9 HW

Kira has two kids

- frank
 - frank has a daughter names Sarah
 - Sarah is mother ofJudyand Ruben
- lola

Kira

Frank

Sarah

Judy

Ruben

Lola

Write down the relation $R = \{(a, b) \mid a \text{ is the parent of } b\}$

```
A = \{Kira, Frank, Sarah, Judy, Ruben, Lola\}
A \times A = (Kira, Kira), (Kira, Frank), (Kira, Sarah), (Kira, Judy), (Kira, Ruben)
                                                                                                        =(Frank,Frank),(Frank,Sarah),(Frank,Judy),(Frank,Ruben),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),(Frank,Sarah),
                                                                                                                                                                                                                                                  = (Sarah, Sarah), (Sarah, Judy), (Sarah, Ruben),
                                                                                                                                                                                                                                                                                                                                                                                                         = (Judy, Judy), (Judy, Ruben)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               = (Ruben, Ruben), (
```

As a matrix

$$A \times A = \begin{bmatrix} (\text{Kira}, \text{Kira}) & (\text{Kira}, \text{Frank}) & (\text{Kira}, \text{Sarah}) & (\text{Kira}, \text{Judy}) \\ (\text{Frank}, \text{Kira}) & (\text{Frank}, \text{Frank}) & (\text{Frank}, \text{Sarah}) & (\text{Frank}, \text{Judy}) \\ (\text{Sarah}, \text{Kira}) & (\text{Sarah}, \text{Frank}) & (\text{Sarah}, \text{Sarah}) & (\text{Sarah}, \text{Judy}) \\ (\text{Judy}, \text{Kira}) & (\text{Judy}, \text{Frank}) & (\text{Judy}, \text{Sarah}) & (\text{Judy}, \text{Judy}) \\ (\text{Ruben}, \text{Kira}) & (\text{Ruben}, \text{Frank}) & (\text{Ruben}, \text{Sarah}) & (\text{Ruben}, \text{Judy}) \\ (\text{Lola}, \text{Kira}) & (\text{Lola}, \text{Frank}) & (\text{Lola}, \text{Sarah}) & (\text{Lola}, \text{Judy}) \end{bmatrix}$$

 $R = \{ (Kira, Frank), (Kira, Lola), (Frank, Sarah), (Sarah, Judy), (Sarah, Ruben) \}$ Relation R as a adjacency matrix:

QUESTION 2.1

• Symmetric & AntiSymmetric & Transitive

Let $R = \{\emptyset\}$ be a relation on a set A

Prove that

- if A is non-empty, the empty relation is not reflexive on A.
- The empty relation is symmetric and transitive for every set A Solution:

For a relation to be reflexive:

- For all elements in A, they should be related to themselves. xRx
 - Now in this case there are no elements in the Relation
- and as A is non-empty no element is related to itself
 Note: Would also hold for A = Ø
 But in that case the empty relation would be reflexive.
 hence the empty relation is not reflexive.

So, As A is not empty, there exists some element $a \in A$

- As R is empty
 - aRa does not hold
- Hence R is not reflexive
- Now for a set to be symmetric and transitive:
- As these are conditional statements
 - if the antecedent is false the statements would be true.
 - And as the relation is empty in both casesthe antecedent is false

 - hence the empty relation is symmetric and transitive.

QUESTION 2.2

• Reflexive & Symmetric & Transitive & Equivalence Relation The complete relation $R = \mathbb{N} \times \mathbb{N}$ defined on the natural numbers.

Imagine that set $\mathbb{N} = \{1, 2, 3, 4, 5, \dots\}$ where $a \in \mathbb{N}$ then,

$$\mathbb{N} imes \mathbb{N} = egin{array}{l} \{(1,1),(1,2),(1,3),(1,\cdots),\ (2,1),(2,2),(2,3),(2,\cdots),\ (3,1),(3,2),(3,3),(3,\cdots) \} \end{array}$$

Then the relation R is Reflexive,

- because diagonal entires exists for all elements $a \in A$
- \bullet (a,a)

The relation R is Symmetric,

• because (a,b)(b,a) for all a and b

Transitive

Question 2.3

• Transitive

```
The relation R on integers where aRb means (a-2) < b
```

a minus 2 is less than b

then b minus 2 is less than c

hence aRc hold true? yes Transitive

can aRb and bRa hold true? no, hence not symmetric Definitely not reflexive

QUESTION 2.4

• Reflexive & Transitive

```
The relation R on \{w,x,y,z\} where R=\{(w,w),(x,y),(x,w),(x,x),(x,z),(y,y),(z,y),(z,z)\}
```

```
Tabel! transitive and reflexive and symmetric tabel

| Column 1 | Column 2 | Reflexive | Symmetric | Transitive |

| ------ | ------ | ------|
```

```
| (w, w) | (w, w) | (w, w) | | |
```

Reflexive,

Because it contains all (w, w), (x, x), (y, y), and (z, z)

Symmetric

Does not contain

(w, x)	(x, w)	
(w, y)	(y, w)	
(w, z)	(z, w)	
(y, w)	(w, y)	
(y, x)	(x, y)	
(y, z)	(z, y)	
(x, w) (X)	(w, x) (Miss)	
(x, y) (X)	(y, x) (Miss)	
(x, z) (X)	(z, x) (Miss)	
(z, w)	(w, z)	
(z, x)	(x, z)	
(z, y) (X)	(y, z) (Miss)	

Transitive

Question 2.5

• Reflexive & Symmetric

aRb means $a^2 = b^2$

$$a^2 = b^2$$
 is equivalent to $a = b$,

thus, it can only be reflexive, be the relation can only contian

$$\begin{bmatrix}
(1,1) & & & & \\
 & (2,2) & & & \\
 & & (3,3) & & \\
 & & & (4,4) & \\
 & & & (5,5)
\end{bmatrix}$$

$$1^2 = 1^2$$
 $2^2 = 2^2$
 $3^2 = 3^2$

thus, the relation is reflexive.

is it antisymmetric?

- the definition for

Taking $a^2 = b^2$ we can say that the given relation for set of integers Z is reflexive because $a^2 = a^2$ and $b^2 = b^2$ will always hold true.

The relation is symmetric as well because $a^2 = b^2$ and $b^2 = a^2$

• so aRb and bRa holds

Not transitive.