Problem

Alice likes all the numbers which are divisible by A. Bob does **not** like the numbers which are divisible by B and likes all the remaining numbers. Determine the smallest number **greater than or equal to** N which is liked by both Alice and Bob. Output -1 if no such number exists.

Input Format

- ullet The first line contains a single integer T the number of test cases. Then the test cases follow.
- The first and only line of each test case contains three space-separated integers A, B and N the parameters mentioned in the problem statment.

Output Format

For each test case, output the smallest number $\geq N$ which is divisible by A and is **not** divisible by B. Output -1 if no such number exists.

Constraints

- $1 \le T \le 1000$
- $1 \le A, B, N \le 10^9$

Sample 1:

Input	Output
3	15
5 2 11	28
4 3 24	-1
7 7 100	

Explanation:

Test case 1: 15 is the smallest number ≥ 11 which is divisible by 5 and is not divisible by 2.

Test case 2: 28 is the smallest number ≥ 24 which is divisible by 4 and is not divisible by 3.

Test case 3: There does not exist any number which is divisible by A=7 and is not divisible by B=7.

Problem

Alice likes all the numbers which are divisible by A. Bob does **not** like the numbers which are divisible by B and likes all the remaining numbers. Determine the smallest number **greater than or equal to** N which is liked by both Alice and Bob. Output -1 if no such number exists.

Input Format

- ullet The first line contains a single integer T the number of test cases. Then the test cases follow.
- The first and only line of each test case contains three space-separated integers A, B and N the parameters mentioned in the problem statment.

Output Format

For each test case, output the smallest number $\geq N$ which is divisible by A and is **not** divisible by B. Output -1 if no such number exists.

Constraints

- $1 \le T \le 1000$
- $1 \le A, B, N \le 10^9$

Sample 1:

Input	Output
3	15
5 2 11	28
4 3 24	-1
7 7 100	

Explanation:

Test case 1: 15 is the smallest number ≥ 11 which is divisible by 5 and is not divisible by 2.

Test case 2: 28 is the smallest number ≥ 24 which is divisible by 4 and is not divisible by 3.

Test case 3: There does not exist any number which is divisible by A=7 and is not divisible by B=7.