Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

SUGARBEET RESEARCH

1966 REPORT

Compiled by Sugarbeet Investigations

CROPS RESEARCH DIVISION

AGRICULTURAL RESEARCH SERVICE

UNITED STATES DEPARTMENT OF AGRICULTURE

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE Crops Research Division Beltsville, Maryland

SUGARBEET RESEARCH

1966 REPORT 1/

Compiled by Sugarbeet Investigations

^{1/} This progress report of cooperative investigations contains data, the interpretation of which may be modified with additional experimentation. Therefore, publication, display, or distribution of any data or statements herein should not be made without prior written approval of the Crops Research Division, ARS, U.S. Department of Agriculture, and the Cooperating Agency or agencies concerned.

FOREWORD

SUGARBEET RESEARCH is an annual compilation of the research accomplishments by staff members of Sugarbeet Investigations and Cooperators. The data in most of the progress reports are later used in the preparation of comprehensive manuscripts for technical publications.

The reports present results of investigations strengthened by contributions received under Cooperative Agreements between Crops Research Division, Agricultural Research Service, U.S. Department of Agriculture, and the Beet Sugar Development Foundation; the Farmers and Manufacturers Beet Sugar Association; and Union Sugar Division, Consolidated Foods Corporation.

At Salinas, California, research is further strengthened through contributions from the California Beet Growers Association,

TRADE NAMES occur in these progress reports solely to provide specific information and do not signify endorsement by the U.S. Department of Agriculture.

110000000

Descriptions of the state of the program of the transfer transfer to the test and the transfer transfer to the state of the transfer transfer transfer to the state of the transfer transfer transfer to the state of transfer transfer transfer to the transfer transfer transfer to the transfer transfer

The reports present results of determinations accomplished by contributions between the contribution of the contribution of the contribution of the factorism and the cost their factorisms for the contribution of the factorisms and the cost the cost factorisms and the cost factorisms and the cost factorisms and the cost factorisms and the cost factorisms for the cost factorisms.

At Salinar, California, varenced in Anther expensional through contributions from the California test County Association, Mids.

CONTENTS

		Page
HIGHLIGHTS	OF ACCOMPLISHMENTS	1
PART I	NEW BREEDING MATERIAL	5
	Items proposed for seed increase and utilization	6 13 17
PART II	PROGRESS REPORTS OF STAFF AT U.S. AGRICULTURAL RESEARCH STATION, SALINAS, CALIFORNIA	18
	Summary of varietal evaluations	19 23 25 26 34 41 48 56 59 70 73 87 95
	nematodes	102 110 112
PART III	PROGRESS REPORTS OF STAFF AT CROPS RESEARCH LABORATORY, UTAH STATE UNIVERSITY, LOGAN, UTAH	131
	Field tests of curly top resistance	132
	with pollen restorer and non-restorer parents Comparison of diploid, triploid and tetraploid	134
	hybrids from related parents	150 161
	lines in combining ability	TOT

CONTENTS

	Pa	age
	Studies on semi-male sterility 16	57
	Studies on asexual transmission of cytoplasmic	
	male sterility	72
	Segregation of pollen fertility in	
	restorer hybrids	77
	Studies on rate of photosynthesis	
	and respiration	
	Greenhouse tests of curly top resistance 18	38
	Pathogenicity and virulence of curly top	
	isolates	13
	DECORDED DE DODGE OF GEATE AT COLORADO GEATE UNITUEDO TEN	
PART IV	PROGRESS REPORTS OF STAFF AT COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO	16
	FORT COLLINS, COLORADO	70
	Breeding and variety evaluation for resistance	
	to curly top and leaf spot	7
	Combining ability among LSR-CTR lines	
	Top-cross tests	
		22
		24
	Varietal response to postemergence	
		56
		51
	Biochemistry and genetics of Cercospora leaf	
		71
	Production of 3-hydroxytyramine	79
	Association of copper and other chemical	
	The state of the s	93
	Relation of 3-hydroxytyramine to beet	
	weight	05
74.77		
PART V	PROGRESS REPORTS OF STAFF AT MICHIGAN STATE UNIVERSITY,	
	EAST LANSING, MICHIGAN, AND PLANT INDUSTRY STATION,	2.0
	BELTSVILLE, MARYLAND	23
	Evaluation of varieties in the Great Lakes Region . 32	24
	_	25
		2 <i>5</i> 39
		50
		56
		58
		51
		67

HIGHLIGHTS OF ACCOMPLISHMENTS

New developments in breeding research comprise 25 items which were made available to cooperators for seed production and utilization (Part I). The items are diverse and each carries one or more desirable characters, such as monogerm seed, excellent quality, cytoplasmic male sterility, tetraploidy, and resistance to certain major pathogens of the sugarbeet. The distribution of seed of the various items to cooperators through the Beet Sugar Development Foundation is given on pages 13-16. Statistics of commercial sugarbeet seed production in the United States continue to indicate almost complete changeover from multigerm to monogerm cultivars (page 17).

Evaluation of new hybrids in California demonstrated that in gross sugar production and sucrose percentage, the monogerm hybrids, US H7 and US H8, are essentially equal to US H6, a multigerm hybrid taken as a standard. US H8 showed slightly better curly top resistance than either US H7 or US H6. In these three-way crosses, all parental lines of US H8 are inbred whereas US H7 has an open-pollinated pollen parent. US H8 has responded more sharply to differences in environmental factors than US H7 as well as suffering more severely under root-rot exposure in the Imperial Valley.

Using diploid monogerm F1 as seed parents and a multigerm tetraploid line as pollen parent, triploid hybrids were produced that were superior to US H6 in both beet yield and sucrose percentage.

Virus yellows resistance was appraised in new lines of sugarbeet which had been derived from previous selection for tolerance. All plants in certain plots were inoculated with a mixture of beet vellows virus and western beet virus. Companion plots of uninoculated plants remained fairly free of disease symptoms until harvest. In inoculated populations, beet yields were reduced from 18.2 to 40.0 percent and reductions in sucrose ranged from 0.76 to 1.63 percentage points. Several lines which benefited from repetitive generations of selection for resistance suffered less than half the loss in beet yield and sucrose percentage as did US 75 from which they had been derived. Selection 534, developed by the Instituut voor Rationele Suikerproductie, Bergen-op-Zoom, Netherlands, was excellent in beet yield and sucrose percentage. Maris Vanguard, developed at the Plant Breeding Institute, Cambridge, England, was found to be resistant to the viruses but tended to be low in sucrose percentage. These European varieties, which are resistant to virus yellows, could have little direct use in this country because they are susceptible to curly top. However, these sources of virus yellows resistance are

of value in breeding programs. Three-way crosses produced by using virus yellows resistant selections as pollinators demonstrated that the resistance of the pollen parent tends to be imparted to the hybrid offspring. It was reported that ratios of certain amino acid in infected plants could be used as a criterion of virus yellows resistance.

Curly Top: In 1966, curly top was accentuated in areas of the San Joaquin Valley of California by high temperatures and other unfavorable conditions. For some fields, the beet yield was less than 10 tons per acre and in a few fields the crop was a total loss. A survey was made to determine the strains of the virus involved in this unexpected manifestation of the disease. In the early part of the season, the strains of the curly top virus isolated from infected sugarbeets were less virulent than Strain 11, but late in the growing season, the strains were more virulent than Strain 11 and equal to the Las Banos strain which is capable of causing severe damage in our most tolerant commercial varieties.

Curly Top Resistance: Severe epidemics of curly top occur at irregular intervals in the Intermountain region and 1966 was a "curly top year." In most years, the potential damage to the sugarbeet crop is prevented by the use of tolerant varieties but such varieties may in years of intense disease exposure suffer intolerable damage. Such epiphytotic, as in 1966, serves to emphasize the need of higher levels of curly top resistance in commercial varieties of sugarbeet. Research at the Crops Research Laboratory, Logan, Utah, is aimed at enhancement of curly top resistance in basic breeding material. Much of the work is cooperative in nature and serves a large portion of the national breeding program of sugarbeet improvement. In addition to extensive field trials under induced epidemics of curly top, precise evaluation of breeder lines to specific strains of the virus are conducted in the greenhouse. Plants and progenies that are outstanding in resistance are selected for seed production and further utilization in breeding programs conducted by both the sugar companies and federal employees.

Leaf Spot and Curly Top Resistance: Results of extensive evaluation tests of 1966 confirmed the results of 1965 in showing excellent yield of beets and acceptable sucrose percentage for the monogerm hybrid SL (129 X 133) X SP6322-0. This hybrid which is widely used in the Great Lakes region is moderately resistant to leaf spot, curly top, and Aphanomyces type of root rot. Under severe exposure to Cercospora leaf spot at Fort Collins, Colorado, the monogerm hybrid FC (502/2 X 504) X FC901 consistently exceeded SL (129 X 133) X SP6322-0 in yield of beets, gross sugar, and in sucrose percentage.

Leaf Spot and Black Root Resistance: Breeding research at Plant Industry Station, Beltsville, Maryland, continues to bring about improvement in Cercospora leaf spot resistance but increments of advancement decreases as high levels of resistance are attained. The inclusion of more susceptible breeding material in the nursery to maintain adequate inoculum has been advantageous. Screening of progenies for black root resistance has shown progress but increase dosages of the inoculum are required to demonstrate differences in tolerance to Aphanomyces cochlioides. Breeding methods now in use should provide lines of extreme field resistance to this pathogen. These lines of exceptional black root resistance are made available for evaluation as parents of improved hybrids for regions subject to losses from this disease complex.

Biochemistry of Leaf Spot Resistance: Previous studies have shown that in a nutrient medium, a phenolic compound, 3-hydroxytyramine, a constituent of the sugarbeet leaf, when oxidized is toxic to the leaf spot pathogen, Cercospora beticola. The amount of 3-hydroxytyramine in leaves of sugarbeet correlated with inherent resistance to the disease. The concentration of the compound tends to increase during active growth of plants and expansion of leaves. The maximum concentration is reached at a certain stage of maturity of the plants and declines thereafter.

The previous report of a trend for leaf spot susceptible populations of sugarbeet to reach a maximum and begin to decline in amount of 3-hydroxytyramine at an earlier date than do more resistant populations was not confirmed. In the sugarbeet, polyphenoloxidase is considered to be the oxidizing enzyme that renders the 3-hydroxytyramine toxic to the pathogen. The ionic constituents of the sugarbeet are of interest since the divalent ones may act as catalysts for the enzyme. Copper is of particular interest since it appears to be the central atom in the enzyme molecule. The root juice constituents of sodium, potassium, copper, chlorides, and total nitrogen are positively correlated with each other and negatively correlated with sucrose percentage. Leaf material was analyzed for copper, calcium, and magnesium. Polyphenoloxidase and 3-hydroxytyramine content were determined on extract from the same leaves. A highly negative association of 3-hydroxytyramine and the enzyme polyphenoloxidase was demonstrated. Only slight associations are indicated between components of root juice and leaf extract. Correlations between 3-hydroxytyramine and weight of root were small but positive and generally significant while those for sucrose percentage were inconsistent.

Rhizoctonia Resistance: Four cycles of mass selection for resistance to Rhizoctonia solani produced multigerm lines FC 701 and FC 702 which are substantially more resistant to the pathogen than their

respective source populations, GW 674 and C 817. Resistance in these lines is rather striking when infection occurs in midseason or later, but both FC 701 and FC 702 are susceptible to infection in the seedling stage of development. Current research demonstrates that the methodology developed for multigerm lines is effective with monogerm breeding material.

Resistance to the Sugarbeet Nematode: Breeding research, aimed at the transfer to the sugarbeet genetic factors conditioning immunity to the cyst nematode, Heterodera schachtii, found in the viny species comprising the Section Patellares of the genus Beta, has shown further promise of success. Attempts to establish resistance to the pathogen through repetitive selection within cultivars of sugarbeet have been less promising. The current report indicates that measurable differences among selections from populations of sugarbeet are largely due to experimental rather than genetical variability. Previous gains were influenced by the use of inoculum composed of a mixture of soilborne pathogens and the resistance attained was not specific for Heterodera schachtii. A significant breakthrough in the research occurred with the development of a method of hatching cysts of the nematode and obtaining large quantities of partially sterilized eelworms for use as inoculum (page 102).

Ploidy and Seed Development: Research was conducted to determine whether viability of seed at different levels of ploidy is under genetic control. The high percent of unfertilized ovules in tetraploids was associated with irregularities in meiosis and with the formation of inviable egg cells whose chromosome number deviated considerably from 2ⁿ. In this study, actual abortion of ovules is almost the same in diploid and tetraploid populations. Thus, the lower fertility of tetraploid populations is due mainly to sterility of gametes and not to abortion of fertilized ovules. Effectiveness of fertilization and grade of ovule abortion are influenced by both male and female parents but greater importance is indicated for the pollinator than for the seed parent.

Breeding Methods: Field tests to compare double cross hybrids with their single cross components indicate for the characters evaluated that the average values for the single cross parents would give a good indication of the performance of the double cross.

Field tests conducted with 3 tetraploid, 10 triploid, and 12 diploid hybrids derived from the same group of diploid inbred lines showed negligible differences in sucrose percentage associated with ploidy. The triploid hybrids had the highest impurity index due to high potassium content. Stands of plants in the diploid hybrids were superior to those in the triploid and tetraploid hybrids and influenced beet yields.

Summary of Accomplishments prepared by Dewey Stewart.

PART I

NEW BREEDING MATERIAL

Items Proposed for Seed Increase
and
Utilization and Distribution of Items

PRODUCTION OF MONOGERM SEED IN U.S.A.

NEW DEVELOPMENTS IN BREEDING RESEARCH

Proposals for Seed Production and Utilization May 18, 1966

Breeder seed and inbred lines that have been developed in the breeding research conducted by the staff of Sugarbeet Investigations are proposed for seed production through the Beet Sugar Development Foundation. Seed not needed for planting overwintering plots will be furnished on request to company members of the Foundation for utilization in their breeding programs. Brief descriptions, current designations, and estimates of seed available August 1 are given for the items.

These new productions of breeding research have been developed by the staff of Sugarbeet Investigations in work conducted under Cooperative Agreements with:

California Agricultural Experiment Station Colorado Agricultural Experiment Station Michigan Agricultural Experiment Station Utah Agricultural Experiment Station Beet Sugar Development Foundation Farmers & Manufacturers Beet Sugar Association Union Sugar Division, Consolidated Foods Corp.

Items Proposed for Seed Increase and Utilization

- I. U.S. Agricultural Research Station, Salinas, California.
 - A. Developments in breeding research by J. S. McFarlane, I. O. Skoyen, and B. L. Hammond.
 - Item 1. C5564 Monogerm 1 pound

A curly top resistant selection from C2563, which is a good type 0. (Item 1 of 1962.) In 1965 tests at Logan, Utah, C5564 was outstanding in curly top resistance. Bolting resistance is similar to that of C2563.

Item 1.	(cont.) Suggested utilization: Use as a breeding line. C5564 may be increased for possible use as a curly top resistant, monogerm, inbred parent.	
Item 2.	C5564HO Monogerm	1 pound
	Suggested utilization: Use as seed parent in the production of the male-sterile equivalent of C5564.	
Item 3.	C685T Multigerm	50 grams
	Increase of a tetraploid derived from a type 0 bolting resistant selection from US 75.	
	Suggested utilization: Use as a pollen parent and for establishment of the male-sterile equivalent. (See Item 4.)	
Item 4.	C685THO Multigerm	50 grams
	Male sterile of tetraploid US 75 crossed with C685T.	
	Suggested utilization: Use as a tetraploid breeding line.	
Item 5.1	C534 Multigerm	1 pound
	Yellows resistant selection originally received from Dr. Henk Rietberg, Director, Instituut voor Rationele Suikerproductie, Bergen op Zoom, Netherlands. The breeder seed was evaluated and increased in California by J. S. McFarlane and associates. Tests in California have shown C534 to have good bolting resistance, and its yellows tolerance is similar to that of C413 from US 75. C534 is not resistant to curly top.	
	ments in breeding for nematode resistance, by arles Price:	
Item 6.	590-1 Multigerm	1 pound
	Selection for resistance to the cyst nematode, Heterodera schachtii. In Salinas tests (1962-1965), which provided severe exposure to the pathogen, 590-1 has yielded significantly better than US 41, the unselected check.	
	Breeder seed 590-1 is the final proposal for utilization from the breeding research conducted by Charles Price.	

^{1.} Item 5A see page 12.

В.

C.	Developments in breeding and genetic research by Helen and V. F. Savitsky:											
	Item 7.	S-5-333 Multigerm	150 grams									
		Breeder seed S-5-333 is tetraploid, multigerm, and excellent in curly top resistance. It was produced from curly top tolerant plants selected in 1964 at Logan, Utah, in a field test conducted by A. M. Murphy.										
		Suggested utilization: Use as tetraploid pollinator with diploid male-sterile lines to produce triploid hybrids.										
	Item 8.	S-5-200 Multigerm	150 grams									
		Breeder seed S-5-200 is tetraploid, multigerm, and excellent in curly top resistance. It was produced from curly top tolerant plants selected in 1964 at Logan, Utah, in a field test conducted by A. M. Murphy.										
		Suggested utilization: Use as tetraploid pollinator with diploid male-sterile lines to produce triploid hybrids.										
	Item 9.	S-5-800 Multigerm	150 grams									
		Breeder seed S-5-800 is tetraploid, multigerm, and excellent in curly top resistance. It was produced from curly top tolerant plants selected in 1964 at Logan, in a field test conducted by A. M. Murphy.										
		Suggested utilization: Use as tetraploid pollinator with diploid male-sterile lines to produce triploid hybrids.										
	Item 10.	S-4-900 Multigerm	150 grams									
		Breeder seed S-4-900 is a multigerm tetraploid F_3 line derived from hybridization of a tetraploid strain carrying resistance to curly top with a tetraploid strain of excellent sucrose percentage. It combines good curly top resistance and better sucrose percentage than is usually available.										
		Suggested utilization: Use as tetraploid pollinator with diploid male-sterile lines to produce triploid hybrids.										

Item 11. S-4-903 Multigerm

150 grams

Breeder seed S-4-903 is a multigerm tetraploid F3 line derived from hybridization of a tetraploid strain carrying resistance to curly top with a tetraploid strain of excellent sucrose percentage. It combines good curly top resistance and better sucrose percentage than usually available. Suggested utilization: Use as tetraploid pollinator with diploid male-sterile lines to produce triploid hybrids. II. Crops Research Laboratory, Logan, Utah. Developments in breeding research of J. C. Theurer, G. K. Ryser, C. H. Smith, and E. H. Ottley: Item 12. L-53 Multigerm 1 pound Breeder seed L-53 is an S_3 line derived from (US 35/2 X Ovana) X CT8. It is almost type O. It is equal to US 41 in curly top resistance and has good combining ability. For performances, see Code OV. 3 in Sugarbeet Research, 1965 Report, pp. 148-165. Suggested utilization: Use as pollinator in experimental hybrids. Item 13. L-19 Multigerm 3 pounds Breeder seed L-19 is an S₁ multigerm inbred line having good combining ability for sucrose percentage. It was included as Entry 3611 in 1965 variety trials. See 1965 Sugarbeet Research, pp. 148-165. Suggested utilization: Use as breeding line to increase sucrose percentages. Sugarbeet Investigations, Fort Collins, Colorado. Developments in breeding research by J. O. Gaskill: Item 14. FC 601/2 Monogerm 1 pound Type O inbred line with high resistance to both leaf spot and curly top, derived from a backcross program in which US 201, the nonrecurring parent,

Item 14. (cont.)

served as the source of leaf spot resistance and various CTR lines served as the recurring parental type. Preliminary agronomic data for FC 601, an S_1 line, indicated acceptable sucrose percentage and combining ability for root yield (Sugarbeet Research, 1965, Report, pp. 192-196). FC 601/2 is a pool of three S_2 sublines of FC 601. It is segregating for R and r; probably also segregating for Mendelian male sterility (aa). C. L. Schneider, A. M. Murphy, and C. W. Bennett participated in curly top evaluation and selection of parental lines of FC 601/2.

Suggested utilization: Increase FC 601/2 and its male-sterile equivalent, FC 601/2-CMS. Also, cross FC 601/2 with FC 502/2-CMS by including a short row of the latter in the planting of FC 601/2.

Male-sterile equivalent of FC 601/2.

Suggested utilization: Increase, using FC 601/2 as the pollinator.

IV. Sugarbeet Investigations, East Lansing, Michigan.

Developments in breeding research by G. J. Hogaboam:

A monogerm type O with some resistance to leaf spot and black root. This is an S_3 line and a sister line of 61G1-01 in the S_2 generation (Item 23, 1961 Report). EL 33 is characterized by long, straight roots and has demonstrated some cold resistance.

Suggested utilization: Increase EL 33 and its male-sterile equivalents.

Male-sterile equivalent (E_4) of EL 33. The source of C1 cytoplasm is SL 9460.

Suggested utilization: Use for seed increase with EL 33 and production of experimental hybrids.

	·	
Item 18.	EL 33 C2 Monogerm	1 pound
	Male-sterile equivalent (E ₃) of EL 33. The source of C2 cytoplasm is C361HO.	
	Suggested utilization: Use for seed increase with EL 33 and production of experimental hybrids.	
Item 19.	EL 35 Monogerm	1 pound
	A monogerm type 0 with some resistance to leaf spot and black root. This is an S3 line and a sister line of 61G4-01 in the S2 generation (Item 27, 1961 Report). This inbred line tends to have long, straight roots and has demonstrated some cold resistance. It has shown specific combining ability in a 3-way cross with EL 32 (61G2-01 1961 Report) when 02 clone or SP 5822-0 is used as pollinator.	,
	Suggested utilization: Increase EL 35 and its	
	male-sterile equivalents.	
Item 20.	EL 35 Cl Monogerm	l pound
	Male-sterile equivalent (E ₅) of EL 35. The source of Cl cytoplasm is SL 9460.	
	Suggested utilization: Use for seed increase with EL 35 and for the production of experimental hybrids.	
Item 21.	EL 35 C2 Monogerm	1 pound
	Male-sterile equivalent (E $_4$) of EL 35. The source of C2 cytoplasm is C361HO.	
	Suggested utilization: Use for seed increase with EL 35 and for the production of experimental hybrids.	
Item 22.	EL 66B15-0 Multigerm	2 pounds
	This Breeder seed is the tetraploid of the multigerm clone 02. Seed from 2nd generation (C2) from colchicine treatment was received from Estacion Experimental de Aula Dei, Zaragoza, Spain. Seed of SP 61B28-01, diploid (Item 21, 1961 Report), was supplied for tetraploidization under PL 480 contract.	
	Suggested utilization: Use as pollinator in the production of triploid hybrids.	

V. Plant Industry Station, Beltsville, Maryland.

Development in breeding research by G. E. Coe.

Item 23. SP 663448-01 Monogerm 1 pound

Male-sterile companion line to SP 663448-0 which is type 0. This male-sterile phase is being made available for utilization, but the type 0 pollinator will be increased and rechecked for trueness to type 0 at Beltsville. The seed production by the overwintering method will provide seed increase of the malesterile phase as well as the pollen-fertile phase of the line. Leaf spot resistance of SP 663448-0 is excellent and its black root resistance is moderate.

Suggested utilization: Use in the production of experimental hybrids.

Item 24. SP 663465-01 Monogerm 1 pound

Male-sterile companion of SP 663465-0 which is type 0. This male-sterile phase is being made available for utilization, but the pollinator will be increased and rechecked for trueness to type 0 at Beltsville. The seed production by overwintering method will provide seed increase of the male-sterile phase as well as the pollen-fertile phase of the line. Leaf spot resistance of SP 663465-0 is excellent and its black root resistance is moderate.

Suggested utilization: Use in the production of experimental hybrids.

Item 5A. $\frac{1}{C}$ 544 Multigerm 5 pounds

Increase of the cross C330 (Item 5, 1963) x C234. C330 is a yellows resistant selection from US 75 and C234 is a yellows resistant selection obtained from the Instituut voor Rationele Suikerproductie, Bergen op Zoom, Netherlands. Tests at Davis and Salinas have shown C544 to have yellows resistance comparable to that of C413. Root yield and sucrose percentage are also similar to those of C413. Curly top resistance is only fair.

BEET SUGAR DEVELOPMENT FOUNDATION

P. O. BOX 538 FORT COLLINS, COLORADO

80521

UTILIZATION OF USDA SEED RELEASES, 1966

Item numbers and seed numbers are identical with those listed in the release memorandum dated May 18, 1966.

I. U. S. Agricultural Research	Station,	Salinas,	California
--------------------------------	----------	----------	------------

A. Developments in breeding research by J. S. McFarlane, I. O. Skoyen, and B. L. Hammond.

Item 1. C5564 Monogerm 1 pound

From the available amount, Amalgamated, Holly and Utah-Idaho each want 10 gm now and Spreckels 5 gm; Spreckels wants stecklings from the plots. The balance of the seed will be used for an increase by the West Coast Beet Seed Company; the increase is to be shared by Amalgamated, American Crystal, Great Western, Holly, Spreckels, Union and Utah-Idaho.

Item	2.	C5564HO	Monogerm	•	•	•	•	•	•	•	•	•	•	•	•	1	pound
------	----	---------	----------	---	---	---	---	---	---	---	---	---	---	---	---	---	-------

Same utilization and distribution as noted for Item 1.

Item 3. C685T Multigerm 50 grams

The amount of seed available will be distributed now among Amalgamated, American Crystal, Great Western, Holly, Spreckels, Union and Utah-Idaho.

Item 4. C685THO Multigerm 50 grams

Same utilization and distribution as noted for Item 3.

Item 5. C534 Multigerm l pound

From the available quantity the following is to distributed now: Amalgamated - 10 gm; Great Western - 20-50 gm; Holly - 15 gm; Utah-Idaho - 15 gm; Spreckels - 5 gm. Spreckels wants stecklings from the plots. The balance of the seed will be used for an increase by the West Coast Beet Seed Company; the increase is to be shared by American Crystal, F & M, Holly Spreckels and Union.

Item 5A. C544 Multigerm 5 pounds

From the available quantity the following is to be distributed now: Amalgamated - 15 gm; American Crystal - 25 gm; Great

II.

Western - 50 gm; Holly - 15 gm; Spreckels - 15 gm; Union - 15 gm; Utah-Idaho - 15 gm. The balance of the seed will be used by the West Coast Beet Seed Company for an increase be shared by American Crystal, Holly, Spreckels, Union and Utah-Idaho.
B. Developments in breeding for nematode resistance by Charles Price.
Item 6. 590-1 Multigerm
The amount of seed available will be distributed now among Amalgamated, American Crystal, Great Western, Holly, Spreckels, Union and Utah-Idaho.
C. Developments in breeding and genetic research by Helen and V. F. Savitsky.
Item 7. S-5-333 Multigerm
The amount of seed available will be distributed now as follows: F & M - 10 gm; the balance will be shared among Amalgamated, American Crystal, Great Western, Holly, Spreckels, Union and Utah-Idaho.
<u>Item 8. S-5-200 Multigerm</u> 150 grams
Same distribution as noted for Item 7.
<u>Item 9. S-5-800 Multigerm</u>
Same distribution as noted for Item 7.
<u>Item 10. S-4-900 Multigerm</u>
Same distribution as noted for Item 7.
<u>Item 11. S-4-903 Multigerm</u>
Same distribution as noted for Item 7.
Crops Research Laboratory, Logan, Utah
Developments in breeding research of J. C. Theurer, G. K. Ryser, C. H. Smith, and E. H. Ottley.
Item 12. L-53 Multigerm l pound

The amount of seed available will be distributed now among Amalgamated, American Crystal, Great Western,

Holly, Spreckels, Union and Utah-Idaho.

to

	Item 13. L-19 Multigerm 3 pounds
	Same distribution as noted for Item 12.
III.	Sugarbeet Investigations, Fort Collins, Colorado
	Developments in breeding research by J. O. Gaskill.
	Item 14. FC 601/2 Monogerm l pound
	From the available quantity the following is to be distributed now: Amalgamated - 15 gm; American Crystal - 10 gm; Great Western - 10 gm; Holly - 15 gm; Spreckels - 10 gm; Utah-Idaho - 15 gm. The balance of the seed will be used by the West Coast Beet Seed Company for an increase to be shared by American Crystal, F & M, Great Western, Holly and Spreckels.
	Item 15. FC 601/2-CMS Monogerm 1 pound
	Same distribution as noted for Item 14.
IV.	Sugarbeet Investigations, East Lansing, Michigan
	Developments in breeding research by G. J. Hogaboam.
	Item 16. EL 33 Monogerm 1 pound
	The amount of seed available will be distributed now as follows: Utah-Idaho - 15 gm; the balance will be shared among American Crystal, Great Western, Holly and Spreckels.
	<pre>Item 17. EL 33 Cl Monogerm 100 grams</pre>
	Same utilization and distribution as noted for Item 16.
	Item 18. EL 33 C2 Monogerm 1 pound
	Same utilization and distribution as noted for Item 16.
	Item 19. EL 35 Monogerm
	Same utilization and distribution as noted for Item 16.
	Item 20. EL 35 Cl Monogerm l pound
	Same utilization and distribution as noted for Item 16.
	Item 21. EL 35 C2 Monogerm
	Same utilization and distribution as noted for Item 16.

	Item 22. EL 66Bl5-O Multigerm 2 pounds
	Same utilization and distribution as noted for Item 16.
v.	Plant Industry Station, Beltsville, Maryland
	Development in breeding research by G. E. Coe.
	<u>Item 23. SP 663448-01 Monogerm</u> 1 pound
	The amount of seed available will be distributed now as follows: Utah-Idaho - 15 gm; the balance will be shared among American Crystal, F & M, Great Western, Holly and Spreckels.
	Item 24. SP 663465-01 Monogerm l pound
	Same utilization and distribution as noted for Item 23.

SUGARBEET SEED PRODUCTION IN UNITED STATES, 1955-1965 $\frac{1}{2}$

Year of		100-pound bags		Percent
production	Total	Multigerm	Monogerm	monogerm
1955	114,187	114,152	35	Trace
1956	88,279	84, 991	3,431	3.9
1957	94,547	83,812	10,735	11.4
1958	109,832	82,571	27,261	24.8
1959	111,788	83,594	28,194	25.2
1960	124,545	49,869	74,676	60.0
1961	95,541	25,227	70,314	73.6
1962	93,416	10,768	82,648	88.5
1963	94,447	12,487	81,960	86.8
1964	133,614	15,777	117,837	88.2
1965	93,363	671	92,692	99.3
1966	139,020	4,700	134,320	96.6

 $[\]underline{1}$ / Production records from Agricultural Statistics.

PART II

Progress reports of research conducted at
U.S. Agricultural Research Station, Salinas, California
and
U.S. Southwest Irrigation Field Station, Brawley, California
by the
Staff of Sugarbeet Investigations, ARS-USDA
in cooperation with:

American Crystal Sugar Company
Holly Sugar Corporation
Union Sugar Division, C. F. Company
Spreckels Sugar Company
California Beet Growers Association
Beet Sugar Development Foundation

Research was conducted by:

J. S. McFarlaneB. L. HammondI. O. SkoyenJ. M. FifeR. T. LewellenD. L. DoneyK. D. BeattyE. D. Whitney

Helen Savitsky

REPORT ON FOUNDATION PROJECTS 24 AND 29 $\frac{1}{2}$

Summary of Accomplishments - 1966

COMPARISON OF US H7 AND US H8--The commercial monogerm varieties US H7 and US H8 have been included in variety tests for the past four years. A summary of the performance of these varieties expressed in percent of the performance of US H6 follows:

	No.	of	tests	Gro	ss su	Sucrose percentage				
	<u>C</u>	CV	Imp.	<u>C</u>	CV	Imp.	<u>C</u>	cv	Imp.	
US H7	27	12	17	100	106	99	101	97	103	
US H8	24	16	21	98	103	100	100	100	103	

C = Coastal valleys CV = Central Valley Imp. = Imperial Valley

The performance of US H7 and US H8 compared favorably with that of US H6 in each of the major sugarbeet producing areas of California. US H7 tended to perform better than US H8 in the coastal valleys and in the Central Valley. In the Imperial Valley the performance of the two hybrids has been about equal.

In the coastal valleys US H7 has shown the best bolting resistance whereas in the Central and Imperial Valleys US H8 is the more bolting resistant. US H8 has shown slightly better curly-top resistance than either US H7 or US H6 in field tests at Thatcher, Utah, and in green-house tests at Salinas. The seedling vigor of US H7 is equal or superior to that of US H6 and is superior to that of US H8.

Severe root rot occurred in the northern part of the Imperial Valley during June and July of 1966. US H8 was more susceptible than either US H7 or US H6. This susceptibility to rot has not been observed in other areas nor in other seasons in the Imperial Valley.

All three components of US H8 are inbred lines whereas US H7 utilizes an open-pollinated selection as the pollen parent. US H8 has been found to respond more sharply to environmental differences than does US H7.

^{1/} Research conducted by J. S. McFarlane, I. O. Skoyen, B. L. Hammond, and K. D. Beatty.

PERFORMANCE OF MONOGERM HYBRIDS--Monogerm hybrids were tested by the U.S. Department of Agriculture and the sugar companies in the major sugarbeet producing areas of California. A summary of the performance of fifteen hybrids expressed in percent of US H6 follows:

Hybrid			tests Imp.		oss su <u>CV</u>			Sucr ercer CV	
(562H0 x 569) x 663 (562H0 x 546) x 464 (563H0 x 550) x 464	5 4 4	4 2 4	7 5 7	100 105 107	109 109 117	99 109 106	100	105 106 103	100 101 99
(563H0 x 546) x 663 (563H0 x 534) x 464	2	2	4 5	102 96	113	105 96		103	101
(562H0 x 569) x NB7 (562H0 x 546) x NB7	4 3	4 2	7 7	98 95	97 97	97 104		103	101
(562H0 x 569) x 413 (562H0 x 546) x 413	4 4	-	2	124 126		118 128			102 103
(562H0 x 569) x 544 (563H0 x 550) x 544 (563H0 x 550) x 534	4 4 4	- - -	1 5 1	121 123 135		111 119 122	101		104 101 105
(562H0 x 569) x 5402 (563H0 x 550) x 5402 (563H0 x 550) x 5405	3 2 2	- - -	1 2 2	108 107 96		103 109 94	103		101 101 102

C = Coastal valleys CV = Central Valley Imp. = Imperial Valley

In general the monogerm hybrids yielded as well or better than did the standard check, US H6. The sucrose percentage of the monogerm hybrids also tended to be higher than that of US H6. The NB7 inbred was inferior to the open-pollinated lines 663 and 464 as a pollen parent in the 1966 tests.

The hybrid (563H0 x 550) x 464 performed very well in all areas. The seed-bearing parent (563H0 x 550) is superior to (562H0 x 569) in curly-top resistance and has similar bolting resistance. The 1966 results indicate that hybrids utilizing (563H0 x 550) as the seed-bearing parent are worthy of additional testing particularly in the Central Valley. The hybrid (562H0 x 546) x 464 also performed well in all districts. The new hybrid (563H0 x 534) x 464 produced a lower root yield than US H6 in the coastal valleys and the Imperial Valley but was superior to US H6 in the Central Valley. The (563H0 x 534) seed-bearing parent combines high curly-top and bolting resistance.

The pollen parents 413, 544, and 534 are yellows-resistant selections. Results with hybrids involving these selections are discussed in Part VIII dealing with virus-yellows investigations.

Triploid hybrids utilizing the tetraploid pollen parent 5402 performed well in 1966 tests. Both root yields and sucrose percentages tended to be superior to those of US H6. 5402 is the increase of a cross between 663 tetra and S203, a tetraploid from Janasz developed by Dr. V. F. Savitsky.

BOLTING RESISTANCE--Bolting-resistance evaluations were made from December plantings at Salinas and from an October planting at Tracy. The yellows-resistant 413 selection from US 75 was equal to the parent variety in bolting resistance at both Salinas and Tracy. The yellows-resistant hybrid (562HO x 569) x 413 showed fewer bolters at Salinas and Tracy than did US H7. The monogerm inbreds 4806 and 4664 showed outstanding bolting resistance and were equal in resistance to the best multigerm inbreds.

CURLY TOP RESISTANCE--Curly top caused severe damage to late-planted sugarbeets in the west-central San Joaquin Valley in 1966. Damage was accentuated by high temperatures and in some fields by unfavorable soil conditions. A few fields were abandoned and yields of less than ten ton per acre were reported in some fields. Dr. J. E. Duffus checked infected plants and found a range in the virulence of the virus. During the early part of the growing season he found that most plants were infected with strains less virulent than strain ll. During the latter part of the season he isolated strains more virulent than strain ll and similar in virulence to the Los Banos strain. The Los Banos strain is one of the most virulent strains that has been isolated and is capable of causing severe damage to our present commercial varieties. The experience of the past season demonstrates the need for continued work on curly-top resistance.

Evaluations for curly-top resistance were made in the field at Thatcher, Utah, and in the greenhouse at Salinas. Adverse growing conditions coupled with a heavy leafhopper infestation caused unthrifty growth and severe damage from curly top at Thatcher. Differences between lines were less clear cut and ratings were less accurate than in previous years. Lines with very good resistance could be identified, however. Monogerm inbreds were identified with resistance superior to that of the multigerm NBL inbred.

Segregating S monogerm lines were planted in blocks and selections made under an extreme curly-top exposure. Mr. A. M. Murphy made selections from seven segregating populations and seed will be produced from individual segregates in the greenhouse at Salinas.

Curly-top resistant ratings obtained in the greenhouse agreed well with those obtained in the field. Greenhouse selections were made for resistance from segregating S₁ and S₂ self-fertile populations. Resistance evaluations of single-plant progenies of greenhouse selections made in 1965 showed an improvement over the original segregating material. The results indicate that progress can be made in the greenhouse when selections are made from self-fertile material. Populations that can be handled in the greenhouse are small compared with the field.

POLYPLOIDY--Dr. B. L. Hammond produced additional autotetraploids from both self-sterile and self-fertile breeding lines. During the past year emphasis has been placed on yellows-resistant lines and on lines with high curly-top resistance. Seed increases were made of tetraploids produced in previous years. Triploid hybrids were produced for testing in 1967.

SEED LOTS MADE AVAILABLE THROUGH THE FOUNDATION--A monogerm inbred designated C5564 was made available in 1966. This type 0 inbred was selected from C2563 for superior curly-top resistance. Field tests at Thatcher, Utah, in 1965 and 1966 showed C5564 to possess outstanding resistance. C5564 is similar to C2563 in bolting resistance.

A male-sterile monogerm designated C5564HO was also made available. This line was obtained from a cross between 563HO and C5564.

A multigerm tetraploid designated C685T and derived from a type O selection from US 75 was made available. The tetraploid male sterile equivalent of C685T was also distributed.

A multigerm yellows-resistant selection designated C534 is being increased by the Foundation. C534 was originally received from Dr. Henk Rietberg, Director, Instituut voor Rationele Suiker-productie, Bergen op Zoom, The Netherlands. California tests have shown C534 to have yellows-resistance similar to the C413 selection from US 75. C534 also has good bolting resistance and produces high root yields coupled with high sucrose percentage. The selection lacks curly-top resistance.

A multigerm line designated C544 was made available for increase by the Foundation. C544 is the increase of a cross between a yellows-resistant selection from US 75 and C534. Tests at Davis and Salinas have shown C544 to have yellows resistance comparable to that of C413 and C534. Root yield and sucrose percentage have been similar to those of C413. Curly-top resistance is only fair.

Percent bolting in sugarbeet inbreds and F₁ hybrids planted at Salinas, California, December 8, 1965.

Entry			Counting
No.	Description	7/11/66	8/17/66
		Percent	Percent
Inbreds			
4806 4664-3 1547 F60-512 F56-502 4664-5 F65-534H0 F65-563 F64-648 F64-550 F65-534 F65-562H0 F65-563H0 F64-562H0 F64-550H0 3539T F63-546 F59-502H0 F64-562 F65-562 F65-562 F63-563 0539 F64-649 F64-569 F63-563H0	mm inbred mm inbred NB5 NB6 NB1 mm inbred MS of 534 mm inbred mm inbred mm inbred mm inbred MS of 562 ms of 563 ms of 562 ms of 563 ms of 562 ms of 563 ms of 563 L.S.D. (5%)	0 0 2 10 14 14 13 16 15 10 19 14 19 21 24 21 17 22 24 36 36 27 27 41	1 2 3 4 16 18 19 21 22 24 26 27 30 31 31 32 37 45 49 58 12

BOLTING NURSERY 1965-1966

Tracy, California

McFarlane Material

Planted: 10-1	-65 Counted: 6-23-66	Plots 1 row (30") x 25 feet
VARIETY	SOURCE OR DESCRIPTION	AVERAGE 4 REPS. BOLTING %
F57-68 F64-30 413C 463H1 463H2 463H4 463TH4 4539H8 464H8 464H11 464H11 464H11 413H4 F64-30H8 F54-40 F64-30H8 F54-41 F59-509H1 F59-512H1 F59-512H1 F59-512H1 F59-502H0 F61-569H3 F63-546H4 F64-569H3 F63-549H3 F63-549H3 F63-549H3 F56-502 F59-502H0 1547 F59-512 0539 F64-562H0 F61-562 F63-549 F64-550 F563-549 F64-550	US75 YRS US75 YRS US75 USH2 USH6 USH7 USH7(3n) USH8 (562H0 x 546) x NB7 (562H0 x 550) x 464 (563H0 x 550) x 464 (562H0 x 569) x 3425 (562H0 x 569) x 5402 (563H0 x 550) x 5405 (562H0 x 569) x 413 (562H0 x 569) x F64-30 (562H0 x 569) x F64-30 (563H0 x 550) x 534 (562H0 x 569) x 544 NB C663 663 4 n 4n 663 x 4 n NB7 NB1 x NB3 NB5 x NB6 562H0 x 546 563H0 x 546 562H0 x 546 562H0 x 549 NB1 x NB3 NB5 x NB6 562H0 x 546 562H0 x 549 NB1 MS of S62 mm "o" inbred	29 22 29 62 38 30 20 17 18 41 41 31 10 66 37 21 25 45 41 40 32 26 7 9 56 1 15 6 5 5 10 16 8 1 29 7 0 5 13 6

LEAF SPOT RESISTANCE EVALUATION OF SUGARBEET STRAINS FURNISHED BY DR. J. S. McFARLANE, 1966 Hospital Farm, Fort Collins, Colorado Experiment 16A

(Conducted by L. W. Lawson and J. O. Gaskill) Vigor b/ Leaf spot a/ Entry No. 8/22 8/15 8/30 Description F64-648 mm inbred from US 401 3.3 4.0 5.3 F64-649 4.0 5.0 3.0 5648-3-1 Subline of F64-648 3.3 4.0 5.0 5648-3-11 4.0 4.0 3.7 4581C2 4.0 5.7 $S_2(984rr \times 648-11)$ 3.0 $S_2(1646-7 \times 648-11)$ 3.7 4.3 5.3 4.3 5857C2 S2(563 x 648-11) 5834 S2(US 201rr x 648-11) 5855C2 2.7 4.0 5.7 5847c2 4.0 4.0 $S_{2}(550 \times 648-3)$ 4.7 Acc. 2483 SP 5481-0 3.0 4.0 6.0 Acc. 2591 SP 5822-0 2.3 6.0 3.0 Acc. 2269 Syn. Ck. 4.7 5.0 5.0

Field Plan: Plots 2 rows x 12'; rows 20" apart; 3 plots of each strain. Artificial inoculation and frequent sprinkling were employed to promote the development of leaf spot.

Remarks: Stand was acceptable for the purposes of this test.

 $[\]frac{a}{}$ Leaf spot (K. G. Gould): 0 = no leaf spot; 10 = complete defoliation.

b/ Foliage vigor (K. G. Gould): Higher number = greater vigor.

VARIETY TEST, BRAWLEY, CALIFORNIA, 1965-66

Location: U. S. Department of Agriculture, Southwestern Irrigation

Field Station.1/

Soil type: Holtville silty clay loam.

Previous crops: Sugarbeets, 1962-63; barley, 1963; barley, 1964;

barley and cantaloupes, 1964-65.

Fertilizer used: 44 lbs. per acre phosphorus, actual, preplant.

60 lbs. per acre nitrogen, actual, preplant. 140 lbs. per acre nitrogen, actual, sidedressed

December 16, 1965.

Planting date: September 20, 1965.

Thinning date: October 15, 1965.

Harvest dates: Early harvest, May 3-5, 1966.

Late harvest, June 16, 1966.

Irrigations: Early harvest, 6 irrigations plus 3.17 inches rainfall.

Late harvest, 8 irrigations plus 3.17 inches rainfall.

Diseases and insects: Moderately severe infection with mosaic and yellows viruses occurred in the test plot about December, 1965. Curly top infection was light in the 1965-66 test plot. The test plot was sprayed on September 29 with malathion and on October 28 with methyl parathion plus phosdrin for control of cabbage looper and striped cabbage beetle. Granular 10 percent Thimet was applied on the test plot January 13, 1966 for the control of aphids. The late harvest test was retreated with Thimet April 22, 1966 for control of spider mite.

Experimental design: Planted for early harvest, twenty varieties in a 4 x 5 rectangular lattice design, repeated once, in two-row plots, analyzed as a randomized block; and 10 varieties in a 10 x 10 latin square design, single-row plots, analyzed as a latin square. Planted for late harvest, twelve varieties with 10 replications, in a randomized block design, two-row plots. Rows spaced 30 inches apart. Plots 40 feet long.

Sugar analysis: From two ten-beet samples per plot by Holly Sugar Corporation, Brawley, California.

Remarks: Test designed and results analyzed by the United States Agricultural Research Station, Salinas, California.

Plot under supervision of K. D. Beatty stationed at Southwestern Irrigation Field Station, Brawley, California.

VARIETY TEST, BRAWLEY, CALIFORNIA, 1966

(10 replications of each variety)

Planted: September 20, 1965 Harvested: May 3, 1966

		Acre	Yield		Harvest
Variety	Description	Sugar	Beets	Sucrose	Count
		Pounds	Tons	Percent	Number
413H8 534H11 544H11 544H4 413H4	(562H0 x 546) x 413 (563H0 x 550) x 534 (563H0 x 550) x 544 (562H0 x 569) x 544 (562H0 x 569) x 413	7,870 7,740 7,450 7,040 6,940	23.79 22.42 22.01 20.53 21.02	16.6 17.3 17.0 17.2 16.5	160 165 169 164 160
5402H11 46l4H8 5402H4 464H11 463TH4	(563H0 x 550) x 5402 (562H0 x 546) x 464 (562H0 x 569) x 5402 (563H0 x 550) x 464 (562H0 x 569) x 663 Tetra	6,800 6,710 6,550 6,470 6,340	20.27 19.93 19.81 19.73 19.86	16.8 16.9 16.6 16.4 15.9	150 169 164 156 154
463H2 4539H8 437H8 463H12 F64-425H4	(MS of NBl x NB5) x 663 (562H0 x 546) x NB7 (562H0 x 546) x 437 (563H0 x 546) x 463 (562H0 x 569) x 3425	6,330 6,320 6,290 6,200 6,080	19.19 18.15 18.79 18.34 18.30	16.5 17.4 16.8 16.9 16.6	164 168 167 163 159
4539H4 5405HL1 437H4 463H4 564HL4	(562H0 x 569) x NB7 (563H0 x 550) x 5405 (562H0 x 569) x 437 (562H0 x 569) x 663 (563H0 x 534) x 564	5,930 5,870 5,860 5,680 5,520	17.38 17.31 17.77 17.35 16.49	17.1 17.0 16.4 16.4	165 138 162 156 145
General MEA all varieti S. E. of ME	es AN	6,500 236	19.42	16.7	Beets per
	Difference (19:1) of Variation (%)	658 11.49	2.0	0.46 3.1	100'

Odds 19:1 = 1.972 x $\sqrt{2}$ x Standard Error of MEAN

VARIETY TEST, BRAWLEY, CALIFORNIA, 1966

(10 replications of each variety)

Planted: September 20, 1965 Harvested: June 16, 1966

		Acre		_	Harvest
Variety	Description	Sugar	Beets	Sucrose	Count
		Pounds	Tons	Percent	Number
413H8	(562но х 546) х 413	10,940	31.63	17.3	172
544H11	(563H0 x 550) x 544	10,650	31.91	16.7	174
413H4	(562H0 x 569) x 413	10,410	30.84	16.9	164
464н8	(562H0 x 546) x 464	9,460	28.25	16.8	172
5402Hll	(563H0 x 550) x 5402	9,200	28.14	16.4	158
464Hll	(563H0 x 550) x 464	8,940	27.78	16.1	166
463н2	(MS of NB1 \times NB5) \times 663	8,280	25.22	16.4	166
4539Н8	(562H0 x 546) x NB7	8,170	24.61	16.6	162
4539H4	(562H0 x 569) x NB7	8,130	24.44	16.6	165
564H14	(563H0 x 534) x 564	8,130	24.27	16.8	152
5405Hll	(563H0 x 550) x 5405	7,800	23.59	16.6	140
463H4	(562H0 x 569) x 663	7,700	23.29	16.6	163
General M	EAN of				
all varie		8,980	27.00	16.7	Beets
S. E. of	MEAN	291	0.95	0.187	per
	nt Difference (19:1)	817	2.66	0.52	100'
Coefficie	nt of Variation (%)	10.26	11.09	3.54	row

Odds 19:1 = 1.984 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	MEAN		ARES
Variation due to	of	Gross	Tons	Percent
	Freedom	Sugar	Beets	Sucrose
Between varieties	11	13,267,211	101.93	0.93
Between replications	9	2,652,011	31.37	0.78
Remainder (Error)	99	849,069	8.97	0.35
Total	119			
Calculated F value		15.63 **	11.36	** 2.65 **

^{**} Exceeds the 1% point of significance (F=2.43)

VARIETY TEST, BRAWLEY, CALIFORNIA, 1966

(10 x 10 Latin Square) (single-row plots)

Planted: September 20, 1965 Harvested: May 3, 1966

		Α	v. 22		77
Variety	Description	Acre	Beets	Cuanaga	Harvest
variety	pescription	Sugar		Sucrose	Count
		Pounds	Tons	Percent	Number
544 534 530 513 463H2	Increase (330 x 234) Rietberg YRS 7th YRS US 75 7th YRS US 75 (MS of NBl x NB5) x 663	6,890 6,580 6,560 6,350 6,290	20.86 19.13 21.15 20.35 19.49	16.6 17.2 15.5 15.7 16.1	165 152 159 159 153
537A 413C 533 F63-64 F57-68	3rd YRS 663 5th YRS US 75 3rd YRS 663 BRS 663 US 75	6,220 6,140 5,840 5,400 4,380	20.19 19.08 19.27 16.86 13.92	15.5 16.1 15.2 16.0 15.8	162 147 158 150 161
General M		(- (-	
all varieties		6,070	19.03	16.0	Beets
S. E. of		156	0.51	0.11	per
-	ant Difference (19:1)	440	1.42	0.31	100'
Coefficie	ent of Variation (%)	8.14	8.36	2.20	row

Odds 19:1 = 1.994 x $\sqrt{2}$ x Standard Error of MEAN

VARIANCE TABLE

	Degrees	MEAN	SQUA	RES
Variation due to	of Freedom	Gross Sugar	Tons Beets	Percent Sucrose
Between varieties	9	5,206,652	46.77	3.51
Between replications	9	1,349,359	18.48	1.86
Between columns	9	2,788,672	31.66	0.65
Remainder (Error)	72	243,967	2.54	0.12

Total

99

Calculated F value

21.34** 18.41** 28.31**

** Exceeds the 1% point of significance (F=2.67)

VARIETY TEST, SALINAS, CALIFORNIA, 1966

Location: Spence Field of the U. S. Agricultural Research Station.

Soil type: Sandy loam.

Fertilizer used: 730 lbs. per acre 10:10:5, preplant.

275 lbs. per acre ammonium sulfate sidedressed

April 19, 1966.

165 lbs. per acre ammonium sulfate sidedressed

June 29, 1966.

Planting dates: Bolting test, planted December 8, 1966.

Yield tests, planted December 23, 1966.

Thinning dates: Bolting test, February 10, 1966.

Yield tests, February 23, 1966.

Harvest dates: Bolting test, September 26, 1966.

Yield tests, September 22-28, 1966.

Irrigation: Sprinkler irrigation as required up to April 25, 1966.

Subsequently, furrow irrigation used at about ten-day

intervals.

Diseases and insects: Symptoms of yellows virus infection were evident throughout the uninoculated test plots by mid July. Test plots were sprayed March 24 and April 13, 1966 with Meta-systox R at a rate of one and one-half pints per acre for control of green peach aphid.

Experimental design: Bolting test planted in a randomized block with four replications. Varieties planted in single-row plots; plots 68 feet long. Yield test of 20 varieties planted in a randomized block with ten replications. Varieties planted in two-row plots; plots 53 feet long. Row spacing 28 inches wide.

Sugar analysis: From two samples per plot, of approximately ten roots each, at the sugar analytical laboratory, United States Agricultural Research Station, Salinas, California.

VARIETY TEST, SALINAS, CALIFORNIA, 1966

(4 replications of each variety)

Planted: December 8, 1965 Harvested: September 26, 1966

Variety	Description	Acre Sugar	Yield Beets	Sucrose	Bolting	Harvest Count
1411C 0y	Description	Pounds	Tons	Percent	Percent	Number
544H11	(563H0 x 550) x 544	11,500	34.47	16.7	10.9	139
413H4	(562H0 x 569) x 413	11,380	33.07	17.3	6.7	161
534H11	(563H0 x 550) x 534	10,950	31.59	17.4	9.0	148
534	Rietberg YRS	10,740	30.18	17.9	1.9	146
4716H3	562H0 x 4716-18	10,460	31.71	16.5	12.4	146
413C	5th YRS US 75	10,250	29.07	17.6	9.7	156
413H8	(562H0 x 546) x 413	10,180	29.64	17.2	10.7	140
F64-30H8	(562H0 x 546) x F64-30	10,080	29.38	17.2	11.8	144
544	Increase (330 x 234)	10,080	29.74	17.0	7.0	144
544H4	(562H0 x 569) x 544	9,980	29.88	16.8	10.4	144
5402H4	(562H0 x 569) x 5402	9,760	28.39	17.2	10.2	147
F64-30H4	(562H0 x 569) x F64-30	9,650	28.95	16.7	12.4	149
5402H11	(563H0 x 550) x 5402	9,440	28.63	16.6	13.7	135
437H8	(562H0 x 546) x 437	9,270	28.64	16.2	9.2	160
464H11	(563H0 x 550) x 464	9,250	28.89	16.1	11.7	146
464H8	(562H0 x 546) x 464	9,090	28.55	15.9	6.5	158
F64-30	YRS US 75	8,900	26.35	16.9	3.2	148
F64-425H4	(562H0 x 569) x 3425	8,900	27.37	16.3	14.9	149
463TH4	(562H0 x 569) x 663 T	8,890	27.29	16.4	16.0	161
437H4	(562H0 x 569) x 437	8,770	27.94	15.8	15.1	156
463H12	(563H0 x 546) x 463	8,720	27.40	15.9	9.0	150
Lot 5476	(562H0 x 569) x NB7	8,690	27.36	15.9	22.7	144
463H2	(MS of NB1 x NB5) x 663	8,640	26.85	16.1	12.7	163
F63-64H4	(562H0 x 569) x 264	8,510	25.23	16.8	17.3	164
Lot 5536 463H4 5402 F60-512H1	(562H0 x 569) x NB7 (562H0 x 569) x 663 Inc. (263T x \$203) MS of NB5 x NB6		25.58 25.10	15.8 16.4 16.7 15.7	31.3 13.4 6.3 3.0	140 158 139 139
4539H4	(562H0 x 569) x NB7	8,250	25.61	15.9	37.3	159
263TH2	(MS of NB1 x NB5) x 663 T	8,230		16.0	7.7	131
Lot 5426	(562H0 x 546) x 464	8,210		16.1	10.1	144
5405H11	(563H0 x 550) x 5405	7,970		16.6	17.5	114

VARIETY TEST, SALINAS, CALIFORNIA, 1966 continued

(4 replications of each variety)

Planted: December 8, 1965 Harvested: September 26, 1966

		Acre	Vield			Harvest
Variety	Description	Sugar	Beets	Sucrose	Bolting	Count
		Pounds	Tons	Percent	Percent	Number
437B F64-425H8 4539Hl2 4539Hll	YRS 663 (562H0 x 546) x 3425 (563H0 x 546) x NB7 (563H0 x 550) x NB7	7,930 7,780 7,720 7,700	25.34 23.73 23.76 23.79	15.6 16.4 16.3 16.2	6.6 8.9 39.3 32.8	156 142 136 147
4539H8 F64-63T F63-64 F57-68	(562HO x 546) x NB7 Tetra 663 Bolt. res. 663 US 75	7,680 7,600 7,440 7,380	24.43 23.82 23.00 23.90	15.8 15.9 16.2 15.4	31.4 2.0 7.1 7.6	141 148 141 132
F64-546H3 F64-550H4 1547H1 F64-425	562HO x 546 563HO x 550 MS of NB1 x NB5 663 T x 8539 T	7,210 6,950 6,900 6,890	20.69 20.87 22.35 21.03	17.4 16.6 15.4 16.5	15.8 23.1 12.0 3.2	143 119 135 142
564H14 663 F64-569H3 5405	(563H0 x 534) x 564 (US15 x US22/3) sel. 562H0 x 569 Inc. (S203 x 1401)	6,730 6,380 6,070 5,980	20.95 20.59 17.83 18.63	16.1 15.6 17.0 16.1	9.1 3.0 19.9 9.4	119 119 144 126
General ME						
all variet						Beets
						-
4539H11 4539H8 F64-63T F63-64 F57-68 F64-546H3 F64-550H4 1547H1 F64-425 564H14 663 F64-569H3 5405 General ME all variet S. E. of M Significan	(563H0 x 550) x NB7 (562H0 x 546) x NB7 Tetra 663 Bolt. res. 663 US 75 562H0 x 546 563H0 x 550 MS of NB1 x NB5 663 T x 8539 T (563H0 x 534) x 564 (US15 x US22/3) sel. 562H0 x 569 Inc. (S203 x 1401) AN of ies	7,700 7,680 7,680 7,600 7,440 7,380 7,210 6,950 6,900 6,890 6,730 6,380 6,070	23.79 24.43 23.82 23.00 23.90 20.69 20.87 22.35 21.03 20.95 20.59 17.83 18.63 26.17 1.72	16.2 15.8 15.9 16.2 15.4 16.6 15.4 16.5 16.1 15.6 17.0	32.8 31.4 2.0 7.1 7.6 15.8 23.1 12.0 3.2 9.1 3.0 19.9	147 141 148 141 132 143 119 135 142 119 119 144 126

Odds 19:1 = 1.976 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	M	EAN SQ	UARES	
Variation due to	of	Gross	Tons	Percent	Percent
	Freedom	Sugar	Beets	Sucrose	Bolting
Between varieties	47	7,349,618	53.73	1.40	317.35
Between replications	3	36,568,713	325.74	3.75	107.85
Remainder (Error)	141	1,100,036	11.83	0.41	15.01
Total	191				
Calculated F value		6.68 **	4.54 **	3.38 **	21.14**
** Evande the 1d min		(TI 2 66)			

^{**} Exceeds the 1% point of significance (F=1.66)

VARIETY TEST, SALINAS, CALIFORNIA, 1966

(10 replications of each variety)
(Two-row plots)

Planted: December 23, 1965 Harvested: September 28, 1966

		Acre	Yield			Harvest
Variety	Description	Sugar	Beets	Sucrose	Bolting	Count
		Pounds	Tons	Percent	Percent	Number
534H11 544H11 413H8 544H4 413H4	(563H0 x 550) x 534 (563H0 x 550) x 544 (562H0 x 546) x 413 (562H0 x 569) x 544 (562H0 x 569) x 413	11,470 11,090 10,520 10,390 10,080	30.30 30.91 28.76 28.63 27.58	19.0 17.9 18.3 18.1 18.3	4.0 4.0 2.8 1.9 3.7	140 140 135 146 141
464H8 5402H4 463TH4 437H4 463H4	(562H0 x 546) x 464 (562H0 x 569) x 5402 (562H0 x 569) x 663 Tetra (562H0 x 569) x 437 (562H0 x 569) x 663	9,880 9,780 9,600 9,280 9,210	27.53 26.67 28.33 25.97 25.70	17.9 18.4 17.0 17.9	3.8 3.1 3.0 3.8 2.7	137 140 129 141 144
5402H11 464H11 F64-425H4 463H12 437H8	(563H0 x 550) x 5402 (563H0 x 550) x 464 (562H0 x 569) x 3425 (563H0 x 546) x 463 (562H0 x 546) x 437	9,190 9,190 9,090 9,060 8,800	26.60 26.38 25.50 26.60 25.38	17.3 17.4 17.8 17.1 17.3	2.5 2.2 2.4 3.9 2.3	133 137 147 137 140
4539H4 463H2 4539H8 5405H11 564H14	(562H0 x 569) x NB7 (MS of NB1 x NB5) x 663 (562H0 x 546) x NB7 (563H0 x 550) x 5405 (563H0 x 534) x 564	8,780 8,770 8,680 8,660 8,510	25.26 25.91 24.96 25.17 24.44	17.4 16.9 17.4 17.3 17.5	3.7 2.0 2.7 2.5 2.7	141 141 138 110 109
	ies	9,500 242 677 8.07	26.88 0.68 1.90 8.00	17.7 0.21 0.59 3.79		Beets per 100' row

Odds 19:1 = 1.97 x $\sqrt{2}$ x Standard Error of MEAN

VARIETY TEST, TRACY, CALIFORNIA, 1966

South Tracy - CTR-NB

By Holly Sugar Corporation

Variety or Lot No.	Description	Sugar	Yield Beets	Sucrose	Bolters	Harvest Count
		Pounds	Tons	Percent	Percent	Number
463H11 464H14 F64-30H4 463H2	(563H0 x 550) x 663 (563H0 x 534) x 464 (562H0 x 569) x F64-3 US H6	9,724 9,374 0 8,921 8,428	27.34 26.92 25.90 24.95	17.8 17.4 17.2 16.9	2.1 2.5 7.2 5.8	172 170 167 166
F64-425H4 263TH4 L.4126	(562H0 x 569) x 3425 (562H0 x 569) x 663T US H8	8,129 7,732 7,224	23.15 22.58 21.63	17.6 17.1 16.7	4.4 1.5 6.2	167 154 155
General ME						
		8,873 328 ^A / 912 3.70	, 25.86 0.88 2.45 3.41	17.2 0.25 0.68 1.43		Beets per 100' row

A/ Short cut formula

VARIANCE TABLE

Variation due to	Degrees of Freedom	MEANS Tons Beets	QUARES Percent Sucrose
Between varieties	41	37.059	1.433
Between replications	8	63.428	7.695
Remainder (Error)	32 8	7.009	0.544
Total	377		
Calculated F value		5 . 29**	2.63**

^{**}Exceeds the 1% point of significance (F=1.64)

Plot Size: 2 rows (30") x 53' planted 2 rows (30") x 50' harvested

Design: 6 x 7 Rectangular lattice - 9 reps (analyzed as random block)

Planted: May 19, 1965 Harvested: March 28, 1966

Harvest: Yield - entire plot; Sucrose - 2 - 25 lb. samples per plot

Remarks: Excellent test - no problems.

The above results were extracted from a test of $\frac{42}{2}$ varieties. Bolter count was taken on 4 replications.

VARIETY TEST, PIXLEY, CALIFORNIA, 1966

South San	South San Joaquin Early Plant By Holly Sugar Corporation					
Variety or		Acre	Yield			Harvest
Lot No.	Description	Sugar	Beets	Sucrose	Purity	Count
		Pounds	Tons	Percent	Percent	Number
464H11 263TH4 464H14 F64-30H4	(563H0 x 550) x 464 (562H0 x 569) x 663T (563H0 x 534) x 464 (562H0 x 569) x F64-30	6,532 6,488 6,376 6,104	30.81 33.79 28.21 26.31	10.6 9.6 11.3 11.6	79.0 79.3 79.9 79.9	168 165 176 176
F63-64H4 463H12 F64-425H4 463H8	(562H0 x 569) x 264 (563H0 x 546) x 463 (562H0 x 569) x 3425 (562H0x546) x 663	6,040 5,588 5,484 5,426	26.04 26.87 26.37 24.67	11.6 10.4 10.4 11.0	82.0 78.5 80.0 80.4	177 175 168 166
L.5517 463H2 4539H8	US H8 US H6 (562HO x 546) x NB7	5,400 4,901 4,855	24.33 23.79 24.52	11.1 10.3 9.9	81.7 80.9 78.8	168 164 161
General ME	AN of					
all variet		5,852	26.26	11.2	80.0	Beets
S. E. of M		379 ^A /	1.39	0.42	0.93	per
	t Difference (19:1)	1,061	3.89	1.17	NS	100'
Coefficien	t of Variation (%)	6.48	5.30	3.74	1.16	row

A/Short cut formula
Odds $19:1 = 1.98 \times \sqrt{2} \times \text{Standard Error of MEAN}$

VARIANCE TABLE

Degrees	MEA	NSQUAR	E S
of	Tons	Percent	Percent
Freedom	Beets	Sucrose	Purity
24	41.03374	3.76148	5.190
5	240.13630	13.71280	15.751
120	11.60218	1.04518	5.136
149			
	3.54 **	3.60**	NS
	of Freedom 24 5 120	of Tons Freedom Beets 24 41.03374 5 240.13630 120 11.60218	of Tons Percent Sucrose 24 41.03374 3.76148 5 240.13630 13.71280 120 11.60218 1.04518

**Exceeds the 1% point of significance (F=1.94)

Plot Size: 2 rows (30") x 53' planted 2 rows (30") x 50' harvested

Design: 5 x 5 triple lattice (analyzed as 6 rep. R.B.)

Planted: February 17, 1966 Harvested: August 9, 1966

Harvest: Yield - entire plot; Sucrose - 2 - 25 lb. samples per plot

Remarks: Poor test. Three reps lost due to rot. Moderate amount of curly top infection could have reduced yields some.

The above results were extracted from a test of $\underline{25}$ varieties.

VARIETY TEST, MERCED, CALIFORNIA, 1966

South San Joaquin Late Plant

By Holly Sugar Corporation

Variety or	•	Acre	Yield			Harvest
Lot No.	Description	Sugar	Beets	Sucrose	Purity	Count
		Pounds	Tons	Percent	Percent	Number
464H11 L.3528 463H2 L.5517	(563H0 x 550) x 464 US H7 US H6 US H8	5,526 5,188 5,160 4,721	17.41 15.71 15.88 14.36	15.9 16.5 16.3 16.4	88.6 87.4 88.2 87.9	136 140 143 154
General ME all variet	ies	5,322	16.06	16.6	87.9	Beets
S. E. of M		239 A /	0.66	0.29	0.69	per
	t Difference (19:1)	667	1.85	0.81	NS	100'
Coefficien	t of Variation (%)	4.49	4.14	1.76	0.79	row

A/ Short cut formula

VARIANCE TABLE

	Degrees	MEAN	SQUAR	E S
Variation due to	of Freedom	Tons Beets	Percent Sucrose	Percent
	rreedom	Deeus	Sucrose	Purity
Between varieties	29	9.48135	1.69070	5.931
Between replications	8	38.07519	2.98923	14.909
Remainder (Error)	232	3.97301	0.76158	4.311
Total	269			
Calculated F value		2.39 **	2.22 **	NS

**Exceeds the 1% point of significance (F=1.79)

Plot Size: 2 rows (30") x 53' planted 2 rows (30") x 50' harvested

Design: 5 x 6 rectangular lattice

March 17, 1966 Planted:

Harvested: September 28, 1966

Harvest: Yield - entire plot; Sucrose - 2 - 25 lb. samples per plot

Remarks: Low yield due to lack of irrigation water and severe weed infestation. Low percent infection of curly top throughout plot, but it should have had only a slight effect on the test.

The above results were extracted from a test of 30 varieties.

VARIETY TEST, IMPERIAL VALLEY, CALIFORNIA, 1966

1st Date of Harvest

By Holly Sugar Corporation

Variety or		Acre	Yield			Harvest
Lot No.	Description	Sugar	Beets	Sucrose	Purity	Count
		Pounds	Tons	Percent	Percent	Number
4539Н8	(562H0 x 546) x NB7	6,063	25.48	11.9	87.2	110
L.3528	US H7	6,007	24.62	12.2	87.3	129
463Hll	(563HO x 550) x 663	5,999	25.21	11.9	87.1	122
L.4664	US H8	5,917	24.86	11.9	86.9	111
463Н4	US H7	5,888	24.13	12.2	86.6	132
463H12	(563H0 x 546) x 463	5,804	24.60	11.8	86.6	124
463H2	US H6	5,477	23.40	11.7	87.4	116
General ME	AN of					
all variet	ies	5,797	23.83	12.2	87.2	Beets
S. E. of M	EAN	146A/	0.54	0.13	0.56	per
	t Difference (19:1)	410	1.52	0.37	NS	100'
Coefficien	t of Variation (%)	2.53	2.28	1.09	0.64	row

A/ Short cut formula

VARIANCE TABLE

	Degrees	MEAN	SQUAR	ES
Variation due to	of Freedom	Tons Beets	Percent Sucrose	Percent Purity
Between varieties	15	14.229	0.794	4.480
Between replications	8	11.110	2.927	13.430
Remainder (Error)	120	2.657	0.159	2.772
Total	143			
Calculated F value		5•35 **	4.98 **	NS

**Exceeds the 1% point of significance (F=2.15)

Plot Size: 2 rows (32") x 53' planted 2 rows (32") x 50' harvested

Design: 4 x 4 triple - 9 reps analyzed as R.B.

Planted: September 20, 1965 Irrigated: September 21, 1965 Harvested: May 23, 1966

Harvest: Yield - entire plot; Sucrose - 2 - 25 lb. samples per plot

Remarks: Poor emerged stand: Beet yellows began to appear in late

January. Rot quite prevalent at 2nd date of harvest and
progressing to such an extent that 3rd date of harvest not

feasible.

Extracted from a test of 16 varieties.

VARIETY TEST, IMPERIAL VALLEY, CALIFORNIA, 1966

2nd Date of Harvest

By Holly Sugar Corporation

Variety or		Acre Yield	ield				Harvest	
Lot No.	Description	Sugar	Beets	Sucrose	Purity	Rotten	Count	
		Pounds	Tons	Percent	Percent	Percent	Number	
L.3528 46384		5,803	25.91 25.61	11.2	85.2	45	11.9	
463H11 463H12	(563H0 x 550) x 663 (563H0 x 546) x 463	5,560	25.51 24.65	10.9	85.9 86.3	C-12	118	
46.3H2	us Hé	5,166	23.48	11.0	86.2	_	116	
L.4664	US HS (562H) × NB7	4,7 4±03,7	22.59 20.59	10.5	4. 0. 4. 0. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2,0	123	
47,7940		4,700	حر • کے	1.01	7.10	27	107	
General MEAN of	N of	7						
all varieties	es	5,406	24.16	11.2	85.6		Beets	
S. E. of MEAN	AN	195A/	0.74	0.21	0.54		per	
Significant	Significant Difference (19:1)	545	2.08	0.59	NS		1001	
Coefficient	Coefficient of Variation (%)	3.60	3.08	1.87	0.63		row	

A Short cut formula

2 rows (32") x 53' planted 2 rows x 50' harvested Plot Size:

 μ x μ triple lattice - 9 reps analyzed as randomized block Planted: Design:

September 20, 1965 September 21, 1965 July 5, 1966 Irrigated:

Yield - entire plot; Sucrose - 2 - 25 lb. samples per plot Harvested: Harvest:

prevalent at 2nd date of harvest and progressing to such an extent that 3rd date Poor emergent stands: Beet yellows began to appear in late January. Rot quite of harvest not feasible. Remarks:

The above results were extracted from a test of 16 varieties.

VARIETY TEST, IMPERIAL VALLEY, CALIFORNIA, 1966

ation	
Corpor	
Sugar	
Holly	
By	
	i
est	
Early harves	
- Earl;	
lant .	
Early plant	
II.	

Variety or		4.	Yield				Harvest
Lot No.	Description	Sugar	Beets	Sucrose	Purity	Bolters	Count
		Pounds	Tons	Percent	Percent	Percent	Number
4539н8	$(562H0 \times 546) \times NB7$	6,334	20.47	15.5	87.9	0	145
544H11	$(563H0 \times 550) \times 544$	5,865	20.99	14.0	89.0	0	131
t64H11	550) x	5,485	20.08	13.7	88.5	0	129
463H12	×	5,298	19.05	13.9	4.88	0	129
9449	494 × 546) × 464	5,104	18.20	14.0	88.8	0.3	130
L.3528	US H7	5,023	18.24	13.8	9.78	0	123
463H4	US H7	4,945	18.24	13.6	9.78	0	132
56年111年	(563но х 534) х 564	4,895	17.77	13.8	87.3	0.1	121
463H2	US H6	848,4	17.56	13.8	88.3	0	124
L.4664	US H8	4,824	17.18	14.0	87.9	0	130
26 3TH4	$(562H0 \times 569) \times 663T$	4,779	17.58	13.6	9.78	0	126
F64-425H4	×	4,018	16.37	12.3	88.7	0	118
General MEAN of	N of						
all varieties	S	4,703,	17.11	13.7	88.1		Beets
S. E. of MEAN	AN	1824	99.0	+0°0	0.36		per
Significant	Significant Difference (19:1)	507	1.84	0.12	0.99		100,
Coefficient	Coefficient of Variation (%)	3.88	5.87	0.32	0.40		row

A Short cut formula

2 rows (30") x 53' planted 2 rows (30") x 50' harvested 6 x 6 triple lattice Plot Size:

Planted: Design:

September 11, 1965 April 20, 1966 Harvested:

Yield - entire plot; Sucrose - 2 - 25 lb. samples per plot No problems - excellent test. Harvest: Remarks:

The above results were extracted from a test of 36 varieties. Bolter count was taken on 6 replications. Percent Rotted Beets in Two Imperial Valley Tests.

By Holly Sugar Corporation

Variety	Description	Total Test 1 Number	beets Test 2 Number	Rotten Test 1 Percent	beets Test 2 Percent
463H4	US H7 (563H0 x 534) x 464 US H6 (562H0 x 546) x 464 (563H0 x 546) x 463 (563H0 x 550) x 464 (563H0 x 550) x 544 US H8 (562H0 x 546) x NB7	1114	1040	31	37
564H14		960		35	
463H2		1048	867	35	46
464H8		1043		35	
463H12			1090		39
464H11		1128	927	40	43
544H11		1051		43	
4539H4		978	758	66	63
4539H8		976	604	71	90

Both tests planted: 9/20/65
Both tests counted: 7/20/66

Remarks: Beet yellows began to appear in late January. Rot became so severe in July that tests could not be harvested for yield and sucrose.

- 41 -

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1966

TEST AREAS:	S P R E	C K E L Beets	S #101	SPRE Sugar	C K E L Beets	S #102
Variety	T/Ac.		Sugar	T/Ac.	T/Ac.	Sugar
US H7 US H8 463H11 363H8 463H12 564H14 2539H8 4539H12 4539H11	2.662 2.571		10.5 9.5	3.312 2.730 3.137 2.977 2.933 2.705 2.586 2.567 2.289	29.38 29.00 24.36 27.35	10.8 9.3 10.0 10.1 10.1 11.2 9.5 9.5 9.1
GENERAL MEAN	2.527	25.68	9.9	2.764	27.87	9.9
LSD @ P = .05	0.309	2.41	0.63	0.334	2.76	0.66
LSD @ P = .Ol	0.409	3.20	0.83	0.444	3.66	0.88
S E of Mean	0.110	0.860	0.224	0.118	0.981	0.235
S E % of Mean	4.35	3.35	2.26	4.27	3.52	2.37
No. Var. in Test		12			12	
Planting Date]	12-9-65		1	2-9-65	
Harvest Date	8	3-31-66			9-1-66	

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1966

TEST AREAS:	S P R E	C K E L Beets	S #103	SPRE Sugar	C K E L Beets	S #105
Variety	T/Ac.	T/Ac.	Sugar	T/Ac.	T/Ac.	Sugar
US H7 US H8 363H8 2539H8	3.467 3.588 3.639 3.451	30.46 32.41 31.60 32.88	11.5 11.1 11.6 10.5	5.615 5.208	37.31 35.06	15.1 14.9
3539Н	3.503	31.98	11.0	5.300	35.53	14.9
GENERAL MEAN	3.371	30.58	11.0	5.669	37.91	15.0
LSD @ P = .05	0.322	2.64	0.62	0.466	3.40	N.S.
LSD @ P = .01	0.428	3.50	0.82	0.622	5.38	N.S.
S E of Mean	0.115	0.938	0.220	0.164	1.20	0.22
S E % of Mean	3.41	3.07	2.00	2.89	3.16	1.47
No. Var. in Test		12			8	
Planting Date	1	-13-66		12	-21-65	
Harvest Date	9	-2-66		9	-14-66	

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1966

TEST AREAS:		A L E S Beets	#107	K I N G	C I T Beets	Y #113
Variety	Sugar T/Ac.	T/Ac.	Sugar	T/Ac.	T/Ac.	Sugar
US H7	5.704	34.91	16.4	3.331	21.97	15.1
US H8	5.697	34.09	16.7	3.750	25.64	14.6
GENERAL MEAN	5.410	32.55	16.7	3.520	23.72	14.8
LSD @ P = .05	0.782	3.56	0.50	N.S.	N.S.	0.51
LSD @ P = .01	N.S.	4.74	0.67	N.S.	N.S.	0.68
S E of Mean	0.206	1.25	0.177	0.180	1.146	0.181
S E % of Mean	3.81	3.84	1.06	5.11	4.83	1.22
No. Var. in Test		10			8	
Planting Date	1	-18-66		2	-18-66	
Harvest Date	9	-6-66		1	0-3-66	

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1966

TEST AREAS:	KING	C I T	Y #118	SAN	ARDO Beets	
Variety	Sugar T/Ac.	T/Ac.	Sugar	Sugar T/Ac.	T/Ac.	% Sugar
US H7	2.912	31.83	9.2	5.189	35.12	14.8
US H8	3.285	31.38	10.5	4.913	34.63	14.2
GENERAL MEAN	3.046	30.96	9•9	5.055	34.49	14.7
LSD @ P = .05	0.370	2.99	0.87	N.S.	N.S.	0.49
LSD @ P = .01	0.493	3.99	1.16	N.S.	N.S.	N.S.
S E of Mean	0.130	1.052	0.307	0.237	1.722	0.172
S E % of Mean	4.27	3.40	3.10	4.69	4.99	1.17
No. Var. in Test		8			8	
Planting Date	2	-18-66			3-4-66	
Harvest Date	10	0-6-66		1	0-4-66	

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1966

TEST AREAS:		WOODLAND			DIXON		
Variety	Sugar T/Ac.	Beets T/Ac.	% Sugar	Sugar T/Ac.	Beets T/Ac.	% Sugar	
us н6 us н7 us н8 463н8	3.792 3.851 3.769 4.021	23.62 23.22 22.82 24.20	16.1 16.6 16.6 16.7	5•377	34.55	15.6	
364H4 464H14 463H11	4.255	25.70	16.6	5.944 5.898	37·30 36·73	15.9 16.1	
4539H8 4539Hl2 463Hl2	3.600 3.487		16.3 16.5	5.981	37.03	16.2	
			761	~ 000		76.0	
GENERAL MEAN	3.953	24.06	16.4	5.833	36.47	16.0	
LSD @ P = .05	0.623	3.74	0.59	N.S.	N.S.	0.48	
LSD @ P = .01	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	
S E of Mean	0.221	1.33	0.21	0.280	1.77	0.17	
S E % of Mean	5.60	5.54	1.28	4.81	4.85	1.06	
No. Var. in Test		16			16		
Planting Date		6-2-65			5-7-65		
Harvest Date		5-16-66			4-13-66		

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1966

TEST AREAS:	MEN	D O Т A	#412	BUR	RELL	#416
Variety	Sugar T/Ac.	Beets T/Ac.	% Sugar	Sugar T/Ac.	Beets T/Ac.	% Sugar
US H7				1.509	10.51	14.3
us H8	3.236	25.55	12.7	1.377	9.63	14.3

GENERAL MEAN	2.535	19.66	12.9	1.401	9.80	14.2
LSD @ P = .05	.470	3.65	.604	.258	1.79	N.S.
LSD @ P = .01	.627	4.87	.806	• 344	2.38	N.S.
S E of Mean	.166	1.286	.213	.091	.630	.172
S E % of Mean	6.548	6.541	1.651	6.495	6.428	5.733
No. Var. in Test					00 00 00	
Planting Date	3	3-17-66			4-4-66	
Harvest Date	1	.0-3-66			9-26-66	

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1966

VARIETY TEST, EL CENTRO, CALIFORNIA, 1965-66

Grower and location: Kline and Kline, El Centro, California.

Test No. 1.

Soil type: Silty clay loam.

Previous crops: Alfalfa, 1962, 1963 and 1964.

Fertilizer used: 250 lbs. per acre 11:48:0, preplant.

200 lbs. per acre, actual nitrogen, sidedressed

in two applications in November, 1965 and

January, 1966.

Planting date: September 30, 1965.

Thinning date: November 5-6, 1965.

Harvest date: June 9, 1966.

Irrigations: Nine by furrow.

Diseases and insects: Thimet granules applied in January, 1966

for the control of aphids.

Experimental design: Eight varieties planted in a 8 x 8 latin square. Varieties planted on double-row beds with 40-inch centers. Plots 60 feet long.

Sugar analysis: From two ten-beet samples per plot by Union Sugar Division, Imperial Valley Tare Laboratory, El Centro, California.

Remarks: IPC was applied to the field containing the plot in December, 1965 for control of grass weeds. Seed for the test plot was furnished, the test designed and the results analyzed by the United States Agricultural Research Station, Salinas, California. Plot planted, observed throughout season and harvested by K. D. Beatty, Southwestern Irrigation Field Station, Brawley, California, in cooperation with Union Sugar Division.

VARIETY TEST, EL CENTRO, CALIFORNIA, 1966

(8 replications of each variety)

By Union Sugar Division

CC		20.7	
111	'est.	No.	

	Acre Yield Harves					
Variety	Description	Sugar	Beets	Sucrose	Count	
		Pounds	Tons	Percent	Number	
544H11 464H8 463H2 464H11	(563H0 x 550) x 544 (562H0 x 546) x 464 (MS of NB1 x NB5) x 663 (563H0 x 550) x 464	9,030 8,500 8,300 8,230	26.30 24.69 24.19 24.58	17.2 17.2 17.2 16.8	130 121 117 127	
4539H8 564H14 463H4 4539H4	(562H0 x 546) x NB7 (563H0 x 534) x 564 (562H0 x 569) x 663 (562H0 x 569) x NB7	7,690 7,530 7,400 7,280	22.36 21.89 21.54 21.09	17.2 17.2 17.2 17.3	132 97 138 132	
General Mall varies. E. of Signification Coefficies	7,995 172 492 6.09	23.33 0.53 1.51 6.39	17.2 0.12 N.S. 2.01	Beets per 100' row		

Odds 19:1 = 2.021 x $\sqrt{2}$ x Standard Error of MEAN

Variation due to	Degrees of Freedom	M E A 1 Gross Sugar	N SQUA Tons Beets	A R E S Percent Sucrose
Between varieties	7	3,037,222	27.69	0.22
Between replications	7	622,875	4.31	1.19
Between columns	7	984,644	10.89	0.60
Remainder (Error)	42	236,918	2.22	0.119
			· · · · · · · · · · · · · · · · · · ·	
Total	63			
Calculated F value		12.82**	12.47**	N.S.

^{**} Exceeds the 1% point of significance (F=3.10)

VARIETY TEST, EL CENTRO, CALIFORNIA, 1965-66

Grower and location: Kline and Kline, El Centro, California.

Test No. 2.

Soil type: Silty clay loam.

Previous crops: Alfalfa, 1962, 1963 and 1964.

Fertilizer used: 250 lbs. per acre 11:48:0, preplant.

200 lbs. per acre, actual N, sidedressed in two

applications.

Planting date: October 13, 1965.

Thinning date: December 8-9, 1965.

Harvest date: June 14-15, 1966.

Irrigations: Eight by furrow.

Diseases and insects: Of minor importance in the field containing

the test plot.

Experimental design: Eight varieties planted in an 8 x 8 latin square. Varieties planted on double-row beds with 40-inch centers. Plots 60 feet long.

Sugar analysis: From two ten-beet samples per plot by Union Sugar Division, Imperial Valley Tare Laboratory, El Centro, California.

Remarks: Test plot area of field very weedy. Seed for the test plot was furnished, the test designed and the results analyzed by the United States Agricultural Research Station, Salinas, California. Plot planted, observed throughout season and harvested by K. D. Beatty, Southwestern Irrigation Field Station, Brawley, California, in cooperation with Union Sugar Division.

VARIETY TEST, EL CENTRO, CALIFORNIA, 1966

(8 replications of each variety)

By Union Sugar Division

Test No. 2

Acre Yield					
Variety	Description	Sugar	Beets	Sucrose	Harvest Count
	· .	Pounds	Tons	Percent	Number
544H11	(563H0 x 550) x 544	7,400	23.68	15.7	147
464H8	(562H0 x 546) x 464	7,260	22.43	16.2	141
4539H8	(562H0 x 546) x NB7	6,640	20.45	16.2	142
464H11	(563H0 x 550) x 464	6,510	21.26	15.4	136
564H14	(563H0 x 534) x 564	6,340	19.58	16.2	122
463H2	(MS of NB1 x NB5) x 663	6,200	19.14	16.2	142
4539H4	(562H0 x 569) x NB7	6,190	19.17	16.1	147
463H4	(562H0 x 569) x 663	6,060	19.12	15.9	146
General Mall varie S. E. of Significa Coefficie	6,574	20.60	16.0	Beets	
	183	0.55	0.14	per	
	524	1.56	0.40	100'	
	7.89	7.50	2.47	row	

Odds 19:1 = 2.021 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	MEAN	V SQUA	ARES
Variation due to	of	Gross	Tons	Percent
	Freedom	Sugar	Beets	Sucrose
Between varieties	7	2,028,775	23.68	0.80
Between replications	7	188,865	1.92	0.25
Between columns	7	406,816	12.43	3.65
Remainder (Error)	42	269,228	2.39	0.156
Total	63			
Calculated F value		7.54 **	9.91**	5.15 **

^{**} Exceeds the 1% point of significance (F=3.10)

VARIETY TEST, SALINAS, CALIFORNIA, 1966

Grower and location: Elmer Abeloe, Salinas, California.

Soil type: Sandy loam.

Previous crops: Sugarbeets, 1962; beans, 1963; broccoli and lettuce,

1964; beans, 1965.

Fertilizer used: 250 lbs. per acre 21:53:0, preplant.

200 lbs. per acre 27:14:0 sidedressed April 10, 1966.

500 lbs. per acre 20:0:0 (aqua) sidedressed May 10, 1966.

Planting date: February 16, 1966.

Thinning date: April 1, 1966.

Harvest date: October 12-13, 1966.

Irrigations: Seven by furrow.

Diseases and insects: A heavy infection with yellows and mosaic viruses was observed in the field containing the test plot about mid-April, shortly after thinning, indicating infection occurred during the early seedling stage. This resulted in greatly reduced yields in the test. One spray application with Meta-systox was made April 15, 1966 for control of green peach aphid. A moderate nematode infestation was present in the test plot area of the field.

Experimental design: Twelve varieties were planted in a randomized block with 10 replications. Varieties planted on double-row beds with 40-inch centers. Plots 60 feet long.

Sugar analysis: From two samples per plot, of approximately ten roots each, by Union Sugar Division, Betteravia, California.

Remarks: Seed for the test plot was furnished, the test designed and the results analyzed by the United States Agricultural Research Station, Salinas, California.

VARIETY TEST, SALINAS, CALIFORNIA, 1966

(10 repli	cations of each variety)		By Ur	nion Sugar	Division	
		Acre	Yield		Harvest	
Variety	Description	Sugar	Beets	Sucrose	Count	
		Pounds	Tons	Percent	Number	
534H11 413H8 544H11 413H4	(563H0 x 550) x 534 (562H0 x 546) x 413 (563H0 x 550) x 544 (562H0 x 569) x 413	8,910 8,350 8,120 7,900	30.49 29.20 28.28 27.15	14.6 14.3 14.4 14.6	144 147 143 147	
544H4 464H11 437H8 564H14	(562H0 x 569) x 544 (563H0 x 550) x 464 (562H0 x 546) x 437 (563H0 x 534) x 564	7,620 7,320 7,190 6,900	25.90 25.06 24.90 23.01	14.8 14.6 14.4 15.0	153 138 143 136	
463H8 463H2 4539H4 463H4	(562H0 x 546) x 663 (MS of NB1 x NB5) x 663 (562H0 x 569) x NB7 (562H0 x 569) x 663	6,520 6,480 6,410 6,030	22.41 21.76 22.57 20.60	14.6 14.9 14.2 14.7	141 138 149 144	
General MEAN of						
all varieties		7,310	25.11	14.6	Beets	
S. E. of		191	0.54	0.16	per	
	ant Difference (19:1) ent of Variation (%)	537 8.27	1.52 6.80	0.45 3.42	100'	
006-11616	ent of variation (%)	0.21	0.00	3.46	TOW	

Odds 19:1 = 1.984 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	MEAN	SQUA	RES
Variation due to	of	Gross	Tons	Percent
	Freedom	Sugar	Beets	Sucrose
Between varieties	11	7,909,947	100.27	0.52
		(((-	0
Between replications	9	5,326,296	93.65	0.98
5 (5)	00	265 002	0.00	0.05
Remainder (Error)	99	365,983	2.92	0.25
Total	119			
Calculated F value		21.61**	34.34 **	2.08*

^{*} Exceeds the 5% point of significance (F=1.88)

^{**} Exceeds the 1% point of significance (F=2.43)

VARIETY TEST, SAN ARDO, CALIFORNIA, 1966

Grower and location: Taylor and Diggs, San Ardo, California.

Soil type: Sandy loam.

Previous crops: Sugarbeets, 1963; beans, 1964; carrots, 1965.

Fertilizer used: 400 lbs. per acre 16:20:0, preplant.

150 lbs. per acre NH3, split into two sidedress

applications.

Planting date: January 26, 1966.

Thinning date: March 10, 1966.

Harvest date: October 18-19, 1966.

Irrigations: Eight by furrow.

Diseases and insects: Not a factor in the field containing the test plot.

Experimental design: Ten varieties planted in a 10 x 10 latin square. Varieties planted on double-row beds with 40-inch centers. Plots 60 feet long.

Sugar analysis: From two samples per plot, of approximately ten roots each, by Union Sugar Division, Betteravia, California.

Remarks: Seed for the test was furnished, the test designed and the results analyzed by the United States Agricultural Research Station, Salinas, California.

VARIETY TEST, SAN ARDO, CALIFORNIA, 1966

(10 x 10 La		By Ur	nion Sugar	Division	
Acre			ield	Harvest	
Variety	Description	Sugar	Beets	Sucrose	Count
		Pounds	Tons	Percent	Number
544H11 F64-425H4 564H14 464H11 463H2	(563H0 x 550) x 544 (562H0 x 569) x 3425 (563H0 x 534) x 564 (563H0 x 550) x 464 (MS of NB1 x NB5) x 663	15,390 14,720 14,560 14,450 14,180	48.35 45.61 43.45 45.41 43.50	15.9 16.1 16.7 15.9 16.3	122 125 132 125 128
4539н4 463н8 463н4 5402н4 4539н8	(562H0 x 569) x NB7 (562H0 x 546) x 663 (562H0 x 569) x 663 (562H0 x 569) x 5402 (562H0 x 546) x NB7	14,100 14,090 14,020 13,890 13,880	44.29 44.15 42.09 41.78 45.62	15.9 16.0 16.6 16.6 15.2	134 125 136 122 126
General MEAN of all varieties S. E. of MEAN		14,330 265	44.42	16.1	Beets per
Significant Difference (19:1) Coefficient of Variation (%)		748 5.85	1.92 4.85	0.44 3.03	100' row

Odds 19:1 = 1.994 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	MEAN	I S Q U .	ARES				
Variation due to	of Freedom	Gross Sugar	Tons Beets	Percent Sucrose				
	Freedom	bugai	Deers	Duci Obe				
Between varieties	9	2,176,437	37.25	2.09				
Between replications	9	11,247,901	36.83	6.03				
Between columns	9	5,481,563	18.34	2.09				
Remainder (Error)	72	703,300	4.64	0.24				
Total	99							
Calculated F value		3.09 **	8.03 **	8.74 **				
** Exceeds the 1% point of significance (F=2.67)								

DEVELOPMENT OF TRIPLOID AND TETRAPLOID SUGARBEETS

B. L. Hammond

Seed increases of the following tetraploid selections were made at Salinas in 1966 from stecklings grown in Oregon: 585T(F57-85T); 585HOT; 5563T(1561-16-7C1T); 5509T(F59-509R-T); 4562T; 4562HOT; 1515T(F61-515T); 552T; 1547T; 330R-T; 164R-T; F58-554rrT; and 586rrT.

Seed increases of the following new tetraploid selections are being made: 613T, 6704T, 6716T; 6753T; 6757Trr; 6757TR-; 6534T; 6764Trr; 6764TR-; 6546-36T; 6152T(871 x 8539)T; 6153T(F62-63rr x 586R-)T; and 6154T(271rr x 586R-)T. Seed increases are also being made of 686Trr, 686TR-, 664T, 6515T, 630T, and 6559-1T. Seed for these increases was planted in Oregon in August 1966 to produce stecklings for isolation at Salinas in March 1967.

Germinating seed of $\underline{234}$, a self-sterile, yellows-resistant selection obtained from Dr. Rietberg was colchicine-treated and planted in November 1964. Sixty-five promising chimeras were selected for thermal induction in August 1965. Plants were removed from the coldroom in June 1966 and interpollinated. This selection has both green and red hypocotyls.

Pregerminated seed of the monogerm inbred 4806 from F57-85 was colchicine-treated and planted in May 1965. One-hundred fifty-five seedlings were transplanted to pots in June 1965. Sixty-eight good chimeras were placed under thermal induction in September 1965. Plants were removed in March 1966 and interpollinated. This selection has green hypocotyls.

One-hundred fifty colchicine-treated seedlings of selection 4742 were transplanted to pots in August 1965. Seventy plants were selected for thermal induction in October. Plants were removed in May 1966 and interpollinated. This multigerm inbred has red hypocotyls and is yellows resistant.

In June 1965, pregerminated seed of selection <u>F60-512</u> was colchicine-treated. One-hundred fifty seedlings were potted in September. Seventy plants were placed under thermal induction in January 1966 and removed in September for interpollinating in September. This is a bolting-resistant, multigerm inbred.

Germinating seed of 4754, a yellows-resistant, multigerm inbred-selection, was colchicine-treated in August 1965 and transplanted to pots in November. These were placed in the coldroom for thermal induction in February 1966 and removed in August for selfing.

In January 1966, pregerminated seed of selection 3646-32-5 was colchicine-treated. One-hundred fifty seedlings were potted in April, of which 66 of the best chimeras were placed under thermal induction in September 1966.

Germinating seed of 537A, a self-sterile multigerm, was colchicine-treated in April 1966. One-hundred fifty of these were potted in June, of which 61 (53 with red hypocotyls and 8 with green) were placed in the coldroom in September for thermal induction.

One-hundred fifty colchicine-treated seedlings of selection 575^4H^4 were transplanted to pots in August 1966. One-hundred of these were selected for thermal induction in November. This male-sterile selection, a yellows-resistant multigerm, will be crossed with type 0 tetraploids to produce male-sterile tetraploid lines.

Germinating seed of the male-sterile selection, 5760H4, were colchicine-treated and planted in May 1966. Ninety-six of these, based on cytological examinations, were selected for thermal induction in November. This male-sterile selection will also be crossed with type 0 tetraploids to produce male-sterile tetraploid lines.

In June 1966, germinated seedlings of 544 were colchicine-treated. Seventy-five each of green and red hypocotyls were potted in November. This is a yellows-resistant, self-sterile multigerm obtained from Dr. Rietberg.

Seedlings of selection 4522, a self-fertile, monogerm inbred, were colchicine-treated and planted in August 1962. One-hundred fifty selected plants were potted in November.

Germinating seedlings of 5703 were colchicine-treated and planted in September 1966. This is a self-fertile, multigerm inbred. One-hundred fifty selected plants were potted in November.

In September 1966, germinating seedlings of $\underline{5633}$ were colchicinetreated and planted. This is a self-fertile, monogerm inbred selection. One-hundred fifty selected plants were potted in November.

In October 1966, seed of the curly-top resistant monogerm inbred, 5601-5-3 was planted for colchicine treatment. This seed did not germinate.

Seedlings of 5605-1-7, a curly-top resistant monogerm inbred selection, was colchicine-treated in November 1966.

Colchicine-treated seedlings of 6705 were planted in November 1966. This is a yellows-resistant, monogerm inbred. It is close to type 0 and will be used in crosses with the male-sterile selection, 6705H24.

Germinating seed of 6705H24 was colchicine-treated in November 1966. This is a yellows-resistant, male-sterile equivalent of 6705 described above and will be used to produce a male-sterile tetraploid line.

A 31-pound seed increase of <u>C6600</u> was made in Oregon in the summer of 1966. This is a homozygous diploid sugarbeet developed at Salinas and described in earlier reports.

Progress in Breeding for Yellows Resistance

J. S. McFarlane, I. O. Skoyen, and Robert Lewellen

Breeding for yellows resistance continued to be a major project at the U. S. Agricultural Research Station in 1966. Lines with improved resistance were selected from three dates of planting at Salinas. Selections made in previous years were evaluated for resistance at Davis, California. Hybrids produced with yellows_resistant pollinators were evaluated in several variety tests.

Plans and Procedures

Selections for yellows resistance were made at Salinas from beets planted March 4, April 18, and June 17. The March planting included both open-pollinated and inbred lines selected for yellows resistance in previous years. The April planting included segregating male-sterile lines from crosses between monogerm male steriles and inbred yellows-resistant selections. Inbred lines from crosses between yellows-resistant selections were also planted. The June 17 planting included one-third acre of the sixth successive yellows-resistant selection from US 75 made in 1965. Also included was one-half acre of the increase of a cross between a yellows-resistant selection from US 75 and a selection from the Netherlands.

Three evaluation tests were planted at Davis, California, on May 10, 1966. The first test included five open-pollinated, yellows-resistant selections made at Salinas and the parental lines from which the selections had been made. A yellows-resistant variety from England, a selection from the Netherlands, and a cross between a US 75 selection and the Netherlands selection were also included.

A second test was designed to test eleven hybrids involving both open-pollinated and self-fertile, yellows-resistant selections. In each hybrid, the seed-bearing parent was a male-sterile monogerm which had not been selected for yellows resistance.

The third test included eight inbred lines selected for yellows resistance and two yellows-susceptible inbreds.

A modified split-plot design was used for all tests. The treatments, consisting of a noninoculated check and a combination beet and western-yellows inoculation, were arranged in randomized strips across each of five replications. The variety subplots were two rows wide and 43 feet long. In the first test the parental groups were randomized within the replications, and the selections or varieties randomized within the parental groups. The entries in the second and third tests were arranged at random. Stand counts were made following thinning and plant populations adjusted so that a similar number of plants occurred in the inoculated and noninoculated plots of any given entry in each replication. Inoculations were made July 5 with a virulent (Brawley) strain of beet-yellows virus and a virulent strain of western-yellows virus. The tests were harvested October 11-13.

A variety test to determine the performance of yellows-resistant selections and hybrids was planted at Salinas, December 23, 1965. Seventeen selections and hybrids were planted in single-row plots 53 feet long and replicated ten times. Six replications were inoculated with virulent strains of beet and western yellows viruses on April 12 and four replications on April 27. The test was harvested September 22.

Hybrids utilizing yellows-resistant selections as pollen parents were tested in the Salinas Valley and the Imperial Valley.

Results and Discussion

Selection for resistance

Selections made from three plantings at Salinas were based on freedom from yellowing, root size, and sucrose percentage. Emphasis was placed on improving the resistance of 544, an F₂ open-pollinated line from a cross between a US 75 selection and a selection from the Netherlands. This line produced large roots when inoculated with beet and western yellows viruses. Considerable variation occurred in root size and in sucrose percentage. Selections from 544 will bring together resistance from two sources and should provide an opportunity to develop a higher level of resistance than exists in either individual source.

The monogerm inbred 5705 showed good promise. This inbred resulted from a cross between a Type O yellows-resistant, open-pollinated selection and a self-fertile monogerm line. 5705 showed less yellowing than other monogerm inbreds and produced large roots when inoculated with the combination of viruses. Variation existed in root size and sucrose percentage and another selection was made for yellows resistance. An increase was made of 5705 and F₁ hybrids produced with cytoplasmic male steriles. Experimental three-way hybrids between these F₁ hybrids and yellows-resistant pollinators will be produced in 1967.

Davis tests

Good stands were obtained in nearly all entries in the Davis tests and all inoculated plots showed a high level of virus infection. The non-inoculated plots showed very little virus infection until late in the season. Mosaic and yellows symptoms were evident in a high percentage of the noninoculated plants at harvest time. This late infection had little effect on yield and probably did not greatly affect the sucrose of the noninoculated plots.

The combination of beet and western yellows caused root-yield losses ranging from 18.2 to 40.0 percent and sucrose losses ranging from 0.76 to 1.63 percentage points among open-pollinated varieties and selections (table 1). The selection 513 showed less than one-half as great a loss in both root yield and sucrose percentage as did the US 75 variety from which it had been selected. The selection 530 from

Table 1. Reduction in yield and sucrose percentage of yellows-resistant selections and of

un De	unselected lines when inoculated with a combination of beet and western yellows viruses at Davis, California, in 1966.	lated wi	th a combinatio	n of beet	and western	yellows viruse	es at
						Loss from Yellows	[ellows
No.	Description	Tons Ro	Tons Roots per Acre Check Inoculated	Sucrose	Sucrose Percentage Check Inoculated	Root Yield Percent	Sucrose Pct. Pts.
513 530 F57-68	7th YRS US 75 7th YRS US 75 US 75	28.8 32.6 27.5	23.5 22.8 16.6	13.7	12.9	18.2 30.1 40.0	0.76
537 A F57-63	3rd YRS 663 Increase 663	32.1 28.7	20.6	13.5	11.8	35.8	1.63
538 A F57-85	3rd YRS F57-85 Type 0 US 75	26.6 19.5	19.6	14.2	13.0	26.0	1.17
521 671	5th YRS 671 Type 0 line	27.0	19.7	13.9	12.3	26.8	1.60
534 544 Ace.119	YRS from Rietberg Increase (330 x 234) Maris Vanguard	29.5 30.8 32.6	24.0 24.0 24.0	14.6 14.0 13.0	13.8	16.3 22.1 25.7	0.87 1.07 1.57
LSD (5%)	(5%)	2°.6	1.85	0.69	0.63	7.14	NS

US 75 yielded better than did 513 but showed higher yield and sucrose losses from yellows. Selections from 671 and F57-85 showed significant improvements in yellows resistance. No improvement was demonstrated in the third successive selection from F57-63. The selection 534 developed by the Instituut voor Rationele Suikerproductie in the Netherlands produced a high root yield and was outstanding in sucrose percentage. The yellows resistance of 534 was similar to that of 513. Maris Vanguard, a yellows-resistant selection developed by Dr. G. E. Russell of the Cambridge Plant Breeding Institute in England, yielded very well when infected with yellows, but was low in sucrose percentage. The 544 line yielded well and showed good resistance to yellows.

Root-yield losses from yellows among six three-way hybrids produced with yellows-resistant pollinators ranged from 23.0 to 30.5 percent (table 2). The three-way hybrid 463H4 lost 36.2 percent in root yield. This is the US H7 monogerm hybrid and none of the parents was selected for yellows resistance. Root-yield losses among four single-cross hybrids produced with yellows-resistant inbred pollinators ranged from 20.5 to 29.4 percent.

Root-yield losses ranged from 15.0 to 42.2 percent and sucrose losses from 0.70 to 1.88 percentage points among inbred lines selected for yellows resistance (table 3). The susceptible inbred F56-511 showed a yield loss of 48.7 percent and a sucrose loss of 2.11 percentage points. The most promising inbred was 5760, a selection from a cross between a US 75 selection and a self-fertile inbred. This inbred remained green following inoculation and showed a yield loss of 18.8 percent.

Salinas tests

Results with seventeen entries in a Salinas test inoculated with the combination of beet and western yellows viruses are shown in table 4. Selection 534 from the Netherlands yielded well and was outstanding in sucrose percentage. The root yield of the 513 selection was 60 percent higher and the sucrose content 0.9 percentage points higher than those of the parent US 75 variety. Selections from 663 were inferior to the US 75 selections and showed no significant improvement over the parent variety, F63-64. Hybrids with the yellows-resistant 534, 544, 413, and 513 selections, produced higher yields than did hybrids with the unselected 663 pollinator.

The sucrose percentage of seven hybrids in the test inoculated with yellows averaged 15.6 percent, whereas, the same hybrids in an adjacent noninoculated test averaged 18.1 percent (table 5). Cultural practices, planting dates, and harvest dates were similar for the two tests. Both tests ran low on nitrogen during the latter part of the growing season. Two sprays with an aphicide were applied to both tests. These sprays delayed infection in the noninoculated test, but nearly all plants were showing yellows symptoms by September.

Table 2. Reduction in yield and sucrose percentage of sugarbeet hybrids when inoculated with a combination of beet and western yellows viruses at Davis, California, in 1966.

						T O C C	المين الم
No.	Description	Tons Rc	Tons Roots per Acre	Sucrose	Sucrose Percentage	Root Yield	Sucrose
		Check	Inoculated	Check	Inoculated	Percent	Pct. Pts.
413H4 413H8 4716H3 5760H4	(562HO x 569) x 13 (562HO x 546) x 13 562HO x 716 563HO x 760	30.00	24.7 24.2 24.2 23.7	15.2	0.50 0.50 0.50 0.50 0.50	24.0 23.0 24.8 20.5	1.59 0.97 1.22
544H11 544H4 F64-30H4 437H4	(563H0 x 550) x 44 (562H0 x 569) x 44 (562H0 x 569) x 30 (562H0 x 569) x 37	30.7 31.0 30.0 29.8	23.6 23.4 21.9 20.7	14.7	13.5 13.6 13.4	23.1 24.7 27.0 30.5	1.25
5753H4 463H4 5754H4 F61-569H3	563HO x 753 (562HO x 569) x 663 563HO x 754 562HO x 569	26.9 29.5 25.9 15.7	19.5 18.8 18.2 10.6	14.3	13.33	27.2 36.2 29.4 30.4	1.15 1.79 1.46 1.35
LSD (5%)	(%)	2.60	1.85	0.56	0.58	7.63	NS

Table 3. Reduction in yield and sucrose percentage of sugarbeet inbreds when inoculated with a combination of beet and western yellows viruses at Davis, California, in 1966.

No.	Description	Tons R	Tons Roots per Acre	Sucrose	Sucrose Percentage	Loss from Root Yield	Yellows
		Check	Inoculated	Check	Inoculated	Percent	Pct. Pts.
4734A	YRS (927-35 x 5577-2)	30.9	23.8	13.6	12.9	23.5	0.70
5760	YRS (911 x 9717-4)	19.6	16.0	14.6	13.7	18.8	0.92
4716-18B	$YRS (US 56 \times NB1)$	23.4	15.6	13.7	12.9	34.0	1.05
4757A	$xRS (911 \times 9716-4)$	22.1	15.1	13.2	11.9	32.2	1.30
5768	YRS (926-36 x 9716-8)	.22.3	14.9	14.8	13.3	33.1	1.53
4742	YRS (928-9 * 5502)	16.0	13.6	15,1	14.5	0.56	0.73
5753A	YRS (671 x 9716-4)	17.3	12.1	13.5	7.1	30.7	1.81
5754A	YRS (671-22 x 9716-10)	20.4	12.0	13.8	12.0	42.2	1.88
F56-511	NBS	19.6	10.1	14.1	11.9	148.7	2.11
4522	$s_1(8546-7 \times 8561-16)$	13.9	7.5	14.3	12.4	8.44	1.88
	ı						
rsd (5%)	5%)	1.70	1.91	0.79	06.0	9.10	0.95

Table 4. Performance of sugarbeet selections and hybrids when inoculated with beet yellows and beet western yellows viruses at Salinas, California, in 1966.

Selection		Acre Y	ield	
or hybrid	Description	Sugar	Beets	Sucrose
		Pounds	Tons	Percent
534 534H11 413H8 513	Rietberg YRS (563H0 x 550) x 534 (562H0 x 546) x 413 7th YRS US 75	9,080 8,860 8,530 8,420	26.1 27.2 26.3 26.0	17.4 16.4 16.3 16.2
544 544H4 413 413H4	Increase (330 x 234) (562H0 x 569) x 544 5th YRS US 75 (562H0 x 569) x 413	8,290 8,060 8,010 7,770	25.2 25.3 24.4 24.7	16.5 16.0 16.5 15.8
530 463H4 537A 437H4	7th YRS US 75 (562H0 x 569) x 663 3rd YRS 663 (562H0 x 569) x 437	7,690 6,450 6,360 6,310	25.4 21.6 22.0 21.4	15.2 15.0 14.5 14.8
463H2 533 F63-64 CS-42 F57-68	(MS of NBl x NB5) x 663 3rd YRS 663 BRS 663 Commercial variety US 75	6,180 5,910 5,610 4,790 4,650	20.6 21.8 18.9 15.9 16.3	15.0 13.6 14.9 15.1 14.3
	L.S.D. (5%)	644	2.1	0.6

Table 5. Comparison of the performance of yellows inoculated and noninoculated sugarbeet hybrids at Salinas, California, in 1966.

	Acre Y	ield	. Suc:	rose
Hybrid	Noninoc. Tons	Inoc. Tons	Noninoc. Percent	Inoc. Percent
534H11 413H8 544H4 413H4 437H4 463H4 463H2 Ave. LSD (5%)	30.3 28.8 28.6 27.6 26.0 25.7 25.9 27.6	27.2 26.3 25.3 24.7 21.4 21.6 20.6 23.9	19.0 18.3 18.1 18.3 17.9 17.9 16.9 18.1	16.4 16.3 16.0 15.8 14.8 15.0 15.0

Root-yield losses from yellows tend to be fairly consistent, but losses in sucrose percentage vary greatly from one test to another. Sucrose losses were greater in the 1966 Salinas test than in any previous test at Salinas or Davis. Additional work will be required to determine the effect of time of infection, soil fertility, and other factors on sucrose losses.

Statewide tests

The performance of hybrids with yellows-resistant pollinators are summarized in tables 6, 7, and 8. Hybrids with 413, the fifth successive selection from US 75, showed good promise. Gross sugar yields of the 413 hybrids were 9 to 42 percent higher than those of US H7 (table 7). The sucrose percentage also tended to be higher in the 413 hybrids (table 8). Tests at Salinas and Thatcher, Utah in 1965 and 1966 showed the two 413 hybrids to be equal or superior to US H7 in bolting and curly-top resistance.

A stock seed increase has been made of 413 and commercial seed of hybrids 413H4 and 413H8 are being produced for harvest in 1967.

The hybrids with 534, a yellows-resistant selection from the Netherlands, not only produced high root yields but were outstanding in sucrose percentage (tables 7 and 8). The 534 hybrids lack curly-top resistance and could be used in very few areas in California.

Hybrids with 544, a cross between a US 75 selection and 534, showed similar performance to the 413 hybrids. The curly-top resistance of 544 is intermediate between 413 and 534. A 0.4 acre seed increase of 544 is being produced for harvest in 1967.

The 437 hybrids which utilized a yellows-resistant selection from 663 as the pollen parent yielded better than US H7, but tended to be inferior in sucrose percentage.

Table 6. Comparison of the performance of hybrids produced with a yellows-resistant pollinator and two commercial varieties in six 1966 variety tests.

		Acre	e Yield	
Location	Variety	Sugar	Beets	Sucrose
		Pounds	Tons	Percent
Brawley (Early harvest)	413H4 413H8 US H7 US H7 A	6940 7870 5680 6710	21.0 23.8 17.4 19.9	16.5 16.6 16.4 16.9
	L.S.D. (5%)	658	2.0	0.5
Brawley (Late harvest)	413H4 413H8 US H7 US H7A	10,410 10,940 7700 9460	30.8 31.6 23.3 28.3	16.9 17.3 16.6 16.8
	L.S.D. (5%)	817	2.7	0.5
Salinas (Inoculated)	413H4 413H8 US H7	7770 8530 6450	24.7 26.3 21.6	15.8 16.3 15.0
	L.S.D. (5%)	644	2.1	0.6
Salinas (Sprayed)	413H4 413H8 US H7 US H7A	10,080 10,520 9 210 98 80	27.6 28.8 25.7 27.5	18.3 18.3 17.9 17.9
~	L.S.D. (5%)	677	1.9	0.6
Salinas (Severe yellows)	413H4 413H8 US H7 US H7A	7900 8350 6030 6520	27.2 29.2 20.6 22.4	14.6 14.3 14.7 14.6
	L.S.D. (5%)	537	1.5	0.5
Davis (Inoculated)	413H4 413H8 US H7	6720 6820 5000	24.7 24.7 18.8	13.6 13.8 13.3
	L.S.D. (5%)	600	1.9	0.6
	413H4 = (562H 413H8 = (562H US H7 = (562H US H7A = (562H	0 x 546) x 0 x 569) x		

Table 7. Gross sugar yields of yellows-resistant hybrids in 1966 California variety tests, expressed in the percent of the yield of US H7.

Location	13H4	13H8	44H4	44Hll	34H11	37H4	37H8
Salinas - Inoc. Salinas - Sprayed Salinas - Sprayed Salinas - Nat. inf. Davis - Inoc. Brawley - Early har. Brawley - Late har. El Centro El Centro San Ardo	121 135 109 131 134 122 135	132 121 114 139 136 139 142	125 118 113 126 130 124 -	136 120 135 127 131 138 122 122	137 130 125 148 - 136 -	98 110 101 - 111 103 - -	- 104 96 119 - 111 - -

Table 8. Sucrose percentage of yellows-resistant hybrids in 1966 California variety tests, expressed in percent of the sucrose percentage of US H7.

13H4	13H 8	44H4	44H11	34H11	37H4	3 7 H8
105 106 102 99 102 101 102	109 105 102 97 104 101 104	107 102 101 101 105 105 -	102 100 98 102 104 101 99 100	109 106 106 99 - 106 -	99 99 100 - 101 100 - -	96 97 98 - 102 -
	105 106 102 99 102 101 102	105 109 106 105 102 102 99 97 102 104 101 101 102 104	105 109 107 106 105 102 102 102 101 99 97 101 102 104 105 101 101 105 102 104 -	105 109 107 - 106 105 102 102 102 102 101 100 99 97 101 98 102 104 105 102 101 101 105 104 102 104 - 101 99 100	105 109 107 - 109 106 105 102 102 106 102 102 101 100 106 99 97 101 98 99 102 104 105 102 - 101 101 105 104 106 102 104 - 101 - 99 - 100 -	105 109 107 - 109 99 106 105 102 102 106 99 102 102 101 100 106 100 99 97 101 98 99 - 102 104 105 102 - 101 101 101 105 104 106 100 102 104 - 101 99 100

13H4 = (562H0 x 569) x 413 13H8 = (562H0 x 546) x 413 44H4 = (562H0 x 569) x 544 44H11 = (563H0 x 550) x 544

 $34H11 = (563H0 \times 550) \times 534$ $37H4 = (562H0 \times 569) \times 437$ $37H8 = (562H0 \times 546) \times 437$

PERFORMANCE OF A SECOND SUCCESSIVE SELECTION FOR YELLOWS RESISTANCE MADE ON THE BASIS OF THE RELATIVE CONCENTRATION OF THREE AMINO ACIDS IN THE LEAVES OF INFECTED PLANTS

by

J. M. Fife

Sugarbeet plants were selected on the basis of the magnitude of the amino acid ratio (concentration: aspartic acid + glutamic acid)

glutamine

in the mature leaves of beet yellows-infected plants having a uniform root weight. First, second and third successive selections have been made and field tested. The methods used in making the selections have been reported (2). Seven years of field testing have shown that certain first, second and third successive selections are significantly more resistant to beet yellows than the parent variety, US 75, as shown by both the percent sucrose and yield of beets. The performance of the most promising selection made to date (a second successive selection) is summarized in this report.

Methods and Results

The tests were conducted at Spence Field, Salinas, California. The agronomic operations, including irrigation and the fertilizer program were the same as used for the other plot tests conducted the same year. The plantings were made in April and harvested in October. The growing period ranged from 162 to 180 days. All plants were inoculated with a virulent strain of the beet yellows virus 30 to 45 days after emergence. Insects, such as leaf miners, were controlled by spraying. The experimental design was a latin square with 2-row plots 50 feet long. Two 20-beet samples were taken from each plot for sucrose analysis. A summary of the tests are given in table 1.

In all tests, the increase in percentage sucrose of the selection, over that of the parent variety, was highly significant, the mean increase being 1.6 percentage points. Bennett (1) reported that, in plot tests conducted in the Salinas Valley in 1955, natural infection caused a reduction in tonnage of 22.3 percent and a reduction in sucrose of 1.38 percentage points. If the length of the growing season and cultural practices for the commercial plantings are maintained similar to that used for the testing of this selection, it appears that this selection may completely (or more than) restore the decrease in the percentage sucrose caused by natural infection in the Salinas Valley.

With the exception of the 1963 test, the yield of beets of the selection was significantly greater than that of the parent variety. The increased yields of sugar per acre of the selection, over that of the parent variety, was highly significant in all tests.

In the 1965 and 1966 tests, the plants were inoculated with a more virulent strain of the beet yellows virus than was used the two previous years. It appears that the more virulent strain did not affect the relative difference, in the sucrose percentage, between the selection and the parent variety. The yield of beets of the selection was increased relative to that of the parent variety, indicating that the selection may show even greater resistance (yield-wise) than the parent variety to the more virulent strains of the yellows virus and possibly to the more virulent strains of the virus that may occur under conditions of natural infection.

Table 1.

Summary of performance of a second successive yellows resistant selection relative to parent variety US 75.

		Suc	rose		Acre	e Yield	
				Be	ets	Su	gar
Year			Ratio: RS-3 US 75		Ratio: RS-3 US 75		Ratio: RS-3 US 75
		%	X 100	Tons	X 100	Pounds	X 100
1963	RS-3 US 75	14.3 13.1	109	15.0 13.9	108	4286 3633	118
1964	RS-3 US 75	17.6 15.7	112	9.8 8.3	118	3453 2609	132
1965	RS-3 US 75	15.5 13.8	112	11.6 9.1	127	3616 2525	143
1966	RS-3 US 75	16.8 15.2	111	11.8	133	3978 2726	146

Discussion and Summary

Four years of field testing has shown a second successive selection to have outstanding resistance to the more virulent strains of the beet yellows virus relative to that of the parent variety (US 75) both with regard to the percentage sucrose and the yield of beets. The mean percentage sucrose of the selection was 1.6 percentage points higher than the parent variety, which is highly significant.

If the length of the growing season and the cultural practices were the same for commercial plantings as that used in the tests, it appears that this selection may completely restore the decrease in the percentage sucrose caused by natural infection in the Salinas Valley.

The yield of beets was also significantly greater (approximately 20 percent) than the parent variety when virulent strains of the beet yellows virus were superimposed in the early stages of growth on virus strains of beet yellows and of beet western yellows by natural infection.

Some first selections and other second successive selections have also been shown to be significantly more resistant to beet yellows than the parent variety, with some first and second successive selections being tested for 7 and 4 years respectively.

By selecting plants, from large populations inoculated with a virulent strain of the beet yellows virus, on the basis of a superior amino acid ratio and a superior root weight, rapid progress toward resistance to beet yellows may be attained, both with respect to the percentage sucrose and to the yield of beets.

Literature Cited

- (1) Bennett, C. W. 1960. Sugar beet yellows disease in the United States. U. Dept. Agr. Tech. Bull. 1218.
- (2) Fife, J. M. 1967. Changes in concentration of three amino acids, in mature leaves of sugar beet plants, produced by mass selection from a population infected with beet yellows. J. Am. Soc. Sugar Beet Technol. 14(4):334-340

BREEDING FOR RESISTANCE TO SUGARBEET NEMATODE HETERODERA SCHACHTII SCHM.

D. L. Doney and E. D. Whitney

The sugarbeet nematode <u>Heterodera schachtii</u> Schm. has long been one of the most destructive pests of the sugarbeet. This pest is found in nearly all the large sugarbeet areas of the world.

Much work has been done in the past years to screen and breed for nematode resistance, however, progress has been slow. In the 1965 progress report it was reported that the present techniques of screening were being confounded by the type and amount of micro-flora present. Therefore, it was felt that the best approach was to separate the nematode-root rotting complex into its component parts and study the known pathogens rather than the unknown complex. This work has been carried on rather closely with Dr. E. D. Whitney, part of which he reports elsewhere.

A technique for hatching and sterilizing nematode larvae in large enough quantities for a breeding program was developed. This technique is reported elsewhere in this report under, "Hatching and partial sterilization of the sugarbeet nematode, Heterodera schachtii Schm., in large quantities."

With this technique it was now possible to break the nematoderoot rotting complex with its component parts and work on each one
individually and in combination. This report will deal primarily
with screening and testing for nematode effects. This research will
be reported and discussed in the following order: (1) Screening for
nematode resistance by cyst counts as a measure of infection rate;
(2) Screening for nematode resistance based on the nematode effect on
root yield; (3) The nematode effect on fibrous roots as a potential
screening device; (4) The nematode effect on free amino acids in
fibrous roots as a potential screening device.

A field trial was also conducted in nematode infested soil in 1966 and will be reported separately.

SCREENING FOR NEMATODE RESISTANCE BY CYST COUNTS AS A MEASURE OF INFECTION RATE

Introduction

After a survey of the work of previous workers it was concluded that there does not exist a gene-for-gene type of resistance to the sugarbeet nematode in the cultivated sugarbeet as there exists in Beta patellaris. This gave rise to the question, "Is there a quantitative type of resistance to the sugarbeet nematode in the cultivated sugarbeet?" i.e., "Are there different levels of infection rate depending on the genotype?" If this is the case, these different levels of infection rate could be combined in a breeding program to gradually build up the

resistance to infection in the cultivated sugarbeet. Therefore, a screening technique and design was set up to test this possibility before an extensive selection and breeding program was undertaken.

Materials and methods

Technique of determining infection rate

Figure I shows the type of containers used. These were 15 and 50 dram-clear plastic vials with a hole punched in the bottom for drainage. The vials were filled with a dark sandy soil that gave very good aeration. In order to prevent the growth of algae along the sides, tops were placed on flats, and the vials placed into holes drilled through the tops as shown in Figure II. Seedlings were transplanted into these containers and allowed to grow from one to two weeks before inoculation. About 1500 sterilized larvae were added to the 15 dram vials and 3,000 sterilized larvae were added to the 50 dram vial when good root growth was observed around the periphery of the soilball as seen through the plastic vials. White female cysts began appearing between 2 to 3 weeks after inoculation, and were counted about 4 weeks after inoculation. Three studies were made in which the number of cysts on the periphery of the soilball was correlated with the total number of cysts on the plant and in the soil. In all three tests a correlation of .90 was obtained. Therefore, it was concluded that the number of cysts on the periphery of the soilball was a good measure of infection rate.

Selection of material

The material selected for these trials were as follows:
(1) Several of the best nematode tolerant selections; (2) Parents, if available, of the above mentioned selections; (3) Other open pollinated varieties having a broad genetic base; (4) A uniform hybrid and a homozygous line for estimation of environmental error.

It was desirable to test the infection rate of the tolerant selections with their parents, therefore materials one and two above were selected.

In attempting to evaluate a quantitative resistance and the measure of progress that can be expected by this means of selection, an estimate of the genotypic variance is necessary. When evaluating a heterozygous population on a per plant basis, the total phenotypic variation is a combination of the environmental variation plus the genotypic variation as illustrated below.

Phenotypic variation (Heterozygous) = Var e + Var g.

The total phenotypic variation of a homozygous population is just an estimate of the environmental variation as illustrated below.

Figure I. Clear plastic vials used for nematode counting. White dots along roots are white female cysts.

Figure II. Flats in which vials were placed.

Phenotypic variation (Homozygote) = Var e.

Thus by subtracting the phenotypic variation of the homozygous population from the phenotypic variation of the heterozygous population, an estimate of the genotypic variation is obtained which could be used to estimate the expected progress. An F test for the homogeneity of variance is the appropriate test for significant genotypic variance.

Results and discussion

A total of six tests have been conducted on most of this material. The mean nematode count on the periphery of the soilball for these selections in the six tests are shown in table I. Each one of these tests involved between 500 and 1500 plants.

As can be seen from table I, there exists a large variation from test to test. A variety low in infection rate in a particular test is not necessarily low in other tests. If it were possible to sum over all tests it appears there would be no difference between any of the entries.

In two tests there were a significant number of comparisons that were different. However, when testing at P=.05 and including all 6 tests one would expect 18 comparisons significantly different by chance alone. A total of 33 comparisons significantly different at P=.05 was obtained or 15 more than was expected. US 41, which has been used as a check, was the most consistently high entry. When comparing all other entries with US 41 a total of 4 comparisons were significantly less at P=.05; while one would expect 3 just by chance alone. Therefore, these extensive tests gave no good evidence to believe that one entry had a significantly lower infection rate than another.

One complication that may arise in screening by this method is that some genotypes may grow faster and thus have more roots available for nematode invasion. This would result in more cysts appearing on the faster growing genotypes and by selecting those with fewer cysts one would be, in effect, selecting for slower root growth. Therefore, correlations were made between root weight and nematode counts. This was done on 4 repeated tests of a population of about 1300 plants. Repeated tests were conducted by cleaning the tap root of all fibrous roots, retransplanting and reinoculating. Table II presents the correlations that were made. A significant correlation of .34 was obtained when the estimated root growth around the outside of the soilball at the time of inoculation was correlated with the resulting nematode count. In one case a good correlation was obtained between successive tests, but poor correlations were found in the other tests. There appeared to be some association between root weight and nematode count, especially the root weight prior to testing. However, there was a large variation between tests.

Table I. Mean number of nematode cysts on the periphery of the soilball.

Note: Any two means followed by the same letter are not significantly different at P = .05.

* A mixture of nematode tolerant lines from Klein E seed obtained from G. J. Curtis, Cambridge, England.

Table II. Correlations between nematode counts and root weights.

Correlations	r
Est. rt. growth at inoculation time x nema. count	• 34*
1st nema. count x 2nd nema. count	.23
2nd nema. count x 3rd nema. count	.20
3rd nema. count x 4th nema. count	.64**
rt. wt. (2nd test) x nema. count (2nd test)	.24*
rt. wt. (2nd test) x nema. count (3rd test)	•50 **
rt. wt. (3rd test) x nema. count (4th test)	.22
rt. wt. (4th test) x nema. count (4th test)	.36

^{*} Significant at P = .05.

^{**}Significant at P = .Ol.

The estimated environmental and genotypic variances are presented in table III. The phenotypic variance of the heterzygous population was larger than that of the homozygous populations in only two tests. In no test was there a significant genotypic variation due to infection rate. This means that there does not exist a genotypic variance for infection rate in these populations or that the environmental error was so great the genotypic variance could not be detected. If there is no genotypic variation, there is no quantitative type of resistance to infection rate and selection based on this technique would result in little or no progress.

To further test these results a selection scheme was set up in a population of 1300 plants of several heterozygous lines. From this population 215 plants were selected that had zero or less than 10 cysts on the periphery of the soilball. Another population of 75 plants with high cyst counts were also selected. These plants were tested in two more successive tests for infection rate. The results are shown in table IV. After two successive tests the population having the fewest nematodes in the first test had the same infection rate as the population with the highest infection rate in the first test.

Similar work is being conducted to test other heterozygous populations of divergent germ plasm.

Table III. Environmental and genotypic variance estimates for nematode infection rate.

		,	Ex	periment	No.	
Population	Variance Component	7	8al	8a2	<u>8</u> bl	<u>8</u> b2
Hom.	Var E	8,254	178	3,077	350	9,208
Het.	Var E + Var G	6,063	211	2,642	277	11,222

Note: Var E = Environmental variance

Var G = Genotypic variance

Table IV. Selection for nematode resistance from an initial population of 1,300 plants.

No.	x count of Resistant selections	No.	x count of Susceptible selections	Test
215	5.98	75	56.60	1
207	63.50	73	81.64	2
203	50.60	73	49.60	3

SCREENING FOR NEMATODE RESISTANCE BASED ON THE NEMATODE EFFECT ON ROOT YIELD

Since the technique was now available to study the effect of nematodes on yield without the complicating factor of the associated root-rotting pathogens, a program was initiated to test the merits of screening for resistance based on root weight in the greenhouse.

Methods and materials

Three tests were conducted in 50 gram plastic vials. A uniform hybrid was used in experiment 610a and 610b and half of the plants inoculated with about 8,000 sterilized larvae. Experiment 610a was harvested one month after inoculation and experiment 610b was harvested two months after inoculation. The material used in experiment 607 consisted of 10 different heterozygous lines and two homozygous lines for an estimate of the environmental error. One half of the plants were inoculated with 4,000 sterilized larvae 2 weeks after transplanting. Tap root weights were taken six weeks after inoculation.

Another test was conducted in 8" clay pots and the plants allowed to grow for 120 days following inoculation. Twenty four plants each of 590-9, (a nematode selection), S2 (the parent of 590-9), HF₁ (a uniform hybrid) and 52-305 (a highly inbred line) were planted in 8" clay pots. Two weeks after emergence 1,000 nematode were added to 12 plants of each entry. Larvae were then added to these plants for about one month until the total number added per plant was about 45,000. After 120 days of growth the plants were harvested and weighed. A soil sample was also taken from each pot to determine the nematode build-up.

Results and discussion

The results of these tests are presented in table V. There was no effect on root weight after one month (exp. 610a), however, after two months there was a significant reduction in root weight due to nematodes (exp. 610b). Experiment 607 was harvested about 6 weeks after inoculation and showed a slight but not significant reduction in root weight. The more important statistic here is the significant genotypic variance obtained. This means that progress could be made by selecting for root weight in these small containers in the greenhouse. However, it also indicates that one month is not long enough to observe differences.

Experiment 609, which was allowed to grow longer, gave the more reliable results.

A significant reduction in root weight due to nematodes was recorded in all entries except the hybrid. It is interesting to note that the percent loss was around 10 to 15 percent. This is much less than that observed in commercial fields. Varieties that yielded best in nematode soil also yielded best in clean soil. Here again a significant genotypic variance was obtained, indicating progress could also be achieved by this method. It appears that the use of larger containers with a longer growing period will give more reliable results.

An extremely high nematode population developed in experiment 609, with an average of 696 cysts per 100 grams of soil. When the nematodes left on and/or in the sugarbeet were included with those in the soil, it was estimated that each beet was invaded with approximately 70,000 to 100,000 larvae. It is significant to note that under these conditions of high nematode infestation little or no killing of plants occurred.

a = Significantly less at P = .05 b = Significant Var G at P = .01

Table V. Effect of nematodes on root weight

Nematode cysts per 100 grams of soil				969				
Var E + Var G	⁹ 652.			1,165 ^b		1,224 ^b	1,105 ^b	
Var E	.438			644	725			1.74
% Loss	7.2	1.5	22.0ª	12.8ª	8.5	12.9ª	13.3ª	17.6ª
Nema, soil wt (g)	2.82	.537	1.92	124.1	113.5	172.5	136.1	74.3
Clean soil $\frac{\text{vt}(g)}{\text{vt}(g)}$	2.96	. 545	2,46	142.3	124.0	198.1	157.0	90.1
Test	209	610 a	610 b	609	HE	6-065	S2	52-305

THE NEMATODE EFFECT ON FIBROUS ROOTS AS A POTENTIAL SCREENING DEVICE

It has long been observed that hairy roots are associated with nematode infestations. These observations have always been in the field where the nematode-root rotting complex was present.

It was desirable to see if this effect was a result of the nematodes, the associated pathogens, or the complex.

Materials and methods

Four tests were conducted where half of the plants were inoculated with sterilized nematode larvae. Six weeks after inoculation the roots were washed clean of soil and weights taken on the fibrous roots. One test showed a significant increase in fibrous roots, while very little increase in fibrous roots due to nematodes was observed in the other three tests.

It was observed that many more new coarse white roots appeared on the plants grown in vials which were inoculated with nematodes than on the noninoculated plants. A further check confirmed these observations. Therefore, two tests of 800 plants each were set up to further examine this phenomenon. The plant materials used were similar to those used in testing nematode infection rates.

Plants in test 607 were grown in 50 dram vials, while plants in test 615 were grown in 15 dram vials. When roots appeared on the outside of the soilball, one half of the plants were inoculated with sterilized larvae. Plants in test 607 were inoculated with 4,000 larvae each. Plants in test 615 were inoculated with 1500 larvae each. Six weeks after inoculation each plant was given a coarse root rating. This rating ranged from one to six (one meaning no coarse roots and six meaning many coarse roots). A completely randomized design was used.

Results

The results of these two tests are shown in table VI. It can be seen that there was a significant increase in coarse roots due to nematode invasion in both tests. The nematode effects on coarse roots were separated into variety effects and presented in table VII. There was considerable variation among varieties for nematode effect on coarse roots. It was encouraging to see that with the exception of two varieties the effects were relatively consistent for varieties over the two tests.

It appears as if this character is genetically controlled, i.e. some varieties are stimulated to send out more new coarse roots as a result of nematode invasion than other varieties.

Selections will be made in this material and tested further in the greenhouse as well as in the field to determine the merits of selecting genotypes that are not stimulated to produce coarse roots as a result of nematode invasion.

Table VI. Effect of nematodes on coarse roots

T . 1		Rating for coars	e roots
Test	Clean	Nematode	Nema. effect
615	1049	1308	259
607	169	426	257

Table VII. Effect of nematodes on coarse roots by variety

Variety	Test 615	Test 607
500.3	00	00
590-1	23 .	23
S2		28
592-3	44	50
US 33	42	6
228-1	8	
US 41	23	26
US 15	34	***
594-2	45	30
56-408	16	16
Acc 107	34	11
c 5600	-12	9
HFl		33

THE NEMATODE EFFECT ON FREE AMINO ACIDS IN FIBROUS ROOTS AS A POTENTIAL SCREENING DEVICE

(This work was done in cooperation with Dr. J. M. Fife)

Various investigators believe that nematode larvae feeding inside the root give off certain enzymes that upset the metabolism of the plant. In like manner resistant plants would not be affected by these enzymes or to a lesser extent than susceptible plants. An upset in the metabolism of the plant can be detected by measuring the change in the free amino acid pattern. In addition, this upset might be reflected in the free amino acids in the root diffusate.

Methods and materials

Two tests were set up to study this approach. The first test (test 601) consisted of three selections, Beta patellaris (a resistant species), US 41 (a susceptible variety), and 063 (a tolerant selection). Twenty plants of each selection were planted in 3 inch pots containing sterile sand and watered with Hoagland's solution. Two weeks after transplanting, 2,000 sterilized larvae were added to 10 plants of each of the three entries. One week after inoculation root diffusate was taken from each plant by leaching 100 ml. of distilled water through each pot in an eight hour period. Two weeks after inoculation fibrous roots and leaf samples were taken from each plant and the juice expressed from each sample for amino acid analysis.

The root diffusate was analyzed for total amino acids. Data taken on the leaf and fibrous juice were total amino acids, aspartic acid, glutamic acid and glutamine. Data are expressed in milligram percent. Duplicate tests were conducted on all samples. A completely randomized design was used.

The second test (test 610) was conducted in 50 dram vials with 62-9134 (a uniform hybrid) as the test material. A dark sandy soil was used instead of sand. Two weeks after transplanting 35 of the 70 plants were inoculated with 8,000 sterilized nematode larvae each. Six weeks after inoculation the fibrous roots were taken, the juice expressed from each, and tested for the concentration of aspartic acid, glutamic acid, and glutamine.

Results and discussion

The analysis of variance and F tests for the first experiment are presented in table VIII. The test of treatments in the analysis is the difference between healthy and infected plants summed over all three selections. Only the total amino acid in root diffusate and the glutamic acid in fibrous root juice gave significant treatment differences, however, several other amino acids approached significance.

Table VIII. ANOV and F tests for the amino acids tested

	Root Diff.	Diff.	Ť	Leaf Juice				Root Juice		
	Total AA	TAKal	Aspartic Acid	Glutamic Acid	Glutamic Glutamine Acid	Total AA	Aspartic Acid	Aspartic Glutamic Glutamine Acid Acid	Glutamine	Complex
Treatments	52,46**	2.82NS	0.34NS	0.04NS	O.lons	2.49NS	2.49NS 2.34NS	7.49*	1.83NS	O.OLNS
Selections	1.26NS	17.51**	**56*9	2.98NS	6.81**	9.11**	15.98**	21.37**	6.77**	2.63NS
Treatments										٠
X Selections	1.09NS	0.84NS	0.95NS	1.25NS	1.08NS	0.63NS 3.96*	3.96*	2,00NS	SN69.0	1.82NS
	*	C + 0 + 0 0 ; C ; C ; C ; C ; C ; C ; C ; C ; C	t.							

* = Significant at P = .05

** = Significant at P = .01

NS = Non-significant

The treatment times selection interaction, if significant, indicates a difference in reaction to infection of the three entries. An effect, in order to be useful as a screening tool, would be significant in the susceptible entries but of no significance in B. patellaris. A significant treatment times selection interaction would detect this. Aspartic acid in root juice was the only amino acid in which a significant interaction was obtained, however, glutamic acid in root juice approached significance at the 5 percent level. It appeared as if the nematode effects were more pronounced in the fibrous roots. Therefore, the treatment times selections interaction for fibrous roots was partitioned and analyzed. These data are in table IX.

The important comparison here is that there were no effects or differences due to nematodes for B. patellaris, while significant increases in both aspartic acid and glutamic acid due to nematodes were observed for the other two entries. When US 41 and 063 were combined, highly significant increases in these two amino acids were found.

These results were further confirmed by the second experiment, the results of which are presented in table X. In this case highly significant increases in aspartic and glutamic acid and significant increases in glutamine in the expressed juice of the fibrous roots were found as a result of nematode infection.

The two tests were different in that, the second test was conducted in a sandy soil with a uniform hybrid while the first test was in sand with heterozygous populations.

With these two tests confirming each other a larger more extensive test was designed to find out the feasibility of selecting for nematode resistance using these three amino acids as a selection criterion. This test is not yet completed.

Table IX. Effect of nematodes on free amino acids in the fibrous roots of B. patellaris, US 41 and 063

Var.		Aspartic	Glutamic	Glutamine	Complex
B. pat.	clean	3.54	5.66.	20.98	5.92
	inoc.	2.35	5.82	22.63	5.20
US 41	clean	4.66	13.40	54.50	8.52
	inoc.	6.24*	17.35	62.02	7.20
063	clean	5.24	10.40	36.20	5.88
	inoc.	6 . 96*	16.79**	61.10	8.20
US 41)	clean	4.95	11.90	45.35	7.20
063)	inoc.	6.60 **	17.07 **	61.56	7.70

^{* =} Significant increase at P = .05

Table X. Effect of nematodes on three amino acids in the fibrous roots of 62-9134 (a uniform hybrid)

	Aspartic	Glutamic	Glutamine
Clean	1.96	2.19	2.64
Inoc.	2.85 **	3.70**	4.75*

^{* =} Significant increase at P = .05

^{** =} Significant increase at P = .01

^{** =} Significant increase at P = .01

1966 FIELD TRIAL OF SELECTIONS AND PARENTS

A very strong selection pressure was exerted on the existing nematode selections and out of these 12 were selected for further testing in 1966.

Prior to planting, nematode counts were taken over the entire nematode field. This was done to determine the nematode distribution in the field. There appeared to be a slight gradient in two directions, therefore, the experimental design chosen was a latin square.

Nine selections with their parents were selected for testing. A hybrid, US H7, was also included in this trial making a total of 14 entries in a 14 x 14 latin square. Plots consisted of 4 ten foot rows. The trial was planted April 7, plants were thinned to ten inches on June 4, and the trial harvested on October 19. Surviving plants after thinning and plants at harvest time were counted. At harvest time the two center and two outside rows of each plot were weighed separately. After each plot was weighed in the field it was bagged and taken to the lab. where it was trimmed, washed, reweighed, and tested for sucrose percentage.

Analyses were made on sucrose, clean weight, field weight, yield of two center rows, and yield of outside two rows. Correlations were made on inside times outside rows and weight times number of roots.

Results

In all results highly significant row and column effects were obtained indicating a good design. Table XI gives the results of the trial based on clean weights. Also shown in table XI are the number of beets at harvest time, the number of beets lost or dying between thinning and harvest, and the average weight per root for each entry. It was believed that some of the more tolerant lines would have fewer sprangled and hairy roots and this could be detected by comparing the differences in tare. Therefore, analyses were made on the clean weight as well as the field weight. However, there was very little difference in tare from selection to selection and the field weights gave essentially the same information as the clean weights. A little more precision was obtained on clean weights, therefore, the clean weights are shown in table XI.

Competition between neighboring unlike genotypes can confound the results. Therefore, analyses were made for the two center rows and the two outside rows separately. These analyses indicate no difference in yield and variation between the outside and inside rows, suggesting very little genotypic competition in this trial. Good correlations were obtained for yield and number of beets between center and outside rows.

Table XI. Field trial of selections and parents, 1966

Entry	Code	Parent	Mean Sucrose	Mean Clean Wt. Tons/Acre	Tons Sucrose Per Acre	No. Beets at Harvest	No. of Beets Lost ^a	Mean Wt./Root
590-1	134-H8	SS	15.6	12.6	1.96	673	717	.79
6-065		22	15.7	15.0	2.35	708	∞	06.
S 2		-	14.6	8.6	1.43	809	115	69.
26-408		not-known	15.5	12.9	2.00	610	113	06.
592-1		us 33	16.2	14.0	2.27	726	ω	-82
592-3	861-15	us 33	15.8	11.9	1.88	65.7	44	.77
592-7	101-7	us 33	15.5	11.0	1.77	515	111	.90
US 33	1	1	16.7	13.2	2.20	631	건	.89
594-2	063	US 22	15.3	13.3	2.04	705	14	.80
US 22	1	1	15.9	11.5	1.83	407	42	69.
591-2	co57-15	ns 56	15.0	11.0	1.65	699	79	.70
228-Bl	228-Bl	US 41	15.5	12.8	1.99	671	04	.79
US 41	;	1	15.4	12.6	1.94	720	32	+77.
US H7	;	-	14.9	9.6	1.43	573	203	.77
ISD .05	1	-	0.5	1.46	·264	53.2	1	1
LSD .01	1	1	0.65	1.90	.343	9.89	1	;

^aNo. of surviving beets at thinning time minus the no. of surviving beets at harvest time.

Both selections out of S2 yielded significantly better than the parent in both yield and sucrose percentage. Of the three selections tested out of US 33, only one (592-1) yielded better than US 33 and it was not significantly better. The other two selections gave significantly poorer yields than their parent. The selection out of US 22 yielded significantly better than its parent but had poorer sucrose, which resulted in no significant increase in sucrose per acre over its parent. The selection from US 41 likewise was not different from its parent.

The interesting entry here is US H7 which is used somewhat commercially. It was not only the poorest in yield but poorest in sucrose percentage. When the surviving plants after thinning count was taken there were significantly more plants of US H7 than any other entry, but at harvest time there was only one other entry with fewer roots.

Discussion

In an attempt to separate the factors involved in nematode resistance, several correlations were made and are shown in figure I with their respective confidence interval. Whenever a confidence interval crosses the zero line the correlation is not significantly different from zero. Correlations of yield times number of roots and yield times weight per root were significant and positive with a correlation of .63. When the loss or the number of roots dying between thinning and harvest time was correlated with yield a correlation of -.77 was obtained. It is interesting to note that there was no correlation between weight per root and loss, even though they were both correlated with yield, but when they were combined and correlated with yield a correlation of -.83 resulted. This indicates that these are important yield factors in nematode infested soils and they are independent of each other, but when combined they account for about 70 percent of the variation in yield.

In attempting to understand these effects in terms of nematode resistance, it seems reasonable to assume that the factor of weight per root is a tolerance or vigor factor. However, this is hard to define. In results reported elsewhere in this report, no evidence was found to indicate that nematodes kill plants. Therefore, it is believed that the loss of roots is not the results of nematodes themselves, but the result of their association with root rotting fungi. Those selections that yielded better than their parents were better than their parents in one or both of these factors.

Figure 1. Correlations and confidence intervals

^aLoss = roots dying between thinning and harvest.

THE EFFECT OF THE SUGARBEET NEMATODE, OTHER ORGANISMS AND A COMPLEX OF THE TWO ON YIELD AND SPRANGLING OF ROOTS

E. D. Whitney and D. L. Doney

The question, as to the relative importance of each organism in the sugarbeet root-rot complex (i.e. <u>Heterodera schachtii</u> Schm. and fungi) was partially answered by the work of Price and Schneider (3). Their study did not evaluate the importance of the addition of nematodes to soils in which the micro-flora and micro-fauna had developed under sugarbeet production. This paper reports the results of such a study.

Materials and methods:

Three soils found to be free of the sugarbeet nematode were selected and designated as soils 1, 2, and 3. The soil type and cropping sequence of each soil is given in Table I. One-half of each soil was steam-treated (autoclaved) for 7 hrs. at 5 lbs. pressure. Each soil was thoroughly mixed, potted in 3 gal. crocks and placed on concrete blocks to avoid contact with the soil. A completely randomized design was used. Each treatment was replicated 25 times. The treatments were: autoclaved soil, autoclaved soil to which nematodes were added, field soil and field soil to which nematodes were added. The experiment was conducted under field conditions. Two varieties of sugarbeets, So and hybrid (F58-554H1) were surface disinfested for 20 min. with a 1000 ppm solution of mercuric chloride and planted in each crock. Three weeks after planting each crock was thinned to 2 plants of one variety with each variety nearly equally represented for each treatment. Those treatments to include nematodes were inoculated with 1000 sugarbeet larvae surface sterilized for 72 hrs. as reported in the section "Hatching and Partial Sterilization of the Sugarbeet Nematode, H. schachtii Schm. in Large Quantities." Each week for 4 weeks following the initial inoculation, plants in appropriate crocks of soil received an increasing number of sterilized nematodes; 2000, 4000, 8000, and 9600. The crocks were thinned to 1 plant between the second and third inoculation.

The beets were harvested 145 days after planting, weighed, checked for root sprangling and soil samples taken. Ten 100 g samples were wet screened and the number of cysts counted to determine the population build-up in soils having larvae added. Four samples from each field soil were treated similarly. A composite sample from several crocks taken at random for each field soil was taken to determine the damping-off fungi in the soils following beet production. An equal number of surface disinfested beet seeds were planted in each soil. Those damping-off were bioassayed by the water culture method for pathogenic fungi. A sample of soil 3 from the original site which had been fallowed was treated similarly.

Table I. Soil type and cropping sequence for each soil.

Soil	Soil Ty pe	Cropping sequence					
		1965	1964	1963	1962	1956	
1	Camphora sandy clay loam	Nasturtiums	Barley	Beets			
2	Chualar sandy loam	Barley/vetch	Fallow	Barley	Fallow	Beets	
3	Camphora sandy clay loam	Beets	Beans	Barley	Beets		

Results:

The number of beets harvested for each treatment differed due to damping-off or poor germination. An analysis of the yield data showed a highly significant difference due to soils, treatments, varieties and soils times treatments. When summing over soils there was a highly significant yield effect due to autoclaving with the beet yield highest in the autoclaved soils. There was no effect due to nematodes nor was there an interaction which would have indicated a synergistic effect. The test of soils times nematodes was highly significant which indicated an effect due to nematodes in 1 soil but not in the others. Soils 1 and 2 appeared to react similarly to all treatments with the only loss being due to soil organisms other than nematodes, Table II. Soil 3 which reacted differently had losses due to nematodes, other soil organisms and a seemingly more than additive effect when a combination of the two existed, Table II. An analysis of the yield data for soil 3, however, did not show an interaction when the treatment effects were partitioned.

The percent of sprangled roots did not increase with the addition of nematodes to the autoclayed soils nor to field soils 1 and 2. There was an increase in percent of roots sprangling in the field soils and a more than additive increase in field soil 3 when nematodes were added, Table II. The greatest loss in weight of sprangled roots occurred in field soil 3 to which nematodes had been added.

The total number of plants damping-off, the number of plants and the percent damping-off from each organism are listed in Table III. The predominant damping-off fungus in soils 1 and 2 was Pythium ultimum Trow. Approximately equal numbers damped-off in soils 3 from P. ultimum and Aphanomyces cochlioides Drechs. The predominant fungus causing damping-off in soil 3 from the original site was A. cochlioides, Table III.

The mean number of cysts per 100 g of soil recovered from each soil to which nematode larvae were added are listed in Table IV. A significantly larger number of cysts developed on plants grown in autoclaved soil 3 to which nematode larvae were added. When the field soil was sampled at the end of the growing season 6 cysts from 12 samples (4 samples from each soil) were found. Two of the cysts were full of eggs, 1 partly full, and 3 empty. The mean number of cysts recovered per 100 g of soil are listed in Table IV.

Discussion:

Although statistically a synergistic effect due to nematodes plus soil organisms in soil 3 was not shown, it seems more than coincidental that the loss due to this treatment as well as the percent increase in number of plants with sprangled roots was more than additive. This additional loss appears to be due to A. cochlioides as the number of plants damping-off from P. ultimum was essentially the same for all 3 soils. This, however, may be incorrect as it is

possible an interaction of all 3 occurred or the losses were due to other organisms in the soil. It has been suggested that sprangling of roots (2) or lack of tap root (1) of sugarbeet is caused by nematodes. These data show that the nematode does not cause the sprangling of roots but may increase this number in the presence of other organisms. This appears to be the system under which the first mentioned work was carried out as they used "tare dirt" in which to grow the sugarbeets. The large number of cysts found in autoclaved soil 3 shows that large populations of nematodes are required to cause a substantial decrease in yield which is common knowledge and further supported by data in the section "Screening for Nematode Resistance Based on the Nematode Effect on Root Yield" reported by D. L. Doney. This large difference in the number of female nematodes developing to maturity is not readily apparent but may be from several causes among which may be poor plant growth or predaceous organisms in soil 3 not found in soils 1 and 2. Although a small number of cysts were found in the field soils after the growing season it is unlikely that they effected the results substantially. The difference in the cyst population of autoclaved soils 1 and 3 is not easily explained as the soil types are the same, however, they were from different sites.

These data would suggest that more emphasis should be placed on rotations that reduce the pathogenic populations of fungi as well as the nematode, as it seems apparent that only low populations of nematodes are required to result in great losses when associated with other soil organisms.

Literature cited:

- 1. Jones, F. G. W. 1965. Beet Eelworm. Plant Nematology. (Edited by J. F. Southey). Her Majesty's Stationery Office, pp 189-198.
- 2. Jorgenson, E. C. and C. H. Smith. 1966. Evaluation of selected varieties of sugarbeets for response to the sugarbeet nematode, Heterodera schachtii. Plant Disease Reptr. 50: 650-654.
- 3. Price, Charles and C. L. Schneider. 1965. Heterodera schachtii in relation to damage from root rot of sugar beets. Proc. Am. Soc. Sugar Beet Technol. 13 (7): 604-606.

Table II. The effect of nematodes, soil organisms, and nematodes plus soil organisms on yield and sprangling of roots in three soils.

	Field	None Nema.	104.0 58.3	47.9 93.6	31.5 61.6	8/25 15/23	34.8 65.2
Soil 3	aved	Nema. No		31.4 4	20.7 3	2/23 8	8.7 3
	Autoclaved	None	151.9 120.5	 		2/20	10.0
	Field	Nema.	75.1 70.2	16.5 21.4	18.0 23.4	3/25	16.7 12.0
oil 2	ഥ	None	75.1	16.5	18.0	t/2/t	16.7
	Autoclaved	Nema.	91.6 114.3	0.0	0.0	2/23	8.7
	Autoc	None	91.6		-	2/23	8.7
	1d	Nema.	172.1	11.1	0.9	5/24	20.8
Soil 1	Field	None	183.1 184.2 163.3	19.8	10.8	4/23	17.4
Soi	Autoclaved	Nema.	184.2	0.0	0.0	1/24	4.2
	Autoc	None	183.1	1	-	1/25	4.0
	Soil treatments	Other treatment	x root wt. gms.	x wt. loss gms.	% loss of wt.	No. sprangled roots/ no. harvested	% sprangled roots

Table III. The total number of sugarbeets damping-off, number and percent from each cause.

Soil	Total	<u>P</u> .	ultimum	<u>A</u> . <u>c</u>	cochlioides	Un	known
ıª	89	77	86.5%	5	5 .6%	7	7.9%
2 ^{a}	100	87	87.0%	5	5 .0%	8	8.0%
3 ^a	163	85	52.1%	78	47.9%	0	0.0%
3 ^b	54	9	16.7%	41	75.9%	4	7.4%

a Soil from crocks.

b Soil from the original site

Table IV. Number of cysts per 100 gms. of soil developing on sugarbeets.

			- 101 -
	1d	Nema.	.50 2.3ª
Soil 3	Field	None Nema.	.50
SO1	Laved	None Nema.	51.4 ^b
	Autoclaved	None	
	Field	None Nema.	.25 12.3ª
Soil 2	ed		
	Autoclaved	None Nema.	8,6ª
	1d	None Nema.	75 · 10,78
Soil 1	Field	None	•75
So	Autoclaved	None Nema.	12.6ª
	Autoc	None	! ! !
	Soil treatments	Other treatment	x number of cysts per 100 gms. soil

Any 2 treatments followed by the same letter are not different at P = .05

HATCHING AND PARTIAL STERILIZATION OF THE SUGARBEET NEMATODE, HETERODERA SCHACHTII SCHM. IN LARGE QUANTITIES

E. D. Whitney and D. L. Doney

Introduction:

Greenhouse studies (3) indicate that progress in selecting for resistance to the sugarbeet nematode Heterodera schachtii Schm., is slow when selections are made from plants grown in soils with high populations of both the nematode and fungi.

It therefore became apparent that it would be desirable to eliminate soil contaminates from nematode larval inoculum to study the root-rot complex of sugarbeets and to evaluate sugarbeets for resistance.

Clark and Shepherd (1) reported in 1965 that zinc chloride and other metallic ions were hatching agents for H. schachtii Schm. It was shown by Moriarty (2) that H. schachtii Schm. could be surface sterilized after hatching by immersing the larvae for 72 hrs. in a solution containing 10 ppm ethoxyethyl mercury chloride, 0.01% dioctyl sodium sulphosuccinate and Crystamycin (1000 units Sodium penicillin G plus 1 mg streptomycin per ml). These reports suggested the possibility of hatching and sterilizing nematodes simultaneously.

Materials and methods:

Sugarbeet nematode cysts were wet screened from the soil or sand by passing the floating material, after a 10 sec. settling period, over a nested 20 and 60 mesh screens. The large organic debris is retained on the top 20 mesh screen and the cysts plus the finer material collected on the 60 mesh screen. This material is placed in a hatching pan. The hatching pan consists of two nested 9 inch stainless steel pie pans. The center 6 inches of the bottom of the top pie pan has been replaced by No. 10 mesh stainless steel screen soldered to the bottom of the pan. Three small spots of solder are placed on the rim of the bottom pan to separate the two pans. A moist milk filter pad (Rapid Flow) is placed over the screen of the top pie pan Fig. 1 and the cyst containing material poured onto the filter pad. The water in the bottom pan is then replaced with enough hatching solution to just cover the screen bottom of the top pan.

Hatching solution:

Zinc chloride
Ethoxyethyl mercury chloride
Dioctyl sodium sulphosuccinate
Streptomycin sulfate USP Grade B
Penicillin G potassium USP Grade B

4mM
10ppm (Aretan)
0.01% (Vatsol OT)
1 mg / ml
1000 units / ml

The hatching pans are placed in a hatching cabinet constructed in cooperation with Mr. A. E. Steele, Nematologist, to study factors affecting the hatching of \underline{H} . schachtii Schm. The hatching cabinet is a reconditioned meat cooler providing temperature control for constant and diurnal temperatures by reverse cycling of the refrigerant for heating and regular cycling for cooling. High humidity is maintained in the cabinet (2 x 6 x 7 ft.) by a one-half minute injection of water every 6 min. through 2 spray nozzles delivering 2 gal. / hr.

The nematodes upon hatching crawl through the filter pad and are collected in the bottom pan free of debris.

To determine the effects of hatching solutions on the rate of hatch and on the infectivity of larvae, four hatching solutions were tested, 1) root exudate, 2) root exudate plus additive (regular hatching solution without zinc chloride, 3) zinc chloride, and 4) hatching solution. The screened cysts were aliquoted onto each filter pad at random. Each treatment had three replications. To remove as many nematodes of other genera as possible, the hatching pans were filled with water for 48 hrs. and the nematodes found in the bottom pan were discarded. The pans were then filled with hatching solution and placed in the hatching cabinet for 5 days at alternating temperatures of 60 F. for 15 hrs. and 75 F. for 8 hrs. with two 30 min. periods of temperature change. Following hatching, enough sterile water was added to the nematodes in each pan to make a total of 500 ml. The total number of larvae was determined by counting three one-half ml. samples from each replication. The mean number of nematodes from the three pans was used to estimate the number of larvae hatched per treatment.

To determine the infectivity of the nematodes from each treatment, four replications of five sugarbeet plants (hybrid F58-554H1) each grown in sand in an individual container were inoculated with approximately 2000 larvae per plant in 10 ml of the diluted solution. Mineral nutrition was provided by Hoagland's solution.

One ml. of solution from each treatment diluted 10^{-1} , 10^{-2} and 10^{-3} was plated on potato-dextrose agar to determine the effectiveness of the fungicide and antibiotics in eliminating the fungi and bacteria from each treatment.

To test the longevity of the nematodes in vitro, aliquots of 10,000 larvae in 50 ml. of the diluted hatching solutions were placed in petri dishes and stored at room temperature in the dark and under refrigeration. Each week 2 aliquots of the nematodes from each treatment were used to inoculate 10 hybrid sugarbeet plants (2 replications of 5 plants) at the rate of 2000 nematodes per plant in 10 ml. of diluted solution. Each plant was grown in sand in an individual container with Hoagland's solution added to provide the necessary minerals. Ten days after inoculation the plant roots were washed free of sand, stained in hot lactophenol acid fuchsin for 1 min. and the number of nematodes infecting the roots of each plant counted.

Although the hatching of larvae in sterilants resulted in a reduction in contamination it was apparent that further sterilization of the larvae was necessary. A test was conducted to evaluate the feasibility of using the same sterilants as a second treatment. Hatched larvae from hand picked cysts hatched over a period of 72 hrs. were screened from the hatching solution and washed from the sieve with sterile water. The larvae were then aliquoted into 6 beakers and screened a second time. One beaker of nematodes was washed from the sieve with water into a petri dish and retained as a check. The remaining 5 beakers containing nematodes were individually screened and washed from the sieve with the sterilizing solution into petri dishes.

To test the decrease in contamination of the larval suspension with each additional 24 hrs. of treatment a 1 ml. sample was taken from the check at the beginning of the test and one from one of the remaining petri dishes of nematodes each day for 5 days. These samples were placed in 9 ml. of sterile water. Also at the end of each 24 hr. period the petri dish of nematodes sampled for the sterility test was screened from the sterilizing solution and placed in sterile water in a petri dish to test the loss of infectivity of the larvae due to length of treatment.

The sterility of each treatment was tested by placing 1 ml. of the 10⁻¹ solution one each of 2 petri dishes of potato dextrose agar and in 4 test tubes each of 9 ml. of N I H and Sabaroud Broth. The infectivity of the larvae from each treatment was tested by inoculating 24, 3 week old hybrid sugarbeet plants (F58-554H1) with 750 larvae. The plants were grown at 24 C in a controlled environment chamber with a 16 hr. photo period. Eight days after inoculation the sugarbeet roots were stained and the nematodes counted as previously described. The test was repeated once.

Results:

The total number of larvae hatched in five days in root exudate, root exudate plus additive, zinc chloride and zinc chloride plus additive was 820,500; 1,171,500; 352,500; and 541,500 respectively. An analysis of the data showed that root exudate was superior to zinc chloride as a hatching agent. The difference was highly significant. It also showed a highly significant increase in hatch when the additive was included in the hatching solutions. There was no interaction between the hatch factors and additive, indicating the stimulating effect of the additive was similar in both cases.

Infectivity studies indicated that more infections occurred when zinc chloride was the hatch factor, as well as when the additive was used. These increases were significant at the 10 percent level, Table I. These differences were not apparent after one week's storage of the nematodes.

Table I. Mean number of larvae infecting each plant when inoculated at the time of hatching and when inoculum is stored under refrigeration and room temperature for a period of 4 weeks.

		Trea	tments	
	1	2	3	4
O week*	349.2	439.9	436.1	495.3
Refrigerated				
Wk. 1**	758.6	357.7	577.4	551.5
Wk. 2**	450.6	508.3	505.7	596.5
Wk. 3**	466.7	376.2	530.3	537.2
Wk. 4**	542.9	558.4	588.3	641.3
Total No. of infections	22,188	18,006	22,017	23,265
Room temperature	2			
Wk. 1**	549.4	534.6	621.7	527.7
Wk. 2**	577.3	301.6	628.0	317.7
Wk. 3**	432.1	146.3	430.9	153.0
Wk. 4**	297.0	110.7	294.0	91.4
Total No. of infections	18,558	10,932	19,746	10,898

Treatments

^{1 -} Root exudate

^{2 -} Root exudate plus additives

^{3 -} Zinc chloride

^{4 -} Zinc chloride plus additives

^{*}Mean of four replications of five plants

^{**}Mean of two replications of five plants

Fig. 1. Nematode hatching pan.

Fig. 2. Reduction in contamination due to treatment.

- 1. Root exudate solution. 2. Root exudate solution + additives (sterilants).
- 3. Zinc chloride solution. 4. Zinc chloride solution + additives.

Losses in infectivity of larvae for all treatments stored under refrigeration at the end of 4 wks. were small, Table I. This was also true for larvae stored at room temperature in the root exudate and zinc chloride treatments for the first 2 wks., but the infectivity of the larvae decreased for the 3rd and 4th wks. However, when the additive was included in the hatching solution, storage of the larvae at room temperature resulted in high losses in infectivity with each additional week. (Table I).

The difference in reduction of fungi and bacteria due to treatments is illustrated by Fig. 2. Preliminary results indicate the bactericides and fungicide are more effective when used with zinc chloride. In one experiment of 320 transplanted sugarbeets grown in sterilized sand, not a single beet died from root-rot during the 8 days between inoculation and harvest. In a similar experiment where plants were grown in sterile soil less than 1% of the 1400 plants inoculated died during a 4 wk. growing period.

The results of the sterility test showed that no fungi were found in any of the treatments of 24 hrs. or longer. However, the number of bacteria present diminished with length of time as shown in Table II. Similar subsequent tests of treatment up to 10 days did not eliminate the bacteria.

Infectivity trial results showed that although the variation in number of nematodes penetrating the root of each plant was great there was no difference due to treatment length, Table III.

Discussion:

These data show that sufficient larvae can be hatched and eliminated of all fungi and most bacteria to inoculate 500 to 1000 plants per wk. depending on the number of hatching pans used, condition of the eggs within the cysts, and the number of larvae used to inoculate each plant.

Although root exudate is superior to zinc chloride as a hatching agent during the initial period of hatching, the total hatch during a 4 wk. period in zinc chloride solution is about 80% of root exudate, (personal communication with Mr. A. E. Steele, Nematologist). This advantage of root exudate is not significant when the time and expense required to grow plants and collect exudate is considered. Also the advantage of obtaining larvae with fewer fungi and bacteria when hatched in zinc chloride plus the additive is of great importance.

The factor or factors responsible for the increase in number of larvae hatched when the additive is included in the hatching solution is not apparent.

Table II. Decrease in bacterial population with increased length of treatment of nematode larvae.

	I	ays of	treatment	after 1	hatchin	g
x no. of bacterial colonies	0	11	2	3	4	5
Test						
1	a	548	358	112	97	6
2	a	1889	315	297	66	40
^a Agar	completel	y cover	ed with b	acteria	and fu	ngi

Table III. Mean number of larvae infecting each plant with each additional day of treatment.

		Days of	treatment	after	hatching	
	0	1	2	3	4	5
x no. of larvae	29.0	39.8	44.6	34.8	33.8	35.6

Of real significant importance is the fact that the infectivity of hatched larvae is not reduced significantly due to treatment when refrigerated. Thus large populations of larvae can be accumulated over a period of time when extremely large numbers are required. Preliminary results of studies show that large quantities of full mature cysts can be obtained by inoculating sugarbeet plants with larvae grown in sterile sand.

Although the nematode larvae are not completely eliminated of all bacteria, we believe the treatment will provide larvae in sufficient quantities to be used as inoculum for large greenhouse studies where monoxenic conditions are not required.

To obtain nematodes of one species, cysts should be hand picked. Where this is not a requirement, most of the free living nematodes can be eliminated by using the hatching pan as an adaptation of the Baermann-funnel technique, thus eliminating those nematodes that appear in the water of the lower pie pan. This technique is particularly effective if the cysts used for hatching have been produced on plants grown in sand culture. Some loss of nematode larvae due to hatching does occur, however, water is a poor hatching agent and the loss is usually small. Following this treatment the water in the lower pan is replaced with hatching solution.

Literature cited:

- 1. Clark, A. M. and Audrey Shepherd. 1965. Zinc and other metallic ions as hatching agents for the beet cyst nematode. Heterodera schachtii Schm. Nature 208:502.
- 2. Moriarty, F. 1964. The monoxenic culture of beet eelworm (Heterodera schachtii Schm.) on excised roots of sugar beet (Beta vulgaris L.). Parasitology 54: 289-293.
- 3. Whitney, E. D. and D. L. Doney. 1965. Progress report on the evaluation of sugarbeet breeding lines selected for nematode resistance and of the screening method used in making these selections. Sugarbeet Research 1965, page 83.

INTERSPECIFIC HYBRIDIZATION 1/2/2015 VULGARES-PATELLARES HYBRIDS

Selection for resistance to sugarbeet nematode (Heterodera schachtii), was continued in the first and second backcross and in F_2 hybrids between sugarbeets and Patellares species.

The technique of soil infestation by nematode cysts was the same as in 1965. All plants selected were tested 3 times for resistance. Hybrids selected were separated into 2 groups. The first group consisted of plants having from 0 to 5 females on the roots; the second group consisted of plants with 5 to 10 females on the roots. All plants which had over 10 females were discarded.

Among b₁ hybrids some nematode resistant plants were selected and placed in the group 1. Since the technique of soil infestation was changed in 1965, and the infested soil contained more cysts, less variation in the grade of resistance was observed. More plants were severely infected and fewer plants appeared to be resistant. Therefore, the number of plants selected for nematode resistance decreased, but the chances of more reliable selection were increased.

Among 500 F₂ hybrids tested also some resistant plants were selected.

Selection in one b₂ progeny looked the most promising. A b₁ plant which had 19 chromosomes was selected for nematode resistance. This plant belonged to the group 1. Thirty offspring of the selected plant were tested for resistance in 1965. Of these, 18 plants were susceptible, having roots covered with hundreds of females, and 12 plants were highly resistant. Six of the highly resistant plants remained free of females in 3 tests, the other 6 plants had 1 to 3 females in one of 3 tests. The plants selected grew in the greenhouse in 1966 and were checked for chromosome number. All of the 12 resistant plants had 19 chromosomes. The group of susceptible plants differed from the group of resistant plants in morphological characteristics. The susceptible plants resembled sugarbeets; whereas plants in the resistant group developed long petioles and narrow, elongated leaves. They had the typical appearance of aneuploids with 19 chromosomes.

After 3 months of thermal induction, the resistant plants were taken to the greenhouse for seed production. Six plants developed seed stalks, flowered, and set some seed. The other 6 plants did not bolt, and were exposed to thermal induction again. Probably the low bolting tendency, as well as a comparatively low fertility, was caused by severe effects of virus yellow. Seed harvested from the resistant plants were planted and the seedlings transplanted into nematode-infested soil for test in the b₃ generation. For the first time the resistance to nematode was transferred to b₂ generation. Also, for the first time several highly resistant plants appeared in

^{1/} Investigations conducted by Helen Savitsky.

the progeny of a plant selected for resistance. Obviously the chromosome responsible for resistance was transferred to sugarbeets from Patellares species.

VULGARIS-COROLLIFLORA HYBRIDS

Species of the section <u>Corollinae</u> Tr. are immune, or highly resistant to curly top. Transmission of a high grade of resistance to curly top from these species to sugarbeets is of great practical importance.

Dr. V. F. Savitsky obtained a tetraploid hybrid between sugarbeet and B. corolliflora. The F₁ hybrid plant was pollinated by diploid sugarbeets in the greenhouse and b₁ seed obtained. The b₁ hybrids were tested by Dr. Bennett for curly top resistance. Dr. Bennett inoculated 400 b₁ plants with a virulent strain of curly top virus (Paso Robles) and selected 32 plants which did not show symptoms of disease. The plants selected were reinoculated with the same virus when in the 10- to 12-leaf stage. Twentynine plants of this group did not show symptoms of curly top and were selected as highly resistant hybrids.

A cytological study showed that all b₁ hybrids were triploids, or aneuploids approaching to triploids. The b₁ plants selected were pollinated in the greenhouse by sugarbeets, and b₂ seed were harvested. After the seed harvest, all b₁ plants were exposed to thermal induction and produced some seed in 1966. To induce translocations, 8 plants of this group were irradiated by X-rays in the Lawrence Radiation Laboratory of the University of California at Berkeley. The doses 1000r, 1500r, and 2000r were applied.

The b₂ seed, harvested from b₁ plants, were planted in greenhouse. In spite of a comparatively good fertility of b₁ hybrids, germination of b₂ seed was very poor. Of 11,764 seed planted, 169 seedlings were obtained. Some seedlings showed different abnormalities, such as an absence of a bud between cotyledons, leaves growing from the petioles, etc. Some seedlings were low in vitality and died. All b₂ plants that survived resembled sugarbeets more than did the b₁ hybrids, although they all maintained some resemblance to B. corolliflora. The b₂ hybrids differed very much in morphological traits from each other. Many were strong, vigorous plants; others were weak with narrow petioles and narrow leaf blades; some plants were dwarfs.

All b_2 hybrids survived were given to Dr. Bennett for the test for curly top resistance and selection of resistant plants in the b_2 generation. The hybrids were recently inoculated with the Paso Robles virus.

STUDIES ON POLYPLOIDY

FERTILIZATION AND FRUIT DEVELOPMENT IN DIPLOID, TRIPLOID AND TETRAPLOID

MATINGS IN SUGARBEETS.

A study of the viability of diploid, triploid and tetraploid seed has both a theoretical and practical value. There are some indications that triploid sugarbeet seed are less viable and lower in germination than the diploid seed. Investigations undertaken consist in a study of fruit development, seed germination, and cytological and embryological study. Several environment factors, as well as the grade of perfection of inflorescence in female plants, simultaneous flowering of both the component of hybridization etc. influence fertilization and seed development. But the main purpose of these investigations is to determine whether some genetic processes control the viability of seed at different ploidy levels. The first data on effectiveness of fertilization and fruit development in diploid, triploid, and tetraploid matings are reported here.

MATERIALS AND METHODS

Eight diploid monogerm male-sterile lines, SLC 502, F_1 -64-569-HS, F-61-562-HO, SLC 91, U.I. 129, A-61225, F_1 -A-61226, and A-63113 were pollinated by diploid and tetraploid monogerm and multigerm populations at 8 different isolations. The pollinators were (1) 2 diploid monogerm populations 4-568, and SLC 91, (2) 2 diploid multigerm populations 112 and US 401, (3) 2 tetraploid monogerm populations SLC 15, and Klein E, and (4) 2 tetraploid multigerm populations 4-601, and 4-900.

In all isolations, plants were well developed and seed setting was normal. To secure a sufficient pollination, the male-sterile lines and the pollinators were planted in alternating rows. All male-sterile lines were checked for male-sterility and did not contain pollen-fertile plants. The male-sterile lines bolted later than the pollinators and started to flower when pollinators were in full blossom. Pollinators produced abundant pollen providing for a successful pollination of male-sterile plants. Possibly the supply of pollen was limited to some extent for very late bolting plants.

A study of the effectiveness of fertilization and seed development in 2n, 3n and 4n matings was based on examination of ovules. Ovules were examined in 5 plants of each male-sterile line in all matings and in 5 plants in each population pollinator. A total of 360 plants were examined. From each plant, 2 branches were collected. On each branch 50 fruits (100 fruits per plant) were examined. The cap of the fruit was removed and the ovary opened. The number of unfertilized, fertilized normal, and fertilized aborted ovules was determined per 100 monogerm and multigerm fruits. In monogerm beets, flowers with unfertilized ovules did not develop into fruits, but remained in the branches alternating with the developed fruits. At the time of examination of 100 fruits, ovules of such flowers were included in the category of

unfertilized ovules. The unfertilized ovules were little dark lumps lying on the bottom of the ovary. Fertilized normally developed ovules were large, covered with brown seed coat and well filled; when crushed, the embryo and starch could be seen. The fertilized aborted ovules were also comparatively large and covered with brown seed coat, but shriveled, thin, and empty when crushed.

EXPERIMENTAL RESULTS.

Fertilization and seed development in diploid and tetraploid populations.

Open-pollinated diploid and tetraploid population-pollinators grown on different isolations produced 2n and 4n fruits. The different genetic nature of diploids and tetraploids caused some variations in the effectiveness of fertilization and in the mode of seed development.

The main difference between the diploid and tetraploid populations consisted in the amount of unfertilized ovules. Mean percent of unfertilized ovules (34.42) for both monogerm and multigerm tetraploids greatly exceeded their percent in diploid monogerm and multigerm populations (13.86) (Table 1). Analysis of variance indicated that the difference between 2n and 4n populations in percent of unfertilized ovules is highly significant. F equals 42.32 and F tabulated is (7.60) at the 1% level. There is no significant difference in this character between monogerm and multigerm beets, although percent of unfertilized ovules is higher in tetraploid multigerm than in tetraploid monogerm populations. The interaction (2n vs. 4n) x (multi vs. mono) is also significant (Table 2).

The high percent of unfertilized ovules in tetraploids is obviously caused by the irregularities in meiosis and formation of inviable egg cells with the number of chromosomes considerably deviating from the diploid number.

Because of the lower number of viable egg cells, percent of fertilized normally developed ovules is lower in tetraploids (56.15) than in diploids (74.09) (Table 1). Difference between diploid and tetraploid populations in the percent of normal ovules is highly significant. F calculated (12.34) exceeds F tabulated at the 1% level (7.60) (Table 3). There is no significant difference between monogerm and multigerm populations in the percent of normally developed ovules. It should be noticed that monogerm diploids and tetraploids had almost the same percentage of normal ovules; whereas, in multigerm tetraploids the percent of normal ovules was lower than in monogerm tetraploid populations. In the multigerm beets, ovules per fruit outnumber the ovules per fruit in the monogerm beets; therefore, the number of normally developed ovules will be always higher in multigerm than in monogerm plants inspite of equal, or even higher percent of normally developed ovules in the monogerm plants.

Abortion of ovules is almost the same in tetraploids as in diploids. Percent of aborted ovules was even a little lower in tetraploid populations (9.43) in comparison with the diploid populations (12.05) (Table 1).

Table 1 ... Number and percent of unfertilized, fertilized normal and aborted ovules in diploid and tetraploid, monogerm and multigerm pollinators.

		vules in	500 fruits per	5 plants	in each	populati	on	
	Total number of	:			D			
	ovules		ertilized	Fertilized Normal Aborted			ad	
	014200	Number	Percent	Number		Number		
			2n Population	<u>s</u>				
4-568-m ₂	500	96	19.20	329	65.80	75	15.00	
S.L.C.91-m ₂	500	95	19.00	340	68.00	65	13.00	
112-M ₂	1420	152	10.10	1116	78.60	152	10.70	
-				1110	70.00	102	10.70	
U.S. 401-M ₂	1266	168	13.27	946	74.72	152	12.01	
Total Percent	3686	511	12.00	2731		444		
rercent			13.86		74.09		12.05	
			4n Populations					
S.L.C.15-m4	500	136	27.20	316	63.20	48	9.60	
Klein E-m _µ	500	135	27.00	326	65.20	39	7.80	
4			2,000	020	03.20	03	7.00	
4-601-M ₄	1200	1100	07.07	71. O				
4-0 01- иц	1320	492	37.27	746	56.52	82	6.21	
4-900-M ₄	1338	496	37.07	666	49.78	176	13.15	
Total	3658	1259		2054		345		
Percent		2200	34.42	2037	56.15	345	9.43	
							0.10	

Table 2 ... Analysis of variance for unfertilized ovules in diploid and tetraploid, monogerm and multigerm pollinators.

Source of variation	Sum of squares	d.f.	Mean squares	Variance Ratio F	F tabu	lated .01
Total sum of squares	27,850.2061	39		-		-
Crosses	130,059.2339	7	488.0780	7.70	2.35	3.33
2n vs. 4n	505,563.3421	1	2,682.8802	42.32	4.18	7.60
Multi vs. mono	452,261.9161	1	17,8089	< 1	4.18	7.60
(2n vs. 4n) x (Multi vs.mono)	259,981.3621	1	702.1518	11.08	4.18	7.60
Error		29	63.3917			

Table 3 ... Analysis of variance for fertilized normal ovules in diploid and tetraploid, monogerm and multigerm pollinators.

				Vensones	T +-b	131-7
Source of variation	Sum of squares	d.f.	Mean squares	Variance Ratio F	F tab	.01
						L
Total sum of squares	177,092.8214	39	-	-	-	F
Crosses	866,174.5154	7	405.8630	3.05	2.35	3.33
2n vs. 4n	3,440,706.7138	1	1,641.4735	12.34	4.18	7
Multi vs. mono	3,407,941.0900	1	3.1923	<1	4.18	7.60
(2n vs. 4n) x (Multi vs. mono)	1,730,610.5338	1	1,022.5253	7.26	4.18	7.60
Error		29	133.0317			L

Table 4... Analysis of variance for fertilized aborted ovules in diploid and tetraploid monogerm and multigerm pollinators.

Source of variation	Sum of squares d.:		Mean squares	Variance ratio F	F tabulated	
Total sum of squares	5, 847.5064	39	-	-	-	
Crosses	25,569.2566	7	43.5146	1.72	2.35	3.33
2n vs. 4n	98,731.1048	1	127.3062	5.03	4.18	7.60
Multi vs. mono	96,303.5600	1	5.9290	<1	4.18	7.60
(2n vs. 4n) x (Multi vs. mono)	49,724.8248	1	29.9983	1.19	4.18	7.60
Error	-	29	25.2985	-	***	

Difference is significant but at a small grade: F calculated 5.03 slightly exceeded F tabulated at the 5% level (4.18) (Table 4). There is no significant difference between monogerm and multigerm beets in percent of aborted ovules. Thus, lower fertility of tetraploid populations is due mainly to the sterility of gametes; not to the abortion of fertilized ovules.

Fertilization and seed development in male-sterile lines. The diploid monogerm male-sterile lines pollinated by 2n and 4n populations developed diploid and triploid fruits, respectively.

In the diploid fruits derived from pollination by monogerm and multigerm diploid populations, mean percent of unfertilized ovules was higher (23.69) than in the diploid pollinators themselves (13.86). In the triploid fruits, derived from pollination of male-sterile plants by tetraploid pollinators, mean percent of unfertilized ovules was still higher (28.08) (Table 5). Several factors influenced such a decline in the effectiveness of fertilization in different matings. Analysis of variance indicated that difference between matings was significant and the biggest difference was between 2n and 3n matings. F calculated is 31.78, while F tabulated at the 5% level is 3.89, and at the 1% level 6.76 (Table 6). There is no difference in the percent of unfertilized ovules between monogerm and multigerm crosses, but the interaction (2n vs. 3n) x (multivs. mono) is highly significant. F calculated equals 17.80 against F tabulated at 5% 3.89, and at 1% 6.76 (Table 6).

In male-sterile lines, pollinated by 4n monogerm populations (3n fruits), percent of unfertilized ovules increased, in comparison with diploid matings, to 26.73 and 27.10. After pollination by the 4n multigerm populations, percent of unfertilized ovules was the highest 28.45 and 30.03 (Table 5). In other words, the effectiveness of fertilization was the lowest in matings in which tetraploid multigerm populations were used as pollinators.

There was also a significant difference between individual male-sterile lines. F is 7.75 against F tabulated at 5%, 2.05, and at 1%, 2.73. The lines F-61-562 and A-63113 had the highest percent of unfertilized ovules, and the lines A-61225 and A-61226 had the lowest (sum in all matings). Thus, the combined effect of different pollinators (diploid or tetraploid, monogerm or multigerm) and different responsiveness of the individual male-sterile lines influenced the effectiveness of fertilization in different matings.

Percent of fertilized and normally developed ovules was high in 2n fruits obtained from pollination of male-sterile lines by monogerm and multigerm populations (6231), although it was lower than in the 2n fruits of the open-pollinated diploid populations (74.09). In male-sterile lines pollinated by 4n populations (3n fruits), percent of normally developed ovules declined to 54.36 (Table 5). Analysis of variance for percent of normal ovules showed significant differences between matings, between 2n and 3n fruits, and between fruits obtained from pollination by monogerm and multigerm populations. The difference was especially highly significant for the interaction (2n vs. 3n) x (multi vs. mono). F calculated for this interaction equalled 53.27, and F tabulated was 3.84 at 5%, and 6.76 at 1%. Also highly significant was the difference in percent of normal ovules between 2n and

Table 5 ... Number and percent of unfertilized, fertilized normal and aborted ovules in 2n and 3n fruits in 8 male-sterile monogerm lines x by diploid and tetraploid monogerm and multigerm pollinators.

		Ovules	4,000 pe	r 8 male	-steril	le lines	in a mating	
	Unfer	tilized		Fertil	ized		Fertilized ormal+Aborted	Aborted
Matings .	Number	Poncont	Number	Percent	Abor		Number	Percent
	Muliper.	rercent	Number	10100110		. 02 00		
				2n mono	fruits	<u> </u>		
8 M.S.lines-m ₂ x 4-568-m ₂	1078	26.95	2430	60.75	492	12.30	2922	16.84
8 M.S.lines-m ₂ x S.L.C.91-m ₂	987	24.67	2421	60.53	592	14.80	3013	19.65
8 M.S.lines-m ₂ x 112-M ₂	909	22.73	2629	65.73	462	11.54	3091	14.95
8 M.S.lines-m ₂ x U.S.401-M ₂	817	20.42	2489	62.23	694	17.35	3183	21.80
Total (16,000 ovules) Percent	3791	23.69	9969	62.31	2240	14.00	12209	10.09
				3n mon	o-fruit	s		
8 M.S.lines-m ₂ x S.L.C.15-m ₄	1084	27.10	2379	59.48	537	13.42	2916	18.07
8 M.S.lines-m ₂ x Klein E-m ₄	1069	26.73	2513	62.82	418	10.45	2931	14.26
8 M.S.lines-m ₂ x 4-601-M ₄	1201	30.03	1996	49.90	803	20.07	2799	28.69
8 M.S.lines-m ₂ x 4-900-M ₄	1138	28.45	1808	45.23	1053	26.30	2861	36.81
Total (16,000 ovules) Percent) 4492	28.08	8697	54.36	2811	17.56	11508	24.43

Table 6... Analysis of variance for unfertilized ovules in 8 diploid malesterile lines pollinated by diploid and tetraploid monogerm and multigerm populations.

Course of	Cum of		V	Variance	F tal	oulated
Source of variation	Sum of squares	d.f.	Mean squares	ratio F	.05	.01
					,	I
Total sum						1L
of squares	236,593	319		-	-	- 15
Crosses	1,121,035	63	155.6623	3.22	1,42	1.62
Male-sterile lines	8,681,005	7	374.9781	7.75	2.05	2.73
Matings (male)	8,685,285	7	390.2638	8.07	2.05	2.73
Lines x matings	~	49	90.8169	1.88	1.42	1.62
2n vs. 3n	34,549,745	1	1,535.6281	31.78	3,89	6.76
Multi w mono	34,315,749	1	73.1531	1.51	3.89	6.76
(2n vs. 3n) x	•					
(Multi vs. mono)	17,349,631	1	861.3277	17.80	3.89	6,76
(2n vs. 3n) x lines	4,377,022	. 7	41.4781	<1	2.05	2.73
(Multi vs. mono) x						
lines	4,359,449	7	124.8817	2.58	2.05	2.73
Error		256	48.3828			

3n fruits. F was 41.24 against F tabulated 3.84 at 5%, and 6.76 at 1% (Table 7).

2n fruits obtained from pollination of male-sterile lines by monogerm and multigerm populations differed little in percent of normal ovules. Variation in different matings ranged from 60.53% to 65.73%. 3n fruits obtained from pollination by 4n monogerm populations were close in percent of normal ovules to 2n fruits (59.48 and 62.82). But pollination by 4n multigerm populations (3n fruits) decreased percent of normal ovules to 49.90 and 45.23 (Table 5).

The individual male-sterile lines differed significantly in percent of normal ovules. F was 5.51 against F tabulated 2.01 (5%) and 2.7 (1%) (Table 7). The lines A-61225, A-61226, and SLC 502 had the highest percent and the lines F-61-562 and A-63113 the lowest percent of normal ovules (sum from all matings). As already mentioned the same male-sterile lines differed in the lowest and the highest percent of unfertilized ovules. A direct negative correlation was observed: the higher percent of unfertilized ovules, the lower the percent of normal ovules, and vice versa. In the individual lines, percent of normal ovules in 2n fruits varied from 45.60 to 74.60 in 2n MS x m₂ crosses, and from 63.00 to 74.80 in 2n MS x M₂ crosses. In 3n fruits, percent of normally developed ovules in the individual lines varied from 55.00 to 71.80 in 2n MS x m₄ crosses, and from 27.80 to 55.40 in M₄ crosses (Tables 8, 9, 10, 11).

In all matings some fertilized ovules were aborted. In 2n fruits obtained from pollination of male-sterile lines by the diploid monogerm and multigerm populations, mean percent of aborted ovules was not high (14.00). In 3n fruits, obtained from pollination by monogerm tetraploids, percent of aborted ovules was practically the same as in 2n fruits, 10.45 and 13.42 in 2 matings. But when male-sterile lines were pollinated by 4n multigerm populations, percent of aborted ovules increased in 2 crosses to 20.07 and 26.30. Mean percent of aborted ovules for all kind of 3n fruits was 17.56 (Table 5).

Analysis of variance for aborted ovules indicated significant difference between matings, between 2n vs. 3n fruits and between other processes resulting from hybridization. The biggest significant difference was observed between multi vs. mono, for which F was 52.31 against F tabulated 3.84 at 5%, and 6.76 at 1% level. Also for the interaction (2n vs. 3n) x (multi vs. mono) the difference was highly significant. F calculated for this interaction equalled 37.97 and F tabulated was 3.84 at the 5% and 6.76 at 1% level. 2n fruits differed significantly in percent of aborted ovules from 3n fruits; F calculated was 18.02 against F tabulated 3.84 at the 5% level, and 6.76 at the 1% level (Table 12). When 2n fruits were compared with 3n fruits derived from crosses with monogerm tetraploids only, the difference in percent of aborted ovules between 2n and 3n fruits was insignificant. F calculated was 2.53 and F tabulated was 3.92 at the 5% level (Table 13).

A significant difference between individual male-sterile lines was not as high as the differences mentioned above. F calculated for lines was 4.73, while F tabulated was 2.01 at the 5% and 2.7 at the 1% level. Male-sterile lines SLC 502, A-61226 and A-63113 had the lowest and the lines U.I. 129 and SLC 91 had the highest percent of aborted ovules (sum from all matings). In the individual lines, percent of aborted ovules varied in 2n fruits from 7.20 to 30.20 in 2n MS x m_2 crosses, and from 3.00 to 24.80 in 2n Ms x m_2 crosses. In the 3n fruits, percent of aborted ovules varied in the individual lines from 6.00 to 19.20 in 2n MS x m_4 crosses, and from 16.20 to 35.40 in 2n MS x m_4 crosses (Tables 8, 9, 10, 11).

Seed harvested from monogerm male-sterile lines consists of fruits with normal and aborted ovules only. Flowers with unfertilized ovules do not develop into fruits and are lost. Mean percent of aborted ovules in the 2n seed harvested, which were derived from pollination by monogerm and multigerm diploid populations, was 10.09. 3n seed, derived from pollination of male-sterile lines by monogerm tetraploids had 14.26 and 18.07 percent of aborted ovules. These figures are in the limit of variation in the 2n seed. 3n seed, derived from crosses with multigerm tetraploids, had higher percent of aborted ovules, 28.69 and 36.81. The augmentation was caused by multigerm pollinators. The pollinator 4-900 gave especially high percent of aborted ovules (Table 5).

CONCLUSION

- l. Tetraploid open-pollinated populations differ from the diploid open-pollinated populations by a higher percent of unfertilized ovules, which is obviously due to the irregularities in meiosis and formation of inviable egg cells. The tetraploid populations did not exceed in this experiment the diploid populations in percent of aborted ovules.
- 2. The tetraploid multigerm populations differ from tetraploid monogerm populations by a higher percent of unfertilized ovules, and consequently by a lower percent of normally developed ovules.
- 3. Abortion of fertilized ovules that causes the inviability of seed was observed in diploid, triploid, and tetraploid fruits.
- 4. Diploid fruits derived from pollination of 2n male-sterile lines by 2n monogerm and multigerm populations, and triploid fruits obtained from pollination by 4n monogerm populations, did not differ in percent of aborted ovules.
- 5. Triploid fruits obtained from pollination of 2n male-sterile lines by multigerm tetraploid populations differed significantly from the diploid fruits in percent of aborted ovules. Data obtained give an important indication that the multigerm tetraploid populations used as pollinators for diploid male-sterile lines increase ovule abortion and lower the viability of 3n fruits. But, before the final conclusion may be drawn, more crosses

with multigerm tetraploids should be examined and the data for seed germination obtained. A cytological study should reveal the causes of this appearance.

- 6. Effectiveness of fertilization and the grade of ovule abortion is controlled, as shown by the analysis of variance, by both male and female parents. But the influence of pollinators was much more important in this experiment than that of male-sterile lines. The value of variance ratio (F) in significant differences is much higher for the processes caused by pollinators than the value of F for the differences caused by male-sterile lines.
- 7. To avoid possible variations caused by a year, or location, this study will be continued next year with a broader selection of material.

Table 7... Analysis of variance for fertilized normal ovules in 8 diploid male-sterile lines pollinated by diploid and tetraploid monogerm and multigerm populations.

				Variance	F tab	ulated
Source of variation	Sum of squares	d.f.	Mean squares	ratio F	.05	.01
Total sum of squares	1,144,603	319	-	-	=	L
Crosses	5,576,950	63	416.3313	3.65	1.32	1.3
Male-sterile lines	43,742,508	7	628.8389	5.51	2.01	2.70
Matings (male)	44,104,210	7	1,920.533	16.83	2.01	2.7
Lines x matings	-	49	171.084	1.50	1.45	1.65
2n vs. 3n	175,018,770	1	4,706.182	41.24	3.84	6.70
Multi vs. mono	174,545,978	1	1,751.232	15.35	3.84	6.7
Qn vs. 3n) x (Multi vs. mono)	88,135,814	ı	6,079.133	`53.27	3.84	6.7
(2n vs. 3n) x lines	21,982,886	. 7	125.0168	1.09	2.01	2.70
(Multi vs. mono) x lines	21,919,568	7	94.8383	0.83	2.01	2.70
Error	-	256	114.113	-	**	L

Table 8 ... Percent of unfertilized, fertilized normal and aborted ovules in 8 diploid male-sterile monogerm lines pollinated by diploid monogerm populations.

M.S.	lines - m	M.S. lines - m ₂ x 4-568-m ₂	2	M	M.S. lines m ₂ x S.L.C. 91-m ₂	S.L.C. 91	-m ₂
Ovules	s 500 per	Ovules 500 per 5 plants in a line	a line	Ovules	s 500 per 5 plants in a line	ants in a	line
erile			Fertilized	Male-sterile		Fer	Fertilized
lines Unf	Unfertilized	Normal	Aborted	lines	Unfertilized	Normal	Aborted
	Percent	Percent	Percent		Percent	Percent	Percent
S.L.C. 502	30.40	62.00	7.60	SL.C. 502	22,20	04.49	13.40
F ₁ 64-569 нз	21.60	70.00	8.40	F ₁ 64-569 H3	23.60	46.20	30.20
F-61-562 HO	33.60	20.00	16.40	F-61-562 HO	43.00	. 45.60	11.40
S.L.C. 91	19.20	65.00	15.80	S.L.C. 91	19.60	63.80	16.60
U.I. 129	29.29	09.64	21.20	U.I. 129	19.00	71.00	10.00
A-61225	25.20	61.80	13.00	A-61225	17.00	74.60	04.8
F ₁ A-61226	26.00	66.80	7.20	F ₁ A-61226	20.60	62.00	17.40
A-63113	30.40	60.80	8.80	A-63113	32.40	26.60	11.00

Percent of unfertilized, fertilized normal and aborted ovules in 8 diploid male-sterile monogerm lines pollinated by diploid multigerm populations. Table 9 ...

	M.S. lines - m ₂ x	, × 112-M ₂		E	M.S. lines - m, x U.S. 401 - M,	x U.S. 40	1 - M
					7		7
Ó	Ovules 500 per 5 plants in a line	plants in	n a line	Ovule	Ovules 500 per 5 plants in a line	ants in a	line
Male-sterile		Fert	Fertilized	Male-sterile		Fer	Fertilized
lines	Unfertilized	Normal	Aborted	lines	Unfertilized	Normal	Aborted
	Percent	Percent	Percent		Percent	Percent	Percent
S.L.C. 502	23.40	73.60	3.00	S.L.C. 502	21.60	00.49	14.40
F ₁ 64-569 H3	21.00	09*99	12.40	F ₁ 64-569 H3	19.40	65.20	15.40
F-61-562 HO	24.00	59.80	16.20	F-61-562 HO	22.80	55.60	21.60
S.L.C. 91	23.60	63.00	13.40	S.L.C. 91	22.80	63.20	14.00
U.I. 129	25.20	63.00	11.80	U.I. 129	17.40	57.80	24.80
A-61225	21.80	67.20	11.00	A-61225	21,40	68.20	10.40
F ₁ A-61226	15.80	74.80	0h*6	F ₁ -A-61226	18.00	04.99	15.60
A-63113	27.00	57.80	15.20	A-63113	20.00	57.40	22.60

Percent of unfertilized, fertilized normal and aborted ovules in 8 diploid male-sterile monogerm lines pollinated by tetraploid monogerm pollinators. Table 10....

M.S.	M.S. lines - m ₂ x S.L.C.15 - m ₄	x S.L.C.1	hш - 9	M	M.S. lines m ₂ x Klein E - m _µ	Klein E -	† _E
Male-sterile		500 per 5 plants in a line Fertilized	nts in a line Fertilized	Male-sterile	Ovules 500 per 5 plants in a line	lants in a line Fertilized	lized
	Unfertilized	Normal	Aborted	lines	Unfertilized	Normal Aborted	Aborted
	Percent	Percent Percent	Percent		Percent	Percent Percent	Percent
S.L.C. 502	26.20	64.20	09*6	SL.C. 502	23.00	68.20	8.80
F ₁ - 64-569 H ₃	28.00	29.60	12.40	F ₁ -64-569 H3	26.80	65.40	7.80
F-61-562 HO	28.60	60.20	11.20	F-61-526 HO	27.20	62.60	10.20
S.L.C. 91	29.00	55.60	15.40	S.L.C. 91	28.20	58.00	13.80
U.I. 129	26.40	55.00	18.60	U.I. 129	23.20	57.60	19.20
A-61225	23.00	58.40	18.60	A-61225	18.40	71.80	9.80
F ₁ A-61226	. 24.00	04.59	10.60	F1-A-61226	28.00	00*49	8.00
A-63113	31.60	57.40	11.00	A-63113	39.00	55.00	00*9

Table 11... Percent of unfertilized, fertilized normal and aborted ovules in 8 diploid male-sterile monogerm lines pollinated by tetraploid multigerm pollinators

M. S.	M.S. lines - $m_2 \times 4-601 - M_{\rm th}$	4-601 - M	#	M.S.	M.S. lines - m ₂ x 4-900 - M ₄	M - 006-h	+
Ovules	500 per 5 plants in a line	lants in	a line	Ovules	500 per 5 plants in a line	nts in a	line
Male-sterile				Male-sterile			
lines		Fertilized	lized	lines		Fertilized	lized
	Unfertilized	Normal	Aborted		Unfertilized	Normal	Aborted
	Percent	Percent	Percent		Percent	Percent	Percent
S.L.C. 502	31.80	52,00	16.20	S.L.C. 502	30.60	47.00	22.40
F ₁ -64-569 H3	00.04	36,80	23.20	F ₁ 64-569 H ₃	24.20	46.20	29.60
F-61-562-H0	31.40	49.80	18.80	F-61-562-H3	36.80	27.80	35,40
S.L.C. 91	28.20	52.60	19,20	S.L.C. 91	22.60	52.80	24.60
U.I. 129	24.60	49.20	26.20	U.I. 129	28.60	43.60	27.80
A-61225	. 28°40	49.20	22.40	A-61225	29.00	47.40	23.60
F ₁ A-61226	26.60	55.40	18.00	F ₁ A-61226	24,80	52.20	23.00
A-63113	29.20	54.20	16.60	A-63113	31,00	44.80	24.20

Table 12... Analysis of variance for fertilized aborted ovules in 8 diploid male-sterile lines pollinated by diploid and tetraploid monogerm and multigerm populations.

Source of	Sum of		Mean	Variance ratio	F tabu	lated	
variance	squares	d.f.	squares	F	.05	.01	
var rance	54442						
Total sum of squares	108,365	319	-	-	-	-	
Crosses	469,433	63	224.7575	3.97	1.32	1.30	
Male-sterile lines	3,263,915	7	267.2853	4.73	2.01	2.70	
Matings (male)	3,504,319	7	1,125.871	19.91	2.01	2.70	
Lines x matings	-	49	89.95	1.59	1.45	1.65	
2n vs. 3n	12,919,321	1	1,018.8781	18.02	3.84	6.76	
Multi vs. mono	13,229,665	1	2,958.5281	52.31	3.84	6.76	
(2n vs. 3n) x (Multi vs. mono)	6,868,153	1	2,147.6282	37.97	3.84	6.76	
(2n vs. 3n) x lines	1,677,121	7	177.0424	3.13	2.01	2.70	
(Multi vs. mono) x lines	1,703,435	7	87.9067	1.55	2.01	2.70	
Error	-	256	56.556	-	-	-	

Table 13... Analysis of variance for 2n and 3n fruits in 8 male-sterile lines pollinated by 2n monogerm and multigerm and by 4n monogerm populations.

Source of variance	Sum of squares	d.f.	Mean squares	Variance ratio F	F calculate
Total sum of squares	35,347	159	-	~	_ [[
Crosses	150,433	31	-	-	- 1
2n vs. 3n	2,087,081	1	104,007	2.53	3.92
Error		128	41.0969	-	-

PART III

Progress reports of research conducted at
Crops Research Laboratory, Utah State University, Logan, Utah
by the
Staff of Sugarbeet Investigations, ARS-USDA
in cooperation with:

Utah Agricultural Experiment Station and Beet Sugar Development Foundation, Fort Collins, Colorado

Research was conducted by:

G. K. Ryser
J. C. Theurer
E. H. Ottley

C. L. Schneider D. L. Mumford

Myron Stout

A. M. Murphy

CURLY-TOP SCREENING TEST, THATCHER, UTAH

Albert M. Murphy

Introduction

In 1966, the curly-top screening work was expanded from approximately six acres in 1965, to 16 acres, more or less, in 1966. Expansion of the curly top nursery was primarily for the purpose of accomodating additional material furnished by the sugar companies, primarily The Holly Sugar Corporation for which they provided additional funds.

The method used to develop the curly top artificially in the curlytop nursery was similar to the method described in the Sugarbeet Research 1965 Report and in earlier publications.

The spring and early summer of 1966 can go down in history as the most adverse as far as weather was concerned in most of the intermountain beet growing territories. Well established agronomic practices of getting the sugarbeet crop off to a good start failed in numerous cases as nature did not cooperate. Extreme variations in temperature and drying winds caused the loss of original stands, making replanting necessary in many instances in all territories.

Some conditions such as temperatures low enough to kill emerging beet seedlings do not, for example, especially hurt the beet leafhopper. On the other hand, the sudden switch to high temperatures is extremely hard on sugarbeet seedlings, but is relatively favorable for the development of the beet leafhopper.

Since the ingredients for the artificial creation of the curly-top epidemic in the beet breeding field are well-known, it was not surprising to the writer that sooner or later in the course of time, these factors would be synchronized under natural conditions to the point where damage by curly top would indeed be alarming. 1966 proved to be that year. It is fantastic that the combinations of certain factors will put a specific beet field under such stress that it literally creates a vacuum in which curly top takes over and puts on a performance equal to the havoc displayed a quarter of a century ago.

Actually, the curly-top damage did not cause a great reduction in yield over an entire factory district. However, it certainly caused serious losses to individual growers who, through no fault of their own, set up an ideal situation for a curly-top epidemic. For example, probably the most serious damage was a field inspected near Pasco, Washington, in early September, which yielded 32 tons per acre in 1964, and was estimated to yield five tons per acre in 1966.

Curly-Top Screening Test, Thatcher, Utah

In the Bear River Valley of Utah where the curly-top nursery was located (Thatcher), it was determined by survey that the leafhopper population was very low in the local breeding area which normally contributes leafhoppers to the cultivated area. The writer, therefore, worked closely with Dr. George F. Knowlton, Utah Extension Entomologist, who was following the migration of the beet leafhopper from the southern breeding toward the north. On May 4, on a survey, Dr. Knowlton and the writer determined that the first leafhopper of the migration had reached as far north as Elberta, Utah (the area west of Utah Lake).

On June 7, the writer found the first curly-top symptoms in the susceptible variety, Old Type, which had been planted April 27. Several beet leafhoppers were noted, but were by no means numerous.

Results and Conclusions

Because the test beets were very small at approximately the time the beet leafhopper entered the field and because of the extremely high temperatures which developed following a most unfavorable spring, the test material was put under great stress and only the most resistant sorts survived the season. One very interesting observation was made that none of the nearby commercial beet fields had more than two or three percent curly top because they were planted at the normal time and were lucky in escaping the hazards of a most unfavorable spring. However, as mentioned earlier, in any beet-growing area where curly top is a potential threat, growers who unwittingly followed the requirements of obtaining a curly-top exposure indeed suffered great damage just like the curly-top nursery at Thatcher.

Curly-top information obtained for all sugarbeet breeders was sent to them. In addition to obtaining curly-top information on varieties, selections were made from varieties in which there was some hope that they would produce seed. In fact, the curly-top exposure was so drastic that it was not a matter of separating the men from the boys, but rather, the giants from the men.

Two especially important people visited the curly-top nursery in 1966: (1) Gordon E. Russell, Plant Breeding Institute of Cambridge, England, and (2) Dr. H. Rex Thomas, Director, Crops Research Division. Both were impressed.

Variety Tests, Logan, Utah, 1966

by George K. Ryser, J. C. Theurer, and Myron Stout

- SOIL TYPES: Silt loam on North Farm, a silt clay loam on the South Farm, and a sandy loam on the Farmington Farm
- PREVIOUS CROPS: North Farm 1963 to 1965 fallowed with a few beets on part in 1963; South Farm 1965, safflower, in 1964 and 1963 alfalfa; Farmington Farm 1965, tomatoes, 1964, peas.
- FERTILIZER: All fields had approximately 300 pounds/acre, 16-20-0 harrowed in before planting. South Farm obtained an additional side dressing of ammonium sulfate of 200 pounds/acre applied June 30. Farmington Farm also received a side dressing of 200 pounds ammonium sulfate, applied June 27, 1966.
- PLANTING DATES: North Farm May 2-3, 1966; South Farm May 3, 1966; Farmington April 5, 1966
- THINNING DATES: North Farm June 6-7, 1966; South Farm June 13, 1966; Farmington May 17, 1966
- IRRIGATIONS: North Farm sprinkled after planting, before and after thinning, and on a weekly schedule from June 20, 1966 until two weeks prior to harvest. South Farm and Farmington furrow irrigations approximately on a weekly schedule after thinning--some deviation due to watering schedules
- CURLY TOP: Light symptoms were noted at all farms
- HARVESTED: North Farm October 10-14, 1966; South Farm October 17-18, 1966; Farmington Farm November 3-4, 1966

Tops were removed with a roto-beater and scalped with tractormounted scalping tools, supplemented by long-handled hoe trimming to assure a complete topping job. Beets in each row of
each plot were counted as they were thrown into the weighing
basket after lifting with the harvester. Ten beet samples were
obtained at random from each row of the two-row plots for sugar
analysis and all beets in the plot were weighed to determine
root yield.

Experimental Design.--All plots were two rows wide except Test 4 which was planted with an alternate row of the same variety throughout the test, 22 inches apart, with a harvested plot length of 35 feet. Tests 1 and 5 were planted as balanced lattice with 8 and 6 replications, respectfully. Test 2 was a split plot randomized block with 8 replications and 30 entries. Test 3 and 4 were randomized blocks, 4 replications with 17 and 25 treatments, respectively.

TEST 1

Variety Test 1 was set up to evaluate the performance of 46 double cross restorer hybrids. Each entry consisted of a (CMS X Type-0) single cross pollinated by one of six (CMS X $R_{\rm f}$) lines. Three additional varieties were used as checks in the test: 1114, a high yielding hybrid in past years' trials; a commercial variety from Amalgamated Sugar Company; and a commercial from Utah-Idaho Sugar Company.

Table 1 shows the results with entries listed in descending order of gross sugar per acre. The check variety, 1114, led all other entries for gross sugar. Significant differences were observed but not between the top 17 varieties for this character. As noted in previous years, Ovana lines, (308, Ov. 1, Ov. 3), and 3611 crossed to some of the best local material (SLC 128, SLC 129, and CT 9), gave the highest yields. East Lansing inbred, EL 31, Amalgamated Sugar Company, AI-1, and O0.5, a derivative from an American Crystal Sugar Company line, were also parents in the better yielding hybrids.

Lines with 3611 (see 1965 Research Report) again showed the best sugar percentage, with entry 11, [(129 X 3611) X (CT 9 X R_f)], producing 15.87% and entry 41, [(AI-1 X 3611) X (C515 X R_f)], producing 15.74%. These were not significantly different from the first 13 entries ranked according to sugar percentage. All six male combinations were among the highest 13 entries. The range in sugar percentage was 2.21% with all three checks being near the mean of the test. The lowest sugar was produced by entry 8, [(308 X 00.5) X (CT 9 X R_f)]. All combinations with (308 X 00.5) as a female were significantly lower in sugar percent.

Entry 4, [(308 X 00.5) X (503 X R_f)], was significantly the poorest variety quality-wise. Entry 16, [(AI-1 X 503) X (128 X R_f)], had the lowest impurity index but was not significantly better than 19 other hybrids.

Three restorer hybrids were significantly better in gross sugar; four were significantly better in tons per acre; and one was significantly better than the best commercial check variety.

Significant differences were observed for the average performance of the six single cross restorer pollinators (Table 2). Hybrids with (SLC 128 X R_f) and (SLC 129 X R_f) pollinators had the highest gross sugar. The average yield of (C515 X R_f) hybrids was lower than the average of the five other groups. (FC 503 X R_f) and (SLC 128 X R_f) pollinators averaged 15.2%, the highest sucrose percentage. Hybrids with the (FC 503 X R_f) pollinator also were the poorest in quality as measured by the impurity index.

Table 2. RESTORER HYBRIDS, VARIETY TEST 1, NORTH FARM, LOGAN, UTAH, 1966

Means of Six Restorer Pollinators

Male parent	No. crosses	Gross sugar	T/A	Sucrose	Index
FC 503 X R _f	5	6641	22.70	15.2	436.7
CT 9 X R _f	8	6935	23.27	14.9	392.9
128 X R _f	5	7054	23.27	15.2	395.6
129 X R _f	9	7075	23.72	14.9	409.8
C515 X R _f	14	6541	21.61	15.1	403.9
AI-1 X R _f	5	6611	22.29	14.8	400.4
Mean	8	6826	22.81	15.0	405.4
Calculated F	Value	5.50**	7.72	4.05**	3.70**

	f		ı																						
Lattice		Av. Beets per plot	79	77	80	72	71	81	73	75	73	74	75	79	75	72	89	71	71	75	72	89	75	79	29
		×	1288	1770	1508	1486	1687	1297	1313	1600	1410	1582	1610	1408	1328	1.373	1355	1424	1496	1542	1283	1223	1460	1303	1410
Balanced	PPM	Na	96	114	134	142	161	121	101	116	130	138	176	122	97	91	115	129	143	107	95	128	118	101	102
		Amino	185	246	219	179	202	210	191	207	147	205	160	165	160	148	214	190	221	192	170	193	232	180	172.
	ŀ	Impuricy index	361	475	442	408	475	380	358	435	354	977	795	367	341	343	394	403	434	415	350	356	410	346	380
		rercent	15.02	5	4	4.8	4.3	5.2	u)	u)	u)	√ T	13,66	u)	5.6	5.3	5.1	14.72	5.0					15.68	
	yield	lons	26.01	25.10	26.10	24.93	25.52	24.09	23.61	24.17	23.87	24.50	26.11	23.06	2.6	2.8	3,1	23.76	3.2					21.70	
	O	Gross	7810	7764	7655	7435	7359	7334	∞	∞	0	7	7152	0	7087	7042	7007	6995	8269	S	S	∞	3	6819	0
49 Varieties		Description	1114 Check	(308 X 3611) X 128	(308 X 09A) X 129	×) X 12	(AI-1 X EL 31) X 129	(129 X Ov. 1) X 503	(AI-1 X 672) X 129	(CT 9 X EL 32) X 128	(308 X EL 31) X 129	(308 X 00.5) X CT 9	(AI-1 X 129) X 515	(308 X 00.5) X 503	W	(S3317 X Ov. 3) X AI-1	(128 X Ov. 3) X CT 9	(AI-1 X Ov. 3) X CT 9	(308 X 129) X CT 9	(308 X CT 5B) X CT 9	(AI-1 X Ov. 3) X 129	51	2 X CT 9A) X C51	(129 X Ov. 1) X CT 9
		Variety	01	17	28 (15	20	02 (25 (6	26	08	29	03	Ŭ	Ŭ	13 (14			Ĭ	Ŭ	30 (07 (

(Continued on next page)

2		ts	t1	-																												1	1	1	}	
Page		Av. Beets	per plo	72	71	71	72	78	78	77.	† ·	64	/3	80	73	74	ı	0/	69	67	72	74	7.1	89	92		72	72	73	65	72	73	2.7		10.52	2,89
			×	1477	1687	1306	1591	1250	1429	1005	1000	1407	1385	1332	1304	1524	000	1430	1512	1463	1313	1394	1378	1430	1426	68	1475	1470	1281	1772	1675	1461	49.7	140	09.6	96.6
	PPM		Na	120	166	100	130	122	131	169		96	13/	142	127	112	106	100	156	143	112	114	135	137	149	149	119	152	89	138	114	125	10.7	30	24.11	4.08
137)		Amino	Z	168	203	150	170	169	235	231	1 -	140	254	190	168	168	100	100	236	175	178	189	206	245	201	220	263	173	174	216	175	193	17.6	50	25.81	2.83
d from page 137)		Impurity	index	403	477	336	406	350	419	562	1 1 1	551	44 I	380	364	398	386		458	401	356	369	412	428	414	493	436	406	338	490	429	450	19.2	54	13,40	6.67
(Continued		Percent	sugar	14.41	4.	.2	15.24	0	3	, ,	0	17.05	0 5	٦,	9	0	-	•	9.	∞	.2	15.55		5.2	14.91	14.12		14.68	5.		4.	15.00	0.19	0.54	3.57	5.76
ih, 1966	yield	Tons	beets	23.49	23.55	22.05	22.05	22,17	21.76		•	20.00	•	0			Ľ	• 	•	∞	21.35	.5	21.67	0.8	1.2	.3	20.08	. 2	∞	.3	9	22.70	0.96	2.71		2.81
Logan, Utah,	Acre	Gross	sugar	0089	6780	6223	6728	7299	6673	9799	6602	6500	0000	0000	6564	9259	6530	6513				6390	6388	6382	6353	6539	6260	6231	6203	5929	5861	0089	295	833	12.26	2.20
1. Variety Test 1, Lo		bescription		X CT5B)	8 X 00.5) X	1 X 503) X	X 00°2) X	X EL 32) X	Ŋ	(308 X 00,5) X 503	Y 3611) Y	ommorcial		O W OO E) W AT	x (c.00 x 8	X 51	Amaleamated Comm.	17 0 11	CIC X (16 44 A	X Ov. 3) X AI-	317 X Ov. 1) X	-1 X 503) X 51	-1 X	0v. 3) 51	6	(308 X 00.5) X AI-1	1 X Ov. 1)	X 129) X 5	CT 5A) X 1	X 00.5)	X 51	Mean	. E. of Mea	Sig. Diff. 5%	. V.	Calculated F (Adj.)
Table		Variety	code	22	31	16	21	47	38	70	11	1 0	0 0	2.5	43	36	67	7.0) t	45	745	35	24	34	37	777	90	33	18	05	32					

Test 2

The purpose of Test 2 was to compare the performance of restorer and non-restorer hybrids from the same inbred lines. A split plot, randomized block design was used with main plots of 15 CMS hybrids and sub-plots of two pollinators, (129+a X R_f) and (129 CMS X R_f). The sub-plot was two rows wide, the whole plot four, planted in 22 inch rows, 35 feet long.

A ten beet sample was taken from each row of each plot for sugar and impurity analysis. Percent sugar was determined by use of a saccharimeter, amino N, Na, and K by the use of a spectrophotometer, gross sugar, tons per acre, and impurity index were calculated.

Females (whole plots) were significantly different from each other for gross sugar, tons per acre, sucrose percent, and impurity index at the North Farm (Table 1). There was no difference between the average performance of the pollinators for these measurements with the exception of the impurity index. Individual impurity measurements, however, were highly significant for both females and males (Table 1A). Comparison of individual females crossed to the two pollinators showed differences in amino N, Na, and impurity index, but not in the other characters.

At the South Farm significant differences for both males and females were observed for gross sugar, tonnage, sucrose percent, and impurity index, with exception of the latter two measurements for males (Table 2). The mean performance of the females for K was also different (Table 2A). CMS-R $_{\rm f}$ (cytoplasmic male sterile X restorer) hybrids with the same female generally had higher tonnage and less sucrose percent than counterpart +a-R $_{\rm f}$ (Mendelian male sterile X restorer) hybrids with the identical female parent.

Males, females, and the interaction of males X females, showed significance with the exception of males for tonnage in the Farmington test (Tables 3, 3A). The top producer and significantly so, was the CT 9 X EL 31 female crossed with $\pm a-R_f$ male.

The performance of the 30 hybrids when locations are combined, and the combined analysis of variance are shown in Tables 4 and 4A. Highly significant differences were noted for locations for every character measured. At Farmington, hybrids averaged 10,983 pounds of gross sugar, while at the North and South Farms, near Logan, the averages were respectively 6,742 and 5,472 pounds. Beet weight showed a similar relationship of 37.8, 22.7, and 18.0 tons per acre. This result could very well be attributed to the fact that the Farmington test had six weeks longer growing season. Sucrose percent for the South Farm was 15.2%, for the North Farm 14.8%, and for Farmington 14.6%. The impurity index, amino N, Na, and K showed similar effects in that the South Farm was lowest and Farmington highest in impurity factors.

Female performance for all measurements was highly significant as indicated by the Analysis of Variance, Tables 4 and 4A. The two pollinators on the other hand failed to show differences in gross sugar and tons per acre yield.

Females performed differently at the three locations for gross sugar and tonnage, while males showed location interaction significance for every measurement except percent sucrose (Tables 4, 4A, and 5).

The most interesting comparison in this variety trial is the performance of restorer versus non-restorer pollinators. A summary of comparisons between the two pollinators is given in Table 5. The gross sugar for CMS-R_f was greater than that for +a-R_f at the North Farm, while at Farmington, it was vice versa. Averaged over the three locations there was no significant difference. CMS-R_f had greater tonnage at the North Farm, but there was no significance in the combined averages of the three locations. At Farmington, sucrose percent for the +a-R_f, was significantly higher than for CMS X R_f, and accounted for significance in the average of the three locations for this character. Significant differences were consistently noted at two locations, the North Farm and Farmington, but not at the South Farm for impurity measurements. The CMS-R_f pollinator had the lowest impurity index and was lower in N and K, and higher in Na than the +a-R_f male.

This test is being repeated in 1967 to acquire another year's data regarding possible differences between restorer and non-restorer hybrids in sugarbeets.

PERFORMANCE OF CMS-RESTORER VERSUS MENDELLAN-RESTORER HYBRIDS TEST 2, NORTH FARM, LOGAN, UTAH, 1966 8 & 16 Replications Respectively Table 1.

مامون	o & 10 Nepticarions	Cri	Gross snoar		Tons	ner	acre	Perc	Percent sucrose	rose		Tndex	
No.	Description	+a	SAS	Mean	+ +	CMS	Mean	+a	CMS	Mean	+a	CMS	Mean
14	AI-1 X Ov. 3	7,087	7,342	7,215	23.41	24.28	23.84	15.06	15.01	15.04	407.5	356.6	382.1
90	AI-1 X CT 5B	6.954	7,072	7,013	23,30	23.45	23,38	14.93	15.05	14.99	425.8	370.5	398.1
01	AI-1 X C672	6,719	7,280	7,000	23.07	25.14	24.11	14.55	14,48	14.51	475.8	450.0	6.794
10	AI-1 X FC 503	6,523	6,395	6,459	22,16		21.98	14.66	14.66	14,66	407.5	423.1	415.3
	AI-1 X Line 289	6,389	6,535	6,462	21,00	21,11	21,06	15,16	15.46	15,31	437.0	444.3	441.6
	AI-1 X EL 31	6,359	6,287	6,323	21,31	21,13	21,22	14.94	14.90	14.92	472.1	415.3	443.7
04	308 X EL 31	7,217	6,738	6,977	24.93	23,35	24.14	14,46	14.41	14.43	515.6	468.0	491.8
15	308 X CT 9A	7,088	7,317	7,203	24.90	24.66	24.78	14.81	14,81	14.51	487.0	422.9	454.9
	X CT	6,751	7,141	9 7 6 9 9 4 6	23,39	25,13	24.26		14.19		417.6	438.5	428.1
05	308 X Line 289	5.794	6,123	5,958	19,29	19.94	19.61	14.99		15,15	403.6	455.6	
07	CT 9 X Ov. 3	6.978	7.200	7.090	23.49	24.43	23,96	14.85	14 73	14. 79	1, 001,	7.28 1	α ας./
03	6	6,616	6,815	6,715	20.08			14,99	15.08	15.03	406.9	356.8	383,3
11	9 X FC	6,570	6,723	6.647	•		22.06	15,15	14,98	15.06	368.8	404.6	386.7
02	129 X CT 5A	6,565	6,293	6,459	21.80	21,30	21,55	15.04	14.74	14.89	387.8	353.8	370.8
80	FC 502 X 00.5	6,940	6,451	969,9	23.14	21,83	22.48	15.01	14.79	14.90	439.9	396.9	418,4
Mean	Mean All Females	6,703	6,781	6,742	22.60	22.84	22.72	14.83	14,84	14.83	432.3	412.3	422.3
Sig.	. Difference: 5%											1	
Males	s Same Female	SN	ro		SN	S		SN	S		46.7	.7	
Females	ıles			700			1.07			0.42			46.2
Males	S	SN	***		SN	S		SN	23		12	.1	

		**	**		 **	**			-
	[Zi		4.31**		10.99	2.67**			
	Mean Sq.	36.94 X 10 ³	18.49 X 10 ³	42.91 X 10 ²	24.04 X 10 ³	58.46 X 10 ²	21.86 X 10 ²	53.28 X 102	
	Ţ	9.58**	3.71**		NS	2.62**			
	Mean Sq.	3,494	1,351	0,365	0.007	0.235	0.000	0.384	
ore	뇬	5.81**	4.57**		SN	SN			
Variance Table	Mean Sq.	45.04	35.42	7.75	3.50	4.01	2.80	8.05	
	ഥ	5.17**	2.16*		SN	NS			
	Mean Sq.	50.54 X 105	21.17 X 10 ⁵	97.81 X 104	36.01 X 10 ⁴	37.56 X 104	24.91 X 104	80.60 X 104	
	DF	7	14	98	1	14	105	239	
	Source Variation	Replications	Female	Error (A)	Male	Male X Yemale	Error (B)	Total	

Re I

	F Mean Sq.	e.80**	2.89* 99.03	40.23	9.28**	NS 33.12		103 52,24
a.	F Mean Sq.	15.02** 15.06 X	2.70** 64.08 X	22.13 X	18.62** 86.52 X	1.83* 11.83 X 10 ³	93.20 X	22.39 X
Variance Table	Mean Sq.	NS 76.31 X 10 ³	50** 13,73 X 103	50.80 X 10 ²	53** 23.17 X 10 ³	22,74 X 10 ²	12,44 X 10 ²	58.99 X 10 ²
	Mean Sq. F	102	4.	102	15	e .	102	55.87 X 10 ²
	Source Variation DF	Renlications 7	Tomalo 14	(4)		Male X Female 14		(4)

Table 2. PERFORMANCE OF CMS-RESTORER AND MENDELIAN-RESTORER HYBRIDS, SOUTH FARM, LOGAN, UTAH, 1966 8 & 16 Replications

	8 & 16 Replications	tions			E			ŗ				7. 30.	
Code			Gross sugar	- 1	Tous	익	re	rerce	Percent sucrose	ose -		Tugex	
No.	Description	+a	CMS	Mean	+a	CMS	Mean	+a	CMS	Mean	 a	CMS	Mean
12	AI-1 X Line 289	9 5488	5975	5732	17.79	19,40	18.59	15.49	15,46	15.48	339.6	337.9	338.8
90	AI-1 X CT 5B	2486	5997	5741	17.90	19.76	18,83	15,35	15.17	15.26	310.4	308.0	309.2
60	AI-1 X EL 31	5102	5171	5136	16.74	16.73	16.73	15,25	15.46	15,35		306.9	304.1
01	AI-1 X C672	5045	4776	4910	16.48	16.15	16,31	15,33	14.81	15.07	343.3	358.4	350.8
14	AI-1 X Ov. 3	4762	5516	5139	15.80	17.80	16.80	15.09	15.48	15.28	320.8	285.6	303.2
10	×	4639	4802	4720	15.31	15.92	15.62	15.15	15.05	15.10	298.8	327.4	313,1
15	308 X CT 9A	5873	5965	5919	19,93	19,99	19,96	14.71	14,95	14.83	336.8	342.5	339.6
13	308 X CT 5B	5790	6301	6045	19,13	20.95	20.04	15,11	15.07	15.09	324.6	310.9	
04	X EL	5438	4064	5171	18,21	16,31	17.26	14.88	15,00	14.94	334.8	316,5	325.6
05	×	4811	5114	4963	15.61	16.77	16.19	15,34	15.24	15.29	311.1	316.6	313.9
11	9	5781	5591	5686	18,88		18.78	15,35	15.04	15,19	303.9	322.6	313,3
07	CT 9 X Ov. 3	5627	7097	6362	18,25	23.25		15.41	15,30	15,36	370.6	345.8	358.2
03	CT 9 X EL 31	5397	5171	5284	17.46	18,80	17,13	15.41	15,36	15,39	290.1	300.3	295.2
02	129 X CT 5A	4815	4678	4747	15,33	15,16	15,26	15.70	15,39	15.54	292.5		311,4
80	FC 502 X 00.5	6437	6614	6526	21.22	21.96	21,59	15,15	15.05	15.10	343.8	321.3	332.5
Mean	Mean All Females	5366	5578	5472	17.60	18,38	17.99	15.25	15,19	15.22	321.5	322.1	321.8
Sig.	Difference: 5%												
Males	Same Female	752	752.0		2,39	6		0.31	1		37	•2	
Females				432.0			1.43			0.17			38.9
Males		192	192,5		0.61	1		0.08	8			SN	

				Variance Table	Table			
Source Variation	DF	Mean Sq.	ĮĽ.	Mean Sq.	Ţ	Mean Sq.	ĮŢ.	Mean Sq. F
Replications	7	10.61 X 106	7.11**	118,31	7.26**	1,358	5.67**	21.13 X 103 6.97**
Female	14	52.94 X 10 ⁵	ന	61,50	3.77**	0,618	2.58**	54.44 X 102 1.80*
Error (A)	98	14.92 X 10 ⁵		16,30		0.239		30,31 x 10 ² .
Male	1	27.05 X 10 ⁵	4.78*	35,81	6.27**	0.210	SN	19.50 MS
Male X Female	14	98.26 X 10 ⁴		10,26	1.80*	0.214	2,20*	16.87 x 10 ² NS
Error (B)	105	56.58 X 10 ⁴		5.71		0.097		13.88 X 102
Total	239	15,50 X 10 ⁵		17.01		0.230		28.89 X 10 ²

Table 2A. PERFORMANCE OF CMS-RESTORER AND MENDELIAN-RESTORER HYBRIDS, SOUTH FARM, LOCAN, UTAH, 1966 8 & 16 Replications

														-	. 14	+4	-						
ot	Mean	72.3	67.4	66.7	73.9	63.5	63.4	73.5	6.69	67.4	68.4	7 27	1.00	69.7	4.89	67.2	67.7	4.89			6.0		
Beet count	CMS	74.1	69.2	0.89	75.4	65.9	7.49	75.6	70.5	67.5	72.0	0 0	7.60		69.2	0.69	66.7	69.5	t .	9		7	
Be	+a	70.5	9.59	65.5	72.5	64.1	62.5	71.4	69.2	67.4	64.7	1 63	1.20		67.5	65.5	68.7	67.2		9.9		1.7	
	Mean	1287.4	1334.7	1257.0	1213,1	1512.1	1267.8	1327.7	1354.2	1287.9	1269.8	1,0,1	1404.	1301.1	1208.8	1346.2	1381,3	1316.9			116.2		
×	CMS	1290,4	1334.6	1238.4	1275.7	1510.2	1305,4	1293.7	1362.2	1226.6	1263.6	17.97. 5	1444	1318.0	1247.1	1380.6	1317.6	1315.9		107.1		SN	
	+a	1284.5	1334.9	1275.6	1200.5	1513.9	1230,2	1361.7	1346.1	1349.2	1276.0	1303 7	1001	1284.1	1170.5	1311.9	1445.0	1317.9		107			
	Mean	104.0	113,4	114.8	118,3	126,4	1111.0	101.5	147.9	118.8	103.8	165 3	100	93.4	98.1	92.8	106.7	114.4			37.6		
Na	CMS	113.6	115,3	118.6	126.8	130.1	125.5	9.66	160,1	128.0	105.4	17.0 0	0.001	102.3	99.3	105.4	104.8	118,4		0		S	
	+a	7°76	111.5	110.9	109,9	122,8	8.96	103.4	135.6	109,5	102,3	170 5	0.00	83.5	97.0	80°3	108.5	110.4		48.0		SN	
	Mean	1111.7	149.8	107.6	120.6	106.8	115.8		111,4	7	122.1	130 0	1000 L	110.5	116,1	113.9	118,1	118.9			NS		
Amino N	CNS	102.6	151,9	91.1	121.9	104.4	121.3	109.8	113,8	122.1	126.6	123 1	1.0.1	118.3	111.4	125.1	115,8	117.3					
	+ a	120.8		124,1	119,3	109.1	110.3	112.6	109.1	123.0	117.5	156 7	0 7	114.8	120.9	102.6	120.5	120.6		SN		NS	
	Description	AI-1 X CT 5B	AI-1 X Line 289	AI-1 X Ov. 3	AI-1 X EL 31	AI-1 X C672	AI-1 X FC 503	×	308 X CT 9A	308 X EL 31	308 X Line 289	0		y x FC	CT 9 X EL 31	129 X CT 5A	FC 502 X 00.5	All Females	Difference: 5%	s Same Female	les	S	
Code	No.	90	12	14	60	01	10	13	15	04	02	0.7	7 -	11	03	02	80	Mean	Sig.	Males	Females	Males	

Variation DF ations 7	ean Sq.							
Replications 7 66		F	Mean Sq.	Ē4	Mean Sq.	Ľ	Mean Sq.	ſΞ
17,	6648.8	5.00**	10,61 X 10 ³	3.75**	16.71 X 104	6,18**	323.71	4.42**
	2181.7	SN	63,05 X 10 ²	2,22*	97.32 X 10 ³	3.60*	158.02	2,16*
Error (A) 98 13	1329,1		28,32 X 10 ²		27.05 X 103		73,28	
Male 1 6	0.099	SN	37,68 X 10 ²	SN	22,62 X 10 ²	SN	312,82	7.14**
Male X Female 14 9	939.5	SN	14.89 X 10 ²	NS	16,39 X 103	SN	32,86	SN
Error (B) 105 780.1	780.1		23,17 X 10 ²		11,47 X 10 ³		43,83	
Total 239 12	268.0		29.62 X 10 ²		27.69 X 10 ³		71,28	

PERFORMANCE OF CMS-RESTORER VERSUS MENDELIAN-RESTORER HYBRIDS TEST 2, FARMINGTON, UTAH, 1966 Table 3.

8 & 16	Replications Ke	Kespectively Gros	U	no.	TOT.	nor	2000	Darce	ont cur	000		Indov	
ע		-1	USS SUBAT	1	10113	124	177	בעדט	rercelle sacrose	1000		THEE	
No.	Description	+a	CMS		<u>+a</u>	CMS	ଖା	+a	CMS	Mean	+a	CMS	Mean
2	(AI-1 X EL 31)	11,184	11,338		37.25	37,41	د .	15.05	15.18	15,11	510.5	462.0	486.3
2	(AI-1 X Ov. 3)	11,470	10,812		38.84	36.76	∞	14.79	14.71	14.75	500.9	439.4	470.1
7)	(AI-1 X Line 289)		10,517		36,48	34.49	4.	15,33	15.26	15,29	386.3	522.0	504.1
. 2	(AI-1 X C672)	10,857	10,459		38.54	38.44	38.49	14.08	13,60	13,84	558.5	585.4	571.9
7)	X CT	10,538	10,641		36,53	38.09	.3	14.44	13,94	14,19	495.0	504.0	499.5
2	×	07666	10,149	10,045	33,85	34.13	6.	14.71	14.91	14.81	444.8	431.5	438.1
	Ę	11 023	11 600		7,7 63	/,1 58	//2 10	1/, 00	17, 06	17, 03	505	569 1	٥
۲	(308 X CI 3B)	11,923	11,070		42.03	41.00	44.010	10.00	14.00	10.00		707	ô
٢	X C.I.	11,385	11,910		40.99	43.49	47.24	13.89	13./1	13.80		571.6	0
9	(308 X EL 31)	11,344	10,791		38.74	37,30	38.02		14.49	14.56	592.1	544.5	568.3
	308 X Line 289)	9,953	10,052	10,002	33.04	33,53	33.28	15.09	14.99	15.04		475.9	5.
9	(CT 9 X EL 31)	12,438	11,740		45.09	40.84	41.46	14.79	14,39	14.59	527.5	558.4	545.9
. 9	9 X Ov.	11,356	11,230		38,51		38.19	14.74	14.83	14.78	487.3	476.3	481.8
(CT		10,266	10,435	10,351	34.70	35.96	3	14.78	14,48	14.63	497.3	488.3	492.8
5	(120 Y CT 54)	11 378	11 508		39.81	7.0 5.0	70 16	17, 28	17, 31	17, 29	1 22/	0 047	2 727
しき	20 00 00 00 00 00 00 00 00 00 00 00 00 0	10 063	10,070		70.76			17. 80	17, 06	17, 02	7 005	7.07	0.10.7
-1	(FC 302 A 00.3)	11 071	10,017	10,471	27 01	27 61	37 76	14.00	14,00	17, 57	516 8	400° I	511 9
Mean	- 1	170611	10,070	-1	2/071			14.00	14.01	14.01	0.010	0000	7110
Dit	Difference: 5%												
Males S	Same Female	5	550		1.	79		0	32		7	444	
Females				872			0,88			0.44			52
Males		1	142			NS		0	08		1	11	
					Variance	e Table							
Source	Variation DF	Mean Sq	ŀ	돈	Mean S	d •	ĽΨ	S	d •	똔	Mean S	b	ഥ
Reps.	7	11.47 X	106	7.55**	148,23		9.77**	1,43	C	3.76**	12,10	x 104	
Female	14	K 68.89	105	4.21**	127.00		3.37**	3,30	∞	** 79.	30.67	х 10 ³	2.80**
Error ((A) 98	15.19 X	ر10		15,17			0.38			52,93	$^{10^{2}}$	
Male	1	18,31 X	105	*20.9	5.02		NS	0.74	7	7.07**	75.60	$^{\rm X}~10^{\rm 2}$	3.94*
Male X	Female 14	70.80 X		2.34**	8.77	2	** 7/-	0.20	1	*88*	36.90	x 10 ²	1.91*
Error ((B) 105	30.19 X	104		3,20			0.10			19,36	x 10 ²	
Total	239	15.15 X	105		19,94	_		0.45			86.11	X 102	
											1	1	

Table 3A. PERFORMANCE OF CMS-RESTORER VERSUS MENDELIAN-RESTORER HYBRIDS TEST 2, FARMINGTON, UTAH, 1966

(AI-1 X EL 31) (AI-1 X Ov. 3) (AI-1 X Line 289) (AI-1 X C672) (AI-1 X CT 5B) (AI-1 X FC 503) (308 X CT 9A)	+a 291.4 276.0 292.0		NI OILLING		Na			. К		1	peer count	1
X EL 31) X Ov. 3) X Line 289) X C672) X CT 5B) X FC 503)	291.4 276.0 292.0	CMS	Mean	+a	CMS	Mean	+ +	CMS Fe	emale	+a	CMS	Mean
X Ov. 3) X Line 289) X C672) X CT 5B) X FC 503)	276.0 292.0	256.3	273.8	216.5			578.5 14	ıw	3 1513.1	84.1		87.1
X Line 289) X C672) X CT 5B) X FC 503)	292.0	211.9	243.9	215.8	257.6	235.7	4.3 14		9.07	80.0	78.9	79.4
X C672) X CT 5B) X FC 503) X CT 9A)		356.6	324.3	162.6			572,3 15	501.0 15	36.6	84.1		84.0
X CT 5B) X FC 503) X CT 9A)	223.8	240.5	232,1	286.5			1,1 17		83.9	81.5		80.7
X FC 503) X CT 9 A)	232.5	212,5	222.5	236.4			9.8 15	4 15	51.	78.1		80.3
X CT 9A)	208.9	201.4	205.1	200°3	•		9.4 17	4 14	57.	80,1	•	79.8
	308.9	270.1		256.1	7	76.	708.5 1	ന				84.2
X CT 5B)	269.5	234.5		266.5	09.	œ	686.6 1	ന		•	•	4.
X EL 31)	356.5	300.3	328.4	189.9	230.0	209.9	68,6 1	0	1689.3	84.1	1	85.6
(308 X Line 289)	325.1	253,4		174.6	•	6	539.0 1	0		78.8	78.9	•
	281.8	263.4	272.6	08		250.2	52.6	0.5		•		
9 X EL 31)	248.6	244.0	246.3	3	191.5	207.3	630	5.9	1603.2	82.3		82.9
(CI 9 X FC 503)	248.4	223,3	235.8	72.	•	187.8	98°4	5.4	•	•	87.3	84.9
(129 X CT 5A)	209.0	201.4	205.2	199,3	229.4	214.3		1596,5 15	1589.8	84.3	82.8	83.5
(FC 502 X 00.5)	252.0	230.1	241.1	96	209.0	202.8			62.5	•	•	- 81
	268.3	246.6	257.5	213.7	243.3	228.5	1640,1 15	1587.4 161	13,8	81.6	82.9	82.2
≈ °1						.	1					
Males Same Female		44		38			77			NS		
Females			46			44			84			SS
Males		12		10			20			SS		
				Var	Variance T	Table						
Source Varia. DF	Mean Sq		드	Mean Sq		ĹΞι	n Sq.		ı	Mean S	9.	ľΞι
Reps. 7	12,70 X	10^{4}	28.91**	.51		.22**	93 X 1	18	***56	45.66		82
e 14	23,36 X		4.74**	96.		.16**	X 61			129.42		SS
Error (A) 98	43.92 X			88			38 X			79.01		
Male 1	28.12 X		14.20**	69.		×*00°4	53 X	27.	50**	102,70		SS
Male X Female 14	45.12 X		2.28**	.81		1.88*	.54 X	2.		39,51		<u>S2</u>
(B) 105	6	102		14.23 }	X 10 ²		60,37 X 1	$\frac{10^2}{10^3}$		50,17		
Total 239	81.38 X	10-					34 X	3		00.01		

Table 4. PERFORMANCE OF CMS-RESTORER VERSUS MENDELIAN-RESTORER HYBRIDS COMBINED LOCATIONS, UTAH, 1966 24 & 48 Observations Respectively

Code	24 & 48 Observations respectively Gross suga	Gross	SS Sugar		Tons	per	acre	Percent	- 1	sucrose		Index	
No.	Description	+a	SMS	Mean	+a	CMS	Mean	+a	150	Mean	+a	CMS	Mean
14	AI-1 X 0v. 3	7773.0	7890.0	7831.5	26.02	26.28	26.15	14,98	15.07	15.02	409.7	360.5	385.1
90	AI-1 X CT 5B	7659.2	7903.4	7781.3	25.91	27.10	26.50	14.91	14.72	14.81	410.4	394.2	402,3
12	AI-1 X Line 289	7680.6	7675.0	7677.8	25.09	25.00	25.04	15,32	15.40	15,35	421.0	434.7	427.8
60	AI-1 X EL 31	7548.5	7598.6		25.10	25.09	25.09	15,08	15,18	15,13	428.0	394.7	411.4
01	AI-1 X C672	7540.1	7505.0	7522.5	0.	26.57	26,30	14,65	14,30		459.2	9.494	461.9
10	AI-1 X FC 503	7033.9	7115.4		23.77	23.95	23.86	14.84	14.87	14.86	383.7	394.0	388.8
15	308 X CT 9A	8294.9	8324_3	8309.6	29,15	28.74	28.95	14,31	14.61	14.46	0.872	5 677	7 227
13	X CT	7975.5	8451.6		•					14.40	437.0	440.3	438.6
040	X EL	7999.6	7477.5	7738.5	27.29	25.65	26.47	4.				443.0	461.9
05	×	6852,5	7096.3						-			416.0	3
07	CT 9 X Ov. 3	8347.8	8679.1	8513.4	27.94	29.50	28.72	15,02	14.80	14.91	442.5	444.1	443.3
11	CT 9 X FC 503	7539.1	7583.3		25.08	25.70	25,39	15.09	14.83	14.96	390.0	405.2	397.6
03	CT 9 X EL 31	7789.6	7738.5	7764.1	26.02		25.89	15.05	15.09	15.07	395.7	377.7	386.7
00	129 X CT 5A	7586.1	7522.9	7554.5	25.65	25.65	25.65	15.00	14.81	14.91	387 5	388	386.7
08	FC 502 X 00.5	8079.9	7715.1	7897.5	26.99	2	26.45	14.99	14.90	14.94	428.1	4007	414.2
Mean		7713.4	7751.7	7732.5	26.04	26,28	26,16	14,90	•) o		413.3	418.5
Sig.	Difference: 5%												
Males	s Same Female	3	352		1	.14		0	18			2.5	
Females	les			502			1.59			0.27			34
Males	S		NS			NS			05			0.9	

	1	1*	*	*			さ	, La	*	مد		1
	Œ	8.49**	318,24*	5.70*	SS		10,25*	3.48*	2,93*	1.59*		
	Mean Sq.	57.56 X 10 ³	21.56×10^{5}	38,60 X 10 ³	80.06 X 10 ²	67.76×10^{2}	18,82 X 103	63.99 X 10 ²	53.90 X 102	29.17 X 10 ²	18.37 X 10 ²	11.59 X 103
	Ŀ	3.17**	**40.09	8.84**	1.87		5.22	NS	3.68**	NS		
	Mean Sq.	1,352	25,580	3.680	0.800	0.430	0.510	0.223	0.360	0.144	0.097	0.426
Table	프	193,31 12,75** 1,352	1687.05**	9.10**	2.83**		SIN	4.33*	2.76**	1.57*		
Variance	Mean Sq.	193,31	25586.50	138.04	45.94	15,17	10,51	16.90	10,75	6.14	3.90	86,13
	ഥ	10.82**	132.07**	5.33**	1.89**		SN	6.22**	2.00**	1.77*		
	Mean Sq.	1637 X 104	1999 X 10 ^o	8076 X 10 ³	2862 X 10 ³	1514 X 10 ³	2650 X 10 ²	2316 X 103	7479 X 10 ²	6590 X 10 ²	3723 X 10 ²	19 6848 X 10 ³
	DF	7	2	14	28	308	-	7	14	28	315	719
	Source Variation	Replications	Locations	Females	Loc. & Female	Error (A)	Males	Loc. X Male	Female X Male	Loc. X Fem. X Male	Error (B)	Total

PERFORMANCE OF CMS-RESTORER VERSUS MENDELIAN-RESTORER HYBRIDS, COMBINED LOCATIONS, UTAH, 1966 Table 4A. PERFORMANCE OF CMS-RESTOREF 24 & 48 Observations Respectively

				7=2:									
Code			Amino N			Na			11K11			Beet co	count
No	Descripti	+a	CMS	Mean	<u>+a</u>	CMS	Mean	+a	CMS	Mean	 -		Mean
14 0	×	218.3	165.5	191.9		198.5	183.0	1326.3	1240.1	1283.2	70	72.3	71.4
90	X CT 5E	205	172.7	189.1	171	204.9		9	1314.2	1337.5	72	75.5	74.0
12	AI-1 X Line 289	246.4	285.3	265.8	151	147.2	149.3	1362.4	1324.3	1343.4	71	77.0	72.8
60	AI-1 X EL 31	246.3	211.1	228.7	179	199.8	6	1322.7	1256 9	1280 8	73	7 7 7	7 7.
01	AI-1 X C672	201.2	191,7	196.5	215	228 2	١ –	1558 1	1521 2	1577	1 0	10.4	14.0
10	×	182 1	100	106.2	167	7.001	1001	1,0001	1331.2	1544.0	0/	1.1/	
9	24	•	130.4	7.001	/01	192.4	180.1	•	1298.0	1297.1	69	70.2	8.69
7	308 V CT 04	222 2	0 /00	0 0	C	0							
12	1 5 C	7.007	7.407	7.817	N	236.0	224.1		1414.0	1430.6		75.2	
13	X C.I.	507.4	190.4	198.9	\vdash	221.4		1400.2	1414.8	1407.5	•	75.4	
04	X EL 31	275.7	234.4	255.1	175.2	206.7			1341.4	1400.6	•	7 7/2	•
02	308 X Line 289	238.1	236.2	237.1	151.0	171.5	161.2	1299.6	1328.0	1313.8	68.1	72.2	70.1
I													
07	9 X Ov.	232.8	208.3	220°9	199.8	230.4	215.1	1451.8	1450.4	1451.1	65.5	73.1	69.3
11	9 X FC	185.1	191.6	188.4	137.1	158,7	147.9	1407.7	1402,4	1405.0		9	7 1/2
03	CT 9 X EL 31	212.8	189.6	201.2	165.4	154.8	160 1	1300 7	1201	1200		•	14.1
					•	•		1.002.	7 7 1	200	•	/3.9	
02		172.8	160.7	166.8	152,2	174.1	163.1	1380.7	1384.9	1382 B	72.2	73 5	
08	FC 502 X 00.5	204.8	186.6	195.7	269.7	168.1	168.9	1463.1	1391.7	1427 4	707	68 7	7.5.7 60.5
Mean	All Females	217.5	201.2	209.4	173.8	192.8	183,3	1389.8	1358.9	1374.4	71 3	73 5	-1
Sig.	Difference: 5%										207	ા	
Males	s Same Female	23	.5		23.	.5		54.6	9		6	0	
Females	les			31.3			29.1			23.0	•		-1
Males	S	9	0		.9	1	d -	14,		2	0	0	7.0
					Varianc	nce Table	اه						
Source	Source Variation DF	Mean Sq	7.	Ţ	Mean Sq		Ŀ	Mean So		þ	_		ļ
Rep1.	Replications 7	41.87 X		7.11**		103	7,91**	٦١٣	104	5 85**	335 80	• 5	- 1
Loca	Locations 2	14.75 X	X 10 ⁵ 250,56	0.56**		104 1	173,00**	25	35	**/-	00.000	,	• П
Females	les 14			6.22**	30,36 X	ľ	**50	? ?)	7700	000.1241		
Loc. X	X Female 28		102	NG)				0.62.0	17.007		•
Error	A) 3			2	77.00 V	102	S	1 t	107	SE	89,13		NS
Malos	(w)		101								68.09		,
Too	V 24.1		7 COT	78.85**		3	**05.			.16**	845.00	18	**61.
Loc. A	Male		107	4.62*	• 8 ₄		4.26*			.57*	39.01		SN
remale	X Ma		102	3.81*		10, 1,	*05°			2,25	53,15		NS
Loc. X	X Fem. X Ma	• 79	104	2.17**	.57	105	NS	10,33 X		NS	26.17		NS
Lrror	(B)	20			16.61 X	102		89.49 X	102		49.96		
Total	1 719	90.86	X 10 ²		68.50 X	102		58.02 X	103		111.46		

Table 5. MALE COMPARISONS AT ALL LOCATIONS AND COMBINED LOCATION TEST 2, LOGAN, UTAH, 1966 120 Obs. each location, 360 Obs. combined locations

-5050			TOTT	דיים דיים ביים ד				ouci use	
3	Comb.	1	2			1	2	3	Comb.
		22.60	17.60			14.83	15,25	14.63	14.90
		22.84	18,38			14.84	15,19	14.51	14.85
		22.72	17,99			14.83	15.22	14.57	14.87
		0.22	0,31			0.04	0.04	0.04	0.02
194 142	NS	SN	0.62	_		SS	NS	0.08	0.04
4.78 6.07		SN	6.27	NS		SN	SN	7.07	5.22
10 010101010			11,071 10,896 10,983 71 71 142 6,07	11,071 7713 22,60 1 10,896 7752 22,84 1 10,983 7733 22,72 1 71 79 0,22 142 NS NS NS	11,071 7713 22.60 17.60 10,896 7752 22.84 18.38 10,983 7733 22.72 17.99 71 79 0.22 0.31 142 NS NS 0.62 6.07 NS NS 6.27	11,071 7713 22.60 10,896 7752 22.84 10,983 7733 22.72 71 79 0.22 142 NS NS NS S	11,071 7713 22.60 17.60 37.91 10,896 7752 22.84 18.38 37.62 10,983 7733 22.72 17.99 37.76 71 79 0.22 0.31 0.73 142 NS NS 0.62 NS 6.07 NS NS 6.27 NS	11,071 7713 22.60 17.60 37.91 26.03 10,896 7752 22.84 18.38 37.62 26.28 10,983 7733 22.72 17.99 37.76 26.16 71 79 0.22 0.31 0.73 0.26 142 NS NS 0.62 NS NS 6.07 NS NS NS NS NS	11,071 7713 22.60 17.60 37.91 26.03 14.83 15.25 1 10,896 7752 22.84 18.38 37.62 26.28 14.84 15.19 1 10,983 7733 22.72 17.99 37.76 26.16 14.83 15.22 1 71 79 0.22 0.31 0.73 0.26 0.04 0.04 142 NS NS 0.62 NS NS NS NS NS NS NS NS NS

	Comb.		192,8		3.0	6.1	39.40
Na	3	110.4 213.7	243,3	228.5	4.9	10.0	37.00
Z	2			114.4	6.2	NS	NS
	1	197.2	216.9	207.0	4.5	0.6	18.62
	Comb.	217.5	201.2	209.4	3.0	0.9	28,86
11N11	3	120.6 268.3	246.6	257.5	5.7	11.0	NS 14.20
Amino "N"	2				3.6	NS	NS
	1	263.7	239.8	251.8	0.9	12.0	15.53
	Comb.	423.6	413.3	418.4	3.2	6. 4	10.25
ex	3	516.8	505.6	511,2	5.7	11.0	3.94
Ind	2	321.5	322.0	321.8	5.0	SN	SN
	1	432.3	412,3	422.3	0.9	12.0	10.99
	Description	$(129 + a X R_{\text{f}})$	(129 CMS X R _{\xi})	Mean	S. E. of Mean Diff.	Sig. Diff. 5%	F Values

Beet count	3 Comb.	81.6	82.9	82,2 72,4	2.9	NS	NS 18.79
Beet	1 2			5.7 68.4		5.2 3.4	7.14
	Comb.	1389.8 65	1358.9 68	1613.8 1374.4 66.7	7.05	14.10 5	19,16 12,4
11	3	1640.1	1587.4	1613.8	10.0	20.0	27.50
"K"	2	1317.9	1315.9	1316,9	13.8	SN	SN
	1	1211.3	1173.4	1192.3	12.5	25.0	9.28
	Description	(129 + a X R _f) .	(129 CMS X R _E)	Mean	S. E. of Mean Diff.	Sig. Diff. 5%	F Values

Significant F Values: 5% = 3.94, 1% = 6.90Significant F Values Combined: 5% = 3.89, 1% = 6.76

Test 3

Test 3 was a comparison of three double cross hybrids and their component single crosses. The test was grown at two locations: Utah State University Evans Farm, six miles south of Logan, and the Greenville Farm, one mile north of Logan.

Results of the performance at the North Farm, South Farm, and combined locations are respectively shown in Tables 1, 2, and 3. SLC 128 X Ov. 1, SLC 129 X Ov. 1, and SLC 129 X EL 31, were the best yielding single crosses in the test, while (CT 9 X CT 5B) X (SLC 129 X Ov. 1) was the highest yielding double cross hybrid. CT 9 X R_f and CT 9 X SLC 129 were the lowest in yield at both locations. Highly significant differences were noted for all variables for locations with the exception of Na and K measurements (Table 3). Higher gross sugar, higher tonnage, and higher impurity index were observed for the North Farm experiment. The amino nitrogen uptake on the South Farm was about half that of the North Farm. In general, the varieties performed similarly at the two locations, however, significant differences were observed for variety times location interactions for potassium and impurity index.

Comparisons were made of the mean performance of the six related single crosses and the four non-parental single crosses, with each double cross hybrid. This was done for each location and for combined locations (Tables 4, 5, and 6). At the North Farm all comparisons were non-significant except for impurity index with (CT 9 X CT 5B) X (129 X Ov. 1) and (129 X Ov. 1) X (CT 9 X Rf) hybrids. This was also true for amino N except with the (129 X Ov. 1) X (CT 9 X Rf) double cross.

At the South Farm there were no significant differences between single cross averages and the respective double crosses. Combining locations resulted in a significant difference between the (CT 9 X CT 5B) X (129 X Ov. 1) double cross and the four non-parental single crosses for sucrose percent. The difference was so small (0.5%), however, it has little meaning. The amino N measurements also showed significance with the double cross cited above and (129 X Ov. 1) X (CT 9 X $R_{\rm f}$). The true meaning of the significant differences for impurity factors will depend upon further tests.

Data indicate that for most of the factors measured, the single cross average would give a good indication of the performance of the double cross. No advantage in prediction was noted for the 4 non-parental versus the six single crosses composing the hybrid.

	ļ		1																		1	1			
1966			ртос	82	72	78	70	80	74	79	79	74	76	84	72	78	89	7 9	48	99	73	.77	13	.12	3.94
UTA		Av.	per																			7		13	8
LOGAN, UTAH 1966		4	4	1167	1298	1376	1773	1226	1103	1085	1351	1478	1740	1190	1421	1186	1196	1221	1576	1256	1332	71,32	202	10.71	8.40
NORTH FARM	PPM	M	Na	155	165	182	239	136	121	135	130	210	188	159	149	131	128	129	112	131	153	17.89	51	23.39	3.68
e :		Amino	2	389	338	325	077	204	262	251	221	300	306	332	246	288	260	290	235	283	292	32.59	92		3.42
VARIETY TEST		Impurity	Tildex	481	487	667	711	381	388	393	410	556	578	747	777	422	408	877	977	443	695	23.57	67	10.05	12.55
SINGLE CROSSES 4 REPLICATIONS		Percent	Sugar	15.3	14.8		13.6		15.0	14.5	14.7	13.4	14.0	14.5	14.8	14.9	14.8	14.3	15.0	14.5	14.57	0.12	0.34	1.65	17.03
SI	Yield	Tons	חבברצ	30.9	29.1	28.1	29.9	27.5	26.9	27.7	27.1	29.5	28.2	26.9	25.9	24.5	24.2	23.5	21.9	22.3	26.7	1.21	3.42	9.05	4.78
DS VERSUS BINATIONS	Acre	Gross	Sugar	8776	8612	8266	8152	8091	8084	8051	8002	7907	7889	7804	7650	7336	7176	6740	6563	6481	7778	362.5	1025	•	4.29
FOURWAY HYBRI		Description		128 X Ov. 1	129 X Ov. 1	CT9 X Ov. 1	308HO1 X EL 31	(CT9 X CT5B) X (129 X 0v.1)	CT9 X CT5B	129 X CT5B	(129 X Ov.1) X (CT9 X R _f)	308H01 X_CT5B	308HO1 X R _f	(129 X EL31)X (129 X 0v.1)	129 X R _f	×	×	128 X 129		CT9 X 129	111 Varieties)iff. 5%	ati	lated F Values
TABLE 1		Variety	2000	13	12	14	90	02	10	60	03	11	17	0.1	15	70	05	07	16	08	Mean	S. E.	Sig.	Coef.	Calculated

1% = 2.40

Significant F Values 5% = 1.86

LOGAN, UTAH 1966		Av. Beets					63					59		70		ςς		53			43		4.38	12	14.1	5.81	
		×	4	1132	1215	1484	1399	1705	1226	1409	1523	1406	1365	1304	7	143/	1050	1260	1476	1414	1397	1365	71	201	10.4	4587	
SOUTH FARM	PPM	N	Na	101	138	161	175	203	123	151	178	140	158	161		140	960	119	161	109	136	144	18	51	24.5	2.65	
9		Amino	4	177	140	165	126	164	125	119	136	107	129	148	7	10/	131	117	214	138	113	139	18	51	26.5	2,32	
VARIETY TEST		Impurity	TIIGEX	324	315	394	355	474	332	362	408	341	351	360	0	349	272	321	427	342	332	357	24	68	13.68	3346	
SS		Percent	sugar	15.5	15.7	15.1	15.2	14.1	14.4	.14.9	14.3	15.1	15.0	14.8	L	15.0	15.7	14.8	15.1	15.6	14.9	15.0	.30	0.85	3,98	22,34	1% = 2.40
SINGLE CROSSES 4 REPLICATION	Yield	Tons	STAAG	26.9	21.3	22.0	20.0	21.3	20.3	19.5	20.1	18.9	18.8	18.1	1	1/./	16.5	16.5	14.3	18.0	10.8	18.5	3,48	NS	37.8	NS	1.86
	0	Gross	sugar	8472	8/99	9999	6107	9669	5915	5777	5724	5654	2647	5376	6	5332	5176	4899	4309	3415	3238	5551	1113	NS	40.1	NS	5% = 1
2 FOURWAY HYBRIDS VERSUS 17 HYBRID COMBINATIONS		Description		129 X EL31	128 X Ov. 1	129 X Ov. 1	CT9 X CT5B	308H01 X CT5B	129 X CT5B	CT9 X Ov. 1	308HO1 X R£	129 X R _f	(CT9 X CT5B) X (129 X Ov.1)	(128 X EL31) X	~ /	(129 X Ov.1) X (CT9 X R£)	128 X.EL 31	128 X 129	308H01 X EL 31	CT9 X RE	CT9 X 129	an All Varieties	E. of Mean	g. Diff. 5%	Coef. Variation	Calculated F Values	Significant F. Values
TABLE		Variety	epoo	04	13	12	10	11	60	14	17	15	03	01	(03	05	07	90	16	080	Mean	s.		Coe	Cal	Sig

LOCATIONS 1966		Av. Beets	Der	1191 77	1159 72	1391 71	1251 68	1392 73	1155 77	1592 75	1295 70			1394 67			1247 77				1241 59		1326 50	1348 67	50.0 3.0	142 9		10.56 8.85	NS 6.62	2.63 NS	1% = 2.19	•
COMBINED LOCATIONS	PPM	, and a	Na	147	116	163	148	166	129	206	147		183	135		145	160		200	112	124	111	134	149	13.0	36		5.16	NS	NS	1,75	Þ
TEST 3		Amino	4	265	232	252	194	222	188	232	167		221	164	1	177	240		327	196	204	187	198	216	19.0	53		4.78	79.14	NS	5% =	20.00
VARIETY T		Impurity	Tugex	398	373	441	372	431	363	515	366		493	380		393	417		569	340	384	394	388	413	17.0	48		12.89		3,13	Locations	
CROSSES		Percent	sugar	15.5			15.1	14.8	14.5	13.7	14.9		14.1	14.9		14.9	14.7		14.3	15,3	14.6	15,3	14.7	14.9	0.16	0.45		7.63	4.18	NS	Varieties X	
S SINGLE ATIONS	Yield	Tons	Deers	9	2	25.5	23.5	23.8	24.0	25.4	23.1		24.2	22.4		22.4	22.5		22.1	20.3	20.0	16.4	16.6	22.6	1.84	5.20		2,42	208.91	NS	and Vari	
RIDS VER SU S SING 8 REPLICATIONS		i .	sugar	8063	7904	7629	9602	7021	6983	6952	6989		6807	2999		6652	6590		6230	6176	5819	6867	4860	6665	584.9	1654		2.22	245.29	NS	Varieties	
LE 3 FOURWAY HYBRIDS VER EUS 17 HYBRIDS, 8 REPLICAT		Description		128 X Ov. 1	129 X EL31	129 X Ov. 1	×	CT9 X Ov. 1	129 X CT5B	308H01 X CT5B	(CT9 X CT5B) X	(129 X Ov.1)	308H01 X Rf	(129 X Ov.1) X (CT9 X Rf)		129 X R _£	(128 X EL31) X	(129 X 0v.1)	308HO1 X EL31	128 X EL31	128 X 129	CT9 X Rf	×		of Mean	11	Calculated F Values	Varieties	Locations	Var. & Loc.		
TABLE		Variety	code	13			10		60	11	02		17	03		15			90			16		Mean		ig.	Calcu	Va	Lo	Va	Signi	

Table 4. DOUBLE CROSS HYBRID VERSUS MEAN OF SIX SINGLE CROSSES AND FOUR NON-PARENTAL SINGLE CROSSES, NORTH FARM, LOGAN, UTAH, 1966

		Acre	yield				PPM	
Variety	Description	Gross	Tons	Percent	Impurity	Amino		
code	2-2	sugar	beets	sugar	index	N	Na	K
13	(128 X Ov. 1)	9448	39.9	15.3	481	389	155	1167
12	(129 X Ov. 1)	8612	29.1	14.8	487	338	165	1298
06	(308 X EL 31)	8152	29.9	13.6	711	440	239	1773
04	(129 X EL 31)	7336	24.5	14.9	422	288	131	1186
05	(128 X EL 31)	7176	24.2	14.8	408	260	128	1196
07	(128 X 129)	6740	23.5	14.3	448	290	129	1221
0,	Mean 6 S.C.	7911	28.5	14.6	493	334	158	1307
01	(128 X EL 31) X							
	(129 X Ov. 1)	7804	26.9	14.5	474	332	159	1190
Mean	4 Non-Parent S.C		29.45	14.74	516	352	164	1337
Hour	Calculated F	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Hybri	lds versus 6 S.C.	NS	NS	NS	NS	NS	NS	NS
	ids versus 4 S.C.	NS	NS	NS	NS	NS	NS	NS
12	(129 X Ov. 1)	8612	29.1	14.8	487	338	165	1298
14	(CT 9 X Ov. 1)	8266	28.1	14.7	499	325	182	1376
10	(CT 9 X CT 5B)	8084	26.9	15.9	388	262	121	1103
09	(129 X CT 5B)	8051	27.7	14.5	393	251	135	1085
11	(308 X CT 5B)	7907	29.5	13.3	556	300	210	1478
08	(CT 9 X 129)	6481	22.3	14.5	443	283	131	1256
	Mean 6 S.C.	7900	27.3	14.6	461	293	157	1266
02	(CT 9 X CT 5B) X							
	(129 X Ov. 1)	8091	27.5	14.7	381	204	136	1226
Mean	4 Non-Parent S.C	.7684	26.7	14.6	472	293	161	1303
	Calculated F							
Hybr:	ids versus 6 S.C.	NS	NS	NS	9.87**	6.39*	NS	NS
	ids versus 4 S.C.	NS	NS	NS	11.92**	5.97*	NS	NS
12	(129 X Ov. 1)	8612	29.1	14.8	487	338	165	1298
14	(CT 9 X Ov. 1)	8266	28.1	14.7	499	325	182	1376
17	(308 X R _f)	7889	28.2	14.0	578	306	188	1740
15	(129 X R _f)	7650	25.9	14.8	444	246	149	1421
16	(CT 9 X R _f)	6563	21.9	15.0	446	235	112	1576
08	(CT 9 X 129)	6481	22.3	14.5	443	283	131	1256
	Mean 6 S.C.	7578	25.9	14.6	483	289	155	1445
03	(129 X Ov. 1) X							
	(CT 9 X R _f)	8002	27.1	14.7	410	221	130	1351
Mean	4 Non-Parent S.C	.7572	26.1	14.5	491	290	163	1448
	Calculated F							
Hybr	ids versus 6 S.C.	NS	NS	NS	8.22**	NS	NS	NS
	ids versus 4 S.C.		NS	NS_	9.45**	NS	NS	NS

Significant "F" Values:

^{5% = 4.04}

^{1% = 1.19}

Table 5. FOURWAY HYBRIDS VERSUS SIX AND FOUR SINGLE CROSS, SOUTH FARM, LOGAN, UTAH, 1966

		Acre	yield				PPM	
Variet	y Description	Gross	Tons	Percent	Impurity	Amino		
code		sugar	beets	sugar	index	N	Na	K
13	(129 X Ov. 1)	6678	21.3	15.7	315	140	138	1215
04	(129 X EL 31)	8472	26.9	15.5	324	177	101	1132
12	(129 X Ov. 1)	6645	22.0	15.1	394	165	161	1484
05	(128 X EL 31)	5176	16.5	15.7	27.2	131	096	1050
07	(128 X 129)	4899	16.5	14.8	321	117	119	1260
06	(308 X EL 31)	4309	15.1	15.1	427	214	161	1476
	Mean 6 S.C.	6030	19.7	15.3	342	157	129	1270
01	(128 X EL 31) X							
	(129 X Ov. 1)	5376	18.1	14.8	360	148	161	1304
Mean	4 Non-Parent SC.		20.1	15.1	367	168	136	1338
12	(129 X Ov. 1)	6645	22.0	15.1	394	165	161	1484
10	(CT 9 X CT 5B)	6107	20.0	15.2	355	126	175	1399
14	(CT 9 X Ov. 1)	5777.	19.5	14.9	362	119	151	1409
09	(129 X CT 5B)	5915	20.3	14.4	332	125	123	1226
11	(308 X CT 5B)	5996	21.3	14.1	474	164	203	1705
08	(CT 9 X 129)	3238	10.8	14.9	332	113	136	1397
	Mean 6 S.C.	5611	19.0	14.8	375	135	158	1437
02	(CT 9 X CT 5B) X	J011	17.0	14.0	373	133	150	1437
	(129 X Ov. 1)	5647	18.8	15.0	351	129	158	1304
Mean	4 Non-Parent S.C		17.9	14.8	381			
Hean	4 Non-Parent 5.0	. 34/9	17.9	14.0	201	131	166	1473
12	(129 X Ov. 1)	6645	22.0	15.1	394	165	161	1484
14	(CT 9 X Ov. 1)	5777	19.5	14.9	362	119	151	1404
17	(308 X R _f)	5724	20.1	14.3	408	136	178	1523
15	(129 X R _f)	5654	18.9	15.1	341	107	140	1406
16	$(CT 9 X R_f)$	3415	10.9	15.6	342			
08	(CT 9 X 129)	3238	10.9	14.9	332	138 113	109	1414
	Mean 6 S.C.	5076	17.0	15.0	· 363		136	1397
03	(129 X Ov. 1) X	2070	17.0	13.0	. 303	130	146	1439
03	$(CT 9 X R_f)$	5332	17.7	15.0	349	107	1/0	1/07
Mean	4 Non-Parent S.C		17.7			107	140	1437
rican	+ Non-Latent 3.0	. 5090	17.3	14.8	361	119	151	1434

Table 6. FOURWAY HYBRIDS VERSUS SIX AND FOUR SINGLE CROSS, COMBINED LOCATIONS, LOGAN, UTAH, 1966

		Acre	yield				PPM	
Variet	y Description	Gross	Tons	Percent	Impurity	Amino		
code		sugar	beets	sugar	index	N	Na	K
13	(128 X Ov. 1)	8063	26.1	15.5	398	265	147	1191
04	(129 X EL 31)	7904	25.7	15.2	373	232	116	1159
12	(129 X Ov. 1)	7629	25.5	14.9	441	252	163	1391
06	(308 X EL 31)	6230	22.1	14.3	569	327	200	1625
05	(128 X EL 31)	6176	20.3	15.3	340	196	112	1123
07	(129 X 129)	5820	20.0	14.6	384	204	124	1241
	Mean 6 S.C.	6970	23.3	15.0	418	246	144	1288
01	(128 X EL 31) X							
	(129 X Ov. 1)	6590	22.5	14.7	417	240	160	1247
Mean	4 Non-Parent S.C		23.5	14.9	431	257	147	1304
	Calculated F				-+31		17/	1304
Hybri	ds versus 6 S.C.	NS	NS	NS	NS	NS	NS	NS
	ds versus 4-S.C.	NS	NS	NS	NS	NS	NS	NS
12	(129 X Ov. 1)	7629	25.5	14.9	441	252	163	1391
10	(CT 9 X CT 5B)	7096	23.5	15.1	372	194	148	1251
14	(CT 9 X Ov. 1)	7021	23.8	14.8	231	222	166	1392
09	(129 X CT 5B)	6983	24.0	14.5	363	188	129	1115
11	(308 X CT 5B)	6952	25.4	13.7	515	232	206	1592
08	(CT 9 X 129)	4860	16.6	14.7	388	198	134	1326
	Mean 6 S.C.	6757	23.1	14.6	385	214	158	1345
02	(CT 9 X CT 5B) X		23.1	17.0	303	217	150	1343
	(129 X Ov. 1)	6869	23.1	14.9	366	167	147	1295
Mean	4 Non-Parent S.C		22.5	14.4	374	210	159	1356
	Calculated F	10131		1707	3/4	210	133	1330
Hybr	ids versus 6 S.C.	NS	NS	NS	NS	5.41*	NS	NS
	ids versus 4 S.C.	NS	NS	7.73**	NS	4.23*	NS	NS
12	(129 X Ov. 1)	7629	25.5	14.9	441	252	163	1391
14	(CT 9 X Ov. 1)	7021	23.8	14.8	231	222	166	1392
17	(308 X R _f)	6807	24.2	14.1	493	221	183	1632
15	(129 X R _f)	6652	22.4	14.9	393	177	145	1413
16	(CT 9 X R _f)	4989	16.4	15.3	394	187	111	1415
08	(CT 9 X 129)	4860	16.6	14.7	388	198	134	1326
	Mean 6 S.C.	6326	21.5	14.8	390	206	151	1442
03	(129 X Ov. 1) X	3320	21.0	14.0	370	200	TOT	1444
-	(CT 9 X R _f)	6667	22.4	14.9	380	164	135	1394
Mean	4 Non-Parent S.C		21.8	14.6	376	205	157	
rican	Calculated F	.0333	21.0	14.0	370	203	137	1441
Hybr	ids versus 6 S.C.	NS	NS	NS	NS	4.32*	NS	NC
	ids versus 4 S.C.	NS	NS NS	NS NS	NS			NS
nybr.	Lub Verbus 4 5.C.	NO	IND	MO	IAD	3.84*	NS	NS

Significant "F" Values:

^{5% = 3.94}

^{1% = 6.90}

Test 4

Test 4 was designed to compare the performance of 2n, 3n, and 4n. hybrids. There were 3 tetraploid, 10 triploid, and 12 diploid varieties developed from the same inbreds in the test. The triploids were crosses between the 2n and 4n lines.

Due to small quantities of seed and poor seed germination the varieties were planted in the field in alternate single row plots with the uniform variety 1101. This was done to minimize possible differences in yield due to border effects caused by irregular stands.

The diploid variety 0156 X 133 had the highest gross sugar but it was not significantly better than ten other hybrids (Table 1). Differences for sucrose percentage were negligible for all hybrids in the test.

The 2n and 3n hybrids gave similar yields and were superior to the average of the 4n entries for gross sugar and tonnage (Table 2). The triploids had the highest impurity index mainly due to significantly higher potassium content.

Stands of the 3n and especially the 4n were poor in this test. In our experience, low germination and poor emergence are inherently characteristic of polyploids which makes it difficult to get a critical evaluation of the comparative performance of diploids versus polyploids. Poor stand undoubtedly influences tons per acre and may influence other characteristics since all varieties or levels of ploidy would not react the same with space.

A covariance adjustment with beet count was made in an effort to eliminate the variability due to stand. This adjustment did level out differences between the ploidy levels but not significantly (Table 3). The use of covariance might be questioned since beet count or stand is a characteristic of the treatments.

Table 1. POLYPLOID VARIETY TEST 4, NORTH FARM, LOGAN, UTAH, 1966
4 Reps, Randomized Blocks

| Det | | | |
 |
 | | | | | | | | | |
 | | | |
 | | | |
 | | 2. | | 23 |
|--|---|--|--
--

--
---|---|--|---|---|--|--|--|---|--
--	--	--
--	--	--
Na		
 |
 | | | | | | | | | |
 | | | |
 | | | |
 | | | | \$25 |
| 2 | ľ | | |
 |
 | | | | | | | | | |
 | | | |
 | | | |
 | | | 12 | |
| Index | | 522 | 522
543 | 522
543
457
 | 522
543
457
547
 | 522
543
457
54 7
636 | 522
543
457
547
636
683 | 522
543
457
547
636
683
457 | 522
543
457
547
636
683
457
570 | 522
543
457
547
636
683
457
570 | 522
543
457
547
636
683
457
590
590 | 522
543
457
547
636
683
457
590
417
433 | 522
543
457
636
683
457
457
570
590
417
419 | 522
543
457
547
683
683
457
570
570
417
413
419 | 522
543
457
636
683
457
570
570
417
419
419
 | 522
543
457
684
683
683
457
570
570
417
419
419
568°
414 | 522
543
457
636
683
417
417
419
419
568°
603 | 522
543
457
636
636
683
457
417
413
419
419
590
590
590
590
590
578 | 522
543
457
683
683
457
570
570
417
433
419
568°
603
578
 | 522
543
457
683
683
457
570
590
417
433
419
496
568°
491
590
5603
578
526 | 522
543
457
683
683
457
570
570
590
417
419
568°
603
568°
603
578
610 | 522
543
457
683
683
417
417
419
568
568
603
570
568
603
610
610 | 522
543
457
683
683
417
417
419
414
603
578
568°
603
610
610
 | 522
543
457
683
683
457
570
570
683
417
419
419
414
603
526
610
610
617 | 522
543
457
683
683
683
457
570
570
417
413
419
491
568°
491
568°
603
578
578
610
474
617
664
617 | 522
543
457
543
683
683
683
457
570
590
417
419
419
590
568°
491
590
568°
491
578
578
578
603
578
578
578
578
578
578
578
578
579
610
617
617
617
617 | 522
543
457
636
683
457
636
683
457
570
570
590
417
413
419
603
568°
491
590
568°
414
603
578
578
578
578
578
578
578
578
578
578 |
| sugar | | 14.1 | 14.1 | 14.1
13.2
14.0
 | 14.1
13.2
14.0
14.8
 | 14.1
13.2
14.0
14.8
13.8 | 14.1
13.2
14.0
14.8
13.8 | 14.1
13.2
14.0
14.8
13.8
13.6 | 14.1
13.2
14.0
14.8
13.8
13.6
13.5 | 14.1
13.2
14.0
14.8
13.8
13.6
13.6 | 14.1
13.2
14.8
14.8
13.8
13.6
13.6
13.7 | 14.1
13.2
14.0
14.8
13.8
13.6
13.6
13.7 | 14.1
13.2
14.0
14.8
13.8
13.8
13.6
13.9
13.8
13.8 | 14.1
13.2
14.0
14.8
13.8
13.8
13.9
13.8
13.8 | 14.1
13.2
14.0
14.8
13.8
13.8
13.9
13.8
13.8
14.1
 | 14.1
13.2
14.0
14.8
13.8
13.8
13.9
14.0
14.0
13.9
14.1
13.9 | 14.1
14.1
14.0
14.8
13.8
13.8
13.8
14.0
14.0
14.1
14.0
14.0 | 14.1
14.1
14.0
13.8
13.8
13.9
14.0
14.0
14.0
14.5 | 14.1
14.1
14.0
13.8
13.8
13.8
13.9
14.0
14.0
14.0
14.0
14.0
 | 14.1
14.1
14.0
13.8
13.8
13.8
13.8
14.0
14.0
14.0
14.5
14.5
14.0 | 14.1
14.1
14.0
13.8
13.8
13.8
13.8
14.0
14.0
14.0
14.0
14.0
14.0 | 14.1
14.1
13.8
13.8
13.8
13.8
14.0
14.0
14.0
14.0
14.0
14.0
14.0 | 14.1
13.2
14.0
14.8
13.8
13.8
13.8
14.0
14.0
14.0
14.0
14.0
13.8
14.0
14.0
13.8
 | 14.1
13.2
14.0
13.8
13.8
13.8
13.9
14.0
14.0
14.0
14.0
14.0
13.9
14.0
13.9 | 14.1
13.2
14.0
14.8
13.8
13.8
13.9
13.9
14.0
14.0
14.0
14.0
14.0
14.0
13.9
14.0
13.9
14.0
13.9
13.9 | 14.1
13.2
14.0
14.8
13.8
13.8
13.9
14.0
14.0
14.0
14.0
13.9
14.0
14.0
13.9
13.9
13.9
14.0
13.9 | 14.1
13.2
14.0
14.8
13.8
13.8
13.9
13.9
14.0
14.0
14.0
14.0
14.0
14.0
14.0
14.0 |
| peets | | 28.8 | 28.8
28.7 | 28.8
28.7
26.5
 | 28.8
28.7
26.5
25.0
 | 28.8
28.7
26.5
25.0 | 28.8
28.7
26.5
25.6
26.7
26.3 | 28.8
28.7
26.5
25.0
26.7
26.3
26.3 | 28.8
28.7
26.5
25.0
26.3
26.3
26.3 | 28.8
28.7
26.5
25.6
26.7
26.3
26.3
25.2 | 28.8
28.7
26.5
26.7
26.3
26.3
25.2
25.2 | 28.8
26.7
26.5
26.7
26.7
26.3
26.1
25.2
25.2
25.2 | 28.8
26.5
26.5
26.5
26.7
26.3
26.3
26.3
26.3
26.3
25.2
25.2
27.2
27.8 | 28.8
26.5
26.5
26.3
26.3
25.2
25.2
24.3
24.3 | 28.8
26.5
26.5
26.5
26.3
26.3
25.2
25.2
24.8
24.3
23.1
 | 28.8
26.5
26.5
26.5
26.7
26.3
26.3
25.2
25.2
25.2
24.3
24.3
23.1
23.1
23.1
23.1
23.1
23.1
23.1 | 28.8
26.5
26.5
26.5
26.3
26.3
26.3
26.3
26.3
26.3
27.2
24.3
24.3
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23 | 28.8
28.7
26.5
26.5
26.7
26.1
26.1
25.2
25.2
25.2
24.8
24.8
24.8
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23.1 | 28.8
26.5
26.5
26.7
26.7
26.7
26.7
26.7
26.7
26.7
26.3
25.2
25.2
25.2
25.2
23.1
23.1
23.1
23.1
23.1
21.3
20.8
 | 28.8
26.5
26.5
26.7
26.3
26.3
26.3
26.3
26.3
26.3
26.3
26.3 | 28.8
26.5
26.5
26.7
26.7
26.7
26.7
26.3
26.3
26.3
26.3
27.2
27.2
27.3
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23 | 28.8
28.7
26.5
26.5
26.5
26.3
26.3
26.3
26.3
26.3
27.2
27.3
27.3
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23 | 28.8
26.5
26.5
26.5
26.7
26.3
26.3
26.3
26.3
26.3
27.0
27.0
23.1
23.1
23.1
23.1
23.1
23.1
23.1
23.1
 | 28.8
28.7
26.5
26.5
26.7
26.7
26.7
26.7
26.7
26.3
26.3
26.3
26.3
26.3
26.3
27.0
23.1
23.1
23.1
23.1
23.1
20.8
10.3
16.8 | 28.8
28.7
26.5
26.5
26.7
26.7
26.3
26.3
26.3
26.3
26.3
26.3
26.3
26.3 | 28.8
28.7
26.5
26.5
26.7
26.7
26.3
26.3
26.3
26.3
26.3
26.3
26.3
26.3 | 28.8
28.7
26.5
26.5
26.5
26.7
26.3
26.3
26.3
26.3
26.3
26.3
26.3
26.3 |
| STROTE | | 8127 | 8127
7585 | 8127
7585
7410
 | 8127
7585
7410
7388
 | 8127
7585
7410
7388
7348 | 8127
7585
7410
7388
7348
7125 | 8127
7585
7410
7388
7348
7125
7094 | 8127
7585
7410
7388
7348
7125
7094 | 8127
7585
7410
7388
7348
7125
7094
7021 | 8127
7585
7410
7388
7348
7125
7094
7021
Z 001 | 8127
7585
7410
7388
7348
7125
7094
7021
2001
6971 | 8127
7585
7410
7388
7348
7125
7094
7021
Z 001
6971
6857 | 8127
7585
7410
7388
7348
7125
7094
7021
Z 001
6971
6857
6503 | 8127
7585
7410
7388
7348
7125
7024
7021
2 001
6971
6857
6503
 | 8127
7585
7410
7388
7348
7125
7021
7021
7021
6971
6857
6495
6495
6496 | 8127
7585
7410
7388
7348
7125
7024
7021
2001
6971
6857
6503
6494
6389
6389 | 8127
7585
7410
7388
7348
7125
7021
7021
6971
6857
6583
6495
6495
6496
6388
6216 | 8127
7585
7410
7388
7348
7125
7024
7021
2 001
6971
6857
6495
6495
6495
6495
6389
6388
 | 8127
7585
7410
7388
7348
7125
7024
7021
6971
6857
6495
6495
6495
6495
6388
6388
6388
6388 | 8127
7585
7410
7388
7348
7125
7024
7021
6971
6857
6495
6494
6389
6494
6388
6216
6216
6216 | 8127
7585
7410
7388
7348
7125
7024
7021
7021
6971
6857
6494
6397
6389
6494
6397
6389
6494
6397
6494
6397
6494
6494 | 8127
7585
7410
7388
7125
7024
7021
7021
7021
6971
6857
6494
6389
6494
6389
6389
6389
6389
6389
6389
6494
6389
 | 8127
7585
7410
7388
7348
7125
7094
7021
7001
6971
6857
6857
6495
6495
6495
6495
6496
6389
6388
6216
6078
5753
5359
5201
4417
4079 | 8127
7585
7410
7388
7348
7125
7024
7021
2 001
6971
6857
6495
6495
6495
6495
6495
6495
6495
6495 | 8127
7585
7410
7388
7348
7125
7024
7021
6971
6857
6857
6495
6494
6388
6495
6494
6397
6495
6497
6388
6216
6078
5753
5359
5753 | 8127
7585
7410
7388
7348
7125
7024
7021
7021
6971
6857
6495
6494
6397
6494
6397
6494
6495
6494
6497
6494
7021
7001
6497
6497
6497
707
6497
707
707
707
707
707
707
707
707
707
7 |
| | 1 | × | (2n) X
(4n) X | (2n) X (4n) X (4n) X | (2n) X (4n) X (4n) X (2n) X | (2n) X (4n) X (4n) X (2n) X (2n) X (2n) X | (2n) X (4n) X (4n) X (2n) X (2n) X (2n) X (2n) X (2n) X (2n) X 2 (2n) X | (2n) X (4n) X (4n) X (2n) X (2n) X (2n) X (2n) X 2(2n) X 2(2n) X 0n) X 0n) | (2n) X (4n) X (4n) X (2n) X (2n) X (2n) X (2n) X (2n) X 2(2n) X 2n) X 0 | (4n) X
(4n) X
(4n) X
(2n) X
(2n) X
2(2n) X
2(2n) X
2(2n) X
2(2n) X | (4n) x (4n) x (4n) x (2n) x (2n) x (2n) x 2 (2n) x 2 (2n) x 2 (2n) x (2n | (4n) x (4n) x (4n) x (2n) x x (2n) x x (2n) x x | (4n) X
(4n) X
(4n) X
(2n) X
(2n) X
2(2n) X
2(2n) X
(2n) X
(2n) X
(2n) X
(2n) X | (4n) x
(4n) x
(4n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x | (4n) x (4n) x (4n) x (2n) x (2 | (4n) x
(4n) x
(4n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x
(2n) x
(4n) y
(4n) y
(4n) y
(2n) x
(2n) x
(2 | (2n) X 1;
(4n) X 0;
(4n) X 0;
(2n) X 1;
(2n) X 1;
(2n) X 0;
(2n) X 0;
(2n) X 0;
(2n) X 0;
(2n) X 0;
(2n) X 0;
(2n) X 1;
(4n) X 1;
(4n) X 1;
(2n) X | (4n) x (4n) x (4n) x (2n) x (2 | (2n) X 1;
(4n) X 0;
(2n) X 1;
(2n) X 1;
(2n) X 2;
(2n) X 2;
(2n) X 1;
(2n) X 0;
(2n) X 0;
(2n) X 1;
(2n) X 1;
(4n) X 1;
(4n) X 1;
(2n) X | (2n) X 1;
(4n) X 0;
(2n) X 1;
(2n) X 1;
(2n) X 1;
(2n) X 0;
(2n) X 1;
(2n) X 0;
(2n) X 0;
(2n) X 1;
(2n) X 1;
(2n) X 1;
(4n) X 1;
(4n) X 1;
(2n) X | (4n) X 1;
(4n) X 0;
(2n) X 1;
(2n) X 2;
(2n) X 2;
(2n) X 0;
(2n) X 1;
(2n) X 0;
(2n) X 0;
(2n) X 1;
(2n) X 1;
(2n) X 1;
(4n) X 1;
(2n) X | (2n) X (4n) X (2n) X (2 | (2n) X (4n) X (2n) X (4n) X (4 | 0156(2n) X
0156(4n) X
0156(4n) X
AI-10(2n) X
AI-1(2n) X
133(2n) X 0
EL 32(2n) X
CT 9(2n) X
CT 9(2n) X
128(2n) X 0
129(2n) X 1
129(2n) X 1
133(2n) X 1
133(2n) X 1
133(2n) X 1 | 0156(2n) X
0156(4n) X
AI-10(2n) X
AI-1(2n) X
AI-12(2n) X
133(2n) X 0
EL 32(2n) X
CT 9(2n) X
CT 9(2n) X
128(2n) X 0
129(2n) X
129(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X | 0156(2n) X
0156(4n) X
0156(4n) X
AI-10(2n) X
AI-12(2n) X
133(2n) X 0
EL 32(2n) X
CT 9(2n) X
CT 9(2n) X
129(2n) X
129(2n) X
129(2n) X
129(2n) X
129(2n) X
129(2n) X
129(2n) X
129(2n) X
128(2n) X
128(2n) X
128(2n) X
128(2n) X
128(2n) X
128(2n) X
128(2n) X
128(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X
133(2n) X
133(4n) X
133(4n) X
133(4n) X
133(4n) X | 0156(2n) X
0156(4n) X
AI-10(2n) X
AI-10(2n) X
AI-12(2n) X
133(2n) X
CT 9(2n) X
CT 9(2n) X
129(2n) X
128(2n) X
128(2n) X
129(2n) X
128(2n) X
128(2n) X
128(2n) X
128(2n) X
133(2n) X |
| code | | 24 | 24 07 | 24
07
05
 | 24
07
05
29
 | 24
07
05
29
28 | 24
07
05
29
28
09 | 24
07
05
29
28
09 | 24
07
05
29
28
09
19 | 24
07
05
29
28
09
19
30 | 24
07
05
29
28
09
19
30 | 24
07
05
29
28
19
30
22
23 | 24
07
05
29
28
09
19
30
14
22
23 | 24
07
05
29
28
09
14
22
20 | 24
07
05
29
28
09
14
22
20
27
 | 24
07
05
29
28
09
14
22
23
20
27
13
03
18 | 24
07
05
29
28
09
14
22
23
20
27
13
13
15 | 24
07
05
29
28
09
19
14
27
27
20
23
20
13
15
10 | 24
07
05
29
28
09
19
30
14
22
23
20
13
13
15
11
 | 24
07
05
29
28
09
19
30
14
22
23
20
23
13
13
15
11
10 | 24
07
05
29
28
09
19
30
14
22
23
20
23
13
13
10
11
11 | 24
07
05
29
28
09
19
30
14
22
23
20
23
15
11
10
11
26 | 24
07
05
29
28
30
19
14
27
20
23
20
11
10
11
26
02
 | | N Wea | S S S S S S S S S S S S S S S S S S S | |
| 0156(2n) X 133(2n) 8127 28.8 14.1 522 509 203 1428 10156(4n) X 133(2n) 7585 28.7 13.2 543 312 194 1341 0156(4n) X 0267(2n) 7410 26.5 14.0 457 221 139 1457 1482 0156(4n) X 0267(2n) 7410 26.5 14.0 457 221 139 1457 1482 0156(4n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 0156(2n) X 133(2n) 7348 26.7 13.8 633 361 186 1979 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25.2 13.8 417 226 140 1186 129(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 129(2n) X 0267(2n) 6581 24.8 13.6 419 206 162 1218 129(2n) X 0367(2n) 6581 24.3 13.6 449 202 1465 1187 169 0156(4n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 | 0156(4n) X 133(2n) 7585 28.7 13.2 543 312 194 1341 0156(4n) X 0267(2n) 7410 26.5 14.0 457 221 139 1457 AI-10(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-1(2n) X 133(2n) 7348 26.7 13.8 633 361 186 1979 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 I33(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25.2 13.8 417 226 140 1186 I28(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 I28(2n) X 0267(2n) 6857 24.8 13.6 419 206 162 1218 CT 9(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(4n) 6593 23.1 14.1 496 276 228 1373 I29(2n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | 0156(4n) X 0267(2n) 7410 26.5 14.0 457 221 139 1457 AI-10(2n) X 133(2n) 7388 25.0 14.8 547 390 135 1482 AI-11(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 I33(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(2n) 6971 25.2 13.8 417 226 140 1186 I28(2n) X 0267(2n) 6857 24.8 13.8 417 226 140 1186 I29(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(4n) 6503 23.1 14.1 496 276 228 1373 I29(2n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 | AI-10(2n) X 133(2n) 73&8 25.0 14.8 547 390 135 1482 AI-1(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25.6 13.7 590 33\$ 155 1672 CT 9(2n) X 0267(2n) 6857 24.8 13.8 417 226 140 1186 128(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 | AII(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AII2(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 AII2(2n) X 133(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25.2 13.8 417 226 140 1186 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6581 24.8 13.8 417 226 140 1186 129(2n) X 0267(2n) 6581 24.8 13.6 419 206 165 1218 CT 9(2n) X 133(2n) 6581 24.8 14.0 206 162 1218 CT 9(2n) X 133(4n) 6495 23.2 14.0 496 276 228 1373 129(2n) X 133(4n) 6494 23.1 14.0 491 249
 | AI12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1644 CT 9(2n) X 133(4n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 417 206 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 276 1218 CT 9(2n) X 133(2n) 6563 23.1 14.0 568 318 172 1669 CT 9(2n) X 133(4n) 6495 23.2 14.0 491 249 202 1465
 | 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 201 25.6 13.7 590 333 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 201 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 276 228 1373 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 | CT 9(2n) X 133(4n) Z 001 25.6 13.7 590 33 G 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 · 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | 128(2n) X 0267(2n) 6581 24.8 ·13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 5686 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | 129(2n) X 133(4n) 6495 23.2 14.0 5686 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 | 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 |
 | 128(2n) X 133(4n) 6389 22.6 14.1 568° 327 179 1584 0156(2n) X 0267(2n) 6388 23.1 13.8 414 229 146 1172 | 128(2n) X 133(4n) 6389 22.6 14.1 568° 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 | 128(2n) X 133(4n) 6389 22.6 14.1 568 $^{\circ}$ 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 | 128(2n) X 133(4n) 6389 22.6 14.1 568° 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430
 | 128(2n) X 133(4n) 6389 22.6 14.1 568 9 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 | 128(2n) X 133(4n) 6389 22.6 14.1 568 9 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 14.30 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 | 128(2n) X 133(4n) 6389 22.6 14.1 568 5 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 1172 14.5 603 443 240 1368 1172 14.5 603 443 240 1368 1172 14.0 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) X 0267(4n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 | 128(2n) X 133(4n) 6389 22.6 14.1 568 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 1172 14.5 603 443 240 1368 1172 14.5 603 443 240 1368 1172 1172 1172 1172 1173 1172 1173 1174 1175 1175 1175 1175 1175 1175 1175
 | 128(2n) X 133(4n) 6389 22.6 14.1 568 9 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 1172 11.0 X 133(4n) 6216 21.5 14.5 603 443 240 1368 1172 133(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 129(2n) X 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 Mean | 128(2n) X 133(4n) 6389 22.6 14.1 568° 327 179 1584 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 172 156(2n)X 0267(2n) 6216 21.5 14.5 603 443 240 1368 1772 179 1563 170 X 133(4n) 6078 21.3 14.4 578 375 161 1563 179 1563 179 1563 179 1792 179 179 179 179 179 179 179 179 179 179 | 128(2n) X 133(4n) 6389 22.6 14.1 568 327 179 1584 20156(2n)X 0267(2n) 6388 23.1 13.8 414 22.9 146 1172 1172 156(2n)X 0267(2n) 6216 21.5 14.5 603 44.3 24.0 1368 1172 1172 11.5 603 44.3 24.0 1368 1172 11.5 603 44.3 24.0 1368 11.5 63 11.5 14.0 6078 21.3 14.0 6078 113.8 52.6 284 24.9 14.30 129(2n) X 133(2n) X 0267(4n) 5753 20.8 13.8 52.6 284 24.9 14.30 129(2n) X 133(2n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 1133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 1133(2n) X 133(2n) 4079 14.7 13.9 664 44.1 34.5 1444 1133(4n) X 133(4n) 4079 14.7 13.9 664 44.1 34.5 1444 113.0 107 57 294 0 | 128(2n) X 133(4n) 6389 22.6 14.1 568° 327 179 1584 2015(2n) X 0267(2n) 6388 23.1 13.8 414 229 146 1172 1172 11.5 14.5 603 443 240 1368 1172 11.5 14.5 603 443 240 1368 13.8 13.0 129(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 1514 129(2n) X 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) X 0267(4n) 5559 19.1 14.0 610 401 205 1514 156 1459 133(2n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(2n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 2.0 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 2.0 133(4n) X 133(4n) 4079 14.7 13.9 539 320 192 1457 2.0 104 2.0 104 2.0 104 2.0 104 13.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 |
| 0156(2n) X 133(2n) 8127 28.8 14.1 522 309 203 1428 0156(4n) X 133(2n) 7585 28.7 13.2 543 312 194 1341 0156(4n) X 133(2n) 7410 26.5 14.0 457 221 139 1457 AI-10(2n) X 133(2n) 7388 25.0 14.8 547 390 135 1482 AI-12(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 CT 9(2n) X 133(4n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 0267(2n) 6971 25.2 13.8 433 235 165 1218 CT 9(2n) X 0267(2n) 6587 24.8 13.8 433 235 165 1218 CT 9(2n) X 133(4n) 6583 23.1 14.1 496 276 228 1373 CT 9(2n) X 133(4n) 6494 23.1 14.0 590 336 187 1670 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | 0156(4n) X 133(2n) 7585 28,7 13,2 543 312 194 1341 0156(4n) X 0267(2n) 7410 26,5 14,0 457 221 139 1457 0156(4n) X 0267(2n) 7410 26,5 14,0 457 221 139 1457 AI-10(2n) X 133(2n) 7348 26,7 13,8 636 422 225 1500 AI-12(2n) X 133(2n) 7348 26,1 13,5 683 361 186 1979 133(2n) X 0267(2n) 7094 26,1 13,6 457 266 165 1185 EL 32(2n) X 133(4n) 7021 25,2 13,9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25,2 13,8 417 226 140 1186 128(2n) X 0267(2n) 6971 25,2 13,8 417 226 140 1186 129(2n) X 0267(2n) 6581 24,8 13,8 433 235 165 1212 129(2n) X 0367(2n) 6581 24,3 13,6 419 206 162 1218 129(2n) X 133(4n) 6503 23,1 14,0 568 318 172 1669 0156(4n) X 133(4n) 6494 23,1 14,0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23,1 13,9 590 336 187 1670 | AI-10(2n) X 133(2n) 7410 26.5 14.0 457 221 139 1457 AI-10(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-1(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(2n) 7125 26.3 13.5 683 361 186 1979 AI-12(2n) X 133(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25.2 13.8 417 226 140 1186 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6581 24.8 13.6 419 206 162 1218 CT 9(2n) X 133(4n) 6581 24.8 13.6 419 206 162 1218 CT 9(2n) X 133(4n) 6593 23.1 14.0 568. | AI-10(2n) X 133(2n) 7388 25.0 14.8 547 390 135 1482 AI-1(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 AI-12(2n) X 133(4n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 CT 9(2n) X 0267(2n) 6857 24.8 13.8 417 226 140 1186 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 165 1212 CT 9(2n) X 133(4n) 6503 23.1 14.1 496 276 228 1373 CT 9(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | AI-1(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 AI-12(2n) X 133(4n) 7024 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6857 24.8 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 417 206 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 165 1212 129(2n) X 133(2n) 6581 24.3 14.0 568 318 172 1669 CT 9(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 590 <td< td=""><td>AI12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) Z001 25.6 13.7 590 33 155 1672 CT 9(2n) X 0267(2n) 6957 24.8 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.0 568 276 228 1373 129(2n) X 133(4n) 6495 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 <td< td=""><td>133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 201 25.6 13.7 590 336 155 1672 CT 9(2n) X 133(4n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6581 24.3 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 276 228 1373 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 5686 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>CT 9(2n) X 133(4n)</td><td>CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 · 13.8 433 235 165 1212 1228(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>128(2n) X 0267(2n) 6581 24.8 · 13.8 433 235 165 1212
129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218
CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373
129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669
0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>129(2n) X 133(4n) 6495 23.2 14.0 568¢ 318 172 1669
0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 22.9 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563
133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563
133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430
129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 22.9 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 44.3 24.0 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 24.9 14.30 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 Mean</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean S. E. of Mean 414</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean Akan Akan 4487 1.68 0.34 442 330 192 1457 S. E. of Mean 487 1.68 0.34 442 38 20 104 2.6 Sig. Diff. 5% 1377 4.75 NS 119 107 57 294 0</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.9 664 441 345 1444 Mean Mean Aean Aaan A</td></td<></td></td<> | AI12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) Z001 25.6 13.7 590 33 155 1672 CT 9(2n) X 0267(2n) 6957 24.8 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.0 568 276 228 1373 129(2n) X 133(4n) 6495 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 <td< td=""><td>133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 201 25.6 13.7 590 336 155 1672 CT 9(2n) X 133(4n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6581 24.3 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 276 228 1373 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 5686 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>CT 9(2n) X 133(4n)</td><td>CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 · 13.8 433 235 165 1212 1228(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>128(2n) X 0267(2n) 6581 24.8 · 13.8 433 235 165 1212
129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218
CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373
129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669
0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>129(2n) X 133(4n) 6495 23.2 14.0 568¢ 318 172 1669
0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 22.9 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563
133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563
133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430
129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 22.9 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 44.3 24.0 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 24.9 14.30 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 Mean</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean S. E. of Mean 414</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean Akan Akan 4487 1.68 0.34 442 330 192 1457 S. E. of Mean 487 1.68 0.34 442 38 20 104 2.6 Sig. Diff. 5% 1377 4.75 NS 119 107 57 294 0</td><td>0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.9 664 441 345 1444 Mean Mean Aean Aaan A</td></td<> | 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 201 25.6 13.7 590 336 155 1672 CT 9(2n) X 133(4n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6581 24.3 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 276 228 1373 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 5686 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | CT 9(2n) X 133(4n) | CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 · 13.8 433 235 165 1212 1228(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | 128(2n) X 0267(2n) 6581 24.8 · 13.8 433 235 165 1212
129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218
CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373
129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669
0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | 129(2n) X 133(4n) 6495 23.2 14.0 568¢ 318 172 1669
0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 22.9 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563
133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172
EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563
133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430
129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 22.9 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 44.3 24.0 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 24.9 14.30 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 Mean | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean S. E. of Mean 414 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean Akan Akan 4487 1.68 0.34 442 330 192 1457 S. E. of Mean 487 1.68 0.34 442 38 20 104 2.6 Sig. Diff. 5% 1377 4.75 NS 119 107 57 294 0 | 0156(2n)X 0267(2n) 6388 23.1 13.8 414 229 146 1172 EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.9 664 441 345 1444 Mean Mean Aean Aaan A |
| 0156(2n) X 133(2n) 8127 28.8 14.1 522 309 203 1428 0156(4n) X 133(2n) 7585 28.7 13.2 543 312 194 1341 0156(4n) X 0267(2n) 7410 26.5 14.0 457 221 139 1457 AI-10(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(2n) 7348 26.7 13.8 683 361 186 1979 AI-12(2n) X 133(4n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 0267(2n) 6971 25.2 13.8 433 25.6 165 1186 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 165 1218 CT 9(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.1 4.0 568 316 187 1670 128(2n) X 133(4n) 6495 22.6 14.1 568 318 172 1670 128(2n) X 133(4n) 6495 22.6 14.1 568 187 1670 128(2n) X 133(4n) 6495 22.6 14.1 568 187 1670 128(2n) X 133(4n) 6495 22.6 14.1 568 187 1670 | 0156(4n) X 133(2n) 7585 28.7 13.2 543 312 194 1341 0156(4n) X 0267(2n) 7410 26.5 14.0 457 221 139 1457 AI-10(2n) X 133(2n) 738 25.0 14.8 547 390 135 1482 AI-11(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 AI-12(2n) X 133(4n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25.2 13.8 417 226 140 1186 CT 9(2n) X 133(2n) 6581 24.8 13.8 417 206 162 1218 CT 9(2n) X 133(4n) 6593 23.1 14.1 496 276 228 1373 CT 9(2n) X 133(4n) 6495 23.2 14.0 590 336 187 1670 AI-1(2n) X 133(4n) 6397 23.1 14.1 568 318 172 1669 AI-1(2n) X 133(4n) 6389 22.6 14.1 568 318 172 1670 | 0156(4n) X 0267(2n) 7410 26,5 14,0 457 221 139 1457 AI-10(2n) X 133(2n) 7348 26,0 14,8 547 390 135 1482 AI-11(2n) X 133(2n) 7348 26,7 13,8 636 422 225 1500 AI-12(2n) X 133(2n) 7125 26,3 13,5 683 361 186 1979 133(2n) X 0267(2n) 7094 26,1 13,6 457 266 165 1185 EL 32(2n) X 133(4n) 7021 25,2 13,9 570 419 275 1644 CT 9(2n) X 133(4n) 7021 25,2 13,8 417 226 140 1186 128(2n) X 0267(2n) 6971 25,2 13,8 417 226 140 1186 129(2n) X 0267(2n) 6581 24,8 13,6 419 206 162 1218 CT 9(2n) X 133(4n) 6503 23,1 14,1 496 276 228 1373 129(2n) X 133(4n) 6494 23,1 14,0 491 249 202 1465 AI-1(2n) X 133(4n) 6389 22,6 14,1 568 2179 1584 | AI-10(2n) X 133(2n) 738 25.0 14,8 547 390 135 1482 AI-1(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(2n) 7125 26.3 13.5 683 361 186 1979 AI-12(2n) X 133(2n) 7094 26.1 13.6 457 266 165 1185 1186 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) Z001 25.6 13.7 590 334 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 417 226 140 1186 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(4n) 6581 24.3 14.0 568c 256 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 AI-1(2n) X 133(4n) 6494 23.1 14.0 568c 336 187 1670 AI-1(2n) X 133(4n) 6389 22.6 14.1 568c 327 179 1584 | AI-1(2n) X 133(2n) 7348 26.7 13.8 636 422 225 1500 AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 AI-12(2n) X 133(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6857 24.8 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 419 206 165 121 129(2n) X 0267(2n) 6581 24.8 13.6 419 206 165 1218 CT 9(2n) X 133(4n) 6503 23.1 14.0 568. 318 172 1669 CT 9(2n) X 133(4n) 6495 23.2 14.0 568. 318 172 1669 AI-1(2n) X 133(4n) 6397 23.1 14.0 590 <
 | AI-12(2n) X 133(4n) 7125 26.3 13.5 683 361 186 1979 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6857 24.8 13.8 417 226 140 1186 128(2n) X 0267(2n) 6581 24.8 13.8 417 226 140 1186 129(2n) X 0267(2n) 6581 24.3 13.6 165 1212 129(2n) X 133(4n) 6563 23.1 14.0 568.6 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 568.0 336 187 1670 AI-1(2n) X 133(4n) 6389 22.6 14.1 568.0 327 179 1584
 | 133(2n) X 0267(2n) 7094 26.1 13.6 457 266 165 1185 EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2.001 25.6 13.7 590 33\$ 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 128(2n) X 133(4n) 6389 22.6 14.1 568 327 179 1584 | EL 32(2n) X 133(2n) 7021 25.2 13.9 570 419 275 1644 CT 9(2n) X 133(4n) 2001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6581 24.3 14.1 496 206 162 1218 CT 9(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 568 336 187 1670 128(2n) X 133(4n) 6397 23.1 14.1 568 327 179 1584 | CT 9(2n) X 133(4n) 7001 25.6 13.7 590 336 155 1672 CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 128(2n) X 133(4n) 6389 22.6 14.1 568 327 179 1584 | CT 9(2n) X 0267(2n) 6971 25.2 13.8 417 226 140 1186 128(2n) X 0267(2n) 6857 24.8 .13.8 433 235 165 1212 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 129(2n) X 133(4n) 6503 23.1 14.0 568° 1318 172 1669 0156(4n) X 133(4n) 6495 23.2 14.0 491 249 202 1465 120 129(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 128(2n) X 133(4n) 6389 22.6 14.1 568° 327 179 1584 | 128(2n) X 0267(2n) 6857 24.8 .13.8 433 235 165 1212 129(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.0 496 276 228 1373 129(2n) X 133(4n) 6495 23.2 14.0 568c 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 128(2n) X 133(4n) 6389 22.6 14.1 568c 327 179 1584 | T29(2n) X 0267(2n) 6581 24.3 13.6 419 206 162 1218 CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 5686 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 128(2n) X 133(4n) 6389 22.6 14.1 568 cools 327 179 1584 | CT 9(2n) X 133(2n) 6503 23.1 14.1 496 276 228 137.3 129(2n) X 133(4n) 6495 23.2 14.0 568° 318 172 1669 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465 AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 128(2n) X 133(4n) 6389 22.6 14.1 568° | 129(2n) X 133(4n) 6495 23.2 14.0 568¢ 318 172 1669
0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670
128(2n) X 133(4n) 6389 22.6 14.1 568° 327 179 1584 | 0156(4n) X 133(4n) 6494 23.1 14.0 491 249 202 1465
AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670
128(2n) X 133(4n) 6389 22.6 14.1 568 327 179 1584 | AI-1(2n) X 133(4n) 6397 23.1 13.9 590 336 187 1670 128(2n) X 133(4n) 6389 22.6 14.1 5680 327 179 1584
 | | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368
AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563
133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 14.30
 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n). X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444
 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 133(4n) X 133(4n) 4079 14.7 13.9 664 441 345 1444 Mean | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean Mean 487 1.68 0.34 42 38 20 104 2. | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 4443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5359 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean S. E. of Mean 487 1.68 0.34 42 339 320 192 1457 Sig. Diff. 5% 1377 4.75 NS 119 107 57 294 0 | EL 31(2n) X 133(4n) 6216 21.5 14.5 603 443 240 1368 AI-10(2n) X 133(4n) 6078 21.3 14.4 578 375 161 1563 133(2n) X 0267(4n) 5753 20.8 13.8 526 284 249 1430 129(2n) X 133(2n) 5559 19.1 14.0 610 401 205 1514 0156(4n) X 0267(4n) 5201 19.3 13.4 474 214 156 1459 133(2n) X 133(2n) 4417 16.8 13.2 617 400 174 3198 Mean Mean Mean S. E. of Mean 487 1.68 0.34 42 38 20 104 2.6 Sig. Diff. 5% 137 4.75 NS 119 107 57 294 Coefficient of Variation 15.0 14.3 4.93 15.5 23.8 21.0 14.4 23 |

Table 2. MEAN OF PLOIDY LEVELS TEST 2, LOGAN, UTAH, 1966

Unadjusted Means

1										
Beets	36	31	26			Beets	36	31	26	
Ж	1360	1573	1456	12,96**		×	1340	1585	1495	15,38**
Na	185	204	243	7,71**		Na	178	186	232	6.74
Z	315	331	301	NS		Z	308	335	316	82
Impurity	512	571	543	5.48	ısted Means	Impurity	504	575	559	8,29
Sucrose	13.9	13.9	13,8	NS	Covariance Adjusted Means	Sucrose	13.9	14.1	13.8	SN
T/A	24.0	24.0	19.0	5.48**	Cove	T/A	22.8	24.8	21.8	10,92**
Gross	6671	6645	5258	10.94**		Gross	6295	6989	6016	9,63**
Number	12	10	က	'F' Values		Number entries	12 .	10	m	Calculated 'F' Values
Ploidy	2n	3n	4n	Calculated		Ploidy	2n	3n	u+y	Calculate

** Significant at the 1% level

Table 3. POLYPLOID VARIETY TEST 4, NORTH FARM, LOGAN, UTAH, 1966
Randomized Blocks

ks	1	ts	ot																																		
zed Blocks		Av. Beets	\dashv	26	28	56	26	22	56	27	35	21	37	34	39	33	36	31	/ 1	41	35	38	39	32	23	39	39	40	37	04	32	36	33	2.69	23.4	80	5.37
Randomized			×	1509	1488	1487	1495	1734	1626	1709	1443	1501	1315	1973	1636	1565	1350	1585	7	1579	1633	1471	1447	1380	1577	1146	1151	1171	1148	1175	1404	1340	1457	104	14.27	291	3.22
	PPM		Na	199	155	345	232	168	177	185	140	544	196	186	158	191	241	186	000	200	9/7	227	137	228	201	168	143	168	147	165	174	178	192	20	21,18	57	5-15
Î		Amino	N	265	226	456	316	341	342	350	217	309	302	359	319	376	437	335		767 71,	416	411	378	279	423	252	213	220	221	190	405	308	320	38	23.68	107	4.22
		Impurity	index	509	987	681	559	594	577	605	452	555	532	681	575	579	595	575	C	503	566	625	533	665	635	441	403	516	405	402	619	504	539	41	15.40	119	3,55
		Percent	sugar	14.0	13.4	13.9	13.8	14.0	14.2	13.9	14.0	.13.9	13.2	13.5	13.7	14.4	14.5	14.1	*	14•1	13.9	13.8	14.8	14.1	14.9	13.6	13.8	13.8	13.8	13.5	13.2	13.9	13.9	0.34	96*4	SN	1,13
	yield	Tons	beets	26.3	21.4	17.7	21.8	27.7	25.6	25.8	25.6	25.7	27.0	25.8	23.0	21.4		24.8		4°C7	74.4	24.7	22.6	23.6	23.6	23.3	22.7	22.0	21.4	21.3	17.2	22.7	23.4	1,22	10.49	3,45	69.4
	Acre	Gross	sugar	7361	5770	4917	9109	7752	71197	7145	7141	7129	9/0/	9002	6283	6108	5857	6989	1	71/0	6812	6780	6700	6653	9859	6316	6283	6050	5909	5744	4537	6292	6491	367	11,32	1039	4.21
ies		Description		0156(4n) X 133(4n)	0156(4n) X 0267(4n)	133(4n) X 133(4n)	Mean (4n)	129(2n) X 133(4n)	128(2n) X 133(4n)		0156(4n) X 133(2n)	133(2n) X 133(4n)	0156(4n) X 133(2n)	AI-12(2n) X 133(4n)	CT 9(2n) X 133(4n)	AI-10(2n) X 133(4n)	EL 31(2n) X 133(4n)	Mean (3n)	· · · · · · · · · · · · · · · · · · ·	0156(zn) X 133(zn)	EL 32(2n) X 133(2n)	AI-1(2n) X 133(2n)	AI-10(2n) X 133(2n)	CT 9(2n) X 133(2n)	129(2n) X 133(2n)		CT 9(2n) X 0267(2n)	128(2n) X 0267(2n)	0156(2n) X 0267(2n)	129(2n) X 0267(2n)		Mean (2n)	Mean	S. E. of Mean	Coeff. of Variation	Sig, Diff, 5%	F Va
25 Varieties		Variety	code	03	02	04		13	18	15	05	11	07	60	14	17	10		Č	7 7	30	28	29	27	26	19	22	23	21	20	25						

TEST 5

The material in Test 5 was made up of hybrids of five CMS females (AI-1, AI-10, SLC 128, SLC 129, and 0156) and five inbred pollinators 712 (CT5 X CT8), 0461 (CT8 X line 289), 0523 (CT5mm), 0198 (129mm X American Crystal Nema Sel), and 030 (630= US 35/2aa X (US 35/2aa X Ovana) X CT8) making a total of 25 entries. The pollinators were selfed progeny of individual beets selected for high sugar. Data on each pollinator mother beet was as follows:

Beet No.	Wt.	Sucrose	N	<u>Na</u>	<u>K</u>	Index
0461-261	1114	17.2	115	37	960	214
0198-297	1000	17.4	268	39	1116	322
0523-146	1420	15.5	96	60	935	226
030-42	930	15.8	105	112	984	247
712-225	1110	17.0	96	78	1158	243

Means of the hybrids for the eight measurements are given in Table 1. Results clearly show there were significant differences between entries for all characteristics. Hybrid AI-1 X 712 had the highest gross sugar and significantly the highest yield in tons per acre. However, it was among the lowest in percent sucrose, and the poorest in quality as evidenced by the impurity index. Sucrose ranged from 14.02% to 15.96% with AI-1 X 0198 being the highest entry for this character. Hybrids AI-10 X 0198 and AI-10 X 0523 had low Na content; however, the former entry was high in N and K. AI-1 X 0523 and AI-10 X 0523 had the best quality as measured by the impurity index. These hybrids were among the low yielding entries in the test. Based upon all measurements, 0156 X 0198, would probably produce the best sugar yield.

Hybrids having 712 as a pollinator had the highest gross sugar and tons per acre, on the average (Table 2). Entries with the pollinator 030 were also high tonnage type. Pollinators 0461 and 0198 were highest in sucrose. The average of 0523 hybrids was lower in gross sugar and tonnage than the four other lines. No doubt the low beet count of 129 X 0523 and 128 X 0523 contributed to the low yield of these hybrids. They averaged second lowest in sucrose and best in quality as noted by the impurity index. "F" values for male and female groupings are given in Table 2A.

When hybrids were grouped by common female parent, the highest producing CMS parent was 0156 with a gross sugar of 8460 and 14.71% sucrose (Table 3). This parent also resulted in a low impurity index on the average. SLC 129 as a female parent produced the lowest gross sugar and tonnage on the average.

Table 1 Sugar Selection Hybrids Variety Test 5 Logan, Utah 1966

		Acre	Yield				PPM		
Variety	Description	Gross	Tons	Percent	Impurity	Amino			Av. Beets
code		sugar	beets	sugar	index	Z	Na	×	per plot
24	AI-1 X 712	9402	33,30	14,30	513	239	221	1663	79
- ∞	56 X 019	9135	29,38	15.55	385	242	118	1323	57
10	×	9113	28.44	15.96	453	332	95	1428	29
21	129 X 712	2606	31,30	14.43	445	221	146	1445	9/
22		9088	29.90	14.65	383	199	119	1272	74
23	0156 X 712	8805	30.74	14.32	907	170	155	1412	74
17	128 X 030	8748	29.65	14.74	408	221	193	1228	72
18	0156 X 030	9428	29.86	14,74	404	184	188	1369	75
19	AI-1 X 030	8705	29.56	14.69	427	193	207	1402	78
16	0	8515	29.75	14,34	447	220	544	1316	75
20	AI-10 X 030	8427	27.63	15.29	385	198	130	1366	92
7	01	8397	27,85	15.06	454	303	125	1380	65
25	9	8367	28.68	14.65	404	180	110	1488	81
-		8345	28.05	14.90	422	309	108	1152	77
9	0156 X 0461	8311	27.52	15.14	411	288	114	1168	. 79
2	128 X 0461	8206	27.85	14.74	463	360	121	1150	78
4	AI-1'X 0461	8199	28,43	14.42	437	262	167	1220	82
6	AI-1 X 0198	8003	27.35	14.65	501	305	130	1507	59
2	AI-10 X 0461	7924	26.45	14.99	465	361	102	1199	81
15	AI-10 X 0523	9692	25.14	15.25	363	193	92	1263	74
13	0156 X 0523	7303	26.08	14.02	380	175	150	1195	71
9	129 X 0198	9202	22.72	15.61	432	275	105	1433	44
14	AI-1 X 0523	6952	23.76	14.57	343	164	132	1133	72
11	129 X 0523	5542	18.97	14.52	380	183	112	1304	37
12	128 X 0523	5436	19.41	14.12	393	196	145	1224	38
	Mean All Varieties		27.51	14.79	420	239	141	1322	70
	Į.	314	1.06	0.14	20	6.3	12	34	3.0
	Sig. Diff. 5%	888	2.98	0,40	57	18	34	96	8.0
	Coef. Variation	80.6	9.19	2.29	11.75	25.56	20.12	6.24	1.05
	Calculated F (Adj)11	11.17	10.76	11.97	4.21	6.04	1244	15,56	18,64

Sugar Selection Hybrids Grouped by Maleparent Variety Test 5 Logan, Utah 1966 Table 2

1		ı																							
	Av. Beets per plot	1	78	79	82	81	7.9	77	65	57	59	29	58	37	38	71	72	74	58	75	72	75	78	92	75
	×	1152	1150	1168	1220	1199	1178	1433	1380	1323	1507	1428	1414	1304	1224	1195	1133	1263	1224	1316	1228	1369	1402	1366	1336
PPM	Na	108	121	114	167	102	122	105	125	118	130	95	115	112	145	150	132	92	126	244	193	188	207	130	192
	Amino	309	360	288	262	361	316	275	303	242	305	332	291	183	196	175	164	193	182	220	221	184	193	198	203
	Impurity	422	463	411	437	465	077	432	424	385	501	453	445	380	393	380	343	363	372	447	408	404	427	385	414
	Percent	14.90	14.74	5.	4.	4.	4.	5.	5	5	14.65	5.	5.	14.52	14.12	14.02	14.57	15.25	14.50	14.34	14.74	14.74	14.69	15.29	14.76
Yield	Tons	. ∞	27.85	7.	∞	6.	7	2.	7	9.	27.35	· ·	7.	∞	9	26.08	3	5.	2.	9.7	9.6	9.8	9.5	27.63	9.2
Acre		8345	8206	8311	8199	7924	8197	9202	8397	9135	8003	9113	8345	5542	5436	7303	6952	9692	9859	8515	8748	97/8	8705	8427	8635
	Description	129 X 0461	128 X 0461	0156 X 0461	0 X 1	AI-10 X 0461	Mean	\times	128 X 0198		0	AI-10 X 0198	Mean		128 X 0523	0156 X 0523	AI-1 X 0523	AI-10 X 0523	Mean	129 X 030	128 X 030	0156 X 030	AI-1 X 030	AI-10 X 030	Mean
	Variety		2	e	4	5		9	7	_∞	6	10		11	12	13	14	15		16	17	18	19	20	

Table 2 (continued)

		Acre Yield	lield				PPM		
Variety	Description	Gross	Tons	Percent	Impurity	Amino			Av. Beets
code		sugar	beets	sugar	index	Z	Na	×	per plot
21	129 X 712	2606	31,30	14.43	445	221	146	1445	92
22	128 X 712	9088	29.90	14.65	383	199	119	1272	74
23	0156 X 712	8805	30.74	14,32	905	170	155	1412	74
24	AI-1 X 712	9402	33,30	14,30	513	239	221	1663	79
25	AI-10 X 712	8367	28.68	14.65	707	180	110	1488	81
	Mean	8895	30.78	14.47	430	202	150	1456	77
Mea	Mean All Varieties	8130	27.51	14.78	420	239	141	1322	70
S.	S. E. of Mean	314	1.06	0.14	20	6.3	12	34	3.0
Sig	Sig. Diff. 5%	888	2.98	0.40	57	18	34	96	8.0
Coe	Coef. Variation	9.08	9.19	2.29	11.75	25.56	20.12	6.24	1.05
Cal	Calculated F (Adi)	11.17	10.76	11.97	4.21	6.04	12.44	15.56	18.64

Table 2A Calculated F Values Sugar Selection Hybrids Test 5 Logan, Utah 1966

		Acre Yield	Yield				PPM		
Source of	DF	Gross	Tons	Percent	Impurity				Av. Beets
Variation		Sugar	beets	Sugar	index	Z	Na	×	per plot
Females	7	96.7	5.12	14.62	1 97	67 6	15 87	07.0	18 07
			11.0	10.11	1/07	7+01	10.01	0.0	7C ° OT
Males	4	44.38	41.53	21.22	11,86	30.47	23,43	58,20	61.06
Females X Males	16	4.31	3.62	3.66	2.46	SN	4.24	4.48	7.90

Significant F Values
For Males and Females 5% = 2.46
For Males X Females 5% = 1.75

1% = 3.511% = 2.19

Av. Beets per plot 82 72 78 79 74 79 57 71 75 74 71 78 65 38 72 74 65 77 44 44 37 75 76 62 1663 1385 1195 1220 1507 1133 1402 1152 1433 1304 1316 1445 1330 1150 1380 1224 1228 1272 1272 1168 1323 1412 1293 Per Million 121 125 145 193 119 114 118 150 188 155 145 167 130 132 207 207 221 171 108 105 112 244 244 146 143 Parts Amino 262 305 164 193 239 233 309 275 183 220 220 221 242 360 303 196 221 199 256 288 242 175 184 170 212 Z Impurity index 437 501 343 427 513 444 422 432 380 447 445 425 463 454 393 408 383 442 411 385 380 404 406 397 Percent 15.14 15.55 14.02 14.74 14.32 14.42 14.65 14.57 14.69 14.30 14.53 sugar 14.90 15.61 14.52 14.34 14.43 14.74 14.12 14.74 14.65 14.66 28.43 27.35 23.76 28.05 18.97 29.75 31.30 26.16 27.85 27.85 19.41 29.65 29.90 27.93 29.38 26.08 29.86 30.74 29.56 33.30 28.48 beets Tons Acre Yield sugar Gross 8345 7076 5542 8515 9097 7715 8806 8206 8397 5436 8748 9135 7303 8746 8805 8460 8311 8199 8003 6952 8705 9402 8252 Description 0198 0461 0198 0523 030 0523 129 X 0198 129 X 0523 129 X 030 129 X 712 128 X 0461 128 X 0198 0461 0198 0523 030 712 030 0461 0156 X 0156 X AI-1 X 128 X (128 X (12 0156 X AI-1 X AI-1 X AI-1 X 128 X 0156 AI-1 0156 Mean Mean Mean Mean Variety code 2 7 12 17 22 3 8 113 13 23 4 9 14 19 24

Logan, Utah 1966 Variety Test 5 Sugar Selection Hybrids Grouped by Female Parent Table 3

Table 3 (Continued)

1							T. 11.1	1200	
		Acre Yield	Yield			Parts	Parts Per Million	110n	
Variety	Description	Gross	Tons	Percent	Impurity	Amino			Av. Beets
code	•	sugar	beets	sugar	index	N	Na	×	per plot
5	AI-10 X 0461	7924	26.45	14.99	465	361	102	1199	81
10	AI-10 X 0198	9113	28.44	15.96	453	332	95	1428	29
15	AI-10 X 0523	9692	25.14	15.25	363	193	92	1263	74
20	AI-10 X 030	8427	27.63	15,29	385	198	130	1366	92
25	AI-10 X 712	8367	28.68	14.65	404	180	110	1488	81
	Mean	8305	27.27	15.23	414	253	106	1349	92
Mean	Mean All Varieties	8130	27.51	14.78	420	239	141	1322	70
S	S. E. of Mean	314	1.06	0.14	20	6.3	12	34	3.0
Sig	Sig. Diff. 5%	888	2.98	0,40	57	18	34	96	8.0
Coe	Coef. Variation	90.6	9.19	2,29	11.75	25.56	20.12	6.24	1.05
Calc	Calculated F (Adj)	11.17	10.76	11.97	4.21	70°9	12.44	15.56	18.64

STUDIES ON SEMI-MALE STERILITY IN SUGAR BEETS

by J. C. Theurer

A partial fertile plant of 9136 (SL 7121 X SLC 03) was selected in 1964 for study of the genetic behavior of semi-male sterility. Segregation observed in the F_1 , F_2 , and b_1 generations was presented in the 1965 Research Report.

Seven male sterile F₂ segregates were crossed to the annual pollinator SLC 03, and fertility readings were made on each plant by microscopic observation of aceto-carmine stained pollen. Anthers from newly opened flowers on each plant were examined at various intervals, until all flowers on the plant were open. The original data showed significant differences between crosses, even though all male sterile parents were phenotypically identical.

In an effort to note aging effect and/or environmental stability of CMS, seedstalks were cut off and new shoots were allowed to develop in the greenhouse at 70 to 80 F. At anthesis each plant was carefully examined and a fertility reading made on the basis of a random collection of anthers. This procedure was repeated throughout the year resulting in six to twelve readings on each plant.

Hybrids of four F_2 male sterile segregates from the original parent crossed to the biennial pollinator SLC 129 and five fertile or partial-fertile segregates that were self pollinated were evaluated for fertility this past year also. F_1 and selfed seed was planted in 4-inch clay pots in the greenhouse. When plants were eight weeks old, they were photothermally induced and later returned to the greenhouse for observation. Microscopic fertility readings were made at weekly intervals on this material.

Results and Discussion

Variation in fertility for the seven annual CMS hybrids is shown in Table 1. No plants that were scored as fertile or partial-fertile in the first reading gave similar successive readings. The plants either tended to vary from male sterile to partial fertiles, or they appeared to remain male sterile after the first reading. In one line (5931), seven plants which appeared male sterile during the first, and many subsequent readings produced a small amount of stainable pollen at one reading. However, plants originally scored male sterile tended to remain such throughout the year.

The data indicate both genetic and micro-environmental differences occur in these seven male sterile hybrids.

The male sterile X SLC 129 crosses gave all male sterile offspring with five exceptions (Table 2). The fourth reading on these five plants, made August 2, 1966, showed 10-20% stainable pollen. Subsequently these plants were read as male sterile.

The selfed progeny showed a tendency toward male sterility in that many plants were consistently read as male sterile and no plant showed an abundance of stainable pollen at subsequent readings. Plants that showed partial fertility had mainly 5-10% stainable pollen; however, a few were as high as 50% fertile at the August 2 reading. No correlation between the fertility of the parent and offspring was apparent. Line 5912 showed the greatest trend for fertility, but 5930 derived from another 50% fertile plant had more male sterile offspring than did 5906, a 20% fertile parent.

The trend for higher fertility during the August 2 reading might be attributed to either a higher temperature, or to the addition of fertilizer to the soil a short time previous to the reading. Plans are to further investigate light, temperature, and soil nutrient effects upon partial fertile plants.

Variation in fertility readings of crosses between male sterile segregates from the semi-male sterile line 9136 and the 0-type annual pollinator, SLC 03 Table 1.

					Fertilit,	y besed on a	Fertility based on average of 6 to 12 readings per plant	12 readings p	er plent
Idne no.	<u> </u>	First reading FF	Br ₁	Total number plants	Alvays	some PF later	PF-F first MS thereafter	F-F first variable MS to FF	Alrays PF-F
	(no.)	(no.)	(no.)		(no.)	(no.)	(no.)	(no.)	(no.)
5913	22	#	0	36	32	0	শ্ৰ	0	0
5921	0	2	0	7	. 0	0	0	5	0
5924	16	80	K	27	16	0	3	00	0
5931	প্ত	2	ત	ま	15	7	&	4.3	•
5933	36	н	0	37	36	0	т	0	0
5936	0	5	9	п	0	. 0	5	. 9	0
5937	K	. ~	П	9	ĸ	0	5	0	0
Total	109	8	य	216	102	7	145	29	0

Table 2. Pollen fertility readings of selfed progenies, and crosses of male sterile segregates from 9136 and the biennial 0-type pollinator, SLC 129

Current	Parent Material	Number Lines	Always MS	MS-PF	Always PF
5905	Male Sterile X SLC 129	2	17	5	0
5914	Male Sterile X SLC 129	1	89	0	0
5917	Male Sterile X SLC 129	1	15	0	0
5918	Male Sterile X SLC 129	1	6	0	0
5906	PF 20% Stainable Pollen	6	34	10	0
5912	PF 50% Stainable Pollen	10	42	27	0
5929	PF 35% Stainable Pollen	1	1	1	0
5930	PF 50% Stainable Pollen	5	18	5	0
5932	PF 50% Stainable Pollen	6	26	6	0

Asexual Transmission of Cytoplasmic Male Sterility

by J. C. Theurer and E. H. Ottley

Studies of the possible graft transmission of cytoplasmic male sterility (CMS) were continued in 1966. Materials and methods have been given in previous Research Reports.

Additional lines of the male-sterile segregates, involving CT 5 and SLC 129 grafts crossed to SLC 03, were observed.

A sample of G_2 grafted progenies from populations M3579-5, 94414, 94602.1, 94625, SLC 03, and SLC 03 CMS were also classified for fertility.

Results

CT 5 and SLC 129 crosses and backcrosses

A summary of the fertility of F₁, F₂, b₁, and b₂ generations, including the data presented in 1965, are shown in Table 1. Eight F₁ lines of CT 5 male sterile segregates in the G₁ crossed to SLC 03 gave 100% fertile offspring, with all plants having better than 70% acetocarmine-stained pollen. Seven F₁ sister lines segregated mostly malesterile offspring, with fertile plants ranging from 5%-90% stainable pollen. The ratio of male-sterile to fertile plants for one F₂ line, [(CT 5/1114)] X 03, gave a good fit (P=.3-.5) to a 3:1 ratio as expected for Mendelian male sterility. Segregation of two other F₂ lines did not fit a 3:1 ratio. Chi square of the combined F₂ lines resulted in a P value of .02-.05. All of the b₁ and b₂ lines studied had a majority of male-sterile progeny with a marked decrease in the range and average fertility from the b₁ to the b₂.

With the exception of a single plant, all of the male-sterile segregates from SLC 129 population grafts crossed to SLC 03 produced fertile offspring. The single exception could be explained by misclassification due to environmental effects.

It is doubtful that environment alone accounts for the large number of male-sterile segregates in CT 5 graft populations. The data indicate transmission of CMS across the graft union or alternatively one or all of the following: (1) new mutations for CMS occurred, (2) the Mendelian male sterility, known to be carried by the parent line is not inherited as a single recessive gene, (3) the parental line carries CMS plasm and is segregating for pollen restorer genes.

In an attempt to further clarify the segregation in CT 5 graft X SLC 03 progenies, crosses were made with ungrafted parental CT 5 Mendelian male-sterile plants and SLC 03. Results to date, although incomplete, are shown in Table 2. These preliminary data indicate that the

Table 1. Fertility of male-sterile segregates from CT 5 and SLC 129 grafts crossed with the annual 0-type pollinator SLC 03.

Seion Stock X Pollinator	Gen.	No. lines	No. p	lants	% Ferti	lity1/
` `			MS	F.	Range	Av.
CT 5						
CT 5 1114 x 03	G_1F_1	5 2	0	22	70-99	90
	0.71		57	3	5-50	63
	G_1F_2 G_1b_1	1	5 10	22 3	10-90 5-40	59 17
	G1b1	1 1	25	0	3-40	1/
	G1b2	_	23	U		
CT 5						
$\frac{\text{CT } 5}{1122} \times 03$	G_1F_1	1	0	2	98-99	99
	-	1	9	0		
	G_1F_2 G_1b_1	1 2	15	29	20-90	76
	G101	2	60	12	20-80	38
СТ 5						
$\frac{\text{CT 5}}{1124} \times 03$	G_1F_1	2	0	30	50-90	90
		4	22	9	80-90	89
	$\begin{smallmatrix}G_1F_2\\G_1b_1\\G_1b_2\end{smallmatrix}$	1 5 2	9	3	10	10
	Gibi	5	104	30	10-90	41
	G ₁ b ₂	2	29	8	10-50	24
129::						
129 x 03	G_1F_1	3	0	39	90-99	95
	1 1					
$\frac{129}{1122}$ x 03	G_1F_1	7	1	91	70-90	89
	-1-1					
$\frac{129}{1124} \times 03$	C.F.	1	0	16	20-90	85
1124	G ₁ F ₁	•	U	10	20-30	63

 $[\]frac{1}{2}$ Range and average of fertile segregates based on percent acetocarmine-stained pollen.

Table 2. Fertility of CT 5 (0223) ungrafted male-sterile plants X SLC 03.

	No	o. plar	its	% Ferti	$1ity^{1/}$
Cross no.	MS	PF	F	Range	Av.
G 6300	0	0	2	90	90
G 6301	0	0	71	80-90	89
G 6302	0	0	18	90	90
G 6303	0	2	86	40-90	88
G 6304	. 0	0	3	90	90
G 6305	0	0	1	90	90
G 6306	0	3	66	40-90	86
G 6308	0	0	4	90	90
G 6309	0	0	13	70-90	88

^{1/} Fertility range and average based upon percent aceto-carminestained pollen.

sterility of the parental line is indeed of the Mendelian type.

New grafts and crosses between CT 5 and CMS lines are in progress to further verify the results noted above and/or to eliminate some of the alternatives for the noted male-sterile segregation.

1963-64 grafts in the G2 generation

The comparative results of G_0 , G_1 and G_2 grafted progenies are shown in Table 3. Lines 94414 and 94602.1 on SLC 03 CMS again had several male-sterile segregates, while M 3579, 94625, and SLC 03 had a few male steriles in the G_2 . Grafts of fertile on fertile (94625 on SLC 03; and SLC 03 on SLC 03) remained autonomous for fertility.

Population 94602.1 is known to carry the Mendelian male-sterile gene (a_1) , which probably accounts for segregation in the G_2 . Crosses have been made of 94414 male-sterile segregates and SLC 03 and will be evaluated next year to discern whether or not this population is heterozygous A_1a_1 .

The limited number of male-sterile plants in the G_2 of other populations could be due to a low frequency of CMS transmission, mutation, or environmental effects which resulted in our misclassification of these plants.

Table 3. Fertility of G_0 , G_1 , and G_2 generation seedling grafts made in 1963-64.

						4.5.4.
Scion on stock	Gen.	No. lines	MS	F.	% Fert Range	Avg.
94414 on 03 CMS	GO		1	17	20-90	77
	G ₁	16	194	327	5-98	53
	G ₂	9	19	66	10-90	66
94602.1 on 03 CMS	GO		0	30	20-90	77
	G_1	25	10	614	10-99	75
	$G_2^{\frac{1}{2}}$	17	3	384	5-90	71
	G_3^-	7	.13	150	10-90	62
1 3579 on 03 CMS	GO		0	39	60-90	88
	G_1^O	4	0	91	10-98	88
	G_{2}^{1}	8	6	134	5-90	52
94625 on 03 CMS	G _O		0	9	90	90
	G ₁	8	Ø	263	30-98	86
	G ₁ G ₂	8	4	295	10-99	83
03 on 03 CMS	Go		0	47	20-90	85
	G ₀	45	2	1256	10-90	78
92.592.1 on 03 CMS	G _O		0	21	90	90
		-				
94625 on 03	G ₀		0	2	90	90
	G_{1}	2	0	44	70-98	88
	G ₂	2	0	58	10-90	79
3 on 03	G		O	34	70-90	87
	G G1	11	. 0	359	30-99	81
03 CMS on 03	Go		15	ō		

Segregation of Pollen Fertility in Restorer Hybrids

by J. C. Theurer and E. H. Ottley

Nineteen cytoplasmic male-sterile (CMS) lines and two Mendelian male-sterile lines were crossed with a pollen restorer inbred in 1964. The fertility of the F₁ progenies was observed and findings reported in 1965 Research Reports. Four of these F₁ hybrids; 12 F₂, and five b₁ progenies were planted in the field at St. George, Utah, in the fall of 1965 and visual pollen fertility readings were made on the progenies in May and June, 1966.

In addition, three F₁ restorer hybrid progenies were photothermally induced and allowed to flower in the greenhouse at 70° F. Pollen dehiscence was noted on each plant and a sample of pollen and/or anthers was collected for microscopic observation. Fertility was determined on the basis of the percent aceto-carmine-stained pollen.

Results

All plants in the four F_1 progenies grown at St. George produced abundant pollen with the exception of six plants in population R 4136 (Table 1). These exceptions were partial fertile and showed poor dehiscence. R 4136, a hybrid of NB-1 CMS and the pollen restorer inbred, gave the greatest number of partial male-sterile progeny in the 1965 readings also (see 1965 Research Report page 135).

A definite trend was noted in the F_2 , even though the segregation ratios were variable. Every hybrid segregated more male-fertile (pollen-producing plants) than male-sterile offspring.

In the b_1 generation all hybrids had a segregation of more malesterile than fertile progeny.

The results of the F₂ and b₁ segregations indicate that pollen restoration is governed by two or more genes having complementary effects. Inasmuch as there was a slight amount of contamination due to volunteer beets in the field at St. George, there may be some error in the ratios obtained. However, this error was not great enough to explain the poor fit of a two-complimentary gene hypothesis to much of the data.

Careful observation in the greenhouse on three F₁ restorer hybrids revealed that there is a marked difference in CMS lines (Table 2). Data confirmed previous field results which indicated NB-1 CMS was a more superior emasculator than SLC 129 CMS or other SLC CMS material.

Plans are under way to further study the inheritance of these differences in CMS lines.

Table 1. Pollen fertility of F₁, F₂, and b₁ generation restorer hybrids determined in St. George field planting, 1966.

Current no.	Description	Gen.	No.	No. p	lants 1/
			families	MS	F
R 4131	SLC 129 CMS X Rf	R.		^	
R 4135	CT 9 X CMS X Rf	F ₁ F ₁		0	130
R 4136	NB-1 CMS X Rf			0	102
R 4145	2938 CMS X Rf	F ₁		0	131
	IN M WIS	F ₁		0	191
R 5503	SLC 129 CMS X Rf	77 .			
R 509	CT 9 CMS X Rf	F ₂	20	643	915
R 5508	Wa-1 Che v n	F ₂ (0, P.)		19	46
R 5515	NB-1 CMS X Rf	F ₂	9	163	428
R 5510	2938 CMS X Kf	F ₂	9 5 2 6	129	438
R 5511	308H01 X Rf	F ₂	5	72	275
R 5512	211H3 X Rf	F ₂	2	40	62
R 5513	S 3317-5 X R _f .	F ₂	6	61	351
	S 3317-14 X Rf	F ₂	1	25	54
R 5514	2937 X R _f	F ₂	10	70	565
528	SLC 128 CMS X Rf	F_2^- (0.P.)	1	24	32
5506	AI-1 CMS X Rf	F ₂	1	15	65
2 503	F.C 503 CMS X Rf	F ₂ (0.P.)		35	102
	_	-			102
5109	SLC 129 CMS X Rf	b ₁	1	186	56
5113	CT 9 CMS X Re	b ₁	1	105	49
5114	SLC 128 CMS X Re	b ₁	1	21	6
5111	AI-1 CMS X R.	b ₁	ī	231	
5112	C 515 CMS X Rf	b ₁	i	133	88 92

Visual observation in which MS = white-anther plants and F = yellow anthers with varied degrees of pollen dehiscence.

Table 2. Fertility of F1 restorer hybrids grown in the greenhouse at Logam, Utah, 1966.

l Av.	s fertility	83	81	14	
Total	plants	41	52	. 93	
	90	28	37	0	
	80	4	7	7	
lts	60 70 80	4	2	Н	
114md	09	4	0	-	
class	20	0	1	1	
upper tile)	20 30 40 50	0	1	9	
by u	30	1	П	0	
lants	20	0	က	01	
No. plants by upper class limits $(% fertile) = 1/2$	10	0	0	39	
	14/	0	0	25	
	ž.	0	0	9	
Description		SLC 129 CMS X Rf	CT & CMS X Rf	NB-1 CMS X Rf	
Current no.		R 4131	R 4135	R 4138	

Fertility determined by percent aceto-carmine-stained pollen at anthesis of flowers on main stem of seed stalk,

2/ T = trace, 1 or 2 stainable pollen grains per thousand.

Photosynthesis and Respiration Rate Studies with Sugar Beets

II. The effect of previous light exposure on rates as measured by CO₂ exchange

by Myron Stout

INTRODUCTION

In a previous study (4) with sugar beet half-leaves that were exposed to light or darkness before testing, it was found that respiration rate and dry weight increased rapidly after only a few minutes exposure to light. The respiration rate of leaves previously kept in darkness for 16 hours increased nearly 20% after only five minutes exposure to sunlight. Photosynthesis, as measured by increase in dry weight per unit of leaf area, was nearly linear or relatively constant in rate. The apparent difference in rates of the two related processes as measured by different methods prompted a study of the time factor in the attainment of equilibrium rates as measured by changes in the CO₂ economy of plants. Some of the sources of variation in measurements between different plants or the same plants on different days might be traceable to a lack of equilibrium conditions when the measurements are made.

MATERIALS AND METHODS

Three similar plants of the phenotipically uniform F1 hybrid variety 4162 were used in the present studies. They were grown in 5-quart plastic pots containing a mixture of vermiculite and sponge-rock and watered with half strength Hoagland solution. The growth chamber had a light intensity of 2,700 F. C. at leaf height and 4,000 F. C. at leaf height when pots were placed on a pedestal above the bench and near the ceiling of the growth chamber. Temperature of the growth chamber was 25° C daytime and 18° C at night. Day length was from 4:00 A.M. to 6:00 P.M. All plants were preconditioned in the growth chamber at the stated illumination intensity for at least six hours before testing. Plants kept in darkness were covered by large cardboard boxes and prepared for testing in dim light. All rates were measured at 25° C and 300 ppm CO concentration. The pots were sealed in plasticsbags and tightly tied around the crown of the root before testing. The leaves were held horizontally at crown height, without overlapping of leaves, by small wires fastened to a supporting screen as previously described (3). Light intensity was 3877 foot candles at leaf level. The light, from five reflector flood lamps, passed through 2 3/8 inches of rapidly circulating distilled water before reaching the plants. Water-bath temperature was regulated to 25 ± .02° C in all tests. Actual leaf temperature was not measured but air within the chamber was rapidly circulated over the leaves and against the five cooling walls of the chamber. Respiration rates reported in the figures were run after the photosynthesis rate measurements were made. A separate set of respiration rate measurements were run on the same plants; first, following a 16 hour period of darkness, then after a one hour period of exposure to 3877 foot candles of illumination. These data are reported in the text. All data are reported in milligrams of CO₂ per square decimeter of total leaf area per hour.

RESULTS

By using each of the plants three times at each preconditioning light exposure, it was possible to reduce plant variation to a low level. The data in Figures 1, 2, and 3 are, therefore, the average values of nine series of measurements. All photosynthesis rate curves were characteristically sigmoid.

The data in Figure 1 show that plants previously kept in darkness for 16 hours before illumination took up little or no CO2 from the atmosphere for several minutes after the lights were turned on. In fact, some of them gave off more CO2 than they absorbed. After about ten minutes the rate of CO2 uptake increased rapidly. The rate of increase declined after about 20 minutes. A semi-plateau was reached about 60 minutes after lights were turned on, however, the rate increased slowly up to 120 minutes.

Sugar beets previously illuminated at 2,700 F. C. had a higher rate of CO₂ uptake at the start of the test period. The rate increased more slowly and reached a liwer level at the end of two hours. Those previously illuminated at 4,000 foot candles initially had an even higher rate of CO₂ uptake but increased more slowly. The increase in CO₂ uptake was greater at the end of two hours than either of the other preconditioning treatments, indicating that all treatments might reach the same level after three or four hours. The photosynthesis tests were discontinued at the end of two hours. At this time the lights were turned off, the chamber was covered, and respiration rates were determined.

The data in Figure 2 show the calculated rates of total photosynthesis (net accumulation + respiration). The curves are similar in form but higher than those of net accumulation.

The data in the upper part of Figure 3 show the rates of respiration after two hours of light at 3,877 foot candles intensity. The lower part of Figure 3 shows the relationship between net accumulation and respiration rates. The curves are similar to those in Figures 1 and 2 but were more closely spaced at the end of two hours. This is due to differences in respiration rate.

A separate set of experiments were run with the same plants, in which all plants were held in darkness for 16 hours. Respiration rate was run before exposure to light and following a one hour photosynthetic period. The average respiration rate when measured after a long period of darkness was 4.31 mg CO₂/dm²/hr. After one hour at 3,877 foot candles of light exposure the rate was 6.97 mg CO₂/dm²/hr., or an increase of 61.9%.

DISCUSSION

The data indicate rather wide differences in photosynthetic and respiratory rates of sugar beets depending on the environment of the plants before the measurements were made. These differences were large in magnitude for several minutes during the first part of the test periods. In these tests the rates were almost the same for all pre-treatments 20 minutes from the start of the tests, but were far below the maximum rates attained after one or two hours.

Although photosynthesis and respiration rates have been studied for many years, critical measurements between different treatments of plants or varieties of the same species have received little attention. In most instances measurements are made after a relatively short exposure of the plant to the experimental environment. The present data indicates that rather wide differences may be expected with only small differences in time before the measurements are made.

In measuring rates of photosynthesis and respiration by means of gaseous exchange at least two important factors must be considered when the plants are suddenly changed from light to darkness or the reverse; l. effect of the change on stomatal response and, 2. reversibility of equilibria in the metabolic sequence involved in both processes.

Within reasonable limits of temperature and water availability that have overriding effects on stomatal response, the evidence is strong that stomatal response is largely controlled by CO₂ concentration within the stomatal cavity (1) (2). Under usual conditions stomata open in light and close in darkness.

If one considers the many equilibria involved in the metabolic processes of photosynthesis and respiration and the shifts in concentration of one metabolite over another in order to reverse the diffection of the overall process, the time lag in the establishment of a uniform rate can be visualized. Under equilibrium conditions of a uniform rate any one of the many steps involved may become the "bottle neck" controlling the overall rate.

The stomata of a plant respiring normally in darkness would be closed due to the high concentration of CO₂ in the tissues. Each step in the metabolic chain is moving toward the production of CO₂ from sugar, with a higher concentration of the reduced metabolite than the more oxidized one. As light energy strikes the leaf, CO₂ in the tissues as gaseous CO₂ is first metabolized. The light energy also causes a slight increase in temperature that expands gaseous CO₂ and releases some dissolved CO₂ with the increased transpiration. Organic acids, in the process of being oxidized, must again be reduced before any great need for exogenous CO₂ is necessary. As the endogenous supply is used up the rate of CO₂ uptake from the atmosphere increases rapidly because concentration gradients of the metabolic pools along the metabolic chain are receptive to reduced substrates. As concentration gradient resistance builds up along the metabolic pathway, the rate of increase in CO₂

uptake slows down until translocation of sugars might also affect the rate of CO₂ uptake.

Conversely, the stomata of a plant photosynthesizing rapidly under high light intensity would be open. The concentration gradients along the metabolic chain would be higher in the more oxidized substrates than the more highly reduced ones. As the plant is suddenly darkened CO₂ is rapidly released from metastable compounds at high concentration gradients at the oxidized end of the metabolic chain. The stomata begin closing as CO₂ is released. The concentration gradients farther up the metabolic chain are reversed until translocation of sugars to the metabolic site may become a limiting factor in the overall respiratory rate.

Such an explanation would seem to be adequate to explain changes in rates of uptake or evolution of CO₂ in photosynthesis or respiration of plants under normal environmental conditions.

Literature Cited

- (1) Bonner, James and A. W. Galston. 1952. Principles of Plant Physiology, W. H. Freeman and Co.
- (2) Kelellapper, H. J. 1963. Stomatal Physiology. Am. Review of Plant Physiology. 14:249-270. Am. Reviews Inc.
- (3) Stout, M. Photosynthesis and Respiration Studies with Sugar Beets.

 I. Equipment and Methods 14(4):302-308. 1967. Journ. Am.

 Soc. Sugar Beet Technol.
- (4) Stout, M. Effects of Previous Light Exposure on Respiration Rate and Dry Weight of Sugar Beet Leaves. Journ. Am. Soc. Sugar Beet Technol. 14(5): 400-404. 1967.

Figure 1. Effect of previous light exposure on net accumulation rate of CO₂ by sugar beet leaves at 300 ppm CO₂, 25° C and 3877 F. C. illumination

Figure 2. Effect of previous light exposure on total photosynthesis rate by sugar beet leaves 300 ppm CO₂, 25° C and 3877 illumination

Figure 3. (upper) Effect of previous light exposure on respiration rate of sugar beet leaves following a 2-hour photosynthesis test

(lower) Effect of previous light exposure on net accumulation - respiration ratio of sugar beet leaves

Physiological Studies by Myron Stout

Photosynthesis and Respiration Rate Studies Improvements in Equipment and Methods

Several improvements have been made in the equipment and methods of measuring changes in the ${\rm CO}_2$ uptake or output of sugarbeets since the last foundation report was written. Two of these changes will be described.

- 1. The gas drying column has been replaced with a moisture condensing unit that insures a low and constant moisture content of the air to the ${\rm CO}_2$ analyzer. The water-vapor error is equivalent to less than 3 ppm of ${\rm CO}_2$ and is maintained constant by having the condensing coil in a bath of distilled water-ice mixture. This greatly reduces mixing of air to the analyzer and gives an immediate response of the analyzer to changes in ${\rm CO}_2$ concentration within the large photosynthesis-respiration chamber. The whole system can be restandardized each time a measured amount of ${\rm CO}_2$ is introduced into the system. Successive restandardizations can be made well within an accuracy of \pm 2%. A paper has been approved for publication in the Journal of the A.S.S.B.T. on equipment and methods.
- Previous attempts to relate virus infection to photosynthetic or respiratory rates were unsuccessful due to several sources of variation (1964 report). The previous studies were run at a normal 300 ppm of CO2 and at relatively high light intensity (3877 F.C.). Recent studies have been made in which the light intensity and CO concentration during consecutive measurements was varied. Tests were 2run for more than an hour at low light intensity (736 F.C.) and high CO2 concentration (445 ppm CO2). In this case the Hill reaction or photolysis of water should be ratelimiting with the plant in an abundance of CO2. Following the measurement of the respiration rate at the same CO2 concentration, the light intensity was increased to 3800 F.C. and the CO2 concentration decreased to 130 ppm. Successive rate measurements were run at the low CO2 concentration and high light intensity for at least an hour, then the respiration rate was determined at the low CO2 concentration. This change in environment should result in a high Hill reaction rate and make CO2 uptake rate-limiting in the overall photosynthetic process.

Recent studies of curly-top infected and firus-free sugarbeets have shown that the net accumulation rate values of infected plants decline at both high light intensity and low CO₂ and at low light intensity and high CO₂ concentration following infection.

The rate of decline after infection was more rapid for the first three weeks after infection when measured under low light intensity and high CO₂ concentration (Hill reaction rate-limiting). However, at the end of 50 days following infection, the decline was greater when the measurements were made at high light intensity and low CO₂ concentration (dark reaction rate-limiting). Although the data from the 1964 tests were not sufficiently consistent to warrant publication, the recent tests confirmed the general trends evident in the earlier studies. A new series of tests are being run prior to publication.

Two other studies run previously will be repeated using the more discriminating technique described.

GREENHOUSE TESTS OF CURLY TOP RESISTANCE AT LOGAN, UTAH C. L. Schneider and D. L. Mumford

In 1966, 247 breeders' seed lots were tested in the greenhouse for curly top resistance at the Logan Station. Included were 40 lots from J. O. Gaskill; Fort Collins, Colorado, and 207 lines from J. C. Theurer; Logan, Utah.

The inoculation tests were conducted as previously described $\frac{1}{}$. There were a series of 28 inoculation tests, planted about 5 days apart. Each test usually comprised 9 seed lots to be evaluated plus check variety US 41, included as a basis for comparison.

There were five 6-inch pots, each containing 4 seedlings, of each entry. Seedlings in a growth chamber maintained at 27 degrees C. were exposed for 5-7 days to caged viruliferous beet leafhoppers (2 per plant) that had previously fed on sugarbeet plants infected with curly top virus isolate A-1-A. After the insects were removed, plants were moved to the greenhouse.

About 6 weeks after inoculation, each plant was numerically graded according to degree of curly top reaction. Curly top grades ranged from 1 (symptoms very light) to 9 (plant dead). Plants with no symptoms were excluded from computation of average curly top severity grade because of the possibility that they might have escaped infection without being immune.

Apparently there were differences in degree of curly top exposure between tests, as indicated by differences in curly top incidence and severity in check variety US 41 in different tests. Incidence ranged from 31 to 100% and severity grades from 4.5 to 7.5 (Table 1). It is conjectured that differences in greenhouse environmental conditions (for example: temperature or light intensity) or differences in virus content of curly top source plants may have caused these differences in intensity of disease exposure.

Results are summarized in Table 2. There were striking differences in curly top reaction between the entries, ranging from about 56 to 175 percent of that of check variety US 41.

In some entries in which segration for curly top resistance was indicated, the most resistant plants were selected and submitted to the plant breeders concerned for possible use as parents in the program of improving curly top resistance. From 6 Fort Collins entries and 23 Logan entries, a total of 80 plants were thus selected.

^{1/} Schneider, C. L., 1964. Greenhouse tests of curly top resistance. Sugarbeet Research-1964 Report. USDA, ARS, CRD: 98-105.

Among the entries in the greenhouse tests were 140 that were included in a field test of curly top resistance conducted by A. M. Murphy in 1966 near Thatcher, Utah. The curly top ratings of the 140 lines obtained in greenhouse and field tests are presented in a correlation table. (Table 3).

Table 1

INCIDENCE AND SEVERITY OF CURLY TOP IN CHECK VARIETY US 41 IN GREENHOUSE

TESTS AT LOGAN, UTAH IN 1966

Test <u>a</u> /	Pct. Plants b/ with Curly Top	C. T. <u>c</u> / Grade	Test a/	Pct. Plants <u>b</u> / with Curly Top	C. T. <u>c</u> / Grade
1 2 3 6 7 8 9 10 11 12 13 14 15	95 95 95 100 90 95 90 95 75 85 90 90 90	4.8 4.9 5.2 5.0 4.5 4.6 4.9 5.3 5.8 4.7 6.2 6.4 6.0	17 18 19 20 21 22 23 24 25 26 27 28 29 30	80 56 55 44 83 71 81 90 77 95 31 64	4.7 5.3 6.1 5.4 7.5 7.5 6.4 5.9 6.6 6.1 5.8 6.5

Mean=81.5, 5.7

a/ Test numbers 4 and 5 were abandoned because most of the plants were accidently lost.

 $[\]underline{b}$ / In most cases, 20 plants were inoculated.

c/ Curly top severity ratings ranged from 1 (very light disease symptoms) to 9 (plant dead).

Table 2

DISTRIBUTION ACCORDING TO CURLY TOP RATING OF 247 SEED LOTS TESTED IN THE GREENHOUSE AT LOGAN, UTAH IN 1966

Curly top rating in % of US 41	No. of Seed Lots in Each Rating Class
56 - 60	1
66 - 75	6
76 - 85	29
86 - 95	54
96 - 105	41
106 - 115	40
116 - 125	28
126 - 135	25
136 - 145	16
146 - 155	5
156 - 165	1
166 - 175	1

Table 3.

COMPARISON OF CURLY TOP RATINGS OF 140 SUGARBEET LINES IN GREENHOUSE AND

FIELD TESTS: NUMBER OF LINES IN EACH CURLY TOP RATING CLASS

Ratings in Greenhouse Tests 1/		Ra	ting	in	Fie	ld T	-06	/ 2/			
(In percent of US 41)	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0.	
60–69					2						
70–79				1	2	1					
80–89			2	3	9	7	3	1			
90–99	1	1	-	4	6	10	5				
100–109				1	4	12	3	2			
110-119					2	7	5 /	3			
120–129	1					7	9	5	1		
130–139						4	2	4			
140–149						1	3	5			
150-159	_	_	_	_	_	_	_	_	_	-	
160–169										1	
170–179							1				

Correlation Coefficient = $.588 ** \frac{3}{}$

^{1/} C. T. Ratings from 1 (light infection) to 9 (dead).

^{2/} Field data furnished by A. M. Murphy, Ratings expressed as averages of 2 plots.

^{3/} Correlation coefficient exceeds 1% level of significance according to table in Snedecor "Statistical Methods" (1946).

COMPARISON OF PATHOGENICITY AND VIRULENCE OF CURLY TOP ISOLATES C.L. Schneider

Pathogenicity and virulence of several curly top virus isolates from the Intermountain and the Great Plains areas were compared on several different plant species in the greenhouse. Two of the isolates were derived from beet leafhoppers (Euttetix tenellus) collected in a desert breeding area near Promontory, Utah. (Isolates A-1-A, A-3-B). Two were derived from a plant of Phacelia sp. with symptoms of curly top (isolates D-1-B, D-1-E). The rest were from sugarbeet plants with curly top symptoms.

Inasmuch as mixtures of pathogenic strains of curly top can coexist on the same host plant, efforts were made at the beginning to "purify" the curly top isolates in order to increase the liklihood that each comprised no more than one pathogenic strain of the virus. On each virus source-plant, leafhoppers from a non-virulent stock were caged for 7 days, then transferred singly in small leaf-cages to seedlings of a relatively curly top-resistant sugarbeet variety for about 8-12 hours. From among the comparatively few plants that subsequently developed curly top after such a short feeding period, the virus cultures used in this study were established.

Inoculation tests to determine pathogenicity and virulence were conducted in the greenhouse. Non-viruliferous leafhoppers were first placed on source-plants of the different isolates. After a virus acquisition period of about 7 days, the insects were transferred to seedlings for feeding periods of about 7 days On sugarbeet, Capsella, and Chenopodium seedlings, a small cage-containing one leafhopper--was placed on each cotyledon. Young Turkish tobacco plants (var. Samsoun) were inoculated by placing a glass cylinder (approx. 15 x 15 cm.), with a Saran screen top, on each 6" pot of 3 seedlings and introducing 7 viruliferous leafhoppers in each cage. Included in most tests, as a basis of comparison, was highly virulent curly top strain 11 that had been supplied by Dr. C. W. Bennett. Assessment of degree of curly top infection was made about 6 weeks after the first day of exposure to the vector.

Results (Table 1) indicate differences in virulence among the isolates on each susceptible host and differences in pathogenicity on tobacco. Although some of the isolates are about equal to curly top strain 11 in virulence on sugarbeet they are not among the most virulent isolates that have been collected from the Intermountain region. In previous report(2), isolates of curly top were reported that appeared to be more virulent than strain 11.

Three of the isolates, although highly virulent on sugarbeet, did not cause curly top symptoms on Turkish tobacco. In several previous tests, 2 of the isolates (B-6-A and B-6-D) consistently failed to cause curly top on tobacco (3), hence it is assumed that they are of a different pathogenic strain of the virus than the rest of the isolates tested.

Strains of curly top virus pathogenic on <u>Chenopodium murale</u> and on cucumber have recently been reported (1). None of the isolates reported herein, nor those included in previous tests (2,3) were pathogenic on the 2 <u>Chenopodium</u> species. In an exploratory test however, a curly top culture derived from isolate A-1-A of the present study, was shown to attack cucumber. Young cucumber plants of variety "Boston Pickling" exposed to 3 curly top cultures (6 viruliferous insects per plant). Efforts to transmit the virus to sugarbeet seedlings from cucumber plants exposed to 2 of the isolates and to control plants with leafhoppers were unsuccessful. From cucumber plants exposed to isolate A-1-A-3, however, curly top symptoms were readily transmitted to 17 out or 19 test plants.

Literature Cited

- 1. Bennett, C. W., 1964, Additional strains of the curly top virus. Sugarbeet Research, 1964 Report. (CR-4-65). U.S.D.A., ARS, CRD: 325-327.
- 2. Schneider, C. L., 1963. Curly top disease investigations. Sugarbeet Research, 1963 Report. (CR-4-64). U.S.D.A., ARS, CRD: 102-109.
- 3. 1964. Studies on pathogenic strains of curly top virus. Sugarbeet Research, 1964 Report. (CR-4-64). U.S.D.A., ARS, CRD: 94-97.

INCIDENCE $\frac{a}{4}$ and severity of curly top on seedlings of several plant species inoculated in the greenhouse with curly top isolates FROM INTERMOUNTAIN AND GREAT PLAINS AREAS Table 1.

Chenopodium	Inc.	0/3	3		-	0/3			0/3	6/0	6/0	0/3	2/0	6/0	0/3	1	0/3		0/3	0/3
Test 5 Chenopodium murale	Inc.	. 0/3	2 -		0/3	0/3		-	0/3	0/3	2/0	0/3	0/2	0/2	6/0		0/3		0/3	0/3
Test 4 Turkish tobacco	Sev.	6.7	/5	0	٥/	10	0	6.3	6.0	0 0		0.0	2	2.7		-	0		7.5	0
Turki	Inc.	4/14	ر اد) 	0/2	9/0	9/0	9/9	1/6	3/6	9/9	2/6	2/6	9/5			9/0		9/9	9/0
Test 3 Capsella	Sev.	5.0	اد /	ان ا	4.0	/ o	/°	\ \ \ \	4.6	7.2	7.00	7.6	7.5	7.0	•					0
Test 3 Capsella bursa past	Inc.	1/12	اد ا	\ 	1/12	ે ા	/ o	/0	5/12	6/12	10/12	9/12	4/12	10,12						0/17
Test 2 Sugarbeet US33	Sev.	5.8	6.3	5.5	6.1	9.9	0.9	9.9	6.1	7.2	4.3	4.5	6.4	7.4			6.7	_	× .	0
Sugarb US33	Inc.	12/12	10/12	8/12	12/12	11/12	3/12	11/12	12/12	12/12	9/12	11/12	12/12	11/12			11/12		21/5	71/0
Test 1 Sugarbeet US 68	Sev.	3.7	\oldots	ો	ે ા	3.5	\ 	/)	4.4	4.8	3.7	5.1	5.1	5.2	9.7	•	1			0
Sugar	Inc.	13/20))	ر ان	\oldots	4/20	′ပ) 	14/20	11/20	16/20	12/20	14/20	18/20	14/20	2			00/0	07/0
	Curly Top Isolate and Source	A-1-A; Thatcher, Utah, 1962	A-3-B; Thatcher, Utah, 1962	b-4-b; Jerome, Idaho, 1963	B-b-A-1; N. Logan, Utah, 1963	B-b-A-3; N. Logan, Utah, 1963	B-6-U-1; N. Logan, Utah, 1963	B-9-B; Riverton, Utah, 1963	C-1-A; St. George, Utah, 1964	C-2-A; Logan, Utah, 1964	C-3-B; Gibbon, Nebr, 1964	C-4-C; Holcomb, Kan., 1964	C-5-A; Ft. Collins, Colo., 1964	C-6-C; Ft. Collins, Colo., 1964	D-1-B; Logan, Utah, (Phacelia sp.), 1965	•	U-1-r; rogan, Utan, (Fnacella sp.), 1965	Strain 11 Calina Calif	Control	

a/ No plants with curly top symptoms/total plants inoculated b/ Severity expressed numerically from 0(no symptoms) to 9 (plant dead). c/ Previously tested and reported (2,3).

PART IV

Progress reports of research conducted at Colorado State University, Fort Collins, Colorado by the Staff of Sugarbeet Investigations, ARS-USDA in cooperation with:

Colorado Agricultural Experiment Station and
Beet Sugar Development Foundation,
Fort Collins, Colorado

Research was conducted by:

J. O. Gaskill E. E. Schweizer
R. J. Hecker C. L. Schneider
A. M. Murphy E. M. Harrison
G. E. Coe R. W. Pylman

G. W. Maag

DEVELOPMENT AND EVALUATION OF SUGARBEET BREEDING MATERIAL AND VARIETIES CARRYING RESISTANCE TO LEAF SPOT AND CURLY TOP, 19661/

John O. Gaskill, Charles L. Schneider, Albert M. Murphy, and Gerald E. Coe2/

Research at Fort Collins in 1966, directed toward the development and evaluation of sugarbeet breeding material and varieties with combined resistance to leaf spot and curly top (LSR-CTR), in general, was similar to that of the preceding year (2)3. Important contributions to this research program were made by other U. S. Department of Agriculture experiment stations and by several state and sugar company stations. A substantial portion of the work performed at Fort Collins during the year was of a service character--e.g. evaluation of the leaf spot resistance of breeding lines, varieties, etc., for other U.S.D.A. stations and several sugar companies. This report is not intended to present results of such tests. Details pertaining to the breeding work, preliminary observational evaluation of breeding lines, etc., also have been largely omitted.

This progress report pertains to breeding and evaluation work conducted at Fort Collins, Colorado, and to cooperative tests conducted elsewhere by various investigators, with results compiled at the Fort Collins station. The work at Fort Collins was performed by the Crops Research Division, A.R.S., U. S. Department of Agriculture, in cooperation with the Colorado Agricultural Experiment Station (Project 149) and the Beet Sugar Development Foundation (Project 25), and was supported in part by funds contributed by the National Sugar Manufacturing Company. Assistance rendered by Luther W. Lawson, Agricultural Research Technician, Crops Research Division, in conducting breeding, evaluation, and other work at Fort Collins is acknowledged. Participation by other investigators in the research program covered by this report is acknowledged in the tables and accompanying discussion.

Research Plant Pathologist, Plant Pathologist, Research Agronomist, and Geneticist, respectively, Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture.

^{3/} Numbers in parentheses pertain to Literature Cited.

High Lights of Accomplishments

- 1. Results of extensive, cooperative, agronomic, evaluation tests at various locations in 1966 confirmed results of the preceding year (2) in showing high productivity and acceptable sucrose percentage for the monogerm hybrid, SL (129 x 133) x SP 6322-0. This hybrid is intermediate in resistance to leaf spot, curly top, and Aphanomyces type black root.
- 2. In three replicated tests (Exp. 3A, 4A, and 17A, with at least 8 replications in each), under severe leaf spot exposure at Fort Collins in 1966, the monogerm hybrid, FC (502/2 x 504) x FC 901, consistently exceeded the standard variety, SL (129 x 133) x SP 6322-0, in yield of roots and gross sucrose and in sucrose percentage. The difference between the two varieties in gross sucrose yield was significant in every case. The 3-test averages for FC (502/2 x 504) x FC 901, expressed as percent of the corresponding averages for the standard variety, were as follows: gross sucrose yield, 113.9; root yield, 109.8; and sucrose percentage, 104.1. The difference between the two varieties for each attribute far exceeded the 1-percent level of significance.
- 3. Progress in 1966 in the development of new LSR-CTR, monogerm, type-0, inbred lines was encouraging, and one of the newer lines of this type, SP 642090sl, appeared to have high combining ability for yield. The hybrid, FC 901 aa x SP 642090sl, in a replicated test under severe leaf spot conditions (Exp. 17A), was somewhat above FC (502/2 x 504) x FC 901 in yield of both roots and gross sucrose. It was significantly below the latter hybrid in sucrose percentage, but was somewhat above the standard variety in that regard. It surpassed the standard variety by highly significant amounts in yield of both roots and gross sucrose.
- 4. Encouraging progress was shown in the use of the seedling induction technique (1) as a tool in the selection for and evaluation of bolting resistance. The LSR-CTR, multigerm variety, FC 901, was used as source material in this study.

Observational Evaluation of LSR-CTR Monogerm, Type-0, Inbred Lines

Leaf spot and curly top resistance evaluation of monogerm, type-0, and near-type-0 inbred lines, represented by very small seed lots (i.e. seed obtained by selfing with one or two paper bags), was continued in 1966 with the assistance of Dr. C. L. Schneider, U.S. Department of Agriculture, Logan, Utah. Results for 31 such lines are presented in Table 1 together with pertinent details regarding breeding histories and evaluation techniques. The curly top resistance of one of the inbred lines is illustrated in Figure 1. The results at Fort Collins were obtained in Experiment 6A.

The lines evaluated included four sublines of FC 601. Each of those sublines was substantially superior to SP 5481-0 and US 41 in leaf spot and curly top resistance, respectively. Eight other lines, representing two different sources, were about equal to SP 5481-0 in leaf spot resistance and approximately equal to or higher than US 41 in curly top resistance.

Table 1 .--Evaluation of leaf spot and curly top resistance of monogerm, type-0 and near type-0, inbred lines of sugarbeet, Fort Collins, Colorado, and Logan, Utah, 1966.

_			ption source			:			ine no.	No. gen. self.	rating	ing	: Entry	: No.	:Leaf :spot	$\frac{e}{\cdot}$ Vig.	£7.	ogan Code no.	green : No. :inf. :plts.	:Curly
SP		S		1		S	P 641155HOA	SI	652013s	2	5	100/0	406	2	2.0	4.0	6	6-2	18	124
11	11	11	- 11			- 11	11	11	652024s		6	76/0	408	2	2.5	4.5	11	-3	20	139
**	611101-0 🛂					11	632028 sl	**	652019 s 3	. 2	5	100/0	410	2	2.0	4.5	11	-4	20	145
**	11					**	63203 7sl	11	652074s	2	6	100/0	412	1	4.0	4.0	***	- 5	17	106
17	***					- 11	632072sl	11	652070sl	. 2	5	100/0	413	1	3.0	5.0	**	-6	17	90
11	11					11	632093sl	81	652049s]	. 2	6	100/0	417	1	3.0	5.0	11	-7	18	98
**	11					**	632106s1	F1	652102s1	. 2	7	95/5	423	2	3.5	4.5	**	-8	20	85
11	**					11	632109sl	11	652078s]	. 2	5	100/0	425	1	4.0	4.0	19	- 9	20	108
11	11					11	11	- 11	652094s]	. 2	6	96/4	427	2	4.0	4.5	**	-10	20	104
**	11	SI	622071s	1 (FC	60	1)"	641156HOA	11	652000s1	. 2	5	100/0	429	2	2.0	4.0	91	-11	18	85
81	**	81	11	(11	11)"	17	9.7	652014s1	. 2	5	100/0	431	2	2.5	4.0	**	-12	20	73
**	" ;	**	**	("	**)"	11	81	652016s1	. 2	6	100/0	433	2	2.5	4.5	11	-13	17	81
18	"	**	11	("	11)"	11	11	652017s1	2	5	100/0	435	2	2.0	4.5	11	-14	17	88
**	621103-0 1/					11	632025sl	**	652005s1	. 2	6	96/4	439	2	3.0	4.5	**	-16	18	115
**	11					**	11	**	652006sl	. 2	4	100/0	441	2	4.0	4.5	11	-17	17	111
11	11					11	11	**	652007 s 1	. 2	6	100/0	443	2	3.5	5.0	11	-18	17	117
11	11					**	632033sl	11	652050sl	2	5	100/0	447	2	4.5	4.0	**	-19	19	79
11	11					11	11	18	652077s1	2	6	100/0	449	1	3.0	5.0		-20	17	102
11	11					**	632034sl	11	652088s1	2	5	83/0	451	2	3.0	5.0	11	-21	17	130
**	11					**	632035sl	11	652067sl	2	5	80/5	458	1	4.0	4.0		-24	15	85
**	11					**	632067sl	12	652048s1	2	6	92/4	462	2	3.5	5.5	**	-25	9	100
**	11					19	11	81	652098sl	2	6	83/0	464	2	3.5	4.5		-26	18	136
**	11					19	632095sl	**	652043s1	2	6	92/0	466	2	3.5	4.5		-27	16	92
11	11					11	**	11	652062sl	2	5	92/0	468	2	3.0	5.0		-28	20	92
11	11					19	11	11	652069sl	2	4	87/0	470	1	4.0	4.0	11	-29	19	121
11	11					11	11	**	652073sl	2	6	100/0	471	1	3.0	4.0		-30	19	108
**	11					**	11	-	652075sl	2	5	100/0	472	2	3.0	5.0		-31	19	117
SP	0.1000	;	SP 592262	2.;							_	,		_	0.0	0,0		-01	13	11,
	SP 612070sl					89	63 117 0H0	81	652018s1	3	4	90/5	474	2	3.0	3.5	- 11	-32	19	146
	do.					**	**	11	652020sl	3	5	91/0	476	1	3.0	4.0		-33	17	127
	do.					**	19	17	652021s1	3	5	100/0	478	1	4.0	4.0	11	-34	20	129
	do.					11	**	19	652023sl	3	5	95/5	480	1	3.0	4.0	**	-35	17	137
	5481-0							Ac	c. 2483				495	9	3.2	6.0	**	-36	59	143
SP	6051-0							SP	631210HO									-37	56	99

 $[\]frac{a'}{c}$ Ouantity of pollen (per flower) shed by the individual plant that was selfed to produce the indicated seed no. Pasis of grades: 1-7 in ascending order of abundance (ordinary, open-pollinated, commercial variety usually rated 6 or 7).

Pertains to the indexing population (at least 16, but usually 20 or more plants); left number is percentage classed as male sterile; right number is percentage classed as male fertile; percentage unaccounted for, if any, represents intermediate types.

 $[\]frac{c'}{c'}$ Field plots on Hospital Farm, Ft. Collins, Colo.; inoculation and frequent sprinkling used to promote leaf spot development; plots 1 row x 20', flanked uniformly by rows of a leaf spot susceptible line.

 $[\]frac{d}{}$ Curly top resistance evaluation by C.L. Schneider, Logan, Utah, using greenhouse seedling technique with Schneider's culture AlA of the curly top virus, and 2 caged leafhoppers per plant. Ordinarily 20 plants were inoculated per line. Except for code no. 66-25, of which 14 plants were inoculated, at least 18 plants were inoculated per line.

 $[\]frac{e}{}$ Leaf spot grades (K.G. Gould): 0 = no leaf spot; 10 = complete defoliation.

f/ Foliage vigor (K.G. Gould): Larger no. = greater vigor.

 $[\]frac{g}{2}$ Curly top severity (C.L. Schneider). The plants were classified individually on a scale of 0 - 9 (0 = no symptoms, 9 = dead). Plants without curly top symptoms were disregarded. Results for plants with curly top symptoms were averaged by lines, and the averages were converted to percent of US 41. Thus, values less than 100 (shown above) indicate less curly top injury than in US 41, and values greater than 100 indicate more curly top injury than in US 41.

 $[\]frac{h'}{s}$ SP 611100-0: LSR-CTR, mm, with SLC 122-0 cytoplasm; derived from backcrossing program; 50% SLC 122-0 blood; 12 1/2% US 201 blood; segregating for type-0 and aa.

 $[\]frac{i}{2}$ SP 611101-0: Same as SP 611100-0 except that the cytoplasm was derived from the multigerm variety, SL 202.

SP 621103-0: LSR-CTR, mm, with SLC 117-0 cytoplasm; derived from backcrossing program; 50% SLC 117-0 blood; 12 1/2% US 201 blood; segregating for type-0 and aa.

 $[\]frac{k}{}$ SP 571803-00: F_2 , US 201 (LSR MM) x SLC 91 (CTR mm).

Fig. 1.--Comparison of two sugarbeet lines (A and B), in resistance to curly top, in greenhouse test, Logan, Utah, 1966. Except for the last pot in each row (non-inoculated), all plants were inoculated with curly top in the early seedling stage. A--code No. 66-14 (SP 652017x1, an S2 inbred and a sub-line of FC 601); 20 plants inoculated; 17 infected. B--code No. 66-36 (SP 5481-0, an open-pollinated variety); 20 plants inoculated; 20 infected. (Logan photo. No. 66D-28).

Preliminary Appraisal of Combining Ability of LSR-CTR, Monogerm, Type-0, Inbred Lines

Use of the reciprocal top-cross technique was continued in 1966 for preliminary appraisal of combining ability of LSR-CTR, monogerm, type-0 or near-type-0, inbred lines. Experimental techniques employed at Fort Collins (Exp. 17A) and at Thatcher, Utah, are described in Table 2. The summarized results are presented in that table, and varietal contrasts under leaf spot conditions are shown in Figure 2.

Experiment 17A included two checks, both of which had performed quite well in the cooperative tests of LSR-CTR varieties in 1965 (2). One of these (entry 506) is the commercial variety, SL (129 x 133) x SP 6322-0, which was used as the "standard variety" in numerous tests in 1966. The other check, FC ($502/2 \times 504$) x FC 901 (entry 505), exceeded the standard variety significantly in both gross sucrose yield and sucrose percentage in Experiment 17A. These results and others presented elsewhere in this report are in keeping with the performance of FC ($502/2 \times 504$) x FC 901 in various tests in 1965 (2).

One of the reciprocal top-cross hybrids in Experiment 17A, entry 504, was somewhat above entry 505 in yield of both roots and gross sucrose. Entry 504 was significantly lower than 505 in sucrose percentage, but it was somewhat above the standard variety in that regard. It surpassed the standard variety by highly significant amounts in yield of roots and gross sucrose.

Another reciprocal top-cross hybrid (entry 501) was rather attractive. It was significantly higher than the standard variety in sucrose percentage, somewhat higher in root yield, and exceeded the standard variety in acre yield of gross sucrose by 351 pounds (450 required for significance).

Both entries 501 and 504 apparently are superior to the standard variety in leaf spot resistance, as shown in Table 2, and this difference presumably was partly responsible for the relatively high agronomic performance of those two entries in Experiment 17A where leaf spot exposure was severe. Curly top was not a factor in that test, but it is important to recognize that, according to the Thatcher test (Table 2), entries 501 and 504 apparently are superior to the standard variety and about the same as the curly top resistant check, US 41, in curly top resistance. The entry with the lowest (best) curly top grade (entry 503) was about the same as entries 501 and 504 in leaf spot resistance, outstanding in sucrose percentage, but low in root yield.

the as .--Agronomic and disease resistance evaluation of experimental, LSR-CTR hybrids having FC 901 female parent, Fort Collins, Colorado, and Thatcher, Utah, 1966. Table

			Fort Collins Exp. no. 17A(9-plot averages) b/	S Exp.	no. 17A(9	-plot	averages)	<u>P</u> / <u>q</u>	: Thatcher C/	erc/:
Description a/	: Fort Collins: seed no. (hybrid or check):	Entry:	Gross Ro	Leld	Sucrose	Leaf 8/31	Leaf spot ^d / 8/31 : 9/8	Plants per 100'	Plants: C.T. grade 6/ per Indi-: o' per cated :parent	adee/ of parent:
	••••						• • •	• • •	:hybrid: or :or ck.:check	or :
			Lbs.	Tons	%			No.		
	I. Hybrids having FC 901 as the 2 parent	havin	ng EC_901_	1S the 2	parent_					
FC 901 aa Q x SP 642010s1 mm	ы	501	4830	15.42	15.67	3.56	3.00	110	0.9	0.9
" " " " x " 642027s1 " " " " 642063s1 "	" 661153H02 " 661154H02	502	4289	14.28	15.01	3.89	3.00	108	0.0	0.9
" " " x " 642090s1 "	" 661155но2	504	5162	16.67	15.48	3.44	3.00	110	5.5)
	II Checks									
FC(502/2 x 504) mm MS Q x FC 901 SL(129 x 133) " " x SP 6322-0	SP 641204H03 Acc. 2646	505	5009	15.73	15.95	3.78	3.00	109	7.0	7.0
SP 5481-0	Acc. 2483								8.5	8.5
SP 6051-0 US 33	SF 631210HU								7.0	7.3
General mean			4603.2	14.764	15.602	3.74	3.19	109.6	1	
y mean			157.61	0.5135		0.15	0.05	1.76	9,	
S. E. of entry mean as % of general mean	1 mean		3.42	3.48	0.95	3.92	1.42	1.60	0 9	
L.S.D. (.05)			450	1.47	0.43	74.0	0.13	5.03	n :	
[x ₄			9.73**	10.65**	9.73** 10.65** 10.58**	1.99	78.40**	0.25	.5	

MS and as denote cytoplasmic and Mendelian types of Lines are multigerm (MM) except where otherwise indicated. male sterility, respectively. <u>a</u>/

Experiment 17A: plots 1 row x 20"; randomized block design; inoculation and frequent sprinkling used to promote development of leaf spot; curly top exposure negligible. <u>۹</u>

except for the three of parents in several plots, each; plots \underline{c} / Results at Thatcher (furnished by A. M. Murphy) were baged on 2 replications, which occurred in one plot, each, and the two "US" check varieties which occurred 1 row x 50'; curly top exposure intensified artificially.

= none; 10 = complete defoliation. Ratings were made on 8/31 by K. G. Gould and on 9/8 0 Leaf spot: L. W. Lawson.) Ie

0 = healthy; 9 = death due to curly top.

by

**

F exceeds the 1% point.

Curly top grades:

Fig. 2.--Comparison of two LSR-CTR hybrids, in 1-row plots, with R & G Pioneer (European variety) under severe leaf spot exposure; Exp. 17A, Fort Collins, Colorado, September 9, 1966; left to right:

- (a) Two rows of Pioneer
- (b) Entry 503, FC 901 aa ♀ x SP 642063s1
- (c) Entry 505, FC (502/2 x 504) MS $2 \times FC$ 901

(Fort Collins photo. No. 184-31).

Top-cross Tests at Fort Collins, Colorado, and Thatcher, Utah

Four sets of top-cross hybrids were evaluated in separate agronomic tests at Fort Collins, under severe leaf spot exposure, and two of those sets also were tested for curly top resistance in observational plots at Thatcher, Utah. Each of the tests at Fort Collins involved 32 entries, equalized random block design, and 4 replications. Plots were 1 row x 20 ft. in size. An accurately measured section in each plot (usually about 17 ft. of row) was harvested for root yield and sucrose determinations. Severe leaf spot exposure was developed with the aid of inoculation and frequent sprinkling. The test at Thatcher, conducted by A. M. Murphy, involved plots 1 row x 50 ft. in size, 2 replications, and artificial intensification of curly top exposure.

Descriptions of the females and pollinators, serving as parents of the top-cross hybrids, are given in Table 3. Hybrids classed as resistant to leaf spot and black root (i.e. LSR-BRR) were included in Experiments 2A-1 and 2A-2. Results for those tests are presented in Tables 4, 5, 6, and 7. Hybrids classed as resistant to leaf spot and curly top (i.e. LSR-CTR) were included in Experiments 3A-1 and 3A-2, and the results are given in Tables 8, 9, 10, and 11. The curly top results obtained at Thatcher are shown in Table 12.

The harvest results of Experiments 2A-1, 2A-2, 3A-1, and 3A-2 failed to show outstanding potential for any female lines not previously recognized as good "combiners". The over-all average gross sucrose yield for all hybrids of FC 504 (designated H031) was 4902 lbs. per acre compared with an average of 4507 for all plots of the check variety, SL (129 x 133) x SP 6322-0 (Acc. 2636 and 2646). The difference (395 lbs.) was substantially above the 5% level of significance (<354). The over-all average gross sucrose yields for all hybrids of each of the respective sublines of FC 502 were as follows:

Subline	Average gross sucrose for all hybrids (lbs.)
FC 502/2	4722
FC 502/3	4710
SP 612046s1	4611

The over-all average gross sucrose yield for all hybrids having FC $502/2 \times SP 581181s1$ (i.e. j x f) as the female parent was 5027. The gross sucrose average for SL (129 x 133) x SP 6322-0, comparable with the stated averages for the "j x f" hybrids and the hybrids involving FC 502 sublines, is 4507.

The hybrid, FC ($502/2 \times 504$) x FC 901, referred to elsewhere in this report (see Tables 2 and 15 and accompanying discussions) occurred as one of the standard or check varieties in Experiment 3A-1 and 3A-2. The average gross sucrose yield for that hybrid was 5515 pounds per acre, 864 pounds greater than the average for the two accessions of SL (129×133) x SP 6322-0. This difference was highly significant.

Since the hybrids representing the different pollinators were in separate Fort Collins tests, direct comparisons between pollinators cannot be made with the results of those tests. Relative performance of two sets of hybrids may be seen in the following table in which the averages for all 27 top-cross hybrids in each of two tests are expressed as percentages of the corresponding averages for the five varieties listed as standards:

	Exp. 3A-1 (FC 901d)	Exp. 3A-2 (663 ď)
Gross sucrose yield	91.46	88.78
Root yield	90.15	88.74
Sucrose %	101.57	100.41
Leaf spot	98.59	103.76

None of the top-cross hybrids listed in Table 12 escaped severe injury under the extremely severe curly top exposure at Thatcher. However, several equaled the CTR check, US 41, in curly top grade.

Table 3 .--Description of parental material involved in top-cross tests, Ft. Collins, Colo., 1966(Exp. 2A-1, 2A-2, 3A-1, and 3A-2).

Line no.	Temp	No.a gen. self	: Description &/or source
	<u>I.</u> _	Monoge	erm, type-0, LSR, inbred lines
FC 502		1	V.F.S. 715 mm Q x US 201 MM
" 502/2	j	2	SP 602008s1; subline of FC 502
" 502/3		2	" 612113s1; " " " "
" 503		2	Derived from V.F.S. 716
" 504		2	11 11 6-2
" 505	h	2	SP 602063s1; US 201 MM x T.O. mm
" 601 <u>b</u> /		1	" 622071s1; SP 611101-0
SP 581181s1	f	1	US 201 MM x T.O. mm
" 581222s1	i	1	и и и х и и
" 592087s1		2	SP 571303s1; US 201 MM x SP 51101- lines mm
" 602105s1	g	2	" 581194s1; US 201 MM x T.O. mm
" 602116s1	е	2	" 581179s1; " " " x " "
" 612003s1 <u>b</u>	/	2	" 591713.; SP 551556. mm x SLC 91 mm
" 612033s1		3	" · 592084s1; US 201 MM x SP 51101- lines mm
" 612046s1		2	Subline of FC 502
" 612054s1		2	SP 591518.; US 201 MM x T.O. mm
" 612068s1		3	" 592094s1; US 201 MM x T.O. mm
" 612070s1 <u>b</u>	/	2	" 592262.; US 201 MM x SLC 91 mm
" 612083s1		2	" 581220s1; US 201 MM x T.O. mm
" 622027s1 <u>b</u>	/	1	" 611100-0
		<u>II.</u>	Pollinators (multigerm)
FC 901			LSR-CTR; prod.of B.C.; US 201 non-recur.parent
McF. 663			CTR-bolt.res., from Salinas, Calif.(J.S.McFarlane)
SP 5822-0			LSR-BRR, from Beltsville, Md.(G. E. Coe)
SP 59B18-0			" , from E.Lansing, Mich. (G.J. Hogaboam)

Numbers indicate known generations of selfing; additional selfing may have occurred.

 $[\]frac{b}{}$ On the basis of ancestry, the line is expected to have some curly top resistance.

Table 4 .--Results of top-cross tests; LSR-BRR, monogerm hybrids, Ft. Collins, Colo., 1966; Exp. 2A-1 & 2A-2; basic data presented as 4-plot averages.

Gross Sucrose per Acre (Lbs.)	Gross	Sucrose	per	Acre	(Lbs.)
-------------------------------	-------	---------	-----	------	--------

	Ŷ		Ub	:Experiment	no. and po	llinator
CMS of mm,	T.O. lines		Hyb.	:Exp. 2A-1		Average
Line no.	:Eq. stage				:SP 59B18-0	:
SP 612003s1 " 612070s1 " 592087s1 " 612033s1	B1 B1 B2 B3	<u>I 1965_</u> t	HO1 HO2 HO3 HO4	3811 3612 3840 3807	4111 4013 4791 4212	3961 3813 4316 4010
" 612046s1 FC 502/3 SP 612068s1 " 612054s1	B ₃ (±) B ₃ B ₂ B ₁		HO5 HO6 HO8 HO9	4157 4552 3617 3631	4477 4955 4888 4387	4317 4754 4253 4009
" 612083s1 FC 502 x 503 FC 502/2	в ₃ (±)	j e x j	HO10 HO11 HO12 HO13	4031 4202 4445 4540	4154 4652 4694 5056	4093 4427 4570 4798
SP 602116s1	^B 3	g x j e g x e h x e	HO14 HO15 HO16 HO17	4220 3482 4087 4137	4623 3966 4117	4422 4027 4127
SP 581181s1	^B 2	ixe f exf gxf	HO18 HO19 HO20 HO21	3829 4382 3798 3642	4135 4424 4196 4362	3982 4403 3997 4002
FC 505	^B 3	h x f i x f j x f h	HO22 HO23 HO24 HO25	4498 4313 4598 3996	4791 4113 4749	4645 4213 4674
		g x h i x h j x h	HO26 HO27 HO28	3840 3823 3974	4663 4358 4886	4252 4091 4430
SP 622027s1 FC 601 FC 504	B ₁ B ₁ B ₂		HO29 HO30 HO31	3891 3803 4133	4682 4870 5230	4287 4337 4682
Acc. 2636[SL Acc. 2646[SL SP 641201H03 SP 641202H03	(129 x 133) [FC(502/2 [FC(502/2	x SP 6322 x SP 6322 x 504) x S x 504) x S	2 - 0] SP 5822	3899 4331 2-0] 8-0]	4816 4409 5334 5151	4358 4370
LSD (.05) for LSD (.05) for		_	3	675	555	437

Table 5 .--Results of top-cross tests; LSR-BRR, monogerm hybrids, Ft. Collins, Colo., 1966; Exp. 2A-1 & 2A-2; basic data presented as 4-plot averages.

Roots per Acre (Tons)

					(Tons)		1112
	CMS of mm,	T.O. lines	below	- Hyb.		no. and po	illnator
	Line no.	:Eq. stage:		no.	•SP 5822-0	:Exp. 2A-2 :SP 59B18-0	Average
_	danc no.			ton-cro	oss hybrids	.51 33510-0	
SP	612003sl	Bal		HO1	13.16	14.41	13.79
11	612070s1	B.		H02	12.58	13.76	13.17
**	592087sl	B1		НОЗ	13.87	16.39	15.13
**	612033s1	B1 B2 B3		HO4	13.79	15.32	14.56
11	612046s1	3					
FC	502/3	₂ 3(I)		H05	13.49	14.75	14.12
SP	612068 s 1	^D 3		H06	14.63	15.94	15.29
11	612054 s 1	^D _D 2		H08	12.54	16.54	14.54
	01203481	B ₃ (±) B ₃ B ₂ B ₁		HO9	12.63	15.08	13.86
11	612083s1	B ₃ (±)		H010	13.81	14.77	14.29
	502 x 503			HOll	13.96	15.54	14.75
FC	502/2	В	j	H012	14.29	15.36	14.83
		•	ехј	H013	15.19	16.65	15.92
			gxj	H014	14.05	15.46	14.76
SP	602116s1	В	e	H015	12.32	200.0	1,0,0
		3	gxe	H016	14.29	13.68	13.99
			hхе	H017	14.46	14.76	14.61
						-	
CD	F01101-1	D	i x e	H018	13.56	14.37	13.97
SP	581181s1	^B 2	f.	H019	14.76	14.75	14.76
			exf	H020	13.59	14.19	13.89
			gxf	H021	12.15	14.35	13.25
			hxf	H022	15.30	16.87	16.09
			ixf	H023	14.23	14.14	14.19
			jхf	H024	14.79	15.70	15.25
FC	505	B ₃	h	H025	14.05		
		· ·	gxh	H026	13.29	15.41	14.35
			ixh	H027	13.07	14.75	13.91
			jxh	H028	13.44	16.28	14.86
CD	622027-1	D					
	622027sl 601	Bı		H029	13.28	16.02	14.65
	504	B ₁		H030	13.03	16.34	14.69
rC	504	B ₂		H031	14.64	18.34	16.49
			II.				
		(129×133)			13.57	16.38	14.98
		(129×133)			15.30	15.79	15.55
		[FC(502/2 x				17.83	
		[FC(502/2 x		SP 59B1		17.48	
		4-plot ave			2.00	1.85	
LSI	(.05) for	aver. of a	verages				1.36

Table 6 .--Results of top-cross tests; LSR-BRR, monogerm hybrids, Ft. Collins, Colo., 1966; Exp. 2A-1 & 2A-2; basic data presented as 4-plot averages.

Sucrose Percentage

	Ŷ		Usela	:Experiment	no, and pol	llinator
CMS of mm,			Hyb.	:Exp. 2A-1	:Exp. 2A-2	. Avenage
Line no.	:Eq. stage:	T. code	no.		:SP 59B18-0	Average
	-	1965	top-cro	oss hybrids		
SP 612003sl	B		H01	14.49	14.22	14.36
" 612070sl	B		H02	14.40	14.53	14.47
" 592087sl	B ₂		НОЗ	13.82	14.62	14.22
" 612033sl	B ₂ B ₃		HO4	13.81	13.72	13.77
" 612046s1	B ₃ (±) B ₃ B ₂ B ₁		Н05	15.36	15.17	15.27
FC 502/3	В3		H06	15.54	15.49	15.52
SP 612068s1	B 3		H08	14.38	14.79	14.59
" 612054sl	B_{\bullet}^{2}		Н09	14.32	14.55	14.44
" 612083sl	Ι ()		11010	14.60		
FC 502 x 503	B ₃ (±)		H010	14.60	14.08	14.34
FC 502 x 503	D	2	H011	15.01	14.95	14.98
10 302/2	В	j	H012	15.51	15.27	15.39
		ехј	H013	14.94	15.15	15.05
		gхj	H014	15.02	14.94	14.98
SP 602116s1	B ₃	е	H015	14.05		
	3	gxe	H016	14.26	14.50	14.38
		hхе	H017	14.25	13.95	14.10
		i x e	H018	14.15	14.39	14.27
SP 581181s1	R	f	HO19	14.82	14.92	14.27
01 00110131	^B 2	exf	HO20	13.97	14.74	14.36
		gxf	H021	14.99	15.19	15.09
		hxf	H022	14.69	14.19	14.44
		ixf	H023	15.10	14.57	14.84
		jхf	H024	15.52	15.09	15.31
FC 505	^B 3	h	H025	14.22		
		gxh	H026	14.45	15.15	14.80
		ixh	H027	14.61	14.74	14.68
		jxh	H028	14.76	14.98	14.87
SP 622027sl	70	3				
	Bl		H029	14.66	14.60	14.63
FC 601 FC 504	B1 B2		H030	14.59	14.89	14.74
10 304	В2		H031	14.09	14.24	14.17
		II.				
Acc. 2636 [S]				14.36	14.67	14.52
Acc. 2646 [S]				14.09	13.96	14.03
SP 641201H03	[FC(502/2 x	504) x	SP 5822		14.97	
SP 641202H03	[FC(502/2 x	504) x			14.74	
LSD (.05) for	4-plot ave	rages		0.68	0.60	
LSD (.05) for	r aver. of a	verages				0.45

Table 7 .--Results of top-cross tests; LSR-BRR, monogerm hybrids, Ft. Collins, Colo., 1966; Exp. 2A-1 & 2A-2; basic data presented as 4-plot averages.

Leaf Spot Grades a

					ades		
	WC - C	Ç		Hyb.		no. and po	llinator
	MS of mm,	T.O. line		- 20	:Exp. 2A-1	:Exp. 2A-2	Average
L	ine no.	:Lq. stag	e:T. code	•	:SP 5822-0	:SP 59B18-0	
SP	612003s1	D	I. 1965	top-cro	ss hybrids	0.50	
		B ₁		HOl	3.00	3.50	3.25
	612070s1			H02	3.00	3.25	3.13
	592087sl	B ₂		ноз	3.00	3.00	3.00
	612033s1	B ₂		HO4	3.00	3.25	3.13
*	612046sl	$B_3(\pm)$		HO5	2.50	3.25	2.88
	502/3	B3		H06	2.50	3.00	2.75
SP	612068s1	B		H08	3.00	2.75	2.88
*	612054s1	B ₂ B ₁		Н09	3.25	3.25	3.25
t	612083sl	B ₃ (±)		H010	3.50	3.50	3.50
	502 x 503	3,=/		HOll	3.25	4.00	3.63
	502/2	В	j	H012	2.75	3.00	2.88
	, -	-4	ехj	H013	3.00	3.00	3.00
			gxj	H014	3.50	3.50	3.50
SP	602116s1	^B 3	e	H015	3.25		
			gxe	H016	3.25	3.75	3.50
			hxe	H017	3.50	3.50	3.50
			ixe	H018	3.25	3.50	3.38
P	581181s1	^B 2	f	H019	3.00	3.75	3.38
		2	exf	H020	4.00	4.25	4.13
			gxf	H021	3.25	3.75	3.50
			hxf	H022	3.00	3.75	3.38
			ixf	H023	3.25	3.75	3.50
			jxf	H024	2.50	3.75	2.88
'C	505	B	h	H025	3.50	3.23	2.00
		^B 3					
			gxh	H026	3.50	3.00	3.25
			ixh	H027	3.50	3.75	3.63
			j x h	H028	3.00	3.00	3.00
P	622027sl	В,		H029	3.00	3.00	3.00
'C (601	B.		Н030		3.00	2.88
'C !	504	B ₁ B ₂		H031		2.75	2.88
		2			•		
00	2636 FCT	(120 - 12	II.			2.75	0.75
00	2000 [SL	(129 x 13	3) x SP 63 3) x SP 63	22-0]	3.75	3.75	3.75
						4.25	3.88
			x 504) x			2.25	
	(.05) for		x 504) x	25 2ART		3.00	
	(.05) for				0.56	0.64	0.40
/	(.05) 101	aver. or	averages				0.43

Leaf spot grades (by K.G. Gould, 8/25-26/66): 0 = no leaf spot; 10 = complete defoliation.

Table 8 .--Results of top-cross tests; LSR-CTR, monogerm hybrids, Fort Collins, Colo., 1966; Exp. 3A-1 and 3A-2; basic data presented as 4-plot averages.

Gross Sucrose per Acre (Lbs.)

	Ŷ		: ,	:Experiment	no. and po	llinator
CMS of mm,		below	- Hyb	:Exp. 3A-1	:Exp. 3A-2	•
Line no.	:Eq. stage:		no.	:FC 901	:McF. 663	Average
		1965	top-cro	ss hybrids		
SP 612003s1	B ₁		H01	4510	4405	4458
" 612070s1	B ₁		HO2	4410	4316	4363
" 592087sl	B		НОЗ	4714	5040	4877
" 612033s1	B1 B2 B3		H04	4038	4843	4441
" 612046s1	B ₂ (±)		H05	4707	5103	4905
FC 502/3	B ₃		H06	4563	4767	4665
SP 612068s1	B		H08	4319	4648	4484
" 612083sl	B ₃ B ₂ B ₃ (±)		H010	4413	4534	4474
FC 502 x 503			HOll	4843	4511	4677
FC 502/2	B ₄	j	H012	4634	5113	4874
	7	ехј	H013	5188	4438	4813
		gxj	H014	4980	4950	4965
SP 602116s1	B ₃	е	H015	4956	4021	4489
	3	gxe	H016	4616	4385	4501
		hхе	H017	4778	5173	4976
		iхе	H018	5270	4186	4728
		exf	H020	4184	4201	4193
		gxf	H021	4199	4978	4589
		hxf	H022	5236	4690	4963
		j x f	H024	5651	5108	5380
FC 505	B ₃	h	H025	4636	4242	4439
	3	gxh	H026	4614	4469	4542
		ixh	H027	4742	4657	4700
		jхh	H028	4822	47 58	4790
SP 622027sl	B ₁		H029	4131	4498	4315
FC 601	Bi		H030	3820	4687	4254
FC 504	B ₂		H031	5041	5200	5121
		II.	Standa	rds		
Acc. 2636 [SL	(129 x 133)	x SP 63	22-0]	4997	4393	4695
Acc. 2646 [SL		x SP 63	22-0]	4814	4397	4606
Acc. 2168 [GW	674-56C]			4864	6122	5493
SP 641204H01 (FC(502/2 x	503) x	FC 901]	5562	5602	5582
SP 641204H03 [FC(502/2 x	504) x	FC 901]		5751	5 5 15
LSD (.05) for LSD (.05) for	4-plot ave	rages		678	884	
100 (.03) TOP	aver. of a	verages				557

Table 9 .--Results of top-cross tests; LSR-CTR, monogerm hybrids, Fort Collins, Colo., 1966; Exp. 3A-1 and 3A-2; basic data presented as 4-plot averages.

Roots per Acre (Tons)

CMS of mm,	T.O. lines	halow	- Hyb.		no. and po	llinator
Line no.	:Eq. stage		no.	:Exp. 3A-1 :FC 901	:Exp. 3A-2	Average
Bille Ho.			ton-one	oss hybrids	:McF. 663	
SP 612003s1	В		HOl	14.73	14.11	14.42
0120/051	B ₁		H02	14.38	14.23	14.31
23200/81	B ₂		Н03	15,46	16.32	15.89
" 612033s1	B1 B2 B3		HO4	13.99	16.52	15.26
" 612046s1	B ₃ (±) B ₃ B ₂ B ₃ (±)		НО5	14.34	15.77	15.06
FC 502/3	B_3°		H06	14.00	15.05	14.53
SP 612068s1	Bo		H08	14.54	15.64	15.09
" 612083sl	$B_3^2(\pm)$		H010	14.48	14.61	14.55
FC 502 x 503			H011	15.46	15.36	15.41
FC 502/2	В ₄	j	H012	14.33	15.74	15.04
		ехj	H013	16.43	14.26	15.35
		gxj	H014	15.46	15.42	15.44
SP 602116sl	В ₃	е	H015	16.41	13.30	14.86
	3	gxe	H016	15.22	14.91	15.07
		hхе	H017	15.98	16.84	16.41
		ixe	H018	16.87	13.73	15.30
		ехf	H020	13.48	14.18	13.83
		gxf	H021	12.89	15.48	14.19
		h x f	H022	16.81	15.20	16.01
		jхf	H024	17.60	15.70	16.65
FC 505	B ₃	h	H025	14.30	13.02	13.66
	3	g x h	H026	14.34	14.05	14.20
		ixh	H027	14.82	15.54	15.18
		jхh	H028	15.14	14.60	14.87
SP 622027sl	B _B 1		H029	13.25	14.60	13.93
FC 601	B_{1}^{\perp}		H030	13.23	15.07	14.15
FC 504	B ₂ 1		H031	16.36	17.06	16.71
	4	7.	Charles			
Acc. 2636 [SI	(129 × 133)	II.	Standa		14.64	3.5. 1/1/
Acc. 2646 [SI				15.74.	14.54	15.44 15.14
Acc. 2168 [GV		, A DI 03.	22-0]	16.10	19.65	15.14
_						
SP 641204H01					18.06	17.83
SP 641204H03	LFC(502/2 x	(504) x	FC 901]		17.90	17.64
LSD (.05) for LSD (.05) for				1.98	2.60	
130 (.03) 101	aver. or a	verages				1.63

Table 10 .--Results of top-cross tests; LSR-CTR, monogerm hybrids, Fort Collins, Colo., 1966; Exp. 3A-1 and 3A-2; basic data presented as 4-plot averages.

Sucrose Percentage

P		•	·Fypanimani	no. and po	llinaton
CMS of mm, T.O. lines	helow	- Hyb.	:Exp. 3A-1	:Exp. 3A-2	
Line no. :Eq. stage:		no.	:FC 901	:McF. 663	Average
SP 612003s1 B,	1965	HO1	15.29	15.62	15.46
" 612070s1 B1 " 592087s1 B2 " 612033s1 B3		HO2 HO3 HO4	15.26 15.22 14.42	15.14 15.42 14.67	15.20 15.32 14.55
" 612046s1 B ₃ (±) FC 502/3 B ₃ SP 612068s1 B ₂ " 612083s1 B ₃ (±)		HO5 HO6 HO8 HO10	16.38 16.30 14.86 15.20	16.19 15.79 14.84 15.52	16.29 16.05 14.85 15.36
FC 502 x 503 FC 502/2 B ₄	j e x j g x j	H011 H012 H013 H014	15.66 16.15 15.75 16.10	14.60 16.24 15.51 16.04	15.13 16.20 15.63 16.07
SP 602116s1 B ₃	e g x e h x e i x e	HO15 HO16 HO17 HO18	15.10 15.19 14.96 15.64	15.10 14.70 15.36 15.20	15.10 14.95 15.16 15.42
	e x f g x f h x f j x f	H020 H021 H022 H024	15.52 16.22 15.57 16.04	14.76 16.07 15.44 16.27	15.14 16.15 15.51 16.16
FC 505 B ₃	h g x h i x h j x h	HO25 HO26 HO27 HO28	16.16 16.10 16.01 15.95	16.29 15.89 14.94 16.27	16.23 16.00 15.48 16.11
SP 622027sl B1 FC 601 B1 FC 504 B2		HO29 HO30 HO31	15.59 14.42 15.39	15.42 15.52 15.25	15.51 14.97 15.32
Acc. 2636 [SL(129 x 133) Acc. 2646 [SL(129 x 133) Acc. 2168 [GW 674-56C]	x SP 63 x SP 63	Standa 22-0] 22-0]	rds 15.35 15.27 15.06	14.94 15.09 15.57	15.15 15.18 15.32
SP 641204H01 [FC(502/2 x SP 641204H03 [FC(502/2 x LSD (.05) for 4-plot ave	504) x	FC 901]	15.79 15.19 0.71	15.45 16.05 0.68	15.62 15.62
LSD (.05) for aver. of a	verages		0.11	0.00	0.49

Table 11 .--Results of top-cross tests; LSR-CTR, monogerm hybrids, Fort Collins, Colo., 1966; Exp. 3A-1 and 3A-2; basic data presented as 4-plot averages.

Leaf Spot Grades a/

		₽			:	Hyb.		t no. and po	llinator
	CMS of mm,	T.O.	lines be		:	no.	:Exp. 3A-1	:Exp. 3A-2	Average
	Line no.	:Eq.	stage:T.				:FC 901	:McF. 663	
SP	612003s1 612070s1 592087s1 612033s1	B B B B B B B B B B B B B B B B B B B	<u>I.</u> .	196	5_t	HO1 HO2 HO3 HO4	3.25 3.75 3.50 3.50	3.50 3.25 3.00 3.00	3.38 3.50 3.25 3.25
FC SP	612046s1 502/3 612068s1 612083s1	B ₃	₃ (±)			HO5 HO6 HO8 HO10	3.00 3.75 3.50 3.50	3.25 3.50 4.00 3.75	3.13 3.63 3.75 3.63
FC FC	502 x 503 502/2	Вц		хј		H011 H012 H013 H014	3.50 3.00 3.75 3.25	3.75 2.75 3.50 3.50	3.63 2.88 3.63 3.38
SP	602116s1	Вз	g h	x e		HO15 HO16 HO17 HO18	3.75 3.75 3.75 3.50	3.50 3.75 3.75 4.00	3.63 3.75 3.75 3.75
			e g h j	x f x f		H020 H021 H022 H024	3.75 4.00 3.50 3.00	4.25 4.00 3.50 3.00	4.00 4.00 3.50 3.00
FC	505	Вз	h g i j	x h		H025 H026 H027 H028	3.75 3.50 3.50 3.25	3.75 4.00 4.00 3.00	3.75 3.75 3.75 3.13
FC	622027sl 601 504	B 1 B 2				HO29 HO30 HO31	3.75 3.00 3.50	3.50 3.00 3.50	3.63 3.00 3.50
Aco	2636 [SI 2646[SL(2168 [GV	(129 x	133) x		632		3.50 3.75 3.75	3.50 4.00 3.00	3.50 3.88 3.38
SP	641204H01 641204H03	[FC(5	$02/2 \times 5$	04)				3.50 3.00 0.58	3.50 3.13
	0 (.05) for 0 (.05)	-		9	S		0.03	0.58	0.44

Leaf spot grades (by K.G. Gould, 8/26/66): 0 = no leaf spot; 10 = complete defoliation.

Table 12 .--Curly top resistance evaluation of LSR-CTR, monogerm hybrids, Thatcher, Utah, 1966, by A. M. Murphy. Except where otherwise indicated, the basic results shown are 2-plot averages (each plot 1 row x 50').

CMS of mm,	T.O. line	s helow	Hybrid	Pollinator	and curly	top grade a/
Line no.	:Eq. stage		no.	FC 901	: McF. 663	: Average
			5 top-cr	oss hybrid	سالسان المسان المسال	
SP 612003s1 " 612070s1 " 592087s1 " 612033s1	B ₁ B ₁ B ₂ B ₃		HO1 HO2 HO3 HO4	7.0 6.5 7.0 8.0	7.5 7.5 8.0 7.5	7.3 7.0 7.5 7.8
" 612046s1 FC 502/3 SP 612068s1 " 612083s1	B ₃ (±) B ₃ B ₂ (±)		HO5 HO6 HO8 HO10	7.5 7.0 7.0 7.0	7.5 7.0 7.5 8.0	7.5 7.0 7.3 7.5
FC 502 x 503 FC 502/2	B ₄	j e x j g x j	HO11 HO12 HO13 HO14	7.5 7.0 7.0 6.5	8.0 7.0 7.0 7.5	7.8 7.0 7.0 7.0
SP 602116s1	В3	e g x e h x e i x e	HO15 HO16 HO17 HO18	6.0 7.0 6.5 6.5	7.0 7.5 6.5 8.0	6.5 7.3 6.5 7.3
		e x f g x f h x f j x f	HO20 HO21 HO22 HO24	6.0 7.5 7.5 7.5	7.5 8.0 8.5 6.0	6.8 7.8 8.0 6.8
FC 505	^B 3	h g x h i x h j x h	HO25 HO26 HO27 HO28	7.5 6.5 7.5 6.5	6.0 6.0 8.0	6.3 6.8 7.3
SP 622027s1 FC 601 FC 504	B ₁ B ₁ B ₂		HO29 HO30 HO31	6.5 6.0 7.5	8.0 6.5 7.0	7.3 6.3 7.3
Ave		uding HO2		6.9	7.3	7.2
SP Acc SP US	E1. 651203H0 (651204H0 (c. 2483 (SE 631210H0 (33 (5 plot 41 (6 plot	FC 901) McF. 663) 5481-0) SP 6051-0]		c <u>k materia</u>	1_ 6. 7. 8. 6. 7.	5 5 5 3

Basis of curly top grades (9/1/66): 0 = healthy; 9 = death due to curly top.

 $^{^{\}rm b/}$ Same hybrids as in Experiments 3A-1 and 3A-2, Fort Collins, Colo.,1966.

Cooperators' Tests of Top-cross Hybrids

Some of the top-cross hybrids included in Fort Collins Experiments 2A-1, 2A-2, 3A-1, and 3A-2 were evaluated in agronomic tests by the American Crystal Sugar Company (R. E. Finkner, E. L. Swift, and others) and the Holly Sugar Corp. (D. F. Peterson and P. R. Scott). The tests were similar to other cooperative tests conducted by those companies and described in Tables 29(a) and 32(a). Disease exposures in and harvest results of the cooperators' top-cross tests are summarized in Tables 13 and 14.

Among the LSR-BRR, top-cross hybrids (Table 13), only one exceeded the standard variety, SL (129 x 133) x SP 6322-0, in average gross sucrose yield, and the difference (6 percent) was not significant. Diseases were unimportant in those tests.

The results for the tests of LSR-CTR top-cross hybrids are presented in Table 14. Under severe leaf spot and very severe curly top exposures at Hereford, Texas, the standard variety, SL (129 x 133) x SP 6322-0, was surpassed in gross sucrose yield by one entry, only. The gross sucrose yield of that entry (FC 601 x FC 901) was 4 percent above that of the standard variety and exceeded that of the local check (HH 10) by a highly significant amount. In sucrose percentage, FC 601 x FC 901 was slightly below the standard variety but significantly above the local check. It should be noted that, under mild leaf spot and curly top conditions at Rocky Ford, FC 601 x FC 901 was low in gross sucrose yield. The favorable performance of that hybrid at Hereford is attributed to the fact that, of all the females listed in Table 14, FC 601 is the only one with curly top resistance.

In comparing pollinators (Table 14) insofar as gross sucrose yield of the hybrids is concerned, it seems clear that FC 901 was superior to 663 under the severe disease conditions at Hereford. At Rocky Ford there was very little difference. In over-all comparisons of females on the same basis, excluding FC 601, there is some indication that SP 602116s1 x FC 502/2 has special merit and deserves additional trials. This conclusion is in line with results obtained at Fort Collins (Tables 4 and 8) where the gross sucrose average for all hybrids of SP 602116s1 x FC 502/2 (i.e. e x j) was 4806 pounds per acre compared with 4507 for the two accessions of the standard variety, SL (129 x 133) x SP 6322-0. In this connection, it is noteworthy that (SP 602116s1 x FC 502/2) x SP 5822-0 was highest in average gross sucrose yield among all entries listed in Table 13.

Colorado, LSR-BRR, ..-Summary of harvest results of cooperators' agronomic evaluation tests of monogerm, (129 x 133) MS x SP 6322-0; Rocky Ford, top-cross hybrids, as percent of the standard variety, SL and East Grand Forks, Minnesota, 1966.

/a	: Seed	no.	:Gross	sucr.	sucr. yield:		Root yield		: Sucrose	percent
Describtion Location			R. F.	E.G.F.Aver	Aver	R. F.	E.G.F.Aver	AveraR	R. R.C.	G. F. Aver
	/q		-	LS-1:	1		.I.S-1	1	1 : 1	1 :
Disease expo	exposure_		:CT-1:	• •		:CT-1:	4 •		:CT-1 :	6.0
No. of repli	eplications		: 9 :	8	• •	: 9	8	* *	8 : 9	
L S D (.05)			: 17 :	10 :	**	15:		4.6	7: 9	
(SP 602116s1 x FC 502/2) x SP 5822-0	SP 6512	651201H013	123	89	106.0	116	87	101.5 10		
(SP 602105s1 x " ") x " "	=	H014	101	88	94.5		88		104 101	
(FC 505 x SP 581181s1) x " "	=	H022	107	90	98.5	102	92	97.0 10		
5	=	H024 ·	102	85	93.5		83			
(" " x FC 505) x " "	=	H028	103	79	91.0	92	77	84.5 1		
	Average	age	107.2	86.2	2.96	100.0	85.4	92.7 1	4.	.8 104.1
(SP 602116s1 x FC 502/2) x SP 59B18-0	SP 6512	651202н013	109	83	0.96	100	80		90 104	
(SP 602105s1 x " ") x " "	=	H014	88	9/	82.0	82	75			
(FC 505 x SP 581181s1) x " "	=	H022	107	91	0.66	66	89	94.0 1	107 103	105.0
(FC $502/2 \times SP 581181s1$) x " "	=	H024	106	81	93.5	76	77			
(" " x FC 505) x " "	=	H028	86	73	79.5	78	71			
	Average	age	99.2	80.8	0.06	9.06	78.4	84.5 10	109.4 103	.2 106.3
(SP $602116s1 \times FC 502/2$) φ	Aver.	H013	116.0	86.0	101.0	108.0	83.5	95.8 1	107.5 102	.5 105.0
(SP 602105s1 x " " .) \$	=	H014	94.5	82.0	88.3	0.06	81.5	85.8 1	106.0 101	.5 103.8
(FC 505 x SP 581181s1) φ	=	H022	107.0	_	98°8	100.5	90.5	95.5 1	106.0 100	.0 103.0
5	Ξ	H024	104.0	83.0	93.5	93.0	80.0	86.5 1	11.0 103	.0 107.0
(" " x FC 505) Q	=	H028	94.5	0.97	85.3	85.0	74.0	79.5 1	111.5 103	.0 107.3
Furnished by cooperator:										
Local check, Am #2 (60-806-0)			104			95			113	
" , Am #3 S, monogerm				88			91		97	
62-GH #2-1-0			66			98		1	15	
SP 6322-0 x SLC 129			114			116			86	
T22-H7			108			107		1	01	
a/	1 2 - 1 1 1	,	1 1 1	1 1 1 1	•	. 1			1 0	1

Cytoplasmic male sterility was utilized to enforce hybridization in the production of all SP 651201 SP 651202 material. and

= Cercospora leaf spot; CT = curly top; 1 = mild; 2 = moderate; 3 = severe. S Disease exposure: 9

.--Summary of harvest results of cooperators' agronomic evaluation tests of monogerm, LSR-CTR, top-cross hybrids, as percent of the standard variety, SL (129 x 133) MS x SP 6322-0; Rocky Ford, Colo., and Hereford, Texas, 1966.

and nererord, lexas, 1966.					•	
Descriptional : Seed no.	:Gross sucr.	vield:	Root vield	· Chonces neadent	+40000	
Location	.R.F.	Aver. R.	:Her. :Aver.:R.F.	R.F. Her.	Aver	1
Disease exposure	:LS-1 :LS-3	: :LS-1				1
	:CT-1 :CT-3+	: :CT-1	:CT-3+:			
	: :Rh-1	••	:Rh-1:		• •	
01	6 : 9 :	9	6	6 9		
LSD (.05)	: 17 : 12	: 15	: 11 :	4 . 9		1
(SP 60210521 x FC 502/2) x FC 901 SP 651203H013	129		98 108.0	109 99	104.0	
# # # X (X T8C0T700			0° 46 98	109 1	104.5	
503/2 % EC EGE) X " " " " " " "	116	7	89 100.5	103	102,5	
: : : : : : : : : : : : : : : : : : :	100		97 94.5	109 101	105.0	
: X C C C C C C C C C C C C C C C C C C	96 104	100.0 94	106 100.0	102	100.0	
L4 HOI7 H	114.0 93.3	103.6 106.0	92.5 99.3	107.5 100.	5 104.0	
x bb3 SP 651204	113		85 93.5	110	107.0	
CONTINET X FC 302/2) X " " " " " " " " " " " " " " " " " "	120	106.0 114	92 103.0	105	102.5	
" X (:: X TSCOTZOO	116	97.0 107	79 93.0	108 99	103,5	
SOUND TO EACH A THE TENER OF TH	123	104.0 118	87 102.5	104	101,0	
302/2 X fc 303) X "	103	96°2 9th	86 90.0	109 1	106,5	
AVEr. HUI3, HUI4, HOI7, HO28	115.5 86.3	100.9 108.3	86.0 97.1	106.5 100	3 103.4	
buzilosi x FC 502/2) \$ Aver.	124.5 94.5	109.5 116.0	95.0 105.5	107.0 99.5		
th d (" x TechTone	113.5 82.0	97.8 104.5	82.5 93.5	108.5 99.5	• '	
(FC 505 x SP 602116s1) \$ H017	119,5 88,0	103.8 115.0	88.0 101.5	103,5 100,0		
(FC 502/2 x FC 505) ♀ ™ H028	101.5 94.5	98.0 93.0	91.5 92.3	102		
Turnished by cooperator:						1
10-00-00 7m + H 1 10 10-00-00 10-000 10-00	104	92		113		
62-GH #2-1-0	82		91	66		
SP 6322-0 x SLC #129	114	86 116		115		
T22-H7	108	107		101	•	
						1

Cytoplasmic male sterility was utilized to enforce hybridization in the production of all SP 651203 SP 651204 material. and ल

Disease exposure: LS = Cercospora leaf spot; CT = curly top; Rh = Rhizoctonia root or crown rot; l = mild; 2 = moderate; 3 = severe. A

Evaluation of Miscellaneous Material

A number of hybrids, varieties, etc., from various sources were compared in an agronomic test (Exp. 4A) under severe leaf spot exposure at Fort Collins. Several of the entries also were tested for curly top resistance at Thatcher, Utah, by A. M. Murphy. Descriptions of entries and techniques are presented in Table 15 together with the summarized results.

Two accessions of the standard variety, SL (129 x 133) x SP 6322-0 (i.e. entries 179 and 180), were included in the test. Only two entries significantly exceeded the standard variety in gross sucrose yield. One of them, FC (502/2 x 503) x FC 901 (entry 176), is now considered rather unattractive because of imperfections in FC 503. The other, FC (502/2 x 504) x FC 901 (entry 177) is of special interest, currently, and its performance was superior in other tests at Fort Collins in 1966 (Tables 2 and 8). In Experiment 4A (Table 15), that hybrid significantly exceeded the standard variety in sucrose percentage as well as in gross sucrose yield. Its root yield also was higher than that of the standard, but the difference was not significant.

Two triploid hybrids (entries 172 and 173), involving a pool of Savitsky tetraploids as a parent, were included in the test; also four Polish varieties presumed to be of polyploid character (entries 193-196). None of these six entries was substantially above the standard variety in gross sucrose yield, and two of the Polish varieties were much lower. None of the Polish varieties was more leaf spot resistant than the standard variety, and two apparently were more susceptible.

.--Agronomic and disease resistance evaluation of miscellaneous sugarbeet material, Fort Collins, Colorado, and Thatcher, Utah, 1966, Table

:Thatcher	Bolt.; C.T.h/	7		0.0 6.5		0.0 7.5		0.0	0.0	5.	0 7.0	1.2	9.	0	0.0			0	\$	0	9	0	0.0			8.5	6.5	7.3	0.0		
	Plants: Bo																			0.0									117.8	.38	6.59
20/	:Vig. g/:Plants: : Per : : 8/12 : 100' :		1		123		118		0 117				0 117	0 114					0 119		8 118		5 115		5 119				=		
41	- 1		3 4.50		3 5.25		5.38		5 5.50			00.9			5.63		5.63			5.88			5.25		5.25				1	0.13	0
	f spot [£] /8 : 8/26		3.63				4.38		4.25	4.25	4.75	4.75	4.0.	4.50	4.50	, 25	4.13	4.25	3,75	3.88	4.00	4.38	4.75	2	5.00					3.87	0.46
1	e Leaf 8/18		3.88	3.50	3.38	4.13	4.38	0 0	4.00	4.25	4.38	4.13	4.13	4.50	4.38	7 7 7	3.88	4.00	3.38	3.88	3.75	4.25	4.63	788	4.88				4.07	0.18	0.50
		6e1	15.25	15.61	15.44	15.92	16.18	15 07	15.37	15.29	15.07	15.15	14.03	15.12	15.08	15.52	15.71	15.64	15,36	15.34	15.16	15.11	14.64	15.55	13.44				15.339	0.204	0.56
	Roots	Tons	12.55	15.04	14.5/	14.56	15.81	16 15	13.11	15,18	15.05	14.63	10.30	10.40	13.58	13.04	15.00	14.58	14.19	13.76	13.74	13.83	12.61 14.31	14.79	12,12				14.070	3.88	1.51
ŀ	Gross Roots	Lbs.	3830	/695	4008	4639	414/ 5153	5122	404	4665	4541	4426	7	3142	4099	4052	4727	4566	4365	4223	41/5	4196	3/03 4506	4590	3300				4326.5	4.27	512
	Entry no.		171	1/2	1/3	174	176	177	178	179	180	181	707	183	185	186	187	188	189	190	191	192	193	195	196						
	Deltsville seed no.		SP 65121210	1011	700	65	" 641204H01	# " HO3	" 651216н01	Acc. 2636	2646	SP 631001-0	7070	Acc. 2649 SP 6528 v 09	" x 021	" " x 022	×	" × 029	" " × 030	= =	×		Acc. 2650 " 2651	" 2652	2653	CO47	SP 63 1210НО				
1	C.T.E		+ -	+ +	ι.	+ -	+ +	+	+	+	+	1 1		+ +	+	+	+	+	+	+ +	۲	+	1 1	1			+ +	+			
	Sced C.T. E.		77 E	≣ 8	=	= 1	≣ €	E	E	E	E :	ন হ		Z E		E	E	E	Б	E		>	zz	ж	N & m	: :	ಶ ಸ	77			
	General		FOOT OF S-64-13, -22, α -29 $(4\underline{n}, V.F.S.)$ FC (502×503) MS \times S-64 nool	(SP 602105s1 x FC 505) MS x S=64 0001	EC (502 × 503) 36 EC 001	(SP 602105s1 x FC 505) MS x EC 901		FC (502/2 x 504) MS x FC 901	F63-648H3 MS x SP 631225-02	0-775 A S 3 (12 X) T 0 377-0	do.	Rhizoc. res. sel. from GW 674-56C	30 6510_0.from Coollast OTB 221 1 36	SL (126 x 129) x SP 6428-0	il 126 x " "	SL 129 x " "	SL 133	эг (129 x 133) x " "	(SL 126 x SP 6121-0) x " "	(CT 5 x " " " x " " " (CT 5 x " " " ") x " " " " " " " " " " " " "		Ruszczynski P-Poly (Polsad)	Tetra-Tri-Polanowice, Poli-0 (")	AJ Polí 2 (")	Poly-Mono, Poli (") SP 5481-0	6051-0	US 33	US 41	General mean S.E. of entry mean	S.E. " as % of gen. mean	L.S.U. (.05) F

Seed numbers involving "SP 6528" are Deltsville, Md., numbers; all others were assigned at Ft. Collins.

b/ Plots 1 row x 20'; randomized block design; leaf spot exposure intensified artificially.

EV Results at Thatcher (furnished by A. M. Murphy) were based on a minimum of two plots (1 row x 50' in size) for each entry or variety; curly top exposure intensified artificially. 70

Seed type: M = multigerm; m = monogerm.

ল

Curly top resistance (based on previous experience or breeding history): + = resistant (though varying widely in degree); - = susceptible. e |

Foliage vigor (K. C. Gould): larger no. = greater vigor. Curly top grades (A. M. Murphy): 0 = healthy; 9 = death due to curly top.

E

Bolting Resistance Selection and Evaluation

Because of increasing interest in and need for LSR-CTR material having bolting resistance, an attempt was initiated in 1964 to extract bolting resistant lines from FC 901. Seed was planted in a warm greenhouse on September 15. On October 6 the plants were placed in an induction room which was illuminated continuously with standard cool white fluorescent lamps and held at about 7 or 8°C (1). After varying lengths of induction treatment, the plants were returned to the warm greenhouse where they were illuminated continuously. The artificial light provided there (at night) was furnished by incandescent lamps. Bolters were rogued, and the nonbolters were returned to the induction room on January 19, 1965. A summary of induction timing, sizes of populations, and numbers of bolters rogued is as follows:

1964	Induction:	Plants to	: Plants	rogued	- Nonbolters
code no.	time	G.H. after induction	Bolters	Other (small)	reinduced
	Weeks	No.	No.	No.	No.
264	4	84	79	0	5
265	6	175	169	1	5
266	8	262	259	0	3

After a reinduction period of 14 weeks, the nonbolters were permitted to flower and interpollinate in a polyethylene enclosure in the greenhouse. Each male-fertile plant was selfed by means of one paper bag. Since FC 901 is rather highly self fertile, much of the seed produced outside the bags was presumed to be a product of selfing. The seed produced outside the bags was harvested separately from each plant; also the seed inside the bags.

Evaluation techniques and the summarized results (Exp. 7A and green-house) are presented in Table 16. From these results it was concluded that the selection procedure described above was highly successful in extracting bolting resistant genotypes from FC 901. The actual level of bolting resistance achieved will not be known until field comparisons can be made under currently accepted field practices at Salinas, Calif. It is gratifying to note that one of the bolting resistant progenies, SP 651101-3, apparently is quite high in leaf spot resistance.

Table 16 .--Bolting and leaf spot resistance evaluation of lines resulting from bolting resistance selection in the LSR-CTR line, FC 901; Fort Collins, Colorado, 1966.

	5	Source				Fort	Co1	lins ^a	: Bolte: 1966:,	er comp	arisons :	Fi	eld Ex	o. no.	7A ^d /
		desc	ripti	on		; see	d no	•	· codo	Plants	':Bolt'	Entry	:Leaf s	pote/	· Vigor f/:
						:			:no.:	induced	ers	no.	: 8/22	9/10	
										No .	No.		0/22	7/20	. 0/ -5
FC	901;	1964	code	no.	264	SP	6511	01c1	112	16	2				
11	tt í	11	11	11	11	11	11	-1	113	16	0	361	4.5	6.5	5.0
11	11	11	11	11	11	11	11	-2	114	16	4	362	4.0	4.3	5.5
11	11	Н	11	11	11	11	11	с3	115	16	0				
11	11	11	11	11	11	н	11	-3	116	16	0	363	2.0	1.8	5.0
81	11	11	11	11	**	11	11	-4	117	16	9	364	3.0	4.0	5.0
11	11	11	11	11	265	11	11	c5	118	16	0				3.0
PP	11	11	11	11	11	- 11	ti	- 5	119	16	2	365	3.5	3.8	5.0
ŤŤ	11	11	11	11	11	11	11	с6	120	16	1				
11	11	11	- 11	11	11	- 11	- 11	-6	121	16	1	366	4.0	4.0	5.0
11	- 11	11	- 11	11	11	11	11	c7	122	16	6				
Ħ	TŤ	11	11	11	11	11	11	-7	123	16	6	367	2.0	1.5	6.0
11	п	11	11	11	11	н	11	c8	124	16	14				
11	Ħ	11	11	- 11	- 11	11	11	-8	125	16	9	368	4.0	5.5	4.0
11	11	11	11	8.8	- 11	- 11	- 11	-9	126	16	4	369	4.0	3.8	6.0
11	11	11	- 11	11	266	8.8	11	c10	127	16	3				
11	11	11	11	11	11	11	11	-10	128	16	2	370	4.0	4.0	5.0
8.8	11	11	- 11	- 11	11	- 11	11	-11	129	16	1	371	3.5	4.0	5.0
11	- 11	11	н	11	11	11	11	c12	130	16	5				
* *	**	11	1.6	Ħ	*1	11	**	-12	131	16	5	372	4.0	4.5	5.0
	901	•		self	s)			A0+0C	135	16	15	373	3.5	3.8	5.5
	901	•	sibs)			11	11	-OB				374	3.5	3.0	6.0
	674-5						. 216		136	16	14				
SP	5822	-0				Acc	. 264	44	137	16	15				
SP	5822	-0					. 259					376	2.0	1.5	6.0
	H7						. 264		138	16	4				
	3 (Mcl		ne)				65120		139	16	3				
	5481-						. 248					375	3.0	3.3	6.0
Syı	n. che	eck (1	Europ.	.)		Acc	. 226	59				377	4.0	5.0	6.0

 $[\]frac{a}{}$ Each suffix number in the SP 651101 material (e.g. 1, 2, 3, etc.) represents an individual parental plant. The letter "c", preceding the suffix no., indicates selfing, and a dash (-) indicates open-pollination.

 $[\]frac{b}{}$ Six weeks' induction at about 7 or 8° C with continuous illumination (standard cool white fluorescent lamps and no sunlight), after a 3-week start in greenhouse.

 $[\]frac{c}{}$ In greenhouse, under favorable (warm) growing conditions and continuous illumination (incandescent lamps used at night).

 $[\]frac{d}{}$ Plots 2 rows x 12'; 2 replications; inoculation and frequent sprinkling used to promote development of leaf spot.

e' Leaf spot grades (K. G. Gould on 8/22; J. O. Gaskill on 9/10): 0 = no leaf spot; 10 = complete defoliation.

 $[\]frac{f}{}$ Foliage vigor (K. G. Gould): larger no. = greater vigor.

Cooperative Evaluation Tests of LSR-CTR Varieties

Seed supplies of sugarbeet hybrids and varieties, assigned entry numbers 1 through 7 (Table 17), were assembled at Fort Collins and distributed to cooperators for evaluation. Tests at three locations were abandoned or disregarded because of loss of stand or other misfortunes. The others were as follows:

State	: Locality :	Type ^a /	: Agency conducting test	: Table	:Fig.:
Calif.	Gerber	A	Holly Sugar Corp.	21(a) & (b))
Colo.	Fort Collins	A	U. S. Dept. of Agr.	22 11 11 11	
11	Rocky Ford	A	Amer. Crystal Sug. Co.	23 " " "	
11	Sugar City	A	National Sug. Mfg. Co.	24 " " "	
Iowa	Kanawha	A	Amer. Crystal Sug. Co.	25 11 11 11	
11	Mason City	A	11 11 11	26 " " "	
Kan.	Tribune	A	Kan. Agr. Exp. Sta. & Natl. Sug. Mfg. Co.	27 '' '' ''	
Md.	Beltsville	A	U. S. Dept. of Agr.	28 " " "	
Minn.	Crookston	A	Amer. Crystal Sug. Co.	29 " " "	
N.M.	Artesia	A	N. M. Agr. Exp. Sta.	30 " " "	
Okla.	Goodwell	A	Okla. Agr. Exp. Sta.	31 " " "	
Texas	Hereford	A	Holly Sugar Corp.	32 " " "	3
Utah	Logan	0	U. S. Dept. of Agr.	33	
11	Thatcher	0	11 11 11 11 11	33	

 $[\]frac{a}{a}$ Type of test: A = agronomic; 0 = observational.

Curly top exposure was extremely severe at Hereford, Texas, where the leaf spot resistant (curly top susceptible) check, entry 6, yielded 2.9 tons of roots per acre in contrast with a yield of 20.6 tons for the curly top resistant check, entry 7. Curly top exposure was quite severe at Artesia, N. M., moderately severe at Goodwell, Okla., and mild or negligible in all other agronomic tests. Severe leaf spot conditions occurred naturally at Hereford, Artesia, and Goodwell. Moderately severe and severe leaf spot epidemics were developed with the aid of artificial techniques at Beltsville, Maryland, and Fort Collins, Colorado, respectively. The disease was mild or negligible in the other agronomic tests. The two observational tests in Utah were designed specifically for curly top resistance evaluation, and severe curly top exposure was provided artificially in each of those tests.

Results for the individual tests are presented in the tables and figure listed above. A general summary of disease conditions and harvest results for all of the agronomic tests is given in Tables 18, 19, and 20. Because of the wide range in the severity of leaf spot and curly top exposures at the respective locations, average performance figures for the LSR check (entry 6) and the CTR check (entry 7) mean little. The high light among the other general averages is the outstanding position of entry 1, SL (129 x 133) x SP 6322-0, in gross sucrose yield. The high gross sucrose yield of the variety in these tests was in keeping with its gross sucrose performance in the 1965 cooperative tests (2) where it placed a "close second" to FC $(502/2 \times 504) \times FC$ 901. latter variety did not occur in the 1966 cooperative tests. The high gross sucrose yield of entry 1 in 1966 was due to its high root yield. However, the sucrose percentage of that variety was considered satisfactory. The only variety that exceeded entry 1 substantially in sucrose percentage was entry 4, FC (502 x 503) x FC 901, but the outstanding sucrose percentage of that variety was more than offset by its lower root yield, and the gross sucrose yield of entry 4 was 95.7 percent of that of entry 1.

Although the over-all performance of entry 1 was gratifying, it is important to recognize that its resistance to leaf spot and curly top is approximately intermediate between that of resistant and susceptible lines, and that higher levels of resistance to both diseases are urgently needed in areas where both diseases are serious problems. The severe impact of these diseases in the Hereford area, particularly, in 1966 emphasized this point. In this connection it should be noted that the root yield of the curly top resistant check (entry 7, US H7) in the Hereford test was 144 percent of that of entry 1. Its outstanding yield in that test is attributed largely to its high level of curly top resistance. However, its susceptibility to leaf spot is a serious handicap and presumably was responsible, at least in part, for its relatively low sucrose percentage in the Hereford test--i.e. 91% of that of entry 1.

Literature Cited

- (1) Gaskill, John O. 1963. Comparison of fluorescent and incandescent lamps for promotion of flowering in sugar beet seedlings. J. Am. Soc. Sugar Beet Technol. 12(7): 623-634.
- (2) Gaskill, John O., et al. Development and evaluation of sugarbeet breeding material and varieties carrying resistance to leaf spot and curly top, 1965. Sugarbeet Research, 1965 Report (Crops Research Division, A.R.S., U.S.D.A.). CR-4-66 pp. 173-229.

Note: Results of a study of varietal response of sugarbeets to postemergence herbicide applications are presented as a supplement to this report on page 256.

Table 17 .--Description of material in cooperative agronomic evaluation tests of LSR-CTR varieties, $1966 \cdot \frac{a}{}$

_	: Fort Collins : seed no.	Description and supplier $\frac{b}{}$:
1	Acc. 2646	SL (129 x 133) MS x SP 6322-0; monogerm; LSR-CTR-BRR; Farmers and Manufacturers Beet Sugar Assoc. (Mich. Sug. Co. lot no. 628446).
2	Acc. 2647	SP 6528X030 [(SL 126 x SP 6121-0)MS x SP 6428-0]; LSR-CTR-BRR; monogerm; G. E. Coe, U.S.D.A., Beltsville, Maryland.
3	Acc. 2648	SP 6528X031 [(SL 129 x SP 6121-0)MS x SP 6428-0]; LSR-CTR-BRR; monogerm; G. E. Coe, U.S.D.A., Beltsville, Maryland.
4	SP 651203H011	FC (502 x 503) MS x FC 901; LSR-CTR; monogerm; U.S.D.A., Fort Collins, Colorado.
5	SP 651213H01	(SL 129 x McF. 2648) MS x SP 6051-0; LSR-CTR; monogerm; U.S.D.A., Fort Collins, Colorado.
6	Acc. 2644	SP 5822-0 (LSR check); LSR-BRR; multigerm; F & M and West Coast Beet Seed Co. (WC lot no. 3378).
7	Acc. 2645	US H7 (CTR check); monogerm; CTR and bolting resistant; J. S. McFarlane, U.S.D.A., Salinas, California.

At least one local check, furnished by the cooperator, was included in each test in addition to the varieties listed in this table.

Disease resistance, though varying widely in degree, is indicated by symbols, above, as follows: BRR = black root resistant (i.e. resistant to the Aphanomyces type black root); CTR = curly top resistant; LSR = leaf spot resistant.

.--General summary of harvest results, cooperative agronomic evaluation tests of LSR-CTR varieties, 1966; as percent of the standard variety, SL (129 x 133) MS x SP 6322-0. Table 18

Gross Sucrose Yield

1	/a/	. No.	••		ū	Entry no.	•			:Local	1 ck. D/	'LSDC'
Location	Diseases—	reps.	. 1	: 2	3	: †	2	9	: 7	ъ	q •	:(.05)
(1) Gerber, Calif.		8	100	98	96	66	66	118	95	103		10
(2) Ft.Collins. Colo. LS-3	LS-3	б	100	81	83	95	80	85	77	93	77	7
(3) Rocky Ford, Colo. LS-1, CT-1	LS-1, CT-1	12	100	103	101	103	91	77	91	92	92	14
(4) Sugar City, Colo. CT-1	CT-1	6	100	66	66	102	95	90	104	ħ6	104	12
(5) Tribune, Kan.		6	100	92	92	105	94	96	114	101		6
(6) Goodwell, Okla.	LS-3, CT-2	10	100	95	90	104	93	71	83	66		13
(7) Hereford, Texas	LS-3, CT-3+, Rh-	1 9	100	69	63	92	117	20	131	82	96	12
(8) Artesia, N.M.d/	LS-3, CT-3+	7	100	79	87	92	97	37	113	83	107	19
(9) Crookston, Minn.	LS-1	6	100	100	108	92	90	84	106	109	114	10
(10) Mason City. Ia.	LS-1	თ	100	107	80	83	100	77	105	83		19
(11) Kanawha. Ia.	LS-1, BR-1	თ	100	104	85	83	₩8	83	81	87	86	15
(12) Beltsville, Md.	LS-2, BR-1	3	100	66	95	95	79	101	62	103		11
Average			100.0	0 94.1	89.9	95.7	93,3	75.	75.4 97.3	3 95,3	ω	

BR = black root (Aphanomyces cochlioides); CT = curly top (virus); LS = leaf spot (Cercospora beticola); Rh = Rhizoctonia root or crown rot; l = mild; 2 = moderate; 3 = severe. Disease exposure:

(2) GW 674-56C and SL (126 x 128) x SP 5822-0; (3) Am #2 mono and Am #3-N; (4) SL (126 x 128) x SP 5822-0 and National Blend; (5) SL (126 x 128) x SP 5822-0; (6) HH 10; (7) HH 10 and 42108-08; (8) HH 10 and 42108-08; (9) Am #3-S mono, (11) Am #3-S mono and T22-H7; (12) SP 64194-0. Local checks, a and b, were as follows, respectively (location numbers in parentheses): (1) HH 9;

LSD (.05) expressed as percent of the gross sucrose yield of the standard variety. ो

Results shown for Artesia, N.M., are gross soluble solids, not gross sucrose

Table .--General summany of narvest result. Autobratic elagronomic evaluation tests of LSR-Caracties, 1966; as percent of the standar. Well (12 x 133) MS x SP 6322-0.

. oot liete			
00	20 1	1)1	
	+00		

Location	Disease a	Z	60 10		FI.	Entry no.				.Local	Local ck. b/	/SOST/
		reps.	-	. 2	m	÷ :		9		៧	Ω,	(000)
(1) Genner, Calif.		ىد	700	100	92	66	8	က	20	104		00
(2) Ft.Collins. Color LS-3		Ji	007	80	(A)	92	81	80	83	ස	79	O
(3) FOCKV Ford, Colo. LS-1.CT-1	LS-1 CT-1	7	100	103	ರು ೧	95	06	75	06	86	භ	13
	CITI	27	100	.л О	100	101	94	06	107	96	104	12
		O:	100	ග	16	101	92	され	113	100		00
	LS-3_CT-2	10	100	80	87	96	93	ည	95	66		Ø
	LS-3, CT-3+, Rh-1	S	100	71	49	92	122	20	144	58	50	12
	LS-3, CT+3+	动	100	77	83	06	95	38	112	82	105	16
	LS-1	o	100	101	108	88	00	88	103	107	111	တ
	LS-1	O	100	110	79	8	101	77	110	80		19
	LS-1,BR-1	on	100	106	85	82	84	78	80	87	98	12
	LS-2,BR-1	ന	100	64	46	16	82	46	77	101		1 t
Average			100.0	93°8	88.8	92°4	93.2	74.5	100.8	9.46		Actions described by the section of the Collection of the Collecti

a/ Disease exposure: BR = black root (Aphanomyces cochlioides); CT = curly top (virus); LS = leaf spot (Cercospora beticola); Rh = Rhizoctonia root or crown rot; l = mild; 2 = moderate; 3 = severe.

(2) GW 674-56C and SL (126 x 128) x SP 5822-0; (3) Am #2mono and Am #3-N; (4) SL (126 x 128) x SP 5822-0 and National Blend; (5) SL (126 x 128) x SP 5822-0; (6) HH 10; (7) HH 10 and 42108-08; (8) HH 10 and 42108-08; (9) Am #3-S mono and Tl4-H11; (10) Am #3-S mono; (11) Am #3-S mono and T22-H7; (12) SF 64194-0. Local checks, a and b, were as follows, respectively (location numbers in parentheses): (1) HH 9;

LSD (.05) expressed as percent of the root yield of the standard variety. Ol

.--General summary of harvest results, cooperative agronomic evaluation tests of LSR-CTR varieties, 1966; as percent of the standard variety, SL (129 \times 133) MS \times SP 6322-0. Table 20

0	
Percentage	
R	
نب	
en	
Õ	
č	
0)	
0	
,	
Φ	
(V)	
0	
ũ	
cros	
S	

	; a/		••			7	Ç			[.o.c.a.]	Tocal ck.b/	/aus'i
Location	: Diseases	. NO.	••			cultry	IIO.					i 、
	••	:reps.		: 2	: 3	ተ :		9	: 7	г •	۵	(02)
(1) Carbon Calif		α	100	98	105			100	100	66		5
(1) Serber, carris	E 0.1	0	100	97	97			86	92	100	97	2
(2) E.COLLINS, COLO. 15-1 (7-1	- EO	12	100	100	103			103	100	111	56	#
(a) NOCKY FOLMS COLO. BULL	- T- T T T T T T T-	i o	100	100	66			101	86	66	100	က
(+) Sugar City, Coro	1) on	100	103	101			102	101	102		寸
(5) Coodino! Okla	C-TO E-2.1	10	100	110	104	109	103	109	97	102		∞
(a) coodwell, oxid		ි ර 	100	97	98			97	91	92	97	#
(c) Antorio N M d/	10-3 CT-3+	=	100	102	105			66	101	105	101	10
(0) AI'LESIA, N.H.		· თ	100	5 5 1	100			96	103	102	103	⇉
(9) CLOCKSCOM, HILLING		, o	100	97	101			100	98	101		က
(10) Mason City, id.	LS-1 RR-1	, o	100	86	100			66	101	100	100	#
(12) Beltsville, Md.		ത	100	102	101			108	81	102		#
Avenage			100	100.0 100.3	3 101.2		103.6 100	100.3 101.0	0 96.7	7 101.3	8	
0				-								

Disease exposure: BR = black root (Aphanomyces cochlioides); CT = curly top (virus); LS = leaf spot (Cercospora beticola); Rh = Rhizoctonia root or crown rot; l = mild; 2 = moderate; 3 = severe. ल

(2) GW 674-56C and SL (126 x 128) x SP 5822-0; (3) Am #2 mono and Am #3-N; (4) SL (126 x 128) x SP 5822-0 and National Blend; (5) SL (126 x 128) x SP 5822-0; (6) HH 10; (7) HH 10 and 42108-08; (8) HH 10 and 42108-08; (9) Am #3-S mono and T14-H11; (10) Am #3-S mono; (11) Am #3-S mono and T22-H7; (12) SP 64194-0. Local checks, a and b, were as follows, respectively (location numbers in parentheses): (1) HH 9;

LSD (.05) expressed as percent of the sucrose percentage of the standard variety ा

Results shown for Artesia, N.M., are refractometer determinations, not sucrose. g

Table 21(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Gerber, California, 1966.

Conducted by: Alex Lange and D. D. Dickenson.

Location: S. D. Glatz Ranch, Gerber, California.

Cooperation: Holly Sugar Corporation and S. D. Glatz.

Dates of Planting and Harvest: April 12; October 6.

Experimental Design: Latin Square, 8 x 8, but analyzed as randomized block experiment due to actual field layout; plots 2 rows x 53'; rows 30" apart.

Root Yield Determination: Two rows x 50' in each plot.

Sucrose Determination: Two 25# samples per plot.

Stand Counts: Actual number of beets at harvest.

Leaf Spot Exposure: None.

Curly Top Exposure: None.

Other Diseases: Only an occasional rotted beet.

Soil and Seasonal Conditions: Excellent growing season, but not all available nitrogen was used by the crop.

Reliability of Test: Good.

.--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Gerber, California, 1966 (8-plot averages). Table 21(b)

	••		: Acre	Acre Yield:		:Beets
Description	: Ft. Collins	: Entry	:Gross :	••		: per
	: seed no.	: no.	:sucrose:	Roots:	Sucrose	:100' row
			Lbs.	Tons	p%	NO.
SL (129 x 133) x SP 6322-0	Acc. 2646	~	8402	28,309	14.84	175
(SL 126 x SP 6121-0) x SP 6428-0	Acc. 2647	2	8237	28.190	14,61	178
(SL 129 x SP 6121-0) x SP $6428-0$	Acc. 2648	က	8060	25.917	15,55	182
FC (502 x 503) x FC 901	SP 651203H011	⇉	8311	27,909	14,89	157
$(SL 129 \times 2648) \times SP 6051-0$	SP 651213H01	2	8352	28,007	14.91	160
SP 5822-0 (LSR check)	Acc. 2644	9	7043	23,633	14.90	138
US H7 (CTR check)	Acc. 2645	7	7984	26,863	14,86	155
HH 9 (Local Check)		80	9498	29.530	14.64	157
General Mean			8129,	27.295	14.90	
S.E. mean			2874	.821	.277	
LSD (5%)			816	2,33	.788	
SEM/gen. mean (%)			3.54	3.01	1,86	

Table
ance
Varie

		Mean	medii square
Variation due to:D/F: Tons beets	to:D/F:	Tons beets:	Percent Sucrose:
Variety	7	26,51428	.66250
Replications	7	157,67703	5,00964
rror	64	5,38942	.61581
Total	63		
Calculated F		4.92**	1.08NS

a/ Short cut formula.

** Exceeds 1% level of 3.04.

NS Not significant.

Table 22(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Fort Collins, Colorado, 1966 (Exp. no. 1A).

Conducted by: J. O. Gaskill and L. W. Lawson.

Location: Hospital Farm, Fort Collins, Colorado; Field no. 3.

<u>Cooperation</u>: Colorado Agricultural Experiment Station, Beet Sugar Development Foundation, and National Sugar Manufacturing Company.

Dates of Planting and Harvest: April 29; October 25.

Experimental Design: Latin Square, 9 x 9; plots 2 rows x 20'; rows 20" apart; hand thinned to single-plant hills.

Determination of Root Yield: All roots in an accurately measured area (usually at least 30 ft. of row) in each plot were topped, washed, and weighed.

Determination of Sucrose and Purity Percentages: All roots harvested for yield determination in each plot were divided into 2 samples for sucrose and purity analyses. Sucrose analyses were made in duplicate for each root sample.

Stand and Bolter Counts: For stand, all plants in the area to be harvested in each plot were counted just before harvest. Bolter percentages were determined by counts (entire plots) in mid-season, and seed stalks were cut off at that time.

Recent Cropping History: 1962, sugarbeets; 1963-65, barley.

Chemicals Applied for 1966 Crop: Treble superphosphate (approx. 112 lbs. P2 05 per acre) and ammonium nitrate (about 74 lbs. of N per acre) were applied and disced in just before plowing in August, 1965. Additional ammonium nitrate (approx. 38 lbs. of N per acre) was applied on March 21, 1966. Shell DD (about 41 gal. per acre) was chiseled in after plowing in August, 1965, for control of the sugarbeet nematode.

Leaf Spot Exposure: Severe.

<u>Curly Top Exposure</u>: Negligible.

Other Diseases and Pests: Rhizoctonia caused moderate stand losses in the latter part of the season. Areas where plants were killed by Rhizoctonia, in any given plot, were excluded from the area harvested for yield and laboratory analyses. Effects of western yellows and sugarbeet nematode were mild.

Soil and Seasonal Conditions: The 1966 crop season was hot and dry. Adequate soil moisture was provided artificially throughout the season as needed, principally by furrow irrigation. Inoculation (July 5) and subsequent frequent sprinkling were used to promote the development of leaf spot (Cercospora beticola).

Reliability of Test: Very good.

.--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Fort Collins, Colorado, 1966 (Exp. 1A, 9-plot averages). Table 22(b)

	Fort	: Fort Collins :	Putnir	Acre yield	eld :		:Appar-:	Thin:	Thin : Leaf spota	_	3 :/q	Stand :	1 to d
Description	••	seed:	מיוים ל	Gross:		oncrose:	ent:	juice:	••		1087	: (hills :	- 1 TO
	••	no.:	• 011	:sucrose:Roots:	Roots:		:purity:purity: 8/22:8/30	purity:	8/22:8	3/30:	8/15	:per 100'):	c.Ip
				Lbs.	Tons	0/0	% l	0/0				No.	<i>%</i>
SL (129 x 133) x SP 6322-0	Acc.	2646	Ч	5143	16.20	15,91	94.88	95,18	0.4	4.3	0.9	118	00.00
(SL 126 x SP 6121-0) x SP 6428-0 Acc. 2647	Acc.	2647	2	4160	13.48	15,41	87,62	95,41	3°0	0.4	0.9	117	0.51
(SL 129 \times SP 6121-0) \times SP 6428-0	Acc.	2648	က	4255	13.71	15,50	87.89	95.72	0.4	0.4	0.9	116	0.27
FC (502 x 503) x FC 901	SP 65	SP 651203H011	ħ	4865	14.97	16.26	89.02	95.64	3.9	0.4	0.9	117	0.61
$(SL 129 \times 2648) \times SP 6051-0$	SP 65	SP 651213H01	2	4092	13,09	15,61	89,25	95.29	4.3	4.3	0.9	117	00.00
SP 5822-0 (LSR check)	Acc. 2644	2644	9	4359	13.94	15,61	87.76	95,83	3.0	3.9	0.9	116	00.0
US H7 (CTR check)	Acc. 2645	2645	7	3935	13.44	14.63	87.83	94.45	5,3	5,3	5.0	119	00.00
				1		((((6	(
GW 674-56C (Local check)	Acc. 2168	2168	ω	4762	15.01	15.85	87.62	84.42	თ • ო	9. 4	0.9	118	0.26
SL (126 x 128)x SP 5822-0(Loc.ck)Acc. 2642	JAcc.	2642	6	3958	12.82	15,42	88.78	95.62	† • †	4.6	0.9	121	00.00
General mean				4392	14.07	15,58	88,25	95.28	60.4	4.33		117,61	
S. E. of var. mean				123,23	0.36	0.13	0.37	0.28	0.12	0.13		1.40	
S. E. of var. mean as % of gen. mean	mean			2.81	2.57	0.85	0.42	0.30	3.02	2.95		1,19	
L. S. D. (.05)				349	1.02	0.37	1.05	0.80	0.35	0.36		3,96	
													İ

Variance Table

Source of variation: D/F: Gross sucrose: Roots: Sucrose %: App. pur.:T.J. pur.:L.S. 8/22:L.S. 8/30: Stand Rows Rows Rows Rows Rows Rows Roys Rows Roys Ro										
256 8 8 8 56 80					We	an square	(variance)			
8 157,532 2.23 0.676 3.433 0.855 0.133 8 762,282 4.98 0.773 1.160 4.485 0.271 8 1,671,342 10.85 1.811 3.690 2.551 3.439 56 136,669 1.18 0.158 1.251 0.719 0.137 80 12.23** 9.19** 11.50** 2.95** 3.55** 25.15**	Source of variation	: D/F		Roots	:Sucrose	%:App. pur	T.J. pur.	.L.S. 8/22:	L.S. 8/30	Stand
8 762,282 4.98 0.773 1.160 4.485 0.271 8 1,671,342 10.85 1.811 3.690 2.551 3.439 56 136,669 1.18 0.158 1.251 0.719 0.137 80 12,23** 9.19** 11.50** 2.95** 3.55** 25.15**	Rows	8	157,532	2.23	0.676	3.433	0.855	0.133	0.139	183.81
8 1,671,342 10,85 1,811 3,690 2,551 3,439 56 136,669 1,18 0,158 1,251 0,719 0,137 80 12,23** 9,19** 11,50** 2,95** 3,55** 25,15**	Columns	ω	762,282	4.98	0.773	1,160	4.485	0.271	0.250	48.22
56 136,669 1.18 0.158 1.251 0.719 0.137 80 12,23*** 9,19*** 11,50*** 2,95*** 3,55*** 25,15***	Varieties	ω	1,671,342	10,85	1.811	3.690	2,551	3,439	1,834	20.82
80 12,23** 9,19** 11,50** 2,95** 3,55** 25,15**	Error (remainder)	56	136,669	1.18	0.158	1.251	0.719	0.137	0.147	17,68
12,23** 9,19** 11,50** 2,95** 3,55** 25,15**	Total	80								
	Calculated F value		12,23**	9.19%	11,50%		3.55**	25,15**	12,49**	1,18

Leaf spot readings (K. G. Gould): 0 = no leaf spot; 10 = complete defoliation. a I

b/ Foliage vigor: Larger number = greater vigor.

** F exceeds the 1% point.

Table 23(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Rocky Ford, Colorado, 1966.

Conducted By: American Crystal Sugar Company.

Location: Rocky Ford, Colorado.

Dates of Planting and Harvest: April 5, October 26.

Experimental Design: 9 varieties in 3 x 3 balanced lattice. Composite of three such tests. 12 replications.

Determination of Root Yield: Weight of all beets harvested per plot.

Determination of Sucrose Percentage: All harvested beets used in two samples.

Stand Counts: Harvested beets counted when weighed.

Leaf Spot Exposure: Very light.

Curly Top Exposure: Very light.

Other Diseases and Pests: None.

Soil and Seasonal Conditions: Good seasonal conditions.

Reliability of Test: Highly reliable for sucrose percent, but due to soil conditions, not a precise test for tonnage. One low variety made the test significant.

Table 23(b).--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Rocky Ford, Colorado, 1966 (Composite averages of 12 plots).

	••	••	: Acre Yield	ield:		Stand
Description	: Ft. Collins	: Entry	:Gross :			:(Roots
	: seed no.	· ou :	:sucrose:	Roots	: Sucrose	:per 35')
			Lbs.	Tons	0/0	No.
SL (129 x 133) x SP 6322-0	Acc. 2646	~	5905	20.88	14.14	43.8
	Acc. 2647	7	6809	21,50	14.16	9.94
$(SL 129 \times SP 6121-0) \times SP 6428-0$	Acc. 2648	က	5975	20.52	14.56	46.2
FC (502 x 503) x FC 901	SP 651203H011	=	6080	20.04	15.17	40° 8
(SL 129 x 2648) x SP 6051-0	SP 651213H01	5	5345	18,86	14,17	2,04
SP 5822-0 (LSR check)	Acc. 2644	9	4571	15.72	14.54	35.7
US H7 (CTR check)	\$ C ORUS	1	л с п	0 0 0	200	
Amonican # Monogomm (Tocal Chock)		~ C		1000	0 V 0 L r	~ (c
THE THOUGHT IN THE TOTAL CHECK)		00 (2002	06°/T	12.00	336.2
122-H/ (Am #3 N Local Check)		6	5432	19,36	14.03	32.7
General Mean			5598	19,29	14.51	41.3
LSD (5% Point)			808	2.71	.50	5.2
F Value			i	3,38%	9.79**	6.53**
O. V.			17.60	17,11	4.22	15.44

a/	ince)	lo.Roots(35")	106.500	204.777	42,000	265,375	75.063	40.625	77.325
Variance Table	quare (variance	Sucrose %:N	49.095	4.413	.592	3.680	.487	.376	1.938
Vari	Mean Square	Roots(lbs.)	202,065	141,955	15,331	82,101	31,478	24,248	40.8792
	••	n:d/f:	2	0	24	∞	16	84	107
		Source of Variation: d/f:Roots(lbs.):Sucrose %:No.Roots(35'	Between entries	Replications	Blocks	Varieties	Variety x lattice	Error	Total

a/ For Gross Sucrose: SE lbs. sucrose = mean lbs. sucrose x

(SE% sucrose) ²	(Mean % sucrose)
+	
(SE lbs. beets) ²	/ (Mean lbs. beets)

Table 24(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Sugar City, Colorado, 1966.

Conducted by: Loyd H. Dillon, National Sugar Manufacturing Company.

Location: Sugar City, Colorado (factory grounds).

Date of Planting: April 28-29, 1966.

Experimental Design: Latin Square, 9 x 9; plots 6 rows x 30'; rows 22" apart; hand thinned to single-plant hills.

Determination of Root Yield: Middle two rows x 30'.

<u>Determination of Sucrose Percentage</u>: All roots harvested for yield determination were analyzed for sucrose content, usually as 3 or 4 samples per plot.

Stand Counts: Harvested roots.

Recent Cropping History: Alfalfa and perennial grass, 1964-65.

Chemicals Applied for Sugarbeet Crop: 150 lbs. of NH_3 and 250 lbs. of 0-52-0 on 3/4 acre.

Leaf Spot Exposure: Trace.

Curly Top Exposure: From trace to 20% in plots of SP 5822-0.

Other Diseases and Pests: Negligible.

Soil and Seasonal Conditions: Irrigated for germination on May 2 and $\overline{\mathbf{3}}$, and thereafter as needed.

Reliability of Test: Four plots were deleted at harvest because of poor stand, and the results shown for the 3 varieties concerned should be viewed with caution. Stand was rather poor in several other plots, and may have resulted in appreciable reduction in yield. Two such plots apparently deserve special mention. In one of these--variety 7--the stand (plants per 100 ft.) was 80, and the root yield per acre was 13.66 tons, approximately 5 tons below the variety average. In the other--variety 9--the stand was 75 and the root yield was 12.63, about 4 tons below the variety average. According to the "F" test, the 9 varieties in this test did not differ significantly in root or gross sucrose yield or in sucrose percentage.

Table 24(b) .--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Sugar City, Colorado, 1966 (9-plot averages).

			: Acre Yield	ield		Stand
Description	: Ft. Collins : Entry: Gross	:Entry	/:Gross :		••	:(beets
	: seed no.	: no.	no. :sucrose :	Roots:	: Sucrose :	:per 100')
			Lbs.	Tons	b/0	No.
SL (129 x 133) x SP 6322-0	Acc. 2646	Н	53843	17.469/	15,364/	107 3/
(SL 126 x SP 6121-0) x SP 6428-0	Acc. 2647	2	5314 ^D /	17.26 ^D /	15.41	1120
(SL 129 x SP 6121-0) x SP 6428-0	Acc. 2648	က	5345	17.51	15,23	118
FC (502 x 503) x FC 901	SP 651203H011	#	5476	17,55	15.58	111
(SL 129 x 2648) x SP 6051-0	SP 651213H01	2	5128	16.48	15,56	96
SP 5822-0 (LSR check)	Acc. 2644	9	4867	15.71	15.44	106
US H7 (CTR check)	Acc. 2645	7	5618 ^a /	18.64	15.07	1169/
National blend (Local Ck.)		ω	5580	18.08	15,36	102
SL (126 x 128) x SP 5822-0(Local Ck.)		6	5082	16.69	15,16	104
General Mean			5310,38	17,2653	15,3533	107.98
S. E. of var. mean			232,66	0.7203	0.1752	4.52
S. E. of var. mean as % of gen. mean			4.38	4.17	1.14	4.19
L.S.D. (.05)			099	2.04	0.50	13

ble	of variation: D/F: Gross Sucrose: Roots	Source of variateows Columns Varieties	tion:D/F:	Variance Tal Mean Sross Sucrose: 2,644,262 804,764 544,278	~ I V I I ~		: Stand 427.55 376.52 451.16
of variation: D/F: Gross Sucrose: Roots: Sucrose %:		Rows	Φ	2,644,262	11,3270	3.9246	427,55
of variation:D/F:Gross Sucrose: Roots: Sucrose %: Star 8 2,644,262 11,3270 3,9246 427	8 2,644,262 11,3270 3,9246 427	Columns	Φ	804,764	8,8583	0.3470	376.52
of variation:D/F:Gross Sucrose: Roots: Sucrose %: Sta 8 2,644,262 11.3270 3.9246 427 8 804,764 8.8583 0.3470 376	8 2,644,262 11.3270 3.9246 427 8 804,764 8.8583 0.3470 376	Varieties	Φ	544,278	6.8457	0.2706	451,16
of variation:D/F:Gross Sucrose: Roots: Sucrose %: Sta 8 2,644,262 11.3270 3.9246 427 8 804,764 8.8583 0.3470 376 es 544,278 6.8457 0.2706 451	8 2,644,262 11.3270 3.9246 427 8 804,764 8.8583 0.3470 376 es 544,278 6.8457 0.2706 451	ı	(L		((()		((()

Calculated F value 1.12 1.47

* F value exceeds the 5% point.

2,45

0.98

184,00

0.2763

4699°h

487,214

52

Error

The indicated values are simple, One plot was deleted at harvest because of poor stand. 8-plot averages. a

The indicated values are simple, Two plots were deleted at harvest because of poor stand. 7-plot averages. a

Table 25(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Kanawha, Iowa, 1966.

Conducted By: American Crystal Sugar Company.

Location: Kanawha, Iowa.

Dates of Planting and Harvest: May 16; October 1.

Experimental Design: 3 x 3 Triple lattice, 9 replications; single-row plots 25 feet long; rows 22" apart.

Determination of Root Yield: Complete plot.

<u>Determination of Sucrose Percentage</u>: Approximately one-half of the beets per plot were bulked as one sample.

Stand Counts: Harvested beets counted when weighed.

Leaf Spot Exposure: Light.

Curly Top Exposure: None.

Other Diseases and Pests: Some Aphanomyces.

Soil and Seasonal Conditions: Soil conditions good. Season was dry during growing period and wet at harvest.

Reliability of Test: Good.

.--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Kanawha, lowa, 1966 (9-plot averages). Table 25(b)

			: Acre Y	Yield :		Stand
Description	: Ft. Collins	: Entry	Gr			:(Roots
	: seed no.	: no.	:sucrose:	Roots:	Sucrose	:per 25')
			Lbs.	Tons	o%	NO.
SL (129 x 133) x SP 6322-0	Acc. 2646	Н	5217	15.83	16.48	32.2
(SL 126 \times SP 6121-0) \times SP 6428-0	Acc. 2647	2	5420	16.77	16,16	33.2
(SL 129 x SP 6121-0) x SP 6428-0	Acc. 2648	က	4433	13.45	16.48	29.7
FC (502 x 503) x FC 901	SP 651203H011	⇉	4354	12.96	16.80	33.1
$(SL\ 129 \times 2648) \times SP\ 6051-0$	SP 651213H01	S	4363	13,22	16.50	30.8
SP 5822-0 (LSR check)	Acc. 2644	9	4341	13.25	16.38	32.8
US H7 (CTR check)	Acc. 2645	7	4211	12.60	16.71	30.7
T22-H7 (Local Check)		∞	6844	13.67	16.42	26.6
American #3 S Monogerm (Local Check)		5	4514	13,72	16.45	30.4
General Mean			4597	13,94	16,49	31.0
LSD (5% Point)			797	2.37	1	1
F Value			1	3,09%	NS	NS
C.V. %			18,35	17.96	3.71	18.88

		Va	Variance Table a/	a/	
		Mean	Mean Square (variance	ance)	
Source of Variation:d/f:Roots(lbs.):Sucrose %:No.Roots(25'	d/f: I	(oots(lbs.)	:Sucrose %:N	o.Roots(25')	
Replications	∞	106.561	0.6575	99,625	
Component a	12	28,650	0.2066	17,916	For Gross Sucre
Component b	9	51,868	0.5966	21,500	sucrose = mean lbs
Blocks	P	36,389	0.3366	19,111	
Varieties	ω	78.208	0.3012	40.500	
Error(Intra-block)	94	25,610	0.3886	40,195	1000 1100 1100
Error(Random-block)	49	1	0,3740	34,265	(SE IDS. Deets)
Total	80	41,391	0.3951	41.425	// (Mean ibs. Deets)

For Gross Sucrose: SE lbs.

ose = mean lbs. sucrose x

(SE % sucrose)²
(Mean % sucrose)

Table 26(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Mason City, Iowa, 1966.

Conducted By: American Crystal Sugar Company.

Location: Mason City, Iowa.

Dates of Planting and Harvest: May 5; October 7.

Experimental Design: Balanced lattice, 9 replications; single row plots, 35 feet long.

Determination of Root Yield: Complete plot.

Determination of Sucrose Percentage: All beets harvested per plot were used for one sucrose sample.

Stand Count: Beets counted at harvest.

Leaf Spot Exposure: Slight.

Curly Top Exposure: None.

Other Diseases and Pests: None.

Soil and Seasonal Conditions: A dry season; good soil conditions.

Reliability of Test: Fair.

Table 26(b) .--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Mason City, Iowa, 1966 (9-plot-averages).

	()		: Acre Yield	ield :	••	, ea/:	: ,a/: Stand
Description	Ft. Collins	. Entry	Gross		••	יייייייייייייייייייייייייייייייייייייי	(Roots
	seed no.	no.	sucrose	sucrose: Roots :Sucrose:	Sucrose:	spor .	per 35 [†])
			Lbs.	Tons	0/0		No.
St. (129 x 133) x SP 6322-0	Acc. 2646	~	4584	11,64	19,69	2	34.0
(SI, 126 x SP 6121-0) x SP 6428-0	Acc. 2647	2	4910	12,82	19,15	٦	h° hE
(SL 129 x SP 6121-0) x SP 6428-0	Acc. 2648	က	3645	9.21	19.79	2	30.4
FC (502 x 503) x FC 901	SP 651203H011	⇉	3794	9.47	20.03	Ч	30.4
$(SL 129 \times 2648) \times SP 6051-0$	SP 651213H01	S	4094	11.71	19.66	٦	35.2
SP 5822-0 (LSR check)	Acc. 2644	9	3538	8,99	19.68	٦	31.0
US H7 (CTR check)	Acc. 2645	7	4816	12,85	18.74	S	41.2
American #3 S Monogerm (Local check)		Φ	4083	10.29	19.84	ന	35.0
General Mean			4261	10,88	19,58		34.0
LSD (5% Point)			868	2,18	.59		†°9
FValue			!	4.42**	3,97**		2,48%
000			21.57	21,33	3.22		20.01

	,,0	For Gross Sucrose: SE lbs.	sucrose = mean lbs. sucrose x (SE lbs.beets)
Variance Table b/	Mean Square (variance)	rose %:No.Roots(35)	1.014 78.750 1.577 114.600 0.397 46.286 0.583 56.676
Varian	: Mean Squa	: Roots(lbs.):Suc	48.174 1 196.663 1 46.777 0
	•	Source of Variation: d/f: Roots(lbs.):Sucrose %:No.Roots(35')	Replications 8 Varieties 7 Error 56 Total 71

(Ratings were Leaf spot readings (D. E. Farus) 0 = no leaf spot; 5 = complete defoliation. made in Leaf Spot Nursery, average of 2 replications, not in field). la

Table 27(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Tribune, Kansas, 1966.

Conducted by: Roy E. Gwin, Jr., G. E. Coupland, and Henry Wolfe.

Location: Tribune Branch Station, Kansas Agricultural Experiment Station, Tribune, Kansas.

<u>Cooperation</u>: Kansas Agricultural Experiment Station and the National Sugar Manufacturing Company.

Date of Planting: May 16 (replanting).

Experimental Design: Randomized block; 9 replications; plots 6 rows x 30'; rows 22" apart; hand thinned.

Determination of Root Yield: 50' of row in each plot.

<u>Determination of Sucrose Percentage</u>: All roots harvested for yield determination were analyzed for sucrose content, usually as 2 or 3 samples per plot.

Stand Counts: Harvested roots.

Preceding Crop: Wheat.

<u>Chemicals Applied for Sugarbeet Crop</u>: 100 lbs. of nitrogen; sprayed twice with Sevin (insecticide).

Leaf Spot Exposure: Trace.

Curly Top Exposure: None.

Other Diseases and Pests: A disease superficially resembling foliar Rhizoctonia was rather common, especially in entry no. 1. Average frequency was estimated to be about 5%; effects, mild.

Reliability of Test: Generally good. Yield in one plot of entry #5 may have been reduced substantially by poor stand. The stand recorded in that plot at harvest was 66 plants per 100', and the root yield in that plot was 12.90 tons per acre, 5 tons below the average for entry #5.

Table 27(b). -- Results of cooperative agronomic evaluation test of LSR-CTR varieties, Tribune, Kansas, 1966 (9-plot averages).

	• •	••	: Acre Yleid	Yleid		stand
	: Ft. Collins	: Entry	:Gross			:(beets
no: tainosou	seed no.	no.	:sucrose	:sucrose: Roots:	Sucrose	Sucrose :per 100')
הפטרו דרויהו			Lbs.	Tons	100	No.
0-000 40 600 000 73	Acc. 2646	7	5711	19,38	14.74	128
SL (129 X 133) X SE 0322-0 /or 136 :: CD 6131-0) < CD 6428-0	Acc. 2647	2	5433	17.97	15,12	131
(St 120 X St 0121-0) X St 0420-0	Acc. 2648	ന	5236	17.54	14,92	138
(SL 129 x SF 0121-0) x St 0125 C FC (502 x 503) x FC 901	SP 651203H011	7	6020	19,65	15,33	127
0-1309 03 " (0/130 001 10)	SP 651213H01	Ŋ	5383	17.89	15.06	121
(Sp. 129 X 2040) X SI 0031-0	Acc. 2644	9	5492	18.25	15.05	118
SF 3822-0 (LSK CHECK)	Acc. 2645	7	6516	21.98	14.82	135
05 H/ (cir cireck)		Φ	5780	19,30	14.97	131
Sh (120 A 120) A St Soft o (2002)			5696,56	5696,56 18,9956	15,0014	128.58
General Mean			174.07	0.5582	0.1821	5.1737
			3.06	5 2.94	1.21	4.02
S.L. Of Var. mean as vol gent mean			493		0.52	14.66
L. 3. D. (1.03)						

	variance lante			
		Mean square (variance)	(variance)	
Source of variation :D/F:Gross sucrose: Roots :Sucrose %: Stand	:D/F:Gross sucro	se: Roots	Sucrose %	: Stand :
Blocks	8 326,943	2.6402	2,6402 0,2766	33.7500
Varieties	7 1,549,424	18,6932	9406.0	398.0871
Error	56 272,714	2,8043		0.2984 240.9088
Total	71			1 t
Calculated F value	5,68**	6.67**	6.67** 1.02	1,65

F exceeds the 1% point.

Table 28(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Beltsville, Maryland, 1966.

Conducted by: G. E. Coe.

Location: Beltsville, Maryland.

Dates of Planting and Harvest: May 5; October 11.

Experimental Design: Randomized block, 3 replications; plots 4 rows \times 20'; rows 24" apart.

Determination of Root Yield: Middle 2 rows x 20' long.

Determination of Sucrose and Purity Percentages: First 10 roots from each of the two middle rows.

Stand Counts: Harvested beets counted when weighed.

Recent Cropping History: 1961-62, soybeans; 1963-66, sugarbeets.

Chemicals Applied for 1966 Crop: 2 tons limestone per acre in winter of 1965; 450 lbs. 10-6-4 with 2% borax, as side dressing on June 13.

Leaf Spot Exposure: Moderate.

Other Diseases and Pests: Aphanomyces black root exposure, light.

Soil and Seasonal Conditions: Moist seedbed. Below adequate moisture much of growing season. Irrigation applied, but not frequently enough. Flooded the third week in August and wet the rest of the fall.

Reliability of Test: Good.

Table 28(b) .--Results of cooperative agronomic evaluation test of LSE-CTR varieties, Beltsville, Maryland, 1966 (3-plot averages).

	••		: Acre Yield	ield	••		: Lec	if Spo	: Leaf Spot a/: Plants	lants
000000000000000000000000000000000000000	· Fort Collins: Entry Gross	Entro	Gross		••	:Apparent:			••	per
המסכן דה דיסיו	seed no. : no. : sucrose: Roots	no.	:sucrose:		:Sucrose:	purity:8/23:8/30:9/8	8/23	8/30	. 8/6	1001
			Lbs.	Tons	b/0	p/0				
ct. (129 x 133) x SP 6322-0	Acc. 2646	~	5288	20.87	12.67	85.5	3.7	4.2	4.1	85
(St. 126 x SP 6121-0) x SP 6428-0		2	5246	20.27	12.93	85.9	3.6	4.3	4.5	ಣಕ
(ST 129 x SP 6121-0) x SP 6428-0	Acc.	က	5024	19,63	12.83	85.4	3.5	£.4	3° co	90
FC (502 x 503) x FC 901	Ñ		5022	19.00	13.22	4.48	0.4	4.5	4.5	ω ω
0-1309 AS A (8#8) A BCE 15)	SP 651213H01	5	4198	17.03	12,33	83.1	0.4	± ∞	4°E	α Ω
CD 5822-0 (188 check)	Acc. 2644	9	5354	19.62	13.65	86.0	2.7	e e	3.1	82
TO HA (CHR Check)		7	3295	16.03	10.32	79.2	5.2	5.5	5.2	83
SP 64194-0 (Local Ck.)		ω	5473	21.17	12,95	84.9	2.6	3.2	3.2	88
General Mean			4863	19,2021	12,6125	84.3042				
S.E. of var. mean			199.01	0.9883	.1806	0.3885				
S.E. of var. mean as % of gen. mean	ean		60.4	5.15	1.43	94.0				
L.S.D. (.05)			409	3.00	0.55	1.18				

		Variance Table	le		
		Hear	n square	Mean square (variance	<u> </u>
Source of variation: D/F: Gross sucrose: Roots : Sucrose 3: App. purity:	D/F	Gross sucrose:	Roots:	Sucrose 8:	App. purity:
Replications	2	107,618	1.9777	0.5972	1.4850
Varieties	7	1,667,869	9.8431	3,0252	15.1743
Error (remainder)	14	118,822	2,9304	0.0979	0.4529
Total	23				
Calculated F value		14.04**	3,36%	30.90**	33.50**

a/ Leaf spot: 0 = none; 10 = complete defoliation.

= F exceeds 5% point; ** = F exceeds 1% point.

...

Table 29(a).--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Crookston, Minnesota, 1966.

Conducted By: American Crystal Sugar Company.

Location: Crookston, Minnesota.

Dates of Planting and Harvest: May 20; October 7.

Experimental Design: Triple Lattice, repeated three times, 9 replications; single-row plots, 35 feet long; rows 22" apart.

Determination of Root Yield: Complete plot.

Determination of Sucrose Percentage: Approximately one-half of the beets per plot were bulked as one sample.

Stand Counts: Harvested beets counted when weighed.

Leaf Spot Exposure: Light.

Curly Top Exposure: None.

Other Diseases and Pests: None.

Soil and Seasonal Conditions: Good.

Reliability of Test: A very reliable test.

Table 29(b) .--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Crookston, Minnesota, 1966 (9-plot averages).

				- E	1 2 2 1 2		2
4		Ft. Collins	Entry	ACL'e	riera	• •	Stand
Description		seed no.	no.	: Gross	Roots:	Sucrose:	per 35')
				Lbs.	Tons	<i>%</i>	No.
SL (129 x 133) x SP 6322-0	12-0	Acc. 2646	Н	5030	16.60	15,15	31.9
$(SL 126 \times SP 6121-0) \times SP$	SP 6428-0	Acc. 2647	2	5010	16.70		30.3
(SL 129 x SP 6121-0) x	SP 6428-0	Acc. 2648	ო	2408	17.92	15.09	32.3
FC (502 x 503) x FC 901		SP 651203H011	크	6494	14.60	15.92	31,2
	51-0	9	. rv	53		0.9	၂ တ
		c. 264	9	4234		14.50	0
US H7 (CTR check)		Acc. 2645	7	5327	17.03	15.64	32.7
Tl4-Hll (Local check)			ω	5750		15,66	29.1
American #3 S Monogerm	(Local check)		O	5470	17.75	15,41	32.3
General Mean				5051	16.42	15,38	31.1
LSD (5% Point)				495	1.46	.63	2.5
F Value				1	9,98	4.72**	2.18**
°/0				10,39	9.43	4.39	8.60
	Vari	Variance Table ^a /					
	Mean	(va					
Source of Variation: d/f:Root	s(lps.):	Sucrose %:No.Root	:s(35')				
Replications 8	15,149	0.9975 8.8	875				
Component (a) 12	16.640		000	d' For	Gross	Sucrose: SE	lbs.
Component (b) 6	41.083	.4200 3.	000	sucrose	= mean	lbs. sucros	e ×
Blocks 18	24.788	.3422 3.	000				
Varieties 8	195,869	15.	625		0		C
Error(Intra-block) 46	19.624	.5002 8.	783	/(SE 1bs	.beets)	+ (SE %	sucrose) 2
(Kandom-block)	!	.455	156	(Mean 1	bs.beets)	(Mean	& sucrose)
Total 80	37,963	0.6795 8.1	175 V				

Table 30(a) .--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Artesia, New Mexico, 1966.

Conducted by: W. J. Russell.

<u>Location</u>: Southeastern Branch Station, New Mexico Agricultural Experiment Station, Artesia, New Mexico.

Cooperation: New Mexico Agricultural Experiment Station.

Dates of Planting and Harvest: March 11; September 12.

Experimental Design: Randomized complete block; 4 replications; plots 4 rows x 22' long; rows 20" apart; hand thinned to single plant hills.

<u>Determination of Root Yield</u>: All roots were harvested from the inside 20 feet of the two center rows in each plot. Diseased roots were not weighed for yield. The pulp was frozen and sent to Holly Sugar Corp. for laboratory analysis. Refractometer readings were made prior to freezing the pulp for comparison with laboratory analysis.

Stand Counts: Harvested beets counted when weighed. Diseased roots were counted but not weighed.

Recent Cropping History: Small grains mixed with Hairy Vetch clipping test 1962-65.

Fertilizers Applied for 1966 Crop: Fertilizer was broadcast on March 8 at the rate of 100 pounds Nitrogen and 48 pounds P_2 O_5 per acre. A second fertilization was sidedressed on May 2 at the rate of 100 pounds Nitrogen and 48 pounds P_2 O_5 per acre.

Leaf Spot Exposure: Severe after September 1.

<u>Curly Top Exposure</u>: Extremely severe.

Other Diseases and Pests: Negligible.

Soil and Seasonal Conditions: The early spring days were cool. Light hail caused minor damage to plants on March 28. Soil was a light clay loam with poor water penetration. All plots were irrigated the day of planting. There was a total of 17 irrigations amounting to 53 acre inches of water. Rainfall amounted to 9.96 acre inches during the growing season.

Remarks: Variability in soil between the north and south halves of the test resulted in a high coefficient of variation. Determination of sucrose percentages was inadvertently omitted in the laboratory.

rative agronomic evaluation test of LSR-CTR varieties, Artesia, New Mexico,	
Artesia	
varieties,	
LSR-CTR	
test of	
evaluation	
agronomic	
cooperative	
s of	
Result	1
Table 30(b)	1000 11 -100

1900 (4-pior averages).			Acro wield	1014	· Total ·		a/		. / q	Stand
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	anilon tron.	Entro	Futry Gross	7077	soluble: Purity:	Purity:	Lea F	Leaf Curly top	•	(plants
Describtion	2117770	חים של היים	.soluble: Roots	Roots	:solids:	, ,	spor	••	••	per
		•	solids		(refr.):	••	9/12	:7/25 :9/12	9/12:	foot)
			Lbs	Tons	%	%				No.
or (120 123) GB 6322_0	Acc. 2646	-	13,400	39.78	16,85	91.9	9.0	1.5	1.8	1.26
St (129 x 130) x St 0322-0 (121 x 130 x 130) x St 130 x S	O Acc. 2647	2	10,600	30.71	17.25	90°2	3,3	2.0	3°0	1,11
(SL 129 x SP 6121-0) x SP 6428-0 Acc. 2	O Acc. 2648	(M)	11,640	33,00	17,65	89.4	0.8	1.5	2.0	1.24
* (502 * 503) * FC 901	SP 651203H011	7	12,680	35.61	17,80	89.7	0.8	1.0	1.01	1,20
(cr 120 × 26/8) × SP 6051=0	SP 651213H01	. 7	12,980	37.82	17.15	92.0	7.0	0.8	0.8	1.34
SP 5822-0 (LSR check)	Acc. 2644	9	5,000	15.03	16,65	0.06	7.0	7.5	φ. ∞	1.23
(42942 BT) 7H SH	Acc. 2645	7	15,200	44.43	17.10	89.7	2.6	0.8	6.0	1.09
US II (CIR CHECK) HH-10 [10cal check (Holly)]		. ∞	11,920	33,65	17.70	7.06	4.0	3,1	4.5	1.37
// 1/08_07 (Holl w)		6	14,120	39,53	17.85	7.06	7.0	2.1	2.1	1,12
42108-07 (HO113)		10	14,280	41.74	17.10	90°3	9°0	2.1	2.1	1.04
General mean			12,182	35.13	17,31	90°2	1.4	2.2	2.7	1.20
(T C D (5% noint)			2,570	6.35	n.S.	n.S.	1,3	1.5	1.4	0.24
(I o D (1% point)			3,470	8.57	n.S.	n.S.	1.7	2.1	1.8	0.32
Coof of var (%)			14.54	12,45	6.56	2.5	63.6	47.0	34.8	13.69
COET OF VOT 1/0/										

Analyses of Variance

: pt		ĹŦ.	2.67*	1.67		
Stand		Mean sq	0.08	0.60 0.05	0.03	
: (%)	. (0/)	 Г.	0.39 0.08	09.0		
: Purity (%)	: + 42 + 5	:Mean sq.: F :Mean sq.: F :Mean sq.: F	2.06	3.15	5.28	
oluble	(%)	 [14	06°0	0.54		
Total soluble:	solids (%)	Mean sq.	1.16 0.90	0.70	1,29	
1014		Ŀ	1,33	14.14**		
+ 0 0 C	POOL STEIN	:Mean sq.:	25.45	270.58	19.14	
	: D/F		3	0	27	39
4	Source or	variation	Replicates	Entries	Error	Total

Leaf spot: 0 = healthy; 9 = all leaves dead. वि वि

Curly top: 0 = healthy; 9 = dead.

Significant at the 5% level. ** Significant at the 1% level.

Table 31(a).--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Goodwell, Oklahoma, 1966.

Conducted by: James D. Arnold, H. Eugene Reeves, Bill Ott, Ralph Matlock, and Roy M. Oswalt.

Location: Panhandle Agricultural Experiment Station, Goodwell, Oklahoma.

Cooperation: Oklahoma Agricultural Experiment Station, Holly Sugar Corporation, Great Western Sugar Company, American Crystal Sugar Company, and U.S.D.A. Fort Collins, Colorado.

Dates of Planting and Harvest: March 19; November 9.

Experimental Design: Randomized block; 10 replications; plots 3 rows x 21' (rows 28" apart), center row test variety, 2 rows common border US-35/2; hand trimmed to single-plant hills 9" apart.

Determination of Root Yield: All roots in 16' of harvested row were hand topped, cleaned and weighed.

Determination of Sucrose Percentage: A random sample of 10 roots was taken from the row and taken to Holly Sugar Corporation for analysis.

Recent Cropping History: 1965 forage sorghum.

Chemicals Applied for Sugarbeet Crop: 100 pounds of nitrogen applied March 18.

Leaf Spot Exposure: Severe.

Curly Top Exposure: Moderate.

Other Diseases and Pests: Negligible.

Soil and Seasonal Conditions: The 1966 crop season was unusually dry. However, the months of July and August were above average in precipitation. This temporary wet period aggrevated the leaf spot infestation. Adequate soil moisture to prevent severe drought stress was maintained throughout the growing season by means of furrow irrigation. Rainfall from March 1 through October 31 was 12.95 inches.

.--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Goodwell, Oklahoma, 1966 (10-plot averages). Table 31(b)

		ŗ	: Acre yield	rield:		: Leafa/
Description	Fort Collins	Entry	Gross		Sucrose	: spot
4	seed no.	no.	: sucrose	Roots:		: grade
			Lbs.	Tons	op	
SL (129 x 133) x SP 6322-0	Acc. 2646	٦	6341	24,20	12,86	1.8
$(SL 126 \times SP 6121-0) \times SP 6428-0$	Acc. 2647	2	6024	20,89	14,14	1.7
(SL 129 x SP 6121-0) x SP 6428-0	Acc. 2648	ო	5694	21,14	13,36	1.2
	SP 651203H011	⇉	6567	23,13	14.01	1.5
(St. 129 × 2648) × SP 6051-0	SP 651213H01	S	5896	22,62	13.20	2.0
	Acc. 2644	9	4472	15.84	13.97	2.1
US H7 (CTR check)	Acc. 2645	7	5671	23,02	12,50	2.9
62-4T33H2 (A. C. S. Co.)		ω	6376	25.66	12.21	2.7
62-4T32H2 (A. C. S. Co.)		თ	7014	28.32	12.05	2.1
62-MSH-200 (G. W. S. Co.)		10	96 11 2	27.28	13.63	1.2
65-MSH-25 (G. W. S. Co.)		11	6371	23.48	13,17	1.8
65-MSH-33 (G. W. S. Co.)		12	9999	25,67	13.06	2.3
HH 10 (Local ck.; Holly Sugar Corp.)		13	6275	23.88	13.14	2.8
General mean			6220	23.47	13,18	2.01
C. V. (%)			14.73	10.50	₩0°6	
L.S.D. (.05)			813	2,19	1.06	0.72

۵۱
le
Д
۵
E-4
Q
nc
ar
-14
ar
>

		Mean	square (Mean square (variance) and calculated F values	lculated	F values	
	••	Gross		••		••	
Source of variation : D/F : sucrose (lbs.) F	: D/F	sucrose (lbs.)	- 1	: Roots (tons) F :Sucrose %	Ĺц	:Sucrose ?	F
Replications	6	33,609,015,14	** to 0 th	239,33	39,36**	17.42	12,27**
Treatments (varieties)		5,326,242,16	6,35%	0h*66	16,35**	5.05	3.56%
Error (remainder)	107 ^D /	839,302,61				1.42	
	108			6.08			
Total	$128\overline{b}/$						
	129						

Basis of leaf spot grades: 0 = healthy; 9 = death due to leaf spot.

ام

Due to calculation of one missing plot (data for sucrose per unit), the error and total degrees of freedom were reduced by one for gross sucrose and sucrose percent. 91

Table 32(a).--Description of cooperative agronomic evaluation test of LSR-CTR varieties, Hereford, Texas, 1966.

Conducted by: D. F. Peterson and Paul Scott.

Location: Eddie Reinauer farm, Hereford, Texas.

Cooperation: Holly Sugar Corporation and Eddie Reinauer.

Dates of Planting and Harvest: March 30; November 1.

Experimental Design: Latin Square, 9 x 9; plots 1 row x 54; rows 30" apart.

Determination of Root Yield: All roots in a 50' section of each plot.

Determination of Sucrose Percentage: Two 15-beet samples per plot.

Recent Cropping History: 1964, onions and carrots; 1965, lettuce and potatoes.

Fertilizer Applied for 1966 Crop: 200# of 21-53-0; 100 units anhydrous ammonia.

Leaf Spot Exposure: Severe (see "Remarks").

Curly Top Exposure: Very severe (see "Remarks").

Other Diseases and Pests: Phizoctonia root rot caused mild to moderate damage (see "Remarks").

Remarks: Both leaf spot and curly top were very significant factors in this test. Curly top infection occurred early, and susceptible material could not produce a crop of beets. Leaf spot infection occurred in August and continued until harvest. Rhizoctonia also was a factor in this test. It appeared that varieties susceptible to curly top were weakened and made susceptible to Rhizoctonia.

Reliability of Test: It is felt that results from this test are highly reliable and accurately portray what may be expected from these varieties under severe disease conditions.

.--Results of cooperative agronomic evaluation test of LSR-CTR varieties, Hereford, Texas, 1966 (9-plot averages). Table 32(b)

היים ביים היים היים להיים היים היים היים היים							1
		••	: Acre	Acre Yield:		:Beets	
Description	: Ft. Collins	: Entry	Entry : Gross :	••		: per	
4	: seed no.	: no.	:sucrose:	sucrose: Roots : Sucrose		:100' row	
			Lbs.	Tons	o%	No.	
St. (129 x 133) x SP 6322-0	Acc. 2646	-	3351	14,307	11.71	118	
$(SI. 126 \times SP 6121-0) \times SP 6428-0$	Acc. 2647	2	2311	10,200	11,33	110	
(SL 129 x SP 6121-0) x SP 6428-0		ന	2114	9.216	11.47	113	
FC (502 x 503) x FC 901	SP 651203H011	⇉	3099	13,153	11,78	119	
(SI, 129 × 2648) × SP 6051-0	SP 651213H01	5	3906	17.467	11.18	132	
SP 5822-0 (LSR check)	Acc. 2644	9	099	2,891	11.41	73	
US H7 (CTR check)	Acc. 2645	7	4375	20,558	10.64	133	
HH10 (Local Check)		80	2740	12,672	10.81	114	
42108-08		6	3204	14.104	11.36	113	1
Gen. mean			2862,	12,730	11.30	114	
S.E. mean			1449/	.605	.18		
Sig. diff. (5%)			80 h	1.718	.52		
SEM/gen mean (%)			5.02	4.75	1.63		1
0.							

Source of variation : D/F: Tons beets : Percent sucrose 4.19** 1.28 .93 Mean square 69,61** 13.77 229.31 3.29 Variance Table ∞ ∞ ∞ F value Calculated Varieties Residual Columns Total Rows

a/ SM calculated from formula.

^{**} Exceeds the 1% point of significance (2.88).

--Cooperative curly top resistance evaluation tests of LSR-CTR varieties, Thatcher and Logan, Utah, 1966.a/ Table

	••		:Thatcher(field) $^{\underline{b}'}$	$field)^{\underline{b}'}$		Logan	Logan (greenhouse) 2/	use) <u>c</u> /	
	ns	:Entry	: C.T. grade	rade	'Plants' Plants' Pre_e/	Plants	· Pre-e/:	C.T. gr	grade
Description	: seed no.		$Actual \frac{d}{d}$	% of	· · ·	with	symp.	Actual E/	% of
	•		9/1	US 41	11100	symp.	period		.US 41
					No.	N	Days		
SL (129 x 133) x SP 6322-0	Acc. 2646	-	7.0	117	20	17	9.6	0.9	125
(SL 126 x SP 6121-0) x SP 6428-0 Acc.	Acc. 2647	2	7.5	125	20	19	10.8	6.2	129
(SL 129 x SP 6121-0) x SP 6428-0 Acc.	Acc. 2648	က	0.8	133	20	20	7.6	ф°9	133
FC (502 x 503) x FC 901	SP 651203H011	#	7.5	125	20	20	10.6	6.1	127
(SL 129 x 2648) x SP 6051-0	SP 651213H01	2	6.5	108	20	18	12,3	5.5	115
SP 5822-0 (LSR check)	Acc. 2644	9	0.0	150	20	20	8.7	7.8	163
US H7 (CTR check)	Acc. 2645	7	0.9	100	20	1.8	9.5	8° #	100
Logan 0667					20	18	14.2	3.7	77
US 33			7.5	125	20	18	13.4	5.9	123
US 41			0.9	100	20	19	12.6	4.8	100

Tests were conducted at Thatcher and Logan by A. M. Murphy and C. L. Schneider, respectively, U. a/ Tests were conduc Dept. of Agriculture. 2 replications; planted during the period, 6/21-24/66; curly top exposure intensi-

b/ Plots 2 rows x 50';

fied artificially.

Seedling technique, with 2 caged leafhoppers per plant; plants in 6" pots with 4 seedlings per c/ Seedling technique, with 2 caged recorded in 5 replications--i.e. 5 pots for each variety or line.

Basis of curly top grades in field plots: 0 = healthy; 9 = death due to curly top.

Presymptom period = no. of days from first exposure to leafhoppers until appearance of curly top

اه ا

due to curly top. Symptomless plants were presumed to be escapes and were not included in the computation \underline{f} Basis of curly top grades in greenhouse (plants rated individually): 1 = very resistant; 9 = death symptoms.

of curly top grades.

Fig. 3.--Comparison of two sugarbeet varieties under severe leaf spot and very severe curly top exposures, Hereford, Texas, Sept. 22, 1966; 1-row plots:

Left: Entry 6, SP 5822-0

Right: Entry 5, (SL 129 \times 2648) MS

x SP 6051-0

(Ft. Collins photo. No. 185-8).

A STUDY OF THE VARIETAL RESPONSE OF SUGARBEETS TO POSTEMERGENCE HERBICIDES $\underline{1}/\underline{1}$

Technical personnel: USDA, E. E. Schweizer (Plant Physiologist, Weed Investigations - Agronomic Crops) and J. O. Gaskill (Research Plant Pathologist, Sugarbeet Investigations)

Numerous investigators have reported that marked differences in tolerance of varieties of a given crop to a herbicide have occurred. Varietal differences to 2,4-D treatment in barley, corn, oats, and soybeans have been reported. We felt that since herbicides are being used widely to control weeds in sugarbeets we should determine the tolerance of several sugarbeet varieties to preplant and postemergence herbicides. To initiate this research we selected seven sugarbeet hybrids or varieties which had been evaluated by 14 cooperators in 1966 for leaf spot and curly top resistance and for their general agronomic performance. These varieties were selected from what is known as the "Cooperative Evaluation Tests of LSR-CTR Sugarbeet Varieties, 1966".

Our primary objectives were to determine what effect several preplant and postemergence herbicides would have on these varieties. Results from only the postemergence experiment will be reported at this time.

The results from the postemergence experiment are summarized in Tables 1 and 2. The weight of tops was reduced by all postemergence treatments (Table 1). The variety FC (502 x 503) x FC 901 (entry 4) was injured the least by the three postemergence treatments, whereas, the variety GW 674-56C (entry 8) was injured the most. The effect of the herbicide treatments on the mean weight of these 8 varieties is summarized in Table 2. The mean weight of the untreated varieties was 4.75 gm. The mean varietal weight was reduced 25% by 1/2 1b/A of S6173, 84% by 1 1b/A of S6173 and 91% by 4 plus 2.2 1b/A of pyrazon and dalapon. Variety GW 674-56C had a mean weight of 1.78 gm which was significantly lower than the mean weights of the other varieties. The variety FC (502 x 503) x FC 901 had the highest varietal weight (2.6 gm). The effects of 1 lb/A of S6173 and 4 plus 2.2 lb/A of the mixture of pyrazon and dalapon are shown pictorially in Figures 1 and 2 for the varieties, FC (502 x 503) x FC 901 and US H7, respectively.

In summary, the postemergence herbicide treatments reduced the weight of these 8 varieties markedly. The variety GW 674-56C was injured the most, whereas, the variety FC (502 x 503) x FC 901 was injured the least. Additional greenhouse and field research is necessary to confirm these results. We know that sugarbeets are much more susceptible to herbicides under greenhouse conditions than they are under field conditions.

Description of herbicide resistance evaluation test of LSR-CTR sugarbeet varieties under greenhouse conditions, Fort Collins, Colorado, $1966-67.\frac{1}{2}$

Conducted by: E. E. Schweizer and J. O. Gaskill

Location: Colorado State University, Fort Collins, Colorado.

Cooperation: Colorado Agricultural Experiment Station.

Date of Planting: December 6 (15 seeds per pot). On December 13 thinned to 4 beet seedlings per pot and to 3 on December 20.

Experimental Design: Randomized complete block; 4 replications.

<u>Data Recorded</u>: Number of seedlings emerging initially; injury ratings to sugarbeets on December 9, January 6, and January 21; and top weights on January 21.

Herbicides Applied: Postemergence: S6173 (benzamidooxyacetic acid) at ½ and 1 1b/A and a mixture of pyrazon (5-amino-4-chloro-2-pheny1-3(2H)-pyridazinone) plus dalapon (2,2-dichloropropionic acid) at 4 plus 2.2 1b/A. Herbicides were applied at a volume of 60 gpa broadcast with an endless belt sprayer on December 20.

Stage of Growth at Application: First pair of true leaves 10 to 20 mm long and beets were 50 to 60 mm tall.

Reliability of Test: Generally good. Although many seedlings were killed by the herbicide treatments, there was no evidence of damping off in any of the pots. The untreated beets, variety CW 674-56C, in replication 4 were very distorted and hence this pot was considered as a missing plot since the yield was only 1/4 of that in the other 3 replications.

1/ This is a report on the current status of research on weed control practices. It does not contain any weed control recommendations, nor does it imply that the herbicide uses discussed have been registered. All uses of pesticides must be registered by appropriate state and federal agencies before their recommendation.

Table 1.--Response of LSR-CTR sugarbeet varieties to postemergence herbicides in the greenhouse, Fort Collins, Colorado, 1966-67.

Description	Fort Collins	Entry	: % Reducti : S6173	tion of 73	% Reduction of tops (dry weight) : S6173 :pyrazon + dalapon :
•	seed no.	no.	:0.5 1b/A:	1 1b/A	:0.5 1b/A: 1 1b/A: 4 + 2.2 1b/A:
SL (129 x 133) x SP 6322-0	Acc. 2646	_	25	88	06
(SL 126 \times SP 6121-0) \times SP 6428-0	Acc. 2647	2	31	77	81
(SL 129 \times SP 6121-0) \times SP 6428-0	Acc. 2648	m	19	77	92
FC (502 x 503) x FC 901	SP 651203H011	4	20	74	85
(SL 129 \times 2648) \times SP 6051-0	SP 651213H01	5	26	06	92
SP 5822-0 (LSR check)	Acc. 2644	9	12	80	06
US H7 (CTR check)	Acc. 2645	7	10	87	66
GW 674-56C (local check)	Acc. 2168	∞	52	97	86

	variance lable	lable		1
Source of variation	: D/F	: mean square : F value	F value	••
Replicates	3	0.41	1.24	
Treatments	31	14.38	43.58**	
Varieties (V)	7	1.21	3.67**	
Herbicides (H)	m	142.85	432.88**	
V × H	21	0.41	1.24	
Error	92	0.33	1 1 1	
Total	126 <u>a</u> /			

 $\frac{a}{}$ Adjusted for one missing pot.

Table 2.--Effect of postemergence herbicides on the dry weight of tops of LSR-CTR sugarbeet varieties in the greenhouse, Fort Collins, Colorado, 1966-67.

1,4	Rate	E	ntry no	and we	Entry no. and weight of tops per pot (grams)	tops 1	oer pot	(grams)		
ner prorde	1b/A	1	2	3	7	5	9	7	8	Mean
86173	0.5	3.54	3.41	3.86	3.54 3.41 3.86 3.82 3.67 4.03 4.11 2.24	3.67	4.03	4.11	2.24	3.58
S6173	1.0	0.59	0.59 1.13	1.11	1.11 1.26 0.51 0.94	0.51	0.94	0.61	0.12	0.78
pyrazon ₊ dalapon	4 2.2	67.0	76.0	0.39	0.39 0.71 0.41 0.45	0.41	0.45	0.03	0.11	0.44
none	0	4.71	96°7	4.79	4.71 4.96 4.79 4.77 4.98 4.59 4.59 4.64	4.98	4.59	4.59	79°7	4.75
Mean		2.33	2.61	2.54	2.33 2.61 2.54 2.64 2.39 2.50 2.33 1.78	2.39	2.50	2.33	1.78	

Between variety means 0.53; and between herbicide means 0.38. LSD (19:1):

Interaction - not significant.

Fig. 1.--Effect of 1 1b/A of S6173 and 4 1b/A of pyrazon plus 2.2 1b/A of dalapon on the hybrid FC (502 x 503) x FC 901 (SP 651203H011). Seed planted December 6, seedlings sprayed on December 20, 1966, and photographed on January 21, 1967, (4 replications).

Fig. 2.--Effect of 1 1b/A of S6173 and 4 1b/A of pyrazon plus 2.2 1b/A of dalapon on the variety US H7(Acc. 2645). Seed planted December 6, seedlings sprayed on December 20, 1966, and photographed on January 21, 1967 (4 replications).

RHIZOCTONIA INVESTIGATIONS, FORT COLLINS, COLORADO, $1966^{\frac{1}{2}}$ (A phase of Beet Sugar Development Foundation Project 25) John O. Gaskill²/

Results of Rhizoctonia research at Fort Collins in 1965 (2,3) were particularly encouraging in indicating that, among the sugarbeet lines evaluated, at least two apparently represented higher levels of resistance than had been achieved in earlier developments. Roots of the two outstanding lines, selected under artificial Rhizoctonia exposure in 1965, were brought to seed in polyethylene enclosures in the greenhouse early in 1966. The two seed lots, representing the respective lines, were designated FC 701 and FC 702. Field evaluation tests on the Hospital Farm at Fort Collins in 1966 centered around these and related lines, and included two methods of disease exposure for one set of material. Twenty three lines or progenies, furnished by the Great Western Sugar Company, also were evaluated. Selection and breeding for Rhizoctonia resistance were continued in 1966.

Experiment R-1

(Comparison of Sugarbeet Lines by Means of Two Inoculation Techniques)

The 8 lines (including commercial varieties) listed in Table 1 were compared in Experiment R-1. Six of them had been used in an experiment in the preceding year, and their descriptions appear in the 1965 report (2). The other two, FC 701 and FC 702, are products of four cycles of mass selection for Rhizoctonia resistance from GW 674-56C and C817, respectively. The former is a commercial Great Western Sugar Company variety. The latter is an increase of "Sel. A54-1 Synthetic",

A progress report on investigations conducted by the Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, in cooperation with the Colorado Agricultural Experiment Station and the Beet Sugar Development Foundation.

^{2/} Research Plant Pathologist. Assistance of Luther W. Lawson, Agricultural Research Technician, in conducting the field experiments, is acknowledged.

 $[\]frac{3}{2}$ Numbers in parentheses refer to Literature Cited.

a product of selection by Dr. LeRoy Powers from another commercial. Great Western Sugar Company Variety, GW 359-52R. Rhizoctonia was not a factor in Dr. Powers selections. Rhizoctonia exposure techniques employed in the root selections leading to the development of the lines listed as entries 902, 903, 905, and 906 are indicated in Table 1.

Experiment R-1 consisted of two 8 x 8 Latin Squares. In one of these (R-1E), the plots were 2 rows (40 inches) wide and 25 feet long. A section, 2 rows x 16 feet, was inoculated by means of the rosette method (1, 4) on July 25, 4 weeks after thinning, using the highly pathogenic Rhizoctonia isolate, B-6. In the other Latin Square (R-1W), plot size was the same, but the portion of each plot considered as inoculated conformed to the dimensions of the area actually inoculated (with isolate B-6) in 1965--i.e. 2 rows x 14 feet. Experiment R-1W was not inoculated in 1966. Both tests were planted on May 25 and hand thinned at about the usual stage of plant development, attempting to leave single-plant hills about 10 to 12 inches apart. Planting rates were adequate to produce satisfactory thinned stands, except as affected by disease in Experiment R-1W. The soil was high in fertility. Irrigation was performed by sprinkler. At harvest (October 11-12), the roots of all living plants in the inoculated portion of each plot were trimmed as mother beets, washed, and weighed.

The results of Experiment R-IE, in which inoculation was performed by the rosette method after the plants had attained considerable size, showed that Rhizoctonia resistance had been improved substantially by selection for resistance in two source varieties or lines (Table 1 and Figure 1). A striking contrast between one of the Rhizoctonia resistant lines (FC 702) and a commercial check variety (US 401) is presented in Figure 2.

In Experiment R-lW, where Rhizoctonia and presumably other disease inocula were relatively abundant in the soil at planting time, much loss of stand occurred before thinning, making it impossible to obtain full thinned stands in many plots. For this reason, it seems advisable to consider actual stand at harvest, as well as percentage survival and root yield, as indications of performance. By all three of these criteria, the results of Experiment R-lW indicated that significant improvement in resistance had occurred as a result of selection in both source varieties (Table 1). That these gains were less impressive than the gains shown by the results of Experiment R-lE, is attributed to several factors. In the first place it is assumed that much of the

Formerly Principal Geneticist, Crops Research Division, Agricultural Research Service, U. S. Department of Agriculture, Fort Collins, Colorado; deceased.

Table 1.--Comparison of sugarbeet lines for Rhizoctonia resistance, Ft. Collins, Colo., 1966; results presented as 6-plot averages (Exp. R-1).

ion	Sel.for	Sel.for Rhizoc.res.	current :		: (Rosette inoc.in 1966):	R-1E c.in 1966)		Exp. R-lw	Exp. R-1W (Residual inoculum from 1965)	65)
and/or		••	:Ft. Collins:Other :Entry:	:Entry:	Harvest results		:Actual1/:		Harvest results	S
aoinos	: No. of		: seed no. : no.	. no.:	1	Root,	:thinned :Actuald	K.		Poot
	: cycles	: Method 4/	••	••	Survival ² /	yield=/	: stand :	: stand :	SurvivalD/:	vielde
					0/0 	Lbs.	No	No.	1 ON	LDS.
GW 674-56C	0	t t t	Acc. 2168	106	23,66	11.55	20.38	3,13	14.55	4.80
do.	2	1,1	SP 631001-0	902	41.68*	21,11**	18,13	5.00	30,78≉	11.18
do.	7	1,23,23,3	SP 661102-0 FC 701	903	73.44*	36,994*	26.00*	10.38**	38.7444	21.76**
C817 (Sel. A54-1 Syn.)	0	\$ 8 8	SP 621220H0	406	35.39	18,95	18.75	4.13	22.10	9.73
do.	2	2,23	SP 621003-0	905	64,83**	33.15**	23.00	≈00°6	35.81*	17.03*
do.	1	2,23,23,3	SP 661103-0 FC 702	906	73.18**	33.11**	27,13**	8.00*	29,26	13.86
US 401	0	-	Acc. 2057	907	27.76	15.03	26.88	2.75	10.29	3.55
SP 5822-0	0		Acc. 2591	906	27.26	13,41	26.25	6.38	23,75	11,30
General mean					45.90	22.91	23.31	60.09	25.66	11.65
LSD (.05)					13.64	7.02	5.24	3,73	12.81	6.72
LSD (.01)					18.24	66.8	7.01	4° 98	17.13	86°8
Calculated : [-/					19.71	16.66	4.21	4.65	88	6.51

lum surviving naturally in the field following inoculation of the sugarbeet crop in the preceding year); 2--inoculum applied in a Disease (Fhizoctonia) exposure techniques used in the respective cycles of root selection: 1--residual inoculum (i.e. inoculsemi-circle, about 1 1/2 inches from the tap root and approximately 1 inch below the soil surface, from 1 to several weeks after thinning of the current crop (i.e. the crop from which the root selections were made); and 3--inoculur applied to the center of the foliar rosette, from I to several weeks after thinning of the current crop (so-called "rosette" method).

2/ Percent of thinned stand alive at harvest.

2/ Total weight of roots of living plants per plot (32' of row).

Actual no. of living plants per plot (28' of row).

ले

£/ Total weight of roots of living plants per plot (?&' of row).

-/ All F values shown are greater than the 1-percent point (3.10).

Average significantly exceeds that of the source variety.

exheris that /. the squrde variety by a highly simplicant amount--i.e. a difference at least equal to LSD (.Dl). AVerdie

early stand loss in R-lW occurred as a result of residual inoculum of **Rythi**um and other damping-off pathogens--organisms to which the respective entries presumably have little if any resistance. Secondly, most of the post-thinning stand losses in Experiment R-lW occurred soon after thinning. Results of earlier experiments had led to the tentative conclusion that the Rhizoctonia resistance then available (e.g. in entries such as 902 and 905) was relatively ineffective during the early stages of growth, up to about 2 weeks after thinning. The results of Experiment R-l tended to support that conclusion. In this connection it should be pointed out that variations in thinned stand in Experiment R-lW could have been due in part to variations in potential seedlings planted per unit of row. Consequently, the thinned-stand averages should be viewed with caution.

Since the most troublesome losses from Rhizoctonia in the sugarbeet crop, in general, occur in the middle or latter part of the growing season, the need for improved seedling resistance to Rhizoctonia apparently is less urgent than what might be called mid-season or adult-plant resistance.

Experiment R-2

(Evaluation of Single-plant Progenies)

Seed of 36, open-pollinated, single-plant progenies were given preliminary Rhizoctonia-resistance evaluation in 1966 in a manner similar to that described for Experiment R-1E. Plots were 1 row (20 inches) wide and 25 feet long. A randomized-block experimental design was used with four replications. The 8 varieties or lines in Experiment R-1 were included in Experiment R-2 as standards.

The relative performance of the 8 so-called standards in Experiment R-2 (Table 2) closely paralleled their performance in Experiment R-1E (Table 1). Although none of the single-plant progenies (seed numbers having suffix numbers other than zero), were substantially higher than FC 701 or FC 702 in percentage survival, many of them equaled or closely approached those lines in that respect, indicating that they merit further evaluation and selection. Of the four open-pollinated lines or varieties in the test, not having a Rhizoctonia-resistance selection background, entry no. 919 stood highest in percentage survival. Fourteen of the single-plant progenies exceeded entry 919, in percentage survival, by highly significant amounts. The root yields shown in Table 2, in general, supported the survival percentages. Root yields for some of the single-plant progenies significantly exceeded that of the resistant line, FC 702. However, in the author's opinion, much of the variation among lines, in root yield, was due to differences

Table 2.--Comparison of sugarbeet lines for Rhizoctonia resistance at harvest, ft. Collins, colo., 1966; results presented as 4-plot averages (Exp. K-2).

escription anu/or source	:				nediate genera designations,	ations,		Col	lins: F	Rhizoc. es.sel.	no.	:vival	:koot ^{5/} :p :yield : :	orad
												9,	Lbs.	
v 674-5bC;LSR,MM,com.var.							Arc.	216	ਰ	0	911	33.2	9.70	σ.
do.	CD	611107	-0					3100		2	912	56.4	11.83	7.
H .	11	11107		D 6	21113-00 IP 6	1004-(02),FC 701				ц	913	81.02#	17.13#	£Ł,
0	11	- 11	• • •	T 6.	31001-0	1004-(02),10 701	CP t	5122	1-4	3	314	1.7.6 ##		٠.
			,											
11	11	17	,	11	11		9.6	17	-7	5	915	명약.1호#		11 .
11	11	11		91	11		71	2.7	-9	3	916	52.6	11.00	О.
11	2.0	11	,	21	H .		6.5		-10	3	917	59.7#		7.
11	11	11	,	81	11		11	11	-11	3	318	72.1**	17.72*	ч.
d/										_	010	40.6	10.30	
617 <u>d</u> /; MM								2122		0	919 920		18.834	
do.	SP	611105						2100		2	920	85.9**		b.
11	99	11		,SP	621003-0,SP	541005-(01),10 702		6110			922		19.68*	ц.
"	,,,	**		3 "	"		(03122	21-19	3	322	10.1	13.00	
11		17		11	88		- 11	11	-20	3	923	76.J##	1H.81%	15.
11	11	- 11		2 11	11		11	11		3	924		23.30**	4 .
**	11	- 11		3 11			11	11		3	925		21.30**	4
11	- 11	- 11		3 11	89		11	11	-31	3	926	76.24#		~ .
				3										
**	19	11		, 11	11		11	11	-33	3	927	74.75	17.93	14.
ly .	11	11		<u> </u>	11		9.9	27	-36	?	928	68.1#	14.24	ц,
11	11	11		3 11	10		11	- 11	-37	3	929	58.6	13.55	
H .	11	**		, 11	11		11	11	-38	3	930	59.7	13.23	
II .	- 11	**		, 11			11	11	-39	3	931	58.9	11.09	ь,
11	11	89		3 17	H		17	11	-40	3	932	50.1	12,65	
317 and GW 674-50C							17	11	-62	1	933	25.9	5.53	25 .
do.							- 17	**	-68	1	934	18.	4.23	٧,
							CD 4	65122	20.0	1	935	41.4	7.80	7
P 621160- lines; LSR-BRR, mm							1111	11 12 T Z Z	-6	1	936	80.6	22.52	3
do.							11	9.0	-10	1	937	44.9	11.73	- 7
19							11	81	-11	1	938	62.8	156	
·										*	2			
P 621220H01 (MM) and other LSR-CTR							11	11	$-30\frac{e}{}$	1	939	56.9	11.08	7.
do.							11	- 11	-31 <u>e</u> /	1	940	38.4	5.83	в.
H H							11	11			941	50.2	13.10	
11							11	11	-33 ^e /	1	942	54.8	14.33	
P 6051-0 (EM) and other LSR-CTR							11	2.3	-35 <u>e</u> /	1	943	42.0	8.31	
F 631224-02(E.mar.bld.)and other LSR-	CTR						- 11	11	-37 e/	1	944	55.5	15.23	٤,
P 53736-01 (M) and other LSR-CTR							11	11	$-38\frac{e}{e}$	1	945	73.7	21.08	44.
• 63736-05(mm) and " " "							77	**	- : 3 <u>e</u> /	1	946	33.7	b.75	
	0.5	() ? ? .		0.5	6 11 0 0 kg 6		0.10	65300	22 V	3	947	73.4	13.32	4.
P 5831-0: LSP-BRR, mm	SP	611104	-0,	SP	621004-0		CP (65122	23-8 -11	3	947	82.2	24.33	3.
do.	11	11		9.0	11		11	11		3	948	76.0	18.25	5
11 11	11	11		11	11		11	11	- 1.0	3	949	66.9	18.23	4
"									2.7	,	550			
manitima and mice sugarheat	11	631150	1-5				11	11	-15	2+	951	75.4	16.10	
maritima and misc. sugarbeet 817(MM) and misc.incl. B. marit.		631150						11	-18	3+	952	82.2	20.33	5.
S1/(MM) and misc. Thei. B. marit. S 401; LSR-BRR, MM, com. var.		501130	-				Acc	. 20!		0	953	24.9	6.85	8.
P 5822-0; LSR-BRR, MM, com. var.							11	25		0	954	30.3	6.08	8.
ononal mean												60.73	14.28	-
eneral mean SD (.05)												24.8	7.43	-
CD (01)												32.8	9.81	
Calculated F												4.59	3.78	

a/ Percent of thinned stand alive at harvest.

b/ Total weight of roots of living plants per plot (16' of row) at harvest.

Visual, pre-harvest estimate of Rhizoctonia injury based on depression of both stand and vigor: u = healthy; 10 = complete loss (1)) plants dead).

C817 is a G.W.S.Co. increase of LeRoy Powers' "Sel. A54-1 Synthetic", a product of selection from GW 359-52R without Rhizoctonia exposure.

Beta maritima may have constituted part of the source of the indicated line.

f/ Each calculated F value exceeds the 1-percent point.

Average significantly exceeds that of the source variety.

^{**} Average exceeds that of the source variety by a highly significant amount -- i.e. a difference at least equal to LSD (.01).

in heterozygosity. FC 702 is considered quite "closely-bred" and less heterozygous than many of the single-plant progenies.

Experiment R-3

(Evaluation of Company Lines)

Experiment R-3 was conducted primarily for the purpose of evaluating the Rhizoctonia resistance of 23 lines or progenies (products of selection under Rhizoctonia exposure) furnished by the Great Western Sugar Company. Experimental design and techniques were the same as for Experiment R-2. Results for the 23 special company lines or progenies will not be reported here. Results for the five lines or varieties, included in the experiment as standards, were as follows (4-plot averages):

Description and/or source	Seed no.	Entry	Survival	Rt.yield (Lbs. per 16')	Rhizoc.
GW 602 (com'1. var.)	Acc. 2664	961	19.2	4.53	8.8
GW 674-56C (com*l.var.)	Acc. 2168	985	16.1	4.63	8.8
FC 701 (from GW 674-56C)SP 661102-0	986	74.6**	17.59**	4.5
C817	SP 621220HO	987	27.5	7.63	8.3
FC 702 (from C817)	SP 661103-0	988	72.0**	14.48%	4.8
LSD (.05)			20.2	5.70	cost state case
LSD (.01)			26.7	7.55	

^{*} Significantly above source variety [difference greater than LSD (.05)].

The results of Experiment R-3, as shown above, agreed rather closely with those of Experiments R-1E and R-2.

^{**} Very significantly above source variety [difference greater than LSD (.01)].

Discussion

The results presented in this report showed conclusively that the average levels of Rhizoctonia resistance occurring in the multigerm populations, GW 674-56C and C817, were raised substantially by several cycles of mass selection under artificial Rhizoctonia exposure. The results also indicated, tentatively, that equivalent levels of resistance can be achieved by selecting in other source material, including certain monogerm lines (e.g. SP 5831-0 and SP 621160- lines).

Although these results are very encouraging, there are several reasons for tempered optimism. In the first place, the stand of resistant lines, such as FC 701 and FC 702, was rather severely damaged by Rhizoctonia in some individual plots inoculated by the rosette method. Furthermore, the tap roots of a substantial proportion of the plants, classed as living in such lines at harvest, were in fact partially if not badly rotted (Figure 1). Some plants classed as living had lost their foliage before harvest, due to crown rot, and then had developed small tufts of new leaves. This tendency, though more pronounced in the susceptible lines (cf. Figure 1), also existed in the resistant lines. The resistance achieved in such lines as FC 701 and FC 702 apparently is relatively ineffective while the plants are small. Finally, the results presented in this report represent response to only one Rhizoctonia isolate and a narrow range of environmental conditions. The need for appraisal of resistance of such lines as FC 701 and 702 under a variety of environmental conditions, including a wide range of biotypes or strains of Rhizoctonia, obviously is urgently needed.

Summary

The Rhizoctonia resistance of eight sugarbeet lines or varieties was compared in the field at Ft. Collins in 1966 by means of two disease exposure techniques (Experiment R-1). One technique involved the placement of Rhizoctonia inoculum in the center of the foliar rosette of the plants 4 weeks after thinning (so-called "rosette" method of inoculation). The other method depended upon residual inoculum in the soil from sugarbeet plants grown and inoculated in the plot area in the preceding year. Separate, 8 x 8 Latin-Square experiments were used for the respective inoculation techniques.

The eight sugarbeet lines or varieties, above, also were compared in another experiment (R-2), together with 36, open-pollinated, single-plant progenies, by means of a randomized-block experiment with four replications. The rosette inoculation method was used. Two of the more resistant lines in Experiments R-1 and R-2 (FC 701 and 702) also were compared with parental and check material in Experiment R-3 which was similar to R-2 in design and techniques.

The results of these experiments led to the following conclusions:

- 1. The multigerm lines, FC 701 and FC 702, products of four cycles of mass selection for Rhizoctonia resistance, are substantially more resistant to Ft. Collins isolate B-6 of Rhizoctonia than their respective source populations, GW 674-56C and C817, when comparisons are made by means of the rosette method of inoculation under certain conditions.
- 2. The level of Rhizoctonia resistance in FC 701 and FC 702 is not high enough to prevent severe injury under conditions especially favorable for the development of the disease.
- 3. The resistance of FC 701 and FC 702 is less effective, if at all effective, when the plants are young.
- 4. Several sister lines of FC 701 and FC 702 probably are about equal to those two lines in resistance.
- 5. Lines with resistance equivalent to that of FC 701 and FC 702 probably can be obtained by selecting in populations other than GW 674-56C and C817. Among these populations are certain monogerm lines.

Literature Cited

- (1) Gaskill, John O. Rhizoctonia investigations, Fort Collins, Colorado, 1963. Sugarbeet Research, 1963 Report (CR-4-64, Crops Research Division, A.R.S., U.S.D.A.): 350-357. (Unpublished).
- (2) Gaskill, John O. Rhizoctonia investigations, Fort Collins, Colorado, 1965. Sugarbeet Research, 1965 Report. CR-4-66 pp.230-239.
- (3) Gaskill, John O. 1966. Breeding for resistance to Rhizoctonia root rot in sugarbeet. J. Colo. Wyo. Acad. Sci. (Abstract). (In press).
- (4) Pierson, Victor G., and John O. Gaskill. 1961. Artificial exposure of sugar beets to Rhizoctonia solani. J. Am. Soc. Sugar Beet Technol. 11(7): 574-590.

Fig. 1.--Comparison of sugarbeet lines in resistance to Rhizoctonia, Fort Collins, Colorado, 1966. Top--the inoculated portion of four, 2-row plots, indicated by stakes, on October 4; from left to right: (a) FC 702 (derived from C817), (b) GS 674-56C, (c) FC 701 (derived from CW 674-56C), and (d) C817; photo. No. B29-3. Bottom--roots of all living plants in the inoculated area shown at top, as harvested on October 11 (same plot sequence, left to right); badly rotted roots in foreground; photo. No. B29-18.

Fig. 2.--Comparison of sugarbeet lines in resistance to Rhizoctonia, Fort Collins, Colorado, October 4, 1966; the inoculated portion of two, 2-row plots indicated by stakes, from left to right: (a) US 401, and (b) FC 702. (Ft. Collins photo. No. B29-12)

COMPARISON OF 3-HYDROXYTYRAMINE AND LEAF SPOT RESISTANCE IN INFECTED AND NONINFECTED SUGARBEET POPULATIONS

1/

Previous studies by Harrison et al. (3) have shown that 3-hydroxy-tyramine (1) in beet leaves, when oxidized, is toxic to Cercospora beticola Sacc. grown in pure culture. Harrison et al. (2) also have shown that the production of 3-hydroxytyramine in sugarbeet leaves reaches a maximum as the plant reaches a certain stage of maturity and declines thereafter. They observed an interaction between sampling date and population in the amount of 3-hydroxytyramine present. A study of these data gave an indication that leaf spot susceptible populations reach a maximum and begin to decline in the amount of 3-hydroxytyramine present at an earlier date than do the more resistant populations.

The purpose of this study was to determine the phenological state when 3-hydroxytyramine is maximized, and to establish whether this maximum actually occurs at different stages of maturity for different genetic populations; also to relate, if possible, the differences between the inoculated and noninoculated populations with regard to 3-hydroxytyramine and leaf spot resistance.

Materials and Methods

The experiment consisted of nine populations, planted at both the Colorado State University Agronomy research farm and Mr. J. O. Gaskill's leaf spot nursery, each in four replications, and grown during the summer of 1966. There was practically no leaf spot at the University research farm. The populations were:

1.	US 201	Highly leaf spot resistant, heterogeneous
2.	GWI-29	Leaf spot resistant, inbred
3.	SP 5822-0	Highly leaf spot resistant, heterogeneous
4.	GW 359-52R	Moderately leaf spot resistant, heterogeneous
	R & G Pioneer	Leaf spot susceptible, heterogeneous
6.	52-334	Very leaf spot susceptible, inbred
7.	52-305CMS x 52-407,F ₁	High 3-hydroxytyramine, homogeneous hybrid
8.	52-305CMS	Inbred
9.	52-407	Inbred

The disease-free planting was made April 11 and harvested October 3. The disease nursery was planted May 3, inoculated July 5, and harvested October 3. Leaf samples were taken five times in the disease-free experiment, from July 7 through August 23. One sampling was made in the disease nursery, July 14. 3-hydroxytyramine was determined in all leaf

^{1/} Richard J. Hecker, E. Merle Harrison, Grace W. Maag, and Robert W. Pylman.

samples. Leaf spot ratings were made August 25. 1/Root weight and sucrose were determined in both plantings. Pressed juice conductivity was measured in the disease-free planting and thin juice purity was determined from the disease nursery. Actually root weight, sucrose, pressed juice conductivity and thin juice purity, total nitrogen, sodium, and potassium were determined on both plantings but only the above analyses have been completed at time of this report.

Results and Discussion

An analysis of variance of the 3-hydroxytyramine data over all sampling dates from the disease free experiment shows highly significant differences due to populations, dates, and dates x populations (Table 1). The interaction of dates x populations is of interest, indicating that the maximum 3-hydroxytyramine present in beet leaves occurs at different dates for different populations as has been suspected. However, the time of maximum content seems unrelated to leaf spot resistance. Means for all characters in the disease-free experiment are shown in Tables 2 and 3. Means from the disease nursery are shown in Table 4. When comparing 3-hydroxytyramine means in Table 2, GWI-29 (leaf spot resistant) started to drop off in quantity on the second sampling date while SP 5822-0 (highly leaf spot resistant) did not decline until after the fourth sampling date. The remaining populations commenced to decline after the third date. Thus maximum 3-hydroxytyramine and leaf spot resistance do not seem to be associated; resistant populations US 201, GWI-29, and SP 5822-0 maximise on the third, second, and fourth sampling dates, respectively, while R & G Pioneer and 52-334 (leaf spot susceptible populations) maximize on the third date, the same as US 201.

^{1/} Acknowledgement is given Mr. J. O. Gaskill, Research Plant Pathologist, for his cooperation in the experiment and furnishing the leaf spot readings.

Table 1.—Analyses of variance for 3-hydroxytyramine for all dates of sampling from the diseasefree nursery and for 3-hydroxytyramine from the July 14 sampling of the disease nursery.

Source of variation	Degrees of freedom	Mean square
Disease-free nursery		
Total Populations Dates P x D Replications R x P R x D R x P X D	179 8 4 32 3	18,081.5972** 4,666.6875** 775.7148** 571.9718 286.9500
Disease mursery .		
Total Populations Replications Residual (R x P)	35 8 3 24	1,643.5075** 200.9000 129.6063

Table 2. -- 3-hydroxytyramine means and standard errors for all populations under disease-free conditions.

Mean and standard error July 18 July 25 August 8 August 23 All dates	105.25± 9.17 106.75± 3.90 84.75±11.05 74.50±7.42 89.88±4.41 89.25±13.30 74.25±16.03 77.00±17.59 67.25±5.50 68.40±6.56 58.25±15.48 55.50± 5.66 81.75± 5.13 65.75±6.97 58.80±4.96	86.00±10.85 96.75±12.89 93.25± 6.94 83.50±4.25 82.10±5.25 85.25± 5.30 98.50±14.03 86.25± 7.18 65.50±5.56 79.10±4.77 10.50± 0.79 25.25± 4.94 17.50± 1.85 9.50±1.04 14.88±1.67	105.62±13.98 100.50± 3.30 135.25±11.71 103.50±7.98 104.08±5.78 130.00±12.46 135.50± 5.17 107.75±11.04 75.75±2.95 116.12±6.08 52.88± 6.21 57.75± 5.86 58.75±10.40 1.3.00±3.80 52.75±2.91
July 7	78.12±5.70	51.00±8.96	75.50±7.06
	34.25±4.57	er 61.12±8.82	130.88±4.64
	32.75±3.39	11.62±1.03	51.38+2.55
Population	US 201	GW 359-52R	F1 hybrid
	GWI 29	R & G Pioneer	52-305CMS
	SP 5822-0	52-334	52-h07

Table 3. --Weight, sucrose, and conductivity means and standard errors for all populations under disease-free conditions.

Pepulation US 201 GWI 29 SP 5822-0 GW 359-52R	Weight 5.59±0.50 6.01±0.72 10.85±1.67 13.78±0.7b	3ucrese Co 3ucrese Co 0 14,00±0.36 1. 2 15,12±0.36 0. 7 15,70±0.41 0. 4 16,65±0.29 0.	Conductivity 1.025±0.095 0.875±0.063 0.925±0.193
R & G Pioneer	9.78±1.46	15.32±0.15	0.950±0.050
52-334	4.66±0.45	15.95±0.29	0.800±0.071
F, hybrid	11.14±0.60	16.22±0.26	0.975±0.025
52-305CMS	4.90±0.32	16.50±0.37	0.825±0.025
52-407	8.69±1.12	15.68±0.33	1.225±0.175

Table 4. -- 3-hydroxytyramine, sucrose, root weight, leaf spot reading, and thin juice purity means and standard errors from the disease nursery.

		Mean	Mean and standard error	rror	
Population	3-hydroxy- tyramine July 14	Sucrose	Root weight	Leaf spot reading	Purity
US 201	50.50± 3.62	14.00±0.26	5.83±0.52	2.00±0.000	95.02±0.76
GWI 29	21.12± 1.55	14.68±0.14	8.10±0.39	1.75±0.145	95.38±1.17
SP 5822-0	23.13± 1.66	14.18±0.32	10.30±0.67	2.50±0.288	95.15±0.47
GW 359-52R	37.25± 7.99	14.63±0.14	12.31±1.21	3.25±0.479	93.22±0.79
R & G Pioneer	29.00± 4.41	13.10±0.19	8.90±0.32	4.75±0.250	92.28±2.84
52-334	5.88± 0.43	11.88±0.91	4.29±0.28	6.75±0.250	81.00±0.50
F, hybrid	48.25± 4.40	13.85±0.10	12.73±1.35	3.50±0.289	91.32±0.65
52-305cms	73.50±12.77	15.10±0.59	6.58±0.55	3.25±0.479	90.98±1.46
52-407	50.13± 5.03	11.43±1.17	7.09±0.28	3.50±0.289	88.75±0.82

There were no significant differences between root weight means for each population at the two locations; however, there were significant differences between populations within locations. Sucrose content was higher in populations in the disease-free nursery, except for US 201, which is to be expected.

Correlations currently completed are shown in Table 5. correlations are confined within locations, except for leaf spot, these data being available only from the disease nursery. The correlation of greatest interest is 3-hydroxytyramine (under disease-free conditions) vs. leaf spot reading; this is -0.267 but not significant. This same correlation under disease conditions was -0.336*. It should be noted that the 3-hydroxytyramine samples in the disease nursery were taken July 14, while inoculation was done July 5; so the initial infection was just becoming established at this time. These correlations are not high, pointing up again that even though early studies disclosed the relationship between 3-hydroxytyramine content and leaf spot resistance, this relationship does not hold for certain exceptional genotypes. The compound may be necessary for resistance, and the fact that it is toxic to Cercospora when oxidized indicates that it is necessary, but perhaps only minimal amounts are needed. The remaining correlations are not different than might be expected.

Table 5.—Correlation coefficients from data obtained from both diseased and disease-free locations.

		Character	
Character	Sucrose	Root weight	Leaf spot reading
3-hydroxytyramine	0.334* ½/ -0.047 ½/	0.073 0.058	-0.336* -0.267
Percent sucrose		0.196 0.428**	-0.573** -0.069
Root weight			-0.497** -0.456**

^{1/2/} Upper correlation coefficients are for disease nursery
2/ Lower correlation coefficients are for disease-free nursery

The correlation of 3-hydroxytyramine quantities in the disease nursery (July 14) and in the disease-free nursery (July 18) was 0.55**. Even though highly significant the relationship of 3-hydroxytyramine at the two locations is certainly not a monotonic function. This is further evidence that environment greatly influences 3-hydroxytyramine content.

A complete analysis of all characters in this experiment will be made and reported in 1967.

Conclusions

Sugarbeet leaves seem to increase in the amount of 3-hydroxytyramine during the active growth and expansion of the leaves. At a certain time, a maximum is reached, followed by a rather rapid decline as the plant and leaves age.

The timing of this maximum occurs at different dates for different genotypes, ranging from mid-July to early August. The time of maximum content of 3-hydroxytyramine seems unrelated to inherent leaf spot resistance.

The correlation of 3-hydroxytyramine content with leaf spot resistance in this experiment is low because of exceptional genotypes such as R & G Pioneer which is susceptible, yet had an average 3-hydroxytyramine content greater than either GWI-29 and SP 5822-0 which are leaf spot resistant.

A complete analysis of these data will be made and reported next year.

Literature Cited

- 1. Gardner, R. L. 1964. Identification of a compound from Beta
 vulgaris reported to be responsible for resistance to Cercospora leaf spot. Unpublished Ph.D. thesis. Colorado State University.
- Harrison, M., G. W. Maag, M. G. Payne, R. J. Hecker, and E. E. Remmenga. Sampling for 3-hydroxytyramine and polyphenoloxidase in sugar beets. J. Amer. Soc. Sugar Beet Technol. 14(6): 470-479. 1967.
- 3. Harrison, M., M. G. Payne, and J. O. Gaskill. 1961. Some chemical aspects of resistance to Cercospora leaf spot in sugar beets. J. Am. Soc. Sugar Beet Technol. 11:457-468.

THE PRODUCTION OF 3-HYDROXYTYRAMINE IN GROWTH CHAMBER EXPERIMENTS

Introduction

These exploratory experiments were undertaken in an attempt to delineate the variables affecting the production of 3-hydroxytyramine in sugarbeet leaves. The amount of 3-hydroxytyramine in the leaves of sugarbeets is correlated with resistance of the beets to attacks of Cercospora beticola, Maag et al. (3). However, this correlation is not absolute, and there always has been inexplicable variation within uniform populations when the plants were grown under field conditions. One purpose of this experiment was to measure the variability of 3-hydroxy-tyramine in plants grown under controlled conditions.

In addition to the positive correlation of 3-hydroxytyramine and leaf spot resistance there always has been a negative correlation between the quantities of 3-hydroxytyramine and its oxidizing enzyme, polyphenoloxidase (2,3). Since copper appears as the central atom in the polyphenoloxidase enzyme molecule, it was included as a variable in this experiment to determine its effect under controlled environmental conditions.

FIRST EXPERIMENT

Materials and Methods

In the first of two experiments two different populations were chosen. One was a completely homozygous annual (produced by Dr. B. Hammond from a haploid) known to be susceptible to leaf spot. The other was an F_1 hybrid (52-305CMS x 52-407, F_1) that produced high levels of 3-hydroxytyramine in the field. This hybrid is considered to be moderately resistant. Seeds were planted February 28, 1966 in eight inch asphalt pots filled with perlite. The plants were transferred from the greenhouse to the growth chamber on April 1.

During the experiment the plants were watered with a modified Hoagland's nutrient solution, one portion of which contained 100 times the normal amount of copper (0.001 moles/liter being normal).

The experiment was a 2 x 2 factorial. There were two populations, two copper levels, three replications, and six plants per replication for a total of 72 plants in the experiment.

The growth chamber was programmed so that lights were on during the periods from 5 AM to 1 PM and 5 PM to 1 AM. The "day" temperatures were $85^{\circ}F$ and the "night" temperatures $65^{\circ}F$.

The pots were periodically leached to prevent a salt accumulation. Samples were taken on the dates shown below:

May 9, 1966 - plot basis (1 leaf per plant)

May 24, 1966 - individual plant basis. Average of six leaves taken from each plant.

June 13, 1966 - plot basis (1 leaf per plant)

July 12, 1966 - plot basis (1 leaf per plant)

All plants were inoculated with <u>Cercospora</u> beticola spores June 2, by spraying water suspensions onto the leaves and covering the individual plants with perforated plastic bags. These bags were removed June 6, at which time there was still free water on the leaves. The first leaf spot symptoms appeared June 9, and by June 12 the disease was well advanced. The last leaf samples, July 12, were taken from new growth after the severe epidemic had defoliated the plants. The post inoculation leaves were not infected since the environment was not suited to a continued epidemic.

The plants were harvested July 12 and measured for root weight and sucrose. All the annual plants bolted, except two, starting about May 20.

Results and Discussion

Determinations for 3-hydroxytyramine and the polyphenoloxidase activity were made on each sampling, following methods described by Harrison et al. (1). Polyphenoloxidase activity was determined on a plot basis for the May 9 sampling and on an individual plant basis for the May 24 sampling. 3-hydroxytyramine was determined on an individual plant basis for the May 24 sampling and on a plot basis for the other three samplings. These results are shown in Table 1. The values given for the May 24 sampling are averages of six individual plant determinations. In spite of using genetically homozygous plants in a well controlled environment the differences between replications were large in many cases. In the case of the May 24 individual plant analyses, there were also great differences within replications. It is apparent that despite our efforts to eliminate variability, it persists, little reduced from field studies. The laboratory process has been scrutinized and cannot be charged with all this variability. Hence, the quantity

of 3-hydroxytyramine may be quite labile and subject to micro-environmental differences.

Table 1.—Summary of 3-hydroxytyramine and polyphenoloxidase determinations at various sampling dates.

		3-hydrox	ytyramine	(mg/100ml	extract)	Polypheno	loxidase
Sample 1/	Repli- cation	May 9	May 24	June 13	July 12	May 9	May 24
F ₁ H	1 2 3	340.0 330.0 330.0	771.5 857.5 872.0	1225.0 1210.0 1460.0	594.0 726.0 714.0	1.16 0.78 1.10	1.05 1.12 1.03
Average		333.3	833.7	1298.3	678.0	1.01	1.07
F ₁ L Average	1 2 3	350.0 345.0 350.0 348.3	750.5 904.0 758.0 804.2	1225.0 1100.0 1210.0 1178.3	705.0 672.0 816.0 731.0	1.23 1.24 1.23 1.23	1.09 1.06 1.04 1.06
AH Average	1 2 3	221.0 280.0 277.0 259.3	532.0 390.0 417.5 446.5	450.0 630.0 635.0 571.7	420.0 303.0 378.0 367.0	1.15 1.14 1.17 1.15	1.16 1.20 1.08 1.15
AL	1 2 3	265.0 260.0 270.0 265.0	ЦЦ5.5 Ц21.0 ЦЦ2.0 Ц36.2	400.0 385.0 280.0 355.0	336.0 441.0 294.0 357.0	1.35 1.29 1.31 1.32	1.20 1.15 1.08 1.14

 $^{1/}F_1 = 52-305$ CMS x $52-407,F_1$; A = annual. H = high copper; L = low copper.

The changes in levels of 3-hydroxytyramine during the course of the experiment are shown graphically in Figure 1.

Means and standard errors of individual plant determinations for root weight, sucrose, leaf copper, 3-hydroxytyramine, and polyphenoloxidase are shown in Table 2.

The annual population was higher in mean weight of roots than the F_1 population with no significant difference between low copper and high copper treatments within populations. There was no significant difference between population means or treatment means for percent

Figure 1.--3-hydroxytyramine determinations at various sampling dates, first experiment.

Table 2.—Means and standard errors for root weight, sucrose, copper, 3-hydroxytyramine, and polyphenoloxidase.

	Population			
Character and treatment	Annual	F_1		
Root weight (grams), July 12				
Low Cu High Cu Mean	131.6±6.87 142.3±7.67 136.9±5.15	90.0±3.40 89.1±2.87 89.5±2.20		
Sucrose (%), July 12				
Low Cu High Cu Mean	12.42±0.186 12.16±0.163 12.29±0.124	11.61±0.175 11.61±0.200 11.61±0.131		
3-hydroxytyramine (mg/100ml), May 24				
Low Cu High Cu Mean	436±19.7 446±21.0 441±14.2	804±35.4 834±24.5 819±21.4		
Polyphenoloxidase (optical density), May 24				
Low Cu High Cu Mean	1.14±0.021 1.15±0.022 1.14±0.015	1.06±0.017 1.07±0.019 1.06+0.013		
Copper (mg/100ml), May 24				
Low Cu High Cu Mean	2.18±0.291 2.94±0.174 2.56±0.179	1.88±0.120 2.43±0.102 2.15±0.090		

sucrose. There was a significant difference between populations for amount of 3-hydroxytyramine; however, there was no difference between copper treatments within populations. Polyphenoloxidase was present in equal concentrations in both populations and within both copper treatments. The high copper treatment gave a significantly higher concentration of leaf copper than the low copper treatment. This was true in both populations. The annual population had a higher mean concentration of copper at both treatment levels. Since the \mathbb{F}_1 population was higher

in 3-hydroxytyramine than the annual, and had lower concentrations of copper in the leaves, copper does not seem to be the limiting factor in production of 3-hydroxytyramine.

The analyses of variance for 3-hydroxytyramine and polyphenoloxidase are presented in Table 3. There were significant copper treatment effects on the amount of polyphenoloxidase present in leaves on the May 9 sampling. The low treatment plants had higher concentrations of the enzyme (Table 1). Thus, copper was not limiting the quantity of polyphenoloxidase in this experiment. This does not exclude the possibility of a detrimental effect from excess copper.

The May 24 sampling for polyphenoloxidase was analyzed both on a plot basis, using means of individuals within plots, and on an individual plant basis. These analyses show highly significant differences between populations.

The June 13 sampling for 3-hydroxytyramine indicated a significant difference between copper treatments and populations. Plants under the high copper treatment produced more 3-hydroxytyramine. This was most pronounced within the annual population (Table 1). The differentiation of the treatments with respect to quantity of 3-hydroxytyramine commenced prior to inoculation (random occurrence) and continued well after the disease had developed.

Since copper and polyphenoloxidase have been postulated as being involved in formation and/or accumulation of 3-hydroxytyramine, but not limiting factors, some genetically controlled reaction may be affecting the efficiency of 3-hydroxytyramine production.

Table 4 shows the correlation coefficients for the various characters. These correlations were calculated from individual plant measurements. The data for 3-hydroxytyramine, polyphenoloxidase, and copper were obtained from the May 24 sampling, and the data for sucrose and root weight were obtained when the plants were harvested, July 12.

Total and within population correlations are of greatest interest. Since copper treatment had no effect, except in the case of copper content, the two within treatment correlations, in all cases except copper, should be estimates of the same parameter. 3-hydroxytyramine was negatively correlated with polyphenoloxidase, sucrose, and root weight. The negative correlation with polyphenoloxidase is of the same magnitude as in all previous experiments. It seems apparent that the correlation of 3-hydroxytyramine and polyphenoloxidase may be fairly constant in sugarbeets at about -0.5. The negative correlation with root weight has also been common in past experiments. The negative correlation with sucrose is an exception to past experiments, but this is related to the positive correlation of sucrose with root weight. This latter correlation is not unique, particularly for homozygous populations under non-field conditions.

Table 3.—Analyses of variance for polyphenoloxidase and 3-hydroxytyramine; growth chamber experiment number 1, 1966.

	July 12		351,918.75** 1,365.75 1,386.75 5,825.04			
emine.	June 13		1,801,875.000** 6,227.085 85,193.330* 10,538.453			
Mean square	May 24		127,707.513** 513.306 1,190.013 1,516.275		2,566,245.125** 3,079.500 7,140.125 1,653.125 12,353.886	
Mear	May 9		18,174.083*** 191.085 374.083 281.512			
معطائين	May 24		0.0192** 0.0069* 0.0000 0.0010		0.1120## 0.0405# 0.0001 0.0000	
Polymbano	of May 9 May 24		0.0374 0.0138 0.1102**	les		
000000	of freedom		11 12 12 7	ant samp	s 27 10 10 10 10 10 10 10 10 10 10 10 10 10	
	variation	Plot samples	Total Populations Replications Treatments Residual	Individual plant samples	Total Populations Replications Treatments P x T Residual	

Table 4.—Simple correlation coefficients (r) in growth chamber experiment number 1.

experiment number 1.				
Character and population-treatment combination 1	3-hydroxy- tyramine (mg/100ml ext.)	Root weight (gm)	Polyphenol- oxidase (optical density)	Copper (mg/100gm)
Sucrose (%) Total Fl A L Cu H Cu Fl, L Cu Fl, H Cu A, L Cu	-0.52** -0.41* -0.28 -0.55** -0.49** -0.35 -0.52*	0.33** -0.35* 0.24 0.24 0.43** -0.39 -0.32 -0.03	0.36** 0.20 0.25 0.32* 0.42** -0.14 0.45* 0.34	0.16 0.40* -0.09 0.11 0.38* 0.64** 0.31
A, H Cu 3-hydroxytyramine Total Fl A L Cu	-0. 29	-0.57** 0.32* 0.07	0.18 -0.46** -0.22 -0.16	-0.22 ' -0.15 0.06
H Cu F ₁ , L Cu F ₁ , H Cu A, L Cu A, H Cu		-0.44** -0.70** 0.48* 0.09 0.36 -0.19	-0.48** -0.45** -0.29 -0.15 -0.13	-0.18 -0.36* -0.32 -0.12 0.03 0.05
Root weight Total F1 A L Cu H Cu F1, L Cu F1, H Cu A, L Cu A, H Cu			0.18 -0.22 -0.22 0.21 0.15 -0.16 -0.27 -0.14	0.27* -0.26 0.25 0.06 0.54** -0.26 -0.32 -0.03 0.57**
Polyphenoloxidase Total Fl A L Cu H Cu Fl, L Cu Fl, H Cu A, L Cu A, H Cu				0.02 -0.28 -0.02 0.07 -0.06 -0.27 -0.39 0.09 -0.22

 $^{1/}F_1 = 52-305$ CMS x $52-407, F_1; A = annual$ L Cu = low copper; H Cu = high copper

The within population correlations add little to the information already gained from the total correlations. In certain cases such as root weight with sucrose and with 3-hydroxytyramine, differences due to genotype are reflected in the correlations but they add little new information.

SECOND EXPERIMENT

Materials and Methods

It was shown in the first experiment that available copper, in normal quantities, was not a limiting factor in accumulation of 3-hydroxytyramine or polyphenoloxidase. A second growth chamber experiment was then conducted to determine if leaf spot infection influenced the quantity of 3-hydroxytyramine in the plant. In the first experiment the 3-hydroxytyramine content decreased after the disease was well advanced. However, this decrease could also have been due to age of plant. The object of the second experiment was to determine if the level of 3-hydroxytyramine was conditioned by the presence or absence of infection.

A third variety was added to the annual and the F₁ hybrid of the previous experiment; US 201, a variety known to be very resistant to leaf spot. The light regime was altered to come on at 5 AM and go off at 9 PM with the accompanying temperature at 85°F. The dark period was from 9 PM to 5 AM with the temperature programmed at 65°F. Hence in a 24 hour period there was the same number of hours of light and dark as in experiment 1, but in the first experiment the light was in two portions.

The annual and the F_1 hybrid were planted June 14, and US 201 was planted June 22. All plants were transferred July 13 from the greenhouse to the growth chamber. Samples were taken (1 leaf per plant) on a plot basis on the following dates: August 17, August 26, September 6, September 13, and September 19.

On August 26 half the plants were inoculated with <u>Cercospora</u> beticola spores, as in the first experiment, but much less inoculum was used. The perforated plastic bags were removed August 31.

A summary of the 3-hydroxytyramine determinations are given in Table 5. No determinations were made on polyphenoloxidase activity. The 3-hydroxytyramine data are summarized graphically in Figure 2.

Table 5.--3-hydroxytyramine determinations at various sampling dates with three populations, second experiment.

	Repli-				lOOml extra	
treatment	cation	Aug. 17	Aug. 26	Sept. 6	Sept. 13	Sept. 19
Noninoculat	ed					
Annual	1 2 3	9.0 25.5 10.5	172.5 22.5 159.0	262.5 46.5 208.5	279.0 276.0 405.0	417.0 397.5
Average)	15.0	118.0	172.5	320.0	390.0 401.5
F _l hybrid	2 3	54.0 103.5 42.0	438.0 238.5 123.0	241.5 570.0 495.0	450.0 4 72. 5 495.0	465.0 480.0 495.0
Average		66.5	266.5	435.5	472.5	480.0
US 2 01	1 2 3	18.0 9.0 21.0	303.0 165.0 241.5	562.5 280.5 510.0	408.0 303.0 310.5	495.0 352.5 321.0
Average		16.0	236.5	451.0	340.5	389.5
Inoculated					~)
Amual	1 2 3	75.0 22.5 9.0	238.5 120.0 105.0	489.0 163.5 465.0	282.0 387.0 313.5	337.5 408.0 472.5
Average		35.5	154.5	372.5	327.5	406.0
F ₁ hybrid	2 3	97.5 69.0 51.0	477.0 480.0 156.0	525.0 354.0 480.0	480.0 472.5 345.0	480.0 487.5 480.0
Average		72.5	371.0	453.0	432.5	482.5
US 201	1 2 3	10.5 45.0 46.5	390.0 139.5 285.0	525.0 487.5 525.0	427.5 297.0 435.0	465.0 462.0 393.0
Average		34.0	271.5	512.5	386.5	1110.0

Figure 2. -- 3-hydroxytyranine determinations at various sampling dates, second experiment.

The age of the plants in each experiment should be kept in mind when comparing the two experiments. In the first experiment the plants were first sampled at 71 days after planting, inoculated at 95 days, and sampled for the last time at 104 days. These same events occurred at 64, 73, and 97 days, respectively, in the second experiment.

Table 6 gives the analysis of variance for the entire experiment. Varieties, replications, and dates of sampling had significant differences in their concentration of 3-hydroxytyramine. The treatment effects and variety by treatment interaction sum of squares were included in the error term since treatments only involved the last three sampling dates. Varieties were ranked consistently from one sampling date to the next, as is shown by the absence of a variety by date interaction. In an analysis of the three post inoculation samplings (not shown), there was no significant treatment effect nor was there a population x treatment interaction. It would appear from this experiment that infection did not induce a significant change in the synthesis and/or accumulation of 3-hydroxytyramine. However there is a consistent increase in the inoculated material and it is our opinion that infection probably does increase the 3-hydroxytyramine content. The increase may be localized on a cellular level, hence, largely undetected by our methods of analysis.

Table 6.—Analysis of variance for the entire second experiment.

Source of variation	Degrees of freedom	Sum of squares	Mean square
Total Varieties Dates Replications Varieties x dates Residual	89 2 4 2 8 73	2,816,277.85 223,873.06 1,902,885.87 51,417.05 109,183.17 528,918.70	111,936.53** 475,721.47** 25,708.53* 13,647.90 7,245.46

From these and past experiments we now know that disease resistance and quantity of 3-hydroxytyramine are positively related. However the association is not exact, i.e., certain moderately resistant, and even susceptible populations, have relatively high quantities of 3-hydroxytyramine.

The ten-fold increase in 3-hydroxytyramine values in the first experiment, compared to previous field studies, indicate that this

character is conditioned primarily by environment. However in a relatively uniform environment, such as a field study, genotype is the most important determinant. If succeeding studies reveal the full relationship between resistance and 3-hydroxytyramine content, it should be relatively easy to discriminate genetically for this latter character.

A study is being conducted into the inheritance of this quantitative character. Further studies are also being made to determine the major environmental factor or factors conditioning its synthesis and/or accumulation. These include light quality and photo period.

Summary

Two separate experiments were conducted in a controlled environment chamber in an attempt to discover the factors which condition the synthesis and/or accumulation of 3-hydroxytyramine in sugarbeets. The variables in the first experiment were copper level in the nutrient solution, and genotype. There were marked differences in 3-hydroxytyramine due to genotype. All plants contained very high levels of 3-hydroxytyramine compared to earlier field grown materials (up to 10 times) for the same variety and age. High copper levels in the nutrient solution had little effect on 3-hydroxytyramine or its oxidizing enzyme, polyphenoloxidase. Therefore, even though polyphenoloxidase is a copper containing enzyme, it is not affected by a copper level higher than that in the standard Hoagland's nutrient solution.

In the second experiment the variables were genotype, and inoculation with Cercospora beticola. The purpose was to determine if infection induced a change in 3-hydroxytyramine level. Again there were marked differences due to genotype; but inoculation with Cercospora beticola produced no significant differences in the levels of 3-hydroxytyramine.

There was some indication that photoperiod may be a factor in quantity of 3-hydroxytyramine. Earlier greenhouse studies also indicated a possible effect of light quality. These possibilities are being investigated as part of a continuing research effort to discover the fundamental chemical nature of Cercospora resistance.

Literature Cited

- 1. Harrison, E. M., G. W. Maag, M. G. Payne, R. J. Hecker, and E. E. Remmenga. Sampling for 3-hydroxytyramine and polyphenoloxidase in sugarbeets. J. Amer. Soc. Sugar Beet Technol. 14(6): 470-479. 1967.
- 2. Maag, G. W., R. J. Hecker, M. G. Payne, E. E. Remmenga, and E. M. Harrison. Relation of 3-hydroxytyramine to weight per root and percent sucrose in sugarbeets. J. Amer. Soc. Sugar Beet Technol. 14(8):709-726. 1968.
- 3. Maag, G. W., M. G. Payne, I. Wickham, R. J. Hecker, E. E. Remmenga, and E. M. Harrison. Association of copper and other chemical characters with Cercospora leaf spot resistance in sugarbeets. J. Amer. Soc. Sugar Beet Technol. 14(7):605-614. 1967.

ASSOCIATION OF COPPER AND OTHER CHEMICAL CHARACTERS WITH CERCOSPORA LEAF SPOT RESISTANCE IN SUGARBEETS

Introduction

A phenolic compound, 3-hydroxytyramine, identified by Gardner (5), was shown by Harrison et al. (6) to be closely associated in its oxidized form with resistance to Cercospora beticola Sacc. (leaf spot) in culture. Polyphenoloxidase may be the oxidizing enzyme activated by some catalyst. Reports in the literature (11,12) indicate that divalent metallic ions may act as catalysts for this oxidizing reaction in various plants. These studies were conducted in an attempt to link certain cations and other chemicals in the leaf and root tissue to leaf spot resistance and to evaluate the interrelations of various chemicals. Copper was of particular interest since it appears as the central atom in the polyphenoloxidase enzyme molecule.

Materials and Experimental Design

The materials used in this experiment were from the variety A56-3 and self-pollinated lines of A56-3 (S_1 's). This is an open pollinated commercial variety adapted to the east slope of the mountains. Four hundred forty random roots of the A56-3 were self pollinated in 1964. From these, 180 plants produced enough seed under the bags so that they could be planted in two tests as one row plots. Both tests were planted at Fort Collins, Colorado; the one in the leaf spot nursery was planted May 6, 1965; the one grown under disease free conditions was planted April 8. The field design consisted of ten blocks of twenty entries each. In each block, 18 entries were S1 lines and the remaining two entries were A56-3. Since A56-3 appeared twice in each block, it provided the opportunity to adjust for block differences if these differences were significant. The data were taken on a plot basis from disease free plants. Twelve-root samples were taken from each plot. The usual measurements were made for root weight, sucrose, and thin juice purity. Chloride, sodium, potassium, total nitrogen, and copper determinations were made on thin juice. Dried leaf material prepared from leaves collected and quick frozen August 4 and 5, 1965, was analyzed for copper, calcium, and magnesium. Polyphenoloxidase and 3-hydroxytyramine content were determined on leaf extract from the same leaves.

Leaf spot readings were taken from the duplicate planting made in the leaf spot nursery. The standard leaf spot scoring method from 0 to 10 was used; o indicating no infection, and 10 indicating complete defoliation. It was necessary to grow the plants in separate areas so that the characters other than leaf spot resistance could be determined on healthy plants. The relationships of these characters might be altered if they are obtained from diseased plants.

Complete data were obtained on the twenty A56-3 plots and 173 of the selfed lines.

Experimental Methods

The thin juice was prepared from sugarbeet roots by a method developed by Brown and Serro (1) and modified by Carruthers and Oldfield (2). The following characteristics were determined as described by Payne et al. (9,10): percentage sucrose, percent apparent purity, mg of Na, K, and N per 100 ml thin juice. Chlorides were determined in meq/l on the thin juice samples with a chloride titrator (Aminco-Cotlove Automatic Chloride Titrator). The 3-hydroxytyramine and polyphenoloxidase were determined on leaf samples as described by Harrison et al. (7).

The leaf samples were prepared as follows for the determination of calcium, magassium, and copper on the Perkin-Elmer Atomic Absorption Spectrophotometer 290. Ten grams of center-cut leaves were dried in an oven at about 82°C and ground with mortar and pestle. One half of a gram (measured to four decimal places) was put into a 25 ml digestion tube with five mulliliters of a digestion mixture and allowed to stand for 24 hours. The Egestion mixture was prepared as follows: Solution I - 10 g. of sodium in the and 150 ml H20. Solution II - 600 ml of concentrated HNO3, 200 Pl - concentrated H2SO4, 150 ml of 70% HClOu, and 150 ml of Solution 1. The types were heated on an American Instrument Co. Rotary digestion appratus for 20 to 30 minutes until the solution was clear. The mixture occoled, diluted to 25 ml with distilled water and mixed well. This system was used for determination of Ca, Mg, and Cu. The values reports calcium concentrations do not reflect the true calcium levels. The. were interferences from phosphate and other ions which were not take into account. However, since the phosphate interference appears to be relatively small and since constant amounts of other reagents were added to each sample, the calcium results are reported and should still give a measure of relative differences in concentrations. In future analyses lanthanum chloride will be added to mask the phosphate interferences and the procedure will be revised to overcome the other

The authors are indebted to J. O. Gaskill for leaf spot scores from his leaf spot nursery at Fort Collins, Colorado.

interferences.

Results and Discussion

The arithmetic means and standard deviations for the various chemical determinations for the controls and inbreds combined, are shown in Table 1. The means and standard deviation of the controls were very similar to those of the A56-3 inbreds and were not statistically different; therefore, the study is concerned only with the combined sample of 193 plots. There were no significant block differences.

Tests for normality using the third and fourth moments about the mean were computed for each character measured on the arithmetic, logarithmic, and the square root scales. On the arithmetic scale, weight and purity were found to have a slight positive kurtosis and sucrose a slight negative skewness. None of the transformations attempted improved upon the arithmetic scale for these characters. All of the chemical characters for both thin juice and leaves showed significant positive skewness on the arithmetic scale except for polyphenoloxidase which was significantly negatively skewed. Some degree of positive kurtosis was also noted for most characters. Transformation to the log scale made the distribution of all of the thin juice characters acceptably normal but overcorrected the leaf characters from significant positive skewness to significant negative skewness. The square root transformation was tried for the leaf characters and acceptable normality was achieved except that 3-hydroxytyramine retained a slight positive skewness and magnesium retained positive kurtosis. Polyphenoloxidase presented a special problem as the negative skewness on the arithmetic scale was exaggerated by both the square root and the logarithmic transformations. It was found by trial and error that polyphenoloxidase was normally distributed when transformed to the antilog to the base 10.

Correlation analysis is based on the requirement that a bivariate normal distribution exists. If this is not true, the interpretation of the correlation coefficient is uncertain (3). Changes of scale to achieve approximate normality for each character are essential for a valid study. The changes of scale should also make biological sense and not simply be a mathematical manipulation. Arguments can be presented for the logic of each of the transformations chosen. When the assumption of normality is satisfied, the observed correlation coefficients can be used to test for independence of the two variables involved.

The scales used for correlation analysis as a result of the

Table 1.--Means and standard deviations of A56-3 and A56-3 inbreds.

Character	Mean	Standard deviation	
Weight (Kg)	8.012	2.094	
Sucrose	14.946	1.192	
Thin Juice Purity (%)	91.80	3.702	
Leaf spot (score)	4.010	1.535	
3-Hydroxy- tyramine (mg/100ml extract)	50.76	31,59	
Polyphenoloxidase (optical density after 5 min)	1.186	0.251	
Leaf Cu (mg/100ml)	1.394	0.296	
Leaf Ca (mg/100gm)	709.870	237.965	
Leaf Mg (mg/100gm)	625.492	186.268	
Thin Juice Na (mg/100ml)	49.248	24.783	
Thin Juice K (mg/100ml)	82.575	18.896	
Thin Juice N (mg/100ml)	45.109	17.913	
Thin Juice Cu (mg/100ml)	0.212	. 0.082	
Thin Juice Cl (meq/l)	2.128	0.908	

normality investigations were: arithmetic scale for weight, sucrose, and purity; antilog base 10 for polyphenoloxidase; square root for the remaining leaf characters; and log base 10 for the thin juice characters. In order to maintain a familiar scale, the means and standard deviations in Table 1 are shown on the arithmetic scale.

It is interesting to note that all of the chemical determinations made were positively skewed on the arithmetic scale with the exception of polyphenoloxidase and that the thin juice characters were log-normal while the leaf characters were square root-normal. This relation could be a result of the physiologic and/or metabolic systems of the plants. Evaluations such as these made on only one population are not sufficient for far reaching conclusion, but it would seem to be a set of relations worthy of further investigation.

The significant simple correlation coefficients of the combined sample of A56-3 and S_l inbreds are shown in Table 2. There is a small but significant positive correlation between root weight and the thin juice chemical characters sodium, copper, and potassium. No significant relation of weight with the leaf chemical characters exists except for polyphenoloxidase which shows a negative association. Sucrose is negatively correlated with weight and positively correlated with purity as is commonly observed.

The thin juice chemical characters which are generally thought of as impurity components are all negatively correlated with sucrose. These correlations are all of similar magnitude. Purity is also significantly correlated negatively with the thin juice chemical characters but to a lesser degree. Even though these relations are of the same magnitude, sodium, potassium, and total nitrogen contribute much more as impurity components than do chlorides and copper as is shown by the mean quantity of materials present. The thin juice chemical characters are all significantly positively correlated with each other.

The leaf chemical characters are not so highly and consistently correlated. Calcium and magnesium are very highly positively correlated with each other and both positively correlated to the same degree with polyphenoloxidase. Negative association of these two elements are shown with 3-hydroxytyramine to a higher degree than the positive associations with polyphenoloxidase. Polyphenoloxidase and 3-hydroxytyramine are highly negatively related to each other. Leaf copper is negatively associated with polyphenoloxidase. Leaf copper is negatively associated with calcium and positively associated with 3-hydroxytyramine. Only slight associations are indicated between thin juice characters and leaf characters.

Leaf spot readings are negatively associated with 3-hydroxytyramine and leaf copper, and positively associated with magnesium.

Table 2. -- Significant correlation coefficients between transformed chemical characters.

			Leaf Det	Leaf Determinations	ons			Thin juice determinations	ice dete	rminat	ons
Character Suc	Sucrose Purity Sq rt Leaf spot	ty Sq rt Leaf spot	Sq rt Anti- 3-hy-t log poly	L- Sq rt Cu	Sq rt Ca	Sq rt Mg	Log	Log	Log N	Log	Log C1
Weight1801	301		1516	9.			.1819	.1819 .2397		.2040	
Sucrose	.3760	0					7606	76065829557050964975	5570 -	- 5096 -	.,4975
Purity							2300	23002732362123732016	3621 -	2373	2016
Sq rt leaf spot			2073	2293		.1450					
Leaf determinations	ions										
Sq rt 3-hy-t			656	6562 .176050594356	5059	-,4356					
Antilog poly					.3730	.3730 .3695					
Sq rt LCu				2152			.1723				
Sq rt Ca						.8355		•	-,1558		
Sq rt Mg											
Thin juice determinations											
Log Na								4864 °	2444.	.4435	.5181
Log K									.5474	.3976	,3334
Log N										.5827	.4188
Log TJCu											.4323
Log Cl											

Positive relations were also noted between leaf spot and polyphenoloxidase and calcium, but they were not significant.

The general patterns of the relations of leaf spot are consistent with and support the hypothesis that 3-hydroxytyramine oxidized by polyphenoloxidase effects some measure of control on leaf spot. The oxidation process may be catalyzed by calcium and/or magnesium as they are negatively associated with 3-hydroxytyramine, and leaf copper may be used in formation of polyphenoloxidase although the relations are not all significant.

High concentrations of either or both 3-hydroxytyramine and its oxidizing enzyme, polyphenoloxidase, are thought to be necessary for high leaf spot resistance, but it appears that selection for high amounts of both compounds simultaneously would be difficult. One might theorize that the negative correlation between the two may be due to high concentrations of polyphenoloxidase which oxidizes the 3-hydroxytyramine. High concentrations of 3-hydroxytyramine may indicate the lack of enough polyphenoloxidase to oxidize the 3-hydroxytyramine as fast as it is produced. However, this type of mechanism is not the entire answer because a few S₁ lines had high concentrations of both compounds.

The progeny-parent regression coefficients for weight, sucrose, and 3-hydroxytyramine, which are the narrow sense heritability estimates, are shown in Table 3 along with the progeny-parent correlations.

The regression and correlation coefficients were determined from data collected on the S_1 lines in 1965 and from data on the individual parents in 1963. According to Falconer (4), the regression of progeny on mid-parent is a measure of the narrow sense heritability. In the case of self fertilization, the value for the parent is the same as the mid-parent in cross fertilization. Variance due to the additive effects of genes accounted for 57% of the phenotypic variance of 3-hydroxytyramine, 35% in the case of root weight, and 26% in the case of percentage sucrose. The proportion of additive variance in weight has been lower in previous experiments (8), but as is the case for any heritability estimate, conclusions drawn from these data should be applied only to this particular group of S_1 lines.

The parent and progeny measurements for weight, sucrose, and 3-hydroxytyramine were correlated, and it was found that the S₁ lines which had high sucrose had parents that also had high sucrose. The same relationship existed for 3-hydroxytyramine and weight; however, the weight correlation coefficient was not significant. This could be the result of poor stands for some of the S₁ lines which would directly affect root weight.

Table 3.--Progeny-parent correlations and narrow sense heritability ratios estimated from progeny-parent regression.

Character	Correlation coefficient (r)	Heritability
3-Hydroxytyramine	0.2802**	0.57
Percentage sucrose	0.3715**	0.26
Weight	0.1077	0.35

A conservative method of estimating broad sense heritability was used for all characters. Since the data obtained from A56-3, as well as the S₁ lines, were measured on the plot basis and not as individual plants, the A56-3 variance of plot means should have little genetic variance. Therefore, plot measurements on A56-3 can be used to estimate the environmental variance which is subtracted from the total variance for the S₁ lines leaving an estimate of their total genetic variance. This ratio of total genetic variance to total variance estimates broad sense heritability and indicates the expected progress from selection if one is using a breeding method which capitalizes on both additive and nonadditive gene action. These calculations are summarized in Table 4. The broad sense heritability estimates for weight and sucrose are 0.62 and 0.48, respectively. When these estimates are compared with estimates from previous experiments with similar material they appear reasonable (8). Therefore, this method should give a reasonable estimate for chemical characters. The estimate for 3-hydroxytyramine was 0.39 which implies that some progress could be made among these S1 lines when selecting for high 3-hydroxytyramine provided the proper breeding method was used, but not as much as for weight and sucrose. When the narrow sense heritability estimate from 3-hydroxytyramine shown in Table 3 is compared with the broad sense heritability estimate, it appears that most of the genetic variability is due to additive genes. A larger proportion is indicated than in the case of weight or sucrose. This indicates that mass selection within these S1 lines should be an effective means for selecting lines having high concentrations of 3-hydroxytyramine. The broad sense heritability coefficients for both leaf spot resistance and polyphenoloxidase were quite high being 0.62 and 0.72. This indicates that genetic shifts could be made in breeding for these characters within this population of S₁ lines, provided all types of gene action were utilized. Narrow sense heritability estimates were not available for these characters. The broad sense

Table 4.--Variances and broad sense heritability estimates of the \mathbf{S}_1 lines.

Character	Total variance	Estimated environmental variance	Genetic variance	Heritability ratio (broad sense)
Weight	4.66463	1.78632	2.87831	0.62
Sucrose	1.48726	0.77882	0.70844	0.48
Purity	14.22721	8.71432	5.51289	0.39
Sq. rt. Leaf spot	0.15554	0.05954	0.09600	0.62
Leaf determinations	<u>s</u>			
Sq. rt. 3-hy-t	4.64815	2.79937	1.84878	0.39
Antilog poly	68.36030	19.07317	49.28713	0.72
Sq. rt. Cu	0.01573	0.01372	0.00201	0.13
Sq. rt. Ca	0.20236	0.24129		
Sq. rt. Mg	0.12760	0.27397		
Thin juice determinations				
Log Na	0.17392	0.05570	0.11822	0.68
Log K	0.05103	0.03445	0.01658	0.32
Log N	0.15257	0.17671		
Log Cu	0.13362	0.15196		
Log Cl	0.17670	0.13730	0.03940	0.22

heritability estimates for purity, sodium, potassium, leaf copper, and chlorides were 0.39, 0.68, 0.32, 0.13, and 0.22. Estimates for the heritability of nitrogen, thin juice copper, calcium, and magnesium were zero, possibly due to the conservative nature of this estimation method.

Conclusions

- l. In this study, involving one heterogeneous population and S lines derived from it, the thin juice chemical characters were found to have a log-normal distribution, and the leaf chemical characters were found to have a square root-normal distribution with the exception of polyphenoloxidase which was normal as the antilog to the base 10.
- 2. Thin juice impurity components (sodium, potassium, total nitrogen, copper, and chlorides) were all positively correlated with each other and negatively correlated with sucrose and purity. However, based on the means, copper and chlorides contribute little to impurity.
- 3. Leaf chemical characters are not so highly and consistently correlated. The general pattern of the relations is consistent but the correlations are weak. It is possible that any of the divalent ions could catalyze the oxidation of 3-hydroxytyramine by polyphenoloxidase leading to some measure of control of leaf spot; at least the relations do not conflict with this hypothesis. However, this is only theory until more is known of the reactions in the plant.
- 4. Perhaps the most important information derived from this experiment is that high 3-hydroxytyramine in disease-free plants is associated with high leaf spot resistance.
- 5. This experiment indicates that a considerable portion of the 3-hydroxytyramine variance is due to additive genes which means that mass selection should be an effective method of selecting for high 3-hydroxytyramine lines. Polyphenoloxidase would very likely respond to the same selection technique.

Literature Cited

- 1. Brown, R. J. and R. F. Serro. 1954. A method for determination of thin juice purity from individual mother beets. Proc. Am. Soc. Sugar Beet Technol. 8:274-278.
- Carruthers, A. and J. F. T. Oldfield. 1961. Methods for the
 assessment of beet quality. I. Purity determination using
 a clarified extract from brei. International Sugar Journal.
 63:72-74.
- 3. Ezekiel, M. and K. A. Fox. 1959. Methods of Correlation and Regression Analysis. John Wiley and Sons, Inc., N. Y. pp. 548.
- 4. Falconer, D. S. 1960. Introduction to Quantitative Genetics.
 Ronald Press Co., N. Y. pp. 365.
- 5. Gardner, R. L. 1965. Identification of a compound from Beta vulgaris reported to be responsible for resistance to Cercospora leaf spot. Ph.D. Thesis. Colorado State University. (Diss. Abstr. 25:2940).
- 6. Harrison, M., M. G. Payne, and J. O. Gaskill. 1961. Some Chemical aspects of resistance to Cercospora leaf spot in sugar beets. J. Am. Soc. Sugar Beet Technol. 11:457-468.
- 7. Harrison, M., G. W. Maag, M. G. Payne, R. J. Hecker, and E. E. Remmenga. Sampling for phenolic compounds in sugar beets.

 J. Amer. Soc. Sugar Beet Technol. 14(6): 470-479. 1967.
- 8. Hecker, R. J. Evaluation of three sugarbeet breeding methods.
 J. Am. Soc. Sugar Beet Technol. 14(4):309-318. 1967.
- 9. Payne, M. G., LeRoy Powers, and E. E. Remmenga. 1961. Some chemical-genetic studies pertaining to quality in sugar beets (Beta vulgaris L.). J. Am. Soc. Sugar Beet Technol. 11:610-628.
- 10. Payne, M. G., LeRoy Powers, and G. W. Maag. 1964. Levels of total nitrogen, potassium and sodium in petioles and in thin juice of sugar beets. J. Am. Soc. Sugar Beet Technol. 13:127-137.
- 11. Polonovski, M., P. Gonnard, and O. Svinareff. 1952. The oxidation of 3,4-dihydroxyphenylalanine. Congr. intern biochim., Resume communs. 2 Congr., Paris. 282-283.

12. Polonovski, M. and P. Gonnard. 1953. Catalytic oxidation of dihydroxyphenylalanine (dopa) in the presence of metal-protein complexes. I, II Bull. Soc. Chim. Biol. 35:(387-398, 633-644).

RELATION OF 3-HYDROXYTYRAMINE TO WEIGHT PER ROOT AND PERCENT SUCROSE IN SUGAR BEETS

Introduction

The relation of 3-hydroxytyramine content of sugarbeet leaves to weight per root and percentage sucrose was studied experimentally in 1963, 1964, and 1965. The purpose of these experiments was to obtain information about the distribution and variability of 3-hydroxytyramine between and within sugarbeet genotypes and varieties. Such information is needed if 3-hydroxytyramine relations are found to be of direct value in breeding, pathologic, and physiologic studies on improved leaf spot resistance in sugarbeets. Equally important is the relation of 3-hydroxytyramine to yield and quality characters. This is necessary for the simultaneous improvement of all the economic characters.

Literature Review

Interest in the study of 3-hydroxytyramine was generated when Harrison et al. (3), found that a phenolic compound in beet leaves was toxic to leaf spot (Cercospora beticola Sacc.) when oxidized in the beet leaf. They also found that the quantity of 3-hydroxytyramine was positivly related to leaf spot resistance. This phenolic compound was later identified as 3-hydroxytyramine by Gardner (1). The methods for chemical determination of 3-hydroxytyramine and its oxidizing enzyme. polyphenoloxidase, are described by Harrison et al. (2). The results of a study of the form of the distribution of these two compounds in one population (A56-3) of sugarbeets, as well as other chemical characters, and the mathematical transformations required to obtain normality are described by Maag et al. (5). The distribution and variability of 3-hydroxytyramine in this one population for 1 year was such that the possibility of genetic change by selection appeared very likely. Differences between populations also indicate excellent potential [Harrison et al. (1)] for genetic change. However, the relation to sucrose and yield are not well defined. It is known that 3-hydroxytyramine content is highly variable with extreme differences occurring between and within leaves from the same plant and from different plants of the same variety. These differences are apparently affected by local environmental conditions. A study of this variability and the development of a sampling procedure to obtain consistent estimates of 3-hydroxytyramine content is also reported by Harrison et al. (2).

The distributions of weight per root and sucrose and their interrelations have been reported by Powers et al. (9), Payne et al. (6), and Powers and Payne (7). Where necessary and informative these relations will be presented here, but major emphasis will be on 3-hydroxytyramine content and its relation to root yield and sucrose content. The analysis will follow the general pattern described by Powers et al. (8).

Materials and Methods

The following populations of sugarbeets were used in the three experiments:

1963: A56-3, US 401 (4n), and (52-305CMS x 52-407, F_1).

1964: A56-3, SP 5481-0 (2n), SP 5481-0 (4n), and $(5\overline{2}-305CMS \times 52-408,F_1)$.

1965: A56-3, FC 901, [52-305CMS x (52-430 x 52-407, F_1)] OP, and (52-305CMS x 52-408, F_1).

A56-3, a multigerm open pollinated commercial variety, was used all 3 years. The hybrid (52-305CMS x 52-408,F1) was used in both 1964 and 1965. Hence eight different populations were used over the 3 years. SP 5481-0 (2n) and (4n) are diploid and tetraploid equivalents of a multigerm open pollinated variety. US 401 (4n) is the tetraploid equivalent of US 401 which is a multigerm open pollinated diploid variety. With respect to leaf spot resistance, US 401 (4n), SP 5481-0 (2n) and (4n), and FC 901 are generally considered to have moderately high resistance. A56-3 is considered to have moderate resistance. Among the four inbred parents involved in the three hybrid populations, 52-305CMS is moderately high in resistance while the other three are quite susceptible. The hybrid (52-305CMS x 52-407,F1) is moderately resistant; the other two have not been classified for leaf spot resistance.

The experimental materials were grown under irrigation at the Colorado State University Agronomy Research Center, Fort Collins, Colorado, and were planted April 8, April 23, and April 8 in 1963, 1964, and 1965, respectively. The average growing season in Fort Collins is about 145 days. The field design was a randomized block with 40 replicates. In 1963, 10 plants were harvested per plot for a total of 400 plants per population. Twelve plants were harvested from each plot in 1964 and 1965 for a total of 480 observations for each character in each population. The same design was used in all years. However, in 1965, two replicates were deleted from the analysis

because of missing plots for two characters.

Individual plant data were obtained on all populations in all years for weight per root, percentage sucrose, and 3-hydroxytyramine content. Leaf samples for 3-hydroxytyramine were taken in mid-July in 1963 and 1964 and the first week of August in 1965. In 1963 and 1964 the same leaves were used for polyphenoloxidase determinations. Complete analysis for polyphenoloxidase was made only in 1964 and sufficient material was available in only 26 replicates for this determination. Incomplete polyphenoloxidase data were available in 1963.

The data were transformed to scales indicated by Maag et al. (5) and the transformed data were checked for normality and independence of means and variance. Population means and variances were obtained for each year and analyses of variance were computed within and between years for each character. Genetic variances and heritabilities were computed for each character each year using the F₁ variance as an estimate of environmental variance. Correlations within populations using individual plant data were computed for each pair of characters within years and estimates of genetic correlation were obtained. Univariate and bivariate frequency distributions were made and studied for numbers of identifiable genetic deviates.

The univariate frequency distributions were partitioned for all populations for all years using methods of Powers et al. (8). This method adjusts the distributions to eliminate differences between replications within populations and differences between populations, resulting in a common mean for all populations. Using the nonsegregating population as an estimate of the environmental distribution, the distributions of the segregating populations each year were partitioned at approximate points of intersection of the obtained and estimated environmental curves. The identifiable numbers of genetic deviates were differences between obtained and estimated environmental distributions. The same partition points were used in the bivariate distributions for estimation of the identifiable numbers of genetic deviates for combinations of two characters.

Results

The population means and their standard errors for the 3 years of this study are reported in Table 1. The mean weight per root in kilograms and percentage sucrose show year and population differences as expected.

Table 1.--Population means and their standard errors within years.

	Leaf spot 1/				
Population and year	classifi-	Root	Percentage sucrose	3-hydroxy- tyramine	Polyphenol- oxidase
		kgs	₩	mg/100ml	optical
1963					
A56-3	mr	1.174 ± 0.032	15,38 ± 0,069	6,64 ± 0,242	0.797*0.056
US 401 (4n)	mr	1.127*0.034	14.60*0.080	7,96 ± 0,271	1,015*0,038
52-305CMS x 52-407,F1	mr	0.974 ± 0.017	16,15*0,050	17,76*0,265	0°497
1964					
A56-3	mr	0.551*0.012	19,01*0,046	12,14*0,530	1,005*0,015
SP 5481-0 (2n)	ĥ	0.502*0.011	18,76*0,043	8.67*0.390	1,052*0,014
SP 5481-0 (4n)	ñ	0.572*0.014	18,50*0,056	12,31*0,393	1.009*0.014
52-305CMS x 52-408 ₈ F ₁	unk	0.556 ± 0.009	20.03 ± 0.030	23,55*0,550	0.790*0.015
1965					
A56-3	mr	0.689±0.016	15,43*0,060	34,76*1,495	
FC 901	ñ	0.516*0.013	14.27 * 0.069	27,85*1,237	
$52-305$ CMS × $(52-430 \times 52-407_{\bullet}F_{1})$	nnk	0.417 ± 0.009	15,37 ±0,048	103,19*2,338	
52-305CMS x 52-408 ₉ F ₁	unk	0.566*0.009	15.28 * 0.033	63,31*1,192	

mr = moderately resistant r = resistant unk = unknown resistance

The means for 3-hydroxytyramine show extreme differences between years and between populations. Some of the year effect between 1963 and 1964 was probably due to changes in analytic methods since the determination method was modified in 1964. However, there was undoubtedly a true year effect as there was with weight per root and percentage sucrose, although year effect cannot be isolated from chemical technique for this variable in 1963 and 1964. There was a corresponding change in the standard error for 3-hydroxytyramine from year to year which may be partly due to changes in chemical procedure, but a positive relation between the means and variances appeared to be partly responsible for these year to year differences. The correlations between 3-hydroxytyramine and weight and sucrose should not be affected by this change in chemical procedure, however.

The highest levels of 3-hydroxytyramine each year occurred in the F_1 hybrids. All of these hybrids in this particular study had the same female parent, 52-305CMS. The hybrid (52-305CMS x 52-407, F_1) is rated as moderately resistant to leaf spot as is A56-3, which in 1963 had less than one-half as much 3-hydroxytyramine. In 1964, SP 5481-0 (2n) had the least amount of 3-hydroxytyramine but was classed as being a resistant variety, superior to A56-3 and the F_1 .

The population differences are such that genetic manipulation of the amounts of 3-hydroxytyramine present should be possible. From the population means, it would appear that 3-hydroxytyramine is not closely related to either root weight or percentage sucrose. High levels of all three characters occurred in the hybrid (52-305CMS x 52-408, F_1) in 1964, while in 1963 the highest level of 3-hydroxytyramine occurred with the lowest yielding population, and the lowest level of 3-hydroxytyramine occurred with the highest yielding population.

Complete polyphenoloxidase data (on 26 replications) were available only in 1964 with some partial data in 1963. Fairly large population differences existed for quantity of this enzyme. The lower levels of polyphenoloxidase occurred in those populations which had high levels of 3-hydroxytyramine and vice versa. It is difficult to infer a relation between polyphenoloxidase and weight per root or percentage sucrose from one year with only four populations but as with 3-hydroxytyramine, a close relation probably does not exist.

For variance and correlation analysis each of the characters in each year were transformed to the scale indicated by Maag et al. (5), (weight per root and 3-hydroxytyramine transformed to square roots, sucrose untransformed, polyphenoloxidase transformed to antilog 10). Tests were performed on each set to determine whether or not the transformations were successful in removing any relations between the means and variances which have commonly existed in this type of

data and to determine if the data on the transformed scale are sufficiently normal for valid tests following the analyses of variance.

Tests using the third and fourth moments about the mean were run on each variable, transformed to the scale recommended by Maag et al. (5), for each population in each year to determine whether or not the data were normally distributed. The tests are sensitive with sample sizes such as were used here. It was observed that many variables were significantly non-normal considering variables within years within populations. For example, square root of weight per root was significantly negatively skewed in three cases, significantly positively skewed in one case, and acceptably normal in seven cases; sucrose, which was handled on the arithmetic scale as has been the usual practice, was found to be significantly negatively skewed in eight cases, significantly positively skewed in two cases, and acceptably normal only once. Obviously, no transformation can possibly produce overall normality when one population is highly negatively skewed and another highly positively skewed in the same year. The chosen transformations are superior to no transformations and allow an acceptable analysis.

The relation between the means and variances for each variable for each population in each year was also studied. The same lack of pattern was found with some significant positive relations, some significant negative relations, and some nonsignificant relations. It is impossible to remove the relation between means and variances in all cases with a uniform transformation. The mean-variance relation for the F_1 's used as a measure of environmental variability has been removed or decreased in most cases, however.

Analyses of variance were performed on the transformed data for each character for each year and reported in Table 2. The population and replication effects were significant for nearly all characters in all years; however the magnitude of these differences is such that the population effect is of greatest concern. The population by replication interaction was significant in six of the ten cases. Environmental differences, as indicated by the replication effects and the replication x population interactions, are minor as compared to the population effects.

Combined analyses of variance were computed to evaluate the year effects and the population x year interactions (Table 3). A56-3 was used in all years and A56-3 and (52-305CMS x 52-408, F_1) were common to 1964 and 1965. These tests are based on only one degree of freedom and broad generalizations should not be made without further study. However, the anticipated year effect is significant

Table 2.--Analyses of variance for weight per root (kgs), percentage sucrose, 3-hydroxy-tyramine (mg/100ml), and polyphenoloxidase (optical density), (transformations as noted), for three years.

			Mea	Mean square	
Year and source of variation	Degrees of freedom	Root weight	Sucrose	√3-hydroxytyramine	Antilog 1/polyphenol-oxidase
1963					
Populations	2	0.5317**	240,1743**	360,2464**	
Replications	39	0.0732	24.5461**	9,0966**	
ъ ж ж	78	0.0633	6.0961**	2,0861**	
Residual	1080	0.0780	1,8333	0.6972	
1964					
Populations	က	0.2161**	213,7442**	317.4579**	1686,3915**
Replications	39	0.0400##	12,6754**	32,8003**	679,2404**
P X R	117	0.0194	3.8082**	4*8494	86.0740**
Residual	. 1760	0.0310	8496.0	1,5617	38.9127
1965					
Populations	က	2,5526##	136,8993#*	2384,8758**	
Replications	37	0.0503*	33,7621**	37.0614**	
P X R	111	0.0288	4.5814##	12,2164**	
Residual	1672	0.0299	1,3317	7496°h	

Degrees of freedom are 3, 25, 75, and 1112, respectively, for each source of variation for polyphenoloxidase.

Table 3.--Analyses of variance for weight per root (kgs), percentage sucrose, and 3-hydroxy-tyramine (transformations as noted), three years (1963, 1964, 1965) combined.

			Mean square	v
Source of variation	Degrees of freedom	Root weight	Sucrose	/3-hydroxytyramine
Years	2	38,3445**	8843,1000**	7690.8741**
Populations within years	∞	1,171244	191,5349**	1103,4368**
Replications within years	115	0.0546	23.4855**	26,1326**
P x R within years	306	0,0340	4.6719**	6,5173**
Residual	4512	0.0418	1,3086	2.6158
A56-3 only Between years	2	11,8058	2002,4538	1064,4171
A56-3 and (52-305CMS x 52-408,F1)				
Years	H	0.9493	8104,2380	3443,7843
Populations	Н	0,2953	93,3355	1641,6128
YxP	7	0.6564	158,2373	98,0632

for all characters (when considering A56-3 only). The year by population interaction is significant for all characters but is usually much smaller in magnitude than either the year or population effects. A study of the means (Table 1) indicates that this interaction exists but also indicates that if a population has a high yield, sucrose content, or 3-hydroxytyramine content in any year, that population will probably be relatively high in all years. The interaction stems from the fact that the population differences vary within years even though the general ranking is the same.

The correlations within populations and within years for each pair of characters are shown in Table 4. These correlations were calculated from individual plant determinations and include both the genetic and environmental correlation. None of the correlations are large but many are significant. The correlation between sucrose and weight is negative in most cases as is generally expected.

Weight and 3-hydroxytyramine are positively related in all populations and years in this study. This relation is not large but is significantly greater than zero in most cases, indicating genetic linkage, epistasis, and/or interallelic interaction.

The relation between sucrose and 3-hydroxytyramine is somewhat erratic. Significant correlations exist in all years and both significant positive and negative relations exist in 1965. These correlations are not as high nor as consistant as those between weight and 3-hydroxytyramine. Simultaneous selection for high sucrose and high 3-hydroxytyramine will probably present the same problems as selection for high sucrose and high root yield.

A significant negative relation exists between 3-hydroxytyramine and polyphenoloxidase. The correlations of polyphenoloxidase with weight per root are negative but not significant, while the correlations with sucrose are positive, with two being significant. This pattern is consistent with the preceding discussion as well as with those previously reported by Maag et al. (5).

The genetic correlations are presented in Table 5. These correlation coefficients were calculated from estimates of the genetic variances and covariances, which in turn were estimated as differences between the respective variances and covariances of the segregating and nonsegregating populations. These genetic correlations should represent the genotypic relationship of the various characters. In testing these genetic correlations for significance the degrees of freedom for the genetic variances and covariances, and thus the

Table 4. -- Simple correlation coefficients (r) within populations and years.

Year and character combination		Poj	Population	
1963	A56-3	US 401 (4n)	52-305CMS x 52-407,F1	
Root weight vs. sucrose Root weight vs. /3-hydroxytyramine Sucrose vs. /3-hydroxytyramine 3-hydroxytyramine vs. polyphenoloxidase	-0.131** 0.147** 0.197** -0.537**	0.093	-0.391** 0.280** 0.100*	
1964	A56-3	SP 5481-0 (2n)	SP 5481-0 (4n)	52-305CMS x 52-408,F1
/Root weight vs. /3-hydroxytyramine /Root weight vs. /3-hydroxytyramine /Root weight vs. antilog polyphenoloxidase	-0.175## 0.059 -0.037	-0.053 0.180** -0.046	-0.007 0.117** -0.100	-0.412** 0.239** -0.030
Sucrose vs. /3-hydroxytyramine Sucrose vs. antilog polyphenoloxidase	0.047	0.030	0.076	-0.130** 0.154**
polyphenoloxidase	-0.406**	-0.283**	-0.209**	-0.330**
1965	A56-3	FC 901	52-305CMS x (52-430x52-407,F1)	52-305CMS x 52-408,F ₁
Root weight vs. sucrose Root weight vs. /3-hydroxytyramine Sucrose vs. /3-hydroxytyramine	-0.115# 0.163*# -0.012	0.116* 0.070 0.139**	-0.056 0.063 -0.119**	0.0080

Table 5.--Genetic correlations within populations and years.

Deg fr Year and character combination (for	Degrees of freedom (for testing r)		Population	no
1963		A56-3	US 401 (4n)	
Root weight vs. sucrose Root weight vs. /3-hydroxytyramine Sucrose vs. /3-hydroxytyramine	178 178 178	0.122 0.038 0.420**	0,419** 0,011 0,336**	
1964		A56-3	SP 5481-0 (2n)	SP 5481-0 (4n)
Root weight vs. v3-hydroxytyramine		-0.059 -0.902**	0.363**	0.279**
Sucrose vs. /3-hydroxytyramine Sucrose vs. antilog polyphenoloxidase	218 143	0.100	0.156	-0°504*
1965		A56-3	FC 901	52-305CMS x (52-430x52-407,F1)
Root weight vs. sucrose Root weight vs. /3-hydroxytyramine Sucrose vs. /3-hydroxytyramine	226 226 226	-0.140* 0.210** 0.093	0.198** -0.047 0.216**	-0.022 -0.065 -0.129

genetic correlations, were obtained from the theoretical form of the variance of the estimates of genetic variances and covariances. Degrees of freedom is generally considered as the divisor in the equation for a variance. In this case if σ_g^2 (or cov_g) = 0, the degrees of freedom is one-half that of the total within plot correlation. Even a sizeable value for σ_g^2 will change this value only slightly; hence the degrees of freedom used for testing the genetic correlations were considered as a good approximation of the true degrees of freedom. From the 3 year study it is apparent from the correlations of root weight with 3-hydroxytyramine for A56-3 that a year by genotype interaction is present and has considerable effect. The difference between populations is marked, indicating that the genes conditioning each character must be different in the different populations. In other words each of these characters seems to be conditioned by several genes.

The total genetic variance was computed for each population for each year based on the total within plot variance of each population and using the total within plot variance of the nonsegregating \mathbf{F}_1 as an estimate of the environmental variance. Broad sense heritability ratio estimates were computed for each population for which an estimate of genetic variance could be obtained and are presented in Table 6.

The heritability ratios for root weight and sucrose are quite consistent and little affected by years. However the heritability ratios for 3-hydroxytyramine are affected by years. Therefore the variability in quantity of 3-hydroxytyramine is affected by the environment and by genotype, which tends to detract from the value of the heritability ratios. It appears that little can be accomplished by a comprehensive study of the variability of 3-hydroxytyramine until its environmental influences are more clearly defined.

The estimates of identifiable numbers of superior and inferior genetic deviates are also included in Table 6. These estimates are expected numbers of genetically inferior and superior individuals in each population for each character and as such provide an empirical comparison of the relative breeding value of each segregating population. These expected numbers of genetic deviates in the case of 3-hydroxytyramine are of dubious value since the population variance can be greatly influenced by unknown environmental factors. One thing worthy of note and further study is that the estimate of superior genetic deviates is usually less than the estimate of inferior ones (classing high 3-hydroxytyramine as superior). Identifiable numbers of genetic deviates should serve as comparative breeding values in the case of root weight and sucrose percentage.

The association between the expected number of genetic deviates

Table 6.--Heritability ratios (h²) and identifiable numbers of superior and inferior genetic deviates, expressed as percent of the total population.

Antilog polyphenoloxidase	Number of heviates Sup. Inf.	oh Oh			0.421 7.0 9.3	0.452 9.3 11.9	0.374 7.7 11.9				
ramine	r of tes Inf.	₩	13.0	10.2	6°9	7.7	3.8	11.2	11.8		13.2
roxyty	Number of deviates Sup. Inf	96	8.2	6.5	1.5	2.1	1.2	7.9	8.1		19.7
/3-hydroxytyramine	h ²		0.342	0.355	0.048			0.483	0.479		0.650
ucrose	r of tes Inf.	ŖĊ	8	8 0	8.5	8.1	11.5	11.0	13.4		9.2
Percentage sucrose	Number o deviates Sup. In	o)P	7.5	11.2	9.2	9.6	12.7	16.2	18.6		9° 6
Percen	h ²		184.0	0.615	0.582	0.530	0.725	0.689	0.767		0.508
root	r of tes Inf.	96	14.5	16.8	7.3	7.5	11.7	13.2	11.2		5.7
t per	deviates Sup. Inf.	ako	13.2	14.5	ა დ	8.1	9.6	13.4	6.6		8 9
Weight per root	h ²		0.623	0.689	0.403	0.418	0.579	0.643	0.595		0.343
	Year and population		1963 A56-3	US 401 (4n)	1964 A56-3	SP 5481-0 (2n)	SP 5481-0 (4n)	1965 A56-3	FC 901	52-305CMS x	(52-430x52-407,F ₁) 0.343

(in percent of the total) and heritability can be determined by their correlation. This correlation, if high, would indicate that the populations were normally distributed, since Hecker (4) states that under conditions of normality the proportion of genetic deviates should be a monotonic (increasing) function of heritability and, hence, an equivalent index. These correlations were calculated. For 3-hydroxy-tyramine the coefficients were 0.88 and 0.85, respectively, for heritability with the number of superior and inferior genetic deviates. These same correlations are also relatively high for root weight and percentage sucrose: 0.92, 0.97, and 0.90, 0.86. In this experiment the heritability ratios and identifiable numbers of genetic deviates provide equivalent information except that the identifiable numbers of genetic deviates allow one to see whether or not high and low deviates contribute equally to the genetic variability of the population.

The partitioned bivariate distributions provide the identifiable numbers of genetic deviates for combinations of two characters in Table 7. These are average numbers of individuals superior or inferior for two characters simultaneously. These values are a function of the correlation of two characters and their heritabilities but they provide information not readily observable by studying the correlations and heritability ratios. For instance it is apparent from Table 6 that there are no individuals superior or inferior for both 3-hydroxytyramine and polyphenoloxidase. This was not readily observable by studying the correlation coefficients and the heritability ratios. It would apparently be futile to select for high 3-hydroxytyramine and high polyphenoloxidase in the three populations studied in 1964. Genetic deviates superior for 3-hydroxytyramine and weight or sucrose occur with about equal frequency in all populations. However the frequency is not very high indicating some difficulty in selecting for these combinations. Genetic deviates superior for both weight and sucrose occur more frequently than any other combination of characters but there is considerable difference between populations and possibly some difference between years.

Discussion

It is apparent from the means and partitioned univariate frequency distributions that there is considerable variability in quantity of 3-hydroxytyramine due to genotype. According to Maag et al. (5) a larger proportion of this variability may be due to additive gene effects than to root weight and sucrose percentage. So it should be possible to shift the quantity of 3-hydroxytyramine by selection or choice of parents in a hybrid combination provided the considerable environmental effect on 3-hydroxytyramine can be separated from the

Table 7.--Heritability ratios (h^2) for the respective characters (in order) and identifiable numbers of genetic deviates, expressed as percent of the total population, in sections 4, 5, and 6 (superior), and in sections 1, 2, and 8 (inferior) for the bivariate frequency distributions.

Year, character,	Herit	ability		ble numbers ic deviates
and population		tio	Sup.	Inf.
1963	h²	h ²	*	*
Weight vs. sucrose (n=400)				
A56-3	0.623	0.484	9.0	11.0
US 401 (4n)	0.689	0.615	8.5	
√Weight vs. √3-hydroxytyramine (n=400)				
A56-3	0.623	0.342	10.0	9.5
US 401 (4n)	0.689	0.355	8.8	8.8
√3-hydroxytyramine vs. sucrose (n=400)				
A56-3	0.342	0.484	8.0	9.0
US 401 (4n)	0.355	0.615	9.8	2.5
1964				
Weight vs. sucrose (n=480)				
A56-3	0 1100	0.500		
SP 5481-0 (2n)	0.403		10.6	8.3
SP 5481-0 (4n)		0.530	13.5	9.4
√Weight vs. √3-hydroxytyramine (n=480)	0.579	0.725	8.8	10.8
A56-3	0.403	0 0110	2.2	0.6
SP 5481-0 (2n)	0.403	0.048	3.3	9.6
SP 5481-0 (4n)	0.579		4.6	9.8
√3-hydroxytyramine vs. sucrose (n=480)	0.579		5.4	7.7
A56-3	0.048	0.582	7.0	0.4
SP 5481-0 (2n)	0.040	0.530	7.9	9.4
SP 5481-0 (4n)		0.725	7.5	6.0
Weight vs. antilog polyphenoloxidase (n=312)		0.723	6.2	4.0
A56-3	0.403	0.421	-1.3	5.8
SP 5481-0 (2n)		0.452	5.4	7.4
SP 5481-0 (4n)	0.579		4.5	9.3
Sucrose vs. antilog polyphenoloxidase (n=312)	••••	0.074	7.5	3.3
A56-3	0.582	0.421	5.1	5.8
SP 5481-0 (2n)		0.452	11.2	
SP 5481-0 (4n)	0.725		10.3	-
√3-hydroxytyramine vs. antilog polyphenoloxidase (n=312)	- • • • • •		10.0	11.5
A56-3	0.048	0.421	-3.5	-1.0
SP 5481-0 (2n)		0.452	-4.8	
SP 5481-0 (4n)		0.374	-5.1	4.5
965			- • -	
Weight vs. sucrose (n=456)				
A56-3	0.643	0.689	17.1	0.6
FC 901	0.595		17.1	
52-305CMS x (52-430 x 52-407,F,)	0.343	-	21.3	-
Weight vs. √3-hydroxytyramine (n=456)	0.045	0.308	11.0	7.9
A56-3	0.643	0.483	12.3	11 6
FC 901	0.595		6.1	
52-305CMS x (52-430 x 52-407,F,)	0.343		15.1	
3-hydroxytyramine vs. sucrose (n=456)	0.040	3,030	13.1	11.2
A56-3	0.483	0.689	12.1	7.2
FC 901	0.479		11.4	4.2
52-305CMS x (52-430 x 52-407,F ₁)	0.650		13.2	6.6
***	3,000	-,500	10,2	0.0

genetic effect. Further studies are currently under way in an attempt to determine the environmental factors influencing 3-hydroxytyramine. Some difficulty might be experienced in advancing both root yield and quantity of 3-hydroxytyramine, as well as sucrose content and 3-hydroxytyramine. From those populations grown in 1964 it appears virtually impossible to increase quantities of 3-hydroxytyramine and polyphenoloxidase simultaneously. Since certain of these 1964 populations were quite hetrogeneous this relationship might be expected to extend extensively through the species.

Even though positive associations between quantity of 3-hydroxytyramine and leaf spot resistance have been established, Harrison et al. (3), and Maag et al. (5), it is apparent from the data of this experiment and Harrison et al. (2), that there are exceptions to this relationship. It is not a one-to-one association. It would appear that quantity of 3-hydroxytyramine cannot be used directly as a measure of leaf spot resistance. Further studies are being conducted to determine the exact relationship of these two characters and the relationship of leaf spot resistance with related phenolic compounds and their related enzymes. A direct quantitative determination of some compound as a precise measure of leaf spot resistance would be extremely valuable, but considering the number of alternative pathways that exist for most metabolic processes it would appear unlikely that any single chemical determination could serve as a direct and precise measure of leaf spot resistance. However a combination of two or more determinations or their ratio might ultimately be a more precise and economic measure of leaf spot resistance than actual plant observations under leaf spot conditions.

Summary

It is known that 3-hydroxytyramine found in sugarbeet leaves is toxic, when oxidized, to Cercospora beticola in pure culture. The oxidizing enzyme polyphenoloxidase is also known to be in beet leaves. The distribution and variability of 3-hydroxytyramine and its oxidizing enzyme between and within varieties was studied to determine the quantity and relationships of this phenolic compound with root yield and sucrose content. Information was also obtained on the relation of 3-hydroxytyramine to the improvement of leaf spot resistance in sugarbeets.

The study was conducted over 3 years and included eight different varieties and hybrids. Population differences in quantity of 3-hydroxy-tyramine and polyphenoloxidase were of sufficient magnitude to indicate

that genetic manipulation is possible. Differences due to environment, years, and replications, were also significant. Even though the variety by year interaction was significant the general ranking of their means was the same over years.

Total correlations between 3-hydroxytyramine and weight per root were small but positive and generally significant. Correlations of 3-hydroxytyramine and sucrose percentage were positive and negative but low. Polyphenoloxidase and 3-hydroxytyramine were consistently negatively correlated and relatively high. The polyphenoloxidase correlations with weight and sucrose were small and generally not significant.

Genetic correlations indicate an effect of environment on genetic expression and that different genes are active in all populations for all characters.

Broad sense heritability ratios were quite consistent for weight per root and sucrose content over years and populations, ranging from 0.403 to 0.689 and 0.484 to 0.767, respectively. Heritability of 3-hydroxytyramine was affected considerably by unaccountable environmental variability and ranged from 0 to 0.650.

Identifiable numbers of genetic deviates for both univariate and bivariate frequency distributions were estimated. If one considers these numbers to be expected breeding values, they correspond very closely to the heritability estimates. They have the advantage of showing whether or not high and low deviates contribute equally to the genetic variability of the population. They also indicate the potential for simultaneous increase of any two characters. There were superior and inferior genetic deviates for all combinations of characters except 3-hydroxytyramine and polyphenoloxidase.

It appears that quantity of 3-hydroxytyramine cannot be used as a direct measure of leaf spot resistance even though there is a general relationship between them.

Literature Cited

- 1. Gardner, R. L. 1965. Identification of a compound from Beta vulgaris reported to be responsible for resistance to Cercospora leaf spot. PhD. Dissertation Colorado State Univ., (Diss. Abstr. 25:2940).
- 2. Harrison, M., G. W. Maag, M. G. Payne, R. J. Hecker, and E. E. Remmenga. Sampling for 3-hydroxytyramine and polyphenoloxidase in sugar beets. J. Amer. Soc. Sugar Beet Technol. 14(6):470-479. 1967.
- 3. Harrison, M., M. G. Payne, and J. O. Gaskill. 1961. Some chemical aspects of resistance to Cercospora leaf spot in sugar beets. J. Am. Soc. Sugar Beet Technol. 11:457-468.
- 4. Hecker, R. J. Evaluation of three sugarbeet breeding methods.

 J. Am. Soc. Sugar Beet Technol. 14(4):309-318. 1967.
- 5. Maag, G. W., M. G. Payne, I. M. Wickham, R. J. Hecker, E. E. Remmenga, and M. Harrison. Association of copper and other chemical characters with Cercospora leaf spot resistance in sugar beets. J. Amer. Soc. Sugar Beet Technol. 14(7): 605-614. 1967.
- 6. Payne, M. G., LeRoy Powers, and E. E. Remmenga. 1961. Some chemical-genetic studies pertaining to quality in sugar beets (Beta vulgaris L.). J. Am. Soc. Sugar Beet Technol. 11:610-628.
- 7. Powers, LeRoy, and M. G. Payne. 1964. Associations of levels of total nitrogen, potassium, and sodium in petioles and in thin juice with weight of roots per plot, percentage sucrose and percentage apparent purity in sugar beets. J. Am. Soc. Sugar Beet Technol. 13:138-150.
- 8. Powers, LeRoy, E. E. Remmenga, and N. S. Urquhart. 1964. The partitioning method of genetic analysis applied to a study of weight per root and percentage sucrose in sugarbeets.

 Colo. Agr. Exp. Sta. Tech. Bull. 84. pp. 23.
- 9. Powers, LeRoy, D. W. Robertson, R. S. Whitney, and W. R. Schmehl. 1958. Population genetic studies with sugar beets (Beta vulgaris L.) at different levels of soil fertility. J. Am. Soc. Sugar Beet Technol. 9:637-676.

PART V

Progress reports of research conducted at Michigan State University, East Lansing, Michigan and

Plant Industry Station, Beltsville, Maryland by the

Staff of Sugarbeet Investigations, ARS-USDA in cooperation with:

Michigan Agricultural Experiment Station Beet Sugar Development Foundation Farmers & Manufacturers Beet Sugar Assoc.

Research was conducted by:

G. J. Hogaboam

F. W. Snyder

R. C. Zielke

D. L. Mumford

G. E. Coe

EVALUATION OF SUGARBEET VARIETIES AND BASIC BREEDING MATERIAL SUITABLE FOR THE GREAT LAKES REGION

1/

The evaluation program was continued in 1966 on a cooperative basis as it has been for several years. Stands were better this year than in the past. Tests with poor stands are not included in the report. The report is divided into two sections: 1) Agronomic Evaluation which contained five hybrids and SP5822-0 in 6 x 6 latin square designs; 2) Area Evaluation tests composed of two basic groups of hybrids within which females could be compared across males and vice versa. The area evaluation test also included two hybrids, SL(129x133)ms pollinated by SP5822-0 and by SP6428-01, which were each entered under two different entry numbers to enable more precision in cross comparisions between the two basic groups of hybrids. Three other hybrids and SP5822-0 were added to complete the 36 x 6 design.

Section One: Agronomic Evaluation

Summary of the 1966 Agronomic Evaluation Tests (pages 325 and 326) reveals that three hybrids (Entries 1, 2, and 3) were significantly above other entries in tons of roots and in pounds of recoverable sugar per acre, and for these characteristics, there was no significant difference among these superior hybrids. When these three hybrids were examined for clear juice purity, however, (SP6121 x EL31)ms X SP5822-0 was found to be significantly below both SL(129x133)ms X SP5822-0 and SL(129x133)ms X SP6322-0. Unfortunately, of these hybrids, the one with significantly more resistance to leaf spot is lowest in purity.

It was possible to make female comparisons between (SP6121 x EL31) and SL(129x133) across a common pollinator for the years 1964, 1965, and 1966. These data indicate that (SP6121 x EL31)ms is lower in purity but much higher in leaf spot resistance than SL(129x133)ms. The yield of roots and recoverable sugar per acre and percent sucrose are not strikingly different.

The 1965 and 1966 data were examined for differences between SP5822-0 and SP6322-0 as pollinators of $SL(129 \times 133)ms$. When the data are combined, significant differences are lacking but slightly in favor of SP6322-0.

^{1/} Compiled by G. J. Hogaboam and cooperators.

AGRONOMIC EVALUATION

TABLE OF PERFORMANCES IN PERCENT OF THE GENERAL MEAN OF THE TEST

Entry → Test ↓	1#	2	3 ^~~a	4	5	6	LSD _%	General Mean
Lbs. Recove Miller Gremel Groulx Helmreich C&D Farm W.O.A.S. AVERAGE	101.9 111.5 103.1 109.3 108.3 101.5	106.5 110.4 99.5 103.6 95.7 108.3 104.0	99.9 102.0 111.9 96.8 110.0 108.8 104.9	102.5 95.0 100.1 99.1 98.6 92.3 97.9	97.8 94.6 96.4 97.4 100.8 98.3 97.6	91.3 86.5 89.0 93.8 86.6 90.8 89.7	7.6 12.9 NS NS NS 5.7	4,967 4,939 4,030 6,222 4,583 7,647 5,398
T								
Tons of Roc Miller Gremel Groulx Helmreich C&D Farm W.O.A.S. AVERAGE	102.5 109.7 103.3 105.4 110.9 100.1 105.3	106.7 111.9 102.6 106.4 99.2 106.4 105.5	100.8 104.8 109.6 99.0 104.5 108.9 104.6	99.0 93.9 100.2 97.6 95.7 95.6 97.0	98.4 93.3 94.8 96.2 99.2 97.9 96.6	92.5 86.2 89.4 95.3 90.4 91.2 90.8	5.3 11.5 NS NS NS 11.1 ₀ 4.6	16.87 18.32 12.87 21.72 20.47 27.08 19.56
Recoverable Miller Gremel Groulx Helmreich C&D Farm W.O.A.S. AVERAGE	99.8 101.5 99.8 103.7 98.0 101.6 100.7	99.8 98.9 97.2 97.4 97.1 101.8 98.7	98.7 97.4 102.0 97.7 106.0 99.8 100.3	99.8	100.6	98.4 100.0 99.1 98.4 95.8 99.4 98.5	NS NS NS NS NS	294.7 270.0 312.7 286.5 225.5 282.18 279.05

Entry No. Seed Number

- 1 SL(129x133)ms X SP5822-0
- 2 (SP6121xEL31)ms X SP5822-0
- 3 SL(129x133)ms X SP6322-0
- 4 (SL129xSP6121)ms X SP6428-0
- 5 (SL126xSP6121)ms X SP6428-0
- 6 SP5822-0

[@] Calculated from an analysis of % performance of entries vs. tests. Standard Footnote a. on page 328.

AGRONOMIC EVALUATION

TABLE OF PERFORMANCES IN PERCENT OF THE GENERAL MEAN OF THE TEST

Entry → Test + a	1#	2	3	4	5	6	LSD 5%	General Mean
%Sucrose				100 7	00 /	00 0	NC	16.14
Miller	100.0	100.3	98.7	102.7	99.4	99.0	NS NS	15.71
Greme1	101.9	100.6	97.0	99.7	100.8	100.1	NS NS	17.42
Groulx	99.9	97.7	101.4	99.3	101.6	100.2	NS NS	16.30
Helmreich	102.7	99.0	97.8	99.8	101.5	96.4	NS	13.50
C&D Farm	97.4	98.2	104.9	102.1 98.7	99.9	98.7		15.99
W.O.A.S.	101.1	101.9	99.6 99.9	100.4	100.7	98.9	NS _@	15.84
AVERAGE	100.5	99.6	33.3	100.4	100.7	70.7	110	13.04
°′ 01 T		a						
% Clear Ju		<u>ty</u> 99.8	100.0	100.6	100.0	99.7	NS	95.07
Miller	99.9 99.8	99.0	100.0	100.6	100.0	100.0	0.8	92.32
Gremel Groulx	99.9	99.8	100.2	100.3	100.3	99.5	NS	94.30
Helmreich	100.4	99.2	100.0	100.9	99.8	99.7	1.0	93.32
C&D Farm	100.4	99.6	100.3	100.2	100.0	99.7	NS	91.05
W.O.A.S.	100.3	99.9	100.1	99.1	100.3	100.3		94.28
AVERAGE	100.1	99.6	100.2	100.3	100.1	99.8	NS _@	93.39
Beets per	100'							
Miller	102.9	103.8	103.8	99.3	96.5	93.8	6.4	109.8
Gremel	102.1	106.2	107.2	97.9	91.8	94.8	8.2	97.0
Groulx	100.8	101.8	103.7	97.8	97.8	97.8	NS	102.2
Helmreich	103.8	104.7	100.0	96.2	96.2	99.1	NS	106.0
C&D Farm	112.8	87.6	105.7	103.7	98.7	91.6	14.2	99.3
W.O.A.S.	10/ 5	100.0	10/ 1	99.0	96.2	95.4	5.7 ^d	102.86
AVERAGE	104.5	100.8	104.1	99.0	90.2	73.4	J. /	102.00
						. , b		
Leaf Spot	(Actual	data ins	tead of	% of Ge	eneral N	lean)		
C&D Farm	5.5	4.2	5.2	4.7	4.2	3.0	.5	4.4
# Entry No	. Seed	Number						
1		9x133)ms						
2	(SP61	21xEL31)	ms X SP	5822-0				
3	SL(12	29x133)ms	X SP63	22-0				
4		29xSP6121						
5		26xSP6121	.)ms X S	P6428-0				
6	SP582	22-0						

[@] Calculated from an analysis of % performance of entries vs. tests. Standard Footnotes a., and b. on page 328.

Conducted by: John Niederer

Location: Henry Miller - Marlette, Michigan

Cooperation: F&M Beet Sugar Assoc. - Michigan Sugar Company

Date of Planting: May 5, 1966

Date of Harvest: October 17, 1966

Experimental Design: 6 x 6 Latin Square

Size of Plots: 4 rows x 28' long x 30" between rows.

Harvested Area per Plot for Root Yield: 4 rows 28' long.

<u>Samples for Sucrose Determination:</u> 10 beet sample taken **prior** to harvest from each plot, 10 beets were taken consecutively in a row where they were growing competitively.

Stand Counts: Harvested beets counted when weighed.

Recent Field History: 1964 - Beets - 600# 6-24-12 plus 50# N sidedress. 1965 - Corn - 400# 6-24-12 broadcast plus 75# N.

Fertilization of Beet Crop: 600# 6-24-12 plus 50# N sidedress

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and Pests: None

<u>Soil and Seasonal Conditions:</u> Wet at planting time and dry during growing season.

Reliability of Test: Good

Cooperator: F&M Beet Sugar Association - Michigan Sugar Co. Year 1966

Location: Henry Miller Farm Marlette, Michigan Exp. 1002

6 X 6 Latin Square

Variety	Recov. Sugar per A.a Lbs.	Roots per Acre Tons	Sugar per Ton ^a Lbs.	Sucrose %	а	100'	Leaf _b Spot Rating
SL(129x133)msXSP5822-0 (SP6121xEL31)msXSP5822-0 SL(129x133)msXSP6322-0 (SL129xSP6121)msXSP6428-0 (SL126xSP6121)msXSP6428-0 SP5822-0		17.3 18.0 17.0 16.7 16.6 15.6	294 294 291 306 293 290	16.14 16.19 15.93 16.58 16.04 15.98	94.97 94.87 95.06 95.61 95.10 94.80	113 114 114 109 106 103	
General Mean S.E. Var. Mean Above as % Gen. Mean LSD 5% Point	4967 127.6 2.57 376	16.9 0.2941 1.74 0.9	294 5.78 1.96 N.S.	16.14 0.2678 1.66 N.S.	95.07 0:2283 0.24 N.S.	110 2.2 2.0 7	

Latin Square Analy	sis				Va:	riance T	able	
	:	:						
	:	:			Mea	an Squar	es	
Source of Variation	n:D/	F:	:	:		:	:	:Beets:
	:		Recov.:		Sugar	:	:	: per :Leaf
	:	:	Sugar :	Roots:	per T	:Sucros	e:Purity	: 100':Spot
Between Rows Between Columns Between Varieties Remainder (Error) Total Calculated F.Value	: 5 : 5 :20	:	239,060: 323,058: 389,559: 97,742: 3.99*	2.59: 3.65: 0.52:	97 197 200	:0.1679 :0.3256 :0.4305	:0.3441 :0.6821 :0.5044 :0.3129 :	: 36 : : 135 : : 32 :

Standard Footnotes:

- a. Data obtained according to procedures as given by Dexter, S. T., M. G. Frakes, and F. W. Snyder, A Rapid and Practical Method of Determining Extractable White Sugar as may be Applied to the Evaluation of Agronomic Practices and Grower Deliveries in the Sugar Beet Industry, Journ. Amer. Soc. of Sugar Beet Technol. 14: 433-454. 1967.
- b. Rating scale: 0 = no evidence of disease; 10 = complete necrosis due to leaf spot.

Conducted by: John Niederer

Location: Harold Gremel - Sebewaing, Michigan

Cooperation: F&M Beet Sugar Assoc. - Michigan Sugar Company

Date of Planting: April 16, 1966

Date of Harvest: October 27, 1966

Experimental Design: 6 x 6 Latin Square

Size of Plots: 4 rows x 28' long x 28" between rows.

Harvested Area per Plot for Root Yield: 4 rows x 28" long.

Samples for Sucrose Determination: One 10 beet sample taken prior to harvest from each plot. 10 beets were taken consecutively in a row where they were growing competitively.

Stand Counts: Harvested beets counted when weighed.

Recent Field History: 1964 - Corn - 300# 4-16-4 ZN. 1965 - Beans - 250# 8-32-16 plus MN plus ZN.

Fertilization of Beet Crop: 550# 8-32-16 plus B plus MN

Black Root Exposure: Slight

Leaf Spot Exposure: None

Other Diseases and Pests: None

Soil and Seasonal Conditions: Moist at planting time - less than normal rainfall during growing season.

Reliability of Test: Good

Cooperator: F&M Beet Sugar Association - Mich. Sugar Co.	_ Year_1966
Location: Harold Gremel Farm, Sebewaing, Michigan	Exp. 1003

6 X 6 Latin Square

	Recov.	Roots	Sugar			Beets
Variety	sugar per A.	per Acre		Sucrose		per Leaf
	Lbs.	Tons	Lbs.	%	%	No. Rating
SL(129x133)msXSP5822-0	5509	20.1	274	16.01	92.11	99
(SP6121xEL31)msXSP5822-0	5452	20.5	267	15.80	91.56	103
SL(129x133)msXSP6322-0	5040	19.2	263	15.24	92.52	104
(SL129xSP6121)msXSP6428-0	4691	17.2	273	15.67	92.92	95
(SL126xSP6121)msXSP6428-0	4674	17.1	273	15.83	92.47	89
SP5822-0	4270	15.8	270	15.72	92.34	92
General Mean	4939	18.3	270	15.71	92.32	97
S.E. Var. Mean	216	0.71	4.95	.2494	.2478	2.83
Above as % Gen. Mean	4.37	3.87	1.83	1.59	0.27	2.92
LSD 5% Point	637	2.1	N.S.	N.S.	0.73	8

Latin Square Analysis Variance Table						
	: :		Mea	ın Squares		
Source of Variation	n:D/F:			:	:Beets: : per :Leaf	
		Recov. Sugar	: :Sugar :Roots:Per T.	: :Sucrose:Puri		
Between Rows Between Columns Between Varieties Remainder (Error) Total Calculated F. Valu	: 5 : : 5 :	615,778 686,756 1411,833 279,739	: 6.15: 309 : 9.69: 250 :21.48: 111 : 3.01: 147	:1.0462 :0.655 :0.5669 :2.945 :0.4052 :1.265 :0.3733 :0.365	54: 67: 95: 35: 53: 217: 84: 48:	
Standard Footnotes	a., a	and b. on	page 328.			

Conducted by: John Niederer

Location: Leo Groulx - Munger, Michigan

Cooperation: F&M Beet Sugar Assn. - Monitor Sugar Company

Date of Planting: April 16, 1966

Date of Harvest: October 24, 1966

Experimental Design: 6 x 6 Latin Square

Size of Plots: 4 rows x 28' long x 28" between rows.

Harvested Area per Plot for Root Yield: 4 rows 28' long.

Samples for Sucrose Determination: One 10 beet sample taken before harvest, 10 beets were taken consecutively in a row where they were growing competitively.

Stand Counts: Harvested beets were counted when weighed.

Recent Field History: 1964 - Wheat - 300# 5-20-20
In fall 800# 12-12-12 for beets but didn't get them in 1965 - Beans - 300# 10-20-10

Fertilization of Beet Crop: 800# 5-20-20

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and pests: Root Aphids

Soil and Seasonal Conditions: Dry at planting time. Less than normal rainfall during growing season.

Reliability of Test: Good

Cooperator:	: F&M Beet Sugar Association - Monitor Sugar Co.	Year 1966
Location:	Leo Groulx Farm Munger, Michigan	Exp. 1001

6 X 6 Latin Square

Variety	Recov. Sugar per A.a Lbs.	Roots per Acre Tons	Sugar pera Ton Lbs.	Sucrose %	a.	per Leaf b 100' Spot No. Rating
SL(129x133)msXSP5822-0	4153	13.3	312	17.40	94.18	103
(SP6121xEL31)msXSP5822-0 SL(129x133)msXSP6322-0	4008 4511	13.2 14.1	304 319	17.02 17.66	94.10 94.57	104 106
(SL129xSP6121)msXSP6428-0		12.9	312	17.29	94.55	100
(SL126xSP6121)msXSP6428-0	3886	12.2	319	17.70	94.56	100
SP5822-0	3585	11.5	310	17.46	93.85	100
General Mean S.E. Var. Mean Above as % Gen. Mean LSD 5% Point	4030 240.14 5.96 N.S.	12.9 0.63 4.90 N.S.	313 .6311 0.20 N.S.	17.42 .3450 1.98 N.S.	94.30 .2757 0.29 N.S.	102 2.28 2.24 N.S.

Latin Square Analys	sis		Variance Table						
	:	:							
	:	:			Mean	Squares			
Source of Variation	n:D/1	F :		:	:	:	:	Beets	3:
	:	:	Recov.	:	:Sugar	:	:	per	:Leaf
	:	:	Sugar	:]	Roots:per T	:Sucros	e:Purity:	100'	:Spot
Between Rows	: 5	•	197,959	:	0.48: 411	:0.6015	:2.4284	: 100	:
Between Columns	: 5	•	185,574	:	0.67: 555	:1.1761	:1.0630:	68	:
Between Varieties	: 5	:	558,566	:	4.92: 197	:0.3828	:0.5599	44	:
Remainder (Error)	:20	:	346,088	:	2.41: 239	:0.7144	:0.4562	31	:
Total	:35	•		:	:	:	:		:
Calculated F. Value	e:	:	N.S.	:	N.S.::N.S.	: N.S.	: N.S.	N.S.	.:

Standard Footnotes a, and b. on page 328.

Conducted by: John Neiderer

Location: Walter Helmriech - Bay City, Michigan

Cooperation: F&M Beet Sugar Assn. - Monitor Sugar Company

Date of Planting: April 16, 1966

Date of Harvest: October 31, 1966

Experimental Design: 6 x 6 Latin Square

Size of Plots: 4 rows x 28' long x 28" between rows.

Harvested Area per plot for Root Yield: 4 rows 28'long

Samples for Sucrose Determination: 10 beet samples taken before harvest, 10 beets were taken consecutively in a row where they were growing competitively.

Stand Counts: Harvested beets counted when weighed.

Recent Field History: 1964 - Alfalfa for Seed 1965 - Beans - 320# 10-20-10 plus MN and Zn.

Fertilization of Beet Crop: 600# 12-12-12 broadcast plus 500# 8-32-16 plus MN and B. at planting time.

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and Pests: Noticeable yellowing of foliage very typical of Beet Western Yellows and the accompanying leaf necrosis.

Soil and Seasonal Conditions: Soil moist at planting time. Adequate moisture during the growing season.

Reliability of Test: Good

Cooperator: F&M Beet Sugar Association - Monitor Sugar Co.	Year 1966
Location: Walter Helmriech Farm, Bay City, Michigan	Exp. 1004
6 X 6 Latin Square	

Variety	Recov. Sugar per A. Lbs.	Roots per Acre Tons	pera	Sucrose 8	а	Beets Per Leaf b 100' Spot No. Rating
SL(129x133)msXSP5822-0	6801	22.9	297	16.74	93.76	110
(SP6121xEL31)msXSP5822-0	6445	23.1	279	16.13	92.51	111
SL(129x133)msXSP6322-0	6020	21.5	280	15.94	93.34	106
(SL129xSP6121)msXSP6428-0	6169	21.2	291	16.27	94.16	102
(SL126xSP6121)msXSP6428-0	6061	20.9	290	16.55	93.13	102
SP5822-0	5837	20.7	282	16.16	93.02	105
General Mean	6222	21.7	287	16.30	93.32	106
S.E. Var. Mean		1.45	6.13	.2877	.3175	3.66
Above as % Gen. Mean		6.68	2.14	1.77	0.34	3.45
LSD 5% Point		N.S.	N.S.	N.S.	0.94	N.S.

Latin Square Analy	Variance Table								
	:	:							
	:	•]	Mean Squ	ares		
Source of Variation	n:D/						:	:Beets	3:
	:	:	Recov.	: :	Sugar	:	:	: per	:Leaf
	:	:	Sugar	:Roots:	per T	:Sucros	e:Purity	: 100	:Spot
Between Rows				:12.70:		:1.0188			
Between Columns	: 5	: 4	Analyzed	1:18.23:	74	:0.2595	:0.4068	: 171	:
Between Varieties	: 5	:		: 6.46:	322	:0.5201	:2.0115	: 85	:
Remainder (Error)	:20	:		:12.58:	226	:0.4968	:0.6049	: 80	:
Total	:35	:		: :		:	: .	:	•
Calculated F. Value	e:	:		: N.S.:	N.S.	: N.S.	: 3.33	: N.S	:

Standard Footnotes a., and b. on page 328.

Conducted by: C. E. Broadwell - R. G. Fraser

Location: Canada & Dominion Sugar Co., Experimental Farm Chatham, Ontario

Cooperation: Canada & Dominion Sugar Co., Ltd.

Date of Planting: April 15,1966

Date of Harvest: September 26, 1966

Experimental Design: 6 x 6 Latin Square Design #8.

Size of Plots: 4 rows 30' long x 24" between rows.

Harvested Area per Plot for Root Yield: 4 rows x 30' long.

Samples for Sucrose Determination: One 10 beet sample was selected at random after plot was harvested.

Stand Counts: Harvested beets counted when weighed.

Recent Field History: 1963 - Soybeans

1964 - Corn

1965 - Peas - 200# Am. Nitrate

400# 5-20-20 broadcast

Fertilization of Beet Crop: 500# 5-20-20 broadcast and worked in 250# in band 3" below seed.

Black Root Exposure: None

Leaf Spot Exposure: Adjacent to last year's field which was planted to beets two years in a row. Quite a severe epidemic.

Other Diseases and Pests: None

Soil and Seasonal Conditions: Very good seed bed moisture. Adequate moisture during growing season.

Reliability of Test: Good.

Cooperator: C & D Sugar Co., Ltd., F & M Beet Sugar Assoc. Year 1966

Location: C & D Dover Farm, Chatham, Ontario Exp. 1008

6 x 6 Latin Square

Variety	Recov. Sugar per A. Lbs.	Roots per Acre Tons	Sugar per Ton Lbs.	Sucrose ^a	C.J.	Beets per 100' No.	Leaf b Spot Rating
SL(129x133)msX SP5822-0 (SP6121xEL31)msX SP5822-0 SL(129x133)msXSP6322-0 (SL129xSP6121)msXSP6428-0 (SL126xSP6121)msXSP6428-0 SP5822-0	5040 4520	22.7 20.3 21.4 19.6 20.3 18.5	221 219 239 231 227 216	13.16 13.27 14.17 13.79 13.61 13.03	91.30 90.70 91.33 91.20 91.01 90.78	112 87 105 103 98 91	5.5 4.2 5.2 4.7 4.2 3.0
General Mean S.E. Var. Mean Above as % Gen. Mean LSD 5% Point	4583 266 5.80 NS	20.5 .94 4.60 NS	226 6.39 2.83 NS	13.50 .3176 2.35 NS	91.05 .3906 .43 NS	99 4.49 4.53 14	4.4 .15 3.28 .5

Latin Square Analys	sis		Va	riance Ta	ble	
	:	:				
	<u>:</u>		Me	an Square	es	
Source of Variation	a:D/1	F:	:	:	:	Beets:
	:	: Recov.	: :Sugar	:	: :	per :Leaf
	:	: Sugar	:Roots:per T	.:Sucrose	:Purity:	100' :Spot
Between Rows Between Columns Between Varieties Remainder (Error) Total Calculated F. Value	: 5 : 5 :20 :35	:556,458 :396,807 :931,704 :423,708 :	:39.97:2165 :11.23: 269 :12.25: 423 : 5.31: 245 :	:0.4046 :1.1177	:1.7654: :0.4311: :0.9158:	81 :.18 823 :.58 512 :4.71 121 :.13 4.22 :36.23

Standard Footnotes a, and b on page 328.

Conducted by: A. McClearin

Location: Western Ontario Agricultural School - Ridgetown, Ontario

Cooperation: Canada and Dominion Sugar Co., Ltd.

Date of Planting: April 15, 1966

Date of Harvest: September 30, 1966

Experimental Design: Randomized Blocks

Size of Plots: 3 rows x 20' long x 24" between rows.

Harvested Area per Plot for Root Yield: 1 row 16' long

Samples for Sucrose Determination: One 10 beet sample was selected after plot was harvested.

Stand Counts: Harvested beets counted when weighed.

Recent Field History: 1964 - Corn 210-10-105# at planting plus 40# of N. plowed down with stalks in the fall of 1964

1965 - Oats 30-110-110#

Fertilization of Beet Crop: 176-88-88 # broadcast

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and Pests: None

Soil and Seasonal Conditions: Adequate moisture at planting time and throughout the growing season.

Reliability of Test: Good

F&M SUGAR BEET VARIETY TRIAL - 1966
W.O.A.S., Ridgetown

		% Sucrose	C. J.	Recoverab	le Sugar	
Variety	Tons/A	in Brei	Purity	Lbs./T.	Tons/A.	
SL(129x133)msXSP6322-0 5822 129x6121X6428 6121xEL61G1X5822 SL126x6121X6428 SL(129x133)msXSP5822-0	29.5 24.7 25.9 28.8 26.5 27.1	15.93 15.79 15.79 16.30 15.98 16.16	94.40 94.58 93.39 94.17 94.60 94.55	281.7 280.6 272.9 287.3 283.9 286.7	4.16 3.47 3.53 4.14 3.76 3.88	
LSD at 5% Point C.V.	3.0 T.	N.S.	N.S. 1.0%	N.S.		

Date of Planting: April 15, 1966

Plot Size: 3 rows x 20' (1 row x 16' harvested)

Row width and Plant Spacing: 24" row, 1 beet/12" of row.

Fertilizer: 176-88-88# broadcast

Previous Crops and Fertilizer: 1965 - Oats - 30-110-110#

1964 - Corn - 210-105-105# at planting plus 40# N. plowed down with stalks in

 \bigcirc

fall of 1964.

Harvest Date: September 30, 1966

Section Two: Area Evaluation

The hybrids were examined for outstanding combinations for this area as well as for general combining ability.

Specific Hybrids

<u>Pounds sugar per acre</u> - Although each location had significant differences, when the three locations were combined the variety by location interaction was too large to allow detection of outstanding hybrids.

Tons roots per acre - The reaction was the same as for pounds sugar per acre.

Pounds sugar per ton - (FC502/2xSP581181s1)ms X SP5822-0 significantly exceeded all but (FC502/2xSP581181s1)ms X SP59B18-0 in the combined
location analysis. Although under one of its entries, SL(129x133)ms X
SP6428-01 was not significantly different from the best; when its other
entry was averaged in, the hybrid was significantly below the best.

Percent sucrose - In the combined location analysis (FC502/2 x SP581181s1)ms X SP5822-0 significantly exceeded all but (FC502/2x SP581181s1)ms X SP59B18-0 , (SL133xEL34)ms X SP6428-0, SL(129x133)ms X SP6428-0, and FC(502/2x505)ms X SP5822-0.

Percent Clear Juice Purity - In the combined analysis (FC502/2x SP581181s1)ms X SP5822-0 significantly exceeded all but nine other hybrids.

<u>Leaf Spot Resistance</u> - In the combined analysis of Ontario and Ohio (no leaf spot in the Michigan test) FC(502/2x505)ms X SP59B18-0 was significantly more resistant than all but (FC502/2xSP581181s1)ms X SP59B18-0, FC(502/2x505)ms X SP5822-0 and (FC502/2xSP581181s1)ms X SP5822-0.

GENERAL COMBINING ABILITY

General combining ability as used here refers only to the male and female combinations used; hence, may have limited general application.

Among the Fort Collins females (group 1) general combining ability across locations (combined) was exhibited for percent purity and leaf spot resistance. FC502/2xSP581181s1 was significantly better than all others in the group in purity and not significantly different from the best in leaf spot resistance. FC(502/2x505) was the most resistant. At the three locations individually, whenever general combining ability was evident, FC502/2xSP581181s1 was either the best or not significantly different from the best. This includes pounds of sugar and tons of roots per acre, pounds sugar per ton, percent sucrose, percent purity, stand and leaf spot resistance.

Among the females in group 2 <u>across locations</u>, there was no significant difference in pounds sugar per acre or stand. In tons of roots per acre, SP64408-1 was the best with SL129xEL33 and EL35C1xEL32 not significantly different from it. Considering pounds of sugar per ton, SL133xEL34 was the best with SL133xFC503 and SL129xSP6121 not significantly different. Percent sucrose had the same result as pounds of sugar per ton. For percent purity, SL129xSP6121 was the best with SL133xFC503 and SL133xEL34 not significantly different. The most leaf spot resistance was exhibited by SL133xFC503 with EL35C1xCL32 not significantly different. At <u>individual locations</u>, high pounds of sugar per acre and tons of roots per acre was given by SP64408-1; in Ontario, high sugar per ton and percent sucrose was obtained by SL133xEL34 in Ohio. The highest percent

purity in Ohio and Michigan was given by SL129xFC503. In Ontario, the most leaf spot resistant female in the group was SL133xFC503.

Considering SP5822-0 versus SP58B18-0 as pollinator, SP5822-0 was better in pounds of sugar per ton in Ohio and Michigan, was better in percent sucrose in Ohio, was better in percent purity in Ontario and Michigan as well as in combined locations, and was better in stand in Ontario and in combined locations. No significant differences were noted in pounds of sugar per acre, tons per acre, or leaf spot resistance.

Considering SP6429-0 versus SP6428-01 as pollinators, SP6428-01 was better in pounds of sugar per ton in Ohio and Michigan and the combined locations, was better in percent sucrose in the combined locations, and was better in percent purity in Ohio, Michigan and the combined locations. SP6429-0 gave the most leaf spot resistance in Ontario and in the combined, however.

Considering SP6428-01 versus SP5822-0 as a pollinator for SL(129x133)ms across all 3 locations, significant difference in favor of the SP6428-01 pollinator accured for pounds of sugar per ton and percent sucrose.

TABLE OF SEED NUMBERS BY MALE AND FEMALE PARENTS

Female + Male →	:SP6429-0	SP6428-01 SP5822-0	SP59B18-0
FC505xSP581181s1 FC502/2xSP581181s FC502/2xFC505 SP581222s1xFC505 FC505xSP602116s1	: ::::::::::::::::::::::::::::::::::::	Group 1 (651201H022 " H024 " H028 " H027	651202H022 " H024 " H028 " H027
SL(129x133) SL(129x133) SP64408-1 SP64211-01 SL129xEL33 SL129xFC503 SL129xFC503 SL133xFC503 SL133xEL34 CT5xSP6121 EL35C1xEL32	: 65Blx02 : "x04 : "x05 : "x06 : "x07 : "x08 : "x09 : "x010	6528x029* 6528x029 6582x02 "x04 "x05 6528x031 6582x07 "x08 "x09 6528x033 6582x011	" НО17

^{*} SP6528x029 and Commercial each included under 2 different entry numbers in the test.

SEED NUMBERS IN TEST WITHOUT MALE AND FEMALE COMPARISONS

MS-Female	0-Pollinator	Male	Seed Number SP5822-0
			5P3622-U
SP58122s1	SP581181s1	SP5822-0	SP651201H023
SP6426-01		SP6428-01	SP6528x026
SP6423-01		SP6428-01 ·	SP6528x027

COMBINED ONTARIO, OHIO AND MICHIGAN OVERALL PERFORMANCE

		% GENERAL MEA	AN		ACTUAL		
Seed No.	Recov. Sugar per A.	Roots Sugar per per Acre Ton	%	% C.J.	*	Leaf Spot	
651202H022 " H024 " H028 " H027 " H017 SP5822-0	100.9 108.9 103.3 104.7 87.3 98.2	103.4 98.0 103.1 105.7 101.3 101.9 103.3 101.3 93.8 93.8 97.4 101.3	105.3 ⁺⁺ 105.3 ⁺⁺ 102.4 3-102.0 95.1	100.2	92.0_ 89.2_ 80.5	2.95 2.00 1.90 2.35 2.35 2.75	
	100.7 103.3 108.5	107.4 99.6 98.4 102.3 96.4 107.4 103.6 104.0 95.3 101.1 95.1 102.2	101.5 105.4 103.0 101.2	100.3 101.0 100.5 100.0	105.4 103.5 104.4	3.75 2.75 2.00 11 2.00 2.75 2.35	
" H017 Commercial 6528x029 65B2x02 " x04 " x05		101.6 101.9 93.4 100.3 97.0 103.3 113.2 96.6 88.4 98.5 106.6 97.8	3+ 99.4 102.1 97.3 97.9	100.4		2.55 3.55 3.35 3.00 3.10 3.10	
6528x031 65B2x07 '' x08 '' x09 6528x033 65B2x011	96.4 94.3 107.0 106.5 102.7 100.5	102.4 104.5 102.2 101.0	99.9 99.8 103.4	100.2 100.5 100.4	101.8 104.5 99.0 104.6 99.1 104.5	2.90 2.90 2.60 3.05 3.00 3.00	\bigcirc
6528x026 '' x027 '' x029 65B1x02 '' x04 '' x05	103.8 101.7 101.2 102.2 88.5 108.0	105.7 98.3 98.8 101.7 96.8 104.9 109.4 93.6 91.7 95.7 111.7 96.7	95.8 96.4	100.6 100.6 98.9 99.7	98.2 102.9 98.9 106.2 111.0 102.8	2.65 3.25 2.95 2.85 2.75 2.85	
" x06 " x07 " x08 " x09 " x010 " x011 General Mean LSD 5%	93.9 99.1 95.0 98.8 88.9 97.4 5567 N.S.	94.2 100.2 98.4 100.1 93.1 95.1 102.3 95.2 20.0 273.6	98.1 100.0 99.7 96.6 96.7	99.6 100.1 100.2 99.2 99.3 93.62	96.0	2.85 2.60 2.35 2.75 2.50 2.50 2.74 0.42	

⁺ Significant above General Mean : - Sig. below General Mean 5% Level

GENERAL COMBINING ABILITY WITHIN GROUPS

```
Groups +
                     Product:Quant. :Quality:Sucrose:Purity : Stand : L.S.
 Females (Group 1) :1 2 3 4:5 6 7 8:9 0 1 2:3 4
 FC505xSP581181s1
                   annn:Annn:n
                                          n n:n
                                                  n n:
                                                        n n
                                                              a n n n:n n
 FC502/2xSP581181s1; A n n n:a n n n:n A n n:n A n n:A n n A:A n n n:n n a
 FC502/2xFc505
                    annn:
                               n n n:n a n n:n a n n:
                                                        n n
 SP581222s1xFC505
                    :a n n n:a n n n:n
                                          n n:n
                                                  n n:
                                                        n n
                                                              :a n n n:n n
 FC505xSP602116s1
                       n n n:
                               n n n:n
                                          n n:n
                                                  n n:
 Females (Group 2)
 SP64408-1
                    :Annn:AnnA:n
                                             :n
                                                  n
                                                      :n
                                                              :n n n n:a n
 SP64211-01
                       n n n:
                               n n
                                     :n a n
                                             :n a n
                                                     :n a a
                                                              :n n n n:a n
 SL129xEL33
                    annn:anna:nan
                                             :n a n
                                                      :n
                                                              :n n n n:
 SL129xSP6121
                                     in a n ain a n ain A A Ain n n nia n
                       n n n:
                               n n
 SL129xFC503
                    annn:ann
                                     :n
                                             :n
                                                      :n
                                                              :n n n n:a n
                                          n
                                                  n
 SL133xFC503
                    annn:
                               n n
                                     :n a n a:n a n a:n
                                                           a a:n n n n:A n A
 SL133xEL34
                    annn;
                               n n
                                     :n A n A n A n A:n a a a:n n n n:a n
 CT5xSP6121
                    annn:ann
                                     :n
                                          n
                                             :n a n
                                                      :n
                                                              :n n n n:a n
 EL35C1xEL32
                       n n n:
                               n n a:n
                                                      :n
                                                              in n n nia n a
                                          n
 Males (Group 1)
 SP5822-0
                    nnnnnnn AAn:nAnn:AnAA:AnnA:nnn
 SP59B18-0
                    :n n n n:n n n n:n
                                            n:n
                                                  n n:
                                                        n
 Males (Group 2)
 SP6429-0
                    :n n n n:n n n n:n
                                             :n n n
                                                     :n
                                                              :n n n n:A n A
 SP6428-01
                    :n n n n:n n n n:n A A A:n n n A:n A A A:n n n n: n
                                      17 = Percent C.J. Purity \frac{1}{2}
 1 = Pounds sugar per acre Ontario
                                                                   Ontario
 2 =
                                                     11
                                      18 =
                            Ohio
                                                                   Ohio
              11
                        11
                                                     11
 3 =
                            Michigan
                                      19 =
                                                                   Michigan
              11
                                       20 =
                                               11
                            Combined
                                                                   Combined
                            Ontario
     Tons roots per acre
                                       21 = Beets per 100 feet
                                                                   Ontario
            11
                 11
                     11
                                                   11
                            Ohio
                                       22 =
                                                                   Ohio
            11
                  11
                                                   11
                                                       Ħ
                                              11
                                                           11
 7 =
                            Michigan
                                      23 =
                                                                   Michigan
                            Combined
                                       24 =
                                                                   Combined
 9 = Pounds sugar per ton
                            Ontario
                                       25 = Leaf Spot Resistance
                                                                   Ontario
              11
                    11
                                       26 =
10 =
                            Ohio
                                                                   Ohio
       11
              11
                    11
                        11
                                                  11
                                                            11
                                       27 =
                                             11
11 =
                            Michigan
                                                                   Combined
                                          No "
                            Combined
12
                                                      readings in Michigan
                            Ontario
                                       n = no significant differences
13 = Percent Sucrose
14 =
                            Ohio
                                       A = best
15 =
                            Michigan
                                       a = not significantly different
16 =
                            Combined
                                            from the best
                                        blank = significantly different
                                            from the best
```

 $[\]frac{1}{2}$ Field histories on pages 347, 348 and 349.

DATA EXPRESSED AS PERCENT OF GENERAL MEAN $\frac{1}{}$

		DAI	A LININI	, 0,	OLD RO	LEKOLK		LITERATE		
		c. Suga		:		Roots/	_		. Sugar	
Seed No.	: Ont,	: Ohio:	Mich.	:	Ont.	: Ohio	: Mich	: <u>Ont.</u>	: Ohio	: Mich.
651202H022	107.6	92.9	102.2		111.8	96.3	102.2	97.5	96.5	99.9
" НО24	116.3	98.7	111.7		104.6	96.1	108.5	110.8	103.3	103.0
" Н028	100.0	96.7	113.1		96.7	95.4	111.8	102.9	101.7	101.2
" H027	114.5	91.6	107.9		111.1	92.8	106.1	103.1	98.9	101.8
" H017	89.6	83.2	89.0		97.3		97.3		96.0	91.5
SP5822-0		100.5	105.5		92.2		102.6		103.5	103.4
					7	,,,,	10210	,,,,	103.3	1031
Commercial	114.4	100.0	105.5		113.7	103.4	105.0	101.8	96.6	100.5
651201H022	111.4		92.1		107.8		88.2		99.4	104.8
" но24	111.4		102.5		99.3	91.1		111.6	105.6	104.9
" но28		108.5	111.8		101.3		107.3		106.1	104.3
" но23		96.0	98.5		94.1		94.9		99.0	104.3
" НО27	106.0	93.1	93.6		103.9		89.8		101.1	
11027	100.0	33.1	33.0		103.9	91.0	09.0	101.4	101.1	104.0
" но17	03 0	103.3	114.2		91.5	101 /	111 0	102.0	101 0	101 0
Commercial		100.5					111.9		101.8	101.9
6528x029			98.7		84.3		100.1	97.2	105.0	98.6
65B2x029		106.8	99.7		91.5		97.5		104.7	102.2
" x04	119.2		99.7		122.9		102.6	97.4	95.0	97.4
	85.6		71.3		85.6		73.2		100.2	96.5
" x05	107.1	106.9	97.5		111.1	106.9	101.8	96.7	100.6	96.0
(500 000										
6528x031		95.8	100.0		92.2	92.7		102.9	103.1	101.2
65B2x07		86.3	100.7		94.8	88.5		102.1	96.7	100.9
" x08	103.1		108.5		105.2		107.9		102.0	100.2
" x09		119.4	104.2		93.5	114.6	99.2	103.8	104.3	105.3
6528x033	108.9		92.7		109.2	105.9	91.4	100.8	100.7	101.4
65B2x011	88.8	104.5	108.1		96.1	108.6	108.7	94.2	96.1	99.5
6528x026	111.0		92.1		118.3	106.2	92.7	93.4	101.8	99.6
" x027	91.8	101.6	111.8		87.6	99.3	109.5	100.8	102.4	102.0
" x029	85.0	108.7	109.9		81.7		106.7		106.6	102.4
65B1x02	106.8	103.0	96.9		111.8		101.6	95.7	89.8	95.3
" x04	80.0	95.9	89.5		85.0	98.0	92.2	92.9	97.5	96.8
" x05	117.0	97.4	109.7		119.6			97.9	96.3	96.0
								,,,,	70.5	70.0
' x06	97.6	97.1	87.0		96.1	96.6	87.8	100 5	100.4	99.1
" x07			87.7		112.4		91.4		98.4	
" x08	93.4		88.7		92.2	102.1		100.3		96.3
" x09		93.9	102.1			94.4		100.3	100.4 99.5	100.0
" x010	93.6	84.9	88.2			90.3	03.5	07 1		100.4
" x011	88.1	96.3	107.8		90.8				94.0	94.3
		, , ,	207.0		70.0	101.1	115.0	96.8	95.2	93.6
General Mean	n 3650	6974	6078		15.3	23.6	21.3	220	206	200
								239	296	286
LSD 5%	22.9	13.5	18.1		20.6	11.7	17.1	8.2	7.0	5.9

^{1/} Field histories on page 347-350.

DATA	EXPRESSED	AS PERCENT	OF GE	NERAL N			ACTUA	L
	% Su	crose	2	C.J. F	Purity ::		Leaf S	not
Seed No.	: Ont. : Oh					Ont.		
651202Н022		.8 100.8	99.4		99.5	3.2	2.7	2.95
" Н024	108.9 102			100.4	99.3	2.3	1.7	2.00
# H028	103.4 102		99.7			2.0	1.8	1.90
H027	104.6 98	.9 102.4	99.4	100.0	99.7	2.5	2.2	2.35
" H017	94.0 97	.2 94.2	98.9	99.3	98.6	2.7	2.0	2.35
SP5822-0	98.8 102	.6 102.6	99.1	100.5	100.4	3.0	2.5	2.75
Commercial	101.5 98	.4 100.4	100.1	99.1	100.1	4.0	3.5	3.75
651201H022	101.9 99			99.8	100.9	3.2	2.3	2.75
" НО24	108.7 104			100.7	100.8	2.2	1.8	2.00
'' НО28	101.2 104	.4 103.4	100.2	100.9	100.4	2.5	1.5	2.00
" Н023	100.3 100	.8 102.5	100.1	99.2	100.6	3.2	2.3	2.75
" Н027	100.3 101	.0 102.4	100.6	100.1	100.8	2.5	2.2	2.35
" H017	101.5 101	.1 102.1	100.2	100.4	. 99.9	2.8	2.3	2.55
Commercial	96.9 103	.1 98.3	100.1	101.0	100.2	4.3	2.8	3.55
6528x029	101.9 103		100.5	100.7	100.7	3.7	3.0	3.35
65B2x02	98.9 95			99.5	100.2	3.3	2.7	3.00
" x04		.3 96.7		100.5	99.9	3.2	3.0	3.10
" x05	96.5 101	.0 97.0	100.0	99.8	99.5	3.5	2.7	3.10
6528x031	101.4 100			101.3	100.5	3.3	2.5	2.90
65B2x07	103.1 96		99.5		100.3	3.3	2.5	2.90
" x08	98.5 101		99.9		100.5	3.0	2.2	2.60
" x09	102.3 103				100.3	3.3	2.8	3.05
	100.7 100			100.3	100.7	3.2	2.8	3.00
65B2x011	96.9 98	.1 100.2	98.8	99.0	99.7	3.2	2.8	3.00
6528x026	94.3 100		99.5		100.5	2.8	2.5	2.65_
" x027	99.7 100			101.2	100.3	3.5	3.0	3.25
" x029	103.8 105			100.7	100.0	3.2	2.7	2.95
65B1x02	96.8 93			98.0	99.1	3.0	2.7	2.85
x04	93.8 97				99.4	2.7	2.8	2.75
" x05	99.4 97	.9 97.5	99.4	99.2	99.2	3.0	2.7	2.85
" x06	100.2 99	.1 98.7	100.1	100.7	100.2	3.0	2.7	2.85
" x07	98.9 99		99.3	99.6	100.0	3.0	2.2	2.60
" x08	99.6 100	.7 99.7	100.3	99.9	100.1	2.5	2.2	2.35
" x09	99.4 99	.4 100.4	100.4	100.1	100.0	3.0	2.5	2.75
" x010	97.6 96	.6 95.6	99.7	98.7	99.3	2.7	2.3	2.50
" x011	96.2 97	.5 96.4	100.4	98.8	98.6	2.8	2.2	2.50
General Mea	n 13.86 16	.54 15.90	92.3	5 94.18	94.33	3.0	2.5	2.74
LSD 5%	6.4 5	.6 4.9	1.6	1.2	1.1	.6	.6	.42

AREA EVALUATION TEST 1/

Conducted by: C. E. Broadwell - R. G. Fraser

<u>Location:</u> Canada & Dominion Sugar Co., Experimental Farm Chatham, Ontario

Cooperation: Canada & Dominion Sugar Co., Ltd.

Date of Planting: April 15, 1966

Date of Harvest: September 26, 1966

Experimental Design: Randomized Block 6 Replications

Size of Plots: 2 rows 20' long x 24" between rows.

Harvested Area per Plot for Root Yield: 2 rows 20' long

Samples for Sucrose Determination: One 10 beet sample was selected at random after plot was harvested.

Stand Counts: Harvested beets counted when weighed.

Recent Field History: 1963 - Soybeans

1964 - Corn

1965 - Peas - 200# Am. Nitrate

400# 5-20-20 Broadcast

Fertilization of Beet Crop: 500# 5-20-20 broadcast and worked in 250# in band 3" below seed.

Black Root Exposure: None

Leaf Spot Exposure: Adjacent to last year's field which was planted to beets two years in a row. Quite a severe epidemic.

Other Diseases and Pests: None

Soil and Seasonal Conditions: Very good seed bed moisture. Adequate moisture during growing season.

Reliability of Test: Good.

 $[\]frac{1}{2}$ / For data see pages 345 and 346.

AREA EVALUATION TEST 1/

Conducted By: John Niederer

Location: Willard Jones - Ottawa, Ohio

Cooperation: F&M Beet Sugar Assn. - Buckeye Sugars, Inc.

Date of Planting: April 14, 1966

Date of Harvest: November 15, 1966

Experimental Design: Randomized Block - 6 replications

Size of Plots: 2 rows x 20' long x 30" between rows

Harvested Area per Plot for Root Yield: 2 rows x 20' long

Samples for Sucrose Determination: One 10 beet sample was taken during harvest. Beets were selected at random from the plot.

Stand Counts: Harvested beets were counted when weighed.

Recent Field History: 1964 - Wheat 100# 8-32-16 at planting and 150# 6-24-12 in the fall

1965 - Beans

Fertilization of Beet Crop: 350# 8-32-16 broadcast plus 125# 8-32-16 at planting.

Black Root Exposure: Slight

Leaf Spot Exposure: Slight

Other Diseases and Pests: None

Soil and Seasonal Conditions: Seed bed was moist at planting time.

Adequate moisture during growing season.

Reliability of Test: Good.

 $[\]frac{1}{}$ For data see pages 345 and 346.

AREA EVALUATION TEST $\frac{1}{}$

Conducted by: John Niederer

Location: Walter Helmriech - Bay City, Michigan

Cooperation: F&M Beet Sugar Assn. - Monitor Sugar Company

Date of Planting: April 16, 1966

Date of Harvest: October 31, 1966

Experimental Design: Randomized Block 6 Replications

Size of Plots: 2 rows 20' long x 28" between rows.

Harvested Area per Plot for Root Yield: 2 rows 20' long

Samples for Sucrose Determination: One 10 beet sample taken prior to harvest from each plot. 10 beets were taken consecutively in a row where they were growing competitively.

Stand Counts: Harvested beets counted when weighed.

Recent Field History: 1964 - Alfalfa for seed 1965 - Beans - 320# 10-20-10 plus MN plus ZN.

Fertilization of Beet Crop: 600# 12-12-12 broadcast plus 500# 8-32-16 plus MN plus B. at planting time.

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and Pests: Noticable yellowing of foliage very typical of Beet Western Yellows and the accompanying leaf necrosis

Soil and Seasonal Conditions: Soil moist at planting time. Adequate moisture during the growing season.

Reliability of Test: Good.

 $[\]frac{1}{2}$ For data see pages 345 and 346.

AGRONOMIC EVALUATION TEST, 1966

USDA Varieties

Conducted by: Phil B. Brimhall, H. L. Bush, R. K. Oldemeyer and D. L. Sunderland

Location: Glen Haas Farm, Fremont, Ohio

Cooperator: Northern Ohio Sugar Company, Fremont, Ohio

Date of Planting: May 27, 1966

Date of Harvest: November 21, 1966

Experimental Design: Simple Lattice Design

Size of Plots: 1 row x 24 feet x 8 replicates

30-inch row spacing

Harvest Area per Plot: 1 row x 18 feet

Samples for Sucrose and Purity Determinations: 1 sample per plot

Stand Counts: Beets counted in laboratory

Recent Field History: Sugar beets (1965) spring plowed

Fertilization of Beet Crop: 400 pounds 8-32-16 plow-down

150 pounds 6-24-12 starter fertilizer

Leaf Spot Exposure: Not enough present for readings

Black Root Exposure: Early seedling stage mild; however, Aphanomyces was a

chronic factor throughout the growing season.

Curly Top Exposure: None noted

Other Diseases: None noted

Soil and Seasonal Conditions: Soil surface dry and cloddy at planting time,

very wet at $2\frac{1}{2}$ inches. Beet emergence good, beets stunted due to 6 inches precipitation, July 11 and 12. Moisture adequate to excessive throughout growing season. Soil was a heavy

clay loam.

Cooperator: Northern Ohio Sugar Company by Phil Brimhall, H. L. Bush,
R. K. Oldemeyer, D. L. Sunderland

Location: Glen Haas Farm, Fremont, Ohio Year: 1966

(Results given as 8 plot averages in % of SP5822-0) Beets (b Thin Juice Recoverable (c Black (a per Sugar Root Sugar App. 100 ft. Content Purity Root Yield Yield Strain 129.07 132.29 2.4 124 99.25 98.79 SP6528 x 026 2.9 126 113.68 100.38 101.34 116.83 SP6528 x 027 125 2.6 115.27 113.88 100.68 99.95 $SP6528 \times 030$ 2.3 128 SP6528 x 031 109.88 107.27 100.47 100.37 2.1 116 113.63 111.90 99.35 101.22 SP6528 x 033 128 2.3 SP6528 x 034 115.24 113.06 101.63 99.80 2.6 114,88 99.00 110 SP6528 x 027 112.58 99.31 99.93+ 2.8 117 108.51 108.89 99.61 $SP65180 \times 032$ 2.8 126 109.48 SP65180 x 027 112.20 99.87 107.25 3.0 115 SP65363-01 109.26, 100.38 100.28 119.86 121.39 2.4 SP65363-02 99.69 99.34 137 93.35 95.08 2.8 SP65499-01 101.28 100.15 105 127.72 130.74 136 SP653170 x 027 99.64 98.53 2.5 121.35+ 3.0 SP653170 x 032 119.61 100.12 99.10 122 117.65 98.74 SP65B1 x 02 113.33 98.75 3.1 143 $SP65B2 \times 02$ 113.66 117.13 2.4 97.87 99.33 134 100.99+ SP65B1 x 06 100.34 99.74 2.8 99.31 128 98.36 102.81 SP65B1 x 09 94.98. 100.25 3.5 123 101.48_ $SP65B2 \times 09$ 117.56 119.17 98.66 2.9 144 117.90+ $SP65B3 \times 09$ 103.81 101.03 110.63 3.4 119 $SP65B3 \times 02$ 102.42 100.55 98.97 99.59 3.4 139 100.64 $SP65B2 \times 08$ 102.39 100.98 100.47 2.9 139 111.22 106.89, 103.84+ $SP65B3 \times 08$ 100.27 2.6 125 SP65B3 x 011 119.22 120.80 97.93 2.9 144 CV (%) 15.66 16.21 2.17 2.93 Sm/Gen. M (%) 5.54 5.73 0.77 1.04 LSD 5% pt. (% of 5822-0) 16.65 17.33 2.20 2.85

Footnotes and Variance Tables, page 352.

Location: Glen Haas Farm, Fremont, Ohio

Year: 1966

Variance Table

	Mean Squ	ares			
Source of Variance	DF	Recoverable (d	Roots (d	Sucrose	Purity
		(lbs.)	(lbs.)	(%)	(%)
Replicates Varieties Random Block Error Blocks (elim. var.) Component a Component b Intra-Block Error Total	7 48 330 48 36 12 282 385	7.3687 2.1069 0.6110 0.7874 0.8739 0.5278 0.5810(e	402.06 84.31 24.02 30.99 34.82 19.49 22.85(e 38.22	3.7204 0.5829 0.1657 0.2287 0.2092 0.2873 0.1552(e 0.2805	19.0401 8.7884 7.9046(e 7.3278 8.1528 4.8529 8.0025 8.2165

- (a 0 = No black root apparent, 10 = complete necrosis due to black root
- (b Harvest stand
- (c Calculated(from formula used since 1953) by electronic computer
- (d Pounds per plot (e Error term used
- (f Mean for 3 plots SP5822-0 = 4433 lbs. Recoverable Sugar, 13.36 Tons Roots per A, 18.01% Sucrose, 96.76% Purity.
- + Significantly above SP5822-0 at 5% pt.
- Significantly below SP5822-0 at 5% pt.

()

Cooperator: Northern Ohio Sugar Company by Phil Brimhall, H. L. Bush,
R. K. Oldemeyer, D. L. Sunderland

Location: Alvin Heilman Farm, Old Fort, Ohio Year: 1966

(Results given a 8 plot averages in % of SP5822-0) (f

(Results	given a 8 pl		s in % of	SP5822-0)\-		
	Recoverable	(c		Thin	6	Beets(b
	Sugar	Root	Sugar	Juice	Leaf (a	per
Strain	Yield	Yield	Content	App. Purity	Spot	100 ft.
SP65B1 x 010 SP6528 x 027 SP6528 x 030 SP6528 x 031 SP6528 x 034 SP6528 x 034 SP65180 x 027 SP65180 x 027 SP65190 x 027 SP65363-01 SP65363-02 SP65363-02 SP653170 x 027 SP653170 x 032 SP65B1 x 02 SP65B1 x 02 SP65B1 x 06 SP65B1 x 09 SP65B1 x 09 SP65B3 x 09 SP65B3 x 04 SP65B1 x 04 SP65B1 x 05 SP65B1 x 05 SP65B1 x 010	123.86 ⁺ 120.13 ⁺ 104.87 109.23 102.05 100.84 105.90 113.68 112.92 97.72 106.08 96.25 110.32 111.49 99.70 114.11 118.41 105.06 106.71 101.05 109.39 100.22 105.56 104.21	124.22 ⁺ 122.09 ⁺ 107.92 112.12 109.50 104.75 110.03 115.29 112.82 102.89 110.27 103.92 110.93 111.69 105.74 116.86 ⁺ 118.19 ⁺ 110.46 108.16 99.40 109.22 105.10 113.00 109.13	97.42 97.59 98.66 99.18 97.80 97.19 95.45 99.38 97.40 94.52 96.30 98.62 98.62 98.93 98.62 98.93 98.52 98.52 98.35 97.74 97.74	100.93 100.31 99.26 98.95 97.91 99.60 100.23 99.50 100.86 100.16 100.30 98.09 100.29 100.57 99.38 100.31 98.65 100.61 100.44 100.35 99.38 99.38	0.6.8.0.8.8.4.6.6.1.3.1.8.0.4.1.3.1.0.1.0.1.9.8.3.3.3.4.4.4.2.3.3.3.4.4.4.4.3.3.3.4.4.4.4	127 119 121 119 126 113 117 129 120 113 113 119 115 113 117 122 129 126 126 126 139 128 111 126 127
CV (%) Sm/Gen. M (%) LSD 5% pt. (% of 5822-	15.77 5.57 0) 16.43	14.50 5.13 16.23	3.57 1.26 3.52	2.69 0.95 2.67	- - -	-

Footnotes and Variance Table, page 354. Field history, page 355.

Location: Alvin Heilman Farm

Year: 1966

Variance Table

			Mean Squ	ares	
		Recoverable (d		
Source of Variance	DF	Sugar	Roots(d	Sucrose	Purity
		(lbs.)	(lbs.)	(%)	(%)
Replicates	7	6.7359	254.74	8.6763	15.6563
Varieties	48	1.7350	72.65	3.0400	10.4870
Random Block Error	331	0.9049	44.77	0.3990	6.3403
Blocks (elim. var.)	48	1.1360	59.41	0.7737	8.6443
Component a	36	1.2467	60.85	0.8554	8.6033
Component b	12	0.8038,	55.10,	0.5288	8.7675,
Intra-Block Error	283	0.8647 ^{(e}	55.10(e 42.29	0.3354(e	8.7675(e 5.9396(e
Total	386	1.1177	52.05	0.8775	7.0375

- (a 0 = No evidence of disease, 10 = complete necrosis due to leaf spot.
- (b Harvest stand
- (c Calculated(from formula used since 1953)by electronic computer
- (d Pounds per plot
- (e Error term used
- (f Mean for 3 plots SP5822-0 = 5470 lbs. Recoverable Sugar per A, 19.44 Tons Roots per A, 16.98% Sucrose, 91.57% Purity, 3.2 Leaf Spot.
- + Significantly above SP5822-0 at 5% pt.
- Significantly below SP5822-0 at 5% pt.

Variance Table -- Data, page 353.

Field history, page 355.

AGRONOMIC EVALUATION TEST, 1966

USDA Varieties

Conducted by: Phil B. Brimhall, H. L. Bush, R. K. Oldemeyer and D. L. Sunderland

Location: Alvin Heilman Farm, Old Fort, Ohio 1/

Cooperator: Northern Ohio Sugar Company, Fremont, Ohio

Date of Planting: April 13, 1966

Date of Harvest: October 7, 1966

Experimental Design: Simple Lattice Design

Size of Plots: 1 row x 24 feet x 8 replicates

28-inch row spacing

Harvest Area per Plot: 1 row x 18 feet

Samples for Sucrose and Purity Determinations: 1 sample per plot

Stand Counts: Beets counted in laboratory

Recent Field History: Sugar beets (1965) spring plowed

Fertilization of Beet Crop: 600 pounds 13-13-13 plow-down

150 pounds 6-24-12 starter fertilizer

Leaf Spot Exposure: Very severe, readings taken September 6, 1966

Black Root Exposure: Mild, no loss of stand

Curly Top Exposure: None noted

Other Diseases: Lygus bug caused some damage

Soil and Seasonal Conditions: Soil and moisture conditions good for seedling

emergence and growth throughout season. Soil

was a sandy loam.

^{1/} Data on page 353.

An Evaluation of Seed Treatments for Controlling Sugarbeet Seedling Diseases in the Great Lakes Region

D. L. Mumford and John Niederer $\frac{1}{2}$

Seedling diseases of sugarbeets continue to hinder obtaining good stands in many fields in the Great Lakes Region. This is especially evident where planting is delayed and when warm moist weather accompanies emergence. All commercial seed planted in this region is routinely treated with a fungicide to reduce losses from soil-borne pathogens.

Field observation and laboratory examination during the past three years indicate that Aphanomyces cochlicides Drechsler is still the most important of several fungi causing seedling diseases in the Great Lakes sugarbeet growing area. Earlier tests both in the greenhouse and field had indicated that Dexon, a product of Chemagro Corporation, was most effective in reducing damping off by Aphanomyces. Therefore, a field test was designed to compare three rates of Dexon, Dexon in combination with Terraclor (a product of Olin Mathieson Chemical Corporation), Captan (California Chemical Company), as it is currently used in treating all seed planted in the region, and Captan in combination with two seed protectants from Dupont.

The test was planted on May 23, on the Bob Springer farm near Coleman, Michigan. The field had been in beets the previous year and had a history of blackroot. Plots were 50 feet long with eight replications per treatment. The number of healthy seedlings in the center 30 feet of each plot was determined at 14 and 28 days after planting. A similar test was planted near Ottawa, Ohio, but it was accidentally destroyed before data was obtained.

Fourteen days after planting there were significantly greater numbers of healthy seedlings with seed treatments of Dexon at four ounces per 100 pounds of seed and Dexon-Terraclor combination at the same rate than with untreated seed (Table 1). The benefit with Dexon-Terraclor was also present after 28 days. Blackroot severity was somewhat variable in the test area, probably due to a tendency for certain sites to remain moist longer after a rain. This resulted in considerable variability in results obtained, particularly after 28 days.

It would be advisable to obtain information from similar tests at other locations. However, these data along with similar unreported data obtained earlier in field and greenhouse seem to warrant consideration of Dexon-Terraclor (35%-35%) at four ounces per 100 pounds of seed in routine treatment of sugarbeet seed for the Great Lakes Region.

^{1/} Director of Research, Farmers & Manufacturers Beet Sugar Association.

Table 1. Effect of fungicide seed treatments on sugarbeet seedling emergence and survival

Fungicide	Rate/100 1bs. seed		edlings/240 ft. at ls after planting 28 days
Captan (75%)	6 oz.	383	155
Captan-Demasan	<u>a</u> /	277	187
Captan-Demasan - 1179-95	o/ a/	347	188
Dexon (70%)	2 oz.	562	217
Dexon	3 oz.	584	222
Dexon	4 oz.	709	204
Dexon-Terraclor (35%-35%)) 4 oz.	816	347
Check		528	5/1/1
	LSD (5%)	150	LSD (10%) 94

a/ The Demasan and 1179-95 (65W) protectants were each superimposed at a 6 oz. rate on seed previously treated with Captan

b/ 1179-95 is an insecticide

PHYSIOLOGICAL INVESTIGATIONS - 1966¹/

F. W. Snyder

Germination Studies²

ABSTRACT: 1. Maturity affects germination performance of Oregon grown seed. 2. Environment during seed and fruit development may affect significantly germination performance in laboratory tests.

3. Preliminary evidence from germination tests indicates that sugarbeet seeds may possess surprising tolerance to artificial heat during drying operations.

The effect of ripeness of fruits and seeds on germination performance of two varieties harvested in Oregon in 1965 is similar to that reported for seed grown in Arizona in 1964. (See 1964 Report) Seeds harvested five days early have a lower percentage of germination and tend to germinate slower than those harvested later. Performance is affected markedly by harvesting 10 days early.

A study of sugarbeet hybrid (SL 126x128)ms x SP 5822-0 seed produced at two locations in Oregon has demonstrated a significant effect of environment during seed development on germination performance (Table 1). Both lots were germinated on the same blotter. Fruits and excised seeds of both lots were examined and germinated. Judging from appearance of the fruits, lot 4426 may have been slightly less mature at harvest, but maturity cannot account for the difference in performance. Lot 4426 had a slightly greater percentage of fruits containing no seeds and badly shrivelled seeds. Lot 4426 also had slightly less vigor as indicated by length of roots of germinated excised seeds. Based on the number of seeds that actually germinated in 10 days, lot 4426 germinated significantly slower. A water extract (1:10) of the fruits of lot 4426 contained 116 milligram-percent of oxalate; lot 4504 contained only 51. The wheat growth bioassay for inhibitory substances revealed that lot 4426 was appreciably more inhibitory. The marked differential in germination performance of these two seedlots occurred only when the seeds were surrounded by the intact fruits. It appears that the slightly less vigorous seeds of lot 4426 may have been sensitive to the greater concentration of inhibitory substances in the fruits of that lot. Previous tests on lot 4426 had demonstrated that removal of the corky material from the fruits and soaking in water could increase the percentage germination up to 87 percent.

^{1/} Research conducted in cooperation with Michigan Agricultural Experiment Station.

^{2/} Christina Filban and John M. Sebeson, Sr. assisted in this research. West Coast Beet Seed Company and Farmers and Manufacturers Beet Sugar Association provided the seed.

Table 1.

GERMINATION PERFORMANCE OF SUGARBEET HYBRID, (SL 126x128)ms x SP5822-0,

GROWN AT TWO LOCATIONS IN OREGON

Lot	Fruit Size	Good Seeds	Germination in 10 days* Percent
No.	Inches/64	Percent	
4426	on 10	89	43.5
4504	on 10	96	95.0
4426	on 8 1/2	70	21.1
4504	on 8 1/2	79	91.5

^{*} Based on good seeds, i.e., corrected for fruits containing no seed and for partially developed seeds that were judged to be non-viable.

Table 2.

EFFECT OF SELECTION OF SUGARBEET MOTHER ROOTS FOR ROOT/SHOOT RATIO
ON THE ROOT/SHOOT RATIO OF THE PROGENIES

		Root/Shoot Ra	itios	
Group	Mot	her Roots Range	Pro Avg.	genies Range
Lowest* Highest**	0.39	0.31-0.44 0.65-0.72	0.81	0.73-1.02
Lowest/Highest	0.57		1.26 0.64	1.04-1.43
		Crown/Root R	atio	
Lowest* Highest** Lowest/Highest	0.39 0.22 1.77	0.26-0.50 0.18-0.27	0.19 0.11 1.73	0.14-0.22 0.08-0.14

^{*10} roots and lines tested **6 roots and lines tested

In a cooperative study of the effect of drying temperature on germination performance of sugarbeet seeds, seeds harvested from individual plants of both monogerm and multigerm varieties were dried at temperatures from 90 to 130 degrees F. Moisture contents of samples (dried at 130 degrees F.) from the individual plants ranged from 9.85 to 198.54 percent. Only two of 15 samples germinated less than 93 percent. Three samples which ranged in moisture content from 58 to 198 percent moisture were dried at 130 degrees F. All three of them germinated better than 93 percent and were not adversely affected by the high temperature as compared with drying at lowest temperatures.

Thin layer chromatography is an excellent technique to attempt to identify the inhibitors in sugarbeet fruits. Although identifications have not been fully completed, at least one new substance has been tentatively identified.

Root-Shoot Ratio Study 4

ABSTRACT: The ratio of root to shoot and crown to root seems to be genitically controlled, however, as indicated in the 1964 Report, nitrogen fertilization may influence the ratio to some degree.

Definitions as used in this report are: Shoot is defined as all of the sugarbeet plant above the lowest leaf scar. Root is that portion of the plant below the lowest leaf scar. Crown is that portion of the plant between the base of the leaves and the lowest leaf scar.

In 1964, 96 plants of Hogaboam's 02-clone were screened by a water displacement procedure to obtain the highest and lowest root-shoot ratios. Seed was obtained from each mother root in 1965. In 1966, a 120 feet of row was planted with seed obtained from each of 10 mother roots that had the lowest root-shoot ratio and from seed obtained from each of 6 mother roots that had the highest root-shoot ratio. With one exception, 25 plants were harvested for each progeny. The total weight, root weight, crown weight, and leaf weight were determined for each progeny. The data (Table 2) indicate a rather high degree of constancy and almost complete separation of the groups.

^{3/} Paul Bergdolt, Graduate Assistant, Agricultural Engineering, Michigan State University, East Lansing, Michigan designed the equipment and did the drying.

^{4/} Cooperative with G. J. Hogaboam and Richard C. Zielke.

DEVELOPMENT OF BREEDING MATERIAL RESISTANT TO LEAF SPOT AND BLACK ROOT

G. E. Coe

Work under Foundation Project 26, at the Plant Industry Station, Beltsville, Maryland is directed mainly toward varietal improvement in resistance to Cercospora leaf spot and Aphanomyces black root.

This part of the report will cover trends in the performance of basic breeding material, leaf spot tests of some experimental hybrids and some new monogerm type 0 lines, and a method for increasing the severity of leaf spot in the nursery tests.

Trends in Basic Breeding Stocks

The trends of the basic breeding stocks in disease resistance and in agronomic characteristics as compared to the performance of the standard check variety, US 401, are presented in graph form. Graphs 1 thru 8 provide comparison of the performance of US 401 with the average performance of all the multigerm and monogerm lines tested. The performance of US 401 was arbitrarily given a numerical value of 100 each year for each characteristic investigated. Ratings higher than 100 indicate that the performance of the breeding lines was better than US 401; ratings less than 100 indicate that the breeding lines did not perform as well as US 401. For percentage soluble nonsugar solids, a rating greater than 100 indicates a lower percentage of soluble nonsugar solids than US 401, and hence better performance with respect to this characteristic.

In 1966, the performance of both the multigerm and monogerm breeding lines bounced back some from 1965's apparent decline on leaf spot resistance. Year to year fluctuations in leaf spot resistance relative to the resistance of US 401 are to be expected. The performance in any one year may deviate some from the long-term performance trend. If one examines the leaf spot performance in Graphs 1 and 2 from 1961 thru 1964, one might conclude that rapid progress was made in improving Cercospora leaf spot resistance. However, if one includes the performances of the breeding lines in 1965 and 1966, a different conclusion is reached: namely, that the rate of improvement in resistance from 1961 through 1966 was no greater than previous rates of improvement. Conditions in the test years of 1962, 1963 and 1964 appear to have been relatively disadvantageous for the standard check variety, US 401, making the breeding lines appear relatively more resistant. However, the actual rate of improvement in resistance to Cercospora leaf spot has probably been fairly constant.

It was pointed out in a previous report that the rate of improvement in resistance to Aphanomyces root rot is difficult to evaluate, because it has been necessary to increase the dosage of inoculum as the resistance of the breeding material increases. A resistant sugarbeet variety can

tolerate relatively low dosages of inoculum, but once a certain dosage threshold is reached, the plants begin to show marked and severe symptoms. Increased amounts of inoculum cause some increase in disease severity but relatively little as compared to the reaction observed immediately after exceeding the tolerance threshold of the variety. Graphs 1 and 2 indicate only a slight improvement in black root resistance in the last seven years. However, this is a measure of improvement in tolerance after the tolerance threshold levels of the varieties has been exceeded. In commercial sugarbeet areas, it is probably only rarely that black root severity exceeds the tolerance threshold level of our more resistant breeding lines. It appears that greater levels of resistance can and will be achieved, and that varieties with virtual field immunity to this disease will be developed.

The root yield of the multigerm breeding lines at Beltsville has decreased considerably in relation to the root yield of US 401 each year for the last 3 years, and has been 3 to 4% less than US 401 at East Lansing (Graph 3). This tendency toward lower yield is real and is a consequence of applying heavy selection pressure for other characteristics and of close breeding. Although decreases in root weight of the breeding lines as a whole are not desirable, it is anticipated that some of these lines will have sufficient combining ability to give maximum yields when used as a parent in the production of hybrids. On the other hand, root yield must now be carefully watched, and perhaps given greater preference in future selections. In 1965 and 1966, the monogerm lines showed a decline in yield as compared to US 401 at Beltsville. At East Lansing, a great increase in the root yield and sugar percentage of the monogerm lines occurred in 1966 as compared to US 401. However, the East Lansing data are from only a few of the better monogerm lines and do not represent the true status of the general run of monogerm lines. (See Graph 4).

The decreases in root yield at Beltsville make one skeptical of the increases in sugar percentage, because of the inverse relationship between root weight and percent sugar. However, a closer examination of the data revealed that both the multigerm and monogerm lines tested for sugar content were heavier than the average of all the lines in the test plot. The multigerm lines tested for sugar percentage have a root yield numerical rating of 120 in 1966 compared to 108 for all multigerm lines; and the monogerm lines tested for sugar percentage had a numerical root yield rating of 130 compared with 102 for all the monogerm lines. These comparisons indicate that the improvement in sugar percentage is not attributable to small root size, but rather to improved leaf spot resistance and to improved potential for sucrose production under Beltsville conditions. The potential for greater sucrose production at Beltsville, however, is usually not attained when these varieties are grown in areas further north where climatic conditions are ordinarily more favorable for the production of higher sugar percentages. Graphs 5 and 6).

rava 2. Disease resistance performance of monogerm breeding lines.

craph 3. Root yield of multigerm breeding lines.

Graph (. Percentage soluble nonsugar solids performance of multigerm breeding lines. More nonsugar solids <--

Soluble nonsugar solids in the multigerm breeding lines in 1966 were less than that of US 401 as it has been since 1961. The data since 1961 indicate that if any progress has been made in reducing these soluble nonsugar solids in the multigerms, it has been rather slight. On the other hand, if selections were not constantly being made to eliminate plants having high percentage of soluble nonsugar solids, the amount of these substances in the breeding material would undoubtedly increase. Selections to decrease the amount of soluble nonsugar solids in monogerm lines appear to have been successful if one looks only at the data from the Beltsville nursery. Data from the East Lansing nursery indicate year to year fluctuation in these soluble solids but no trend of improvement. Improvement of this characteristic is only by small increments. More extensive and precise tests would be necessary to accurately determine the rate of change in content of soluble nonsugar solids. (See Graphs 7 and 8).

New Monogerm Type-O Lines

In the spring of 1966, test crosses of selected pollen-fertile monogerm plants indicated that many did not restore pollen fertility in the F progeny and are probably type-0. When available, hybrid seed of the male-sterile parent and selfed seed of the presumptive type-0 monogerm plant were planted in the greenhouse. On May 15, the progenies were transplanted into the leaf spot nursery. Although the leaf spot was not severe, the epidemic was adequate to obtain some information concerning the tolerance of these lines. Leaf spot evaluations are presented in Table 1. Leaf spot evaluations were made on a basis of 0 to 10, 0 being no spots on the leaves and 10 being complete blighting of the foliage.

The selfed progeny of the new monogerm type-0 plants were generally more resistant to leaf spot than their hybrid male-sterile progeny because the tester plants came from lines relatively low in resistance. The resistance of the male-sterile component of the new lines will undoubtedly increase with backcrossing to their more resistant pollenfertile companions. The combining ability of most of these male-sterile lines will be tested in nursery plots in 1967.

Experimental Hybrids in the Beltsville Nursery

One hundred and nine experimental hybrids were tested for leaf spot resistance in the Beltsville nursery in 1966. These hybrids occurred in 4 different experiments. Their performances are not comparable except through certain check varieties that were included in all the tests.

- (1) The experiments were planted on May 5 in triple-lattice design.
- (2) The plots were single-row, 20 feet long.

Table 1. Leaf spot evaluation of selfed and hybrid progeny of new monogerm type-0 plants.

Seed Number	Leaf Spot Reading*	Seed Numb	er	Leaf Spot Reading*
SP 6322-0**	1	SP 65554.	PF	2
US 401 **	3	0D (5555		
SP 65500. PF	2	SP 65555. SP 65555-1	PF	1
SP 65500-1 MS	2 2	21 00000-1	MS	3
	۷	SP 65559.	PF	2
SP 65502. PF	1	SP 65559-1	MS	3
SP 65503. PF	2	SP 65567.	PF	3
SP 65503-1 MS	2	SP 65567-1	MS	3
SP 65505. PF	1	SP 65576.		3
SP 65505-1 MS	1	SP 65576-1	MS	3
SP 65506. PF	1	SP 65584.	PF	3
SP 65506-1 MS	2	SP 65584-1	MS	4
S P 65509. PF	2	SP 65599.	PF	2
SP 65509-1 MS	2	SP 65599-1	MS	3
SP 65515. PF	1	SP 65604.	PF	3
SP 65515-1 MS	2			.
		SP 65621.	PF	2
SP 65519. PF	1	SP 65621-1	MS	3
SP 65519-1 MS	2	SP 653308.	PF	
SP 65529. PF	1	SI 000000.	II	2
SP 65529-1 MS	2	SP 653332.	PF	4
	2	SP 653332-1		4
SP 65530. PF	3	•		
SP 65530-1 MS	4	SP 653334.	PF	3
		SP 653334-1	MS	3
SP 65547. PF	2	CD (52251	DE	
SP 65547-1 MS	2	SP 653351. SP 653351-1		3
SP 65550. PF	1	DI 000001-1	LIO	3
SP 65550-1 MS	3	SP 653365.	PF	3
		SP 653365-1		2
SP 65552. PF	2			
SP 65552-1 MS	2			

^{*0 =} No spots on leaves. 10 = Complete defoliation caused by leaf spot. **Standard multigerm check variety.

- (3) The first 10 plants of each row were taken for laboratory analyses.
- (4) All the beets in the row were weighed.
- (5) Harvest was October 20.
- (6) The root yield, % sucrose and gross sugar yields are given as percent of the performance of the commercial hybrid, $SL(129 \times 133) \times SP 5822-0$.

In experiment 1 (Table 2), 8 of 10 hybrids produced in the greenhouse in the winter of 1965-66 were better than SP 6322-0 in root yield. This is probably attributable to improved MS lines. In experiment 2 (Table 3), the hybrids having MS parents of East Lansing and Beltsville origin were better in root yield than hybrids with MS parents of western origin. This is not related to the leaf spot resistance of the hybrids. In experiments 3 and 4 (Table 4), the hybrids having SP 5822-0 as a pollinator were superior to hybrids having SP 59B18-0 as a pollinator. This is at least partially due to the better leaf spot resistance of SP 5822-0. The hybrids in experiment 3 and 4 having FC 502/2 as component of the MS parent were among the best hybrids in the test. Again, this is at least partially attributable to the superior leaf spot resistance of FC 502/2.

Increasing the Severity of Leaf Spot in Nursery Trials

The increased resistance of breeding lines to Cercospora leaf spot makes it difficult if not impossible to determine which of the more resistant lines are best. If the severity of the leaf spot epidemic could be increased, it might be easier to distinguish the most resistant lines. An experiment was run to determine if alternate rows planted with a vigorous but somewhat susceptible hybrid would increase the leaf spot in adjacent rows containing the breeding lines. The breeding lines were planted in rows 2 feet apart. In one replication in each of 2 experiments, the susceptible hybrid was planted between and on the outside of the 2 ft. rows creating a 1 ft. row spacing in each of these replications. There was significantly more leaf spot on the breeding lines in the replications with the interplanted rows of susceptible hybrid (Tables 5 and 6). However, the increased severity of leaf spot might be attributable to one or both of 2 factors: (1) the increase of inoculum available due to the presence of the susceptible hybrid; and (2) improved environmental conditions for the development of the disease because of the higher plant population per acre. This experiment will be repeated in 1967 with all row widths at 2 ft.

Table 2. Harvest data for experiment 1 in 1966 Beltsville, Md. Leaf Spot Nursery.

(3 replications: plots 1-row, 20 feet long)

			e Yield		Raw Juice App	arent Leaf Sp	
Vari	ety	Gross Sugar	Tons Beets	% Sucrose	Purity	Rating	Stand Count
		% of check	% of check	% of check	Percent	Numerical	<u>Number</u>
SP 6468-1	X SP 6322-0	151	159	95	82.03	3.00	85
SP 64218-01	X ***	150	154	97	79.27	3.00	93
SP 643448-2	X	149	162	92	81.27	3.33	93
SP 64217-01	X	149	154	97	79.34	3.33	100
SP 631154H01	X SP 62326-3	147	152	97	81.25	3.67	83
SP 64502-01	X SP 6428-0	145	137	106	80.87	3.00	85
SP 6423-01	Χ "	142	150	94	79.84	4.67	88
SP 6426-01	X	142	145	98	82.39	4.00	93
SP 64209-03	X SP 6322-0	140	144	98	79.36	3.67	95
SP 643301-1	X	139	156	89	80.33	4.00	93
SP 631154H01	X SP 62320-3A	139	153	91	79.70	3.67	93
SP 6423-01	X SP 5822-0 4n	133	145	92	80.14	4.00	90
SP 6322-0 Multigerm	and the second s	131	140	94	80.42	3.00	92
SP 643465-1	X SP 6322-0	130	136	96	80.65	3.33	100
SP 6442-1	X #	130	155	84	79.28	4.00	90
SP 6423-01	X SP 62326-3	129	138	93	80.29	4.00	85
SP 65406-01	X SP 6322-0	128	142	90	79.67	4.00	87
CT 5 x SL 129	X SP 6428-0	128	135	95	79.88	5.00	103
SL 126	X 11	128	135	94	81.12	5.00	88
SP 65363-01 mM hybr		128	136	94	81.55	4.00	92
SL 129 x SL 133	X SP 6428-0	127	128	99	81.57	4.33	93
SL 129	X 11	124	123	101	80.64	5.00	88
SP 631154H01	X SP 5822-0 4 <u>n</u>	123	125	97	82.53	4.00	92
US H2O		122	126	96	79.21	4.33	92
SL 126 x SP 6121-0	V CD 6/28_0	122	135	90	79.01	4.67	83
SL 126 x SL 129	X "	120	129	93	79.79	5.00	98
3061 MS	X	118	124	96	81.20	4.67	92
SL 129 x SP 6121-0		117	123	95	81.53	4.33	90
SP 6423-01	X SP 62320-3A	117	121	96	81.53	4.33	95
SL 133	X SP 6428-0	114	112	102	82.71	4.33	83
SP 65363-02 mm hybr		113	126	90	80.30	5.00	88
CT 5 x SP 6121-0	X SP 6428-0	110	121	91	79.94	5.00	90
SP 6423-01	X SP 6322-0	106	118	90	77.90	5.00	92
SP 65499-01 mm hybr		101	110	92	80.35	5.00	87
SL 129 x SL 133	X SP 5822-0	100 (4047#)	100 (14.88T/A)	100 (13.6%)	81.73	4.00	88
US 401 Multigerm		99	112	88	80.01	4.67	85
		10-	105				
General MEAN of all	varieties	135	135	95	80.55	4.06	91
S.E. of MEAN		2.00	2.05	.56	.20	. 08	. 83
L.S.D. (.05)	otion (%)	32	30	10	NS 2 50	1.0	NS
Coefficient of Vari	ation (/)	11.50	10.80	5.23	2.50	12.40	7.5

Leaf Spot Test, Beltsville, Maryland, 1966

01
(Experiment
check,
Of
1,3
Sugar,
Gross
3(4)
4

P01.

Ct.er "	·· ··	51 (3) (1)	109 100 5	(4502 lbs.	per acre)										
Arer. :	····	(6)				129 a	127 ab	120 bc		108 cdc				93 c	
• • • •	SP 6427-0	(5)	104			128	123	111	113	100	95	89	105	101	107
Polling	SP 642	(†)	91			109	126	124	96	122	104	104	91	89	107
	SP 6429-0:	(3)	126			149	132	125	130	102	109	108	66	06	116
	Fenale line	(2)				FL 35 cl x EL 32	SF 64218-1	SP 64408-1	SL 129 x FC.503	SL 133 x EL 34	SL 129 x EL 33	SL 129 x SP 6121-0	SI 133 x FC 503	CT 5 x SP 6121-0	Average for pollinators LSD (.05) for individual varieties LSD (.05) for pollinator averages
ormanae	÷+	(1)	, ecc.			ids	No	-	The	en.					

Leaf Spot Test, Eeltsville, Maryland, 1966

_
C-1
nt
leī
ij
니
cpe
^
9
•
<u>کہ</u>
ē
C
J O
200
_^
pT
ie
> i
44
00
2
_
m
3
a
l'ab
ind

					: Aver			Mate		
Perform-	••		Pollinators		: for	• •	65 E2X :	SL(129 X : 6522X	: :	
ance of	Female line :	SP 6429-0:	SP 6428-01:	SP 6427-0	0	••	03:	133)MS X : 0	010: 82	2 5822-0
	•••	• •	• •			• •	••	SP 5822-0:	••	
	(2)	(3)	(†)	(5)	(6)		(7)	(8) (8)		(97)
		נטו	90	0			200	001		000
rol., ecc.		171	06	70			100			ე ○ -
								Tons/A)		
Hybrids	EL 35 cl x EL 32	147	115	135		Ø				
	SP 64218-1	135	134	124		ರ				
	SP 64408-1	103	134	120		cı,				
	SL 129 x FC 503	126	16	110		.Ω.				
	SL 133 x EL 34	102	120	96		oc				
	SL 129 x EL 33	112	66	102		bc				
	SL 129 x SP 6121-0	107	104	91		Ъс				
	SL 133 x FC 503	93	88	97		C				
	CT 5 x SP 6121-0	76	81	107	76	O				
	Average for pollinators	113	108	109						
	LSD (.05) for individual varieties LSD (.05) for pollinator averages		36 NS							

Leaf Spot Test, Beltsville, Maryland, 1966

_
N
(Experiment
check,
0 £
5
Sucrose,
Percent
0
5
ble
ed d

	• •			**	••		11	10,	
Performance		PC	Pollinators	• •	for : (SL(129 X :6	: 62 MX:	
ш _і О	: Female line : S	SP 6429-0 : SP	P 6425-01 : SP	6+27-0:	01		133)MS X : SP 5822-0:	010:SF	5822-0
(1)	(2)	(3)	(;)	(5)	(9)	(7)	(8)	(6)	(10)
Pol., etc.		106	8	107		106	100	86	100
livbrids	EL 35 cl × EL 32	102	55	95	97 bc		(%50.61)		
		66	34	100	98 bc				
11		93	92	52	92 c				
Ξ	SL 129 x FC 503	103	172	104					
Ξ	SL 133 x EL 34	86	102	105	102 ab				
=	SL 129 x EL 33	97	104	93					
=	SL 129 x SP 6121-0	101	97	97					
***	SL 133 x FC 503	106	103	108	106 a				
Sta Sta	$cr \ 5 \ x \ SP \ 6121-0$	95	104	76	98 bc				
	Average for pollinators	66	66	66					
	LSD (.05) for individual varieties LSD (.05) for pollinator averages	S	10.4 NS						

Leaf Spot Test, Beltsville, Maryland, 1966

Table 3(D) Average Lear Spot Rating, Numerical, (Experiment 2)

		(°)										
0	(19)	CI										
terical : 638.X : CIO :	(6)	5.00										
Other Material SL(129 X : 638, 133)MS X : CI SP 5822-0:	(8)	7.00										
65 B2X : 03	(7)	3.33										
Aver.	(9)		3.89 bc	3.22 a	3.50 also	3.89 bc	3.89 bc	3.67 abc	4.11 c	3.44 ab	3.67 abc	
SP 6427-0	(5)	3.33	4.00	3.33	3.67	4.00	4.23	4.33	4.33	4.00	3.67	3.96
		57	2.0	33	57	00	57	33	00	33	29	1.19
Pollinators : SP 6428-01	(7)	2.67	4.67	3.33	3.67	4.00	3.67	3.33	4.00	3.33	3.6	3.74
SP 6429-0	(3)	2.33	3.00	3.00	3.33	3.67	3.67	3.33	4.00	3.00	3.67	3.41
Female line	(2)		35 cl x E7, 32			FC 503	x EL 34	x EL 33	SP 6121-0	x FC 503	SP 6121-0	Average for pollinators LSD (.05) for individual varieties LSD (.05) for pollinator averages
			EL 35 cl ;	SP 64218-1	SP 67408-1	SL 129 x FC	133	SL 129 x	SL 129 x	SL 133 x]	CT 5 x SP	Average for LSD (.05)
Perforance or	(1)	Pol., etc.	Hybrids	=	900 91	11	2	=	-	=		

Laaf Spor Teat, Beltsville, Maryland, 1966

Table 4(A) Gross Sugar, % of check, (Experiment 3 & 4)

(4) (5) (6) (7) (8) 11		Female line	101	Pollinators 2-0: SP 59	B18-0	Aver.	61203331 X X 5822-0	05		132) F. X 0 : 5022-0
121 106 117 (38¢¢¹ 118 134 116 133 122 128 128 126 109 123 100 121 100 121 100 121 101 117 101 110 86 109 87 105 108 108 108 108 108 109 108 109 109 109 109 109 109 109 109 109 109	(2)		(3)		(4)	(5)	(9)	(2)	(9)	(6)
118 134 116 133 122 128 128 126 129 124 100 123 107 121 101 110 86 109 86 109 87 97 78 105 105 107 78 105 108 98 107 78 105 109 99 107 79 105 109 99 107 79 105			109				121	106	117	100 (38t = 1b. per acre)
116 100 122 128 100 100 101 101 103 103 103 103 103	502/2 x SP 581181s		149		118	134				4
100 122 128 120 100 101 101 102 103 103 87 79			151		116	134				
122 128 120 100 100 101 101 102 103 103 103 78	502/2		166		100	133				
128 116 109 1007 101 101 102 103 103 103 103	×		134		122	128				
118 120 109 1007 101 101 102 102 102 103 103 93	602116s ₁ x FC		123		128	126				
120 109 1007 1005 101 1002 1002 1003 1003 1003 1003	SP 612046s, cl		130		118	124				
109 107 105 101 101 102 102 103 103 103 103			128		120	124				
107 105 116 100 101 102 102 103 103 103 78 79			137		109	123				
105 106 1001 1002 1002 1003 1003 1003 1003			134		107	121				
116 105 101 101 86 102 103 103 87 79	612083s ₁		135		105	120				
105 101 102 102 98 105 103 93	SP 602105s ₁ x SP 581181s ₁		117		116	117				
101 86 102 98 78 105 93	59208		127		101	115				
102 102 102 98 103 93	505 x SP 58		119		101	110				
102 102 98 78 105 103 93			131		86	109				
102 98 78 105 103 93	612v83s1		114		102	108				
98 78 105 103 93 79	SP 602105s, x SP 602116s,		113		102	108				
78 105 103 93 87 79	581181s ¹		116		98	107				
105 103 93 87 79	581222s ₁ x SP		131		78	105				
103 93 87 79	SP 581222s1 x FC 505 1		104		105	105				
93 79 79	6120548,		102		103	105				
87	612063s		110		93	102				
	SF 602116s ¹ x SP 581181s ₁ FC 505 x SP 602116s ₁		107		87	96				
	LSD (.05) for individual varieties LSD (.01) for pollinator averages LSD (.05) for female averages			38 17						
				CN.						

Leaf Spot Test, Beltsville, Maryland, 1966

Table 4(B) Root Yield, A of check, (Experiment 3 & 4)

Female line SP 5622-0 : S7 59 918-0 Total line SP 5622-0 : S2 59 918-0 Total line SP 5622-0 S2 59 92-0 S2	Parformance					2000000	Other	Marerial	
116 (2)		Female line	SP 582	9318-0		X X 5822-0	N N 5822_0	129 x	33) 7,
116 125 116 125 116 117 117 115 117 115	1)	(2)		(†		(9)	(7)		777
FC 504/2 x SP 581181s FC 504/2 FC 502/2 FC 503/2	erc		p-ref			CI	0		200. x e 7 - 4 to
FC 502/2 SP 6021052 x FC 502/2 SP 6021051 x FC 502/2 SP 6120465 c1 FC 502/2 x FC 502/2 SP 6120465 c1 FC 502/2 x FC 503 SP 612033 x FC 503 SP 612035 x SP 581181s 1 SP 6021058 x SP 581181s 1 SP 622058 x SP 581181s 1 SP 622058 x SP 581181s 1 SP 612083 x SP 602116s 1 SP 612058 x SP 581181s 1 SP 612054 x SP 602116s 1 SP 612058 c1 SP 612054 x SP 602116s 1 SP 612054 x SP 602116s 1 SP 612058 c1 SP 612054 x SP 602116s 1 SP 612054 x SP 602116s 1 SP 612058 c1 SP 612054 x SP 602116s 1 SP 612056 c1 SP 612058 c1 SP 612056 c1 SP 61205	Hybrids	502/2 x SP 581181s	142	116	129				1/2:11
SP 6021053 x FC 502/2 149 190 19		504	157	123	140				
SP 602116s x FC 502/2	Ξ	6021053, % FC	129	0 7 [123				
SP 612046s cl 121 117 FC 502/2 x FC 505 126 121 SP 602105s x FC 503 128 106 FC 502 x FC 503 128 106 SP 612083s 1 121 106 SP 622105s x SP 581181s 1 126 108 FC 601 FC 601 128 101 FC 601 FC 601 128 101 FC 505 x SP 581181s 1 126 89 SP 612083s x SP 581181s 1 117 96 SP 602105s x SP 602116s 1 117 96 SP 581222s x SP 581181s 1 103 111 SP 61206s x SP 602116s 1 107 96 SP 61206s x SP 602116s 1 107 96 SP 60216s x SP 602116s 1 107 96 SP 60206s x SP 602116s 1 124 85 Avverages for pollinators 123 104 LSD (.05) for individual varieties 12 96 LSD (.05) for formule lines 18 14 LSD (.05) for formule lines 18 14	=	602116s ¹ x FC	118	129	124				
FC 502/2 x ⁴ FC 505 SP 602105s x FC 503 FC 502 x FC 503 FC 502 x FC 503 FC 502 x FC 503 SP 612083s ¹ FC 601 FC 505 x SP 581181s ² SP 612083s ² SP 602105s ² SP 61206s ² S	Gra Gra		121	117	119				
SP 602105s x FC 505 130 106 SP 612083s 1 121 106 SP 602105s x SP 581181s 1 107 121 SP 592087s 1 128 101 FC 601 128 107 FC 505 x SP 581181s 1 126 108 FC 505 x SP 581181s 1 126 89 SP 61202s 1 x SP 581181s 1 117 105 SP 61202s 2 x SP 602116s 1 117 96 SP 581222s 1 x SP 602116s 1 117 96 SP 581222s 2 x SP 602116s 1 107 120 SP 612058s 1 c 1 107 105 SP 612058s 1 c 1 107 107 SP 61205s 2 x SP 602116s 1 107 96 SP 61205s 1 c 1 107 107 SP 61205s 1 c	± .	$502/2 \times 10^{-1}$	126	121	124				
FG 502 x FC 503 SP 6120835 SP 6120835 SP 59208751 SP 59208751 FC 601 FC 505 x SP 5811815 FC 505 x SP 5811815 SP 6120835 SP 6120845 SP 60211651 SP 6120885 SP 612085	- io	602105s ₁ x FC	130	106	118				
SP 662105s1 SP 662105s2 SP 592087s1 SP 592087s1 FC 601 FC 505 x SP 581181s FC 505 x SP 581181s2 FC 505 x SP 581181s2 FC 505 x SP 581181s2 SP 612083s SP 612083s SP 602105s1 SP 602105s2 SP 602105s2 SP 612083s SP 581222s1 SP 602105s2 SP 581222s1 SP 602105s2 SP		502 x FC	128	106	117				
SP 602105s1 x SP 581181s1 126 SP 592087s1 FC 601 FC 602 x SP 581181s2 FC 505 x SP 581181s2 SP 581222s1 x SP 581181s1 SP 602105s1 x SP 602116s1 117 105 SP 581222s1 x FC 505 SP 602116s1 x SP 602116s1 107 120 SP 612008s1 c1 SP 612008s1 c1 SP 612008s1 c1 SP 602116s1 x SP 581181s1 SP 602116s1 x SP	:	6120838	121	106	114				
SP 592087s1 1 126 108 FC 601 128 101 FC 505 x SP 581181s1 118 109 SP 581222s1 x SP 581181s1 126 89 SP 602105s1 x SP 602116s1 117 105 SP 58122s1 x SP 602116s1 117 96 SP 58122s31 x FC 505 111 96 SP 612054s1 c1 107 120 SP 612054s1 c1 107 96 SP 612058s1 c1 117 96 SP 60216s1 x SP 581181s1 124 85 Averages for pollinators 128 124 85 LSD (.05) for individual varieties 12 12 LSD (.05) for individual varieties 12 14 LSD (.05) for individual lines 15 14 LSD (.05) for female lines 14 LSD (.05) for individual lines 14 LSD (.05) for female lines 14	90 90	602105s, x SP 581181s	107	121	114				
FC 601	ton ton	592087s1	126	108	117				
FC 505 x SP 581181s SP 581222s x SP 58#181s 126 89 SP 612083s SP 602105s ¹ x SP 602116s ₁ 117 105 SP 581222s ¹ x SP 602116s ₁ 114 96 SP 581222s ¹ x FC 505 SP 612054s ¹ cl SP 612054s ¹ cl SP 612054s ¹ cl SP 612058s ² cl SP 61205	tus i	109	128	101	115				
SP 581222s x SP 581181s 1 126 89 SP 612083s SP 602105s ¹ x SP 602116s ₁ 117 105 SP 581222s ¹ x SP 602116s ₁ 126 SP 581222s ¹ x FC 505 SP 612054s cl SP 612054s cl SP 612054s cl SP 612058s cl SP	= :	505 x SP 581181s	118	109	114				
SP 612083s SP 602105s ¹ x SP 602116s ₁ SP 581181s ¹ SP 581222s ¹ x SP 602116s ₁ SP 581222s ¹ x FC 505 SP 612054s ¹ cl SP 612054s ¹ cl SP 6021i6s ¹ x SP 581181s ¹ SP 6021i6s ¹ x SP 581181s ¹ Averages for pollinators LSD (.05) for individual varieties LSD (.05) for female lines NS NS	:	581222s ₁ x SP 581181s	126	68	108				
SP 602105s1 x SP 602116s1 SP 581181s1 SP 581222s1 x SP 602116s1 SP 581222s1 x FC 505 SP 581222s1 x FC 505 SP 612054s1 c1 SP 612054s1 c1 SP 612058s1 c1 SP 602116s1 x SP 581181s1 SP 602116s2 x SP 581181s1 SP 602116s2 x SP 602116s2 SP 602116s2 x SP 60211	90 90	612083s	115	101	108				
SP 5811815 ¹ SP 5812225 ¹ SP 5812225 ¹ SP 5812225 ¹ SP 612054s ¹ SP 612054s ¹ SP 612068s ¹ SP 602116s ² SP	=	602105s ¹ x SP 602116s	117	105	111				
SP 581222s1 x SP 602116s1 126 83 SP 581222s1 x FC 505 111 SP 612054s1 c1 SP 612054s1 c1 SP 612058s1 c1 SP 602116s1 x SP 581181s1 107 96 FC 505 x SP 602116s1 124 85 Averages for pollinators 123 106 LSD (.05) for individual varieties 123 LSD (.05) for female lines NS	=	581181s ₁	114	96	105				
SP 581222s1 x FC 505 t 103 111 SP 612054s1 c1 SP 612068s1 c1 SP 602016s1 x SP 581181s1 FC 505 x SP 602116s1 Averages for pollinators LSD (.05) for individual varieties LSD (.01) for pollinator averages LSD (.05) for female lines NS NS	Ξ	581222s ₁ x SP 602116s	126	83	105				
SP 612054s1 cl 107 120 SP 61206s2 cl 117 96 SP 6021i6s1 x SP 581181s1 107 90 FC 505 x SP 602116s1 124 85 Averages for pollinators 123 106 LSD (.05) for individual varieties 18 16 LSD (.01) for pollinator averages 14 14 LSD (.05) for female lines NS NS		$581222s_1^2 \times FC 505$	103	111	107				
SP 612058s ¹ cl SP 6021i6s ¹ x SP 581181s ₁ FC 505 x SP 602116s ₁ Averages for pollinators LSD (.05) for individual varieties LSD (.01) for pollinator averages LSD (.05) for female lines NS NS	0) 0)	612054s,	107	120	114				
SP 602116s1 x SP 581181s1 107 90 FC 505 x SP 602116s1 124 85 Averages for pollinators 123 106 LSD (.05) for individual varieties 18 LSD (.01) for pollinator averages 14 LSD (.05) for female lines NS	Ξ	612068s,	117	96	107				
FC 505 x S\$ 602116s ₁ Averages for pollinators LSD (.05) for individual varieties LSD (.01) for pollinator averages LSD (.05) for female lines NS NS	Ξ	602116s, x SP 581181s	107	06	66				
cages for pollinators 123 10 (.05) for individual varieties 18 (.01) for pollinator averages 14 (.05) for female lines NS	00 20	c 505 x SP 602116s ₁	124	85	105				
(.05) for individual varieties 123 10 (.05) for individual varieties 18 (.01) for pollinator averages 14 (.05) for female lines NS			(,					
(.05) for female lines		. ages for politinators (.05) for individual varietie (.01) for pollinator averages	23	10					
		(.05) for female lines		NS.					

Leaf Spot Test, Beltsville, Maryland, 1966

Table 4(C) Percent Sucrose, % of check, (Experiment 3 & 4)

Performance			linators		6120538.	505 505	Material:	
0 Ĺ	: Female line :	: SP 5822-0	: SP 5918-0		5822-0	5822-0	(129 x l	155, 72 %
(1)	(2)	(3)	(4)	(5)	9	(7)	(8)	(5)
Pol., etc.		92			92	86	16	100
llybrids	502/2 x SP 581181s	102	101	a U				(13(,)
= :	FC 504	95	766	95 bc				
: :	502/2	111	104					
: 2	602105s ₁ x FC 502	101	104	ab				
	602116s ₁ x FC 502/	102	76	98 abc				
1	SP 612046s, cl	105	100	103 abc				
= :	FC 502/2 x FC 505	101	66	100 abc				
= :	SP 602105s, x FC 505	102	101					
= :	FC 502 x FC 503	103	100					
	SP 612083s	109	100	105 ab				
=	602 105	107	0.7	100 240				
0.1	59208781	100	76					
=	109	100	100					
= :	3P 581181s	100	92	96 bc				
ms so		102	76	98 abc				
=	6120338	100	100					
=	SP $602105s_1^{\perp} \times SP 602116s_1$	96	95	95 bc				
= ;	581181s,	101	101					
den :	581222s ₁ x	101	76					
	$581222s_1^2 \times FC 505$	100	93	97 abc				
2	SP 612054s, cl	92	06	91				
=	SP 612068s1 cl	96	9 6					
= :	x SP 5	100	96	98 abc				
=	505 x SP 602116s ₁	, 89	76	92 c				
	Averages for pollinators	101						
	LSD (.05) for individual varieties LSD (.05) for individual varieties	101 S	/s 6					
			4					

Leaf Spot Test, Beitsville, Marylana 1966

Table 4(D) Pol. Ex. Purity, percent, (Experiment 3 & 4)

Performance of	Remale line	Pollinators	tors	Aver.	: 612033s ₁	her 505	1 1 '	B 00
	TTIC	. 0522-0	070766	-10F	5822-0	5822-0	(129 × 13 (6322-0 :	133, F A
(1)	(2)	(3)	(4)	(5)	(9)	(7)	(8)	(6)
Pol., etc.		81.10			80.97	81.91	50.16	81.17
Hybrids	FC 502/2 x SP 581181s FC 504	80.57	80 <	80.69 abcd				
		81.66	81.97	र्थ व				
que en	602105s		4	42 a				
	$602116s_1^4 \times FC$. 2	80.97 abcd				
uter feer		79.70		79.91 abcde				
= :	.c 505	79.75	78.82	79.29 de				
	SP 602105s x FC 505	81.06		2.7				
- :	502 x F€	80.17	9.	92 abc				
	SP 612383s ₁	81.51	r.)	80.54 abcd				
era sen		<u>.</u>	S	80.29 abcde				
gm d 600 es	SP 59208751	83.03	79.76	81.40 abc				
	109	0	3	00				
es o	$505 \times SP 5811818$	e1.	9.	6C				
	$\text{SP} \text{ 581222s} \times \text{SP} \text{ 581181s}$. 7	9.	79.72 bcde				
tro date	612083s	7.	r-1	31.80 a				
= :	SP 662105s1 x SP 602116s,	80.49	81.30	80.90 abcd				
on don	581181s	.5	. 5	60				
	58:222s x SP	7.	5	66 ab				
	581222s ₁ x		so.	79.53 cde				
= :	SP 612054s ₁ cl	~	(~)	3				
= :	612068s; cl	2	5	94 a				
= =	602116s1	80.38	79.39	79.89 abcde				
	FC 565 x SP 662116s ₁	\sim	5	T				
	age for pollinators	80.87	79.96					
	LSD (.03) for individual varieties LSD (.01) for pollinator averages	8 89 8 89						

Leaf Spot Test, Meltsville, Maryland, 1966

Table 4(E) Leaf Spot Rating, Numerical, (Experiment 3 & 4)

						Other Ma	Mareriai	
Performance	Fenale line	S. 582	1:04.05.25-0 : Sr 59126-0	FVCT.	6120353; X X X X X X X X X X X X X X X X X X X	. FC 505 : X : 5822_0	(129 x 33	() () () () ()
(1)	(2)	(3)	(7)		(0)	(7)		(6)
Pol., etc.		4.33			00.4	3.67	, , (₄)	10) •
Aybrids	502/2 x SP 581151s	.0.0	3.00					
yr 6 bo y	FC 504	2.67	3.00					
= ;	502/2	2.00	3.00	2.50 a				
Ξ :		3.00	2.67					
 -	N.	3.00	3.33	3.17 abcd				
on me			00					
=	$FC 502/2 \times ^{L}FC 505$	3.00	(A)	17				
Ξ		4.00	7.00	00.				
=	FC 502 x FC 503		3.67	50 3				
=	SP 612083s ₁	2.67	3.00	3 75				
= ;	602105s	4.33		4.50 e				
: :		3.00	3.33					
: :	601	3.67		.50				
: :	505 x SP 5	3.67		.17				
	$SP 581222s_1 \times SP 581181s_1$	4.00						
= ;	612083s ₁	4.00	4.33	4.17 cde				
: :	SP 602105s1 x SP 602116s1	3.33	5.00					
: :	581181s ₁	4.33	7.00	4.17 cde				
: ::	581222s1 x SP	3.67	4.67	4.17 cde				
	581222s ₁ x FC	7.00	2.00	4.50 e				
~ 2	612054s1	7.00	4.33	4.17 cde				
: =	SP 61206881 c1	3.67	4.33	4.00 bcde				
: :	602116s	4.33	5.00					
	$02116s_1$	3, 67	4.33	4.00 bcde				
	ages for pollinators	3.44	3.90					
	LSD (.05) for individual varieties LSD (.01) for pollinator averages	~	. 33					

Table 5. Leaf spot ratings of monogerm breeding lines with and without interplanted rows of susceptible hybrid.

Replication	Totaled leaf spot ratings of 36 lines
First	111
Second (with susceptible hybrid interplanted)	143
Third	106
General MEAN of replications	120
S. E. of MEAN	3.03
Significant Difference (100:1)	10.80
Coefficient of Variation (%)	13.58

Table 6. Leaf spot ratings of multigerm breeding lines with and without interplanted rows of susceptible hybrid.

Replication	Totaled leaf spot ratings of 36 lines
First	118
Second	108
Third (with susceptible hybrid interplanted)	135
General MEAN of replications	120.3
S. E. of MEAN	2.77
Significant Difference (100:1)	11.88
Coefficient of Variation (%)	15.02

