

Modularity in Reinforcement Learning: An Algorithmic Causality Perspective on Credit Assignment

UC Berkeley

Michael Chang*, Sidhant Kaushik*, Sergey Levine, Thomas L. Griffiths

Question

What are the conditions for efficient modular transfer in reinforcement learning (RL)?

Contributions

Modularity Criterion

Algorithmic independence of decision mechanisms induced via credit assignment

Theoretical

- We assess the modularity of major class of RL algorithms
- Single-step temporal difference algorithms with decoupled weights are modular

Empirical

Modularity improves sample efficiency in recovering from isolated changes in the environment dynamics

Princeton

Theoretical Results

Agent Architecture Modular RL Structurally Local Structurally Global Algorithms Tabular & Linear Function Approximation Q-learning, SARSA Cloned Vickrey Society Temporally Actor-Critic methods Local Non-Linear Function Approximation Cloned Vickrey Society Credit Assignment n-step TD methods, n > 1Policy Gradients Temporally Global

Cloned Vickery Society: Chang, Kaushik, Weinberg, Griffiths, Levine (ICML 2020)

Empirical Results

Cloned Vickrey Society (modular) transfers more efficiently than PPO (not modular).