Quaternion Interpolation

3D Rotation Representations (review)

- Rotation Matrix
 - orthornormal columns/rows
 - bad for interpolation
- Fixed Angle
 - rotate about global axes
 - bad for interpolation, gimbal lock
- Euler Angle
 - rotate about local axes
 - same problem as fixed angle

3D Rotation Representations (review)

- Axis angle
 - rotate about A by θ , (A_x, A_y, A_z, θ)
 - good interpolation, no gimbal lock
 - bad for compounding rotations
- Quaternion
 - similar to axis angle but in different form
 - q=[s,v]
 - good for compounding rotations

Quaternion Math (review)

Addition

$$[s_1, v_1] + [s_2, v_2] = [s_1 + s_2, v_1 + v_2]$$

Multiplication

$$[s_1, v_1] \cdot [s_2, v_2] = [s_1 s_2 - v_1 \cdot v_2, s_1 v_2 + s_2 v_1 + v_1 \times v_2]$$

- Multiplication is associative but not commutative $q_1(q_2q_3) = (q_1q_2)q_3$ $q_1q_2 \neq q_2q_1$
- \blacksquare q and -q represent the same orientation

Quaternion Rotation (review)

- To rotate a vector *v* using quaternion
 - Represent the vector as [0, v]
 - Represent the rotation as a quaternion q

$$v' = Rot_q(v) = q \cdot v \cdot q^{-1}$$

- \blacksquare q and cq has the same rotation effect to v
 - c is a scalar

Visualizing Rotations

View rotations as points lying on an n-D sphere

1-angle rotation unit circle in 2D space

2-angle rotation unit sphere in 3D space

- Interpolating rotation means moving on n-D sphere
- How about 3-angle rotation (quaternion)?

Quaternion Interpolation

- A quaternion is a point on a 4D unit sphere
- Unit quaternion: q = (s, x, y, z), |/q|/= 1
- Interpolating rotations means moving on 4D sphere

Linear Interpolation

 Linear interpolation generates unequal spacing of points after projecting to circle

Spherical Linear Interpolation (slerp)

Want equal increment along arc connecting two quaternions on the spherical surface

$$slerp(q_1, q_2, u) = \frac{\sin(1-u)\theta}{\sin\theta} q_1 + \frac{\sin u\theta}{\sin\theta} q_2$$

Normalize to regain unit quaternion

Slerp

- Recall that q and -q represent same rotation
- Slerp can go the LONG way!
- Have to go the short way $q_1 \cdot q_2 > 0$

Useful Analogies

Euclidean Space Position Linear interpolation

4D Spherical Space Orientation Spherical linear interpolation

What if there are multiple segments?

 As linear interpolation in Euclidean space, we can have first order discontinuity

 Need a cubic curve interpolation to maintain first order continuity

Bezier Interpolation on 4D Sphere

- Have to perform interpolation on 4D sphere
- Construct Bezier curve by iteratively applying slerp

Bezier Interpolation in Euclidean Space

$$P'(0) = 3(p1-p0), P'(1)=3(p3-p2)$$

Bezier Interpolation in Euclidean Space

Automatically generate control points

Bezier Interpolation on 4D sphere

 Automatically generating interior (spherical) control point

$$double(q_{n-1}, q_n) = 2(q_{n-1} \cdot q_n)q_n - q_{n-1}$$

De Casteljau Construction of Bezier Curve

Constructing Bezier curve by multiple linear interpolation

De Casteljau Construction on 4D Sphere

$$p_{1} = slerp(q_{n}, a_{n}, \frac{1}{3})$$

$$p_{2} = slerp(a_{n}, b_{n+1}, \frac{1}{3})$$

$$p_{3} = slerp(b_{n+1}, q_{n+1}, \frac{1}{3})$$

$$p_{12} = slerp(p_{1}, p_{2}, \frac{1}{3})$$

$$p_{23} = slerp(p_{2}, p_{3}, \frac{1}{3})$$

$$p = slerp(p_{12}, p_{23}, \frac{1}{3})$$

Bezier Interpolation in Euclidean Space

Automatically generate control points

