No. of Pages	2
No. of Questions	4

Department of Computer Science and Engineering MAKEUP FINAL EXAMINATION Fall 2020

CSE 340: Computer Architecture

Total Marks: 60 Time Allowed: 2.00 Hours

Name	e:	ID: Section:	-
1. a.		In MIPS we have two types of branching, conditional and unconditional. In both	4
		cases, we have to consider the address stored in the program counter (PC). Assume	
		that Program Counter (PC) holds the value 0x12220000. If offset value is 66, then	
		calculate the conditional and unconditional branch target.	
	b.	Consider the C code given below. Variable i is represented by 4-bit (ABCD). So,	6
		for example i=0 is represented as A=0, B=0, C=0, and D=0, where A is the MSB	
		and D is LSB. Draw the truth table considering the below C code, perform a sum of	
		product simplification of z, and design the circuit for the simplified expression.	
		int i,x=1,y=1,z=0;	
		for(i=0;i<16;i++){	
		x=x+y+i;	
		y=3*i;	
		if(x%7 = 0 y%5 = 0)	
		z=1;	
		else	
		z=0;}	
2		Consider the below C code segment. Convert the given segment into MIPS	10
		assembly code. Consider that x, y and z, i are in registers \$f0 and \$t0 and \$f1, \$t1	
		respectively. Base address of A is in register \$s0. [Please note: do not use mult	
		instruction to perform the multiplication]	
		For (i=0;i<10;i++){	
		(float) $x = (int) y + (float) z;$	
		(int) $y = (float) x + (float) z$;	
		float (z)= (int) y+(float) z; $A[i]=(float) z+2*(int) y$;	

		hazards using all the available methods. Your answer should contain all the necessary diagrams, required total cycle count in each solution along with average	
		CPI.	
		Add \$10,\$11,\$12	
		Add \$13,\$10,\$11	
		Sub \$7,\$13,\$6	
		Lw \$8,40(\$7)	
		S11 \$3,\$8,2	
		Addi \$11,\$9,\$6	
4.	a.	Let's assume in a pipeline execution, two instructions are trying to access the RAM	2
		in the same clock cycle for performing two different operations. What are those	
		operations, what situation can arise because of those operations and how that	
		situation can be handled?	
	b.	Design a PLA for the expressions: i. $y_1 = X'YZ' + XY'Z + XYZ$	4
		ii. $y_2 = XY'Z' + X'YZ' + XY'Z$	
	С.	iii. $y_3 = X'Y'Z' + XY'Z + X'YZ$ Suppose you are designing a direct mapped cache with 256 blocks (with 16-bit	4
	С.		7
		addresses) where each block is of size 16 bytes. What is the size of the tag field in	
		bits in the address? To what block number does address 1500 map? What would be	
		the miss ratio if, among 30 accesses, there were 10 hits?	

Consider the below set of instructions. Identify the data hazards and overcome the 10

THE END