CZ4045 Natural Language Processing

Tutorial 4 POS Tagging and HMM

- Find one tagging error in each of the following sentences that are tagged with the Penn Treebank tagset:
 - How/WRB do/VBP I/PRP get/VB to/TO Singapore/NN
 - 2. Do/VBP you/PRP have/VB any/DT vacancies/NN
 - 3. This/DT room/NN is/VBZ too/JJ noisy/JJ
 - 4. Can/VB you/PRP give/VB me/PRP another/DT room/NN

Penn TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	44	left quote	or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), },>
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	ир, off			

- How/WRB do/VBP I/PRP get/VB to/TO Singapore/NN
 - Singapore/NNP
- Do/VBP you/PRP have/VB any/DT vacancies/NN
 - vacancies/NNS
- This/DT room/NN is/VBZ too/JJ noisy/JJ
 - too/RB
- Can/VB you/PRP give/VB me/PRP another/DT room/NN
 - Can/MD

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%,&
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

 Finish the computation of the Viterbi algorithm in the example used in the lecture for HMM. The transition probability and word likelihood probabilities are in the following tables.

Main Idea

- We also have a matrix.
 - Each column— a time 't' (observation)
 - Each row a state 'i'
 - For each cell $v_t[i]$, we compute the probability of the **best path** to the cell
- the Viterbi path probability at time t for state i
 - there are |Q| number of paths from t-1 to $v_t[i]$
 - if we know the best path to each cell in t-1, or $v_{t-1}[j]$
 - $-\arg\max_{j} v_{t-1}[j] \times P(i|j) \times P(s_t|i)$

Review

Viterbi Example

Required computations

(This figure does not show the backtrace pointers)

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

end					
NN	p(NN < s >) * p(I NN) = 0				
ТО	p(TO < s >) * p(I TO) = 0				
VB	p(VB < s >) * p(I VB) = 0				
PPSS	p(PPSS < s >) * p(I PPSS) = 0.067 * 0.37 = 0.02479				
start					
	I	want	to	race	

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

end					
NN	0	0.02479 * p(NN PPSS) * p(want NN) = 0.02479 * .0012 * .000054 = 0.0000000160639			
ТО	0	.02479 * p(TO PPSS) * p(want TO) = 0			
VB	0	02479 * p(VB PPSS) * p(want VB) = $.02479 * .23 * .0093 =$ 0.00005302581			
PPSS	0.02479	.02479 * p(PPSS PPSS) * p(want PPSS) = 0			
start 🎒					
	I	want	to	race	

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

end					
NN	0	1.6*10e-9	$\max(1.6 * 10e - 9 * p(NN NN), 5.3 * 10e - 5 * p(NN VB))$ $* p(to NN) = 0$		
ТО	0	0	$\max(1.6 * 10e - 9 * p(TO NN), 5.3 * 10e - 5 * p(TO VB))$ $* p(to TO) = \max(1.6 * 10e - 9 * .016, 5.3 * 10e - 5 * .035) * .99$ $= 1.84 * 10e - 6$		
VB	0	5.3*10e-5	$\max(1.6 * 10e - 9 * p(VB NN), 5.3 * 10e - 5 * p(VB VB))$ $* p(to VB) = 0$		
PPSS	0.02479	0	$\max(1.6 * 10e - 9 * p(PPSS NN), 5.3 * 10e - 5 * p(PPSS VB))$ $* p(to PPSS) = 0$		
start ≜					
	1	want	to	race	

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

end					
NN	0	1.6*10e-9	0	1.84 * 10e - 6 * p(NN TO) * p(race NN) = 1.84 * 10e - 6 * .00047 * .00057 = 4.92 * 10e - 14	
ТО	0	0	1.84*10e-6	1.84 * 10e - 6 * p(TO TO) * p(race TO) = 0	
VB	0	5.3*10e-5	0	1.84 * 10e - 6 * p(VB TO) * p(race VB) = 1.84 * 10e - 6 * .83 * .00012 = 1.83 * 10e - 10	
PPSS	0.02479	0	0	1.84*10e - 6*p(PPSS TO)*p(race PPSS) = 0	
start					
	1	want	to	race	

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

end					•
NN	0	1.6*10e-9	0	1.84 * 10e - 6 * p(NN TO) * p(race NN) = 1.84 * 10e - 6 * .00047 * .00057 = 4.92 * 10e - 14	
ТО	0	0	1.84*10e-6	1.84 * 10e - 6 * p(TO TO) * p(race TO) = 0	
VB	0	5.3*10e-5	0	1.84 * 10e - 6 * p(VB TO) * p(race VB) = 1.84 * 10e - 6 * .83 * .00012 = 1.83 * 10e - 10	
PPSS	0.02479	0	0	1.84 * 10e - 6 * p(PPSS TO) * p(race PPSS) = 0	
start					
	I	want	to	race	

	VB	ТО	NN	PPSS
<s></s>	.019	.0043	.041	.067
VB	.0038	.035	.047	.0070
TO	.83	0	.00047	0
NN	.0040	.016	.087	.0045
PPSS	.23	.00079	.0012	.00014

	I	want	to	race
VB	0	.0093	0	.00012
TO	0	0	.99	0
NN	0	.000054	0	.00057
PPSS	.37	0	0	0

end					
NN	0	1.6*10e-9	0	1.84 * 10e - 6 * p(NN TO) * p(race NN) = 1.84 * 10e - 6 * .00047 * .00057 = 4.92 * 10e - 14	
ТО	0	0	1.84*10e-6	1.84 * 10e - 6 * p(TO TO) * p(race TO) = 0	
VB	0	5.3*10e-5	0	1.84 * 10e - 6 * p(VB TO) * p(race VB) = 1.84 * 10e - 6 * .83 * .00012 = 1.83 * 10e - 10	
PPSS	0.02479	0	0	1.84 * 10e - 6 * p(PPSS TO) * p(race PPSS) = 0	
start					
	T	want	to	race	

- Run the Viterbi algorithm with the HMM below to compute the most likely weather sequences for each of the two observation sequences,
 - 312312312
 - 311233112.

Hint 3

end					
Н					
С					
start					
	3	1	2	3	

- 3
 - H 0.8 *0.4 (P(3|H)) = 0.32
 - C 0.2 *0.1 (P (3|C)) = 0.02
- ′
 - H max (0.32*0.7*0.2, 0.02*0.4*0.2)
 - C max (0.32*0.3*0.5, 0.02*0.6*0.5)
- 2
- 3

Sequence 1: 3 1 2 3 1 2 3 1 2

Sequence 2: 3 1 1 2 3 3 1 1 2.

Decoded states: -Hot--Cold--Cold--Hot--Hot--Cold--Cold--Cold-

 The Church tagger (1988) is different from the HMM tagger since it incorporates the probability of the tag given the word.

```
- HMM: p(word|tag) * p(tag|previous n tags)
- Church: p(tag|word) * p(tag|previous n tags)
```

 Interestingly, this use of a kind of "reverse likelihood" has proven to be useful in the modern log-linear approach to machine translation.

- As a gedanken-experiment, construct a sentence, a set of tag transition probabilities, and a set of lexical tag probabilities that demonstrate a way in which the HMM tagger can produce a better answer than the Church tagger, and create another example in which the Church tagger is better.
 - Hint: The Church and HMM taggers will perform differently when, given two tags, tag₁ and tag₂:
 - $p(tag_1|word) > p(tag_2|word)$
 - $p(word|tag_1) < p(word|tag_2)$

 A word "manufacturing" is associated with the following probabilities (from a sample of text from Wall Street Journal).

```
-P(VBG|manufacturing) = 0.231
```

- -P(NN|manufacturing) = 0.769
- -P(manufacturing|VBG) = 0.004
- -P(manufacturing|NN) = 0.001
- So if we are looking at the words, we will expect this word to receive tag NN
- If we are looking at the tags, we expect this word to be produced more often from VBG state than NN state

- Let's assume P(NN | < s >) = P(VBG | < s >) = 0.5
- Then HMM model will select VBG label
 - -P(manufacturing|NN) * P(NN| < s >) = 0.0005
 - -P(manufacturing|VBG) * P(VBG| < s >) = 0.002
- Church(1988) Tagger will select NN label
 - -P(NN|manufacturing) * P(NN| < s >) = 0.3845
 - -P(VGB|manufacturing) * P(VBG| < s >) = 0.1155