

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Кафедра «Компьютерные системы автоматизации производства»

Семинар на тему:

«Логика переговоров. Диалогические бирешетки»

Сочельников Роман Андреевич

– Отрицание (не)

• → — Импликация (¬a ∨ b)

^ — Конъюнкция (и)

- Эквивалентность
- V Дизъюнкция (или) 🕀 Исключающее ИЛИ

а	b	¬a	¬b	a∧b	a∨b	a→b	a ⇔ b	a⊕b
0	0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	0	1
1	0	0	1	0	1	0	0	1
1	1	0	0	1	1	1	1	0

$$\neg a \lor b \rightarrow c$$

a $\lor b \land \neg c \rightarrow b \land d$

а	b	С	¬а	¬a∨b	¬aVb→c
0	0	0	1	1	0
0	0	1	1	1	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	1	0	0	1
1	1	0	0	1	0
1	1	1	0	1	1

a	b	C	k	¬с	b∧¬с	a∨b∧¬c	b∧d	a∨b∧¬c→b∧d	а	b	С	d	¬с	b∧¬с	a∨b∧¬c	b∧d	a∨b∧¬c→b∧d
0	0 0) C	וכ	1	0	0	0	1	1	0	0	0	1	0	1	0	0
0	0 0) 1	L	1	0	0	0	1	1	0	0	1	1	0	1	0	0
0	0 1	. C)	0	0	0	0	1	1	0	1	0	0	0	1	0	0
0	0 1	. 1	L	0	0	0	0	1	1	0	1	1	0	0	1	0	0
0	1 C	0)	1	1	1	0	0	1	1	0	0	1	1	1	0	0
0	1 C) 1	L	1	1	1	1	1	1	1	0	1	1	1	1	1	1
0	1 1	_ (ס	0	0	0	0	1	1	1	1	0	0	0	1	0	0
0	1 1	. 1	L	0	0	0	1	1	1	1	1	1	0	0	1	1	1

Понятие агента

Агент – любая система, способная воспринимать окружающую среду посредством датчиков и осуществлять воздействие на нее с помощь исполнительных механизмов. [Рассел и др., 2016] Дополнительные свойства агента:

- активность, выраженная в способности планировать свои действия и осуществлять их, согласно этим планам;
- автономность, выраженная в самостоятельном осуществлении своей деятельности;
- коммуникативность, которая характеризует способность агента к общению с другими агентами;
- целенаправленность, которая характеризует поведение агента как направленное на достижение цели;
- адаптивность, предполагающая способность агента приспосабливаться к изменениям в окружающей среде.

Классификация агентов

Агенты классифицируются, основываясь на трех параметрах [Поспелов, 1972]:

- представление о среде,
- уровень развития автономии,
- степень социализации агентов.

Опираясь на первый параметр, можно провести разделение агентов на интеллектуальные и реактивные.

Когнитивные агенты относятся к первой категории и имеют хорошо развитую модель внешнего мира, которая постоянно обновляется, благодаря наличию у агента базы знаний, алгоритмов принятия решения и наличия обратной связи для контроля и анализа действий.

Классификация искусственных агентов по Поспелову

Когнитивный агент

Когнитивный агент — это активная, автономная, коммуникативная, целенаправленная, адаптивная система с хорошо развитой моделью окружающей среды и способная воспринимать ее посредством датчиков и осуществлять воздействие на нее с помощь исполнительных механизмов.

В качестве подобных агентов можно представить интегральных, интеллектуальных и коллаборативных роботов [Тарасов, 2002, Жданов, 2020]. Альтернативой автономных агентов являются многоагентные системы, в которых агенты воспринимаются как «сообщество экспертов» склонных к взаимодействию друг с другом для решения поставленной задачи.

Архитектура робота как когнитивного агента

Проблема эффективности взаимодействия когнитивных агентов в многоагентной системе. Автономность агентов

Когнитивные агенты, обладают высокой степенью автономии, проявляющейся в способности противодействовать внешним воздействиям, что в свою очередь приводит к определенным сложностям при организации их взаимодействия между собой.

Для полноценного сотрудничества необходимо, чтобы внутри системы, состоящей из множества различных агентов, наблюдалось наличие хорошо организованных и согласованных между собой действий элементов данной системы.

Сотрудничество предполагает не только наличие связности и взаимного влияния между различными агентами внутри сообщества, но и возможность его трансформации, которая может быть выражена как в виде изменения самих членов сообщества, так и формы их взаимодействия.

Проблема эффективности взаимодействия когнитивных агентов в многоагентной системе. Автономность агентов

Основными характеристиками, которые должны присутствовать при любой возможной форме взаимодействия, являются:

- Направленность;
- Избирательность;
- Степень интенсивности;
- Динамичность.

Всеми этими характеристиками также должны обладать многоагентные системы.

Проблема эффективности взаимодействия когнитивных агентов в многоагентной системе. Связь естественного и искусственного языков

Искусственные языки — это знаковые системы искусственной природы, посредством которых осуществляются процессы хранения, преобразования и передачи сообщений (сигналов, информации, знаний) на различных уровнях коммуникации в разных областях человеческой деятельности.

Логическая семантика — это раздел логики, в котором изучаются отношения языковых знаков к обозначаемым ими объектам и выражаемому ими содержанию. Она занимается изучением смысла и значений конструкций формализованного языка теории, способами понимания его логических связок и формул. При этом главное внимание уделяется описанию и определению таких понятий, как «истина», «ложь», «неопределенность», «противоречивость» и др.

Связь этих понятий может быть представлена как четырехзначная «логика значений».

Определение решетки

Решеткой L, называется частично упорядоченное множество (X, \leq) , в котором любые два элемента x и yимеют точную нижнюю грань (пересечение) $inf(x,y) = x \wedge y$ и точную верхнюю грань (объединение) $sup(x, y) = x \vee y.$

Любую решетку можно представить как алгебру

$$L = \langle X, \wedge, \vee \rangle,$$

для которой выполняются следующие законы: $\forall x, y, z \in L$

- а) идемпотентность: $x \wedge x = x$,
- $x \wedge y = y \wedge x$, b) коммутативность:
- ассоциативность:
- $x \wedge (x \vee y) = x$ d) поглощение:

$$x \wedge x = x,$$
 $x \vee x = x,$
 $x \wedge y = y \wedge x,$ $x \vee y = y \vee x,$
 $x \wedge (y \wedge z) = (x \wedge y) \wedge z,$ $x \vee (y \vee z) = (x \vee y) \vee z,$

- $x \lor (x \land y) = x$.

Построение четырехзначной логики C4 как произведения двух классических логик C1 и C2

(1)

Определение бирешетки

Бирешеткой называется четверка

$$BL = (X, \leq_1, \leq_2, \neg),$$
 (2) где $X \neq \emptyset$, $|X| \geq 4$, \leq_1 , и \leq_2 , \neg два различных отношения порядка, заданных на множестве X , а \neg есть отрицание Гинзберга, удовлетворяющее условиям 1) если $x \leq_1 y$, то $\neg x \geq_1 \neg y$, 2) если $x \leq_2 y$, то $\neg x \leq_2 \neg y$, 3) \neg $(\neg x) = x$.

Операция отрицания Гинзберга есть функция $\neg: X \to X$,

(3)

которая удовлетворяет следующим условиям:

- если $x \leq_1 y$, то $\neg x \geq_1 \neg y$;
- если $x \leq_2 y$, то $\neg x \leq_2 \neg y$;
- $\neg (\neg x) = x$.

Определение бирешетки

Бирешетка может строиться как алгебра с двумя различными операциями пересечения и объединения соответственно, т.е. задаваться шестеркой:

 $BL = (X, \land, \lor, \otimes, \oplus, \neg),$ (4) где а) решетка (X, \land, \lor) и решетка (X, \otimes, \oplus) — полные; б) ¬ есть отображение вида ¬: $X \to X$, такое что (а) ¬² = 1; (б) ¬ есть гомоморфизм решетки (X, \land, \lor) в решетку (X, \lor, \land) и автоморфизм решетки (X, \otimes, \oplus) .

Все конечные бирешетки могут быть представлены графически с помощью двойных диаграмм Хассе, где по вертикали (снизу-вверх) отображается один порядок, а по горизонтали (слева-направо) – другой порядок.

Определение бирешетки

Естественный способ формирования бирешеток заключается в образовании произведений двух решеток как алгебр и введении соответствующих операций.

Возьмем пару решеток
$$L_1 = (X_1, \Lambda_1, V_1)$$
 и $L_2 = (X_2, \Lambda_2, V_2)$.

Тогда бирешетку (2) можно определить в виде

$$BL = (X1 \times X2, \land, \lor, \otimes, \oplus, \neg),$$

(5) (0,1) (1,0) (6) (0,0) (7)

(1,1)

причем:

$$(x_1, x_2) \land (y_1, y_2) = (x_1 \land_1 y_1, x_2 \lor_2 y_2),$$

$$(x_1, x_2) \lor (y_1, y_2) = (x_1 \lor_1 y_1, x_2 \land_2 y_2),$$

$$(x_1, x_2) \otimes (y_1, y_2) = (x_1 \wedge_1 y_1, x_2 \wedge_2 y_2),$$

$$(x_1, x_2) \oplus (y_1, y_2) = (x_1 \vee_1 y_1, x_2 \vee_2 y_2),$$

$$\neg(x_1, x_2) = (x_2, x_1).$$

(8)

Диалогическая бирешетка. Диалоговая решетка

- $(T_1, T_2) = T$ «согласованная истина»; соглашение между ними достигнуто в результате согласования мнений обоих агентов
- $(T_1, F_2) = I «внутренняя истина»; соглашение на основе мнения первого агента$
- $(F_1, T_2) = E «внешняя истина»; соглашение на основе мнения второго агента$
- $(F_1,F_2)=F$ «согласованная ложь»; соглашение невозможно или взаимный отказ от согласования мнений
- Элементы T и F точки согласия агентов
- Элементы E и F точки противоречия.

Минимальное множество значений истинности в ситуации диалога: $V4 = \{T, I, E, F\}$.

Диалогическая бирешетка. Порядок согласия

Цель диалога – достижение согласия между агентами, следовательно ≤_C – порядок согласия.

- $F \leq_C I \leq_C T$
- $F \leq_C E \leq_C T$
- Значения I и E являются несравнимыми

Логическая матрица для четырехзначной логики С4:

$$LM_{C4} = \langle \{T, I, E, F\}, \{\neg_{C}, \land_{C}, \lor_{C}, \rightarrow_{C}\}, \{T\} \rangle.$$
 $\downarrow^{T_{1}}$
 \times
 $\downarrow^{F_{2}}$

Диалоговая решетка C4

17

Диалогическая бирешетка. Решетка диспута

- T_i «аргумент найден»,
- F_i «возражение не найдено»
- $(T_1, F_2) = I$ победа в споре первого агента и поражение второго, поскольку первый агент нашел неопровержимый аргумент
- $(F_1, T_2) = E$ поражение первого агента и победа второго
- $(T_1, T_2) = T$ ничья; аргументы обоих агентов взаимно опровергаемы
- $(F_1, F_2) = F$ отказ от спора

Переход от диалоговой решетки C4 к решетке диспута D4

Диалогическая бирешетка. Решетка диспута

Минимальное множество значений истинности в ситуации спора: $V4 = \{T, I, E, F\}$. Цель спора — победа в споре первого агента, следовательно \leq_{D} — порядок выигрыша.

- $E \leq_D T \leq_D I$
- $E \leq_D F \leq_D I$
- Значения Т и F являются несравнимыми

Логическая матрица для четырехзначной логики D4:

$$LM_{D4} = \langle \{T, I, E, F\}, \{\neg_D, \lor_D, \land_D, \rightarrow_D\}, \{I\} \rangle, \tag{12}$$

Переход от диалоговой решетки C4 к решетке диспута D4

19

Диалогическая бирешетка

- Операцией отрицания (инверсии) называется любая унарная операция n, которая меняет порядок истинности:
 x≤y ⇒ n(x)≥n(y), ∀x,y∈V, таких отрицаний насчитывается 36.
- В свою очередь, операция n является операцией консервативного отрицания в том случае, если n((T1,T2))=(F1,F2), a n((F1,F2))=(T1,T2). Таких операций 16.
- Если, к тому же, выполняется n(n(x)) = x, ∀x, y ∈ V (закон двойного отрицания), то отрицание называется инволюцией.

Помимо этого отрицания могут быть простыми и составными, однородными и неоднородными, зеркальными и циклическими. Простые отрицания характеризуются одномерностью, инверсией одного-единственного порядка, тогда как составные отрицания многомерны и связаны с рассмотрением различных порядков (при этом некоторые порядки могут инвертироваться, а прочие оставаться без изменений). Однородные отрицания выполняют одну и ту же операцию инверсии по различным порядкам, а неоднородные – различные операции по разным порядкам.

Первое отрицание 1, являющееся примером составного, однородного, консервативного отрицания, представляет собой обращение (инверсию) обоих базовых порядков $≤_{C}$ и $≤_{D}$ (прямое обобщение классического отрицания на двухмерный случай). Так отрицание по порядку ≤_с показывает, что противоположностью согласия между агентами (Т1,Т2) является невозможность его достижения (F1,F2), тогда как отрицание по порядку ≤_D означает конверсию – смену ролей агентов (пропонент превращается в оппонента, первоначальный победитель оказывается побежденным и т.п.).

_
\mathbf{I}_{1}
(F_1,F_2)
(F_1,T_2)
(T_1,F_2)
(T_1,T_2)

Следующие два отрицания являются примерами составных неоднородных отрицаний. Так второе отрицание ¬2, совпадающее по форме с отрицанием Фиттинга, сохраняет порядок согласия ≤_с, но инвертирует порядок спора ≤_D (показывая, например, смену ролей агентов). Подобная конверсия может применяться при рефлексивных рассуждениях.

V	¬₂ v
(T_1,T_2)	(T_1,T_2)
(T_1,F_2)	(F_1,T_2)
(F_1,T_2)	(T_1,F_2)
(F_1,F_2)	(F_1,F_2)

Третье отрицание ¬₃, которое инвертирует порядок согласия ≤_C, но сохраняет порядок спора ≤_D, аналогично отрицанию Белнапа: противоположностью согласия оказывается отказ от него (свойство консервативности), в то время как порядок спора не меняется. По сути, в данном случае, диалог агентов «заходит в тупик».

V	¬3 v
(T_1,T_2)	(F_1,F_2)
(T_1,F_2)	(T_1,F_2)
(F_1,T_2)	(F_1,T_2)
(F_1,F_2)	(T_1,T_2)

Операции отрицания позволяют естественным образом представить возражения агентов друг другу. Так четвертое отрицание I_д семантически соответствует возражению оппонента пропоненту (внутреннее возражение в случае рефлексивных рассуждений), а пятое отрицание I₅ – возражению пропонента оппоненту. В совокупности отрицания 🗓 и 🖡 формируют операцию циклического отрицания.

		_
V	4 v	₅ v
(T_1,T_2)	(F_1,T_2)	(T_1,F_2)
(T_1,F_2)	(F_1,F_2)	(T_1,T_2)
(F_1,T_2)	(T_1,T_2)	(F_1,F_2)
(F_1,F_2)	(T_1,F_2)	(F_1,T_2)

Различные отрицания могут порождаться операцией композиции других отрицаний. Например, неконсервативное отрицание Фиттинга \neg_2 можно получить как композицию однородного консервативного отрицания I_1 и неоднородного консервативного отрицания Белнапа \neg_3 : $\neg_2 = I_1 \circ \neg_3$

Диалогическая бирешетка. Конъюнкция и дизъюнкция

Операции конъюнкции и дизъюнкции для логик D4 и K4 можно определить как взятие наименьшей верхней и наибольшей нижней грани решеток C4 и D4, построенных на порядках ≤_C и ≤_D. Данные операции можно определить как конъюнкции (дизъюнкции) согласия и спора соответственно.

$$(x_{1}, x_{2}) \wedge_{C} (y_{1}, y_{2}) = (x_{1} \wedge_{C} y_{1}, x_{2} \wedge_{D} y_{2}),$$

$$(x_{1}, x_{2}) \vee_{C} (y_{1}, y_{2}) = (x_{1} \vee_{C} y_{1}, x_{2} \vee_{D} y_{2}),$$

$$(x_{1}, x_{2}) \wedge_{D} (y_{1}, y_{2}) = (x_{1} \wedge_{C} y_{1}, x_{2} \vee_{D} y_{2}),$$

$$(x_{1}, x_{2}) \vee_{D} (y_{1}, y_{2}) = (x_{1} \vee_{C} y_{1}, x_{2} \wedge_{D} y_{2}).$$

$$(13)$$

$$(x_{1}, x_{2}) \vee_{D} (y_{1}, y_{2}) = (x_{1} \vee_{C} y_{1}, x_{2} \wedge_{D} y_{2}).$$

$$(14)$$

$$(x_{1}, x_{2}) \vee_{D} (y_{1}, y_{2}) = (x_{1} \vee_{C} y_{1}, x_{2} \wedge_{D} y_{2}).$$

$$(15)$$

Диалогическая бирешетка. Конъюнкция и дизъюнкция

v∧ _C w	(T_1,T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T ₁ ,T ₂)				
(T_1,F_2)				
(F ₁ ,T ₂)				
(F ₁ ,F ₂)				

v ∧ _D w	(T_1,T_2)	(T_1,F_2)	(F_1,T_2)	(F_1,F_2)
(T_1,T_2)				
(T_1,F_2)				
(F ₁ ,T ₂)				
(F ₁ ,F ₂)				

v V _C w	(T_1,T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T_1,T_2)				
(T ₁ ,F ₂)				
(F_1,T_2)				
(F ₁ ,F ₂)				

v V _D w	(T_1,T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T_1,T_2)				
(T ₁ ,F ₂)				
(F ₁ ,T ₂)				
(F ₁ ,F ₂)				

29

Диалогическая бирешетка. Конъюнкция и дизъюнкция

$v \wedge_C w$	(T_1,T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F_1,F_2)
(T_1,T_2)	(T_1,T_2)	(T_1, F_2)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T_1,F_2)	(T_1,F_2)	(T ₁ ,F ₂)	(F ₁ ,F ₂)	(F ₁ ,F ₂)
(F_1,T_2)	(F ₁ ,T ₂)	(F ₁ ,F ₂)	(F_1,T_2)	(F ₁ ,F ₂)
	(F ₁ ,F ₂)			

v ∨ _C w	(T_1, T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T_1,T_2)	(T_1,T_2)	(T_1,T_2)	(T_1, T_2)	(T_1,T_2)
(T ₁ ,F ₂)	(T_1,T_2)	(T_1,F_2)	(T_1,T_2)	(T_1,F_2)
(F_1,T_2)	(T_1,T_2)	(T_1,T_2)	(F_1,T_2)	(F_1,T_2)
		(T ₁ ,F ₂)		

$\mathbf{v} \wedge_D \mathbf{w}$	(T_1,T_2)	(T_1,F_2)	(F_1,T_2)	(F_1,F_2)
(T_1,T_2)	(T_1,T_2)	(T_1, T_2)	(F ₁ ,T ₂)	(F ₁ ,T ₂)
(T ₁ ,F ₂)	(T_1,T_2)	(T_1,F_2)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(F ₁ ,T ₂)				
(F ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)

$\mathbf{v} \vee_D \mathbf{w}$	(T_1,T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T_1,T_2)	(T_1,T_2)	(T ₁ ,F ₂)	(T_1,T_2)	(T ₁ ,F ₂)
(T ₁ ,F ₂)	(T_1, F_2)	(T ₁ ,F ₂)	(T ₁ ,F ₂)	(T ₁ ,F ₂)
(F ₁ ,T ₂)	(T_1,T_2)	(T_1,F_2)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(F ₁ ,F ₂)	(T ₁ ,F ₂)	(T ₁ ,F ₂)	(F ₁ ,F ₂)	(F ₁ ,F ₂)

30

Диалогическая бирешетка. Импликация

В классической логике она удовлетворяет следующим свойствам:

- значение истинности зависит от двух операндов (посылки х и заключения у);
- если посылка истинна, то значение истинности совпадает со значением второго операнда;
- из лжи следует все что угодно.

В логике диалога импликацию можно задать как при помощи расширения принципа материальной импликации (путем комбинации отрицания и дизъюнкции), так и независимо.

Диалогическая бирешетка. Импликация

Рассмотрим импликацию, как следствие для обоих агентов:

$$x \rightarrow_1 y = \int_1 x \vee_C y$$
 $x \rightarrow_{1'} y = \int_1 x \vee_D y$

$v \rightarrow_{\mathcal{C}} w$	(T_1,T_2)	(T_1,F_2)	(F ₁ ,T ₂)	(F_1,F_2)
(T_1,T_2)	(T_1, T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T ₁ ,F ₂)	(T_1, T_2)	(T_1,T_2)	(F ₁ ,T ₂)	(F ₁ ,T ₂)
(F ₁ ,T ₂)	(T_1,T_2)	(T_1,F_2)	(T_1,T_2)	(T ₁ ,F ₂)
(F ₁ ,F ₂)	(T ₁ ,T ₂)			

Диалогическая бирешетка. Импликация

Теперь рассмотрим импликацию как следствие для первого агента и как обратное следствие для второго:

$v \rightarrow_D w$	(T ₁ ,T ₂)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T_1,T_2)	(T_1, T_2)	(T ₁ ,F ₂)	(F ₁ ,T ₂)	(F ₁ ,F ₂)
(T ₁ ,F ₂)	(T_1, T_2)	(T_1, T_2)	(F ₁ ,T ₂)	(F ₁ ,T ₂)
(F ₁ ,T ₂)	(T_1,T_2)	(T_1,F_2)	(T_1, T_2)	(T ₁ ,F ₂)
(F ₁ ,F ₂)	(T_1, T_2)	(T ₁ ,T ₂)	(T ₁ ,T ₂)	(T ₁ ,T ₂)

$$x \to_D y = \left[\int_5 x \to_C \right]_5 y = \left[\int_1 \int_5 x \lor_C \right]_5 y$$

Анализ взаимодействия с помощью бирешеточных семантик. Ситуация «T-T»

Краткое описание ситуации:

- Один робот серии Р загружен, второй нет, загруженный робот должен доставить паллету на свободное место, пустой забрать конкретную паллету
 - а) Загружен 2-ой робот
 - б) Загружен 1-ый робот

Индекс 1 присваивается незагруженному агенту. Аргументом 1-го агента является возможность избежать пересечения траекторий.

Аргументом 2-го агента является невозможность изменения траектории.

Порядок диспута ≤_D:

- Аргументы агентов взаимно опровергаемы;
- В споре имеет место ничья $T = (T_1, T_2)$.

Порядок согласия ≤_C:

• Достигается взаимная согласованность мнений агентов. $\leq_{c} \bigwedge$ (T_1, T_2)

Моделирование ситуации «Т-Т»

	Первый	Первый
	агент	агент
	загружен	разгружен
Время выполнения	61,965 c	83,325 c
операции первым агентом		
Время выполнения	83,119 c	40,656 c
операции вторым агентом		
Максимальное	83,293 c	83,698 c
операционное время		
системы		

- Выигрыш по времени по времени появления свободного агента:
 - 61,965 40,656 = 21,309 c
- Выигрыш по времени по времени появления свободного агента в процентном соотношении:
 - **1** (21,309 / 61,965) * 100 = **34**%

- Проигрыш по времени системы:
 - \blacksquare 83,698 83,293 = 0,405 c
- Проигрыш по времени системы в процентном соотношении:
 - **(**0,405 / 83,698) * 100 = 0,5%

Анализ взаимодействия с помощью бирешеточных семантик. Ситуация «2-4»

Краткое описание ситуации:

- Оба робота серии Р загружены и должны доставить паллеты на свои места
 - а) Первым проезжает робот, цель которого ближе
 - б) Первым проезжает робот, цель которого дальше
 - в) Вариант блокировки доступа к свободному месту

Индекс 1 присваивается агенту, место назначение которого находится дальше. Аргументом является большее расстояние до цели.

Порядок диспута ≤_D:

- Аргумент 1-го агента неопровержим;
- Контраргумент 2-м агентом не может быть найден;
- В споре побеждает 1-ый агент I = (T₁, F₂).

Порядок согласия ≤_C:

• Согласие достигается на основе мнения 1-го агента. $\stackrel{\leq_{\rm c}}{\uparrow}$

Моделирование ситуации «2-4»

	Первый	Первый	
	агент с	агент с	
	коротким	длинным	
	маршрутом	маршрутом	
Время выполнения	72,688 c	82,700 c	
операции первым агентом			
Время выполнения	92,407 c	79,800 c	
операции вторым агентом			
Максимальное	92,604 c	83,052 c	
операционное время			
системы			

- Проигрыш по времени второго агента:
 - 92,407 79,800 = 12,607 c
- Суммарный проигрыш по времени:
 - 12,607 10,012 = 2,595 c

- Выигрыш по времени системы:
 - 92,604 83,052 = 9,552 c
- Выигрыш по времени системы в процентном соотношении:
 - **(**9,552 / 92,604) * 100 = **10,3**%