$TD N^{\circ}8$

Éclatement primal-dual

Exercice 1 – Méthode d'UZAWA

Module B6

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, s.c.i. et propre. Soit $A: \mathcal{X} \to \mathcal{Y}$ un opérateur linéaire et $b \in \mathcal{Y}$. On considère le problème d'optimisation suivant :

$$\min_{\substack{x \in \mathcal{X} \\ A \, x - b \le 0}} J(x) \tag{$\mathcal{P}_{\text{Uzawa}}$}$$

- (a) Écrire le lagrangien \mathcal{L} associé au problème ($\mathcal{P}_{Uz_{AWA}}$). En déduire une formulation primale-duale du problème ($\mathcal{P}_{Uz_{AWA}}$).
- (b) Écrire le problème dual associé. Exprimer l'énergie duale à l'aide de J^* .
- (c) Caractériser les points-selles de \mathcal{L} . En déduire une condition d'optimalité pour les solutions ($\mathcal{P}_{U_{ZAWA}}$).

Exercice 2 - Convergence de la méthode d'Uzawa

Module B6, Lemme 1

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction fortement convexe, de module α , s.c.i. et propre. Soit $A: \mathcal{X} \to \mathcal{Y}$ un opérateur linéaire borné et $b \in \mathcal{Y}$. On considère le problème d'optimisation suivant :

$$\min_{\substack{x \in \mathcal{X} \\ A \, x - b \le 0}} J(x) \tag{$\mathcal{P}_{\text{Uzawa}}$}$$

Soit $((x_k, \lambda_k))_{k \in \mathbb{N}}$ une suite générée par la méthode d'Uzawa pour la résolution de (\mathcal{P}_{Uzawa}) . Soit $k \in \mathbb{N}$.

(a) Justifier que

$$-A^*\lambda_k \in \partial J(x_{k+1})$$

En déduire que

$$x_{k+1} = \nabla(J^*)(-A^*\lambda_k)$$

- (b) Réécrire les itérations de la méthode d'UZAWA sans les variables primales x_k . Quel algorithme reconnaît-on? Sous quelles hypothèses cet algorithme converge-t-il?
- (c) Justifier que la fonction

$$E: \lambda \mapsto J^*(-A^*\lambda) + \langle \lambda, b \rangle$$

est régulière et donner une estimation de la constante de LIPSCHITZ de ∇E .

- (d) En déduire une condition suffisante pour la convergence des variables duales λ_k de la méthode d'UZAWA vers un point λ^* .
- (e) Démontrer que, sous la condition établie à la question précédente, la suite des variables primales x_k de la méthode d'Uzawa converge vers un point x^* . Établir que

$$-A^*\lambda^* \in \partial J(x^*)$$

(f) En déduire que x^* est solution de $(\mathcal{P}_{U_{ZAWA}})$.

Exercice 3 - ADMM et méthode de DOUGLAS-RACHFORD

Module B6

Soit $f, g: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ deux fonctions convexes, s.c.i. et propres. Soit $A: \mathcal{X} \to \mathcal{Y}$ et $B: \mathcal{Z} \to \mathcal{Y}$ deux opérateurs linéaires bornés et $c \in \mathcal{Y}$. On considère le problème d'optimisation suivant :

$$\min_{\substack{(x,z)\in\mathcal{X}\times\mathcal{Z}\\A\ x+B\ z=c}} f(x) + g(x) \tag{$\mathcal{P}_{\mathrm{ADMM}}$}$$

Soit $((x_k, z_k, \lambda_k))_{k \in \mathbb{N}}$ une suite générée par l'ADMM pour la résolution de (\mathcal{P}_{ADMM}) . Soit $k \in \mathbb{N}$.

Pauline Tan

5MASO1: Méthodes du premier ordre pour l'optimisation non lisse et non convexe

- (a) Écrire le lagrangien \mathcal{L} et le lagrangien augmenté \mathcal{L}_{τ} associé au problème ($\mathcal{P}_{\mathrm{ADMM}}$). En déduire deux formulations primales-duales pour (\mathcal{P}_{ADMM}) .
- (b) Définir la fonction duale associée au lagrangien \mathcal{L} . L'exprimer en fonction de f^* , g^* , A^* et B^* .
- (c) Caractériser les solutions duales.
- (d) Caractériser au premier ordre le point z_{k+1} . En déduire que

$$z_{k+1} \in \partial(g^*)(-B^*\lambda_{k+1})$$

puis que

$$-B z_{k+1} \in F(\lambda_{k+1})$$

 $-B z_{k+1} \in F(\lambda_{k+1}) \qquad \text{avec } F = (g^*) \circ (-B^*)$

Enfin, montrer que

$$\lambda_{k+1} = \operatorname{prox}_{F/\tau}(p_k)$$
 avec $p_k = \lambda_{k+1} - \frac{1}{\tau} B z_{k+1}$

(e) Montrer de manière analogue que

$$p_{k+1/2} = \text{prox}_{G/\tau}(p_k - 2\lambda_{k+1})$$
 avec $p_{k+1/2} = \lambda_{k+1} + \frac{1}{\tau}(Ax_{k+2} + Bz_{k+1} - c)$

(f) Vérifier que

$$p_{k+1} - p_k = p_{k+1/2} - \lambda_{k+1}$$

Réécrire les itérations de l'ADMM avec les variables p_k , $p_{k+1/2}$, p_{k+1} et λ_{k+1} . Quel algorithme reconnaît-on? Quel problème résout-il?

Exercice 4 – Problèmes composites

Module B6, Proposition 5

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ et $g: \mathcal{Y} \to \mathbb{R} \cup \{+\infty\}$ deux fonctions convexes, s.c.i. et propres. Soit $A: \mathcal{Y} \to \mathcal{X}$ un opérateur linéaire borné. On considère le problème d'optimisation suivant :

$$\min_{x \in \mathcal{X}} f(Ax) + g(x) \tag{\mathcal{P}_{\text{C-P}}}$$

- (a) On suppose qu'il existe une solution primale x^* . Les caractériser au premier ordre.
- (b) Justifier que $\partial f(Ax^*)$ est non vide. Soit $p \in \partial f(Ax^*)$. Montrer que

$$-A^*p \in \partial g(x^*)$$

- (c) En utilisant la conjuguée convexe de f, proposer une formulation primale-duale n'impliquant aucune composition de fonctions.
- (d) Écrire le problème dual associé. Exprimer la fonction duale à l'aide de f^* , g^* et A^* .
- (e) Caractériser les solutions duales. En déduire que p est une solution duale.
- (f) Montrer que le problème primal-dual considéré vérifie la propriété de dualité forte.
- (g) En déduire que (x^*, p) est un point-selle d'une fonction que l'on précisera.