•	
/	
,	
	· ·
1 20 2	
,	
at the	
2.	
	,
	•
. 4.	
	, (
	1

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

4 C			
		-	
And the state of t			
A.			
	,		
1 0 9 ·			
5			
100			
CAN.			
	**		
/			
			•
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

8	
8	
Œ.	
Z.	
3	
70	
T	
100	

EURIX EURIX De par

State of California THE RESOURCES AGENCY

partment of Water Resources

BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume IV: SAN JOAQUIN VALLEY

DECEMBER 1965

AUG ~ 1000

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume IV: SAN JOAQUIN VALLEY

DECEMBER 1965

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

LIBRARY
UNIVERSITY OF CALIFORNIA
DAVIS

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALE	NT METRIC UNIT
Inch (in)	2.54	Centimeters
Foot (ft)	0.3048	Meter
Mile (mi)	1.609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U. S. gallon (gal)	3.785	Liters
Acre foot (acre-ft)	1,233.5	Cubic meters
U. S. gallon per minute (gpm)	0.0631	Liters per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute

TABLE OF CONTENTS

Pag	e
ORGANIZATION OF BULLETIN NO. 130 SERIES	ίi
AREA ORIENTATION MAP	ιi
METRIC CONVERSION TABLE	ίv
LETTER OF TRANSMITTAL	ix
ORGANIZATION, DEPARTMENT OF WATER RESOURCES	ςi
CHAPTER I. INTRODUCTION	1
Location and General Features of the San Joaquin Valley	1
Scope of Report	1
CHAPTER II. CLIMATE	3
Scope	3
Precipitation	3
Temperatures, Evaporation, and Wind Movement	6
CHAPTER III. SURFACE WATER FLOW	7
Scope	7
Hydrography	7
Hydrographic Activities of Other Agencies	8
Runoff and Water Supply	8
Runoff Comparisons	8
Lakes and Reservoirs	11
Streamflow Measurements	1
Recorders	11
Ratings	1 2
Use of Water for Irrigation	12
Criteria	1 2
Irrigation Diversions	12
Imported and Exported Water	13
CHAPTER IV. GROUND WATER MEASUREMENTS	15
	15
	15
	16
Related Information	16
	16
	16
Annual and Semiannual Programs	16
	17
CHAPTER V. SURFACE WATER QUALITY	21
	21
	21
	21
	21
	21

TABLE OF CONTENTS (Continued)

PLATES

(Bound at end of bulletin)

late Number	
A-1	Location of Climatological Stations
A-2	Seasonal Precipitation Distribution for 1963-64 in Percent of 50-year Mean
B-1	Location of Surface Water Measurement Stations
C-1	Ground Water Level Changes in Districts or Areas, Unconfined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-2	Ground Water Level Changes in Districts or Areas, Confined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-3	Location of Selected Observation Wells and Cooperative Program Areas
C-4	Map of 19 Ground Water Areas in San Joaquin Valley and Profiles Along Section A-A' Showing Ground Water Levels in 1921, 1951, 1963, and 1964
C-5	Fluctuation of Average Water Level, 1921 to 1964, in 19 Ground Water Areas in San Joaquin Valley
C-6	Fluctuation of Water Level in Selected Wells in San Joaquin Valley
C-7	Lines of Equal Elevation of Water in Wells, Unconfined Aquifers, San Joaquin Valley, Spring 1964 (Plate is located in jacket, inside back cover.)
C-8	Lines of Equal Elevation of Water in Wells, Pressure Surface, San Joaquin Valley, Spring 1964 (Plate is located in jacket, inside back cover.)
E-1	Location of Selected Observation Wells, Ground Water Quality
E-2	Location of Selected Wells, Fresno-Madera Area
E-3	Ground Water Quality, Fresno-Madera Area
E-4	Nitrate Concentrations in the San Joaquin Valley

RTMENT OF WATER RESOURCES

X 388 NTO

November 1, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Gentlemen:

Bulletin No. 130-64, entitled "Hydrologic Data, Volume IV, San Joaquin Valley", presents data on hydrologic conditions in the San Joaquin Valley during the 1964 reporting year.

This bulletin is the second of a series which incorporates data on surface water, ground water, and climate published annually.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes, and appendixes.

The collection and publication of data as contained in Bulletin No. 130 are authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the California Water Code.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies to satisfy specific needs of the State. Bulletin No. 130 presents to the public useful, comprehensive, accurate, timely hydrologic data, which are prerequisites for effective planning, design, construction, and operation of water facilities.

Collection of much of the data presented has been possible only because of the generous cooperation and assistance of others. I wish to especially acknowledge

ix

the assistance of the United States Bureau of Reclamation, Geological Survey, Corps of Engineers, Weather Bureau, and Forest Service, as well as the Kern County Surveyors Office and Kern County Land Company.

The districts, private companies, and individuals are too numerous to list here; however, these cooperators are shown in the tables where appropriate. Without their assistance Bulletin 130-64 would be a much less valuable tool.

Sincerely yours,

8. Wany

Director

State of California The Resources Agency Department of Water Resources

EDMUND G. BROWN, Governor
HUGO FISHER, Administrator, The Resources Agency of California
WILLIAM E. WARNE, Director, Department of Water Resources
ALFRED R. GOLZE', Chief Engineer

This report prepared under the direction of JOHN R. TEERINK, Assistant Chief Engineer, Area Management

by the

SAN JOAQUIN DISTRICT

SAN JOAQUIN DISTRICT
Carl L. Stetson District Engineer, San Joaquin District Floyd I. Bluhm
Activities covered by this report were under the supervision of
Cledith L. Chastain
Collection, correlation, and computation of hydrographic data pertaining to surface water flow, ground water levels, and climatology were supervised by
Laurence O. Grossnickle Ground Water Water Resources Engineering Associate
Harry R. Brenner Surface Water Water Resources Technician II
William A. Mancebo
Robert W. Grimshaw Modesto Field Office Water Resources Engineering Associate
Office and Field Personnel of the Hydraulic Unit
John Gostanian Assistant Civil Engineer Keithal B. Dick
The portions of the report covering water quality activities were prepared by
Barney H. Perkins
Assisted by
James W. Windsor

Reviewed and Coordinated by Statewide Planning Office, Data Coordination Branch

CHAPTER I. INTRODUCTION

This is Volume IV, Bulletin 130-64, entitled "Hydrologic Data". It is the second of an annual series reports which present basic data. The five volumes of the bulletin embrace the entire State of California, h volume being prepared by the area branch or district of the Department responsible for the publication of ic data collected in its respective area. These areas are shown on the frontispiece map.

This report contains a record of hydrologic data collected and assembled by the San Joaquin District the Department of Water Resources. It brings together in a permanent and usable form the following types hydrologic basic data collected during the respective time intervals as shown below:

Surface Water Flows October 1, 1963 - September 30, 1964

Diversion Data October 1, 1963 - September 30, 1964

Surface Water Quality

October 1, 1963 - September 30, 1964

Ground Water Quality

October 1, 1963 - September 30, 1964

Location and General Features of the San Joaquin Valley

The San Joaquin Valley includes approximately the southern two-thirds of the Great Central Valley California. It is a broad structural trough surrounded on three sides by mountains: the Sierra Nevada the east, the Coast Range on the west, and the Tehachapi and San Emigdio Mountains on the south. It is arated from the Sacramento Valley on the north by the combined deltas of the Sacramento and San Joaquin ers. The Valley extends 250 miles southeasterly from Stockton to Grapevine at the foot of the Tehachapi ntains; the width of the valley floor ranges from 25 miles near Bakersfield to 55 miles near Visalia and rages about 35 miles. The area of the valley floor is 10,000 square miles, excluding the rolling thills that skirt the mountains.

East of the San Joaquin Valley the Sierra Nevada rises in a distance of 45 to 60 miles to altitudes 14,000 feet or more; to the west the Coast Range rises to 6,000 feet; and on the south the Valley is losed by the San Emigdio and Tehachapi Mountains which rise to altitudes of about 8,000 feet. Only at quinez Strait, a break in the Coast Range east of San Francisco Bay, does the Great Central Valley n to the sea.

The valley floor rises gently from sea level at the north end to 500 feet above sea level about miles south of Bakersfield; alluvial fans along the valley borders rise to altitudes as high as 700 to 00 feet. The gentle northward gradient of the valley floor is interrupted by a low divide in the ghborhood of the Kings River, about 15 miles west of Hanford; the San Joaquin Valley is divided at that no two separate drainage basins to the San Joaquin River Basin and the Tulare Basin.

Scope of Report

The areal scope of this volume of the report is depicted on Plates A-1, B-1, C-1, D-1, and E-1. location of climatological stations for which data are presented is shown on Plate A-1 and the location surface water gaging stations on Plate B-1. The districts or areas in the San Joaquin Valley for which bund water levels are reported are shown on Plate C-1. The locations of surface water sampling stations a shown on Plate D-1, and the ground water quality well locations are shown on Plates E-1 and E-2.

The following chapters present information on precipitation, evaporation, temperature, surface noff, diversions, reservoir storage, imported water supplies, ground water conditions, and surface and ground ter quality.

The tabulated basic data are presented in Appendixes A through E. These appendixes include all sic data collected pertaining to climate, surface water flow, ground water levels, and surface and ground ter quality.

CHAPTER II. CLIMATE

Precipitation is the only significant source of water supply. All runoff and ground water sources derive their waters ultimately from meteorological sources. Planning for more intense development of our available water resources and operation of existing and planned facilities bring to sharp focus the continued need for collection and analysis of basic data pertaining to precipitation, temperatures, wind movement, and evaporation.

For many years it has been apparent that the official network of the U. S. Weather Bureau was not adequate to supply the Department's needs for climatological data required for water resources investigations. One of the primary objectives of this data program is to supplement the observation network of the U. S. Weather Bureau.

There are 16 cooperating agencies and 185 individual observers contributing data for the 407 stations reported.

Scope

The area covered by this report is shown on Plate A-1.

The Department of Water Resources gathers basic data relating to climatic phenomena in the San Joaquin Valley. This involves field measurements and office computations to determine the instantaneous, daily, monthly, seasonal, and annual temperatures, precipitation, and evaporation.

The field activities include the installation and maintenance of weather stations. The installed equipment obtains measurements of: (1) daily maximum and minimum temperatures; (2) precipitation—annual amounts from storage gages in remote areas, daily amounts from standard rain gages, and instantaneous amounts from recording rain gages; (3) evaporation in inches per day; and (4) wind movement in miles per day. In addition, similar data are obtained from many public and private agencies, and individuals.

The Department contributes to the cooperative program with the U. S. Weather Bureau by providing services for the installation, maintenance, and operation of approximately 100 stations in the State, eight of which are located in the San Joaquin Valley. The U. S. Weather Bureau reports these data in its publication, "Climatological Data".

The office activities consist of computation and compilation of approximately 150 monthly climatological station observations to provide a continuous and current record. This includes the computation of intensities from recording rain gages and preparation of hourly precipitation records for future use in development of rainfall intensity-duration-frequency relationships.

Precipitation

The San Joaquin Valley area may be divided into three general parts: the west side, the valley floor, and the east side or Sierra Nevada. Table 1, "Seasonal and Mean Precipitation at Selected Stations in the San Joaquin Valley", shows the distribution of rainfall west to east across the valley. Averages of precipitation normals show for the west side stations 6.3 inches, for the valley floor 9.7 inches, and for the east side 16.6 inches.

Precipitation during the 1963-64 season for the San Joaquin Valley area was below normal. The seasonal precipitation, expressed in percent of normal, for the three general areas is 68 percent on the west side, 72 percent on the valley floor, and 76 percent on the east side.

TABLE 1

SEASONAL AND MEAN PRECIPITATION AT
SELECTED STATIONS IN THE SAN JOAQUIN VALLEY

Alpha Order	Station	County	50-Year Mean 1910-1960	In	Season Percent
Number			In inches	inches	of Mean
в8 6675	Panoche	San Benito	7.51	4.72	63
CO 1867	Coalinga l SE	Fresno	6.80	4.79	70
CO 4536	Kettleman Sta.	Kings	6.21	4.51	73
CO 1244	Buttonwillow	Kern	5.38	2.90	54
C7 5338	Maricopa	Kern	5.54	4.41	80
BO 5297-01	Manteca No. 2	San Joaquin	11.65	8.22	71
B0 5738	Modesto	Stanislaus	11.56	7.74	67
во 9073	Turlock	Stanislaus	11.71	8.20	70
BO 5532	Merced Fire Sta. 2	Merced	11.89	8.76	74
BO 5233	Madera	Madera	10.11	7.81	7 7
CO 3257	Fresno WB A. P.	Fresno	9.65	6.76	70
CO 9367	Visalia	Tulare	9.39	7.58	81
CO 3747	Hanford	Kings	8.10	5.01	62
CO 9452	Wasco	Kern	6.32	4.66	74
CO 0442	Bakersfield A. P.	Kern	6.19	4.60	74
во 4590	Knights Ferry 2 SE	Stanislaus	17.42	14.14	81
B6 1588	Catheys Vly. Bull Run Rch.	Mariposa	19.72	14.51	74
B5 5346	Mariposa	Mariposa	28.94	20.95	72
B7 3261	Friant Gov't. Camp	Fresno	13.38	8.71	65
C2 6476	Orange Cove	Fresno	12.90	8.73	68
C2 4890	Lemon Cove	Tulare	13.68	11.89	87
CO 7077	Porterville	Tulare	10.39	9.73	94

The subnormal precipitation for the season was the result of a very dry period covering the months of December and February through June. January received about 70 percent of normal. Only three months out of the season's 12, September, October, and November, were on the wet side. Table 2, "Cumulative Monthly Precipitation at Key Stations in the San Joaquin Valley", shows the occurrences described above.

The San Joaquin Valley area normally receives 80 percent of the total seasonal precipitation by April 1. Also, by this date, maximum snowpack has been attained in the Sierras. On April 1, 1964, the valley floor had received rainfall in accumulated totals ranging from 70 percent of normal at Modesto on the north to 75 percent at Bakersfield on the south. Snowpack accumulation in the adjacent Sierras was only 70 percent of normal; however, the precipitation patterns of April, May, and June were far below normal, varying from 60 percent for the Kaweah River watershed to 77 percent for the Stanislaus River watershed.

TABLE 2
CUMULATIVE MONTHLY PRECIPITATION
AT KEY STATIONS IN THE SAN JOAQUIN VALLEY

1963-64

		MODESTO		MER	MERCED FS #	#2	N	MADERA		FRESN(FRESNO WB AIRPORT	PORT	VI	VISALIA		BAKERSFIELD WB AIRPORT	ILD WB A	IRPORT
	50-Year	1963-64	Season	50-Year	1963-64	Season	50-Year	1963-64	Season	50-Year	1963-64	Season	50-Year	1963–64	Season	50-Year	1963-64	Season
Month	Mean		In	Mean		In	Mean		In	Mean		In	Mean		In	Mean		In
	1910-60	uI	percent	1910-60	In	percent	1910-60	П	percent	1910-60	n	percent	1910-60	u	percent	1910-60	In	percent
	In inches	inches	of mean	In inches inches of mean In inches inches of me	inches	an	In inches	inches	of mean	In inches inches of mean	inches	of mean	In inches	inches	of mean	In inches inches of mean In inches inches of mean	inches	of mean
July	.01	00.	0	.01	00.	0	.01	00.	0	.01	00.	0	00.	00.	0	.02	00.	0
August	.03	00.	0	.02	00.	0	.02	00.	0	.02	.01	50	.01	.02	200	.03	00.	0
September	.19	.12	63	.12	.38	317	.10	. 23	230	.10	.16	160	.08	.33	412	.12	.83	692
October	.68	1.82	268	.61	1.88	308	.55	1.68	305	.62	1.11	179	.49	2.25	459	.42	1.56	371
																		-
November	1.68	4.00	238	1.76	4.69	566	1.45	4.06	280	1.43	3.65	255	1.24	3.45	278	.94	2.50	566
December	3.95	4.09	104	3.79	4.86	128	3.18	4.30	135	3.08	3.92	127	2.81	3.63	129	1.87	2.58	138
January	6.21	5.90	96	6.24	5.77	92	5.18	4.91	96	5.01	4.58	91	4.78	4.36	91	2.98	2.85	96
February	8.17	5.95	73	8.35	5.93	71	7.04	4.92	70	6.64	4.58	69	6.57	4.53	69	4.01	3.26	81
March	10.11	7.03	70	10.34	7.68	74	8.80	6.42	73	8.34	5.85	70	8.18	5.69	70	5.10	3,83	75
April	11.02	7.29	99	11.37	8.08	71	9.70	7.12	73	9.22	6.35	69	00.6	7.21	80	5.79	4.39	92
May	11.46	7.40	65	11.81	8.35	71	10.04	7.54	75	9.54	6.70	70	9.33	7.58	81	6.11	4.59	75
June	11.56	7.74	67	11.89	8.76	74	10.11	7.81	77	9.65	92.9	70	9.39	7.58	18	6.19	4.60	74

Temperatures, Evaporation, and Wind Movement

The distribution of temperatures, evaporation, and wind movement is presented in Table 3, "Average Temperatures, Total Evaporation, and Average Wind Movement at Selected Stations in the San Joaquin Valley".

TABLE 3

AVERAGE TEMPERATURES, TOTAL EVAPORATION, AND AVERAGE WIND MOVEMENT AT SELECTED STATIONS IN THE SAN JOAQUIN VALLEY

Alpha Order Number	Station Name	_	Seasonal Temp.	°F Mean	Seasonal Evaporation Total Inches	Wind Movement Av.Mi./Mo.
C0 0332-02	Arvin-Frick	71.8	43.4	57.6	62.5	1879
C0 2013	Corcoran El Rico l	74.2	45.8	60.0	79.5	1952
C6 2222-80	Cummings Valley	67.0	34.9	51.0	79.7	2627
B4 2473	Don Pedro Res.	72.6	43.8	58.2	73.9	М
C5 4303	Isabella Dam	72.8	44.8	58.8	80.5	1940
BO 5117	Los Banos Field Sta.	73.3	45.1	59.2	92.4	2953
C1 6895	Pine Flat Dam	75 .2	45.4	60.3	65.8	785
B6 7273	Raymond 9N	81.0M	45.4M	63.2M	М	493M
C3 8620	Success Dam	74.4	49.3	61.9	82.5	1532
C7 8755	Taft KTKR	73.0	49.3	61.2	90.9	1084
C2 8868	Terminus Dam	73.2	49.8	61.5	81.2	1522
CO 9145	U.S. Cotton Field Sta.	74.3	48.4	61.4	79.5	1431
BO 9565	Westley	75.4M	44.6M	60.0M	М	М

M - All or part of record missing.

CHAPTER III. SURFACE WATER FLOW

The variable flows of the streams entering the San Joaquin Valley on the east side result from the rainfall runoff occurring each winter and spring season, principally from December through April. The snowmelt runoff occurs during the spring and summer months from March through June. A combination of runoff from perennial tributaries and released stored water occurs during the summer and fall seasons. Flood flows in the valley floor channels are caused by runoff from rainfall and melting snow in the mountain areas in excess of mountain reservoir capacities, and by rainstorm runoff from the vast area of minor foothill watersheds and valley floor lands. In more recent years, flooding has become a lesser threat in the San Joaquin Valley as a result of additional reservoirs constructed on many of the tributary watersheds, including the Kern, Tule, Kaweah, Kings, San Joaquin, Merced, Tuolumne, and Stanislaus Rivers. With the completion of the Lower San Joaquin River Flood Control Project and eventual construction of additional dams and reservoirs, such as Buchanan on the Chowchilla River, Hidden on the Fresno River, and New Melones on the Stanislaus River, flooding will cease to be a problem in the San Joaquin Valley except in years of excessive precipitation.

Scope

The area covered by this report is shown on Plate B-1.

Records of mean daily flows and/or stage at 65 stream-gaging stations located on streams on the San Joaquin Valley floor and on streams entering the valley are presented in Appendix B of this report.

Measurements of flows at points of diversion from major streams on the valley floor, diversions and acreage irrigated by east side irrigation districts, and deliveries from canals of the Central Valley Project are also included in Appendix B.

Hydrography

The Department of Water Resources' hydrographic activities in the San Joaquin Valley area are divided into two major categories -- field and office.

The field activities include:

- 1. Operation and maintenance of 35 stream-gaging stations.
- Measurement of streamflows passing the gaging stations at stages varied enough to establish a stage-discharge relationship.
- Measurement of the quantities of water diverted by major diverters from the San Joaquin, Merced,
 Tuolumne, Stanislaus, and Tule Rivers, and from Dry Creek near Modesto.
- 4. Construction of new installations as needed to augment the base network of gaging stations operated by the U. S. Geological Survey.
- 5. Cooperation with public and private agencies and with other branches within the department in the gathering of hydrographic data.

The office activities include:

- 1. Preparation of hydrographic data for computation by machine computation methods.
- Manual computation and compilation of the discharge of stations not adaptable to machine computation.
- 3. Computation and compilation of quantities of water diverted for use in quantities per month for pumped diversions and quantities per day for gravity diversions.
- 4. Preparation of rating curves based on a series of discharge measurements on each stream.
- Computation of rating formulas for the curves written in machine language for machine computation purposes.

Hydrographic Activities of Other Agencies

The U. S. Geological Survey maintains and operates about 180 streamflow gaging stations in addit to the stations operated by the Department in the San Joaquin Valley area. Of these, 57 are operated under the Federal-State Cooperative Surface Water Measurement Program. The records are published annually in a report by the U. S. Department of the Interior, Geological Survey, entitled "Surface Water Records of California, Volume 2, Northern Great Basin and Central Valley".

The U. S. Bureau of Reclamation maintains and operates seven streamflow gaging stations which monitor natural inflow to the southern San Joaquin Valley. These stations are in addition to the Bureau's operation stations on project canals. Data from both types of stations appear in an annual report publish by the Bureau of Reclamation entitled "Fresno Field Division Water Supply".

The U. S. Corps of Engineers, the City and County of San Francisco, and other local agencies maintain and operate streamflow gaging stations within the San Joaquin Valley area. These data are publis in this report. The specific degree of cooperation by these agencies with the Department of Water Resource is detailed in footnotes to tables contained in this report.

Runoff and Water Supply

The streams entering the Valley on the east side produce the major runoff to the Valley. Rainfarunoff occurs principally during the period December to April, while snowmelt is the source during the spring and summer seasons from March through June. During the summer and fall seasons, runoff is a combination of flows from perennial tributaries and releases from reservoir storage.

Runoff Comparisons

Runoff conditions from year to year for a particular stream are compared to the mean runoff for that stream over a long period of time. The mean runoff is a base or normal used to compare runoff with a other year. Flow conditions on all major streams entering the Valley are affected by man-made impairments such as reservoirs and diversions; therefore, the runoff comparisons are made with computed natural runoff which allows for effects of impairments. These computed natural or unimpaired runoffs are considered to the flows that would occur if no impairments were above the points of measurement. Runoff normals are computed for the 50-year period October 1910 through September 1960.

The water supply available during the 1964 season was below normal on all major tributaries, varying from 48 percent on the Tule River to 64 percent on the Tuolumne River.

The annual unimpaired runoff in percent of average for the 50-year normal for the period 1924 through 1964 on the major streams tributary to the San Joaquin Valley is shown in Table 4. The monthly unimpaired runoff for 1964 in percent of average based on the same 50-year period is shown for the same streams in Table 5.

TABLE 4 ANNUAL UNIMPAIRED RUNOFF In percent of average (a)

Water Year	Stanislaus River below Melones P. H.	Tuolumne River near La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kings River Inflow to Pine Flat	Kaweah River near Three Rivers	Tule River Inflow to Success	Kern River Inflow to Isabella
Average Annual Runoff (a)	1090	1776	927	1670	5463	1570	385	127	617
1923-24	24	31	27	27	27	25	26		
1924-25	112	109	98	86	101	82	85		
1925-26	56	63	66	70	64	66	57		
1926-27	125	115	117	120	119	126	126		
1927-28	87	86	79	69	80	62	53		
1928-29	47	55	52	5 2	5 2	54	58		
1929-30	67	65	55	51	60	55	57		54
1930-31	29	34	28	29	30	30	30	19	30
1931-32	124	119	120	123	121	133	135	109	113
1932-33	56	63	56	67	60	75	74	63	69
1933-34	39	46	39	41	41	42	34	16	37
1934-35	111	119	126	115	118	103	93	70	74
1935-36	121	122	124	111	120	120	126	134	121
1936-37	102	113	131	132	120	149	176	241	180
1937-38	188	193	224	221	206	209	226	279	209
1938-39	48	55	51	55	52	62	64	65	73
1939-40	128	125	118	113	121	114	133	166	113
1940-41	123	141	157	159	145	162	167	186	202
1941-42	136	134	139	135	136	128	127	107	122
1942-43	144	134	139	123	135	129	174	287	163
1943-44	62	74	74	76	72	74	82	80	94
1944-45	117	118	118	128	120	131	143	160	131
1945-46	108	106	102	104	105	103	93	74	105
1946-47	58	62	61	67	62	71	69	41	69
1947-48	82	80	74	73	77	63	68	50	54
1948-49	68	70	69	70	69	61	57	38	48
1949-50	99	87	78	78	86	82	78	49	70
1950-51	155	140	132	111	134	102	109	122	86
1951-52	176	168	169	170	171	182	214	252	226
1952-53	89	86	68	73	79	74	80	78	88
1953-54	82	81	72	79	78	83	79	70	81
1954-55	62	64	58	70	64	71	72	51	58
1955-56	173	178	181	177	177	162	188	165	141
1956-57	82	80	70	79	78	79	77	51	71
1957-58	154	149	152	158	153	157	166	176	171
1958-59	54	56	49	57	54	51	40	25	44
1959-60	54	59	52	50	54	45	47	38	45
1960-61	37	41	34	39	38	36	30	15	28
1961-62	91	100	100	115	102	117	103	68	106
1962-63	116	116	106	117	114	119	130	94	120
1963-64	60	64	49	5 5	58	54	60	47	51

⁽a)

Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1910 through September 1960.
Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from valley floor. (b)

TABLE 5 MONTHLY UNIMPAIRED RUNOFF In percent of average(a)

Month		Stanislaus River below Melones P. H.	Tuolumne River near La Grange	Merced River at Exchequer	San Joaquin River below Friant	San Joaquin River near Vernalis (b)	Kings River Inflow to Pine Flat	Kaweah River near Three Rivers	Tule River Inflow to Success	Kern River Inflow to Isabella
October	Percent ^C	74	130	88	135	116	136	144	27 5	172
	Average	3	15	7	19	49	19	4	1	14
November	Percent	228	292	22 5	237	253	222	191	130	134
	Average	22	37	17	27	102	25	8	4	18
December	Percent	66	70	55	68	66	75	67	48	89
	Average	44	73	38	53	2 09	45	16	8	23
January	Percent	64	62	41	48	55	45	41	33	70
Candary	Average	59	98	54	65	276	56	19	12	25
February	Percent	36	40	24	33	34	32	32	18	50
<u> </u>	Average	82	135	78	91	386	77	27	18	30
March	Percent	39	40	30	38	38	38	40	28	46
	Average	120	179	99	135	533	112	39	26	47
April	Percent	64	60	51	52	57	59	62	60	44
	Average	202	284	148	241	875	215	63	24	89
May	Percent	61	72	57	60	64	61	67	62	39
· ·	Average	296	447	244	428	1415	428	102	21	149
June	Percent	49	61	46	52	54	47	60	57	40
oune .	Average	188	368	179	386	1121	384	75	9	125
										2.4
July	Percent	56	35	26	38	38	32	45	38	36
]	Average	52	113	50	160	375	148	23	2	59
August	Percent	107	52	50	64	65	48	57	60	52
	Average	12	19	10	45	85	42	6	0	24
September	Percent	108	53	14	55	58	47	84	157	59
	Average	5	8	4	19	37	18	3	0	14
1963-64										
Water Year	Percent	60	64	49	55	58	54	60	47	51
	Average	1090	1776	927	1670	5463	1570	385	127	617

 ⁽a) Average unimpaired runoff in thousands of acre-feet computed from the 50-year period October 1910 through September 1960.
 (b) Figures were computed from summations of unimpaired runoff at foothill stations on major tributaries only and do not include runoff from minor tributaries and from the valley floor.
 (c) Percent figures are preliminary values and subject to revisions.

Lakes and Reservoirs

There are 59 principal reservoirs in the State, of which 25 are located in the San Joaquin Valley area. These 25 have a total storage capacity of 4,727,530 acre-feet. The storage capacity, water in storage on October 1, 1963, and storage on October 1, 1964, in the major reservoirs in the San Joaquin Valley area are shown in Table 6. The quantity of water in storage in these 25 reservoirs at the end of the 1963-64 season was about 27 percent of the total storage capacity as compared to 49 percent at the end of the 1962-63 season.

TABLE 6

SUMMARY OF PRINCIPAL RESERVOIR STORAGE
IN THE SAN JOAQUIN VALLEY

(In acre-feet)

Watershed	Reservoir	Total Capacity	In Storage Oct. 1, 1963	In Storage Oct. 1, 1964
Stanislaus				
	Relief	15,560	4,400	11,530
	Strawberry	18,270	10,480	9,190
	Melones	112,600	11,060	10,450
	Donnels	64,500	49,576	21,800
	Beardsley	97,500	83,296	77,313
	Tulloch	68,400	33,948	23,670
Tuolumne				
	Lake Eleanor	26,100	18,520	4,650
	Lake Lloyd	268,000	182,450	25,700
	Hetch Hetchy	360,400	289,461	230,490
	Don Pedro	290,000	174,920	111,040
	Turlock Lake	49,000	11,440	17,830
Merced				
	Lake McClure	289,000	63,750	0
San Joaquin				
	Crane Valley	45,400	24,800	24,200
	Lake Thomas A. Edison	125,000	101,360	50,100
	Florence Lake	64,600	31,020	237
	Mammoth Pool	122,700	17,490	27,010
	Huntington Lake	89,800	87,900	49,720
	Redinger Lake	35,000	8,600	9,840
	Shaver Lake	135,400	103,830	15,550
	Millerton Lake	520,500	205,000	172,400
Kings				
	Wishon	128,300	90,060	58,980
	Pine Flat	1,001,500	467,200	191,860
Kaweah				
	Terminus	150,000	8,460	7,500
Tule				
	Success	80,000	12,350	9,260
Kern				
	Isabella	570,000	217,030	96,970
TOTAL		4,727,530	2,308,401	1,257,290

Streamflow Measurements

Many of the stream-gaging stations, records of which are reported in Appendix B, are maintained and operated by agencies cooperating with the Department of Water Resources. The methods used by all cooperating parties are standardized and the results obtained are equally good.

During the 1964 season 35 of the total of 65 gaging stations on streams for which records are reported in Tables B-4 and B-5 were maintained, operated, and records compiled by the Department of Water Resources.

Recorders

An automatic water stage recorder is in operation at each gaging station in the San Joaquin Valley area. The continuous record of water surface elevation at each station serves two major purposes in the preparation of the data in this report, and assists in the planning of flood control projects. First, the water surface elevation (gage height) is a factor in determining the quantity of flow of the stream in

cubic feet per second passing a given station. Second, the actual surface elevation at two adjacent stations on a stream on the valley floor afford the means of obtaining the water surface elevation at pumping plants along the stream between the stations. This information assists in the determination of the pumping head in order that the rate of diversion by the pumping plants can be obtained.

Ratings

A streamflow rating is made for each stream gaging station. This rating gives the flow in cubic feet per second for each gage height at the station. Normally, the gage height-to-flow relation or streamflow rating is more or less permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed of the channel consists of loose, shifting sand; where heavy weed growth accumulates as the season progresses; or where there may be backwater effects due to ice or other downstream conditions. In the last two cases, more frequent measurements of flow are made to obtain accurate records of flows passing the station.

Use of Water for Irrigation

The prevailing warm temperatures and a prolonged frost-free period during the summer season in the San Joaquin Valley favors the profitable production of a wide variety of marketable crops.

The major irrigated crops in the San Joaquin Valley include rice, alfalfa, orchard fruits, nuts, grapes, cotton, corn, grain, flax, pasture grasses, and a large variety of truck crops.

Criteria

The number of diversion points measured on the major streams in the San Joaquin Valley may vary from year to year. The criteria for selecting points to be measured were established in 1960. At that time it was determined that by measuring only those diversion points which had an average of two hundred acre-feet per season based on the previous three years of diversion record, 50 percent of the field work could be eliminated and still 95 percent of the total water diverted could be measured.

Changes in crop pattern and the available water supply are major factors that influence the amounts of water diverted for irrigation purposes.

Irrigation Diversions

Measurements and records of diversions in 1964 included all the major points of diversion on the valley floor along the San Joaquin River and tributaries; along the Stanislaus, Tuolumne, and Merced Rivers, and Dry Creek tributary to Tuolumne River; and along the Tule River.

This report contains records for a total of 171 points of diversion. Table 7 shows, by streams, the number of points of diversion and the acre-feet diverted.

TABLE 7

SUMMARY OF DIVERSION POINTS AND TOTAL ACRE-FEET DIVERTED

Oct. 1, 1963-Sept. 30, 1964

Stream	Number Of Points Measured	Total Acre-feet Diverted
San Joaquin River		
Vernalis to Fremont Ford Bridge	40	208,700
Fremont Ford Bridge to Gravelly Ford (a)	18	969,846
Gravelly Ford to Friant Dam	24	11,230
Tuolumne River	22	22,640
Stanislaus River	23	58,220
Merced River	34	62,210
Dry Creek (Tributary to the Tuolumne River)	3	1,259
Tule River	7	31,070
TOTAL	171	1,365,175

⁽a) Records furnished by U. S. Bureau of Reclamation.

Waters diverted by Central Valley Project canals and east side irrigation districts are shown on Table B-7.

The monthly amount of water diverted at the individual points of diversion along all the streams covered in the San Joaquin Valley area together with the total acre-feet diverted for the season is shown in Appendix B, Table B-6 of this report. The monthly use in percentage of seasonal total is also shown. The location of each diversion point on a given stream is measured from the mouth of that stream progressing upward by river-mile. References to left or right bank assume an orientation facing downstream.

All of the diversions are accomplished by pumping except for 18 by gravity. The records of diversion by gravity are obtained by means of canal ratings established by flow measurements. The records of pumping diversions are obtained in a few instances by means of canal rating but generally are obtained by actual measurement of the pump discharge. Most of the pumps are electrically operated, making it possible to establish a relationship between water pumped and power input. Sufficient measurements are made to establish a rate of discharge for each pump, and the electric meters are read monthly to determine the power used.

The monthly amount of diversions in acre-feet by the large east side irrigation districts from the Stanislaus, Tuolumne, and Merced Rivers during the 1964 season is shown in Appendix B, Table B-7. The monthly amount of diversions in acre-feet by Central Valley Project canals is shown in Appendix B, Table B-9.

Fresno Slough and James Bypass normally convey excess flood flows from the Kings River into the San Joaquin River at a point above Mendota Dam, but during the irrigation season, San Joaquin River water is backed up through those channels by the Mendota Dam to afford irrigation supplies to the James and Tranquillity Irrigation Districts and to certain other diverters. The diversion data for these streams shown in Table B-6 were furnished by the U. S. Bureau of Reclamation.

Imported and Exported Water

Water is imported to the San Joaquin Valley from the Sacramento-San Joaquin Delta via the Delta-Mendota Canal. The amount of water diverted and its distribution for use are shown in Table B-9.

Water is exported from the San Joaquin Valley via the Hetch Hetchy Aqueduct from the Tuolumne River to the City and County of San Francisco. Table B-8 shows the amount of that export.

		,

CHAPTER IV. GROUND WATER MEASUREMENTS

The ground water resources of California have long been recognized as one of the major natural resources of the State. The ever-increasing rate of draft on the ground water basins makes the problems associated with the use and conservation of this resource numerous and complex, and the solution more urgent.

More than one-quarter of all the ground water pumped for irrigation in the United States is used in the San Joaquin Valley. Widespread pumping began about 1900 and, especially since 1940, has increased at an accelerated rate. In response to this heavy withdrawal, ground water levels in extensive areas of the Valley have declined rapidly. The water level decline will continue as long as ground-water pumpage exceeds the natural and artificial recharge of the ground water basin.

Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the Valley, three distinct ground water reservoirs are present. In downward succession there are (1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age overlying the Corcoran Clay Member of the Tulare Formation; (2) a body of fresh water confined beneath the Corcoran Clay Member which occurs in alluvial and lacustrine deposits of late Pliocene age or older; and (3) a body of saline connate water contained in marine sediments of middle Pliocene or older age which underlies the fresh-water body throughout the area. (U. S. Geological Survey Water-Supply Paper 1618 Abstract.)

In much of the eastern part of the Valley, especially in the area of the major streams, the Corcoran Clay Member is not present and ground water occurs as one fresh-water body to considerable depth. Ground water is replenished by infiltration of rainfall, by infiltration from streams, canals, and ditches, by underflow entering the Valley from tributary streams and from canyons, and by infiltration of excess irrigation waters.

The ground-water storage capacity of the San Joaquin Valley to a depth of 200 feet has been estimated to be approximately 93 million acre-feet, equal to roughly 9 times the capacity of the present and proposed surface-water reservoirs in the Valley.

All studies of ground-water problems and plans for solution of these problems have two factors in common: they must be founded upon records of water level measurements and quality analysis of water samples obtained over a period of years.

On the east side of the San Joaquin Valley from Chowchilla River to the southern end of the Valley good records of ground water levels extending as far back as 1921 have been obtained through the combined efforts of the State, U. S. Bureau of Reclamation, and many local agencies. In 1930 the Department began collection of ground water level data in connection with special investigations of water resources of specific areas. From this beginning a program of annual, semiannual, and monthly measurements of ground water levels has developed in cooperation with federal and local agencies.

Scope

The area covered by this report is shown on Plates A-1 and B-1.

The areal scope of Appendix C of this volume is depicted on Plates C-1 through C-4. During the period July 1, 1963, to June 30, 1964, the San Joaquin District of the Department of Water Resources obtained approximately 13,000 water level measurements on some 7,500 wells. The period of record of these wells ranges from one to over 40 years.

Basic Data

Because significant trends in water level fluctuations can be indicated by a representative sample, a selection was made of approximately 600 wells for which the records are presented in Appendix C of this volume. These wells, designated as selected wells, were chosen on the basis of a number of factors such as

areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuation in the ground water area; and availability of a log, mineral analysis, and/or production record. Table C-1 presents the water level measurements made from July 1, 1963, through June 30, 1964. This volume continues the records for those wells published in Bulletin 77-62 which fall within the boundary of the San Joaquin Valley area.

Processed Data

Hydrographs depicting average water level fluctuations in 19 selected ground water areas are presented on Plate C-5. Individual well hydrographs depicting graphically the fluctuation of water levels are shown on Plate C-6. These wells distributed among significant areas were selected insofar as possible to be representative of their respective areas.

Ground water maps showing lines of equal elevation of water in wells for spring of 1964 appear on Plates C-7 and C-8. Where sufficient data are available, lines of equal elevation of water are shown for the unconfined or semiconfined aguifer, and the confined aguifer or pressure surface.

Maps showing the areas where the ground water level changed five feet or more in the unconfined, semiconfined, and confined aquifers are presented on Plates C-1 and C-2.

Related Information

For some basins or areas, maps showing depth to ground water are also prepared. At appropriate times, commonly every five years, maps are prepared showing lines of equal change occurring in the water level in wells during the time intervals. These maps are available in the office of the San Joaquin District of the Department of Water Resources and will be presented in future reports.

Cooperative Programs

Within the San Joaquin Valley area the Department of Water Resources has cooperative ground water programs with the U. S. Geological Survey, U. S. Bureau of Reclamation, Kern County, Kings County Water District, Poso Soil Conservation District, and the Los Banos Soil Conservation District.

Monthly Program

Approximately 350 selected wells are measured monthly and the resulting figures are published in a monthly summary report. These wells were selected as being representative of their respective areas. Most of the field work is done by cooperating agencies, while the Department measures 25 of the 350 selected wells. The Department compiles and publishes the collected field data in a monthly report. The water level measurements on the selected monthly wells are included in Appendix C of this volume.

Annual and Semiannual Programs

In Kern County approximately 1,000 wells are measured semiannually under a cooperative agreement between the U. S. Bureau of Reclamation, the County of Kern, and the Department of Water Resources.

Approximately 500 additional water level measurements being made by the Kern County Land Company are made available to the Department.

Maps of Kern County showing lines of equal depth to water and lines of equal elevation of water in wells are prepared for both spring and fall of each year.

In the Kings County Water District approximately 325 selected wells are measured semiannually by that agency and submitted to the Department for use in preparation of ground water maps under a cooperative agreement. Ground water maps are prepared for both spring and fall showing lines of equal elevation of water in wells in the district.

In the Poso Soil Conservation District approximately 40 wells are measured by that agency and the results submitted to the Department. Ground water maps are prepared for the district showing depth to water in wells in January and July.

Ground Water Conditions

Data are presented in this report for two zones or aquifers in 13 of the 50 areas reported in Appendix C.

During the period July 1963 to June 1964, 34 areas in the San Joaquin Valley showed a rise in the unconfined and semiconfined aquifers. There was no change in one area, but in 9 other areas there was a decline. Five of the 15 areas for which the pressure surface is reported show a decline and 10 show a rise in the water level.

In the shallow zone the maximum declines occurred in the Tracy area and the Fresno Slough area, where changes of 6.2 feet and 4.8 feet respectively are noted. The greatest rise in the shallow zone was 17.3 feet in the Vandalia Irrigation District. The maximum decline of 2.4 feet occurred in the deep zone of the Kern River Delta area. The greatest rise in the deep zone was 16.4 feet in the Delano-Earlimart Irrigation District. In those areas for which water levels are based on a composite of shallow and deep zones, the main change was a rise of 4.6 feet in the Buena Vista Water Storage District.

Table 8 presents the average change in ground water levels, spring 1963 to spring 1964. The average change in water level for each district or area was determined where possible by planimetering ground water contour maps. In areas where insufficient data were available to define reliable contours, a numerical average was made from the actual well measurements.

TABLE 8

AVERAGE CHANGE IN GROUND WATER LEVELS
IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY
Spring 1963 - Spring 1964

Ground Water Districts or Areas		Number of Wells Considered	Change in
Name	Number	in Analysis	Feet
San Joaquin Valley	5-22.00		
Tracy Area	5-22.04	19	- 6.2
Oakdale Irrigation District	5-22.06	<u>a</u> /	+ 0.2
Modesto Irrigation District	5-22.07	<u>a</u> /	0.0
Turlock Irrigation District	5-22.08	<u>a</u> /	- 3.6
Merced Irrigation District	5-22.09	<u>a</u> /	+ 0.7
El Nido Irrigation District	5-22.10	<u>a</u> /	+ 4.7
Delta-Mendota Area	5-22.11	555	- 1.1
Chowchilla Water District	5-22.12	<u>a</u> /	+ 0.3
Madera Irrigation District	5-22.13	<u>a</u> /	+ 0.8
West Chowchilla-Madera Area	5-22.14	<u>a</u> /	- 2.9
Fresno Irrigation District	5-22.15	<u>a</u> /	+ 0.3
City of Fresno	5-22.16	<u>a</u> /	- 0.3
Fresno Slough Area	5-22.17	<u>a</u> /	- 4.8
Consolidated Irrigation District	5-22.18	<u>a</u> /	+ 2.9
Alta Irrigation District	5-22.19	<u>a</u> /	+ 3.4
Lower Kings River Area	5-22.20		
Shallow Zone		<u>a</u> /	+ 2.6
Deep Zone		<u>a</u> /	- 0.9
Orange Cove Irrigation District	5-22.21	<u>a</u> /	+ 1.5
Stone Corral Irrigation District	5-22.22	<u>a</u> /	+ 5.1
Ivanhoe Irrigation District	5-22.23	<u>a</u> /	+ 4.9
Kaweah-Delta Water Conservation District	5-22.24	<u>a</u> /	+ 6.2

TABLE 8 (Cont.)

AVERAGE CHANGE IN GROUND WATER LEVELS IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1963 - Spring 1964

Number Number San Pe Analysis Pe Pe Pe Pe Pe Pe Pe P	Ground Water Districts or Areas		Number of Wells Considered	Change in Feet	
San Joaquin Valley (Continued) Tulare Irrigation District 5-22.25 a/ +5 Exeter Irrigation District 5-22.26 a/ +11 Lindsay-Strathmore Irrigation District 5-22.27 21 +10 Lindmore Irrigation District 5-22.28 a/ +15 Porterville Irrigation District 5-22.28 a/ +15 Porterville Irrigation District 5-22.29 a/ +8 Lower Tule River Irrigation District 5-22.30 Shallow Zone a/ +14 Vandalia Irrigation District 5-22.31 6 +17 Saucelito Irrigation District 5-22.32 Shallow Zone a/ +3 Deep Zone a/ +3 Deep Zone Pixley Irrigation District 5-22.33 Shallow Zone a/ +6 Deep Zone a/ +6 Deep Zone a/ +10 Alpaugh-Allensworth Area 5-22.34 Shallow Zone a/ +10 Deep Zone Delano-Earlimart Irrigation District 5-22.35 Shallow Zone a/ +6 Deep Zone Southern San Joaquin Municipal Utility District 5-22.36 Shallow Zone a/ +6 Deep Zone a/ +10 North Kern Water Storage District 5-22.37 Shallow Zone a/ +10 Deep Zone a/ +10 Shallow Zone a/ +10 Deep Zone a/ +10 Shallow Zone a/ +6 Deep Zone a/ +10 Deep Zone a/ +10 Shallow Zone a/ +6 Deep Zone a/ +10 Shallow Zone a/ +6 Deep Zone a/ +10 Shallow Zone a/ +10 Deep Zone a/ +11 Deep Zone a/ +10 Shallow Zone a/ +10 Deep Zon	Name	Number	in		
Exeter Irrigation District Lindsay-Strathmore Irrigation District Lindmore Irrigation District Exeter Irrigation District Lindmore Irrigation District Forterville Irrigation District Forterville Irrigation District Exeter Tule River Irrigation District Shallow Zone Deep Zone Vandalia Irrigation District Shallow Zone Deep Zone Pixley Irrigation District Shallow Zone Deep Zone Pixley Irrigation District Shallow Zone Deep Zone Alpaugh-Allensworth Area Shallow Zone Deep Zone Delano-Rarlimart Irrigation District Shallow Zone Deep Zone Shallow Zone Deep Zone Delano-Rarlimart Irrigation District Shallow Zone Deep Zone Shallow Zone Shallow	San Joaquin Valley (Continued)	.d 1			
Lindsay-Strathmore Irrigation District 5-22.27 21 410 Lindmore Irrigation District 5-22.28 a/ +15 Porterville Irrigation District 5-22.29 a/ +8 Lower Tule River Irrigation District 5-22.30 Shallow Zone a/ +10 Deep Zone a/ +14 Vandalia Irrigation District 5-22.31 6 +17 Saucelito Irrigation District 5-22.32 Shallow Zone a/ +8 Deep Zone a/ +8 Pixley Irrigation District 5-22.33 Shallow Zone a/ +8 Pixley Irrigation District 5-22.33 Shallow Zone a/ +9 Deep Zone a/ +10 Alpaugh-Allensworth Area 5-22.34 Shallow Zone a/ +7 Deep Zone a/ +7 Deep Zone a/ +7 Shallow Zone a/ +7 Deep Zone a/ +7 Shallow Zone a/ +7 Deep Zone a/ +16 Southern San Joaquin Municipal Utility District 5-22.36 Shallow Zone a/ +11 North Kern Water Storage District 5-22.37 Shallow Zone a/ +11 North Kern Water Storage District 5-22.38 Shallow Zone a/ +11 Deep Zone A/ +12 Shallow Zone a/ +11 Deep Zone A/ +12 Shallow Zone a/ +11 Shallow Zone a/ +11 Deep Zone A/ +12 Shallow Zone a/ +11 Shallow Zone a/ +11 Deep Zone A/ +12 Shallow Zone a/ +11 Shallow Zone a/ +12 Shallow Zone a/ +12 Shallow Zone a/ +13 Shallow Zone a/ +14 Shallow Zone a/ +15 Shallow Zone a/ +10 Shallow Zo	Tulare Irrigation District	5-22.25	<u>a</u> /	+ 5.5	
Lindmore Irrigation District 5-22.28	Exeter Irrigation District	5-22.26	<u>a</u> /	+11.9	
Porterville Irrigation District	Lindsay-Strathmore Irrigation District	5-22.27	21	+10.6	
Lower Tule River Irrigation District 5-22.30 Shallow Zone 2	Lindmore Irrigation District	5-22.28	<u>a</u> /	+15.2	
Shallow Zone	Porterville Irrigation District	5-22.29	<u>a</u> /	+ 8.9	
Deep Zone	Lower Tule River Irrigation District	5-22.30			
Vandalia Irrigation District 5-22.31 6 +17 Saucelito Irrigation District 5-22.32 Shallow Zone a/ +3 Deep Zone a/ +8 Pixley Irrigation District 5-22.33 Shallow Zone a/ +9 Deep Zone a/ +9 Deep Zone a/ +10 Alpaugh-Allensworth Area 5-22.34 Shallow Zone a/ +7 Deep Zone a/ +7 Deep Zone a/ +7 Deep Zone a/ +6 Deep Zone a/ +6 Shallow Zone a/ +6 Deep Zone a/ +6 Southern San Joaquin Municipal Utility District 5-22.35 Shallow Zone a/ +11 Deep Zone a/ +11 North Kern Water Storage District 5-22.37 Shallow Zone a/ +11 Deep Zone a/ +11 Shallow Zone a/ +11 Deep Zone a/ +11 Shallow Zone a/ +11 Deep Zone a/ +11 Shallow Zone a/ +11 Deep Zone a/ +12 Shallow Zone a/ +14 Shallow Zone a/ +15 Shallow Zone a/ +5	Shallow Zone		<u>a</u> /	+10.3	
Saucelito Irrigation District Shallow Zone Deep Zone Pixley Irrigation District Shallow Zone Deep Zone Alpaugh-Allensworth Area Shallow Zone Deep Zone Alpaugh-Allensworth Area Shallow Zone Deep Zone Delano-Earlimart Irrigation District Shallow Zone Deep Zone Deep Zone Shallow Zone Deep Zone Southern San Joaquin Municipal Utility District Shallow Zone Deep Zone Shallow Zone Deep Zone By + 5 - 5 - 22.39 Shallow Zone Deep Zone By + 0 Deep Zone By +	Deep Zone		<u>a</u> /	+14.6	
Shallow Zone Deep Zone Pixley Irrigation District Shallow Zone Deep Zone Alpaugh-Allensworth Area Shallow Zone Deep Zone Delano-Earlimart Irrigation District Shallow Zone Deep Zone Delano-Earlimart Irrigation District Shallow Zone Deep Zone Shallow Zone Deep Zone Southern San Joaquin Municipal Utility District Shallow Zone Deep Zone North Kern Water Storage District Shallow Zone Deep Zone Shallow Zone Deep Zone Deep Zone By + 0 Deep Zone Deep Zone Deep Zone By + 0 Deep Zone Deep Zone By - 2	Vandalia Irrigation District	5-22.31	6	+17.3	
Deep Zone Pixley Irrigation District Shallow Zone Deep Zone Alpaugh-Allensworth Area Shallow Zone Deep Zone Deep Zone Alpaugh-Allensworth Area Shallow Zone Deep Zone Delano-Earlimart Irrigation District Shallow Zone Deep Zone Southern San Joaquin Municipal Utility District Shallow Zone Deep Zone North Kern Water Storage District Shallow Zone Deep Zone City of Bakersfield Shallow Zone Deep Zone Shallow Zone Deep Zone City of Bakersfield Shallow Zone Deep Zone Shallow Zone Deep Zone Alpace Alp	Saucelito Irrigation District	5-22.32			
Pixley Irrigation District 5-22.33 3	Shallow Zone		<u>a</u> /	+ 3.7	
Shallow Zone a	Deep Zone		<u>a</u> /	+ 8.2	
Deep Zone	Pixley Irrigation District	5-22.33			
Alpaugh-Allensworth Area 5-22.34 Shallow Zone a/ + 7 Deep Zone a/ - 0 Delano-Earlimart Irrigation District 5-22.35 Shallow Zone a/ + 16 Deep Zone a/ + 16 Southern San Joaquin Municipal Utility District 5-22.36 Shallow Zone a/ + 11 North Kern Water Storage District 5-22.37 Shallow Zone a/ + 11 Deep Zone a/ + 11 Shafter-Wasco Irrigation District 5-22.38 Shallow Zone a/ + 14 Shafter-Wasco Irrigation District 5-22.38 Shallow Zone a/ + 5 City of Bakersfield 5-22.39 26 - 5 Kern River Delta Area 5-22.40 Shallow Zone a/ + 0 Deep Zone a/ - 2	Shallow Zone		<u>a</u> /	+ 9.3	
Shallow Zone	Deep Zone		<u>a</u> /	+10.5	
Deep Zone Delano-Earlimart Irrigation District Shallow Zone Deep Zone Southern San Joaquin Municipal Utility District Shallow Zone Shallow Zone Deep Zone A/ +7 Deep Zone Shallow Zone Deep Zone North Kern Water Storage District Deep Zone Shallow Zone Deep Zone Shallow Zone Deep Zone Shallow Zone Shallow Zone Shallow Zone Shallow Zone Shallow Zone Shallow Zone Deep Zone Shallow Zone Shallow Zone Deep Zone Shallow Zone Shallow Zone Deep Zone Shallow Zone Deep Zone a/ +0 Deep Zone	Alpaugh-Allensworth Area	5-22.34			
Delano-Earlimart Irrigation District 5-22.35 Shallow Zone a/ +66 Deep Zone a/ +16 Southern San Joaquin Municipal Utility District 5-22.36 Shallow Zone a/ +7 Deep Zone a/ +11 North Kern Water Storage District 5-22.37 Shallow Zone a/ +11 Deep Zone a/ +14 Shafter-Wasco Irrigation District 5-22.38 Shallow Zone a/ +5 City of Bakersfield 5-22.39 26 -5 Kern River Delta Area 5-22.40 Shallow Zone a/ +0 Deep Zone a/ +0 Deep Zone a/ +0 Deep Zone a/ +0 Deep Zone a/ +0	Shallow Zone		<u>a</u> /	+ 7.3	
Shallow Zone a	Deep Zone		<u>a</u> /	- 0.8	
Deep Zone a	Delano-Earlimart Irrigation District	5-22.35			
Southern San Joaquin Municipal Utility District 5-22.36	Shallow Zone		<u>a</u> /	+ 6.4	
Shallow Zone a/ + 7	Deep Zone		<u>a</u> /	+16.4	
Deep Zone a	Southern San Joaquin Municipal Utility District	5-22.36			
North Kern Water Storage District 5-22.37	Shallow Zone		<u>a</u> /	+ 7.1	
Shallow Zone a/ +11 Deep Zone a/ +14 Shafter-Wasco Irrigation District 5-22.38 Shallow Zone 3 - 1 Deep Zone a/ + 5 City of Bakersfield 5-22.39 26 - 5 Kern River Delta Area 5-22.40 - 2 Shallow Zone a/ + 0 Deep Zone a/ - 2	Deep Zone		<u>a</u> /	+11.9	
Deep Zone a/ +14	North Kern Water Storage District	5-22.37			
Shafter-Wasco Irrigation District 5-22.38 Shallow Zone 3 - 1 Deep Zone a/ + 5 City of Bakersfield 5-22.39 26 - 5 Kern River Delta Area 5-22.40 - 2 - 2 Shallow Zone a/ - 2 - 2 Deep Zone a/ - 2 - 2	Shallow Zone		<u>a</u> /	+11.6	
Shallow Zone 3 - 1 Deep Zone a/ + 5 City of Bakersfield 5-22.39 26 - 5 Kern River Delta Area 5-22.40 - 2 - 2 Shallow Zone a/ - 2 - 2 Deep Zone a/ - 2 - 2	Deep Zone		<u>a</u> /	+14.9	
Deep Zone	Shafter-Wasco Irrigation District	5-22.38			
City of Bakersfield 5-22.39 26 - 5 Kern River Delta Area 5-22.40 Shallow Zone a/ + 0 Deep Zone a/ - 2	Shallow Zone		3	- 1.7	
Kern River Delta Area 5-22.40 Shallow Zone a/ + 0 Deep Zone a/ - 2	Deep Zone		<u>a</u> /	+ 5.4	
Shallow Zone a/ + 0 Deep Zone a/ - 2	City of Bakersfield	5-22.39	26	- 5.2	
Deep Zone a/ - 2	Kern River Delta Area	5-22.40			
2	Shallow Zone		<u>a</u> /	+ 0.2	
Edison-Maricopa Area 5-22.41	Deep Zone		<u>a</u> /	- 2.4	
	Edison-Maricopa Area	5-22.41			
Deep Zone <u>a/</u> - 1	Deep Zone		<u>a</u> /	- 1.6	
Buena Vista Water Storage District 5-22.42 <u>a/</u> + 4	Buena Vista Water Storage District	5-22.42	<u>a</u> /	+ 4.6	
Semitropic Water Storage District 5-22.43	Semitropic Water Storage District	5-22.43			
Shallow Zone 410	Shallow Zone		<u>a</u> /	+10.5	
Deep Zone <u>a</u> / + 2	Deep Zone		<u>a</u> /	+ 2.1	

TABLE 8 (Cont.)

AVERAGE CHANGE IN GROUND WATER LEVELS IN DISTRICTS OR AREAS IN THE SAN JOAQUIN VALLEY Spring 1963 - Spring 1964

Ground Water Districts or Areas		Number of Wells Considered	Change in
Name	Number	in Analysis	Feet
San Joaquin Valley (Continued)			
Avenal-McKittrick Area	5-22.44	33	+ 0.7
Tulare Lake-Lost Hills Area	5-22.45	12	+ 4.4
Corcoran Irrigation District	5-22.46		
Shallow Zone		<u>a</u> /	+ 7.7
Deep Zone		<u>a</u> /	+15.4
Mendota-Huron Area	5-22.47		
Deep Zone		<u>a</u> /	$+ 6.0^{b}$
Poso Soil Conservation District	5-22.48	<u>a</u> /	- 2.6
San Luis Canal Company	5-22.49	<u>a</u> /	- 3.0
Terra Bella Irrigation District	5-22.50	4	+ 4.9
Centerville Bottoms Area	5-22.64	<u>a</u> /	+ 1.3
Garfield Water District	5-22.65	21	+12.8
Kings County Water District	5-22.66		
Shallow Zone		<u>a</u> /	+ 3.1
Deep Zone		<u>a</u> /	- 1.8
Pleasant Valley Area	5-22.69	23	- 4.2

 $[\]underline{a}/$ Average changes were determined by planimetering ground water contour maps. $\underline{b}/$ Average change determined from water level measurements made during December 1962 and December 1963.

Table 9 presents the change in average ground water levels from 1921 to 1951 and 1951 to 1964 in 19 ground water areas in the San Joaquin Valley.

TABLE 9

CHANGE IN AVERAGE GROUND WATER LEVEL FROM
1921 TO 1951 AND 1951 TO 1964
IN 19 GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY

Name of Ground Water Area	Area in square miles	Irrigation and Other Water Districts Included in The Ground Water Area	Net change in water level 1921-51ª in feet	Net change in water level 1951-64 <u>b</u> / in feet
Madera	342.6	Madera Irrigation District and Chowchilla Water District	- 24.1 ^C /	- 13.5
Fresno	404.0	Fresno Irrigation District and City of Fresno	- 22.4	- 16.0
Consolidated	243.0	Consolidated Irrigation District	- 19.0	- 6.6
Fresno, Consolidated, and Outside	700.1	Fresno Irrigation District, City of Fresno, and Consolidated Irrigation District	- 23.2	- 13.4
Outside Only	53.1		- 25.6	- 29.7
Centerville Bottoms	18.1		+ 1.0	+ 4.2
Alta	190.9	Alta Irrigation District	- 17.2 [⊆] /	+ 0.8
Ivanhoe	17.4	Ivanhoe Irrigation District	- 55.9	+ 13.3
Outside Ivanhoe	76.6	Stone Corral Irrigation District and a portion of Alta Irrigation District	- 28.5	- 0.5
Mill Creek	128.2	Portions of Kings County Water District and Kaweah Delta Water Conservation District	- 31.1	- 13.5

TABLE 9 (Cont.)

CHANGE IN AVERAGE GROUND WATER LEVEL FROM 1921 TO 1951 AND 1951 TO 1964 IN 19 GROUND WATER AREAS IN THE SAN JOAQUIN VALLEY

Name of Ground Water Area	Area in square miles	Irrigation and Other Water Districts Included in The Ground Water Area	Net change in water level 1921-51ª/ in feet	Net change in wate: level 1951-64 ¹ in fee
Tulare	121.1	Tulare Irrigation District	- 59.1	- 1.8
Elk Bayou	67.6	Portion of Kaweah Delta Water Conservation District	- 47.8	- 7.2
Lindsay-Exeter	136.4	Exeter Irrigation District, Lindsay- Strathmore Irrigation District, and Lindmore Irrigation District	- 77.7	+ 59.4
Tule River	156.6	Porterville Irrigation District, portions of Lower Tule River Irrigation District, and Saucelito Irrigation District	- 62.5	+ 22.7
Lower Deer Creek	162.2	Portions of Lower Tule River Irrigation District, Saucelito Irrigation District, and Delano-Earlimart Irrigation District	-106.7	- 1.1º + 1.5£
Middle Deer Creek	54.6	Terra Bella Irrigation District	- 61.8	- 8.9호 - 36.7호
Delano-Earlimart	140.0	Portions of Delano-Earlimart Irrigation District and Southern San Joaquin Municipal Utility District	-133.8	+ 8.4° + 5.4£
McFarland-Shafter	306.0	North Kern Water Storage District, Shafter-Wasco Irrigation District, and a portion of Southern San Joaquin Municipal Utility District	- 99.0	+ 16.2 <u>e</u> - 13.6 <u>f</u>
Rosedale	78.9		- 36.3	- 58.4 - 3.59
Arvin-Edison	205.2	Arvin-Edison Water Storage District	- 69.9 <u>d</u> /	- 20.7 <u>£</u>

a/ b/

¹⁹⁵¹ was the first year of substantial deliveries from the Friant-Kern Canal.
Fall 1951 to spring 1964.
Fall 1929 to fall 1951.
Fall 1941 to fall 1951.
Unconfined aquifer, spring 1961 to spring 1964, only one aquifer reported prior to 1961.
Pressure surface, spring 1961 to spring 1964, only one aquifer reported prior to 1961.
Pressure surface, spring 1963 to spring 1964, only one aquifer reported prior to 1963.

CHAPTER V. SURFACE WATER QUALITY

The Department of Water Resources maintains a program of surveillance of the quality of water to detect any degradation of the surface waters of California due to contributions of wastes by agricultural, industrial, and municipal water users and to notify the proper control agencies of any such occurrences. The Surface Water Quality Monitoring Program was initiated to meet this surveillance need in April 1951 with the following objectives: (1) to determine the quality of the State's surface waters through a network of strategically located sampling stations representative of the major surface streams and lakes; (2) to detect changes in the quality of surface waters and notify control agencies of adverse changes; (3) to determine trends in surface water quality; and (4) to compile data into readily available form for distribution to cooperators and interested agencies.

Scope

The areal extent of activities discussed in this chapter and in Appendix D is shown on Plate D-1. Data on the quality of surface waters are presented in graphs and tables in Appendix D for the 1964 water year (October 1, 1963, to September 30, 1964). These data represent the observed physical, chemical, bacteriological, and radiological characteristics of water samples collected at the surface water quality stations shown on Plate D-1. The stations are listed alphabetically in Table D-1.

Sampling Program

The Department of Water Resources has 31 surface water quality monitoring stations in the San Joaquin Valley area. In November of 1963, two new stations were added to the area of the program monitoring the Tulare Lake Basin. Of the 31 stations, 21 are sampled monthly, 8 quarterly, and 2 semiannually. The variation in the sampling frequency is dependent upon past records, need, and the type of data required.

The Kern County Parks and Recreation Department, City and County of San Francisco (Oakdale office), and the U. S. Corps of Engineers collect samples at one, five, and nine stations, respectively. The U. S. Geological Survey, California Department of Public Health, Fresno County, Kern County, and Tulare County Health Laboratories perform the various analyses on the samples from the entire 31 sampling stations.

Station Sampling

Sampling at each station consists of obtaining water samples for partial mineral and bacteriological analyses and field measurement of pH, temperature, gage height, and dissolved oxygen. Samples collected in May and September were subject to: (1) complete mineral analysis, (2) bacteriological analysis, (3) radiological analysis, and (4) determination of concentrations of phosphate, arsenic, and detergents (alkyl benzene sulfonate-ABS). A sample is collected twice each year at ten selected stations for the determination of heavy metals by spectrographic analysis. The results of the spectrographic analyses are contained in Table D-3.

Conductivity Recorders

Conductivity recorders are maintained at selected surface water stations to obtain continuous records of the specific electrical conductance of the waters. The recorder charts are removed, edited, and processed at the end of each month. The data are converted and tabulated into mean hourly, daily, and weekly electrical conductivity values with the daily values being published monthly in an office report. A plot of the mean weekly values versus time for each of these stations is shown on Plate D-2.

Information from these recorders is used to approximate concentrations of several water quality parameters, including but not limited to concentrations of total dissolved solids (TDS), chlorides, and total hardness. These approximations are possible because of the relationship between specific conductance and each of the dissolved mineral constituents in the water.

Surface Water Quality Conditions

Surface water samples taken from the lower reaches of the San Joaquin River indicate an appreciable increase in mineral concentration as compared with results from the same stations for the 1963 water year.

The contribution of mineral constituents from major tributaries was also appreciably higher than it was the previous year. The increase in mineral concentration was most noticeable during the irrigation season when the streamflow regimen was at its lowest stage for the entire year. The incremental change in mineral constituents over the previous year's concentrations increased significantly from Fremont Ford to Vernalis. This accumulation of minerals is attributed to the lack of available streamflow sufficient in quantity to dilute accretions affluent to the lower reaches of the San Joaquin River.

The U. S. Bureau of Reclamation supplemented the flow in the San Joaquin River to aid the migration of fish from the Sacramento-San Joaquin Delta to the lower reaches of the San Joaquin River.

Approximately 45,000 acre-feet were diverted from the Delta-Mendota Canal through the Newman and Westley Wasteways from September 23 to November 1, 1964, to provide adequate streamflow and dissolved oxygen content necessary for fish migration up the San Joaquin River.

CHAPTER VI. GROUND WATER QUALITY

Water development to meet the needs of California's phenomenal growth is one of the major problems facing the State. Although the use of ground water has been, and is, one of the major factors contributing to the economy of the State, insufficient data are available regarding the mineral quality of such ground water supplies. The present widespread dependence upon ground water requires constant vigilance, coupled with remedial action where necessary, to assure that the quality of ground water remains suitable for all intended uses. In view of this need for vigilance, a statewide program of observation and study of ground water quality was initiated by the Department of Water Resources in 1953.

Scope

Approximately 415 wells were sampled throughout the San Joaquin Valley, Panoche Valley, Tehachapi Valley, and Cummings Valley during this reporting period. The locations of monitored wells for 1963 are shown on Plate E-1, "Location of Selected Observation Wells, Ground Water Quality". A special program was conducted in the Fresno-Madera area during 1963 and 1964 by the Department in conjunction with the U. S. Geological Survey. The location of the wells used for this program are shown on Plate E-2.

Ground Water Quality Conditions

Adequate surveillance of the quality of a ground water basin requires the establishment of norms from which deviations can be determined. Considerable information has been gathered during the early years of this program and through other programs where ground water quality data were collected to assist in establishing the norms. Individual wells for the monitoring program were selected by an evaluation of well drillers' logs, water analyses, and water level data to best represent the quality of the ground water in the surrounding area. The number of wells needed for this purpose was mainly determined by the complexity of the ground water basin in a given area. The analyses of samples collected from selected wells in the San Joaquin Valley for the 1964 water year are contained in this bulletin. Included are tables of complete and partial mineral analyses and trace element determinations. The type of analysis made on a sample from a well is based mainly on the history of the data on that well.

With the increased use of fertilizers for agriculture and with the increase in the quantity of domestic waste water discharges, the possibility of an increase in nitrates in ground water is becoming more likely. Irrigation waters containing nitrate yielding fertilizers may percolate into the ground water bodies as evidenced by the study of well 185/28E-10Ml (see Plate E-4). The discharge of domestic waste waters into the ground through leach fields or by disposal to ponds where percolation can occur is also another source of nitrates. Specific problems of this type have occurred in the Fresno-Clovis area (see Bulletin 143-3, Fresno-Clovis Metropolitan Area Water Quality Investigation). In light of this concern over the possibility of increases in nitrate concentrations in the Valley a special map was prepared. There were insufficient data in any one year to prepare such a map so it was necessary to use data collected during the period from 1961 through 1964 for Plate E-4, "Nitrate Concentrations in the San Joaquin Valley". It is intended that this plate will provide a base for identifying areas of high nitrates and for determining increases in future years.

Lithium, a relatively rare constituent of ground water, usually appears in very small quantities. In concentrations greater than 0.1 part per million, however, lithium has been found to be detrimental to citrus and other fruit trees in much the same manner as boron. Arsenic, although generally rare, also is found in some ground waters of the Valley and is significant even at 0.01 part per million.

Detergents (ABS: alkyl benzene sulfonate) do not occur in ground water naturally and therefore are an indicator of pollution. Selected nutrient determinations were also made in a few special cases in conjunction with the ABS determinations in the vicinity of sewage or industrial waste discharges.

Fresno-Madera Area Study

During 1963-64 a concentrated sampling program was carried out in the greater part of the valley floor of both Fresno and Madera Counties. This sampling was done in conjunction with the U.S. Geological

Survey's investigations in eastern Fresno County and in Madera County. This coordination eliminated duplication of effort and resulted in more and better coverage of the area. By utilizing the data collected during this period which was supplemented with older data, particularly in western Fresno County, a picture of the ground water quality for the Fresno-Madera area was developed. The ground water quality data for these areas are listed in Appendix E on Table E-2. The data were evaluated and illustrated on Plate E-3. This plate shows the mineral type of the ground water and contours of the electrical conductivity for each aquifer defined

It should be noted that there is a difference between the water quality map on Plate E-3 and a similar plate published in Bulletin 130-63. First, the data are broken down by aquifer in this bulletin, whereas in 1963 sufficient data were not available to make this differentiation. Second, the difference indicated does not mean that the water quality picture was changed since 1963 but that with the greater quantity and quality of data now available more accurate maps could be prepared. It is possible that with more data and a better understanding of the geology and water quality the picture may be further refined. It is believed, however, that the present maps are very close to representing the actual ground water quality in the area. Areas were left blank when sufficient data were not available to make an evaluation. These areas will be studied in more detail in the future.

Kern County Piezometer Sampling Program

An ideal sampling network for an area would contain wells that are representative of single aquifers from which maps of the water quality for each aquifer could be made. It was believed that the U. S. Bureau of Reclamation's piezometer pipes best reflected this ideal network in Kern County. During 1964 a special sampling program was conducted in Kern County in order to sample the piezometers. Table E-5 lists some of the results of this study. The pumping times shown vary considerably and are based on the time required for the electrical conductivity (EC), which was measured continually, to settle down to a steady value. It was assumed that the erratic EC values first noted were indicative of the waters trapped in the pipe and gravel packing and that the water in the aquifer was indicated by the leveled off EC values. The pumping rates shown vary considerably and are thought to be generally indicative of the formation permeability. In a few cases the depth at which the piezometer was pumped would also reflect different rates.

Regular Sampling Program

Samples from the monitored areas are collected from early spring, when pumping begins, through the fall, when pumping generally slows down. Some of the samples collected are obtained by cooperating agencies, the remainder by the Department. Normally the cooperating agencies collect the majority of the samples, but for the 1964 water year most sampling was performed by department personnel due to a concentrated reevaluation in certain areas. At the conclusion of the reevaluation, it is intended that the cooperating agencies again continue with most of the sampling.

APPENDIX A

CLIMATE

TABLE OF CONTENTS

	$\underline{\mathbf{r}}$	age
INTRODU	UCTION	29
Explana	ation of Tables	29
Pr	recipitation Station Index	29
Мо	onthly Precipitation	29
Мо	onthly Temperatures	29
Мо	onthly Summary of Evaporation Station Data	29
Re	eference Notes	30
	LIST OF TABLES	
Table Number		
A-1	Index of Climatological Stations for 1963-64, San Joaquin District	31
A-2	Precipitation Data for 1963-64, San Joaquin District	38
A-3	Temperature Data for 1963-64, San Joaquin District	43
A-4	Monthly Summary of Evaporation Station Data	47
	LIST OF PLATES	
	(Bound at end of volume)	
Plate Number		
A-1	Location of Climatological Stations	
N - 2	Consonal Presinitation Distribution for 1962 64 in Devent of 50 year Man	

1			

INTRODUCTION

This appendix presents the climatological data for the period July 1, 1963 to June 30, 1964. The data consist of precipitation station descriptions, monthly precipitation quantities, monthly temperature summaries and monthly evaporation totals.

Explanation of Tables

Precipitation Station Index

Table A-1 shows the precipitation station index. The climatological station designations used are based on the drainage basin and alpha number. Stations are also named, and latitude and longitude are shown to the nearest minute. The county, elevation above sea level, the year the record began, and the name of the current observer of record are also shown.

Each main drainage basin is assigned a letter and each subbasin a number as shown on Plate A-1 of this report.

The alpha order number is assigned each station to denote its order in alphabetical sequence for machine processing. The subnumbers are used to avoid duplication of the original four-digit system for machine processing. Only 21 columns are available for the station name making some abbreviations necessary.

Each station is generally named after and referenced to the nearest post office (Livingston 5W--a point 5 miles west of the post office in the town of Livingston), or named for a geographic location (Chiquito Creek). Occasionally the observer's name is incorporated in the station name (Hornitos Giles Ranch).

Monthly Precipitation

Table A-2 shows the monthly and seasonal total rainfall for some 395 weather stations within and near the San Joaquin Valley area. This table summarizes all of the available precipitation observations from July 1963 through June 1964. Daily records are available in department office files.

Monthly Temperatures

Table A-3 shows a temperature summary for a monthly period at 60 weather stations throughout the San Joaquin Valley area.

The individual observations were obtained using the observations, techniques, types of thermometers, and exposure conditions recommended by the U. S. Weather Bureau. The Fahrenheit scale is used in all references to temperature.

Terms used in connection with the temperature data are explained in the following:

Term	<u>Definition</u>	Abbreviation
Maximum	The highest temperature of record for the month.	Max.
Minimum	The lowest temperature of record for the month.	Min.
Average maximum	The arithmetic average of daily maximum temperatures for indicated period.	Avg. max.
Average minimum	The arithmetic average of daily minimum temperatures for indicated period.	Avg. min.
Average temperature	The average of the daily maximum and minimum for each day; the daily averages are averaged to make the monthly averages.	Avg.

Monthly Summary of Evaporation Station Data

Table A-4 shows the monthly net evaporation at 12 stations throughout the San Joaquin Valley area.

Observations of the amount of water evaporating from an open pan are made in the manner recommended by the U. S. Weather Bureau. The standard Weather Bureau pan is 47.5 inches in diameter and

10 inches deep. It contains clean water to a depth of seven to eight inches. The pan is placed on a lumber frame to insulate it from significant conductive heat exchange with the ground. The evaporation is measured by the actual difference in the pan water surface elevation over a 24-hour period with the appropriate adjustments for rainfall.

Terms used in connection with evaporation data are explained below:

Term	<u>Definition</u>	Abbreviation
Evaporation	The net amount of water evaporated from the pan for the period given.	Evap.
Precipitation	The total amount of rainfall in inches which occurred during the period.	Precip.
Wind	The total movement of air over the pan, in miles, for the period.	Wind
Average maximum	See explanation in temperature data table.	
Average minimum	See explanation in temperature data table.	

Reference Notes

- A list of the reference notes used in the climatological portion of this report follows:
 - CD Record published in "Climatological Data" by U. S. Weather Bureau.
 - WB All or part of record published by U. S. Weather Bureau.
 - HPD Record published in "Hourly Precipitation Data" by U. S. Weather Bureau.
 - HPD CD Published in both "CD" and "HPD" from separate gages. Record from "CD" reproduced in this report.
 - CD(P) Precipitation data published in "CD". Other data published by DWR.
 - R CD Published in both "CD" and "HPD" from recording rain gage. Record from "CD" reproduced in this report.
 - R Recording rain gage. Hourly precipitation distribution not necessarily available at DWR.
 - (R) Hourly precipitation record also available for this station.
 - S Storage gage. Data published in "Storage Gage Precipitation Data" by U. S. Weather Bureau.
 - Ss Storage gage using standard rain gage. Data published by DWR.
 - T Trace.
 - AS After storm only. Small amounts may not be recorded.
 - b Preliminary data--subject to revision.
 - E Wholly or partially estimated.
 - No record.
 - M One or more days of record missing. If average value is entered, less than 10 days' record is missing.
 - RB Beginning of record.
 - RE End of record.
 - * Amount included in following measurement; time distribution unknown.
 - V Includes total for previous month.
 - D Water equivalent of snowfall wholly or partly estimated using a ratio of 1 inch water equivalent to every 10 inches of new snowfall.
 - SCE Data obtained from Southern California Edison Company.

Additional criteria are:

Dimensional units used in this report are: Temperature in degrees Fahrenheit, precipitation and evaporation in inches, and wind movement in miles (per month).

- Evaporation, wind movement and temperature data in this report are not published by the $U.\ S.\ Weather\ Bureau.$
 - All temperature data represent air temperatures.

oge Sin	Alpha	6		Co. st	61-	Lo	ot.	Lo	ng.	Record	Observer	
Droinoge Bosin	Order Number	Station Name		County	Elev.	Deg	Mın.	Deg	Mın	Began	Observer	
CO B6 CO C7 D6	0009 0049 0204 0215 0239	Academy Ahwahnee 2 NNW Angiola Annette Apache Camp	WB WB	Fresno Madera Tulare Kern Ventura	545 2790 205 2140 4965	36 37 35 35 34	53 24 59 39 52	119 119 119 120 119	32 44 29 10 20	1958 1959 1899 1951 1940	Edwin W. Simpson Mrs. Eleanor P. Crooks Angiola Elev. & Whse. Ernest Still Kern Co. Road Camp	
CO CO C2 BO C2	0332 0332-02 0343 0373-80 0374	Arvin Arvin Frick Ash Mountain Atwater Craig Atwell	WB S	Kern Kern Tulare Merced Tulare	445 437 1708 150 6400	35 35 36 37 36	12 14 29 21 28	118 118 118 120 118	49 52 50 37 40	1936 1959 1925 1961 1949	Kern Co. Fstry. & F.D. Dept. Water Resources U.S. Natl. Park Serv. H. J. Craig Corps of Engineers	
B7 C0 C7 C7	0379 0396-02 0399 0399-01 0399-02	Auberry Avenal Walden Avenal Orchard Ranch Avenal 8 SW Avenal 6 SSW	WB	Fresno Kings Kings Kings Kings	2005 810 712 1424 1565	37 36 35 35 35	05 00 48 58 56	119 120 120 120 120	29 08 05 13 10	1915 1957 1919 1957 1953	Pete E. Dubose L. F. Walden E. R. Orchard J. A. Sagaser Leslie Sagaser	
C2 B5 B5 CO CO	0422 0425 0430 0440 0442	Badger Badger Pass Bagby Bakersfield 1 W Bakersfield WB Airport	WB S WB	Tulare Mariposa Mariposa Kern Kern	3030 7300 820 400 495	36 37 37 35 35	38 40 37 23 25	119 119 120 119 119	01 40 08 02 03	1940 1941 1958 1913 1933	Lucille E. Weddle U.S. Natl. Park Serv. Mr. Peron Kern County Land Co. U.S. Weather Bureau	
C1 C6 C1 B5 B5	0449 0466 0534 0570 0570-80	Balch Power House Ballinger Barton Flat Bear Valley Trabucco Bear Valley	WB Ss S	Fresno Kern Fresno Mariposa Mariposa	1720 4240 3760 2000 2060	36 34 36 37 37	55 53 49 34 34	119 119 118 120 120	05 22 53 07 07	1921 1961 1961 1952 1960	P. G. & E. Company B. J. Snedden Corps of Engineers Harold Trabucco Corps of Engineers	
B3 C2 B4 C0 V2	0573 0596 0617 0631 0684	Beardsley Dam Beartrap Meadow Beehive Meadow Bellevue Benton Insp. Sta.	s s	Tuolumne Tulare Tuolumne Kern Mono	3165 6800 6500 369 5460	38 36 38 35 37	12 41 00 20 50	120 118 119 119 118	05 52 47 07 29	1958 1959 1947 1961 1959	Oakdale Irrig. Dist. Corps of Engineers Hetch Hetchy Wtr. Sup. Kern County Land Co. John M. Patterson	
BO B7 B7 B7 B7	0688-02 0755 0755-01 0755-02 0755-05	Berenda 2 N Big Creek PH No. 1 Big Creek PH No. 2 Big Creek PH No. 3 Big Creek PH No. 8		Madera Fresno Fresno Fresno Fresno	270 4928 3000 1400 2260	37 37 37 37 37	04 12 12 09 12	120 119 119 119 119	08 14 18 23 20	1959 1913 1913 1922 1921	Closed Jan. 1, 1963. So. Calif. Edison Co. So. Calif. Edison Co. So. Calif. Edison Co. So. Calif. Edison Co.	
V2 V2 V2 C1 V2	0767 0776 0819 0821 0824	Big Pine Creek Big Pine PH No. 3 Bishop Creek Intake 2 Bishop Pass Snow Course Bishop Union Carbide	WB S WB	Inyo Inyo Inyo Fresno Inyo	10060 4680 8154 11040 9390	37 37 37 37 37	08 08 15 06 22	118 118 118 118 118	29 19 35 34 43	1947 1925 1950 1957	Dept. Water Resources LA Dept Water & Power Calif. Elec. Power Co. Corps of Engineers Union Carbide Co.	
C6 C0 C1 C1 D1	0825-01 0875 0880-80 1069-01 1170	Bitter Creek Blackwells Corner Blasingame Bretz Mill Buena Vista	Ss WB WB	Kern Kern Fresno Fresno San Benito	1250 644 1050 3250 1640	35 35 36 37 36	00 37 58 02 46	119 119 119 119 121	20 52 27 14 11	1961 1944 1961 1960 1932	B. J. Snedden Dean Sams Calif. Div. Forestry U.S. Forest Service Mrs. Ora Lee Martin	
CO CO C6 C0	1174 1175 1180-80 1199-01 1244	Buena Vista Rch. Buena Vista Rch. M & L Buena Vista Rch. M & L 2 Burgess Corrals Buttonwillow	Ss WB	Kern Kern Kern Kern Kern	310 286 290 1600 268	35 35 35 34 35	20 12 14 58 24	119 119 119 119 119	17 18 18 19 28	1914 1955 1962 1960 1940	Kern County Land Co. Miller & Lux, Inc. J. G. Boswell Co. B. J. Snedden Buena Vista W. S. Dist	
B2 B3 C3 C3 C0	1277 1280 1300 1425 1479	Calaveras Big Trees Calaveras Ranger Sta. Calif. Hot Springs RS Camp Nelson Canfield Ranch	WB WB WB	Calaveras Calaveras Tulare Tulare Kern	4696 3343 2950 4825 334	38 38 35 36 35	17 12 53 08 17	120 120 118 118 119	19 22 41 37 10	1929 1944 1907 1959 1952	Calif Div. Beaches & Pkg U.S. Forest Service U.S. Forest Service John F. Lewis Kern County Land Co.	
V7 C0 C0 B0 B8	1488 1490 1557 1580 1583	Cantil Cantua Ranch Caruthers 4 E Castle AFB Castle Rock Rad. Lab.	WB	Kern Fresno Fresno Merced San Joaquin	2010 295 265 170 625	35 36 36 37 37	18 30 33 22 38	117 120 119 120 121	58 19 46 34 32	1955 1955 1960 1951 1956	Postmaster Giffen Ranch R. L. Kincade U. S. Air Force Lawrence Rad. Lab.	
B6 B5 B5 B6 B6	1588 1588-01 1588-03 1590		WB	Mariposa Mariposa Mariposa Mariposa Mariposa	1425 2250 1250 1275 1210	37 37 37 37 37	24 29 29 26 25	120 120 120 120 120	03 04 07 06 05	1940 1957 1957 1957 1951	W. H. Sawyer	

۾ د	Alpha					L	ot.	Lo	ng.	Record		
Drainage Basin	Order Number	Station Name		County	Elev.	Oeg	Mın.	Deg	Min.	Began	Observer	
B4 B7 D3 C7 Z2	1697 1737 1743 1743-02 1754	Cherry Valley Dam Chiquito Creek Cholame Hatch Ranch Cholame Twisselman Chuchupate Ranger Sta.	WB S WB	Tuolumne Madera San Luis Obpo. San Luis Obpo. Ventura		37 37 35 35 34	58 30 41 34 48	119 119 120 120 119	55 23 12 07 01	1955 1961 1925 1951 1941	Hetch Hetchy Wtr. Sup. Dept. Water Resources Everett C. Hatch H. A. Twisselman U.S. Forest Service	
CO B7 CO C7 CO	1770-80 1844 1864 1864-02 1867	Citrus Clover Meadows GS Coalinga Coalinga Roberts Rch. Coalinga 1 SE	S WB WB	Kern Madera Fresno Fresno Fresno	660 7002 671 1350 663	35 37 36 36 36	02 32 09 02 08	118 119 120 120 120	58 17 21 27 21	1963 1945 1942 1953 1911	Kern County Land Co. Dept. Water Resources Coalinga Fire Dept. R. J. Roberts Union Oil Company	
C7 C0 C0 B6 C0	1869 1870-80 1871-80 1878 1885	Coalinga 14 WNW Coalinga CDF Coalinga Feed Yards Inc. Coarsegold Coit Ranch Hdq.	WB	Fresno Fresno Fresno Madera Fresno	1640 690 1000 2363 278	36 36 36 37 36	14 08 13 16 42	120 120 120 119 120	34 22 21 42 28	1949 1961 1964 1952 1954	Mrs. Charles Howell Calif. Div. Forestry Dept. Water Resources Dorothy McAllister Coit Ranch	
B4 B3 C0 C0	1904 2003 2012 2013 2013-05	Cold Springs Copperopolis Corcoran Irrig. Dist. Corcoran El Rico 1 Corcoran El Rico 33	WB	Tuolumne Calaveras Kings Kings Kings	5680 1000 200 198 190	38 37 36 36 35	10 59 06 03 58	120 120 119 119 119	03 38 34 39 42	1961 1954 1912 1958 1951	John D. Morrison Corps of Engineers S. S. Whitehead J. G. Boswell Co. J. G. Boswell Co.	
V2 V2 B5 B5 C5	2069 2071 2072 2072-05 2114	Cottonwood Creek Cottonwood Gates Coulterville FFS Coulterville 5 E Crabtree Meadow	s	Inyo Mariposa Mariposa	10600 3710 1870 3010 10720	36 36 37 37 36	29 25 43 43 34	118 118 120 120 118	11 02 12 06 20	1947 1959 1959 1950	Dept. Water Resources LA Dept. Water & Power Calif. Div. Forestry Norman Jaenecke Corps of Engineers	
B7 V2 C6 D6 D6	2122 2181 2222-80 2236 2248	Crane Valley PH Crowley Lake Cummings Valley Cuyama Cuyama Ranch	WB WB	Madera Mono Kern Santa Barbara San Luis Obpo.	3440 6870 3825 2240 2170	37 37 35 34 34	17 35 07 56 59	119 118 118 119 119	32 42 35 37 40	1903 1920 1961 1944 1948	P. G. & E. Company LA Dept. Water & Power Dept. Water Resources John S. Rowell Corps of Engineers	
B6 C0 B8 B0 B0	2288 2346 2369 2375 2389	Daulton Delano Del Puerto Road Camp Delta Ranch Denair	WB WB	Madera Kern Stanislaus Merced Stanislaus	410 323 1125 90 124	37 35 37 37 37	07 47 25 07 32	119 119 121 120 120	5 9 15 23 45 48	1946 1876 1958 1948 1917	M. M. Greenman Delano Fire Dept. Stanislaus County Pasquale Bisignani Closed Feb. 29, 1964.	
B0 C0 C0 C0	2389 2408 2436 2440-01 2464	Denair 3 NNE Devils Den SLF DiGiorgio Dinuba Alta I.D. Domengine Ranch	WB	Stanislaus Kern Kern Tulare Fresno	137 500 483 334 1000	37 35 35 36 36	34 46 15 33 20	120 119 118 119 120	47 58 51 23 22	1964 1959 1937 1944 1959	Ken C. Bratten South Lake Farms DiGiorgio Fruit Corp. Alta Irrig. Dist. V. Ciesielski	
C7 B4 C5 B5 B4	2464-01 2473 2492 2539 2609	Domengine Spring Don Pedro Reservoir Doublebunk Meadow Dudleys Early Intake PH	S WB	Fresno Tuolumne Tulare Mariposa Tuolumne	1700 700 6200 3000 2356	36 37 35 37 37	20 43 57 45 53	120 120 118 120 119	24 24 36 06 57	1958 1940 1955 1909 1925	V. Ciesielski Hetch Hetchy Wtr. Sup. Corps of Engineers W. D. McLean Hetch Hetchy Wtr. Sup.	
C1 C0 V0 C7 B0	2653 2752-80 2756 2785 2820	East Vidette Meadow Eighth Standard Ranch Ellery Lake El Rancho Cantua El Solyo Rch.	S WB	Tulare Kern Mono Fresno Stanislaus	10400 338 9600 1020 50	36 35 37 36 37	44 06 56 25 37	118 119 119 120 121	23 02 14 29 14	1955 1963 1924 1938 1953	Corps of Engineers Kern County Land Co. Calif. Elec. Power Co. Sta. discontinued 7/63. John K. Ohm	
BO BO B5 CO BO	2860 2909 2920 2922 2968	Escalon Swanson Eugene Exchequer Reservoir Exeter Fauver Ranch Fancher Ranch Camp 3	WB WB	San Joaquin Stanislaus Mariposa Tulare Merced	125 173 484 439 225	37 37 37 36 37	47 55 35 21 19	121 120 120 119 120	00 51 16 04 20	1944 1923 1935 1938 1959	Clark Swanson Corps of Engineers Merced Irrig. Dist. Charles O. Coulter Calif. Packing Corp.	
C7 B0 C0 C0 B7	3005 3063 3083 3084 3093	Fellows Firebaugh 9 W Five Points 5 SSW Five Points Diener Florence Lake	WB WB	Kern Fresno Fresno Fresno Fresno	1340 187 285 263 7344	35 36 36 36 37	11 51 21 22 16	119 120 120 120 118	33 37 09 06 58	1956 1934 1942 1933 1940	Kern Co. Fire Dept. Thomas & Thomas Ranch Raymond Thomas Ranch Frank C. Diener So. Calif. Edison Co.	
CO CO B7 VO E5	3257 3258-80 3261 3369 3387	Fresno WB Airport Fresno Co. Westside FD Friant Government Camp Gem Lake Gerber Ranch	WB WB WB	Fresno Fresno Fresno Mono Santa Clara	326 600 410 8970 2140	36 36 36 37 37	46 08 59 45 22	119 120 119 119 121	43 16 43 08 29	1899 1963 1896 1924 1912	U.S. Weather Bureau Dept. Water Resources U.S. Bur. Reclamation Calif. Elec. Power Co. Mrs. Hilda Draghi	

Drainage Basin	Alpha Order	Station Name		Caunty	E∣ev	La	ıt.	Lo	ng.	Record	Observer
Drair	Number	Station Nume		Coomy	2.64	Deg	Min	Deg	Min	Began	0550.10.
C2 D1 C0 C4 C4	3397 3422 3428-01 3463 3465	Giant Forest Gilroy 14 ENE Gin Yard Glennville Glennville Fulton RS	WB WB	Tulare Santa Clara Kern Kern Kern	6412 1350 295 3140 3500	36 37 35 35 35	34 06 09 43 44	118 121 119 118 118	46 20 14 42 40	1921 1940 1960 1951 1940	U.S. Natl. Park Serv. Seth E. Auser Miller & Lux, Inc. Kern Co. Fstry. & F.D. U.S. Forest Service
CO B4 C1 C1 B5	3512 3529 3548 3551 3612-03	Gosford Feed Mill Grace Meadow Granite Basin Grant Grove Green Valley Ranch	s s wb		360 8900 10000 6580 3170	36	19 09 52 44 46	119 119 118 118 120	05 36 36 58 09	1953 1947 1949 1924 1957	Kern County Land Co. Hetch Hetchy Wtr. Sup. Corps of Engineers U.S. Natl. Park Serv. Mrs. D. Davidson
B4 B4 B0 B0 B0	3669 3672 3690-02 3690-04 3694	Groveland 2 Groveland Ranger Sta. Gustine 5 SW Gustine Snyder Gustine Avoset	WB WB	Tuolumne Tuolumne Merced Merced Merced	2825 3135 145 150 98	37 37 37 37 37	50 49 13 12 15	120 120 121 121 121	14 06 03 03	1940 1940 1927 1954 1928	Duane J. Cox U.S. Forest Service W. P. Jorgensen Harry M. Snyder Foremost Co.
BO V7 CO C1 D1	3698-80 3710 3747 3811-11 3925	Gustine 7 SSW Haiwee Hanford Haslett Basin Hernandez 2 NW	WB WB	Merced Inyo Kings Fresno San Benito	156 3810 242 2400 2160	37 36 36 36 36	10 08 20 58 25	121 117 119 119 120	02 57 40 13 55	1959 1923 1899 1960 1940	Mrs. George E. Butts LA Dept. Wtr. & Power Calif. Div. Forestry U.S. Forest Service Max D. Ley
D1 B4 B6 B2 B0	3928 3939 3948 3952 3981	Hernandez 7 SE Hetch Hetchy Hidden Valley Highland Lakes Hilmar	WB WB	San Benito Tuolumne Mariposa Alpine Merced	2765 3870 1880 8650 90	37	18 57 26 30 25	120 119 119 119 120	42 47 56 48 51	1940 1910 1949 1960 1948	Mrs. Clorene Akers Hetch Hetchy Wtr. Sup. Howard Brady Dept. Water Resources Hilmar Fire Dept.
	4012 4061-01 4061-02 4061-03 4101-80	Hockett Meadow Homeland Dist. Sec. 9 Homeland Dist. Sec. 17 Homeland Dist. Sec. 34 Hornitos Bridge Cafe	s	Tulare Kings Kings Kings Mariposa	8500 190 206 195 825	36 35 35 35 37	22 57 50 53 30	118 119 119 119 120	39 36 37 34 14	1959 1952 1952 1951 1962	Corps of Engineers J. G. Boswell Co. J. G. Boswell Co. J. G. Boswell Co. Closed July 1, 1964.
B5 B5 B5 C3 B4	4102-01 4103 4104-80 4120 4148	Hornitos Erickson Ranch Hornitos Giles Ranch Hornitos Hossack (Radio) Huckleberry Lake	s s	Mariposa Mariposa Mariposa Tulare Tuolumne	1150 1050 850 7100 7800	37 37 37 36 38	30 28 30 11 06	120 120 120 118 119	09 14 14 37 45	1955 1939 1960 1959 1959	Louie Erickson Arthur Giles Corps of Engineers Corps of Engineers Hetch Hetchy Wtr. Sup.
B3 B7 B8 V2 V2	4170 4176 4204 4232 4235	Hunters Dam Huntington Lake Idria Independence Independence Onion Vly.	WB WB WB WB	Calaveras Fresno San Benito Inyo Inyo	3220 7020 2650 3950 9175	38 37 36 36 36	12 14 25 48 46	120 119 120 118 118	22 13 40 12 20	1950 1915 1918	P. G. & E. Company So. Calif. Edison Co. New Idria Mine & Chem. LA Dept. Wtr. & Power LA Dept. Wtr. & Power
B5 V7 C5 B5 C5	4246 4278 4303 4369 4389	Indian Gulch Inyokern Isabella Dam Jerseydale GS Johnsondale	WB WB	Mariposa Kern Kern Mariposa Tulare	1000 2440 2660 3605 4680	37 35 35 37 35	26 39 39 33 58	120 117 118 119 118	12 49 29 50 32	1952 1937 1949 1958 1954	Kern County Fire Dept.
C2 C6 B8	4442 4452 4463 4508 4510-02	Kaiser Meadows Kaweah PH 3 Keene Kerlinger Kerman 2 ESE		Fresno Tulare Kern San Joaquin Fresno	9110 1370 2575 172 225	36 3 5	18 29 13 41 43	119 118 118 121 120	06 50 34 26 01		Pac. Coast Aggregates
C5	4513 4518 4519 4520 4523	Kern Canyon Kern River Intake No. 3 Kern River Intake 3 SCE Kern River PH No. 1 Kern River PH No. 3	WB WB WB	Tulare	700 3650 3642 970 2703	35	26 57 57 28 47	118 118 118 118 118	48 29 29 47 26	1916 1952 1921 1904 1946	Mrs. Lila Lofberg So. Calif. Edison Co.
C0 C0	4572 - 01 4534 4535 4536 4590	Kernville RS Kettleman City 1 SSW Kettleman Hills Kettleman Station Knights Ferry 2 SE		Kern Kings Kings Kings Stanislaus	2600 310 1255 508 315	36 36 36	45 00 02 04 48	119	25 58 06 05 39	1953 1930 1931 1933 1905	Standard Oil Co. Calif. Standard Oil Co. Calif. P. G. & E. Company
B4 V2 D3	4664 4679 4705 4767 4863	Lake Alpine Lake Eleanor Lake Sabrina La Panza Ranch Lebec	S S WB WB	Tuolumne Inyo San Luis Obpo.	7500 4662 9065 1550 3585	37 35	13 23	119 118 120	37 10	1948 1909 1948 1948 1940	Hetch Hetchy Wtr. Sup. Calif. Elec. Power Co. Abe E. Zimmerman

				SAN JOAQUIN							
age	Alpho					Lo	at.	Lo	ng.	Record	0
Drainage Basin	Order Number	Station Name		County	E1ev.	Oeg	Mın.	Deg	Min.	Begon	Observer
B6 B0 B0 C2 B0	4883 4884 4884-05 4890 4953-02	Le Grand Preston Rch. Le Grand Le Grand 6 N Lemon Cove Linden Fire Station	WB WB	Mariposa Merced Merced Tulare San Joaquin	984 255 280 513 90	37 37 37 36 38	20 14 19 23 01	120 120 120 119 121	02 15 15 02 05	1950 1899 1945 1899 1948	See White Rock Preston Merced Co. Fire Dept. James Massengale (USCE) Kaweah Lemon Company E. J. Murphy
CO BO B7 V2 B8	4957 4999-03 5040 5067 5074	Lindsay Livingston 5 W Logan Meadow Lone Pine Cottonwood PH Lone Tree Canyon	S WB WB	Tulare Merced Madera Inyo San Joaquin	395 112 3400 3790 420	36 37 37 36 37	11 22 20 27 37	119 120 119 118 121	04 48 19 03 23	1913 1952 1948 1940 1933	Frank De Chaine E & J Gallo Winery Rch. See Mammoth Pool LA Dept. Wtr. & Power Edward C. Gerlach
B3 C6 V2 B0 B0	5078 5098 5111-09 5116 5117	Long Barn Exp. Station Loraine LA Aqueduct Intake Los Banos 5 S Los Banos Field Sta.	WB WB	Tuolumne Kern Inyo Merced Merced	5200 2720 3841 175 160	38 35 36 36 37	11 18 58 59 01	120 118 118 120 120	01 26 12 51 54	1960 1941 1919 1948 1956	Closed February 1964. Charles W. Poole LA Dept. Wtr. & Power H. G. Fawcett U.S. Bur. Reclamation
B0 B8 C0 C1 B4	5118 5119 5151 5155-51 5160	Los Banos Los Banos Arburua Ranch Lost Hills Lower Big Creek Lower Kibbey Ridge	WB WB WB	Merced Merced Kern Fresno Tuolumne	125 860 285 1078 6500	37 36 35 36 38	03 53 37 55 01	120 120 119 119 119	51 56 41 15 53	1873 1932 1912 1960 1948	Roger C. Rice Arburua Ranch Kern Co. Fstry & F.D. U.S. Forest Service Hetch Hetchy Wtr. Sup.
B6 B0 B0 C0 V2	5 202 5 2 3 3 5 2 3 3 - 0 3 5 2 5 7 5 2 8 4	Lushmeadows Ranch Madera Madera I. D. Magunden Mammoth Pass	wB S	Mariposa Madera Madera Kern Mono	3215 268 263 440 9380	37 36 36 35 37	29 58 55 22 37	119 120 120 118 119	50 04 02 55 02	1959 1899 1964 1927 1947	F. L. Raby Calif. Div. Forestry Madera Irrig. Dist. So. Calif. Edison Co. LA Dept. Wtr. & Power
B7 B0 B0 C7 C7	5288 5297-01 5297-02 5338 5338-01	Mammoth Pool Manteca No. 2 Manteca SP Maricopa Maricopa FS	s wb	Madera San Joaquin San Joaquin Kern Kern	3390 46 42 685 885	37 37 37 35 35	21 48 48 05 04	119 121 121 119 119	19 12 13 23 24	1948 1930 1935 1911 1958	So. Calif. Edison Co. Spreckles Sugar Co. Southern Pacific Co. Signal Oil & Gas Co. Kern County Fire Dept.
B5 B5 B6 B5 B5	5346 5346-01 5346-04 5348 5352	Mariposa Mariposa Reynolds Mariposa 8 ESE Mariposa Circle 9 Rch. Mariposa RS	WB	Mariposa Mariposa Mariposa Mariposa Mariposa	2011 2000 2780 3536 2100	37 37 37 37 37	29 29 27 33 30	119 119 119 119 119	58 58 50 51 59	1909 1958 1952 1957 1957	Mrs. Gabrielle Wilson E. F. Reynolds D. A. Boyce Miss D. D. Sevedge Calif. Div. Forestry
C7 B4 B0 B0 B5	5372-01 5400 5408-80 5418-80 5460	Martinez Spring Mather Mattos Ranch Maze Bridge 2 S McDiermid Sta.	WB	Fresno Tuolumne Merced Stanislaus Mariposa	1875 4515 170 35 2990	36 37 36 37 37	20 53 59 37 43	120 119 120 121 120	25 51 51 13 06	1959 1930 1961 1958 1959	V. Ciesielski City of San Francisco Bobbie Mattos Dept. Water Resources Dale Goodner
C7 B7 B3 B0 C0	5480-01 5496 5511 5526 5526-04	McKittrick FS Meadow Lake Melones Dam Mendota 1 NNW Mendota Murietta Ranch	WB	Kern Fresno Tuolumne Fresno Fresno	1051 4480 900 172 253	35 37 37 36 36	18 05 57 46 39	119 119 120 120 120	37 26 31 23 27	1956 1948 1955 1941 1958	Kern County Fire Dept. Radio Station KRFM Oakdale Irrig. Dist. Henry E. Schreiner Mrs. R. Truelove
BO CO CO BO BO	5528 5529 5530 5532 5532-01	Mendota Dam Mendota Halfway Pump Mendota VDL Farms Merced Fire Station 2 Merced SP	WB WB	Fresno Fresno Fresno Merced Merced	166 444 230 169 170	36 36 36 37 37	47 28 45 18 18	120 120 120 120 120	22 23 28 29 29	1873 1956 1948 1872 1872	Frank F. Moitoza Tidewater Oil Co. Vista Del Llano Farms City of Merced Southern Pacific Co.
B0 B0 B0 B8 C3	5532+03 5534 5535 5550 5669	Merced 5 SE Merced Fancher Ranch Merced 2 Mercey Hot Springs Milo 5 NE	WB WB	Merced Merced Merced Fresno Tulare	198 212 168 1165 3400	37 37 37 36 36	16 18 19 42 17	120 120 120 120 118	23 21 29 52 46	1959 1920 1938 1932 1957	Dept. Water Resources Calif. Packing Corp. Merced Irrig. Dist. Horace C. Swatzel Mrs. Ethel Walker
B7 C2 C2 C1 B4	5677-80 5680 5708 5723 5735	Minarets RS Mineral King Miramonte Honor Camp Mitchell Meadow Moccasin	s	Madera Tulare Fresno Fresno Tuolumne	5180 7975 3005 9700 950	37 36 36 36 37	25 26 40 45 49	119 118 119 118 120	21 35 05 43 18	1962 1956 1957 1957 1935	U.S. Forest Service Corps of Engineers Calif. Div. Forestry Corps of Engineers Hetch Hetchy Wtr. Sup.
BO BO V8 V8	5738 5740 5741 5756 5758	Modesto Modesto KTRB Modesto 2 Mojave Mojave 2 ESE	WB WB WB	Stanislaus Stanislaus Stanislaus Kern Kern	91 93 92 2735 2680	37 37 37 35 35	39 40 38 03 02	121 120 121 118 118	00 59 00 10 09	1926 1959 1942 1947 1963	Modesto Irrig. Dist. Clifford Price City of Modesto Kern County Fire Dept. KDOL Radio Station

TABLE A-1 (Cont.)

age c	Alpho					La	ıt	Lor	ng.	Record	0
Drainage Basin	Order Number	Station Name		County	Elev	Deg	Min.	Deg	Mın	Began	Observer
C5 C0 C3 C1 V8	5777 5822-80 5893 6122	Monache Meadows Moody Ranch Mountain Home 2 Mountain Rest FFS Neenach	S S WB	Tulare Kern Tulare Fresno Los Angeles	7900 405 5360 4100 2 890	36 35 36 37 34	13 06 14 03 43	118 118 118 119 118	10 58 43 22 35	1950 1963 1962 1960 1931	Corps of Engineers Kern County Land Co. Corps of Engineers U.S. Forest Service LA Dept. Wtr. & Power
BO BO CO B7 BO	6168 6168-01 6230-50 6252 6303	Newman 2 NW Newman 1 SE North Belridge North Fork Ranger Sta. Oakdale	WB WB	Stanislaus Merced Kern Madera Stanislaus	108 80 630 2630 155	37 37 35 37 37	21 18 33 14 46	121 121 119 119 120	03 00 47 30 51	1899 1960 1953 1904 1880	Richard A. Smith Dept. Water Resources Belridge Oil Co. U.S. Forest Service A. L. Gilbert Co.
B0 B6 C0 C7 C5	6305 6321-80 6393 6395 6462	Oakdale Woodward Dam Oakhurst Oilfields FFS Oilfields Joaquin Ridge Onyx	WB Ss	Stanislaus Madera Fresno Fresno Kern	215 2250 950 3620 2750	37 37 36 36 35	52 20 15 18 42	120 119 120 120 118	52 39 19 24 13	1918 1961 1952 1949 1962	S. San Joaquin I. D. Oakhurst School Gene Martin U.S. Weather Bureau Corps of Engineers
CO BO B5 B8 CO	6467 6490 6552 6583 6651	Orange Cove Orestimba Ostrander Lake Pacheco Pass Paloma Ranch	s	Fresno Stanislaus Mariposa Merced Kern	431 110 8600 880 290	36 37 37 37 35	37 22 38 04 11	119 121 119 121 119	18 04 33 11	1931 1896 1947 1949 1957	Orange Cove Cit. Assn. Central Calif. I. D. U.S. Natl. Park Serv. U.S. Bur. Reclamation Miller & Lux, Inc.
B8 B8 B0 B0 B4	6675 6676 6677 6679-05 6688	Panoche Panoche 2 W Panoche Creek Panoche Water Dist. Paradise Meadow	WB WB S	San Benito San Benito Fresno Fresno Tuolumne	1265 1320 370 183 7700	36 36 36 36 38	36 37 41 53 03	120 120 120 120 120	50 53 35 44 40	1922 1957 1963 1949 1948	Miss Lily Berg Malcolm Strohn Employee Enterpr. Inc. Panoche Water Dist. Hetch Hetchy Wtr. Sup.
D3 D3 B0 C6 C2	6703 6706 6746-01 6754 6767	Parkfield Parkfield 7 NNW Patterson Pattiway Pear Lake	WB WB	Monterey Monterey Stanislaus Kern Tulare	1482 3590 105 3868 9700	35 36 37 34 36	53 00 28 56 36	120 120 121 119 118	26 28 07 23 40	1938 1948 1912 1915 1956	Herbert H. Durham Raulston P. Morrison Yancey Lumber Co. Hudson Ranch Corps of Engineers
B8 C1 B3 C1 C1	6847 6857 6893 6895 6902	Pfeiffer Ranch Piedra Pinecrest Strawberry Pine Flat Dam Pinehurst	WB WB	Merced Fresno Tuolumne Fresno Fresno	1615 580 5700 610 4050	36 36 38 36 36	53 48 12 49 42	121 119 119 119 119	08 23 59 20 01	1954 1917 1922 1949 1954	Frances S. Pfeiffer Mrs. Ida H. Akers P. G. & E. Company Corps of Engineers U.S. Forest Service
B7 C0 C0 C0 C5	6959-80 7055-80 7077 7079 7093	Placer G. S. Pond 1 N Porterville Porterville 3 W Portuguese Meadow	WB S	Madera Kern Tulare Tulare Tulare	3670 268 393 413 7000	37 35 36 36 35	22 44 04 05 48	119 119 119 119 118	22 19 01 04 34	1962 1962 1893 1958 1953	U.S. Forest Service Dept. Water Resources John H. Daybell Porterville I. D. Corps of Engineers
C4 C0 B0 B4 D2	7096 7098-11 7099-11 7145 7150		WB WB	Tulare Kern Fresno Tuolumne Monterey	4920 370 125 2245 2300	35 35 36 37 36	48 37 59 49	118 119 120 120 120	38 16 30 16 42	1954 1913 1928 1898	Panorama Height Lodge Kern County Land Co. Central Calif. I. D. Hetch Hetchy Wtr. Sup. Nelson H. Palmer
C5 C1 B6 B6 B6	7179 7259 7270-01 7272-01 7273			Tulare Fresno Madera Mariposa Mariposa	7200 9900 635 1640 1210	36 37 37	59 11	118 118 119 119	43 56 54	1961 1940	Corps of Engineers Sam Wood Fred Bunning Jr.
CO CO BO	7276 7288 7354-80 7447-80 7460	Raymond 12 NNE Rector Reedley MVFD Ripon Riverdale		Mariposa Tulare Fresno San Joaquin Fresno		36	18 37 45	121	15 27 07	1888 1962 1963	So. Calif. Edison Co. Mid-Valley Fire Dist. Arthur N. Clemens
B6 CO B7	7510 7528 7555 7560 7579	Rock Creek Rocky Village Rosedale Rose Marie Meadow Round Meadow	s s		9700 570 380 10000 9000	37 35 37	22 26 19	120 119 118	10 08 52	1957 1914 1953	W. R. Down Kern County Land Co. So. Calif. Edison Co.
D1 Z2 C0	7623 7719 7735 7753 7755	Saches Springs San Benito Sandberg WB San Emigdio Ranch San Felipe Highway Sta.	S WB WB WB	San Benito Los Angeles Kern	7900 1355 4517 1450 365	36 34	31 45 00	121 1 1 8	05 44 12	1936 1933 1901	John M. Shields U. S. Weather Bureau

TABLE A-1 (Cont.)

<u>. 1</u>	· · · · · · · · · · · · · · · · · · ·	· - · · · · · · · · · · · · · · · · · ·					. 1				···
Droinoge Bosin	Alpho Order	Station Name		County	Elev.	Lo		Lor	_	Record Begon	Observer
هٔ	Number					0eg.	Min.	Deg	Min.		
CO CO CO B7 CO	7800-02 7800-03 7816 7817 7819-80	Sanger 1 NE Sanger RS San Joaquin San Joaquin Exp. Range San Joaquin MVFD	WB	Fresno Fresno Fresno Madera Fresno	375 375 174 1100 174	36 36 36 37 36	44 44 36 06 36	119 119 120 119 120	33 33 11 44 11	1959 1958 1919 1934 1962	James S. Minter Calif. Div. Forestry James Irrig. Dist. U.S. Forest Service Mid-Valley Fire Dist.
BO B8 BO CO D7	7836-01 7846 7855 7987-80 8259-02	San Juan Hdqrs. M & L San Luis Dam San Luis Canal Co. Hdq. Santiago Ranch M & L Simmler R. W. Cooper	WB	Merced Merced Merced Kern San Luis Obpo.	105 277 106 437 2040	37 37 37 35 35	05 03 03 06 24	120 121 120 119 120	39 04 40 13 06	1947 1963 1944 1963 1936	Miller & Lux, Inc. U.S. Bur. Reclamation San Luis Canal Co. Mr. Leo Destranpe R. W. Cooper
D7 D2 C6 B5 C1	8259-04 8276 8304 8318 8323-01	Simmler Maint. Sta. Slack Canyon Smith Flat Snow Flat Soaproot Saddle	WB Ss S	San Luis Obpo. Monterey Kern Mariposa Fresno	2030 1730 3800 8700 3830	35 36 34 37 37	21 05 54 50 02	119 120 119 119 119	59 40 21 30 15	1946 1955 1960 1947 1960	Div. of Highways Calif. Div. Forestry B. J. Snedden Dept. Water Resources U.S. Forest Service
D7 B4 G9 CO BO	8326 8353 8355 8375-50 8378	Soda Lake Sonora RS Sonora Junction South Belridge South Dos Palos	WB WB	San Luis Obpo. Tuolumne Mono Kern Merced	1960 1749 6886 575 116	35 37 38 35 36	15 59 21 27 58	119 120 119 119 120	55 23 27 43 39	1925 1887 1959 1938 1938	Dewey Werling Calif. Div. Forestry Div. of Highways Belridge Oil Co. Southern Pacific Co.
B5 V2 C0 B3 C3	8380 8406 8407-11 8450 8455	So. Entrance Yosemite NP South Lake South Lake Farms Hdq. Spring Gap Forebay Springville 7 ENE	WB S	Mariposa Inyo Kings Tuolumne Tulare	5120 9580 190 4900 2470	37 37 35 38 36	30 11 56 10	119 118 119 120 118	38 34 39 06 42	1941 1948 1959 1921 1953	U.S. Natl. Park Serv. Calif. Elec. Power Co. South Lake Farms P. G. & E. Company Elmer A. Sutton
C3 C3 C2 B3 C1	8460 8463 8474-80 8499 8510	Springville RS Springville Tule Hdwks. Squaw Valley Fr. Stanislaus Power House State Lakes	WB WB WB	Tulare Tulare Fresno Tuolumne Fresno	1050 4070 1750 1130 10300	36 36 36 38 36	08 12 45 08 56	118 118 119 120 118	48 39 13 22 35	1924 1907 1961 1955	U.S. Forest Service P. G. & E. Company Edgar Young P. G. & E. Company Corps of Engineers
CO C3 C1 C7	85 20 86 20 86 4 3 87 5 2 87 5 5	Stevenson Dist. Sec. 33 Success Dam Summit Meadow Taft Taft KTKR Radio	S WB	Tulare Tulare Fresno Kern Kern	212 590 6240 1025 1030	36 36 37 35 35	03 03 05 09	119 118 119 119 119	30 55 13 28 28	1951 1959 1960 1940 1954	J. G. Boswell Co. Corps of Engineers Dept. Water Resources Kern Co. Fstry & F.D. G. K. Mann
C6 C6 C0 C2 C7	8826 8832 8839 8868 8893-80	Tehachapi Tehachapi RS Tejon Rancho Terminus Dam Thirty-Two Corral	WB WB WB	Kern Kern Kern Tulare Fresno	3975 3975 1425 5 70 1700	35 35 35 36 36	08 08 02 25 19	118 118 118 119 120	27 27 45 00 22	1876 1940 1895 1959 1959	Mrs. Anita Cowan Kern County Fire Dept. Tejon Ranch Company Corps of Engineers V. Ciesielski
C2 C2 C2 B0 B8	8912 8914 8917 8997 8999	Three Rivers 6 SE Three Rivers Edison PH 2 Three Rivers Edison PH 1 Tracy 2 SSE Tracy Carbona	WB WB WB WB	Tulare Tulare Tulare San Joaquin San Joaquin	2200 950 1140 105 140	36 36 36 37 37	22 28 28 43 42	118 118 118 121 121	51 53 52 25 25	1940 1909 1940 1951 1934	Glenn Baker So. Calif. Edison Co. So. Calif. Edison Co. Aage R. Tugel Banta Carbona Irr. Co.
C0 C0 C1 C0 C0	9006 9011-80 9025 9051 9051-04	Tranquillity Glotz Traver 4 ESE Trimmer RS Tulare Tulare Dist. Sec. 27		Fresno Tulare Fresno Tulare Kings	165 285 736 293 179	36 36 36 36 36	38 26 54 13 05	120 119 119 119 119	14 24 17 20 48	1953 1962 1948 1919 1953	Ted Gromala Dept. Water Resources U.S. Forest Service So. Calif. Edison Co. J. G. Boswell Co.
CO C3 C3 C5 B3	9052 9059 9060 9061 9062	Tulefield Tule River Intake Tule River PH Tunnel RS Tullock Dam	WB S	Kern Tulare Tulare Tulare Calaveras	295 2450 1240 8950 515	35 36 36 36 37	09 10 08 22 53	119 118 118 118 120	01 42 47 17 36	1948 1910 1910 1945 1958	
B4 B0 B0 B0 C0	9063 9073 9073-01 9073-02 9145	Tuolumne Meadows Turlock Turlock 5 SW Turlock 8 WSW U. S. Cotton Field Sta.	S WB	Tuolumne Stanislaus Stanislaus Stanislaus Kern	8600 115 76 60 367	37 37 37 37 35	53 29 28 27 32	119 120 120 120 119	20 51 55 58 17	1947 1893 1958 1958 1922	Herbert Ellis
B7 D1 B7 C0 C0	9162-80 9189 9301 9304 9367	Upper Chiquito Upper Tres Pinos Vermilion Valley Vestal Visalia	WB S WB	Madera San Benito Fresno Tulare Tulare	6800 2050 7520 500 354	37 36 37 35 36	30 38 22 50 20	119 121 118 119 119		1962 1940 1947 1920 1903	Eldon Fancher So. Calif. Edison Co. So. Calif. Edison Co.

90°	Alpha	.		6	51-	Lo	ot,	Lo	ng	Record	Observer
Drainage Basin	Order Number	Station Name		County	Elev	Oeg	Min.	Deg	Min	Begon	Observer
	0360	Visalia 4 E		Tulare	357	36	20	119	13	1959	J. V. Pimentel
CO CO	9369 9452	Wasco	WB	Kern	333	35	36	119	20	1899	Kern Co. Fstry. & F.D
B5	9452	Wasco Wawona RS	WB	Mariposa	3965	37	32	119	40	1934	U.S. Natl. Park Serv.
C5	9512	Weldon 1 WSW	WB	Kern	2680	35	40	118	18	1940	Vernon J. Blount
CO	9535	West Camp SLF		Kings	290	35	51	119	5.3	1959	South Lake Farms
-0	9333	West camp our		Kings	2 30	33	J.	11,	55	1,,,,	boden bake rarms
В6	9556-80	Westfall RS		Madera	4793	37	27	119	39	1958	U.S. Forest Service
CO	9560	Westhaven	WB	Fresno	285	36	13	119	59	1925	Boston Ranch Co.
во	9565	Westley		Stanislaus	85	37	33	121	12	1928	W. Stanislaus I. D.
C5	9602	Wet Meadow	S	Tulare	8950	36	21	118	34	1959	Corps of Engineers
CO	9614-81	Wheeler Ridge LWU A-122		Kern	1230	34	59	118	57	1963	Dept. Water Resources
в6	9640-80	White Rock Preston		Mariposa	984	37	20	120	02	1950	Ray Preston
CO	9670-80	Wilbur Ditch		Kings	210	35	56	119	45	1962	South Lake Farms
Cl	9749	Wishon Res.		Fresno	6600	37	01	118	58	1958	P. G. & E. Co.
C5	9754	Wofford Heights	WB	Kern	2700	35	43	118	27	1894	James H. Jorgensen
C1	9773	Woodchuck Meadow	S	Fresno	9200	37	02	118	54	1955	Corps of Engineers
C4	9805	Woody		Kern	1630	35	42	118	51	1956	Kern Co. Fstry. & F.D.
B5	9855	Yosemite National Park	WB	Mariposa	3985	37	45	119	35	1904	U.S. Natl. Park Serv.

WB - All or part of data published by U. S. Weather Bureau.
S - Storage gage - Data published by U. S. Weather Bureau.
Ss - Storage gage using standard rain gage.
Note - Data collected from all other stations by Department of Water Resources.

TABLE A-2
PRECIPITATION DATA FOR 1963-64
SAN JOAQUIN DISTRICT

Second	3 c	Alpho	T	Seasonal					·	In ir	nchea					
Section Color Co	Bosi Bosi		Station Name		July	Aug.	Sept.	Oct.	Nov	Dec.	Jan.	Feb.	Mar.	Apr.	May	June
Column	86 C0 C7	0049 0204 0215	Ahwahnee 2 NNW Angiola CD Annette	19.89 5.94 5.99	.00	.02 .05	.44 .55	1.47 1.10 1.34	7.41 1.19 1.08	.53 .23 .00	3.03 .66 1.59	.00	3.33 1.21 -90	.81 1.64 .77 .20	.45 1.48 .12 .46 .39	.00 .54 T .00
Second Column Second Colum	C0 C2 80	0332-02 0343 0373-80	Arvin Frick Ash Mountain CO Atwater Craig	6.30 17.76 8.76	.00	.02	1.20	.76 1.45	1.51 5.06 2.59	.15 .55 .28	.49 1.81 1.31	.44 .31 .21	.52 3.61	.63 .69 2.49 .56	.71 .50 1.50 .34	.01 .02 .23 .47
2	B7 C0 C7	0381 0396-02 0399	Auberry Valley Avenal Walden Avenal Orchard Rch.	4.02 5.92	.00	RE T .20	.26	1.01	.94 1.42	.05	.92 1.40	T .08	.33	1.73 -47 .56 39	.04 .10 .22	.34 T .00
Col Odd-9	B5 B5	0422 0425 0430	Badger HPD Badger Pass S Bagby	24.25 16.21M	.00	.00	-	RB	4.99 April 28 5.24	.67 3, 1963 .56	2.44 to April 4.23	.49 12, 196 .18	5.32 4 2.84	1.40 1.21	.04 1.73 1.43 .17	.00 .07 .33 .00
63 673	C1 C6 C1	0449 0466 0534	Balch Power House HPO CO Ballinger Ss Barton Flat S	21.40 9.00 16.48	.00	.02	.56	1.59	6.51 July 22	.69 1963 t	2.61 O August	.05 10, 196	3.87 4	.56 2.29	.20 2.80	.01
BO	83 C2 B4	0573 0596 0617	Beardsley Oam Beartrap Meadow S Beehive Meadow S	27.40 33.24 38.68	.00	.44	.59	2.63 Septe	7.81 July 22 ember 12	.B1 , 1963 t 1963 t	5.84 o June 2 o Septem	.21 5, 1964 ber 15,	2.98 1964	1.18 2.01	1.57 2.44	.35 1.64
V2 O767	B0 B7 B7	0688-02 0755 0755-01	Berenda 2 N Big Creek PH No. 1 b Big Creek PH No. 2 b	24.25 21.14	.00	.00 .09 .02	.17 .49 .63	1.40 1.46 1.57	3.02 8.17 7.63	.49 .46 .42	RE 2.55 2.23	.15	3.66 3.14	.86 2.65 1.66 1.55	1.06 3.62 3.15 1.75	.03 .93 .66
CC 0875-01 Bitter Creek Ss 2.118 CC 0875- Blackwells Corner CD 3.89 .00 .12 .32 .88 .81 .03 .62 .05 .13 .16	V2 V2 V2	0767 0776 0819	Big Pine Creek S Big Pine PH No. 3 Bishop Creek Intake 2 (R) CD	12.10 3.46 7.44	.00	.40	.47 .78	.08 .81	.30 1.10	1963 t .04 .20	.88 1.00	r 19, 19 .02 .30	64 .11 .65	1.36 .40 .70	2.49 .76 1.00	.49 .00 .10
CO 1175 Buena Vista Rch. 4.36 .00 T .56 .78 1.03 .13 .31 .07 .82	C6 C0 C1	0825-01 0875 0880-80	Bitter Creek Ss Blackwells Corner CD Blasingame	2.11E 3.89 14.18	.00	.12	.32	.88 1.52	.81 4.51	.03	.62 1.83	.05 T	.13 3.79	.52 .54 .48 2.35	1.34 .39 .98 2.68	.13E .00 .07 .22
82 1277	CO CO	1174 1175 1180-80	Buena Vista Rch. Buena Vista Rch. M & L Buena Vista Rch. M & L 2	3.98	.00 .00	.00 .00	.76 1.12	.78 .94 1.10	.9B 1.03	.13 .00	.31 .35 .40	.07 .04 .05	.82 .61 .79	.43 .08 .04	.54 .23 .22 .39 .00E	.49 .00 .00 .00
V7 1488 Cantil	82 B3 C3	1277 1280 1300	Calaveras Big Trees CD Calaveras Ranger Sta. HPD Calif. Hot Springs RS HPD	45.01 36.06 19.64	.00	.00	.50 .36 .47	3.87 2.99 2.12	13.39 11.29 4.30	1.15 .73 .92	9.12 7.51 1.96	.63 .48 .79	7.10 6.41	.25 2.93 1.36 V6.44 1.86	.10 3.99 3.65 2.02 2.07	.00 2.33 1.28 .20
B6	V7 C0 C0	1488 1490 1557	Cantil CD Cantua Ranch Caruthers 4 E	3.86 6.77 6.80	.00	.29 .00 .09	1.77 .00 .24	.82 1.99 1.02	.61 1.70 1.92	.10 .00 .16	1.10 .61	.00 .00	1.43 1.48	.49 .00 .50 .42 .28	.19 .04 .00 .82 .20	.00 .00 .05 .04
B7 1737 Chiquito Creek S 32.51 S S S S S S S S S	B6 B5 86	1588 1588-03 1590	Catheys Viy. Bull Run Rch. CD Catheys Viy. 3 NNW Catheys Viy. Sawyer Rch.	14.51 14.45 15.16	.00	.00	.19 .00 .15	1.50 1.10 1.37	4.45 5.78 4.70	.28 .00 .40	2.34 2.50 3.02	.13 .00 .06	2.81 2.22 2.57	.25 1.23 1.30 1.22 1.22	.32 1.23 1.55 1.32 1.34	.56 .35 .00 .35 .46
B7	B7 D3 C7	1737 1743 1743-02	Chiquito Creek S Cholame Hatch Rch. HPO Cholame Twisselman	32.51 6.07	.00	.06	.66	1.12	July 16 .97 1.11	.1963 t .00 .00	0 July 1 1.48 1.61	3. 1964 .06 .07	1.00	2.56 .32 .28 V2.96	2.95 .40 .53 .72	2.15 .00 .00 .00
CO 1870-80 Coalings COF 4.54 .00 T .12 .71 1.66 .00 1.34 .00 .63 RB RB 1878 Coarsesold 20.10 .00 .03 .43 2.16 6.76 .34 2.99 .00 3.46 CO 1885 Coit Ranch Hdq. 5.08 .00 .00 .11 .92 1.51 .24 .43 .10 .97 RB 3 2003 Copperopolis (R) 19.298 .008 .008 .008 .23 2.30 6.15 .20 3.45 .41 2.69 CO 2012 Corcoran Irig, Dist. HPO CD 5.29 .00 .00 .45 1.04 .82 .15 .75 .12 .60 CO 2013 Corcoran IRico 1 5.45 .00 .00 .06 .51 1.15 .92 .10 .86 .08 .95 .95	B7 C0 C7	1844 1864 1864-02	Clover Meadows GS S Coalinga CD Coalinga Roberts Rch.	31.72 5.10 8.96	.00	.01	.17	.93 1.42	July 16 1.41 3.17	.09 .13	1.46 2.62	3, 1964 .01 .00	.93	.72 .02 .72 .00	.37 .07 .00 .03	.00 T .00
B3 2003 Copperopolis (R) 19.298 .008 .008 .23 2.30 6.15 .20 3.45 .41 2.69 CO 2012 Corcoran Irrig. Dist. HPO CO 5.29 .00 .00 .45 1.04 .82 .15 .75 .12 .60 CO 2013 Corcoran SI Rico 1 5.45 0.00 .06 .51 1.15 .92 .10 .86 .08 .95	C0 C0 B6	1870-80 1871-80 1878	Coalinga COF Coalinga Feed Yards Inc. Coarsegold	4.54 20.10	.00	.03	.12	2,16	6.76	.00	2.99	.00	.63 RB 3.46	.33 .03 .30 2.03 .48	.19 .03 .00 1.46 .21	.00 .02 .00 .44 .11
	B3 CO	2003 2012	Copperopolis (R) Corcoran Irrig. Dist. HPO CO	5.29	.00E .00	.008	.23	2.30	.82	.15	.75	.12	.60 .95	1.09 1.22 .53	1.77 .14 .29	1.00 .00 .00
V2 2069 Cottonwood Creek S 10.15 .00 .53 .56 October 17 1963 to October 14, 1964 V2 2071 Cottonwood Gates 2.58 .00 .53 .56 .34 .21 .06 .56 .00 .20 B5 2072 Coulterville FFS 20.36 .00 .00 .24 1.70 6.30 .54 3.64 .06 4.19 B5 2072-05 Coulterville FS - 7 T .25 - September 21 1963 to September 13, 1964	P5 P5	2071 2072 2072-05	Cottonwood Gates Coulterville FFS Coulterville 5 S	2.58	.00	.00	. 24	1.70	6.30	.06 .54	.56 3.64	.00	4.19	1.00	.12 2.25 -	.00
B7 2122 Crane Valley PH 21.71 .00 .00 .45 1.69 9.13 .59 2.05 .00 4.11 V2 2181 Crowley Lake 5.80 .00 .43 .65 .63 .77 .25 1.18 .12 .45 .45 .66 .219 .222-80 Cuymings Valley 2 13.24 .00 .70 1.62 .95 2.44 .72 1.06 .65 2.19 .70	V2 C6 D6	2181 2222-80 2236	Crowley Lake Cummings Valley 2 Cuyama CD	5.80 13.24 5.96	.00	.43 .70 .04	.65 1.62 .86	.63 .95 1.09	.77 2.44 .87	. 25 .72 .02	1.18 1.06 .86	.12 .65 .13	.45 2.19 .44	1.95 .56 1.39 .28	1.05 .74 1.42 .37	.69 .02 .10 .00
B6 2288 Daulton CD 2346 Oclano CD 5.42 .00 .00 .24 1.40 4.65 .40 1.32 .00 3.70 CD 2346 Del Puerto Road Camp (R) CD 7.81 .00 .00 .25 1.07 2.27 T 2.56 T .96 BO 2375 Delta Ranch BO 2389 Denair CO 5.95E .00 .00 .14 1.62 1.46 .07 .88 .03 RE	B8 B0	2346 2369 2375	Oelano CD Del Puerto Road Camp (R) CD Delta Ranch	5.42 7.81 5.958	.00	.03	.88 .25 .10	1.08 1.07 1.31	.82 2.27 1.628	.23 T	.53 2.56 .80	.17 T	.58 .96 1.15	.90 .93 .20 .44 See I	.25 .17 T .10 Denair 3	.40 .00 .50 .28

ī	Alaba				5417 50	AQUIN DI			In ir	ches					$\overline{}$
Drainage Basin	Alpha Order Number	Station Name	Seasonal Talal	July	Aug	Sept.	Oct.	Nov	Dec.	Jan.	Feb.	Mgr.	Apr.	Моу	June
80 C0 C0 C0 C7	2389 2408 2436 2440-01 2464	Denair 3 NNE CD Devils Den SLF DiGlorgio Dinuba Alta I. D. Domengine Ranch	7.08 4.59 6.42 7.79 6.56	.00 .00 .00	.08 T .02	.27 1.17 .26	1.01 .20 1.41 .80	1.03 1.45 2.04 2.28	T .05 .24	.89 .50 1.20 1.14	RB .10 .54 .10 T	1.33 .30 .73 1.58 1.56	.47 .91 1.24 .48 .23	.63 T .51 .45	.45 .00 .03 .01
C7 84 C5 85 84	2464-01 2473 2492 2539 2609	Domengine Spring Don Pedro Reservoir Doublebunk Meadow S Dudleys CD Early Intake PH	7.90E 16.73 31.03 26.06 26.09	.00E .00	.00E .00	.00E .25 .35	1.17 1.72 1.98 1.85	2.63 4.98 July 10 9.07 7.22	.15 .63 1963 to .65	1.60 2.80 June 2 5.12 4.71	.30 .35 3, 1964 .11 .09	2.05 3.19 4.50 4.30	.00E .78 1.49 2.30	.00E 1.53 1.84 2.85	.00E .50 .95 1.70
C1 CD V0 80 80	2653 2752-80 2756 2820 2860	East Vidette Meadow S Eighth Standard Ranch Ellery Lake CD El Solyo Rch. Escalon Swanson	15.16 5.51 18.89 6.18 10.00	.00 .00 .00	.00 .60 .00	.99 1.10 .13 .22	.80 1.45 1.24 1.82	1.24 5.04 1.40 3.27	.03 .70 .05 .13	.39 2.90 1.95 1.86	.10 .18 .01 .02	1.03 2.85 .84 1.41	.63 1.41 .15 .40	.30 1.61 .41 .31	.00 1.05 .00 .56
80 85 C0 80 C7	2909 2920 2922 2968 3005	Rugene (R) Exchequer Reservoir CD Exeter Fauver Ranch HPD Fancher Rch, Camp 3 Fellows	10.43 14.07 - 9.18 4.61	.00 .00 .00 .00	.00 .00 .09 .00	.10 .14 .29 .26	1.84 1.59 1.68 1.58	3.51 3.70 1.85 2.66 1.53	.13 .31 .18 .19	1.60 2.76 - 1.09 .81	.07 .17 .35 .22	1.21 2.65 2.30 1.45 .53	.81 1.18 .92 .93	.74 1.40 .97 .30	.42 .17 .05 .50
80 C0 C0 87 C0	3063 3083 3084 3093 3257	Firebaugh 9 W Pive Points 5 SSW CD Five Points Diener Florence Lake HPD Fresno WBAP (R) CD	3.76 19.14 6.76	.00	.00 T .84	- .07 .05 .79	- .84 .53 1.58 .95	1.64 1.22 5.52 2.54	- .09 .11 .53 .27	.53 .84 .68 2.53 .66	.00 .00 .00 .25	1.00 1.22 1.16 3.11 1.27	.29 T .01 2.38 .50	.19 .03 T 1.38 .35	.15 T T .23
CD 87 VO E5 C2	3258-80 3261 3369 3387 3397	Fresno Co. Westside FD Friant Government Camp CD Gem Lake CD Gerber Ranch CD Giant Forest HPD CD	8.71 16.04 11.54 30.63	.00	RB .00 .34 .01	.07 .33 1.58 .24 1.26	.99 1.42 .75 .85 1.31	1.77 2.99 3.52 3.68 6.89	.04 .35 .50 .25	1.14 .92 2.58 4.36 4.56	.08 .08 .30 .12	1.00 1.34 1.95 1.18 6.89	.14 .80 1.89 .25 4.47	.01 .48 1.63 .24 2.67	.01 .00 1.00 .36 1.06
D1 C0 C4 C4 C0	3422 3428-01 3463 3465 3512	Gilroy 14 ENE CD Gin Yard Glennville CD Glennville Fulton RS Gosford Feed Mill	12.71 4.17 18.57	.00 .00 .00	.00 .00 .44 .31	.25 .66 1.54 -	1.17 .88 2.26 1.70 RE	4.57 1.42 3.93 4.04	.11 .00 .56 .55	3.85 .43 1.92 1.51	.07 .03 .63	1.56 .46 3.45 3.85	.47 .05 1.95 1.61	.34 .24 1.89 1.97	.32 .00 T
84 C1 C1 85 84	3529 3548 3551 3612-03 3669	Grace Meadow S Granite Basin S Grant Grove HPD CD Green Valley Rch. Groveland 2 HPD	34.27 28.64 33.16 31.32 23.67	.00	.25 T	1.78 .45 .39		ember 16, August 2: 8.76 10.40 8.58	1963 to , 1963 1.28 .70 .64	Septem CO Augus 4.33 5.46 3.71	ber 17, t 11, 19 .28 .02 .09	1964 64 7.19 6.15 3.86	2.73 2.06 1.39	3.40 2.55 2.64	.75 1.15 .63
84 80 80 80	3672 3690-02 3690-04 3694 3698-80	Groveland Ranger Sta. CD Gustine 5 SW Gustine Snyder Gustine Avoset Gustine 7 SSW	26.62 7.40 7.18 5.88 6.16	.00 .00 .00 .00	.00	.37 .26 .24 .10	1.86 1.31 1.21 1.07 1.29	8.53 2.12 2.20 1.72 1.82	.75 .02 .05 .03	6.63 1.54 1.65 1.34 1.29	.08 .04 .00 .00	3.64 1.11 .92 1.04	2.06 .51 .36 .02	1.91 .01 .00 .18	.79 .48 .55 .38
V7 C0 C1 D1	3710 3747 3811-11 3925 3928	Haiwee CD Hanford CD Haslett Basin Hernandez 2 NW CD Hernandez 7 SE HPD	5.02 5.01 18.23 10.42 13.13	.00	1.42 .00 .00 .02	1.37 .33 1.04 .19	1.12 .75 1.63 1.26 1.21	.51 1.23 6.36 3.75 4.67	.01 .29 .50 .21	.20 .61 1.72 2.27 2.94	T .02 .00 .06	.08 .94 2.86 1.81 2.25	.08 .64 1.80 .24 .22	.23 .20 2.07 .43 .51	.00 .00 .25 .18
84 86 83 80 C2	3939 3948 3952 3981 4012	Hetch Hetchy HPD CD Hidden Valley Highland Lakes S Hilmar Hockett Meadow S	24.23 23.24 28.80 6.42 26.56	.00	.11 T	.64 .31	2.23 1.98 1.42	7.09 8.33 July 23 1.64 August 2	.30	1.76	.10 .22 0, 1964 .11 21, 1964	3.73 3.99 .78	2.19 1.47 .27	2.65 1.24	1.43 .57
CO CD CD 85 85	4061-01 4061-02 4061-03 4101-80 4102-01	Homeland Dist. Sec. 9 Homeland Dist. Sec. 17 Homeland Dist. Sec. 34 Hornitos Bridge Cafe Hornitos Erickson Rch.	6.02 4.67 5.54 -	.00	.00	.44 .38 .42 -	1.25 1.52 1.41 1.09 1.48	1.34 1.27 1.01 3.76 4.81	.21 .13 .11 -	.87 .99 .90 1.93 2.75	.08 .14 .19 -	.93 .24 .76 2.35 2.25	.81 .00 .69 .85	.09 .00 .05 1.13 1.21	.00 .00 .00 RE .20
85 85 C3 84 83	4103 4104-80 4120 4148 4170	Hornitos Giles Rch. Hornitos USCE (R) Hossack (Radio) S Huckleberry Lake S Hunters Dam	12.68 11.24M 32.86 40.23 37.42	.00	T -	.18	1.74 1.61 Sept 3.09	4.21 3.65 July 10 ember 20 11.55	.26 .31 , 1963 to , 1963 to	1.89 1.72 June 2 Septem 7.92	.27 .27 4, 1964 ber 20,	2.35 2.25 1964 6.24	.39 .57	1.13 .86M	.26 -
87 88 V2 V2 V2 85	4176 4204 4232 4235 4246	Huntington Lake HPD Idria (R) CD Independence CD Independence Onion Vly HPD Indian Gulch	31.12 10.06 2.92 - 12.97	.00 .00 .00 .00	.13 .07 1.39 1.60	1.15 .28 .76 1.85 .23	1.74 1.08 .16 - 1.54	8.96 3.86 .03 - 3.91	1.05 .08 T .59	4.40 2.60 .14 2.88 2.29	.39 .07 T .20	5,76 1,59 .02 2,77 1,95	2.45 .27 .07 1.13 1.08	4.08 .14 .35 1.89 .94	1.01 .02 .00 .35
V7 C5 85 C5 87	4278 4303 4369 4389 4442	Inyokern CD Isabella Dam Jerseydale GS Johnsondale CD Kaiser Meadows S	2.38 9.94 29.33 - 29.64	.00	.30 1.16 .00 .85	.74 1.16 .39 1.27	.60 2.02 1.88 1.63	.30 1.20 10.47 3.73 June 25	.01 .46 1.10 .70	.34 .97 3.53 - O June 2	.00 .07 .02 -	.09 1.68 6.27 3.68	T .50 2.27 1.69	.00 .69 2.12 .90	.00 .03 1.28 .22
C2 C6 88 CD C5	4452 4463 4508 4510-02 4513	Kaweah PH 3 Keene Kerlinger Kerman 2 ESE Kern Canyon	16.30 14.58 5.26 6.97 9.27	.00 .00 .00 .00	.18 .44 .00 .00	.63 1.33 .21 .21 1.76	1.39 .89 .85 1.22 1.03	5.09 2.39 1.15 2.21 2.10	.55 .97 .18 .31	1.80 1.51 1.63 .58	.36 .66 .03 .04	3.69 3.06 .31 1.77 .97	1.06 1.95 .11 .21 .73	1.40 1.30 .15 .28	.15 .08 .64 .14
C5 C5 C5 C5 C5	4518 4519 4520 4523 4527-01	Kern River Intake No. 3 CO Kern River Intake 3 SCE b Kern River PH No. 1 CD Kern River PH No. 3 CD Kernville RS	13.62 12.94 12.60 10.26 9.84	.00	.53 .54 .03 .24	1.33 1.12 2.00 1.29 1.36	1.69 1.77 1.30 1.90 1.87	1.81 2.14 2.60 1.11 1.24	.79 .42 .19 .43	2.14 1.78 1.30 1.48 1.19	.29 T 1.12 .09 .07	3.23 3.46 1.75 2.40 2.25	.97 .89 1.37 .48	.73 .71 .94 .77	.11 .11 .00 .07 .06
CO CO CO 80 83	4534 4535 4536 4590 4664	Kettleman City 1 SSW CD Kettleman Hills Kettleman Station CD Knights Ferry 2 SE CD Lake Alpine S	3.92 4.51 14.14	.00	.38 .15 .13	.15 .21 .15 .11	1.16 1.01 1.02 1.73	.65 .81 .85 3.96 July 23	.12 .08 .18 .20	.76 .68 .85 3.18 o July 1	.06 .05 .13 .21	.45 .89 .81 1.94	.40 .01 .38 1.34	.00 .03 .01 1.02	.00 .00 .00 .45
84 V2 D3 C6 80	4679 4705 4767 4863 4884-05	Lake Eleanor S Lake Sabrına S La Panza Ranch HPD Lebec CD Le Grand 6 N	11.40 5.91	.00	.00	.64 1.88 .08	1.14 2.31 1.62	June 30 June 30 .74 4.26 2.27	, 1963 t 1963 t .00 .33 .17	O June 3 O June 3 1.40 1.28 .95	0, 1964 0, 1964 15 .64 .17	1.49 2.33 1.84	.09 .23 .78	. 26 . 54 . 45	.00
80 86 C2 80 C0	4884 4883 4890 4953-02 4957	Le Grand CD Le Grand Preston Rch. (R) Lemon Cove Linden Fire Station Lindsay CD	11.89	.00	.00 .23 .00 .14	.08 .34 .27 .41	1.40 1.56 1.44 1.84	2.70 See 2.45 3.64 1.93	.27 White F .40 .16 .43	.63 ock Pres 1.05 2.09 ,95	.08 ton .39 .15	2.30 2.44 1.75 1.78	.77 1.47 .55 .86	.30 1.48 .86 .81	.38 .08 .86
					1			}				1			

3 .	Alpha	T T	<u> </u>			DAQUIN DI			In	inches			•		
Droinage Basin	Order Number	Station Name	Seasonal Total	July	Aug.	Sept	Oct.	Nov.	Dec.	Jan.	Feb.	Mor.	Apr.	May	June
BO V2 B8 B3 C6	4999-03 5067 5074 5078 5098	Livingston 5 W Lone Pine Cottonwood PM Lone Tree Canyon CD Long Barn Exp. Station MPD Loraine MPD	9.03 2.86 5.28 Closed 13.53	.00 .00 .00 .00	.00 .60 .00E .38	.19 1.15 .15 1.04 1.34	1.52 .26 1.05 2.61 1.29	2.26 .03 .97 8.53 1.83	.17 .08 .04 1.06	1.89 .39 1.91 7.05 2.09	.16 .00 .06 RE .64	1:17 .14 .43	.41 .00 .11	.50 .21 .17	.76 .00 .39
V2 BO BO BO B8	5111-09 5116 5117 5118 5119	LA Aqueduct Intake Los Banos 5 S Los Banos Field Sta. Los Banos CD Los Banos Arburua Ranch CD	2.86 3.63 4.61 4.85 3.36	.00	.88 .00 .00 T	.56 .03 .08 .05 T	.10 1.08 1.17 1.07	.02 .60 .87 1.22 .69	T .08 .06 .12 .20	.30 .56 .72 .66	.00 .03 .04 .02	.05 .72 .98 .87	.10 .32 .33 .45	.85 T .00 T	.00 .21 .36 .39
CO C1 B4 B6 B0	5151 5155-51 5160 5202 5233	Lost Nills MPO Lower Big Creek Lower Kibbey Ridge S Lushmeadows Rch. Madera CO	3.86 	.00	.05 .00 T	.17 .35E .34 .23	1.26 1.50 Septe 1.44 1.45	1.05 ember 21 10.50 2.38	.06 .1963 to .54 .24	.31 Septem 1.71 .61	.13 ber 24, T	.56 1964 3.39 1.50	.25 - 1.40 .70	.02 - 1.54 .42	.00 - .58 .27
BO CO V2 B7 BO	5233-03 5257 5284 5288 5297-01	Madera ID Magunden b Mammoth Pass b Mammoth Pool S Manteca No. 2	6.03 52.78 20.46 8.22	.00	.00	1.01	.80 Oc:	1.53 ober 10 July 1 2.54			.59 r 15, 19 4, 1964 .06	RB .83 64	.42 .52	.00	.00
BO C7 C7 B5 B5	5297-02 5338 5338-01 5346 5346-01	Manteca SP Maricopa CO Maricopa FS Mariposa CO Mariposa Reynolds	4.41 5.18 20.95 20.47	.00	.00 .00 .00 T	.75 1.04 .28 .24	1.05 1.07 1.66 2.05	1.70 1.86 7.80 7.30	Closed .06 .08 .43 .48	July 196 .58 .63 3.29 3.05	.00 .04 .11	.17 .30 4.12 3.63	.02 .08 1.32 1.44	.08 .08 1.51 1.63	.00 .00 .43
B6 B5 B5 C7 B4	5346-04 5348 5352 5372-01 5400	Mariposa 8 ESE Mariposa Circle 9 Rch. Mariposa RS (R) Martinez Spring Mather CD	23.66 32.43 20.27M 6.45E 23.28E	.00 .00 .00 .00E T E	.00 .00 .00 .00E .10E	.36 .39 .18 .00E	1.85 1.88 1.68 .80 2.14	10.01 12.39 7.94 2.35 7.07	.47 .69 .42 .10	3.06 6.33 3.40 1.20 4.07	.01 T .16M .20 .08	3.88 5.01 4.13 1.80 3.46	1.90 1.86 1.16 .00E 2.73	1.53 2.66 .68 .00E 2.27	.59 1.22 .52 .00E .67
B0 B0 B5 C7 B7	5408-80 5418-80 5460 5480-01 5496	Mattos Ranch Maze Bridge 2 S McOiermid Sta. McKittrick FS Meadow Lake CD	4.04 7.10 26.31E 4.18 22.46	.00 .00 .00E .00	.00 .00 .04 .00	.04 .12 .39 .39	1.15 1.33 1.86 1.00 2.20	.63 1.51 8.19 1.07 8.19	.08 .13 .72 .02 .43	.60 1.89 6.63 .85 2.51	.06 .00 .08 .07	.77 .61 3.64 .43 4.20	.37 .19 2.06 .14 1.99	.04 .35 1.91 .21 1.99	.25 .97 .79 .00
B3 B0 C0 B0 C0	5511 5526 5526–04 5528 5529	Melones Dam Mendota 1 NNW Mendota Murietta Rch. Mendota Oam CD Mendota Nalfway Pump	22.55 5.64 6.39E 5.25 4.57	.00 .00 .00E .00	.00 .00 .00E .00	.34 .21 .20E .20	2.74 .88 1.00 .76 .89	6.57 1.81 2.03 1.44 1.35	.40 .21 .29 .25 .05	4.21 .38 .60 .43 .86	.50 .05 .07 .06	3.65 1.20 1.56 1.37 .67	1.33 .49 .23 .34	2.29 .19 .35 .17	.52 .22 .06 .23
BO BO BO	5530 5532 5532-01 5532-03 5534	Mendota VOL Farms Merced Fire Station 2 CD Merced SP Merced 5 SE Merced Fancher Rch.	8.76 8.22 8.94 9.23	.00	.00	.38 .13 .24 .33	1.50 1.41 1.61 1.53	No 2.81 2.74 2.54 2.66	.17 .18 .31 .25	this per .91 .96 .97 1.19	.16 .11 .23 .25	1.75 1.56 1.78 1.42	.40 .45 .48 .94	. 27 . 28 . 33 . 27	.41 .40 .45
B0 B8 C3 B7 C2	5535 5550 5669 5677-80 5680	Merced 2 HPD Mercey Hot Springs CD Milo 5 NE HPD Minarets RS Mineral King S	7.98 4.09 23.25 - 22.58	.00 .00 .00	.00 T .69 .17	.28 .04 .94 .61	1.34 .86 1.83 1.40	2.90 .99 5.50 4.55M July 26	.14 .00 .55		.11 .00 .84 Closed f 7, 1964	1.41 .97 6.01 or seasc	.31 .00 2.20	.27 .07 1.66	.38 .06 .60 .89
C2 C1 B4 B0 B0	5708 5723 5735 573B 5740	Miramonte Monor Camp Mitchell Meadow S Moccasin Modesto CO Modesto KTRB	20.19 24.95 21.63 7.74 7.30	.00	.00 .00 .00	.46 .29 .12 .12	1.92 1.97 1.70 1.56	5.51 July 23, 7.59 2.18 2.02	.87 1963 to .40 .09	2.14 August 4.17 1.81 1.72	.34 17, 1964 .22 .05 .05	4.74 3.02 1.08 1.04	2.00 1.43 .26 .19	2.12 2.15 .11 .14	.09 .39 .34 .34
BO V8 V8 C5 CO	5741 5756 5758 5777 58 22- 80	Modesto 2 MPD Mojave MFO CO Mojave 2 ESE CD Monache Meadows S Moody Ranch	7.91 5.15 4.22 7.62 5.90E	.00	.00 .29 .13	.10 1.64 1.38	1.80 1.03 .95 Sep	2.03 .90 .85 etember 1.34	.05 .04 .00 25, 1963 .06	1.98 .53 .35 to Augu	.03 .02 .20 st 5, 19	1.27 .32 .01 64	.23 .20 .15	.11 .18 .20	.00
03 B7 V8 B0 B0	5893 6122 6168 6168-01	Mountain Mome 2 S	28.63 20.61 - 6.39 5.77	.00	.07 .43 T	.45 2.24 .13 .16	2.05 1.64 1.24 .77	June 24 7.50 1.10 1.44 1.68	.1963 t .55 .07 .05	July 1 1.90 1.01 1.57 1.44	1, 1964 .01 .17 T .00	4.18 .97 1.19 1.04	1.86 .28 .22 .19	1.61 - .26 .09	.43
CO B7 B0 B0 B6	6230-50 6252 6303 6305 6321-80	North Belridge North Fork Ranger Sta. CD Oakdale Oakdale Woodward Dam CD Oakhurst	3.72 22.82 10.22 9.74 20.34	.00 .00 .00 .00	T .04 T .00	.37 .38 .16 .28	1.25 1.65 1.74 1.78 1.61	.87 8.23 3.18 3.34 7.44	.05 .57 .17 .15	.44 3.77 2.14 1.60 3.75	.05 .00 .05 .02	.35 3.92 1.15 1.08 3.09	.12 1.98 .56 .66 1.46	.22 1.71 .56 .41 1.40	.00 .57 .51 .42
CO C7 C5 C2 BO	6393 6395 64 62 64 7 6 6490	Oilfields FFS Oilfields Joaquin Ridge Ss Onyx Orange Cove CD Orestimba	6.30 7.11E 6.36 8.73 6.30	.00 .00E .00 .00	.28 .20E .70 .00	.05 .12E 1.69 .21 .16	1.53 .95E 1.89 1.47 1.04	1.65 2.72E 1.10 2.24 1.65	.10 .00 .28 .61	1.02 1.42E .95 1.02 1.57	.00 .00 .00 .06	1.06 1.70E 1.05 1.34 .95	.53 .00E .33 1.20	.08 .00 .37 .55	.00 .00 .00 .03
B5 B8 C0 B8 B8	6552 6583 6651 6675 6676	Ostrander Lake S Pacheco Pass MPD Paloma Ranch Panoche CD Panoche 2 W	37.40 - 4.81 4.72 5.21	.00	.00 .00 T	.32 .67 .20	.76 1.25 .87 1.00	2.62 1.40 1.28 1.39	3, 1963 - .00 .22 .22	to July 2.11 .42 1.14 1.36	17, 196 .02 .08 T	1.40 .68 .92 .04	.11 .31 .02 .11	.28 .00 .04 .16	.31 .00 .03
BO BO B4 D3 C7	6677 6679-05 6688 6703 6706	Panoche Creek CD Panoche Water Dist. Paradise Meadow S Parkfield CD Parkfield 7 NNW MPO	4.92 38.08 8.60	.00	.00 .00	.14 .11 .32 .20	1.47 1.52 Septe 1.00	1.41 .70 ember 14 2.87 3.72	.19 .38 , 1963 t	.41 .52 Septem 2.21 1.22	.07 T ber 15, .05	.60 1.27 1964 1.12 .57	.41 .22 .67 .09	.56 .49	.20 T
80 C6 C2 B8 C1	6746-01 6754 6767 6847 6857	Patterson Pattiway CO Pear Lake S Pfeiffer Ranch Piedra CO	6.53 8.65 26.80 13.32 12.29	.00	.00 .00	.11 1.14 .20 .28	1.15 1.80 1.15 1.49	1.57 2.38 August 20 2.77 3.68	.07 .04 6, 1963 .53 .62	1.59 .97 to July 3.72 1.59	.00 .21 13, 1964 .20 .00	1,05 .89 2.91 2.62	.58 .95 .42 1.07	.08 .25 .96 .81	.33 .02 .46
B3 C1 C1 B7 C0	6893 6895 6902 6959-80 7055-80	Pinecrest Strawberry Pine Flat Oam Pinehurst Placer GS Pond 1 N	34.55 13.06 29.78 - 5.41	.00	.10 T .00 .11	.99 .20 1.86 .66	2.77 1.53 1.89 1.16 1.21	9.29 3.96 7.10	1.00 .65 .83	6.35 1.59 2.79 Closed f	.15 .03 .60 or seaso	5.04 2.77 4.76 n .68	2.72 1.13 7.42	3.89 1.12 2.25 1.77 .20	2.25 .08 .28 .87
C0 C0 C5 C4 C0	7077 7079 7093 7096 7098-11	Porterville CD Porterville 3 W Portuguese Meadow S Posey 3 E CD Poso Ranch	8.57 39.92	.00	.13 .10 .25	.63 .46 1.16 .93	1.99 1.64 2.79 1.01	1.95 1.84 July 8 5.33 .93	.31 .15 1963 t .97	1.24 .99 June 2 2.89 .64	15 10 2, 1964 1.01 .20	1.59 1.98 6.16 .49	1.01 .55 3.06 1.67	.73 .76 2.29 .31	.00 .77
			1			<u></u>			<u> </u>	<u> </u>				L	

PRECIPITATION DATA FOR 1963-64 SAN JOAQUIN DISTRICT

· .	Alpha		Seasonal						In	inches		-			
Orainage Basin	Order Number	Station Name	Total	July	Aug	Sept	0ct	Nov	Dec	Jan	Feb	Mar	Δpr	May	June
B0 B4 02 C5 C1	7099-11 7145 7150 7179 7259	Poso Canal Co. Hdq. Priest Priest Valley Cuaking Aspen Rattlesnake Creek S	5.70 22.16 13.14 30.88 31.62	.00	.00 .00 T	.14 .32 .25	1.25 1.97 1.53	1.68 7.51 5.11 July 10 August	.06 .49 .20 , 1963 to	.55 3.88 2.98 5 June 2 to July	.03 .16 .07 3, 1964 9, 1964	1.09 3.01 1.95	.47 1.86 .53	.05 2.31 .43	.38 .65 .09
B6 B6 B6 CO	7270-01 7272-01 7273 7276 7289	Raymond 3 SSW Raymond 10 N Raymond 9 N CO Raymond 12 NNE Rector	12.90 17.18£ 18.01£ 18.24 7.93	.00 .00E .00 .00	.00 .008 .00 T	.10 .03 .49 .35	1.80 2.00 1.85 1.79 2.08	3.95 6.68 6.82E 6.96 1.56	.20 .40 .428 .41	1.75 1.65 2.12 2.07 .84	.25 .00E .01 T	2.95 4.20 3.468 4.46 1.17	1.30 .70 1.428 .65 1.00	.35 .90 .90 1.00	.25 .62 .52 .55 T
CO BO CO V2 B6	7354-80 7447-80 7460 7510 7528	Reedley MVFD Ripon Riverdale Rock Creek Rocky Village	8.67 9.51 5.02 12.95 13.768	.00 .00 .00	T .00 T	.14 .15 .13	1.20 1.67 .89 No	2.21 2.80 1.39 vember 4 4.48	.42 .18 .10 , 1963 t	.79 2.03 .77 DCtobe 2.01	.01 .04 T r 14, 19	2.90 1.45 1.41 64 3.27	.51 .02 .09	.49 .30 .21	.87 .03
CO B7 C5 B4 O1	7555 7560 7579 7623 7719	Rosedale Rose Marie Meadow Someond Meadow Saches Springs San Benito Someond So	4.50 29.08 31.77 45.18 8.53	.00	.00	.71	.68 Sept 1.14	1.13 July 17 July 9, ember 20		.28 o June 2 June 22 o Septem 2.09	, 1964	.41 1964 2.36	.79	.14	.00
CO CO CO	7735 7753 7755 7800-02 7800-03	Sandberg WB (R) CD San Emigdio Ranch CD San Felipe Highway Sta. HPO Sanger 1 NE Sanger RS	11.29 6.4B M 8.89 B.28	.00 .00 .00 .00	.22 .00 .00 T	2.52 .96 - .13 .15	2.11 1.93 1.56 1.40 1.29	2.48 1.29 3.62 3.06 2.88	.06 .23 .54 .59	.91 .43 3.34 .77	.21 .15 .08 .02 T	1.61 .47 - 1.81 1.87	.51 .36 .03 .75 .18	.66 .50 .41	.00
CO CO B7 B0 BB	7816 7819-80 7817 7836-01 7846	San Joaquin MVFO San Joaquin Exp. Range San Juan Hdqrs. M & L San Luis Oam	4.40 4.76 12.73 6.72 6.50	.00 .00 .00	.00	.13 .29 .28 .14	.46 .72 1.58 1.25 1.31	1.46 1.35 4.76 1.91 1.92	.0B .00 .32 .10	.43 .15 1.29 .85 1.26	.00 .00 .00	1.19 1.29 2.46 1.32 .95	.55 .86 1.15 .51 .42	.04 .10 .84 .16	.06 T .05 .40
BO CO 07 07	7855 7987-80 8259-02 8259-04 8276	San Luis Canal Co. Hdq. Santiago Ranch M & L Sımmler R. W. Cooper Sımmler Maint. Sta. Slack Canyon HPO	6.47 4.53 7.02 5.678 10.14	.00	.00 .00 .00	.20 .45 .62 .59	1.46 .98 1.26 1.17 1.59	1.86 1.41 1.01 .74 3.80	.20 .02 .00 .008	.78 .39 1.20 1.32 2.15	.11 .03 .20 .00	1.12 .45 1.74 1.69 1.81	.34 .43 .62 .01	.08 .37 .37 .15	.32 .00 .00 .00
C6 B5 C1 D7 B4	8304 8318 8323-01 8326 8353	Smith Flat Ss Snow Flat S Soaproot Saddle Soda Lake Sonora RS CO	7.76 38.60 18.21 6.43 24.56	.00	.00	.73 .47 .30	1.56 1.28 2.28	July 1, July 17 5.63 .71 7.31	1963 to , 1963 t ,53 ,00 ,42		, 1964 4, 1964 .00 .18 .20	2.71 2.06 4.05	2.51 .00 1.62	2,41 ,26 2,49	.22 .00 .82
G9 C0 B0 B5 V2	8355 8375-50 B378 8380 8406	Sonora Junction HPD South Belridge South Dos Palos So. Entrance Yosemite NP CD South Lake S	3.77 5.39 31.18	.00	.10 .13 .00 .40	1.41 .29 .04 .63	.54 1.12 1.41 1.66	2.80 .78 1.29 13.00 June 30	.43 T .18 .55	1.78 .56 .55 4.33 o June 3	.17 .09 .00 .03	.98 .41 1.13 4.15	.60 .20 .41 1.53	1.46 .19 .20 2.61	.40 .00 .18 2.29
CO B3 C3 C3 C3	8407-11 8450 8455 8460 8463	South Lake Farms Hdq. Spring Gap Forebay Springville 7 EME Springville Ranger Sta. Springville Tule Hdwks.	5.93 34.21 22.05 M 25.09	.00 .00 .00 .00	.00 .63 .36 .38	.48 .53 .87 .87	1.49 2.97 1.44 -	1.17 10.53 6.10 - 6.38	.22 1.07 .68	.71 7.58 2.00 - 3.02	.11 .20 .64 -	.B3 5.12 4.72 - 5.91	.82 1.15 2.63 - 2.56	.10 3.70 2.18 - 2.20	.00 .73 .43 - .57
C2 B3 C1 C0 C3	8474-B0 8499 8510 8520 8620	Squaw Valley Fr. Stanislaus Power House CD State Lakes S Stevenson Dist. Sec. 33 Success Dam	15.11 26.28 24.70 6.32 10.41	.00 .00	.00 .00	.27 .17 .54 .45	1.50 2.50 1.11 1.89	5.29 7.88 ugust 22 .80 2.28	.65 .66 .1963 t	1.75 4.35 o August .91 .89	.08 .27 12, 196 .11 .34	2.49 5.13 4 1.03 1.97	1.72 1.47 1.24 1.10	1.32 2.90 .16 .86	.04 .95 .00
C1 C7 C7 C6 C6	8643 8752 8755 8826 8832	Summit Meadow S Taft HPC Taft KTKE Radio Tehachapi CC Tehachapi Ranger Sta. HPC	4.13 4.45 8.61	.00	.00 T 1.36 2.24	.61 .56 1.34 1.54	.81 .86 .37	July 15 1.50 1.54 1.10 1.86	.02 .08 .00 .49	o July 1 .64 .68 .80	.1, 1964 .04 .09 .42 .47	.35 .37 1.84 1.56	.12 .20 1.00 1.10	.04 .07 .38 .37	.00 .00 T
CO C2 C7 C2 C2	8839 8868 8893-80 8912 8914	Tejon Rancho Terminus Dam Thirty-Two Corral Three Rivers 6 SE Three Rivers Edison PH 2 CD	11.72 9.15£ 17.20	.00 .00 .300 .00	.35 .11 .00E .71	1.21 .37 .00£ .55	1.26 1.52 1.50 1.64 1.56	2.85 2.59 3.30 4.74 4.54	.32 .34 .00E .64	.93 .96 1.80 1.40 1.34	.71 .41 .30 .89	1.85 2.41 2.25 3.34 2.86	1.35 1.46 .00s 1.48 1.93	.69 1.50 .00E 1.64 1.59	.00 .05 .00E .17 .06
C2 B0 B8 C0 C0	8917 8997 8999 9006 9011-80	Three Rivers Edison PH 1 CT Tracy 2 SSE HPT Tracy Carbona CT Tranquillity Glotz Traver 4 ESE	6.06	.00 .00 .00 .00	.09 .00 .00 T	.74 .30 .27 .24 .20	1.56 1.17 1.07 1.15 1.58	4.54 1.51 1.51 1.40 1.51	.59 .08 .10 .05 .23	1.34 1.63 1.63 .24 .84	.30 .05 .06 .03	2.86 .51 .39 .98 1.29	1.98 .07 .12 .59 1.27	1.48 .14 .13 .18 .23	.07 .60 .63 .15
C1 C0 C0 C0 C3	9025 9051 9051-04 9052 9059	Trimmer RS Tulare Tulare Dist. Sec. 27 Tulefield Tule River Intake		.00 .00 .00 .00	.01 .08 .02 T	.39 .31 .24 .88 .83	1.31 1.10 1.09 .86 1.42	6.61 1.23 1.10 1.58 6.11	.61 .27 .04 T	2.45 .94 .78 .56 2.18	.00 .15 .09 .13	3.33 1.17 .64 .55 5.18	1.59 1.24 .39 .33 2.33	1.42 .55 .06 .22 2.38	.17 .01 .00 .00
C3 C5 B3 B4 B0	9060 9061 9062 9063 9073	Tule River PH Tunnel Ranger Station Tulloch Oam Tuolunne Meadows Turlock CC	9.92 16.75 23.07	.00	.66 .00 T	.88	1.66 Se 1.97	3.91 eptember 4.37 July 17 1.81	.82 25, 1963 .78 , 1963 t	1.58 to Augu 3.40 b July 1.91	.23 ust 4, 19 .30 i4, 1964 .07	3.60 964 2.34 1.13	1.54 1.24 .86	1.79 1.65	.19 .56
80 BO CO B7 D1	9073-01 9073-02 9145 9162-80 9189	Turlock 5 SW Turlock 8 WSW U. S. Cotton Field Sta. Upper Chiquito Upper Tres Pinos HPG	8.43 7.34 4.56 M	.00 .00 .00 .00	T .05 .03 .16	.25 .23 .61 1.22 .20	1.55 1.26 .99 .76	1.82 1.52 1.10 - 1.59	.15 .10 .10	2.06 1.78 .40 - 2.45	.05 .06 .19 -	2.15 1.17 .34	.20 .39 .76 -	.20 .58 .04 -	.20 .00
B7 C0 C0 C0	9301 9304 9367 9369 9452	Vermilion Valley Vestal Visalia Visalia Visalia Visalo Wasco Ci	6.09 7.58 7.73	.00 .00 .00	.00 .02 .07	.66 .31 .28	1.30 1.92 1.73 .53	June 25 1.13 1.20 1.47 .83	.1963 1 .10 .18 .27 .16	.62 .73 .75 .57	1964 .18 .17 .18 .19	1.24 1.16 1.32 .25	.66 1.52 1.10 1.54	.20 .37 .56	.00 T T
85 C5 C0 B6 C0	9482 9512 9535 9556-80 9560	Wawona Ranger Station HPI Weldon 1 WSW HPI West Camp SLF Westfall RS Westhaven CC	6.79 4.76 35.00	.00 .00 .00	.00 .38 .14 .09	.45 1.71 .20 1.04	1.68 1.72 1.11 1.75 1.37	9.97 .81 .76 14.29 1.16	.64 .18 .04 6.76	5.42 .71 .84 .05	.03 .00 .11 .00	4.23 .B8 .30 4.22 .85	1.12 .13 1.26 2.35 .78	1.95 .27 T 2.71	1.36 .00 .00 1.74
BO C5 C0 B6 C0	9565 9602 9614-81 9640-80 9670-80	Westley Wet Meadow Wheeler Ridge LWUA-122 White Rock Preston (R Wilbur Ditch	7.41E 25.11 7.71E 12.73E 4.56	.00 .00E .00E	.00 .300 .300 .00	.118 .93 .088 .24	1.64 1.57 1.45 .92	1.64 August 2.07 4.21 1.18	.07 2B, 1963 .15 .39	1.86 to July .55 1.87 .78	.00 21, 1964 .33 .08 .11	1.06 2.57 .72	.19 .55 .96 .49	.32 .50 .79 .01	.85 .00 .33 .00
					<u> </u>										

TABLE A-2 (Cont.)

PRECIPITATION DATA FOR 1963-64 SAN JOAQUIN DISTRICT

9 c	Alpha		Se	easonal						In i	nches					
Drainage Basin	Order Number	Station Name		Total	July	Δug	Sept	Dct	Nov.	Dec	Jan	Feb	Mar	Apr	Мау	June
C1 C5	9749 9754	Wishon Res. Wofford Heights	CD 2	29.85 9.42	.00	.23	1.13	1.81	9.62	.71	4.46	.19	5.76 2.01	2.26	2. 7 9 .78	.89
C1 C4 B5	9773 9805 9855	Woodchuck Meadow Woody Yosemite National Pk H	PD CD 2	9.43 26.30	.00 T	.08	.33 .93	1.03	2.61 9.55	'9, 1963 .33 .81	to July 1.25 4.49	7, 1964 .00 .06	1.84 3.50	.87 1.49	1.09 2.46	.00

TABLE A-3
TEMPERATURE DATA FOR 1963-64
SAN JOAQUIN DISTRICT

8 =	Alpha							In «	degrees l	Fahrenhe	it				
Drainage Bosin	Order Number	Station Name		July	Aug	Sept	Oct.	Nov	O+c	Jan	Feb	Mar	Apr	May	June
86	0049	Ahwahnee 2NNE	Max Min Av Max Av Min Avg	94 56 86.9 63.5 75.2	95 56 88.2M 64.3M 76.2M	97 52 85.2 62.5 73.8	M M M M	80 38 65.2 47.0 56.1	80 34 69.1 43.3 56.2	80 32 59.4 38.4 46.9	76 34 62.3M 39.6M 51.0M	78 32 61.0 41.0 51.0	78 36 67.1 46.6 56.8	84 38 70.1M 51.5M 60.8M	98 44 79.9 60.3 70.1
C0	0332	Arvin	Max Min Av Max Av Min Avg	102 53 95.0M 67.0M 77.8M	102 53 92.5 58.4 75.5	106 56 89.7 61.6 75.6	96 44 75.1 54.1 64.6	76 31 63.7 44.2 54.0	60 25 47.9 33.1 40.5	66 25 57.6M 34.0M 45.8M	77 27 65.9 33.6 49.8	92 31 68.4 39.9 54.2	97 39 74.0 47.3 60.6	95 37 81.8 50.5 66.2	110 52 90.4 58.7 74.6
со	0396-02	Avenal Walden	Max Min Av Max Av Min Avg	104 60 97.8 71.9 84.8	106 59 97.9M 66.7M 82.3M	M M M M	96 48 78.2 57.4 67.8	76 37 65.5M 47.5M 56.5M	61 29 52.8M 38.1M 45.4M	66 32 58.3M 39.0M 48.7M	73 35 64.7M 40.1M 52.4M	87 34 69.5M 44.6M 57.6M	93 41 76.0 50.0 63.0	99 41 83.0M 53.5M 68.3M	109 53 92.7 61.97
85	0430	8agby	Max Min Av Max Av Min Avg					331311	RB RB RB RB RB	66 29 55.7 36.1 45.9	73 29 62.9 34.2 48.6	79 28 64.9 37.8 51.4	91 34 71.9 43.5 57.7	92 37 77.6 48.2 62.9	M 83.61 54.91 69.31
C0	1557	Caruthers 4E	Max Min Av Max Av Min Avg	104 49 96.6 56.6 76.6	102 50 95.0 56.6 75.8	104 53 91.5 57.5 74.5	96 41 78.7 50.1 64.4	75 33 63.5 42.3 52.9	56 27 48.0 35.6 41.8	67 24 56.0 34.2 45.1	70 25 62.9 32.1 47.5	90 31 69.6 37.2 53.4	94 36 78.2 44.0 61.1	94 37 82.8 47.4 65.2	M M M
80	1580	Castle AF8	Max Min Av Max Av Min Avg	99 50 91.2 60.0 75.6	100 54- 91.3 61.7 76.5	105 56 87.7 61.5 74.6	91 42 74.5 53.2 63.8	71 34 57.5 44.1 50.8	52 29 42.9 35.8 39.4	61 26 51.7 36.6 44.2	68 29 59.9 35.2 47.6	80 27 63.6 40.2 51.9	91 35 71.1 44.5 57.8	91 40 75.5 49.3 62.4	109 50 64.8 56.9 70.8
88	1583	Castle Rock Rad. Lab.	Max Min Av Max Av Min Avg	102 52 90.8 61.0 75.9	102 52 93.0 61.4 77.2	102 50 89.1 61.6 75.4	99 38 78.2 51.4 64.8	78 32 63.0 42.3 52.6	76 25 49.2 33.2 41.2	66 26 57.4 35.3 46.4	75 29 64.0 36.6 50.3	83 33 66.3 41.4 53.8	92 32 77.3 44.3 58.8	91 34 76.2 50.2 63.2	107 47 84.1 58.4 71.3
96	1590	Catheys Vly. Sawyer Rch.	Max Min Av Max Av Min Avg	100 49 91.5 57.8 74.6	101 49 91.9 59.2 75.6	105 53 89.0 60.2 74.6	93 40 74.5 51.4 63.0	74 32 58.6 41.6 50.1	68 25 49.2 32.9 41.0	63 29 50.5 35.7 43.1	67 29 58.1 33.7 45.9	77 27 59.2 37.6 48.4	87 31 66.9 41.9 54.4	89 31 73.5 46.5 60.0	108 43 84.3 54.5 69.4
36	1591	Catheys Vly. Stonehouse	Max Min Av Max Av Min Avg	99 44 90.2 51.1 70.6	100 44 90.8 52.7 71.8	104 47 88.4 54.7 71.6	94 36 76.0 48.4 62.2	73 27 60.5 37.1 48.8	68 22 49.2 29.3 39.2	65 22 51.3 30.9 41.1	67 24 59.2 27.9 43.6	78 21 61.5 31.9 46.7	86 27 68.8 36.0 52.4	88 30 74.5 40.9 57.7	105 38 82.8 48.7 65.8
1 87	1844	Clover Meadows GS	Max Min Av Max Av Min Avg	80 28 74.5M 34.1M 54.3M	88 24 76.0M 32.7M 54.4M	80 30 M M	M M M M	1			đ for Se				M M M
CD	1871-80	Coalinga Feed Yards Inc.	Max Min Av Max Av Min Avg				;		RB RB RB RB RB	M 53.3M 33.3M 43.3M	м м м м	82 32 64.5 39.6M 52.1M	91 35 74.3M 45.6M 60.0M	96 34 78.7M 48.6M 63.7M	108 46 88.8 58.3 73.6
84	1904	Cold Springs	Max Min Av Max Av Min Avg	M M M M	M M M M	86 42 74.5M 50.6M 62.6M	83 29 64.5 41.2 52.8	M M M M	M M M	м м м м	M M M M	M M M M	M M M M	M M M M	M M M M
co	2013	Corcoran El Rico 1	Max Min Av Max Av Min Avg	106 49 96.9 57.5 77.2	103 50 95.0 57.9 76.4	106 53 90.2M 59.2M 74.7M	96 43 78.6 53.5 66.0	78 32 62.4 43.9 53.2	58 29 44.3M 36.1M 40.2M	66 25 53.1 34.4 43.8	73 24 61.7 31.2 46.4	86 26 65.5 35.5 50.5	94 34 73.4 41.2 57.3	96 33 79.5 45.2 62.4	111 48 90.1 54.0 72.0
85	2072	Coulterville FFS	Max Min Av Max Av Min Avg	99 50 90.4 58.6 74.5	102 49 91.7 60.9 76.3	102 50 67.6 60.6 74.1	95M 44M 75.0M 52.7M 63.8M	м м м м	67 28 M M M	68 28 M M M	M M M M	м м м м	м м м м	86 32 M M	105 41 83.0 57.0
87	2122	Crane Valley PH	Max Min Av Max Av Min Avg	97 50 88.2 60.2 74.2	96 48 89.0 60.0 74.5	96 50 86.5 58.8 72.7	92 40 73.6 50.1 61.9	74 28 59.3 40.6 50.0	70 18 59.4M 34.4M 46.9M	74 23 55.2M 31.9M 43.6M	66 26 58.2 32.0 45.1	75 28 56.7 34.9 45.6	80 30 63.9 40.0 52.0	80 32 68.9 45.3 57.1	98 40 79.3 54.6
C6	2222-80	Cummings Valley	Max Min Av Max Av Min Avg	92 38 84.1 43.9 64.0	97 36 85.6 44.9 65.2	98 40 83.5 48.7 66.1	94 28 73.4 39.2 56.3	81 22 58.9 33.0 46.0	82 20 59.1 28.5 43.8	74 13 53.2 23.3 38.2	69 12 56.2 22.1 38.2	72 12 54.1 26.6 40.4	80 22 58.5 31.2 44.8	80 20 63.3 34.2 48.8	93 30 74.3 42.6 58.4
88	2369	Del Puerto Road Camp	Max Min Av Max Av Min Avg	103 44 95.4 54.7 75.1	99 43 91.3 55.6 73.4	100 48 86.8 55.5 71.1	92 36 73.4 48.4 60.9	70 28 59.5 38.3 48.9	68 24 52.6M 31.0M 41.8M	65 24 54.7 33.9 44.3	68 27 60.3M 33.1M 46.7M	78 29 62.1 36.6 49.4	86 30 69.8 41.3 55.6	92 31 77.2M 44.2M 60.7M	108 42 86.5
co	2436	DiGiorgio	Max Min Av Max Av Min Avg	104 56 96.4 63.5 79.9	106 55 98.1 63.6 80.8	111 57 91.3 61.5 76.4	100 45 77.4 54.8 66.1	81 34 66.3 45.2 55.7	65 30 50.4 36.6 43.5	70 30 58.2 36.5 47.4	81 29 67.5 36.4 51.9	93 29 68.1 38.8 53.4	98 38 75.7 46.2 60.9	96 36 60.8 50.3 65.5	112 48 91.6 59
C7	2464	Domengine Ranch	Max Min Av Max Av Min Avg	101 52 93.2 64.4 78.8	101 53 91.1 67.5 79.3	105 54 89.3 65.6 77.4	95 49 76.6 57.2 66.9	88 34 61.2 45.0 53.1	63 24 46.7 33.4 40.0	61 32 54.0 39.3 46.6	68 37 60.1 43.1 51.6	83 35 64.4 45.4 54.9	90 38 71.6 48.8 60.2	92 39 76.9 50.6 63.8	109 48 85.1 60.5
84	2473	Don Pedro Reservoir	Max Min Av Max Av Min Avg	104 47 95.3 56.0 76.7	105 48 94.4 58.3 76.6	106 51 91.8 57.8 74.8	97 41 78.0 49.0 63.5	76 28 51.2 39.4 45.3	62 25 47.5 30.8 39.2	60 25 52.9 31.4 42.2	69 25 61.3 30.4 45.9	81 26 63.0 35.5 49.3	90 30 71.9 39.1 55.5	91 32 77.3M 44.0M 60.7M	107 42 86. 51.

TABLE A-3 (Cont.) TEMPERATURE OATA FOR 1963-64 SAN JOAQUIN DISTRICT

<u>.</u>	Alpha					•		In	degrees l	ahrenhe:	it				
Drainage Basin	Order Number	Station Nome		July	Aug	Sept	Oct.	Nov	Oec	Jan	Feb	Mar	Apr	May	June
co	3084	Five Points Oiener	Max Min Av Max Av Min Avg	103 52 94.4 60.6 77.5	100 52 93.6 61.1 77.4	104 54 89.5 60.9 75.2	94 41 77.6 53.2 65.4	76 34 61.2 43.0 52.1	57 27 45.6 35.6 40.6	65 26 54.0 35.6 44.8	70 30 61.5 35.6 48.6	84 30 65.8 39.2 52.6	92 39 74.7 44.2 59.4	95 38 79.9 49.4 64.7	109 50 88.7 57.3 73.0
со	3258-80	Fresno Co. Westside FO	Max Min Av Max Av Min Avg			RB RB RB RB RB	96 41 78.9 52.2 65.6	84 32 64.4 42.1 53.5	60 22 49.3 32.8 41.1	64 25 55.3 33.2 44.3	72 29 63.0 34.4 48.7	85 24 68.8 37.3 53.1	93 34 75.7M 43.6M 59.7M	97 34 81.7 47.6 64.7	110 46 90.8 56.0 73.4
В6	3948	Hidden Valley	Max Min Av Max Av Min Avg	104 51 95.9 59.7 77.8	101 52 93.2 61.9 77.6	104 54 91.3 62.0 76.6	96 43 76.0 52.6 64.3	м м м м	73 28 58.0 34.2 46.1	67 30 55.4 35.4 45.4	74 30 62.3 34.1 48.2	79 27 58.8 36.9 47.8	86 31 68.4 42.7 55.6	91 33 73.7 46.4 60.1	110 44 86.1 55.3 70.7
B 5	4103	Mornitos Giles Ranch	Max Min Av Max Av Min Avg	100 50 91.2 60.8 76.0	100 50 91.3 61.8 76.6	105 52 88.5 62.5 75.5	92 44 74.6 53.6 64.1	73 32 56.7 42.1 49.4	65 26 45.6 33.2 39.4	58 31 50.2 36.0 43.1	66 30 57.9 35.4 46.7	79 30 60.2 39.2 49.7	88 32 68.6 43.7 56.2	89 36 74.7 47.9 61.3	106 44 84.1 56.9 70.5
В3	4170	Hunters Dam	Max Min Av Max Av Min Avg	92 40 85.2 46.5 65.8	96 40 66.7 46.4 66.6	98 42 84.8 47.8 66.3	92 31 70.8 41.2 56.0	74 24 57.2 33.2 45.2	69 21 58.6 28.7 43.6	63 20 50.8 27.1 39.0	70 20 58.0 25.4 41.7	73 19 • 54 • 4 27 • 8 41 • 1	80 21 61.2 31.9 46.6	80 28 65.2 36.2 50.7	96 32 74.0 42.1 58.1
C5	4303	Isabella Dam	Max Min Av Max Av Min Avg	100 51 92.8 59.5 76.2	101 49 93.4 59.6 76.5	99 51 89.5 58.7 74.1	97 39 76.8 49.7 63.2	75 30 63.0 39.7 51.4	72 22 60.6 31.7 46.2	67 22 52.3 31.4 41.8	70 22 60.9 29.5 45.2	79 20 59.2 33.B 46.5	87 30 66.9 40.5 53.7	89 35 73.5 46.7 60.1	103 42 84.5 56.5 70.5
C6	4463	Keene	Max Min Av Max Av Min Avg	95 46 87.2 53.1 70.1	95 44 87.6 56.7 72.2	98 37 84.3 57.9 71.1	87 38 70.4 47.5 59.0	78 26 61.3 36.9 49.1	72 26 61.1 33.3 47.2	77 16 53.1 28.3 40.7	73 23 58.6 30.1 44.4	79 21 57.4 31.6 44.5	87 29 65.7 37.0 51.3	84 28 71.8 40.3 56.1	103 39 81.8 51.5 66.7
C5	4513	Kern Canyon	Max Min Av Max Av Min	99 51 91.6M 66.2M 78.9M	98 56 M M M	98 57 M M M	95 47 74.8M 54.9M 64.9M	76 35 M M M	60 24 45.8M 32.3M 39.0M	64 26 M M	74 33 60.3M 38.0 49.2M	86 32 62.6M 42.7M 52.7M	91 38 70.5M 49.4M 60.0M	89 38 M M	106 49 84.5M 60.9M 72.7M
co	4535	Kettleman Hills	Max Min Av Max Av Min Avg	102 54 94.3 68.0 81.1	102 56 93.0 70.6 81.8	106 56 88.6 67.2 77.9	92 50 73.4 57.9 65.6	76 38 60.0 47.3 53.6	66 29 47.4 34.4 40.9	63 34 52.0 39.5 45.8	72 36 59.4 44.0 51.7	85 35 62.5 45.6 54.0	92 39 71.4 50.1 60.8	96 40 77.4 54.8 66.1	109 50 86.6 63.2 74.9
во	4999-03	Livingston 5W	Max Min Av Max Av Min Avg	105 45 97.0M 53.7M 75.4M	103 46 97.1M 54.4M 75.8M	109 47 92.5M 55.1M 73.8M	99 35 80.1M 48.6M 64.4M	75 31 60.4M 41.1M 50.8M	55 25 44.1M 34.5M 39.3M	62 23 53.3M 32.9M 43.1M	74 27 65.4 31.0 48.2	84 27 68.2 36.8 52.5	97 33 77.8M 40.7M	101 32 83.2M 43.5M 63.4M	115 41 90.9M 51.6M 71.3M
во	5117	Los Banos Field Sta.	Max Min Av Max Av Min Avg	104 48 92.5 57.8 75.2	101 45 94.3 57.4 75.8	103 50 89.4 56.7 73.0	96 39 77.4 49.3 63.4	73 28 60.5 39.2 49.8	54 22 46.1 31.8 39.0	63 21 54.0 32.4 43.2	71 29 62.9 34.2 48.6	78 25 66.0 39.1 52.5	92 33 74.0 44.1 59.0	93 36 77.0 46.8 61.9	107 37 85.9 52.7 69.0
86	5202	Lushmeadows Rch.	Max Min Av Max Av Min Avg	100 52 M M M	102 44 M M M	102 50 M M	м м м м	76 31 58.1M 38.6M 48.4M	72M 29 61.2M 39.9M 50.6M	72 27 52.3M 33.5M 42.9M	73 28 61.9 35.5M 48.7M	77 27 60.7M 37.1M 48.9M	87 29 65.7M 41.4M 53.6M	87 30 M M M	105 39 83.0M 54.9M 69.0M
со	5257	Magunden	Max Min Av Max Av Min Avg	106 56 97.7 64.3 81.0	105 40 97.4 64.5 81.0	106 56 90.9 63.8 77.4	96 48 77.8 56.1 67.0	78 35 64.3 44.4 54.4	60 26 47.9 34.5 41.2	68 26 56.7 34.6 45.6	75 30 63.9 35.4 49.8	91 32 66.6 40.8 53.7	95 38 73.5 47.2 60.4	96 41 81.4 52.4 66.9	113 51 91.8 60.8 76.3
B 5	5348	Mariposa Circle 9 Rch.	Max Min Av Max Av Min Avg	100 44 93.3 51.0 72.1	102 44 91.5M 52.0M 71.8M	97 42 M M	78 34 67.0M 41.9M 54.4M	73 28 55.3M 35.3M 45.3M	70 23 58.1M 31.1M 44.6M	70 19 48.5 27.1M 37.8M	66 22 56.7 27.3 42.0	70 17 53.0M 28.6M 40.8M	82 22 63.4M 34.1 48.8M	98 24 72.0M 38.9M 55.5M	109 34 85.5M 47.6M 66.6M
B 5	5352	Mariposa RS	Max Min Av Max Av Min Avg	99 47 91.5 54.8 73.1	100 47 92.3 57.3 74.8	103 48 89.0 57.1 73.0	98 40 77.2 48.8 63.0	79 30 M M M	78 24 M M M	75 26 55.5M 30.7M 43.1M	71 25 M M M	79 22 60.6M 33.2M 46.9M	86 29 68.2M 38.9M 53.6M	88 31 72.8 43.3 58.1	104 35 82.9 48.3 65.6
87	5496	Meadow Lake	Max Min Av Max Av Min Avg	90 53 82.2 62.5 72.3	91 54 83.8 63.1 73.4	94 44 79.5 60.1 69.8	92 40 69.1 51.5 60.3	74 30 55.9 40.1 48.0	68 25 58.4 40.4 49.4	72 23 50.6 33.7 42.2	66 26 53.0 36.5 44.8	70 21 50.3 34.6 42.5	78 28 57.2M 39.8M 48.5M	84 29 63.7 44.5 54.1	95 35 74.8 55.6 65.2
В7	5677-80	Minarets RS	Max Min Av Max Av Min Avg	86 42 80.9 49.3 65.1	90 40 82.9 50.4 66.6	90 40 77.6 50.6 64.1	88 30 68.0 41.1 54.6		ı	Closed f	or Winte	r Season			м м м м
во	5740	Modesto KTRB	Max Min Av Max Av Min Avg	99 51 91.0 56.8 73.9	100 49 91.5 57.1 74.3	103 52 88.4 58.2 73.3	94 39 76.6 51.1 63.8	71 32 59.1 43.3 51.2	54 27 46.7 35.7 41.2	61 25 54.6 36.3 45.4	74 27 64.7 32.9 48.8	83 27 67.2 38.5 52.8	92 34 75.0 43.1 59.0	93 36 78.8 47.6 63.2	107 46 85.3 54.1 69.7
87	5893	Nountain Rest FFS	Max Min Av Max Av Min Avg	91 51 83.6M 59.6M 71.6M	92 50 86.0 61.3 73.6	99 45 83.0M 59.1M 71.0M	89 37 70.3M 50.5M 60.4M	M M M M	M M M M	62 25 51.5M 33.2M 42.3M	62 26 54.0M 34.4M 44.2M	70 22 53.8M 34.2M 44.0M	77 26 62.0M 41.7M 51.8M	79 26 65.6M 43.4M 54.5M	95 34 76.5M 52.8M 64.7M
co	6230-50	North Belridge	Max Min Av Max Av Min	105 50 96.1 67.8M 81.9M	106 59 92.8 66.1M 79.4M	105 62 91.5 66.8 79.2	96 48 77.2 57.3 67.2	78 37 63.1M 45.2M 54.2M	62 25 47.7 34.0 40.8	65 28 55.1 35.5 45.3	75 34 62.6 37.2 49.9	87 32 66.7M 41.1M 53.9M	94 40 74.7 48.1 61.4	95 41 79.6 54.2 66.9	109 54 89.7 63.4 76.6

TEMPERATURE DATA FOR 1963-64 SAN JOAQUIN DISTRICT

					SAN JU	AQUIN DI	STRICT			n-1- 1					
Droinage Bosin	Alpha Order Number	Station Name		July	Aug	Sept	Oct.	In Nov	degrees Oec	Fahrenhe Jan	1t Feb	Mar	Apr	Moy	June
B 6	6321-80	Oakhurst	Max Min Av Max Av Min Avg	95 33 88.4 42.5 65.4	97 36 89.2 43.6 66.4	103 40 86.9 45.8 66.4	95 29 74.7 39.3 57.0	80 24 61.8 31.8 46.8	73 18 61.6 22.1 41.8	77 16 55.1 24.5 39.8	69 13 59.9 20.1 40.0	75 16 56.8 28.5 42.6	80 23 62.2 33.6 47.9	81 21 67.6 37.0 52.3	97 32 78.2 42.4 60.3
83	6893	Pinecrest Strawberry	Max Min Av Max Av Min Avg	84 38 79.1 45.8 62.4	86 38 77.7 44.8 61.2M	88 42 75.7 47.3 61.5	84 32 67.1 40.6 53.8	64 22 51.7 31.2 41.4	66 14 54.6 27.0 40.8	60 18 47.5 24.6 36.0	64 16 54.2 24.1 39.2	68 10 49.2 24.2 36.6	74 12 56.7 28.7 42.7	78 22 60.4 32.8 42.7	88 30 68.7 39.9 54.3
C1	6895	Pine Flat Oam	Max Min Av Max Av Min Avg	105 50 97.6 58.1 77.8	105 49 97.8 56.6 77.2	110 51 93.2 58.4 75.8	100 42 79.4 51.1 65.2	78 34 63.0 41.3 52.2	67 27 49.4 33.5 41.4	63 27 54.4 32.5 43.4	71 28 61.8 32.6 47.2	84 27 64.1 36.6 50.4	92 35 72.4 43.1 57.8	94 33 78.8 47.5 63.2	109 43 90.1 53.9 72.0
cı	6902	Pinehurst	Max Min Av Max Av Min Avg	88 51 82.3M 58.3M 70.3M	89 50 82.9 58.7 70.8	92 47 82.0 58.7 70.4	92 37 69.8M 48.2M 59.0M	M M M M	M M M M	M M M M	м м м м	м м м м	м м м м	78 30 66.7M 43.1M 54.9M	94 36 74.6 52.1 63.4
B7	6959-80	Placer GS	Max Min Av Max Av Min Avg	94 40 M M M	96 40 87.8M 47.2M 67.5M	96 44 87.1M 48.7M 67.9M	M M M	c	losed fo	or Winter	Season		м м м м	84 26 69.0M 39.0M 54.0M	96 36 79.4M 46.2M 62.8M
86	7273	Raymond 9 N	Max Min Av Max Av Min Avg	102 45 94.5 54.1 74.3	106 46 96.7M 57.9M 77.3	108 49 94.0 57.1 75.6	97 40 M M M	-	1111	65 25 53.7 31.0 42.4	70 24 63.5 29.4 46.5	-	-	89 27 77.0 39.9 58.5	108 40 87.6 48.7 68.2
co	7288	Rector	Max Min Av Max Av Min Avg	102 53 95.3 58.8 77.0	102 52 94.3 58.3 76.3	104 49 90.5 59.5 75.0	96 44 77.1 52.0 64.6	79 33 63.1 43.3 53.2	58 29 44.6 35.4 40.0	70 26 54.0 34.7 44.4	72 30 63.1 33.7 48.4	85 30 66.4 38.5 52.4	93 35 73.5 45.2 59.4	95 37 79.6 49.7 64.7	110 50 88.5 56.7 72.6
co	7460	Riverdale	Max Min Av Max Av Min Avg	102 42 95.9 58.3 77.1	102 51 93.9 58.5 76.2	106 53 89.8 58.8 74.3	94 40 77.3 49.8 63.6	76 31 62.0 41.0 51.5	53 26 44.4 33.8 39.1	65 27 54.4 33.6 44.0	72 24 63.2 31.6 47.4	83 32 66.3M 38.7M 52.5M	92 36 74.2 43.3 58.8	94 36 79.1 48.1 63.6	113 45 88.2 55.4 71.8
CO	7800-02	Sanger 1 NE	Max Min Av Max Av Min Avg	104 53 96.5 58.3 77.4	104 52 96.3 58.2 77.2	105 54 90.8 59.6 75.2	75.9 52.7 64.3	72 37 60.7 45.5 53.1	57 29 46.3 38.0 42.2	63 29 54.1 37.9 46.0	71 30 62.8 35.8 49.3	84 29 66.4 40.2 53.3	95 37 74.9 46.3 60.6	95 37 81.5M 50.1M 65.8M	108 51 90.3 56.4 73.4
co	8375-50	South Belridge	Max Min Av Max Av Min Avg	104 54 96.5M 63.8M 80.1M	103 53 95.9 63.8 79.8	105 55 91.3 62.6 76.9	97 44 77.6M 52.1M 64.8M	76 33 64.2M 41.0M 52.6M	62 22 47.1M 30.7M 38.9M	63 27 56.0M 33.0M 44.5M	78 31 64.6 36.2 50.4	87 31 67.4 39.4 53.4	94 38 74.8 47.0 60.9	95 40 80.4 50.8 65.6	110 50 90.4M 60.6M 75.5M
co	8407-11	South Lake Farms Hdq.	Max Min Av Max Av Min Avg	103 49 96.0 57.5 76.7	103 49 95.7 59.2 77.4	108 54 91.2 60.1 75.6	94 42 77.0 51.6 64.3	77 30 63.0 40.6 51.8	59 27 44.1 35.1 39.6	67 24 54.6 33.8 44.2	74 25 62.6 31.2 46.9	83 27 66.0 36.6 51.3	92 35 73.7 43.5 58.6	94 33 79.1 45.9 62.5	108 48 88.8 54.2 71.5
83	8450	Spring Gap Forebay	Max Min Av Max Av Min Avg	м м м м	м м м м	M M M M	86 30 67.1M 39.8M 53.5M	68 22 50.5M 30.9M 40.7M	66 18 55.7M 28.9M 42.3M	58 18 43.9M 25.4M 34.7M	62 18 51.3M 25.1M 38.1M	66M 14M 48.0M 25.1M 36.6M	68 12 52.3M 28.4M 40.4M	74 22 61.8M 33.4M 47.6M	M M M M
B 3	8499	Stanislaus Power House	Max Min Av Max Av Min Avg	99 45 91.5 53.5 72.5	103 46 92.8 55.8 74.3	104 48 90.1 57.1 73.6	100 36 73.8 43.8 58.8	75 27 60.6 37.2 48.9	63 25 55.3 30.5 42.9	68 22 54.1 29.5 41.8	72 23 62.5 28.0 45.3	82 23 62.7 32.6 47.7	88 30 72.4 41.3 56.9	91 31 76.6 46.4 61.5	106 42 85.5M 53.7M 69.6M
сз	8620	Success Oam	Max Min Av Max Av Min Avg	102 54 94.6 62.1 78.4	101 53 94.5 62.8 78.6	105 58 90.6 63.6 77.1	99 47 77.5 55.7 66.6	78 36 63.6 45.0 54.3	65 26 49.0 34.2 41.6	67 29 55.2 34.7 44.9	72 31 62.9 36.9 49.9	82 31 64.8 40.8 52.8	94 37 72.6 47.3 60.0	94 37 78.7 50.8 64.8	111 47 89.3 58.0 73.7
C7	8755	Taft KTKR Radio	Max Min Av Max Av Min Avg	103 56 94.0M 65.2M 79.6M	102 55 94.2 66.0 80.1	104 51 88.4 63.3 75.8	96 48 75.5 55.5 65.5	76 35 62.3 43.4 52.9	61 26 47.6 31.9 39.8	65 22 54.4M 34.0M 44.2M	73 31 61.2 35.7 48.5	85 32 63.6 40.2 51.9	92 36 70.4 46.5 58.4	92 38 76.9 50.5 63.7	107 44 87.7 59.7 73.7
C2	8868	Terminus Dam	Max Min Av Max Av Min Avg	101 54 93.9 63.9 78.9	101 54 93.6 65.4 79.5	105 57 89.7 64.6 77.1	97 49 76.9 56.0 66.4	76 35 62.1 45.0 53.6	63 26 47.0 33.6 40.3	66 28 54.2 35.4 44.8	70 32 61.5 37.7 49.6	85 33 63.2 40.8 52.0	90 38 71.5 46.6 59.1	93 36 77.4 51.0 64.2	109 47 87.8 58.1 73.0
со	9006	Tranquillity Glotz	Max Min Av Max Av Min Avg	100 52 91.4 59.3 75.3	98 50 88.5 59.4 74.0	98 54 84.6M 59.4M 72.0M	88 40 75.7M 50.9M 63.3M	77 28 59.8 41.8 50.8	48 24 42.5 33.3 37.9	M 50.8M 33.0M 41.9M	м м м м	74 28 60.4 36.4 48.4	84 35 68.8 42.2 55.5	M 72.0M 44.9M 58.5M	м м м м
Cl	9025	Trimmer RS	Max Min Av Max Av Min Avg	102 45 95.1 57.5 76.3	103 49 96.2 61.0 78.6	104 49 91.5 61.3 76.4	-	-	-	-	-	-	-	-	-
со	9051	Tulare	Max Min Av Max Av Min Avg	106 54 97.9 60.4 79.1	104 54 97.1 60.6 78.8	107 56 92.1 60.5 76.3	98 44 78.4 52.5 65.4	78 33 62.5 43.4 53.0	55 28 43.2 35.8 39.5	68 26 53.6 35.7 44.6	76 30 63.1 34.5 48.8	86 30 65.9 39.0 52.4	96 37 75.0 45.7 60.4	97 40 81.8 49.8 65.8	113 48 90.8 57.1 74.0
co	9145	U. S. Cotton Field Sta.	Max Min Av Max Av Min Avg	102 55 94.8 62.6 78.7	101 50 93.8 61.5 77.6	108 57 90.1 62.1 76.1	95 46 76.7 53.6 65.2	80 34 62.6 43.9 53.2	59 27 45.3 34.7 40.0	68 26 54.8 34.1 44.4	76 27 63.4 33.1 48.2	86 30 66.5 39.5 53.0	94 39 73.8 46.5 60.2	96 39 80.6 50.0 65.3	111 48 89.3 58.8 74.1

TABLE A-3 (Cont.)

TEMPERATURE DATA FOR 1963-64 SAN JOAQUIN DISTRICT

	Alpha					19	63	In	degrees	Fahrenh	eit	19	64		
Drainage Basin	Order Number	Station Name		July	Aug	Sept.	Oct	Nov	000	Jan.	Feb	Mar.	Apr	May	June
В7	9162-80	Upper Chiquito	Max Min Av Max Av Min Avg	78 26 74.2M 32.1M 53.1M	82 22 72.4M 28.3M 50.4M	84 23 69.9M 30.7M 50.3M				losed fo	r Winter	Season			
CD	9304	Vestal	Max Min Av Max Av Min Avg	104 57 96.7 65.4 81.0	103 61 97.0M 67.6M 82.3M	107 58 91.7 66.4 79.6	97 51 78.1 58.2 68.2	79 37 64.1M 47.0M 55.6M	63 28 49.4 37.2 43.3	69 27 57.3 37.1 47.2	74 32 65.2M 37.9M 51.6M	85 32 67.3M 42.3M 54.8M	98 39 76.8M 49.6M 63.2M	97 39 82.6M 53.0M 67.8M	113 53 91.8M 63.3M 77.6M
во	9565	Westley	Max Min Av Max Av Min Avg	98 47 91.2M 53.7M 72.4M	97 48 91.4M 54.4M 72.9M	M M M M	м м м м	70 29 M M M	53 26 M M M	60 27 53.8M 34.5M 44.2M	M 63.4M 35.0M 49.2M	79 30 66.7M 39.9M 53.3M	88 33 73.5M 42.7M 58.1M	90 36 78.0M 45.1M 61.1M	105 47 85.4M 51.8M 68.6M
C1	9749	Wishon Res.	Max Min Av Max Av Min	80 40 74.5M 46.4M 60.4M	M M M M	90 37 M M M	81 30 63.1m 38.8m 51.0m	м м м м	м м м м	55 10 43.4M 22.8M 33.2M	55 13 47.0M 22.7M 34.9M	61 7 43.0M 21.3M 32.2M	68 14 51.7M 27.5M 39.6M	70 19 M M M	82 29 65.1M 41.0M 53.1M
C4	9805	Weody	Max Min Av Max Av Min Avg	108 49 92.8 58.2 75.5	M 37 M 58.6 M	104 34 89.5 55.7 72.6	94 41 74.4 51.4 62.9	77 30 62.0 40.2 51.1	67 24 52.0 30.0 41.0	65 25 52.4M 31.9M 42.2M	68 28 58.8 33.6 46.2	81 27 60.0 35.9 47.9	92 33 68.9 41.6 55.2	92 32 75.8 45.8 60.8	109 41 86.9 56.8 71.9

TABLE A-4
MONTHLY SUMMARY OF EVAPORATION STATION DATA

e c	Alpha					19	63					19	64	·	
Drainage Basin	Order Number	Station Name		July	Aug.	Sept.	0c1	Nov	Dec	Jan	Feb	Mar	Apr.	May	June
C0	0332-02	Arvin-Frick	Evap Wind Precip Av Max Av Min	9.69 1723 .00 92 57	7.85 1318 .02 93 56	5.50 1046 1.20 87 58	3.35 1040 .76 75 48	2.05 1720 1.51 61 38	.77 1280 .15 42 29	1.46 1669 -49 52 28	3.32 1944 .44 61 29	4.46 2477 .52 64 35	6.06 2458 .69 70 42	8.18 2766 .50 78 47	9.78 3107 .02 86 54
co	2013	Corcoran El Rico l	Evap Wind Precip Av Max Av Min	14.03E 2390E .00 96.9 57.5	13.02 2115 .06 95.0 57.9	8.25 1940 .51 90.2 E 59.2 E	4.63 1720 1.15 78.6 53.5	1.32 1520 .92 62.4 43.9	.41 1120 .10 44.3 M 36.1 M	1.09 1515 .86 53.1 34.4	2.94 1425 .08 61.7 31.2	4.98 2520 .95 65.5 35.5	6.73 2110 .53 73.4 41.2	8.77 2216 .29 79.5 45.2	13.33 2834 .00 90.1 54.0
C6	2222-80	Cummings Valley	Evap Wind Precip Av Max Av Min	11.74 1810 .00 84.1 43.9	11.33 1940 .70 85.6 44.9	8.17 1720 1.62 83.5 48.7	4.55 1520 .95 73.4 39.2	3.75 2850 2.44 58.9 33.0	6.05 4070 .72 59.1 28.5	3.24 3500 1.06 53.2 23.3	4.32 3320 .65 56.2 22.1	3.93 2920 2.19 54.1 26.6	5.38 2720 1.39 58.5 31.2	6.99 2680 1.42 63.3 34.2	10.27 2470 .10 74.3 42.6
84	2473	Don Pedro Reservoir	Evap Wind Precip Av Max Av Min	.00 95.3 58.0	12.28 - .00 95.2 58.3	8.80 - .25 91.8 57.8	4.53 - 1.72 78.0 49.0	1.89 - 4.98 51.2 39.4	.75 - .63 47.5 30.8	1.46 - 2.80 52.9 31.4	2.63 - .35 61.3 30.4	3.86 3.19 63.0 35.5	6.24 78 71.9 39.1	6.93 1.53 77.3 M 44.0 M	11.32 - .50 86.3 51.4
C5	4303	Isabella Dam	Evap Wind Precip Av Max Av Min	14.15 2344 .00 92.8 59.5	12.21 1947 1.16 93.4 59.6	8.00 1501 1.16 89.5 58.7	4.73 1544 2.02 76.8 49.7	2.48 1595 1.20 63.0 39.7	2.05 1202 .46 60.6 31.7	2.27 1932 .97 52.3 31.4	3.21 1493 .07 60.9 29.5	4.34 2291 1.68 59.2 33.8	6.30 2181 .50 66.9 40.5	8.92 2600 .69 73.5 46.7	11.81 2655 .03 84.5 56.5
80	5117	Los Banos Field Sta.	Evap Wind Precip Av Max Av Min	16.02 4056 .00 92.5 57.8	13.35 3156 .00 94.3 57.4	9.58 2687 .08 89.4 56.7	5.08 2082 1.17 77.4 49.3	1.19 1542 .87 60.5 39.2	.46 1167 .06 46.1 31.8	1.53 1933 .72 54.0 32.4	3.63 2070 .04 62.9 34.2	6.06 3588 .98 66.0 39.1	9.61 3709 .33 74.0 44.1	11.27 4259 .00 77.0 46.8	14.64 5187 .36 85.9 52.7
CI	6895	Pine Flat Dam	Evap Wind Precip Av Max Av Min	12.07 721 .00 97.6 58.1	9.97 628 T 97.8 56.6	7.47 703 .20 93.2 58.4	4.23 681 1.53 79.4 51.1	1.40 631 3.96 63.0 41.3	.88 701 .65 49.4 33.5	1.23 790 1.59 54.4 32.5	2.37 878 .03 61.8 32.6	3.43 991 2.77 64.1 36.6	5.34 914 1.13 72.4 43.1	7.32 867 1.12 78.8 47.5	10.05 916 .08 90.1 53.9
86	7273	Raymond 9 N	Evap Wind Precip Av Max Av Min	11.99 579 .00 94.5 54.1	9.44E 532E .00 96.7 M 57.9 M	9.60E 482E .49 94.0 57.1	M 346 1.85 M M	м м м м	м м м м	1.78 467 2.12 53.7 31.0	2.49 435 .01 63.5 29.4	M M M M	м м м м	7.45 408 .90 77.0 39.9	8.07 696 .52 87.6 48.7
c 3	8620	Success Dam	Evap Wind Precip Ay Max Av Min	14.20 1776 .00 94.6 62.1	12.83 1648 .21 94.5 62.8	9.12 1575 .45 90.6 63.6	5.18 1363 1.89 77.5 55.7	2.20 1266 2.28 63.6 45.0	.79 1084 .30 49.0 34.2	1.52 1362 .89 55.2 34.7	3.18 1545 .34 62.9 36.9	4.34 1530 1.97 64.8 40.8	7.21 1674 1.10 72.6 47.3	9.90 1837 .86 78.7 50.8	12.02 1727 .12 89.3 58.0
C7	8755	Taft KTKR Radio	Evap Wind Precip Av Max Av Min	14.21 750 .00 94.0 M 65.2 M	13.56 710 T 94.2 66.0	9.06 570 .56 88.4 63.3	5.40 570 .86 75.5 55.5	2.55 660 1.54 62.3 43.4	1.08 510 .08 47.6 31.9	1.93 1080 .68 54.7 M 34.0 M	4.04 1150 .09 61.2 35.7	5.81 1710 .37 63.6 40.2	9.12 2000 .20 70.4 46.5	10.91 1740 .07 76.9 50.5	13.21 1560 .00 87.7 59.7
C2	8868	Terminus Dam	Evap Wind Precip Av Max Av Min	13.64 1268 .00 93.9 63.9	12.77 1445 .11 93.6 65.4	9.65 1621 .37 89.7 64.6	5.27 1474 1.52 76.9 56.0	2.11 1476 2.59 62.1 45.0	.77 1237 .34 47.0 33.6	1.52 1634 .96 54.2 35.4	3.39 1802 .41 61.5 37.7	4.42 1756 2.41 63.2 40.8	6.25 1356 1.46 71.5 46.6	9.20 1581 1.50 77.4 51.0	12.19 1618 .05 87.8 58.1
co	9145	U. 5. Cotton Field Sta.	Evap Wind Precip Av Max Av Min	12.29 1156 .00 94.8 62.6	10.93 962 .03 93.8 61.5	7.31 793 .61 90.1 62.1	4.75 762 .99 76.7 53.6	1.70 668 1.10 62.6 43.9	.62 586 .10 45.3 34.7	1.19 1028 .40 54.8 34.1	3.72 1161 .19 63.4 33.1	5.03 2104 .34 66.5 39.5	7.89 2443 .76 73.8 46.5	10.89 2841 .04 80.6 50.0	13.17 2673 .00 89.3 58.8
80	9565	Westley	Evap Wind Precip Av Max Av Min	9.10E .00 91.2 M 53.7 M	7.16 -00 91.4 M 54.4 M	м - м м	м - м м	M - 1.64 M M	.38 - .07 M M	3.40 - 1.86 53.8 M 34.5 M	3.62 .00 63.4 M 35.0 M				9.46 - .85 85.4 M 51.8 M

APPENDIX B
SURFACE WATER FLOW

		,

TABLE OF CONTENTS

	<u>Pa</u>	ge
ALPHABET	ICAL INDEX TO TABLES	52
DRAINAGE	BASIN INDEX TO DAILY MEAN DISCHARGE TABLES	53
INTRODUCT	PION	55
Defi	inition of Terms	55
Surf	face Water Gaging Station Designation	55
EXPLANATI	ION OF TABULAR DATA	56
Lake	es and Reservoirs	56
Dail	ly Mean Discharge	56
Dail	ly Mean Gage Height	56
Dive	ersions	5 7
	LIST OF TABLES	
Table Number		
B-1	Gaging Station Additions and Discontinuations	59
B-2	Daily Inflow Millerton Lake	60
B-3	Daily Content Millerton Lake	61
B-4	Daily Mean Discharge	62
B-5	Daily Mean Gage Height	16
B-6	Diversions	43
B-7	Diversions and Acreage IrrigatedEast Side Canals and Irrigation Districts	52
B-8	Imports and Exports	52
B-9	Deliveries from Central Valley Project Canals	53
	LIST OF PLATES	
	(Bound at end of volume)	
Plate Number		

B-1 Location of Surface Water Measurement Stations

Page

	Daily Mean Discharge	Daily Mean Gage Height and Crest Stages
Bear Creek below Bear Reservoir	79	
near Catheys Valley	78	
Big Creek Diversion near Fish Camp	66	
Burns Creek below Burns Reservoir	59 81	
at Hornitos	80	
Campbell-Moreland Ditch above Porterville	106	118
East Fork near Ahwahnee	70	110
Middle Fork near Nipinnawassee	72 71	
Cross Creek below Lakeland Canal #2	100	
Delta-Mendota Canal near Tracy	63	
to Mendota Pool	64 92	133
Elk Bayou near Tulare	101	133
Fresno River, Lewis Fork near Oakhurst	67 102	
to Tule River	102	
Hubbs-Miner Ditch at Porterville	112	
Kern River near Bakersfield	115 99	
Mariposa Bypass near Crane Ranch	76	
Mariposa Creek near Catheys Valley	74 75	
below Mariposa Reservoir	75 84	
Merced River at Cressey	86	123
below Snelling	85	122 124
North Fork near Coulterville	83	124
Miami Creek near Oakhurst	68	
Millerton Lake, Daily Inflow	60 61	
Orestimba Creek near Crows Landing	87	
Owens Creek below Owens Reservoir	77 59	
Panoche Drain near Dos Palos	111	
Porter Slough at Porterville	107	
near Porterville	109 108	
Rhodes-Fine Ditch near Porterville	113	
San Joaquin River at Crows Landing Bridge	69	126
near Dos Palos	03	121
below Friant	62	117
at Grayson	88 94	128
at Maze Road Bridge	7-	136
near Mendota	65	1.05
near Newman		125 127
above Sand Slough near El Nido		119
near Stevinson	82 98	120 142
at West Stanislaus Irrigation District Intake		129
Stanislaus River at Koetitz Ranch	97	140 141
near Mouth	95	137
at Ripon		139
at Riverbank	96 73	138
Tulare Lake		116
Tule River below Porterville	105 104	
North Fork at Springville	91	132
at La Grange Bridge	89	130
at Modesto	90	134 131
at Tuolumne City	93	135
Vandalia Ditch near Porterville	110 114	
woods central bittin hear forterville	114	
		_
		<u>Page</u>
SIONS		
Deliveries from Central Valley Project Canals		153

IVERSIONS	
Deliveries from Central Valley Project Canals	15
Dry Creek	14
East Side Canals and Irrigation Districts	15
Merced River	14
San Joaquin River	
Vernalis to Fremont Ford Bridge	
Fremont Ford Bridge to Gravelly Ford	14
Gravelly Ford to Friant Dam	14
Stanislaus River	15
Tule River	15
Tuolumne River	14

ALPHABETICAL INDEX TO TABLES

	Page
LAKES AND RESERVOIRS Millerton Lake, Daily Inflow	. 61
GAGING STATION ADDITIONS AND DISCONTINUATIONS	• 59
DRAINAGE BASIN INDEX TO DAILY MEAN DISCHARGE TABLES	
SAN JOAQUIN RIVER BASIN	
San Joaquin River	
Daily Inflow Millerton Lake	
Daily Content Millerton Lake	
Delta-Mendota Canal near Tracy	
Delta-Mendota Canal to Mendota Pool	
San Joaquin River near Mendota	
Fresno River	
Big Creek Diversion near Fish Camp	
Lewis Fork Fresno River near Oakhurst	
San Joaquin River near Dos Palos	. 69
Chowchilla River	,
East Fork Chowchilla River near Ahwahnee	
West Fork Chowchilla River near Mariposa	
Middle Fork Chowchilla River near Nipinnawassee	
Striped Rock Creek near Raymond	. 73
Mariposa Creek near Catheys Valley	. 74
Mariposa Creek below Mariposa Reservoir	
Mariposa Bypass near Crane Ranch	
Owens Creek below Owens Reservoir	
Bear Creek	70
Bear Creek near Catheys Valley	
Burns Creek	. ,,
Burns Creek at Hornitos	. 80
Burns Creek below Burns Reservoir	
San Joaquin River near Stevinson	
Panoche Drain near Dos Palos	. 59
Merced River North Fork Merced River near Coulterville	. 83
Maxwell Creek at Coulterville	
Merced River below Snelling	
Merced River at Cressev	. 86
Orestimba Creek near Crows Landing	. 87
San Joaquin River at Grayson	. 88
Burkhardt Drain near Grayson	. 59
Tuolumne River Tuolumne River at La Grange Bridge	. 89
Tuolumne River at Roberts Ferry Bridge	. 90
Tuolumne River at Hickman Bridge	. 91
Dry Creek near Modesto	
Tuolumne River at Tuolumne City	
San Joaquin River at Hetch Hetchy Aqueduct Crossing	. 94
Stanislaus River Stanislaus River at Orange Blossom Bridge	. 95
Stanislaus River at Riverbank	
Stanislaus River at Koetitz Ranch	. 97
San Joaquin River near Vernalis	
TULARE LAKE BASIN	
Kings River	
South Fork Kings River below Empire Weir #2	. 99
Cross Creek below Lakeland Canal #2	. 100
Elk Bayou near Tulare	
Delivery to Porter Slough	. 102
Delivery to Tule River	. 103
Tule River North Fork Tule River at Springville	. 104
Below Porterville	. 105
Tule River Diversions Campbell-Moreland Ditch above Porterville	. 106
Porter Slough at Porterville	. 107
Porter Slough Ditch at Porterville	. 108
Porter Slough near Porterville	. 109
Vandalia Ditch near Porterville	. 110
Poplar Ditch near Porterville	
Hubbs-Miner Ditch at Porterville	
Woods-Central Ditch near Porterville	
Kern River near Bakersfield	
VETIL VIACE HEAT DAVEIBILEIG	

			1.34	

INTRODUCTION

This appendix presents surface water data for the Water Year 1964 which is from October 1, 1963, to September 30, 1964. The data presented in this appendix consists of daily mean discharge, station locations, daily mean gage heights, and diversion quantities.

Stream gaging station descriptions presented show the historic maximum discharge of record and the maximum discharge for the report year. Locations of the gaging stations and other important data on the Length of record and datum of gage are also presented.

Quantities of daily mean discharge for most stations shown are computed by an electronic computer. The gage height data are fed into the computer simultaneously with rating and shift correction data. Daily nean discharge, total monthly acre-feet, and instantaneous maximum and minimum discharge are computed. The gage height data are extracted from the standard recorder chart by a semiautomatic chart-reading machine and out into machine language. The record for those stations affected by backwater conditions is not adaptable so computation by machine methods and is computed manually by standard methods.

Daily mean stage tables are presented for key stations on the major streams in the San Joaquin Valley. These daily mean stages are computed by the electronic computer, as mentioned above. The gage neights are computed to the nearest one-hundredth of a foot, and the major crests for the year are shown.

Quantities of water diverted for use are shown as monthly total acre-feet and total acre-feet liverted for a certain reach of a stream.

efinition of Terms

A list of definition of terms as used herein follows:

Second-foot or cubic foot per second is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second.

Acre-foot is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

<u>Drainage area</u> of a stream above a specific location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

Unimpaired runoff is the flow that would occur naturally at a point in a stream if there were:

(1) no upstream controls such as dams and reservoirs; (2) no artificial diversions or accretions; and (3) to changes in ground water storage resulting from development. Unimpaired flow is computed from measured runoff by allowing for man-made changes in natural conditions.

Water Year is the 12-month period from October 1 of any year through September 30 of the subsequent year and is designated by the calendar year in which it ends.

urface Water Gaging Station Designation

The index number for each gaging station is composed of a number which begins with an alphabetical letter designating the hydrographic area, followed by the first digit which indicates the main liver basin. The second digit refers to a tributary of the main river basin. The hydrographic area and the liver basin are outlined on Plate B-1. The remaining three digits are used to number stations in an upstream direction with the lowest number at or near the mouth. The digit 9, which is the third from the left, indicates that the station is a surface gravity diversion station. Each station is listed by name as well as by machine index number.

EXPLANATION OF TABULAR DATA

The tabular data presented in this appendix are divided into the general categories of daily mean discharge, daily mean stage, and monthly diversions.

The area to which these data pertain is shown as AreaIV on page iii and on Plate B-1.

Table B-1 presents gaging station additions and discontinuations.

Lakes and Reservoirs

Two types of data are presented for lakes and reservoirs. Table B-2 presents inflow to Millerton Lake. Table B-3 presents the daily content of Millerton Lake in thousands of acre-feet.

Daily Mean Discharge

Presented in Table B-4 are records of daily mean discharge, gaging station location, period of record, maximum flow of record, maximum and minimum flow for the season, as well as the total flow in acre-feet for the 1963-64 water year.

The streamflow tables are arranged, for each stream or stream system, in downstream order. Stations on a tributary entering between two main stem stations are listed between those stations, and in downstream order on that tributary. A stream gaging station is named after the stream and the nearest post office (Merced River at Cressey) or well-known landmark (San Joaquin River at Fremont Ford Bridge).

Each stream gaging station has a stage-discharge relationship or rating developed. The rating gives the flow in second-feet for each gage height at the station. When flows at a single station occur in excess of 140 percent of the highest measurement on the rating, the computed daily mean discharges from the electronic computer are shown as estimated. Normally, the rating is fairly permanent where there is a fixed channel and a fixed flow regimen at the station. The rating varies, however, where the bed at the channel is of loose shifting sand, or where aquatic growth builds up in the channel changing the flow regimen.

Where the rating is not permanent and varies periodically, more frequent measurements of discharge are necessary to accurately determine the daily mean discharge.

All streamflow data reported herein are derived through the use of mechanical, arithmetical, and empirical operations and methods. Since the results are affected by inherent inaccuracies in the procedures and equipment used, it becomes necessary to establish limits of accuracy for which the data are reported. The following is a listing of significant figures used in reporting streamflow data;

1. Daily flows - second-feet

0.0 - 9.9 Tenths 10 - 99 2 significant figures 100 - up 3 significant figures

2. Means - second-feet

0.0 - 99.9 Tenths 100 - 999 3 significant figures 1000 - above 4 significant figures

The water year totals are reported to a maximum of four significant figures.

Daily Mean Gage Heights

Presented in Table B-5 are records of daily mean gage heights for key stations on major streams in the San Joaquin Valley for the 1963-64 water year.

At the bottom of the stage tables are shown the major river crests occurring for the 1963-64 water year. The table also shows the location of the station, maximum gage height of record, period of record, and datum of gage. The elevation of water surface at the gaging station is obtained by adding the gage height reading to the elevation of the gage datum presented in each table. Gage height for stage tables are computed from recorder charts and are reported to one-hundredth of a foot.

Of the 26 stations for which daily mean gage heights are presented in this report, 13 have computed daily mean discharge. These data are included in the streamflow tables.

Diversions

Presented in Table B-6 are the amounts of water diverted for irrigation during the period October 1, 1963, through September 30, 1964. The amounts of water diverted by pumping were determined by rating the capacity of each diversion pumping plant and collecting data on hours of operation. The amounts of water diverted by gravity (indicated by "Gravity" in column headed "Number and Size of Pump") were determined either by calibrating suitable measuring devices or by rating canals in a manner similar to that used to rate streamflow stations.

Because of the intermittent operation of most diversion facilities, the monthly diversion values are reported in acre-feet to three significant figures. The totals for individual water users and stream reaches are reported to four significant figures.

Table B-7 shows the amounts of water diverted by east side canals and the several east side irrigation districts that divert water from the San Joaquin, Merced, Tuolumne, and Stanislaus Rivers.

Presented in Table B-8 are the amounts of water imported to the San Joaquin Valley via the Delta-Mendota Canal and the amount of water exported from the San Joaquin Valley via the Hetch Hetchy Aqueduct to the city and county of San Francisco.

Presented in Table B-9 are the deliveries from the Central Valley Project canals.

The data presented in Tables B-7, B-8, and B-9 were supplied by other agencies, are published as received, and are not necessarily rounded to the criteria which are used for data computed by the Department of Water Resources.

		1
	e e	
la		
		4

TABLE B-1

GAGING STATION ADDITIONS AND DISCONTINUATIONS

ADDITIONAL STATIONS

Panoche Drain near Dos Palos

(Under a cooperative agreement with the Panoche Drainage District this station was reactivated on September 27, 1964.)

DISCONTINUED STATIONS

Panoche Drain near Dos Palos

(Station discontinued July 2, 1963.)

PUBLICATION DISCONTINUED

Burkhardt Drain near Grayson

DAILY INFLOW (IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1964	871121	MILLERTON LAKE AT FRIANT	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	D
,	1656	1226	1456	802	1077	806	1717	1752	2545	1744	1814	1817	
2	838	1259	2103	900	959	1143	1760	1676	2473	1763	1714	1994	
3	787	1240	1899	820	1094	1115	1789	1719	2324	1778	1603	1979	-1
4	920	1214	1973	711	973	1056	1751	1673	2393	1757	1874	2053	
5	374	1447	2027	770	1034	995	1360	1781	2423	1767	1812	1982	
6	809	1855	1983	963	836	999	1472	1726	2430	1735	1861	1900	
7	949	1693	1847	657	1010	721	1465	1738	2295	1821	1815	1853	- 1
ė	781	1692	1711	850	943	551	1247	1730	2464	1721	1823	1862	
9	827	1694	1765	936	867	1192	1308	1691	2500	1629	1796	1957	
10	780	1697	1703	978	840	1165	1411	1740	2399	1737	1931	1982	
,,	1138	1685	1494	488	950	864	1741	1729	2400	1662	1842	1954	
12	609	1390	1689	452	908	1266	1735	1690	2461	1852	1581	1964	
13	694	1102	1667	689	1069	900	1742	1731	2503	1759	1911	1868	
14	831	1615	1484	768	826	695	1703	1716	2417	1796	1992	1793	
15	722	1754	1386	710	808	529	1731	1763	2458	1773	2114	1800	
16	741	1883	1339	735	538	906	1661	1692	2446	1799	1955	1655	
17	942	1921	1526	735	899	839	1758	1700	2349	1811	1971	1620	
18	894	1750	1570	931	1115	1147	1705	1699	2473	1747	2096	1551	- 15
19	804	2045	1543	817	982	1247	1766	1711	2401	1769	2085	1324	- 17
20	865	2034	1629	1343	947	1367	1720	1673	2380	1766	2045	1409	
21	1529	2108	1472	1372	999	1689	1700	1729	2500	1677	1990	1475	
22	1194	1890	1424	1063	936	1719	1726	1675	2466	1777	1903	1439	- 17
23	1484	1966	1528	998	999	1640	1721	1697	2457	1765	2074	1782	
24	1316	1984	1536	1085	940	1797	1667	1729	2538	1744	1825	1612	- 17
25	1222	1994	1097	784	939	1753	1666	1697	2484	1739	2047	1511	
26	1344	2013	1354	585	845	1737	1421 b	1812	2416	1730	2030	1367	
27	745 a	2035	1473	658	927	1109	1723	2740	2494	1802	2070	1452	- 17
28	1302	1979	1501	1051	859	1423	1734	2469	2464	1728	1982	1410	- 15
29	1352	1931	1393	921	504	1383	1704	2749	2076	1781	2037	1320	
30	1352	1071	1023	860	, ,,,	1464	1713	2451	1781	1760	1863	1535	
31	1421	1071	740	940		1827	••••	2355		1746	1899		
MEAN	1007	1706	1559	851	918	1195	1645	1853	2407	1756	1931	1707	M
MAX.	1656	2108	2103	1372	1115	1827	1789	2749	2545	1852	2114	2053	
MIN.	374	1071	740	452	504	529	1247	1673	1781	1629	1714	1320	- 17
AC. FT.	61990	101488	95871	52308	52806	73476	97741	113917	143226	107970	116721	101593	

E - ESTIMATED NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND .

a - 25-hour day b - 23-hour day

MEAN			MAXIMU	M		$\overline{}$			MINIM	J M		$\overline{}$	4
DISCHARGE	I	DISCHARGE	OAGE HT.	MO.	DAY	TIME	ì	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1
1545	H						ļ	[

TOTAL ACRE FEET 1121107

	LOCATION		MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE				
		1/4 SEC. T. B. R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.	
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM	
37 00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE		1941		0.00	uscgs	

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Inflow to Friant Reservoir takes into account change in storage, release, spill, precipitation, and evaporation, and is representative of the natural flow which would pass the dam site if the dam had not been constructed. Figures shown under total discharge are computed inflow to the reservoir. Period of record for computed inflow is shown under period of record for discharge. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi.

TABLE B-3

DAILY CONTENT

IN THOUSANDS OF ACRE-FEET)

WATER YEAR STATION NO. STATION NAME 1964 871100 MILLERTON LAKE AT FRIANT

AY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
-	 	1404.	DEC.	37.14.	125.	MAK.	Al K.	ma i	30112	3011	700.	32	DAI
1	203.5	157.1	239.7	330.7	372.2	315.3	283.9	342.7	404.7	368.1	228.0	137.1	1
2	200.6	157.8	243.7	332.4	372.2	313.1	286 • 4	344.7	406.6	364.6	222.9	137.5	2
3	197.6	158.6	247.4	333.9	372.4	310.9	289.1	346.7	408.2	361.6	217.9	138.1	3
4	194.9	159.8	251.2	335.2	372.5	308.3	291.8	348.5	409.9	359.0	213.0	139.1	4
5	190.2	161.7	255•1	336.6	372.5	305 • 4	293.6	350•5	411.7	355.9	207.9	140.2	S
6	186 • 4	164.4	258.9	338.4	372.0	302.6	295.7	352.7	413.3	352.1	202.8	140.8	6
7	182.8	166.8	262.4	339.6	371.5	299.5	297.7	355.2	414.0	348.0	197.8	141.3	7
8	179.4	169.1	265.7	341.2	370.3	295.9	299.2	357.7	414.5	343.4	193.5	141.5	8
9	176.2	171.4	269.1	342.9	368.7	293.4	300.8	360.2	415.0	338.4	188.8	142.2	9
0	173 • 2	173.7	272.3	344.7	367.2	290.7	302.6	362.8	414.9	333.8	184.1	143.6	10
	171.2	176.0	275.2	345.6	366.0	287.4	305.0	365.2	414.4	329.5	179.2	145.1	11
12	168.5	177.6	278.4	346.3	364.5	285.1	307.3	367.4	414.1	325.2	174.3	147.2	12
13	166.2	178.5	281.6	347.6	363.1	282.5	309.4	369.5	414.9	320.3	169.5	149.1	13
4	164.3	180.3	284.4	349.0	361.3	279.9	311.3	371.5	415.0	315.4	165.2	150.9	14
5	162.3	182.8	287.1	350.3	359.4	277.6	313.0	373.7	414.2	310.3	161.9	152.5	15
12	102.5	102.6	207.1	3,000	337.4	2,,,•0	31300	313•1	71702	31003	101.	1,72.00	'3
16	160.5	185.9	289.6	351.6	356.6	275.7	314.4	375.7	413.0	305 • 4	158.9	153.9	16
7	159.7	189.4	292.5	353.0	354.3	273.7	316.0	377.5	411.1	301.1	156.0	155.3	17
8	158.9	192.6	295.6	354.7	352.2	272.3	317.6	379.2	408.9	297.1	153.4	156.8	18
9	157.8	196.5	298.5	356.2	349.5	271.0	319.3	380.8	406.3	292.9	150.7	157.9	19
20	156.6	200.5	301.6	358.7	346.5	270.0	321.1	382.3	403.7	288.5	149.2	159.1	20
													1
11	156.7	204.5	304.4	361.3	343.7	269.7	323.0	383.9	401.0	283.9	148.0	160.3	21
!2	156.1	208 • 1	307.1	363.3	340.7	269.4	325.0	385.5	397.9	279.4	147.0	161.4	22
3	156.2	211.9	310.1	365.1	337.7	269.3	326.9	387.0	394 • 4	274.6	146.1	163.2	23
14	155.8	215.8	313.0	367.2	334.4	270.1	328.9	388.4	390.8	269.9	144.4	164.6	24
5	155.9	219.6	315.0	368.6	331.1	271.6	331.1	389.4	387.0	265.4	143.1	166.1	25
6	156.2	223.5	317.6	369.7	327.8	273.3	332.6	390.5	384.3	260.3	141.7	167.3	26
7	155.3	227.4	320.4	370.9	325.1	274.3	334.7	393.2	381.9	254.9	140.4	168.7	27
	155 • 6	231.2	323.3	371.8	322.0	276.0	336.7	395.4	379.4	249.2	139.2	169.9	28
9	155.9	234.9	326.0	370.2	318.3	277.7	338.7	398.2	375.9	243.6	138.4	170.9	29
0			326.0	369.4	31003	279.4	340.7	400.5	371.9	238.1	137.6	172.3	30
1	156 • 2 156 • 7	236.9	327.9	370.8		281.7	۱ • ۵۰ د	402.5	3/109	232.8	137.3	.,,,,,	31
Tie .	-			-									
bnth							1						
nang	e -48.3	+80.2	+92.3	+41.6	-52.5	-36.6	+59.0	+61.8	-30.6	-139.1	-95.5	+35.0	1
1		1					-			· - ,			
		1 1		ı			1					1	1 .

- ESTIMATED

- ESTIMATED

NO RECORD

DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

E AHD *

MEAN		MAXIMU	М				MINIM	J M		$\overline{}$
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO	DAY	TIME
			L							ز

\sim	TOTAL	_
	ACRE FEET	
(

		LOCATION			MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
1	LATITUDE	LONGITUDE	1/4 SEC. T. B. R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
	LATITUDE	LONGITUDE	M.D.B.B.M.	C.F,S.	GAGE HT.	DATE	o o o o o o o o o o o o o o o o o o o	ONLY	FROM	TO	GAGE	DATUM
	37 00 00	119 42 10	SW 5 11S 21E				OCT 41-DATE		1941		0.00	uscgs

Station located near center of Friant Dam on San Joaquin River, immediately above Cottonwood Creek, 0.9 mi. NE of Friant. Usable capacity, 503,000 ac.-ft. between elevations 375.4 and 578.0 ft. above mean sea level. Not available for release, 17,400 ac.-ft. Records furnished by U.S.B.R. Drainage area is 1,633 sq. mi.

TABLE B-4

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME	
	1964	807685	SAN JOAQUIN RIVER BELOW FRIANT	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	D.
1	90	62 *	51	51	49	91	76	113	126	151	166	134	
2	90	62	51	51	49	91	70	118	122	151	166	134	
3	88	62	52	51	49	8.6	73	120	118	151	166	134	
4	88	61	5 2	51	49	85	78	118	118	151	181	132	
5	86	62	52	50	48	64	78	118	118	149	176	126	
6	88	62	52	50	52	84	75	115	118	151	176	118	
7	85	62	52	50	57	84	70	111	116	146	176	118	
8	84	62	51	50	56	64	70	111	122	151	174	118	
9	82	62	51	51	57	84	78	113	126	157	174	118	
10	62	61	51	51	56	80	84	113	120	164	176	118	1
,,	78	61	51	51	56	76	66	113	117	169	176	118	
12	70	61	51	51	56	74	90	113	117	169	178	120	
13	70	61	51	51	55	70	90	113	115	166	174	120	
14	70	62	51	50	58	69	91	115	115	166	169	120	
15	69	63	51	50	63	69	96	117	117	166	169	122	
16	70	62	50	50	64	69	111	120	117	166	169	122	
17	70	62	50	49	67	69	115	120	122	166	169	122	- 1
16	69	61	50	52	70	69	115	120	126	162	166	122	
19	68	61	50	54	73	69	117	122	126	160	164 *	122	
20	68	60	51	54	73	70	117	122	124	160	164	122	
21	70	54	51	57	73	70	117	122	124	160	164	122	
22	69	54	50	55	73	73	118 -	124	132	160	164	115	
23	68	54	50	50	73	67	117	124	138	164	164	108	
24	68 *	53	49	51	75	60	113	124	136	171	164		*
25	68	53	49	51	74	56	109	124	140	171	164	108	
26	68	52 *	50	51	73	58	101	124	153	169	164	108	
27	67	51	50	52	87	61	102	124	153	169	164 *		
26	68	51	50	52	93 *	65	102	126	153	166	146	109	- 13
29	68	52	51	51	93	67	102	126	153	166	136	109	-
30	68	52	51	51		66	109	126	153	169 *	136	109	*
31	64		51	50		75		126		166	138		1
MEAN	74.6	58.6	50.7	51.3	64.5	73.6	95.7	119	128	161	166	119	M
MAX.	90.0	63.0	52.0	57.0	93.0	91.0	120	126	153	171	181	134	N
MIN.	64.0	51.0	49.0	49.0	46.0	58.0	70.0	111	115	146	136	108	٨
AC. FT.	4590	3490	3120	3150	3710	4520	5700	7330	7610	9920	10190	7070	A

E - ESTIMATED

NR - NO RECORD

* - DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	М		$\overline{}$	
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	П
97.0	183	2.62	8	10	0800	П
$\overline{}$					<u>ー</u> ノ	

MINIMUM											
DISCHARGE	GAGE HT.	MO.	DAY	TIME							
48	1.89	2	5								

	TOTAL
_	ACRE FEET
	70400

	LOCATION	1	МА	XIMUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.	OF RECORD DISCHARGE		GAGE NEIGHT	PERIOD		ZERO ON	REF.		
		M.D.B.&M. CFS GAGE HT.		DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM	
36 59 04	119 43 24	SW7 11S 21E	77,200	77,200 23.8 12/11/37		OCT 07-DATE		1938		294.00	USGS

Station located 1 mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi.

AILY MEAN DISCHARGE

(IN CUSIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME)
1964	B95925	DELTA-MENOOTA CANAL NEAR TRACY	

YAC	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1666	644	105	141	1004	3291	1795	3302	3071	4353	4622	2285	1
2	1669	645	105	141	1004	2675	1828	3299	3069	4356	4592	2288	2
3	1671	646	105	141	934	2751	1823	3301	3064	4351	4585	2057	3
4	1904	538	106	142	862	2873	1822	3278	3195	4280	4446	2059	4
5	2278	467	106	142	863	2907	1895	2997	3348	4291	4450	1926	5
6	3314	287	106	141	865	2857	1931	2994	3505	4309	4341	1958	6
7	2276	286	105	141	863	2788	2181	2730	3507	4174	4333	1959	7
6.0	2280	286	105	142	932	2635	2315	2831	3501	4157	4426	1957	8
9	2280	321	105	140	1039	2306	2321	2833	3514	4151	4792	1955	9
10	2281	321	105	140	1040	2214	2320	3061	3414	4143	4394	2020	10
11	2286	322	140	206	1103	2217	2880	3064	3313	4148	4419	2086	11
12	2277	322	104	1218	1335	2128	4025	3068	3313	4152	4416	1925	12
13	3313	429	104	631	1335	1916	3098	3198	3311	4216	4413	1624	13
114	2279	430	140	618	1396	1912	3102	3220	3110	4300	4303	1822	14
15	2281	574	140	635	1473	1913	3365	3225	3372	4338	4309	1820	15
16	2280	681	105	420	1472	1912	3537	3207	3366	4435	4243	2123	16
17	2277	681	105	421	1405	1914	3700	3198	3365	4443	4184	2127	17
118	2279	681	105	422	1782	1908	3700	3203	3611	4532	3867	2124	18
19	2277	646	105	423	1846	1915	3765	2991	3667	4655	3849	2120	19
20	3320	647	105	425	1907	1980	3754	2994	3856	4640	3853	2121	20
21	2276	646	106	497	2105	2197	3822	3062	4016	4653	3956	2122	21
22	2251	608	105	497	2106	2197	3363	3161	3835	4633	3953	2178	22
23	1898	608	121	562	2106	1849	3317	3288	3667	4628	4160	2876	23
24	1557	609	105	639	2111	1508	3343	3292	3833	4641	3691	3121	24
25	1560	608	105	1190	2313	1503	3293	3262	4221	4601	3906	2991	25
26	1095	572	104	639	2264	1464	3291 b	3146	4319	4605	3709	3003	26
27	1053 a	572	104	1183	2263	1464	3295	2944	4364	4601	3561	2996	27
28	1027	212	104	1167	2264	1395	3172	2862	4442	4686	3411	2995	28
29	928	104	104	1185	2266	1395	3173	2810	4355	4696	3072	2859	29
30	928	105	104	934		1398	3170	2910	4363	4709	2961	2790	30
31	789	,	105	934		1723		3075		4577	2591		31
EAN	1995	483	109	524	1526	2100	2947	3091	3636	4434	4060	2263	MEAN
AX.	3320	681	140	1218	2313	3291	4025	3302	4442	4709	4792	3121	MAX
UN.	789	104	104	140	862	1395	1795	2730	3064	4143	2591	1820	MIN.
:. FT.	122765	28756	6690	32245	87784	129134	175059	190028	216371	272636	249620	135642	AC.FT

MEAN		MAXIMU	M			MINIM	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	
2266					Ц			1	
,	1	1	I I	. /	/ (1		- 1	

TOTAL	١
ACRE FEET	1
1646930	J

	LOCATION			MAXI	MUM DISCH	ARGE	PERIOD O	DATUM OF GAGE				
t	LATITUOE		1/4 SEC. T. B.R.	OF RECORD			OISCHARGE	GAGE HEIGHT	PERIO0		2ERO ON	REF.
L	LATITUDE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
	37 47 45	121 35 05	SW31 1S 4E				JUN 51-DATE		1951		0.00	USGS

Station located at Tracy Pumping Plant at intake to canal, 6 mi. SE of Byron, 10 mi. NW of Tracy. Discharge computed from records of operation of pumps. Water is diverted from Sacramento-San Joaquin Delta by way of Old River and a dredged channel to the Tracy Pumping Plant where it is lifted about 200 ft. into canal. Records furn. by U.S.B.R.

⁻ ESTIMATED

⁻ DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
- E AND *
1 = 25-hour day
- 23-hour day

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 800770 DELTA-MENDOTA CANAL TO MENDOTA POOL

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1	1327	550	0.0	0.0	632	1907	1131	2212	2127	2718	2821	1511	
2	1180	450	0.0	0.0	632	2001	1224	2299	2114	2717	2823	1534	1
3	1182	450	0.0	0.0	626	1948	1212	2214	2110	2688	2817	1550	
4	1223	425	0.0	0.0	517	1965	1340	2277	2106	2657	2798	1483	4
5	1271	370	0.0	0.0	507	2124	1316	2174	2198	2634	2776	1482	1 2
6	1344	250	0.0	0.0	472	2136	1311	1936	2354	2683	2737	1459	
7	1374	255	0.0	0.0	471	2068	1537	1820	2319	2675	2696	1472	1
8	1359	245	0.0	0.0	471	1864	1692	1890	2345	2637	2739	1465	1
9	1490	225	0.0	0.0	650	1730	1739	1914	2396	2593	2857	1400	3
10	1489	225	0.0	0.0	650	1459	1728	2100	2391	2615	2907	1400	19
11	1346	225	0.0	0.0	709	1448	2011	2079	2351	2587	2796	1387	1
12	1152	230	0.0	652	912	1406	2388	2119	2279	2616	2811	1294	1:
13	1173	350	0.0	508	895	1168	2235	2154	2272	2608	2810	1197	13
14	1065	364	0.0	447	866	1182	2209	2128	2180	2716	2798	1219	1
15	1039	351	0.0	466	1042	1210	2341	2185	2230	2742	2790	1246	1.
16	1136	466	0.0	201	1042	1217	2398	2230	2370	2798	2780	1571	1
17	1209	465	0.0	193	1017	1184	2627	2246	2392	2750	2767	1516	1
18	1154	447	0.0	193	1154	1115	2617	2259	2427	2786	2762	1488	1
19	1077	453	0.0	193	1257	1165	2630	2189	2464	2808	2563	1530	1
20	1039	468	0.0	177	1281	1178	2 62 7	2096	2660	2831	2481	1532	2
21	1073	456	0.0	216	1524	1473	2602	2118	2638	2860	2495	1530	2
22	1055	451	0.0	229	1519	1375	2348	2148	2709	2851	2544	1532	2
23	937	383	0.0	352	1496	1275	2185	2282	2648	2866	2687	1685	2
24	815	383	0.0	400	1509	918	2211	2263	2628	2852	2611	1820	2
25	805	375	0.0	575	1617	972	2198 *	2289	2555	2845	2545	1780	2
26	700	387	0.0	575	1635	975	2189	2195	2643	2844	2560	1763	2
27	700 *	357	0.0	744	1624	956	2110	1999	2704	2836	2481	1660	2
28	680	0.0	0.0	719	1624	955	2079	2002	2738	2846	2351	1690	2
29	650	0.0	0.0	732	1655	963	2148	1996	2798	2857	2083	1711	2
30	633	0.0	0.0	593		999	2135	2026	2739	2837	2110	1705	3
31	600		0.0	632		1126		2149		2838	1781		3
MEAN	1073	335	0.0	284	1035	1402	2017	2129	2430	2748	2632	1520	ME
MAX.	1490	550	0.0	744	1655	2136	2630	2299	2798	2866	2907	820	M
MIN.	600	0.0	0.0	0.0	471	918	1131	1820	2106	2587	1781	1197	M
AC. FT.	66062	19946		17449	59516	86206	119854	130885	144565	168974	161806	90470	AC.

E - ESTIMATED

NR - NO RECORD

* - DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	м		$\overline{}$	MINIMUM						
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO	DAY	TIME		
1467									1			
$\overline{}$			L.				l					

TOTAL ACRE FEET 1065733

	LOCATION			MUM DISCH	ARGE	PERIOD C	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.
		M.D.B.&M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
36 47 11	120 23 05	NW19 13S 15E			-						

Station-located approximately 2 mi. N of Mendota, where DMC crosses the Outside Canal, which is 0.8 mi. NW of Bass Avenue crossing (check No. 21). Flow measured by 3 Sparling meters located at siphon outlet.

Record furnished by U.S.B.R.

AILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 807710 SAN JOAQUIN RIVER NEAR MENDOTA

YAC	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	168	44	82	4.D	93	338	154	274	392	433	470	219	1
2	111	42	84	3.0	96	327	138	280	376	401	474	238	2
3	112	41	84	2.0	90	296	166	288	358	374	456	304	3
4	120	43	82	2.0	72	264	193	274	356	346	434	304	4
5	123	45	93	1.0	61	264	196	261	366	348	441	26 6	5
	138	36	123	0.0	5 6	281	231	256	376	351	423	274	6
7	135	36	146	0.0	63	288	268	258	381	364	477	288	7
8	131	36	171	0.0	84	276	328	286	381	366	477	276	8
9	100	45	134	0.0	92	284	328	298	364	416	474	256	9
10	65	51	95	1.0	90	298	324	296	341	421	472	248	10
11	56	58	63	2.0	8.2	296	336	296	338	431	456	246	11
12	88	65	48	2.0	74	271	341	301	294	444	451	266	12
13	88	63	36	2.0	75	258	354	298	266	441	456	271	13
14	87	55	27	3.0	71	256	361	321	314	421	474	264	14
15	87	36	24	5.0	71	254	364	361	348	408	459	284	15
16	72	25	24	7.0	71	184	361	376	368	416	441	291	16
17	65	25	23	8.0	70	114	361	388	381	434	434	271	17
18	71	31	23	10	75	100	361	368	394	448	431	238	18
19	88	44	23	10	108	88	361	361	411	446	462	234	19
20	90	43	23	10	177	95	361	384	411	454	446	234	20
21	96	43	21	10	264	106	348	376	414	477	416	246	21
22	129	43	20	12	326	121	341	378	426	469	404	271	22
23	123	43	19	32	341	111	314	401	446	451	404	281	23
24	109	43	17	81	341	101	308	418	466	426	384	268	24
25	118	43	16	87	324	111	326	421	487	441	354	254	25
26	132	43	13	88	306	140	338	404	501	464	306	246	26
27	132	43	ió	93	306	140	356	398	501	461	326	236	27
28	127	60	9.0	101	321	138	351	384	504	428	346	219	28
29	125	59	7.0	116	338	136	314	391	490	411	334	214	29
30	121	70	7.0	150		134	266	398	464	406	338	224	30
31	84		5.0	120		148		396		444	281		31
EAN	106	45	50	31	157	201	306	343	398	421	419	258	MEAN
AAX.	168	70.0	171	150	341	338	364	421	504	477	477	304	MAX
MIN.	56.0	25.0	5.0	0.0	58.0	88.0	138	256	288	346	281	214	MIN.
C. FT.	6530	2690	3080	1910	9010	12330	16190	21080	23680	25910	25790	15350	AC.FT

MEAN		MAXIMU	М			1 1		MINIM	JM		
DISCHARGE 228	DISCHARGE	GAGE HT.	MO.	DAY	TIME	\int	DISCHARGE	GAGE HT.	MO	DAY	TIME

_	TOTAL	\
	ACRE FEET	
	165550	

	LOCATIO	N	MAXI	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T.& R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
36 48 37	120 22 35	SW 7 13S 15E	8840		6-1-52	OCT 39-DATE		1939		142.53	USBR

Station located 2.5 mi. below Mendota Dam, 4 mi. N. of Mendota. Records furn. by U.S.B.R. Drainage area is 4,310 sq. mi. This station equipped with DWR radio telemeter.

⁻ ESTIMATED

^{* -} DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW - E AND *

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 867920 BIG CREEK DIVERSION NEAR FISH CAMP 1964

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.
1	2 • 1	3.6	11	7.7	9.6	8 • 2 E	20	27	19	7.9	3.2	4.4
2	2.3*	3.6	11	7.7	8.1	7.7 E	18	24	18	7.7	3.1	2.5
3	2 • 2	4.5	1 2	6.8	8.5	8.2E	18	22	17	8.4*	2 • 8	2.1
4	2.2	5.1	12	6.7	6.1	8.4E	19	22	16 #	7.7	3.0*	1.9*
5	2 • 3	17	11	6 • 4	8.6	8 • 2 E	18	20	16	7.5	3.0	1.6
6	2.2	26 *	4.5*	7.1*	8.7	8 • 4 #	17	21	15	7.5	2 • 8	1.5
7	2 • 2	11	4.6	7 • 2	8 • 4 *	7 • 4	18 +	25	17	7.3	2.7	1.5
8	2.0	12	12	6.5	8.5	7 • 8	20	25	20	6.9	2.7	1.4
9	2 • 2	9.7	13	6 • 2	8.6	8 • 4	23	29	23	6.2	2.5	1 • 4
10	2 • 1	0.8	12	6.0	8.6	7.9	26	3 2	21	6.3	2.5	1.5
11	9.0	7.3	11	6.3	8.5	8.0	29	34	23	6.1	2.5	1.4
12	4.7	7.0	12	6 • 6	7 • 8	17	32	36	22	5.7	2.2	1.3
13	3.8	6.7	12	10	8.1	29	35	36	19	5 • 4	2.1	1.4
14	3 • 2	11	12	14	8.1	9.1	37	36	17	5 • 2	2.0	1 • 4
15	2.9	14	11	18	7.9	12	37	35	16	5.0	2.0	1.3
16	3 • 3	12	9.8	22	7.7	12	38	34	15	5.1	2.0	1.2
17	3 • 6	12	9.4	21	7.5	14	37	33	15	4.7	1.9	1.1
18	3 • 4	11	8 • 8	30	7.8	16	33	33	14	4.5	1.9	1.3
19	3.5	11	8 • 8	23	8 • 2	17	29	32	14	4.5	1.9	1.4
20	3.5	12	8.8	6.6	8.0E	18	27	31	13	4.8	1.8	1.3
21	3 • 7	12	8 • 6	5.3	8.8E	16	28	28	12	4.5	1.7	1.3
22	2 • 4	12	8 • 3	22	8 • 4 E	13	29 #	26	11	4.1	1.5	1.3
23	3.9	12	8.5	51	8 • 4 E	12	28	25	11	3.9	1.7	1.3
24	4 • 2 *	12	8.0	56	8 • 4 É	14	24	24	11	3.9	1.5	1.1
25	5.0	12	7.9	54	8 • 2 E	13	23	24	10	3.7	1.5	1.1
26	4.7	12	7.8	48	7.8E	15	24	25	9.2	3.5	1.4	1.4
27	4.2	îĩ	8.1	40	7.8 E	16	27	27	9.1	3.8	1.4	1.4
28	4.2	11	7.7	41	6.CE	17	29	24	9.0	4.0	1.4	1.6
29	3.9	11	7.7	41	8.0E	18	29	23	8.5	3.5	1.4	1.6
30	5.5	11	7.7	35		20	28	22	8.2	3.5	1.3	1.6
31	4.3		7.7	24		21		20		3.3	3.4	
MEAN	3.5	10.7	9.5	20.7	8.2	13.2	26.7	27.6	15.0	5.4	2.2	1.6
MAX.	9.0	26.0	13.0	56.0	9.6	29.0	38.0	36.0	23.0	8.4	3.4	4.4
MIN.	2.0	3.6	4.5	5.3	7.5	7.4	17.0	20.0	8 • 2	3 • 3	1.3	1.1
AC. FT.	216	636	585	1276	474	809	1587	1696	891	329	132	92

E - ESTIMATED NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

MEAN		MAXIMU	M		$\overline{}$		
DISCHARGE	DISCHARGE	GAGE HT.			TIME	l	
12.0	66.0	1.85	3	13	1020	П	

	MINIMU	J M		$\overline{}$
DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.0		10	22	0940
(l		

TOTAL	`
ACRE FEET	
8722	

	LOCATIO	N		MAXI	MUM DISCH	HARGE	PERIOD C	F RECORD		DATUM OF GAGE		
LATITUDE		1/4 SEC. 1	. 8. R.		OF RECORD DISCHARGE GAGE HEIGHT		PERIOD		ZERO	REF.		
LATITODE	LONGITUDE	M. D. B. 6	3 М.	C.F.S.	GAGE HT.	DATE		ONLY	FROM T		GAGE	DATUM
37 2B 10	119 36 52	NE25 5S	21E	150	3.58	1-30-63	DEC 58-DATE		195B		0.00	LOCAL

Station located 195 ft. above road culvert pipe, 1.4 mi. SE of Fish Camp. This is regulated diversion from Big Creek to Lewis Fork, Fresno River. Stage-discharge relationship at times affected by ice and extreme high flows affected by culvert pipe below station.

Maximum discharge determined from slope area survey and maximum capacity of culvert pipe below station.

Altitude of gage is approximately 5,400 ft. (from topographic map.)

INLY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 867325 LEWIS FORK FRESNO RIVER NEAR OAKHURST

1 3 3 4 5 6 7 8 9	6.8 5.6* 5.2 5.7 6.0 6.9 7.1 6.5 8.8 7.2	15 14 18 18 28 101 * 34 25 26	35 33 32 30 28 27 * 20 29	20 20 18 19 18	26 26 26 25 26	26 29 25 29 28 *	95 75 62 60 59	73 65 63 63	52 E 50 E 48 E 45 #	23 21 22 * 22 22	9.0 6.3 4.3 2.3# 1.8E	9.6 4.4 3.5 3.4# 3.0E	
3 4 5 6 7 8 9	5.6* 5.2 5.7 6.0 6.9 7.1 6.5 8.8	14 18 18 28 101 * 34 25 26	33 32 30 28 27 * 20 29	20 18 19 18	26 26 25 26	29 25 29 28 *	75 62 60	65 63 63	50 E 48 E 45 #	21 22 * 22	4.3 2.3#	3.5 3.4#	3
3 4 5 6 7 8 9	5.2 5.7 6.0 6.9 7.1 6.5 8.8	18 18 28 101 * 34 25 26	32 30 28 27 * 20 29	18 19 18	26 25 26	29 28 *	62 60	63 63	45 #	22	2.3#	3.4#	4
4 5 6 7 8 9	5.7 6.0 6.9 7.1 6.5 8.8	18 28 101 * 34 25 26	30 28 27 * 20 29	18 21 *	26	28 *				22			
7 8 9	6.9 7.1 6.5 8.8	28 101 * 34 25 26	28 27 # 20 29	18 21 *			59	64	44	22	1.85	3.0E	1 -
7 8 9	7 • 1 6 • 5 8 • 8	34 25 26	20 29		26						1.0E		"
7 8 9	7 • 1 6 • 5 8 • 8	34 25 26	20 29			26	52 *	65 +	48	22	3.0E	3.0E	
8 9	6 • 5 8 • 8	25 26	29		26	27	49	64	49	21	3.0E	3.1E	7
	8.8	26		18	25	26	50	6.5	54	19	2.5E	3.1E	8
			36	19	25	28	57	70	79	19	2.5E	3.0E	9
		20	27	18	24 *	27	66	79	66	18	2.7E	2.7E	10
	2,	,,	26	19	22	26	70	86	67	16	2.7E	2.6E	11
11	24	18 17	26	19	21	36	76	93	6.8	16	2.7E	2.6	12
13	16	18	28	17	21	34	82	88	60	16	2.5E	2.7	13
	14	27	26	18	21	32	86	86	53	17	2.5E	2.5*	
14 15	13	150	26	16	22	36	87	87	49	16	2.5E 2.7E	2.4	15
1,2	13	1,70				"							1
16	13	52	24	18	21	36	87	86	4.5	14	2.5E	3.0	16
17	14	37	24	19	21	37	84	81	45	12	2.0E	1.8	17
18	14	34 #	24	21	22	4.1	81	79	43	13 12	1 . 8E	2.6 2.6 3.4	18
19	14	45	23	19	22	44	76	83	41	12	2.3E	2.6	19
20	14	137 +	24	18	23	45	67	86	39	12	2.6#	3.4	20
					23	46	67 *	84	33	13	1.6E	2.9	21
21	13	65	21	31 17	25	41	68	79	32	10	1.3	2.4	22
53	13	45	20 22	24	25	35	70	78	29	ii	1.6	2.4	23
23	12	59	18	27	24	43	60	75		10	1.8+	1.9	24
	14 14	78 50	17	28	26	39	60	67 E	28 25	8.7	1.2	1.8	25
2S	14	,,,	1,										
26	14	43	19	29	24	44	58	66 E	24	9.6	1.0	1.6	26
27	13	42	19	27	24	48	63	63 E	23	9.4	1.1	2.3	27
78	12	39	19	27	24	5 2	76	61 E	22	11	1.1	2.7	28
18	12	37	19	26	24	53	73	58 #	23	8.7	1.4	2.3	29
30	15	36	19	27		55	71	55 E	24	10	1.4	2.6	30
111	16		19	25		56		54 E		9.9	2.4		31
AN	12.1	44.3	24.5	21.4	23.8	37.1	69.6	73.1	43.6	15.0	2.5	2.9	MEAN
AX.	24.0	150	36.0	31.0	26.0	56.0	95.0	93.0	79.0	23.0	9.0	9.6	MAX
SIN.	5.2	14.0	17.0	16.0	21.0	25.0	49.0	54.0E	22.0	8.7	1.0	1.6	MIN.
FT.	741	2634	1507	1315	1369	2281	4140	4495	2594	921	154	173	AC.FT

- ESTIMATED
- NO RECORD
- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW
- E AND *

MEAN		MAXIMU			
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
30.8	383	2 • 25	11	15	0620
\	\	I	ı	I	. /

	MINIM	J M	_	$\overline{}$
DISCHARGE	GAGE HT.	MO	DAY	TIME
0.3	0.78	9	24	1830

TOTAL
ACRE FEET
22320

ſ		LOCATION	ı	MAXIMUM DISCHARGE			PERIOD O	F RECORD	DATUM OF GAGE			
l	LATITUDE		1/4 SEC. T. 8 R.		OF RECORD		ORD DISCHARGE GAGE HEIGHT PERIO		PERIOD ZERO		ON	
1	LATITUDE	LONGITUDE	M.O.8.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
	37 20 44	119 38 20	SE 2 7S 21E	2930E	493	2- 1-63	SEP 61-DATE		1961	DATE	0.00	LOCAL

Station located 1.6 mi. N. of Oakhurst on Highway 41, 500 ft. downstream from White Oaks Motel. Station located on left bank above concrete weir. Altitude of gage is approximately 2,520 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME MIAMI CREEK NEAR OAKHURST 867300 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.
1	0.9	1.8	5.0	2.9	4.0	3.7	19	5.1	2.1	0.7	0.8	0.6
2	0.9*	1.8	4.7	2 • 8	4.0	4.0	13	5.3	2 • 2	1.0	0.8	0.5
3	1.0	2.1	4.5	2.7	3.9	3.7	11	5.3	2 • 4	1.6*	0.7	0.5
4	1.0	2 • 2	4.3	2.7	4.0	3.6	9.8	5.6	2.4*	1.7	0.7*	0.5
s	1.1	4.1	3.9	2.7	4.3	3.7	٩٠١	5.9	2 • 5	1 • 7	0.7	0.5
6	1.1	19 *	4.0*	2.7*	4.3	3.6*	8.5*	6.7*	2.5	1.7	0.6	0.4
7	1.1	6.2	4.2	2.8	4.1*	3.7	8.1	6.6	2.7	1.5	0.7	0.4
8	1.1	4.7	4.0	2.8	4.1	4.0	8.3	7.5	3.1	1.5	0.6	0.3
9	1.1	4.4	4.8	2 • 8	4.1	3.5	8.6	8.1	7.2	1.4	0.5	0.3
10	1.1	4.1	4.3	2.7	4.2	3.8	8 • 4	8.0	5+1	1.4	0 • 4	0.3
11	4.9	3.7	4.1	3.0	4.2	3.7	8.4	7.3	4.2	1.2	0-4	0.3*
12	3 • 4	3.4	4.1	2 • 9	4.0	4.7	8.4	6.3	3.3	1.2	0.5	0.3
13	2 • 4	3 • 2	3.9	3.0	3.9	4 - 4	8.3	5.7	3.0	1.1	0.5	0.3
14	2.1	5.3	4.0	3.0	4.2	4 . 4	7.9	5 • 2	2.7	1.1	0.5	0.3
15	2 • 8	32	3.9	2 • 9	3.7	4 • 9	7.8	3.9	2.7	1.1	C•5	0.3
16	2.2	9.2	3.9	3.3	3.6	5.4	7.3	3.7	2.7	1.1	0.4	0.3
17	2.0	6.1	3.6	2.9	3.5	5 • 4	7.0	3.8	2.7	1.1	0.3	0.3
18	1.7	5.0	3.7	4.3	3.5	5 • 8	6.4	3.9	2.5	1.0	0.4	0 • 3
19	1.7	8 • 1	3.6	3.8	3.6	5 • 8	6.4	4.0	2 • 4	1.5	0.4	0.3
20	1 • 8	33 *	3.8	3.6	3.6	5.9	6.1	3.7	2 • 4	1.4	0.4	0.3
21	1.8	13	3.6	5.1	3.7	5 • 8	5.9*	3.6	2.3	1.2	0.3	0.3
22	1.7	8.5	3.3	3 • 1	3.8	5.5	5.7	3 • 6	2.3	1.1	0.3	0.3
23	1.6	9 . 8	3.1	4 • 2	3.8	5 • 3	5.7	3 • 4	2 • 4	1.0	0 • 3	0.3
24	1.7	15	3.0	4.5	3.8	5.3	5 • 8	3 • 2	2 • 3	0.9	0.3	0.3
25	1.7	8.7	2.9	4.7	3.7	6.4	5.8	3.2	2.2	0•9	0.3	0.3
26	1.8	7.0	2.8	4.3	3.5	6.7	5.5	3.5	2 • 1	0.9	0.3	0.3
27	1.8	6 • 3	2.7	4.3	3.4	7 • 6	5.3	3.6	2.1	0.9	0.3	0.3
28	1.7	6.0	2.7	4.0	3.6	8.8	5.1	3.8	2.1	0.8	0 • 2	0.3
29	1.6	5 • 2	2.8	4.0	3.6	9.4	5.1	3.4	2.0	0.9	0.3	0.4
30	1.9	5 • 2	2.7	4.1	!	9.3	5.1	3.0	1.8	0 • 8	0.3	0.4
31	1.8		2.8	4.1		9.7		2.3		0.8	0.5	
MEAN	1.8	8.1	3.7	3.4	3.9	5.4	7.8	4.8	2.7	1.2	0.5	0.4
MAX.	4.9	33.0	5.0	5.1	4.3	9.7	19.0	8.1	7.2	1.7	0.8	0.6
MIN.	0.9	1.8	2.7	2.7	3.4	3.5	5.1	2.3	1.8	0.7	0.2	0.3
AC. FT.	108	484	228	212	222	332	462	294	163	72	28	21

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR DBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M			
DISCHARGE	DISCHARGE	DADE HT.	MO.	DAY	TIME	П
3.6	DISCHARGE 68.0	4.21	11	15	0610	ļ

MINIMUM										
DISCHARGE	GAGE HT.	MO.	DAY	TIME						
0.2	2.41	8	17	1640						
(1	i I							

\subset	TOTAL
Г	ACRE FEET
١	26 2 5

	LOCATION	1	MAXIMUM DISCHARGE			PERIOD O	F RECORD	DATUM OF GAGE			
		1/4 SEC, T, & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	IIOD	ZERO ON	REF.
LATITUOE	LONGITUDE	M. O. B. B.M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
37 23 38	119 39 10	SE22 6S 21E	1140E	9.08	2- 1-63	DEC 59-DATE		1959	Date	0.00	

Station located 150 ft. below bridge, 4.5 mi. N. of Oakhurst. Tributary to Fresno River. Stage-discharge relationship at times affected by ice. Drainage area is 10.6 sq. mi. Recorder installed December 15, 1959. Altitude of gage is approximately 3,500 ft. (from topographic map.)

AILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	807610	SAN JOAQUIN RIVER NEAR DOS PALOS

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	11	1,0	0.0	0.0	0.0	0.0	12	0.0	0.0	1
2	0.0	0.0	0.0	11	1.0	0.0	0.0	0.0	9.0	12	0.0	0.0	2
2	0.0	0.0	0.0	11	0.0	0.0	0.0	0.0	12	4.0	0.0	0.0	3
4	0.0	0.0	0.0	11	0.0	0.0	0.0	0.0	12	0.0	0.0	0.0	4
S	0.0	0.0	0.0	īī	8.0	0.0	0.0	0.0	12	0.0	0.0	0.0	S
6	0.0	0.0	0.0	11	12	0.0	0.0	8.0	12	0.0	0.0	0.0	6
7	0.0	0.0	0.0	11	12	0.0	0.0	12	4.0	0.0	0.0	0.0	7
8	0.0	0.0	0.0	11	12	0.0	0.0	4.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	11	12	0.0	0.0	0.0	0.0	0.0	0.0	8.0	9
10	0.0	0.0	0.0	9.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	10
11	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0	11
12	0.0	0.0	0.0	8.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	12
12	0.0	0.0	0.0	8.0	0.0	0.0	5.0	6.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	8.0	8.0	0.0	0.0	12	0.0	0.0	0.0	4.0	14
15	0.0	0.0	0.0	8.0	4.0	0.0	0.0	8.0	0.0	9.0	0.0	0.0	15
16	0.0	0.0	0.0	7.0	0.0	0.0	5.0	0.0	0.0	12	0.0	0.0	16
17	0.0	0.0	0.0	11	0.0	0.0	4.0	0.0	0.0	4.0	0.0	0.0	17
18	0.0	0.0	0.0	18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.0	0.0	21	4.0	0.0	0.0	0.0	9.0	0.0	9.0	0.0	19
20	0.0	0.0	0.0	18	8.0	3.0	0.0	0.0	10	0.0	12	0.0	20
21	0.0	0.0	0.0	11	0.0	0.0	0.0	0.0	0.0	0.0	12	0.0	21
22	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	22
23	0.0	0.0	0.0	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0.0	0.0	7.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.0	0.0	1.0	3.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	25
26	0.0	0.0	0.0	1.0	5.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	26
27	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	27
28	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	28
29	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	2.0	9.0	0.0	5.0	29
20	0.0	0.0	0.0	1.0		0.0	0.0	0.0	12	4.0	0.0	4.0	30
21	0.0	•••	0.0	2.0		0.0		0.0		0.0	0.0		31
MEAN	0.0	0.0	0.0	8.8	3.4	0.1	0.5	1.6	3.6	2.5	1.6	0.8	MEAN
MAX.	0.0	0.0	0.0	21.0	12.0	3.0	5.0	12.0	12.0	12.0	12.0	8.0	MAX
MIN.	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC, FT.	0.0	0.0	0.0	540	196	6	28	99	214	155	97	50	AC.FT.

E -- ESTIMATED

NR -- NO RECORD

DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

B -- E AND *-

MEAN DISCHARGE 1.9

MAXIMUM GAGE HT. MO. DAY TIME DISCHARGE

MINIMUM GAGE HT. MO DAY TIME DISCHARGE

TOTAL ACRE FEET 1385

	LOCATION	l	MAXIMUM DISCHARGE			PERIOD C	PERIOD OF RECORD			DATUM OF GAGE			
LATITUOE		1/4 SEC. T, & R. M. D. 8.8 M.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.		
LATITUDE	LONGITUOE		C.F.S.	GAGE HT.	DATE	- OF STATE	ONLY	FROM	то	GAGE	DATUM		
36 59 38	120 30 02		8200		6-5-52	OCT 40-DATE		1940		116.5	USED		

Station located 800 ft. below the head of Temple Slough, 6.5 mi. E of Dos Palos. Records furn. by U.S.B.R. Drainage area is approx. 5,630 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	864400	EAST FORK CHOWCHILLA RIVER NEAR AHWAMNEE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 , [0.5	3.7	20	8.2	34	10	74	18	8.9	2 • 2	0.0	0.0	1
2	0.5	3.4	16	7.7	31	15	65	20	8.3	2.1	0.0	0.0	2
3	0.5	3.7	14	8.2	28	13 *	44 *	19	7.8	1.5	0.0*	0.0	3
4	0.5	4.2	13	8.5	25	11	35	21	7.6	1.5	0.0	0.0	4
s	0.6	4.9	11 *	8.5	25 #	11	32	24	7.1*	1.5	0.0	0.0	5
6	0.7	49 #	11	8.2	26 E	11	30	38 *	6.4	1.4	0.0	0.0	6
7	1.1	23	10	8.5	24 E	12	26	36	6.9	1.2	0.0	0.0	7
8	1.2	13	11	8.6*	23 E	11	24	32	9.1	1.1*	0.0	0.0	8
9	1.3	9.5	15	7.4	22 E	10	24	28	19	1.1	0.0	0.0	9
10	1.3	9.0	16	8.2	20 E	10	23	26	16	1.0	0.0	0.0	10
11	6.8	9.0	12	8.2	19 E	10	21	25	11	0.8	0.0	0.0	11
12	10	8.7	11	8.2	19 E	21	21	23	9.0	0.8	0.0	0.0	12
13	4.3	7.9	11	8.2	18 E	24	21	20	7.9	0.6	0.0	0.0	13
14	3.2	9.4	11	8.2		17	21	18	7.0	0.4	0.0	0.0	14
15	2.8	132	10	7•7	16 E	16	18	18	5.9	0.3	0.0	0.0	15
16	3 • 2	44	9.3	7.7	16 E	15	18	16	6.3	0.2	0.0	0.0	16
17	3 • 4	27	9.3	7.7	15 E 15 E	14	17	15	5.9	0.3	0.0	0.0	17
18	3.2	22	9.3	13		13	16	15	5.7	0 • 2	0.0	0.0	18
19	3 • 2	28	9.3	15	13 E	13	19	15	5.2	0 • 2	0.0	0.0	19
20	3.2	267 *	8.2	12	12	12	20	14	4 • 8	0 • 2	0.0	0.0	20
21	3 • 2	87	8 • 2	34	12	12	18	14	4.5	0.3	0.0	0.0	21
22	3 • 4	49	8.2	69	13	14	18	14	4.3	0.2	0.0	0.0	22
23	3 • 4 *	44	8.5	35	13	32	18	13	3.9	0 • 2	0.0	0.0	23
24	3 • 4	. 84	8.7	29	12	39	25	12	3 • 3	0 • 2	0.0	0.0	24
25	3 • 4	46	8.7	27	12	30	21	11	2.9	0.1	0.0	0.0	25
26	3.4	34	8.7	30	12	40	20	12	2.7	0.1	0.0	0.0	26
27	3 • 4	28	8.7	35	11	45	19	12	2.5	0.1	0.0	0.0	27
28	3 . 2	26	8.5	34	10	40	18	15	2.5	0 • 1	0.0	0.0	28
29	3.3	23	8.5	36	11	35	18	13	2.3	0.1	0.0	0.0	29
30	3.2	19	8.5	37		29	17	11	2.6	0.0	0.0	0.0	30
31	3.2		7.9	35		27		9.9		0.0	0.0		21
MEAN	2.8	37.3	10.7	18.7	18.1	19.7	25.4	18.6	6.6	0.6	0.0	0.0	MEAN
MAX.	10.0	267	20.0	69.0	34.0	45.0	74.0	38.0	19.0	2.2	0.0	0.0	MAX
MIN.	0.5	3.4	7.9	7.4	10.0	10.0	16.0	9.9	2.3	0.0	0.0	0.0	MIN.
AC. FT.	175	2218	656	1148	1039	1214	1509	1146	391	40			AC.FT

E -- ESTIMATED

NR -- NO RECORO

*-- DISCHARGE MEASUREMENT OR
DBSENVATION OF NO FLOW

H -- E AHD *

MEAN		MAXIMU	M	
DISCHARGE 13 • 1	DISCHARGE 524	GAGE HT. 5 • 8 2		
				_

	MINIM	JM		
DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.0		7	29	1940
	l	<u> </u>		L/

	101	TAL)
Г	ACRE	FEET
1		9537

	LOCATION			MAXIMUM DISCHARGE			PERIOD OF RECORD			DATUM OF GAGE			
		1/4 SEC. T. 8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF.		
LATITUOE	LONGITUOE	M, D. B. B. M.	C.F.S. GAGE HT. DATE			ONLY	FROM	то	GAGE	DATUM			
37 20 09	119 48 59	SE 7 7S 20E	3710E	10.34	1-31-63	NOV 57-DATE		1957	Date	0.00	LOCAL		

Station located 1.1 mi. above mouth, 5.5 mi. W of Ahwahnee. Drainage area 57.8 sq. mi. Altitude of gage 980 ft. (from topographic map.)

LULY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B64300 WEST FORK CHOWCHILLA RIVER NEAR MARIPOSA

AY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	0.0	0.2	3.7	2.8	15	4.8	51	2.7	0.7	0.0	0.0	0.0	1
3	0.0	0.2	3.6	2.9	13	8.5	35	2.9	0.6	0.0	0.0	0.0	2
	0.0	0.3	3.3	2.7	11	5.8+	21 +	3.5	0.5	0.0	0.0*	0.0	3
	0.0	0.3	3.4	2.7	9.0	4.7	14	4.3	0.5	0.0	0.0	0.0	4
	0.0	0.8	3.4*	2.7	8.8*	4.1	12	4.3	0.4*	0.0	0.0	0.0	5
	0.0	11 *	3.4	2.7	8.3	4.3	10	12 *	0.4	0.0	0.0	0.0	6
	0.0	4.0	3.5	2.8	7.3	4.7	8.1	7.8	0.6	0.0	0.0	0.0	7
	0.0	2.1	3.5	2.9+	7.4	4.2	7.6	4.6	0.7	0.0	0.0	0.0 +	8
	0.0	1.6	6.3	2.7	7.3	3.8	5.9	3.7	1.3	0.0	0.0	0.0	9
)	0.0	1.3	6.3	2.7	7.0	3 • 8	6.3	3.2	1.2	0.0	0.0	0.0	10
	0.3	1.1	4.3	2.7	6.3	3 . 8	5.8	2.9	0.9	0.0	0.0	0.0	11
	D•1	1.0	3.6	2.5	6.0	9.6	4.9	2.5	0.7	0.0	0.0	0.0	12
	0.1	0.9	3.4	2.5	5.7	11	4.7	2.3	0.5	0.0	0.0	0.0	13
	0.0	2 • 2	3.3	2.6	5.5	5.9	4.5	2.0	0.4	0.0	0.0	0.0	14
	0.0	84	3.3	2.6	5 • 4	5 • 0	4 . 2	1.9	0.3	0.0	0.0	0.0	15
	0.1	7.4	3.1	2.5	5.2	4.4	4.1	1.8	0.3	0.0	0.0	0.0	16
,	0.1	3.2	2.9	2.6	5.0	3.8	3.8	1.6	0.3	0.0	0.0	0.0*	17
ı	0.1	2 • 1	2.9	5.0	5.1	3.7	3.8	1.5	0.3	0.0	0.0	0.0	18
	0.1	5.4	2.9	5 • 2	5.0	3.3	4.9	1.6	0 • 2	0.0	0.0	0.0	19
,	0 • 1	126 +	2.9	4.4	5.1	3 • 1	4.6	1.4	0.2	0.0	0.0	0.0	20
	0.1	29	3.0	15	4.8	2.9	4.0	1.3	0.2	0.0	0.0	0.0	21
2	0.1	8.0	3.1	66	4.6	4.4	3.7	1.3	0.1	0.0	0.0	0.0	22
1	0.1*	8.9	3.0	31	4.6	17	3.6	1.1	0.1	0.0	0.0	0.0	23
	0.1	30	2.8	22	4.6	31	3.7	1.0	0.1	0.0	0.0	0.0	24
;	0.2	11	2 • 8	18	4.7	28	3 • 4	1.0	0.1	0.0	0.0	0.0	25
,	0 • 2	6.9	2.8	22	4.8	34	3.3	1.2	0.0	0.0	0.0	0.0	26
,	0.2	5.5	2.8	28	4.8	38	3.2	1.3	0.0	0.0	0.0	0.0	27
)	0.2	4.7	2 • 8	22	4.9	32	3.0	1.3	0.0	0.0	0.0	0.0	28
,	0.2	4.1	2.8	22	4.8	23	2.9	1.1	0.0	0.0	0.0	0.0	29
)	0 • 2	3.9	2.8	22	1	16	2.7	0.9	0.0	0.0	0.0	0.0	30
	0.2		2.8	18	i	14		0.8		0.0	0.0		31
N	0.1	12.2	3.4	11.2	6.6	11.1	8.4	2.6	0.4	0.0	0.0	0.0	MEA
х.	0.3	126	6.3	66.0	15.0	38.0	51.0	12.0	1.3	0.0	0.0	0.0	MA
4.	0.0	0.2	2.8	2.5	4.6	2.9	2.7	0.8	0.0	0.0	0.0	0.0	MIN
FT.	6	728	207	687	379	680	497	160	23				AC.F

- ESTIMATED
- NO RECORD
- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW
- E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MQ.	DAY	TIME
4-6	270	4.97	11	15	0620
				ľ	レン

C	MINIMU	JM		
DISCNARGE	GAGE HT.	MQ.	DAY	TIME
0.0		10	1	0000
			<u> </u>	

	TO	TAL
Г	ACRE	FEET
		3367
1		

	LOCATION			MAXIMUM DISCHARGE			PERIOD OF RECORD			DATUM OF GAGE			
		1/4 SEC, T, & R.	OF RECORD			OIS CHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.		
LATITUOE	LONGITUOE	M. O. B. & M.	C.F.S.	GAGE HT.	OATE	O O O TANGE	ONLY	FROM	TO	GAGE	OATUM		
37 25 14	119 52 25	SE10 6\$ 19E	3590E	8.67	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL		

Station located 15 ft. below Indian Peak Road Bridge, 6.7 mi. SE of Mariposa. Drainage area is 33.6 sq. mi. Altitude of gage is 1,680 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME B64360 MIDDLE FORK CHOWCHILLA RIVER NEAR NIPINNAWASEE 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.1	0.3	3.2	1.9	12	3.1	29	2.5	0.7	0.2	0.0	0.0	1
2	0.1	0.3	3.2	1.9	10	5.0	20	2.5	0.6	0.1	0.0	0.0	2
3	0.1	0.3	3.1	1.9	8.7	4.0#	12 *	2.6	0.6	0.2	0.0*	0.0	3
4	0.2	0.4	2.9	1.9	7.0	3.5	9.0	2.9	0.5	0.1	0.0	0.0	4
5	0.2	0.4	2 • 8 *	1.9	6.5*	3 • 2	7.7	3.2	0.5*	0.1	0.0	0.0	5
6	0 • 2	5.4*	2.7	1.9	6.0	3.2	7 • 1	6.2*	0 • 4	0 • 1	0.0	0.0	6
7	0.2	2.8	2.5	1.9	5 • 2	3 • 2	6.2	6.5	0.5	0 • 2	0.0	0.0	7
8	0.2	1.7	2.5	1.9*	4.8	3.0	5.5	4.2	0.5	0.1*	0.0	0.0	8
9	0.3	1.4	3.7	1.9	4.6	2.7	5.2	3.4	0.8	0.1	0.0	0.0	9
10	0.3	1 • 1	4 - 1	1.8	4.4	2.7	4 • 8	3.0	1.3	0 • 1	0.0	0.0	10
111	0.7	0.9	3.1	1.7	4.3	2.7	4.5	2.8	1.2	0.1	0.0	0.0	11
12	0.9	0.8	2.9	1.7	4.1	6 • 2	4.7	2.5	1.1	0.0	0.0	0.0	12
13	0.6	0.7	2.5	1.6	3.7	8.5	4.4	2.3	0.8	0.0	0.0	0.0	13
14	0.4	1 • 4	2.3	1.6	3.6	4.6	3.9	1.9	0.7	0.0	0.0	0.0	14
15	0.3	30	2.3	1.6	3.5	3.7	3.7	1.8	0.5	0.0	2.0	0.0	15
16	0.5	5.8	2.3	1.6	3.6	3 • 5	3.6	1.7	0.5	0.0	0.0	0.0	16
17	0.5	3.0	2 • 2	1.5	3.5	3 • 1	3.4	1.5	0.5	0.0	0.0	0.0	1
18	0.5	2 • 4	2 • 1	2 • 4	3.4	3 • 1	3.3	1.5	0.6	0.0	0.0	0.0	18
19	0.5	3.0	2.0	3.5	3.3	2.9	3.9	1 • 4	0.5	0.0	0.0	0.0	19
20	0.5	103 *	1.9	2.8	3.4	2.9	4.0	1.3	0 • 4	0.0	0.0	0.0	20
21	0.5	16	2.0	7.7	3.2	2.7	3.6	1.1	0.4	0.0*	0.0	0.0	21
22	0.5	6.8	2.0	14	3.2	3 • 6	3.3	1.1	0.3	0.0	0.0	0.0	22
23	0.5*	6 • 4	1.9	9.9	3.1	7.7	3.3	1.2	0.3	0.0	0.0	0.0	23
24	0 • 4	16	1.9	7.8	3.1	10	3.6	1.0	0 • 2	0.0	0.0	0.0	24
25	0 • 4	8.1	1.9	7.5	3.1	8.7	3.3	0.9	0.2	0.0	0.0	0.0	25
26	0.4	5.7	1.9	9.0	3.1	16	2.9	0.9	0.1	0.0	0.0	0.0	26
27	0.4	4.5	1.9	12	2.9	23	2.8	1.0	0.1	0.0	0.0	0.0	27
28	0.3	4.0	1.9	11	2 • 8	19	2.8	1.2	0.1	0.0	0.0	0.0	28
29	0.3	3.6	1.9	12	3.0	12	2.7	1.1	0.1	0.0	0.0	0.0	29
30	0.3	3.3	1.9	13		8.5	2.6	0.9	0.1	0.0	0.0	0.0	30
31	0.3		1.9	12		7.2		0.8		0.0	0.0		31
MEAN	0.4	8.0	2.4	5.0	4.6	6.2	5.9	2 • 2	0.5	0.0	0.0	0.0	MEAN
MAX.	0.9	103	4.1	14.0	12.0	23.0	29.0	6.5	1.3	0 • 2	0.0	0.0	MAX
MIN.	0.1	0.3	1.9	1.5	2.8	2.7	2.6	0.8	0.1	0.0	0.0	0.0	MIN.
AC. FT.	23	475	150	307	264	383	351	133	30	3			AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
2 • 9	217	4.43	11	20	0510
	(}		l	

MINIMUM
GAGE HT. MO. DAY TIME
7 12 2400 DISCHARGE 0.0

TOTAL ACRE FEET 2118

Γ	LOCATION			MAXIMUM DISCHARGE			PERIOD C	DATUM OF GAGE				
ſ	LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF.
L	LATITUDE	LUNGITUUE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
	37 22 56	119 50 11	NE25 6S 19E	1280	10.10	2- 1-63	MAR 58-DATE		1958	Date	0.00	LOCAL

Station located 6 mi. W of Nipinnawasee, 10 mi. SE of Mariposa. Tributary to East Fork Chowchilla River. Drainage area is 12.3 sq. mi. Altitude of gage is 1,520 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 864260 STRIPED ROCK CREEK NEAR RAYMOND

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	0.0	0.2	1.4	0.7	1.9	0.9	8.6	1.0	0.1	0.0	0.0	0.0	1
2	0.0	0.2	1.1	0.7	1.8	1.9	5.5	1.3	0.0	0.0	0.0	0.0	2
3	0.0	0.2	1.2	0.6	1.6	1.0*	3.9*	1.5	0.1	0.0	0.0*	0.0	3
1	0.0*	0.2	1.0	0.5	1.5	0.7	2.8	1.9	0.0	0.0	0.0	0.0	4
5	0.0	0.3	1.0+	0.6	1.5*	0.6	3.1	2.3	0.1*	0.0	0.0	0.0	5
6	0.0	1.1*	0.8	0.5	1.4	0.7	2.7	3.9*	0.0	0.0	0.0	0.0	6
7	0.0	0.5	0.7	0.5	1.3	0.8	2.3	2.2	0.1	0.0	0.0	0.0	7
8	0.0	0.3	0.9	0.5*	1.2	0.7	2.3	1.4	0.1	0.0	0.0	0.0*	
9	0.0	0.3	1.6	0.4	1.2	0.7	2.5	1.2	0.3	0.0	0.0	0.0	9
10	0.0	0 • 3	1.6	0.4	1.1	0.6	2.2	1.0	0.2	0.0	0.0	0.0	10
11	0.7	0.2	0.9	0.5	1.1	0.6	2.2	0.8	0.1	0.0	0.0	0.0	11
12	0.2	0 • 2	0.8	0.4	1.1	2.0	2.0	0.7	0.1	0.0	0.0	0.0	12
13	0.1	0.3	0.8	0.4	1.2	1.9	1.9	0.6	0.0	0.0	0.0	0.0	13
14	0.1	0.8	0.7	0.3	1.2	1.0	1.9	0.5	0.0	0.0	0.0	0.0	14
15	0.1	6 • 6	0.7	0.4	1.2	8.0	1.8	0.4	0.0	0.0	0.0	0.0	15
16	0.4	1.0	0 • 8	0.4	1.2	0.8	1.7	0.3	0.0	0.0	0.0	0.0	16
17	0.2	0.5	0.8	0.8	1.0	0.8	1.5	0.3	0.0	0.0	0.0	0.0	
18	0.2	0.4	0.8	1 • 4'	1.0	0.8	1.4	0.3	0.0	0.0	0.0	0.0	18
19	0.1	0.8	0.7	1.0	0.9	0.7	2.0	0.2	0.0	0.0	0.0	0.0	19
20	0.1	24	0.8	0.7	1.0	0.7	2 • 2	0.2	0.0	0.0+	0.0	0.0	20
21	0.1	6.4	0.8	2.3	0.9	0.8	1.8	0.2	0.0	0.0	0.0	0.0	21
22	0.1	2.5	0.7	21	0.8	1 • 4	1.6	0.2	0.0	0.0	0.0	0.0	22
23	0.1	3.0	0.7	9.4	0.8	6.0	1.5	0.2	0.0	0.0	0.0	0.0	23
24	0.1	5.9	0.6	5.3	0.8	13	1.4	0.1	0.0	0.0	0.0	0.0	24
25	0.1	3.1	0.6	3.6	0.9	6.6	1.3	0.1	0.0	0.0	0.0	0.0	25
26	0.1	2.4	0.6	3.1	0.9	3 • 8	1.3	0.2	0.0	0.0	0.0	0.0	26
27	0.1	1.9	0.6	2.9	0.8	3.1	1 • 2	0.2	0.0	0.0	0.0	0.0	27
28	0.2	1.7	0.6	2.4	0.8	2.7	1 • 2	0.2	0.0	0.0	0.0	0.0	28
29	0.1	1.6	0.7	2 • 3	0.8	2 • 4	1.0	0.1	0.0	0.0	0.0	0.0	29
30	0.2	1.3	0.7	2 • 2		2 • 4	0.9	0.1	0.0	0.0	0.0	0.0	30
31	0 • 2		0.7	2.0		2 • 5		0.1		0.0	0.0		31
MEAN	0.1	2 • 3	0.9	2.2	1.1	2.0	2.3	0.8	0.0	0.0	0.0	0.0	MEA
MAX.	0.7	24.0	1.6	21.0	1.9	13.0	8.6	3.9	0.3	0.0	0.0	0.0	MAX
MIN.	0.0	0.2	0.6	0.3	0.8	0 • 6	0.9	0.1	0.0	0.0	0.0	0.0	MIN
AC. FT.	7	135	52	135	65	126	134	47	2			1	AC.FT

E - ESTIMATEO
NR - NO RECORD

• OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AHD •

MEAN		MAXIMU	м		$\overline{}$	
DISCHARGE	DISCHARGE				TIME	DISCH
1.0	45.0	3.11	11	20	0330	
\ /	(l	ı	l ノ	

	MINIM	JM		
DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.0		10	1	0000
				L/

$\overline{}$	TO	TAL	١
Г	ACRE	FEET	
ı		705	
١.			,

	LOCATION	•	MAXI	NUM DISCH	IARGE	E PERIOD OF RECORD			DATUM OF GAGE		
		I/4 SEC. T. & R. OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF		
LATITUDE	LONGITUDE	M. O. B. В М.	C.F.S.	GAGE HT.	DATE	VISCHANGE	ONLY	FROM	TO	GAGE	DATUM
37 20 27	119 53 35	NE 9 7S 19E	1180E	8.87	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located 8.7 mi. N of Raymond, 11 mi. SE of Mariposa. Tributary to Chowchilla River. Drainage area is 17.1 sq. mi. Altitude of gage is approximately 1090 ft. (from USGS topographic maps.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 862400 MARIPOSA CREEK NEAR CATHEYS VALLEY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	0.0	0.3	5.1	3.3	12	4.3	38	4.6	1.0	0.0	0.0	0.0	1
2	0.0	0.3	5.1	3.3	10	7.1	47	4.6	0.7	0.0	0.0	0.0	2
3	0.0*	0.5	5.1	3.1	9.0	5.8*	26	4.9	0.5	0.0*	0.0	0.0	2
4	0.0	0.8	4.5*	3.1	8.1	4.4	19	6.3	0.4*	0.0	0.0*	0.0	4
5	0.0	1.2*	4.3	3.3	7.4	4.0	16	6.1	0.4	0.0	0.0	0.0	5
6	0.0	5.0	4.3	3.3	7.0*	3.5	14 *	11 *	0.3	0.0	0.0	0.0	6
7	0.0	3.3	3.9	3.1	6.8	3.8	11	8.9	0.3	0.0	0.0	0.0	7
8	0.0	1.6	3.8	3.1*	6.3	3 • 2	10	6.4	0.4	0.0	0.0	0.0*	8
9	0.0	1 • 1	4.9	3.1	6.3	3.0	9.2	5.3	0.7	0.0	0.0	0.0	9
10	0.0	0.9	5•3	3.0	6.2	2 • 6	8.2	4.8	1.1	0.0	0.0	0.0	10
11	0.0	0.9	4.4	2.9	5.8	2.5	7.4	4 • 2	1.1	0.0	0.0	0.0	11
12	0.0	0.7	4.3	3.0	5.5	4.1	6.4	3.9	1.0	0.0	0.0	0.0	12
13	0.0	0.8	4.2	2.9	5.3	5.7	6 • 1	3.5	0.7	0.0	0.0	0.0	13
14	0.0	1.6	3 • 8	2 • 8	5.0	3.5	5.8	3.1	0.6	0.0	0.0	0.0	14
15	0.0	60	3 • 4	2•9	5•1	2.7	5.7	2.9	0.5	0.0	0.0	0.0	15
16	0.0	7.2	3 • 2	3 • 1	5 • 1	2.7	5.5	2.7	0.4	0.0	0.0	0.0	16
17	0.0*	3.1	3.3	3 • 2	4.8	2.2	5 • 0	2 • 4	0.3	0.0	0.0	0.0*	
18	0.0	2.2	3.1	4 • 2	4.8	2 • 1	4 . 8	2 • 4	0.3	0.0	0.0	0.0	18
19	0.0	3.0	3.6	5.1	4.6	1.9	5.0	2 • 2	0.3	0.0	0.0	0.0	19
20	0.0	161 *	3.3	4.6	4.1	1.8	6.0	2.0	0.2	0.0*	0.0	0.0	20
21	0.0	42	3.0	11	4.0	1.9	5.4	1.9	0.1	0.0	0.0	0.0	21
22	0.0	11	2.9	218	4.0	3.8	5 • 2	1.8	0.1	0.0	0.0	0.04	
23	0.0	10	2.9	70	4.0	48	5.5	1.6	0.0	0.0	0.0	0.0	23
24	0.0	53	2.7	50	3.9	107 *	5.3	1.4	0.0	0.0	0.0	0.0	24
25	0.0	17	2.7	30	4.5	65	5 • 4	1.3	0.0	0.0	0.0	0.0	25
26	0.0	9.0	2.9	23	5.1	58	5.0	1.5	0.0	0.0	0.0	0.0	26
27	0.0	7.0	3 • 1	24	4.8	65	4.7	1.7	0.0	0.0	0.0	0.0	27
28	0.1	6.5	3.1	18	4 • 6	45	4.6	1.6	0.0	0.0	0.0	0.0	28
29	0.2	5.5	3.2	18	4.2	23	4.6	1.4	0.0	0.0	0.0	0.0	29
30	0.2	5 • 4	3 • 2	15		15	4.5	1.3	0.0	0.0	0.0	0.0	30
31	0.2		3.1	14		13		1.2		0.0	0.0		31
MEAN	0.0	14.1	3.7	18.0	5 • 8	16.6	10.2	3.5	0.4	0.0	0.0	0.0	MEAN
MAX.	0.2	161	5 • 3	218	12.0	107	47.0	11.0	1.1	0.0	0.0	0.0	MAX
MIN.	0.0	0.3	2.7	2.8	3.9	1.8	4.5	1.2	0.0	0.0	0.0	0.0	MIN.
AC. FT.	1	837	229	1106	334	1023	608	216	23				AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
6.0	529	6.11	1	22	0540
. ,	\	1		•	

	MINIMUM												
DISCHARGE	GAGE HT.	MO.	DAY	TIME									
0.0		10	1	0000									
		1		l ノ									

TOTAL	
ACRE FEET	١
4376	l

LOCATION				XIMUM DISCH	MUM DISCHARGE PERIOD OF RECORD			DATUM OF GAGE			
LATITUDE LONGITUDE		1/4 SEC. T. & R. OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.		
LATITODE	LONGITODE	M.D.8.&M.		GAGE HT. DATE		DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 23 55	120 00 10	NE21 6S 18E	7180E	11.62	4- 3-58	NOV 57-DATE		1957		0.00	LOCAL

Station located at Co. Rd. bridge, 5.6 mi. E. of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 66.0 sq. mi. Altitude of gage is 1100 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 862100 MARIPOSA CREEK BELOW MARIPOSA RESERVOIR

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	8.0	6.0	17	7.0	20	5.0	0.5	0.0	0.0	0.0	1
2	0.0	0.0	8.0	6.0	16	8.0	34	5.0	0.5	0.0	0.0	0.0	2
3	0.0	0.0	7.0	5.0	14	8.0	38	5.0	0.5	0.0	0.0	0.0	3
4	0.0	0.0	7.0	5.0	13	9.0	26	5.0	0.5	0.0	0.0	0.0	4
5	0.0	0.0	7.0	5.0	12	9.0	21	5.0	0.5	0.0	0.0	0.0	5
6	0.0	0.0	6.0	5.0	11	8.0	18	5.0	0.1	0.0	0.0	0.0	6
7	0.0	0.0	6.0	5.0	11	8.0	16	7.0	0.0	0.0	0.0	0.0	7
8	0.0	0.0	6.0	5.0	10	7.0	15	10	0.0	0.0	0.0	0.0	8
9	0.0	0.0	6.0	5.0	10	7.0	14	8.0	0.0	0.0	0.0	0.0	9
10	0.0	0 • 0	7.0	5.0	10	7.0	12	6.0	0.0	0.0	0.0	0.0	10
$ \cdot _{\mathbf{u}} $	0.0	0.0	7.0	5.0	10	7.0	12	5.0	0.0	0.0	0.0	0.0	111
12	0.0	0.0	8.0	5.0	9.0	7.0	10	4.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	8.0	5.0	9.0	7.0	10	4.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	7.0	5.0	8.0	9.0	9.0	3.0	0.0	0.0	0.0	0.0	14
15	0.0	0.0	7.0	5.0	8.0	10	8.0	3.0	0.0	0.0	0.0	0.0	15
16	0.0	0•0	7.0	5.0	8.0	9.0	8.0	2.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	6.0	5.0	8.0	8.0	7.0	2.0	0.0	0.0	0.0	0.0	17
18	0.0	0.0	6.0	6.0	8.0	8.0	7.0	2.0	0.0	0.0	0.0	0.0	18
19	0.0	0.0	6.0	6.0	8.0	7.0	6.0	2.0	0.0	0.0	0.0	0.0	19
20	0.0	0.0	6.0	6.0	8.0	6.0	7.0	2.0	0.0	0.0	0.0	0.0	20
21	0.0	60	6.0	6.0	7.0	5.0	7.0	1.0	0.0	0.0	0.0	0.0	21
22	0.0	26	6.0	68 *	7.0	6.0	7.0	1.0	0.0	0.0	0.0	0.0	22
23	0.0	17	6.0	114	7.0	8.0	7.0	1.0	0.0	0.0	0.0	0.0	23
24	0.0	13	6.0	50	7.0	56	7.0	1.0	0.0	0.0	0.0	0.0	24
25	0.0	31	6.0	32	7.0	93	6.0	1.0	0.0	0.0	0.0	0.0	25
26	0.0	20	6.0	25	7.0	56	6.0	1.0	0.0	0.0	0.0	0.0	26
27	0.0	14	6.0	21	6.0	54	6.0	1.0	0.0	0.0	0.0	0.0	27
28	0.0	11	6.0	20	7.0	4.8	6.0	1.0	0.0	0.0	0.0	0.0	28
29	0.0	10	6.0	20	8.0	38	5.0	1.0	0.0	0.0	0.0	0.0	29
30	0.0	9.0	6.0	20	٠.٥	28	5.0	1.0	0.0	0.0	0.0	0.0	30
31	0.0	7.0	6.0	18		21		1.0		0.0	0.0		31
MEAN	0.0	7.0	6.5	16.1	9.3	18.4	12.0	3.3	0.1	0.0	0.0	0.0	MEAN
MAX.	0.0	60.0	8.0	114	17.0	93.0	38.0	10.0	0.5	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	6.0	5.0	6.0	5.0	5.0	1.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	0.0	419	401	990	538	1129	714	200	5				AC.FT.

E — ESTIMATEO
NR — NO RECORO
* — OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
— E AHD *

MEAN		MAXIMU	М		$\overline{}$		MINIM	U_M_		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT	MO.	DAY	TIME
6.1					J					

`

	LOCATION			MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			
		1/4 SEC. T, & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF
LATITUDE	LONGITUOE	M.O.B.8 M.	C.F.S.	C.F.S. GAGE HT.			ONLY	FROM	то	GAGE	OATUM
37 16 52	120 09 45	NE36 7S 16E	6020		12-24-55	NOV 52-DATE		1952		337.63	uscgs

Station located 1.5 mi. below Mariposa Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Mariposa Reservoir. Records furn. by U.S.C.E. Drainage area is 108 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME
	1964	B00420	MARIPOSA BYPASS NEAR CRANE RANCH

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2													1 2
3 4													3
5													5
6 7													6 7
8 9													8 9
10													10
11 12													11 12
13													13
15					INSU	 FFICIENT D	 ATA TO PUB	LISH LISH					15
16 17													16 17
18													18
20													20
21 22													21 22
23 24		:			:								23 24
25							:						25
26 27													26 27
28 29													28 29
30 31													30 31
MEAN										<u> </u>			MEAN
MAX. MIN.													MAX
AC. FT.												<u> </u>	MIN. AC.FT.

E -- ESTIMATED

NR -- NO RECORD

* -- DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AHD *

MEAN		MAXIMU	J M	$\overline{}$	`	$\overline{}$	MINIMI	J M		$\overline{}$
SCHARGE	DISCHARGE	GAGE HT.	MO. DAY	TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1				1	l	1				
			1 1	1 /	/					

	TOTAL	\supset
	ACRE FEET	
1		

	LOCATION	N	MAXIMUM DISCHARGE			PERIOD C	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. B. R.		OF RECORD		OISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE		M, D, & & M,	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 12 00	130 41 50	NW 31 8 S 11E						1962		0.00	uscgs

This station was installed in January 1962 for the Lower San Joaquin Flood Control Project for the purpose of recording flows diverted into Mariposa bypass by float activated electrically operated gates. No continuous water stage recorder is installed to date. Miscellaneous measurements of instantaneous discharge will be presented when appropriate.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B06170 OWENS CREEK BELOW OWENS RESERVOIR

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.5	0.5	0.9	0.7	1.7	0.5	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.5	0.5	0.9	1.1	2.0	0.5	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.5	0.5	0.8	1.0	2.0	0.5	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.5	0.5	0.8	0.8	1.0	0.5	0.0	0.0	0.0	0.0	4
5	0.0	0.0	0.5	0.5	0.7	0.8	1.0	0.5	0.0	0.0	0.0	0.0	5
6	0.0	0.4	0.5	0.5	0.7	0.7	1.0	0.5	0.0	0.0	0.0	0.0	6
7	0.0	0 • 4	0.5	0.5	0.6	0.7	1.0	0.8	0.0	0.0	0.0	0.0	7
8	0.0	0 • 4	0.5	0.6	0.6	0.8	0.9	0.8	0.0	0.0	0.0	0.0	8
9	0.0	0 • 4	0.5	0.6	0.6	0.8	0.8	0.6	0.0	0.0	0.0	0.0	9
10	0.0	0.4	0.5	0.6	0.6	0.8	0.8	0.5	0.0	0.0	0.0	0.0	10
11	0.0	0.4	0.5	0.6	0.6	0.7	0.7	0.5	0.0	0.0	0.0	0.0	111
12	0.0	0.4	0.5	0.6	0.5	0.8	0.6	0.4	0.0	0.0	0.0	0.0	12
13	0.0	0.4	0.5	0.6	0.5	1.0	0.6	0.4	0.0	0.0	0.0	0.0	13
14	0.0	0.4	0.5	0.6	0.5	1.0	0.6	0.4	0.0	0.0	0.0	0.0	14
15	0.0	0.5	0.5	0.6	0.5	0.8	0.5	0.3	0.0	0.0	0.0	0.0	15
16	0.0	0.5	0.5	0.6	0.7	0.7	0.5	0.2	0.0	0.0	0.0	0.0	16
17	0.0	0.4	0.5	0.6	0.7	0.6	0.5	0.1	0.0	0.0	0.0	0.0	17
18	0.0	0.4	0.5	0.8	0.6	0.6	0.5	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.5	0.5	0.8	0.6	0.6	0.5	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.5	0.5	0.8	0.5	0.6	0.6	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.5	0.5	1.1	0.5	0.6	0.6	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.5	0.5	9.0*	0.5	1.0	0.7	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0.5	0.5	4.0	0.5	3.0	0.7	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0.5	0.5	2.0	0.5	4.0	0.6	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.5	0•5	1 • 8	0.5	3.0	0.5	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.5	0.5	1.5	0.5	2.0	0.5	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.5	0.5	1.2	0.5	1.7	0.5	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.5	0.5	1.1	0.5	1.4	0.5	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.5	0.5	1.0	0.6	1.2	0.5	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.5	0.5	1.0		1.0	0.5	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0.5	0.9		1.1		0.0		0.0	0.0		31
MEAN	0.0	0.4	0.5	1.2	0.6	1.1	0.8	0.3	0.0	0.0	0.0	0.0	MEAN
MAX.	0.0	0.5	0.5	9.0	0.9	4.0	2.0	0.8	0.0	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.5	0.5	0.5	0.6	0.5	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.		23	31	72	35	71	46	16					AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

MEAN	$\overline{}$	MAXIMU	M		$\overline{}$		MINIM	JM	
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO. DAY	TIME
0.4					j				
	`						1		

TOTAL ACRE FEET 293

	LOCATIO	N	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUOE	LONGITUDE	1/4 SEC. T. B. R.		OF RECORE)	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
	LONGITUDE	M.D.B.B.M.	C.F.S.	C.F.S. GAGE HT.		DISCHARGE	ONLY	FROM	TO	ON GAGE	DATUM
37 18 28	120 11 35	SW23 7S 16E	590		12 -24 -55	FEB 50-DATE		1950		338.22	uscgs

Station located 0.25 mi. below Owens Dam. Tributary to San Joaquin River, via Eastside Bypass. Flow regulated by Owens Reservoir. Records furn. by U.S.C.E. Drainage area is 25.6 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	B55400	BEAR CREEK NEAR CATHEYS VALLEY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	0.0	0.0	1.2	0.6	4.0	0 • 8	6.9	0.8	0.3	0.0	0.0	0.0	1
2	0.0	0.0	1.1	0.6	3.2	1.1	17	0.7	0.3	0.0	0.0	0.0	2
3	0.0*	0.0	1.2	0.5	2.8	1.2*	9.0	0.9	0.3	0.0*	0.0	0.0	3
4	D•0	0.0	1.0*	0.5	2.4	1.0	5.8	1.1	0.2	0.0	0.0*	0.0	4
5	0.0	0 • 0 *	1.0	0.5	2.0	0.9	4.3	1.2	0.2	0.0	0.0	0.0	5
6	0.0	0.0	0.9	0.5	1.7*	0.8	3.4*	2.8*	0.2	0.0	0.0	0.0	6
7	0.0	0.0	0.8	0.5	1.5	0.9	2 • 8	2.5	0 • 2	0.0	0.0	0.0	7
8	0.0	0.0	0.7	0.5*	1.4	0.9	2 • 3	1.6	0.1	0.0	0.0	0.0	
9	0.0	0.0	1.0	0.4	1.3	0.8	2.0	1 • 4	0.1	0.0	0.0	0.0	9
10	0.0	0.0	1.0	0.4	1.2	0.8	1.8	1.2	0.1	0.0	0.0	0.0	10
11	0.0	0.0	0.9	0.4	1.1	0.8	1.6	1.1	0.1	0.0	0.0	0.0	11
12	0.0	0.0	0.9	0.4	1.1	1.0	1.5	1.0	0.1	0.0	0.0	0.0	12
13	0.0	0.0	0.9	0.4	1.1	1.7	1.3	1.0	0.1	0.0	0.0	0.0	13
14	0.0	0.0	0.8	0 • 4	1.1	1.4	1.2	0.9	0.1	0.0	0.0	0.0	14
15	0.0	0.0	8•0	0 • 4	1.0	1 • 2	1.2	0.8	0.1	0.0	0.0	0.0	15
16	0.0	0.0	0.8	0.4	1.0	1.0	1.1	0.7	0.1	0.0	0.0	0.0	16
17	0.0	0.0	0.7	0.5	1.0	0.9	1.1	0.8	0.1	0.0	0.0	0.0	
18	0 • 0	0.0	0.7	0.6	1.0	0.9	1.0	0.7	0.1	0.0	0.0	0.0	18
19	0.0	0.0*	0.7	0.7	1.0	0.8	1.1	0.7	0 • 1	0.0	0.0	0.0	19
20	0.0	11 *	0.7	0.8	0.9	0.9	1.1	0.7	0.0	0.0*	0.0	0.0	20
21	0.0	9.3	0.7	2.7	0.9	1.0	1.1	0.7	0.0	0.0	0.0	0.0+	
22	0.0	3.1	0•6	144	0.9	1.7	1.0	0.7	0.0	0.0	0.0	0.0	22
23	0.0	3 • 1	0.5	55	0.9	12	1.1	0.7	0.0	0.0	0.0	0.0	23
24	0.0*	21	0.6	37	0.8	39 *	1.6	0.6	0.0	0.0	0.0	0.0	24
25	0.0	7.7	0.6	28	0.8	31	1.5	0.5	0.0	0.0	0.0	0.0	25
26	0.0	3.6	0.5	22	0.8	22	1.1	0.6	0.0	0.0	0.0	0.0	26
27	0.0	2.3	0.5	18	0.8	14	1.0	0.5	0.0	0.0	0.0	0.0	27
28	0.0	1.7	0.5	12	0.8	9.4	0.9	0.4	0.0	0.0	0.0	0.0	28
29	0.0	1.6	0.5	8.6	0.8	5.7	0.8	0.4	0.0	0.0	0.0	0.0	29
30	0.0	1 • 4	0.5	6 - 4		4 • 2	0.8	0.3	0.0	0.0	0.0	0.0	30
31	0.0		0.6	5.2		3 • 4		0.3		0.0	0.0		31
MEAN	0.0	2.2	0.8	11.3	1.4	5 • 3	2.6	0.9	0.1	0.0	0.0	0.0	MEAN
MAX.	0.0	21.0	1.2	144	4.0	39.0	17.0	2 • 8	0.3	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.5	0 • 4	0.8	0.8	0.8	0.3	0.0	0.0	0.0	0.0	MIN.
AC. FT.		131	47	692	78	324	156	56	6	1	1	(AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	М					MINIMU	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	I	DISCHARGE	GAGE HT.	MO.	DAY	TIME
2 • 1	427	5.81	1	22	0530	П	0.0		10	1	0000
				l	レン	١,				ļ .	

TOTAL ACRE FEET 1489

	LOCATIO	Н	MA	XIMUM DISCH	ARGE	PERIOD O	F RECORD		DATU	M OF GAGE		
LATITUDE	1/4 SEC. T.		LONGITUDE 1/4 SEC. T. & R. OF RECORD)	OISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.	
LATITODE	LONGITUDE	M.D.B.&M.	CFS	GAGE HT.	DATE	Olscharde	OHLY	FROM	TO	GAGE	DATUM	
37 28 38	120 06 43	SW21 5S 17E	3850E	9.98	2-1-63	DEC 57-DATE		1957		0.00	LOCAL	

Station located at Co. Rd. bridge, 3.7 mi. N. of Catheys Valley School. Tributary to San Joaquin River via Eastside Bypass. Drainage area is 24.6 sq. mi. Altitude of gage is approx. 1,210 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 805570 BEAR CREEK BELOW BEAR RESERVOIR

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 1	0.0	0.0	4.0	3.0	8.0	3.0	7.0	2.0	1.0	0.0	0.0	0.0	
2	0.0	0.0	3.0	3.0	7.0	3.0	8.0	2.0	1.0	0.0	0.0	0.0	2
3	0.0	0.0	3.0	3.0	6.0	3.0	14	2.0	1.0	0.0	0.0	0.0	3
4	0.0	0.0	3.0	3.0	6.0	3.0	10	2.0	1.0	0.0	0.0	0.0	4
5	0.0	0.0	3.0	3.0	6.0	3.0	10 8.0	3.0	1.0	0.0	0.0	0.0	5
6	0.0	0.0	3.0	3.0	6.0	3.0	7.0	3.0	1.0	0.0	0.0	0.0	
7	0.0	0.0	3.0	3.0	5.0	3.0	6.0	4.0	1.0	0.0	0.0	0.0	
8	0.0	0.0	3.0	3.0	5.0	3.0	6.0	5.0	1.0	0.0	0.0	0.0	8
9	0.0	0.0	3.0	3.0	4.0	3.0	5.0	5.0	1.0	0.0	0.0	0.0	9
10	0.0	0.0	3.0	3.0	4.0	3.0	5.0	4.0	1.0	0.0	0.0	0.0	10
11	0.0	0.0	3.0	3.0	4.0	3.0	4.0	3.0	1.0	0.0	0.0	0.0	
12	0.0	0.0	4.0	3.0	4.0	3.0	4.0	3.0	1.0	0.0	0.0	0.0	
13	0.0	0.0	3.0	3.0	3.0	3.0	4.0	3.0	0.5	0.0	0.0	0.0	13
14	0.0	0.0	3.0	3.0	3.0	3.0	3.0	2.0	0.5	0.0	0.0	0.0	14
15	0.0	0.0	3.0	3.0	3.0	3.0	3.0	2.0	0.5	0.0	0.0	0.0	15
16	0.0	0.0	3.0	3.0	3.0	3.0	3.0	2.0	0.5	0.0	0.0	0.0	16
17	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.5	0.0	0.0	0.0	17
18	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.5	0.0	0.0	0.0	18
19	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.5	0.0	0.0	0.0	19
20	0.0	0.0	3.0	3.0	3.0	3.0	3.0	1.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	4.0	4.0	3.0	3.0	2.0	1.0	0.0	0.0	0.0	0.0	21
22	0.0	0.0	3.0	121 *	3.0	3.0	2.0	1.0	0.0	0.0	0.0	0.0	22
23	0.0	0.0	3.0	93	3.0	4.0	2.0	1.0	0.0	0.0	0.0	0.0	23
24	0.0	0.0	3.0	63	3.0	16	2.0	1.0	0.0	0.0	0.0	0.0	24
25	0.0	5.0	3.0	42	3.0	40	2,0	1.0	0.0	0.0	0.0	0.0	25
26	0.0	9.0	3.0	31	3.0	27	3.0	1.0	0.0	0.0	0.0	0.0	26
27	0.0	7.0	3.0	25	3.0	16	3.0	1.0	0.0	0.0	0.0	0.0	27
28	0.0	6.0	3.0	19	3.0	14	3.0	1.0	0.0	0.0	0.0	0.0	28
29	0.0	5.0	3.0	13	3.0	10	2.0	1.0	0.0	0.0	0.0	0.0	29
30	0.0	4.0	3.0	11		7.0	2.0	1.0	0.0	0.0	0.0	0.0	30
31	0.0		3.0	8.0		7.0		1.0		0.0	0.0		31
MEAN	0.0	1.2	3.1	15.8	4.0	6.7	4.4	2.0	0.5	0.0	0.0	0.0	
MAX.	0.0	9.0	4.0	121	8.0	40	14	5.0	1.0	0.0	0.0	0.0	
MIN.	0.0	0.0	3.0	3.0	3.0	3.0	2.0	1.0	0.0	0.0	0.0	0.0	
AC. FT.		71	190	972	230	415	262	123	31				AC.FT

E - ESTIMATED NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AHD *

						_						
MEAN	۷ ۵		MAXIML	ı M			١.	(MINIM	J M		
DISCHARGE	H	DISCHARGE	GAGE HT.	MO.	DAY	TIME	l	DISCHARGE	GAGE HT.	MO.	DAY	TIME
3.2	Н						l			-	lΙ	
,	/ \			l .	l		/	(ΙI	,

TOTAL ACRE FEET 2294

	LOCATION	٧	MAXII	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	DE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M.O.B.&M.	C.F.S.	GAGE HT.	DATE	J.S. S. TANOE	ONLY	FROM	TO	GAGE	DATUM
37 21 27	120 14 05	NE 5 7S 16E	4460		12-24-55	JAN 55-DATE		1955		320.50	USCGS

Station located approx. 0.75 mi. below Bear Dam. Tributary to San Joaquin River via Eastside Bypass. Flow regulated by Bear Reservoir. Records furn. by U.S.C.E. Drainage area is 72 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B56400 BURNS CREEK AT HORNITOS

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	0.0	0.0	0.1	0.2	1.1	0.4	0.7	0.1	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.1	0.1	1.0	0.5	0.6	0.1	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.1	0.1	1.0	0.4+	0.4	0.2	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.1*	0.1	0.9	0.4	0.4	0.2	0.0	0.0	0.0*	0.0	1 4
5	0.0	0.0	0.1	0.1	0.8	0.3	0.4	0.2	0.0	0.0	0.0	0.0	5
6	0.0	0.1	0.1	0.1	0.7*	0.3	0.3*	0.3*	0.0	0.0	0.0	0.0	6
7	0.0	0.0	0.1	0.2	0.7	0.4	0.3	0.2	0.0	0.0	0.0	0.0	7
8	0.0	0.0	0.1	0.2*	0.6	0.3	0.3	0.2	0.0	0.0	0.0	0.01	8
9	0.0	0.0	0.2	0.1	0.6	0.3	0.3	0.2	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.1	0.1	0.6	0.3	0.2	0.2	0.0	0.0	0.0	0.0	10
111	0 • 2	0.0	0.1	0.2	0.6	0.3	0.2	0.1	0.0	0.0	0.0	0.0	11
12	0 • 1	0.0	0.1	0.2	0.6	0.3	0.2	0.1	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.1	0.2	0.5	0.3	0.2	0.1	0.0	0.0	0.0	0.0	13
14	0.0	0.1	0.1	0.1	0.5	0.3	0.2	0.1	0.0	0.0	0.0	0.0	14
15	0.0	0+2	0.1	0.1	0.5	0 • 2	0.2	0.1	0.0	0.0	0.0	0.0	15
16	0.0	0.1	0.1	0.1	0.5	0.3	0.2	0.1	0.0	0.0	0.0	0.0	16
17	0.0	0.1	0.1	0.2	0.5	0.3	0.2E	0.1	0.0	0.0	0.0	0.0	
18	0.0	0.0	0.1	0.2	0.4	0.3	0.2E	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0 • 2 *	0 • 2	0 • 2	0.4	0.3	0.2E	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0 • 4	0.2	0.2	0.5	0.3	0.2E	0.0	0.0	0.0*	0.0	0.0	30
21	0.0	0.1	0.1	14 +	0.5	0.2	0.2E	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.1	0.1	95	0.4	0.4	0.2E	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0 • 2	0.2	21	0.4	0.8	0.1E	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0 • 2	0 • 2	7.5	0.4	1.0	0.1E	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.2	0.2	4.2	0.4	0.7	0.1E	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0 • 1	0.2	2.9	0.4	0.6	0.1E	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.1	0.1	2.0	0.3	0.6	0.1E	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.1	0.1	1.7	0.4	0.6	0.1	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.1	0.2	1.5	0.4	0.5	0.1	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.1	0.2	1.2		0.5	0.1	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0 • 2	1.2		0.5		0.0		0.0	0.0		31
MEAN	0.0	0.1	0.1	5.0	0.6	0.4	0.2	0.1	0.0	0.0	0.0	0.0	MEA
MAX.	0.2	0.4	0.2	95.0	1.1	1.0	0.7	0.3	0.0	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.1	0.1	0.3	0.2	0.1	0.0	0.0	0.0	0.0	0.0	MIN
AC. FT.	i	5	8	308	33	26	14	5				1	AC.F

E — ESTIMATEO
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW # - EAHD *

M A X I M U M

GAGE HT. MO. DAY TIME

1 25 1 22 0443 MEAN DISCHARGE DISCHARGE 0.5 222

MINIMUM GAGE HT. MO. DAY TIME DISCHARGE 0.0 10 1 0000 TOTAL ACRE FEET 399

	LOCATION	1	MA	XIMUM DISCH	ARGE	PERIOD 0	F RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC, T, & R.	SEC. T. & R. OF RECORD DISCHARGE GA		GAGE HEIGHT	PERIOD FROM TO	ZERO	REF.			
LATITODE	LONGTODE	M.D.8.&M.	CF5	F5 GAGE NT. DATE		DIOGNAROL	ONLY	FROM	то	GAGE	DATUM
37 29 42	120 14 17	SE17 5S 16E	4340E 10.66 2-15-62		DEC 58-DATE		1958		0.00	LOCAL	

Station located 130 ft. S of Stockton-Mariposa Road, 0.2 mi. SW of Hornitos. Tributary of San Joaquin River via Bear Creek. Drainage area is 26.7 sq. mi. Maximum discharge from slope-area measurement. Altitude of gage is approx. 780 ft. (From U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME BURNS CREEK BELOW BURNS RESERVOIR 1964 B56100

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1
2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
											0.0	0.0	١. ١
6	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		7
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
13	0.0	0•3	٠•٠	•••	•••		•••					1	
16	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0 • 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
21	0.0	1.2		2.8*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22
22	0.0	0.5	0.0	3.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
23	0.0	0.3		1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
24	0.0	1 • 2	0.0	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
25	0.0	1.2	0.0	1 • 2	0.0	0.0	0.0			1			
26	0.0	0.6	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.4	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.2	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.3		0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0	0.0	0.0	0.3		0.0		0.0		0.0	0.0		31
					2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MEAN
MEAN	0.0	0 • 2	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MAX
MAX.	0.0	1 • 2	0.0	3.2	0.2			0.0	0.0	0.0	0.0	0.0	MIN.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1 0.0	0.0	0.0	1	1	AC.FT.
AC. FT.		14		22	1	1		I	I	I	1	1	7

E - ESTIMATED

NR - NO RECORD

* - DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

			MAXIMU				MINIM	1 44		
MEAN DISCHARGE	۱	DISCHARGE	GAGE HT.	 DAY	TIME	DISCHARGE	GAGE HT.	Ť	DAY	TIME
0.0)				1	

\subset	TOTAL
Г	ACRE FEET
	37
	,

	LOCATION	N	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	<u> </u>
		1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF
LATITUDE	LONGITUOE	M.D.B.8.M.	C.F.S.	GAGE HT.	DATE	510 01141102	ONLY	FROM	ro	GAGE	DATUM
37 22-27	120 16 35	NE36 6S 15E	2590		12-24-55	APR 50- DATE		1950		260.60	usccs

Station located 0.5 mi. below Burns Dam. Tributary to San Joaquin River via Bear Creek. Flow regulated by Burns Reservoir. Records furn. by U.S.C.E. Drainage area is 73.8 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME SAN JOAQUIN RIVER NEAR STEVINSON 807400

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	63	21	21	27	33	25	46	49	100	4 2	42	55	1
2	59	19	18	29	33	25 *	49 #	47	100	30	42	52	2
3	59	18	18	37 *	30	24	48	46	81	34 *	49	50	3
4	51	16	19 *	45	31	22	51	48 #	53 *	33	55 *	48 1	4
5	55	16	18	80	26 *	22	43	51	41	31	54	41	5
		• • •								l			
6	56	17	17	81	26	25	37	59	41	28	49	36	6
,	55	16	20	115	25	25	36	59	38	26	44	36	7
l á l	62	15 *	22	75 52	19	26	40	52	38	29 32	36	39	8
9	69	14	21	52	19	29	37	55	43	32	35	34	9
10	63	12	21	49	19	31	32	54	58	34	38	32	10
1 . 1													3
1 11	53	14	20	47	15	30	31	53	83	32 32	35	30	11
12	62	20	14	44	14	32	28	61	125	32	34	28	12
13	65	20	13	55	14	35	32	63	148	37	36	27	13
14	65	16	13	54	15	38	37	62	119	36	35	27	14
15	81	18	16	54	33	42	39	53	86	42	36	25	15
''	٠.	••					,	1				1	
16	83 *	25	21	49	44	44	37	51	67	44	39	25	16
1 17	61	26	21	42	25	43	40	49	57	38	40	24	17
18	60	28	21	36	26	38	41	48	53	34	37	24	18
19	67	28	21	34	22	45	44	50	46	36	33	2 2	19
20	68	37	26	32	23	37	56	62	40	38	40	23	20
20	• •									!			
21	62	42	27	31	23	33	76	76	38	40	41	22	21
22	62	43	24	61	22	34	53	74	40	44	44	26	22
23	52	45	22	103	22	35	43	75	48	44	47	29	22
24	47	42	23	112	22	37	46	8.3	55	44	48	25	24
25	47	39	24	iii	20	47	50	91	52	44	51	25	25
23	7'	٠,		•••			1		!				
26	51	35	27	96	21	4.8	51	89	44	42	5.8	26	26
27	46	30	26	81	26	45	51	89	3.8	39	57	26	27
28	43	28	25	53	27	46	50	88	41	36	53	29	28
29	40	26	23	33	24	46	50	89	40	38	50	31	29
30	32	24	25	25		42	48	88	43	42	51	32	30
30	25	24	24	30		42	**	86		41	52		31
31	2.5			- 70		7-							
MEAN	56.7	25.0	21.0	57.2	24.1	35.3	44.1	64.5	61.9	36.8	43.9	31.6	MEAN
MAX.	83.0	45.0	27.0	115	44.0	48.0	76.0	91.0	148	44.0	58.0	55.0	
MIN.	25.0	12.0	13.0	25.0	14.0	22.0	28.0	46.0	38.0	26.0	33.0	22.0	MIN.
AC. FT.	3487	1488	1291	3517	1386	2168	2626	3967	3681	2265	2700	1882	AC.Ff

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU			
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
42.0	152	62.48	6	12	2100
,	\	1			

MINIMUM
GAGE HT. MO. DAY TIME DISCHARGE 12.0 11 10 1220 TOTAL ACRE FEET 30460

	LOCATION MAXIMUM DISCHARGE		ARGE	PERIOD (F RECORD	DATUM OF GAGE						
		1/4 SEC. T. B. R.		OF RECORD		OISCHARGE	GAGE HEIGHT	PER	100	2ERO ON	REF.	
LATITUDE	LONGITUOE	M, O, 8, 8, M.	C.F,S.	GAGE HT.	OATE	J	ONLY	FROM	TO	GAGE	DATUM	
37 17 42	120 51 00	26 7S 10E	6060	73.04	2-17-62	OCT 61-DATE	MAY 61-SEP 61	1961		0.00	USCGS	

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME B52600 NORTH FORK MERCED RIVER NEAR COULTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	2 • 4	7.8	4.5	1.5	13	3.7	16	3.5	2.4	0.6	0.2	0.9	1
2	2.0	8 • 2	4.9	1.5	11	5 • 4	18	3.6	2.5	0.5	0.1	0.8	2
3	1.3	8.8	4.7	1.4	9.9	3.7*	13	4.6	2.3	0.3*	0.1	0.5	3
4	0.7	8.5	3.4+	1.4	8.5	3 • 1	11	5.0	2.1*	0 • 3	0.1*	0.3+	4
5	0.7	6.1*	3 • 1	1.5	8.0+	2.8	8 • 6	5 • 1	1.9	0 • 4	0.3	0.4	5
6	0•8	7.5	3.5	1.3	8.0	2.8	7.6*	8.2*	2.2	0.4	0.3	0.4	6
7	1.0	2.7	3.4	1.3	6.4	3.0	6.3	7.9	2.4	0 • 4	0.4	0.3	17
8	1.0	2.0	3.3	1.3*	6.0	2.4	6.2	7.3	2.4	0.2	0.3	0.3	8
9	1.3	1.8	5 • 2	1.6	6.3	2.4	5 . 8	7.1	3.7	0.3	0.3	0.4	9
10	1.5	1.8	3.9	1 • 8	6.3	2 • 5	5.4	6.5	2.4	0.3	0.3	0 • 4	10
11	2•7	1.4	3.6	1.6	5.7	2.7	4.7	5.0	2.1	0.3	0.5	0.6	11
12	0.8	1.5	3.2	1.8	4.9	5.9	4.1	4.7	2.1	0.3	0.5	0.6	12
13	0.7	1.4	2.8	2 • 2	4.7	5.5	3.6	4.6	1.9	0.3	0.5	0.5	13
14	1.0	4.8	2.7	2 • 2	4.3	5 • 2	3.7	4.3	1.6	0.2	0.4	0.5	14
15	1.0	7.3*	2 • 7	2•1	4.5	4.3	3.8	4.0	1.3	0.3	0.5	0.6	15
16	1.0	2.5	2.4	2.3	4.4	3 . 8	3.6	3.8	1.3	0.5	0.3	0.5	16
17	0.5*	2.4	2.2	2.5	4.0	3.6	3.3	3.6	1.3	0.3	0.6	0.5	17
18	0.8	2.6	2.2	4.3	3.4	3.7	2.7	3 • 2	1.1	0.1	0.5	0.4	18
19	1.2	8.0	2 • 1	3.8	2.6	3.1	4.7	3.2	0.9	0.1	0.6	0.6	19
20	1 • 8	30 *	2 • 1	4 • 2	3.1	3.0	3.7	2.9	0.9	0 • 2	0.8	0.6	20
21	2.5	11	2•1	18 *	2.9	3.1	4.0	3.1	0.7	0.1	0.6	0.6	21
22	3 • 1	5.5	2 • 1	16	3.1	4.7	3.8	3.2	0.7	0.2	0.7	0.6	22
23	4.9	12	2.1	11	2.9	8.0	4.1	3.1	0.7	0.2	0.8	0.6	23
24	6.2	18	2.1	9.2	2.9	10 +	4.1	3.1	0.6	0.2	1.1	0.5	24
25	6.3	9.2	1.8	9•1	3.1	9.3	4.0	2.8	0•6	0 • 2	0.8	0.6	25
26	5.7	6.6	1.8	8.8	3.2	11	3.8	3.1	0.6	0 • 2	0.9	0.5	26
27	6.2	5.3	1.8	9.4	3.1	16	3.7	3.8	0.6	0.1	0.8	0.5	27
28	5.5	5.6	1.8	10	3.1	19	3.5	3.2	0.8	0.3	0.6	0.5	28
29	3.7	4.8	1.8	12	3.1	18	3 • 1	3.1	0.8	0 • 4	0.6	0.3	29
30	7.5	4.5	1.8	15		12	3.1	2.9	0.6	0 • 4	0.5	0.3	30
31	7.8		1.5	14		11		2.7		0 • 4	0.7		31
MEAN	2.7	6.7	2.8	5.6	5.3	6.3	5.8	4.3	1.5	0.3	0.5	0.5	MEAN
MAX.	7.8	30.0	5.2	18.0	13.0	19.0	18.0	8 • 2	3.7	0.6	1.1	0.9	MAX.
MIN.	0.5	1.4	1.5	1.3	2.6	2.4	2 • 7	2.7	0.6	0.1	0.1	0.3	MIN.
AC. FT.	166	396	172	345	302	386	343	262	90	18	31	30	AC.FT.

E - ESTIMATED

NR - NO RECORD

* OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AHD *

MEAN	$\overline{}$	MAXIMU	м		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
3 • 5	43.0	3.72	11	20	0210
,	1				1 1

MINIMUM										
DISCHARGE	GAGE HT.	MO.	DAY	TIME						
0.0		7	17	1500						

	TOTAL	•
Г	ACRE FEET	
ĺ	2542	

	LOCATION			MUM DISCH	ARGE	PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO	REF.
LATITUDE	LONGITODE	M, O, B, & M,	C.F.S.	GAGE HT.	DATE	O O O O TARROE	ONLY	FROM	ТО	GAGE	DATUM
37 44 51	120 02 12	NW19 2S 18E	3440	7.83	1-31-63	DEC 58-DATE		1958		0.00	LOCAL

Station located 40 ft. above Greeley Hill Road Bridge, 9 mi. NE of Coulterville. Drainage area is 30.3 sq. mi. Altitude of gage is 2,360 ft. (from U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 851250 MAXWELL CREEK AT COULTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	0.0	0.0	0.6	0.5	3.6	1.1	14	0.7	0.2	0.0	0.0	0.0	1
2	0.0	0.0	0.6	0.5	3.1	2 • 1	12	0.6	0.2	0.0	0.0	0.0	2
] з	0.0*	0.0	0.5	0.4	2.1	1.4*	5.9	1.5	0.2	0.0*	0.0	0.0	3
4	0.0	0.1	0.8*	0.4	1.5	1.2	4.0	1.4	0.2*	0.0	0.0 *	0.0*	4
5	0.0	0 • 2 *	0.8	0 • 4	1.7	1.0	3.1	1.2	0.2	0.0	0.0	0.0	5
6	0.0	1.2	0.8	0.4	1.5*	1.2	2.5*	4.9*	0.2	0.0	0.0	0.0	6
7	0.0	0 • 4	0.8	0.4	1.1	1.4	2.0	3.7	0.2	0.0	0.0	0.0	7
8	0.0	0.3	0.8	0.5*	1.1	1 • 2	1.8	2.1	0.2	0.0	0.0	0.0	8
9	0.0	0 • 3	1.6	0.5	1.1	1.1	1.6	1.6	0.3	0.0	0.0	0.0	9
10	0.0	0 • 4	1.3	0.5	1.3	1.0	1.5	1.6	0.2	0.0	0.0	0.0	10
11	0.8	0.4	1.0	0.6	1.3	0.8	1.3	1.3	0.2	0.0	0.0	0.0	11
12	0 • 3	0.6	0.8	0.6	1.1	3 • 8	1.2	1.2	0.1	0.0	0.0	0.0	12
13	0.2	0.8	0.6	0.5	1.1	3.9	1.1	1.1	0.1	0.0	0.0	0.0	13
14	0.1	1.9	0.6	0.5	1.1	2 • 2	1.0	0.9	0.1	0.0	0.0	0.0	14
15	0.1	10 *	0.7	0.4	1.0	1.7	1.0	0.8	0.1	0.0	0.0	0.0	15
16	0.1	1.3	0.6	0.4	1.1	1.5	0.9	0.8	0.2	0.0	0.0	0.0	16
17	0.0*	0.6	0.5	0.5	1.4	1 • 4	0.9	8•0	0.1	0.0	0.0	0.0	17
18	0.0	0.3	0.4	1.4	1.3	1.1	8.0	0.7	0.1	0.0	0.0	0.0*	18
19	0.0	2.8	0.5	1.4	1.0	1.0	1.4	0.6	0.1	0.0	0.0	0.0	19
20	0.1	17 *	0 • 4	1 • 4	1.4	1.0	1.2	0.5	0.1	0.0	0.0	0.0	20
21	0.1	2 • 1	0.4	19 *	1.4	1.1	1.0	0.5	0.1	0.0	0.0	0.0	21
22	0 • 1	0 • 4	0.4	46	1.2	1.7	0.8	0.4	0.1	0.0	0.0	0.0	22
23	0.1	3.7	0.4	9.9	1.2	3.9	0.9	0.4	0.1	0.0	0.0	0.0	23
24	0.0	6.0	0.4	5 • 8	1.3	18 *	1.2	0.4	0.0	0.0	0.0	0.0	24
25	0.0	1.4	0.4	4.5	1.2	12	0.9	0.3	0.0	0.0	0.0	0.0	25
26	0.0	0.7	0.4	4.3	1.1	18	0.7	0.4	0.0	0.0	0.0	0.0	26
27	0.0	0 • 5	0.4	4.3	1.0	15	0.7	0 • 4	0.0	0.0	0.0	0.0	27
28	0.0	0.5	0.4	3 • 7	0.9	8.7	0.6	0.3	0.0	0.0	0.0	0.0	28
29	0.0	0.5	0.5	4.3	0.9	4.6	0.6	0.3	0.0	0.0	0.0	0.0	29
30	0.0	0.5	0.5	6.3		3.0	0.5	0.2	0.0	0.0	0.0	0.0	30
31	0.1		0.4	4.9		2 • 6		0.2		0.0	0.0		31
MEAN	0.1	1.8	0.6	4.0	1.4	3.9	2.2	1.0	0.1	0.0	0.0	0.0	MEAN
MAX.	0.8	17.0	1.6	46.0	3.6	18.0	14.0	4.9	0.3	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.4	0.4	0.9	0.8	0.5	0.2	0.0	0.0	0.0	0.0	MIN.
AC. FT	4	109	38	248	80	237	133	63	7				AC.FT.

E — ESTIMATEO
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
— E AHD *

MEAN		MAXIMU			
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1.3	135	4.28	1	22	0330

MINIMUM GAGE HT. MO. DAY DISCHARGE TIME 10 1 2000 0.0

TOTAL ACRE FEET 921

	LOCATION			NUM DISCH	ARGE	PERIOD O	DATUM OF GAGE				
LATITUDE LONGITUDE		1/4 SEC. T. & R.	OF RECORD		OIS CHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF.	
		M.D.8.8.M.	C.F.S.	GAGE HT.	OATE	0.000,121.00	ONLY	FROM TO		GAGE	DATUM
37 42 58	120 11 20	SE34 2S 16E	1720E	5.73	2~ 8-60	DEC 58-DATE		1958		0.00	LOCAL

Station located below Dogtown Road Bridge, 0.5 mi. NE of Coulterville. Tributary to Merced River. Drainage area is 17.0 sq. mi. Altitude of gage is 1740 ft. (from topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 805170 MERCED RIVER BELOW SNELLING

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 1	34	19	21	17	20	19	28 *	63 *	48	67	77	70	1
2	45	19	21	17	20	18 *	26	67	47	63	76	69	2
3	84	20	21	17	20 *	17	26	79	50 *	66 *	76	69	3
4	26	21	21 *	18	20	18	23	82	4.9	71	76 +	61 *	4
5	20	24 *	22	21	19	17	18	91	46	68	75	62	5
6	14	28	21	22 *	19	19	16	94	50	67	68	50	6
7	13	24	21	22	19	19	18	94	53	69	69	50	7
8	9.5	23	21	22	22	19	13	77	55	70	66	43	8
9	8.4	22	21	21	22	18	14	73	74	68	69	28	9
10	8.6	23	21	22	26	18	18	68	94	70	71	19	10
11	19	23	20	22	26	19	29	59	8.2	76	72	9.0	11
12	15	23	19	21	26	23	28	56	79	79	75	19	12
13	12	22	18	21	26	21	26	5.5	73	79	73	17	13
14	11	25	18	21	25	20	23	71	60	320 70	72 75	8.4	14
15	11	33	19	21	22	19	38	70	57	70	75	7.3	15
16	13 *	26	19	20	23	19	54	60	69	61	73	5.0	16
17	15	25	18	20	22	19	62	59	71	58	79	3.4	17
18	15	25	18	21	23	20	53	58	51	53	79	3.0	18
19	14	30	19	21	22	20	61	56	59	56	73	2.7 2.5	19
20	14	41	19	21	22	19	70	51	66	54	8 2	2.5	20
21	14	33	18	29	22	17	70	52	67	52	101	2.2	21
22	13	29	18	38	21	18	70	57	73	51	76	2.1	22
23	14	31	18	36	21	20	75	57	71	59	53	2.1	23
24	14	32	18	27	21	23	80	60	67	82	19	1.9	24
25	15	28	19	24	21	22	69	64	68	73	44	1.7	25
26	15	27	18	24	17	22	67	68	74	68	55	1.5	26
27	15	27	18	23	17	21	68	72	72	65	57	1.5	27
28	15	22	19	21	17	19	68	63	66	75	64	1.5	28
29	17	21	18	21	18	16	64	60	70	75	63	1.5	29
30	20	21	18 18	21 22		16	62	49	69	79	63	1.3	30
31	17		18	22		15		47		81	65		31
MEAN	18.4	25 • 6	19.3	22.4	21.3	19.1	44.6	65.5	64.3	75.6	68.9	20.5	MEAN
MAX.	84.0	41.0	22.0	38.0	26.0	23.0	80.0	94.0	94.0	320	101	70.0	MAX.
MIN.	8.4	19.0	18.0	17.0	17.0	15.0	13.0	47.0	46.0	51.0	19.0	1.3	MIN.
AC. FT.	1132	1521	1186	1377	1228	1174	2652	4030	3828	4651	4237	1221	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M		
ISCHARGE	DISCHARGE	GAGE HT.			
38.9	1530	9.35	7	14	1440

MINIMUM										
DISCHARGE	GAGE HT.	MO.	DAY	TIME						
1.3	4.73	9	27	1630						

TOTAL ACRE FEET 28240

	LOCATION	MAXII	MUM DISCH	HARGE	PERIOD O	F RECORD	DATUM OF GAGE			:	
		1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF
LATITUDE	LONGITUDE	M.O.B.8.M.	C.F.S.	GAGE HT.	DATE	O B G T A K O E	ONLY	FROM	TO	GAGE	DATUM
37 30 06	120 27 03	NE17 5S 14E	4910	12.51	5-10-63	NOV 58-DATE		1958		0.00	LOCAL

Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream. Altitude of gage is 221 feet, USGS datum.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B05155 MERCED RIVER AT CRESSEY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	107	75	88	86	104	75	71 *	64	86	72	73	93	1
2	106	76	86	88	102	78 *	70	65	91	71	86	86	2
3	113	76	83	89 *	101 *	81	89	77	76	61	66	97	3
4	145	77	83 *	90	100	81	66	85 *	78 *	63	91 * 75		4
5	137	77 76 *	85	90	100	81	61	93	74	71	75	97	5
6	109	76	85	90	97	84	63	105	70	89 *	89	92	6
7	101	84	86	91	96	92	60	123	76	95	88	85	7
8	89	85	86	92	95	90	57	140	86	88	87	84	8
9	83	82	86	91	94	86	56	125	96	87	82	86	9
10	77	79	86	92	97	82	52	120	122	84	69	85	10
11	94	79	85	91	95	84	53	115	136	88	82 72	74	11
12	106	78	86	90	92	91	53	103	135	71	72	66	12
13	109	78	85	89	91	92	56	87	126	73	70	60	13
14	101	81	85	92	90	92	64	75	109	69	94 98	61	14
15	95	91	84	95	90	92	64	65	108	311	98	52	15
16	98 +	100	82	93	95	88	64	57	95	178	99	55	16
17	99	100	85	93	94	82	83	54	95	111	105	58	17
18	102	96	86	95	92	81	91	61	94	93	103	62	18
19	101	97	84	96	93	82	106	57	87	78	100	67	19
2D	98	107	84	95	92	82	127	48	75	63	110	85	20
21	94	111	86	103	93	78	122	48	66	63	110	56	21
22	91	111	86	136	93	75	127	58	64	84	120	51	22
23	89	105	83	343	92	79	124	67	67	67	151	44	23
24	86	103	85	215	96	81	114	71	70	59	142	49	24
25	86	104	87	158	87 *	80	113	70	75	58	118	53	25
26	83	101	86	132	86	80	109	75	72	68	81	49	26
27	84	97	89	116	83	80	104	65	63	73	82	45	27
28	85	95	88	112	81	79	89	83	58	69	100	40	28
29	82	94	87	107	80	76	72	96	59	64	99	27	29
30	76	91	86	103		75	70	93	62	59 63	111	33	30
31	74		86	105		72		90		63	112		21
MEAN	96.8	90.2	85.5	112	93.1	82.3	81.0	82.4	85.7	84.6	97.0	65.6	MEAN
MAX.	145	111	89.0	343	104	92.0	127	140	136	311	151	97.0 27.0	MAX.
MIN.	74.0	75.0	82.0	86.0	80.0	72.0	52.0	48.0	58.0	58.0	151 70.0	27.0	MIN.
AC. FT.	5950	5365	5254	6859	5357	5060	4820	5068	5100	5203	5964	3901	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	Μ					MINIM	J M			١
SCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	li	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1
88.0	523	12.40	7	15	1220	П	25.0	10.35	9	29	1850	l
	(i	l .	1	i /		\	I	I			,

TOTAL ACRE FEET 63900

	LOCATION			MAXIMUM DISCHARGE			OF RECORD	DATUM OF GAGE			
	LATITUDE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE	5.5 6.7.4.162	ONLY	FROM	то	GAGE	DATUM
37 25 28	120 39 47	SW 9 6S 12E	34400	22.67	12- 4-50	JUL 41-DATE	APR 41-JUL 41	1950		96.24	USCGS

Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream. Altitude of gage is approximately 85 ft. (USC & GS datum)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME B08720 ORESTIMBA CREEK NEAR CROWS LANDING 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1, 1	6.0	0.8	0.0	0.0	0.0	1.8	5.4	3.5	46	3.3	6.9	31	1
2	6.8	4.3	0.0	0.0*	0.0	2 • 1 *	19 *	12	27	4.4	8.2	25	2
3	5.5	13	0.0	0.0	0.0	1.7	6.2	9.3	10	4.1*	11	6.5*	3
4	5.3	23	0.0*	0.0	0.0*	2.3	3.4	14	8.8	4.9	11 *	7.6	4
5	3.9	27	0.0	0.2	0.0	2.9	6.1	18 *	7.9	5.1	13	17	5
6	9.1	21	0.0	0.6	0.0	3.2	8.0	4.9	7.4	4.5	16	11	6
7	12	20	0.0	0.6	0.0	3.8	7.1	3.2	5.9	6.7	25	4.0	7
8	2 • 6	22 *	0.0	0.5	0.0	2 • C	7.4	3.7	7.6*	11	20	26	8
9	2.0	17	0.0	0.4	0.0	2 • 2	7.3	2.3	18	10	22	4.8	9
10	2.9	6.5	0.0	0.8	0.0	1.5	6.8	1.1	11	11	27	7.7	10
111	3.5	0.6	0.0	0.6	3.3	2.9	7.6	7.6	62	9.9	14	8.2	111
12	6.2	0.4	0.0	9.0	4.6	2.1	6.8	4.6	46	6.7	13	23	12
13	1.9	16	0.0	0.7	4.4	8.7	8.7	4.4	20	6.2	14 .	4.0	13
14	1.3	9.7	0.0	0.9	4.9	2.5	6.5	2.5	11	5 . 8	13	4.3	14
15	0.8	4.4	0.0	1.1	4.0	5.0	6.3	6.3	7.4*	6.8	7.3	6.5	15
16	5.2*	1.2	0.0	2.3	5 • 9	7 • 2	6.2	1.9	4.3	7.6	7.3	6.2	16
17	2 • 3	0 • 2	0.0	1.3*	6.5*	11	6.4	4.8	6.7	8.2	23	6.7	17
18	0.8	0.0	0.0*	0.3	4.7	6.7	5.5	23	24	7.5	16	11	18
19	0.5	0.0	0.0	0.2	3.6	5 • 2	6.4	27	5.7	7.8	14	7.5	19
20	0 • 4	0.0	0.0	0.6	4.6	5.5	26	8.0	3.6	25	12	2.6	20
21	0.3	0.0*	0.0	1.1	2.2	6.2	26	16	12	11	12	5 2	21
22	0.3	0.0	0.0	0.7	3.2	7.5	24	17	21	8.3	9.7	26	22
23	0.3	0.0	0.0	0.2	4.9	2.2	3.6	5.0	13	8.3	19	5.6	23
24	0.4	0.0	0.0	0.0	4.3	72	21	7.2	7.7	9.5	49	5.4	24
25	0.4	0.0	0.0	0.0	3.5	93	13	32	4.3	12	20	6.3	25
26	0.4	0.0	0.0	0.0	4.3	101	7.5	21	5.4	14	6.9	15	26
27	0.5	0.0	0.0	0.0	3.3	110	5.6	20	4.2	15	22	1.2	27
28	0.6	0.0	0.0	0.0	2.7	57	4.5	20	6.1	21	12	19	28
29	0.6	0.0	0.0	0.0	2.2	36	7.9	17	5.0	6.5	19	6.6	29
30	0.7	0.0	0.0	0.0	, i	28	9.3	11	2.4	5.5	4.3	1.8	30
31	0.7		0.0	0.0		12		18		6 • 2	6.7		31
MEAN	2.7	6 • 2	0.0	0.4	2.7	20.2	9.5	11.2	14.1	8.6	15.3	12.1	MEAN
MAX.	12.0	27.0	0.0	2.3	6.5	110	26.0	32.0	62.0	25.0	49+0	52.0	MAX
MIN.	0.3	0.0	0.0	0.0	0.0	1.5	3.4	1.1	2.4	3.3	4.3	1.2	MIN.
AC. FT.	167	371		28	153	1240	567	687	837	543	941	721	AC.FT

E - ESTIMATED

NR - NO RECORD

- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

H - E AND *

	MEAN
Ì	DISCHARGE
	8 • 6
ı	

	MAXIMU	М		
DISCHARGE	GAGE HT.	MQ.	DAY	TIME
122	2.96	3	27	1150
(1	l	

	MINIM	J M _		
DISCHARGE	GAGE HT.			
0.0		11	18	0000
			L	

_	
	TOTAL
	ACRE FEET
l	6254
1	

	LOCATION	V	MAXII	NUM DISCH	IARGE	PERIOD O	PERIOD OF RECORD DATUM OF C			OF GAGE	
1/4 SEC. T		1/4 SEC. T. 8 R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. B. M.	C.F,S.	GAGE HT.	OATE	DIS STATUS	ONLY	FROM	TO	GAGE	MUTAO
37 24 59	121 00 45	SW 8 6S 9E	2650E	12.08	2- 1-63	DEC 57-DATE		1957		0.00	LOCAL

Station located 0.1 mi. below River Road Bridge, 3.7 mi. NE of Crows Landing. This includes drainage returned to San Joaquin River. Daily flows are estimated during periods of backwater from San Joaquin River. Altitude of gage is approximately 50 feet (from USGS topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 B07080 SAN JOAQUIN RIVER AT GRAYSON

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	695	545	705	570	620	380	500	380	475	320	245	435	1
2	635	525	705	570	605	365	555	385	465	330	235	470	2
3	600	535	705	580	605	350	510	395	490	335	280	480	3
4	645	535	765	570	600	360	510	460	46 5	320	275	440	4
5	755	555	765	575	600	335	445	480	440	345	280	425	5
6	850	570	765	600	560	330	450	490	425	350	265	455	6
7	1000	550	765	655	570	350	415	495	420	305	250	465	7
8	1300	545	765	740	555	345	400	510	420	310	250	420	8
9	940	555	765	765	535	355	365	510	490	285	270	375	9
10	870	540	765	760	510	355	330	455	540	270	275	360	10
111	910	525	765	745	500	330	315	480	610	260	240	330	111
12	1020	510	725	725	500	365	290	460	625	255	250	345	12
13	1260	510	725	710	490	455	290	425	610	250	240	370	13
14	1700	520	730	705	480	440	290	430	630	245	250	360	14
15	1600	540	715	700	475	415	310	400	610	230	250	330	15
16	1560	555	700	685	460	430	335	360	555	245	260	355	16
17	1010	570	700	680	480	410	330	385	490	285	300	360	17
18	1080	600	695	655	460	395	335	390	470	315	350	345	18
19	1030	640	680	635	445	370	405	430	425	320	330	350	19
20	1060	720	665	630	435	360	470	455	420	315	260	360	20
21	1480	760	655	655	425	305	485	460	440	305	290	365	21
22	1510	755	640	695	410	325	495	455	445	290	275	405	22
23	1260	805	625	715	410	490	470	430	390	260	345	410	23
24	1070	865	625	740	400	535	440	440	335	220	410	535	24
25	925	860	670	775	405	595	485	470	330	230	405	705	25
26	770	860	680	775	395	570	480	470	330	245	365	725	26
27	670	860	695	725	375	550	480	480	320	290	345	765	27
28	615	860	610	695	360	560	455	490	305	290	350	750	28
29	585	880	595	665	355	525	415	550	365	280	335	735	29
30	580	885	570	630		570	390	510	340	230	385	735	30
31	580	005	570	630		525		490		235	390		31
MEAN	986	651	694	677	484	421	418	452	456	283	299	465	MEAN
MAX.	1700	885	765	765	620	595	555	550	630	350	410	765	MAX
MIN.	580	510	570	570	355	305	290	360	305	220	235	330	MIN.
AC. FT.	60625	38747	42655	41603	27848	25874	24883	27808	27124	17385	18387	27689	AC.FT.

E — ESTIMATED

NR — NO RECORD

• — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M	•	\geq	MINIMUM						
DISCHARGE	DISCHARGE	GAGE HT.	MO. D	AY TI	AE	DISCHARGE	GAGE HT.	MO.	DAY	TIME		
524				i	- }	Į.			ll			
	<u></u>	L			ノ	<u></u>						

TOTAL ACRE FEET 380628

LOCATION			MAXIMUM DISCHARGE			PERIOD O	DATUM OF GAGE			:	
LATITUOE		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
	LONGITUDE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE	0.00.727.02	ONLY	FROM	TO	GAGE	DATUM
37 33 47	121 09 06	NW25 4S 7E	23900	45.15	3- 8-41	JUL 28-DATE		1960 1960	1959	0.00 0.00 3.81	USED USCGS USED

Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn. by City of San Francisco.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME B04175 TUDLUMNE RIVER AT LAGRANGE BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	175	1400	2800	1590	616	27	13	13	3.1	1.6	1.1	4.7	1
2	184	1440	2750	1660	530	23 *	16 #	12	3.3	2.7*	8.9	4.4*	1 2
3	192	1420	2410 #	1190	580 *	17	16	13	2.9*	2.7	8.3*	4.7	3
4	192	1460 *	2400	1400	645	16	9.8	13 *	3.5	1.7	11	4.0	4
5	193	1470	2420	1430	637	16	9.5	11	3.5	6.7	11	4.7	5
6	8.5	1460	2460	1480 #	656	15	9.8	12	4.0	5.5	12	4.2	6
7	187	1460	2400	1400	656	16	9.8	11	2.0	2.1	11	4.2	7
8	190	1470	2410	957	646	13	9.7	7 • 1	2.6	2.3	11	4.8	8
9	190	1490	2400	735	457	13	11	3.8	2.9	4.5	11	12	9
10	191	1480	2220	728	565	15	14	3.0	1.9	4.1	11	16	10
111	194	1510	2260	528	649	14	11	1.3	1.4	3.5	12	4.4	11
12	195	1540	2240	505	671	16	11	1 • 2	17	2.7	12	2.8	12
13	6.9	1560	2310	649	807	15	10	1.8	14	1.2	12	2.0	13
14	184	1580	2050	647	678	15	11	1.4	7.6	1.1	12	1.7	14
15	265	1670	2070	684	649	15	16	1.7	2 • 1	6.6	12	3.8	15
16	741	1860	2200	597	470	14	13	2.4	1.1	9.8	16	5.6	16
17	869	1860	2110	605	579	15	12	2.6	35	2.4	14	4.5	17
18	881	2030	2010	546	536	18	26	2.2	4 . 8	2.6	14	2.0	18
19	1230	2200	1870	540	348	14	13	16	1.9	0 • 2	13	1.6	19
20	1350	2280	1890	509	347	15	11	4.5	2 • 3	0.1	47	1.4	20
21	1710	2170	1860	787	354	16	16	2.7	1.7	0.0	13	1.2	21
22	1730 +	2340	1870	719	351	18	15	2.0	1.6	0.4	7.6	1.7	22
23	1720	2410	2090	618	305	16	12	2.0	3.3	1.3	3.9	4.1	23
24	1570	2400	2430	583	362	17	12	2.0	7.3	6.4	3.5	9.3	24
25	1120	2380	2370	576	443	16	12	2.3	3.7	10	24	5.5	25
26	1130	2440	2380	502	179	27	12	3.6	1.8	0.4	6.8	1.9	26
27	980	2540	1660	546	33	17	12	3.5	1.5	0.0	3.7	1.8	27
28	1170	2720	1640	616	54	24	12	3 • 2	1.4	0.0	3.4	1.1	28
29	1200	2710	1550	624	36	17	12	3.0	1.5	0.3	3.5	1.3	29
30	1210	2780	1470	779		15	13	3.3	1.5	1.1	3.4	0.6	30
31	1210		1730	632		18		3.5		0•0	3.6		31
MEAN	722	1918	2153	818	477	16.9	12.7	5.3	4.7	2.7	10.9	4.1	MEAN
MAX.	1730	2780	2800	1660	807	27.0	26.0	16.0	35.0	10.0	47.0	16.0	MAX
MIN.	6.9	1400	1470	502	33.0	13.0	9.5	1.2	1.1	0.0	1.1	0.6	MIN.
AC. FT.	44370	114100	132400	50310	27450	1037	755	327	282	167	668	242	AC.FT

E -- ESTIMATED

NR -- NO RECORD

* -- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

-- E AND *

MEAN		MAXIMU	м		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
512	2920	72.31	12	11	2020

	MINIM	J M		$\overline{}$
DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.0		7	20	2400
		1		lノ

TOTAL	
ACRE FEET	
372100	

LOCATION			MAXII	MUM DISCH	HARGE	PERIOD O	DATUM OF GAGE				
LATITUDE LO		1/4 SEC. T. & R.	OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.	
	LONGITUDE	M.D.B.8 M.	C.F.S.	GAGE HT.	DATE	010 01141102	ONLY	FROM	TO	GAGE	DATUM
37 39 59	120 27 40	NW20 3S 14E	48200	188.0	12- 8-50	OCT 36-SEP 60 OCT 61-DATE		1937		0.00	U S GS

Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. Drainage area is 1,540 sq. mi. Altitude of gage is approximately 175 feet (from USGS topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE 804165

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	61	1490	3040	1810	779	75	62	45	29	31	26	36	1
2	208	1590	3070	1840	701	67 *	58 +	46	36	30 *	27		* 2
3	233	1600	2690 *	1410	681 *	58	53	49	34 *	29	27 *	31	3
4	233	1610 *	2650	1570	774	51	57	52 *	37	29	27	33	4
5	231	1640	2670	1480	771	51	55	50	40	32	27	31	5
6	140	1660	2700	1480 *	774	52	51	55	39	33	29	34	6
7	94	1650	2660	1430	785	52	45	51	40	33	35	35	7
8	219	1660	2650	1290	770	48	45	50	42	31	36	32	8
9	225	1670	2650	845	636	46	44	50	46	31	37	30	9
10	230	1680	2420	845	613	46	45	45	42	31	35	28	10
11	251	1720	2410	755	733	45	46	43	43	28	35	29	11
12	232	1760	2430	622	728	52	49	39	47	27	33	29	12
13	139	1770	2510	626	815	53	50	36	45	27	33	30	13
14	98	1800	2250	775	850	49	51	31	44	30	38	30	14
15	249	1880	2260	780	765	49	45	32	46	30	41	26	15
16	642	2110	2330	744	599	48	49	33	46	29	43	27	16
17	1050	2110	2290	721	610	46	47	34	42	27	43	27	17
18	1050	2180	2180	720	668	45	49	33	44	25	39	31	18
19	1230	2430	2070	650	444	46	59	31	46	26	41	32	19
20	1470	2560	2080	635	409	46	51	31	44	29	46	31	20
21	1790	2410	2090	701	412	46	43	33	43	29	68	28	21
22	1860 #	2610	2060	948	404	50	43	36	36	28	49	29	22
23	1870	2680	2170	823	364	56	43	39	35	27	46	28	23
24	1840	2670	2570	750	350	53	43	36	37	28	42	28	24
25	1300	2650	2510	718	468	53	40	36	33	29	39	30	25
26	1320	2700	2630	686	426	54	38	36	32	30	37	35	26
27	1170	2770	1840	602	113	59	38	34	33	29	36	33	27
28	1290	2980	1810	723	84	56	42	34	34	28	37	32	28
29	1370	2960	1730	761	110	59	36	31	32	27	36	31	29
30	1360	3040	1650	819		56	39	30	32	28	35	28	30
31	1370	_	1830	872		54		32		27	38		31
MEAN	801	2135	2352	949	574	52.3	47.2	39.1	39.3	29.0	37.5	30.5	MEAN
MAX.	1870	3040	3070	1840	850	75.0	62.0	55.0	47.0	33.0	68.0	36.0	MAX
MIN.	61.0	1490	1650	602	84.0	45.0	36.0	30.0	29.0	25.0	26.0	26.0	MIN.
AC. FT.	49240	127000	144600	58380	33000	3215	2809	2406	2339	1781	2303	1815	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

— E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
590	3080	13.12	12	2	2030

	MINIM	J M		$\overline{}$
DISCHARGE	GAGE HT.	MO.	DAY	TIME
03.0	8.58	10	1	1640
				<u>ー</u> ノ

	TOTAL
	ACRE FEET
	428900
١.	,

LOCATION			MAXII	MUM DISCH	DISCHARGE PERIOD OF RECORD				DATUM OF GAGE			
		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.	
LATITUOE	LONGITUDE	M. O. B. B. M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM	
37 38 08	120 37 03	NW35 3S 12E	49800	128.2	12 8-50	JUL 28-OCT 36 JAN 37-FEB 38 JUN 38-DATE		1930 1940		106.20 0.00	USCGS USCGS	

Station located at highway bridge, 7.5 mi. E of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 110 feet (from USGS topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	804150	TUOLUMNE RIVER AT HICKMAN BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	83	1600	2770	1780	718	160	117	101	67	74	70	97	1
2	317	1710	2810	1830	653	149 *	114 *	108	69	77 *	69	92 *	2
3	370	1710	2480 *	1450	610 *	141	112	113	77 *	79	65 *	93	3
4	382	1700 *	2430	1630	724	130	119	111 *	75	75	53	99	4
S	399	1720	2450	1500	725	126	115	109	77	80	55	93	5
6	363	1740	2510	1490 *	725	128	110	120	78	82	56	94	6
7 1	158	1700	2490	1520	739	126	101	122	77	78	63	101	7
8	361	1710	2480	1460	731	123	98	118	84	77	68	101	8
9	388	1700	2490	941	668	118	99	118	102	80	62	94	9
10	385	1680	2280	917	539	115	94	114	88	80	55	98	10
11	586	1690	2240	856	710	118	95	112	84	77	51	97	11
12	594	1730	2280	697	714	121	96	100	86	72	50	101	12
13	532	1740	2350	680	771	122	102	98	84	72	50	99	13
14	208	1740	2150	847	862	120	99	92	8.2	69	55	101	14
15	417	1810	2110	826	758	116	92	85	84	75	58	96	15
16	653	1970	2200	802	645	113	91	90	89	78	65	94	16
17	1150	1980	2150	767	590	115	94	89	92	74	70	94	17
18	1190	2000	2080	761	701	108	93	8.2	93	70	62	93	18
19	1300	2310	1920	692	502	112	108	80	104	65	55	100	19
20	1610	2450	1930	682	442	111	107	79	95	74	62 E	100	20
21	1880	2300	1960	711	441	114	98	84	95	78	63 E	93	21
22	2000 -	2480	1930	988	441	119	94	86	88	69	69 E	90	22
23	1950	2540	2020	850	415	123	97	87	79	66	74 E	91	23
24	1960	2550	2480	762	388	119	94	92	72	72	81 E	85	24
25	1480	2510	2450	718	505	117	95	99	76	67	97 E	87	25
26	1480	2530	2600	694	530	117	92	100	70	71	8.8	94	26
27	1350	2550	1810	584	260	120	92	94	69	76	88	96	27
28	1360	2750	1790	705	278	115	92	93	70	73	95	97	28
29	1500	2730	1650	727	249	112	91	95	73	67	93	94	29
30	1480	2780	1590	729		110	94	83	76	69	92	91	30
31	1490		1770	834		107		69		73	98		31
MEAN	948	2070	2215	982	587	121	99.8	97.5	81.8	73.8	68.8	95.2	MEAN
MAX.	2000	2780	2810	1830	862	160	119	122	104	82.0	98.0	101	MAX.
MIN.	83.0	1600	1590	584	249	107	91.0	69.0	67.0	65 • 0	50.0	85.0	MIN.
AC. FT.	58270	123200	136200	60360	33790	7428	5940	5996	4869	4540	4229	5663	AC.FT

E - ESTIMATED

NR - NO RECORD

* DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.			
620	2870	76 • 12	12	26	1340
.)	1				

(MINIM	J M		
DISCHARGE	GAGE HT.	МО	DAY	TIME
42.0	71.36	8	12	2150
(1	ì	l	レノ

TOTAL
ACRE FEET
450400

	LOCATION	٧	MAXI	MUM DISCH	HARGE	PERIOD O	DATUM OF GAGE				
ATITURE	LONGITUDE	1/4 SEC. T. 8 R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M. O. B. & M.	C.F,S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
37 38 10	120 45 14	NW34 3S 11E	59000	96.2	12- 8-50	JUL 32-OCT 36 JAN 37-MAR 37 JUL 37-FEB 38 JUL 38-DEC 38		1932		0.00	VSCGS
						MAR 39-DATE					

Station located at Hickman-Waterford Road Bridge, immediately S of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 80 feet, USC&GS Datum. In August 1964 this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford Road Bridge.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 804130 DRY CREEK NEAR MODESTO 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	59	20	20	16	33	13	53	78	46	40	30	61	1
2	60	20	20	16	29	14 *	67 *	83	51	39 *	31	57	2
3	62	19	19 *	16	25	16	53	85	48	33	34 *	52	3
4	66	19 *	19	16	23	15	34	92	47	29	28	53 4	4
5	77	20	19	16	20 *	19	32	82 *	46	29	28	4 2	5
6	80	21	19	16 *	19	31	29	89	5 3	35	28	44	6
7	75	21	19	16	18	51	30	86	51	32	25	43	7
8	69	21	19	17	17	50	32	61	52 *	24	27	47	8
9	69	21	19	16	18	59	44	49	58	26	33	50	9
10	78	21	19	16	17	59	43	43	71	26	38	51	10
11	110	20	19	15	16	51	46	44	53	33	33	53	11
12	236	20	19	16	15	50	50	44	43	30	30	51	12
13	124	20	18	16	15	46	49	45	47	29	27	43	13
14	74	22	18	17	15	35	48	53	46	27	30	47	14
15	58	29	19	16	16	29	61	47	46	27	30	42	15
16	54 #	30	18	16	16	20	63	39	53	24	27	47	16
17	51	30	18	17	16	27	54	36	54	30	36	43	17
18	42	29	18	17	17	26	60	41	5.5	30	38	42	18
19	37	30	18	16	16	27	62	42	55	28	33	47	19
20	32	34	18	20	16	29	75	44	62	33	38	45	20
21	28	45	17	30	15	37	68	44	57	30	43	43	21
22	25	42	17	213	16	54	71	44	51	36	38	45	22
23	24	31	17	779	16	89	73	46	43	29	39	43	23
24	23	32	17	227 *	15	59	76	49	41	29	40	47	24
25	23	38	17	128	14	42	78	48	43	30	31	47	25
26	21	30	17	88	13	31	81	47	38	29	28	46	26
27	20	25	17	68	12	27	8.8	46	37	30	34	43	27
28	20	22	17	56	12	26	72	51	31	35	37	50	28
29	20	20	17	47	14	25	59	49	35	33	37	57	29
30	21	20	17	42		23	60	51	36	37	44	57	30
31	20		17	38		27		50		33	52		31
MEAN	56.7	25.7	18.1	65.9	17.4	35.7	57.0	55 • 1	48.3	30.8	33.8	47.9	MEAN
MAX.	236	45.0	20.0	779	33.0	89.0	88.0	92.0	71.0	40.0	52.0	61.0	MAX.
MIN.	20.0	19.0	17.0	15.0	12.0	13.0	29.0	36.0	31.0	24.0	25.0	42.0	MIN.
AC. FT.	3487	1531	1115	4052	1000	2196	3394	3388	2874	1894	2077	2852	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M.		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
41.1	1060	75 • 53	1	23	0700

DISCHARGE	GAGE HT.	MO.	DAY	TIME
10.0	67.55	2	28	0650

TOTAL ACRE FEET 29860

LOCATION			MAXI	MUM DISCH	HARGE	PERIOD C	DATUM OF GAGE				
LATITUOE	LONGITURE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF.
LATITUGE	LONGITUDE	M. D. B. & M.	C.F.S.	S. GAGE HT. DATE		DISTORTANCE.	ONLY	FRDM	TO	GAGE	DATUM
37 39 26	120 55 19	SE24 3S 9E	7710	88.04	12-23-55	MAR 41-DATE		1941		0.00	USCGS

Station located 0.1 mi. below Claus Road Bridge, 4 mi. E of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. This is a Department of Water Resources-Modesto Irrigation District cooperative station. Altitude of gage is approximately B0 feet. USC & GS datum.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	804105	TUOLUMNE RIVER AT TUOLUMNE CITY

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	370	1700	2850	1930	845	345	300	270	240	230	200	260	1
2	370	1800	2860	1900	770	335	320	280	230	230	200	255	2
3	460	1860	2870	1930	720	330	305	285	235	230	195	240	3
4	530	1880	2650	1640	700	325	300	295	230	230	190	235	4
5	555	1890	2610	1720	755	315	300	290	225	225	195	240	5
6	595	1910	2630	1670	755	310	300	300	230	225	185	240	6
7	555	1910	2650	1720	755	325	290	300	245	230	180	230	7
8	435	1900	2620	1640	760	325	285	290	250	220	190	225	8
9	545	1900	2620	1470	745	325	275	270	265	200	205	230	9
10	565	1910	2600	1180	780	330	270	260	260	205	200	235	10
11	715	1900	2470	1110	660	325	265	255	255	205	200	240	111
12	970	1910	2440	1000	735	340	270	250	240	205	200	240	12
13	1010	1940	2440	905	745	340	265	245	240	200	200	245	13
14	855	1960	2480	915	805	315	265	235	245	200	200	235	14
15	645	2010	2320	970	815	315	260	235	240	190	215	245	15
16	725	2050	2280	970	760	300	265	240	250	185	225	255	16
17	915	2170	2350	935	670	290	260	245	250	185	205	250	17
18	1280	2190	2290	905	670	290	260	245	250	190	200	245	18
19	1320	2270	2230	870	695	295	260	240	245	200	200	240	19
20	1510	2500	2150	830	540	295	265	240	245	200	200	250	20
21	1750	2560	2140	880	535	290	275	235	250	200	210	240	21
22	2030	2480	2140	1000	530	310	275	230	245	195	220	235	22
23	2130	2620	2120	1530	520	330	275	235	230	205	225	235	23
24	2130	2660	2240	1350	490	330	275	235	225	200	220	230	24
25	2080	2650	2510	1010	485	320	265	235	225	195	210	235	25
26	1700	2630	2530	900	545	310	265	230	225	200	205	240	26
27	1660	2650	2510	810	530	305	280	225	230	195	210	240	27
28	1550	2680	2040	745	390	300	275	230	230	185	215	235	28
29	1610	2800	1960	795	350	300	270	230	225	180	210	255	29
30	1680	2800	1860	800		295	265	240	235	185	220	285	30
31	1690		1810	825		285		240		190	240		31
MEAN	1128	2203	2396	1189	657	314	277	253	240	204	205	242	MEAN
MAX.	2130	2800	2870	1930	845	345	320	300	265	230	240	285	MAX
MIN.	370	1700	1810	745	350	285	260	225	225	180	180	225	MIN.
AC. FT.	69332	131088	147312	73101	37795	19329	16463	15540	14261	12526	12635	14410	

E — ESTIMATED
NR — NO RECORD
* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
— E AND *

MEAN		MAXIM	Ū M		
776	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHA

	MINIM	U.M.		
DISCHARGE	GAGE HT.	MO.	DAY	TIME

TOTAL ACRE FEET 563792

	LOCATION	N	MAXI	MUM DISCH	ARGE	PERIOD O	F RECORD	DATUM OF GAGE			:
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF
LATITUDE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	ON GAGE	DATUM
37 36 12	121 07 50	NW 7 4S 8E				30-DATE		1960	1959	0.00	USED USCGS
	•	•				•	•	1960	, ,	3.50	USED

Station located at highway bridge, 3.35 mi. above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Records furn. by City of San Francisco.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

1	WATER YEAR	STATION NO.	STATION NAME	`
	1964	B07060	SAN JOAQUIN RIVER AT HETCH HETCHY AQUEOUCT CROSSING	_

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1070	2155	3285	2385	1665	615	765	615	630	480	335	799	1
2	1025	2130	3295	2415	1595	615	810	660	570	480	345	790	2
3	1050	2200	3275	2430	1545	575	775	685	565	490	390	770	3
4	1160	2220	3115	2280	1500	560	700	740	525	485	370	706	4 [
S	1310	2245	3000	2250	1535	525	700	765	520	485	340	657	5
6	1575	2285	2975	2245	1540	505	665	810	495	525	325	690	6
7	1865	2275	2975	2285	1530	570	590	780	505	480	305	719	7
8	2035	2260	2955	2350	1505	570	595	745	555	440	310	667	8
9	1785	2275	2955	2335	1435	570	575	685	695	410	340	626	9
10	1680	2275	2965	2080	1375	580	520	640	785	395	380	581	10
111	1790	2250	2880	1975	1260	560	515	630	790	385	330	575	111
12	2175	2245	2820	1905	1295	585	540	580	805	390	340	598	12
13	2490	2260	2825	1780	1315	690	520	530	740	395	345	623	13
1 14	2755	2275	2835	1740	1320	670	500	510	725	365	335	633	14
15	2840	2315	2760	1790	1360	640	500	495	720	325	370	579	15
16	2445	2360	2685	1775	1290	625	530	485	640	295	410	582	16
17	2330	2345	2700	1760	1255	575	540	495	580	345	505	567	17
18	2485	3140	2710	1660	1185	585	540	520	530	380	525	582	18
19	2520	2565	2650	1570	1205	630	565	575	510	420	538 a	577	19
20	2515	2820	2586	1570	1090	650	665	585	480	420	493	616	20
21	2965	2950	2595	1640	990	610	660	630	490	405	462	632	21
22	3340	2910	2630	1700	945	630	660	625	520	390	476	702	22
23	3850	3005	2620	2145	935	855	660	590	480	390	540	772	23
24	3000	3115	2635	2300	895	890	630	575	435	345	611	913	24
25	2950	3125	2885	2000	840	900	640	635	435	325	607	1070	25
26	2580	3115	3030	1875	860	875	685	650	420	365	574	1100	26
27	2325	3125	3040	1780	860	840	705	640	435	385	545	1170	27
28	2165	3140	2680	1655	725	805	690	620	480	380	592	120 0	28
29	2140	3225	2515	1655	605	775	630	645	485	330	582	1100	29
30	2195	3855	2410	1650		780	605	680	505	295	625	1110	30
31	2200		2355	1620		740		650		280	707		31
MEAN	2213	2615	2827	1955	1223	664	623	628	550	396	450	757	MEAN
MAX.	3850	3855	3295	2430	1665	900	810	810	805	525	707	1200	MAX.
MIN.	1025	2130	2355	1570	605	505	500	485	420	280	305	567	MIN.
AC. FT.	136086	155623	173821	120198	70324	40850	37041	38618	33818	24357	27670	45040	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

- E AND *
a - See note (a) below.

MEAN			MAXIMU	М		$\overline{}$			MIN	MI	JM		
DISCHARGE	H	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE	HT.	MO.	DAY	TIME
1242	Н						Ш					lΙ	
j	١,			ı		1 /			•		l		

TOTAL ACRE FEET 903446

LOCATION MAXIMUM DISCHARGE				HARGE	PERIOD C	F RECORD	DATUM OF GAGE				
	. 01/6/7/105	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
LATITUDE	LONGITUOE	M, D, B, & M,	C.F.S.	GAGE HT.	DATE	DIS GITAINGE	ONLY	FROM	то	GAGE	DATUM
37 38 10	121 12 54	NE32 3 S 7 E	38400	38.43	4- 2-40	MAR 33-DATE		1960	1959	0.00	USED

Station located 2.9 mi. above the mouth of the Stanislaus River. Records furn.by City of San Francisco.

(a) Daily mean discharge from August 19 through September 30, 1964, computed from San Joaquin River at Maze Road Bridge gage height record by Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 803175 STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE

DAY	94 92 92	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
2	92		170										$\overline{}$
		744		770	854	85	182	34	30	23	24	31	1
		199	269	770	853	71	168 *	3 3	30	21 *	2.5	28	* 2
		139	181 *	779	850	70 *	121	36	32	20	27 *	29	3
4	93	144 *	183	779	855 *	71	116	36 *	29 *	22	27	23	4
5	95	153	185	775	858	73	113	31	26	30	30	26	5
6	91	154	183	781	852	79	117	37	26	26	32	21	6
7	91	165	181	773 *	642	85	126	36	31	22	39	18	7
8	97	171	184	779	197	85	147	28	32	22	30	18	8
9	95	159	194	778	188	83	123	28	36	20	28	19	9
10	93	164	182	781	168	86	75	28	31	20	27	20	10
11	149	156	174	776	162	86	68	24	27	23	29	21	111
12	683	159	161	781	177	83	79	30	2.5	23 25	30	20	12
13	633	158	175	780	163	81	83	25	26	22	32	23	13
14	601	161	180	771	131	75	60	27	31	21	35	20	14
15	617	164	156	777	97	74	40	28	28	21 23	3 2	20	15
16	606	183	167	657	90	77	41	25	27	30	30	28	16
17	610	159	176	354	86	80	35	27	26	25	30	21	17
18	199	182	157	544	84	80	39	23	28	25	33	19	
	94	166	560	539	84	78	39	23	31	23	28	19	18
19	115	230	777	542	83	78	35	24	29	26	27	21	19
	125 *	178	775	757	82	80	36	27	29	23	26	21	
21				1210		81	39	27	29	22	28	23	21
22	141	208	775		81								22
23	149	194	775	871	81	78	35	29	30	24	30	25	23
24	145	210	777	849	83	76	37	27	33	22	31	20	24
25	142	189	775	848	80	76	38	24	28	25	28	18	25
26	153	186	776	840	80	75	35	27	25	24	25	21	26
27	152	161	764	836	76	77	36	35	24	29	27	22	27
28	132	172	746	837	80	78	41	33	25	27	26	23	28
29	135	176	773	838	80	82	39	29	22	26	29	25	29
30	146	178	777	837		82	34	28	25	26	26	21	30
31	142		734	845		97		27		24	27		31
MEAN	219	170	421	770	283	79.4	72.6	28.9	28.4	23.9	29.0	22.1	MEAN
MAX.	683	230	777	1210	858	97.0	182	37.0	36.0	30.0	39.0	31.0	MAX.
MIN.	91.0	139	156	354	76.0	70.0	34.0	23.0	22.0	20.0	24.0	18.0	MIN.
AC. FT.	13490	10130	25870	47310	16260	4883	4318	1777	1688	1470	1781	1317	

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AHD *

MEAN		MAXIMU	м		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
179	1640	5.28	1	22	0650
.)	(1	l	l	,

MINIMUM GAGE HT. MO. DAY TIME 1-31 9 7 1740 DISCHARGE 17.0

TOTAL ACRE FEET 130300

	LOCATION	V	MAXII	MAXIMUM DISCHARGE		PERIOD O	F RECORD	DATUM		OF GAGE	
LATITUDE		1/4 SEC. T. 8 R.		OF RECORE)	DISCHARGE	GAGE HEIGHT	PER	HOD	2ERO ON	REF.
LATTIODE	LONGITUDE	M. D. B. 8 M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 47 18	120 45 41	SW 4 2S 11E	52000	30.05	11-21-50	JUN 28-DEC 39 APR 40-DATE				0.00	LOCAL

Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants. Drainage area, 1,020 sq. mi. Altitude of gage is approximately 7D feet (from U.S.G.S. topographic map).

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME B03145 STANISLAUS RIVER AT RIVERBANK

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	170	207	211	809	904	128	188	72	45	62	74	80	1
1 2	167	211	215	848	900	128	153 *	71	47	59 *	67		* 2
3	162	211	310 *	853	904	119 *	108	71	41	62	73 *	73	3
4	165	209 *	224	849	903 *	116	96	71 *	41 *	61	63	76	1 4
5	169	217	226	840	906	124	96	71	39	67	65	72	5
6	163	222	226	840	898	131	94	73	36	70	65	75	6
7	168	219	219	846 *	880	144	98	73	41	67	66	72	7
8	166	229	222	845	391	140	103	67	46	73	75	63	8
9	170	225	230	850	259	133	105	56	54	66	70	67	9
10	173	224	245	853	244	136	100	53	56	63	71	6.2	10
11	234	221	231	850	226	146	83	52	48	64	68	64	1,,
12	579	216	216	849	224	173	83	52	48	72	74	66	12
13	772	215	211	856	230	122	91	52	48	71	80	68	13
14	728	216	224	854	200	113	83	49	52	72	82	75	14
15	727	225	217	855	177	114	67	47	55	69	80	71	15
16	738	225	197	846	152	123	61	47	58	70	77	69	16
1 17	735	231	217	488	146	114	61	50	57	72	80	75	17
18	559	218	216	559	144	115	62	46	57	71	78	73	18
19	199	230	320	596	143	109	62	45	56	67	78	68	19
20	164	263	818	596	141	115	62	43	52	77	69	69	20
21	177 *	290	853	686	139	114	62	42	57	78	67	72	21
22	189	245	853	1220	139	125	61	43	60	65	70	77	22
23	207	249	853	1020	136	159	63	52	51	67	78	8.2	23
24	204	259	852	933	132	118	60	50	59	68	77	79	24
25	199	247	847	917	130	112	59	45	62	63	75	75	25
26	207	231	846	907	125	109	68	42	54	74	69	75	26
27	211	223	853	903	125	103	73	44	48	72	66	73	27
28	201	205	811	902	124	105	74	47	62	69	74	77	28
29	185	217	847	897	128	112	81	41	59	74	75	79	29
30	203	216	845	902		120	74	43	58	72	77	77	30
31	205		837	901		116		44		71	69		31
MEAN	300	227	468	838	350	124	84.4	53.4	51.6	68.6	72.6	72.7	MEAN
MAX.	772	290	853	1220	906	173	188	73.0	62.0	78.0	82.0	82.0	MAX.
MIN.	162	205	197	488	124	103	59.0	41.0	36.0	59.0	63.0	62.0	MIN.
AC. FT.	18440	13520	28740	51510	20130	7609	5020	3281	3068	4221	4467	4326	

E — ESTIMATED

NR — NO RECORD

* — OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

— E AHD *

MEAN)		MAXIMU	M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
226	1520	77.47	1	22	1500
,		1	1	ı	

M 1 N 1 M U M GAGE HT. MO. DAY TIME 72 4 6 6 1520 DISCHARGE 34.0 6 1520 TOTAL ACRE FEET 164300

	LOCATIO	N	MAXIMUM DISCHARGE			PERIOD C	DATUM OF GAGE				
		1/4 SEC, T, 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUOE	M. 0. 8. 8 M.	C.F.S.	GAGE HT.	DATE	OISCHARGE	ONLY	FROM	TO	GAGE	DATUM
34 44 31	120 56 21	SW24 2S 9E	85800	103.18	12-23-55	JUL 40-DATE		1940		0.00	USCGS

Station located at Burneyville Bridge, immediately N of Riverbank. Drainage area 1,055 sq. mi.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	B03115	STANISLAUS RIVER AT KOETITZ RANCH

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	324	281	303	858	922	185	258	120	131	95	106	151 *	1
1 2	327	278	296	868	917	187	315 +	110	122	98	112	152	2
3	363	279	311 *	883	915	182 *	269	117	136	108	91 *	160	3
1 4	343	280 *	348	887	913 *	170	217	137 *	120 *	124	102	154	4
5	319	281	311	889	916	157	225	140	124	145	116	134	5
6	302	290	304	889	918	160	212	162	118	132 +	108	128	ا ہ ا
,	321	290	300	888 *	915	171	176	139	126	132	95	127	7 1
lé	324	289	298	889	824	191	169	149	138	149	96	123	8
9	307	293	298	889	501	201	179	134	192	139	117	121	9
10	313	291	303	890	400	186	193	129	180	125	153	127	10
111	440	288	310	890	359	189	187	111	198	106	149	120	11
12	552	288	300	890	330	210	189	107	175	117	144	110	12
13	742	286	291	887	321	215	178	113	148	124	122	108	13
14	816	287	285	890	314	184	174	106	137	126	116	119	14
15	832	291	292	885	287	175	171	110	134	131	108	134	15
16	823	289	284	883	262	171	155	92	134	125	126	140	16
17	784	295	273	823	242	172	137	96	136	123	109	136	17
18	753	295	280	579	229	243	156	121	131	111	112	147	18
19	563	293	277	633	218	233	156	111	122	118	125	150	19
20	365	313	401	645	211	209	153	105	131	116	109	147	20
21	308 *	348	708	660	207	233	143	110	143	120	114	169	21
22	290	350	796	798	204	225	135	106	133	119	118	178	22
23	291	329	826	1120	197	303	134	108	128	108	134	175	23
24	293	340	846	1020	196	250	122	118	109	112	134	171	24
25	289	349	849	951	194	227	122	127	109	112	109	168	25
26	285	329	848	932	186	218	130	120	115	118	108	183	26
27	291	312	856	926	179	217	143	126	108	115	93	189	27
28	291	300	862	919	184	204	134	120	107	100	91	182	28
29	280	290	847	919	182	214	118	119	112	98	105	153	29
30	274	294	869	919		212	116	131	124	94	119	158	30
31	281		877	921		213		135		107	128		31
MEAN	422	301	492	868	436	204	172	120	134	118	115	147	MEAN
MAX.	832	350	877	1120	922	303	315	162	198	149	153	189	MAX.
MIN.	274	278	273	579	179	157	116	92.0	107	94.0	91.0	108	MIN.
AC. FT.	25960	17890	30250	53400	25080	12510	10250	7396	7976	7234	7079	8755	AC.FT.

E - ESTIMATED

NR -- NO RECORD

* -- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

-- E AMD *

MEAN		MAXIMU	м		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME
294	1170	33.09	1	23	1440

MINIMUM

GAGE HT. MO. DAY TIME
26.53 7 1 2400 DISCHARGE 1 2400 79.0

TOTAL ACRE FEET 213800

-	LOCATION MAXIMUM DISCHARGE				IARGE	PERIOD C	DATUM OF GAGE				
	. 0	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 41 57	121 10 D8	SW 2 3S 7E				OCT 62-DATE	MAR 50-SEP 62	1950 1951 1951	1951		USED USCGS USED

Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 807020 SAN JOAQUIN RIVER NEAR VERNALIS

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1440 E	2550	3900	3300	2600	800 E	1120	672	690	493	274	911	1
2	1420 E	2480	3920 *	3330	2530	760 E	1200 *	704	601	461	320	930	2
3	1400 E	2570	3910	3350	2500	720 E	1170	736	589	457	340	898 *	
4	1440 E	2600	3810	3250	2450 #	695 *	925	785	569 *	465	334 *	880	4
s	1630 E	2610	3620	3190	2480	695	862	834 *	557	517	320	834	5
6	1920	2660	3560	3180	2480	722	844	888	537	557	320	821	6
7	2190	2660	3550	3200	2470	785	740	935	569	513 *	267	857	7
8	2470	2640	3530	3280 *	2440	826	686	898	628	437	274	821	8
9	2220	2640	3540	3290	2000 E	839	677	850 E	848	445	306	780	9
10	2050	2650	3540	3050	1800 E	816	659	800 E	1060	393	373	718	10
11	2230 *	2640	3490	2910	1600 E	776	659	700 E	1080	397	344	704	11
12	2720	2630 *	3400	2840	1600 E	821	672	632	1060	377	316	708	12
13	3140	2630	3400	2710	1650 E	970	636	581	960	405	330	704	13
14	3470	2640	3410	2650	1650 E	960	589	561	852	337	302	749	14
15	3660	2690	3370	2700	1700 E	880	561	501	848	288	330	740	15
16	3310	2740	3260	2680	1600 E	830	614	505	776	253	377	704	16
17	3120	2800	3260	2680	1500 E	767	593 *	505	708	306	501	700	17
18	3200	2920	3280	2450	1400 E	762	589	561	614	340	489	700	18
19	3210	2980	3230	2360	1500 E	902	597	654	577 *	397	521	704	19
20	3040	3220	3150	2350	1400 E	893	749	650	521	409	485	722	20
21	3290	3420	3350	2410	1200 E	888	780	672	541	369	429	776	21
22	3680	3430	3490	2510	1200 E	898	767	672	593	358	457	790	22
23	3670	3530	3510	3110	1150 E	1240	776	664	533	373	537	816	23
24	3540	3690	3540	3360	1150 E	1330	785	668	441	344	654	1040	24
25	3370	3740	3790	3000	1100 E	1290	772	722	425	298	650	1220	25
26	3090	3740	3910	2840	1100 E	1260	785	726	409	351	589	1290	26
27	2790	3720	3980	2730	1150 E	1220	808	722	429	369	565	1390	27
28	2650	3740	3700	2600	1000 E	1160	821	944	489	358	581	1490	28
29	2520	3820	3460	2590	820 E	1120	776	740	481	320	589	1290	29
30	2550	3860	3360	2580		1100	713	780	517	250	677	1300	30
31	2570		3300	2550		1070		740		236	790		31
MEAN	2677	3021	3533	2872	1697	929	764	703	650	383	440	900	MEAN
MAX.	3680	3860	3980	3360	2600	1330	1200	935	1080	557	790	1490	MAX.
MIN.	1400 E	2480	3150	2350	820 E	695	561	501	409	236	267	700	MIN.
AC. FT.	164600	179800	217200	176600	97630	57100	45470	43240	38680	23550	27060	53530	AC.FT.

E - ESTIMATED NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M			. 4		MINIMU	JM		_
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	П	DISCHARGE	GAGE HT.	MO.	DAY	ī
1547	4020	15.58	12	27	1400	П	213	8.86	7	31	ı
			1)	'\	.			li	ı

TOTAL ACRE FEET 1124000

	LDCATION MAXIMUM DISCHARGE			PERIOD O	F RECORD	DATUM OF GAGE					
LATITUDE	LONGITURE	1/4 SEC. T.& R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
LATITUDE	LONGITUDE	M.O.B.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	OATUM
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23 JAN 24-FEB 25		1931		8.4	USED
•		•	J	'	ı	JUN 25-OCT 28 MAY 29-DATE		1 1959	1959		USCGS

Station located on left bank 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River 3.4 mi. NE of Vernalis. Drainage area is approx. 14,010 sq. mi. Natural flow of stream affected by storage reservoirs, power development, ground water withdrawals and diversions for irrigation. Low flows consist mainly of return flow from irrigation. This station is operated under the Federal-State Cooperative Program. The records are furnished by the U.S.G.S.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C01120 1964 SOUTH FORK KINGS RIVER BELOW EMPIRE WEIR #2

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	110	0.0	0.0	18.0	19.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	1 1
2	99	0.0	0.0	21.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	2
3	100	0.0	0.0	21.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	11.7	3
4	130	0.0	0.0	24.0	11.0	0.0	0.0	0.0	0.0	0.0	0.0	11.7	4
5	114	0.0	0.0	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11.7	5
6	94	0.0	0.0	45.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.8	6
7	34	0.0	0.0	57.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	7
8	6.0	0.0	0.0	62.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	8
9	5.0	0.0	0.0	34.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	9
10	5.0	0.0	0.0	45.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	10
11	4.0	0.0	0.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	111
12	4.0	0.0	0.0	43.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	12
13	3.0	0.0	0.0	38.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	13
14	0.0	0.0	0.0	42.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	14
15	0.0	0.0	0.0	36.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	15
16	0.0	0.0	0.0	37.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29.4	16
17	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	7.9	29.4	17
18	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	7.9	29.4	18
19	0.0	0.0	0.0	28.0	0.0	0.0	0.0	0.0	0.0	0.0	7.9	29.4	19
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.1	29.4	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.4	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.0	22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	29.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	25
26	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	26
27	0.0	0.0	0.0	19.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	27
28	0.0	0.0	0.0	18.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	28
29	0.0	0.0	0.0	19.0	0.0	0.0	0.0	0.0	0.0	0.0	10.4	28.0	29
30	0.0	0.0	8.0	20.0		0.0	0.0	0.0	0.0	0.0	10.4	28.0	30
31	ŏ.ŏ	0.0	13	19.0		0.0		0.0		0.0	10.4		31
MEAN	22	0.0	0.0	26.0	2.0	0.0	0.0	0.0	0.0	0.0	5.0	26.0	MEAN
MAX.	130	0.0	13.0	62.0	19.0	0.0	0.0	0.0	0.0	0.0	10.4	29.4	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	1404	0.0	42	1587	131						292	1543	

E - ESTIMATEO
NR - NO RECORD
* DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW
- E AND *

MEAN		MAXIMU	м				MINIM	J M_		
DISCHARGE 6 · 8	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
•••										

TO	TAL
ACRE	FEET
	4999
	,

	LOCATION	4	MAXIMUM DISCHARGE			PERIOD (F RECORD	DATUM OF GAGE			
LATITUDE I LONGITUDE I		1/4 SEC. T. 8. R.		OF RECORO		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
LATITODE	LONGITUDE	M.O.B.8.M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	ON	DATUM	
36 10	119 50	20S 19E									

Station located 1.0 mi. SW of Stratford. So. Fork Kings River, composed of Kings River water, is a tributary to the Tulare Lake area. Records furn. by Kings River Water Association.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

1	WATER YEAR	STATION NO.	STATION NAME	
	1964	C02602	CROSS CREEK BELOW LAKELAND CANAL #2	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2													1 2
3													3
4													4 5
5											Ì		
6						1				}			6. 7
7 8													8
9													9
10				l				1				1	10
11						:		}					11
12				l				1					12
13 14				l									13 14
15				1	ļ	NO I	FLOW						15
16				į			1						16
17				1									17
18				1						ļ			18
19 20									ļ.	}			19 20
21 22										l			21 22
23													23
24				[1		i	24
25						İ				!			25
26						Ì							26
27 28				l									27 28
29										ŀ			29
30												j	30
31					ļ							ļ	31
MEAN					İ			1					MEAN MAX.
MAX. MIN.													MAX.
AC. FT.									1				MIN. AC.FT.

E -- ESTIMATED

NR -- NO RECORD

* -- DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

-- E AMD *

MEAN		MAXIMUM					MINIMUM					
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME		
0.0)	0.0		10	1	0000		

TOTAL ACRE FEET

	LOCATIO	N	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
	. ONOTHE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	SAGE HEIGHT PERI	RIOD	ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 12 42	119 34 05	NE10 20S 22E				21-DATE					

Station located below Cross Creek Weir, 4 mi. E of Guernsey. Tributary to Tulare Lake area. At times the flow is a combination of water from Kaweah River, Kings River, and Cottonwood Creek. Records furn. by the Kaweah River Watermaster.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	C03130	ELK BAYOU NEAR TULARE a

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	2
3	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0*	0.0	3
4	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	0.0	0.0	4
5	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	111
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0*	0.0	0.0*	17
18	0.0*	0.0	0.0*	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	19
20	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0		0.0	0.0		0.0		0.0		0.0	0.0		31
MEAN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MAX.
MIN. AC. FT.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN. AC.FT.

E - ESTIMATED

NR - NO RECORD

+ DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

a - See note (a) below.

MEAN		MAXIMU	М		$\overline{}$			MINIMU	J M		$\overline{}$	Δ
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	I	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1
0.0						Н	0.0		10	1	0000	l
. <i>1</i>	(l	l	l	1 /	١,		I	l	1		,

TOTAL ACRE FEET

	LOCATION	N	MAXII	NUM DISCH	IARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	PERIOO ZERO		REF
LATITODE	LONGITODE	M.O.8.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 08 37	119 19 48	SW36 20S 24E	261	2.35	2- 5-63	OCT 58-DATE	MAR 57-SEP 58	1959		0.00	LOCAL

Station located 1.8 mi. W of U.S. Highway 99, 5.8 mi. S of Tulare. Prior to Mar. 4, 1960, station located 700 feet W of U.S. Highway 99, 4.5 mi. S of Tulare. Tributary to Tule River. Prior records, 1942 to July 1953, available at a site 1 mi. E of Elk Bayou Ave. 3.6 mi. below Old Highway 99 Bridge. Recorder installed March 6, 1957. Altitude of gage is approximately 250 ft. (from U.S.G.S. topographic map.)

(a) A partially opened gate in the control created a condition making it impossible to record low flows if such flow did occur.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1964	C03913	FRIANT-KERN CANAL DELIVERY TO PORTER SLOUGH	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0	10	0.0	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	0.0	1
2	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
s	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	s
6	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8
9	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
11	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11
12	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
16	0.0	9.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	6.7	2 • 8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17
18	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22
23	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	10	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	27
28	10	0.0	0.0	0.0	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	28
29	10	0.0	0.0	0.0	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	29
30	10	0.0	0.0	0.0		10	0.0	0.0	0.0	0.0	0.0	0.0	30
31	10		0.0	0.0		10		0.0		0.0	0.0		31
MEAN	4.7	5.4	0.0	0.0	0.0	1.5	0.1	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	10.0	10.0	0.0	0.0	0.0	10.0	3.3	0.0	0.0	0.0	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	291	322				93	7						AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND .

							_		
	MAXIMU	M		$\overline{}$		MINIM	JM		
DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
	DISCHARGE		DISCHARGE GAGE HT. MO.						

TOTAL	
ACRE FEET	
712	

	LOCATIO	N	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
		1/4 SEC. T. B. R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.B.M.	C.F.S. GAGE HT. DATE			ONLY	FROM	TO GAGE		DATUM	
36 05 00	119 04 50	SW20 21S 27E		1							

These flows are deliveries from Friant-Kern Canal into Porter Slough under contract agreement with the U.S.B.R. Delivery is at the intersection of Porter Slough with the Friant-Kern Canal approx. 4 mi. W of Porterville. Records furn. by U.S.B.R.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C03923 FRIANT-KERN CANAL DELIVERY TO TULE RIVER 1964

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	169	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	53	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	111
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15
16	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17
18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	22
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
						0.0	0.0	0.0	0.0	0.0	0.0	0.0	
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	0.0	0.0	0.0					0.0		0.0		27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	30 31
						-							-
MEAN	7.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MEAN
MAX.	169	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MAX.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	440							1	1				AC.FT.

E — ESTIMATEO

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

MEAN		MAXIMU	J M				MINIM	J M	-	
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.6						(1	

TOTAL ACRE FEET

	LOCATION	v	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM OF GAGE			
		1/4 SEC, T, & R.		OF RECORD		OISCHARGE	GAGE HEIGHT	PEF	HOD	ZERO ON	REF.	
LATITUDE	LONGITUDE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM	
36 04 25	119 05 15	NW29 21S 27E				1						

These flows are deliveries from Friant-Kern Canal into Tule River under contract agreements with the U.S.B.R. Delivery is located on the Tule River approximately 4 mi. W of Porterville. Record furnished by U.S.B.R.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	C32100	NORTH FORK TULE RIVER AT SPRINGVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.7	1.9	17	9.8	18	5.8	185	47	27	1.4	0 • 2	0.4	1
2	0.3	2.3	16	8.8	17	20	168	46	26	1.3	0.2	0.4*	
3	0.4	2.2	15	8.6	17	13	97	42	25	1.0	0.2*	0.4	3
4	0.5	2.0	14	8.6	17	12	77	40	22	1.0	0.3	0.4	4
5	0.5	2.5	13	8.6	16	11	72	43	21	1.1	0-4	0.4	5
6	0.5	9•2	12	8.8	15	11	67	64	19	1.3	0.4	0.3	6
7	1.1	15	12	8.8	15	14	5.6	56	20	0.8	0.6	0.4	7 !
8	0.7	10	11	8.6	14	14	53 *	51	23	0.7	0 • 4	0 • 4	8
9	0.7	9.7	16	8.5	13	13	57	55	30	0.6	0.3	0.6	9 1
10	0.7	10	15	8.6	12	13	68	58	28	0.6	0 • 2	0.4	10
111	0.9	9.1	12	8.7	12	12	76	65	26	0.6	0.3	0.2	111
12	0.5	7.6	13	8.0	12	18	77	70	21	0.7	0.4	0.1	12
13	0.9	6.5	12	8.0	12	26	83	76	18	0.6	0.4	0.1	13
14	0.9	5.9	12	7.9	11	19	8.8	74	15	0.7	0.4	0 • 1	14
15	0.9	36	12	7.7	10	19	93	73	13	2.1	0.1	0.0	15
16	1.3	46	12	7.6	10	20	91	70	13	0.3	0.1	0.0	16
17	2 • 1	25	12	7.6	9.9	20	84	65	12 *	0.3	0.1	0.1	17
18	1.4	19	12 *	8.1	9.3*		73	62	12	0.4	0.0	0.5	18
19	1.2	15 +		9.2	9.3	28 *	75	58 *		0.7	0.1	0.5	19
20	1.9	40	11	8.6	7.6	28	64	5 7	8.2	1.2	0 • 2	0 • 5	20
21	2.4	58	11	15	6.6	28	57	56	7.7	0.4	0.2	0.4	21
22	2.7	31	11	29	6.6	37	53 +		6.9	0.3	0.2	0.3	22
23	2.7	26	10	21	6.8	55	51	47	5.6	0.5	0.1	0.3	23
24	3.1	30	10	17	7.0	57	48	44	6.0	0.6	0.1	0.2	24
25	3 • 2	30	9.6	16	6.6	47	44	42	4.3	0.7	0.1	0.2	25
26	3.1	25	9.4	16	5.6	50	41	48	2.3	0.4	0 • 2	0+2	26
27	2.6	23	9.4	15	4.8	50	40	45	2.7	0.9	0.3	0 • 4	27
26	2 • 4	21	9.0	15	3.6	68	43	41	2.8	1.0	0.4	0.4	28
29	2 • 5	21	9.0	14	5.1	80	47	37	2.1	0+3	0.4	0+2	29
30	2 • 0	19	8.7	15	1	85	46 *	33	1.8	0.3	0 • 2	0 • 2	30
31	1.5	'	8.5	16 *	<u></u> '	92	'	30	<u> </u>	0.3	0.4		31
MEAN	1.5	18.6	11.8	11.6	10.7	31.9	72.5	53.1	14.4	0.7	0.3	0.3	MEAN
MAX.	3 • 2	58.0	17.0	29.0	18.0	92.0	185	76.0	30.0	2 • 1	0.6	0.6	MAX.
MIN.	0.3	1.9	8.5	7.6	3.6	5 . 8	40.0	30.0	1.8	0.3	0.0	0.0	MIN.
AC. FT.		1109	727	710	614	1963	4316	3267	855	46	16	18	AC.FT.

E - ESTIMATED

NR - NO RECORD

* - OISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AND *

MEAN		MAXIMU	M				MINIMU	J M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
18.9	313	6.62	4	1	2200	0.0		8	16	1710
	(1	l	l	1 /	\		l		,

\sim	TOTAL
Г	ACRE FEET
	13730

	LOCATIO	N	MAXII	MUM DISCH	HARGE	PERIOD O	DATUM OF GAGE				
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M,	C.F. S. GAGE HT.		DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
36 08 23	118 48 1 6	SE35 20S 29E	4600E	10.29	1~31-63	FEB 57-DATE		1957		0.00	LOCAL

Station located at State Highway 190 Bridge, 0.8 mi. NE of Springville. Drainage area is 97.9 sq. mi. Altitude of gage is approx. 990 ft. (from U.S.G.S. topographic map.)

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

			_
WATER YEAR	STATION NO.	STATION NAME	_
1964	C03169	TULE RIVER BELOW PORTERVILLE	ر

1 152 0.0* 0.0* 0.0 0.0 0.0 0.0 0.0 0.0E 45 0.0* 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0* 0.0 0.0 0.0 0.0	0.0 0.0 0.0* 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	37 36 32 33 31 39 41 *	0.0E 0.0E 0.0* 0.0 0.0	0.0 0.0 0.0 0.0*	0.0 0.0* 0.0 0.0	0.0 0.0 0.0 * 0.0	199 267 263 * 202	52 0.0 0.0 0.0	2 3 4
2 52 199	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0	0.0* 0.0 0.0 0.0 0.0	0.0 0.0* 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	36 32 33 31 39 41 *	0.0E 0.0* 0.0 0.0 0.0	0.0 0.0 0.0*	0.0* 0.0 0.0	0.0 0.0 0.0 * 0.0	199 267 263 * 202	52 0.0 0.0 0.0	3 4
3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0* 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	32 33 31 39 41 *	0.0* 0.0 0.0 0.0	0.0 0.0*	0.0	0.0 0.0* 0.0	267 263 * 202	0.0 0.0 0.0	3 4
4 0.0 263 * 0.0 0.0 0.0 0.0 0.0* 0.0* 0.0* 0.0* 0.0 <td< th=""><td>0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0</td><td>0.0 0.0 0.0 0.0 0.0</td><td>0.0 0.0 0.0 0.0 0.0</td><td></td><td>0.0 0.0 0.0 0.0</td><td>0.0 0.0 0.0 0.0</td><td>0.0</td><td>0.0 0.0 0.0 0.0</td><td>33 31 39 41 *</td><td>0.0</td><td>0.0*</td><td>0.0</td><td>0.0*</td><td>263 * 202</td><td>0.0</td><td>4</td></td<>	0.0 0.0 0.0 0.0 0.0 0.0 1 0.0 1 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0	0.0 0.0 0.0 0.0	33 31 39 41 *	0.0	0.0*	0.0	0.0*	263 * 202	0.0	4
5 0.0 202 0.0 0.0 0.0** 0.0 33 0.0	0.0 0.0 0.0 0.0 0.0 1	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0		0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0 0.0	31 39 41 *	0.0 0.0 0.0	0.0	0.0	0.0	202	0.0	
7 0.0 163 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 0.0 1	0.0 0.0 0.0 0.0	0.0 0.0 0.0		0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	39 41 *	0.0	0.0			202		
7 0.0 165 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 0.0 0.0 1	0.0 0.0 0.0	0.0 0.0 0.0		0.0	0.0	0.0	0.0	39 41 *	0.0	0.0					
8 0.0.0 * 84 0.0 <td>0.0 0.0 0.0 1 0.0 1</td> <td>0.0</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td>	0.0 0.0 0.0 1 0.0 1	0.0	0.0		0.0	0.0	0.0	0.0		0.0			0.0			
9 0.0 50 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 1 0.0 1 0.0 1	0.0	0.0						36		0.0 1					
10	0.0 1 0.0 1 0.0 1	0.0	0.0		0.0	0.0	0.0			0.0						
12	0.0 1						0.0	0.0								
12	0.0 1 0.0 1	0.0			0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	36	0.0	١,, ١
13			0.0		0.0	0.0										
14 0.0 21 1.3 0.0		0.0	0.0		0.0											
15	0.0 1	0.0		1												
17	0.0 1															
17	0.0 1	0.0	0.0		0-0	0.0	0.0	0.0	0.0				2.2			
18	0.0															
19 0.0 31 * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0															
20 0.0 28 0.0 0.0 0.0E 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0															
21 0.0 71 0.0 0.0 0.0E 0.0 0.0 0.0 0.0 0.0 0.0	0.0 2															
1 21 0.0 1 71 1 0.0 1 0.0 1 0.0 1	0.0 2	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.05	0.0*	0.0	28	0.0	20
	0.0 2														0.0	21
[22	0.0 2			1				0.0	0.0*	0.0	0.0E	0.0	0.0	86	0.0	22
23 0.0 29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0 2													29	0.0	23
24 0.0 28 0.0 0.0 0.0E 2.8* 0.0 0.0 0.0 0.0	0.0 2											0.0	0.0	28	0.0	24
25 0.0 26 0.0 0.0 0.0E 18 0.0 0.0 0.0 0.0 0.0	0.0 2	0.0	0.0		0.0	0.0	0.0	0.0	0.0	18	0∙0€	0.0	0.0	26	0.0	25
26 0.0 26 0.0 0.0 0.0E 30 0.0 0.0 0.0 0.0	0.0 2											0.0	0.0	26	0.0	26
27	0.0 2									34	0.0E					
28	0.0 2					0.0	0.0	0.0	0.0	36	0.0E	0.0	0.0			
29 0.0 1.2 0.0 0.0 0.0 38 0.0 0.0 0.0 0.0 0.0	0.0 2			ļ	0.0	0.0	0.0	0.0	0.0	38	0.0E					
30 0.0 0.0 0.0 0.0 42 0.0 0.0 0.0 0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	42						
31 0.0 0.0 0.0 45 0.0 0.0 0.0	3				0.0	0.0		0.0						""		
MEAN 6.6 69.3 1.1 0.0 0.0 7.9 12.1 0.0 0.0 0.0	0.0 ME	0.0	0.0		0.0	0.0	0.0	0.0	12.1	7.9	0.0	0.0	1.1	60.3		MEAN
MAX. 152 267 11.0 0.0 0.0 45.0 45.0 0.0 0.0 0.0 0.0	0.0 M															
[man 172 201 1140 000 100 100 100 100 100 100 100 100 100 100 100 100 100	0.0 M															
MIN. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	AC				1	3.0	"•"	""			0.0	""				

E - ESTIMATED NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AHD *

MEAN	$\overline{}$	MAXIMU	M		$\overline{}$	١.		MIN	IMI	JM_		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	11	DISCHARGE	GAGE	HT.	MO.	DAY	TIME
8.1	l l		l			П				ļ	1	
	/ (1	1	l		, ,		l		1		l /

TOTAL ACRE FEET 5804

	LOCATIO	N	MAXI	MUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
LATITUDE LONGITUDE		1/4 SEC. T. 8 R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M. O. B. & M.	C.F.S. GAGE HT. DATE			ONLY	FROM	то	GAGE	DATUM	
36 04 40	119 06 22	NW30 21S 27E	5170	8.17	5-19-57	FEB 57-DATE		1957 1959	1959	0.00 -3.48	LOCAL

Station located 330 ft. above Rockford Road Bridge, 5.1 mi. W of Porterville. Flows regulated by Success Reservoir and spill from Friant-Kern Canal. Altitude of gage is approx. 400 ft. (from U.S.G.S. topographic map). Flows include C.V.P. releases from Friant-Kern Canal to Tule River. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME	
1964	C03970	CAMPBELL MORELAND DITCH ABOVE PORTERVILLE	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	20	6.1	0.0	9.6	12	0.0	0.0*	9.4	29 #	7.8	15	24	1
2	20	6.1	0.0+	9.7*	7.8	0.5*	0.0	10	29	7.8	15	24	2
3	20	6.7	0.0	9.6	6.0	0.0	0.0	10	28	7.8	15	23	3
4	20	7.0	0.0	9.6	2.1*	0.0	0.0	9.8	15	8.7	14	22	4
5	20	7.2	0.0	9•6	1.5	0.1	0.0	9.7	15 7.7	9•6	14 *	25	5
6	20	7.4	0.0	9.6	1.1	0.3	0.0	10	8 • 4	9.6	14	30	6
7	19	7.2	0.0	9.6	0.9	0.5	0.0	19 *	9.0	9.6	14	30	7
8	16	6.5	0.0	9•6	0.8	0.2	0.0	25	9.9	9.6	14	32	8
9	14	6.1	0.0	9.6	0.7	0.2	0.0	24	8.7	9.6*	14	34	9
10	15	5.6	0.0	9•6	0.3	0.1	0.0	24	8.3	9.6	1 4	34	10
11	16	5.3	. 0.0	9.3	0.0	2.5	0.0	23	7.7	9.3	14	33	11
12	16	4.9	0.0	9.3	0.0	5.7	0.0	23	8 • 4	9.6	18	32	12
13	15	2.7	0.0	9.3	0.0	0.0	0.0	25	7.8	9.3	21 *		13
14	15	0.0	0.0	15	0.1	0.0	0.0	27 28 *	7.6	9.6	16	23	14
15	15 E	0.0*	0.0	19	0.3	0.0	0.0	28 *	7.0	13	15	16	15
16	15 E	0.0	0.0	20	0.4	0.0	0.0*	28	6.7*	14	13	17	16
17	15 E	0.0	0.0*	19 +	0.4	0.0*	0.0	28	8.0	13	10	16	17
18	15 #	0.0	0.0	19	0.4*	0.0	0.0	28	10	13	7.2*	16	18
19	15	0.0	0.0	20	0.3	0.0	0.0	28	9.7	13	6.7	16	19
20	15	0.0	0.0	20	0.3	0.0	0.0	29	9•3	13	6.7	21	20
21	13	0.0	1.9	21	0.2	0.0	0.0	30	9•6	12 *	6.7	23	21
22	6.8	0.0	6.2	22	0.2	0.0	0.0	30	9.7	13	6.2	21	22
23	6.4	0.0	8.6	22	0.0	0.0	0.0	31	9.7	13	6.7	22	23
24	6.8	0.0	8.7	20	0.0	0.0	0.0	31	16	13	8.1	21	24
25	7.4	0.0	8.7	19	0.0	0.0	0.0	30	19	12	7.4*	20	25
26	7.8	0.0	8.7	19	0.1	0.0	0.0	29	17	12	16	21	26
27	8.6	0.0	9.0	19	0.0	0.0	0.0	31	16	13	22	22	27
28	7.8	0.0	9.0	20	0.0	0.0	7.3*	31	15	13	24	21	28
29	6.3	0.0	9.0	20	0.0	0.0	11	30	15	14	26	21	29
30	6.1	0.0	9.3	19		0.0	9.6*	29	11	15	26	19	30
31	6.3*		9.6	19		0.0		29	:	15	26		31
MEAN	13.5	2.6	2.9	15.4	1.2	0.3	0.9	24.2	12.4	11.3	14.5	23.7	MEAN
MAX.	20.0	7.4	9.6	22.0	12.0	5.7	11.0	31.0	29.0	15.0	26.0	34.0	MAX.
MIN.	6.1	0.0	0.0	9.3	0.0	0.0	0.0	9.4	6.7	7.8	6.2	16.0	MIN.
AC. FT.	832	156	176	944	71	20	55	1485	740	697	888	1412	AC.FT.

E - ESTIMATED

NR - NO RECORD

* OISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

MEAN	. (MAXI	Mυ	М				MINIMU	J M		
DISCHARGE	İΓ	DISCHARGE	GAGE H	T.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
10.2										!	i	ı
()	1						<i>)</i>			i		د ا

	TOTAL
Г	ACRE FEET
	7476
l	

ļ		LOCATION			MUM DISCH	IARGE	PERIOD O	DATUM OF GAGE					
		LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.	
	LATITUDE	LONGITUDE	M.O.B.8M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM	
	36 02 48	118 56 54	NW 4 22S 28E				AUG 42-DATE	-	Oct 62	Oct 62	0.00	LOCAL	

Station located 3.9 mi. SE of Porterville approximately 2600ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME PORTER SLOUGH AT PORTERVILLE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	40 #	6.6	20	0.0E	0.0	0.0	0.0#	0.0*	36	31	17	0.0	1
2	40	49	20	0.0#	0.0	0.0*	0.0	0.0	42	26	1.2	0.0	2
3	39	57	20	0.0	0.0	0.0	0.0	0.0	33	27 *	0.2	0.0	3
4	38	60	18 *	0.0	0.0	0.0*	0.0	0.0	30 *	26	0.0	0.0	4
5	39	72	11	0.0	0.0	0.0	0.0	0.0	3 2	24 *	0.0	0.0	5
6	40	64	2.5	0.0	0.0	0.0	0.0	0.0	16	23	11	0.0	6
7	38	56	0.8	0.0	0.0	0.0	0.0	0.0	0.0	23	35	0.0	7
8	24	44	0.5	0.0	0.0	0.0	0.0*	0.0	0.0	23	30	0.0	8
9	2.3	3.8	0.3	0.0	0.0	0.0	0.0	0.0	0.0	23	22	0.0	9
10	0.3	1 • 1	5.4	0.0	0.0	0.0	0.0	0.0	0.0	22	22	0.0	10
,,	0.1	0.4	27	0.0	0.0	0.0	0.0	0.0	0.0	12	22	0.0	11
12	0.0	0.1	28	0.0	0.0	0.0	0.0	0.0	0.0	0.7	23	0.0	
13	0.0	0.0	20	0.0	0.0	0.0	0.0	0.0	17	0.0	23 *	0.0	13
14	0.0	0.0	2.3	0.0	0.0	0.0	0.0	0.0	4 1	17	24	0.0	
15	0.0	3.3	0.6	0.0	0.0	0.0	0.0	0.0*	38	31	13	0.0	15
16	0.0	77	0.3	0.0	0.0	0.0	0.0	0.0	30	20	0.6	0.0	
17	0.0	76	0.0	0.0	0.0	0.0	0.0	0.0	30 *	8.8*	0.0	0.0	
18	0.0*	43	1.3	0.0	0.0#	0.0	0.0	0.0	27	0.4	0.0	0.0	
19	0.0	4.2*	19	0.0	0.0	0.0	0.0	0.0	2 4	0.0	0.0	0.0	19
20	0.0	1.6	13	0.0*	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	20
21	0.0	14	1.6	0.0	0.0	0.0	0.0	0.0	24	0.0	0.0	0.0	
22	0.0	59	0.3	0.0	0.0	0.0	0.0*	0.0	25	6.7	0.0	0.0	
23	0.0	35	0.0	0.0	0.0	0.0	0.0	0.0	24	27	0.0	0.0	
24	0.0	28	0.0	0.0	0.0	0.0	0.0	0.0	23	30 *	0.0	0.0	
25	0.0	27	0.0	0.0	0.0	0.0	0.0	0.0	12	28	0.0	0.0	25
26	0.0	26	0.0	0.0	0.0	0.0	0.0	0.0	0.4	25	0.0	0.0	
27	0.0	25	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	23	0.0	0.0	
28	0.0	23	0.0E	0.0	0.0	0.0	0.0	3.5	0.0	24	0.0	0.0	
29	0.0	23	0.0E	0.0	0.0	0.0	0.0	18	8.5	25	0.0	0.0	29
30	0.0	20	0.0E	0.0		0.0	0.0	25	33	25	0.0	0.0	30
31	0.0*		0.0E	0.0		0.0		27		25	0.0		31
MEAN	9.7	30.0	6.8	0.0	0.0	0.0	0.0	2.4	19.0	18.6	7.9	0.0	
MAX.	40.0	77.0	28.0	0.0	0.0	0.0	0.0	27.0	42.0	31 0	35.0	0.0	
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN
AC. FT.	596	1783	420	•••				146	1130	1144	484		AC.FI

E - ESTIMATEO NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

MEAN		MAXIMU	I M			١.		MINIM	J.M.		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
7.9] [١,)			ì		

TOTAL ACRE FEET 5703

	200ATION MINIMUM DIE					DISCHARGE PERIOD O			DATUM OF GAGE		
LATITUOS LONGITUOS		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF
LATITUDE	LONGITUOE	M.D.8.8M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
36 03 29	118 59 08	SE31 21S 28E				JAN 42-DATE		1957		0.00	LOCAL

Station located at "B" Lane Bridge, immediately E of Porterville. This is regulated diversion from Tule River. Altitude of gage is approx.465 ft. (from U.S.G.S. topographic map). Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

(WATER YEAR	STATION NO.	STATION NAME
	1964	C03984	PORTER SLOUGH DITCH AT PORTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	11	0.0*	0.0	0.0	0.0	0.0	0.0+	0.0*	4.1*	13 *	15	0.0	1
2	12	5 • 1	0.0*	0.0*	0.0	0.0*	0.0	0.0	11 *	11	0.2	0.0	2
3	12	12	0.0	0.0	0.0	0.0	0.0	0.0	12	12 *	0.0	0.0	3
4	12	13	0.0	0.0	0.0	0.0	0.0	0.0	12 *	12	0.0	0.0	4
5	12	15	0.0	0.0	0.0*	0.0	0.0	0.0	12 *	11 *	0.0	0.0	5
6	12	14	0.0	0.0	0.0	0.0	0.0	0.0	6.4	11 *	0.2	0.0	6
7	7 • 2	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	14 *	0.0	7
8	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	15 *	0.0	8
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12 *	15 *	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12	15	0.0	10
11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.7	15	0.0	11
12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15	0.0	12
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15 *	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	1.6	17	0.0	14
15	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	11	9.0*	11	0.0	15
16	0.0	0.1	0.0	0.0	0.0	0.0	0.0*	0.0	12 *	8 • 5	0.0	0.0	16
17	0.0	9.0	0.0*	0.0*	0.0	0.0*	0.0	0.0	13	4 • 7 *	0.0	0.0	17
18	0.0	7.1	0.0	0.0	0.0*	0.0	0.0	0.0	13	0.0	0.0	0.0	18
19	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14 *	0.0	0.0	0.0	19
20	0.0	0.0	0.0	0.0	0.0	0.0	0•0	0.0	14	0.0	0.0	0.0	20
21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	0.0	0.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15 +	0.0	0.0	0.0	23
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	6.4	0.0	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13	13 *	0.0	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.5	14	0.0	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	0.0	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13	0.0	0.0	27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14	0.0	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16 +	0.0	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	0.0	10	16	0.0	0.0	30
31	0.0*		0.0	0.0		0.0		0.0		13	0.0		31
MEAN	2.5	3.2	0.0	0.0	0.0	0.0	0.0	0.0	7.0	8 • 6	4.8	0.0	MEAN
MAX.	12.0	15.0	0.0	0.0	0.0	0.0	0.0	0.0	15.0	16.0	17.0	0.0	MAX.
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	155	191		ļ					417	531	292	1	AC.FT.

E - ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR
OBSERVATION OF NO FLOW

- E AHD *

								_
MEAN		MAXIMU	M	$\overline{}$		MINIM	J M	
DISCHARGE	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO. DAY	TIME
2 • 2							l l	
)	(,	(

TOTAL ACRE FEET 1586

LOCATION			MAXIMUM DISCHARGE			PERIOD C	DATUM OF GAGE				
LATITUDE		1/4 SEC. T. B. R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		ZERO	REF.
	LONGITUDE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE	J. J. J. J. J. J. J. J. J. J. J. J. J. J	ONLY	FROM	то	GAGE	DATUM
36 04 06	119 01 06	SE26 21S 27E				JAN 43-DATE		1943		0.00	LOCAL

Station located in Porterville 0.5 mi. W of Porterville Post Office, approximately 150 ft. below head. This is regulated diversion from Tule River via Porter Slough. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	C03187	PORTER SLOUGH NEAR PORTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.0	0.0*	7.8	0.0	0.0	0.0	0.1	0.0*	0.0	0.0	0.0	0.0	1
2	2.4	0.1	7.6	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	2
3	2 • 8	9.3	7.6	0.0*	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	3
4	3.7	13	6.9*	0.0	0.0	0.0*	0.0	0.0	0.0*	0.0	0.0	0.0	4
5	4 • 0	25	3.0	0.0	0.0*	0.0	0.0	0.1	0.0	0.0	0.0	0.0	5
6	5 • 2	26	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	6
7	7.8*	18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7
8	10	27	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	8
9	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10
11	0.1	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11
12	0.0	0.0	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	14
15	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0*	2.4	0.1	0.0	0.0	15
16	0.4	47 E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16
17	0.0	66 E	0.0	0.0	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	17
18	0.0*	26	0.0*	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0	0.6	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19
20	0.0	0.6	5.3	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0	41	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	22
23	0.0	21	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25
26	0.0	12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0	11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29	0.0	9.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0	8.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0*		0.0	0.0		0.0		0.0		0.0	0.0		31
MEAN	1.2	13.2	2.3	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	MEAI
MAX.	10.0	66.0E	12.0	0.2	0.0	0.2	0.1	0.1	2.4	0.1	0.0	0.0	MAX
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN
AC. FT.	74	787	139			1			5			}	AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

OBSERVATION OF NO FLOW

— E AND *

MEAN			MAXIMU	м			. (MINIM	J M		
ISCHARGE	П	DISCHARGE	GAGE HT.	MO.	DAY	TIME	١ſ	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1.4	П						H					
,	, ,			l			١(l		

TO	TAL	`
ACRE	FEET	Ξ
	1006	,
		TOTAL ACRE FEET 1006

LOCATION			MAXI	MUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
LATITUDE		1/4 SEC. T. 8 R.		OF RECORD	<u> </u>	DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
	LONGITUDE	M.O.8.8.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 04 00	119 03 08	NE28 21S 27E	364	5.14	4- 3-58	JAN 57-DATE		1957		0.00	LOCAL

Station located at Newcomb Drive Bridge, 2.0 mi. W of Porterville. Tributary to Tular Lake Basin via Tule River. Altitude of gage is approx. 425 ft. (from U.S.G.S. topographic map). Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

1	WATER YEAR	STATION NO.	STATION NAME
	1964	C03965	VANDALIA DITCH NEAR PORTERVILLE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1	4.0	0.0*	0.0	0.0	0.0	0.0	0.0*	0.0*	3.6*	0.0*	3.9	3.1	1
2	4.0	0.0	0.0*	0.0*	0.0	0.0*	0.0	0.0	3.5	0.0	3.8	2.9	2
3	4.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3 • 4	0.0	3 • 8	2.9	3
4	4.3	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	3.3	0.0	3.8	2.9	4
5	4.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.3	0.0	3.7*	2.8	5
6	4.1	0.0	0.0	0.0	0.0	0.0	0.0	2.5	3.6	0.0	3.7	2.8	6
7	3.9	0.0	0.0	0.0	0.0	0.0	0.0	4.1*	3.9	0.0	3.7	2.9	7
8	3.6	0.0	0.0	0.0	0.0	0.0	0.0	4.3	4 • 2	0.0	3.8	15	8
9	4.1	0.0	0.0	0.0	0.0	0.0	0.0	4.1	4.5	0.0	3.8	0.5	9
10	4 • 2	0.0	0.0	0.0	0.0	0.0	0.0	4.1	4.4	0.0	3 • 8	0.0	10
11	4 • 2	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.4	0.0	3.8	0.0] 11
12	4 • 2	0.0	0.0	0.0	0.0	0.0	0.0	4.0	4.4	0.0	3 • 8	0.0	12
13	4 • 2	0.0	0.0	0.0	0.0	0.0	0.0	4.1	3.9	0.0	3.8*	0.0	13
14	4.4	0.0	0.0	0.0	0.0	0.0	0.0	4.1	3.6	0.0	3.3	0.0	14
15	4.4	0.0*	0.0	0.0	0.0	0.0	0.0	4.1*	3.6	2•4	3.2	0.0	15
16	4.5	0.0	0.0	0.0	0.0	0.0	0.0*	4.1	3.6*	4.1	3 . 2	0.0	16
17	4 • 2	0.0	0.0*	0.0*	0.0	0.0*	0.0	4.1	3.7	4.1	3.1	0.0	17
18	3.7*	0.0	0.0	0.0	0.0*	0.0	0.0	4.0	4.0	4.1	3.0*	0.0	18
19	3.5	0.0	0.0	0.0	0.0	0.0	0.0	4.0	2.0	4.2	3.0	0.0	19
20	3.4	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.4	4.2	3.0	0.0	20
21	2.1	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.3	4.1*	3.0	0.0	21
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.2	4.1	3.1	0.0	22
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.2	4.1	3.2	0.0	23
24	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	0.1	4.1	3 • 2	0.0	24
25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.0	4.1	3.2*	0.0	25
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.0	4.1	3.1	0.0	26
27	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.3	0.0	4.1	3.2	0.0	27
28	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.2	0.0	3.4	3.3	0.0	28
29	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.1	0.0	3.1	3.4	0.0	29
30	0.0	0.0	0.0	0.0		0.0	0.0	3.9	0.0	4.1	3.4	0.0	30
31	0.0*		0.0	0.0		0.0		3.7		4.1	3.4		31
MEAN	2.7	0.0	0.0	0.0	0.0	0.0	0.0	3.4	2.4	2.1	3.4	0.7	MEA
MAX.	4.5	0.0	0.0	0.0	0.0	0.0	0.0	4.3	4.5	4.2	3.9	3.1	MA
MIN.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	MIN
AC. FT.	165			1				209	143	132	211	44	AC.F

E -- ESTIMATED

NR -- NO RECORD

* -- DISCHARGE MEASUREMENT OR

DBSERVATION OF NO FLOW

- E AHD *

MEAN		MAXIMU	$\overline{}$	MINIMUM							
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
1 • 2									i i		
$\overline{}$			لسل				<u></u>				—)

	TOTAL
Г	ACRE FEET
	904
١.	

LOCATION			MAXIMUM DISCHARGE			PERIOD C	DATUM OF GAGE				
LATITUOE	LONGITURE	1/4 SEC, T. B. R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
	LONGITUDE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
36 03 00	118 58 18	NE 5 22S 28E				1948-DATE		1948		0.00	LOCAL

Station located 2.8 mi. SE of Porterville approximately 1000 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

PAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME POPLAR DITCH NEAR PORTERVILLE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	12	3.2	37	0.3	30	3.4	0.0*	0.0*	0.0*	0.0	89 *	18	١, ١
2	12	47	38 *	0.5*	9.9	3 • 8 *	0.0	0.0	0.0	0.0	87	18	2
3	13	60	38	0.5	8 • 1	2 • 8	0.0	0.0	0.0	0.0	86	16	3
4	13	59 *	37	0.5	7.3*	0.8	0.0	0.0	0.0	8.9	85	8.9	4 1
5	6.1	57	38	0.4	6.9	0.0	0.0	0.0	0.0	46 *	84 *	0.0	5
6	0.2	13	30	0.3	6.3	0.0	0.0	0.0	19	88	8.5	0.0	6
7	0.1	0.2	27	0.1	6.C	0.0	0.0	0.0	61	114	8.5	0.0	7
8	0.1	0.0	27	0.1	5.8	0.0	0.0	0.0	87 *	122	86	0.0	8
9	0.2	0.0	27	0.0	5.6	0.0	0.0	0.0	98 *	122 *	86	0.0	9
10	0•2	0.0	27	0.0	5 • 4	0.0	0.0	0.0	103	121	85	0.0	10
11	0.2	0.0	26	0.0	5.4	0.0	0.0	0.0	104	119	85	0.0	11
12	0.2	0.0	26	0.0	5.4	0.0	0.0	0.0	104	119 *	86	0.0	12
13	0.2	0.0	26	0.0	5 • 2 *	0.0	0.0	0.0	62	116 *	87 *	0.0	13
14	0 • 2	4.8	26	0.0	4.9	0.0	0.0	0.0	0.7	110	41	0.0	14
15	0.2	9.8*	26	0.0	4.7	0.0	0.0	0.0*	0.0	111	1.4	0.0	15
16	0.2	13	17	19	4.5	0.0	0.0*	0.0	0.0*	113	3.2	0.0	16
17	0.2	14	0.5*	29 *	4.2	0.0*	0.0	0.0	18	112	0.7	0.0	17
18	0.2	19	0.4	30	4.1*	0.0	0.0	0.0	59	110	0.0	0.0	18
19	0.3	35	0.3	30	4.0	0.0	0.0	4.8*	86	112	0.0	0.0	19
20	0.3	38	0.2	34	3.9	0.0	0.0	17	105	113	0.0	0.0	20
21	0.2	34	0.1	34	3.7	0.0	0.0	20 *	106	112 *	0.0	0.0	21
22	0.3	35	0.1	40	3.7	0.0	0.0	20	107	112	0.0	0.0	22
23	0.2	34	0.1	48	3.7	0.0	0.0	20	112	112	0.0	0.0	23
24	0.2	37	0.1	52 *	3.7	0.0	0.0	19	114	112	0.0	0.0	24
25	0.3	37	0.0	50	3.6	0.0	0.0	20	115	112	0.0	0.0	25
26	0.2	37	0.1	50	3.6	0.0	0.0	19	70	112	0.0	0.0	26
27	0.2	37	0.1	49 #	3.5	0.0	0.0	18	0.0	113	0.0	0.0	27
28	0.2	38	0.1	44 *	3.5	0.0	0.0	17	0.0	110	5.7	0.0	28
29	0.3	37	0.1	40	3,5	0.0	0.0	9.3*	0.0	98	20	0.0	29
30	0.3	37	0.1	40	1	0.0	0.0	0.0	0.0	91	17	0.0	30
31	0.3		0.1	40		0.0		0.0		91	16		31
MEAN	2.0	24.5	15.3	20.4	5.9	0.3	0.0	5.9	51.3	94.6	39.4	2.0	MEAN
MAX.	13.0	60.0	38.0	52.0	30.0	3.8	0.0	20.0	115.0	122.0	89.0	18.0	MAX.
MIN.	0.1	0.0	0.0	0.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MIN.
AC. FT.	123	1460	943	1253	337	21		365	3050	5815	2422	121	AC.FT.

E — ESTIMATED

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- E AND *

MEAN		M	A X I M L	I M			1		MINIM	J M		
DISCHARGE	DISCHAI	GE G	AGE HT.	MO.	DAY	TIME	ìГ	DISCHARGE	GAGE HT.	MO.	DAY	TIME
21.8	l (Ц					

TOTAL
ACRE FEET
15910
,

	LOCATION			MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE				
I LATITUDE I LONGITUDE I		1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	AGE HEIGHT PERIOD		ZERO ON	REF.	
LATITUDE	LONGITODE	M.O.B.B.M.	C.F.S.	S. GAGE HT. DATE			ONLY	FROM	TO	GAGE	DATUM	
36 03 18	119 00 54	SW36 21S 27E				APR 42-DATE		1942		0.00	LOCAL	

Station located 1.0 mi. S of Porterville approximately 4750 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C03925 HUBBS - MINER DITCH AT PORTERVILLE a

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	17	0.0*	0.0E	0.0	0.0	0.0	0.0*	0.0*	0.0*	7.8*	6.4	0.0	,
2	17	8.8	0.0#	0.0*	0.0	0.0*	0.0	0.0	0.0	7.3	0.0	0.0	2
3	17	14	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0	3
4	14	13	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	5.9	0.0	0.0	4
5	9.6	12	0.0	0.0	0.0	0.0	0.0	3 • 4	0.0	8.0	0.0	0.0	5
6	7.5	12	0.0	0.0	0.0	0.0	0.0	7.6	1.8	7.9	6.7	0.0	6
7	4 - 1	9.3	0.0	0.0	0.0	0.0	0.0	8.0*	5.9	10	11 *	0.0	7
8	0.0	4.8	0.0	0.0	0.0	0.0	0.0	4.7	9.3*	18	9.4	0.0	8
9	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	13	14	6.8*	8.0	9
10	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	13	11	5.9	11	10
111	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	12	6.4	5.6	6.5	11
12	0.0	0.1	0.0	0.0	0.0	1.4	0.0	2.4	12	8.1*	5.9	3.8*	1 12
13	0.0	0.0	0.0	0.0	0.0	8.3	0.1	6.8*	9.6	9.5*	8.0*	0.0	12
14	0.0	0.0	0.0	0.0	0.0	12	6.5	7.6	5.5	14	11	0.0	14
15	0.0	0.0#	0•0	0.0	0.0	13	11	7.2*	7.3	16 *	13	0.0	15
16	0.0	0.0E	0.0	0.0	0.0	14	11 +	6.9	3.8*	17	12	0.0	16
17	0.0	0.0E	0.0*	0.0*	0.0	17 *	9.7*	6.8	0.0E	15	6.7	0.0	17
18	0.0	0.0E	0.0*	0.0	0.0*	17	6.9	3.2	0.0E	7.8	5.2*		18
19	0.0	0.0E	0.0	0.0	0.0	8.5*	5.0	0.0*	0.0E	8 • 1	5.0	0.0	19
20	0.0	0.0E	0.0	0.0*	0.0	0.0	3.2	2.4	0.0E	10	5.0	0.0	20
21	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.6	1.9E	12 *	4.7	2.8	21
22	0 • 0	0.0E	0.0	0.0	0.0	0.0	0.0	6.3	5.1#	12	4 • 8	11 *	,
23	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.6	7.6	11	5.2	13 12	23
24	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.8	14 *	11	5.1		24
25	0.0	0.0E	0.0	0•0	0.0	0.0	0.0	7.3	15 *	13	5.1	10 *	25
26	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	6.9	14	15	5.1	2.5	26
27	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	7.6*	19 *	17	5.5	0.0	27
28	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	4.0	19	18	8.1	0.0	28
29	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	13	18 *	16	0.0	29
30	0.0	0.0E	0.0	0.0		0.0	0.0	0.0	7.5	19	20	0.0	20
31	0.0*		0.0	0.0		0.0		0.0		13	12		21
MEAN	2.8	2.6E	0.0E	0.0	0.0	2.9	1.8	3.8	7.0	11.8	6.9	2.7	MEAN
MAX.	17.0	14.0E	0.0E	0.0	0.0	17.0	11.0	8.0	19.0	19.0	20.0	13.0	MAX
MIN.	0.0	0.0E	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	6.4	0.0	0.0	MIN.
AC. FT.	171	153				181	106	236	419	728	427	160	AC.FT

E — ESTIMATED

NR — NO RECORD

* — DISCMARGE MEASUREMENT OR

085ERVATION OF NO FLOW

- EAND • a - See note (a) below.

MEAN		MAXIMU	M		$\overline{}$	MINIMUM							
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	H	DISCHARGE	GAGE HT.	MO.	DAY	TIME		
3.3			l				0.0		10	7	1600		

(TOTAL
Г	ACRE FEET
Į	2581

	LOCATION			MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
LATITUDE L		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.
	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
36 03 27	119 02 02	NW35 218 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 1.1 mi. SW of Porterville, approximately 3400 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

(a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association.

IAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME

1964 C03940 RHODES - FINE DITCH NEAR PORTERVILLE a

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0E	0.0	0.0E	0.0E	0.0E	0.0E	0.0*	12	15 *	0.0*	0.0	0.0	1
2	0.0E	0.0	0.0E	0.0E	0.0E	0.0E	0.0	12	16 *	0.0	0.0	0.0	2
3	0.0E	0.0	0.0E	0.0E	0.0E	0 • 0	0.0	3.6	12	0.0	0.0	0.0	3
4	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	8.1	6.1*	0.0	0.0	0.0	4
5	0.0E	0.0	0.0E	0.0E	0.0E	0•0	0.0	13 *	6.1*	0.0	0.0	0.0	5
6	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	16	8.8	0.0	0.0	0.0	6
7	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	15	5.7	0.0	0.0	0.0	7
8	0.0E	0 • 0	0.0E	0.0E	0.0E	0.0	0.0	19	9.4	0.0	0.0	0.0	8
9	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	18	13	0.0	0.0	0.0	9
10	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	15	12	0.0	0.0	0.0	10
11	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	14	12	0.0	0.0	0.0	11
12	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	11	10	0.0	0.0	0.0	12
13	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	11	8.8	0.0	0.0	0.0	13
14	0.0E	0.0	0.0E	0.0E	0.0E	0.0	0.0	15	7.6	0.0	0.0	0.0	14
15	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	17 *	12	0.0	0.0	0.0	15
16	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0*	17	9.1*	0.0	0.0	0.0	16
17	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	19	5.0	0.0	0.0	0.0	17
18	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	20	3.6	0.0	0.0	0.0	18
19	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	19 *	6.8*	0.0	0.0	0.0	19
20	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	16	4.4	0.0	0.5	0.0	20
21	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	18	5.2	0.0	1.1	0.0	21
22	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	17	0.0	0.0	0.0	0.0	22
23	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	17	0.0	0.0	0.0	0.0	23
24	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	0.0	17	0.0	0.0	0.0	0.0	24
25	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	1.7	20 *	0.0	0.0	0.0	0.0	25
26	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	3.8	16	0.0	0.0	0.0	0.0	26
27	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	5.7#	14	0.0	0.0	0.0	0.0	27
28	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	9.6*	15	0.0	0.0	0.0	0.0	28
29	0.0E	0.0E	0.0E	0.0E	0.0E	0 • 0	11 *	20	0.0	0.0	0.0	0.0	29
30	0.0E	0.0E	0.0E	0.0E		0.0	12 *	17	0.0	0.0	0.0	0.0	30
31	0.0*		0.0E			0.0		13		0.0	0.8		31
WEAN	0.0E	0.0E	0.0E	0.0E	0.0E	0.0E	1.5	15.3	6.3	0.0	0.1	0.0	MEAN
MAX.	0.0E	0.0E	0.0E	0.0E	0.0E	0.0E	12.0	20.0	16.0	0.0	1.1	0.0	MAX.
MIN.	0.0E	0.0E	0.0E	0.0E	0.0E	0.0E	0.0	3.6	0.0	0.0	0.0	0.0	MIN.
AC. FT.	0.02	0.00	5.02	0.00	0.00	0.00	87	942	374		5	1	AC.FT.

- ESTIMATED

NR - NO RECORD

* - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW

- EAND* a - See note (a) below.

MEAN		MAXIMU	J M		_	MINIMUM							
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	ŀГ	DISCHARGE	GAGE HT.	MO.	DAY	TIME		
1.9	l .					Ц	0.0E		10	1	0000		
	<u></u>					'\		L		لـــــا			

TO	[AL	
ACRE	FEET	
	1408	

	LOCATION			MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
L ATITUOS	LATITUDE LONGITUDE 1/4			OF RECORD		DISCHARGE	GAGE HEIGHT	PERIO0		2ERO ON	REF.
LATTIODE	LONGITUDE	M. O. B. 8 M,	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
36 03 26	119 04 13	SE32 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 3.1 mi. SW of Porterville, approximately 3100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

(a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME C03948 WODOS-CENTRAL OITCH NEAR PORTERVILLE a 1964

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.0E	0.0E	0.0E	22	0.0	0.0E	0.0*	0.0*	0.0*	0.0*	0.0	0.0	1
2	0.0E	0.0E	0.0E	21 *	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	3
3	0.0E	0.0E	0.0E	21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3
4	0.0E	0.0E	0.0E	21	0.0*	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	4
5	0.0E	0.0E	0.0E	19	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	5
6	0.0E	0.0E	0.0E	19	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	6
7	0.0E	0.0E	0.0E	19	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	7
8	0.0E	0.0E	0.0E	16	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	8
9	0.0E	0.0E	0.0E	18	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	9
10	0.0E	0.0E	0.0E	18	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	10
11	0.0E	0.0E	0.0E	19	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	11
12	0.0E	0.0E	0.0E	20	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	12
13	0.0E	0.0E	0.0E	19 +	0.0	Q.OE	0.0	0.0	0.0	0.0	0.0	0.0	13
14	0.0E	0.0E	0.0E	19	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	14
15	0.0E	0.0E	0.0E	7.9*	0.0	0.0E	0.0	0.0*	0.0	0.0	0.0	0.0	15
16	0.0E	0.0E	0.0E	3.1	0.0	0.0E	0.0*	0.0	0.0*	0.0	0.0	0.0	16
17	0.0E	0.0E	17	0.0*	0.0	0.0#	0.0	0.0	0.0	0.0	0.0	0.0	17
18	0.0E	0.0E	28 *	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18
19	0.0E	0.0E	21	0.0	0.0E	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	19
20	0.0E	0.0E	16	0.0*	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
21	0.0E	0.0E	24	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
22	0.0E	0.0E	24	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32
23	0.0E	0.0E	24 *	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23
24	0.0E	0.0E	24	0.0	0.0E	0.9	0.0	0.0	0.0	0.0	0.0	0.0	24
25	0.0E	0.0E	22	0.0	0.0E	0.2	0.0	0.0	0.0	0.0	0.0	0.0	35
26	0.0E	0.0E	21	0.0	0.0E	0.1	0.0	0.0	0.0	0.0	0.0	0.0	26
27	0.0E	O.OE	21	0.0	0.0E	0.2	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0E	0.0E	21 *	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28
29		0.0E	21	0.0	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29
30	0.0E	0.0E		0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30
31	0.0E	0.0E	21 21	0.0		0.0	3.0	0.0		0.0	0.0		31
MEAN	0.0E	0.0E	10.5E	9.1	0.0E	0.0E	0.0	0.0	0.0	0.0	0.0	0.0	MEA
MAX.	0.0E	0.0E	28.0E	22.0	0.0E	0.9E	0.0	0.0	0.0	0.0	0.0	0.0	MAX
MIN.	0.0E	0.0E	0.0E	0.0	O.OE		0.0	0.0	0.0	0.0	0.0	0.0	MIN
AC. FT.	U.UE	U.UE	647	559	U.UE	0.0E							AC.FI

E - ESTIMATEO

NR — NO RECORD

* — DISCHARGE MEASUREMENT OR

085ERVATION OF NO FLOW

- EAHD*

a - See note (a) below.

MEAN		MAXIMU	M		$\overline{}$		MINIM	U M		
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
0.8						0.0E		10	1	0000

TOTAL
ACRE FEET
1209

	LOCATION			MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
		1/4 SEC. T. B.R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.B.M.	C.F.S.	C.F.S. GAGE HT. DATE		- DISCHARGE	ONLY	FROM	то	GAGE	DATUM
36 04 18	119 05 48	SE30 21S 27E				DEC 42-DATE		1942		0.00	LOCAL

Station located 4.5 mi. W of Porterville, approximately 100 ft. below head. This is regulated diversion from Tule River. This station is operated under cooperative agreement between the Department of Water Resources and the Tule River Association. Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.

(a) During extended periods of estimated no flow the recorder at this station was deactivated. The recorder was activated prior to anticipated diversions upon notification from the Tule River Association.

IAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR	STATION NO.	STATION NAME
1964	C05150	KERN RIVER NEAR BAKERSFIELD

AY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1574	624	432	344	369	397	473	443	855	1412	646	320	,
2	1550	617	437	353	385	441	479	446	960	1305	655	260	2
3	1497	608	430	343	422	438	454	444	1144	1225	655	188	3
4	1520	593	411	353	424	448	448	443	1082	1221	653	170	4
5	1500	588	404	347	421	453	456	451	1039	1234	642	160	5
6	1468	572	393	338	430	513	447	476	1054	1237	654	164	6
7	1477	565	360	333	442	499	428	451	1169	1263	625	176	7
8	1446	523	364	324	417	484	442	458	1213	1304	608	198	8
9	1393	529	374	318	408	497	444	463	1235	1321	594	154	9
10	1280	539	368	302	398	499	447	461	1258	1377	601	215	10
h l	1049	534	365	284	326	488	448	434	1298	1402	625	218	11
12	1057	543	365	286	316	485	445	462	1265	1413	598	173	12
13	1066	579	364	292	306	489	446	449	1253	1415	583	221	13
14	1074	594	368	328	297	467	445	448	1288	1445	537	228	14
15	1091	588	389	330	272	482	435	438	1342	1439	458	220	15
16	1041	583	401	328	261	468	496	443	1440	1379	460	235	16
		550	402	328	283	462	520	439	1356	1306	471	211	17
17	728 783	446	403	312	310	443	547	443	1313	1265	470	183	18
18				279	315	466	487	457	1518	1258	462	177	
19	853	437	395		309	446	456	446	1498	1176	459	160	19
50	859	438	372	277	309	440	476	440	1498	1176	459	160	20
21	863	459	374	298	340	443	449	451	1419	1086	422	165	21
12	867	490	382	330	387	468	449	451	1394	1110	393	182	22
53	865	502	354	320	400	472	455	459	1394	1103	413	173	23
24	803	498	342	329	412	463	468	455	1208	1008	410	162	24
15	825	469	341	355	421	452	469	498	1141	983	404	138	25
26	830	459	333	387	418	449	475	448	1418	937	406	144	26
27	839	458	338	381	416	442	467	449	1489	682	393	145	27
85	604	442	341	374	393	463	466	457	1535	639	361	158	28
19	584	449	341	348	366	456	452	458	1465	618	373	130	29
30	645	441	335	359		458	464	470	1409	626	375	112	30
11	653	''-	340	383		454		753		646	386		31
AN	1054	524	375	331	368	464	462	463	1282	1156	509	185	MEAN
AX.	1668	629	439	387	442	513	547	753	1518	1445	655	320	MAX.
MN.	557	426	331	277	261	397	428	434	855	618	361	1112	MIN.
FT.	64828	31174	23044	20356	21152	28532	27485	28451	76268	71078	31323	10989	AC.FT

- ESTIMATED
- NO RECORD
- DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW
- E AND *

MEAN		MAXIMU	M	=		MINIMU	J M	
DISCHARGE	DISCHARGE	GAGE HT.	MO. DAY	TIME	DISCHARGE	GAGE HT.	MO DAY	TIME
598								
\ /	' \	,		- /	(i I	

TOTAL ACRE FEET 434680

		LOCATIO	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD	RECORD DATU		OF GAGE	
Γ	ATITUDE		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF.
	LATITUDE	LONGITUDE	M. D. B. & M.			DATE		ONLY	FROM	TO	GAGE	DATUM
	35 26 9	118 56 8	SW 2 29S 28E	36000	14.2	11-19-50	93-DATE		1			

Also known as "Kern River at First Point." Station located 5 mi. NE of Bakersfield. Tabulated discharge is the computed regulated flow and is computed from noon to noon beginning at noon of day shown. Records furn. by Kern County Land Company. Drainage area is 2,420 sq. mi.

TABLE B-5

WATER YEAR STATION NO. STATION NAME

1964 C03110 TULARE LAKE

DAILY	MEAN	GAGE	HEIGHT	1964
	(IN	FEET)		

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1													1
2									i				3
3 4				1				Į.					4
5													5
6													6
7													7
8													8
9													10
,,													11
12													12
13					ĺ								13
14					1						İ		14
15					•	D	R Y					Į.	15
16													16
17		1 1										1	17
18 19]				Į.					ŀ	Ì	18 19
20													20
21													21
22		1				į					ľ	ļ	22
23		1 1				1						1	23
24 25		1 1											24
25													25
26													26
27								1					27
28 29													28
30										İ			29
31		ł				-							30
													1 "

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAG
E - ESTIMATED												
NR - NO RECORD	l											
NE - NO FLOW							L					

	LOCATION	ı	MAXI	MUM DISCH	IARGE	PERIOD (OF RECORD	DATUM OF GAGE			:
	TITUDE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF
LATITUDE	LONGITUDE	M. D. B. B. M.	C.F.S.	GAGE HT.	DATE	DIBONANGE	ONLY	FROM	TO	GAGE	DATU
30 03 10	119 49 35			196.8	6-28-41	 	FEB 37-DATE	1937		0.00	USCG

Station located 2.2 mi. SW of Chatom Ranch, 6 mi. SW of Corcoran on south end of El Rico Bridge. Tulare Lake receives water from Kings, Kaweah, and Tule Rivers during high-water periods and occasionally from Kern River, Deer Creek, and several small intermittent streams. Elevation at lowest point of lake bed is now about 180 ft. U.S.G.S. datum. Records furn. by Tulare Lake Basin Water Storage District.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME 1964 807885 SAN JOAQUIN RIVER BELOW FRIANT

(IN FEET)

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	2.11	1.95	1.89	1.91	1.89	2.24	2.12	2.34	2.35	2.52	2.54	2.42	1
2	2.11	1.95	1.89	1.91	1.89	2.24	2.07	2.36	2.33	2.56	2.54	2.42	2
3	2.11	1.95	1.90	1.91	1.90	2.22	2.09	2.37	2.32	2.56	2.54	2.42	3
4	2.11	1.95	1.90	1.91	1.90	2.20	2 • 14	2.36	2.32	2.56	2.60	2 • 4 1	4
5	2.11	1.96	1.90	1.91	1.90	2.20	2.14	2.36	2.32	2.55	2.59	2.38	5
			,	1.91	1.94	2.20	2.12	2.34	2.33	2.56	2.58	2.35	6
6	2.11	1.96	1.90		1.99	2.20	2.09	2.32	2.33	2.54	2.58	2.35	7
7	2.10	1.96	1.90	1.91		2.20		2.32	2.35	2.56	2.57	2.35	8
8	2.09	1 • 96	1.90	1.91	1.99		2.09				2.57	2.35	,
9	2.07	1.96	1.90	1.92	2.00	2.20	2.15	2.32	2.38	2.59			10
10	2.07	1.96	1.90	1.92	2.00	2.18	2.20	2.32	2.35	2.62	2.59	2.35	'0
11	2.05	1.96	1.90	1.92	2.00	2.15	2.23	2.32	2.33	2.64	2.60	2.35	11
12	1.99	1.96	1.90	1.92	2.00	2.13	2.23	2.32	2.33	2 • 6 4	2.60	2.36	12
13	1.99	1.96	1.90	1.92	2.00	2.10	2.23	2.32	2.32	2.63	2.58	2.36	13
14	1.99	1.97	1.90	1.92	2.03	2.10	2 • 24	2.33	2 • 32	2 • 63	2.56	2.36	14
15	1.99	1.98	1.90	1.92	2.07	2.10	2 • 27	2.34	2.32	2.63	2.56	2.37	15
	2.00	1.97	1.90	1.92	2.08	2.10	2 • 36	2.35	2.32	2.63	2.56	2.37	16
16		1.97	1.90	1.91	2.10	2.10	2.37	2.35	2.35	2.63	2.56	2.37	17
17	2.00		1.90	1.93	2.13	2.10	2.37	2.35	2.37	2.61	2.55	2.37	18
18	1.99	1.97	1.90	1.95	2.14	2.11	2.38	2.35	2.37	2.60	2.54	2.37	19
19	1.99	1.97			2.14	2.12	2.38	2.35	2.36	2.60	2.54	2.37	20
20	1.99	1.96	1.91	1.95	2.14	2.12	2.50	2.33	2.50	2.00	2.004	200	
21	2.01	1.90	1.91	1.97	2.14	2.12	2+38	2.35	2.36	2.60	2.54	2.37	21
22	2.00	1.90	1.90	1.95	2.14	2.14	2.38	2.35	2 • 40	2.60	2.54	2.33	22
23	2.00	1.90	1.90	1.90	2.13	2 • 10	2.37	2.35	2.43	2.62	2.54	2.29	23
24	2.00	1.90	1.90	1.90	2.15	2.05	2.35	2.35	2 • 42	2.65	2.54	2.29	24
25	2.00	1.90	1.90	1.90	2.14	2.01	2.33	2.34	2 • 4 4	2.65	2.54	2.29	25
26	2 00	1.89	1.91	1.90	2.13	2.00	2.28	2.34	2.49	2.64	2.54	2.29	26
27	2.00	1.88	1.91	1.90	2.23	2.02	2.28	2.34	2.49	2.64	2.54	2.30	27
28	1.99			1.90	2.25	2.05	2.28	2.34	2.49	2.63	2.46	2.30	28
28	2.00	1.88	1.91	1.90	2.24	2.05	2.28	2.34	2.49	2.63	2.41	2.30	29
	2.00	1.89	1.91		****	2.05	2.32	2.34	2.49	2.59	2.41	2.30	30
30	2.00	1.89	1.91	1.90		2.11	2.00	2.34	***/	2.54	2.42		31
31	1.97		1.91	1.90	1	2 • 11	l	2.5		2.0,4	"""		"

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

O	ATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
7-	-24-64	0900	2.67									

	LOCATION	١	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	ATITUDE LONGITUDE	1/4 SEC. T.& R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	OD	ZERO	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	OATE	DISCHAILE.	ONLY	FROM	то	GAGE	DATUM
36 59 04	119 43 24	SW7 11S 21E	77,200	23.8	12/11/37	OCT 07-DATE		1938		294.00	USGS

Station located 1 mile downstream from Friant Dam. Flow regulated by Millerton Lake. Records furnished by U.S.G.S. Drainage area is 1,675 sq. mi.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1964 B64200 CHOWCHILLA RIVER NEAR RAYMOND

(IN FEET)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	NR	NR	NR	NR	NR	NR	69.90	NR	NR	NR	NR	NR	,
2	NR	NR	NR	NR	NR	NR	70.68	NR	NR	NR	NR	NR	2
3	NR	NR	NR	NR	NR	NR	70.13	l NR	NR NR	NR	NR	NR	3
4	NR	NR	NR	NR	NR	NR	69.88	NR	NR	NR	NR	NR	4
5	NR	NR	NR	NR	NR	NR	69.74	NR	NR	NR	NR	NR	5
6	NR	NR	NR	NR	NR	NR	69.68	NR	NR	NR	NR	NR	6
7	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	7
8	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	8
9	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	9
10	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	10
11	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	11
12	NR	NR	NR	NR	MR	NR	NR	NR	NR	NR	NR	NR	12
13	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	13
14	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	14
15	NR	70.27	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	15
16	NR	70.01	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	16
17	NR	69.32E	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	17
18	NR	69.52E	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	18
19	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	19
20	NR	71.42	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	20
21	NR	70.88	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	21
22	NR	69.84E	NR	70.50	NR	NR	NR	NR	N.R	NR	NR	NR	22
23	NR	69.43E	NR	70.31	NR	NR	NR	NR	NR	NR	NR	NR	23
24	NR	69.88E	NR	69.88E	NR	70.23	NR	NR	NR NR	NR	NR	NR	24
25	NR	69.90	NR	NR	NR	70.09	NR	NR	NR	NR	NR	NR	25
26	NR	69.53E	NR	NR	NR	69.89	NR	NR	NR	NR	NR	NR	26
27	NR	69.44	NR	NR	NR	70.13	NR	NR	NR	NR	NR	NR	27
28	NR	NR	NR	NR	NR	70.07	NR	NR	NR	NR	NR	NR	28
29	NR	NR	NR	NR	NR	69.89	NR	NR	NR	NR	NR	NR	29
30	NR	NR	NR	NR I		69.77	NR	NR	NR NR	NR	NR	NR	30
31	NR	''''	NR	NR		69.65		NR		NR	NR		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
11-20-64	1130	73.30									

	LOCATION	N	MAXII	NUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PER	RIOD	ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 15 36	119 56 42	SE 1 8S 22E	8497E	83.9	2- 1-63	NOV 59-SEP 62	OCT 62-DATE	1959		0.00	usces

Station located 6.0 mi. NW of Raymond on Raymond Road. Elevation of station is approximately 600 ft. USCGS datum. This station was installed in cooperation with Madera County and Chowchilla Water District. It is a flood control warning station, equipped with a Stevens Surface Detector and Telemark. Low flows are not recorded. Prior to 1962, high flow records were insufficient for publication. Discharge measurements and partial flow records are available in DWR files. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 500 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1964 B07575 SAN JOAQUIN RIVER ABOVE SAND SLOUGH

(IN FEET)

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1 2 3 4 5		NF NF NF NF	10.93 10.72 10.54 NF										1 2 3 4 5
6 7 8 9		NF NF NF NF NF	NF NF NF NF			ı							6 7 8 9
11 12 13 14 15	N O	NF NF NF NF	NF NF NF NF	N O	O	N O	N O	N O	N O	N O	N O	N 0	11 12 13 14 15
16 17 18 19 20	F L O W	NF NF NF NF	NF NF NF NF	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	F L O W	16 17 18 19 20
21 22 23 24 25		NF NF 10.73 11.59 11.55	NF NF NF NF										21 22 23 24 25
26 27 28 29 30 31		11.44 11.59 11.57 11.39 11.16	NF NF NF NF NF										26 27 28 29 30 31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
11-27-63	1850	11.65									
(

	LOCATION	١	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
<u> </u>		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF
LATITUDE	LONGITUDE	M. D. B. B. M.	C.F.S.	GAGE HT.	OATE	0.00	ONLY	FROM	то	GAGE	DATUM
37 06 36	120 35 24	NE31 9 S 13E	2110	6.55	2/12/62	OCT 61-SEP 62	OCT 62-DATE	1961		0.00	USCGS

Station located 5 mi. NW of Santa Rita Bridge and 5 mi. W of El Nido. Flows sometimes affected by operation of control structures below station. During this period flows are not computed. Partial flow records and discharge measurement are available in the office of the San Joaquin Valley Branch of the Department of Water Resources. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 90 feet to all of the above gage heights.

WATER YEAR STATION NO. STATION NAME 807400 SAN JOAQUIN RIVER NEAR STEVINSON

DAILY MEAN GAGE HEIGHT (IN FEET)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	61.28	60.72	60.87	60.79	60.96	60.82	61.10	61.12	61.82	61.02	60.94	61.18	1
2	61.21	60.69	60.81	60.82	60.96	60.83	61.15	61.10	61.82	60.85	60.95	61.14	2
3	61.13	60.67	60.82	60.96	60.92	60.80	61.14	61.08	61.56	60.92	61.04	61.13	3
4	61.10	60 • 64	60.84	61.08	60.93	60.77	61.18	61.11	61.19	60.91	61.12	61.09	4
5	61.17	60.66	60.81	61.60	60.85	60.76	61.06	61.16	61.02	60.87	61.10	61.00	5
6	61.17	60.67	60.78	61.63	60.83	60.81	60.96	61.29	61.03	60.83	61.05	60.91	6
7	61.16	60.66	60.84	62.08	60.82	60.81	60.98	61.28	60.98	60.80	60.97	60.93	7
8	61.27	60.66	60.87	61.55	60.70	60.84	61.00	61.17	60.98	60.83	60.85	60.96	8
9	61.37	60.62	60.84	61.21	60.70	60.87	60.95	61.22	61.05	60.87	60.85	60.89	9
10	61.29	60.61	60.84	61.17	60.70	60.91	60.86	61.21	61.25	60.90	60.90	60.85	10
11	61.13	60.64	60.81	61.14	60.61	60.90	60-84	61.19	61.59	60.87	60.85	60.83	11
12	61.26	60.77	60.69	61.09	60.61	60.93	60.79	61.31	62.14	60.87	60.84	60.80	12
13	61.32	60.78	60.65	61.26	60.61	60.97	60.86	61.35	62.43	60.93	60.87	60.79	13
14	61.32	60.70	60+65	61.26	60.62	61.02	60.96	61.32	62.07	60.91	60.87	60.76	14
15	61.55	60.74	60.70	61.26	60.94	61.09	60.99	61.20	61.63	61.00	60.88	60.75	15
16	61.58	60.88	60.79	61.17	61.14	61.12	60.95	61.16	61.38	61.02	60.93	60.74	16
17	61.26	60.92	60.78	61.06	60.83	61.10	61.00	61.12	61.24	60.94	60.94	60.73	17
18	61.26	60.95	60.78	60.98	60.85	61.01	61.02	61.11	61.19	60.88	60.91	60.71	18
19	61.36	60.96	60.77	60.94	60.77	61.12	61.06	61.14	61.08	60.90	60.85	60.69	19
20	61.38	61.12	60.86	60.91	60.78	60.99	61 • 24	61.33	61.00	60.93	60.95	60.70	20
21	61.31	61.20	60.87	60.89	60.78	60.93	61.54	61.53	60.97	60.95	60.96	60.68	21
22	61.31	61.22	60.82	61.38	60.76	60.93	61.20	61.50	61.00	61.01	61.01	60.73	22
23	61.17	61.25	60.77	61.97	60.76	60.94	61.04	61.51	61.11	61.00	61.06	60.79	23
24	61.11	61.21	60.77	62.09	60.76	60.99	61.09	61.63	61.22	60.99	61.07	60.72	24
25	61.11	61.17	60.80	62.08	60.73	61.14	61.16	61.75	61.18	60.99	61.11	60.71	25
26	61.17	61.11	60.84	61.89	60.75	61.17	61.18	61.72	61.06	60.97	61.21	60.72	26
27	61.12	61.03	60.82	61.68	60.83	61.11	61.16	61.71	60.98	60.92	61.21	60.73	27
28	61.07	60.98	60.77	61.27	60.85	61.13	61.16	61.70	61.02	60.87	61.14	60.76	28
29	61.03	60.95	60.75	60.94	60.80	61.13	61.14	61.72	61.01	60.90	61.10	60.80	29
3D	60.90	60.92	60.77	60.82		61.05	61.11	61.70	61.05	60.95	61.13	60.81	30
31	60.77		60.75	60.90		61.05	1	61.67		60.93	61.14		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1-24-64 6-12-64	1600 2100	62.38 62.48									

	LOCATION	1	MAXII	MUM DISCH	IARGE	PERIOD 0	F RECORD		DATUM	OF GAGE	
		1/4 SEC, T, & R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PEF	RIOD	2ERO ON	REF.
LATITUOE	LONGITUDE	M. O. B. & M.	C.F.S.	GAGE HT.	DATE			FROM	TO	GAGE	DATUM
37 17 42	120 51 00	26 7S 10E	6060	73.04	2-17-62	OCT 61-DATE	MAY 61-SEP 61	1961		0.00	uscgs

Station located on bridge 2.3 miles south of Stevinson on Lander Avenue.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME 1964 807375 SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	54.95	54.82	55.33	54.93	55.48	54.88	55.22	55.20	55.75	55.11	54.50	54.97	1
2	54.81	54.83	55.20	54.96	55.49	54.88	55.28	55.12	55.80	55.05	54.55	55.16	2
3	54.73	54.84	55.12	54.97	55.48	54.93	55.36	55.20	55.71	55.01	54.60	55.13	3
4	54.86	54.83	55.07	55.03	55.44	54.94	55.27	55.34	55.55	54.95	54.80	55.10	4
5	54.92	54.79	55.02	55.21	55.38	54.99	55.21	55.36	55.38	54.87	54.84	55.07	5
6	55.00	NR	54.95	55.36	55.32	55.03	55 • 14	55.49	55.31	54.81	54.83	54.96	6
7	54.99	NR	54.96	55.88	55.28	55.01	55.12	55.52	55.21	54.79	54.78	54.97	7
8	54.86	54.60	55.03	56.04	55.13	54.99	55.06	55.46	55.05	54.74	54.65	54.91	8
9	55.00	54.59	55.05	55.87	55.10	55.09	54.96	55.33	55.26	54.64	54.59	54.84	9
10	54.93	54.52	55.08	55.78	55.10	55.19	54.78	55.37	55.42	NR	54.68	54.67	10
11	54.85	54.54	55.15	55.73	55.11	55.16	54.64	55.45	55.77	54.67	54.67	54.68	11
12	54.88	54.61	55.24	55.66	55.01	55.22	54.73	55 • 45	56.05	54.71	54.78	54.63	12
13	55.13	54.73	55.31	55.64	54.98	55.29	54.85	55.52	56.26	54.68	54.64	54.50	13
14	55.20	54.82	55.33	55.65	54.94	55.33	55.08	55.46	56.16	54.81	54.46	54.54	14
15	54.97	54.82	55.34	55.63	55.01	55.40	55.18	55.22	55.89	54.84	54.55	54.66	15
16	55.05	54.87	55.30	55.59	55.31	55.47	55.16	55.07	55.62	54.78	54.75	54.62	16
17	54.92	55 • 13	55.23	55.50	55.18	55 • 44	55.12	55 • 05	55.41	54.68	54.77	54.53	17
18	NR	55.29	55.21	55.42	55.13	55.30	55.12	55.11	55.24	54.58	54.74	54.63	18
19	NR	55.31	55.26	55.39	55.07	55 • 15	55.21	55.24	55.12	54.45	54.65	54.59	19
20	54.80	55.32	55.25	55.36	55.03	54.90	55.36	55.42	54.99	54.48	54.47	54.42	20
21	54.82	55.42	55.20	55.38	55.03	54.79	55.48	55.49	55.05	54.61	54.48	54.46	21
22	NR	55.52	55.06	55.35	55.02	54.71	55.38	55.49	55.02	54.62	54.46	54.44	22
23	54.77	55.57	55.04	55.69	54.98	54.69	55.31	55.51	55.06	54.59	54.66	54.45	23
24	54.73	55.51	55.06	55.74	54.98	54.78	55.28	55.52	55.09	54.66	54.85	54.37	24
25	NR	55.50	55.03	55.93	54.86	54.93	55.40	55.66	55.01	54.64	54.88	54.47	25
26	NR	55.46	55.05	55.77	54.78	54.98	55.43	55.79	54.90	54.66	54.89	54.57	26
27	NR	55.42	55.05	55.70	54.82	54.98	55.34	55.76	54.86	54.72	54.96	54.64	27
28	54.73	55.38	55.00	55.52	54.83	55.09	55.32	55.78	54.91	NR	54.92	54.64	28
29	54.80	55.40	54.98	55.42	54.87	55.22	55.35	55.80	55.05	NR	54.72	54.59	29
30	54.80	55.41	54.97	55.38		55.24	55.27	55.71	55.14	NR	54.75	54.58	30
31	54.80		54.94	55.41		55.20		55.67		54.54	54.83		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE
6-13-64	1000	56.33									
								i			

	LOCATION		MAXI	MUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
		1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	DATE	DISCHANGE	DNLY	FROM	TO	GAGE	DATUM
37 18 35 12	20 55 45		5910	71.14	4- 6-58	MAR 37-DATE		1944 1957	1957 1959	-3.73 -3.77	USCGS USCGS

Station located 30 ft. below Fremont Ford Bridge, 4.5 mi. W of Stevinson, 6.7 mi. above the Merced River. During periods of high flow, some water bypasses station through Mud Slough. Maximum discharge of record is for period 1944 to date. Records furn. by U.S.G.S. Drainage area is approx. 8,090 sq. mi. Flow records are published in U.S.G.S. report "Surface Water Records of California."

DAILY MEAN GAGE HEIGHT

(IN FEET)

WATER YEAR	STATION NO.	STATION NAME
1964	805170	MERCED RIVER BELOW SNELLING

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	5.46	5 • 25	5.31	5 • 25	5.33	5.29	5.44	5.80	5.64	5.83	5.91	5.84	1
2	5.59	5 • 25	5.30	5.24	5.33	5.27	5.42	5.83	5.63	5.81	5.91	5.83	2
3	5.88	5 • 27	5.31	5.24	5.33	5.25	5.42	5.92	5.66	5.83	5.90	5.83	3
4	5.35	5.28	5.31	5.27	5.32	5.26	5.36	5.95	5.65	5.87	5.90	5.76	4
s	5.25	5.33	5.32	5.32	5.31	5 • 24	5 • 27	6.02	5.62	5.85	5.89	5.77	5
	5.15	5.40	5.32	5.33	5.31	5.27	5 • 24	6.03	5.66	5.84	5.84	5.65	6
7	5.11	5 • 34	5.31	5.34	5.31	5.29	5.27	6.03	5 • 69	5.85	5.84	5.67	7
8	5.03	5.31	5.30	5.34	5.35	5.28	5 • 18	5.91	5.71	5.86	5.82	5.60	8
9	5.00	5.30	5.32	5.32	5.35	5.27	5.20	5.88	5.88	5.85	5.84	5.41	9
10	5.01	5 • 32	5.30	5.34	5.42	5.27	5.27	5 • 8 4	6.02	5.86	5.86	5.25	10
11	5.22	5.33	5.29	5.34	5.41	5.29	5.45	5.75	5.95	5.91	5.87	5.03	11
12	5.16	5.33	5.26	5.32	5.41	5 . 36	5.44	5.73	5.93	5.93	5.90	5 • 25	12
13	5.10	5.31	5 • 26	5.32	5.41	5.33	5 • 40	5.71	5 • 88	5.94	5.88	5 • 22	13
14	5.08	5.36	5.25	5.32	5.39	5.31	5.36	5.86	5.77	6.68	5.87	5.03	14
15	5.09	5 • 48	5.27	5.32	5.34	5.29	5.55	5.85	5.73	5 • 84	5.89	4.99	15
16	5.12	5 • 38	5.26	5.31	5.37	5.30	5.73	5.77	5 • 84	5.79	5.88	4.92	16
17	5.17	5.37	5 • 25	5.31	5.34	5.30	5.81	5.76	5.86	5.75	5.93	4.85	17
18	5.18	5.37	5.25	5.33	5.36	5.30	5.72	5.74	5 • 68	5.71	5.93	4.83	18
19	5.16	5.44	5.27	5.33	5.35	5.30	5.79	5.72	5.75	5.74	5.88	4.81	19
20	5.16	5 • 57	5.27	5.33	5.35	5.28	5 • 86	5.67	5.82	5.71	5.93	4.80	2D
21	5.15	5.48	5.26	5.45	5.34	5.26	5.86	5.68	5.83	5.69	6.05	4.78	21
22	5.13	5 • 42	5.27	5.57	5.33	5.27	5 . 86	5.73	5.87	5.68	5.88	4.78	22
23	5.16	5.45	5.26	5.54	5.33	5.32	5.91	5.73	5.86	5.76	5.68	4.78	23
24	5.16	5 • 47	5.26	5.42	5.33	5.36	5 • 94	5.76	5.83	5.94	5.25	4.76	24
25	5.17	5 • 40	5 • 28	5.37	5.31	5.36	5 • 86	5.79	5 • 84	5.87	5.58	4.75	25
26	5.16	5.40	5.26	5.37	5.24	5.36	5 • 84	5.83	5.89	5.83	5.71	4.74	26
27	5.18	5 • 39	5.27	5.35	5.23	5.33	5 • 85	5.86	5.88	5 • 81	5.72	4.74	27
26	5.18	5.33	5.27	5.34	5.25	5.30	5 • 83	5.78	5.83	5.90	5.80	4.74	28
29	5.22	5.31	5.27	5.34	5.27	5.29	5.80	5.75	5.86	5.89	5.78	4.75	29
3D	5.27	5.31	5.26	5.34		5 • 25	- 5.79	5 - 65	5.85	5.93	5.79	4.74	30
31	5.20		5.26	5.35		5.22		5 • 63		5.94	5.80		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
10- 3-63 7-14-64	0630 1440	6.59 9.35									

	LOCATION	7	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUOE	LATITUDE LONGITUDE		OF RECORD)	DISCHARGE	GAGE HEIGHT	PERIO0		ZERO	REF.
LATITODE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
37 30 06	120 27 03	NE17 5S 14E	4910	12.51	5-10-63	NOV 58-DATE		1958		0.00	LOCAL

Station located 0.2 mi. below Merced-Snelling Highway Bridge, 1.4 mi. SW of Snelling. Flow regulated by Exchequer power plant and Lake McClure. Prior to November 1958, records available for a site 3.6 mi. downstream.

DAILY MEAN GAGE HEIGHT

(IN FEET)

WATER YEAR	STATION NO.	STATION NAME	
1964	805155	MERCED RIVER AT CRESSEY	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	10.62	10.55	10.76	10.56	10.60	10.25	10.30	10.30	10.54	10.43	10.51	10.85	1
2	10.62	10.57	10.75	10.57	10.58	10.26	10.30	10.31	10.57	10.42	10.60	10.82	2
3	10.66	10.58	10.74	10.57	10.58	10.29	10.29	10.39	10.48	10.35	10.62	10.89	3
4	10.84	10.59	10.74	10.58	10.57	10.29	10.26	10.45	10.49	10.36	10.64	10.87	4
5	10.80	10.59	10.74	10.58	10.56	10.29	10.24	10.51	10.46	10.42	10.54	10.90	5
6	10.65	10.59	10.74	10.57	10.54	10.32	10.25	10.59	10.43	10.55	10.63	10.87	6
7	10.59	10.65	10.74	10.57	10.53	10.38	10.23	10.70	10.48	10.59	10.64	10.82	7
8	10.52	10.66	10.73	10.58	10.52	10.37	10.21	10.80	10.55	10.55	10.64	10.82	8
9	10.48	10.64	10.72	10.57	10.51	10.34	10.19	10.71	10.62	10.54	10.62	10.85	9
10	10.44	10.63	10.72	10.57	10.52	10.31	10.17	10.69	10.77	10.52	10.67	10.83	10
11 5	10.56	10.63	10.70	10.56	10.51	10.33	10.18	10.66	10.85	10.55	10.63	10.75	11
12	10.64	10.63	10.70	10.56	10.49	10.38	10.19	10.59	10.85	10.44	10.57	10.69	12
13	10.66	10.63	10.69	10.55	10.47	10.39	10.21	10.49	10.78	10.45	10.55	10.65	13
14	10.62	10.65	10.68	10.57	10.46	10.40	10.27	10.41	10.68	10.43	10.73	10.66	14
15	10.58	10.72	10.67	10.58	10.47	10.40	10.27	10.34	10.68	11.56	10.76	10.59	15
16	10.59	10.79	10.65	10.56	10.49	10.37	10.27	10.28	10.60	11.07	10.78	10.62	16
17	10.61	10.79	10.66	10.57	10.48	10.34	10.41	10.26	10.60	10.71	10.82	10.64	17
18	10.63	10.77	10.66	10.58	10.47	10.33	10.47	10.32	10.59	10.61	10.82	10.67	18
19	10.64	10.78	10.64	10.57	10.46	10.34	10.57	10.28	10.55	10.51	10.81	10.71	19
20	10.63	10.84	10.64	10.57	10.46	10.34	10.69	10.22	10.46	10.40	10.87	10.70	20
21	10.61	10.88	10.64	10.62	10.46	10.32	10.66	10.22	10.39	10.41	10.88	10.63	21
22	10.59	10.88	10.63	10.81	10.45	10.30	10.69	10.30	10.38	10.41	10.95	10.59	22
23	10.59	10.84	10.61	11.73	10.45	10.33	10.67	10.38	10.40	10.44	11.13	10.53	23
24	10.58	10.84	10.61	11.20	10.46	10.35	10.61	10.41	10.43	10.38	11.09	10.58	24
25	10.58	10.84	10.62	10.92	10.40	10.35	10.62	10.41	10.46	10.37	10.06	10.61	25
26	10.57	10.83	10.61	10.78	10.32	10.35	10.60	10.44	10.44	10,46	10.73	10.58	26
27	10.58	10.81	10.62	10.69	10.30	10.36	10.56	10.52	10.37	10.50	10.74	10.54	27
28	10.59	10.80	10.60	10.65	10.28	10.35	10.46	10.51	10.33	10.47	10.87	10.50	28
29	10.58	10.79	10.59	10.62	10.27	10.33	10.35	10.59	10.33	10.43	10.87	10.38	29
30	10.55	10.78	10.58	10.60		10.32	10.34	10.59	10.35	10.40	10.95	10.44	30
31	10.55		10.57	10.61		10.31		10.57		10.43	10.96		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	5TAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1-23-64	1210	11.92									
7-15-64	1220	12.40									

	LOCATION	N	MAXII	MUM DISCH	IARGE	PERIOD (OF RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF
LATITUDE	LUNGITUDE	M. D. B. & M.	C. F, S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 25 2B	120 39 47	SW 9 6\$ 12E	34400	22.67	12- 4-50	JUL 41-DATE	APR 41-JUL 41	1950		96.24	USCGS

Station located 150 ft. below McSwain Bridge, immediately N of Cressey. Prior to May 20, 1960, station located 250 ft. upstream.

D

TABLE B-5 (Gont.)	WATER YEAR	ON NOITATE	STATION NAME	١
DAILY MEAN GAGE HEIGHT	1964	805138	MERCED RIVER NEAR LIVINGSTON	
(IN FEET)	-			

DAY	ОСТ.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
,	11.58	11.07	11.28	11.13	11.21	10.95	11.00	11.08	11.17	10.98	10.82	11.24	1
2	11.43	11.07	11.25	11.13	11.18	10.90	10.94	11.04	11.22	10.92	11.10	11.09	2
3	11.34	11.08	11 • 24	11.15	11.18	10.92	10.92	11.09	11.07	10.92	11.06	11.10	3
4	11.32	11.08	11.22	11.15	11.16	10.93	10.89	11.29	10.97	10.88	11.07	11.12	4
5	11.58	11.10	11.21	11.14	11.17	10.90	10.92	11.24	11.09	10.94	11.00	11.12	5
6	11.38	11.10	11.20	11.13	11.16	10.91	11.03	11.48	11.15	11.07	10.92	11.10	6
1 7 1	11.29	11 • 13	11.19	11.14	11.14	10.98	10.99	11.43	11.18	11.04	10.90	11.04	7
8	11.27	11.16	11.21	11.14	11.13	11.05	10.90	11.45	11.21	10.96	11.00	11.03	8
9	11.33	11.15	11.22	11.14	11.12	10.99	10.88	11.53	11.61	10.96	11.04	11.04	9
10	11.12	11.13	11.22	11.13	11.12	10.97	10.84	11.43	11.54	10.98	11.15	11.02	10
l 11	11.22	11 • 12	11.22	11.12	11.12	11.00	10.88	11.48	11.46	10.99	11.03	11.02	111
12	11.23	11.13	11.21	11.12	11.14	11.13	10.86	11.22	11.51	11.00	11.23	10.97	12
13	11.25	11.12	11.20	11.12	11.13	11.06	10.86	11.15	11.52	10.95	11.14	10.94	13
14	11.23	11.14	11.19	11.12	11.11	11.02	10.77	11.12	11.39	10.86	10.98	10.92	14
15	11.20	11.18	11.18	11.12	11.10	11.06	10.82	11.05	11.30	11.15	11.19	10.89	15
16	11.21	11.23	11.17	11.13	11.11	11.05	10.90	10.88	11.28	11.99	11.14	10.87	16
17	11.15	11.27	11.19	11.13	11.10	11.05	10.90	11.03	11.30	11.48	11.17	10.86	17
18	11.15	11.25	11.19	11.13	11.10	11.03	11.08	11.08	11.24	11.22	11.18	10.87	18
19	11.16	11.25	11.17	11.12	11.10	10.95	11.29	11.01	11.19	11.22	11.14	10.96	19
20	11.14	11.31	11.15	11.12	11.08	10.92	11.35	10.90	11.12	11.16	11.13	10.97	20
21	11.13	11.34	11.15	11.18	11.08	10.91	11.31	10.87	11.17	10.92	11.15	10.94	21
22	11.12	11.37	11.15	11.25	11.07	10.96	11.39	10.99	11.27	10.95	11.17	10.84	22
23	11.12	11 • 35	11.14	11.91	11.06	10.94	11.54	10.98	10.95	10.93	11.24	10.86	23
24	11.10	11.33	11.14	12.12	11.07	10.98	11.49	11.16	10.84	10.80	11.36	10.84	24
25	11.08	11.34	11.15	11.71	11.02	10.97	11.34	11.07	10.89	10.75	11.24	10.85	25
26	23.00			11.50	10.98	10.97	11.78	10.98	10.87	10.95	,, ,,	10.77	
27	11.08	11.33	11 • 14	11.30	10.98	10.97	11.73	11.30	10.87	11.03	11.07	10.77	26
28	11.07	11.33	11 • 14 11 • 14	11.39	10.91	10.97	11.54	11.30	10.87	10.94	11.01	10.75	27
29	11.07	11.31	11.13	11.30		11.06	11.10	11.22		10.94	11.01	10.75	28
30	11.06	11.30			10.90	10.99		11.22	10.97				29
30	11.06	11 • 29	11 • 13	11.23	l	10.99	11.16	11.22	11.08	10.79 10.71	11.14	10.69	30
("	11.05		11.12	11.21		10.76		11.20	1	10.71	11.28		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	1-23-64	2200	12.43									
NR - NO RECORD	7-16-64	0200	12.41									
NF - NO FLOW				· · · · · · · · · · · · · · · · · · ·								

	LOCATION MAXIMUM			MUM DISCH	IARGE	PERIOD	OF RECORD	DATUM OF GAGE			
		1/4 SEC. T. & R.	8 R. 0)	DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF.
LATTIONE	ATITUDE LONGITUDE M.D.B.B.M.		C.F.S.	GAGE HT.	DATE	DIBUILANCE	ONLY	FROM	то	GAGE	DATUM
37 23 18	120 47 35	NW29 6S 11E	11100	21.44	2-12-38	MAR 22-SEP 24 OCT 25-FEB 44	JAN 51-JAN 60 APR 62-DATE		DATE	79.5	USGS

Station located 4.5 mi. W of Livingston and 9.5 mi. upstream from mouth. Early discharge records, 1922-44, available in U.S.G.S. Water Supply Papers. Stage records from 1951-1960 were not published, available from D.W.R., State of California. Station reactivated April 1, 1962 for stage only. Drainage area, 1,259 sq. mi. In order to machine process this station, the recorder datum was changed. To obtain recorder gage heights subtract 10.00 feet from all of the above gage heights.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1964 B07300 SAN JOAQUIN RIVER NEAR NEWMAN

(IN FEET)

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	49.40	49.07	49.79	49.20	49.60	48.98	49.13	49.04	49.27	48.82	48.24	48.94	1
2	49.31	49.09	49.64	49.24	49.60	49.02	49.18	48.98	49.31	48.72	48.39	48.97	2
3	49.23	49.09	49.52	49.28	49.59	48.99	49.09	48.98	49.26	48.64	48.42	48.88	3
4	49.23	49.11	49.45	49.30	49.57	48.98	49.01	49.18	49.11	48.58	48.43	48.92	4
5	49.32	49.13	49.42	49.39	49.53	48.98	48.97	49.20	49.03	48.58	46.45	48.87	5
6	51.02	49.13	49.38	49.64	49.49	48.97	48.97	49.32	49.04	48.64	48.45	48.85	6
7	51.40	49.11	49.36	49.95	49.45	48.97	48.99	49.40	49.03	48.58	48.42	48.83	7
8	49.55	49.16	49.41	50.16	49.38	48.98	46.85	49.36	49.01	48.54	48.31	48.76	8
9	49.44	49.13	49.45	50.12	49.32	49.04	48.77	49.29	49.18	46.45	48.26	48.75	9
10	49.37	49.07	49.48	50.05	49.30	49.05	48.68	49.32	49.44	48.40	48.33	48.71	10
11	49.26	49.04	49.52	49.98	49.32	49.00	48.52	49.40	49.64	48.40	48.37	48.63	11
12	50.27	49.02	49.54	49.92	49.24	49.19	48.59	49.28	49.74	48.47	48.40	48.52	12
13	51.95	49.05	49.53	49.89	49.22	49.22	48.68	49.20	49.81	48.51	48.43	48.42	13
14	51.99	49.09	49.52	49.89	49.17	49.19	48.73	49.09	49.70	48.44	48.32	48.47	14
15	50.08	49.14	49.52	49.86	49.14	49.26	48.85	48.98	49.56	48.48	48.35	48.56	15
16	50.32	49.17	49.49	49.82	49.27	49.29	48.80	46.92	49.32	48.58	48.54	48.55	16
17	50.30	49.32	49.44	49.75	49.26	49.27	48.86	48.89	49.27	48.76	48.60	48.45	17
18	50.19	49.43	49.42	49.68	49.16	49.24	48.95	48.95	49.08	48.61	48.53	48.46	18
19	50.18	49.52	49.42	49.66	49.14	49.07	49.02	49.01	49.01	48.49	48.48	48.48	19
20	51.77	49.63	49.38	49.64	49.09	48.87	49.23	49.10	48.89	48.53	48.47	48.48	20
21	51.92	49.69	49.35	49.69	49.09	46.80	49.29	49.10	48.89	48.60	48.48	48.60	21
22	50.57	49.79	49.29	49.72	49.09	46.76	49.20	49.10	46.90	48.53	46.45	48.48	22
23	49.94	49.96	49.26	49.88	49.07	48.93	49.24	49.11	48.85	48.37	48.58	49.12	23
24	49.47	49.92	49.27	50.18	49.07	48.96	49.28	49.12	48.73	48.37	48.69	49.91	24
25	49.42	49.93	49.25	50.21	49.03	48.95	49 • 24	49.26	48.66	48.30	48.76	49.97	25
26	49.29	49.89	49.24	50.02	46.98	48.94	49.23	49.39	48.59	48.25	48.71	50.02	26
27	49.08	49.87	49.23	49.90	46.96	46.94	49.33	49.31	48.57	48.46	48.64	50.02	27
26	49.04	49.85	49.20	49.78	48.93	49.02	49.28	49.36	48.63	48.41	48.74	50.04	28
29	49.06	49.85	49.19	49.66	48.94	49.12	49.24	49.37	46.73	48.39	48.65	50.07	29
30	49.07	49.85	49.19	49.60		49.13	49.07	49.26	48.88	48.32	46.62	50.10	30
31	49.07		49.19	49.58	1	49.06		49.20		48.24	48.75		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	5T AGE	DATE	TIME	5TAGE
10-14-63	0900	5 2. 70									
(,

	LOCATION	V	MAXII	NUM DISCH	IARGE	PERIOD O	DATUM OF GAGE				
	THURE LONGITUDE 1/4 SEC. T. & R.		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIO0		2ERO ON	REF
LATITUDE	LONGITUDE	м. О.В. 8. м.	C.F,S.	GAGE HT.	OATE		ONLY	FROM	TO	GAGE	DATUM
37 21 02	120 58 34	SW 3 7S 9E	33000	18.50	3- 7-38	APR 12-DATE		1912	1959	47.24 47.31 0.00	USCGS USCGS USCGS

Station located at bridge on Hills Ferry Road, 300 ft. below the Merced River, 3.5 mi. NE of Newman. Records furn. by U.S.G.S. Drainage area is 9,990 sq. mi. Flow records are published in the U.S.G.S. report "Surface Water Records of California".

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 807250 SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	39.05	38.53	39.30	38.69	39.10	38.31	38.63	38.54	36.84	38.34	37.73	38.36	1
2	38.90	38.56	39.18	38.72	39.11	38.41	38 - 80	38.52	38 . 86	38.25	37.65	38.48	2
3	38.91	38.58	39.05	36.77	39.10	38.40	38.63	38.48	38.78	38.11	37.69	38.43	3
4	38.92	38.63	38.98	38.81	39.08	38.37	36.50	38.70	38.72	38.03	37.88	36.33	4
5	38.96	36.69	38.93	38.86	39.06	38.43	38.44	36.81	36.58	38.08	37.91	38.32	5
6	39.83	38.67	38.69	39.06	39.02	38.38	36,42	38.79	38.53	38.02	37.87	38.33	6
7	41.39	38-57	36.84	39.33	36.96	38.36	38.40	36.90	36.52	37.97	37.95	38.30	7
8	39.75	38.67	38.68	39.60	38.69	38.35	38 • 42	38.92	38.50	37.97	37.88	38.28	8
9	39.14	38 • 65	38.93	39.65	38.80	38.39	38.27	38.81	38.63	37.90	37.66	38.16	9
10	39.05	38.56	36.96	39.61	38.76	36.44	38.16	38.81	38.91	37.84	37.82	38.07	10
11	39.03	38.49	38.99	39.52	38.79	38.37	38.02	38.90	39.23	37.88	37.80	36.03	111
12	39.53	38 • 46	39.03	39.48	36.70	38.46	37.98	38.79	39.33	37.89	37.83	38.08	12
13	40.79	38.51	39.02	39.41	36.69	38.71	36.12	38.74	39.32	37.96	37.89	37.90	13
14	42.01	38.55	39.01	39.44	38.62	38.61	38.12	38.64	39.26	37.81	37.87	37.85	14
15	40.24	38.60	39.01	39.38	36.56	38.76	38.35	38.44	39.07	37.94	37.79	37.98	15
16	40.01	38.60	38.96	39.35	36.65	38.79	36.28	38.38	38.86	37.90	37.94	38.00	16
17	39.94	38.67	38.94	39.29	38.71	38.74	38.29	38.41	38.75	38.14	38.11	37.92	17
18	39.84	38.83	38.92	39.22	36.60	38.75	38.35	38.57	38.65	38.13	38.08	37.84	18
19	39.66	38.91	36.93	39.16	38.60	38.60	36.50	38.59	38.55	38.01	37.99	37.93	19
2D	40.59	39.07	38.90	39.15	38.53	36.43	38.86	38.64	38.44	38.05	37.94	37.91	20
21	41.70	39.15	36.66	39.21	38.49	38.29	38.86	38.66	38.44	38.06	37.92	38.12	21
22	40.43	39.19	36.81	39.25	38.52	38.27	38.86	38.65	38.44	36.06	37.92	38.05	22
23	39.83	39.39	38.76	39.34	38.43	38.49	38 . 72	38.58	38.33	37.86	38.05	38.07	23
24	39.12	39.42	38.76	39.60	38.46	38.69	36.77	36.61	38.24	37.83	38.26	38.93	24
25	38.98	39.40	38.75	39.74	38.46	38.76	36.61	38.70	38.15	37.77	38.26	39.28	25
26	38.88	39.38	38.73	39.61	38.40	38.79	36.72	38.80	38.07	37.72	38.17	39.39	26
27	38.65	39.36	38.72	39.45	38.34	38.81	38.77	38 . 82	37.96	37.93	36.11	39.41	27
28	38.56	39.34	38.70	39.36	36.30	38.69	38.70	36.89	38.04	37.97	36.15	39.46	28
29	36.55	39.32	38.67	39.24	38.28	38.75	38.74	38.91	38.20	37.85	38.19	39.48	29
30	38.55	39.33	38.68	39.16	1	38.63	38,65	38.80	38.30	37.79	38.09	39.48	3D
31	38.53		38.68	39.10		36.61		38.73		37.86	36.07		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	OATE	TIME	STAGE	DATE	TIME	STAGE
10-14-63	1450	42.20					-				
								i			

	LOCATIO	N	MAXI	MUM DISCH	IARGE	PERIOD C	DATUM OF GAGE				
LATITUDE	LONGITUOE	1/4 SEC. T. & R.	·	OF RECORD		DISCHARGE	GAGE HEIGHT F		RIOD	ZERO ON	REF.
LATITUDE	LONGITUOE	M.D.B.B.M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 26 52	121 00 44	NW 8 6 S 9E		61.9	4- 7-58		41-0ATE	1959 1959	1959	0.00	USED USGS USED

Station located at Crows Landing Road Bridge, 4.3 mi. NE of Crows Landing.

, ABLE D & (Comm.)	WATER YEAR	STATION NO.	STATION NAME	1
DAILY MEAN GAGE HEIGHT	1964	807200	SAN JOAQUIN RIVER AT PATTERSON BRIDGE	
(IN FEET)				

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	32.99	32.33	33.02	32.39	32.74	31.78	32.21	31.46	31.99	32.69	32.08	33.20	1
2	32.81	32.32	32.93	32.40	32.74	31.78	32.48	31.46	32.00	33.17	32.18	33.31	2
3	32.77	32.34	32.79	32.45	32.76	31.61	32.31	31.48	32.02	33.03	32.55	33.23	3
4	32.88	32.36	32.72	32.48	32.72	31.50	32.15	31.83	31.91	32.91	32.46	33.00	4
5	32.86	32.42	32.67	32.49	32.69	31.42	32.03	32.05	31.81	33.01	32.54	33.05	5
6	33.25	32.46	32.63	32.60	32.65	31.41	31.95	32.05	31.62	32.93	32.25	33.16	6
7	34.98	32.38	32.59	32.35	32.60	31.57	31.81	32.18	31.61	32.80	32.28	33.09	7
8	34.14	32.38	32.56	33.16	32.54	31.56	31.72	32.26	31.69	32.74	32.23	33.00	8
9	33.15	32.42	32.61	33.26	32.47	31.64	31.51	32.00	31.94	32.56	32.37	32.85	9
10	33.08	32.35	32.63	33.23	32.41	31.60	31.23	32.01	32.34	32.49	32.33	32.73	10
11	33.16	32.26	32.66	33.17	32.39	31.43	30.99	32.20	32.53	32.48	32.15	32.60	11
12	33.43	32.24	32.58	33.13	32.33	31.81	30.71	31.95	32.63	32.47	32.22	32.68	12
13	34.35	32.23	32.71	33.09	32.28	32.08	31.01	31.84	32.52	32.54	32.16	32.75	13
14	35.81	32.28	32.73	33.10	32.21	31.96	31.03	31.83	32.60	32.40	32.22	32.62	14
15	34.62	32.35	32.72	33.05	32.17	31.95	31.35	31.49	32.36	32.34	32.18	32.58	15
16	33.85	32.37	32.71	33.00	32.16	31.98	31.29	31.34	32.07	32.46	32.34	32.72	16
17	33.76	32.39	32.69	32.97	32.24	31.85	31.18	31.45	31.78	32.73	32.61	32.69	17
18	33.65	32.51	32.66	32.91	32.17	31.78	31.25	31.78	31.71	32.90	32.69	32.57	18
19	33.44	32.65	32.64	32.88	32.14	31.67	31.83	31.79	31.33	32.61	32.55	32.62	19
20	33.88	32.79	32.64	32.88	32.08	31.43	32.10	31.85	31.32	32.79	32.39	32.66	20
21	35.19	32.84	32.60	32.91	31.97	30.97	32.15	31.93	31.40	32.66	32.31	32.75	21
22	34.49	32.89	32.56	32.97	31.96	31.66	32.14	31.93	31.53	32.60	32.48	32.74	22
23	33.75	33.05	32.50	33.03	31.97	32.15	31.86	31.81	30.83	32.28	32.89	31.90	23
24	33.02	33.12	32.49	33.16	31.93	32.33	31.79	31.92	30.77	32.11	33.17	32.54	24
25	32.83	33.10	32.47	33.34	31.98	32.56	32.08	32.02	30.92	32.14	33.13	32.97	25
26	32.75	33.11	32.44	33.28	31.01	32.50	31.97	31.97	31.00	32.18	32.78	22.02	
27	32.56	33.08	32.43	33.11	31.81	32.46	31.95	31.98	30.90	32.58	32.78	33.03 33.09	26
28	32.41	33.05	32.41	33.00	31.70	32.38	31.77	32.01	30.90	32.56	32.80	33.09	27
29	32.35	33.04	32.38	32.89	31.70	32.34	31.63	32.14	31.51	32.44	32.82	33.08	28
30	32.33	33.03	32.36	32.82	51.0	32.48	31.48	32.09	31.35	32.06	32.82	33.03	29
31	32.33	23.03	32.38	32.76		32.22	31.46	32.09	31.35	32.21		35.01	3D
	26.03		32.30	32010		32.622		32.02		32.21	32.94		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	10-14-63	1610	36.07									
NR - NO RECORD												
NF - NO FLOW												

	LOCATION			MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
	1 01/0/7/105	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF
LATITUDE	LONGITUOE	M.D.B.8iM.	C.F.S.	GAGE HT.	OATE	DISCHARGE	ONLY	FROM	TO	GAGE	DATUM
37 29 52	121 04 52	SW15 5S 8E		54.0	6-13-38		APR 38-DATE	1938 1959	1959	0.00 0.00 3.53	USED USCGS USED

Station located at Patterson-Turlock Highway Bridge, 3.1 mi. NE of Patterson

WATER YEAR STATION NO. STATION NAME

1964 B07080 SAN JOAQUIN RIVER AT GRAYSON

	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	807080	SAN JOAQUIN
(IN FEET)	-		

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	24.61	24.09	24.65	24.17	24.35	23.45	23.92	23.46	23.83	23.21	22.89	23.67	3
2	24.41	24.02	24.65	24.17	24.30	23.40	24.12	23.47	23.79	23.25	22.83	23.81	2
3	24.28	24.05	24.65	24.22	24.30	23.34	23.97	23.52	23.88	23.28	23.04	23.84	3
4	24.44	24.06	24.85	24.18	24.28	23.37	23.96	23.77	23.79	23.20	23.02	23.69	4
5	24.82	24.12	24.85	24.20	24.28	23.27	23.72	23.85	23.70	23.32	23.05	23.64	5
6	25.12	24.18	24.85	24.28	24.22	23.25	23.73	23.88	23.64	23.33	22.97	23.74	6
7	25.55	24 • 11	24.85	24.49	24.17	23.34	23.59	23.91	23.61	23.14	22.92	23.78	7
8	26.42	24.09	24.85	24.77	24.13	23.31	23.54	23.97	23.62	23.17	22.91	23.61	8
9	25.38	24.13	24.85	24.91	24.05	23.35	23.40	23.87	23.88	23.07	23.01	23.44	9
10	25.18	24.08	24.85	24.84	23.97	23.35	23.24	23.75	24.07	22.99	23.02	23.37	10
- 11	25.30	24.01	24 - 85	24.79	23.93	23.24	23.18	23.84	24.32	22.96	22.86	23.24	11
12	25.62	23.97	24.71	24.72	23.93	23.40	23.07	23.77	24.37	22.94	22.91	23.31	12
13	26.30	23.97	24.72	24.67	23.88	23.74	23.07	23.63	24.32	22.91	22.87	23.42	13
14	27.43	24.00	24.73	24.65	23.85	23,69	23.07	23.63	24.39	22.89	22.91	23.38	14
15	27.23	24.08	24.68	24.63	23.83	23.59	23.17	23.54	24.32	22.82	22.91	23.25	15
16	27.12	24.12	24.63	24.59	23.77	23.65	23.28	23.37	24.12	22.89	22.94	23.35	16
17	25.87	24.17	24.63	24.56	23.85	23.57	23.26	23.48	23.88	23.07	23.12	23.37	17
18	25.79	24.29	24.62	24.48	23.77	23.52	23.27	23.51	23.80	23.19	23.34	23.31	18
19	25.64	24 • 43	24.57	24.41	23.72	23.41	23.55	23.65	23.64	23.21	23.25	23.34	19
20	25.72	24.70	24.52	24.40	23.68	23.38	23.80	23.76	23.62	23.19	23.04	23.38	20
21	25.92	24.83	24.48	24.48	23.63	23.15	23.86	23.71	23.69	23.15	23.08	23.40	21
22	27.00	24.83	24.43	24.61	23.57	23.23	23.90	23.75	23.72	23.08	23.02	23.55	22
23	26.29	24.98	24.38	24.68	23.58	23.88	23.81	23.66	23.50	22.95	23,32	23.58	23
24	25.77	25.17	24.37	24.76	23.54	24.06	23.69	23.69	23.27	27.78	23.57	24.06	24
25	25.34	25.15	24.53	24.89	23.55	24.26	23.87	23.81	23.25	22.81	23.55	24.65	25
26	24.86	25 • 15	24.56	24.88	23.52	24.18	23.84	23.80	23.25	22.88	23.40	24.72	26
27	24.54	25.15	24.61	24.72	23.44	24.11	23.85	23.85	23.20	23.07	23.31	24.85	27
28	24.34	25.15	24.33	24.62	23.37	24.14	23.76	23.88	23.15	23.09	23.34	24.80	28
29	24.23	25.20	24.26	24.51	23.35	24.02	23.59	24.19	23.40	23.05	23.27	24.75	29
30	24.22	25.22	24.18	24.40		24.17	23.51	23.97	23.30	22.82	23.47	24.75	30
31	24.22		24.17	24.40		24.02		23.88		22.83	23.50		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	10- 7-63	2350	26.98	5-29-64	0530	24.17						
NR - NO RECORD	10-14-63	2400 1100		7-24-64 9-28-64	1945 1300	22.63 24. 95						}
NF - NO FLOW			-									

-	LOCATION	N		MAXI	MUM DISCH	HARGE	PERIOD C	F RECORD	DATUM OF GAGE			
		1/4 SEC	. T. 8 R.		OF RECORD		OISCHARGE	GAGE HEIGHT	PERIOD		2ERO ON	REF.
LATITUDE	LONGITUDE	M. O. E	3.8M.	C.F.S.	GAGE HT.	OATE	O S O SAROE	ONLY	FROM	TO	GAGE	DATUM
37 33 47	121 09 06	NW25 4	1S 7E	23900	45.15	3- 8-41	JUL 28-DATE		1960	1959	0.00	USED
J	1	ŀ		J	1	1	I	ı	1960	, .	3.81	USED

Station located at Laird Slough Bridge, 5 mi. above the Tuolumne River. High flows bypassing this station through old channel of San Joaquin River are included in figures shown. Records furn. by City of San Francisco.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1964 B07070 SAN JOAQUIN RIVER AT WEST STANISLAUS 1. D. INTAKE

(IN FEET)

OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
19.96	22.07	24.23	22.54	21.02	18.54	19.05	18.73	18.33	18.14	18.46	19.59	1
19.82	22.09	24.23	22.50	20.90	18.53	19.22	18.87	18.15	18.22	18.40		2
19.92	22.23	24.20	22.58			18.94	19.04	18.07	16.24	18.57		3
20.19	22.26	23.85	22.18	20.74	18.31	16.64	19.23	17.84	18.15	18.47	19.34	4
20.65	22.32	23.68	22.26	20.77	17.63	18.82	19.30	17.97	18.38	18.32	19.19	5
21.15	22.40	23.66	22.26	20.74	17.30	18.73	19.38	17.67	18.52	18.12	19.27	6
	22.37	23.70	22.34	20.72	18.43	18.38	19.23	17.91	18.20	18.31	19.32	7
		23.66	22.43	20.68	18.36						19.20	8
		23.65	22.32	20.63	18.30						19.07	9
21.26	22.36	23.67	21.83	20.49	18.37	18.83	18.86	19.27	16.80	18.59	18.92	10
21.57	22.32	23.50	21.68	20.32	18.32	18.47	18.82	19.33	17.44	18.16	18.95	11
			21.52	20.47	18.58	18.22	18.60	19.37	17.99	18.46	18.96	12
			21.30	20.45	18.96	18.20	18.33	19.19	17.87	18.36	19.11	13
				20.50	18.87		17.94	19.29	17.36		19.07	14
23.20	22.48	23.31	21.36	20.55	18.87	18.29	17.91	19.08	16.63	18.44	18.86	15
22.44	22.56	23.21	21.31	20.43	18.74	18.44	17.56	18.78	17.44	18.74	18.86	16
			21.27	20.31	18.54	18.48	17.91		18.33	18.97	18.85	17
			21.17	20.19	18.67	18.42				18.97	18.87	18
			21.09	20.23	18.89					18.96	18.90	19
22.93	23.42	23.01	21.02	19.94	18.93	18.99	18.53	17.24	18.29	18.70	19.07	20
22.08	22.50	22.97	21.15	10.74	18.77	18.03	18.75	19.27	18.10	18.66	19.03	21
												22
												23
												24
23.64	23.90	23.47	21.65	19.16	19.64	18.77	18.77	17.42	18 • 05	19.13	20.39	25
22.70	22 80	22.64	22 46	10 20	10 52	18.02	19.81	17.00	10.34	19.00	20.44	26
												27
												28
												29
				11.052								30
22.22	24.17	22.39	20.98		18.97	10.00	18.60	10.41	18.25	19.45	20,00	31
	19.96 19.82 19.92 20.19 20.65 21.15 21.94 21.98 21.37 21.26 21.57 22.19 22.71 23.31 23.20 22.44 22.38 22.71 22.74 22.93 23.98 24.50 24.24 23.90 23.64 22.79 22.42 22.16 22.11 22.22	19.96	19.96	19.96	19.96	19.96	19.96	19.96	19.96	10.96	19.96	19.96 22.07 24.23 22.54 21.02 18.54 19.05 18.73 18.33 18.14 18.46 19.59 19.96 22.09 24.23 22.50 20.90 18.53 19.22 18.87 18.15 18.22 18.40 19.67 19.97 22.23 24.20 22.58 20.82 18.42 18.94 19.04 18.07 18.24 18.57 19.56 20.19 22.26 23.65 22.18 20.74 18.31 16.84 19.23 17.84 18.15 18.47 19.34 20.65 22.32 23.68 22.26 20.74 17.63 18.82 19.30 17.97 18.38 18.32 19.19 21.15 22.40 23.66 22.26 20.74 17.30 18.73 19.30 17.97 18.36 18.31 19.22 21.94 22.37 23.70 22.34 20.72 18.43 18.38 19.23 17.67 18.52 18.12 19.27 21.98 22.33 23.66 22.43 20.68 18.36 18.33 19.18 18.45 17.78 18.33 19.20 21.37 22.36 23.65 22.32 20.63 18.30 18.17 19.02 19.02 17.11 18.59 19.07 21.26 22.36 23.65 22.32 20.43 20.49 18.37 18.83 18.86 19.27 16.80 18.59 18.92 21.57 22.32 23.47 21.83 20.49 18.37 18.82 18.33 19.18 17.97 18.86 18.92 22.19 22.30 23.44 21.52 20.47 18.58 18.22 18.60 19.37 17.99 18.66 18.96 22.11 22.35 23.47 21.30 20.45 18.96 18.20 19.37 17.99 18.66 18.96 22.11 22.35 23.47 21.30 20.45 18.67 18.20 17.91 19.08 16.63 18.44 18.66 22.44 22.56 23.21 21.31 20.43 18.67 18.20 17.91 18.39 18.33 18.97 18.66 22.44 22.56 23.21 21.31 20.43 18.67 18.20 17.91 18.39 18.33 18.97 18.66 22.44 22.56 23.21 21.31 20.43 18.67 18.20 17.91 18.39 18.33 18.97 18.66 22.44 22.56 23.21 21.31 20.43 18.69 18.62 18.51 16.07 18.39 18.39 18.97 18.66 22.44 22.56 23.21 21.31 20.43 18.69 18.62 18.51 16.07 18.39 18.97 18.66 22.77 22.88 22.75 23.28 21.17 20.19 18.67 18.27 18.29 17.36 18.97 18.66 22.78 23.99 23.54 21.50 19.56 19.52 18.66 18.60 17.99 17.9

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
10-22-63	1200	24.54									
12- 1-63	2400	24.25									
(

	LOCATIO	N	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD	DATUM OF GAGE			
		1/4 SEC, T, & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RI O O	ZERO ON	REF
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO_	GAGE	DATUM
37 36 07	121 10 51	SE10 4S 7E					DEC 50-DATE	1959 1959	1959	0.00 0.00 3.67	USED USCGS USED

Station located at intake gates for W.S.I.D. Canal, 2.6 mi. N of Grayson.

DAILY MEAN GAGE HEIGHT

(IN FEET)

1	WATER YEAR	STATION NO.	STATION NAME
•	1964	804175	TUDLUMNE RIVER AT LAGRANGE BRIDGE

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	68.36	70.88	72.23	70.89	69.11	67.48	67.33	67.29	67.02	66.94	66.91	67.05	1
2	68.47	70.94	72.18	70.97	68.92	67.45	67.35	67.28	67.02	66.98	67.19	67.04	2
3	68.52	70.91	71.65	70.31	69.01	67.39	67.36	67.30	67.00	66.97	67.18	67.05	3
4	68.52	70.96	71.84	70.62	69.14	67.38	67.29	67.30	67.02	66.95	67.21	67.04	4
s	68.53	70.97	71.86	70.69	69.12	67.37	67.29	67.26	67.02	67.05	67.22	67.06	5
6	67.53	70.96	71.89	70.69	69.16	67.35	67.28	67.28	67.03	67.05	67.22	67.05	6
7	68.45	70.95	71.83	70.60	69.16	67.37	67.28	67.26	66.96	66.96	67.21	67.06	7
8	68.51	70.96	71.84	69.98	69.14	67.34	67.28	67.20	66.99	66.98	67.21	67.07	8
9	68.51	70.97	71.83	69.54	68.70	67.34	67.29	67.11	67.00	67.04	67.21	67.14	9
10	66.52	70.95	71.64	69.55	68.97	67.35	67 • 34	67.09	66.97	67.04	67.21	67.24	10
11	66.53	70.99	71.67	69.20	69.15	67.34	67.30	67.02	66 • 93	67.02	67.21	67.07	11
12	68.54	71.02	71.66	69.14	69.18	67.37	67.29	67.02	67.12	67.01	67.21	67.03	12
13	67.50	71.03	71.73	69.38	69.41	67.35	67.29	67.04	67.17	66.95	67.21	67.01	13
14	68.45	71.05	71.45	69.38	69.20	67.35	67.29	67.01	67.09	66.94	67.21	67.00	14
15	68.71	71.15	71.47	69.43	69.15	67.34	67.35	67.03	66.96	66.99	67.21	67.05	15
16	69.63	71.38	71.59	69.26	66.77	67.33	67.31	67.05	66.92	67.12	67.25	67.11	16
17	70.09	71.37	71.50	69.27	69.00	67.34	67.30	67.05	67.30	66.97	67.23	67.09	17
18	70.10	71.53	71.39	69.15	66.91	67.37	67.42	67.04	67.04	66.99	67.23	67.02	18
19	70.57	71.72	71.24	69.12	68.49	67.33	67.31	67.23	66.96	66.88	67.22	67.02	19
20	70.82	71.80	71.25	69.04	66.48	67.34	67.29	67.09	66.97	66.66	67.43	67.00	20
21	71.26	71.67	71.21	69.51	68.50	67.34	67.34	67.04	66.95	66.85	67.20	67.00	21
22	71.29	71.85	71.23	69.40	68.49	67.36	67.33	67.01	66.95	66.91	67.12	67.02	22
23	71.27	71.91	71.45	69.22	68.37	67.34	67.30	67.01	67.00	66.93	67.05	67.10	23
24	71.08	71.90	71.83	69.15	68.51	67.35	67.29	67.01	67.08	67.11	67.04	67.15	24
25	70.48	71.87	71.75	69.12	66.71	67.34	67.29	67.01	67.01	67.15	67.30	67.13	25
26	70.51	71.92	71.76	68.94	68.13	67.42	67.29	67.05	66.94	66.91	67.10	67.05	26
27	70.30	72.01	70.96	69.03	67.54	67.34	67.29	67.05	66.93	66.86	67.04	67.04	27
28	70.55	72.18	70.94	69.16	67.65	67.40	67.29	67.03	66.93	NF	67.03	67.02	28
29	70.60	72.16	70.62	69.16	67.56	67.34	67.29	67.03	66.93	66.89	67.03	67.03	29
30	70.62	72.22	70.71	69.41		67.32	67.30	67.03	66.93	66.95	67.03	66.98	30
31	70.62		71.05	69.15		67.34		67.03		NF	67.02		31

CREST STAGES

E — ESTIMATED

NR — NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
12-8-63	2020	72.31									
		į									

	LOCATION	٧	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUOE	1/4 SEC. T. & R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF.
CATTIGUE	TITUDE LONGITUDE M.D.B.B.M.		C.F.S. GAGE HT. DATE				ONLY	FROM	TO	GAGE	DATUM
37 39 59	120 27 40	NW20 3 S 14E	48200	88.0		OCT 36-SEP 60 OCT 61-DATE		1937		0.00	USGS

Station located at highway bridge, immediately N of La Grange. Flow regulated by reservoirs and power plants. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

DAILY MEAN GAGE HEIGHT

NF - NO FLOW

(IN FEET)

WATE	ER YEAR	STATION NO.	STATION NAME	
1	964	804165	TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	8.89	11.58	13.09	11.73	9.95	8.44	8.40	8.46	8.53	8.65	8.69	8.71	1
2	9.61	11.71	13.11	11.77	9.83	8.40	8.38	8 • 46	8 • 5 8	8.65	8.70	8.68	2
3	9.68	11.71	12.72	11.22	9.78	8.35	8.36	8.49	8.57	8 . 64	8.70	8.68	3
4	9.68	11.73	12.58	11.43	9.91	8.31	8.39	8.51	8.60	8.64	8.70	8.70	4
s	9.68	11.76	12.70	11.32	9.90	8.31	8.39	8.51	8.62	8.67	8.70	8.68	s
6	9.36	11.77	12.72	11.31	9.91	8.32	8.37	8.54	8.62	8.68	8.71	8.70	6
7	9.14	11.76	12.68	11.22	9.92	8.32	8 • 34	8.52	8 • 6 3	8.68	8.75	8.71	7
8	9.64	11.76	12.68	11.02	9.90	8.30	8 • 34	8.52	8 . 65	8.67	8.76	8.69	a
9	9.66	11.77	12.68	10.41	9.70	8.29	8 • 34	8.53	8.67	8.67	8.77	8.58	9
10	9.57	11.76	12.43	10.40	9.68	8.29	8.35	8.51	8.65	8.67	8.75	8.66	10
11	9.73	11.80	12.42	10.26	9.86	8.28	8.36	8.49	8.67	8.65	8.75	8.67	11
12	9.68	11.84	12.44	10.06	9.86	8.33	8.38	6.46	8.69	8 • 65	8.74	8.67	12
13	9.36	11.86	12.53	10.05	9.97	8.34	8.40	8 • 4 5	8.68	8 • 65	8.72	8.67	13
14	9.15	11.88	12.24	10.24	10.02	8.31	8 • 40	8.43	8.68	8.67	8.76	8.67	14
15	9.71	11.97	12.25	10.23	9.91	8.31	8.38	8.45	8.69	8.67	8.78	8.54	15
16	10.37	12.23	12.33	10.16	9.66	8.31	8.40	8.46	8.69	8.67	8.79	8.65	16
17	11.03	12.22	12.29	10.12	9.68	8.30	8.40	8.47	8.68	8.66	8.79	8.65	17
18	11.03	12.28	12.16	10.10	9.77	8.30	8.41	8.47	8 • 6 9	8 • 65	8.77	8.67	18
19	11.28	12.56	12.04	9.99	9.41	8.31	8.48	8 • 4 6	8.71	8.65	8.77	8.68	19
20	11.60	12.69	12.04	9.95	9.34	8.30	8 • 43	8.47	6.70	8.69	8.80	8.67	20
21	12.00	12.52	12.06	10.02	9.35	8.30	8.40	8.49	8.70	8.68	8.92	8.65	21
22	12.09	12.73	12.03	10.34	9.34	8.33	8.39	8.52	8 - 5 5	8.68	8.82	6.65	22
23	12.09	12.78	12.15	10.15	9.26	8.36	8.40	8.54	8 • 6 5	8.67	8.80	8.64	23
24	12.05	12.77	12.59	10.05	9.23	8.35	8.40	8.53	8.66	8.68	8.78	6,64	24
25	11.36	12.74	12.52	9.98	9.46	8.35	8.39	8.54	8 • 6 4	8 • 6 9	8.75	8.56	25
26	11.37	12.78	12.65	9.92	9.36	8.35	8.38	8 - 5 4	8.64	8.70	8.73	6.70	26
27	11.18	12.85	11.75	9.78	8.60	8.38	8.39	8.54	8.65	8.70	8.73	8.69	27
28	11.34	13.05	11.73	9.94	8 . 48	8.36	8.42	8.53	8.66	8.70	8.73	8.68	28
29	11.42	13.02	11.62	9.97	8.58	8.39	8.39	8.52	8 . 64	8.69	8.72	8.67	29
30	11.41	13.09	11.52	10.03		8.37	8.41	8.52	8 • 65	8+70	8.72	8.65	30
31	11.43		11.75	10.09		8.36		8.53		8.69	8.73		31
					1								"'

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	12-2-63	2030	13.12									
NR - NO RECORD												

	LOCATIO	V	MAXI	MUM DISCH	HARGE	PERIOD O	F RECORD	DATUM OF GAGE			
	ATITUDE LONGITUDE 1/4 SEC. T. & R		OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	DATE	- CISCIANOL	DNLY	FROM	TO	ON GAGE	DATUM
37 3 8 08	120 37 03	NW35 3S 12E	49800	28.2	12- 8-50	JUL 28-OCT 36 JAN 37-FEB 38		1930 1940	1940	106.20	USCGS USCGS

Station located at highway bridge, 7.5 mi. E of Waterford. In order to machine process this station, the recorder datum was changed. To obtain true elevations add 100 feet to all of the above gage heights.

WATER YEAR STATION NO. STATION NAME

1964 804150 TUOLUMNE RIVER AT HICKMAN BRIDGE .

DAILY	MEAN	GAGE	HEIGHT
	IIN	FEETY	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	71.58	74.66	76.14	74.93	73.21	71.80	71.71	71.63	71.38	71.40	71.52	71.24	1
2	72.37	74.80	76.17	74.98	73.08	71.76	71.70	71.66	71.38	71.42	71.53	71.21	2
3	72.52	74.80	75.86	74.48	72.99	71.73	71.69	71.69	71.43	71.43	71.50	71.21	3
4	72.55	74.79	75.80	74.72	73.21	71.70	71.72	71.68	71.42	71.42	71.43	71.25	4
5	72.59	74.82	75.82	74.57	73.21	71.68	71.71	71.67	71.43	71.44	71.45	71.23	5
6	72.50	74.84	75.86	74.53	73.21	71.69	71.69	71.71	71.43	71.46	71.45	71.24	6
7	71.91	74.81	75.85	74.54	73.22	71.68	71.64	71.72	71.43	71.44	71.49	71.27	7
8	72.52	74.82	75.82	74.47	73.21	71.68	71.63	71.70	71.46	71.45	71.52	71.28	8
9	72.59	74.82	75.83	73.72	73.09	71.66	71.64	71.69	71.55	71.46	71.49	71.25	9
10	72.59	74.80	75.60	73.68	72.83	71.64	71.61	71.67	71.48	71.47	71.44	71.27	10
-11	73.04	74.83	75.56	73.58	73.17	71.66	71.62	71.66	71.46	71.46	71.42	71.27	11
12	73.06	74.88	75.60	73.30	73.18	71.66	71.62	71.61	71.47	71.44	71.41	71.29	12
13	72.92	74.89	75.67	73.27	73.28	71.68	71.65	71.59	71.46	71.44	71.42	71.29	13
14	72.10	74.90	75.44	73.54	73.42	71.68	71.64	71.56	71.45	71.43	71.44	71.30	14
15	72.69	75.00	75.40	73.50	73.25	71.66	71.60	71.53	71.46	71.47	71.46	71.29	15
16	73.15	75 - 19	75.48	73.46	73.04	71.66	71.60	71.54	71.49	71.49	71.50	71.28	16
17	74.01	75 • 21	75.43	73.39	72.93	71.66	71.61	71.54	71.50	71.47	71.53	71.28	17
18	74.06	75.23	75.34	73.37	73.14	71.64	71.61	71.50	71.50	71.45	71.49	71.28	18
19	74.23	75.57	75.16	73.25	72.75	71.65	71.66	71.48	71.54	71.43	71.45	71.32	19
20	74.66	75.74	75.16	73.22	72.62	71.66	71.66	71.48	71.50	71.48	71.49E	71.33	20
21	74.99	75.58	75.19	73.26	72.60	71.67	71.62	71.50	71.50	71.51	71.49E	71.30	21
22	75.12	75.77	75 - 15	73.72	72.60	71.69	71.60	71.51	71.47	71.47	71.52E	71.29	22
23	75.07	75.85	75.24	73.49	72.54	71.71	71.62	71.51	71.42	71.46	71.55E	71.30	23
24	75.08	75.87	75.75	73.34	72.48	71.70	71.60	71.53	71.39	71.49	71.58E	71.27	24
25	74.48	75.83	75.71	73.26	72.74	71.69	71.61	71.56	71.41	71.47	71.66E	71.29	25
26	74.50	75.86	75.65	73.20	72.80	71.69	71.59	71.56	71.38	71.50	71.19	71.32	26
27	74.32	75.89	74.97	72.99	72.14	71.71	71.59	71.53	71.37	71.53	71.19	71.34	27
28	74.34	76.10	74.96	73.21	72.18	71.70	71.59	71.53	71.38	71.52	71.23	71.35	28
29	74.53	76.08	74.78	73.24	72.09	71.68	71.58	71.53	71.39	71.49	71.21	71.34	29
30	74.50	76 - 14	74.69	73.24		71.67	71.60	71.47	71.41	71.50	71.21	71.33	30
31	74.51		74.92	73.41		71.66		71.39	1	71.54	71.24		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E - ESTIMATED	12-2-63	2100	76.18									
NR - NO RECORD												j
NF - NO FLOW												

	LOCATIO	N	MAXI	MUM DISCH	IARGE	PERIOD O	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	RIOD	2ERO ON	REF.
LATTIONE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 38 10	120 45 14	NW34 3S 11E	59000	96.2	12- 8-50	JUL 32-OCT 36 JAN 37-MAR 37 JUL 37-FEB 38 JUL 38-DEC 38 MAR 39-DATE		1932		0.00	USCGS

Station located at Hickman-Waterford Road Bridge, immediately S of Waterford. Flow regulated by reservoirs and power plants. Altitude of gage is approximately 8D feet, USC & GS datum. In August 1964 this station was moved approximately one-quarter mile downstream to a point immediately upstream of the new Hickman-Waterford Road Bridge.

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME 1964 804130 DRY CREEK NEAR MODESTO

(IN FEET)

DAY	ОСТ.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	68.40	67.73	67.73	67.64	67.96	67.64	68.38	68.82	68.13	68.13	67.98	68.64	,
2	68.42	67.73	67.73	67.64	67.91	67.67	68.63	68.91	68.21	68.11	68.00	68.57	2
3	68.48	67.73	67.71	67.63	67.84	67.70	6R.37	68.94	68.15	67.99	68.07	68.48	3
4	68.55	67.72	67.71	67.64	67.81	67.69	67.99	69.05	68.13	67.90	67.94	68.50	4
5	68.76	67.74	67.71	67.64	67.77	67.78	67.94	68.89	68.10	67.90	67.93	68.28	5
6	68.81	67.78	67.70	67.64	67.74	68.05	67.88	69.01	68.25	6R.Q5	67.93	68.32	6
7	68.72	67.77	67.71	67.64	67.72	68.46	67.89	68.93	68.19	67.98	67.87	68.31	7
8	68.63	67.76	67.71	67.65	67.71	68.45	67.95	68.50	68.21	67.81	67.91	68.39	8
9	68.64	67.77	67.70	67.63	67.73	68.62	68.21	68.27	68.33	67.85	68.07	68.46	9
10	68.79	67.76	67.70	67.64	67.70	68.61	68.18	68.15	68.57	67.86	68.17	68.47	10
11	69.30	67.75	67.70	67.62	67.67	68.45	68.23	68.17	68.26	68.00	68.06	68.52	31
12	70.89	67.74	67.70	67.64	67.64	68.43	68.32	68.15	68.06	67.96	68.00	68.48	12
13	69.56	67.74	67.70	67.64	67.66	68.34	68.30	68.19	68.15	67.93	67.92	68.32	13
14	66.76	67.80	67.70	67.56	67.66	68.12	68.27	68.33	68.13	67.89	67.99	68.42	14
15	68.47	67.96	67.70	67.64	67.69	67.96	68.52	68.21	68.15	67.89	68.00	68.32	15
16	68.39	67.97	67.69	67.64	67.69	67.76	68.55	68.04	68.30	67.82	67.93	68.41	16
17	68.35	67.97	67.68	67.65	67.70	67.91	68.39	67.98	68.31	67.95	68.12	68.35	17
18	68.19	67.95	67.68	67.65	67.72	67.90	68.51	68.C7	68.35	67.94	68.18	68.33	18
19	68.08	67.96	67.68	67.64	67.71	67.89	68.54	68.09	68.35	67.92	68.07	68.44	19
20	67.96	68.07	67.68	67.73	67.69	67.95	68.76	68.12	68.48	68.03	68.16	68.39	20
21	67.88	68.28	67.66	67.97	67.68	68.11	68.64	68.14	68.40	67.95	68.28	68.35	21
22	67.62	68.22	67.66	70.15	67.71	68.45	68.70	68.12	68.30	68.10	68.17	68.41	22
23	67.79	68.00	67.66	74.11	67.69	69.06	68.73	68.16	68.15	67.94	68.21	68.36	23
24	67.79	68.01	67.66	70.57	67.68	68.53	68.79	68.22	68.11	67.94	68.22	68.44	24
25	67.79	68.15	67.67	69.43	67.66	68.21	68 • 82	68.19	68.15	67.97	68.04	68.45	25
26	67.75	67.97	67.67	68.84	67.64	67.97	68.87	68.17	68.07	67.94	67.97	68.44	26
27	67.71	67.86	67.66	68.51	67.60	67.86	68.99	68.15	68.03	67.96	68.10	68.39	27
28	67.72	67.78	67.66	68.32	67.59	67.83	68.72	68.23	67.93	68.09	68.17	68.53	28
29	67.73	67.75	67.65	68.18	67.67	67.82	68.48	68.21	68.02	68.05	68.17	68.65	29
30	67.74	67.74	67.66	68.10	1	67.75	68.49	68.22	68.06	68.11	68.31	68.67	30
31	67.74		67.66	68.04	1	67.83		68.20		68.04	68.48		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	5T AGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1											
1-23-64	0700	75.53									
ĺ						ļ					
(I				1					

	LOCATION	N	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	LONGITURE	1/4 SEC. T. 8 R.		OF RECORD	1	DISCHARGE	GAGE HEIGHT	PEF	RIOD	ZERO ON	REF.
LATITUOE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 39 26	120 55 19	SE24 3S 9E	7710	88.04	12-23-55	MAR 41-DATE		1941		0.00	uscgs

Station located 0.1 mi. below Claus Road bridge, 4 mi. E. of Modesto. Tributary to Tuolumne River. Prior to Mar. 1941, records available for a site 2.5 mi. downstream. Station is operated under a cooperative agreement between the Department of Water Resources and the Modesto Irrigation District.

.,	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	B04120	TUOLUMNE RIVER AT MODESTO
(IN FEET)			

DAY	ОСТ.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	41.32	42.56	43.97	42.73	41.95	41.32	41.34	41.26	41.20	41.20	41.13	41.25	1
2	41.44	42.65	43.99	42.70	41.91	41.28	41.33	41.28	41.20	41.20	41.12	41.23	2
3	41.59	42.68	43.84	42.67	41.84	41.26	41.28	41.31	41.20	41.17	41.14	41.20	3
4	41.64	42.67	43.52	42.50	41.88	41.25	41.27	41.34	41.20	41.19	41.11	41.21	4
5	41.68	42.71	43.48	42.56	41.91	41.23	41.27	41.31	41.20	41.21	41.12	41.20	5
6	41.71	42.71	43.52	42.53	41.91	41.26	41.26	41.34	41.23	41.21	41.12	41.18	6
7	41.54	42.71	43.55	42.54	41.91	41.28	41.22	41.32	41.25	41.19	41.13	41.19	7
8	41.52	42.70	43.50	42.50	41.91	41.29	41.24	41.28	41.25	41.14	41.15	41.20	8
9	41.66	42.71	43.51	42.26	41.91	41.30	41.25	41.23	41.30	41.15	41.16	41.21	9
` 10	41.67	42.71	43.42	42.12	41.76	41.30	41.23	41.22	41.28	41.15	41.16	41.24	10
11	41.85	42.71	43.24	42.08	41.86	41.29	41.23	41.22	41.24	41.18	41.16	41.27	11
12	42.07	42.73	43.26	41.96	41.90	41.36	41.25	41.20	41.20	41.16	41.13	41.27	12
13	41.97	42.76	43.25	41.92	41.92	41.32	41.26	41.19	41.21	41.15	41.11	41.24	13
14	41.72	42.78	43.26	42.00	42.00	41.28	41.26	41.20	41.21	41.15	41.13	41.25	14
15	41.66	42.84	43.04	42.00	41.95	41.28	41.27	41.20	41.22	41.14	41.14	41.25	15
16	41.60	42.92	43.06	42.02	41.90	41.27	41.27	41.19	41.24	41.14	41.14	41.22	16
17	42.07	43.05	43.17	41.97	41.79	41.25	41.25	41.17	41.26	41.15	41.16	41.20	17
18	42.24	43.05	43.09	41.96	41.87	41.24	41.25	41.18	41.26	41.16	41.17	41.20	18
19	42.25	43.20	42.96	41.92	41.81	41.26	41.26	41.16	41.26	41.17	41.15	41.21	19
20	42.49	43.47	42.91	41.90	41.67	41.25	41.30	41.17	41.27	41.18	41.15	41.23	20
21	42.60	43.40	42.92	41.93	41.66	41.27	41.27	41.19	41.27	41.16	41.18	41.21	21
22	42.82	43.42	42.90	42.17	41.65	41.33	41.26	41.19	41.25	41.20	41.20	41.22	22
23	42.86	43.60	42.89	42.63	41.63	41.39	41.26	41.20	41.22	41.19	41.19	41.23	23
24	42.87	43.63	43.21	42.21	41.58	41.36	41.28	41.21	41.22	41.16	41.18	41.23	24
25	42.73	43.60	43.44	42.05	41.61	41.32	41.27	41.22	41.20	41.17	41.15	41.23	25
26	42.49	43.59	43.49	41.98	41.70	41.29	41.28	41.19	41.19	41.19	41.14	41.25	26
27	42.48	43.62	43.16	41.89	41.57	41.28	41.30	41.19	41.20	41.18	41.17	41.24	27
28	42.37	43.76	42.77	41.91	41.33	41.27	41.26	41.22	41.21	41.20	41.17	41.31	28
29	42.47	43.89	42.70	41.94	41.28	41.25	41.24	41.20	41.22	NR	41.17	41.34	29
30	42.53	43.94	42.65	41.94		41.25	41.23	41.20	41.20	NR	41.17	41.34	30
31	42.53		42.65	42.02		41.27		41.21		NR	41.22		31

CREST STAGES

TIME STAGE DATE TIME STAGE DATE TIME STAGE DATE STAGE E - ESTIMATED 12-2-63 2400 44.02 NR - NO RECORD NF - NO FLOW

	LOCATIO	N	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. B. R.		OF RECORD)	DISCHARGE	GAGE HEIGHT	PE	OOIF	ZERO ON	REF.
LATITUDE	LONGITUDE	M.O.B.B.M.	C.F.S.	GAGE HT.	OATE	O'S O'TARGE	ONLY	FROM	то	GAGE	DATUM
37 37 38	120 59 20	SW33 3S 9E	57000	69.19	12- 9-50	JAN 95-DEC 96 MAR 40-DATE	78- 84 91- 94	1940		0.00	USCGS

Station located at U.S. Highway 99 Bridge. Records furn. by U.S.G.S. Flow records are published by the U.S.G.S. report "Surface Water Records of California."

IT

WATER YEAR STATION NO. STATION NAME 1964 804105 TUOLUMNE RIVER AT TUOLUMNE CITY

DAILY	MEAN	GAGE	HEIGH1
	(IN	FEET)	

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	24.09	27.53	29.79	28.00	25.66	23.98	23.73	23.56	23.37	23.32	23.11	23.51	1
2	24.11	27.72	29.80	27.94	25.50	23.93	23.83	23.60	23.30	23.30	23.13	23.47	2
3	24.54	27.86	29.82	28.00	25.36	23.88	23.76	23.63	23.34	23.31	23.10	23.38	3
4	24.76	27.89	29.40	27.39	25.30	23.66	23.71	23.69	23.31	23.30	23.06	23.33	4
5	24.85	27.92	29.32	27.56	25.46	23.81	23.72	23.66	23.33	23.29	23.08	23,39	5
6	24.99	27.95	29.36	27.46	25.46	23.79	23.73	23.71	23.30	23.29	23.02	23.37	6
7	24.85	27.96	29.40	27.56	25.46	23.85	23.67	23.71	23.41	23.30	23.00	23.32	7
8	24.43	27.93	29.35	27.40	25.47	23.87	23.64	23.66	23.45	23.25	23.07	23.27	8
9	24.82	27.94	29.34	27.01	25.42	23.86	23.59	23.56	23.54	23 • 14	23.15	23.30	9
10	24.95	27.95	29.31	26.38	25 • 24	23.88	23.55	23.49	23.51	23.15	23.12	23.35	10
11	25.34	27.94	29.05	26.24	25.17	23.85	23.52	23.46	23.48	23.16	23.11	23.38	111
12	25.94	27.96	29.00	26.00	25.40	23.94	23.55	23.44	23.36	23.16	23.12	23.37	12
13	26.02	28.01	29.00	25.79	25.42	23.94	23.53	23.41	23.36	23.13	23.11	23.42	13
14	25.68	28.05	29.07	25.82	25.58	23.80	23.52	23.34	23.40	23.13	23.14	23.35	14
15	25.13	28.15	28.76	25.94	25.60	23.81	23.51	23.35	23.38	23.07	23.22	23.42	15
16	25.37	28.23	28.70	25.93	25.47	23.73	23.52	23.38	23.42	23.02	23.28	23.48	16
17	25.82	28.47	28.82	25.86	25.20	23.68	23.51	23.40	23.44	23.02	23.17	23.44	17
18	26.60	28.51	28.72	25.79	25.20	23.68	23.50	23.40	23.43	23.05	23.13	23.48	18
19	26.70	28.67	28.60	25.72	25.28	23.69	23.51	23.39	23.42	23.13	23.13	23.38	19
2D	27.10	29.12	28.43	25 • 6 3	24.80	23.69	23.54	23.36	23.42	23.14	23.12	23.43	20
21	27.62	29.23	28.41	25.74	24.79	23.67	23.59	23.34	23.44	23.12	23.17	23.38	21
22	28.20	29.07	28-41	26.00	24.76	23.78	23.58	23.31	23.41	23.09	23.25	23.33	22
23	28.39	29.35	28.38	27.16	24.74	23.89	23.58	23.34	23.37	23.17	23.27	23.34	23
24	28.40	29.42	28.62	26.75	24.64	23.89	23.58	23.35	23.28	23.11	23.24	23.31	24
25	28.30	29.40	29.14	26.02	24.61	23.62	23.53	23.35	23.27	23.09	23.20	23.35	25
26	27.53	29.37	29.17	25.78	24.61	23.78	23.52	23.30	23.27	23.12	23.17	23.37	26
27	27.43	29.41	29.14	25.58	24.76	23.75	23.62	23.28	23.30	23.10	23.18	23.38	27
28	27.19	29.47	28.22	25.42	24.21	23.73	23.59	23.30	23.30	23.04	23.23	23.35	28
29	27.32	29.70	28.06	25.55	23.99	23.72	23.55	23.31	23.29	22.98	23.20	23.48	29
30	27.47	29.72	27.86	25.57		23.69	23.52	23.36	23.34	23.02	23.24	23.63	3D
31	27.49		27.75	25.62	1	23.64		23.38	1	23.06	23.38		31

CREST STAGES

E - ESTIMATED NR - NO RECORD

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
10-24-63	1700	28.60	1-23-64	1800	27.64	7-30-64	1400	22.99			
12- 1-63	0800	29.86	2-27-64	0700	24.90						
12-27-63	0300	28.50	5- 7-64	0600	23.76						
(======================================	0000	20.30		0000	23.70						

NF - NO FLOW

	LOCATIO	N	MAXI	MUM DISCH	HARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. & R.		OF RECORD)	OISCHARGE	GAGE HEIGHT	PER	3001	ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M,	C.F,S.	GAGE HT.	DATE	0.001121102	ONLY	FROM	10	GAGE	OATUM
37 36 12	121 07 50	NW 7 4S 8E		46.65	12- 9-50	30-DATE		1960	1959	0.00	USED USCGS
	ĺ		l	1	ł		}	1960		3.50	USEI

Station located at highway bridge, 3.35 mi. above mouth. Backwater at times, from the San Joaquin River, affects the stage-discharge relationship. Records furn. by City of San Francisco.

DAILY MEAN GAGE HEIGHT

NF - NO FLOW

WATER YEAR STATION NO. STATION NAME

1964 B07040 SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE

(IN FEET)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	15.20	17.36	19.14	17.88	16.56	14.00	14.42	13.91	13.93	13.47	12.97	14.36	1
2	15.11	17.31	19.17	17.89	16.45	14.00	14.53	14.04	13.77	13.47	13.02	14.33	2
3	15.18	17.42	19.16	17.93	16.38	13.87	14.44	14.11	13.77	13.51	13.06	14.28	3
4	15.44	17.45	18.93	17.70	16.29	13.79	14.20	14.25	13.65	13.52	13.14	14.12	4
s	15.76	17.50	18.74	17.65	16.36	13.68	14.19	14.32	13.62	13.53	13.02	13.98	S
6	16.28	17.58	18.68	17.65	16.37	13.66	14.11	14.46	13.55	13.62	12.97	14.06	6
7	16.82	17.58	18.68	17.72	16.34	13.84	13.92	14.35	13.60	13.44	12.88	14.13	7
8	17.15	17.54	18.66	17.80	16.29	13.66	13.92	14.27	13.75	13.30	12.90	14.01	8
9	16.67	17.56	18.66	17.81	16.06	13.68	13.87	14.11	14.16	13.22	13.01	13.92	9
10	16.48	17.56	18.69	17.49	15.88	13.90	13.70	13.99	14.40	13.16	13.14	13.80	10
11	16.72	17.53	18.53	17.16	15.66	13.86	13.67	13.94	14.42	13.14	12.97	13.79	11
12	17.44	17.53	18.44	17.02	15.75	13.97	13.77	13.81	14.43	13.14	12.99	13.83	12
13	17.96	17.54	18.45	16.80	15.75	14.22	13.71	13.69	14.26	13.18	13.03	13.92	13
14	18.42	17.59	18.48	16.72	15.76	14.16	13.65	13.61	14.22	13.03	12.96	13.96	14
15	18.54	17.66	18.38	16.80	15.83	14.09	13.64	13.55	14.20	12.89	13.10	13.80	15
16	17.98	17.72	18.24	16.77	15.72	14.06	13.74	13.53	13.99	12.73	13.24	13.75	16
17	17.77	17.86	18.27	16.72	15.61	13.94	13.75	13.57	13.82	12.97	13.50	13.74	17
18	18.02	17.96	18.27	16.48	15.45	13.96	13.74	13.63	13.67	13.10	13.57	13.80	18
19	18.07	18.10	18.17	16.39	15.48	14.06	13.81	13.80	13.60	13.25	13.59	13.77	19
20	18.02	18.44	18.06	16.32	15.24	14.11	14.08	13.83	13.49	13.26	13.43	13.92	20
21	18.65	18.63	18.16	16.45	15.00	13.98	14.06	13.93	13.52	13.22	13.31	13.95	21
22	19.18	18.58	18.24	16.66	14.90	14.16	14.04	13.91	13.61	13.17	13.38	14.12	22
23	19.07	18.73	18.23	17.44	14.86	14.64	14.04	13.85	13.48	13.20	13.59	14.33	23
24	18.88	18.90	18.28	17.73	14.76	14.77	13.96	13.78	13.30	13.03	13.79	14.66	24
25	18.65	18.91	18.66	17.24	14.63	14.80	14.00	13.96	13.31	12.97	13.79	15.04	25
26	18.09	18.89	18.79	16.97	14.66	14.73	14.13	13.98	13.27	13.12	13.70	15.09	26
27	17.70	18.92	18.88	16.76	14.66	14.63	14.19	13.97	13.32	13.15	13.62	15.25	27
28	17.49	18.93	18.33	16.56	14.33	14.54	14.14	13.89	13.49	13.14	13.74	15.31	26
29	17.34	19.06	18.07	16.55	13.97	14.46	13.98	13.98	13.52	12.95	13.75	15.10	29
30	17.44	19.12	17.91	16.51	1	14.46	13.90	14.06	13.56	12.81	13.91	15.13	30
31	17.45	*/***	17.80	16.52		14.33	1	13.96		12.75	14.13		31
٠. ا	11047		1,000	10072		1				1	1	1	" .

CREST STAGES

| DATE | TIME | STAGE | DATE | TIME |

	LOCATION	N	MAXII	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	•
		1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PEF	100	ZERO ON	REF.
LATITUDE	LONGITUDE	M.D.B.&M.	C.F.S.	GAGE HT.	DATE		ONLY	FROM	TO	GAGE	DATUM
37 3 8 28	121 13 37	SW29 3S 7E		39.8	12-9-50	JAN 50-MAR 52	SEP 43-DEC 49 APR 52-DATE	1943 1959 1959	1959	0.00 0.00 3.41	USED USCGS USED

Station located at State Highway 132 Bridge, 13 mi. W of Modesto.

DAILY MEAN GAGE HEIGHT (IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 803175 STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.85	2.01	2.07	3.60	3.67	1.81	2.15	1.44	1.26	1.24	1.25	1.51	1
2	1.85	2.00	2.29	3.61	3.67	1.75	2.11	1.43	1.25	1.21	1.27	1.47	2
3	1.84	1.99	2.10	3.63	3.66	1.74	1.97	1.46	1.27	1.20	1.30	1.48	3
4	1.85	2.00	2.11	3.64	3.67	1.75	1.95	1.46	1.23	1.22	1.31	1.40	4
5	1.86	2.03	2 • 1 1	3.64	3.68	1.76	1.94	1.40	1.19	1.34	1.36	1.44	5
6	1.84	2.04	2.11	3.67	3.67	1.79	1.95	1.47	1.20	1.29	1.39	1.37	6
7	1.84	2.07	2.10	3.66	3.18	1.82	1.99	1.46	1.27	1.23	1.48	1.32	7
8	1.87	2.08	2.11	3.66	2.18	1.81	2.05	1.34	1.29	1.23	1.37	1.32	8
9	1.86	2.05	2.13	3.66	2.16	1.81	1.98	1.34	1.34	1.20	1.35	1.33	9
10	1.85	2.06	2.11	3.65	2.11	1.82	1.78	1.32	1.28	1.20	1.34	1.36	10
11	2.03	2.04	2.08	3.64	2.09	1.82	1.75	1.27	1.22	1.24	1.38	1.37	11
12	3.30	2.05	2.05	3.64	2.13	1.80	1.80	1.34	1.21	1.28	1.40	1.36	12
13	3.17	2.05	2.09	3.63	2.09	1.79	1.82	1.27	1.22	1.22	1.42	1.40	13
14	3.09	2.06	2.10	3.61	1.99	1.77	1.69	1.29	1.29	1.20	1.47	1.36	14
15	3.13	2.07	2.03	3.62	1.87	1.77	1.51	1.30	1.26	1.24	1.44	1.35	15
16	3.11	2 • 12	2.06	3.33	1.84	1.78	1.52	1.26	1.25	1.34	1.41	1.48	16
17	3.12	2 • 05	2.09	2.60	1.82	1.79	1.44	1.28	1.24	1.27	1.42	1.36	17
18	2.13	2 • 11	2.03	3.02	1.81	1.79	1.50	1.23	1.26	1.27	1.47	1.34	18
19	1.84	2.06	2.99	3.01	1.81	1.79	1.50	1.21	1.31	1.24	1.40	1.34	19
20	1.92	2.22	3.51	3.01	1.80	1.79	1.45	1.22	1.29	1.28	1.39	1.37	20
21	1.96	2.09	3.51	3.53	1.80	1.80	1.46	1.26	1.30	1.24	1.39	1.37	21
22	2.01	2.17	3.52	4.46	1.79	1.81	1.50	1.26	1.30	1.23	1.41	1.40	22
23	2.04	2 • 14	3.53	3.78	1.80	1.79	1.45	1.28	1.32	1.25	1.46	1.43	23
24	2.03	2 • 18	3.54	3.73	1.80	1.78	1.48	1.25	1.35	1.22	1.47	1.36	24
25	2.01	2 • 12	3.54	3.71	1.79	1.78	1.49	1.21	1.29	1.27	1.44	1.32	25
26	2.04	2.11	3.55	3.69	1.79	1.78	1.45	1.24	1.25	1.26	1.38	1.38	26
27	2.04	2.05	3.54	3.68	1.77	1.79	1.47	1.35	1.23	1.33	1.43	1.39	27
28	1.98	2.08	3.50	3.67	1.79	1.79	1.53	1.31	1.26	1.30	1.42	1.40	28
29	1.98	2.09	3.58	3.67	1.79	1.81	1.50	1.26	1.22	1.29	1.48	1.43	29
30	2.02	2.09	3.60	3.66		1.81	1.44	1.23	1.26	1.29	1.42	1.38	30
31	2.01		3.50	3.67		1.87		1.23		1.26	1.45		31

CREST STAGES

E - ESTIMATED

NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1-22-64	0650	5.28									
Į.											

	LOCATION	N .	MAXII	MUM DISCH	ARGE	PERIOD O	F RECORD		DATUM	OF GAGE	-
	LATITUDE LONGITUDE 1/4 SEC. T. 8.R.		OF RECORD			OISCHARGE	GAGE HEIGHT	PERIOD		ZERO ON	REF
LATITUDE	LONGITUDE	M.O.B.8.M.	C.F.S.	GAGE HT.	DATE	O O O I IANOE	ONLY	FROM	TO	GAGE	DATUM
37 47 18	120 45 41	SW 4 2S 11E	52000	30.05	11-21-50	JUN 28-DEC 39 APR 40-DATE				0.00	LOCAL

Station located at bridge, 5.0 mi. E of Oakdale. Flow regulated by reservoirs and power plants.

TABLE B-5 (Cont.)	WATER VEAR	STATION NO.	STATION NAME
	WATER TEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	B03145	STANISLAUS RIVER AT RIVERBANK
(IN FEET)			

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	73.43	73.56	73.65	75.94	76.07	73.00	73.50	72.75	72.54	72.43	72.50	72.72	1
2	73.41	73.58	73.68	76.05	76.06	72.99	73.30	72.74	72.57	72.39	72.44	72.70	2
3	73.38	73 - 55	74.18	76.05	76.06	72.93	73.01	72.74	72.51	72.41	72.49	72.67	3
4	73.41	73.53	73.73	76.04	76.05	72.92	72.93	72.74	72.50	72.41	72.41	72.70	4
5	73.44	73.58	73.74	76.02	76.06	72.97	72.92	72.74	72.47	72.46	72.43	72.66	5
6	73.39	73.62	73.74	76.02	76.05	73.03	72.91	72.76	72.43	72.48	72.44	72.69	6
7	73.43	73.60	73.70	76.03	76.00	73.11	72.94	72.76	72 • 47	72.46	72.44	72.66	7
8	73.42	73.67	73.71	76.03	74.37	73.10	72.97	72.72	72.52	72.50	72.53	72.59	a a
9	73.45	73.65	73.76	76.03	73.78	73.05	72.99	72.62	72.59	72.45	72.50	72.62	9
10	73.47	73.64	73.94	76.04	73.70	73.08	72.95	72.59	72.59	72.42	72.51	72.57	10
-11	73.84	73.64	73.76	76.02	73.59	73.14	72.83	72.57	72.51	72.42	72.49	72.59	11
12	75.25	73.61	73.68	76.02	73.60	73.32	72.83	72.57	72.49	72.49	72.55	72.61	12
13	75.94	73.60	73.64	76.03	73.63	73.00	72.89	72.57	72.47	72.48	72.61	72.63	13
14	75.81	73.61	73.73	76.02	73.45	72.94	72.83	72.56	72.51	72.49	72.63	72.69	14
15	75.80	73.67	73.68	76.02	73.31	72.95	72.70	72.54	72.53	72.46	72.61	72.66	15
16	75.85	73.68	73.56	75.99	73.13	73.03	72.64	72.54	72.54	72.47	72.60	72.63	16
17	75.84	73.72	73.67	74.63	73.09	72.96	72.64	72.57	72.52	72.49	72.63	72.69	17
18	75.23	73.64	73.66	75.11	73.08	72.98	72.65	72.53	72.51	72.48	72.62	72.68	18
19	73.65	73.72	74.09	75.23	73.08	72.95	72.65	72.51	72.50	72.45	72.63	72.64	19
20	73.44	73.90	75.98	75.22	73.07	72.99	72.65	72.50	72.45	72.53	72.55	72.64	20
21	73.52	74.04	76.07	75.51	73.06	72.99	72.65	72.49	72.48	72.54	72.55	72.67	21
22	73.59	73.81	76.07	76 - 85	73.05	73.07	72.64	72.50	72.50	72.43	72.58	72.71	22
23	73.69	73.83	76.07	76.41	73.04	73.29	72.66	72.60	72.41	72.45	72.65	72.75	23
24	73.66	73.90	76.07	76.18	73.00	73.03	72.64	72.58	72.47	72.45	72.65	72.73	24
25	73.61	73.83	76.05	76.14	72.99	73.00	72.63	72.52	72.50	72.41	72.63	72.69	25
26	73.65	73.75	76.04	76.10	72.96	72.97	72.71	72.50	72.39	72.51	72.60	72.70	26
27	73.65	73.71	76.06	76.09	72.96	72.94	72.76	72.53	72.33	72.48	72.57	72.66	27
28	73.58	73.60	75.94	76.08	72.96	72.96	72.77	72.55	72.45	72.46	72.65	72.71	28
29	73.47	73.67	76.04	76.07	72.99	73.02	72.63	72.49	72.42	72.50	72.67	72.73	29
30	73.56	73.67	76.04	76.07		73.07	72.77	72.51	72.40	72.48	72.66	72.72	30
31	73.57	1	76.02	76.07		73.06		72.53		72.47	72.62	1	31
٠ . ا		1	'		l		1			1	1		J 3' A

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	1-22-64	1500	77.47									
NR - NO RECORD												J
NF - NO FLOW									l			

	LOCATION	N		MAXIMUM DISCHARGE			PERIOD O	F RECORD	DATUM		OF GAGE	
	TITUDE LONGITUDE 1/4 SEC. T. & R.		8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PERIOD		ZERD ON	REF.
LATITUDE	LONGITUDE	M, 0, 8, 8	М,	C.F.S.	GAGE HT.	DATE	DISTRINGE	ONLY	FROM	то	GAGE	DATUM
37 44 31	120 56 21	SW24 2S	9E	85800	103.18	12-23-55	JUL 40-DATE	-	1940		0.00	uscgs

Station located at Burneyville Bridge, immediately N of Riverbank.

T

WATER YEAR STATION NO. STATION NAME 1964 803125 STANISLAUS RIVER AT RIPON

DAILY	MEAN	GAGE	HEIGH
	(IN	FEET)	

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	38.43	38.28	38.38	NR	41.59	37.62	38.05	37.13	37.04	36.73	36.66	37.36	1
2	38.44	38 - 27	38.32	MR	41.58	37.63	38.42	37.09	36.94	36.76	36.72	37.28	2
3	38.67	38.27	38.59	NR	41.57	37.57	37.95	37.18	36.90	36.74	36.67	37.36	3
4	38.43	38 - 25	NR	NR	41.57	37.54	37.79	37.39	36.86	36.84	36.76	37.16	4
s	38.32	38 • 27	NR	MR	41.58	37.52	37.80	37.35	36.91	36.95	36.67	37.06	5
6	38.24	38.35	NR	NR	41.57	37.59	37.70	37.49	36.86	36.84	36.62	37.07	6
7	38.37	38.34	NR	MR	41.56	37.63	37.55	37.40	36.88	36.88	36.74	37.13	7
8	38.40	38.34	NR	NR	40.72	37.75	37.58	37.33	37.06	36.90	36.80	37.07	8
9	38.38	38.38	NR	41.48	39.18	37.76	37.60	37.26	37.37	36.91	36.87	36.98	9
10	38.52	38.34	NR	41.48	38.80	37.64	37.57	37.15	37.39	36.92	36.78	36.96	10
.,	39.04	38.34	NR	41.48	38.60	37.67	37.53	37.12	37.44	36.84	36.78	36.94	111
12	39.64	38.33	NR	41.47	38.48	37.80	37.45	37.10	37.19	36.83	36.87	37.01	12
13	40.77	38.30	NR	41.47	38.46	37.75	37.44	37.08	37.01	36.86	36.70	36.94	13
14	40.87	38.30	NR	41.46	38.41	37.54	37.50	37.00	37.04	36.88	36.71	37.03	14
15	41.00	38.34	NR	41.43	38.24	37.49	37.43	36.96	37.00	36.90	36.81	37.96	15
16	40.96	38.35	NP	41.44	38.08	37.48	37.36	36.99	36.97	36.81	36.89	37.21	16
17	40.99	38.38	NP	40.90	37.94	37.56	37.25	37.06	37.00	36.81	36.91	36.96	17
18	40.85	38.35	NR	39.92	37.89	38.05	37.31	37.09	36.92	36.76	36.83	37.01	18
19	39.60	38.38	NP	40.32	37.87	37.76	37.28	37.10	36.92	36.70	36.A3	37.01	19
20	38.68	38.49	NP	40.33	37.82	37.61	37.30	36.98	36.97	36.70	36 . R2	36.98	
20	30.00	30.47		40.55	31.02	31.01	31150	30.70	30.47	36.70	30.72	30.40	20
21	38.46	38.79	NP	40.47	37.79	37.58	37.26	37.02	36.91	36.76	36.78	37.01	21
22	38.39	38 • 65	NR	41.72	37.76	37.83	37.21	37.00	36.92	36.77	36 • 82	37.06	22
23	38.40	38.56	NR	42.74	37.72	38.29	37.23	37.02	36.89	36.70	36.99	37.07	23
24	38.41	38 • 66	NP	41.92	37.71	37.82	37.17	37.03	36,85	36.72	36.89	37.12	24
25	38.38	38 • 66	NR	41.73	37.68	37.60	37.15	37.10	36.86	36.78	36.82	37.07	25
26	38.36	38.52	NR	41.67	37.66	37.58	37.10	37.04	36.82	36.76	36.82	36.96	26
27	38.38	38.44	NR	41.63	37.64	37.58	37.27	36.98	36.79	36.79	36.77	37.09	27
28	38.38	38.35	NR	41.62	37.62	37.53	37.17	37.07	36.88	36.69	36.74	37.09	28
29	38.30	38.31	NR	41.61	37.61	37.57	37.23	37.06	36.95	36.65	36.85	37.02	28
30	38.25	38.33	NP.	41.61		37.64	37.19	37.04	36.91	36.66	36.98	37.09	
31	38.30	30.33	NR	41.61		37.65		37.01		36.75	37.05	•	30
ت.	30.30		MIK	41.01		31.03		37.01		30413	37.03		3

CREST STAGES

E - ESTIMATED NR - NO RECORD

NF - NO FLOW

DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
1-23-64	0300	43.24		_							
											,

	LOCATION	V	MAXII	MUM DISCH	IARGE	PERIOD O	F RECORD		DATUM	OF GAGE	
	ATITUDE LONGITUDE 1/4 SEC. T. B. R.			OF RECORD		OISCHARGE	GAGE HEIGHT	PERIO0		ZERO ON	REF.
LATITUDE	LONGITUOE	M.O.B.B.M.	C.F.S.	C.F.S. GAGE HT. DATE			ONLY	FROM	то	GAGE	DATUM
37 43 50	121 06 35	SE29 2S 8E	62500	63.25	12-24-55	APR 40-DATE		1940		0.00	USGS

Station located 15 ft. below the Southern Pacific Railroad Bridge, 1.0 mi. SE of Ripon. Records furn. by U.S.G.S. Flow records are published in U.S.G.S. report "Surface Water Records of California."

TABLE B-3 (Cont.)	WATER YEAR	STATION NO.	STATION NAME
DAILY MEAN GAGE HEIGHT	1964	803115	STANISLAUS RIVER AT KOETITZ RANCH
(IN FEET)			

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	28.80	28.55	28.61	31.73	32.10	27.81	28.37	27.45	27.32	26.72	26.88	27.63	1
2	28.83	28 - 52	28 - 56	31.78	32.09	27.82	28.79	27.35	27.21	26.75	26.95	27.63	2
3	29.08	28.51	28.67	31.85	32.08	27.77	28.46	27.44	27.35	26.86	26.70	27.69	3
4	28.95	28.51	28.92	31.88	32.07	27.66	28.07	27.66	27.18	27.03	25.84	27.62	4
5	28.79	28.52	28.68	31.89	32.08	27.54	28.15	27.68	27.21	27.24	27.01	27.41	5
6	28.69	28.58	28.63	31.90	32.08	27.57	28 • 05	27.89	27.14	27.10	26.93	27.33	6
7	28.83	28.57	28.61	31.89	32.07	27.67	27.77	27.65	27.22	27.10	26.79	27.31	7
a	28.85	28.56	28.60	31.90	31.65	27.85	27.69	27.75	27.33	27.28	26.82	27.25	8
9	28.74	28.60	28.61	31.91	30.05	27.94	27.79	27.58	27.84	27.18	27.06	27.22	9
10	28.79	28.58	28.65	31.91	29.46	27.81	27.93	27.52	27.72	27.04	27.44	27.27	10
1 11	29.62	28.56	28.69	31.91	29.18	27.83	27.89	27.32	27.88	26.83	27.41	27.18	111
12	30.25	28.55	28.63	31.91	28.99	28.00	27.92	27.26	27.67	26.95	27.37	27.05	12
13	31.20	28.53	28.57	31.91	28.92	28.04	27.83	27.32	27.40	27.03	27.16	27.01	13
14	31.56	28.54	28.53	31.92	28.87	27.78	27.81	27.23	27.29	27.06	27.10	27.12	14
15	31.65	28.57	28.59	31.90	28.68	27.70	27.79	27.27	27.26	27.12	27.02	27.27	15
16	31.60	28.56	28.54	31.89	28.49	27.66	27.65	27.05	27.24	27.05	27.23	27.32	16
17	31.44	28.59	28 - 46	31.63	28.34	27.67	27.48	27.08	27.27	27.03	27.06	27.27	17
18	31.30	28.59	28.51	30.46	28.23	28.26	27 • 68	27.35	27.21	26.91	27.09	27.36	18
19	30.34	28.57	28.50	30.73	28.13	28.19	27 • 69	27.24	27.11	26.98	27.24	27.37	19
20	29.21	28.71	29.28	30.79	28.07	27.99	27.67	27.17	27.19	26.96	27.08	27.33	20
21	28.84	28.94	31.00	30.88	28.03	28.19	27.58	27.21	27.30	27.01	27.14	27.53	21
22	28.70	28.96	31.41	31.52	28.00	28.12	27.52	27.16	27.21	27.00	27.19	27.59	22
23	28.70	28.82	31.56	32.88	27.95	28.71	27.51	27.16	27.14	26.88	27.37	27.55	23
24	28.70	28.89	31.65	32.46	27.92	28.32	27.40	27.26	26.93	26.93	27.38	27.50	24
25	28.66	28.95	31.66	32.21	27.90	28.14	27.41	27.36	26.93	26.92	27.12	27.46	25
26	28.63	28.80	31.66	32.13	27.83	28.06	27.50	27.27	26.98	27.00	27.13	27.58	26
27	28.66	28.68	31.70	32.10	27.76	28.05	27.65	27.32	26.90	26.96	26.96	27.62	27
28	28.66	28.60	31.74	32.08	27.81	27.95	27.58	27.25	26.89	26.80	26.94	27.55	28
29	28.57	28.53	31.67	32.09	27.78	28.03	27.42	27.22	26.93	26.78	27.11	27.26	29
30	28.52	28.56	31.78	32.09		28.01	27.40	27.34	27.05	26.73	27.28	27.30	30
31	28.56		31.81	32.09		28.01		27.38		26.88	27.39		31
		1	1	I	ŀ			l	1			!	

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	5TAGE	DATE	TIME	STAGE
E — ESTIMATED	1-23-64	1440	33.09									
NR - NO RECORD												
NF - NO FLOW			l									

	LOCATION	V	MAXI	MUM DISCH	ARGE	PERIOD (OF RECORD		DATUM	OF GAGE	=
		1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PER	2100	ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. B. & M.	C.F.S.	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
37 41 57	121 10 08	SW 2 3S 7E				OCT 62-DATE	MAR 50-SEP 62	1950	1951	0.00	USED
								1951		0.00	USCGS
1	1	1		1			1	1951		3.60	USED

Station located 0.6 mi. NW of Bacon and Gates Road Junction, 3.7 mi. SW of Ripon.

DAILY MEAN GAGE HEIGHT

(IN FEET)

WATER YEAR STATION NO. STATION NAME

1964 803105 STANISLAUS RIVER NEAR MOUTH

DAY	ОСТ.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	16.31	16.73	17.69	19.12	19.17	15.78	16.13	14.83	14.68	13.89	13.97	15.03	1
2	16.31	16.69	17.73	19.11	19.14	15.62	16.36	14.70	14.44	13.92	14.15	15.12	2
3	16.51	16.72	17.74	19.20	19.15	15.66	16.18	14.89	14.50	13.96	14.01	15.24	3
4	16.57	16.73	17.76	19.17	19.14	15.62	15.52	15.17	14.51	14.04	13.92	15.48	4
5	16.45	16.74	17.62	19.19	19.16	15.20	15.49	15.26	14.55	14.29	14.13	15.49	5
6	16.57	16.79	17.50	19.11	19.15	15.45	15.49	15.33	14.46	14.37	14.18	15.55	6
7	16.75	16.80	17.47	19.18	19.13	15.56	15.35	15.11	14.93	14.47	13.98	15.02	7
8	16.85	16.78	17.42	19.19	18.97	15.72	15.11	15.02	14.85	14.35	13.99	14.77	
9	16.68	16.77	17.41	19.20	18.21	15.77	15.03	14.89	15.50	14.51	14.11	14.62	9
10	16.50	16.79	17•41	19.14	17.46	15.54	15.37	15.32	15.61	14.27	14.38	14.84	10
11	17.25	16.77	17.41	19.12	17.12	15.39	15.43	14.98	15.71	14.08	14.32	14.70	111
12	18.04	16.77	17.35	19.12	16.88	15.59	15.40	14.72	15.52	14.29	14.15	14.35	12
13	18.62	16.76	17.31	19.10	16.78	15.78	15.24	14.67	15.25	14.35	13.94	14.60	13
14	19.15	16.77	17.27	19.09	16.71	15.64	15.23	14.67	15.04	14.23	14.00	14.80	14
15	19.23	16.80	17.26	19.05	16.62	15.48	15.15	14.64	14.73	14.06	14.00	14.85	15
16	19.14	16.83	17.19	19.06	16.54	15.29	15.08	14.58	14.88	14.22	14.57	15.03	16
17	18.95	16.87	17.12	18.91	16.46	15.21	14.96	14.47	14.71	14.31	14.39	14.83	17
18	18.80	16.98	17.12	18.17	16.29	15.35	14.98	14.84	14.64	14.04	13.99	14.78	18
19	18.42	17.03	17.12	18.08	16.11	15.68	15.06	15.04	14.33	14.19	14.28	14.95	19
20	17.58	17.23	17.22	18.19	15.95	15.52	15.07	14.88	14.18	14.17	14.25	15.23	20
21	17.47	17.42	18.36	18.23	15.82	15.77	14.91	14.66	14.19	14.18	14.22	14.97	21
22	17.75	17.55	18.83	18.77	15.74	15.84	14.99	14.63	14.19	14.03	14.45	14.85	22
23	17.70	17.53	18.97	19.88	15.73	16.39	15.05	14.72	14.18	14.05	14.79	14.68	23
24	17.58	17.61	19.07	19.73	15.64	16.37	15 • 19	14.97	14.06	14.04	15.02	15.03	24
25	17.40	17.68	19.20	19.43	15.48	16.17	14.98	14.82	14.02	14.06	14.71	14.95	25
26	17.11	17.69	19.27	19.32	15.40	16.07	14.94	14.66	14.20	14.39	14.38	15.25	26
27	16.89	17.63	19.32	19.24	15.35	16.12	14.69	14.75	14.06	14.13	14.42	15.57	27
28	16.82	17.60	19.21	19.24	15.49	16.04	14.87	14.88	14.09	14.06	14.14	15.29	28
29	16.64	17.64	19.08	19.23	15.59	16.01	14.78	14.82	13.94	14.13	14.20	14.77	29
30	16.58	17.67	19.14	19.20		15.81	14.64	14.69	14.05	13.89	14.73	14.99	30
31	16.63		19.15	19.18		15.86		14.89		13.81	15.01		31

CREST STAGES

	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE	DATE	TIME	STAGE
E — ESTIMATED	1-23-64	1400	20.21									
NR - NO RECORD												
NF - NO FLOW										<u> </u>		

	LOCATIO	v	MAXI	MUM DISCH	ARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. 8 R.	_	OF RECORD		DISCHARGE	GAGE HEIGHT	PER	100	ZERO	REF.
LATITUDE	LONGITUOE	м.о.8.8м.	C.F.S.	GAGE HT.	DATE	O SOMANOE	ONLY	FROM TO GAGE	DATUM		
37 40 33	121 13 18	NE17 3S 7E				SEP 51-DATE		1951 1959	1959	1.11	USCGS

Station located 1.9 mi. above mouth, 7 miles SW of Ripon. Backwater from San Joaquin River at times affects the stage-discharge relationship. Prior records available at other sites. Drainage area 1,091 sq. mi. Altitude of gage is approx. 25 ft. (from U.S.G.S. topographic map).

DAILY MEAN GAGE HEIGHT

WATER YEAR STATION NO. STATION NAME

1964 807020 SAN JOAQUIN RIVER NEAR VERNALIS

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	NR	13.78	15.38	14.65	13.63	NR	11.01	10.22	10.15	9.62	9.04	10.58	1
2	NR	13.69	15.40	14.68	13.52	NR	11.17	10.29	9.95	9.54	9.17	10.62	2
3	NR	13.81	15.39	14.72	13.47	NR	11.11	10.36	9.91	9.53	9.23	10.55	3
4	NR	13.85	15.27	14.57	13.39	10.10	10.98	10.48	9.86	9.55	9.21	10.51	4
5	NR	13.87	15.05	14.48	13.43	10.10	10.55	10.59	9.82	9.68	9.17	10.41	s
6	12.87	13.95	14.96	14.47	13.44	10.16	10.52	10.71	9.78	9.78	9.17	10.38	6
7	13.27	13.94	14.97	14.50	13.42	10.30	10.31	10.80	9.83	9.67	9.02	10.46	7
8	13.67	13.92	14.94	14.61	13.37	10.39	10.21	10.72	9.96	9.48	9.04	10.38	8
9	13.32	13.92	14.95	14.63	NR	10.42	10.19	NR	10-44	9.50	9.13	10.29	9
10	13.07	13.93	14.96	14.28	NR	10.37	10.15	NR	10.88	9.37	9.32	10.15	10
11	13.33	13.92	14.89	14.09	NR	10.28	10.15	NR	10.91	9.38	9.24	10.12	111
12	14.03	13.90	14.78	13.99	NR	10.38	10.18	10.11	10.88	9.33	9.16	10.13	12
13	14.63	13.90	14.78	13.80	NR	10.70	10.11	9.99	10.58	9.40	9.20	10.12	13
14	15.09	13.92	14.79	13.72	NR	10.68	10.00	9.93	10.45	9.22	9.12	10.22	14
15	15.32	13.98	14.73	13.76	NR	10.51	9.93	9.78	10.44	9.08	9.20	10.20	15
16	14.87	14.04	14.59	13.76	NR	10.40	10.06	9.78	10.28	8.98	9.33	10.12	16
17	14.60	14.12	14.58	13.75	NR	10.26	10.01	9.78	10.13	9.13	9.64	10.11	17
18	14.72	14.26	14.62	13.38	NR	10.25	10.00	9.91	9.92	9.23	9.61	10.11	18
19	14.73	14.33	14.54	13.24	NR	10.56	10.03	10.13	9.83	9.38	9.69	10.12	19
20	14.48	14.63	14.43	13.21	NR	10.54	10.37	10.12	9.89	9.41	9.60	10.16	20
21	14.84	14.86	14.72	13.32	NR	10.53	10.44	10.16	9.74	9.31	9.48	10.28	21
22	15.35	14.88	14.91	13.48	NR	10.55	10.41	10.16	9.87	9.28	9.53	10.31	22
23	15.34	14.98	14.94	14.37	NR	11.23	10.43	10.13	9.72	9.32	9.73	10.37	23
24	15.17	15.15	14.98	14.73	NR	11.42	10.46	10+14	9.49	9 • 24	10.01	10.83	24
25	14.96	15.20	15.29	14.22	NR	11.34	10.43	10.25	9.45	9.11	10.00	11.20	25
26	14.56	15.20	15.44	13.98	NR	11.28	10.46	10.25	9.41	9.26	9.86	11.34	26
27	14.13	15.18	15.52	13.83	NR	11.21	10.51	10-24	9.46	9.31	9.80	11.52	27
28	13.93	15.20	15.17	13.64	NR	11.09	10.54	10.29	9.61	9.28	9.84	11.71	28
29	13.74	15.30	14.87	13.62	NR	11.01	10.45	10.27	9.59	9.17	9.86	11.34	29
30	13.79	15.33	14.73	13.60		10.97	10.31	10.36	9.68	8.97	10.06	11.36	30
31	13.81		14.64	13.55	1	10.90		10.26		8.93	10.31		31

CREST STAGES

TIME

TIME

STAGE DATE

STAGE

E — ESTIMATED

NR — NO RECORD

NF - NO FLOW

 DATE
 TIME
 STAGE
 DATE
 TIME
 STAGE
 DATE

 10-15-63
 1020
 15.38
 12-27-63
 1400
 15.58

 10-22-63
 2400
 15.45
 1-24-64
 0430
 14.88

 12-2-63
 0430
 15.41
 15.41
 15.41

	LOCATION	ı	MAXII	MUM DISCH	IARGE	PERIOD C	F RECORD		DATUM	OF GAGE	
		1/4 SEC. T. 8 R.		OF RECORD		DISCHARGE	GAGE HEIGHT	PE	RIOD	ZERO ON	REF.
LATITUDE	LONGITUDE	M. D. 8. 8 M.	C.F.S.	GAGE HT.	DATE	Olderland	ONLY	FROM	TO	GAGE	DATUM
37 40 34	121 15 51		79000	27.75	12-9-50	JUL 22-DEC 23 JAN 24-FEB 25		1931		8.4	USED
						JUN 25-OCT 28 MAY 29-DATE]	1959	1959		USCGS

Station located 30 ft. above the Durham Ferry Highway Bridge, 3 mi. below the Stanislaus River, 3.4 mi. NE of Vernalis. Records furn. by U.S.G.S. Drainage area is approx. 14,010 sq. mi.

DIVERSIONS - SAN JDAQUIN RIVER (Vernalis to Fremont Ford Bridge) October 1963 through September 1964

	MILE AND BANK	NUMBER ANO SIZE				м	ONTHLY	DIVERSI	ON IN AC	RE - FE	ΕT				TOTAL
WATER USER		OF PUMP IN INCHES	DCT.	NOV.	DEC,	JAN.	FE8	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DCTSEPT. ACRE-FEET
OURHAM FERRY BRIDGE	76.7														
GAGING STATION - SAN JOAQUIN	76.7						•						1		
RIVER NEAR VERNALIS	70.05												1		
Cook Land and Cattle Company	70.9R	1-14 1-24						164	522	160	383	858	727	285	3099
Cruze, Trudel and Gillmeister	79.4R	1-20					2	136	41	77	79	59	153	44	591
stanislaus river	79.7R			1		;									1
Faith Ranch	79.8R	1-16	161	3			60	164	147	140	172	245	220	240	1552
W. C. Blewett Estate	80.7L	1-12	172						259	284	251	441	477	181	2065
W. C. Blewett Estate	81.8L	2-12 1-14	540				394	128	970	1230	1110	1980	1850	61	8263
GAGING STATION - SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE	81.85														
8lewett Mutual Water Company	81.95L	1-10 2-12	208			1	3	557	869	1280	1170	1210	1330	770	7397
El Solyo Water District	82.0L	1-10 1-16 3-18	125				164	1380	2420	2 550	2110	3520	3680	1360	17310
GAGING STATION - SAN JOAQUIN RIVER AT HETCH HETCHY AQUEDUC CROSSING	82.65 T	, , ,							į						
El Solyo Ranch	82.9L	1-16	41		1			105	202	250	77	204	384	282	1545
El Solyo Ranch	83.5L	1-12						28	43	117	64	85	59	35	431
El Solyo Ranch	83.7L	1-12	55					202	248	285	189	264	327	289	1859
Faith Ranch	84.48	1-16 1-20	514	60			320	422	906	1010	599	904	781	604	6120
TUOLUMNE RIVER	91.0R	1-20								ĺ					
GAGING STATION - SAN JOAQUIN RIVER AT WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL	91.8L														
WEST STANISLAUS IRRIGATION DISTRICT INTAKE CANAL	91.8L														
West Stanıslaus Irrigation District	91.8L	1-12 1-24 6-26	1530	151		407	3520	6390	7650	7850	9290	7420	5000	2910	52120
Fred Lara #1	**(0.6S)	1-14					ĺ	164	6	154	200	288	152	47	1011
Frank Sarmento #1	**(0.7N)	3-16	152					1230	873	697	929	1050	748	507	6186
Frank Sarmento #2	**(1.1N)	1-14 1-16	583				74	454	529	374	361	610	363	107	3455
Fred Lara #2	**(2.2S)	1-16					19	9	30	29	60	12	55		214
Frank Sarmento #3	**(2.3N)	2-16						250	103	153	291	364	383	100	1644
J. V. Steenstrup Estate	93.1R	1-12 1-14	ŀ	•					338	634	393	1260	1370	135	a 4130
T. C. Daily	94.1L	1-3 1-6	21				37	159	49	131	93	129	75	25	719
Rancho Dos Rios	94.7R	1-12	15	1		1	149	3	174	175	314	419	226	305	1782
E. L. Brazil	95.5R	1-16	15	3		2	94	51	102	139	70	163	221	35	895
Charles Correia	95.8R	1-10								50	19	27	20	12	128
GAGING STATION - SAN JOAQUIN RIVER AT GRAYSON	95.95L												,		
Island Dairy	96.0L	1-18	107		1		211	119	318	266	438	519	568	345	2891
LAIRD SLOUGH BRIDGE	96.05													1	
E. S. Brush	98.5R	1-7	25						6	44		45	33		153
Rancho El Pescadero	19.8e	1-18	23		1	1	120	22	140	230	216	246	29	73	1101
GAGING STATION - SAN JOAQUIN RIVER AT PATTERSON BRIDGE	104.4L														
Patterson Water District	104.4L	1-14 2-18 3-20 1-36					322	4290	6670	6190	7210	9280	8800	5080	47840
Chase Brothers	104.SR	1-18	21					303	480	289	375	551	541	470	3030
PATTERSON BRIDGE	104.6			}											
Chase Brothers	106.5R	1-12	10					367	244	453	631	448	517	391	3061
Tony Spinelli	109.1R	1-12					35	35	36	7 5	44	80	31	60	416
Twin Daks Irrigation Company	109.8L	1-12 2-16 1-18	39				134	1280	980	2550	2290	2770	2289	1810	a 14130
T. J. Henderson	110.8R	2-8	20				12	120	204	351	307	308	321	300	1943

DIVERSIONS - SAN JOAQUIN RIVER (Vernalis to Fremont Ford Bridge) October 1963 through September 1964

	MILE AND SANK	AN	UMBER ID SIZE				м	ONTHLY	DIVERSI	ON IN A	CRE - FE	ΕT				TOTAL
WATER USER	*		F PUMP INCHES	OCT.	NOV.	OEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCT - SEP
L. A. Thompson	112.55R		1-18						32	331	231	98	33	30		755
Frank C. Mosier	113.4R		1-12	72				79	107	143	143	155	169	167	155	1190
GAGING STATION - SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE	113.4			1				<u> </u>								
Frank C. Mosier	114.63R	ь	1-4 1-8						15	47	30	67	70	46	51	326
Manual A. Serpa	114.75R		2-10	43				146	50	257	189	322	410	356	263	2036
ORESTIMBA CREEK	115.2L	l		i								i				1
Roy F. Crow	115.BL	l	1-10	l .						47	314	42	250	205	11	B96
L. B. Crow	116.05L	l	1-14	23			24	41	51	86	157	94	205	162	108	951
John W. Greer	116.5R	l	1-12						101	294	99	156	206	276	190	1322
Stevinson Water District	121.3R	l	1+1B	12				37	121	242	262	190	450	322	272	1908
MERCED RIVER SLOUGH	122.2R	l		i												ŀ
GAGING STATION - SAN JOAQUIN RIVER NEAR NEWMAN	123.7															
MERCED RIVER	123.75R															
Stevinson Corporation	129.1R		1-16	19				193	222	212	312	381	195	443	240	2217
GAGING STATION - SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE	129.5															
VERNALIS TO FREMONT FORD BRIDGE		\vdash														
Total Average cubic feet per second Monthly use in percent of seasor	nal			4546 74 2.2	218 4 0.1	1 0 0	435 7 0.2	6166 107 3.0	19230 313 9.2	27040 454 13.0	29950 487 14.4	31240 525 15.0	37750 614 18.1	33730 549 16.2	17B70 300 B.6	208700 288

Mileage along San Joaquin River from its mouth, 4.5 miles below Antioch.
 West Stanislaus Irrigation District Canal. The intake canal joins the San Joaquin River at mile 91.8L. Distance from the river and the bank is shown in parentheses.

a Includes an undetermined amount of water returned to river by spill.b The 4" unit was installed in 1964.

DIVERSIONS - SAN JOAQUIN RIVER (Fremont Ford Bridge to Gravelly Ford) October 1963 through September 1964

-	MILE AND BANK	NUMBER AND SIZE				M	ONTHLY	OIVERSIO	ON IN AC	RE - FE	ΕT				TOTAL DIVERSION
WATER USER	*	OF PUMP IN INCHES	ост.	NOV.	OEC.	JAN	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT	OCTSEPT. ACRE-FEET
GAGING STATION - SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE	129.5														
GAGING STATION - SAN JOAQUIN RIVER NEAR DOS PALOS	186.0														
San Luis Canal Company (a)	186.6L	Gravity	7517	3486	2751	1279	7404	12260	18284	22586	25030	26775	26120	18828	169323
FIREBAUGH BRIDGE	198.4													•	
GAGING STATION - SAN JOAOUIN RIVER NEAR MENDOTA	206.2														
MENDOTA DAM	208.63														1 1
Central California Irrigation District (a)	208.8L	Gravity	19460	4856	107	5871	28477	50686	66553	75168	75667	90252	83826	43097	d 544020
FRESNO SLOUGH	209.0L														
DELTA-MENDOTA CANAL	ð (0.2L)														
Firebaugh Canal Company (a)	ð (0.4L)		835	117	20	0	1722	9956	1 1748	13440	14231	13765	5946	1203	72983
M. Jenson					· '			NO DIV	ERSION						
M. L. Dudley	8 (3.4L)		0	0	0	0	182	438	373	347	530	545	454	14	2883
State of California – Ö (6 Mendota Waterfowl Management (b)	.45 ~ 8.20)		4762	1960	446	470	26	54	186	79	2212	2414	2634	3120	18363
Fresno Slough Water District	(b)		0	0	0	0	651	141	569	696	1123	873	661	0	4714
JAMES BYPASS	ð (11.80R)														i I
Traction Water District (b)	ð8 (0.75)		192	0	0	34	573	240	611	756	912	1020	1152	1218	6708
Reclamation District (b) 1606	ðð (1.50)		0	0	ο	0	40	36	54	0	137	123	71	7	468
James Irrigation District (b) 88 (4.4)		36	0	0	0	5336	2729	4348	5338	8846	9483	9082	3352	4855
Tranquillity & {12.4 Irrigation District (b)	00 - 13.75)		210	0	0	28	5361	1722	2164	2045	5395	7018	5353	1327	30623
Melvin D. Hughes (b)	8 (12.20)		0	0	0	0	20	0	0	0	28	14	22	0	84
LONE WILLOW \$LOUGH	219.8R			1											1
Columbia Canal Company (a)	219.8R		3050	2523	145	1166	1978	4149	6006	8630	8083	8785	8652	6141	59308
State Center Duck Club (b)		e	173	89	40	0	0	0	0	0	0	0	0	0	302
C. Sawall		f						NO DIV	ERSIDN						
Mendota Duck Club (b)		g						NO DIV	ERSION						
M. Beck (b)		h	20	2	0	0	О	0	0	0	0	0	0	0	22
Mario Giomi (c)			0	0	0	0	159	52	61	10	32	52	34	0	400
P. A. Yearout			0	0	0	0	54	63	56	5.2	38	0	85	0	348
Tulle Gun Club		j	34	0	0	0	0	0	0	0	0	0	0	0	34
Westlands Water District			0	0	0	0	0	0	0	216	1038	1824	1962	488	5528
FREMONT FORD BRIDGE TO GRAVE	LLY FORD										<u> </u>				
Total Average cubic feet per second Monthly use in percent of se	d asonal		37174 605 3.8	13008 219 1.3	3501 569 0.4	9237 150 1.0	53254 926 5.5	77535 1261 8.0	108821 1829 11.2	127373 2072 13.1	141299 2375 14.6	164221 2671 16.9	154359 2510 15.9	80064 1346 8.3	969846 1336

- 8
- Mileage along San Joaquin River from its mouth 4.5 miles below Antioch.
 Plant is located on Fresno Slough which diverts from San Joaquin River at mile 209.0L. Distance from San Joaquin River and bank is shown in parentheses.
 Plant is located on James Bypass which diverts from Fresno Slough at mile 6 (11.80R). Distance from Fresno Slough and bank are shown in parentheses.
 Records furnished by contracting entities.
 Records furnished by U. S. Bureau of Reclamation.
 Formerly listed as J. E. Jennings. ඊඊ

- Includes Class I water.

 1 6" pump located on arm of slough at S.W. corner

 5. 12, T. 14 S., R. 15 E.

 1 8" pump located on arm of slough, 1500' W. of S.E. corner S. 18, T. 14 S., R.16 E.

 1 8" pump located on arm of slough at S.W. 4 corner

 5. 11, T. 14 S., R. 15 E.

 1 8" pump located on arm of slough, 1400' S. of N.E. corner S. 24, T. 14 S., R. 15 E.

 1 8" pump located on arm of slough adjacent to M. 8eck.

DIVERSIONS - SAN JOAQUIN RIVER (Gravelly Ford to Friant Dam) October 1963 through September 1964

	MILE	NUMBER	<u> </u>			м	ONTHLY	OIVER\$1	ON IN AC	RE - FE	ΕT				TOTAL OIVERSION
WATER USER	ANO BANK	AND SIZE OF PUMP IN INCHES	0CT.	NOV.	OEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	A UG.	SEPT.	OCTSEPT.
W. A. Kochergen l	233.66R	1-6						8	27		22	31	36		124
Dewey W. Johnson 1	235.33R	1~5 1-10						16	26	42	50	61	81	17	293
SKAGGS BRIDGE	238.18														
U. S. HIGHWAY 99 BRIDGE	247.38									ļ					
SANTA FE RAILROAD BRIDGE	249.23														
Miller Brothers	251.46L	1-6	23				8	7	73	. 86	70	92	64	54	477
Sycamore Island Stock Ranch 2	256.52R	1-8				<u> </u>			3	50	50	93	50	37	283
Oscar Spano River Ranch l	257.10L	1-16	33				41	36	112	148	218	257	224	134	1203
Oscar Spano River Ranch 2	257.70L	1-12	10	6		ŀ	7	30	33	51	43	157	151	162	650
L. D. Cobb	258.08R	1-6 1-7	:				15	97	21	8	147	176	132		5 96
STATE HIGHWAY 41 BRIDGE	258.33								1						
R. J. Curtis	258.39L	1-4 1-7									21	61	41		123
W. E. Roberts 1	258.80L	1-6	4					5	44	16	38	52	42	5	206
W. E. Roberts 2	258.90L	1-12	29	2	1	1	1	9	44	70	97	99	85	89	527
J. E. Cobb	259.39R	2-6	1			1	39	4	19	5	51	79	79	16	293
OLD LANES BRIDGE	259.78		ĺ			1									
J. E. Cobb 3	260.40R	1-6	34	1		}		39	72	105	121	126	122	69	689
R. C. Arnold	261.53R	1-4 1-5	5				16	35	46	67	87	142	146	62	606
Duane M. Folsom	261.70L	1-6	20					38	55	99	117	161	144	90	724
E. G. Rank, Jr.	262.32L	1-5	12				11	17	13	56	45	63	50	36	303
Oale McCoon 1	262.60R	1-5						25	98		32	153	134	30	472
W. H. Rohde	262.66L	1-7						46	1	6	36	86	60	12	247
Dale McCoon 2	263.40R	1-7						5	80	16	27	171	141	27	467
Dale McCoon 3	263.48R	1~6	5					29	20	17	23	126	74		294
H. K. Jensen	263.76R	1-5	31				37	15	54	67	96	91	78	58	527
H. W. Ball 4	264.08L	1-6									36	103	110	80	329
Ike O. Ball	264.60R	1-6	34				29	57	94	114	108	111	109	96	752
W. F. 8all	264.83L	1-4 1-5	12	1			10	9	25	50	61	67	69	53	357
Virgil Durando	267.56L	1-8	3	1	11		10	45	52	57	180	204	210	118	891
GAGING STATION - SAN JOAQUIN RIVER BELOW FRIANT	268.13L														
FRIANT BRIDGE	268.88														
COTTONWOOD CREEK	269.53R														
FRIANT DAM	269.63														
GRAVELLY FORD TO FRIANT DAM						†			—	l		 			
Total Average cubic feet per second Monthly use in percent of seaso	nal		252 4.1 2.2	11 0.2 0.1	12 0.2 0.1	1 0 0	22 4 3.9 2.0	567 9.2 5.1	968 16 8.6	1114 18 9.9	1738 29 15.5	2710 44 24.1	2390 39 21.3	1240 21 11.0	11230 15

^{*} Mileage along San Joaquin River from its mouth $4\frac{1}{3}$ miles below Antioch.

DIVERSIONS - MERCED RIVER October 1963 through September 1964

	MILE	NUMBER	·			gh Sept	ONTHLY		ON IN A	*RF F F	FT				TOTAL
WATER USER	ABOVE	OF PUMP	ост.	NOV.	OEC.	JAN.				т		1	T	T	OIVERSION OCTSEPT
	MOUTH	IN INCHES	001.	NOV.	OEC.	JAN.	FEB	MAR.	APR,	MAY	JUNE	JULY	AUG.	SEPT.	ACRE-FEE
HILLS FERRY BRIDGE	1.1	ŀ													
Stevinson Water District #1	1.8R	1-16	43	116		1	11	307	231	227	257	255	493	273	2213
Stevinson Water District #2	3.8R	1-18	141		. 3	4	77	462	557	580	718	868	699	450	4559
Milton Gordon	4.3L	1-10	3	1		2	4	3	27	55	53	64	29	37	278
GAGING STATION - MERCED RIVER NEAR STEVINSON	4.6		l												
Maria DeAngelis	5.8L	1-12	10				42		32	43	62	80	96	49	414
Stevinson Water District	6.1L	1-20	114	3	11	4	279	404	466	464	548	606	553	332	3784
Stevinson Water District #3	7.7L	1-20					154	551	943	106	222	1150	937	551	4614
Manuel Clemintino	8.5L	1-12	18				22	16	34	25	32	62	74		283
Manuel Clemintino	8.9L	1-12	11					66	55	26	48	50	44	42	342
Samuel B. McCullagh	9.4L	1-8	14		2					130	8	135	82	6	377
Mrs. J. R. Jacinto	9.6L	1-12	14	42			30	103	100	105	122	145	66	40	767
Mrs. J. B. Silva, E. and J. Gallo Winery Ranch, L. Alves and A. Mattos	10.35L	1-10	21	6	5	3	9	115	131	173	177	304	108	110	1162
Manual Freitas	10.9L	1-12	35		1			57	82	68	119	106	130	44	641
R. E. Prusso and John Vierra	10.9L	1-8	13	4				63	84	50	106	128	103	99	650
n1 , a ;; ;		1-12			1					l					
E. and J. Gallo Winery Ranch	11.6L	1-18						158	319	29	340	342	269		1457
MILLIKEN BRIDGE	11.65														
E. and J. Gallo Winery Ranch	12.35L	1-10						19	38	6	61	87	17		228
Anthony L. Calderia	12.5R	1-12	7					21	38	55	16	48	64	43	292
E. and J. Gallo Winery Ranch	12.85L	1-12						67	109	17	177	250	42	1	662
J. M. Souza	14.5L	1-10	32						5.5	65	64	66	97	55	434
GAGING STATION - MERCED RIVER NEAR LIVINGSTON	16.49L		ĺ												
E. and J. Gallo Winery Ranch	16.5L	1-14							136	124	63	234	97		654
J. E. Gallo	20.4L	1-8						130	182	32	178	224	8	ļ	754
U. S. HIGHWAY 99 BRIDGE	21.04	i l								ļ				1	
SOUTHERN PACIFIC RAILROAD BRIDGE	21.05														
Gallo Cattle Company	22.2R	1-8 1-16	38	1	1	5	72	241	244	135	248	438	310	204	1937
Gallo Cattle Company	22.8R	1-12 1-15					57	128	183	90	169	3 2 5	198	38	1188
Merced River Farms Association	26.3R	1-8							67	71	50	78	71	31	368
SANTA FE RAILROAD BRIDGE	27.05														ļ
W. C. Magneson	27.5R	1-10	31						31	48	14	57	35	50	266
GAGING STATION - MERCED RIVER AT CRESSEY	27.55														
CRESSEY BRIDGE	27.55														
Manuel Silva	29.9R	1-6 1-10							13	71	67	91	61		303
Manuel Silva	30.95R	1-12							62	67	90	138	89	78	524
Rancho Con Valor	31.1L	1-8	31						22	119	54	122	76	67	491
Manuel Silva	31.4R	1-10							91	237	118	261	210	145	1062
P. Hilarides	32.3L	1-12							4	44		3	52	27	130
SHAFFER BRIDGE	32.5													-	
Harry P. Schmidt and Son	33.1R	1-10							3	138	18	57	107	3	326
Walter Bettencourt	34.5L	1-12						NO 1	DIVERSIO		1			ĺ	320
W. F. Bettencourt, P. Hilarides, and Cowel Lime and Cement Company	36.9L	Gravity	648	752	597	713	25	35	521	887	956	1330	1080	566	8110
Amsterdam Orchards Incorporated	39,17.	1-14				1	75	116	90	32		24	16		354
Ratzlaff Brothers	40.2L	a 1-2					7.5	10	23	18	44	56	58	23	232
COV REDDY BOYCOS	42.	1-4													
COX FERRY BRIDGE	42.1													į	
Cowel Ditch	45.3R	Gravity	511	654	582	819	787	827	2410	3620	3390	3720	3410	1620	22350
GAGING STATION - MERCED RIVER BELOW SNELLING	46.2														
MERCED RIVER						,									
Total Average cubic feêt per second Monthly use in percent of season	al		1735 28 2.8	1579 27 2.5	1201 20 1.9	1551 25 2.5	1644 29 2.7	3899 63 6.3	7383 124 11.9	7957 129 12.8	8589 144 13.8	11900 194 19.1	9781 159 15.7	4983 84 8.0	62 2 10 86

a The 2" unit was installed in 1964.

DIVERSIONS - TUOLUMNE RIVER October 1963 through September 1964

	MILE NUMBER MONTHLY DIVERSION IN ACRE - FEET									TOTAL					
WATER USER	ASOVE MOUTH	OF PUMP IN INCHES	ост.	NOV.	OEC.	JAN.	FE8	MAR,	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OCTSEPT.
E. T. Mape	1.3R	a 2-14	73			55	429	560	366	810	806	1120	1110	386	5715
J. V. Steenstrup Estate	1.9L	2-12					19	96	176	161	83	258	347	13	1153
J. V. Steenstrup Estate	2.9L	1-10 1-12		1			28	445	224	94	318	337	343	108	1898
GAGING STATION - TUOLUMNE RIVER AT TUOLUMNE CITY (SHILOH BRIDGE)	3.35														
Bancroft Fruit Farms	5.0R	1-10	10					21	44	47	58	57	42	37	316
Della Battestin	5.9L	b 1-16						391	869	356	603	948	1199	744	5110
Western Farms	6.3L	1-16	1					35	108	11	71	114	69	22	431
Eugene Boone, Galen Hartwich, and Dr. Harold Willis	7.1R	1-10	7				10	4	118	4	34	51	95	72	395
Beth Wootten	8.4R	1-10					23	10	32	51	5	20	43	27	211
Ella T. Rahilly Estate	8.5L	1-10	16						25	20	12	29	61	8	171
A. C. Watkins Estate	9.4L	1-20	7		2	,	5	90	593	523	168	561	406	40	2395
McClure Ranches	9.7R	1-12	16		1		20	4	23		23	3	13		102
Homer Couchman (c)	10.2R	1-14					17	3	107	78	123	107	120	129	684
CARPENTER ROAD BRIDGE	12.9							ĺ				1			
SEVENTH STREET 8RIDGE	15.75														
SOUTHERN PACIFIC RAILROAD BRIDGE	15.8														
U. S. HIGHWAY 99 BRIDGE	16.05	Ī													i
GAGING STATION - TUOLUMNE RIVER AT MODESTO	16.05														
DRY CREEK	16.5R	İ	ŀ									İ			
EAST MODESTO BRIDGE	19.3	}	l									ļ			1
Jack Gardella	20.3R	1-10	19		1			4	23	19	51	19	51	56	242
SANTA FE RAILROAD BRIDGE	21.6	1								1			1		
SANTA FE ROAD BRIDGE	21.65														
Mrs. A. L. Leib	22.8R	1-3 1-6						6	25	7	26	27	28	13	132
GEER AVENUE BRIDGE	26.0						1					•	}		
Michel Investment Company	28.8R	1-8	10				1	24	35	22	79	54	100	50	375
J. W. and Lola Mae Short	29.8L	1-10	17				2	108	60	56	34	72	63	8	đ 420
Firpo Ranch	30.2L	1-10			1		9	15	55	59	30	54	39	28	290
SOUTHERN PACIFIC RAILROAD BRIDGE (OAKDALE BRANCH)	31.5														
GAGING STATION - TUOLUMNE RIVER AT HICKMAN BRIDGE	31.7	<u> </u>			<u> </u>										
Iva M. Ketcham (e)	39.4R	1-8	18					39	62	116	96	159	134	111	735
Westley N. Sawyer	39.8L	1-8	7		ļ	ł		13	64	90	90	95	97	54	510
GAGING STATION - TUOLUMNE RIVER AT ROBERTS FERRY BRIDGE	39.9														
Westley N. Sawyer	40.8L	1-14	24			İ		26	75	80	82	97	106	54	544
Curtner Zanker	45.7L	1-10	1	1		1	1	1	90	58	55	51	36	33	328
Dolling Brothers	46.3R	1-8	20	1				15	57	68	55	90	103	80	488
STATE HIGHWAY 132 BRIDGE	47.4		1				[
GAGING STATION - TUDLUMNE RIVER AT LA GRANGE BRIDGE	50.5														
TUOLUMNE RIVER					<u> </u>										
Total Average cubic feet per second Monthly use in percent of seas	onal		246 4 1.1	2 0 0	3 0 0	56 1 0.2	564 10 2.5	1910 31 8.4	3231 54 14.3	2730 44 12.1	2902 49 12.8	4323 70 19.1	4605 75 20.3	2073 35 9.2	22640 31

a One 14" unit was installed in 1964.
b Replaces a 14" unit.
c Formerly listed as Raymond Boone.
d Includes an undetermined amount of water returned to river by spill.
e Formerly listed as A. E. Ketcham Estate.

DIVERSIONS - DRY CREEK October 1963 through September 1964

	MILE AND BANK	NUMBER AND SIZE				M	ONTHLY	DIVERSIO	N IN AC	RE - FEI	ΕT				TOTAL DIVERSION
WATER USER	ABOVE MOUTH	OF PUMP IN INCHES	ост.	NOV.	DEC.	JAN.	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DCTSEPT ACRE-FEET
MODESTO-EMPIRE TRACTION COMPANY RAILROAD BRIDGE	0.7														
STATE HIGHWAY 132 BRIDGE (YOSEMITE BOULEVARD)	0.8														
LA LOMA BRIDGE	1.2														1
EL VISTA AVENUE BRIDGE	2.9														
GAGING STATION - DRY CREEK NEAR MODESTO	5.3R											'			
CLAUS ROAD BRIDGE	5.4					}									
SANTA FE RAILRDAD BRIDGE	6.4								i						
CHURCH STREET BRIDGE	7.2								\						
WELLSFORD ROAD BRIDGE	8.7		l									•			
ALBERS ROAD BRIDGE	11.0		1												
MODESTO IRRIGATION DISTRICT CANAL CROSSING	11.1														
Edward Johnson	12.6R	1-6	7						7	12	2	19	37	26	110
Edward Johnson	12.7R	1-6	22						2B	17	39	46	64	24	240
Joe Fagundes	14.7R	1-10	22	2	4	7	61	78	108	91	120	144	166	106	909
OAKDALE-WATERFORD HIGHWAY BRIDGE	17.4			}											
DRY CREEK															
Total Average cubic feet per second Monthly use in percent of sea	sonal		51 1 4.0	2 D 0.2	0 0.3	7 0 0.6	61 1 4.8	78 1 6.2	143 2 11.4	120 2 9.5	161 3 12.B	209 3 16.6	267 4 21.2	156 3 12.4	1259

DIVERSIONS - STANISLAUS RIVER October 1963 through September 1964

	AND BANK AND SIZE DIVE										TOTAL				
WATER USER	ANO BANK ABOVE MOUTH	OF PUMP IN INCHES	ост,	NOV.	OEC.	JAN.	FEB.	MAR,	APR,	MAY	JUNE	JULY	AUG.	SEPT.	DIVERSION OCT SEPT
		IN INCHES			1	-					10000	0021	700.	30,-1,	ACRE-FEET
GAGING STATION - STANISLAUS RIVER NEAR MOUTH	1.9R														
Cook Land and Cattle Company and C. M. Carroll	1.9R	1-16							13	20	9	9	10	57	119
C. C. Angyal	2.4R	1~18	63					198	146	153	309	318	239	125	1551
Faith Ranch	3.4L	2-12 1-16	408				299	290	443	673	566	660	619	506	4463
Reclamation District 2064	4.0R	1-14 1-16 2-20	223				344	689	2630	2040	2340	3080	2670	2050	16070
Reclamation District 2075	4.05R	2-16 1-20	483		31	42	739	976	2160	2280	2270	2580	2550	1890	16000
D. F. Koetitz	4.7L	1-14					39	49	3 24	356	206	288	331	312	1905
E. T. Mape	4.75L	1-20					131	212			110	269	117		839
Henry Pelucca	5.5L	1-16	18					53	55	52	156	149	167	91	741
Alice Gill	6.4L	1-12								370	312	298	453	2 65	a 1698
D. J. Macedo	8.4R	1-16	123				58	213	263	403	203	539	589	498	2889
N. E. Cannon	9.7R	1-10	19					271	281	266	321	459	430	163	2210
GAGING STATION - STANISLAUS RIVER AT KOETITZ RANCH	9.35L														
D. F. Koetitz	9.4L	1-12			l .		51	161	369	258	253	622	420	342	24 96
John L. Hertle	9.8L	1-10	6					40	36	41	40	39	56	34	292
Nelson Santos	10.0R	1-16	18			i			102	94	20	55	81	33	403
Nelson Santos	10.5R	1-16	25						263	122	63	127	190	68	948
John L. Hertle	10.7L	1-10	7					17	9	9	10	15	17	5	89
GAGING STATION - STANISLAUS RIVER AT RIPON	15.7L														
SOUTHERN PACIFIC RAILROAD BRIDGE	15.7		:								İ				
U. S. HIGHWAY 99 BRIDGE	15.7										•			}	
A. Girardı	17.7L	1-16				2	1		219	126	92	249	182	115	a 986
E. J. Freethy	19.0R	1-14					29		130	134	123	200	236	88	940
Libby, McNeill, and Libby	20.9R	1-14						250	150	55	264	300	268	164	1451
Heath Ranch	21.2L	1-6	71					7	8	50	61	53	74	91	415
Mark Rumble	23.4L	1-8									3	3	7		13
MODESTO-ESCALON HIGHWAY BRIDGE	29.6														
F. K. Floden	29.9L	1-10						NO I	DIVERSI	ON					
SANTA FE RAILROAD BRIDGE	33.4														
GAGING STATION - STANISLAUS RIVER AT RIVERBANK	33.6														
Oakdale Irrigation District (Crawford pump) (b)	37.7L	1-14	17					86	144	115	164	112	260	6	a 904
Oakdale Irrigation District (Brady pump) (b)	39.1L	1-12	46					81	94	130	145	157	191	54	a 898
OAKDALE-STOCKTON HIGHWAY BRIDGE	41.2		.												
SOUTHERN PACIFIC RAILROAD BRIDGE (OAKDALE BRANCH)	41.2														
GAGING STATION - STANISLAUS RIVER AT ORANGE BLOSSOM BRIDGE	47.0														
STANISLAUS RIVER															
Total Average cubic feet per second Monthly use in percent of seaso	onal -		1527 25 2.6		31 0.1	44 1 0.1	1691 29 2.9	3613 59 6.2	7839 132 13.5	7747 126 13.3	8040 135 13.8	10580 172 18.2	10150 165 17.4	6957 117 11.9	58 22 0 80

a Includes an undetermined amount of water returned to river by spill.
b Oakdale Irrigation District for season of 1964 maintained plants at miles 27.7L and 39.1L to supplement district gravity supply.

DIVERSIONS - TULE RIVER October 1963 through September 1964

	MILE	NUMBER				м	ONTHLY	OIVERSI	ON IN AC										
WATER USER	# AND BANK	OF PUMP	ост.	NOV.	OEC.	JAN.	FEB	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	OIVERSION OCTSEPT. ACRE-FEET				
success DAM	0.0														HONE TEET				
GAGING STATION - TULE RIVER BELOW SUCCESS DAM	0.35						i												
Campbell Moreland Oitch	2.4L	Gravity	832	156	176	944	71	20	55	1485	740	697	B88	1412	7476				
PORTER SLOUGH	2.4R		1																
GAGING STATION - PORTER SLOUGH AT PORTERVILLE (B LANE BRIOGE)	** (2.4)	:													•				
PIONEER SPILL	**(3.7R)						ĺ												
Porter Slough Ditch	** (4.5R)	Gravity	155	191				İ			417	531	292		1586				
GAGING STATION - PORTER SLOUGH NEAR PORTERVILLE (NEWCOMB ROAD)	**(6.1)				E														
Vandalia Ditch (b)	3.1L	Gravity	165	ļ					1	209	143	132	211	44	904				
SANTA FE RAILROAD BRIDGE	5.1																		
Poplar Ditch	5.8L	Gravity	123	1460	943	1253	337	21		365	3050	5815	2422	121	15910				
STATE HIGHWAY 190 BRIDGE	5.9																		
SOUTHERN PACIFIC RAILROAD BRIDGE	6.0				1														
Hubbs-Miner Ditch (c)	6.4R	Gravity	171	153	1			181	106	236	419	728	427	160	2581				
STATE HIGHWAY 65 BRIDGE	6.6					1													
Rhodes-Fine Ditch (c)	8.4L	Gravity				i			87	94.2	374		5	ŀ	1408				
OLIVE AVENUE BRIDGE	9.9																		
FRIANT KERN CANAL CROSSING	10.5							ŀ											
Woods-Central Oitch (c)	11.0L	Gravity			647	559		3	}						1209				
GAGING STATION - TULE RIVER BELOW PORTERVILLE	11.8																		
OTTLE BRIDGE	14.4																		
									L		ļ			L					
TULE RIVER																			
Total Average cubic feet per second Monthly use in percent of seaso	nal		1446 24 4.7	1960 33 6.3	1766 29 5.7	2756 45 8.9	408 7 1.3	225 4 0.7	248 4 0.8	3237 53 10.4	5143 B6 16,5	7903 129 25.4	4245 69 13.7	1737 29 5.6	31070 42				

Mileage downstream from Success Dam.
Figure in parenthesis indicates distance along Porter Slough from Tule River.
Records for July, August, and September furnished by the Tule River Association and reviewed by the Department of Water Resources.
The greater portion of this water was used to recharge Vandalia Irrigation District well field.
Ouring periods of no record, the recorder at this station was deactivated. This recorder was activated prior to anticipated diversion periods upon notification from the Tule River Association. It is assumed there was no flow during the "no record" periods.

WATER USER OCT NOV OFF INN SER MAR APP MAY THE THE AUG SERT TOTAL									ACREAGE II	RRIGATED					
WATER USER	ост	NOV.	OEC.	JAN	FE8	MAR,	APR.	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL	GENERAL	RICE
Friant-Kern Canal				<u>San</u> Jo	aquin R	<u>iver</u>						1			
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	93329 1568 11.4	23222 390 2.8	1557 25 .2	0 0 0	92337 1605 11.3	75012 1220 9.2	32460 546 4.0	36786 598 4.5	112026 1883 13.7	155538 2530 19.0	145948 2374 17.9	49348 829 6.0	817563 1126		1
Madera Canal			ļ												
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	9965 167 4.5	492 83 .2	0 0	0 0 0	0 0 0	28154 458 12.8	0 0 0	5133 83 2.3	47560 799 21.5	72890 1185 33.0	49264 801 22.3	7281 122 3.3	220739 304		
Merced Irrigation District				Merc	ed Rive	ř			1						
Main Canal Northside Canal	2755 494	0 117	0 123	0 186	0 125	0 135	75680 3074	83610 3687	84134 3731	104880 4737	73586 3521	0 520	a 424645 20452	ъ 111826	5297
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	3249 53 .7	117 2 0	123 2 0	186 3 0	125 2 0	135 2 0	78754 1324 17.7	87297 1420 19.6	87865 1477 19.8	109617 1783 24.7	77107 1254 17.4	520 9 .1	445097 615		
Turlock Irrigation District				Tuolu	mne Riv	e <u>r</u>									
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	34187 556 6.6	18960 319 3.6	1595 26 .3	1459 24 .3	9540 166 1.8	40982 666 7.9	73190 1230 14.0	59006 960 11.3	73071 1226 14.0	80648 1312 15.4	77375 1258 14.8		c 522414 722	d 173043	0
Modesto Irrigation District														1	
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	20049 326 7.9	45 1 0	43 1 0	304 5	90 2 0	26607 433 10.5	34828 585 13.7	37342 607 14.7	40791 686 16.1	40163 653 15.8		20958 352 8.3	e 254068 351	f 74161	450
Waterford Irrigation District					ĺ								İ		
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	2049 33 6.7	0 0 0	0 0 0	0 0 0	0 0 0	2060 34 6.8	4189 70 13.8	5206 85 17.1	5568 94 18.3	5241 85 17.3	3917 64 12.9	2164 36 7.1	g 30394 42	h 6819	0
Oakdale Irrigation District				Stanıs	laus Rı	ver_				1					
Northside Canal Southside Canal	6811 10201	0	0	0	0	7458 13745	15848 22975	16572 23758	16044 24499	16535 26302		12699 20852	109101 169324	i 33381 j 33869	3290 416
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	17012 277 6.1	0 0 0	0	0	0	21203 345 7.6	38823 652 13.9	40330 656 14.5	40543 681 14.6	42837 697 15.4	43926 714 15.8	33751 567 12.1	278425 385	k 67250	k 3706
South San Joaquin Irrigation Oistrict	1			1								1			
Total acre-feet diverted Average cubic feet per second Monthly use in percent of seasonal	8284 135 3.0	0 0	0 0	0 0	6812 123 2.5	17109 278 6.1	48558 816 17.4	44205 719 15.9	36513 614 13.1	40096 652 14.4	44051 716 15.8		278427 385	m 62832	٥

- Data for Madera and Friant-Kern Canals furnished by U. S. Bureau of Reclamation, all other data furnished by individual irrigation

- q An additional 7,569 acre-feet of water was pumped from wells.
 h Of this acreage, 110 was double cropped.
 i Of this acreage, 275 was double cropped.
 J Of this acreage, 275 was double cropped.
 This acreage 1850 received 13,435 acre-feet of water from wells and controlled drainage.
 This acreage also received an undetermined amount of well water, and an undetermined amount of controlled drainage water from Oakdale Irrigation District. Of this acreage, 3,198 was double cropped. Includes 1,446 acres served by subirrigation.

TABLE 8-8 IMPORTS AND EXPORTS October 1963 through September 1964

WATER USER	OCT.	NOV.	OEC.	JAN,	FE8	MAR.	APR.	МАУ	JUNE	JULY	AUG.	SEPT.	TOTAL
					Im	ports f	rom Del	[ta					
Delta-Mendota Canal	1												
Total acre-feet Average cubic feet per second Monthly use in percent of seasonal	120464 1959 7.4			504	1508	2079	2932				247272 4021 15.2		2240
					Export	from S	Tuolumne	r e River					ŀ
City and County of San Francisco								Ì					
Total acre-feet Average cubic feet per second Monthly use in percent of seasonal	10255 167 6.5	7476 126 4.7		200	13961 243 8.8		258	262	261	16185 263 10.2	16236 264 10.2	264	219

	MILE PO						YLHTRON	DELIVER	RIES IN	ACRE-FE	ET				TOTAL
WATER USER	FROM	TO	OCT.	NOV.	OEC.	JAN	FE8	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	TOTAL
	-						D.	elta-Mer	ndota C:	2021		1			1
State of California	3	.54	2301	487	382	1277	1040	1315	621	2808	2986	2754	2348	2537	20856
(South Bay Aqueduct)							1								
Plain View Water Oistrict		20.00	615	33	6	7	4 24	1492	25 23	2802	2317	3677	3523	1739	19158
West Side Irrigation District		.78	0	0	0	0	0	0	219	286	0	999	578	2	2084
8anta-Carbona Irrigation District Hospital Water District	10.05	.42	0	0	0	0	0	0	962	1476	776	3752	5707	1317	13990
West Stanislaus Irrigation		30.96	544	53	116	30	683	2762	3513	3838	4234	4696	4580	2617	27666
District	31.	. 31	"	0		0	0	1322	8703	3210	4022	11895	10578	3349	43079
Kern Canon Water District	31.31	35.18	372	4	0	1	130	826	1699	772	812	1548	1275	598	8037
Del Puerto Water District	35.73	42.08	228	22	22	95	507	1865	1828	1028	2002	2105	1884	863	12449
Patterson Water District	42	.51	249	0	28	30	0	993	684	646	922	501	1021	587	5661
Salado Water Olstrict	42.10	46.83	14	0	0	0	0	662	2371	1280	1380	2125	1573	600	10205
Sunflower Water District	44.23	52.02	108	99	0	0	2 53	1185	2335	1456	1647	2750	2105	546	12484
Orestimba Water District	46.83	51.41	110	0	2	0	226	819	3 3 4 4	1179	1462	2770	1537	371	11820
Foothill Water District	51.65	57.46	342	0	0	1	412	848	1169	1677	1584	2016	1757	1178	10984
Davis Water District	53.60	56.82	206	1	0	0	214	71	539	360	385	758	435	206	3175
Luhr and Wendt			6	1	0	0	0	0	0	0	0	0	0	0	7
Mustang Water District	56.80	62.67	136	0	0	0	209	882	921	1655	1029	2055	1791	792	9470
Quinto Water District	63.96	67.55	252	0	0	0	409	865	940	732	752	1107	1064	768	6889
Romero Water District	66.70	68.03	104	33	0	0	101	420	138	168	41	119	178	105	1407
San Luis Water District	69.21	90.53	1683	1578	2407	3802	6866	9354	66 25	8260	11101	12958	9993	4148	7 8775
Grasslands Water District	70.	.00	9633	4773	0	0	0	0	472	1097	922	1094	244	2501	2 0736
Grasslands Water District (a)	Po	001	22501	7311	0	0	0	0	0	0	0	0	0	6819	36631
Morrison-Knudsen			13	3	1	1	1	5	6	5	2	7	5	1	50
State Fish and Game	70.	.00	0	0	0	0	0	0	0	0	0	0	0	0	0
Sam Hamburg Farms	90.	. 53	2	1	1	1	1	2	2	3	2	4	0	3	22
Panoche Water District	93.25	96.70	1462	1062	1650	4760	10198	7492	4587	6699	9220	13151	10912	1508	72701
Eagle Field Water Oistrict	93.27	94.57	191	0	318	352	719	233	724	620	467	815	1167	572	6178
Oro Loma Water District	95.50	96.62	0	0	0	0	0	5.2	595	1113	94.2	1141	1028	212	5083
Westside Golf Association	95.	95	11	3	5	2	6	8	14	19	21	26	20	14	149
McNamara-Mannix			62	41	26	34	50	74	67	0	157	51	101	98	761
Mercy Springs Water District	97.70	99.82	302	7	1 28	0	38	447	107	1164	1185	1115	1081	297	5871
Mercy Springs (a)	Pc	001	0	0	0	0	0	0	0	0	0	0	0	0	0
Widren Water District	102.	.03	0	0	0	0	7 9	0	170	542	363	427	396	0	1977
Broadview Water District	102.	.95	291	433	158	1507	2952	2276	1642	1499	2752	3102	2276	55	18943
McNamara Corp. of California			0	0	0	0	0	0	0	0	0	13	33	14	60
San Luis Water Oistrict (Temp. M & I)			0	0	0	0	0	0	0	9	25	27	39	19	119
Western Contracting Corp.			0	0	0	0	0	0	0	0	0	0	0	63	63
Total			41738	15945	5250	11900	25518	36270	47520	46403	53510	79558	69229	34699	467540
Net Deliveries, DMC to			66062	19946	0	17449	59516	86206	119855	130885	144565	168974	161806	90470	1065734
Mendota Pool												ļ			
i								Millert	on L ake						
Fresno County Water District #18		1	5	2	2	1	3	3	7	12	19	23	18	12	107
Ralston Associates		-	1	0	0	1	1	0	1	2	4	2	1	1	14
Total			6	2	2	2		2	6	14	22	26	- -		
							4	3	ы	14	23	25	19	13	121
								Madera	.Canal						
Madera Irrigation District	6.10	32.2	9965	492	0	0	0	16378	0	5133	30018	43151	20325	0	125462
Adobe Ranch	20.	6	0	0	0	0	0	0	0	0	0	0	43	89	132
Chowchilla Water District	35.	9	0	0	0	0	0	11776	0	0	17542	29739	28896	7192	95145
								=							

DELIVERIES FROM CENTRAL VALLEY PROJECT CANALS* October 1963 through September 1964

	October 1963 through September 1964 MILE POST FROM MONTHLY DELIVERIES IN ACRE-FEET													
	CANAL HEAD													TOTAL
WATER USER	FROM TO	OCT.	NOV.	OEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	
1						<u>P</u>	riant-K	ern Can	al_					
Garfield Water District	7.53	110	122	168	0	276	46	200	430	512	547	488	298	3199
International Water District	14.9	61	58	0	0	0	21	0	103	151	210	84	27	715
Round Mountain Water District	20.85 21.33	15	0	0	0	0	0	0	0	0	0	0	0	15
Round Mountain Ranch	20.22	4	0	0	0	4	0	6	0	5	11	7	4	41
Consolidated Irrigation District	28.50	10084	1674	0	0	1533	0	0	0	0	0	0	0	13291
Last Chance Water Ditch Company	20.50	. 0	0	0	0	0	0	0	0	0	0	0	0	0
Laguna Irrigation District	28.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Corcoran Irrigation District	28.50	3618	0	0	0	4701	0	0	0	0	0	0	0	8319
Stratford Irrigation District	28.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Tulare Lake Basin Water Storage District	28,50 & 95.64	0	0	0	0	0	0	0	0	0	0	0	0	0
Alta Irrigation District	28.50	0	0	0	0	0	0	0	0	0	0	0	0	0
fresno Irrigation District	28.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Riverdale Irrigation Oistrict	28.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Kings River Water Association	28.50	9001	0	0	0	0	0	0	0	0	0	0	0	9001
Westside Irrigation District	28.50	0	0	0	0	0	0	0	0	0	0	0	0	0
Kings County Water District	28.50 71.29	1655	145	0	0	3273	0	0	0	0	0	0	0	5273
Orange Cove Irrigation District	35.07 53.31	1063	474	0	0	0	2140	1571	3400	5847	7436	7266	3667	32864
City of Orange Cove	43.44	14	4	0	0	1	21	25	37	44	45	38	22	251
Stone Corral Irrigation District	56.90 64.40	238	131	0	0	353	393	101	694	1382	1870	1910	881	7953
Ivanhoe Irrigation District	65.04 68.13	1339	547	0	0	0	373	212	621	968	2475	2694	1607	10836
Tulare Irrigation District	68.14 71.29	13307	0	0	0	16927	0	0	0	15755	27581	21918	0	95488
Lakeside Irrigation Water District	69.42	O	0	0	0	0	0	0	0	0	0	0	0	0
Kaweah-Delta Water Conservation District	69.08 71.29	10249	0	o .	0	0	0	0	0	0	0	0	0	10249
Exeter Irrigation District	72.52 79.24	930	422	0	0	1938	944	996	2053	2491	2803	3205	1827	17617
Lindsay-Strathmore Irrigation District	85.56	1396	686	0	0	984	770	1454	3047	4312	5066	5125	4017	b 26857
Lindmore Irrigation District	86.17 91.12	1628	563	0	0	3414	2039	2267	3170	5954	7611	7569	5125	39340
Porterville Irrigation District	93.93 98.62	916	321	0	0	1065	1845	1267	1384	2577	3983	4263	1863	19484
Lower Tule Irrigation District	95.67 98.62	20008	7549	0	0	18960	12984	0	0	18587	32270	33777	7561	151696
Tea Pot Dome	99.35	194	34	0	0	133	147	329	458	682	783	815	603	4178
Saucelito Irrigation District	98.62 107.37	1623	375	0	0	3408	4848	1632	1045	4044	4949	5772	2061	29757
Cloer Commercial Service District	101.60	0	0 1	0	0	0	0	.0	0	0	0	0	0	0
Terra Bella Irrigation District	102.65	662	91	0	0	298	452	1004	1525	2317	2761	2755	1853	13710
Pixley Irrigation District Delano-Earlimart Irrigation District	102.69 109.48 118.45	4510 5272	2372 4873	0 1 7 9	0	6016 16406	0 19920	9416	7801	20551	0 22211	18671	7156	12898 132456
Rag Gulch Water District	117.96	377	262	0	0	946	٥	0	0		0	0	0	1585
Southern San Joaquin Municipal Utility District	117.44 127.97	3683	1422	32	0	8188	19849	8674	7222	16967	21586	20150	7178	114951
Shafter-Wasco Irrigation District	134.42 137.17	1164	692	301	0	3511	8220	3306	3796	8880	11340	9441	3598	54249
Pacific Gas and Electric Company	150.83	0	405	877	0	0	0	0	0	0	0	0	0	1282
Rosedale Rio Bravo Water	151.0	0	0	0	0	0	0	0	0	0	0	0	0	0
Storage District Buena Vista Water Storage	151.00	o	0	0	0	0	0	0	0	0	0	0	0	0
District	151.00								Ů	Ů				
Total		93329	23222	1557	0	92337	75012	32460	36786	11 2026	155538	145 94 8	49348	817563

^{*} Data furnished by the U.S. Bureau of Reclamation.
a Delta-Mendota Canal water delivered via Delta-Mendota Pool.
b Includes water transported from Wutchumna Ditch.

APPENDIX C GROUND WATER MEASUREMENTS

	· ·

TABLE OF CONTENTS

	Page
INTRODUCT	TON
Defi	nitions
Expl	anation of Headings and Symbols Used in Columns in Appendix C
	LIST OF TABLES
Table Number	
C-1	Ground Water Levels at Wells
	LIST OF PLATES
	(Bound at end of volume)
Plate Number	
C-1	Ground Water Level Changes in Districts or Areas, Unconfined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-2	Ground Water Level Changes in Districts or Areas, Confined and Semiconfined Aquifers, Spring 1963-Spring 1964
C-3	Location of Selected Observation Wells and Cooperative Program Areas
C-4	Map of 19 Ground Water Areas in San Joaquin Valley and Profiles Along Section A-A' Showing Ground Water Levels in 1921, 1951, 1963, and 1964
C-5	Fluctuation of Average Water Level, 1921 to 1964, in 19 Ground Water Areas in San Joaquin Valley
C-6	Fluctuation of Water Level in Selected Wells in San Joaquin Valley
C-7	Lines of Equal Elevation of Water in Wells, Unconfined Aquifers, San Joaquin Valley, Spring 1964
C-8	Lines of Equal Elevation of Water in Wells, Pressure Surface, San Joaquin Valley, Spring 1964

(Plates C-7 and C-8 are in pocket)

INTRODUCTION

This appendix presents ground water measurement data for the period July 1, 1963, through June 30, 1964.

The area for which ground water level measurements of selected wells are shown on Table C-1 is designated as Area 4 on page iii. Area IV is that portion of the Water Pollution Control Board Region 5, which includes the Stanislaus River drainage area and the area south, to the Tehachapi Mountains.

The Department cooperates with U. S. Geological Survey and the U. S. Bureau of Reclamation and many local agencies for the systematic observation of ground water levels. Wells for which water level measurements are collected in the San Joaquin Valley Hydrologic area number approximately 7,500 of which nearly 600 are presented here. These 600 wells were selected as representative wells of all the wells measured in the area, and are designated as selected wells. These wells were selected on the basis of a number of factors such as areal distribution; length of water level record; frequency of measurements; conformity with respect to water level fluctuations in the ground water basin or area, in a confined aquifer, or in a zone of shallow depth; and availability of a log, mineral analyses, and production records.

The depth to water in most wells is usually a direct measurement made with a tape; however, in some wells, especially deep ones, measurements are made with an air line and gage or an electric sounder.

Forty-eight districts or areas in the San Joaquin Valley are shown on Plates C-1 and C-2.

The districts or areas with a ground water level change of five feet or more in the unconfined and semiconfined aquifers are also shown on Plate C-1. The districts or areas with a ground water level change of five feet or more in the confined and semiconfined aquifers are shown on Plate C-2.

A map showing the location of the selected wells as listed in Table C-1 and cooperative program areas is presented on Plate C-3.

A map of 19 ground water areas and profiles along a section showing water levels in 1921, 1951, 1963, and 1964 are presented on Plate C-4.

Unit hydrographs depicting the fluctuation of average water levels in the 19 ground water areas in the San Joaquin Valley are presented on Plate C-5.

Water level fluctuations are depicted graphically on hydrographs for 35 selected wells distributed among significant districts and areas in the San Joaquin Valley. The hydrographs are presented on Plate C-6 by region, basin, or area, and well number.

Presented on Plate C-7 is a map showing lines of equal elevation of water in wells, unconfined aquifers, San Joaquin Valley, spring 1964.

Presented on Plate C-8 is a map showing lines of equal elevation of water in wells, pressure surface, spring 1964.

Definitions

<u>Free ground water</u> is water in the interconnected interstices in the zone of saturation down to the impervious barrier, moving under the control of the water-table slope.

Water table is the upper surface of the body of free water which completely fills all openings in the material sufficiently pervious to permit percolation. On fractured impervious rocks and in solution openings, it is the surface at the contact between the water body in the openings and the overlying ground air.

<u>Confined ground water</u> is a body of ground water overlain by material sufficiently impervious to sever free hydraulic connections with overlying ground water except at the intake. Confined water moves in conduits under pressure due to difference in head between intake and discharge areas of the confined water body.

Semiconfined ground water occurs when the vertical movement is at a slower rate than the horizontal movement so as to cause differences in head between aquifers during periods of heavy pumping, but when during periods of little draft, the water level recovers to a level coincident with the water table.

These aquifers are subject to pressure effects for short periods but the artesian head adjusts to equilibrium with the water table over long periods of time.

<u>Pressure surface</u> or <u>piezometric surface</u> is the level to which the water level will rise above the bottom of a confining bed of impervious material when penetrated.

<u>Perched ground water</u> is ground water occurring in a saturated zone separated from the main body of ground water by unsaturated material.

Explanation of Headings and Symbols Used in Columns in Appendix C

State well number used in this report is based on the township, range, and section subdivision of the Public Land Survey. It conforms to the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number, which is assigned to a well in accordance with this system, is referred to as the "state well number".

Under the system, each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
E	F	G	Н
М	L	к	J
N	P	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers. For example, a well which has the number 16S/15E-17Kl M would be in Township 16 South, Range 15 East, Section 17, M.D.B. & M., and would be further located as the first well assigned a state well number in Tract K. In this report, well numbers are referenced to the Mount Diablo Base and Meridian (M) or the San Bernardino Base and Meridian (S).

<u>Ground surface elevation</u> represents the elevation in feet above mean sea level (U.S.G.S. datum).

<u>Date</u> is the date upon which the depth measurement was made.

Ground surface to water surface in feet is the measured depth in feet from the ground surface to the water surface in the well. Certain of the depth measurements in the column may be followed with an asterisk superscript to indicate a questionable measurement. Depth to ground water measurements may be questionable for such reasons as (a) well being pumped while undergoing measurement, (b) nearby pump in operation, (c) existence of a leaking or wet casing, (d) well having been pumped recently, (e) air gage measurement, (f) recharge operation at well or nearby. The specific reason for any asterisk on any given measurement may be obtained through the San Joaquin District Office of the Department of Water Resources.

Other code symbols used in this column are as follows:

- m -- No measurement
- #--Measurement discontinued
- @--Well has been destroyed

The words FLOW and DRY are shown in this column to indicate a flowing or dry well.

The word DISCONTINUED indicates records from this well will no longer be published.

<u>Water surface elevation</u> is the elevation in feet above mean sea level (U.S.G.S. datum) of the water surface in the well. It was derived by machine computation by subtraction of the depth measurement from the reference point elevation.

Agency supplying data represents the code numbers for the agencies supplying water level data. The agency code consists of a five-digit number, the first of which is a region number. Thus, 54200 refers to agency 4200 in Region 5. Because of the limitations of punch-card space, the agency code has been shown as a four-digit number without the region number.

The first digit of the four-digit agency code designates the type of well numbering system used by the agency as follows:

Code	Well Numbering System
4	Local numbers
5	State or U. S. G. S.
6	U. S. B. R.
7	South San Joaquin Irrigation District
8	Kern County Land Company

The last three digits of the agency code are numbers that designate, within specified serial limits, the type of agency from which the data were obtained, as follows:

<u>Code</u>	Type of Agency			
000-049	Federal			
050-099	State			
100-199	County			
200-399	Municipal			
400-699	DistrictWater,	Irrigation,	Conservation,	etc.
700-999	Private			

In the Central Valley Region, the agency code for <u>districts</u> is further broken down to the geographic areas, as follows:

<u>Code</u>	Area in Central Valley Region
500-599	American River to San Joaquin River
600-699	San Joaquin River to Tehachapi Mountain

In this list of water levels, the agency furnishing the measurement is listed. The agencies and code numbers assigned to them are as follows:

Agency Code	<u>Agency</u>	
4200	City of Fresno	
4520	Oakdale Irrigation District	
4521	Modesto Irrigation District	
4524	Turlock Irrigation District	
4525	Merced Irrigation District	
4636	Consolidated Irrigation District	
4637	Alta Irrigation District	
4640	Buena Vista Water Storage District	

Agency Code	Agency
5000	U. S. Geological Survey
5050	Department of Water Resources
5120	Kern County Surveyor
5529	Poso Soil Conservation District
5631	Fresno Irrigation District
6001*	U. S. Bureau of Reclamation
7518	South San Joaquin Irrigation District
8700	Kern County Land Company

^{*}A large amount of data listed under this agency code has been gathered by irrigation and water districts and compiled by the Bureau of Reclamation for transmittal to the Department of Water Resources.

TABLE C-1

WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET		9.99	5.99	57.8	57.2	59.3	68.9	7 8 7	6.90	999	9.19	7.4		61.0 4520	2	11.3	52.8	54.3		24.5			8-1-8	61.6		97.1 4520	4.00	94.6 4520	9**6	95.0	96•2	76.7	5.9	96.5	2.96	96•3	7.06	6.0	96.1
GROUND SUR. FACE TO WA WATER SURFACE ELE' IN FEET IN	5-22.04						6.0						5-22.06			57.7								57.4		7.9								50.0					7.
DATE		7-24-63	8-26-63	9-54-63	10-25-63	11-21-63	12-20-63	2-21-64	3-23-64	-24	5-25-64	6-23-64	ICT	7-01-63	8-01-63	9-03-63	10-01-63	11-01-63	12-02-63	1-02-64	79-60-7	3-03-64	5-01-64	-05-6		12-00-63	9 -00-	7-01-63	8-01-63	9-03-63	10-01-63	11-01-63	12-05-63	1-02-64	2-03-64	3-03-64	40-10-4	+0-TO-C	4-02-64
GROUND SURFACE ELEVATION IN FEET		77.2											SATION DISTR	119.0												145.0		146.5											
STATE WELL NUMBER	TRACY AREA	35/06E-06N01 M											OAKDALE IRRIGATION DISTRICT	15/09E-16J01 M												15/09E-36A01 M		15/10E-19L01 M											
AGENCY SUPPLYING DATA						0606										5050											5050												_
WATER SURFACE ELEVATION IN FEET						→ r	\ e • 0	9.0	1.0	9•0	1•4	\ • C	1 - 1	8 0		20.2	0.61	19•0	200	2002	21.3	20.8	20.7	19.3	21.6	7.17	15.9	15.5	15.4	10.4	4.46	•							
GROUND SUR. FACE TO WATER SURFACE IN FEET		5-22.00	(5-22.04	6	6 * 7	w w w v	3.4	3.3	3.4	2.6	9 0 9 0	2.9	3.2		11.8	13.0	13.0	11.0	11.0	10.7	11.2	11.3	12.7	10.4	10.0	4.1	4.0 0.4	1 4	9 0	0.4	•	υ						
DATE	REG I ON					69-42-1	8-26-63	10-25-63	11-21-63	12-20-63	1-27-64	3-23-64	4-24-64	6-23-64		7-24-63	8-26-63	9-24-63	10-62-01	11-21-03	1-27-63	2-21-64	3-23-64	4-54-64	5-25-64	49-67-0	7-24-63	8-26-63	69-47-6	10-62-03	11-21-63	1-27-64	10-17-1						
GROUND SURFACE ELEVATION IN FEET	CENTRAL VALLEY REGION	>				0.4										32.0											20.0												
STATE WELL NUMBER	GE C	SAN JOAQUIN VALLEY	E 250 4 4 E	TRACY AREA		1S/05E-31R02 M										2S/05E-15N02 M											25/06E-28J01 M												

	AGENCY SUPPLYING OATA		4520	4520	4520							4520	0764			4521		4521	5050														
	WATER SURFACE ELEVATION IN FEET		114.8	146.9 147.0	97.7	0	102.3	103.2 103.6	103.7	102.9		106.3	105.9			59.8	•	63•3	47.3	47.9	40.0	48.7	49.8	49.9	50.1	49.7	1.44	44.2	6 • 4 4				
	GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.06	77.2	43.1 43.0	54 • 3	* = :	49.7	48.8 48.4	48.3	49•1		56.7	56.1		5-22.07	37.4	•	37.0	16.7	16.1	17.3	15.3	14.2	14.1	13.9	14.3	19.3	19.8	19.				
	DATE	ICT	12-00-63 3-00-64	12-00-63 3-00-64	7-01-63	10-01-63	11-01-63	1-02-64 2-03-64	3-03-64	4-01-64 5-01-64	6-02-64	12-02-63	3-01-64		ICT	3-00-64		3-00-64	7-08-63	8-05-63	9-04-63	11-05-63	12-04-63	1-07-64	2-04-64	3-03-64	4-05-64	9	101010				
	GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	192.0	190.0	152.0							162.0	201		IRRIGATION DISTRICT	97.2		100.3	64.0														
	STATE WELL NUMBER	OAKDALE IRRIG	25/11E-31N01 M	25/12E-31K01 M	35/10E-15A01 M							35/11F=18001 M			MODESTO IRRIG	25/08E-25P01 M		2S/09E-31G01 M	35/08E-22C01 M														
Ī	AGENCY SUPPLYING DATA		4520	4520						4520	4520		-	•	-	-				4520		45.20	200										
	WATER SURFACE ELEVATION IN FEET		108.3		79.2 78.7 80.6	80°7 80°8	80•7 79•8	78.3			106.1	106.4	107.3	109.6	109.9	109.9	100.	108.3	107.3	106.0	105.3	7 22	122.1	121.6	121.8	124.4	125.6	126.5	126.8	126.6	126.3	125.1	124.3
	GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22.06	84.7 82.9		52.8 53.3 51.4	51.3 51.2	51.3	53.7	1		4.67	79.1	78.2	75.0	75.6	75.6	15.1	77.2	78.2	59.0	29.7	9	000	4000	96.2	93.6	92.4	91.5	91.2	91.4	91.7	92.9	93.7
	DATE	CT	12-01-63 3-01-64	7-01-63	9-03-63 10-01-63 11-01-63	12-02-63	3-03-64	4-01-64	5	6-02-64	8-01-63	9-03-63	10-01-63	12-02-63	1-02-64	2-03-64	3-03-64	91	6-02-64	12-00-63	3-00-64	7 61 63	8-01-63	6-10-6	10-01-63	11-01-63	12-02-63	1-02-64	2-03-64	3-03-64	4-01-64	5-01-64	6-02-64
	GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	193.0	132.0						132.0	185.5									165.0		0	0.017										
	STATE WELL NUMBER	OAKDALE IRRIG	1S/10E-28J01 M	2S/09E-26F01 M						2S/09E-26F01 M	25/10E-04H01 M									2S/10E-33J01 M			45/11E-29B01 M										

AGENCY SUPPLYING DATA		4554								4554	4554		4554	4554						4554		5050									
WATER SURFACE ELEVATION IN FEET		96.1	100.0	101.3	100.0	100.4	0.66	98.7	98•1	0.56			107.4	61.0	47.0	4-1-4	8.64	45.0	45.7			0.49	65.0	64.8	0.99	4.59	0.63	620	63.1	4.49	61•8
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.08	12.9	-					10.3	10.9	14.0	DRY	DRY DRY	22.6	5.1	0.9	5.6	6.2	0°, 0°,	7.3	7-6							7.0	7.T	6.9	5.6	8.5
DATE	ָט	7-03-63	9-09-63	10-03-63	12-04-63	1-03-64	2-05-64	40-	79-90-7	2-00-64	7-02-63	12-03-63	2-00-64	7-02-63	8-02-63	10-02-63	11-01-63	12-03-63	2-05-64			7-08-63	8-02-63	10-02-63	11-05-63	12-04-63	1-02-64	2-04-64	4-02-64	5-05-64	6-08-64
GROUND SURFACE ELEVATION IN FEET	TURLOCK IRRIGATION DISTRICT	109.0								109.0	131.0		130.0	53.0						1	•	70.0									
STATE WELL NUMBER	TURLOCK IRRI	45/10E-21R01 M								45/10E-21R02 M	45/11E-29N01 M		45/11E-32P01 M	55/08E-01N01 M						4 FOGCO 1100000		55/09E-04A01 M									
AGENCY SUPPLYING OATA		5050				_					4521	4521	4521	4521	4521	4521		4521	4521		4524				·					4554	
WATER SURFACE ELEVATION IN FEET		50.3	48.9	48.4 50.1	51.4	51.1	51.0	51.7	51.1	6.05	53.1	9.89	62.2	0.94	9.16	2.2		0.59	4.7.7		46.1	46.8	. 0 0 7 0 0 7	47.6	46.7	0.94	45.0	44.0	40.1		
	_														•	7					•										
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.07	13.7	15.1	15.6	12.6	12.9	12.	12.8	12.9	13.1	20.9	23.9	37.0	36.5	35.5	7 0.74		58.0	15.3	5-22.08			6.9	7.4	8.3	0•6	10.0	10.4	٧•٥	DRY	ORY
GROUND SUR- FACE TO FACE TO WATER SURFACE IN FEET		7-08-63 13.7 8-05-63 13.3	9-04-63	10-02-63 15.6 11-05-63 13.9				3-02-64 12.1			3-00-64 20.9	3-00-64 23.9	3-00-64 37.0	3-00-64 36.5	5.			3-00-64 58.0			8.9	8.2						-04-64	4-00-64 9.3	12-04-63 DRY	
GROUND SU FACE TO WATER SURFACE IN FEET	MODESTO IRRIGATION DISTRICT 5-22.0	-	9-04-63												35.5	47.0			15.3	TURLOCK IRRIGATION DISTRICT 5-22.08	8.9	8.2							-00-04		

AGENCY SUPPLYING DATA		4554				4554		4254										4554													4554												
WATER SURFACE ELEVATION IN FEET		117.1	116.5	116.0		109.9			•	13/03		135.0	135.0	135.2	135.3			56.8	56.2	57.0	57.6	56.2	0 - / 6	7/01	5.00	53.6	53.9	53.7	54.8		81.7	81.0	81.9	82.8	82.8	83.7	83.5	83.6	83.5	84.0	82.9	83.1	83.5
GROUND SUR. FACE TO WATER SURFACE	5-22.08	7.9	8.5	0.6		10.1		0.8 ₹	, הל הליני	DRY	DRY	15.0	15.0	14.8	\ • • • • • • • • • • • • • • • • • • •	ָ ה ה ה	בא	3.2	3.8	3.0	2.4	φ, ,	7.7	6.7	.	V 4	[9	6.9	5.62				5•1									3.0	3.5
DATE	Į.	12-31-63	2-03-64	4-02-64		2-00-64		3-05-63	0 - 0 - 0 - 0	8-02-63	10-02-63	11-01-63	12-03-63	1-02-64	49-00-7	3-03-64	4-03-04	4-05-63	5-02-63	6-04-63	7-02-63	8-02-63	69-60-6	10-02-63	11-01-63	1-03-69	2-04-64	3-02-64	4-03-64		4-01-63	5-01-63	6-03-63	7-01-63	8-01-63	9-04-63	10-01-63	10-31-63	12-05-63	12-31-63	2-04-64	3-01-64	4-05-64
GROUND SURFACE ELEVATION IN FEET	TURLOCK IRRIGATION DISTRICT	125.0				120.0		150.0										0.09													87.0												
STATE WELL NUMBER	TURLOCK IRR	5S/11E-21N01 M	CONT.			5S/11E-29F01 M		58/12E-31N01 M										65/09E-15R01 M													65/10E-21A01 M												
TY ZCY		4554		,							4554		4554				_					i i	4254	,	4254										4554	-							
AGE SUPPL DA		4																																									
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA			9.69	0 6 6 9	68.5	67.8	67.4	67.7	4.6	•	55•3		70•3	69•1	4 0	6999	68.5	68.4	69.2	9.89	68.7	•	81.1			0000	82.3	8 2 8	83.7	84.0	84.4	83.8	83.5			117.8	118.0	118.2	118.7	117.9	117.8	117.9	117.6
	5-22.08	.7 68.3	.	5.7 69.3	. "	2	•	m ,	ه م	•	5.3		_					6.6 68.4			•		→	4	D	, c		- 0	1 (*	. 0	9	2	• 5										
NATER SURFACE ELEVATION IN FEET	_	6.7 68.3	5.4	o r	6.5	7.2	7.6	7.3	ه م		.7 55.3		4.7	5.9	0.0	1.0	5.5		5.8	4.9	•		81		n r	200	0-01-63 9.7	2.6	2-02-63 843	. 0	7.6	8.2	8.5		118.2	7.2	7.0	6.8	6.3	7.1	7.2	7.1	7.4
GROUND SUR- FACE TO SURFACE WATER ELEVATION IN FEET IN FEET		6.7 68.3	8-02-63 5-4	6.0	6.5	7.2	7.6	7.3	901 77 60		-00-64 7.7 55.3		4.7	5.9	0.0	1.0	5.5	9•9	5.8	-02-64 6.4	-03-64 6.3 6		8.9	2 1 67 10 1	0-01-63 (-0.0	200	0-01-63 9.7	0-31-63 9.2	2-02-63 843	2-31-63 8.0	7.6	8.2	-02-64 8.5		6.8 118.2	7.2	7.0	6.8	6.3	7.1	7.2	7.1	7.4

AGENCY SUPPLYING DATA		4525										4525												4525		5050																
WATER SURFACE ELEVATION IN FEET		167.2	166.1	165.0	164.1	163.6					168.3	166.2	166.6	165.9	165.4	168.2	164.7	164.5	162.4	163.4	164.1	164.8			79.5	108.0	108.0	107.6	107.4	108.9	108.6	108.4	108.4	1000	107.0	105-8						
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.09	13.5	14.6	15.7	16.6	1/01	200	DRY	DRY	DRY	12.4	11.9	11.5	12•2	12.7	6*6	13.4	13.6	15.7	14.7	14.0	13•3		DRY	11.2	10.0	10.0	10.4	10.6	9.1	7. 6	0 ·	9.0		0 .	12.2	,					
DATE	-	7-31-63	9-06-63	11-04-63	12-02-63	1-06-64	3-05-64	4-01-64	4-28-64	6-01-64	6-29-64	7-01-63	8-05-63	69-69-63	10-01-63	11-06-63	12-03-63	1-20-64	3-04-64	4-08-64	4-29-64	6-02-64		7-31-63	3-03-64	7-02-63	-05-6	9-03-63	10-04-63	11-05-63	12-04-63	1-02-64	2-05-64	3-02-20	**************************************	49-40-6						
GROUND SURFACE ELEVATION IN FEET	MERCED IRRIGATION DISTRICT	180.7										178.1												90.7		0.8(1																
STATE WELL NUMBER	MERCED IRRIG	65/13E-19N01 M										65/14E-32N01 M												75/10E-01N01 M		M TOHLO-BILLY M																
AGENCY SUPPLYING DATA		4554	4554											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	#7 C#								-							-	4525			-								
WATER SURFACE ELEVATION IN FEET			101.5	101.3	101.5	103.6	104.0	104.1	104.7	103.6	103.8	101.0			11001	11105	111.2	111.4	111.6	112.6	112.6	7.71	113.1	110.6	110.5	1111.0	110.4	111.2			127.9	128.2	129.1	129.4	129.1	128.8	128.8	128.5	128.2	128•0	17/0	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.08	0	13.5	13.7	13.5	11.4	11.0	10.9	10.3	11.4	11.2	14.0	DRY		6.7	- v	8 9	9•9	4.9	5.4	4.0	ο. Ο (4 L	7.4	7.0	7.0	7.6	9 •9	5-22-09		15.9		14.7	14.4	14.7	15.0	15.0	15.3	15.6	15.8	10°0	
DATE	5	5-00-64	4-01-63	5-01-63	6-03-63	8-01-63	9-04-63	10-01-63	10-31-63	12-05-63	12-31-63	3-01-64	4-05-64	,	1-03-63	2-10-2	4-02-63	5-02-63	6-04-63	7-02-63	8-02-63	69-60-6	10-02-63	11-01-63	1-02-64	2-04-64	3-03-64	4-03-64	Ε.	-	7-31-63	9-00-6	9-30-63	11-04-63	12-02-63	1-06-64	1-30-64	3-05-64	4-01-64	4-28-64	+9-010-9 9-50-9	,
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	84.0	115.0											•	118.0														MERCED IRRIGATION DISTRICT		143.8	1										
STATE WELL NUMBER	TURLOCK IRRI	65/10E-21N01 M	65/11E-08R01 M												65/11E-09N01 M														MERCEN IDDIE	True Control	65/12F-21N01 M											

AGENCY SUPPLYING DATA		4525	4525	4525		4 5 2 5 5
WATER SURFACE ELEVATION IN FEET		175.8 175.2 173.4 173.7 173.0 183.0		115.1	115.8 1113.8 1113.9 1112.9 110.0 1115.0 1115.0	132.2 133.2 133.2 123.8 129.6 129.6 131.7 132.9
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.09	112.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0RY 0RY 0RY 0RY 5•1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
DATE	I	1-07-64 1-29-64 3-04-64 4-08-64 4-29-64 6-02-64	8-01-63 9-09-63 10-01-63 11-07-63 12-04-63 1-09-64 1-29-64	4-08-64 4-28-64 6-02-64 6-30-64 7-31-63	9-06-63 11-06-63 11-06-63 1-07-64 1-28-64 3-03-64 4-07-64 6-01-64 6-30-64	8-01-63 9-106-163 9-106-163 11-106-163 11-07-164 1-07-164 4-07-164 5-129-164 5-129-164 6-101-64 6-101-64
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	187.5	234.2	120.2		135.0
STATE WELL NUMBER	MERCED IRRIC	7S/14E-16R1 M CONT.	75/15E-36N01 M	8S/12E-01D01 M		85/13E-09R01 M
AGENCY SUPPLYING DATA		4525	4525		4525	4525
WATER SURFACE ELEVATION IN FEET		97.99 97.99 97.59 98.2 98.2 91.4	101.7 101.0 98.3 99.0 98.2 98.1 135.1	11 11 11 11 11 11 11 11 11 11 11 11 11	99999999999999999999999999999999999999	1400-3 11200-1 11200-1 11200-1 11200-1 11820-4 11820-4 11820-4 11820-4
1		999991	1			
GROUND SUR. WATER SURFACE IN FEET	5-22.09			1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		11122
GROUND SUR- FACE TO WATER SURFACE IN FEET			4 w & c & d & d & d & d & d & d & d & d & d		11111111111111111111111111111111111111	
GROUND SU FACE TO WATER SURFACE IN FEET	MERCED IRRIGATION DISTRICT 5-22.09	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 w & c & d & d & d & d & d & d & d & d & d	11334 1334 1336 1336 1366 1366 1366 1366	1105 105 105 105 105 105 105 105 105 105	11111111111111111111111111111111111111

)								
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
MEDCED TRRIC	MERCED TRRIGATION DISTRICT	T.	5-22.09			DELTA-MENDOTA AREA	TA AREA		5-22.11		
85/14E-01A01 M	196.8	8-01-63	11.8	185.0	4525	35/06E-16001 M	80.0	9-27-63	88.2 61.5	- 8.2 18.5	6001
		9-30-63 11-07-63 12-01-63	12.0 9.8 10.2	184.8 187.0 186.6		35/06E-18M01 M	666	9-26-63 3-09-64	13.3	86.0 84.6	6001
		1-08-64	10.8 11.0	186.0 185.8 185.0		3S/06E-25D01 M	63.5	9-27-63 3-13-64	23.0	40.5	6001
		4-07-64 4-28-64 6-01-64	12.6 12.2 12.2			4S/06E-04H01 M	163.3	9-24-63 3-16-64	122.7	40.6	6001
000	TOTAL SELECTION OF TARIBUTE OF THE POST OF	6-30-64	11.0	185.8		45/06E-09R01 M	166.3	9-24-63 3-10-64	137.7 118.8	28.6 47.5	6001
	133.0	2-10-64	76.5	57.0	6001	45/07E-27M01 M	0.89	9-26-63	24.8 26.4	43.2	6001
95/14E-20801 M	152.0	2-10-64	62.4	87.6	6001	45/07E-31001 M	185.4	9-25-63 3-11-64	110.6	74.8 67.8	6001
25/04E-16H01 M 7	18 AREA 78.0	9-24-63	5.5	72.5	6001	55/07E-05D01 M	157.4	10-07-63 3-25-64	84.6	72.8	6001
2S/04E-25J01 M	4.08	9-25-63	20.3	60.1 55.4	6001	5S/07E-13K01 M	107.0	10-07-63	61.0	46.0	6001
25/04E-28A01 M	187.0	9-24-63	128.1	58.9 58.7	6001	5S/07E-14D01 M	130.4	10-07-63	75.6	54.8 52.0	6001
2S/05E-32A01 M	76.0	9-25-63		4 4	6001	S/08E-06K01	58.7	3-29-64	20.0	38.7	5050
35/05E-08R01 M	195.7	9-25-63	128.4	67•3 69•3	6001	55/08E-35HUL M 65/07E-12P01 M	248.3	-26-6 -06-6	18 13	229.9 235.2	5050
3S/05E-08R02 M	195.7	9-25-63 3-06-64	131.7	64.0	6001	65/08E-12L01 M	64•3	9-27-63 3-29-64	21.8	45.5	5050 6001
35/05E-25001 M	207.0	9-26-63 3-10-64	120.0	87.0 86.5	6001	65/08E-16M01 M	129•5	9-26-63 3-09-64	89.2	40.3 49.1	5050
35/05E-26K01 M	212.1	9-26-63	12 6. 3 127.9	85.8 84.2	6001	65/08E-27J01 M	114•5	9-27-63 3-10-64	50.7	63.8	5050

AGENCY SUPPLYING DATA		5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	6001 5050 6001	
WATER SURFACE ELEVATION IN FEET		43.6 45.9	138.1	83.7 89.3	79.6 78.6	86.7 84.6	31.0	93.1 92.4	28•3 41•1	101.5	106.4	103.6 104.5	110.6	106.0	103.1	134.5	
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22•11	44.6	89 11	83.3	19.9	19.9	160.1 ¤	5.9	73.0	55.8	140.4 136.8	2.4	3.6	13.0	28.9 28.6	8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
DATE		10-15-63 3-20-64	10-10-63 3-16-64	10-10-63 3-16-64	10-15-63 3-17-64	10-15-63 3-17-64	10-14-63 3-17-64	10-08-63 3-13-64	10-08-63 3-13-64	10-10-63 3-11-64	10-15-63 3-11-64	10-09-63 3-13-64	10-15-63 3-06-64	10-15-63 3-06-64	10-09-63 3-06-64	10-02-63 12-26-63 4-08-64	
GROUND SURFACE ELEVATION IN FEET	A AREA	90.5	147.0	167.0	99.5	106.6	191•1	0*66	101•3	157.3	246.8	106.0	114.2	119.0	132.0	138.0	
STATE WELL NUMBER	DELTA-MENDOTA	95/11E-20J01 M	10S/09E-06A01 M	10S/09E-08B01 M	105/10E-02R01 M	10S/10E-11R01 M	10S/10E-31G01 M	105/11E-23D01 M	10S/11E-27E02 M	115/10E-11J01 M	115/10E-22001 M	115/11E-02J02 M	115/11E-22K01 M	115/11E-22003 M	11S/12E-31C01 M	12S/12E-04D01 M	
AGENCY SUPPLYING DATA		5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	5050	
WATER SURFACE ELEVATION IN FEET		66.8 71.6	78.1	48.9	60.9	104.9	99.8 114.2	27.6 53.6	67•3 71•1	66.2	174.1	121.0 118.5	36.3	80.8	36.8 33.8	82.5	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.11	123.2 118.4	8 • 6 7	16.7 17.8	7.5	18.3	73.0 58.6	47.4	7.7	80 KJ 80 80	п 27.5	32.6 35.1	63.7 55.9	3.2	50.2 53.2	8 9 • 5 • 5	
OATE		9-26-63 3-09-64	9-30-63 3-11-64	9-30-63 3-11-64	9-30-63 3-13-64	9-30-63	10-01-63 3-10-64	10-08-63 3-13-64	10-08-63	10-08-63 3-13-64	10-04-63 3-10-64	10-04-63 3-18-64	10-10-63	10-09-63 3-19-64	10-09-63	10-15-63 3-20-64	
GROUND SURFACE ELEVATION IN FEET	AREA	190.0	127.9	65.6	68.4	123.2	172.8	75.0	75.0	75.0	201.6	153.6	100.0	84.0	87.0	91.0	
STATE WELL NUMBER	DELTA-MENDOTA AREA	6S/08E-29J01 M	75/08E-22L01 M	75/09E-04R01 M	75/09E-26N01 M	85/08E-01N01 M	85/08E-15J01 M	85/09E-26H01 M	8S/09E-26H03 M	85/10E-21L04 M	95/08E-13D01 M	95/09E-18N01 M	95/09E-23L01 M	95/10E-19801 M	95/10E-23J01 M	9S/11E-16H01 M	

AGENCY SUPPLYING DATA		6001	6001										6001										6001		6001		6001		6001						
WATER SURFACE ELEVATION IN FEET		184.8	166.1	149.7	149.0	148.2	148.0	145.8	151.5	151.5	145.4	•	224.0	223.8	224.7	224.9	224.8	224.2	223.9	221.8	220.9	219.7	221•3	223.5	242.6	242.0		311.6	72.3	68.0	61.1	74.5	19.0	83.0	83.4
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22.12	47.2	41.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	59.0	59.8	0.09	58.3	56.5	56.5	62.6	94.6	43.0	43.2	42.3	42.1	42.2	42.8	43.1	44.0	46.1	47.	7.86	96.5	77.4	78.0	п	53.4	77.7			75.5			66.6
DATE		11-04-63 2-10-64	7-24-63	8-27-63	10-23-63	12-06-63	12-23-63	1-22-64	3-27-64	4-54-64	5-21-64	9-56-64	7-24-63	8-28-63	10-23-63	12-06-63	12-23-63	1-22-64	2-11-64	3-77-6	5-21-64	6-26-64	10-01-63	2-11-64	10-01-63	2-11-64	9-30-63	2-11-64	7-24-63	8-28-63	10-01-63	10-23-63	12-06-63	77-77-71	1-22-64 2-12-64
GROUND SURFACE ELEVATION IN FEET	WATER DISTRICT	232.0	208.0										267.0										320.0		320.0		365.0		0.031	200					
STATE WELL NUMBER	CHOWCHILLA W	9S/15E-25J02 M	95/15E-33801 M										95/16E-22R01 M										95/17E-21L01 M		95/17E-35J01 M		M (00%6-391) 30			105/14E-06603 H					
AGENCY SUPPLYING DATA		2000									6001	5050	1009	6001		6001	5050	6001		6001	5050	1009	_	6001		6001									
WATER SURFACE ELEVATION IN FEET		38•3 37•9	37°4 36°8	36.8	37.4	45.4	45.4	42.1	41.8	30.1	1111.6	113.9	11102	164.2	164.9		137.7			127.7	131.6	127.6		106.9	122.0	105.4	96.3	109.0	115.7	122.5	139.5	124.3	114.9		
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22-11	129.7	130.6 131.2	131.2	130.6	125.6	125.6	125.9	126.2	131•3	65.4	63.1	65.8	12.8	12.1	ORY	663) AG				26.4	5-22.12	78.1	63•0	1111.1	120.2	110.4	100.8	94.0			101.6		
DATE		7-16-63	9-11-63	11-04-63	12-05-63	1-07-64	3-05-64	3-30-64		6-23-64	10-02-63	12-26-63	4-08-64	10-02-63	4-08-64	10-03-63	12-27-63	4-08-64		10-03-63	12-27-63	4-01-64	_	10-31-63	2-10-64	7-24-63	8-27-63	10-01-63	12-06-63	12-23-63	7-11-64	3-27-64	4-54-64	5-21-64	6-26-64
GRDUND SURFACE ELEVATION IN FEET	A AREA	168.0									177.0	•		177.0		144.0				154.0			CHOWCHILLA WATER DISTRICT	185.0		216.5									
STATE WELL NUMBER	DELTA-MENDOTA AREA	125/12E-16H05 M									126/12F-25001 M			12S/12E-25002 M		M 10401-361,361				125/14E-30C01 M			CHOWCHILLA !	95/14E-25R01 M		95/15E-22R02 M									

AGENCY SUPPLYING OATA		6001			6001			6001	6001			
WATER SURFACE ELEVATION IN FEET		123.1 122.3 120.6	128.3 130.0 131.0	131.9 128.8 127.1 125.5	132.8 133.9 136.8 138.3	14004 14100 14202	138.8 138.0 134.7 131.7	178.0 176.9	201.5	202.4 202.4 201.6 201.6 199.6	203.8 204.7 203.5	•
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.13	72.9	65.0 65.0 65.0	64.1 67.2 68.9 70.5 72.8	72.2 71.1 68.2 66.7	64.0 62.8 62.1	66.2 66.2 70.0 8.8 8.8		72.9	8 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 4 4 6 7 6 8 6 7 6 8 6 7 6 8 6 7 6 8 6 7 6 8 6 8	81.2
DATE	CT	7-24-63 8-27-63 10-01-63	10-23-63 11-16-63 12-23-63 1-21-64	2-12-64 3-26-64 4-24-64 5-21-64 6-25-64	7-24-63 8-27-63 10-01-63 10-23-63	12-00-63 12-23-63 1-21-64 2-12-64	3-26-64 4-24-64 5-20-64 6-25-64	-16-6 -17-6 -03-6	2-14-64	9-28-63 9-30-63 10-24-63 12-06-63 12-24-63	1-22-64 2-10-64 3-27-64	5-20-64
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	196.0			205•0			250.6	284•0			
STATE WELL NUMBER	MADERA IRRIG	115/16E-06A01 M			115/16E-10N01 M			115/17E-27C01 M	11S/18E~27M01 M			
AGENCY SUPPLYING DATA		6001	6001	6001			6 001	-		6001	6001	6001
WATER SURFACE ELEVATION IN FEET		77.5	112.9	106.4	104.9 1114.5 1114.5 112.4	102.9	148.7 134.9 147.0 150.9	155.4 160.5 161.9 155.8		127•7 134•0	263•3 259•0	365.6 363.7
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22 • 12	72.5	81.1 64.8	76.6 n 82.5 73.1	78.1 68.5 7.0 6.0 7.0 6.0 6.0 6.0	78•2 n 80•1	83.3 97.1 85.0	71.5 70.1 76.2	n n n	81.8 75.5 5-22.13	62.7 67.0	23.3
DATE		3-27-64 4-24-64 5-21-64	10-30-63	7-24-63 8-27-63 10-01-63 10-23-63	12-06-63 12-24-63 1-22-64 2-12-64 3-27-64	4-24-64 5-21-64 6-26-64	7-24-63 8-28-63 10-01-63 10-23-63	12-29-63 12-23-63 1-22-64 2-12-64 3-27-64	4-24-64 5-21-64 6-26-64	10-29-63 2-11-64 ET	9-30-63 2-11-64	9-30-63 2-10-64
GROUND SURFACE EL EVATION IN FEET	TER DISTRIC	150.0	194.0	183.0			232.0			209.5	326.0	387.0
STATE WELL NUMBER	CHOWCHILLA WATER DISTRICT	10S/14E-08BO3 M CONT.	10S/15E-23K01 M	105/15E-27D03 M			10S/16E-09E01 M			10S/16E-29R01 M 209.5 MADERA IRRIGATION DISTRICT	105/18E-20801 M	105/19E-16D01 M

AGENCY SUPPLYING DATA		6001	6001		6001		6001	6001		6001
WATER SURFACE ELEVATION IN FEET		170.5 169.2	169.7 171.8 175.9 166.4	180.2 181.2 181.8 180.5 176.7 170.8	207.2 205.0 208.5 208.5	209.8 211.5 210.5 207.5 208.0 205.9	188.2 192.1	186.4 186.2 187.0 188.0	189.6 190.1 191.7 190.7 190.7 189.9 188.3	224.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.13	64.5 65.8	65.3 63.2 59.1 68.6	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	80.8 83.0 79.5 79.1	78.2 76.5 77.5 77.5 80.5 82.1 84.1	76.8 72.9		7 4 4 7 7 4 4 4 7 7 4 4 4 7 7 7 9 9 9 9	83.0
DATE	-	5-20-64 6-25-64	7-23-63 8-27-63 10-01-63 10-24-63	12-05-63 12-23-63 1-21-64 2-11-64 3-26-64 4-23-64 5-20-64	7-23-63 8-27-63 9-30-63 10-24-63	12-05-63 12-23-63 12-23-63 1-21-64 2-11-64 3-26-64 4-23-64 5-20-64	12-13-63 2-17-64	7-23-63 8-27-63 10-01-63 10-24-63	12-05-63 12-23-63 1-21-64 2-11-64 3-26-64 4-23-64 5-20-64 6-25-64	2-12-64 2-13-64
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	235.0	235.0		288.0		265.0	265.0		307.0
STATE WELL NUMBER	MADERA IRRIGA	12S/17E-26CO1 M CONT.	125/17E-34R01 M		125/18E-13R01 M		125/18E-21G01 M	125/18E-21H01 M		12S/19E-28A01 M
AGENCY SUPPLYING DATA		6001	6001	6001		6001		6001	6001	
	1									40
WATER SURFACE ELEVATION IN FEET		306.5 288.0	135.5 138.1	142.8 141.5 144.8 144.8 167.4 151.4 152.5	154.4 150.2 149.4 147.4 144.5	123.5 131.55 140.2 145.8 149.0 149.0	143.0	162.0	168.4 169.6 172.2 171.7 175.0 176.0 176.5	171.4
WATER SURFACE ELEVATION IN FEET	5-22-13	109.5 306.5 128.0 288.0	35. 38.	86.2 87.5 84.2 81.6 77.6	74.6 78.8 79.6 81.6 84.5	94.5 86.5 17.8 17.9 12.9 11.0 68.2 13.7	75.0	0 99	666.666.666.988888.9888.9888.98888.988888888	63.6 64.7
WATER SURFACE ELEVATION IN FEET		9-30-63 109.5 2-12-64 128.0	69.9 135. 67.3 138. u		74.6 78.8 79.6 81.6 84.5	444444	75.0	-25-64		63.6 64.7
GRDUND SUR- FACE TO SURFACE WATER SURFACE IN FEET IN FEET	IRRIGATION DISTRICT 5-22.13	9-30-63 109.5 2-12-64 128.0	-10-63 69.9 135. -11-64 67.3 138. -14-64 u	86.2 87.5 84.2 81.6 77.6	74.6 78.8 79.6 81.6 84.5	7-23-63	75.0	-25-64	666.666.666.988888.9888.9888.98888.988888888	63.6 64.7

AGENCY SUPPLYING DATA		6001	6001					6001							6001	6001	6001							
WATER SURFACE ELEVATION IN FEET			121.5	121.2	132.0	129.6 129.6 126.2	112.5	135.0	136.2	141.2	137.0	135.8	133./			123.8	114.5	115.0	136.1	130.5	140.5	136.9	128.8 118.0	
GROUNO SUR- FACE TO WATER SURFACE IN FEET	5-22.14	0 0	38.5	38.8 37.5	28.0 28.2	30.4 33.8	47.5	15.0	13.8	8.8 11.0	13.0	14.2	10.3	0	#	41.3	80.5	80.0	0 0 0	58.5 55.5	54.5	58.1	66.2	j
DATE	ЕA	10-03-63	7-24-63	10-03-63 10-23-63	12~23~63 12~23~63 1~21~64	2-14-64 3-26-64 4-24-64	5-20-64 6-25.64	7-23-63	10-03-63	12-05-63	1-21-64 2-14-64	3-26-64	1 1	6-25-64	10-03-63	10-03-63 2-14-64	7-23-63	10-01-63	12-05-63	12-23-63	2-11-64	4-23.64	5-20-64 6-25-64	Ì
GROUND SURFACE ELEVATION IN FEET	СНОWСНІЦА-МАВЕКА АКЕА	158.0	160.0					150.0							145.0	165.1	195.0							1
STATE WELL NUMBER	WEST CHOWCH:	11S/15E-33E01 M	11S/15E-33P01 M					12S/14E-25H01 M							12S/14E-28G01 M	12S/15E-14L01 M	13S/16E-02C01 M							
-												_												
AGENCY SUPPLYING OATA		6001	6001	6001	6001					6001					1003			6001						
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET		6001	99.1 6001 98.6	97.1 6001 111.9	111.2 6001	105.4 106.0	106.0 105.1	104.7	102.0		90.7		91.4	89.4		82.0		116.6 6001	118.2	122.3	122.4	121.8		120.3
WATER SURFACE ELEVATION IN FEET	5-22.14	# 6001		97.1 11.9	9.8 111.2 1.2 109.8	5.6 5.0	25.0 106.0 25.9 105.1	6.3	0.0	98.2					9 60	9.0 82.0	. .	9.					_ 0	1
WATER SURFACE ELEVATION IN FEET	ιΩ		9 99.1 4 98.6	9.9 97.1 5.1 111.9	9.8 111.2 1.2 109.8	25.6 25.0	25.0 25.9	26.3	29.0	49.8 98.2	90.7	DRY	56.6	58 . 6 #	9 60	9.0 82.0		.4 116.6	16.8	14.2	12.6	13.2		1
GROUNO SUR- FACE TO WATER SURFACE IN FEET IN FEET		3 #	-63 19.9 99.1 -64 20.4 98.6	-63 79.9 97.1 -64 65.1 111.9	19.8 111.2 21.2 109.8	25.6 25.0	25.0 25.9	26.3	29.0	49.8 98.2	8-28-63 57.3 90.7 10-01-63 58.9 89.1	DRY	56.6	58 . 6 #	7-13-64 60 4 00 6	3-27-64 69.0 82.0 4-24-64 0		18.4 116.6 p	16.8	14.2	12.6	13.2		o 14.7

	AGENCY SUPPLYING DATA		6001	6001									1008	6001								5631					6001	1600				6001				
	WATER SURFACE ELEVATION IN FEET		154.0	203.8	204.5	202.2	203.8	205.2	205.8	201•3	201.5		198.8	182.8	181.5	184.6	185.0	186.5	182.0	179.9	181.8	222.2	222.7	223.2	222.7	222.0	222 • 8	225.4	222.9	219.0	C • . 17	216.2				
0113	FACE TO WATER SURFACE IN FEET	5-22-15	58.0		51.9						56		57.0	62						65.1								66.1 62.8				73.8				
	DATE	-	6-24-64	7-22-63	8-26-63	10-25-63	12-04-63	12-23-63	2-12-64	3-25-64	5-19-64	*0-+7-0	10-15-63 2-12-64	7-22-63	8-26-63	10-25-63	12-04-63	1-20-64	3-25-64	4-22-64	5-19-64	7-29-63	8-28-63		12-05-63		2-12-64	3-05-64	4-28-64	-28-	٥	7-22-63				
	GROUND SURFACE ELEVATION IN FEET	TION DISTRICT	212.0	258.0									255.8	245.0								288.2										290.0				
	STATE WELL NUMBER	FRESNO IRRIGATION	13S/17E-33D01 M	135/18E-10P01 M									135/18E-16D01 M	135/18E-34D01 M								M (0000-301/361	33/17/2 0/321									135/19F-16K01 M	1001 201 00			
	AGENCY SUPPLYING DATA		6001		<u> </u>			•				5631	_		_				6001		5631								1007	1000						
	WATER SURFACE ELEVATION IN FEET		262.7	62.4	62.0	258.3	264.9	261.3	264.3	258.6	251.8	329.4	329.6 331.0	332.3	334.1	334.0	32.1	329.6	446.3	455.1	178.2	183.4	181.9	181.7	180.5	178.6	100.4	180.6		59.0	59.7	155.0	160.7	161.0	162.0	159.3
	ν ш	l			1 72					• • •				, , , ,		., .	ויאו		4											7 [-					
)		5-22-15	97.3	97.6									58•1 58•1						26.7 4	6	42.6	37.4	38.9					40.5	1	53.0	52.3	57.	5.0	51.0	50	52.
	GROUND SUR- FACE TO SWATER SURFACE IN FEET	5-22•1	7-22-63		0.86	101.7	102.9	98.7	95.7	106.7	108.2	-31-63 58-3	58.1	4.00	53.6	53.7	55.6	-29-64 58.1	-04-63 26.7	2-13-64 17.9	42.6	37.4	38.9					5-28-64 40.4	1	53.0	52.3	57.	5.0	1-20-64 51-0	50	52.
	GROUND SUR- FACE TO WATER SURFACE IN FEET	-:	7-22-63	8-26-63 97.6	0.86	101.7	102.9	98.7	95.7	106.7	108.2	-31-63 58-3	58.1	4.00	53.6	53.7	55.6	-29-64 58.1	0-04-63 26.7	2-13-64 17.9	-29-63 42.6 -28-63 38.7	37.4	38.9						1	53.0	52.3	57.	5.0	51.	50	52.

AGENCY SUPPLYING DATA		5631	6001		5631	5631
WATER SURFACE ELEVATION IN FEET		376.3 376.2 375.7 375.7	159.4	164.6 166.3 166.8 166.8 166.8 156.4	1995.1 1995.1 1995.4 1996.2 1996.2 1996.4 1995.8 1995.8	213.9 209.2 209.2 216.0 215.1 217.5 218.1 216.6 208.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.15	30.2 30.3 30.8 30.8	68.0 71.3	622.8 62.7 61.1 60.0 71.0 74.2	55 55 57 58 58 58 58 58 58 58 58 58 58 58 58 58	68.6 73.3 6.6.5 6.5.6 6.5.4 6.5.0 74.5
DATE	-	2-30-64 3-30-64 4-30-64 5-30-64 6-29-64	7-23-63 7-29-63 8-28-63	10-29-63 11-30-63 12-28-63 1-30-64 3-05-64 4-28-64 6-30-64	7-30-63 8-29-63 9-27-63 10-29-63 11-30-63 12-30-63 1-27-64 3-05-64 4-28-64 5-29-64	7-30-63 8-28-63 9-30-63 10-29-63 11-30-63 12-7-64 8-28-64 6-30-64
GROUND SURFACE ELEVATION IN FEET	FRESNO IRRIGATION DISTRICT	406.5	215.0		247.2	282.5
STATE WELL NUMBER	FRESNO IRRIG	135/23E-31P01 M CONT.	145/17E-13H02 M 145/18E-08J01 M		145/19E-20801 M	145/20E-06H01 M
AGENCY SUPPLYING DATA		6001		5631	5631	5631
WATER SURFACE ELEVATION IN FEET		216.2 216.9 214.5 216.8 217.0	217.4 217.4 215.0 215.5	2551 2551 2553 2555 2556 3556 3556 3556 3556 3556	25545 25545 25545 25541 2355 2355 2355 2355 2355 2355 2355 235	334.5 333.1 373.2 373.1 375.8 375.8
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.15	73.8 73.5 73.0 73.0	72.6 72.6 75.0 74.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	787.00 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATE	. .	8-26-63 10-03-63 10-25-63 12-04-63	1-20-04 2-12-64 3-25-64 4-22-64 5-19-64	7-31-63 8-27-63 9-30-63 10-28-63 11-27-64 1-27-64 3-05-64	3-26-64 5-28-64 5-28-64 6-29-64 7-31-63 8-29-63 9-20-63 11-28-63 11-28-64 1-28-64 1-28-64	3-27-64 4-28-64 5-29-64 6-29-64 7-30-63 8-30-63 9-30-63 11-27-63 12-30-63 13-30-63
GROUND SURFACE ELEVATION IN FEET	FRESNO IRRIGATION DISTRICT	290•0		336.7	364.0	4 0 6 • 5
	ΙΞ̈́	Σ		Σ	Σ	Σ

WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET		226.3 4200		239.6 4200	236.7	236.2	237.9	239.0	240.4	240.9	240.5	239.5	236.4	7 116	212.7	212.4	212.0	213•1 216:5	215.3	215.4	214.6	213.7	212.1			224.8 4200 222.3										
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.16	83.7			88.3		87.1		84.6	84.1	84.5	90.5	88.6	0	92.6			92.2		89.9	7.06	90.7	93.2		10.1											
DATE		12-01-63		7-01-63	8-01-63	9-01-63	11-01-63	12-01-63	1-01-64	2-01-64	3-01-64	4-01-64	6-05-64		8-01-63	9-01-63	10-01-63	11-01-63	1-01-64	2-01-64	3-01-64	4-01-64	6-05-64	,		8-01-63	/-01-63 8-01-63 9-01-63	7-01-63 8-01-63 9-01-63 10-01-63	7-01-63 8-01-63 9-01-63 10-01-63 11-01-63	10-01-63 9-01-63 10-01-63 11-01-63 12-01-63	10-01-63 9-01-63 10-01-63 11-01-63 12-01-63 1-01-64 2-01-64	10-01-63 9-01-63 9-01-63 10-01-63 11-01-63 12-01-64 2-01-64 3-01-64	10-01-63 10-01-63 11-01-63 11-01-63 12-01-64 12-01-64 2-01-64 3-01-64	10-01-63 9-01-63 9-01-63 11-01-63 12-01-64 2-01-64 4-01-64 4-01-64	10-01-63 9-01-63 9-01-63 10-01-63 11-01-64 2-01-64 4-01-64 4-01-64 4-01-64 4-01-64	10-01-69 9-01-69 10-01-69 11-01-64 12-01-64 2-01-64 4-01-64 4-01-64 4-01-64 4-01-64 4-01-64
GROUND SURFACE ELEVATION IN FEET	ON	310.0		325.0										6	5020									6												291.4
STATE WELL NUMBER	CITY OF FRESNO	135/20E-21J01 M	CONT.	135/20E-23B01 M											135/20E-33HU2 M										1 #2/ ZOE-01001 M											145/20E-10M01 M
AGENCY SUPPLYING DATA		5631		-								5631	1									5631	1						-	_					900	4200
			~ ~	0	۲.	٠. د و	, ,	4	•3		m	353.4		357.1		3.5	.2	35803	8 9	356.9	6.89	2.0		7 -	4 0	-	٠,	- ~ 0	1707	14044	40000	862202	960000	862202	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	245.2 241.0 240.2 242.2 242.6 242.6 242.8 226.5 226.5
WATER SURFACE ELEVATION IN FEET		291.0	288.3	289	290	6 6	293	293	291		289	35.		35	35.6	356	355	35	9 6	35	9.	24	245	242	244	245		241.	241.	241 241 240 242	241 241 240 242 242	241. 241. 242. 242.	2222 2222 2222 2222 2222 2222 2222 2222 2222	77777		
GROUND SUR. FACE TO SURFACE WATER ELEVATION FEET IN FEET	5-22.15	43.0 291.0	45°7	45.0	43.3	42.5					44.7	46.6		42.9	41.5	41.5	8.04	41.7	41.9	43.1 35		39.6	,	40.3	37.6	37.4						41.55 241. 42.93 240. 40.93 242. 39.9 242.	,	91	61.55 42.3 40.3 39.9 39.7 5-22.16	611.5 471.5 40.3 39.7 5-22.16 83.5
-		3 43.0		45.0		42.5	-06-64 40-3	9.04	42.7	-29-64 п		9.94		42.9	41.5	41.5	8.04		41.9	-29-64 43.1		9	3 37.5	40.3		37.4	4I•3	J . 7	41.5	41.5 42.3 40.3	41.5 42.3 40.3 99.9	41.5 42.3 40.3 39.9	7 4 4 4 5 1	41.5 42.3 40.3 39.9 39.7 5-22.16	41.5 40.3 40.3 39.7 39.7 5-22.16	41.5 42.3 40.3 39.9 39.7 5-22.16 83.5
GROUNO SUR- FACE TO WATER SURFACE IN FEET	FRESMO IRRIGATION DISTRICT 5-22.15	3 43.0	45°7	45.0	43.3	42.5	-06-64 40-3	40.6	42.7	-29-64 п	1-44 49-67-	-30-63 46.6		42.9	41.5	41.5	8.04	41.7	41.9	-29-64 43.1	-29-64 41.1	-30-63 39.6	8-29-63 37.5	40.3	37.6	37.4			41.5	4 1 • 7 4 2 • 3 4 0 • 3	4 4 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	*1* 400.0000000000000000000000000000000000	3-20-04 41.57 3-28-64 42.3 4-29-64 40.3 5-29-64 39.9 6-30-64 39.7	\$1.57 \$2.33 \$40.33 39.97 39.7 5-22.16	3-00-04 41.5 3-28-64 42.3 4-29-64 40.3 5-29-64 39.9 6-30-64 39.7 5-22.16	3-00-04 41.5 3-28-64 40.3 4-29-64 40.3 5-29-64 39.9 6-30-64 39.7 6-30-64 39.7 5-22.16 310.0 7-31-63 83.5 9-01-63 83.6

AGENCY SUPPLYING DATA		6001						6001										6001											6001		6001		6001		6001	
WATER SURFACE ELEVATION IN FEET		136.5	140.4 133.8	136.4	131.4	131.5	127.0	135.2	136.3	144.4	147.4	149.0	144.0	143.3	140.5			126.0	129.5	126.8	15/04	141.4	143.2	138•2	132.2	132.9	129.0	•	143.8	144.3		133.8	135.8		144.9	1 • • • •
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-17	23.5	19.6	23.6	28.6	28.5	33.0	44.8	43.7	35.6	32.6	31.0	36.0	36.7	39.5	- I	ı	39.0	35.5	38.2	23.4	23.5	21.8	26.8	32.8	32.1	50.0	7.7.	23.2	22.7		77.2	35.2	3	26.1	6.07
DATE		12-23-63	1-20-64	3-25-64	4-25-64	5-19-64	49-42-9	7-22-63	8-26-63	10-25-63	12-23-63	1-20-64	2-17-64	3-25-64	4-22-64	6-24-64		7-22-63	8-26-63	10-04-63	10-62-63	12-04-63	1-20-64	2-17-64	3-25-64	4-22-64	5-19-64	,	10-03-63	2-14-64	10-08-63	-18-6	10-03-63	7-10-94	7-23-63	60-07-9
GROUND SURFACE ELEVATION IN FEET	SLOUGH AREA	160.0						180.0										165.0											167.0		211.0) 	171.0		171.0	
STATE WELL NUMBER	FRESNO SLOUG	145/15E-25H02 M	CONT.					145/16E-03C01 M										14S/16E-08D01 M											145/16E-22N01 M		145/17F-25A01 M	•	15S/16E-01L01 M		15S/16E-12C03 M	
AGENCY SUPPLYING DATA		4200								6001		6001											6001										6001			
WATER SURFACE ELEVATION IN FEET		208.5	214.3	216.7	216.7	216.3	213.5			120.0	121.1	96•5	95.2	117.0	126.5	134.8	133.0	124.5	111.0	110.9	10%	0 • • • • • • • • • • • • • • • • • • •			186.3	100	186.4	187.0	186.7	186.1	185.3	184.2	131.1	132.5	135.0	13700
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.16	82.9	77.1	74.7	74.7	75.1	77.9 80.1	1	5-22-17	42.0	A . 0 .	*0*69	70.3*	48.5	39.0	30.7	32.5	41.0	54.5	54.6	0.00	•	0		18.7	7.01	18.6	18.0	18.3	18.9	19.7	20.8	28.9	27.5	25.0	7•07
DATE		10-30-63	12-03-63	2-04-64	3-03-64	3-31-64	4-29-64			10-01-63	7-10-94	7-22-63	8-26-63	10-01-63	10-25-63	12-23-63	1-20-64	2-10-64	3-25-64	4-22-64	40-6T-C	*01+710	7-22-63	8-26-63	10-02-63	10-62-03	12-23-63	1-20-64	2-11-64	3-25-64	5-19-64	6-24-64	7-23-63	10-01-63	10-25-63	00-40-71
GROUND SURFACE ELEVATION IN FEET	9	291.4							AREA	162.0		165.5											205.0										160.0			
STATE WELL NUMBER	CITY OF FRESNO	145/20E-10M01 M	CONT						FRESNO SLOUGH AREA	135/15E-28H01 M		135/15E-35D02 M											135/17E-17A01 M										145/15E-25H02 M			

				•	1						
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRDUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GRDUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
FRESNO SLOUGH AREA	H AREA		5-22.17			FRESNO SLOUGH	AREA		5-22.17		
15S/16E-12C03 M CONT.	171.0	10 - 03 - 63 10 - 25 - 63 12 - 04 - 63 12 - 23 - 63 1 - 20 - 64 2 - 10 - 64 4 - 22 - 64 5 - 19 - 64 6 - 24 - 64	25.1 24.5 23.8 22.8 25.1 27.1 27.3 27.2 27.2 27.9	11144444444444444444444444444444444444	6001	155/19E-29C01 M CONT.	227.3	8-30-63 9-30-63 110-29-63 111-30-63 12-30-63 1-30-64 1-20-64 3-26-64 3-26-64 5-29-64 6-29-64	99999999999999999999999999999999999999		5631
		2-10-64 3-02-64	91.5	95.5		165/17E-23N01 M	189.0	12-16-63 2-12-64	99•1 125•0	89.9 64.0	5050 6001
15S/17E-35N02 M	185.0	7-23-63 8-26-63 10-25-63 12-23-63 12-23-64 2-10-64 2-264 8-25-64 8-25-64 8-25-64 8-25-64	1000.6 101.2 97.1 97.1 81.9 779.9 78.0 85.0 85.0 85.0	8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	6001	165/18E-03J01 M	206.0	9-27-63 10-28-63 11-27-63 12-03-64 2-24-64 3-31-64 4-27-64 5-25-64 6-24-64	94.0 88.0 87.0 87.0 87.0 87.0 89.0 91.0 92.1	112.0 117.2 118.0 118.0 118.3 118.2 116.1 115.0 103.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15S/18E-07A02 M	204.0	6-24-64 7-23-63 8-26-63 10-09-63 12-04-63 12-23-63	95.8 n 97.5 102.1 93.6 91.3 89.1	89.2 106.5 110.4 112.7 114.9	6001	165/18E-10A01 M	205.0	7-29-63 8-29-63 9-27-63 10-28-63 11-27-63 12-30-63 2-03-64	887 805.00 805.00 805.00	118.0 119.6 122.5	5050
		2-17-64 3-25-64 4-22-64 5-19-64	98.5 102.0 102.8	105.5		165/18E-27C01 M 165/18E-31G02 M	198.0	2-07-64 7-29-63 8-29-63 9-27-63	85.9 109.0 111.1	112.1 82.0 79.9 86.6	5050
	205.8	10-22-63 2-10-64 3-03-64	93•2 n 90•8	112.6	6001			10-28-63 11-27-63 12-30-63 2-03-64 2-24-64	103.6 96.3 95.5 99.8 125.8	94.7 95.7 91.2 95.2	
15S/19E-29C01 M	227•3	7-30-63	ORY		5631						

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
FRESNO SLOUGH AREA	SH AREA		5-22-17			CONSOLIDATED IRRIGATION		DISTRICT	5-22.18		
165/18E-31002 M CONT.	191.0	3-31-64 4-27-64 5-25-64 6-24-64	114.3 1111.3 100.3 99.6	76.7 79.7 90.7 91.4	5050	155/19E-24N01 M CONT.	246.6	1-03-64 2-01-64 3-03-64 4-01-64	70.3 69.8 75.4	176.3 176.8 171.2	4636
16S/19E-34PO1 M	220•0	7-29-63 8-29-63 9-27-63 10-28-63 11-27-63	92 0 90 2 90 2 85 8 84 9	127.9 129.8 134.2 135.1	5050	155/20E-28A01 M	264.8	4-29-64 5-25-64 7-01-63 7-30-63 8-31-63	55 45 45 45 45 45 45 45 45 45 45 45 45 4	167.8 167.8 207.9 207.5 211.0	4636
		2-03-64 3-31-64 4-27-64 5-25-64 6-24-64	81.6 86.8 103.0 96.0	133.2				11-01-63 12-03-63 1-03-64 2-01-64 3-03-64 4-01-64		113. 113. 113. 09.	
175/17E-12H01 M 175/18E-23A02 M	199.0	12-19-63 2-07-64 12-19-63 2-07-64	120.5 152.0* 72.8	78.5 47.0 126.7	5050	155/21E-15D01 M	301.2	5-25-64 7-01-63 7-30-63 8-31-63 10-03-63		207.9 264.9 264.5 265.2 266.1	4635
CONSOL IDATED 145/22E-22N01 M	1RR1GAT1ON 355.7	DISTRICT 7-01-63 7-30-63 8-31-63 10-03-63 11-01-63	5-22.18 36.2 35.6 34.2 33.3 32.7 32.1	319 320 321 321 323 323 323 323 323 323 323 323	4636			111-01-63 12-03-64 1-03-64 2-01-64 3-03-64 4-01-64 5-25-64	######################################	266.9 267.6 268.3 268.6 268.6 268.0 267.0	
15S/19E-24N01 M	246.6	2-01-64 3-03-64 4-01-64 4-29-64 5-25-64 7-01-63 7-30-63 10-01-63 12-03-63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3224.5 3224.5 3223.7 3223.7 166.2 1166.8 1771.0 1731.0	4636	15S/22E-16A01 M	337 _• 0	7-01-63 7-30-63 10-03-63 11-01-63 11-03-64 1-03-64 7-01-64 4-01-64 4-21-64 7-03-64	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	301.0 301.0 301.5 306.6 306.6 306.2 300.4 300.0 300.0	696
					_			1		i !	

AGENCY SUPPLYING OATA		4636						,	4030												4636														4637										
WATER SURFACE ELEVATION IN FEET		226.6	227.0	224.2	223•1	21.	220•9		6 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	266.9	267.6	268.1	269.0	268.9	269.1	269.5	269.5	269.1	269.1		260.8	7.797	263.9	261.9	261.1	261•3	260.5	260•5	259.2	257.8	254.6	253.8			330.0	345.6	227.3	0 700	226.5	3 3 6 6	236.46	221 6	900	221.0	20176
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.18	7.77	0.44	46.8	47.9	49.5	50.1	ć	31.6	30.6	29.9	29.4	28.5	28.6	28.4	œ .	•	.	28.4		25.42	23.9	22.1	24.1	24.9	24.7	25.5	25.5	26.8	28.2	31.4	32.2		61.77-6		45.4	52.7	100	4 4 4		56.5	9 9	100	7.07	T • C O
DATE	DISTRICT	1-03-64	2-01-64	3-03-64	4-01-64	4-59-64	5-25-64		7 00 7	8-31-63	10-03-63	11-01-63	12-03-63	1-03-64	2-01-64	3-03-64	4-01-64		2-22-64		7-01-63	7-30-63	8-31-63	10-03-63	11-01-63	12-03-63	1-03-64	2-01-64	3-03-64	4-01-64	4-59-64	5-22-64			7-30-63	9-02-63	10-0-01	10-05-63	11-20-63	60-67-11	1-28-62	+9-07-T	*9-97-7	3-21-64	40-17-4
GROUND SURFACE ELEVATION IN FEET	IRRIGATION	271.0							29/62												286.0													ION DISIRICE	0 102	0.160									
STATE WELL NUMBER	CONSOL IDATED	165/21F-22NO1 M							16S/22E-23R01 M												175/22E-03C01 M													ALTA IRRIGATION	M 10076 3667 371										
N Y INC		4636							•	_			••••	4636				•				•					4636												7637	000					
AGENCY SUPPLYING DATA		3	•																																										
WATER AGE SURFACE SUPPL ELEVATION DA		281.8	2	285.1	285.3	285.7	286.2	285.8	286.8	28363	282.9	282.1		150.9	149.3	152.1	156.0	157.8	158.9	160.0	160.8	157.9	154.9	151.0	149.3		183.7	184.2	186.0	187.3	188.2	188,9	10407	180.2	187.0	183.0	3 C C C C C C C C C C C C C C C C C C C	•	230 2	2,012	71004	6,012	0.522	4.622	0.022
	5-22,18	281.8										39.8 282.1		84.6 150.9	_	83.4	79.5	77.7	76.6	75.5	 1 (7	7	7	7		7	63.5 184.2	-	_	-	-	-1 -	58.5 189.2		1 -	٠-	•			52 1 218 6			0.0	.
WATER SURFACE ELEVATION IN FEET		281.8	3 39.7 282.2	36.8	36.6	36.2	35.7	36.1	35.1		36.0	39.8		84.6	3 86.2 1	83.4	79.5	-	76.6	75.5	 1 (9.//	80.6	-29-64 84.5 1	7		64.0	63.5 1	61.7	60.4	59.5	-	***	5000	60.7	64.7	67.3	• • • • • • • • • • • • • • • • • • • •	52.7	1 0 7 7		1 0 0 7	0 • 4 •	0.04	45.0
GROUND SUR- FACE TO SURFACE WATER ELEVATION IN FEET IN FEET	CONSOLIDATED IRRIGATION DISTRICT 5-22.18	3 40.1 281.8	7-30-63 39.7 282.2	36.8	36.6	36.2	35.7	36.1	35.1	20°00	36.0	39.8		84.6	86.2	83.4	79.5	77.7	76.6	75.5	74.7	9.//	80.6	84.5	-25-64 86.2 1		64.0	63.5 1	61.7	60.4	59.5	500.00	***	5000	60.7	64.7	67.3	• • • • • • • • • • • • • • • • • • • •	52.7	1 20 CD 10-1	0.20	1 0 0 7	0 • 4 •	0.04	65.0

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ALTA IRRIGATION DISTRICT	ION DISTRICT		5-22-19			ALTA IRRIGATION	ION DISTRICT		5-22.19	1	
145/23E-36R01 M COMT.	391.0	5-31-64	68.1	322.9	4637	165/24E-21J01 M CONT.	336.0	8-27-63 10-01-63	6 4 6 4 6 6 6	301.7	4637
145/24E-31P01 M	395.0	7-30-63 2-06-64 2-26-64	45.6 64.9 54.0	349.4 330.1 341.0	4637 6001 4637			10-30-63 11-26-63 12-27-63 1-27-64	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	902. 902. 900. 901. 9	
155/23E-23A02 M	358.0	7-30-63 9-02-63 10-02-63 10-31-63	5 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	305.1 305.1 306.3 309.2	4637			2-25-64 3-26-64 4-25-64 5-29-64 6-25-64	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2962 2956 2956 2956 2956 2956	
		12-30-63 1-28-64 2-26-64 3-27-64 4-27-64 5-31-64 6-29-64	444 446 0000000 000000 00000 00000 00000 00000 0000	3000 3000 3000 3000 2000 2000 2000 300 30		16S/25E-29A01 M	364.0	7-29-63 8-27-63 10-01-63 10-30-63 11-26-63 12-27-63	24 204 400 400 400 400 400 400 400 400 4	311.9 315.9 312.7 313.6 314.8	4637
15s/24E-22D01 M	388.0	7-29-63 8-31-63 10-04-63 11-02-63	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	348.8 351.7 344.1 342.2	4637			2-25-64 3-26-64 4-25-64 5-29-64 6-25-64	56.1 57.6 57.5 53.6	307.9 306.4 306.5 310.4	
		12-31-63 1-30-64 2-28-64 3-30-64 4-29-64 5-29-64 6-26-64	0 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		175/22E-25A01 M	275.0	7-29-63 8-27-63 10-03-63 11-01-63 11-27-63 12-28-63	98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	238.6 241.0 242.9 244.7	4637
165/23E-23E01 M	314.0	7-30-63 9-03-63 10-03-63 11-01-63	32.6 31.7 29.5 28.9 28.6	281.4 282.3 284.5 285.1 285.4	4637			2-27-64 3-30-64 4-28-64 6-01-64 6-27-64	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	242.5 240.4 241.7 234.4 233.5	
		12-28-64 1-29-64 2-27-64 3-28-64 4-28-64 6-01-64	286 286 286 206 306 316 316 4	285.7 285.8 285.3 283.1 281.2 282.7 282.7		175/22E-25J01 M	275.0	7-31-63 9-03-63 10-03-63 11-01-63 11-27-63 12-28-63	00000000000000000000000000000000000000	237.6 236.6 237.5 240.9 242.9	4637
16S/24E-21J01 M	336.0	7-29-63	37.8	298•2	4637						

165/24E-21JO1 M 336.0 7-29-63 37.8

AGENCY SUPPLYING DATA		5050	5129	5129	5050	5129		5050	5050					5050	6001	5129	5050											6001			
WATER SURFACE ELEVATION IN FEET		199.0	195.3	188.5	188.5	183.5	176.4	205+3	147.1	146.3	142.0	141.5		201.6	202.8	202•7	180.9	179.9	180.7	181.2	181.7	181.8	181.3	180.1	1 / 9 • 9			429°0 430°3	430.7 428.8	427.9	425.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.20	55.0	58.7	65.5	65.5	70.5	77.6	2.7	69.69	70.7	75.0	69.5	υ	4.4	19.2	19•3	30.1	31.1	30.3	29.8	7.67	2002	29.7	30.9	31•1	5-22-21				15.1	
DATE		12-30-63	2-12-64	2-29-64	3-31-64	5-31-64	6-28-64	2-05-64	7-29-63	9-27-63	10-28-63	11-27-63	60-06-21	2-10-64	9-30-63	2-05-64	7-29-63	8-29-63	9-27-63	10-28-63	11-27-63	2-03-64	2-24-64	3-31-64	5-25-64	TOTALSTO	774171	7-02-63	9-03-63	12-02-63	2-03-64
GROUND SURFACE ELEVATION IN FEET	RIVER AREA	254.0						208.0	217.0					206.0	222.0	 	211.0	0 1 1 7								TOTTOTOT	NOTI WOLLAND	443.0			
STATE WELL NUMBER	LOWER KINGS R	185/21E-10R01 M	CONT					19S/19E-25A01 M	195/20E-21A01 M					20S/20E-09C01 M	205/21F-03A01 M		M TOMO L. Bock hot	Z US/ ZZE-13MO1 M									UKANGE COVE	14S/24E-20B01 M			
AGENCY SUPPLYING DATA		4637			,	1604	4637		5050	0505	200								•	5050						9	2	5050	5050		
WATER SURFACE ELEVATION IN FEET		243.8	242.2	238.8		59/94	255.7		156.4	150.5	159.5	126.5	157.8	179.6	159.9	156.6	155.6	148.0			212.6	216	61017		220.2	0	0.603	222.5	181.6	186.5	
	5-22.19	31.2 243.8		36.2 238.8 37.8 237.2		• / 8	65.3 255.7	5-22.20	63.6 156.4	150		*			63.1* 139.9 60.2 162.8			75.0 168.0	•	п	6 212•	216	C172 ×6-14		37.0 220.2	306	2.02	•		67.5 186.5	
<u>~</u>	5-22-19	31.2	33.0 3.0 4.0 4.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6		. !	•/82 9•	7	5-22.20		150	63.5	96.5*	65.2 56.6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 -	66.4	67.4	-	•		44.6 212.	316	• 617	b	37.0 220.		• 603	.5 222.	72.4		7 E
GRDUND SUR. FACE TO WATER SURFACE IN FEET	ALTA IRRIGATION DISTRICT 5-22-19	31.2	935 936 946 946	36•2 37•8		-25-64 47.6 28/.	65•3 2	RIVER AREA 5-22.20	4 63.6 1	160	63.5	96.5*	65.2 56.6	7 • 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6	83.1*	66.4	67.4	75.0	•	п	8-29-63 44.6 212.	316	•CT7 #6•T*	b	37.0 220.		-02-64 2.0 203.	-05-64 7.5 222.	72.4	67.5	7 E

AGENCY SUPPLYING DATA		6001	6001		6001	6001
WATER SURFACE ELEVATION IN FEET		403 403 403 603 603 603	348.9		259.0 260.8 262.0 263.2 263.2 261.3 261.2 261.2	266.7 265.9 265.9 266.3 266.3 267.9 268.4 268.4
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.22	1.6 1.5 1.7 2.0	15.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8832 8826 8836 8836 8816 8816 8806 6806
DATE	DISTRICT	3-24-64 4-21-64 5-19-64 6-22-64	7-26-63	9-27-63 10-21-63 12-24-63 1-20-64 2-06-64 2-25-64 3-24-64 4-21-64 5-19-64	7-01-63 8-01-63 8-01-63 10-04-63 11-29-64 1-29-64 4-01-64 4-01-64 4-29-64	7-01-63 8-01-63 8-31-63 10-04-63 11-04-63 11-29-64 1-29-64 3-02-64 4-01-64
GROUND SURFACE ELEVATION IN FEET		405.0	364.0		5E-27R01 M 350.0	349.0
STATE WELL NUMBER	STONE CORRAL IRRIGATION	165/26E-32R01 M CONT.	175/26E-07R01 M		175/25E-27R01 M	175/25E-35M01 M
AGENCY SUPPLYING DATA		6 00 1	6001	6001	6001	0009
WATER SURFACE ELEVATION IN FEET		426.5 427.3 427.4 428.3	475.7	371. 371. 377. 377. 377. 377. 377. 378. 378. 378	90000000000000000000000000000000000000	4 + + + + + + + + + + + + + + + + + + +
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.21	16.5 15.7 15.6 14.7	34°3 33°9	33. 30. 30. 30. 30. 30. 30. 30. 30. 30.	112.0 114.0 114.0 114.0 114.0 114.0 114.0 114.0	5-22 • 22 1 • 6 2 • 0 2 • 0 2 • 0 1 • 5 1 • 5 1 • 6 2 • 1
DATE	DISTRICT	3-03-64 4-02-64 5-01-64 6-02-64	9-26-63 2-07-64	7-02-63 8-02-63 9-03-63 10-01-63 11-05-63 12-02-64 2-03-64 4-02-64 5-01-64	0000000000000	7-26-63 8-30-63 8-30-63 9-27-63 10-21-63 12-02-63 12-24-63 1-20-64 2-04-64
GRDUND SURFACE ELEVATION IN FEET	IRRIGATION DI	443.0	510.0	4 05•0	415.0	
STATE WELL NUMBER	ORANGE COVE I	145/24E-20B01 M CONT.	145/25E-30D01 M	155/24E-14D01 M	165/25E-04C02 M	STONE CORRAL IRRIGATION 165/26E-32R01 M 405.0

AGENCY SUPPLYING DATA		6001		6001	6001			6001	6001	6001	6001
WATER SURFACE ELEVATION IN FEET		357.0 378.4 358.8	356.5 357.1 356.3 354.8	304•6 313•4	278.6	273.4 273.4 272.3	268.0 265.7 264.5 263.6 262.4	230.5	368.4 368.9 458.0	458.5 172.2 174.6 174.7	153.5 150.3 150.1
GRDUND SUR- FACE TD WATER SURFACE IN FEET	5-22-23	59.0 37.6 57.2	59.5 58.9 59.7 61.2	58.4 49.6	• ovro	24.5 24.6 25.6 25.0 25.0	229 232 232 54 54 1	104.5 0 99.0 n		11.5 78.8 76.4 76.3	
DATE	5	11-29-63 1-06-64 1-29-64	3-04-64 4-01-64 4-30-64 6-02-64		7-26-63	9-27-63 10-21-63 12-03-63 12-24-63	2-25-64 3-24-64 4-21-64 5-19-64 6-22-64	7-26-63 8-30-63 9-27-63 10-21-63 12-03-63	9-27-63 2-06-64 9-27-63	2-07-64 9-26-63 2-05-64 2-12-64	7-25-63 8-29-63 9-24-63
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	416.0		36	297.5			335.0	385.0	251.0	245.0
STATE WELL NUMBER	IVANHOE IRRIC	175/26E-34D01 M CONT.			KAWEAH DELIA 175/24E-34B01 M			175/25E-21A01 M	175/26E-17P02 M		18S/22E-36P01 M
AGENCY SUPPLYING DATA		6001	1009			6001		6001			6001
WATER SURFACE ELEVATION IN FEET			288.7	290.8 290.2 290.4 284.3	28%	375.2 375.0 376.0	976.0 976.0 973.9 973.4	374.7	915-0 915-0 916-0	317.8	352 350 351 351 353 553 553 553
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-23	D	76.3	74.2 74.8 74.6	75.5 0	18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 0 19 0 20 2 20 6 20 6	19•3	400 600 400 400 100 100 100 100 100 100 100 1	67.2	665.0 67.0 62.0 62.0 63.0 63.0
DATE	5	6-02-64	7-01-63 8-01-63 8-31-63	11-29-63 1-06-64 1-29-64 3-02-64	4-01-64 4-29-64 6-02-64	7-01-63 8-01-63 8-31-63 10-04-63	11-04-63 11-29-63 1-06-64 1-29-64 3-04-64	4-30-64 6-02-64 7-01-63 8-01-63	10-04-63 11-04-63 11-29-63 1-06-64	3-04-64 4-02-64 4-30-64 6-02-64	7-01-63 8-01-63 8-31-63 10-04-63 11-04-63
GROUND SURFACE ELEVATION IN FEET	IVANHOE IRRIGATION DISTRICT	349.0	365.0			394.0		385.0			416.0
STATE WELL NUMBER	IRRIO	17S/25E-35M01 M CONT.	17s/25E-36G01 M			17S/26E-21E01 M		17S/26E-32N01 M			175/26E-34D01 M

AGENCY SUPPLYING DATA		6001	6001	6001			6001					6001
WATER SURFACE ELEVATION IN FEET		341.0	175.7 175.8	145.5 143.8 143.7 145.7	15000 151000 151000 151000 14800 14800	144.4 142.5 136.5	127.3 127.6 128.0	128.5	131.0	134.4	133.0 131.0 129.5	280.4 280.4 280.6 279.6 275.0 274.3 271.1 268.2 267.2 260.2
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-24	26.0	69.3	89.5 91.2 91.3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	90.6 92.5 98.5	106.7 106.4 106.0	105.5	103.0	99.6 100.0	101.0 103.0 104.5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
DATE	V DIST	6-23-64	9-27-63 2-05-64	7-25-63 8-29-63 9-26-63	12-02-63 12-23-63 1-20-64 2-04-64 2-24-64 3-23-64	4-20-64 5-18-64 6-23-64	7-25-63 8-29-63 9-26-63	9-30-63	12-02-63	2-05-64	5-23-64 4-20-64 5-18-64 6-23-64	7-25-63 8-30-63 9-24-63 10-21-63 12-03-63 12-24-64 1-20-64 3-23-64 4-21-64 5-18-64
GROUND SURFACE ELEVATION IN FEET	KAWEAH DELTA WATER CONSERV	367.0	245.0	235.0			234.0					320.0
STATE WELL NUMBER	KAWEAH DELTA	185/26E-30N01 M CONT.	195/22E-01N02 M	195/22E-19A01 M			195/22E-36E01 M					195/25E-07K01 M
AGENCY SUPPLYING DATA		6001		-	6001			5129	6001	6001	6001	0001
WATER SURFACE ELEVATION IN FEET		154.0	165.4 162.4 157.2	157.2 154.9 149.3	221.4 217.8 217.9 221.8 227.0 228.5	230.6 230.3 226.0 224.3	224•2 220•6	185.5	244.0	289.1 293.3	369.0 371.7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.24	91.0	79.6 82.6	87.8 90.1 95.7	61.1 64.7 60.7 55.5	51.9 52.2 56.5 58.2	58.3 61.9	85.5	68.5 64.1	48.9	21.0 18.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DATE	ty Dist	10-22-63	1-20-64 2-24-64 3-23-64	4-20-64 5-18-64 6-23-64	7-25-63 8-29-63 9-24-63 10-21-63 12-02-63 12-23-63	1-20-64 2-24-64 3-23-64 4-20-64	5-18-64 6-23-64	2-05-64	9-24-63	10-01-63 2-05-64	9-25-63	7-26-63 8-30-63 9-25-63 10-21-63 12-24-64 1-20-64 2-24-64 3-24-64 3-24-64 5-19-64
GROUND SURFACE EL EVATION IN FEET	KAWEAH DELTA WATER CONSERV DIST	245.0			282.5			271.0	312.5	338.0	390.0	367.0
STATE WELL NUMBER	KAWEAH DELTA	185/22E-36P01 M CONT.			185/23E-12H01 M			185/23E-34A01 M	185/24E-26A01 M	185/25E-33F01 M		185/ 26 E-30N01 M

AGENCY SUPPLYING DATA		6001	004	5129	6001									1004	1000									1009									
WATER SURFACE ELEVATION IN FEET			156.8	153.7	000	200•3	206.4	205.0	210.8	0.012	203.5	196.6		190.4	194.0		204.6	208•1	207.5	208•807 100 F	197.3	198.0	179.0	26523	268.2	272.0	275.4	276.1	272.0		6 1 1 9 9	266.5	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-25	ם ם	03.7	96.8	n (100°3 89°7	83.6	85.0	79.2	0 0	86.5	93.4 86.5		7 00	0.96	D	85.4	81.9	82.5	291.5	92.7	95.0	101.0	61.7	8 8 6	55.0	51.6	6.05	55.0	u ,	T • C C	60.5	מ
DATE		4-28-64 5-28-64	6-26-64	2-17-64	7-25-63	9-25-63	10-22-63	12-23-63	1-24-64	2-25-64	3-30-64	4-28-64	6-26-64	7-25-63	8-29-63	9-25-63	10-22-63	12-02-63	12-23-63	1-24-64	3-30-64	4-28-64	5-28-64 6-26-64	7-25-63	-30-6	9-24-63	10-21-63	12-02-63	12-24-63	2-06-64	4-21-64	5-28-64	6-26-64
GROUND SURFACE ELEVATION IN FEET	TULARE IRRIGATION DISTRICT	270•0	250.5		290.0									0.000	0.067									327.0									
STATE WELL NUMBER	TULARE IRRIG	195/23E-14R01 M CONT.	195723E-32H01 M		19S/24E-16P01 M									1007277001										195/25F-17.101 M									
AGENCY SUPPLYING DATA		6001	1009	-							6001	6716	6001				-							6001	•			•					
WATER SURFACE ELEVATION IN FEET		266.1		227.4	251.1	231.0	235.2	241.0	226.9		102.9		199.7	213.7	219.2	226.0	227.9	228.7	208•3	215.0	207.4	193.0			169.0	170.0	182.8	174.4	180.1	1,78.0	186.5	195.5	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-24	53.9	00	113.6	89.9	110.0	105.8	100.0	114.1	1	123.1	,	104.8	806	85.3	78.5	76.6	75.8	96.2	90.0	97.1	111.5	5-22.25	D	101.0	100.0	87.2	95.6	89.9	92.0	83.5	74.5	
DATE	N DIST	6-23-64	7-26-63	9-25-63 10-21-63	12-02-63	1-20-64	2-24-64	4-20-64	5-18-64		9-30-63	10-70-7	7-25-63	9-25-63	10-21-63	12-02-63	12-23-63	1-20-64	2-24-64	4-20-64	5-18-64	6-23-64	ħ	7-25-63	8-29-63	9-55-63	10-10-63	10-22-63	12-02-63	2-10-63	2-25-64	3-30-64	
GROUND SURFACE ELEVATION IN FEET	KAWEAH DELTA WATER CONSERV DIST	320.0	341.0								226.0		304.5										TULARE IRRIGATION DISTRICT	270.0									
STATE WELL NUMBER	KAWEAH DELTA	195/25E-07K01 M CONT.	195/26E-34R02 M								20S/22E-10C01 M		20S/25E-14F01 M										TULARE IRRIG	195/23E-14R01 M									

### STATE WELL SUBSECTION OF THE PACE NATER SUBSECTION OF THE PACE NATER		0	ROUND SUR.						GROUND SUR-		
TULARE IRRIGATION DISTRICT 215/23E-05R01 M 222.0 1-24-64 94.7 127.3 2-05-64 94.7 127.3 2-05-64 94.7 127.3 2-05-64 94.7 127.3 2-05-64 94.7 127.3 2-05-64 94.7 127.3 2-05-64 94.7 127.3 120-24-64 94.7 127.3 185/26E-25K01 M 436.0 17-26-63 59.4 376.4 185/27E-29D01 M 447.0 17-26-63 59.6 386.4 185/27E-29D01 M 447.0 17-26-63 30.5 410.5 195/26E-14E01 M 375.0 17-26-63 20.6 410.5 195/26E-14E01 M 375.0 17-26-63 20.5 410.5 195/26E-14E01 M 375.0 17-26-63 20.5 410.5 195/26E-14E01 M 375.0 17-26-63 20.5 410.5 195/26E-14E01 M 375.0 17-26-63 20.5 410.5 195/26E-14E01 M 375.0 17-26-63 20.5 410.5 195/26E-14E01 M 375.0 17-26-63 20.5 20.5 10-21-63 98.3 277.7 11-20-64 20.3 11-2	WATER SURFACE ELEVATION IN FEET	WATER SURFACE ELEVATION IN FEET		<u> </u>	AGENCY UPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	ш	FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
215/23E-05R01 H 222.0 1-24-64 94.7 127.3 CONIT. 2-05-64 95.5 126.5 3-30-64 94.7 127.8 2-25-64 95.5 126.5 3-30-64 94.0 123.0 4-28-64 91.0 5-28-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-64 11 6-26-63 59.4 376.7 1-26-63 59.6 330.9 1-26-63 59.6 330.9 1-26-63 59.6 330.9 1-26-63 50.6 330.9 1-26-63 36.2 410.8 1-26-64 55.6 330.9 1-26-63 31.8 418.2 1-26-64 55.6 330.9 1-26-63 31.8 418.2 1-26-64 57.2 1-26-63 31.8 418.2 1-26-64 27.2 1-26-64 55.6 330.9 1-26-63 31.8 418.2 1-26-64 27.2 1-26-64 27.2 1-26-63 31.8 418.2 1-26-64 27.	TULARE IRRIGATION DISTRICT 5-22.25	1-22.25					ATION DISTRIC	-	5-22+25		
EXETER IRRIGATION DISTRICT EXETER IRRIGATION DISTRICT EXETER IRRIGATION DISTRICT EXETER IRRIGATION DISTRICT EXETER IRRIGATION DISTRICT EXETER IRRIGATION DISTRICT 185/26E-25K01 M 447.0			114.4		6001	1S/23E-05R01	222.0	1-24-64	7.46	127.3	6001
22-5-64 95-5 126-5 3-30-64	126.5	-	114.5			CONT		2-05-64	94.2	127.8	
EXETER IRRIGATION DISTRICT 185/26E-25K01 M	115.8	_	125.2					2-52-64	95.5	126.5	
EXETER IRRIGATION DISTRICT EXETER IRRIGATION DISTRICT 185/26E-25K01 M 436.0	10-22-63 108-4 132-6		132.6			_		3-30-64	_		
EXETER IRRIGATION DISTRICT 185/26E-25K01 M	7.401		1000					1010711	• 1	75200	
EXETER IRRIGATION DISTRICT 185/26E-25K01 M 436.0 7-26-63 59.4 376.6 185/26E-25K01 M 436.0 7-26-63 59.3 376.7 8-30-63 59.3 376.7 12-02-64 52.0 383.9 12-02-64 52.0 383.9 12-02-64 52.0 383.9 185/27E-29D01 M 447.0 7-26-63 36.2 185/27E-29D01 M 447.0 7-26-63 36.2 185/27E-29D01 M 447.0 7-26-63 36.2 195/26E-14E01 M 375.0 7-26-64 27.5 195/26E-14E01 M 375.0 7-26-64 27.5 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 195/26E-14E01 M 375.0 7-26-63 103.8 10-21-63 93.0 11-20-64 91.2 283.8	103.0	7.	130.0					79-07-0	3 5		
EXETER IRRIGATION DISTRICT 185/26E-25K01 M 436.0 7-26-63 59.4 376.6 379.4 10-21-63 59.3 55.1 380.9 12-02-63 59.5 1 380.9 12-02-63 59.5 1 380.9 12-02-63 59.6 383.6 12-20-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 419.0 9-25-63 30.5 416.5 9-25-63 30.5 416.5 9-25-63 30.5 418.6 12-02-64 28.0 419.0 9-25-63 32.0 419.0 9-25-63 32.0 419.5 1-20-64 28.5 10.5 9-25-64 57.5 419.5 1-20-64 28.5 10.5 9-25-64 10.5 9-25-63	10101	-	1200					10-07-0	ı		
185/26E-25K01 M 436.0 7-26-63 59.4 376.6 185/26E-25K01 M 436.0 7-26-63 59.4 376.7 9-26-63 59.4 376.7 9-26-63 59.4 376.7 9-26-63 59.4 376.7 9-26-63 59.6 379.9 12-02-63 59.5 1 380.9 12-02-64 52.0 384.0 2-24-64 52.0 384.0 2-24-64 52.0 383.9 3-24-64 52.0 383.9 3-24-64 52.0 383.9 9-26-63 30.5 410.8 8-30-64 59.6 380.4 6-22-64 59.6 380.4 6-22-64 59.6 380.4 6-22-64 59.6 380.4 6-22-64 59.6 380.4 6-22-64 59.6 380.4 6-22-64 59.6 380.4 6-22-64 59.6 380.4 6-22-64 28.8 418.2 11.2-22-63 31.8 418.2 11.2-22-64 28.3 418.2 11.2-22-64 28.3 418.2 11.2-22-64 28.3 418.2 11.2-22-64 28.3 101.9 273.1 12-02-64 28.3 101.9 273.1 12-02-63 105.9 273.1 12-22-64 39.0 282.9 11.2-22-64 39.3 277.7 12-22-64 30.3 277.7 12-22-64 30.3 277.7 12-22-64 30.3 277.7 12-22-64 30.3 2	2-20-64 100-1 1300-9 2-30-64 100-6 136-6	-	13007			ASTOR GREAT	CTOTAL DISTOR		5-22-26		
185/26E-25K01 M 436.0 7-26-63 59.4 376.6 9-30-63 59.3 59.3 376.7 9-26-63 55.1 380.9 12-02-63 55.1 380.9 12-02-64 52.0 383.8 12-02-64 52.1 380.9 2-24-64 52.1 380.9 3-24-64 52.2 383.8 4-20-64 52.2 383.8 4-20-64 52.5 383.8 4-20-64 52.5 383.8 4-20-64 52.6 380.6 5-19-64 52.6 380.6 5-19-64 52.6 380.6 1-20-64 52.6 380.6 1-20-64 52.6 380.6 1-20-64 52.6 380.6 1-20-64 52.6 380.6 1-20-64 52.6 380.6 1-20-64 27.7 410.8 1-20-64 27.7 410.8 1-20-64 27.5 410	104.8	-	136.2			EALIER TRATE	7141616	_			
8-30-63 59.3 376.7 9-25-63 55.6 378.4 10-21-64 52.6 36.6 378.4 11-20-64 52.1 382.8 12-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-24-64 52.2 383.8 13-22-64 36.2 410.8 13-22-63 36.2 410.8 12-24-63 28.8 418.7 13-22-63 28.8 418.7 13-22-64 27.5 419.8 13-24-64 27.5 419.8 13-24-64 27.5 419.8 13-24-64 27.5 419.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-64 30.5 5410.8 13-24-63 30.0 55 56.5 12-24-64 30.5 56.5 12-24-64 30.5 56.5 12-24-63 30.0 83.8 12-24-63 30.0 83.8 12-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-63 30.0 83.8 13-24-64 30.0 83.8 13-34-64 30.0 83.	116.6	•	12404		_	S/26F-25K01	436.0	7-26-63	59.	376.6	6001
185/27E-29D01 M 447.0 12-26-63 55.6 379.4 12-22-63 53.5 1383.6 1383.6 12-24-63 52.6 384.0 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-64 52.0 383.9 12-24-63 28.0 419.0 12-24-63 28.0 419.0 12-24-63 28.0 418.5 12-24-64 27.5 419.8 12-24-64 27.5 41	119.5		121.5		•		•	8-30-63		376.7	
10-21-63 55-1 380.9 12-02-64 52.0 384.0 12-24-64 52.0 384.0 12-24-64 52.1 383.9 3-24-64 52.5 383.9 3-24-64 52.5 383.9 3-24-64 52.5 383.9 3-24-64 52.5 383.9 3-24-64 52.5 383.9 3-24-64 52.5 383.9 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-								9-25-63		379.4	
12-24-63 53.5 382.5 12-24-64 52.0 383.4 1-20-64 52.0 383.4 1-20-64 52.0 383.8 2-24-64 52.0 383.8 4-20-64 52.0 383.8 4-20-64 52.0 383.8 4-20-64 52.0 383.8 4-20-64 52.0 383.8 4-20-64 52.0 383.8 4-20-64 52.0 383.8 4-20-64 52.0 383.8 4-20-64 52.0 410.8 4-20-64 52.0 410.8 4-20-63 30.5 410.8 4-10.0 195/26E-14E01 M 375.0 7-26-63 103.8 4-20-64 27.5 419.8 4-20-64 27.5 419.8 4-20-64 27.5 419.8 4-20-64 27.5 419.8 4-20-64 30.5 416.5 6-22-64 101.9 273.1 195/26E-14E01 M 375.0 7-26-63 103.8 2-24-64 27.5 410.8 4-20-64 30.5 416.5 6-22-64 101.9 273.1 12-24-63 93.0 282.0 12-24-63 93.0 282.0 12-24-63 93.0 282.0 12-24-63 93.0 282.0 12-24-63 93.0 283.8			153.5		6001	_		10-21-63		380.9	
12-24-63 52.6 383.4 1-20-64 52.0 383.4 2-24-64 52.1 383.8 3-24-64 52.2 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-19-64 52.5 383.8 3-19-64 52.5 383.8 3-19-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 52.5 383.8 3-24-64 28.3 31.8 3-24-64 28.3 31.8 3-24-64 28.3 418.5 3-24-64 28.3 418.5 3-24-64 28.3 418.7 3-24-64 28.3 418.7 3-24-64 28.3 418.7 3-24-64 28.3 418.7 3-24-64 28.3 30.5 418.5 3-24-64 28.3 30.5 418.5 3-24-64 28.3 30.5 418.7 3-24-64 28.3 30.5 418.7 3-24-64 28.3 30.5 30.5 3-24-64 28.3 30.5 30.5 3-24-64 28.3 30.5 30.5 3-24-64 28.3 30.5 3-24	121.7		151.3					12-02-63		385.5	
1-20-64 52.0 384.0 2-24-64 52.1 383.9 3-24-64 52.2 383.9 4-20-64 52.5 383.9 4-20-64 52.5 383.9 4-20-64 52.5 383.9 4-20-64 52.5 383.9 4-20-64 52.5 383.9 4-10-64 52.5 380.4 6-22-64 55.4 380.6 410.8 8-30-63 30.5 410.8 8-30-63 31.8 415.0 10-21-63 28.4 418.5 10-21-63 28.4 418.5 12-24-63 28.4 418.5 12-24-64 27.7 419.3 12-24-64 27.7 419.8 4-20-64 28.3 418.7 5-19-64 28.3 418.7 5-19-64 28.3 418.7 5-19-64 28.3 418.7 5-19-64 20.5 410.8 8-30-63 103.8 271.2 8-30-63 103.8 271.7 12-02-63 93.0 282.0 12-02-63 93.0 282.0 12-02-63 93.0 282.0	9-25-63 101.9 171.1		171.1		•	_		12-24-63		383.4	
2-24-64 52-1 383-9 3-24-64 52-2 383-8 4-20-64 55-6 383-8 4-20-64 55-6 380-6 185/27E-29001 M 447.0 7-26-63 36-2 410-8 8-30-63 30-5 416-5 9-25-63 31-8 416-5 9-25-63 31-8 418-2 10-21-63 32-0 419-0 12-24-63 28-8 418-2 12-24-63 28-8 418-2 12-24-64 27-2 419-8 12-24-64 27-2 419-8 4-20-64 28-3 418-7 195/26E-14E01 M 375.0 7-26-63 103-8 8-30-63 101-9 273-1 8-30-63 101-9 273-1 195/26E-14E01 M 375-0 7-26-63 30-5 269-5 10-21-63 93-0 282-0 12-24-63 93-0 282-0 12-24-63 93-0 282-0 12-24-63 93-0 282-0 12-24-63 93-0 282-0 12-24-63 93-0 282-0 12-24-63 93-0 283-8	102.3	_	170.7					1-20-64		384.0	
3-24-64 52.2 383.8 4-20-64 52.5 383.5 5-19-64 52.5 383.5 36.0 4 55.4 380.6 5-22-64 55.4 380.6 5-22-64 55.4 380.6 5-22-64 55.4 380.6 5-22-64 55.4 380.6 413.0 5-22-63 31.8 413.0 5-22-63 31.8 413.0 5-22-63 31.8 413.0 413.0 5-22-63 31.8 413.0 413.0 5-22-64 27.5 413.0 413.0 5-22-64 27.5 413.0 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-64 27.5 413.0 5-22-63 27.5 413.0 5-2	87.7	7	185.3					2-24-64		383.9	
185/27E-29001 M	95.6		180.4					3-24-64	52.2	383.8	
5-19-64 55.6 360.4 6-22-64 55.6 380.6 185/27E-29001 M 447.0 7-26-63 36.2 410.8 8-30-63 30.5 416.5 9-25-63 28.0 419.0 12-02-63 31.8 415.2 12-02-63 32.0 4115.0 12-24-64 28.5 418.6 12-24-64 27.7 419.8 2-07-64 28.5 419.8 2-07-64 27.7 419.8 375.0 7-26-63 103.8 271.2 195/26E-14E01 M 375.0 7-26-63 101.9 273.1 9-25-63 101.9 273.1 195/26E-14E01 M 375.0 7-26-63 101.9 273.1 12-02-63 97.3 277.7 12-02-63 97.3 277.7 12-02-63 93.0 282.0 1-20-64 91.2 283.8	88.1		184.9					4-50-64	52.5	383.5	
185/27E-29D01 M			170.3					5-19-64	55.6	380.4	
185/27E-29001 M 447.0 7-26-63 36.2 410.8 6-30-63 30.5 416.5 9-25-63 28.0 419.0 9-26-63 31.8 415.2 10-21-63 32.0 415.0 12-02-63 28.4 418.2 1-20-64 28.3 28.8 418.2 1-20-64 28.5 418.5 2-07-64 27.5 419.5 2-07-64 27.5 419.5 2-07-64 27.5 419.5 2-07-64 27.5 419.5 2-07-64 27.5 419.5 2-07-64 28.3 103.8 271.2 6-22-64	110.4		162.6					-23	55.4	380•6	
185/27E-29001 M 447.0 7-26-63 36.2 410.8 8-30-63 30.5 4116.5 9-25-63 21.8 415.0 10-21-63 32.0 415.0 12-02-63 28.4 418.5 12-24-63 28.8 418.5 12-24-64 28.5 418.5 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 419.8 2-24-64 27.5 418.7 2-24-64 27.5 418.7 2-24-64 27.5 419.8 2-25-64 28.3 416.5 6-22-64 28.3 416.5 6-22-64 28.3 27.5 10-21-63 98.3 277.7 12-02-63 97.3 277.7 12-02-63 97.3 277.7 12-24-63 93.0 282.0 11-20-64 91.2 283.8	104.6		168.4								
8-30-63 30.5 416.5 9-25-63 28.0 419.0 9-25-63 31.8 419.0 10-21-63 32.0 415.2 10-21-63 28.4 418.5 12-24-63 28.8 418.5 1-20-64 28.5 418.5 2-4-64 27.7 419.8 2-4-64 27.5 419.8 4-20-64 28.3 418.7 195/26E-14E01 M 375.0 7-26-63 103.8 2-26-64 101.9 273.1 12-02-63 97.3 277.7 12-02-63 93.0 282.0 1-20-64 91.2 283.8			165.5				0.744	7-26-63	36.2	410.8	6001
9-25-63 28.0 419.0 9-26-63 31.8 415.2 10-21-63 32.0 415.2 110-21-63 32.0 418.6 12-24-64 28.8 418.2 1-20-64 28.8 418.2 2-07-64 27.7 419.3 2-24-64 27.7 419.8 3-24-64 27.5 419.8 3-24-64 27.5 419.8 3-24-64 27.5 419.8 3-24-64 27.5 419.8 3-24-64 28.3 418.7 5-19-64 30.5 416.5 6-22-64 0 10-21-63 98.3 277.7 12-02-63 97.3 277.7 12-02-63 97.3 277.7 12-02-64 91.2 283.8	-26-64 127.7		145.3					8-30-63		416.5	
9-26-63 31.8 415.2 10-21-63 32.0 415.0 12-22-63 28.4 418.6 12-24-63 28.8 418.2 1-20-64 28.8 418.2 2-7-64 27.5 419.8 2-24-64 27.5 419.8 3-24-64 27.5 419.8 3-24-64 27.5 419.8 3-24-64 27.5 418.7 4-20-64 28.3 418.7 4-20-64 28.3 418.7 5-19-64 20.5 416.5 6-22-64 a. 195/26E-14E01 M 375.0 7-26-63 103.8 271.2 12-02-63 97.3 277.7 12-02-63 97.3 277.7 12-24-63 93.0 282.0 1-20-64 91.2 283.8								9-25-63		419.0	
10-21-63 32.0 415.0 12-02-63 28.4 418.6 12-24-63 28.8 418.6 12-24-64 28.5 418.5 2-24-64 27.7 419.3 2-24-64 27.7 419.8 3-24-64 27.7 419.8 3-24-64 27.7 419.8 3-24-64 27.7 419.8 4-20-64 27.2 419.8 4-20-64 27.2 418.7 5-19-64 30.5 416.5 6-22-64	250.0 7-25-63 #	п			1004	_		9-26-63		415.2	
12-02-63 28.4 418.6 12-24-63 28.8 418.2 1-20-64 28.5 418.5 2-07-64 27.7 419.3 2-07-64 27.7 419.3 2-07-64 27.7 419.3 3-24-64 27.5 419.8 4-20-64 28.3 418.7 5-19-64 28.3 418.7 5-19-64 28.3 418.7 5-19-64 28.3 418.7 5-19-64 28.3 271.2 10-21-63 98.3 271.2 12-02-63 105.9 269.5 11-20-64 91.2 283.8	8-30-63							10-21-63		415.0	
12-24-63 28.8 418.2 1-20-64 28.5 418.5 2-07-64 27.7 419.3 2-24-64 27.5 419.8 3-24-64 27.5 419.8 4-20-64 28.5 418.5 5-19-64 27.5 419.8 4-20-64 28.3 418.7 5-19-64 30.5 418.7 5-19-64 30.5 418.7 5-19-64 30.5 418.7 5-19-64 30.5 27.2 11-20-63 97.3 277.7 12-02-63 93.0 282.0 1-20-64 91.2 283.8	112.6		137 6					12-02-63		418.6	
195/26E-14E01 M 375.0 726-64 21.2 26.6 4 18.5 418.5 418.5 418.5 418.5 418.5 418.5 418.5 418.5 418.5 418.7 419.8 420.6 4 28.3 101.9 271.2 26.6 3 102.6 3 101.9 273.1 12-02-63 97.3 277.7 12-02-63 93.0 282.0 11-20-64 91.2 283.8	1010	•	1.01			_		12-24-63		418.2	
195/26E-14E01 M 375.0 7-26-64 27.5 419.8 4-26-64 27.5 419.8 4-26-64 27.5 419.8 4-26-64 27.2 419.8 4-26-64 27.2 419.8 4-26-64 27.2 419.8 5-19-64 30.5 416.5 6-22-64			7 77					1-20-64		2 6 1 7	
2-24-64 27.5 419.5 3-24-64 27.2 419.8 4-20-64 28.3 418.7 5-19-64 28.3 418.7 5-19-64 28.3 418.7 5-22-64 30.5 6-22-64 30.5 101.9 273.1 8-30-63 101.9 273.1 9-25-63 105.5 10-21-63 98.3 277.7 12-02-63 97.3 277.7 12-02-64 91.2 282.0	•	•	145.8					2-07-64		410.3	
3-24-64 27.2 419.8 4-20-64 28.3 418.7 5-19-64 20.5 416.5 6-22-64			154.9			_		7-74-64		419.5	
195/26E-14E01 M 375.0 7-26-64 28.3 418.7 5-19-64 28.3 418.7 6-22-64		,				_		3-76-6	27.2	410.4	
5-19-64 30.5 416.5 6-22-64 0 275.0 7-26-63 103.8 271.2 8-30-63 101.9 273.1 9-25-63 105.5 269.5 10-21-63 98.3 277.7 12-02-63 97.3 277.7 12-02-64 91.2 283.8	3-30-64 98.5 151.5	1512						4-20-64	28.3	418.7	
195/26E-14E01 M 375.0 7-26-63 103.8 271.2 8-30-63 101.9 273.1 9-25-63 105.5 269.5 10-21-63 98.3 277.7 12-02-63 97.3 277.7 12-24-63 93.0 282.0 1-20-64 91.2 283.8								79-07-9		416.5	
195/26E-14E01 M 375.0 7-26-63 103.8 271.2 8-30-63 101.9 273.1 9-25-63 105.5 269.5 10-21-63 98.3 276.7 12-02-63 97.3 277.7 12-24-63 93.0 282.0 1-20-64 91.2 283.8			0			_		79-61-0	0.00	C • 0 T +	
195/26E-14E01 M 375.0 7-26-63 103.8 271.2 8-30-63 101.9 273.1 9-25-63 105.5 269.5 10-21-63 98.3 276.7 12-02-63 97.3 277.7 12-24-63 93.0 282.0 1-20-64 91.2 283.8	• 76 T 0 • 86	126	26			_		+0-77-0	3		
195/26E-14E01 M 375.0 7-26-63 103.8 271.2 8-30-63 101.9 273.1 9-25-63 105.5 269.5 10-21-63 98.3 276.7 12-02-63 97.3 277.7 12-24-63 93.0 282.0 1-20-64 91.2 283.8	*9-97-	13									
8-30-63 101.9 9-25-63 105.5 10-21-63 98.3 12-02-63 97.3 12-24-63 93.0 1-20-64 91.2							375.0	7-26-63		271.2	6001
105.5 98.3 97.3 93.0	100.6 121.4	121.4	21.4		6001			8-30-63		273.1	
98.3 93.0 91.2	101.6	•	120.4					9-25-63		269.5	
97.9 93.0 91.2	101.0		121.0					10-21-63		276.7	
91.5 93.0 91.2	10101 10101 10101	•	1210					13 63 63		7 7 7 6	
91.2		•				_		12-26-21		- 6	
91.2	78.9	7	1630					12-24-63		0.282	
	96.1		125.9					1-20-64		283∙8	

STATE WELL NUMBER	GROUND SURFACE EL EVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
EXETER IRRIGA	IRRIGATION DISTRICT		5-22.26			LINDMORE IRR	IRRIGATION DISTRICT] ICT	5-22.28		
195/26E-14E01 M CONT.	375.0	2-24-64 3-23-64 4-20-64 5-18-64 6-22-64	90.8 n 92.2 96.0 100.4	284.2 282.8 279.0 274.6	6001	205/26E-01P01 M CONT.	360•0	2-24-64 3-23-64 4-21-64 5-18-64 6-22-64	88.0 89.4 102.6	272.0 270.6 257.4	6001
195/26E-23E01 M	359.0	9-26-63	104.2 91.9	254•8 267•1	6001	20S/26E-22C02 M	341.0	9-30-63	123.4	217.6	5001
DSAY-STRAT	LINDSAY-STRATHMORE IRRIG	015T	5-22.27			205/26E-24K01 M	362.5	7-25-63	ec ec	275.0	6001
19S/27E-29D01 M	385.0	9-23-63	74.6	310.4	6001			9-25-63 10-21-63 12-02-63		279.0 282.0 285.0	
20S/27E-06B01 M	372.0	7-26-63 8-30-63 9-25-63 10-16-63 12-02-63	70.9 74.1 64.1 62.1 62.7 61.3	301.1 297.9 307.9 309.9 309.3 310.7	6001			12-24-63 1-21-64 2-24-64 3-26-64 4-22-64 5-19-64 6-22-64	76.0 776.0 778.0 78.0 79.0 84.0 84.0	286.0 285.6 284.6 284.3 284.3 282.6 278.2	
		1-21-64 2-04-64 2-24-64 3-23-64 4-21-64 5-18-64	666666 666666 66666 6666 6666 6666 6666 6666	309.5 308.0 307.9 307.6 307.5 308.1		205/26E-32A01 M	331.5	7-25-63 8-29-63 9-25-63 10-21-63 12-02-63 12-24-63	137.3 140.6 145.8 130.5 115.0	194.2 190.9 185.7 201.0 216.5 218.5	6001
20S/27E-21F01 M 20S/27E-29J01 M	414.0	9-23-63 2-04-64 9-23-63	52•7	60 60 60 60 60 60 60	6001			2-24-64 3-25-64 4-22-64 5-19-64 6-22-64		216.5 212.9 204.7 198.0	
LINDMORE IRR 205/26E-01P01 M	IRRIGATION DISTRICT M 360.0 7 10 112 112 122	RICT 7-26-63 8-30-63 9-25-63 10-21-63 12-23-63 1-20-64 2-04-64	χ, π	261.1 259.4 266.0 266.8 272.0 277.0	6001	20S/27E-29E01 M	392.0	7-25-63 8-29-63 9-25-63 10-21-63 12-02-63 12-24-64 3-25-64	4 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	324. 325. 335. 335. 3336. 3336. 3336. 335. 35.	6001

AGENCY SUPPLYING DATA		6001								6001		,	1004											6001											1004	000							
WATER SURFACE ELEVATION IN FEET		361.8	367.1	368.1	369.7	372.6	3/1.0	3716	0 1 1 6	376.9	387.7		300.0	3000	393.7	205	397.6	390.7	390.6	394.0	391•3	391.3		301.0	312.6	307.0	310.4	313.2	313.8	310.0	•	310.3	30%	299.7	0 676	04.0	0.00	365.0	325.8	٠ د د	324.4		
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-29	47.2	41.9	6.04	39•3	36.4	38.0	50°4	7.16	59.1	48.3	ı	ء د د	20.00	26.3	24.45	22.4	29.3	29.4	26.0	28.7	28.7		0.46	82.4	88.0	84.6	81.8	81.2	0.67	= 1	/ • # 0 0 u	85.3	95•3	110 3	7.611		102.0		111.2			
DATE	ISTRICT	9-23-63	12-02-63	12-23-63	1-21-64	2-24-64	3-25-64	5-19-64	77.	9-23-63	2-04-64	,	7-29-63	0-23-63	10-21-63	11-22-63	12-20-63	2-04-64	3-02-64	3-24-64	5-27-64	6-22-64		7-29-63	8-20-63	9-23-63	10-21-63	11-22-63	12-20-63	5-01-94	3-05-64	3-25-64	2-21-64	6-22-64	27 00 0	69-07-8	9-53-63	11-22-63	2-06-64	3-25-64	2-26-64		
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	0.604								436.0			420.0											395.0											0 111	0./4							
STATE WELL NUMBER	PORTERVILLE	215/27E-21E01 M								21S/27E-23N01 M			215/27E-28E01 M											225/26E-01J01 M												225/2/E-10K01 M							
AGENCY SUPPLYING DATA		6001		6001				•		-			_		1004	7000														6001												000	
WATER SURFACE ELEVATION IN FEET		335.]		267.8	257.1	278.1	289.9	2000	299.3	297.6	280.3	281.7	2/103	0.007	300.8	303.7	395.9	393.1	393.7		392.7	393.6	392.2	392.9	3960	392.6				301.8	303.6	303.4	308.5	313.8	000	518.0	320.0	31/•5	313.0	201.0	• • • • • • • • • • • • • • • • • • • •	36168	2000
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.28	п 56.9	•	104.2	114.9	93.9	82.1	73.2	72.7	74.4	91.7	90.3	100.7	• • • •	28.2	25.2	33.1	35.9	35.3	11	36.3	35.4	36.8	36.1	32.4	36.4		5-22-29	;	12.2	4.07	9.07	65.5	60.2	700	0.00	0 4 ° 0	200	0.10	1.00	,	7.14	100
DATE	RICT	5-19-64	3	7-25-63	8-29-63	9-23-63	10-21-63	12-02-63	1-21-64	2-24-64	3-25-64	4-22-64	5-19-64 6-33-64	* 0-77-0	7-25-63	8-20-63	9-23-63	10-21-63	12-02-63	12-24-63	1-21-64	2-24-64	3-25-64	4-25-64	5-19-64	6-22-64		ISTRICT	;	1-24-63	8-20-63	9-23-63	10-21-63	11-22-63	77-70-6	#4-#0-7	3-07-64	3-62-64	7	49-77-9		1-62-63	10-14-0
GROUND SURFACE ELEVATION IN FEET	LINDMORE IRRIGATION DISTRICT	392.0		372.0											0.99.4	0067												PORTERVILLE IRRIGATION DISTRICT		3/4.0											001	0.60	
STATE WELL NUMBER	LINDMORE IRR	205/27E-29E01 M		215/26E-01001 M											215/27F-02F01 M													PORTERVILLE		215/20E-23NU1 M											M 10310-310/310	# 1037272727	

AGENCY SUPPLYING DATA		6001	6001		6001		6001	6001
WATER SURFACE ELEVATION IN FEET		242.0	205.5	20165 21965 23765 24165 24365 22265 21965	215.4	297.0 272.0 279.0 277.0 281.0 284.0 286.0	120.0 124.0 124.0 120.0 125.0 119.0 131.0 131.0	96.5 119.5 182.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-30	49.0	116.5	120.5 102.5 102.5 84.5 80.5 78.5 78.5 102.5	106.6	62.0 87.0 80.0 82.0 75.0 75.0	124.0 120.0 120.0 115.0 115.0 119.0 113.0 113.0	155.0
DATE	ON DIST	5-01-64 6-03-64	7-02-63	9-03-63 11-08-63 12-08-63 11-08-63 1-05-64 2-01-64 4-03-64 5-01-64	6-03-64 7-02-63 8-01-63	9-03-63 9-28-63 10-21-63 12-02-63 1-05-64 2-01-64 4-03-64 5-01-64 6-03-64	7-02-63 8-02-63 9-04-63 10-27-63 11-02-64 3-02-64 4-03-64 6-03-64	9-26-63 2-06-64
GROUND SURFACE ELEVATION IN FEET	RIVER IRRIGATION DIST	291.0	322.0		359.0		244.0	251.5
STATE WELL NUMBER	LOWER TULE R	215/25E-16A01 M CONT.	21S/26E-06G02 M		21S/26E-10H01 M		225/24E-09A01 M	225/24E-15A01 M
AGENCY SUPPLYING DATA		6001	6001	6001		6001	6001	
WATER SURFACE ELEVATION IN FEET		118.2		114444 114444 116465 116665 11	148.5 148.5 148.5 147.7	155.0 156.0 156.0 156.0 151.0 160.0 160.0	159 158 168 206 258 258 258 258 258 258 258 258 258 258	242.0 234.0 241.0 244.0
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22•30	103•3 83•8		8 8 8 8 8 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9	81.5 81.5 82.5	995.00 995.00 995.00 997.00 990.00	12 992 12 992 13 99 90 14 99 90 16 90 16 90 17 90 18 90 19 90 10 9	649 57.0 50.0 50.0
DATE	ON DIST	9-24-63	9-30-63	200100000000000000000000000000000000000	3-02-64 4-03-64 5-01-64 6-03-64	7-02-63 8-02-63 9-04-63 9-30-63 11-08-63 12-05-63 1-02-64 3-03-64	5-01-64 6-03-64 7-02-63 8-02-63 9-04-63 9-04-63 11-08-63	1-05-64 2-01-64 3-02-64 4-03-64
GROUND SURFACE ELEVATION IN FEET	RIVER IRRIGATION DIST	221.5	253.0	230.0		251.0	285.0	
STATE WELL NUMBER	LOWER TULE R	215/23E-22J01 M	215/24E-15H01 M	215/24E-31D01 M		21S/24E-35M01 M	215/25E-08H01 M 215/25E-16A01 M	

AGENCY SUPPLYING DATA]	6001	6001		6001	6001	6001
WATER SURFACE ELEVATION IN FEET			4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	415.4 416.0 406.8	260.1 277.8 278.6 286.3 279.2 274.8	225. 227. 237. 236. 236. 236. 236. 236. 236. 236.	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.31	В	131.3 140.0 137.4 1118.2 108.7 105.2 105.2	119.6 119.0 128.2 5-22.32	135.9 118.2 117.4 109.7 116.8		208 208 202 207 207 197 195
DATE	ICT	6-22-64	7-25-63 8-29-63 9-23-63 10-21-63 12-02-63 12-24-63 1-21-64 2-24-64	5-22-64 5-19-64 6-22-64 RICT	8-20-63 9-23-63 11-22-63 2-07-64 3-25-64 5-26-64	7-25-63 8-29-63 9-24-63 10-21-63 12-24-63 1-21-64 1-21-64 2-24-64	5-12-64 6-22-64 7-25-63 8-29-63 9-24-63 10-21-63 12-24-64 1-21-64 1-21-64 1-21-64
GROUND SURFACE ELEVATION IN FEET	IRRIGATION DISTRICT	524.0	535.0	5- 6- 6- SAUCELITO IRRIGATION DISTRICT	396.0	371.0	339.0
STATE WELL NUMBER	VANDALIA IRR	225/28E-07001 M CONT.	225/28E-18A01 M	SAUCELITO IR	225/26E-12R02 M	225/26E-15J01 M	225/26E-32E01 M
AGENCY SUPPLYING DATA		6001		6001	6001		
WATER SURFACE ELEVATION IN FEET		174.5	1748.5 1748.5 1900.5 1801.5 1799.5 7	170.0 159.0 219.7 215.5	225.5 198.5 205.5 203.5 211.5	2154 2166 2166 2066 2066 3066 3066 3066 3066 3066 30	99999999999999999999999999999999999999
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.30	119.5	1115 1116 1116 1116 1116 1116 1116 1116	130.5 141.5 117.3 121.5	105.5 132.5 125.5 127.5 117.5	115.5 114.5 117.5 117.5 124.5 5-22.31	131.4 131.6 131.6 125.2 125.2 127.0 127.0 131.7
DATE	ON DIST	8-02-63 9-04-63 9-28-63	7-28-63 12-08-63 12-08-64 1-02-64 2-01-64 3-02-64 4-03-64 5-01-64	9-26-63 2-06-64 9-23-63 2-03-64	7-01-63 8-02-63 9-04-63 9-25-63 10-21-63 11-08-63	1-05-64 2-04-64 3-02-64 5-01-64 5-01-64 6-03-64 7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	10-21-63 9-29-63 9-29-63 12-02-63 12-02-63 12-24-64 2-24-64 2-25-64 3-25-64 5-19-64
GROUND SURFACE ELEVATION IN FEET	RIVER IRRIGATION	294•0		300.5	331.0	VANDALIA IRRIGATION DISTRICT	
STATE WELL NUMBER	LOWER TULE R	22S/25E-10E01 M CONT.		225/25E-15A01 M 225/26E-06A01 M	225/26E-06F04 M	VANDALIA IRR	

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
SAUCELITO IRA	SAUCELITO IRRIGATION DISTRICT	RICT	5-22 • 32			PIXLEY IRRIG	PIXLEY IRRIGATION DISTRICT	1	5-22•33		
22S/26E-32E01 M CONT.	339.0	3-25-64 4-22-64 5-19-64 6-22-64	192.5 203.5 204.2 n	146.5 135.5 134.8	6001	235/24E-16R01 M CONT•	222.0	1-20-64 2-24-64 3-26-64 4-23-64	121.7 120.5 124.4 126.1	100.3 101.5 97.6 95.9	6001
235/26E-02R01 M	397.0	9-25-63 2-05-64	157.5 148.8	239.5 248.2	6001			6-22-64	130.1	91.9	
235/26E-03R01 M	381.0	7-25-63 8-29-63 9-19-63 10-22-63 12-24-64 2-24-64 3-25-64 5-19-64 6-22-64	186.6 187.4 188.7 173.0 167.0 165.5 163.2 177.2 117.5 1181.6	194.4 193.6 192.6 192.3 208.0 214.0 215.5 217.8 203.8 203.5	6001	235/25E-09002 ₩	278.0	7-25-63 8-29-63 9-20-63 10-22-63 12-03-63 12-23-64 1-20-64 2-24-64 3-26-64 4-22-64 5-19-64	DRY 171 - 5 185 - 0 165 - 0 165 - 0 185 - 0 185 - 0 185 - 0	106.5 124.0 128.3 132.3 120.5 102.3 96.1	6001
PIXLEY IRRIG	PIXLEY IRRIGATION DISTRICT	1	5-22.33			235/25E-14C01 M	300•0	9-19-63 1-31-64	83.0 75.5	217.0	6001
225/25E-25N01 M	310•0	7-25-63 8-29-63 9-24-63 10-22-63 12-03-63 12-23-63 1-20-64 2-26-64 4-22-64 5-19-64	207.5 209.7 200.3 191.9 184.1 178.6 188.4 198.8 186.4 190.7	1002.5 1000.3 1000.7 118.1 125.9 128.6 1310.4 127.2 1123.6 119.3	6 001	235/25E-15J02 M	291.0	7-25-63 8-29-63 9-19-63 10-22-63 12-03-63 12-23-63 12-23-64 4-22-64 5-19-64 6-22-64	202.0 206.1 196.2 196.3 194.3 160.0 151.4 161.8 175.1	89.0 84.9 94.8 96.7 131.0 133.3 129.6 129.6	6001
235/23E-02B01 M 235/24E-16R01 M	207.0	9-24-63 1-30-64 7-26-63 8-30-63 9-23-63 110-22-63 12-03-63	127.8 130.5 130.7 125.0	94.2 91.5 91.3 92.0 97.0	6 001	235/25E-16N03 M	263.0	7-17-63 8-14-63 9-12-63 10-10-63 11-04-63 12-04-64 2-04-64 3-03-64	196.3 1016.3 1016.3 1156.0 1156.0 1134.0 1138.0	66.7 61.3 68.6 88.6 107.0 118.4 128.4	2000

AGENCY SUPPLYING DATA		6001		6001		6001	6001
WATER SURFACE ELEVATION IN FEET		100.0 104.7 111.8 105.3	131.0 126.8 103.8 99.2 94.7	196.2 196.3 196.6 196.3	196.5 196.5 196.5 196.2 196.2	1139.46.46.46.46.46.46.46.46.46.46.46.46.46.	88888888888888888888888888888888888888
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.34	95.0 90.3 83.2	65.00 68.00 91.20 95.88 100.33	13.4 13.4 13.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	733.7 755.7 755.7 755.7 725.9 725.0 725.0 725.0 725.0 725.0	123.0 125.1 127.5 127.0 127.8
DATE		7-26-63 8-30-63 9-23-63 10-22-63	12-04-63 12-23-63 1-20-64 2-25-64 3-26-64 4-23-64 5-19-64 6-23-64	7-26-63 8-30-63 9-24-63 10-22-63	12-23-63 12-23-63 12-20-64 2-24-64 3-26-64 4-23-64 5-19-64 6-22-64	7-26-63 8-30-63 9-24-63 12-24-63 12-24-64 1-20-64 1-20-64 2-24-64 4-23-64 5-19-64 5-22-64	7-26-63 8-30-63 9-24-63 10-22-63 12-04-63
GROUND SURFACE ELEVATION IN FEET	ALPAUGH-ALLENSWORTH AREA	195.0		210.0		210•0	210.0
STATE WELL NUMBER	ALPAUGH-ALLE	22S/23E-28L01 M		235/23E-33A01 M		235/23E-33A04 M	235/23E-33A05 M
AGENCY SUPPLYING DATA		2000	2000		5000	6001	
WATER SURFACE ELEVATION IN FEET		102.8 100.4 82.0	157.7.7 159.5 161.8 165.6 165.6 165.6	167.5 167.3 166.0 161.2	160.8 160.8 161.6 163.6 165.4 167.3	116516 106900 10690 10690 10690 10690 10690 10690 10690 10690 106900 10690 10690 10690 10690 10690 10690 10690 10690 106900 10690 10690 10690 10690 10690 10690 10690 10690 106900 1069	161.3 163.9 165.5 164.7 156.6
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-33	160.2 162.6 181.0	105.3 105.3 101.2 101.2 97.4 96.1	95.5 95.7 97.0 101.8	108.2 108.2 107.4 105.4 103.6 101.7	10 9997 10 9977 10 99777 10 9077 10 9077 10 9077 10 9077 10 9077 10 9077 10 9077 10 90	183.7 181.1 179.5 180.3 188.4
DATE		3-18-64 3-31-64 5-01-64 6-26-64	7-17-63 8-14-63 9-12-63 10-10-63 11-04-63 12-04-63	3-03-64 3-03-64 5-01-64 6-26-64	7-17-63 8-14-63 9-12-63 10-10-63 11-04-63 12-04-63 1-05-64	3-3-64 3-31-64 5-01-64 6-26-64 7-25-63 10-22-63 12-24-63	2-24-64 3-25-64 4-22-64 5-19-64 6-22-64
	1 💆						
GROUND SURFACE ELEVATION IN FEET	PIXLEY IRRIGATION DISTRICT	263.0	263.0		269.0	345.0	

AGENCY SUPPLYING DATA		6001		6 001	6001	6001	6001	
WATER SURFACE ELEVATION IN FEET		148.5 150.2		922.4 882.4 1112.6 1116.9 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0 1118.0	191.0 198.0	158.0 168.0 114.1	215.2 216.8 217.0	218.0 219.5 220.0 219.0 218.4 217.7
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22.34	100	u o o	133.3 126.2 126.2 113.6 109.1 109.0 109.0 112.7 112.7 112.7 112.7 12.7 12.7 12.7	5-22.35 105.0 98.0	198.5 188.5 419.2		
DATE		10-22-63 12-03-63 12-23-63 1-20-64 2-24-64 3-26-64	4-23-64 5-20-64 6-23-64	7-26-63 8-30-63 9-19-63 10-22-63 12-23-63 12-23-64 1-20-64 2-25-64 3-26-64 5-20-64 5-20-64	DIST 9-23-63 2-04-64	9-24-63 2-04-64 9-20-63	7-25-63 8-29-63 9-19-63	10-22-63 12-03-63 12-23-63 1-20-64 2-24-64 3-26-64
GROUND SURFACE ELEVATION IN FEET	ALPAUGH-ALLENSWORTH AREA	249.0		226.0	DELAMO-EARLIMART IRRIG DI 5E-27JO2 M 296.0	356.5 533.3	320.0	
STATE WELL NUMBER	ALPAUGH-ALL	24S/24E-25F01 M CONT.		245/24E-32K04 M	DELAMO-EARL 23S/25E-27J02 M	235/26E-29P01 M 235/27E-28J01 M	24S/25E-02H01 M	
AGENCY SUPPLYING DATA		6001	6001	6001	6001			6001
WATER SURFACE ELEVATION IN FEET		8 8 8 9 9 1 1 8 8 8 8 9 9 9 9 9 9 9 9 9	152.4	128.2 1183.3 1183.3 123.8 131.2 131.2 130.3 125.6 125.6 43.6	30.6 18.7 - 1.8	8 0 51 0 73 0 73 0 9 3	23.4	188.8 187.5
GROUND SUR- FACE TD WATER SURFACE IN FEET	5-22.34	124.9 122.7 121.7 121.2 121.4 122.0	51.6 52.3	8 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		210.0 166.4 154.5 144.9		46.2 47.5 0
DATE		1-20-64 2-24-64 3-26-64 4-23-64 5-19-64	9-16-63 1-30-64	7-26-63 9-16-63 9-16-63 10-22-63 12-03-63 12-23-63 12-23-64 2-24-64 2-26-64 4-22-64 5-20-64 6-23-64	1-30-64 7-26-63 8-30-63	9-19-63 10-22-63 12-03-63 12-23-63 1-20-64 2-24-64	3-26-64 4-23-64 5-20-64 6-23-64	9-19-63 1-30-64 7-26-63 8-30-63 9-19-63
GROUND SURFACE ELEVATION IN FEET	ALPAUGH-ALLENSWORTH AREA	210.0	204.0	205.0	218.0			235.0
STATE WELL NUMBER	ALPAUGH-ALLE	235/23E-33A05 M CONT.	245/23E-21802 M	245/23E-34R01 M	245/24E-20R01 M			245/24E-23001 M 245/24E-25F01 M

AGENCY SUPPLYING DATA		6001	5000				6001	5000								6001			2000							
WATER SURFACE ELEVATION IN FEET		157.5 149.0	112.0	163.2	159.6	102.5	191.5 203.5	270.0	270.9	272.5	274.7	275.0	274.1	273.0	275.0	9,00	_		145.8	143.4	14204	157.6	165.7	166.6	165.8	159.4
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-35	396.0 377. 5	393.5 385.5	342.3	345.0	403.0 500.6	238.5	118.0	117.1	115.5	113.3	113.0	113.9	115.0	113.0	000	200C	77_	107.2	109.6	110.6	95.4	87.3	86.4	87.2	98.6
DATE	ST	9-19-63 1-25-64	7-17-63	10-10-63	3-04-64	5-01-64 6-25-64	9-26-63 2-11-64	7-18-63	8-16-63	9-12-63	11-14-63	1-27-64	2-18-64	3-16-64	5-18-64	9-19-63	1000		7-18-63	8-16-63	9-12-63	11-11-63	12-10-63	1-27-64	2-18-64	3-16-64
GROUND SURFACE ELEVATION IN FEET	MART IRRIG DIST	526.5	505.5				430•0	388.0								750.0	411040		253.0							
STATE WELL NUMBER	DELANO-EARLIMART IRRIG	24S/27E-31P01 M	255/26E-01A02 M				255/26E-10803 M	255/26E-16P01 M								255/27E-22H01 M	A A G A G A A A A A A A A A A A A A A A		255/24E-12A02 M							
AGENCY SUPPLYING DATA		6001	6001	6001	6001	6001	2000	6001	2000			6001	2000			6001	000	2								
WATER SURFACE ELEVATION IN FEET		217.5	163.5 183.5	214.5	186.0 194.0	194.0 222.0	242.3 258.4 259.6	250.0	260.5	264.6	261.4	258.0	257.7	253.1	244.5	263.5	171.6	175.7	179.0	189.3	201.00	208.9	204.9	197.3	189.7	161.1
GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22•35	102.5	140.5	77.0	190.0 182.0	184.0 156.0	157.7	150.0	139.5	135.4	138.6	142.0	142.3	146.9	155	132.5	273.6	269.3	266.0	255.7	24/98	236.1	240.1	247.7	255.3	283.9
DATE	015T	5-20-64	9-23-63	9-19-63 1-30-64	9-24-63	9-24-63	7-18-63 8-16-63 9-12-63	9-24-63	10-11-63	11-14-63	1-27-64	2-06-64	2-18-64	3-16-64	5-18-64	9-26-63	7-17-63	8-14-63	9-12-63	10-10-63	11-05-63	1-05-64	2-05-64	3-04-64	-31-6	6-25-64
GROUND SURFACE ELEVATION IN FEET		320.0	304•0	291•5	376.0	378.0	0.004									396.0	0.44									
STATE WELL NUMBER	DELANO-EARLIMART IRRIG	245/25E-02H01 M CONT.	245/25E-10A01 M	245/25E-33J01 M	245/26E-05R01 M	245/26E-20H01 M	245/26E-29R02 M									245/26E-32G01 M	M 1037E-376/376									

AGENCY SUPPLYING DATA		2000		2000	1009	9000	8700
WATER SURFACE ELEVATION IN FEET		196.1	176.5 138.2	130 130 135 135 135 135 135 130 130 130 130 130 130 130 130 130 130	135.5 154.2	104 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	129.7 84.7 84.7 98.7 80.7 183.7 183.7 173.7
GROUNO SUR- FACE TO WATER SURFACE IN FEET	5-22•36	139.9	159.5 197.8	3722 3722 376.9 376.9 362.3 362.3 373.6 373.6 373.6	307.5 288.8	262.9 276.9 274.8 268.2 262.5 259.1 257.1 270.1 271.5	5-22.37 222.6* 267.6* 271.6* 273.6* 168.6
DATE		2-18-64	5-18-64 6-24-64	7-18-63 8-16-63 9-12-63 10-11-63 11-14-63 12-10-63 12-10-64 2-18-64 4-20-64 5-18-64	9-20-63 1-28-64	7-18-63 8-16-63 9-12-63 10-11-63 11-14-63 12-10-64 2-18-64 4-20-64 5-19-64	7-01-63 7-15-63 8-01-63 8-19-63 9-04-63 1-02-64 1-15-64 2-03-64
GROUND SURFACE ELEVATION IN FEET	JOAQUIN MUD	336.0		503.0	443.0	411.0	WATER STORAGE 352+3
STATE WELL NUMBER	SOUTHERN SAN	26S/25E-02001 M CONT.		265/26E-10R01 M	265/26E-16P01 M	26S/26E-29C01 M	NORTH KERN W
AGENCY SUPPLYING DATA		2000	6001	5 000	6001	2000	5000
WATER SURFACE ELEVATION IN FEET		156•5	177.7	107.8 90.2 86.4 103.3 126.7 141.0 152.1 141.9 123.9 111.9	130.0	217.4 218.2 221.6 223.6 223.6 218.3 230.5 231.6 227.9 228.4	209.5 226.0 208.1 206.9 197.2 198.5 199.7
GROUNO SUR. FACE TO WATER SURFACE IN FEET	5-22•36	96.5	81•3 ¤	178 1956 1996 1896 1820 1682 1939 1939 1940 1145 1167 1167 1167 1167 1167 1167 1167 116	192.0 149.6	176.6 175.6 172.6 169.4 175.7 163.7 165.6 165.6	204.5 188.0 125.4 126.6 138.8 137.5
OATE		5-18-64 6-24-64	9-17-63 1-27-64	7-18-63 8-16-63 9-12-63 10-11-63 11-14-63 12-10-63 1-27-64 2-18-64 4-20-64 5-18-64	9-17-63 1-27-64	7-18-63 8-16-63 9-12-63 10-11-63 11-14-63 12-16-64 2-18-64 4-20-64 5-18-64	9-19-63 1-29-64 7-18-63 8-16-63 9-12-63 11-14-63 12-10-63
GROUNO SURFACE ELEVATION IN FEET	JOAQUIN MUD	253.0	259.0	286.0	322.0	394.0	414.0 333.5 336.0
STATE WELL NUMBER	SDUTHERN SAN	25S/24E-12A02 M CONT•	5S/25E-06H01 M	255/25€-22001 M	25S/25E-35P01 M	255/26E-28E01 M	25S/26E-28H02 M 26S/25E-01C01 M 26S/25E-02G01 M

AGENCY SUPPLYING DATA		5000									8700											1004			8700												2000			
WATER SURFACE ELEVATION IN FEET			132.5	152.4	157.1	160.4	10101		142.5		10001	136.1	129.1	134.1	117.1	155.1	158.1	158.1	160.1	6	145.1				149.0	161.0	165.0	170.0	171.0	174.0	175.0	175.0	176.0	177.0	152.0		221.9	7.0°7	221.5	1 1 1
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-37	םם	314			286.4	• • • • • • • • • • • • • • • • • • • •	םו	304.3	n	335.6*	299.6#	306.6*	301.6*	318.6*	280.6*	277.6*	277.6*	275.6#	16.6	*9*062						196.1#	191.1*	190.1*	187.1#	186.1*	186.1#	185.1*	84.1	209.1#				166.5	
DATE	0151	7-18-63	9-12-63	11-14-63	12-10-63	1-27-64	79-91-7	4-20-64		6-24-64	7-05-63	7-18-63	8-23-63	9-09-63	9-23-63	12-00-63	1-06-64	1-21-64	5-06-64	2-24-64	5-05-64	0-10-63	1-27-64		7-08-63	7-16-63	8-06-63	8-26-63	9-04-63	12-00-63	1-02-64	1-15-64	2-03-64	2-16-64	6-15-64		7-18-63	8-15-63	9-12-63	•
GROUND SURFACE ELEVATION IN FEET	NORTH KERN WATER STORAGE	446.8									435.7											0.753	00130		361.1												388.0			
STATE WELL NUMBER	NORTH KERN W	275/26E-20D01 M									275/26E-20E01 M											W COUCE 3500 250			285/25E-13L01 M												285/26E-21H01 M			
-					_															_								_		_			_	_				_		_
AGENCY SUPPLYING DATA		8 7 0 0	8 700									8 700											1004	•		2000													1000	
WATER AGENCY SURFACE SUPPLYING ELEVATION DATA IN FEET		144.7 8700 72.7	œ	73.5	64.5	74.5	156.5	155.5	151.5	148.5 60.5	•	35.0	133.0	128.0	126.0	170.0	164.0	161.0	163.0	163.0	å,	76•0	~	327.5			264.5	265.1	266.3	272.6	275.1	278.3	279.0	278.5	274.6	274.0	269•3	4	1000 6001	
	5-22.37		103.5	73.5	*	262-1# 74-5 248-1# AB-5				186.1* 148.5 274.1* 40.5		35.0			266.0 126.0			_	-	_	<u> </u>	•	317.8	0					127.7 266.3		118.9 275.1		115.0 279.0				124.7 269.3	3 771	n	
R. WATER SURFACE ELEVATION IN FEET	0157 5-22.37	144.7	233.1# 103.5 8	73.5	272,1#		180.1	181.1*	185.1#			.0* 135.0	259.0*	264.0		222.0	228.0	231.0	-03-64 229.0 1	229.0 1	294.0	.9/	83.2 317.8	327.5		3 129.1 264.9	129.5	128.9	127.7		118.9	115.7	115.0	115.5	-20-64 119.4		4.7 269.	3 771 6 71.0.6	C • * * * T	
GROUND SUR- FACE TO SURFACE WATER ELEVATION IN FEET IN FEET		207.6 144.7 279.6* 72.7	233.1# 103.5 8	7-15-63 263.1* 73.5	272,1#	262.1#	180.1	181.1*	185.1#	186.1*		257.0* 135.0	259.0*	264.0	266.0	222.0	228.0	231.0	229.0 1	229.0 1	294.0	316.0 76.	83.2 317.8	1-29-64 73.5 327.5		3 129.1 264.9	129.5	128.9	127.7	121.4	118.9	115.7	115.0	115.5	119.4	-18-64 120.0	-24-64 124 ₀ 7 269 ₀	3 176 67-61-0	211.5 144.5	

DATE		18"	GROUND SUR- FACE TO WATER	WATER SURFACE ELEVATION	AGENCY SUPPLYING	STATE WELL	GROUND SURFACE ELEVATION	DATE	GROUND SUR- FACE TO WATER SURFACE	1	AGENCY SUPPLYING DATA
ELEVATION IN FEET	EET		SURFACE IN FEET		DATA		IN PEET		N FEET	IN FEET	4
NORTH KERN WATER STORAGE	RAGE	DIST	5-22.37			SHAFTER-WASCO IRRIGATION		DIST	5-22.38		
0	c	11-14-63	162.7	22423	2000	275/25F-28A01 M	375.0	12-10-63	213.5	161.5	2000
	>	12-10-63	159.9	228.1				1-27-64	207.9	167.1	
		1-27-64	155.6	232.4				2-18-64	-		
		2-18-64	155.2	232.8				3-16-64	1.662	121.9	
		3-17-64	156.6	231.4				4-20-64	70/47	0 0 0 0 0 0 0	
		4-20-64	158.7	229.3				5-18-64	7.747	0 - 7 6 7	
		5-18-64	160.3	227.7				49-47-9	**997	0 0 0 7	
		6-24-64	163.6	224.4				27-01-5	187.2	147.7	5000
						28S/25E-16D03 M	335.0	6-16-62	179.7	155.3)
SHAFTER-WASCO IRRIGATION	NOL	DIST	5-22.38					9-12-63		145.9	
			0	,	9			10-11-63		150.0	
322.0	_	(-18-63	258.4	4.50	200			11-14-63	181.2	153.8	
		0-12-63		65.00				12-10-63		156.3	
		10-11-62		96.3				1-27-64		158.5	
		11-11-63		126.3				2-18-64	176.6	158.4	
		12-10-63		133.5				3-16-64	184.9	150.1	
		77 27 77		136.				4-20-64	183.8	151•2	
		+9-17-T		1 20 1				5-18-64	185.2	149.8	
		+9-01-7		00.0	-			6-24-64	192.8	142.2	
		7-10-07	217.8	104.2							
		79-81-5	226.2	95.8		KERN RIVER DE	DELTA AREA		2-22-40		
		4-24-64	268.8	53.2							•
						285/24E-23D01 M	309.0	7-18-63	186.4	122.6	2000
316.0	0	7-03-63	242.8*	73.2	8700			8-15-63	191.2	117.8	
•		7-17-63		97.2				9-12-63	190•3	118.	
		0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		90.2				10-11-63		125.5	
		8-22-63	238.8*	77.2				11-14-63		127.7	
		9-06-63		88.2				12-10-63	176	132.9	
		9-26-63	215.8*	100.2				1-27-64		132.0	
		12-18-63		128.2				2-18-64	176.4	132.6	
		1-05-64		130.2				3-17-64	182.1	126.9	
		1-20-64		129.2	•			4-20-64	181.1	127.9	
		74-6		128.2				5-18-64	183.0	126.0	
		*0-CO-7	0 7	1001				49-54-9	192.9	116.1	
		*9-07-7		70,71	_						
		6-18-64	291.8	7.40				7-15-63	150.0	176.0	6001
						285/25E-34JUI M	250.0	60-61-7		17.)
27	475.0	7~18-63			2000			8-14-63		1 / 4 • O	
•	2	8-15-63	258	117.0				9-16-63		168.0	
		0-01-0						11-14-63		176.0	
		9-17-63		130.9				12-12-63		171.0	
		10-11-63	223.1	151.9				75-90-2	-	177.0	
		11-14-63		13343							
						285/26E-29L01 M	349.0	7-08-63	166.1*	182.9	8700
								CO-01-1			

AGENCY SUPPLYING DATA		2000				8700		0494		5120	2000
WATER SURFACE ELEVATION IN FEET		300.5	303°4 305°9 307°9	310.2	310.4 309.2 307.0	185.6 209.6 185.6 216.6 197.6 233.6 230.6 230.6	220.6 202.6 193.6	245.2 249.5 249.5 249.5 249.6 259.7 255.1 255.1	245.6 245.0	275•1 276•1	258•2 257•1 260•0
GRDUND SUR- FACE TO WATER SURFACE IN FEET	5-22.40	84.5	81.6 79.1 77.1	74.8 74.1 74.2	74.6 75.8 78.0	1333	98.7* 116.7* 125.7*	00000000000000000000000000000000000000	6 6 2 6 6 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	64.0	79.8 80.9 78.0
DATE		8-15-63 9-12-63	10-11-63 11-14-63 12-10-63	1-27-64 2-18-64 3-17-64	4-20-64 5-18-64 6-24-64	7-12-63 7-23-63 8-13-63 8-30-63 9-11-63 12-00-63 1-08-64 1-2-64	2-28-64 4-23-64 6-22-64	2-04-63 8-02-63 9-07-63 110-02-63 11-02-63 12-02-64 1-03-64 2-03-64	5-04-64 5-28-64 6-30-64	9-19-63 1-23-64	7-17-63 8-15-63 9-12-63
GROUND SURFACE ELEVATION IN FEET	DELTA AREA	385.0				319.3		308°5		339.1	338.0
STATE WELL NUMBER	KERN RIVER	295/27E-34N01 M CONT.				305/25E-03H01 M		305/25E-22D01 M		30S/26E-16J01 M	30S/26E-22P02 M
AGENCY SUPPLYING DATA		8700	6001			2000		2000	000	3	
WATER SURFACE ELEVATION IN FEET		180.9	185.9	206.9 206.9 207.9	192.9 189.9 183.9	1800.3 1770.5 1770.1 1810.7 1850.6 1890.6 1870.8	185.6 183.5 177.2	2995.2 2995.2 3095.2 3184.6 3111.1 3005.6	298.9	•	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.40	168.1*	163.1	142.1* 142.1* 141.1*	156.1* 159.1* 165.1	L N O W 4 N 4 N 0	4 1/2 80				
			127	144	156 159 165	1649.7 1150.9 1150.9 1148.3 1140.4 1140.4 1140.2 1140.2	144. 146. 152.	000 000 000 000 000 000 000 000 000 00	99.00		
DATE				1-02-64 14 1-15-64 14 2-03-64 14		7-18-63 149 8-15-63 152 9-12-63 150 10-11-63 144 11-14-63 141 12-10-63 141 1-27-64 140 2-18-64 140		7-18-63 8-15-63 8-15-63 10-11-63 11-14-63 11-14-63 11-27-64 12-10-63 1-27-64 12-18-64 12-18-64 12-18-64 12-18-64 12-18-64		,	
GROUND SURFACE ELEVATION IN FEET	KERN RIVER DELTA AREA										

AGENCY SUPPLYING DATA		5120	8700		2000		5120	6001		
WATER SURFACE ELEVATION IN FEET		233°3 243°3	196.5 194.5 194.5 201.5 226.5	219.5 239.5 235.5 218.5 220.5	201.6 216.1 228.1 241.6	223.9	241•1 247•6	726.7	23999999999999999999999999999999999999	247.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.40	61.2 51.2	144.6* 146.6* 146.6* 147.6* 139.6*	121.6* 101.6 105.6 122.6* 120.6	108°4 93°9 11 11 11 11 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	86.1 82.8 82.8	71.0	# C	75°0°0°1°0°0°0°1°0°0°0°1°0°0°0°1°0°0°0°0°1°0	*0.05
DATE		9-18-63	7-08-63 7-19-63 8-13-63 8-26-63 9-10-63 12-00-63	1-22-64 2-10-64 2-26-64 5-26-64 6-22-64	7-17-63 8-14-63 9-11-63 10-10-63 11-13-63 12-11-63	3-17-64 4-21-64 5-19-64 6-25-64	9-18-63	9-16-63	7-10-63 8-14-63 8-27-63 9-11-63 10-03-63 12-20-63	1-22-64 1-22-64 2-10-64
GROUND SURFACE ELEVATION IN FEET	RIVER DELTA AREA	294.5	341.1		310.0		312.1	321.1	• **	
STATE WELL NUMBER	KERN RIVER DE	315/26E-35D01 M	315/27E-04L01 M		315/27E-28H01 M		315/27E-28J01 M		315/28E-30M01 M	
AGENCY SUPPLYING DATA	-	2000		8700		5120	2000			5120
		<i>ლ</i>	0 H 2 & K 2 & C	00000				.0 .+ 1	0 4 4 4 4	9
WATER SURFACE ELEVATION IN FEET		267.3	269.9 269.9 269.9 265.2 265.5 265.1 258.9	250000000000000000000000000000000000000	255.0 272.0 272.0 270.0 264.0 264.0 264.0	255.0 258.0 237.6	254.6	256.6	2669 2669 2669 2669 2689 2689 2689 2689	247.1 251.6
	5-22-40	70.7 267. 68.5 269.		88.7* 250. 86.7* 252. 96.7* 242. 84.7* 254.		104.0 255.0 101.0 258.0 116.8 237.6		102.4 256.6 98.6 260.4		85.9 247. 81.4 251.
GROUND SUR. WATER FACE TO SURFACE SURFACE ELEVATION IN FEET IN FEET	5-22.40		72.8 72.8 72.5 72.5 72.9		665-74 893-74 71-74 71-74 89-74		104.4	102.4 98.6		0.4
GROUND SUR- FACE TO WATER SURFACE IN FEET	DELTA AREA 5-22-40	70.7	72.8 72.8 72.5 72.5 72.9	88 88 88 88 8 8 8 8 8 8 8 8 8 8 8 8 8	665-74 893-74 71-74 71-74 89-74	104.0 101.0 116.8	-17-63 104.4 -15-63 105.4	102.4 98.6	89.7 89.7 90.1 93.1 96.6 95.6	85.9 81.4

AGENCY SUPPLYING DATA		2000			5050	6001	2000				6001 5050	6001	6001	6001	5120	6001	2000
WATER SURFACE ELEVATION IN FEET		220.6 223.3 225.7	221.6 220.0 217.3	209.3	174.5	172.7	292.2	291.4			595.0 598.5	183•1 167•1	254.8	139.0 175.5	211.5	119.7	151.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-41	151.4 148.7 146.3	150.4 152.0	162.7	340.5 331.0	455•3 ¤	128.8	129.6		7 12 %	196.5 193.0	289.4 305.4	145.2 n	397.0 360.5	231.0 181.0	д 267.0	318.3*
DATE		11-13-63 12-11-63 1-28-64	3-17-64 4-21-64 5-19-64	6-25-64	9-17-63 1-28-64	9-16-63	7-17-63	9-11-63 10-10-63	12-11-63	1-20-04 2-19-64 3-17-64	9-18-63 1-28-64	9-18-63 1-30-64	9-17-63 1-28-64	9-19-63 1-29-64	9-17-63 1-21-64	9-18-63 1-29-64	7-17-63
GROUND SURFACE ELEVATION IN FEET	OPA AREA	372.0			515.0	628.0	421.0				791.5	472.5	4000	536.0	442.5	386.7	470.0
STATE WELL NUMBER	EDISON-MARICOPA	305/28E-10N04 M CONT.			30S/29E-05F01 M	30S/29E-26A01 M	30S/29E-31R01 M				30S/30E-20R01 M	31S/29E-09A01 M	31S/29E-29A01 M	315/30E-21601 M	32S/25E-35N02 M	32S/28E-23R01 M	32S/29E-16R02 M
AGENCY SUPPLYING DATA		8700	5120	8700				6001		6001	6001	2000				2000	
WATER SURFACE ELEVATION IN FEET		162.7 166.7 162.7	201.8 196.8		1.01.1	115.3	153.3	251.1		125.5		332.7 341.5 341.9	335.4	335.0 335.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	212.1	212•3 212•2 214•0
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.40	152.0* 148.0* 152.0*	176.2 181.2	n n	179.24	177.3* 109.3 130.3	139.3*	п 51•9	5-22.41	rv ev	0 0	<i>6</i>	36.6 35.2 34.3	34.0	93.00		152.7 159.8 158.0
 		222	18		-	1701	13	2	5	452.5 430.3		39.3 30.5 30.1	w w w	m m m	10000		255
DATE	Lan .	2-26-64 19 6-04-64 14 6-23-64 15	9-16-63 17 1-20-64 18	7-09-63				9-18-63 1-27-64 51	}- \$	9-18-63 452 1-28-64 430	9-18-63 1-29-64		10-10-63 36 11-13-63 35 12-11-63 34				8-15-63 15 9-11-63 15 10-10-63 15
GROUND SURFACE ELEVATION IN FEET	RIVER DELTA AREA 5			292.6 7-09-63 7-22-63					EDISON-MARICOPA AREA 5-;								

AGENCY SUPPLYING DATA		2000	6001	6001	6001	0006			8700		6001	8 7 00
WATER SURFACE ELEVATION IN FEET		262.9 261.1 261.5	• 900	735.3 747.5	165.1	168.7 209.0 215.2 216.2	219•1 219•1 219•2 213•1 208•8	212.6	- 110.6 - 115.6 - 115.6 66.4		135.2	
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22-41	210.1	6.012	114.7	410.8	506.3 466.0 459.8 458.8	400 4 400 4 400 4 4 4 4 4 4 4 4 4 4 4 4	462.4	562 567 567 385		п 349•5	
DATE		3-17-64 4-21-64 5-19-64	6-25-64 9-17-63 1-28-64	9-17-63	9-18-63 1-28-64	7-17-63 8-15-63 9-11-63 10-10-63	11-13-63 12-11-63 1-28-64 2-19-64 3-17-64	5-19-64 6-25-64	7-24-63 8-15-63 8-28-63 9-13-63 1-10-64 2-12-64	2-27-64 3-02-64 6-03-64 6-10-64 6-24-64	9-16-63 1-27-64	7-10-63 7-24-63 8-15-63
GROUND SURFACE ELEVATION IN FEET	OPA AREA	473.0	657.0	850.0	575.9	675.0			452.3		484.7	730.2
STATE WELL NUMBER	EDISON-MARICOPA	325/29E-21P01 M CONT.	11N/18W-06P01 S	11N/18W-28D01 S	11N/19W-04H01 S	11N/19W-07R03 S			11N/20W-07G01 S		11N/20W-18F01 S	11N/20W-24A01 S
AGENCY SUPPLYING OATA		2000			2000			2000		000		
1 5												
WATER SURFACE ELEVATION IN FEET		149•3 148•5 150•7	151.1 152.2 151.7 150.9	150.1 149.9 148.1	217.1	218.0 216.1 216.2 216.2 216.2	215.8 216.0 216.7 216.5 216.3	52.2	69.4 90.1 116.6 122.4 121.4 102.1	82.9 76.8 46.3	269.7 261.3 260.6	262.4 262.4 262.4 262.4
1	5-22.41	320.7 149.3 321.5 148.5 319.3 150.7				198.0 218.0 199.9 216.1 199.8 216.2 199.8 216.2 199.6 216.4		363.8 369.4	346.6 325.0 293.6 293.6 313.9	333.1 339.2 369.7	203.3 211.7 212.4	210.4 210.6 210.6
WATER SURFACE ELEVATION IN FEET	5-22•41		318.9 317.8 318.3 319.1	319.9 320.1 321.9		198.0 199.9 199.8 199.8		363.8 369.4		333.1 339.2 369.7	203.3 211.7 212.4	
GROUND SUR- FACE TO SURFACE WATER SURFACE IN FEET	EDISON-MARICOPA AREA 5-22.41	320.7 321.5 319.3	318.9 317.8 318.3 319.1	319.9 320.1 321.9	198.9 189.7	198.0 199.9 199.8 199.8	200.2 200.0 199.3 199.5	363.8 369.4	346.6 325.0 293.6 293.6 313.9	333.1 339.2 369.7	8-15-63 203-3 9-11-63 211-7 10-10-63 212-4	210.4 210.6 210.6

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
EDISON-MARICOPA AREA	COPA AREA		5-22.41			EDI SON-MARICOPA	OPA AREA		5-22-41		
11N/20W-24A01 S CONT.	730•2	8-28-63 9-13-63	510•6	219•6	8700	12N/23W-28P01 S CONT.	498.0	1-21-64	269•0	229.0	5120
		1-27-64	508	221.6		BUENA VISTA	WATER STORAGE	E D1ST	5-22.42		
		2-28-64		215.6		275/22E-16801 M	238.0	7-17-63	79.6	158.4	2000
11N/21W-05M01 S	515.9	7-10-63	ים		8700			9-11-63	78.9	159.1	
		8-15-63	9 6					11-13-63	40.4	167.6	
		8-28-63	673.1	8 - C 7				12-11-63 1-28-64	73.2	160.9	
		1-10-64		0 • 7 •				2-19-64			
		1-27-64						3-16-64	a p		
		2-28-64						6-25-64	87.5	150.5	
		6-03-64				275/22E-21F02 M	240.0	9-52-63	40.0	200.0	5120
		9-60-9	ם					1-27-64	38•0	202.0	
11N/22W-04H01 S	529.0	7-10-63	а		8700	275/22E-32H01 M	241.0	7-17-63	93.2	147.8	2000
		7-24-63						8-14-63	98.3	142.7	
		8-15-63	n 477.2	7				9-11-63	102.5	138.5	
		9-13-63		61.7	_			11-13-63	99.3	141.7	
		1-10-64		78.7				12-11-63	95.8	145.2	
		1-27-64	448.3	80.7				1-28-64	95.5	145.5	
		3-02-64	1 13					3-18-64	109.0	132.0	
		49-60-4	ום					4-21-64	108.5	132.5	
		6-24-64	u 11					6-25-64	103.3	137.7	
12N/20W-31R01 S	363.0	9-16-63 1-27-64	241.6 234.2	121.4	6001	285/22E-09001 M	245.0	7-17-63	58.5	186.5	2 000
12N/20W-36002 S	209.0	9-17-63 1-28-64	п њ.		6001			9-11-63 10-10-63 11-13-63	49.8 48.4 42.1	195.2 196.6 202.9	
12N/21W-29N01 S	423.3	9-16-63	323.0	100.3	5120			12-11-63	41.8	203.2	
		1-20-64	314.0	109.3	231			2-19-64	9.64	195.4	
12N/23W-28P01 S	498.0	9-17-63	293.0	205.0	5120			3-18-64	55.7 49.8	189.3	
								5-19-64 6-25-64	21.0	224•0 222•1	
						285/22E-10002 M	245.0	9-25-63	27.7	217.3	5120

AGENCY SUPPLYING OATA		0494									2000												0777	0404													0777	104								
WATER SURFACE ELEVATION IN FEET		221.0	221.7	220.9	186.1	202.0	219.8	218.2			223.1	223.4	226.0	5529	227.2	227.5	225.8		1.627	223.4	224.1	215.7		199.8		218.0	223.6	23.6	C++17	1000	1.402	2002	218.3	218.4				70102	216.0	210.	226.6	227.0	220.9	218.9		
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.42	42.5	41.8	42.6	77.4	61.5	43.7	45.3			6.94	46.6				45.5			6.94	46.6	45.9	54.3		80		62.7			4.00	0	9.9/	4.67	62.4	65.3	8	n		9•69								
DATE	DIST	10-03-63	12-02-63	2-03-64	3-02-64	4-01-64	5-04-64	5-28-64	6-28-64		7-17-63	8-14-63	9-11-63	10-10-63	11-13-63	12-11-63	1-28-64	2-19-64	3-17-64	4-21-64	5-19-64	6-25-64		7-03-63	8-01-63	69-90-6	10-05-63	11-01-63	12-02-63	1-02-04	2-01-64	3-03-64	4-01-64	5-04-64	5-28-64	6-28-64		7-03-63	8-05-63	69-90-6	10-05-63	11-01-63	12-02-63	1-02-64)	
GROUND SURFACE ELEVATION IN FEET	WATER STORAGE	263.5									270.0													280.7														276.8								
STATE WELL NUMBER	BUENA VISTA	29S/23E-10P01 M									295/23E-27M01 M													29S/24E-32001 M														305/23E-01C01 M								_
AGENCY SUPPLYING OATA		5120		0494							•					0494													4640														0477	040		
WATER SURFACE ELEVATION IN FEET		218.2		207.8	207	214.5	231.2	24177	230.7	. •077	180.8	206.9	2002			184.9	208.4	205.4	220.6	214.7	22B.5	22023	207.7		215.9	215.6	207.7				198.3	20800	225.2	226.8	222.2	21103		211 2	216.9	213	713.0			199.5		219.3
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22-42	26.8		45.4	45.3	40 0 0	0000	32.0	34.6	25.5	43.44	44.3	40.0		3	72.0	7 6 7	43.65	37.2	1.64	4 . 0 .	28.5	50.0	• •	, t	42.2	50.1	!	п	13						1007			0 0 0	† ·	41.3	5		40		44.2
DATE	DIST	1-27-64		7-03-63	8-01-63	69-90-6	10-03-63	11-01-63	12-02-63	1-03-04	77-07-6	20-02-04	19-TO-19	101010	9-87-	7-03-63	69-60-7	6-06-6	10-02-63	11-01-63	10-11	79-20-1	2-01-64	10-10-2	4-02-64	49-20-4	5-28-64		7-04-63	R-06-63	64-40-0	50-00-01	10-00-01	11-02-63	15-69-67	2-01-04	±9-10-2	10-60-6	\$9-70-\$	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	-28	6-28-64		7-04-63	8-01-63	69-90-6
ND ACE TION	BUENA VISTA WATER STORAGE DIST	245.0		253.2												0 1 9 1	0.167												260.3														,	263.5		
GROUND SURFACE EL EVATION IN FEET	VATER																																													

AGENCY SUPPLYING DATA		2000											5120		5120	9	2000											2000												6003	i i
WATER SURFACE ELEVATION IN FEET		150.9	140.7	141.8	143.0	143.0	141.5	147.4	142.5	142.2	139.9		28.5	6.10			127.4	124.4	123.6	127.6	131.3	136.6	135.0	133.0	132.5	127.4	****	48.7	3.3	- 2.5	1.7	37.0	57.1	68.3	0.49	4.1.1	48.7		12.6	125.8	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.43	61.1	62.6	70.2	*0.69	0.69	70.5	0.0	69.9	8.09	72.1		186.5	0	**	4	89.6	95.6	93.4	89.4	85.7	80.4	85.0	84.0	0.4°0	4.00	•	168.3	213.7	219.5	215.3	180.0	159.9	148.7	153.0	6.6/1	168.3	172.2	201.4	102.2	
DATE	DIST	7-18-63	6-16-63	10-10-63	11-13-63	12-11-63	1-28-64	7-19-64	3-18-64	5-19-64	6-25-64		9-30-63	*9-16-1	10-01-63		8-16-63	9-12-63	10-10-63	11-13-63	12-11-63	1-28-64	2-19-64	3-18-64	49-17-4	4-25-64	10-73-0	7-18-63	8-16-63	9-12-63	10-10-63	11-13-63	12-11-63	1-28-64	2-19-64	3-18-04	4-21-64	5-19-64	6-25-64	9-20-63	; ;
GROUND SURFACE ELEVATION IN FEET	SEMITROPIC WATER STORAGE	212.0											215.0		209•0		0.112											217.0												228.0)
STATE WELL NUMBER	SEMITROPIC W	255/22E-02N02 M											255/22E-14601 M		255/23E-03R01 M		235/23E-28D01 M											255/23E-28D03 M												255/24F-07R01 M	
AGENCY SUPPLYING DATA		0494					0,7,7,7	0										2000												2000					-		-				
WATER SURFACE ELEVATION IN FEET		213.7	220.3	219.9	212.7				212.3	216.2	218.7	218.9	219.0	209.7	216.0		20802	214.2	212.8	219.7	222.8	222.9	224.5	205.7	19/02	210.0	210.2	20101		257.6	256.1	257.0	248.0	254.7	257.5	00667	258.6	750 7	255.8	253.8	
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.42	63.1	56.5	56.9	64.1	D	ı	3 6	74.7	70.8	68.3	68.1	68.0	77.3	71.0	- °	9.00	67.8	69.2	62.3	59.2	59.1	57.5	76.3	20 r	73.1	71.8	80.9		25.4	56.9	26.0	35.0	28.3	25.5	****	24.4	7 to 0	27.7	29.2	
																																					.	* 4	į 4	† 4	
DATE	DIST	2-01-64	4-03-64	5-05-64	5-28-64	9-30-64	6 7 - 70 - E	01010	9-07-63	10-03-63	11-02-63	12-03-63	1-03-64	3-03-64	4-05-64	5-05-64	7-78-04	7-17-63	8-14-63	9-11-63	10-10-63	11-13-63	12-11-63	1-28-64	5-19-64	5-11-64 4-21-64	5-19-64	6-25-64		7-17-63	8-14-63	9-11-63	10-10-63	11-13-63	12-11-63	+0-97-T	2-19-6	3-11-64	5-19-64	6-25-64	
GROUND SURFACE ELEVATION IN FEET	BUENA VISTA WATER STORAGE DIST	9,	4-103-164	5-05-64	5-28-64	99-06-9	C 7 - 70 - L		8-70-8 9-07-83	10-03-63	11-02-63	12-03-63	1-03-64	3-03-04 3-03-64	4-05-64			282.0 7-17-63		9-11-63	10-10-63	11-13-63	12-11-63	1-28-64	49-6I-2	3-11-84 4-10-4	19-61-6	6-25-64		283.0 7-17-63	8-14-63	9-11-63	10-10-63	11-13-63	12-11-63	+0-97-T	2-19-6	9-1/-6 7-13-4	7-101-4	6-25-6	

AGENCY SUPPLYING DATA		2000	5120	5120	5120	8700			5120	2000			2000
WATER SURFACE ELEVATION IN FEET		147.4		130.9		35.7 21.7 1.7 - 9.3	- 6.3 113.7 129.7	76.7 123.7 61.7	208.5	154.3 154.0 153.7 153.0	156.0 155.6 155.1	153.8 154.2 153.7 152.1	23.9 10.5 16.6 47.7 83.3
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.43	77.6	0 0	104.0 130.0	n	259.8* 273.8* 293.8* 304.8*	301.8* 181.8* 165.8*	218.8* 171.8* 233.8* 290.8*	56.5 52.5	112.7 113.0 113.3 114.0	1110.0	113.2 112.8 113.3 114.9	243.1# 256.5# 250.4 219.3 183.7 170.5
DATE	DIST	6-25-64	9-30-63 1-30-64	10-01-63 1-31-64	10-01-63	7-02-63 7-16-63 8-02-63 8-20-63	9-05-63 1-03-64 1-17-64	2-01-64 2-04-64 4-22-64 6-16-64	9-25-63	7-18-63 8-16-63 9-12-63 10-11-63	12-10-63 1-27-64 2-18-64	3-16-64 4-20-64 5-18-64 6-24-64	7-18-63 8-16-63 9-12-63 10-11-63 11-14-63
GROUND SURFACE ELEVATION IN FEET	WATER STORAGE	225.0	253.0	234.9	258.0	295.5			265.0	267.0			267.0
STATE WELL NUMBER	SEMITROPIC WA	265/22E-10G02 M CONT.	265/22E-35E01 M	265/23E-02R01 M	265/23E-36F01 M	265/24E-23H01 M			275/22E-02001 M	275/23E-01R01 M			275/23E-01R04 M
AGENCY SUPPLYING DATA		6001	2000				6001	2 0 0 0			5120	2000	
WATER SURFACE ELEVATION IN FEET		139.9	158.5	159.0	160.9	160.5 160.4 159.8	37.4	204.9 202.9 205.1 205.7	206.2	205.0 203.1 205.4 205.4	216.5		153.2 152.0 151.7 152.6 152.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.43	88•1	89.5 90.1	8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	87.1 87.1	87.5 87.6 88.2	200.0 174.6	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.5 12.0		73.0 73.0 72.3 72.3
DATE	DIST	1-30-64	7-18-63	9-12-63 10-11-63 11-14-63	1-27-64 2-18-64	5-16-04 4-20-64 5-18-64 6-24-64	9-19-63 1-30-64	7-17-63 8-14-63 9-11-63	11-13-63 12-11-63 1-28-64	2-19-64 3-18-64 4-21-64 5-19-64 6-25-64	9-27-63 1-30-64	7-18-63 8-16-63 9-12-63 10-10-63	11-13-63 12-11-63 1-28-64 2-19-64 3-18-64 4-21-64 5-19-64
GROUND SURFACE ELEVATION IN FEET	ATER STORAGE	228.0	248.0				237.4	244.0			237.0	225.0	
STATE WELL NUMBER	SEMITROPIC WATER STORAGE	255/24E-07R01 M CONT.	255/24E-15H01 M				255/24E-30H01 M	265/21E-14E01 M			265/21E-14J01 M	265/22E-10G02 M	

AGENCY SUPPLYING DATA		2000		5050	5050	9050	5050	5050	5120		2000										5120	5120		5120	
WATER SURFACE ELEVATION IN FEET		426.4 426.4 426.7 426.5 426.5	425.8 426.3 426.5 422.3						314.2	•	351.0	350.2	350.1	250.0	350.4	349.8	349.3	343.8	342.4		205.0	747.5	737.5	520.0 519.0	
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.44	133.4 133.6 133.3 133.5 133.8		B		*		DRY	107.8		129.0	129.8	129.9			130.2	130.7	136.2	137.6		63.0	162.5	172.5	165.0 166.0	
DATE		9-11-63 10-10-63 11-13-63 12-11-63 1-28-64 2-19-64	3-18-64 4-21-64 5-19-64 6-25-64	1-21-64	1-21-64	1-24-64	1-21-64	1-21-64	9-27-63		7-16-63 8-14-63	9-11-63	10-10-63	12-13-63	1-28-64	2-19-64	3-18-64	4-21-64	5-19-64)	1-30-64	9-56-63	1-29-64	9-27-63	•
GROUND SURFACE ELEVATION IN FEET	ITRICK AREA	560.0		235.0	267.0	470.0	0*669	625.0	422.0		480.0										268.0	910.0		0.589	
STATE WELL NUMBER	AVENAL-MCKITTRICK	235/18E-29E02 M CONT.		235/19E-14R01 M	235/19E-26M01 M	24S/18E-11D01 M	24S/18E-30D01 M	24S/18E-33N01 M	255/19E-15G01 M		255/19E-20002 M										255/20E-04C01 M	265/17E-13L02 M		265/18E-16H01 M	
AGENCY SUPPLYING DATA		2000	5120	}	•					4640										5120	-	-	5050	5 000	
WATER SURFACE ELEVATION IN FEET		95.7 85.8 51.8 68.1 57.9	208.0	221.6	222.6	224.0	224.4	229.2	224.0		124-1		132.1	120.0	134.4	131.2	132.6			193.5	191•0		0.96	426.6	456.5
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.43	171.3 181.2 215.2* 198.9 209.1 249.1	50°0 45°0 30°5	1 4 4 0 0 0 0 0 0	32.4	31.0	30.6	25.8	31.0	- 1	177.0		169.0	162.0	166.7	169.9	168.5		1	96.5	0.66	5-22.44	159.0	133.4	133.5
DATE	DIST	1-27-64 2-18-64 3-16-64 4-20-64 5-18-64 6-24-64	9-25-63 1-28-64 7-03-63	8-01-63	10-02-63	12-02-63	9	5-04-64	5-28-64	7-04-63	69-20-8	10-03-63	11-01-63	1-03-69	2-03-64	3-05-64	4-01-64	2-04-64	5-28-64		1-24-64		1-21-64	7-16-63	8-14-63
GROUNO SURFACE ELEVATION IN FEET	SEMITROPIC WATER STORAGE	267.0	258.0							301.1										290.0		TRICK AREA	255.0	560.0	
STATE WELL NUMBER	SEMITROPIC W	275/23E-01R04 M CONT.	275/23E-06L01 M							285/24E-28A01 M										295/24E-14R01 M		AVENAL-MCKITTRICK AREA	225/19E-18P02 M	235/18E-29E02 M	

AGENCY SUPPLYING DATA		2000					5050		5050						0.50	0			5050))	5050								
WATER SURFACE ELEVATION IN FEET	 -	112.7	105.1	111.5	109.8 108.3				151.8	153.4	152.3	151.3	150.7	148.8	179.8	179.5	179.8				150.7	152.8	151.5	157.8	157.9	156.0	157.5	157.5	156.4
GROUND SUR. FACE TD WATER SURFACE IN FEET	5-22.45	104.3	1111.9	105.5	107.2 108.7	5-22.46	□ *	:	44.7	430	44.2	45.2	4 0 • 0 0 • 0	47.7	16.7	17.0	16.7	*		!	45.3	43.2	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	38.2	38.1	0.04	38•5	38.5	39.6
DATE	AREA	8-14-63	10-10-63 11-13-63 12-11-63	2-19-64 3-18-64 4-21-64	5-19-64 6-25-64	1101	7-29-63		11-27-63	2-03-64	2-24-64	3-31-64	5-25-64	6-24-64	7-29-63	8-29-63	9-27-63	11-12-63	2-05-64		7-29-63	8-29-63	10-28-63	11-27-63	12-30-63	2-03-64	3-31-64	4-27-64	5-25-64
GROUND SURFACE ELEVATION IN FEET	LAKE-LOST HILLS AR	217.0				CORCORAN IRRIGATION DISTRICT	204•0		196.5						196.5				0.806		196.0								
STATE WELL NUMBER	TULARE LAKE-	255/21E-22H01 M CONT.				CORCORAN IRR	215/22E-10J03 M		215/22E-16L02 M						M 10071-326-1216				215/22E-24K01 M	•	21S/22E-27A01 M								
AGENCY SUPPLYING DATA		5120	5120	5120	5120	5050		5000			-		5050	2000	-			2000					5050	2000				-	2000
WATER SURFACE ELEVATION IN FEET		715.0 722.0	524.5 524.0		1182.0 1182.0			1.2	9.4	13.3	21.2	24.1	20.7	24.0	17.2		1.5	7.6	14.5 3.3	4.1	10.7	15.8	1.50	11.8	11.0		21.9	(112.9
<u>&</u>																	1	1	1 1						ı	1 1	, ,		
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.44	160.0	205.5	" "	38.0* 38.0*	*	5-22.45	179.8	176.4	167.7	159.8	156.9	153.9	157.0	163.8	175.5			192.5* -	173.9	167.3	162.2	176.5	166.2		197.5			104.1
GROUND SU FACE TO DATE WATER SURFACE IN FEET	5-22•44	9-26-63 160.0 1-29-64 153.0	9-26-63 205.5 1-29-64 206.0	9-27-63 H	9-26-63 38•0* 1-24-64 38•0*	7-01-63 #	5-22.4	7-16-63 179.8	8-13-63 176-4				1-29-64 153.9		3-18-64 163-8			187.7			11-12-63 167.3				189.0		199.9		7-17-63 104.1
	AVENAL-MCKITTRICK AREA 5-22.44	w 4	m 4	m 4			-22 • 4	179.									-26-64 182.5	187.7	192.5*						189.0	197.5	199.9	ř	

STATE WELL NUMBER	GRDUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
CORCORAN IRE	IRRIGATION DISTRICT	RICT	5-22.46			MENDOTA-HURON AREA	N AREA		5-22-47		
215/22E-27A01 M CONT.	196.0	9-54-94	41.0	155.0	5050	135/12E-05001 M	247.0	9-03-63 12-24-63 3-20-64	302•0 236•0 n	- 55.0 11.0	6001 5050 6001
22S/22E-01802 M	201.0	7-29-63 8-29-63 9-27-63 10-28-63	25.8 25.3 27.2 23.7	175.2 175.7 173.8 177.3	5050	135/12E-22N01 M	280•0	9-13-63 12-23-63 3-17-64	189•0 169•7 n	91.0 110.3	6001 5050 6001
		11-27-63 12-30-63 2-03-64 2-24-64	23.0 23.0 23.0	177.9 178.0 178.1 178.0		135/13E-10R01 M	211.0	10-01-63 12-20-63 3-18-64	212.9 210.6	1.9	6001 5050 6001
		3-31-64 4-27-64 5-25-64 6-24-64	23.5 23.5 24.0	177.5 177.5 177.4 177.0		135/13E-12A01 M	183.0	10-01-63 12-20-63 3-18-64	50 50 50 50 50 50 50 50 50 50 50 50 50 5	179•4 177•6 177•7	6001 5050 6001
225/22E-05L01 M	188.0	7-29-63	R.		5050	135/13E-15R01 M	222.0	10-01-63	242.5	20.5	5050
22S/22E-08L01 M	188.0	7-29-63	149.5	38.5	5050			3-18-64	248.4	N	6001
		9-27-63	164.9	23.1		135/14E-09J01 M	164.0	10-02-63 12-20-63	DRY DRY		6001 5050
		12-30-63	162.9 133.6	25.1		13S/14E-32Q1 M	225.0	10-03-63 12-19-63	□ •		6001 5050
		3-31-64	128.9	1.66		145/13E-15M01 M	321.0	12-27-63	n		5050
		4-71-04 5-25-64 6-24-64	145.0 142.0	46.0		145/14E-05H01 M	221.0	7-16-63 8-13-63 9-11-63	87.8 93.0	133.2 128.0	2000
22S/22E-15C01 M	191.0	7-29-63 8-29-63 9-27-63	135.5 135.9	55.5 55.1 53.7	5050			10-09-63 11-04-63 12-05-63		129.3 131.3 134.3	
		10-28-63	135.4	55.6 61.3				12-19-63	85.8 84.1	135.2	
		12-30-63 2-03-64	124.5 119.7	66.5 71.3				3-05-64		132.5	
		2-24-64 3-31-64 4-27-64	120•1 124•5 128•9	70.9 66.5 62.1				4-30-64 6-23-64	8 4 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	134.0 133.6	
		5-25-64	131.5 142.2	59.5		145/14E-28E02 M	248.0	7-16-63		186.0	2000
								8-13-63 9-10-63		185.0	
								10-09-63		185.1	
			j					11-12-63	61.4	180.0	

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING OATA
MENDOTA-HURON AREA	ON AREA		5-22.47			MENDOTA-HURON AREA	N AREA		5-22.47		
14S/14E-28E02 M CONT.	248.0	1-29-64 2-20-64 3-19-64 4-22-64 5-20-64 6-25-64	56.2 57.9 59.5 60.3 60.3	191.8 191.1 190.1 188.5 187.7	5000	155/16E-17L01 M CONT.	165.0	8-13-63 9-10-63 10-09-63 11-12-63 12-12-63 1-29-64		133.0 133.1 132.3 130.2	2000
14S/15E-18E02 M 14S/15E-35N01 M	186.0	12-19-63 12-17-63 2-13-64	207.0 52.2 55.2	- 21.0 108.8 105.8	5050 5050 6001			3-19-64 4-22-64 5-20-64 6-26-64	34.2 34.1 34.1	130.8 130.9 130.9 130.3	
155/13E-26N01 M	473.0	12-20-63	= 4 0		5050	155/16E-20R01 M	171.0	7-16-63 8-13-63 9-11-63	70.9	100•1 94•8 82•6	2000
15S/14E-15E01 M	236.0	7-16-63 8-13-63 9-10-63 10-09-63	60.0 61.8 61.9 62.0	176.0 174.2 174.1 174.0	2000			10-09-63 11-04-63 12-05-63 12-17-63		106.1 111.3 112.5 113.7	
		11-12-63 12-12-63 1-29-64 2-20-64 3-19-64 4-22-64	611.8 601.6 600.6 59.8	174.2 174.4 175.4 175.8 176.2 176.8				2-06-64 2-11-64 3-05-64 4-30-64 6-24-64		90.9 92.4 94.1 92.9 101.9	6001 5000
15S/14E-15E04 M	236.0	5-20-64 6-26-64 7-16-63 8-13-63 9-10-63	59.1 58.9 412.7 416.2 422.5		2000	15S/16E-28A04 M	170.0	7-16-63 8-13-63 9-10-63 10-09-63	167.8 169.8 173.3 173.8 172.4	1 2 3 6 2 2 2 2 2 4 4 8 3 2 4 4 8 3 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	0006
		10-09-63 11-12-63 12-12-63 1-29-64 2-20-64 3-19-64	4 4 5 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				12-12-03 1-29-64 2-20-64 3-19-64 4-22-64 5-20-64 6-26-64			
55/15E-22001	175.0	5-20-64 6-26-64 12-17-63 2-13-64	427.0 428.3 94.3 139.5*	191.0 192.3 80.7 35.5	5050	15S/16E-34E01 M	175.0	7-16-63 8-13-63 9-11-63 10-09-63 11-04-63	189.8 192.4 197.0 196.7 195.0	- 14.8 - 17.4 - 22.0 - 21.7 - 20.0	2000
155/16E-17L01 M	165.0	7-16-63	u		0000						

AGENCY SUPPLYING OATA		2000	2000				5050	5000		5050	5050	5050	5000
WATER SURFACE ELEVATION IN FEET		224.4 224.3 223.3 223.5	.,	1 4 8 9 . 4 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6			- 35.0	4 (. 66.2	- 160.0		- 116.4 - 141.7
GROUND SUR- FACE TO WATER SURFACE IN FEET	5-22.47	65.6 65.7 66.7 66.5	987.8 397.2 375.7	379.4 363.0	371.9 369.1	371°3 371°3 375°1	261.0	837.2*	769% 769% 769% 776% 776% 841. 768% 768% 768% 768%	3) 9, 2	465.0	0	483.4 508.7
DATE		2-20-64 3-19-64 4-22-64 5-20-64	6-26-64 7-16-63 8-13-63 9-10-63	11-12-63	2-20-64	5-20-64 6-26-64	12-22-63	7-16-63	8-13-63 9-10-63 10-090-63 11-12-63 12-12-64 2-19-64 4-22-64 5-20-64 6-26-64	12-17-63	12-18-63	12-19-63	7-17-63 8-13-63
GROUNO SURFACE ELEVATION IN FEET	N AREA	290•0	290•0				226.0	429.0		451.0	305.0	249.0	367.0
STATE WELL NUMBER	MENDOTA-HURON	175/16E-30A03 M CONT.	175/16E-30A05 M				175/17E-21N02 M	185/15E-02N01 M		185/15E-13N01 M		18S/18E-07N01 M	195/17E-35N01 M
AGENCY SUPPLYING DATA		2000	5000	5050 6001	5050	5050 6001	5050	5050 6001	5000		2000		
WATER SURFACE ELEVATION IN FEET			14.7 - 17.8 - 18.9 - 20.5	143.0 124.5	83.3 51.4	157.2 148.5		12.7	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	48 . 48 . 36 . 8	224.0 181.2	223.7 223.2	223.9
GROUND SUR. FACE TO WATER SURFACE IN FEET	5-22.47	193.0 192.0 188.5 187.9	189.7 192.8 193.9 195.5	76.0	107.7 139.6*	75.8 84.5	n	а 205•3	1993.6 * * 1973.6 * * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 * * 1973.5 *	184.2 195.7	66.0 108.8*	66.3 68.3	66.1 65.6
OATE		12-05-63 12-17-63 1-06-64 2-06-64	2-14-64 3-05-64 3-31-64 4-30-64 6-24-64	12-17-63 2-13-64	12-16-63 2-11-64	12-16-63 2-11-64	12-19-63	12-19-63 2-11-64	7-16-63 8-13-63 9-10-63 10-09-63 11-12-63 12-19-64 1-29-64 3-19-64	5-20-64 6-26-64	7-16-63 8-13-63 9-10-63	10-09-63	12-12-63 1-29-64
GROUND SURFACE ELEVATION IN FEET	N AREA	175.0		219.0	191.0	233.0	457.0	218.0	232.5		290•0		
STATE WELL NUMBER	MENDOTA-HURON	155/16E-34E01 M CONT.		165/15E-02N02 M	165/16E-10N01 M	16S/16E-18N01 M	175/14E-13R01 M	175/16E-02E01 M	175/16E-24R01 M		17S/16E-30A02 M		

)								
STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING OATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
MENDOTA-HURON AREA	AREA		5-22-47			MENDOTA-HURON AREA	N AREA		5-22.47		
					0	M [0011=381/305	270-0	7-17-63	435.4	- 165.4	2000
195/1/E-35NUI M	301.0	69-21-6	10%		0006	1001100		9-13-63	430		
CONT.		10-09-63	4 / 0 • 3	- 111.3 - 114.3				9-12-63	448		
		12-05-63	452.6					10-09-63	447		
		1-06-64	482.6	- 115.6				11-05-63			
		2-06-64	498.5	_				12-03-63	428.2		
		3-05-64	495.5					1-06-64		- 166.7	
		3-31-64	492.5	_				2-06-64	7 * 7 * 7	1 :	
		4-30-64	466.3					3-31-64	455.0	- 185.0	
		!						4-30-64	432.0	91	
19S/18E-15M01 M	274.0	12-18-63	364.0	0*06 -	5050			9-54-94	433.9	- 163•9	
195/18E-27M01 M	281.0	7-16-63	354.8		2000	20S/18E-36D01 M	260.0	7-16-63		- 30.7	2000
		8-13-63	363.0					8-13-63	295.2	- 35.2	
		9-10-63	364.6					9-10-63			
		10-09-63	366.4					10-09-63			
		11-12-63	361.9					11-12-63			
		12-12-63	357.7					12-12-63	782.4		050
		1-29-64	365.1					1-20-64			2000
		2-19-64	313.0	- 92.5 - 7.7	_			7-19-64	792.3		0
		4-22-64	365.1					3-18-64	295.8*	ויאו	
		5-20-64	359.1	- 78.1				4-25-64	293.4*		
		6-26-64						5-20-64	291.3	- 31.3	
								6-26-64	292.9	61	
20S/15E-17C01 M	806.0	7-01-63	**		2050	215/15F-01E01 M	623.0	1-21-64	195.7	427.3	5050
20S/15E-25D01 M	619.0	1-21-64	193.0	426.0	5050	M CONCO DESCRIPTION	6.70	1-20-64			5050
305/15E-32401 M	675.0	7-17-63	217.3	7-227	0005				I		
		8-14-63	- 1	457.1	2	21S/16E-07N01 M	634.0	1-21-64	п		5050
		9-12-63	218.6	4.96.4		M 10090	0 0 0	1-20-64	Ē		5050
		10-09-63	219.1	450.0			9	0	I		
		12-05-63	220.0	455.0		21S/17E-06N01 M	526.0	1-20-64	а		5050
		1-06-64	219.9	455.1		M 10311 3217 310	, A.	12-17-63			5050
		1-21-64	219.9	455.1	2020	Z 13/ 1/E-11E01 M	0	75 11 21	ı		
		3-05-64	220.1	454.9		21S/17E-24601 M	425.0	12-17-63	484.5	- 59.5	5050
		3-31-64		454.7							0
		30-	220.8	454.2		21S/18E-02M01 M	278.0	12-18-63	n		2050
		0-67-	•	9		215/18E-28M02 M	360.0	7-16-63	335.9	24.1	2000
205/18E-11N01 M	277.0	12-18-63	u		5050			8-13-63	336.5	23.5	
					-						

The proof and the proof of th	STATE WELL NUMBER	GROUND SURFACE EL EVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GRDUND SUR. FACE TD WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
March Marc	MENDOTA-HURC	N AREA		-22.4			SOIL		ISTRICT	-22.4		
March Marc												
10-09-63 31-2 3 31-2 3 38-8 CONT. 10-09-63 31-4 11-12-63 31-4 11-12-64 32-4 32-4 35-1 11-12-64 32-4 32-4 35-1 11-12-64 32-4 32-4 35-1 11-12-64 32-4 32-4 35-1 11-12-64 32-4 32-4 35-1 11-12-64 32-4 32-4 35-1 11-12-64 32-4 32-4 35-1 11-12-64 32-4 35-1 11-12-64 32-4 35-1 11-12-64 32-4 35-1 11-12-64 32-4 35-1 11-12-64 32-4 35-1 11-12-64 35-1		360.0	9-10-63	356.5	33.5	2000		126.0	8-19-63	8,6	116.2	5529
11-12-63 314-4	CONT.		10-09-63	321.2	38.8		CONT.		9-54-63	7. 6	116.6	
17-12-6-3 32.16 35.1 19.2 1			11-12-63	314.4	45.6				10-25-63	9.2	116.8	
Technology Tec			12-12-63	321.6	38.4				11-19-63	9.5	116.5	
The construction of the			1-29-64	324.9	35.1				12-23-63	9.8	116.2	
H 117.0 I2-25-64 31.6 5 28.7 5 31.8 5 52.9 6 52.0 5 52.0 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 5 52.0 6 6 52.0 6 6 52.0 6 6 52.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			2-19-64	327.3	32.7				1-25-64	9.5	116.5	
H 447.0 12-17-63 33.1 28.9 3 4.4 20.0 33.4 20.			3-18-64	328.2	31.8				4-06-64	11.9	114.1	
H 787.0 12-17-63			4-25-64	325.6	34.4				5-04-64	10.2	115.8	
H 447.0 12-17-63			5-20-64	333.4	28.9				-03-6	10.9	115.1	
M								140.0	7-28-63	_	128.1	5529
Mail		447.0	12-17-63	0		2050			9-24-63	_	129.2	
Lange Lang		787	1-30-64	0 000	0	0			10-25-63		129.2	
CONSERVATION DISTRICT S-22.48 S-529		•	+ 0-0 7 -1	0.067	•	000			12-23-63	-	130.0	
Magnetic Magnetic	POSO SOIL CC		DISTRICT	4					1-25-64	_	129.5	
110.00 10.25-63 7.7 102.8 5529 10.00 10.00 10.00 10.25-63 7.7 102.8 5529 10.00 10.									49-90-4	13.4	126.6	
10-25-63 7.7 1022-3 1022-3 1022-3 1022-3 1022-3 1022-3 1022-3 1022-3 1022-3 1022-4 1022-3 1022-4 10		110.0	9-54-63	7.2	102.8	5529			5-04-64	11.2	128.8	
12-23-64 8.4 101.64 10			10-25-63	7.7	102.3				9-03-94	11.6	128.4	
12-23-64 8-4 101-6 10-84 101-6 10-84 101-6 10-84 101-6 10-84 101-6 10-84 101-6 10-84 101-6 10-84 101-6 10-84 101-6 100-64 1			11-19-63		101.4					ų		
H 117.0 8-19-64 6.3 103.7 225/27E-25JO3 H 532.0 7-25-63 140.8 391.2 391.8 6-03-64 6.4 103.6 6.3 103.7 225/27E-25JO3 H 532.0 7-25-63 140.8 391.2 420.8 120.2			12-23-63	oo oo	101.6		BELLA		ISTRICT	ů		
M 117.0 8-19-63 5.29 9-24-64 5.4 103.6 9-24-63 127.5 404.5 9-24-63 127.5 404.5 9-24-63 127.5 404.5 9-24-63 127.5 404.5 9-24-63 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 404.5 127.5 400.5 422.7 410.6 422.7 410.6 422.7			4-09-4	6.3	103.7			532.0	7-25-63		391.2	6001
M 117.0 8-19-64 5.4 100.6 55.29 404.5 404.5 404.5 404.5 404.5 404.5 404.5 404.5 404.5 404.5 404.6 40.6 <td></td> <td></td> <td>5-04-64</td> <td>4.9</td> <td>103.6</td> <td></td> <td></td> <td>1</td> <td>8-29-63</td> <td></td> <td>397.8</td> <td></td>			5-04-64	4.9	103.6			1	8-29-63		397.8	
M 117.0 8-19-63 7.6 109.4 5529 100-21-63 121.2 410.8 10-25-63 6.6 110.4 5529 12-02-63 109.3 422.7 11-19-63 6.6 110.4 5529 12-24-63 109.3 422.7 11-19-63 6.5 110.4 5529 12-24-64 107.8 422.7 1-23-64 10.6 100.4 100.4 100.4 100.4 422.7 1-25-64 10.8 100.4 100.4 100.4 412.0 412.0 4-06-64 10.8 100.4 100.4 412.0 412.0 412.0 5-04-64 10.6 100.4 100.4 100.4 111.0 412.0 412.0 6-03-64 10.6 100.6 100.6 111.8 5529 225/27E-36NO1 M 513.0 7-25-6 117.0 415.0 11-19-63 10.0 118.0 110.0 110.0 110.0 110.0 117.0 110.0 110.0			6-03-64	5.4	104.6				9-24-63		404.5	
M 117.0 8 19-63 7.6 109.4 55.29 12-26-63 109.3 4.22.7 10.5 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6									10-21-63		410.8	
10-25-63 6.6 110.4 110.4 12-24-63 109.2 4.22.8 110.25-63 6.5 110.4 110.5 1		117.0	8-19-63	7.6	109.4	5529			12-05-63		422.7	
11-19-63 0.5 110			10-25-63	9•9	110.4				12-24-63		422.8	
M 128.0 9-24-64 10.0 412			69-61-11	0.	110.5				1-47-I	10 / e	7.474	
## 128.0 9-24-64 10.6 106.4 10			12-23-63	10	110.4				2-24-64	120.0	0.214	
M 128.0 9-24-64 10.6 106.4 6-03-64 114.5 5529 22S/27E-36NO1 M 513.0 7-25-64 117.0 412.0 412.5 41			+0-CZ-T	0.0	10%				40-67-6	1110	0.124	
M 128.0 9-24-63 16.5 111.5 5529 22S/27E-36NO1 M 513.0 7-25-64 117.0 415.0 117.			5-04-64	10.6	106.4				49-77-4	120.7	202.2	
M 128.0 9-24-63 16.5 111.5 5529 22S/27E-36NO1 M 513.0 7-25-63 294.0 219.0 8-29-63 322.5 190.5 117.8 11			6-03-64	8.7	108.3				6-22-64	117.0	415.0	
M 128.0 9-24-63 16.5 111.5 5529 225/27E-36N01 M 513.0 7-25-63 294.0 219.0 219.0 10-25-63 10.2 117.8 218.0 118.0 118.3 10.0 118.3 10.0 118.3 10.0 118.3 10.0 118.3 10.0 118.3 10.0 118.3 10.0 118.3 10.0 117.5 117.5 117.5 117.0 117.												
10-12-63 10.2 117.8 8-29-63 322.5 8-29-63 322.5 118.0 118.0 10-21-63 10.0 118.0 10-21-63 10.0 118.0 10-21-63 20.0 10-21-63 20.0 10-21-63 20.0 10-21-63 20.0 10-21-63 20.0 12-20-64 10.0 117.0 117.0 117.0 117.0 12.0-64 246.0 10-20-64 8.9 119.1 110.0 110.0 10.0 10.0 10.0 10.0		128.0	9-24-63	16.5	111.5	5529		513.0	7-25-63	294.0	219.0	2000
11-19-63 10.0 118.0 9-24-63 308.0 12-23-63 9.7 118.3 10-21-63 298.0 10-21-63 298.0 10-21-63 298.0 12-26-64 11.0 117.0 12-24-64 6.5 121.5 6-03-64 8.9 119.1 3-25-64 246.8 4-22-64 251.1			10-25-63	10.2	117.8				8-59-63		190.5	
10-21-63 298.0 10-21-63 298.0 1-25-64 10.5 117.0 12-24-64 246.0 5-04-64 6.5 6-03-64 8.9 119.1 M 126.0 7-28-63 9.5 116.5 5529			11-19-63	10.0	118.0				9-24-63		205.0	
12-02-63 267-0 1-22-64 10-5 117-0 5-04-64 6.5 121-5 6-03-64 8.9 119-1 M 126-0 7-28-63 9.5 116-5 5529			12-23-63	/ · · · ·	118.3				10-21-63		215.0	
## 126.0 7-28-63 9.5 116.5 5529 ## 126.0 7-28-64 251.1			#9-67-T	10.5	11/02				12-02-63		246.0	
6-03-64 8.9 119.1 17.0 17-28-63 9.5 116.5 5529			19190-1	11.0	121.5				12-24-63		0.662	
M 126.0 7-28-63 9.5 116.5 5529 4-22-64 251.1			6-03-64	6.00	119.1				2-24-64	744.7	26843	
M 126.0 7-28-63 9.5 116.5 5529 4-22-64 251.1				1					3-25-64	246.8	266.2	
		126.0	7-28-63	9.5	116.5	5529			4-25-64	251.1	261.9	

	D SUR. WATER AGENCY SURFACE SUPPLYING CCE ELEVATION DATA IN FEET	•54	•4 100•6 5050	127.	96.	128.	• / 131•3 • 0 134• 0	130.	122.	111.	102.	147.	147	14.7	•	145	145	145	147	14.0	145		:•65		.9 274•1 6001 .2 274•8 .0 277•0		_	_			273		210	.112
	GROUND SUR FACE TO WATER SURFACE IN FEET	5-22.54	79	52 83	00 00 1	5.13	4 4	200	1 57	4 68			63 32.1								64 34.9		5-22		63 115. 63 115. 63 113.	63 114.	64 112	64 112.0	64 114.	64 115.	.+		63 195.2	0
	DATE		9-04-9	7-02-	9-04-63	12-05-	1-02-64	3-02-64	4-05-6	40-	9-04-9	7-02-	8-05-63	10-01	11-05-	12-04-	1-02-	2-05-	3-02-64	4912014	6-04-64				10-06-63 10-31-63 11-30-63	12-31-	1-31-	2-15-	4-01-	4-25-6	6-01-		10-07-6	10-21-01
	GROUND SURFACE ELEVATION IN FEET	OMS	180.0	180.0								180.0											WATER DISTRICT		390•0							•	405.5	
	STATE WELL NUMBER	MERCED BOTTOMS	95/14E-01801 M CONT.	95/14E-01802 M								95/14E-01803 M											GARFIELD WA		125/20E-13A01 M								125/21E-07A02 M	
	AGENCY SUPPLYING DATA	}	2000	6001		5050										5050										5050								
	WATER SURFACE ELEVATION IN FEET		254.5	266.0 292.5		74.4	64.9	6.09	64.5	4.00	73.0	74.3	73.8	68.8)	76.2	75.5	75.2	75.3	75.5	75.3	75.6	75.7	1.0	76.3	127.2	7.46	92.3	91.4	120.0	127.2	130.5	133.3	1687
	GRDUND SUR. FACE TO WATER SURFACE IN FEET	5-22.50	258.5 266.0	252.0 225.5	5-22.54	5.6	15.1	19.1	15.5	12.6	7.0	5.7	6.2	11.2		ω ·	, t	3 4	0.0 7.4		4.7	7.7	4°	٥٠٧	3.8	52.8	85.6	87.7	88.6	0.09	52.8	49.5	7.94	0.00
	DATE	DISTRICT	5-19-64 6-22-64	9-23-63 2-03-64		7-02-63	9-04-63	10-04-63	11-05-63	12-04-63	2-04-64	3-02-64	5-04-64	6-04-64		7-02-63	8-05-63	9-03-63	11-05-63	12-04-63	1-02-64	5-04-64	3-02-64	to-70-t	0-04-04	7-02-63	8-05-63	9-04-63	10-04-63	11-05-63	12-04-63	1-02-64	2-05-64	#0.70-c
	GRDUND SURFACE ELEVATION IN FEET	TERRA BELLA IRRIGATION D	513.0	518.0	M S	80.0										80.0										180.0								
- 1		ELLA	225/27E-36N01 M CONT.	3S/27E-10H01 M	MERCED BOTTOMS	7S/10E-23K01 M										75/10E-23K02 M										95/14E-01B01 M								

GROUND WATER LEVELS AT WELLS

STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR. FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA	STATE WELL NUMBER	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND SUR- FACE TO WATER SURFACE IN FEET	WATER SURFACE ELEYATION IN FEET	AGENCY SUPPLYING DATA
GARFIELD WA	GARFIELD WATER DISTRICT		5-22.65								
125/21E-07A02 M CONT.	405.5	11-30-63 12-31-64 1-31-64 2-16-64 4-01-64 5-01-64	191.8 189.1 187.2 186.7 183.6	213.7 216.4 218.3 218.8 219.5 221.9	6001						

6001

390.5

125/21E-18A03 M

APPENDIX D
SURFACE WATER QUALITY

Specific conductance is a measure of the capacity of water to conduct a current of electricity.

Coliform is a group of organisms whose presence is an indicator of bacteriological contamination or pollution of water.

Most probable number (MPN) is an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests.

<u>Hardness</u> is a characteristic of water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather.

221

TABLE OF CONTENTS

		Pa g e
INTRODUC	TION	220
Explanat:	ion of Tables	220
Explanat:	ion of Plates	220
Explanat:	ion of Terms and Abbreviations	220
	LIST OF TABLES	
Table Number		
D-1	Sampling Station Data and Index for Surface Water	22
D-2	Analyses of Surface Water	22
D-3	Spectrographic Analyses of Surface Water	25
D-4	Radioassays of Surface Water	26
	LIST OF FIGURES	
Figure Number		
D-1	Location of Surface Water Sampling Stations	223
D-2	Weekly Mean Specific Conductance at Selected Stations (3 sheets)	224

INTRODUCTION

This appendix contains data pertaining to the quality of surface waters during the 1964 water year (October 1, 1963, to September 30, 1964). The data are presented as tables and graphs and represent the observed physical, chemical, and bacteriological characteristics of the waters collected at the surface water quality monitoring stations. These characteristics are analyzed according to "standard methods" and accuracy of the measurements are contained therein.

The stations are sampled periodically (monthly, quarterly, or semiannually), depending on past records, need, and the type of data required for each station. Samples collected and the field data obtained at the stations are as follows:

- Partial mineral analysis--½ gallon
- 2. Bacteriological analyses (coliform)--2 samples in 4 oz., sterilized bottles
- 3. Dissolved oxygen--D. O.
- 4. pH
- 5. Temperature
- 6. Gage height
- 7. Time
- 8. Visual observation of water conditions

In May and September, the partial mineral analysis is replaced by a complete mineral analysis and the following are added to the list above:

- 1. Radiological analysis
- 2. Phosphate, arsenic, and detergents (ABS)
- 3. Spectrographic analysis of heavy metals (for ten selected stations)

Continuous conductivity recorders are installed at nine of the surface water quality monitoring stations. The recorders measure specific electrical conductance, a characteristic of water which provides an approximation of the quantity of minerals in solution.

Explanation of Tables

An alphabetical listing of all stations in the surface water monitoring program is found in Table D-1 along with information concerning station number, location, period of record, frequency of sampling, and agency responsible for collection of samples.

Results of mineral analyses can be found in Table D-2, where mineral concentrations, dissolved oxygen, and ABS are expressed in parts per million (ppm). Discharges are expressed as cubic feet per second (cfs) and bacteriological determinations are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample.

Results of spectrographic analyses for heavy metals, found in Table D-3, are expressed as parts per billion.

Table D-4 contains results of radiological analyses, expressed as picocuries per liter (pc/1).

Explanation of Plates

Locations of surface water quality stations and recorder sites are depicted on Figure D-1. Figure D-2 presents, in graphical form, data obtained from electrical conductivity recorders in terms of mean weekly values of electrical conductivity (EC \times 10^6 micromhos) plotted against time (week).

Explanation of Terms and Abbreviations

<u>Cubic foot per second (cfs)</u> is the unit rate of discharge of water. It is a cubic foot of water passing a given point in one second.

<u>Dissolved oxygen (DO)</u> is the amount of free oxygen contained in water. It is one of the most important indicators of the condition of a water supply.

Total dissolved solids (TDS) represents the quantity of dissolved mineral constituents in water.

<u>Specific conductance</u> is a measure of the capacity of water to conduct a current of electricity.
<u>Coliform</u> is a group of organisms whose presence is an indicator of bacteriological contamination or pollution of water.

Most probable number (MPN) is an index of the number of coliform bacteria which more probably than any other number would give the results shown by laboratory tests.

<u>Hardness</u> is a characteristic of water that determines its usefulness and economic value. It is mainly caused by compounds of magnesium and calcium and is usually recognized by the increased quantity of soap required to produce lather.

Station name	Station number
San Joaquin River at Friant Dam Salt Slough at San Luis Ranch San Joaquin River near Mendota San Joaquin River at Fremont Ford Bridge ² San Joaquin River at Maze Road Bridge ² San Joaquin River at Crows Landing Bridge San Joaquin River at Crows Landing Bridge San Joaquin River near Vernalis ² San Joaquin River at Patterson Bridge ² Stanislaus River at Koetitz Ranch ² Stanislaus River below Tulloch Dam Tuolumne River at Hickman Bridge ² Tuolumne River at Tuolumne City ² Tuolumne River below Don Pedro Dam Merced River near Stevinson ² Merced River below Exchequer Dam Kings River below Pine Flat Dam Kings River below Poples Weir Kaweah River below Terminus Dam Kaweah River near Three Rivers Kern River near Bakersfield Kern River at Kernville Tule River below Success Dam	24 24 c 25 25 c 26 26 27 27 a 29 a 31 a 32 a 33 b 33 c 33 d 35 5 36 a 36 b 91
Tule River near Springville Delta-Mendota Canal near Mendota Delta-Mendota Canal near Tracy ^{1,2} Fresno River near Daulton Chowchilla River near Raymond	91b 92 93 113 114

¹ Not shown on plate, station is outside of branch boundary. Originally monitored by Delta Branch transferred to San Joaquin District as of July 1, 1963.

² Conductivity recorder installed at this surface water station.

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY

TUOLUMNE RIVER NEAR HICKMAN BRIDGE STA. No. 30 RIVER MILE 29.3

MERCED RIVER NEAR STEVINSON STA. No. 32 RIVER MILE 1.8

STANISLAUS RIVER AT KOETITZ RANCH STA. No. 29 RIVER MILE 9.5

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY

SAN JOAQUIN RIVER AT MAZE RD. BRIDGE STA. No. 26a RIVER MILE 82.9

TUOLUMNE RIVER NEAR TUOLUMNE CITY STA. No. 31 RIVER MILE 2.9

DELTA MENDOTA CANAL NEAR TRACY STA. No. 93 CANAL MILE 3.5

WEEKLY MEAN SPECIFIC CONDUCTANCE AT SELECTED STATIONS SAN JOAQUIN VALLEY 1964

SAMPLING STATION DATA AND INDEX FOR SURFACE WATER

Station	Station Number	Location	Period D of Record	Frequency cof	Sompled ^d	Analysis
	 		necord	Sompring		page
Big Creek above Pine Flat Dam	33₫	12S/25E-4	July 1960	М	USACE	224, 256
Chowchilla River near Raymond	114	8s/18E-1	January 1962	S	DWR	225, 256
Delta-Mendota Canal near Mendota	92	13S/15E-19	July 1952	М	DWR	226, 255, 256
Delta-Mendota Canal near Tracy	93	1S/4E-30	July 1952	М	DWR	227, 255, 256
Fresno River near Daulton	113	9S/19E-34	January 1958	S	DWR	228, 256
Kaweah River below Terminus Dam	35	17S/27E-25	September 1961	М	USACE	229, 256
Kaweah River near Three Rivers	35⁵	17S/28E-27	April 1951	М	USACE	230, 256
Kern River near Bakerafield	36	29S/28E-9	April 1951	М	KCPR	231, 256
Kern River below Isabella Dam	36a	26S/33E-30	September 1955	ବ	USACE	232, 255, 256
Kern River at Kernville	36ъ	25S/33E-15	September 1955	Q	USACE	233, 256
Kings River below North Fork	33e	12S/26E-21	September 1955	ବ	USACE	234, 256
Kinga River below Peoplea Weir	34	17S/22E-1	April 1951	М	DWR	235, 255, 256
Kings River below Pine Flat Dam	33ъ	13S/24E-2	September 1955	ବ	USACE	236, 257
Merced River below Exchequer Dam	32a	4S/15E-13	April 1959	ବ	DWR	237, 257
Merced River near Stevinson	32	6s/9E-36	April 1951	М	DWR	238, 255, 257
Salt Slough at San Luis Rench	24 c	9S/11E-7	November 1958	М	DWR	239, 257
San Joaquin River at Crows Land Eridge	26b	6S/9E-7	January 1962	М	DWR	240, 257
San Joaquin River at Fremont Ford Bridge	25 c	7s/9E-24	July 1955	М	DWR	241, 257
San Joaquin River at Friant Dam	24	11S/21E-7	April 1951	Q	DWR	242, 255, 257
San Joaquin River near Grayson	26	4S/7E-24	April 1959	м	SF	243, 257
San Joaquin River at Maze Road Bridge	26a	3S/TE-33	April 1951	м	SF	244, 257
San Joaquin River near Mendota	25	13S/15E-7	April 1951	м	DWR	245, 257
San Joaquin River at Patterson Bridge	27a	5S/8E-15	January 1962	М	DWR	246, 257
San Joaquin River near Vernalis	27	3s/6E- 1 3	April 1951	м	DWR	247, 255, 258
Stanislaus River at Koetitz Ranch	29	3S/7E-2	April 1951 ^e	м	DWR	248, 255, 258
Stanialaua River below Tulloch Dam	29a	1S/12E-1	July 1956	Q	DWR	249, 258
Tule River near Springville	91ъ	21S/29E-15	November 1963	м	USACE	250, 258
Tule River below Success Dam	91	21S/28E-35	July 1952 ^f	м	USACE	251, 255, 258
Tuolumne River below Don Pedro Dam	3la	3S/14E-20	April 1951	Q	SF	252, 258
Tuolumne River at Eickman Bridge	30	3S/11E-34	April 1951	м	SF	253, 258
Tuolumne River at Tuolumne City	31	4s/8E-12	April 1951	м	SF	254, 255, 258
]			
A						-

a. Locations are in reference to Mt. Diablo Base and Meridian

a. Locations are in reference to Mt. Diablo Base and Meridian
 b. Beginning of record
 c. M - Monthly, B - Bimonthly, C - Quarterly, S - Semiannually
 d. DWR - Department of Water Resources
 USACE - United States Army Corps of Engineers
 SF - City & County of San Francisco
 KCPR - Kern County Parks and Recreation
 e. Prior to 2-7-64 station was located at river mile 1.9, location 3S/TE-17, and was called Stanislaus River near Mouth.
 f. Formerly called Tule River near Porterville

TABLE D-2
ANALYSES OF SURFACE WATER

BIG CREEK ABOVE PINE FLAT DAM (STA. NO. 33d)

	Analyzed by i	300	250													
	Hardness bid - Coliform as CoCO ₃ ify MPN/mi	Vedio	4.5 Maximum	Minimum 0.23				-								
	- A - A - A - A - A - A - A - A - A - A		N	-	1 0		۳	N	N	N	П	п	٦		N	
	SOO NE		0	0	0		0	0	0	0	0	0	0		o	
	Totol Ppa	_	82	33	53		33	32	88	12	17	56	33		\$4	
ة ا	- PO		37	35	36		38	38	38	9	37	38	F		37	
Total	Solved Solids In ppm		113 ^e	95 e	83		89	75e	81e	59 ^e	588	16 e	95e		124 ⁸	
	Other constituents										ABS 0.00 PO ₁ 0.05 AB 0.00				ABS 0.0 Po ₁ , 0.05 As 0.00	
	Silic (S)										ଧା		•		絽	
e les	Boron (B)		0.0	0.0	0.1		0.0	0:0		0.1	0.1	0.0	0.0		0.3	
r million per million	- ou ou ou ou ou ou ou ou ou ou ou ou ou ou -										0.0					
ports per million equivalents per mil	Ni- trote (NO ₃)										0.02			DRY	0.7	
g vine	Cha- ride (CI)		0.31	8.5	0.13		5.0	6.0	6.0	3.5	1.5	4.5 0.13	0.20	TAKEN -	0.51	
٤	Sul - fote (SO ₄)										0.02			SAMPLE	0.08	
Mineral constituents	Bicar – banote (HCO ₃)		53	8 ¹ 10	42 0.69		147 0.777	39 0.04	μ ₁ 0.67	33	30	1,2 0,69	146 0.75	NO S	0.93	
erol con	Corbon- of (CO ₃)		0.00	0.0	0.00		0.0	0.00	0.00	0.00	0.00	0.0	0.00		0.00	
ž	Potos- sium (K)			•							0.03				0.07	
	Sodium (NO)		or 6.	7.1	0.33		8.7	7.3	8.1	6.5	5.0	0.33	9.8		0.57	
	Colcium Magne- (Co) sium										0.08				01.0	
	Colcium (Co)		<u>0.76</u>	0.66	<u>0.58</u>		0.62	0.53	0.56	0.42	5.2	0.53	0.62		16	
	ماء ي	<u> </u>	7.0	7.5	7.0		8.	7.3	7.4	7.0	7.7	7.3	7.7		7.7	
	conductance (micromhos at 25°C)		132	77	97		101	88	95	69	99	89	77		1 %1	
			117	101	8		83	. 80	87	100	105	011	711		104	
	- 1		10.7	10.8	10.7		10.2	10.2	10.4	10.0	10.0 105	10.7	9.0		10.2 104	
	Ten n oF		70	47	947		1,13	21	54	99	₫	29	85		70	
	Dischorge Temp		5.0	15.5	94		12	56	14	56	52	22.5	2			
	Oote ond time sampled P.S.T.	1963	10/1	11/12	12/3	1961	1/13	2/3	3/9	4/13 1120	5/11 0111	6/8 1050	7/13 1130		9/14	

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfanate (ABS), and phasphote (PO.)

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health, Service (USPHS); San Bernardino County Flood Cantrol District (SBCFCD); Metropoliton Water District (SBCF h Annuol median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service. g Grovimetric determination.

228

TABLE D-2 (Cont.)

ANALYSES OF SURFACE WATER

CHOWCHILLA RIVER NEAR PAINFORD (SIA. NG. 114)

	2	10			
	Anolyzed by i	USGS			
	Hordness bid - Coliform os CoCO ₃ ity MPN/ml	Median 2.3 Maximum 6.2 Minimum	.05		
	Pod c	n	н		
	Hardness de CoCOs Total N C	58	0		
	Totol Benga	747	29		
	- 50 E	700	37		
Toto	solved solved solids in ppm	355	1246		
	Other constituents	ABS 0.0 PO ₁ 0.00 As 0.00	ABS 0.0 PO ₁ 0.10 As 0.00		
	Silco	[3]	881		
100	5	- i	0.0		
artio	Fluo- ride (F)	0.3	000		
parts per million equivolents per million	trote (NO ₃)	1-1	0.08		
q	Chlo- ride (CI)	11.0 3.36	12		
c. st	Sul - fats (\$04)	0.0	0.0		
nstituen	Bicor- bonate (HCO ₃)	109	75		
Mineral constituents	Carbon -	00	10.03		
ž	Potos- Sium (K)	3.0 0.03	1.7		
	Sodium (No)	70° 2	14 0.51		
	Mogne- mus (Mg)	7.8 ∴.0 ∓.5	3.3		
	Calcium (Co)	μ6 c <u>2.30</u>	17 0.85		
	T a o	7-8	1-100 رخا الان		
Specific	conductance (micromhos at 25°C)	571	188		
		24	1		
	Disa	7. h	•		
	Temp in OF	ŧ	99		
	Orschorge Temp in cfs in oF	,	30.1:	Dr.,	
	Dote and time sampled	1963 1c/7 0720	1967 5/11 0910	41/6	

o Field pH

b Laboratory pH

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.)

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimetric determination

Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS), Son Bernardino County Flood Council District (SBCFCD), Metropoliton Water District of Southern California (WMD), Los Angeles Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH); City of LaDPH); City of Lang Beach, Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

DELLA-MENDOTA CANAL NEAR MENDOTA (STA. NO. 92)

		Anolyzed by i		USGS									-				
	Hordnass bid-Coliformh as CaCO ₃ Ify MPN/mi			Median	6.2 Maximum	Minimum Minimum 06.	-	.,							-		
	Į,	- Pid - Pid			25	15	10		2	15	22	04	30	04	8	010	30
		000	D E		45	53	51		195	7	67	84	20	16	13	23	27
		i i			161	143	131		284	168	139	120	137	82	85	76	120
	-	# 5 E			72	20	52		26	64	94	T 1	<u>1</u> 47	142	43	25	55
	Totol dis- solids In pop		mod u		382	354°	329 e		784°	\$28 6	311 ^e	240e	324 ^g	159°	174 ^e	261 ^e	335 ^g
		Other constituents											ABS 0.10 Po _t 0.35 As 0.00				ABS 0.1 Po ₁ 0.25 As 0.00
		Silico	(2 ()(5)										티				77
	ion	Baron	Đ		0.1	0.3	0.3		1.6	4.0	0.5	0.5	0.2	0.1	0.0	0.5	20
noillie	per million	Flua-					_						0.0				
parts per million		- N	(NO3)						•				6.8				0.02
la.	equivolents	Chlo-	(<u>.</u>		2.96	2.54	86 2.43		3.50	3.13	76	53 1.50	86 2.43	29 0.82	34	80	104 2.93
	·	Sul -	(\$0.5)			_					•		96.0				45 0.94
	fituents	Bicar -	(HCO ₃)		2.31	1.80	98		104	1.93	1,188	1,488	106	8 2		34	95 1.56
ļ	Mineral constituents	Carban-			0.0	0.00	0.0		2.0	0.00	0.00	0.0	0.00	0.0	0.00	0.00	0000
	Wine	Potos- C											2.2				2.8 0.07
		, whipo's			3.13	66 2.87	65 2.83		168	3.26	5 [‡] 2.35	38	2.44 2.44	27 1.17	30	52 2.26	70 3.04
			(B/N)										1.24				1.25 1.25
		Calcium	(B)		3.22	2.86	2.62		5.68	3.36	2.78	2.10	30	1.64°	1.70	1.88	23 1.15
r		Ŧ (ماه		7.4	7.3	8.1		8.3	8.2	7.7	8.0	8.1	8.0	7.4	7.6	7.4 7.9
	Specific	conductance (micromhos	5		678	628	583		1390	759	551	924	526	282	308	463	599
			%Sot		18	87	85		126	8	96	93	76	85	82	85	81
		Dissolved	mad	-	6.9	8.5	9.8		15.2	9.8	9.01	9.0	9.1	7.7	6.9	7.3	7.3
			-		7	19	83		1,5	53	25	63	99	69	11	72	70
	Oischorge Temp in cfs in oF										_						
		ond time	P.S.T.	1963	10/8 0 71 0	11/4 0920	12/9 0930	1964	1/13	2/10 0950	3/9 1045	4/13 0900	5/11 0830	6/8 0945	7/13 0845	8/10 0490	9/14 0700

b Laboratory pH.

o Field pH.

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfonate (A8S), and phosphata (PO.)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

i Mineral onalyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (WMD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); os indicated. - Annual median and range, respectively. Calculated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

DELTA-MENDOTA CANAL NEAR TRACY (STA. NO. 93)

A nolyzed by i			25511	}													
	Tur- bid - Caliform ity n oom			Madfon	23. Maximum	Minimum 2.3											
	Tur- F bid- Ity			15	6	8		15	2	2	35	9	8	35	8	8	
		5 00	2 6		56	62	37		4	62	82	04	8	15	6	32	72
			Total		186	152	114		911	155	157	109	82	98	8	101	180
	-	500			20	51	52		17	54	24	04	37	145	775	52	75
Ī	Totol 1919		m 00m		19t	383°	294°		302	392 ^e	389e	216e	1648	$17^{h}e$	162°	564€	8484
		Other constituents									ABS 0.0 Pol, 0.30 As 0.01						
		Silico	(2 015)										리				শ
	llion	Boron	9		0.2	5.5	0.3		0.3	4.0	0.3	0.2	0.1	0.1	0.1	6.1	
i i	per million	Fluo-											0.0				
ports per million	equivolents		(NO ₃)										0.02				0.03
	equiv	Chio-	\rightarrow		3.75	3.02	2:12		2.31	3.05	2.51	1.24	30	36	30	2.37	165
	č	Sul -	(\$05)										0.56				63 1.31
	Mineral constituents	Bicor-	(HCO3)		158 2.54	1.80	9 th		1.4	1.61	1.43	84 1.38	1.25	36	85	1.38	132 2.16
	nerol cor	Carbon -	(°03)		000	0.00	000		0.00	8 0.27	2.0 0.07	0.00	0.00	0.00	0.03	0.0	0.00
	Mir	Potos-	3										0.05				3.3 0.08
		Sodium	1		3.74	73 3.18	57 2.46		2.39	3.57	64 2.78	1.48	1.00	32	27	2.18	100
		Mogne-	(6 _M)										10				1.70
		Colcium			3.72	3.03	2.28		2.35	3.10	3.14		0.80	1.72°			38 1.90
L		E .	ماه		8.2	4.7	7.1		8.0	7.7	7.4	7.5	7.6	4.0	8.3	7.4	7.8
	Specific	(micromhos pH	2		818	089	522		537	969	169	383	275	309	287	691	1798
			%Sof		88	89	35		82	48	95	76	94	83	82	81	83
		Discolved oxygen	maa		7.8	9.0	4.3		9.5	9.5	10.4	9.5	7.6	7.9	7.1	6.9	7.4
		Temp in OF			20	59	7		83	8	53	58	58	179	73	75	7.0
		Dischorge Temp in cfs in oF			1640	0	0		0	860	2510	1704	3320	3248	4oT5	1	2510
		Dote ond time	P.S.T.	1963	10/9 0750	11/5 1340	12/3 1320	1964	1/7 1340	2/5 0930	3/3 1410	4/8 0845	5/6 0945	6/9 1330	7/7 1215	8/4 1310	9/1 1345

o Field pH

b Leberatory pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO.)

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USCHS), United States Department of the Interior, Bureau of Reclamation (USBR), United States Geological Survey, Quality of Water Bronch (USCHS), United States Department of the Interior, Bureau of Reclamation (USBR), United States Geological Survey, Ovolity of Water Bronch (USPHS), Son Bernardina County Flood California (WMD), Las Angeles Department of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR), as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

FRESNO RIVER NEAR DAULTON (STA. NO. 113)

	Anolyzed by 1	usgs		
	Hordness bid - Coliform os CoCO ₃ ity MPN/mi Total N.C.	Median .62 Maximum 6.2 Miniaum		
إ	D = 0	а	1-	
	2000 N O O		0	
	Hordn ee Co Total ppm	89	77.	
ا ا	T Son T	55	37	
Poto	solved solids in ppm	2016	546	
	Other constituents	ABS 0.0 FP4 0.00 As 0.01	ABS 0.0 Pol, 0.10 As 0.00	
	(SiO2)	81	61	
c co	Boron (B)	0.0	0	
millio	Fluo- ride (F)	0.01	0.0	
ports per million	Ni- trote (NO ₃)	0.02	0.03	
a line	Chia- ride (CI)	5.0	0.13	
ř.	Sul - fote (SO ₄)	0.10	1.0 0.08	
netituen	Bicor- bonote (HCO ₃)	68	36	
Mineral constituents	Carbon- ote (CO ₃)	000	000	
ž	Potas- sium (X)	8.0 0.0	0.03	
	Sodium (No)	30	0.30	
	Mogne- Sium (Mg)	200	0.0	
	Calcium (Ca)	21 c	8 1 0 4 2	
	T ala	3.0	1-10	
:	Specific conductance (micromhos pH C at 25°C) a	292	8	
	Oissotved oxygen ppm %Sat	98	103	
		8.7	10.0	
		5,0	19	
	Oschorge Temp	,	8	7.40
	Oote and time sampled P.S.T.	29 <u>63</u> 20/7 0630	1264 5/11 0800	9/17:

b Loborotory pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and phasphate (PO.)

f Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves

h Annuol median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Labarataries, or United States Public Health Service.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USGS); United States Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); as indicated.

Public Health (LBDPH); Terminal Testing Labarataries, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

KAWEAH RIVER BELOW TERMINOUS DAM (STA. NO. 35)

2		-															
		Anolyzed by i		USGS				_							. <u> </u>		
	Tur-Coliformh 33 ity MPN/ml C. C.			Med1 an	0.62 Maximum	Minimum 0.62		_									
					-	п	Q		N	п	2	4	ч	0	-	t-	ч
	•	Hordnes os CoC(Totol N			0	0	0		0	0	0	0	0	0	٦	0	0
					9	1,5	37		2	54	717	35	23	15	ส	32	9
L	å	- Po	\dashv		87 —	17	21		23	22	22	56	21	25	2	8	ਹ
L	Totol Gra		ق و د	•	79	888	7 ¹ te		75 ⁸	85e	76°	999	11.7 ⁸	31	1 ¹ 1 e	52 ⁸	698
		Other constituents d											ABS 0.00 PO ₁ 0.10 As 0.00				ABS 0.0 Pol _t 0.05 As 0.00
	Ì	Silico	200					-					ឌា	-	-		4.9
	5	Boron	0		긺	0:0	0.0		0	이	0:0	0	0.1	0.0	<u></u>	0.0	6.3
million	per million	-001 F				-	,						000				
ports per million	1 1	- N		-									0.0				4.3 0.07
8	equivolents	Chio-	\dashv		3.2	5.2	3.0		3.5	5.2	5.0	1.5	0.03	0.03	0.03	0.00	3.6
	<u>.</u>	Sul -	(80,										0.02				3.0
	constituents	Bicor-	(HCO ₃)		53 0.87	59 0.97	17.0		0.90	57 0.93	56 0.92	43 0.70	33	% 0.33	25 0.41	1,1 0.67	53 0.87
		Corbon-			000	0.0	0.00		000	0.00	0.00	000	0.00	0.00	0.0	00.0	0.00
	Mineral	Polos-C	(X)										0.03				2.1 0.05
	}	Sodium			0.17	4.4 0.19	0.20		5.5	5.7	5.8	0.22	2.9	2.2	2.6	3.7	0.23
		Mogne- S	(6 M)										0.0				0.20
		Colcium	(0)		08.0	°.8	0.74°		0.80	8.	0.88°	0.64	8.0 0.40	0.30	0.42°	0.63	21.0 08.0
		I a	ام		6.9	7.2	7.1		8.1	7:0	7.5	7.3	7.5	7.0	6.7	7.0	7.5
	Specific	conductance (micromhos			101	711	8		105	113	111	87	62	Ľij	75	82	108
Γ			%Sot		55	85	63		95	97	211	7	145	134	125	130	150
		Dissolved	mdd		5.2	4.8	6.5		п.5	0.11	13.5	13.0	15.0	13.5	п.9	0.11	12.8
\mid		r of			29	61	54		5#	77	5+	74	57	9	59	92	92
		Discharge Temp in cfs in oF			8	1	500		011	170	ំដ	:	;	739	1038	8	38
	Dote Dote		P.S.T.	1963	10/7 0845	11/4	12/5 09 1 5	1964	1/6 2115	2/4 1330	3/13 0930	4/6 1015	5/11 0830	6/10 0715	7/6 1200	8/10 08 20	9/14

o Field pH.

b Loborotory pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfonote (ABS), ond phosphote (PO.)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Benardino County Flood Control District (SBCFCD); Metropolitan Water District of Sauthern California (MWD); Las Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LaDPH); City of Long Beach, Department of Public Health (LaDPH); City of Long Beach, Department of Public Health (LaDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. h, Annuol median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service Grovimetric determination.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

KAWEAH RIVER NEAR THREE RIVERS (STA. NO. 35b)

_															
	Analyzed by i		USGS												
•	Coliform MPN/ml		Median 0.38	Maximum 0.60 Minimum	2.								•		
Tur	- <u>}</u>			-	5		0	٧.	91	٥	٦	0	2	ч	rl '
	Hordness but Coliform os CoCO ₃ ity MPN/mi			0	0		0	0	0	0	0	0	0	0	0
	Hora Co	Total ppm		7.4	35		01	38	9	33	19	15	77.	38	94
0	5 5 E			8	8		25	52	25	25	23	25	8	77	25
Total	solids	rgq ri		82°	62°		7¼ e	989	90L	STe	904	28 e	55 ⁸	9 69	858
	Other constituents										ABS 0.0 PO _{lt} 0.10 As 0.00				ABS 0.0 FO _{1,} 0.00 As 0.00
	Silica	(2015)									শ্ৰ				12
lion	Boron	(B)		0.0	0.1		0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1
million ser mil	Fluo-										0.0				
parts per million equivalents per million	- Z			•							0.07		000		9.3
e quive	Chio-	(5)		5.8	2.5		1.8 0.14	4.6 0.13	0.11	2.5 0.07	0.03	0.5	0.03	0.11	6.8 0.19
£ .	Suf -										0.02				1.0 0.02
ıstituent	Bicor-	(HCO ₃)		63	46 0.75		5 ⁴ 0.89	0.80 0.80	52 0.85	69°0	0.41	22 0.34	33	52 0.85	96°0
Mineral constituents	Corbon-	(°00)		000	000		000	0.0	000	0.00	0.00	000	0.00	0.00	0.00
M	Polos-	(X									0.8				0.05
	Sodium	(0 N		5.2	4.2 0.18		6.1	5.7 0.25	6.0	0.21	2.7 0.12	2.4 0.10	3.8 0.17	5.5	0.32
	Magne-	(Mg)									0.08				0.0
	Calcium			76.0	0.70		0 0 0	0.7	0.80	19*0	0.30	0.30		0.76	17 0.85
	I a	مار		2.8	7.1		8.2	7.1	7.5	7:7	7.5	-6.9	7.3	8.0	- 18.
Specific	Conductance (micromhos	S S		121	93		109	100	103	78	20	17	99	101	131
		ppm %Sat		88	67		76	8	118	114	128	130	123	135	143
	Dissolved	Edd		0.6	7.4		12.8	0.11	14.5	0.41	13.2	14.0	11.5	11.3	13.1
	1, 18 1, 19			58	75		39	777	77	77	50	75	99	78	899
	Discharge Temp			8	500		75	170	210	1	ı	739	250	8	38
	Oate and time	P.S.T.	1963	11/4	12/5	1961	1/6	2/4 1400	3/13 1015	4/6 1055	5/11 0910	6/10 0800	7/6 1240	8/10 0715	9/14 1030

o Field pH.

b Labaratary pH.

c Sum of calcium and magnesium in epm.

d Aisenic (As), olkyl benzene sulfanate (ABS), and phosphote (PO.)

f Determined by addition of analyzed canstituents. Derived from conductivity vs TDS curves.

g Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS) ; Son Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD); Las Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Water Resources (DWR); as indicated. - Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

KERN RIVER NEAR BAKERSFIELD (STA. NO. 36)

		Analyzed by 1		2001		-											
	-	bid - Coliform" ify MPN/mi		fod to n	2.t Maximum	Minimum 0.23											
	5				α	0	5		0	cv .	cv cv	cu cu	~	~		m	н
		Hordness to CaCO ₃	S E		0	0	0		0	0	0	0	0	0	0	0	0
		Hord C C	Tatal N.C. Pam pam		36	017	77		45	84	51	52	90	87	017	1,2	7.7
	Per	- pos			£.	35	37		33	35	37	38	37	37	39	38	38
	Total	spilos.	E 0.0 c		75°	91/6	93e	-	966	102°	108	111 ^e	366	101e	89€	906	878
		Other constituents											ABS 0.0 PO ₁ 0.10 As 0.01				ABS 0.0 Po _{lt} 0.15 As 0.01
		Silico	(2)(c)										60				9.6
L	lion	Boron	ĝ		0.0	0.2	0.1		0.1	0.2	0.1	0.2	0.2	<u>ر:</u>	0	0	0.1
a Hio	per million	Fluo-	(F)										0.02				
parts per million	equivalents	N-1	(NO ₃)										0.05				0.02
٩	equiv	Chio.	(i)		4.2 0.12	0.12	4.5 0.13		5.8	5.8	6.0	5.5	0.20	5.5	0.13	0.11	1, 9 0, 14
	c s	Sul -											10 0.21				12 0.25
	nstituen	Bicar -	(HCO ₃)		5.6	59 0.97	1.11		72 1.18	73	76	80 1.31	1.23	72 1.18	0.98	1.11	70
	Mineral constituents	Corbon-	(co ₃)		000	0.00	000		0.0	000	0.0	000	0.00	000	000	0.0	000
:	ž	Potos-	(K)										0.05				1.6 0.04
:		Sodium	(0.41)		8.6 0.37	0.14	12 0.52		13 0.57	0.52	14 0.61	15 0.65	14 0.61	13	0.52	12 0.52	0.61
		Magne-	(Mg)										2.4				2.9
		Calcium Magne-	3		0.72°	08.0	988.0		0.0	36.0	1.02	1.04	16 0.80	<u>96.0</u>	0.80	0.84	14 0.70
		Īď	م		7.3	7.3	7.3		8.2	8.0	8.0	9.7	<u>-</u>	7.2	6.9	7.4	7.8
	Specific	(micramhos			971	130	144		154	158	168	172	166	157	138	140	158
			%Sat		35	93	833		1	•	,	1	•	1	,		•
		Dissolved	maa	-	8.4	9.3	10.1		•	'	ı	,	1	ı	1	1	1
					19	99	54		1,2	113	917	53	25	ŀ		70	70
		Discharge Temp in ofs in oF		_	1405	045	365	-	318	425	691	444	244	845	1422	959	218
		ond time	P.S.T.	1963	1000	11/6 2111	12/9	1961	1/7 0930	2/4 0945	3/5 0915	4,7	5/4 1120	6/1 0830	7/1 0930	8/¼ 0960	9/3 1300

o Field pH

b Labaratory pH.

c. Sum of calcium and magnesium in epm

Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO4)

e Derived from conductivity vs TUS curves

f Determined by addition of analyzed constituents. Gravimetric determination

Annual median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Internat, Bureau of Reclomation (USBR); United States Despite Health (Laphi), Son Bernardino County Flood Control District (SBCFCD); Metropolition Water District (SBCFCD); Metropolition Water District (SBCFCD); Metropolition Water Carly of Los Angeles, Department of Water Resources (DWR); as indicated.

Public Health (Labph); Terminal Testing Laboratories, Inc. (TTL), or California Department of Water Resources (DWR); as indicated.

TABLE D-2 (cont.)
ANALYSES OF SURFACE WATER

KERN RIVER BELOW ISABELLA DAM (STA. NO. 36a)

_							
		Anolyzed by i	uscs				
		Hardnass bid - Coliform ^N as CoCO ₃ ity MPN/ml Total N.C. nppm	Median 0.23 Maximum 7. Minimum	90.			
	Tur.	- pid Viju	1	ľ	-	N	П
		000 N.C. DPR	0	0	0	0	0
			36	94	64	3	3
	8	2 0 0 1 E	32	36	37	38	38
	Total	solved solids In ppm	71 ^e	946	988	82	# ⁴⁶
		d Other constituents			ABS 0.1 PO ₁ 0.05 As 0.01		As 0.1 As 0.02 As 0.02
		Silico (SiO ₂)			7.4		엙
	llion	Boron (B)	0.1	0.2	0.1	0.1	हैं।
101	per million	Fluo- ride (F)			0.0		
ports ner million	equivolents	Ni- trote (NO ₃)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.02		6.9 H.
č	equive	Chio- ride (CI)	3.2	5.0	0.16	3.0	5.1 0.14
	Ē	Sul - fate (SO ₄)			0.21		0.19 0.19
	stituents	Bisar- bonate (HCO ₃)	52 0.85	69	76 1.25	38.	88 L:
	Mineral constituents	Corbon- ots (CO ₃)	0.0	0.00	0.00	0.0	0.00
	ž	Potos- sum (X)			0.05		0.0 0
		Sodium (No)	7.8	12 0.52	16 0.61	11.0 5.48	0.57
		Mogne- sium (Mg)			2.2		9.4 0.38
		Calcium (Ca)	<u>0.71</u> °	26.0	0.80	08.0	0.50
L		F e o	6.9	7.2	7.7	7.9	[- -
	Sourific	conductance (micrambos of 25°C)	2112	148	161	130	151
			93	89	48	8	8.
		Dissolved osygen ppm %So	4.8	10.4	0.6	4.8	7.9
		F 0 0 0	88	74	₹5	67	r.
		Dischorge Temp in cfs in oF	1525	m	5	190	v
		Dote ond time sompled P.S.T.	196 <u>3</u> 10/4 1330	1/2 1100	5/1 0915	7/10 1330	9/11 1115

o Field pH.

b Loborotory pH.

c Sum of colcium and magnesium in epm.

d. Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO $_{\! \bullet})$

e Derived from conductivity vs TDS curves. f Determined by addition of onalyzed constituents.

g Grovimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBRFCD); United States Geological Survey, Quality of Water Branch (WMD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Mealth (LADPH); City of Long Beach, Department of Papartment of Public Mealth (LADPH); City of Long Beach, Department of Water Resources (DWR); os indicated.
Public Mealth (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or Californio Department of Water Resources (DWR); os indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Control District (SBCFCD), Metropolition Well Library Public Health (LBDPH), Terminal Teating Lobort

KERN RIVER AT KERNVILLE (STA. NO. 36b)

	Anolyzed by i		nses				
	bid - Coliform Ar		Medien U. 2.4 Maximum 24.	60.			
_	Zori.	_					
;	2	€نا	0 6		0	0	0
	Hordness oc CoCO ₃	Total N.C.					
_	100		h2 31		37 28	143 26	38
	Paylog Spilog	E 00	79 e		***	65 e 1	8111
-	1	$\neg \neg$					1
	p	- 1			As 0.00		ABS 0.1 Po ₁ 0.00 As 0.00
	Silice	(30.5)			ᆌ		श
	1 5	Ē	0.1		0:0	0.1	8.0
million er mil	Fluo-				000		
parts per million	- <u>-</u>	(NO3)			0.5		0.00
G N	Chlo-	(12)	5.0	EIVED	3.5	2.5 0.07	7.2 0.20
ءِ	Sul-	(\$0\$)		NO SAPPLE RECEIVED	0.15		11 0.23
stituents	Bicor	(HCO ₃)	28.0 0.82	No SA	2 1 0.69	39	1.36
Mineral constituents	Corbon	(°O ₂)	0.0		0.00	0.0	0.00
Mis	Potos-	E(X)			0.03		4.000
	Sodium	(0 N)	o 10		8.1 0.35	8.8	0.70
	Mogne-	(Mg)			0.0		8.60 E
	Calcium	<u>(</u> ဦ)	0.62		9.8	<u>0.51</u>	0.75
	I d	ماه	7.3		7.5	7.7	8.2
	conductance (micromhoe	62 16	111	_	93	93	8
		ppm %Sot	8		8	&	88
	Diecolved oxygen	Edd	0.6		10.0	8.8	τ.
	T e		3		12	99	ব
	Dischorge Temp in cfs in oF		295		760	350	ी
	ond time	P.S.T.	196 <u>3</u> 10/4 1300	1961	5/1 0830	7/10	9/11 1030

a Field pH.

b Lobarotory pH.

c. Sum of calcium and magnesium in epm. d. Arsenic (Ab.), and phosphate (PO_4) d. Arsenic (Ab.), alkyl benzene sulfanate (ABS), and phosphate (PO_4).

Derived from canductivity vs TDS curves

f Determined by addition of analyzed constituents.

g Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USCS); United States Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. h Annual median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Labaratories, or United States Public Health Service.

237

TABLE D-2 (cont.) ANALYSES OF SURFACE WATER

KINGS RIVER BELOW NORTH FORK (STA. 190. 33c)

	D		Si				
	Anolyzed by i		nsgs				
	Hordnese bid - Coliform's as CoCO ₃ ity MPN/mi		Median 0.23 Maximum 0.62 Minimum	ତ୍ର			
Tur-	9.4 1.7 y 1.0 gm		~	N	Н	-	7
	dne 8 e	Σ g Ω E	0	0	0	0	0
			15	17	ω	9	1
-1	500	_	68	₹ 	36	33	32
Total	solved spiles	ē	33.	396	26E		1,56
	Other constituents d	- 1			ABS 0.0 FO ₄ 0.10 As 0.00		ABS 0.0 POl ₁ 0.00 As 0.00
	Silico	/2 ₀₁₆)			8.8		ল
illion	Baron		0	0	0.1	읭	ु
per m	Fivo	(F)			0.0		
ports per million equivalents per million	-iN	(KON)			0.02		0,0
equiv	Chlo-	اَقَ	0.00	0.00	0.5	0.5	0,00
ts in	Sul -				000		o. ୭୦ ନାତ
nstituen	- Bicar-	(HCO ₃)	8.33	23 0.38	0.25	0.20	0.34 34
Mineral canstituents	Corban-	(603)	0.0	000	00.00	000	0.00
W	Potos-	Œ.			0.02		0.02
ľ	Sodium	(o z)	0.12	2.6	2.4	2.3 0.10	00.17
	Mogne-	(Mg)			0.2		0.10 0.10
	Calcium	ٳۛ	0.30	0.34	2.8	8.0	8 4
ļ	E e	ما	9.9	7.7	7:7	• 6.9	10.
Specific	(micramhos	5	₽ -	55	62	33	75
		ppm %Sot	111	82	811	95	112
		E dd	10.4	10.6	12.2	8.5	10.1
	To ri		99	07	95	يان	8
	Dischorge Temp in cfs in oF		328	303	2116	968	182
	Dote ond time	P.S.T.	1963 10/1 1280	1964 1/13 1150	5/11 0945	7/13 1030	47.00 1100

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO.)

e Derived from conductivity vs TDS curves. f Determined by oddition of analyzed constituents.

g Grovimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclomation (USBR); United States Public Health Service (USPHS); Son Bernordino County Flood Control District (SBCFCD); Metropoliton Water District of Southern Colifornia (AWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); os indicated. h Annuol median and range, respectively. Colculated from analyses of duplicate monthly samples made by Califarnia Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

KINGS RIVER BELOW PEOPLES WEIR (STA. NO. 34)

_			_														
		Anolyzed by 1		uses													
	4	Hordness bid - Coliform" os CoCO ₃ ity MPN/mi		Median	2.3 Maximum	Minimum Minimum							_				
	Ę	- 514 - C			cv.	-	2			-	15	П	7	C)	5	-	н
r	·	00 00	o E		0	0	0		0	0	0	0	0	0	0	0	0
		Hora 200	PPm		91	745	30		25	21	8	02	38	15	7	12	14
	Per	Sod -			3	23	78		28	31	65	82	23	23	35	53	25
	Toto	solios solios			33	82e	55 ^e		111e	75 _e	1,1e	133e	999	30e	23°	25e	288
		Other constituents	- 1										ABS 0.1 P7 ₁ , 0.10 As 0.00				ABS C.O FO ₄ 0.05 As 0.00
		Silico	20.00										밁				7.0
_	lion	Boron (B)	<u> </u>		0.0	0.0	0.1		0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0
million	E L	Fluo-											0.0				
ports per million	equivalents per million	N-in-											2 7				00.0
ă	equive	Chlo-	(C)		2.9	5.6	2.0 0.0 6		0.07	3.0	0.00	6.8	1.5	1.5	1.5	0.03	0.08
	<u>=</u>	Sul -	(°OS)		_						_	· · · ·	7.0				0.00
	stituenti	Bicor - bonote	(HCO ₃)		0.36	96.0	38		28 0.46	26	26	93	52 0.85	0.31	15	16	0.30
	Mineral constituents	Carbon-	(CO ₃)		0.0	0.0	000		0.00	000	000	2.0	0.00	000	000	000	000
	Min	Potos	ξ			-							1.5	-			0.02
		Sodium (N)	(0.11)		3.2	6.1	4.3 0.19		0.0	4.1 0.18	3.8	13	6.6 0.29	2.6	0.12	0.10	2.10 0.10
		Mogne-	(Mg)										0.34				0.5
		Colcium	(2)		0.31	0.00	09.0		77.0	0.41	0.41	1.40	8.4	0.30	0.22	0.24	0.24
		I a	م		7.0	7.8	6.8		7.0	7.2	7.5	88.1	8.0	7.5	7.7	7.1	7.8
	Specific	(micromhos			84	120	81		79	19	59	194	108	43	34	37	04
			%Sot		8	%	79		66	102	107	109	101	101	107	8,	101
		Dissolved	ppm %Sot		8.4	7. 6	9.5		11.3	11.5	13.5	9.5	ω ω	0.0	9.6	9.1	9.1
r					99	62	54		1.8	20	54	72	73	61	69	19	69
		Oischorge Temp in cfs in oF			732	95	82		235	361	1	,	126	602	1356	1080	3146
		ond time	P.S.T.	1963	10/7	11/4	12/9 1255	1967	1/13	2/10 1215	3/9	4/13 1215	5/11 5/11	6/8	7/13	8/10 0950	9/1 ⁴ 1000

a Field pH.

b Laboratory pH.

c. Sum of colcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfonate (ABS), and phosphote (PO $_{ullet}$)

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

⁻ h Annuel median and ronge, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. g Grovimetric determination

name of anotyses made by United States Geological Survey, Quality of Water Bronch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR), United States Public Health Servey Quality of More and Power (LADMP), City of Los Angeles, Department of Water District (SBCFCD), Metropolitan Water District of Southern California Department of Water Resources (DWR), os indicated.

Public Health (LBDPH), Terminal Testing Loboratories, Inc. (TTL), or California Department of Water Resources (DWR), os indicated.

TABLE D-2 (cont.)
ANALYSES OF SURFACE WATER

KINGS RIVER BELOW PINE FLAT DAM (STA. NO. 33b)

	-	by 1	nsgs				
	-			9			
	10,000	n ppm MPN/ml	Median 0.23 Maximum 4.5	90.			
	ر ا ا	- <u> </u>	01	m	N	7	N.
		ပ္ပ ပ	н	- н	0	0	0
	1	Totol Em	- σ	ដ	13	ω	2
_	à	P . E	25	77	56	33	8
-	-	solved in opm	176	25	30 ^g	196	98 58
		Other constituents			ABS 0.0 Po ₄ 0.05		AB 2.0.0 Poly 0.05 AB 2.00
		SIIICo (SIO ₂)			7.4		6.2
		Boron (B)	0.0	0.0	0.0	0.0	7
million and		- pus- ride (F)			0.0		
5 I		trote (NO ₃)			0.00		2.00
d sind	PAINA	Chlo- cde (CC)	0.0	0.5	0.00	0.5	0.0 <u>8</u>
<u> </u>		Sul - fote (SO ₄)			3.0		0.00
constituents		Bicor- banots (HCO ₃)	0.15	14 0.23	0.31	10 81.0	0.25
Mineral con		Corbon- ate (CO ₃)	0.00	0.0	0.00	0.0	000
Z		Potos- sium (K)			0.0		0.00
		Sodium (No)	1.2	1.1	2.3 0.10	1.8	0.00
		Mogne- sium (Mg)			0.0		0.03
		Colcium (CO)	0.15	0.24	1.8 0.24	0.17	3.2
		표 씨스	9.9			7.5	6:
	Spacific	(micromhos at 25°C)	53	33	38	25	<u>ਵ</u> ੰ
			102	46	96	107	133
		oxy. oxy.	10.2	10.6	12.0	10.5	10.1
		0 E E E	- 3	8	54	8	9
		Dischorgs Tsmp in cfs in of	787	615	1565	0194	1871
		sampled P.S.T.	196 <u>3</u> 10/1 1400	1964	5/11 1310	7/13	9/14 1300

a Field pH.

b Loborotory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO.

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents. g Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood County Flood Subject Macropolitan Water District of Southern Californio (AWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); as indicated. - Annual median and range, respectively, Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service.

MERCED RIVER BELOW EXCHBQUER DAM (STA. NO. 32a)

		_					
	Anolyzed by 1		SOSO			_	
	bid - Coliform's ity MPN/ml		Median 1.3 Maximum 62. Minimum 0.23				
) i	2 2 2		50	۲-	н	N	ଷ
	Hordness os CoCO ₃	z &	٥	-	0	0	ω
		Totol	55	98	15	g	8
	000		77.	21	₹	8	21
Totol	soived soids	mde ni	416	e ^{†††}	33 ^g	18	143 ⁸
	p	Ciner constituents			ABS 0.0 Po ₁ 0.05 As 0.05		ABS 0.0.0 Pol, 0.1.5 As 0.001
	Silice	(\$10,2)			ם		<u> </u>
lion	Boron	<u>@</u>	0,0	0.0	- 0	70	0
per million		(F)			0.0		
ports per million equivolents per mil	Z	(NO ₃)			00.0		0.0 0.10
e duiv	Chlo-	(C)	1.8	2.5 0.07	0.03	0.03	0.19
Ē	Sul-	(SO ₄)			3.0		0.12
constituents	Bicar	(HCO ₃)		30	0.31	21 0 8	1.79
Mineral cor	Corbon-	(CO ₃)	<u>61.0</u>	000	000	000	0.00
Mır	Polos-	K)			0.0		0.01
	Sodium	(N 0)	1.9	3.2	2.4 0.10	1.8	6.1 0.27
	Magne-	(Co) SHUM (Mg)			0.08		99 45.0
			0.50	0.52	4.4	0.19	1.40
	ī	ماه	6.9 7.4	6.8	7.0	6.9	1.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
Specific	conductance (micromhos	of 25°C	62	88	O [†] 1	23	550
	9 × 0	% So	89	16		104	78
	Dissolved	E Ga	8.0	11.4		10.4	7.0
	Tenp in OF		69	1 47	54	59	0.1
	Discharge Tamp in cfs. in PF		52	۲۲	1327	1816	94
	ond time		1963 10/7 0945 1964	1/13	5/11	7/13 1035	9/1¢

e Field pH.

b Leboretery pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfonote (ABS), and phasphote (PO4)

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureou of Reclamation (USBR); United States Public Health Service (USPHS), San Bernardino County Flood Control District (SBCFCD); Metropolitan Water District of Southern California (WWD), Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Lobaratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. - Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Gravimetric determination.

9 Gravinetric determination.
A Annola median and instructively. Colculoted from analyses of duplicate monthly samples made by California Department of the Interior. Bureou of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardino County Flood in Mineral analyses and by United States Geological Survey, Quolity of Water Branch (USBS); United States Department of the Interior of Southern California (WWD); Los Angeles, Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Control District (SBCFCD); Metropolition Water District of Southern California (WWD); Los Angeles, Department of Department of Public Health (LADPH); City of Long Beach, Department of Dep

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

MERCED RIVER NEAR STEVINSON (STA. NO. 32)

11. 12. 12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13			_	L			_				Mineral		constituents	i ⊆	por	as I	Hion	1			,	_					
This continue conti									-		-		- 1	-	@dnival	- 1	-	<u>_</u>	-		ē ;		e or tok	<u>ئۆ</u> ر	100	-	700
1.66 6.0 6.2 6.0 7.1	ond time	Dischor in cfs	e Ten		payloss aygan		Ξ e.	Calcium (Ca)	-sngow	Podica No.	Stos- Co	$\overline{}$						ron Silic 3) (SiO ₂		er constituents d	solids in ppm	505	os CoCC		Z Z	- E	
1.0 1.0	P.S.T.		_	à	$\overline{}$				(Bw)	+	3		_	\dashv	十	\rightarrow	+	+				+		Ę	-	+	T
1.0 1.0	1963				_								-								•						S.
11.0	10/8	246.4		80		224	7.7			20 0.87	210		1.70		13 0.37		<u>ା</u>	이			144c					- HZH	
110	11/5	917	8	-6		374	7.3			1.28			143 2.34		19 0.54		<u> </u>	이			202					. 3 E.	
103 52 10.6 56 281 7.2	12/3	172	54			588	8.3			26 1.13			129 1.2		14 0.39		<u>ગ</u>	다.			185°						
10.5 52 10.6 56 28.1 7.2	1964	_												· -											-		
103 105	1/7 0950	140	52	<u>,</u>		297	8.5			26 1.13			2.07		18		<u> </u>	이			191	9	98			·	
86 6 10 10.7 94 830 6 13.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7/2	103	25	10.		281	7.4			30			126 2.07		16			1.1			181		83				
103 56 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	3/3	82				330	8.3			3. 1.48			138 2.26		25.02 0.62		<u> 기</u>	1:1			213		رو 				
133 58 9.7 94 87 231 7.8 138 6.6 1 1.3 2	1/4 0945	96		-6		248	7.6			25		-	1.90		51 <mark>℃</mark> 12		٦ <u> </u>	0.0			160	1+3	72				
118 63 64 87 231 778 6 6 59 27 773 778 6 6 75 6 75 6 75 6 75 778 6 6 75 778 7 778 6 75 6 75	5/5	103				542	7.7		6.6						0.39					0.00	1518		72				
98 71 6.6 75 316 7.3 15	6/9 080	118				231	2.8			28.0			102		14 0.39	-		<u> </u>			1496	1,2	99				
93 71 6.6 75 9.2 97 189 7.3 6.37 0.70 0.00 130 0.00 0.71 0.00 0.00 0.71 0.00 0.00 0.0	0090	%		Ŀ			8.0			31			123 2.02		10 0.28	_		1,0			191 ^e		- 62				
166 65 9.2 97 189 7.3 15 0.75 0.07 0.07 0.07 0.05 1.18 0.15 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.0	8/4 0830	93		9			8.0			1.48			130 2.13		25 0.71		-1	9			201 e		83				
o Field pH.	9/1 0840	991				189	7.5		0.37			0.00			0.20	3.6	~I			0.15	124 ⁶		95				-
	a Field pl												-				\dashv	\dashv						-	_	_	

b Loboratory pH.

c Sum of colcium and magnessum in epm.

d. Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO $_{4}$)

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents. 9 Gravimetric determination.

Mirand Desiries (SBCFCD), Morrapolitan Wales District of Southern California (MWU), Los Angeles Departicional Department of Woles Responsibility of Morrapolitant Responsibility of Morrapolitant California Department of Woles Responsibility of Morrapolitant Responsibility of Morrapolita

SALT SLOUGH AT SAN LUIS RANCH (STA. NO. 24c)

		Anolyzed by i		nses													
	4	Coliform" MPN/mi		Median	230. Maximum	15 Minimum 21.											
Γ	Ţ	- P - G			β	15	01		15	8	8	25	50	30	01	25	&
		5 0	2 E		172	941	197		315	1,22	143	533	8:	158	113	93	87
		1	Poto Bom		340	326	384		525	62 ⁴	618	458	220	762	645	526	211
	Per	- P E			82	58	57		82	61	59	57	53	57	55	55	54
	Totol	solved	E 00 E		1064	998e	1124e		1670	1791 ^e	1713 ^e	1268°	5818	835e	673	631	5898
		Other constituents d	- 1										ABS 0,10 As 0.00 FO ₁ 0.45				ABS 0.00 As 0.00 POL 0.35
		Silco	2010										91				ଧ
	million	Boron	j		9.0	8	1.9		2.7	3.9	3.3	1.8	2.5	0.9	†•°0	0.4	η·0
million	per m	Fluo-	(F)										0.1				
ports per million	equivolents	Ni- trote	(NO3)										1°0 0°0				0.05
ľ	equiv	Chlo-	ĵ.		9.10	83.41	27.5		370	428 12.07	13,12	355	148	220	180 5.08	180 5.08	184 5.19
	Ē	Sul -	(\$05)		3.79		341 7.10		350 7.29	670 13.95	532 11.08	382 7.95	2.54	196	125 2.60	92 1.92	92 1.92
	constituents	Bicor -	(HCO)		338	3.61	3.74		8.4	246	3.51	194 3.18	2.43	166 2.72	166 2.72	162	2.47
	Mineral con	1	(co3)		000	000	000		000	000	000	000	000	000	000	000	000
	Min .		(¥)										1, 1				0.11
		whipos	1		215 9.22	9.09	254 10.18		338	44.2 19.23	4.15 18.05	280 12.18	5.00	180 7.83	140 5.09	257 24.5	119 5.18
		Mogne-	(Mg)										₹ 8				23 1.92
		Colcium	(3)		98.9	6.32	7.68		10.50	12.18	ें हुद्	9.16	5.40	38.5 1		4.52 4.52	2.30 5.30
		I a	م		7.3	7.1 8.0	7.9		7.4	8.0	7.8	7.5	7.6	7.4	7.5	7.3 8.0	7.5
	Specific	(micromhos)	;		1770	1660	1870		2500	2980	2850	2110	991	1390	1120	1050	1000
Γ			%Sot		7.	73	38		42	75	77	72	69	179	52	96	81
		Dissolved	m dd		6.9	7.4	7.7		9.5	8.7	0.6	7.5	7.3	₹9	9.4	5.0	7.2
		Temp in OF			19	58	84		L †1	84	24	35	55	65	2	2	2
		Discharge Temp in cfs in oF			53	917	136		106	105	*	%	145	92	70	73	122
		Date ond time	P.S.T.	1963	10/8	11/5 0820	12/3 0830	1967	1/7 0820	2/4 0735	3/3 0740	0080	5/5 0615	6/9 6/9	7/7 0630	8/4 0715	9/1

o Field pH.

b Laborotory pH.

c Sum of calcium and magnesium in epm.

d. Arsenic (As), olkyl benzene sulfonate (ABS), and phosphate (PO $_{ullet}$)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service (USPHS); San Bernardino County Flood Mineral analyses made by United States Geological Survey, Quality of Water Branch (USCS), United States Department of the Interior, Surcey of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USCS), United States State

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

SAN JOAQUIN RIVER AT CROWS LANDING BRIDGE (STA. NO. 26b)

1 1 1 1 1 1 1 1 1 1						_										
The control The control		Anolyzed by i	SSS								-					
Control Cont	4	Coliform" MPN/ml	Median	12.	Maximum 2400.	Minimum 6.2		-								
The control of the	į	- Page		25	15	50		15	10	co	10		50			
The control of the		20 Z G		21	105	95		99	149	233	199	80	117	126	110	3
The control of the		Total		141	566	792		286	320	408	358	214	256	283	564	205
10 10 10 10 10 10 10 10	è	100 m		52	95	65	_	3)	56	9	53	55	57	95	55	23
1	Totol	solide in ppm		3708	786°	762 ^e		8878	1000g	1210	10908	582E	738 e	85,38	762 e	2495
Control Cont		Other constituents										POl ₄ 0.50 AS 0.00	ABS 0.1			AS 0.00 ABS <u>0.0</u> 0 Pol <u>0.50</u>
Control Cont		Silica (SiO ₂)										ଥ				25
The color of the	lion	Boron (B)		0.1	7.0	0.8		0.8	1:1	1.3	0.9	0.4	7.0	7.0	0.3	6.3
Conference Table Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference Table Conference	ser mil											0.1 0.01				
The control of the	ents per															6.0
The continue of the continue	Bquival			92 2.60	210	150 5.36		203 5.7 3	228 6.43	325	300	150	206	231 6.52	212 5.98	154 4.34
The contract of the contract		Sul - fote (SO ₄)										2.37				1.64
1	stituants			146	3.21	206 3.38	•	3.80	208 3.41	206 3.38	194 3.18		162	181 2.97	3.08	
1				0.0	0.0	0.00		000	0.00	0.13	0.00	0 0 0	0.13	5 0.17	0.0	0.00
1	Ž	Potos- sium (K)										3.4		_		3.7
Conductance Conductance Conductance Colour Colo		0) E		70	154	158 6.87		158 6.87	9.14	280 12.18	186 8.09		155	164	147 6.39	110 4.78
Discharge Tamp Dissolved Conductance PH		Mogne- sium (Mg)														
Discharge Temp Dissolved Conductance Conductance Inc. of a system Oxygen Oxyg		Colcium (Co)		2.82	- 32	5.28		5.78	6.40		7.16					
Discharge Temp Dissolved oxygen in cfs in cfs of ppm %Solved oxygen oxyg		H alo	ļ	7.5	2.7	7.3 8.2		7.7	88.0 0.1	8.9	9.5	8.0	8 8 9 9	9.00 1.00	9.7	7.0
Discharge Temp Dissolved oxygen in cfs in cfs of ppm %Solved oxygen oxyg	Sacrific	conductanc (micrambo at 25°C		629	1300	1260		1400	1590	5000	1720	166	1.220	1320	1260	742
Dischorde Tempo Disso ony in ets in ets in ets in ets ony in ets in ets in ets ony in ets in ets in ets in ets in ets in ets expensive description on ets ets ets ets ets ets ets ets ets ets				83	\$	75		16	16	56	115	96	8%	106	66	66
* D H:		Oisso Oxy Ppm		7.5	4.0	9.1		10.5	10.0	11.2	11.0	9.8	9.5	9.2	8.8	9.7
P P P		To ri		59	65	77 77		8 4	52	8	3	58	63	73	72	63
P P P		Dischorge in cfs Gage off							_							
			1963	10/8	11/5	12/3 1035	1964	1/7	2/4 1015	3/3	4/7 1010	5/5 0845	6/9 6/9	0¶80 J.//.	8/4	9/1

b Loborotory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfanate (ABS), and phosphate (PO.

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Califarnia Department of Public Health, Division of Lobaratories, or United States Department of the Interior, Bureau of Reclamation (USBR); United States Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Branch (USBR); San Benardino County Flood Canter of Sauthern California (SMD); Las Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Meolth (LADPH); City of Long Beach, Department of Public Academics, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

SAN JOAQUIN RIVER AT FREMONT FORD BRIDGE (STA. NO. 25c)

	Anolyzed by i		OUGH	8							-					
	Hordness bid - Coliformh os CoCO ₃ lity MPN/mi		Mode	23. Maxtmum	Minimum 6.2											
	- P - C			8	15	35	_	8	15	8	R	ಜ	%	8	35	30
	000 c	S E		717	233	203		129	177	1,58	325	151	151	164	149	143
	F S	Total Pom		262	₄ 22	392		324	844	0479	764	294	308	317	310	300
	200			55	- 29	58		59	8	29	26	54	5.4	26	26	55
Total	Pevies Polids	mqq ri		729 ^e	1318 ^e	1125		1020 ^g	1259 ^e	1790 ^e	1353 ^e	798	857	869 ^e	851e	8228
	Other constituents	,			_							ABS 0.1 PO _h 0.35 As 0.0				ABS 0.1 PO ₁ 0.35 As 0.01
	Silico	(2015)										36				22
lio	5	ê		3	6.0	1.3		1.2	2.1	2.3	1.7	3	0.5	7.0	4.0	t 0
r million	F1u0-							-	-			0.0				
		(NO3)										0.05				3.7
ports pe	Chlo-	(Ĉ		230 6.19	401 11.31	318 8.97		237 6.69	330	545	120 11.85	235	269 7.59	280 7.90	272 7.67	278 7.84
5	Sul -	(\$0\$)		1.98		302		27th 5.70	412 8.58	536 11.16	372 7.75	15 ⁴	156 3.25	153 3.19	13 ⁴ 2.79	132 2.75
constituents	Bicar -	(нсоз)		173 2.84	3.77	3.77		3.90	3.41	3.64	3.34	17 ⁴ 2.85	192 3.15	3.05	196 3.21	192 3.15
Mineral cons	Corbon-			0.17	000	000		000	1 0.13	000	000	0.00	000	000	0.0	0.0
M v	Potos-	£										1.4				4.8
	Sodium	0 2	_	11:88 6:14 6:14 6:14 6:14 6:14 6:14 6:14 6:14	275	250		218 9.48	312	430 18.70	288 12.53	164 7.13	166 7.22	186 8.09	18th 8.00	17 ¹⁴ 7.57
	Mogne-	(Mg)										3 ⁴ 2.79			-	32 2.66
	Calcium	روق		5.24°	8.44	7.84		e.13	36.8	12.80	9.84	62 3.09	6.16	6.34°	6.20	67 3.34
	¥ a	م		4.4	8.1	8.2		2.9	8.3	88.0	8.2	8.1	7.9	8.0	8.0	7.8
Specific	Conductonce (micromhos	5		1250	2260	1930		1630	2160	3070	2320	1360	1470	1490	1460	1400
		%Sot		82	16	#		88	85	8	107	95	75	99	75	46
	Dissolved	pom %Sot		4.7	9.1	8.5		10.5	8.6	10.5	11.0	9.8	7.7	5.9	9.9	9.3
	Ten in oF			8	58	143		<u>'''</u>	84			57	- 65	73	72	9
	Discharge Temp in cfe in oF			94.8	2112	126		256	189	122	142	183	155	811	88	106
	Dote ond time compled	P.S.T.	1963	10/8 0930	11/5 0915	12/3 0910	1964	1/7 0910	2/4 0840	3/3 0830	04/4	5/5	6/9 073	7/7 0715	8/4 0800	9/1 0740

a Field pH

b Lobaratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and phosphate (PO.)

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR), United States Geological Survey, Quality of Water Branch (MMD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), Toty of Long Beach, Department of Public Health (LADPH), Terminal Testing Laboratories, Inc. (TIL); or California Department of Water Resources (DWR), as indicated. Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service Gravimetric determination.

TABLE D-2 (Cont.)

ANALYSES OF SURFACE WATER

SAN JOAGUIN RIVER AT FRIANT DAM (STA. NO. 24)

	yzed i		uses				
	Anolyzed by i	\perp				_	
	bid - Coliform		Median 0.62 Maximum 62.	8.0			
1	- P - C		70	7	m	7	7
	8 0	z g	0	0	0	0	0
		Total Pom	S. F.	7.	12	17	य -
		-	36	38	39	94	en 4
Totol	- solog Polog Polog	od ri	3,6	396	386	34°	88 80 90 90 90 90 90 90 90 90 90 90 90 90 90
	Other constituents				ABS 0.00 FO ₄ 0.10 As 0.00		ABS 0.0 P0 _k 0.05 As 0.05
	Silica	(2 0'S)			9.5		위
lion	5	<u>@</u>	0.0	0.0	0.0	0.0	01
millior ser mi	Fluo-		7		0.1		
parts per million equivalents per million	N.	(NO ₃)			2.2		ო. <mark>შ.</mark>
Polivide	Chio-	(CD)	3.8	1.5	0.12	3.0	<u> </u>
€	Sul -	(\$0.4)			0.0		0.00
stituents	Bicar-	(HCO ₃)	16	18	15	16 0.26	17 0.28
Mineral constituents	Carban-	(CO3)	0.0	000	000	000	0000
M	Potas-	(x)			0.03		0.01
	Sodium	G Z	3.3	3.9	3.8	4.4	6.19 • 19
	Mogne-	(BW)			0.5		0.08
	Calcium	ဒ္ဌိ	0.25	382.0	0.20	0.22	ु: 0 1,0
	E a	ماه	6.9	6.8	7.0	7.7	ତାଳ ତାଳ
Sasti	conductance (micramhos	7 52 IB	^{1,} 5	87	44	75	4 2
	P	%Sa	89	17	105	91	88
	Dissolved	mdd	7.7	8.7	10.6	10.0	9.1
	Ts and and and and and and and and and and		64	72	o) 0)	52	51
	Dischorge Tamp in cfs in of		88	51	126	171	120
	and time	P.S.T.	1963 10/7 0445	1964 1/13 0845	5/11 0645	7/13 0820	9/14 0530

o Field pH.

b Laboratory pH.

c Sum of colcium and magnesium in epm.

Arsenic (As), olkyl benzene sulfonate (ABS), and plasphate (PO.)

• Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

f Determined by addition of analyzed cor g Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino County Flood Control District (SBCFCD); Metropoliton Water District of Southern California (MWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Water District of Southern California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

SAN JOACULH RIVER NEAR GRAYSON (STA. NC. 26)

	Anolyzed by i		nses													
	A Poor	_														
	bid - Coliform		Median	230. Maximum	Minimum 13.											
	- Pid - Pid - Pid - Pid			13	5	10		25	8	30	15	9	35	6	15	15
	Hordness os CoCO ₃	O E		4.4	113	119		ř.	140	552	153	85	82	131	141	7.4
		Totol ppm		170	298	304		276	330	7,70	324	242	24.8	313	338	23.23
				54	75	25		57	9	26	75	22	53	77	64	25
10101	solved solids	nqq ni		454e	873 ^e	867°		790°	0€2e	1212 ^e	879 ^e	610E	642°	302e	8326	6018
	o see a see											ABS 0.0 POL 0.10 As 0.00				ABS 0.0 FOI: 0.50 As 0.00
	Silice	S:02)										25		~~ ~~		성
ا	5	œ		0.0	0.5	7.0			0	1.1	0.8	0.3	0.0	6.3	0.1;	0.4
million	F 100-									_						
		(NO ₃)		•								6.1				3.4
ports pe	:	(3)		3.24	231 6.52	225		186	238	343	240	155	162	215	218	151; 14.34
٤	Sul -	(\$0.			•							2.27				2.21
constituents	Bicor-	(HCO ₃)		2,52	3.61	3.70		2444 7.00	22th 3.67	250	3.41	2.59	3.27	3.14	3.93	3.10
Mineral con		(503)		000	000	000		000	0.13	000	000	14,00.47	000	000	000	0.00
Mine		E(X)										0.10	•			3.4 0.0g
	Sodium	(o z)		3.96	164	182		168	230	275 11.96	178 7.74	5.35	130 5.60	168	152	119 5.18
	Mogne-	(Mg)								•		30				2.34
	Colcium			3.40	2.96	90.0		5.52	09.3	07.6	6.48	2.40 2.40	26.4	320	22.3	46 2•30
	I	ماه		8.0	7.9	000		0 0	0 0 0 0	7.7	0 0 0	90.0	7.5	~ O	യയ	8 0 0
	Specific conductonce (micromhos	7.67 10		764	1470	14(0		1330	1620	2040	1480	1020	1080	1350	1400	1040
		%Sat		<u>6</u> 2	105	80		83	70	177	ಪೆ	88	15	126	178	20
	Dissolved	Edd	•	7.3	10,4	F .		6.0	7.f	15.0	00	0° 3	8 .4.	10.3	74°0	80.
	Temp in OF			29	19	51		87	53	956	ŝ	65	72	42	8	69
	Discharge Temp			930	025	735		2002	515	250	560	160	362	320	220	2000
	ond time	P.S.T.	1963	10/12 1000	11/9	12/ç 1555	1907	1/9	2/3	3/9	4/1 135	5/7 0930	000T	7/8 1350	7/31	9/3

o Freld pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfonate (ABS), and phosphate (PO $_{4}$)

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

i Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS), San Bernardino County Fload Control District (SBCFCD); Metropolition Water and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LBDPH); Try of Lang Beach, Department of Water Resources (DWR); as indicated. - Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service g. Gravimetric determination.

247

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

SAN JOAQUIN RIVER AT MAZE ROAD BRIDGE (STA. NO. 26a)

	1	by 1		USGS		•						_					
	-	ĘĘ	+			· E .:											
		as CoCO ₃ ity MPN/mi		Media	230. Max1mm	Minimum 23.					_						
	1 2 2	- y - u			ç	<u> </u>	10		15	···	೫	15	50	25	52	140	15
		000	ě		23	37	8		98	85	157	121	105	114	126	148	42
	3	9 6	E G		122	101	బ ే		125	8	308	595	54g	568	282	315	232
	-	200			53	52	53		5,4	57	54	51	25	12.	53	52	25
3	ē -	solide in apm			310	268°	223 ^e		338°	538°	787°	ə †99	570 ^g	, 670°	698	792 ^e	6108
		Other constituents											ABS 0.1 PO ₁ 0.65 As 0.60		-		ABS 0.1 PO ₄ 0.75 As 0.01
		Silico (SiO ₂)					·						얾				81
		Boron (B)			0	0.0	0.2		0.2	0.5	7.0	0.5	e.0	0.3	7.0	70	, o
million	per million	Fluo-	_				-					•	0.0			·	
I I I	- 1	trote	Ĉ.					-					<u>3.0</u>				0.07
DG.	equivolents	Chlo- ride	- 1		89 2.51	88	1.69		89 2.51	151	271 7.64	218	181	221	242 0.83	289 8.15	180 5.08
Ē		Sul -	(305)			_							81 1.69				81 1.69
tituents		Bicar - bonate	LE COM		1.8	1.28	1.11		108	140 2.29	184 3.02	172 2.82	156 2.56	188 3.08	3.11	3.28	187 3.06
Mineral constituents	Ì	Carbon-	\neg		000	000	0000		000	000	000	000	0.27	000	000	000	0.0
Mine	ŀ	Potos- C	<u> </u>										4.8 0.12				4.5 0.12
	ŀ	Sodium (No)			64 2.78	50 2.18	16.1		2.96	5.31	166	5.52	5.05	221 6.18	1144 6.26	158 6.87	120 5,22
		Mogne	(Mg)					-					5,45				21 1.70
	Ì	Calcium (Ca)			2.44	20.5	1.68		2.50°	, 00. 14.	5.16	5.24	2.50	5.36	5.04	6.24	59 2.94
	_	Ŧ 6			7.6	7.8	7.5		7.5	7.9	8.0	7.7	8.0	8.3	25.	7.9	7.3
	Specific	(micromhos ot 25°C)			925	181	399		605	796	1410	1190	1000	1500	1250	1420	1040
-			%Sot		72	8	82		82	89	125	85	93	62	102	900	82
	i	Dissolved	ppm %Sat		6.5	8.8	0.6		9.5	7.5	13.0	8.2	8.7	7.0	8.7	8.7	7.3
-			1		67	- 29	25		20	55	2.5	29	99	72	71-	1 2	92
	!	Discharge Temp in cfs in oF			425	2255	2945		2335	1550	510	755	750	485	455	300	475
		and time	P.S.T.	1963	10/12	11/9	12/9	1961	1/9 1115	2/3 1130	3/9	4/1 1100	5/7 1045	6/4	1/8	7/31	9/3 0815

o Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzena sulfonata (ABS), and phasphata (PO.)

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loborataries, or United States Bealogical Survey, Quality of Water Branch (USGS), United States Department of the Interior, Survey of Reclamation (USBR), United States Bealogical Survey, Quality of Water Branch (USGS), United States Department of Water and Power (LADWP), City of Las Angeles, Department of Survey, California (WWD), Los Angeles Department of Water and Power (LADWP), City of Las Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), Terminal Testing Laboratories, Inc. (TTL), or California Department of Water Resources (DWR); as indicated.

TABLE D-2 (Cont.)

ANALYSES OF SURFACE WATER

SAN JOAQUIN RIVER NEAR MENDOTA (STA. NO. 25)

Γ		Anolyzed by i		nses			_		-				-				
			+		6.2 Maxdmm	Minimum 0.13				_					_		
	-	ds CoCO ₃ ity MPN/mi		Med				<u> </u>							0		
-	5	<u> </u>	ی∈		33	31	20 45		10	63 10	74 50	40 35	53 70	29 25	20 10	32 45	51 30
		Cocc	Total N C.		139 <u> </u>	3 3	130 2		† †††C	158 6	151	1 —	- 04t	901	145 5	001	150 5
_		1 PO 5	' 1		 	1.8	20 20		20	52 1	17 24	<u>п</u>	17 71	1,5	611		54 7
H	0	o spilos	E Q		3446	279 ^e 1	323		361	414e	3496		3188	23₁4€		270°	1+07B
\vdash	بي. آ				<u>~</u>	<u>81</u>	<u>~~~</u>		<u>~</u>	<i>a</i>	m m	λί -	.κ.	čvi	m	71	
		Other constituents d											Po _{tt} 0.25 As 0.01 ABS 0.0				ABS 0.1 PO ₄ 0.15 As 0.01
	ŀ	Silico	13										의			-	16
	60	Boron	9		0.0	0.1	0.3		0	0.3	0.2	0.1	0.2	0.2	0.2	0.1	6.3
miltion	ě	Fluo-			-				-				0.00				
ports per million	equivalents per million	- N	\rightarrow										1.6				0.11
por	equival	Chlo-	-		2.12	1.92	2.26	_	2.65	2.96	89 2.51	1.35	83 2.34	54 1.52	95 2.68	82 2.31	3.50
	· =	Sul -								•			1.06				<u>27</u> 1.19
	11106018	Bicor-		-		1.69	134 2.20		1.18	1:8	94	86 1.41	106	94	1.90	36	121 1.98
	Mineral constituents	Corbon			00.0	0.00	000		2.0	0.00	0.00	000	0.0	000	000	000	0.00
	MIN	Potos-	(X)										0.05		_		3.4 0.09
		Sodium			57 2.48	148 2.09	2.61		65 2.83	3.44	61 2.65	36	2.48	41 1.78	64 2.78	53	82 3.57
		Mogne-	(Mg)										16 1.30				1.35
		Calcium	(00)		2.78°	2.26	2.60		2.88	3.16	3.02	2.25	1.50	2.14°	<u>8.8</u>	2002	33
		Ę.	ماه		8.2	8.1	8.1		7.7	8.0	7.8	7.7 8.0	7.7	7.6	7.7	7.6	7.6
	Specific	(micrombos	5 67 10		595	785	559		ηZ9	717	603	397	547	क्०न	919	194	217
			%Sat		88	66	93		105	102	107	108	105	93	95	100	91
		Dissolvs d osygen	Edd		7.9	9.95	10.8		13.3	11.5	11.3	10.3	7.6	4.8	7.8	8.6	8. 6.
		7 of			69	8	Ĺή		24	20	55	79	67	69	87	₹_	69
		Discharge Tamp in cfs in 0F			156	88.50	נגנ		14	109	320	350	4 12	384	8414	1485	264
		and time	P.S.T.	1963	10/8 0730	12/4	12/9	1964	1/13	2/10 1020	3/9 1125	4/13 0930	5/11 0900	6/8 1025	7/13	8/10 0710	9/14 0730

a Field pH.

b Labaratory pH.

Sum of calcium and magnesium in epm.

Arsenic (As), alkyl benzene sulfonate (ABS), and pleosphate (PO4)

Derived from canductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS), San Bernardina County Flood Control District (SBCFCD); Metropolitan Water District of Southern California Department of Water Resources (DWR); as indicated.

Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL), or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

c. Sum of calcium and magnesium in epm. d. Arsenic (AS), and phasphate (PO_4). b Loborotory pH.

TABLE D-2 (Cont.)

	27a)
T T	NO.
₹ 8	(STA.
TACE	BRIDGE (STA. NO. 27a)
ANALYSES OF SURFACE WATER	SAN JOAQUIN RIVER AT PATTERSON
Ŋ	¥
וראא	RIVER
AN	JOAQUIN
	SAN

-	Anolyzed by i		nsgs					_							
	Hordness bid - Coliform A os CoCOs Ity MPN/mi		Median 62.	2400. Minimum 6.2				-					-		
	- Year		20	r-	્ર		15	15	6	51	೯	8	15	25	15
	800 000	Z Q	22	113	68	_	16	150	227	151	88	91	119	16	1,1
	Hordr OS Co	PPH	134	280	560		580	324	102	305	236	232	275	256	236
	5 8		20	52	82		57	19	3	57	57	26	57	56	55
Totol	solved solids	E 00 c	332 ^{&}	837	759 ^e		8378	10208	⁸ 0421	9108	658 ^g	655 ⁸	795 ⁸	746°	650 ^g
	Other constituents d										ABS 0.1 PO ₁ 0.55 As 0.00				ABS 0.0 Po ₄ 0.55 As 0.00
	Silico	(2)									ଥା				78.
الة القام	l s	<u>ē</u>	1.0	0.5	0.8		0.8	1.2	디	0.7	7.0	0.3	7.0	6.3	0.3
r million per million	Fluo-	(F)									0.0				
		(NO 3)									4.3 0.07				0.08
ports pe	Chlo-		و <u>«</u>	228 6.43	187 5.28		189 5.33	240 6.77	325 9.17	242 6.83	175	174	238 6.75	204 5.75	185 5.22
č	Sul -	(%)				_		-			128 2.66				11 2:31 2:31
constituents	Bicor-	(HCO3)	136	20t 3.34	196 3.21		3.64	3.47	3.51	3.02	180 2.95	2.82	3.11	19t 3.18	325
Minsrol con	Carban-		0	0.0	0.6		4 0.13	0.0	0.0	000	0.00	0.0	0.00	0.00	0.00
N.	Potos-					-					3.4				3.7
	Sodium		6.1	168	164		7.40	232 10.08	276 12.01	186 8.09	1 ¹⁴⁴ 6.26	136 5.92	169	149	136
	Magne-	(Mg)									27 2.18				2.13
	Calcium	(၀၁)	5 F.7 C	5.60	28		5.60	5.45 5.46	3 <u>+0.8</u>	6.04 6.04	2.54	1.64 1.64	5.50	2.13	2.59
	Ŧ	ماه	7.3		7.4		7.8 8.5	8.0	8.2	9.0	7.9	7.8 8.1	8.3	8.2	8 8 0 0
	conductance (micromhos	10 co 10	578	1390	1260		1350	1620	1990	1450	041	001	1320	1240	0111
		%Sot	80	93	11		88	2	104	901	104	8	220	211	8
	Dissolvsd	ppm %Sol	7.1	9.5	8.6		10.0	6.6	8.11	10.4 10.4	10.5	8.6	10.8	8.6	0.6
		L	02	59	77		64	53	20	61	26	75	72	72	65
	Dischorgs Tsmp in cfs in 9F				•					-					
	and time	P.S.T.	1963 10/8	11 12 12 12 12 12 12 12 12 12 12 12 12 1	12/3	1964	1/1	2/4	3/3	1040	5/5	6/9 0160	7/7 0925	8/4	9/1

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

g Grovimetric determinotion.

A Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS); Son Bernardino County Flood in Mineral analyses made by United States Poblic Health Service (USPHS); Son Bernardino County Flood in Mineral analyses made by United States Public Health (LADPH); Son Bernardino County Flood County District (SECPC): Metapoliton When District (SECPC): Metapoliton Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton District (SECPC): Metapoliton Dist

TABLE D-2 (Cont.)
ANALYSES OF SURFACE WATER

SAN JOAQUIN RIVER NEAR VERNALIS (STA. NO. 27)

		Andlyzed by i	25511	3												
		bid - Coliform ⁿ ity MPN/ml	Modton	620.	Minimum 50.						·	-				
	10,1	- bid - ti modd u		25	-	90		15	0	10	20	50	25	8	4.5	9
		N N N		ಸ	32	57		27	53	125	122	85	72	137	147	78
				136	76	84		93	144	564	598	229	208	290	306	2334
	-	Log -		84	נל	50		52	53	53	53	54	51	53	52	52
	Total	solved solids in ppm		323 ^e	251 ^e	146e		245e	363 ^e	9099	671 ^e	5798	505e	705 ^e	784°	6016
		d Other constituents								-		ABS 0.1 PO _t 0.55 As 0.01				ABS 0.1 Po _{1,} 0.55 As 0.00
		n Silica (SiO ₂)				oul				mı		<u>۲</u>	m:			- 23
	ullion	Boron (B)		0.1	0.1	0.5		0.2	0.3	0.3	4.0	4.0	0.3	7.0	0.3	0.3
Ē	per	Fluo- ride (F)										0.1				
ports per million	equivolents per million	Ni- trate (NO ₃)								_		0.08	-			0.09
ľ	equiv	Chlo- ride (CI)		87 2.45	70.1	1.41		58 1.64	95 2.68	209 5.90	223 6.29	171	1,12	7.00	259	182 5.13
	e .	Sul - fots (SO ₄)										82 1.71				78
	constituents	Bicor- bonate (HCO ₃)		2.23	79 1.29	73 1.20		81 1.33	107	166 2.72	176 2.88	176 2.88	166 2.72	3.06	198 3.25	3.11
	Minerol con	Corbon- ote (CO ₃)		000	0.00	000		0.0	000	20.07	0.0	0.00	0.00	0.0	0.00	0.00
	Σ	Potos- sium (K)										0.11				0.15
		Sodium (No)		58 2.52	1,7 2,04	38		1.91	3.22	136 5.92	139 6.05	119 5.18	1.31	149 6.48	150 6.52	5.18
		Mogne- sium (Mg)						•				25 2.08				24 1.94
		Calcium (Ca)		2.75	1.94°	1.68		1.86	2.82	5.28	5.32	2.50	1.16	5.80	6.12	55 2.74
		F sp		8.1	7.2	7.1		8.2	7.4	8.3	7.7	7.0	7.8	8.1	8.0	7.8
	Specific	conductance (micromhos of 25°C)		573	445	258		435	643	0711	1190	1010	896	1250	1390	1030
		15		78	85	73		87	98	95	104	96	8	101	75	91
		Disse osy mdd		7.0	9.8	8.8		10.1	10.3	10.3	6.6	9.6	8.6	8.8	8.5	8.3
		Temp in OF		22	59	54		74	13	53	₹9	58	179	73	72	8
		Dischorge Temp in cfs in of		2300	27.12	0694		3184	2370	1050	676	847	946	004	337	958
		cnd time sompled P.S.T.	1963	10/9	11/6	12/4 0920	1964	1/8 1055	2/5	3/4	4/8 1015	. 5/6 . 0830	6/10 0460	7/8 0715	8/5 0820	9/2

o Field pH.

b Laborotory pH.

c Sum of colcium and magnessum in epm.

d Arsenic (As), olkyl benzene sulfonate (ABS), and phasphate (PO.)

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents. g Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Minned analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR), United States Public Health Service (USPHS), Son Bernardino Country Fload Cantrol District (SBCFCD); Metropolitan Water District (SBCFCD); Metropolitan Water District (SBCFCD); Metropolitan Water District (SBCFCD); Metropolitan Water District (SBCFCD); Metropolitan Water Department of Water Resources (DWR), as indicated.

Public Health (LBDPH), Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR), as indicated.

__

9 craviments usremmonton.
A Annual median and ronge, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.
(USPHS); United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureou of Reclamation (USBR); United States Public Health (L.ADPH); City of Long Beach, Department of Public Health (L.ADPH); City of Long Beach, Department of Laboratorial District (SBCFCD); Metropolitan Water District of Southern California (WMD); Las Angeles, Department of Public Health (L.ADPH); City of Long Beach, Department of Public Health (L.ADPH); City of Long Beach, Department of District of Southern California (WMD); Las Angeles, Department of District of Southern California (WMD); Las Angeles, Department of Public Health (L.ADPH); City of Long Beach, Department of District of Southern California (WMD); Las Angeles, Department of District of Southern California (WMD); Constitution of Constitution (WMD); Constitution (

TABLE D-2 (Cont.)

ANALYSES OF SURFACE WATER	STANISLAUS RIVER AT KOETITZ RANCH (STA. NO. 29)
A	STANISL

	Accelerate	Andlyzso by i	2 5 20											_		
	4	ity MPN/ml	Median	23. Maximum 7000.	Minimum 2.3							_				
	- i	ity ity mogan		2	2	9		유	ω	L -	2	25	9	2	-4	6
		as CaCO _S		0	0	0		0	٥	0	0	0	0	0	0	0
				73	88	92		37	917	105	91	76	8.	110	គ	8
	Per	Fod -		25	22			91	13	24	75	52	25	₹	%	%
	1010	solids in pom	,	131	149 ^e	129°		63 _e	19 <u>6</u>	188	159 ^e	172 ^g	159 ^e	190e	194°	156
		Other constituents		_								ABS 0.0 FOL 0.20 As 0.00				ABS 0.1 P01, 0.30 As 0.01
	ļ	Siles (SiO _E)						_				8				<u>इ</u>
uc	lion	Baron (B)			0	0.1		이	0.1	0.1	ं	- In	0	0.1	0	0.1
millic	per million	Fluo- rids (F)										0.0				
•	equivalents	Ni- trote (NO ₃)				·						0.07				4.00 00 40 00 00 04
ď	equiv	Chlo-ride (CI)		6.2	0 10	0.11		3.0 0.08	3.4 0.10	12 0.34	8.0 0.23	8.5	0.21	0.23	0.28	5.5 0.16
		Sul - fats (SO ₄)										0.21				0.15
	STITUENTS	Bicar - bonate (HCO ₃)		1.62	1.98	1.59		46 0.75	56 0.92	13th	121	130 2,13	119	2.31	148 2.43	133 2.18
	Mineral constituents	Carbon- ats (CO ₃)		000	00	00		000	000	0.03	00	000	000	5.17	000	0000
1	E I	Potas- Sium (K)							_			2.0				3.8
		Sodium (Na)		11 0.48	11 0.18	9.7		3.2	4.9	18 0.78	13	15 0.65	14	16 0.70	18 0.78	15
		Magns- sium (Mg)							•			0.79				0.86
		Calcium (Ca)		1.46	1.76	1.52		0.74°	26.0	2.10	1.82	23	1.80	28.2	2.20	22 1.10
		E ala		3.3	7.3	7.3 8.0		7.2	7:5	8 4 8	35	7.9	7.7 8.0	8.5	8.2	7.8
	Spacific	conductance (micromhos at 25°C)		194	220	191		93	2112	278	235	257	235	281	88	24.1
				8	93	85		93	8	76	86	36	%	111	95	25
		Dissolvs d oxygen pom %So		8.0	e. 9	10.3		10.8	11.11	10.3	4.6	9.3	9.1	4.6	9.8	5.0
\mid				2	29	77		87	<u>۲</u>	53	75	59	61	- 22	89	89
		Distribution of Sin of		29.1	281	358		888	606	182	178	137	149	143	101	1747
		ond time sompled P.S.T.	1963	9/01	11/3	12/4	1964	1/8	2/4	3/3	1,77	5/5 0011	6/9	7/7	8/4 0111	0/21

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanata (ABS), and phosphote (PO.) e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

g Gravimetric determination.

STANISLAUS RIVER BELOW TULLOCH DAM (STA. NO. 29a)

		Anolyzed by i	USGS				
		bid - Coliform ity MPN/mi In ppm	Median 0.23 Maximum 6.2 Minimum 0.23	-			
r		- Pid - Pid - Yda	4	т	4	m	A.
		# 0 2 E	0	0	а	0	0
L		Hord Totol	23	83	23	19	†∂
L	9	- po	15	17	19	55	2
L	Totol	solved solids mooni		9 84	1768	37°	8111
		Other constituents d			ABS 0.0 PO ₁ 0.10 As 0.0		ABS 0.0 Po ₀ , 0.00 As 0.00
		(Silica			ឤ		되
_	ilion	Boron (B)	0.0	0.0	0	00	8.0
i E	per million	Fluo- ride (F)			0.0		
ports per million	equivolents	NI- trote (NO ₃)			5.4		4.60.00
å	equive	Chio- ride (CI)	1.0	3.5	0.03	0.03	0.02
	n s	Sul - fots (SO ₄)			0.0		0.00
	netituent	Bicor- bonote (HCO ₃)	& B. C.	34 0.56	2, d 1, d	24	3년 조·· · · · · · · · · · · · · · · · · · ·
	Mineral constituents	Corbon- ote (CO ₃)	0.0	0.0	00.0	0.0	0.00
	Min	Potos- sium (K)			0.0		0.00
		Sodium (No)	0.08	2.6 0.11	0.11	2.6 0.11	2.9 0.13
		Mogne- mus (Mg)			2.2 0.18		0.15
		(Co)	94.0	0.54	5.6	0.38	0.32 0.32
L	_	£ 8 p	7.2	2.7.7	6.9	6.6	0 r
	Specific	(micromhos pH Cc	57	65	57	20	61
		gen %Sot	64	26		98	7.14
		Disec oxy	6.2	11.2		8.2	œ. Vo
		in of	88	94	63	63	89
		Discharge Temp in cfs in aF	930	1600			1060
		ond time compled P.S.T.	196 <u>3</u> 10/7 1115	1964 1/13 1240	5/11 1245	7/13	9/1 ⁴

b Laboratory pH.

c Sum of colcium and magnesium in epm.

d Arsenic (As), olkyl benzene sulfanote (ABS), and phosphote (FO,

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Mineral analyses mode by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureou of Reclamation (USBR); United States Public Health Service (USPHS), Son Bernardino Country Flood Control District (SBCFCD); Metropoliton Water District of Southern California (WWD), Las Angeles Department of Water and Power (LADWP), City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Loboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Grovimetric determination.

TABLE D-2 (Cont.)
ANALYSES OF SURFACE WATER

TULE RIVER NEAR SPRINGVILLE (STA. NO. 91b)

		Anolyzed by i	sosn											
ŀ	•	E /												
L		Hordness bid - Colform os CaCO ₃ IIY MPN/ml Total N C Ppm Ppm	No Samples Taken											
_	7	2 - d		N .					٦	-1	н	CI	CI .	н
		Caco ₃		9	۰ 	158 0	145 0	145 0	0 64	76 o	67 0	135 0	150 0	0 691
_				21 176	21 131	21 15	21 12	21 12	<u>ي</u>	&	55	22	24	
L	-	and and and and and and and and and and	· .					256° 2	133° 2	3421		2136		2716
	<u></u>	solids in ppm		280	206	245°	230 e	22	13	12	108	23	24	
		Other constituents ^d								ABS 0.0 POL 0.10 As 0.00				ABS 0.0 Po ₁ , 0.15 As 0.00
		Silico (SiO ₂)								ଷ				씱
	ion	Baran (B)		0.1	0.1	0.1	0.0	0.1	0.1	0.2	0.0	0.1	0.5	0.2
million	per million	Flua- ride (F)							_	0.01			·	
ports per million	1 1	Ni- trate (NO ₃)	mber				-			1,1 0.07				0.02
ľ	equivalents	Chio- ride (CI)	Sampling started as of November	14 0.39	0.28	12 0.34	10 0.28	0.28	0.07	0.00	3.5	8.5	12 0.34	0.39
	C. S	Sul - fots (SO ₄)	rted as							0.4	· · · · ·			0.12
	nefituant	Bicar- bonate (HCO ₃)	ing ste	25t 1.16	17 ⁴ 2.85	3.14	3.38	3.11	117	103	10.1	3.05	3.59	243 1,06
	Mineral constituents	Corbon- ote (CO ₃)	Зашр	000	9	8	0.0	8	0.0	3.07	0.00	0.0	10.03	2 0.07
	Ā	Potas- sium (K)								1.6				0.12
		Sodium (No)		25	16 0.70	19 0.83	18 0.78	18 0.78	11.0	8.8	8.8	17 0.74	22 0.96	28
		Magne- sium (Mg)								0.22				0.98
		Colcium (Co)		3.52	2.62	3.16	28.5	8.8	1.58	1.30	1.34	2.70	00.00	148 2.40
		ماه ي		2.8	8.5	8.2	7.5	8.5	7.8	1.8	<u>3.7</u>	7.7	. p	8 .3
	Specific	(micromhos ot 25°C)		727	312	371	348	342	202	183	164	323	372	759
r				%	88			ı	96	102	ŗ	5,	12-	136
		Ossolvad osygan ppm %So		8.8	10.6	1	1.1	•	10.0	11.2	5.4	°. 4	6.0	13.5
+				58	54	7 t	2:7	77.77	28	52	68	72	&	ío
-		Discharge Temp		27	63	4.1	34	95	139	117	131	₍₀	7	ศา
		Dote ond time sompled P.S.T.	1963	11/4	12/2	1964 1/6 1345	2/14 1050	3/5	14,78	5/4	6/1	7/6	8/5	9/6

a Field pH.

Derived from conductivity vs TDS curves

b Laboratory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO,

f Determined by addition of analyzed constituents. g Grovimetric determination.

Mineral analyses made by United States Geological Survey, Ovality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Ovality of Water Branch States Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); or indicated.
Public Health (Lessing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); or indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

TULE RIVER BELOW SUCCESS DAM (STA. NO. 91)

	1	by i		2551	3				· · ·									7
_						_ 目 ^Q	- 19											$\frac{1}{2}$
	9110	or CoCO ₃ ity MPN/m		Modian	.27 Maxtmum	Minimum Minimum												
))))	y o			н	N	N		1			9	г	н	N	<i>=</i>	н	
	•	0000	J E Z d −		0	0	0		0			0	0	0	0	0	0	
					98	109	11		123			108	100	12/	83	98	- 35	
_	9	- E	_		21	2	23		23			23	55	- 5	55	55	21	_
	ē <u>.</u>	solved solide	do L		210e	173 ^e	182		196 ^g				163 ⁸	1428	133 ^g	136	147 ⁸	
		Other constituents d	- 1										ABS 0.00 Pol _t 0.10 As 0.00				ABS 0.1 As 0.00 Pou 0.00	
		Silico	,200										ଷ୍				8	
c		Boron			0:0	0.1	0.1		0.1			0.1	0.1	0.1	0.2	0	.0	
millio	180	Fluo-	<u>(£</u>										0.0					
parts per million	equivolents per millon	Ni- trote	(NO3)										3.1				0.02	
å		Chia-	<u>5</u>		0.50	0.20	9.8		0.11	TAKEN	TAKEN	0.21	0.07	6.0	5.0	0.1	5.2	1
Ē		Sul -	(80%)			-				SAMPLES TAKEN	SAMPLES		6.0				0.10	
stituents		Bicor- bonate	(HCO ₃)		2.31	156 2.56	162		162	NO S	NO S	156	136	2.13	1.95	121	135 2.21	
Mineral constituents		Carbon-			0.0	0.0	0.0		7.0			0.0	0.10	000	000	20.07	0.00	
. ₩		Potos-	<u> </u>					_				_	0.06				0.07	
		Sodium (No)			2 <u>35.0</u>	13	16 0.70		17 0.74			15	13	25.0	п <u>г</u>	#	0.52	
		Magne	(8 (¥ð)										0.45				4.1 0.34	
		Colcium (Co)			1.96°	2.18°			2.46			2.16	31	1.82	1.66	1.72	30	
	-	F #	م		7.2	7.8	8.0		8.2			8.1	β. 1.	7.5	 E.	8.	0. 0.	
	Specific	(micromhos at 25°C)			329	270	285		305			273	247	227	208	212	235	
			%2°1		88	8	16		118	_		315	126	29	99	15	16	
	Disso	oxygen	E od		7.5	7.3	10.2		13.8			12.2	13.5	4.9	6.1	6.5	6.8	
	Temo	Ë			75	68	83		64			96	55	75	99	72	47	
	Dischorde	in cfs in oF			30	904	81		53			83	911	115	172	211	<i>L</i> 14	
		and time	P.S.T.	1963	10/8	11/4	12/2 1415	1961	1/6 1325			4/9 1100	5/4 1525	6/1 1430	7/6 1350	8/5 1320	9/9 1030	

o Field pH.

b Loboratory pH.

Sum of colcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanaie (ABS), and phosphate (PO.)

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service. Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Device (USPHS), San Bernardino Cauthor Flood Cannol District (SBCFCD), Metropoliton Water District of Sauthern California (AMD). Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

TUOLUMME RIVER BELOW DON: PEDRO DEN: (STA. NO. 31a)

	Analyzed by 1	USGS				
	bid - Coiform ity MPN/ml	No Semples Teken				
1	a ppm	CU	4	el	c)	N
	SO Z	0	0	r-H	0	0
		60	10	16	10	ω
	90	25	13	21	8	2
Total	Police Police mad ni	17e	21e	348	22 _e	1961
	Other constituents			ABS 0.0 PO ₁ , 0.05 As 0.00		ABS 0.0 Po ₁ 0.00 As 0.00
	Silic (SiO ₂)			7.8		8,
Lion		0	0.0	0.2	0.1	ं
million ier mi	Fluo- ride (F)			0.00		
parts per million equivolents per million	Ni- trate (NO ₃)			0.00		0000
• vine	Chlo- ride (C!)	1.0	1.0	0.01	0.5	0.00
E	Sul - fots (\$04)			0.01		0.10
natituen	Bicor- bonote (HCO ₃)	10	- S	0.30	0.8	01 0.0
Mineral constituents	Corbon- ote (CO ₃)	000	0 8	0 0	08	0.00
ž	Potos- sium (K)			0.01		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Sodium (No)	1.1 0.05	0.08	5.0	1.9	हों .
	Colcium Mogne- (Co) (Mg)			0.00	4	\$. 00.0
	Colcium (Co)	.15	0.20	0.26	0.20	2
	# 8 p	<u>6.7</u>	7:1	7.5	7.1	ු ද හ o
Spacific	conductance (micromhas at 25°C)	25	8	04	9,	21
	Dissolved osygen ppm %Sot	72	73	87	72	4.1
		0*1	8.1.	۶. گ•3	7.2	1:1
	Ten in OF	23	77	ħ	9	62
	Discharge Temp	07/1	730	1540	2410	01510
	ond time sompled P.S.T.	196 <u>3</u> 10/11 1310	1964 1/9 2510	5/7	7/8 0830	9/3 1330

o Freld pH.

b Loborotory pH.

c Sum of calcium and magnesium in epm.

d Arsenic (As), alkyl benzene sulfanate (ABS), and phosphote (PO,

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Grovimetric determination.

Annual median and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service (USPKS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quolity of Water Branch (USS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quolity of Water Branch (USPKS); San Bernardino County Flood Cantrol District (SBCFCD); Metropoliton Water District of Southern California (MMD); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated.

TUOLIDMUE RIVER AT HICKMAN BRIDGE (STA. NO. 30)

	Anolyzed by i		50811													
	4 7	_		_												
	bid - Coliform Ity MPN/ml		Ş	Semples Taken												
1	- hid year			<i>⇒</i>	m	īV.		N	m	CV .	-3	2	m	5	15	4
	5 0	Z Č		9	0	0		CI.	<u>۲</u>	88	52	27	₹.	31	8	%
		P P P		8	17	18		22	77	105	105	108	124	154	123	119
å	2 6 5			24	28	574		39	£-,	<u>=</u>		<u>:</u> ;	20	8	57	8
Total	Solide Paride	4		a69	56e	31e		7£	82°	58¢	% %	303 ^{&}	322 ^e	322e	340°	350€
	Other constituents											ABS 0.0 PO ₄ 0.20 As 0.00				ABS 0.0 PO ₄ 0.10 As 0.01
	Silica	2										77				13
Lion	Ę	i		0	C.	0		0:0	0	0.0	0.1	0.1	0.1	0:1	0.1	₹.0
ports per million volents per mill	Fluo- ride											0.1				
equivolents per million	Trote	+				_						6.0	,			0.0
edniva	Chlo-	چ چ		18	5.1	3.5		0.31	0.56	2,54	86 2.43	2.60	3.10	3.16	3.13	104 2.93
<u>.</u>	Sul -	(\$o 5)										80.0				0.10
tituents	Bicar- bonate	1		87.0	17	0.36	•	24 0.39	141	1.54	1.52	1.56	1.67	109	1114	113
Mineral constituents		(60)		0000	0.00	0.0		0.0	0.0	0.0	20.07	0.07	1; 0.13	20.07	000	0.00
M	Potas- C	1										0.10				0.13
	Sodium F		-	100	2.6	2.8		6.5 0.28	11 0.48	1.91	1,7 2,04	1,7 2,04	58 2.52	58 2.52	58 2.52	25.52 2.52
	Mogne-	(S				_	-					9.2				0.73
	Eugona Calcium	3		09.0	0.28	0.37		0.11	0.82	2.10	2.10	1.40	2,48	2 48	2.46	33
	를 e	م		7.2	6.8	6.9		7.3	7.7	9.0	88	3.6	8.5	4 8 F	8.1	8.1
Specific	(micromhos			119	111	53		8	141	720	977	797	552	558	578	246
		%Sot		85	62	88		76	82	112	89	88	122	100	011	125
	Dissolved oxygen	Edd		7.9	0	4.6		10.4	9.1	11.3	8.5	7.8	10.2	9.1	0.6	11.0
	Te or			29	59	51		51	13	59	₹	17	92	76	62	73
	Dischorge Temp in cfs in oF			887	1636	2170		999	695	121	73.7	70	25	82	8.14	100
	Dote and time	P.S.T.	1963	10/11	11/9	12/10 1000	1964	1/9	2/3	3/9	4/1 1400	5/7 1425	6/4 1250	7/8	7/31	9/3

o Field pH.

b Laboratory pH.

c. Sum of calcium and magnesium in epm. d. Arsenic (As), and phosphate (PO $_{f 4}$)

e Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents. Gravimetric determination.

Annual median and range, respectively, Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laborotories, or United States Public Health Service.
Chinecal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPRS); Son Bernardino Country Flood Chine States California (WWD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles Department of Water Resources (DWR); as indicated.

257

ANALYSES OF SURFACE WATER TABLE D-2 (Cont.)

TUOLUME RIVER AT TUOLUMME CITY (STA. NO. 31)

	Angivzed	by 1	USGS		·											
	Coliform	os CoCO ₃ ity MPN/mi Totol N C	Median	Meximum 24000	Minimum 6.											
	- P	, de n		9	C/	10		5	4	2	ľ	٦	7	9	- 5	CI .
	***	S OS E		8	12	11		12	92	12	7	69	74	81	92	59
				7	37	35		17	85	189	192	180	202	220	554	208
	1000	- po		20	54	147		84	61	52	₹.	50	77	53	52	51
Totol	5	eolide in ppm		202	932	726°		121 ^e	506	493°	522e	5238	583	583€	595 ^e	5846
		Other constituents										ABS 0.1 FO ₄ 1.2 As 0.01				ABS 0.2 FO _{th} 1.3 As 0.00
		Silica (SiO ₂)										쭤				얼
		Boron (B)		0.0	0.0	0.1		0	0	ं	0.1	0.2	0.2	0.2	0.2	0.0
million		Fluo- ride (F)										0.3		-		
ports per million		trote (NO ₃)		-						•		5.3				0.02
00	פֿלמוֹאַ	Chio- ride (CI)		1.95	31 0.87	21		38	70	185	192	172 4.85	205 5.78	222	223 6.29	5.70
Ē		Sul - fate (SO ₄)										11 0.23				0.23
tituents	-	Bicor- banote (HCO ₃)		70	31 0.51	29		43 0.70	72 1.18	2.36	2,43	2.29	2.56	166 2.72	180 2.95	182 2.98
Mineral constituents	Ī	Corbon – F		000	000	000		000	000	000	000	00	000	0.0	000	0.00
Ž		Potos-C (X)						•				6.0		-		0.19
	r	Sodium (No)		36	14 0.61	0.48		087	38	23	102	87 3.78	108	116 5.05	113	102 1,11
		Mogne- mus (Mg)		-								1.25				17
		Colcium (Co)		1.54	0.74°	0.70		26.0	1.70	3.78	3.84	2.35	10°1	27.7	84.4	25.74
		E e		7.0	6.9	7.5		8.0	8.1	7.5	7.t	7-3	7.6	88	7:5	7.7
	Specific	(micromhos at 25°C)		353	163	127		212	360	862	915	835	1020	1020	1040	982
				57	1	87		81	89	92	29	54	73	103	83	50
	;	Oiesolved oxygen ppm %So		5.2	7.7	9.5		0.6	7.6	6.7	4.9	5•1	6.4	8.3	7.5	4.5
		E i		99	9	52	-	12	51	57	63	79	72	&	69	69
	'	Oiechorge Temp in cfs in oF		006	1550	2150		1450	760	335	300	300	191	500	195	235
		compled	1963	10/12 0930	11/9	6/21	1961	1/9	2/3 1230	3/9 1325	4/1	5/7 0850	6/4 1015	7/8 1405	7/31	9/3 0910

o Field pH.

b Laboratory pH.

d Arsenic (As), alky! benzene sulfonate (ABS), and phasphate (PO.) c Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Grovimetric determinotion.

Mineral angless made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamption (USBR); United States Geological Survey, Quality of Water Branch (USGS); United States Geological Survey, Quality of Water Branch Survey, Quality of Los Angeles, Department of Water and Power (LADWP); City of Los Angeles, Department of Survey, Quality of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Water Resources (DWR); as indicated. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division af Laboratories, or United States Public Health Service.

TABLE D-3 SPECTROGRAPHIC ANALYSES OF SURFACE WATER

						ŭ	Constituents	ts in parts	ts per billion	6						
Station	Sto	0ate 1964	Alumi- Beryl- Bismuth num lium (Al) (Be) (Bi)	nuth Cadmium	Coball Chra- mium (Co) (Cr)	Comper (Cu)	Iron (Fe)	(6a)	Germa- nium (Ge)	Manga- Nanga- (Mn)	Molyb- denum (Mo)	N Ckel	Lead Tit	Titanium Van	En:pbuo/	Zinc (Zn)
San Joaquin River at Fremont Ford Bridge	25c	5-5	3.1 < 0.57 < 0.57 < 0.57 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.50 < 0.5	0.29 < 1.4 0.29 < 1.4	V 1.4	ή. 0. ή. 0.	22 91	5.7	v v 0.29	1.4	7.4 8.6	1.8	1.4 4	0.57	o.4. 6.3 ∆	5.7
San Joaquin River near Vernalis	23	5-6	1.8 A 0.57 A 0 2.1 A 0.57 A 0	0.29 < 1.4 0.29 < 1.4	7: v v v v v v v v v v v v v v v v v v v	4.8 4.8	ន ជ	5.7	v v %	1.7	3.1	1.3 6 1.3 6	7 V	0.57	4.6 5.7 5.7	5.7
Stanislaus River at Koetitz Rench	8	5-5	3.1 × 0.57 × 0.57	0.29 < 1.4 0.29 < 1.4	7 1 1 7 W W W W W W W W W W W W W W W W	4 1.4 4 3.7	16 7.7	5.7	0.29 v 0.29	1.7	1.1	V V	V V	0.57	5.1 5.0 7	5.7
Tuolumne River at Tuolumne City	31	7 - 4	1,2 < 0,50 < 0,4	0.25 < 1.2 0.29 < 1.4	2.1 A A 1.2 A 1.2	2 7 T	3.9	A 5.0	v 0.25	2. 4. 6.4	0.25	i i i	1.2 4.1	0.50	2.1 5.4 A	5.0
Merced River near Stevinson	8	9-1-6	1,4 < 0.57 < 0. 7,1 < 0.57 < 0.	0.29 < 1.4	7 7 7 1. r v v v v v v v v v v v v v v v v v v	7 6.9 VII	23 53	5.7	v v	1.4	7. 7. T.	0.29 A 0.57 A	1.4	0.57	4. 8. 4. A. A. A. A. A. A. A. A. A. A. A. A. A.	5.7
Kings River below People's Weir	₹.	5-11-6	3.7 4 0.50 4 0	0.25 < 1.2	A 1.2 A 1.2 A 1.2 A 1.4	2 4 1.2 1.2 1.4 1.4	312	5.0	A 0.25	1.2	2.0	0.38 0.34 0.34	1.2 4.1	0.50	0.98 A 47.0	5.0
Kern River near Bakersfield	% 	5- 4	2.5 × 0.57 × 0.57 × 0.53 × 0.57 × 0.57 × 0.57 × 0.57 × 0.57 × 0.57 × 0.57 × 0.57 × 0.50 × 0.5	0.29 < 1.4 0.29 < 1.4	1 1 7 V V V V V V V V V V V V V V V V V	7 7 7 1 V 1 V 1 V 1	а 1.5	5.7	v v v v	η·ι 1·ι	6.0	v 0.4.0	1, 4 A	0.57	0.43 1.3 A ⊪A	5.7
Tule River below Success Dem	6	4 -6	0 × 72.0 × 0.4	0.29 < 1.4 0.29 < 1.4	7 V V V V V V V V V V V V V V V V V V V	7 7 1 1 V V 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3.7	5.7	A 0.29 A	η·τ	1.6	0.29 0.91 0.91	V V	0.57	2.6 7.4.7	5.7
Delta-Mendota Canal near Mendota	8	11-6	2.3 4 0.57 4 0	0.29 4 1.4 0.29 4 1.4	V V V I T T T T T T T T T T T T T T T T	1 2.3 4 1.4 1.4	5.4	5.7 5.7	v v v	†•°1	1.9	1.0	7 7 7	0.57	7.1 A A	5.7
Delta-Wendota Canal near Tracy	83	9-1-6	8.3 A 0.57 A 0	0.29 4 1.4	7.	7 6. 4 V II	22	5.7 7.5 A	v v v v v v v v v v v v v v v v v v v	1.t	1.0	0.89	7 7 1	57 < 0.57	0.29 A	5.7

< = less than the amount indicated
< = equal to, but slightly less than the amount indicated
</pre>

TABLE D-4 RADIOASSAYS OF SURFACE WATER

	210	1		Picocuries	per liter	
Station	No	Dale	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Big Creek above Pine Flat Dam	334	$\frac{5}{11}$	0.17 + 0.90	0.01 + 0.67	- 5.46 + 10.54 - 3.91 + 10.85	1.48 + 9.13 . 2.57 + 8.49
Chowchilla River near Raymond	114	5/11	- 0.02 + 0.90	- 0.13 ± 0.67	19.42 + 12.11	- 4.26 + 8.73
Delta-Mendota Canal near Mendota	92	5/11 9/14	1.47 + 1.68	1.28 + 1.24 0.59 + 1.06	12.31 + 13.08 -12.77 + 11.09	2.40 + 9.86 - 5.20 + 7.91
Delta-Mendota Canal near Tracy	93	5/6 9/1	- 0.80 + 0.35 3.10 + 1.53	- 0.51 + 0.67 2.18 + 1.58	156.80 + 10.21 6.19 + 13.61	7.66 + 9.79 1.90 + 9.66
Fresno River near Daulton	113	5/11	- 0.08 + 0.61	0.27 + 0.84	3.56 ± 9.67	2.51 + 9.02
Kaweah River below Terminus Dam	35	5/11 9/14	0.13 + 0.74 - 0.29 + 0.73	- 0.34 + 0.46 - 0.17 + 0.43	8.26 + 9.95 -16.63 + 10.69	- 4.62 + 8.55 5.00 + 8.58
Kaveah River near Three Rivers	35b	5/11 9/14	- 0.18 + 0.81 0.73 ± 1.23	0.70 + 1.00	0.79 + 11.46 - 7.35 + 10.49	1,.84 + 9.92 6.71 + 8.60
Kern River near Bakersfield	36	5/4 9/3	1.68 + 1.56 - 0.12 <u>+</u> 0.96	0.31 + 0.65	-15.29 + 11.35 - 3.35 + 10.84	0.25 + 7.67 - 6.44 + 7.81
Kern River below Isabella Dam	36a	5/1 9/11	1.49 + 1.36 - 1.50 + 0.53	0.84 + 1.10	7.99 + 10.15 8.81 + 12.41	- 5.93 + 9.7 ⁴ 7.83 + 8.88
Kern River at Kernville	36b	5/1 9/11	0.07 + 0.74	0.07 + 0.98	4.07 + 10.86 - 5.36 ± 10.61	-11.38 + 9.98 1.43 + 8.24
Kings River below North Fork	33c	5/11 9/14	0.69 + 1.04 - 0.82 + 0.31	- 0.59 + 0.39 - 0.12 + 0.72	4.61 + 10.23 9.14 + 10.55	- 2.87 + 8.31 - 7.53 + 8.44
Kings River below Peoples Weir	34	5/11 9/14	0.85 + 1.08	0.71 + 1.00	- 7.81 + 11.56 4.20 + 9.46	13.25 <u>+</u> 10.25 2.12 <u>+</u> 7.86

TABLE D-4 (Cont.) RADIOASSAYS OF SURFACE WATER

	Sto	0		Picocuries	per liter	
HOLIDIA	No	2100	Dissolved Alpha	Solid	Dissolved Beta	Solid Beta
Kings River below Pine Flat Dam	33b	5/11 9/14	- 0.53 + 0.74 1.94 + 1.51	0.49 + 0.74	10.43 + 10.94	0.18 + 7.64 - 8.28 + 7.61
Merced River below Exchequer Dam	32a	5/11 9/14	- 0.38 + 0.23 0.23 + 1.18	- 0.21 + 0.67	10.73 + 9.84	3.69 + 8.98
Merced River near Stevinson	32	5/5	1.49 + 1.64	- 0.53 + C.73 - 0.20 + 0.73	12.06 + 11.26 - 1.23 <u>+</u> 11.10	4.01 + 9.53 - 2.14 + 7.84
Salt Slough at San Luis Ranch	54c	5/5 9/1	7.77 + 6.25 8.67 + 5.34	0.32 + 0.86 0.46 + 0.89	- 4.71 + 13.62 -22.81 + 13.34	10.74 + 9.36
San Joaquin River at Crows Landing Bridge	g92	5/5	3.05 ± 3.93	0.80 + 1.17	4.55 + 12.35	11.03 + 9.55
Sın Joaquin River at Fremont Ford Bridge	25c	5/5	8.15 ± 6.97	1.98 + 1.49	12.38 + 14.94	5.52 + 9.01
San Joaquin River at Friant Dam	ħ2	5/11 9/14	0.19 + 0.95	0.31 + 0.65	5.26 + 10.97 - 1.77 + 10.45	- 0.34 + 7.61
San Joaquin River near Grayson	98	5/7 9/3	9.12 + 7.40	1.25 + 1.56	1.63 + 17.96 - 1.82 + 13.50	1.18 + 10.60
San Joaquin River at Maze Road Bridge	26a	5/7 9/3	1.09 + 1.76	0.26 + 0.93	9.37 + 12.94 5.14 + 10.92	8.31 + 10.05 - 4.76 = 7.88
San Joaquin River near Mendota	25	5/11 9/2	0.47 + 2.18 5.15 + 5.00	- 0.13 + 0.80 1.24 + 1.13	3.19 + 12.32	.12.70 + 10.34
San Joaquin River at Patterson Bridge	27a	5/5 9/1	0.15 + 1.65 - 0.83 + 3.54	0.07 + 0.70	-1.8.62 + 10.44 15.61 + 14.15	- 1.44 + 7.44 7.54 + 10.50

TABLE D-4 (Cont.) RADIOASSAYS OF SURFACE WATER

	Sto				Picocuries		per liter			
Sterion	? o	a D D	Dissolved	Aipha	Solid Alpha	ha	Dissolved	Beta	Solid	Ветл
							ļ			
Son Joaquin River near Vernalis	27	9/5	4.71 +	40.4		0.89		12.98	27.68 ±	11.49
	_	2/6	5.15 +	5.00	+	1.13	+ 1	12,42	+1	9.62
Stanislaus River at Koetitz Ranch	56	5/5	- 0.21 +	69°0		1.00		10.48	+ 96.8	10,25
		9/1		0.87	+ 1		-51 +		- 5.02 +	9.35
Stanislaus River below Tulloch Dam	29a	5/11	- 67.0 -	0.52		99.0	-11.71 +	10.33	7.94 +	9.28
		9/14	14.19 +	9.29	+1	0.0	1	•	- 5.27 +	7.51
Tule River near Springville	916	5/4	+ 72.0	1.18	0.05 +	0.85	+ 92-4	9.88	- 5.28 +	80
		6/6		3.79	+	1.21	+1	12.53	36	9.16
Tule River below Success Dam	91	5/4	0.91 +	1.50	+ 84.0 -	0,28	14.18 +	12.21	+ 97.0	8.21
		6/6) ┬ • ┬	+1		+		• V	0.0
Tuolumne River below Don Pedro Dam	31a	5/7	- 0.41 +	0.21	0.32 +	0,82	2.94 +	9.84	5.38 +	9.81
)		•	ı	-	l)
Tuolumne River at Hickman Bridge	8	5/7 9/3	- 0.51. 2.85.+	1.95	0.39 +	1,11	12.56 +	12.19	1,60 + - 1,28 +	9.21
		1,		((10	3	
Tuolumne Klver at Molumne Lity	ZT.	9/3	6.73 +	5.37	+1+1	\$\$. 0	11.0(+ - 2.21 +	11.88	0.13 +1	, % %
								•		

APPENDIX E GROUND WATER QUALITY

The contribution of mineral constituents from major tributaries was also appreciably higher than it was the previous year. The increase in mineral concentration was most noticeable during the irrigation season when the streamflow regimen was at its lowest stage for the entire year. The incremental change in mineral constituents over the previous year's concentrations increased significantly from Fremont Ford to Vernalis. This accumulation of minerals is attributed to the lack of available streamflow sufficient in quantity to dilute accretions affluent to the lower reaches of the San Joaquin River.

The U. S. Bureau of Reclamation supplemented the flow in the San Joaquin River to aid the migration of fish from the Sacramento-San Joaquin Delta to the lower reaches of the San Joaquin River.

Approximately 45,000 acre-feet were diverted from the Delta-Mendota Canal through the Newman and Westley Wasteways from September 23 to November 1, 1964, to provide adequate streamflow and dissolved oxygen content necessary for fish migration up the San Joaquin River.

TABLE OF CONTENTS

	Page
INTRODUCTION	267
Explanation of Tables	267
Explanation of Plates	
Explanation of Headings and Symbols Used in Table E-1	
State Well Number	
Agency Supplying Data	267
LIST OF TABLES	
Table Number	
E-1 Mineral Analyses of Ground Water, San Joaquin District	269
E-2 Mineral Analyses of Ground Water, Fresno-Madera Area	299
E-3 Trace Element Analyses of Ground Water	375
E-4 Analyses of Miscellaneous Constituents	376
E-5 Kern County Piezometer Sampling Program	379
E-6 Wells Indicating Significant Deviation in Quality from Surrounding Area	. 381

LIST OF PLATES

(Bound at end of volume)

Plate <u>Number</u>

- E-1 Location of Selected Observation Wells, Ground Water Quality
- E-2 Location of Selected Wells, Fresno-Madera Area
- E-3 Ground Water Quality, Fresno-Madera Area
- E-4 Nitrate Concentrations in the San Joaquin Valley

INTRODUCTION

This appendix contains data pertaining to ground water quality in the San Joaquin Valley area. The data consist of the chemical characteristics of those waters sampled. The analyses represent the constituents which were most significant for the evaluation and/or surveillance of ground water quality. These data appear on the tables and plates. Additional supporting information is available in the office of the San Joaquin District, Fresno, California.

Explanation of Tables

Table E-1 lists mineral analyses of selected wells for the area reported in this volume excluding analyses for the Fresno-Madera area which are listed on Table E-2. Table E-2 lists the analyses used in the preparation of Plate E-3 for the Fresno-Madera area, and those analyses are listed by the aquifer from which the samples came.

A standard mineral analysis is made on the samples of wells either new to the program or whose previous analyses have varied from year to year requiring a more complete history before partial analysis would be suitable. A partial mineral analysis is suitable when a satisfactory history on the well has been established and a detailed analysis is not required to maintain surveillance.

Trace element analyses and other important constituents not determined in a standard mineral analysis are shown in Table E-3. These constituents, though small in quantity, can be significant for various types of water usages. Three constituents not normally determined, ABS (detergents), nutrients, and lithium, were analyzed in selected samples, and are shown on Table E-4.

Where mineral analyses of water from a well were found to differ significantly from those of other wells in the surrounding area, the deviations were recorded and are given in Table E-6. Such deviations may be either in a single constituent or the complete analysis. Special effort is made to investigate these wells to determine the reason for the observed deviations.

Explanation of Plates

The locations of the selected sampling wells are shown on Plate E-1 except those for the Fresno-Madera area which are shown on Plate E-2. Plate E-3 illustrates, by aquifer, the chemical character of the water in the Fresno-Madera area. The chemical character of the water is illustrated by mineral type and by contours of electrical conductivity. The mineral type was determined by the use of the hypothetical salt method.

The nitrate concentrations of ground water in the San Joaquin Valley are illustrated on Plate E-4 and are represented by contours of equal parts per million of nitrates.

Explanation of Headings and Symbols Used in Table E-1

<u>State Well Number</u>--The well numbering system used in this report for the location of wells is explained on page 160.

Agency Supplying Data--The numbers in this column are the code numbers for the agencies who sampled the well.

The agencies, and code numbers assigned to them, are listed in the following tabulation:

ct

MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

	TOTAL hardness	03 Co CO 3	16	104	116	54	99	152	170	153	82	161
nts in on	TDS	Evap 180°C		249	246	135			355	348	192	301
neral constituents parts per millian	: <u>†</u> 8	SIO 2	!	32	4	11	1	1	60 4f	74	8	42
Mineral constituents in parts per million	Baron	80	0.10	0.05	0.05	0.05	00•0	00.0	0.05	0.05	0.05	0.05
	Fluo- ride	u.	ł	1	1	!	ł	1	1	1	1	1
	rotë.	NO 3	l	1	1	1	;	1	1	1	1	1
	Chlo-	ō	15	21	14	0.20	20.0	15	14	18	14	14
ser million tance value	Sulfote	\$0.4	;	11	19	20.04	1	1	21	9	4 0 0 8 0 8	16
minigrams per iner equivalents per million percent reactance value	Bicar. banate	нсо з	114	162	152	95	l	ł	244	256	128	217
ă ă.	Carbon- ote	co ₃	-	0	С	С	;	!	0	0	c	0
	Patos- sium	¥	ł	1	1	ŀ	1	1	{	ł	1	
Mineral Constituents in	Sodium	ž	16	32	1.00	17	8 0 35	26	34	1.87	22 0.96	26
Mineral Co	Magne- sium	Mg	1	10	13	0.33	1	!	1.40	1,15	9 0 44	16
	Colcium	ვ	-	1.25	1.25	15		1	2.00	38	18	38
Specific conduct-	micro	mhas at 25°C)	279	1	}	1	149	408	}	1	¦	1
	ī		7.6	7 . 8	7.2	7.6	7 • 1	7.9	7.6	7.7	7.4	7.7
Temp.	Sompled	т.	56	1	1	ł	69	99	}	1	}	1
		Agy. Coll.	3 1 M 5∩5∩	1 ™ 5521	1 M 5521	1 M 5521	1 M 5050	1 M 5050	1 M 5521	1 M 5521	5521	J J M 5521
State Well Number		Date Sampled Time	1N/10E-17G 3-26-64	25/ 8F-27N 8-11-64 5	2S/ 9F-28N 1 M 8-11-64 5521	25/ 9E-31G 1 M 8-11-64 5521	25/10E-10B 1 M 4-15-64 5050	25/10E-27H 1 M 5-29-64 5050	35/ 8E-12H 1 M 8-11-64 5521	3s/ 8E-29E 1 M 8-11-64 5521	35/ 9E- 3D 1 8-11-64 552	35/ 9E- 9J 8-11-64 59

269

MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

		os 10°C CaCO 3	125	107	8	666	345 184 353	199	10	521 258 554	929	130
stituents in million	Sili: IDS	SIO 2 Evop 180°C	23	54		<u> </u>	<u> </u>	1	<u> </u>	<u> </u>		1
Mineral constituents in parts per million	Boron		90.0	0.05	00 • 0	0 4 • 0	00 • 0	0.10	0 • 50	04.0	0.80	00•0
	Fluo-	и.	}	i	1	-	;		1	1	1	1
	ž ž	o N	1	1	1	1	60.0 0.97 16	1	,	12.0 0.19	1	1
	Chlo	ō	0.31	21	14	1330	31 0.87 14	1.13	39	121 3.41 37	181	16
milligrams per liter equivalents per millian percent reactance value	Sulfote	504	0.25	17	}	}	22 0.46 7	1	1	95 1.98 21	1	1
milligrams per liter equivalents per mill percent reactance v	Bicar-	HCO 3	183 3•00	143	1	1	235 3 85 63	317	1	228 3•74 40	381	1
	Carbon.		0	0	ł	ł	0	1	1	0	1	1
	Potos.	~	1	-	1	1	0.10	1		0.03	1	1
Mineral Canstituents in	Sodium	ž	24	1.17	18	415	50 2.17 36	3.35	2.39	97 4•22 45	152	1.87
Mineral Co	Mogne.	6W	0.90	12	1	1	18 1.48 25	1	;	33 2•71 29	1	}
	Calcium	J	32	1.15			44 2.20 37	1	1	49 2.45 26	1	;
Specific canduct-	micro-	mhas at 25°C)	1	-	255	4190	578	707	297	444	1750	443
	Ξ,	a	5.7	7.1	7.5	7.8	7.8	7.6	7.9	8 • 1	& &	8
Temp.	Sampled	· ш.	1		72	73	1	49	16	77	89	89
State Well Number		Date Sampled Agy. Time Call.	35/10E-17K 1 M 8-11-64 5521	35/10F-29K 1 M 8-11-64 5521	35/11E÷ 4N 1 M 4-15-64 5050	35/12E-35C 1 M 2-2n-64 5050	45/ 9E-22C 1 W 6-3n-64 5050	45/ 9F-30R 1 M 3-26-64 5050	45/11F- 5M 2 M 7-29-64 5050	55/ 7E-35A 1 W 7-29-64 5050	55/ 8E- 8G 1 W 3-26-64 5050	55/10E-28H 1 M 5-29-64 5050
, is		Date	35/1	35/1 8-1	35/1	35/1 2-2	45/ 6-3	45/	45/1	55/ 7-2	55/ 3-2	55/1

TOTAL	os CO 3	240	118	161	445	370	9.8	107	356	370	452
											825
Compet	Evap 18										s o
. <u>≅</u> 8	SIO 2	i	1	1	1	1	1	}	!	1	1
Boron	8	0.30	0.10	0.10	0 • 4 0	09•0	00•0	00•0	1	2.10	0.10
Fluo- ride	ı.	1	1	!	-	1	1	i	ł	ł	!
tote	N 0 3	-	ł	!	1	}	1	1	36.0 0.58	1	15.0 0.24 2
Chlo- ride	Ū	16	58	16	304	2.12	5	10	13	336	111 3•13 23
Sulfate	50 4	1		1	i i	!	!	;	1		217
Bicar- banate	HCO 3	1	1	171	1	1	}	ŀ	ł	i	354 5•80 42
Carban- ate	° 00	1	1	1	1	1	1	ł	1	1	0
Patas	×	1	1	}	1	1	1	i	;	1	0.03
Sodium	Ž	1.74	106	38	136	100	20	23	59	341	110 4 • 78 35
Magne- sium	Wg	1	!	i	}	1	l I		1	1	54 4,44 32
Cakium	ű	1	1	1	1	1	1	<u> </u>	1	1	4.59
micro-	at 25°C)	625	8698	511	1550	1140	279	325	8 7 9	2370	1280
±_		8 • 2	7.8	7.9	80 •	© 40	7.8	7.5	7.6	& •	φ •
Sompled	u.	1	67	99		1	67	89	8		99
4		9E-18F 1 M	.nE-28K 1 M	11F- 9C 1 M	8E-23R 1 M 1-64 5641	9E-32H 1 M 2-64 5641	12F-19A 1 M	13E- 4P 1 M	5E-30E 1 M	9E-12E 1 M 6-64 5641	85/ 9E-16E 1 M 7-30-64 5050
	Sompled p H (micro- Colcium sium Sodium sium ate bonate Sulfate ride Baron as Computed h	PH (micro- mode) Calcium sium Sodium sium one bonate Carlon bonate Sulfate ride ride Chio. Baron so Gamputed ride Sii. IDS mhas at 25 C Co. Mg No. K CO.3 HCO.3 SO.4 CI NO.3 F B SIO.2 Evap 180°C	Agy.	Agy. Sampled pH (micro- Galcium sium Sodium sium ote boarde ride (micro- Galcium sium ote boarde sulfate (micro- Galcium sium sodium sium ote boarde ride (micro- Galcium sium ote boarde sulfate (micro- Galcium sium mbas	Sodium So	Agy. ° F mhos	Agy. ° F Miss Social material solution Social material m	Agy. ** Fig. 10 miles Chicum Magnes Solid miles Fig. 10 miles Solid miles Solid miles Chicum Magnes Solid miles Computed mil	Agy. ** Indict Colicion Agy ** Indict Colicion Agy ** Indict Colicion Agy ** Indict ** Indic ** Indict ** Indict ** Indict ** Indict ** Indict ** Indict ** Indict Indict ** Indict Indict Indict Indict Indict Indict Indict Indict Indict <t< td=""><td>Agy. *** supplied PH Indicated column *** supplied <</td><td>Agy Agy Agy Agy Agy Agy Agy Agy Agy Agy</td></t<>	Agy. *** supplied PH Indicated column *** supplied <	Agy Agy Agy Agy Agy Agy Agy Agy Agy Agy

	ز پر	3 6	\ \ \	<u>~</u>	4	•	6 0		•	4	65	<u>e</u>
	TOTAL	hardness as CoCO 3	242	403	164	146	388	1380	129	174	•	293
ents in ion	TOS	Evap 180°C		661					239	288 289		
neral constituents parts per million	Sili	sio 2	1	1	ł	1	1	1	42	67	1	-
Mineral constituents in parts per million	Boron	65	1.20	0.07	00.0	0.30	0.70	1.80	0000	0.10	00 • 0	0.10
	Fluo-	Ē u.	1	1	l	l	i		0.0	0•1	i	ŀ
	ï.	, S	1	0•1	1	1	1	94.0	17.0 0.27 8	2.7 0.04	;	-
	Chlo	ž ö	3.16	124 3•50 30	126 3•55	140 3.95	507	754	12 0•34 9	0.23	5	2.31
milligrams per liter equivalents per million percent reactance value	Sulfate	808	. }	226 4•71 40	}	}	}	}	0.25	13	0.15	18 0.37
milligrams per liter equivalents per mill percent reactance vo	Bicar-	HCO 3	1	210 3•44 30	ł	1	l	1	166 2•72 76	3.77	1.31	304
و ق	Carbon-	CO 3	, ;	O	1	l	1	1	0	0	0	0
_	Potos-	Ē ×	1	0.05		1	1	1	0.13	0.08	0.03	0.05
Mineral Constituents in	Sodium	2	4.22	3.35	3.96	114	266	422 18•35	24 1.04 28	20 0.87 20	0.26	2.83
Mineral C	Magne-	E 5	1	4.11 36	+		-		0.82	1.07	0.25	25 2.06
	Colcium	კ	}	3.94 3.94	}		Ì	}	35 1.75 4.7	2.40 5.40	21	3.79
Specific conduct-	ance (micro-	mhos at 25 C)	919	1120	773	881	2120	4270	375	401	150	857
	I	<u> </u>	8•1	8.2	8.1	eo •	8 • 2	0.0	7.6	4.6	80.2	7.6
Temp.	when		ł	1	}	1	1	1	1	1	20	69
State Well		Date Sampled Agy. Time Coll.	95/ 9E-21F 1 M 7- 1-64 5641	95/10F-36R 1 M 7- 7-64 5641	95/13F-31D 1 M 8- 7-64 5641	10S/12E- 6K 1 M 7- 9-64 5641	10S/12E-35K 1 M 7-13-64 5641	115/10E-23K 1 M 7-20-64 5641	155/25E- 3DS1 M 6-10-64 5000	155/26E- 5CS1 M 6-24-64 5000	175/22E-19H 1 M 10- 7-63 5000	175/23E- 1D 2 M 10- 7-63 5000

State Well	Temp		Specific canduct-		Mineral Co	Mineral Canstituents in		18 % 9	milligrams per liter equivalents per million percent reactance value	er liter ser million ance value				Mineral constituents in parts per million	neral constituents parts per million	nts in on	
Nomber	when	I	ance	Coleium	Magne	Speling	Potos-	Ė	Bicar-	Sulfate	ek :	ż	Fluo-	Boros	Sili	SOI	TOTAL
Date Sampled Agy.		α.	mhas at 25 C)	კ	E 8	ž	E *	co oi	HCO 3	Šos		, o	<u> </u>	, so	Sio s	Evap 180°C	coCO 3
175/23E- 8J 2 M 3-26-64 5050	4	C •	1080	1	1	104	1		1	.	115	!	1	0.10	1		321
175/25E-34P 1 M 3-26-64 5050	73	7.7	551	}	1	33	1	;	1	-	30.85	1	1	00•0			206
185/19E- 4J 1 M 3- 3-64 5000	69	80	1170	0 • 20	0.08	270 11•74 97	0.08	0.33	348 5 • 70 49	125 2•60 22	100	9.2 0.15	2 • 6	1.30	22	719	14
185/24E-34L 1 M 9-30-64 5050	99	8 • 2	676	88 4 • 39 46	0.58	1.83	0.05	0	305 5 • 00 73	12 0•25 4	52 1.47 22	6.8 0.11 2	;	00•0	1	360 391	249
185/26E-36C 1 M 9-30-64 5050	67	ου •	921	3.74	3.70	2.61 2.61 2.6	0.10	0.13	360	102 2•12 21	43 1•21 12	44.0 0.71	1	3.80	i	55 55 88	372
18S/27E-10C 2 M 9-3n-64 5050	66	O • •	986	101 5 • 04 47	3.78	44 1.91 18	0.08	0	384 6.29 60	117 2.44 23	31 0.87 8	52.0 0.84 8	1	0.01	1	583 656	441
195/21E- 3B 1 M 5-21-64 5050	70	α α	259	1	1	57 2.48	1	1	-	-	0.11	1	1	0.30	1		13
195/26E- 2K 2 W 9-3n-64 5050	89	6 0	1000	5.44	2.14 2.14	2.52	0•10 1	0	330 5.41 53	72 1•50 15	2.62 2.62 26	38.0 0.61 6	1	1.00	1	563 635	379
205/16F-20L 1 M 3-16-64	76	[1	}	-	1	i i	1	}	968 20.15	185	1	1	2.10	1		-
20S/16E-28F 1 M 3-17-64 5050	09	ŀ	1	!	}	i	1	;	ł	952 19•82	129	1	1	2.50	1		
DWR 1982			STATE	OF CALIFO	RNIA - THE	RESOURCES	AGENCY	OF CALIFC	RNIA - DE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	F WATER RE	SOURCES					

	TOTAL	hardness	CoCO 3		702		113	25	396	1538	1096	454	275
ents in ion	10S	Computed	Evap 180°C						808 813	2710 3530	1054		
neral constituents parts per million	Sili	8	SIO 2	!	1	1	1	1	ŧ	ł	43	1	1
Mineral constituents in parts per million	0	5	83	1.40	2.20	0.70	0.10	1.50	0.20	3.60	09•0	0.50	1.10
	Fluo	9	ш	!	i	-	İ		1	1	0.2	1	†
	Ž į	trote	ε ON	1	1	-	1	}	0.0	36.0 0.58	0	!	1
	dy :	602	Ū	146		88	1	36	233 6.57 45	1420 40.04 78	1,33	205	1
milligrams per liter equivalents per million percent reactance value	Sulfate		504	1049	1918 39.93	719	531 11.06	-	92 1.92 13	0.87	192 4•00 49	1140	803 16.72
milligrams per liter equivalents per milli percent reactance vo	Bicor-	bonate	нсо з	1	217	ł	107		378 6.20 42	592 9.70 19	170 2•79 34	1	167
EĕĞ	Carban-	a a	co 3	1	c	1	0	1	0	0	0	1	0
	Patos-	En:	¥	1	1	1	1	1	0.03	0.26	0.33	1	1
Mineral Constituents in	Sodium		Z	!	472	i	265 11.52	186 8 • 09	154 6.70 46	431 18•74 38	325 14•13 39	226 9.83	263
Mineral Co	Мадпе	Enis	Mg		;	1	1	1	2.22	216 17•76 36	137 11.27 31	ł	
	Calcium		3	1	281 14.02		2.25	-	5.69	260 12.97 26	213 10.63 29	182 9.08	110
Specific conduct-	micro	mhos	at 25 C)	1	3750	1	1480	833	1430	5170	2250	l	1860
	r	۵		ŀ	7.3	ŀ	7.9	8 • 2	7.8	8 • 1	7.7	-	7.4
Темр.	Sampled	naid u		7.1	49	1	78	1.1	92	72	72	73	i
		Agy.	Soll	5050	1 M	1 M 5050	5050	- 1 M 5050	1 M 5050	3D 1 M	1 M 5050	2R 1 M	1 M 5050
State Well Number		Date Sampled	Time	205/16F-32D 3-17-64 5	20S/16E-32M 1 M 2-29-64 5050	20S/16E-36N 1 3-18-64 505	20S/16E-36Q 2-29-64 5	20S/20E-10L 5-21-64 5	20S/21E-12A 7-29-64 5	20S/26E- 3D 9-30-64 5	215/16E- 1N 1 3-17-64 505	215/16E- 2R 3-18-64 5	16E- 4E 29-64
		۵		20.5	20.2	205	202	202	202	20%	215	21.5	215/

MINERAL ANALYSES OF GROUND WATER

	TOTAL	nardness as CaCO 3		257	795	262	414	404	362	155	374	121
nts in on	TOS				2002			1087				
neral constituents parts per million	Sili	S10 2	l	l	33	ł	1	0 4	ł	1	1	1
Mineral constituents in parts per million	Bores	۵	1.50	1.10	1.30	06.0	0.50	0.60	0.50	0.50	0.40	0 • 0
	Fluo	. L	1	İ	0.5	1	!	0 • 1	1	!	1	
	Ä Š	e 0 Z	1		0.5	1		1.1	l	1	ł	i Significant
	Chlo-	B U	152	1	182 5•13 17	}	142	127 3•58 21	102	;	26	154 4.34
milligrams per liter equivalents per millian percent reactance value	Sulfate	50 4	1243 25•88	770	1014 21•11 71	675	961	503 10•47 62	864	417	-	60 209 4.34 4.35 5.09 5.00
milligrams per liter equivalents per million percent reactance value	Bicar-	HCO 3	-	184 3.02	213 3•49 12	3.56	116	175 2•,87 17	120	155	i	
Εŏā	Carbon-	CO 3	i i	0	0	0	0	0	o	C	1	5
_	Patos-	×		1	0.20	1	ł	0 0 8	-	l	1	1 20
Mineral Canstituents in	Sodium	ž	ì	247	315 13.70 46	240 10•44	253	200 8 • 70 51	202	153	118	60.6
Mineral Co	Magne-	6W	1		107 8 80 30	!	1	4 0 3 5 4 5 5 4 5 5 4 5 6 5 6 6 6 6 6 6 6 6 6	1	!	1	1
	Calcium	S	1	103	142 7•09 24	105	166 8 • 28	83 4 • 14 24	145	3.09	1	- Called
Specific conduct-	(micro-	mhos at 25 C)	1	1800	2100	1950	2150	1250	1750	1110	1200	1160
	I	۵.	1	7.5	7.6	© •	7 • 4	7.6	7.4	7.6	0 •	7 • 7
femp.	when	, F	74	73	72	7.1	76	74	72	72	78	4
State Well Number		Date Sampled Agy.	21S/16E- 4E 2 M 3-19-64	21S/16E- 4N 2 M 2~29-64 5050	21S/16E- 5P 1 M 3-16-64 5050	215/16F- 8K 1 M 2-29-64 5050	21S/16E-10F 1 M 2-29-64 5050	21S/16E-10N 1 M 3-18-64 5050	215/16E-11E 1 M 2-29-64 5050	21S/16E-14M 1 M 2-29-64 5050	21S/18E-17M 1 M 5-21-64 5050	21S/22E-22M 2 M 4-14-64 5050

MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

State Well	Теяр		Specific canduct-		Mineral Co	Mineral Canstituents in	_	Eĕ	milligrams per liter equivalents per million	er liter ser million				Mineral constituents in parts per million	neral constituents parts per millian	nts in on	
Number	when		auce				1	- 1	ercent reac	percent reactance value		ž			:	200	10101
	Sampled	±_	micro-	Calcium	sion.	Sodium	sion.	Carbon- ate	bonate	Sulfate	ę spir	trate	- epir	Baron	<u> </u>	Computed	hardness
Date Sampled Agy. Time Call.			mhas at 25°C)	5	Mg	Na	×	co ₃	нсо з	504	ō	NO 3	Ľ.	89	SIO 2	Evap 180°C	os CaCO 3
215/25E-27L 2 M 3-26-64 5050	70	0 • 8	165	0.35	0	1.35	0.03	0	82 1•34 84	480.0	0.17	0.8 0.01	-	00•0	}	104	18
21S/27E-15P 2 M 3-26-64 5050	69	7.8	558	1		1.17	1	1	284 4.65	1	22	17.0	}	0.00			233
215/27E-21K 1 M 8-11-64 5050	49	1	}	1	}	1	ł	1	ł	1		41.0	1	1			
21S/27E-22E 1 M 8-11-64 5050	49	eo •	642	3.79	1.40	31 1•35 20	0.08	0	288 4•72 71	0.35	34 0.96 15	36 • 0 0 • 58 9	}	0.10	1	356 391	260
215/27E-22J 1 M 8-11-64 5050	72	1	}	1	1	1	!	;	1	;	1	24.0	;	1	1		
21S/27E-23L 1 M 8-11-64 5050	73	1	1	1		l	!	i	1	<u> </u>	ļ	18.0 0.29	1	!	1		
21S/27E-26F 2 M R-11-64 5050	99				1	ľ		ł	1	-	1	5 • 0 • 0 8	1	1	1		
21S/27E-26P 1 M 8-11-64 5050	67				-	ł	1	1	1	1	1	0.01		1	1		
21S/27E-27C 1 M 8-10-64 5050	89		1			1	1	ì	l	;	ľ	7.6	1	ł	1		
215/27E-27F 1 M 8-12-64 5050 bwelles	72	7.8	608	2.59	0.16	3.09	0.18	0	3.33	30 0.62	1.21	43.0	1	09•0	-	34 8 382	138

		TOTAL hardness	03 CaCO 3		123							36	5
nts in		Camputed	€vap 180°C (199						· · · · · -	246	
neral constituents		ij 8	SIO 2	1	-	1	1	1	ŀ	1	ł	}	1
Mineral constituents in	d sund	Boron	80	1	0.10	1	1	.		1	1	0.20	0.20
		Flua- ride	u.	1	}	ţ	1	-	<u> </u>	<u> </u>		1	;
		rote.	NO 3	13.0 0.21	16.0	7.6	18.0	20.0	14.0	0.0	9.5	1.0	
		Chlo- ride	Ü	1	13 0•37 10	1		}	1	1	1	0.39	3.74 73
er liter ser million	percent reactance value	Sulfate	504	1	0.25	1	1	ļ	}	1	1	50 1•04 24	1
milligrams per liter equivalents per million	ercent reac	Bicar- banate	нсо 3	1	164 2•69 75	ł	1	1	;	;	1	173 2.84 66	
E 40	- 1	Carban. ate	co 3	•	0	i	1	1	}	i	l I	0	1
		Patas- sium	¥	1	0.05	1	1	1	1	j j	1	0	1
Mineral Constituents in	•	Sadium	N _O	1	26 1•13 31	!	1	1	1	!	1	3.61 84 84	3.74
Mineral Co		Magne- sium	Wg	1	0	1	1	1	-	!	1	2 0•16 4	
		Calcium	ខ	1	2.45 67		1	1	1	1	 	0.55	1
Specific canduct-	auce	micro-	mhas at 25°C)	1	363	1		}	}	}	-	439	559
		=_		1	0	1	<u> </u>	1	1	1	1	8 . 2	7.8
e e	dina.	Sampled	u.	89	74	72	11	72	99	67	72	69	62
State Well	Number	-	Date Sampled Agy. Time Coll.	215/27E-27G 1 M 8-10-64 5050	215/27E-27L 1 M 8-10-64 5050	215/27F-27R 1 M 8-11-64 5050	21S/27E-28A 1 M 8-10-64 5050	21S/27E-28K 1 M 8-11-64 5050	21S/27E-28N 1 M 8+11-64 5050	21S/27F-34B 1 M 8-11-64 5050	21S/27E-34D 1 M 8-11-64 5050	245/22F-35N 1 M 4-21-64 5050	245/23E- 5R 2 M 7-29-64 5050

	Τ.		3	0	0	0		4		0	-		- 5
	TOTAL	hardness	Coco	1170	1120	1270	16			720	279	108	36
ents in Ion	TDS	Computed	Evap 180°C						94	1190			312
neral constituents parts per million	3.5	8	510 2	-	1		1	1	;	1	1	i	;
Mineral constituents in parts per million		Boron	8	1	1	}	ł	ł	0.10	00•0	1		0.00
	Fluo	ride	ı	ì	1	†	1	1	1	1	1	1	1
	ź	trate	NO 3	-		1		1	0	22.0 0.35	1		7.8 0.13
	СНО	ride	ט	593 16•72	518 14•61	424 11•96	19	0.11	0.08	189	53	30	86 2.43 49
milligrams per liter equivalents per millian	percent reactance value	Sulfate	504	1	1	}	1	}	0.04	580 12.08 66	1	1	0 96 1 0 31 92 86 7.8 4.17 0.03 0.51 1.92 2.43 0.13 85 1 10 38 49
milligrams per liter equivalents per mill	Biar-	bonate	нсо з	112	130 2•13	155	1.26	1.29	48 0 • 79 44	39	118	119	31 0.51 10
Εŭ	Corbon-	ate	co 3	0	0	0	0.23	0	26	0	0.13	0	0
c	Potos-	e i i	×	1	!	1	1	1	0	0.03	1	!	0.03
Mineral Constituents in		Sodium	Z	1	l	1		!	37 1.61 93	92 4.00 22	ŀ	1	96 4.17 85
Mineral C	Magne-	, is	Mg	1	-				0.08	0.16	1	1	0
		Colcium	კ	1	1	1	1		0.05	285 14•22 77	1	1	515 14 0.70 14 14
Specific canduct-	auce	(micro-	at 25°C)	3470	4270	5220	383	161	192	1700	873	419	615
		= _		8.2	8 • 2	8	Ø	0 • 8	9.1	7.1	4 • 4	8 • 2	7.4
Temp.	when	Sampled		74	79	78	70	1	69	69	080	73	70
		Agv	Call.	N 2 M 5050	60 2 M 4 5050	5050	5050	J 1 M 5050	5050	5050	₹ 1 M 5050	40 1 M 4 5050	5050
State Well	Number	Polamo? otoO	Time	255/18E- 3N 8-27-64	255/19E- 6D 8-27-64	255/19E- 7P 1 M 8-27-64 5050	255/22E- 2P 2 M 8-26-64 5050	255/23E-11J 1 8-26-64 505	255/23E-28D 5- 6-64 5	25S/24E-15H 1 5- 5-64 505	255/24E-27R 1 8-27-64 50	255/25E- 40 8-26-64	25S/25E-22D 1 M 5- 5-64 5050

Computed hard by 249 269 269 205 205 205 205 205 205 205 205 205 205	8 SIO 2		ride	ž	Chlo	Bicar-	Bicar-	Corbon-	Potos.		Magne		-	ance	_		
2 Evop 180°C CC 232 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ö İ I			trote	ride	Sulfate	bonate	at e	e nis	Ę	Sodium			Enis	Calcium sium	(micro- Calcium sium	Sampled p micro- Calaum sium
197 232 249 269 205			u	NO 3	ō	504	нсо з	00 3	¥		ž	N ₉		Co Mg	Co Mg	at 25°C) Co Mg	at 25°C) Co Mg
249 269 149 205	1			1.2 0.02 1	49 1•38 43	49 1.02 32	49 0.80 25	0	0	3.00 9.00	w	0.08	0.08 2	0.08	0.20 0.08 6 2	368 4 1 0.20 0.08 6 2	7.8 368 4 1 0.20 0.08 6 2
249 269 149 205			<u> </u>	1	23	!	99	0.03	1	1		1	1	362		362	8 • 4 362
149	0.10			6.5 0.10 2	0.20	32 1•71 40	137 2•25 53	0	0.05	50 2.17 52		0.58	•	•	1.35 0.	428 27 0•	7.8 428 27 1.35 0.
	00.0	1		0.0	19 0.54 21	0.56	91 1.49	0	0.03	5.26 2.26 89		0.16	• 1	.10 0.1	0.10 0.1	292	7.2 292 2 2 0.10 0.1
		<u> </u>	_	1	1.07	1	161	0.20	1	!		-	1		1		8.6 492
	1			1	21	1	85 1•39	0	1	1			1		1	-2 268	8.2 268
	1	-		1	611	1	1.33	0		1		-	1		1	2530	8.1 2530
-	1			1	3.19	}	53	0	!	1		1	1		1	565	565
- 27	1			ł	0.28	1	58 0 • 95	0.27	1	1		-	1		1	199	9.0
139	! !	-		}	1.33	1	96	0	;	1		1				• 5 564	8.2 564

TABLE E-1
MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in	_	ا قىق	milligroms per liter equivalents per mill percent reoctonce v	milligroms per liter equivalents per million percent reoctonce value				Minerol constituents in ports per million	nerol constituents ports per million	ents in ion	
	when	Ξ	micro-	Calcium	Magne-	Sodium	Potos-	Carban	Bicor.	Sulfate	Chlo-	Z d	Fluo-	Boron	Sili	1DS Partitions	TOTAL
Date Sampled Agy.	L.		mhos	٥		ź	;	5 6		S	Ē	i c		a	3 5		so os
			5	5	6W	P	¥	, ,	E 03	\$ O.	5	F 2			310 2	O not done	5
265/27E- 9G 1 M 8-26-64 5050	82	© •	1720	}	;	103	i	1	ł	-	210	0.7	!	1	!		659
275/19E-28H 1 M 8-27-64 5050	1	8•2	10500	1	l	1	1	0	132	1	1800 50•76		1	1	1		2420
275/20E-34G 1 M 8-27-64 5050	1	8	558		1	1	<u> </u>	0.07	128	1	1.97	;	1	-	-		6 0
275/22E- 20 2 M 9-15-64 5050	78	8 • 2	2480	-	}	1	}	0	1.05	1	698 19•68	1	1	1	ŀ		194
275/22E-21P 2 M 8-26-64 5050	69	7.9	4000	1	}	1	ł	C	1.25	1	1010	1	1	1	1		760
275/23E- 1R 1 M 5- 6-64 5050	69	7.4	3360	317 15.82 46	0.66	418 18•17 52	0.05	0	1.43	994 20.70 59	461 13•00 37	13.0 0.21	1	0.10	1	2256	825
275/23E- 1R 3 M 5- 6-64 5050	70	8.2	218	0.75 36	C	31 1•35 64	0	0	115 1 • 88 90	0.06	0.14	0 • 0	ł	0.10	1	112	38
275/23E- 1R 4 M 5- 6-64 5050	70	7.6	184	0.20 11	0 0 0 0 4	37 1•61 85	o	С	38 1•38 76	12 0•25 14	0.17	0.6	!	00.00	1	102	14
275/23E- 1R 5 M 5- 6-64 5050	70	8 • 2	249	0 • 0 5	0	52 2•26 98	0	C	92 1.51 64	0	0.85	0.0	}	0.20	!	129	w
275/23E-27J 1 M 9-15-64 5050	8	8 • 2	1500	1	1	1	ł	0	1.26	}	105	l	1	1	1		187
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY (OF CALIFC	DENIA - DE	PARTMENT	OF WATER RE	SOURCES					

			-		6	.st	60	60		7	4	0
ı	TOTAL	as CaCO 3	133	14		14	103	28	117		104	140
ii voi	Camputed	Evap 180°C	238	86 86	104				219	49 70		
parts per million	: <u>÷</u> 8	SIO 2	1	1	1	ł	ł	1	1	1	1	1
parts per million	Boron	æ	00.00	00.0	00.0	1	1	1	0.10	00.0	1	-
	Fluo- ride	u.	1	!	1	;	1	1	l	1	1	1
	Ni. frate	NO 3	28.0 0.45 11	0.01	2.0	1	1	1	5.4	1.0	1	1
	Chlo- ride	ū	1.16	0.14	0.14	0.17	1.97	18	0.31	0.20	0.25	14 0 39
er millian ance value	Sulfate	504	40 0.83 21	13	10	1		-	44 0•92 24	0.12	1	1
equivalents per millian percent reactance value	Bicar. banote	нсо з	95 1.56 39	54 0 • 89 64	60 0•98 72	58	1.05	0.98	158 2.59 66	47 0•77 69	138	135
ŭ ō.	Carbon.	CO3	0	0.07	0	0	0.07	0	0	0	0.13	0
	Potos-	¥	0.03	0.03	0	-	1	1	0.05	0.03	1	1
nstituents in	Sodium	Ž	31 1.35 33	1.17	27 1.17 87	1	1	1	37 1.61 40	1.04	1	1
Mineral Constituents in	Magne.	Mg	5 0•41 10	0.08	0.08		-	i i	7 0.58 15	0.08	1	1
	Colcium	ß	45 2.25 56	0.20	0.10	1		1	35 1.75 44	0.05	1	1
canduct-	micro-	mhas at 25 C)	745	155	140	150	919	210	407	131	352	415
	Ξ,	a.	8 • 0	6.4	0	8•1	9.4	7.8	7.4	6.2	& •	80 •
Temp	when	·	68	69	89	76	78	74	6.5	99	80	72
		Agy. Call.	. 2 M	3 M 5050	. 4 M 5050	5050	5050	5050	5050	5050	5050	\$ 2 M 5050
State Well		mpled	27S/24E- 1L 5- 7-64 5	275/24E- 1L 5- 7-64 5	275/24E- 1L 5- 7-64 5	.	Ξ	275/24E-34F 1 9-15-64 509	27S/25E- 1N 5- 6-64 5	275/25E- 1N 5- 6-64 5	r.	27S/25E-34A 9-15-64 5
Stat		Date Sampled Time	15/24	75/24 5- 7	75/24 5- 7	275/24E- 9-15-64	7S/24E-3 8-27-64	75/24	75/25	75/25 5- 6	275/25E- 9-15-64	75/25

ABLE E-1	L ANALYSES OF GROUND WATER	SAN JOAQUIN DISTRICT
	MINERAL ANA	NAN

State Well	Temp		Specific conduct-		Minerol Co	Minerol Constituents in		E 9 3	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral constituents in ports per million	neral constituents ports per million	ints in ion	
	Sompled	Ξď	micro-	Calcium	Mogne- sium	Sodium	Potos- sium	Corbon- ote	Bicar- bonate	Sulfote	Chlo.	rote	Fluo- ride	Boron	: <u>;</u> 8	TDS	7O7AL hardness
Date Sampled Agy. Time Coll.	ů.		mhos at 25°C)	ვ	М	Z	¥	CO 3	нсо з	504	ō	ς Ο Ν	u.	60	SIO 2	Evap 180°C	coco 3
275/26E-22H 1 M 9-24-64 5703	1	7.7	769	58 2 89	0.82	3.65	0.10	0	122	1500.31	164	1	0•0	0.79	1	396	186
275/26E-22Q 1 M 9-21-64 5703	1	80	303	7	0.41	51	0.08	0.27	91	14	34	ł	0 • 2	0.36	1	169	38
27S/26E-25J 1 M 9-16-64 5703		8 • 0	581	0.70	1.23	108	20	0	110	1.60	130	ļ	0 • 1	0.15	1	419	6
275/26E-27A 1 M 8- 6-64 5703		& • •	909	0.70	0.41	3 • 4 8	0.10	16	137	9	1 55 1	l	∞ •	0.28	1	251	56
275/26E-27R 1 M 8- 6-64 5703	1	7.5	2500	235 11•73	3.87	2.70	0.13	0	218	148 3•08	411	ţ	0	90.0	1	1017	781
285/22E- 9D 1 M 5- 7-64 5050	67	6 • 9	3920	206 10•28 26	46 3.78 10	588 25.57 64	0.13	0	166	731 15•22 38	776 21.88 55	0.01	}	3.30	1	2438	704
28S/22E- 9D 2 M 5- 7-64 5050	67	7.2	4650	254 12.67 26	50 4.11 8	752 32.70 66	0.15	0	277	983 20•47 42	846 23.86 49	0.08	ł	4.30	1	3032	840
285/22E-10R 1 M 8-27-64 5050	}	8.1	1410	1	1	1	ļ	0	95		127	1	1	-	1		197
285/22E-26J 1 M 9-14-64 5050	882	80 4	712		-	1	<u> </u>	0.13	127	;	58 1•64	ł	}	1	1		101
285/23E-25H_2-M 5-29-64 5050	1	8•1	1090	3.99	0.16	134 5•83 58	0.03	0	31 0.51	202 4•21 37	228 6.43 56	17.0 0.27 2	ł	00•0	1	679	208

	F	-						8	milliorams ner liter	or liber							
State Well	Temp		conduct-		Mineral Co	Mineral Canstituents in	_	9	equivalents per millian	ser millian				Mineral constituents in	neral constituents	ints in	
Number	4		ance					ă	ercent reac	percent reactance value							
	Sompled	H.		Calcium	Magne-	Sodium	Potos-	Carban- ate	Bicar- benate	Sulfate	Chło-	Ni- frate	Fluo- ride	Boron	ij 8	Computed	TOTAL
Date Sampled Agy.			mhas at 25°C)	3	6W	2	¥	CO3	нсо з	504	ō	ς Ο Σ	u.	æ	SIO 2	Evap 180°C	00°C)
285/23E-25P 1 M 9-14-64 5050	71	7 8	399	1	1	ŀ	1	0	45	1	1.38	1	ŀ	+	1		36
285/24E- 1F 1 M 6-23-64 5050	73	80	471	2.59	0.08	35 1•52 36	0.03	0	66 1•08 25	73 1.52 36	40 1•13 26	34.0 0.55 13	1	00.00	1	300	134
285/24E- 2B 1 M 6-23-64 5050	75	00 •	215	0.75	0	30 1.30 63	0.03	0	71 1.16 58	17 0•35 18	15 0•42 21	4.2	1	00.00	1	117	38
285/24E- 2P 1 M 6-23-64 5050	75	4.8	205	13	O	30 1.30 66	0.03	0.03	62 1.02 53	18 0.37 19	16 0.45 23	3.1	1	00•0	1	113	м М
28S/24E- 3N 1 M 6-24-64 5050	75	9 . 6	170	0.35	0	1.30	0.03	0.07	56 0.92 57	13 0•27 17	0,31 19	2.2	1	00•0	1	94	18
28S/24E- 30 1 M 3-31-64 5050	75	7•7	190	0.45	0	1.22	0.03	0	60 0 • 98 60	13 0.27 16	13 0.37 23	1.3 0.02 1	1	0.10	1	95	23
285/24E- 6F 1 M 3-31-64 5050	75	7 • 8	969	3.14 5.1	0	2.96 48	0.03	0	38 0•62 10	133	2.57	5.3 0.09	i	0.10	1	380	157
7- 9-64 5050	74	80	980	2.35	0	2.83	0.03	0	0.66	121 2•52 48	70 1.97	5.5	1	0•10	1	329 355	118
285/24E- 78 1 M 7- 9-64 5050	76	œ •	298	0.80	0	1.74	0.03	0.13	41 0•67 26	45 0.94 37	0.76	2.3	1	0.10	1	156	0 4
285/24E- 9H 1 M 7- 9-64 5050	76	8 . 5	224	0.45	0	36 1.57	0.03	0.03	52 0.85 44	20 0 • 42	0.62 32	2.0	1	0•10	1	117	23
DWR 1982			STAT	STATE OF CALIFORNIA		RESOURCES	AGENCY	OF CALIFO	RNIA DE	. THE RESOURCES AGENCY OF CALIFORNIA . DEPARTMENT OF WATER RESOURCES	JE WATER RE	SOURCES					

	ş	" T		60	,w	60	•	0	-2	<u> </u>	•	$\overline{}$
TOTAL		_										70
ZOI S		Evop 180 C	250 268	108	145 169	201 235	138	95	161	93	120 140	265 280
:is	8	SIO 2	1	1	1	1	1	1	1	1	1	1
Boron			0.10	0.10	00•0	00•0	0.10	0.20	0.20	0.10	0.10	0.10
- Si	9	_	ł	1	ł	1	1	1	1	ł	1	ł
ż		ε O2	32.0 0.52 13	1.7 0.03 2	9•7 0•16 7	21.0 0.34 10	7•3 0•12 5	0.9	0.01	1.3	0.01	3.2 0.05 1
Chlo	0	ō	44 1.24 31	16 0.45 24	0.59	0.85	36 1.02 43	13 0•37 22	1.97	0.23 14	28 0.79 38	516 28 0 69 1 3 40 52 89 3.2 1.40 3.00 0.03 0.10 0.66 1.08 2.51 0.05 32 68 1 2 15 25 57 1
Sulfore		504	1.10 28	0.31	0.42	41 0.85 26	19 0.40	0.19	0	12 0.25 15	19	52 1.08 25
Bion-	pondre	HCO ₃	1.13	1.08 5.8	1.29	1.28	45 0.74 31	70 1.15 67	56 0.92 32	1.15	55 0 • 90 43	40 0.66 15
ė	ě	93	0	0	0	0	0.10	0	0	C	0	0.10
Potas-	E	×	0.03	0.03	0.03	0.03	0	0	1	0	0	0.03
Sodian		2	1.91	1.35	1.26	35 1.52 46	38 1.65 73	1 6 4 8 8 8	2.57	1 • 4 3 3 8 8 8 8 8	37 1.61 80	3.00 8.00 6.8
Mogne	E	6₩	0.08	0	0	0	0	0	0.08	0	0	0
Coleium		S	41 2.05 50	0.55	1.25	1,75	12 0•60 27	0.20	0.15	0.20	0.40	28 1,40 32
ance	mhas	ar 23 C)	447	205	260	377	257	176	323	173	230	516
Ι.	a.		ω •	œ •	8 • 2	8 • 1	•	7.1	7.5	89 • 2	0	80 • 70
when	4		73	75	82	75	62	72	72	0	73	70
	Agy.		1 M 5050	33 X	1 M	1 M 5050	1 M 5050	2 M 5050	3 X	1 M	1 M 5050	5050
Nomber	Date Sampled	aume l	S/24E-11/ 6-23-64	85/24E-11F 7- 9-64 9	8S/24E-12A 6-23-64 !	85/24E-12D 6-24-64 !	85/24E-16A 6-23-64 F	85/24E-23D 4- 9-64 5	85/24E-23D 4- 9-64	8S/24E-26D 6-23-64 !	85/24E-30F 6-23-64 !	285/24E-31A 6-24-64
	when ance when Angre- Carbon Bicar Sulole Chlo Ni: Fluo Sil: IDS	when ance Magne- Sodium sium Sodium sium of Biar- Sulfote trate ride Baran a Computed Agy. Agy. of mhas Collision Sodium sium of Bonde Sulfote side Baran a Computed Collision of Computed Sulfote side Baran a Computed Sodium sium of Collision of Computed Sodium sium of Collision of Collisio	Agy. of mhas at 25C) Ca Mg No K CO 3 HCO 3 SO 4 CI NO 3 F B SIO 2 Evop 180°C	Agy. or minos are colcium sium sium ote bonate sulfote ride fluo. Ni- fluo. Sili. 105 Camputed Agy. or minos at 25°C ca Mg No K CO 3 HCO 3 SO 4 CI NO 3 F B SIO 2 Evop 180°C Call. Mg No Bonate Sollote Fide No S F B SIO 2 Evop 180°C Call. Sollote Sollote Fide No S F B SIO 2 Evop 180°C Call. Sollote Fide No S F B SIO 2 Evop 180°C Call. Sollote Fide No S F B SIO 2 Evop 180°C Call. Sollote Fide No S F B SIO 2 Evop 180°C Call. Sollote Fide No S F B SIO 2 Evop 180°C Call. Sollote Fide No S F B SIO 2 Evop 180°C Call Mg No No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 2 Evop 180°C Call Mg No S F B SIO 3 Evop 180°C Call	Material Material	Simple Agriculture Agric	March Marc	Simple Paragraphic Parag	Mark	Second Participation Par	Marked M	Marked M

State Well	Temp.		Specific canduct-		Mineral Co	Mineral Constituents in		e a a	milligrams per liter equivalents per millian percent reactance value	er liter er millian ance value				Mineral canstituents in parts per million	neral canstituents parts per million	nts in	
Number	when	I	ance micro-	Colcium	Mogne-	Sodium	Potas-	Carbon-	Bicar-	Sulfate	Chlo	.i N	Fluo-	Boran	ilis 8	Computed	TOTAL
Date Sampled Agy. Time Coll.	0	a.	mhos at 25 C)	კ	6 W	ž	<u> </u>	00	HCO ₃	\$0	0	S O S	.	œ .	7		as CoCO 3
285/24E-31D 1 M 6-24-64 5050	72	0.6	200	0.25 14	0	34 1•48 86	0	0.27	30 0•49 28	19 0.40 23	20 0.56 32	1 • 1 0 • 0 2 1	1	00•0	1	102	13
285/24E-32P 1 M 6-23-64 5050	74	8 . 7	227	13 0.65 31	0	1 • 4 • 6 • 9	0	0.13	43 0 • 70 32	38 0.79 36	16 0•45 21	7.3	1	0.20	-	133	33
285/24E-36R 1 M 6-24-64 5050	73	8•1	722	3.64	0.08	2.70	0.05	0	55 0.90 14	119 2•48 38	1111 3•13 47	6.0	1	0.10	1	401	186
285/25E- 24 1 4 6-23-64 5050	74	8 • 2	580	3.44	0.66	1.35	0.08	0	1.59	1111 2•31 42	36 1.02 18	39.0 0.63 11	-	00•0	1	88 88 80	205
285/25E- 2K 1 M 6-23-64 5050	75	8 • 5	630	73 3.64 61	0 4 8	1.78	0.05	0	97 1•59 72	126 2.62 44	38 1.07 18	42.0 0.68 11	1	00.0	1	376	207
285/25E- 4F 1 M 7- 9-64 5050	72	© • •	583	3.59	0 4 4 9	36 1.57 28	0.05	0	141 2•31 42	58 1.21 22	25 0•71 13	81.0 1.31 24	1	0.10	;	9.46 88.0 88.0	204
285/25E- 4P 2 M 6-23-64 5050	78	8.1	561	3.19	0 • 33	1.74	0.05	0	92 1•51 29	1 889 985	1.13	47.0 0.76 14	1	00.0	1	331	176
285/25E- 9E 2 M 6-24-64 5050	7.	© •	784	3.44	16 1.32 18	57 2.48 34	0.03	0	91	94 1•96 29	2.00	77 • 0 1 • 24 19	1	0.10	!	430 504	238
28S/25E-10B 1 M 3-31-64 5050	47	6 0	647	3.69	0.41	1.96	0.08	0	98 1•61 27	134 2 • 79 47	39 1 • 10 18	30.0	1	0.10	1	378	205
285/25E-13C 1 M 6-25-64 5050	73	80	489	36 1 • 80 40	0.16	2.52 56	0.03	0	113 1.85 41	93 1 • 94 43	19 0.54 12	14.0 0.23	;	0.10	1	279 301	86
DWR 1982			STATE	STATE OF CALIFORN	ا≥ا	RESOURCES	AGENCY (OF CALIFO	ORNIA - DE	THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JE WATER R	ESOURCES					

pH Million Column virth Salikon virth One of the column Apple of the column virth One of the column virth	Stofe Well Number		Temp		Specific conduct- ance		Mineral Ca	Mineral Constituents in	Potos	Carbon-	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value	CFIO	ż	Fluo	Mineral canstituents in parts per million	neral canstituents parts per million	ents in ion TDS	TOTAL
1 M 72 8+2 234 0 1.85 0 1.85 0 1.85 0 1.85 0 1.85 0 1.85	pled	Agy. Call.	Sampled ° F	Ξ.	(micro- mhos at 25 C)	Calcium	En:s	Sodium	e in a	ote Of	bonote	Sulfate	p p	ž di Š	ride ab	Boron	8 9	Computed	hordness
1 M	-17L	1 M	72	•	234					, 0	∞ 4	∀	i I •		. 1	1 1	7		335
1 M 75 8+1 2120 1275 1.40 5-44 0.08 1.00 7.60 12.15 0.32 0+10 5-50 0+10 0+10 0+10 0+10 0+10 0+10 0+10 0+10 0+10 0+10 0+10 </td <td>-20D -64 5</td> <td>1 050</td> <td>4</td> <td>8 • 1</td> <td>687</td> <td>2.79</td> <td>4.</td> <td>3,26</td> <td>0</td> <td>0</td> <td>∞ ~ ~</td> <td>148 3.08 47</td> <td>•</td> <td>29.0</td> <td>1</td> <td>0.10</td> <td>1</td> <td>413</td> <td>160</td>	-20D -64 5	1 050	4	8 • 1	687	2.79	4.	3,26	0	0	∞ ~ ~	148 3.08 47	•	29.0	1	0.10	1	413	160
1 M 75 8.1 2900 22.75 1.53 8.48 0.10 1.33 19.57 10.38 54.0 0.10 5050 7 4 26 0.10 1.33 19.57 10.38 0.87 0.10 0.10 0.10	-22F	1 050	73	8 0 • 8	2120	275 13•72 66	- 4	125 5.44 26	0.08	0	• 0	365 7.60 36	2 •	20.0	1	0.10	1	1266 1440	757
1 M 75 8 · 2 466 47 0 40 0 · 97 1 · 49 1 · 60 3 · 8 0 · 10 0 ·	-24P	1 050	75	8.1	2900	456 22.75 70	. 2	195 8 • 48 26	• 1	0	∞ ₩	•	368 10•38 32	54.0 0.87	1	0•10	1	2072	1200
1 M 74 7.88 1230 160 0.49 3.35 0.05 0.144 4.89 5.25 186 8.2 0.20 0.20 0.20 0.20 0.02 0.144 4.89 5.25 0.13 0.20 0.20 0.20 0.20 0.10 0.25 0.15 0.02 0.03 0.0	-25L -64 5	1 M 050	75	•	466	•	0	•	0	0	•	L 4 W	1.69	3 · 8 0 · 06 1	1	0.10	1	253 268	118
2 M 8+2 166 1 00 8 1 00 5 64 7 0 15 0 25 0 0.02 0 0.02 0 0.10 0 0.02		1 M 050	74	7 • 8	1230	160 7.98 67	4	•	0	0	804-	~ •	186 5.25 45	8.2 0.13	1	0.20	1	718	454
1 M 75 8.0 306 16 0 42 1 0 66 37 26 4.2 0.10 <t< td=""><td>-28P</td><td>2 X 050</td><td>1</td><td>•</td><td>166</td><td>0.35</td><td>0</td><td>•</td><td>0</td><td>0</td><td>1.05</td><td>•</td><td>• 5</td><td>1.0 0.02 1</td><td>1</td><td>0.10</td><td>1</td><td>83 106</td><td>22</td></t<>	-28P	2 X 050	1	•	166	0.35	0	•	0	0	1.05	•	• 5	1.0 0.02 1	1	0.10	1	83 106	22
1 M 74 7-8 344 26 0 37 1 0 64 43 37 2.9 0.10 5050 1 M 75 8.6 166 8 0 28 1 3 58 13 8 1.22 0.010 0.02 0.010 0.02 0.010 0.02 0.010 0.02 0.010 0.02 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 <	-306 -64 5	1 M 050	75	•	306	•	0	•	0	0	•	•	21.0	4.2 0.07	1	0.10	1	159	0 4
1 M 75 8.66 166 8 0 28 1 3 58 13 8 1.62 0.010 0.057 0.023 0.010 <td< td=""><td>-32L -64 5</td><td>1 M 050</td><td>74</td><td>7 • 8</td><td>344</td><td>•</td><td>0</td><td>•</td><td>0</td><td>0</td><td>•</td><td>•</td><td>37 1.04 34</td><td>2.9</td><td>1</td><td>0.10</td><td>1</td><td>178</td><td>65</td></td<>	-32L -64 5	1 M 050	74	7 • 8	344	•	0	•	0	0	•	•	37 1.04 34	2.9	1	0.10	1	178	65
	-32P 64 5	1 M 050	75	89 •	166	0.40	0	•	•	-	•	•	2 ~	1.2	1	0.10	1	91	20

MINERAL ANALYSES OF GROUND WATER

			Specific					Ë	milligrams per liter	ır liter				Ations of the state of the stat	1000	1.5	
State Well	Гетр		conduct-		Mineral Co	Mineral Constituents in		p a	equivalents per million percent reactance value	er million ance value				parts p	parts per million	: : : :	-
Number	& hen		ance	mijslo	Mogne-	Sodium	Patas-	ė	Bicar	Sulfate	SHO.	ż	Fluo	Boron	Sili	ZOI SOI	TOTAL
Date Sampled Agy.	odmpted %	۵.	soum.		En:		Ens	90	ponole		D	5	-				so
Time Coll.			at 25 C)	3	Wg	Ž	¥	00 g	нсо з	504	ō	ε ON	u.		SIO 2	Evap 180 C	C0C0 3
285/25E-35G 2 M 4-29-64 5050	4	7.9	295	28 1.40 56	0	25 1.09 43	0.03	0	85 1 39 55	20 0.42 17	24 0.68 27	1.5 0.02	ŀ	0•10	1	141	70
285/25E-36C 1 M 6-25-64 5050	75	8 • 4	348	32 1.60 52	0.08	31 1.35	0.05	0.07	70 1•15 37	0.94 0.94	0.99	1.4	1	0.10	1	182	48
285/26E-21H 2 M 4-10-64 5050	%	0.6	376	0.10	0.08	3.17	0.03	23 0.77 23	65 1•07 32	0.52	36 1-02	0.04	!	0 • 2 0	ł	194	6
285/26E-21H 3 M 4-10-64 5050	69	7.8	4 18	0.20	0	3,39	0.03	0	1.03	0	88 2•48 70	0.04	1	0.20	1	203	10
285/26E-30A 1 M 9-14-64 5050	79	7.9	1080	1	1	1		C	1.25	1	3.16		1	!	1		368
285/27E- 7C 1 M 9-14-64 5050	40	8 • 2	313	1	-	ł	1	0	92	-	1.16	1	1	1	-		Φ
285/27E-28L 1 M 9-14-64 5050	81		260	1	1	1	1	0	1.21	-	17	1	•	1	1		€C
295/22E- 1C 1 M 8-27-64 5050		6 • 9	9300		-	1	1	0	304	1	2370	1	1	1	1		2660
295/24E- 1H 1 M 3-31-64 5050	9	7 • 8	170	0.30	0	1.17	0.03	С	1.02	0.19	0.25	0.0	ŀ	0.10	;	83 114	15
295/24E- 4D 1 M 6-23-64 5050	72	7.7	363	0.70	0.08	57 2.48 76	0	0	31 0.51 15	1.58	40 1 • 13 34	6.8 0.11	1	0.10	1	210	39
DWR 1982			STATE	OF CALIFOR	INIA - THE	RESOURCES	AGENCY (OF CALIFO	RNIA DE	PARTMENT (STATE OF CALIFORNIA. THE RESOURCES AGENCY OF CALIFORNIA. DEPARTMENT OF WATER RESOURCES	SOURCES					

State Well	Temp.		Specific conduct-		Mineral Co	eral Constituents in	٠	E & &	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral canstituents in parts per millian	neral canstituents parts per million	ints in ian	
	when Sampled	±_	mhos	Colcium	Magne- sium	Sodium	Potas- sium	Carbon.	Bicar- bonote	Sulfate	Chlo- ride	trate.	Fluo-	Boron	ij 8	TDS	TOTAL hardness
Time Call.	_		at 25°C)	3	φ	2	×	0	нсо з	so 4	ō	NO 3	u.	80	SIO 2	Evop 180°C	C ₀ CO ₃
295/24E- 4M 1 M 4-29-64 5050	72	. 4	263	8 0•40 18	o	1.83 81	0.03	0.13	27 0 • 44	20 0.42 19	1.21 55	0.01	}	0.10	!	132	20
295/24E- 7C 1 M 6-23-64 5050	7.	& • •	355	0.30	0	2.78	0	0.20	51 0.84 27	40°0 80°0	68 1.92 61	6•3 0•10	!	0.20	ł	180	15
295/24E- 8N 1 M 6-23-64 5050	77	eo 	1360	2.79	0.08	216 9.39 76	0.03	0	115 1 • 88 15	146 3.04 25	262 7.39 60	3.8	1	0.70	1	743	144
295/24E-21B 1 M 6-23-64 5050	76	4.6	174	0.15	0	35 1.52 91	0	10 0•33 20	36 0 • 59 36	13 0.27 17	15	0.0	ł	00.0	1	94	60
29S/24E-24F 1 M 6-24-64 5050	72	80 • 33	474	30 1 • 50 35	0	2.70	0.03	0	73 1.20 28	102 2•12 49	27 0•76 18	14.0 0.23 5	1	0.10	ł	272	75
295/24E-33P 3 M 7- 9-64 5050	80	8.2	1160	152 7.58 62	10	3.83	0.05	0	254 4 • 16 33	349	40 1•13 9	0 • 0	1	0.50	1	766	420
295/25E- 3N 1 M 6-24-64 5050	73	4.	308	1.20	0.08	34 1.48 53	0.03	0.03	69 1•13 41	0.90	22 0•62 22	5 · 8 · 0 · 0 9	1	0.10	;	166	79
295/25E- 5A 1 M 4-28-64 5050	89	8 • 1	706	3.04	0.25	3.22	2 0.05 1	0	125 2•05 31	103 2•14 32	78 2.20	15.0	1	0•10	1	398	165
295/25E- 5G 1 M 3-31-64 5050	75	7.9	195	10 0.50 29	0	28 1.22 70	0.03	0	68 1•11 64	0.25	12 0 34 20	1.6	1	0•10	1	98 132	25
295/25E-10M 1 M 6-24-64 5050	72	8.1	213	113 18 0 25 1 0 73 18 14 1.07 0.09 0.09 0.03 0.03 0.03 0.03 0.03 0.03	0	1.09	0.03	0	1.20	18 0.37	0.39	0.03	1	0.10	1	114	45

MINERAL ANALYSES OF GROUND WATER

SAN JOAQUIN DISTRICT

170 165 10 25 30 50 257 159 CoCO 3 58 8 / hordness 338 287 378 301 139 165 132 141 161 Evap 180°C 86 417 92 TDS ع. Mineral canstituents parts per million 510 2 i 1 i 1 ŀ 1 ŀ 1 i :<u>†</u> 8 00.0 0.20 0.10 0.10 0.10 00.0 0.30 0.20 0.10 1 Boron i 1 ŀ l ł ł ł 1 1 Fluo-ride 16.0 0.26 13.0 1.7 1.5 1.5 4.1 2.8 5.2 5.2 <u>STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES</u> 1 ς Ο Tofe 84 0.17 7 0.20 12 25 0.71 18 0•51 22 18 10 0.28 84 2 37 61 1.72 35 225 6•35 88 64 47 라 e e ō 23 0 • 4 8 20 18 0•37 0.15 23 percent reactance value 61 25 •69 34 10 0•21 13 21 15 equivalents per million 0 81 504 milligrams per liter 1.15 109 1.15 73 1•20 77 1.07 71 1•16 51 82 1.34 27 51 0.84 12 81 1•33 . 18 24 23 2 Bicar-banate HCO 3 20.0 20.0 20.0 0 0 0 0 0 0 0 3 ~ co 3 Carban-ate 0.03 0.03 0.03 0.03 0.03 0.05 0.05 20.0 0.03 Potos-sium Mineral Constituents in 23 1 • 00 39 30 • 70 38 30 1•30 85 154 6.70 24 1.04 62 29 • 26 52 35 31 Sodium ž 0.16 3 0 25 0.16 0.33 0 0 0 0 0 Magne-sium ٨ 28 1.40 54 0.20 13 12 0.60 36 23 1•15 47 20 1•00 43 63 3•14 63 63 3•14 62 57 2•84 58 10 0.50 7 1 შ 999 166 267 247 250 553 160 849 257 at 25°C) conductmicro-Specific 561 mhos auce ۳۵ 7.3 4.6 8.5 8.5 8.5 8.2 8.2 7 • 8 8.1 8.1 Sampled 72 69 99 47 72 72 74 ! 14 71 Femp. ď -10N 1 M 6-24-64 5050 295/25E-11K 1 M 6-23-64 5050 29S/25E-12N 1 M 6-23-64 5050 295/25E-13R 1 M 7- 9-64 5050 295/25E-32F 1 M 7- 8-64 5050 -32F 1 M 9-14-64 5050 295/25E-35J 1 M 6-23-64 5050 295/25E-10N 1 M 4-28-64 5050 29S/25E-12M 3 M 4-10-64 5050 29S/25E-12M 4 M 4-10-64 5050 Agy. Coll. State Well Number Date Sampled

MINERAL ANALYSES OF GROUND WATER
SAN JOAQUÍN DISTRICT

	TOTAL	20 CO 3	153	24	110	72	120	39	10	56	88	59
ents in ion	TDS	Evap 180°C			335 339	118 145	194	89 114	99			
neral canstituents parts per millian	Sit	SIO 2	1	1	19	ì	1	1	1	1	1	1
Mineral constituents in parts per million	Boron	80	!	1	0.20	0.20	0.10	0.10	0.10	0.20	-	1
	Fluo	u.	1	1	0.3	1	1	1	1	1	1	1
	Z tota	NO 3	1	ł	14.0 0.23	2.0	2 • 7 0 • 04 1	2 • 8 0 • 05 3	0.01	1	1	1
	Chlo	ō	1.38	13	36 1.02 18	0.23	0 - 85	0.14	0.23	15	15	150
milligrams per liter equivolents per million percent reactance volue	Sulfate	50 4	1	1	16 0•33 6	0.35	37 0 . 77	0.17	0.12	1	1	1
milligrams per liter equivalents per million percent reactance value	Bicor-	HCO 3	1.49	1.23	254 4•16 72	94 1•54 72	110 1.80 52	1.26	88 1 • 44	ł	150	34
E & C	Carban	O	0	0	0	0	0	0	0	j B	0.17	0
	Patas-	¥		1	3 0.08 1	0.05	0.08	0.05	0.03	1	1	1
Mineral Constituents in	Sodium	ž	1	!	3.57	0.74	1.00	18 0.78 48	36 1.57 87	2.91	1	ł
Mineral C	Magne-	¥	ł	ł	6 0.49 8	0.33	0.49	0.08	0	!	1	1
	Colcium	S	1	1	34 1.70 29	1.10 50	38 1 • 90 55	14 0 • 70 43	0.20	1	}	1
Specific conduct-	once (micro-	mhas at 25°C)	575	196	552	232	374	173	199	422	432	641
	I	a .	80 • 3	8 • 0	7.6	7.2	7.6	7.4	8 • 2	1	8 • 5	7.6
Temp.	when	· L	72	65	4 5	89	49	99	88	0	08	70
State Well		Date Sampled Agy. Time Call.	295/26E- 9R 1 M 9-14-64 5050	295/26E-35K 1 M 9-14-64 5050	29S/27E-21R M 2- 7-64 5050	295/27E-34N 1 M 4- 8-64 5050	295/27E-34N 2 M 4- 8-64 5050	29S/27E-34N 3 M 4- 8-64 5050	29S/27E-34N 4 M 4- 8-64 5050	295/28E-12E 1 M 12- 8-63 5124	-12E 1 M	30S/23E- 1C 3 M 8-27-64 5050
		Do	295	295	295	295	295	295	295	295 12	6	30S 8

State Well	Teap		Specific conduct-		Mineral Ca	Mineral Canstituents in		e a	milligrams per liter equivalents per millian percent reactance value	er liter er millian ance value				Mineral canstituents in parts per million	neral canstituents parts per million	ants in ion	
	when	Ξ.	ance (micro-	Calcium	Magne- siom	Sodium	Patas.	Carbon	Bicor- bonate	Sulfate	Chlo- ride	rate.	Fluo- ride	Boron	i <u>\$</u> 8	TDS Computed	TOTAL
Date Sampled Agy. Time Call.	o .		mhas at 25°C)	კ	Mg	Ž	×	co 3	нсо 3	504	ō	NO 3	it.	8	SIO 2	Evap 180°C	coco 3
305/24E- 3E 1 M 6-24-64 5050	52	0•6	184	5 0•25 16	0	31 1.35 84	0	0.20	38 0•62 38	25 0•52 32	10 0•28 17	0•1	-	0.10		96	13
30S/24E- 4C 1 M 4- 9-64 5050	8 0	7.6	1350	168 8.38 57	21 1.73 12	102 4 • 43 30	3 0.08 1	0	282 4•62 31	440 9.16 61	1.24	0.0		09•0	1	918	206
305/24E- 4C 4 M 7- 1-64 5050	78	8 • 2	506	32 1.60 35	0.08	66 2.87 63	0	0	90	120 2.50 53	25 0.71 15	0.0	1	0.20	!	289	48
30S/24E- 4C 5 M 4- 9-64 5050	69	7.1	416	35	4 6 0 0 3 3 8 8	1.87	0.03	0	94 1•54 39	1.92	16	0.2	İ	0.30	1	238	104
30S/24E- 4C 6 M 4- 9-64 5050	69	8•1	142	0.10	0.16	28 1•22 82	0	0	62 1•02 72	9 0•19 13	0.20	0 • 2	1	0.20	1	119	13
30S/24E- 5L 2 M 6-24-64 5050	69	80 • 33	1000	4.69	13 1.07 10	103	0.08	0	274	235 4 • 89 46	1.13	0.4	1	0.60	1	624	288
30S/24E- 6E 1 M 6-24-64 5050	1	8 • 2	1120	2.69 2.5	0.16	178 7.74 73	0.03	0	133 2•18 21	227 4•73 45	129 3•64 35	0.3	!	0.40	1	657	143
30S/24E- 6H 1 M 6-24-64 5050	69	8 • 2	878	3.94	14 1.15 13	3.88	0.05	0	279 4•57 50	178 3•71 40	32 0 90 10	0	1	0.40	1	531	255
30S/24E- 8G 1 M 7- 2-64 5050	73	& • 3	2410	158 7.88	2.22	319 13.87 58	0.05	3 0 • 10	259 4•25 18	444 9 • 24 3 8	375 10•58 44	0.5	1	0.40	1	1456	505
30S/24E- 8P 1 M 8-28-64 5050	1	1	7160	1	1	-	1	-	1	1	1	!	1	3.10	ł		
DWR 1982			STATE	OF CALIFOR	NIA THE	RESOURCES	AGENCY (OF CALIFO	RNIA DE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	F WATER RI	SOURCES					

	TOTAL	os CoCO 3	680	439	4	15	252	226	76	47	176	104
					169	93			7 9	5 2		
ents in	Camputed	Evap 180°C	3034 3160	841	16	10	516 525		257	135	266	184
neral constituents parts per million	i ∃ 8	SIO 2	1	1	1	!	1	1	1	1	1	}
Mineral constituents in parts per million	Boran	8	2.00	0.40	00.0	0.10	0.20	1	0.20	0.10	0.20	0.10
	Fluo- ride	ñ.	1	1	1	!	i	ł	1	1	1	1
	rote.	NO 3	0.6	10.0	0.1	0.01	0	1	0.01	5 • 2 0 • 08	32.0 0.52 11	0.07
	Chlo- ride	Ö	1220 34.40 68	2.03 15	0.56	0.20	24 0.68 8	22	1.35	10 0•28 12	20 0.56 12	1.16 36 36
milligrams per liter equivalents per million percent reactance value	Suffate	504	686 14•28 28	463	1.21	0.27	262 5.45 67	1	1.79	18 0•37 15	32 0.67 14	55 40
milligrams per liter equivalents per mill percent reactance v	Bicar. banate	нсо з	104 1•70	88 1•44 11	0.92	1.05 6.4 6.3	125 2•05 25	1.46	62 1.02 24	104	183 3•00 63	1.61
E & C.	Carban- ate	CO 3	0	0	0.10	4 61 8	0	0	0	0	0	0
	Potas- sium	¥	0.08	0.10	0	0	0.03	1	0.03	0.03	0.03	0.03
Mineral Canstituents in	Sodium	Ž	824 35•83 72	93 4.04 31	1.87	31 1,35 82	2.96	1	2.70	21 0•91 38	1.17	1.22
Mineral C	Magne- siom	Mg	3.21 6	2.63	0	0	0.25	1	0.16	0.08	0.82	0.08
	Calcium	კ	208 10•38 21	123 6•14 48	0.85	0.30	96 4 • 79 60		1,35	28 1.40 58	54 2.69 57	2.00
Specific canduct-	(micro-	mhos at 25°C)	5120	1250	310	164	806	802	473	247	474	355
	Ξ.		0 • 8	6.9	80 • 07	ec •	8•1	7.9	7.9	& •	7.7	89.
Temp.	Sampled	r o	1	71	73	74	76	1.7	70	70	75	72
		Agy. Coll.	5050	2 M 5050	5050	1 M 5050	5050	5050	5050	5050	5050 5050	5050
State Well Number		ne ne	8	E-10P	E-11G	-64 64	E-14H	-14H 1 8-27-64 509	S/24E-15D 6-24-64	64 1H	E- 2A	E- 2K
Sta		Date Sampled Time	305/24E- 8 8-28-64	305/24E-10P 6-24-64	30S/24E-11G 6-25-64	30S/24E-11J 6-24-64	30S/24E-14H 6-24-64	8-27	30S/24E-15D 1 6-24-64 50	30S/25E- 1H 1 6-25-64 50	305/25E- 2A 6-23-64	305/25E- 2K 6-23-64

MINERAL ANALYSES OF GROUND WATER

			Specific					Ē	milligroms per liter	er liter				Mindred Lands	l suctified	i se	
State Well Number	Темр.		conduct-		Minerol Co	Mineral Constituents in		p e	equivolents per million percent reactance volue	er million ance volue				ports	ports per million	e c	
	Sampled	Ξ.	micro-	Calcium	Magne- sium	Sodium	Patas- sium	Carban.	Bicor- bonate	Sulfate	Chlo- ride	rote frote	Fluo-	Boron	₹ 8	Computed	TOTAL
Dote Sampled Agy.			mhos ot 25 C)	3	6W	ž	~	03	HCO 3	50 4	ō	ς O Z	u.	80	SIO 2		03 CaCO 3
30S/25E- 7P 1 M 6-23-64 5050	70	8 ∙ 0	587	2 • 7 4 5 5 5 8	0.08	1.87	0.03	О	151 2.47 53	62 1•29 28	0.85	4•1 0•07	1	0.20	;	271	141
30S/25E- 8P 1 M 6-23-64 5050	72	80 •	213	17	0	30	0	2 0 0 0 3	86 1•41 66	17 0•35 16	10 0•28 13	1.8	-	0.10		120	43
305/25E- 94 1 M 6-23-64 5050	74	& • 3	310	28 1• 4 0 45	0.08	36	0.03	C	117	0.60	14 0 39 13	6.0	;	0.10	i	173	74
30S/25E- 9L 1 M 6-23-64 5050	ļ	8 . 2	407	36 1.80 46	0.25	1.83	0.03	0	137 2•25 58	45 0 • 94 24	21 0.59	5.5	1	0.20	1	221	103
305/25E-10C 1 M 6-23-64 5050	73	8.4	377	38 1.90 52	0.16	36	0.03	0.13	136 2•23 64	31	0.31	12.0 0.19	1	0.20	1	202	103
-10C 1 M	71	8•1	8 7 6	1		1	1	0	123	-	14		1	1	i		88
305/25E-14H 1 M 7- 7-64 5050	74	8 •	243	28 1•40 58	0 0 0 3	0.91	0.03	0	106 1.74 73	0.35	0.28 12	0 • 2	1	0.20	i	131	74
305/25E-18A 1 M 6-23-64 5050	72	& •	238	21 1.05 44	0.16	1.17	0.03	0	106 1.74 75	16 0.33 14	9 0.25 11	0.01	-	0.10	1	129	61
30S/25E-18C 1 M 6-23-64 5050	7.1	α: •	310	1.35	0.16	32 1.39 47	0.03	0	118 1.93 66	26 0•54 18	15	1.9	l	0.20	1	163	76
30S/25E-26A 1 M 7- 7-64 5050	70	8 • 2	262	19 0.95 37	0.08	36 1.57 60	0	0	114 1•87 73	18 0•37 15	10 0.28 11	1•6 0•03 1	1	0.20	1	142	52
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE R	ESOURCES	AGENCY C	JF CALIFO	RNIA - DEF	PARTMENT C	F WATER RE	SOURCES					

		TOTAL	20 CoCO 3	67	29	23	0	91	252	4 80	89	23	157
		-		е -	67	w 4	0.4			- 4	∞	2 0	
ents in		Computed	Evap 180°C	17	163	113	112		675 694	131	218 231	116	
onstitu	parts per millian	Sili	SIO 2	1	1	ŀ	1	1	1	1	ł	1	1
Mineral constituents in	parts	Boron	65	0.10	0.10	00	0.10	1	0.80	0.10	0.10	0.10	!
		Fluo-	ı.	ŀ	1	1	}	ł	!	1	1	ł	1
		rote	ი 0 2	0.4	1 • 1 0 • 0 2 1	2.9	1.6	1	43.0 0.69	0.01	1.7	1 • 3 0 • 0 2 1	 ESOURCES
		Chlo- ride	ō	16 0•45 15	1.92	0.17	10 0.28 14	0.31	80 2 • 26 19	0.25	17 0•48 13	16 0.45 23	32 0 • 90
er liter oer millian	tance value	Sulfate	50 4	30	0.21	0.17	13 0.27 13	1	100 2.08 18	15 0•31 13	38 0.79 21	17 0.35 18	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES
milligrams per liter equivalents per millian	percent reactance value	Bicar- bonale	HCO 3	120 1.97 65	86 1•41 40	106 1•74 82	89 1•46 72	126	418 6.85 58	110 1.80 76	153 2.51 66	1.15 58	3 • 2 3
		Carbon- ote	9	0	0	0	0	0	0	0	0	0	5 0.17 OF CALIF
	-	Potas-	¥	0.03	0.03	0.03	0	1	0.15	0 0 0 0	0.10	0.05	AGENCY
Mineral Constituents in		Sodium	ž	40 1•74 56	30 1.30 68	1.57	41 1•78 91	1	154 6.70	31 1.35 56	5.48 63	1.57	RESOURCES
Mineral		Magne- sium	6W	0.08	0.08	0.25	0.08	1	23 1.89 16	0.16	0.25	0	
		Coleium	S	1.25 1.25 40	0.50	0.20	0.10	}	3.14	16	22 1•10 28	0.45	 OF CALIFOR
Specific	conduct	micro-	mhos at 25°C)	321	171	186	214	318	1150	243	394	215	542 STATE
		I	<u>.</u>	8.3	0	80 •	80 •	80	8 • 2	7.7	0 •	00 •	8 • 4
	Temp.	Sampled		76	70	1	1	67	89	8	89	68	76
			Agy. Call.	5050	5050	5050 5050	5050 5050	. 1 M	1 M 5050	2 ™ 5050	5050 5050	1 4 W	5050
State Well	Number		Date Sampled Time	305/25E-31P 6-25-64 5	30S/26E-22P 4- 8-64 5	305/26F-22P 4- 8-64 5	305/26E-22P 4- 8-64 5	30S/27E-19L 1 8-27-64 505	305/28E-10N 1 4- 8-64 50	305/28E-10N 2 M 4- 8-64 5050	305/28E-10N 3 4- 8-64 505	305/28E-10N 4 4- 8-64 505	305/28E-11R 8-28-64 5 bwr 1982
						· · · · · · · · · · · · · · · · · · ·							

State Well	Temp.		Specific conduct-		Mineral Ca	Mineral Canstituents in		ا ق	milligrams per liter eqvivalents per millian	milligrams per liter equivalents per millian				Mineral constituents in parts per million	neral constituents parts per million	ants in ion	
Number	when	:	ance		Magne-		Potas-	Carban-	Bicar.	dince value	Chlo-	ż	Fluo-		Sid:	IDS	TOTAL
Date Sampled Agy.	Sompled	-	micro- mhos	Calcium	sicm	Sodium	sicm	ato	bonate	Sulfale	rids	trate	ride	Boron	8	Computed	hardness
Time Coll.			at 25°C)	ვ	Mg	Z	*	co 3	нсо з	504	Ü	ν 0 3	u.	8	SIO 2	Evap 180°C	CoCO 3
305/28E-25A 1 M 8-28-64 5050	78	8 • 1	566	1	1	ļ	ł	0	220 3.61	1	35	ļ	1	1	1		165
315/24E-28B 1 M 8-26-64 5050	78	8 • 1	6030	1	1	1	1	0	91	1	886 24 • 99	1	l	1	1		1810
31S/25E-27F 1 M 4- 9-64 5050	64	7.6	2330	362 18•06 64	26 2.14 8	179 7•78 28	6 0.15	0	1.16	1260 26•23 93	22 0•62 2	3.2	1	0.00	1	1894	1011
315/25E-27F 2 M 4- 9-64 5050	63	7.6	2080	245 12•23 54	0.33	228 9.91 44	3	0	1.02	1060 22•07 94	0.31	2.6	1	0.10	1	1584	659
31S/25E-27F 3 M 4- 9-64 5050	9	7.2	868	2.50	0.08	136 5.91 69	0.05	0	74 1•21 14	330 6.87 80	15	3.0 0.05	1	1.00	1	574	129
31S/25E-27F 4 M 4- 9-64 5050	64	7.7	868	22 1•10 14	0	157 6.83 86	0.03	O	99 1•62 20	254 5.29 65	44 1•24 15	3.0 0.05	i	1.00	1	531	5.5
31S/26E-32C 1 M 8-26-64 5050	79	&	496	1	1	i	1	0	123	-	0.23	1	1	!	1		61
315/27E-14F 1 M 8-27-64 5050	67	8 • 4	372			1	1	0.13	121	1	17	1	1	1	1		92
315/30E-20B 1 M 7-17-64 5645		11.1	8933	24 1.20 19	0.16	116 5.04 79	1	3.30	0	23	97 2.74 41	14.3 0.23	1	0.64	!	376 353	89
315/30E-20B 2 M 7-14-64 5645	-	80 • 5	435	0.15	5 0.41	3.17	!	13 0•43 11	127 2•08 55	6 0•12 3	40 1.13 30	0.1	ł	0.38	1	203	28
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY (OF CALIFO	ORNIA - DE	PARTMENT	OF WATER RI	ESOURCES					

	Computed hardness	_	Evap 180°C	Evap 180°C 210 211	210 210 211 183	210 210 211 183 183	210 210 211 183 183	210 211 211 183 183	210 211 211 183 183	210 211 211 183 183	210 211 211 183 183	210 211 211 183 183 183 378 400
Minerol constituents in ports per million	Sili: 8		510 2	34								
ď	Fluo- ride Boran		8		!!!							
	Ni.		NO 3			1. 2021	- vēv	- ~ ~ ~ ~ ~	- ~ ~ ~ ~ ~	- vov	- von	- www
	Chlo-	ט		50 1•41 36	1 0	0 0	0 0 1	0 0 0	0 0 0			
	Sulfate	504		0.08	· · ·	0.0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	
percent reactance value	Bicar- bonote	ĘĢ.	,	121 1•98 51	121 1.98 51 51 171 2.80		121 1-98 1-98 171 2-80 79 146 2-39	10.00 10.00	10.00 10.00	10.08 10	10.98 10.98 171 20.80 20.39 20.25 20.25 30.15 30.15	10.98 10.98 10.98 10.11 10.11 10.13 10
. 0.	Carbon- ote	9		0.40	14.	144 1	חַלָּה חַ	14.1	2 141	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 0	141 0 0
	Potas- sium	×		1		1 1 1	1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1		1 1 1 1 1 4 10 0
Mineral Constituents in	Sodium	Z		3.30 85	•	• •	•	•	• •	•	•	•
Mineral Co	Magne- sium	Wg		5 0 • 4 1	•	• •	•	•	•	•	•	•
Specific conduct-	Calcium	ვ		0.15	3 0 • 15 4 1 • 50 4 5	0.15	0.13	0.13	0.13	0.13	0.13	0.13 0.13 1.50 1.50 1.95
	(micro-	mhos at 25°C)		416	416	416	416 357 471 3420	416 357 471 471 415	416 357 471 415 860	416 357 471 415 860	416 357 471 415 860 375	416 357 471 415 860 375 646
	Ξ_			& • •	8 .7	8 7 8	8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 7 6 8 0 7 . 7 8 . 1	8 7 8 8 7 8 8 2 1 8 8 2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8	80	80
Temp.	Sampled	u. 0		-	1 1							
State Well Number		Dote Sampled Agy. Time Coll.		15/30E-20B 3 M 7-20-64 5645	15/30E-20B 3 M 7-20-64 5645 15/30E-29M 1 M 8- 6-64 5645	15/30E-20B 3 M 7-20-64 5645 15/30E-29M 1 M 8- 6-64 5645 15/30E-30C 1 M 8-28-64 5050	15/30E-20B 3 M 7-20-64 5645 15/30E-29M 1 M 8-6-64 5645 15/30E-30C 1 M 8-28-64 5050					315/30E-20B 3 M 315/30E-29M 1 M 8-6-64 5645 315/30E-30C 1 M 8-28-64 5050 325/25E-34G 2 M 8-27-64 5050 325/27E-6D 3 M 9-15-64 5050 9-15-64 5050 9-15-64 5050 9-15-64 5050 8-28-12F 1 M 8-28-64 5050

State Well	Temp.		Specific canduct-		Mineral Ca	Mineral Canstituents in		E & 8	milligrams per liter equivalents per millian	er liter er million				Mineral canstituents in parts per millian	neral canstituents parts per millian	nts in	
Number	when		ance	1	Mogne-	11.17.2	Potos	ė	Bicar.	Sulfate	Chlo	ż	Fluo	30	-ils	TOS .	TOTAL
Date Sampled Agy. Time Call.	de de de de de de de de de de de de de d	a .	mhas at 25°C)	ß	E 6W	ž	ž ×	g %	bonate HCO 3	504	ep. J	9 0 2 Z	. u		SIO 2	Computed Evap 180°C	hardness as CoCO 3
375/28E-30D 3 M 4- 7-64 5050	7.0	7.9	490	0.95 20	0.66 14	3.04 64	0.10	0	154 2 • 52 54	1.69 1.69	15	0•0	;	0.50	1	273	81
325/29E-19H 2 M 4- 7-64 5050	70	8 0 •	741	3.44	19 1.56 21	55 2•39 32	0.08	0	197 3•23 44	92 1•92 26	76 2•14 29	3.4	i	0.20	1	414	250
325/29E-19H 3 M 4- 7-64 5050	70	7.9	333	1.35	0.49	33 1 • 4 3 4 3	0.08	O	155 2.54 78	21 0.44	0.23	1.8 0.03	1	0.20	1	176	92
325/29F-35M 1 M 8-28-64 5050	70	7.9	1390	1		101	1	}	1	1	130	3.66	1	1	1		414
104/19W- 8A 1 S	<u> </u>	8 • 3	1190	2.94	3,78	127 5.52 44	10	0	328 5 • 38 43	294 6.12 49	32 0.90	3.1		1.30	1	734	336
11N/18W-14M 1 S 8-28-64 5050	}	8 • 2	4 8 6	!	!	1	-	O	126	!	24			1	1		181
11N/19W-25F 1 S 8-28-64 5050		8 • 7	561	1		1	1	12	3.79	}	19		1	1	1		216
11N/20W- 8R 1 S 8-28-64 5050	78	8 • 1	1570		}	1	1	0	1.28	}	1.52			!	;		517
11N/20W-25K 1 S 8-28-64 5050	1	8•1	2320	1		ŀ	1	0	1.43	1	1.78	1	1	;	ł		859
11N/21W- 5M 1 S 8-27-64 5050	78	7.9	1480	1	1	1	1	0	117	ļ	23	1	1	;	l		559
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY	OF CALIFO	RNIA DE	PARTMENT (OF WATER RI	ESOURCES					

TABLE E-1
MINERAL ANALYSES OF GROUND WATER
SAN JOAQUIN DISTRICT

										•	
	TOTAL	hordness	CaCO 3	199	396	408	1290	95	587	556	
ents in ian	TOS	Computed	Evop 180°C		858 910						
neral canstituents parts per millian	iż	8	510 2	1	30	!	ł	ŀ	1	1	
Mineral constituents in parts per millian		5	8	1	0 • 40	1	1	1	i	1	
	Fluo	ē	F	-	0.2	1	ł	1	1	;	
	ż	trate	NO 3	1	0.0	1	1	}	!	1	
	Chlo	api	CI	19	0.65	26	151	0.20	28	18	
milligrams per liter equivalents per millian percent reactance value	Sulfate		504	1	498 10.37 82	1	;	}	!	1	
milligrams per liter equivalents per mil	Bicar	panole	нсо з	105	98 1•61 13	1.57	82 1•34	153	1.25	1.62	
	ė	e e	co ₃	20.0	0	C	0	5	0	0	
	Potos-	E	х		0.13	1	1	1	1	1	
Mineral Constituents in	1 1 1		Š	1	112 4.87 38	1	ł	1	ļ	1	
Mineral C	-wagne-	E	Mg	+	2.22	1	1	1	1	1	
	1		ပီ	1	114 5 • 69 44	1	!	1	1	1	
Specific conduct-	ance	mhas	at 25°C)	951	1040	1260	3210	359	1540	1540	
		<u>.</u>		8 • 4	7.9	8•1	8	8 5	8 • 1	89 • 2	
Temp.	when	o F		83	}	87	6 0	74	79	68	
State Well	Laguing	Date Sampled Agy.		11N/21W-11N 1 S 8-27-64 5050	11N/21W-110 1 S 12- 6-63 5124	-110 1 S 8-27-64 5050	11N/22W- 8G 1 S 8-27-64 5050	12N/19W-33R 1 S R-28-64 5050	12N/21W-33N 1 S 8-27-64 5050	12M/22W-25N 1 S 8-27-64 5050	

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well		Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & &	milligrams per liter equivalents per millian percent reactance value	er liter ser millian tance value				Mineral constituents in parts per million	neral constituents parts per million	ints in	
Number		when	I	ance micro-	Colcium	Magne-	Sodium	Patos-	Corbon	Bicar-	Sulfate	Chlo-	ž ž	Fluo-	Boran	: 8 : 8	TDS	TOTAL
Date Sampled Time	Agy. Call.	- L	<u>.</u>	mhas at 25 C)	ვ	E 8	ž		် ၀	, O	804	ō	NO 3	<u>u</u> .	œ	SIO 2	Evap 180°C	10 CoCO 3
115/14E- 3K 10- 8-64	1 M 5000	1	8 • 2	1902	1	1	1	1	0	174	1	496	1	1	1	1		685
115/14E- 6G 1 10- 9-64 500	5 1 M 5000	-	80	2760	}	-	!	1	0	132	1	817	1	1	ł	1		80 %
115/14E-21N 2 M	2 Mi 5000	29	7 • 8	7890	<u> </u>	1		ŀ	0	096	1	2560	1	-	-	1		2270
115/14E-33P 1 9- 4-64 500	1 M 5000	67	7.5	6410	4C8 20•36 37	88 7•24 13	610 26.52 49	0 - 20	0	164 2•69 5	135 2•81 5	1720 48.50 90	4.6	m •	0.10	9	3470	1381
115/15E-35P 1 9-29-64 500	1 M 5000	99	8.3	782	3.04 3.04	22 1.81 23	3.04	0.08	4 0.13	376 6 • 16 76	19 0 • 40 5	49 1•38 17	2 • 3	· •	0.10	, 9	482	245
125/14E- 3N 1 9-23-64 500	5000 5000	1 1	0	6250	239 11.93 20	3 • 40 6 4 0	1000	4 0•10	0	344 5•64 10	211 4•39 8	1680 47.38 82	7.7	•	0.10	61	5412	762
125/14E- 4J 2 M 13- 7-64 5000	2 M 5000	9	7.9	2090	1	1	•	-	0	173	-	1520 42.80	1	1	1	1		1060
125/14E-12N 1 M 10- 8-64 5000	1 M 5000	9	7.7	2060	113 5.64 28	34 2.80 14	260 11.30 57	0 0 2	0	296 4•85 25	1.75	452 12•75 66	1.5	0	0.10	4	1146	422
125/14E-26G 1 10-23-64 5CC	5 1 M	1	8.	1390	59 2.94 23	0 0 0	209	0 0 0 5	0	161 2.64 20	107	288 8•14 6 2	0.61	1	0.20	1	753 810	180
125/15E-27L 10-26-64	1 M 5000	1	0 • 6	979	1	1	ŀ	1	31	273	1	38	1	1	1	1		o o
DWR 1982				STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY	OF CALIFO	ORNIA - DE	PARTMENT	OF WATER F	RESOURCES					

TABLE E-2 PERCHED AQUIFER

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	Ů	95
ents in ian	TDS Camputed	Evop 180°C	310
er mill	: <u>∰</u> 8	SIO 2	
Mineral canstituents in parts per millian	Boron	89	00•0
	Fluo- ride	F	
	N:- trote	NO 3	0 • 0 0 • 0 1 0 0 • 0 1
	Chlo- ride	CI	10,4
milligrams per liter equivalents per million percent reactance value	Sulfate	504	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
milligrams per liter equivalents per mill percent reactance v	Bicar- bonate	нсо з	3 • 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
E & O.	Carbon- ate	co 3	0
_	Potos- sium	×	0 0 0 0
Mineral Constituents in	Sodium	N _o	3,018
Mineral C	Magne- sium	Mg	0 • 3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	Calcium	3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Specific canduct-	(micro-	at 25°C)	514
	±.		8 8
Fe -	Sompled	-	5
	Aav.	Call.	5000 M
State Well Number	Polamo Soto C	Time	135/15E-18R 10-23-64

MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

State Well	Te ap		Specific conduct-		Mineral Co	eral Constituents in	_	1 8 9 9	milligrams per liter equivalents per million percent reactance volue	milligrams per liter equivalents per million percent reactance volue				Mineral constituents in parts per millian	neral constituents parts per millian	ants in ion	
	Sampled	I	ance micra-	Colcium	Mogne-	Sodium	Potas.	Carbon-	Bicar-	Sulfore	Chło	ż	Fluo-	Boros	Sili-	SOI	TOTAL
Date Sampled Agy. Time Call.		<u>a</u>	mhas at 25°C)	კ	W _g	Ž	¥	, O	HCO ₃	50 4	ē ō	e o	<u> </u>	۵	SiO 2	Evap 180°C	hardness as CaCO 3
95/16E-30B 3 M 7-26-57 5050	70	7.1	202	17 0 85 45	0.33	15 0•65 34	0.08	0	1.29	0 0	17 0•48 26	1 • 8 0 • 0 3	0.0	00.0	6.2	162	59
-308 3 M 8- 7-58 5050	72	8	204	18 0.90 46	0.33	15	0	0	1 • 3 8 7 0	0 • 0 4 2 2	18 0.51 26	0 8 • 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0.03	0.2	174	79
-308 3 M 7-21-59 5128	1	7.9	203	19 0 95 47	0.23	17 0 • 74 37	0 6 0 4	0	86 1•41 70	0.02	0 0 0 0 0	2.0 0.03 1	0	0000	77	184	09
-308 3 M 7-20-60 5128	73	7.6	216	0.80	5 0 • 41 19	0.83	0	0	1 • 3 8 6 4	8 0 • 1 7 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.0	• •	0 11	48	791	61
-308 3 M 7-25-61 5128	72	8 . 2	, 198	17 0 85 43	0.33	16 0•70 36	0.08	0	81 1•33 68	m vg m	18 0.51 26	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	0 • 0	30	173	ç.
-308 3 M	71	6.2	197	14 0•70 36	0 • 4 9 6 2 5	16 0•70 36	0 0 8 4	0	80 1•31 70	0.02	18 0.51 27	1 • 8 0 • 03	o •	90.	70	169	, 0
-305 3 M 8- 7-63 5050	74	!	207	1	1	17	1	1	-	1	18	1	1	000	1		63
-30B 3 M 5-28-64 5050	-	7.9	201	<u> </u>	1	16	!	1	1		17	1	!	0000	1		0
105/14E- 8B 2 M 1- 5-53 5001	¦ 	1	306	0 • 2 0	0.08	2.70	0.03	0.13	135	0 0 0	21	i	<u> </u>	ł	1	750	, T
- 83 2 M 7-24-57 5050	99	7.9	530	2 • 8 9 5 1	12 0•99 17	39	0.10	0	261 4•28 77	0.12	32 • 90 16	14.0	• 2	0	80	374	194
DWR 1982			CTATE	CTATE OF CALIFORNIA		THE DECOLIDER		ALENCY OF CALLSONIA		DEPARTMENT OF WATER RESOURCES	E WATER RE	SOURCES					

STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES

SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

		•	_										-
	TOTAL	8	CoCO 3	160	1 8	125	134	131	176	217	136	119	223
ents in Iian	Samo		Evap 180 C	327	565	272	301	299					422
neral canstituents parts per millian	SH;	3	SIO 2	68	9	ů.	99	8 9	1	i	-	1	85
Mineral canstituents in parts per millian	Boran		8	00.0	0	0.11	90.	0.07	0•10	00.0	1	•	00•0
	Fluo			0•1	•	0	0•1	0•1	1	1	i	1	0.0
	Ž į		NO 3	15.0 0.24 5	14.0 0.23	12.0 0.19 5	15.0	15.0 0.24 6	1	1	-	1	9•3 0•15
	Chlo-	·	Ū	30 0.85 17	0.000	37 1.04 25	310.87	33 0.93 21	35	35	1.40	56	121 3•41 55
milligrams per liter equivalents per million percent reactance value	Sulfate		50 4	0.12	0.10	0 0 8 2	0.12	0.10	1	1	!	1	6 0•12
milligrams per liter equivalents per mill percent reactance vo	Bicar.		нсо з	224 3.67 75	264	174 2.85 69	3.11 72	187 3•06 71	1	1	138 2•38	139	156 2.56 41
c • c	Carban	j	CO 3	0	0	0	0	0	1	i	0	0	0
.⊑	Potos-		¥	0.10	0.10	0.10	0.10	0.10	-	1	1	1	0.10
Mineral Constituents in	Sodium		Ν̈́	37 1•61 33	1.74	37 1•61 38	38 1.65	36 1.57 37	38	1.74		-	39 1•70 27
Mineral C	Magne-		Mg	11 0.90 18	110.00.90	12 0.99 24	10 0 82 19	10	!	!	1	1	1.07
	Calcium		ვ	2.30	2.99	1.50	37	36 1 • 80 42	-	1		1	3.39 5.4
Specific canduct-	micro-	mhos	at 25 C)	491	532	426	0 4 4	4 4 8	533	594	414	464	658
	I	a		7.8	7.6	7.6	8	7.7	1	7.7	89	ω •	8•1
Temp	when			67	67	8	72	69	67	67	1	1	68
		Agy.	3	5050 5050	3 2 M 5128	3 2 M 5128	3 2 M 5128	3 2 M 5050	5050 5050	5050	5000	1 1 M 5000	3 1 M 5050
State Well		Date Sampled	lime	10S/14E- 8B 8- 7-58	7-21-59	7-26-60	7-25-61	- 88 6-19-62	8-15-63	5-28-64	10S/14E-13A 1 10-22-64 500	10S/14E-20N 1 10- 7-64 50	10S/14E-24B 7-24-57

MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

State Well Number		Тепр.		Specific conduct-		Mineral Co	Mineral Constituents in	_	ا خقق	milligrams per liter equivalents per million percent reactance value	er liter ser million ance value				Mineral canstituents in parts per millian	neral canstituents parts per millian	nts in an	
		Sompled	Ξ.	(micro-	Colcium	Magne- sium	Sodium	Polas- sium	Carbon- ale	Bicar- bonate	Sulfate	Chlo- ride	N;- trole	Fluo- ride	Boron	i¦ 8	Camputed	TOTAL
Date Sampled Time	Agy. Coll.	<u></u>		mhas at 25°C)	3	Wg	ž	×	co 3	нсо з	50 4	Ū	ε 0 2	u.	80	SIO 2	Evop 180°C	os CaCO 3
105/14E-248 8- 7-58 5	5128	8 9	7.7	707	3.54	1.07	1.74	0.13	0	165 2•70 42	0.12	3.38 53	10.0	0 • 1	00.0	χ ₀	414	231
-243 7-21-59 5	3 1 M 5128	8 9	7.5	746	3 · 89 54	1.23	1.91	0.15	0	181 2.97 42	0.15	134 3.78 54	9.6 0.15	• 1	0	71	454	256
-248 7-20-60 5	3 1 M 5128	72	7.5	748	3 . 24	16 1.32 20	46 2.00 30	4 0•10 2	0	125 2.05 31	0.17	4 6 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7.0 0.11	•	0.22	64	410	228
-24B 8-12-62 5	3 1 M 5128	10	1	802	1	1	50	0 1 0	1	1		136 3 • 84	1	1	0 • 0			261
105/14E-26H 1 10-13-64 50	5000	i	89	550	1	1	ļ	1	0	114	l I	94		1	1			173
105/14E-33M 1 10- 9-64 500	1 1 M 5000	99	ω •	868	}		!	1	0	98	1	219	1	1	1	i		300
105/14E-35K 10- 8-64 5	1 M 5000	1	8 • 4	589		1	1	1	0 10 3	105	!	3.17	1	1	1	1		151
10S/15E- 2J 1 9-28-61 505	1 M 5050	1		390	2.19	0 0 0 0 0 0 0	1.18	0.11	0	106 1.77 55	0.04	1.27	9.4 0.11	• 5	0 0	54	243	661
10S/15E-31A 7-24-57 5	1 M 5050	20	6•7	353	32	8 0•66 19	H	0 0 0 0	0	127 2.08 60	0 0 0 8 4	43 1•21 35	4 • 5 0 • 0 7 2	• • •	0	78	261	113
-31A 8- 7-58 5	5050	70	7 • 7	459	38 1 • 90 48	9 • 74 19	28 1•22 31	0 10 %	0	139 2 • 28 58	0 • 0 4 8 6 2	54 1.52 38	5.0	0	0.03	73	284	132
DWR 1982				STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE R	ESOURCES	AGENCY C	JE CALIFC	SRNIA - DE	PARTMENT C	OF WATER R	ESOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

My No K CO3 HCO3 Solution rate rat	Specific conduct-when ance		Specific conduct: ance			Mineral Co	Mineral Constituents in			milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value	- 2	ź	- vii	Mineral constituents in parts per millian	parts per millian	ants in ian	TOTAL
8.0 4.96 2.48 0.10 1.35 0.10 4 0 1.55 0.15 0.2 0	بي -		I.	micro-	Calcium	Mogne- Evis	Sodium	sic E	Ote ote	Bicar- bonote	Sulfate	o spir	ţ ţ	ride	Boron	<u>‡</u> 8	Computed	hardness
496 2,48 0.91 1,35 0.14 0 2,54 0.15 2,66 0.09 0.01 0.09 0.12 2,54 0.02 0.02 0.09 0.02 0.09 0.01 0.00 0.0				at 25°C)	ვ	Wg	Na	×	co 3	нсо з	50 4	ū	NO 3	u.	8	SIO 2	Evop 180°C	CaCO 3
625 2.94 1.57 0.08 0.173 0.173 0.16 0.00 <t< td=""><td>70</td><td></td><td>0</td><td>967</td><td>48 2•40 51</td><td>1 •9 1</td><td>w w ∨</td><td>• 1</td><td>0</td><td>⊢ •</td><td>• 1</td><td>73 2.06 43</td><td>5.8 0.09 2</td><td>•</td><td>•</td><td>57</td><td>000</td><td>165</td></t<>	70		0	967	48 2•40 51	1 •9 1	w w ∨	• 1	0	⊢ •	• 1	73 2.06 43	5.8 0.09 2	•	•	57	000	165
662 3.49 1.23 1.65 0.13 0.187 3.10 7.53 0.1 0.05 707 4.19 2.5 2.6 0.13 1.11 0.05 772 1.78 0.13 1.20 0.08 268 1.36 0.58 0.78 0.05 0.116 0.04 0.56 0.10 0.10 418 0.21 0.22 0.04 0.56 0.00 459 0.91 0.306 0.73 439 0.91 0.230 0.73 439 0.93 0.73 295 0.987 0.968 1.011 0.959 0.02 <	72	•	7.8	625	2 5 9 4 5 5 0	•		0.08	0	173 2.84 48		101 2 • 8 5 4 9	4 • 0 0 • 0 6 1	0	0.22	51	361	213
707 -41 0.13 1.78 0.13 111 0.08 8.0 268 26 120 0.10 8.1 418 0.10 7.7 669 0.23 0.16 0.04 0.05 0.10 7.8 0.9 0.93 0.14 8.1 418 0.93 0.18 8.1 439 0.230 44 7.8 295 0.93 0.93 8.1 439 0.93 </td <td>72</td> <td></td> <td>7•4</td> <td>662</td> <td>3 4 9</td> <td>72</td> <td>w • 0</td> <td></td> <td>0</td> <td>187 3.06 47</td> <td>• 1</td> <td>110 3.10 48</td> <td>7•3 0•12 2</td> <td>0</td> <td>0 0 0 0</td> <td>72</td> <td>417</td> <td>236</td>	72		7•4	662	3 4 9	72	w • 0		0	187 3.06 47	• 1	110 3.10 48	7•3 0•12 2	0	0 0 0 0	72	417	236
8.0 268 26 772	69	-	-	707	;	!	•	• 1	-	i	!	1113.0	1	 	0 0	:		249
8.0 268 26 7 18 2 0 116 2 3	68	<u> </u>	1	772	1	!	43	1	1		1	120 3•38	1	i i	0.10	ł		268
8.1 418 -21 0.91 22 7.7 669 0.230 44 8.1 439 0.194 7.8 295 0.59 7.8 295 0.87 0.68	-		0	268	26 1.30 48	•	18 0•78 29	0.05	0	116	0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NBN	5 • 9 0 • 10 4	0	0.07	56	194	γ 4
7.7 669 0 230 44 8.1 439 0 194 7.8 295 0 68 7.8 295 0.687 0.687	1		8 • 1	418	1	!	21 0.91	1	0	187	1	26	!	-	1	ł		170
8.1 439 0 194 21 7.8 295 20 0 68 1.11 0.57	1	-	7 • 7	699	<u> </u>	!	!	1	0	230	1	•	1	-		:		242
7.8 295 20 0 68 25 0.87 0.87	-		8 1	439	1	1	1	ł	0	194 3•18	1	Δ 12	1	ļ	1	-		126
	1	-	7 • 8	295	<u> </u>	1	20	1	0	68	ł	25	1	1	1	{		06

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

								۱	milliarams per liter	ar liter							
State Well Number	Тепр.		canduct-		Mineral Co	Mineral Constituents in	_	. 9 g	equivalents per million percent reactance value	ser million ance value				Mineral canstituents in parts per million	neral canstituents parts per million	ents in ion	
. \vdash	Sampled	Ξ _α	(micro-	Colcium	Magne- sium	Sodium	Palos- sium	Carbon- ale	Bicar- banate	Sulfate	- chi ebir	rate.	Fluo- ride	Boran	S S	TDS Computed	TOTAL
Time Call.	u .		mnas ot 25 C)	3	w	2	×	003	нсо з	50 4	ō	г О З	u.	80	SIO 2	Evap 180°C	03 CGCO 3
10S/19E-16D80 M 7- 8-59 5050	1	8 • 2	744	1	!		-	0	198 3•25	1	16	1	1	1	i		161
115/12E-13J 1 M 7- 3-57 5641	1	7•1	1870	98 4 89 27	4 • 1 1 2 3	200 8•70 49	0.13	0	188 3.08 17	108	460 12.97 71	1 • 3	0 • 1	0.28	31	1046	4 5 0
-13J 1 M 8-16-58 5641	!	89	1570	83 4 • 1 4 2 8	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	168 7•30 49	0.18	0	131 2•15 15	87 1.81 12	381 10•74 73	0 0 0	0	0 80	21	853 1004	364
-13J 1 M	!	7.3	1900	100	4 50 70 4	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 19 2	0	197 3•23 18	117	443 12•49 69	1.0	· 0	0 .35	05	1051	476
-13J 1 M 7-23-60 5641	1	7•7	1395	3.84	3.21 2.55	128 5 • 57 43	14 0•36 3	0	223 3•65 28	1.12	290 8 • 18 63	1 0 0 0 0 2	0	0.22	23	736	35.53
-13J 1 M 7- 7-61 5641	1	7•1	1810	4 • 6 4 2 6 4	4.04 444 25	195 8 • 48 4 8	0.10	0	190 3.11 17	116 2 • 42 14	435 12•27 69	1.5	0 . 2	0 • 34	29	1021	454
-13J 1 M 7-23-63 5641	i	<u> </u>	1770	-	!	8 • 8 5	1	i	-	1	407 11•48	-	!	0 %	1		417
115/13E-17L 1 M 7- 3-57 5641	1	7.3	1190	36 1 • 80 16	21 1.73 16	173	0.10	0	171 2.80 25	75 1.56 14	248 6 • 99 62	0.01	•	0.51	<u>ы</u>	675	177
-17L 1 M 8- 3-59 5641	1	89 • 11	1240	40 2.00 17	20 1•64 14	1817.87	0.083	.0	183 3•00 26	79 1•64 14	250 7.05 60	0.01	0	0 9 • 0	30	46.9	182
-17L 1 M 7-23-60 5641	1	89	1326	41 2.05 17	23 1 • 89 15	189 8•22 67	0 • 0 1 8 0	0	180 2.95 24	81 1•69 14	275 7•76 63	0	•	0.59	22	723	197
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY (OF CALIFO	RNIA - DE	ARTMENT C	OF WATER RE	ESOURCES	1				1

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

	TOTAL	88 CoCO 3	204	198	205	197	199	104	110	126	129	134
ents in Ion	TDS	Evap 180°C	726					605	643	658		
nerol constituents parts per million	∯ 8	SIO 2	30	i i	1	1	1	52	51	37	ł	i
Minerol constituents in parts per million	Boron	89	09•0	1	0 • 60	0 9 • 0	0 9 • 0	0.29	0.30	0.51	0.30	0.40
	Fluo-	u.	0•1	1	ì	1	1	•	0.5	•	i	
	rote	NO 3	1.0	1	1	1	1	0 • 1	0 • 0	0	1	1
	Chlo- ride	ō	262 7•39 61	272	275	267	272	186 5 25 56	204	222 6•26 59	235	241
milligrams per liter equivalents per million percent reactonce volue	Sulfate	504	86 1.79 15	1	!	1	!	90 1.87 20	92 1•92 19	94 1.96 18	1	!
milligrams per liter equivalents per mill percent reactonce v	Bicar- bonate	нсо 3	181 2•97 24	}	1	1	1	137 2•25 24	147 2•41 24	146 2•39 23	1	1
	Carbon- ote	003	0	!	!	I a	į D	0	0	0	i	1
	Potos- sium	×	0.08	0.08	1	1	1	0.08	0.05	0.05	0.05	
Mineral Constituents in	Sodium	No	188 8•17 66	192 8•35	195	186	188	169 7-35 77	181 7•87 78	186 8•09 76	192	195 8•48
Minerol C	Magne- sium	Wg	24 1•97 16	1	1	1	1	0.58	0 • 4 • 0	8 99 0	Î	
	Colcium	ვ	42 2•10 17	!	;	!	1	30 1.50 16	34 1.70 17	37	;	-
Specific conduct-	micro-	at 25°C)	1290	1310	1360	1330	1330	1010	1060	1160	1190	1240
·	ī		8.3	1	1	7.9	89	7 • 7	0 • 8	8	1	1
Temp.	Sampled	, 1			1	67	Ī	!	1	i	1	1
		Agy. Coll.	. 1 М 5641	. 1 M 5641	. 1 M 5641	1 M 5050	. 1 M 5641	3 1 M 5641	1 M 5641	3 1 M 5641	1 M 5641	3 1 M 5641
State Well Number	-	Dote Sompled Time	115/13E-17L 7- 7-61	-17L 7- 6-62	-17L 7-23-63	-17L 4-15-64	-17L 7-13-64	115/13E-36B 7- 3-57 5	-368 8-3-59 5	-36B 7-23-60	-36R 1 7- 6-62 564	-36B 1 7-23-63 56

			Specific					1 €	milligrams per liter	er liter				Mineral constituents in	constitue	nts in	
State Well	Temp.		conduct-		Mineral Ca	Mineral Canstituents in		ě č	equivalents per million percent reactance value	ser million ance value				parts	parts per million	noi	
-	Sompled	I.	micro-	Colcium	Magne- sium	Sodium	Potas- sium	Corbon. ate	Bicar- bonote	Sulfate	Chloride	rote *	Fluo- ride	Boron	≟ 8	TDS Computed	TOTAL hardness
Time			ot 25°C)	8	Wg	Ž	¥	co 3	нсо з	504	CI	NO 3	ш.	8	SIO 2	Evap 180°C	CoCO 3
115/14E- 58 1 M 8- 7-58 5050	69	7.9	267	21 1.05 42	5 0•41 16	22 0•96 38	0 0 3	0	91 1•49 62	2 0•04 2	27 0•76 32	7.4	0.1	00•0	72	206	73
- 58 1 M 8-12-59 5050	1	7•4	313	28	6 0 • 4 9 1 6	1 • 0 4 3 5	0 0 8 B	0	101 1•66 55	0.06	1.24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	00	11	258	95
- 58 1 M 7-26-60. 5128	6 8	7 • 8	422	38 1.90 50	0.58	1.26	0.05	0	96 1.57 41	4 8 8 2	76 2•14 56	2 • 0 0 • 0 3 1	0	00 • 0	e G	258	124
7-25-61 5128	72	8 • 2	906	0 0 0 0 0 0	9 0 • 7 4 16	29 1 • 26 28	0.0883	0	93 1.52 34	0.12	2 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.7	0•1	0 • 0 4	52	916	162
- 58 1 M 6-21-62 5641	9	1	909	<u> </u>	1	1.43	4 0 0 10	1	1	[]	123	!	1	0 • 0	!		198
- 58 1 M 8-15-63 5050	9	Ο • ω	610	3.44	12 0•99 16	36	0 • 10 2	0	110 1•80 29	0.35	142 4 • 000 6 5	3 • 2 0 • 0 5 1	0	0•10	Ġ,	394	222
115/14E- 9G 1 M 7-25-57 5050	68	7.2	562	3,25	10	1 6 4 9 7 5 5 5	0.13	0	154 2.24 46	0 1 • 0 8 9 %	2.000	2 • 5 0 • 0 8 2	0	00•0	62	347	411
115/14E-16A 1 M 8- 7-58 5128	102	7.7	340	1 • 4 0 4 4 5	6 0 • 4 9 1 6	27 1.17 37	m & m • •	0	119 1•95 62	0.10	0.90	11.0 0.18 6	0•1	00 • 0	92	247	95
-16A 1 M	1 20	7.5	420	38	0.66	32 1 • 39 34	0.10	0	122 2•00 50	8 0.17 4	1.00 pg 7.00 p	11.0 0.18 5	0	00.0	78	297	128
-16A 1 M 7-26-60 5128	20	7 • 8	503	2.30 49	10 0.82 18	33 1,43 31	0.10	0	126 2•07 45	0.15	2 • 2 6 4 9	6.0 0.10 2	0	0.11	<u>છ</u>	301	156
DWR 1982	_		STATE	STATE OF CALIFORNI	INIA - THE F	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	AGENCY (JE CALIFO	SRNIA - DE	PARTMENT (OF WATER R	ESOURCES					

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & g	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value			!	Mineral constituents in parts per millian	neral constituents parts per millian	ents in Ian	
	when Sampled	±_	micro-	Calcium	Magne- sium	Sodium	Potos- síum	Carbon- ate	Bicar- banate	Sulfate	Chlo	rote.	Fluo- ride	Boron	:i:8	Computed	TOTAL hardness as
Time Coll.			at 25°C)	J	Mg	Ž	¥	co 3	нсо з	50 4	Ċ	NO 3	u.	80	SIO 2	Evap 180°C	CoCO 3
115/14E=16A 1 M 7-25-61 5128	72	& •	539	2 52 50 50	12 0.99 19	34 1•48 29	0.10	0	126 2•07 41	0.25	91 2•57 51	8 0 13 3	0.2	0 • 0 5	62	354	179
-16A 1 M 6-21-62 5050	69	8 • 1	290	;	!	36	0.10	;	1	1	104	1	1	0.10	1		196
-16A 1 M 9-11-63 5050	70	8 • 2	655	2.69	21 1.73 28	1.74	4 0.10 2	0	137 2•25 37	0.12	3 3 5 5 5 5 5	11.0	0	000	5	384 402	221
113/14E-24R 1 M 10- 7-64 5000	69	& •	428	1	1	1	į	0	146	1	1. 0.000	1	1	1	-		136
115/14E-25R 1 M 10- 7-64 5000	69	8 •	347	1	\$ 1	1	į į	8	136		0.62	1	1	1	t I		102
115/14E-28B 1 M 10- 7-64 5000	69	8 2	1010	1	1	-	1	0	1.32	1	8 • 55 • 50	1	1	1	1		288
115/15E- 6F 1 M 10- 8-64 5000	i	8	616	1	1	1	1	8	172	1	84	1	1	1	1		146
115/14E-32B 1 M 10- 7-64 5050	1	7 • 8	925	84	22	66	0 • 0 3	0	234	1.21	141 3•98	9.6	1	0•10	1	559	300
11S/15E-23L 1 M 7-23-57 5050	68	7•1	939	32 1.60 45	0.66 19	28 1•22 34	0.08	0	169 2•77 80	0.08	18 0•51 15	6 • 2 0 • 10 3	0 • 2	0 • 0 5	29	249	113
-23L 1 M 8- 7-58 5050	69	7.8	368	31	10	1.22	0 0 8 9	0	180 2.95 81	0.08	18 0•51 14	7.3 0.12	0.5	0	70	∠60	119

SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Canstituents in		E 5 6	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per millian	neral constituents parts per millian	nts in an	
	Sampled	Ŧ	ance (micro-	Colcium	Magne-	Sodium	Potos-	Carbon-	Bicar- bonate	Sulfate	Chlo-	rote trote	Fluo- ride	Boron	Sili-	Computed	TOTAL
Date Sampled Agy. Time Coll.	7	L	mhas at 25 C)	3	бW	Z	¥	0	нсо з	50 4	ō	ς O N	u.	æ	SIO 2		os CaCO 3
11S/15E-23L 1 M 7-21-59 5128	6 8	8 • 2	365	1.65	0.82	1. 9.85 9.55	0.08	0	171 2•80 69	0.10	38 1.07 26	5.6	0 • 1	00.0	70	280	124
-23L 1 M 7-26-60 5128	70	7.3	358	1.80 4.5	10 0 • 82 21	1. 9.00 9.00	0.08	0	190 3•11 78	0.12	24 0.68 17	4.0	0	0.97	4 8	255	131
-23L 1 M 7-25-61 5128	73	8 .3	365	1 • 6 9 9 0 0 9 0 0	10	1.30 1.30	0.08	0	183 3.00 78	0.12	21 0.59 15	7.7 0.12 3	0 • 2	0.07	7.1	272	124
-23L 1 M 8-12-62 5128	8	!	407	1	•	29	0.08	1	1	!	0 53	1	1	0.08	i		140
-23L 1 M 8-26-63 5050	69	1	422	1	i i	1.00	1		1	1	22	1	1	000	!		144
11S/15E-29H 1 M 7-24-57 5050	8 9	7.7	385	3.7 1.85 4.3	11 0.90 21	34 1•48 34	0 0 8 8 8	0	188 3.08 71	8 0 17	34	6.0 0.10 2	0 . 2	0.01	~ •	2 2 2	138
-29H 1 M	69	8 8	432	37	11 0.90 21	ы в и в и	0.08	4 0•13	184 3 • 02 70	0.15	0.088	4•2 0•07	0.2	00•0	74	662	130
-29H 1 M 7-21-59 5128	72	8	454	2.40 54	0 4 1 9	1.000	0.08	0	193 3•16 72	0.15	1.02	2 • 7 0 • 0 4	0 • 1	0.10	78	310	141
-29H 1 M 7-26-60 5128	70	7 • 8	418	34	11 0.90 21	1 550 86	0.08	0,	176 2.88 70	7 0 15	38	2.0	0	00•0	iù L	270	130
-29H 1 M 7-25-61 5128	70	σ •	456	1 9 0 0 4 5	10 0.82 19	34 1•48 34	0.08	0	188 3•08 71	8 0.17 4	36 1.02 24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 2	90.	79	305	139
DWR 1982			STATE	STATE OF CALIFORNI	NIA - THE	RESOURCES	AGENCY	OF CALIFO	RNIA - DE	PARTMENT (A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES			1		

	TOTAL	as CaCO 3	142	148	5.4	5 4	Q 22	رن 8	94	5 4	S.	51
				. .	2	0		٠,	<u>m</u>	9		
ents in Itian	Computed	Evap 180°C			172	169	174	135	163	166		
neral constituents parts per millian	i <u>‡</u> 8	SIO 2	1	1	62	65	4	26	67	8	i	1
Mineral constituents in parts per millian	Boran	89	0.07	0.10	90•0	• 0	0000	0.11	0.05	0.07	0000	0000
	Fluoride	u		1	0.2	0.2	0.1	0 • 0	•	0 • 1	1	ł
	N;- trate	NO 3		!	6 • 8 0 • 11 5	1.5 0.02 1	1.4 0.02 1	1.0 0.02 1	1.6 0.03 2	1.0 0.02	ł	1
	Chło • pir	٥	36	1.13	18 0.51 25	0.51	18 0.51 25	0.59	0.37	16 0 • 45 25	18	0.39
milligrams per liter equivalents per million percent reactance value	Sulfate	504	-	1	0 . 4 8 4	0.04	0.12	0.06	0 0 4 8 4	2 0•04 2	1	1
milligrams per liter equivalents per mill percent reactance v	Bicor. banate	нсо з	1	1	82 1.34 66	1.38	1.38	1.39 67	1.31	80 1.31 72	1	1.31
E # G	Carbon- ote	CO 3	[1	0	0	0	0	0	0	1	<u> </u>
c	Patas- siom	¥	90.0	-	0 0 0 0	0 0 0 8 0 4	0 0 80 4	0 6 0 8 4	0.10	0.08	1	1
Mineral Canstituents in	Sodium	S.	35	1.05	0.889 4.2	0.83	21 0.91 43	19 0 • 83 40	17 0•74 41	18 0•78 40	20	19
Mineral C	Magne- sium	₩	-	1	0.33	0.33	0.41	0.41	0.33	0.33	1	!
	Colcium	3	1	1	15 0.75 38	0.75	0.70	0.75	0.65	15 0.75 39	}	t t
Specific conduct-	micro-	mhas at 2S°C)	436	4 0 0	207	204	200	210	184	197	205	505
	Ŧ _a		1	1	6.9	7.6	7.4	7.7	7.6	7.8	-	7.2
Temp.	Sampled	u.	1	68	70	02	72	72	72	71	72.	70
=	-	Agy. Coll.	H 1 M 5641	H 1 ₹ 5050	В 1 М 5050	B 1 M 5050	8 1 M 5050	8 1 M 5128	8 1 M 5128	6 1 M 5050	8 1 M 5050	8 1 M 5050
State Well		Date Sampled Time	115/15E-29H 6-21-62	-29H 8-15-63 5	115/17E-25B 7-22-57	-25B 8- 8-58	-258 7-23-59	-25B 7-26-60	-258 7-26-61	-25B 6-19-62	-258 8- 7-63	-258 3-19-64

State Well	Teap		Specific conduct-		Mineral Ca	Mineral Canstituents in	_	E	milligrams per liter equivalents per million percent reactance volue	er liter er million ance volue				Mineral constituents in parts per million	neral constituents parts per million	nts in on	
	Somulad	I	ance (micro-	Calcium	Мадле-	Sodium	Potas-	ė	Bicar-	Sulfate	CFlo	ž	Floo	Boron	-ilis	SOI	TOTAL
Date Sampled Agy. Time Call.			mhas at 25°C)	3	6 W	Z	×	့် ၀	HCO 3	504	ō	, o	. u.	۵	SIO 2	Evap 180°C	os CoCO 3
115/17E-35A 1 M 11- 2-61 5050	1	7.8	194	1	1	16	1	1	1	!	18	1	1	0.02	ł		0 0
11S/17E-35K 1 M 5- 1-62 5050	1	8•1	187	1	1	17	ł	1	1	;	18	1	1	0 • 0	1		51
115/18E-17H 1 M 7-25-60 · 5050	1	7 • 7	229	17 0 85	5 0•41 18	22 0 • 96 42	0 0 0	0	100 1.64 71	0.10	19	1 • 0 0 • 0 2 1	0	00	1	121	63
115/19E- 6E80 M 8-10-60 5050	i	8 0	316	-	1	29	1	0	104	1	39	i	!	0.01	1		87
115/19E-32C 1 M 8-10-60 5050	1	7 • 7	218	1	1	20	1	0	1.03	†	16	ł	1	40.	ļ		5
115/21E-32E 1 M 7-22-59 5050	8	4.	618	1	!	i	1	8 0.27	264 4•33	1	1.13	1	1	1	1		177
125/14E- 3J 1 M 10- 8-64 5000	<u> </u>	9 •	724	1	1	1	1	7 0 • 23	185 3 • 03	1	1.21	1	1	1	1		48
125/14E-16K 1 M 7-25-61 5128	8	4 • 4	783	110.55	c • 0 8	154 6•70 91	0 0 0 3	0.07	156 2.56 35	73 1.52 21	111 3 13 43	0	0.2	0 • 40	4	767	32
-16K 1 M 6-20-62 5050	6	6.	788	10 0.50	0.16	150	0.03	0	161 2.64 36	67 1•39 19	114 3•21 44	0.5	0.5	0.35	09	484	60
-16K 1 M 7-30-64 5050	69	8 • 1	836 STATE	36 STATE OF CALIFORNIA	- I	160 6 • 96 8 • 90	A GENCY	 OF CALIFO	- L	PARTMENT O	160 3.44 6.96 3.44 THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	 Sources	!	0.50	1		34

FRESNO - MADERA AREA

	_							
	TOTAL	hardness as	47	79.	95	72	87	96
ents in ion	TOS	Evan 180°C		152 204		211	265	239
neral canstituents parts per million	Sili:	8 0	1	1	1	N G	42	52
Mineral constituents in parts per million	Boros	α	1	0	1	0.03	0	0 88
	Fluo	, L	1	i	1	0.2	0	0
	ż	, C	1	0 · 0 0 · 0 2 · 0	1	1 • 0 • 0 0 2 1	1 • 2 0 • 02 1	1.0 0.02
	- Page	ğ 0	205	19 0•54 19	16	26 0•73 25	320.00.90	0 9 9 0 2 5 2 5
milligrams per liter equivalents per million percent reactance value	Suffate	ç	1	01.0	1	0 • 12	0.15	0.12
milligrams per liter equivalents per mil percent reactance v	Bicar	ere CC	131	130	127	126 2.07 70	149 2•44 70	152 2.49 71
_ 0 0.	Carbon-	o o	14 0 • 47	Q	21	0	0	0
و	Patas.	E .	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	0 0 0	0 • 10 8	0.08
Mineral Constituents in	Sodium	Ž	1	0 m • 1 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	1.00 mg	36	36 1.57 44
Mineral C	Magne	E 2		0 4 8 11	1	0.0 4 4 1.1	4 ° 0 0 0 0 1 0 0 1 0 0 1	0.66 19
	Calcium	5	1	1 25 1 43 43	1	22 1•10 37	28 1•40 41	1.25
Specific conduct-	micro-	mhas at 25°C)	1210	304	327	302	333	355
	Ι	a	8	7.7	& • •	7.3	O • 8	7 • 8
Tenp.	when Campled	,	1	9	1	49	71	73
_		Agy. Coll.	5000 A	1 N 5000	1 1 M 5000	5 1 ×	5 1 M 5050	5 1 M 5128
State Well Number		Date Sampled Time	125/14E-360 10-23-64	12S/15E-20L 1 10-28-64 500	125/15E-24H 1 M 10-26-64 5000	12S/15E-27G 1 M 7-23-57 5050	-27G 7-21-59 5	-27G 1 M 7-26-60 5128

i

00.00

7.1

-27G 1 M 8-15-63 5050

i

0.07

0.05

ł

-27G 1 M 6-22-62 5641

0.05

0.2

1.2

2•46 71

0.08 2

1•61 45

0•41 12

1•45 41

8.1

-27G 1 M 7-25-61 5128

l

į

i

ŧ

8

125/15E-36J 1 M 10-26-64 5000

ARE
~
4
~
⋖
\propto
OE.
=
ب
ĀΨ
~
~
•
-
-
-
2
SNO
ESNO
ESNO
RESNO
ESNO

0 106	Specific Aineral Constituents in and ance Magne. Sodium sum sum sum sum sum sum sum sum sum s	Mineral Constituents in Mogne-	Mineral Constituents in Magne-Sodium sum sum	Polos-	Polos-	Polos-	1 10	Garbon Pe	milligrams per liter equivalents per million percent reactance value Bion Sulfate	er liter er million ance value Sullote	Chlo.	Zi.	Fluo	Mineral canstituents in parts per million	neral canstituents parts per million	10 1	TOTAL
1,20	1		mhos at 25°C)	ß	6W	ž	¥		HCO 3	50 4	ō	o S	u.	۵	Sio 2		\$ COCO 3
0.18 0.46 0.16 0.10 0.10 0.10 0.26 0.26 0.06 0.1 0.00 65 178 0.75 0.58 0.70 0.10 0.10 1.62 0.02 0.02 0.05 0.02 0.01 43 152 0.85 0.49 0.65 0.10 0.10 1.51 0.12 0.37 0.06 0.1 1 43 152 0.85 0.49 0.65 0.10 0.10 0.15 0.12 0.28 0.00 0.11 43 152 0.85 0.49 0.65 0.10 0.10 0.15 0.12 0.28 0.00 0.10 1 43 152 0.85 0.49 0.65 0.10 0.10 0.10 0.12 0.28 0.20 0.00 0.10 1 43 152 0.85 0.48 0.70 0.0 0.10 0.10 0.10 0.28 0.28 0.28 0.20 0.10 0.10 1 183 0.50 0.58 0.58 0.08 0.08 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10	•1		230	20 1.00 44	5 0 • 41 18	3.71	• 1	0	- •	• 1	1 ° ° 1	2.0	•	0.05		∞	7.1
0.75 0.58 0.50 0.10 0.4 0 0.99 0.1 16 1.0 0.0 0.11 43 152 0.55 0.75 0.25 0.45 0.02 0.02 0.02 0.01 43 152 0.05 0.1	0		214	18 0•90 41	0.49	1 . €	-	0	102	-	0.28 13	4 • 0 • 0 • 0 %	0	0	6 5	178	70
174 1.45 0.45 0.45 0.10 0.15 0.15 0.37 0.06 0.45 0.15 0.15 0.15 0.23 0.06 0.15 0	7•1		226	15 0.75 35	₹. N	1 ~ w	- T	0	•	0	16 0 • 45 21	1.0 0.02	0	0.11	4 3	152	29
15 0.65 0.10 10 0.28 0.28 0.00 0.00 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28 0.00 0.28 0.08 0.08 0.08 0.08 0.08 0.08	6.7		205	17 0 85 41	0.49	400	.	0	•	-	13 0•37 18	3 • 0 • 0 • 0	• 5	90•0	4 9	174	29
16	{		205	i	 	0.65	• 1	1	1	}	1.5	i i	1	0.10	1		104
15			202	;	•	16	 	ŀ	;	1	10	1	-	00	1		61
20 0.58 0.78 0.08 1.11 0.10 0.31 0.043 0.0 0.10 71 183 7 41 24 32 32 47 4 13 35 41.0 0.00 0.10 71 183 7 55 23 38 5 23 50 238 50 22 41.0 0.00 351 23 2.74 1.89 1.65 0.13 3.90 1.04 0.65 0.66 351 23 443 29 2.65 0.05 2.47 0.27 0.17 0.16 0.1 0.00 46 203 11 1.50 0.82 0.57 0.27 0.17 0.16 0.1 0.1 0.0 46 203 11			204	1	-	۰ ا	;	1	1		100.28	ł	1	00 0	1		61
2.74 1.89 1.65 0.13 3.90 1.04 0.62 0.66 0.00 351 23 2.74 1.89 1.65 0.13 2.8 5.0 2.27 0.05 1.0 0.1 0.00 0.1 0.00 1.1 1.50 0.82 0.57 0.05 2.47 0.27 0.17 0.16 5.1 5.1 2.8	2		262	20 1.00 41	3	¬ ~ w	0	3	91	• 1	નિજ્ન	27 • 0 • 83 85 85	0	0.10	71	183	79
30 10 13 2 0 151 13 6 10.0 0.1 0.02 46 203 11 1.50 0.82 0.57 0.05 2.47 0.27 0.17 0.16 5 5 5	2		614	55 2.74 43	•	w • 0	• 1	0	238 3•90 63	1.04	22 0.62 10	41.0 0.66 11	ŀ	00.0	ŀ	351	CO.
	7.6		259	30 1 50 51	•	1 5 1	•	0	151 2•47 81	- 5 -	• 1	10 • 0 0 • 16 5	0 • 1	0.02	94	203	116

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL hardness	03°C)	129	130	100	146	261	193	160		102	106
	<u> </u>		206	203	180		376		210	·		
ents in Ilion	Camputed	Evap 180°C	20	50	18		<u>κ</u>	277	21			1643
neral constituents parts per million	S 8	SIO 2	47	4	4 8	1	64	45	4	}	}	4 8
Mineral constituents in parts per million	Boron	60	0.05	0 0	0.07	0	00.0	90.0	0000	1	1.00	1.20
	Fluo-	ш	0	0.2	0.2	!	0.1	0.2	0 • 1	-	1	0.4
	N:-	NO 3	8.5 0.14	8 • 5 0 • 1 4 5	7•0 0•11 4	l	6.0 0.10 2	13.0 0.21 5	17.0 0.27 7	;	!	0.9
	Chlo- ride	ō	0.14	0.11	0.11	5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14 0.39 8	13 0•37	251 7•08	260	300 8 • 46 34
milligrams per liter equivalents per million percent reactance value	Sulfate	\$0.4	0.21	0.17	0.25	1	17	0.17	0.31 8	582 12•12	528 10.99	635 13•22 53
milligrams per liter equivalents per mill percent reactance v	Bicar- banate	нсо з	161 2•64 84	162 2•66 86	126 2.07 81	;	334	234 3 • 84 83	188 3.08 76	189	646	202 3•31 13
E & OL	Carban- ate	8	0	0	0	1	0	0	0	O	0	0
c	Patas. sium	×	0.05	0.05	0.05	ŀ	0.08	0.08	0.05	1	1	0.08
Mineral Canstituents in	Sodium	ž	12 0.52 17	12 0•52 16	0.52	13	1.00	19 0.83 17	0.83	1	430	516 22•44 91
Mineral C	Magne- sium	₩	1.5	141.000	0.90	1	2.63	22 1•81 38	20	1	7	0 • 41
	Calcium	კ	1.35	1.45	22 1•10 43		2.02	2 4 4 9 9 9 9	1.55	ł	1.45	34
Specific canduct-	(micro-	mhos at 25°C)	310	295	258	344	602	444	388	!	2230	2410
	Ŧ.		0•8	7.6	8•1	1	7 • 7	4 •	7.5	7 • B	7.4	7.8
Temp.	Sampled	<u>.</u>	99	1	88	1	70	1	73	1	1	75
		Agy. Coll.	1 M 5050	1 M 5050	1 M 5050	1 M 5631	1 M 5000	2 M	2 M 5000	1 M 5702	1 M 5050	5050
State Well Number		Date Sampled Time	125/21E-31P 7-31-58 5	-31P 7-20-60	-31P 6-18-62 5	-31P 7-11-63 5	12S/22E-20R 8- 8-63 5	125/22E-30C 7-20-60 5	125/22E-32R 8-13-63 5	135/14E-15B 2-13-50 5	-158 8-15-51 5	-15B 7-14-59 5

State Well Number	ļ	Тетр.		Specific conduct-		Mineral Cc	Mineral Constituents in	_	اج مِ وَ	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value			,	Mineral constituents in parts per million	neral constituents parts per million	ents in Jion	
. -		Sampled	Ŧ	micro-	Calcium	Magnersium	Sodium	Patas- sium	Carban- afe	Bicar- banate	Sulfate	-da sign	N:- Irote	Fluo- ride	Boron	i <u>‡</u> 8	TDS Computed	TOTAL hardness
Date Sampled Ag	Agy. Coll.	u.		mhos at 25°C)	ß	We	Z	¥	03	нсо 3	504	ō	0 3	u.	80	SIO 2	Evap 180°C	CaCO 3
13S/14E-15B 1 M 8-13-59 5050		77	٦ «	2400	35.1	0.41	491 21•35 91	0 0 8	0	203 3•33 14	581 12•10 52	284 8•01 34	0.3	7•0	1.20	51	1552	108
-156 1 M 7-19-60 5050		<u> </u>	80 •	2170	34	0.33	494 21.48 91	0 0 8	0.17	186 3 • 05 13	584 12•16 52	286 8 • 07 34	0.01	4	1.20	51	1555	102
-15B 1 M 8-25-61 5050		77	ະກ • ສ	2300	32	5 0 • 41 2	488 21•22 91	2 0 • 0 5	8 0.27	180 2•95 12	540 11.24 46	350 9.87 41	0.0	0 •	1.10	57	1573	101
-158 1 M 4-26-62 5050		77	89 1	2320	36 1.80 8	2 0•16 1	497 21•61 91	2 0 • 0 5	0	207	591 12•30 53	270	0	0 •	1•19	43	1544	88
-15B 1 M 8-26-63 5050		92	-	2450	1	1	488	1	!	1	1	300	1	1	1.10	1		108
135/15E- 6E 1 M 4-10-56 5050		1	7 . 8	913	30	0 0 0 0	155 6•74 80	0.08	0	158 2•59 30	70	159 4•48 52	1.0	0	2 • 00	1	667	79
135/15E-11P 1 M 10-23-64 5050			% 4	969	0 • 9 0 0 1 5	0.23	110 4.78 80	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0.20 3	276 4•52 74	14 0.29 5	38 1•07 18	1.4	!	0.20	i i	328	δ. 8
135/15E-24D 1 M 10-26-64 5000	≅ 0	<u> </u>	0.6	411		1	1	1	23	3.20	1	12	1	!	1	1		51
13S/15E-35E 1 M 5-28-51 5001			1	011	1	1	0.04	1	!	1	ł	6		1	1	1		
-35E 1 M	Σ τ,	29	{	100	0 10 0 50	0 .23	0.30	0.05	i	0 4 9 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	13 0•37 34	0.9	-	1	1	57	38
DWR 1982	\dashv			STATE	STATE OF CALIFORN	NIA - THE F	RESOURCES	AGENCY C	JE CALIFC	JRNIA - DE	IA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	OF WATER R	ESOURCES					

	TOTAL	03°C	51	77	67	82	81	103	114	130	117	62
ents in ion	TDS	Evap 180°C	216 284	202	222	236	210	253				
neral constituents parts per million	Sili	SIO 2	1	50	8	φ 9	58	78	1	1	ł	1
Mineral constituents in parts per million	Boron	89	90•0	0 •	0.12	0000	60.0	0 0	0 • 0	00•0	1	!
	Fluo- ride	u.	t 1	т • •	• 5	0	0	0 • 2	1	ļ	i i	(
	rate frate	NO 3	6.2 0.10 3	2 · 0 · 0 3 · 1	1.0	1 • 3 0 • 0 2 1	2 • 0 • 0 1	2 • 7 0 • 0 4 1	!	-	1	1
	Chloride	Ū	43 1•21 31	16 0 • 45 16	16 0•45 17	18 0.51 17	19 0•54 18	18 0.51 15	18	19	114	1.78
milligrams per liter equivalents per million percent reactance value	Sulfate	504	0.21	0 4 8 6	0 0 8	0 • 06	0 0 8	0.10	i		1	1
milligrams per liter equivalents per mill percent reactance v	Bicar- bonote	HCO 3	145 2•38 61	133 2•18 80	129 2•11 80	142 2 • 33 80	143 2•34 79	165 2.70 81	1	!	125	169
E & C	Carban- ate	8	0	0	0	0	0	0	1	1	10	1.60
	Polas- sium	×	0.05	0.05	0.05	0.05	0.05	0.05	2 0 • 0 5	{	1	-
Mineral Constituents in	Sodium	Ž	2.91 73	28 1•22 44	29 1 • 26 48	30 1 • 30 4 4 3	30	1 980 38	1.30	31 1•35	32	1
Mineral C	Magne- sium	8	0.41 10	0.58	0 4 8 8 1 8 8	0.49	10 0 • 82 28	8 0.66 19	1	1	B 1	!
	Calcium	3	0.60	190.00	1.00	23 1•15 38	16 0.80 27	28 1•40 41	{	{	t 1	-
Specific conduct-	micro-	mhos at 25°C)	427	270	282	280	298	328	351	395	691	639
	ī		7.6	7.8	8 • 1	7.9	7.6	8 • 1	1	1	8 . 7	9.1
Temp.	Sampled	٠ ۳	29	71	02	71	72	72	69	71	1	1
State Well	. -	Date Sampled Agy. Time Coll.	13S/15E-35E 1 M 12-14-60 5001	135/16E- 2C 2 M 7-25-57 5050	- 2C 2 M	- 2C 2 M 7-23-59 5128	7-25-60 5128	- 2C 2 M 7-25-61 5128	- 2C 2 M 6-21-62 5641	- 2C 2 M 8-15-63 5050	135/16E- 7R 1 M 10-26-64 5000	135/16E-18F 1 M 10-26-64 5000

State Well Number		Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & O	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per millian	neral constituents parts per millian	ints in	
. -		when Sompled	ī	(micro-	Calcium	Magne- sium	Sodium	Patas- sium	Carban.	Bicar- bonate	Sulfate	Chlo	tote .	Fluo-	Boron	ij 8	Computed	TOTAL
Date Sampled A	Agy. Coll.	<u>"</u>		mhos at 25 [°] C)	3	W	Ž	¥	00	нсо 3	50 4	ō	е О Х	u.	80	SIO 2	Evop 180°C	20 CaCO 3
135/16E-36R 3 8-14-63 50	8000 M	69	7.6	756	3.94	1.40	2.00	0.13	0	212 3.47	49 1•02 13	110 3•10 41	0.01	0 • 2	00•0	50	461	267
135/17E- 1L 1 9- 3-63 50	1 M 5000	7.1	7•4	237	0.85	5 0•41 18	22 0 • 96 42	0.05	0	92 1.51 47	444 0 • 92	23 0 65 20 20	8 • 1 0 • 13	0	00	77	244	63
135/17E- 5P 1 7-22-57 50	1 M 5050	80	7.5	760	21 1•05 41	4 0•33 13	26 1•13 44	0.05	0	111 1•82 71	7 0.15	19 0•54 21	4 • 0 • 0 6 2	0	000	77	215	69
- 5P 1 8- 6-58 50	1 M 5050	80	4.9	265	20 1.000	6 0.49 18	26 1•13 42	0.05	0	113 1.85 67	8 0 • 1 7	24 0 • 68 25	2.8	• 5	0	000	225	75
- 5P 1 7-23-59 51	1 M	72	4.9	252	22 1•10 42	0.25	1.22	0 0 2 2	Э	11111-111-111-111-1111-1111-1111-1111-1111	5 0 • 10 4	23	2.5	0 • 1	0	81	221	8
- 5P 1 7-25-60 51	1 M	7.6	O • &	661	3.54	1.15	2.04	0.05	O	274 4 • 49 66	30	1.52 22	8 • 0 0 • 13 2	0	0.22	53	414	235
- 5P 1 7-25-61 51	1 M 5128	77	○ • ∞	638	3 • 4 9 5 2	13 1•07 16	2 • 0 9 3 1	2 0.05 1	0	277 4 • 54 69	27 0 • 56 9	40 1•13 17	21.0	0	0.16	72	430	228
- 5P 1 6-19-62 50	1 050	78	8 . 2	194	87 4•34 52	19 1•56 19	2 • 3 9 2 9	0.08	0	342 5•61 68	40 0 • 83 10	52 1•47 18	23.0 0.37 4	0 • 1	0 • 18	72	519	295
- 5P 1 8-15-63 50	1 M 5050	75	Į Į	718	1	1	67 2•91	}	1	1	1	50	1	t 1	0.20	1		226
- 5P 1 3-19-64 50	1 M 5050	92	7 • 9	530	2 + 4 8 + 4 5 + 4 5 + 4 5	11 0.90 17	2.04	0 0 0 0 0 1	0	218 3.57 68	0.52	0 • 1 & 0 6 5	18 • 8 • 29 6	1	0.10	{	358	165
DWR 1982				STATE	STATE OF CALIFORN	RNIA - THE	IA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT C	OF WATER RE	ESOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

x CO ₃ HCO ₃ SO ₄ C ₁ x CO ₃ HCO ₃ SO ₄ y O ₂ O ₈ 0 0.08 0 0.08 0 0.08 0 0.09 0	Specific Mineral Cons ance Mogne	Specific conduct-		-	Mineral Constitue	nstitue	- }	ľ	Carbon Gr	milligrams per liter equivalents per milli percent reactance vo	milligrams per liter equivalents per million percent reactance value	Chlo	ż	Fluo	Mineral constituents in ports per million	neral constituents ports per million	lion TOS	TOTAL
8.3 600 2.54 1.644 2.30 0.08		Sompled	I _Q	(micro-	Colcium	Mogne. sium	Sodium	Potos- sium	of the state of th	Bicar- banote	Sulfate	ę ś	r of	ride Plice	Boron	<u>‡</u> 8	Computed	hardness
11 M	C 39	<u>.</u>		mhas at 25°C)	3	Wa	ž	×	8	нсо 3	504	ō	ς O ₃	u.	ω	SIO 2	Evap 180°C	CoCO 3
1 M 66 8.3 389 19 10 56 10 22 216 15 22 216 15 23 20.07 3.54 0.31 0.23 5631 7.6 747 594 1.48 3.30 0.05 0.07 3.54 0.31 0.53 5631 7.6 747 2.94 1.48 3.30 0.05 0.05 0.07 0.87 0.59 1 M 71 7.9 473 2.45 1.24 0.08 0.06 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.07 0.07 0.	12J 1 M 3 5050	1	8 • 3	009	5. 2.54 39	20 1.64 25	งคูก	0	0	304 4.98 77	4 6 0	1.4	9.5 0.15	1	0.20	1	345 385	209
1 M 7.6 747 59 18 76 2 0 372 442 2.94 1.48 3.30 0.05 0 372 0.49 0.87 0.59 2 3	14R 1 M 5050	99	•	389	19 0 95 22	•	₩ 4 W	•	0.07	216 3.54 83	15 0.31	0 N M W W,	5.9 0.10	0 .	0.11	8	291	8 8
1 M 71 7.9 473 2.15 1.32 1.04 0.08 0.160 14 444 5050 1 M 68 7.7 499 1.32 1.04 0.08 0.251 0.29 1.24 1 M 68 8.3 525 2.4 2.1 2.04 0.18 4.11 0.27 0.48 5050 1 M 66 8.3 525 2.4 21 46 0.15 0.20 2.77 0.29 1.25 1 M 68 8.2 498 2.8 20 0.15 0.20 2.77 0.29 1.55 5000 1 M 7.4 385 1.40 1.64 1.74 0.13 0.20 1.89 8 48 5000 7.4 385 3.4 1.5 0.20 1.1 1.35 0.26 0.13 0.20 1.1 1.35 5050 7.4 3.1 1.5 0.15 0.13 0.20 1.1 1.25 0.14 0.12 0.20 1 M 7.4 385 1.7 0.12 0.20 0.11 0.12 0.23 0.20 1 M <td< td=""><td>22B 1 M 3 5631</td><td>!</td><td>•</td><td>747</td><td>2 • 94 38</td><td>18 1•48 19</td><td>•</td><td>0</td><td>0</td><td>372 6•10 77</td><td>42 0.87 11</td><td>2 2</td><td>25.0 0 • 40 5</td><td>0 • 1</td><td>0.16</td><td>20</td><td>485</td><td>221</td></td<>	22B 1 M 3 5631	!	•	747	2 • 94 38	18 1•48 19	•	0	0	372 6•10 77	42 0.87 11	2 2	25.0 0 • 40 5	0 • 1	0.16	20	485	221
1 M 68 7.7 499 36 14 47 7 0 251 13 17 5050 1 M 66 8.3 525 24 21 46 66 6 169 14 55 5050 2 M 22 39 39 39 31 31 31 1 M 66 8.3 525 24 21 46 6 169 14 55 2050 1 M 68 8.2 498 28 20 40 39 34 1.56 1.74 0.13 0.20 1.77 0.29 1.55 5000 1 M 7.4 385 3.4 1.5 1.74 0.13 0.20 1.71 1.35 5000 7.4 385 3.4 1.5 0.20 1.1 1.35 5000 1.2 1.2 1.2 1.2 1.2 1.2 1.	27J 1 M 4 5050	7.1	6.7	473	43 2.15 47	1.32	4 0 4	•	0	16 • 6 5	1.5	4 0 0	19.0	1	00.0	1	318	174
1 M 66 8.3 525 24 21 46 6 6 169 14 55 5050 1.20 1.73 2.00 0.15 0.20 2.77 0.29 1.55 1 M 68 8.2 498 28 20 40 5 0 189 8 48 8 5050 1.40 1.64 1.64 1.74 0.13 0.189 8 48 48 1 M 7.4 385 34 15 22 5 0 201 11 1.35 5000 7.7 311 30 0.96 0.13 3.29 0.23 0.28 1 M 7.7 31 1.50 0.66 0.78 0.13 0.141 0.12 0.23 0.23 0.23 1 M 7.7 311 1.50 0.66 0.78 0.13 0.12 0.31 0.23 <td< td=""><td>2L 1 M 4 5050</td><td>8 9</td><td>7.47</td><td>664</td><td>36 1•80 35</td><td>1 4 2</td><td>•</td><td>• 1</td><td>0</td><td>251 4•11 81</td><td>•</td><td>17 0•48 10</td><td>12.0 0.19</td><td>1</td><td>0.10</td><td>1</td><td>340</td><td>148</td></td<>	2L 1 M 4 5050	8 9	7.47	664	36 1•80 35	1 4 2	•	• 1	0	251 4•11 81	•	17 0•48 10	12.0 0.19	1	0.10	1	340	148
1 M 68 8.2 498 28 20 40 5 0 189 8 48 5050 1.40 1.64 1.64 1.74 0.13 3.10 0.17 1.35 1 M 7.4 385 34 1.5 0.96 0.13 0.201 11 10 5000 7.4 385 1.70 1.23 0.96 0.13 3.29 0.23 0.28 1 M 7.7 311 30 8 1.8 5 0 141 6 13 5050 - 7.7 311 1.50 0.66 0.78 0.13 2.31 0.25 0.35 0.14 0 1.25 0.37 5050 7.5 2.31 1.5 0.66 0.70 0.10 2.05 0.00 0.22 1 M 75 7.5 2.31 1.5 0.82 0.70 0.10 0.05 0.00 <td>33L 1 M 7 5050</td> <td>99</td> <td>•</td> <td>525</td> <td>24 1.20 24</td> <td>21 1•73 34</td> <td>400</td> <td>• 1</td> <td>. 2</td> <td>169 2•77 56</td> <td>•</td> <td>•</td> <td>11.0</td> <td>0 • 2</td> <td>00 • 0</td> <td>96</td> <td>362</td> <td>147</td>	33L 1 M 7 5050	99	•	525	24 1.20 24	21 1•73 34	400	• 1	. 2	169 2•77 56	•	•	11.0	0 • 2	00 • 0	96	362	147
1 M 7.44 385 34 15 22 5 0 201 11 10 5000 1.70 1.23 0.96 0.13 3.29 0.23 0.28 1 M 7.77 311 30 8 18 5 0 141 6 13 5050 7.7 31 1.50 0.66 0.78 0.13 2.31 0.12 0.37 1 M 75 7.5 231 15 10 16 4 0 125 3 9 5050 0.05 0.75 0.70 0.10 2.05 0.06 0.25	₹	89	8 • 2	864	28 1•40 29	20 1.64 33	4 1- W	• 1	0	18 •1 6	7	4 W U	11.0	0 • 1	0•10	8	311	152
1 M 7.7 311 30 8 18 5 0 141 6 13 5050 1.50 0.66 0.78 0.13 2.31 0.12 0.37 1 M 75 7.5 231 15 10 16 4 0 125 3 9 5050 32 32 32 32 36 36 33 11	27L 1 M 3 5000	!	7•4	385	34	- ~ ~ ~	•	•1	0	201 3.29 82	•	- 7 - 7	12.0 0.19	0 • 2	00.0	70	278	147
1 M 75 7.5 231 15 10 16 4 0 125 3 9 9 5050 0.050 0.75 0.82 0.70 0.10 2.05 0.06 0.25 3 9 9	29E 1 M 3 5050	1	7.7	311	30	9.2	7 7 7	• 1	0	141 2.31	7	⊣ € ⊢	13.0 0.21	0 • 2	90•0	102	265	108
-	30L 1 M 0 5050	52	7.5	231	15 0.75 32	•	375		0	125 2•05 86	0	1.	0.00	0.2	0.05	5.9	178	79

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		- E & G	milligrams per liter equivolents per million percent reactance volue	er liter er million				Minerol constituents in ports per million	nerol constituents ports per million	nts in on	
Number	when	I	micra-	Calcium	Magne.	Sodium	Potos	Corbon-	Bicar-	Sulfate		.i. Z	Fluo-	Boron	Sili	Computed	TOTAL
Dote Sampled Agy.	, i	a.	mhas	,				.			<u> </u>	ģ				0	8
			Of 25 C)	კ	W _B	2	×	CO 3	HCO 3	504	5	23	-	•	302	2 091 days	Caco 3
13S/19E-30L 1 M 10-18-61 5050	!	8 • 2	253	20 1.00 38	10 0.82 31	17 0•74 28	0.10	0	122 2•00 78	0.10	10 0•28 11	11.0 0.18 7	0	000	77	214	91
-30L 1 M	71	ı	257	1	0.16	17	0 • 10	1	i	-	0 25	1	1	0.07	1		80
13S/19E-32D 1 M 6-13-63 5050	1	7•4	356	26 1.30 37	1 1 1 33	21 0.91 26	0.13	0	157 2•57 74	9 0•19 6	15	17.0 0.27 3	• 5	0.07	73	257	123
13S/19E-32M 1 M 5- 9-52 5050	65	7 • 7	486	1.50	1.40	1.96	0.13	0	215	0.23	31 0 87 18	15.0	0	0 • 0 3	72	332	145
-32M 1 M 8-12-63 5000	1	7.5	832	2 2 8 8 8 8	21 1•73 19	105	0.15	0	373 6•11 71	27 0 . 56	50 1•41 16	31. 0.50 6	φ •	0 • 20	62	536	212
13S/19E-36E 2 M 5-28-63 5050	72	8 0	281	16 0 • 80 36	0.66	14 0•61 28	0.13	0	108 1•77 84	0 0 0 0	0.11	10•0 0•16 8	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 • 0 5	73	186 180	73
13S/20E- 3C 1 M 7-20-60 5050	1	8 0	214	19 0 95 44	0.668	11 0•48 22	0 6 8 4	0	109 1•79 85	0 0 0 4 2	0.17	6•7 0•11 5	0	0.11	63	173	81
- 3C 1 M 6-12-63 5050	-	1	1	1	8	1	ŧ I	(1	1	-	10.0	1	1	-		
- 3C 1 M 6- 9-64 5050	73	7 • 8	215	18 0.90 41	9 0 • 74 34	11 0.48	0 0 0 8 4	0	110 1•80 85	0.04	0.17	7.6 0.12 6	1	0.10	ŀ	162	82
13S/20E- 3P 1 M 7- 5-61 5060	1	7.6	1	0 9 9 5 3 9	10 • 82 34	0.57	0.10	0	122 2•00 83	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 1 7	12.0 0.19 8	0	1	1	127	80
DWR 1982			STATE	STATE OF CALIFORNI	NIA - THE R	ESOURCES	AGENCY C	F CALIFO	RNIA - DE	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JE WATER RE	ESOURCES	1				

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in	_	E & &	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per millian percent reactance value				Mineral canstituents in parts per millian	neral canstituents parts per millian	ents in ion	
Agy.	Sampled °F	ī	micro-	Colcium	Mogne, sium	Sodium	Potos- sium	Carbon- ate	Bicar- bonate	Sulfote	Chlo-	frole.	Fluo- ride	Boron	ij 8	TDS	TOTAL hardness as
Coll.			at 25°C)	3	Wg	Š	¥	00 3	нсо з	504	ū	NO 3	ш	8	SIO 2	Evap 180°C	CoCO 3
13S/20E- 4J 1 M 7- 5-61 5060	1	7.5	1	17 0.85 38	9 0•74 33	12 0.52 24	0.10	0	110 1.80 80	0.06	9 0•25 11	8 • 8 0 • 1 4	0.2	!	1	117	80
13S/20E- 4M 1 M 1-11-62 5060	1	7 • 7	1	23 1,15 41	10 0.82 29	0.70	0 1 0 0	0	134 2•20 82	0.17	0.20	6•2 0•10 4	0	1	i	141	66
35/20E- 4R 1 M 1-11-62 5060	1	r-1 • ⊗	1	18 0.90 41	0 .66 30	13 0.57 26	0 0 8 0 4	0	107	0.02	0.20	17.7 0.29 13	0•1	1	1	120	78
13S/20E- 6F 1 M 6-11-63 5050	7.1	O 8	212	21 1•05 48	5 0•41 19	15	0 0 8 0 4	0	104 1•70 82	0.06	0.20	7 • 1 0 • 1 1 5	0	0 • 28	26	169	73
S/20E- 8A 1 M 1-11-62 5060	1	7 • 7		18 0 • 90 40	0.74	0.52	0 10 4	0	117 1.92 88	m 9 m 0	0.17	2 • 2 0 • 0 4 2	0.1	1	ł	112	82
135/20£- 8E 1 M 10-22-59 5060	1	7 • 7		18 0.90 38	9 0•74 31	15 0•65 27	0 · 10 · 4	0	118 1.93 82	0.10	0.20	6.6 0.11 5	0•1	i	1	123	8
- 8E 1 M	70	-	1	1	!	1	1		1	1	1	7.8 0.13	1	ł	ł		
135/20E- 9Q 1 M 5-28-63 5050	7.1	8 • 1	206	19 0 • 95 39	10 0 • 82 34	13 0.57 24	0 0	0	118 1.93 84	4 0 • 08 3	0 14	9.6 0.15	0 • 2	90.0	69	191	69
- 90 1 M	1	1	1	1	1	1	 	1	1	}	1	12.0	ł	ł	1		
.35/20E-12L 1 M 7-29-58 5050	70	7.5	214	16 0.80 37	0 10 382	11 0 • 48 22	0 0 0 2 2	0	110 1.80 87	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C • 11	6 8 0 0 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 5	00 • 0	4	160	81

FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral Ca	eral Canstituents in		E & }	milligrams per liter equivalents per million	er liter ser million				Mineral constituents in parts per million	neral constituents parts per million	ints in	
Number	shen.		ance		-eugnw-	1	Potos.	ė	Bicar.	Dille voide	Chło	ż	Flua-	,	Sil;	<u>sol</u>	TOTAL
Date Sampled Agy.	Sampled	<u>.</u>	mhos	Easisis	E	Enipos Enipos	E	e e e	banate	90000	epir	trate	e pir	Boran	8	Camputed	hardness
Time Call	_		at 25 C)	S	Mg	Ž	¥	co 3	нсо 3	504	ō	NO 3	ı	8	SIO 2	Evap 180°C	CoCO 3
135/20E-12L 1 M 7-20-60 5050	<u> </u>	7.9	219	18 0•90 41	10 0.82 37	10 0.43 20	0.05	0	115 1•88 87	4 0 • 0 4	4 0•11 5	6.4 0.10 5	0•1	90•0	09	171	86
-12L 1 M 4-26-62 5050	70	8 • 2	264	24 1.20 42	12 0 99	0.61	0.05	0	160 2.62 92	0	0.23 8	0	• •	900	27	166	110
-12L 1 M 6-14-63 5050		7.8	155	14 0.70 45	5 0 • 41 26	0 0 0 0 0 0	0.000	0	80 1.31 86	0.10	0.11	0.01	0 • 2	0.02	23	102	20
135/20E-16L 2 M 8- 7-57 5060	<u> </u>	7.5	1	26 1 • 30 44	11 0.90	0 • 6 5 2 2 2 2	0.10	0	129 2•11 71	0.15	12 0•34 11	24•3 0•39 13	• 1	ļ	į į	163	110
135/20E-16L 3 M 8- 7-57 5060	<u> </u>	8 • 1	1	17	9 9 0 9 0	0.57	0 0 0 0	0	104 1•70 78	0 0 0 0 0 0	10	6.6 0.11 5	0 1	1	1	115	92
13S/20E-17G 1 M 3- 6-51 5060	 	7.1	1	17 0 85 44	9 0 0 7 4 3 8	0.35 18	1	į	1.56	0.15	6 0•17 9	0 0 0 0 0 0	0	1	1	66	80
-17G 1 M 9- 3-63 5060	<u> </u>	7.7	i	19 0 • 95 39	10	0.57	0 0 10 4	0	120	0 • 0 0 4	0 • 14	7•1 0•11 5	0	;	1	122	8
135/20E-17G 2 M 5- 5-55 5060	<u> </u>	8 • 1	ł	17 0.85 37	9 0 • 74	0 • 6 5 2 8	8 8 8 0	0	122 2•00 90	m 9 m 0 •	4 0•11 5	0 0 0	!	-	1	114	80
-17G 2 M 9- 3-63 5060		8	1	1.65	13 1•07 30	17 0 • 74 21	0.13	1	172 2•82 81	8 0•17 5	0.23	15.9	· 0	!	{	185	136
135/20E-17J 1 M 8- 7-57 5060		7.9	1	18 0•90 44	0 58	11 0•48 23	4 t 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0	108	7 0 0 7	4 11 6	11 • 1 0 • 18	0 • 2	-	i e	112	74
DWR 1982			STATE	STATE OF CALIFORNIA		RESOURCES	AGENCY (OF CALIFO	RNIA - DE	· THE RESOURCES AGENCY OF CALIFORNIA . DEPARTMENT OF WATER RESOURCES	JF WATER RE	SOURCES			<u> </u>		

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	Specific conduct-		Mineral Co	Mineral Constituents in	_	E # 8	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	ents in Ion	
Sampled p (Micro- Calcium	Calcium		Magne- sium	Sodium	Patas- sium	Carban- ate	Bicor- banate	Sulfate	Chloride	trate	Fluo- ride	Boran		TDS Camputed	TOTAL
mhos at 25 C)			Wg	Ž	¥	co ₃	нсо з	504	ū	NO ₃	ı.	8	SIO 2	Evap 180°C	os CoCO 3
7.8 15	0.75		9 0 7 4 35	13 0.57 27	30.08	0	101 1•66 79	0.10	5 0 • 14	11.5 0.19	0.1	•	1	111	75
7.7 213 16 0.80 36			9 0 • 74	13	0.10	0	108 1•77 83	0 0 4 8 4	5 0 • 14	8.6	1	00.0	1	113	7.7
7.5 17			8 0•66 29	0.65	0 0 10 4	0	95 1.56 70	0.21	0.25 11	12.4	0	1	1	122	76
7.5 225 17 0.85 37			10 0.82 36	0.52	0 10 4	0	107	0.10	0.20	13 • 0 0 • 21 9	1	00.0	1	121 194	84
7.7 14			0.49	11 0.48	0 0 0	0	80 1•31 75	0.12	5 0•14 8	10.6	0.2	!	1	95	09
7.7 194 16 0.80 (41	16 0.80 41		7 0 • 5 8 3 0	11 0•48 24	0 1 0 1 0	0	93 1.52 81	0.06	0.14	10.0 0.16	0•1	90•0	89	170 168	69
7.7 14	14 0 70 36	J	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0•48 25	0.10	0	911.49	0.15	5 0•14 7	13•7 0•22 11	0•1	{	1	108	8
7.7 9	0 • 0 4 6 0 8 6		0.41 30	10 0.43 31	0 0 0	0	71 1.16 82	0.10	0.08	4 0 0 0 0 0	0•1	1	1	75	4 8
7.5 10 0.50 (0 000	J	0.49 33	10	0 0 0	0	73 1.20 84	0 4 80 4 80	0.08	4 • 4 0 • 0 7 5	0•1	1	1	76	50
7.7 9	0.01	J	6 0.49 34	10 0.43 30	0.08	0	1.15	0 • 0 8 0 • 0	0.06	4.4 0.07 5	0.1		1	73	47

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E	milligrams per liter equivalents per million	er liter er million				Mineral constituents in parts per million	neral constituents parts per million	ants in ion	
Number	when	Ι	ance micro-	Calcium	Magne-	Sodium	Potas-	Carban.	Bicar-	Sulfate	Chlo	N:	Fluo	Boron	:i 8	Computed	TOTAL
Date Sampled Agy. Time Coll.	-		mhas at 25 C)	კ	. W	ž	×	့် ငွ	HCO 3	80 4	Ū	, o , z	ш	œ	Sio 2	Evap 180°C	38 CoCO 3
135/20E-22L 1 M 6-10-64 5050	69	7.6	161	0.50	7 0.58 7£	0.39	0.00%	0	80 1•31 85	0.06	0 0 0	6.5 0.10 6	1	0.10	1	81	54
135/20E-23B 1 M 12-12-56 5060	I .	0	1	14 C•70 31	10 0.82 36	15	0 0 8 9 4	O	87 1•43 73	0.15	0.17	12.4 0.20 10	0	1	i	110	92
-23B 1 M	70	7.6	212	15	10 0.82 38	12 0 • 52 24	0.0803	0	102 1•67 80	0 • 12	0. 11. 5	11.0 0.18	1	0	1	111	79
135/20E-23J 1 M 10-14-60 5060	<u> </u>	7.6	1	15 0•75 32	10 0.82 35	15 0•65 28	0.10	0	104 1•70 74	0.15	0.17	16.8 0.27 12	0 • 1	1	t 1	125	62
-23J 1 M 6-11-64 5050	6 9	7.7	229	14 0.70 31	10 0.82 36	15 0.65 29	0 6 8 4	0	106 1•74 78	0.12	5 0 14	14.0 0.23 10	1	0.10	i	176	76
135/20E-230 1 M 12-12-56 5060] ====================================	8 . 2	1	19	64.0	15	<i>w w</i>	1	74	12	0.20	8.0	0	1	1	114	72
135/20E-26D 1 M 6-11-64 5050	δ 9 Σ 0	7.8	152	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 • 5 8 3 6	11 0•48 30	0 0 0	0	74 1.21 83	0 . 0 4	O • • • • • • • • •	6•6 0•11 8	!	0.10	1	138	52
13S/20E-27F 1 M 5- 1-52 5050	ο Z	7.8	164	11 0.55 34	6 0 • 49 31	11 0•48 30	0 0 0	0	82 1 • 34 84	0.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 • 1 0 • 10 6	0	0.02	69	153	52
-27F 1 M 5-17-55 5060	<u> </u>	7.7	1 2	13 0.65 36	0.58	0.52	0.08	0	87 1 • 43 84	0.12	0.00	0 · · · · · · · · · · · · · · · · · · ·	0	1	1	91	62
-27F 1 M 4-15-59 5050	50	7•4	165	0.45	0 • 40	10	0.00	0	72 1•18 79	6 0 • 12 8	0 0 0	6.7	0.2	0	41	120	4 7
DWR 1982	\downarrow		STATE	STATE OF CALIFORNIA	NIA - THE	RESOURCES	AGENCY (OF CALIFO	RNIA - DE	THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JE WATER R	ESOURCES					

	TOTAL	* O	47	57	5.9	62	8 9	77	92	75	82	64
	1		+	210	9	106	175	181	182		190	5.2
vents in Ilion	Computed				т 	-	1	٦	ri -		- i	ii
neral constituents parts per million	ii 8	Š	1	İ	6 9	 	65	99	65	-	6.5	63
Mineral constituents in parts per million	Baran	80	0.10	!	00 • 0	}	000	90 • 0	00.	0.07	0.16	00.0
	Fluo-	u	1	1	0.0	0•1	0.5	0 • 2	0.1	1	0•1	0.0
	r z	o Z	8 • 4 0 • 14	1	7.6	7 • 1 0 • 11 5	9 • 9 0 • 16 8	10.0	10.0	1	14.0 0.23 10	5 • 2 0 • 0 8 4
	Chlo	ō	0 0 0 0 0	0.20	0.11	0.11	4 0•11 5	0.11	6 0.17 8	5	0.14	0.11
equivalents per million percent reactance value	Sulfate	ç	0.10	18	0.12	0.17	0.10	0.12	0.12	1	0.15	0.10
equivalents per mill percent reactance v	Bicar-	HCO,	72 1.18 79	95 1 • 56	90 1•48 81	100 1.64 81	104 1•70 82	107 1•75 82	106 1•74 79	{	108 1•77	92 1•51 84
: ē c.	Carban.	ဗိ	, 0	0	0	0	0	0	0	1	0	0
c	Potas.	×	0.08	1	60.0 4	0.10	4 0 • 10 5	0 • 10	0.10	4 • 0 • 0	0.10	0.10
Mineral Constituents in	Sodium	ž	11 0•48 32	21	0.57	14 0•61 31	14 0.61 29	13 0.57 26	0.00	15	0.65 27	10 0•43 24
Mineral C	Magna-,	×	0.49	7 0 . 58	70.58	0.58	0.66 32	0.74	0 B 2 3 6	!	9 0 • 7 4 31	7 0•58 32
	Calcium	3	0.45	11	12 0•60 33	13 0.65 34	14 0•70 34	16 0.80 36	14 0.70 31	{	18 0.90 38	14 0•70 39
conduct-	(micro-	mhos ot 25 ^C)	154	i	185	1	213	219	224	243	233	182
	Ξ,	ı	7.8	7.8	Ο « »	7 • 8	7.9	7.9	8 • 2	1	7.8	7.7
Temp	Sompled	ů.	72	1	9	}	70	70	73	71	1	67
		Agy. Coll.	1 M 5050	1 M 5702	5050	J J M 5060	1 M 5050	1 M 5050	1 M 5200	1 M 5200	J J M 5050	1 M 5050
State Well Number		Date Sampled Time	3S/20E-27F 6-10-64	3S/20E-27G 12- 1-49	-27G 10-25-51 5	13S/20E-27J 5-17-55 5	-27J 7-29-58 5	-27J 1 7-21-60 50	-27J 10-19-61 5	-27J 1 6-19-62 52	-27J 1 6-26-63 505	13S/20E-28C 1 5- 2-52 50
												-

SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well		Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		 E & g	milligrams per liter equivalents per million percent reactance value	er liter ser million ance value				Mineral canstituents in parts per million	neral canstituents parts per million	ints in ion	
		Sompled	ī.	micro	Calcium	Mogna- sium	Sodium	Potas- sium	Carbon.	Bicar- banote	Sulfote	Chlo-	rate	Fluo-	Boron	: <u>†</u> 8	Computed	TOTAL
Date Sampled Time	Agy. Coll.	, L		mhos at 25 C)	კ	W	ž	~	8	HCO 3	SO 4	Ū	NO 3	u.	83	510 2	Evop 180°C	% C°CO 3
135/20E-28C 1 8-27-57 5C	1 M 5060	1	7.8	1	13 0.65 32	9 0 0 7 4 37	0.52	0.10	0	89 1 • 46 77	0.12	0.14	11•1 0•18	0.0		-	104	70
-28C 1 6-10-64 5C	1 M 5050	67	7 • 7	243	18 0.90 35	12 0 • 99 39	0.52	0 • 13	0	120 1•97 79	8 0 • 1 7 7	0.17	11.0	-	000	i	131	9
135/20E-300 1 6-11-64 50	1 M 5050	71	7 • 8	203	13	9 0 • 74 36	13	0 10	0	103 1•69 86	0 0 0 2	5 0 14	0 0 0 0 0 0 0 0	1	0•10	0	103	70
135/20E-32D 1 10-14-60 50	1 M 5060	i	7.6	1	14 0.70 31	9 0 • 7 4	0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.15	0	94	0 0 0 0 0	0.20	18.1 0.29 14	0	1	1	120	72
-320] 6-26-63 50	5050 5050	10	7.7	239	0.80	9 0 • 74 32	14 0.61 27	0.15	0	86 1.41 72	4 0 0 0 4	0.20	16.0 0.26 13	0 • 2	0 •	74	188 198	77
135/20E-32L 2 8-27-57 50	2 M	1	7 • 8	i i	0.95	12 0 99 34	0,000	0.10	0	1.62	11 0•23 9	0.25	20	0	1	1	145	76
-32L 2 6-10-64 50	2 M 050	71	7.9	311	21 1.05 35	13 1.07 36	17 0 • 74 25	0.15	0	132 2•16 73	0.15	0.31	22 0 • 35 12	1	0.10	1	162 226	106
135/20E-33D 1 5- 1-52 50	1 X 050	02	7 • 7	302	1.00	14 1.15 38	17 0•74 24	0.15.6	0	147 2•41 80	10 0 21 7	0 23 8	11.0 0.18 6	0	0	44	232	108
-330 1 8-27-57 50	1 060	1	7.9	1	21 1.05	13	19 0 83	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	142	9 0 19	0 25 8	17.0	0	1	1	164	106
-330 1 4-15-59 50	1 M 5050	70	7.8	317	23 1•15 36	13 1.07 34	19 0.83 26	0.13	0	153 2 • 51 80	10 0.21	8 0•23 7	11.0 0.18 6	0 .	0 0	72	236	111
DWR 1982				STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE F	RESOURCES	AGENCY C	JE CALIFC	ORNIA - DE	PARTMENT C	OF WATER R	ESOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	os	CoCO 3	113	111	149	119	06	95	153	91	8 5	57
	TOS		Evep 180°C C	236	163	569	165	146	221	298	182	204	164
nerol constituents ports per million	Sil:		SIO 2	73	1	73	1	1	1	75	31	89	70
Minerol constituents in ports per million	Boran		a	000	-	0 0 8	0 • 10	1	0	0	0 • 18	0.05	00.0
	Flue		4	0.0	0	0•1	1	0•1	!	0	n •	0.2	0.1
	Ż ż		NO 3	0 • 15 0	16.0 0.26 8	11.0	12.0	15.0 0.24 9	16.0 0.26 10	21 • 0 0 • 3 4 8	22 • 0 0 • 35 13	12.0 0.19	5 • 2 0 • 0 8 5
	Chlo		Ū	0.23 8	10	10	0.20	0.20	0.50	0 • 0 9 9 9 9	0 2 8 8 8	0.20	0.11
milligroms per liter equivolents per million percent reoctance value	Sulfate		50 4	9 0•19 6	0.15	13 0 • 27	0.17	0.23	8 0•17 7	10 0•21 5	0.15	0.12	0.12
milligroms per liter equivolents per million percent reoctance value	Bicar.		нсо з	152 2•49 81	145 2•38 78	185 3•03 81	157 2.57 82	124 2•03 75	124 2•03 81	174 2.85 67	123 2•02 73	122 2•00 80	89 1•46 82
e a	Carbon-	<u>.</u>	CO 3	0	0	0	0	0	0	14 0•47 11	0	0	0
	Potos-		¥	0.15	0.13	0 • 13 8 8	0.15	0.13	0.13	0.15	0.13	0 1 2 5	0.00
Minerol Constituents in	Sodium		ž	16 0.70 23	0 • 78 25	18 0•78 20	0.74	18 0•78 29	16 0•70 26	23 1•00 24	18 0•78 29	18 0•78 30	0.52
Minerol Co	Magne-		Mg	8 0.66	13 1•07 34	18 1 • 48 38	1. 2.2. 8.8. 8.8.	00000	12 0•99 36	19 1.56 37	10 0.82 30	9 0 • 74 28	0.33
	Colcium		ပ	32 1•60 51	23 1•15 37	1 • 0 • 0 • 0 • 0 • 0	23 1.15 35	18 0 • 90 33	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.50	20 1.00 37	19 0 37	16 0 80 46
Specific conduct-	micro-	mhos	ot 25 C)	298	1	379	322	1	265	396	273	281	171
	I	a.		7.7	8 8	8•/	7.0	7.7	7.6	χ •	7.6	7.7	7.7
Temp.	when	, u		69	1	8 8	02	1	71	{	70	71	8 8
		Agy.	Coll.	1 M 5050	1 M 5060	1 M 5050	5050	5060	1 M 5050	1 1 M 5050	1 1 M 5050	1 1 M 5050	5050
State Well Number		Dote Sampled	Time	135/20E-33P 5- 1-52 5	-33P 8-27-57	-33P 4-15-59 5	-33P 6-10-64 5	13S/20E-34B 5-17-55 5	-348 6-10-64 5	135/20E-34M 8-30-51 5	-34M 4-15-59 5	-34M l 5- 1-63 50	13S/20E-35D 1 5- 1-51 50

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well			Specific		Mineral Co	Mineral Constituents in		IE &	milligroms per liter equivalents per million	er liter				Mineral constituents in	constitue	ints in	
Number	Temp.		duce.					Ď	ercent read	percent reactonce volue				ports	ports per million		
	Sompled	I.	(micro	Colcium	Mogne- sium	Sodium	Polas- sium	Carbon- ote	Bicar. bonate	Sulfote	CMo- ride	rote	Fluo-	Boron	: 8 : 8	Computed	TOTAL
Dote Sampled Agy.	<u>ш</u>		mhos ot 25 C)	3	6 W	2	¥	8	HCO3	504	ō	, o	u.	60	SIO 2	Evap 180°C	80 CoCO 3
13S/20E-35D 1 M 5-17-55 5060	1	6.7	i i	14 0.70 37	6 0 • 49 26	14 0•61 32	0.10	0	94 1.54 81	0.21	0.11	1 • 8 0 • 0 3	0 • 1	1	1	100	09
-35D 1 M 4-15-59 5050	67	7 • 4	229	0.80	0.66	13	0.10	0	98 1•61 78	0.19	6 0•17 8	0.10	0 • 2	0.22	36	147	73
135/21E- 4P 1 M 6-13-50 5060	1	7.4	1	1.10	12 0.99 34	19 0 • 85 28	ł	1	147 2•41 83	0 0 0 0 0	10 10	8 • 8 0 • 14 0	0	i	1	147	105
- 4P 1 M 4-30-62 5060	1	00 • 1	1	20 1.00 34	1.15	16 0•70 24	0 0 0 0	0	142 2•33 79	0 • 0 6 2	1100.31	14.6 0.24 8	. 0	1	i	152	108
135/21E- 8J 1 M 4-12-59 5060	1	7 • 8	1	23 1.15 36	14 15 36	18 0•78 25	0 • 0	0	144 2•36 78	0.06	10.28	20•7 0•33 11	0	1	1	163	115
13S/21E-15N 2 M 7-29-58 5050	70	7.8	163	0 • 45	6 0.49 31	13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1 8 1 9 3 3 8 5	0 0 0 0 0 4	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	φ •	0	777	126	7 4
-15N 2 M 7-20-60 5050	1	7 • 8	167	10 0.50 29	7 0.58 34	0.57	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1 • 3 8 8 4 4 4	0 10	0 0 0	5 • 1 0 • 0 8 5	0	0	777	131	4
-15N 2 M 4-26-62 5050	70	8 • 1	238	0 • 4 9 2 5 5 5	0.000	0.70	0 0 0 0 0 0 3	0	1.33	0.15	0.20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	€ •	0 • 0 5	29	121	55
-15N 2 M 5-16-63 5050	1	7.9	152	8 0 • 40 2 7	0 • 49 34	12 0 52 36	0 0 0 0	0	76 1.25 86	4 8 0	0 0 0 0 0 4	3.7	• 5	0.0	4 5	120	45
135/21E-17F 1 M 5-16-63 5050	71	7.9	254	0.85	0.82	0.70	# & # 0	0	106	12 0•25 11	0 2 0 8	11 0 1 8 8	0	0.03	62	190	84
DWR 1982			STATE (STATE OF CALIFORNIA		RESOURCES	AGENCY (OF CALIFC	RNIA - DE	THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JF WATER RE	SOURCES					7

₹ещр. when		Specific canduct- ance		Mineral Co	Mineral Constituents in			milligrams per liter equivalents per mill percent reactance vo	milligrams per liter equivalents per million percent reactance value	ŧ	ž	-	Mineral constituents in parts per million	neral constituents parts per million	nts in Ion	Į Į
Ŧ _a		(micra- mhas	Calcium	Magne- sium	Sodium	Potas.	Carban- ate	Bicar- banate	Sulfate	o spir	ź t	- abir	Boron	i	Computed	TOTAL hardness as
		at 25°C)	S	Mg	Š	¥	co 3	нсо з	504	CI	NO 3	ш	83	SIO 2	Evap 180°C	CaCO 3
c • 7		230	14 0.70 31	10 0.82 36	14 0•61 27	0.13	0	111 1•82 82	0.23 10	3 0 • 0 8	5.2 0.08	0.2	40•0	6 8	185	76
7 • 6		1	0.35	0.58	11 0 • 48 32	0 0 0	0	1.10	40.0	0 0 0 0	7.5	0 • 2	1	1	76	47
8 • 0		1	26 1•30 34	1.40	1.00	0.10	0	171 2.80 75	0.25	13 0•37 10	18.6 0.30 8	0	1	l	198	135
7 • 4	t	393	28 1•40 36	17 1•40 36	24 1.04 26	0.10	0	178 2•92 75	13	13 0 37 10	20.0	• 0	60.0	5	272	140
1	1	1	1	1	1	l	i	1	!	1	16.0	1	1	1		
20		ļ	2 4 4 4 4 4 0	2.22	1.22	0.18	0	283 4.64 77	27.00.56	18 0•51 8	22.0 0.35 6	1	1	t t	317	234
φ •	0	427	22 1•10 40	14 1•15 41	11 0•48 17	0 0 2 2	0	120 1•97 71	16 0.33 12	0.11	23 • 0 0 • 3 7 1 3	0	0	53	210	113
8 • 1		242	21 1.05 42	10 • 82 33	13	0 0 2 2	0	113 1.85 76	11 0.23	0.11	16.0 0.26 11	0	0 • 0 4	57	190	94
7•6	.0	216	;	1	12	1	ł	1	ł	0.06	1	1	00.0	ļ		79
7 • 8		173	0.45	0.49	0.57	0.03	0	1.20	0.12	0.03	1.9	0.1	00.0	44	120	47

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well		Temp.		Specific canduct-		Mineral Co	Mineral Constituents in		E & S	milligroms per liter equivalents per million percent reactance value	er liter ser million ance value				Mineral canstituents in parts per million	neral canstituents parts per million	ints in	
_		when	Ŧ	ance (micra-	Calcium	Magne- sium	Sodium	Patas- sium	Carban- ate	Bicar- bonate	Sulfate	Chlo- ride	ż ż	Fluo-	Boron	: <u></u> 8	TDS	TOTAL
Date Sampled Ag	Agy. Call.	<u>پ</u>		mhas at 25 C)	3	88	g	×	8	HCO 3	\$00	ō	e o N	u.	80	SIO 2	Evap 180°C	as CaCO 3
13S/22E-10M 1 M 6- 3-64 5050	ΣOS	72	7.7	515	2.25	24 1.97 37	1.09	0.08	0	259 4•25 81	9 • 19 • 4	200.56	14.0 0.23	;	00.0	1	322	211
135/22E-14D 1 M 8- 8-63 5000	ΣΟ	7.1	7 • 6	553	300	N 9 5 8 8 8 8 8	25 1.09 20	0 0 0 5	0	270 4•43 82	10 0.21 4	18 0.51	14.0	0	0	45	312	219
135/22E-28C 2 M 7-20-60 5631	3 Z	1	8 • 1	452	22 1•10 25	30 2.47	17 0 • 74	0.05	0	203	0 19	18 0•51	24 • 0 0 • 39 9	N •	0.07	0 %	272	179
-28C 2 M 6-20-62 5631	3 I	69	8 4	428	23	2.22	20	0.08	3 0.10	195 3•20 73	10 0.21 5	18 0•51 12	23.0	• 0	90.	4 8	266	169
-28C 2 M 7-11-63 5631	31 31	1	⊕ •	794	23	2.00.00	20	0 88 3	0	210	12 0.25 5	0.56	25.0 0.40	0	0.10	48	287	189
135/23E- 7N 2 M 8-13-63 5000	Σ Ο	9	0	382	4.5 2.10 54	0 • 58	1.17	0.05	0	180 2 • 95 78	17 0 35	0.31	10 0 0 0 1 6 4	0	0.11	32.	237	134
135/23E-30J 1 M 7-24-57 5631	3 J	69	7 • 7	217	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 8 9 8 8 8 9	25 1.09 47	m & m 0	0	111 1•82 76	10 0•21 9	0 23 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0 • 0 2	57	185	بر 8
-30J 1 M 6-20-62 5631		80	O • 20	218	13	0 • 4 9 2 2 2 2	24 1•04 46	0	0	106 1•74 79	0.12	0.20	8 0 • 1 • 4 0	0	0 •	r.	175	57
-30J 1 M 7-19-63 5631	31 ————————————————————————————————————	1	7 • 0	232	0 10 30	6 0 4 2 1	25 1.09 46	· m & m	0	112 1•84 80	0.12	0.17	9.7	φ •	80	62	187	09
135/23E-34A 1 M 6- 3-64 5050	Σ Ο	29	0	808	38 1•90 20	78 • 41 69	21 0•91 10	0 0 0 2 1	0	469 7•69 85	29	0.14	40.0	1	0	1	444	416
DWR 1982	\exists	1		STATE	STATE OF CALIFORNI		ESOURCES	AGENCY C	JE CALIFO	SRNIA - DE	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	OF WATER R	ESOURCES					

	TOTAL		1040	īU.	52		88	137	50	20	15	22
ents in Iian	Computed	Evap 180°C	1888 1930	441	969		271 326	449	598	598	609	6 5 8
neral canstituents parts per millian	<u>≅</u> 8	SIO 2	1	50	47	į	1	55	56	5 6	57	54
Mineral canstituents in parts per millian	Boran	6	1.80	0.18	0.10	!	0	04.0	0 8 8	0 83	06.0	1.60
	Fluo-	u.	0	4.0	0	1	1	0.2	0	4.0	0	0 • 5
	Ni- trate	0 2	0 • 2	0.5	4•9 0•08 1	1	· •	0.6	0.4	0.4	1.0	0.4
	Chlorida	ō	3.38 11	142 4•00 57	156 4•40 47	980	1.86	211 5 • 95 57	234	234	228 6•43 67	250 7.05 67
milligrams per liter equivalents per millian percent reactance value	Sulfate	\$0.4	1160 24.15 80	0.02	1.19 13	!	23	34 0 • 71	0.06	0.06	0.08	0.04
milligrams per liter equivalents per mill percent reactance v	Bicar- banate	нсо з	169 2.77	184 3 • 02 43	214 3•51 37	1	152 2•49 52	228 3•74 36	176 2.88 30	176 2.88 30	172 2.82 30	206 3 • 38 32
E & &	Carban-	0	0	0	0.23	1	0	0	0	0	0.20	0.07
٠	Patas-	¥	0.20	0.03	0.08	1	8 0 • 20 4	0.13	0.08	0.08	0.08	0.08
anstituents i	Sodium	Ž	207 9•00 30	154 6•70 98	195 8 • 48 88	4 ¢ 2 • 0 ¢	66 2.87 60	178 7•74 73	206 8 • 96 95	206 8•96 95	218 9•48 96	235 10•22 95
Mineral Canstituents in	Magne-	ø	169 13.90 46	0	0.08	1	0 2 3	0 • 4 9	0	0	0	0.08
	Calcium	J	138 6.89 23	0.10	0.95	i	30 1.50 31	2.25	8 0 • 40 4	8 0.40 4	0.30	0.35
Specific canduct-	ance micro-	mhos at 25°C)	2500	765	973	330	513	1100	976	976	1030	1160
	I	L	7.2	8•1	8 • 4	1	8 •	7.6	8 • 2	8 • 2	80 • •	8.4
Temp	Sampled		1	8 9	1	02	72	70	1	70	71	72
State Well		Date Sampled Agy. Time Call.	145/14E-16N 1 M 8-12-52 5050	145/16E- 6A 1 M 8-27-63 5000	145/16E-10J 1 M 8-12-63 5000	145/16E-13H 1 M 8-24-50 5001	-13H 1 M - 4-64 5050	145/16E-23M 1 M 8-12-63 5000	14S/16E-25A80 M 7-20-60 5050	145/16E-36A 1 M 7-20-60 5050	-36A 1 M	-36A 1 M 6-20-62 5050
		Dat	145/	145/ 8-	14S/ 8-	1457	9	145/ 8-	145/	14S/ 7-	10-18	9

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

State Well	Te H		Specific conduct-		Mineral Ca	Mineral Canstituents in		E & S	milligrams per liter equivalents per million	milligrams per liter equivalents per million				Mineral constituents in parts per million	neral constituents parts per million	ints in	
Number	when	Ι	ance (micro-	Colcium	Magne-	Sodium	Potos-	Carbon-	Bicor-	Sulfate	Chlo ti	N.	Fluo	Boren	# £	TDS Sometimen	TOTAL
Date Sampled Agy. Time Coll.	, F	a .	mhas at 25°C)	J	5 X	ž		. o	HCO 3	\$0.8	5	ε Ο Ζ	ш.	æ	Sio 2	Evop 180°C	CoCO 3
145/16E-36A 1 M 4-15-64 5050	72	7 • 8	875	1	-	169	1	+	1	1	181	t 1	1	0.80	1		16
145/17E- 9A 1 M 9- 7-56 5050	73	.ν 	382	35 1 46	8 0.66 17	300 1 34	0 13 8	0	156 2•56 65	15 0 • 31 8	35	4•3 0•07	•	90•0	8 8	298	121
- 9A 1 M 5-28-59 5050	72	7 • 7	514	1	1	1	36	0	164	1	1 2 2	1	1	1	1		-
14S/17E-13H 1 M 7-20-60 5050	1	ω • 2	375	35	13 1 • 07 2 9	18 0•78 21	0 13	0	132 2•16 60	14 0.29 8	37 1•04 29	8 • 9 0 • 14	0 • 2	9000	76	272	141
-13H 1 M 6-20-62 5641	71	8 • 2	157	2 • 05 4 4 6	16 1.32 29	22 0.96 21	0.15	0	150 2.46 56	19 0 40	1 9 4 9 1 9 1	13 • 0 0 • 21 5	• 5	0.07	78	317	169
-13H 1 M 6-25-63 5631	ļ	○ • ∞	7 777	1.900	1.15	200.87	0 13 5	0	143 2•34 57	0.33	42 1•18 29	15.0 0.24 6	0 • 2	0 • 0 8	69	311	153
145/18E-11F 1 M 8-28-63 5000	69	ο •	560	30 1.50 27	1.97	43 1.87 34	0.15	0	212 3•47 64	24 0 • 50	38	23.0 0.37 7	0	0.15	52	368	174
145/18E-160 1 M 8-12-63 5000	7.1	7.3	471	45 2•10 44	20 1•64 34	20 0•87 18	0.18	•	170 2•79 60	16	1.27	16.0 0.26 6	• •	0.10	75	325	187
145/18E-24D 1 M 8-12-63 5000	71	7 • 7	339	1.45	13 1.07 31	18 0.78 22	0 1 8	0	154 2•52 74	0.12	17 0•48 14	17.0 0.27 8	0 • 2	00 • 0	76	259	126
145/18E-25A 1 M 6-12-63 5050	8 9	O • %	450	38 1•90 41	16 1•32 29	1.26	0.15	0	193 3•16 70	0 • 23	33 0 • 93 21	13.0 0.21 5	0	0.20	79	305 293	161
DWR 1962			STATE	STATE OF CALIFORNI	NIA - THE R	RESOURCES	AGENCY 0	OF CALIFO	RNIA DE	PARTMENT	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	ESOURCES					

331

AREA
MADERA
FRESNO -

			Specific					E	milligrams per liter	oer liter				Mineral constituents in	constitue	ants in	
Number	Temp.		conduct-		Mineral	Mineral Canstituents in	c	ŭ ŭ.	quivalents ercent reac	equivalents per millian percent reactance value				parts 1	parts per millian	ian	
	Sompled	Ξ.	micro-	Calcium	Magne- sium	Sodium	Potas- sium	Corbon-	Bicar- bonate	Sulfate	Chlo-	role	Fluo- ride	Boron	: <u> </u> 8	TDS Camputed	TOTAL
Date Sampled Agy. Time Call.	•	<u>.</u>	mhas. at 25°C)	3	S	ž	2	ő	HCO.	ç	Ū	02	u	æ	, 018	Evon 180°	0,000
145/18E-26N 1 M 7-24-57 5000	71	7.5	640	2.51	22 1.81 28	47 2.04 31	0.15	, 0	23. 3.92 59.	0.52	1.97	15.0	0	0.26	702	454	218
-26N 1 M 7-20-60 5050	9	7.6	654	56 2.79	23 1.89 29	41 1•78 27	0.13	0	256 4 • 20 65	0.35	63 1.76 27	11.00.18	0 • 2	0.07	69	411	234
7-30-62 5050	70	89 • i	857	38 1.90	4 • 8 5 5 2 2	57 2.48 26	7 0 18	0	υ • ω • ω • ω	31 0.65	105 2 • 96 33	27 • 0 0 • 44 5	0	00 • 0	71	547	338
-26N 1 M 8-13-63 5050	i	<u> </u>	559	!	i i	1.78	1	1	1	1	1.69	I I	1 1	0.10	1		175
145/19E- 7M 1 M 7-29-58 5631	1 1	80	438	2.30 5.00	14 1•15 25	23 1.00	7 0.18	8 0.27 6	220 3 .6 1 78	0.19	0 15	7.2 0.12	0 • 5	0.04	48	322	173
7-20-60 5050	69	8 • 4	431	38 1.90 42	18 1•48 32	1.04	0.15	0.13	230	0.15	16 • 45 10	8 • 4 0 • 14	FI • 0	0.07	ω Ω	320	169
- 7M 1 M 6-20-62 5641	71	4.	96+	42 2•10 40	21 1•73 33	1 23 23 23	7 0.18	0.13	2 6 3 4•31 83	0.17	15 0 • 42 8	11.0 0.18 3	0 • 1	0.11	77	343	192
- 7M 1 M 6-13-63 5050	! !	0	503	2.20 41	1.73	30	0.18	0	276 4•52 86	0.19	13	12 • 0 0 • 1 9 4	• • •	0.04	74	346	197
145/19E-14P 1 M 10-24-62 5050	68	7.9	290	13	0 0 0 25 5	1 0 0 4 0 8	0 0 0	0	101	20 0 42 16	0.20	20.0 0.32 12	0	000	34	185	99
-14P 1 M 6-13-63 5050	ì	7.4	261	12 0•60 24	0 • 5 8	28 1•22 49	0 • 0 8	0	1.70	0.19 8	0.23	16.0 0.26 11	0.1	0 0 8	47	181	59

								8	millianame nor liter	r liber							
State Well	Тетр		conduct-		Mineral Co	neral Constituents in		9 0	equivalents per million percent reactance value	er million ance value				Mineral constituents in parts per millian	neral constituents parts per millian	ints in	
	Sampled	Ξ,	ance (micro-	Calcium	Magne-	Sodium	Patas-	Carban-	Bicar-	Sulfote	Chto-	. Z.	Fluo-	Boron	ij 8	Computed	TOTAL
Date Sampled Agy. Time Coll.		<u> </u>	mhas at 25°C)	3	Wg	Š	×	8	HCO 3	50 4	σ	۳ 0 2	ı.	œ	SIO 2		°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
145/19E-2UM 2 M 6-12-63 5050	1	7.7	331	24 1.20 37	11 0.90 28	0.96	0.18	0	134 2•20 70	8 0 • 17 5	19 0.54 17	15.0 0.24	0	0.07	74	246	105
145/19E-28P 1 M 6-26-63 5050	8 9	8 • 0	1040	98 4.89 4.7	2.63	61 2.65 25	0 933	0	474 7•77	21 0 44	66 1.86 18	3.9 0.06 1	0	0.14	73	603	376
145/19E-29A 1 M 6-26-63 5050	65	α • Σ	928	3.69	3.37	2.96 2.96 2.96	11 0.28 3	0	527 8 • 64 84	14 0.29 3	1.38	0 • 0	0	0.27	67	584 565	353
145/19E-31A 1 M 4-30-52 5050	70	7 • 7	594	2 50 4 3	23	31	0.13	0	222 3•64 62	0.31	1.69	15.0	0	0	67	375	220
-31A 1 M	9	7.3	851	3.89	3.37	41 1•78 19	10 0.26 3	0	368 • 03 66	9 0 19	2.65	14 • 0 0 • 23 3	• 5	60	3	536	363
14S/20E- 2Q 1 M 6-10-64 5050	73	7 • 7	391	28 1.40 35	19 1.56	0.87	0 13 3	0	189 3•10 79	0.12	13	20 · 0 0 · 32 8	1	0	1	204	148
145/20E- 3C 2 M 8-27-59 5060	!	7.7	ļ	23 1•15 36	1.07	19 0.83 26	0.15	0	148 2•43 76	0.15	0.31	19.9 0.32 10	0	i	1	172	111
- 3C 2 M	72	7 • 7	348	26 1.30 37	1.15	20 0 87 25	0.15	၁	157 2•57 77	7 0 15	12 0 • 34 10	18.0 0.29	1	0•10	-	180	123
145/20E- 3M 1 M 6-13-63 5050	74	7.9	395	32 1.60 41	14 1•15 29	24 1•04 26	0.15		173 2•84 73	8 0•17 4	17 0•48 12	24.0 0.39 10	• 0	0.13	77	287	138
145/20E- 5H 1 M 8-27-57 5060		7 • 4	!	21 1.05 35	13 1.07 36	17 0•74 25	0.13 4	0	134 2•20 79	0 • 12 4	0 52 6	12.4 0.20	0•1	1	ŀ	149	106
DWR 1982			STATE (OF CALIFOR	NIA - THE R	RESOURCES	AGENCY 0	OF CALIFO	RNIA - DEI	PARTMENT	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES			1		7

	TOTAL	2 G G	102	173	0	57	66	41	144	51	148	140
			1 1 4			3	7 7	9				9
vents in Ilion	Camputed	Evap 180°C	15.	308	22,	30	369	563	22.	315	300	293
neral constituents parts per million	SE 8	510 2	ł	6 8	73	76	74	78	1	73	6 2	80
Mineral constituents in parts per million	Boron	60	00.0	0.04	0	0.07	0.07	00000	l •	0.10	!	0.02
	Fluo- ride	u.	1	0•1	1	0.2	0 • 2	0	0	0 • 1	!	0.0
	N: trate	ε 0 2	14.0 0.23 8	5 · 8 0 • 0 9 2	15.0 0.24 8	32.0 0.52 13	41.0 0.66 13	25.0 0.40 10	27.4 0.44 11	28.0 0.45 10	6.0 0.10 2	16.0 0.26 6
	Chlo- ride	Ū	0.25	29 0.82 17	10	18 0.51 12	26 0•73 14	24 0.68 17	24 0•68 17	24 0•68 15	28	200.56
milligrams per liter equivolents per million percent reactance value	Sulfate	\$0.	0.15	15 0 31	0 4 80 80	13	0.35	15 0.31 8	13	17	0.12	9 0 19 5
milligrams per liter equivolents per mill percent reactonce v	Bicar. banate	нсо з	132 2•16 77	212 3•47 74	138 2•26 79	173 2•84 6 9	215 3•52 67	162 2•66 66	158 2 59 65	180 2.95 67	183 3.00 75	167 2•74 67
Eŭā	Carban- ate	, co	0	0	0	0	0	0	0	0	0	10 0.33 8
c	Palas. sium	×	0.13	0.13	0.00	7 0•18	8 0.20	7 0.18	0.15	0.15	0.10	0.15
onstituents i	Sodium	ž	0.74	24 1.04 22	0 883 28	21 0•91 22	1.17	24 1.04 26	1.13	1.22 1.22 2.8	22 0•96 24	1.09
Mineral Constituents in	Magne- sium	Wg	12 0.99 34	1.56 3.4	13 1.07 37	1 1 4 3 3 5	1.23 2.3	1.32	16 1•32 32	1.32	1.40	1.40
Min	Calcium	კ	1.05	38 1•90 41	0.95	1 6 8 9 9	2.74 51	30 1.50 37	31	34 1•70 39	1 • 55 99	28 1•40 35
Specific conduct-	(micro-	mhos at 25°C)	289	1	285	425	531	415	1	4 4 8	4 0 0	383
	Ξ.		7.6	7.8	8 • 0	7 • 8	7.5	7.7	7.6	7.8	7.07	8.6
Temp	Sampled		71	i	76	74	70	71	!	73	1	72
		Agy. Coll.	- 1 M 5050	1 M 5702	5000	1 M 5050	1 5050	1 M 5050	1 1 M 5060	1 1 M 5000	1 M 5702	1 1 M 5050
State Well Number		Dote Sampled, Time	14S/20E- 5H 6-10-64 5	14S/20E- 8A 5- 2-47 5	- 8A 1 10-19-51 50c	- 8A 4-15-59 5	- 8A 7-16-63 5	145/20E- 9N 1 5-12-52 5UD	- 9N 1 8-27-57 50	- 9N 1 4-15-59 50	14S/20E-10M 1 M 5- 2-47 5702	-10M 1 8-30-51 50

MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	\vdash		C C0C0 3	140	129	8 131	9 110	0 134	7 276	3 192	7 157		0 131
vents in	10S	Computed	Evap 180 C	28	25	178	22 21 21	260	437	300	233		2 2 2
neral canstituents parts per million	Sili	8	510 2	80	29	1	7.8	73	42	36	1	-	63
Mineral constituents in parts per million		5	80	0 • 5 0	46.0	0000	0.57	0	• •	0 • 0 5	ł	1	90.0
	Fluo-	e più	F	0.0	i	1	•	0 • 1	0 • 2	0 • 2	0.1	1 1	0•1
	Ż	4	NO 3	22.0 0.35 9	14.0 0.23	20.0 0.32 10	9 • 8 0 • 16 5	11.0 0.18	25 • 0 0 • 40 6	16.0 0.26 5	25•3 0•41 9	2 6.0 0.42	16.0 0.26 7
	Chlo	e pi	ō	18 0•51 13	13 0•37 10	11 0•31 9	0.20	16 0•45 13	1 . 35 20 20	40 1•13 22	15		11 0•31 9
milligroms per liter equivalents per millian	a Pillo		50 4	9 0•19 5	8 0.17 5	0.12	0 • 0 • 0 8 0	8 0 • 1 7 5	18	10 0 • 21	13 0 • 27 6	-	0.19
milligroms per liter equivalents per mil	Bicar-	panate	нсо з	172 2•82 73	172 2.82 79	158 2.59 78	151 2.47 85	169 2•77 78	283 4.64 69	212 3•47 68	204 3•34 75		169 2•77 78
	l è	e e	CO 3	0	0	0	0	0	0	0	i	ł	0
Mineral Constituents in	Patas-	E	¥	0.13	0.10	0.10	0.13	0.15	0.18	0.10	0.18	i i	0 1 0 0
	Codium		Z	23 1.00 25	19	17 0•74 21	15 0.65 22	0.83	27 1•17 17	1.17	1.09	1	0.96 26 26
Mineral C	-eußoW	En:	Mg	1.40 36	1, 23, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	1.32 1.38	14 1.15 39	1.5 1.23 34	18 1•48 22	1.73	18 1•48 34	1	1.32
	anii ja		3	28 1•40 36	1.35	1.30	21 1.05 35	29 1•45 40	81 4, 04	42 2•10 41	1.65 38	!	1.30 35
Specific conduct-	ance	mhas	at 25 C)	378	347	340	277	367	672	511	}		359
		<u>a</u>		7•6	7 • 8	7.8	7•7	.—i	7 • 7	8 • 1	8		7.5
Temp	when			<u> </u>		73	1	73	1	i a	1	73	}
	ļ	Agy.	,	M 1 M 5000	F 1 M 5200	F 1 M 5050	M 1 M 5000	M 1 M 5050	A I M 5050	R 2 M 5000	E 1 M 5060	E 1 5050	E 1 M 5050
State Well		Date Sampled	allille	14S/20E-10M 10-17-51	145/20E-14F 10-17-51	-14F 6-10-64	145/20E-15M 1 10-17-51 50	-15M 1 5-16-63 50	14S/20E-19A 7-17-63	145/20E-34R 8-22-63	145/21E- 6E 11-19-62	5-16-63	- 6E 10-29-63

State Well			Specific		Windrad	Mineral Constitutions	,	E 6	milligrams per liter equivalents per mill	milligrams per liter equivalents per million				Mineral canstituents in	anstitue	nts in	
Number	Temp.		canauci			r sillaniii silo	•	. 0.	ercent rea	percent reactance value				parts	parts per million		
\vdash	Sampled	Ŧ.	(micro-	Calcium	Mogne- sium	Sodium	Potas- sium	Carbon- ofe	Bicar- bonote	Sulfote	Chlo-	- Z-	Pluo.	Boran	SIĘ 8	Computed	TOTAL
Date Sampled Agy. Time Calt.			mhas at 25 C)		& W	ž	¥	8	HCO 3	504	ΰ	NO 3	u	æ	SiO 2	Evap 180°C	% CoCO 3
145/21E- 9R 1 M 5-28-63 5050	7.1	8 .3	452	1.95	1.73 1.73	1.09	0.05	0	219	0.31	15	21.0	0.1	0.05	47	293	184
14S/21E-13B 1 M 9- 7-56 5050	}	7•3	599	31 1.55 25	33 2 - 7 1 4 4	1.87	0.08	0	213 3•49 57	79 1 .6 4 27	23 0.65 11	21.0 0.34 6	0	0.01	68	406	213
14S/21E-23F 1 M 6- 4-64 5050	1	8 • 4	434	30 1 • 50 34	1.00 1.00 1.00 1.00	30 1-30 29	0 0 0 0 0	0.13	196 3•21 73	24 0.50 11	12 0•34 8	12•0 0•19	-	0000	1	230	153
14S/21E-27R 1 M 7-24-57 5050	69	7.5	694	1.90	1.56	1.30	0 • 10 2	0	226 3•70 74	23 0 • 48 10	21	13 • 0 0 • 21 4	0	0 • 0 2	09	319	173
14S/21E-30N 1 M 6-13-63 5050	1	7.9	381	31 1.55	16 1.32 34	21 0.91 24	0 0 0	0	162 2.66 70	0.15	24 0•68 18	19•0 0•31 8	€ • •	0.24	0 7	241	144
14S/21E-34J 1 M 9- 7-56 5050	1	7.6	281	22 1•10 37	11 0.90 31	20	m & m	0	134 2 20 75	0.19	14 0 • 39 13	10.0	0•1	000	64	204	100
145/22E- 1B 1 M 7-21-60 5050	8 8	8	242	21 1.05 43	90.74	0.65	0 0 0 0 1	0	102	22 0 • 46 18	0.20	11.0	0	90•0	4 9	185	06
145/22E- 4R 1 M 9- 7-56 5050	1	8•1	270	18	15	18 0•78 26	0 0 0 0 0 0 0	0	160 2.62 88	0.15	0 • 14 5	4•3 0•07	0	0	47	195	107
145/22E- 9P 2 M 6- 4-64 5050	42	7.9	256	22 1•10 39	10	200.87	0 0 0 2	0	140 2.29 84	0.15	0.17	7•2 0•12	1	0	1	143	96
145/23E- 3G 1 M 6- 4-64 5050	70	7.0	192	1.00	0 • 5 8 3 0	0.30	0.03	0	92 1.51 79	10 0•21 11	0.11	5 • 0 0 • 0 8 4	+	0000	1	99	79

State Well		Тепр		Specific canduct-		Mineral Ca	Mineral Canstituents in		E & &	milligrams per liter equivalents per million percent reactance value	er liter ver million ance value		1		Mineral constituents in parts per million	neral constituents parts per million	ints in	
Laguion	, <u>"</u>	when	I	ance (micra-	Calcium	Magne	Sodium	Patas-	Carban-	Bicor-	Sulfate	Chlo	Ż	Fluo-	Boron	Sili	TDS	TOTAL
Date Sampled Ag	Agy. Coll.	, u	۵.	mhos at 25 C)	კ	. W	ž		9	HCO 3	50 4	. J	e 0 2	. u.		SiO 2	Evap 180°C	os CaCO 3
145/23E- 8D 1 M 8-13-63 5000	Σ O C	89	7.3	215	0 80 41	10 0 82 42	0.30	0.05	0	1.56 1.56	0.15	5 0 14	9 9 15 8	0	00.0	56	129	81
14S/23E-20F 2 M 8- 4-59 5050	ΣΟ	76	89	191	1	!	-	į	0	108	;	0 0 0 0	I I	1	1	-		74
145/23E+33C 1 M 9-15-58 5050	ΣΟ	0.2	6•7	367	34 1.70 49	13 1.07 31	14 0 • 61 18	0 0 0 0 0	0	114 1•87 54	44 0 • 92 26	0.17	32. 0.52 15	0	0	, 1	215	139
145/24E- 9P 3 M 6- 4-64 5050	ΣΟ	92	7 • 6	349	32 1.60	13 1 • 0 7 3 1	16 0•70 20	0 0 0 0 0	0	161 2•64 78	8 0 17 5	0.23	22 0 3 5 1 0	1	0	1	181	134
145/24E-14B 1 M 7-21-60 5050	Σ Ο	,0 ,U	7 • 8	239	1.00	0.82	0.39	0 0 0 0 0 0 0	0	1.23	32 0 67 28	0 14 0	21.0 0.34 14	0	0 0 0	53	165	91
145/24E-36L 1 M 8- 8-63 5000	E 0	22	7 • 5	7 4 4	1 • 90 40	17	1 ° 8 ° 1 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2	0 0 8	0	218 3•57 76	0.23	14 0 0 3 9 8	30.0 0.48 10	0 .2	0 9 • 0	0	302	165
155/17E-14G 1 M 2- 4-53 5050	ΣΟ	1	7•7	542	1 • 66 9 9 55 9	9 0•74 15	59 2 51 51	0 10 2	0	140 2.29 46	14 0.29 6	2.43 48	0.01	0	000	e e	327	120
-14G 1 M 4-20-54 5050	Σ O	74	7•7	2300	203 10.13 48	3.54	167	10	0	164 2•69 13	27 0 • 56 3	620 17.48 84	2.0	•	0.26	9	1216	684
-14G 1 M 9-29-55 5050	ΣΟ	į	1	5590	ł	!	602	1	i	[1	1790	;	1	-	1		1300
-14G 1 M 10-18-55 5050	٤٥,	7.1	Ĭ	8320	ł	!	946	-	l	1	1	2700	1	1	2 • 70	1		2100
DWR 1982				STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE S	RESOURCES	AGENCY C	JF CALIFO	RNIA - DE	PARTMENT C	JE WATER RI	ESOURCES					

State Well				Specific		Mineral	inerol Constituents in		E 3	milligrams per liter equivalents per mill	milligrams per liter equivalents per million				Mineral canstituents in	canstitue	ents in	
Number		Temp		-dugace-						ercent reac	percent reactance value				parts	parts per millian		,
-	\top	Sampled	Ŧ _a	(micro-	Calcium	Magna- sium	Sodium	Palas- sium	Carban- ate	Bicar- banate	Sulfate	Chlo- ride	Ni. trate	Fluo- ride	Boron	Siļ 8	Computed	TOTAL
Date Sampled Time	Agy. Coll.			mhos at 25°C)	3		ž	~	9	HCO 3	Sos	ō	S O Z	u.	æ	SIO ,	Evap 180°C	# O
155/17E-14G 9-27-56 50	5050	20	1	397	1	1	3.48	1	t t	1		59	1	1	0 0 8	1		11
-14G J	5050	62	7.5	413	0.15	0.08	3.48 9.1	0 10	0	128 2•10 54	0.08	1.69	1.0 0.02	0.2	0 • 0 4	9 9	282	12
-146 J 7-30-58 50	1 M 5050	68	8	456	0.35	0	3.91 90	0.10	8 0.27	138 2•26 51	0.04	64 1 • 80 41	1.0	0	0.16	9	310	18
-146 J	5050	105	7 • 4	645	0.65	0 23 3	112	0.10	1	133 2•18 37	4 0•08 1	127 3•58 61	0 • 3	0 4	0.01	9	389	4 5
-146 7-21-60 50	5050	{	8.1	885	31	0 9 4 9	136 5 • 91 73	0.10	0	116 1.90 24	0 • 08 1	215	0.6	0 4	0.20	49	518	102
-146 1 8-22-63 500	5000	1	Ο • •	855	23 1•15 15	0.16	141 6•13 81	0.13	0	138 2 • 26 30	0 0 0 0 H	186 5•25 69	e • •	0 4	0.16	41	470	99
15S/17E-15H 4-20-54 5(1 M 5050	1	8 • 1	1090	0.60	0.16	217 9•44 91	0.13	0	244 4 • 00 3 8	0	212 5•98 57	0 • 0	ε • •	0.77	67	9	38
-15H 10-18-55 50	1 M 5050	73	1	1070	1	!	214	1	-	ļ	Î	192	1	1	1 • 40	1		35
-15H 7	1 1 M 5050	74	0.8	1080	12 0 • 60 6	0 0 0 1	214 9 • 30	0 13	0	252 4•13 40	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	202 5•70 55	0	4.0	1 • 80	67	651	34
-15H] 7-13-59 50	1 1 M 5050	72	7.4	1090	10 0.50 5	0.08	222 9•65 93	0.10	0	248 4•06 40	26 0.54 5	198 5•58 55	0.01	9.0	2.00	61	647	29

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & g	milligrams per liter equivalents per millian percent reactance value	er liter ser million ance value				Mineral canstituents in parts per million	neral canstituents parts per million	in strain	
-	Sampled	Ŧ	micro-	Calcium	Magne- sium	Sodium	Potos- sium	Carbon- ate	Bicar- bonate	Sulfate	Chlo- ride	trote	Fluo- ride	Boran	∏ 8	Computed	TOTAL hardness
Date Sampled Agy. Time Coll.	°		mhos at 25°C)	ც	Mg	Z	×	co 3	нсо з	504	σ	NO 3	u	89	510 2	Evap 180°C	coco 3
15S/17E-15H 1 M 7-19-60 5050	7.3	8 • 4	1007	0.55	0	216 9•39 93	5 0•13	0.20	235 3 85 40	12 0.25 2	201 5•67 56	0.01	4 • 0	1.40	67	642	28
155/18E-16G 1 M 8-13-53 5050	73	7.8	ମ ପ ପ	1.022 3.33	7 0.58 17		7 0.18 5	0	136 2.23 68	0.12	28	8 0 1 3 4	0•1	0 • 0	7.7	257	84
-16G 1 M 5-24-54 5050	!	1	छ (१ (१		1	1	1	ł	1	0.12	29	1	1	-	1		
-16G 1 M 7-28-55 5050	74	1	795	1	i i	40	1	1	1	1	0.00	•	1	1	i		8 6
-16G 1 M 8- 6-57 5050	74	7.3	5 6 6	1.10	0.49	1.57	0.18	0	137 2•25 69	0.15	0.76	7 • 7 0 • 12 4	0	0	75	255	0
-16G 1 M 7-13-59 5050	44	α • I	346	25 1.25 37	5 0 • 41 12	ี้ ผ <i>น</i> ่ ขรา	7 0.18 5	0	142 2.33 70	0.12	23 23	0 0 1 0 4	0	0	70	253	89
-16G 1 M 7-19-60 5050	72	89	326	1 9 8 8 8	0 4 % %	1 6 4 0 5 4	0.18	0	140 2•29 71	0 • 10	25 0•71 22	7.9	0 • 2	0.07	74	252	42
-16G 1 M 7-30-62 5050	74	80 W	349	1 825 955 85	0.49	1 • 6 • 6 • 6 • 6	0.18	0 17	144 2•36 67	0 0 0 8 0 2	25 0•71 20	13.0	•	0	34	278	8 7
-16G 1 M 6-11-63 2631	1	1	377		1	27	1	ŧ	1	8	27	1	1	0.07	1		113
155/18E-20G 1 M 8-13-53 5050	73	2 · 2	372	20 1.00 29	2 0•1 6 5	48 2.09 61	0.18	0	136 2•23 63	9 0•19 5	38 1•07 30	4.3 0.07 2	0 • 2	40.0	70	265	rð Ø
DWR 1982			STATE	STATE OF CALIFORNIA		RESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT C	- THE RESOURCES AGENCY OF CALIFORNIA . DEPARTMENT OF WATER RESOURCES	SOURCES					

	TOTAL	80	CoCO 3		62	6.0		o ®	70	92	190	184	100
ents in ion	Computed		Evap 180 C			278		277	280	251	549	336 342	204
neral constituents ports per million	Sil.	3	SIO ₂	l t	Ī	71	i	79	69	Q,	70	47	1
Mineral constituents in ports per million	Boron		æ	1	-	0 • 0	-	90 • 0	0.14	000	0	0.07	0 • 00
	Fluo		u.	!	1	0 • 2	1	0 • 3	• •	0.2	0	0.2	-
	Ž ž		ε 0 3	-	1	4 • 7 0 • 0 8 2	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13 • 0 0 • 2 1 6	0 0 0 • ' <i>u</i> ' • 0	5.7	7.1 0.11 3
	Chlo		ō	1.18	1.18	1.18 32	1.18	1 • 2 1 3 2 3 2	42 1•18 32	18 0 • 51	1 • 0 0 0 1 0 0	51 1•44 27	30
milligrams per liter equivalents per million percent reactonce value	Sulfate		504	0.17	1	0.15	i i	0 910	8 0•17 5	0.23	32	26 0 • 54 10	26 0.54 15
milligrams per liter equivalents per mill percent reactonce v	Bicor		нсо з	!	1	139 2.28 62	i	143 2•34 61	140 2•29 61	153 2•51 73	331 6.91 75	198 3•25 61	128 2•10 58
E & G	Carban-	ŝ	803	1	1	0	1	0	0	0	0	0	0
۔	Potas-		×	1	1	0 2 5 5	{	0.18	0.18	7 0.18 5	13	0.18	0.18
Mineral Constituents in	Sodium		Ž	1	55 2 • 39	54 2.35 62	1	2.30	2 0 0 0 0 0 0	36	2.17 2.2	36 1.57 29	33 1•43 40
Minerol C	Magne		Wg	1	1	0.25	1	0 5 3	0 O	7 0.58 16	8 9 9 8 4 4	12 0.99 18	0.25
W	Calcium		კ	{	1	20 1 000	1	22 1.10 29	1. 15 30	1.25 3.5 3.5	3.97	2. 2.69 50	35 1.75 4.8
Specific conduct-	micro-	mhos	at 25 C)	377	389	ک 5 کا گ	403	402	389	340	758	547	386
	Ξ,	a.		1	<u> </u>	7.5	1	8 • 1	8.1	0 •	7.6	○ • ¤	8 • 2
Temp.	Sampled			:	73	72	1	74	70	7.1	8 9	1	71
		Agy.		5 1 M	1 M 5050	G 1 M 5050	5 1 M 5001	G 1 M 5050	1 M 5050	1 M 5000	1 M 5000	1 M 5000	1 1 M 5050
State Well		Date Sompled	lime	155/18E-20G 5-24-54 5	-20G 1 M 7-28-55 5050	-20G 1 8- 6-57 505	-20G 1 2-18-58 500	-20G 1 7-13-59 505	-20G 1 M 7-19-60 5050	155/18E-36A 1 M 8-14-63 5000	155/19E-15C 1 M 8-14-63 5000	155/196-22M 1 M 8-29-63 5000	155/19E-25A 1 6- 4-64 500

SEMI-CONFINED AQUIFER

ANALYSES OF GROUND WATER MINERAL

AREA FRESNO - MADERA

hardness C₀C₀3 TOTAL 386 112 154 228 383 333 237 346 202 113 Evop 180°C Computed Mineral canstituents in parts per millian 510 2 99 50 55 53 30 40 1 1 39 į Sili: 0.20 0.10 0.10 0.03 00.0 00.0 0.12 0.14 00.0 i Boron 0.3 6.9 0.1 0.2 0.1 0.1 0.0 1 ! 1 Fluo-ride 3.5 23.0 13.0 0.21 7 29.0 26.0 0.42 8 11.0 0.18 5 2.4 3.0 3 • 5 0 • 0 6 3 0.05 STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES 1 후 17 0•48 17 27 0•76 12 35 0 • 99 15 24 0•68 13 30 8 8 5 22 51 1•44 26 21 0.59 16 0.03 16 음 Ü 4 4 4 9 0•19 7 17 9 0•19 3 22 0•46 9 12 31 0.65 12 18 6 0•12 9 percent reactance value 10 equivalents per millian ŀ Sulfate So A milligrams per liter 288 106 1•74 87 215 3.52 67 157 2•57 67 168 2•75 73 120 1•97 69 324 5•31 81 187 3.06 74 1•21 86 84 1•38 Bicar-banate HCO 3 0.17 0 0 0 0 0 0 0 \circ Carbon-8 ote 0 0 8 0.08 0.08 3 0 0 0 2 0.08 0.10 0.05 4 0.10 7 0.18 6 4 Potas-¥ Mineral Canstituents in 34 1•48 50 42 1.83 29 2.35 20 0•87 16 1 9 0 0 9 2 9 3 3.09 37 11 0.48 35 35 1.52 72 -Sodium ₽ 5 0 • 41 29 0.08 4 0.33 24 1•97 31 2.14 3.2 23 1•89 35 5 0•41 11 15 1 • 23 23 9 0•74 19 1 Mogne-sium W 2.45 2.45 39 8 0•40 19 21 1.05 19 28 1•40 36 9 0 45 32 19 0.95 32 41 2.05 31 51 2.54 47 39 1.95 52 1 გ 139 286 614 501 372 247 383 384 at 25°C) 197 584 Specific conductmicromhas ance ±a 8.4 7.6 8.0 7.44 8.0 7.8 8 . φ. 4 o • 8 1 Sompled 29 70 29 20 89 72 l 99 1 74 Temp - 3D 1 M -59 5050 6L 1 M 3 5000 5050 1 M 5050 155/19E-28E 1 M 8-14-63 5000 Σ 5050 155/20E-31K 1 M 5050 S/20E-36H 1 M 9- 3-56 5050 15S/21E- 2K 1 M 6-15-64 5050 155/21E- 3D 1 M 5-21-52 5050 Agy. Coll. 15S/20E-10D 3 -10D 3 15S/20E-36H 1 15S/19E-26F 6- 4-64 5 State Well Number Date Sampled 7-21-60 7-22-59 8-14-63 7-30-58 8-56 15S/20E-

210

221

24

64

222

118

107

114

DWR 1982

139

43

	ī	<u> </u>	6 4		<u>σ</u>		144		89		43		74		19		237		36		97	
	TOTAL	CoCO	2	+	14.														13			
	<u>201</u>	Computed Evap 180 C		924	327		335		335		99	717			32	2	473	_			170	
	Silit	S OS			39		38		33		ļ		-		1		54		1		1	
	Boron	æ	0.10		0.11		0.07		0.11		00.0		1		00.0		0.10		ł		00.0	
	Fluo-		!		0.2		0.2		0.1		1		1		1		0 • 2		1		1	
milligrams per liter equivalents per million percent reactance value	Ä	0 2	, I 💌	0.0	• ·	0.34	19.0		16.0	0 m	3.5	9 S	1		0 0	2	26.0	9	1		28.0	15
	Chlo	. J	(n)	1.02	9	9 6	33	7	4 -	1.18		80.0	C	•	(0 O	69	2	16	† •	11	10
	Sulfate	Ş	4 10 0	1.08	2	10	29	-	C1 -	Ο • 4 • 8	•	10	ł			•	41		1		7 21.0	1
	Bicor-	, OJH	36	0 0 0 0 0 0	\sim	8. 6. 6. 6. 6.	219)	22	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	1-00		0 • •	32	•	246	40	196	•	131	70
	Carbon-	် ဝိ	0		0		0		0		0		0		0		0.00	1	0		0	
	Potas-		٬ ا ،	0.13	(2 2 2	4 0 10	1	-	0.10	•	0 0 0 0 4	1	-		0 0	40.	•	-		20.05	•
	Sodium	ž	ω,	3 • 8 4 3 6 4	v)	7 * * * * * * * * * * * * * * * * * * *	53	4	ω,	3.61 66		06.30	1		4 7	-2	64	· w	i		25	, ω
	Magne-	*	ויי	1.48		0.90	10	,	13	1.07		0.25	-		1	•	14	-	1		6	7
	Colcium	5	~	8 9 9 9 9	cη (1.95	41	39	14	0.0	12	0.60	i		9 0	52	3.59	47	1		24	39
Specific conduct-	mhos at 25 C)	834		510		550		533		138		208		62	-	731	_	644		319		
	H d				80 • •		8 • 2		8.2		7.2		7.8		7.7		8 • 4		8.2		7.9	
Temp	when	e.	7.0		78		73		89		89		1	7	63		1		1		69	
State Well Number Date Sampled Agy. Time Coll.		Agy. Coll.	Σ ,	0 0 0	Σ (000	. 1 M		Σ X	ე ი ი	J 1 M	0 0 0	3080 M) n o	Σ)))	1 M)))	80 G		1 M	
		-17F	6-15-64	155/21E-24L	7-21-60	-24L		/5	9616 6	٦,	9 - 17- 9 4	155/22E- 3D		/22E-10F		15S/22E-33G 1 M 8-21-63 5000		155/23E-33C80	66-22-1	15S/24E- 3A 6- 4-64	5	

MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

State Well Number	Temp		Specific conduct-		Mineral Co	Mineral Constituents in		E & &	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	nts in on	
	Sampled	I	micro-	Calcium	Magne	Sodium	Potas-	Carban	Bicor.	Sulfate	Chlo	ž t	Fluo-	Boron	Sil:	Somourad	TOTAL
Date Sampled Agy. Time Call.	· •	.	mhas at 25°C)	კ	6 W	ž	¥	9	нсо з	50 4	ō	0 8	u.	80	SIO 2	Evap 180°C	CaCO 3
155/24E- 70 1 M 8-13-63 5000	89	7.5	385	1.85	1.15	0.87	0.05	0	168 2.75 70	16 0.33 8	14 0 39	27.0 0.444 11	0.2	00.0	62	275	150
155/24E-10L 1 M 8-20-63 5000	69	7.6	556	2 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5	20 1•64 29	1.31	0.08	0	2 5 9 5 6 9 6 9	29	0.65	32.0	0 • 2	000	w ®	362	207
155/24E-20A 1 M 11-18-63 5000	62	7.8	270	1.20	0 8 8 0	0.65	0.05	0	121 1•98 73	13 0 27 10	0.25	13.0 0.21 8	!	0.20	ļ	146	101
15S/24E-23K 1 M 3-23-60 5050	1	1	!	1	1	1	i	1	1	1	1	1	1	0	<u> </u>		
-23K 1 M	69	8 1	289	1.35	0.66	0.96	0.05	0	127 2•08 71	0.10	16	19.0 0.31 11	0 • 2	0 • 0 5	8	220	101
-23K 1 M 8-23-63 5050	72	7.9	313	1.35	0.66	21 0.91 31	0 0 2 2	0	128 2•10 71	0 4 & w	16 0 • 45 15	20.0	0 • 2	90.0	6 5	220	101
15S/24E-33R80 M 7-21-60 5050	1	80	507	1.60	1.64	5.2 2.26 4.1	0.03	0.20	249 4•08 74	21 0 44	17	20.0	0 • 2	60.0	1	292	162
15S/24E-36M 1 M 6- 4-64 5050	88	8 0	653	3.39	2.06	31 1.35 20	0.08	0	284 4.65 69	32 0.67	38 1•07 16	23.0	1	0000	l	360 376	273
16S/16E-20N 1 M 7-21-60 5050	1	7.7	2010	147 7.34 29	150 12.34 49	125 5 • 44 22	0 0 0 5	0	196 3•21 13	915 19.05 76	59 1.66	62.0 1.000	0	1.10	5	1603	985
16S/16E-28M 1 M 8-16-51 5050	1	7.5	1721	1	!	176.	1	1	124	760	1 • 69	1	!	1.40	1		615
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	NIA - THE R	FSOURCES	AGENCY (OF CALIFO	RNIA DE	PARTMENT C	F WATER RE	SOURCES					

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

Specific canduct-	Specific :anduct-	1		Mineral Co	Mineral Constituents in		E &	milligrams per liter equivalents per mil	milligrams per liter equivalents per millian				Mineral constituents in	neral constituents	ants in	
ance	ance							ercent reac	percent reactance value	ļ			parts	ber m		
(micro- Colcium		Calçium		Magne- sium	Sodium	Patas- sium	Carban- ate	Bicar. banote	Sulfate	Chlo- ride	Ni. trate	Fluo- ride	Boron	: <u>†</u> 8	Computed	TOTAL hardness
at 25°C)		ვ		Mg	N _o	¥	co 3	нсо з	504	ū	NO 3	T.	æ	510 2	Evap 180°C	CoCO 3
206 12 0•60 27	9	12 0.60 27		2 0.16 7	30 1.30 59	0.13	0	109 1•79 87	0.02	6 0.17 8	5 • 1 0 • 0 8	0.3	00 • 0	63	178	38
172 5 0.25 15		0.25		0	32 1•39 81	0 0	0	92 1.51 90	0.06	0.11	0.1	4.0	0.02	6 8	161	13
185 0.50 28	° °	10 0.50 28		0.08	26 1.13 63	0 6 8 4	0	94 1 • 54 88	0 • 0 8 0 0	0.11	1.1	0	0.03	45	138	29
177 10 0.50 28		0.50		0 0 0 0 0 0	25 1.09 62	4 0 1 0 6	0	1 . 56 90 90	0.04	0.11	1.4		0 • 0 3	39	133	29
169 0.65	•	0.000		0.08	22 0.96 56	0.03	0	88 1•44 84	0.10	0.17	0	1	i	ł	91	37
334 26 1•30 0	34 26 1•30 40	226	9	0.08	1.83	0.03	0	153	0.33	15	e • 0	0	0.02	36	213	69
161 13	13 0.65 39		0	2 0.16 10	18 0.78 47	0 0	0	1 85 1 80 80	70.15	0.20	•	1	1	1	92	41
3.84 3.84	<u>.</u>	77 3.84 36		0.16	154 6 70 62	0.05	O	143 2•34 22	130 2•71 26	196 5 53 52	0.0	0 • 1	0 • 08	31	663	200
582 1,60	82	32 1.60 26		2 0.16 3	98 4.26 70	0.03	0	269 4•41 73	0 58 10	38 1•07 18	0 • 1	• 0	0.11	}	332	30 30
658 30 1.50 (1,50	30 21 21	0	0.08	126 5•48 77	0.03	0	375 6•15 84	44 0.92 13	10	0•1	0.1	0.18	24	421	79

MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

Number when sampled when sampled Golf. Agy. or colf. Sampled micrometer Scampled Golf. Agy. or colf. P H (micrometer or colf.) SE=35Q 2 M	Mineral C	ieral Constituents in		Ē Ē	milligrams per liter equivalents per million	r liter er million				Mineral constituents in parts per million	neral constituents parts per million	ion sin	
Agy. Sumpled PT mhos mhos coll. F. M. Coll. P. M. Coll. P. M. Coll. P. M. Coll. P. C	\vdash		-	Carbon-	percent reactonce value	once value	Chlo	ž	Fluo-	-	SE!	ZOI	TOTAL
SQ 1 M 73 7.9 464 5050 73 7.9 464 5000 73 8.1 359 FE 1 M 70 7.8 394 5050 70 7.8 394 FR 1 M 72 7.9 141 5050 70 7.8 394 FR 1 M 72 7.9 141 5050 70 7.8 394		Sodium	siom mois	ę,	bonote	Sulfote	ab i	trote	abir	Boron	8	Computed	hardness
SQ 2 M	Co Mg	Z	¥	° 0	нсо з	SO 4	ō	NO 3	<u>.</u>	89	SIO 2	Evap 180°C	CaCO 3
SO 1 M 73 7.9 464 5000 73 8.1 359 5050 7.8 394 5000 7.8 394 5000 7.8 394 71 M 72 7.9 141 5050 7.9 146 71 M 74 7.9 146	39	2.35	0.03	0	113 1.85 47	38 0 79 20	1 • 2 4 3 2	1 • 8 0 • 0 3 1	0 • 2	0.02	55	250	75
1 M 73 8.1 359 1 M 70 7.8 394 5000 8.0 246 5000 1 M 72 7.9 141 5050 74 7.9 146	2.35 5.5 8	- - - - - - - - - - - - - - - - - - -	0.10	0	117	24 0 • 50 12	1.41	24•0 0•39 9	0 • 1	90 • 0	31	277	134
1 M 70 7.8 394 5000	35 4 1.75 0.33 52 10	1.17	0.13	0	98 1•61 49	19 0•40 12	1.13	7.2 0.12	-	00 • 0	ţ	238	104
1 M 74 7.9 141 8.2 450	35 1.75 0.58	1.78	0.05	0	134	20 0 4 5	36	•	-	1	i		117
1 M 72 7.9 141 5050 1 M 74 7.9 146 5050 1 M 71 8.2 450	1.20 0.08 51 3	1.00	m & m 0	0	98 1•61 70	11 0.23 10	16 0 • 45 20	φ •	0 • 1	0	39	166	4
4R 1 M 74 7.9 146 5050 2P 1 M 71 8.2 450	8 0.40 27 5	0.96	0 0 0 3	0	1.34 89	0.04	0 0	3 · 1 · 3 · 1	0	• 0 3	30	110	24
2P 1 M 71 8•2 450	1	1	ł	0	1.13	1	1	1	-	1	-		7,
	41 10 2.05 0.82 45 18	1.57	0 0 0 0 0 0 0	0	182 2•98 69	18 0 • 37	25 0 • 71	18.0 0.29	1	00.	1	275	144
165/20E-18G 1 M 9.3 1 11- 7-61 5060 9.3 4	0.05	1.22 1.22 94	0.03	0.13	59 0.97 78	0.04	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	φ •		;	73	M
8-16-63 5000 75 7.4 134 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 0 0.15	0 28 1 0 71 3 2 0.05 1.22 0.03 1.16 0.06 0.06 0.01 87 2 90 5 5 5	0.03	0	71 1.16 90	0 0 0 0 0 0 0	0 0 0 0 0 0	0 • 0 1	т •	0 0 0	17	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	20

TABLE E-2 SEMI-CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER

AREA

FRESNO - MADERA

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Canstituents in		Eag	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reoctance volue				Mineral constituents in parts per million	neral constituents parts per million	ents in ion	
-	Sampled	±_	micro-	Calcium	Magne- sium	Sodium	Patos- sium	Carban- ate	Bicar- bonote	Sulfate	Chloride	r tot	Fluo- ride	Boran	ii 8	Computed	TOTAL hardness
Coll.			at 25°C)	3	Mg	Š	¥	co 3	нсо з	504	CI	NO 3	F	8	SIO 2	Evap 180°C	CaCO 3
16S/21E-21F80 M 7-30-62 5050	69	8.2	228	22 1•10 48	0	1.13	0.08	0	102 1•67 70	0.17	12 0•34 14	12.0 0.19 8	0 • 1	00•0	33	166	S
16S/21E-30R 1 M 9-17-58 5050	70	7.9	293	1.35	0.08	1.17	0.05	0	94 1.54 76	0.17 8	0.06	16.0 0.26 13	0•1	0.16	22	151	7.2
16S/21E-35P 1 M 8- 9-63 5000	69	7.9	482	51 2.54 52	10 0.82 17	34 1.48 30	0 0 0 8	0	190 3•11 64	19 0•40 8	36 1•02 21	22.0 0.35	• 0	0000	37	306	168
165/23E- 5C 1 M 2-27-61 5050	68	8 • 1	609	1	1	2.57	-	0	293	1	23	ŀ	B L	0.07	1		187
16S/23E- 8P 1 M 9-13-63 5000	67	7.8	327	30	8 0.66 21	21 0.91 29	0 0 8 8	0	127 2•08 67	21 0.44 14	10	19.0 0.31 10	1	000	1	174	108
175/16E- 2E 1 M 8-22-51 5000	76	0 •	1720	147 7.22 38	1 58 8	232 10•10 53	5 0 • 14	0	130	719 14•76 78	1.95	0.2	0 •	2 • 04	0	1300	433
17S/17E- 2N 1 M 7-21-54 5050	1	7.6	1930	98 4•89 24	23 1 • 89 9	315 13•70 67	0.10	0	235 3 • 85 19	622 12.95 65	3.07	0.0	0	1.20	1	1289	339
175/17E-23Q 1 M 8-15-51 5050	76	6	1270	3.49	20	164	1	1	116	476 9•91	1.33	1	1	0 • 50	1		257
-230 1 M -52 5050	76	7 • 8	1280	3.29	23 1.89 14	183 7•96 60	0.08	0	115 1•88 14	487 10•14 76	1.24	0 • 2	0	0 0 0	3.5	8 7 8	2 2 2
-230 1 M -53 5050	75	7.7	1210	63 3•14 25	1.56	181 7.87 62	0.05	0	121 1•98 16	449 9•35 75	1.13	0 • 3	0 • 3	1.80	23	839	235

MINERAL ANALYSES OF GROUND WATER

R
⋖
∢
œ
1.1
α
MADE
3
_
1
$\overline{}$
ջ
ŝ
0)
Ú.
œ
LL.

۹.
ARE
œ
⋖
⋖
\propto
ш
a
⋖
Σ
MADER
Σ
1
1
1
1
1

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & 8	milligrams per liter equivalents per millian percent reactonce value	milligrams per liter equivalents per millian percent reactonce value				Mineral constituents in parts per million	neral constituents parts per million	ints in	
romber	Somoled	I	ance (micro-	Colcium	Mogne-	Sodium	Potos-	Carbon-	Bicar-	Sulfate	Chlo	ž	Fluo	Boron	Sili	<u>sa</u>	TOTAL
Date Sampled Agy.	u. °		mhos at 25°C)	კ		ž	<u> </u>	. 0	HCO 3	Sos	ē 0	, F	<u> </u>	æ	Sio,	Evop 180 C	hardness os CoCO 3
17S/17E-23Q 1 M 7-27-55 5050	76	ł	1190	1	1	180	1		1	. 1	1.13	1	1	0.71	1		
-230 1 M 6-27-56 5050	76	1	1210		1	178	1		ţ	1	42 1•18	1	1	0 • 78	1		232
-230 1 M 7-31-57 5050	76	1	1210	1	ł	167	1	i	ł	1	1 • 1 6	1	1	0.72	-		254
-230 1 M 6-26-58 5050	76	0	1250	3.29	21 1•73 13	186 8 • 0 9 6 1	0 0 2	•	121 1•98 15	470 9.79 75	46 1•30 10	•	• 5	06.0	79	878	251
-230 1 M 7-15-59 5050	76	ω • σ	1260	3,29	22 1•81 14	178 7•74 60	0.05	11 0.37 3	116 1•90 15	450 9.37	47 1•33 10	0 - 2	0	0.81	26	860	255
~230 1 M 7-19-60 5050	[8	1220	3 6 2 2 4 2 5 5 5	21 1•73 13	186 8 • 0 9 62	0.05	0	127 2•08 16	408 404 74	1 . 35 1 . 35	0 • 2	. 5	0.92	25	89 9	249
-230 1 M	77	0 8	1270	3.49	20 1•64 13	1777	4 0 • 1 0 1	0	130 2•13 17	443 9•22 72	52 1.47 11	0•1	e • •	0.70	27	80 83 80	257
-230 1 M 6-21-62 5050	76	1	1290	1	1	172	0.05	1	1	470	48 1•35	i	1	0.73	1		262
-230 1 M 8-22-63 5050	76		1340	1	\$ 1	176	1	1	1	1	50	ł	1	0 80	ł		265
17S/17E-25N 1 M 7-19-60 5050	1	80 • 1	1220	3.34	20 1•64 13	178 7•74 61	0 0 2	0	119 1•95 15	468 9•74 75	1 9 4 4 10	0 • 0	• 0	0 • 94	2	S S S	548
DWR 1982			STATE	STATE OF CALIFORN		ESOURCES	AGENCY C	JF CALIFOL	RNIA - DEI	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	F WATER RE	SOURCES					

SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	TOTAL	hardness	CaCO 3	275	286	2 7 1	295		301	208	318	351	293
ents in Ian	105	Camputed	Evap 180°C		8 90	916	668 668				9 9 9	616	921
neral constituents parts per millian	:ils	8	SIO 2	}	23	24	24	1	i i	1	54	26	24
Mineral constituents in parts per millian		Boran	В	0 3 •	1.10	0.61	0.75	0	0.75	ω • •	0 0	0	98
	Fluo-	ride	u.		0 • 2	 	0	1	1	i t	0.2	0 • 2	0 • 5
	Ż	trate	NO 3	}	0•3	• •	0 • 3	:	;	1	0.0	0.0	0.4
	Sh	ę	ō	51	1.38	1.38 1.0	49 1•38 10	58	1 • 1 0	1 • 38	51 1•44 10	0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1.41
milligroms per liter equivalents per million percent reactance volue	4.11.2	9000	504	491 10•22	477 9•93 75	505 10•51 77	488 10•16 76	1	1	1	518 10•78 77	541 11.26 76	509 10•60 77
milligroms per liter equivalents per milt percent reactance v	Bicar.	banate	нсо з	116	116 1•90 14	112 1•84 13	100	1	1	1	105 1•72 12	100	109 1•79 13
- 6 0	Ė	e e	co 3	0	0	0	0	1	1	1	0	10 0•33 2	0
c	Patas-	E nis	×	1	0.05	0.05	0.03	1	1	1	0.05	0.05	0.05
Mineral Canstituents in		E 3000	Z	170	177 7•70 57	177 7•70 57	178	176	174	167	7.77	175 7•61 52	178 7•74 57
Mineral C	Magne-	E n	Mg	17	18	1.73	22 1•81 13	i	\$ [i	2 • 2 • 0 6 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5	2.03	22 1•81 13
		maising.	ვ	82 4•09	85 4.24 31	4 • 0 8 3 0 0	4 09 30	1	;	į	4 9 2 9 9 0 0	4 8 8 8 0 0	81 4•04 30
Specific canduct-	auce	micro- mhas	at 25 C)	1300	1320	1300	1130	1310	1330	1280	1350	1410	1290
	3	<u>.</u>		8 9	7 • 7	7.5	7.6	1	1	1	7.9	ω • ω	8.1
Te ap	when	Sampled o F		77	76	77	76	75	77	75	92	92	76
		Agy.	Coll.	5050	5050	5050	5050	5050	5050 5050	2 1 M 5050	5050 5050	5050	R 1 M 5050
State Well		Date Sampled	Time	175/17E-27R 8-15-51	-27R 8-13-52	-27R 7- 9-53	-27R 7-21-54	-27R 7-27-55 5	-27R 1 6-27-56 505	-27R 1 7-31-57 505	-27R 1 6-26-58 505	-27R 7-15-59	_27R 1 7_19-60 505

State Well	Iemp.		Specific conduct-		Mineral Co	Mineral Constituents in		E & 0	milligrams per liter equivalents per million percent reactance value	er liter ser million ance value				Mineral constituents in parts per millian	neral constituents parts per millian	ints in	
	when	Ξ.	ance (micro-	Calcium	Mogne-	Sodium	Potas.	Carbon- ote	Bicor- bonote	Sulfate	Chloride	rote	Fluo-	Boran	i <u>§</u> 8	TDS	TOTAL
Date Sampled Agy. Time Coll.	u. 0	.	mhos at 25°C)	3	М	ž	×	00	HCO 3	504	ō	o z	u.	æ	SIO 2	Evap 180°C	coco 3
175/17E-27R 1 M 10-17-61 5050	92	7.9	1290	3.94	24 1.97 15	173 7•52 56	0.10	0	109 1•79 14	482 10•04 76	1.41	0.5	e •	0 80	30	897	296
-27R 1 M 4-25-62 5050	76		1310	!	1	163	0.05	ļ	1	500	1 • 4 8 2 5	1	1	0.78	1		292
-27R 1 M 8-22-63 5050	75	-	1370	ł	•	172	1	i g	1	1	51	1	1	0 • 70	!		301
175/18E-24J 1 M 8-28-63 5000	1	8 • 2	1170	0.35	0	246 10•70	0.03	0	307 5 • 03 46	0.0. 40. 9	174 4.91 4.5	0 • 7	.Ω • লা	8	19	651	, C
17S/18E-350 1 M 10-27-49 5001	70	}	1000	1	1	190 8•26	i	1	-	1	94	1	1		}		
-350 1 M 11- 2-51 5000	70	7.6	1440	37	12	265		0	262	328	123		-	1.20	1		142
-350 1 M 7-15-59 5050	74	8 • 9	1320	2.74	0	238 10•35 75	0.03	20.67	294 4 • 82 35	294 6 • 12	79 2•23 16	0.0	7.0	1.40	20	862	170
-35Q 1 M 7-19-60 5050	71	8 • 1	1270	53 2.64 19	0 • 6 8	235 10•22 75	0.03	0	303 4 • 97 36	307	80 2.26 17	0.01	ω •	9.0	50	8 2	165
-35Q 1 M 6-19-62 5050	7.1	8 4	1440	2.79	9 0 • 7 4	258 11•22 76	0.03	0.07	263 4•31 29	387 8 • 06 55	2.84 1.6	0.5	φ •	1.60	70	948	177
-35Q 1 M 8-26-63 5050	71	80 • •	1,090	35 1 - 75 14	110.90	225 9•78 78	0.03	13 0 • 43 4	304 4.98 41	235 4 • 89 40	1.92 1.92	0	•	1. • 40	17	756	155
DWR 1982			STATE	STATE OF CALIFORNIA	١.	RESOURCES	AGENCY (OF CALIFO	RNIA DE	PARTMENT C	THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES	1				

TABLE E-2 SEMI-CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FORMO - MADERA AREA

			·							
	TOTAL	CoCO 3	6.9	23	29	'n	4	10	149	∞ ∞
ants in	SOI S	Evop 180°C	194	292	U O W	242	181	174	205	144
neral constituents parts per million	Sili	SIO 2	4.1	26	32	}	24	18	1	56
Mineral constituents in parts per million	Boran	60	0.05	1 • 30	0.94	1	90•0	0 • 0	0000	0
	Fluo-	ш	0.2	1.6	Ĭ • 4	1	0 • 2	0 • 1	1	0
	ż	o Z	1 • 9 0 • 0 3	0 • 2	0	0	4.4 0.07	0	7•4 0•13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Chlo	ē	0 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	36 1•02 21	2.17	35.00.99	37 1.04 39	0.11	33	0 0 0 0 1
milligrams per liter equivalents per millian percent reactance value	Sulfote	50 4	0.35	0.17	44 0•92 11	22 0•46 10	20 0 • 42	13 0•27 10	21 0•45 13	0 • 71 3 4 4
milligrams per liter equivalents per mill percent reactance v	Bicor-	HCO 3	1,38	199 3•26 68	306	159 2•61 58	1.16	149 2•44 87	142 2•24 64	1 2 2 9 6 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	Carban	ို့ ဝ	0	0.37 8	0.33	14 0•47 10	0	0	0	0
	Pates.	¥	0.03	0.03	0.03	0	0.03	0.03	2 0.11 3	0
Mineral Constituents in	Sodium	ž	36 1.57 56	101	168 7•30 84	91 3•96 98	41 1•78 66	61 2•65 92	20 0•87 23	0 0 0 0 0 0 0 0 0
Mineral C	Magne-		0.08	0.16	0.49	0	0	0	11 0.90	0 • 1 6 8
	Calcium	3	1.10	0.30	0.85	0.10	18 0•90 33	0.20	1.97	1 660 760 760
Specific canduct-	ance (micro-	mhas at 25°C)	303	520	818	435	307	275	394	509
	I	٥.	7.5	8 • 6	8.5	80	7.5	7.8	7.9	7.7
Temp.	when	. "	7.1	8 9	1	70	1	99	6 9	1
State Well		Date Sampled Agy.	17S/19E- 1G 1 M 8-14-63 5000	175/19E-16H 1 M 8- 2-55 5050	175/19E-21P80 M 8- 3-55 5050	175/195-27A 1 M 8-19-63 5000	S/20E- 2M 1 M 8-28-63 5000	175/20E-22P 1 M 8-27-63 5000	175/21E- 1J80 M 10- 7-63 5050	17S/21E-17P 1 M 8-13-63 5000
		Date	175/	175/ []] 8-	175/:	17s/ 8-	175/ 8-	175/ 8-	175/ 10-	175, 8-

State Well	Т•шр.		Specific conduct-		Mineral Co	Mineral Constituents in		E & 8	milligrams per liter equivalents per millian	milligrams per liter equivalents per millian				Mineral canstituents in parts per millian	neral canstituents parts per millian	ints in	
Number	raha.	3	ance		Magne-	111111	Potas-	Ł	Bion-	Sulfah	Chlo	ż	Fluo	Boron	÷iis	SQL	TOTAL
Date Sampled Agy.	Sampled	۵.	mhas	English	Ē.	E 2000	E :	ŧ (a domata		å (e C		, a	8 5	Computed Fyor 180°	hardness as
11:	1	8.5	331	3 1	1 5 8	1 1	¥ {	5 4	151	1 1	12	1	. -	1	1		112
10-22-64 5000								0.13	2•4 (46.0						
105/14E-19R 1 M 10- 7-64 5000	-	8 5	399	1	1	1	1	0.13	121	1	1.30	1	1	i	1		95
105/14E-33J 2 M	9	8 • 4	372	1	1	1		0.13	98	1	1.58	1	1	1	1		112
115/14E-30H 1 M 10- 7-64 5000	67	7.9	316	21 1,05 35	0 • 41 14	1 • 4 3 4 8	0 1 0 3	0	133 2•18 74	4 80 0	21 0•59 20	6 • 1 0 • 10 3	1	00.0	1	159 248	73
12S/11E-13D 2 M 8-13-51 5000	1	7.5	1590	i	ı	286 12•44	-	0	192 3•15	450	100	1	1	2.40	1		196
12S/11E-23R 2 M 758 5050	1	0 •	2520	118 5.89 23	62 5.10 19	348 15•13 58	0.05	0	154 2•52 10	512 10.66	459 12.94 49	2.1	0 • 3	3.70	30	1613	550
125/11E-250 1 M 8-14-51 5000	1	7.3	2570	127	58	365 15.87	0	0	196 3•21	583 12.14	415 11•70	i i	1	3.90	1		556
12S/12E-18D 1 M 8-14-51 5000	8	7.8	2010	1	•	385 16•74	1	0	158	550 11.45	196	1	1	2 • 40	1		172
-18D 1 M 4-10-56 5050	83	7.9	2134	4.5 2.25 1.1	18	397 17•26 82	0 0	0	165 2•70 13	581 12.10 58	213 6•01 29	0 • 1	4.	1.90	<i>ω</i>	1373	187
125/12E-19N 1 M 8-13-51 5000	81	7.8	1390	1	1	242	1	0	218	400	84	1	i i	3.40	1		180
DWR 1982			STATE	STATE OF CALIFORNI	RNIA - THE	RESOURCES	AGENCY	OF CALIFC	ORNIA - DE	PARTMENT	A - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	ESOURCES					

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

		Specific conduct-		Mineral Co	Mineral Constituents in		Εĕ	milligrams per liter equivalents per mill	milligrams per liter equivalents per million				Mineral canstituents in	neral canstituents	ents in	
					•	- 1		ercent rea	percent reactance volue	•			pare			
p (micro- Colcium sium	Calcium		Mag	ė £	Sodium	Potas- sium	Carban.	Bicar- banate	Sulfate	cho e ig	rate frate	Fluoride	Boron	<u>≅</u> 8	Camputed	TOTAL hardness
at 25°C) Ca Mg	3		\$		₽	¥	co ₃	нсо з	504	δ	NO 3	F	89	SIO 2	Evap 180°C	CoCO 3
7.8 38 1	38 1.90 1.	η.	•	0.40	434	1	0	172	693	181 5.10	1	-	1.25	32	1513	173
7.6 2130	1		,	!	440 19•13	1	0	176	600	180 5•08	1	1	2.90	1		180
8.4 1280 26 1.30 0.	26 1.30 0	•	0	2 4 6	266 11•57 87	0.05	0.13 1	319 5•23 39	293 6•10 46	1.78	1.9	0 • 5	0.43	51	869	86
8.2 1290 25 6 1.25 0.49	1,25	<u> </u>	0 • 4	004	266 11.57 87	0.03	0	329 5•39 41	282 5 • 87 45	63 1.78 14	1 8 0 0 0 0 3	0.2	0.40	51	858	87
7.3 2470 102 5	102 5.09 4	4	4 • 1	٦٥	385 16•74	0	0	213	713	280	1	1	2.90	{		494
7.9 2500 94 57 4.69 4.69 4.69	4,00,00,00,00,00,00,00,00,00,00,00,00,00	*	•	<u> </u>	385 16•74 64	0.10	0	217 3•56 13	730 15.20 58	272 7•67 29	0.5	• •	3.60	36	1689	694
7.6 191 13 5 0.65 0.41 35 22	0 95 0 35	o 	0.4		16 0•70 38	0.08	0	1.25	0 • 0 • 0	17 0•48 27	0 • 0 2 1	0.2	0	65	161	53
7.8 194 14 0.30 0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 0.70 39	•	•	33 18	16 0•70 39	0 6 8 4	0	78 1•28 71	0	18 0.51 28	0 0 0 1	0 • 3	0	70	164	52
7.8 194 15 4 0.75 0.33	15 0•75 39	•	0.3	1 m r	17 0•74 39	0.10	0	1.29	0.10	18 0.51 26	2 • 6 0 • 0 4 2	0	0	69	174	رن 4
7.8 209 17 0.85 0.2 45 1	17 0.85 0.45	•	•	m m m	16 0•70 37	0 6 0 8 4	0	78 1.28 67	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18 0.51 27	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0.13	48	150	S S

No. K Co.	Specific conduct- once discre-		Coleium	1	Minerol Ca	Minerol Canstituents in		ė	milligrams per liter equivalents per millian percent reactance value	milligrams per liter equivalents per millian percent reactance value	She is	Ä	Fluo	Mineral constituents in parts per million	heral constituents	ints in on TDS	TOTAL
0.16 0.23 0.16 0.28 0.048 0.48 0.48 0.48 0.48 0.48 0.09 0.048 0.09 0.048 0.094			micro- mhos at 25°C)	Calcium Ca	mois Mg	N No die	sium K	c CO 3	bonata HCO 3	SO 4	abir O	frate NO 3	ride F	Boron	sio 2	Computed Evap 180°C	hardness as CaCO 3
17 0.08	0 • 8		195	16 0.80 43	1	16 0•70 38	• 1	0	•	4 0 • 0 4	4.4	2•3 0•04 2	•	0	83	184	53
1.45 0.90 9.35 — 0 220 7.47 1.47 — 1.60 — 4.89 5.10 18.04 — 0 218 742 342 — 4.20 — 2.99 2.38 8.91 — 0 218 742 342 — 4.20 — 1.70 1.29 — 0 2.79 10.08 2.54 — 3.10 — 1.70 1.23 1.295 — 0 220 4.58 112 — 3.10 — 1.85 1.48 1.295 — 0 220 4.58 112 — 3.10 — 1.30 1.29 — 0 220 4.77 127 — 3.10 — 1.30 0.08 1.34 — 0 204 5.54 3.16 — 2.80 — 1.30 0.08 0.30 3.24 10.61 2.79 — 2.80 — 1.30 0.82 0.94	-		198	1		•	•	1	1	1	17	1	1	90.0	ł		56
4.89 5.10 18.04 0 218 742 342 4.20 2.99 2.38 8.91 0 170 484 9.64 3.10 1.70 1.29 2.38 8.91 0 220 458 112 3.10 1.70 1.29 0 220 458 112 3.10 1.70 1.29 0 220 458 112 3.10 1.85 1.48 12.83 0 206 477 127 3.10 1.86 1.48 12.84 9.93 3.58 2.80 1.30 0.20 451 10.81 2.26 2.26 2.26 1.90 1.81 13.91 0.34 10.81 2.26 2.26 2.20 2.20	7•7	7	1270	1.45	11	21	1	0	220 3•61	359	1.47	1	1	1.60	1		118
2.99 2.29 2.05 0 170 484 90 3.10	7.3 2	7	2690	9 6 8 9	62 5•10	œ	1	0	218	rU.	342	1	1	4.20	1		200
34 15 295 0 220 458 112 3·10 1,70 1,23 12.83 0 206 477 127 0.60 1,85 1,48 12.83 0 206 477 127 0.60 1,85 1,48 12.83 0 204 519 80 2.80 1,30 0.82 13.48 0 212 542 99 2.70 1,90 1.81 13.91 0 212 542 99 2.70 1,55 1.32 8 0.93 3.06 9.99 2.26 0.06 0.05 2.20 38 1050	7.2 14	1,	1480	2.99	~ ~ ~	205	1	0	170	0	•	1	1	3.10	1		269
37 18 295 0 206 477 127 0.600 1.85 1.48 12.83 0 204 519 80 2.80 1.30 0.82 13.48 0 204 519 80 2.80 1.90 1.30 0 212 542 99 2.70 1.90 1.61 13.91 0 212 542 99 2.70 1.55 1.32 12.78 0.08 0.30 3.06 9.99 2.26 0.06 0.5 2.20 38 1050	7.5 16	16	1640	34	2	29 2•B	i	0	220	4 • 5 • 5 • 5	3.16	1	1	3.10	1		147
26 10 310 0 204 519 80 2.80 1,30 0.82 13.48 0 212 542 99 2.70 1,90 1,81 13.91 0 212 542 99 2.70 1,50 1,61 13.91 0.30 3.47 11.28 2.79 2.70 1,55 1,32 12.78 0.08 0.30 3.06 9.99 2.26 0.06 4.0 0.5 2.20 38 1050 1,050 81 1 2 2.26 0.06 14 14 0.06 5.22 3.20 38 1050	7.5 16	16	1650	37	18	~	1	0	206 3•38	4.4 • 9	3.58	1	1	09•0	1		167
38 22 320 0 212 542 99 2.70 2.70 1.90 1.el 13.91	8.0 1670	16	02	26	•	M	1	0	N •	0	•	1	1	2 • 80	1		106
31 16 294 3 9 187 480 80 4.0 0.5 2.20 38 1050 1.55 1.32 12.78 0.08 0.30 3.06 9.99 2.26 0.06 0.06 1.4 14	7.9 17.	17	1740	38	2 8	m	1	0	212	542	99	1	1	2.70	1		186
	8.6 1590	159	0	31 1.55 10	⊣ €	2	0000	•	187 3•06 20	084 0.99 4.09	•	4 • • 0 • 0	•	2.20	38	1050	144

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

	TOTAL	as as	C0C0 3	200	238	177	435	354	373	384	459	388	415
ents in ion	Computed		Evop 180°C					3064		3171	3272	3138	
neral canstituents parts per million	: <u>†</u> 8	3	SiO 2	1	1	1	i	37	1	7 7 7	88	47	1
Mineral canstituents in parts per million	Boron		В	2.60	3 • 80	3.02	1.10	2.54	1.80	1.30	1.50	1.60	1.90
	Fluoride	!	u.	1	1	ł	1	0.0	i	;	0	0•1	1
	Ž.		NO 3	-	1	1	1	0	1	1.2	1.8	2.6	1
	Chloride	1	ō	3.95	130	131 3•69	1020	1330 37.51	1300	1390 39•20 75	1440 40•61 76	1380 38•92 76	742
milligrams per liter equivalents per million percent reoctance value	Sulfate		504	584 12•16	713	984	504	520 10.83	502 10.45	523 10.89	509 10•60 20	477 9.93 19	
milligrams per liter equivalents per mill percent reoctance v	Bicor-		нсо з	211	233	214	162	145 2•38 5	136	138	136 2•23 4	139 2•28 4	1
E & 8	Carbon-	Š	co 3	0	0	0	0	0	0	0	0	0	-
و	Potas-		×	1	i	1	1	0.13	ł	7	0.10	0.15	1
Mineral Constituents in	Sodium		8	355	390 16•96	395	33.48	975 42.39 85	970	1000 43.48 85	10 6 0 46.09 84	1010 43.91 85	1140
Mineral C	Magne-		Mg	1.89	31	1.73	31.	2 29	24	2.14 4	2 . 6 . 8 . 5 . 5 . 5	1.32	*
	Colcium		კ	2.10	44	36	123	94 4.69 9	110	1115.54	119 5•94 11	129 6•44 12	1
Specific canduct-	ance (micro-	whos	at 25 C)	1930	2160	2040	4290	5140	5130	5330	5360	5390	5590
	I	<u>.</u>		7.1	7.5	7.5	7 • 4	8	7.5	7.8	7.5	8 • 2	-
Temp.	when Sampled			84	78	88	8	88	88	88	98	86	88
State Well		Date Sampled Agy.	Time Coll.	13S/12E-35N 1 M 8-15-51 5000	135/12E-36D 2 M 8-15-51 5000	135/12E-36M 1 M 8-15-51 5000	135/13E- 9E 3 M 8-14-51 5000	135/13E- 9Q 1 M 8-23-51 5000	13S/13E-14N 1 M 8-14-51 5000	-14N 1 M 8-11~52 5050	-14N 1 M 7- 7-53 5050	14N 1 M 7-20-54 5050	-14N 1 M 7-28-55 5050

	TOTAL	CoCO 3	412	326	383	271	344	153	239	122	103	206
	\vdash		1									
ents in Ion	TOS	Evap 180°C										1487
nerol constituents ports per million	:H:S	Sio 2	1	1	1	1	1	1	1	1	1	75
Minerol constituents in ports per million	Boron	60	1	1.50	0 • 10	0	1.70	3.20	1.90	1.90	0 • 0	1.42
	Fluo		1	1	ŀ	i i	ł	i	ł	1	1	φ •
	Ż Ż	, o	1	1	1	1	ļ	1	1	1	ł	1 6
	Chlo	Ū	718	1040	1160	682	1100	139	99	191	3.02	291 8•21 37
milligrams per liter equivalents per million percent reoctonce value	Sulfate	504	1	505	395 8 22	370 7 • 70	507 10.56	669 13.93	630	626 13.03	436 9 • 08	478 9 • 95 45
milligrams per liter equivalents per mil percent reoctonce v	Bicar-	HCO 3	1	148 2•43	164	212	168	218	221 3• 6 2	261	231	228 3•74 17
E & &	l è	, 6		0	0	0	0	0	0	0	0	0
	Potas-	×	1	1	1	1	1	1	!	t 1	1	0.15
Minerol Constituents in	Sodium	ž	1070	840 36•52	810	590 25•65	870	425 18•48	305	435 18•91	315	450 19•57 82
Minerol Co	Magne-	e W	İ	21	22	1.32	20	17	32.63	9	0.41	1.32
	Colcium	3	1	96	117	82 4•09	105	1.65	2.15	34	33	2.79
Specific conduct-	ance micro-	mhos at 25°C)	5660	4380	4540	3110	4540	2140	1870	2160	1620	2300
	I	a.	1	7.5	7.5	7.3	7.4	7.6	7.6	7 • 8	7.4	8 • 1
Temp.	when	ů.	87	87	80	82	87	87	87	68	1	1
Well	laci.	led Agy. Coll.	-14N 1 M	-16N 1 M	16R 1 M	-25N 1 M	-27P 1 M	-30R 1 M	-32N 2 M	-33N 2 M	- 7N 1 M	-10D 1 M
State Well	5	Dote Sampled Time	13S/13E-14N 10-11-55	135/13E-16N 8-14-51	135/13E-16R 8-14-51' 5	135/13E-25N 1 8-15-51 50	135/13E-27P 8-15-51	135/13E-30R 8-15-51	135/13E-32N 8-15-51 5	135/13E-33N 8-15-51	135/14E- 7N 8-15-51	135/14E-10D 8-23-51 5

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

Specific conduct-	Specific canduct-			Minerol C	Minerol Constituents in	_	Εŭ	milligrams per liter equivalents per mill	milligrams per liter equivalents per million				Mineral constituents in	neral constituents	ants in	
lemp.	auce		Ì				- 1	ercent reac	percent reactance value				2			
I.a	(micra-	Colcium		Magne- sium	Sodium	Potas.	Carbon- ate	Bicar- bonate	Sulfate	Chlo- ride	rote t	Fluoride	Boron	S # 8	Computed	TOTAL
°F mhos at 2S°C) Ca	mhas at 25°C)			W	Ž	×	00	нсо з	504	ū	NO 3	u.	83	510 2	€vap 180°C	% CoCO 3
85 8.0 3280 61 3.04	3280			36	6009	1	0	250	499	640 18•05		1	5.70			300
84 7.1 4410 141 7.04	4410 141 7•04	1417.04		93	700	1	0	205	780	925 26•09	1	1	5.20	1		735
85 7.2 2550 59	2550 59	59 2 94		3.70	445 19•35	1	0	211	741 15•43	272	1	ł	0 + • +	1		332
84 7.5 2310 52 1	2310 52 1	2,59	-	23	425 18•48	1	0	220 3•61	648	232	1	1	4.10	1		224
85 2400 48 2•40 2-10	2400 48 2 40 2	2 • 40 2 10	7	30.10	430 18•70 79	0.10	0	220 3•61 15	640 13.32 56	240	1.4	1	4.10	{	1506	544
85 7.5 2100 64 3.19	2100 64 3	3.19	m m	4 4 5	389	1	0	3.61	742	190	1	1	4 • 10	1		332
84 2300 68 3•39 3•	2300 68 3•39 3	3,68	m	4 4 14 14	400 17•39 71	0.13	0	220 3•61 15	730 15•20 63	190 5•36 22	1.6	1	1		1546 1600	347
83 7.9 4200 186 9.28 0.	4200 186 9.28 0	186 9.28 21	0	• 66	800 34 • 78 77	0.23	0	290 4•75 11	925 19•26 45	598 16.86 40	98 1 • 5 4	!	8 • 91	43	2818	164
74 7.4 16900 568 2 28.34 24.	16900 568 28.34 24 15	568 28•34 24 15	- 4	294 4.18 13	3070 133•48 72	19	0	110	0.04	6650 187.53	8.5	•	21.00	24	10711	2628
86 7.5 1900 58 2.	1900 58 2	2 89 2	2	32	320	1	0	203	687	98	1	1	2 • 70	1		276

A	State Well Number	Тетр.		Specific conduct-		Mineral Co	Mineral Constituents in		E 9 C.	milligrams per liter equivalents per million percent reactance volue	milligrams per liter equivalents per million percent reactance volue				Mineral constituents in ports per million	neral constituents ports per million	nts in on	
Call Call	\vdash	Sompled	Ξ.	(micro-	Calcium	Mogne- sium	Sodium	Potos-	Carbon- ote	Bicar- bonate	Sulfate	Chlo- rida	Ni- trote	Fluo- rida	Boron	:i:S	TDS Computed	TOTAL hardness
No. 1 No.		, <u> </u>		mhos at 25°C)	3	₩ ⁸	ž	¥	03	HCO 3	504	ō	NO 3		80	510 2		°000
1 M 84 8.4 110 0.95 0.49 9.13	8	89	7.4	1880	35	1.5	72	1	0	21 • 5	2	6.7	{	1	• 1	1	-	166
No. St. 1300 1.05 0.56 11.30 0.10 0.10 0.10 0.253 30.2 7.8 1.5 0.5	145/13E-12N 1 M 8-15-51 5050	48	7.4	1110	19	4	210	1	ł	268	~ ~	•	1	1	•	{	678	72
1 M 82 8.6 1180 1.20 0.66 11.44 0.10	۷.,	84	8 • 4	1300	21 1 05 8	5	1 2	r-1 •	0	25.3 4 • 15 33	<i>(</i> ∩ •	•2	1.5	•	1 • 90	6	863	82
1 M 84 1330	_12N 7-53	48	7.7	1320	22 1.10	•	-	• 1		257 4•21 32	•	α 4 ⊓	0.04	0	2.50	47	869	3 0
1 M 82 1190	~	8 2	8 • 6	1180	18 0 • 90	5	0	•	14.	271 4.44 36		$\sigma \tilde{\sigma}_{-1}$	1.9	•	06•0	61	813	74
2N 1 M 82 1190 228	-12N 1 M 7-28-55 5050	84	1	1330	1		~	!	-		1	88 • 48	1	1	1.20	1		
2N 1 M 83 7-7 1150 19 4 237 4 0 262 261 70 0.4 0.5 1-10 64 790 2N 1 M 76 8.1 1290 20 0.33 11.39 0.10 89 1	~	82	1	1190	1	1	228 9•91	ł	ł	1	!	1.72	1	ł	06•0	1		78
2N 1 M 83 7.7 1150 19 4 237 4 0 262 261 70 0.4 0.5 1.10 64 790 5050 8.3 10.30 0.10 4 262 4.29 5.43 1.97 0.01 70 0.4 0.5 1.10 64 790 790 2N 1 M 76 8.1 1290 20 20 4 262 4 0 0.10 4.28 6.10 2.54 0.03 1.7 0.5 1.40 49 854 854 5050 1.00 0.33 11.39 0.10 4.28 6.10 2.54 0.03	Ä	83	1	1280	{	1	259	1	i	1	1	88	1	1	1.20	1		78
5050	2	83	7.7	1150	0.000	™	0	• 1	•	2 6 2 4•29 37	261 5•43 46	•	0.4	•	1.10	4	790	4 9
	2.	76	8	1290	1 000 1 8	~	-	• 1	0	2 6 1 4 • 28 33	293 6•10 47	•	.0	•	1.40	64	854 854	29

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

State Well			Specific canduct-		Mineral Co	Mineral Constituents in	_	Εŏ	milligrams per liter equivalents per millian	er liter ver millian				Mineral constituents in	neral constituents	ents in	
Number	dE 4		ance					- 1	ercent react	percent reactance value				ST OG	Der mi		
-	Sampled	Ξ_	(micro-	Calcium	Magne- sium	Sodium	Palas.	Carban- ate	Bicar- banate	Sulfate	Chloride	Ni- frote	Fluo-	Boran	:#:S	TDS Computed	TOTAL
Date Sampled Agy. Time Coll.	т п		mhos at 25 C)	ß	W	Š	¥	00	HCO 3	\$0.4	ō	NO 3	ų.	83	SIO 2	Evap 180°C	03°C
14S/13E-12N 1 M 7-19-60 5050	80	7.8	1250	1.05 1.05	0 4 w w	262 11•39 89	0.089	0	254 4•16 33	287 5 • 98 47	2.54	1.7	9	1.12	6 3	8 3 8 8 5 8	69
-12N 1 M 4-26-62 5050	81	80 6.	1240	20 1 000 8	0 4 9 8	267 11.61 88	0.13	0	265 4 • 34 34	292 6•08 48	82 2,31 18	1.0	4	0.93	က	854 900	7.1
-12N 1 M 8-13-63 5050	87	1	2930	1	!	556 24•17	ł	i	!	1	586	1	i	1.30	1		165
14S/13E-21N 1 M 8-15-51 5050	88	7.8	2170	3.59	57	355	1	1	225 3• 6 9	797	3.30	1	1	3.20	1		414
-21N 1 M 10-14-52 5050	8	7.9	2110	3.09	54 4.44 19	350 15.22 67	0.10	i	216 3•54 16	769 16.01 70	114 3•21 14	1 • B 0 • 0 3	0	3.60	4 4	1509	377
-21N 1 M 7- 7-53 5050	8	7.6	2690	115	120 9 • 87 32	348 15•13 49	7 0.18 1	0	220 3.61 11	1150	146 4•12 13	0.0	0 4	2.20	4	2042	781
-21N 1 M 7-28-55 5050	1	{	2100	ł	1	340	1	1	1	1	3.10	1	1	2.60	į		
-21N 1 M 10-11-55 5050	88	1	2090	1	1	336	1	i	1	1	3.10	1	1	1	;		401
-21N 1 M 6-26-56 5050	80	-	2110	1	1	342	1	1	1	<u> </u>	121 3•41	1	1	3.20	1		390
-21N 1 M 7-31-57 5050	80	1	2150	1	!	330	1	1	1	!	120	1	i	3 • 30	1		424
				San San San San San San San San San San	No.	0.00	1	2	1								

MINERAL ANALYSES OF GROUND WATER

FRESNO - MADERA AREA

State Well Number	Temp		Specific conduct-		Mineral C	Mineral Constituents in	_	Eğü	milligrams per liter equivalents per mil percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral canstituents parts per million	nts in on	
	Sampled	Ŧ	(micro-	Calcium	Magne- sium	Sodium	Potas-	Carban- ate	Bicar- banate	Sulfate	Chlo-	rote .	Fluo- ride	Boran	S S	Computed	TOTAL
Date Sampled Agy.	°-	1.	mhas at 25 C)	J	6W	Z	¥	° °	нсо з	504	ō	NO 3	u.	æ	SIO 2	Evap 180°C	24 CaCO 3
145/13E-21N 1 M 6-25-58 5050	88	7•6	2300	3.89 16	84 6.91 28	322 14•00 56	0.15	0	210 3.44 13	874 18•20 71	140 3•95 15	1.7	9	3.50	94	1659	540
-21N 1 M 7-14-59 5050	88	8.2	2210	71 3.54 14	73 6.00 24	342 14.87 61	0.10	0	246 4•03 16	818 17.03 69	123 3.47 14	0.5	0 4	3.00	43	1599	477
-21N 1 M 7-19-60. 5050	8 5	8 • 0	2540	132	140 11.51 38	274 11•91 40	0.13	0	222 3•64 12	1120	132 3•72 12	4.6	0	3.10	51	1971	906
-21N 1 M	90	8 4 •	1760	38 1•90 11	23 1 • 89 11	320 13•91 78	0 0 0	0.20	165 2.70 16	584 12•16 71	74 2.09 12	2.2	0 • 5	1 • 90	4	1178	190
-21N 1 M 6-19-62 5050	91	1	1760	1	l l	298 12•96	0.08	1	1	612	76	!	1	1 • 80	ļ		208
145/13E-25N 1 M 8-15-51 5050	8 8	7.3	1990	34	13	375 16.31	1	1	172	637	141 3•98	i	1	1.60	ļ		139
-25N 1 M 8-11-52 5050	06	80	1970	34 1•70	17	390 16.96 84	0 0 3	0.20	160 2.62 13	622 12.95 65	141 3•98 20	1 • 6	9	2 • 70	0	1337	155
-25N 1 M	06	7.6	1900	32 1.60 8	17	366 15.91 84	0.10	0	178 2.92 15	591 12.30 64	139 3 • 92 20	1.1	9	1.10	24	1266	150
-25N 1 M 7-20-54 5050	68	8	1930	35	15 1.23 6	365 15.87 84	0.08	0	175 2.87 15	592 12.33 64	139 3•92 20	1.7	0 •	1 • 50	4	1285	149
-25N 1 M 7-28-55 5050	06	1	1940	1	•	387 16•83	!	1	1	1	139 3•92	1	1 0	1.90	1		
DWR 1982			STATE	STATE OF CALIFORNIA		RESOURCES	AGENCY	OF CALIFO	RNIA DE	- THE RESOURCES AGENCY OF CALIFORNIA . DEPARTMENT OF WATER RESOURCES	JF WATER RI	SOURCES	1				

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

State Well	Тетр	ģ		Specific conduct-		Mineral Ca	Mineral Canstituents in	_	e a a	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per millian percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	ents in ion	
Laguage	when		I	once (micro-	Calcium	Magne-	Sodium	Potas-	Carbon	Bicar-	Sulfate	Chlo	Ä į	Flvo	Boron	Sil;	Committed	TOTAL
Date Sampled Agy.				mhos		E			 5							3		30 so
Time Col	_	_		ot 25 C)	3	W ₉	Ž	¥	co 3	нсо з	\$0 4	ō	NO 3	.	80	SIO 2	Evop 180°C	CoCO 3
145/13E-25N 1 M 10-11-55 5050		68	1	1860	i	1	365	1	1	ł	1	130	1	1	1	!		149
-25N 1 M 6-29-56 5050		88	<u> </u>	2010	1	!	377	1	1	1	1	156	1	1	1.43	1		192
-25N 1 M 7-31-57 5050		68	1	1960	}	1	366 15•91	i	1	1	1	1.27	1	ł	1 • 90	}		198
-25N 1 M 6-25-58 5050		88 7.	8 • 7	2120	53 2.64 12	34 2 • 80 13	362	0 10	0	3 • 25 15	614 12•78 6 1	175 4•94 23	4 • 3	9	2.10	46	1392	272
-25N 1 M 7-14-59 5050		68	2	2150	2 • 8 9 1 3	3 ° 0 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	383 16.65 73	0 0 0	0	187 3•06 14	657 13.68 61	197 5•56 25	7.0	9	2.50	47	1484	297
-25N 1 M 7-19-60 5050		<u></u>	- 5	2200	2.69 12	36 2.96 13	377	0 0 0 0	•	180 2.95 13	691 14•39 64	178 5•02 22	0 1 0	• 0	2 • 70	4	1483	283
-25N 1 M 8-25-61 5050		88	4	2410	3.39 13	54 • 44 • 17	408 17•74 69	0 0 0 0	8 0.27 1	151 2•47 10	741 15•43 63	222 6 • 26 25	7 · 8 0 · 13	0 4	1 • 90	4 8	1636	392
-25N 1 M 4-26-62 5050		- 78	<u> </u>	2610	1	1	384	0.10	1	1	882 18•36	232	1	1	2.40	-		517
-25N 1 M 8-13-63 5050		98	1	2600	<u> </u>	8 1	390	1	1	1	}	218	1	1	2.20	1		533
145/13E-26M 1 M 8-15-51 5000		92 7	7.4	2170	34	1.40	425	-	0	156	749	132 3•72		1	2 • 50	{		155

State Well	Temp.		Specific conduct-		Minerol Cc	Mineral Constituents in		E & &	milligrams per liter equivalents per million percent reactance value	milligrams per liter equivalents per millian percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	on on	
Number	when	I	ance	Calcium	Magne-	Sodium	Potos-	Carban-	Bicar.	Sulfate	Chlo-	- Z	Fluo	Boran	<u>≅</u> 8	Camputed	TOTAL
Date Sampled Agy. Time Coll.	,	<u>.</u>	mhas at 25 C)	S	w w	ž	×	, ç	HCO 3	80 4	ō	ο Ο Σ	u.	æ	SIO 2		as CoCO 3
145/13E-290 1 M 8-16-51 5000	95	7.6	2160	19	0.41	4 6 0 20•00	ł	0	254 4.16	13.89	132 3•72	1	1	3.60	1		89
145/13E-30N 1 M 8-16-51 5000	87	7.6	1920	42	24	342	1	0	204	658	2 6 8	1	1	2.60	i		204
145/13E-300 1 M 8-16-51 5000	88	7.3	1740	57	3.62	285 12•39	1	0	198 3•25	652	80	1		2 • 30	-		323
145/13E-35E 1 M 8-15-51 5000	66	7.3	2160	36	18	392	1	0	160	746	130	ł	1	1.80	1		164
145/14E- 7M 1 M 8-13-51 5000	87	7.7	2100	1	1	445 19•35	1	0	210	470	330 9•31	1	1	1.50	ł	-	146
14S/14E= 9E 1 M 7~14-59 5050	8 2	7 • 7	3520	3.99 1.2	22 1•81 5	642 27•91 83	0.10	0	180 2•95 9	487 10.14 30	752 21•21 62	1.7	4.0	1.50	n 2	2124	290
- 9E 1 M 7-19-60 5050	<u> </u>	7.3	3770	280 13•97 32	14 6 12•01 27	414 18•00 41	12 0•31 1	0	220 3•61 8	1150 23.94 54	601 16•95 38	1.1	1.0	1.40	73	2788	1300
- 9E 1 M 8-25-61 5125	78	0	3840	302 15•07 33	138 11•35 25	432 18•78 41	12 0•31	0	191 3•13	1180 24.57 56	570 16.07	3 • 5	0 • 2	1.70	89	2801	1322
- 9E 1 M 4-26-62 5050	78	7.8	3910	275 13•72 35	134 11•02 28	317 13•78 35	16 0•41	0	218 3.57 9	861 17.93 47	584 16•47 43	4.0	0.2	1.79	90	2356 2590	1234
- 9E 1 M 8-13-63 5050	8	!	4190	1	i	439 19•09	į į	1	1	i	631	1	1	1.80	1		1390
DWR 1982			STATE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	RNIA - THE	RESOURCES	AGENCY	OF CALIFO	RNIA DE	PARTMENT (OF WATER RE	SOURCES					

TABLE E-2
CONFINED AQUIFER
MINERAL ANALYSES OF GROUND WATER

State Well	Генр		Specific conduct-		Minerol C	Minerol Constituents in	•	Eŏă	milligrams per liter equivalents per mill percent reactonce v	milligrams per liter equivalents per million percent reactonce value				Minerol constituents in parts per million	nerol constituents parts per million	ints in ion	
	when	I	micro-	Calcium	Magne	Sodium	Potos-	Carbon-	Bicar-	Sulfate	Chlo	.i. State	Fluoride	Boron	÷ 8	Computed	TOTAL
Agy. Coll.	, u	<u>a</u>	mhos ot 25 C)	S	\$	ź			O O	Ş	Ē Ū	0 0	<u> </u>	æ	S OS	Evap 180°C	6000
9E 1 M 5050	1	7.1	4800	1		496	1	,	1	1	844	}	1	1.90	1		1630
14S/14E- 9M 1 M 8-23-51 5000	85	8 0	7540	303 15•12 21	3.21	1260 54.78 75	13	0	126 2.07	398 8•29 11	2310 65•14 86	5.4	0.5	1.40	54	9777	917
9M 1 M 5050	8 2	80 •	2200	54 2.69 11	1.07	492 21•39 85	0 0 8	0	184 3•02 12	551 11•47 45	388 10•94 43	0.0	9	1.30	41	1635	188
9M 1 M 5050	8 2	7.6	1970	2.35	1.07	361 15.70 82	0.08	0	198 3.25 16	535 11.14 56	192 5•41 27	2 • 3	0 • 5	2.50	33	1287	171
9M 1 M 5050	82	!	1860	1	1	361 15•70	1	1	1	1	159	1	1	1.50	ł		
9M 1 M 5050	88	1	1840	1	1	346 15•04	1	1	1	ł	152	1	1		1		175
9M 1 M 5050	0 80	1	1760	1	!	321 13•96	!	1	1	1	120 3•38	1	ì	1.23	i		181
9M 1 M 5050	82	{	1850	1	1	342	1	1	1	1	152	1	1	1.50	i		236
9M 1 M 3 5050	82	7.7	1860	2.89 15	18 1.48	337 14•65 77	0.10 1	•	204 3•34 17	561 11•68 60	155 4•37 22	30.00	9•0	1.50	4.1	1280	219
145/14E-10N 1 M 8-13-51 5000	83	7.7	2490	1	1	490	1	0	3.05	580 12.08	470		-	2.50	ł		188

MINERAL ANALYSES OF GROUND WATER

Date Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Sampled Agy. Agy	Temp.	Specific conduct-	nct-		Mineral Ca	Mineral Canstituents in		E & 6	milligrams per liter equivalents per millian percent reactance value	milligrams per liter equivalents per millian percent reactance value				Mineral canstituents in parts per millian	neral canstituents parts per millian	ents in lian	
Date Sampled Agy. "F " mines numbes <th< th=""><th></th><th></th><th><u> </u></th><th>alcium</th><th>Mogne- sium</th><th>Sodium</th><th>Potos- sium</th><th>Corbon.</th><th>Bicar- banate</th><th>Sulfate</th><th>Chlo- ride</th><th>Ni- trate</th><th>Fluo- ride</th><th>Boron</th><th>.<u>÷</u> 8</th><th>Computed</th><th>10TAL hardness</th></th<>			<u> </u>	alcium	Mogne- sium	Sodium	Potos- sium	Corbon.	Bicar- banate	Sulfate	Chlo- ride	Ni- trate	Fluo- ride	Boron	. <u>÷</u> 8	Computed	10TAL hardness
45/14E-12N 1 M 80 7·7 2520 31 556 2500 0.49 22.00 0.65 22.00 0.65 22.00 0.65 22.00 0.65 22.00 0.65 22.00 0.65 24.26 0.65 24.26 0.65 24.26 0.65 24.26 0.65 24.26 0.65 24.26 0.67 <td< th=""><th></th><th></th><th></th><th>3</th><th>6 W</th><th>Ž</th><th>¥</th><th>03</th><th>HCO 3</th><th>SO 4</th><th>ō</th><th>s O N</th><th>u.</th><th>æ</th><th>SIO₂</th><th>Evap 180°C</th><th>03 CoCO 3</th></td<>				3	6 W	Ž	¥	03	HCO 3	SO 4	ō	s O N	u.	æ	SIO ₂	Evap 180°C	03 CoCO 3
-12N 1 M 75 8.9 2560 20 7 558 24.26 0.5 8 24.26 0.5 8 24.26 0.5 8 24.26 0.5 8 24.26 0.5 8 24.26 0.5 8 24.26 0.5 8 25.0 0.5 8 24.26 0.5 8 25.0 0	0	2		- 63 - 65 - 65	4	50 2 • 0		0	173 2•84 11	544 11•33 46	375 10.58 43	1.0	1	1•81		£991	102
-12N 1 M 78 7.5 1790 385 16.74 0.1 -12N 1 M 79 8.0 1860 26 4 385 0.1 -12N 1 M 79 8.3 1960 25 4 377 0.1 2-52 5050 1.25 0.33 16.39 0.1 -12N 1 M 7.8 1350 29 4 4 409 -12N 1 M 8.4 1980 29 4 4 409 -12N 1 M 2050 2050 414 12N 1 M 2040 18.00	ω ω	0		200.	5	4		18 0•60 2	155 2.54 10	240 11.24 45	382 10•77 43	ο •	1	1.82	4	1651	67.
-12N 1 M 79 8.0 1860 26 4 385 0.1 8-74 0.1 -12N 1 M 79 8.3 1960 25 0.33 16.39 0.1 -12N 1 M 7.8 1850 26 4 385 -12N 1 M 7.8 1850 29 4 4 385 -12N 1 M 8.4 1980 29 4 4 409 -12N 1 M 2050 -12N 1 M 2050 -12N 1 M 2050 -12N 1 M 2050 -12N 1 M 2050 -12N 1 M 2050 -12N 1 M 2050 -12N 1 M 2050 -12N 1 M 2050 4420	· .		0 6	1	i t	9	1	•	174	12.28	170	1	1	1 • 90	1		.P./
M 79 8.3 1960 25 4 377 0.10 10.25 0.33 16.39 0.10 10.25 0.33 16.39 0.10 10.25 0.33 16.39 0.10 10.25 0.33 16.74 0.10 10.25 0.33 17.78 0.10 10.25 0.35 0.35 0 10.25 0.35 0 10.25 0.35 0 10.25 0.35 0 10.25 0 10.25 0 10.25 0				26	<u>.</u>	9	•	0	174 2.85 16	514 10•70 59	4 0 0 0 0 0 0 0 0 0	3.0	უ • •	0 0	9	1257	2.20
M 7.8 1350 26 4 385 0.1 1.30 0.33 16.74 0.1 M 8.4 1980 29 4 4009 M 2050 420 0.1 M 2050 420 0.1 M 2040 18.00	<u> </u>			25.	• ~	37 6 • 3 9	6 0 • 10 1	0	176 2•88 16	525 10.93	156 4•40 24	o •	0 • 5	1 • 40	30 40	1247	7
M 2050 4420 18.00 18.00 18.00				286	<u>.</u>	38 6•7	•	0	176 2 • 88 16	507 10•06 94	157	o •	٥٠ ٦	99.0	9	1239	02
M 2056 18.26 M 2040 18.00				29	m ·	4.0 7.7	•	0.27	167 2•74 14	526 10.95 57	io1 5•10 27	C 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1.20	6	1313	o.
M 2040 414			200	1	i t	4.2 8 • 2	į į		1	1	200	}	1	1.60	{		91
	·-	· · · · · · ·	0 †	1	1	∞	1	1	1	1	211		1	1	1		7 %
-12N 1 M 228 413 228 7-31-57 5050 2110 17.96		21	10	-	1	413	1	1	1	1	228	1	1	1.50	1		140

TABLE E-Z CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

3			Specific					Ε	milligrams per liter	oer liter				Mineral canstituents	canstitu	ants in	
State Well	Тетр		canduct-		Mineral C	Mineral Canstituents in	_	ă ă	quivalents srcent reac	equivalents per millian percent reactance value				parts	parts per million		
. -	- ×	I _	(micra-	Calcium	Magne- sium	Sodium	Potas- sium	Carbon- ote	Bicar- bonote	Sulfate	Chloride	trate	Fluo- ride	Baron	ij 8	TDS Computed	TOTAL hordness
Date Sampled Agy.	<u>.</u>		mhas at 25°C)	კ	W	Ž	×	00	нсо з	SO 4	ō	NO 3	ĸ	89	SIO ₂	Evap 180°C	coco 3
145/14E-12N 1 M 6-24-58 5050	98 0	7.6	2320	52 2.59 11	7 0 • 5 8	445 19•35 85	8 0.20	0	178 2•92 13	576 11.999 20	200 7.40 66	4.0	0.0	0 c • t	9	0001	107
14S/14E-12N 2 M 5-18-51 5000	74	7.3	4810	7 185 • 23 18	117	737 32.04 63	0.51	0	241 3.62 7	742 10.40	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	11 • 0 • 1 ¤	1		7).	9000	940
-12N 2 M 5-18-51 5000	74	7.3	4620	189 9 43 20	96 7.90 7.1	671 29•18 62	0.31)	221 3 • 62 8	673 14•01 29	1060 29•89 63	10.0	I I] • 64	70	2 & Y]	0 0
-12N 2 M 5-18-51 5000	74	7.4	4800	174 8.68 17	126 10.35	748 32.52 63	14 0.36 1	0	222 3•64 7	750 15•62 31	1100 51.02 61	0 · i · 0	1	1 • 4 6	()	3107	907
-12N 2 M 5-19-51 5000	68	7.2	4480	1527.58	108 • 88 19	573 29.26 64	1. 0 . 28 1	Ö	212 3•47	614 12.78 28	1040	0 + 0 × 0 × 0	1	1.64	7	2750	8 2 4
-12N 2 M 5-20-51 5000	74	7 • 8	4550	165 8 23 18	10 8 10 10	540 27.83 62	14 0.36	J	221 3.62 8	571 11.689 26	1070	C	-	7.00€	()	7 (09	340
-12N 2 M 8-13-51 5000	79	7.3	4150	!	1	30.44	!	3	2.51	720	1046	1	1	1.60	1		
145/15E-13E 1 M 8-23-51 5000	78	α • •	1700	29 1 • 45	0 33 4	355 15•44 89	0 0 8 0	0	180 2•95 14	118 2•46 12	532 15•00 73	0 • 1	. 0	1 • 30	75	1206	90
145/15E-18E 2 M 8-13-51 5000	1 79	7.0	1308	1	1	405 17•61	1	0	176 2•88	270	236	1	1	5.50	1		76
-13E 2 M 8-12-52 5050	78	7.9	2090	26 1•30 6	0.33	430 18•70 92	0 1 0	0	172 2•82 14	005 10.51 52	254 6•74 34	0.0	0.7	1.20	60	1001	97

MINERAL ANALYSES OF GROUND WATER

State Well	Гетр		Specific canduct-		Mineral Co	Mineral Constituents in		E 6	milligrams per liter equivalents per mil percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral canstituents in parts per millian	neral canstituents parts per millian	nts in an	
-	when	±_	ance (micra-	Calcium	Magne- sium	Sodium	Patas- sivm	Carbon- ate	Bicar- banote	Sulfate	Chlo- ride	to.	Fluo.	Baron	S S	TDS	TOTAL
Date Sampled Agy. Time Call.	ы. 0	,	mhas at 25°C)	კ	W ₉	Ž	¥	00 3	нсо з	504	Ū	NO 3	L	В	SIO 2	Evap 180°C	°° coco
145/15E-28L 5 M 8-15-51 5050	l 1	7.2	1380	1	1	275	1	1	186 3.05	400 8 • 33	1.69	a t	1	1 • 90	1		150
-28L 5 M	75	1.88	1940	!	i	l I	1	0	176 2.88	650	152	\$ 1	1	1 • 60	1		162
-28L 5 M	i	7.5	1530	30	5	310	ţ	0	145 2.38	11.03	70 1.97	1	ŧ i	0	1	1085	7 0
-28L 5 M 7-29-58 5050	1	7.9	1460	32	0 4 0 1 6	281 12•22 85	7 0 • 18	0	184 3•02 21	2 t t c c c c c c c c c c c c c c c c c	86 2•43 17	2.1	.n • •	1.50	74	1011	101
-28L 5 M	i 1	7.9	1460	1.55	0 4 0	278 12.09 85	0.10	0	1.89 3.10 21	434 9.04 62	2 3 4 0 0	1.2	0 4	1.70	7.5	1006	102
-28L 5 M 7-21-60 5050	1	88	1400	1.65	0 0 14 0	282 12•26 85	6 10 0 10	0	182 2.98 21	44.3 9 - 2.2 64	2 • 20 15	70.0	0 • 0	1 • 4 Ü	0	101	100
-28L 5 M 9-27-61 5125	0 8	ω •	1470	32	7 0 58	272 11.83 84	0.10	0 • 13	179 2•93 21	404 8 • 41 60	8 1 2 2 2 8 1 6	10.0 0.16	0 • 3	1 • 50	7.5	D (~	109
-28L 5 N 6-20-62 5050	0 &	89	1460	32	0 4 9 4 9	266 11•57 84	0.10	0	181 2•97 21	447 9.20 64	74 2.09 15	1.1	η • 0	1.40	71	70 7	105
-28L 5 M 8- 1-63 5050	80	i	1500	1	1	273	1	i	1	1	77 2 17	!	1	1 • 40	1		103
145/15E-30M 1 M 8-14-51 5000	8	7 • 7	1790	1	1	375	-	0	178	640	160	1	1 1	07.	1		9)
DWR 1982			STATE	STATE OF CALIFORNIA . THE RESOURCES AGENCY OF CALIFORNIA . DEPARTMENT OF WATER RESOURCES	NIA - THE	RESOURCES	AGENCY (OF CALIFO	RNIA - DE	PARTMENT (OF WATER R	ESOURCES					

TABLE E-2 CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

tuents in illion	TDS TOTAL Computed hardness	as Evap 180°C CoCO 3	345		 	5 O O O O	20 00 00 00 00 00 00 00 00 00 00 00 00 0	5 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 % % % % % % % % % % % % % % % % % % %	5 8 9 0 7 0 7 7	9 9 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	203 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Minerol constituents in parts per million	Boron ca	B SIO 2	3.40	1	5 • 10							
	Fluo- ride	- L	_	1	1 1							
	Chlo- Ni- ride trate	CI NO 3		205 5 7 8	10.79	7 •						0 0 0
milligrams per liter equivolents per million percent reactance value	Sulfate	50.4		1210	121 25.1 25.1 176 36.6	1210 25.19 1760 36.64 1090 22.65	1210 25.19 1760 36.64 1090 22.69 1080 22.49	1210 25.19 1760 36.64 1090 22.69 1080 22.49	1210 25.19 1760 36.64 1090 22.69 22.69 73	1210 25.19 1760 36.64 1090 22.699 1080 22.499	1210 25.19 1760 36.64 1090 22.69 22.69 1080 22.49	1210 25.19 1760 36.64 1090 22.699 22.499 1080 22.499 1310 1310
milligroms per liter equivolents per mill percent reactance v	1	HCO 3		0 218	21 3.5 22 3.7	(a) (a)	(1) (N) (N) (N)					
	Potas- Carban-	K CO 3		1	1 1	•	1 1 1	1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 8 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Minerol Constituents in	Sodium	Ž		594 25•83	2 2	υ ο ο	5.594 2.004 2.004 3.539 3.446 3.540 3.448	5 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 5 8 3 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 6 8 8 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 5 8 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	5 2 3 3 3 3 3 4 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Minerol Co	Magne- sium	6W		1	i i	• •	• †	ф ф	* *	• *	4 4	• , • , • , • • • • • • • • • • • • • • • • • • •
	Colcium	3		1		m						
Specific conduct-		mhos at 25 C		4 2926	+ 61	+ 01 10	+ 0 0	+ 01 10 10	+ 01 00 00 1	+ 01 10 10	+ 01 10 10 1	+ 01 10 10 11 11 11 11
Temp	when Sampled p			83 7.4	3 7		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
State Well		Date Sampled Agy. °F Time Coll.		55/126- 15 1 M 8-15-51 5000	51 5 000 51 18 1 M	51 15 1 M 51 1 M 51 1 M 51 1 M 51 1 M 52 5050	N N S C C N S	51 17 1 M 51 18 1 1 M 51 18 1 M 52 18 50 50 53 50 50 55 50 50 65 18 1 M 65 50 50	51 17 1 W 51 18 5 0 0 0 51 18 18 18 18 18 18 18 18 18 18 18 18 18	51 18 1 18 18 18 18 18 18 18 18 18 18 18	51 18 1 W 51 18 1 W 51 18 1 W 52 18 5050 53 18 1 W 53 18 1 W 54 5050 56 5050 57 5050 58 5050 59 5050 50 5050 50 5050 50 5050 50 5050 50 5050 60 5050	51 18 1 18 1 18 1 18 1 18 1 18 1 18 1 1

State Well	T G G		Specific canduct-		Mineral Co	Mineral Constituents in		E &	milligrams per liter equivalents per mil	milligrams per liter equivalents per million				Mineral constituents in parts per million	neral constituents parts per million	ints in	
Number	when		auce		Mogne		Potas	Carban	Biar.	percent reactance value	Chlo-	ż	Fluo-		:H:S	TOS	TOTAL
Pate Campled Agy	Sompled	Ŧ <u>a</u>	(micra-	Colcium	s.c.a	Sodium	Eng.	ate	bonate	Sulfate	-ide	trate	- ide	Boron	8	Computed	hardness
Time Coll.			at 25°C)	კ	₩	Ŷ	×	c 03	нсо з	504	Ū	NO 3		89	SIO 2	Evap 180°C	CaCO 3
155/12E- 1N 1 M 7-19-60 5050	ŀ	80 &	4560	112 5.59 11	78 6.41 13	897 39•00 76	9	0.20	200 3•28 6	1810 37.68 74	326 9•19 18	23.0 0.37	α •	υ. 0Ω.	4.2	3407	009
15s/12E-120 1 M 8-15-51 5000	06	7.2	2950	1	1	627	1	0	196 3.21	1300	205	1	1	3 • 60	1		375
155/13E- 1N 1 M 8-15-51 5000	06	7 • 8	1740	1	•	350	1	0	164	560	9.5 . 5 0 0 . 5 0 0	1	!	1.90	1		175
155/13E- 2N 1 M 8-15-51 5000	06	7.6	1740	1	ì	285 12•39	1	0	160	690	85	!	1	1 • 80	1		210
158/13E- 8N 1 M 8-15-51 5000	9 8	7.6	2797	1	1	644 28.00	1	0	242	1320	200	1	1	4 • 10	1		000
15S/13E-16N 1 M 8-15-51 5000	66	7.9	1650	1		1	1	0	198	540 11•24	90	1	1	t 8	1		155
155/13E-260 2 M 8-31-51 5000	8 8	ω •	1040	16	0 • 41	220 9.57 88	0.05	0	330 5 • 41 50	215 4•48 41	0 8 0 9 0	7 • 0	0	0 80	74	672	61
155/14E- 4M 1 M 3-14-51 5000	50	7.5	1780	-	1	340	ł	0	164	610	90	1	!	2 • 00	1		120
155/14E- 6H 1 M 8-14-51 5000	7.8	7.6	1540	1	1	205	1	0	186 • 05	590	50 1•41	1	1	2 • 40	1		250
155/14E- 7H 1 M 8-14-51 5000	හ හ	7.6	1770	1	t	320 13•91	1	0	156	650 13.53	100	1	1	0 0 0 0	1		160
DWR 1982			STATE	OF CALIFOR	RNIA - THE	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	AGENCY	OF CALIFC	RNIA - DE	PARTMENT (OF WATER R	ESOURCES					

TABLE E-2 CONFINED AGUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

	7	ŝ	3	71	265	100	110	<u>ح</u>	155	_	127	112	136
	TOTAL		Coco 3		5		<u>-</u>	-				٦	
ents in lian	TDS		Evap 180°C	120				1000	1074				
neral constituents parts per millian	Sili	3	SIO ₂	1	¦	1	1	ų O	0	i .	1	1	i
Mineral constituents in parts per million	Boron		æ	1	2.10	2.00	1.90		1 • 30	2 • 20	1	0 ¢ • 7	2.00
	Fluo-		F	į.	1	1	1	0 • 7	9.0	!	1	1	1
	Ä Ž		NO 3	1	1	!	!	0	0	1	!	}	1
	Chlo		ō	1.72	1.27	40	8 5 6 4 0	74 2 • 0 9 1 3	2.62	2.17	74	2 4 0 0 0	2.03
milligrams per liter equivalents per million percent reactance value	Sulfote		504	340	680 14.16	580 12.08	640	528 11.62 74	547 11.39 72	1	1	1	!
milligrams per liter equivalents per mill percent reactance v	Bicor.		нсо з	130	134	140	124	118 1•93 12	110 1.80 1.11	1	1	1	1
E & &	Carbon-	ů Ö	co 3	0	၁	0	1	0	0	1	Į.	1	ł
c	Potas-	Ē	×	0.13	1	ł	1	0.08	0 0 0	ł	1	1	1
Mineral Constituents in	Sodium		Na	220	275	245 10•65	320	285 12•44 82	290 12.61 80	306	288	325 14•13	281
Mineral C	Magne-	5	Mg	5 0•41	i i	1	i	0 • 4 %	11 C•90 6	1	1	1	1
	Calcium		రి	1.00	1	1	1	2 • 10 14	2.20 14	;	-		1
Specific conduct-	ance micro-	mhas	at 25 C)	1100	1600	1340	1880	1570	1530	1580	1550	1640	1530
	I	۵.			7.5	7.9	7•4	8 • 1	7.5	1	1	!	1
Тетр.	when			99	8.7	8	80	ဘ	86	8 8	ω	ත ග	78
		Agy.	Coll.	. 4 M 5001	1 M 5000	1 2 M 5000	5050	5050	5050 5050	5050	5050 5050) 2 M 5050	5050
State Well	Jaguioni	Date Sampled	Time	155/14E-15E 12-22-50	155/14E-30E 8-14-51	155/14E-31N 8-14-51 5	155/14E-360 8-14-51 5	-360 8-14-52 5	-36Q 7- 8-53	-360 7-28-55 5	-360 10-12-55	-360 6-26-56	7-31-57 5

MINERAL ANALYSES OF GROUND WATER

AKEA
IJ
Y
⋖
-
->
-
Τ,
بد
MADERA
∑
1
•
\neg
=
_
ONS.
자 나
Y
1

State Well			Specific		Mineral Co	ineral Canstituents in		Ē	milligrams per liter equivalents per millian	er liter er millian				Mineral constituents in	onstitue	nts in	
Number	Temp		- Coluctor					pe	percent reactance value	ance value				pars	paris per iminan		
\vdash	Sampled	±		Calcium	Mogne- sium	Sodium	Potas- sium	Carbon.	Bicar. bonate	Sulfate	Chlo- ride	rote.	Fluo- ride	Boron	Sili:	TDS Computed	TOTAL
Date Sampled Agy. Time Call.	, '		mhas at 25°C)	კ	6 W	Z	×	8	нсо 3	504	Ū	NO 3	N.	80	510 2	€vap 180°C	as CoCO 3
155/14E-36Q 2 M 6-25-58 5050	8 0	7.5	1580	35	0.4.0	289 12•57 85	0.05	0	114 1.87 12	518 10•78 71	85 2•40 16	2.6	8	1.60	28	1023	108
-360 2 M 9-27-61 5125	5 87	ο • 8	1650	38 1.90	0 0 0 0 1	308 13 • 39 87	0.05	0	264 • 33 28	419 8•72 56	2.57	0 • 1	.xx	2 - 10	32	1024	, ,
-360 2 M 7-31-62 5050	80 E O	1	1640	1	!	274	0 0 0 5	1	t 1	564 11•74	2.43	!	!	2.20	ſ		130
-360 2 M 8-13-63 5050	Σ O		1650	1	1	361	1 1	1	1	-	84	1	1	2.00	İ		163
16S/14E- 2J 1 M 8-23-51 5050	0 W	ω •	1760	3.29	1.40	335	0.00	0	124 2•03 11	703 14•64 79	1.92 10	0 0 0 0 0	· 0	7.4		1297	235
165/14E-14N 1 M 8-15-51 5050	Ε O 88	7 • 4	1540	109	3.04	180	1	0	134	652	1 8 4 0 8 4 0	1	1	1 • 50	1		474
-14N 1 M 8-14-52 5050	Σ. O 8	80	1580	115 5•74 34	32 2•63 16	190 8•26 49	0 i 0	0	134 2•20 13	658 13•70 81	37	0 •	0	1.90	31	1135	4 1 9
165/14E-23N 1 M 8-15-51 5050	ω ω ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	7.5	1790	138	62 5 • 10	195 8•48	!	0	160	756	63 1•78	!	1	1.30	1		0 0
165/15E-20G 3 M 8-15-51 5050	Σ O 4	7 • 1	1370	57	24	210	1	0	2.11	10.39	1.56	1	1	2.20	i		24 i
165/15E-23F 1 M 8-15-51 5050	7 × 0	7 • 2	1770	109	73	188	1	0	153	714	2 6 8 • 6 8	1	1	1.30	1		572
DWR 1982			STATE	OF CALIFOR	RNIA . THE	RESOURCES	AGENCY (OF CALIFC	ORNIA - DE	STATE OF CALIFORNIA . THE RESOURCES AGENCY OF CALIFORNIA . DEPARTMENT OF WATER RESOURCES	JE WATER RE	ESOURCES					

TABLE E-2 CONFINED AUUIFER MINERAL ANALYSES OF GROUND WATER

State Well	Temp.		Specific conduct-		Mineral Co	Mineral Constituents in		Ē 6 6	milligrams per liter equivalents per mill percent reactance v	milligrams per liter equivalents per million percent reactance value				Mineral constituents in parts per million	neral constituents parts per million	nts in on	
Number	when	I	ance	Calsion	Magne-	Sodium	Potas	è	Bicar-	Sulfate	Chlo	Ä start	Fluo-	Boron	SII:	Computed	TOTAL
Date Sampled Agy.	Sampled P.F.	<u>.</u>	whos		En:		E	9	povoje		9	9			8		hordness
Time Call.			at 25 C)	ვ	Wg	Ž	¥	co 3	нсо з	504	Ū	NO 3	_	8	SIO 2	Evap 180°C	CoCO 3
65/15E-310 1 M 8-14-51 5050	84	7 • 3	1380	3.19	50	186	-	0	158	505 10•51	1.64 1.64	1	1	2.10	1		365
175/15=- 50 1 M 8-14-51 5050	76	7 • 4	1776	4 000 9	135	136	1	0	228 3•74	736	1.80	1	1	1.10	1		805
17S/15E- 6M 1 M 8-14-51 5050	81	7 • 6	1370	3.99	103	91	i	0	234	475	1.89	{	1	0 • 50	ì		623
S/15E- 6N 1 M 8-22-51 5000	00 17	80 •	1620	4 98 4 25	9007-400	160	0 • 10 1	0	204 3•34 17	672 13•99 72	2.17 2.17 1.1	1.5	0	0 4 • 0	88	1236	615
175/15E- 60 1 M 8-14-51 5050	78	7.3	1770	95 4 . 5 9	74	215	l	0	176	713	2.37	1	}	1.70	ł		534
175/15E- 7N 1 M 8-14-51 5050	92	7 . 5	1730	91	141	104	1	0	226 3.70	658	102	1	1	09•0	1		80 8
175/15E- 8N 1 M 8-14-51 5050	77	7.3	1760	4.69	136	114	1	0	226 3•70	680	100	ł	1	0 8 0	1		803
175/15E- 8P 1 M 8-14-51 5050	77	7•4	1810	4.59	132 10•86	156	į	0	228 3•74	734	84 2.37	1	i	06 • 0	1		773
17s/15E-13N 1 M 8-14-51 5050	102	7.3	1870	33	9	400	1	0	148	616 12•83	126 3•55	1	ì	2 • 30	l		120
17S/15E-14F 1 M 8-14-51 5050	88	7.3	1810	54	5.54	300	-	0	194 3•18	617	3 0 p		1	2.70	-		312

State Well	Тетр		Specific conduct-		Mineral Co	Mineral Canstituents in		E & &	milligroms per liter equivalents per million	milligrams per liter equivalents per million				Mineral canstituents in parts per millian	neral canstituents parts per millian	ints in ian	
Number	when	I,	ance (micra-	Colcium	Mogne- sium	Sodium	Potos- sium	Carbon-	Bicar- bonate	Sulfote	Chloride	rate t	Fluo- ride	Boron	S S	Computed	TOTAL
Date Sampled Agy. Time Call.	<u></u>	.	mhos at 2S ^C)	3	6W	Ž	×	00	нсо з	50 4	ō	NO 3	ч	8	SIO 2	Evap 180°C	as CaCO 3
17S/15E-14E 1 M 8-13-52 5050	06	8 • 3	1750	50 2.50 14	41 3•37 19	280 12•17 67	0.08	0	178 2•92 16	596 12•41 68	105 2.96 16	3 • 1	9.0	2.20	30	1198	294
17S/15E-15N 1 M 8-14-51 5050	86	7.2	1820	3.74	3.78	245	ł	0	153	695	88 2•48	1	1	3.10	1		376
-15N 1 M 8-13-52 5050	88	7 • 8	1790	3.59	41 3•37 18	260 11.30 62	0.10	0	142 2•33 12	671 13.97 75	85 2•40 13	2 • 6 0 • 0 4	0	3 • 00	27	1236	346
-15N 1 M 8- 5-59 5050	86	7.9	1600	59 2 94 16	4 • 11 23	246 10•70 60	0.10	•	168 2•75 15	597 12.43 70	2 • 5 4 1 4	200	0	0.27	200	1106	60 U U
17S/15E-16N 1 M R-14-51 5050	78	7.4	2160	117	139	186	!	0	213	881 18•34	146	1	1	1.30	1		9 8 4
-16N 1 M 8-13-52 5050	78	8 • 1	2290	125 6 • 24	132 10•86 40	221 9•61 36	0.13	0	196 3.21 12	900 18•74 71	158 4 • 46 17	10.00	0 4	ا س د س	(n .u	i o o	ω C
17s/15E-160 1 M 8-14-51 5050	80	8 . 2	2020	109	110	182	i	0	198	840	122 3•44	1	-	2.20	i		725
175/15E=18K 1 M 8-22-51 5000	78	S •	1760	3.94	121 9.95	166 7.22 34	0 8 0	0	234 3•84 19	045 13.43 66	105 2.96 15	6.6 0.11	4	1 • 1 6	3.6	1278	0 7 0
17S/15E-20N 1 M 8-14-51 5050	7.7	7.3	1670	3.44	167	165	;	0	264	626	76	1	1	1.50	1		859
175/15E-21M 1 M 8-14-51 5050	78	7.1	2540	138 6 • 89	162	200	ł	0	209	988	229	1	1	1.90	ļ		1011
DWR 1982			STATE	OF CALIFO	RNIA - THE	RESOURCES	AGENCY	OF CALIF	DRNIA - DI	STATE OF CAUFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	JF WATER R	ESOURCES					

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER FRESNO - MADERA AREA

Mineral canstituents in parts per millian	oron co Computed hardness	_	8 510 ₂ Evap 180°C CoCO 3	SIO 2 Evop 180 C	510 ₂ Evap 180 _C C	Sio 2 Evop 180 C C	5102 Evop 180 C C	30	Sio ₂ Evon 180°C Co	30 L24i	30 1247	30 tvop 180°C
Mine	Fluo- ride Boron	ш.			1	; ;	3	1 1 1 1	1 1 4 1 1			
	Trote	г ОИ	225	162		3.07	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	0	0
	Sulfate Chlo-	50 4 CI	947 2 19•72 6•	838 1 17.45 4.	711 1							
milligrams per liter equivalents per millian percent reactance value		нсо з	3.54	3.10	0 164			2 1 64 2 689 3 2 1 6	2 1 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 1 1 4 6 4 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2 8 7 5 8 8 7 8 7 8
	Patas- Carbon- sium ate	к со з	-				0 • 10					
Mineral Canstituents in	Sodium si	°Z	200	200	245	_	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					7
-			(8 8	80	10		10	10	15 10	ਜ਼ ਜ਼ ਜ਼	ă ă â â	ă
Mineral C	Magne- sium	Wg	154	107	60 4		55 4.52 10 24	652 24 24 101 8 • 31	4 . 5.5 4 . 5.2 2.4 101 8 . 31 6 . 69	25 24 24 101 8 31 8 31 152 152	5.5 4.55 24 101 8.31 8.31 15.67 1.21 12.50	652 101 8 • 31 8 • 31 12 • 67 1 152 1 152 1 1 2 50 1 2 9 9 5
	Calcium	კ	129 154 6.44 12.66	129 6•44 8•80	79 60		3.84 4.52 10 20 24 24	77 55 3.84 4.52 20 24 113 101 5.64 8.31	3.84 4.52 20 24 113 101 5.64 8.31 109 69	3.84 4.52 20 24 113 101 5.64 8.31 109 69 5.44 5.67 202 152	3.84 4.55 20 24 113 101 5.64 8.31 10.09 69 5.44 5.67 10.08 12.50 10.08 12.50	3.84 4.55 2.84 4.52 2.02 24 113 101 5.64 8.31 2.02 152 10.08 12.50 162 121 8.08 9.95 10.48 10.53
· +	micro- Calcium	ot 25°C) Co	3 2450 129 154 6.44 12.66	2220 129 107 6.44 8.80	1800 79 60 3.94 4.93		1780 77 55 3.84 4.52 10 20 24	1780 77 55 3.84 4.52 20 24 2150 113 101 5.64 8.31	1780 77 55 3.84 4.52 20 24 2150 113 101 5.64 8.31 2500 109 69 5.44 5.67	1780 77 55 3.84 4.52 20 24 2150 113 101 5.64 8.31 2500 109 69 5.44 5.67 3280 202 152	1780 77 55 3.84 4.52 20 24 2150 113 101 5.64 8.31 2500 109 69 5.44 5.67 3280 202 152 3280 10.08 12.50 2840 162 121	1780 77 555 3.84 4.52 20 24 2150 113 101 5.64 8.31 2500 109 69 5.44 5.67 3280 202 152 3280 10.08 12.50 2840 162 121 3220 210 128
Specific conduct-	Calcium	at 25°C)	129 154 6.44 12.66	129 6•44 8•80	79 60		3.84 4.52 10 20 24	7.7 1780 77 55 3.84 4.52 20 24 7.3 2150 113 101 5.64 8.31	7.7 1780 77 55 3.84 4.52 20 24 7.3 2150 113 101 5.64 8.31 7.0 2500 109 69	7.7 1780 77 55 3.84 4.52 2.0 24 7.3 2150 113 101 5.64 8.31 7.0 2500 109 69 5.44 5.67 7.1 3280 202 152	7.7 1780 77 55 3.84 4.52 20 24 7.3 2150 113 101 5.64 8.31 7.0 2500 109 69 7.1 3280 202 152 7.1 3280 202 152 6.9 2840 162 121	7.7 1780 77 55 3.84 4.52 20 220 113 101 7.0 2500 109 69 7.1 3280 202 152 6.9 2840 162 121 6.9 2840 162 121 6.9 2840 162 121 6.9 3220 210 128

State Well				Specific		Mineral Co	Mineral Constituents in		Ē.Ē.	milligrams per liter equivalents per million	r liter er million				Mineral constituents in	onstitue	nts in	
Number	Jemp.	de		-cananci-					be .	percent reactance value	ance value				parrs p	parts per million		
	$\neg r$		I.	micra-	Colcium	Magne- sium	Sodium	Patas- sium	Carban. ote	Bicar- banate	Sulfate	chlo- ride	rate at	Fluorride	Boron	i . 8	Computed	TOTAL hordness
Date Sampled Ag	Agy.			mhos at 25 C)	კ	W	Z	¥	co 3	нсо з	50 4	IJ	NO 3	u.	8	SIO 2	Evap 180°C	CoCO 3
175/16E-29N 1 M 8-15-51 5050		88	30	1360	54 2.69	7	220	•	0	54	504 10•49	76	-	!	1.80	1		164
175/16E-30A 4 M 7-26-52 5001				2000	3.69 20	0 23	340 14•78 78	0 1 3 5	0.000	25 0•41 2	640 13.32 71	160 4•51 24	0 • 2	1	1	1	1249	197
-30A 4 M		08	1	4000	1	1	1	1	1	1	1	1	1	1	1	ł		
17S/16E-30A 5 M 7-26-52 5001			-	1400	1.65	0.16	260 11.30 86	0.05	0	70	490 10•20 77	1.97	0 • 2	1	1	i	892	91
175/16E-30A 6 M 7-26-52 5001		ش ش	1	1900	1 65	2 0.16	360 15•65 89	2 0 0 0 0 5	0	110 1•80 10	320 6.65 37	330 9.31 52	0	i	1.20	1	1102	7.
175/16E-30N 1 M 8-14-51 5050		9 06	0,	1730	81	19	270	1	0	79	650 13 - 53	2.79	1	1	1 • 50	ţ		280
175/16E-32N 1 8-15-51 50	Σ 0	93 6	6	1710	3.69	10	295 12•83	1	0	83 1•36	634 13•20	102 • 68	1	1	2 • 20	ļ.		226
-32N 1 8-13-52 509	1 M 050	92 7	7.7	1700	3.54	11 0 • 90	281 12•22 73	0 0 0 0 0 0	0	80 1•31 8	630 13•12 76	101 2.85 16	0 • 1	0 • •	2.20	28	1166	222
17S/16E-33N 1 8-15-51 509	1 M 10	101 6	7 • 9	1630	36	0.33	330	1	0	80 1•31	500	140 3.45	-	-	1 . 80	1		107
175/17E-31Q 1 M 8-15-51 5050		8 5	ω •	1150	54	12 0 99	175	1	0	86	428 8•91	41	1	1	0 % •	1		184
DWR 1982	\dashv			STATE	DF CALIFOR	RNIA - THE	RESOURCES	AGENCY	OF CALIFO	RNIA - DE	PARTMENT	STATE OF CALIFORNIA - THE RESOURCES AGENCY OF CALIFORNIA - DEPARTMENT OF WATER RESOURCES	SOURCES					

TABLE E-2 CONFINED AQUIFER MINERAL ANALYSES OF GROUND WATER

		TOTAL hardness	os CoCO 3	2
nts in	5	Computed	Evap 180°C	
neral constituents		: <u>†</u> 8	S10 ₂	-
Mineral constituents in	simd	Boran	æ	96.0
		Fluo	4	
		role i	NO 3	1
		OF SE	σ	0.00
milligrams per liter equivalents per millian	percent reactance value	Sulfate	504	7•31
milligrams per liter equivalents per mill	ercent reac	Bicar- banate	нсо з	1.10
E &		Corbanate	co 3	0
	- 1	Patas- sium	¥	-
Mineral Constituents in		Sodium	ž	180 7 • 83 7 • 83
Mineral C		Mogne- sium	W	0
		Calcium	3	1.45
Specific conduct-	ance	micro-	mhos at 25°C)	486
		Ξ.	•	
į	de d	Sempled	, L	9 80
			Agy. Coll.	000 000 000 000
State Well	Number		Date Sampled Time	17S/17E-33N80 M 9-25-29 5050
		· ·		

QUALITY OF GROUND WATERS IN CALIFORNIA SAN JOAQUIN DISTRICT TRACE ELEMENT ANALYSES OF GROUND WATER

					7	۲-		~								-											
	Zinc (Zn)				5.7	5.7		5.7		A 13	v 13			15	4 13		< 15		× 13	4 10	7 10	A 10	199	۷_ او	4 13	A 13	
	Vonadium (V)				57	22		&		79.0	79.0			19.0	19.0		0.77		5.7	7.0	0.6	15	0.67	4.2	19.0	2.7	
					0.57	.57		6.9	_	v	v m			v m	v m		Λ.		<u>س</u>		•		v m	•	<u>v</u>	e	
	Trianium (T.)				o V	o V		.9		r v	4 1.3			۲.	v.		4 1.5		1.3	۸ 2.0	1.0	1,0	۸ 1.3	1.0	۲ <u>.</u>	4 1.3	
	(Pb)				1.4	7. T		7. V		4 3.3	4 3.3			4 3.3	4 3.3		A 3.8		4 3.3	2.5	4 2.5	4 2.5	3.3	< 2.5	3.3	4 3.3	
	Nickel (Ni)				1.9	2.3		2.0		2.5	2.5			1.2	1.4		3.1		1.2	1.0	7.4	8	98.0	2.7	1.3	1.7	
	Molyb- denum (Mo)				7.1	0.29		0.29		19.0	79.0				14		5.4		7.9	0.4	0.6	0.50	19.0	0.50	8.0	3.1	
						Λιι	0.0	VII		V	9.3				3.3				7.1	2.5	2.5	2.5	<u>v</u>	2.5	3.3	_	
	- Mango- nese (Mn)				71 6	91 6	_	\$		-2					_ v		25			v	v	v	7 7	v	٧	7 11	
Billion	Germo- nium (Ge)				v 0.29	v 0.29		¥ 0.29		¥ 0.67	4 0.67			¥3.3	79.0 ₽		2.4		Z 0.67	▲ 0.50	v• v• 50	4 0.50	20.67	4 0.50	Z 0.67	¥ 0.67	
Ports Per	Gallium (Ga)				7.2	5.7		5.7		A 13	4 13			۸ <u>ان</u>	4 13	0.0	< 15		< 13	7 70	2 V	01 V	4 13	y 10	4 13	4 13	
Constituents In Pa	Iron (Fe)	0,00		8	73	8	8	100		o <i>l.</i> ≥ ×	6.7			35	15		9.5		4.7	2	5.0	77.	4 3,3	₹ ٧	1.7	6.4	
Constitu	Copper (Cu)		-		4.1.4	1.1		4.1.		3,3	3.3			3.3	3.3		3.8		3.3	: 2.5	: 2.5	: 2.5	3.3	2.5	: 3.3	3.3	
	Chro- mium (Cr)	_			4.1.4 A.1.4	A 1.4		V 1.t V		A 3.3	۸ 3.3 A			A 3,3	A 3.3		A 3.8		A 3.3	4 2.5 A	4 2.5 ▲	4 2.5	A 3.3	4 2.5 A	A 3.3	A 3.3	
	Cobalt (Co)			<u> </u>	1.4	1.4		1.4		3.3	3,3			3,3	3,3		3.8		3.3	2.5	2.5	2.5	3.3	2.5	3.3	3.3	
	Codmium (Cd)				1.4	1.4		1.4		3.3	3.3			3.3	3.3		3.8		3.3	2.5	2.5	2.5	3.3	2.5	3.3	3.3	
	Bismuth Co.				v 62.0	0.8		0,29		> 79.0	> 79.0			o.67	2 79.0		0.TT A		79.0	0.50	0.50	0.50	o.67 ▲	0.50	× 19.0	o.67 <	
					0.57 < 0	0.57 < 0		0.57 < 0		V	V			V	٧		V		V	V	٧	٧	٧	V	V	٧	<u> </u>
	ic Beryl- lium (Be)				° V	v v		o V		A 1,3	4 1.3			4 1,3	4 1.3		4 1.5		< 1.3	4 1.0	4 1.0	4 1.0	4 1.3	7	4 1.3	4 1.3	
	Arsenic (As)													190	ន			0									
	Alumi- num (AI)		8.0		15	24	8	8	乌	3.3	1A 3.3	8	og.	35	8.7		3.7		4 3.3	g	7.7	3.9	4 3.3	6.0	1.8	A 3.3	
	Oate	19/11/6	3/19/61	η9/η /6	19/01/9	19/h2/9	7/28/64	6/10/64	3/26/64	3/11/64	3/18/64 ≤ 3.3	5/21/64	49/41/4	1/59/67	19/92/8	2/ 7/64	12/17/63	8/28/64	2/ 3/64	11/18/63	11/18/63	11/18/63	2/ 3/64 < 3.3	11/18/63	12/ 9/63	2/ 3/64 < 3.3	
	Use	į.	Mun.	Dom.	Spring	Spring	īī.	Spring	Nom.	Abnd.	Irr.	īī.	lom.	irr & Stock	Dom & Stock	Dona.	Dom.	į	Jom.	John.	ir.	Stock	Dom.	ош.		Jone.	
		Irr.	2	Ā	Ğ	, id	Ä	g.	Ā	Ab	Ä	Ä	ã	Ā	<u>ā</u>	5	Ö	<u>H</u>	ğ	<u>5</u>	Ħ.	žť	ā	<u> </u>	Irr.	Dog	
	State Well Number	11S/14E~33P1-M	11S/17E-25B1-M	12S/14E-27J2-M	14S/25E-35QS1-M	14S/26E-32HS1-M	15S/17E-10R1-M	15S/25E-3DS1-M	17S/23E-8J2-M	21S/16E-1N1-M	21S/16E-2R1-M	21S/18E-17M1-M	21S/22E-22N2-M	24S/22E-35N1-M	26S/27E-9G1-M	29S/27E-21R1-M	29S/29E-34N1-M	32S/29E-35M1 -M	32S/31E-36C1-M	32S/32E-13Pl-M	32S/32E-26Q1-M	328/325-28нл-м	32S/32E-34G2-M	32S/33E-27D2-M	32S/33E-29F1-M	32S/34E-34B1-M	
	·																										

> More than the amount indicated. < Less than the amount indicated.

TABLE E-4

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

ANALYSES OF MISCELLANEOUS CONSTITUENTS

STATE WELL NUMBER	DATE	CONS	TITUENTS IN PA	RTS PER MILLION (ppm)
		Alkyl- Benzene- Sulfonate (ABS)	Lithium (Li)	Nutrients1/
4S/ 9E-22Cl-M	6-30-64	4.6	0.00	NH ₁₄ as N - 0.00 NO ₂ as N - 0.00 NO ₃ as N - 11 Organic N as N - 0.1
13S/20E-30Q1 -M	6-11-64	0.0		
30Q2 -M	6-11-64	0.0		
21S/27E-21K1 -M	8-11-64	0.0		
22E1 -M	8-11-64	0.1		
22Jl -M	8-11-64	0.0		
23L1 -M	8-11-64	0.0		
26F2 -M	8-11-64	0.0		
26Pl -M	8-11-64	0.0		
27Cl -M	8-10-64	0.0		
27Fl-M	8-12-64	1.9		NH ₁₄ as N - 0.01 NO ₂ as N - 0.00 NO ₃ as N - 9.7 Organic N as N - 0.5 Organic & Total PO ₁₄
27Gl -M	8-10-64	0.0		
27Ll -M	8-10-64	0.0		Organic & Total PO ₄
27Rl -M	8-11-64	0.0		
28Al-M	8-10-64	0.0		
28K)M	8-11-64	0.0		
28NJ -M	8-11-64	0.0		
34Bl -M	8-11-64	0.0		
34Dl -M	8-11-64	0.0		
26S/27E- 9Gl-M	8-26-64		0.18	

 $[\]underline{1}$ / Ammonium (NH₄), Nitr**i**te (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄)

TABLE E-4

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

ANALYSES OF MISCELLANEOUS CONSTITUENTS

STATE WELL NUMBER		CONSTITUENTS IN PARTS PER MILLION (ppm)		
	DATE	Alkyl- Benzene- Sulfonate (ABS)	Lithium (Li)	Nutrients 1
28 5/ 24E - 1F1-M	6-23-64		0.00	
2Bl-M	6-23-64		0.00	
2Pl-M	6-23-64		0.00	
3N1 -M	6-23-64		0.00	
6F1-M	7- 9-64		0.00	
7Bl-M	7- 9-64		0.00	
9Hl-M	7- 9 - 64		0.00	
11F3-M	7- 9 - 64		0.00	
12A1-M	6-23-64		0.00	
16A1-M	6-23-64		0.00	
32Pl-M	6-23-64		0.00	
36Rl -M	6-24-64		0.00	
28s/25E- 2Al-M	6-23-64		0.00	
4F1-M	7- 9-64		0.00	
4P2-M	6-23-64		0.00	
20D1 -M	6-23 - 64		0.00	
24Pl-M	6-25-64		0.08	
25L1 -M	6-24-64		0.00	
32Pl-M	6-24-64		0.00	
29S/24E- 4Dl-M	6-23-64		0.00	
7C1 -M	6-23-64		0.00	
21B1 -W	6-23-64		0.00	
24Fl-M	6-24-64		0.00	
33P3 -M	7- 9-64		0.02	

^{1/} Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄)

TABLE E-4

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

ANALYSES OF MISCELLANEOUS CONSTITUENTS

· STATE WELL NUMBER	DATE	CONSTITUENTS IN PARTS PER MILLION (ppm)			
		Alkyl- Benzene- Sulfonate (ABS)	Lithium (Li)	Nutrients 1 /	
29S/25E- 3N1-M	6-24-64		0.00		
lon1-M	6-24-64		0.00		
12N1-M	6-23-64		0.00		
13R1-M	7- 9-64		0.00		
32F1-M	7- 8-64		0.00		
30S/24E- 3El-M	6-24-64		0.00		
5L2-M	6-24-64		0.03		
бн 1 -м	6-24-64		0.02		
8P1-M	8-28-64		0.09		
llGl -M	6-25-64		0.00		
11 J 1 -M	6-24-64		0.00		
15D1 -M	6-24-64		0.02		
30S/25E- 1H1-M	6-25-64		0.00		
2Al-M	6-23-64		0.02		
2Kl-M	6-23-64		0.00		
7Pl-M	6-23-64		0.00		
8pl-M	6-23-64		0.00		
9Al -M	6-23-64		0.00		
14H1 -M	7- 7-64		0.00		
26Al -M	7- 7-64		0.01		
31P1 -M	6-25-64		0.00		
32S/29E-35Ml-M	8-28-64		0.01		

 $[\]underline{1}$ / Ammonium (NH₄), Nitrite (NO₂), Nitrate (NO₃), Nitrogen (N), Phosphate (PO₄)

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

KERN COUNTY PIEZOMETER SAMPLING PROGRAM

STATE WELL NUMBER	DEPTH TO WATER (FT.)	PUI TII (HRS		E C. ^d	PUMP RATE (G.P.M.)	REMARKS
25S/23E-28				o h/	, ,	ъ/
-D1-M	40.4	1		1380b/ 1125b/	5/50	<u>b</u> /
-D2-M	111.0	1	10	11259/	5/9 a. 5/3	Commind
-D3-M 25S/24E- <u>15</u>	190.0	+	10	192	2/3	Sampled
-H1-M	87.5	7		1650, ,	5/9	, , Water muddy sampled
-H2-M	139.0	l l		1100p	5/9 5/11 ^a ,	b/ water maday sampred
-H3-M		_				Dry at 175'. Obstruction
25S/25E/22						•
-D1-M	172.7	-	40	595	5/2	Sampled
-D2-M	168.0	-	40	350	5/2	Sampled
25S/26E-16	1 -	_		100	- 10	
-Pl-M	114.0	1	30	400	5/9	Sampled
-P2-M 27S/23E-1	243.0	Τ.	20	275	5/6	Sampled
-R1-M	112.7	18	30°/	,3100	5/105	Sampled
	210.0		c/	, 200	5/90	Sampled
-R4-M	206.6	20	30 <u>c</u> /	185	5/7,5/	40 Two rates due to different
				,		pumping depths - sampled
-R5-M	201.2	22	30°	235	5/9,5/	
000 (0) 7 3						pumping depths - sampled
27S/24E-1 -I2-M	220.6	7		1,20	5/4	Sommled.
	223.1	1	 45	430 140	5/ 1 5	Sampled Sampled
-14-M	221.9	ı	サ ノ	140	5/3	Sampled
27S/25E-1				1.0	713	Jamp 204
	119.9	2	40	390	5/13	Sampled
-N3-M	261.0	2	30	130	5/11	Sampled
28s/22E - 9					,	
-D1-M	27.2	-	45	3700	5/2	Sampled
-D2-M	33.5	-	45	4300	5/2	Sampled
28S/24E-23 -Dl-M	180.2			240 <u>b</u> /	5/2 ^{a, b} 5/3	Plugged @ 300'
-D2-M	182.0	ı	10	140	5/3	Sampled
-D3-M	180.1	ì		280	5/2	Sampled
28s/26E-21		_			<i>71</i> –	
-Hl-M	159.0	l	30	630	5/31	
-H2-M	205.0	l	30	400	5/27	Sampled
-H3-M	239.0	-	40	400	5/4	Sampled
29S/25E-12	142.5		40	150	5/2	Forman J. A. Comp.
-M3-M -M4-M	137.7	-	40	150 810	$\frac{5}{2}$	Sampled Sampled
-1.54-1.7	-5101	-	70	010	<i>)</i>	~amprea

O-ONLY ABLE TO PUMP 5 GALLONS

b-FIRST 5 GALLONS

c-ON AND OFF FOR THIS PERIOD

d-MICROMHOS ELECTRICAL CONDUCTIVITY=KXIO6

TABLE E-5

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

KERN COUNTY PIEZOMETER SAMPLING PROGRAM

STATE WELL NUMBER	DEPTH TO WATER (FT.)	PUMF TIME (HRSN	Ξ	E C.d	PUMP RATE (G.P.M.)	REMARKS	
295/27E-34							
<u>298/21E-34</u> -Nl-M	73.4	2	30	220	5/18	Sampled	
-N2-M	101.4		45	360	5/2	Sampled	
-N3-M	105.0			135	5/2	Sampled	
-N4-M	114.3			200	5/17	Sampled	
30S/24E-4C							
-C1-M	66.1		30	1300	5/,2	Sampled	
-C4-M	74.5		20	400	5/5 5/3	Sampled	
-C5-M	88.2	_		108	5/,3	Sampled	
-C6-M	92.3	1 :	20	9 7	5/3	Sampled	
30S/26E-22	69.0		20	170	- 10	Campled	
-Pl-M	68.0 69.6		30 35	172 182	5/2 5/2	Sampled	
-P2-M	74.3		35	205	5/2 5/2	Sampled Sampled	
-P3-M 30s/28E-10	14.5	-	25	205	<i>7/ c</i>	Sampted	
-N1-M	38.5	1	10	1100	5/6	Obstruction @ 60'	- sampl
-N2-M	136.7		20	220	5/2	Sampled	
-N3-M	125.2			330	5/3	Sampled	
- N ¹ + - M	144.4		30	220	5/4	Sampled	
31S/25E - 27			-			-	
-F1-M	33.6			2250	5/,3	Sampled	
-F2-M	67.9		25	2000	5/5	Sampled	
- F 3-M	68.7		10	880	5/4	Sampled	
-F4-M	55•5	1	20	900	5/3	Sampled	
32S/28E-30	=2.0	_	_	(00	- 10		
-D1-M	52.2	2	5	620 360	5/9 5/1/2	Sampled	
-D2-M	178.2		20	360 460	5/43 5/7	Sampled	
-D3-M -D4-M	170.5 217.2		15	460	5/7	Sampled Would not pump	
32S/29E-19	CT (• C	-				MOUTA HOE PAMP	
-H2-M	202.0	1	20	700	5/6	Sampled	
-H3-M	324.2		35	320	5/7	Sampled	
-H4-M	326.0	-				Obstruction - could	d not p
11N/19W-7							1
-R2-S	Dry	-				No water	
-R3-S	465.2	-				Too deep to pump	
-R4-S	464.3	-				Too deep to pump	

o-ONLY ABLE TO PUMP 5 GALLONS

b-FIRST 5 GALLONS

c-ON AND OFF FOR THIS PERIOD

d-MICROMHOS ELECTRICAL CONDUCTIVITY=KXIO6

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
4S/9E-22Cl-M Drainage	$NO_3^{1/2} = 60 \text{ ppm}^{2/3}$ ABS $3/2 = 4.6 \text{ ppm}$	This well is near the Ceres Sewage Treatment Plant and appears to be affected by it. A detailed investigation will be instituted for this area.
7S/15E-30E1-M Irrigation	High EC4/ 676 mu5/in 1963 879 mu in 1964 Area EC = 200 to 300 mu	Above normal EC values in ground water limited to small (1 sq. mi.) area. No source for high values could be located.
9S/9E-2Ll-M Irrigation & stock	EC increasing 964 mu in 1961 1660 mu in 1962 2050 mu in 1 9 63	Increase appears to be due to the influence of the highly mineralized perched water table
llS/10E-23Kl-M Irrigation	$NO_3 = 94 ppm$	Cause being investigated
12S/15E-4F1-M Irrigation	EC increasing from 380 in 1957 to 634 in 1964	Cause being investigated
12S/21E-17L1-M Irrigation	$NO_3 = 41 ppm$	Cause being investigated
13S/19E-24Q1-M Irrigation	$NO_3 = 47 \text{ ppm}$	This well was previously polluted. Pollution abatement has resulted in a reduction of the total dissolved solids but during the same period the nitrates have increased. The reason for this will be investigated
175/23E-8J2(8H1)6/-M Domestic	High NO3 40 ppm in 1962 Area NO3 = <107/ppm	NO3 concentrations in immediate area found to be greated than 100 ppm. No cause determined. Further investigation underway.

^{1/} NO3 = Nitrate

^{2/} ppm = parts per million 3/ ABS = alkyl benzene sulfonate (detergent surfactant) 4/ EC = Electrical Conductivity in micromhos at 25°C

mu = Micromhos

well number in () is number previously reported

< = less than</pre>

TABLE E-6

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
18S/26E-10M1(10N1)-M Irrigation	High NO3 78 ppm in 1963 Area NO3 = 10 ppm	High NO ₃ concentrations apparently caused by percolation of nitrogen supplemented irrigation water. Depth to water approximately 10 ft. NO ₃ concentrations in ground water found to be greater than 100 ppm.
18S/26E-36Cl-M Domestic & irrigation	$NO_3 = 1414 \text{ ppm}$	Cause being investigated
18S/27E-10C2-M Domestic	$NO_3 = 52 ppm$	Cause being investigated
21S/27E-27F1-M	ABS = 1.9 ppm in 1964, 0.44 ppm in 1963 NO ₃ = 43 ppm	Source of ABS and high NO ₃ is Porterville Sewage Treatment Plant. ABS found in 10 wells. Office report to be published in 1965.
24S/22E-35Nl M Irrigation & stock	Arsenic = 0.19 ppm in 1964, 0.25 ppm in 1963	Cause and areal extent being investigated.
28S/25E-4Fl-M Irrigation	$NO_3 = 81 ppm$	Cause being investigated
28S/25E-4P2-M Domestic	$NO_3 = 47 ppm$	Cause being investigated
28S/25E-9E2-M Domestic	$NO_3 = 77 ppm$	Cause being investigated
28S/25E-24Pl-M Domestic & irrigation	$NO_3 = 54 ppm$	Cause being investigated

TABLE E-6

QUALITY OF GROUND WATERS IN CALIFORNIA

SAN JOAQUIN DISTRICT

WELLS INDICATING SIGNIFICANT DEVIATION IN QUALITY FROM SURROUNDING AREA

STATE WELL NUMBER WELL USE	DEVIATION	STATUS
30S/28E-10N1 ·M Test Well	$NO_3 = 143 \text{ ppm}$	This well is near the Bakersfield Sewage Treatment Plant ponds. An investigation of the area is being conducted to determine the effect of the sewage treatment plant's discharges on the ground water.
32S/29E-35Ml(35M2)-M Irrigation	High NO ₃ 159 ppm in 1962 227 ppm in 1964	NO ₃ concentration greater than 60 ppm found only in small area (1 sq. mi.). Due to complex conditions no definite source found.

	134 3	

100	

0 0420 Mariposa Bypass near Crane Ranc 0 0770 Delta-Mendota Canal to Mendota 0 3105 Stanislaus River near Mouth 0 3115 Stanislaus River at Koetitz Rand 0 3125 Stanislaus River at Ripon 0 3145 Stanislaus River at Riverbank 0 3175 Stanislaus River at Orange Blos 0 4105 Tuolumne River at Tuolumne City 80 4120 Tuolumne River at Modesto 30 4130 Dry Creek near Modesto 80 4150 Tuolumne River at Hickman Bridg 0 4165 Tuolumne River at Roberts Ferry 30 4175 Tuolumne River at LaGrange Brid 30 5138 Merced River near Livingston 30 5155 Merced River at Cressey 30 5170 Merced River below Snelling 30 5570 Bear Creek below Bear Reservoin 30 6170 Owens Creek below Owens Reserve 30 7020 San Joaquin River near Vernalis 30 7040 San Joaquin River at Maze Road 30 7060 San Joaquin River at Hetch Het 30 7070 San Joaquin River at West Stani 30 7080 San Joaquin River at Grayson 30 7200 San Joaquin River at Patterson BO 7250 San Joaquin River at Crows Land 30 7300 San Joaquin River near Newman 30 7375 San Joaquin River near Fremont

* Not shown

ORF: | WATER MEASUREMENT STATIONS

Б		.h	85 20 0 Wordt Fire Mc ad P. ar 1 1 4
во		1 - P= 1	85 400 Bear Cover or o Corticys full
ВО			By William Burns Carri In 1 . Burns fo our
Βó			B (408 Europa Gross near rhin 1
80			Be 21 m Martin of the filling Martin the fill
811			Be 2400 Mariansh Fritz bear Cather Care.
80		EL U. = -	Br 4200 Chowchilla Riner near Fig. nd
ВС			Br. 4200 Str.ped Firk Creck heat Faymond
86			Br ann West Ferrich swchilla First mear Mar
во			on a his Middle E in Chowonsala Error wear his
ВО			in 11) East Form Translile River near Abwahne
Ви		B1. ·	Bi 1900 Hiam; Uros hear Oaxhurst
во		u-	B) 1 2 Devis F of Ficence Proof to it Galhuret
В∪			18 142 Publisher Division hear Eight camp
во			(1) - Daily Cintons Millers in 1966
ВО		ra .	
ВО		t i	*E ! 12% Delta-Monduta Canal most Trany
Bó		2s Js. Fr	() (112) Short E il Funda Parez Ivlim Engire Weir
BG			to got a first City K to 1 or Day land in the #4
80		Eur at the	() .10 Tulare Live
ВО		. Chaque Ray . at 100 meter (but)	o (130 E1) Bayou near Tuloro
ВО		But you or of White Indea. Intak	1)) Tule Remot tolow Fortune-lie
ВО		bit Pares at Gia e	Low Firther Stough at Portervalle
80		. Court Famir of Exploration Br	le" Forter Slough near Porterville
80	"2"	. st laquir River at Clows Landah (1943 Espant-Kern Canal Delivery to Forter Slow
80		.sn Waquin River near Newman	en 1923 Friant-Kern Canal Delivery to Tule Piver
		- in Jaquin Fiver near Fremont Ford Bridge	1) 42° Hubbs-Mincr Ditch at Portermille
		" - " liguin Piver heat Sty inson	1 : 3940 Rh. des-Fine Ditch hear Porterville
		Sun J iguin flyer above Sand Slough	3 1949 Woods-Central Datch near Purterville
		Ean Juaquin River near Dns Palos	(# 346) Poplar Ditch mear Forterville
		San Josquin River near Mendota	CO 3965 Vandalas Datch near Portervalle
		San Toaquin Piver bel w Friant	CO 3470 Camplell Markland Ditch above Porterville
		Grestimba Creek near Crows Landing	"O 3984 Poster Slough Dirch at Posterville
B5	1250	Marwell Creek near Coultervalle	CO 9150 Kern Pivir near Bakerstield
			C3 2100 North For/ Tule River at Springville

^{*} Not shown on Plate as station is outside of district boundary.

LEGEND

DISTRICT OR AREA BOUNDARIES.

NUMBERS INDICATE CODE CLASSIFICATION.

DISTRICTS OR AREAS WITH A GROUND WATER
LEVEL CHANGE OF +5.0 FEET OR MORE IN
THE UNCONFINED AND SEMICONFINED AQUIFERS
FROM SPRING 1963 TO SPRING 1964.

DISTRICTS OR AREAS WITH A GROUND WATER
LEVEL CHANGE OF -5.0 FEET OR MORE IN
THE UNCONFINED AND SEMICONFINED AQUIFERS
FROM SPRING 1963 TO SPRING 1964.

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT

HYDROLOGIC DATA 1964
GROUND WATER LEVEL CHANGES

IN DISTRICTS OR AREAS
UNCONFINED AND SEMICONFINED AQUIFERS
SPRING 1963 — SPRING 1964

SCALE OF MILES

LEGEND

~

DISTRICT OR AREA BOUNDARIES.

NUMBERS INDICATE CODE CLASSIFICATION.

DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF +5.0 FEET OR MORE IN THE CONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964.

DISTRICTS OR AREAS WITH A GROUND WATER LEVEL CHANGE OF -5.0 FEET OR MORE IN THE CONFINED AND SEMICONFINED AQUIFERS FROM SPRING 1963 TO SPRING 1964.

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

GROUND WATER LEVEL CHANGES
IN DISTRICTS OR AREAS
CONFINED AND SEMICONFINED AQUIFERS

SPRING 1963 — SPRING 1964

SCALE OF MILES

T)	2/1
10	
*	
	(1)
	0.1
	()
	T. VI
	· A2
	e 44.
	ye ,
	N. Carlotte and Ca
	No.
1	11
	1/4
1	3. \$\dots
1	
1	
	n 4
P.	
11	

Σ

כ

ৰ

۵

Ø Ø Ø Ú S j

H

W W

L

Z

Z

0 -

4 > Ш

MILL CREEK GROUND WATER AREA AREA 12825 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 305'

TULARE GROUND WATER AREA

AREA 12107 SQUARE MILES AVERAGE GROUND SURFACE ELEVATION 363

ELK BAYOU GROUND WATER AREA AREA 67.6 SQUARE MILES

AVERAGE GROUND SURFACE ELEVATION 295

ROUND

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT

HYDROLOGIC DATA 1964

FLUCTUATION OF AVERAGE WATER LEVEL, 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY

ARVIN-EDISON GROUND WATER AREA AREA 205.18 SQUARE MILES

Ö Ø Ö ø ゔ Z Z 0

ш

٥

ø

NOTE: SEE PLATE C-4 FOR GROUND WATER AREA LOCATION

YEAR

STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT

FLUCTUATION OF AVERAGE WATER LEVEL. 1921 TO 1964 IN 19 GROUND WATER AREAS IN SAN JOAQUIN VALLEY

HYDROLOGIC DATA 1964

				∑ + 4
				Ø 6 0 0 0 0 1 1 1
LEGEND				لنا ل نا
 CONNECTS MEASUREMENTS OF ONE YEAR OR MORE	MADE	ΑT	INTERVALS	ŗ
 GROUND LEVEL				Z -
				Z O ∀ > Ш

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT

HYDROLOGIC DATA 1964

 Σ

•

S S

6

Ö

S S

F

Ζ

Z

0

∢ >

EXETER IRRIGATION DISTRICT (5-22.26) WELL 185/27E-290L M.D.B.& M. GROUND SURFACE ELEVATION 446

LINDSAY-STRATHMORE IRRIGATION DISTRICT (5-22.27)

LEGEND

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

FRESNO SLOUGH AREA (5-22.17) WELL 175/18E-23A2, M. D. B. B. M. GROUND SURFACE ELEVATION EDD'

KAWEAH DELTA WATER CONSERVATION DISTRICT (5-22.24)

ALTA IRRIGATION DISTRICT (5-22.19)

ORANGE COVE IRRIGATION DISTRICT (5-22.21)
WELL 165/25E - 4C2, M. Q. B. M.

GROUND EURFACE ELEVATION 418

STONE CORRAL IRRIGATION DISTRICT (5-22.22)
WELL 185/26E-32R, M.D. B.B.M.
GROUND SURFACE ELEVATION 406'

TULARE IRRIGATION DISTRICT (5-22.25) WELL 209/23E-9JI, M. D. B. B. M.

EXETER IRRIGATION DISTRICT (5-22.26) WELL 185/27E-290(, M.D.B.A.M. GROUND SUNFACE ELEVATION 446

LINDSAY - STRATHMORE IRRIGATION DISTRICT (5-22.27) WELL 205/27E-681, M.D.B. 8 M.

LEGEND

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT

4 ۵ Ø 0 Ø Ö Ø j ы Ш ᄕ Z Z 0 _ |-4 > Ы

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

Σ

∢

Ø

Ú

ゴ

Z

Z 0

◂

LEGEND

CONNECTS MEASUREMENTS MADE AT INTERVALS OF ONE YEAR OR MORE

___ _ GROUND LEVEL

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

	1
	k =
	ł
	1
	1
	۱

LEGENO A PARTIAL CHEMICAL ANALYSIS O TRACE ELEMENT ANALYSIS STATE OF CALIFORNIA THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES SAN JOAQUIN DISTRICT HYDROLOGIC DATA 1964 LOCATION OF SELECTED OBSERVATION WELLS GROUND WATER QUALITY SCALE OF MILES

LEGEND

O WELL LOCATIONS

STATE OF CALIFORNIA
THE RESOURCES AGENCY
DEPARTMENT OF WATER RESOURCES
SAN JOAQUIN DISTRICT
HYDROLOGIC DATA 1964

LOCATION OF SELECTED WELLS FRESNO-MADERA AREA

SCALE OF MILES

6

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

E 17 1978

NOV 11 REC'D

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-25m-6,'66 (G3855s4)458

2 1175 00/89 9939

Nº 482511

California. Dept. of Water Resources. Rulletin.

02 A2 no.130:64 v.l.

TCR24

PHYSICAL SCIENCES LIBRARY c.2

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

Call Number.

482511
California. Dept.
of Water Resources.
Bulletin.

TC824 C2

A2

no.130:64

