

 $Head \ to \underline{www.savemyexams.com} \ for \ more \ awe some \ resources$ 

# Edexcel GCSE Chemistry



# Group 7

### **Contents**

- Group 7 (Halogens)
- \* Reactions of the Halogens
- \* Halogen Displacement & Redox
- ★ Group 7: Reactivity & Electronic Configurations



## **Group 7 (Halogens)**

# Your notes

# Physical Properties in Group 7

- The elements in group 7 are known as the halogens
  - These are fluorine, chlorine, bromine, iodine and astatine
- These elements are non-metals that are **poisonous**
- All halogens have similar reactions as they each have seven electrons in their outermost shell
- Halogens are diatomic, meaning they form molecules made of pairs of atoms sharing electrons (forming a single covalent bond between the two halogen atoms)

## **Trends in Physical Properties**

At room temperature, the halogens exist in different states and colours, with different characteristics

#### The Appearance, Characteristics and Colour in Solution of the Halogens

| Halogen  | State & Appearance<br>at Room Temperature | Characteristics                                               | Colour in solution |
|----------|-------------------------------------------|---------------------------------------------------------------|--------------------|
| Fluorine | Yellow gas                                | Very reactive,<br>poisonous gas                               | -                  |
| Chlorine | Pale yellow-green gas                     | Reactive, poisonous and dense gas                             | Pale green         |
| Bromine  | Red-brown liquid                          | Dense red-brown volatile liquid                               | Ordnge             |
| lodine   | Grey solid                                | Shimmery, crystalline solid, sublimes to form a purple vapour | Dark brown         |

Copyright © Save My Exams. All Rights Reserved

- The melting and boiling points of the halogens **increase** as you go down the group
- This is due to increasing intermolecular forces as the atoms become larger, so more energy is required to overcome these forces



Head to <a href="https://www.savemyexams.com">www.savemyexams.com</a> for more awesome resources





### This graph shows the melting and boiling points of the group 7 halogens

- At room temperature (20 °C), the physical state of the halogens changes as you go down the group
  - Fluorine and chlorine are **gases**, bromine is a **liquid** and iodine is crumbly **solid**
- The colours of the halogens also change as you descend the group they become darker







The physical states and colours of chlorine, bromine and iodine at room temperature



#### **Examiner Tips and Tricks**

Exam questions on this topic occur often so make sure you know and can state the trends of the group 7 elements in detail.

# **Testing Chlorine**

- The test for chlorine makes use of **litmus paper**
- If chlorine gas is present, damp blue litmus paper will be bleached white
- It may turn red briefly before bleaching, as acids are produced when chlorine comes into contact with water
- Chlorine should always be handled in a fume cupboard due to its toxicity



 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$ 





Diagram showing the test for chlorine gas



## **Examiner Tips and Tricks**

You should distinguish between properties of gases and tests for gases. Chlorine 'smells like swimming pools' is a characteristic, but not an acceptable means of identification. You can use blue, red or universal indicator paper to show the bleaching effect.



## Reactions of the Halogens

# Your notes

## **Reactions with Metals**

#### **Metal Halides**

- The halogens react with some metals to form ionic compounds which are metal halide salts
- The halide ion carries a -1 charge so the ionic compound formed will have different numbers of halogen atoms, depending on the **valency** of the metal
- E.g., sodium is a group 1 metal:
  - 2 Na + Cl<sub>2</sub> → 2 NaCl
- Calcium is a group 2 metal:
  - $Ca + Br_2 \rightarrow CaBr_2$
- The halogens **decrease** in **reactivity** moving down the group, but they still form halide salts with some metals including iron
- The rate of reaction is slower for halogens which are further down the group such as bromine and iodine





Page 7 of 14









Sodium donates its single outer electron to a chlorine atom and an ionic bond is formed between the positive sodium ion and the negative chloride ion

## **Hydrogen Halides**

- The halogens react with nonmetals to form simple molecular covalent structures
- For example, the halogens react with hydrogen to form **hydrogen halides** (e.g., hydrogen chloride)



Hydrogen chloride is a simple covalent molecules made by direct combination of hydrogen and chlorine



- Hydrogen halides are steamy acidic gases that dissolve very well in water to form strongly acidic solutions
- For example, hydrogen chloride gas dissolves in water to form hydrochloric acid:

#### $HCI(g) \rightarrow HCI(aq)$

• The other hydrogen halides will do the same, although strangely enough, hydrofluoric acid is actually a weak acid in water

## Trends in reactivity and stability

- Reactivity decreases down the group, so iodine reacts less vigorously with hydrogen than chlorine (which requires light or a high temperature to react with hydrogen)
- Fluorine is the most reactive (reacting with hydrogen at low temperatures in the absence of light)
- The hydrogen halides becomes less stable as you go down the group, so much so that hydrogen iodide decomposes quite readily on heating:

$$2HI(g) \neq H_2(g) + I_2(g)$$

 This pattern illustrates an important principle in chemistry about stability and reactivity: the more vigorous and energetic a reaction forming a compound is, the more stable in the product, and vice versa

## **Displacement Reactions**

- A halogen displacement reaction occurs when a more reactive halogen displaces a less reactive halogen from an aqueous solution of its halide
- The reactivity of group 7 elements decreases as you move down the group
- You only need to learn the displacement reactions with chlorine, bromine and iodine
  - Chlorine is the most reactive and jodine is the least reactive

#### Chlorine with Bromides & Iodides

- If you add chlorine solution to colourless potassium bromide or potassium iodide solution a displacement reaction occurs:
  - The solution becomes orange as bromine is formed or
  - The solution becomes brown as iodine is formed
- Chlorine is **above** bromine and iodine in group 7 so it is more reactive
- Chlorine will **displace** bromine or iodine from an aqueous solution of the metal halide:



$$CI_2 + 2KBr \rightarrow 2KCI + Br_2$$

chlorine + potassium bromide → potassium chloride + bromine

$$CI_2 + 2KI \rightarrow 2KCI + I_2$$

chlorine + potassium iodide → potassium chloride + iodine

#### **Bromine with lodides**

- Bromine is above iodine in group 7 so it is **more** reactive
- Bromine will displace iodine from an aqueous solution of the metal iodide

bromine + potassium iodide → potassium bromide + iodine

$$Br_2 + 2KI \rightarrow 2KBr + I_2$$

 This table shows a summary of the displacement reactions of the halogens: chlorine, bromine and iodine

|                             | Chlorine (Cl <sub>2</sub> )                                                  | Bromine (Br <sub>2</sub> )                                         | lodine (l <sub>2</sub> ) |
|-----------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------|
| Potassium chloride<br>(KCl) | ×                                                                            | No reaction                                                        | No reaction              |
| Potassium bromide<br>(KBr)  | Chlorine displaces the bromide ions. Yellow-orange colour of bromine is seen | ×                                                                  | No reaction              |
| Potassium iodide<br>(KI)    | Chlorine displaces the iodide ions. Brown colour of iodine is seen           | Bromine displaces the iodide ions:. Brown colour of iodine is seen | ×                        |

Copyright © Save My Exams. All Rights Reserved

- From this pattern of reaction we can predict that:
  - Fluorine will **displace** all other halogens from their compounds
  - Astatine will **be displaced** by all the halogens from its compounds
- Having said that, a statine is the rarest naturally occurring element so there is not enough around to actually test!





 $Head \ to \underline{www.savemyexams.com} \ for more \ awe some \ resources$ 



## **Examiner Tips and Tricks**

 $Displacement\ reactions\ are\ sometimes\ known\ as\ single\ replacement\ reactions.$ 



## Halogen Displacement & Redox

# Your notes

# **Halogen Displacement & Redox**

- Recall that oxidation and reduction take place together at the same time in the same reaction
- Oxidation is loss of electrons and reduction is the gain of electrons
- Halogen displacement reactions are **redox reactions**
- This can be seen if we analyse in more detail the displacement of iodine by chlorine in the following reaction:

$$CI_2 + 2KI \rightarrow 2KCI + I_2$$

chlorine + potassium iodide → potassium chloride + iodine

• The full ionic equation is:

$$CI_2 + 2K^+ + 2I^- \rightarrow 2K^+ + 2CI^- + I_2$$

■ The K<sup>+</sup> ions are **spectator ions** as they appear on both sides of the equation unchanged so can be eliminated. The net ionic equation is thus:

$$CI_2 + 2I^- \rightarrow 2CI^- + I_2$$

• If we now analyse each half equation, we can see that each chlorine atom has been **reduced** as an electron is **gained** on changing from the chlorine molecule to chloride ions:

$$Cl_2 + 2e^- \rightarrow 2Cl^-$$
 REDUCTION

Each iodide ion has been oxidised as an electron is lost on changing from iodide ions to the iodine molecule:

$$2I^- \rightarrow I_2 + 2e^-$$
 OXIDATION

• This shows that halogen displacement reactions are **redox processes** 



### **Examiner Tips and Tricks**

The more reactive halogen undergoes reduction, the less reactive one undergoes oxidation.



## **Group 7: Reactivity & Electronic Configurations**

# Your notes

## **Group 7: Reactivity & Electronic Configurations**

- When halogen atoms gain an electron during reactions, they form -1 ions called halide ions
- We can use electronic configuration to explain the trends in chemical reactivity down group 7









#### The atoms of the elements of group 7 all have 7 electrons in their outer shell

- Reactivity of group 7 non-metals decreases as you go down the group
  - As you go down group 7, the number of shells of electrons increases, the same as with all other groups
- However, halogen atoms form negative ions when they gain an electron to obtain a full outer shell
  - This means that the increased distance from the outer shell to the nucleus as you go down a group makes the halogens become less reactive
- Fluorine is the smallest halogen, which means its outermost shell is the **closest** to the positive nucleus of all the halogen
  - Therefore, the ability to attract an electron is strongest in fluorine making it the most reactive
  - As you move down the group, the forces of attraction between the nucleus and the outermost shell decreases



 $Head \, to \, \underline{www.savemyexams.com} \, for \, more \, awe some \, resources \,$ 

- This makes it **harder** for the atoms to gain electrons as you descend the group
- Therefore, the halogens are less reactive the further down the group you go





### **Examiner Tips and Tricks**

Exam questions on this topic occur often so make sure you know and can explain the reactivity trends of the group 7 elements in detail, using their electron configurations.