Prediction of Category of the Customer

Table of contents

- Introduction
- Data Acquisition
- Data Wrangling
- Data Exploration
- Model Development
- Pros and Cons of recommendation by this approach
- An architecture that will work more efficiently when building a recommendation engine for an e-commerce platform

Introduction:

- In this challenge, I have to cluster the customers into two different groups so that I can recommend the correct products based on the customer's cluster.
- I have used classification machine learning algorithm (Support Vector Machine) because train dataset is labelled and dependent variable 'customer_category' is categorical(0, 1).

Data Acquisition:

• Separate train and test dataset was given in the csv format, used pandas library to read the train and test dataset.

```
# scintific computing libraries
import numpy as np
import pandas as pd
df train = pd.read csv('train.csv')
df train.head()
   customer_id customer_visit_score customer_product_search_score customer_ctr_score customer_stay_score customer_frequency_score customer_product_
0
         csid_1
                          13.168425
                                                          9.447662
                                                                            -0.070203
                                                                                                 -0.139541
                                                                                                                           0.436956
         csid_2
                          17.092979
                                                          7.329056
                                                                             0.153298
                                                                                                 -0.102726
                                                                                                                           0.380340
                                                                                                                           0.417648
         csid 3
                          17.505334
                                                          5.143676
                                                                             0.106709
                                                                                                 0.262834
         csid 4
                          31.423381
                                                          4.917740
                                                                            -0.020226
                                                                                                 -0.100526
                                                                                                                           0.778130
         csid_5
                          11.909502
                                                          4.237073
                                                                             0.187178
                                                                                                 0.172891
                                                                                                                           0.162067
```

Data Wrangling:

Analysed that some of the features like
 'customer_product_search_score', 'customer_stay_score',
 'customer_product_variation_score', 'customer_order_score',
 'customer_active_segment' and 'X1' are containing missing value.

```
df test.isnull().sum()
customer id
customer visit score
customer product search score
customer_ctr_score
customer stay score
                                     16
customer frequency score
customer_product_variation_score
customer order score
                                     41
customer affinity score
customer_active_segment
                                    12
                                     25
dtype: int64
```

- Replaced the missing value of columns 'customer_product_search_score',
 'customer_stay_score', 'customer_product_variation_score', and
 'customer_order_score' with median because median is more resistant towards outliers.
- Columns 'customer_active_segment' and 'X1' are categorical. After analysis of the columns replaced the missing value of 'customer_active_segment' with 'D' and missing value of 'X1' with 'E'.
- Used 'One hot encoding' for the categorical features 'customer_active_segment' and 'X1'.

```
for df in data:
    df['customer_product_search_score'].replace(np.nan, df['customer_product_search_score'].median(), inplace = True)
    df['customer_stay_score'].replace(np.nan, df['customer_stay_score'].median(), inplace = True)
    df['customer_product_variation_score'].replace(np.nan, df['customer_product_variation_score'].median(), inplace = True)
    df['customer_order_score'].replace(np.nan, df['customer_order_score'].median(), inplace = True)
    df['customer_active_segment'].replace(np.nan, 'D', inplace = True)
    df['X1'].replace(np.nan, 'E', inplace = True)
```

```
new_cols = pd.get_dummies(df_train[['customer_active_segment','X1']])
df_train = pd.concat([df_train, new_cols], axis=1)

new_cols = pd.get_dummies(df_test[['customer_active_segment','X1']])
df_test = pd.concat([df_test, new_cols], axis=1)
```

Data Exploration:

Analysed that the correlation between featurures

 'customer_ctr_score' and 'customer_stay_score' are more than 0.9,
 so removed one of the feature 'customer_stay_score' because 'customer_stay_score' is containing more outliers than 'customer_ctr_score' and also the p-value(significance Value) is 0.

df_train.corr()

	customer_visit_score	customer_product_search_score	customer_ctr_score	customer_stay_score	customer_frequency_score
customer_visit_score	1.000000	0.273879	-0.569430	-0.473134	-0.209270
customer_product_search_score	0.273879	1.000000	-0.415732	-0.414079	-0.022984
customer_ctr_score	-0.569430	-0.415732	1.000000	0.907221	0.419461
customer_stay_score	-0.473134	-0.414079	0.907221	1.000000	0.400025
customer_frequency_score	-0.209270	-0.022984	0.419461	0.400025	1.000000
$customer_product_variation_score$	-0.219462	-0.065755	0.447256	0.405500	0.702169
customer_order_score	0.169942	0.050875	-0.341667	-0.310317	-0.532368
customer_affinity_score	0.118925	0.044064	-0.232876	-0.210383	-0.326201
customer_category	-0.449654	-0.300462	0.794445	0.677941	0.389465

Correlation and p-value of different features.

```
from scipy import stats
Correlation =[]
P_value = []
columns = df_train.columns
for col in columns:
    pearson_coef, p_value = stats.pearsonr(df_train[col], df_train['customer_category'])
    Correlation.append(pearson_coef)
    P_value.append(p_value)

df = pd.DataFrame({'Correlation':Correlation, 'P_value':P_value}, index = columns)
df
```

	Correlation	P_value
customer_visit_score	-0.449654	0.000000e+00
customer_product_search_score	-0.300462	6.776219e-223
customer_ctr_score	0.794445	0.000000e+00
customer_stay_score	0.677941	0.000000e+00
customer_frequency_score	0.389465	0.000000e+00
customer_product_variation_score	0.492628	0.000000e+00
customer_order_score	-0.384326	0.000000e+00
customer_affinity_score	-0.274105	2.295016e-184
customer_category	1.000000	0.000000e+00

 Using 'distplot' analysed that some of the features like 'customer_ctr_score', 'customer_product_variation_score' and 'customer_affinity_score' are containing outliers. So, removed the outliers.

```
q = df_train['customer_affinity_score'].quantile(0.99)
df = df_train[df_train['customer_affinity_score']<q]
df_train = df.reset_index(drop=True)</pre>
```

Model Development:

 After preprocessing and visualization noramalised the train and test dataset, and divided the train dataset using 'train_test_split'.

```
X_train = StandardScaler().fit(X_train).transform(X_train)
X_test = StandardScaler().fit(X_test).transform(X_test)

x_train, x_test, y_train, y_test = train_test_split( X_train, Y_train, test_size=0.2, random_state=4)
print ('Train set:', x_train.shape, y_train.shape)
print ('Test set:', x_test.shape, y_test.shape)
```

• Used classification machine learning algorithm (Support Vector Machine) because dependent variable 'customer_category' is categorical (0,1).

- Support Vector Machine (SVM) is a supervised algorithm that classifies cases by finding the separator. Mapping data in to a higher dimensional space, in such a way that can change a linearly inseparable dataset in to a linearly separable dataset.
- Model is not underfitted or overfitted because difference between train set accuracy and test set accuracy is very less.

```
from sklearn import svm
SVM = svm.SVC(kernel='rbf', gamma = 'auto')
SVM.fit(x_train, y_train)

SVM_train_predict = SVM.predict(x_train)
SVM_test_predict = SVM.predict(x_test)

print('Train Accuracy', accuracy_score(y_train, SVM_train_predict))
print("Test set Accuracy: ",accuracy_score(y_test, SVM_test_predict))
```

Train Accuracy 0.9733589343573743 Test set Accuracy: 0.9779270633397313

Pros and Cons of recommendation by this approach:

- **Pros:** In this challenge, I have to cluster the customers into two different groups so that I can recommend the correct products based on the customer's cluster. I have used classification machine learning algorithm because train dataset is labelled and dependent variable 'customer_category' is categorical(0, 1).
- **Cons:** If I have to build recommendation engine to recommend the different type of product based on customers interest then I have to build recommendation engine using content based and collaborative filtering .

An architecture that will work more efficiently when building a recommendation engine for an ecommerce platform:

- Content Based and Collaborative Filtering types of recommender system will work more efficiently when building a recommendation engine for an e-commerce platform.
- Recommender system capture the pattern of peoples behaviour and use it to predict what else they might want or like.
- Content Based: Show me more of the same of what I have liked before.
- Collaborative Filtering: Show me what is popular among my neighbours,
 I also might like it.

User-based: Based on users neighbourhood.

Item-based: Based on item similarity.