

Federated Node Classification over Graphs with Latent Link-type Heterogeneity

Han Xie, Li Xiong, Carl Yang
WWW'23

李自超

₩ 研究背景 ≪

※ 框架设计 ≪

≫ 实验设计 ≪

≫ 总结与讨论 ≪

> 提纲

> 研究背景

图神经网络及应用

联邦图神经网络

联邦图链接异质性

动机与挑战

> 图神经网络

Layer N+1

Graph Neural Network (GNN)

サ点嵌入 边嵌入

Layer N

特征提取

- 节点特征
- 边特征

消息传递

- 获取邻居节点信息
- 聚合邻居节点信息
- 更新中心节点信息

> 图神经网络应用

> 图神经网络应用

如何提升每个部门开发 App 的效果?

> 联邦图神经网络

> 边同质图的隐式链接

开发某 App 的部门收集到的数据

GNN 节点分类

节点标签、特征,是否有相连边

节点标签、特征,边的隐藏属性

社交网络图 (单关系图,边为好友关系)

>基于隐式链接的联邦图

> 联邦图的链接异质性

FL中的一个重要挑战——non-IID

节点

链接

i.i.d.

non-i.i.d.

FL 场景下的图的隐式链接类型的异质性尚未得到研究!

>研究的必要性

在全局、 FL 场景下训练模型时,是否应该**针对不同的隐式链接类型**

进行不同的处理?(即考虑区别对待不同隐式链接是否对模型有帮助)

- 提取 4 种<mark>隐式关系</mark>作为预定义的隐式链接类型,
- 构造4个单一子图(只包含一种隐式链接类型)
- 1 个混合子图(包含 4 种隐式链接类型)。

Link-type reference share authors share keywords same year mixed

> 研究的必要性

针对不同隐式链接类型的处理能否影响图学习模型性能(准确率)?

全局

	Link-type	reference	share authors	share keywords	same year	mixed
	GCN	0.4066	0.3209	0.4159	0.1862	0.3403
多诵道	mGCN	0.4025	0.3202	0.4155	0.1828	0.4017

每个通道对应不同链

接类型进行消息传递

联邦

Link-type	reference	share authors	share keywords	same year	mixed		
Fed-GCN	0.3280						
Fed-mGCN		0.	4125		N/A		

简化设置:每个客户端存有具有单一隐式链接类型的子图

> 研究挑战

设计应对隐式链接类型异质性问题的 FL 框架时应考虑:

如何检测出潜在的隐式链接类型

如何在 FL 场景中区别对待不同隐式链接类型

客户端**上传到服务器**进行聚合时 是否应针对不同隐私链接类型做不同的处理

客户端

- ① 每个客户端存有包含**不同隐式链接类型**的图数据

表示隐式链接类型异质性的不同程度

> 提纲

> 框架设计

m-GCN

Fed-mGCN

FEDLIT

>多通道图卷积神经网络(m-GCN)

共享特征投影层 (θ^s)

 h_u^s

输入原始节点 u 的特征 x_u 输出 node embedding:

$$\theta^s = [\vartheta_0^s, \vartheta^s]$$

$$\mathbf{h}_{u}^{s} = \sigma(\vartheta_{0,u}^{s} + \sum_{u \in V} \vartheta_{u}^{s} x_{u})$$

每个通道负责一个链接类型 c , 假设节点 u 与类型 c 的边相连, 将 h_u^s 作为输入 , 输出 h_u^c

在对应通道中进行 L 层图卷积

> 联邦多通道图卷积神经网络(Fed-mGCN)

$$\theta^{c,(r+1)} = \sum_{n=1}^{|\{n\}_{\exists c \in \mathbb{C}_n}|} \frac{|V_n^c|}{|V^c|} \theta_n^{c,(r)}$$

$$\theta^c$$

$$\theta^{s,(r+1)} = \sum_{n=1}^{|N|} \frac{|V_n|}{|V|} \theta_n^{s,(r)} \qquad \theta^{t,(r+1)} = \sum_{n=1}^{|N|} \frac{|V_n|}{|V|} \theta_n^{t,(r)}$$

共享特征投影层 (θ^s)

分类器 (θ^t)

与普通 FL-GCN 相同:

客户端训练本地模型,再 传到服务器进行通信。

>本文设计的方法:FedLit

动态的隐式链接类型感知的聚类联邦学习框架

(a dynamic latent link-type-aware clustered FL framework)

动态检测边的隐式链接类型,并聚类相应的边

> 动态检测+聚类

预定义隐式链接类型数量为 k , 如果边 e_{uv} 的嵌入 z_{uv} 离质心 φ^c 最近 , 它将被分配给链接类型为 c 的 蔟。

检测

使用 K-Means 聚类,结合 EM(Expectation Maximization),

最小化蔟内距离并更新质心 φ^c 。

> 联邦动态聚类

每个簇的质心 φ^c 都与本地模型中的一个通道相对应,

隐式链接类型为 c 的边会被传输到与质心 φ^c 相关联的通道中 ,

其余操作与 m-GCN 中相同。

> 联邦动态聚类

在FL通信过程中,每个客户端传输本地模型参数和更新后的 k 个质心集合到服务器。

服务器端

将收到的 $N \times K$ 个质心分成k个组 $\emptyset = \{\emptyset_1, \emptyset_2, ..., \emptyset_k\}$ 。

目标:中央每组应对应一种链接类型,与本地通道对齐,

且组内距离最小化(组内的所有质心间距离最近)。

限制条件:每组内所有质心应来自不同客户端。

如何做到?

> 联邦动态聚类

Server

centroid aggregation

aggregation

 φ_i^c , Θ_i

 φ_j^c , Θ_j

center $\tilde{\varphi}^{\alpha}$

第1轮

服务器从每个客户端中随机选一个质心形成一个组 Ø, 共进行 k 次得到 $\{\emptyset_1,\emptyset_2,...,\emptyset_k\}$,

并计算各组的中心 $ilde{arphi}$ (平均值)

接下来的每轮

>提纲

> 实验设计

实验设置

实验结果

〉实验设置

出版物数据集: DBLP-DM 、 PUBMED-DIABETES

电子健康记录数据集: NELL 、 MIMIC3

Dataset	#Node	#Feature	#Class	#Total Edge	#Oracle Edge				
Dataset	#Node	#reature	#Class	# Total Euge	i)	ii)	iii)	iv)	
DBLP-DM	46,582	200	12	7,097,924	206,219	1,285,315	2,818,120	2,788,270	
PUBMED-DIABETES	13,778	200	3	588,529	20,035	118,441	74,971	375,082	
NELL	41,671	2,792	5	39,250,315	91,229	6,499,135	24,529,421	8,130,530	
MIMIC3	58,495	6,671	6	30,603,469	23,068	27,244,566	2,413,231	922,604	

将数据分割为三部分,以模拟不同程度的隐式链接类型异质性:

Distinct

模拟 FL 中客户端存有不同隐式链接类型的图的情况,

并通过让客户端仅持有一种隐式链接类型来极端化这种情况。

>实验设置

Dominant

模拟 FL 中更合理的情况:客户端存有所有隐式链接类型的图,

但存在随机选择的主导隐式链接类型(其余类型的边占较小部分)。

Balanced

模拟 FL 中不太可能出现的情况:

客户端上的图具有<mark>相同的边分布(最小的隐式链接类型异质性,</mark>即完全同质图)。

> 全局实验结果

Dataset	DBLP-DM		PubMed-diabetes			NELL			MIMIC3			
GCN	0.3378 (±0.0022)		0.8468 (±0.0024)		0.3758 (±0.0210)			0.3603 (±0.0021)				
$cGCN[k = \pi]$	$0.3712 (\pm 0.0042)$		0.8781 (±0.0055)			0.4983 (±0.0198)			0.3655 (±0.0039)			
$cGCN[k > \pi]$	$0.3884 (\pm 0.0048)$			0.8795 (±0.0028)			$0.5024~(\pm 0.0069)$			0.3715 (±0.0030)		
mGCN	0.4148 (±0.0026)			0.8778 (±0.0023)			0.5162 (±0.0129)			0.3973 (±0.0028)		
	distinct	dominant	balanced	distinct	dominant	balanced	distinct	dominant	balanced	distinct	dominant	balanced
Fed-GCN	0.3033	0.3088	0.3226	0.7776	0.8008	0.8284	0.2345	0.2260	0.3491	0.3399	0.3388	0.3584
rea-GCN	(±0.0028)	(± 0.0025)	(± 0.0036)	(± 0.0046)	(± 0.0043)	(±0.0029)	(±0.0184)	(± 0.0016)	(± 0.0107)	(±0.0055)	(± 0.0026)	(±0.0032)
Fed-mGCN	0.3930	0.3779	0.4046	0.8758	0.8657	0.8745	0.4447	0.4050	0.5178	0.3830	0.3474	0.3762
reu-ilioch	(±0.0016)	(± 0.0050)	(± 0.0015)	(±0.0025)	(± 0.0058)	(±0.0022)	(±0.0178)	(± 0.0055)	(± 0.0065)	(±0.0015)	(± 0.0020)	(±0.0011)
FEDLIT $[k = \pi]$	0.3238	0.3371	0.3400	0.8776	0.8779	0.8771	0.4158	0.3970	0.4750	0.3552	0.3541	0.3750
FEDLIT $[K = n]$	(±0.0049)	(± 0.0066)	(± 0.0083)	(± 0.0044)	(± 0.0028)	(±0.0070)	(±0.0071)	(± 0.0067)	(± 0.0152)	(±0.0017)	(± 0.0037)	(±0.0048)
FEDLIT $[k > \pi]$	0.3533	0.3701	0.3669	0.8759	0.8820	0.8811	0.4715	0.4243	0.5091	0.3685	0.3593	0.3765
TEDLII [K > n]	(±0.0040)	(± 0.0080)	(± 0.0062)	(±0.0092)	(± 0.0047)	(±0.0023)	(±0.0111)	(± 0.0253)	(± 0.0060)	(±0.0018)	(± 0.0038)	(±0.0046)

mGCN:在已知预定义的隐式链接类型的图上训练;

cGCN:将FedLit的<mark>聚类</mark>机制引入mGCN,<mark>无需获取</mark>其预定义的隐式链接类型。

· |Fed-mGCN:在<mark>已知</mark>预定义的隐式链接类型的图上进行<mark>联邦</mark>训练;

FEDLIT:无需获取预定义的隐式链接类型。

π:预定义的隐式链接类型数量

k:设置的通道数量

> 提纲

> 总结与讨论

本文工作的优势与局限性

思考

> 总结与讨论

本文的工作解决了不同客户端之间隐式链接类型的异质性问题,

但仍有局限:

① 无法生成空蔟

② 效率: Gu Z, Zhang K, Bai G, et al. Dynamic Activation of Clients and Parameters for Federated Learning over Heterogeneous Graphs[C]. ICDE, 2023.

③ 隐私

思考:

- 本文的场景中客户端之间没有相连边 , "缺失边" 的链接类型是否需要考虑?
- 单关系图中的隐式链接类型,多关系图呢?

欢迎老师和同学们指正!