Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра теоретических основ компьютерной безопасности и криптографии

Лабораторная работа №1. Методы оценки погрешностей

ОТЧЁТ

по дисциплине

«ПРОГРАММНЫЕ СРЕДСТВА РЕШЕНИЯ МАТЕМАТИЧЕСКИХ ЗАДАЧ»

студента 4 курса 431 группы			
специальности 10.05.01 Компьютерная безопасность			
факультета компьютерных наук и информационных технологий			
Серебрякова Алексея	Владимировича		
Преподаватель			
доцент		А. С. Гераськин	
	подпись, дата		

1) Число X=0.10834, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа $X_1 \approx X$ найдите предельную абсолютную и предельную относительную погрешности. В записи числа X_1 укажите количество верных цифр (в узком и широком смысле).

Пусть X = 0.10834

Округлим данное число до трех значащих цифр, получим число:

$$X_1 = 0.108$$

Вычислим абсолютную погрешность:

$$\Delta X_1 = |X - X_1| = |0,10834 - 0,108| = 0,00034$$

Определим границы абсолютной погрешности (предельную погрешность), округляя с избытком до одной значащей цифры:

$$\Delta_{X_1} = 0.0004$$

Предельная относительная погрешность составляет:

$$\delta_{X_1} = \frac{\Delta_{X_1}}{|X_1|} = \frac{0,0004}{0,00034} = 0,0 (037) = 0,37\%$$

Укажем количество верных цифр в узком и широком смысле в записи числа $X_1 = 0.108$

Так как $\Delta_{X_1}=0.004\leq 0.0005$, следовательно, в узком смысле верными являются все цифры числа $X_1\colon 0.1.0.8$

Так как $\Delta_{X_1} = 0.004 \le 0.001$, следовательно, в широком смысле верными являются все цифры числа X_1 : 0,1,0,8

- 2) Вычислите с помощью микрокалькулятора значение величины $Z=\frac{c+\sin b}{c-a^2}$, при заданных значениях параметров $a=0.3107,\,b=13.27$ и c=4.711, используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:
 - 1. по правилам подсчета цифр;
 - 2. по методу строгого учета границ абсолютных погрешностей;
 - 3. по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

2.1) «Правила подсчета цифр»

$$Z = \frac{c + \sin b}{c - a^2}$$

а	b	С	$\sin b$	$c + \sin b$	a^2	$c-a^2$	Z
0,3107	13,27	4,711	0,64 69	5,35 79	0,0965 34	4,614 46	1,16

Прокомментируем ход вычислений.

Рассмотрим $\sin b$: $\sin 13,27 = 0,64698934$.. Воспользуемся правилом, что при определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо оценить значение модуля производной функции. Оценка величины производной в этой точке: $\sin b' = \cos b = \cos 13,27 \approx 0,762499 < 10^0$. Так как значение производной не превосходит единицы, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Округляя с двумя запасными цифрами, получаем 0,6469 (запасные цифры выделены) и заносим результаты в таблицу.

Рассмотрим $c + \sin b$: 4,711 + 0,6469 = 5,3579. Воспользуемся правилом, что при сложении и вычитании приближенных чисел врезультате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков. Число 4,711 содержит три десятичных знака, число 0,6469 - два десятичных знака, т. е. в полученном значении следует сохранить два десятичных знака. Округляя с двумя запасными цифрами, получаем 5,3579 (запасные цифры выделены) и заносим результаты в таблицу.

Рассмотрим a^2 : $0.3107^2 = 0.09653449$. Воспользуемся правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число 0.3107 содержит четыре значащих цифры, т. е. в полученном значении следует сохранить четыре значащие цифры. Округляя с двумя запасными цифрами, получаем 0.096534 (запасные цифры выделены) и заносим результаты в таблицу.

Рассмотрим $c-a^2:4,711-0,096534=4,614466$. Воспользуемся правилом, что при сложении и вычитании приближенных чисел врезультате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков. Число 4,711 содержит три десятичных знака, число 0,096534 — четыре десятичных знака, т. е. в полученном значении следует сохранить два десятичных знака. Округляя с двумя запасными цифрами, получаем 4,61446 (запасные цифры выделены) и заносим результаты в таблицу.

Рассмотрим $Z: Z = \frac{c + \sin b}{c - a^2}: \frac{5,3579}{4,61446} = 1,161109...$ Воспользуемся правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число 5,3579 содержит две значащих цифры, число 4,61446 — два десятичных знака, т. е. в полученном значении следует сохранить две значащие цифры. Округляя с двумя запасными цифрами, получаем 1,1611 (запасные цифры выделены) и заносим результаты в таблицу.

2.2) «Метод строгого учета границ абсолютных погрешностей»

Проделаем пошаговые вычисления по методу строгого учета границ предельных абсолютных погрешностей в предположении, что исходные данные a, b и c имеют предельные абсолютные погрешности $\Delta a = 0,00005$, $\Delta b = 0,0005$, $\Delta c = 0,0005$ (т. е. у a, b и c все цифры верны в узком смысле).

Промежуточные результаты вносятся в таблицу после округлениядо одной запасной цифры (с учетом вычисленной параллельно величины погрешности); значения погрешностей для удобства округляются (с возрастанием) до двух значащих цифр.

а	0,3107	Δa	0,00005
b	13,27	Δb	0,005
С	4,711	Δc	0,0005
$\sin b$	0,64 69	$\Delta \sin b$	0,0038
$c + \sin b$	5,3579	$\Delta(c + \sin b)$	0,0043
a^2	0,0965 34	Δa^2	0,000031
$c-a^2$	4,614 46	$\Delta(c-a^2)$	0,000469
Z	1,161 10	ΔZ	0,00012

Прокомментируем ход вычислений.

<u>Рассмотрим $\sin b$ </u>: $\sin 13,27 = 0,64698934...$ Подсчитаем предельную абсолютную погрешность:

$$\Delta(\sin b') = |\cos b| * \Delta b = 0.762499 * 0.005 = 0.0038124952029 \approx 0.0038.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляя с двумя запасными цифрами, получаем 0,6469 (запасные цифры выделены) и заносим результаты в таблицу.

<u>Рассмотрим $c + \sin b$ </u>: 4,711 + 0,64**69** = 5,3579. Подсчитаем предельную абсолютную погрешность:

$$\Delta c + \Delta(\sin b') = 0,0005 + 0,0038 = 0,0043.$$

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляя с двумя запасными цифрами, получаем 5,3579 (запасные цифры выделены) и заносим результаты в таблицу.

<u>Рассмотрим a^2 </u>: 0,3107² = 0,09653449. Подсчитаем предельную абсолютную погрешность:

$$\Delta a * a + a * \Delta b = 0,00005 * 0,3107 + 0,3107 * 0,00005 = 0,00003107 \approx 0,000031$$

Судя по ее величине, в полученном значении в узком смысле верны четыре знака после запятой. Округляя с двумя запасными цифрами, получаем 0,096534 (запасные цифры выделены) и заносим результаты в таблицу.

<u>Рассмотрим $c - a^2$ </u>: 4,711 - 0,096534 = 4,614466.Подсчитаем предельную абсолютную погрешность:

$$\Delta c - \Delta a * a - a * \Delta b = 0,0005 - 0,000031 = 0,000469$$

Судя по ее величине, в полученном значении в узком смысле верны три знака после запятой. Округляя с двумя запасными цифрами, получаем 0,09653 (запасные цифры выделены) и заносим результаты в таблицу.

<u>Рассмотрим Z</u> : $Z = \frac{c + \sin b}{c - a^2}$: $\frac{5,3579}{4,61446} = 1,161109...$ Подсчитаем предельную абсолютную погрешность:

$$\frac{\Delta \left(c + \sin b\right) * \left(c - a^2\right) + \left(c + \sin b\right) * \Delta \left(c - a^2\right)}{\left(c - a^2\right)^2} = \frac{0,0043 * 4,61446 + 5,3579 * 0,000469}{4,61446^2}$$
$$= \frac{0,0025128551}{21,2932410916} = 0,000118011865323 \approx 0,00012$$

Судя по ее величине, в полученном значении в узком смысле верны три знака после запятой. Округляя с двумя запасными цифрами, получаем 1,161**10** (запасные цифры выделены) и заносим результаты в таблицу.

2.3) «Способ границ»

Нижняя и верхняя границы значений a, b и c определены из условия, что в исходных данных a=0.3107, b=13.27 и c=4.711 все цифры верны в узком смысле ($\Delta a=0.00005$, $\Delta b=0.005$, $\Delta c=0.0005$), т. е.

$$0.31065 < a < 0.3175$$
; $13.265 < b < 13.275$; $4.7105 < c < 4.7115$

При выполнении промежуточных вычислений и округлении результатов будем использовать все рекомендации правил подсчета цифр с одним важным дополнением: округление нижних границ ведется по недостатку, а верхних – по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.

	НГ	ВГ
а	0,31065	0,3175
b	13,265	13,275
С	4,7105	4,7115
$\sin b$	0,6431	0,6507
$c + \sin b$	5,3536	5,362 2
a^2	0,096503	0,1008 0
$c-a^2$	4,6139 9	4,610 70
Z	1,160 2	1,1629 9

Прокомментируем ход вычислений.

Рассмотрим $\sin b$:

$$\mathsf{H}\Gamma_{\sin b} = \sin \mathsf{H}\Gamma_b = \sin 13,265 = 0,643168778773 \approx 0,6431$$

 $\mathsf{B}\Gamma_{\sin b} = \sin \mathsf{B}\Gamma_b = \sin 13,275 = 0,650793737408 \approx 0,6507$

Рассмотрим $c + \sin b$:

$$\mathsf{H}\Gamma_{c+\sin b} = \mathsf{H}\Gamma_{c} + \mathsf{H}\Gamma_{\sin b} = 4,7105 + 0,6431 = 5,3536 \approx 5,3536$$

 $\mathsf{B}\Gamma_{c+\sin b} = \mathsf{B}\Gamma_{c} + \mathsf{B}\Gamma_{\sin b} = 4,7115 + 0,6507 = 5,3622 \approx 5,3622$

Рассмотрим a^2 :

$$\begin{split} \mathsf{H}\Gamma_{a^2} &= \mathsf{H}\Gamma_a * \mathsf{H}\Gamma_a = 0,31065 * 0,31065 = 0,0965034225 \approx 0,096503 \\ \mathsf{B}\Gamma_{a^2} &= \mathsf{B}\Gamma_a * \mathsf{B}\Gamma_a = 0,3175 * 0,3175 = 0,10080625 \approx 0,10080 \end{split}$$

Рассмотрим $c - a^2$:

$$\begin{split} \mathsf{H}\Gamma_{c-a^2} &= \mathsf{H}\Gamma_c - \mathsf{H}\Gamma_{a^2} = 4,7105 - 0,09650\mathbf{3} = 4,613997 \approx 4,61399 \\ \mathsf{B}\Gamma_{c-a^2} &= \mathsf{B}\Gamma_c - \mathsf{B}\Gamma_{a^2} = 4,7115 - 0,1008\mathbf{0} = 4,61070 \approx 4,6107\mathbf{0} \end{split}$$

 ${\sf Paccmotpum}\, Z$:

$$H\Gamma_Z = \frac{H\Gamma_{c+\sin b}}{H\Gamma_{c-a^2}} = \frac{5,3536}{4,61399} = 1,16029726983 \approx 1,1602$$

$$\mathsf{B}\mathsf{\Gamma}_Z = \frac{\mathsf{B}\mathsf{\Gamma}_{c+\sin b}}{\mathsf{B}\mathsf{\Gamma}_{c-a^2}} = \frac{5,3622}{4,61070} = 1,16299043529 \approx 1,16299$$

Таким образом, результат вычислений значения Z по методу границ имеет вид

2.4) Вычисляя значение величины Z тремя разными способами, получили следующие результаты:

$$Z \approx 1,16$$

 $Z = 1,161 \pm 0,00012$
 $1,160 < Z < 1,1629$