Group Members: Stephen Kuo, Derek Mui

Homework 1

1) In each of the following situations, indicate whether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

Answer:

2) Show that, if c is a positive real number, then $g(n)=1+c+c^2+\ldots+c^n$ is:

- (a) $\Theta(1)$ if c < 1
- (b) $\Theta(1)$ if c=1
- (c) $\Theta(1)$ if c > 1

Answer:

If c = 1, $g(n) = 1 + 1 + ... + 1 = n + 1 = \Theta(n)$. Otherwise:

$$g(n) = \frac{c^{n+1}-1}{c-1} = \frac{1-c^{n+1}}{1-c}$$

If c < 1, then $1 - c < 1 - c^{n+1} < 1$. So, $1 < g(n) < \frac{1}{1-c}$. Thus, $g(n) = \Theta(1)$

If
$$c > 1$$
, then $c^{n+1} > c^{n+1} - 1 > c^n$. So, $\frac{c^n}{1-c} < g(n) < \frac{c}{1-c} * c^n$. Thus, $g(n) = \Theta(c^n)$

3) Determine the number of Paths of length 2 in a complete graph of n nodes. Give your answer in Big-O notation as a function of n.

Answer: