PERBANDINGAN MODEL CHEN DAN MODEL LEE PADA METODE FUZZY TIME SERIES UNTUK PERAMALAN HARGA BERAS

COMPARISON OF CHEN MODEL AND LEE MODEL IN FUZZY TIME SERIES METHOD FOR FORECASTING RICE PRICES

Ahmad Fausan Khofi¹, Deni Arifianto^{2*}, Ilham Saifudin³

¹Mahasiswa Fakultas Teknik,Universitas Muhammadiyah Jember

email: fauzank113@gmail.com

²⁾ Dosen Fakultas Teknik Universitas Muhammadiyah Jember *Koresponden Author

email: deniarifianto@unmuhjember.ac.id

3) Dosen Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Jember

email: ilhamsaifudin@unmuhjember.ac.id

Abstrak

Beras adalah jenis tanaman padi yang dibuat dari biji-bijian, Sebagian besar masyarakat Indonesia mengonsumsi beras yang diolah dalam bentuk nasi sebagai sumber utama karbohidrat dalam makanan sehari-hari untuk pemberi energi bagi tubuh manusia. Beras merupakan kebutuhan pokok masyarakat Indonesia yang harus terpenuhi. Secara umum, harga beras mengalami kenaikan ataupun penurunan harga setiap bulan, Hal itu menunjukkan pola data harga beras yang fluktuatif. Kenaikan harga beras dapat mempengaruhi pertumbuhan penduduk miskin di Indonesia, Setiap kenaikan 10% harga beras dapat menyebabkan peningkatan 1% jumlah penduduk miskin. Untuk mengantisipasi kenaikan harga beras di bulan berikutnya maka perlu dilakukan permalan. Metode peramalan yang digunakan dalam penelitian ini yaitu menggunakan metode Fuzzy Time Series model Chen dan model Lee. Model tersebut merupakan model dalam metode Fuzzy Time Series dengan menggunakan konsep himpunan fuzzy set sebagai dasar perhitungannya dan AFER untuk mengukur ketepatan hasil peramalan. Berdasarkan hasil pengujian yang telah dilakukan menggunakan metode Fuzzy Time Series model Chen diperoleh hasil peramalan pada bulan juli 2020 adalah Rp12.097,6 dengan Tingkat akurasi peramalan sebesar 97.71% dan untuk metode Fuzzy Time Series model Lee adalah Rp12.128,9 dengan Tingkat akurasi peramalan sebesar 98.37%. Karena memiliki tingkat kesalahan kurang dari 15%, maka peramalan pada penelitian ini termasuk peramalan yang baik.

Kata Kunci: Peramalan, Beras, Fuzzy Time Seriest Model Chen, Fuzzy Time Seriest Model Lee

Abstract

Rice is a type of rice plant made from grains. Most Indonesian people consume rice that is processed in the form of rice as the main source of carbohydrates in their daily diet to provide energy for the human body. Rice is a basic need of the Indonesian people that must be met. In general, rice prices experience an increase or decrease in prices every month, this shows a fluctuating pattern of rice price data. The increase in rice prices can affect the growth of the poor in Indonesia. Every 10% increase in the price of rice can cause a 1% increase in the number of poor people. To anticipate the increase in rice prices in the following month, it is necessary to do forecasting. The forecasting method used in this research is using the Fuzzy Time Series Chen model and Lee model. This model is a model in the Fuzzy Time Series method using the concept of a fuzzy set as the basis for its calculations and AFER to measure the accuracy of forecasting results. Based on the results of tests that have been carried out using the Fuzzy Time Series Chen model, the forecasting results in July 2020 are Rp12.097,6 with a forecasting accuracy rate of 97.71% and for the Lee model Fuzzy Time Series method is Rp12.128,9 with a forecasting accuracy rate of 98.37%. Because it has an error rate of less than 15%, the forecasting in this study is a good forecast.

Keywords: Forecasting, Rice, Chen's Fuzzy Time Series Model, Lee's Fuzzy Time Series Model

Vol. 3, No. 2, Januari 2022, Halaman 140 – 146

ISSN: 2774-1702, http://jurnal.unmuhjember.ac.id/index.php/JST

1. PENDAHULUAN

Indonesia merupakan negara agraris dengan dukungan bahan pangan yang sangat luas, termasuk produksi beras. Beras adalah jenis tanaman padi yang dibuat dari biji-bijian. Sebagian besar masyarakat Indonesia mengonsumsi beras yang diolah dalam bentuk nasi sebagai sumber utama karbohidrat dalam makanan sehari-hari untuk pemberi energi bagi tubuh manusia. Beras merupakan kebutuhan pokok masyarakat Indonesia yang harus dipenuhi.

Secara umum, harga beras mengalami kenaikan ataupun penurunan harga setiap bulan, Hal itu menunjukkan pola data harga beras yang fluktuatif. Kenaikan harga beras dapat mempengaruhi pertumbuhan penduduk miskin di Indonesia, Setiap kenaikan 10% harga beras dapat menyebabkan peningkatan 1% jumlah penduduk miskin (Septiadi, 2016).

Naiknya harga beras yang signifikan akan berpengaruh ke sektor ekonomi, khususnya ekonomi keluarga yang dapat menyebabkan semakin bertambahnya jumlah penduduk miskin di Indonesia. Untuk mengantisipasi kenaikan harga beras pemerintah perlu langkah preventif mengambil mengurangi kenaikan harga beras. Maka perlu dilakukan peramalan harga beras di bulan berikutnya.

Peramalan prediksi adalah tentang kejadian yang akan datang. Peramalan dilakukan dengan mempelajari data historis untuk menemukan hubungan dan pola yang Hubungan dan sistematis. pola yang teridentifikasi kemudian diproyeksikan untuk Peramalan dalam berbagai bidang kehidupan sangat penting dilakukan, karena dapat merencanakan pengambilan keputusan jika mengetahui peristiwa atau kondisi di masa mendatang (Pambudi, 2018). Salah metode untuk melakukan peramalan yaitu dengan Fuzzy Time Series.

Salah satu metode peramalan yaitu *fuzzy time series* dengan perhitungannya menggunakan konsep himpunan fuzzy set. Sistem prediksi ini bekerja dengan menangkap pola dari data historis dan

kemudian menggunakannya untuk memproyeksikan data di masa mendatang (Sugumonrong, 2019).

2. METODOLOGI PENELITIAN

A. Peramalan

Dalam peramalan, data masa lalu digunakan untuk membuat prediksi tentang masa depan. Data historis dianalisis untuk menemukan hubungan dan pola yang sistematis.. Hubungan dan pola yang teridentifikasi kemudian diproyeksikan untuk diramalkan (Rahmadiani, 2012)

B. Time Series

Time series adalah data berkala yang menggambarkan dikumpulkan untuk perkembangan suatu kegiatan. Analisa data secara berkala untuk mengetahui perkembangan dan hubungan atau pengaruh satu atau lebih peristiwa terhadap peristiwa lain. Adanya data berkala dapat diikuti atau diketahui dengan pola pergerakan data atau variabel, hal ini memungkinkan penggunaan data berkala sebagai dasar pengambilan keputusan, perdagangan masa depan dan prediksi kondisi ekonomi dan perencanaan kegiatan masa depan (Desmonda, 2018).

C. Logika Fuzzv

Antara benar dan salah terdapat nilai ketidakjelasan yang tidak terdefinisi, yang disebut logika fuzzy. Ada kemungkinan dua nilai benar atau salah pada saat yang sama dalam teori logika fuzzy. Tergantung pada keanggotaan, bagaimanapun, menentukan berapa banyak yang benar dan berapa banyak yang salah Keanggotaan dalam logika fuzzy berkisar dari 0 hingga 1. (Desmonda, 2018).

D. Fuzzy Time Series

Salah satu metode peramalan yaitu *fuzzy* time series dengan perhitungannya menggunakan konsep himpunan fuzzy set. Sistem prediksi ini bekerja dengan menangkap pola dari data historis dan kemudian menggunakannya untuk

Jurnal Smart Teknologi

Vol. 3, No. 2, Januari 2022, Halaman 140 – 146

ISSN: 2774-1702, http://jurnal.unmuhjember.ac.id/index.php/JST

memproyeksikan data di masa mendatang (Sugumonrong, 2019).

Tahapan-tahapan metode *Fuzzy Time Series* adalah sebagai berikut (Febriana, 2018):

- 1. Pembentukan himpunan semesta (U). $U = [D_{min} D_1, D_{max} + D_2]$ dimana D_1 dan D_2 adalah nilai konstanta yang ditentukan oleh peneliti. D_{min} adalah data terkecil dan D_{max} adalah data terbesar.
- 2. Menentukan interval.

Rumus untuk menghitung interval menggunakan rumus Sturges berikut:

$$1+3,322 \log(n)$$

Dengan, : adalah jumlah data. Kemudian mencari panjang interval dengan rumus sebagai berikut:

Panjang interval =
$$\frac{D_{min} - D_{max}}{jumlah interval}$$

3. Menentukan himpunan fuzzy.

Himpunan fuzzy adalah sebuah rangkaian kesatuan dari derajat keanggotaan (grad of membership). Misalkan U adalah himpunan semesta, dengan $\{u_1, u_2, u_3, \ldots, u_n\}$. kemudian variabel linguistik A_i terhadap U dapat dirumuskan sebagai berikut:

$$A_{i} = \frac{u_{Ai}(u_{1})}{u_{1}} + \frac{u_{Ai}(u_{2})}{u_{2}} + \frac{u_{Ai}(u_{3})}{u_{3}} + \dots + \frac{u_{Ai}(u_{n})}{u_{n}}$$

$$u_{Ai} : U \to [0,1]$$

Jika u_j adalah keanggotaan dari A_i , maka $\mathbf{u}_{\mathrm{Ai}}\left(u_j\right)$ adalah derajat keanggotaan u_j terhadap A_i .

4. Melakukan Fuzzifikasi.

Fuzzifikasi dilakukan berdasarkan interval. Dari data awal, kemudian dikelompokkan. Jika data pertama dimasukkan pada interval *u*1 fuzzifikasinya adalah *A*1.

5. Menentukan Fuzzy Logic Relations (FLR).

FLR $A_i o A_j$ ditentukan berdasarkan nilai A_i , dimana A_i adalah tahun n dan A_j tahun n+1 pada data time series. Misalnya jika FLR berbentuk $A_1 o A_2$, $A_1 o A_1$, $A_1 o A_3$, $A_1 o A_1$ Jika $F(t-1) = A_i$.

6. Menentukan *Fuzzy Logic Relationship Group* (FLRG).

Cara pengelompokkan Fuzzy Logic Relationship Group (FLRG) model Chen dan model Lee adalah dari sisi kiri yang sama. Perbedaan kedua model tersebut terletak pada pengelompokan. Missal untuk FLRG model Chen $A_1 \rightarrow A_1$, $A_1 \rightarrow A_1$, $A_1 \rightarrow A_2$ maka akan mengasilkan $A_1 \rightarrow A_1$, A_2 , sedangkan FLRG model Lee $A_1 \rightarrow A_1$, $A_1 \rightarrow A_1$, $A_1 \rightarrow A_2$ maka akan mengasilkan $A_1 \rightarrow A_1$, $A_1 \rightarrow A_2$ maka akan mengasilkan $A_1 \rightarrow A_1$, $A_1 \rightarrow A_2$.

7. Melakukan proses defuzzyfikasi dan melakukan perhutngan nilai prediksi. Misalkan $F(t) = A_{j1}, A_{j2}, \dots, A_n$, maka

persamaan untuk mencari nilai peramalan akhir adalah sebagai berikut: $\sum_{n=1}^{n} \cdots$

$$\hat{\mathbf{y}}(t) = \frac{\sum_{i=1}^{n} m_i}{k}$$

dengan, $\hat{y}(t)$ merupakan defuzzifikasi dan m_i adalah nilai tengah dari A_i .

E. Average Forcasting Error Rate (AFER)

AFER menghitung tingkat kesalahan dengan menentukan persentase perbedaan antara data aktual dan prediksi. Semakin kecil nilai AFER, semakin besar akurasi prediksi (Rahmat, 2018):

AFER =
$$\frac{\sum_{i=1}^{n} |(A_i - F_i)/A_i|}{n} \times 100\%$$

Dimana,

 A_i = Data Aktual.

 F_i = Data Peramalan.

n = Banyak data ke-n.

ISSN: 2774-1702, http://jurnal.unmuhjember.ac.id/index.php/JST

F. Tahapan Penelitian

Gambar 2. Tahapan Penelitian Sumber: Hasil Pengamatan

G. Bagan Aliran Program (Flowchart)

Gambar 3. *Flowchart* Sumber : Hasil Pengamatan

H. Use Case Diagram

Use Case Diagram mewakili fungsionalitas sistem dari sudut pandang pengguna. Ada satu jenis penguna dalam sistem ini yaitu User. Sistem ini memungkinkan User untuk dapat melihat dan mengubah data, kemudian User dapat melihat dan mengubah nilai D_1 dan D_2 untuk hasil peramalan.

Gambar 1. *Use Case Diagram*Sumber: Hasil Pengamatan

3. HASIL DAN PEMBAHSAN

A. Data Harga Beras

Data yang digunakan adalah data dari Badan Pusat Statistik (BPS) yaitu data rata – rata kenaikan harga beras ditingkat perdagangan besar atau grosir di Indonesia , menurut data laporan dari BPS dalam angka dari periode bulan Januari 2010 sampai bulan Juni 2020 sebanyak 126 data.

Tabel 1. Data Harga Beras

No.	Bulan	Tahun	Harga	
1	Januari	2010	6702	
2	Februari	2010	6888	
3	Maret	2010	6854	
4	April	2010	6761	
5	Mei	2010	6772	
6	Juni	2010	6873	
7	Juli	2010	7026	
8	Agustus	2010	7318	
9	September	2010	7351	
10	Oktober	2010	7391	
11	November	2010	7457	
12	Desember	2010	7617	
:	:	:	:	
121	Januari	2020	12343	
122	Februari	2020	12355	
123 Maret		2020	12368	

ISSN: 2774-1702, http://jurnal.unmuhjember.ac.id/index.php/JST

124	April	2020 12382	
125	Mei	2020	12293
126	Juni	2020	12224

Sumber: Badan Pusat Statistik (BPS)

Selanjutnya proses perhitungan metode fuzzy time series model Chen dan model Lee yang perlu dilakukan adalah memasukkan nilai D₁ dan D₂ yang dilanjutkan dengan proses perhitungan himpunan semesta, pembentukan interval, menentukan himpunan fuzzy, melakukan fuzzifikasi, fuzzy logic relationship (FLR), fuzzy logic relationship group (FLRG) model Chen dan model Lee, perhitungan deffuzifikasi, perhitungan hasil peramalan dan nilai error average forecasting error rate (AFER). Bahasa pemrograman yang digunakan adalah PHP.

B. Pengujian Sistem

Uji pengaruh nilai D₁ dan D₂ fuzzy time series model Chen dan model Lee dilakukan dengan memberikan nilai D₁ dan D₂ yang berbeda dengan kelipatan 10 antara 10 – 100 sehingga dapat dianalisa pengaruh nilai D tersebut terhadap tingkat akurasi peramalan. Dari hasil analisa dapat simpulkan bahwa, pada metode fuzzy time series model Chen, semakin besar nilai D_1 maka tingkat akurasi peramalan semakin naik, dan semakin besar nilai D₂ maka tingkat akurasi permalan semakin turun. Sedangkan untuk metode fuzzy time series model Lee, semakin besar nilai D_1 maka tingkat akurasi peramalan semakin turun, dan semakin besar nilai D_2 maka tingkat akurasi permalan semakin naik, Seperti pada Gambar berikut berikut:

Gambar 4. Grafik Tingkat Akurasi Pengaruh D_1 dan D_2

Sumber: Hasil Pengujian Sistem

Gambar 5. Grafik Tingkat Akurasi Pengaruh D_1 dan D_2

Sumber: Hasil Pengujian Sistem

C. Hasil Peramalan

Dari hasil pengujian tersebut diperoleh tingkat akurasi peramalan terbaik dengan menggunakan nilai D_1 tetap dan D_2 berbeda, D_2 tetap dan D_1 berbeda. untuk metode fuzzy time series model Chen dengan nilai konstanta (D) 100 dan 50 diperoleh hasil peramalan sebesar Rp12.097,6 dengan tingkat akurasi 97.71% dan metode fuzzy time series model Lee dengan nilai konstanta (D) 50 dan 80 diperoleh hasil peramalan sebesar Rp12.128,9 dengan tingkat akurasi 98.37%.

Vol. 3, No. 2, Januari 2022, Halaman 140 – 146

ISSN: 2774-1702, http://jurnal.unmuhjember.ac.id/index.php/JST

Tabel 2. Hasil Peramalan

			20	010				
No.	Bulan	Harga (A_i)	P. Chen (F ₁)	P. Lee (F ₂)	$(A_i - F_1)/A_i$	$(A_i - F_2)/A_i$		
1	Januari	6702	-	-	-	-		
2	Februari	6888	7334.75	7138.83	0.0649	0.0364		
3	Maret	6854	7334.75	7138.83	0.0701	0.0416		
4	April	6761	7334.75	7138.83	0.0849	0.0559		
5	Mei	6772	7334.75	7138.83	0.0831	0.0542		
6	Juni	6873	7334.75	7138.83	0.0672	0.0387		
7	Juli	7026	7334.75	7138.83	0.0439	0.0161		
8	Agustus	7318	7334.75	7138.83	0.0023	0.0245		
9	September	7351	7701.12	7138.83	0.0476	0.0289		
10	Oktober	7391	7701.12	7747.38	0.042	0.0482		
11	November	7457	7701.12	7747.38	0.0327	0.0389		
12	Desember	7617	7701.12	7747.38	0.011	0.0171		
1						1		
2020								
122	Januari	12343	12097.6	12128.9	0.0199	0.0173		
123	Februari	12355	12097.6	12128.9	0.0208	0.0183		
124	Maret	12368	12097.6	12128.9	0.0219	0.0193		
125	April	12382	12097.6	12128.9	0.023	0.0204		
126	Mei	12293	12097.6	12128.9	0.0159	0.0133		
127	Juni	12224	12097.6	12128.9	0.0103	0.0078		
128	Juli	12213	12097.6	12128.9	0.0951	0.0068		
Total					2.8563	2.0435		

Sumber: Hasil Perhitungan

4. KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan implementasi *Fuzzy Time Series* model Chen dan model Lee dapat ditarik beberapa kesimpulan:

- 1. Pada metode *fuzzy time series* model Chen, semakin besar nilai D_1 maka tingkat akurasi peramalan semakin naik, dan semakin besar nilai D_2 maka tingkat akurasi permalan semakin turun.
- 2. Pada metode fuzzy time series model Lee, semakin besar nilai D_1 maka tingkat akurasi peramalan semakin turun, dan semakin besar nilai D_2 maka tingkat akurasi permalan semakin naik.
- 3. Berdasarkan hasil penelitian diperoleh peramalan harga beras ditingkat perdagangan besar atau grosir di Indonesia menggunakan pengujian sistem terbaik pada bulan Juli 2020 adalah Rp12.097,6 untuk metode *Fuzzy Time Series* model Chen dan Rp12.128,9 untuk metode *Fuzzy Time Series* model Lee. Data aktual harga beras pada bulan Juli 2020 adalah Rp12.213.
- 4. Berdasarkan pengujian sistem terbaik untuk metode *Fuzzy Time Series* model Chen dan model Lee pada studi kasus yang

- sama yaitu kenaikan harga beras ditingkat perdagangan besar atau grosir di Indonesia periode bulan Januari 2010 sampai bulan Juni 2020 diperoleh tingkat akurasi model Chen sebesar 97.71% dan model Lee sebesar 98.37%.
- Berdasarkan hasil pengujian sistem terbaik, Metode Fuzzy Time Series model Lee lebih baik dari metode Fuzzy Time Series model Chen dengan nilai D₁ dan D₂ masing – masing sebesar 50 dan 80.

B. Saran

Dari hasil penelitian yang telah dilakukan maka saran peneliti adalah sebagai berikut:

- 1. Dalam penelitian selanjutnya dapat menerapkan metode *Fuzzy Time Series* lainnya, seperti : *Fuzzy Time Series* Ruey Chyn Tsaur, *Fuzzy Time Series* Stevenson Porter, dan lain-lain.
- 2. Selanjutnya dapat menggunakan studi kasus yang berbeda.

5. DAFTAR PUSTAKA

- Azzahra, D., & Ramadhani, S. 2020. "Pengembangan Aplikasi Online Public Access Catalog (Opac) Perpustakaan Berbasis Web Pada Stai Auliaurrasyiddin Tembilahan," J. Teknol. Dan Sist. Inf. Bisnis, vol. 2, no. 2, pp. 152–160, 2020, doi: 10.47233/jteksis.v2i2.127.
- Desmonda, D., Tursina, & Irwansyah, M. A. 2018. "Prediksi Besaran Curah Hujan Menggunakan Metode Fuzzy Time Series," J. Sist. dan Teknol. Inf., vol. 6, no. 4, p. 141, 2018, doi: 10.26418/justin.v6i4.27036.
- Febriana, E. T. 2018. Fuzzy Time Series Chen Orde Tinggi untuk Meramalkan Jumlah Penumpang dan Kendaraan Kapal. Skripsi (dipublikasikan) Universitas Islam Indonesia.
- Firman, A., Wowor, H. F., & Najoan, X. 2016. Teknik, E. Fakultas, and T. Unsrat, "Sistem Informasi Perpustakaan Online Berbasis Web," E-Journal Tek. Elektro Dan Komput., vol. 5, no. 2, pp. 29–36, 2016.

- Heriyanto, Y. 2018. "Perancangan Sistem Informasi Rental Mobil Berbasis Web Pada PT.APM Rent Car," J. Intra-Tech, vol. 2, no. 2, pp. 64–77, 2018.
- Muhammad, M. 2020. "Penerapan Fuzzy Time Series Lee Untuk Peramalan Nilai Tukar Petani Subsektor Peternakan Di Kalimantan Timur," vol. 21, no. 1, pp. 1–9, 2020, doi: 10.1016/j.solener.2019.02.027.
- Noviani, D. Prambudi, F. Mulyadi. 2020. Sistem Pakar Diagnosis Penyakit Pada Tanaman Pepaya Menggunakan Metode Backward Chaining Berbasis Web. *Buletin Poltanesa*, 21(2), 50–57.
- Nuryani. 2013. "Potensi Subtitusi Beras Putih Dengan Beras Merah Sebagai Makanan Pokok Untuk Perlindungan Diabetes Melitus," Media Gizi Masy. Indones., vol. 3, no. 3, pp. 157–168, 2013.
- Pambudi, R. A., Setiawan, B. D., & Wijoyo, S. H. 2018. Implementasi Fuzzy Time Series untuk Memprediksi Jumlah Kemunculan Titik Api. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), 4767–4776.
- Putra, N. A., Kurniawan, H., Ritha, N. 2013.
 Prediksi Jumlah Penduduk
 Menggunakan Fuzzy Time Series
 Model Chen (Studi Kasus: Kota
 Tanjungpinang). Journal of Chemical
 Information and Modeling, 53(9),
 1689–1699.
- Rahmad, C., Ramadhani, M. F., & Puspitasari, D. 2018. "Mancanegara Dengan Menggunakan Metode Time Invariant Fuzzy Time Series (Studi Kasus: Wisata Kabupaten Pasuruan)," vol. 4, pp. 195–200, 2018.
- Rahmadiani, A., Anggraeni, W. 2012. Implementasi Fuzzy Neural Network untuk Memperkirakan Jumlah Kunjungan Pasien Poli Bedah di Rumah Sakir Onkologi Surabaya.

- Jurnal Teknik Institut Teknologi Sepuluh Nopember (ITS), 1, 1–5.
- Septiadi, D., Harianto, & Suharno. 2016. "Dampak Kebijakan Harga Beras Dan Luas Areal Irigasi Terhadap Pengentasan Kemiskinan Di Indonesia," J. Agribisnis Indones., vol. 4, no. 2, p. 91, 2016, doi: 10.29244/jai.2016.4.2.91-106.
- Sugumonrong, D. P., Handinata, A., & Tehja, A. 2019. "Prediksi Harga Emas Menggunakan Metode Fuzzy Time Series Model Algoritma Chen," vol. 1, no. 1, pp. 48–54, 2019.
- Sumartini, Hayati, M. N., & Wahyuningsih, S. 2017. "Peramalan Menggunakan Metode Fuzzy Time Series Cheng," J. Eksponensial, vol. 8, pp. 51–56, 2017.
- Syamsiah. 2019. Perancangan Flowchart dan Pseudocode Pembelajaran Mengenal Angka dengan Animasi untuk Anak PAUD Rambutan. *STRING (Satuan Tulisan Riset Dan Inovasi Teknologi)*, 4(1), 86–93.
- Widi, T. A. 2018. "Perbandingan Model Chen Dan Lee Pada Metode Fuzzy Time Series Untuk Prediksi Harga Saham Bank Bri," no. 1, pp. 430–439, 2018.