Solutions Manual

A Book of Abstract Algebra - 2nd EditionCharles C. Pinter

This solution manual was created by the MathLearners study group.

Contents

2	Operations	
3	The Definition of Groups	Ģ

Chapter 2

Operations

A: Examples of Operations

3 a * b is a root of the equation $x^2 - a^2b^2 = 0$, on the set \mathbb{R} .

Solution. From $x^2 - a^2b^2 = 0$ we get $x^2 = a^2b^2$, so $\pm ab$ is a root, which means it's not unique. Thus a * b is not an operation on \mathbb{R} .

5 Subtraction, on the set $\{n \in \mathbb{Z} | n \ge 0\}$.

Solution. Subtraction is not an operation on that set, because if we have $k, l \in \mathbb{Z}_{>0}$, where l > k, we get a negative result, which would not be in $\mathbb{Z}_{>0}$.

B: Properties of Operations

$$1 x * y = x + 2y + 4$$

Solution. We follow the steps from the example.

- I. Commutative: x * y = x + 2y + 4; y * x = y + 2x + 4. Thus x * y is not commutative.
- II. Associative: x * (y * z) = x * (y + 2z + 4) = x + 2(y + 2z + 4) + 4(x * y) * z = (x + 2y + 4) * z = x + 2y + 4 + 2z. Thus x * y is not associative.
- III. Solve x * e = x for e.

$$x * e = x$$

$$x + 2e + 4 = x$$

$$4 = -2e$$

$$-2 = e.$$

IV. Solve
$$x * x' = e$$
 for x' .

$$x * x' = e$$

$$x + 2x' + 4 = e$$

$$x + 2x' + 4 = -2$$

$$x + 2x' = -6$$

$$2x' = -6 - x$$

$$x' = -\frac{6 + x}{2}$$

$$2 x * y = x + 2y - xy$$

Solution. We follow the steps from the example.

I. Commutative:

$$x * y = x + 2y - xy$$
$$y * x = y + 2x - yx.$$

Thus x * y is not commutative.

II. Associative:

$$x * (y * z) = x * (y + 2z - yz) = x + 2(y + 2z - yz) - x(y + 2z - yz)$$
$$(x * y) * z = (x + 2y - xy) * z = x + 2y - xy + 2z - (x + 2y - xy)z.$$

Thus x * y is not associative.

III. Solve
$$x * e = x$$
 for e .

$$x * e = x$$

$$x + 2e - xe = x$$

$$2e - xe = 0$$

$$e(2 - x) = 0$$

$$e = 0$$

Check that it works: $x * 0 = x + 2 \cdot 0 - x \cdot 0 = x + 0 - 0 = x$.

IV. Solve
$$x * x' = e$$
 for x' .

$$x * x' = e$$

$$x + 2x' - xx' = 0$$

$$x + x'(2 - x) = 0$$

$$x'(2 - x) = -x$$

$$x' = -\frac{x}{2 - x}.$$

If x = 2, then the right side is undefined. Thus there is no inverse.

$$3 x * y = |x + y|$$

Solution. We follow the steps from the example.

I. Commutative:

$$x * y = |x + y|$$

 $y * x = |y + x| = |x + y|$.

Thus x * y is commutative.

II. Associative:

$$x * (y * z) = x * |y + z| = |x + |y + z||$$

 $(x * y) * z = |x + y| * z = ||x + y| + z|$

Let x = 2, y = -2 and z = 0. Then x * (y * z) = 2 * (-2 * 0) = <math>|2 + | -2 + 0|| = |2 + 2| = 4. But (x * y) * z = (2 * -2) * 0 = ||2 + (-2)| + 0|| = |0 + 0|| = 0. Thus x * y is not associative.

III. Solve x * e = x for e.

$$x * e = x$$
$$|x + e| = x.$$

But if x < 0, then the right side is negative, but the left side is nonnegative, which is a contradiction. Thus there is no identity element.

Chapter 3

The Definition of Groups

C: Groups of Subsets of a Set

1 Prove that there is an identity element with respect to the operation +, which is ϕ .

Proof. Let *A* be any element of $\mathcal{P}(D)$. Then $A+\phi=(A-\phi)\cup(\phi-A)=A\cup\phi=A$. Thus ϕ is the identity element.

2 Prove every subset A of D has an inverse with respect to +, which is A.

Proof. Let *A* be any subset of *D*. Then $A + A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$. Thus *A* is the inverse of *A*.

D: A Checkerboard Game

1 Write the table of *G*.

Solution. See table below:

2 Granting associativity, eplain why $\langle G, * \rangle$ is a group.

Solution. Assuming associativity, we only have to show that there exists an identity element and an inverse.

Proposition 1. The identity element of *G* is *I*.

Proof. Let *X* be any element of *G*. Then X * I = X and I * X = X. Thus *I* is the identity element of *G*.

Proposition 2. For any element *X* of *G*, the inverse is *X*.

Proof. Let *X* be any element of *G*. Obersve that X * X = I and X * X = I. Thus *X* is the inverse of *X*.

We also note that G is an abelian group, since changing the order of the operands doesn't change the result (i.e. D * V = V * D = H).

E: A Coin Game

1 If $G = \{I, M_1, ..., M_7\}$ and * is the operation we have just defined, write the table of $\langle G, * \rangle$.

Solution. See table below:

I	I	M_1	M_2	M_3	M_4	M_5	M_6	M_7
I	I	M_1	M_2	M_3	M_4	M_5	M_6	M_7
M_1	M_1	I	M_3	M_2	M_5	M_4	M_7	M_6
M_2	M_2	M_3	I	M_1	M_6	M_7	M_4	M_5
M_3	M_3	M_2	M_1	I	M_7	M_6	M_5	M_4
M_4	M_4	M_6	M_5	M_7	I	M_2	M_1	M_3
M_5	M_5	M_7	M_4	M_6	M_1	M_3	I	M_2
M_6	M_6	M_4	M_7	M_5	M_2	I	M_3	M_1
M_7	M_7	M_5	M_6	M_4	M_3	M_1	M_2	I

2 Granting associativity, eplain why $\langle G, * \rangle$ is a group. Is it commutative? If not, show why not.

Solution. As can be seen from the operation table, there exists an identity element, namely I, and every element has an inverse. But G is not abelianc, since $M_4 * M_5 = M_2$, but $M_5 * M_4 = M_1$.

F: Groups in Binary Codes

1 Show that $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (b_1, b_2, ..., b_n) + (a_1, a_2, ..., a_n)$.

Proof. We use induction and start with the base case:

I.
$$0+1=1=1+0$$
, and $0+0=0=1+1$.

II. Assume that $(a_1, a_2, ..., a_k) + (b_1, b_2, ..., b_k) = (b_1, b_2, ..., b_k) + (a_1, a_2, ..., a_k)$ for $k \le n$. Observe that $(a_1, a_2, ..., a_k, a_{k+1}) + (b_1, b_2, ..., b_k, b_{k+1}) = (b_1 + a_1, b_2 + a_2, ..., b_k + a_k, a_{k+1} + b_{k+1})$. Thus we have to show that $a_{k+1} + b_{k+1} = b_{k+1} + a_{k+1}$. Since a_{k+1} can be either 0 or 1, and b_{k+1} can also be either 0 or 1, we refer to the base case to conclude that $a_{k+1} + b_{k+1} = b_{k+1} + a_{k+1}$. Thus we have $(a_1, a_2, ..., a_k, a_{k+1}) + (b_1, b_2, ..., b_k, b_{k+1}) = (b_1, b_2, ..., b_k, b_{k+1}) + (a_1, a_2, ..., a_k, a_{k+1})$.

This completes our proof that $(a_1, a_2, ..., a_n) + (b_1, b_2, ..., b_n) = (b_1, b_2, ..., b_n) + (a_1, a_2, ..., a_n).$

2 Check the remaining six cases:

Solution.

$$1 + (0+1) = 1 + 1 = 0 = 1 + 1 = (1+0) + 1$$

$$1 + (0+0) = 1 + 0 = 1 = 1 + 0 = (1+0) + 0$$

$$0 + (1+1) = 0 + 0 = 0 = 1 + 1 = (0+1) + 1$$

$$0 + (1+0) = 0 + 1 = 1 = 1 + 0 = (0+1) + 0$$

$$0 + (0+1) = 0 + 1 = 1 = 0 + 1 = (0+0) + 1$$

$$0 + (0+0) = 0 + 0 = 0 = 0 + 0 = (0+0) + 0$$

3 Show that $(a_1, ..., a_n) + [(b_1, ..., b_n) + (c_1, ..., c_n)] = [(a_1, ..., a_n) + (b_1, ..., b_n)] + (c_1, ..., c_n).$

Proof. We use proof by induction and start with the base case.

- I. See exercise 2.
- II. Assume $(a_1,...,a_k) + [(b_1,...,b_k) + (c_1,...,c_k)] = [(a_1,...,a_k) + (b_1,...,b_k)] + (c_1,...,c_k)$ for $k \le n$. Observe that the first k digits in $(a_1,...,a_k,a_{k+1}) + [(b_1,...,b_k,b_{k+1}) + (c_1,...,c_k,c_{k+1})]$ are associative, which means whe only have to show that $a_{k+1} + (b_{k+1} + c_{k+1}) = (a_{k+1} + b_{k+1}) + c_{k+1}$ is true. And since we have shown in the base case that any binary word of length 1 is associative, we conclude that $a_{k+1} + (b_{k+1} + c_{k+1}) = (a_{k+1} + b_{k+1}) + c_{k+1}$ holds, and thus $(a_1,...,a_k,a_{k+1}) + [(b_1,...,b_k,b_{k+1})] + (c_1,...,c_k,c_{k+1})] = [(a_1,...,a_k,a_{k+1}) + (b_1,...,b_k,b_{k+1})] + (c_1,...,c_k,c_{k+1}).$

This completes our proof that addition of binary words is associative.

6 Show that A + B = A - B, [where A - B = A + (-B)].

Proof. Observe that:

$$A = A$$

$$= A + 0$$

$$= A + (B + B)$$

$$= (A + B) + B$$

$$A + (-B) = (A + B) + B + (-B)$$

$$= (A + B) + (B - B)$$

$$= (A + B) + 0$$

$$A - B = A + B.$$

This completes our proof that A + B = A - B.

7 If A + B = C, show that A = B + C.

Proof. Observe that:

$$A + B = C$$

$$(A + B) + B = C + B$$

$$A + (B + B) =$$

$$A + 0 =$$

$$A = B + C.$$

This completes our proof that A + B = C implies A = B + C.