Task 5: Operational Amplifiers: Feedback and Stability

Optical Uplink

Joseph Arsenault Ryan Dufour Phil Robb

Abstract

The design, simulation and construction of a differential amplifier circuit (developed in task 4) with feedback is described. In this task a multistage op-amp with a class B output amplifier will be developed, simulated and constructed. The required differential voltage gain for this circuit is $200 \frac{V}{V}$ while driving the smallest load possible. The uncompensated unity gain is required to be larger than 150 kHz. The gain was measured at 63.3 dB while unloaded. The smallest value for the load resistor which caused a 3 dB drop in gain was found to be 900 Ω , with a gain measured at 61.3 dB. The unity gain uncompensated unity gain frequency was measured at 2 MHz.

Electrical and Computer Engineering
University of Maine
ECE - 343
April 22, 2018

Contents

1	Introduction	1
2	Circuit Development	1
3	Experimental Implementation	4
4	Discussion	4
5	Conclusion	5

List of Figures

1	Simulated Circuit	2
2	Sweep values of load resistor vs gain	3
3	Gain with 900 Ω load resistance	3
4	Phase plot with 900 Ω load resistance	4
List	of Tables	
1	Voltage amplifier specifications	1
2	Current values from simulated circuit	4
3	Current values from simulated circuit	4
4	BJT and NMOS comparison	5

1 Introduction

This report describes design, implementation and test of two voltage amplifiers. One consisting of negative metal oxide semconducting field effect transistors (NMOS). The other comprised of bipolar junction transistors. Figure ?? demonstrates where in the optical uplink project the voltage amplifier is placed.

The voltage amplifier is required by the optical uplink project. The output signal from the multi-feedback bandpass filter (MFBP) is in the hundreds of millivolt range. In order to make a more easily detectable signal, a voltage amplifier is required. This can achieved through the use of either a common source or common emitter amplifier. The specifications for this lab are summarized in Table 1.

Specifications	Required
Peak gain, with load	$21 \text{ dB} \pm 1 \text{dB}\%$
Bias current for N ₁	1mA
Lower cut-off frequency	≥100 mA
Upper cut-off frequency	at least 200 kHz
R_{in} , small signal	at least 1 $M\Omega$
R_{out} , small signal	at least 3 k Ω
2^{nd} Harmonic distortion @ 1kHz	<2%
Supply voltages	±12 V

Table 1: Voltage amplifier specifications

The voltage amplifier circuit receives the voltage signal from the MFBP and increases the amplitude of the voltage wavefrom. The desired final output being 5 V. This is achieved with either the use of a NMOS common source amplifier or an NPN BJT common emitter amplifier.

Section 2 of this report describes the design and simulations of the common source amplifier and the common emitter amplifier. Experimental results are addressed in section 3. A discussion of the results, sources of error, and areas of possible improvement are outlined in section 4. Section 5 concludes this report.

2 Circuit Development

This section covers the design choices associated with the actively loaded differential amplifier with cascoded current mirror and a class B amplifier for an output stage. Frequency compensation will also be considered in the development to ensure stability.

The circuit that was developed in task 4 will be used for the purposes of this circuit development section. The output stage will be added in this task which will be a class B amplifier. The class B amplifier will consist of a 2n3904 NPN BJT and a 2n3906 PNP BJT. The simulations were conducted in Microcap 10. As these schematics are difficult to read, a set of schematics with identical values and components were created in Eagle by Autodesk. The simulated schematic can be seen in Figure 1 below.

Figure 1: Simulated Circuit

The value of 13 k Ω was taken from the previous lab which gave a reference current of 401 μ A. There are several specifications to meet, or at least come near for the completion of this task. The unity gain frequency should be above 150 kHz. A small load resistance of 500 Ω or less should cause a drop of 3 dB from the unloaded gain. Lastly, the gain needs to be high than 200 $\frac{V}{V}$ or 46 dB. The equation for closed loop gain is shown below in equation 1.

$$A_f(j\omega) = \frac{x_o}{x_i} = \frac{A_f(j\omega)}{1 + A_f(j\omega)\beta}$$
 (1)

The part of the denominator, $A_f(j\omega)\beta$ is the actual loop gain for the amplifier, which it is much greater than one, then the closed loop gain is approximately $\frac{1}{\beta}$. The value of β in this case was found to be $21\frac{V}{V}$. The value for the resistor at the source of the ALD1106 NMOS, RS, was found to be 1.1k in the previous lab, and yielded similar results for this simulation, as it gave the appropriate offset nulling at the base of the BJTs at approximately zero volts. This will allow the amplifier to have it's maximum amount of gain.

The output of the amplifier met the specifications as it was simulated to have a 63.3 dB gain. To find the smallest load resistor that the amplifier could drive, Microcap 11 was used to do a sweep of load resistor values from 250 Ω to 2.5 k Ω . The goal is to find the load resistor value that will cause a 3 dB drop from the unloaded gain, which would be 60.3 dB, or at least a value close to that. The result can be seen in Figure 4 below.

Figure 2: Sweep values of load resistor vs gain

Figure 3: Gain with 900 Ω load resistance

Figure 4: Phase plot with 900 Ω load resistance

Table 2: Current values from simulated circuit

Simulated current values				
I_{Ref}	$410.8 \ \mu A$			
I_{D_1}	$204.4 \ \mu A$			
I_{D_2}	$204.4 \ \mu A$			
I_{CS}	$\approx 227 \ \mu A$			
I_C	$\approx 2 \ \mu A$			

Table 3: Current values from simulated circuit

Simulated current values				
V_{Ref_2}	-340 mV			
V_{Ref_1}	-2.987 V			
V_{D_1}	2.796 V			
V_{D_2}	2.796 V			
V_Base	$9.7~\mu V$			
V_{out}	$\approx 0 \text{ V}$			

3 Experimental Implementation

4 Discussion

After several minor changes, both circuits operated correctly. This lab served as introduction to the main differences between MOSFET and BJT devices. The two components are both transistors but have defining differences, mainly the polarity of the devices. The specifications are outlined in Table 4.

Table 4: BJT and NMOS comparison

BJT	Values	NMOS	Values
Q_1, Q_2, Q_3	2N3904	N_1, N_2, N_3	2N7000
$R_r ef$	$19.3 \mathrm{k}\Omega$	$R_R ef$	$22\mathrm{k}\Omega$
R_C	$4.7\mathrm{k}\Omega$	R_D	$8.2 \mathrm{k}\Omega$
R_B	$10 \mathrm{k}\Omega$	R_G	$1 \mathrm{M}\Omega$
R_E	$3.3 \mathrm{k}\Omega$	R_S	$8.2 \mathrm{k}\Omega$
R_L	$1 \mathrm{k}\Omega$	R_L	$1 \mathrm{k}\Omega$
C_B, C_C, C_E	470nF	C_G, C_S, C_D	$10\mu\mathrm{F}$
Gain	25 dB	Gain	22 dB

Notably, different voltages than those specified in the lab manual were used as the Analog Discovery handles small voltage signals very poorly, producing a lot of noise. Other than this both circuits had little issue performing as expected.

The BJT, while having a larger gain and much less 2nd harmonic distortion, did not have the required cutoff frequency to meet the specification for the optical link project, thus the NMOS CS amplifier was chosen for it's ability to meet specification.

One of the biggest challenges of this lab was the mathematical assumptions and operations used to solve for the transistor values in simulation. When dealing with such devices the assumptions used can sometimes give wildly incorrect values and lead to repetition of calculations until correct. Fortunately simulations help greatly with reducing the time it takes to get to the correct solution.

The final circuits fell well within specifications and operated correctly after minor component alterations.

5 Conclusion

The design, simulation, and implementation of a voltage amplifier have been explained. The specifications required, for the purposes of use in the optical uplink project, are a lower cutoff frequency of \leq 1kHz, upper cutoff frequency of 200 kHz, and a peak gain of 21 dB \pm 1 dB. Also, the 2nd Harmonic distortion for a 20 mVp-p sinusoidal signal at 1 kHz must be < 2%. The sinusoidal source was 20 mV_{P-P} at 1kHz, and the supply voltages were \pm 12V. This resulted in a lower cutoff frequency of approximately 600 Hz and the upper cutoff frequency was in the MHz range, which exceeds the required \geq 200 kHz. The 2nd harmonic distortion was measured to be approximately 5%. An important lesson was learned about the comparison between a voltage amplifier using NMOS components and a voltage amplifier using BJT components.

References

- [1] D.E. Kotecki Lab.(2017) Lab #5 Voltage Amplifier [Online]. Available: $http://davidkotecki.com/ECE342/labs/ECE342_2017_Lab5.pdf$
- [2] ON Semiconductor. (2017) 2N7000 [Online]. Available: http://www.onsemi.com/PowerSolutions/supportDoc.do?type=models&rpn=2N7000