Independent Submission Request for Comments: 6114 Category: Informational

ISSN: 2070-1721

M. Katagi S. Moriai Sony Corporation March 2011

The 128-Bit Blockcipher CLEFIA

Abstract

This document describes the specification of the blockcipher CLEFIA. CLEFIA is a 128-bit blockcipher, with key lengths of 128, 192, and 256 bits, which is compatible with the interface of the Advanced Encryption Standard (AES). The algorithm of CLEFIA was published in 2007, and its security has been scrutinized in the public community. CLEFIA is one of the new-generation lightweight blockcipher algorithms designed after AES. Among them, CLEFIA offers high performance in software and hardware as well as lightweight implementation in hardware. CLEFIA will be of benefit to the Internet, which will be connected to more distributed and constrained devices.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor has chosen to publish this document at its discretion and makes no statement about its value for implementation or deployment. Documents approved for publication by the RFC Editor are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc6114.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Table of Contents

1. Introduction	. 3
2. Notations	. 3
3. CLEFIA Algorithm	
4. CLEFIA Building Blocks	
4.1. GFN_{d,r}	4
4.2. F-Functions	6
4.3. S-Boxes	. 7
4.4. Diffusion Matrices	
5. Data Processing Part	
5.1. Encryption/Decryption	. 9
5.2. The Numbers of Rounds1	_0
6. Key Scheduling Part1	0
6.1. DoubleSwap Function1	
6.2. Overall Structure	
6.3. Key Scheduling for a 128-Bit Key1	
6.4. Key Scheduling for a 192-Bit Key1	. 1
6.5. Key Scheduling for a 256-Bit Key	_2
6.6. Constant Values1	
7. Security Considerations	
8. Informative References	. 8
Appendix A. Test Vectors	_9
Appendix B. Test Vectors (Intermediate Values)	
TEP CHAZIF D. 1000 FOCOSTO (INCOMENSATACE VALACE)	

1. Introduction

Due to the widespread use of the Internet, devices with limited capabilities, e.g., wireless sensors, are connected to the network. In order to realize enough security for the network, cryptographic technologies suitable for such constrained devices are very important. This recent technology is called "lightweight cryptography", and the demand for lightweight cryptography is increasing.

In order to satisfy these needs, a 128-bit blockcipher, CLEFIA, was designed based on state-of-the-art techniques [FSE07]. CLEFIA is a 128-bit blockcipher, with key lengths of 128, 192, and 256 bits, which is compatible with the interface of AES [FIPS-197]. Since the cipher algorithm was published in 2007, its security has been scrutinized in the public community, but no security weaknesses have been reported so far.

CLEFIA is a lightweight blockcipher, since it can be implemented within 3 Kgates using a 0.13-um standard Complementary Metal Oxide Semiconductor (CMOS) Application-Specific Integrated Circuit (ASIC) library. Many of the lightweight cryptographic algorithms sacrifice security and/or speed; however, CLEFIA provides high-level security of 128, 192, and 256 bits and high performance in software and hardware. CLEFIA will be of benefit to the Internet, which will be connected to more distributed and resource-constrained devices.

CLEFIA is proposed in ISO/IEC 29192-2 [ISO29192-2] and the CRYPTREC project for the revision of the e-Government recommended ciphers list in Japan [CRYPTREC].

Further information about CLEFIA, including reference implementation, test vectors, and security and performance evaluation, is available from http://www.sony.net/clefia/.

2. Notations

This section describes mathematical notations, conventions, and symbols used throughout this document.

: A prefix for a binary string in hexadecimal form

a|b or (a|b) : Concatenation of a and b

(a,b) or (a b) : Vector style representation of a b a <- b : Updating a value of a by a value of b trans(a) : Transposition of a vector or a matrix a a XOR b : Bitwise exclusive-OR operation

: Logical negation

"a : Logical negation
a <<< b : b-bit left cyclic shift operation
a ^ b : a raised to the power of b</pre>

a $\hat{}$ b : a raised to the power of b a * b : Multiplication in GF(2^n) over a defined polynomial

3. CLEFIA Algorithm

The CLEFIA algorithm consists of two parts: a data processing part and a key scheduling part. The data processing part of CLEFIA consists of functions ENCr for encryption and DECr for decryption. The encryption/decryption process is as follows:

Step 1. Key scheduling

Step 2. Encrypting/decrypting each block of data using ENCr/DECr

The process of the key scheduling is described in Section 6, and the definitions of ENCr and DECr are explained in Section 5. CLEFIA supports 128-bit, 192-bit, and 256-bit keys, and the key scheduling and ENCr/DECr should be appropriately selected for its key length.

4. CLEFIA Building Blocks

4.1. $GFN_{d,r}$

We first define the function $GFN_{d,r}$, which is a fundamental structure for CLEFIA, and then define a data processing part and a key scheduling part.

CLEFIA uses a 4-branch and an 8-branch generalized Feistel network. The 4-branch generalized Feistel network is used in the data processing part and the key scheduling for a 128-bit key. The 8-branch generalized Feistel network is applied in the key scheduling for a 192-bit/256-bit key. We denote the d-branch r-round generalized Feistel network employed in CLEFIA as GFN_{d,r}.

For d pairs of 32-bit inputs Xi and outputs Yi (0 <= i < d), and dr/232-bit round keys $RK_{i} = i < dr/2$, $GFN_{d,r} = 4.8$ is defined as follows.

```
GFN_{4,r}(RK_{0}, ..., RK_{2r-1}, x0, x1, x2, x3)
      input : 32-bit round keys RK_{0}, ..., RK_{2r-1},
              32-bit data X0, X1, X2, X3,
      output: 32-bit data Y0, Y1, Y2, Y3
   Step 1. T0 | T1 | T2 | T3 <- X0 | X1 | X2 | X3
   Step 2. For i = 0 to r - 1 do the following:
      Step 2.1. T1 <- T1 XOR F0(RK_{2i}, T0),
                T3 \leftarrow T3 \times F1(RK_{2i} + 1), T2
      Step 2.2. T0 | T1 | T2 | T3 <- T1 | T2 | T3 | T0
   Step 3. Y0 | Y1 | Y2 | Y3 <- T3 | T0 | T1 | T2
GFN_{8,r}(RK_{0}, ..., RK_{4r-1}, x0, x1, ..., x7)
      input : 32-bit round keys RK_{0}, ..., RK_{4r-1},
              32-bit data X0, X1, X2, X3, X4, X5, X6, X7,
      output: 32-bit data Y0, Y1, Y2, Y3, Y4, Y5, Y6, Y7
   Step 1. T0 | T1 | ... | T7 <- X0 | X1 | ... | X7
   Step 2. For i = 0 to r - 1 do the following:
      Step 2.1. T1 <- T1 XOR F0(RK_{4i}, T0),
                T3 \leftarrow T3 \times F1(RK_{4i} + 1), T2),
                T5 <- T5 XOR F0(RK_{4i + 2}, T4),
                T7 < - T7 XOR F1(RK_{4i} + 3), T6
      Step 2.2. T0 | T1 | ... | T6 | T7 <- T1 | T2 | ... | T7 | T0
   Step 3. Y0 | Y1 | ... | Y6 | Y7 <- T7 | T0 | ... | T5 | T6
```

The inverse function GFNINV_ $\{4,r\}$ is obtained by changing the order of RK_ $\{i\}$ and the direction of word rotation at Step 2.2 and Step 3 in GFN_ $\{4,r\}$.

```
GFNINV_{4,r}(RK_{0}, ..., RK_{2r-1}, x0, x1, x2, x3)
         input : 32-bit round keys RK_{0}, ..., RK_{2r-1},
                 32-bit data X0, X1, X2, X3,
         output: 32-bit data Y0, Y1, Y2, Y3
      Step 1. T0 | T1 | T2 | T3 <- X0 | X1 | X2 | X3
      Step 2. For i = 0 to r - 1 do the following:
         Step 2.1. T1 <- T1 XOR F0(RK_\{2(r - i) - 2\}, T0),
                   T3 <- T3 XOR F1(RK_{2}(r - i) - 1), T2)
         Step 2.2. T0 | T1 | T2 | T3 <- T3 | T0 | T1 | T2
      Step 3. Y0 | Y1 | Y2 | Y3 <- T1 | T2 | T3 | T0
4.2. F-Functions
   Two F-functions F0 and F1 used in GFN_{d,r} are defined as follows:
  FO(RK, x)
         input: 32-bit round key RK, 32-bit data x,
         output: 32-bit data y
      Step 1. T <- RK XOR x
      Step 2. Let T = T0 \mid T1 \mid T2 \mid T3, where Ti is 8-bit data,
              T0 < -S0(T0),
              T1 < - S1(T1),
              T2 < - SO(T2),
              T3 < - S1(T3)
      Step 3. Let y = y0 \mid y1 \mid y2 \mid y3, where yi is 8-bit data,
              y <- M0 trans((T0, T1, T2, T3))
```

F1(RK, x)

input: 32-bit round key RK, 32-bit data x,

output: 32-bit data y

Step 1. T <- RK XOR x

Step 2. Let $T = T0 \mid T1 \mid T2 \mid T3$, where Ti is 8-bit data, T0 < - S1(T0), T1 < - S0(T1), T2 < - S1(T2), T3 < - S0(T3)

Step 3. Let $y = y0 \mid y1 \mid y2 \mid y3$, where yi is 8-bit data, y <- M1 trans((T0, T1, T2, T3))

S0 and S1 are nonlinear 8-bit S-boxes, and M0 and M1 are 4x4 diffusion matrices described in the following section. In each F-function, two S-boxes are used in the different order, and a different matrix is used.

4.3. S-Boxes

CLEFIA employs two different types of 8-bit S-boxes: S0 is based on four 4-bit S-boxes, and S1 is based on the inverse function over GF(2^8) [CLEFIA1].

Tables 1 and 2 show the output values of S0 and S1, respectively. In these tables, all values are expressed in hexadecimal form. For an 8-bit input of an S-box, the upper 4 bits indicate a row and the lower 4 bits indicate a column. For example, if a value 0xab is input, 0x7e is output by S0 because it is on the cross line of the row indexed by "a." and the column indexed by ".b".

Table 1: S-Box S0

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f 0. 57 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c 1. 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af 2. bf a1 19 65 f7 7a 32 20 06 ce e4 83 9d 5b 4c d8 3. 42 5d 2e e8 d4 9b 0f 13 3c 89 67 c0 71 aa b6 f5 4. a4 be fd 8c 12 00 97 da 78 e1 cf 6b 39 43 55 26 5. 30 98 cc dd eb 54 b3 8f 4e 16 fa 22 a5 77 09 61 6. d6 2a 53 37 45 c1 6c ae ef 70 08 99 8b 1d f2 b4 7. e9 c7 9f 4a 31 25 fe 7c d3 a2 bd 56 14 88 60 0b 8. cd e2 34 50 9e dc 11 05 2b b7 a9 48 ff 66 8a 73 9. 03 75 86 f1 6a a7 40 c2 b9 2c db 1f 58 94 3e ed a. fc 1b a0 04 b8 8d e6 59 62 93 35 7e ca 21 df 47 b. 15 f3 ba 7f a6 69 c8 4d 87 3b 9c 01 e0 de 24 52 c. 7b 0c 68 1e 80 b2 5a e7 ad d5 23 f4 46 3f 91 c9 d. 6e 84 72 bb 0d 18 d9 96 f0 5f 41 ac 27 c5 e3 3a e. 81 6f 07 a3 79 f6 2d 38 1a 44 5e b5 d2 ec cb 90 f. 9a 36 e5 29 c3 4f ab 64 51 f8 10 d7 bc 02 7d 8e

Table 2: S-Box S1

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f 0. 6c da c3 e9 4e 9d 0a 3d b8 36 b4 38 13 34 0c d9 1. bf 74 94 8f b7 9c e5 dc 9e 07 49 4f 98 2c b0 93 2. 12 eb cd b3 92 e7 41 60 e3 21 27 3b e6 19 d2 0e 3. 91 11 c7 3f 2a 8e al bc 2b c8 c5 0f 5b f3 87 8b 4. fb f5 de 20 c6 a7 84 ce d8 65 51 c9 a4 ef 43 53 5. 25 5d 9b 31 e8 3e 0d d7 80 ff 69 8a ba 0b 73 5c 6. 6e 54 15 62 f6 35 30 52 a3 16 d3 28 32 fa aa 5e 7. cf ea ed 78 33 58 09 7b 63 c0 c1 46 1e df a9 99 8. 55 04 c4 86 39 77 82 ec 40 18 90 97 59 dd 83 1f 9. 9a 37 06 24 64 7c a5 56 48 08 85 d0 61 26 ca 6f a. 7e 6a b6 71 a0 70 05 d1 45 8c 23 1c f0 ee 89 ad b. 7a 4b c2 2f db 5a 4d 76 67 17 2d f4 cb b1 4a a8 c. b5 22 47 3a d5 10 4c 72 cc 00 f9 e0 fd e2 fe ae d. f8 5f ab f1 1b 42 81 d6 be 44 29 a6 57 b9 af f2 e. d4 75 66 bb 68 9f 50 02 01 3c 7f 8d 1a 88 bd ac f. f7 e4 79 96 a2 fc 6d b2 6b 03 e1 2e 7d 14 95 1d

4.4. Diffusion Matrices

The multiplications of a diffusion matrix MO or M1, and a vector T in Section 4.2, are obtained as follows.

```
y = M0 \text{ trans}((T0, T1, T2, T3)):
       TO XOR (0x02 * T1) XOR (0x04 * T2) XOR (0x06 * T3),
y3 = (0x06 * T0) XOR (0x04 * T1) XOR (0x02 * T2) XOR
y = M1 trans((T0, T1, T2, T3)):
y3 = (0x0a * T0) XOR (0x02 * T1) XOR (0x08 * T2) XOR
```

In the above equations, * denotes a multiplication in $GF(2^8)$ defined by the lexicographically first primitive polynomial $z^8 + z^4 + z^3 + z^2 + 1$. The constants 0x02, 0x04, 0x06, 0x08, and 0x0a are represented in hexadecimal form of finite field polynomials. For example, 0x02 identifies the finite field element z. 8-bit data Ti is also interpreted as a finite field element.

The mathematical background of two diffusion matrices and their choices are explained in [CLEFIA2].

5. Data Processing Part

5.1. Encryption/Decryption

The data processing part of CLEFIA consists of ENCr for encryption and DECr for decryption. ENCr and DECr are based on the 4-branch generalized Feistel structure GFN_{4,r}. Let P,C be 128-bit plaintext and ciphertext, and let Pi, Ci (0 <= i < 4) be divided 32-bit plaintexts and ciphertexts where P = P0 | P1 | P2 | P3 and $C = C0 \mid C1 \mid C2 \mid C3$, and let WK0, WK1, WK2, WK3 be 32-bit whitening keys and RK_{i} (0 <= i < 2r) be 32-bit round keys provided by the key scheduling part. Then, r-round encryption function ENCr is defined as follows:

The decryption function DECr is defined as follows:

5.2. The Numbers of Rounds

The number of rounds, r, is 18, 22, and 26 for 128-bit, 192-bit, and 256-bit keys, respectively. The total number of RK_{i} depends on the key length. The data processing part requires 36, 44, and 52 round keys for 128-bit, 192-bit, and 256-bit keys, respectively.

6. Key Scheduling Part

The key scheduling part of CLEFIA supports 128-bit, 192-bit, and 256-bit keys and outputs whitening keys WKi (0 <= i < 4) and round keys $RK_{\{j\}}$ (0 <= j < 2r) for the data processing part.

6.1. DoubleSwap Function

We first define the DoubleSwap function, which is used in the key scheduling part.

The DoubleSwap Function Sigma(X):

For 128-bit data X,

```
Y = Sigma(X)
  = X[7-63] \mid X[121-127] \mid X[0-6] \mid X[64-120],
```

where X[a-b] denotes a bit string cut from the a-th bit to the b-th bit of X. Bit 0 is the most significant bit.

6.2. Overall Structure

The key scheduling part of CLEFIA provides whitening keys and round keys for the data processing part. Let K be the key and L be an intermediate key, and the key scheduling part consists of the following two steps.

- 1. Generating L from K.
- 2. Expanding K and L (Generating WKi and RK_{j}).

To generate L from K, the key schedule for a 128-bit key uses a 128-bit permutation $GFN_{4,12}$, while the key schedules for 192/256-bit keys use a 256-bit permutation GFN_{8,10}.

6.3. Key Scheduling for a 128-Bit Key

The 128-bit intermediate key L is generated by applying $GFN_{4,12}$, which takes twenty-four 32-bit constant values CON_128[i] (0 <= i < 24) as round keys and K = K0 \mid K1 \mid K2 \mid K3 as an input. Then, K and L are used to generate WKi $(0 \le i \le 4)$ and RK_{j} $(0 \le j \le 36)$ in the following steps. In the latter part, thirty-six 32-bit constant values CON_128[i] (24 <= i < 60) are used. The generation steps of CON_128[i] are explained in Section 6.6.

```
(Generating L from K)
```

```
Step 1. L <- GFN_{4,12}(CON_{128}[0], \ldots, CON_{128}[23], K0, \ldots, K3)
```

(Expanding K and L)

```
Step 2. WK0 | WK1 | WK2 | WK3 <- K
```

```
Step 3. For i = 0 to 8 do the following:
    T <- L XOR (CON_128[24 + 4i] | CON_128[24 + 4i + 1]
                  | CON_128[24 + 4i + 2] | CON_128[24 + 4i + 3])
    L <- Sigma(L)
    if i is odd: T <- T XOR K
    RK_{4i} | RK_{4i+1} | RK_{4i+2} | RK_{4i+3} < T
```

6.4. Key Scheduling for a 192-Bit Key

Two 128-bit values KL and KR are generated from a 192-bit key K = K0 | K1 | K2 | K3 | K4 | K5, where Ki is 32-bit data. Then, two 128-bit values LL and LR are generated by applying GFN_{8,10}, which takes $CON_{192}[i]$ (0 <= i < 40) as round keys and KL KR as a 256-bit input.

Then, KL, KR and LL, LR are used to generate WKi $(0 \le i \le 4)$ and $RK_{\{j\}}$ (0 <= j < 44) in the following steps. In the latter part, forty-four 32-bit constant values CON_192[i] (40 <= i < 84) are used.

The following steps show the 192-bit/256-bit key scheduling. For the 192-bit key scheduling, the value of k is set as 192.

6.5. Key Scheduling for a 256-Bit Key

The key scheduling for a 256-bit key is almost the same as that for a 192-bit key, except for constant values, the required number of RKi, and the initialization of KR.

For a 256-bit key, the value of k is set as 256, and the steps are almost the same as in the 192-bit key case. The difference is that we use $CON_256[i](0 \le i \le 40)$ as round keys to generate LL and LR, and then to generate $RK_{\{j\}}$ (0 <= j < 52), we use fifty-two 32-bit constant values $CON_256[i](40 \le i \le 92)$.

(Generating LL, LR from KL, KR for a k-bit key)

```
Step 1. Set k = 192 or k = 256
```

```
Step 2. If k = 192:
              KL <- K0 | K1 | K2 | K3, KR <- K4 | K5 | ~K0 | ~K1
       else if k = 256:
              KL <- K0 | K1 | K2 | K3, KR <- K4 | K5 | K6 | K7
```

```
Step 3. Let KL = KL0 \mid KL1 \mid KL2 \mid KL3
            KR = KR0 | KR1 | KR2 | KR3
            LL LR <-
            GFN_{8,10}(CON_k[0], ..., CON_k[39],
                               KLO, ..., KL3, KRO, ..., KR3)
```

(Expanding KL, KR and LL, LR for a k-bit key)

```
Step 4. WK0 | WK1 | WK2 | WK3 <- KL XOR KR
```

```
Step 5. For i = 0 to 10 (if k = 192),
                           or 12 (if k = 256) do the following:
             If (i \mod 4) = 0 \text{ or } 1:
                 T \leftarrow LL XOR (CON_k[40 + 4i] | CON_k[40 + 4i + 1]
                          | CON_k[40 + 4i + 2] | CON_k[40 + 4i + 3])
                 LL <- Sigma(LL)
                 if i is odd: T <- T XOR KR
                 T \leftarrow LR XOR (CON_k[40 + 4i] | CON_k[40 + 4i + 1]
                         | CON_k[40 + 4i + 2] | CON_k[40 + 4i + 3])
                 LR <- Sigma(LR)
                 if i is odd: T <- T XOR KL
             RK_{4i} \mid RK_{4i+1} \mid RK_{4i+2} \mid RK_{4i+3} \leftarrow T
```

6.6. Constant Values

32-bit constant values CON_k[i] are used in the key scheduling algorithm. We need 60, 84, and 92 constant values for 128-bit, 192-bit, and 256-bit keys, respectively. Let P(16) = 0xb7e1 $(= (e-2)2^16)$ and Q(16) = 0x243f $(= (pi-3)2^16)$, where e is the base of the natural logarithm (2.71828...) and pi is the circle ratio (3.14159...). CON_k[i], for k = 128,192,256, are generated as follows (see Table 3 for the repetition numbers 1_k and the initial values IV_k).

```
Step 1. T_k[0] \leftarrow IV_k
Step 2. For i = 0 to l_k - 1 do the following:
   Step 2.1. CON_k[2i] \leftarrow (T_k[i] \times P) \mid (T_k[i] \leftrightarrow 1)
   Step 2.2. CON_k[2i + 1] \leftarrow (T_k[i] \times Q) \mid (T_k[i] \iff 8)
   Step 2.3. T_k[i + 1] \leftarrow T_k[i] * (0x0002^{-1})
```

In Step 2.3, the multiplications are performed in the field GF(2^16) defined by a primitive polynomial $z^16 + z^15 + z^13 + z^11 + z^5 +$ $z^4 + 1$ (=0x1a831). 0x0002^{-1} denotes the multiplicative inverse of the finite field element z. The selection criteria of IV and the primitive polynomial are shown in [CLEFIA1].

Table 3: Required Numbers of Constant Values

k	# of CON_k[i]	1_k	IV_k
128	60	30	0x428a
192	84	42	0x7137
256	92	46	0xb5c0

Tables 4-6 show the values of $T_k[i](k = 128,192,256)$, and Tables 7-9 show the values of $CON_k[i](k = 128,192,256)$.

Table 4: T_128[i]

i	0	1	2	3	4	5	6	7
T_128[i]	428a	2145	c4ba	625d	e536	729b	ed55	a2b2
i	8	9	10	11	12	13	14	15
T_128[i]	5159	fcb4	7e5a	3f2d	cb8e	65c7	e6fb	a765
i	16	17	18	19	20	21	22	23
T_128[i]	87aa	43d5	f5f2	7af9	e964	74b2	3a59	c934
i	24	25	26	27	28	29		
T_128[i]	649a	324d	cd3e	669f	e757	a7b3		

Table 5: T_192[i]

i	0	1	2	3	4	5	6	7
T_192[i]	7137	ec83	a259	8534	429a	214d	c4be	625f
i	8	9	10	11	12	13	14	15
T_192[i]	e537	a683	8759	97b4	4bda	25ed	сбее	6377
i	16	17	18	19	20	21	22	23
T_192[i]	e5a3	абс9	877c	43be	21df	c4f7	b663	8f29
i	24	25	26	27	28	29	30	31
T_192[i]	938c	49c6	24e3	c669	b72c	5b96	2dcb	c2fd
i	32	33	34	35	36	37	38	39
T_192[i]	b566	5ab3	f941	a8b8	545c	2a2e	1517	de93
i	40	41						
T_192[i]	bb51	89b0						

Table 6: T_256[i]

i 0 1 2 3 4 5 6 7 T_256[i] b5c0 5ae0 2d70 16b8 0b5c 05ae 02d7 d573 i 8 9 10 11 12 13 14 15 T_256[i] beal 8b48 45a4 22d2 1169 dcac 6e56 372b i 16 17 18 19 20 21 22 23 T_256[i] cf8d b3de 59ef f8ef a86f 802f 940f 9e1f i 24 25 26 27 28 29 30 31 T 256[i] 9b17 9993 98d1 9870 4c38 261c 130e 0987 i 32 33 34 35 36 37 38 39 T_256[i] d0db bc75 8a22 4511 f690 7b48 3da4 1ed2 i 40 41 42 43 44 45 T_256[i] 0f69 d3ac 69d6 34eb ce6d b32e

Table 7: CON_128[i] (0 <= i < 60)

0 1 2 CON_128[i] f56b7aeb 994a8a42 96a4bd75 fa854521 i 4 5 6 7 CON_128[i] 735b768a 1f7abac4 d5bc3b45 b99d5d62 i 8 9 10 11 CON_128[i] 52d73592 3ef636e5 c57alac9 a95b9b72 i 12 13 14 15 CON_128[i] 5ab42554 369555ed 1553ba9a 7972b2a2 i 16 17 18 19 CON_128[i] e6b85d4d 8a995951 4b550696 2774b4fc i 20 21 22 23 CON_128[i] c9bb034b a59a5a7e 88cc81a5 e4ed2d3f i 24 25 26 27 CON_128[i] 7c6f68e2 104e8ecb d2263471 be07c765 i 28 29 30 31 CON_128[i] 511a3208 3d3bfbe6 1084b134 7ca565a7 i 32 33 34 35 CON_128[i] 304bf0aa 5c6aaa87 f4347855 9815d543 i 36 37 38 39 CON_128[i] 4213141a 2e32f2f5 cd180a0d a139f97a i 40 41 42 43 CON_128[i] 5e852d36 32a464e9 c353169b af72b274 i 44 45 46 47 CON_128[i] 8db88b4d e199593a 7ed56d96 12f434c9 i 48 49 50 51 CON_128[i] d37b36cb bf5a9a64 85ac9b65 e98d4d32 i 52 53 54 55 CON_128[i] 7adf6582 16fe3ecd d17e32c1 bd5f9f66 i 56 57 58 59 CON_128[i] 50b63150 3c9757e7 1052b098 7c73b3a7 Table 8: CON_192[i] (0 <= i < 84)

2	0	1	2	2
CON 192[i]	0 c6d61d91	1 aaf73771	5b6226f8	374383ec
i	4	5	6	7
CON_192[i]	15b8bb4c	799959a2	32d5f596	5ef43485
i	8	9	10	11
CON_192[i]	f57b7acb	995a9a42	96acbd65	fa8d4d21
i	12	13	14	15
CON_192[i]	735f7682	1f7ebec4	d5be3b41	b99f5f62
i	16	17	18	19
CON_192[i]	52d63590	3ef737e5	1162b2f8	7d4383a6
i	20	21	22	23
CON_192[i]	30b8f14c	5c995987	2055d096	4c74b497
i	24	25	26	27
CON_192[i]			920cb425	fe2ded25
1	28	29	30	31
CON_192[i]	710f7222	1d2eeec6		b8b77763
1	32	33	34	35
CON_192[i]	524234b8	3e63a3e5	1128b26c	7d09c9a6
i	36	37	38	39
CON_192[i]	309df106	5cbc7c87	f45f7883	987ebe43 43
T 100[4]	40 963ebc41	41 falfdf21	42 73167610	43 1f37f7c4
CON_192[i]	44	45	46	47
CON 192[i]	01829338	6da363b6	- 0	54e9298f
;	48	49	50	51
CON_192[i]	246dd8e6	484c8c93		9206c649
i	52	53	54	55
CON 192[i]	9302b639	ff23e324	7188732c	1da969c6
i	56	57	58	59
CON_192[i]	00cd91a6	6cec2cb7		8056965b
i	60	61	62	63
CON 192[i]	9a2aa469	f60bcb2d	751c7a04	193dfdc2
i	64	65	66	67
CON_192[i]	02879532	6ea666b5	ed524a99	8173b35a
i	68	69	70	71
CON_192[i]	4ea00d7c	228141f9	1f59ae8e	7378b8a8
i	72	73	74	75
CON_192[i]	e3bd5747	8f9c5c54	9dcfaba3	
i	76	77	78	79
CON_192[i]	a2f6d5d1			
i	80	81	82	83
CON_192[i]	0cb0895c	609151bb	3e51ec9e	5270b089

Table 9: CON_256[i] (0 <= i < 92)

		•	,	
i	0	1	2	3
CON 256[i]	0221947e	6e00c0b5	ed014a3f	8120e05a
ī	4	5	6	7
CON_256[i]	9a91a51f	f6b0702d	a159d28f	cd78b816
i	8	9	10	11
CON_256[i]	bcbde947	d09c5c0b	b24ff4a3	de6eae05
i	12	13	14	15
CON_256[i]	b536fa51	d917d702	62925518	0eb373d5
i	16	17	18	19
CON_256[i]	094082bc	6561a1be	3ca9e96e	5088488b
i	20	21	22	23
CON_256[i]	f24574b7	9e64a445	9533ba5b	f912d222
1	24	25	26	27
CON_256[i]	a688dd2d 28	caa96911 29	6b4d46a6 30	076cacdc 31
CON 256[i]	d9b72353	b596566e	80ca91a9	eceb2b37
i	32	33	34	35
CON 256[i]	786c60e4	144d8dcf	043f9842	681edeb3
i	36	37	38	39
CON 256[i]	ee0e4c21	822fef59	4f0e0e20	232feff8
ī	40	41	42	43
CON_256[i]	1f8eaf20	73af6fa8	37ceffa0	5bef2f80
i	44	45	46	47
CON_256[i]	23eed7e0	4fcf0f94	29fec3c0	45df1f9e
i	48	49	50	51
CON_256[i]	2cf6c9d0	40d7179b	2e72ccd8	42539399
1	52	53	54	55
CON_256[i]	2f30ce5c	4311d198	2f91cf1e	43b07098
1 COM 256[4]	56 fbd9678f	57 97f8384c	58 91fdb3c7	59
CON_256[i]	60	61	62	fddc1c26 63
CON 256[i]	a4efd9e3	c8ce0e13	be66ecf1	d2478709
i	64	65	66	67
CON 256[i]	673a5e48	0b1bdbd0	0b948714	67b575bc
i	68	69	70	71
CON_256[i]	3dc3ebba	51e2228a	f2f075dd	9ed11145
i	72	73	74	75
CON_256[i]	417112de	2d5090f6	cca9096f	a088487b
i	76	77	78	79
CON_256[i]	8a4584b7	e664a43d	a933c25b	c512d21e
i	80	81	82	83
CON_256[i]	b888e12d	d4a9690f	644d58a6	086cacd3
1	84	85	86	87
CON_256[i]	de372c53	b216d669 89	830a9629 90	ef2beb34
1 CON 256[i]	88 798c6324	89 15ad6dce	90 04cf99a2	91 68ee2eb3
CON_720[1]	19800324	radouce	U4CL99a2	ooeezeb3

7. Security Considerations

The security of CLEFIA has been scrutinized in the public community, but no security weaknesses have been found for full-round CLEFIA to date, neither by the designers nor by independent cryptographers. Security evaluation by the designers is described in [CLEFIA3], and a list of published cryptanalysis results by external cryptographers is available from

http://www.sony.net/Products/cryptography/clefia/technical/ related material.html.

8. Informative References

- The 128-bit Blockcipher CLEFIA Algorithm Specification, [CLEFIA1] Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/ technical/data/clefia-spec-1.0.pdf.
- [CLEFIA2] The 128-bit blockcipher CLEFIA - Design Rationale, Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/ technical/data/clefia-design-1.0.pdf.
- [CLEFIA3] The 128-bit blockcipher CLEFIA - Security and Performance Evaluations, Revision 1.0, June 1, 2007, Sony Corporation, http://www.sony.net/Products/cryptography/clefia/ technical/data/clefia-eval-1.0.pdf.
- [CRYPTREC] Cryptography Research and Evaluation Committees, http://www.cryptrec.go.jp/.
- [FIPS-197] National Institute of Standards and Technology, "Advanced Encryption Standard (AES)", FIPS 197, November 2001, http://csrc.nist.gov/publications/fips/fips197/ fips-197.pdf.
- [FSE07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., and T. Iwata, "The 128-bit Blockcipher CLEFIA", proceedings of Fast Software Encryption 2007 - FSE 2007, LNCS 4593, pp. 181-195, Springer-Verlag, 2007.

[ISO29192-2]

ISO/IEC 29192-2, "Information technology - Security techniques - Lightweight cryptography - Part 2: Block ciphers", http://www.iso.org/iso/iso_catalogue/ catalogue_tc/catalogue_detail.htm?csnumber=56552.

Appendix A. Test Vectors

In this appendix, we give test vectors of CLEFIA for each key length. The data are expressed in hexadecimal form. For the intermediate values of these vectors, refer to Appendix B.

128-bit key:

```
ffeeddcc bbaa9988 77665544 33221100
plaintext 00010203 04050607 08090a0b 0c0d0e0f
ciphertext de2bf2fd 9b74aacd f1298555 459494fd
```

192-bit key:

```
key
           ffeeddcc bbaa9988 77665544 33221100
           f0e0d0c0 b0a09080
plaintext 00010203 04050607 08090a0b 0c0d0e0f
ciphertext e2482f64 9f028dc4 80dda184 fde181ad
256-bit key:
          ffeeddcc bbaa9988 77665544 33221100
           f0e0d0c0 b0a09080 70605040 30201000
```

plaintext 00010203 04050607 08090a0b 0c0d0e0f ciphertext a1397814 289de80c 10da46d1 fa48b38a

Appendix B. Test Vectors (Intermediate Values)

128-bit key:

key

plaintext ciphertext			08090a0b f1298555	
L	8f89a61b	9db9d0f3	93e65627	da0d027e
WK_{0,1,2,3}	ffeeddaa	bbaa9988	77665544	33221100
RK_{0,1,2,3}			41c06256	
RK_{4,5,6,7}			e8c528dc	
RK_{8,9,10,11}			312a37cc	
RK_{12,13,14,15}			d3f463d6	
RK_{16,17,18,19}			018002e2	
RK_{20,21,22,23}	9f98d11e	babee8cf	b0369efa	d3aaef0d
RK_{24,25,26,27}	3438f93b	f9cea4a0	68df9029	b869b4a7
RK_{28,29,30,31}	24d6406d	e74bc550	41c28193	16de4795
RK_{32,33,34,35}			b19d0554	

ffeeddcc bbaa9988 77665544 33221100

	l whitening	g key	00010203	04050607 ffeeddcc	08090a0b	0c0d0e0f bbaa9988
after v	whitening		00010203	fbebdbcb	08090a0b	b7a79787
Round	F-function input round key after key after S after M		00010203 F0 00010203 f3e6cef9 f3e7ccfa 290246e1 547a3193	fbebdbcb	08090a0b F1 08090a0b 8df75e38 85fe5433 777de8e8 abf12070	b7a79787
Round	F-function input round key after key after S after M		af91ea58 F0 af91ea58 41c06256 ee51880e cb5d2b0c f51cebb3	08090a0b	1c56b7f7 F1 1c56b7f7 640ac51b 785c72ec 63a5edd2 82dfe347	00010203
Round	F-function input round key after key after S after M		fd15e1b8 F0 fd15e1b8 6a27e20a 973203b2 c2c7c6c2 d8dfd8de	1c56b7f7	82dee144 F1 82dee144 5a791b90 d8a7fad4 be59e10d e15ea81c	af91ea58
Round	F-function input round key after key after S after M		c4896f29 F0 c4896f29 e8c528dc 2c4c47f5 9da4dafc b5b28e96	82dee144	4ecf4244 F1 4ecf4244 00336ea3 4efc2ce7 43bce638 b65c519a	fd15e1b8
Round	5 F-function input round key after key after S after M		376c6fd2 F0 376c6fd2 59cd17c4 6ea17816 f26ad3e5 29f08afd	4ecf4244	4b49b022 F1 4b49b022 28565583 631fe5a1 62af9f1b be01d127	c4896f29

Round	6 F-function input round key after key after S after M	add	673fc8b9 F0 673fc8b9 312a37cc 5615ff75 b39c8e58 5999a79e		7a88be0e F1 7a88be0e c08abd77 ba020379 2dd1e9a2 0429b329	376c6fd2
Round	7 F-function input round key after key after S after M	add	F0 12d017bc 7e8e7eec		3345dcfb F1 3345dcfb 8be7e949 b8a235b2 67a08eba dfd3cd32	673fc8b9
Round	8 F-function input round key after key after S after M	add	1459a507 F0 1459a507 d3f463d6 c7adc6d1 e7ee5a5f 8c9d011c		b8ec058b F1 b8ec058b a0aad6aa 1846d321 9e97f1a1 93684eec	12d017bc
Round	9 F-function input round key after key after S after M	add	bfd8dde7 F0 bfd8dde7 e75eb039 58866dde 4e821daf e6d6501e		81b85950 F1 81b85950 0d657eb9 8cdd27e9 59c56044 6d5839b4	1459a507
Round	F-function input round key after key after S after M		F0 5e3a5595 018002e2		79019cb3 F1 79019cb3 9117d009 e8164cba 0185a49c b9b479c8	bfd8dde7
Round	F-function input round key after key after S after M		bba357c7 F0 bba357c7 9f98d11e 243b86d9 f70f1144 28974052	79019cb3	066ca42f F1 066ca42f babee8cf bcd24ce0 cb72a481 4a6700b1	5e3a5595

Round 12 input F-function input round key after key add after S after M	5196dcel 066ca42f 145d5524 bba357c7 F0 F1 5196dcel 145d5524 b0369efa d3aaef0d ela0421b c7f7ba29 6f7efd4f 72642dce ffb5db32 907d3820
Round 13 input F-function input round key after key add after S after M	F0 F1 f9d97f1d 2bde6fe7 3438f93b f9cea4a0
Round 14 input F-function input round key after key add after S after M	
Round 15 input F-function input round key after key add after S after M	817ca7e4 4da8e442 3de82490 1e29190c F0 F1 817ca7e4 3de82490 24d6406d e74bc550 a5aae789 daa3e1c0 8d233818 2904757b 7bd4cced eac2f0fb
Round 16 input F-function input round key after key add after S after M	F0 F1 367c28af f4ebe9f7 41c28193 16de4795
Round 17 input F-function input round key after key add after S after M	64664dd0 f4ebe9f7 4065c77b 367c28af F0 F1 64664dd0 4065c77b a34a20f5 33265d14 c72c6d25 73439a6f e7e61de7 788c85b4 2ac01b0a c755adfa

Round 18 input F-function input round key after key add after S after M	de2bf2fd F0 de2bf2fd b19d0554 6fb6f7a9 b44d648c ac7738f2	4065c77b	f1298555 F1 f1298555 5142f434 a06b7161 7e99ea2a 12d0c82d	64664dd0
output final whitening key after whitening ciphertext	de2bf2fd	77665544 9b74aacd	f1298555 f1298555 f1298555	33221100 459494fd
192-bit key:				
key plaintext ciphertext	f0e0d0c0 00010203	b0a09080 04050607	77665544 08090a0b 80dda184	0c0d0e0f
LL LR WK_{0,1,2,3} RK_{0,1,2,3} RK_{4,5,6,7} RK_{8,9,10,11} RK_{12,13,14,15} RK_{16,17,18,19} RK_{20,21,22,23} RK_{24,25,26,27} RK_{28,29,30,31} RK_{32,33,34,35} RK_{36,37,38,39} RK_{40,41,42,43} plaintext initial whitening key	db05415a 1ca9b2e1 0f0e0d0c 4d3bfd1b 73c2eeb8 38c46a07 38351b2f 509b31a6 419a74b9 6e3ff82a ed785cbd 4bbd5f6a 521213ce 17f68fde	800082db b4606829 0b0a0908 7a1f5dfa dd429ec5 fc2ce4ba 74bd6e1e 4c5ad53c 1dd79e0e 74ac3ffd 9c077c13 31fe8de8 4f1f59d8 f6c360a9	7cb8186c c92dd35e 7777777 0fae6e7c e220b3af 370abf2d 1b7c7dce 6fc2ba33 240a33d2 b9696e2e 04978d83 b76da574 c13624f6 6288bc72 08090a0b	d788c5f3 2258a432 7777777 c8bf3237 c9135e73 b05e627b 92cfc98e e1e5c878 9dabfd09 cc0b3a38 2ec058ba 3a6fa8e7 ee91f6a4 c0ad856b
after whitening Round 1 input F-function input round key after key add after S after M		0b0b0b0b	08090a0b 08090a0b F1 08090a0b 7a1f5dfa 721657f1 ed85d736 c397f62b	

Round	F-function input round key after key after S after M		be091130 F0 be091130 Ofae6e7c bla77f4c f3d10ba4 9fba69c1	08090a0b	c490f12c F1 c490f12c c8bf3237 0c2fc31b 13d83a3d 6683cae3	00010203
Round	3 F-functioninput round key after key after S after M		97b363ca F0 97b363ca 73c2eeb8 e4718d72 79ea66ed 61c21ea5	c490f12c	6682c8e0 F1 6682c8e0 dd429ec5 bbc05625 f47b0d7a 120e06e2	be091130
Round	F-functioninput round key after key after S after M	-	a552ef89 F0 a552ef89 e220b3af 47725c26 daeda541 28a43c63	6682c8e0	ac0717d2 F1 ac0717d2 c9135e73 651449a1 355c651b cb1ab573	97b363ca
Round	5 F-functioninput round key after key after S after M		4e26f483 F0 4e26f483 38c46a07 76e29e84 fe663e39 5ce7dafe	ac0717d2	5ca9d6b9 F1 5ca9d6b9 fc2ce4ba a0853203 7edcc7c6 ac7f4e3e	a552ef89
Round	6 F-functioninput round key after key after S after M		f0e0cd2c F0 f0e0cd2c 370abf2d c7ea7201 e77f9fda b9869270		092da1b7 F1 092da1b7 b05e627b b973c3cc 174a3a46 8fc7e089	4e26f483
Round	F-function input round key after key after S after M		e52f44c9 F0 e52f44c9 38351b2f dd1a5fe6 c5496150 33d8590f	092da1b7	cle1140a F1 cle1140a 74bd6e1e b55c7a14 5aa5c15c e62eb913	f0e0cd2c

Round	8 F-functio input round key after key after S after M	add	3af5f8b8 F0 3af5f8b8 1b7c7dce 21898576 a118dc09 f091202d	16ce743f F1 16ce743f 92cfc98e 8401bdb1 3949b1f3 04f9e827	e52f44c9
Round	9 F-functio input round key after key after S after M		F0 31703427 509b31a6	eld6acee F1 eld6acee 4c5ad53c ad8c79d2 eeffc072 8bebfe3d	3af5f8b8
Round	F-functio input round key after key after S after M		efadeeaf F0 efadeeaf 6fc2ba33 806f549c cd5eeb61 a100e35b	b11e0685 F1 b11e0685 e1e5c878 50fbcefd 25d7fe02 26a4e16d	31703427
Round	F-functio input round key after key after S after M	n add	40d64fb5 F0 40d64fb5 419a74b9 014c3b0c 49a4c013 51c0208f	17d4d54a F1 17d4d54a 1dd79e0e 0a034b44 b4c6c912 f1a2c339	efadeeaf
Round	F-functio input round key after key after S after M		F0 e0de260a 240a33d2	1e0f2d96 F1 1e0f2d96 9dabfd09 83a4d09f 86b8f8ed 3e451646	40d64fb5
Round			00000201		

Round 14 input F-function input round key after key add after S after M	F0 095d6ad7 b9696e2e	ab524674 9d4e3a7e F1 ab524674 cc0b3a38 67597c4c 52161e39 7902f3eb
Round 15 input F-function input round key after key add after S after M	897dd878 ab524674 F0 897dd878 ed785cbd 640584c5 459d9e10 4034defc	e44cc995 095d6ad7 F1 e44cc995 9c077c13 784bb586 636b5a11 0228bdd4
Round 16 input F-function input round key after key add after S after M		0b75d703 897dd878 F1 0b75d703 2ec058ba 25b58fb9 e7691f3b 05b2b4a9
Round 17 input F-function input round key after key add after S after M	F0 ae2b4f9c 4bbd5f6a	8ccf6cd1 eb669888 F1 8ccf6cd1 31fe8de8 bd31e139 b15d7589 bad65e22
Round 18 input F-function input round key after key add after S after M	7978239e 8ccf6cd1 F0 7978239e b76da574 ce1586ea 919c117f ef24fe56	51b0c6aa ae2b4f9c F1 51b0c6aa 3a6fa8e7 6bdf6e4d 283aaa43 08916103
Round 19 input F-function	63eb9287 51b0c6aa	a6ba2e9f 7978239e

F-function input round key after key add	e6f68dc9 c13624f6	98a8a539 63eb9287 F1 98a8a539 ee91f6a4 7639539d 09893194 b603c454
Round 21 input F-function input round key after key add after S after M		d5e856d3 e6f68dc9 F1 d5e856d3 f6c360a9 232b367a b383a1bd 662b2c4d
Round 22 input F-function input round key after key add after S after M	F0 e2482f64 6288bc72	80dda184 9a14af01 F1 80dda184 c0ad856b 407024ef fbe99290 108259db
output final whitening key after whitening ciphertext	77777777 e2482f64 9f028dc4	80dda184 8a96f6da 77777777 80dda184 fde181ad 80dda184 fde181ad

256-bit key:

key plaintext		f0e0d0c0 00010203	b0a09080 04050607	77665544 70605040 08090a0b	30201000 0c0d0e0f	
cipher	text		a1397814	289de80c	10da46d1	fa48b38a
LL LR					2cc2be04 84bd5663	
WK_{0,1,2,3} RK_{0,1,2,3} RK_{4,5,6,7} RK_{8,9,10,11} RK_{12,13,14,15} RK_{16,17,18,19} RK_{20,21,22,23} RK_{24,25,26,27} RK_{28,29,30,31} RK_{32,33,34,35} RK_{36,37,38,39} RK_{40,41,42,43} RK_{44,45,46,47} RK_{48,49,50,51}		58f02029 6c498393 fa37c259 b05bd737 581b3e34 b523d4e9 25d80df2 b304eb20 d71ff7e9 4dd7cfb7 2c664a7a 568c5a33	15413cd0 8846231b 0e3da2ee 8de1f2d0 03263f89 176d7c44 a646bba2 44f8824e aca1fb0c ae71c9f6 8cb5cf6b 07ef7ddd	07060504 1b0c41a4 1fc716fc aacf9abb 8ffee0f6 2f7100cd 6d7ba5d7 6a3a95e1 c7557cbc 2deff35d 4e911fef 14c8de1e 608dc860 33e01cb9	e4bacd0f 7c8la45b 8ec0aad9 b70b47ea 05cee171 f797b2f3 3e3a47f0 47401e21 6ca3a830 90aa95de 43b9caef ac9e50f8	
plaintext initial whitening key after whitening		g key		0f0e0d0c	08090a0b 08090a0b	0b0a0908
Round	1 F-function input round key after key after S after M	_	00010203 F0 00010203 58f02029 58f1222a 4ee41927 2db2101b	0b0b0b0b	08090a0b F1 08090a0b 15413cd0 1d4836db 2c78a1ac d87ee718	07070707
Round	F-function input round key after key after S after M		26b91b10 F0 26b91b10 1b0c41a4 3db55ab4 aa5afadb 317e029c	08090a0b	df79e01f F1 df79e01f e4bacd0f 3bc32d10 0f1e1928 c0cc96ba	00010203

Round	3 F-functio input round key after key after S after M		39770897 F0 39770897 6c498393 553e8b04 5487484e c3a7ac1d		c0cd94b9 F1 c0cd94b9 8846231b 488bb7a2 d84876a0 7ae05884	26b91b10
Round	4 F-functio input round key after key after S after M		1cde4c02 F0 1cde4c02 1fc716fc 03195afe c607fa95 5edee0ce		5c594394 F1 5c594394 7c81a45b 20d8e7cf 12f002c9 4cfb0e90	39770897
Round	5 F-functio input round key after key after S after M	add	9e137477 F0 9e137477 fa37c259 6424b62e 4592c8d2 adfd33ae		758c0607 F1 758c0607 0e3da2ee 7bb1a4e9 46f3a044 42450650	1cde4c02
Round	6 F-functio input round key after key after S after M		f1a4703a F0 f1a4703a aacf9abb 5b6bea81 22285e04 0fa52ed4	758c0607	5e9b4a52 F1 5e9b4a52 8ec0aad9 d05be08b f822d448 aa7a0a9c	9e137477
Round	7 F-functio input round key after key after S after M		7a2928d3 F0 7a2928d3 b05bd737 ca72ffe4 23ed8e68 8b158630	5e9b4a52	34697eeb F1 34697eeb 8de1f2d0 b9888c3b 172b59c0 334e2af2	f1a4703a
Round	8	input n	d58ecc62	34697eeb	c2ea5ac8 F1	7a2928d3

Round 9 input F-function input round key after key add after S after M	46ab7c95 c2ea5ac8 dfabfd23 d58ecc62 F0 F1 46ab7c95 dfabfd23 581b3e34 03263f89 1eb042a1 dc8dc2aa 177afd6a 57664735 51d5740a 110287d7
Round 10 input F-function input round key after key add after S after M	F0 F1 933f2ec2 c48c4bb5 2f7100cd 05cee171
Round 11 input F-function input round key after key add after S after M	78c32e09 c48c4bb5 f00533be 933f2ec2 F0 F1 78c32e09 f00533be b523d4e9 176d7c44 cde0fae0 e7684ffa 3fd410d4 02ef5310 08bd9b01 2fdb3f65
Round 12 input F-function input round key after key add after S after M	cc31d0b4 f00533be bce411a7 78c32e09 F0 F1 cc31d0b4 bce411a7 6d7ba5d7 f797b2f3 a14a7563 4b73a354 1b512562 c94a71eb 7c2c762b 81ca0b59
Round 13 input F-function input round key after key add after S after M	F0 F1 8c294595 f9092550 25d80df2 a646bba2
Round 14 input F-function input round key after key add after S after M	f663d9ff f9092550 988db861 8c294595 F0 F1 f663d9ff 988db861 6a3a95e1 3e3a47f0 9c594c1e a6b7ff91 58ff39b0 054d1d75 d82301d4 085d5025

Round 15 input F-function input round key after key add after S after M	212a2484 988db861 847415b0 f663d9ff F0 F1 212a2484 847415b0 b304eb20 44f8824e 922ecfa4 c08c97fe 86d2c9a0 b5ff567d dbf56073 87e2a6a2
F-function input round key	4378d812 847415b0 71817f5d 212a2484 F0 F1 4378d812 71817f5d c7557cbc 47401e21 842da4ae 36c1617c 9e19b889 a10c5414 6791a3e3 e177d3a8
round key	
Round 18 input F-function input round key after key add after S after M	56c29070c05df72c2c94d2b9e3e5b653F0F156c290702c94d2b92deff35d6ca3a8307b2d632d40377a8956193719fb13c1b7ee6316fa5e3245b7
Round 19 input F-function input round key after key add after S after M	F0 F1 2e3ee1d6 bdd7f3e4 4dd7cfb7 ae71c9f6
Round 20 input F-function input round key after key add after S after M	ab3e6237 bdd7f3e4 d94f8683 2e3ee1d6 F0 F1 ab3e6237 d94f8683 4e911fef 90aa95de e5af7dd8 49e5135d f6ad88be 65f68f77 0889df33 f418c84f

Round 21 input F-function input round key after key add after S after M	F0 b55e2cd7 2c664a7a	3 da262999 ab3e6237 F1 da262999 8cb5cf6b 5693e6f2 0df150e5 da5415d2
Round 22 input F-function input round key after key add after S after M	F0 50d661f1 14c8de1e 441ebfef	9 716a77e5 b55e2cd7 F1 716a77e5 43b9caef 32d3bd0a c7bbb182 744a9ced
Round 23 input round key after key add after M	F0 2fc9f107 568c5a33	5 c114b03a 50d661f1 F1 c114b03a 07ef7ddd c6fbcde7 4cd7e238 ce67e20a
Round 24 input F-function input round key after key add after S after M	F0 99251a7e 608dc860	a 9eb183fb 2fc9f107 F1 9eb183fb ac9e50f8 322fd303 c7d8f1c6 591b3f55
Round 25 input input round key after key add after S after M	F0 e177fb4d c0c18358	b 76d2ce52 99251a7e F1 76d2ce52 4f53c80e 3981065c c8e20aa5 89ff5caf
Round 26 input round key after key add after M	a1397814 76d2ce5 F0 a1397814 33e01cb9 92d964ad 864445ee 5949235a	2 10da46d1 e177fb4d F1 10da46d1 80251e1c 90ff58cd 9a8e803f 183d49c7

 output
 a1397814
 2f9bed08
 10da46d1
 f94ab28a

 final whitening key
 07060504
 03020100

 after whitening ciphertext
 a1397814
 289de80c
 10da46d1
 fa48b38a

 ciphertext
 a1397814
 289de80c
 10da46d1
 fa48b38a

Authors' Addresses

Masanobu Katagi System Technologies Laboratories Sony Corporation 5-1-12 Kitashinagawa Shinagawa-ku Tokyo, 141-0001, Japan

EMail: Masanobu.Katagi@jp.sony.com

Shiho Moriai System Technologies Laboratories Sony Corporation 5-1-12 Kitashinagawa Shinagawa-ku Tokyo, 141-0001, Japan

Phone: +81-3-5448-3701 EMail: clefia-q@jp.sony.com