- TD V : Convergences
 - \bullet 6 Octobre 2025-10 octobre 2025
 - Master I ISIFAR
 - Probabilités
- i Loi des grands nombres
- Exercice 1
- Exercice 2
 - Convergence en distribution
- Exercice 3
- Exercice 4
- Exercice 5
- Exercice 6

Exercice 7

a. Si f est une fonction croissante sur [a,b], on définit son inverse généralisée f^{\leftarrow} par

$$f^{\leftarrow}(y) = \inf\{x : x \in [a, b], f(x) \ge y\}$$
 pour $y \in [f(a), f(b)]$.

Montrer que si $(f_n)_n$ est une suite de fonctions croissantes sur $[a,b] \subset \mathbb{R}$ qui converge *simplement* vers f une autre fonction croissante sur [a,b] en tout point de continuité de f, alors la suite $(f_n^{\leftarrow}(y))$ converge simplement vers $f^{\leftarrow}(y)$ en tout $y \in [f(a),f(b)]$ où f^{\leftarrow} est continue.

b. Soit F une fonction de répartition, on définit la fonction quantile associée F^{\leftarrow} par

$$F^\leftarrow(p) = \inf\{x: F(x) \geq p\} \qquad \text{ pour } p \in]0,1[\,.$$

Vérifier que si deux fonctions de répartitions ont même fonction quantiles alors elles sont égales.

Dans cette définition F est une fonction de répartition, F^{\leftarrow} la fonction quantile associée.

Montrer que pour tout $x \in \mathbb{R}, p \in]0,1[$,

- c. $F^{\leftarrow}(p) \le x \Leftrightarrow p \le F(x)$.
- d. $F \circ F^{\leftarrow}(p) \geq p$ avec égalité si et seulement si il existe x tel que F(x) = p.\ Si $F \circ F^{\leftarrow}(p) > p$ alors F^{\leftarrow} est discontinue en p.
- e. $F^{\leftarrow} \circ F(x) \leq x$.\ Si $F^{\leftarrow} \circ F(x) < x$, alors il existe $\epsilon > 0$ tel que $F(x \epsilon) = F(x)$.
- f. $(F \circ G)^{\leftarrow} = G^{\leftarrow} \circ F^{\leftarrow}$

Exercice 8

Si $Y_{1:n} \leq Y_{2:n} \leq ... \leq Y_{n:n}$ forme les statistiques d'ordre d'un n-échantillon de la loi exponentielle d'espérance 1, et si $X_{1:n} \leq X_{2:n} \leq ... \leq X_{n:n}$ désigne les statistiques d'ordre d'un n-échantillon d'une loi de fonction de répartition F qui admet une densité partout positive, montrer que

$$(X_{1:n}, X_{2:n}, \dots, X_{n:n}) \sim (F^{\leftarrow}(1 - \exp(-Y_{1:n})), \dots, F^{\leftarrow}(1 - \exp(-Y_{n:n}))) \ .$$

La fonction quantile empirique F_n^{\leftarrow} est la fonction quantile associée à la fonction de répartition empirique F_n . Si les points de l'échantillon sont deux à deux distincts

$$F_n^{\leftarrow}\left(p\right) = X_{k:n}$$
 pour $\frac{k-1}{n} .$

Soit F une fonction de répartition qui est dérivable en $F^{\leftarrow}(p)$ de dérivée non nulle notée f(p) pour une valeur $p \in]0,1[$. Montrer que

$$\sqrt{n}\left(F_n^\leftarrow(p) - F^\leftarrow(p)\right) + \sqrt{n}\frac{1}{f(p)}\left(F_n(F^\leftarrow(p)) - p\right) = o_P(1)\,.$$

Quelle est la loi limite de $\sqrt{n}\left(F_n^{\leftarrow}(p) - F^{\leftarrow}(p)\right)$?