4 Teoremes de Stokes i Gauss

- 1. (a) Donat un camp vectorial $\mathbf{F} \in \mathcal{C}^2(\mathbb{R}^3)$, demostreu que div (rot \mathbf{F}) = 0.
 - (b) Donat un camp escalar $f \in \mathcal{C}^2(\mathbb{R}^3)$, demostreu que rot $(\nabla f) = \mathbf{0}$.
- **2.** Considerem el camp vectorial radial, $\mathbf{r}(x,y,z) = (x,y,z)$, definit a \mathbb{R}^3 i el camp escalar $r = |\mathbf{r}|$ definit a $\mathbb{R}^3 \{\mathbf{0}\}$. Donada $h \in \mathcal{C}^1(0,+\infty)$, obteniu les relacions següents:
 - (a) $\nabla r = \mathbf{r}/r$.
 - (b) $\nabla h(r) = \frac{h'(r)}{r} \mathbf{r}$.
 - (c) $\nabla (r^{\alpha}) = \alpha r^{\alpha-2} \mathbf{r}, \ \alpha \in \mathbb{R}.$
 - (d) $\operatorname{div} \mathbf{r} = 3$.
 - (e) div $(h(r)\mathbf{r}) = 3h(r) + rh'(r)$. Quan val 0 aquesta divergència? I, en general, quant val h(r)?
 - (f) div $(r^{\alpha} \mathbf{r}) = (3 + \alpha)r^{\alpha}, \ \alpha \in \mathbb{R}.$
 - (g) rot $(h(r)\mathbf{r}) = \mathbf{0}$.
 - (h) Useu els apartats anteriors per determinar un camp vectorial, definit a $\mathbb{R}^3 \{\mathbf{0}\}$, amb rotacional i divergència nuls.
 - (i) $\Delta h(r) = h''(r) + 2h'(r)/r$.
 - (j) $\Delta r^{\alpha} = \alpha (1 + \alpha) r^{\alpha 2}, \ \alpha \in \mathbb{R}.$
- **3.** Calculeu la circulació dels camps vectorials següents al llarg de les corbes orientades indicades, utilitzant el teorema de Stokes:
 - (a) $\mathbf{F}(x,y,z)=(x^2y^3,1,z)$, C circumferència intersecció del cilindre $x^2+y^2=R^2$ amb el pla z=0, recorreguda en el sentit positiu vista des de dalt.
 - (b) $\mathbf{F}(x,y,z) = (y,-2z,x)$, C ellipse intersecció del cilindre $x^2 + y^2 = R^2$ i el pla x = z, recorreguda de manera que la seva projecció sobre el pla XY sigui positiva.
 - (c) $\mathbf{F}(x,y,z)=(ye^{xy},xe^{xy}+x,xyz)$, C corba unió de les tres corbes obtingudes tallant el tros de con $x^2+y^2=(z-1)^2, \ 0\leq z\leq 1$, amb els plans $x=0,\ y=0$ i z=0 i dins el primer octant; recorreguda de manera que, des de l'origen, es vegi en el sentit de les busques del rellotge.
 - (d) $\mathbf{F}(x,y,z) = (y-z,z-x,x-y)$, C corba tancada intersecció de l'esfera $x^2+y^2+z^2=1$ i el pla x+y+z=1, recorreguda en el sentit $(1,0,0) \to (0,1,0) \to (0,0,1)$. Indicació: Relacioneu la integral a calcular amb l'àrea tancada per C.
 - (e) $\mathbf{F}(x,y,z)=(yz,-x,2y)$, C triangle de vèrtexs (1,0,0), (0,1,0) i (0,0,1), orientat en aquest sentit.
 - (f) $\mathbf{F}(x,y,z)=(y,z,x)$, C intersecció de z=xy amb $x^2+y^2=1$, recorreguda de forma que la seva projecció sobre el pla XY sigui positiva.
- **4.** Verifiqueu el teorema de Stokes per a la superfície helicoïdal definida per la parametrització $\mathbf{r}(u,v) = (u\cos v, u\sin v, v), \ (u,v) \in [0,1] \times [0,\pi/2], \ i \ el \ camp \ vectorial \ donat \ per \ \mathbf{F}(x,y,z) = (xz,yx,zy).$
- **5.** Considerem la semiesfera $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1, z \ge 0\}.$
 - (a) Calculeu el flux del rotacional del camp vectorial $\mathbf{F}(x,y,z)=(y,zx,yzx)$ a través de S, orientada amb la normal "cap amunt".
 - (b) Calculeu la circulació del camp vectorial $\mathbf{F}(x, y, z) = (x, y, z)$ al llarg de la vora de S.
- **6.** Calculeu els fluxos dels camps vectorials següents (cap a l'exterior en els apartats a), b) i c)) de les superfícies donades, utilizant el teorema de la divergència de Gauss:
 - (a) $\mathbf{F}(x, y, z) = (xy, y^2, z^2)$, S vora del cub 0 < x < 1, 0 < y < 1, 0 < z < 1.

- (b) $\mathbf{F}(x,y,z) = (x^2y,xy^2,xyz),$ S vora de la regió $V = \{(x,y,z) \mid x^2+y^2+z < a^2, \ x>0, y>0, z>0\},$ on a>0 constant.
- $\begin{array}{l} \text{(c) } \mathbf{F}(x,y,z) = (x^2,y^2,z^2), \\ S \text{ vora de la regió } V = \left\{ (x,y,z) \mid \frac{x^2}{a^2} + \frac{y^2}{a^2} \leq \frac{z^2}{b^2}, \, 0 \leq z \leq b \right\}, \, \text{on } a,b > 0 \text{ constants.} \end{array}$
- (d) $\mathbf{F}(x,y,z)=x\mathbf{i}-(2x+y)\mathbf{j}+z\mathbf{k}$ S hemisferi $x^2+y^2+z^2=1,\,z>0$, orientat segons la normal exterior de l'esfera.
- (e) $\mathbf{F}(x,y,z) = (\cos z, \sin z, \frac{1}{9}(x^2 + y^2)^{3/2})$ $S = \{(x,y,z) \in \mathbb{R}^3 \mid z^2 - x^2 - y^2 = 16, \ 4 \le z \le 5\},$ orientat amb la normal apuntant cap avall.
- 7. Donades a, b, c > 0, considerem les funcions

$$\varphi(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$
 i $g(x,y,z) = \frac{x}{a} + \frac{y}{b} + \frac{z}{c}$

Apliqueu el teorema de Gauss a fi de calcular el flux del camp $\nabla \varphi$ a través de la superfície $S = \{(x,y,z) \mid g(x,y,z) = 1, x > 0, y > 0, z > 0\}$, orientada amb la normal "cap avall".

- 8. (a) Donada una superfície tancada S, proveu que el volum del sòlid limitat per S és $\frac{1}{3} \iint_{S} \mathbf{r} \cdot \mathbf{dS}$, on \mathbf{r} és el camp radial a \mathbb{R}^{3} .
 - (b) Verifiqueu la fórmula anterior en el cas del sòlid $\{(x,y,z) \in \mathbb{R}^3 \mid z \ge x^2 + y^2, z \in [0,2]\}$.
- 9. (a) Determineu $a, b \in \mathbb{R}$ de manera que el camp $\mathbf{F}(x, y, z) = (2xyz + \sin x, azx^2, byx^2)$ sigui conservatiu (o irrotacional). Obteniu-ne aleshores un potencial.
 - (b) Determineu h(x, y, z) de manera que el camp $\mathbf{F}(x, y, z) = (h, 2x 3zy^2, -y^3 + 2xz)$ sigui conservatiu (o irrotacional). Obteniu-ne aleshores un potencial.
- **10.** Sigui **F** un camp vectorial de la forma $\mathbf{F} = \phi(r)\mathbf{r}$, definit a \mathbb{R}^3 .
 - (a) Demostreu que **F** és conservatiu. És irrotacional?
 - (b) Determineu $\phi(r)$ per tal que el flux de ${\bf F}$ a través de qualsevol superfície tancada que no contingui l'origen sigui nul.
 - (c) En aquest darrer cas, calculeu la circulació de ${\bf F}$ entre els punts (1,0,0) i $(0,1,\pi/2)$ mitjançant la funció potencial.
- 11. Comproveu que les següents integrals de línia no depenen del camí, i calculeu-les.
 - (a) $\int_{(0,0,0)}^{(1,1,1)} (3x^2 + yz) dx + (3y^2 + xz) dy + (3z^2 + xy) dz$
 - (b) $\int_{(1,1,1)}^{(a,b,c)} yzdx + xzdy + xydz$ (c) $\int_{(0,0,0)}^{(3,4,5)} \frac{xdx + ydy + zdz}{\sqrt{x^2 + y^2 + z^2}}$
- 12. Considerem el camp vectorial $\mathbf{F}(x,y,z) = (z,2x,x+y^2)$ definit a \mathbb{R}^3 .
 - (a) Estudieu si és un camp solenoïdal. Sigui G un potencial vectorial.
 - (b) Calculeu la circulació de G al llarg de la circumferència de centre (0,0,0) i radi 2, continguda en el pla z=0. Indiqueu el sentit de recorregut que heu considerat en fer el càlcul.
 - (c) Determineu, sense fer més càlculs, el flux de ${\bf F}$ a través de les superfícies següents:

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0, \ x^2 + y^2 \le 4\}$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid z \ge 0, \ x^2 + y^2 + z^2 = 4\}$$

$$S_3 = \{(x, y, z) \in \mathbb{R}^3 \mid z \ge 0, \ z = 4 - x^2 - y^2\}$$

$$S_4 = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 + y^2 + z^2 = 4\}$$

Expliqueu raonadament el sentit dels fluxos calculats i els teoremes utilitzats.

- 13. Considerem el camp vectorial $\mathbf{F}(x,y,z) = (-x,-y,2z)$
 - (a) Existeix algun camp \mathbf{Q} tal que rot $\mathbf{Q} = \mathbf{F}$? En cas afirmatiu, determineu-ne algun.
 - (b) Calculeu $\iint_S \mathbf{F} \cdot \mathbf{dS}$, on $S = \{(x, y, z) \mid (x a)^2 + (y b)^2 + (z c)^2 = R^2, z > c\}$, orientada en sentit radial exterior. *Indicació*: Useu el resultat anterior.
- 14. Sigui V el sòlid limitat per les superfícies d'equacions $x^2 + y^2 = 1$, z = 1 i z = y + 3, i S la vora del sòlid V.
 - (a) Calculeu $\iiint_V 8z \, dx \, dy \, dz$.
 - (b) Considerem el camp vectorial \mathbf{F} definit per $\mathbf{F}(x,y,z) = (0,\frac{8}{3}yz + z^2, -x^2 + 3z + y)$. Sabent que el volum de V és 2π , raoneu la relació entre el flux del camp \mathbf{F} que entra a través de S i $\iiint_V 8z dx dy dz$. Sense calcular cap integral deduïu el valor del flux esmentat.
 - (c) Donat el camp $\mathbf{G}(x, y, z) = (1 2z \frac{8}{3}y, 2x, 0)$, relacioneu \mathbf{F} i \mathbf{G} i raoneu si $\iint_S \mathbf{G} \cdot \mathbf{dS} = 0$, sense calcular cap integral.

Solucions

2. (e)
$$h(r) = \frac{C}{r^3}$$
, $h(r) = \frac{C}{r^2}$, per a tot $C \in \mathbb{R}$.

3. (a)
$$-\frac{\pi R^6}{8}$$
 (b) $-3\pi R^2$ (c) $\frac{\pi}{4}$ (d) $-\frac{4\pi\sqrt{3}}{3}$ (e) $\frac{1}{2}$ (f) $-\pi$

4.
$$\pm \left(\frac{4}{3} - \frac{\pi}{8}\right)$$

5. (a)
$$-\pi$$
 (b) 0

6. (a)
$$\frac{5}{2}$$
 (b) $\frac{5a^6}{24}$ (c) $\frac{\pi a^2 b^2}{2}$ (d) $\frac{2\pi}{3}$ (e) $-\frac{54\pi}{5}$

7.
$$-\frac{1}{3}abc\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)$$

8. (b)
$$2\pi$$

9. (a)
$$a = b = 1$$
. Un potencial és $\phi(x, y, z) = x^2yz - \cos x + C$.

(b)
$$h(x, y, z) = 2y + z^2 + g(x)$$
. Un potencial és $\phi(x, y, z) = 2xy + xz^2 - y^3z + \int g(x) dx$.

10. (b)
$$\phi(r) = \frac{k}{r^3}$$
 (c) $k - \frac{k}{\sqrt{1 + (\pi/2)^2}}$

11. (a) 4 (b)
$$abc - 1$$
 (c) $5\sqrt{2}$

12. (a)
$$\mathbf{G}(x, y, z) = \left(2xz - \frac{y^3}{3}, \frac{x^2 - z^2}{2}, 0\right)$$

(b) 4π (en sentit antihorari al pla z=0)

(c)
$$\iint_{S_1} \mathbf{F} \cdot dS = \iint_{S_2} \mathbf{F} \cdot dS = \iint_{S_3} \mathbf{F} \cdot dS = 4\pi, \text{ amb el vector normal cap amunt.}$$
$$\iint_{S_4} \mathbf{F} \cdot dS = 0$$

- **13.** (a) Sí, per exemple $\mathbf{Q}(x, y, z) = (0, 2zx, yx)$
- (b) $2\pi cR^2$

- **14.** (a) 33π
- (b) -17π (c) **G** és un camp solenoïdal