ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Алгоритмы и модели вычислений.

Домашняя работа 4.

Задача 1.

Докажите, что язык SUBSETSUM= $\{(n_1, \cdots n_k, N) | \text{из } n_1 \cdots n_k$ можно выбрать подмножество с суммой $N\}$

Для начала, докажем, что данная задача лежит в NP. В качестве сертификата выберем вектор из 0 и 1, при умножении на который наша исходная строчка $n_1 \cdots n_k$ будет, предположительно, давать N. Тогда мы, очеевидно, сможем проверить правдивость этого сертификата за полиномиальное время, используя не более k умножений и сложений.

Теперь докажем, что задача лежит в NPH. Для этого сведем 3CNF к нашей задаче. Пусть заданы формула ϕ от n переменных, состоящая из k пар скобок (C_i).

Задача 2.

Приведите три языка A, B и C такие, что $A \subset B \subset C : B \in P$, но $A, C \in NPC$.

Решение.

Возьмем в качестве B язык двураскрашиваемых графов (2-COL), в качестве C-3COL, докажем, что $2COL \subset 3COL$, пусть граф 2-раскрашиваемый, тогда покрасим произвольную вершину графа в цвет, отличный от первых двух, тогда получили, что граф 3-раскрашиваемый. Возьмем в качестве А язык 2-раскрашиваемых графов, в которых есть гамильтонов путь. Тогда получили, что $A \subset B \subset C$. Далее считаем, что ни одна скобка не содержит ондновременно саму переменниую x_i и ее отрицание $\overline{x_i}$, также считаем, что каждая переменная x_i входит хотя бы в одну пару скобок. Построим сводимость следющим образом. Каждой переменной x_i и каждой паре скобок C_i сопоставим два числа длиной n+k, эти числа образуют наш набор $n_1 \cdots n_k$, также создадим наше число N, такой же длины. Далее пометим каждый разряд этих чисел собственной меткой, метка одинакова для всех чисел, но отличается для разрядов, кроме того, метки для переменных и скобок отличны. Метки, соответствующие скобкам стоят в младших к разрядах. В нашем числе N разряды, соответвующие переменным назначим 1, остальные - 4. Теперь рассмотрим x_i . Каждой такой переменной соответсвуют два числа: v_i и u_i . Поставим в разряд, соответствующий x_i 1, а в остальные разряды, соотв. переменным, 0. Для v_i все разряды, соответвующий скобкам, в которых есть x_i , поставим равными 1, во все остальные разряды, не соотв. x_i , ставим 0. В u_i , аналогично, ставим 1 в разряды, соотв. $\overline{x_i}$, и 0 в остальные. Каждым скобкам C_i соотв. два числа d_i и e_i . Эти числа сожержат нули во всех разрядов, кроме тех, которые соотв C_i .В эти разрядвх поставим 1 у d и 2 у e.

Докажем, что такое сведение корректно. Рассмотим полученное множество чисел. Его мощность 2(n+k), каждое число длиной n+k, а его построение занимает полиномиальное время. Таким образом сведение работает за полиномиальное время.

Пусть функция ϕ выполнима: $\phi(x_1 \cdots x_k) = 1$ и $f(\phi) = \{(n_1 \cdots n_k)|N\}$. Тогда существует подмиржество с суммой N. Докажем это. Если $x_i = 1$, то добавляем в наше подмижество v_i , иначе u_i . Тогда в нашем подмижестве n чисел. Заметим, что для каждого скобочного разряда в уже набранной части подмижества есть не менее одного и не более трех чисел, у которых в данном разряде стоит единица. Также заметим, что для каждого разряда, соотв. скобкам C_i мы можем выбрать d и е, так что сумма в данном разряде станет равной 4. Добавим их в наше подмижество. Кроме того, что суммы в разрядах, соотв. переменным, равны 1 тк одна скобка не может одновременно содержать переменную и ее отрицание. Тогда сумма элементов подмножества есть N. Тогда ЗСNF сводится к задаче о сумме подмножества. \Rightarrow эта задача лежит в NPC.