Introduction to Computer Programming

Week 8.2: Symbolic computation with SymPy

Bristol

What is symbolic computation?

Symbolic computation is about performing exact mathematical operations that go beyond the basics like addition and multiplication (think differentiation and integration) The idea is to introduce a new type of variable, called a **symbol**, that behaves like an algebraic variable.

Symbols can be operated on without having a precise value assigned to them.

This is different from the variable types we have seen so far (e.g. int, float), which need a value assigned to them when they are created x = 1.33

```
v = [1, 2, 3, 4]
```

SymPy is a Python library for carrying out exact computations using symbolic computing.

SymPy

Features of SymPy include:

Differentiating and integrating functions

- Solving linear algebra problems (linear systems, determinants, eigenvalue problems)
- · Solving differential equations
- · And much more!
- **Getting started**

Some special variables

SymPy has exact representations of useful mathematical quantities

To get started, let's load the SymPy library into Python:

- pi represents π ullet E represents Euler's number e
- In [2]: sin(pi)
- Out[2]: 0

```
In [3]: log(E)
```

Out[4]: 0

Defining variables as symbols In order to make use of the capabilities of SymPy, we need to define variables as symbols.

This creates a variable x of type symbol.

This is done using the symbols function

In [6]: y = x + 1

Defining mathematical functions

print(y)

y = sqrt(x)

In [10]: $y_at_8 = y.subs(x, 8)$ y_at_8.evalf()

Out[10]: 2.82842712474619

x + 1

Values of x can be substituted into y using the substituted into y

Once we define a symbol, we can use it to create mathematical functions.

Example: Substitute x = 4 into y(x)

Let's see what happens when we substitute x=8 into the function $y=\sqrt{x}$

Example: Define the function $y(x) = \sqrt{x}$

In [9]: y.subs(x, 8)

Out[9]: $2\sqrt{2}$

The number $2\sqrt{2}$ is represented exactly as a symbol rather than being approximated by a float

The evalf method evaluates a symbolic expression as a floating point number

There are some other ways we can do this. The simplest is to substitute x=8.0 into y, which automatically triggers the floating-point evaluation

The diff function enables functions to be differentiated an arbitrary number of times

The integrate function computes the indefinite integral of a function (if it exists)

Warning: SymPy does not add the constant of integration to indefinite integrals!

 $\int_{0}^{1} x^{2} dx$

Out[12]: 2.82842712474619

The substitution and evaluation can be done at the same time using dictionaries In [12]: $y.evalf(subs = \{x:8\})$

Differentiating functions

Example: Compute y' and y''' when $y = \sqrt{x}$

In [14]: diff(y, x, 3) Out[14]:

In [15]: y = cos(x) * exp(3 * x) $y_ppp = diff(y, x, 3)$ $y_ppp.subs(x, 3.0)$

In [16]:

Out[16]:

Out[15]: -174127.050175619

y = xintegrate(y, x)

Example: Compute the indefinite integral of y = x

Integrating functions

Example: Evaluate y'''(3) when $y(x) = \cos(x)e^{3x}$

integrate(x^* 2, (x, 0, 1))

The integrate function can also handle definite integrals.

1

Example: Compute

Example: Compute

In [18]: integrate($\sin(x) / x$, (x, 0, oo))

Example: Solve $x^2 = -4$

Solving an equation

Example: Find the solutions to $x^3 = ax$

solve(F, x)Out[20]: [0, -sqrt(a), sqrt(a)]

Summary

SciPy performs exact mathematical calculations using* symbolic computing

• diff and integrate compute derivatives and integrals

• symbols is used to define algebraic variables

Solution: First we write this as $F(x) = x^2 + 4 = 0$

The solve function solves algebraic equations of the form F(x)=0

solve(F, x)Out[19]: [-2*I, 2*I]

> a, x = symbols('a x') $F = x^*3 - a^*x$

• subs and evalf are for substituting values and computing floating-point approximations

This is very useful for calculus homework!

• Solving algebraic equations (linear equations, polynomials, nonlinear equations)

In [1]: from sympy import *

• oo (two o's) represents infininty ∞ • I represents the complex number $i = \sqrt{-1}$

Out[3]: 1 In [4]: 1 / 00

In [5]: x = symbols('x')

Even though we haven't assigned a value to x, we can still perform operations on it and use it to define new variables

In [7]:

In [8]: y.subs(x, 4)Out[8]: 2

In [11]: y.subs(x, 8.0) Out[11]: 2.82842712474619

In [13]: diff(y,x)Out[13]:

Out[17]:

Out[18]:

In [19]: $F = x^*2 + 4$

In [20]:

solve solves algebraic equations