Predicting the bug fixing likelihood

Florian Spychiger

University of Zurich

December 9, 2018

Roadmap

- Background
- Problem Formulation & Goal
- Oata
- Solution Approach
- Results
- Q&A

Background Information

The annual cost of software bugs is estimated at \$59.5 billion¹. For the Eclipse project, there are thousands of bugs reported. An efficient bug-triaging can help developers to focus their resources and thus, save companies a lot of money.

¹P Bhattacharya and I Neamtiu, "Fine-grained incremental learning and multi-feature tossing graphs to improve bug triaging", Software Maintenance (ICSM) 2010 (ieeexplore.ieee.org)

Problem Formulation & Goal

Problem

Bug-triaging is an important, but labor-intensive process if done manually.

Goal

Train a bug-triaging machine, which predicts whether a bug is likely to be fixed.

Raw Data

The Eclipse data set can be found at https://github.com/ansymo/msr2013-bug_dataset.
The raw data set consists of 12 tables:

Eclipse Bug Data Set		
reports	priority	
$assigned_to$	product	
bug_status	resolution	
cc^2	severity	
component	short_desc	
op_sys	version	

Table 1: Tables of the bug data set.

Data Preselection

After a visual exploratory analysis, four datasets were excluded:

Eclipse Bug Data Set*		
reports	priority 💶	
assigned_to	product	
bug_status	resolution	
сс	severity 2	
component	short_desc 3	
op_sys	version 4	

Table 2: Excluded data tables.

- Priority is set by the assignee, but as we want to help them triaging the bugs, we exlude it.
- Severity is currently set by the triaging team.
- The descriptions are hard to encode.
- The version dataset is quite messy and sometimes it is not clear which version is being referred to.

^{*}All duplicate bugs are excluded.

Data Model

Figure 1: ER model of data used.

Feature Creation

From the data model, the feature matrix X is constructed with:

```
x_1 = \mathsf{OpenTime} (\mathsf{Open} - \mathsf{Close})
                                                              [discrete]
x_2 = Assignments (Nr. of assignees)
                                                              [discrete]
x_3 = CC (Nr. of interested parties)
                                                              [discrete]
x_4 = Product (Affected product)
                                                              [discrete]
x_5 = \mathsf{OS} \; (\mathsf{Major} \; \mathsf{OS})
                                                              [discrete]
x_6 = SuccessAssignee (Success rate of Assignee)
                                                              [proportion]
x_7 = SuccessReporter (Success rate of Reporter)
                                                              [proportion]
x_8 = Component (The affected subcomponent)
                                                              [discrete]
x_9 = Social (Past bug collaborations)
                                                              [discrete]
x_{10} = \text{Equal (Reporter equals Assignee)}
                                                              [binary]
```

The labels are y =Fixed with values in $\{0, 1\}$.

Univariate Analysis

Figure 2: Boxplots of the features and the label.

Correlation Analysis

Figure 3: Correlations of the features and the labels.

Models

We consider 6 models:

- Naive Bayes
- 2 Logistic Regression
- Random Forest
- Boosting Classifier
- Support Vector Machine
- Neural Network

We split the data set into a training (50%), a cross-validation (25%) and a test (25%) set. The training set is used to train the models and we calibrate the parametes on the cross-validation set. The final accuracy is caculated on the test set.

Accuracy

We achieve the following accuracies on the test set:

Naive Bayes	82.8098%
Logistic Regression	84.9409%
Random Forest	86.1529%
Boosting Classifier	85.4661%
Support Vector Machine	85.9105%
Neural Network ³	86.1125%

Table 3: Accuracies of the models.

³Results are not exactly reproducible, as some randomness with GPU usage cannot be avoided.

ROC-Curves

Figure 4: ROC-Curves of all models.

Q&A

The code of the project can be found at

 $\verb|https://github.com/Speaker90/BusinessAnalytics_RPIcase|\\$