- 1. (12 pkt) Napisz pseudokod funkcji Merge(A,B), której parametrami wejściowymi są dwie tablice A[1..n], B[1..m], n,m>0, zawierające liczby całkowite posortowane niemalejąco, a wynikiem tablica zawierająca wszystkie liczby z tablic A i B posortowane niemalejąco.
- 2. (8 pkt) Podaj definicję drzewa poszukiwań binarnych.

BST - to drzewo binarne Tr spełnia warunek:

- dla dowolnego węzła X drzewa Tr każdy węzeł znajdujący się w lewym poddrzewie wezła X ma klucz mnijeszy lub równy kluczowi w węźle X.
- a każdy węzeł znajdujący się w prawym poddrzewie węzła X ma klucz większy od klucza w węźle X.

Operacje:

- search
- minimum/maximum
- predecessor/successor
- insert
- delete
- 3. (6 pkt) Narysuj drzewo BST otrzymane po wstawieniu węzła o kluczu 23 do podanego poniżej drzewa (graf w oddzielnym pliku).

ODPOWIEDZ:

4. (9 pkt) Wymień trzy algorytmy na wyznaczanie najkrótszej drogi w grafie zorientowanym (G=(V,E),w) |V|=n, |E|=m n,m>0, w:E->R>0, z wierzchołka u do wierzchołka v u,v ϵ V, i podaj ich rząd pesymistycznej złożoności czasowej.

```
- DIJKSTRA - O(V^2) - tablicach OO(E \cdot log V) - kopiec - BELLMAN - FORD O(|V| \cdot |E|) - FLOYD-WARSHALL O(n^3)
```

5. (10 pkt) Dany jest wektor $\pi[1..n]$ wyznaczony przez procedurę BFS dla pewnego grafu G=(V,E) i wierzchołka początkowego 1. Napisz funkcję wypisującą wierzchołki **najkrótszej drogi z 1 do i** dla danego i ϵ v.

```
FIND\text{-PATH}(V,k,\pi) \\ \{ \\ if(k!=\text{-}1) \text{ then } \\ \{ \\ FIND\text{-PATH}(V,\pi[k],\pi) \\ wypisz \ k; \\ \} \\ \}
```

6. (10 pkt) Dany jest tekst: abbadabbabcabdabbabcabbd i wzorzec: abbabcabb . Podaj własności funkcji prefiksowej dla wzorca i kolejne wartości s (przesunięcia w tekście) wyznaczane przez algorytm Knutha_Morrisa_Pratta.

s = 14

j (długość	Prefiks	Najdłuższa ramka prefiksu	$\pi[j]$ (długość ramki)
prefiksu)			
1	A	brak	0
2	AB	brak	0
3	ABB	brak	0
4	ABBA	A	1
5	ABBAB	AB	2
6	ABBABC	brak	0
7	ABBABCA	A	1
8	ABBABCAB	AB	2
9	ABBABCABB	ABB	3

7. (10 pkt) Dany jest zbiór punktów na płaszczyźnie:

(3,6); (4,11); (5,2); (6,3); (8,8); (8,10); (9,6); (10,2); (10,8); (11,2)

Podaj wszystkie **kolejne zawartości stosu** tworzonego podczas wykonywania **algorytmu Grahama** na tych danych.

8. (10 pkt) Podaj specyfikację algorytmu Prima, także definicje pojęć użytych w specyfikacji wyniku.

Dane:

n – liczba wierzchołków w grafie, n symbol C graf – zadany w dowolnie wybrany sposób, algorytm tego nie precyzuje. Graf musi być spójny.

Wyjście:

Zbiór T. Elementami są krawędzie wraz z wagami. Zbiór zawiera minimalne drzewo rozpinające grafu.

Minimalne drzewo rozpinające (ang. *MST*, *minimum spanning tree*) – drzewo rozpinające danego grafu o najmniejszej z możliwych wag, tj. takie, że nie istnieje dla tego grafu inne drzewo rozpinające o mniejszej sumie wag krawędzi.

9. (**9** *pkt*) Wymień operacje na **kolejce priorytetowej**, które są wykorzystywane w **algorytmie Prima**. Podaj ich rząd pesymistycznej złożoności czasowej, gdy kolejka priorytetowa jest implementowana za pomocą kopca binarnego.

10. (10 pkt) Narysuj drzewo kodów dla ciągu znaków: allamaakootakootmaale utworzone przez algorytm **Huffmana**.

RAZEM: 94 pkt (od 47 pkt zaliczenie)

Mkzor56 Mkzor5