

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

V. Országos Magyar Matematikaolimpia XXXII. EMMV

országos szakasz, Arad, 2023. február 20-23.

XII. osztály – I. forduló

- 1. feladat. Tekintsük az (S_5, \cdot) szimmetrikus csoportot (az ötödrendű permutációk csoportját).
 - a) Igazold, hogy az $f: S_5 \to S_5$, $f(x) = x^7$ függvény bijektív!
 - b) Oldd meg az $x^7 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 3 & 2 & 5 \end{pmatrix}$ egyenletet az S_5 halmazon!
- **2. feladat.** Határozd meg az összes olyan $f:(0,+\infty)\to(0,+\infty)$ kétszeresen deriválható függvényt, amelyre f(1)=f'(1)=e és

$$f''(x) \cdot f(x) - (f'(x))^2 = \frac{1 - \ln x}{x^2} \cdot f^2(x),$$

bármely x valós szám esetén.

- **3. feladat.** Legyen (G, \cdot) egy 6n + 1 elemű csoport, ahol $n \in \mathbb{N}^*$.
 - a) Igazold, hogy G-nek egyetlen olyan eleme van, amely önmaga inverze!
 - b) Ha a H halmaznak legalább 2n eleme van és (H,\cdot) részcsoportja a (G,\cdot) csoportnak, igazold, hogy H=G.
- 4. feladat. Számítsd ki az

$$I = \int \frac{e^x x^2 + 2x + 1}{e^{2x} x^2 + e^x x^2 + x} dx$$

integrált, ahol x > 0.