Part III Category Theory

Based on lectures by Prof P.T. Johnstone

Michaelmas 2016 University of Cambridge

1

4

Contents

1 Definitions and Examples

The Yoneda Lemma

3	3 Adjunctions	7
4	4 Limits	10
5	5 Monads	18
6	6 Regular Categories	26
1	1 Definitions and Examples	
D	Definition 1.1 (Category). A category \mathcal{C} consists of	
	a. a collection ob $\mathcal C$ of objects A,B,C,\ldots	
	b. a collection $\operatorname{mor} \mathcal{C}$ of morphisms f, g, h, \ldots	
	c. two operations dom , cod from morphisms to objects. We write or $A \xrightarrow{f} B$ to mean 'f is a morphism and dom $f = A$ and cod f	
	d. an operation assigning to each object A a morphism $1_A:A\to A$	A
	e. a partial binary operation $(f,g)\mapsto gf$, s.t. gf is defined \iff $\operatorname{cod} f$, and then $gf:\operatorname{dom} f\to\operatorname{cod} g$	dom g =
sa	atisfying	
	f. $f1_A = f$ and $1_B f = f \ \forall f : A \to B$	

g. h(fg) = (hg)f whenever gf and hg are defined

Definition 1.2 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $\mathcal{C} \to \mathcal{D}$ consists of

- a. a mapping $A \to FA$ from ob \mathcal{C} to ob \mathcal{D}
- b. a mapping $f \to Ff$ from mor \mathcal{C} to mor \mathcal{D}

satisfying dom $Ff = F \operatorname{dom} f$, $\operatorname{cod} Ff = F \operatorname{cod} f$ for all f, $F(1_A) = 1_{FA}$ for all A, and F(gf) = (Fg)(Ff) whenever gf is defined.

Definition 1.3. By a **contravariant functor** $\mathcal{C} \to \mathcal{D}$ we mean a functor $\mathcal{C} \to \mathcal{D}^{op}$ (or equivalently $\mathcal{C}^{op} \to \mathcal{D}$). A functor $\mathcal{C} \to \mathcal{D}$ is sometimes said to be **covariant**.

Definition 1.4 (Natural transformation). Let \mathcal{C} and \mathcal{D} be two categories and $F, G: \mathcal{C} \rightrightarrows \mathcal{D}$ two functors. A **natural transformation** $\alpha: F \to G$ assigns to each $A \in \text{ob } \mathcal{C}$ a morphism $\alpha_A: FA \to GA$ in \mathcal{D} , such that

$$FA \xrightarrow{Ff} FB$$

$$\downarrow^{\alpha_A} \qquad \downarrow^{\alpha_B}$$

$$GA \xrightarrow{Gf} GB$$

commutes.

We can compose natural transformations: given $\alpha: F \to G$ and $\beta: G \to H$, the mapping $A \mapsto \beta_A \alpha_A$ is the A-component of a natural transformation $\beta \alpha: F \to H$.

Definition 1.5. Given categories \mathcal{C}, \mathcal{D} , we write $[\mathcal{C}, \mathcal{D}]$ for the category of all functors $\mathcal{C} \to \mathcal{D}$ and natural transformations between them.

Lemma 1.6. Given $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \to G$, α is an isomorphism in $[\mathcal{C}, \mathcal{D}] \iff each \alpha_A$ is an isomorphism in \mathcal{D} .

Definition 1.7 (Faithful and full). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- a. We say that F is **faithful** if, given $f, g \in \text{mor } \mathcal{C}$, the equations dom f = dom g, cod f = cod g and Ff = Fg imply f = g.
- b. F is **full** if, given any $g:FA\to FB$ in \mathcal{D} , there exists $f:A\to B$ in \mathcal{C} with Ff=g.
- c. We say a subcategory \mathcal{C}' of \mathcal{C} is **full** if the inclusion $\mathcal{C}' \hookrightarrow \mathcal{C}$ is a full functor.

For example, **Gp** is a full subcategory of the category **Mon** of monoids, but **Mon** is a non-full subcategory of the category **Sgp** of semigroups.

Definition 1.8 (Equivalence of categories). Let \mathcal{C} and \mathcal{D} be categories. An **equivalence** between \mathcal{C} and \mathcal{D} is a pair of functors $F:\mathcal{C}\to\mathcal{D},\ G:\mathcal{D}\to\mathcal{C}$ together with natural isomorphisms $\alpha:1_{\mathcal{C}}\to GF,\ \beta:FG\to 1_{\mathcal{D}}$. We write $\mathcal{C}\simeq\mathcal{D}$ to mean that \mathcal{C} and \mathcal{D} are equivalent.

We say a property P of categories is **categorical** if whenever \mathcal{C} has P and $\mathcal{C} \simeq \mathcal{D}$ then \mathcal{D} has P.

For example, being a groupoid is a categorical property, but being a group is not.

Definition 1.9 (Slice category). Given an object B of a category C, define the **slice category** C/B to have morphisms $A \xrightarrow{f} B$ as objects, and morphisms $(A \xrightarrow{f} B) \to (A' \xrightarrow{f'} B)$ are morphisms $h : A \to A'$ making

commute.

Lemma 1.10. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor. Then F is part of an equivalence $\mathcal{C} \simeq \mathcal{D} \iff F$ is full, faithful and **essentially surjective**, i.e. for every $B \in \text{ob } \mathcal{D}$, there exists $A \in \text{ob } \mathcal{C}$ s.t. $FA \cong B$.

Definition 1.11. a. A **skeleton** of a category C is a full subcategory C' containing exactly one object from each isomorphism class of objects of C.

b. We say C is **skeletal** if it's a skeleton of itself. Equivalently, any isomorphism f in C satisfies dom $f = \operatorname{cod} f$.

For example, \mathbf{Mat}_K is skeletal. The full subgategory of standard vector spaces K^n is a skeleton of \mathbf{fd} \mathbf{Mod}_K .

Remark 1.12. The following statements are each equivalent to the Axiom of Choice:

- 1. Every small category has a skeleton
- 2. Any small category is equivalent to each of its skeletons
- 3. Any two skeletons of a given small category are isomorphic

Definition 1.13. Let $f: A \to B$ be a morphism in a category \mathcal{C} .

a. f is a **monomorphism** if, given $g, h : D \rightrightarrows A$, the equation fg = fh implies g = h. We write $A \mapsto B$ if f is monic.

- b. Dually, f is an **epimorphism** if, given $k, l : B \Rightarrow C$, kf = lf implies k = l. We write $A \rightarrow B$ if f is epic.
- c. C is a **balanced** category if every $f \in \text{mor } C$ which is both monic and epic is an isomorphism.

2 The Yoneda Lemma

Definition 2.1. A category C is **locally small** if, for any two objects A, B of C, the morphism $A \to B$ are parametrised by a set C(A, B).

Given local smallness, $B \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}(A, -) : \mathcal{C} \to \mathbf{Set}$: if $g : B \to B'$, the mapping $f \mapsto gf : \mathcal{C}(A, B) \to \mathcal{C}(A, B')$ is functorial since h(gf) = (hg)f for any $h : B' \to B''$.

Similarly, $A \mapsto \mathcal{C}(A, B)$ becomes a functor $\mathcal{C}^{op} \to \mathbf{Set}$.

Lemma 2.2 (Yoneda). Let C be a locally small category, $A \in \text{ob } C$ and $F : C \to Set$. Then

- i. There is a bijection between natural transformations $C(A, -) \to F$ and elements of FA.
- ii. Moreover, this bijection is natural in both A and F.

Proof. Bijection: given $\alpha : \mathcal{C}(A, -) \to F$, define $\Phi(\alpha) = \alpha_A(1_A) \in FA$. Given $x \in FA$, define $\Psi(x) : \mathcal{C}(A, -) \to F$ by

$$\Psi(x)_B(A \xrightarrow{f} B) = (Ff)(x) \in FB$$

 $\Psi(x)$ is natural: given $g: B \to C$, we have

$$\Psi(x)_{C}(\mathcal{C}(A,g)(f)) = \Psi(x)_{C}(gf)$$

$$= F(gf)(x)$$

$$= (Fg)(Ff)(x)$$

$$= (Fg)\Psi(x)_{B}(f)$$

 $\Phi\Psi(x)=x$ since $F(1_A)(x)=x$, and $\Psi\Phi(\alpha)=\alpha$ since, for any $f:A\to B$,

$$\Psi\Phi(\alpha)_B(f) = Ff(\Phi(\alpha))$$

$$= Ff(\alpha_A(1_A))$$

$$= \alpha_B(\mathcal{C}(A, f)(1_A))$$

$$= \alpha_B(f)$$

Corollary 2.3. The mapping $A \to \mathcal{C}(A, -)$ is a full and faithful functor $\mathcal{C}^{op} \to [\mathcal{C}, \mathbf{Set}]$.

Proof. Given two objects A, B, 2.2(i) gives us a bijection from $\mathcal{C}(B, A)$ to the collection of natural transformations $\mathcal{C}(A, -) \to \mathcal{C}(B, -)$ (by taking $F : C \mapsto \mathcal{C}(B, C)$). We need to show this is functorial, but given $f \in \mathcal{C}(B, A), \Psi(F)_A$ sends 1_A to $\mathcal{C}(B, f)(1_A) = f$, so it's the natural transformation $g \mapsto gf$.

Hence, given
$$e: C \to B$$
, $\Psi(fe)(g) = g(fe) = (gf)(e) = \Psi(e)\Psi(f)g$

We call this functor the **Yoneda embedding**. Hence any locally small category C is equivalent to a full subcategory of $[C^{op}, \mathbf{Set}]$.

Definition 2.4. A functor $\mathcal{C} \to \mathbf{Set}$ is **representable** if it's isomorphic to $\mathcal{C}(A,-)$ for some A.

A representation of $F: \mathcal{C} \to \mathbf{Set}$ is a pair (A, x) where $A \in \text{ob}\,\mathcal{C}, x \in FA$ and $\Psi(x): \mathcal{C}(A, -) \to F$ is an isomorphism. We also call x a **universal element** of F.

Corollary 2.5 ('Representations are unique up to unique isomorphism'). If (A, x) and (B, y) are both representations of $F : \mathcal{C} \to \mathbf{Set}$, then there's a unique isomorphism $f : A \to B$ s.t Ff(x) = y.

Definition 2.6 (Product and coproduct). Given two objects A, B of a locally small category C, we define their **product** to be a representation of the functor

$$\mathcal{C}(-,A)\times\mathcal{C}(-,B):\mathcal{C}^{op}\to\mathbf{Set}$$

i.e. an object $A \times B$ equipped with morphisms $\pi_1 : A \times B \to A$, $\pi_2 : A \times B \to B$ s.t. given any pair $(f : C \to A, g : C \to B)$, there exists a unique $h : C \to A \times B$ s.t. $\pi_1 h = f$ and $\pi_2 h = g$.

More generally, we can define the product $\prod_{i \in I} A_i$ of a family $\{A_i \mid i \in I\}$ of objects, or the product of the empty family, i.e. a **terminal object** 1 s.t. for every A there's a unique $A \to 1$.

Dualizing, we get the notion of **coproduct** or **sum**.

Definition 2.7 (Equaliser and coequaliser). Given a parallel pair $f, g : A \Rightarrow B$ in a locally small category C, the assignment $C \mapsto FC = \{h : C \to A \mid fh = gh\}$ is a subfunctor F of C(-,A). A representation of F is called an **equaliser** of (f,g).

In elementary terms, it's an object E equipped with $e: E \to A$ s.t. fe = ge, s.t. any h with fh = gh factors uniquely as h = ek

Dually, we have the notion of **coequaliser**, i.e. a morphism $q: B \to Q$ satisfying qf = qg, and universal among such.

Definition 2.8. a. We say a monomorphism is **regular** if it occurs as an equaliser (dually, regular epimorphism).

b. We say $f: A \to B$ is a **split monomorphism** if there exists $g: B \to A$ with $gf = 1_A$.

Every split monomorphism is regular: if $gf = 1_A$, f is an equaliser of $(1_B, fg)$ [see sheet 1, q2].

Definition 2.9. Let C be a (locally small) category, G a collection of objects of C.

- a. Say \mathcal{G} is a **separating family** if the functors $\mathcal{C}(G,-)$, $G \in \mathcal{G}$ are jointly faithful, i.e. if given $f,g:A \Rightarrow B$ with $f \neq g$, there exists $G \in \mathcal{G}$ and $h:G \to A$ with $fh \neq gh$.
- b. Say \mathcal{G} is a **detecting family** if the $\mathcal{C}(G, -)$, $G \in \mathcal{G}$ jointly reflect isomorphisms, i.e. if given $f: A \to B$ s.t. every $g: G \to B$ with $G \in \mathcal{G}$ factors uniquely through f, f is an isomorphism.

Lemma 2.10. i. If C is balanced, then any separating family is detecting

ii. If C has equalisers, then every detecting family is separating

Definition 2.11. An object P is **projective** if C(P, -) preserves epimorphisms, i.e. if given

$$\begin{array}{c} P \\ \downarrow^f \\ A \stackrel{e}{\longrightarrow} B \end{array}$$

there exists $g: P \to A$ with eg = f.

Dually, P is **injective** in C if it's projective in C^{op} .

If P satisfies this property $\forall e$ in some class \mathcal{E} of epimorphisms, we call it \mathcal{E} -projective.

Corollary 2.12. Representable functors are (pointwise) projective in [C, Set]

Proof. Given

$$\begin{array}{c} \mathcal{C}(A,-)\\ \downarrow^{\beta}\\ F \stackrel{\alpha}{-\!\!\!-\!\!\!-\!\!\!-} G \end{array}$$

 β corresponds to some $y \in GA$. α_A is surjective, so $\exists x \in FA$ with $\alpha_A(x) = y$. x corresponds to $\gamma : \mathcal{C}(A, -) \to F$ with $\alpha \gamma = \beta$.

3 Adjunctions

Definition 3.1 (D.M. Khan, 1958). Let \mathcal{C} and \mathcal{D} be categories and $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{C}$ be two functors. An **adjunction** between F and G is a bijection between morphisms $FA \to B$ in \mathcal{D} and morphisms $A \to GB$ in \mathcal{C} , which is natural in A and B.

(If \mathcal{C} and \mathcal{D} are locally small, this says that $(A,B) \to \mathcal{D}(FA,B)$ and $(A,B) \to \mathcal{C}(A,GB)$ are naturally isomorphic functors $\mathcal{C}^{op} \times \mathcal{D} \to \mathbf{Set}$).

We say F is **left adjoint** to G, or G is **right adjoint** to F, and write $F \dashv G$.

Theorem 3.2. Let $G: \mathcal{D} \to \mathcal{C}$ be a functor. Given $A \in \text{ob } \mathcal{C}$, let $(A \downarrow G)$ be the category whose objects are pairs (B, f) with $B \in \text{ob } \mathcal{D}$, $f: A \to GB$ and whose morphisms $(B, f) \to (B', f')$ are morphisms $g: B \to B'$ in \mathcal{D} such that

$$A \xrightarrow{f} GB$$

$$\downarrow^{Gg}$$

$$GB'$$

commutes. Then specifying a left adjoint for G is equivalent to specifying an initial object of $(A \downarrow G)$ for each A.

Proof. First suppose G has a left adjoint F. Let $\eta_A: A \to GFA$ be the morphism corresponding to $1_{FA}: FA \to FA$. The pair (FA, η_A) is an object of $(A \downarrow G)$. We'll show it's initial.

Given $g: FA \to B$, the composite $A \xrightarrow{\eta_A} GFA \xrightarrow{Gg} GB$ must correspond to $FA \xrightarrow{1} FA \xrightarrow{g} B$ under the adjunction.

So, for any object (B, f) of $(A \downarrow G)$, the unique morphism $(FA, \eta_A) \to (B, f)$ in $(A \downarrow G)$ is the morphism $FA \to B$ corresponding to f.

Conversely, suppose we're given an initial object (FA, η_A) of $(A \downarrow G)$ for each G. Given $f: A \to A'$, the composite $A \xrightarrow{f} A' \xrightarrow{\eta_{A'}} GFA'$ is an object of $(A \downarrow G)$, so there's a unique morphism $Ff: FA \to FA'$ making

$$\begin{array}{ccc} A & \stackrel{\eta_A}{\longrightarrow} & GFA \\ \downarrow^f & & \downarrow^{GFf} \\ A' & \stackrel{\eta_{a'}}{\longrightarrow} & GFA' \end{array}$$

commute.

 $f \mapsto Ff$ is functorial: given $f': A' \to A''$, then (Ff')(Ff) and F(f'f) are both morphisms $(FA, \eta_A) \to (FA'', \eta_{A''}f'f)$ in $(A \downarrow G)$, so they're equal.

Finally, given $f:A\to GB$, the morphism $g:FA\to B$ corresponding to it is the unique morphism $(FA,\eta_A)\to (B,f)$ in $(A\downarrow G)$.

The naturality of this bijection is given by naturality of η , and naturality in B is immediate.

Corollary 3.3. If F, F' are both left-adjoint to G, then there's a canonical natural isomorphism $F \to F'$.

Proof. For each A, (FA, η_A) and $(F'A, \eta'_A)$ are both initial in $(A \downarrow G)$, so there's a unique isomorphism $\alpha_A : (FA, \eta_A) \to (F'A, \eta'_A)$.

 α is natural: given $f: A \to A'$, $\alpha_{A'}f$ and $(Ff)\alpha_A$ are both morphisms $(FA, \eta_A) \to (F'A', \eta'_{A'}f)$ in $(A \downarrow G)$. So they're equal.

Lemma 3.4. Given $\mathcal{C} \xleftarrow{F} \mathcal{D} \xleftarrow{H} \mathcal{E}$, if $F \dashv G$ and $H \dashv K$ then $HF \dashv GK$

Proof. We have bijections

$$\mathcal{E}(HFA, C) \cong \mathcal{D}(FA, KC) \cong \mathcal{C}(A, GKC)$$

which are natural in A and C.

Corollary 3.5. Given a commutative square $C \xrightarrow{F} \mathcal{D}$ $C \xrightarrow{F} \mathcal{D}$ $C \xrightarrow{K} \mathcal{F}$

functors, suppose all the functors in the diagram have left adjoints. Then the

Given $F \dashv G$, we have a natural transformation $\eta : 1_{\mathcal{C}} \to GF$ defined as in 3.2. We call η the **unit** of the adjunction.

Dually, we have $\epsilon: FG \to 1_{\mathcal{D}}$, the **counit**. $\epsilon_B: FGB \to B$ corresponds to $1_{GB}: GB \to GB$.

Theorem 3.6. Suppose we're given $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$. Specifying an adjunction $F \dashv G$ is equivalent to specifying natural transformations $\eta: 1_{\mathcal{C}} \to GF$ and $\epsilon: FG \to 1_{\mathcal{D}}$ such that

$$F \xrightarrow{F\eta} FGF \qquad and \qquad G \xrightarrow{\eta_G} GFG$$

$$\downarrow^{1_F} \downarrow_{\epsilon_F} \downarrow_{G}$$

$$\downarrow^{G} \downarrow^{G}$$

$$\downarrow^{G} \downarrow^{G}$$

commute. (We say η and ϵ satisfy the **triangular identities**).

Proof. Given $F \dashv G$, we define η and ϵ as already described. Since ϵ_{FA} : $FGFA \to FA$ corresponds to 1_{GFA} , the composite $\epsilon_{FA}(F\eta_A)$ corresponds to $A \xrightarrow{\eta_A} GFA \xrightarrow{1_{GFA}} GFA$, so it must be 1_{FA} .

Similarly for the other identity.

Conversely, given η and ϵ satisfying the \triangle^r identities, we map $f:A\to GB$ to the composite $FA \xrightarrow{Ff} FGB \xrightarrow{\epsilon_B} B$ and $g:FA\to B$ to the composite $A \xrightarrow{\eta_A} GFA \xrightarrow{Gg} GB$.

We have

$$\Phi(A \xrightarrow{f} GB) = FA \xrightarrow{Ff} FGB \xrightarrow{\epsilon_B} B$$

$$\Psi(FA \xrightarrow{g} B) = A \xrightarrow{\eta_A} GFA \xrightarrow{Gg} GB$$

So

$$\Psi\Phi(f) = A \xrightarrow{\eta_A} GFA \xrightarrow{GFf} GFGB \xrightarrow{G\epsilon_B} GB$$

$$= A \xrightarrow{f} GB \xrightarrow{\eta_{GB}} GFGB \xrightarrow{G\epsilon_B} GB$$

$$= f$$

And dually $\Phi\Psi(g) = g$.

Naturality of Φ in A is immediate from its definition, and naturality in B follows from that of ϵ .

Lemma 3.7. Suppose given $C \stackrel{F}{\longleftrightarrow} \mathcal{D}$ and natural isomorphisms $\alpha : 1_{\mathcal{C}} \to GF$, $\beta : FG \to 1_{\mathcal{D}}$. Then there exist natural isomorphisms α' , β' which additionally satisfy the triangular identities. In particular $(F \dashv G)$.

Proof. We define $\alpha' = \alpha$ and take β' to be the composite

$$FG \xrightarrow{\beta_{FG}^{-1}} FGFG \xrightarrow{F_{\alpha_G}^{-1}} FG \xrightarrow{\beta} 1_{\mathcal{D}}$$

 $FGFG \xrightarrow{FG\beta} FG$

Note that, since $\downarrow_{\beta_{FG}} \quad \downarrow_{\beta} \text{ commutes and } \beta \text{ is monic, we have } FG\beta = FG \xrightarrow{\quad \beta \quad} 1_{\mathcal{D}}$

 $\beta_F G$.

Similarly, $GF\alpha = \alpha_{GF} : GF \to GFGF$.

Now

$$\beta_F' \circ F_{\alpha'} = F \xrightarrow{F\alpha} FGF \xrightarrow{\beta_{FGF}^{-1}} FGFGF \xrightarrow{F\alpha_{GF}^{-1}} FGF \xrightarrow{\beta_F} F$$

$$= F \xrightarrow{\beta_F^{-1}} FGF \xrightarrow{FGF\alpha} FGFGF \xrightarrow{FGF\alpha^{-1}} FGF \xrightarrow{\beta_F} F$$

$$= 1_F$$

and

$$G\beta' \circ \alpha'_{G} = G \xrightarrow{\alpha_{G}} GFG \xrightarrow{GFG\beta^{-1}} GFGFG \xrightarrow{GF_{\alpha_{G}}^{-1}} GFG \xrightarrow{G\beta} G$$

$$= G \xrightarrow{G\beta^{-1}} GFG \xrightarrow{\alpha_{GFG}} GFGFG \xrightarrow{\alpha_{GFG}^{-1}} GFG \xrightarrow{\beta_{F}} G$$

$$= 1_{G}$$

Lemma 3.8. Suppose $\mathcal{C} \xleftarrow{F}_{G} \mathcal{D}$, $(F \dashv G)$ is an adjunction with counit ϵ .

 $i. \ \epsilon \ is \ (pointwise) \ epic \iff G \ is \ faithful$

 $ii. \ \epsilon \ is \ an \ isomorphism \iff G \ is \ full \ and \ faithful$

Proof. i. Given $g: B \to B'$, the morphism $Gg: GB \to GB'$ corresponds to

$$FGB \xrightarrow{\epsilon_B} B \xrightarrow{g} B'$$

So, for fixed B, composition with ϵ_B is injective on morphisms $B \to B'$ $\iff (g \mapsto Gg)$ is injective on morphisms $B \to B'$.

Hence G is faithful $\iff \epsilon_B$ is epic $\forall B$.

ii. Similarly, ϵ_B is $0 \ \forall B \implies G$ is bijective on morphisms with given domain and codomain, i.e. G is full and faithful.

Conversely, if G is full and faithful, 1_{FGB} factors uniquely as $FGB \xrightarrow{\epsilon_B} B \xrightarrow{g} FGB$, so ϵ_B is split monic. But it's epic by (i), hence an isomorphism.

conditions

Definition 3.9. i. A **reflection** is an adjunction satisfying the conditions of 3.8(ii).

ii. A **reflective** subcategory of C is a full subcategory C' for which the inclusion $C' \hookrightarrow C$ has a left adjoint.

Dually, coreflection and coreflective subcategory.

4 Limits

Definition 4.1. a. Let J be a category (almost always small, often finite). A **diagram of shape J** in a category C is a functor $D: J \to C$.

E.g. if J is the finite category \downarrow , a diagram of shape J is a

commutative square. If J is the category \downarrow , a diagram of shape

J is a not-necessarily-commutative square.

The objects D(j), $j \in \text{ob } J$ are called **vertices** of D, and the morphisms $D(\alpha)$, $\alpha \in \text{mor } J$ are called **edges** of D.

b. Let $D: J \to \mathcal{C}$ be a diagram in \mathcal{C} . A **cone over D** is a pair $(A, (\lambda_j | j \in \mathcal{C}))$

ob
$$J)$$
) where $\lambda_j:A\to D(j)\ \forall j,$ and $D(j)\xrightarrow{\lambda_j} D(\alpha)$ commutes for $D(j)\xrightarrow{D(\alpha)} D(j')$

each $\alpha: j \to j'$ in J.

A is called the **apex** of the cone, and the λ_j are its **legs**.

Equivalently, λ is a natural transformation $\triangle A \rightarrow D$, where $\triangle A$ is the **constant diagram** with all vertices A and all edges 1_A .

A morphism $f:(A,(\lambda_j))\to(B,(\mu_j))$ of cones over D is a morphism

$$f:A \to B \text{ s.t.}$$
 $A \xrightarrow{f} B$ commutes for each j . We have a category $D(j)$

 $\mathbf{Cone}(D)$ of cones over D.

Note that $A \mapsto \triangle A$ is a functor $\mathcal{C} \to [J, \mathcal{C}]$ and **Cone**(D) is in fact the category $(\triangle \downarrow D)$.

A cocone over $D: J \to \mathcal{C}$ is a cone over $D: J^{op} \to \mathcal{C}^{op}$. We write Cocone(D) for the category of cocones over D.

- i. A **limit** (resp. **colimit**) for a diagram $D: J \to \mathcal{C}$ is a terminal object of **Cone**(D) (respectively an initial object of **Cocone**(D)).
 - ii. We say $\mathcal C$ has limits (resp. colimits) of shape J if $\triangle:\mathcal C\to [J,\mathcal C]$ has a right (resp. left) adjoint.

(This is equivalent to making a choice of limit (resp. colimit) for every diagram of shape J).

l=gk. Equivalently, it's a pair \bigvee_{k}^{h} completing the diagram to a

commutative square.

A universal such pair is called a **pullback** (or **fibre product**); in **Set** it can be defined as $\{(a,b) \in A \times B \mid f(a) = g(b)\}$. A colimit of shape J^{op} is called a **pushout**.

Theorem 4.4. Let C be a category.

- i. If C has equalisers and all finite (resp. all small) products, then C has all finite (resp. all small) limits.
- ii. If C has pullbacks and a terminal object, then C has all finite limits.

Proof. i. Given $D: J \to \mathcal{C}$, first form the products

$$P = \prod_{j \in \text{ob } J} D(j)$$
 and $Q = \prod_{\alpha \in \text{mor } J} D(\text{cod } \alpha)$

Define $P \xrightarrow{f \atop g} Q$ by $\pi_{\alpha}f = \pi_{\operatorname{cod}\alpha} : P \to D(\operatorname{cod}\alpha)$ and $\pi_{\alpha}g = D(\alpha) \circ \pi_{\operatorname{dom}\alpha} : P \to D(\operatorname{dom}\alpha) \to D(\operatorname{cod}\alpha)$, and let $e : E \to P$ be the equaliser of (f,g).

Claim $(E, (\pi_j e \mid j \in \text{ob } J))$ is a limit cone for D. It is a cone since, for any $\alpha: j \to j', D(\alpha)\pi_j e = \pi_\alpha g e = \pi_\alpha f e = \pi_{j'} e$.

Given any cone $(C, (\lambda_j \mid j \in \text{ob } J))$, the λ_j define a unique $\lambda : C \to P$, and $f\lambda = g\lambda$ since $\pi_{\alpha}f\lambda = \pi_{\alpha}g\lambda \ \forall \alpha$. So λ factors uniquely through e.

ii. Let 1 be a terminal object of \mathcal{C} . For any pair of objects (A, B) the pullback

of
$$A$$
 has the universal property of a product $A \times B$, so $\mathcal C$ $B \longrightarrow 1$

has binary products. Then we can define any finite product $\prod_{i=1}^n A_i$ as $(((A_1 \times A_2) \times A_3) \times ...) \times A_n$.

So we need to show $\mathcal C$ has equalisers. Given $A \stackrel{f}{\Longrightarrow} B$, consider the

$$P \xrightarrow{h} B$$
 It consists of \downarrow_k satisfying $1_A h = 1_A k$ and $fh = gk$, and uni-

versal among such.

But this forces h = k, and h has the universal property of an equaliser for (f, g). So by (i), \mathcal{C} has all finite limits.

Definition 4.5. Let $F: \mathcal{C} \to \mathcal{D}$ be a functor.

- a. We say F **preserves** limits of shape J if, given $D: J \to \mathcal{C}$ and a limit cone $(L, (\lambda_j: j \in \text{ob } J))$ for D, the cone $(FL, (F\lambda_j: j \in \text{ob } J))$ is a limit for $FD: J \to \mathcal{D}$.
- b. We say F reflects limits of shape J if, given $D: J \to \mathcal{C}$ and a cone $(L, (\lambda_j))$ such that $(FL, (F\lambda_j))$ is a limit for FD, then $(L, (\lambda_j))$ is a limit for D.
- c. We say F creates limits of shape J if, given $D: J \to \mathcal{C}$ and a limit $(M, (\mu_j))$ for FD, there exists a cone (L, λ_j) over D whose image is isomorphic to $(M, (\mu_j))$, and any such cone is a limit for D.

Lemma 4.6. Suppose \mathcal{D} has limits of shape J. Then $[\mathcal{C}, \mathcal{D}]$ has limits of shape J, and they're constructed pointwise (i.e. the forgetful functor $[\mathcal{C}, \mathcal{D}] \to \mathcal{D}^{\text{ob}\,\mathcal{C}}$ creates them).

Proof. Consider a functor $D: J \times \mathcal{C} \to \mathcal{D}$. For each $A \in \text{ob } \mathcal{C}$, let $(LA, (\lambda_{j,A} : LA \to D(j,A) | j \in \text{ob } J))$ be a limit for the diagram $D(-,A): J \to \mathcal{D}$.

Given any $f: A \to B$ in \mathcal{C} , the composites

$$LA \xrightarrow{\lambda_{j,A}} D(j,A) \xrightarrow{D(j,f)} D(j,B)$$

form a cone over D(-,B), so they induce a unique $Lf:LA\to LB$ such that

$$\begin{array}{c} LA \xrightarrow{Lf} LB \\ \downarrow^{\lambda_{j,A}} & \downarrow^{\lambda_{j,B}} \\ D(j,A) \xrightarrow{D(j,f)} D(j,B) \end{array}$$

commutes for all j. Uniqueness assures L(gf) = L(g)L(f), so L is a functor $\mathcal{C} \to \mathcal{D}$, and the $\lambda_{j,-}$ are natural transformations $L \to D(j,-)$.

Suppose we're given any cone over D in $[\mathcal{C}, \mathcal{D}]$ with apex M and legs μ_j : $M \to D(j, -)$. Then $(MA, (\mu_{j,A} : MA \to D(j, A) | j \in \text{ob } J))$ is a cone over D(-, A) in \mathcal{D} , so we get a unique $\nu_A : MA \to LA$ s.t. $\lambda_{j,A}\nu_A = \mu_{j,A}$ for all j. Uniqueness tells us that

$$MA \xrightarrow{Mf} MB$$

$$\downarrow^{\nu_A} \qquad \downarrow^{\nu_B}$$

$$LA \xrightarrow{Lf} LB$$

commutes for all $f \in \text{mor } \mathcal{C}$, so $\nu : M \to L$ in $[\mathcal{C}, \mathcal{D}]$, so it's the unique factorisation of the $\mu_{j,-}$ through the $\lambda_{j,-}$.

Lemma 4.7. A morphism $f: A \to B$ is monic \iff

$$\begin{array}{ccc}
A & \xrightarrow{1_A} & A \\
\downarrow_{1_A} & & \downarrow_f \\
A & \xrightarrow{f} & B
\end{array}$$

is a pullback.

Proof. f is monic \iff any cone (g,h) over (f,f) has $g=h \iff (g,h)$ factors uniquely through $(1_A,1_A)$.

Hence, provided \mathcal{D} has pullbacks, a morphism $\alpha: F \to G$ in $[\mathcal{C}, \mathcal{D}]$ is monic $\iff \alpha_A: FA \to GA$ is monic for each A.

Theorem 4.8. If $G: \mathcal{D} \to \mathcal{C}$ has a left adjoint, then G preserves all limits which exist in \mathcal{D} .

Proof. Suppose \mathcal{C} and \mathcal{D} both have limits of shape J and let $(F \dashv G)$. The diagram

$$\begin{array}{ccc} \mathcal{C} & \stackrel{F}{\longrightarrow} & \mathcal{D} \\ \downarrow \triangle & & \downarrow \triangle \\ [J,\mathcal{C}] & \stackrel{[J,F]}{\longrightarrow} & [J,\mathcal{D}] \end{array}$$

commutes and [J, F] has a right adjoint [J, G]. So by 3.5 the diagram of right adjoints

$$\begin{bmatrix} J, \mathcal{D} \end{bmatrix} \xrightarrow{[J,G]} \begin{bmatrix} J, \mathcal{C} \end{bmatrix}$$

$$\downarrow \lim_{J} \qquad \qquad \downarrow \lim_{J}$$

$$\mathcal{D} \xrightarrow{G} \mathcal{C}$$

commutes up to isomorphism, i.e. G preserves limits of shape J.

Proof. Let $D: J \to \mathcal{D}$ be a diagram with limit $(L, (\lambda_j \mid j \in \text{ob } J))$. Given a cone $(A, (\mu_j : A \to GD(j) \mid j \in \text{ob } J))$ in \mathcal{C} , we get a cone $(FA, (\bar{\mu_j} : FA \to D(j) \mid j \in \text{ob } J))$ in \mathcal{D} , and hence a unique $\bar{\nu} : FA \to L$ such that $\lambda_j \bar{\nu} = \bar{\mu_j}$ for all j.

Then $\nu: A \to GL$ is the unique morphism such that $(G\lambda_j)\nu = \mu_j \forall j$. \square

The 'primeval' Adjoint Functor Theorem says that if \mathcal{D} has and $G: \mathcal{D} \to \mathcal{C}$ preserves all limits, then G has a left adjoint.

This depends on two ideas:

Lemma 4.9. C has an initial object $\iff 1_C : C \to C$ has a limit.

Proof. Suppose \mathcal{C} has an initial object 0. The morphisms $(0 \to A \mid A \in \text{ob } \mathcal{C})$ form a cone over $1_{\mathcal{C}}$. If we had another, say $(L, (\lambda_A \mid A \in \text{ob } \mathcal{C}))$, then $\lambda_0 : L \to 0$ would make

$$L \xrightarrow{\lambda_0} 0$$

$$A$$

commute for all A, and it's the only morphism which does.

Conversely, suppose $(I, (\lambda_A : I \to A \mid A \in \text{ob } \mathcal{C}))$ is a limit for $1_{\mathcal{C}}$. If $f : I \to A$, then

$$I \xrightarrow{\lambda_I} I$$

$$\downarrow^{\lambda_A} f$$

$$A$$

commutes. In particular, $\lambda_A \lambda_I = \lambda_A$ for all A, so $\lambda_I = 1_I$ since both are factorisations of the limit cone through itself. So $f = \lambda_A$, and hence I is initial.

Lemma 4.10. Suppose \mathcal{D} has and $G: \mathcal{D} \to \mathcal{C}$ preserves limits of shape J. Then, for each $A \in \text{ob}\,\mathcal{C}$, $(A \downarrow G)$ has limits of shape J and the forgetful functor $(A \downarrow G) \to \mathcal{D}$ creates them.

Proof. Suppose given $D: J \to (A \downarrow G)$. Write D(j) as $(UD(j), f_j: A \to GUD(j))$ for each j. Let $(L, (\lambda_j \mid j \in \text{ob } J))$ be a limit for UD, then $(GL, (G\lambda_j \mid j \in \text{ob } J))$ is a limit for GUD. But the f_j form a cone over GUD with apex A, so there's a unique $h: A \to GL$ such that

$$A \xrightarrow{f_j} GL$$

$$GUD(j)$$

commutes for all j. So there's a unique lifting of the cone over D in $(A \downarrow G)$. Suppose we're given a cone $((B, g), (\mu_j \mid j \in \text{ob } J))$ over D. Then

$$A \xrightarrow{g} GB$$

$$\downarrow G_k$$

$$GL$$

commutes since both ways round are factorisations of $(f_j | j \in \text{ob } J)$ through the limit GL.

Combining 4.10 and 4.9 with 3.2, we've proved the primeval Adjoint Functor Theorem. However, this requires \mathcal{D} to have limits for diagrams 'as big as \mathcal{D} itself', and the only such categories are preorders (c.f. Q6, sheet 2).

In practice, the most we can hope for is that $\mathcal D$ has all small limits. We call such a $\mathcal D$ complete.

Theorem 4.11 (General Adjoint Functor Theorem). Suppose that \mathcal{D} is complete and locally small. Then a functor $G: \mathcal{D} \to \mathcal{C}$ has a left adjoint if and only if it preserves all small limits and satisfies the 'solution set condition': for any $A \in \text{ob } \mathcal{C}$, there is a set $\{f_i: A \to GB_i \mid i \in I\}$ of objects of $(A \downarrow G)$ such that any $h: A \to GC$ factors as

$$A \xrightarrow{f_i} GB_i \xrightarrow{Gg} Gc$$

for some $i \in I$ and $g: B_i \to C$.

Proof. If G has a left adjoint, then it preserves small limits by 4.8, and $\{\eta_A : A \to GFA\}$ is a singleton solution set at A.

Conversely, each $(A \downarrow G)$ is complete by 4.10, and locally small since it admits a faithful functor to \mathcal{D} . So we need to show: if \mathcal{A} is complete and locally small, and has a weakly initial set of objects $\{S_i \mid i \in I\}$, then \mathcal{A} has an initial object.

First form $P = \prod_{i \in I} S_i$: then P is weakly initial.

Now form the limit $I \xrightarrow{a} P$ of the diagram $P \Longrightarrow P$ whose edges are all morphism $P \to P$ in A.

Claim I is initial: it's weakly initial since it admits a morphism to P.

Suppose we had $I \xrightarrow{g \atop g} A$. Let $b: E \to I$ be an equaliser for (f,g): then there exists $c: P \to E$.

Now $P \xrightarrow{c} E \xrightarrow{b} I \xrightarrow{a} P$ is an edge of the diagram whose limit is I, but so is 1_P ; so $abca = 1_Pa = a$. But a is monic, so $bca = 1_I$. So b is (split) epic, and f = g. So all the $(A \downarrow G)$ have initial objects, hence by 3.2 G has a left adjoint.

The Special Adjoint Functor Theorem imposes additional conditions on \mathcal{C} and \mathcal{D} which ensure that every functor $\mathcal{D} \to \mathcal{C}$ preserving small limits has a left adjoint.

- **Definition 4.12.** a. A **subobject** of an object A is a monomorphism $A' \rightarrow A$. We write $\mathbf{Sub}_{\mathcal{C}}(A)$ for the full subcategory of \mathcal{C}/A whose objects are subobjects of A: note that this category is a preorder.
 - b. We say \mathcal{C} is **well-powered** if each $\mathbf{Sub}_{\mathcal{C}}(A)$ is equivalent to a small category, i.e. up to isomorphism each object has only a set of subobjects.

Dually, C is well-copowered if C^{op} is well-powered.

Lemma 4.13. Suppose given a pullback

$$P \xrightarrow{k} A$$

$$\downarrow h \qquad \downarrow f$$

$$B \xrightarrow{g} C$$

with f monic. Then h is monic.

Proof. Suppose $D \xrightarrow{x} P$ satisfy hx = hy. Then fkx = fky = ghx = ghy and f is monic so kx = ky.

Now x=y since both are factorisations of the same cone through the pullback.

Theorem 4.14 (Special Adjoint Functor Theorem). Suppose both C and D are locally small, and D is complete, well-powered and has a separating set. Then $G: D \to C$ has a left adjoint $\iff G$ preserves all small limits.

Proof. The forward implication is 4.8 again.

Conversely, we first show that $(A \downarrow G)$ has the properties we've assumed for \mathcal{D} : it's complete by 4.10, and locally small as in 4.11. It's well-powered since subobjects of (B,f) in $(A \downarrow G)$ are in bijection with subobjects $B' \mapsto B$ such that f factors through $GB' \mapsto GB$.

It has a coseparating set: if $\{S_i \mid i \in I\}$ is a coseparating set for \mathcal{D} , then $\{(S_i, f) \mid i \in I, f : A \to GS_i\}$ is a coseparating set for $(A \downarrow G)$, since if $(B, f) \xrightarrow{g} (B', f')$ satisfies $g \neq g'$, there exists $h : B' \to S_i$ for some i with $hg \neq hg'$, and then h is a morphism $(B', f') \to (S_i, (Gh)f')$ in $(A \downarrow G)$.

Now we show that if \mathcal{A} is complete, locally small and well-powered and has a coseperating set, then it has an initial object.

First form $P = \prod_{i \in I} S_i$, where $\{S_i \mid i \in I\}$ is a coseparating set.

Consider the diagram

whose edges are a representative set of subobjects of P.

Form its limit

by the argument of 4.13 the legs $I \to P^{(-)}$ are monic, so $I \to P$ is monic and it's the least subobject of P.

Hence in particular I has no proper subobjects, so any two maps $I \xrightarrow{f} A$ must be equal, since their equaliser is an isomorphism.

Now given $A \in \mathcal{A}$, form the product $Q = \prod_{i,f:A \to S_i} S_i$. The canonical morphism $h:A \to Q$ defined by $\pi_{i,f}h=f$ is monic since the S_i form a coseparating set.

We also have $k: P \to Q$ defined by $\pi_{i,f}k = \pi_i$, and we can form the pullback

$$I \xrightarrow{B} \xrightarrow{m} A$$

$$\downarrow l \qquad \downarrow h$$

$$P \xrightarrow{k} Q$$

By 4.13 l is monic and hence isomorphic to an edge of the diagram defining I, so $I \rightarrow P$ factors through it. So there exists a morphism $I \rightarrow A$, hence I is initial.

5 Monads

Suppose given an adjunction $\mathcal{C} \xleftarrow{F}_{G} \mathcal{D}$, $F \dashv G$. How much of this can we describe purely in terms of \mathcal{C} ?

We have the composite $T = GF : \mathcal{C} \to \mathcal{C}$, and the unit $\eta : 1_{\mathcal{C}} \to T$. We also have $G\epsilon_F : GFGF \to GF$, which we'll denote $\mu : TT \to T$.

These satisfy the commutative diagrams

from the \triangle^r identities and naturality of ϵ .

Definition 5.1. A monad $\mathbb{T} = (T, \eta, \mu)$ on a category \mathcal{C} consists of a functor $T: \mathcal{C} \to \mathcal{C}$ and natural transformations $\eta: 1_{\mathcal{C}} \to T$, $\mu: TT \to T$ satisfying the commutative diagrams ①, ② and ③.

Definition 5.2. Let \mathbb{T} be a monad on \mathcal{C} . A \mathbb{T} -algebra is a pair (A, α) where $A \in \text{ob } \mathcal{C}$, and $\alpha : TA \to A$ satisfies

$$\begin{array}{ccccc}
A \xrightarrow{\eta_A} TA & \text{and} & TTA \xrightarrow{T\alpha} TA \\
& & \downarrow^{\mu_A} & & \downarrow^{\alpha} \\
A & & & TA \xrightarrow{\alpha} A
\end{array}$$

A homomorphism $f:(A,\alpha)\to (B,\beta)$ of \mathbb{T} -algebras is a morphism $f:A\to B$ such that

$$TA \xrightarrow{Tf} TB$$

$$\downarrow^{\alpha} \quad \textcircled{6} \qquad \downarrow^{\beta}$$

$$A \xrightarrow{f} B$$

commutes. We write $\mathcal{C}^{\mathbb{T}}$ for the category of \mathbb{T} -algebras.

Lemma 5.3. The forgetful functor $G: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ has a left adjoint F, and the adjunction $(F \dashv G)$ induces the monad \mathbb{T} .

Proof. We define $FA = (TA, \mu_A)$ (which is an algebra by ② and ③), and $F(A \xrightarrow{f} B) = Tf$ (which is a homomorphism by naturality of μ).

Clearly GF = T and $\eta: 1_{\mathcal{C}} \to GF$.

We define $\epsilon: FG \to 1_{\mathcal{C}^{\mathbb{T}}}$ by $\epsilon_{(A,\alpha)} = \alpha: (TA, \mu_A) \to (A, \alpha)$ (which is a homomorphism by \mathfrak{F}).

The triangular identities for η and ϵ follow from 4 and 6, so $6 \vdash 6 \vdash 6$.

Finally, $G_{\epsilon_{FA}} = \mu_A$ by the definitions of FA and ϵ , so the adjunction incudes \mathbb{T} .

Note that if $\mathcal{C} \xleftarrow{F} \mathcal{D}$ induces \mathbb{T} , then so does $\mathcal{C} \xleftarrow{F} \mathcal{D}'$ where \mathcal{D}' is the full subcategory of objects of the form FA. So in seeking to construct \mathcal{D} , we may require F to be bijective on objects. But then morphisms $FA \to FB$ in \mathcal{D} correspond bijectively to morphisms $A \to GFB = TB$ in \mathcal{C} .

Definition 5.4. Given a monad \mathbb{T} on \mathcal{C} , the **Kleisi category** $\mathcal{C}_{\mathbb{T}}$ is defined by: ob $\mathcal{C}_{\mathbb{T}} = \text{ob } \mathcal{C}$, morphisms $A \to B$ in $\mathcal{C}_{\mathbb{T}}$ are morphisms $A \to TB$ in \mathcal{C} , the identity $A \to A$ is $A \xrightarrow{\eta_A} TA$, and the composite of $A \xrightarrow{f} B \xrightarrow{g} C$ is $A \xrightarrow{f} TB \xrightarrow{Tg} TTC \xrightarrow{\mu_C} C$.

We check

$$A \xrightarrow{1_A} A \xrightarrow{f} B = A \xrightarrow{\eta_A} TA \xrightarrow{Tf} TTB \xrightarrow{\mu_B} B$$
$$= A \xrightarrow{f} TA \xrightarrow{\eta_{TB}} TTB \xrightarrow{\mu_B} B$$
$$= f \text{ by } \textcircled{2}$$

$$A \xrightarrow{f} B \xrightarrow{1_{\mathcal{B}}} B = A \xrightarrow{f} TB \xrightarrow{T_{\eta_B}} TTB \xrightarrow{\mu_B} B$$
$$= f \text{ by } \textcircled{1}$$

Given $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$,

$$\begin{aligned} (hg)f &= A \stackrel{f}{\to} TB \stackrel{Tg}{\to} TTC \stackrel{TTh}{\to} TTTD \stackrel{T\mu_D}{\to} TTD \stackrel{\mu_D}{\to} TD \\ &= A \stackrel{f}{\to} TB \stackrel{Tg}{\to} TTC \stackrel{TTh}{\to} TTTD \stackrel{\mu_{TD}}{\to} TTD \stackrel{\mu_D}{\to} TD \text{ by } \textcircled{3} \\ &= A \stackrel{f}{\to} TB \stackrel{Tg}{\to} TTC \stackrel{\mu_C}{\to} TC \stackrel{T_h}{\to} TTD \stackrel{\mu_D}{\to} TD \\ &= h(gf) \end{aligned}$$

Lemma 5.5. There exists an adjunction $\mathcal{C} \xleftarrow{F}_{G} \mathcal{C}_{\mathbb{T}}$ inducing \mathbb{T} .

Proof. We define FA = A and $F(A \xrightarrow{f} B) = A \xrightarrow{f} B \xrightarrow{\eta_B} TB$. This clearly preserves identities, and

$$\begin{split} (Fg)(Ff) &= A \xrightarrow{f} B \xrightarrow{\eta_B} TB \xrightarrow{Tg} TC \xrightarrow{T\eta_C} TTC \xrightarrow{\mu_C} TC \\ &= A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{\eta_C} TC \text{ by } \textcircled{1} \text{ and naturality of } \eta \\ &= F(gf) \end{split}$$

We define GA = TA and $G(A \xrightarrow{f} B) = TA \xrightarrow{Tf} TTB \xrightarrow{\mu_B} TB$. G preserves identities by ① and

$$\begin{split} G(A \xrightarrow{f} B \xrightarrow{g} C) &= TA \xrightarrow{Tf} TTB \xrightarrow{TTg} TTTC \xrightarrow{T\mu_C} TTC \xrightarrow{\mu_C} TC \\ &= TA \xrightarrow{Tf} TTB \xrightarrow{TTg} TTTC \xrightarrow{\mu_{TC}} TTC \xrightarrow{\mu_C} TC \text{ by } \textcircled{3} \\ &= TA \xrightarrow{Tf} TTB \xrightarrow{\mu_B} TB \xrightarrow{Tg} TTC \xrightarrow{\mu_C} TC \text{ by naturality of } \mu \\ &= (Gg)(Gf) \end{split}$$

Clearly GFA = TA and

$$GF(A \xrightarrow{f} B) = TA \xrightarrow{Tf} TB \xrightarrow{T\eta_B} TTB \xrightarrow{\mu_B} TB$$
$$= Tf \text{ by } \textcircled{1}$$

so GF = T and $\eta: 1_{\mathcal{C}} \to GF$.

We define $FGA \xrightarrow{\epsilon_A} A$ to be $TA \xrightarrow{\eta_{TA}} TA$. To verify naturality of ϵ , consider

$$FGA \xrightarrow{FGf} FGB$$

$$\downarrow^{\epsilon_A} \qquad \downarrow^{\epsilon_B}$$

$$A \xrightarrow{f} B$$

The top and right edges yield

$$TA \xrightarrow{Tf} TTB \xrightarrow{\mu_B} TB \xrightarrow{\eta_{TB}} TTB \xrightarrow{1_{TTB}} TTB \xrightarrow{\mu_B} TB$$

and the left and bottom yield

$$TA \stackrel{1_{TA}}{\longrightarrow} TA \stackrel{Tf}{\longrightarrow} TTB \stackrel{\mu_B}{\longrightarrow} TB$$

For the \triangle^r identities,

$$GA \stackrel{\eta_{GA}}{\rightarrow} GFGA \stackrel{G\epsilon_A}{\rightarrow} GA = TA \stackrel{\eta_{TA}}{\rightarrow} TTA \stackrel{1_{TTA}}{\rightarrow} TTA \stackrel{\mu_A}{\rightarrow} TA = 1_{TA}$$

and

$$FA \xrightarrow{F\eta_A} FGFA \xrightarrow{\epsilon_{FA}} FA = A \xrightarrow{\eta_A} TA \xrightarrow{\eta_{TA}} TTA \xrightarrow{1_{TTA}} TTA \xrightarrow{\mu_A} TA$$
$$= A \xrightarrow{\eta_A} TA \ (= FA \xrightarrow{1_{FA}} FA)$$

Finally, $G\epsilon_{FA} = TTA \xrightarrow{1_{TTA}} TTA \xrightarrow{\mu_A} TA = \mu_A$, so the adjunction induces the monad \mathbb{T} .

Theorem 5.6. Given a monad \mathbb{T} on \mathcal{C} , let $\mathbf{Adj}(\mathbb{T})$ be the category whose objects are adjunctions $\mathcal{C} \overset{F}{\rightleftharpoons} \mathcal{D}$ inducing \mathbb{T} , and whose morphisms $(\mathcal{C} \overset{F}{\rightleftharpoons} \mathcal{D}) \rightarrow (\mathcal{C} \overset{F'}{\rightleftharpoons} \mathcal{D}')$ are functors $K : \mathcal{D} \rightarrow \mathcal{D}'$ satisfying KF = F' and G'K = G.

Then the Kleisi category $\mathcal{C}_{\mathbb{T}}$ is initial in $\mathbf{Adj}(\mathbb{T})$, and the Eilenberg-Moore category $\mathcal{C}^{\mathbb{T}}$ is terminal.

Proof. Given $(\mathcal{C} \overset{F}{\rightleftharpoons} \mathcal{D})$ in $\mathbf{Adj}(\mathbb{T})$, we define the **Eilenberg-Moore comparison functor** $K : \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$ by $KB = (GB, G\epsilon_B)$ (note that $G\epsilon_B$ is an algebra structure on GB: the unit condition 4 follows from a \triangle^r identity, and 5 follows from the naturality of ϵ).

 $K(B \xrightarrow{g} B') = Gg : (GB, G\epsilon_B) \to (GB', G\epsilon_{B'})$ (a homomorphism since ϵ is natural).

It's clear that K is a functor, that $G^{\mathbb{T}}K = G$ and that $KFA = (GFA, G\epsilon_{FA}) = (TA, \mu_A) = F^{\mathbb{T}}A$ and $KF(A \xrightarrow{f} B) = Tf = F^{\mathbb{T}}f$.

Uniqueness: suppose \bar{K} also satisfies $G^{\mathbb{T}}\bar{K}=G$ and $\bar{K}F=F^{\mathbb{T}}$. Then $\bar{K}B$ is of the form (GB,β_B) for some algebra structure β_B , and that $\beta_{FA}=\mu_A=G\epsilon_{FA}$ for all A.

Given any B, consider the diagram

$$GFGFGB \xrightarrow{GFG\epsilon_B} GFGB$$

$$\downarrow^{\mu_{GB}} \qquad \downarrow^{\beta_B}$$

$$GFGB \xrightarrow{G\epsilon_B} GB$$

which must commute, since $G\epsilon_B$ is an algebra homomorphism. But it would also commute with $G\epsilon_B$ in place of β_B , and $GFG\epsilon_B$ is (split) epic, so $\beta_B = G\epsilon_B$.

For the **Kleisi comparison functor** $K: \mathcal{C}_{\mathbb{T}} \to \mathcal{D}$, we define KA = FA, $K(A \xrightarrow{f} B) = FA \xrightarrow{Ff} FGFB \xrightarrow{\epsilon_{FB}} FB$.

To verify this is functorial, consider

$$\begin{split} K(A \xrightarrow{f} B \xrightarrow{g} C) &= FA \xrightarrow{Ff} FGFB \xrightarrow{FGFg} FGFGFC \xrightarrow{FG\epsilon_{FC}} FGFC \xrightarrow{\epsilon_{FC}} FC \\ &= FA \xrightarrow{Ff} FGFB \xrightarrow{FGFg} FGFGFC \xrightarrow{\epsilon_{FGFC}} FGFC \xrightarrow{\epsilon_{FC}} FC \\ &= FA \xrightarrow{Ff} FGFB \xrightarrow{\epsilon_{FB}} FB \xrightarrow{Fg} FGFC \xrightarrow{\epsilon_{FC}} FC \\ &= (Kg)(Kf) \end{split}$$

$$GKA = GFA = TA = G_{\mathbb{T}}A$$

$$GK(A \xrightarrow{f} B) = TA \xrightarrow{Tf} TTB \xrightarrow{\mu_B} TB = G_{\mathbb{T}}(f)$$
And $KF_{\mathbb{T}}A = FA$,

$$KF_{\mathbb{T}}(A \xrightarrow{f} B) = FA \xrightarrow{Ff} FB \xrightarrow{F\eta_{B}} FGFB$$

$$\downarrow^{1_{FB}} \downarrow^{\epsilon_{FB}}$$

$$FB$$

So K is a morphism of $\mathbf{Adj}(\mathbb{T})$.

Uniqueness: suppose \bar{K} is any other morphism $\mathcal{C}_{\mathbb{T}} \to \mathcal{D}$ in $\mathbf{Adj}(\mathbb{T})$. Then $\bar{K}A = FA = KA$ for all A; since \bar{K} commutes with both the Fs and the Gs, we have $\bar{K}(\epsilon_A) = \epsilon_{FA}$.

We can write
$$A \xrightarrow{f} B$$
 as $A \xrightarrow{F_{\mathbb{T}} f} F_{\mathbb{T}} G_{\mathbb{T}} \xrightarrow{\epsilon_B} B$, so $\bar{K}(f) = \bar{K}(\epsilon_B) F f = K(f)$. \square

The Kleisi category $\mathcal{C}_{\mathbb{T}}$ inherits coproducts from \mathcal{C} if \mathcal{C} has them, but it has few other limits or colimits in general.

Theorem 5.7. i. The forgetful functor $G: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ creates all limits which exist in \mathcal{C} .

ii. If $T: \mathcal{C} \to \mathcal{C}$ preserves colimits of shape J, then $G: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ creates them.

Proof. i. Let
$$D: J \to \mathcal{C}^{\mathbb{T}}$$
 be a diagram, write $D(j) = (GD(j), \delta_j)$.

Let $(L, (\lambda_j : L \to GD(j)))$ be a limit for GD. The composites $TL \stackrel{T\lambda_j}{\to} TGD(j) \stackrel{\delta_j}{\to} GD(j)$ form a cone over GD, since the edges of GD are algebra homomorphisms.

So they induce a unique $l: TL \to L$ such that

$$TL \xrightarrow{T\lambda_j} TGD(j)$$

$$\downarrow^l \qquad \qquad \downarrow^{\delta_j}$$

$$L \xrightarrow{\lambda_j} GD(j)$$

commutes for each j.

l is an algebra structure: $l\eta_L = l_L$ since both are factorisations of (λ_j) through itself, and $lTl = l\mu_L$ since they're factorisations of the same cone through L.

So $((L,l),(\lambda_i))$ is the unique lifting of $(L,(\lambda_i))$ to a cone over D in $\mathcal{C}^{\mathbb{T}}$.

Any cone over D in $\mathcal{C}^{\mathbb{T}}$ factors uniquely through L, and the factorisation is an algebra homomorphism.

ii. Similarly, given $D: J \to \mathcal{C}^{\mathbb{T}}$ as before and a colimit $(L, (\lambda_j: GD(j) \to L))$ for GD, we get a unique $l: TL \to L$ making

$$TGD(j) \xrightarrow{T\lambda_j} TL$$

$$\downarrow \delta_j \qquad \qquad \downarrow l$$

$$GD(j) \xrightarrow{\lambda_j} L$$

commute, since $(TL, (T\lambda_j))$ is a colimit. The rest of the proof is similar to (i).

Definition 5.8. An adjunction $(\mathcal{C} \stackrel{F}{\rightleftharpoons} \mathcal{D})$, $(F \dashv G)$, is **monadic** if the comparison functor $K : \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$ is part of an equivalence, where \mathbb{T} is the monad induced by $(F \dashv G)$. We also say $G : \mathcal{D} \to \mathcal{C}$ is monadic if it has a left adjoint and the adjunction is monadic.

Note that K preserves all limits which exist in \mathcal{D} , since G preserves them and $G^{\mathbb{T}}$ creates them.

Lemma 5.9. Suppose given $(\mathcal{C} \overset{F}{\underset{G}{\rightleftharpoons}} \mathcal{D})$, $(F \dashv G)$ inducing a monad \mathbb{T} on \mathcal{C} . Suppose, for each \mathbb{T} -algebra (A, α) , the pair $FGFA \overset{F\alpha}{\underset{\epsilon_{FA}}{\rightleftharpoons}} FA$ has a coequaliser in \mathcal{D} . Then $K : \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$ has a left adjoint L.

Proof. We define $L(A, \alpha) = \operatorname{coeq}(FGFA \overset{F\alpha}{\underset{\epsilon_{FA}}{\rightrightarrows}} FA)$.

Given $(A, \alpha) \xrightarrow{f} (B, \beta)$, we get

$$FGFA \xrightarrow{F\alpha} FA \longrightarrow L(A,\alpha)$$

$$\downarrow^{FGFf} \qquad \downarrow^{Ff} \qquad \downarrow^{Lf}$$

$$FGFB \xrightarrow{\epsilon_{FB}} FB \longrightarrow L(B,\beta)$$

So $\exists ! Lf$ making the right hand square commute. Uniqueness ensures L is functorial.

Morphisms $L(A, \alpha) \to B$ in \mathcal{D} correspond bijectively to morphisms $f : FA \to B$ such that $f(F\alpha) = f(\epsilon_{FA})$ and hence to morphisms $\bar{f} : A \to GB$ such that $f\bar{\alpha} = Gf|_{GFA} = G\epsilon_B \circ GF\bar{f}$, i.e. to algebra homomorphisms $(A, \alpha) \to (GB, G\epsilon_B) = KB$.

So
$$(L \dashv K)$$
.

Definition 5.10. a. A parallel pair $A \stackrel{f}{\underset{g}{\Longrightarrow}} B$ is **reflexive** if $\exists r : B \to A$ such that $fr = gr = 1_B$.

Note that $FGFA \overset{F\alpha}{\underset{\epsilon_{FA}}{\rightrightarrows}} FA$ is reflexive, with common splitting $FA \overset{F\eta_A}{\hookrightarrow} FGFA$.

A **reflexive coequaliser** is the coequaliser of a reflexive pair.

b. A split coequaliser diagram is a diagram

$$A \xrightarrow{f \atop g} B \xrightarrow{h \atop s} C$$

satisfying hf = hg, $hs = 1_C$, $gt = 1_B$ and ft = sh.

If these equations hold, h is a coequaliser of f and g: given $k: B \to D$ with kf = kg, we have k = kgt = kft = ksh, so k factors through h, uniquely since h is split epic.

Note that **any** functor preserves split equalisers.

c. Given $G: \mathcal{D} \to \mathcal{C}$, a pair $A \stackrel{f}{\underset{g}{\Longrightarrow}} B$ in \mathcal{D} is **G-split** if there exists a split coequaliser

$$GA \xrightarrow{Gf} GB \xrightarrow{S} C$$

in \mathcal{C} .

The pair $FGFA \overset{F\alpha}{\underset{\epsilon_{FA}}{\rightrightarrows}} FA$ of 5.9 is G-split:

$$GFGFA \xrightarrow[\eta_{GFA}]{GfGFA} GFA \xrightarrow[\eta_{A}]{\alpha} A$$

is a split coequaliser diagram.

Theorem 5.11 (Precise Monadicity Theorem). $G: \mathcal{D} \to \mathcal{C}$ is monadic \iff G has a left adjoint, and c reates coequalisers of G-split pairs.

Theorem 5.12 (Crude Monadicity Theorem). Suppose $G: \mathcal{C} \to \mathcal{C}$ has a left adjoint, that \mathcal{D} has and G preserves reflexive coequalisers, and G reflects isomorphisms. Then G is monadic.

Proof. For the forward implication in 5.11, it's enough to show that $G^{\mathbb{T}}: \mathcal{C}^{\mathbb{T}} \to \mathcal{C}$ creates coequalisers of $G^{\mathbb{T}}$ -split pairs. This follows from 5.7, given that T and TT both preserve split coequalisers.

Conversely in either case, $K: \mathcal{D} \to \mathcal{C}^{\mathbb{T}}$ has a left adjoint L by 5.9. Now $LKB = \operatorname{coeq}(FGFGB \overset{FG\epsilon_B}{\underset{\epsilon_{FGB}}{\rightrightarrows}} FGB)$ and the counit $LKB \to B$ is the factorisation of $FGB \overset{\epsilon_{FGB}}{\underset{\epsilon_{FGB}}{\rightrightarrows}} B$ through this coequaliser.

But
$$GFGFGB \longrightarrow GFGB \longrightarrow GB$$
 is a split coequaliser diagram. So either set of hypotheses ensures that $LKB \to B$ is an isomorphism.

 $KL(A, \alpha) = K(\operatorname{coeq}(FGFA \overset{F\alpha}{\underset{\epsilon_{FA}}{\Longrightarrow}} FA))$. Either hypothesis implies that G = $G^{\mathbb{T}}K$ preserves this coequaliser, but

$$GFGFGA \xrightarrow{GFA} GFA \xrightarrow{\alpha} A$$

is a split coequaliser, so $GL(A, \alpha) \cong A$.

The unit $(A, \alpha) \to KL(A, \alpha)$ is mapped to this isomorphism by $G^{\mathbb{T}}$, so it's an isomorphism in $\mathcal{C}^{\mathbb{T}}$.

Remark 5.13. Let $\mathcal{C} \stackrel{F}{\rightleftharpoons} \mathcal{D}$ be an adjunction, and suppose \mathcal{D} has reflexive coequalisers. The **monadic tower** of $(F \dashv G)$ is the diagram

where \mathbb{T} is the monad induced by $(F \dashv T)$, K is the Eilenberg-Moore comparison functor, $(L \dashv K)$ (5.9), \mathbb{S} is the monad induced by $(L \dashv K)$, etc.

We say $(F \dashv G)$ has **monadic length** n if we reach an equivalence after n steps. **Top** \rightarrow **Set** has monadic length ∞ .

6 Regular Categories

Definition 6.1. The **image** of a morphism $A \xrightarrow{f}$ is the smallest subobject of B through which f factors, if this exists.

We say C has images if every $f \in \text{mor } C$ has an image.

 $A \xrightarrow{f} B$ is a **cover** if its image is 1_B , i.e. it doesn't factor through any proper subobject of B. We write $A \xrightarrow{f} B$ to indicate that f is a cover.

Lemma 6.2. If C has finite limits, then covers in C coincide with strong epimorphisms.

Proof. Recall that f is strong epic if and only if given (*) $A \xrightarrow{g} C$ $\downarrow f$ $\downarrow k$ with k $B \xrightarrow{h} D$

monic, $\exists l: B \to C$ with kl = h and lf = g.

Being a cover is the special case of this condition with $h=1_B$, so strong epimorphisms are covers.

Conversely, if f is a cover then it's epic, since if gf = hf then f factors through the equaliser of g and h, so this must be an isomorphism. Given (*),

we can form the pullback $\bigvee_{m}^{p} \bigvee_{k}^{n}$, and m is monic by 4.13. $\bigoplus_{m}^{h} D$

f factors through m, so m is an isomorphism and $B \xrightarrow{nm^{-1}} C$ is the diagonal fill in for (*).

It follows that image factorisation is functorial: given

we get a unique $I \to I'$ making everything commute. So image factorisation defines a functor $[\mathbf{2}, \mathcal{C}] \to [\mathbf{3}, \mathcal{C}]$.

Definition 6.3. A **regular category** is a category which preserves finite limits and images, in which strong epimorphisms are stable under pullback.

A **regular functor** is one which preserves finite limits and strong epimorphisms.

26

Theorem 6.4. In a regular category, the strong epimorphisms coincide with regular epimorphisms.

Proof. Regular \Longrightarrow strong is true in general (see sheet 1). Suppose $A \xrightarrow{f} B$ is strong epic. Let $R \xrightarrow{\Rightarrow} b$ be the **kernel-pair** of f, i.e. the pullback of f against itself. Certainly fa = fb.

Suppose $A \stackrel{g}{\rightarrow} C$ with ga = gb. Form the image

$$A \Longrightarrow I \xrightarrow{(k,l)} B \times C$$

of (f,g).

Claim k is an isomorphism: given this, the composite $B \stackrel{k^{-1}}{\to} I \stackrel{l}{\to} C$ satisfies $lk^{-1}f = lk^{-1}kh = lh = g$, and it's unique since f is epic.

We know k is strong epic, since kh=f is strong epic. So we need to show it's monic.

Suppose $D \stackrel{x}{\underset{y}{\Longrightarrow}}$ satisfy kx = ky. Form the pullback

$$F \xrightarrow{m} D$$

$$\downarrow^{(n,p)} \qquad \downarrow^{(x,y)}$$

$$A \times A \xrightarrow{1 \times h} A \times I \xrightarrow{h \times 1} I \times I$$

then $h \times 1$ and $1 \times h$ are strong epimorphisms, and hence so is m.

Now fn = khn = kxm = kym = khp = fp, so (n, p) factors through (a, b), say by $E \xrightarrow{q} R$. Since kha = khb and lha = lhb, and (k, l) is monic, we have ha = hb. So xm = hn = haq = hbq = hp = ym. But m is epic, so x = y.

Remark 6.5. In many textbooks, regular categories are defined as categories with (some) finite limits, in which every morphism factors as a regular epimorphism and a monomorphism, and regular epimorphims are stable under pullback.

Note that if $A \xrightarrow{f} B$ has kernel pair $R \xrightarrow{a} A$ and image factorisation $A \xrightarrow{g} I \rightarrow B$, then (a,b) is also the kernel-pair of g since h is monic. So g may be obtained as the coequaliser of the kernel-pair of f, and f as the factorisation of f through this.