Predicting Song Likeability for a Spotify User

Bipin Dhoddamane Ravi Deron Martin Nimisha Gulati Sarthak Jain Siddhant Dushyant Purohit Utkarsh Neema

Introduction

Why spotify?

- Variations over 1300! music genres
- readily available large datasets
- real world problem

Logistic Regression

- Supervised learning algorithm used for linear classification.
- Ideal for categorical binary classification
- Weights features to obtain probabilistic outcomes.

Logistic Regression

Results:

- Accuracy with sklearn: 0.54
- Accuracy with our implementation(standard weight initialization): 0.52
- Accuracy with our implementation(custom weight initialization): 0.67

Support Vector Machines

- Used to create decision boundaries for linearly separable data
- Supervised learning method which creates decision boundaries in high dimension space
- Once trained, only requires the support vectors
- Can be used for non-linearly separable data using kernel tricks

Results

- Accuracy: 0.5272
- Only slightly above randomly guessing
- Like and disliked songs are not separable in linear space
- Comparable to Scikit-learn implementation which has an accuracy of 0.5594

Random Forest

- Random Forest algorithm utilizes the power of decision trees to make classifications
- It uses random subspacing and bootstrapping while making decision trees
- It then considers the prediction made by majority of the decision trees as final output
- Each decision tree created is independent of the other
- Splits in decision tree are created based on 'information gain'

Results

Accuracy of scikit-learn: 75%

- Time taken by my implementation: 3 mins
- Time taken by scikit-learn : 3 seconds

K-Means Clustering

Figure 12: After clustering, with 2 clusters.

Kmeans is an unsupervised clustering algorithm.

It is used to find structure in data when we have no labels.

We use Kmeans with k=2 for creating 2 cluster used for binary classification of liked and disliked songs.

K-Means Clustering

Results

	precision	recall	f1-score	support
0	0.54	0.71	0.61	189
1	0.64	0.46	0.53	215

Figure 10: Evaluation metrics for KMeans

Kmeans is not an ideal solution to binary classification problems

The clusters formed do not have labels and can be any 2 clusters.

AdaBoost

Ensemble Learning

- Weak Classifier
- Misclassified samples get more weight
- Weighted Average for result

Results:

- Accuracy with sklearn: 0.75
- Accuracy with our implementation: 0.72

Naive Bayes Classifier

- Naive Bayes classifier is a supervised machine learning algorithm that is used to predict/classify unseen data based on prior probabilities.
- We have used min-max scaling and gaussian distribution functions to normalize our data
- Naive Bayes assumes independence of features which helps our case

Results

- Preprocessing improves our accuracy
- accuracy is 66%
- compared to other algorithms, we get a better AUC

Conclusion

- supervised learning algorithms like logistic regression seen above is comparable but not the most efficient modeling technique when it comes to binary categorical classifications.
- Ensemble learning algorithms like random forest and ADA boost provide higher accuracy metrics close to 75% accuracy while in contrast the supervised method of Logistic regression only reaches upto 68% accuracy with modifications.
- Other clustering algorithms which are also unsupervised in nature provide slightly lower accuracy scores due to inability to distinguish between weighted features.

