CV 510½ Modeling, Uncertainty, and Data for Engineers

(July – Nov 2025)

Dr. Prakash S Badal

1

Flow

- Least-square errors
- Parameter estimation

3

Linear models: intro

• Linear functional relationship

$$E[Y \mid X = x] = Ax$$

A: deterministic constant

In other words,

$$Y = Ax + \epsilon$$

such that

$$E[\epsilon] = 0$$

 $\varepsilon \equiv \text{random error}$: zero mean, finite variance

In a deterministic linear model, *x* is given:

$$\sigma_Y = \sigma_\epsilon$$

4

Linear models: example

• Linear function relationship

$$E[Y_i] = x_1 + x_2 t_i$$

 t_i : observation time; epoch; given; deterministic

 x_1 : intercept

 x_2 : rate of change

Linear functional model is

$$E\begin{pmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$A \qquad \mathbf{X}$$

5

Linear models: example

• Is this a linear model

Write its linear functional relationship

A linear model in x

Linear models: example

Is this a linear model

Step function, $s = x_2 - x_1$

Write its linear functional relationship

$$E\left(\begin{bmatrix} Y_1 \\ \vdots \\ Y_{i-1} \\ Y_i \\ \vdots \\ Y_n \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ s \end{bmatrix}$$

A linear model in x

7

Linear models: example

• Is this a linear model

$$E[Y_i] = x_1 + x_2 t_i + x_3 t_i^2$$

Write its linear functional relationship

$$E\left(\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}\right) = \begin{bmatrix} 1 & t_1 & t_1^2 \\ 1 & t_2 & t_2^2 \\ \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

A linear model in x

 x_i are coefficients (yet to be determined) in this model.

Misleading variable naming!

$$E[Y_i] = c_1 + c_2 t_i + c_3 t_i^2$$

Linear models: example

Is this a linear model

$$E[Y_i] = \beta_0 \cdot x_{1,i}^{\beta_1} \cdot x_{2,i}^{\beta_2}$$

Write its linear functional relationship

$$E\left(\begin{bmatrix} \ln Y_{1} \\ \ln Y_{2} \\ \vdots \\ \ln Y_{n} \end{bmatrix}\right) = \begin{bmatrix} 1 & \ln x_{1,1} & \ln x_{2,1} \\ 1 & \ln x_{1,2} & \ln x_{2,2} \\ \vdots & \vdots & \vdots \\ 1 & \ln x_{1,n} & \ln x_{2,n} \end{bmatrix} \begin{bmatrix} \ln \beta_{0} \\ \beta_{1} \\ \beta_{2} \end{bmatrix}$$

$$A$$

A linear model in x

 x_i are coefficients (yet to be determined) in this model

9

Elements of models

O. Eyeball the data.

Scatter, histogram, change scales (log-log, semilogX, semilogY, e^X , so on).

1. Estimation

Model:

 $Y = Ax + \epsilon$ $Y = x\beta + \epsilon$

Predicted/response: Y dependent var.

2. Inference

Predictor/feature:

x ind./explanatory/covariate

Parameters:

A or β

3. Prediction

4. Explanation

Estimating parameters aka "model building stage":

- Role of x is not to predict (y) as yet!
- It is to estimate A or β
- Better call x at this stage feature/covariate/explanatory var.

5. Diagnosis

 $\frac{1}{1}$ Goal of estimation: Obtain parameter estimates \widehat{A}

Elements of models

- 0. Eyeball the data. Scatter plot, histogram, change scales
- **1.** Estimation Goal: Obtain parameter estimates $(\hat{\beta})$ Concepts: least squares, maximum likelihood, fitting the model
- 2. Inference Goal: Model comparison; uncertainty in parameter $(\hat{\beta})$ Concepts: Conf. interval for $\hat{\beta}$, hyp. testing, std. error, p-values
- 3. Prediction Goal: Forecast new outcomes (x is now a predictor) Concepts: CI for \hat{y} (prediction error), mean-squared error (MSE)
- 4. Explanation Goal: Interpret the fitted model, understand relationships Concepts: feature importance, causality
- 5. Diagnosis Goal: Assess model assumptions and validity Concepts: error (constant Var.), unusual observations (outliers)

11

Least-square errors

A linear model with a single feature has two parameters:

Least-square errors

A linear model with a single feature has two parameters:

Intercept slope

An example: $y_1 = mx_1 + c$ $y_5 = mx_5 + c$ $A = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}; x = \begin{bmatrix} m \\ c \end{bmatrix}$ $A^Ty = A^TAx \implies x = (A^TA)^{-1}A^Ty$ Magic: What does the calculated m and c mean?

Least-square estimates of m, c.

13

Least-square errors

 $E[Y \mid X = x] = Ax$

Observed (x_i, y_i)

x and y

predicted $\hat{y}_i = A$

 $\hat{y}_i = A\hat{x}_i$ \hat{x} and \hat{y}

$$\hat{\epsilon}_i = y_i - \hat{y}_i = y_i - A \,\hat{x}_i$$

2-norm error,

$$\|\epsilon\| = \sqrt{\epsilon_1^2 + \epsilon_2^2 + \dots + \epsilon_n^2} = \sqrt{\epsilon^{\mathrm{T}} \epsilon}$$

Minimizing $\|\epsilon\| \equiv \min \|z\|^2$

Parameter estimation

- Next week's class:
 - Estimation: Maximum likelihood estimation
 - Inference: Confidence interval
 - Inference: Hypothesis testing
 - Goodness of fit: χ^2 , KS

15

15

Questions, comments, or concerns?