

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

92. Proposed by JOSIAH H. DRUMMOND, LL. D., Counselor at Law, Portland, Maine.

Let ABCD be a quadrilateral inscribed in a circle. Draw the diagonals AC and BD. Show that AB.BC:DC.AD=BD:AC. [From a note in Young's Geometry, edition of 1830.]

93. Proposed by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics in Russell College, Lebanon, Va.

While surveying in a level field I notice a mountain behind a hill. Wishing to know the height of each I take the angles of elevation of the tops of both and find them to be $\beta=45^{\circ}$, $\delta=40^{\circ}$, I then measure a straight line a=400 feet and find the angles of elevation of the tops to be $\gamma=42^{\circ}$, $\mu=38^{\circ}$. After measuring b=300 feet more in the same straight line I find the elevations to be $\lambda=40^{\circ}$, $\nu=36^{\circ}$. Find the height of each.

** Solutions of these problems should be sent to B. F. Finkel, not later than May 10.

CALCULUS.

73. Proposed by MOSES COBB STEVENS, A. M., Professor of Mathematics, Pur due University, Lafayette, Ind.

Solve
$$\int_{0}^{2\pi} \log(1 - \tan x) dx$$

74. Proposed by EDWARD R. ROBBINS, A. B., Mathematical Master in the Lawrenceville School, Lawrenceville, N. J.

A circular ring, whose radii are a and b, is cut by a plane making the area of the section (or sections) a maximum. Required the position of the plane, and the nature and area of the section (or sections).

*** Solutions of these problems should be sent to J. M. Colaw, not later than May 10.

DIOPHANTINE ANALYSIS.

64. Proposed by JOHN M. COLAW, A. M., Monterey, Va.

Find two cubic proper fractions whose product is a square proper fraction. Can a general solution be made?

- 65. Proposed by F. P. MATZ, D. Sc., Ph. D., Professor of Mathematics and Astronomy, Irving College, Mechanicsburg, Pa.
- Find (1) four consecutive numbers whose sum is a square, and (2) four consecutive numbers the sum of whose squares is a square.
- ** Solutions of these problems should be sent to J. M. Colaw, not later than May 10.

MISCELLANEOUS.

60. Proposed by G. B. M. ZERR, A. M., Ph. D., President and Professor of Mathematics, The Russell College, Lebanon, Va.

A tube of uniform cross section, small compared with its length, is bent into the form of a cycloid, its open ends lying at the cusps, and this cycloid is placed with its axis vertical and its vertex downwards. Equal quantities of fluids of specific gravity σ_1 and σ_2 are