

Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Sequential Pattern Mining
- Graph Pattern Mining

Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations
- Mining Negative Correlations

Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk; Wonder wheat bread
- How to set min-support thresholds?
 - Uniform min-support across multiple levels (reasonable?)
 - Level-reduced min-support: Items at the lower level are expected to have lower support

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items

(Suppose the 2% milk sold is about ¼ of milk sold in gallons)

- milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)
- 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
- A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
 - Rule (1) is an ancestor of rule (2), which one to prune?

Customized Min-Supports for Different Kinds of Items

- We have used the same min-support threshold for all the items or item sets to be mined in each association mining
- In reality, some items (e.g., diamond, watch, ...) are valuable but less frequent
- It is necessary to have customized min-support settings for different kinds of items
- One Method: Use group-based "individualized" min-support
 - E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...

Mining Multi-Dimensional Associations

- Single-dimensional rules (e.g., items are all in "product" dimension)
 - buys(X, "milk") \Rightarrow buys(X, "bread")
- Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)
 - Inter-dimension association rules (no repeated predicates)
 - age(X, "18-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")
 - Hybrid-dimension association rules (repeated predicates)
 - age(X, "18-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
- Attributes can be categorical or numerical
 - Categorical Attributes (e.g., profession, product: no ordering among values): Data cube for inter-dimension association
 - Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches

Mining Quantitative Associations

- Mining quantitative associations
 - Ex.: Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)
 - LHS: a subset of the population
 - RHS: an *extraordinary* behavior of this subset
- Rule condition can be categorical or numerical
 - Ex.: (Gender = female) $^$ (South = yes) \Rightarrow mean wage = \$6.3/hr
 - Ex.: Education in [14-18] (yrs) \Rightarrow mean wage = \$11.64/hr
- Data cube technology?

Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based minsupport thresholds for different groups of items
- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a
 Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car),
 buying a Ford Expedition and buying a Ford Fusion are likely
 negatively correlated patterns
 - How to define negative patterns?

Defining Negative Correlated Patterns

- A support-based definition
 - If itemsets A and B are both frequent but rarely occur together,
 i.e., sup(A U B) << sup(A) × sup(B)
 - Then A and B are negatively correlated
- Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have
 - $s(A \cup B) = 0.005$, $s(A) \times s(B) = 0.25$, $s(A \cup B) << s(A) \times s(B)$
 - But when there are 10⁵ transactions, we have
 - $s(A \cup B) = 1/10^5$, $s(A) \times s(B) = 1/10^3 \times 1/10^3$, $s(A \cup B) > s(A) \times s(B)$
 - What is the problem? Null transactions: The support-based definition is not null-invariant!

the definition of *lift*?

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the null-invariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of nulltransactions
- A Kulczynski measure-based definition
 - If itemsets A and B are frequent but $(P(A|B) + P(B|A))/2 < \epsilon$, where ϵ is a negative pattern threshold, then A and B are negatively correlated
- For the same needle package problem:
 - No matter there are in total 200 or 105 transactions
 - If ϵ = 0.01, we have $(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < \epsilon$

Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Sequential Pattern Mining
- Graph Pattern Mining

Why Constraint-Based Mining?

- Finding all the patterns in a dataset autonomously? unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining
 - Constraint-based mining: Constraint-pushing, similar to push selection first in DB query processing

Meta-Rule Guided Mining

A meta-rule can contain partially instantiated predicates & constants

```
- P_1(X, Y) \wedge P_2(X, W) \Rightarrow buys(X, "iPad")
```

- The resulting mined rule can be
 - age(X, "15-25") $^{\circ}$ profession(X, "student") \Rightarrow buys(X, "iPad")
- In general, (meta) rules can be in the form of

$$-P_1 \wedge P_2 \wedge ... \wedge P_1 \Rightarrow Q_1 \wedge Q_2 \wedge ... \wedge Q_r$$

- Method to find meta-rules
 - Find frequent (I + r) predicates (based on min-support)
 - Push constants deeply when possible into the mining process
 - Also, push min_sup, min_conf, and other measures as early as possible (measures acting as constraints)

Different Kinds of Constraints Lead to Different Pruning Strategies

- Constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints
- Pattern space pruning constraints
- Data space pruning constraints

Pattern Space Pruning with **Pattern**Anti-Monotonicity

- Constraint c is anti-monotone
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c1: sum(S.price) ≤ v is antimonotone
- Ex. 2: c2: range(S.profit) ≤ 15 is antimonotone
 - Itemset ab violates c2 (range(ab) = 40)
 - So does every superset of ab
- Ex. 3. c3: sum(S.Price) ≥ v is not antimonotone
- Ex. 4. Is c4: support(S) ≥ σ antimonotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

TID	Transaction	
10	a, b, c, d, f, h	
20	b, c, d, f, g, h	
30	b, c, d, f, g	
40	40 a, c, e, f, g	
min_sup = 2		
price(item) > o		

ltem	Profit
a	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	5

Pattern Monotonicity and Its Roles

- A constraint c is monotone: if an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c1: sum(S.Price) ≥ v is monotone
- Ex. 2: c2: min(S.Price) ≤ v is monotone
- Ex. 3: c3: range(S.profit) ≥ 15 is monotone
 - Itemset ab satisfies c3
 - So does every superset of ab

TID	Transaction	
10	a, b, c, d, f, h	
20	20 b, c, d, f, g, h	
30	b, c, d, f, g	
40	a, c, e, f, g	
min_sup = 2		
price(item) > o		

Profit
40
0
-20
-15
-30
-10
20
5

Data Space Pruning with **Data Anti- Monotonicity**

- A constraint c is data anti-monotone: In the mining process, if a data entry (transaction) t cannot satisfy constraint c, t cannot satisfy any pattern p under c
 - Data space pruning: Data entry t can be pruned
- Ex. 1: c_1 : $sum(S.Profit) \ge v$ is data anti-monotone
 - Let constraint c_1 be: sum{S.Profit} ≥ 25
 - T₃₀: {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
- Ex. 2: c_2 : $min(S.Price) \le v$ is data anti-monotone
 - Consider v = 5 but every item in transaction T_{50} has a price higher than 10

TID	Transaction	
10	a, b, c, d, f, h	
20	b, c, d, f, g, h	
30	b, c, d, f, g	
40	a, c, e, f, g	
min_sup = 2		
price(item) > 10		

ltem	Profit
а	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	5

Different Kinds of Constraints Lead to Different Pruning Strategies

- Constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints
- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated (=no superset)
 - Monotonic: If c is satisfied, no need to check c again (=all supersets)
 - Succinct: If c can be enforced by directly manipulating the data
 - Convertible: c can be converted to monotonic or anti-monotonic if items can be properly ordered in processing
- Data space pruning constraints
 - Data anti-monotonic: If a transaction t does not satisfy c, then t can be pruned to reduce data processing effort (=no that transaction)

20

 Data succinct: Data space can be pruned at the initial pattern mining process

References: Mining Diverse Patterns

- R. Srikant and R. Agrawal, "Mining generalized association rules", VLDB'95
- Y. Aumann and Y. Lindell, "A Statistical Theory for Quantitative Association Rules", KDD'99
- K. Wang, Y. He, J. Han, "Pushing Support Constraints Into Association Rules Mining", IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003
- D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 6o(1): 5-29, 2007
- D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns", KDD'o6
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07

References: Constraint-Based Frequent Pattern Mining

- R. Srikant, Q. Vu, and R. Agrawal, "Mining association rules with item constraints", KDD'97
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, "Exploratory mining and pruning optimizations of constrained association rules", SIGMOD'98
- G. Grahne, L. Lakshmanan, and X. Wang, "Efficient mining of constrained correlated sets", ICDE'oo
- J. Pei, J. Han, and L. V. S. Lakshmanan, "Mining Frequent Itemsets with Convertible Constraints", ICDE'01
- J. Pei, J. Han, and W. Wang, "Mining Sequential Patterns with Constraints in Large Databases", CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, "ExAnte: Anticipated Data Reduction in Constrained Pattern Mining", PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, "gPrune: A Constraint Pushing Framework for Graph Pattern Mining", PAKDD'07