Програмна система моделювання впливу природних та антропогенних факторів на зміни кліматичних показників

ВИКОНАЛА: студентка групи КМ-62 Шумель Софія

КЕРІВНИК: асистент Ковальчук-Химюк Людмила Олександрівна

АКТУАЛЬНІСТЬ

- швидкі темпи глобального потепління
- невизначена суспільна думка
- способи запобігання екологічної катастрофи

ПОСТАНОВКА ЗАДАЧІ

Мета: провести аналіз кліматичних даних та дослідити вплив природних та антропогенних факторів на зміну клімату.

Завдання:

- проаналізувати існуючі математичні методи аналізу кліматичних даних
- обрати математичне забезпечення для моделювання кліматичної системи розробити програмне забезпечення, яке реалізує обраний метод розв'язання задачі

МЕТОДИ

Регресійний аналіз

Факторний аналіз

Моделі на основі ланцюгів Маркова

Нейромережеві моделі

ПОРІВНЯННЯ МЕТОДІВ

МЕТОД	ПЕРЕВАГИ	НЕДОЛІКИ
Регресійний аналіз	Простота та гнучкість, можливість розширення функціоналу поза області відомих значень, доступність до проміжних обчислень.	Велика кількість вимог до вхідних даних, проектування лише лінійних залежностей.
Факторний аналіз	Узагальнення вхідної системи з можливістю дослідження спрощеної моделі.	Відсутність однозначного математичного розв'язку, висока складність обчислень.
Марковські процеси	Легко моделюється та проектується.	Використання лише дискретних даних та неможливість моделювання вибірок з довгою пам'яттю.
Нейронні мережі	Відсутність обмеження на лінійність системи, здатність швидкої адаптації до навколишнього середовища.	Відсутність доступу до проміжних обчислень, складність проектування.

ЗАДАЧА РЕГРЕСІЇ

Нехай існує множина об'єктів:

$$I=\{i1,i2,...,ij,...,in\},\$$

кожен елемент якої ϵ значенням середньої температури поверхні землі та характеризується набором змінних:

$$Ij=\{x1,x2,...,xh,...,xm,y\},$$

де xh — значення h-фактору, який впливає на середню температуру поверхні землі.

Необхідно визначити:

$$min R(f) = \frac{1}{m} \sum_{i=1}^{m} c(y_i, f(x_i))$$

де F — множина всіх можливих функцій, які описують дані, c(yi,f(xi)) — функція втрат.

МЕТОДИ МАШИННОГО НАВЧАННЯ

Лінійна регресія

Random Forest

SVR

ОЦІНКА АДЕКВАТНОСТІ МОДЕЛЕЙ

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y_i})^2$$

де N — загальна кількість спостережень, уі — фактичні дані, уі— передбачувані дані.

$$RMSE = \sqrt{MSE}$$

ДАНІ

ДАНІ

ДАНІ

Лінійна регресія

$$y = \omega_0 + \omega_1 x_1 + \dots + \omega_n x_n = \omega_0 + \sum \omega_j x_j$$

де ω_0 , ω_1 , ..., ω_n — коефіцієнти при незалежних змінних.

$$\min R(f) = \min_{m} \sum_{i=1}^{m} (y_i - \sum_{i=1}^{n} \omega_i f_i(x))^2$$

$$Y = 0.369X_1 + 1.203X_2 + 1.699X_3 + 0.031X_4 + 0.024X_5 - 0.005$$

де Y — вектор прогнозованих середніх температур, X_1 — вектор концентрації CO_2 ,

 X_2 — вектор концентрації CH_4 , X_3 — вектор концентрації N_2O , X_4 — вектор

показників VEI вулканічної активності, X_5 — вектор значення сонячної радіації.

RMSE = 0.341

Random Forest

SVR

RMSE = 0.338

ПОРІВНЯННЯ АЛГОРИТМІВ

АЛГОРИТМ	НАВЧАЛЬНЕ RMSE	TECTOBE RMSE
Лінійна регресія	0.404	0.341
Random Forest	0.154	0.227
SVR	0.153	0.338

ВПЛИВ ФАКТОРІВ

Моделі для карбон діоксиду

Моделі для оксид азоту

Графік прогнозованої температури з використанням випадкових дерев в залежності від N2O

ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ

- Python
- Jupyter Notebook
- Flask
- Bootstrap3
- Jinja2

ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ

висновки

- було розглянуто основні підходи до аналізу кліматичних даних: регресійні моделі, факторний аналіз, моделі на основі ланцюгів Маркова та нейромережеві моделі
- було порівняно три алгоритми машинного навчання: лінійна регресія, Random Forest та SVR.
 Найкращим алгоритмом машинного навчання для представлених у даній роботі кліматичних даних є метод Random Forest з RMSE = 0.227
- було показано, що метан домінує серед інших парникових газів у впливі на показник середньої температури поверхні землі
- результати аналізу кліматичних даних продемонстровано на розробленому вебдодатку у вигляді інформаційної панелі.

ДЯКУЮ ЗА УВАГУ!