PROJECT REPORT STAGE-1

BE Project On

IMPROVEMENT IN QUALITY PPM IN REJECTION AND REWORK FOR CUP-MACHINING OPERATIONS ON GILDEMEISTER (AS-48).

- College Guide-S.V.GOSAVI
- Project Sponsored by- CUMMINS India limited, Kothrud.

Group Members:-

- 1. Rajratna. M .Patil
- 2. Omkar. P. Pawar
- 3. Abhishek .S. Pathak

Improvement in Quality PPM in product rejection and rework for Cup-machining operations on Gildemeister (AS-48).

- ➤ Gildemeister (AS-48) is a <u>cam operated</u>- Multi-spindle automat machine.
- The machine was procured in 1971 by Cummins India Limited.,
 Kothrud
- The machine is used for performing machining operations for diesel-generator-injector cup(nozzle).

NEED OF THE PROJECT:-

Since the machine has become old and rudimentary cam operated mechanism is used-

- The two AS-48 machines are giving high rejection rate and faulty machining ultimately resulting in unreasonable Quality PPM losses.
- It is a top priority in the company **to reduce PPM losses** by innovating the Gildemeister (AS-48) through technological advancement in tooling, cooling, indexing, cam motion and positioning of the tools.

Gildemeister (AS-48)

CENTRAL BLOCK

SPINDLE DRUMS OF GM-1 AND GM-2

OPERATIONS ON GILDEMEISTER

Cup evolution on different stations

SCOPE OF THE PROJECT:-

- Problems in the Gildemeister (AS-48) have to be studied in-depth
- Rework and installation of any techno-innovative solution within the economical feasibility of such solution.

PROBLEM DEFINITION:-

Technical problems that need to be resolved are :-

- 1. Tooling Quality, its rework and availability.
- 2. Precise tooling positioning and alignment.
- 3. Cam -drive mechanisms.
- 4. Fault-reverberations on further machines.

Technical problems analyzed:-

- 1. Jamming of slides.
- 2. Tool holder broken.
- 3. Worn out Cam profile.
- 4. Pick-off Dysfunctions.
- 5. Turning tool positioning problem.

1. Jamming of slides

- ➤ Causes:- Slide lubrication is inadequate and the gear tooth were a bit worn out leading to lag in gear timing.
- > Rejection Frequency: Twelve jobs every month.

Gear adjustment lever mechanism

Gear train mechanism

- ➤ There is frequent activation of safety-clutch due to jamming of slides.
- ➤ The safety clutch in gear adjustment level disengages if the slides are jammed.
- ❖ All six jobs on six spindles are rejected.

2.Tool holder broken

- > Causes:- Vibrations and stress loading.
- ➤ **Rejection Frequency:-** 4-5 jobs were rejected daily for almost a week.

New tool holder deployed

3.Worn out Cam profile

> Causes:-

- 1. Inaccurate cam profile
- 2. Cam edge worn-out
- 3. Crack formation
- 4. Surface wear and tear.

Cam profile

Effects:-1.Inaccurate central-block motion2.Wear and tear of gears

Operator removing Cams

4. Pick-off Dysfunctions

> Causes:-

- 1. Pick-off sleeve is worn out.
- 2. Mandrill bar of pick-off is slightly bend.
- 3. Cup O.D reduced beyond tolerance.
- 4. Pick-off spring malfunctioned

Pick-off collet

Operator repairing Pick-off spring

> Effects:-

- 1.Cup breakage
- 2. Surface indentation and scratches on cup.

5. Turning tool positioning problem.

- > The Turning tool has to be set for three different cups- K, STC, STD.
- ➤ Causes:- Turning tool setting done on trial and error method using dial gauges.
- > Rejection Frequency:- 3 parts per day
- > Effects:- Faulty plunge profile on cup.

Turning tool mechanism

OPERATIONAL PROBLEM ANALYSIS

OPERATIONS	PROBLEMS	REASONS	SOLUTION	
FACING	INSERT WORN OUT	-	-	
PARTING	. TOOL BREAKAGE	ASYNCHRONOUS MOTION BETWEEN FEED AND HOLDING MECHANISM	-	
		HIGHER CLAMPING FORCE IN CLAMPING MECHANISM	-	
CONE-DRILLING	TOOL HOLDER BROKEN	VIBRATION AND STRESS LOADING	CASTING NEW TOOL HOLDER.	
	FAULTY TOOL SETTING	MANUAL SETTING	DESIGNING ACCURATE GAUGE FOR BETTER TOOL SETTING (STD,STC AND K TYPE)	
TURNING	POCKET-FORMATION	UNREASONABLE SLIDE – MOTION VARIATION	-	
	O.D TOOL SETTING SIZE VARIATION	MANUAL SETTING	-	
PICK-OFF OPERATIONS	FAULTY PICK-OFF OPERATION	SLEEVE OF PICK-OFF WAS WORN- OUT	REGRINDING OF SLEEVE	
		CUP O.D REDUCED BEYOND TOLERANCE	-	
		MANDRILL BAR OF PICK-OFF IS SLIGHTLY BEND.	-	

MISCELLANEOUS PROBLEMS

PROBLEMS	REASONS	SOLUTION
CAM PROFILE FAULTY	FRICTION; WEAR AND TEAR	
TOOL HOLDER SHIFTS FROM TOOL POST.	WEAK TIGHTENING MECHANISM	
SPRING OF FEED DAMAGED.	WEAR AND TEAR; UNBALANCED LOADING.	
GEAR ADJUSTMENT LEVER STOPPED	FREQUENT ACTIVATION OF SLIP-CLUTCH DUE JAMMING OF SLIDES	
VARIATION IN CENTRAL BLOCK-SLIDES.	GEAR MOTION PROBLEM	
BURR SEDIMENTATION-SATURATION IN TOOL-HOLDER LEADING TO FAULTY MOTION	SMALL CHIP SIZE.	USING BETTER INSERTS WHICH PRODUCE LONG CHIPS.
BAR ENDING SIGNAL NOT WORKING.	ELECTRICAL WIRING CORRUPTED	REPLACE THE BAR ENDING SIGNAL

Problem Statement – Error in measurement of cone drill length on station 2

- Solution –
- We have designed measuring gauge to tackle the arbitrary measurement taken on cone drill .
- The cone drill is 30 degree and the length of the cone drill outside the tool holder is not fixed.
- Thus C- clamp has been designed to accurately measure the length of the tool length outside the tool holder.
- The L shaped scale fabricated on the C clamp perfectly aligns the tip of the cone drill at accurate length.
- This is an offline operation
- PROCEDURE 1) The C- clamp is fixed on the holder with the help of nuts.
 - 2) The tip of cone drill is aligned as per the L shaped.
 - 3) Once the tool length is fixed the C –clamp is removed.
 - 4) The procedure is completed.

Solution for Cone-drill Problem

Statistical Data of Cup Parameters(STD):-

PARAMETER	SPECIFICATIONS	1 st SEPTEMBER	2 st SEPTEMBER	3 st SEPTEMBER	4 th SEPTEMBER	5 th SEPTEMBER	6 th SEPTEMBER
CONE ROUNDNESS	0.00005	0.000021	0.000031	0.000025	0.000035	0.00004	0.000042
CONE STRAIGHTNE SS	0.0001	0.000052	0.000045	0.000065	0.000061	0.00007	0.00008
INNER-SEAL FLATNESS	0.00003	0.000016	0.000011	0.000012	0.000013	0.000023	0.000028
OUTER-SEAL FLATNESS	0.00007	0.000012	0.000041	0.000038	0.000031	0.00005	0.000062
CUP FACE ROUGHNESS	10	5.12	5.45	6.19	3.97	4.5	7
CONE ANGLE	45	44.96	45.75	44	45.83	44.9	43.5

Rejection and Rework Data

MONTH	REJECTION (QTY.)	REJECTION (%)	REWORK (%)	REJECTION (PPM.)	REWORK (PPM)
16-JUNE	1343	17%	11%	1,70,000	1,10,000
16-JULY	602	7%	10%	70,000	1,00,000
16-AUGUST	544	5%	9%	50,000	90,000

- > REJECTION has been considerable reduced from 17% in JUNE to 5% in AUGUST.
- > REWORK has been reduced from 11% in JUNE to 9% in AUGUST
- \triangleright Nearly (1,70,000 50,000) = 1,20,000 PPM have been saved in**REJECTION**since**JUNE**
- \triangleright Nearly (1,10,000 90,000) = 20,000 PPM have been saved in**REWORK**since**JUNE**

CONCLUSION REMARKS: -

- > PPM losses are reduced since JUNE.
- > Still, 50,000 PPM losses in REJECTION &
 - 90,000 PPM losses in REWORK are unreasonable PPM losses.
- Further technological improvement and validation is essential to reduce these unreasonable **PPM losses.**

6. FUTURE SCOPE: -

The unsolved and unrecognized problems on Gildemeister (AS-48) have to be solved to achieve lesser PPM losses in **REJECTION** and **REWORK**.

> Statistical analysis of various cup-parameters need to be further performed to find root causes of high PPM losses.