Print Slides 7/20/19, 1:40 AM

# **Expanding OLS to Multiple Dimensions**

- Bivariate OLS can be useful.
- Usually we have more variables.
  - Want to understand their relationship, use the information they contain to make better predictions
- The mechanics of multiple OLS regression are similar to simple regression.
  - A workhorse of statistical analysis in a wide variety of fields

# **Multiple Regression Population Model**

• Similar to population model for simple regression, but several *x* variables and a coefficient for each



# **Interpreting Coefficients** in Multiple Regression

- Consider the meaning of each coefficient.
- $\beta_j$  represents the expected change in y from a unit change in  $x_{j_i}$  holding u and all the other x terms constant.
- Our interpretation is ceteris paribus (all other things held equal).
- This is true, even if other variables are correlated with  $x_i$ .

about:blank Page 1 of 2

#### **Example: Test Scores**



- Scores were modeled as a function of school spending and family income.
- Schools that spend a lot on each student are also likely to be in areas with high family income—these variables are correlated
- Omitting average family income in regression would lead to a biased estimate of the effect of spending on average test scores.
- To assess a spending plan, hold family income fixed, since this is unlikely to change, at least in the short term.

## **Example: College GPA**

 $\widehat{colGPA} = 1.29 + .453 hsGPA + .0094 ACT$ Grade point average at college High school grade point average Achievement test score

- Holding ACT fixed, one additional hsGPA point is associated with an additional .453 points on colGPA.
- If we compare two students with the same ACT, but the hsGPA of student A is one point higher, we predict student A will have a colGPA that is .453 higher than that of student B.
- Holding hsGPA fixed, another 10 points on ACT are associated with less than 0.1 points on colGPA.

### **Partialling Out**

y

- 1. Write down the regression of  $x_1$  on all the other x's.
  - $x_1 = \delta_0 + \delta_2 x_2 + \dots + \delta_k x_k + r_1$ 
    - The error term  $r_1$  can be understood as the unique variation in x.
    - The other variables have been "partialled out."
- 2. Regress y on just  $r_1$ :
  - $y = \gamma_0 + \gamma_1 r_1 + v$ 
    - $\circ$   $\beta_1$  is the same as the coefficient on  $r_1$  in this new regression.
    - $\beta_1 = \text{cov}(r_1, y)/\text{var}(r_1)$  (regression anatomy formula)
    - We can look at each variable's unique variation and how it relates to y.

about:blank Page 2 of 2