第31期CAMMフォーラム2月本例会 2018/2/2 at 東京・表参道「アイビーホール」

第一原理計算と熱力学を組み合わせた組織 形成予測

格子欠陥について最近の研究から

西谷滋人 情報科学科,関西学院大学

·講演日: 2006年1月13日/19期

・演題: 「第一原理計算による自由エネルギー計算」

- ・固体物性の有限温度シミュレーションにおいては、熱振動の自由エネルギーと配置のエントロピーを分離して取り扱うことが可能である。これによって第一原理計算をもちいて、精度よく自由エネルギー変化を求めることが可能である。…析出現象の核生成の活性化エネルギーを第一原理計算により直接求めた結果を…
- ·1988京都大学金属加工学科. 急冷凝固. 準安定平衡.
- ・1988-1995 レーザー照射. 金属間化合物
- · 1991-1993 Oxford大材料学部D.G.Pettifor
- ・材料の計算機シミュレーションの研究に従事
- · 2004- 関西学院大学理工学部情報科学科教授

第19期CAMMフォーラム1月例会 2006年1月13日(金) 東京「虎ノ門パストラル」

第一原理計算による自由エネルギー計算

関西学院大学 理工学部情報科学科教授 西谷 滋人

KWANSEI GAKUIN

→ KWANSEI GAKU 組織制御に必要なデータ,計算				
	 連続体 モデル	経験データ (材料レベル)	か子動力学 (原子レベル)	第一原理計算 (電子レベル)
熱力学	入力	(1314D 170)	入力	?
拡散	入力	0	0	可能
界面エネルギー	入力	×	入力	0
歪	入力	\circ	入力	?
熱膨張	入力	Δ	入力	0
核生成	×	0	?	?
成長	0	\circ	Δ	×
),○,△,×:データ, 彡	ノミュレーショ	ン結果の信頼性の指	漂.	

Today's agenda···

- □ 材料の計算・研究での
 - □ 視点, 手法の移動
 - generalなモデル vs specificな対象
 - □ 平衡状態 vs 動的過程
- □ Fe-Cu系の核生成
 - □ 核生成, 熱力学, 空孔,
 - □ キネティックMC,振動効果,
- □ SiCの液相成長
 - □ 凝固, 準安定平衡, 振動効果の失敗例
- □ Mg系合金のLPSO相の形成過程
 - □ 振動効果が動機、キネティックMC
- □ 小傾角粒界の粒界エネルギー
 - □ 転位論?

general vs specific, OK or finite temp. slow or fast