

BR6265

8K X 8 CMOS SRAM

FEATURES

- Single +5V Power Supply
- Access Times 120ns (max.)
- Supply Current
 - Very low power version:
 Operating: 40mA (max.)
 Standby: 50μA (max.)
- Fully Static Operation No Clock Or Refresh Cycles Required
- All Inputs And Outputs Directly TTL Compatible
- Common I/O Using Tri-State Output
- Output Enable And Two Chip Select Inputs For Easy Application
- Data Retention Voltage: 2V (min.)
- Available In 600 mil Plastic 28 Pin

PIN CONFIGURATION

Plastic Dual-in-line Package

DESCRIPTION

The BR6265 is a low operating current 65,536-bit static random access memory organized as 8,192 words by 8 bits and operates on a single 5V power supply. It is built using ROHM's high performance CMOS process.

Inputs and tri-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Two chip select inputs are provided for power down and device select, and an output enable input is included for easy interface.

Data retention is guaranteed at a power supply voltage as low as 2V.

PIN NAMES

GND Ground

BR6265

BLOCK DIAGRAM

TRUTH TABLE

Mode	CE ₁	CE ₂	ŌĒ	WE	I/O Operation	V _{CC} Current
Standby	Н	х	Х	Х	High Z	I _{SB} , I _{SB1}
	Х	L	Х	Х	High Z	ISB, ISB2
Output Disabled	L	Н	Н	Н	High Z	ICCA1, ICCA2
Read	L	Н	L	Н	Dout	ICCA1, ICCA2
Write	L	Н	Х	L	D _{IN}	ICCA1, ICCA2

◆Datasheet5—集成电路查询网

ABSOLUTE MAXIMUM RATINGS*

V _{CC} to GND	0.5V to +7.0V
IN, IN/OUT VOLT to GND	
Operating Temperature, Topr	0°C to +70°C
Storage Temperature, T _{stg}	55°C to +125°C
Temperature Under Bias, Tbias	
Power Dissipation, P _T	1.0W/SOP 0.7W
Soldering Temperature and Time	260°C, 10 sec.

*NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS

 $T_A = 0$ °C to 70°C

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Ground	0	0	0	V
ViH	Input High Voltage	2.2	_	V _{CC} +0.5	V
VIL	Input Low Voltage	-0.3	_	+0.8	٧
CL	Output Load	_		100	pF
TTL	Output Load		_	1	<u>—</u>

DC ELECTRICAL CHARACTERISTICS

 $T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 10$ %, GND = 0V

		BR6265-12LL		BR6265-12LL			
Symbol	Parameter	Min.	Max.	Unit	Test Conditions		
ILI	Input Leakage Current	_	1	μΑ	V _{IN} = GND to V _{CC}		
lLO	Output Leakage Current	1	1	μΑ	$\overline{CE}_1 = V_{IH}$ or $\overline{CE}_2 = V_{IL}$ or $\overline{OE} = V_{IH}$ or $\overline{WE} = V_{IL}$, $V_{I/O} = \overline{GND}$ to V_{CC}		
ICCA2	Active Power Supply Current		10	mA	$\overline{CE}_1 = V_{IL}$, $CE_2 = V_{IH}$, $I_{I/O} = 0$ mA, $f=1$ MHz		
ICCA1	Dynamic Operating Current	-	40	mA	Min. Cycle, Duty = 100% \overline{CE}_1 = V _{IL} , CE_2 = V _{IH} , I _{I/O} = 0mA		
ISB		_	3	mA	CE ₁ = V _{IH} or CE ₂ = V _{IL}		
I _{SB1}	Standby Power Supply Current	_	50	μA	$\overline{CE}_1 \ge V_{CC}$ - 0.2V, $CE_2 \ge V_{CC}$ - 0.2V, $V_{IN} \ge V_{CC}$ - 0.2V or $\dot{V}_{IN} \le 0.2V$		
I _{SB2}		_	50	μΑ	$\overline{CE}_1 \le 0.2V$, $CE_2 \le 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$		
V _{OL}	Output Low Voltage	_	0.4	٧	I _{OL} = 2.1mA		
Vон	Output High Voltage	2.4		٧	I _{OH} = -1.0mA		

AC ELECTRICAL CHARACTERISTICS

 $T_A = 0$ °C to +70°C, $V_{CC} = 5V \pm 10\%$

READ CYCLE®

Symbol	Parameter	BR626	BR6265-12LL	
	raidilietei	Min.	Max.	Unit
trc	Read Cycle Time	120	_	ns
taa	Address Access Time	_	120	ns
tco1	Chip Select Access Time (CE ₁)		120	ns
tco2	Chip Select Access Time (CE ₂)		120	ns
toe	Output Enable to Output Valid		60	ns
tLZ1 [®]	Chip Selection to Output in Low Z (CE1)	10		ns
t _{LZ2} ®	Chip Selection to Output in Low Z (CE ₂)	10	_	ns
toLz ^②	Output Enable to Output in Low Z			ns
tHZ1 [®]	Chip Deselection to Output in High Z (CE ₁)		40	ns
tHZ2 [©]	Chip Deselection to Output in High Z (CE ₂)		40	ns
tonz ^②	Output Disable to Output in High Z	0	40	ns
tон	Output Hold from Address Change	10		ns

① WE is always high all times for read cycles.

2 Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.

WRITE CYCLE³

Symbol	Parameter	BR6265-12LL		Unit
Syllibol	rarameter	Min.	Max.	Oint
twc	Write Cycle Time	120	_	ns
tcw	Chip Selection to End of Write	85	_	ns
tas	Address Set-up Time	0	_	ns
taw	Address Valid to End of Write	85	_	ns
twp ⁴	Write Pulse Width	70	_	ns
twn ⁵	Write Recovery Time	5	_	ns
twnz [®]	Write to Output in High Z	0	40	ns
t _{DW}	Data to Write Time Overlap	50		ns
tDH	Data Hold from Write Time	-10	_	ns
tow [®]	Output Active from End of Write	5		ns

③ If OE is high during write cycle, outputs are in high impedance state.
 ④ A write occures during the overlap (Twp) of a low CE1 (or CE2) and a low WE.
 ⑤ twR is measured from CE1 (or CE2) or WE going high to the end of a write cycle.
 ⑥ I/O pins are in the output state so that the input signals of opposite phase to the output must not be applied.
 ⑦ Transition is measured ± 500mV from steady state. This parameter is sampled and not 100% tested.

Datasheet

CAPACITANCE

 $T_A = 25$ °C, f = 1.0MHz

Symbol	Parameter	Min.	Max.	Unit	Test Conditions
C _{IN} *	Input Capacitance		10	pF	V _{IN} = 0V
C _{I/O} *	Input/Output Capacitance	_	10	pF	V _{I/O} = 0V

^{*}This parameter is sampled and not 100% tested.

AC TEST CONDITIONS

Input Pulse Levels	0.8V to 2.2V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	1TTL Gate and CL=100pF

DATA RETENTION CHARACTERISTICS

 $T_A = 0^{\circ}C$ to $70^{\circ}C$

Symbol	Parameter	Min.	Typ. ^①	Max.	Unit
V _{DR}	V _{CC} for Data Retention	2.0	_	5.5	٧
ICCDR	Data Retention Current	_	1.0	20 ³	μА
tcor	Chip Deselect to Data Retention Time	0	_		ns
t _R	Operation Recovery Time	t _{RC} ®	_	_	ns

- ① VDR=3.0V, TA=25°C
- ② T_{RC}=Read Cycle Time
- This characteristic is guaranteed to meet 3μA (max.) at T_A=0 to +40°C (V_{CC}=3.0V) and 1μA (max.) at T_A=0 to +25°C (V_{CC}=3.0V).

Oatasheet

Datasheet

PACKAGE DIAGRAMS

ORDERING INFORMATION

Standard Configurations

Part Number	Access Time (ns)	Package
BR6265-12LL	120	600 MIL PLASTIC DIP28

ROHM CORPORATION reserves the right to make changes to any product herein to improve reliability, function or design. ROHM CORPORATION does not assume any liability arising out of the application or use of any product described herein, neither does it convey any license under its patent right nor the rights of others.

© ROHM CORPORATION December 1992 Printed in U.S.A.

ROHM CORPORATION 3034 Owen Drive Jackson Business Park Antioch, TN 37013 (615) 641-2020 FAX: (615) 641-2022

超过3,000,000种电子元器件资料免费查询

www. datasheet5. com