Inverse Probleme in der Geophysik Vorlesung (Vertretung K. Spitzer), TU Bergakademie Freiberg, SS 2020

Thomas Günther (LIAG Hannover) (Thomas.Guenther@extern.tu-freiberg.de)

19. April 2020

Inhalt

- Veranstaltung 1: 26.05.
- Veranstaltung 2: 02.06.
- Veranstaltung 3: 23.06.
- Veranstaltung 4: 30.06.
- 5 Veranstaltung 5: 07.07.
- Veranstaltung 6: 14.07.
- Beleg als prüfungsrelevante Leistung

Heutige Veranstaltung

- kurze Vorstellungsrunde
- Organisatorisches
- Einführung und Motivation
- Auffrischung/Überblick Matlab
- Lineare Inversion, überbestimmte Probleme
 Ein einfachstes Problem gemeinsam und selbst
 Lineare Regression selbst gemacht
- Auflösungsanalyse
- Lineare Inversion, unterbestimmt/gemischt

Kurze Vorstellung

Thomas Günther

- Studium der Geophysik, TU Bergakademie Freiberg
- Promotion 2004
- Mathematik in Industrie & Technik, TU Chemnitz
- 2005: GGA Hannover (später LIAG)
- Anwendung: Hydrogeophysik
- numerische Modellierung & Inversion, Geoelektrik/IP, EM, Magnetresonanz, Ra, GPR

LIAG Hannover

- Leibniz-Institut f
 ür Angewandte Geophysik
- finanziert v. Bund & Ländern
- im Geozentrum Hannover (mit BGR, LBEG)
- 110 Beschäftigte (WM+TM)
- methodisch & thematisch orientierte Forschung
- 5 Sektionen (Geoelektrik/EM), und 3 Schwerpunkte (z.B. Grundwasser)

Korrekt gestellte Probleme

Korrekt gestelltes Problem

Definition nach Hadamard:

- Es existiert eine Lösung.
- Sie ist eindeutig.
- Die Lösung hängt stabil von den Eingangsdaten ab, d.h. kleine Variationen führen zu kleinen Änderungen.

Schlecht gestellte Probleme

- Kein Modell kann die Daten perfekt anpassen.
- Innerhalb eines Fehlers können viele Modelle die Daten fitten.
- Kleine Änderungen in den Daten führen zu großen Modelländerungen.

Einführung und Motivation

Angewandte Geophysik

Messung und Rückschluss auf Struktur & Parameter des Untergrunds

- direkte Verwendung sehr selten (Punktmessungen): Bohrlochgeophysik, flache Magnetik, Bodensensoren, Eigenpotential
- ansonsten: Messung = \sum Effekte des Untergrundes + Fehler
- Modellbildung (Vereinfachung) und Rekonstruktion

Meist verwendet man fertige Programme zur Auswertung, die man oft nicht durchschaut.

Ziel der Veranstaltung

nicht:

Programmier-Anleitung für Geophysiker

sondern:

Verständnis für Anwender von Geophysik

- Prozesse verstehen und kontrollieren
- zielgerichtete Wahl von Optionen in Programmen
- Grundlage f
 ür Interpretation von Ergebnissen
- Abschätzung von Vertrauensmaßen
- Planung geophysikalischer Experimente

Inhalt

- Auffrischung Matlab
- Übersicht über Probleme und Verfahren
- Einführung mit Mini-Problemen (z.B. lineare Regression)
- Lineare Inversion (Laufzeit-Tomographie)
- Nichtlineare Inversion (Geoelektrik)
- Auflösungs- und Fehleranalyse
- kleiner Kurs 2D-Geoelektrik-Inversion mit DC2dInvRes als Ergänzung zur Vorlesung Geoelektrik/EM und Wiederholung
- Einblick in problemangepasste Lösungen aus der Praxis

Literatur

- von Prof. Korn: Gubbins, D. (2004): Time Series Analysis and Inverse Theory for Geophysicists
- Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory, volume 45 of International Geophysics Series. Academic Press Inc. - Das Standardwerk schlechthin
- Scales & Smith: Introductory geophysical inverse theory (GP605), Samizdat Press, Colorado School of Mines, Golden(CO) (gut verständliche, sprachlich geniale Einführung)
- Friedrich, W.: Inversion geophysikalischer Daten, Vorlesungsskript Universität Stuttgart (gute Beispiele aus der Geophysik)
- Inversion tutorials of the geophysical inversion facility, University of British Columbia,
 Vancouver gute Tutorials mit vielen interessanten Beispielen

Matlab

- MatLab = Matrix Laboratory
- Metasprache zum (numerischen) wissenschaftlichen Rechnen
- Reduzierung auf mathematisch notwendiges Level
- System von Toolboxen (frei, käuflich)
- Fülle von Visualisierungs-Funktionen(2D,3D)
- (einfaches) System zum Erstellen von GUIs
- Compiler zur Erstellung von lauffähigen Programmen
- Anwender: Mathematiker, Ingenieure, Mediziner, ... Geowissenschaftler

Grundphilosophie von Matlab

Vektorisierung (Vermeidung von Indizierungsarbeit)
 Schleifen Vektorisiert

```
for i = 1:10,

for j = 2:8,

A(i,j) = B(i,j+1); \quad A(1:10,2:8) = B(1:10,3:9);
end

end
```

- Modularisierung(Vermeidung von Mehrfacharbeiten)
- Reduzierung auf mathematisch notwendiges Level
- Abgeschlossene Funktionen und Toolboxen

Matritzen und Vektoren

```
>> a = [123]
a =
  1 2 3
>> b = [0;2;1]
b = 2
>> b'
ans =
     1 0 2
```

Matritzen und Vektoren

```
C =
>> d = b * a;
 =
  0 0 0
  2 4 6
  1 2 3
>> A= [ 1 2 3; 4 5 6; 0 2 0 ];
A =
  1 2 3
  4 5 6
  0 2 0
>> x = A*b
x = 16
```

Matritzen und Vektoren

```
>> A\x \% Gleichungslöser
ans = 2
>> x+b \% Addition
ans = 15
>> x.*b \% elementweise Multiplikation
ans = 32
```

Matlab Indizierung

```
>> a = 1:10
1 2 3 4 5 6 7 8 9 10
>> b=0:2:20
b =
     0 2 4 6 8 10 12 14 16 18 20
>> b(3)
ans =
>> b(4:8)
ans =
     6 8 10 12 14
>> b(a)
ans =
     0 2 4 6 8 10 12 14 16 18
```

Matlab Indizierung

```
>> b(8:end)
ans =
     14 16 18 20
>> b(6:2:end-1)
ans =
     10 14 18
>> B=A+1
B =
    2 3 4
    5 6 7
    1 3 1
>> B(2,3)
ans =
```

Matlab Indizierung

```
>> B(2:3,1:2)
ans =
      5 6
>> B(3,:)
ans =
      1 3 1
>> B(:,2)
ans =
>> B(:)
ans =
      5
```

Befehle für Vektoren

```
% Größe einer Matrix als Vektor
size(a)
length(a) % Länge eines Vektors
max(a), min(a) % Maximum/Minimum
find(a==1) % Finden von Elementen
A(A==1)=-1; % Ersetzen aller 1 durch -1
sort(a)
             % Sortieren
diff(a)
             % Differenzvektor (1 kürzer)
[abc] % nebeneinander
[a;b;c] % untereinander
zeros(m,n) % erzeugt m.n Vektor aus Nullen
ones(m,n)
              % erzeugt m.n Vektor aus Einsen
A(:)
              % alle Elemente als Spaltenvektor
```

Matlab Steuerstrukturen

```
>> if a == 5
    . . .
  else
    . . .
  end
>> for i = 1:10
     . . .
  end
>>while(k < kmax)
     . . .
  end
```

Matlab Graphik

Plotten von Kurven

```
plot(x,y); \% 2D-Kurve
plot(x,y,'r+:'); \% rot gestrichelt mit +
plot(x,y1,x,y2); \% Mehrere Kurven
xlabel, ylabel, title \% Beschriftung
semilogx,semilogy,loglog \% logarithmisch
```

Plotten von Flächen (Matritzen)

```
imagesc(x,y,Z); \% x,y..Vektoren, Z..Matrix
contour \%
surf, colorbar, ...
```

Daten und Modell

Daten

Einzelwerte in Vektor $\mathbf{d} = [d_1, d_2, \dots, d_N]$

z.B. 3-Schichtmodell: $\mathbf{m} = [p_1, p_2, p_3, h_1, h_2]$

Modell

Verteilung eines (oder mehrerer) Parameter p(x,y,z) oft diskretisiert: $p_{ijk} \Rightarrow \mathbf{m} = [m_1, m_2, \dots, m_M]$ allgemeiner: $p = \sum m_i p_i(x,y,z)$ mit Basisfunktionen p_i oder: Strukturparameter (vorgegeben oder flexibel).

Schritt 1: Modellbildung

Occams Prinzip

Das einfachste Modell, welches die Daten (im Rahmen der Fehler) erklären kann, ist vorzuziehen

Inverses Problem

Bestimme ein Modell **m**, das die Daten **d** im Rahmen des Fehlers erklärt:

$$d = f(m) + n$$

Vorwärtsantwort (ideale Messung) f, Noise n

Lineares Problem

f kann als Matrix-Vektorgleichung geschrieben werden

$$d = Gm + n$$

Gravimetrie, Magnetik, MRS, VSP, Tomographie mit geraden Strahlen

Wie lösen wir das inverse Problem?

Vorwärtsmodellierung

- gezielt ausprobieren
- alles absuchen (grid search)
- intelligent suchen (Genetische Algorithmen etc.)

Matrix-basierte Minimierung

- strahlenbasierte Rekonstruktion (ART, SIRT)
- Gradientenverfahren (steepest descent)
- Newton-Verfahren (Gauss-Newton)
- Mischung von Verfahren, Filterung, Dekonvolution

Warum nicht einfach $\mathbf{m} = \mathbf{G} \setminus \mathbf{d}$?

- G nicht explizit bekannt (DC-Modellierung)
- G nicht invertierbar, meist nicht einmal quadratisch
- inverse Aufgabe ist nicht korrekt gestellt
 - Existenz einer Lösung
 - 2 Eindeutigkeit der Lösung
 - Stetigkeit bzgl. Daten (Fehlerverhalten)

Verschiedene Aufgabentypen

Anzahl unabhängiger Messungen N, Anzahl Modellparameter M

- ullet N>M: überbestimmtes Problem \Rightarrow Ausgleichsrechnung, Lösung im Sinne kleinster Quadrate
- N<M: Unterbestimmtes Problem ⇒ Zusätzliche Forderungen an Lösung führen zu Eindeutigkeit
- In vielen Fällen: sowohl über- als auch unterbestimmte Parameter gleichzeitig

Beispiel überbestimmtes Problem

Es gibt mehr unabhängige Gleichungen als Unbekannte.

 $m_1 - m_2 = -1$ $2m_1 - m_2 = 0$

 $m_1 + m_2 = 2.5$

Beispiel überbestimmtes Problem

$$2m_1 - m_2 = 0 (2)$$

$$m_1 + m_2 = 2.5$$

 $m_1 - m_2 = -1$

Es gibt mehr unabhängige Gleichungen als Unbekannte.

(3)

Die Methode der kleinsten Quadrate

Ausgangspunkt ist die Minimierung des Residuums $\|\mathbf{d} - \mathbf{Gm}\|$ Bedingung für ein Extremum ist das Verschwinden der Ableitungen nach allen freien Parametern. Daraus folgen die Normalgleichungen

$$\mathbf{G}^{T}(\mathbf{d} - \mathbf{Gm}) = 0 = \mathbf{G}^{T}\mathbf{Gm} - \mathbf{G}^{T}\mathbf{d}$$

mit der (nun eindeutigen) Least Squares Lösung

$$\mathbf{m} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{d}$$

Maß für die Anpassung ist die (normalisierte) Residuumsnorm

$$\|\mathbf{d} - \mathbf{f}(\mathbf{m})\| = \sqrt{1/N\sum(d_i - f_i(\mathbf{m}))^2}$$

auch bezeichnet als RMS (root mean square)

Gewichtete Minimierung

Was passiert bei verschiedener Genauigkeit der Daten?

Wichtung des Datenmisfits durch individuellen Datenfehler ε_i :

$$\sum \left(\frac{d_i - f_i(\mathbf{m})}{\varepsilon_i}\right)^2 \to \min$$

(Ersetzung d_i durch $\hat{d}_i = d_i/\epsilon_i$) führt zu

$$\mathbf{m} = (\hat{\mathbf{G}}^T \hat{\mathbf{G}})^{-1} \hat{\mathbf{G}}^T \hat{\mathbf{d}}$$

mit $\hat{\mathbf{G}} = \operatorname{diag}(1/\epsilon_i) \cdot \mathbf{G}$

zugehöriges Fehlermaß: fehlergewichteter Misfit (ideal 1)

$$\chi^2 = \frac{1}{N} \sum \left(\frac{d_i - f_i(\mathbf{m})}{\varepsilon_i} \right)^2$$

Aufgaben Ausgleichsrechnung

- Bestimmen Sie die Lösung mit der Ausgleichsmethode und das RMS-Fehlermaß.
- Verwenden Sie alternativ die gewichtete Methode mit konstanten Fehlern und geben Sie das χ^2 -Fehlermaß an.
- Wie verändert sich die Lösung, wenn Sie das Fehlermodell variieren?
- Variieren Sie die rechten Seiten (Verschiebung der Geraden) oder Koeffizienten.

Lineare Regression(1)

Lineare Regression(2)

Die Daten: y_i Das Modell: a,b Der Vorwärtsoperator: Abbildung von (a,b) auf a + bx durch Matrix-Vektor-Produkt.

- Wie muss diese aussehen? (Überlegung 1, danach 2 Werte)
- 3 Stellen Sie G auf und lösen Sie die Normalengleichungen

$$\mathbf{G}^{T}(\mathbf{d} - \mathbf{Gm}) = 0$$
 bzw. $\mathbf{G}^{T}\mathbf{Gm} = \mathbf{G}^{T}\mathbf{d}$

- Testen Sie mit idealen Daten (graphischer Vergleich)!
- Verrauschen Sie die Daten und variieren Sie die Fehler.
- Berechnen Sie die Fehlerquadratsumme!
- Wiederholen Sie (neue Verrauschung) & plotten Sie die alle Ergebnisse zusammen! Wie verteilen sie sich?
- Erhöhen Sie den Polynomgrad schrittweise!

Heutige Veranstaltung 02.06.

- Wiederholung des Stoffes von letzter Woche (Motivation, Matlab, einfache lineare & überbestimmte Probleme)
- Auflösungsanalyse
- überbestimmte ⇒ unterbestimmte Probleme
- Regularisierungsverfahren
- 2D Crosshole Laufzeittomographie (linear)
- Singulärwertzerlegung?

0

Wiederholung 1. Veranstaltung

- Lineare Probleme: Vorwärtsoperator Gm
- Daten: Modellantwort plus Fehler $\mathbf{d} = \mathbf{Gm} + \mathbf{n}$
- Überbestimmte Probleme (M>N) \Rightarrow Ausgleichsrechung \Rightarrow Minimierung des Residuums $\|\mathbf{d} \mathbf{Gm}\| \rightarrow \min$
- Least Squares Lösung durch Normalgleichungen:

$$\mathbf{G}^T\mathbf{Gm} = \mathbf{G}^T\mathbf{d}$$

- Matlab denkt mit: m = G \ d
- Maß für Anpassung: Root Mean Square (RMS)

$$\sqrt{1/N\sum(\mathbf{d}-\mathbf{Gm})_i^2}=\|\mathbf{d}-\mathbf{Gm}\|/\sqrt{N}$$

• 3-Geraden-Problem, Lineare Regression

Rauschen und Fehler

- Fehler (immer da) werden mit invertiert
- Least-Squares-Inversion = Gauss-Verteilung des Residuums
- Modellvariation durch Wiederholung: Fehleranalyse
- je größer Daten-Fehler desto größer Modell-Variation
- auch abhängig von Gutartigkeit des Problems
- ungleiches Rauschen ⇒ systematische Verzerrung
- Wichtung der Daten mit reziprokem Fehler
 ⇒ gewichtete Normalgleichungen

$$\mathbf{m} = (\hat{\mathbf{G}}^T \hat{\mathbf{G}})^{-1} \hat{\mathbf{G}}^T \hat{\mathbf{d}} \text{ mit } \hat{\mathbf{G}} = \text{diag}(1/\epsilon_i) \cdot \mathbf{G}$$

• Maß für Anpassung: χ² (fehlergewichtetes Quadratmittel)

Modell-Auflösung

$$d = Gm^{true} + n$$

Matrix-Inversion mit inversem Operator G†:

$$\mathbf{m}^{\mathrm{est}} = \mathbf{G}^{\dagger}\mathbf{d} = \mathbf{G}^{\dagger}\mathbf{G}\mathbf{m}^{\mathrm{true}} + \mathbf{G}^{\dagger}\mathbf{n} = \mathbf{R}^{M}\mathbf{m}^{\mathrm{true}} + \mathbf{G}^{\dagger}\mathbf{n}$$

mit der Modell-Auflösungsmatrix $\mathbf{R}^M = \mathbf{G}^\dagger \mathbf{G}$

⇒ Wie spiegelt sich die Wahrheit (**m**^{true}) im Ergebnis (**m**^{est}) wider?

Überbestimmte Probleme: $\mathbf{G}^{\dagger} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T$

 \Rightarrow perfekte Modellauflösung

$$\mathbf{R}^M = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{G} = \mathbf{I}$$

Daten-Auflösung

$$\mathbf{m}^{\mathrm{est}} = \mathbf{G}^{\dagger} \mathbf{d}^{\mathrm{obs}}$$

Wie werden die Daten durch das Modell erklärt?

$$\mathbf{d}^{\mathrm{est}} = \mathbf{G}\mathbf{m}^{\mathrm{est}} = \mathbf{G}\mathbf{G}^{\dagger}\mathbf{d}^{\mathrm{obs}} = \mathbf{R}^{D}\mathbf{d}^{\mathrm{obs}}$$

mit der Daten-Auflösungsmatrix (Informationsdichtematrix):

$$\mathbf{R}^D = \mathbf{G}\mathbf{G}^\dagger$$

Diagonale von R^D : Informationsgehalt der einzelnen Daten Überbestimmte Probleme:

$$\mathbf{G}^{\dagger} = (\mathbf{G}^{T}\mathbf{G})^{-1}\mathbf{G}^{T} \quad \Rightarrow \quad \mathbf{R}^{D} = \mathbf{G}(\mathbf{G}^{T}\mathbf{G})^{-1}\mathbf{G}^{T}$$

Lineare Regression(2)

Die Daten: y_i Das Modell: a,b Der Vorwärtsoperator: Abbildung von (a,b) auf a + bx durch Matrix-Vektor-Produkt.

- Wie muss diese aussehen? (Überlegung 1, danach 2 Werte)
- ② Stellen Sie G auf und lösen Sie die Normalengleichungen

$$\mathbf{G}^{T}(\mathbf{d} - \mathbf{Gm}) = 0$$
 bzw. $\mathbf{G}^{T}\mathbf{Gm} = \mathbf{G}^{T}\mathbf{d}$

- Testen Sie mit idealen Daten (graphischer Vergleich)!
- Verrauschen Sie die Daten und variieren Sie die Fehler.
- Berechnen Sie die Fehlerquadratsumme!
- Wiederholen Sie (neue Verrauschung) & plotten Sie die alle Ergebnisse zusammen! Wie verteilen sie sich?
- Erhöhen Sie den Polynomgrad schrittweise!

Daten-Auflösung Überbestimmte Probleme

Berechnen Sie für die beiden Beispiel-Probleme (3 Geraden, Lineare Regression) die Datenauflösungsmatrix und stellen Sie diese dar

Problem mit Unterbestimmung

2 Messungen (z.B. Strahlen), 3 Parameter (Zellen)

$$\mathbf{Gm} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \mathbf{d}$$

Zerlegung in zwei Unterprobleme:

- Parameter 3 ist überbestimmt
- Parameter 1+2 unterbestimmt

Alle Lösungen mit $m_1 = d_1 - m_2$ sind gleichrichtig

Für eindeutige (reguläre) Lösungen müssen zusätzliche Bedingungen gestellt werden ⇒ Regularisierung

Problem mit Unterbestimmung

2 Messungen (z.B. Strahlen), 3 Parameter (Zellen)

$$\mathbf{Gm} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \mathbf{d}$$

Zerlegung in zwei Unterprobleme:

- Parameter 3 ist überbestimmt
- Parameter 1+2 unterbestimmt

Alle Lösungen mit $m_1 = d_1 - m_2$ sind gleichrichtig

Für eindeutige (reguläre) Lösungen müssen zusätzliche Bedingungen gestellt werden ⇒ Regularisierung

Problem mit Unterbestimmung

2 Messungen (z.B. Strahlen), 3 Parameter (Zellen)

$$\mathbf{Gm} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} m_1 \\ m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \mathbf{d}$$

Zerlegung in zwei Unterprobleme:

- Parameter 3 ist überbestimmt
- Parameter 1+2 unterbestimmt

Alle Lösungen mit $m_1 = d_1 - m_2$ sind gleichrichtig

Für eindeutige (reguläre) Lösungen müssen zusätzliche Bedingungen gestellt werden ⇒ Regularisierung

Regularisierung

Wie können wir die Inversion regulär machen? Zusätzliche Gleichungen im Modellraum

- A-priori-Wissen über eine Unbekannte (Modellreduktion)
- Beziehung zwischen mehreren Unbekannten (z.B. Summe zweier M\u00e4chtigkeiten, Differenz/Glattheit)
- ungefähre Schätzung (Referenzmodell)

Zusammen mit Daten im Sinne kleinster Quadrate zu lösen:

$$\left[\begin{array}{cccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]$$

Aber: Erste zwei Gleichungen leben im Datenraum, letzte im Modellraum (Einheiten, Rauschen etc.)

Regularisierung

Wie können wir die Inversion regulär machen? Zusätzliche Gleichungen im Modellraum

- A-priori-Wissen über eine Unbekannte (Modellreduktion)
- Beziehung zwischen mehreren Unbekannten (z.B. Summe zweier M\u00e4chtigkeiten, Differenz/Glattheit)
- ungefähre Schätzung (Referenzmodell)

Zusammen mit Daten im Sinne kleinster Quadrate zu lösen:

$$\left[\begin{array}{cccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]$$

Aber: Erste zwei Gleichungen leben im Datenraum, letzte im Modellraum (Einheiten, Rauschen etc.)

Regularisierung

Wie können wir die Inversion regulär machen?

Zusätzliche Gleichungen im Modellraum

- A-priori-Wissen über eine Unbekannte (Modellreduktion)
- Beziehung zwischen mehreren Unbekannten (z.B. Summe zweier M\u00e4chtigkeiten, Differenz/Glattheit)
- ungefähre Schätzung (Referenzmodell)

Zusammen mit Daten im Sinne kleinster Quadrate zu lösen:

$$\left[\begin{array}{cccc}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]$$

Aber: Erste zwei Gleichungen leben im Datenraum, letzte im Modellraum (Einheiten, Rauschen etc.)

Regularisierung (2)

Minimierung einer gewichteten Summe (Residuum + Constraints):

$$\|\mathbf{Gm} - \mathbf{d}\|^2 + \lambda^2 \|\mathbf{Wm}\|^2 \rightarrow \min$$

 $(\lambda\text{-Wichtungsfaktor mit Einheit }[\lambda]=[Daten]/[Modell])$ führt zu

$$(\mathbf{G}^T\mathbf{G} + \lambda^2\mathbf{W}^T\mathbf{W})\mathbf{m} = \mathbf{G}^T\mathbf{d}$$

- Einfachster Fall: W ist Einheitsmatrix I: gedämpfte Normalengleichungen ⇒ kleinstes Modell
- Weiterer häufiger Fall: W ist diskrete Ableitungsmatrix: smoothness constraints ⇒ glattestes Modell:

Occams Prinzip

William v. Occam, Schottland 14. Jh.:

Pluralitas non est ponenda sine neccesitate! (Wähle aus allen möglichen Lösungen die einfachste)

Doch wie kännen wir einfach mathematisch definieren?

- wenige Modellzellen (z.B. Schichten)
- große Glattheit
- möglichst geringe Kontraste
- möglichst wenige Kontraste
- Schätzung von Wahrscheinlichkeiten (Bayes)
- Maximum der Entropie/Informationsgehalt

Wahl des Regularisierungsparameters

Auflösung für regularisierte Inversion

generalisierte Inverse:

$$\mathbf{G}^{\dagger} = (\mathbf{G}^{T}\mathbf{G} + \lambda^{2}\mathbf{W}^{T}\mathbf{W})^{-1}\mathbf{G}^{T}$$

Modell-Auflösung:

$$\mathbf{R}^{M} = \mathbf{G}^{\dagger} \mathbf{G} = (\mathbf{G}^{T} \mathbf{G} + \lambda^{2} \mathbf{W}^{T} \mathbf{W})^{-1} \mathbf{G}^{T} \mathbf{G}$$

nähert sich Einheitsmatrix I für $\lambda \rightarrow 0$

Daten-Auflösung:

$$\mathbf{R}^D = \mathbf{G}\mathbf{G}^\dagger = \mathbf{G}(\mathbf{G}^T\mathbf{G} + \lambda^2\mathbf{W}^T\mathbf{W})^{-1}\mathbf{G}^T$$

Referenzmodell-Inversion

Oft macht kleinstes Modell wenig Sinn.

Dann invertiert man oft Modelländerungen $\Delta \mathbf{m} = \mathbf{m} - \mathbf{m}^R$

$$\mathbf{G}\Delta\mathbf{m} = \Delta\mathbf{d} + \mathbf{n} = \mathbf{d} - \mathbf{G}\mathbf{m}^R + \mathbf{n}$$

und verwendet die gedämpften Normalengleichungen (Abstand zu Referenzmodell wird minimiert) Dadurch werden smoothness constraints bewusst vermieden (z.B. bei Timelapse-Inversion sehr kleiner Änderungen)

Aufgaben Regularisierung

Wir betrachten das zuvor diskutierte gemischt bestimmte Problem oder eine Variante der letzten Zeile.

- Versuchen Sie zunächst den backslash m=G\d
- Lösen Sie formell nach den Normalengleichungen
- Lösen Sie mit Hilfe der gedämpfen Normalengleichung unter Variation des Regularisierungs-Parameters
 - ▶ Plotten Sie *m*₁ gegen *m*₂
 - Plotten Sie Modellnorm gegen Residuumsnorm
- Wiederholen Sie die letzte Übung mit einer diskreten Ableitungsmatrix
- Verwenden Sie ein von Null verschiedenes Referenzmodell und wiederholen Sie 3.

Zusammenfassung 1.+2. Veranstaltung

- Unterscheidung unter-/über-bestimmte Probleme
- überbestimmt: Ausgleichsrechnung (Normalengleichungen)
- Beispiele: 3 Linien, lineare Regression, gemischtes Problem
- unterbestimmt ⇒ Regularisierung (zusätzliche Annahmen):
 - ► Constraints (z.B. Summe Mächtigkeiten)
 - Glattheit (Differenz minimieren)
 - Parameter (Abweichungen) klein halten
- Regularisierungsparameter: Datenfit vs. Constraints
- Auflösungsanalyse: Verknüpfung Vorwärts+Invers
 - Modellauflösungsmatrix R^M = G[†]G
 Auflösung der Parameter (Diagonale) und ihr Zusammenhang
 - ▶ Dateninformationsmatrix $R^D = \mathbf{G}\mathbf{G}^{\dagger}$ Wichtigkeit der Daten (Diagonale) und ihr Zusammenhang
- Anpassungsmaße, Fehlerwichtung, Referenzmodell

Die heutige Übung

- Zusammenfassungen
- Fertigstellung Aufgaben Regularisierung (gemischtes Problem)
- echt geophysikalisches Problem: 2D-Laufzeit-Tomographie
- Downloaden und Ausprobieren einiger Funktionen
- Erzeugen einer Crosshole-Geometrie und synth. Rechnungen
- Inversion mit verschiedenen Verfahren
- Klassische Strahl-Rekonstruktions-Verfahren

Lineare Laufzeit-Tomographie

Prinzip

Gesamt-Laufzeit integriert über Strahlweg I

$$t = \int_{\text{Strahl}} 1/v \, dl = \int_{\text{Strahl}} s \, dl$$

(t-Laufzeit, v=Geschwindigkeit, s-Slowness, l-Weg)

Das Problem ist linear bezüglich s (nicht v!)

Diskretisierung (konstante v/s): Integral \Rightarrow Summe $\sum w_i s_i$

$$t_i = \sum_j W_{ij} s_j \Rightarrow \mathbf{t} = \mathbf{Ws}$$

Wege-Matrix **W**: W_{ij} = Weglänge des Strahls i durch die Zelle j

Amplituden-Tomographie

z.B. Röntgen-Tomographie (CT) Dämpfung der Amplitude A durch Dämpfungskonstante μ

$$A = A_0 e^{-\int \mu dl}$$

Transformation in logarithmische Amplitudenverhältnisse

$$P = \ln \frac{A}{A_0} = -\int_I \mu dI$$

⇒ Amplitudenabnahme linear bezüglich Dämpfung (Lösung wie Laufzeit-Tomographie)

Lineare Laufzeit-Tomographie

Vorwärtsrechnung

• Downloaden Sie die Funktion http://resistivity.net/invprob/matlab/wmatrix.m und schauen sich die Hilfe an (help wmatrix)!

```
W = wmatrix(x, y, pos, it, ir)
```

- Sie berechnet die Weglängen durch die Zellen eines 2D-Gitters (x,y) aufgrund der Transmitter/Receiver-Kombination it/ir mit den Positionen pos (unabhängig von Geschwindigkeit = linear!)
- Erzeugen Sie sich eine Bohrlochgeometrie mit 2 Bohrlöchern (pos), Transmitter in der einen und Receiver in der anderen, sowie eine dazwischen liegende Diskretisierung x/y

Laufzeit-Tomographie

Darstellung des Modells

```
http://resistivity.net/invprob/matlab/drawfield.m
W = drawfield(x,y,field)
W = drawfield(x,y,field,pos,it,ir,rays)
```

Laufzeit-Tomographie

Darstellung des Modells

```
http://resistivity.net/invprob/matlab/drawfield.m
W = drawfield(x, y, field)
W = drawfield(x, y, field, pos, it, ir, rays)
```

Erzeugen Sie ein (zunächst homogenes) Slowness-Modell (Größen von x und y beachten!) und berechnen Sie daraus die Laufzeit! Checken Sie ob Minimum/Maximum stimmen.

Variieren Sie die Slowness in einem bestimmten Bereich und vergleichen Sie das Ergebnis mit dem homogenen Modell (Verhältnis)!

Laufzeit-Tomographie

Darstellung der Daten

```
http://resistivity.net/invprob/matlab/drawdata.m
W = drawdata(it, ir, data)
```

plottet eine Funktion als Matrix über it und ir Stellen Sie die Laufzeit mit der Funktion drawdata dar.

Das Konzept der scheinbaren Modelle

Jeder Datenpunkt wird in einen Parameter transformiert, dass dieser bei einem homogen Modell die Daten erklärt.

Hier: Laufzeit durch Gesamtweg = scheinbare Slowness

Gesamtweg in Matlab: Summe über alle Modelle (2. Dim.) sum (W, 2)

Laufzeittomographie: Aufgaben

- Erzeugen Sie eine Crosshole-Geometrie (2 Bohrlöcher mit äquidistanten Sensorpositionen) und entsprechende Sender/Empfänger-Kombinationen
- Diskretisieren Sie den Raum zwischen den Bohrlöchern durch x- und y-Vektor
- Berechnen Sie die Wegmatrix mit wmatrix.m
- Stellen Sie die Weglängen einzelner Strahlen (Daten/Zeilen) dar und prüfen Sie auf Plausibilität
- Stellen Sie die Überdeckung (Summe aller Weglängen) des Modellgebiets dar. Welche Auflösung ist zu erwarten?
- Berechnen Sie die Laufzeiten für einen homogenen Untergrund.
- Bauen Sie eine Geschwindigkeitsanomalie ein und vergleichen Sie die Laufzeitvektoren

Zusammenfassung letzte Veranstaltung

- lineare überbestimmte und unterbestimmte Probleme abgehakt
- Regularisierungsverfahren: Dämpfung, Smoothness
- Beispiel Laufzeittomographie (linearer Laufweg)
- 2 Bohrlöcher mit Positionen (pos) und Tx-Rx-Paaren (it,ir)
- Modelldiskretisierung (x,y)
- Modelldarstellung mit drawfield(x,y,m)
- Berechnung der Wegmatrix mit wmatrix (x, y, pos, it, ir)
- Datendarstellung mit drawdata(it,ir,d)

Konkrete Fragen?

Klassische Rekonstruktionstechniken

ART (Algebraische Rekonstruktionstechnik):

$$\Delta m_j = rac{G_{ij}\Delta d_i}{\sum_k G_{ik}^2}$$

(Herleitung Tafel)

SIRT (Simultane Iterative Rekonstruktions-Technik)

$$\Delta m_j = \frac{1}{\sum_i G_{ij}} \sum_j \frac{G_{ij} \Delta d_i}{\sum_k G_{ik}}$$

Laufzeittomographie: Aufgaben (2)

- Erstellen Sie ein synthetisches Modell und verrauschen Sie dessen Vorwärtsantwort. Stellen Sie Daten als Laufzeiten und scheinbare Slowness dar.
- Bestimmen Sie eine Lösung mit den Verfahren ART und SIRT
- Errechnen Sie eine Lösung mit den gedämpften Normalengleichungen, einmal direkt und einmal mit Startmodell.
- Variieren Sie den Regularisierungsparameter und stellen Sie Datenmisfit und Modellnorm dar. Wie ist λ zu wählen?
- Wiederholen Sie alles mit Ableitungsmatrix 1. Ordnung http://resistivity.net/invprob/matlab/smooth2d1st.m
- Berechnen Sie Modell- und Datenauflösungsmatrix und stellen Sie jeweils die Diagonalen und ausgewählte Spalten dar!

Die heutige Übung und darüber hinaus

Laufzeit-Tomographie

- Vergleich gedämpfte Normalgleichungen und Smoothness
- Vergleich Regularisierung Modell und Modellupdate
- Optimierung des Regularisierungsparameters mittels Fehlern
- Berechnung der Auflösungsmatritzen (Modell,Daten)
- Tests mit verschiedenen Modellen (Form, Kontrast)

Nichtlineare Inversion

- Grundkonzepte der nichtlinearen Inversion
- Laufzeittomographie mit logarithmischem Modell

1D-Geoelektrik-Inversion

- Block-Inversion mit Marquardt-Levenberg-Verfahren
- Smoothness-constrained Inversion, blocky model constraints

Die heutige Übung & das Ende der Vorlesung

Zusammenfassung Laufzeit-Tomographie

- Smoothness Constraints mit bester Abbildung abhängig von Form&Kontrast der Anomalie, Fehlern etc.
- Verschmierung der Anomalie, v.a. horizontal

Nichtlineare Inversion

Grundkonzepte der nichtlinearen Inversion

1D-Geoelektrik-Inversion

- Sensitivitäten
- Block-Inversion mit Marquardt-Levenberg-Verfahren
- Smoothness-constrained Inversion, blocky model constraints

Nichtlineare Probleme

bisher: Referenzemodell-Inversion (Dämpfung von $\Delta \mathbf{m}$)

$$\mathbf{G}\Delta\mathbf{m} = \Delta\mathbf{d} = \mathbf{d} - \mathbf{G}\mathbf{m}$$

 $\mbox{ Jetzt: } \mathbf{d} = \mathbf{f(m)} + \mathbf{n} \Rightarrow \mbox{Minimierung von } \|\mathbf{f(m)} - \mathbf{d}\| \\ \mbox{ Linearisierung (Taylor-Entwicklung) f. alle Daten}$

$$f_i(\mathbf{m} + \Delta \mathbf{m}) \approx f_i(\mathbf{m}) + \sum_j \frac{\partial f_i(\mathbf{m})}{\partial m_j} \Delta m_j = d_i \Rightarrow \mathbf{d} - \mathbf{f}(\mathbf{m}) = \mathbf{S} \Delta \mathbf{m}$$

S - Sensitivitätsmatrix/Jacobimatrix mit $S_{ij} = \frac{\partial f_i(\mathbf{m})}{\partial m_j}$ abhängig von \mathbf{m} ! Iterative Lösung (k Iterationsschritt) wie lineare Inversion

$$\mathbf{m}^{k+1} = \mathbf{m}^k + \Delta \mathbf{m}^k$$
 mit $\mathbf{S} \Delta \mathbf{m}^k = \mathbf{d} - \mathbf{f}(\mathbf{m}^k) = \Delta \mathbf{d}^k$

Berechnung der Jacobimatrix

- analytisch (selten möglich)
- Umformung des Vorwärtsproblems
- Differentialgleichungsmethoden
- Updatemechanismen (Broyden)
- Perturbationsmethode, d.h. für jede Spalte

$$\mathbf{S}_j = \frac{\mathbf{f}(\mathbf{m} + \Delta \mathbf{m}_j)}{\Delta m_j}$$
 mit $\Delta \mathbf{m}_j = [0 \dots 1 \dots 0] \Delta m_j$

M zusätzliche Vorwärtsrechnungen (Perturbationen)

 Δm_j nicht zu groß (Linearisierung) oder zu klein (Genauigkeit)

Line Search

Manchmal (wenn stark nichtlinear) schießt das Modellupdate $\Delta \mathbf{m}$ über das Ziel hinaus, d.h. $\mathbf{f}(\mathbf{m} + \Delta \mathbf{m})$ fittet schlechter als $\mathbf{f}(\mathbf{m})$

 \Rightarrow Einführung einer Schrittweite $s^k \in (0,1)$:

$$\mathbf{m}^{k+1} = \mathbf{m}^k + s^k \Delta \mathbf{m}^k$$

Optimierung von s^k so, dass $\|\mathbf{d} - \mathbf{f}(\mathbf{m}^k + s^k \Delta \mathbf{m}^k)\| \to \min$

- Ausprobieren (z.B. s=0.3 nehmen) und Konvergenz ansehen
- Test (Vorwärtsrechnung) für viele s ⇒ teuer!
- lineare Interpolation zwischen $f(\mathbf{m}^k)$ und $f(\mathbf{m}^k + \Delta \mathbf{m}^k)$
- Rechnung für 2 Schritte (0,0.3,1) ⇒ Parabel ⇒ Minimum

Transformationen

Oft wird nicht der Modellparameter m, sondern eine Funktion \hat{m} von ihm verwendet.

Typisches Beispiel:

Verwendung von Logarithmen $\hat{m} = \log m$, um m positiv zu halten. (Elektrische Leitfähigkeit oder spez. Widerstand bevorzugt gute bzw. schlechte Leiter \Rightarrow Logarithmus) Veränderung des Jacobimatrix:

$$\hat{S}_{ij} = \frac{\partial f_i(\mathbf{m})}{\partial \hat{m}_j} = \frac{\partial f_i(\mathbf{m})}{\partial m_j} \frac{\partial m}{\partial \hat{m}} = \frac{\partial f_i(\mathbf{m})}{\partial m_j} / \frac{\partial \hat{m}}{\partial m}$$

Logarithmus-Transformationen

Motivation: positive Parameter, statistische Verteilung, meist relative Fehler

Innere Ableitung und Jacobimatrix

$$\partial \log m/\partial m = 1/m \Rightarrow \hat{S}_{ij} = S_{ij} * m_j$$

Modellupdate: $\log m^{k+1} = \log m^k + \Delta m \Rightarrow m^{k+1} = m^k * e^{\Delta m}$

Transformationen mit Grenzen

untere Grenze: $\hat{m} = \log(m - m_L)$, obere Grenze: $\hat{m} = \log(m_U - m)$

Range-Funktion: $\hat{m} = \log(m - m_L) - \log(m_U - m)$

Datentransformation

$$\hat{S}_{ij} = \frac{\partial \hat{f}_i(\mathbf{m})}{\partial \hat{m}_i} = \frac{\partial f_i(\mathbf{m})}{\partial m_i} \frac{\partial \hat{d}}{\partial d} / \frac{\partial \hat{m}}{\partial m}$$

 $\hat{d} = \log d$ und $\hat{m} = \log m$ führt zu $\hat{S}_{ij} = S_{ij} * d_i / m_j$

1D-Geoelektrik

Schlumberger-Tiefensondierung

• Grundlagen siehe Vorlesungen Einführung o. Geoelektrik

Aufgaben

- Downloaden Sie die Funktion http://resistivity.net/invprob/matlab/dcldfwd.m und schauen sich die Hilfe an (help dc1dfwd)!
- Erzeugen Sie eine (logarithmische) Folge von AB/2-Abständen sowie passende MN/2-Abstände.
- Generieren Sie einen 2-Schichtfall, berechnen und plotten Sie die synthetische Kurve (loglog).
- Verändern Sie einzelne Modellparameter und sehen Sie sich die Veränderung an.
- Erhöhen Sie die Anzahl Schichten.

Geoelektrik-Inversion

grundsätzlich zwei Modelltypen:

Block-Inversion

- Veränderung von Schicht-Mächtigkeiten und spez. Widerständen
- relativ wenige unabhängige Modellparameter
- gedämpfte Normalgleichungen ⇒ Marquart-Levenberg-Verfahren: schrittweise Verringerung des Dämpfungsparameters

Smooth-Inversion (typisch 2D/3D)

- feste Schicht-Mächtigkeiten und spez. Widerständen
- Regularisierung mit Smoothness Constraints
- feste Regularisierungs-Stärke: probieren, Fehler, L-Kurve

Bei beiden: Vektor für spez. Widerstände und Mächtigkeiten

Sensitivitätsberechnung Smooth

Logarithmen: relative Veränderung der Modellantwort bei relativer Veränderung der Modell um Faktor fak (z.B. 1.05)

```
S = zeros(length(ab2), length(rho));
R0 = dc1dfwd(rho, thk, ab2, mn2);
fak = 1.05;
for i=1:length(rho).
    rho1 = rho;
    rho1(i) = rho(i)*fak;
    R = dc1dfwd(rho1, thk, ab2, mn2);
    S(:,i) = (\log(R(:)) - \log(R(:))) / \log(fak);
end
http://resistivity.net/invprob/matlab/dc1dsmoothsens.m
```

Sensitivitätsberechnung Block

Logarithmen: relative Veränderung der Modellantwort bei relativer Veränderung der Modell um Faktor fak (z.B. 1.05)

```
zeros (length (ab2), length (rho) + length (thk));
. . .
for i=1:length(rho),
. . .
for i=1:length(thk),
    thk1=thk;
    thk1(i) = thk(i) *fak;
    R=dc1dfwd(rho,thk1,ab2,mn2);
    S(:, i+length(rho)) = (log(R(:)) - log(R0(:))) / log(fak);
end
http://resistivity.net/invprob/matlab/dc1dblocksens.m
```

Aufgaben

- Erzeugen Sie sich einen synthetischen 2-Schicht-Fall und verrauschen Sie dessen Antwort mit Relativfehler ⇒ d
- Erzeugen Sie einen angemessenen Mächtigkeitsvektor (thk)
- Generieren Sie ein homogenes Startmodell (rho)
- Berechnen Sie das Residuum $\Delta \hat{\mathbf{d}} = \hat{\mathbf{d}} \hat{\mathbf{f}}(\mathbf{m})$
- Berechnung der Sensitivitätsmatrix und Darstellung
- Erzeugen Sie eine Ableitungsmatrix und berechnen Sie das Modellupdate $\Delta \mathbf{m}$ mittels Smoothness Constraints
- Updaten Sie das Modell und berechnen Sie dessen Antwort sowie den RMS-Fehler
- Schreiben Sie eine Schleife darum und variieren Sie λ
- Gleiche Vorgehensweise mit Blockmodell und Verfahren nach Marquardt-Levenberg (lambda=lambda*0.8)

Belegaufgaben

Ziel

Nachweis des Verständnisses der Inversionsverfahren und Methoden (Laufzeittomographie, 1D-Geoelektrik) durch Modifikation/Erstellung von Matlab-Scripten, Darstellung und Interpretation der Ergebnisse

Inhalt

- kurze Darstellung der Ausgangsposition (Experiment-Geometrie und Modelldiskretisierung, synthetisches Modell, Rauschen)
- Beschreibung des Inversionsansatzes
- Diskussion der Ergebnisse (Modelle und Auflösungsmaße)

Abgeben (bis Semesterende)

Dokument (pdf) und dokumentierte Scripte per Email an:

Thomas.Guenther@uni-leipzig.de

Belegaufgaben Teil 1: Laufzeittomographie

- Erstellen Sie eine Modellgeometrie mit zwei 10 m entfernten Bohrlöchern sowie Geophonen an der Oberfläche.
- Generieren Sie ein realistisches (wenige 100 bis 1000 m/s) Modell mit langsamen & schnellen Anomalien.
- Addieren Sie zu den synthetischen Laufzeiten Gauss-verteiltes, realistisches (0.5-1 ms) Rauschen!
- Invertieren Sie mit Smoothness Constraints und optimieren Sie dabei den Regularisierungsparameter, so dass Daten im Rahmen der Fehler gefittet werden.
- Stellen Sie das Auflösungsmaß dar und vergleichen Sie mit der Gesamt-Überdeckung (kumulierte Weglänge pro Zelle)
- Interpretieren Sie Ergebnis und Auflösung!

Belegaufgaben Teil 2: 1D-Geoelelektrik

- Generieren Sie ein synthetisches 3-Schicht-Modell sowie eine passende Folge von AB/2-Werten und modellieren Sie.
- Addieren Sie auf die Kurve ein relatives Rauschen von 2 %.
- **Solution** Sie ein homogenes Startmodell mit dem mittleren ρ_a -Wert, berechnen und diskutieren Sie die Jacobimatrix.
- Ändern Sie den mittleren Widerstand leicht und wiederholen Sie.
- Erzeugen Sie den (logarithmischen) Datenmisfit und lösen die gedämpften Normalgleichungen sowie updaten Sie das Modell.
- Wiederholen Sie den letzten Schritt und verringern Sie dabei den D\u00e4mpfungsparameter in jeder Iteration um 20%. Geben Sie jeweils den relativen root mean square error an.
- Optimieren Sie das Script bis die Daten im Rahmen der Fehler gefittet werden. Vergleichen Sie mit dem synth. Modell.
- Berechnen Sie die Informationsdichtematrix, stellen Sie diese dar und interpretieren Sie diese.