Paras harg 160Cs 122

The LNM Institute of Information Technology

(Deemed-to-be University)

QUIZ-II

Cryptographic Algorithms(CRYALO)

Duration:1 Hrs 8.00 PM-9.00AM 10 Marks 11th April 2019

Answer all Questions

1. Suppose E is an elliptic curve defined over \mathbb{Z}_p , where p > 3 is prime. Suppose that the number of points #E is prime, P be an element in $E(\mathbb{Z}_p)$ and $P \neq \mathcal{O}$, where \mathcal{O} is point at infinity (identity element). Prove that the discrete logarithm $log_P(-P) = \#E - 1$.

HINT: Discrete logarithm - Let an element $P \in E(\mathbb{Z}_p)$ of order n. An element Q is in the cyclic group generated by P. Find an unique integer d, $0 \le d \le n-1$ such that $d \cdot P = Q$. This can be written as $d = log_PQ$. [3]

- Prove the following in ElGammal Signature Scheme and DSA
 A signature in the ElGammal Signature Scheme or DSA is not allowed to have s = 0. Show that if a message were signated with a "signature" in which s = 0, then it would be easy for an adversary to compute the private key a. [2]
- 3. Write Elliptic Curve Digital Signature Algorithm (ECDSA) and justify that the security of this scheme relies on Discrete Logarithm Problem (ECDLP). [3]
- 4. Suppose Alice and Bob communicating over a public network. To preserve data integrity, Alice modifies the ElGammal Signature Scheme as

$$r = \alpha^k \bmod p$$

$$s = (H(m) - kr)a^{-1} \bmod (p - 1)$$

and signs on message m. Construction of keys remains same. She chooses a generator $\alpha \in \mathbb{Z}_p^*$, where \mathbb{Z}_p^* is the multiplicative group. Also selects a random integer a, $1 \le a \le p-2$, gcd(a,p-1)=1 and construct both the public and private keys by computing $y=\alpha^a \mod p$. The keys are (p,α,y) and a. How the signature (r,s) would be verified by Bob using the following verification equation

$$v_1 = v_2$$

Where $v_1 = y^s \cdot r^r \mod p$ and $v_2 = \alpha^{H(m)} \mod p$

[2]