5. Stosując metodę najmniejszych kwadratów (regresja liniowa), wyznaczyć wartości współczynników prostej (prostych) najlepszego dopasowania (linii trendu, prostej regresji) dla zmierzonych zależności UH= f(Bn). Wyznaczyć niepewności tych współczynników oraz współczynnik korelacji RK. Skorzystać z gotowych programów komputerowych (patrz też: "dodatki" na stronie internetowej LPF). Wykorzystując otrzymane parametry prostej, narysować na wykresach punktowych zależności UH = f(Bn) odpowiadające im linie trendu y = ax +b, tworzące rodzinę charakterystyk polowych hallotronu. Wyniki graficzne omówić.

		9,41
Dane	Wartość	
a_0	4.90694444	Tabela 1.2 Obliczone
a_1	-348.90898	
$u(a_0)$	0.89211199	
$u(a_1)$	2.52327375	
$\approx u(a_0)$	0.9	
$\approx u(a_1)$	2.600	niepewności
Wspól.		mepewnosci
Korel.	0.99822495	
Liniowej		
•		

$$U_H = B_n * a_1 + a_0$$

 $U_H = B_n * -348.90898 + 4.90694444$

Wnioski Silna korelacja liniowa

6. Dla trzech punktów nanieść prostokąty niepewności (pola niepewności) oraz omówić tendencję ich zmian. Wybrać punkty (po jednym z początkowego, środkowego i końcowego obszaru wykresu) najbardziej oddalone (odstające) od prostej regresji.

Szukałem w wielu miejscach jak nanieść pola niepewności dla wybranych punktów, nie znalazłem