Modern Programing Languages Introduction to Haskell (2)

Wamberto Vasconcelos w.w.vasconcelos@abdn.ac.uk

2016-2017

Plan of Lecture

- Lists
- Polymorphic Types
- 4 Higher-Order Functions
- Folding a List of Values
- Curried Functions
- Operation Partial Application and Operator Sections
- Computing with Infinite Data Structures

Lists

- A list is an ordered collection of values.
- All elements must be of the same type!

```
• Examples: [2,6,3,7] :: [Int]

['2','6','3','7'] :: [Char]

"2637" :: [Char]

[(1,'a'),(2,'b'),(3,'c')] :: [(Int,Char)]
```

- N.B.: [3,7,True,4] is not a valid list: it contains values of different types.
- A list with no elements is called the empty list, written as "[]".

Lists (2)

- Haskell provides shorthands for lists of numbers:
 - [n..m] stands for [n, n+1, ..., m']; if n > m, then the result is [].
 - [n,p..m] stands for [n, n+k, n+k+k, ..., m'], where k = p-n.
- m': the largest/smallest number in the sequence which is greater/less than or equal to m (i.e. it does not go after m)
- Examples:

Some Built-In Operations on Lists

• Adding an element to a list (cons) ":":

```
(1:(2:(3:[]))) \rightsquigarrow [1,2,3]
```

Concatenating two lists "++":

$$[1,2,3] ++ [4,5,6] \rightarrow [1,2,3,4,5,6]$$

Finding the length of a list "length":

```
length [] \rightsquigarrow 0
length ['a','b','c'] \rightsquigarrow 3
```

 Obtaining the first element (head) of a list and the remaining elements (tail):

```
head [1,2,3,4] \leftrightarrow 1
tail [1,2,3,4] \leftrightarrow [2,3,4]
```

Pattern Matching on Lists

• The pattern "(x:xs)" splits a list into its first element, "x", and everything else, "xs".

```
last [x] = x
last (x:xs) = last xs
```

- In recursive functions over lists
 - base case is "[x]" or "[]";
 - recursive case relates the solution for "x" and the solution for "xs"
- Example:

```
zip [] [] = []
zip (x:xs) (y:ys) = (x,y):(zip xs ys)
```

Polymorphic Types in Haskell (1)

- What is the type of zip?
- Some functions have general definitions for lists of any type!
- To express this, we must use a type variable.
- In Haskell, type variables are specified using conventioanl variables as "a", "my_type", etc.
- Example:

```
zip :: [a] -> [b] -> [(a,b)]
```

 Types specified as type variables are called polymorphic types (many forms).

Polymorphic Types in Haskell (2)

 When applying a function with polymorphic types to particular arguments, the specific types of the arguments give values to the type variables:

```
zip [1,2] ['a','b'] \leftrightarrow [(1,'a'),(2,'b')]
```

Variable a is instantiated to type Int and b to Char, that is:

```
[Int] -> [Char] -> [(Int,Char)]
```

- Types without type variables are called monomorphic types.
- Traditional languages, such as C, only support monomorphic types (though Java now has "generic types")

Type Synonyms in Haskell

 To improve the readability of programs, Haskell allows us to give names to (complex) types:

```
type String = [Char]
type Date = (Int,String,Int)
tomorrow :: Date -> Date
```

We can also parameterise type synonyms using type variables:

```
type ThreeTuple a = (a,a,a)
primaryColours :: ThreeTuple String
primaryColours = ("red", "green", "blue")
```

Higher-Order Functions (1)

- A function is a mapping from elements of one type to elements of another type.
- Haskell places no constraints on what those types may be.
- In particular, Haskell allows us to define functions which take other functions as arguments and/or return functions as their result
- Such functions are said to be higher order. Example:

```
double :: (a \rightarrow a) \rightarrow a \rightarrow a
double f x = f (f x)
```

 This function applies the function f (an argument!) to x twice, that is,

double square 2 → 16

Higher-Order Functions (2)

 We can generalise the previous function and define function composition ".":

```
(.) :: (a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c

(f.g) x = f (g x)
```

 Function composition is useful for stringing function applications together:

```
greatGrannies = mothers.parents.parents
```

We can now define double more easily as:

```
double f = (f.f)
```

Programming with Higher-Order Functions (1)

 Higher-order functions capture common patterns of computation (idioms).

```
squares [] = []
squares (x:xs) = (square x):(squares xs)
allUpper [] = []
allUpper (x:xs) = (upper x):(allUpper xs)
```

- All functions exhibit the typical recursive idiom for transforming elements of a list.
- Idioms can be abstracted as higher order function definitions:

```
map f [] = []
map f (x:xs) = (f x):(map f xs)
```

• What is the type of map?

Programming with Higher-Order Functions (2)

• We can rewrite the previous functions in terms of map:

```
squares xs = map square xs allUpper xs = map upper xs
```

• The type of map is:

Selecting Items from Lists (1)

• Common idiom in list processing: selection of elements.

```
onlyUpper [] = []
onlyUpper (x:xs)
  | isUpper x = x:(onlyUpper xs)
  | otherwise = onlyUpper xs

bignums n [] = []
bignums n (x:xs)
  | big n x = x:(bignums n xs)
  | otherwise = bignums n xs
```

Selecting Items from Lists (2)

This idiom is abstracted by the higher-order function filter:

• We can use filter to define the previous functions as:

```
onlyUpper xs = filter isUpper xs
bignums n xs = filter (big n) xs
```

• The type of filter is:

```
filter :: (a -> Bool) -> [a] -> [a]
```

Folding a List of Values (1)

- A more complex but very versatile idiom consists of folding a binary function into a list of values to compute a single value.
- Example: to add a list of numbers, fold in the + operator, that is, sum $[5,2,8,14,11] \rightsquigarrow 5+2+8+14+11$
- Example: to find the conjunction of a list of Boolean values, fold in operator &, that is,

```
and [True, False, True] → True & False & True
```

Haskell definitions for these functions:

```
sum [] = 0
sum (x:xs) = x + (sum xs)
and [] = True
and (x:xs) = x & (and xs)
```

Folding a List of Values (2)

The abstraction of this idiom is defined as:

```
foldr :: (a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b
foldr f a [] = a
foldr f a (x:xs) = f x (foldr f a xs)
```

• foldr defines sum and and as follows:

```
sum xs = foldr (+) 0 xs
and xs = foldr (&) True xs
```

 This function is called foldr because it brackets the folded expression to the right, that is,

```
5+(2+(8+(14+11))) and not (((5+2)+8)+14)+11
```

Folding a List of Values (3)

 We can also define a second version of the fold idiom, called foldl, which brackets the folded expression to the left:

```
foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f a [] = a
foldl f a (x:xs) = foldl f (f a x) xs
```

- The types of foldr and foldl are subtly different.
- This is the main factor which influences the choice of which of these functions to use in a given situation.
- If the function you wish to fold into the list has a type which matches
 (a -> b -> b) then you should use foldr. An example is:

```
(:) :: a -> [a] -> [a]
```

Folding a List of Values (4)

- If the function's type matches (a -> b -> a), then you should use foldl.
- The constant function has exactly this type: const x y = x
- When applied to a function f with a type matching (a -> a -> a),
 foldr and foldl have the same type, that is,

$$(a \rightarrow a \rightarrow a) \rightarrow a \rightarrow [a] \rightarrow a$$

- If f is also associative, then foldr f a $xs \equiv foldl$ f a xs
- In this case, the choice must be made on the basis of which of these functions gives the most efficient solution, which will depend upon the characteristics of f.

Folding a List of Values (5)

- The folding idiom can be used to define a surprisingly diverse range of functions.
- Example reversing a list:

```
reverse :: [a] -> [a]
reverse xs = foldr rev [] xs
   where rev a bs = bs ++ [a]
```

Example – finding the maximum element of a list:

Curried Functions in Haskell (1)

Consider the function:

```
plus :: Int -> Int -> Int
plus x y = x + y
```

- The "->" operator for declaring function types associates to the right.
- So, strictly speaking the type of the function should be:

- But this says that plus is a function which takes a number as its (only) argument and returns a function of type (Int -> Int) as its result!!
- What is the meaning of, for example, plus 2?

$$(plus 2) y = 2 + y$$

Curried Functions in Haskell (2)

- So, strictly speaking, plus is a function which takes a number, x, as
 its only argument and constructs as its result a function which takes
 another number y as an argument and adds x to it.
- This technique is known as Currying (after the logician Haskell B. Curry).
- Currying allows us to define functions with multiple arguments
 without departing from the true mathematical definition of a function
 as a mapping from one set to another.
- Currying results in more readable definitions than if we continually had to bundle multiple arguments up into tuples.
- Currying also makes higher-order programming much easier, as we do not need to know how many arguments a function requires in order to apply it.

Partial Application and Operator Sections (1)

- The application of a function requiring n arguments to fewer than n values is called partial application.
- Partial application is a useful way of building new nameless functions.
- The same technique can be applied to operators:

- The result is called an operator section.
- Functions like these are particularly handy as arguments to map and filter, though not all work with current Hugs.
- Example:

```
filter (>5) [2,4,6,8,10] \leftrightarrow [6,8,10]
map (*2) [1,2,3] \leftrightarrow [2,4,6]
```


Partial Application and Operator Sections (2)

- The brackets are important here.
- They turn an infix operator into a prefix operator:

$$x + y \equiv (+) x y$$

In the same way, a prefix function can be turned into an infix operator
if we enclose it in backquotes '...', that is,

map
$$f l \equiv f 'map' l$$

Computing with Infinite Data Structures (1)

- One of the advantages of a lazy evaluation strategy is that we can compute with infinite data structures.
- For example:

```
ones :: [Int]
ones = 1 : ones
```

- What is the result of evaluating head ones?
- An eager evaluation strategy will not terminate when presented with this expression.
- A lazy evaluation strategy will compute only as much of the infinite list of ones as is needed to evaluate head.
- Its motto is "never do today what you can put off until asked tomorrow".

Computing with Infinite Data Structures (1)

```
• Example 1:
-- All natural numbers
```

• Example 2:

nn = [1..]

```
-- The squares of all natural numbers nnSquares = map square nn where square x = x * x
```

• Example 3:

```
-- The Fibonacci series

all_fib = 1:(1:(add_fib all_fib))

where add_fib(x:(y:rs)) = (x+y):(add_fib (y:rs))
```

Computing with Infinite Data Structures (2)

- What happens when Haskell tries to evaluate all_fib?
- Note that we start by cons-ing together the first two members of the series.
- We now have just enough to calculate the third member (x+y = 1+1 = 2), should anybody ask for it.

Computing with Infinite Data Structures (3)

 To manipulate infinite lists, we make use of functions which produce a finite result from an infinite list:

```
take :: Int -> [a] -> [a]
take 0 xs = []
take (n+1) (x:xs) = x:(take n xs)
```

• Examples:

```
take 10 [1..] \rightarrow [1,2,3,4,5,6,7,8,9,10]
take 5 nnSquares \rightarrow [1, 4, 9, 16, 25]
nnSquares !! 4 \rightarrow 25
filter (<20) nnSquares \rightarrow [1, 4, 9, 16]
filter (<20) (filter (>10) nnSquares) \rightarrow [16]
```