GB2312 标准汉字字库芯片

用户手册 DATASHEET

字型: 15X16 点阵

字符集: GB2312

ASCII: 6 套

排置方式: 竖置横排

总线接口: SPI 串行总线

芯片形式: SOT23-6 封装

1 概述

JLX-GB2312是一款内含15X16点阵的汉字库芯片,支持GB2312国标简体汉字(含有国家信标委合法授权)、ASCI1字符。排列格式为竖置横排。用户通过字符内码,利用本手册提供的方法计算出该字符点阵在芯片中的地址,可从该地址连续读出字符点阵信息。

1.1 芯片特点

· 数据总线: SPI 串行总线接口

· 点阵排列方式:字节竖置横排

· 时钟频率: 30MHz(max.) @3.3V

· 工作电压: 2.2V~3.6V

• 电流:

工作电流: 8mA 待机电流: 8uA

· 封装: SOT23-6

· 尺寸 SOT23-6: 2.9mmX1.6 mm x1.10mm

- 工作温度: -20℃~85℃

1.2 芯片内容

分类	字库内容	编码体系(字符集)	字符数
汉字及字符	15X16 点 GB2312 标准点阵字库	GB2312	6763+376
以于汉于的	8X16 点国标扩展字符 GB2312	GB2312	126
	5X7 点 ASCII 字符	ASCII	96
3	7X8 点 ASCII 字符	ASCII	96
ASCII 字符	8X16 点 ASCII 字符	ASCII	96
ASCIT 7-19	8X16 点 ASCII 粗体字符	ASCII	96
8	16 点阵不等宽 ASCII 方头 (Arial) 字符	ASCII	96
8	16 点阵不等宽 ASCII 白正 (TimesNewRoman) 字符	ASCII	96

字型样张

15X16点 GB2312 汉字

啊阿埃挨哎唉哀皑癌蔼矮艾 碍爱隘鞍氨安俺按暗岸胺案 肮昂盎凹敖熬翱袄傲奥懊澳 芭捌扒叭吧笆八疤巴拔跋靶 把耙坝霸罢爸白柏百摆佰败 拜稗斑班搬扳般颁板版扮拌

5x7点 ASCII 字符

!"#¥%&'()±+,-./0123456789: =>?@ABCDEFGHIJKLMNOPQRSTUV YZ[\]^ `abcdefghijklmnopqr

8x16点 ASCII 字符

!"#¥%&†()*+,-./012345 6789:;<=>?@ABCDEFGHIJK LMNOPQRSTUVWXYZ[\]^ \a

16 点阵不等宽 ASCII 方头

!"#\$%&'()*+,-./0123456789:;<=> DEFGHIJKLMNOPQRSTUVWX abcdefghijkImnoPqrstuvwxyz{

8x16 点国标扩展字符

!"#¥%&¹()*+,-./012345 6789:;<=>?@ABCDEFGHIJK LMNOPQRSTUVWXYZ[\]^ \a

7x8 点 ASCII 字符

†"#\$%&'()#+,-./01234 6789:;(=>?@ABCDEFGHIJ LMNOPQRSTUUWYZ[\]^_\ bcdefghijklmnopqrstuv 6789::(=>?@ABCDEFGHIJ

8x16点 ASCII 粗体字符

!"#\$%&'()*+,-./012345 9:;(=>?@ABCDEFGHIJKLM ijklmnopqrstuvwxyz{|}

16 点阵不等宽 ASCII 白正

|"#\$%&'()*+.-./0123456789 |,<=>?@ABCDEFGHIJKLM |cdefghijklmnopqrstuvwxyz(|)

2 引脚描述与接口连接

2.1 引脚配置

2.2 引脚描述

SOT23-6	名称	I/O	描述
1	SCLK	1	串行时钟输入(Serial clock input)
2	GND	18	地(Ground)
3	CS#I		片选输入(Chip enable input)
4	VCC		电源(+ 3.3V Power Supply)
5	SO	3	串行数据输出 (Serial data output)
6	SI		串行数据输入 (Serial data input)

串行数据输出(SO):该信号用来把数据从芯片串行输出,数据在时钟的下降沿移出。串行数据输入(SI):该信号用来把数据从串行输入芯片,数据在时钟的上升沿移入。串行时钟输入(SCLK):数据在时钟上升沿移入,在下降沿移出。

片选输入(**CS#**): 所有串行数据传输开始于CS#下降沿, CS#在传输期间必须保持为低电平, 在两条 指令之间保持为高电平。

2.3 HOST CPU 主机 SPI 接口电路示意图

SPI 与主机接口电路连接可以参考下图。

HOST CPU 主机 SPI 接口电路示意图

3操作指令

3.1 指令参数

Instruction Set

Instruction	Description	Instruct Code(One-	Charles and the second	Address Bytes	Dummy Bytes	Data Bytes
READ	Read Data Bytes	0000 0011	03 h	3	-	1 to ∞
FAST_READ	Read Data Bytes at Higher Speed	0000 1011	0B h	3	1	1 to ∞

所有对本芯片的操作只有 2 个,那就是 Read Data Bytes (READ "一般读取")和 Read Data Bytes at Higher Speed (FAST_READ "快速读取点阵数据")。

3.2 Read Data Bytes (一般读取)

Read Data Bytes 需要用指令码来执行每一次操作。READ 指令的时序如下(图):

- ■首先把片选信号(CS#)变为低,紧跟着的是 1 个字节的命令字(03 h)和 3 个字节的地址和通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上升沿被锁存。
- ■然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- ■读取字节数据后,则把片选信号(CS#)变为高,结束本次操作。 如果片选信号(CS#)继续保持为低,则下一个地址的字节数据继续通过串行数据输出引脚(SO) 移位输出。

图: Read Data Bytes (READ) Instruction Sequence and Data-out sequence:

3.3 Read Data Bytes at Higher Speed (快速读取点阵数据)

Read Data Bytes at Higher Speed 需要用指令码来执行操作。READ_FAST 指令的时序如下(图):

- ■首先把片选信号(CS#)变为低,紧跟着的是 1 个字节的命令字(0B h)和 3 个字节的地址 以及一个字节 Dummy Byte 通过串行数据输入引脚(SI)移位输入,每一位在串行时钟(SCLK)上 升沿被锁存。
- ■然后该地址的字节数据通过串行数据输出引脚(SO)移位输出,每一位在串行时钟(SCLK)下降沿被移出。
- ■如果片选信号(CS#)继续保持为低,则下一个地址的字节数据继续通过串行数据输出引脚(SO)移位输出。例:读取一个 15x16 点阵汉字需要 32Byte,则连续 32 个字节读取后结束一个汉字的点阵数据读取操作。

如果不需要继续读取数据,则把片选信号(CS#)变为高,结束本次操作。

CS#

SCLK

| SCLK | SCLK | SCLK | School | Schoo

4 电气特性

4.1 绝对最大额定值

Symbol	Parameter	Min.	Max.	Unit	Condition
TOP	Operating Temperature	-20	85	°C	36
T _{STG}	Storage Temperature	-65	150	°C	
VCC	Supply Voltage	-0.3	3.6	V	
V _{IN}	Input Voltage	-0.3	VCC+0.3 V	1	
GND	Power Ground	-0.3	0.3	V	

4.2 DC 特性

Condition: T_{OP} =-20°C to 85°C, GND=0V

Symbol	Parameter	Min.	Max.	Unit	Condition
IDD	VCC Supply Current(active)		8	mA	
I _{SB}	VCC Standby Current	8	8	uA	98
V _{IL}	Input LOW Voltage	-0.3	0.3VCC	V	
VIH	Input HIGH Voltage	0.7VCC	VCC+0.4	V	
V _{OL}	Output LOW Voltage		0.4 (I _{OI} =1.6mA)	V	VCC=2.2~3.6V
V _{oh}	Output HIGH Voltage	0.8VCC (I _{OH} =-100uA)	V		VCC=2.2~3.6V
lu	Input Leakage Current	0	2	uA	
ILO	Output Leakage Current	0	2	uA	7

Note: I_{IL} : Input LOW Current, I_{IH} : Input HIGH Current,

IoL: Output LOW Current, IoH: Output HIGH Current,

4.3 AC 特性

Symbol Al	. Paramete	er	Min. N	Max. Unit	
Fc	Fc	Clock Frequency	D.C.	30	MHz
tch	tclh	Clock High Time	15		ns
tcl	tcu	Clock Low Time	15		ns
tclch		Clock Rise Time(peak to peak)	0.1		V/ns
tchcl		Clock Fall Time (peak to peak)	0.1		V/ns
tslch	tcss	CS# Active Setup Time (relative to SCLK)	5		ns
tchsl		CS# Not Active Hold Time (relative to SCLK)	5		ns
tovch	tosu	Data In Setup Time	2		ns
tchdx	ton	Data In Hold Time	5		ns
tchsh		CS# Active Hold Time (relative to SCLK)	5		ns
t shch		CS# Not Active Setup Time (relative to SCLK)	5		ns
t SHSL	tcsh	CS# Deselect Time	100		ns
t shoz	tois	Output Disable Time		9	ns
tcLQV	tv	Clock Low to Output Valid		9	ns
t CLQX	tho	Output Hold Time	0		ns

Output Timing

5 封装尺寸

SOT23-6 Package

θ	T	e	E1	H	D	A3	A2	Al	Α	or moon	SYMBOL
0	0.30	_	1.40	2.60	2.72	0.55	1.00	0.04	1	MIN	M
1	1	0.95BS(1.60	2.80	2.92	0.65	1.10	0.07	1	NOM	LLIME
%	0.60	С	1.80	3.00	3.12	0.75	1.20	0.10	1.30	MAX	ΓER

SOT23-6 封装

6 字库调用方法

6.1 汉字点阵排列格式

每个汉字在芯片中是以汉字点阵字模的形式存储的,每个点用一个二进制位表示,存 1 的点,当显示时可以在屏幕上显示亮点,存 0 的点,则在屏幕上不显示。点阵排列格式为竖置横排:即一个字节的高位表示下面的点,低位表示上面的点(如果用户按 16bit 总线宽度读取点阵数据,请注意高低字节的序),排满一行后再排下一行。这样把点阵信息用来直接在显示器上按上述规则显示,则将出现对应的汉字。

6.1.1 15X16 点汉字排列格式

15X16 点汉字的信息需要 32 个字节(BYTE 0 - BYTE 31)来表示。该 15X16 点汉字的点阵数据是竖置横排的,其具体排列结构如下图:

6.1.2 5X7 点 ASCII 字符排列格式

5X7 点 ASCII 的信息需要 8 个字节(BYTE 0 - BYTE7)来表示。该 ASCII 点阵数据是竖置横排的,其具体排列结构如下图:

6.1.3 7X8 点 ASCII 字符排列格式

7X8 点 ASCII 的信息需要 8 个字节(BYTE 0 - BYTE7)来表示。该 ASCII 点阵数据是竖置横排的,其具体排列结构如下图:

6.1.4 8X16 点字符排列格式

适用于此种排列格式的字体有:

8X16 点 ASCII 字符

8X16 点 ASCII 粗体字符

8X16 点国标扩展字符

8X16 点字符信息需要 16 个字节(BYTE 0 - BYTE15)来表示。该点阵数据是竖置横排的,其具体排列结构如下图:

6.1.5 16 点阵不等宽 ASCII 方头(Arial)、白正(Times New Roman)字符排列格式 16 点阵不等宽字符的信息需要 34 个字节(BYTE 0 - BYTE33)来表示。

■ 存储格式

由于字符是不等宽的,因此在存储格式中 BYTE0~ BYTE1 存放点阵宽度数据,BYTE2-33 存放竖置横排点阵数据。具体格式见下图:

■ 存储结构

不等宽字符的点阵存储宽度是以 BYTE 为单位取整的,根据不同字符宽度会出现相应的空白区。根 BYTE0~ BYTE1 所存放点阵的实际宽度数据,可以对还原下一个字的显示或排版留作参考。

例如: ASCII 方头字符 B

0-33BYTE 的点阵数据是: 00 0C 00 F8 F8 18 18 18 18 18 F8 F0 00 00 00 00 00 00 7F 7F 63

63 63 63 63 67 3E 1C 00 00 00 00 00

其中:

BYTE0~BYTE1: 00 0C 为 ASCII 方头字符 B 的点阵宽度数据,即: 12 位宽度。字符后

面有 4 位空白区,可以在排版下一个字时考虑到这一点,将下一个字的起始位置前移。

BYTE2-33: 00 F8 F8 18 18 18 18 18 F8 F0 00 00 00 00 00 00 7F 7F 63 63 63 63 63 67 3E 1C 00 00 00 00 00 为 ASCII 方头字符 B 的点阵数据。

6.2 汉字点阵字库地址表

	字库内容	编码体系	码位范围	字符数	起地址	结 地 址	参
1	15X16 点 GB2312 标准点阵字库	GB2312	A1A1-F7 FE	6763+376	00000	3B7BF	6.3.1.1
2	7X8点 ASCII 字符	ASCII	20~7F 96		66C0	69BF	6.3.2.2
3	8X16 点国标扩展字符	GB2312	AAA1-A BC0	126	3B7D0	3BFBF	6.3.1.2
4	8X16 点 ASCII 字符	ASCII	20~7F	96	3B7C0	3BFBF	6.3.2.3
5	5X7点 ASCII 字符 ASCII		20~7F	96	3BFC0	3C2BF	6.3.2.1
6	16 点阵不等宽 ASCII 方头 (Arial) 字符	ASCII	20~7F	96	3C2C0	3CF7F	6.3.2.4
7	8X16 点 ASCII 粗体字符 ASCII		20~7F	96	3CF80	3D57F	6.3.2.5
8	16 点阵不等宽 ASCII 白正 (TimesNewRoman)字符	ASCII	20~7F	96	3D580	3E23F	6.3.2.6

6.3 字符在芯片中的地址计算方法

用户只要知道字符的内码,就可以计算出该字符点阵在芯片中的地址,然后就可从该地址连续读出 点阵信息用于显示。

6.3.1 汉字字符的地址计算

6.3.1.1 15X16 点 GB2312 标准点阵字库 参数说明:

GBCode表示汉字内码。

MSB 表示汉字内码GBCode 的高8bits。

LSB 表示汉字内码GBCode 的低8bits。

Address 表示汉字或ASCII字符点阵在芯片中的字节地址。

BaseAdd: 说明点阵数据在字库芯片中的起始地址。

计算方法:

BaseAdd=0:

if(MSB ==0xA9 && LSB >=0xA1)

Address = (282 + (LSB - 0xA1))*32+BaseAdd;

else if(MSB >=0xA1 && MSB <= 0xA3 && LSB >=0xA1)

Address = ((MSB - 0xA1) * 94 + (LSB - 0xA1))*32+ BaseAdd;

else if(MSB >=0xB0 && MSB <= 0xF7 && LSB >=0xA1)

Address = ((MSB - 0xB0) * 94 + (LSB - 0xA1)+ 846)*32+ BaseAdd;

6.3.1.2 8X16 点国标扩展字符

说明:

BaseAdd: 说明本套字库在字库芯片中的起始字节地址。

FontCode: 表示字符内码 (16bits)

ByteAddress: 表示字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x3b7d0

if (FontCode>= 0xAAA1) and (FontCode<=0xAAFE) then

ByteAddress = (FontCode-0xAAA1) * 16+BaseAdd

Else if(FontCode>= 0xABA1) and (FontCode<=0xABC0) then

ByteAddress = (FontCode-0xABA1 + 95) * 16+BaseAdd

6.3.2 ASCII 字符的地址计算

6.3.2.1 5X7 点 ASCII 字符

参数说明:

ASCIICode:表示 ASCII 码(8bits) BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x3bfc0

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 8+BaseAdd

6.3.2.2 7X8 点 ASCII 字符

参数说明:

ASCIICode:表示 ASCII 码(8bits) BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。 计算方法:

BaseAdd=0x66c0

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then

Address = (ASCIICode -0x20) * 8+BaseAdd

6.3.2.3 8X16 点 ASCII 字符

说明:

ASCIICode:表示 ASCII 码(8bits) BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。 计算方法:

BaseAdd=0x3b7c0

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 16+BaseAdd

6.3.2.4 16 点阵不等宽 ASCII 方头 (Arial) 字符 说明:

ASCIICode:表示 ASCII 码(8bits) BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。 计算方法:

BaseAdd=0x3c2c0

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 34 + BaseAdd

6.3.2.5 8X16 点 ASCII 粗体字符

说明:

ASCIICode:表示 ASCII 码(8bits) BaseAdd:说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。 计算方法:

BaseAdd=0x3cf80

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 16+BaseAdd

6.3.2.6 16 点阵不等宽 ASCII 白正(Times New Roman)字符 说明:

ASCIICode: 表示 ASCII 码 (8bits)

BaseAdd: 说明该套字库在芯片中的起始地址。 Address: ASCII 字符点阵在芯片中的字节地址。

计算方法:

BaseAdd=0x3d580

if (ASCIICode >= 0x20) and (ASCIICode <= 0x7E) then Address = (ASCIICode -0x20) * 34 + BaseAdd

7 附录

7.1 GB2312 1 区 (376 字符)

GB2312 标准点阵字符 1 区对应码位的 A1A1~A9EF 共计 376 个字符;

GB2312 1 ⊠

1.1	0	1	2	3	4	ő	6	7	8	9	Α	В	C	D	E	F
Α				0	•	-	~		"	ヤ	_	~		•••	"	,
В	"	"	()	<	>	«	>	٦	J	r	J	[]	ľ	1
C	±	×	÷	:	Λ	V	Σ	П	U	\cap	\in	::	1	\perp	11	Z
D	^	0	l	∮	=	\simeq	≈	S	∞	#	≮	≯	<	\geq	∞	::
E	٠.	\$	우	۰	'	"	\mathbb{C}	\$	Ø	Ø	£	%	§	Νo	公	*
	_	_	_		-			A		1.0	-			1	=	
F	O	•	0	\Diamond	•	Ш		Δ		×	\rightarrow	←	1	4	=	
F	0	•	0	\Diamond	•	Ш		Δ	A	ж.	→	←	<u>T</u>	\	=	
F 12	0	1	2	3	4	5	6	Δ 7	8	9	→	←	С	Ð	Е	F
	0	1	_	3	4	5	6	7						D	E	F
12	0	1 1.	_	3 3.	4 4.	5.	6	7 7.		9	Α		С		E 14.	
\2 A		1 1. 17.	2	3.	4 4. 20.	5.		-	8.	9.	A 10.	В	С		14.	Ĺ
A2 A B			2	3. 19.		5. (1)	6. (2)	(3)	8	9.	A 10.	В	c 12.	13.	14.	15. (11)
A2 A B		17.	2 2. 18.	3. 19.	20.	5. (1)	6. (2)	(3)	8. (4) (20)	9 9. (5)	л 10. (6) ②	в 11. (7)	c 12. (8)	13. (9) (§)	14. (10)	15. (11)

Λ3	0	1	2	3	4	5	6	7	8	9	Λ	В	C	D	E	F
A		!	"	#	¥	%	&	7	()	*	+	,	-		7
В	0	1	2	3	4	5	6	7	8	9	:	,	<	=	>	?
C	a	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0
D	P	Q	R	S	Т	U	V	W	Х	Y	Z	[/]	^	
E	'	а	b	С	d	е	f	g	h	i	j	k	ι	m	n	0
F	р	q	r	s	t	u	٧	W	×	У	z	{	Т	}	_	Г

Α9	0	1	2	3	4	5	6	7	8	9	Λ	В	С	D	E	F
A					_	_	1	I			1	ŀ			1	1
В	Г	г	г	г	٦	٦	٦	٦	L	L	L	L	7	_	7	_
С	F	H	F	F	H	H	F	F	Н	Н	+	4	Η	4	4	H
D	Т	_	一	_	Т	т	Т	т	上	1	_	1	1	1	1	1
Е	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
F																

7.2 8×16 点国标扩展字符(126 字符)

内码组成为 AAA1~ABC0 共计 126 个字符

AA 0 1 2 3 4 56789ABC D E F

AB 0 1 2 3 4 56789ABC D E F

