东北大学考试试卷(B/闭卷)

2022-2023 学年 秋季 学期

课程名称: 概率论与数理

说明: 样本方差 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$, $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$.

上分位数: $t_{0.05}(8) = 1.86$, $t_{0.025}(8) = 2.31$, $t_{0.05}(9) = 1.83$, $t_{0.025}(9) = 2.26$, $\chi_{0.95}^2(9) = 3.33$,

 $\chi_{0.05}^2(9) = 16.92$, $\chi_{0.05}^2(8) = 15.51$, $\chi_{0.05}^2(8) = 2.73$.

一、计算题(8小题,每小题5分,共40分)

1. 设 A 和 B 为随机事件, P(A) = 0.6, P(B) = 0.5, P(A|B) = 0.4, 求 $P(A \cup \overline{AB})$.

2. 随机变量(X, Y)服从二维正态分布 N(1, 2, 4, 9, -0.5), 求 E(XY). 3. 袋子里装着比赛用的乒乓球,每局比赛都随机取一球,每局比赛后将用过的球放

回袋子。若袋子中有5个球,其中3个新球2个旧球,求在已知第二局取到是新 球的条件下,第一局取到也是新球的概率。

变量 Y的概率密度函数 $f_{\nu}(y)$.

4. 随机变量 X 的概率密度函数 $f_X(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他} \end{cases}$ 随机变量 $Y = X^2$,求随机

5. 随机变量 X 服从均匀分布 U(0,2), 用切比雪夫不等式估算概率 P(|X-1|<2). 6. 随机变量 X, Y 相互独立,分别服从二项分布 B(2, p), B(1, p),并且 $P(X > 1) = \frac{1}{2}$

若随机变量 Z=max(X, Y), 求 Z 的分布律。 7. 设 X_1, X_2, X_3, X_4 是来自正态总体 N(0, 4)的简单随机样本,常数 a, b 取何值时使

得随机变量 $Y = a(X_1 - 2X_2)^2 + b(2X_1 - 3X_2)^2$ 服从自由度为 2 卡方分布。

8. 某商店每周售出的某种贵重商品的数量服从泊松分布 P(2), 每周售出该商品的数 量是独立的,用中心极限定理估算50周内至少卖出120件该商品的概率。

二、计算题(3小题,每小题6分,共18分) 袋子中有2个红球,3个白球,现从袋子中无放回取3次球,随机变量 X表示取到的 白球总数, Y表示第三次取到的白球个数, 求:

总分 Ξ 四 五

- 随机变量(X, Y)的联合分布律;

3. 随机变量(X, Y)的协方差.

三、计算题(3小题,每小题6分,共18分)

1. 常数 A 及概率 P(Y ≤ X);

2. 边缘概率密度函数 $f_{v}(x)$ 与条件概率密度函数 $f_{vv}(y|x)$;

3. 随机变量 Z=min(X, Y)的概率密度函数 $f_z(z)$.

四、计算题(2小题,每小题6分,共12分)

某电解质溶液中电解质浓度(单位: $mol.kg^{-1}$) 服从正态分布 $N(\mu,\sigma^2)$, 现随机抽取 9 份

样品, 测得电解质浓度的样本均值 $\bar{x}=1.2$, 样本方差 $s^2=0.16$, 求:

1. 在显著性水平 $\alpha = 0.05$ 下,是否可以认为该电解质溶液浓度的均值 $\mu = 1.4$; 2. 该电解质溶液浓度方差 σ^2 的置信水平为 95%的置信上限(保留两位小数)。

五、计算题(2小题,每小题6分,共12分)

已知总体 X 的分布律为

X $(1-\theta)^2$ $2\theta(1-\theta)$

参数 $\theta(0 < \theta < 1)$ 未知, 现从总体 X 中随机抽取容量为 n 的简单随机样本, 其中样本中有 n_0 个 0, n, 个 1, n, 个 2, 求: 1. 参数 θ 的矩估计:

2. 参数 θ 的最大似然估计。

东北大学考试试卷(B闭卷)

2022—2023 学年春季学期

课程名称: 概率论与数理统计

一. 计算题 (共3小题, 每小题6分, 共18分)

- 1.设 A,B,C 是随机事件。 A 与 C 互不相容。 $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(C) = \frac{1}{3}$, $P(A \cup B) = \frac{2}{3}$,求 $P(AB \mid \overline{C})$ 。
- 2. 设 A, B 两工厂产品的次品率分别为 1%和 2%,先从由 A 和 B 的产品分别占 60%和 40%的 一批产品中随机抽取一件,发现是次品,问该次品是由哪家工厂生产的可能性大。
- 3. 设随机变量 $X \sim P(\lambda)$, P(X=1) = P(X=2), 求 $P(0 < X^2 < 3)$ 。

二. 计算题 (共3小题, 每小题6分, 共18分)

俏。

- 1. 设 \varLambda, B 为随机事件,且 $P(A) = \frac{1}{4}, P(B \mid A) = \frac{1}{3}, P(A \mid B) = \frac{1}{2}$,令 $X = \begin{cases} 1, A$ 发生 0, A 不发生, $Y = \begin{cases} 1, B$ 发生 0, B 不发生, 求二维随机变量 (X, Y) 的联合分布律。
- 2.已知随机变量 $X \sim N(\mu, \sigma^2)$, 随机变量 $Y = e^X$, 求 Y 的密度函数。
- 3. 设总体 X 的密度函数为 $f(x;\theta) = \begin{cases} \frac{2x}{3\theta^2}, \theta < x < 2\theta \\ 0, 其它 \end{cases}$ (其中 $\theta(\theta > 0)$ 是未知参数),

 X_1,X_2,\cdots,X_n 为来自总体 X 的简单随机样本,若 $a\sum_{i=1}^n X_i^2$ 是 θ^2 的无偏估计,求参数 a 的

三. 计算题 (共3小题, 每小题6分, 共18分)

1. 设随机变量 $X_1,X_2,\cdots,X_n(n>1)$ 独立同分布、且其方差为 σ^2 、令 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ 、 求

 $D(X_1 - \overline{X}) \cap Cov(X_1, \overline{X})$.

- 2. 某学校有5000名学生,每人以20%的概率去图书馆自习,图书馆应至少设多少个座位, 才能以95%的概率保证去上自习的同学都有座位?
- 3. 设总体 X 服从指数分布 E(1), $X_1, X_2, \cdots X_5$ 是来自总体 X 的简单随机样本,求

 $P(\min\{X_1, X_2, \dots X_5\} < \frac{1}{2}).$

四、计算题 (共3小题,每小题6分,共18分)

设二维随机变量 (X,Y) 的联合密度函数为 $f(x,y) = \begin{cases} \frac{x+y}{3}, 0 < x < 1, 0 < y < 2 \\ 0, 其它 \end{cases}$

- 1. 求 $f_X(x)$, $f_Y(y)$. 并判断随机变量 X,Y 的独立性;
- 2. 求 $f_{Y|X}(y|x)$ 和 $f_{X|Y}(x|y)$:
- 3.. 求 Z = X + Y 的密度函数。

五. 计算题 (每题7分,共14分)

- 1. 已知一批罐头的重量 X (单位: 千克) 服从正态分布 $N(\mu, \sigma^2)$ (其中 μ, σ^2 均未知). 从中随机地抽取 11 听罐头,得到重量的平均值为 1 (千克),标准差为 0.5 (千克),求 σ^2 的置信水平为 0.95 的置信区间。(计算结果保留两位小数)
- 2. 某化工厂生产化学制品的日产量 X(吨)服从正态分布 $N(\mu,\sigma^2)$,当设备正常工作 Hol 天的产量为800吨,现测得五天产量的平均值为790吨,标准差为7吨,在显著性水平 $\alpha = 0.05$ 下,是否可以认为该设备处于正常工作状态?

六. 计算题 (每题7分,共14分)

设总体 X 的密度函数为 $f(x;\theta) = \frac{1}{2\theta}e^{\frac{|y|}{\theta}}$, 其中 $\theta > 0$ 为未知参数、 $X_1,...,X_n$ 是来自 X 的简单 随机样本。

- 1. 求参数 θ 的矩估计。
- 2. 求参数 θ 的最大似然估计。

试卷中可能用到的上分位数及其它数值:

 $\Phi(1)\approx 0.8413 \ , \quad \Phi(2)\approx 0.9772 \ , \quad z_{0.05}\approx 1.645 \ , \quad z_{0.025}\approx 1.96 \ , \quad t_{0.025}(4)\approx 2.78 \ ,$

 $t_{0.025}(5) \approx 2.57$, $t_{0.05}(4) \approx 2.13$, $t_{0.05}(5) \approx 2.02$, $\chi_{0.025}^2(10) \approx 20.48$, $\chi_{0.975}^2(10) \approx 3.25$,

 $\chi^2_{0.025}(11) \approx 21.92$. $\chi^2_{0.975}(11) \approx 3.81$, $\sqrt{5} \approx 2.236$

东北大学考试试卷 (B/闭卷)

2022-2023 学年春季学期

课程名称: 高等数学①(二)

一、填空题 (每题3分,共15分)

2. 微分方程的
$$\frac{dy}{dx} = e^{x-y}$$
 通解为______.

- 3. 曲面 $e^{z} z + xy = 3$ 在点(2, 1, 0)处的切平面方程是______
- 4. 交换二次积分 $\int_0^1 dx \int_{z-\sqrt{1-x^2}}^{x+1} f(x,y)dy$ 的积分次序______.
- 二、(每题5分,共10分)
- 1. 已知三角形顶点 A(1,-1,2), B(5,-6,2), C(1,3,-1), 计算 AC 边上高的长度.
- 2. 计算二重积分 $\iint_D x \sqrt{y} dx dy$,其中 D 是由两条抛物线 $y = \sqrt{x}$, $y = x^2$ 所围成. 三、(每题 6 分,共 18 分)
- 1. 求过点(-1,2,3) 垂直于直线 $\frac{x}{4} = \frac{y}{5} = \frac{z}{6}$ 而与平面 7x + 8y + 9z + 10 = 0 的 平行的直线方程.
- 2. 计算累次积分 $I = \int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy$.
- 3. 求微分方程 $y'' + 3y' + 2y = 3xe^x$ 的通解.

四、(每题6分,共18分)

1. 设 $u = f(x^2 + y^2, z)$, f 具有二阶连续偏导数,而 z = z(x, y) 由方程

$$x+y-z=e^z$$
确定,求 $\frac{\partial^2 u}{\partial x \partial y}$.

=	111	四	五	六	七	八	九	+

2. 设曲面 $\Sigma:|x|+|y|+|z|=1$,求 $\iint_{\Sigma}(x+|z|)dS$.

3. 求函数
$$u = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$
 在点 (1,2,-2) 处沿曲线
$$\begin{cases} x = t \\ y = 2t^2 \end{cases}$$
 在该点处的与参数增
$$z = -2t^4$$

大方向一致的切向量的方向导数.

五、(6 分) 计算 $I=\iint_{\Sigma}2x^3dydz+2y^3dzdx+3(z^2-1)dxdy$,其中 Σ 为曲面 $z=1-x^2-y^2(z\geq 0)$ 的上侧.

六、(7分)设f(x)可导,且f(z)=1,试求f(x),使

 $I = \int_{AB} [\sin x - f(x)] \frac{y}{x} dx + f(x) dy$ 与路径无关,并求 A, B 两点坐标分别为

(1,0), (元,元) 时的曲线积分.

七、(7 分)求曲线 $x^3 + y^3 - xy = 1(x \ge 0, y \ge 0)$ 上的点到原点的最长和最短距离.

八、 $(7 \, \mathcal{G})$ 设薄片所占的区域是介于两个圆 $\rho = a \cos \theta, \rho = b \cos \theta (0 < a < b)$ 之间的平面闭区域,求该薄片($\rho = 1$)的质心.

九、(7分)设 A(1,2),B(3,4),质点 P沿着以 AB 为直径的半圆周按逆时针从 A运动到 B的过程中受到力 \vec{F} 的作用, \vec{F} 的大小等于点 P与原点 O之间的距离,其方向垂直于线段 OP 且与 y 轴正向的夹角小于 $\frac{\pi}{2}$,求变力 \vec{F} 对质点 P 所做的功.

十、(5分) 试证: $z=\sqrt{|xy|}$ 在点 (0,0) 处连续,偏导数存在,但是不可微分.