CMSC 141 Automata and Language Theory Regular Languages

Mark Froilan B. Tandoc

August 27, 2014

$\overline{\mathsf{NFA}} o \mathsf{DFA}$ Conversion

 $L = \{w | w \text{ have an a as the second last symbol } \}$ $L = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, ...\}$

δ	а	b
0	{0,1}	{0}
1	{2}	{2}
2	Ø	Ø

δ	a	b
0	{0,1}	{0}
1	{2}	{2}
2	Ø	Ø

δ	a	b
0	{0,1}	{0}
1	{2}	{2}
2	Ø	Ø

$$\delta'(\{0\}, a) = \delta(0, a)$$

= $\{0, 1\}$

δ	а	b
0	{0,1}	{0}
1	{2}	{2}
2	Ø	Ø

 $= \{0, 1, 2\}$

Bad case for NFA ightarrow DFA conversion

Bad case for NFA \rightarrow DFA conversion

Bad case for NFA → DFA conversion

Bad case for NFA \rightarrow DFA conversion

Generalizing our example for arbitrary n

Bad case for NFA \rightarrow DFA conversion

$\varepsilon \mathsf{NFAs}$

NFAs also has the capability of having transitions using ε .

Without reading any input, the machine can split to multiple states.

$\varepsilon \mathsf{NFAs}$

Does these NFAs accept the same language? Why or why not?

References

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org