EKSTRAPOLACJA ITEROWANA RICHARDSONA

Do obliczenia pewnej wielkości stosuje się metodę numeryczną z parametrem h. Wynikiem jej działania jest F(h). Wartością dokładną jest F(0). Trudności obliczeniowe rosną, gdy h maleje.

Zakładamy, że znamy postać rozwinięcia (
$$p_1 < p_2 < p_3 ...$$
)
$$F(h) = a_0 + a_1 h^{p_1} + a_2 h^{p_2} + a_3 h^{p_3}$$

$$F(\theta)$$
 ekstrapolujemy na podstawie kilku obliczonych wartości $F(h_{\theta}),\ F(q^{-1}h_{\theta}),\ F(q^{-2}h_{\theta}),\ F(q^{-3}h_{\theta})...\ q>1$

Ekstrapolacja iterowana Richardsona pozwala na utworzenie ciągu funkcji $F_1(h), F_2(h), F_3(h), \dots$, którego n-ty wyraz ma rozwinięcie:

$$F_n(h) = a_0 + a_{n,n}h^{p_n} + a_{n,n+1}h^{p_{n+1}} + a_{n,n+2}h^{p_{n+2}} \dots$$

Sposób obliczeń: dana wartość początkowa h_0 i liczba q>1, stosuje się wzór rekurencyjny:

$$A_{m,0} = F(q^{-m}h_0), m = 0,1,2...$$

$$A_{m,k} = A_{m,k-1} + \frac{A_{m,k-1} - A_{m-1,k-1}}{q^{p_k} - 1}$$
, $k = 1,2,3...,F_n(h_0) = A_{n-1,n-1}$, $n = 2,3,4...$

Schemat obliczeń: $\Delta = A_{m,k-1} - A_{m-1,k-1}$

k	0		1
m		$\frac{\Delta}{q^{p_1}-1}$	
0	$A_{0,0} =$		
	$F(h_0)$		
1	$A_{1,0} =$	$A_{1,0} - A_{0,0}$	$A_{1,1} =$
	$F(q^{-1}h_0)$	$+\frac{q^{p_1}-1}{q^{p_1}-1}$	$F_2(h_0)$
2	$A_{2,0} =$	$A_{2,0} - A_{1,0}$	$A_{2,1} =$
	$F(q^{-2}h_0)$	$q^{p_1}-1$	$F_2(q^{-1}h_0)$
3	$A_{3,0} =$	$A_{3,0} - A_{2,0}$	$A_{3,1} =$
	$F(q^{-3}h_0)$	$q^{p_1}-1$	$F_2(q^{-2}h_0)$

Instytut Automatyki Politechniki Łódzkiej - Metody Numeryczne w Inżynierii wykład 5

k	0		1		2		3
m		$\frac{\Delta}{q^{p_1}-1}$		$\frac{\Delta}{q^{p_2}-1}$		$\frac{\Delta}{q^{p_3}-1}$	
0	$A_{0,0} = F(h_0)$						
1	$A_{1,0} = F(q^{-1}h_0)$	$+\frac{A_{1,0}-A_{0,0}}{q^{p_1}-1}=$	$A_{1,1} = F_2(h_0)$				
2	$A_{2,0} = F(q^{-2}h_0)$	$+\frac{A_{2,0}-A_{1,0}}{q^{p_1}-1}=$	$A_{2,1} = F_2(q^{-1}h_0)$	$+\frac{A_{2,1}-A_{1,1}}{q^{p_2}-1}=$	$A_{2,2} = F_2(h_0)$		
3	$A_{3,0} = F(q^{-3}h_0)$	$+\frac{A_{3,0}-A_{2,0}}{q^{p_1}-1}=$	$A_{3,1} = F_2(q^{-2}h_0)$	$+\frac{A_{3,1}-A_{2,1}}{q^{p_2}-1}=$	$A_{3,2} = F_3(q^{-1}h_0)$	$+\frac{A_{3,2}-A_{2,2}}{q^{p_3}-1}=$	$A_{3,3} = F_4(h_0)$

Zastosowanie do różniczkowania numerycznego

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f^{(3)}(x_0) + \cdots$$

Różnica progresywna

$$D_P(h) = \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) + \frac{h}{2!}f''(x_0) + \frac{h^2}{3!}f^{(3)}(x_0) + \cdots$$

$$p_1 = 1$$
, $p_2 = 2$, $p_3 = 3$, ...

Różnica centralna

$$D_{c}(h) = \frac{f(x_{0} + h) - f(x_{0} - h)}{2h} =$$

$$= \frac{1}{2h} \left\{ \left(f(x_{0}) + hf'(x_{0}) + \frac{h^{2}}{2!} f''(x_{0}) + \frac{h^{3}}{3!} f^{(3)}(x_{0}) + \cdots \right) - \left(f(x_{0}) - hf'(x_{0}) + \frac{h^{2}}{2!} f''(x_{0}) - \frac{h^{3}}{3!} f^{(3)}(x_{0}) + \cdots \right) \right\} =$$

$$= f'(x_{0}) + \frac{h^{2}}{3!} f^{(3)}(x_{0}) + \frac{h^{4}}{5!} f^{(5)}(x_{0}) + \cdots$$

$$p_{1} = 2, \quad p_{2} = 4, \quad p_{3} = 6, \quad \dots$$

-2

0

*

-8

-6

n

-4

-10

-9└ -12

Z Ekstrapolacji Richardsona

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2!}f''(x_0) + \frac{h^3}{3!}f^{(3)}(x_0) + \cdots$$

Wzór Taylora dostarcza także informacji o wyższych pochodnych funkcji f(x) w punkcie x_0 . Dla obliczenia drugiej pochodnej należy we wzorze "pozbyć się" składnika zawierającego pierwszą pochodną. Na przykład tak: zastępując h przez 2h dostajemy

$$f(x_0 + 2h) = f(x_0) + 2hf'(x_0) + \frac{4h^2}{2!}f''(x_0) + \frac{8h^3}{3!}f^{(3)}(x_0) + \cdots$$

Odjąć:
$$2f(x_0 + h) = 2f(x_0) + 2hf'(x_0) + 2\frac{h^2}{2!}f''(x_0) + 2\frac{h^3}{3!}f^{(3)}(x_0) + \cdots$$

daje

 $f(x_0 + 2h) - 2f(x_0 + h) = -f(x_0) + h^2 f''(x_0) + 6\frac{h^3}{3!} f^{(3)}(x_0) + \cdots$ czyli: $D_{2P}(h) := \frac{f(x_0 + 2h) - 2f(x_0 + h) + f(x_0)}{h^2} = f''(x_0) + 6\frac{h}{3!} f^{(3)}(x_0) + \cdots$

•••

Wyrażenie to, zwane różnicą progresywną drugiego rzędu jest przybliżeniem drugiej pochodnej funkcji f(x) w punkcie x_0 , obarczonym błędem metody proporcjonalnym do h.

Dokładniejsze wzory przybliżające pochodną

Powróćmy do wzoru przybliżającego pochodną w punkcie x_0 różnicą progresywną. Wynika z niego:

$$f'(x_0) = \frac{f(x_0+h)-f(x_0)}{h} - \frac{h}{2!}f''(x_0) - \frac{h^2}{3!}f^{(3)}(x_0) - \cdots$$

Z kolei

$$\frac{h}{2}f''(x_0) = \frac{f(x_0+2h)-2f(x_0+h)+f(x_0)}{2h} - 3\frac{h^2}{3!}f^{(3)}(x_0) - \cdots,$$

co daje:

$$f'(x_0) = \frac{f(x_0 + h) - f(x_0)}{h} - \frac{f(x_0 + 2h) - 2f(x_0 + h) + f(x_0)}{2h} - 4\frac{h^2}{3!}f^{(3)}(x_0)$$

Tak więc przybliżenie pierwszej pochodnej $f'(x_0)$ przez

$$D_{P+}(h) = \frac{-f(x_0 + 2h) + 4f(x_0 + h) - 3f(x_0)}{2h}$$

jest obarczone błędem metody proporcjonalnym do h^2 . Wykorzystanie drugiej pochodnej we wzorze Taylora, a więc i większej liczby wartości funkcji pozwoliło na zmniejszenie błędu metody z proporcjonalnego do h do proporcjonalnego do h^2 .

Podobny sposób postępowania można zastosować do wyprowadzenia dokładniejszych wersji wzoru z różnicą wsteczną i centralną. Ten ostatni ma postać

$$D_{C+}(h) = \frac{-f(x_0 + 2h) + 8f(x_0 + h) - 8f(x_0 - h) + f(x_0 - 2h)}{12h}$$

i jest obarczony błędem metody proporcjonalnym do h^4 .

Całkowanie numeryczne

Kwadratura:
$$\int_{a}^{b} f(x) dx = \sum_{k=0}^{n} A_{k} f(x_{k})$$

KWADRATURY NEWTONA-COTESA

uzyskane przez interpolację wielomianem z węzłami równoodległymi

$$x_{i} = a + ih, \quad i = 0,...,n, \quad h = \frac{b - a}{n}$$

$$\int_{a}^{b} f(x) dx \approx \int_{a}^{b} P_{n}(x) dx = \frac{b - a}{ns} \sum_{i=0}^{n} \sigma_{i} f_{i}, \quad f_{i} = f(x_{i}) = P_{n}(x_{i})$$

n	σ _i	ns	błąd	nazwa	
1	1 1	2	$h^3 \frac{1}{12} f^{(2)}(\xi)$	wzór trapezów	
2	1 4 1	6	$h^{5} \frac{1}{90} f^{(4)}(\xi)$	wzór Simpsona	
3	1 3 3 1	8	$h^5 \frac{3}{80} f^{(4)}(\xi)$	wzór ''trzech ósmych''	
4	7 32 12 32 7	90	$h^7 \frac{8}{945} f^{(6)}(\xi)$	wzór Milne'a	
5	19 75 50 50 75 19	288	$h^7 \frac{275}{12096} f^{(6)}(\xi)$	-	
6	41 216 27 272 27 216 41	840	$h^9 \frac{9}{1400} f^{(8)}(\xi)$	wzór Weddle'a	
	h- długość przedziału, ξ - punkt pośredni				

Obliczenie współczynników kwadratur Newtona-Cotesa:

Dane są węzły $x_0, x_1, ..., x_n$. Chcemy, by kwadratura całkowała dokładnie (na przedziale [-1 1])stałą:

$$w_0 x_0^0 + w_1 x_1^0 + \dots + w_n x_n^0 = \int_{-1}^1 x^0 dx = \left[\frac{x^1}{1}\right]_{-1}^1 = \frac{1 - (-1)}{1}$$

oraz funkcje x, x^2 , ... x^n :

$$w_0 x_0^1 + w_1 x_1^1 + \dots + w_n x_n^1 = \int_{-1}^{1} x^1 dx = \left[\frac{x^2}{2} \right]_{-1}^{1} = \frac{1^2 - (-1)^2}{2}$$

$$w_0 x_0^n + w_1 x_1^n + \dots + w_n x_n^n = \int_{-1}^{1} x^n dx = \left[\frac{x^{n+1}}{n+1} \right]_{-1}^{1} = \frac{1 - (-1)^{n+1}}{n+1}$$

W postaci macierzowej:

$$\begin{bmatrix} x_0^0 & x_1^0 & \cdots & x_n^0 \\ x_0^1 & x_1^1 & \cdots & x_1^1 \\ \vdots & \vdots & \vdots & \vdots \\ x_0^n & x_1^n & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} \frac{1 - (-1)}{1} \\ \frac{1 - (-1)^2}{2} \\ \vdots \\ \frac{1 - (-1)^{n+1}}{n+1} \end{bmatrix}$$

transponowana macierz Vandermode'a

Kwadratura Newtona-Cotes'a o n+1 węzłach obliczy dokładnie całkę wielomianu stopnia n. Można zmienić układ węzłów, tak by zwiększyć stopień wielomianu całkowanego dokładnie przez kwadraturę korzystającą z n węzłów.

Kwadratury Gaussa pozwalają na dokładne całkowanie wielomianów stopnia do 2n-1 przy n węzłach:

Np. Dla 2 węzłów: $T = w_0 f(x_0) + w_1 f(x_1)$ mamy 4 parametry

$$\begin{bmatrix} x_0^0 & x_1^0 \\ x_0^1 & x_1^1 \\ x_0^2 & x_1^2 \\ x_3^3 & x_3^3 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 2/3 \end{bmatrix} \text{ co daje } \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \ x_0 = -\sqrt{\frac{1}{3}}, x_1 = \sqrt{\frac{1}{3}}$$

$$T = f\left(-\sqrt{\frac{1}{3}}\right) + f\left(\sqrt{\frac{1}{3}}\right)$$

Kwadratury złożone
$$x_i = a + ih$$
, $i = 0,...,n$, $h = \frac{b-a}{n}$

Wzór prostokątów $\int_a^b f(x)dx \approx h \sum_{i=0}^{n-1} f(x_i + \frac{h}{2}) = R(h)$

Wzór trapezów $\int_a^b f(x)dx \approx \frac{h}{2} \sum_{i=0}^{n-1} [f(x_i) + f(x_{i+1})] = T(h)$
 $T(h) = h \left[\frac{f(a)}{2} + f(a+h) + \dots + f(b-h) + \frac{f(b)}{2} \right]$

Oszacowanie błędu obcięcia:
$$\left| \int_a^b f(x)dx - R(h) \right| \leq \frac{1}{24} (b-a)h^2 |f''(\xi)|$$

$$\left| \int_a^b f(x)dx - T(h) \right| \leq \frac{1}{12} (b-a)h^2 |f''(\xi)|$$

$$T(h) = \int_{a}^{b} f(x)dx + a_1h^2 + a_2h^4 + a_3h^6 + \cdots$$

Metoda Romberga=

=złożona kwadratura trapezów+ekstrapolacja Richardsona

$$q=2$$
, $p_i=2i$

Midpoint rule

Trapezoid rule

Simpson's rule

Composite Simpson's rule

Kwadratury adaptacyjne

