(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 11 December 2003 (11.12.2003)

PCT

(10) International Publication Number WO 03/102199 A1

(51) International Patent Classification⁷: A61K 038/16, 039/395, A61P 015/00

C12N 015/12,

(21) International Application Number: PCT/NZ03/00109

(22) International Filing Date: 30 May 2003 (30.05.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 519330

30 May 2002 (30.05.2002) NZ

(71) Applicants and

(72) Inventors: DAVIS, George, Henry, [NZ/NZ]; School Road North, North Taieri, RD2, Mosgiel (NZ). GAL-LOWAY, Susan, May, [NZ/NZ]; 197 Balmacewen Road, Dunedin (NZ). GREGAN, Scott, Michael, [NZ/NZ]; 63 Ravenswood Road, Saint Clair, Dunedin (NZ). HANRA-HAN, James, Patrick, [IE/IE]; Carrowmoneen, Tuam, County Galway (IE). JUENGEL, Jennifer, Lee, [US/NZ]; 45 Sunnyview Drive, Upper Hutt (NZ). MCNATTY, Kenneth, Pattrick, [NZ/NZ]; 732 Fergusson Drive, Upper Hutt (NZ). MULSANT, Philippe, [FR/FR]; 16 Rue du Moulin, 31520, F- Ramonville (FR). POWELL, Richard, Patrick, [IE/IE]; 19 Bun Caise, Rahoon, Galway (IE).

(74) Agents: CALHOUN, Douglas Cet al.; A J Park, 6th Floor Huddart Parker Building, 1 Post Office Square, Post Office Square, PO Box 949 (NZ).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

199 A

(54) Title: NEW GDF-9 AND GDF-9B (BMP-15) SEQUENCES FOR ALTERING MAMMALIAN OVARIAN FUNCTION AND OVULATION RATE

(57) Abstract: The present invention provides compositions and methods for modulating the ovulation rate and therefore fertility in female mammals including humans. The invention also relates to novel mutations in the GDF-9 and GDF-9B genes which are associated with changes in fertility.

10/516992 DT15 Rec'd PCT/PTO 30 NOV 2004 PCT/NZ03/00109

WO 03/102199

NEW GDF-9 AND GDF-9B (BMP-15) SEQUENCES FOR ALTERING MAMMALIAN OVARIAN FUNCTION AND OVULATION RATE

TECHNICAL FIELD

The present invention relates to new sequences for altering mammalian ovarian function and ovulation rate.

In particular, the invention broadly concerns a novel mutation in the GDF-9 gene and two novel mutations in the GDF-9B gene. These mutations have been found to be involved in increasing the ovulation rate in heterozygous female mammals; or causing sterility in homozygous female mammals.

10 BACKGROUND ART

15

20

The genes GDF-9 and GDF-9B (also known as BMP15) code for proteins which are expressed exclusively in the oocyte of the developing follicle, and which play an essential role in mammalian fertility. GDF-9 is a member of the transforming growth factor beta (TGFß) superfamily (McPherron and Lee, 1993) which is expressed in oocytes from the primary stage of follicular development until ovulation (McGrath et al., 1995; Laitinen et al., 1998). GDF-9B is closely related to GDF-9 (Dube et al., 1998; Laitinen et al., 1998) and is expressed in mouse oocytes at the same time as GDF-9, but in human primary follicles slightly later than GDF-9. In the ovary GDF-9 and GDF-9B have now been shown to be expressed exclusively in the developing oocyte in humans (Aaltonen et al., 1999), rodents (Laitinen et al., 1998; Dube et al., 1998; Jaatinen et al., 1999), ruminants (Bodensteiner et al., 1999; Bodensteiner et al., 2000; Galloway et al., 2000) and marsupials (Eckery et al., 2002). In sheep expression of GDF-9 can be seen in primordial follicles whereas GDF-9B is expressed in primary follicles (Bodensteiner et al., 1999; Galloway et al., 2000).

10

15

2

PCT/NZ03/00109

GDF-9 is an essential growth factor for folliculogenesis in mice. Female GDF-9 knockout mice (GDF-9 -/-) are infertile due to a block in follicular development at the primary stage (Dong et al., 1996). GDF-9B does not appear to be crucial for mouse folliculogenesis as knockout female mice (BMP15 -/-) are fertile (Yan et al., 2001), even though fecundity is somewhat reduced. However, GDF-9B is essential for folliculogenesis in sheep as those carrying two copies of naturally-occurring inactivating GDF-9B mutations are infertile due to a block in follicular development at the primary stage (Galloway et al., 2000).

In sheep it is also clear that heterozygotes carrying inactivating mutations in one copy of GDF-9B (whereby only one copy of the gene produces active protein) have an increased ovulation rate (Galloway et al., 2000). A similar increase in ovulation rate in heterozygote mice with knockouts in either GDF-9 or GDF-9B has not been observed (Yan et al., 2001). Double knockouts of both GDF-9 and GDF-9B in mice are infertile with a similar phenotype to GDF-9 -/- mice alone, but GDF-9B knockout mice (BMP15 -/-) with one active copy of GDF-9, have a lower fecundity than BMP15 -/- females (Yan et al., 2001), suggesting that the relative dose of these gene products may also play a role in mice. Collectively these findings suggest that important differences exist in the actions of GDF-9 and GDF-9B between species with a high ovulation rate phenotype (e.g. mice, rats) and those with a low ovulation rate phenotype (e.g. sheep, humans).

GDF-9 maps to a region of sheep chromosome 5 (Sadighi et al., 2002) which is syntenic 20 to the map locations for GDF-9 on human chromosome 5 and mouse chromosome 11. GDF-9B maps to the sheep X chromosome (Galloway et al., 2000) in a region of the chromosome syntenic to the map locations for GDF-9B on the human and mouse X chromosomes (Dube et al., 1998; Aaltonen et al., 1999).

10

15

GDF-9 and GDF-9B, like other members of the TGFB family, are coded as prepropeptides containing a signal peptide, a proregion and a C-terminal mature region which is the biologically active peptide. Cleavage of the mature region from the proregion is carried out by an intracellular furin-like protease, and occurs at a conserved furin protease cleavage site. Members of the TGFB superfamily are biologically active as dimers, and although GDF-9 and GDF-9B do not contain the cysteine molecule responsible for covalent interchain disulphide bonding seen in other members of the family, these molecules are thought to be biologically active as dimers (Galloway et al., 2000; Yan et al., 2001). However it is unclear whether the physiologically active dimers are homodimers (GDF-9-GDF-9 and GDF-9B-GDF-9B), or heterodimers (GDF-9-GDF-9B) or whether all three dimer forms play a role. It has been postulated based on the above models that GDF-9 homodimers play a more important role in the mouse but in sheep the GDF-9B homodimers are the most bioactive (Yan et al., 2001). It is unclear whether any such difference is related to the fact that sheep are mono-ovulatory animals (maturing usually only one egg per cycle) whereas mice are poly-ovulatory. Clearly both GDF-9 and GDF-9B play crucial roles in controlling and maintaining fertility in mammals, and understanding the nature of their actions is essential for the development of therapies.

GDF-9 and GDF-9B in sheep

The sheep GDF-9 gene spans about 2.5 kb and contains 2 exons separated by a single 1126 bp intron (Bodensteiner et al., 1999). The full length coding sequence is 1359 nucleotides long and encodes a pre-propeptide of 453 amino acid residues (Genbank accession number AF078545). A pre-pro region of 318 residues includes a predicted signal sequence, and ends with the RHRR furin protease cleavage site at residues 315 – 318. Residues 319 to 453 beyond the cleavage site code for the 135 amino acid mature

4

active peptide. The amino acid sequence of the sheep GDF-9 mature peptide is 92.8 % similar to the human mature peptide and 87.1 % similar to the mouse mature peptide.

Sheep GDF-9B has previously been sequenced by us (Galloway et al. 2000; Genbank accession nos. AF236078, AF236079) and has a very similar gene structure to GDF-9. The full length coding sequence of 1179 nucleotides is contained in two exons, separated by an intron of about 5.4 kb, and encodes a pre-propeptide of 393 amino acid residues. A pre-pro region of 268 residues includes a predicted signal sequence, and ends with the RRAR furin protease cleavage site at residues 265 – 268. Residues 269 to 393 beyond the cleavage site code for a 125 amino acid mature active peptide. The amino acid sequence of the sheep GDF-9B mature peptide is 78.3 % similar to the human mature peptide and 78.6 % similar to the mouse mature peptide.

5

10

15

20

25

We have previously shown that the effects on prolificacy in Inverdale and Hanna sheep is due to naturally-occurring mutations in GDF-9B (Galloway et al., 2000). Both Inverdale and Hanna sheep have increased ovulation rates in heterozygous carriers of mutated GDF-9B, but female homozygous carriers are infertile with 'streak' ovaries (Davis et al., 2001). Infertility in these sheep is due to primary ovarian failure caused by the inability of the follicle to develop beyond the primary stage. Hanna sheep have a single C to T mutation at nucleotide 871 of the GDF-9B coding sequence (nucleotide 67 of the mature GDF-9B peptide coding region) which produces a premature stop codon in the place of a glutamic acid (Q) at amino acid residue 291 (residue 23 of the mature protein). Inverdale sheep have a distinct T to A mutation at nucleotide 896 (nucleotide 92 of the mature GDF-9B peptide coding region) which substitutes valine (V) for aspartic acid (D) at residue 299 (residue 31 of the mature peptide). This substitution of a hydrophobic valine with a negatively charged aspartate changes the electrostatic surface potentials of an area involved in dimer formation and appears to disrupt dimerisation and hence abolish biological activity (Galloway et al., 2000).

20

25

In addition to the Inverdale and Hanna lines of sheep discussed above, the Cambridge and F700 Belclare strains of sheep have also been shown to carry genes affecting prolificacy as evidenced in high ovulation rate (Hanrahan, 1991) and the presence of sterile ewes with 'streak-like' ovaries (Hanrahan, 1991).

The Cambridge breed was established at the Cambridge University farm in 1964 by screening 54 ewes selected for their high prolificacy from nine British sheep breeds. Ewes within the screened flock were subsequently selected on high litter size. Ewes with the highest ovulation rates were selected from this flock in 1984 to provide the foundation animals for the flock now maintained at Teagasc Sheep Research Centre in Ireland (Hanrahan, 1991). A progeny test of 10 Cambridge rams, descended from the flock in Ireland, gave progeny mean ovulation rates ranging from 2.1 - 4.2.

The Belclare breed was established in 1978 at the Belclare Research Centre of Teagasc in Ireland by crossing three populations of prolific sheep assembled by Teagasc in Ireland. These were Fingalway, High Fertility, and Lleyn sheep (Hanrahan, 1991). The Fingalway was an interbred cross (from F1) of the Finnish Landrace and Galway breeds; the Lleyn is a breed native to north west Wales and selected animals were imported into Ireland in 1975 by Teagasc for the purposed of developing the Belclare breed; the High Fertility was developed in Ireland during the 1960s from ewes with exceptional litter size performance collected from farms in Ireland between 1963 and 1965. A subline of the Belclare (called F700 line) was derived from Belclare sheep that had exceptionally high ovulation rates (Hanrahan 1991). Progeny of 10 Belclare rams had mean ovulation rates ranging from 1.9 – 4.2.

All references, including any patents or patent applications cited in this specification are hereby incorporated by reference. No admission is made that any reference constitutes prior art. The discussion of the references states what their authors assert, and the

PCT/NZ03/00109

applicants reserve the right to challenge the accuracy and pertinency of the cited documents. It will be clearly understood that, although a number of prior art publications are referred to herein, this reference does not constitute an admission that any of these documents form part of the common general knowledge in the art, in New Zealand or in any other country.

It is acknowledged that the term 'comprise' may, under varying jurisdictions, be attributed with either an exclusive or an inclusive meaning. For the purpose of this specification, and unless otherwise noted, the term 'comprise' shall have an inclusive meaning - i.e. that it will be taken to mean an inclusion of not only the listed components it directly references, but also other non-specified components or elements. This rationale will also be used when the term 'comprised' or 'comprising' is used in relation to one or more steps in a method or process.

It is desirable to provide new sequence mutations in the GDF-9B and GDF-9 genes linked to altered fertility rates.

It is an object of the present invention to go some way towards fulfilling this desideratum and/or provide the public with a useful choice.

Further aspects and advantages of the present invention will become apparent from the ensuing description which is given by way of example only.

SUMMARY OF INVENTION

5

10

The present invention is concerned with novel mutated GDF-9 and GDF-9B gene sequences which alter mammalian ovarian function and ovulation rate. The invention broadly has application in increasing or decreasing the ovulation rate, or causing sterility in a female mammal, and additionally encompasses regulation of the function of the corpeus luteum.

7

In particular, the present invention concerns a novel mutation in GDF-9 which increases ovulation rate in heterozygotes and causes sterility in homozygotes for this gene.

The present invention also concerns two mutations in GDF-9B. Heterozygotes for either one of these mutations have an increased ovulation rate. Mammals which are heterozygotes for both mutations in GDF-9B (where each mutation is on a separate X chromosome) are sterile.

Surprisingly, the inventors have also discerned that in female mammals that are heterozygous for the mutated GDF-9 gene and heterozygous for one of the GDF-9B gene mutations, an even higher ovulation rate exists than in mammals heterozygous for one mutation in either GDF-9 or GDF-9B alone.

10

15

20

25

Knowledge of the mutated gene sequences can be applied to a test for identifying heterozygous or homozygous female and male mammals carrying the mutated GDF-9B and/or GDF-9 genes. This knowledge of the biological function of the genes and their mutations can also be utilised to increase or decrease the ovulation rate of female mammals, or to induce sterility or reduced fertility in female mammals. In particular, an increase in ovulation rate in mammals may be induced by mimicking the heterozygous state, e.g. by reducing the biological activity of GDF-9 and/or GDF-9B by aound 50%. This can be achieved by a partial or short-term active immunisation regime whereby wild-type GDF-9 and/or GDF-9B or a functional variant or fragment thereof is administered to raise sufficient antibodies to partially neutralise endogenous GDF-9 and/or GDF-9B. Alternatively, said antibodies may be administered directly in a partial or short term passive immunisation regime.

A decrease in ovulation rate sufficient to reduce fertility or induce sterility may be induced by mimicking the homozygous state, e.g. by reducing the biological activity of GDF-9 and/or GDF-9B to around zero. This can be achieved by a full or long term

8

active immunisation regime whereby wild-type GDF-9 and/or GDF-9B or a functional variant or fragment thereof is administered to raise sufficient antibodies to affectively neutralise all of the endogenous GDF-9 and/or GDF-9B. Alternatively, said antibodies may be administered directly in a full or long term passive immunisation regime. Where the effect is permanent, sterility in the mammal is induced. Where the effect is reversible or temporary, a contraceptive effect is induced.

While the invention is broadly defined above, it will be appreciated by those persons skilled in the art that it is not limited thereto and includes embodiments of which the following descriptions give examples.

10 BRIEF DESCRIPTION OF DRAWINGS

Further aspects of the present invention will become apparent from the following description which is given by way of example only and with reference to the accompanying drawings in which:

15 Figure 1a shows the predicted amino acid sequence of sheep GDF9 protein.

Numbers at the start of each line indicate amino acid positions of full-length unprocessed protein. Numbers in brackets indicate amino acid positions of the mature peptide. The RRHR furin protease cleavage site and predicted start of the mature processed peptide is shaded in grey.

The filled triangle indicates the position of the single intron within the gene. The open triangles indicate positions of mutations that confer amino acid substitutions but are not associated with the sterility phenotype. The position of the [787] mutation associated with sterility is shaded black;

5

Figure 2a

Figure 2b

Figure 3a

Figure 1b shows nucleotide substitution of four GDF-9 sequence mutations which result in an amino acid change compared to the wild-type sequence in Irish Cambridge and F700 Belclare sheep;

shows the predicted amino acid sequence of sheep GDF9B protein. Numbers at the start of each line indicate amino acid positions of full-length unprocessed protein. Numbers in brackets indicate amino acid positions of the mature peptide. The RRAR furin protease cleavage site and predicted start of the mature processed peptide is shaded in grey. The filled triangle indicates the position of the single intron within the gene. The open triangle indicates the position of a single Leu deletion polymorphism. The position of the [S1] and [S2] mutations associated with sterility are shaded black;

shows nucleotide substitutions of two GDF-9B sequence mutations which result in an amino acid change compared to the wild-type sequence in Irish Cambridge and F700 Belclare sheep;

shows a table representing the genotype and phenotype of sire R830 mated to three ewes 9704, 8783 and 7810, and their six female offspring. The phenotype of each animal is indicated as sterile S, fertile F or n/a (not applicable) for the male. The genotype of each animal is shown as ++ (wild type female for X-linked [S1] and [S2] mutations, wild type male and female [787] autosomal mutation), +Y (wild type male for X-linked [S1] or [S2]). Double copy carriers of the mutation are T/T, S1/S1 or S2/S2. Single copy carriers are T/+, S1/+ or S2/+. Sire R830 is hemizygous for X-linked [S2] as he can only carry one copy;

5

10

15

20

Figure 3b

shows a table representing the genotypes and phenotypes within a F700 Cambridge pedigree. The pedigree represents sire 962101 mated to two ewes 962158 and 976234, and their four female offspring, and sire 930142 mated to ewe 8874 and their one female offspring. The phenotype of each animal is indicated as sterile S, fertile F or n/a (not applicable) for the male. The genotype of each animal is shown as ++ (wild type female for X-linked [S1] and [S2] mutations, wild type male and female for [787] autosomal mutations), +Y (wild type male for X-linked [S1] or [S2]. Double copy carriers of the mutations are T/T or S1/S1. Single copy carriers are T/+ or S1/+. Sires are hemizygous for X-linked [S1] as they can only carry one copy.

10

5

Figure 4

15

20

25 Figure 5

shows the nucleotide and amino acid sequences of wildtype sheep GDF-9 showing the positions of mutations in Irish Cambridge and F700 Belclare sheep. Numbers on the right indicate nucleotide position from the atg start codon. Numbers under each line indicate amino acid residue numbering from the start of the mature processed active peptide. Negative numbers indicate amino acids in the pro-region of the protein. The position of the single intron is marked by white boxes inserted into the sequence. Positions of the eight nucleotide polymorphisms are marked in bold within boxes, and named according to Table 1 using square brackets []. The amino acids residues which are changed by the nucleotide polymorphisms are underlined. The taa stop codon indicates the end of the protein;

shows the nucleotide and amino acid sequences of sheep GDF-9B showing the positions of mutations in Irish Cambridge and F700 Belclare sheep. Numbers on the right indicate nucleotide position from the atg start codon. Numbers under each line indicate amino acid residue numbering from the start of the mature processed active peptide.

Negative numbers indicate amino acids in the pro-region of the protein. The position of the single intron is marked by a dashed inserted into the sequence. Positions of the four nucleotide polymorphisms are marked in bold within boxes, and named according to Table 1 using square brackets []. The amino acids residues which are changed by the nucleotide polymorphisms are underlined. Asterisks (***) indicate the positions of the previously reported Hanna (Gln to Stop codon) and Inverdale (Val to Asp codon) mutations. The tga stop codon indicates the end of the protein;

10

15

20

5

Figure 6

shows the alignment of GDF-9 and GDF-9B protein sequence with other members of the TGFB superfamily members for which structures have been determined. The furin processing site is indicated as a solid gray block at the start of the sequences. The mature processed protein begins at amino acid residue position 4. Conserved cysteine molecules involved in disulphide bonds are shown in grey shading. Numbers along the bottom provide a relative reference to amino acid position, but do not represent the real amino acid residue number of each protein because gaps have been introduce to allow alignment of conserved protein regions. The asterisk * indicates the conserved cysteine that is present in most other TGFB family members except GDF9 and GDF9B, and which is responsible for the interchain disulphide bond present in most dimers. Boxed letters indicate the [787] serine (S) in GDF9 which is changed to phenylalanine in the mutants (position 86 on this diagram), and the [S2] serine (S) in GDF9B which is changed to isoleucine (position 118 in this diagram);

25

Figure 7 shows examples of the pattern of progesterone concentrations in plasma of actively immunized ewes. Antigen used for immunization and the ewe identification numbers are shown at the top of each graph. Markings by

vasectomized rams are indicated with arrows. Day 0 = corresponds to the beginning of thrice weekly sampling period; and

Figure 8 shows the average concentrations of progesterone in plasma following synchronization of luteal regression. Ewes were administered 100 ml of KLH, GDF9 peptide or BMP15 peptide antiplasma i.v. 4 days before synchronization with Estrumate (i.e. PGF_{2α}, arrowed).

DETAILED DESCRIPTION OF INVENTION

5

10

15

The present invention is directed to new naturally-occurring mutations in the sheep GDF-9 and GDF-9B genes. It is shown for the first time that mutation of the GDF-9 gene causes increased ovulation rate as well as infertility in a manner similar to inactivating mutations in GDF-9B, and that GDF-9 is also essential for maintaining normal ovarian folliculogenesis in sheep. Furthermore, it is shown for the first time in any species, that sheep which are heterozygous for both GDF-9 and GDF-9B mutations have higher ovulation rates than sheep that are heterozygous for GDF-9 or GDF-9B mutations alone. These observations are supported by genotype, phenotype and immunisation data discussed below.

According to a first aspect of the present invention there is provided an isolated mutated GDF-9 nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

- 20 a) SEQ ID NOs. 1, 3 or 5;
 - b) a sequence complementary to the molecule defined in a);
 - c) a functional fragment or variant of the sequences in a) or b);
 - d) an anti-sense sequence to any of the molecules defined in a), b) or c).

10

20

PCT/NZ03/00109

The present invention also provides an isolated mutated GDF-9 polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs. 2, 4 or 6, or a functional fragment or variant thereof.

Whilst eight polymorphisms were located in the GDF-9 nucleotide sequence of the Belclare and Cambridge genomic DNA, only four resulted in amino acid substitutions in the corresponding polypeptide. However, of these, only one amino acid substitution was considered likely to change the function of the encoded polypeptide and therefore be involved in the observed changes in fertility rate seen in these sheep. This [787] serine to phenylalanine substitution at residue 395 replaces an uncharged polar group with a non-polar group at residue 77 of the mature coding region. Figures 1a, 1b, and 4, and Table 1 illustrate these nucleotide and amino acid changes.

Cambridge and Belclare ewes which were genotyped and found to be heterozygous for the GDF-9 [787] mutation were associated with a significant increase in ovulation rate over control ewes having none of the observed mutations (Table 3).

15 Cambridge and Belclare ewes which were genotyped and found to be homozygous for the GDF-9 [787] mutation were sterile.

The discovery of an inactivating mutation in GDF-9 associated with infertility and increased ovulation rate in sheep is the first evidence that GDF-9 is important for increasing ovulation rate. Although a knockout mutation of GDF-9 in mice has been shown to cause infertility, no effects for GDF-9 on increasing ovulation rate have been described. The present invention shows that small pertubations of protein structure within the GDF-9 mature peptide have severe consequences on protein activity.

The present invention also provides an isolated mutated GDF-9B nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:

a) SEQ ID NOs. 7, 9, 11, 13, 15 or 17;

5

10

15

20

- b) a sequence complementary to the molecule defined in a)
- c) an anti-sense sequence to any of the molecules defined in a) or b).

The present invention further provides an isolated mutated GDF-9B polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs. 8, 10, 12, 14, 16 or 18.

Four polymorphisms were located in the GDF-9B nucleotide sequence of the Belclare and Cambridge genomic DNA. Two of these polymorphisms resulted in amino acid substitutions in the corresponding polypeptide sequence which were considered to change the polypeptide function and be involved in the observed changes in fertility rates seen in these sheep. The [S1] polymorphism resulted in C to T change at nucleotide 718 and introduced a premature stop codon (TAG) in the place of glutamic acid (Q, CAG) at amino acid residue 239 which presumably resulted in a complete loss of GDF-9B function. The [S2] polymorphism resulted in a serine to isolucine substitution at residue 367 of the unprocessed protein replacing an uncharged polar group with a non polar group. Figures 2 and 5 and Table 1 illustrate these nucleotide and amino acid changes.

Cambridge and Belclare ewes which were genotyped and found to be heterozygous for the GDF-9B [S1] or [S2] mutation were associated with a significant increase in ovulation rate over control ewes having none of the observed mutations (Table 3).

Cambridge and Belclare ewes which were genotyped and found to be homozygous for the GDF-9B [S1] or [S2] mutations were sterile.

These two new functional mutations in GDF-9B support the findings of previous studies, that mutations in this gene in sheep are associated with fertility control

15

(Galloway et al., 2000). Inactivating mutations in GDF-9B cause increased ovulation rate and infertility in a dosage dependent manner. The serine to isoleucine change in the [S2] mutation and premature stop codon in the [S1] mutation, support the notion that perturbations of protein structure within the GDF-9B mature peptide have serious consequences in protein activity.

5

10

15

Surprisingly, ewes which are heterozygous for both of the GDF-9 [787] mutation and one of the GDF-9B [S1] or [S2] mutations have an even higher ovulation rate than animals that are heterozygous for a GDF-9 or GDF-9B mutation alone. The effects of the combination of GDF-9 [787] and GDF-9B [S1] mutations in Cambridge sheep and the combination of GDF-9 [787] and GDF-9B [S2] mutation in Belclare sheep appears to be additive (Table 3).

Thus, it is contemplated that an immunisation regime which could mimic these genotypes would be useful in modulating ovulation in female mammals. For example, a regime which would reduce the activity of endogenous GDF-9B and/or GDF-9 to about one half (as in heterozygous animals whereby only 50% of active molecules are expressed) could be used to increase ovulation and enhance fertility in female mammals. Conversely, an immunisation regime which would reduce the activity of endogenous GDF-9 and/or GDF-9B to approximately zero (as in homozygous animals where no active molecules are expressed) could be used to induce sterility.

The present invention further provides an isolated GDF-9 nucleic acid molecule comprising a mutation in at least one codon associated with receptor binding and/or dimerisation. The mutation preferably results in an amino acid substitution in the polypeptide encoded by the nucleic acid molecule, and said amino acid substitution is preferably present in the receptor binding domain and causes a disruption in receptor

16

binding. Alternatively, the amino acid substitution may be present in the dimersation domain to cause a disruption in dimerisation.

The invention further provides an isolated GDF-9B nucleic acid molecule comprising a mutation in at least one codon associated with receptor binding and/or dimerisation. The mutation preferably results in an amino acid substitution in the polypeptide encoded by the nucleic acid molecule, and said amino acid substitution is preferably present in the receptor binding domain and causes a disruption in receptor binding. Alternatively, the amino acid substitution may be present in the dimerisation domain to cause disruption in dimerisation.

5

25

- Suitable programs for ascertaining the structure of polypeptides from the amino acid sequence which can used to determine the regions of the nucleotide sequence associated with dimerisation and/or receptor binding will be known to persons skilled in the art. Examples of suitable computer programs include The Modeller by Rockerfeller University and The SWISS Model developed by Swiss Protein database.
- The mutations seen in the GDF-9 and GDF-9B genes which are associated with changes in fertility in the Cambridge and Belclare breeds have been shown to be associated with alterations in the function of the encoded polypeptides due to amino acid substitutions. Comparison between the location of these amino acid substitutions, with mutations, in other closely related TGF-\$\beta\$ molecules support the hypothesis that the biological activity of GDF-9 [787] is abolished due to a disruption in dimerisation whilst the GDF-9B [S2] mutation may abolish biological activity by disrupting receptor binding.

It is anticipated that other amino acid changes in the receptor-binding and dimerisation domains, or regions of the protein that disrupt protein folding of the mature peptide will have similar effects as would be appreciated by a skilled person and are included within the scope of the present invention.

17 -

The present invention also provides a method of identifying a mammal which carries a mutated nucleic acid molecule encoding GDF-9B, said method comprising the steps of:

- i) obtaining a tissue or blood sample from the mammal;
- ii) isolating DNA from the sample; and optionally
- 5 iii) isolating GDF-9B DNA from the DNA obtained at step i) or ii);
 - iv) probing said DNA with a probe complementary to either strand of the mutated GDF-9B DNA of SEQ ID NOs 11 or 17;
 - v) amplifying the amount of mutated GDF-9B DNA;
- vi) determining whether the GDF-9B sequence DNA obtained in step v) carries a mutation associated with sterility or increased ovulation.

The present invention further provides a method of identifying a mammal which carries a mutated nucleic acid molecule encoding GDF-9, said method comprising the steps of:

- i) obtaining a tissue or blood sample from the mammal;
- ii) isolating DNA from the sample; and optionally
- 15 iii) isolating GDF-9 DNA from the DNA obtained at step i) or ii);
 - iv) probing said DNA with a probe complementary to either strand of the mutated GDF-9 DNA of SEQ ID NO 5;
 - v) amplifying the amount of mutated GDF-9 DNA;
- vi) determining whether the GDF-9 sequence DNA obtained in step v) carries a mutation associated with sterility or increased ovulation.

The probe and primers that can be used in this method also forms a part of this invention. Said probes and primers may comprise a fragment of the nucleic acid molecule of the invention capable of hybridising under stringent conditions to a mutated GDF-9 or GDF-9B gene sequence. Such probes and primers are also useful, in studying the structure and function of the mutated genes, and for obtaining homologues of the genes from mammals other than sheep expressing the Cambridge and Belclare phenotypes.

5

10

15

Nucleic acid probes and primers can be prepared based on nucleic acids according to the present invention or sequences complementary thereto. A "probe" comprises a single stranded nucleic acid molecule having a known sequence which is attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. Such probes are used to locate and mark target DNA or RNA sequence by hybridizing to it.

A "primer" is a short nucleic acid, preferably DNA, 15 or more nucleotides in length, which are annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, then extended along the target DNA strand by a polymerase, preferably a DNA polymerase. Primer pairs can be used for amplification of a nucleic acid sequence, eg by the polymerase chain reaction (PCR) or other nucleic acid amplification methods well known in the art. PCR-primer pairs can be derived from the sequence of a nucleic acid according to the present invention, for example, by using computer programs intended for that purpose such as Primer (Version 0.5[©] 1991, Whitehead Institute for Biomedical Research, Cambridge, MA).

Methods for preparing and using probes and primers are described, for example, in Sambrook et al. Molecular Cloning: A Laboratory Manual, 2nd ed, vol. 1-3, ed Sambrook et al. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY, 1989.

Probes or primers can be free in solution or covalently or noncovalently attached to a solid support by standard means.

WO 03/102199 19

For the amplification of a target nucleic acid sequence (eg by PCR) using a particular amplification primer pair, stringent conditions are conditions that permit the primer pair to hybridise only to the target nucleic acid sequence to which a primer having the corresponding wild type sequence (or its complement) would bind.

PCT/NZ03/00109

- Nucleic acid hybridization is affected by such conditions as salt concentration, temperature, or organic solvents, in addition to the base composition, length of the complementary strands, and the number of nucleotide base mismatches between the hybridising nucleic acids, as will be readily appreciated by those skilled in the art.
- When referring to a probe or primer, the term "specific for (a target sequence)" indicates that the probe or primer hybridises under stringent conditions only to the target sequence in a given sample comprising the target sequence. Commonly, stringent hybridization conditions are 6 x SSC at 55°C.

In another embodiment, the present invention provides the use of a nucleic acid molecule which is complementary to either strand of the mutated DNA of SEQ ID NOs. 11 or 17 as a marker to identify a mammal carrying a mutated nucleic acid molecule encoding GDF-9B.

15

The term 'either strand' refers to both the strand of DNA shown in the Sequence ID Number that is being referred to or its complementary strand which is not shown in the sequence listing but which can be determined therefrom.

In a further embodiment, the present invention provides the use of a marker as described above in a method of DNA marker assisted selection of mammals carrying mutated GDF-9B associated with either enhanced ovulation or sterility.

In another embodiment, the present invention provides the use of a nucleic acid molecule which is complementary to either strand of the mutated DNA of SEQ ID NO 5

20

as a marker to identify a mammal carrying a mutated nucleic acid molecule encoding GDF-9.

The present invention further provides the use of a marker as described above in a method of DNA assisted selection of mammals carrying mutated GDF-9 either enhanced ovulation or sterility.

5

10

15

20

The above markers and methods of marker assisted selection are useful to identify sequence variants in individual animals that are associated with increased ovulation of that animal. Although these variants may not necessarily give rise to the increased ovulation or sterility trait directly, they will be sufficiently closely associated with it to predict the trait. The methods by which these sequence variants are identified are known in the art, and include, but are not limited to, restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism AFLP, direct sequencing of DNA within or associated with the GDF-9 gene, or identification and characterisation of variable number of tandem repeats (VNTR), also known as Thus, the genetic marker may have utility in DNA microsatellite polymorphisms. selection of animals having increased ovulation.

In a further embodiment, the present invention provides a construct or vector comprising a nucleic acid molecule substantially as described above.

The term "construct" as used herein refers to an artificially assembled or isolated nucleic acid molecule which includes the gene of interest. In general a construct may include the gene or genes of interest and appropriate regulatory sequences. It should be appreciated that the inclusion of regulatory sequences in a construct is optional for example, such sequences may not be required in situations where the regulatory sequences of a host cell are to be used. The term construct includes vectors but should 25 not be seen as being limited thereto.

The term "vector" as used herein encompasses both cloning and expression vectors. Vectors are often recombinant molecules containing nucleic acid molecules from several sources.

A "cloning vector" refers to a nucleic acid molecule originating or derived from a virus, a plasmid or a cell of a higher organism into which another exogenous (foreign) nucleic acid molecule of interest, of appropriate size can be integrated without loss of the vector's capacity for self-replication. Thus vectors can be used to introduce at least one foreign nucleic acid molecule of interest (e.g. gene of interest) into host cells, where the gene can be reproduced in large quantities.

An "expression vector" refers to a cloning vector which also contains the necessary regulatory sequences to allow for transcription and translation of the integrated gene of interest, so that the gene product of the gene can be expressed.

The cloning vector may be selected according to the host or host cell to be used. Useful vectors will generally have the following characteristics:

- 15 (a) the ability to self-replicate;
 - (b) the possession of a single target for any particular restriction endonuclease; and
 - (c) desirably, carry genes for a readily selectable marker such as antibiotic resistance.

Two major types of vector possessing these characteristics are plasmids and bacterial viruses (bacteriophages or phages). Presently preferred vectors are bacterial, insect or mammalian vectors and may include the following: the pUC, pBlueScript, pGEM, PGEX, pBK-CMV, lambda ZAP, lambda GEM, pEFIRES-P, pUB6/V5/His, pBC1, pADTrack-CMV, pAdenovator, pAdEasy-1, pSFV-PD, pCA3, pBABE, pPIC9,

pA0815, pET and pSP series. However, this list should not be seen as limiting the scope of the present invention.

Examples of preferred expression systems are as follows:

- For an in vitro cell expression system, the 293T cell system with a pEFIRES-P vector (Hobbs S et al.,1998, Biochem Biophys Res Commun. 252: 368-72) which confers puromycin resistance may be used. For coexpression of two genes, the aforementioned vector may be modified to change the antibiotic resistance gene to bleomycin resistance. Alternatively, the co-expression of two genes and the selection gene can be achieved by constructing a tricistronic expression vector. A corresponding stably transfected insect cell system can also be used, e.g. the S2 cell system using "DES" vector expression system; www.invitrogen.com.
- With respect to expressing GDF's in all tissues of transgenic animals, one approach is to use the pUB6/V5-His A vector (www.invitrogen.com) to make the constructs. For tissue-specific expression the rat PEPCK 0.6 kb promoter for liver and kidney expression can be included in the construct by replacing the Ubi-C promoter in the pUB6/V5-His A vector with the PEPCK promoter. For GDF expression in mammary tissue another promoter system would be preferred. For this tissue one approach would be to use the bovine β-lactoglobulin gene promoter and/or the bovine α S1 casein promoter (e.g. pBC1 vector, www.invitrogen.com) to drive the expression of the GDFs into milk. For global over-expression in transgenic animals, the CMV enhanced β-actin

WO 03/102199

promoter (Okabe M, et al.; FEBS Letters 407: 313-319, 1997) or a modified EF1 α-promoter can be used also (Taboit-Dameron F, et al., Transgenic Research 8: 223-235, 1998).

Adenoviruses, retroviruses and alphaviruses are other suitable mammalian expression systems. A typical approach to those skilled in the art is that described by (TC He et al., 1998, Proc Natl Acad Sci USA. 95: 2509-14). With respect to GDF expression the pAd Track-CMV vector or pAdenovator vectors (www.qbiogene.com) can be used to make the construct which is then co-transformed with pAd Easy-1 adenoviral plasmid into E. coli to generate a recombinant adenoviral genome which contains a CMV-promoter driven GDF expression cassette. This recombinant adenoviral genome is then transfected into 293T cells to make the virus stock. Alternative methods for generating adenoviruses can also be used for the same purpose (e.g. PCA3 plasmid based gene transfer (www.microbix.com); or COS-TPC method (Miyake S et al., 1996, Proc Natl Acad Sci USA. 93: 1320-4).

- Non-cytopathogenic Semliki Forest viruses expressing GDF's can be generated using, for example, pSFV-PD vectors as described by Lundstrom et al., Histochem Cell Biol 115: 83-91, 2001. Furthermore, retroviral expression systems based on, for example, pBABE vectors, can be used for expressing GDF's in mammalian cells (Morgenstern, JP and Land, H, 1990; Nucleic Acids Res 18: 3587-3596).
 - 4. Yeast cells (e.g. Pichia pastoris, Saccharomyces cerevisiae) are another well established expression system to those skilled in the art (MA Romanos et al.,

WO 03/102199

5

10

PCT/NZ03/00109

1992, Yeast. 8: 423-88). For example, the pPIC9 vector (www.invitrogen.com) can be used in *Pichia pastoris* for the expression of GDF's. For coexpression of two genes, the vector pA0815 (www.invitrogen.com) is a preferred candidate.

5. Echerichia coli (E. coli) is a standard laboratory expression system in widespread use. For example, the pET expression system (www.novagen.com) can be used to express recombinant mammalian GDF-9 and GDF-9B

The DNA molecules of the invention may be expressed by placing them in operable linkage with suitable control sequences in a replicable expression vector. Control sequences may include origins of replication, a promoter, enhancer and transcriptional terminator sequences amongst others. The selection of the control sequence to be included in the expression vector is dependent on the type of host or host cell intended to be used for expressing the DNA as would be understood by a person skilled in the art.

The term "operably linked" or grammatical variant thereof as used herein means that the regulatory sequences necessary for expression of the gene of interest are placed in the nucleic acid molecule in the appropriate positions relative to the gene to enable expression of the gene.

As used herein the term "regulatory sequences" refers to certain nucleic acid sequences such as origins of replication, promoters, enhancers, polyadenylation signals, terminators and the like, that enable expression of the nucleic acid molecule of interest.

The term "expression" as used herein broadly refers to the process by which a nucleic acid molecule is converted by transcription and then translation into a protein.

WO 03/102199 PCT/NZ03/00109
25 .

5

10

25

The term "gene" as used herein refers to a nucleic acid molecule comprising an ordered series of nucleotides that encodes a gene product (i.e. specific protein). The expression vectors useful in the present invention may contain at least one expression control sequence that is operatively linked to the DNA sequence or fragment to be expressed. The control sequence is inserted in the vector in order to control and to regulate the expression of the cloned DNA sequence. Examples of useful expression control sequences are the lac system, the trp system, the tac system, the trc system, major operator and promoter regions of phage lambda, the glycolytic promoters of yeast acid phosphatase, e.g. Pho5, the promoters of the yeast alpha-mating factors, and promoters derived from polyoma, adenovirus, retrovirus, and simian virus, and cytomegalovirus e.g. the early and late promoters of SV40, and other sequences known to control the expression of genes of prokaryotic and eukaryotic cells and their viruses or combinations thereof.

In the construction of a vector it is also an advantage to be able to identify the bacterial clone carrying the vector incorporating the foreign DNA. Such assays include measurable colour changes, antibiotic resistance and the like. In one preferred vector, the β-galactosidase gene is used, in which clones are detectable as blue or white phenotypes on X-gal plates. This facilitates selection. Once selected, the vectors may be isolated from the culture using standard procedures.

Depending on the host used, transformation and transfection is performed according to standard techniques appropriate to such cells. For prokaryotes or other cells that contain substantial cell walls, the calcium treatment process (Cohen, S N Proceedings, National Academy of Science, USA 69 2110 (1972)) may be employed. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graeme and Van Der Eb, Virology 52:546 (1978) or liposomal reagents are preferred.

Upon transformation of the selected host with an appropriate vector the polypeptide encoded can be produced, often in the form of a fusion protein, by culturing the host cells. The polypeptide of the invention may be detected by rapid assays as indicated above. The polypeptide is then recovered and purified as necessary. Recovery and purification can be achieved using any procedures known in the art, for example by absorption onto and elution from an anion exchange resin. This method of producing a polypeptide of the invention constitutes a further aspect of the present invention.

5

Host cells transformed with the vectors or constructs of the invention also form a further aspect of the present invention.

The term "host cell" refers to a cell which is capable of containing a vector or construct and supports the replication and/or expression of the vector or construct. Suitable hosts cells may include *E.coli*, yeast or mammalian cells but should not be limited thereto.

The present invention also provides a cell line comprising a host cell substantially as described above.

15 Knowledge of the mutated gene sequences can be applied to a test for identifying heterozygous or homozygous female and male mammals carrying the mutated GDF-9B and/or GDF-9 genes. This knowledge of the biological function of the genes and their mutations can also be utilised to increase or decrease the ovulation rate of female mammals, or to induce sterility or reduced fertility in female mammals. In particular, an increase in ovulation rate in mammals may be induced by mimicking the heterozygous state whereby only half of the 'normal' amount of GDF-9 and/or GDF-9B is expressed. This can be achieved by a partial or short-term active regime whereby wild-type GDF-9 and/or GDF-9B or a functional variant or fragment thereof is administered to raise sufficient antibodies to partially neutralise endogenous GDF-9 and/or GDF-9B.

WO 03/102199

10

Alternatively, said antibodies may be administered directly in a partial or short term passive immunisation regime.

A decrease in ovulation rate sufficient to reduce fertility or induce sterility may be induced by mimicking the homozygous state, whereby no active GDF-9 and/or GDF-9B is expressed. This can be achieved by a full or long term active immunisation regime whereby wild-type GDF-9 and/or GDF-9B or a functional variant or fragment thereof is administered to raise sufficient antibodies to affectively neutralise all of the endogenous GDF-9 and/or GDF-9B. Alternatively, said antibodies may be administered directly in a full or long term passive immunisation regime. Where the effect is permanent, sterility in the mammal is induced. Where the effect is reversible or temporary, a contraceptive effect is induced.

Thus in a further aspect, the present invention provides a method altering GDF-9 and/or GDF-9B bioactivity in a female mammal so as to modulate ovulation comprising the steps of either:

- (a) inducing a partial immunisation response to endogenous GDF-9 and/or GDF 9B to partially reduce bioactivity thereof and enhance ovulation; or
 - (b) inducing a full immunisation response to endogenous GDF-9 and/or GDF-9B to substantially reduce bioactivity thereof and induce sterility.

The immunisation response may be induced by administration of an antigenic composition comprising:

- i) a GDF-9 polypeptide or a functional fragment or variant of GDF9; and/or
- ii) a GDF-9B polypeptide or a functional fragment or variant of GDF-9B;

03/102199 PCT/NZ03/00109

together with a pharmaceutically or veterinarily acceptable carrier and/or diluent to a mammal in need thereof.

The antigenic composition may include an adjuvant to induce a partial immunisation response and enhance ovulation.

5 An example of such an adjuvant includes DEAE-Dextran adjuvant.

Adjuvants such as DEAE-Dextran are selected so as to provoke a partial immune response upon administration to a mammal.

The antigenic composition may comprise an alternative adjuvant to induce a strong immunisation response and reduce fertility or induce sterility.

10 Examples of such an adjuvant include Freunds adjuvant.

Adjuvants such as Freunds are selected so as to provoke a strong immune response upon administration to a mammal.

Partial or strong immunisation may be induced either actively by the administration of the aforementioned antigenic compositions, or passively, by administration of antibodies raised against said antigenic composition or anti-sera comprising said antibodies.

Partial immunisation may also be induced by a short term administration regime, whereby the antigenic composition or antibodies thereto are administered over a short time period such as one to two months.

Full immunisation may be induced by a long term administration regime, whereby the antigenic composition or antibodies therein are administered over a long time period such as six months or more.

29

The type of adjuvant, antigenic composition, and administration regime are selected to induce the desired response as would be understood by a skilled worker. A particularly desired response is an enhanced ovulation rate and associated increased fertility. Such a method is useful to enhance the reproductive efficiencies and/or enhance multiple ovulations from high value mammals.

5

10

15

20

25

A further desired response is a decrease in ovulation rate and associated reduced fertility. Preferably such a response is permanent and results in sterility of the female mammal. This method provides an alternative to surgical methods that are presently used to induce sterility and is much less invasive and carries no risk of infection etc as is the case with surgery.

When the response induced is temporary or reversible, the method may be used as a method of contraception. Again such a method provides advantages over the currently used methods of contraception (i.e. administration of progesterone and/or oestrogen) which are associated with health risks. In addition, the method of the present invention may be used to prevent ovulation in a female mammal, such as a race horse, greyhound etc, when the natural oestrous cycle would interfere with the performance of such a mammal. As such an effect is temporary or reversible, the mammal will not suffer any deleterious effects.

Such a temporary/reversible effect has been observed in sheep following administration of GDF-9B peptide over a period of time sufficient to inhibit ovulation, which upon cessation of administration, subsequently became pregnant.

The present invention further contemplates inducing a desired response by administration of the mutated GDF-9B polypeptide molecules of the invention. Although such polypeptide molecules are likely to be inactive as they comprise a mutation in the receptor binding and/or dimerisation domains, such polypeptides, when

administered in sufficient amounts, may compete with the endogenous GDF-9 and/or GDF-9B binding and/or dimerisation to reduce the biological activity thereof. Such a response, if it results in a partial reduction of endogenous GDF-9 and/or GDF-9B activity will result in enhanced ovulation and fertility. If such administration results in a full reduction of endogenous GDF-9 and/or GDF-9B activity, the response induced will

PCT/NZ03/00109

Also encompassed by the present invention is a transgenic non-human mammal wherein one copy of the endogenous GDF-9 and/or GDF-9B gene has been knocked out. Such a mammal would have increased ovulation and enhanced fertility.

- Such a transgenic mammal may be produced by known methods (Wells et al, 1998. Reprod Fertil Dev: 10:615-26; Clark 2002, Methods Mol Biol, 180: 273-87; Cousens et al 1994, Mol Reprod Dev. 39:384-91; Chen et al 2002, Biol Reprod. 67: 1488-92; Arat et al 2001, Mol Repord Dev. 60: 20-6) and may comprise the steps of introducing to the genetic material of the mammal at least one nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
 - SEQ ID NOs 1 or a functional fragment or variant thereof; and
 - SEQ ID NOs 7 or 13 but not both; or

5

be sterility.

- SEQ ID NOs 3 or a functional fragment or variant thereof; and
- SEQ ID NOs 9 or 15 but not both, using a vector or construct according to the invention.

In a further aspect the present invention provides a method of modulating the ovulation rate of a female mammal comprising the steps of:

a) identifying the nucleotide sequences of GDF-9 or GDF-9B carried by the female mammal;

b) administering as appropriate having regard to the GDF-9 and/or GDF-9B genes present in the mammal, an effective amount of an agent selected from the group consisting of:

5

- an immunising effective amount of a GDF-9 polypeptide and/or an immunising effective amount of a GDF-9B polypeptide substantially as described above;
- 2) antisense nucleic acid molecule(s) directed towards nucleic acid(s) encoding:
 - i) a GDF-9 polypeptide substantially as described above; and/or
 - ii) a GDF-9B polypeptide substantially as described above.

In a further embodiment, the present invention provides a method for breeding a mammal having increased ovulation comprising the steps of:

- 15 a) identifying the nucleotide sequences of GDF-9 or GDF-9B carried by the female mammal it is proposed to breed from;
 - b) identifying the nucleotide sequences of GDF-9 or GDF-9B carried by the male mammal it is proposed to breed from;
- c) selecting the female and male animals that will result in progeny having the following characteristics:
 - i) a single copy of a mutated GDF-9 nucleotide sequence comprising:

WO 03/102199

- A) SEQ ID NO 5; or
- B) a functional variant or fragment of the molecule in A); or
- C) a sequence complementary to the molecule in A) or B); and/or
- ii) a single copy of mutated GDF-9B nucleotide sequence comprising:
- 5 A) SEQ ID NOs 11 or 17; or
 - B) a sequence complementary to the molecule(s) in A).

The mammals selected for breeding according to the method described above may result in progeny having the following characteristics:

- i) a single copy of a mutated GDF-9 nucleotide sequence comprising:
- 10 A) SEQ ID NO 5; or
 - B) a functional variant or fragment of the molecule in A); or
 - C) a sequence complementary to the molecule in A) or B);
 - ii) a single copy of a mutated GDF-9B nucleotide sequence comprising:
 - A) SEQ ID NOs 11 or 17; or
- 15 B) a sequence complementary to the molecule(s) in A).

In a still further embodiment, the present invention provides a method for selecting a female mammal for breeding on the basis of possessing an increased rate of ovulation comprising the steps of identifying a female mammal possessing only a single mutated copy of:

33

- 1) a mutated GDF-9 nucleotide sequence comprising:
 - a) SEQ ID NO 5; or
 - b) a functional variant of the molecule of a); or
 - c) a sequence complementary to the molecules in a) or b);
- 5 and/or
 - 2) a mutated GDF-9B nucleotide sequence comprising:
 - a) SEQ ID NOs 11 or 17; or
 - b) a sequence complementary to the molecules in a).

Preferably the mammal selected has both a single mutated copy of GDF-9 and GDF-9B.

- 10 In a further embodiment, the present invention provides a composition comprising:
 - i) a mutated GDF-9 polypeptide comprising an amino acid sequence selected from the group consisting of:
 - A) SEQ ID NOs. 2, 4 or 6; or
 - B) a functional fragment or variant of the sequences in A); and/or
- 15 ii) a mutated GDF-9B polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs. 8, 10,12,14,16 or 18

together with a pharmaceutically or veterinarily acceptable carrier and/or diluent.

The preparation of pharmaceutical compositions including pharmaceutical carriers are well known in the art, and are set out in textbooks such as Remington's Pharmaceutical Sciences, 19th Edition, Mack Publishing Company, Easton, Pennsylvania, USA.

10

15

The compounds and compositions of the invention may be administered by any suitable route, and the person skilled in the art will readily be able to determine the most suitable route and dose for the condition to be treated. Dosage will be at the discretion of the attendant physician or veterinarian, and will depend on the nature and state of the condition to be treated, the age and general state of health of the subject to be treated, the route of administration, and any previous treatment which may have been administered.

The carrier or diluent, and other excipients, will depend on the route of administration, and again the person skilled in the art will readily be able to determine the most suitable formulation for each particular case.

As mentioned above, the polypeptide of the present invention may be administered directly to a female mammal.

The term "protein, or polypeptide" as used herein refers to a protein encoded by the nucleic acid molecule of the invention, including fragments, mutations and homologues having the same biological activity i.e. ovulation modulating activity. The protein or polypeptide of the invention can be isolated from a natural source, produced by the expression of a recombinant nucleic acid molecule, or chemically synthesized.

It is to be clearly understood that the invention also encompasses peptide analogues, which include but are not limited to the following:

Compounds in which one or more amino acids is replaced by its corresponding Damino acid. The skilled person will be aware that retro-inverso amino acid
sequences can be synthesised by standard methods; see for example Choreo and
Goodman, 1993;

10

15

- 2. Peptidomimetic compounds, in which the peptide bond is replaced by a structure more resistant to metabolic degradation. See for example Olson et al, 1993; and
- 3. Compounds in which individual amino acids are replaced by analogous structures for example, gem-diaminoalkyl groups or alkylmalonyl groups, with or without modified termini or alkyl, acyl or amine substitutions to modify their charge.

The use of such alternative structures can provide significantly longer half-life in the body, since they are more resistant to breakdown under physiological conditions.

Methods for combinatorial synthesis of peptide analogues and for screening of peptides and peptide analogues are well known in the art (see for example Gallop et al, 1997, Nature Biotechnology, 15: 328-330).

For the purposes of this specification, the term "peptide and peptide analogue" includes compounds made up of units which have an amino and carboxy terminus separated in a 1, 2, 1, 3, 1, 4 or larger substitution pattern. This includes the 20 naturally-occurring or "common" α -amino acids, in either the L or D configuration, the biosynthetically-available or "uncommon" amino acids not usually found in proteins, such as 4-hydroxyproline, 5-hydroxylysine, citrulline and ornithine; synthetically-derived α -amino acids, such as α -methylalanine, norleucine, norvaline, $C\alpha$ - and N-alkylated amino acids, homocysteine, and homoserine; and many others as known in the art.

It also includes compounds that have an amine and carboxyl functional group separated in a 1,3 or larger substitution pattern, such as β-alanine, γ-amino butyric acid, Freidinger lactam the bicyclic dipeptide (BTD) (Freidinger et al, 1982, J. Org. Chem 59: 104-109; Nagai and Sato, 1985, Tetrahedron Lett. 26: 647-650), amino-methyl benzoic acid, and others well known in the art. Statine-like isosteres, hydroxyethylene isosteres, reduced amide bond isosteres, thioamide isosteres, urea isosteres, carbamate

WO 03/102199

5

10

15

20

isosteres, thioether isosteres, vinyl isosteres and other amide bond isosteres known to the art are also useful for the purposes of the invention.

36

PCT/NZ03/00109

A "common" amino acid is a L-amino acid selected from the group consisting of glycine, leucine, isoleucine, valine, alanine, phenylalanine, tyrosine, tryptophan, aspartate, asparagine, glutamate, glutamine, cysteine, methionine, arginine, lysine, proline, serine, threonine and histidine. These are referred to herein by their conventional three-letter or one-letter abbreviations.

An "uncommon" amino acid includes, but is not restricted to, one selected from the group consisting of D-amino acids, homo-amino acids, N-alkyl amino acids, dehydroamino acids, aromatic amino acids (other than phenylalanine, tyrosine and tryptophan), ortho-, meta- or para-aminobenzoic acid, ornithine, citrulline, norleucine, α -glutamic acid, aminobutyric acid (Abu), and α - α disubstituted amino acids.

In a further embodiment, the present invention provides a method of modifying the function of the corpus luteum by administering supplementary GDF-9 or GDF-9 B, or analogues thereof, or GDF-9 or GDF-9B antagonists to female mammals.

The present invention also encompasses ligands directed to the polypeptides of the invention.

The term "ligand" refers to any molecule which can bind to another molecule such as a polypeptides or peptide, and should be taken to include, but not be limited to, antibodies, cell surface receptors or phage display molecules.

It should be appreciated that the term "antibody" encompasses fragments or analogues of antibodies which retain the ability to bind to a polypeptide of the invention, including but not limited to Fr, F (ab)₂ fragments, ScFv molecules and the like. The antibody may

37

be polyclonal but is preferably monoclonal. In some embodiments the ligand may be a phage display molecule.

The invention also includes adenovirus-based gene therapy techniques for expressing GDF-9B and GDF-9/GDF-9B in cell cultures, organ cultures and whole experimental animals for manipulating ovarian follicular protein synthesis or production.

Definitions

5

10

15

20

Throughout this specification it should understood that the nucleic acid molecule may be a RNA, cRNA, genomic DNA or cDNA molecule, and may be single or double-stranded. The nucleic acid molecule may also optionally comprise one or more synthetic non-natural or altered nucleotide bases, or combinations thereof.

The term "analogues" above refers to a compound which has a biological function with improved characteristics over the native compounds (e.g. such an analogue may have a longer half-life than the native compound.)

The term "antagonist" refers to a compound which inhibits the effect of another compound. In this context, the antagonist could refer to a purified antibody, a sera or serum containing an antibody or a plasma or pool of plasma containing an antibody that would neutralise GDF-9 or GDF-9B.

The term "partial immunisation" refers to immunisation of an animal either active or passive of sufficient antigen/antibody to allow for instigation of an immune response to be mounted against the antigen; but the degree of antigen/antibody administered and/or the means of administration are such that insufficient antibodies are produced by the immunised animal to effectively neutralise all the antigen of interest.

WO 03/102199 38

5

20

25

The term "full immune response" refers to the immune response of animal which has been fully immunised i.e. the response mounted by the immunised animal results in production of sufficient antibodies to effectively neutralise all the antigen of interest.

PCT/NZ03/00109

The term "introducing" (or grammatical variations thereof) when used in the context of inserting a nucleic acid molecule into a cell, means "transfection" or "transformation" or "transduction" and includes reference to any method for incorporation or transfer of a nucleic acid molecule into a eukaryotic or prokaryotic cell for expression or replication thereof (for example this may include but should not be limited to insertion of a nucleic acid into: a chromosome, mitochondrial DNA, an autonomous replicon (eg. a plasmid).

The term "transduction" as used herein, refers to the process of transferring genetic information from a nucleic acid molecule from one cell to another by way of a viral vector. The term "transfection" as used herein, refers to the uptake, incorporation, and expression of recombinant DNA by eukaryotic cells.

The term "transformation" as used herein refers to a process by which the genetic material carried by an individual cell is altered by incorporation of exogenous DNA into its genome.

The term "variant" as used herein refers to nucleotide and polypeptide sequences wherein the nucleotide or amino acid sequence exhibits substantially 60% or greater homology with the nucleotide or amino acid sequence of the Figures, preferably 75% homology and most preferably 90-95% homology to the sequences of the present invention. — as assessed by GAP or BESTFIT (nucleotides and peptides), or BLASTP (peptides) or BLAST X (nucleotides). The variant may result from modification of the native nucleotide or amino acid sequence by such modifications as insertion, substitution or deletion of one or more nucleotides or amino acids or it may be a naturally-occurring variant. The term "variant" also includes homologous sequences

39

which hybridise to the sequences of the invention under standard hybridisation conditions defined as 2 x SSC at 65°C, or preferably under stringent hybridisation conditions defined as 6 x SSC at 55°C, provided that the variant is capable modulating the ovulation rate of a female mammal or altering ovarian function. Where such a variant is desired, the nucleotide sequence of the native DNA is altered appropriately. This alteration can be effected by synthesis of the DNA or by modification of the native DNA, for example, by site-specific or cassette mutagenesis. Preferably, where portions of cDNA or genomic DNA require sequence modifications, site-specific primer directed mutagenesis is employed, using techniques standard in the art.

5

10

15

20

25

A "fragment" of a nucleic acid is a portion of the nucleic acid that is less than full length, and comprises at least a minimum sequence capable of hybridizing specifically with a nucleic acid molecule according to the invention, or a sequence complementary thereto, under stringent conditions as defined below. A "fragment" of a polypeptide is a portion of the polypeptide which is less than full length, but which still retains the biological function of either; increasing or decreasing the ovulation rate of a mammal, causing sterility in a mammal; or altering the regulation of the corpus luteum. Hence, a fragment according to the invention has at least one of the biological activities of the nucleic acid or polypeptide of the invention. However, it will be appreciated that the biological activity of a fragment of the GDF-9 sequence of the present invention encompass only those mutations which will increase the ovulation rate in female mammals heterozygous for the mutation.

The term "isolated" means substantially separated or purified away from contaminating sequences in the cell or organism in which the nucleic acid naturally occurs and includes nucleic acids purified by standard purification techniques as well as nucleic acids prepared by recombinant technology, including PCR technology, and those chemically synthesised.

40

The term "modulation of ovulation" means increasing or decreasing the rate of ovulation compared to the endogenous rate observed in an untreated animal.

The term "hybridization" or grammatical variants thereof means the process of joining two complementary strands of DNA or one each of DNA and RNA to form a double stranded molecule.

When referring to a probe or primer, the term "specific for (a target sequence)" indicates that the probe or primer hybridizes under stringent conditions only to the target sequence in a given sample comprising the target sequence.

EXAMPLES

5

Non-limiting examples illustrating the invention will now be provided. It will be appreciated that the above description is provided by way of example only and variations in both the materials and techniques used which are known to those persons skilled in the art are contemplated.

Methodology

15 Animals

The flocks of Cambridge and Belclare sheep at The Sheep Research Centre of Teagasc,
Athenry, were routinely examined for ovulation rate at the beginning of each mating
season using laparoscopy. The examination was done once before joining and once after
the first mating of the joining period. This data has been collected each year since these
flocks were established. The flocks were self-contained with at least 5 males used for
mating each year. In addition rams from these flocks were progeny tested for ovulation
rate by crossing with Galway and Scottish Blackface ewes – both low prolificacy

WO 03/102199

41

breeds. Ovulation rate measurements were done by laparoscopy under licence from The Minister of Health under the Cruelty to Animals Act (1876) EU Directive 86/609/EC.

When sterile ewes were first detected they were checked for the possibility that they were freemartins but this could not be confirmed (Hanrahan, 1991). Blood samples were retained for DNA extraction from the sterile Cambridge ewes born in 1990 and later years and from essentially all of the F700 Belclare sterile females born since 1993. This material has been supplemented by blood samples for DNA extraction collected from fertile ewes in these flock from 1992 onwards.

Ovulation rate data were analysed by least squares procedures with the individual animal as the experimental unit using the GLM procedure of SAS. The factors in the models were ewe, age, year of record, and the number of copies (0 or 1) of each of the mutations described below.

Samples

5

10

Genomic DNA was isolated from Irish Cambridge and F700 Belclare sheep either from frozen stored buffy coat or directly from white blood cells in whole blood. Parentage of key pedigrees was verified with autosomal sheep microsatellite markers OarHH64 (sheep chromosome 4), OarCP34 (sheep chromosome 3) and OarFCB304 (sheep chromosome 19).

Sequencing and Mutation Detection

The sheep GDF-9 and GDF-9B genes were amplified using the polymerase chain reaction (PCR) with primers designed from published sheep sequences (sheep genomic GDF-9B exon 1, AF236078; sheep genomic GDF-9B exon 2, AF236079; sheep genomic GDF-9 exon 1 and 2, AF078545).

42

The PCR primers used were as follows:

GDF-9B exon 1 B13: 5'-ACTGCTGCCTTGTCCCAC-3'

B28: 5'-AGGCAATGTGAAGCCTGACA-3'

GDF-9B exon 2 B25: 5'-CAGTTTGTACTGAGCAGGTC-3'

5 O4: 5'-TTCTTGGGAAACCTGAGCTAGC-3'

GDF-9 exon 1 G1: 5'-GAATTGAACCTAGCCCACCAC-3'

G4: 5'-AGCCTACATCAACCCATGAGGC-3'

GDF-9 exon 2 G5: 5'-ATCCCACCCTGACGTTTAAGGC-3'

G7: 5'-TCCTCCCAAAGGCATAGACAGG-3'

10 The resulting PCR products were sequenced on an ABI 373 sequencer.

Single Stranded Conformational Polymorphism Detection

15

20

SSCP (single stranded conformational polymorphism) was carried out on 9 Belclare rams involved in the progeny testing programme and on the half sib progeny of three of these rams (n = 58 (29, 17, and 12 progeny respectively)) and also on 2 Cambridge rams one of whom was progeny tested. In addition, seven purebred daughters of two of the Belclare rams were tested along with four of the five dams involved.

GDF-9B genotypes were determined by analysis of three nucleotide fragments which spanned most of exon 2. Fragments analysed by SSCP were:

primer 9B-359 5'-CGC TTT GCT CTT GTT CCC TCT-3'

primer 9B-691 5'-CCT CAC TAC CTC TTG GCT GCT-3'

273 bp, exon 2	primer 9B-664 5'-GGG TTC TAC GAC TCC GCT TC-3'
	primer 9B-916 5'-GGT TAC TTT CAG GCC CAT CAT-3'
312 bp, exon 2	primer 9B-915 5'-CAT GAT GGG CCT GAA AGT AAC-3'
	primer 9B-1205 5'-GGC AAT CAT ACC CTC ATA CTC C-3'

Primers were designed from nucleotide sequence Genbank Accession number AF236079 and primer names correspond to nucleotide position within that sequence.

GDF-9 genotypes were determined by analysis of five fragments which spanned exon 1,

part of the intron and most of exon 2. Fragments analysed by SSCP were:

primer G9-1734 5'-GAA GAC TGG TAT GGG GAA ATG-3'

primer G9-2175 5'-CCA ATC TGC TCC TAC ACA CCT-3'

294 bp, intron

primer G9-2676 5'-GTG TGA GAG AGA TGG GAG CA-3'

primer G9-2947 5'-AAG AGG AAA ACT ATC AAA AGA CA-3'

primer G9-3270: 5'-TGG CAT TAC TGT TGG ATT GTT TT-3'

primer G9-3546: 5'-CAA GAG GAG CCG TCA CAT CA-3'

206 bp, exon 2 primer G9-3543: 5'-GAT TGA TGT GAC GGC TCC TCT-3'

primer G9-3728: 5'-GGG AAT GCC ACC TGT GAA AAG-3'

primer G9-3939: 5'-TCT TTT TCC CCA GAA TGA ATG T-3'
primer G9-4140: 5'-CAC AGG ATG GTC TTG GCA CT-3'

44

Primers were designed from nucleotide sequence Genbank Accession number AF078545 and primer names correspond to nucleotide position within that sequence.

Amplification was carried out for 30 cycles in a 40 μL reaction mixture, using 150 ng of genomic DNA, with 1.5 mM or 3 mM magnesium and an annealing temperature of 55 to 58° C. PCR fragments were analysed by SSCP in polyacrylamide gels with overnight migration at 9-15 V/cm, 15°C.

Single Nucleotide Polymorphism Detection Assays

5

10

15

20

25

The [B1] polymorphism identified in GDF-9 exon 1 produced a G to A nucleotide change which disrupts a *Hha* I restriction enzyme cleavage site (GCGC to GCAC) at nucleotide 260 of the 462 bp PCR fragment produced by primers G9-1734 and G9-2175 above. Digestion was carried out using 9 μl of PCR product and 3 U *Hha* I in 15 μl final volume, for 6 h at 37° C. Restriction digestion of the PCR product from wildtype animals with *Hha* I resulted in cleavage of the 462 bp product (at two internal *Hha* I sites) into fragments of 52 bp, 156 bp and 254 bp. However, DNA fragments containing the A nucleotide are not cleaved at this site and fragment sizes of 52 bp and 410 bp are seen. Animals heterozygous for the mutation have fragments of all four sizes (52 bp, 156 bp, 254 bp and 410 bp).

The remaining single nucleotide polymorphisms (SNPs) in GDF-9 and GDF-9B identified by sequencing did not affect common restriction endonuclease cleavage sites. In order to screen these polymorphisms through the F700 Belclare and Cambridge flocks of sheep, PCR was carried out using primers with single mismatches in order to deliberately generate products that contained restriction enzyme sites. Assays were designed so that digestion with the appropriate restriction enzyme cleaved either PCR products from wild-type animals or PCR products from animals containing the SNP, as specified below. The resulting band shift was resolved on a high percentage agarose gel.

The primer sequences and PCR conditions for each assay were as follows. The mismatch created in the appropriate primer to generate the restriction enzyme cleavage site is underlined.

- In all five assays below, amplification was carried out at: 94°C for 5 min; 35 cycles of 94°C for 30 sec, an annealing step for 40 sec (at the specific temperature stated below for each assay) and 72°C for 30 sec; followed by a final extension of 72°C for 4 min. Magnesium concentration was 1.5 mM.
 - 1. The primers used for the GDF-9 [324] nucleotide change amplify a 161 bp PCR product were:
- 10 [324]-Sfu1F 5'-GGAATATTCACATGTCTGTAAAATTTTACATGTTCG-3'
 [324]-Sfu3R 5'-GAGGGAATGCCACCTGTGAAAAGCC-3'

The annealing temperature was 63°C.

The non-wildtype strand was cleaved by restriction enzyme Sfu I.

The primers used for the GDF-9 [714] nucleotide change amplify a 158 bp PCR
 product were:

[714]-Tru1R 5'-CAGTATCGAGGGTTGTATTTGTGTGGGGCCT-3'

[714]-Tru3F 5'-GCCTCTGGTTCCAGCTTCAGTC-3'

The annealing temperature was 63°C.

The non-wildtype strand was cleaved by restriction enzyme Mse I.

20 3. The primers used for the GDF-9 [787] nucleotide change amplify a 139 bp PCR product were:

[787]-Dde1R: 5'-CATGGATGATGTTCTGCACCATGGTGTGAACCTGA-3'

[787]-Dde3F: 5'-CTTTAGTCAGCTGAAGTGGGACAAC-3'

The annealing temperature was 62°C.

The wildtype strand was cleaved by restriction enzyme $Dde\ I$.

5 4. The primers used for the GDF-9B [S1] nucleotide change amplify a 141 bp PCR product were:

[S1]-Hinf1F: 5'-CACTGTCTTCTTGTTACTGTATTTCAATGAGAC-3'

B26: 5'-GATGCAATACTGCCTGCTTG-3'

The annealing temperature was 63°C.

- The wildtype strand was cleaved by restriction enzyme Hinf I.
 - 5. The primers used for the GDF-9B [S2] nucleotide change amplify a 153 bp PCR product were:

[S2]-Dde1F: 5'-GCCTTCCTGTGTCCCTTATAAGTATGTTCCCCCTTA-3'

O4: 5'-TTCTTGGGAAACCTGAGCTAGC-3'

The annealing temperature was 64°C.

20

The wildtype strand was cleaved by restriction enzyme Dde I.

Restriction digestion of PCR with Hinf I [S1] or Dde I [[787] and [S2]] resulted in a cleavage of the longer primer from the fragment amplified from wild-type alleles (thus producing a 30-35 bp smaller product than the uncleaved fragment from animals containing alleles with the mutation). Restriction digestion of PCR with Sfu I [324] or

Mse I [714] resulted in a cleavage of the longer primer from the fragment amplified from mutant alleles (thus producing a 30-35 bp smaller product than the uncleaved fragment from animals containing wild-type alleles). Animals heterozygous for any of the mutations had fragments of both sizes. The digested fragments were separated on a 4% agarose gel and visualised with ethidium bromide staining. The gels were scored for the presence or absence of the mutations. Homozygous, heterozygous and negative controls were included with each assay.

Immunisation experiments

10

20

All experiments were performed with the approval of the Animals Ethics Committee at Wallaceville Animal Research Centre in accordance with the 1987 Animal Protection (Codes of Ethical Conduct) Regulations of New Zealand. The animals used in the immunization studies (n=54) were 5 to 6 year old parous Romney ewes.

Generation of antigens for immunization of sheep

Peptides KKPLVPASVNLSEYFC (GDF-9) and SEVPGPSREHDGPESC (GDF-9B) were synthesized and conjugated to KLH through the C terminal cysteine residue by Macromolecular Resources (Colorado State University, Fort Collins, CO).

Long-term active immunization of ewes against GDF-9 and GDF-9B peptides

Ewes were injected (i.m) with 0.4 mg KLH (control, n=10), 0.4 mg KLH-GDF-9 peptide conjugate (GDF-9 peptide; n=10) or 0.4 mg KLH-GDF-9B peptide conjugate (GDF-9B peptide; n=10) in 1 ml of Freund's complete adjuvant for the initial immunization. Thereafter, ewes were immunized once monthly with 0.2 mg KLH, GDF-9 peptide or GDF-9B peptide in 1 ml of saline mixed with 1.25 ml STM (Span-Tween-Marcol) for 6 months. After the 5th injection, vasectomised rams with marking harnesses were run with the ewes to monitor estrous cycles. The length of the estrous

48

cycle was calculated as the days between first observed markings by the vasectomised ram of successive cycles. In addition, blood samples were collected via the jugular vein 3 times a week for determination of plasma progesterone concentrations. Ovulation rates of the ewes that displayed estrous behaviour were determined by laparoscopy onceall of the control ewes had been observed in estrus and for each successive estrous cycle. In addition, ovulation rate of all ewes was determined by laparoscopy 3-4 weeks prior to ovarian collection. Approximately 2 weeks following the final injection, ewes were killed using a captive bolt and exsanguinated. The blood collected from all ewes was to be used in subsequent passive immunisation studies. Both ovaries were recovered and the number of corpora lutea present was recorded and one ovary from each ewe was fixed in Bouins fluid for morphological examination and analysis of follicular populations.

5

10

25

Passive immunisation of ewes against KLH, KLH-GDF-9 peptide and KLH-GDF-9B peptide

15 Pools of antiplasma from KLH (n=9), GDF-9 peptide (n=7, all anovulatory ewes) and GDF-9B peptide (n=9, all anovulatory ewes) treated ewes were generated by combining the plasmas obtained from some of the actively immunized ewes within each treatment group. The estrous cycles of ewes were synchronized by using a prostaglandin $F_{2\alpha}$ derivative (Estrumate; 125µg). Estrus was detected with the aid of a vasectomised ram wearing a marking harness. On day 4 or 5 of the estrus cycle (estrus = day 0) ewes were 20 laparascoped to determine ovulation rate and fitted with an indwelling jugular cannula. The following day ewes (n=4-5 per group) were administered 100 ml of antiplasma to KLH, GDF-9 peptide or GDF-9B peptide through the indwelling jugular cannula. Ewes were given another injection of Estrumate, at 96h after administration of the antiplasma to induce a follicular phase and ovulation rate was determine by laparoscopy at 10 days after the injection of Estrumate and every 15-18 days thereafter until the end of the

PCT/NZ03/00109

breeding season (as assessed by lack of estrous activity in non-experimental sheep). Blood samples were collected from the ewes at 5 minutes, 1 h and 96 h after injection of the antiplasma and thereafter 3 times a week from the 2nd injection of Estrumate for determination of antibody titers and concentrations of progesterone in plasma.

5 Determination of progesterone concentrations

Concentrations of progesterone in plasma were determined by radioimmunoassay (RIA). The inter- and intra-assay co-efficients of variation were <10% and assay sensitivity was 0.1 ng/ml. All samples below the sensitivity of the assay were assigned a value of 0.1 ng/ml for statistical analysis.

10 Short-term immunisations

Romney ewes were immunized with KLH (N=50), KLH conjugated to GDF-9 peptide (N=30) or KLH conjugated to GDF-9B peptide (N=30). The antigens were administered in DEAE Dextran (4% w/v) on 2 occasions one month apart. The number of corpora lutea (CL) was determined following the first observed oestrus which occurred after the booster immunization. In addition, in a selected subpopulation of these ewes (N=26 KLH, N=15 GDF-9, N=16 GDF-9B) the number of CL present following the next oestrus was also determined. The average number of CL for each ewe was analysed by Chi-square analysis.

Statistical analysis

15

For the long-term, actively immunized ewes, ovulation rate for individual ewes was calculated as the mean of the number of corpora lutea observed at all observations for that ewe when at least 1 corpus luteum (CL) was present (i.e. observations of no CL were excluded from the calculation). The Kruskal-Wallis test was used to compare ovulation rates between the KLH-GDF-9B mature protein and the KLH treated groups.

WO 03/102199 PCT/NZ03/00109 50

No other groups were included in this comparison since none had sufficient numbers of ewes ovulating. The Chi Square test was used to compare the proportion of ewes observed in estrus by the time all the control ewes had been observed in estrus. In addition the Chi Square test was used to compare the proportion of ewes with corpora lutea on their ovaries 3-4 weeks before and at ovarian collection.

5

10

15

20

When examining the effects of active immunization treatments on ovarian volumes, numbers of follicles or oocyte or follicular diameters, the data were analysed within each follicle type after normalising the data by log transformation. For each parameter a one-way ANOVA was performed, after blocking on animals where appropriate, and differences between treatment groups were determined by least significant difference.

For the passively immunized ewes, differences in the number of ewes with corpora lutea at each laparoscopy were determined using Fisher's exact test. The areas under the curves were calculated using Genstat using the area function for progesterone values from 2 to 19 days following injection of Estrumate that was given 4 days after administration of plasma. Resulting values were analysed with one-way ANOVA and differences between the control and treated ewes determined with Fisher's pairwise comparisons.

For the short term active immunizations, ovulation rate for individual ewes was calculated as the average of the number of corpora lutea observed at both observations. Data was analysed using the general linear models procedures of SAS. Differences between least-squares means were evaluated by least significant differences.

51

RESULTS and ANALYSIS OF RESULTS

Finding mutations in Cambridge and F700 Belclare animals

In order to determine whether mutations in GDF-9 or GDF-9B were contributing to sterility in these animals sequence information was obtained for the entire coding sequence of both genes in a subset of Irish Cambridge (N = 9) and F700 Belclare sheep (N = 10). Animals were chosen for full-length sequencing based on their sterility phenotype or their pedigree relationship to sterile animals. In addition, mutation detection was also carried out by single-stranded conformational polymorphism (SSCP) analysis independently of the above sequencing in F700 Belclare pedigrees (23 animals and 58 progeny test daughters of three rams) and also on 2 Cambridge rams.

Mutations in GDF-9

5

10

15

20

Sequence of GDF-9 revealed eight single nucleotide polymorphisms across the entire coding region (Table 1, Figure 4). SSCP analysis identified five fragments across the gene which contained conformational differences. These differences correspond to one single nucleotide polymorphism (SNP) in exon 1, one SNP in the intron and five SNPs in exon 2.

Original naming of the mutations (numbers in square brackets [], Table 1) refers to the nucleotide position from the start of exon 2, except for [E1] which refers to the polymorphism found in exon 1 of GDF-9. Table 1 shows the relationship between (a) the original numbering system, (b) the coding nucleotide position in the full length coding sequence numbered from the first atg, (c) the position of the coding amino acid residue involved, and (d) the position of the coding residue (if any) within the mature coding sequence, numbering from the first amino acid after the furin protease processing site. For example mutation [581] is a G to A nucleotide substitution at

WO 03/102199

5

10

15

20

25

PCT/NZ03/00109

coding nucleotide 978 of GDF-9 which corresponds to an unchanged glutamate (Glu) coding residue 326 of the full length unprocessed protein, or residue 8 of the processed mature peptide.

Three of the eight polymorphisms are nucleotide changes which do not result in an altered amino acid ([74] at nucleotide position 471, [80] at nucleotide 477, and [581] at nucleotide position 978). The five remaining nucleotide changes [324], [597], [714], and [787] gave rise to amino acid changes (Table 1), Figure 1, Figure 4), although three of them were relatively conservative changes. The [E1] arginine to histidine change at amino acid residue 87 in exon 1 substituted one basic charged polar group with another, and occurred at a position prior to the furin processing site, so was unlikely to affect the activity of the mature protein. Both the [597] valine to isoleucine change at amino acid residue 332 of the unprocessed protein (residue 14 of the mature coding region) and the [714] valine to methionine at residue 371 of the unprocessed protein (residue 53 of the mature coding region) substituted non-polar groups with non-polar groups. The remaining two changes resulted in non-conservative substitutions. The [324] glutamic acid to lysine change at amino acid residue 241 of the unprocessed protein replaced an acidic group with a basic group, but this occurred at a position prior to the furin processing site and was unlikely to affect the mature active coding region. However the [787] serine to phenylalanine change at residue 395 replaced an uncharged polar group with a non-polar group at residue 77 of the mature coding region. The nucleotide and amino acid changes are illustrated in Figure 1 and Figure 4.

Mutations in GDF-9B

Both DNA sequencing and independent SSCP analysis of GDF-9B in Cambridge and F700 Belclare sheep revealed four polymorphisms across the entire coding region (Table 1, Figure 5). Original naming of these mutations (in square brackets []) refers

specifically to the leucine deletion [Leu], or for the conservative [422] T to C mutation, the nucleotide position from the start of exon 2. GDF-9B mutations which changed amino acids were named [S1] and [S2]. Table 1 shows the relationship between (a) the original numbering system, (b) the coding nucleotide position in the full length coding sequence numbered from the first atg, (c) the position of the coding amino acid residue involved, and (d) the position of the coding residue (if any) within the mature coding sequence, numbering from the first amino acid after the furin protease processing site. For example mutation [S2] was a G to T nucleotide substitution at coding nucleotide 1100 of GDF-9B which corresponds to an serine (Ser) residue changing to an isoleucine (Ile) residue at coding residue 367 of the full length unprocessed protein, or residue 99 of the processed mature peptide.

The first of these four polymorphisms (Table 1) was a previously-reported leucine deletion polymorphism [leu] in the predicted signal sequence (Galloway et al., 2000) whereby some sheep have two leucine codons (CTT) at this position and some sheep have only one. This polymorphism has been shown to be unrelated to fertility and ovulation rate in Inverdale sheep (Galloway et al., 2000). One other nucleotide change, [422], did not result in an altered amino acid (nucleotide position 747). The remaining two nucleotide changes ([S1] and [S2]) gave rise to more critical changes in the protein (Figure 2, Figure 5). The [S1] C to T change at nucleotide 718 introduced a premature stop codon (TAG) in the place of glutamic acid (Q, CAG) at amino acid residue 239 of the unprocessed protein, which presumably resulted in complete loss of GDF-9B function. The [S2] G to T change at nucleotide 1100 changed the serine residue at amino acid 99 of the mature active protein (residue 367 of the unprocessed protein) to an isoleucine, thereby substituting an uncharged polar group with a nonpolar group. The nucleotide and amino acid changes are illustrated in Figure 2 and Figure 5.

Screening for mutations in more animals

5

10

15

20

25

Initial sequencing of a smaller number of animals from each family identified the [74], [80], [324], [714], and [787] nucleotide changes in GDF-9, and the [S1], [S2] and [422] changes in GDF-9B. Forced RFLP (restriction fragment length polymorphism) assays to detect the specific SNPs were developed for [324], [714], [787] (GDF-9) and for [S1] and [S2] (GDF-9B), and these assays were carried out on larger numbers of animals (Table 2). Subsequent sequencing of full length GDF-9 and GDF-9B in more animals revealed the [581] and [597] nucleotide changes in GDF-9 in the Cambridge sheep but not the F700 Belclares. Independent SSCP analysis identified the [E1] polymorphism in exon 1 of GDF-9 in one ram, and this was also screened through further animals. [E1] was found to be associated with the wildtype alleles in this ram and his backcross progeny, and not associated with ovulation rate.

Homozygous mutations relate to sterility

Presence or absence of each of these nucleotide changes was analysed in relation to sterility or fertility in all of the animals tested, revealing that only the [787] change in GDF-9 and the [S1] and [S2] changes in GDF-9B contributed to infertility. Female sheep which were homozygous for [787] were sterile; female sheep which were homozygous for [S1], or homozygous for [S2] were sterile; female sheep which were heterozygous for [S1] and [S2] simultaneously (whereby both copies of the X chromosome carried a different GDF-9B mutation) were sterile. Figures 3a and 3b show data from small pedigrees illustrating what was seen in the larger set of animals.

Figure 3a illustrates a F700 Belclare pedigree. The sire R830 carried the GDF-9B [S2] mutation on his X chromosome and a single copy of the GDF-9 [787] mutation on chromosome 5, but did not have the GDF-9B [S1] mutation. Dam 9704 carried a single copy of the GDF-9B [S1] mutation on her X chromosome and their two female

55

offspring (930458 and 930459) were sterile since they had inherited mutated copies of GDF-9B from both parents. Dam 8783 carried a single copy of the GDF-9 [787] mutation on chromosome 5 and the female offspring of her mating with sire R830 were infertile and were homozygous for the GDF-9 [787] mutation. Their infertility cannot be explained by GDF-9B mutations. Offspring 930810 and 948302 were not homozygous for any of these mutations and hence were fertile. All three functional mutations ([S1], [S2], and [787]) were seen in the F700 Belclare flock (Table 2).

5

10

15

20

Figure 3b illustrates two Cambridge pedigrees. The sire 962101 carried the GDF-9B [S1] mutation on his X chromosome and a single copy of the GDF-9 [787] mutation on chromosome 5, but did not have the GDF-9B [S2] mutation. Dam 962152 carried a single copy of the [S1] mutation on her X chromosome and a single copy of the [787] mutation on chromosome 5. Their two female offspring (997634 and 997635) were sterile and had inherited mutated copies of both GDF-9B ([S1]) and GDF-9 ([787]) from both parents. Dam 976234 only carried a single copy of the [S1] mutation and one female offspring (997553) was infertile, having inherited mutated copies of GDF-9B ([S1]) from both parents, whereas 997552 was fertile. Sire 930142 was homozygous for the GDF-9 [787] mutation and carried the GDF-9B [S1] mutation on his X chromosome, whereas dam 8874 was only heterozygous for the GDF-9 [787] mutation and carried no GDF-9B mutation. Their daughter (948093) had inherited two copies of the GDF-9 [787] mutation and was sterile even though she was also heterozygous for the GDF-9B [S1] mutation which she inherited from her sire. The [S2] mutation was not seen in any animals tested from the Cambridge flock (Table 2).

Among the animals tested for these changes, fertile animals homozygous for both GDF-9 [324] and [714] were found and it is therefore concluded that neither of those changes result in disruption of the genes sufficient to cause sterility. Animals were also found

56

which were heterozygous for GDF-9 and GDF-9B mutations together, and these animals were not sterile.

Structural effects of mutations on activity

10

15

20

25

Structural data is available for members of the TGFB superfamily which may provide information about the likely effects of each of the three mutations ([S1], [S2] and [787]) on the biological activity of GDF-9 and GDF-9B, and hence explain the association with sterility. Structures have been reported for TGF-B1 (Hinck et al., 1996); TGF-B2 (Daopin et al., 1992), TGF-B3 (Mittl et al., 1996), BMP7/OP1 (Griffith et al., 1996) and BMP2 (Scheufler et al., 1999). Receptor binding structures have also been reported for BMP2 with the BRIA receptor binding ectodomain (Kirsch et al., 2000) and for TGF-B3 with the TBR2 receptor binding ectodomain (Hart et al., 2002).

In the present invention, the [S1] mutation resulted in premature termination of GDF-9B protein prior to the mature active protein processing site. It is thus expected that this mutation would result in no mature protein being translated, and appears to be an even more severe effect than the Hanna mutation (Galloway et al., 2000) which results in infertility in sheep. The GDF-9B [S2] mutation changed an uncharged polar serine residue (residue 99 of mature GDF-9B) which is conserved across most members of the TGFB superfamily, to a non-polar isoleucine (Figure 6). This serine (and the nearby conserved leucine) has been shown to be essential for receptor binding by structural and site-directed mutagenesis studies of BMP2. In F700 Belclare sheep it appears that this mutation abolishes biological activity of GDF-9B, possibly by affecting receptor binding. The GDF-9 [787] mutation changed an uncharged polar serine residue (residue 77 of mature GDF-9) to a non-polar phenylalanine in a region of the molecule which appears to be involved in dimerisation. This change occurred only three residues away from a conserved histidine (H80) of the mature GDF-9 peptide (Figure 6). In BMP7 this

5

10

15

conserved histidine exhibits hydrogen bonding to three residues of the paired molecule in the BMP7 dimer (Griffith et al., 1996) and TGFB3 (Mittl et al., 1996). GDF-9 lacks the interchain disulphide bond which forms a covalent link between both monomers of the biologically active dimer that is found in most other members of the TGFB superfamily. It is therefore likely that in GDF-9 the hydrogen bonds between monomers would be even more critical for maintaining dimer stability, so that the GDF-9 [787] mutation possibly abolished biological activity by disrupting dimerisation.

Heterozygous animals have increased ovulation rate

Irish Cambridge and F700 Belclare sheep have increased ovulation rates as well as infertility (Hanrahan, 1996). Ovulation rate data of fertile ewes which had been genotyped for the [S1], [S2] and [787] mutations was collected (Table 3). Heterozygous carriers of mutations in GDF-9B (either [S1] or [S2]) showed an increased ovulation rate similar to those seen in Inverdale and Hanna sheep (Davis *et al.*, 2001). Animals which were heterozygous for both a GDF-9B mutation and a GDF-9 mutation had an even higher ovulation rate, and this effect appeared to be additive.

The additive effects of the GDF-9 mutation and GDF-9B mutations together in one animal imply that GDF-9 and GDF-9B work independently so that a combination of both proteins would alter ovarian function more effectively than by altering either GDF-9 or GDF-9B alone.

20 Effect of immunising sheep against GDF-9

In addition to the genotype effects above, both long-term active immunisation and short-term passive immunisation of sheep with GDF-9 was carried out and shown to cause sterility and/or abnormal corpus luteum function. This finding provides additional evidence that a homozygous GDF-9 mutant phenotype is one of sterility.

58

Ewes were actively immunised against KLH (control, n = 9) or KLH conjugated to GDF-9 peptide (n = 10). The ewes actively immunized with the GDF-9 peptide showed no cyclic estrous behaviour (Table 4) as evidenced by repeated laproscopy. High (normal) progesterone concentrations were only seen in one or two samples (Figure 7). Generally, when corpora lutea and/or luteal-like structures were observed following long-term immunisation against KLH conjugated to GDF-9 peptide, progesterone concentrations were abnormal. In addition many of the ewes did not have any visible antral follicles at laparoscopy or at ovarian collection. Figure 7 also shows data for ewes immunised against GDF-9B/(BMP15) for comparison.

5

25

10 Passive immunisation using 100 ml of GDF-9 peptide antiplasma caused abnormal luteal function within 30 days of administration of the antiplasma (Figure 8). There were no differences in ovulation rates among the groups before administration of the antiplasma. Administration of antiplasma against GDF-9 peptide 4 days before induction of the follicular phase did not affect ovulation rate. However, at laparoscopy the corpora lutea of two of the animals treated with GDF-9 antiplasma appeared smaller than normal. In addition, the overall mean concentration of progesterone during the subsequent luteal phase was less (P<0.05) than that observed in the control animals (Figure 8). This was the result of the progesterone concentrations being normal in two of the animals but in the other three animals, the post ovulation rise in progesterone was delayed even though luteolysis occurred at the normal time. Figure 8 also shows data for passive immunisation with GDF-9B/(BMP15) for comparison.

The finding of abnormal luteal function following GDF-9 immunisation (both passive and active) has not been previously reported. It is postulated, therefore, that the administration of supplementary GDF-9 and GDF-9B, or analogue thereof, or GDF-9 or GDF-9B antagonists, may modify corpus luteum function.

59

In a further experiment, short-term active immunisation of sheep with GDF-9 or GDF-9B was shown to mimic the heterozygous effects of mutations in these genes. Short-term immunisation using milder adjuvant than in the previous experiments (2 immunisations in DEAE-Dextran adjuvant), with either KLH conjugated to GDF-9 peptide or with KLH conjugated to GDF-9B peptide, acted to increase ovulation rate in the animals which ovulated as measured by the number of corpora lutea (CL) (Table 5).

The observation that an increased ovulation rate effect (ie as seen in heterozygous carriers of these inactivating mutations) can also be induced in sheep by short-term active immunisation against peptides of GDF-9 and GDF-9B provides new methods for altering ovarian function.

Temporary/reversible effects in immunization with GDF-9B

5

10

15

20

Four of the 30 ewes immunised (0.4 mg GDF-9B peptide-KLH followed by 0.2 mg GDF-9B peptide-KLH 30 days apart) displayed transient infertility. After the second immunization, ewes failed to show oestrus and upon examination of their ovaries, failed to show any evidence of ovulation (no corpora lutea). These ewes returned to estrous over the next 30 days and were placed with a fertile ram. The oocytes release at oestrous were healthy as indicated by the following. Three of the four ewes were flushed to recover embryos for transfer as they had higher ovulation rates upon return to fertility. While no embryos were recovered from one of the ewes, developing embryos were recovered from the other two ewes. In addition, while the embryos from one of the ewes were too advanced for recovery (by approximately one week) the two embryos from the other ewe were transferred to a recipient ewe and resulted in the birth of one lamb. The fourth ewe was allowed to carry the pregnancy to term and gave birth to two lambs, one stillborn and one live. These results provide evidence that the sterility induced by the

method of the present invention can be temporary or reversible and may therefore be used in methods of contraception.

CONCLUSIONS

These findings provide the first evidence that mutations in GDF-9 and GDF-9B are associated with the reproductive effects seen in the Cambridge and Belclare breeds of sheep. The increased ovulation rate and sterility phenotypes in these animals can be explained by the presence of heterozygous mutations and homozygous mutations, respectively, in these genes. Methods which are able to induce changes in the biological activity of GDF-9 and/or GDF-9B to mimic these genotypes have been developed to modulate fertility in mammals in need thereof.

INDUSTRIAL APPLICATION

The present invention provides compositions and methods for modulating the ovulation rate and therefore fertility in female mammals including humans.

5

10

Sequence variations in GDF-9 and GDF-9B within the Irish Cambridge and F700 Belclare F700 flocks

	Gene	[original	nucl.	coding	coding	mature	result
5		name]	change	nucl.(bp)	residue	residue	
	GDF-9	[E1]	G-A	260	87	; 1	Arg (R) – His (H)
		[74]	C-T	471	157	!	unchanged Val (V)
		[80]	G-A	477	159		unchanged Leu (L)
		[324]	G-A	721	241	•	Glu (E) – Lys (K)
10		[581]	A-G	978	326	8	unchanged Glu (E)
		[597]	G-A	994	332	14	Val (V) – Ile (I)
		[714]	G-A	1111	371	53	Val (V) – Met (M)
		[787]	C-T	1184	395	77	Ser (S) - Phe (F)
	GDF-9B	[Leu]	CTT del	28-30	10	•	Leu deletion
15		[S1]	С-Т	718	239		Gln (Q) – STOP
		[422]	T-C	747	249		unchanged Pro (P)
		[S2]	G-T	1100	367	99	Ser (S) - Tle (I)

Columns indicate the relationship between (a) the original naming system used for each polymorphism, (b) the nucleotide change, (c) the coding nucleotide position (in base

pairs (bp)) in the full length coding sequence numbered from the first atg start codon,

(d) the position of the coding amino acid residue involved (starting from the first Met residue), and (e) the position of the coding residue (if any) within the mature coding sequence, numbering from the first amino acid after the furin protease processing site.

5 For example mutation [581] is a G to A nucleotide substitution at coding nucleotide 978 of GDF-9 which corresponds to an unchanged glutamate (Glu) coding residue 326 of the full length unprocessed protein, or residue 8 of the processed mature peptide. Polymorphisms associated with infertility and ovulation rate traits are in bold.

TABLE 2. Genotype analysis of nucleotide changes in GDF-9B and GDF-9 genes from10 Irish Cambridge and F700 Belclare sheep.

Numbers shown are the number of individuals carrying at least one copy of the given mutation with the total number of individuals genotyped indicated in brackets underneath. Genotypes were determined by specific SNP assay and/or sequencing.

* The [E1] polymorphism in exon 1 of GDF-9 (see Table 1) was identified by SSCP analysis and was not tested in the same set of animals used for the above table.

	GDF-9B				GDF-9*					
	[S1]	[82]	[422]	[74]	[80]	[324]	[581]	[597]	[714]	[787]
F700 Belclares	9 (83)	71 (86)	2 (13)	6 (10)	6 (10)	13 (29)	0 (10)	0 (10)	2 (19)	11 (86)
Cambridge	74 (129)	0 (131)	0 (9)	0 (9)	7 (9)	1 (26)	3 (9)	2 (9)	7 (24)	95 (126)

4

TABLE 3. Least squares means for ovulation rate of sheep carrying the different genotypes for GDF-9 and GDF-9B mutations

Genotype GDF-9B GDF-9 [S1] [S2] [787]			Breed			
			F700 Belclare	Cambridge		
0	0	0	1.92±0.277 (n = 11)	2.27±0.488 (n = 10)		
0	0	1	$2.67\pm0.895 (n = 1)$	4.39±0.308 (n = 28)		
0	1	0	$3.26\pm0.184 (n = 32)$	-		
0	1	1	$6.09\pm0.549 (n=3)$	-		
1	0	0	$2.69\pm0.475 (n=4)$	$3.11\pm0.438 (n = 15)$		
1	0	1	-	$5.77\pm0.270(n=38)$		
Effect of GDF-9B [S1]		$0.77\pm0.537 (P = 0.16)$	1.18±0.387 (P<0.01)			
Effect of GDF-9B [S2]		2.38±0.548 (P<0.01)	-			
Effect of	GDF-9 [787	"]	1.79±0.548 (P<0.01)	2.35±0.392 (P<0.01)		

⁽n) = no. of ewes

5 TABLE 4. Proportions of ewes immunized against KLH, GDF-9 peptide or GDF-9B peptide in estrus at the time of first laparoscopy (1st), with visible luteal structures at laparoscopy 3-4 weeks before collection (2nd) and at ovarian collection (3rd).

Immunized Group	1 st	2 nd	3 rd	
KLH	9/9	9/9	9/9	
GDF-9 peptide	2/10*	2/10*	3/10*	
GDF-9B peptide	1/10*	1/10*	1/10*	

^{*}Signifies a value that is different from the control (KLH) value (P<0.05)

TABLE 5. Short-term immunisation of sheep with GDF-9 or GDF-9B

	Number of CL	1 to < 2	2 to < 3	=3			
	Treatment	Number o	Number of CL recorded in treated ewes				
5	KLH (n=50)	21	29	. 0			
	GDF-9 peptide* (n=30)	7	17	6			
10	GDF-9B peptide* (n=30)	2	18	10			

^{*} Using Chi-square analysis, the GDF-9 and GDF-9B immunized ewes have significantly higher ovulation rates (as measured by corpora lutea (CL) than KLH control ewes (P<0.01).

Aspects of the present invention have been described by way of example only and it should be appreciated that modifications and additions may be made thereto without departing from the appended claims.

REFERENCES

5

Aaltonen J., Laitinen M., Vuojolainen K., Jaatinen R., Horelli-Kuitunen N., Seppa L., Louhio H., Tuuri T., Sjoberg J., Butzow R., Hovatta O., Dale L., Ritvos O (1999). Human growth differentiation factor- 9 (GDF-9) and its novel homolog GDF-9B are expressed during early folliculogenesis. J Clin Endocrinol Metab 84: 2744-2750.

Bodensteiner KJ., Clay C.M., Moeller C.L., and Sawyer HR., (1999) Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries. Biology of Reproduction 60, 381-386.

Bodensteiner, K.J., McNatty, K.P., Clay, C.M., Moeller, C.L. and Sawyer, H.R. (2000) Expression of growth and differentiation factor-9 in the ovaries of fetal sheep homozygous or heterozygous for the Inverdale prolificacy gene (FecX). Biology of Reproduction 62: 1479-1485.

Daopin S., Piez KA., Ogawa Y., Davies DR (1992) Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science 257:369-373.

Davis GH., Bruce GD., & Dodds KG (2001) Ovulation rate and litter size of prolific Inverdale (FecX^I) and Hanna (FecX^H) sheep. Proceedings of Association for the Advancement of Animal Breeding and Genetics 14: 175-178.

Dong J., Albertini DF., Nishimori K., Kumar TR., Lu N., Matzuk MM (1996) Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 383:531-535.

5

20

WO 03/102199 PCT/NZ03/00109

Dube JL., Wang P., Elvin J., Lyons KM., Celeste AJ., Matzuk MM (1998) The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 12:1809-1817.

66

Eckery DC., Whale LJ., Lawrence SB., Wilde KA., McNatty K.P., & Juengel., J.L. (2002). Expression of mRNA encoding growth differentiation factor 9 and bone morphogenetic protein 15 during follicular formation and growth in a marsupial, the brushtail possum (*Trichasurus vulpecula*). Molecular & Cellular Endocrinology, 192: 115-126.

Galloway SM., McNatty KP., Cambridge LM., Laitinen MPE., Juengel JL., Jokiranta

TS., McLaren RJ., Luiro K., Dodds KG., Montgomery GW., Beattie AE., Davis GH.,

Ritvos O (2000) Mutations in an oocyte-derived growth factor gene (*BMP15*) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nature Genetics 25:279-283.

Griffith DL., Keck PC., Sampath TK., Rueger DC., Carlson WD (1996) Threedimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci U S A 93:878-883.

Hart PJ., Deep S., Taylor A.B., Shu Z., Hinck C.S., and Hinck A.P (2002). Crystal structure of the human TBR2 ectodomain-TGF-B3 complex. Nature Structural Biology 9: 203-208.

Hanrahan JP (1991) Evidence for single gene effects on ovulation rate in the Cambridge and Belclare breeds. In *Major Genes for Reproduction in Sheep* pp 93-102 Eds J.M. Elsen, L.Bodin and J. Thimonier, INRA, Paris.

Hinck AP., Archer SJ., Qian SW., Roberts AB., Sporn MB., Weatherbee JA., Tsang ML., Lucas R., Zhang B-L., Wenker J., and Torchia DA (1996) Transforming growth factor \(\mathbb{B}1 : Three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor \(\mathbb{B}2 : Biochemistry 35 : 8517-8534 .

- Jaatinen R., Laitinen MP., Vuojolainen K., Aaltonen J., Louhio H., Heikinheimo K., Lehtonen E., and Ritvos O (1999) Localisation of growth differentiation factor-9 (Gdf-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B.Mol Cell Endocrinol 156: 189-193.
- Kirsch, T., Sebald, W. and Dreyer, M.K. (2000a). Crystal structure of the BMP2-BRIA ectodomain complex. Nature Structural Biology 7: 492-496.
 - Laitinen M., Vuojolainen K., Jaatinen R., Ketola I., Aaltonen J., Lehtonen E., Heikinheimo M., Ritvos O (1998) A novel growth differentiation factor-9 (GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis. Mech Dev 78:135-140.
- 15 McGrath SA., Esquela AF., Lee SJ (1995): Oocyte-specific expression of growth differentiation factor-9. Mol Endocrinol 9:131-136.
 - McPherron AC., Lee SJ: GDF-3 and GDF-9 (1993) two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines. J Biol Chem 268:3444-3449.
- 20 Mittl PRE., Priestle JP., Cox DA., McMaster G., Cerletti N., and Grutter MG., (1996)

 The crystal structure of TGF-B3 and comparison to TGF-B3: Implications for receptor binding. Protein Science 5: 1261-1271.

68

Sadighi M., Bodensteiner KJ., Beattie AE. and Galloway SM (2002). Genetic mapping of ovine growth differentiation factor 9 (*GDF-9*) to sheep chromosome 5. Animal Genetics, 33: 244-245.

Scheufler C., Sebald W., Hulsmeyer M (1999) Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution. J Mol Biol 287:103-115.

Yan C., Wang P., DeMayo J., DeMayo FJ., Elvin J., Carino C., Prasad SV., Skinner SS., Dunbar BS., Dube JL., Celeste AJ. and Matzuk MM (2001) Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Molecular Endocrinology 15: 854-866.

5

WHAT WE CLAIM IS:

- 1. An isolated mutated GDF-9 nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
 - a) SEQ ID NOs. 1, 3 or 5;
- 5 b) a sequence complementary to the molecule defined in a);
 - c) a functional fragment or variant of the sequences in a) or b);
 - d) an anti-sense sequence to any of the molecules defined in a), b) or c).
 - 2. An isolated mutated GDF-9B nucleic acid molecule comprising a nucleotide sequence selected from the group consisting of:
- 10 a) SEQ ID NOs. 7, 9, 11, 13, 15 or 17;

20

- b) a sequence complementary to the molecule defined in a)
- c) an anti-sense sequence to any of the molecules defined in a) or b).
- 3. An isolated GDF-9 nucleic acid molecule comprising a mutation in at least one codon of the sequence associated with receptor binding and/or dimerisation.
- 4. An isolated GDF-9 nucleic acid molecule as claimed in claim 3, wherein said mutation results in an amino acid substitution in the polypeptide encoded by said nucleic acid sequence.
 - 5. An isolated GDF-9 nucleic acid molecule as claimed in claim 4, wherein said amino acid substitution is present in a receptor binding domain and disrupts receptor binding.

- 6. An isolated GDF-9 nucleic acid molecule as claimed in claim 4, wherein said amino acid substitution is present in a dimerisation domain and disrupts dimerisation.
- 7. An isolated GDF-9B nucleic acid molecule comprising a mutation in at least one codon sequence associated with receptor binding and/or dimerisation.
 - 8. An isolated GDF-9B nucleic acid molecule as claimed in claim 7, wherein said mutation results in an amino acid substitution in the polypeptide encoded by said nucleic acid sequence.
- An isolated GDF-9B nucleic acid molecule as claimed in claim 8, wherein said
 amino acid substitution is present in a receptor binding domain and disrupts
 receptor binding.
 - 10. An isolated GDF-9B nucleic acid molecule as claimed in claim 8, wherein said amino acid substitution is present in a dimerisation domain and disrupts dimerisation.
- 15 11. A method of identifying a mammal which carries a mutated nucleic acid molecule encoding GDF-9B, said method comprising the steps of:
 - i) obtaining a tissue or blood sample from the mammal;
 - ii) isolating DNA from the sample; and optionally
 - iii) isolating GDF-9B DNA from the DNA obtained at step i) or ii);
- iv) probing said DNA with a probe complementary to either strand of the mutated GDF-9B DNA of SEQ ID NOs 11 or 17;
 - v) amplifying the amount of mutated GDF-9B DNA;

- vi) determining whether the GDF-9B sequence DNA obtained in step v) carries a mutation associated with sterility or increased ovulation.
- 12. A method of identifying a mammal which carries a mutated nucleic acid molecule encoding GDF-9, said method comprising the steps of:
- 5 i) obtaining a tissue or blood sample from the mammal;
 - ii) isolating DNA from the sample; and optionally
 - iii) isolating GDF-9 DNA from the DNA obtained at step i) or ii);
 - iv) probing said DNA with a probe complementary to either strand of the mutated GDF-9 DNA of SEQ ID NO 5;
- v) amplifying the amount of mutated GDF-9 DNA;
 - vi) determining whether the GDF-9 sequence DNA obtained in step v) carries a mutation associated with sterility or increased ovulation.
- 13. A use of a nucleic acid molecule which is complementary to either strand of the mutated DNA of SEQ ID NOs. 11 or 17 as a marker to identify a mammal carrying a mutated nucleic acid molecule encoding GDF-9B.
 - 14. A use of a marker as defined in claim 13 in a method for marker assisted selection of a mammal which possesses a genotype which is associated with either enhanced ovulation or sterility.
- 15. A use of a nucleic acid molecule which is complementary to either strand of the mutated DNA of SEQ ID NO 5 as a marker to identify a mammal carrying a mutated nucleic acid molecule encoding GDF-9.

- **72**
- 16. A use of a marker as defined in claim 15, in a method for marker assisted selection of a mammal which possesses a genotype which is associated with either enhanced ovulation or sterility
- 17. A probe capable of specifically hybridising to either strand of the mutated GDF 9B DNA of SEQ ID NOs 11 or 17 under stringent hybridisation conditions.
 - 18. A probe capable of hybridising to either strand of the mutated GDF-9 DNA of SEQ ID NO 5 under stringent hybridisation conditions.
 - 19. A construct comprising a nucleic acid molecule as claimed in claim 1 or 2.
 - 20. A vector comprising a nucleic acid molecule as claimed in claim 1 or 2.
- 10 21. A host cell which comprises a construct or vector as claimed in claim 19 or 20 which has been introduced therein.
 - 22. A cell line comprising a host cell as claimed in claim 21.
 - 23. A method of altering GDF-9 and/or GDF-9B bioactivity in a female mammal so as to modulate ovulation comprising the steps of either:
- (a) inducing a partial immunisation response to endogenous GDF-9 and/or GDF-9B to partially reduce bioactivity thereof and enhance ovulation; or
 - (b) inducing a full immunisation response to endogenous GDF-9 and/or GDF-9B to substantially reduce bioactivity thereof and induce sterility.
- 24. A method as claimed in claim 23, wherein said immunisation response is induced
 20 by administration of an antigenic composition comprising:
 - i) a GDF-9 polypeptide or a functional fragment or variant of GDF9; and/or

WO 03/102199

ii) a GDF-9B polypeptide or a functional fragment or variant of GDF-9B; together with a pharmaceutically or veterinarily acceptable carrier and/or

73

PCT/NZ03/00109

to a mammal in need thereof.

diluent;

- 5 25. A method as claimed in claim 24, wherein said antigenic composition comprises a mild adjuvant to induce a partial immunisation response and induce enhanced ovulation.
 - 26. A method as claimed in claim 24, wherein said antigenic composition comprises a strong adjuvant to induce a full immunization response and induce sterility.
- 10 27. A method as claimed in any one of claims 23 to 26, wherein said partial immunization response is induced by a short term immunization regime.
 - 28. A method as claimed in any one of claims 23 to 26, wherein said full immunization response is induced by a long term immunization regime.
- 29. A method as claimed in claim 24, wherein said immunization response is induced passively by administration of antibodies raised against said antigenic composition.
 - 30. A method as claimed in claim 29, wherein said antibodies are administered according to a short term regime to induce a partial immunization response and induce enhanced ovulation.
- 20 31. A method as claimed in claim 29, wherein said antibodies are administered according to a long term regime to induce a full immunization response and induce sterility.

- 32. A method as claimed in any one of claims 23, 24, 26, 28, 29, and 31, wherein said full immunization response is temporary and/or reversible and wherein said sterility induced comprises contraception.
- 33. A method as claimed in any one of claims 23, 24, 26, 28, 29, and 31, wherein said
 5 full immunization response and said sterility induced is permanent.
 - 34. A method for breeding a mammal having increased ovulation comprising the steps of:
 - a) identifying the nucleotide sequences of GDF-9 or GDF-9B carried by the female mammal it is proposed to breed from;
- b) identifying the nucleotide sequences of GDF-9 or GDF-9B carried by the male mammal it is proposed to breed from;
 - c) selecting the female and male animals that will result in progeny having the following characteristics:
 - i) a single copy of a mutated GDF-9 nucleotide sequence comprising:
- 15 A) SEQ ID NO 5; or
 - B) a functional variant or fragment of the molecule in A); or
 - C) a sequence complementary to the molecule in A) or B); and/or
 - ii) a single copy of mutated GDF-9B nucleotide sequence comprising:
 - A) SEQ ID NOs 11 or 17; or
- B) a sequence complementary to the molecule(s) in A).

5

10

- 35. A method as claimed in claim 34, wherein said mammal is selected to have a single mutated copy of GDF-9 and GDF-9B.
- 36. A method for selecting a female mammal for breeding which possesses a genotype indicative of an increased rate of ovulation, said genotype comprising a single mutated copy of:
 - 1) a mutated GDF-9 nucleotide sequence comprising:
 - a) SEQ ID NO 5; or
 - b) a functional variant of the molecule of a); or
 - c) a sequence complementary to the molecules in a) or b); and/or
 - 2) a mutated GDF-9B nucleotide sequence comprising:
 - a) SEQ ID NOs 11 or 17; or
 - b) a sequence complementary to the molecules in a)
- said method comprising identifying said mammal according to the method of claim 11 and/or 12 and selecting said mammal.
 - 37. A method as claimed in claim 36 wherein the mammal selected has both a single mutated copy of GDF-9 and GDF-9B.
- 38. A method of modifying the function of the corpus luteum by administering supplementary GDF-9 or GDF-9B, or analogues thereof, or GDF-9 or GDF9-B antagonists to female mammals.

76

- 39. A transgenic non-human animal wherein one copy of the endogenous GDF-9 and/or GDF-9B gene has been knocked out.
- 40. A transgenic non-human animal as claimed in claim 39, comprising a transgenic ovine having a genome lacking one copy of a gene encoding a protein having biological activity of GDF-9 and/or GDF-9B.
- 41. An isolated mutated GDF-9 polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 3, or 6 or a functional fragment or variant thereof.
- 42. An isolated mutated GDF-9B polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 10, 12, 14, 16, or 18.
 - 43. A composition comprising an isolated nucleic acid as claimed in any one of claims 1 to 10, or an isolated polypeptide as claimed in claim 41 or 42 and a pharmaceutically acceptable carrier.

5

Figure 1a

(135)

1	MALPNKFFLW	FCCFAWLCFP	ISLDSLPSRG	EAQIVARTAL	ESEAETWSLL
				R	87H [E1] ▽
<u>51</u>	NHLGGRHRPG	LLSPLLEVLY	DGHGEPPRLQ	PDDRALRYMK	RLYKAYATKE
<u>101</u>	GTPKSNRRHL	YNTVRLFTPC	AQHKQAPGDL	AAGTFPSVDL	LFNLDRVTVV
<u>151</u>	EHLFKSVLLY	TFNNSISFPF	PVKCICNLVI	KEPEFSSKTL	PRAPYSETYN
				E	241K [324]
<u>201</u>	SQFEFRKKYK	WMEIDVTAPL	EPLVASHKRN	IHMSVNFTCA	EDQLQHPSAR
<u>251</u>	DSLFNMTLLV	APSLLLYLND	TSAQAFHRWH	SLHPKRKPSQ	GPDQKRGLSA
		(1)	V33 <u>2I</u> [597]	
<u>301</u>	YPVGEEAAEG	VRSS	ESASSELKKP	LVPASVNLSE	YFKQFLFPQN
		V	7371M [714]		S395F [787]
<u>351</u>	ECELHDFRLS	FSQLKWDNWI	VAPHKYNPRY	CKGDCPRAVG	
401	VQNIIHEKLD	SSVPRPSCVP	AKYSPLSVLA	IEPDGSIAYK	EYEDMIATKC

Figure 1b

3/13

Figure 2a

	∇				
1	MVLLSILRIL	LWGLVLFMEH	RVQMTQVGQP	SIAHLPEAPT	LPLIQELLEE
<u>51</u>	APGKQQRKPR	VLGHPLRYML	ELYQRSADAS	GHPRENRTIG	ATMVRLVRPL
<u>101</u>	ASVARPLRGS	WHIQTLDFPL	RPNRVAYQLV	RATVVYRHQL	HLTHSHLSCH
<u>151</u>	VEPWVQKSPT	NHFPSSGRGS	SKPSLLPKTW	TEMDIMEHVG	QKLWNHKGRR
				Q2397	Ter [S1]
<u> 201</u>	VLRLRFVCQQ	PRGSEVLEFW (1)	WHGTSSLDTV		
<u>251</u>	GLKEFTEKDP	•	GSIASEVPGP	SREHDGPESN	QCSLHPFQVS
<u>301</u>	FQQLGWDHWI	IAPHLYTPNY	CKGVCPRVLH	YGLNSPNHAI	IQNLVSELVD
		S367I [S2]		(125)
351	QNVPQPSCVP			EYEGMIAOSC	(125) TCR

4/13

Figure 2b

5/13

Figure 3a

Ani	mal	R 8 3 0	9 3 0 4 5 8	9 3 0 4 5 9	9 7 0 4	9 3 0 8 1	9 3 0 .8 1 2	8 7 8 3	9 3 0 8 1 0	9 4 8 3 0 2	7 8 1 0
Steri	otype le (S) le (F)	n/a	S	S	F	S	S	F	F	F	F
G E	S1	+/Y	S1/+	S1/+	S1/+	+/+	+/+	+/+	+/+	+/+	+/+
N O T Y	. S2	S2/Y	S2/+	S2/+	+/+	S2/+	S2/+	+/+	S2/+	S2/+	+/+
PE	787	T/+	T/+	+/+	+/+	T/T	T/T	T/+	+/+	+/+	+/+

Figure 3b

Ani	imal	9 6 2 1 0	9 9 7 6 3 4	9 9 7 6 3 5	9 6 2 1 5	9 9 7 5 5 2	9 9 7 5 5 3	9 7 6 2 3 4	9 3 0 1 4 2	9 4 8 0 9	8 8 7 4
Steri	otype le (S) le (F)	n/a	S	S	F	F	S	F	n/a	S	F
G B	S1	S1/Y	S1/S1	S1/S1	S1/+	\$1/+	S1/S1	S1/+	S1/Y	S1/+	+/+
N O T Y	S2	+/Y	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+	+/+
P E	787	T/+	T/T	T/T	T/+	T/+	T/+	+/+	T/T	T/T	T/+

Figure 4

Sheep GDF9		*** *** ***		
	Asn Lys		tgg ttt tgc tgc Trp Phe Cys Cys	_
	Pro Ile	-	tct ctg cct tct Ser Leu Pro Ser	
	Val Ala		ttg gaa tct gag Leu Glu Ser Glu)	
	Leu Asn		ggg aga cac aga Gly Arg His Arg	
	Leu Leu		tat gat ggg cac Tyr Asp Gly His (E1)	
	Gln Pro		gct ttg cgc tac Ala Leu <u>Arg</u> Tyr	
	Ala Tyr	-	gag ggg acc cct Glu Gly Thr Pro	
	Leu Tyr	•	cgg ctc ttc acc Arg Leu Phe Thr Intron posi	Pro Cys
-	Gln Ala		ctg gcg gca g[g Leu Ala Ala G]I	
	Leu Leu	-		
	Lys Ser		tat act ttc aac Tyr Thr Phe Asn	
	Phe Pro	_	ata tgc aac ctg Ile Cys Asn Leu ;	
	Phe Ser	_	ctc cct aga gct Leu Pro Arg Ala	
	Asn Ser	_	ttt aga aag aaa Phe Arg Lys Lys	
	Asp Val		ctt gag cct ctg Leu Glu Pro Leu	

8/13

Figure 4 continued

cac aag agg His Lys Arg -90	Asn Ile	cac ate	g tct Ser -85	gta Val	aat Asn	ttt Phe	aca Thr	tgt Cys -80	gcg Ala	gaa Glu	gac Asp	726
cag ctg cag Gln Leu Gln -75	cat cct	tca gc	a Arg	gac Asp	agc Ser	ctg Leu	ttt Phe -65	aac Asn	atg Met	act Thr	ctt Leu	774
ctc gta gcg Leu Val Ala -60	ccc tca Pro Sei	ctg ct Leu Le -55	t ttg 1 Leu	tat Tyr	ctg Leu	aac Asn -50	gac Asp	aca Thr	agt Ser	gct Ala	cag Gln -45	822
gct ttt cac Ala Phe His	agg tgg Arg Trp -40	His Se	c ctc r Leu	cac His	cct Pro -35	aaa Lys	agg Arg	aag Lys	cct Pro	tca Ser -30	cag Gln	870
ggt cct gad Gly Pro Asp	cag aag Gln Lys -25	g aga gg s Arg Gl	g cta y Leu	tct Ser -20	gcc Ala	tac Tyr	ccc Pro	gtg Val	gga Gly -15	gaa Glu	gaa Glu	918
gct gct gag Ala Ala Glu -10	Gly Val	a aga tc L Arg Se	g tcc r Ser -5	Arg	cac His	Arg	aga Arg -1	Asp	cag Gln	gag Glu	agt Ser	966
gcc agc tct Ala Ser Ser 5	gaa tt	g aag aa ı Lys Ly 10	g cct s Pro	ctg	gtt	cca	gct Ala	tca Ser	gtc Val	aat Asn	ctg Leu 20	1014
agt gaa tad Ser Glu Tyr	ttc aac Phe Ly 25	a cag tt s Gln Ph	t ctt e Leu	ttt Phe	ccc Pro 30	cag Gln	aat Asn	gaa Glu	tgt Cys	gag Glu 35	ctc Leu	1062
cat gac ttt	aga ct Arg Le 40	t agc tt u Ser Ph	t agt e Ser	cag Gln 45	ctg Leu	aag Lys	tgg Trp	gac Asp	aac Asn 50	tgg Trp	att Ile	1110
[714] gtg gcc cca Val Ala Pro 55	a cac aa o His Ly	a tac aa s Tyr As	c cct n Pro 60	cga Arg	Tyr	tgt Cys	aaa Lys	ggg Gly 65	gac Asp	tgt Cys	ccc Pro	1158
agg gcg gto Arg Ala Val	e gga ca L Gly Hi	t cgg ta s Arg Ty 75	t ggc r Gly	tat	ccg	gtt Val	cac His 80	acc Thr	atg Met	gtg Val	cag Gln	1206
aac atc atc Asn Ile Ile 85	cat ga His Gl	g aaa ct u Lys Le 90	t gac u Asp	tcc Ser	tca Ser	gtg Val 95	cca Pro	aga Arg	cca Pro	tcc Ser	tgt Cys 100	1254
gta cct gce Val Pro Ala	aag ta Lys Ty 10	r Ser Pi	t ttg o Leu	agt Ser	gtt Val 110	ttg Leu	gcc Ala	atc Ile	gag Glu	cct Pro 115	Asp	1302
ggc tca ato Gly Ser Ilo	c gct ta e Ala Ty 120	t aaa ga r Lys Gl	a tat u Tyr	gaa Glu 125	Asp	atg Met	ata Ile	gcc Ala	act Thr 130	Lys	tgt Cys	1350
acc tgt cg Thr Cys Are	g STOP	gacte ct	gtcaa	gta	aaac	catg	ag t	gtcc	tggc	C		1399
agtgtaaatg	ccgcgcc				•							1416

9/13

Figure 5

2166	p BM	IP15	full	_											
	• •	• •	• •		• •	.atg .Met	gtc Val	ctc Leu	ctg Leu -265	agc Ser	atc Ile	ctt Leu	aga Arg	atc Ile -260	27
[Lev	_			-b		-a++		2 t m	~~~	ant	200	ata	022	ata	72
									gaa Glu -250						12
aca Thr	cag Gln	gta Val	gjy ggg	cag Gln -240	ccc	tct Ser	att Ile	gcc Ala	cac His -235	ctg Leu	cct Pro	gag Glu	gcc Ala	cct Pro -230	11
									gaa Glu -220						16
cag Gln	cag Gln	agg Arg	aag Lys	ccg Pro -210	cgg Arg	gtc Val	tta Leu	ggg	cat His -205	ccc Pro	tta Leu	cgg Arg	tat Tyr	atg Met -200	20
									gca Ala -190						25
gaa Glu	aac Asn	cgc Arg	acc Thr	att Ile -180	GJÅ âāā	gcc Ala	acc Thr	atg Met	gtg Val -175	Arg	ctg Leu	Val	Arg	ccg Pro -170	29
_	_	_	_	gca Ala -165	-				g		_			gc Gly -160	32
				-103											
				cag					cct Pro -150						37
Ser gta	Trp	His	Ile	cag Gln -155 cta	Thr	Leu aga	Asp	Phe	Pro	Leu gtt	Arg	Pro	Asn	Arg -145 cag	372 41
Ser gta Val	Trp gca Ala cac	His tac Tyr	caa Gln	cag Gln -155 cta Leu -140	Thr gtc Val	aga Arg	gcc Ala	Phe act Thr	Pro -150 gtg Val	Leu gtt Val	Arg tac Tyr	Pro cgc Arg	Asn cat His	Arg -145 cag Gln -130	
gta Val ctt Leu	Trp gca Ala cac His	tac Tyr cta Leu	caa Gln act Thr	cag Gln -155 cta Leu -140 cat His -125	Thr gtc Val tcc Ser acc	aga Arg cac His	gcc Ala ctc Leu	Phe act Thr tcc Ser	Pro -150 gtg Val -135 tgc Cys	gtt Val cat His	tac Tyr gtg Val	cgc Arg gag Glu	Cat His CCC Pro	Arg -145 cag Gln -130 tgg Trp -115	41.
gta Val ctt Leu gtc Val	Trp gca Ala cac His cag Gln	His tac Tyr cta Leu aaa Lys	caa Gln act Thr agc Ser	cag Gln -155 cta Leu -140 cat His -125 cca Pro -110	Thr gtc Val tcc Ser acc Thr	aga Arg cac His aat Asn	gcc Ala ctc Leu cac His	Phe act Thr tcc Ser ttt Phe aaa	Pro -150 gtg Val -135 tgc Cys -120 cct Pro -105	gtt Val cat His tct Ser	tac Tyr gtg Val tca Ser	cgc Arg gag Glu gga Gly	Asn cat His ccc Pro aga Arg	Arg -145 cag Gln -130 tgg Trp -115 ggc Gly	41.

Figure 5 continued

														ctt Leu	651
_														tta Leu	699
				act	_					acc Thr			ctc	[422] cc[Pro -20	747
										tct Ser					795
	 _	Gln	_		_		_	_	-	gtt Val					843
										tcc Ser 25					891
										tgg Trp					939
										tgt Cys					987
								-		atc Ile	_			_	1035
			Asp	_		_		_		tcc Ser	_	_			1083
			att	agc						gca Ala 105					1131
										tcc Ser					1179

tga cggcaaaggtgca STOP

11/13

Figure 6

---SEKRHPLYVDFS-DVGWND BMP2 Human STGSKQRSQNRSKTPKNQEALRMANVAENSSSDQRQA@KKHELYVSFR-DLGWQD BMP7/OP1 Human rdoesasselkkplvpasvnlseyfkoflfp----onegelhdfrlsfs-olkwdn GDF9 SHEEP GQETVSSELKKPLGPASFNLSEYFRQFLLP----QNESELHDFRLSFS-QLKWDN GDF9 Human GQKAIRSEAKGPLLTASFNLSEYFKQFLFP----QNE@ELHDFRLSFS-QLKWDN GDF9 Mouse oagsiasevpgpsrehdgpe------snogslhpfqvsfq-olgwdh GDF9B SHEEP Qacsiesdascpsqehdgsv------nnq**e**slhpykvsfh-qlgwdh GDF9B Mouse QADGISAEVTASSSKHSGPE------NNQESLHPFQISFR-QLGWDH GDF9B Human ALDAAYCFRNVQDN-------CLRPLYIDFKRDLGWK-TGFB2 Human ------CVRPLYIDFRQDLGWK-LDTNYCFRNLEEN-----TGFB3 Human TGFB1 Human 10 20 30 40 50 WIVAPPGYHAFY HGE PFPLADHLNSTNHAIVQTLVNSVN-SKIPKA VPTELSAISM BMP2 Human WIIAPEGYAAYYEEE AFPLNSYMNATNHAIVQTLVHFINPETVPKP APTQLNAISV BMP7/OP1 Human WIVAPHKYNPRYEKGDEPRAVGHRYGSPVHTMVQNIIHEKLDSSVPRPSEVPAKYSPLSV GDF9 SHEEP WIVAPHRYNPRY KGDEPRAVGHRYGSPVHTMVQNIIYEKLDSSVPRPS VPAKYSPLSV GDF9 Human WIVAPHRYNPRY KGD PRAVRHRYGSPVHTMVQNIIYEKLDPSVPRPS VPGKYSPLSV GDF9 Mouse WIIAPHLYTPNYEKGVEPRVLHYGLNSPNHAIIQNLVSELVDQNVPQPSEVPYKYVPISI GDF9B SHEEP WIIAPRLYTPNY KGISTRVLPYGLNSPNHAIIQSLVNELVNHSVPQPS VPYNFLPMSI GDF9B Mouse WIIAPPFYTPNYEKGTELRVLRDGLNSPNHAIIQNLINQLVDQSVPRPSEVPYKYVPISV GDF9B Human WIHEPKGYNANF AGA PYLWS---SDTQHSRVLSLYNTINPEASASP VSQDLEPLTI WVHEPKGYYANF SGP PYLRS---ADTTHSTVLGLYNTLNPEASASP VPQDLEPLTI TGFB2 Human TGFB3 Human WIHEPKGYHANFELGP PYIWS---LDTQYSKVLALYNQHNPGASAAP VPQALEPLPI TGFB1 Human * 110 60 80 90 100 BMP2 Human LYLDENEKVVLKNYQDMVVEGEGER LYFDDSSNVILKKYRNMVVRA BMP7/OP1 Human GDF9 SHEEP LAIEPDGSIAYKEYEDMIATKGT GDF9 Human LTIEPDGSIAYKEYEDMIATK LTIEPDGSIAYKEYEDMIATR T GDF9 Mouse LLIEANGSILYKEYEGMIAQS GDF9B SHEEP LLIETNGSILYKEYEGMIAQSET R GDF9B Mouse LMIEANGSILYKEYEGMIAES T GDF9B Human LYYIGK-TPKIEQLSNMIVKSKKS TGFB2 Human LYYVGR-TPKVEQLSNMVVKSEKES TGFB3 Human VYYVGR-KPKVEQLSNMIVRS K TGFB1 Human 130 120

12/13

Figure 7

13/13

Figure 8

WO 03/102199

120

1

SEQUENCE LISTING

```
<110> Galloway, Susan May
 5
          Davis, George Henry
          Gregan, Scott Michael
10
          Hanrahan, James Patrick
           Juengel, Jennifer Lee
          McNatty, Kenneth Pattrick
15
           Mulsant, Philippe
           Powell, Richard Patrick
20
     <120> New sequences for altering mammalian ovarian function and
     ovulation rate
     <170> PatentIn version 3.0
25
     <210> 1: GDF-9 [787] Full
     <211> 1879
     <212> DNA
     <213> Ovis aries
30
     <221> 5'UTR
     <222> (1)..(121)
     <221> misc feature
     <222> (122)..(124)
     <223> atg start codon.
35
     <221> CDS
     <222> (122)..(518)
     <221> CDS
     <221> Intron
     <222> (519)..(838)
     <223> n at 709 represents remainder of approx 900 bp unsequenced of
40
     the approx 1.1 kb intron
     <221> mat peptide
     <222> (1396)..()
     <221> misc feature
45
     <222> (709)..()
     <223> n represents approximately 900 bp of unsequenced intron.
     <221> misc feature
     \langle 222 \rangle (180\overline{1})...(1803)
     <223> taa stop codon.
50
     <221> 3'UTR
     <222> (1804)..(1879)
     <221> mutation
     <222> (1624)..(1626)
     <223> c to t at 1625 in [787] sheep changing tct serine codon to ttt
55
     phenylalanine
     <400> 1
     gaattgaacc tagcccaccc acacacctaa agtttattta agagaccaac cgaggctctt
60
     cctggttttt aggaagaaga ctggtatggg gaaatgtgtt ccttgctaat tcttccaagc
```

c atg gcg ctt ccc aac aaa ttc ttc ctt tgg ttt tgc tgc ttt gcc 166 Met Ala Leu Pro Asn Lys Phe Phe Leu Trp Phe Cys Cys Phe Ala -305 -3155 tgg ctc tgt ttt cct att agc ctt gat tct ctg cct tct agg gga Trp Leu Cys Phe Pro Ile Ser Leu Asp Ser Leu Pro Ser Arg Gly -290 -295 -30010 gaa gct cag att gta gct agg act gcg ttg gaa tct gag gct gag 256 Glu Ala Gln Ile Val Ala Arg Thr Ala Leu Glu Ser Glu Ala Glu -280-285 15 act tgg tcc ttg ctg aac cat tta ggt ggg aga cac aga cct ggt 301 Thr Trp Ser Leu Leu Asn His Leu Gly Gly Arg His Arg Pro Gly -265 -260 -27020 ctc ctt tcc cct ctc tta gag gtt ctg tat gat ggg cac ggg gaa 346 Leu Leu Ser Pro Leu Leu Glu Val Leu Tyr Asp Gly His Gly Glu -245-255-25025 ccc ccc agg ctg cag cca gat gac aga gct ttg cgc tac atg aag 391 Pro Pro Arg Leu Gln Pro Asp Asp Arg Ala Leu Arg Tyr Met Lys -230-240-235 30 agg ctc tat aag gca tac gct acc aag gag ggg acc cct aaa tcc Arg Leu Tyr Lys Ala Tyr Ala Thr Lys Glu Gly Thr Pro Lys Ser -215 -220 -225 35 aac aga cgc cac ctc tac aac act gtt cgg ctc ttc acc ccc tgt 481 Asn Arg Arg His Leu Tyr Asn Thr Val Arg Leu Phe Thr Pro Cys **-205** -200 -21040 gct cag cac aag cag gct cct ggg gac ctg gcg gca g gtgtgtagga 528 Ala Gln His Lys Gln Ala Pro Gly Asp Leu Ala Ala 45 gcagattggt taatgggtgg agggaagaag aaagaccttt ttgcatttca gttacataaa ggagttggcc ctgctccttg acttgcattt tactttgcat ggtactcaat atccaaacaa 50 648 acctqqtqct tgatcttact tactgtttat tcctaatggc ctcatgggtt gatgtaggct 708 natcccaccc tgacgtttaa ggcttgagaa tgtggggaga aaagggacag aagcacattc 55 768 tgaggtactg attccttgat ttgacttcct gttacatatg gcattactgt tggattgttt 60 ttcttctcag ga acc ttt cca tca gtg gat ctg ctg ttt aac ctg gat 876 Gly Thr Phe Pro Ser Val Asp Leu Leu Phe Asn Leu Asp 3

٠.

-175 -180-185cgt gtt act gtt gtg gaa cat tta ttc aag tca gtc ttg ctg tat 921 Arg Val Thr Val Val Glu His Leu Phe Lys Ser Val Leu Leu Tyr 5 -160-165 -170act ttc aac aac tcc att tct ttt ccc ttt cct gtt aaa tgt ata 966 Thr Phe Asn Asn Ser Ile Ser Phe Pro Phe Pro Val Lys Cys Ile 10 -145-150-155 tgc aac ctg gtg ata aaa gag cca gag ttt tct agc aag act ctc 1011 Cys Asn Leu Val Ile Lys Glu Pro Glu Phe Ser Ser Lys Thr Leu 15 -130-135 -140cct aga gct cca tac tca ttt acc tat aac tca cag ttt gaa ttt 1056 Pro Arg Ala Pro Tyr Ser Phe Thr Tyr Asn Ser Gln Phe Glu Phe 20 -120-125aga aag aaa tac aaa tgg atg gag att gat gtg acg gct cct ctt 1101 Arg Lys Lys Tyr Lys Trp Met Glu Ile Asp Val Thr Ala Pro Leu 25 -100 -105-110 gag cct ctg gtg gcc tcc cac aag agg aat att cac atg tct gta aat 1149 Glu Pro Leu Val Ala Ser His Lys Arg Asn Ile His Met Ser Val Asn 30 -85 -90 -95 ttt aca tgt gcg gaa gac cag ctg cag cat cct tca gcg cgg gac agc 1197 Phe Thr Cys Ala Glu Asp Gln Leu Gln His Pro Ser Ala Arg Asp Ser 35 -75 -80 ctg ttt aac atg act ctt ctc gta gcg ccc tca ctg ctt ttg tat ctg Leu Phe Asn Met Thr Leu Leu Val Ala Pro Ser Leu Leu Tyr Leu 40 -55 -60 -65 aac gac aca agt gct cag gct ttt cac agg tgg cat tcc ctc cac cct 1293 Asn Asp Thr Ser Ala Gln Ala Phe His Arg Trp His Ser Leu His Pro 45 -35 -45 -40-50aaa agg aag cct tca cag ggt cct gac cag aag aga ggg cta tct gcc 1341 Lys Arg Lys Pro Ser Gln Gly Pro Asp Gln Lys Arg Gly Leu Ser Ala 50 -30 tac ccc gtg gga gaa gaa gct gct gag ggt gta aga tcg tcc cgt cac 1389 Tyr Pro Val Gly Glu Glu Ala Ala Glu Gly Val Arg Ser Ser Arg His 55 -10 -15 cgc aga gac cag gag agt gcc agc tct gaa ttg aag aag cct ctg gtt 1437 Arg Arg Asp Gln Glu Ser Ala Ser Ser Glu Leu Lys Lys Pro Leu Val 60 -1 1

```
cca gct tca gtc aat ctg agt gaa tac ttc aaa cag ttt ctt ttt ccc
     1485
     Pro Ala Ser Val Asn Leu Ser Glu Tyr Phe Lys Gln Phe Leu Phe Pro
                                                                   30
                          20
5
     caq aat gaa tgt gag ctc cat gac ttt aga ctt agc ttt agt cag ctg
     Gln Asn Glu Cys Glu Leu His Asp Phe Arg Leu Ser Phe Ser Gln Leu
                                                               45
                      35
                                          40
10
     aag tgg gac aac tgg att gtg gcc cca cac aaa tac aac cct cga tac
     1581
     Lys Trp Asp Asn Trp Ile Val Ala Pro His Lys Tyr Asn Pro Arg Tyr
15
     tgt aaa ggg gac tgt ccc agg gcg gtc gga cat cgg tat ggc ttt ccg
     1629
     Cys Lys Gly Asp Cys Pro Arg Ala Val Gly His Arg Tyr Gly Phe Pro
                                  70
                                                       75
             65
20
     gtt cac acc atg gtg cag aac atc atc cat gag aaa ctt gac tcc tca
     1677
     Val His Thr Met Val Gln Asn Ile Ile His Glu Lys Leu Asp Ser Ser
         80
                              85
25
     gtg cca aga cca tcc tgt gta cct gcc aag tat agc cct ttg agt gtt
     1725
     Val Pro Arg Pro Ser Cys Val Pro Ala Lys Tyr Ser Pro Leu Ser Val
                                              105
                                                                   110
     95
                          100
30
     ttg gcc atc gag cct gat ggc tca atc gct tat aaa gaa tat gaa gat
     1773
     Leu Ala Ile Glu Pro Asp Gly Ser Ile Ala Tyr Lys Glu Tyr Glu Asp
                                                               125
                      115
                                          120
35
     atg ata gcc act aag tgt acc tgt cgt taacagactc ctgtcaagta
     1820
     Met Ile Ala Thr Lys Cys Thr Cys Arg
                 130
40
     aaaccatgag tgtcctggcc agtgtaaatg ccgcgcccct gtctatgcct ttgggagga
     1879
45
     <210> 2: protein GDF-9[787] full
     <211> 453
     <212> PRT
     <213> Ovis aries
     <221> misc feature
50
     <222> (122)..(124)
     <223> atg start codon.
     <221> misc feature
     <222> (709)..()
     <223> n represents approximately 900 bp of unsequenced intron
55
     <221> misc feature
     \langle 222 \rangle (180\overline{1})...(1803)
     <223> taa stop codon.
```

5

<400> 2

Met Ala Leu Pro Asn Lys Phe Phe Leu Trp Phe Cys Cys Phe Ala -305 -310 -3155 Trp Leu Cys Phe Pro Ile Ser Leu Asp Ser Leu Pro Ser Arg Gly -290 -295 -300 10 Glu Ala Gln Ile Val Ala Arg Thr Ala Leu Glu Ser Glu Ala Glu -280 -275 -285Thr Trp Ser Leu Leu Asn His Leu Gly Gly Arg His Arg Pro Gly -260-270-265 Leu Leu Ser Pro Leu Leu Glu Val Leu Tyr Asp Gly His Gly Glu 20 -245-250 -255 Pro Pro Arg Leu Gln Pro Asp Asp Arg Ala Leu Arg Tyr Met Lys -230 -240-235 25 Arg Leu Tyr Lys Ala Tyr Ala Thr Lys Glu Gly Thr Pro Lys Ser -220 -215 -225 30 Asn Arg Arg His Leu Tyr Asn Thr Val Arg Leu Phe Thr Pro Cys -205 -200 -210Ala Gln His Lys Gln Ala Pro Gly Asp Leu Ala Ala Gly Thr Phe 35 -190 -185-195 Pro Ser Val Asp Leu Leu Phe Asn Leu Asp Arg Val Thr Val Val 40 -170-175 -180Glu His Leu Phe Lys Ser Val Leu Leu Tyr Thr Phe Asn Asn Ser -160-165 45 Ile Ser Phe Pro Phe Pro Val Lys Cys Ile Cys Asn Leu Val Ile -145-150 50 Lys Glu Pro Glu Phe Ser Ser Lys Thr Leu Pro Arg Ala Pro Tyr -125 -130 -135 55 Ser Phe Thr Tyr Asn Ser Gln Phe Glu Phe Arg Lys Lys Tyr Lys -110-115 -120Trp Met Glu Ile Asp Val Thr Ala Pro Leu Glu Pro Leu Val Ala Ser 60 -95 -100-105

6

	His	Lys	Arg -90	Asn	Ile	His	Met	Ser -85	Val	Asn	Phe	Thr	Cys -80	Ala	Glu	Asp
5	Gln	Leu -75	Gln	His	Pro	Ser	Ala -70	Arg	Asp	Ser	Leu	Phe -65	Asn	Met	Thr	Leu
10	Leu -60	Val	Ala	Pro	Ser	Leu -55	Leu	Leu	Tyr	Leu	Asn -50	Asp	Thr	Ser	Ala	Gln -45
15	Ala	Phe	His	Arg	Trp -40	His	Ser	Leu	His	Pro -35		Arg	Lys	Pro	Ser -30	Gln
	Gly	Pro	Asp	Gln -25		Arg	Gly	Leu	Ser -20	Ala	Tyr	Pro	Val	Gly -15	Glu	Glu
20	Ala	Ala	Glu -10	Gly	Val	Arg	Ser	Ser -5	Arg	His	Arg	Arg -1	Asp 1	Gln	Glu	Ser
25	Ala 5	Ser	Ser	Glu	Leu	Lys 10	Lys	Pro	Leu	Val	Pro 15	Ala	Ser	Val	Asn	Leu 20
30	Ser	Glu	Tyr	Phe	Lys 25	Gln	Phe	Leu	Phe	Pro 30	Gln	Asn	Glu	Cys	Glu 35	Leu
35	His	Asp	Phe	Arg 40	Leu	Ser	Phe	Ser	Gln 45	Leu	Lys	Trp	Asp	Asn 50	Trp	Ile
	Val	Ala	Pro 55	His	Lys	Tyr	Asn	Pro 60	Arg	Tyr	Cys	Lys	Gly 65	Asp	Cys	Pro
40	Arg	Ala 70	Val	Gly	His	Arg	Tyr 75	Gly	Phe	Pro	Val	His 80	Thr	Met	Val	Gln
45	Asn 85	Ile	Ile	His	Glu	Lys 90	Leu	Asp	Ser	Ser	Val 95	Pro	Arg	Pro	Ser	Cys 100
50	Val	Pro	Ala	Lys	Tyr 105		Pro	Leu	Ser	Val 110		Ala	Ile	Glu	Pro 115	Asp
55	Gly	Ser	Ile	Ala 120		Lys	Glu	Tyr	Glu 125	Asp	Met	Ile	Ala	Thr 130	Lys	Суз
	Thr	Суз	Arg 135													
60																

7

```
<210> 3: GDF-9 [787] coding
     <211> 1362
     <212> DNA
     <213> Ovis aries
    <221> misc_feature
     <222> (1)..(3)
     <223> atg start codon.
     <221> CDS
     <222> (1)..(1359)
10
    <221> mat peptide
     <222> (955)..()
     <221> mutation
     <222> (1183)..(1185)
     <223> c to t 1184 in [787] sheep changing serine tct codon to ttt
    phenylalanine
15
     <221> misc feature
     <222> (1360)..(1362)
     <223> taa stop codon.
20
    <400> 3
    atg gcg ctt ccc aac aaa ttc ttc ctt tgg ttt tgc tgc ttt gcc
     Met Ala Leu Pro Asn Lys Phe Phe Leu Trp Phe Cys Cys Phe Ala
                                                          -305
                                     -310
                -315
25
     tgg ctc tgt ttt cct att agc ctt gat tct ctg cct tct agg gga
     90
     Trp Leu Cys Phe Pro Ile Ser Leu Asp Ser Leu Pro Ser Arg Gly
                                     -295
                                                          -290
                -300
30
     gaa get cag att gta get agg act geg ttg gaa tet gag get gag
     Glu Ala Gln Ile Val Ala Arg Thr Ala Leu Glu Ser Glu Ala Glu
                                     -280
                                                          -275
                -285
35
     act tog tee ttg etg aac cat tta ggt ggg aga cae aga eet ggt
     180
     Thr Trp Ser Leu Leu Asn His Leu Gly Gly Arg His Arg Pro Gly
                                     -265
                                                          -260
                -270
40
     ctc ctt tcc cct ctc tta gag gtt ctg tat gat ggg cac ggg gaa
     225
     Leu Leu Ser Pro Leu Leu Glu Val Leu Tyr Asp Gly His Gly Glu
                                     -250
                -255
45
     ccc ccc agg ctg cag cca gat gac aga gct ttg cgc tac atg aag
     Pro Pro Arg Leu Gln Pro Asp Asp Arg Ala Leu Arg Tyr Met Lys
                                     -235
                                                          -230
                -240
50
     agg ctc tat aag gca tac gct acc aag gag ggg acc cct aaa tcc
     315
     Arg Leu Tyr Lys Ala Tyr Ala Thr Lys Glu Gly Thr Pro Lys Ser
                                     -220
                                                          -215
                 -225
55
     aac aga cgc cac ctc tac aac act gtt cgg ctc ttc acc ccc tgt
     360
     Asn Arg Arg His Leu Tyr Asn Thr Val Arg Leu Phe Thr Pro Cys
                                      -205
                                                          -200
                -210
60
     get cag cae aag cag get eet ggg gae etg geg gea gga ace ttt
     Ala Gln His Lys Gln Ala Pro Gly Asp Leu Ala Ala Gly Thr Phe
```

8

-190-185 -195 cca tca gtg gat ctg ctg ttt aac ctg gat cgt gtt act gtt gtg 450 Pro Ser Val Asp Leu Leu Phe Asn Leu Asp Arg Val Thr Val Val -180-175-170 qaa cat tta ttc aag tca gtc ttg ctg tat act ttc aac aac tcc 495 10 Glu His Leu Phe Lys Ser Val Leu Leu Tyr Thr Phe Asn Asn Ser -165 -160att tot ttt ccc ttt cct gtt aaa tgt ata tgc aac ctg gtg ata 540 15 Ile Ser Phe Pro Phe Pro Val Lys Cys Ile Cys Asn Leu Val Ile -140-150-145aaa qag cca qag ttt tct agc aag act ctc cct aga gct cca tac 585 20 Lys Glu Pro Glu Phe Ser Ser Lys Thr Leu Pro Arg Ala Pro Tyr -130 -135 tca ttt acc tat aac tca cag ttt gaa ttt aga aag aaa tac aaa 630 25 Ser Phe Thr Tyr Asn Ser Gln Phe Glu Phe Arg Lys Lys Tyr Lys -110 -120 -115tgg atg gag att gat gtg acg gct cct ctt gag cct ctg gtg gcc tcc 678 30 Trp Met Glu Ile Asp Val Thr Ala Pro Leu Glu Pro Leu Val Ala Ser -100-95 -105 cac aag agg aat att cac atg tct gta aat ttt aca tgt gcg gaa gac 726 35 His Lys Arg Asn Ile His Met Ser Val Asn Phe Thr Cys Ala Glu Asp -90 -85 caq ctq caq cat cct tca qcg cgg gac agc ctg ttt aac atg act ctt 40 Gln Leu Gln His Pro Ser Ala Arg Asp Ser Leu Phe Asn Met Thr Leu -75 -70 ctc gta gcg ccc tca ctg ctt ttg tat ctg aac gac aca agt gct cag 822 45 Leu Val Ala Pro Ser Leu Leu Leu Tyr Leu Asn Asp Thr Ser Ala Gln -50 -45 -60 -55 gct ttt cac agg tgg cat tcc ctc cac cct aaa agg aag cct tca cag 870 50 Ala Phe His Arg Trp His Ser Leu His Pro Lys Arg Lys Pro Ser Gln -35 ggt cct gac cag aag aga ggg cta tct gcc tac ccc gtg gga gaa gaa 918 55 Gly Pro Asp Gln Lys Arg Gly Leu Ser Ala Tyr Pro Val Gly Glu Glu -25 -20 -15 get get gag ggt gta aga teg tee egt eac ege aga gae eag gag agt 966 60 Ala Ala Glu Gly Val Arg Ser Ser Arg His Arg Arg Asp Gln Glu Ser -5 -10

9

gcc agc tct gaa ttg aag aag cct ctg gtt cca gct tca gtc aat ctg 1014 Ala Ser Ser Glu Leu Lys Lys Pro Leu Val Pro Ala Ser Val Asn Leu 20 5 agt gaa tac ttc aaa cag ttt ctt ttt ccc cag aat gaa tgt gag ctc 1062 Ser Glu Tyr Phe Lys Gln Phe Leu Phe Pro Gln Asn Glu Cys Glu Leu 35 30 25 10 cat gac ttt aga ctt agc ttt agt cag ctg aag tgg gac aac tgg att 1110 His Asp Phe Arg Leu Ser Phe Ser Gln Leu Lys Trp Asp Asn Trp Ile 15 gtg gcc cca cac aaa tac aac cct cga tac tgt aaa ggg gac tgt ccc 1158 Val Ala Pro His Lys Tyr Asn Pro Arg Tyr Cys Lys Gly Asp Cys Pro 65 55 20 agg gcg gtc gga cat cgg tat ggc ttt ccg gtt cac acc atg gtg cag 1206 Arg Ala Val Gly His Arg Tyr Gly Phe Pro Val His Thr Met Val Gln 70 25 aac atc atc cat gag aaa ctt gac tcc tca gtg cca aga cca tcc tgt 1254 Asn Ile Ile His Glu Lys Leu Asp Ser Ser Val Pro Arg Pro Ser Cys 100 30 gta cct gcc aag tat agc cct ttg agt gtt ttg gcc atc gag cct gat Val Pro Ala Lys Tyr Ser Pro Leu Ser Val Leu Ala Ile Glu Pro Asp 115 110 105 35 ggc tca atc gct tat aaa gaa tat gaa gat atg ata gcc act aag tgt 1350 Gly Ser Ile Ala Tyr Lys Glu Tyr Glu Asp Met Ile Ala Thr Lys Cys 130 125 120 40 acc tgt cgt taa 1362 Thr Cys Arg 45 <210> 4: Protein GDF-9 [787] coding <211> 453 <212> PRT 50 <213> Ovis aries misc feature <221> <222> (1)..(3) atg start codon. <223> <221> misc feature 55 (1360)..(1362)<222> <223> taa stop codon. <400> 4 Met Ala Leu Pro Asn Lys Phe Phe Leu Trp Phe Cys Cys Phe Ala 60

-310

-315

	Trp	Leu	Cys	Phe -300		Ile	Ser	Leu	Asp -295		Leu	Pro	Ser	Arg -290	Gly
5	Glu	Ala	Gln	Ile -285		Ala	Arg	Thr	Ala -280	Leu	Glu	Ser	Glu	Ala -275	Glu
10	Thr	Trp	Ser	Leu -270		Asn	His	Leu	Gly -265	_	Arg	His	Arg	Pro -260	Gly
15	Leu	Leu	Ser	Pro -255		Leu	Glu	Val	Leu -250	_	Asp	Gly	His	Gly -245	Glu
	Pro	Pro	Arg	Leu -240		Pro	Asp	Asp	Arg -235		Leu	Arg	Tyr	Met -230	Lys
20	Arg	Leu	Tyr	Lys -225		Tyr	Ala	Thr	Lys -220	Glu	Gly	Thr	Pro	Lys -215	Ser
25		_	_			_			Val -205	_					Cys
30	Ala	Gln	His	Lys -195	Gln	Ala	Pro	Gly	Asp -190	Leu	Ala	Ala	Gly	Thr -185	Phe
35	Pro	Ser	Val	Asp -180		Leu	Phe	Asn	Leu -175	Asp	Arg	Val	Thr	Val -170	Val
	Glu	His	Leu	Phe -165	_	Ser	Val	Leu	Leu -160	Tyr	Thr	Phe	Asn	Asn -155	Ser
40	Ile	Ser	Phe	Pro -150	Phe	Pro	Val	Lys	Cys -145	Ile	Cys	Asn	Leu	Val -140	Ile
45	Lys	Glu	Pro	Glu -135	Phe	Ser	Ser	Lys	Thr -130	Leu	Pro	Arg	Ala	Pro -125	Tyr
50	Ser	Phe	Thr	Tyr -120	Asn	Ser	Gln	Phe	Glu -115	Phe	Arg	Lys	Lys	Tyr -110	Lys
55	Trp	Met	Glu	Ile -105	Asp	Val	Thr	Ala	Pro -,100	Leu	Glu	Pro	Leu	Val 2 -95	Ala Ser
	His	Lys	Arg -90	Asn	Ile 1	His		Ser -85	Val A	sn Pl	he Tl		ys Al 30	la Glı	ı Asp
60	Gln	Leu -75	Gln	His	Pro		Ala /	Arg .	Asp So	er Le		ne As 65	sn Me	et Thi	r Leu

11

Leu Val Ala Pro Ser Leu Leu Leu Tyr Leu Asn Asp Thr Ser Ala Gln
-60 -55 -50 -45

5

Ala Phe His Arg Trp His Ser Leu His Pro Lys Arg Lys Pro Ser Gln
-40 -35 -30

10

Gly Pro Asp Gln Lys Arg Gly Leu Ser Ala Tyr Pro Val Gly Glu Glu -25

- 15 Ala Ala Glu Gly Val Arg Ser Ser Arg His Arg Arg Asp Gln Glu Ser
 -10 -5 -1 1
- Ala Ser Ser Glu Leu Lys Lys Pro Leu Val Pro Ala Ser Val Asn Leu 5 10 15 20
- Ser Glu Tyr Phe Lys Gln Phe Leu Phe Pro Gln Asn Glu Cys Glu Leu 25 30 35

His Asp Phe Arg Leu Ser Phe Ser Gln Leu Lys Trp Asp Asn Trp Ile 40 45 50

30

Val Ala Pro His Lys Tyr Asn Pro Arg Tyr Cys Lys Gly Asp Cys Pro 55 60 65

- 35 Arg Ala Val Gly His Arg Tyr Gly Phe Pro Val His Thr Met Val Gln 70 75 80
- Asn Ile Ile His Glu Lys Leu Asp Ser Ser Val Pro Arg Pro Ser Cys 90 95 100
- Val Pro Ala Lys Tyr Ser Pro Leu Ser Val Leu Ala Ile Glu Pro Asp 105 110 115

Gly Ser Ile Ala Tyr Lys Glu Tyr Glu Asp Met Ile Ala Thr Lys Cys 120 125 130

50

Thr Cys Arg 135

- 55 <210> 5: GDF-9 [787] mutation
 - <211> 168
 - <212> DNA
 - <213> Ovis aries
 - <221> CDS
- 60 <222> (1)..(168)
 - <221> mutation
 - <222> (82)..(84)

12

<223> c to t at 83 in [787] sheep changing tct serine codon to ttt phenylalanine

5 aac tgg att gtg gcc cca cac aaa tac aac cct cga tac tgt aaa ggg 48 Asn Trp Ile Val Ala Pro His Lys Tyr Asn Pro Arg Tyr Cys Lys Gly

- gac tgt ccc agg gcg gtc gga cat cgg tat ggc ttt ccg gtt cac acc 96
 Asp Cys Pro Arg Ala Val Gly His Arg Tyr Gly Phe Pro Val His Thr 20
- atg gtg cag aac atc atc cat gag aaa ctt gac tcc tca gtg cca aga 144
 Met Val Gln Asn Ile Ile His Glu Lys Leu Asp Ser Ser Val Pro Arg 35
- 20 cca tcc tgt gta cct gcc aag tat
 168
 Pro Ser Cys Val Pro Ala Lys Tyr
 50 55
- 25
 <210> 6: protein GDF-9 [787] mutation
 <211> 56
 <212> PRT
- <213> Ovis aries 30

<400> 6

- Asn Trp Ile Val Ala Pro His Lys Tyr Asn Pro Arg Tyr Cys Lys Gly
 1 5 10 15
 - Asp Cys Pro Arg Ala Val Gly His Arg Tyr Gly Phe Pro Val His Thr 20 25 30
- Met Val Gln Asn Ile Ile His Glu Lys Leu Asp Ser Ser Val Pro Arg
 35 40 45
- Pro Ser Cys Val Pro Ala Lys Tyr 50 55
- <210> 7: GDF-9B [S1] full
- **50** <211> 1665
 - <212> DNA
 - <213> Ovis aries
 - <221> 5'UTR
- <222> (1)..(252)
 55 <221> misc feature
 - <221> misc_feature
 <222> (253)..(255)
 - <223> atg start codon.
 - <221> CDS
- <222> (253)..(577)
- 60 <221> CDS
 - <222> (774)..(1165)
 - <221> Intron
 - <222> (578)..(773)

577

WO 03/102199 PCT/NZ03/00109

13

<223> n at 685 represents remainder of approx 5.2 kb intron. <221> misc feature $\langle 222 \rangle$ $(125\overline{3})...(1255)$ <223> position of first codon of mature peptide in wildtype sheep. <221> misc feature <222> (685)..() <223> n represents approx 5.2 kb of intron. <221> misc feature <222> (1628)..(1630) <223> tga stop codon in wildtype sheep. 10 <221> 3'UTR <222> (1631)..(1665) <221> mutation <222> (1166)..(1168) 15 <223> c to t at 1166 of [S1] sheep changes cag glutamine codon to tag STOP <400> 7 catgctgcct tgtcccacct gctgtttctg tttgtttgat gcaaagagga caatttagaa 20 60 gacctctttt tggttcagga gatcctacca gaggaagaaa cataggacct gcctgccagc 120 25 ctttcatttt tccttgccct atcctttgtg gtagtggagc ctggatgctg ttacccatgt 180 aaaaggaaag gtttaaagcg ttatcctttg ggcttttatc agaacatgtt gctgaacacc 30 aagcttttca ag atg gtc ctc ctg agc atc ctt aga atc ctt tgg gga 291 Met Val Leu Leu Ser Ile Leu Arg Ile Leu Leu Trp Gly 1 5 10 35 ctg gtg ctt ttt atg gaa cat agg gtc caa atg aca cag gta ggg cag 339 Leu Val Leu Phe Met Glu His Arg Val Gln Met Thr Gln Val Gly Gln 15 20 25 40 ccc tet att gee cae etg eet gag gee eet ace ttg eee etg att eag 387 Pro Ser Ile Ala His Leu Pro Glu Ala Pro Thr Leu Pro Leu Ile Gln 30 45 gag ctg cta gaa gaa gcc cct ggc aag cag cag agg aag ccg cgg gtc Glu Leu Leu Glu Glu Ala Pro Gly Lys Gln Gln Arg Lys Pro Arg Val 50 55 60 50 tta ggg cat ccc tta cgg tat atg ctg gag ctg tac cag cgt tca gct 483 Leu Gly His Pro Leu Arg Tyr Met Leu Glu Leu Tyr Gln Arg Ser Ala 70 55 gac gca agt gga cac cct agg gaa aac cgc acc att ggg gcc acc atg 531 Asp Ala Ser Gly His Pro Arg Glu Asn Arg Thr Ile Gly Ala Thr Met 60 gtg agg ctg gtg agg ccg ctg gct agt gta gca agg cct ctc aga g

Val	Arg 95	Leu	Val	Arg	Pro	Leu 100	Ala	Ser	Val	Ala	Arg 105	Pro	Leu	Arg

gtgagttatc atactatatt gttctggtgg gagggggga gaaaatgggg aagaaaagtg 5 637

tagaaaaaag tggatctgtc agttttctgt caggcttcac attgcctnca gtttgtactg 697

10 agcaggtctg ttagagagac taaggctagg atataagaag ctaacgcttt gctcttgttc 757

cctcttacta atgcag gc tcc tgg cac ata cag acc ctg gac ttt cct ctg 808

Gly Ser Trp His Ile Gln Thr Leu Asp Phe Pro Leu
110 115 120

aga cca aac cgg gta gca tac caa cta gtc aga gcc act gtg gtt tac 856

20 Arg Pro Asn Arg Val Ala Tyr Gln Leu Val Arg Ala Thr Val Val Tyr
125 130 135

cgc cat cag ctt cac cta act cat tcc cac ctc tcc tgc cat gtg gag 904

25 Arg His Gln Leu His Leu Thr His Ser His Leu Ser Cys His Val Glu
140 145 150

ccc tgg gtc cag aaa agc cca acc aat cac ttt cct tct tca gga aga 952

30 Pro Trp Val Gln Lys Ser Pro Thr Asn His Phe Pro Ser Ser Gly Arg
155 160 165

ggc tcc tca aag cct tcc ctg ttg ccc aaa act tgg aca gag atg gat 1000

35 Gly Ser Ser Lys Pro Ser Leu Leu Pro Lys Thr Trp Thr Glu Met Asp 170 175 180

atc atg gaa cat gtt ggg caa aag ctc tgg aat cac aag ggg cgc agg 1048

Ile Met Glu His Val Gly Gln Lys Leu Trp Asn His Lys-Gly Arg Arg 185 190 195 200

gtt cta cga ctc cgc ttc gtg tgt cag cag cca aga ggt agt gag gtt 1096

Val Leu Arg Leu Arg Phe Val Cys Gln Gln Pro Arg Gly Ser Glu Val 205 210 215

ctt gag ttc tgg tgg cat ggc act tca tca ttg gac act gtc ttc ttg 1144

Leu Glu Phe Trp Trp His Gly Thr Ser Ser Leu Asp Thr Val Phe Leu 220 225 230

tta ctg tat ttc aat gac act tagagtgttc agaagaccaa acctctccct 1195

55 Leu Leu Tyr Phe Asn Asp Thr 235

60

aaaggcctga aagagtttac agaaaaagac ccttctcttc tcttgaggag ggctcgtcaa 1255

gcaggcagta ttgcatcgga agttcctggc ccctccaggg agcatgatgg gcctgaaagt 1315

15

aaccagtgtt ccctccaccc ttttcaagtc agcttccagc agctgggctg ggatcactgg

atcattgctc cccatctcta taccccaaac tactgtaagg gagtatgtcc tcgggtacta 5 1435

cactatggtc tcaattctcc caatcatgcc atcatccaga accttgtcag tgagctggtg 1495

10 gatcagaatg tccctcagcc ttcctgtgtc ccttataagt atgttcccat tagcatcctt

ctgattgagg caaatgggag tatcttgtac aaggagtatg agggtatgat tgcccagtcc 1615

15

tgcacatgca ggtgacggca aaggtgcagc tagctcaggt ttcccaagaa 1665

- 20 <210> 8: protein GDF-9B [S1] full
 - <211> 239

1375

- <212> PRT
- <213> Ovis aries
- <221> misc feature
- **25** <222> (253)..(255)
 - <223> atg start codon.
 - <221> misc_feature
 - <222> (1253)..(1255)
 - <223> position of first codon of mature peptide in wildtype sheep.
- 30 <221> misc feature
 - <222> (685)..()
 - <223> n represents approx 5.2 kb of intron.
 - <221> misc_feature
 - $\langle 222 \rangle$ (1628)...(1630)
- 35 <223> tga stop codon in wildtype sheep.

<400> 8

- Met Val Leu Leu Ser Ile Leu Arg Ile Leu Leu Trp Gly Leu Val Leu 40 1 5 10 15
- Phe Met Glu His Arg Val Gln Met Thr Gln Val Gly Gln Pro Ser Ile 20 25 30

45

Ala His Leu Pro Glu Ala Pro Thr Leu Pro Leu Ile Gln Glu Leu Leu 35 40 45

50

- Glu Glu Ala Pro Gly Lys Gln Gln Arg Lys Pro Arg Val Leu Gly His
 50 55 60
- Pro Leu Arg Tyr Met Leu Glu Leu Tyr Gln Arg Ser Ala Asp Ala Ser 65 70 75 80
- Gly His Pro Arg Glu Asn Arg Thr Ile Gly Ala Thr Met Val Arg Leu 90 95

16

Val Arg Pro Leu Ala Ser Val Ala Arg Pro Leu Arg Gly Ser Trp His 105 110 100 Ile Gln Thr Leu Asp Phe Pro Leu Arg Pro Asn Arg Val Ala Tyr Gln 5 125 120 115 Leu Val Arg Ala Thr Val Val Tyr Arg His Gln Leu His Leu Thr His 10 140 135 130 Ser His Leu Ser Cys His Val Glu Pro Trp Val Gln Lys Ser Pro Thr 160 155 150 145 15 Asn His Phe Pro Ser Ser Gly Arg Gly Ser Ser Lys Pro Ser Leu Leu 175 170 165 20 Pro Lys Thr Trp Thr Glu Met Asp Ile Met Glu His Val Gly Gln Lys 190 185 180 Leu Trp Asn His Lys Gly Arg Arg Val Leu Arg Leu Arg Phe Val Cys 25 205 195 200

Gln Gln Pro Arg Gly Ser Glu Val Leu Glu Phe Trp Trp His Gly Thr 210 220

Ser Ser Leu Asp Thr Val Phe Leu Leu Leu Tyr Phe Asn Asp Thr
225 230 235

35

<210> 9: GDF-9B [S1] coding

<211> 1182

<212> DNA

40 <213> Ovis areis

<221> misc_feature

<222> (1)..(3)

<223> atg start codon

<221> mutation

45 <222> (718)..(720)

<223> c to t at 718 of [S1] sheep changes cag glutamine codon to tag STOP.

<221> CDS

<222> (1)..(717)

50 <221> misc feature

<222> (805)..(807)

<223> first codon of mature peptide in wildtype sheep.

<221> misc_feature

<222> (1180)..(1182)
55 <223> tga stop codon.

<400> 9

atg gtc ctc ctg agc atc ctt aga atc ctt ctt tgg gga ctg gtg ctt

Met Val Leu Leu Ser Ile Leu Arg Ile Leu Leu Trp Gly Leu Val Leu
1 1 5 10 15

WO 03/102199

ttt atg gaa cat agg gtc caa atg aca cag gta ggg cag ccc tct att Phe Met Glu His Arg Val Gln Met Thr Gln Val Gly Gln Pro Ser Ile gcc cac ctg cct gag gcc cct acc ttg ccc ctg att cag gag ctg cta Ala His Leu Pro Glu Ala Pro Thr Leu Pro Leu Ile Gln Glu Leu Leu gaa gaa gcc cct ggc aag cag cag agg aag ccg cgg gtc tta ggg cat Glu Glu Ala Pro Gly Lys Gln Gln Arg Lys Pro Arg Val Leu Gly His ccc tta cgg tat atg ctg gag ctg tac cag cgt tca gct gac gca agt Pro Leu Arg Tyr Met Leu Glu Leu Tyr Gln Arg Ser Ala Asp Ala Ser gga cac cct agg gaa aac cgc acc att ggg gcc acc atg gtg agg ctg Gly His Pro Arg Glu Asn Arg Thr Ile Gly Ala Thr Met Val Arg Leu gtg agg ccg ctg gct agt gta gca agg cct ctc aga ggc tcc tgg cac Val Arg Pro Leu Ala Ser Val Ala Arg Pro Leu Arg Gly Ser Trp His ata cag acc ctg gac ttt cct ctg aga cca aac cgg gta gca tac caa Ile Gln Thr Leu Asp Phe Pro Leu Arg Pro Asn Arg Val Ala Tyr Gln cta gtc aga gcc act gtg gtt tac cgc cat cag ctt cac cta act cat Leu Val Arg Ala Thr Val Val Tyr Arg His Gln Leu His Leu Thr His tcc cac ctc tcc tgc cat gtg gag ccc tgg gtc cag aaa agc cca acc Ser His Leu Ser Cys His Val Glu Pro Trp Val Gln Lys Ser Pro Thr aat cac ttt cct tct tca gga aga ggc tcc tca aag cct tcc ctg ttg Asn His Phe Pro Ser Ser Gly Arg Gly Ser Ser Lys Pro Ser Leu Leu ccc aaa act tgg aca gag atg gat atc atg gaa cat gtt ggg caa aag Pro Lys Thr Trp Thr Glu Met Asp Ile Met Glu His Val Gly Gln Lys ctc tgg aat cac aag ggg cgc agg gtt cta cga ctc cgc ttc gtg tgt Leu Trp Asn His Lys Gly Arg Arg Val Leu Arg Leu Arg Phe Val Cys cag cag cca aga ggt agt gag gtt ctt gag ttc tgg tgg cat ggc act

18

Gln Gln Pro Arg Gly Ser Glu Val Leu Glu Phe Trp Trp His Gly Thr 215 220 210 tca tca ttg gac act gtc ttc ttg tta ctg tat ttc aat gac act 5 717 Ser Ser Leu Asp Thr Val Phe Leu Leu Leu Tyr Phe Asn Asp Thr 230 tagagtgttc agaagaccaa acctctccct aaaggcctga aagagtttac agaaaaagac 10 ccttctcttc tcttgaggag ggctcgtcaa gcaggcagta ttgcatcgga agttcctggc 837 ccctccaggg agcatgatgg gcctgaaagt aaccagtgtt ccctccaccc ttttcaagtc 15 897 agettecage agetgggetg ggateaetgg ateattgete eccateteta taccecaaac 957 20 tactgtaagg gagtatgtcc tcgggtacta cactatggtc tcaattctcc caatcatgcc 1017 atcatccaga accttgtcag tgagctggtg gatcagaatg tccctcagcc ttcctgtgtc 25 1077 ccttataagt atgttcccat tagcatcctt ctgattgagg caaatgggag tatcttgtac 1137 30 aaggagtatg agggtatgat tgcccagtcc tgcacatgca ggtga 1182 <210> 10: protein GDF-9B [S1] coding 35 <211> 239 <212> PRT <213> Ovis areis <221> misc_feature <222> (1)..(3) <223> atg start codon. 40 <221> misc feature <222> (805)..(807) <223> first codon of mature peptide in wildtype sheep. <221> misc feature 45 $(118\overline{0})..(1182)$ <222> <223> tga stop codon. <400> 10 50 Met Val Leu Leu Ser Ile Leu Arg Ile Leu Leu Trp Gly Leu Val Leu Phe Met Glu His Arg Val Gln Met Thr Gln Val Gly Gln Pro Ser Ile 55 Ala His Leu Pro Glu Ala Pro Thr Leu Pro Leu Ile Gln Glu Leu Leu 40 45 35 60 Glu Glu Ala Pro Gly Lys Gln Gln Arg Lys Pro Arg Val Leu Gly His

55

50

5	Pro 65	Leu	Arg	Tyr	Met	Leu 70	Glu	Leu	Tyr	Gln	Arg 75	Ser	Ala	Asp	Ala	Ser 80	
	Gly	His	Pro	Arg	Glu 85	Asn	Arg	Thr	Ile	Gly 90	Ala	Thr	Met	Val	Arg 95	Leu	
10 -	Val	Arg	Pro	Leu 100	Ala	Ser	Val	Ala	Arg 105	Pro	Leu	Arg	Gly	Ser 110	Trp	His	
15	Ile	Gln	Thr 115	Leu	Asp	Phe	Pro	Leu 120	Arg	Pro	Asn	Arg	Val 125	Ala	Tyr	Gln	
20	Leu	Val 130	Arg	Ala	Thr	Val	Val 135	Tyr	Arg	His	Gln	Leu 140	His	Leu	Thr	His	
25	Ser 145	His	Leu	Ser	Cys	His 150	Val	Glu	Pro	Trp	Val 155	Gln	Lys	Ser	Pro	Thr 160	
	Asn	His	Phe	Pro	Ser 165		_	Arg				-			Leu 175	Leu	
30	Pro	Lys	Thr	Trp 180	Thr	Glu	Met	Asp	Ile 185	Met	Glu	His	Val	Gly 190	Gln	Lys	
35	Leu	Trp	Asn 195	His	Lys	Gly	Arg	Arg 200	Val	Leu	Arg	Leu	Arg 205	Phe	Val	Cys	
40	Gln	Gln 210	Pro	Arg	Gly	Ser	Glu 215	Val	Leu	Glu	Phe	Trp 220	Trp	His	Gly	Thr	
45	Ser 225	Ser	Leu	Asp	Thr	Val 230	Phe	Leu	Leu	Leu	Tyr 235	Phe	Asn	Asp	Thr		
50	<223	1> 3 2> 1 3> 0 1> 0	168 DNA DVis CDS	ario		S1] I	nutai	tion									
55	<222 <222	1> 1 2> 3> 0	nuta (85)	.(84) tion (8) t a	7)	of	[S1]	she	ep cl	nange	es gi	luta	mine	cag	code	on to	ta
60	aga 48		agt	-	gtt Val 5												

```
gac act gtc ttc ttg tta ctg tat ttc aat gac act tagagtgttc
     94
     Asp Thr Val Phe Leu Leu Leu Tyr Phe Asn Asp Thr
 5
     agaagaccaa acctctccct aaaggcctga aagagtttac agaaaaagac ccttctcttc
     154
     tcttgaggag ggct
10
     168
     <210> 12: protein GDF-9B [S1] mutation
     <211> 28
15
     <212> PRT
     <213> Ovis aries
     <400> 12
20
     Arg Gly Ser Glu Val Leu Glu Phe Trp Trp His Gly Thr Ser Ser Leu
                                         10
                                                             15
                     5
     Asp Thr Val Phe Leu Leu Leu Tyr Phe Asn Asp Thr
25
                 20
                                     25
     <210> 13: GDF-9B [S2] full
     <211> 1665
30
     <212> DNA
     <213> Ovis aries
     <221> 5'UTR
     <222> (1)..(252)
     <221> misc_feature
35
     <222> (253)..(255)
     <223> atg start codon.
     <221> CDS
     <222> (253)..(577)
     <221> CDS
40
     <222> (774)..(1627)
     <221> Intron
     <222> (578)..(773)
     <223> n at 685 represents approx 5.2 kb intron.
     <221> mat peptide
45
     <222> (1253)..()
     <221> misc feature
     <222> (685)..()
     <223> n represents approx 5.2 kb of intron
     <221> misc feature
     \langle 222 \rangle (162\overline{8})..(1630)
50
     <223> tga stop codon.
     <221> 3 UTR
     <222> (1628)..(1665)
     <221> mutation
55
     <222> (1547)..(1549)
     <223> g to t at 1548 of [S2] sheep changes agc serine codon to atc
     isoleucine codon
     <400> 13
     catgctgcct tgtcccacct gctgtttctg tttgtttgat gcaaagagga caatttagaa
60
     60
```

gacctctttt tggttcagga gatcctacca gaggaagaaa cataggacct gcctgccagc 120

- ctttcatttt tccttgccct atcctttgtg gtagtggagc ctggatgctg ttacccatgt 5 180
 - aaaaggaaag gtttaaagcg ttatcctttg ggcttttatc agaacatgtt gctgaacacc 240
- 10 aagcttttca ag atg gtc ctc ctg agc atc ctt aga atc ctt ctt tgg
 288

 Met Val Leu Leu Ser Ile Leu Arg Ile Leu Leu Trp
 -265
 -260
- gga ctg gtg ctt ttt atg gaa cat agg gtc caa atg aca cag gta 333

 Gly Leu Val Leu Phe Met Glu His Arg Val Gln Met Thr Gln Val -255

 -250

 -245
- ggg cag ccc tct att gcc cac ctg cct gag gcc cct acc ttg ccc 378

 Gly Gln Pro Ser Ile Ala His Leu Pro Glu Ala Pro Thr Leu Pro -230
- 25 ctg att cag gag ctg cta gaa gaa gcc cct ggc aag cag cag agg
 423
 Leu Ile Gln Glu Leu Leu Glu Glu Ala Pro Gly Lys Gln Gln Arg
 -225 -220 -215
- aag ccg cgg gtc tta ggg cat ccc tta cgg tat atg ctg gag ctg
 468
 Lys Pro Arg Val Leu Gly His Pro Leu Arg Tyr Met Leu Glu Leu
 -210 -205 -200
- 35 tac cag cgt tca gct gac gca agt gga cac cct agg gaa aac cgc 513
 Tyr Gln Arg Ser Ala Asp Ala Ser Gly His Pro Arg Glu Asn Arg -195
 -190
- 40 acc att ggg gcc acc atg gtg agg ctg gtg agg ccg ctg gct agt 558

 Thr Ile Gly Ala Thr Met Val Arg Leu Val Arg Pro Leu Ala Ser -180

 -175

 -170
- 95 gta gca agg cct ctc aga g gtgagttatc atactatatt gttctggtgg 607
 Val Ala Arg Pro Leu Arg -165
- 50 gagggggga gaaaatgggg aagaaaagtg tagaaaaag tggatctgtc agttttctgt 667
- caggetteae attgeetnea gtttgtaetg ageaggtetg ttagagagae taaggetagg 727

-160

- atataagaag ctaacgcttt gctcttgttc cctcttacta atgcag gc tcc tgg 781 Gly Ser Trp
- cac ata cag acc ctg gac ttt cct ctg aga cca aac cgg gta gca 826

His Ile Gln Thr Leu Asp Phe Pro Leu Arg Pro Asn Arg Val Ala -150-155-145tac caa cta gtc aga gcc act gtg gtt tac cgc cat cag ctt cac 5 871 Tyr Gln Leu Val Arg Ala Thr Val Val Tyr Arg His Gln Leu His -140-135cta act cat tcc cac ctc tcc tgc cat gtg gag ccc tgg gtc cag 10 916 Leu Thr His Ser His Leu Ser Cys His Val Glu Pro Trp Val Gln -125-120-115aaa agc cca acc aat cac ttt cct tct tca gga aga ggc tcc tca 15 961 Lys Ser Pro Thr Asn His Phe Pro Ser Ser Gly Arg Gly Ser Ser -110 -105-100aag cct tcc ctg ttg ccc aaa act tgg aca gag atg gat atc atg gaa 20 Lys Pro Ser Leu Leu Pro Lys Thr Trp Thr Glu Met Asp Ile Met Glu -95 -90 -85 cat gtt ggg caa aag ctc tgg aat cac aag ggg cgc agg gtt cta cga 25 1057 His Val Gly Gln Lys Leu Trp Asn His Lys Gly Arg Arg Val Leu Arg -80**-75** -70 ctc cgc ttc gtg tgt cag cag cca aga ggt agt gag gtt ctt gag ttc 30 1105 Leu Arg Phe Val Cys Gln Gln Pro Arg Gly Ser Glu Val Leu Glu Phe -65 -60 -55 tgg tgg cat ggc act tca tca ttg gac act gtc ttc ttg tta ctg tat 35 Trp Trp His Gly Thr Ser Ser Leu Asp Thr Val Phe Leu Leu Leu Tyr -45-40-35 tto aat gac act cag agt gtt cag aag acc aaa cct ctc cct aaa ggc 40 1201 Phe Asn Asp Thr Gln Ser Val Gln Lys Thr Lys Pro Leu Pro Lys Gly -30 -25 -20 ctg aaa gag ttt aca gaa aaa gac cct tct ctt ctc ttg agg agg gct 45 1249 Leu Lys Glu Phe Thr Glu Lys Asp Pro Ser Leu Leu Leu Arg Arg Ala cgt caa gca ggc agt att gca tcg gaa gtt cct ggc ccc tcc agg gag 50 Arg Gln Ala Gly Ser Ile Ala Ser Glu Val Pro Gly Pro Ser Arg Glu -1 1 15 cat gat ggg cct gaa agt aac cag tgt tcc ctc cac cct ttt caa gtc 55 1345 His Asp Gly Pro Glu Ser Asn Gln Cys Ser Leu His Pro Phe Gln Val 20 30 25 age tte cag cag etg gge tgg gat cae tgg ate att get eee cat etc 60 1393 Ser Phe Gln Gln Leu Gly Trp Asp His Trp Ile Ile Ala Pro His Leu

23

tat acc cca aac tac tgt aag gga gta tgt cct cgg gta cta cac tat 1441 Tyr Thr Pro Asn Tyr Cys Lys Gly Val Cys Pro Arg Val Leu His Tyr 60 55 50 5 ggt ctc aat tct ccc aat cat gcc atc atc cag aac ctt gtc agt gag 1489 Gly Leu Asn Ser Pro Asn His Ala Ile Ile Gln Asn Leu Val Ser Glu 70 75 ·65 10 ctg gtg gat cag aat gtc cct cag cct tcc tgt gtc cct tat aag tat 1537 Leu Val Asp Gln Asn Val Pro Gln Pro Ser Cys Val Pro Tyr Lys Tyr 15 gtt ccc att atc atc ctt ctg att gag gca aat ggg agt atc ttg tac 1585 Val Pro Ile Ile Leu Leu Ile Glu Ala Asn Gly Ser Ile Leu Tyr 110 100 105 20 aag gag tat gag ggt atg att gcc cag tcc tgc aca tgc agg 1627 Lys Glu Tyr Glu Gly Met Ile Ala Gln Ser Cys Thr Cys Arg 125 115 120 25 tgacggcaaa ggtgcagcta gctcaggttt cccaagaa 1665 30 <210> 14: protein GDF-9B [S1] mutation <211> 393 <212> PRT <213> Ovis aries <221> misc feature 35 <222> (253)..(255) <223> atg start codon. <221> misc feature <222> (685)..()<223> n represents approx 5.2 kb of intron 40 <221> misc feature (1628)..(1630)<222> <223> tga stop codon. <400> 14 45 Met Val Leu Leu Ser Ile Leu Arg Ile Leu Leu Trp Gly Leu Val -260-265 50 Leu Phe Met Glu His Arg Val Gln Met Thr Gln Val Gly Gln Pro -245-250 Ser Ile Ala His Leu Pro Glu Ala Pro Thr Leu Pro Leu Ile Gln 55 -230-225 -235 Glu Leu Leu Glu Glu Ala Pro Gly Lys Gln Gln Arg Lys Pro Arg -210-215-220

Val Leu Gly His Pro Leu Arg Tyr Met Leu Glu Leu Tyr Gln Arg

-200

-205

-195

5	Ser	Ala	Asp	Ala 19		r Gl	y Hi	s Pr	o Ar -1	_	lu A	sn A	rg 1		le -180	Gly
	Ala	Thr	Met	Val -17		g Le	u Va	l Ar	g Pr -1		eu A	la S	er V		la -165	Arg
10	Pro	Leu	Arg	Gly -160		r Trj	o Hi:	s Il	e Gl: -1		hr L	eu A	sp E		Pro 150	Leu
15	Arg	Pro	Asn	Arg -14		l Ala	а Ту:	r Gl	n Le		al A	rg A	la 1		al 135	Val
20	Tyr	Arg	His	Gln -130		ı His	s Le	u Thi	r Hi:		er H	is L	eu S		ys 120	His
25	Val	Glu	Pro	Trp -115		l Glı	ı Lya	s Se	r Pr -1		hr A	sn H	is F		ro 105	Ser
	Ser	Gly	Arg	Gly -100		r Sei	c Ly:	s Pro	o Se: -9:		u Le	u Pr	o Ly	rs Th -9		p Thr
30	Glu	Met	Asp -85	Ile	Met	Glu	His	Val -80	Gly	Gln	Lys	Leu	Trp -75		His	Lys
35	Gly	Arg -70	Arg	Val	Leu	Arg	Leu -65	Arg	Phe	Val	Cys	Gln -60	Gln	Pro	Arg	Gly
40	Ser -55	Glu	Val	Leu	Glu	Phe -50	Trp	Trp	His	Gly	Thr		Ser	Leu	Asp	Thr -40
45	Val	Phe	Leu	Leu	Leu -35	Tyr	Phe	Asn	Asp	Thr -30	Gln	Ser	Val	Gln	Lys -25	Thr
	Lys	Pro	Leu	Pro -20	Lys	Gly	Leu	Lys	Glu -15	Phe	Thr	Glu	Lys	Asp -10		Ser
50	Leu	Leu	Leu -5	Arg	Arg	Ala	Arg -1		Ala	Gly	Ser	Ile 5	Ala	Ser	Glu	Val
55	Pro 10	Gly	Pro	Ser	Arg	Glu 15	His	Asp	Gly	Pro	Glu 20	Ser	Asn	Gln	Суз	Ser 25
60	Leu	His	Pro	Phe	Gln 30	Val	Ser	Phe	Gln	Gln 35	Leu	Gly	Trp	Asp	His 40	Trp

25

Ile Ile Ala Pro His Leu Tyr Thr Pro Asn Tyr Cys Lys Gly Val Cys 50 45

Pro Arg Val Leu His Tyr Gly Leu Asn Ser Pro Asn His Ala Ile Ile 70 60 65

Gln Asn Leu Val Ser Glu Leu Val Asp Gln Asn Val Pro Gln Pro Ser 10 80 85 75

Cys Val Pro Tyr Lys Tyr Val Pro Ile Ile Ile Leu Leu Ile Glu Ala 15 100 105 90 95

Asn Gly Ser Ile Leu Tyr Lys Glu Tyr Glu Gly Met Ile Ala Gln Ser 120 115 110

Cys Thr Cys Arg 125

25

20

<210> 15: GDF-9B [S2] coding

<211> 1182

<212> DNA

<213> Ovis aries

30 <221> misc_feature

<222> (1)..(3)

<223> atg start codon.

<221> mutation

<222> (1099)..(1101)

<223> g to to at 1100 of [S2] sheep changes agc serine codon to atc 35 isoleucine codon

<221> CDS

<222> (1)..(1179)

<221> mat_peptide

<222> (805)..()

<221> misc feature <222> (1180)..(1182)

<223> tga stop codon.

45 <400> 15

atg gtc ctc ctg agc atc ctt aga atc ctt ctt tgg gga ctg gtg

Met Val Leu Leu Ser Ile Leu Arg Ile Leu Leu Trp Gly Leu Val -255 -265 -260

50 ctt ttt atg gaa cat agg gtc caa atg aca cag gta ggg cag ccc

Leu Phe Met Glu His Arg Val Gln Met Thr Gln Val Gly Gln Pro -245-240-250

55

40

tot att ged cad letg cet gag ged cet lace tig eec etg att leag 135

Ser Ile Ala His Leu Pro Glu Ala Pro Thr Leu Pro Leu Ile Gln -225 -230-235

60 gag ctg cta gaa gac cct ggc aag cag cag agg aag ccg cgg

180 Glu Leu Leu Glu Glu Ala Pro Gly Lys Gln Gln Arg Lys Pro Arg

26

-215-210-220gtc tta ggg cat ccc tta cgg tat atg ctg gag ctg tac cag cgt 225 5 Val Leu Gly His Pro Leu Arg Tyr Met Leu Glu Leu Tyr Gln Arg -200-195 -205 tca gct gac gca agt gga cac cct agg gaa aac cgc acc att ggg 270 10 Ser Ala Asp Ala Ser Gly His Pro Arg Glu Asn Arg Thr Ile Gly -180-190-185gcc acc atg gtg agg ctg gtg agg ccg ctg gct agt gta gca agg 315 15 Ala Thr Met Val Arg Leu Val Arg Pro Leu Ala Ser Val Ala Arg -170 -165 -175cct ctc aga ggc tcc tgg cac ata cag acc ctg gac ttt cct ctg 360 20 Pro Leu Arg Gly Ser Trp His Ile Gln Thr Leu Asp Phe Pro Leu -160 -155aga cca aac cgg gta gca tac caa cta gtc aga gcc act gtg gtt 405 25 Arg Pro Asn Arg Val Ala Tyr Gln Leu Val Arg Ala Thr Val Val -135 -140-145tac ege cat cag ett cae eta aet cat tee cae etc tee tge eat 450 Tyr Arg His Gln Leu His Leu Thr His Ser His Leu Ser Cys His 30 -130 -125. gtg gag ccc tgg gtc cag aaa agc cca acc aat cac ttt cct tct 495 35 Val Glu Pro Trp Val Gln Lys Ser Pro Thr Asn His Phe Pro Ser -110-105-115 tca gga aga ggc tcc tca aag cct tcc ctg ttg ccc aaa act tgg aca 40 Ser Gly Arg Gly Ser Ser Lys Pro Ser Leu Leu Pro Lys Thr Trp Thr -95 -90 -100 gag atg gat atc atg gaa cat gtt ggg caa aag ctc tgg aat cac aag 591 45 Glu Met Asp Ile Met Glu His Val Gly Gln Lys Leu Trp Asn His Lys -85 -80ggg cgc agg gtt cta cga ctc cgc ttc gtg tgt cag cag cca aga ggt 639 50 Gly Arg Arg Val Leu Arg Leu Arg Phe Val Cys Gln Gln Pro Arg Gly agt gag gtt ctt gag ttc tgg tgg cat ggc act tca tca ttg gac act 687 55 Ser Glu Val Leu Glu Phe Trp Trp His Gly Thr Ser Ser Leu Asp Thr -40-55 -50 -45gtc ttc ttg tta ctg tat ttc aat gac act cag agt gtt cag aag acc 735 60 Val Phe Leu Leu Tyr Phe Asn Asp Thr Gln Ser Val Gln Lys Thr -35 -30

27

aaa cct ctc cct aaa ggc ctg aaa gag ttt aca gaa aaa gac cct tct 783 Lys Pro Leu Pro Lys Gly Leu Lys Glu Phe Thr Glu Lys Asp Pro Ser 5 ctt ctc ttg agg agg gct cgt caa gca ggc agt att gca tcg gaa gtt 831 Leu Leu Leu Arg Arg Ala Arg Gln Ala Gly Ser Ile Ala Ser Glu Val -1 -5 10 cct ggc ccc tcc agg gag cat gat ggg cct gaa agt aac cag tgt tcc 879 Pro Gly Pro Ser Arg Glu His Asp Gly Pro Glu Ser Asn Gln Cys Ser 15 10 15 ctc cac cct ttt caa gtc agc ttc cag cag ctg ggc tgg gat cac tgg 927 Leu His Pro Phe Gln Val Ser Phe Gln Gln Leu Gly Trp Asp His Trp 40 35 30 20 atc att gct ccc cat ctc tat acc cca aac tac tgt aag gga gta tgt Ile Ile Ala Pro His Leu Tyr Thr Pro Asn Tyr Cys Lys Gly Val Cys 50 45 25 cct cgg gta cta cac tat ggt ctc aat tct ccc aat cat gcc atc atc 1023 Pro Arg Val Leu His Tyr Gly Leu Asn Ser Pro Asn His Ala Ile Ile 30 cag aac ctt gtc agt gag ctg gtg gat cag aat gtc cct cag cct tcc Gln Asn Leu Val Ser Glu Leu Val Asp Gln Asn Val Pro Gln Pro Ser 85 80 75 35 tgt gtc cct tat aag tat gtt ccc att atc atc ctt ctg att gag gca 1119 Cys Val Pro Tyr Lys Tyr Val Pro Ile Ile Ile Leu Leu Ile Glu Ala 100 95 90 40 aat ggg agt atc ttg tac aag gag tat gag ggt atg att gcc cag tcc 1167 Asn Gly Ser Ile Leu Tyr Lys Glu Tyr Glu Gly Met Ile Ala Gln Ser 120 115 110 45 tgc aca tgc agg tga 1182 Cys Thr Cys Arg 125 50 <210> 16: protein GDF-9B [S2] coding <211> 393 <212> PRT 55 <213> Ovis aries <221> misc_feature <222> (1)..(3) <223> atg start codon. <221> misc feature 60 <222> (1180)..(1182)

<223> tga stop codon.

<400> 16

	Met	Val	Leu	Leu -265	Ser	Ile	Leu	Arg	Ile -260		Leu	Trp	Gly	Leu -255	Val
5	Leu	Phe	Met	Glu -250	His	Arg	Val	Gln	Met -245		Gln	Val	Gly	Gln -240	Pro
10	Ser	Ile	Ala	His -235	Leu	Pro	Glu	Ala	Pro -230		Leu	Pro	Leu	Ile -225	Gln
15	Glu	Leu	Leu	Glu -220	Glu	Ala	Pro	Gly	Lys -215		Gln	Arg	Lys	Pro -210	Arg
20	Val	Leu	Gly	His -205		Leu	Arg	Tyr	Met -200		Glu	Leu	Tyr	Gln -195	Arg
	Ser	Ala	Asp	Ala -190		Gly	His	Pro	Arg -185		Asn	Arg	Thr	Ile -180	Gly
25	Ala	Thr	Met	Val -175	Arg	Leu	Val	Arg	Pro -170	Leu	Ala	Ser	Val	Ala -165	Arg
30	Pro	Leu	Arg	Gly -160		Trp	His	Ile	Gln -155		Leu	Asp	Phe	Pro -150	Leu
35	Arg	Pro	Asn	Arg -145		Ala	Tyr	Gln	Leu -140	Val	Arg	Ala	Thr	Val -135	Val
40	Tyr	Arg	His	Gln -130		His	Leu	Thr	His -125		His	Leu	Ser	Cys -120	His
	Val	Glu	Pro	Trp -115		Gln	Lys	Ser	Pro -110		Asn	His	Phe	Pro -105	Ser
45	Ser	Gly	Arg	Gly -100		Ser	Lys	Pro	Ser -95	Leu	Leu	Pro		Thr T -90	rp Thr
50	Glu	Met	Asp -85	Ile	Met	Glu	His	Val -80	Gly 0	Sln L	ys L		rp A 75	sn Hi	s Lys
55	Gly	Arg -70	Arg	Val	Leu	-	Leu -65	Arg	Phe V	al C		ln G 60	ln P	ro Ar	g Gly
60	Ser -55	Glu	Val	Leu		Phe -50	Trp	Trp	His G		hr S 45	er S	er L	eu As	p Thr -40
	Val	Phe	Leu	Leu	Leu -35	Tyr	Phe	Asn		Thr G	ln S	er V	al G	ln Ly -2	

29

WO 03/102199 PCT/NZ03/00109

Lys Pro Leu Pro Lys Gly Leu Lys Glu Phe Thr Glu Lys Asp Pro Ser -15-20 5 Leu Leu Leu Arg Arg Ala Arg Gln Ala Gly Ser Ile Ala Ser Glu Val -5 10 Pro Gly Pro Ser Arg Glu His Asp Gly Pro Glu Ser Asn Gln Cys Ser 15 20 10 15 Leu His Pro Phe Gln Val Ser Phe Gln Gln Leu Gly Trp Asp His Trp 40 35 . 30 Ile Ile Ala Pro His Leu Tyr Thr Pro Asn Tyr Cys Lys Gly Val Cys 20 50 45 Pro Arg Val Leu His Tyr Gly Leu Asn Ser Pro Asn His Ala Ile Ile 70 65 60 25 Gln Asn Leu Val Ser Glu Leu Val Asp Gln Asn Val Pro Gln Pro Ser 85 80 75 30 Cys Val Pro Tyr Lys Tyr Val Pro Ile Ile Ile Leu Leu Ile Glu Ala 100 90 95 Asn Gly Ser Ile Leu Tyr Lys Glu Tyr Glu Gly Met Ile Ala Gln Ser 35 120 110 Cys Thr Cys Arg 40 125 <210> 17: GDF-9B [S2] mutation <211> 168 45 <212> DNA <213> Ovis aries <221> CDS <222> (1)..(168) <221> mutation 50 <222> (85)..(87) <223> g to t at 86 of GDF9B sheep changes agc serine codon to atc isoleucine codon <400> 17 gcc atc atc cag aac ctt gtc agt gag ctg gtg gat cag aat gtc cct 55

Ala Ile Ile Gln Asn Leu Val Ser Glu Leu Val Asp Gln Asn Val Pro

cag cct tcc tgt gtc cct tat aag tat gtt ccc att atc atc ctt ctg

Gln Pro Ser Cys Val Pro Tyr Lys Tyr Val Pro Ile Ile Leu Leu

30

30

att gag gca aat ggg agt atc ttg tac aag gag tat gag ggt atg att 144

Ile Glu Ala Asn Gly Ser Ile Leu Tyr Lys Glu Tyr Glu Gly Met Ile
35
40
45

gcc cag tcc tgc aca tgc agg tga
168

Ala Gln Ser Cys Thr Cys Arg
50 55

<210> 18: protein GDF-9B [S2] coding
<211> 55
<212> PRT

<213> Ovis aries

<400> 18

20 Ala Ile Ile Gln Asn Leu Val Ser Glu Leu Val Asp Gln Asn Val Pro 1 5 10 15

Gln Pro Ser Cys Val Pro Tyr Lys Tyr Val Pro Ile Ile Ile Leu Leu 25 20 . 25 30

Ile Glu Ala Asn Gly Ser Ile Leu Tyr Lys Glu Tyr Glu Gly Met Ile 35 40 45

Ala Gln Ser Cys Thr Cys Arg
50 55

E-mail address: pct@ipaustralia.gov.au

Facsimile No. (02) 6285 3929

International application No.

PCT/NZ03/00109 A. CLASSIFICATION OF SUBJECT MATTER Int. Cl. 7: C12N 015/12; A61K 038/16, 039/395; A61P 015/00 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED B. Minimum documentation searched (classification system followed by classification symbols) SEE ELECTRONIC DATABASE BOX BELOW Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched SEE ELECTRONIC DATABASE BOX BELOW Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) AGRICOLA CA MEDLINE WPIDS: GDF-9? GDF9? BMP15 BMP-15 FERTIL? INFERTIL? OVULAT? BREED? IMMUNIS? VACC? OOCYTE? FOLLIC? FECUND? PROLICACY OVAR? CORPUS LUTEUM CONTRACEPTI? SEQ ID NOs 6, 12 AND 18 DOCUMENTS CONSIDERED TO BE RELEVANT C. Citation of document, with indication, where appropriate, of the relevant passages Category* Relevant to claim No. WO 01/85926 A2 (AGRESEARCH LIMITED) 15 November 2001. X See the entire document. 2, 7–11, 13, 14, 17, 19–37, 41-43 Y 1, 2, 11–22, 34–37, 41–43 WO 01/96393 A2 (AGRESEARCH LIMITED) 20 December 2001. X. See the entire document. 2, 7–11, 13, 14, 17, 19–38, 41–43 Y 1, 2, 11–22, 34–37, 41–43 See patent family annex X Further documents are listed in the continuation of Box C Special categories of cited documents: "A" document defining the general state of the art later document published after the international filing date or priority date which is not considered to be of particular and not in conflict with the application but cited to understand the principle relevance or theory underlying the invention "E" earlier application or patent but published on or document of particular relevance; the claimed invention cannot be after the international filing date considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined claim(s) or which is cited to establish the publication date of another citation or other special with one or more other such documents, such combination being obvious to reason (as specified) a person skilled in the art "O" document referring to an oral disclosure, use, document member of the same patent family "&" exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed Date of mailing of the international search report 08 SEP 2003 Date of the actual completion of the international search 1 September 2003 Name and mailing address of the ISA/AU Authorized officer **AUSTRALIAN PATENT OFFICE** PO BOX 200, WODEN ACT 2606, AUSTRALIA

JANE MCHENRY

Telephone No: (02) 6283 2091

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Juengel JL et al (2002). Growth differentiation factor 9 and bone	•
	morphogenetic protein 15 are essential for ovarian follicular development	
	in sheep. Biology of Reproduction 67: 1777-1789.	00 00 00
X	See the entire document.	23–33, 38
		1, 12, 15, 16, 18–22, 34–37,
Y		41–43
7.7	WO 99/17797 (THE JOHNS HOPKINS UNIVERSITY SCHOOL OF	
	MEDICINE) 15 April 1999.	
X	See the entire document.	23, 24, 26–29, 31–33
	Vitt UA et al (2000). In vivo treatment with GDF-9 stimulates primordial	
	and primary follicle progression and theca cell marker CYP17 in ovaries	
	of immature rats. Endocrinology 141: 3814–3820.	
X	See the entire document.	23, 24, 27
	WO 00/66620 (CREATIVE BIOMOLECULES INC) 9 November 2000.	
X	See the entire document.	38
		1 12 15 16 19 22 24 27
Y		1, 12, 15, 16, 18–22, 34–37 41–43
	Tr. Ct. 1 (2001) Compositionales of home members and protein 15	41-45
	Yan C et al (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Molecular	
X	Endocrinology 15: 854–866.	39, 40
Λ	See the entire document.	
Y	See the crime document.	1, 12, 15, 16, 18–22, 34–37
•		41–43
	Montgomery GW et al (2001). Genes controlling ovulation rate in sheep.	
	Reproduction 121: 843–852.	1 2 4 2 4 5 4 6 4 9 9 9
X	See the entire document, and in particular the abstract and page 849–851.	1, 3–6, 12, 15, 16, 18–22,
		34–37, 41, 43
		2, 11, 13, 14, 17, 19–22,
Y		34–37, 41–43
·		
	Note: for the Y indications, either WO 01/85926 or WO 01/96393 may be	
	combined with any one of Juengel et al (2002), WO 00/66620 or Yan et	
	al (2001) (with relevance to claims 2, 11, 13, 14, 17, 19–22, 34–37 and	
	41-43) or with Motgomery et al (2001) (with relevance to claims 1, 12,	
	15, 16, 18–22, 34–37 and 41–43).	

Box I	(Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This inter	mation	nal search report has not been established in respect of certain claims under Article 17(2)(a) for the following
1.		Claims Nos:
	II	because they relate to subject matter not required to be searched by this Authority, namely:
•		
2.	X	Claims Nos: 38 (in part)
		because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
		The claim does not comply with Rule 6.3 of the PCT, because this claim recites analogues or antagonist of GDF-9 or GDF-9B, which owe nothing to the applicant's invention and do not define the technical features of the invention. The search on this claim has been restricted to analogues and antagonists derived specifically using GDF-9 or GDF-9B. The full scope of these claims has not been searched.
3.		Claims Nos:
		because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule
		6.4(a)
	_	
This Inte	_	Observations where unity of invention is lacking (Continuation of item 3 of first sheet) nal Searching Authority found multiple inventions in this international application, as follows:
This Inte	_	6.4(a) Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This Inte	_	Observations where unity of invention is lacking (Continuation of item 3 of first sheet) nal Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
This Inte	_	Observations where unity of invention is lacking (Continuation of item 3 of first sheet) nal Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite
This Inte	_	Observations where unity of invention is lacking (Continuation of item 3 of first sheet) and Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search
Box II This Inter 1. 2. 3.	_	Observations where unity of invention is lacking (Continuation of item 3 of first sheet) and Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search
This Interest 1. 2. 3.	rnatio	Observations where unity of invention is lacking (Continuation of item 3 of first sheet) all Searching Authority found multiple inventions in this international application, as follows: As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Pater	nt Document Cited in Search Report	Patent Family Member							
WO	01/85926	AU	608210	CA	2408051	EP	1292674		
		NZ	500844						
WO	01/96393	AU	6795001	CA	2410532	EP	1294755		
		NZ	502796						
WO	99/17797	AU	1071499	AU	757563	CA	2306452		
		EP	1021201	JР	2001518516T				
WO	00/66620	AU	4676600	CA	2371695	EP	1181041		