

Cómputo Paralelo y en la Nube

Proyecto

Apertura

DBSCAN paralelo para la detección de ruido o outliers con OpenMP

Density-Based **Spatial Clustering of Applications** with Noise

Density-Based Spatial Clustering of Applications with Noise

Clusters Outliers

DBSCAN - parámetros

epsilon: Distancia

min_samples: Núm mínimo de puntos a distancia épsilon para ser denso

Tres tipos de nodos: Nodo *core* (de *primer* grado)

Nodo *ruido* ó *outlier*

Nodo *core* (de *segundo* grado)

DBSCAN — algoritmo ingenuo para detectar ruido

- Paso 1: Determina la categoría de cada punto en función de la distancia épsilon y del número mínimo de puntos a distancia épsilon para ser una zona densa.
 - Si un punto está en medio de una zona densa, es punto core (de primer orden)
 - Si no, es un punto ruido o outlier

DBSCAN – algoritmo ingenuo para detectar ruido

 Paso 2: Determina si un punto ruido (o outlier) es épsilon-alcanzable desde un punto core, si es el caso, re-etiquétalo como punto core (de segundo orden).

DBSCAN paralelo para la detección de ruido o outliers

- ¿Qué debo entregar?
 - Todo el código fuente
 - Versión serial.
 - Versión paralelizada.
 - Escrito con una descripción del código y de la estrategia de paralelización
 - Escrito con una descripción de la evaluación experimental de desempeño:
 - Explicación detallada de la definición del experimento.
 - Descripción del equipo donde se ejecutaron los experimentos en términos de hardware y software.
 - Interpretación y análisis de resultados.
 - Incluir gráficas
 - Archivo con los datos de los experimentos

Experimento para evaluar Rendimiento

Parametrizar el programa

- Número de puntos
 {20000, 40000, 80000, 120000, 140000, 160000, 180000, 200000}
- Número de hilos
 {1, (número de cores virtuales)/2, número de cores virtuales, número de cores virtuales*2}
- Promediar diez iteraciones para cada configuración.
- Entrada del programa: PUNTOS ALEATORIOS. El programa debe recibir (como entrada) un archivo csv que se puede generar usando la libreta DBSCAN_noise.ipynb que se encuentra en el respositorio del curso.
- Salida del programa: PUNTOS CORE Y RUIDO. El programa debe generar (como resultado) un archivo csv que se pueda visualizar usando la libreta DBSCAN_noise.ipynb que se encuentra en el respositorio del curso.
- Comparar contra version serial
- Obtener gráfica de Speed Ups

Criterios de evaluación

- Equipo de 1 o 2 personas.
- Peso total del proyecto: 2 puntos de su calificación final.
- Ejecución del proyecto con todos los requerimientos indicados en su descripción (1.2 puntos)
- Calidad y presentación de los documentos de descripción de código y evaluación experimental de desempeño (0.8 puntos)
- Fecha de entrega de código y documentación: Jueves 17 de Octubre de 2024 en clase.
- NOTA 1: El programa paralelo debe alcanzar al menos un speedup de 1.5. Caso contrario, habrá una penalización de 50%.
- NOTA 2: Si es una sola persona puede 1) hacer la mitad de los experimentos, 2) no entregar el escrito con la descripción del código y de la estrategia de paralelización (aunque SÍ tiene que entregar el escrito con la descripción de la evaluación experimental de desempeño).
- NOTA 3: 20% menos por cada día natural de retraso.
- NOTA 4: Si se entrega después de la hora de entrega, en automático aplica un día menos.