

Devoir surveillé 1 - 24/09/24

Exercice 1:

- 1. Soit $(u_n)_{n\geq 1}$ une suite positive décroissante qui converge vers 0. On note pour tout $n\in\mathbb{N}^*$, $S_n=\sum_{k=1}^n u_k$, $T_n=\sum_{k=1}^n k(u_k-u_{k+1})$
 - (a) Pour tout $n \in \mathbb{N}$, déterminer une relation entre T_n, S_n, n, u_{n+1}
 - (b) Démontrer que si $\sum u_n$ converge alors $\sum n(u_n u_{n+1})$ converge également.
 - (c) On suppose que $\sum n(u_n u_{n+1})$ converge. Démontrer que pour tout $n \in \mathbb{N}^*$, $nu_n \leq \sum_{k=n}^{+\infty} k(u_k u_{k+1})$. En déduire que $\sum u_n$ converge également.
- 2. Soit $\sum x_n$ une série à termes positifs qui converge, on note (R_n) la suite de ses restes d'ordre n. Démontrer que les séries $\sum R_n$ et $\sum nx_n$ sont de même nature et en cas de convergence ont la même somme.

Exercice 2: Pour tout $n \in \mathbb{N}^*$, on note $f_n : \mathbb{R}_+ \to \mathbb{R}, t \mapsto \frac{t^2}{(1+t^4)^n}$

- 1. Démontrer que pour tout $n \in \mathbb{N}^*$, f_n est intégrable sur \mathbb{R}_+ . On note $I_n = \int_0^{+\infty} f_n(t)dt$
- 2. Démontrer que pour tout $n \in \mathbb{N}^*$, $I_{n+1} = \frac{4n-3}{4n}I_n$.
- 3. Montrer que (I_n) converge.
- 4. Pour tout $n \in \mathbb{N}^*$, on note $J_n = n^{\frac{3}{4}}I_n$.
 - (a) Démontrer que $(J_n)_{n\in\mathbb{N}^*}$ est une suite strictement positive.
 - (b) Trouver un équivalent simple de $\ln(J_{n+1}) \ln(J_n)$
 - (c) En déduire la convergence de $\sum \ln(J_{n+1}) \ln(J_n)$.
- 5. Montrer que la suite $(\ln(J_n))$ converge et en déduire l'existence d'un réel c strictement positif tel que $I_n \underset{n \to +\infty}{\sim} \frac{c}{n^{\frac{3}{4}}}$
- 6. Montrer que pour tout $x \in \mathbb{R}_+^*, t \mapsto e^{-t}t^{x-1}$ est intégrable sur \mathbb{R}_+^* . On note pour tout $x \in \mathbb{R}_+^*, \Gamma(x) = \int_0^{+\infty} e^{-t}t^{x-1}dt$.
- 7. En effectuant le changement de variable $v=\ln(1+t^4)$, montrer que $I_n=\frac{1}{4}\int_0^{+\infty}e^{-(n-1)v}\phi(v)dv$ avec $\phi(v)=(e^v-1)^{-\frac{1}{4}}$.
- 8. Soit $\psi: \mathbb{R}_+^* \to \mathbb{R}, v \mapsto \phi(v) v^{-\frac{1}{4}}$. Montrer que ψ est bornée sur \mathbb{R}_+^* . En déduire que $I_{n+1} = \frac{1}{4} \int_0^{+\infty} \frac{e^{-nv}}{v^{\frac{1}{4}}} dv + \mathop{O}_{n \to +\infty}(\frac{1}{n})$ (On rappelle que $u_n = O(\frac{1}{n})$ si (nu_n) est bornée)
- 9. Calculer la constance c de la question 5 en fonction de $\Gamma(\frac{3}{4})$