Beschreibung von Bewegungen

Unter einer Bewegung versteht man die Veränderung des Ortes oder der Ausrichtung eines Körpers während dem die Zeit vergeht.

1. Zusammenhang zwischen Ort und Zeit

Den Zusammenhang zwischen Ort und Zeit kann man auf verschiedene Arten beschreiben:

- Tabelle ("Fahrplan")
- Diagramm
- Gleichung (geht nur in speziellen Fällen)

Beispiel

Eine <u>Tabelle</u> gibt an, an welchen Orten s sich der Körper zu gewissen Zeiten t befindet:

<i>t</i> [s]	0	1	2	3	4	5	6
s [m]	0	2	4	4	3	2	1

In einem $\underline{\text{Orts-Zeit-Diagramm}}$ wird grafisch dargestellt, wo (an welchem $\underline{\text{Ort }}s$) sich der Körper wann (zu welcher $\underline{\text{Zeit }}t$) befindet:

Mit Hilfe einer <u>Gleichung</u> s(t) kann man ausrechnen, an welchem Ort s sich der Körper zu jedem Zeitpunkt t befindet:

$$s(t) = \frac{1}{2} a \cdot t^2$$

2. Die Geschwindigkeit

Ein Körper befindet sich zur Zeit t_1 am Ort s_1 und zur Zeit t_2 am Ort s_2 . Die Geschwindigkeit dieser Bewegung ist definiert als:

$$V = \frac{\Delta s}{\Delta t} \qquad \Delta s = s_2 - s_1$$
$$\Delta t = t_2 - t_1$$

$$[v] = \frac{m}{s}$$
 oder $\frac{km}{h}$, wobei 1 $\frac{m}{s} = 3.6 \frac{km}{h}$

3. Die Beschleunigung

Ein Körper hat zur Zeit t_1 die Geschwindigkeit v_1 und zur Zeit t_2 die Geschwindigkeit v_2 . Die Beschleunigung dieser Bewegung ist definiert als die Änderung der Geschwindigkeit:

$$a = \frac{\Delta V}{\Delta t}$$

$$a = \frac{\Delta v}{\Delta t} \qquad \Delta v = v_2 - v_1$$
$$\Delta t = t_2 - t_1$$

$$\Delta t = t_2 - t_1$$

$$[a] = \frac{m}{s^2}$$

4. Die gleichförmige Bewegung

Eine Bewegung ist gleichförmig, wenn die Geschwindigkeit $v = \frac{\Delta s}{\Delta t}$ konstant ist. Dann gilt:

$$s = v \cdot t$$

$$v = \text{const.}$$

5. Die gleichmässig beschleunigte Bewegung

Eine Bewegung ist gleichmässig beschleunigt, wenn die Beschleunigung $a = \frac{\Delta V}{\Delta t}$ konstant ist. Dann gilt:

$$v = a \cdot t$$

$$s = \frac{1}{2} \cdot a \cdot t^2$$
 $a = \text{const.}$