Exercitiu	1	2	3	4	5	6	7	8	9
Punctaj									

Examen AA

- 1. (1p) Rezolvati recurenta T(n) = 2T(n-1) + 1.
- 2. (1p) Este implicatia: $f(n) = O(\log n) \implies 2^{f(n)} = O(n)$ adevarata? Justificati.

Fie Tipul de Date Abstract List, definit astfel:

$$\label{eq:Void:List} \begin{split} \text{Void:List} \\ \text{Ins:} E \times \text{List} \rightarrow \text{List} \end{split}$$

- 3. (1p) Definiti operatorul length:List $\to \mathbb{N}$.
- 4. (1p) Definiti operatorul care elimina ultimul element dintr-o lista: rmlast:List\{Void} →List.
- 5. (1p) Demonstrati prin inductie structurala ca ∀1∈List\{Void}, length(rmlast(1)) = length(1) 1.
- 6. (1p) Dati un exemplu de problema din clasa NP. Justificati pe scurt.

- 7. (1p) Dati un exemplu de problema din clasa $RE \cap NPD$, unde NPD reprezinta multimea problemelor NP-dure. Justificati pe scurt.
- 8. (1p) Fie Q_1 si Q_2 doua probleme astfel incat Q_2 este NP-completa si $Q_1 \leq_p Q_2$. Atunci: (i) Q_1 este NP-dura, (ii) Q_1 este NP-completa, (iii) Q_1 este in NP, (iv) nu putem spune nimic despre Q_2 . Justificati pe scurt.
- 9. Fie M_1 o masina Turing nedeterminista si M_2 o masina Turing determinista. M_1 si M_2 rezolva problema Q. M_1 ruleaza in $O(2^{\sqrt{n}\log n})$, iar M_2 ruleaza in $O(n^2\log n)$. Care afirmatii sunt corecte: (i) $Q \in EXPTIME$, (ii) $Q \in NP$, (ii) Q este NP-dura, (iii) Q este NP-completa, (iv) $Q \in P$, (v) M_1 si M_2 nu pot exista. Justificati pe scurt.