$$f(X) = f(x_1, \dots, x_n)$$

$$\nabla f(X) = \begin{cases} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{cases}$$

$$\text{Matrix} \quad H(x) = \begin{cases} \frac{3^2 f}{2} & \frac{3^2 f}{2} \\ \frac{3^2 f}$$

findout if Hessian is positive definite (λ, y) are eigenpairs of H. $Hy = \lambda y = y^T Hy = \lambda y^T y = \lambda \|y\|_2^2$ if NiDO ti => H is positive chefinite => X* is minimizer if Ti <0 ti => H is negative definite => X* is maximizer. if Mi<0 => H is indefinite => X* is saddle point.