Практическая работа № 5

ОБЪЕМНЫЙ ГИДРОМОТОР

Цель работы: изучение принципов преобразования энергии давления жидкости в механическую энергию вращения выходного вала объемного гидромотора.

Общие сведения

Гидромотор — это объемный гидродвигатель вращательного движения, который предназначен для превращения энергии потока жидкости во вращательную энергию выходного звена, т. е. выполняет функцию, обратную функции насоса. Если провести аналогию с электрооборудованием, то гидромотор по назначению схож с электродвигателем, а насос — с генератором.

Существуют шестеренные, винтовые, пластинчатые и поршневые (радиальные и аксиальные) гидромоторы. Конструкции гидравлических моторов обычно имеют некоторые отличия от конструкций соответствующих насосов.

Гидравлические моторы классифицируют по различным признакам.

По движению рабочих звеньев:

- роторные,
- безроторные.

По числу рабочих звеньев:

- однорядные,
- многорядные.

По возможности регулирования:

- регулируемые,
- нерегулируемые.

По возможности реверсирования:

- реверсивные,
- нереверсивные.

По циклу работы:

- однократного действия,
- многократного действия.

По виду конструкции распределения:

- клапанные,
- крановые,
- золотниковые.

По виду рабочих звеньев:

- винтовые,
- ролико-лопастные,
- шестеренные:
 - с внутренним (наружным) зацеплением,
 - с внешним зацеплением;
- шиберные:
 - пластинчатые,
 - фигурно-шиберные;
- поршневые:
 - аксиально-поршневые:
 - с наклонным диском (шайбой),
 - с профильным диском (шайбой),
 - с наклонным блоком;
 - радиально-поршневые:
 - кривошипные,
 - кулачковые.

Обозначение гидромоторов на гидравлических схемах показано на рис. 1.7. Расположение треугольника указывает на направление движения рабочей жидкости.

Гидромоторы, используемые при большой частоте вращения, условно называют средне- или высокооборотными (низкомоментными).

Гидромоторы, предназначенные для создания большого крутящего момента при малой угловой скорости, принято условно называть высокомоментными.

Характеристика гидромотора — зависимость частоты вращения вала от расхода n(Q) при постоянном перепаде давления Δp на гидромоторе (рис. 5.1). При $\Delta p = 0$ гидромотор работает в режиме холостого хода (давление на выходе равно нулю), и характеристика проходит через начало координат. При повышении давления нагнетания увеличиваются утечки в гидромоторе, и характеристика смещается вправо.

Рис. 5.1. Характеристика гидромотора:

 $1 - \Delta p = \Delta p_{\text{Hom}}; 2 - \Delta p = 0,5\Delta p_{\text{Hom}}; 3 - \Delta p = \Delta p_{\text{max}}$

В гидроприводах самоходных машин наиболее широко применяются шестеренные, аксиально-поршневые, радиально-поршневые и (реже) пластинчатые гидромоторы. Тип и исполнение гидромоторов выбирают по основным параметрам с учетом назначения и условий их эксплуатации.

Основными параметрами, характеризующими работу гидромотора, являются:

- $-\,$ напор, потребляемый гидромотором $H_{\rm rg},\,{\rm M},-$ это полная удельная энергия, отбираемая гидромотором у потока рабочей жидкости;
- расход, потребляемый гидромотором $Q_{rд}$, м³/с, это объем жид-кости, потребляемый гидромотором из трубопровода в единицу времени;
 - частота вращения выходного вала гидромотора n, об/с;
- момент на выходном валу гидромотора $M_{\rm гд}$, Нм (для гидродвигателей с вращательным движением выходного звена);
- потребляемая мощность гидромотора *N*, Bт, это мощность, отбираемая гидромотором у потока жидкости, проходящего через него;

- полезная мощность гидромотора $N_{\rm II}$, Вт, это мощность, развиваемая на выходном звене гидромотора;
- коэффициент полезного действия (КПД) гидромотора $\eta_{rд}$ это отношение полезной мощности гидромотора к потребляемой.

Скорость выходного звена гидромотора прямо пропорциональна количеству поступающей к нему жидкости, а при постоянной подаче обратно пропорциональна рабочему объему камер гидравлического двигателя.

Различают два способа плавного регулирования скорости гидромотора: дроссельный и объемный.

При дроссельном регулировании применяют насосы с постоянной подачей, а гидромоторы — с постоянным расходом. Для регулирования расхода жидкости гидромотором используют гидродроссели. Гидродроссель может быть установлен последовательно с гидромотором (в напорной гидролинии или в гидролинии слива) и параллельно ему. Для обеспечения стабильного регулирования расход насоса обычно превышает расход гидромотора, излишек жидкости сливается через переливной клапан в бак.

Преимуществами дроссельного регулирования являются широкий диапазон регулирования и простота реализации, недостатками — значительные потери энергии и низкий КПД. Для повышения КПД при дроссельном регулировании используют схему с двумя насосами различной подачи, которые могут быть включены поочередно или одновременно. В пределах каждой ступени плавное регулирование осуществляется гидропросселем. Дроссельное регулирование применяют в гидроприводах небольшой мощности.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Задание

- Ознакомиться и кратко законспектировать общие сведения.
- Изучить условия задачи 1 и спецификацию гидроаппаратов, которые потребуются для ее решения (табл. 5.1).
 - Самостоятельно разработать гидравлическую схему решения задачи.

- Разработанную гидравлическую схему сравнить с рис. 5.2 и дорисовать недостающие элементы.
- Изучить условия задачи 2 и спецификацию гидроаппаратов, которые потребуются для ее решения (табл. 5.2).
 - Самостоятельно разработать гидравлическую схему решения задачи.
- Разработанную гидравлическую схему сравнить с рис. 5.3 и дорисовать недостающие элементы.
 - Дать описание работы гидравлических схем.
- Сделать выводы по результатам проведенной работы и ответить на контрольные вопросы.

Условия задачи 1

С помощью лебедки поднимаются и опускаются грузы. Скорость движения троса лебедки должна быть регулируемой. Из соображений экономии места применение гидроцилиндра нецелесообразно. Использование электродвигателя также нежелательно из-за изменяющегося веса грузов. Следовательно, приводить трос лебедки в движение необходимо с помощью гидромотора. С целью разгрузки гидромотора предусмотреть предохранительный клапан на 20 бар.

Таблица 5.1 Спецификация к гидравлической схеме. Задача 1

Позиция	Коли- чество, шт.	Название устройства	Обозначение типа устройства	Символ
1.0	1	Гидромотор	ГМ	A B
1.1	1	Гидрораспределитель четырехлинейный трехпозиционный с ручным управлением	P4/3-PУ2	A B TT P T
1.2 1.4	2	Предохранительный клапан с ручным управлением	КП-РУ	PT

Позиция	Коли- чество, шт.	Название устройства	Обозначение типа устройства	Символ
1.3	1	Дроссель двойного действия	ДР2	A B
0.1 0.2 0.3	3	Тройник с манометром	TM	

Puc. 5.2. Эскиз гидравлической схемы управления лебедкой с регулированием скорости вращения приводного вала гидромотора

Условия задачи 2

Имеется гидравлический стенд испытания гидромотора с целью построения его характеристики (зависимость частоты вращения вала от расхода n(Q) при постоянном перепаде давления Δp на гидромоторе). На стенде скорость движения выходного вала гидромотора должна быть регулируемой. Для определения расхода жидкости используется мерная емкость. Для переключения подачи бак — мерная емкость использовать гидрораспределитель четырехлинейный двухпозиционный с ручным управлением.

Таблица 5.2 Спецификация к гидравлической схеме. Задача 2

Позиция	Коли- чество, шт.	Название устройства	Обозначение типа устройства	Символ
1.0	1	Гидромотор	ГМ	<u>A</u> B
1.1	1	Гидрораспределитель четарехлинейный трехпозиционный с ручным управлением	Р4/3-РУ	A B P T
1.4	1	Гидрораспределитель четырехлинейный двухпозиционный с ручным управлением	Р4/2-РУ	A B P T
1.2	1	Предохранительный клапан с ручным управлением	КП-РУ	P
1.3	1	Дроссель одностороннего действия	ДР1	A B
0.1 0.2 0.3	3	Тройник с манометром	TM	<u> </u>

Рис. 5.3. Эскиз гидравлической схемы стенда для построения характеристики гидромотора

Контрольные вопросы

- 1. Назовите факторы, которые определяют скорость движения вала гидромотора.
- 2. От каких параметров зависит частота вращения выходного вала гидромотора?
- 3. Какие способы регулирования частоты вращения выходного вала гидромотора вы знаете?
- 4. Как регулируется направление вращения выходного вала гидромотора?
 - 5. Как определяется крутящий момент на валу гидромотора?