Flynn's Taxonomy

Flynn's Taxonomy, proposed by Michael J.

Flynn in 1966, is a classification system for computer architectures based on the number of instruction streams and data streams processed simultaneously. It divides computer architectures into four categories:

1. SISD (Single Instruction, Single Data)

- A single processor executes one instruction at a time on one data stream.
- Example: Traditional Von Neumann architecture, old single-core processors.

2. SIMD (Single Instruction, Multiple Data)

- A single instruction is applied to multiple data streams simultaneously, enabling parallel processing.
- Example: Vector processors, GPUs, and multimedia processing (e.g., SSE, AVX instructions).

3. MISD (Multiple Instruction, Single Data)

 Multiple processors execute different instructions on the same data stream.

- Rarely used in practical systems but can be found in some fault-tolerant computing architectures.
- Example: Some pipeline processors,
 spacecraft fault-tolerant systems.

4. MIMD (Multiple Instruction, Multiple Data)

- Multiple processors execute different instructions on different data streams, allowing true parallel computing.
- Example: Modern multicore CPUs, distributed computing, and supercomputers.

Comparison Table

Туре	Instruction Stream	Data Stream	Example
SISD	1	1	Traditional single-core processors
SIMD	1	Multiple	GPUs, Vector processors
MISD	Multiple	1	Fault-tolerant systems
MIMD	Multiple	Multiple	Multicore CPUs, Supercomputers

MIMD-based architectures dominate modern computing, including cloud computing, parallel processing, and distributed systems