Basics of R

Ling 250/450: Data Science for Linguistics
C.M. Downey
Spring 2025

Welcome back! We'll be switching gears a little now

- Welcome back! We'll be switching gears a little now
- Focuses for the rest of the term:
 - **Term project!** You'll start brainstorming right away in homework 3, and we'll have several check-ins along the way
 - Crash-course in statistics and probability, using R to illustrate
 - Manipulating and visualizing data in R (with the "tidyverse" libraries & ggplot)
 - Statistically testing hypotheses, and applying this to your project

- Welcome back! We'll be switching gears a little now
- Focuses for the rest of the term:
 - Term project! You'll start brainstorming right away in homework 3, and we'll have several check-ins along the way
 - Crash-course in statistics and probability, using R to illustrate
 - Manipulating and visualizing data in R (with the "tidyverse" libraries & ggplot)
 - Statistically testing hypotheses, and applying this to your project
- These will all be mixed together as we go

- Manipulating and analyzing tabular data (e.g. CSVs)
 - Has a well-maintained set of libraries called the tidyverse for data cleaning and management

- Manipulating and analyzing tabular data (e.g. CSVs)
 - Has a well-maintained set of libraries called the tidyverse for data cleaning and management
- Learning about statistical concepts

- Manipulating and analyzing tabular data (e.g. CSVs)
 - Has a well-maintained set of libraries called the tidyverse for data cleaning and management
- Learning about statistical concepts
- Running statistical tests (usually with a special library)

- Manipulating and analyzing tabular data (e.g. CSVs)
 - Has a well-maintained set of libraries called the tidyverse for data cleaning and management
- Learning about statistical concepts
- Running statistical tests (usually with a special library)
- Creating data visualizations (both with base R and ggplot)
 - R libraries are far superior to Python for visualization
 - There are some knock-offs for Python, but they aren't well maintained

What R is not so good for

What R is not so good for

- Text processing!
 - String operations are way less intuitive than in Python
 - I don't think I've heard of anyone using R for this

What R is not so good for

- Text processing!
 - String operations are way less intuitive than in Python
 - I don't think I've heard of anyone using R for this
- Writing complicated functions/algorithms
 - R is specialized for data manipulation; writing other functions from scratch can be cumbersome
 - Python is far more general purpose

Installing R(Studio)

- Go to posit.co/download/rstudio-desktop
- Follow the instructions to install **both** R and RStudio (default options for installation should be okay)

1: Install R

RStudio requires R 3.6.0+. Choose a version of R that matches your computer's operating system.

R is not a Posit product. By clicking on the link below to download and install R, you are leaving the Posit website. Posit disclaims any obligations and all liability with respect to R and the R website.

DOWNLOAD AND INSTALL R

2: Install RStudio

DOWNLOAD RSTUDIO DESKTOP FOR MACOS 13+

This version of RStudio is only supported on macOS 13 and higher. For earlier macOS environments, please download a previous version.

Size: 557.15 MB | SHA-256: BE73D3A9 | Version: 2024.12.1+563 |

Released: 2025-02-13

Rlanguage

- Arithmetic operators are essentially the same
 - Addition and subtraction: a + b; a b
 - Multiplication, division, exponents: a * b; a / b; a ^ b
 - (In)equalities: a > b; a >= b; a == b; a != b

- Arithmetic operators are essentially the same
 - Addition and subtraction: a + b; a b
 - Multiplication, division, exponents: a * b; a / b; a ^ b
 - (In)equalities: a > b; a >= b; a == b; a != b
- Strings are written in quotes: "This is a string variable"
 - Note: strings and characters are the same thing in R, both called characters
 - Strings do not have the same functionality as in Python

- Arithmetic operators are essentially the same
 - Addition and subtraction: a + b; a b
 - Multiplication, division, exponents: a * b; a / b; a ^ b
 - (In)equalities: a > b; a >= b; a == b; a != b
- Strings are written in quotes: "This is a string variable"
 - Note: strings and characters are the same thing in R, both called characters
 - Strings do not have the same functionality as in Python
- Comments are demarcated with hashtags: # this is a comment

- Variable assignment: two options that are pretty much the same
 - my_variable = 10 # newer versions of R allow the equal sign
 - my_variable <- 10 # R used to only use this "arrow" operator

- Variable assignment: two options that are pretty much the same
 - my_variable = 10 # newer versions of R allow the equal sign
 - my_variable <- 10 # R used to only use this "arrow" operator
- Boolean operators: function the same as Python, different symbols
 - "and": a & b
 - "or": a | b
 - "not": !a
 - TRUE, FALSE
 - Parentheses needed for order of operations: (2 > 1) & (3 > 2)

- Other concepts that work similarly but with syntactic differences:
 - Functions
 - If/else statements
 - Loops

- Other concepts that work similarly but with syntactic differences:
 - Functions
 - If/else statements
 - Loops
- We won't focus as much on these, but you can read up on them in the <u>Learning Statistics with R</u> book if you need

• Probably most substantial: variable classes (especially sequential ones)

- Probably most substantial: variable classes (especially sequential ones)
- The closest thing to a Python list is a vector

- Probably most substantial: variable classes (especially sequential ones)
- The closest thing to a Python list is a vector
 - Formed with the c() function: $my_vec = c(1, 2, 3, 4, 5)$

- Probably most substantial: variable classes (especially sequential ones)
- The closest thing to a Python list is a vector
 - Formed with the c() function: $my_vec = c(1, 2, 3, 4, 5)$
 - Can be indexed with brackets, but starting with 1: my_vec[1] == 1

- Probably most substantial: variable classes (especially sequential ones)
- The closest thing to a Python list is a vector
 - Formed with the c() function: $my_vec = c(1, 2, 3, 4, 5)$
 - Can be indexed with brackets, but starting with 1: my_vec[1] == 1
 - Elements can be reassigned: my_vec[1] = 0

Substantial differences from Python

- Probably most substantial: variable classes (especially sequential ones)
- The closest thing to a Python list is a vector
 - Formed with the c() function: $my_vec = c(1, 2, 3, 4, 5)$
 - Can be indexed with brackets, but starting with 1: my_vec[1] == 1
 - Elements can be reassigned: my_vec[1] = 0
 - Can apply arithmetic to all elements: $my_vec * 2 == c(2, 4, 6, 8, 10)$

Substantial differences from Python

- Probably most substantial: variable classes (especially sequential ones)
- The closest thing to a Python list is a vector
 - Formed with the c() function: $my_vec = c(1, 2, 3, 4, 5)$
 - Can be indexed with brackets, but starting with 1: my_vec[1] == 1
 - Elements can be reassigned: my_vec[1] = 0
 - Can apply arithmetic to all elements: $my_vec * 2 == c(2, 4, 6, 8, 10)$
 - $my_vec + c(1, 2, 3, 4, 5) == c(2, 4, 6, 8, 10)$

Substantial differences from Python

- Probably most substantial: variable classes (especially sequential ones)
- The closest thing to a Python list is a vector
 - Formed with the c() function: $my_vec = c(1, 2, 3, 4, 5)$
 - Can be indexed with brackets, but starting with 1: my_vec[1] == 1
 - Elements can be reassigned: my_vec[1] = 0
 - Can apply arithmetic to all elements: $my_vec * 2 == c(2, 4, 6, 8, 10)$
 - $my_vec + c(1, 2, 3, 4, 5) == c(2, 4, 6, 8, 10)$
 - length(my_vec) == 5

Data frames

- Data frames store tabular data (rows and columns)
 - Can be read from a CSV file with read.csv(filename)
 - Can also be created from vectors: data.frame(vec1, vec2, ...)
- The first few rows can be viewed with the head () function

```
> dataframe = read.csv("~/CourseCode/ling250/vowels.csv")
                                                             > evens = c(2,4,6,8)
> head(dataframe)
                                                             > odds = c(1,3,5,7)
  SPEAKER WORD VOWEL
                         F1
                                 F2 SEX HEIGHT
                                                             > data.frame(evens, odds)
              œ 848.070 1450.96 male
      S1 bad
                                            173
                                                               evens odds
      S1 bard a 648.318 1126.22 male
                                            173
      S1 bead
                  i 259.000 1834.00 male
                                            173
                  e 578.985 1715.22 male
       S1 bed
                  I 405.000 1899.00 male
      S1 bid
                                            173
6
      S1 bird
                  з 656.600 1414.40 male
                                            173
```

Data frames

- Each column is a vector, and can be accessed with the \$ operator
- The column names can be accessed with names (dataframe)

```
> dataframe$VOWEL

[1] "@" "a" "i" "e" "I" "3" "D" "p" "u" "A" "V" "@" "a"

[14] "i" "e" "I" "3" "D" "p" "u" "A" "V" "@" "a" "i" "e"

[27] "I" "3" "D" "p" "u" "A" "V" "@" "a" "i" "e" "I" "3"

[40] "D" "p" "u" "A" "V" "@" "a" "i" "e" "I" "3" "D" "p"

[53] "u" "A" "V" "@" "a" "i" "e" "I" "3" "D" "p" "u" "A"

[66] "V" "@" "a" "i" "e" "I" "3" "D" "p" "u" "A" "V" "@"

> names(dataframe)

[1] "SPEAKER" "WORD" "VOWEL" "F1" "F2"

[6] "SEX" "HEIGHT"
```

Packages / A little tidyverse

Installing a package (dplyr)

Installing a package (dplyr)

Files Plots Package	s Help Vie	ewer Presentation			
Install • Update			Q		
Name	Description			Version	
System Library					
ba Click IIIn	e Package Functions (Originally by Angelo			4.4.3	
bd Click III			/ Angelo	1.3-31	₩ 🛇
	Canty for S)				
class	Functions for Classification			7.3-23	₩ 🛇
cli	Helpers for Developing Command Line Interfaces			3.6.4	₩ 🛇
cluster	"Finding Groups in Data": Cluster Analysis Extended Rousseeuw et al.			2.1.8	₩ 🛇
codetools	Code Analysis Tools for R			0.2-20	₩ 🛇
compiler	The R Compiler Package			4.4.3	
✓ datasets	The R Datase	ts Package		4.4.3	
✓ dplyr	A Grammar of Data Manipulation			1.1.4	₩ 🛇
fansi	ANSI Control Sequence Aware String Functions			1.0.6	⊕ ⊗
	Dand Data Ctared by INA: stabl ICL ICACL ICDCCL			^ 0 00	

NIVERSITY of ROCHESTER

Installing a package (dplyr)

Type in the name of the package and click "Install"


```
Q → R 4.4.3 · ~/ ⇒
> library(dplyr)
> filter(dataframe, VOWEL=="i")
   SPEAKER WORD VOWEL
                                          SEX
                           F1
                                    F2
        S1 bead
                    i 259.000 1834.00
                                         male
                    i 237.000 2258.00
        S2 bead
                                         male
        S3 bead
                    i 471.265 2791.13 female
        S4 bead
                    i 366.237 1841.18 female
        S5 bead
                    i 373.277 2602.93 female
6
                    i 320.294 2048.55
        S6 bead
                                         male
        S7 bead
                    i 372.307 2874.09 female
8
                    i 238.480 2269.17
        S8 bead
                                         male
9
        S9 bead
                    i 472.915 2440.00 female
       S10 bead
                    i 329.000 2875.00 female
10
```

library is similar to Python's import

```
Q → R 4.4.3 · ~/ 🧼
> library(dplyr)
> filter(dataframe, VOWEL=="i")
   SPEAKER WORD VOWEL
                                          SEX
                            F1
                                    F2
        S1 bead
                    i 259.000 1834.00
                                         male
                    i 237.000 2258.00
        S2 bead
                                         male
        S3 bead
                    i 471.265 2791.13 female
                    i 366.237 1841.18 female
        S4 bead
                    i 373.277 2602.93 female
        S5 bead
6
                    i 320.294 2048.55
        S6 bead
                                         male
        S7 bead
                    i 372.307 2874.09 female
8
                    i 238.480 2269.17
        S8 bead
                                         male
9
                    i 472.915 2440.00 female
        S9 bead
                    i 329.000 2875.00 female
10
       S10 bead
```

- library is similar to Python's import
- Unlike Python, imported functions like filter don't need to be prefixed with the package name

```
Q → R 4.4.3 · ~/ 🧼
> library(dplyr)
> filter(dataframe, VOWEL=="i")
   SPEAKER WORD VOWEL
                                          SEX
                            F1
                                    F2
        S1 bead
                    i 259.000 1834.00
                                         male
                    i 237.000 2258.00
        S2 bead
                                         male
        S3 bead
                    i 471.265 2791.13 female
                    i 366.237 1841.18 female
        S4 bead
                    i 373.277 2602.93 female
        S5 bead
6
        S6 bead
                    i 320.294 2048.55
                                         male
        S7 bead
                    i 372.307 2874.09 female
8
        S8 bead
                    i 238.480 2269.17
                                         male
9
                    i 472.915 2440.00 female
        S9 bead
       S10 bead
                    i 329.000 2875.00 female
10
```

- library is similar to Python's import
- Unlike Python, imported functions like filter don't need to be prefixed with the package name
- filter returns a subset of the data frame matching a certain condition

```
Q → R 4.4.3 · ~/ 🧼
> library(dplyr)
> filter(dataframe, VOWEL=="i")
   SPEAKER WORD VOWEL
                                          SEX
                            F1
                                    F2
        S1 bead
                    i 259.000 1834.00
                                         male
                    i 237.000 2258.00
        S2 bead
                                         male
        S3 bead
                    i 471.265 2791.13 female
                    i 366.237 1841.18 female
        S4 bead
                    i 373.277 2602.93 female
        S5 bead
6
        S6 bead
                    i 320.294 2048.55
                                         male
        S7 bead
                    i 372.307 2874.09 female
8
                    i 238.480 2269.17
        S8 bead
                                         male
9
                    i 472.915 2440.00 female
        S9 bead
       S10 bead
10
                    i 329.000 2875.00 female
```

- library is similar to Python's import
- Unlike Python, imported functions like filter don't need to be prefixed with the package name
- filter returns a subset of the data frame matching a certain condition
- dplyr contains many more functions, but filter is extremely useful

```
Q → R 4.4.3 · ~/ 🧼
> library(dplyr)
> filter(dataframe, VOWEL=="i")
   SPEAKER WORD VOWEL
                            F1
                                    F2
                                          SEX
        S1 bead
                    i 259.000 1834.00
                                         male
                    i 237.000 2258.00
        S2 bead
                                         male
        S3 bead
                    i 471.265 2791.13 female
                    i 366.237 1841.18 female
        S4 bead
                    i 373.277 2602.93 female
        S5 bead
6
        S6 bead
                    i 320.294 2048.55
                                         male
        S7 bead
                    i 372.307 2874.09 female
8
                    i 238.480 2269.17
        S8 bead
                                         male
                    i 472.915 2440.00 female
        S9 bead
10
       S10 bead
                    i 329.000 2875.00 female
```

```
Q → R 4.4.3 · ~/ △
> filter(
   dataframe,
   SEX=="female",
   VOWEL=="i" | VOWEL=="u",
   HEIGHT<=mean(HEIGHT)</pre>
+ )
            WORD VOWEL
                                          SEX HEIGHT
   SPEAKER
                            F1
                                    F2
        S3
                     i 471.265 2791.13 female
                                                  163
           bead
        S3 booed
                     u 466.943 2360.90 female
                                                  163
                     i 366.237 1841.18 female
                                                  164
        S4 bead
                     u 200.000 379.00 female
                                                  164
        S4 booed
                     i 373.277 2602.93 female
                                                  165
        S5
           bead
                     u 459.272 1635.41 female
                                                  165
        S5 booed
                     i 372.307 2874.09 female
        S7
                                                  159
           bead
        S7 booed
                     u 382.030 1071.09 female
                                                  159
```

Can take any number of conditions

```
R 4.4.3 · ~/ ≈
> filter(
    dataframe,
   SEX=="female",
   VOWEL=="i" | VOWEL=="u",
   HEIGHT<=mean(HEIGHT)</pre>
+ )
                                          SEX HEIGHT
            WORD VOWEL
                            F1
                                    F2
   SPEAKER
                     i 471.265 2791.13 female
        S3
            bead
                                                  163
        S3 booed
                     u 466.943 2360.90 female
                                                  163
                     i 366.237 1841.18 female
                                                  164
        S4 bead
                     u 200.000 379.00 female
        S4 booed
                                                  164
                     i 373.277 2602.93 female
                                                  165
        S5
           bead
                     u 459.272 1635.41 female
        S5 booed
                                                  165
                     i 372.307 2874.09 female
        S7
                                                  159
           bead
                     u 382.030 1071.09 female
        S7 booed
                                                  159
```

- Can take any number of conditions
- Conditions can be any boolean criterion

```
> filter(
   dataframe,
   SEX=="female",
   VOWEL=="i" | VOWEL=="u",
   HEIGHT<=mean(HEIGHT)</pre>
           WORD VOWEL
                           F1
  SPEAKER
                                   F2
                                         SEX HEIGHT
                    i 471.265 2791.13 female
       S3
           bead
                                                163
                    u 466.943 2360.90 female
                                                163
        S3 booed
                    i 366.237 1841.18 female
                                                164
        S4 bead
       S4 booed
                    u 200.000 379.00 female
                                                164
                    i 373.277 2602.93 female
                                                165
        S5
           bead
                    u 459.272 1635.41 female
       S5 booed
                                                165
                    i 372.307 2874.09 female
                                                159
       S7
           bead
       S7 booed
                    u 382.030 1071.09 female
                                                159
```

- Can take any number of conditions
- Conditions can be any boolean criterion
- This example filters for the vowels and u, spoken by females that are shorter than average height
 - (Shorter than average of all speakers, not just females)

```
> filter(
   dataframe,
   SEX=="female",
   VOWEL=="i" | VOWEL=="u",
   HEIGHT<=mean(HEIGHT)</pre>
                           F1
  SPEAKER
           WORD VOWEL
                                   F2
                                         SEX HEIGHT
                    i 471.265 2791.13 female
       S3
           bead
                                                163
                    u 466.943 2360.90 female
        S3 booed
                                                163
                    i 366.237 1841.18 female
                                                164
        S4 bead
       S4 booed
                    u 200.000 379.00 female
                                                164
                                                165
        S5
           bead
                    i 373.277 2602.93 female
                    u 459.272 1635.41 female
       S5 booed
                                                165
                    i 372.307 2874.09 female
       S7
           bead
                                                159
        S7 booed
                    u 382.030 1071.09 female
                                                159
```

Basic plotting

- R has built-in functions for plotting and visualizing data
 - These are great for getting a quick look at data, but hard to customize

- R has built-in functions for plotting and visualizing data
 - These are great for getting a quick look at data, but hard to customize
- In a week or two, we'll introduce the ggplot package for visualization
 - ggplot is considered the gold-standard for scientific data visualization
 - It's far more customizable than the base R package
 - It gives the best results, but is a little tricky to learn, so we'll need a dedicated unit

- R has built-in functions for plotting and visualizing data
 - These are great for getting a quick look at data, but hard to customize
- In a week or two, we'll introduce the ggplot package for visualization
 - ggplot is considered the gold-standard for scientific data visualization
 - It's far more customizable than the base R package
 - It gives the best results, but is a little tricky to learn, so we'll need a dedicated unit
- Goal for today: quick and simple visualization with base R

plot() $> powers_of_2 = c(1,2,4,8,16)$ > plot(powers_of_2) > 15 powers_of_2 10 0 5 0 Index

UNIVERSITI " NOCHESTER

 plot(vector) draws a plot of the datapoints in the vector

- plot(vector) draws a plot of the datapoints in the vector
- If just one vector is given, plots their values on the y-axis

```
R → R 4.4.3 · ~/  
> powers_of_2 = c(1,2,4,8,16)
> plot(powers_of_2)
>
```


- plot(vector) draws a plot of the datapoints in the vector
- If just one vector is given, plots their values on the y-axis
 - The type argument can change the plot type (e.g. to a line plot)

- plot(vector) draws a plot of the datapoints in the vector
- If just one vector is given, plots their values on the y-axis
 - The type argument can change the plot type (e.g. to a line plot)
- If two vectors are given, a
 scatterplot is made with the vectors along the x- and y-axis respectively

 hist(vector) gives a
 histrogram of the data, which plots the frequency of values in certain ranges

- hist(vector) gives a
 histrogram of the data, which plots
 the frequency of values in certain
 ranges
- It takes a breaks argument that specifies how many boxes to split into (approximately)

- hist(vector) gives a
 histrogram of the data, which plots
 the frequency of values in certain
 ranges
- It takes a breaks argument that specifies how many boxes to split into (approximately)
 - breaks = 4

- hist(vector) gives a
 histrogram of the data, which plots
 the frequency of values in certain
 ranges
- It takes a breaks argument that specifies how many boxes to split into (approximately)
 - \bullet breaks = 4
 - breaks = 16

boxplot()

- boxplot() draws a plot showing the inner quartiles of the data
 - Quartiles show where each 25% of the total data falls
 - We'll talk more about quartiles later
- Oddly, this function doesn't give axis titles by default

