Exercise 3: Deadlocks Due Time: Apr. 4, 2022

- A computer system has 8 printers that are shared by K process. Each of the processes can take no more than 3 printers. k=1 V k=2 V k=3 V k=4 X If each of the process 0.60 for 1 printer while
 - What is the minimum value of K that may cause the system deadlock? Why? already has two printer, a deadlock may be caused Is there a minimum value of K that must cause the system deadlock? Why? No.
- Consider the following snapshot of a system: 2.

		Alloc	ation		Max				Available				Need			
	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4	121	P2	Pb	124
Р0	10	0	1	2	0	0	1	2	, 2	-1	0	0	0	0	0	0
P1	2	0	0	0	2	7	5	0	2))	2	0	7	5	0
P2	0	0	3	4	6	6	5	6					7 .	12	D	2
Р3	2	3	5	4	4	3	5	6						1		
P4	0	3	3	2	0	6	5	2					D	7	V	W

Answer the following questions using the banker's algorithm:

- What is the content of the matrix Need?
- b. Is the system in a safe state? Why or why not? \(\frac{1}{15}\), \(\frac{1}{0} \frac{1}{0} \f
- c. If a request from process P2 arrives for (0,2,0,0), can the request be granted immediately? Briefly Explain. No, because P2 needs 2 R2, but there only 1 R2
- Consider a system with four processes P1, P2, P3, and P4, and two kinds of resources, R1, and R2, respectively. Each kind of resource has two instances. Furthermore: $\begin{array}{cccc}
 P_1 & & P_2 & & P_3 \\
 P_2 & & & P_4
 \end{array}$
 - P1 is allocated with an instance of R2, and requests an instance of R1.
 - P2 is allocated with an instance of R1, but doesn't need any more resource.
 - P3 is allocated with an instance of R1, and requests an instance of R2.
 - P4 is allocated with an instance of R2, but doesn't need any more resource
 - Draw the resource allocation graph.

 - c. Is the system in deadlock? If yes, explain why. If not, give a possible sequence of executions after which every process completes. $0, 0, 0 \rightarrow 0 \rightarrow 0$

A system has four processes and five allocable resources. The current allocation and maximum needs are as follows:

	Allocated	Maximum	Available
Process A	10211	11213	0 0 1 X 2
Process B	20110	22210	
Process C	11010	21310	
Process D	11110	11221	

What is the smallest value of X for which this is a safe state?

Exercise 3 Solutions

- 1. a. 4
 - b. No
- 2. a.

	Allocation					M	[ax		Available				
	R1	R2	R3	R4	R1	R2	R3	R4	R1	R2	R3	R4	
P0	0	0	1	2	0	0	1	2	0	0	0	0	
P1	2	0	0	0	2	7	5	0	0	7	5	0	
P2	0	0	3	4	6	6	5	6	6	6	2	2	
Р3	2	3	5	4	4	3	5	6	2	0	0	2	
P4	0	3	3	2	0	6	5	2	0	3	2	0	

- (b) The system is in a safe state as the processes can be finished in the sequence <P0,P3,P4,P1,P2>
- (c) No, it can't. Process P2 requires two R2, while there is only one free R2.
- 3. a. Draw the resource allocation graph.

- b. P1 R1 P3 R2 P1
- c. No. There is a cycle, but no deadlock. P2 and P4 have all resources for completing. P2 P4, P1, P3
- 4. The need matrix is as follows:

R1 R2 R3 R4 R5

A 0 1 0 0 2

B 0 2 1 0 0

 $C \quad 1 \quad 0 \quad 3 \quad 0 \quad 0$

D 0 0 1 1 1

Suppose that we are in a safe state. Process D must run first, because we have no other choice. To make process D run, the number X of R4 should be no less than 1. Since process A, B, and C do not need any more instance of resource R4, the constraint of X is $X \ge 1$.

So if and only if $X \ge 1$, the state is safe. Then the smallest value of X is 1.