John Karasinski

625 G Street • Davis, CA 95616 (916) 467-2727 • karasinski@gmail.com

Education

• University of California, Davis

Davis, CA

Ph.D. Mechanical and Aerospace Engineering

2016 - Current

- Human systems integration and control theory

M.S. Mechanical and Aerospace Engineering

2013-2016

- Real-time performance feedback for the manual control of spacecraft

• University of California, Santa Cruz

Santa Cruz, CA

B.S. Physics

2008-2012

- High-energy astroparticle physics with the Fermi Gamma-ray Telescope

Experience

• NASA Ames Research Center

NASA Pathways Intern

NASA Ames Research Center, Moffett Field, CA

August 2017 – Current

- Human factors and human performance within the Human Systems Integration Division

- Teleoperator performance modelling
- Development and design of Playbook scheduling tool
- Software development with python, Unity, node, and C#

• UC Davis Center for Human/Robotics/Vehicle Integration and Performance

Davis, CA

Graduate Student Researcher

2013 - Current

- Development and validation of methods to assess task performance in real-time and provide immediate feedback to improve mission outcomes for spaceflight operations
- Customized refresher and just-in-time training for long-duration spaceflight crews
- Simulation development for the analysis of human performance and human-automation interaction
- Multiple human subject research campaigns
- Computer-vision techniques for autonomous spacecraft rendezvous and docking
- Optimal control theory for spacecraft attitude pointing

• San José State University Research Foundation

NASA Ames Research Center, Moffett Field, CA

Research Intern

June – September 2016, June – August 2017

- Designed and built a prototype of a mobile procedure viewer with the goals of reducing execution time, training time, and procedure execution errors for astronauts on the International Space Station
- Directed design interns on prototyping, usability testing, analysis and feasibility tasks
- Mentored software development interns learning Arduino, node, and Unity to accomplish tasks
- Integrated HoloLens augmented reality display and ESP8266 hardware through a MQTT broker
- Software development with Unity, node, and C++

• Foodfully, Inc. Davis, CA

Lead Software Developer

2015-Current

- Development of web, iOS, and Android mobile apps to reduce household food waste
- Full-stack software development in Javascript, Meteor, MongoDB, and React

• Teachers Curriculum Institute

Mountain View, CA

Software Developer

2013-2015

- Development of interactive science curriculum, comprehensive educational suite, and online store
- Software development in JavaScript, HTML5, and Ruby on Rails

• Handstand Inc.

Content Administrator

Mountain View, CA
2011 – 2012

- Curated and published a library of over 2,000 creative commons and open source textbooks for free use (over 2 million views as of January 2017, see https://archive.org/details/opensource_textbooks)
- Assisted with the design, creation, and quality assurance of both the mobile and web applications
- Selected science, technology, engineering, and mathematics (STEM) textbooks for use with Android education application
- Effectively managed small teams of 3-7 people to complete various start up projects

• University of California, Santa Cruz

Santa Cruz, CA

2010 - 2012

Undergraduate Student Researcher

- Search for 'smoking gun' signatures of dark matter in the galactic center

- High energy gamma-ray timing analyses with the Fermi Gamma Ray Telescope

Junior Specialist

2009 - 2010, Balloon Campaigns 2011-13

- Computer-aided testing and evaluation of hardware and software for use on both test and final BARREL (Balloon Array for RBSP Relativistic Electron Losses) balloon campaigns
- Monitored data acquisition and performance of balloons during multiple campaigns to determine the electron loss rate during RBSP relativistic electron events

Selected Publications

Karasinski, John A, Joyce, R., Carroll, C., Gale, J., and Hillenius, S., "An Augmented Reality/Internet of Things Prototype for Just-in-time Astronaut Training," *International Conference on Virtual, Augmented and Mixed Reality*, Springer, Cham, 2017, pp. 248–260.

Karasinski, John A, Robinson, S. K., Handley, P., and Duda, K. R., "Real-Time Performance Feedback in a Manually-Controlled Spacecraft Inspection Task," *AIAA Modeling and Simulation Technologies Conference*, 2017, p. 1314.

Karasinski, John Austin, *Real-Time Performance Feedback for the Manual Control of Spacecraft*, Master's thesis, University of California, Davis, 2016.

Karasinski, John A, Robinson, S. K., Duda, K. R., and Prasov, Z., "Development of real-time performance metrics for manually-guided spacecraft operations," 2016 IEEE Aerospace Conference, IEEE, 2016, pp. 1–9.

Duda, K., Robinson, S., Prasov, Z., York, S., Handley, P., **Karasinski J**, Tinch, J., and West, J., "Metrics and Methods for Real-Time Task Performance Assessment," *Aerospace Medicine and Human Performance*, Vol. 86, No. 3, March 2015, pp. 207–208.

Duda, K., Robinson, S., Prasov, Z., York, S., Handley, P., **Karasinski J**, Tinch, J., and West, J., "Metrics and Methods for Real-Time Task Performance Assessment," Galveston, TX, January 2015, [Abstract and Poster].

Karasinski, John Austin, *A HIGH ENERGY TIMING ANALYSIS WITH THE FERMI GAMMA-RAY TELESCOPE*, Bachelor's thesis, University of California, Santa Cruz, 2012.

Core Technical Skills

Core Languages: Python, Javascript

Additional Languages: FORTRAN, C++, C, MATLAB, Simulink, LATEX, jQuery, Ruby on Rails, HTML5, CSS3

Development Environments: Linux, macOS, Windows, Android, iOS