Heaven's Light is Our Guide Computer Science & Engineering Rajshahi University of Engineering & Technology

Lab Manual

Module- 09 Course Title: Sessional based on CSE 1201 **Course No.** : CSE 1202

Experiment No. 9

Name of the Experiment: Sorting and Searching

Duration: 1 cycle

Background Study: Chapter 9 (Theory and Problems of Data Structures Written by Seymour Lipschutz)

[Contain:

Insertion Sort & its Complexity Selection Sort & its Complexity Merge Sort & its Complexity Radix Sort & its Complexity

9.1 Insertion Sort

- 1. Select TEMP \leftarrow A[j]
- 2. Shift Data, and copy TEMP to proper place

Problem I: Insertion Sort

Algorithm 9.1: INSERTION(A, N)

This algorithm sorts the array A with N elements

- 1. Set A[0]:=- ∞
- 2. Repeat Steps 3 to 5 for K = 2,3,, N:
- 3. Set TEMP:=A[K] and PTR:=K-1
- 4. Repeat while TEMP<A[PTR]:
- 5. (a) Set A[PTR+1]:=A[PTR].
- 6. (b) Set PTR:=PTR-1.
- 7. [End of loop]
- 8. Set A[PTR+1]:=TEMP.
- 9. [End of Step 2]
- 10. Return.

Flow Chart: Draw a flow chart. Complexity of Insertion Sort:

Worst Case: O(n²)
Average Case: O(n²)

9.2 Selection Sort

Total comparisons = n(n-1)/2

 $\sim O(n^2)$

- 1. Find Min from A[2:N], and Interchange with First Element.
- 2. Find Min from A[3:N], and Interchange with second Element.
- 3. So on.

Problem II: Selection Sort

Algorithm 9.2(a): GETMIN(A,K,N,LOC)

An array A is in memory. The procedure finds the location LOC of the smallest element among A[K], a[K+1],..., A[N].

- 1. Set MIN:=A[K] and LOC:=K.
- 2. Repeat for J=K+1 to N:

If MIN>A[J], then:

Set MIN:=A[J] and LOC:=J.

[End of If statement]

[End of loop]

3. Return.

Algorithm 9.2(a): SELECTION(A,N)

This algorithm sorts the array A with N elements

- 1. Repeat Steps 2 and 3 for K=1,2,, N-1
- 2. **CALL GETMIN(A,K,N,LOC).**
- 3. Set TEMP:=A[K], A[K]:=A[LOC] and A[LOC]:=TEMP.
- 4. [End of Step 1 loop]
- 5. Exit

Flow Chart: Draw a flow chart. Complexity of Selection Sort:

Worst Case: $O(n^2)$ Average Case: $O(n^2)$

9.3 Merge Sort

Fig. Merge Sort

Problem III: Merge Sort

Algorithm 9.3(a): MERGE(A,R,LBA,B,S,LBB,C,LBC)

Let A be a sorted array with R elements and lower bound LBA, B be a sorted array with S elements and lower bound LBA and C has lower bound LBC. The procedure merges A and B into an array C with R+S elements.

```
1. Set NA:=LBA, NB:=LBB, PTR:=LBC, UBA:=LBA+R-1, UBB:=LBB+S-1.
2. Repeat while NA≤UBA and NB≤UBB
       If A[NA]<B[NB], then:
         (a) Set C[PTR]:=A[NA].
         (b) Set PTR:=PTR+1 and NA:=NA+1.
      Else:
         (a) Set C[PTR]:=B[NB].
         (b) Set PTR:=PTR+1 and NB:=NB+1.
      [End of If Statement]
   [End of loop]
3. If NA>UBA, then:
      Repeat for K=0,1,2,....., UBB-NB
         Set C[PTR+K]:=B[NB+K].
     [End of loop]
   Else:
      Repeat for K=0,1,2,....., UBA-NA
         Set C[PTR+K]:=A[NA+K].
      [End of loop]
   [End of If statement]
```

Algorithm 9.3(b): MERGEPASS(A,N,L,B)

4. Exit.

The N elements array A is composed of sorted subarrays where each subarray has L elements except possibly the last subarray, which may have fewer than L elements. The procedure merges the pairs of subarrays of A and assigns them to the array B.

- 1. Q:=INT(N/(2*L)), S:=2*L*Q and R:=N-S.
- 2. Repeat for J=1,2,....., Q:
 - (a) Set LB:= 1+)2*J-2)*L.
 - (b) Call MERGE(A,L,LB,A,L,LB+L,B,LB)

[End of Loop]

3. If R≤L, then:

Repeat for $J=1,2, \ldots, R$: Set B(S+J):=A(S+J).

[End of loop]

Else:

Call MERGE(A,L,S+1,A,R,L+S+1,B,S+1).

[End of If statement]

4. Return.

Algorithm 9.3(c): MERGESORT(A,N)

The algorithm sorts the array A with N elements using an auxiliary array B

- 1. Set L:=1
- 2. Repeat Steps 3 to 5 while L<N:
- 3. **Call MERGEPASS(A,N,L,B).**
- 4. Call MERGEPASS(B,N,2*L,A).
- 5. Set L:=4*L.

[End of Step 2 loop]

6. Exit.

Flow Chart: Draw a flow chart.

Complexity:

Worst Case: O(nlogn)
Average Case: O(nlogn)
Extra Memory: O(n).

9.4 Radix Sort

LSD Radix Sorting Sort by the last digit, then l	by the middle	MSD Radix Sorting: Sort by the first digit, then sort each of the groups by the next digit				
and the first on	ıe	group	s by th	ne next	t digit	
362 291 207	207	237	237	216	211	
436 362 436	253	318	216	211	216	
291 253 253	291	216	211	237	23₹	
487 436 362	362	462	268	268	268	
207 487 487	397	211	318	3∮8	318	
253 207 291	436	268	462	462	460	
397 397 397	487	460	460	460	462	
	¥ = -					

62	36	91	87	
0	1	2	3	
d = 10,				

PASS-I:

STEP-1: Initialize

COUNT:

A:

	COUNT	•								
	0	0	0	0	0	0	0	0	0	0
,	0	1	2	3	4	5	6	7	8	9

STEP 2: Consider LSB of each Number. (2,6,1,7,3,7)

COUNT:

0	1	1	1	0	0	1	2	0	0
0	1	2	3	4	5	6	7	8	9

STEP 3: 1	Now d	ecide how	to store	the num	ber				
0	1	2	3	3	3	4	6	6	6
0	1	2	3	4	5	6	7	8	9
STEP 4: Now con COUNT:	ısider	97, LSB = 7	, Let Au	xiliary a	rray B				
0	1	2	3	3	3	4	5 (6-1)	6	6
0 B:	1	2	3	4	5	6	7	8	9
									97
0 Now con COUNT:	ısider	1 53, LSB = 3	3	2	3	,	4		5
0	1	2	2(3-1)	3	3	4	5	6	6
0 B:	1	2	3	4	5	6	7	8	9
				53					97
0 Now con COUNT:	ısider	1 87, LSB = 7	7	2	3		4		5
0	1	2	2	3	3	4	4(5-1)	6	6
0 B:	1	2	3	4	5	6	7	8	9
				53			87		97
0 Now con COUNT:	ısider	1 91, LSB = 1	1	2	3		4	·	5
0	0	2	2	3	3	4	5	6	6
0 B:	1	2	3	4	5	6	7	8	9
91				53			87		97
0	ısider	36, LSB = 6	6	2	3	,	4		5
0	0	2	2	3	3	3	5	6	6
0 B:	1	2	3	4	5	6	7	8	9
91				53	36		87		97
0 Now con	sider	1 62, LSB = 2	2	2	3	1	4	•	5
COUNT:	0	2	1	3	3	3	5	6	6
0 B:	1	2	3	4	5	6	7	8	9
91		62		53	36		87		97
0		1	<u> </u>	2	3		4	1	5
STEP 5: (A:	Copy i	from B to A	λ:						
91		62		53	36		87		97

_		~~	
υ	Λ	C.C.	. •

				PAS	SS-II:							
STEP1: A		Initialize										
0	0	0	0	0	0	0	0	0	0			
0	1	2	3	4	5	6	7	8	9			
STEP 2: Consider Next DIGIT of each Number. (6,3,9,8,5,9) COUNT:												
0	0	0	1	0	5	1	7	1	2			
0	1	2	3	4		6	7	8	9			
STEP 3: Now decide how to store the number COUNT:												
0	0	0	1	1	5	3	7	4	6			
0	1	2	3	4	5	6	7	8	9			
STEP 4: Now cor COUNT:	Now consider 97, DIGIT = 9 , Let Auxiliary array B											
0	0	0	1	1	2	3	3	4	5			
_ 0	1	2	3	4	5	6	7	8	9			
B:					1			1				
0		1		2	3		4		97 5			
-	nsider	87, LSB =	8	2	3		4		5			
0	0	0	1	1	5	3	3	3	5			
0	1	2	3	4	5	6	7	8	9			
B:						. 1						
					87		4		97			
COUNT:		1 36, DIGIT	= 3	2	3		4		5			
0	0	0	0	1	2	3	3	3	5			
0 B:	1	2	3	4	5	6	7	8	9			
36					87				97			
0 Now cor COUNT:	nsider	1 53, DIGIT	= 5	2	3		4	·	5			
0	0	0	0	1	1	3	3	3	5			
0 B:	1	2	3	4	5	6	7	8	9			
36		53			87				97			
				_	3	·	4		5			
	nsider	62, DIGIT	= 6	2	3		7		3			
-	nsider 0			2		2		3				
Now cor COUNT:		1 62, DIGIT 0 2 53	= 6	_	3 1 5 5 87	6	3 7	8	5 9			

Now consider 91, DIGIT = 9

COUNT:

COUNT.									
0	0	0	0	1	1	2	3	3	4
0	1	2	3	4	5	6	7	8	9
B:									
36		53		62	87		91		97
0		1		2	3		4	•	5

STEP 5: Copy from B to A:

A:

36	53	62	87	91	97
0	1	2	3	4	5

Problem IV: Radix Sort to sort a set of integer number

Algorithm 9.4(a): GETMAX(A,N,MAX)

An array A is in memory. The procedure returns largest element among A[1], a[2],..., A[N].

- 1. Set MAX:=A[1].
- 2. Repeat for J=2 to N:

If MAX<A[J], then:

Set MAX:=A[J].

[End of If statement]

[End of loop]

3. Return.

Algorithm 9.4(b): COUNTSORT(A,N.EXP)

EXP is used to find the digit of each integer number. This procedure sorts the integer array A according to the digit represented by EXP using an auxiliary array B.

1. Repeat for J=0,1,, 9:

Set COUNT(J):=0.

[End of loop]

2. Repeat for J=1,2,, N:

Set COUNT((A[j]/EXP)%10) := COUNT((A[j]/EXP)%10) + 1.

[End of loop]

3. Repeat for J=1,2,, 9:

Set COUNT(J) := COUNT(J) + COUNT(J-1).

[End of loop]

4. Repeat for J=N,N-1,, 1:

Set COUNT((A[j]/EXP)%10) := COUNT((A[j]/EXP)%10)-1.

Set B(COUNT((A[j]/EXP)%10)):=A[J].

[End of loop]

5. Repeat for J=1,2,, N:

Set A(J):=B(J).

[End of loop]

6. Exit.

Algorithm 9.4(c): RADIXSORT(A,N)

The algorithm sorts the array A with N elements.

- 1. Call GETMAX(A,N,MAX).
- 2. Set EXP:=1.
- 3. Repeat Steps 4 and 5 while (MAX/EXP)>0
- 4. Call COUNTSORT(A,N.EXP).
- 5. EXP:=EXP*10.

[End of Step 3 loop]

6. Exit.

Flow Chart: Draw a flow chart.

Complexity:

Let d be the radix, s be the total pass (i.e. max length of items) and n be the total number of items into a list.

Hence the number of comparisons for this algorithm is bounded as follows:

 $C(n) \leq d^*s^*n$

d is constant for a specific case (e.g. d =10 for decimal digits) so d is independent of n. In worst case, s=n, then $O(n^2)$

In best case, $s = log_a n$, then O(nlogn).

Exercise:

[1] Supplementary Problem: Searching, Hashing

MORE PROBLEMS

1. Programming (or supplementary) Problems of Chapter 9 of "Data Structures" by Seymour Lipschutz.

LAB REPORT: You have to submit all assigned problems in next lab.