用 1 **H**(19 **F**, 16 **O***) α 反应分析氢分布

乔颢¹

1. 北京大学物理学院,海淀区 北京 100871;

1 原理

1、共振核反应选择

本实验采用 ${}^{1}H({}^{19}F, {}^{16}O^{*})\alpha$ 共振核反应来测量氢在样品中的分布。

图 1 ¹H(¹⁹F, ¹⁶O*)α 共振核反应

入射粒子 19 F 轰击靶核,生成处于激发态的 20 Ne* 核,它退激后发射 α 粒子和处于激发态的 16 O* 核, 16 O* 核退激后回到基态同时发射 γ 光子。该共振态的末态有 α 和 γ 粒子。测量必须在真空下进行。我们只需测量 16 O* 核退激发射的 γ 光子产额,以确定样品中氢的含量。

反应截面随入射粒子能量变化的曲线称为核反应的激发曲线。 1 H(19 F, 16 O*) α 的激发曲线如图所示。

作者简介: 乔颢, E-mail: i@catofes.com

图 2 ¹H(¹⁹F, ¹⁶O*)α 共振核反应激发曲线

对不同的入射离子能量,该核反应主要有两个主要的 共振峰,分别在 6.42MeV 和 16.44MeV。共振峰的形 状用 Breit-Wigner 公式描述:

$$\sigma(E) = \frac{\sigma_R}{1 + (\frac{E - E_R}{\Gamma/2})^2} \tag{1}$$

其中 Γ 为共振峰宽度, E_R 为共振能量, σ_R 为共振截面。实验采用 $6.42 \mathrm{MeV}$ 的共振($\Gamma = 55 \mathrm{keV}, \sigma = 0.1 \mathrm{b}$)测量氢分布。

6.42MeV 的共振核反应产生的 16 O 处于激发态,退激时发出能量分别为 6.13,6.92,7.12MeV 的 γ 光子其中 6.13MeV 的光子的分支比为 97%,因此测量时不考虑其他两种光子。

2、氢分布分析原理

入射能量为 E_0 (高于共振能量) 的 F 离子打到样品上,进入样品后逐渐损失能量。设在深度 x 处,F 离子的能量损失了 ΔE 后变为 E。

图 3 氢分布分析示意图

a、深度分析

F 离子只有其能量为 E_R 时才和样品中的氢发生反应,

$$E = E_0 - \Delta E \approx E_0 - \left| \frac{dE}{dx} \right| \times x = E_R$$
 (2)

因此发生核反应的深度 x 为:

$$x = \frac{E_0 - E_R}{\left|\frac{dE}{dx}\right|} \tag{3}$$

F 离子束流能量 E_0 和加速器高压的关系为 $E_0=HV\times(4+1)MeV$,则

$$x(A) = \frac{[HV \times (4+1) - 6.42] \times 10^6 (eV)}{|dE/dx| (eV/A)}$$
(4)

改变加速器能量 HV,不同入射能量的 F 离子就会和不同深度的氢发生核反应,记录反应后产生的光子产额,就可以得到样品中的氢分布。

b、含量分析

假设标准样品中,氢沿深度均匀分布,且氢含量 C_{st} 已知,测得 γ 光子计数为 N_{st} ,测得未知样品中的 γ 光子数为 N: 则待测样品的氢含量为

$$C = C_{st} \times \frac{\left|\frac{dE}{dx}\right|_{E=E_R} \times N}{\left|\frac{dE}{dx}\right|_{st(E=E_R)} \times N_{st}} \times \frac{\rho_{st}}{A_{st}} \times \frac{A}{\rho}$$
 (5)

对公式 5 的理解:

探测到的 γ 光子的数量 N 可以写为

$$N = \frac{\phi_F S \sigma C \rho}{A} \times dx \tag{6}$$

其中 ϕ_F 为入射 F 离子数量, σ 为反应截面,S 为束流面积,dx 为在材料中能发生反应的厚度。设在共振能量 ΔE_R 的范围内能发生反应,则 $\mathrm{dx} = \frac{\Delta E_R}{|dE/dx|_{E=E_r}}$ 。因此可以得到式 5。

2 实验步骤

1、测量标准样品

标准样品所含的氢均匀分布在 $2\mu m$ 的非晶硅层,含氢原子比为 13.9%。标准样品的测量数据如下:

表 1 标准样品测量数据

电 压/MV	电流/nA	时间/s	计数
1.30	260	77	2294
1.35	260	75	2310
1.40	260	80	2415
1.45	260	76	2336
1.50	260	78	2545

2、测量待测样品 (样品 10)

10 号待测样品是不锈钢,具体的测量数据如下表 所示:

表 2 10 号待测样品测量数据

电 压/MV	电流/nA	时间/s	计数
1.26	260	78	176
1.29	225	89	1467
1.32	270	78	1199
1.35	270	77	1102
1.38	280	72	835
1.41	300	68	288
1.44	310	66	99

3 数据分析

首先是对标准样品的分析。标准样品的含 H 量为 13.9%,利用 SRIM 程序可以得到能损本领和能量之间的关系。cubic 插值之后可以得到在我们感兴趣的 6.42MeV 能量处的能损。能损为 173.28eV/A。

标准样品的 H 分布是均匀的, 所以可以得到其平均计数为 2380。因此可以得到公式 5 中的各个参数。有

$$C_{st} = 0.139$$

$$N_{st} = 2380$$

$$\left|\frac{dE}{dx}\right|_{st(E=E_R)} = 173.28eV/A$$

$$\rho_{st} = 2.0085$$

$$A_{st} = 24.147$$

因此可以根据公式 5 来计算待测样品的具体结果。当电压为 1.26MV 时加速器得到的能量小于共振

能量,因而不会发生共振,所以不与考虑,其他电压情况下可以根据迭代法得到氢含量和电压的关系,数据表如下所示:

表 3 10 号待测样品氢含量信息

电 压/MeV	氢含 量/%	能损本 领/ $eV\cdot$ A^{-1}	对应深 度/A
1.26	-	-	-
1.29	12.26	426.6900	70.31
1.32	10.25	434.9050	413.88
1.35	9.49	438.0130	753.40
1.38	7.33	446.8270	1074.24
1.41	2.64	466.1560	1351.48
1.44	0.92	473.2780	1648.08

由此可以得到样品的氢含量,可以看到随着深度 逐渐的加深,氢含量急剧的减少。这样符合待测样品 (不锈钢)的特性。

4 参考文献

[1] Peking Unviersity, Fudan University Nuclear Experment Nuclear Publishing House, 1989 (in Chinese) (北京大学,复旦大学. 原子核实验 原子能出版社, 1989)