## Modèles linéaires - Statistical Analysis System (SAS) Rappels de traitement statitiques en bi dimensionnel

Emmanuelle Gautherat $^{(a)}$ 

(a) Crieg-Regards, Université de Reims Champagne Ardenne

Second semestre - 4 ECTS

## Outline

1. 2 quali

e quali

2. 2 ordi

**.**....

3. 2 discrètes

nova 4. 2 continues

Test

Homoscédasticité 5. Anova
Estimateurs
Qui ? Test

Homoscédasticité

6. Qui?

7. SPSS

## Introduction

2 qu

2 ord

2

2

Anova

Test Homoscédasticité

~ .2

Qui !

4 D > 4 D > 4 E > 4 E > E 9900





Homoscédasticité

Etude conjointe de deux variables.

- -> selon la nature des variables considérées ;
- -> passer en revue les indicateurs statistiques + objets graphiques.





Homoscédasticité

- -> selon la nature des variables considérées ;
- -> passer en revue les indicateurs statistiques + objets graphiques.
  - Deux variables qualitatives

Etude conjointe de deux variables.

- Deux variables qualitatives ordonnées
- Deux variables quantitatives discrètes finies
- Deux variables quantitatives discrète dénombrables
- Deux variables quantitatives continues
- 6 Une variable qualitative-ordonnée ou non- et une variable quantitative -discrète ou continue-



## Source

Les exemples de ce cours sont tirés de

• Référence : Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children", Research Quarterly for Exercise and Sport, 63, 418-424

Homoscédasticité

4 D > 4 B > 4 E > 4 E >

Homoscédasticité

## Source

Les exemples de ce cours sont tirés de

- Référence : Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children", Research Quarterly for Exercise and Sport, 63, 418-424
- Les auteurs ont interrogé des enfants scolarisés dans des écoles sélectives du Michigan. Ils leur ont posé les questions suivantes :
  - Qu'aimerais-tu le mieux faire à l'école : A. Avoir de bonnes notes. B. Etre bon en sport, C. Etre populaire?
  - 2 Pour chacun de ces critères ils leur ont demandé de placer un chiffre marquant l'ordre d'importance que ces enfants accordent aux choix A,B,C ainsi que pour le choix "avoir beaucoup d'argent";
  - 3 Un ensemble d'informations socio-dém. ont été également recueillies.

Homoscédasticité

girl

White

Suburban

| Gender | Grade | Age | Race  | Urban/Rural | School               | Goals   | Grades | Sports | Looks | Money |
|--------|-------|-----|-------|-------------|----------------------|---------|--------|--------|-------|-------|
| girl   | 5     | 10  | White | Suburban    | Brentwood Elementary | Popular | 3      | 2      | 1     | 4     |
| girl   | 5     | 10  | White | Suburban    | Brentwood Elementary | Grades  | 1      | 3      | 2     | 4     |
| girl   | 5     | 11  | White | Suburban    | Brentwood Elementary | Sports  | 1      | 3      | 2     | 4     |
| girl   | 6     | 11  | Other | Suburban    | Brentwood Middle     | Popular | 2      | 3      | 1     | 4     |
| girl   | 6     | 11  | White | Suburban    | Brentwood Middle     | Popular | 1      | 3      | 2     | 4     |
| girl   | 6     | 11  | White | Suburban    | Brentwood Middle     | Popular | 1      | 3      | 4     | 2     |
| girl   | 6     | 11  | White | Suburban    | Brentwood Middle     | Grades  | 4      | 1      | 2     | 3     |
| girl   | 6     | 11  | White | Suburban    | Brentwood Middle     | Sports  | 1      | 2      | 3     | 4     |
| girl   | 6     | 11  | White | Suburban    | Brentwood Middle     | Grades  | 3      | 4      | 1     | 2     |
|        |       |     |       |             |                      |         |        |        |       |       |

Figure - extrait de la base de données Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"

Brentwood Middle

Popular

2 quali

2 quali

Homoscédasticité

## Deux variables qualitatives

On se restreint à deux variables qualitatives uniquement :

| Gender | Goals   |
|--------|---------|
| boy    | Sports  |
| boy    | Popular |
| girl   | Grades  |
| girl   | Sports  |
| girl   | Sports  |
| girl   | Sports  |
| girl   | Grades  |
| boy    | Popular |

Figure - extrait de la base de données réduite à deux variables qualitatives, Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children" 《四》《圖》《意》《意》

2 guali

## Indicateurs

tableau de contingence -> perte des données individuelles

<sub>E Gaus</sub> tab

00000000000000000

2 quali

discrèt

2

contir

E-1:---

T---

Homoscédasticité

Qui

2 quali

ther

2 quali

2 orc

discrète

continu Anova

Estimateurs
Test
Homoscédasticité

Qui?

## Indicateurs

tableau de contingence -> perte des données individuelles -> vue synthétique selon les modalités des variables

|       |         | Gender |      | Total |
|-------|---------|--------|------|-------|
|       |         | boy    | girl |       |
|       | Grades  | 117    | 130  | 247   |
| Goals | Popular | 50     | 91   | 141   |
|       | Sports  | 60     | 30   | 90    |
| Total |         | 227    | 251  | 478   |

Figure – Tableau de contingence de l'extrait de la base de données réduite à deux variables qualitatives, Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"

《四》《圖》《意》《意》



2 guali

Indicateurs rappels

00000000000000000

Profils lignes -> permet de donner une "masse" égale à chaque ligne : on peut comparer les modalités des colonnes (donc les lignes).

#### 2 quali

Homoscédasticité

4 D > 4 A > 4 B > 4 B >

2 quali

## Indicateurs

00000000000000000

Profils lignes -> permet de donner une "masse" égale à chaque ligne : on peut comparer les modalités des colonnes (donc les lignes).

|       |         | Ger   | Gender |        |
|-------|---------|-------|--------|--------|
|       |         | boy   | girl   |        |
|       | Grades  | 47,4% | 52,6%  | 100,0% |
| Goals | Popular | 35,5% | 64,5%  | 100,0% |
|       | Sports  | 66,7% | 33,3%  | 100,0% |
| Total |         | 47,5% | 52,5%  | 100,0% |

Figure - Profils lignes du tableau de contingence, extrait de la base de données réduite à deux variables qualitatives, Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"



2 guali

rappels E. Gau-

## Indicateurs

Profils colonnes -> permet de donner une "masse" égale à chaque colonne : on peut comparer les modalités des lignes (donc les colonnes).

2 quali

2 ordi

discrèt

continu

Anova Estimateu

Test Homoscédasticité

Qui?

《四》《圖》《意》《意》

2 quali

## Indicateurs

Profils colonnes -> permet de donner une "masse" égale à chaque colonne : on peut comparer les modalités des lignes (donc les colonnes).

|       |         | Gender |        | Total  |
|-------|---------|--------|--------|--------|
|       |         | boy    | girl   |        |
|       | Grades  | 51,5%  | 51,8%  | 51,7%  |
| Goals | Popular | 22,0%  | 36,3%  | 29,5%  |
|       | Sports  | 26,4%  | 12,0%  | 18,8%  |
| Total |         | 100,0% | 100,0% | 100,0% |

Figure - Profils colonnes du tableau de contingence, extrait de la base de données réduite à deux variables qualitatives, Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"





\_ |

2 orc

discrèt

continu

Anava

Estimate

Test Homoscédasticité

Qui !

## Indicateurs

Test du chi 2 d'indépendance Variables issues d'un échantillon iid + au moins 5 données dans les effectifs théoriques.

## Indicateurs

000000000000000000

Test du chi 2 d'indépendance Variables issues d'un échantillon iid + au moins 5 données dans les effectifs théoriques.

 $H_0: X$  indépendante de Y contre  $H_1: X \ et \ Y$  dépendantes

Le risque de rejeter  $H_0$  à tort doit être au plus de  $\alpha$  (risque de déclarer l'indépendance, à tort).

$$\Delta_{\chi^2} = \sum_{i} \sum_{j} \frac{\left(n_{ij} - \frac{n_{i,n,j}}{n}\right)^2}{\frac{n_{i,n,j}}{n}}.$$

En d'autres termes

$$\Delta_{\chi^2} = \sum_{i} \sum_{j} \frac{(n_{obs} - n_{theo})^2}{n_{theo}}.$$

4日 > 4周 > 4 至 > 4 至 > 一至

2 quali

## Indicateurs

Test du chi 2 d'indépendance Variables issues d'un échantillon iid + au moins 5 données dans les effectifs théoriques.

 $H_0: X$  indépendante de Y contre  $H_1: X$  et Y dépendantes

Le risque de rejeter  $H_0$  à tort doit être au plus de  $\alpha$  (risque de déclarer l'indépendance, à tort).

$$\Delta_{\chi^2} = \sum_{i} \sum_{j} \frac{\left(n_{ij} - \frac{n_{i,n,j}}{n}\right)^2}{\frac{n_{i,n,j}}{n}}.$$

En d'autres termes

$$\Delta_{\chi^2} = \sum_{i} \sum_{j} \frac{(n_{obs} - n_{theo})^2}{n_{theo}}.$$

Cas de deux variables à deux modalités spécifiques (correction de Yates).

## ModL Indicateurs

2 quali

rappels

2 quali

Homoscédasticité

|                               | Valeur  | ddl | Signification<br>asymptotique<br>(bilatérale) |
|-------------------------------|---------|-----|-----------------------------------------------|
| Khi-deux de Pearson           | 21,455ª | 2   | ,000                                          |
| Rapport de vraisemblance      | 21,769  | 2   | ,000                                          |
| Nombre d'observations valides | 478     |     |                                               |

a. 0 cellules (0,0%) ont un effectif théorique inférieur à 5. L'effectif théorique minimum est de 42,74.

Figure - Chi2 et sa p-value sur la base d'un extrait de la base de données réduite à deux variables qualitatives, Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"

2 quali

E. Gau-

2 guali

Homoscédasticité

## Indicateurs

|                               | Valeur  | <u>ddl</u> | Signification<br>asymptotique<br>(bilatérale) |
|-------------------------------|---------|------------|-----------------------------------------------|
| Khi-deux de Pearson           | 21,455ª | 2          | ,000                                          |
| Rapport de vraisemblance      | 21,769  | 2          | ,000                                          |
| Nombre d'observations valides | 478     |            |                                               |

a. 0 cellules (0.0%) ont un effectif théorique inférieur à 5. L'effectif théorique minimum est de 42,74.

Figure - Chi2 et sa p-value sur la base d'un extrait de la base de données réduite à deux variables qualitatives, Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"

Rque : si n grand, tendance à rejeter l'indépendance (différence à 0 non expliquée par la fluctuation d'échantillonnage)

### Indicateurs

000000000000000000

Contribution au Test du chi 2 d'indépendance : les "petits chi 2" Résidus standardisés $_{ij}$ =  $(n_{ij}$  observé -  $n_{ij}$  théo) /  $\sqrt{n_{ij}}$ théo.

Petits  $\chi_{ij}^2 = (\text{R\'esidus standardis\'es}_{ij})^2$ .

Le résidu standardisé outre le sens de la contribution (avec les signes) varie autour d'une moyenne de 0 et a un écart-type de 1 -> suit presque une loi normale (utile pour dire si grand ou pas).

## Indicateurs

000000000000000000

Contribution au Test du chi 2 d'indépendance : les "petits chi 2" Résidus standardisés $_{ij}$  =  $(n_{ij}$  observé -  $n_{ij}$  théo) /  $\sqrt{n_{ij}}$ théo.

Petits  $\chi_{ij}^2 = (\text{R\'esidus standardis\'es}_{ij})^2$ .

Le résidu standardisé outre le sens de la contribution (avec les signes) varie autour d'une moyenne de 0 et a un écart-type de 1 -> suit presque une loi normale (utile pour dire si grand ou pas).

Le résidu standardisé ajusté est plus proche d'une loi normale. Résidus standardisés ajustés $_{ij}=$  résidus standardisés $_{ij}$  /  $\sqrt{$  (1- fréquence marginale $_{i.}$ ) (1- fréquence marginale $_{i.}$ ) avec fréquence marginale $_{i.}=\frac{n_{i.}}{n}$ 

## Indicateurs

000000000000000000

Contribution au Test du chi 2 d'indépendance : les "petits chi 2" Résidus standardisés $_{ij}$  =  $(n_{ij}$  observé -  $n_{ij}$  théo) /  $\sqrt{n_{ij}}$ théo.

Petits  $\chi_{ij}^2 = (\text{R\'esidus standardis\'es}_{ij})^2$ .

Le résidu standardisé outre le sens de la contribution (avec les signes) varie autour d'une moyenne de 0 et a un écart-type de 1 -> suit presque une loi normale (utile pour dire si grand ou pas).

Le résidu standardisé ajusté est plus proche d'une loi normale. Résidus standardisés ajustés $_{ij}$  = résidus standardisés $_{ij}$  /

 $\sqrt{\text{(1- fréquence marginale}_{i.})}$  (1- fréquence marginale $_{.j}$ ) avec fréquence marginale $_{i.} = \frac{n_{i.}}{n_{i.}}$ 

-> préférable pour dire si grand ou pas en comparant aux quantiles de la loi normale

# 

ModL Indicateurs

E. Ga thera

2 quali

2 quali

2 0"

2 discrèt

2 continu

Continu

Estimateur

Homoscédasticité

herat

|       | •       | Gender<br>boy girl |      |
|-------|---------|--------------------|------|
|       |         |                    |      |
|       | Grades  | -,1                | ,1   |
| Goals | Popular | -3,4               | 3,4  |
|       | Sports  | 4,0                | -4,0 |

Figure – "Petits  $\chi^2$ " : résidus standardisés et ajustés sur la base d'un extrait de la base de données réduite à deux variables qualitatives, *Chase, M. A., and Dummer, G. M.* (1992), "The Role of Sports as a Social Determinant for Children"

《四》《圖》《意》《意》

2 guali

## Indicateurs

000000000000000000

Test du  $\chi^2$  dit si liées ou pas -> avec quelle intensité?  $\chi^2$  dépend de n, de K et de L le nombre lignes et de colonnes du tableau de contingence.

2 quali 2 ordi

2

continue

Estimateu

Homoscédasticité

Qui?

## E. Gai

#### 2 quali 2 ordi

Qui !

## Indicateurs

Test du  $\chi^2$  dit si liées ou pas -> avec quelle intensité?  $\chi^2$  dépend de n, de K et de L le nombre lignes et de colonnes du tableau de contingence.

• Carré moyen de contingence :  $\Phi = \sqrt{\frac{\chi^2}{n}}$ 

## E. Gau-

### 2 quali 2 ordi

## Indicateurs

Test du  $\chi^2$  dit si liées ou pas -> avec quelle intensité ?  $\chi^2$  dépend de n, de K et de L le nombre lignes et de colonnes du tableau de contingence.

• Carré moyen de contingence :  $\Phi=\sqrt{\frac{\chi^2}{n}}$  -> élimine l'effet taille (n) rque :  $\Phi_{max}=\sqrt{min(K-1;L-1)}$ 

#### ModI Indicateurs rappels

E. Gau-

2 guali

Homoscédasticité

Test du  $\chi^2$  dit si liées ou pas -> avec quelle intensité?  $\chi^2$  dépend de n, de K et de L le nombre lignes et de colonnes du tableau de contingence.

- Carré moyen de contingence :  $\Phi = \sqrt{\frac{\chi^2}{n}}$  -> élimine l'effet taille (n)rque :  $\Phi_{max} = \sqrt{min(K-1;L-1)}$
- V de Cramer  $V = \sqrt{\frac{\chi^2}{n \min(L-1:K-1)}}$ Varie entre 0 et 1.

Ne dépend ni du nombre de lignes et de colonnes ni de la taille n de l'échantillon;

2 guali

Homoscédasticité

## Indicateurs

Test du  $\chi^2$  dit si liées ou pas -> avec quelle intensité ?  $\chi^2$  dépend de n, de K et de L le nombre lignes et de colonnes du tableau de contingence.

- Carré moyen de contingence :  $\Phi = \sqrt{\frac{\chi^2}{n}}$  -> élimine l'effet taille (n) rque :  $\Phi_{max} = \sqrt{min(K-1;L-1)}$
- V de Cramer  $V=\sqrt{\frac{\chi^2}{n\;min(L-1;K-1)}}$  Varie entre 0 et 1. Ne dépend ni du nombre de lignes et de colonnes ni de la taille n de l'échantillon :
  - Coefficient de contingence C.

Indicateurs

2 quali

2

discrète

contin

E--:---

Test Homoscédasticité

Qui?

Coefficient de contingence C ->

2 guali

## Indicateurs

00000000000000000

2 quali

2 0141

discrèt

contin

.

Estimat

Test

Homoscédasticité

Qui !

Coefficient de contingence C -> issu du  $\chi^2$ 

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

16/94

## ModL rappels

## Indicateurs

Coefficient de contingence C -> issu du  $\chi^2$ 

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}.$$

- absence d'association C=0;
- concordance parfaite C devrait atteindre 1. En fait la valeur max de C dépend du nombre de colonnes et de lignes : on ne peut donc comparer que deux coefficients de contingence que pour des tableaux de même nbre de colonnes et de lignes.

- 2
- 2 continue
- Anova
- Estimateurs
  Test
  Homoscédasticité
- Qui?

E. Gau

2 quali

2 ordi

discrèt

continu

Anova

Estima

Test Homoscédasticité

Qui?

SPSS

## Indicateurs

## On obtient

- $\chi^2 = 21,455 \text{ avec } n = 478$
- $\Phi = 0,212$
- $V_{Cramer} = 0,212$
- C = 0,207

2 guali

0000000000000000000

Qui?

## Dispositifs graphiques



Figure – Graphe bâton superposé sur les effectifs : regroupement par sexe, Chase, M. .. ..

E. Gautherat

ModL rappels

rappels

2 quali

2 guali

Homoscédasticité

## Dispositifs graphiques



Figure – Graphe bâton superposé sur les effectifs : regroupement par choix des buts, Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social

# ModL Dispositifs graphiques

#### Tableau croisé Gender \* Goals % compris dans Goals



Figure – Graphe bâton superposé sur les profils lignes : regroupement par buts. Issu des données de Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a ...

2 quali

Homoscédasticité

# ModL Dispositifs graphiques

2 quali

Homoscédasticité

Tableau croisé Goals \* Gender % compris dans Goals



Figure – Graphe bâton superposé sur les profils lignes : regroupement par sexe. Base issue des données de Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"

《四》《圖》《意》《意》

Gender

E. Gautherat ModL rappels 21/94

#### ModL rappels

E. Ga

2 quali

2 discrèt

2 continu

Anova Estimates

Homoscédasticité

SDSS

### Dispositifs graphiques

#### Tableau croisé Goals \* Gender % compris dans Gender



Figure – Graphe bâton superposé sur les profils colonnes : regroupement par but. Base issue des données de *Chase, M. A., and Dummer, G. M. (1992), "The Role of second to the colonnes of the Role of second to the colonnes of the Role of second to the colonnes of the Role of second to t* 

E. Gautherat ModL rappels 22/94

### ModL Dispositifs graphiques

000000000000000000

2 guali

rappels

2 quali

Homoscédasticité

#### Tableau croisé Goals \* Gender % compris dans Gender



Figure – Graphe bâton superposé sur les profils colonnes : regroupement par sexe. Base issue des données de Chase, M. A., and Dummer, G. M. (1992), "The Role of a contract of the contract of t

ModL rappels E. Gautherat 23/94



2 quali

Homoscédasticité

2 quali

000000000000000000

## Dispositifs graphiques

L' analyse factorielle des correspondances propose des dispositifs graphiques mais est techniquement fondée sur l'ACP.

《四》《圖》《意》《意》

#### ModI rappels

2 ordi

Homoscédasticité

### Deux variables qualitatives ordinales

On se restreint à deux variables ordinales uniquement :

| Grades | Sports |
|--------|--------|
| 1      | 2      |
| 2      | 1      |
| 4      | 3      |
| 2      | 3      |
| 4      | 2      |
| 4      | 2      |
| 3      | 4      |
| 3      | 4      |
| 3      | 2      |
| 4      | 3      |

Figure – extrait de la base de données réduite à deux variables ordinales. Chase. M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"

- -Grades : rang alloué par les écoliers à l'importance d' "avoir de bonnes notes" pour être reconnu par ses pairs
- -Sports : rang alloué à l'importance d'être un "bon sportif" Ordre: 1= le plus important, ..., 4 = le moins important



### Indicateurs

On peut reprendre la totalité des indicateurs existant dans le cadre de deux variables qualitatives non ordonnées

2 ordi

2

continue

Δnova

Estimate

Test Homoscédasticité

Qui?

2 ordi

Homoscédasticité

### Indicateurs

On peut reprendre la totalité des indicateurs existant dans le cadre de deux variables qualitatives non ordonnées

On ajoute des statistiques de corrélation des rangs

- Corrélation des rangs de Spearman
  - Corrélation des rangs de Kendall

Deux variables ordinales x et y appariées, décrites sur n individus. On peut les considérer comme des observations des variables aléatoires X et Y.

Cadre théorique : chaque observation a une place unique. Création de 2 variables R = rang(X) et S = rang(Y). Représentent les rangs de chaque observation (pas deux observations de  $R_i = rang(X_i)$  identiques) :

$$\min_{i=1,...,n} (R_i) = 1, \quad \max_{i=1,...,n} (R_i) = n, \quad \overline{R} = \frac{n+1}{2}$$

On note  $ho_{Spearman}$  le coefficient de corrélation de Spearman.

On définit la corrélation de Spearman par  $\rho_S = cor(R; S)$ .

Par abus (clair) de notation, on confond la notation pour des variables aléatoires X et Y avec son estimation pour les observables x et y.

$$\rho_S = \frac{\sum_{i=1}^{n} (R_i - \overline{R})(S_i - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_i - \overline{R})^2} \sqrt{\sum_{i=1}^{n} (S_i - \overline{S})^2}}$$

<sub>ité</sub> ou encore

$$\rho_S = \frac{12\sum_{i=1}^n R_i S_i}{n(n^2 - 1)} - \frac{2(n+1)}{(n-1)}$$

et, en notant  $D_i = R_i - S_i$ 

$$\rho_S = 1 - \frac{6\sum_{i=1}^n D_i^2}{(n^3 - n)}$$



### Interprétation :

• exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable xet variable y;

2 ordi

Homoscédasticité

### Interprétation :

- exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable x et variable y;
- $-1 \le \rho_S \le 1$ ;

E. Gai

2 ordi

discrète

continue

Anova
Estimateurs
Test
Homoscédasticité

Qui?

### Interprétation :

- exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable x et variable y;
- $-1 \le \rho_S \le 1$ ;
- X et Y indépendantes  $=> \rho_S = 0$ ;

2 ordi

2

continue

Estimateurs Test

Homoscédasticité

SPSS

2 ordi

Homoscédasticité

### Corrélation de Spearman

### Interprétation :

- exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable x et variable y;
- $-1 \le \rho_S \le 1$ ;
- X et Y indépendantes  $=> \rho_S = 0$ ;
- Test du  $ho_S$  valable dans un cadre non paramétrique.

2 ordi

Homoscédasticité

### Corrélation de Spearman

### Interprétation :

- exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable x et variable y;
- $-1 \le \rho_S \le 1$ ;
- X et Y indépendantes  $=> \rho_S = 0$ ;
- Test du  $\rho_S$  valable dans un cadre non paramétrique. Test aussi puissant que la corrélation de Pearson, dans le cadre paramétrique Gaussien;

### Interprétation :

- exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable x et variable y;
- $-1 \le \rho_S \le 1$ ;
- X et Y indépendantes  $=> \rho_S = 0$ ;
- Test du  $\rho_S$  valable dans un cadre non paramétrique. Test aussi puissant que la corrélation de Pearson, dans le cadre paramétrique Gaussien;
- Peut traduire une situation non linéaire, mais elle doit être monotone;

**2 ordi** 2

2 continue

Anova Estimateurs Test Homoscédasticité

Qui?

SPSS

### Interprétation :

- exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable x et variable y;
- $-1 \le \rho_S \le 1$ ;
- X et Y indépendantes  $=> \rho_S = 0$ ;
- Test du  $\rho_S$  valable dans un cadre non paramétrique. Test aussi puissant que la corrélation de Pearson, dans le cadre paramétrique Gaussien;
- Peut traduire une situation non linéaire, mais elle doit être monotone;
- Robustesse par rapport aux valeurs extrêmes;

2 ordi

Homoscédasticité

### Interprétation :

- exprime le degré de concordance des classements entre x et y, ainsi que son sens : exprime la concordance au vu du classement global : variable xet variable y;
- $-1 \le \rho_S \le 1$ ;
- X et Y indépendantes  $=> \rho_S = 0$ ;
- Test du  $\rho_S$  valable dans un cadre non paramétrique. Test aussi puissant que la corrélation de Pearson, dans le cadre paramétrique Gaussien;
- Peut traduire une situation non linéaire, mais elle doit être monotone;
- Robustesse par rapport aux valeurs extrêmes :
- Une variante permet de prendre en compte les ex-aeguo : essentiel.

#### ModL rappels

E. Gar thera

2 qua

2 ordi

discrèt

continu

Estimate

Homoscédasticité

Qui !

### Corrélation de Spearman

Cadre avec ex-aequo. facteur de correction -> valeurs intermédiaires.



E. Ga thera

2 quai

2

2

Anova

Estimateı Test

Homoscédasticité

Qui ?

### Corrélation de Spearman

Cadre avec ex-aequo.

facteur de correction -> valeurs intermédiaires.

ullet Calcul des rangs moyens. Soit  $n_R$  le nombre de rangs moyens distincts.

Cadre avec ex-aequo.

facteur de correction -> valeurs intermédiaires.

• Calcul des rangs moyens. Soit  $n_R$  le nombre de rangs moyens distincts. (Si  $n_R=n$  pas d'ex-aequo).

#### ModL rappels

E. Ga thera

2 ordi

2 discrète

2 continue

Estimateurs
Test
Homoscédasticité

Qui?

### Corrélation de Spearman

Cadre avec ex-aequo.

- Calcul des rangs moyens. Soit  $n_R$  le nombre de rangs moyens distincts. (Si  $n_R=n$  pas d'ex-aequo).
  - on calcule les rangs;

Cadre avec ex-aequo.

- Calcul des rangs moyens. Soit  $n_R$  le nombre de rangs moyens distincts. (Si  $n_R=n$  pas d'ex-aequo).
  - on calcule les rangs;
  - pour les individus de même valeur : on alloue une valeur de rang moyenne.

Cadre avec ex-aequo.

- Calcul des rangs moyens. Soit  $n_R$  le nombre de rangs moyens distincts. (Si  $n_R=n$  pas d'ex-aequo).
  - on calcule les rangs;
  - pour les individus de même valeur : on alloue une valeur de rang moyenne.
- Soit  $t_r$  le nombre d'apparition du même rang moyen r

Cadre avec ex-aequo.

- Calcul des rangs moyens. Soit  $n_R$  le nombre de rangs moyens distincts. (Si  $n_R=n$  pas d'ex-aequo).
  - on calcule les rangs;
  - pour les individus de même valeur : on alloue une valeur de rang moyenne.
- ullet Soit  $t_r$  le nombre d'apparition du même rang moyen r
- On calcule la valeur  $T_X$  le facteur de correction, fonction du nombre d'ex-aequo au sein de la variable X:

$$T_X = \sum_{a=1}^{n_R} (t_a^3 - t_a).$$

$$\rho_S = \frac{(n^3 - n) - 6\sum_{i=1}^n D_i^2 - (T_X + T_Y)/2}{\sqrt{(n^3 - n)^2 - (T_X + T_Y)(n^3 - n) + T_X T_Y}}$$



E. Gai

2 qual 2 ordi

2 discrète

continue

Estimateur Test

Homoscédasticité
Qui ?

### Corrélation de Spearman

Test du coefficient de corrélation de Spearman. Aucune hypothèse de loi, mais un recueil iid des observations.

 $H_0: X$  et Y indépendantes contre  $H_1: X$  et Y sont concordantes ou anti-concordantes

Test du coefficient de corrélation de Spearman. Aucune hypothèse de loi, mais un recueil iid des observations.

 $H_0: X$  et Y indépendantes contre  $H_1: X$  et Y sont concordantes ou anti-concordantes

 pour n petit (inférieur à 10, mais toujours supérieur à 4), on utilise des tables exactes;



2 ordi

Homoscédasticité

### Corrélation de Spearman

Test du coefficient de corrélation de Spearman. Aucune hypothèse de loi, mais un recueil iid des observations.

 $H_0: X$  et Y indépendantes contre  $H_1: X$  et Y sont concordantes ou anti-concordantes

- pour n petit (inférieur à 10, mais toujours supérieur à 4), on utilise des tables exactes:
- Entre 20 et 35, on utilise une approximation de Student;

Test du coefficient de corrélation de Spearman. Aucune hypothèse de loi, mais un recueil iid des observations.

 $H_0: X$  et Y indépendantes contre  $H_1: X$  et Y sont concordantes ou anti-concordantes

- pour n petit (inférieur à 10, mais toujours supérieur à 4), on utilise des tables exactes;
- Entre 20 et 35, on utilise une approximation de Student;
- Au delà, une approximation normale.

Mais, il s'agit tours d'une corrélation de Pearson , même si elle s'exécute sur des rangs.

#### ModL rappels

E. Ga thera

2 ordi

2 discrè

2 continue

Estimateurs
Test
Homoscédasticité

Qui?

### Corrélation de Kendall

On transforme toujouts x et y en rang R et S On dit que la paire  $(r_i,s_i)$  correspondante à l'individu i est concordante avec la paire  $(r_j,s_j)$  correspondante à l'individu j si leurs observations sur les variables R et S évoluent dans le même sens :  $(r_i-r_j)(s_i-s_j)>0$ . Dans le cas où ce prodit est négatif, on parle de paires discordantes.



# E. Gar

#### 2 qual 2 ordi

- 2 discrèt
- 2 continues
- Anova Estimateurs Test
- Homoscédasticité
  Qui ?
- SPSS

### Corrélation de Kendall

On transforme toujouts x et y en rang R et S On dit que la paire  $(r_i,s_i)$  correspondante à l'individu i est concordante avec la paire  $(r_j,s_j)$  correspondante à l'individu j si leurs observations sur les variables R et S évoluent dans le même sens :  $(r_i-r_j)(s_i-s_j)>0$ . Dans le cas où ce prodit est négatif, on parle de paires discordantes.

On note  $N_C$  le nombre de paires concordantes, et  $N_D$  le nombre de paires discordantes.

### Corrélation de Kendall

On transforme toujouts x et y en rang R et S On dit que la paire  $(r_i, s_i)$ correspondante à l'individu i est concordante avec la paire  $(r_i, s_i)$ correspondante à l'individu i si leurs observations sur les variables R et Sévoluent dans le même sens :  $(r_i - r_j)(s_i - s_j) > 0$ . Dans le cas où ce prodit est négatif, on parle de paires discordantes.

On note  $N_C$  le nombre de paires concordantes, et  $N_D$  le nombre de paires discordantes.

La comparaison de toutes les paires est longue si n est grand.

### Corrélation de Kendall

On transforme toujouts x et y en rang R et S On dit que la paire  $(r_i, s_i)$ correspondante à l'individu i est concordante avec la paire  $(r_i, s_i)$ correspondante à l'individu i si leurs observations sur les variables R et Sévoluent dans le même sens :  $(r_i - r_j)(s_i - s_j) > 0$ . Dans le cas où ce prodit est négatif, on parle de paires discordantes.

On note  $N_C$  le nombre de paires concordantes, et  $N_D$  le nombre de paires discordantes.

La comparaison de toutes les paires est longue si n est grand.

On définit  $\rho_K$  la corrélation de Kendall par

$$\rho_K = 2\frac{N_C - N_D}{n(n-1)}$$

Corrélation de Kendall

Interprétation:

#### ModL rappels

E. Gau

2 qua

2 ordi

discrete

Anova

Estimat —

Homoscédasticité

Qui !

33/94



E. Gar

2 qua

2 ordi

2 discrète 2

continue

Estimateu

Homoscédasticité

SPSS

### Corrélation de Kendall

### Interprétation :

ullet Exprime le degré de concordance des classements entre X et Y, ainsi que son sens : exprime la concordance individu après individu;

2 ordi

### Interprétation :

• Exprime le degré de concordance des classements entre X et Y, ainsi que son sens : exprime la concordance individu après individu;

•  $-1 \le \rho_K \le 1$ ;

Homoscédasticité

### E. Ga thera

### 2 qua .

### 2 ordi 2 discrète

2 continues

Anova Estimateurs Test Homoscédasticité

Qui?

### Corrélation de Kendall

- ullet Exprime le degré de concordance des classements entre X et Y, ainsi que son sens : exprime la concordance individu après individu;
  - $-1 \le \rho_K \le 1$ ;
- X et Y ont autant de chance d'être concordant que discordant (indépendance des classements) =>  $\rho_K = 0$ ;

- ullet Exprime le degré de concordance des classements entre X et Y, ainsi que son sens : exprime la concordance individu après individu;
  - $-1 \le \rho_K \le 1$ ;
- X et Y ont autant de chance d'être concordant que discordant (indépendance des classements) =>  $\rho_K=0$ ;
- ullet Test du  $ho_K$  valable dans un cadre non paramétrique;

### E. Gautherat

### 2 qual 2 ordi



ontinues

Anova Estimateurs Test

Homoscédast<mark>icité</mark> Qui ?

SPSS

### Corrélation de Kendall

- ullet Exprime le degré de concordance des classements entre X et Y, ainsi que son sens : exprime la concordance individu après individu;
  - $-1 \le \rho_K \le 1$ ;
- X et Y ont autant de chance d'être concordant que discordant (indépendance des classements) =>  $\rho_K=0$ ;
- ullet Test du  $ho_K$  valable dans un cadre non paramétrique;
- Robustesse par rapport aux valeurs extrêmes;

- ullet Exprime le degré de concordance des classements entre X et Y, ainsi que son sens : exprime la concordance individu après individu;
  - $-1 \le \rho_K \le 1$ ;
- X et Y ont autant de chance d'être concordant que discordant (indépendance des classements) =>  $\rho_K=0$ ;
- ullet Test du  $ho_K$  valable dans un cadre non paramétrique;
- Robustesse par rapport aux valeurs extrêmes;
- Une variante permet de prendre en compte les ex-aequo : essentiel.



Cadre avec ex-aequo.

facteur de correction -> valeurs intermédiaires.

2 ordi 2

2 continue

Estimate

Test

Homoscédasticité

Qui?



E. Gautherat



Cadre avec ex-aequo.

facteur de correction -> valeurs intermédiaires.

2 ordi 2

2 continue

Estimate

Test

Homoscédasticité

Qui?



E. Gautherat

E. Ga thera

2 quali 2 ordi

2 discrète

2

Anova

Estimateurs
Test
Homoscédasticité

Qui?

## Corrélation de Kendall

Cadre avec ex-aequo.

facteur de correction -> valeurs intermédiaires.

• Soit  $n_R$  le nombre de rangs moyens distincts;



E. Ga thera

2 ordi

discrète

continue

Estimateurs
Test
Homoscédasticité

Qui?

### Corrélation de Kendall

Cadre avec ex-aequo.

facteur de correction -> valeurs intermédiaires.

- Soit  $n_R$  le nombre de rangs moyens distincts;
- Soit  $t_r$  le nombre d'apparition du même rang moyen r;

Cadre avec ex-aequo.

facteur de correction -> valeurs intermédiaires.

- Soit  $n_R$  le nombre de rangs moyens distincts;
- Soit  $t_r$  le nombre d'apparition du même rang moyen r;
- On calcule la valeur  $E_X$  le facteur de correction, fonction du nombre d'ex-aequo au sein de la variable X (resp. pour Y) :

$$E_X = \sum_{a=1}^{n_R} (t_a^2 - t_a).$$

$$\rho_K = 2 \frac{N_C - N_D}{\sqrt{((n^2 - n) - E_X)((n^2 - n) - E_Y)}}.$$

Test du coefficient de corrélation de Kendall. Aucune hypothèse de loi, mais un recueil iid des observations.

 $H_0: X$  et Y indépendantes contre  $H_1: X$  et Y sont concordantes ou anti-concordantes

Test du coefficient de corrélation de Kendall. Aucune hypothèse de loi, mais un recueil iid des observations.

 $H_0: X$  et Y indépendantes contre  $H_1: X$  et Y sont concordantes ou anti-concordantes

• pour n petit (inférieur à 10, mais toujours supérieur à 4), on utilise des tables exactes;

Test du coefficient de corrélation de Kendall. Aucune hypothèse de loi, mais un recueil iid des observations.

 $H_0: X$  et Y indépendantes contre  $H_1: X$  et Y sont concordantes ou anti-concordantes

- pour n petit (inférieur à 10, mais toujours supérieur à 4), on utilise des tables exactes:
- Pour n > 10, on utilise une approximation normale.

## Corrélations : exemples

Relation non monotone : carrevar1=(var1 -5 $)^2$  pour n=10 observations de var1 variant de 1 en 1 entre -4 et 5

### Corrélations

|                  |           |                            | var11 | carrevar1 |
|------------------|-----------|----------------------------|-------|-----------|
| Tau-B de Kendall | var11     | Coefficient de corrélation | 1,000 | ,210      |
|                  |           | Sig. (bilatérale)          |       | ,413      |
|                  |           | N                          | 10    | 10        |
|                  | carrevar1 | Coefficient de corrélation | ,210  | 1,000     |
|                  |           | Sig. (bilatérale)          | ,413  |           |
|                  |           | N                          | 10    | 10        |
| Rho de Spearman  | var11     | Coefficient de corrélation | 1,000 | ,276      |
|                  |           | Sig. (bilatérale)          |       | ,440      |
|                  |           | N                          | 10    | 10        |
|                  | carrevar1 | Coefficient de corrélation | ,276  | 1,000     |
|                  |           | Sig. (bilatérale)          | ,440  |           |
|                  |           | N                          | 10    | 10        |

Figure – Données artificielles. Calcul des coefficients de corrélation dans le cadre d'une relation non monotone.



36/94

2 ordi

Homoscédasticité

## Corrélations : exemples

Relation monotone non linéaire : cubevar1=c(var11-5)<sup>3</sup> pour n = 10observations de var11 variant de 1 en 1 entre 1 et 10



Figure - Données artificielles. Relation monotone, non linéaire. 4 D > 4 B > 4 B > 4 B >

## Corrélations : exemples

### Corrélations

|                  |          |                            | var11   | cubevar1 |
|------------------|----------|----------------------------|---------|----------|
| Tau-B de Kendall | var11    | Coefficient de corrélation | 1,000   | 1,000**  |
|                  |          | Sig. (bilatérale)          |         |          |
|                  |          | N                          | 10      | 10       |
|                  | cubevar1 | Coefficient de corrélation | 1,000** | 1,000    |
|                  |          | Sig. (bilatérale)          |         |          |
|                  |          | N                          | 10      | 10       |
| Rho de Spearman  | var11    | Coefficient de corrélation | 1,000   | 1,000**  |
|                  |          | Sig. (bilatérale)          | ٠.      |          |
|                  |          | N                          | 10      | 10       |
|                  | cubevar1 | Coefficient de corrélation | 1,000** | 1,000    |
|                  |          | Sig. (bilatérale)          |         |          |
|                  |          | N                          | 10      | 10       |

<sup>\*\*.</sup> La corrélation est significative au niveau 0,01 (bilatéral).

Figure - Données artificielles. Calcul des coefficients de corrélation dans le cadre d'une relation monotone non linéaire.

2 ordi

Homoscédasticité

## Corrélations : exemples



Figure - Données artificielles. Relation monotone avec données extrêmes. イロト (間) (量) (量)

E. Gautherat ModL rappels 39/94



Corrélations : exemples

Récapitulatif des observations

| var11 | VAR00004 | VAR00005 |
|-------|----------|----------|
| 1     | 2        | 10       |
| 2     | 1        | 1        |
| 3     | 3        | 2        |
| 4     | 4        | 3        |
| 5     | 5        | 4        |
| 6     | 6        | 5        |
| 7     | 7        | 6        |
| 8     | 8        | 7        |
| 9     | 9        | 8        |

2 ordi

Homoscédasticité

10

10

# quali 2 ordi

### ModL rappels

E. Gau

2 quai

2

2

Estimateu

Test Homoscédasticité

Qui?

# Corrélations : exemples

### Corrélations

|                            | VAR00004 |
|----------------------------|----------|
| Tau-B de Kendall var11     | ,956     |
| Tau-B de Kendall var11     | ,000     |
| Rho de Spearman var11      | ,988     |
| Kilo de Speailliait Val II | ,000     |

|                  |       | VAR0005 |
|------------------|-------|---------|
| Tau-B de Kendall | var11 | ,600    |
|                  |       | ,016    |
| Rho de Spearman  | var11 | ,455    |
|                  |       | ,187    |

Figure - Données artificielles



E. Gautherat ModL rappels 41/94

# \_

Corrélations : exemple sur données réelles

ModL

rappels

2 ordi

Homoscédasticité

# Récapitulatif des observations

| Grades | Sports |
|--------|--------|
| 1      | 2      |
| 2      | 1      |
| 4      | 3      |
| 2      | 3      |
| 4      | 2      |
| 4      | 2      |
| 3      | 4      |
| 3      | 4      |
| 3      | 2      |
| 4      | 3      |

a. Limité aux 10 premières observations

Figure – Extrait des réponses de 10 écoliers aux questions "importance des notes" et "importance du sport", Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children"

2 ordi

Homoscédasticité

## Corrélations : exemple sur données réelles

### Corrélations

|                  |        | Sports |
|------------------|--------|--------|
| Tau-B de Kendall | Grades | -,111  |
|                  |        | ,004   |
|                  |        | 478    |
| Rho de Spearman  | Grades | -,149  |
|                  |        | ,001   |
|                  |        | 478    |

Figure - Calcul des corrélations de Spearman et de Kendall pour les réponses aux questions "importance des notes" et "importance du sport", Chase, M. A., and Dummer, G. M. (1992), "The Role of Sports as a Social Determinant for Children" quali 2 ordi 2 discrètes 2 continues Anova Qui ? SPSS

# Corrélations : exemple sur données réelles

2 ordi

Homoscédasticité



Figure – Graphe bâtons en trois dimensions correspondant aux effectifs des réponses

aux questions "importance des notes" et "importance du sport". Chase. M. A.. and

ModL rappels

44/94

2 discrètes

Homoscédasticité

## Deux variables discrètes

2 guali

L'ensemble de ce qui a été présenté précédemment (variables ordinales) est valable.



### Deux variables discrètes

2 discrètes

2 continue:

Anova Estimateurs Test

Test Homoscédast<mark>icité</mark> Qui ? L'ensemble de ce qui a été présenté précédemment (variables ordinales) est valable.

Indicateurs : ajout du coefficient de corrélation de Pearson (qui sera développé dans le cadre de deux variables continues)

discrètes

## Deux variables discrètes

L'ensemble de ce qui a été présenté précédemment (variables ordinales) est valable.

Indicateurs : ajout du coefficient de corrélation de Pearson (qui sera développé dans le cadre de deux variables continues)

Graphes: les diagrammes de dispersion, et les graphes bâtons en trois dimensions.



Homoscédasticité

## Deux variables continues

Le jeu de données utilisé :

Moore, David S., et George P. McCabe (1989). Introduction to the Practice of Statistics, p. 179. Original source: "Family Expenditure Survey, Department of Employment", 1981 (British official statistics)



continues

## Deux variables continues

Le jeu de données utilisé :

Moore, David S., et George P. McCabe (1989). Introduction to the Practice of Statistics, p. 179. Original source: "Family Expenditure Survey, Department of Employment", 1981 (British official statistics)

Il décrit la moyenne des dépenses hebdomadaires, exprimées en livre, des Homoscédasticité ménages de Grande Bretagne distingués en 11 régions, dans les achats de tabac et d'alcool.



## Corrélation de Pearson

On se place dans le cadre d'observations issues de variables continues : aucun ex-aequo.

On note le coefficient de corrélation de Pearson par  $\rho_{Pearson}$ .

continues

Homoscédasticité

E. Gai

2 qu

2 ord

2 discrète

2 continues

Estimate \_

Homoscédasticité

Qui !

# Corrélation de Spearman



E. Ga

2 qu

2 0141

aiscrett

continues

Anova Estimateurs Test

Homoscédasticité

SPSS

## Corrélation de Spearman

### Interprétation :

 exprime l'intensité d'une liaison, ainsi que son sens, dans le cadre d'une relation linéaire (sinon, n'exprime rien);

Homoscédasticité

# Corrélation de Spearman

## Interprétation :

- exprime l'intensité d'une liaison, ainsi que son sens, dans le cadre d'une relation linéaire (sinon, n'exprime rien);
- $-1 \le \rho_{Pearson} \le 1$ ;

←ロト→面ト→重ト→重ト 重 めなべ

Homoscédasticité

## Interprétation :

- exprime l'intensité d'une liaison, ainsi que son sens, dans le cadre d'une relation linéaire (sinon, n'exprime rien);
- $-1 < \rho_{Pearson} < 1$ ;
- X et Y indépendantes implique  $\rho_{Pearson} = 0$ ;

《四》《圖》《意》《意》

E. Gau-

continues

Homoscédasticité

## Corrélation de Spearman

- exprime l'intensité d'une liaison, ainsi que son sens, dans le cadre d'une relation linéaire (sinon, n'exprime rien);
- $-1 < \rho_{Pearson} < 1$ ;
- X et Y indépendantes implique  $\rho_{Pearson} = 0$ ;
- Test du  $\rho_{Pearson}$  valable dans un cadre paramétrique gaussien pour tout n. Test valable dans un cadre non paramétrique pour n grand.

## Corrélation de Pearson

On définit la corrélation de Pearson par la covariance entre les variables X et Y réduites.

continues

Homoscédasticité

《四》《圖》《意》《意》 E. Gautherat ModL rappels 49/94



## Corrélation de Pearson

On définit la corrélation de Pearson par la covariance entre les variables X et Y réduites.

On note  $\widehat{\sigma}_X$  l'écart-type de la variable X.

2

continues

Estimateu

Test

Homoscédasticité

thera

2 ord

2 discrète

continues

Estimateur Test

Homoscédasticité

Qui ?

SPSS

On définit la corrélation de Pearson par la covariance entre les variables X et Y réduites.

On note  $\widehat{\sigma}_X$  l'écart-type de la variable X.

$$cov(X;Y) = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})$$

$$\rho_{Pearson} \ = \ cov(\frac{X}{\widehat{\sigma}_X}; \frac{Y}{\widehat{\sigma}_Y})$$



**Homoscédasticité** 

### Test de la corrélation de Pearson rappels

Dans le cas gaussien, le coefficient de corrélation peut être testé

 $H_0: X$  indépendante de Y contre  $H_1: X$  et Y dépendantes

Hors du cas gaussien, seule une asymptotique dans un cadre iid permet de déterminer une statistique de test.

### Deux variables continues : présentation des données

| Region              | Alcohol | Tobacco |  |
|---------------------|---------|---------|--|
| North               | 6,47    | 4,03    |  |
| Yorkshire           | 6,13    | 3,76    |  |
| Northeast           | 6,19    | 3,77    |  |
| East Midlands       | 4,89    | 3,34    |  |
| West<br>Midlands    | 5,63    | 3,47    |  |
| East Anglia         | 4,52    | 2,92    |  |
| Southeast           | 5,89    | 3,20    |  |
| Southwest           | 4,79    | 2,71    |  |
| Wales               | 5,27    | 3,53    |  |
| Scotland            | 6,08    | 4,51    |  |
| Northern<br>Ireland | 4,02    | 4,56    |  |

Figure – Données : 2 variables continues, 1 variable qualitative représentant les individus, "Family Expenditure Survey, Department of Employment", 1981, British official statistics <ロト (部) (注) (注)

#### ModL rappels

### Deux variables continues : présentation des données

Region Alcohol Tobacco North 6.47 4.03 Yorkshire 6,13 3,76 Northeast 6.19 3.77 continues East Midlands 3,34 4,89 West 5,63 3,47 Homoscédasticité Midlands East Anglia 4,52 2,92 Southeast 5,89 3,20 Southwest 2,71 4.79 5,27 3,53 Wales Scotland 6.08 4.51

Morthern



4.02

continues

Homoscédasticité

## Deux variables continues : visualisation des données



#### ModL Deux variables continues : visualisation des données rappels

continues

Homoscédasticité



Figure - Dépenses de tabac et dépenses d'alcool par des boîtes à moustache, "Family Expenditure Survey, Department of Employment", 1981, British official statistics



《四》《圖》《意》《意》 E. Gautherat

### Deux variables continues : indicateurs

• Corrélation de Pearson = 0,224 avec une p-value de 0,509

continues

Homoscédasticité



continues

Homoscédasticité

ullet Corrélation de Pearson =0,224 avec une p-value de 0,509

### Test de Kolmogorov-Smirnov à un échantillon

|                                            | Alcohol | Tobacco |
|--------------------------------------------|---------|---------|
| Z de Kolmogorov-Smirnov                    | ,553    | ,417    |
| Signification<br>asymptotique (bilatérale) | ,920    | ,995    |

SPSS



continues

Homoscédasticité

### Deux variables continues : indicateurs

ullet Corrélation de Pearson =0,224 avec une p-value de 0,509

### Test de Kolmogorov-Smirnov à un échantillon

|                                            | Alcohol | Tobacco |
|--------------------------------------------|---------|---------|
| Z de Kolmogorov-Smirnov                    | ,553    | ,417    |
| Signification<br>asymptotique (bilatérale) | ,920    | ,995    |

- Corrélation de Kendall = 0,345 avec une p-value de 0,139;
- Corrélation de Spearman = 0,373 avec une p-value de 0,259.



Homoscédasticité

### Pré-requis pour les aspects mathématiques

- Matrice de projection orthogonale;
- Lois dérivées de la loi gaussienne;
- Tests de Wald et tests paramétriques optimaux (UPP).



E. Gautherat

- taille des épis de blé, selon l'engrais placé dans le champs;
- taille des épis de blé selon l'engrais placé dans le champs et la région considérée.

Les facteurs (appartenance à un sous-groupe) sont contrôlés, ou considéré comme tels. Situations pour lesquelles une observation n'appartient qu'à une Homoscédasticité seule classe (ou sous-groupe) déterminée par l'expérimentateur.

Relation entre une variable quantitative et une variable qualitative.

Suppose un modèle probabiliste : un aléa.

#### ModL Analyse de la variance rappels

Reprise exemple des Hot-Dog, taux de sodium et calories selon le type de viande, beuf, volaille. Référence: Consumer Reports, June 1986, pp. 366-367





Anova

Homoscédasticité

### Analyse de la variance

ModL

rappels

Anova

Homoscédasticité





Moyenne =424,83

Ecart type =95,856 N =54

E. Gautherat ModL rappels 59/94

quali 2 ordi 2 discrètes 2 continues Anova Qui? SPSS

#### ModL rappels

Anova

Homoscédasticité

### Analyse de la variance

| Type_Code |            | Calories | Sodium  |
|-----------|------------|----------|---------|
| Beef      | Moyenne    | 156,85   | 401,15  |
|           | N          | 20       | 20      |
|           | Ecart-type | 22,642   | 102,435 |
| Meat      | Moyenne    | 158,71   | 418,53  |
|           | N          | 17       | 17      |
|           | Ecart-type | 25,236   | 93,872  |
| Poultry   | Moyenne    | 118,76   | 459,00  |
|           | N          | 17       | 17      |



E. Gautherat ModL rappels 60/94

**Ecart-type** 

Moyenne

Total

22,551

145,44

84,739

424,83

## ModL Analyse de la variance

Analyse de la variance



discrète

#### contin

#### Anova

Estimateurs

Homoscédasticité

Qui?





## ModL Analyse de la variance

Analyse de la variance

80-



Meat

E. Gautherat

Anova

Homoscédasticité

ModL rappels

Beef

62/94

Poultry

therat

2 discrète

continue

Test Homoscédast<mark>icité</mark> Qui ?

SPSS

### Analyse de la variance à un facteur

Soient  $Y=(Y_1,\cdots,Y_n)$  indépendemment distribués, de loi gaussienne (taux de calories). Pour  $k=1,\ldots,n$ , on classe  $Y_k$  en p sous-groupes (3 groupes) en fonction d'une seconde variable qualitative  $x_k$  (type de viande) prenant p modalités (mélange, volaille, boeuf). On dit que  $k\in Classe\ i$ , lorsque  $x_k\in Classe\ i$ .

$$Y_k = Y_{i,j}$$

- $i=1,\ldots,p$ , numéro de groupe;
- $n_1, \ldots, n_p$ , effectif des groupes  $i (\sum_{i=1}^p n_i = n)$ ;
- $j=1,\ldots,n_i$  numéro d'individu j dans le sous-groupe i.

$$Y = \left( \begin{array}{c} Y_{1,1} \\ \vdots \\ Y_{1,n_1} \\ \vdots \\ Y_{p,1} \\ \vdots \\ Y_{p,n_p} \end{array} \right)$$

### Analyse de la variance à un facteur

On suppose a priori que Y dépend linéairement du sous-groupe auquel elle appartient.

Quantifier cette dépendance -> effet facteur.

### E. Gau

2 quali

2 ordi

2 discrète

2 continue

continue Anova

> Estimateu --

Homoscédasticité

Qui ?

Anova

Homoscédasticité

### Analyse de la variance à un facteur

On suppose a priori que Y dépend linéairement du sous-groupe auquel elle appartient.

Quantifier cette dépendance -> effet facteur.

Idée : décomposition de la variance (variance intra+ variance inter -> création de l'indicateur  $R^2$ )

Anova

### Analyse de la variance à un facteur

### Modèle probabiliste

$$\begin{cases} Y = \sum_{i=1}^{p} m_i \mathbb{I}_{Y \in Classe\ i} + \xi, & i = 1, \dots, p \\ \xi \sim \mathcal{N}(0, \sigma^2) \end{cases}$$

Homoscédan icité Des modèles plus généraux cherchent à relaxer la dernière hypothèse.

## E. Gau



#### Anova

Estima

Test

Qui?

### Analyse de la variance à un facteur

#### Modèle statistique

$$\begin{cases} Y_{ij} = m_i + \xi_{ij}, & i = 1, \dots, p, \quad j = 1, \dots, n_i \\ \xi = (\xi_{ij})_{i,j} \sim \mathcal{N}_n(0, \sigma^2 Id_n) \end{cases}$$

La dernière hypothèse pourra être relaxée dans certains modèles étudiés ultérieurement.

$$\begin{cases} Y_{ij} = m_i + \xi_{ij}, & i = 1, \dots, p, \quad j = 1, \dots, n_i \\ \xi = (\xi_{ij})_{i,j} \sim \mathcal{N}_n(0, \sigma^2 Id_n) \end{cases}$$

La dernière hypothèse pourra être relaxée dans certains modèles étudiés ultérieurement.

Facteur pas d'influence sur  ${\cal Y}$ 

- discrète
- continu
- Anova Estimate
- Homoso
- Qui? SPSS

## Modèle statistique

$$\begin{cases} Y_{ij} = m_i + \xi_{ij}, & i = 1, \dots, p, \quad j = 1, \dots, n_i \\ \xi = (\xi_{ij})_{i,j} \sim \mathcal{N}_n(0, \sigma^2 Id_n) \end{cases}$$

La dernière hypothèse pourra être relaxée dans certains modèles étudiés ultérieurement.

Facteur pas d'influence sur  $Y \rightarrow m_1 = \cdots = m_p$ .

E. Ga thera

2 qua

2 014

discrèt

Anova

Test

Homoscédasticité

SPSS

### Analyse de la variance à un facteur

$$m = \begin{pmatrix} m_1 \\ \vdots \\ m_1 \\ m_2 \\ \vdots \\ m_2 \\ \vdots \\ m_2 \\ \vdots \\ m_p \\ \vdots \\ m_p \end{pmatrix}$$

et  $\xi$  le vecteur du bruit. Loi de Y?

E. Gautherat ModL rappels 67/94

E. Ga thera

∠ qua

2 orc

discrè

Anova

Test Homoscédasticité

Qui?

SPSS

### Analyse de la variance à un facteur

$$m = \begin{pmatrix} m_1 \\ \vdots \\ m_1 \\ m_2 \\ \vdots \\ m_2 \\ \vdots \\ m_p \\ \vdots \\ m_p \end{pmatrix}$$

et  $\xi$  le vecteur du bruit. Loi de Y?:

$$Y \sim \mathcal{N}_n(m; \sigma^2 Id_n).$$

E. Gautherat ModL rappels 67/94

E. Ga thera

2 qua

2 or

discrèt

-----

#### Anova

Test

Homoscédasticité

SPSS

### Analyse de la variance à un facteur

$$m = \begin{pmatrix} m_1 \\ \vdots \\ m_1 \\ m_2 \\ \vdots \\ m_2 \\ \vdots \\ m_p \\ \vdots \\ m_p \end{pmatrix}$$

et  $\xi$  le vecteur du bruit. Loi de Y?:

$$Y \sim \mathcal{N}_n(m; \sigma^2 Id_n).$$

m?  $\sigma^2?$ 

→□ → →□ → → □ → □ → ○ ○ ○

E. Gautherat ModL rappels 67/94

### Rappels : matrice de projection orthogonale

Soient E un e.v. munit d'un produit scalaire, W un sous-e.v. de E, et B un vecteur de E.

Soit  $\Pi_W$  la matrice de projection orthogonale d'un élément de E sur W. Alors

$$\begin{array}{rcl} \Pi_W^2 & = & \Pi_W \\ trace(\Pi_W) & = & dim(W) \\ Id_EB - \Pi_WB & = & \Pi_{W^\perp}B = B^\perp \\ & \Pi_WB & = & \underset{a \in W}{\operatorname{argmin}} \|B - a\|_2 \\ & \Pi_W & = & ww' \text{ lorsque } W = vect(w), \ w \text{ vect. unitaire} \end{array}$$

Soient W et G deux ss-ev de E,

$$\begin{array}{rcl} \Pi_W \Pi_G = 0 & \Longleftrightarrow & W \perp G \\ & \Pi_{W+G} & = & \Pi_W + \Pi_G, \text{ si } W \perp G \\ & \Pi_{W+G} & = & \Pi_W + \Pi_{(Id_E - \Pi_W).G}, \text{th\'eo. de Frisch-Waugh} \end{array}$$

#### Estimateurs

#### ModL rappels

E. Ga thera

2 qua

2 discrèt

2 continue

A -----

Estimateurs Test

Homoscédasticité

SPSS

### Rappels : matrice de projection orthogonale

Soient  $E=\mathbb{R}^n$ , V ss-ev de E (modèle), engendré par  $(1_{n_1},\dots,1_{n_p})$  où pour tout i,

$$1_{n_i} = {}^{t}(0,\ldots,0,1,\ldots,1,0,\ldots,0).$$

Estimateurs Homoscédasticité

### Rappels: matrice de projection orthogonale

Soient  $E = \mathbb{R}^n$ , V ss-ev de E (modèle), engendré par  $(1_{n_1}, \dots, 1_{n_p})$  où pour tout i,

$$1_{n_i} = {}^{t}(0,\ldots,0,1,\ldots,1,0,\ldots,0).$$

Alors

$$dim(V) = p.$$

#### Estimateurs

#### ModL rappels

E. Ga thera

2 qua

2 discrè

2 continue

Estimateurs Test

Homoscédasticité Qui?

### Rappels : matrice de projection orthogonale

Soient  $E=\mathbb{R}^n$ , V ss-ev de E (modèle), engendré par  $(1_{n_1},\dots,1_{n_p})$  où pour tout i,

$$1_{n_i} = {}^{t}(0,\ldots,0,1,\ldots,1,0,\ldots,0).$$

Alors

$$dim(V) = p.$$

$$dim(V^{\perp}) = n - p.$$

Estimateurs Homoscédasticité

### Rappels: matrice de projection orthogonale

Soient  $E = \mathbb{R}^n$ , V ss-ev de E (modèle), engendré par  $(1_{n_1}, \dots, 1_{n_n})$  où pour tout i,

$$1_{n_i} = {}^{t}(0,\ldots,0,1,\ldots,1,0,\ldots,0).$$

Alors

$$dim(V) = p.$$

$$dim(V^{\perp}) = n - p.$$

$$\mathbb{R}^n = V \stackrel{\perp}{\oplus} V^{\perp}.$$

#### E. Ga thera

#### 2 qual 2 ordi

2 discrèt

2

Anova Estimateurs

Estimateurs Test Homoscédast<mark>icité</mark>

Qui?

### Estimateurs -ANOVA 1 facteur

### Propriété 1 : Estimateur des effets du facteur

L'EMV  $\widehat{m}$  de m est défini par

$$\widehat{m}_{i} = Y_{i}.$$

$$\widehat{m} = \sum_{i=1}^{n} \widehat{m}_{i} 1_{n_{i}} \sim \mathcal{N}_{n}(m; \sigma^{2} \Pi_{V})$$

où 
$$Y_{i.}=rac{1}{n_i}\sum_{j=1}^{n_i}Y_{ij}$$
 et

Preuve: On sait que MCO=EMV pour l'espérance dans un modèle gaussien :

$$\begin{array}{lll} \widehat{\boldsymbol{m}}^{EMV} & = & \underset{\boldsymbol{m} \in V}{\operatorname{argmin}} \|\boldsymbol{Y} - \boldsymbol{m}\|_2^2 \\ \\ & = & \Pi_V \boldsymbol{Y} \\ \\ & = & \Pi_V \boldsymbol{m} + \Pi_V \boldsymbol{\xi} \\ \\ & = & \boldsymbol{m} + \Pi_V \boldsymbol{\xi} \end{array}$$

et

$$\Pi_V \xi \sim \mathcal{N}_n(0_n, \sigma^2 \Pi_V \Pi_V') = \mathcal{N}_n(O_n, \sigma^2 \Pi_V).$$

**Estimateurs** 

ModI rappels

Estimateurs

Homoscédasticité

### Estimateurs - ANOVA 1 facteur

### Propriété B : Estimateur de la variance

ESB de  $\sigma^2$ :

$$\widehat{\sigma^2} = \frac{\|Y - \Pi_V Y\|_2^2}{n - p} = \frac{1}{n - p} \sum_{i=1}^p \sum_{j=1}^{n_i} (Y_{ij} - Y_{i.})^2.$$

$$(n-p)\frac{\widehat{\sigma^2}}{\sigma^2} \sim \chi^2(n-p)$$

et  $\widehat{\sigma^2}$  indépendant de  $\widehat{m}$ .

Estimateurs

#### ModL rappels

# E. Gar





#### Estimateurs - ANOVA 1 facteur

Preuve : Connu dans le cadre de l'estimation de la variance dans un modèle gaussien EMV de  $\sigma^2$ 

$$\begin{split} \widehat{\widetilde{\sigma}^2} &= \frac{\|Y - \Pi_V Y\|_2^2}{n} \\ &= \frac{1}{n} \|\Pi_{V^{\perp}} Y\|_2^2, \end{split}$$

 $\gamma$  ->transformation linéaire d'un vecteur gaussien  $\sim \mathcal{N}_n(m,\sigma^2 Id_n)$ 

#### Estimateurs - ANOVA 1 facteur

Preuve : Connu dans le cadre de l'estimation de la variance dans un modèle gaussien EMV de  $\sigma^2$ 

$$\widehat{\widetilde{\sigma}^2} = \frac{\|Y - \Pi_V Y\|_2^2}{n}$$

$$= \frac{1}{n} \|\Pi_{V^{\perp}} Y\|_2^2,$$

- ->transformation linéaire d'un vecteur gaussien  $\sim \mathcal{N}_n(m, \sigma^2 I d_n)$
- $\rightarrow$  par Cochran, indépendance avec  $\Pi_V Y$  et

$$\frac{1}{\sigma^2} \|\Pi_{V^{\perp}} Y\|_2^2 \sim \chi^2(n-p)$$

$$\mathbb{E}(\hat{\hat{\sigma}}^2) = \frac{n-p}{n} \sigma^2$$

#### Test sur l'effet du facteur

Tous les tests sont réalisables avec les propriétés précédentes. Ces tests se construisent de manière similaire à l'exemple suivant.

Homoscédasticité

#### Test sur l'effet du facteur

Tous les tests sont réalisables avec les propriétés précédentes. Ces tests se construisent de manière similaire à l'exemple suivant.

Facteur considéré : pas influence ? influence ? (dans le cadre d'une supposée relation causale *a priori*) :

#### Test sur l'effet du facteur

Tous les tests sont réalisables avec les propriétés précédentes. Ces tests se construisent de manière similaire à l'exemple suivant.

Facteur considéré : pas influence ? influence ? (dans le cadre d'une supposée relation causale a priori) :  $m_1 = \cdots = m_p$ .

Soit W ss-ev engendré par  $1_n$  (pas d'influence) :  $W = \{\tilde{m}1_n, \tilde{m} \in \mathbb{R}\}.$ 

$$H_0: m \in W$$
 contre  $H_1: m \in V \cap W^{\perp}$ 

au niveau  $\alpha$ .

#### Test sur l'effet du facteur

Tous les tests sont réalisables avec les propriétés précédentes. Ces tests se construisent de manière similaire à l'exemple suivant.

Facteur considéré : pas influence ? influence ? (dans le cadre d'une supposée relation causale a priori) :  $m_1 = \cdots = m_p$ .

Soit W ss-ev engendré par  $1_n$  (pas d'influence) :  $W = \{\tilde{m}1_n, \tilde{m} \in \mathbb{R}\}.$ 

$$H_0: m \in W$$
 contre  $H_1: m \in V \cap W^{\perp}$ 

au niveau  $\alpha$ .

Homoscédas licité -> cadre paramétrique : existence test UPP,

#### Test sur l'effet du facteur

Tous les tests sont réalisables avec les propriétés précédentes. Ces tests se construisent de manière similaire à l'exemple suivant.

Facteur considéré : pas influence ? influence ? (dans le cadre d'une supposée relation causale a priori) :  $m_1 = \cdots = m_p$ .

Soit W ss-ev engendré par  $1_n$  (pas d'influence) :  $W = \{\tilde{m}1_n, \tilde{m} \in \mathbb{R}\}.$ 

$$H_0: m \in W$$
 contre  $H_1: m \in V \cap W^{\perp}$ 

au niveau  $\alpha$ .

- -> cadre paramétrique : existence test UPP,
  - -> test du rapport de vraisemblance :

$$D = \left\{ \frac{\sup_{H_1} V_n}{\sup_{H_0} V_n} \ge t \right\}$$

$$D = \left\{ \frac{\sup_{m \in W^{\perp} \cap V, \sigma^2} V_n(m; \sigma^2)}{\sup_{m \in W, \sigma^2} V_n(m; \sigma^2)} \ge t \right\}.$$

Tes

#### ModL rappels

....

2 ord

2 discrèt

2 contin

Anova

Test
Homoscédasticité

Qui ?

### Test sur l'effet du facteur

Les sup sont atteints pour les projecteurs sur W et sur V. Ainsi

$$D = \left\{ \frac{\sup_{m \in V, \sigma^2} V_n(m; \sigma^2)}{\sup_{m \in W, \sigma^2} V_n(m; \sigma^2)} \ge t \right\}$$

$$D = \left\{ \frac{V_n(\Pi_V Y; \frac{1}{n} \|Y - \Pi_V Y\|_2^2)}{V_n(\Pi_W Y; \frac{1}{n} \|Y - \Pi_W Y\|_2^2)} \ge t \right\}.$$

Or

$$\begin{split} V_n(\Pi_U Y; \frac{1}{n} \| Y - \Pi_U Y \|_2^2) & = & \left( \frac{2\pi}{n} \| Y - \Pi_U Y \|_2^2 \right)^{-n/2} \exp\left( -\frac{n}{2} \frac{\| Y - \Pi_U Y \|_2^2}{\| Y - \Pi_U Y \|_2^2} \right) \\ & = & C_n \| Y - \Pi_U Y \|_2^{-n} \end{split}$$

donc

$$D = \left\{ \frac{\|Y - \Pi_W Y\|_2^2}{\|Y - \Pi_V Y\|_2^2} \ge K \right\}.$$

E. Ga

2 qua

2 ordi

discrèt

continu

Estimate

Test Homoscédasticité

Qui?

#### Test sur l'effet du facteur

$$Y - \Pi_V Y$$
 est orthogonal à  $\Pi_V Y - \Pi_W Y$ 

75/94

Tes

#### ModL rappels

E. Ga thera

2 qual

2 ordi

discrète

2 continue

> Anova Estimate

Test Homoscédasticité

Qui?

#### Test sur l'effet du facteur

 $Y - \Pi_V Y$  est orthogonal à  $\Pi_V Y - \Pi_W Y$  -> avec Cochran : indépendance.

75/94

Test

#### ModL rappels

E. Ga

2 qual 2 ordi

discrè

continu

Estima Test

Homoscédasticité

Qui?

Test sur l'effet du facteur

- $Y \Pi_V Y$  est orthogonal à  $\Pi_V Y \Pi_W Y$
- -> avec Cochran : indépendance.
- ->avec Pythagore

$$||Y - \Pi_V Y||_2^2 + ||\Pi_V Y - \Pi_W Y||_2^2 = ||Y - \Pi_W Y||_2^2.$$

# E. Ga

- 2 qua 2 ordi
- 2 discrè
- 2 conti
- Anov: Estim Test

Homoscédasticité Qui ?

SPSS

#### Test sur l'effet du facteur

- $Y \Pi_V Y$  est orthogonal à  $\Pi_V Y \Pi_W Y$
- -> avec Cochran : indépendance.
- ->avec Pythagore

$$||Y - \Pi_V Y||_2^2 + ||\Pi_V Y - \Pi_W Y||_2^2 = ||Y - \Pi_W Y||_2^2.$$

Ainsi

$$D = \left\{ \frac{\|\Pi_V Y - \Pi_W Y\|_2^2/(p-1)}{\|Y - \Pi_V Y\|_2^2/(n-p)} \ge k \right\}.$$

et

$$\frac{\|\Pi_V Y - \Pi_W Y\|_2^2/(p-1)}{\|Y - \Pi_V Y\|_2^2/(n-p)} \sim F(p-1; n-p).$$

#### Test sur l'effet du facteur

On appelle cette décomposition la somme des carrés totale

$$||Y - \Pi_W Y||_2^2 = ||\Pi_V Y - \Pi_W Y||_2^2 + ||Y - \Pi_V Y||_2^2.$$

Elle s'interprète comme

$$SCT = SCR + SCf$$

où SC signifie somme des carrés, T=Totale R= Résidu et f= facteur. On a donc

$$\begin{split} \frac{SCf}{\sigma^2} &\sim & \chi^2(p-1) \\ \frac{SCR}{\sigma^2} &\sim & \chi^2(n-p) \\ SCR & & independent \ SCf \\ F = \frac{SCF/p-1}{SCR/n-p} &\sim & F(p-1,n-p) \end{split}$$

ŏŏŏŏŏoo

On en tire le tableau d'analyse de la variance

| Source de variation | Som Car | d.d.l | Carrés moyens           | F                 |
|---------------------|---------|-------|-------------------------|-------------------|
| Facteur             | SCf     | p-1   | $CMf = \frac{SCf}{p-1}$ |                   |
| Résidus             | SCR     | n-p   | $CMR = \frac{SCR}{n-p}$ | $\frac{CMf}{CMR}$ |

Le test de Fisher est robuste vis à vis de l'hypothèse de gaussiannité : il "résiste" si les lois sont symétriques.

En revanche il ne résiste pas à une rupture d'homoscédasticité :  $\sigma^2$  ne dépend pas du groupe d'appartenance.

rappels

### Deux échantillons : test de student

$$m_1 = m_2$$
, contre  $m_1 \neq m_2, m_1 < m_2, m_1 > m_2$ 

Rapport de vrais :

$$\bar{Y}_{1.} - \bar{Y}_{2.} \sim \mathcal{N}(m_1 - m_2; \sigma^2(\frac{1}{n_1} + \frac{1}{n_2})).$$

Loi tabulée

Test Homoscédasticité

Test Homoscédasticité

$$m_1 = m_2$$
, contre  $m_1 \neq m_2, m_1 < m_2, m_1 > m_2$ 

Rapport de vrais :

$$\bar{Y}_{1.} - \bar{Y}_{2.} \sim \mathcal{N}(m_1 - m_2; \sigma^2(\frac{1}{n_1} + \frac{1}{n_2})).$$

Loi tabulée  $\sigma^2$ ?

$$\widehat{\sigma}^2 = \frac{1}{2} (S_{n_1}^2((Y_{1j})_j) + S_{n_2}^2((Y_{2j})_j))$$

$$= \frac{1}{n-2} \left( \sum_{j=1}^{n_1} (Y_{1j} - \bar{Y}_{1.})^2 + \sum_{j=1}^{n_2} (Y_{2j} - \bar{Y}_{2.})^2 \right).$$

Ainsi,

$$\frac{\bar{Y}_{1.} - \bar{Y}_{2.} - (m_1 - m_2)}{\sqrt{\hat{\sigma}^2(\frac{1}{n_1} + \frac{1}{n_2})}} \sim T(n - 2).$$

Même procédure lorsque plus de 2 échantillons, en traitant 2 à 2 les modalités du facteur considéré. 《四》《圖》《意》《意》

Test

Homoscédasticité

### Hypothèses d'applications

Gaussianité (même si symétrie convient). : test de coef de symétrie, de KS

Test d'homoscédasticité : $\forall i=1,\ldots,p,\sigma_i^2=\sigma_2$ .

#### ModL rappels

### test d'homogénéité des variances

Cadre: 1 facteur, deux modalités.

$$H_0: \sigma_1^2 = \sigma_2^2, \quad \text{contre} \quad \sigma_1^2 
eq \sigma_2^2.$$

Rapport de vraisemblance :

$$R = \frac{\sup_{H_1} V_n}{\sup_{H_0} V_n}$$

$$= \frac{\sup_{m_1, m_2, \sigma_1^2 \neq \sigma_2^2} V_n}{\sup_{m_1, m_2, \sigma_1^2 = \sigma_2^2} V_n}$$

$$= \frac{N}{D}.$$

Homoscédasticité

### test d'homogénéité des variances

.

Estima

Test

Homoscédasticité

Qui?

$$N = V_n(\bar{Y}_1, \bar{Y}_2, \frac{n_1 - 1}{n_1} S_{n_1}^2; \frac{n_2 - 1}{n_2} S_{n_2}^2)$$

$$= (2\pi)^{-\frac{n}{2}} e^{-\frac{n}{2}} \left(\frac{n_1 - 1}{n_1} S_{n_1}^2\right)^{-\frac{n_1}{2}} \left(\frac{n_2 - 1}{n_2} S_{n_2}^2\right)^{-\frac{n_2}{2}}.$$

$$D = V_n(\bar{Y}_{1.}, \bar{Y}_{2.}, \frac{(n_1 - 1)S_{n_1}^2 + (n_2 - 1)S_{n_2}^2}{n})$$
$$= (2\pi)^{-\frac{n}{2}} e^{-\frac{n}{2}} \left( \frac{(n_1 - 1)S_{n_1}^2 + (n_2 - 1)S_{n_2}^2}{n} \right)^{-\frac{n}{2}}.$$

# E. Ga

2 qua

2 or

discrète

2

continues

Estima

Homoscédasticité

Qui?

enee

### test d'homogénéité des variances

$$\begin{split} R & = & C(n_1,n_2) \frac{(A+B)^{\alpha+\beta}}{A^{\alpha}B^{\beta}} \\ & = & \left(\frac{A}{B}\right)^{-\alpha} \left(1 + \frac{A}{B}\right)^{\alpha+\beta} \,. \end{split}$$

Sous  $H_0: \{R \geq t\} = \{\frac{A}{B} < a\} \cup \{\frac{A}{B} > b\}$ . avec

$$\frac{A}{B} = \frac{(n_1 - 1)S_{n_1}^2}{(n_2 - 1)S_{n_2}^2}.$$

 ${\rm D'ou} : \{R \geq t\} = \{F < a' \cup F > b'\}. \ {\rm avec}$ 

$$F = \frac{S_{n_1}^2}{S_{n_2}^2} \sim F(n_1 - 1, n_2 - 1).$$

(rque  $F \sim F(p,q) \Longrightarrow \frac{1}{F} \sim F(q,p)$ )

Si plus de deux modalités : test de Levene et en cas de suspicion de non normalité test de Brown-Forsythe

E. Ga thera

2 qua

2 discrèt

continu

Estimateurs Test Homoscédast

Qui?

### test de Bartlett

Cadre : 1 facteur, p modalités.

$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_p^2, \quad \text{contre} \quad H_1: \exists i, j\sigma_i^2 \neq \sigma_j^2.$$

$$Q = (n-p)ln(\frac{SCR}{n-p}) - \sum_{i=1}^{p} (n_i - 1)ln(S_i^2)$$

pour 
$$S_i^2 = \frac{1}{n_i - 1} ||Y - \Pi_V Y||_2^2$$
 et  $SCR = \sum_{i=1}^p (n_i - 1) S_n i^2$ .

Et on a

$$\frac{Q}{C(n,(n_i)_i,p)} \sim \chi^2(p-1).$$

- Très sensible à la non normalité

#### ModL rappels

E. Gautherat

2 qua

2 discrè

continue

Test

Homoscédasticit

SPSS

### test de Hartley

Si effectifs  $n_i$  égaux entre eux, ce test est plus rapide.

Stat de test :

$$\frac{S_{i,max}^2}{S_{i,min}^2} \sim Hartley(p,n-1)$$

$$H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_p^2, \quad \text{ contre} \quad H_1: \exists i, j\sigma_i^2 \neq \sigma_j^2.$$

#### Remarque :

- Pour p=2 Hartley équivalent à F.
- Pour p>2, Hartley moins sensible que Bartlett
- Très sensible à la non normalité

### Comparaison de moyennes multiples

Homoscédasticité Qui?

Cadre :  $H_0$  de l'anova est rejetée.

But : Quels groupes ont des moyennes différentes?

On désire tester  $H_O: \exists i, j, m_i = m_i$ .



Qui?

### Comparaison de moyennes multiples

Cadre :  $H_0$  de l'anova est rejetée.

But : Quels groupes ont des moyennes différentes?

On désire tester  $H_O: \exists i, j, m_i = m_i$ . On compare 2 à 2 les moyennes.

- Méthode de Student (LSD)
- Méthode de Bonferroni
- Méthode de Scheffé
- Méthode de Tukey





Qui?

#### Méthode ISD

On procède comme pour le test de Student en utilisant le carré moyen des résidus (CMR) pour estimer  $\sigma 2$ . On rejète  $H_0$  pour

$$|\Pi_{V_i}Y - \Pi_{V_j}Y| \ge t_{1-\frac{\alpha}{2}}^{n-p} \widehat{\sigma} \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}.$$

Homoscédasticité Si effectifs égaux :

$$|\Pi_{V_i}Y - \Pi_{V_j}Y| \ge t_{1-\frac{\alpha}{2}}^{n-p}\widehat{\sigma}\sqrt{\frac{2}{n_1}}.$$

LSD: Least Significant Difference.

#### Méthode de Bonferroni

On part toujours du test de Student usuel mais en tenant compte du nombre de comparaisons effectuées. Estimateur de  $\sigma^2$  par CMR. Même stat de test que pour LSD, mais on choisit  $\alpha$  de manière à contrôler le risque d'erreur global.

 $lpha^*$  correspond à la valeur pour laquelle au moins une égalité est rejetée à tort, donc à 1 - probabilité qu'aucune égalitée ne soit rejetée à tort. On a p(p-1)/2 paires, on obtient

$$\alpha^* \le 1 - (1 - \alpha)^{\frac{p(p-1)}{2}}$$

On pose  $\alpha^* \leq C.$  On a alors (en utilisant,  $0 \leq \alpha \leq 1$ ) une condition suffisante

$$\alpha \le \frac{2c}{p(p-1)}.$$

《中》《圖》《意》《意》

#### ModL rappels

On rejète  $H_0$  si

Méthode de Scheffé

$$|\Pi_{V_i} Y - \Pi_{V_j} Y| \ge \sqrt{(p-1)F_{1-\alpha^*}^{(p-1,n-p)}} \widehat{\sigma} \sqrt{\frac{1}{n_i} + \frac{1}{n_j}}.$$

avec

$$\widehat{\sigma^2} = \frac{SCR}{n-p}.$$

On peut tester tous les couples, à la fois, en calculant Homoscédasticité

$$K = \sqrt{(p-1)F_{1-lpha^*}^{(p-1,n-p)}}$$
 pour vérifier ensuite si

$$|\Pi_{V_i}Y - \Pi_{V_j}Y| \ge K\widehat{\sigma}\sqrt{\frac{1}{n_i} + \frac{1}{n_j}}.$$

## rappels

2 gua

. . .

2

2

continue

Anova Estimate

Test

Homoscédasticité Qui ?

enes

### Méthode de Scheffé

On rejète  $H_0$  si

$$|\Pi_{V_i} Y - \Pi_{V_j} Y| \ge q_{1-\alpha^*}^{(p,n-p)} \widehat{\sigma} \sqrt{\frac{1}{2} (\frac{1}{n_i} + \frac{1}{n_j})}.$$

avec  $q_{1-lpha^*}^{(p,n-p)}$  le fractile de l'étendue studentisée (tables).



Homoscédasticité Qui?

### Comparaison des méthodes

- Tukey + sensible à la détection de petites différences entre couples que Scheffé.
- Tukey préférable à Bonferroni pour comparer tout
- Si que quelques comparaisons Bonferroni préférable.



Qui?

### Comparaison des méthodes

- Tukey + sensible à la détection de petites différences entre couples que Scheffé.
- Tukey préférable à Bonferroni pour comparer tout
- Si que quelques comparaisons Bonferroni préférable.

En non paramétrique, mais en asymptotique, Kruskall-Wallis



### Traitement ANOVA des hot-dogs

# Test d'homogénéité des variances

Calories

Statistique de Levene

Homoscédasticité

SPSS

ddl2 Signification

,490

ddl1

,616



SPSS

### Traitement ANOVA des hot-dogs

#### Test de Kolmogorov-Smirnov à un échantillon

#### Calories

Ν 54 Paramètres normauxa,,b Moyenne 145,44 Ecart-type 29,383 Différences les plus extrêmes Absolue ,095 Positive ,084 Négative -,095 Z de Kolmogorov-Smirnov .696 Signification asymptotique (bilatérale) ,718

◆ロト ◆昼 ト ◆重 ト ◆ 重 ・ かんぐ

**ANOVA** 

ddl



### Traitement ANOVA des hot-dogs

thera

2 qı

2 or

2 discrète

2 continu

Anova

Test
Homoscédasticité

...: 7

Qui ?

Calories

Calone

Inter-grou

| Inter-groupes | 17692,195    |
|---------------|--------------|
| Intra-groupes | 28067,138    |
| Total         | 45759,333 53 |

51 550,336

8846,098

Moyenne des carrés

Somme des carrés

Signifi

,000

16,074

SPSS 000



### Traitement ANOVA des hot-dogs

### Comparaisons multiples

Variable dépendante: Calories

(I) Type

Différence de

Homoscédasticité

(J) Type

movennes (I-J)

Erreur standard

Signification

Scheffe

Beef Meat

Poultry

Poultry

Meat Poultry Beef

Beef

Meat

Beef

Poultry

-1.85638.085\* 1,856

-1,856

1,856

38,085\*

7.739 7.739 7,739 ,972 .000

,811

.000

.811

.000

,000

SPSS

-38,085\* -39.941\*

39,941\*

8.046 7.739

8.046

7,739

7.739

7.739

8,046

,972 .000 .000 .000

LSD Beef Meat

Meat Poultry Beef Poultry

39,941\* -38,085\*





