Documentação dos Construtores & Destrutor

def ipv4.logica_ipv4.LogicasMenu1.__init__ (self, command)

```
15 def __init__(self, command):
16 self.command = command
17
```

Documentação dos métodos

def ipv4.logica_ipv4.LogicasMenu1.delete_id (self)

```
21    def delete_id(self):
22        id = int(input(Color.VERMELHO + " digite numero da regra a ser
deletada \n>>" + Color.RESET))
23        os.system(self.command.format(id))
24
```

def ipv4.logica_ipv4.LogicasMenu1.ip_func_regra (self)

```
29    def ip_func_regra(self):
30         ip = str(input(Color.VERMELHO + "Digite o ip Escolhido \n PORT >> " +
Color.RESET))
31         os.system(self.command.format(ip))
32
```

def ipv4.logica_ipv4.LogicasMenu1.port_change (self)

```
def port_change(self):
    port = str(input(Color.VERMELHO + "Digite a Porta Escolhida \n PORT
>> " + Color.RESET))
    os.system(self.command.format(port))
```

def ipv4.logica_ipv4.LogicasMenu1.start_command (self)

```
18     def start_command(self):
19         os.system(self.command)
20
```

Documentação dos dados membro

ipv4.logica_ipv4.LogicasMenu1.command

A documentação para esta classe foi gerada a partir do seguinte ficheiro:

Referência à classe ipv4.logica_ipv4.RegrasList

Atributos Públicos Estáticos

Descrição detalhada

ACCEPTS

Documentação dos dados membro

ipv4.logica_ipv4.RegrasList.ports_tab_forward_accept = LogicasMenu1("sudo iptables
-A FORWARD -p tcp --dport {} -j ACCEPT")[static]

ipv4.logica_ipv4.RegrasList.ports_tab_forward_drop = LogicasMenu1("sudo iptables A FORWARD -p tcp --dport {} -j DROP")[static]

ipv4.logica_ipv4.RegrasList.ports_tab_input_accept = LogicasMenu1("sudo iptables -A
INPUT -p tcp --dport {} -j ACCEPT")[static]

ipv4.logica_ipv4.RegrasList.ports_tab_input_drop = LogicasMenu1("sudo iptables -A
INPUT -p tcp --dport {} -j DROP")[static]

ipv4.logica_ipv4.RegrasList.ports_tab_output_accept = LogicasMenu1("sudo iptables A OUTPUT -p tcp --dport {} -j ACCEPT")[static]

ipv4.logica_ipv4.RegrasList.ports_tab_output_drop = LogicasMenu1("sudo iptables -A
OUTPUT -p tcp --dport {} -j DROP")[static]

A documentação para esta classe foi gerada a partir do seguinte ficheiro:

Referência à classe ipv4.logica_ipv4.SaveTable

Atributos Públicos Estáticos

status_service = LogicasMenu1("sudo systemctl status netfilter-persistent.service")

Documentação dos dados membro

ipv4.logica_ipv4.SaveTable.status_service = LogicasMenu1("sudo systemctl status netfilter-persistent.service")[static]

A documentação para esta classe foi gerada a partir do seguinte ficheiro:

Documentação do ficheiro

Referência ao ficheiro	pyFirewall-v1.1.1/banner.py
------------------------	-----------------------------

Namespaces banner
Funções def banner.header_banner ()
Referência ao ficheiro pyFirewall-v1.1.1/colors.py
Componentes class colors.Color
Namespaces colors
Referência ao ficheiro pyFirewall-v1.1.1/ipv4/initpy
Namespaces ipv4
Referência ao ficheiro pyFirewall-v1.1.1/ipv6/initpy
Namespaces ipv6

Referência ao ficheiro pyFirewall-v1.1.1/ipv4/logica_ipv4.py

Componentes

class ipv4.logica_ipv4.LogicasMenu1 class ipv4.logica_ipv4.RegrasList class ipv4.logica_ipv4.DeleteRegra class ipv4.logica_ipv4.SaveTable class ipv4.logica_ipv4.IpRegras

Namespaces

ipv4.logica_ipv4

Referência ao ficheiro pyFirewall-v1.1.1/pyfirewall.py

Namespaces

pyfirewall

Funções

def pyfirewall.menu_main_ipv4 ()
INCIO DO BLOCO DE MENU IPV4 ####.

Variáveis

pyfirewall.ver_regras = LogicasMenu1("sudo iptables -L --line-numbers")
pyfirewall.delete = LogicasMenu1("sudo iptables -D INPUT")

Referência ao ficheiro pyFirewall-v1.1.1/README.md