- (1) (a) x_0 is a limit point of S if $\forall \varepsilon > 0$ $I_{\varepsilon}(x_0) \cap S \setminus \{x_0\} \neq \emptyset$
 - or/ I seg. (xn) in S\ {xo3 s.+4. xn -> xo.
 - (b) $\sqrt{5}$ is a limit point of \mathbb{Q} : every open interval $(\sqrt{5}-\epsilon, \sqrt{5}+\epsilon)$ contains rational numbers since \mathbb{Q} is dense in \mathbb{R} .

 - Show: lim F(x) = L (Use proof by contradiction).

Suppose F(x) does not approach L as x -> xo.

:. 78>0 s.H. YS>0 7xeS s.H.

0< /x-x0/< S and /F(x)-L/> E.

Idea: $S = \frac{1}{n}, n = 1, 2, 3, ...$

For each $n \in \mathbb{N}$ $\exists x_n \in S$ s.th. $0 < |x_n - x_0| < \frac{1}{n}$ and $|F(x_n) - L| > E$.

Since $|x_n-x_0|>0$, $x_n \neq x_0$... (x_n) is a veg. in $S \mid \{x_0\}$. Squeeze $Th^m \Rightarrow |x_n-x_0| \rightarrow 0$... $x_n \rightarrow x_0$. Contradiction. $(F(x_n) \rightarrow L)$.

(2) (a)
$$L(f, P) = \sum_{i=1}^{N} m_i(f)(x_i - x_{i-1})$$

where $m_i(f) = \inf_{x \in [x_{i-1}, x_{i}]} f(x)$
 $V(f, P) = \sum_{i=1}^{N} M_i(f)(x_i - x_{i-1}),$
 $M_i(f) = \sup_{x \in [x_{i-1}, x_{i}]} f(x)$

(b) $L(f) = \sup_{x \in [x_{i-1}, x_{i}]} \{L(f, P)\} P$ partition of $L_{0}, L_{1}\}$
 $V(f) = \inf_{x \in [x_{i-1}, x_{i}]} \{V(f, P)\} P$

$$= \inf_{x \in [x_{i-1}, x_{i}]} \{V(f, P)\} P$$
 $V(f) = \inf_{x \in [x_{i-1}, x_{i}]} \{V(f, P)\} P$
 $V(f, P) = V(f, P) P$
 $V(f, P) = V(f) P$
 $V(f, P) = V($

:
$$L(f) = \# \sup_{x \in \mathcal{L}} \{C(b-a)\} = C(b-a) = \inf_{x \in \mathcal{L}} \{C(b-a)\} = U(f)$$

: $f \in \inf_{x \in \mathcal{L}} \{C(b-a)\} = C(b-a) = \inf_{x \in \mathcal{L}} \{C(b-a)\} = U(f)$

(3) (a)
$$Show |\int_{c}^{d}g(t)dt| \leq M/c-dl$$
, $Krow : lg(t)|\leq M$
 $c \leq d = (g int)$
 $lg(t) \leq M = \int_{c}^{d}lg(t) dt$
 $lg(t) = lg(t) = lg(t) \leq M$
 $lg(t) = lg(t) = lg(t) = lg(t) \leq M$
 $lg(t) = lg(t) = lg(t)$

(d) Show
$$F$$
 is diffible at x_0 with $F(x_0) = f(x_0)$
 $|F(x)-F(x_0)-f(x_0)(x-x_0)| < M_x|x-x_0|$.

 $|F(x)-F(x_0)-f(x_0)| < M_x$
 $|f(x)-F(x_0)| = f(x_0)| < M_x$

Let $E > 0$. Since f is $e^{-\frac{1}{2}}$ then $|f(x)-f(x_0)| < E_{1/2}$
 $|f(x)-f(x_0)| = f(x_0)| = f(x_0)| = f(x_0)| < E_{1/2}$
 $|f(x)-f(x_0)| = f(x_0)| = f(x_0)| = f(x_0)| < E_{1/2}$
 $|f(x)-f(x_0)| < f$
 $|f(x)-f(x_0$

(5) (a)
$$\sum_{N=1}^{\infty} a_N$$
 converges (SN) $N=1$ converges where $S_N = \sum_{N=1}^{\infty} a_N$.

(c).
$$\leq \frac{(-1)^{n+1}}{n}$$
 converges but not absolutely.

(d) Suppose
$$\sum_{n=1}^{\infty} |a_n|$$
 converges.
Show $(SN)_{n=1}^{\infty}$ converges, $SN = \sum_{n=1}^{\infty} a_n$

Idea: show
$$(S_N)_{N=1}^{ol}$$
, $(ovely)$.

 $M_{17}M_{2}$

Let $(S_N)_{N=1}^{ol}$ = $\left|\sum_{N=1}^{M_1} a_{N} - \sum_{n=1}^{M_2} a_{n}\right|$
 $=\left|\sum_{N=1}^{M_1} a_{N}\right|$
 $\leq \sum_{N=1}^{M_1} |a_{N}|$
 $\leq \sum_{N=1}^{M_2} |a_{N}| < \leq \sum_{N=1}^{M_2} |a_{N}| < \leq \sum_{N=1}^{M_2} |a_{N}|$
 $\leq \sum_{N=1}^{M_2} |a_{N}| < \leq \sum_{N=1}^{M_2} |a_{N}| < \sum$

-: \[\sum | \and | \tau \converges by companion \(\omega' \) \\ \\ \quad \text{geom. series} \(\sum \text{M(F)}^n \) \]

(c) $p_N \rightarrow f$ uniformly an [-r,r] $\Rightarrow \sum_{n=0}^{\infty} (a_n x^n)$ converges uniformly on [-r,r].

Weiershaes M-feot. If $n(x) \mid \leq M_n$. $\sum_{n=0}^{\infty} M_n$ converges $|x| \leq r \quad |a_n x^n| \leq |a_n| r^n \quad (|x| \leq r) \forall n$. $\sum_{n=0}^{\infty} |a_n| r^n \quad \text{converges}$ $\sum_{n=0}^{\infty} |a_n x^n| \quad \text{converges}$

-