Foglio di esercizi

2 dicembre 2011

9.1. Esercizio.

Data la funzione

$$f(x) = \begin{cases} |x \operatorname{tg}(\frac{\pi}{4}x)| & \text{se } |x| < 1\\ a & \text{se } |x| = 1\\ b x^2 + c & \text{se } |x| > 1 \end{cases}$$

- determinare $a, b \in c$ in modo che f sia continua in \mathbb{R} ,
- determinare $a, b \in c$ in modo che f sia anche derivabile in \mathbb{R}

9.2. Esercizio.

Data la funzione

$$f(x) = \frac{\sqrt{x^2 - 2x + 1}}{x^2 - 2x + 2}$$

- determinare l'insieme di definizione,
- determinare i limiti per $x \to \pm \infty$
- determinare il grafico.

9.3. Esercizio.

Assegnata la funzione $f(x) = e^{-x^2}|1 - x^2|$

- determinare i limiti per $x \to \pm \infty$
- calcolare il minimo,
- determinare i punti di massimo o di minimo relativi,
- \bullet calcolare l'immagine di f.

9.4. Esercizio.

Sia

$$f(x) = \frac{x^2 + 2x}{x - 1}$$

- determinare l'insieme di definizione ed eventuali asintoti,
- determinare gli intervalli in cui f é crescente e quelli in cui é decrescente,
- determinare gli intervalli di concavità e convessità,
- disegnare il grafico di f.

9.5. Esercizio. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{x \log(1+x)}{e^x - x \cos x - 1} \qquad \lim_{x \to 0} \frac{x^2 \cos x - \sin(x^2)}{x^2 (e^{x^2} - 1)}$$

9.6. Esercizio. Calcolare i seguenti limiti

$$\lim_{x \to 0} \frac{\sqrt[3]{1 + x^3 - 3x^2} - 1 + x^2}{x^3}$$

$$\lim_{x \to 0} \frac{\sqrt[4]{1 - 4x^2 + x^4} - 1 + x^2}{x^4}$$

$$\lim_{x \to 0} \frac{\sin(x^2) - \sin^2(x)}{1 - \cos(x^2)}$$

 \bullet Stabilire per quali $x \in \mathbb{R}$ la seguente serie é assolutamente convergente

$$\sum_{k=1}^{+\infty} \frac{3^k}{k} \left(\frac{x}{x+1} \right)^k$$

• Determinare la somma della serie $\sum_{k=1}^{\infty} \frac{1}{(k+2)(k+1)}$

9.8. Esercizio.

- Determinare per quali x la serie $\sum_{k=0}^{\infty} \frac{k+2}{k+1} \, x^k \quad \text{\'e assolutamente convergente}$
- Determinare la somma della serie $\sum_{k=2}^{\infty} (1+x)^k$

9.9. Esercizio.

• Stabilire il comportamento della serie

$$\sum_{k=1}^{+\infty} k \left(e^{1/k^{\alpha}} - 1 \right)$$

al variare di $\alpha > 0$.

• Calcolare la somma della serie

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \left(1 - \frac{1}{3^k} \right)$$

9.10. Esercizio.

Data la funzione

$$f(x) = \frac{\cos x}{2 + \sin x}$$

- scrivere il polinomio di Taylor $T_2(x)$ di centro $x_0 = 0$ e ordine 2 e il resto $R_2(x)$ nella forma di Lagrange;
- calcolare $f(\frac{1}{10})$ con un errore minore di 10^{-2} .

9.11. Esercizio.

Assegnata la funzione $f(x) = \log(1+x)$

- \bullet calcolare i polinomi di Taylor $T_1(x)$ e $T_2(x)$ di punto iniziale $x_0=0$ e ordini 1 e 2
- provare che riesce $\forall x \in [0,1]: T_2(x) \leq f(x) \leq T_1(x)$.

9.12. Esercizio.

Assegnata la funzione

$$f(x) = \sin(x) + \cos(x), \quad x \in \mathbb{R}$$

- \bullet determinare l'immagine di f,
- determinare il polinomio di Taylor $T_3(x)$ di punto iniziale $x_0 = \pi/2$ e ordine 3,
- calcolare $f(\pi/2 + \frac{1}{10})$ con un errore minore di 10^{-3} .

9.13. Esercizio.

Assegnata la funzione

$$f(x) = e^x + 4e^{-x} \quad x \in \mathbb{R}$$

- \bullet determinare l'immagine di f,
- determinare per quali $k \in \mathbb{R}$ l'equazione f(x) = k non ha soluzioni, ha una soluzione, ha due soluzioni,
- \bullet determinare in quanti punti la tangente al grafico di f é parallela alla retta y=3x

9.14. Esercizio.

Sia $f(x) = xe^{-x^2}$

- Determinare i limiti per $x \to \pm \infty$,
- \bullet determinare l'immagine di f,
- determinare per quali $k \in \mathbb{R}$ l'equazione f(x) = k non ha radici, ne ha una o ne ha piú di una.

9.15. Esercizio.

Sia
$$f(x) = 2x + \sin(2x), \quad x \in [0, \pi]$$

- \bullet verificare che f(x) é monotona,
- \bullet determinare il dominio della sua inversa f^{-1}
- determinare la derivata della funzione inversa nei punti

$$y_1 = \pi, \quad y_2 = 2\pi$$