Lecture 7: Dynamic Programming II

General techniques in this course

- Greedy algorithms [Lecture 3]
- Divide & Conquer algorithms [Lecture 4]
- Sweepline algorithms [Lecture 5]
- Dynamic programming algorithms [Lecture 6 and today]
- Network flow algorithms [18 Sep and 9 Oct]

Weighted Interval Scheduling
Knapsack Problem
RNA Secondary Structure
Shortest Paths

Bellman-Ford
Segmented Least Square

Algorithmic Paradigms

- Greed. Build up a solution incrementally, optimizing some local criterion.
- Divide-and-conquer. Break up a problem into two subproblems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.
- Planesweep. Sort the geometric input. Define event points, and maintain invariant during sweep.
- Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Key steps: Dynamic programming

- 1. Define subproblems
- 2. Find recurrences
- 3. Solve the base cases
- 4. Transform recurrence into an efficient algorithm

Recap: Weighted Interval Scheduling

- Job j starts at s_j , finishes at f_j , and has value v_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum value subset of mutually compatible jobs.

Recap: Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. **Def.** p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Step 1: Define subproblems

OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

Step 2: Find recurrences

- Case 1: OPT selects job j.
 - can't use incompatible jobs $\{p(j) + 1, p(j) + 2, ..., j 1\}$
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j) 因为已经选择了jobj, 所以只能考虑P(j)之前的了。
- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1
 因为没有选择job j, 所以要考虑j-1及之前的jobs

$$OPT(j) = \max \{v_j + OPT(p(j)), OPT(j-1)\}$$
Case 1 Case 2

Step 3: Solve the base cases

$$OPT(0) = 0$$

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \left\{ v_j + OPT(p(j)), OPT(j-1) \right\} & \text{otherwise} \end{cases}$$

Done...more or less

Recap: Memoization

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{v_j + OPT(p(j)), OPT(j-1)\} & \text{otherwise} \end{cases}$$

Could get an exponential number of subproblems!

Recap: Memoization

Instead of recomputing every subproblem store the results of each sub-problem. Unwind recursion.

```
OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}
```

```
Compute-Opt {
   OPT[0] = 0
   for j = 1 to n
        OPT[j] = max(v<sub>j</sub> + OPT[p(j)], OPT[j-1])
}
```

Time: O(n)

Recap: Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Step 1: Define subproblems

```
OPT(i, w) = max profit with subset of items 1, ..., i with weight limit w.
```

Step 2: Find recurrences

- Case 1: OPT does not select item i.
 - OPT selects best of {1, 2, ..., i-1} using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = $w w_i$
 - OPT selects best of {1, 2, ..., i-1} using this new weight limit

Formula

$$OPT(i,w) = \max \{ v_i + OPT (i-1,w-w_i), OPT(i-1,w) \}$$

Step 2: Find recurrences

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = $w w_i$
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

如果物品i的质量比背包承重还要大的话,忽略它。

$$OPT(i,w) = OPT(i-1,w)$$

otherwise

$$OPT(i,w) = max \{ v_i + OPT (i-1,w-w_i), OPT(i-1,w) \}$$

Step 3: Solve the base cases

$$OPT(0, w) = 0$$

$$OPT(i,w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i-1,w) & \text{if } i > 0 \text{ and } w_i > w\\ \max\{OPT(i-1,w), v_i + OPT(i-1,w-w_i)\} & \text{otherwise} \end{cases}$$

Done...more or less

6.5 RNA Secondary Structure

Time Complexity: O(n³)

Space Complexity: O(n²)

RNA (Ribonucleic acid) Secondary Structure

- **RNA.** String $B = b_1 b_2 ... b_n$ over alphabet $\{A, C, G, U\}$.
- Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

RNA Secondary Structure

- **Secondary structure.** A set of pairs $S = \{ (b_i, b_i) \}$ that satisfy:
 - [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.
 - [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_i) \in S$, then i < j 4.
 - [Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l.

- **Free energy.** Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

approximate by number of base pairs

- Goal. Given an RNA molecule $B = b_1b_2...b_n$, find a secondary structure S that maximizes the number of base pairs.

RNA Secondary Structure: Examples

ok

sharp turn

crossing

RNA Secondary Structure: Subproblems

- First attempt (Step 1). OPT(j) = maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_i$.

- Difficulty (in Step 2). Results in two sub-problems.
 - Finding secondary structure in: $b_1b_2...b_{t-1}$. \leftarrow OPT(t-1)
 - Finding secondary structure in: $b_{t+1}b_{t+2}...b_{i-1}$. \leftarrow need more sub-problems

Dynamic Programming Over Intervals - Step 1

Step 1: Define subproblems

```
OPT(i, j) = maximum number of base pairs in a secondary structure of the substring b_i b_{i+1} ... b_j.
```

Dynamic Programming Over Intervals - Step 2

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} ... b_j$.

Step 2: Find recurrences

Case 1. Base b_i is not involved in a pair.

• OPT(i, j) = OPT(i, j-1)

Case 2. Base b_i pairs with b_t for some $i \le t < j - 4$.

- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1 + max { OPT(i, t-1) + OPT(t+1, j-1) } $i \le t < j-4$

Dynamic Programming Over Intervals – Step 3

Step 3: Solve the base cases

If $i \ge j-4$ then OPT(i, j) = 0 by no-sharp turns condition.

Dynamic Programming Over Intervals – 3 Steps

Step 1: OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} ... b_j$.

Step 2:

Case 1. Base b_i is not involved in a pair.

• OPT(i, j) = OPT(i, j-1)

Case 2. Base b_i pairs with b_t for some $i \le t < j - 4$.

- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1 + $\max_{i \le t < j-4}$ OPT(i, t-1) + OPT(t+1, j-1) }

Step 3:

Base case. If $i \ge j - 4$.

• OPT(i, j) = 0 by no-sharp turns condition.

Bottom Up Dynamic Programming Over Intervals

- Question: What order to solve the sub-problems?
- Answer: Do shortest intervals first.

- Running time: O(n³)

6.8 Shortest Paths

Bellman-Ford Algorithm:

The Bellman-Ford algorithm correctly computes the shortest path in a graph even when the graph contains edges having negative weight.

With

Time Complexity O(nm)

Space Complexity O(n+m)

Shortest Paths

- Shortest path problem. Given a directed graph G = (V, E), with edge weights c_{vw} , find shortest path from node s to node t.

allow negative weights

Shortest Paths: Failed Attempts

- Dijkstra. Can fail if negative edge costs.

Re-weighting. Adding a constant to every edge weight can fail.

Shortest Paths: Negative Cost Cycles

Negative cost cycle.

 Observation. If some path from s to t contains a negative cost cycle, there does not exist a shortest s-t path; otherwise, there exists one that is simple.

Problem: Find shortest path from s to t

Step 1: Define subproblems

OPT(i, v) = length of shortest v-t path P using at most i edges.

Step 2: Find recurrences

Case 1: P uses at most i-1 edges.

• OPT(i, v) = OPT(i-1, v)

Case 2: P uses exactly i edges.

• if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i-1 edges

$$\mathsf{OPT}(i,v) = \min \{ \mathsf{OPT}(i-1,v), \min_{(v,w) \in \mathsf{E}} [\mathsf{OPT}(i-1,w) + \mathsf{c}_{vw}] \}$$

Step 3: Solve the base cases

$$OPT(0,t) = 0$$
 and $OPT(0,v\neq t) = \infty$

Step 1: OPT(i, v) = length of shortest v-t path P using at most i edges.

Step 2:

Case 1: P uses at most i-1 edges.

• OPT(i, v) = OPT(i-1, v)

Case 2: P uses exactly i edges.

• if (v, w) is first edge, then OPT uses (v, w), and then selects best w-t path using at most i-1 edges

Step 3: OPT(0,t) = 0 and OPT(0, $v\neq t$) = ∞

$$OPT(i,v) = \begin{cases} 0 & \text{if } i=0 \text{ and } v=t \\ \infty & \text{if } i=0 \text{ and } v\neq t \\ \min\{OPT(i-1,v), \min [OPT(i-1,w)+c_{vw}] \} & \text{otherwise} \\ (v,w) \in E \end{cases}$$

The Universit

Shortest Paths: Implementation

```
Shortest-Path(G, t) {
    foreach node v ∈ V
        M[0, v] ← ∞
    M[0, t] ← 0

for i = 1 to n-1
    foreach node v ∈ V
        M[i, v] ← M[i-1, v]
    foreach edge (v, w) ∈ E
        M[i, v] ← min { M[i, v], M[i-1, w] + c<sub>vw</sub> }
}
```

- Analysis. $\Theta(mn)$ time, $\Theta(n^2)$ space.
- Finding the shortest paths. Maintain a "successor" for each table entry.

Time

Bellman-Ford: Efficient Implementation Complexity:

```
Push-Based-Shortest-Path(G, s, t) {
   foreach node v \in V {
      M[v] \leftarrow \infty
       successor[v] \leftarrow \emptyset }
   M[t] = 0
   for i = 1 to n-1 {
       foreach node w \in V  {
       if (M[w] has been updated in previous iteration) {
          foreach node v such that (v, w) \in E \{
              if (M[v] > M[w] + c_{vw}) {
                 M[v] \leftarrow M[w] + c_{vw}
                 successor[v] ← w
       If no M[w] value changed in iteration i, stop.
```

Shortest Paths: Practical Improvements

- Practical improvements.
 - Maintain only one array M[v] = shortest v-t path that we have found so far.
 - No need to check edges of the form (v, w) unless M[w] changed in previous iteration.
- Theorem: Throughout the algorithm, M[v] is length of some v-t path, and after i rounds of updates, the value M[v] is no larger than the length of shortest v-t path using \leq i edges.
- Overall impact.
 - Memory: O(m + n).
 - Running time: O(mn) worst case, but substantially faster in practice.

6.3 Segmented Least Squares

Segmented Least Squares

- Least squares.
 - Foundational problem in statistic and numerical analysis.
 - Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
 - Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

Solution. Calculus ⇒ min error is achieved when

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \quad b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

Segmented Least Squares

- Segmented least squares.
 - Points lie roughly on a sequence of several line segments.
 - Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with
 - $-x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).

Question. What's a reasonable choice for f(x) to balance

accuracy and complexity?

Segmented Least Squares

- Segmented least squares.
 - Points lie roughly on a sequence of several line segments.
 - Given n points in the plane (x_1, y_1) , (x_2, y_2) , ..., (x_n, y_n) with $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors E in each segment
 - the number of lines L
 - Tradeoff function: $E + c \cdot L$, for some constant c > 0.

Dynamic Programming: Multiway Choice - Step 1

Step 1: Define subproblems

OPT(j) = minimum cost for points p_1, p_2, \ldots, p_j .

Dynamic Programming: Multiway Choice - Step 2

Notations:

- OPT(j) = minimum cost for points p_1, p_2, \ldots, p_j .
- e(i, j) = minimum sum of squares for points p_i , p_{i+1} , ..., p_j .

Step 2: Finding recurrences

- Last segment uses points p_i , p_{i+1} , ..., p_j for some i.
- Cost = e(i, j) + c + OPT(i-1).

$$OPT(j) = \min_{1 \le i \le j} \{ e(i,j) + c + OPT (i-1) \}$$

Dynamic Programming: Multiway Choice - Step 3

Step 3: Solving the base cases

$$OPT(0) = 0$$

```
If j=0 then OPT(0) = 0 otherwise OPT(j) = \min_{1 \le i \le j} \big\{ e(i,j) + c + OPT (i-1) \big\}
```

Segmented Least Squares: Algorithm

```
INPUT: n, (p_1, ..., p_n), c
              Segmented-Least-Squares() {
                  M[0] = 0
                   for j = 1 to n
             for i = 1 to j

compute the least square error e_{ij} for \longleftarrow O(n)

the segment p_i, ..., p_j
iterations
                  for j = 1 to n

M[j] = \min_{1 \le i \le j} (e_{ij} + c + M[i-1])
                   return M[n]
```

```
If j=0 then OPT(0) = 0 otherwise OPT(j) = \min_{1 \le i \le j} \{ e(i,j) + c + OPT(i-1) \}
```

Segmented Least Squares: Algorithm

```
INPUT: n, (p_1, ..., p_n), c
                 Segmented-Least-Squares() {
                      M[0] = 0
O(n^2) \begin{tabular}{ll} for j = 1 to n \\ for i = 1 to j \\ compute the least square error <math>e_{ij} for \longleftarrow O(n) the segment p_i, ..., p_j
O(n) 

iterations for j = 1 to n
M[j] = \min_{1 \le i \le j} (e_{ij} + c + M[i-1])
                                                                                                          O(n)
                      return M[n]
```

```
Running time: O(n^3)
Space: O(n^2)
```

Dynamic Programming Summary I

3 steps:

- 1. Defining subproblems
- 2. Finding recurrences
- 3. Solving the base cases

Dynamic Programming Summary II

- 1D dynamic programming

- Weighted interval scheduling
- Segmented Least Squares
- Maximum-sum contiguous subarray
- Longest increasing subsequence

- 2D dynamic programming

Knapsack

Dynamic programming over intervals

RNA Secondary Structure