

AMENDMENTS TO THE CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the application:

1 1. (Original) A method of transmitting a radio signal with polarization diversity, comprising
2 the steps of: transmitting a plurality of versions of the radio signal having different polarizations
3 from a first station to a second station; and adaptively controlling respective transmission powers
4 of said versions of the radio signal according to measurements carried out by the first station on
5 signals transmitted by the second station.

1 2. (Original) The method as claimed in claim 1, wherein said versions of the radio signal are
2 transmitted simultaneously.

1 3. (Original) The method as claimed in claim 1, wherein an optimal transmission power
2 distribution of the radio signal between the polarizations is estimated on the basis of minimizing a
3 cost function relative to a quality of the signal received by the second station, and the
4 transmission power is distributed between said versions of the radio signal in accordance with the
5 estimated distribution.

1 4. (Original) The method as claimed in claim 3, wherein the cost function to be minimized
2 measures an error probability in receive mode.

1 5. (Original) The method as claimed in claim 3, wherein transmission parameters for signals
2 transmitted by the second station to the first station and parameters for the receiving by the
3 second station of said versions of the radio signal transmitted with polarization diversity by the
4 first station are measured, and said measured parameters are transmitted to the first station in
5 order to estimate the optimal transmission power distribution.

1 6. (Original) The method as claimed in claim 5, wherein said second station is designed to
2 transmit with polarization diversity, the method further comprising the steps of:

3 - for each transmit polarization, measuring a mean power contribution of at least
4 some of the signals transmitted by the second station;
5 - for at least some of the signals transmitted in a defined polarization by the first
6 station to the second station, measuring a mean power contribution of the noise
7 that interferes in receive mode with the useful signal relating to said transmitted
8 signal; and
9 - for each transmit polarization, evaluating at the first station power transfer
10 coefficients in a radio propagation channel of at least some of the signals
11 transmitted by the second station.

1 7. (Original) The method as claimed in claim 6, wherein the mean noise power contribution
2 and mean transmission power contribution measurement steps are executed in the second station
3 and the measured mean noise power contribution and mean transmission power contribution are
4 transmitted to the first station for estimating the optimal distribution of the transmission power.

1 8. (Original) The method as claimed in claim 5, wherein said second station is designed to
2 transmit with polarization diversity, wherein the mean power contribution of the signals
3 transmitted by the second station is substantially identical for each polarization, the method
4 further comprising the steps of:

5 - measuring a, mean power contribution of at least some of the signals transmitted
6 by the second station;
7 - for at least some of the signals transmitted in a defined polarization by the first
8 station to the second station, measuring a mean power contribution of the noise
9 that interferes in receive mode with the useful signal relating to said transmitted
10 signal; and
11 - for each transmit polarization, evaluating at the first station power transfer
12 coefficients in a radio propagation channel of at least some of the signals
13 transmitted by the second station.

1 9. (Original) The method as claimed in claim 8, wherein the mean noise power contribution
2 and mean transmission power contribution measurement steps are executed in the second station
3 and the measured mean noise power contribution and mean transmission power contribution are
4 transmitted to the first station for estimating the optimal distribution of the transmission power.

1 10. (Original) A radiocommunication station with polarization diversity, comprising means
2 for transmitting a plurality of versions of a radio signal having different polarizations to a remote
3 radiocommunication station, means for measuring parameters on the basis of signals transmitted
4 by said remote station, and means for adaptively controlling the respective transmission powers of
5 said versions of the radio signal according to said measured parameters.

1 11. (Original) The radiocommunication station as claimed in claim 10, wherein the
2 transmission means are coupled to n_{pol} antennas, n_{pol} being a number greater than or equal to
3 two, and are designed to transmit from each antenna a radio signal in one polarization from
4 among n_{pol} polarizations.

1 12. (Original) The radiocommunication station as claimed in claim 10, wherein the means for
2 adaptively controlling the transmission powers comprise means for estimating an optimal
3 distribution of the transmission power of the signals transmitted with a defined polarization, on
4 the basis of minimizing a cost function relating to the quality of the signal received by the remote
5 station, and means for driving the transmission means so as to distribute the transmission power
6 according to the estimated distribution.

1 13. (Original) The radiocommunication station as claimed in claim 12, wherein the means for
2 estimating the optimal transmission power distribution comprise means for minimizing an error
3 probability in receive mode by the remote station.

1 14. (Original) The radiocommunication station as claimed in claim 12, further comprising
2 means for obtaining parameters for the transmitting of signals by the remote signal and for the
3 receiving of signals transmitted to the remote station, cooperating with the means for estimating
4 the optimal transmission power distribution.

1 15. (Original) The radiocommunication station as claimed in claim 11, further comprising
2 receiving means coupled to the n_{_}pol antennas sensitive in receive mode to the n_{_}pol
3 polarizations, and wherein the means for estimating the optimal transmission power distribution
4 cooperate with means for obtaining parameters for the transmitting of signals by the remote
5 station and for the receiving of signals transmitted to the remote station and with means for
6 obtaining parameters for the receiving of signals transmitted by the remote station.

1 16. (Original) The radiocommunication station as claimed in claim 15, wherein the means for
2 obtaining parameters for the receiving of signals transmitted by the remote station comprise
3 means for obtaining, for each of the n_{_}pol polarizations, a mean power contribution of at least
4 some of the signals transmitted by the remote station and means for estimating power transfer
5 coefficients for signals transmitted by the remote station in each of the n_{_}pol polarizations and
6 received on each of the n_{_}pol antennas.

1 17. (Original) The radiocommunication station as claimed in claim 15, wherein the means)
2 for obtaining parameters for the receiving of signals transmitted by the remote station comprise
3 means for obtaining a mean power contribution of at least some of the signals transmitted by the
4 remote station and means for determining power transfer coefficients for signals transmitted by
5 the remote station in each of the n_{_}pol polarizations and received on each of the n_{_}pol antennas.

1 18. (Original) The radiocommunication station as claimed in claim 15, wherein the means for
2 obtaining parameters for the receiving of signals transmitted by the remote station comprise
3 means for estimating symbols transmitted by the remote station in each of the n_{_}pol polarizations,
4 and received on each of the n_{_}pol antennas, and means for combining the estimated symbols.

1 19. (Original) The radiocommunication station as claimed in claim 14, wherein the means for
2 obtaining parameters for the transmitting of signals by the remote station and for the receiving of
3 signals transmitted to the remote station comprise means for obtaining, for at least one of the
4 signals transmitted to the remote station in one defined polarization among n_pol, a measurement
5 of a mean power contribution of the noise that interferes with the useful signal relating to said
6 transmitted signal.

1 20. (Original) The radiocommunication station as claimed in claim 14, wherein the means for
2 obtaining parameters for the transmitting of signals by the remote station and for the receiving of
3 signals transmitted to the remote station comprise means for measuring, for each of the n_pol
4 transmission polarizations, a mean power contribution of at least some of the signals transmitted
5 by the remote station.

1 21. (Original) The radiocommunication station as claimed in claim 11, wherein n_pol=2.

1 22. (Withdrawn) A radiocommunication terminal, comprising means for receiving and
2 processing signals transmitted with polarization diversity in n_pol polarizations by a
3 radiocommunication station of a network infrastructure, n_pol being a number greater than or
4 equal to two, means for measuring, for at least some of the signals transmitted by said
5 radiocommunication station in a defined polarization among n_pol, a mean power contribution of
6 the noise that interferes with the useful signal relating to said transmitted signal, and means for
7 transmitting said mean noise power contribution measurements to the radiocommunication
8 network infrastructure.

1 23. (Withdrawn) The radiocommunication terminal as claimed in claim 22, comprising
2 means for receiving and processing signals transmitted with polarization diversity in n_pol
3 polarizations on n_ant antennas, n_ant being greater than or equal to 2, means for evaluating, for
4 each of the n_pol polarizations, power transfer coefficients in a radio propagation channel of at
5 least some of the signals transmitted by said radiocommunication station, and means for
6 transmitting the evaluated coefficients to the radiocommunication network infrastructure.

- 1 24. (Withdrawn) The radiocommunication terminal as claimed in claim 22, further
- 2 comprising means for transmitting radio signals in said n_{pol} polarizations from n_{ant}
- 3 transmission antennas, means for measuring, for each of the n_{pol} transmission polarizations, a
- 4 mean power contribution of at least some of the signals transmitted by said transmission means,
- 5 and means for transmitting said measurements to the radiocommunication network infrastructure.

- 1 25. (Withdrawn) The radiocommunication terminal as claimed in claims 24, wherein
- 2 $n_{ant}=2$.

- 1 26. (Withdrawn) The radiocommunication terminal as claimed in claim 22, further
- 2 comprising means for transmitting, with a substantially identical mean power contribution, radio
- 3 signals in said n_{pol} polarizations from n_{ant} transmission antennas, means for measuring a mean
- 4 power contribution of at least some of the signals transmitted by said transmission means, and
- 5 means for transmitting said measurements to the radiocommunication network infrastructure.

- 1 27. (Withdrawn) The radiocommunication terminal as claimed in claims 26, wherein
- 2 $n_{ant}=2$.

- 1 28. (Withdrawn) The radiocommunication terminal as claimed in claim 22, wherein $n_{pol}=2$.