Univerzita Karlova v Praze Matematicko-fyzikální fakulta

MATEMATIKA

Martin Brajer

Matematická analýza

bakalářské studium v letech 2009 až 2012

Přednášející: doc. Mgr. Petr Kaplický, Ph.D.

Studijní program: Fyzika

Studijní obor: FOF

Praha 2020

Obsah

Ú	vod		1
	0.1	Diferenciální počet	1
	0.2	Integrální počet	1
1	Úvo	od, základní pojmy	3
	1.1	Reálná čísla	4
	1.2	Význačné podm nožiny $\mathbb R$	7
2	Reá	lné funkce, limita a spojitost	12

Věty a definice

A	Lemma (Čtverec lichého čísla)
A	Věta (Reálná čísla)
A1	Definice (Algebraická struktura)
1.1	Příklad
A2	Definice (Uspořádání)
1.2	Příklad
1.1	Definice (Absolutní hodnota)
1.1	Lemma (Vlastnosti absolutní hodnoty)
1.1	Věta (Trojúhelníková nerovnost)
1.2	Definice (Maximum)
1.2	Lemma (Jednoznačnost max)
1.3	Definice (Supremum)
1.4	Definice (Infimum)
A3	Definice (Supremum a infimum)
1.5	Definice (Odmocnina)
В	Lemma (Čtverec dělitelný třema)
1.2	Věta (Iracionální čísla)
A4	Definice (Vlastnosti N)
1.3	Věta (Velikost intervalu)
2.1	Definice (Prostá funkce, injekce, monomorfismus)
2.2	Definice (Na funkce, surjekce, epimorfismus)
2.3	Definice (Vzájemně jednoznačné zobrazení, bijekce , isomorfismus) 12
2.4	Definice (Restrikce, zúžení)
2.1	Příklad
2.5	Definice (Složená funkce, superpozice)
2.6	Definice (Definiční obor a obor hodnot)
2.2	Příklad
2.7	Definice (Monotónost funkce)
2.8	Definice (Omezenost funkce)
2.9	Definice (Symetrie funkce)
2 10	Definice (Okolí)

2.1	Věta (Hausedorfův princip oddělení)	15
2.11	Definice (Limita)	15
В	Věta (Jednoznačnost limity)	15
2.3	Příklad	16

Semestry

٨																																			1
$\boldsymbol{\Lambda}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	

$\mathbf{\acute{U}vod}$

Přednášející:

- Petr Kaplický, KMA
- kaplicky@karlin.mff.cuni.cz
- www.karlin.mff.cuni.cz/~kaplicky

Literatura:

- J. Kopáček: Matematická analýza (nejen) pro fyziky I (II) + příklady
- J. Souček: www.karlin.mff.cuni.cz/soucek
- V. Jarník: Diferenciální počet I
- V. Jarník: Integrální počet I
- W. Rudin: Principles of MA
- I. Černý, M. Rokyta: Differential and integral calculus of one real variable

Semestr A

0.1 Diferenciální počet

Mějme funkci f(t) vyjadřující pozici bodu v čase. Základní úloha:

průměrná rychlost:
$$\frac{f(t) - f(t_0)}{t - t_0}$$
 (1)

okamžitá rychlost:
$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} = f'(t_0)$$
 (2)

0.2 Integrální počet

Plocha pod grafem. Interval [a,b] rozdělme na n částí délky Δ_n v bodech a_n . Označme $a_0 = a, a_n = b$.

přibližně:
$$f(a_0)\Delta_1 + f(a_1)\Delta_2 + \dots + f(a_{n-1})\Delta_n =$$
$$= S(\Delta) = \sum_{j=1}^n f(a_{j-1})\Delta_j$$
(3)

přesně:
$$\lim_{\Delta \to 0} S(\Delta) = \int_a^b f(x) dx$$
 (4)

1. kapitola: Úvod, základní pojmy

Výrok - má pravdivostní hodnotu 0 nebo 1. Mějme A, B výroky:

		$A \wedge B$			$(A \Rightarrow B) \land (A \Leftarrow B)$	
A	B	A&B	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$	$\neg A$
0	0	0	0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	0	0
1	1	1	1	1	1	0

Obrázek 1.1: Tabulka pravdivostních hodnot

Důkaz implikace $A \Rightarrow B$:

1. přímý: ukážeme, že když A = 1, pak B = 1

2. nepřímý: plyne z $\neg B \Rightarrow \neg A$

3. sporem: předpokládáme, že $A=1 \wedge B=0$ a odvodíme spor (např.: 1=2)

Lemma A (Čtverec lichého čísla). $(tvrzení) \ \forall n \in \mathbb{N} : n^2 \ liché \Rightarrow n \ liché$

 $D\mathring{u}kaz$ 1. Fixuj $n \in \mathbb{N}$. Prvočíselný rozklad:

$$n = p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k} \tag{1.1}$$

$$n^2 = p_1^{2\alpha_1} \cdot \dots \cdot p_k^{2\alpha_k} \tag{1.2}$$

$$\forall j \in \{1, \dots, k\} : 2 \neq P_j \tag{1.3}$$

V rozvoji n^2 není 2, tak v rozvoji n také není (liší se pouze mocninou). QED

 $D\mathring{u}kaz$ 2. Chci: $\forall n \in \mathbb{N} : n \text{ sud\'e} \Rightarrow n^2 \text{ sud\'e}$

$$n = 2k, k \in \mathbb{N} \tag{1.4}$$

$$n^2 = 4k^2 = 2(2k^2) (1.5)$$

QED

Důkaz 3. Předpokládejme: n^2 liché a n sudé. Pak:

$$n^2 + n$$
 liché (1.6)

$$n(n+1)$$
 liché a sudé zároveň (spor) (1.7)

QED

O čem budou výroky? O definovaných pojmech:

- množina: soubor prvků (př.: množina mužů, žen)
- $x \in A$ x je prvkem
- $x \notin A \quad \neg(x \in A)$
- $A \subset B$ A je podmnožinou $B: \forall x \in A: x \in B$
- Ø prázdná množina
- množinové operace:

$$\circ \ A \cup B = \{x; (x \in A) \lor (x \in B)\}$$

$$\circ \ A \cap B = \{x; (x \in A) \land (x \in B)\}$$

$$\circ A - B = \{x; (x \in A) \lor (x \notin B)\}\$$

- kvantifikátory:
 - $\circ \ \forall x$ pro všechna x
 - $\circ \exists y$ existuje y
 - o př.: V(x,y) je vlastnost, že y je matka x. M je množina mužů, Z je množina žen.
 - * $\forall x \in M \ \exists y \in Z : V(x,y)$
 - * $\exists y \in Z : \forall x \in M : V(x, y)$

1.1 Reálná čísla

Věta A (Reálná čísla). Existuje množina \mathbb{R} s operacemi \oplus a \otimes a relací < tak, že splňuje vlastnosti A1 až A4.

Definice A1 (Algebraická struktura).

I Komutativita: $\forall x, y \in \mathbb{R} : x + y = y + x; \ x \cdot y = y \cdot x$

II Asociativita: $\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z; \ (x \cdot y) \cdot z = x \cdot (y \cdot z)$

III Nulový prvek \oplus : $\exists \ 0 \in \mathbb{R} : \forall x \in \mathbb{R} : 0 + x = x$ $Jednotka \otimes : \exists \ 1 \in \mathbb{R} : \forall x \in \mathbb{R} : 1 \cdot x = x$

IV Inverzní prvek: $\forall x \in \mathbb{R}, \forall z \in \mathbb{R} \exists ! y : x + y = z \ (právě jedno; ozn. \ y = z - x)$ $\forall x, z \in \mathbb{R}, x \neq 0 \ \exists ! y \in \mathbb{R} : x \cdot y = z \ (ozn. \ y = z/x)$

V Distributivita: $\forall x, y, z \in \mathbb{R} : x(y+z) = xy + xz$

VI Násobení nulou: $\forall x \in \mathbb{R} : 0 \cdot x = 0$

$$\forall x, y \in \mathbb{R} : x \cdot y = 0 \Rightarrow ((x = 0) \lor (y = 0))$$

Další vlastnosti lze odvodit:

$$-(-x) = x \tag{1.8}$$

$$-(x \cdot y) = (-x) \cdot y \tag{1.9}$$

Další značení:

$$x^n = x \cdot x \cdot \dots \cdot x \text{ (n-krát)} \tag{1.10}$$

$$-x = 0 - x \tag{1.11}$$

$$\forall x \neq 0 : x^{-1} = \frac{1}{x} \tag{1.12}$$

$$\forall x \neq 0 : x^{-n} = \left(\frac{1}{x}\right)^n \tag{1.13}$$

I. - IV. říká $(\mathbb{R}, +)$ a $(\mathbb{R} - \{0\}, \cdot)$ jsou grupy.

I. - VI. říká $(\mathbb{R}, +, \cdot)$ je těleso.

Ověřte, že Vlastnost A1 platí pro \mathbb{C} (komplexní čísla).

Příklad 1.1. Definujme $\mathbb{C} = \{z = (z_1, z_2); z_1, z_2 \in \mathbb{R}\}$ a operace $\oplus, \otimes \forall z, u \in \mathbb{C}$:

$$(z_1, z_2) + (u_1, u_2) = (z_1 + u_1, z_2, u_2)$$
(1.14)

$$(z_1, z_2) \cdot (u_1, u_2) = (z_1 u_1 - z_2 u_2, z_1 u_2 + z_2 u_1) \tag{1.15}$$

Nulový prvek: (0,0)

Jednotkový prvek: (1,0)

Lze zapisovat $z \in \mathbb{C}$, $z = (z_1, z_2)$, ozn. $z = z_1 + iz_2$ pro $i^2 = -1$.

Definice A2 (Uspořádání).

I Relace: $\forall x, y \in \mathbb{R}$ nastane právě jedna z možností:

$$(x < y)$$
 nebo $(x > y)$ nebo $(x = y)$

II Tranzitivita: $(x < y) \land (y < z) \Rightarrow (x < z)$

III Vztah uspořádání a sčítání: $(x < y) \Rightarrow x + z < y + z$

IV Vztah relace k násobení: $(0 < x) \land (0 < y) \Rightarrow 0 < xy$

Značení:

• $x > y \Leftrightarrow y < x$

•
$$(x \le y) \Leftrightarrow (x < y) \lor (x = y)$$

•
$$(x \ge y) \Leftrightarrow (x > y) \lor (x = y)$$

Lze odvodit další pravidla:

$$x < y \Leftrightarrow -x > -y \tag{1.16}$$

Důkaz.

$$x < y$$

$$x - x < y - x \qquad / \text{bod III}$$

$$0 < y - x$$

$$0 - y < y - y - x \qquad / \text{bod III}$$

$$-y < -x$$

$$-x > -y \qquad \text{funguje} \Leftrightarrow$$

QED

DÚ:

$$\forall x \in \mathbb{R} : x > 0 \Rightarrow \frac{1}{x} > 0 \tag{1.17}$$

Důkaz. Sporem:

$$x > 0 \text{ a } \frac{1}{x} < 0$$
$$-\frac{1}{x} > 0$$
$$0 < x \cdot \left(-\frac{1}{x}\right) = -1$$
$$1 < 0$$

Pokud 0 < 1, pak spor! 0 < 1 < 0.

Máme
$$0 < -1 \xrightarrow{IV} 0 < (-1)(-1) = 1$$
 QED

Příklad 1.2. Komplexní čísla nelze uspořádat podle Vlastnosti A2

Důkaz. Sporem: předpokládejme, že to lze.

$$i < 0$$
 $(0,1) < (0,0)$
 $-i > 0 \xrightarrow{A2-IV} 0 < (-i)(-i) = -1$

Pozn.:
$$i > 0 \xrightarrow{A2-IV} 0 < (i)(i) = -1$$
 QED

1.2 Význačné podmnožiny $\mathbb R$

- $\mathbb{N} = \{1, 2, \dots\}$ přirozená čísla
- $\mathbb{Z} = \{0, -1, -2, \dots\} \cup \mathbb{N}$ celá čísla
- $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{N} \right\}$ racionální čísla
- $\bullet \ \mathbb{R} \mathbb{Q}$ iracionální čísla

Poznámka: \mathbb{Q} má obě vlastnosti A1, A2 Intervaly:

- $(a,b) = \{x \in \mathbb{R}; a < x < b\}$ otevřený
- $[a, b] = (a, b) \cup \{a, b\}$ uzavřený
- \bullet [a,b),(a,b] polootevřené
- $(a, +\infty) = \{x \in \mathbb{R}; x > a\}$ neomezený otevřený
- $(-\infty, a) = \{x \in \mathbb{R}; x < a\}$ neomezený otevřený
- podobně: $[a, +\infty), (-\infty, a]$ neomezený uzavřený

Definice 1.1 (Absolutní hodnota). Pro $x \in \mathbb{R}$ definuji

$$|x| = \begin{cases} x & pokud \ x \ge 0 \\ -x & pokud \ x < 0 \end{cases}$$

Lemma 1.1 (Vlastnosti absolutní hodnoty). Nechť a > 0, pak |x| < a právě když - a < x < a

Důkaz. Podle znaménka x:

- 1. Ať $x \ge 0$ pak |x| = x a máme ukázat, že $x < a \Leftrightarrow -a < x < a$ " \Leftarrow "jasná " \Rightarrow "víme $-a < 0 \le x < a$
- 2. Ať x < 0, pak |x| = -x a máme ukázat, že $-x < a \Leftrightarrow -a < x < a$ x > -a pak pokračujeme podobně jako 1 :: -a < x < 0 < a

QED

Věta 1.1 (Trojúhelníková nerovnost).

$$|x + y| \le |x| + |y| \tag{1.18}$$

$$|x - y| \le |x| + |y| \tag{1.19}$$

$$|x+y| \ge ||x| - |y|| \tag{1.20}$$

$$|x - y| \ge ||x| - |y|| \tag{1.21}$$

 $D\mathring{u}kaz$. 1.18 a 1.19 plyne z Lemma 1.1

1.20 a 1.21 plyne z předešlého řádku pomocí triku

$$x = x + y - y \tag{1.22}$$

$$|x| = |x + y - y| \le |x + y| + |y| \tag{1.23}$$

$$|y| \le |x+y| + |x| \tag{1.24}$$

$$|x| - |y| \le |x+y| \tag{1.25}$$

$$|y| - |x| \le |x + y| / \cdot (-1)$$
 (1.26)

$$|x| - |y| \ge -|x + y|$$
 plyne z 1.26 a 1.16 (1.27)

QED

Definice 1.2 (Maximum). Nechť $M \subset \mathbb{R}$

- $x \in M$ nazveme maximum M, pokud $\forall y \in M : y \leq x$ Ozn. $x = max \ M$ Př.: (0,1) nemá max
- $K \in \mathbb{R}$ nazveme horní odhad M, pokud $\forall x \in M : x \leq K$ Př.: (0,1) má horní odhad 4, 1, ...

Lemma 1.2 (Jednoznačnost max). Existuje nejvýše 1 max. $M \subset \mathbb{R}$

 $D\mathring{u}kaz$. Ať existují dvě: $x_1, x_2 \in M$ maxima

$$x_1$$
je max; $x_2 \in M \Rightarrow x_1 \ge x_2$ (1.28)

$$x_2$$
je max; $x_1 \in M \Rightarrow x_2 \ge x_1$ (1.29)

$$\Rightarrow x_1 \le x_2 \le x_1 \tag{1.30}$$

Tedy
$$x_1 = x_2$$
 QED

Pozn.: analogicky def. minimum a dolní odhad.

Definice 1.3 (Supremum). Číslo $s \in \mathbb{R}$ nazvu supremem množiny $M \subset \mathbb{R}$, pokud

$$I \ \forall x \in M : x \leq s$$

$$II \ \forall s' < s, s' \in \mathbb{R} : \exists x \in M : s' < x$$

Supremum M značíme $s = \sup M$

Pozn.: I říká, že s je horní odhad, II říká, že s je nejmenší možný horní odhad Pozn.: pokud supremum náleží do intervalu, je to jeho maximum

Definice 1.4 (Infimum). Nechť $M \subset \mathbb{R}$. řekneme, že $s \in \mathbb{R}$ je infimum množiny M (ozn. inf M), pokud

$$I \ \forall x \in M : s \leq x$$

$$II \ \forall s' > s, s' \in \mathbb{R} : \exists x < s' : x \in M$$

 $Infimum\ M\ značíme\ s=inf\ M$

Definice A3 (Supremum a infimum). $Ka\check{z}d\acute{a}$ neprázdná shora omezená $M \subset \mathbb{R}$ má supremum $v \mathbb{R}$. $Ka\check{z}d\acute{a}$ neprázdná zdola omezená $M \subset \mathbb{R}$ má infimum $v \mathbb{R}$.

Definice 1.5 (Odmocnina).

- 1. Nechť a>0 a n sudé, $n\in\mathbb{N}$, pak existuje právě jedno číslo b>0: $b^n=a$
- 2. Nechť a>0 a n liché, $n\in\mathbb{N}$, pak existuje právě jedno číslo $b\in\mathbb{R}:b^n=a$ Značení: $b=\sqrt[n]{a}$

Lemma B (Čtverec dělitelný třema). k^2 je dělitelné $3 \Rightarrow k$ je děl. 3

 $D\mathring{u}kaz$. Jak zapsat k? $\exists m \in \mathbb{Z}$:

$$k = 3m + 0$$
 k^2 je děl. 3 (1.31)

$$k = 3m + 1 \Rightarrow k^2 = 9m^2 + 6m + 1$$
 není děl. 3 (1.32)

$$k = 3m + 2 \Rightarrow k^2 = 9m^2 + 12m + 4$$
 není děl. 3 (1.33)

QED

QED

Věta 1.2 (Iracionální čísla). Existují iracionální čísla

 $D\mathring{u}kaz$. Tvrdíme, že $\sqrt{3}$ není racionální. Sporem:

Ať
$$\sqrt{3}$$
 je rac. $\Rightarrow \exists k \in \mathbb{Z}, l \in \mathbb{N}$ nesoudělná: $\sqrt{3} = \frac{k}{l}$ (1.34)

$$3 = \frac{k^2}{l^2} \Rightarrow k^2 = 3l^2 \tag{1.35}$$

$$k^2$$
 je dělitelné 3 $\stackrel{LB}{\Longrightarrow} k$ je děl. 3 (1.36)

$$n \in \mathbb{Z} : (k = 3n \Rightarrow k^2 = 9n^2) \Rightarrow k^2 \text{ je děl } 9$$
 (1.37)

$$k^2 = 9n^2 = 3l^2 \Rightarrow l^2 = 3n^2 \tag{1.38}$$

$$l^2$$
 je děl. $3 \stackrel{LB}{\Longrightarrow} l$ je děl. 3 (1.39)

Což je spor, protože k, l jsou nesoudělná.

Definice A4 (Vlastnosti \mathbb{N}).

 $I \ \forall x \in \mathbb{R} \exists n \in \mathbb{N} : x < n$

II Princip indukce: nechť $M \subset \mathbb{N}$ a

(a) $1 \in M$

(b)
$$n \in M \Rightarrow n+1 \in M$$

 $Pak \ m = \mathbb{N}$

Pozn.:Vlastnost I plyne z vlastnosti A3

Pozn.: Archimédova vlastnost:

$$\forall m \in \mathbb{N}, \forall \epsilon > 0 \text{ (tedy reálné) } \exists n \in \mathbb{N} : n\epsilon > m$$
 (1.40)

 $D\mathring{u}kaz$. Polož $x = m/\epsilon$ v I QED

Věta 1.3 (Velikost intervalu). Každý otevřený interval obsahuje nekonečně racionálních i nekonečně iracionálních čísel.

Důkaz. Ve zkratce:

$$\frac{k}{l} + \frac{n}{n+1} \frac{1}{l} \qquad \text{je racionální } \forall n \in \mathbb{N}$$
 (1.41)

$$\frac{k}{l} + \frac{n}{n+1} \frac{1}{l} \qquad \text{je racionální } \forall n \in \mathbb{N}$$

$$\frac{k}{l} + \frac{\sqrt{3}}{3} \frac{n}{n+1} \frac{1}{l} \qquad \text{je iracionální } \forall n \in \mathbb{N}$$

$$(1.41)$$

Mějme otevřený interval (a, b). Stačí mít rac. č. k/l tak, aby $k/l, (k+1)/l \in (a,b).$

Jak hledám
$$l$$
? $\frac{1}{l} < \frac{b-a}{2}$ plyne z A4-I pomocí $l > \frac{2}{b-a}$ Jak hledám k ? def. $M = \left\{ n \in \mathbb{Z}; \frac{n}{l} < a \right\}$ podle A3 $\exists s \in \mathbb{R} : s = \sup M$

Tvrdíme: $s \in M$:

Podle druhé vlastnosti suprema: $\forall s' < s \ \exists n \in M : s' < n$ Volím $s' \in (s - \frac{1}{2}, s)$, pak $\exists n' \in M : s' < n'$. Zafixuji n' a tvrdím:

$$\forall s' \in (s - \frac{1}{2}, s) : s' < n' \le s \tag{1.43}$$

A tedy $s \leq n' \leq s.$ Definujme

$$k := s + 1 \Rightarrow \frac{k}{l} \in (a, b) \tag{1.44}$$

$$k+1 := s+2 \Rightarrow \frac{k+1}{l} \in (a,b)$$
 (1.45)

Potom:

$$a < \frac{k}{l} < \frac{k+s}{l} = \frac{s+2}{l} < a + \frac{2}{l} < a + b - 1 = b$$
 (1.46)

QED

 $D\mathring{u}kaz.$ 1.43 Vol. $s'' \in (s-\frac{1}{2},s)$ pak $\exists n'' \in M: s'' < n''$

$$s - \frac{1}{2} < s' < n' \le s \tag{1.47}$$

$$s - \frac{1}{2} < s'' < n'' \le s \tag{1.48}$$

Tedy:

$$n', n'' \in (s - \frac{1}{2}, s] \cap \mathbb{Z} \Rightarrow n' = n''$$

$$(1.49)$$

QED

2. kapitola: Reálné funkce, limita a spojitost

Funkce z Mdo Nje předpis, který každému prvku M přiřadí nejvýše jeden prvek z N

- $A \subset M : f(A) = \{f(x); x \in A\} \subset N$
- $B \subset M : f^{-1}(B) = \{x \in M : f(x) \in B\} \subset M$

Definice 2.1 (Prostá funkce, injekce, monomorfismus). Funkce je prostá, pokud

$$x \neq y \Rightarrow f(x) \neq f(y) \tag{2.1}$$

Definice 2.2 (Na funkce, surjekce, epimorfismus). Funkce $f: M \to N$ je na (zobrazuje M na N), pokud

$$\forall n \in \mathbb{N} \ \exists m \in M : f(m) = n \tag{2.2}$$

Obrázek 2.1: Funkce a) je na, funkce b) není.

 $P\check{r}$.: φ není prostá, zobrazuje \mathbb{R} na $[0,+\infty)$

$$\varphi: \mathbb{R} \to \mathbb{R} \tag{2.3}$$

$$x \to x^2 \tag{2.4}$$

$$\varphi((-1,1)) = [0,1)] \tag{2.5}$$

$$\varphi^{-1}([1,4]) = [-2,-1] \cup [1,2]$$
 (2.6)

Definice 2.3 (Vzájemně jednoznačné zobrazení, bijekce , isomorfismus). *Je-li* $f:M\to N$ prostá a na říkáme, že je vzájemně jednoznačná

Pro vzájemně jednoznačnou funkci lze definovat inverzní funkci:

$$f_{-1}: N \to M; y \in N \to \text{jediné } x \in M: f(x) = y$$
 (2.7)

Pozor!
$$\begin{cases} f^{-1} & \text{pro každou hodnotu zvlášť, je to množina} \\ f_{-1} & \text{inverzní funkce} \end{cases}$$

Definice 2.4 (Restrikce, zúžení). *Je-li f: M \to N a A \subset M: f|_A nazvu restrikce* (zúžení) f na A

Příklad 2.1. $\varphi(x) = x^2 : \varphi|_{[0,+\infty)}$ zobrazuje $[0,+\infty)$ na $[0,+\infty)$ vzájemně jednoznačně. Lze tedy definovat $\varphi_{-1} = (\varphi|_{[0,+\infty)})_{-1}(x) = \sqrt{x}$

Definice 2.5 (Složená funkce, superpozice). Pro M, N, K množiny a $f: M \to N; g: N \to K$ funkce definujeme složenou funkci

$$g \circ f: M \to K$$
 $M \xrightarrow{f} N \xrightarrow{g} K$ (2.8)

$$x \in M \to (g(f(x))) \quad x \to f(x) \to (g(f(x)))$$
 (2.9)

Budeme psát: $\varphi: M \to N$ i když $\varphi(x)$ není definované $\forall x \in M$

Definice 2.6 (Definiční obor a obor hodnot).

$$D(\varphi) = \{ x \in M : f(x) \text{ je definovaná} \}$$
 (2.10)

$$H(\varphi) = f\{D(\varphi)\} \tag{2.11}$$

Příklad 2.2.

$$x^{-1}: \mathbb{R} \to \mathbb{R} \quad D(x^{-1}) = \mathbb{R} - \{0\} \quad H(x^{-1}) = \mathbb{R} - \{0\}$$

Definice 2.7 (Monotónost funkce). Nechť $f: \mathbb{R} \to \mathbb{R}$; $M \subset D(f)$. Řeknu, že f

$$je \begin{cases} rostouci \\ klesajici \\ nerostouci \\ neklesajici \end{cases} na M, pokud \forall x_1, x_2 \in M : x_1 < x_2 \Rightarrow f(x_1) \begin{cases} < \\ > \\ \ge \\ \le \end{cases} f(X_2)$$

Obrázek 2.2: Ilustrace.

Definice 2.8 (Omezenost funkce). *Řekněme*, *že f*

$$je \left\{ \begin{array}{l} omezen\'a \ shora \\ omezen\'a \ zdola \\ omezen\'a \end{array} \right\} na \ M, \ pokud \ \exists K \in \mathbb{R} : \forall x \in M : \left\{ \begin{array}{l} f(x) < K \\ f(x) > K \\ |f(x)| < K \end{array} \right\}$$

Definice 2.9 (Symetrie funkce). Řekněme, že f

$$je \begin{cases} lich\acute{a}, \\ sud\acute{a}, \\ periodick\acute{a}, \end{cases} pokud \begin{cases} \forall x \in D(f) \\ \forall x \in D(f) \\ \exists p \in \mathbb{R} : \forall x \in D(f) \end{cases} plat\acute{i}$$

$$\begin{cases} -x \in D(f) & \& f(x) = -f(-x) \\ -x \in D(f) & \& f(x) = f(-x) \\ x + p \in D(f) & \& f(x) = f(x + p) \end{cases}$$

$$(2.12)$$

Budeme zkoumat: $f: \mathbb{R} \to \mathbb{R}$ nebo $f: \mathbb{R} \to \mathbb{C}$. Druhou variantu chápeme jako:

$$f = f_1 + i f_2; \ f_1, f_2 : \mathbb{R} \to \mathbb{R}$$
 (2.13)

Definice 2.10 (Okolí). Nechť $x_0\mathbb{R}, \delta \in (0, \infty)$

- kruhové okolí $U(x_0, \delta) := (x_0 \delta, x_0 + \delta) = \{x \in \mathbb{R} : x_0 \delta < x < x_0 + \delta\}$ (v aj B: ball)
- prstencové okolí $P(x_0, \delta) := U(x_0, \delta) \{x_0\}$
- pravé kruhové okolí $U_+(x_0, \delta) := [x_0, x_0 + \delta)$
- obdobně definujeme levé kruhové okolí, pravé prstencové okolí
 a levé prstencové okolí

Poznámky:

• Pro
$$0 < \delta_1 < \delta_2 \Rightarrow U(x_0, \delta_1) \subset U(x_0, \delta_2)$$

• Budeme psát: "na jistém $U(x_0)$ platí...", což znamená $\exists \delta > 0 : \forall x \in U(x_0, \delta)$ platí...

Věta 2.1 (Hausedorfův princip oddělení). Nechť $x_1, x_2 \in \mathbb{R}$; $x_1 \neq x_2$, pak $\exists \delta > 0 \ tak, \ \check{z}e \ U(x_1, \delta) \cap U(x_2, \delta) = \varnothing$ $Speciálně: x_1 \notin U(x_2, \delta); \ x_2 \notin U(x_1, \delta)$

 $D\mathring{u}kaz$. Volím $\delta = \frac{|x_1 - x_2|}{2}$. Tvrdím, že $U(x_1, \delta) \cap U(x_2, \delta) = \emptyset$ Sporem: ať $\exists y \in U(x_1, \delta) \cap U(x_2, \delta)$, pak

$$|x_1 - x_2| = |x_1 - y + y - x_2| \stackrel{\triangle nerovnost}{\leq}$$

$$|x_1 - y| + |y - x_2| < 2\delta = |x_1 - x_2|$$
(2.14)

Tedy $|x_1 - x_2| < |x_1 - x_2|$, což je spor. QED

Definice 2.11 (Limita). Nechť $x_0 \in \mathbb{R}$ a f je fce def na jistém $P(x_0)$ Číslo $A \in \mathbb{R}$ nazvu limitou f v x_0 , pokud

$$\forall \epsilon > 0 \ \exists \delta > 0 : x \in P(x_0, \delta) \Rightarrow f(x) \in U(A, \epsilon)$$
 (2.15)

Terminologie: pokud existuje $\lim_{x\to x_0} f(x) \in \mathbb{R}$ říkáme, že f má vlastní limitu ve vlastním bodě

Značení:

- $\lim_{x\to x_0} f(x) = A$
- $f(x) \to A \text{ pro } x \to x_0$

Poznámky:

- Limita závisí na f v okolí x_0
- Jiné zápisy 2.15

$$\forall \epsilon > 0 \; \exists \delta > 0 : f(P(x_0, \delta)) \subset U(A, \epsilon) \tag{2.16}$$

$$\forall \epsilon > 0 \ \exists \delta > 0 : \forall x \in \mathbb{R} : [0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \epsilon] \tag{2.17}$$

Věta B (Jednoznačnost limity). $Bud' \lim_{x\to x_0} f(x) = A \ a \lim_{x\to x_0} f(x) = B$ $Pak \ A = B$ $D\mathring{u}kaz$. Sporem: af $A \neq B$

Věta 2.1
$$\exists \epsilon > 0 : U(A, \epsilon) \cap U(B, \epsilon) = \emptyset$$
 (2.18)

2.15 pro
$$A \quad \exists \delta_1 > 0 : x \in P(x_0, \delta_1) \Rightarrow f(x) \in U(A, \epsilon)$$
 (2.19)

2.15 pro
$$B \quad \exists \delta_2 > 0 : x \in P(x_0, \delta_2) \Rightarrow f(x) \in U(B, \epsilon)$$
 (2.20)

Definujme
$$\delta = min(\delta_1, \delta_1)$$
 (2.21)

Odvodíme spor
$$\forall x \in U(x_0, \delta) : f(x) \in U(A, \epsilon) \cap U(B, \epsilon) = \emptyset$$
 (2.22)

QED

Příklad 2.3.