Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э.Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э.Баумана)

ФАКУЛЬТЕТ «Фундаментальные науки»

КАФЕДРА «Прикладная математика»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЕ*

HA TEMY:

«Численное решение задачи нагружения трубы давлением с использованием стандартного и смешанного методов конечных элементов»

Студент ФН2-82Б	(Подпись, дата)	М.В. Матвеев
Руководитель ВКР	(Подпись, дата)	А.С. Родин
Нормоконтролер	(Подпись, дата)	М.М. Лукашин

РЕФЕРАТ

Расчётно-пояснительная записка 63 с., 20 рис., 27 табл., 15 источников.

НАГРУЖЕНИЕ ТРУБЫ, СТАНДАРТНЫЙ МЕТОД КОНЕЧНЫХ ЭЛЕ-МЕНТОВ, СМЕШАННЫЙ МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ, ДАВЛЕ-НИЕ, ДЕФОРМАЦИЯ ПОЛЗУЧЕСТИ, СЛАБОСЖИМАЕМЫЙ МАТЕРИ-АЛ, СХЕМА ЭЙЛЕРА

В технике при рассмотрении задач, связанных с удержанием высокого давления, часто приходится сталкиваться с толстостенными трубами. Определение напряжений в подобной трубе значительно тяжелее, чем в тонкостенных трубах. Вопросы, касающиеся эффективного решения подобных задач относительно разных факторов являются актуальными.

Цель работы - сравнение численных решений задачи нагружения трубы давлением, полученных с использованием стандартного и смешанного методов конечных элементов, в упругой постановке и в постановке с учётом деформации ползучести.

Результаты, полученные для краевой задачи упругости, показали, что для слабосжимаемого материала правильнее использовать смешанный метод конечных элементов, так как ошибки в вычислении напряжений при решении стандартным методом конечных элементов существенно возрастают, в то время как смешанный метод конечных элементов обладает стабильной точностью. Результаты, полученные для краевой задачи с учётом деформации ползучести, показали, что смешанный метод конечных элементов эффективнее стандартного метода конечных элементов, так как с течением времени аналитическое и численное решения начинают расходиться.

СОДЕРЖАНИЕ

P	ЕФЕРАТ	2
1	Результаты решения задачи для упругой трубы для одномер-	
	ного случая	4
	1.1 Коэффициент Пуассона $\nu=0.34$	6
34	АКЛЮЧЕНИЕ	10
\mathbf{C}	ПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	12

1 Результаты решения задачи для упругой трубы для одномерного случая

Рассмотрим случай, когда внутреннее давление $p_a=20~\mathrm{M}\Pi \mathrm{a}$, внешнее давление $p_b=0~\mathrm{M}\Pi \mathrm{a}$. Тогда аналитическое радиальное перемещение считается по формуле (??):

$$u = \frac{(1-2\nu)(1+\nu)}{E} \frac{p_a a^2}{b^2 - a^2} r + \frac{1+\nu}{E} \frac{a^2 b^2}{r} \frac{p_a}{b^2 - a^2}.$$
 (1)

Вычисление аналитического радиального напряжения производится по формуле (??):

$$\sigma_{rr} = \frac{p_a a^2}{b^2 - a^2} - \frac{a^2 b^2}{r^2} \frac{p_a}{b^2 - a^2} \tag{2}$$

Вычисление аналитического окружного напряжения производится по формуле (??):

$$\sigma_{\varphi\varphi} = \frac{p_a a^2}{b^2 - a^2} + \frac{a^2 b^2}{r^2} \frac{p_a}{b^2 - a^2} \tag{3}$$

Для решения поставленной задачи примем, что материал цилиндра имеет следующие параметры: модуль Юнга E-70000 МПА и коэффициент Пуассона $\nu=0.34$. Внутренний радиус цилиндра a-10 мм, внешний радиус цилиндра b-20 мм.

Расчёт относительной погрешности произведён по формулам для норм, являющихся конечномерными аналогами следующих пространств:

• пространство L_2

$$\sqrt{\sum_{i=1}^{n} \frac{(u_i^{an} - u_i^{me})^2}{(u_i^{an})^2} \frac{s_i}{\sum s_i}}$$
 (4)

где u^{an} - аналитическое решение, u^{me} - численное решение, s_i - полусумма двух шагов $\frac{h_i+h_{i+1}}{2}, \sum s_i$ - сумма всех шагов на данном отрезке. Коэффициент относительного захлёста - 0,2.

7 P P 3 3 3 3			, ,	
Критерий останова ε Кол-во подобластей	10^{-3}	10^{-4}	10^{-5}	10^{-6}
2	59	92	124	157
4	205	387	576	765
10	609	1691	3062	4473

1.1 Коэффициент Пуассона $\nu=0.34$

Проведены серии расчётов на разных сетках. Результаты расчётов представлены ниже. В таблицах 1 и 3 приведены нормы ошибок вычисления перемещений, радиального и окружного напряжений, в таблицах 2 и 4 - отношения норм ошибок.

Таблица 1: Нормы ошибок для L_2

Метод	h, мм	относительная	относительная	относительная
конечных		погрешность	погрешность	погрешность
элементов		перемещений,	радиальных	окружных
		M	напряжений,	напряжений,
			МПа	МПа
	0.02	7.08×10^{-5}	2.74×10^{-2}	1.07×10^{-2}
Стандартный	0.01	1.77×10^{-5}	1.38×10^{-2}	5.37×10^{-3}
	0.005	4.42×10^{-6}	6.9×10^{-3}	2.68×10^{-3}
	0.02	2.29×10^{-5}	2.72×10^{-2}	1.07×10^{-2}
Смешанный	0.01	5.72×10^{-6}	1.37×10^{-2}	5.36×10^{-3}
	0.005	1.43×10^{-6}	6.9×10^{-3}	2.68×10^{-3}

Таблица 2: Отношение норм ошибок для L_2

Метод	отношение	отнош.	отнош.	отнош.
конечных	шагов по	погреш-	погреш-	погреш-
элементов	пространству	ностей	ностей	ностей
		u	σ_{rr}	$\sigma_{arphiarphi}$
Стандартный	0.02/0.01 = 2	4	1.99	2
Стандартный	0.02/0.005 = 4	16	3.96	4.01
Смешанный	$0.02/0.01{=}2$	4	1.98	2
Омешанный	0.02/0.005 = 4	16	3.95	4

Таблица 3: Нормы ошибок для C_1

Метод	h, мм	относительная	относительная	относительная
конечных		погрешность	погрешность	погрешность
элементов		перемещений,	радиальных	окружных
		M	напряжений,	напряжений,
			МПа	МПа
	0.02	7.96×10^{-5}	2.63×10^{-2}	1.57×10^{-2}
Стандартный	0.01	1.99×10^{-5}	1.32×10^{-2}	7.93×10^{-3}
	0.005	4.97×10^{-6}	6.64×10^{-3}	3.98×10^{-3}
	0.02	2.57×10^{-5}	2.62×10^{-2}	1.57×10^{-2}
Смешанный	0.01	6.43×10^{-6}	1.32×10^{-2}	7.92×10^{-3}
	0.005	1.61×10^{-6}	6.64×10^{-3}	3.98×10^{-3}

Таблица 4: Отношение норм ошибок для C_1

Метод	отношение	отнош.	отнош.	отнош.
конечных	шагов по	погреш-	погреш-	погреш-
элементов	пространству	ностей	ностей	ностей
		u	σ_{rr}	$\sigma_{arphiarphi}$
Стандартий	$0.02/0.01{=}2$	4	1.99	1.98
Стандартный	0.02/0.005 = 4	16	3.96	3.95
Смешанный	$0.02/0.01{=}2$	4	1.98	1.98
Смешанный	0.02/0.005 = 4	16	3.95	3.94

Таблица 5: Вычисление ε_V^*

Тип МКЭ	Минимальное значение	Максимальное значение
Стандартный	0.04663	0.1828
Смешанный	0.04663	0.1828

Таблица 6: Время решения задачи

h	Стандартный МКЭ	Смешанный МКЭ
0.02	0.000116749	0.006622
0.01	0.0001466	0.02458
0.005	0.0003759	0.222698

Анализ полученных результатов показал, что:

- полученные двумя методами радиальные и окружные напряжения достаточно близки друг к другу;
- для напряжений наблюдается линейная скорость сходимости численного решения к аналитическому при измельчении сетки, для перемещений
 - квадратичная;
- при использовании смешанного метода конечных элементов существенно возрастают вычислительные затраты по сравнению с использованием стандартного метода конечных элементов;

Отметим, что значения радиальных напряжений на внутренней и внешней поверхностях трубы, полученные смешанным и стандартным методами конечных элементов, соответствуют приложенным давлениям.

На рисунках 1-2 показаны распределения напряжений для сетки с шагом h=0.01 (N=100). Синим обозначено аналитическое решение, красным квадратом -численное решение, полученное стандартным методом конечных элементов, чёрным ромбом- численное решение, полученное смешанным методом конечных элементов.

Рис. 1: Зависимость радиальных напряжений от радиуса

Рис. 2: Зависимость окружных напряжений от радиуса

ЗАКЛЮЧЕНИЕ

Цели и задачи, поставленные в бакалаврской работе, выполнены. Изучены математические модели для краевой задачи упругости и краевой задачи с учётом деформации ползучести, исследованы стандартный и смешанный методы конечных элементов для численного решения поставленной задачи. Данные методы реализованы в виде программы, написанной на языке C++. Проведены серии расчётов для задачи нагружения упругой трубы давлением. Выполнено тестирование программы путём сравнения численных решений с аналитическим решением рассмотренной задачи, проведено сопоставление численных решений, полученных стандартным и смешанным методами конечных элементов.

Проведённый анализ норм ошибок для краевой задачи упругости показал, что для расчёта перемещений получен второй порядок точности, а для напряжений - первый порядок. Сравнение результатов при разных коэффициентах

Пуассона показало, что для слабосжимаемого материала правильнее использовать смешанный метод конечных элементов, так как ошибки в вычислении напряжений при решении стандартным методом конечных элементов существенно возрастают, в то время как смешанный метод конечных элементов обладает стабильной точностью.

Проведённый анализ норм ошибок для краевой задачи с учётом деформации ползучести показал, что смешанный метод конечных элементов эффективнее стандартного метода конечных элементов, так как с течением времени аналитическое и численное решения начинают расходиться. Чем мельче сетка, тем медленнее происходит рост ошибки. Для смешанного метода ошибка увеличивается значительно медленнее, чем при использовании стандартного метода.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Зарубин В.С., Кувыркин Г.Н. Математические модели механики и электродинамики сплошной среды. М. МГТУ им. Н.Э.Баумана, 2008.-512 с.
- [2] Феодосьев В.И. Сопротивление материалов. М. МГТУ им. Н.Э.Баумана, 2010.-591 с.
- [3] Сагдеева, Ю.А. Введение в метод конечных элементов: метод.пособие/Ю.А.Сагдеева, С.П.Копысов, А.К.Новиков.-Ижевск: Изд-во "Удмуртский университет". 2011. 44c
- [4] Погорелов В.И. Строительная механика тонкостенных конструкций.-СПб.: БХВ-Петербург,2007.-528 с.:ил.
- [5] Алексеев Г.В. Численные методы математической физики.Введение в метод конечных элементов.-Владивосток:Изд-во "Институт прикладной математики ДВО РАН".1999. 125с.
- [6] Князева А.Г. Теплофизические основы современных методов металлообработки.-Томск:Изд-во "Томский политехнический университет".2009.-48 с.
- [7] Князева А.Г. Различные варианты метода прогонки.-Томск:Изд-во "Томский политехнический университет". 2006.-8 с.
- [8] Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М. МГТУ им. Н.Э.Баумана, 2010.-591 с.
- [9] Малинин Н. Н. Прикладная теория пластичности и ползучести. Учебник для студентов вузов. Изд. 2-е, перераб. и доп. М., «Машиностроение», 1975, 400 с. с ил.
- [10] Писаренко Г. С., Можаровский Н. С. Уравнения и краевые задачи теории пластичности и ползучести. Справочное пособие— Киев: Наук. думка, 1981.— 496 с.
- [11] Митчелл Э., Уэйт Р. Метод конечных элементов для уравнений с частными производными. М.: Мир, 1981. 216 с.

- [12] Zienkiewicz O.C., Taylor R.L., Fox D.D. The finite element method for solid and structural mechanics, 5th Edition. Elsevier, 2014. 657 p
- [13] Глизнуцина П.В., Лукин В.В., Родин А.С. Реализация условия механического контакта упругих тел в рамках МКЭ при различном выборе базисных функций: одномерный случай // Препринты ИПМ им. М.В.Келдыша. 2015. № 90. 25 с.
- [14] Станкевич И.В., Волков С.С. Алгоритмы решения краевых задач МДТТ с учётом деформации ползучести. Математика и математическое моделирование. 2018;(1):1-14.
- [15] В.Л. Рвачев. Геометрические приложения алгебры логики. Изд-во «Техника», Киев, 1967 г.