Discussion of "Investing in Misallocation" by Kılıç and Tüzel

Martin Souchier - The Wharton School, University of Pennsylvania

May 2024 - SFS Cavalcade North America

- **Q**: what drives firms investment?
 - are some firms investment too little? Are some investing too much?

- Q: what drives firms investment?
 - are some firms investment too little? Are some investing too much?
- Benchmark: neoclassical model of investment with adjustment costs
 - firms invest more when productivity is high
 - key statistics to analyze firm investment are MPK and I/K ratio

- Q: what drives firms investment?
 - are some firms investment too little? Are some investing too much?
- Benchmark: neoclassical model of investment with adjustment costs
 - firms invest more when productivity is high
 - key statistics to analyze firm investment are MPK and I/K ratio
- This paper: MPK and I/K ratio in the data are very different than implied by NC model!
 - $\Rightarrow\,$ provide an explanation based on idea that firms invest in growth

- Q: what drives firms investment?
 - are some firms investment too little? Are some investing too much?
- Benchmark: neoclassical model of investment with adjustment costs
 - firms invest more when productivity is high
 - key statistics to analyze firm investment are MPK and I/K ratio
- This paper: MPK and I/K ratio in the data are very different than implied by NC model!
 - \Rightarrow provide an explanation based on idea that firms invest in growth
- My discussion: remind what to expect in NC model + some suggestions

The neoclassical model of investment

- Q: why are I/K and MPK the right statistics to look at?
- Consider the NC model of investment with adjustment costs $\Phi(I, K_{-})$
 - dispersion in investment driven by permanent productivity shocks ϵ and initial capital K_-
- Firm buys capital at price 1 to invest, and maximize PV of profits

$$V(K_{-},Z) = \max_{I} Z^{\alpha} K^{1-\alpha} - I - \Phi(I,K_{-}) + \frac{\mathbb{E}_{\epsilon}[V(K,Z+\epsilon)]}{1+r}$$
s.t. $K = (1-\delta)K_{-} + I$

The neoclassical model of investment

- Q: why are I/K and MPK the right statistics to look at?
- Consider the NC model of investment with adjustment costs $\Phi(I, K_{-})$
 - dispersion in investment driven by permanent productivity shocks ϵ and initial capital K_-
- Firm buys capital at price 1 to invest, and maximize PV of profits

$$V(K_{-},Z) = \max_{I} Z^{\alpha} K^{1-\alpha} - I - \Phi(I,K_{-}) + \frac{\mathbb{E}_{\epsilon}[V(K,Z+\epsilon)]}{1+r}$$

s.t. $K = (1-\delta)K_{-} + I$

• Without shocks, this model implies a constant MPK and I/K_- across firms

Response of I/K and MPK to productivity shocks

- After positive shock, firms want to grow $\Rightarrow \uparrow I/K$, but slowly because of adj. costs
- MPK initial rises because of productivity shock, then falls back due to decreasing returns

Cross-sectional distribution of I/K and MPK in the NC model

- Figure shows distribution of I/K and MPK from simulation of firms s.t. to shocks
 - firms are either growing (high I/K) to reap benefits from high productivity (high MPK) ...
 ... or shrinking (low I/K) in response to low productivity (low MPK)

Cross-sectional distribution: NC model vs data

- Q: how does the neoclassical model of investment fare against the data?
- Table shows share of firms in each quadrant from my simulations vs data from KT paper
- In data, many unprofitable firms invest (high MPK but low I/K), and vice versa!

This paper: firms invest in growth

- Idea: some firms invest to increase the probability of future jumps in productivity
 - data: firms with low MPK but high I/K are more innovative + more likely to experience jumps
 - jumps and investment positively correlation in cross section of firms + time series

This paper: firms invest in growth

- Idea: some firms invest to increase the probability of future jumps in productivity
 - data: firms with low MPK but high I/K are more innovative + more likely to experience jumps
 - jumps and investment positively correlation in cross section of firms + time series
- Add endogenous TFP jumps to NC model following recent endogenous growth literature
- Estimate the model with Compustat data
 - suggestion: ORBIS has more small/young firms where jumps seems to be more important!

Main results

- Model matches key characteristics of firms in low MPK-high I/K group
 - measure of success: model is over-identified + few testable implications
 - suggestion: if jumps were twice smaller/less likely, would it be harder to match the data?

Main results

- Model matches key characteristics of firms in low MPK-high I/K group
 - measure of success: model is over-identified + few testable implications
 - suggestion: if jumps were twice smaller/less likely, would it be harder to match the data?
- Estimation reveals a new perspective on firm life-cycle!
 - most firms invest in growth (p=95%) for about 10 years ($\mu=10\%$)

Main results

- Model matches key characteristics of firms in low MPK-high I/K group
 - measure of success: model is over-identified + few testable implications
 - suggestion: if jumps were twice smaller/less likely, would it be harder to match the data?
- Estimation reveals a new perspective on firm life-cycle!
 - most firms invest in growth (p=95%) for about 10 years ($\mu=10\%$)
- Equilibrium is efficient so don't interfere!
 - e.g. preventing firms from investing in growth \Rightarrow \downarrow TFP by 40%, and dispersion in MPK by 16%
 - very different implications than usual stories based on misallocation

Firms that do not invest despite being productive

- The paper provides a rational for firms with low MPK and high I/K
 - ⇒ Q: what about firms with high MPK and low I/K? Report shares of firms in each group

TFP vs. MPK

- The NC model also fails to match the distribution of TFP z across firms
 - table shows median of log TFP for firms in each I/K and MPK category
 - model: TFP high when MPK is high \neq data: TFP high when I/K is high
 - \Rightarrow Q: does your model solve this disconnect?

High MPK	NC model: 0.09 Data: - 0.03	NC model: 0.01 Data: 0.07
Low MPK	NC model: - 0.01 Data: - 0.06	NC model: - 0.13 Data: 0.02
	Low I/K	High I/K

Implications for asset pricing?

• This paper: new perspective, where vast majority of firms invest in growth

Implications for asset pricing?

- This paper: new perspective, where vast majority of firms invest in growth
- Asset pricing implication: such firms should have high (and volatile?) price/earnings ratios
 - seems to be true anecdotally (e.g. Tesla), but is it true more broadly for these firms?

Implications for asset pricing?

- This paper: new perspective, where vast majority of firms invest in growth
- Asset pricing implication: such firms should have high (and volatile?) price/earnings ratios
 - seems to be true anecdotally (e.g. Tesla), but is it true more broadly for these firms?
- Besides, raising funds from investors must be a lot harder for such firms!
 - investors in low-type firms can see that sales are going up + get a return after just a few years
 - high-type firms can never prove that they have potential, unless rare jump occurs!
- Bring back the frictions! Imperfect information between entrepreneurs and investors
 - Q: How much funds can firms raise in this environment?

Concluding thoughts

- Nice paper!
- Changed my prior on the life-cycle of firms
 - young firms not just s.t. to adjustment costs (e.g. Hopenhayn 1992, Hopenhayn Rogerson 1993)
 - also invest heavily in future growth with uncertain returns
- In my view, paper could become even more influential by pursuing implications further
 - surely, these jumps raise new issues (e.g. asset pricing, business dynamism)