QUESTION # 1 (5 points)

On considère la fonction

$$f(x) = \ln(1+x)$$
, $x > -1$

- a) Donner T(x) la série de Taylor de f(x) autour de a = 0. Spécifier $f^{(n)}(0)$.
- b) Pour la série T(x) obtenue en a), donner l'intervalle et le rayon de convergence. converge-t-elle aux extrémités de cet intervalle ? Justifier.
- Considérons que $x \in \left[-\frac{1}{2}, \frac{1}{2} \right]$.

 Calculer $\lim_{n \to \infty} \left| P_n(x) f(x) \right|$ où $P_n(x)$ est le polynôme de Taylor de degré n de f(x) de a = 0. Qu'en concluez-vous?
- Vous voulez approximer la fonction f(x) sur l'intervalle $\left[-\frac{1}{2},\frac{1}{2}\right]$ en utilis polynôme de Taylor de degré n autour de a=0. Quel degré minimal n dev utiliser pour garantir que l'erreur soit strictement inférieure à 0,02 en chaque poir intervalle?

QUESTION # 2 (3 points)

Soit l'égalité :

$$\sum_{n=1}^{\infty} C_n \left(x - \frac{\pi}{2} \right)^n = \left(x - \frac{\pi}{2} \right) \sin \left(x \right),$$

où C_n est un coefficient fonction de n.

Trouver les valeurs de C_n pour lesquelles cette équation est satisfaite.

QUESTION # 3 (2 points)

Déterminer si les séries suivantes sont convergentes ou divergentes. Trouver la somme lorsqu'il y a convergence.

a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)}$$

$$\mathbf{b)} \quad \sum_{n=1}^{\infty} \frac{e^n}{n^3}$$

QUESTION #4 (3 points)

Trouver la valeur positive de x telle que

$$5\sum_{n=-1}^{\infty} (3-x)^{-n} = 36.$$

QUESTION # 5 (3 points)

Déterminer l'intervalle et le rayon de convergence de la série

$$\sum_{K=1}^{\infty} \frac{100^K \left(x-1\right)^{2K}}{K}$$

QUESTION #6 (4 points)

Estimer la valeur de

$$\int_0^1 \frac{1 - e^{-x^2}}{x^2} dx,$$

tout en garantissant que l'erreur d'approximation soit inférieure à 5×10^{-2}