## ESAME DI MECCANICA RAZIONALE

## CORSO DI LAUREA IN ARCHITETTURA – INGEGNERIA ALMA MATER – UNIVERSITÀ DI BOLOGNA

7 Febbraio 2024

ISTRUZIONI. Il tempo a disposizione per la risoluzione è di 120 minuti. È indicato il punteggio associato ad ogni domanda. Il voto minimo per l'accesso all'orale è 15/30.

In figura è rappresentato un sistema mobile su un piano dove è dato un riferimento cartesiano Oxy. Il sistema è costituito da quattro aste di massa trascurabile e di uguale lunghezza  $\ell$ , imperniate con quattro giunti mobili in modo da formare un rombo di vertici A, B, C e O. I giunti in A, B e C sono tali da permettere alle aste incidenti di avere un angolo reciproco compreso tra l'angolo nullo e l'angolo piatto. Il restante vertice O è fissato nell'origine del riferimento cartesiano, dove un perno permette una rotazione libera senza attrito. Sono inoltre presenti una massa m in A, una massa m in B e una massa m in C. Tutte le masse sono da assumersi puntiformi. Infine, lungo la diagonale  $\overline{OC}$  è collocata una molla di costante elastica k e lunghezza a riposo trascurabile.



- A Utilizzando come parametri lagrangiani gli angoli  $\theta$  e  $\alpha$  indicati in figura, scrivere le coordinate dei tre punti A, B e C. Si individuino possibili configurazioni di confine, le forze attive agenti sul sistema e il tipo di vincoli a cui esso è soggetto. [7 pt]
- B Individuare la posizione del centro di massa in funzione dei parametri lagrangiani scelti. Calcolare inoltre il momento d'inerzia del sistema rispetto ad un asse perpendicolare al piano e passante per l'origine. [8 pt]
- C Calcolare le configurazioni di equilibrio non di confine del sistema, e dire se esse sono di equilibrio stabile, instabile o indifferente. [15 pt]

Suggerimento. Per risolvere l'esercizio, si osservi che, con riferimento alla figura, gli angoli  $\phi$  e  $\gamma$  si possono scrivere in termini di  $\alpha$  e  $\theta$  come

$$\phi = \alpha + \theta$$
  $\gamma = \alpha - \theta$ .

A Il sistema ha due gradi di libertà, descritti dai parametri lagrangiani  $\theta \in \mathbb{R}$  e  $\alpha \in [0, \pi/2]$ : le configurazioni aventi  $\alpha = 0$  e  $\alpha = \pi/2$  sono di confine. Indicando con g vettore di accelerazione di gravità diretto verso il basso, le forze attive agenti sono la forza peso sulla massa in A,  $\vec{F}_{g,A} = -mg\hat{\imath}_2$ , la forza peso sulla massa in B,  $\vec{F}_{g,B} = -mg\hat{\imath}_2$ , e la forza peso sulla massa in C,  $\vec{F}_{g,C} = -mg\hat{\imath}_2$ . Infine, in C agisce la forza elastica  $\vec{F}_{el,C} = k\overrightarrow{CO}$  dove CO ha lunghezza  $2\ell \sin \alpha$ . L'unico vincolo attivo è il perno in O che è olonomo e ideale e permette la rotazione del sistema. Le coordinate dei punti A, B e C sono

$$\overrightarrow{OA} = -\ell \cos \phi \,\hat{\imath}_1 - \ell \sin \phi \,\hat{\imath}_2 = -\ell \cos(\alpha + \theta) \,\hat{\imath}_1 - \ell \sin(\alpha + \theta) \,\hat{\imath}_2,$$

$$\overrightarrow{OB} = \ell \cos(\alpha - \theta) \,\hat{\imath}_1 - \ell \sin(\alpha - \theta) \,\hat{\imath}_2,$$

$$\overrightarrow{OC} = 2\ell \sin \alpha \sin(\theta) \,\hat{\imath}_1 - 2\ell \sin \alpha \cos(\theta) \,\hat{\imath}_2.$$

B La posizione del centro di massa è

$$x_G = \frac{m\overrightarrow{OA} + m\overrightarrow{OB} + m\overrightarrow{OC}}{3m} = \frac{4\ell \sin \alpha}{3} \sin \theta \, \hat{\imath}_1 - \frac{4\ell \sin \alpha}{3} \cos \theta \, \hat{\imath}_2.$$

dove nell'ultimo passaggio si sono usate le formule di addizione  $\cos(x+y) = \cos x \cos y - \sin x \sin y$  e  $\sin(x+y) = \sin x \cos y + \cos x \sin y$ .

Il momento d'inderzia si trova ora facilmente essendo pari a

$$I = m \|\overrightarrow{OA}\|^2 + m \|\overrightarrow{OB}\|^2 + m \|\overrightarrow{OC}\|^2 = 2m\ell^2(1 + 2\sin^2\alpha).$$

C Osservando che  $d^2(C,O)=4\ell^2\sin^2\alpha$ , possiamo scrivere l'energia potenziale come combinazione di un contributo gravitazionale  $V_g$  e un contributo elastico  $V_k$ . Avendo a disposizione le coordinate del centro di massa, possiamo scrivere

$$V_g = -4m\ell g \cos \theta \sin \alpha, \qquad V_k = 2k\ell^2 \sin^2 \alpha$$

così che l'energia potenziale globale possa scriversi

$$V = V_g + V_k = -4m\ell g \cos \theta \sin \alpha + 2k\ell^2 \sin^2 \alpha.$$

I punti stazionari si ottengono risolvendo la coppia di equazioni

$$\partial_{\theta}V = 0 \Leftrightarrow -\sin\alpha\sin\theta = 0, \qquad \partial_{\alpha}V = 0 \Leftrightarrow \cos\alpha(-mg\cos\theta + k\ell\sin\alpha) = 0.$$

Dato che stiamo escludendo le configurazioni di confine, possiamo assumere cos  $\alpha \neq 0$  e sin  $\alpha \neq 0$ . Deve essere quindi sin  $\theta = 0$ , abbiamo  $\theta = n\pi$ ,  $n \in \mathbb{Z}$ . Se n è pari, la seconda equazione fornisce  $mg - k\ell \sin \alpha = 0$ , ovvero, se  $\frac{mg}{k\ell} < 1$ ,  $\alpha = \arcsin \frac{mg}{k\ell}$ : diversamente non esiste una soluzione che non sia di confine. Se n è dispari, si ottiene  $-mg - k\ell \sin \alpha = 0$  che non ha soluzione per  $\alpha \in (0, \pi/2)$ . L'unico possibile punto stazionario è quindi

(1) 
$$(\alpha, \theta) = \left(\arcsin \frac{mg}{k\ell}, 0\right), \quad \text{se } \frac{mg}{k\ell} < 1.$$



La stabilità può essere studiata valutando la matrice Hessiana in questo punto di equilibrio. La matrice è

$$\begin{split} \mathbf{H} &= 4\ell \begin{pmatrix} k\ell(\cos^2\alpha - \sin^2\alpha) + mg\sin\alpha\cos\theta & mg\sin\theta\cos\alpha \\ mg\sin\theta\cos\alpha & mg\cos\theta\sin\alpha \end{pmatrix} \\ &= 4\ell \begin{pmatrix} k\ell(1-2\sin^2\alpha) + mg\sin\alpha\cos\theta & mg\sin\theta\cos\alpha \\ mg\sin\theta\cos\alpha & mg\cos\theta\sin\alpha \end{pmatrix}. \end{split}$$

Calcolando sul punto dato dall'Eq. (1), si ha che  $\sin \theta = 0$  e  $\sin \alpha = \frac{mg}{k\ell}$ , per cui

$$\mathbf{H} = 4k\ell^2 \begin{pmatrix} 1 - \frac{m^2g^2}{k^2\ell^2} & 0\\ 0 & \frac{m^2g^2}{k^2\ell^2} \end{pmatrix} \quad \text{con} \quad \frac{mg}{k\ell} < 1.$$

Nell'intervallo di validità della soluzione,  $4k\ell^2\left(\frac{m^2g^2}{k^2\ell^2}-1\right)<0$ , per cui tale punto di equilibrio, quando esiste, è stabile.

**Q** Lo studio delle configurazioni di confine non era richiesto ma lo riportiamo per completezza come esempio. Le configurazioni di confine sono associate a  $\alpha=0$  e  $\alpha=\pi/2$ . L'analisi può essere svolta utilizzando il principio dei lavori virtuali, ovvero calcolando  $\delta V$  e imponendo che tale variazione virtuale sia sempre negativa. Non avendo  $\theta$  vincoli di variazione, la prima condizione da imporre è  $\partial_{\theta}V=0$ , ovvero  $\sin\alpha\sin\theta=0$ .

Per  $\alpha=0,\ \partial_{\theta}v|_{\alpha=0}=0$  sempre; dovendo essere  $\delta\alpha>0,\ \partial_{\alpha}V|_{\alpha=0}\geq0$ , ovvero  $\partial_{\alpha}V|_{\alpha=0}=-4\ell mg\cos\theta\geq0$ , che è vera se e solo se  $\frac{\pi}{2}+2n\pi\leq\theta\leq\frac{3\pi}{2}+2n\pi,\ n\in\mathbb{Z}$ : in questo intervallo di angoli  $\theta,\ \alpha=0$  è una configurazione di confine stabile.

Per  $\alpha=\pi/2$ , la situazione è più delicata. Infatti,  $\partial_{\theta}V|_{\alpha=\pi/2}=4\ell mg\sin\theta=0$  è soddisfatto per  $\theta=n\pi$ ,  $n\in\mathbb{Z}$ . In  $\alpha=\pi/2$ , abbiamo che  $\partial_{\alpha}V|_{\alpha=\pi/2}=0$  identicamente. Questo ci permette di dire che i punti  $(\alpha,\theta)=(\pi/2,n\pi),\ n\in\mathbb{Z}$ , sono di equilibrio. Per capire se essi sono stabili o instabili, però, occorre considerare derivate di ordine superiore. La matrice hessiana è

$$\mathbf{H} = \begin{pmatrix} 4mg\ell\cos\theta - 4\ell^2 & 0 \\ 0 & 4mg\ell\cos\theta \end{pmatrix}$$

che per  $\theta=n\pi$  con n pari ha entrambi autovalori non positivi per  $\frac{mg}{kl}\geq 1$ , mentre per n dispari ha entrambi autovalori positivi ed è quindi instabile. Di conseguenza  $(\alpha,\theta)=(\pi/2,n\pi),\ n\in\mathbb{Z}$  pari, è stabile se  $\frac{g}{kl}\geq 1$ , diversamente è instabile. È possibile eseguire un plot del valore di  $\alpha$  associato ad una configurazione stabile al variare del parametro di controllo  $\frac{mg}{k\ell}$  per  $\theta=0$ .

$$\alpha$$
 stabile per  $\theta = 0$ 

