Санкт-Петербургский Национальный Исследовательский Университет Информационных технологий, механики и оптики

Факультет инфокоммуникационных технологий

Лабораторная работа №4 Вариант №1

Выполнили:

Кремпольская Е.А

Петрова Н.Г

Проверил:

Мусаев А.А.

СОДЕРЖАНИЕ

BBE	ЕДЕНИЕ	. 3
1	ЗАДАНИЕ 1	. 4
1.1	Быстрая сортировка и сортировка расческой	. 4
ЗАД	[АНИЕ 2	. 6
2.1	Блочная и пирамидальная сортировки	. 6
ЗАД	[АНИЕ 3	. 7
3.1	Анализ сортировок	. 7
СПІ	ИСОК ЛИТЕРАТУРЫ	. 8
ПРИ	ЛОЖЕНИЕ	. 9

ВВЕДЕНИЕ

Цель данной работы – ознакомление с различными сортировками на языке программирования Python.

В ходе выполнения лабораторной работы были решены следующие задачи:

- создание программ с сортировкой;
- оценивание достоинства и недостатки различных сортировок.

Задания, которые необходимо выполнить:

- 1. Задание 1: написать программу с функциями для быстрой сортировки и сортировки расческой. Использовать данные функции п программу как модуль в другой программе. Пользователь выбирает один из двух методов сортировки. Оценить время выполнения программы с помощью модуля timeit.
- 2. Задание 2: изучить блочную и пирамидальную сортировку. Написать соответствующие программы.
- 3. Задание 3: оценить достоинства, недостатки и сложность изученных методов сортировок.

1 ЗАДАНИЕ 1

1.1 Быстрая сортировка и сортировка расческой

Быстрая сортировка разбивает массив на меньшие массивы до тех пор, пока он не закончится пустым массивом, или массивом, содержащим только один элемент, и затем все рекурсивно соединяется в сортированный большой массив.

При пузырьковом алгоритме сравниваются постоянно два элемента. В сортировке расческой эти элементы берутся не соседними, а как бы по краям «расчески» — первый и последний. Расстояние между сравниваемыми элементами наибольшее из возможных, то есть, это максимальный размер расчески.

Была создана программа, в которой данные сортировки используются как модули, а пользователь выбирает какой сортировкой он желает отсортировать список элементов. Метод быстрой сортировки (рисунок 1). Метод сортировки расчёской (рисунок 2).

```
Выберете сортировку:

1) Быстрая сортировка

2) Сортировка расческой

Введите номер действия: >? 1

Введите количество >? 4

Введите число >? 1

Введите число >? 5

Введите число >? 9

Сортировка завершена!

1.0 1.0 5.0 9.0

Время выполнения quicksort

3.3334014005959034e-05
```

Рисунок 1 – быстрая сортировка

```
Выберете сортировку:

1) Быстрая сортировка

2) Сортировка расческой

Введите номер действия: >? 2

Введите количество >? 4

Введите число >? 1

Введите число >? 5

Введите число >? 9

Сортировка завершена!

1.0 1.0 5.0 9.0

Время выполнения comb_sort

1.1708005331456661e-05
```

Рисунок 2 – сортировкой расчёской

Для сравнения быстродействия быстрой сортировки и сортировки расческой будет использована библиотека Timeit. Посчитав среднее значение, мы заметили, что быстрая сортировка работаетмедленнее в 1,3 раза.

Вывод: Сортировка расчёской — это очень эффективный метод сортировки. Стабильная сортировка, требуется меньше памяти и времени, основана на сравнении. Написали программы быстрая сортировка и сортировка расчёской, офицвремя данных методов при помощи модуля Timeit.

ЗАДАНИЕ 2

2.1 Блочная и пирамидальная сортировки

В алгоритме блочная сортировки сортируемые элементы распределяются между конечным числом отдельных блоков (карманов, корзин) так, чтобы все элементы в каждом следующем по порядку блоке были всегда больше (или меньше), чем в предыдущем. Каждый блок затем сортируется отдельно, либо рекурсивно тем же методом, либо другим. Затем элементы помещаются обратно в массив. Этот тип сортировки может обладать линейным временем исполнения. (рисунок 3).

```
Введите количество >? 4
Введите число >? 25
Введите число >? 4678
Введите число >? 1
Введите число >? 0.2
Сортировка завершена!
[0.2, 1.0, 25.0, 4678.0]
```

Рисунок 3 – Блочная сортировка

Алгоритм пирамидальной сортировки полагается на такие структуры данных как двоичные кучи. Поскольку мы знаем, что кучи всегда должны соответствовать определенным требованиям, мы можем использовать это для поиска элемента с наименьшим значением, последовательно сортируя элементы, выбирая корневой узел кучи и добавляя его в конец массива (рисунок 4).

```
Введите количество >? 4
Введите число >? 5
Введите число >? 44
Введите число >? 13
Введите число >? 2
Сортировка завершена!
2.0 5.0 13.0 44.0
```

Рисунок 4 – Пирамидальная сортировка

ЗАДАНИЕ 3

3.1 Анализ сортировок

Быстрая сортировка (O (n log n)) — алгоритм относительно короткий, не требует много памяти, но неустойчив, скорость может сильно упасть при неудачных входных данных;

Сортировка расчёской (O (n log n)) – простой код, эффективная сортировка, достаточно быстрая, но неустойчивая;

Блочная сортировка $(O(n \log n))$ – быстрая, работает с типами любых данных, но скорость может упасть при неудачных входных данных;

Пирамидальная сортировка $(O(n \log n))$ — быстро сортирует большие списки, не требует много памяти, но неустойчива.

Вывод: На основе этой таблицы мы можем сделать вывод, что сортировки имеют своипреимущества и недостатки, а также имеют наиболее подходящие для них случаи применения.

СПИСОК ЛИТЕРАТУРЫ

 1. Habr.
 [Электронный ресурс]
 –

 https://habr.com/ru/company/otus/blog/460087/
 (Дата последнего обращения

 24.10.2022).

приложение

Ссылка на полный код данной лабораторной работы:

https://clck.ru/32pBt6