```
In [6]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import pandas as pd
         %matplotlib inline
In [7]: columns = ['Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Class_lal
         df = pd.read_csv('irisdata.csv', names=columns)
         df.head()
Out[7]:
            Sepal length Sepal width Petal length Petal width Class_labels
         0
                    5.1
                                 3.5
                                                         0.2
                                             1.4
                                                               Iris-setosa
         1
                    4.9
                                 3.0
                                             1.4
                                                         0.2
                                                               Iris-setosa
         2
                    4.7
                                 3.2
                                             1.3
                                                         0.2
                                                               Iris-setosa
                                                               Iris-setosa
         3
                    4.6
                                 3.1
                                             1.5
                                                         0.2
                    5.0
                                 3.6
                                             1.4
                                                         0.2
                                                               Iris-setosa
In [8]: df.describe()
```

Out[8]: Sepal length Sepal width Petal length Petal width

	Sepai length	Sepai width	Petal length	Petai width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [10]: custom_palette = ['red', 'blue', 'green']
sns.pairplot(df, hue='Class_labels', palette=custom_palette)
plt.show()
```



```
In [16]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2)
```

```
In [18]: from sklearn.svm import SVC
svn = SVC()
svn.fit(X_train, y_train)
```

Out[18]: ▼ SVC SVC()

In [19]: predictions = svn.predict(X_test)
 from sklearn.metrics import accuracy_score
 accuracy_score(y_test, predictions)

Out[19]: 0.966666666666667

In [20]: from sklearn.metrics import classification_report
 print(classification_report(y_test, predictions))

	precision	recall	f1-score	support
Iris-setosa	1.00	1.00	1.00	11
Iris-versicolor	1.00	0.91	0.95	11
Iris-virginica	0.89	1.00	0.94	8
· ·				
accuracy			0.97	30
macro avg	0.96	0.97	0.96	30
weighted avg	0.97	0.97	0.97	30

```
In [21]: X_new = np.array([[6.4,3.2,5.3,2.3], [6.0,3.4,4.5,1.6], [4.8,3.4,1.6,0.2]])
    prediction = svn.predict(X_new)
    print("Prediction of Species: {}".format(prediction))
```

Prediction of Species: ['Iris-virginica' 'Iris-versicolor' 'Iris-setosa']

```
In [22]: import pickle
with open('SVM.pickle', 'wb') as f:
```

```
pickle.dump(svn, f)
with open('SVM.pickle', 'rb') as f:
   model = pickle.load(f)
model.predict(X_new)
```

Out[22]: array(['Iris-virginica', 'Iris-versicolor', 'Iris-setosa'], dtype=object)