Neumática

Tecnología industrial I

1er curso de Bachillerato. RIES Jovellanos.

Tecnología Industrial I. Programación anual.

- Recursos energéticos
 - Materiales
- Elementos de máquinas y sistemas
 - Procedimientos de fabricación
- El proceso y los productos de la tecnología

Índice

- 1. Definición.
- 2. Magnitudes y Unidades.
 - 1. presión
 - 2. caudal
 - 3. trabajo
 - 4. potencia
- 3. Ventajas y desventajas del circuito neumático.
 - 4. Elementos de un circuito neumático:
 - 1. Producción de aire.
 - Redes de distribución.
 - 3. Accionamiento.
- 5. Similitudes entre un circuito hidráulico y uno eléctrico.
- 6. Producción, mantenimiento y distribución de aire comprimido.
 - 7. Redes de distribución
 - 8 Accionamiento
 - 9. Montaje y experimentación con circuitos neumáticos.
 - 10. Ejercicios

Antes de empezar

¿Qué es la mecánica?

¿Qué es un automatismo?

¿Cuál es el principal elemento de la neumática?

Cita tres máquinas que tengan dispositivos neumáticos y dónde están

¿Conoces algún componente de un circuito neumático?

Automatización optima = informática + electricidad + electrónica + neumática

Definición

• **Neumática** es la ciencia que tiene como objetivo el estudio y aplicación del aire comprimido para producir efectos mecánicos deseados.

http://www.mescorza.com/neumatica/neumateoria/tema1/conceptosutiles4.htm

Magnitudes

- Presión. Es la fuerza ejercida por el aire perpendicularmente por unidad de superficie. Se expresa como: P = F/S donde:
 - F es la fuerza (N)
 - S es la superficie donde actúa la presión (m2)
 - P es la presión del aire (en N / m2 o Pa, KPa o MPa)
- Caudal. Es la cantidad de fluido (en este caso aire a presión) que atraviesa una sección de un conductor (tubería) por la unidad de tiempo. Se expresa como:
 Q = V/T donde:
 - V es el volumen de fluido (en L)
 - Q es el caudal (en L / seg)
 - T es el tiempo (en segundos)
- Trabajo. Es la energía necesaria para desplazar un cuerpo una distancia determinada. Se mide en Julios y se calcula así:
 W=Fxd
- Potencia. Es la cantidad de trabajo realizado por unidad de tiempo.

 W x t

http://edison.upc.edu/units/Slcas.html http://edison.upc.edu/units/cem.PDF

Ventajas e inconvenientes del circuito hidráulico

	Ventajas	Inconvenientes	7		
And	Abundante	Debe ser preparado			
De	fácil transporte en tuberías	Ruidoso	Ruidoso		
	Fácil de almacenar	Rentable hasta cierta fuerza (2	Rentable hasta cierta fuerza (2-3 t)		
Limpio		Velocidades no uniformes	Velocidades no uniformes		
Rápido					
Elementos simples y económicos					
Utilizable a temperaturas extremas					
No hay riesgo de explosión o incendio					
Fácil automatización					

Elementos de un circuito neumático

Elementos de un circuito neumático

Conversor (compresor)

Acumulador (depósito)

Elementos de protección (secador + filtros)

Elementos de control (válvulas)

Receptor (cilindros)

Similitudes entre el circuito eléctrico y el neumático

C. ELÉCTRICO	ELEMENTOS	C. NEUMÁTICO
Alternadores, dinamos, pilas, baterías	GENERADORES Y PREPARADORES	Compresores y elementos que acondicionan y tratan el aire: refrigerador, acumulador, filtro, regulador de presión, lubricador
Cables (metálicos)	CONDUCTORES O REDES DE DISTRIBUCIÓN	Tuberías (metálicas, de plástico)
Interruptores, pulsadores, conmutadores	ELEMENTOS DE MANIOBRA (REGULACIÓN Y CONTROL)	Válvulas distribuidoras, (y, o, reguladoras de caudal, temporizadores, etc)
Receptores: motores, bombillas, timbres, etc	ELEMENTOS FINALES	Cilindros (simple efecto, doble efecto)
Diferenciales, fusibles	ELEMENTOS DE SEGURIDAD	Válvulas de seguridad

Producción y mantenimiento del aire comprimido

• http://www.catedu.es/aratecno/images/pilar/neu.swf

Redes de distribución

http://demo.imh.es/DemoElectro.htm

Accionamiento

http://demo.imh.es/DemoElectro.htm

- Simbología de neumática
 - Teoría y simbología

Contenidos mínimos para neumática

¿Alguna duda?

Montaje y experimentación con elementos mecánicos

Elaborar esquemas neumáticos y electroneumaticos

http://demo.imh.es/Electroneumatica/Ud12/

Simulación

http://www.logiclab.hu/

Montaje y experimentación con elementos mecánicos

 Programa de diseño de circuitos neumáticos <u>Pneusim</u> (<u>programa para usarlo en windows</u> <u>xp, vista y posteriores</u>)

Nombra los diferentes elementos de este circuito neumático:

Nombra los diferentes elementos de este circuito neumático:

Nombra los diferentes elementos de este circuito neumático:

EJERCICIO 1

El diámetro del émbolo del pistón de la figura es de 10 cm. La presión del circuito es de 5 kgf/cm 2. Determina la fuerza ejercida por el pistón en su salida (en N).

EJERCICIO 2

El diámetro del émbolo del pistón de la figura es de 20 cm, siendo el diámetro del vástago de 5 cm. La presión del circuito es de 5 kgf/cm2. Determina la fuerza ejercida por el pistón en la salida y en la entrada. (en N)

EJERCICIO 3

Determina la presión necesaria en el circuito (en bar), para que el cilindro de la figura en su salida realice una fuerza de 5000 kN en su avance, sabiendo que el diámetro del émbolo es de 25 cm.

• EJERCICIO 4

Un cilindro de simple efecto tiene 40 mm de diámetro y su rendimiento es del 58%. ¿Cuál es la presión del aire que hay que utilizar para obtener una fuerza efectiva de 800 N, si la resistencia del muelle es de 150 N?

EJERCICIO 5

De un cilindro de doble efecto se conocen los siguientes datos: diámetro del émbolo = 10 cm; diámetro del vástago = 3 cm; carrera = 12 cm. Este cilindro se conecta a una red de aire comprimido a la presión de 1 MPa y efectúa 15 ciclos por minuto. Suponiendo que no exista rozamiento, calcular:

- La fuerza que ejerce el vástago en la carrera de avance.
- La fuerza que ejerce el vástago en la carrera de retorno.
- El consumo de aire en condiciones normales.

Mas ejercicios:

http://www.netcom.es/pepetec/problemasneumaticos.html

Contenidos básicos

Citar y comentar las ventajas y los inconvenientes del aire comprimido. Comparar la neumática con la electricidad, sabiendo en qué aspectos principales "gana y pierde"

Resolver problemas sencillos de presiones, superficies y fuerzas, aplicados en especial a los cilindros

Citar e indicar la función o misión de los elementos generadores y "preparadores" del aire comprimido Identificar con toda precisión los símbolos de los elementos de los circuitos neumáticos y saber claramente la misión del elemento que el símbolo representa

Interpretar o comentar correctamente el funcionamiento de circuitos neumáticos y sus diferentes modos de funcionamiento, indicando su utilidad y aplicaciones concretas para ese circuito

(Diseñar correctamente un circuito neumático sencillo para una aplicación concreta) (en el caso de disponer de ordenadores para ello)

Páginas web de contenidos

Con animaciones

- http://www.mescorza.com/neumatica/
- http://demo.imh.es/DemoElectro.htm
- http://www.catedu.es/aratecno/images/pilar/neu.swf
- http://guindo.pntic.mec.es/~crangil/neumatica.htm
- http://www.neumaticar.com/colombia/flashdidactica.php
 - http://www.wisc-online.com/ListObjects.aspx
 - http://www.mekanizmalar.com/index.shtml

Con información

- http://www.sapiensman.com/neumatica/mapadelsitio.htm
 - http://perso.wanadoo.es/mabopa/index.htm
- http://olmo.pntic.mec.es/~jmarti50/neumatica/neumatica.html
 - http://olmo.pntic.mec.es/jmarti50/descarga/neumatica.html