

RECEIVED: April 16, 2011
REVISED: May 23, 2011
ACCEPTED: May 30, 2011
PUBLISHED: June 17, 2011

Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC

The CMS collaboration

ABSTRACT: The results of searches for new physics in events with two same-sign isolated leptons, hadronic jets, and missing transverse energy in the final state are presented. The searches use an integrated luminosity of 35 pb⁻¹ of pp collision data at a centre-of-mass energy of 7 TeV collected by the CMS experiment at the LHC. The observed numbers of events agree with the standard model predictions, and no evidence for new physics is found. To facilitate the interpretation of our data in a broader range of new physics scenarios, information on our event selection, detector response, and efficiencies is provided.

Keywords: Hadron-Hadron Scattering

 p_T values. Different models of new physics may thus populate only one or the other of our different search regions.

9 Summary and conclusions

Using two different trigger strategies, we have searched for new physics with same-sign dilepton events in the ee, $\mu\mu$, $e\mu$, $e\tau_h$, $\mu\tau_h$, and $\tau_h\tau_h$ final states, and have seen no evidence for an excess over the background prediction. The τ_h leptons referred to here are reconstructed via their hadronic decays. The dominant background processes in all final states except $\tau_h\tau_h$ involve events with one fake lepton. In the $\tau_h\tau_h$ final state, events with two fake τ_h dominate. We have presented methods to derive background estimates from the data for all major background sources. We have set 95% CL upper limits on the number of signal events within $|\eta| < 2.4$ at 35 pb⁻¹ in the range of 3.1 to 4.5 events, depending on signal region, and have presented details on signal efficiencies that can be used to confront a wide variety of models of new physics. Our analysis extends the region excluded by experiments at LEP and the Tevatron in the CMSSM model.

Acknowledgments

We wish to congratulate our colleagues in the CERN accelerator departments for the excelent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONA-CYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); and the Council of Science and Industrial Research, India.

Open Access. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini²⁵, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jorda, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez²⁶, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland

- D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell²⁷,
- D. Benedetti, C. Bernet³, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, M. Bona, H. Breuker,
- G. Brona, K. Bunkowski, T. Camporesi, G. Cerminara, J.A. Coarasa Perez, B. Curé,
- D. D'Enterria, A. De Roeck, S. Di Guida, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi,
- S. Gennai, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-
- Reino Garrido, M. Gouzevitch, P. Govoni, S. Gowdy, L. Guiducci, M. Hansen, C. Hartl,
- J. Harvey, J. Hegeman, B. Hegner, H.F. Hoffmann, A. Honma, V. Innocente, P. Janot,
- K. Kaadze, E. Karavakis, P. Lecoq, C. Lourenço, T. Mäki, L. Malgeri, M. Mannelli, L. Masetti, A. Maurisset, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer,
- L. Maseuti, A. Maurisset, F. Merjers, S. Mersi, E. Mescill, R. Moser, M.O. Mozer
- M. Mulders, E. Nesvold¹, M. Nguyen, T. Orimoto, L. Orsini, E. Perez, A. Petrilli,
- A. Pfeiffer, M. Pierini, M. Pimiä, G. Polese, A. Racz, J. Rodrigues Antunes, G. Rolandi²⁸, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, I. Segoni,
- A. Sharma, P. Siegrist, M. Simon, P. Sphicas²⁹, M. Spiropulu²³, M. Stoye, P. Tropea,
- A. Tsirou, P. Vichoudis, M. Voutilainen, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille³⁰, A. Starodumov³¹

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

- P. Bortignon, L. Caminada³², N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar,
- J. Eugster, K. Freudenreich, C. Grab, A. Hervé, W. Hintz, P. Lecomte, W. Lustermann,
- C. Marchica³², P. Martinez Ruiz del Arbol, P. Meridiani, P. Milenovic³³, F. Moortgat,
- C. Nägeli³², P. Nef, F. Nessi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga,
- M. Rossini, L. Sala, A.K. Sanchez, M.-C. Sawley, B. Stieger, L. Tauscher[†], A. Thea,
- K. Theofilatos, D. Treille, C. Urscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universität Zürich, Zurich, Switzerland

E. Aguiló, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, B. Millan Mejias, P. Otiougova, C. Regenfus, P. Robmann, A. Schmidt, H. Snoek