Extensiones de grupos y teoremas de Hall

Carlos Moya García

Universidad del País Vasco

10 de julio de 2022

Carlos Moya García 10 de julio de 2022

Índice

- 1 Cohomología
- 2 Extensiones de grupos
- 3 Teoremas de Hall
- 4 Homomorfismo del trasfer

Complejos de cocadenas

Dada una sucesión de R-módulos $C = \{C^n\}_{n \in \mathbb{Z}}$, se define un complejo de cocadenas sobre C como

$$\cdots \to C^{n-1} \xrightarrow{\partial^{n-1}} C^n \xrightarrow{\partial^n} C^{n+1} \to \cdots$$

donde cada ∂^i es un homomorfismo de R-módulos y $\partial^{n+1} \circ \partial^n = 0$.

Complejos de cocadenas

Dada una sucesión de R-módulos $C = \{C^n\}_{n \in \mathbb{Z}}$, se define un complejo de cocadenas sobre C como

$$\cdots \to \textbf{\textit{C}}^{n-1} \xrightarrow{\partial^{n-1}} \textbf{\textit{C}}^{n} \xrightarrow{\partial^{n}} \textbf{\textit{C}}^{n+1} \to \cdots$$

donde cada ∂^i es un homomorfismo de R-módulos y $\partial^{n+1} \circ \partial^n = 0$.

Se definen los grupos de *n*-cociclos, *n*-cobordes como

$$Z^n(C) = \operatorname{Ker}(\partial^n),$$

 $B^n(C) = \operatorname{Im}(\partial^{n-1})$

y el *n*-ésimo grupo de cohomología como

$$H^n(C) = Z^n(C)/B^n(C).$$

Cohomología de grupos

Sea G un grupo y A un G-módulo. Denotamos por C^n al conjunto de funciones de G^n en A.

Definimos el operador coborde $\partial^n \colon C^n \to C^{n+1}$ como

$$\partial^n f = \sum_{i=0}^{n+1} (-1)^i d_i f$$

donde d_i viene dado por

$$(d_i f)(g_1, \dots, g_n) = egin{cases} g_1 \cdot f(g_2, \dots, g_n) & ext{si } i = 0, \\ f(g_1, \dots, g_i g_{i+1}, \dots, g_n) & ext{si } 0 < i < n, \\ f(g_1, \dots, g_{n-1}) & ext{si } i = n. \end{cases}$$

Se verifica que $\partial^{n+1}(\partial^n f) = 0$ y por tanto (C, ∂) es un complejo de cocadenas.

→□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ● りへで

Cohomología de grupos

1-coborde

$$(\partial^0 a)(g) = g \cdot a - a$$

2-coborde

$$(\partial^1 f)(g_1, g_2) = g_1 \cdot f(g_2) - f(g_1 g_2) + f(g_1)$$

1-cociclo

$$(\partial^1 f)(g_1, g_2) = g_1 \cdot f(g_2) - f(g_1 g_2) + f(g_1) = 0$$

2-cociclo

$$(\partial^2 f)(g_1,g_2,g_3) = g_1 \cdot f(g_2,g_3) - f(g_1g_2,g_3) + f(g_1,g_2g_3) - f(g_1,g_2) = 0$$

Cohomología de grupos

Proposición

Si
$$|G| = m < \infty$$
 o $|A| = m < \infty$, entonces $m \cdot H^n(G, A) = \{0\}$.

Teorema

$$Si \ mcd(|G|, |A|) = 1$$
, entonces $H^n(G, A) = \{0\}$.

Extensiones de grupos

Una extensión de un grupo Q por un grupo N es una sucesión exacta corta

$$1 \to N \xrightarrow{i} E \xrightarrow{\pi} Q \to 1.$$

Extensiones de grupos

Una extensión de un grupo Q por un grupo N es una sucesión exacta corta

$$1 \rightarrow N \xrightarrow{i} E \xrightarrow{\pi} Q \rightarrow 1.$$

Decimos que dos extensiones son equivalentes cuando existe un homomorfismo *f* que hace al siguiente diagrama conmutativo

Necesariamente f debe ser un isomorfismo de grupos.

Acción de grupos de una extensión

Una extensión de grupos $1 \to N \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$ determina por conjugación por elementos de E una acción de grupos en N $\alpha \colon E \to \operatorname{Aut}(N)$ definida por

$$\alpha(e)(n) = i^{-1}(ei(n)e^{-1}).$$

Acción de grupos de una extensión

Una extensión de grupos $1 \to N \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$ determina por conjugación por elementos de E una acción de grupos en N $\alpha \colon E \to \operatorname{Aut}(N)$ definida por

$$\alpha(e)(n) = i^{-1}(ei(n)e^{-1}).$$

Si N es abeliano, Inn(N) = 1 y la extensión define una acción de Q-módulo en N. Nos centraremos únicamente en el caso en que N es abeliano.

Extensiones que escinden

<u>Definición</u>

Se dice que una extensión $1 \to A \to E \xrightarrow{\pi} Q \to 1$ escinde cuando existe un homomorfismo $s: Q \to E$ tal que $\pi \circ s = 1_Q$.

Teorema

Una extensión 1 \rightarrow *A* \rightarrow *E* \rightarrow *Q* \rightarrow 1 *que escinde es equivalente a* 1 \rightarrow *A* \rightarrow *A* \rtimes *Q* \rightarrow *Q* \rightarrow 1.

Clasificación de las escisiones

Definición

Sea A un grupo abeliano y 1 \to $A \xrightarrow{i} E \xrightarrow{\pi} Q \to$ 1 un extensión de grupos. Diremos que dos escisiones s_1 y s_2 son A-conjugadas si existe $a \in A$ tal que $s_1(Q)^{i(a)} = s_2(Q)$.

Teorema

Las escisiones salvo A-conjugación están en biyección con $H^1(Q, A)$.

Clasificación de las extensiones

$$1 \to A \xrightarrow{i} E \xrightarrow{\pi} Q \to 1$$

$$s(q_1)s(q_2)s(q_1q_2)^{-1} = i(c(q_1, q_2))$$
(1)

$$E = \bigsqcup_{q \in Q} i(A)s(q) = i(A)s(Q)$$

$$i(a_1)s(q_1)i(a_2)s(q_2) = i(a_1 + q_1 \cdot a_2 + c(q_1, q_2))s(q_1q_2)$$

El conjunto $A \times Q$ con la siguiente operación tiene estructura de grupo y es equivalente a (1) con la inclusión y proyección canónicas

$$(a_1,q_1)*(a_2,q_2)=(a_1+q_1\cdot a_2+c(q_1,q_2),q_1q_2).$$
 (2)

<ロ > ∢回 > ∢昼 > ∢差 > → 差 → りへぐ

11/22

Carlos Moya García 10 de julio de 2022

Clasificación de las extensiones

Proposición

El conjunto $A \times Q$ con la operación definida en (2) define una extensión de Q por A cuando c es un 2-cociclo.

Proposición

Sea 1 \rightarrow A \rightarrow E $\stackrel{\pi}{\rightarrow}$ Q \rightarrow 1, s_1 y s_2 secciones de π y c_1 y c_2 los cociclos asociados. Entonces $c_1 - c_2$ es un 2-coborde.

Teorema

Las extensiones de Q por A salvo equivalencia están en biyección con $H^2(Q,A)$.

Teorema de Schur-Zassenhaus

Teorema

Sean Ay Q grupos con órdenes coprimos y 1 \rightarrow A \rightarrow E \rightarrow Q \rightarrow 1 una extensión. Entonces la extensión escinde y todas las escisiones son conjugadas.

Definición

Sea G un grupo, $S \le G$ y π un conjunto de primos. Se dice que S es un π -subgrupo de Sylow cuando es un π -subgrupo maximal.

Definición

Sea G un grupo, $S \le G$ y π un conjunto de primos. Se dice que S es un π -subgrupo de Sylow cuando es un π -subgrupo maximal.

Definición

Se dice que H un π -subgrupo de Hall cuando |H| es producto de primos en π y |G:H| es coprimo con |H|. Denotamos al conjunto de π -subgrupos de Hall como $Hall_{\pi}(G)$.

Definición

Sea G un grupo, $S \le G$ y π un conjunto de primos. Se dice que S es un π -subgrupo de Sylow cuando es un π -subgrupo maximal.

Definición

Se dice que H un π -subgrupo de Hall cuando |H| es producto de primos en π y |G:H| es coprimo con |H|. Denotamos al conjunto de π -subgrupos de Hall como $Hall_{\pi}(G)$.

Definición

Carlos Moya García

Se define el π -núcleo de G, $O_{\pi}(G)$, como el subgrupo generado por todos los π -subgrupos normales. Equivalentemente, $O_{\pi}(G)$ es la intersección de todos los π -subgrupos de Sylow.

10 de julio de 2022

14/22

Propiedades

Proposición

Sea G un grupo, $N \subseteq G$ y $H \in Hall_{\pi}(G)$. Entonces $H \cap N \in Hall_{\pi}(N)$ y $HN/N \in Hall_{\pi}(G/N)$.

Proposición

Sean π y τ conjuntos de primos disjuntos y $H \in \operatorname{Hall}_{\pi'}(G)$ y $K \in \operatorname{Hall}_{\tau'}(G)$ subgrupos de Hall. Entonces $H \cap K \in \operatorname{Hall}_{\pi' \cap \tau'}(G)$.

Teorema de Schur-Zassenhaus

Teorema

Sea G un grupo y $N \subseteq G$ un π -subgrupo de Hall. Entonces G tiene π' -subgrupos de Hall y todos ellos son conjugados.

Teoremas de Hall

Teorema

Sea ${\it G}$ un grupo resoluble. Entonces, para todo conjunto de primos π se tiene

- $\operatorname{Hall}_{\pi}(G) \neq \emptyset$
- G actúa transitivamente por conjugación sobre los π -subgrupos de Hall

Teoremas de Hall

Teorema

Sea G un grupo resoluble. Entonces, para todo conjunto de primos π se tiene

- $\operatorname{Hall}_{\pi}(G) \neq \emptyset$
- G actúa transitivamente por conjugación sobre los π -subgrupos de Hall

Teorema

Sea G un grupo tal que para todo conjunto de primos π existen π -subgrupos de Hall. Entonces G es resoluble.

Sea G un grupo, H un subgrupo de índice finito n y $T = \{t_1, \ldots, t_n\}$ representantes de las coclases de H. Definimos la acción de G sobre T por

$$Ht_ig = Ht_{(i)g},$$

Sea G un grupo, H un subgrupo de índice finito n y $T = \{t_1, \ldots, t_n\}$ representantes de las coclases de H. Definimos la acción de G sobre T por

$$Ht_ig = Ht_{(i)g},$$

de esta forma se tiene

$$t_i g t_{(i)g}^{-1} \in H$$
.

Sea G un grupo, H un subgrupo de índice finito n y $T = \{t_1, \ldots, t_n\}$ representantes de las coclases de H. Definimos la acción de G sobre T por

$$Ht_ig = Ht_{(i)g},$$

de esta forma se tiene

$$t_i g t_{(i)g}^{-1} \in H$$
.

Dado θ : $H \rightarrow A$ un homomorfismo sobre un grupo abeliano, se define el transfer de θ como

$$\tau_{G/H}(g) = \prod_{i=1}^n \theta\left(t_i g t_{(i)g}^{-1}\right)$$

Sea G un grupo, H un subgrupo de índice finito n y $T = \{t_1, \ldots, t_n\}$ representantes de las coclases de H. Definimos la acción de G sobre T por

$$Ht_ig = Ht_{(i)g},$$

de esta forma se tiene

$$t_i g t_{(i)g}^{-1} \in H$$
.

Dado θ : $H \rightarrow A$ un homomorfismo sobre un grupo abeliano, se define el transfer de θ como

$$\tau_{G/H}(g) = \prod_{i=1}^{n} \theta\left(t_{i}gt_{(i)g}^{-1}\right)$$

El transfer es un homomorfismo independiente del transversal.

◆ロ > ◆昼 > ◆ 差 > ◆ 差 ● り Q (*)

Cálculo del transfer

Dado un elemento $g \in G$, las órbitas de la acción de x sobre las coclases por multiplicación a derecha tienen la siguiente forma

$$\left\{ \textit{Hs}_i, \dots, \textit{Hs}_i^{l_i-1} \right\},$$

donde l_i es el menor entero tal que $Hs_ig^{l_i}=Hs_i$. Los elementos s_ig^j para $i=1,\ldots k$ y $j=0,\ldots,l_i-1$ forman un transversal de H a G.

Cálculo del transfer

Dado un elemento $g \in G$, las órbitas de la acción de x sobre las coclases por multiplicación a derecha tienen la siguiente forma

$$\left\{ \mathit{Hs}_i, \ldots, \mathit{Hs}_i^{\mathit{l}_i-1} \right\},$$

donde I_i es el menor entero tal que $Hs_ig^{l_i}=Hs_i$. Los elementos s_ig^j para $i=1,\ldots k$ y $j=0,\ldots,l_i-1$ forman un transversal de H a G. El transfer con este transversal se escribe como

$$au_{G/H}(g) = \prod_{i=1}^k \, s_i g^{l_i} = \prod_{i=1}^k \, s_i g^{l_i} s_i^{-1}.$$

Transfer a un subgrupo

Definimos el transfer de G a un subgrupo $H \leq G$ como el transfer a Ab: $H \rightarrow H^{ab}$

$$\tau_{G/H}(g) = \prod_{i=1}^n \left(t_i g t_{(i)g}^{-1}\right) H'.$$

Es de especial interés el transfer a subgrupos abelianos ya que dan lugar a endomorfismos de grupos.

Transfer al centro y teorema de Schur

Proposición

Sea $H \le G$ un subgrupo central de índice finito |G:H| = n. Entonces el transfer de G a H es

$$au_{G/H}(g) = \prod_{i=1}^k {}^{s_i}g^{l_i} = g^n.$$

Transfer al centro y teorema de Schur

Proposición

Sea $H \le G$ un subgrupo central de índice finito |G:H| = n. Entonces el transfer de G a H es

$$au_{G/H}(g) = \prod_{i=1}^k {}^{\mathbf{s}_i} g^{l_i} = g^n.$$

Teorema (Schur)

Sea G un grupo con centro Z(G) de índice finito n. Entonces G' es finito y $G'^n = \{1\}$.

Fin

Gracias por su atención