Relatório ITP

Thiago Oliveira Coelho

13 de abril de 2020

Sumário

1	Intr	odução	2			
2	Metodologia					
	2.1	Modelos de gravidade	2			
	2.2	Obtenção de estimadores	2			
	2.3	Variáveis do modelo	4			
3	Dados e fontes					
4	Resultados					
	4.1	Regressão Com base de dados CEPII	3			

1 Introdução

Com o advento da globalização, as barreiras tradicionais ao comércio internacional, como as tarifárias, têm se tornado menores o que diminui as oportunidades para implementação de medidas protecionistas.(MASKUS; WILSON; OTSUKI, 2000). Isso tem causado aparecimento de diversas barreiras não tarifárias (BNTs), que impedem o fluxo internacional de bens. Apesar de estas barreiras poderem ser legítimas, por exemplo para corrigir eventuais externalidades negativas advindas do produto importado, o fato é que estas terão impacto nas importações do país. Este impacto pode ser positivo ou negativo, dependendo do setor analisado. Em geral, normas de importação tendem a diminuir o comércio para bens primários e impulsionar o comércio de bens mais complexos (MOENIUS, 2006).

2 Metodologia

Considerando os trabalhos que visam estabelecer quantitativamente o impacto das notificações, será utilizado um modelo de gravidade cujos estimadores serão estabelecidos por PPML (Poisson Pseudo Maximum Likelihood).

2.1 Modelos de gravidade

Os modelos de gravidade são utilizados majoritariamente desde a década de 60 para a explicação de fluxos de comércio internacional. Originalmente derivado do modelo de Newton, utilizava a distância entre os dois objetos (países) e a massa deles (PIB), para explicar tal fluxo. Com o tempo, o desenvolvimento da área de economia internacional têm tornado o modelo cada vez mais teóricamente embasado e representativo da realidade.

2.2 Obtenção de estimadores

Dada a característica de haver grandes quantidades de fluxos de troca com valor zero, o estimador utilizado será o de *Poisson Pseudo Maximum Likelihood* (PPML). Isso se deve pelo fato de tal metodologia se portar melhor dados muitos valores nulos. Tal método de estimação também gera resultados consistentes na presença de heterocedasticidade.

2.3 Variáveis do modelo

$$\ln X_{JT} = \ln Y B_t + \ln Y E_{JT} + Dist_J + \ln T R F_{JT} \tag{1}$$

Onde:

- X_{JT} = Valor de exportação do Brasil para o país J no período T;
- YB_T = Renda do Brasil no período t;
- YE_{JT} = Renda do país J no período t;
- $Dist_J$ = Distância entre o Brasil e o país J;
- TRF_{JT} = Valor da tarifa efetivamente aplicada pelo país J ao Brasil no período T.

Obs: Todas aquelas variáveis que não são dummies estão sendo transformadas por meio de logaritmo natural, assim como pede a especificação de (SANTOS SILVA; TENREYRO, 2006).

3 Dados e fontes

Bases de dados utilizadas:

- 1. Notificações: https://www.epingalert.org/en;
- 2. Valor de exportações: https://comtrade.un.org/;
- 3. PIB: Banco mundial, (BANK, s.d.);
- 4. Distanciamento: (MAYER; ZIGNAGO, 2011);
- 5. Tarifas: WITS

4 Resultados

4.1 Regressão Com base de dados CEPII

Os resultados a seguir foram obtidos a partir da base de dados para modelos de gravidade da CEPII. Esta foi unificada com base própria criada a partir da quantidade de notificações de diferentes objetivos emitidas por diferentes países para diferentes commodities. Esta regressão não possui efeitos fixos, e não inclui variáveis tarifa.

Variável	Coeficiente	Erro padrão	t valor	Pr(> t)
(Intercepto)	0.8289	0.4231	1.96	0.0501
dist_log	-0.0023	0.0067	-0.34	0.7362
Animal.health	0.0041	0.0015	2.69	0.0072
Consumer.information	-0.0094	0.0110	-0.86	0.3914
Food.safety	-0.0057	0.0009	-6.64	0.0000
Harmonization	-0.5179	0.0285	-18.19	0.0000
Lower.barriers.to.trade	-0.0332	0.0089	-3.72	0.0002
Other	-0.0221	0.0483	-0.46	0.6473
Plant.protection	0.0009	0.0017	0.51	0.6101
PROT1	-0.0523	0.0039	-13.56	0.0000
PROT2	0.0037	0.0020	1.81	0.0708
PROT3	-0.0366	0.0050	-7.34	0.0000
PROT4	-0.0073	0.0010	-7.46	0.0000
PROT5	-0.0851	0.0454	-1.87	0.0611
PROT6	0.0274	0.0028	9.78	0.0000
Quality.requirements	-0.0158	0.0082	-1.92	0.0553
ln_gdp_d	0.0379	0.0014	27.62	0.0000
ln_gdp_o	0.0328	0.0148	2.22	0.0263
comrelig	0.0051	0.0107	0.48	0.6329
gatt_d	-0.1269	0.0368	-3.45	0.0006
eu_d	-0.4327	0.0355	-12.19	0.0000

Tabela 1: Regresão 1

As seguintes variáveis foram encurtadas na tabela:

- 1. PROT1: Prevention.of.deceptive.practices.and.consumer.protection;
- 2. PROT2: Protect.humans.from.animal.plant.pest.or.disease;
- 3. PROT3: Protect.territory.from.other.damage.from.pests;
- 4. PROT4: Protection.of.Human.health.or.Safety;
- 5. PROT5: Protection.of.animal.or.plant.life.or.health;
- 6. PROT6: Protection.of.the.environment.

Referências

BANK, The World. World Development Indicators. [S.l.: s.n.].

MASKUS, Keith E; WILSON, John S; OTSUKI, Tsunehiro. Quantifying the impact of technical barriers to trade: a framework for analysis. World Bank, Washington, DC, 2000.

MAYER, Thierry; ZIGNAGO, Soledad. Notes on CEPII's distances measures: The GeoDist database. [S.l.], 2011. Disponível em: http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=3877;.

MOENIUS, Johannes. The Good, the Bad and the Ambiguous: Standards and Trade in Agricultural Products, jan. 2006.

SANTOS SILVA, João; TENREYRO, Silvana. The Log of Gravity. **The Review of Economics and Statistics**, v. 88, n. 4, p. 641–658, 2006. Disponível em: https://EconPapers.repec.org/RePEc:tpr:restat:v:88:y: 2006:i:4:p:641-658;.