

VALVOLINE GLOBAL OPERATIONS

- Worldwide leader in automotive and industrial lubricants
- Offered their first comprehensive internship program in the summer of 2025
- Website: https://www.valvolineglobal.com/en/

ASSEMBLY LINE SKETCH

PROBLEM STATEMENT

The BIB (Bag-in-Box) assembly line is experiencing low performance levels and a considerable amount of unplanned downtime

PROJECT GOAL

Implement a new strategy that will increase the Overall Equipment Efficiency (OEE) to increase company sales

 $OEE\ Average = 63.94\%$

Average OEE is skewed by shifts B and C

Deer Park needs to ensure its operators are correctly inputting data information on machine monitors

MY ROLE

- Gather more accurate data
- Track production output, unplanned downtime, machine failures, and noteworthy details.
- Analyze data to conduct **root-cause analysis** and report to the Deer Park engineers.

THE **FOLLOWING ARE MY FINDINGS**

$$\% Efficiency = \frac{actual \ bags \ produced}{theoretical \ max} * 100\%$$

Theoretical max is the assumption that the filler is running at full capacity (14 bags/minute) and running for 11 hours

•	Counted number of
	produced bags within a
	minute

- Tests were spaced out over time
- 70 Samples
- Consistent with the operation of only one side

BAGS PER MINUTE (BPM)					
PART #893933	PART #881056	PART #884940	PART #904063	PART #881050	
7	6.8	7	7	7	
6.9	6.9	6.9	7	6.9	
7	6.9	6.9	7	7	
7	7	7	7	7	
7	6	6.9	7	7	
7	7	7	7	6	
7	6.9	6.9	6.9	6.8	
7	7.1	7	7.1	6.9	
7.3	6.9	7	7.1	7	
7	7.1	7	7	6.9	
7	6.9	6.9	7.1	7	
	7.1	6.8	7.1	6.9	
	7		7	7.2	
	7			7	
	7			7	
	7			7	
				7	
				7	

6.96 TOTAL AVG (BPM)

14
EXPECTED (BPM)

49.7 CAPACITY (%)

Even if we construct a similar graph analyzing efficiency for only one side, production still lies below 50%. The core issue is the availability.

Equipment

- The filler causes about 60% of total monthly downtime
- Focusing solely on filler would help significantly
- But why is there so much downtime at the filler?

DOWNTIME ROOT CAUSE

- The filler experiences constant machine failures throughout shift
- However, it's a matter of how those issues are attacked
- Line operators tend to view downtime as a resting opportunity (take their time to troubleshoot failures)

WORKERS

Encourage/train them to minimize downtime

ANALYSIS

Compare before-and-after data to view progress

FILLER

Implement PMs* and prepare both lines

TESTING

Supervise BIB Line and record downtime/output

PIVOTING

Make changes to project plan as necessary

THANKS

I am proud to say that I have left the groundwork for the Deer Park Engineers to initiate their action plan in the next coming months

