PHIL 3something - Logic II

Scott Saunders - 10163541

Winter 2016

Misc. Notation

- The set of positive integers $\{x : x \text{ is a positive integer }\}$
- The set of positive integers less than $\{x : x \text{ is a positive integer and } x \text{ is less than } 3\}. = \{1, 2\}.$
- The empty set: \emptyset or Δ
- Member of: $A \subseteq B$ iff $\forall X (x \in A \implies x \in B)$
- Union of A and B: $A \cup B$ iff $\{x : x \in A \lor x \in B\}$
- Intersection of A and B: $A \cap B$ iff $\{x : x \in A \land x \in B\}$
- Difference of A and B: $\{x : x \in A \land x \notin B\}$
- For any non-empty sets A, B: Cartesian product: A of B: $A \times B$: $\{ \langle x, y \rangle : x \in A \land y \in B \}$ (ALL OF THE POSSIBILITIES)
- TOTAL FUNCTION: Every element in the domain is valid
- PARTIAL FUNCTION: Not every element in the domain is valid.
- for any set of sets A:

$$- \ \, \cup A = \{x : \exists y (y \in A \land x \in y)\}$$
$$- \ \, \cap A = \{x : \forall y (y \in A \rightarrow x \in y)\}$$

- Relations: R is
 - reflexive : $\forall x Rxx$
 - symmetric : $\forall x \forall y (Rxy \implies Ryx)$
 - transitive : $\forall x \forall y \forall z ((Rxy \land Ryz) \implies Rxz)$
 - Euclidean : $\forall x \forall y \forall z ((Rxy \land Rxz) \implies Ryz)$
 - a equivalence relation: it's symmetric, reflexive, transitive.
 - a (partial) function: $\exists x$ and there is at most one y: Rxy: denoted f
 - a (total) function: assigns a value to each number of A: denoted f
- Domain: The set of a functions arguments.
- Range: The set of its values. (Results)
- f is a function from a set A iff the domain of f is included in A
- f is a function to a set B iff its range is included in B.

- f^{-1} is the inverse of the function f from the set A to the set B iff:if for every member $b \in B$, there is exactly one member of $a \in A$ such that f(a) = b, then $f^{-1}(b) = a$, otherwise $f^{-1}(b)$ is undefined.
- f is onto B iff B is the range of f (Surjective)
- f is one-to-one iff $\forall x \forall y (f(x) = f(y) \implies x = y)$ (Injective)
- f is a bijection iff f is onto and one-to-one.
- f is a correspondence iff f is total, one-to-one and onto.
- Sets A and B are equinumerous iff there is a correspondence from A to B.

Equinumerous is transitive. Prove: if A is equinumerous with B and B is equinumerous wit C, then A is equinumerous with C. Proof: Suppose A is equinumerous to B, and B is equinumerous to C. Then: There is a total, one-to-one function f from A onto B, and a total one-to-one function g from B to C. Prove equinumerous via h=g(f), such that h(n)=g(f(n))

- h is total: Let a be a member of A. h(a) = g(f(a)). Since f is total there is a member of b of B such that f(a) = b). since g is total, there is a member of $c \in C$ such that g(b) = c. Hence, h is total.
- h is onto C. WLOG Let c be a member of C, as g is onto, $\exists b \in B$ such that g(b) = c. As f is onto, then $\exists a \in A$ such that f(a) = b. Hence, the composition of h = f(g) is onto C.
- h is one-to-one: Suppose h is not one-to-one.

Then there $\exists a_1, a_2 \in A$ such that $h(a_1) = h(a_2), a_1 \neq a_2$.

Giving $g(f(a_1)) = g(f(a_2)), a_1/not = a_2$

Since g is one-to-one $g(b_1) = g(b_2)$ iff $b_1 = b_2$.

So the issue must lie in f. However f is one-to-one $f(a_1) = f(a_2)$ iff f(a) = f(b). Which is a contradiction, giving us that h is one-to-one.

 A^n : the nth Cartesian product of A with itself.

Suppose that the set of real Numbers r, r < r < 1, is enumerable. Then $L_r : r_1, r_2, r_3...$ written in a notation of $0.n_1n_2n_3.(nbeing natural numbers)$

The set of functions form the set of positive integers to positive integers is not enumerable.

The set of total nomadic functions from the set of positive integers, F^1 , is not enumerable.

It's a Proof by contradiction.

Turing machines are in the following form: q_n , $S_{1/0}$, $S_{1/0}/R/L$, q_m where q_n is our current state, and you see $S_{1/0}$, perform function $S_{1/0}/R$ and move to state q_m . If there is no operation specified on the current state for a scan, then it halts. (Also Called the Turing Alphabet)

$$\operatorname{start} \longrightarrow \binom{n}{}$$
 $\binom{m}{}$

Example with notation:

ex: (These are the same)

$$Q_1S_1RQ_1, Q_1S_0S_1Q_2, Q_2S_1LQ_2, Q_2S_0RQ_3, Q_3S_1S_0Q_3, Q_3S_0RQ_4$$

Remark (Turing Machines). • Each Turing machine is a finite set of Turing instructions.

- Each instruction is a 4 letter word of the Turing Alphabet.
- The set of Turing machine is enumerable. (Proof: exercise)