o6 – Spatial Interpolation with Grids

J.S. Onésimo Sandoval Sociology Saint Louis University

Outline

- What is Spatial Interpolation?
- Modifiable Areal Unit Problem (MAUP)
- How to make a grid
- Assigning discrete or count variables to the grid cell
- Assigning ratio scales variables to the grid cell

What is Spatial Interpolation?

Spatial Interpolation

- Interpolation=Estimate
 - Estimate the unknown data values for specific locations using the known data values
- In a perfect world we would work with point data, however, most of our data is in the form of a shapefile
- Most ecological, environmental, economic, and social data represents continuous and dynamic values
- Time (data is fluid)
 - Spatial-temporal interaction effects
- Standardize variables

 The polygons we use are artificial spatial representation of continuous geographical phenomena

Results may depend on the specific geographic

• Scale Issue: involves the aggregation of smaller units into larger ones. Generally speaking, the larger the spatial units, the stronger the relationship among variables.

Aggregation (smoothed)

 Modifiable Area or Group: Units are arbitrary defined and different organization of the units may create different analytical results.

- Ecological Fallacy: Results from <u>aggregated data</u> (e.g. census tracts) <u>cannot</u> be applied to <u>individual people</u>
- <u>Cannot</u> assume the <u>people in blue areas</u> commit crimes

0.07 - 0.44

0.45 - 0.52

0.53 - 0.60

0.61 - 0.92

homicides0509

Solutions

- Standardized space over time we need to compare apples to apples
 - One way to do is to normalize the 2000 boundaries to 2010.
 - A second way to do to this normalize the boundaries to standard space
- Advantages of the grid
 - We can synthesis social and economic data with raster images
 - We can avoid some potential pitfalls in bias with our statistics tests related to sample size and neighbors

How to make a grid

- 1. Define your study area
- 2. ArcToolbox->Cartography Tools->Data Driven Pages -> Grid Index Features

- Once you select your study you need to name the new feature file
- 2. I typically use the "Generate Polygon Grid" option
- 3. Now you have the flexibility to experience with different sizes for the grids. Remember we are working in meters
- 4. Everything also should populate as a default

- 1. You will have something like this image to the right
- 2. At this point you should inspect the partial grids and determine if you want to keep them or delete them

- 1. Clip the grids to the STL City boundaries
- 2. N=215 You will get partial grids. Note I will delete two very small partial grids at the top of the city

Assigning discrete or count variables to the grid cell

Step 1 – use the intersect function to intersect the grids with the census tracts

You have 634 unique polygons

OBJECTID *

Shape 3

Polygon

2 Polygon

3 Polygon

5 Polygon

6 Polygon

8 Polygon

9 Polygon

10 Polygon

11 Polygon

12 Polygon

13 Polygon

14 Polygon

15 Polygon

16 Polygon

17 Polygon

18 Polygon

19 Polygon

22 Polygon

23 Polygon

24 Polygon

25 Polygon

26 Polygon

27 Polygon

28 Polygon

Polygon

Polygon

FID arid02

3 B12

4 B13

5 C11

6 C12

7 C13

8 D10

9 D11

10 D12

11 D13

12 E10

13 E11

14 E12

15 F8

16 F9

17 F10

18 F11

19 G6

20 G7

20 G7

21 G8

21 G8

22 G9

23 G10

24 H6

24 H6

24 H6

25 H7

25 H7

(0 out of 634 Selected)

$$A_{w} = \frac{A}{A}$$

 A_{w} = Partial census tract area weight

 A_i = Individual area of each census tract

 A_t = Total area of the census tract parts

$$T_{v} = \sum_{i=1}^{n} C_{t} * A_{w}$$

 T_{v} = Census tract population

 C_t = Census tract total population

Partial cens	us tract area				
GEOID	Pop (C)	area	Sum_area	area_wgt (A)	pop_new
29510101100	2591	0.001	1.252	0.001	2
29510101100	2591	0.043	1.252	0.034	89
29510101100	2591	0.002	1.252	0.001	3
29510101100	2591	0.507	1.252	0.405	1049
29510101100	2591	0.617	1.252	0.493	1276
29510101100	2591	0.031	1.252	0.025	64
29510101100	2591	0.001	1.252	0.001	3
29510101100	2591	0.051	1.252	0.040	105
Total		1.252		1.000	2591

$$G_{v} = \sum_{i=1}^{n} C_{t} * A_{w}$$

 G_v = Grid population

 C_t = Census tract total population

 A_{w} = Partial census tract area weight

Step 2 – Create a new variable called "area". Note you can use the shape area as well. Divide by 1 million

Step 3 – Summarize GEOID by area

Step 4 - Join Summarized Table to "sioi"

Step 5 – Make it a permanent join (e.g., new file)

Step 6 - Add a field called "area_wgt"

Step 7 – Add a field called "pop_new"

Step 8 – compute the formula for area_wgt

area_wgt=area/Sum_area

Step 9 – compute the formula for pop_new

pop_new=tot_pop*area_wgt (in our case tot_pop=SE_Too1_oo12)

Step 10 – check your work - the new population must equal the tract population (n=2591)

Everything looks right. The 2591 residents have been distributed over the 8 grids

SE_T001_0012	area	OBJECTID_1	GEOID	Count_GEOID	Sum_area	Shape_Length	Shape_Area	area_wgt	pop_new
2591	0.001113	1	29510101100	8	1.251657	171.761061	1112.672362	0.000889	2.303294
2591	0.043112	1	29510101100	8	1.251657	967.052956	43111.50779	0.034444	89.243239
2591	0.00159	1	29510101100	8	1.251657	199.675425	1589.862493	0.00127	3.291105
2591	0.50658	1	29510101100	8	1.251657	3090.13167	506580.41584	0.404728	1048.649872
2591	0.61657	1	29510101100	8	1.251657	3804.781168	616569.78395	0.492603	1276.334033
2591	0.030697	1	29510101100	8	1.251657	798.027909	30696.927695	0.024525	63.544362
2591	0.001478	1	29510101100	8	1.251657	217.533358	1478.062647	0.001181	3.059673
2591	0.050518	1	29510101100	8	1.251657	1097.927209	50517.676122	0.040361	104.574423

Step 11 – Summarize the GRIDCODE by the "pop_new" variable

Step 12 – Join the summarized table to the unpopulated grid shapefile.

Legend

SE_T001_0012

620 - 2024

2025 - 2920

2921 - 3789

3790 - 7069

Legend grid02

