Heart Attack Risk Prediction: A Case Study

This Data is regarding the Heart Attack Risk Prediction where we having the multiple features to check the Heart Attack Risk. Now we'll perform a lot of analysis to our dataset also we'll create a ML model which will help us to get to know which Data consist to more heart attack risk.

About the Dataset:

- Age-: Age of the Patient
- Sex-: Gender of the Patient
- **CP-:** Type of Chest Pain
 - Value 1: typical angina
 - Value 2: A-typical angina
 - Value 3: non-anginal pain
 - Value 4: asymptomatic
- trtbps-: trestbps (Resting Blood Pressure)
- Chol-: Cholesterol
- **FBS-:** Fasting Blood Sugar
- rest_ecg-: Resting Electrocardiographic Results
 - Value 0: normal
 - Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)
 - Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria
- exang-: Exercise Induced Angina (1 Yes; 0 No)
- OldPeak-: Previous Peak
- SLP-: Slope
- caa-: Number of Major Vessels
- **thall-:** Thallium Stress Test Result (0-3)
- Output-: Whether the Patient Has Heart Attack Risk or Not
 - 1 The Person Has Heart Attack Risk
 - 2 The Person Does Not Have Heart Attack Risk

iatic

Loading the Standard Libraries

In [190...

9/29/24, 8:03 PM

import numpy as np
import pandas as pd

```
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as sts
```

Loading the Dataset

In [191... df = pd.read_csv('Dataset/heart.csv')
 df.head()

Out[191...

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

Fetching some information with data

In [192... df.shape

Out[192... (303, 14)

In [193... df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
               Non-Null Count Dtype
     Column
               303 non-null
                               int64
     age
 1
     sex
               303 non-null
                               int64
 2
               303 non-null
                               int64
     ср
               303 non-null
                               int64
 3
     trtbps
 4
     chol
               303 non-null
                               int64
 5
     fbs
               303 non-null
                               int64
               303 non-null
                               int64
 6
    restecg
7
    thalachh
               303 non-null
                               int64
 8
               303 non-null
                               int64
     exng
 9
    oldpeak
               303 non-null
                               float64
              303 non-null
    slp
 10
                               int64
               303 non-null
11
    caa
                               int64
 12 thall
               303 non-null
                               int64
13 output
               303 non-null
                               int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
```

Observation-: There having only **303** Record with **14** Features also there is no as such object or any irrelevant data type format which we need to transform all data are in the form of **int** and **float**

```
In [194... df.describe().T
```

\cap	0.4	Γ	1	0	4	
U	uц	L	Т	J	4.	

	count	mean	std	min	25%	50%	75%	max
age	303.0	54.366337	9.082101	29.0	47.5	55.0	61.0	77.0
sex	303.0	0.683168	0.466011	0.0	0.0	1.0	1.0	1.0
ср	303.0	0.966997	1.032052	0.0	0.0	1.0	2.0	3.0
trtbps	303.0	131.623762	17.538143	94.0	120.0	130.0	140.0	200.0
chol	303.0	246.264026	51.830751	126.0	211.0	240.0	274.5	564.0
fbs	303.0	0.148515	0.356198	0.0	0.0	0.0	0.0	1.0
restecg	303.0	0.528053	0.525860	0.0	0.0	1.0	1.0	2.0
thalachh	303.0	149.646865	22.905161	71.0	133.5	153.0	166.0	202.0
exng	303.0	0.326733	0.469794	0.0	0.0	0.0	1.0	1.0
oldpeak	303.0	1.039604	1.161075	0.0	0.0	0.8	1.6	6.2
slp	303.0	1.399340	0.616226	0.0	1.0	1.0	2.0	2.0
caa	303.0	0.729373	1.022606	0.0	0.0	0.0	1.0	4.0
thall	303.0	2.313531	0.612277	0.0	2.0	2.0	3.0	3.0
output	303.0	0.544554	0.498835	0.0	0.0	1.0	1.0	1.0
exng oldpeak slp caa thall	303.0 303.0 303.0 303.0 303.0	0.326733 1.039604 1.399340 0.729373 2.313531	0.469794 1.161075 0.616226 1.022606 0.612277	0.0 0.0 0.0 0.0 0.0	0.0 0.0 1.0 0.0 2.0	0.0 0.8 1.0 0.0 2.0	1.0 1.6 2.0 1.0 3.0	1.0 6.2 2.0 4.0 3.0

Observation:-

- Age :-
 - The Maximum Age of Our Patient is :- 77
 - The Miniumu Age of Our Patient is :- 29
 - The Average Age of Our Patient is :- 55
- trtbps: Resting Blood Presure

Our Resing Blood presure reading should be between 120 / 180. if it's more than 180 it's very critical condition we should immediate seek for medical treatment * The Maximum trtbps of Our Patient is :- 200 which is very critical condition for our patients * The Minimum trtbs of Our

Patient is :- 94 which is low blood presure which is not critical but it's not that much good for our health * The Agerage trtbs of Our Patients is :- 131 which is preety normal

• Chol:- Cholesterol

Our Cholerterol Level should under 200-240 * The Maximum Cholerterol of Our Patient is :- 564 which can significantly increase the risk of heat attack * The minimum cholerterol of Our Patient is :- 211 which can also significant increase the risk of heat attack * The Average Cholerterol of Our Patient is :- 246 which is preety normal

Let's do some Sainity of the Data

In [195	<pre>df.duplicated().sum()</pre>											
Out[195	1											
In [196	<pre>df[df.duplicated()]</pre>											
Out[196	age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp caa thall output											
	164 38 1 2 138 175 0 1 173 0 0.0 2 4 2 1											
	Observation-: Our Data is containing only 1 duplicates values let's drop it out											
In [197	<pre>df = df.drop_duplicates()</pre>											
	Let's Check the Unique Value in our dataset											
In [198	<pre>df.nunique()</pre>											

```
Out[198...
           age
                         41
           sex
                          2
                         4
           ср
           trtbps
                         49
           chol
                       152
           fbs
                         2
           restecg
                          3
           thalachh
                         91
           exng
                         2
           oldpeak
                         40
           slp
                          3
           caa
                          5
           thall
                          4
           output
                          2
           dtype: int64
```

Let's Check the Null Value From Our Dataset

Observation:- There are no as such missing values in our dataset

```
df.isnull().sum()
In [199...
Out[199...
           age
                        0
                        0
           sex
           ср
           trtbps
           chol
                        0
           fbs
                        0
           restecg
                        0
           thalachh
                        0
                        0
           exng
           oldpeak
                        0
           slp
                        0
           caa
           thall
                        0
           output
                        0
           dtype: int64
```

EDA

Countplot of Target

```
In [203... sns.countplot(data = df , x = 'output')
   plt.show()
```


Let's See the Correleation on the matrix

```
In [204...
num_col = ['age', 'trtbps', 'chol', 'thalachh', 'oldpeak']
df_corr = df[num_col].corr().T
df_corr
```

Out[204...

	age	trtbps	chol	thalachh	oldpeak
age	1.000000	0.283121	0.207216	-0.395235	0.206040
trtbps	0.283121	1.000000	0.125256	-0.048023	0.194600
chol	0.207216	0.125256	1.000000	-0.005308	0.050086
thalachh	-0.395235	-0.048023	-0.005308	1.000000	-0.342201
oldpeak	0.206040	0.194600	0.050086	-0.342201	1.000000

Outliers

Obsevation:: As we can see there are some outliers in out dataset we can remove this if we don't lost lot of data

Removing the Outliers

```
In [206...
s = set()
for i in df[num_col]:
    q1 = df[i].quantile(0.25)
    q3 = df[i].quantile(0.75)
    iqr = q3-q1
    lower_bond = q1 - 1.5 * (iqr)
        upper_bond = q3 + 1.5 * (iqr)
        index_ = df[(df[i] < lower_bond) | (df[i] > upper_bond)].index.tolist()
        s.update(index_)
    print(f"The Index Where We Have the Outliers : {s}")
    print(f"The Number of Data Which we lost : {len(s)}")
    df = df.drop(s)
```

The Index Where We Have the Outliers: {260, 8, 266, 272, 28, 291, 203, 204, 85, 220, 221, 223, 96, 101, 110, 241, 246, 248, 250}

The Number of Data Which we lost: 19

Observation:- We have lost almost 19 records which was treated as outliers now if we check that are still dataset is contating the outliers after applying method of removing the outliers

	-					-	-		0.0					
0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	0.0	0.2	0.4	0.6	0.8	1.0
				oldneak										

Observation:- As you can see there are no as such outliers is our dataset

Now We'll See the Distribution of the Continues Column

оіареак

Observation-: As we can see our age, trtbp, chol are normally distributed whereas oldpeak is left-skewed distribution and thalachh is a bit right skewed distributed.

• Age:-

- More Risk of Heart Attack is between to Age Group of 40-55
- Whereas is the Less Risk of Heart Attack is Between Age Group of 55-65
- trtbps:- trestbps (Resting Blood Pressure).
 - More Risk of Heart Attack Patient with low BP 95- 105 also with high BP of 120-140 some there is some patient is also there with the BP of 145-155.
 - Where as Less Risk of Heart Attack Patient **Resting Blood Pressure** is 140-145 also there some patient has been observed with low Risk of Heart Attack with the BP of 155-170
- Chol (Cholesterol) :-.
 - Cholesterol Level Make Huges impact of Heart Attack Risk. More People Having Heart Attack Risk with the Cholesterol Level of 145-250. but few people also have been observed with Heart Attack Risk at Cholesterol Level 350.
 - Where Less Risk of Heart Attack Risk of Patient has been observed 260 300.
- thalachh (The Person Heart Rate Achieved) :-
 - The Higher Risk of Heart Attack Patinent is 150-200
 - The Low Risk of Heart Attack Patient is 90 140

Data Preprocessing

1) Seperating the Dependent and Independent Features

```
In [209... df_ = df.copy()
    x = df_.drop('output', axis = 1)
    y = df_[['output']]
```

2) Spliting the Dataset

```
In [210... from sklearn.model_selection import train_test_split
```

f = open("Feature Scaler File\\StandardScaler.pkl", "wb")

```
x train , x test , y train, y test = train test split(x,y,random state = 42, test size = 0.25)
In [211...
In [212...
          x train.shape , y train.shape , x test.shape , y test.shape
Out[212... ((212, 13), (212, 1), (71, 13), (71, 1))
          Feature Engineering
          1) Numerical Data Encoding
          from sklearn.preprocessing import StandardScaler
In [213...
          ss = StandardScaler()
In [214...
          SS
          ▼ StandardScaler
Out[214...
          StandardScaler()
          x train[['age','trtbps','chol','thalachh']] = ss.fit transform(x train[['age','trtbps','chol','thalachh']])
In [215...
          def transform(x test):
In [216...
              x_test[['age','trtbps','chol','thalachh']] = ss_new.transform(x_test[['age','trtbps','chol','thalachh']])
              return x test
```

Modeling

f.close()

import pickle

pickle.dump(ss, f)

In [217...

1) LogisticRegression

```
from sklearn.linear model import LogisticRegression
In [218...
          lr = LogisticRegression()
In [219...
          lr
           ▼ LogisticRegression
Out[219...
          LogisticRegression()
          lr.fit(x train , y train)
In [220...
Out[220...
          ▼ LogisticRegression
          LogisticRegression()
In [221...
          lr.coef
Out[221... array([[ 0.02512152, -1.30496145, 0.67026635, -0.28378598, -0.35751672,
                   -0.28348342, 0.63866043, 0.74933245, -0.74104964, -0.54843962,
                    0.49907719, -0.5671385, -1.08789224]])
          lr.intercept
In [222...
          array([3.1373863])
Out[222...
          import pickle
In [223...
          file = open("Feature Scaler File\\StandardScaler.pkl", "rb")
In [224...
          ss new = pickle.load(file)
          def transform(x test):
In [225...
              x_test[['age','trtbps','chol','thalachh']] = ss_new.transform(x_test[['age','trtbps','chol','thalachh']])
              return x test
          x test = transform(x test)
```

```
y pred test = lr.predict(x test )
In [226...
          pd.DataFrame({"predicted":y pred test, "actual":y test['output']}).head()
In [227...
Out[227...
                predicted actual
            10
           263
           145
                       1
           216
                       0
                              0
            77
                       1
                              1
          lr.score(x_train, y_train)
In [228...
Out[228...
           0.8632075471698113
          Accuracy
          from sklearn.metrics import classification_report , accuracy_score , confusion_matrix
In [229...
In [230...
          print(classification_report(y_test ,y_pred_test ))
          print(confusion matrix(y test, y pred test))
          print(f"Accuracy Score of the Test Data-: {round(accuracy_score(y_test , y_pred_test)*100,3)} %")
```

```
recall f1-score
                                             support
              precision
                   0.81
                             0.70
                                       0.75
                                                   30
                   0.80
                             0.88
           1
                                       0.84
                                                   41
                                       0.80
                                                   71
   accuracy
                                       0.79
                                                   71
  macro avg
                   0.80
                             0.79
weighted avg
                   0.80
                             0.80
                                       0.80
                                                   71
[[21 9]
[ 5 36]]
Accuracy Score of the Test Data-: 80.282 %
```

Observation:- We got Test Accuracy as 83.099 we'll perform the hyperpermeter tunning to see weather we can improve the accuracy of the model or not

Hyperperameter Tunning

```
import warnings
In [236...
          warnings.filterwarnings('ignore')
          gsv.fit(x train ,y train['output'])
Out[236...
                      GridSearchCV
           ▶ estimator: LogisticRegression
                  ▶ LogisticRegression
In [237...
          gsv.best params
          {'C': 10, 'penalty': 'l2', 'random state': 42, 'solver': 'liblinear'}
          gsv.best_estimator
In [238...
                                   LogisticRegression
Out[238...
          LogisticRegression(C=10, random state=42, solver='liblinear')
          lr = LogisticRegression(C= 10, penalty='12', random state= 42, solver='liblinear')
In [239...
          Observation: We have Added the Best Predicted Perameter into Logistic Regression. Now We'll See is there any changes in Accuracy Score
          lr .fit(x train, y train)
In [240...
Out[240...
                                   LogisticRegression
          LogisticRegression(C=10, random state=42, solver='liblinear')
          lr_.coef_
In [241...
Out[241... array([[ 0.05318007, -1.60969064, 0.72833798, -0.32335647, -0.40054777,
                   -0.36606581, 0.7601775, 0.82466617, -0.84674224, -0.52783103,
                    0.6169009 , -0.58740307, -1.16395227]])
```

```
In Γ242...
          lr .intercept
          array([3.27403243])
Out[242...
         y pred test = lr .predict(x test)
In [243...
          print(f"The Training Score : {lr .score(x train , y train)*100}")
In [244...
         The Training Score: 86.79245283018868
          Now we'll check the score of accuracy
In [245...
          print(classification report(y test ,y pred test ))
          print(confusion matrix(y test, y pred test ))
          print(f"Accuracy Score of the Test Data-: {round(accuracy score(y test , y pred test )*100,3)} %")
                                    recall f1-score
                       precision
                                                       support
                    0
                                      0.70
                                                0.72
                                                            30
                            0.75
                            0.79
                                      0.83
                                                0.81
                                                            41
                                                0.77
                                                            71
             accuracy
            macro avg
                            0.77
                                      0.76
                                                0.77
                                                            71
         weighted avg
                            0.77
                                                0.77
                                                            71
                                      0.77
         [[21 9]
         [ 7 34]]
         Accuracy Score of the Test Data-: 77.465 %
          As we can see we have impovement of 1% of the Model
          f = open("ML Model//Logistic Regression.pkl", "wb")
In [246...
          pickle.dump(lr , f)
          f.close()
```

DecisionTree Classifier

Now We'll Try Another Algorithym Which is know as Decision

```
from sklearn.tree import DecisionTreeClassifier
In [247...
In [248...
          dtc = DecisionTreeClassifier()
          dtc
Out[248...
          ▼ DecisionTreeClassifier
          DecisionTreeClassifier()
In [249...
          dtc.fit(x_train , y_train)
           ▼ DecisionTreeClassifier
Out[249...
          DecisionTreeClassifier()
          dtc y pred = dtc.predict(x test)
In [250...
In [251...
          print(classification report(y test ,dtc y pred ))
          print(confusion_matrix(y_test, dtc_y_pred))
          print(f"Accuracy Score of the Test Data-: {round(accuracy_score(y_test ,dtc_y_pred)*100,3)} %")
```

```
precision
                                    recall f1-score
                                                       support
                    0
                            0.60
                                      0.70
                                                0.65
                                                             30
                    1
                            0.75
                                      0.66
                                                0.70
                                                            41
                                                0.68
                                                            71
             accuracy
            macro avg
                            0.68
                                      0.68
                                                0.67
                                                             71
         weighted avg
                            0.69
                                      0.68
                                                0.68
                                                            71
         [[21 9]
          [14 27]]
         Accuracy Score of the Test Data-: 67.606 %
In [252...
          dtc.get depth()
Out[252... 9
          dtc = DecisionTreeClassifier(max depth = 3)
In [253...
          dtc.fit(x train , y train)
Out[253...
                  DecisionTreeClassifier
          DecisionTreeClassifier(max depth=3)
          print(f"The Accuracy of Train Dataset is -: {dtc.score(x train , y train) * 100}")
In [254...
         The Accuracy of Train Dataset is -: 85.84905660377359
          dtc_y_pred_test = dtc.predict(x test)
In [255...
          dtc_y_pred_test
Out[255... array([1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1,
                  1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
                  1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1,
                  1, 1, 0, 1, 1], dtype=int64)
          print(classification_report(y_test ,dtc_y_pred_test ))
In [256...
          print(confusion matrix(y test, dtc y pred test))
          print(f"Accuracy Score of the Test Data-: {round(accuracy score(y test ,dtc y pred test)*100,3)} %")
```

```
precision
                                   recall f1-score
                                                      support
                    0
                            0.79
                                     0.73
                                               0.76
                                                           30
                            0.81
                                     0.85
                                               0.83
                    1
                                                           41
                                               0.80
                                                           71
            accuracy
                                               0.80
                                                           71
            macro avg
                            0.80
                                     0.79
         weighted avg
                            0.80
                                     0.80
                                               0.80
                                                           71
         [[22 8]
         [ 6 35]]
         Accuracy Score of the Test Data-: 80.282 %
In [257...
         from sklearn.tree import plot tree
In [258...
          plt.figure(figsize = (11,5))
          plot_tree(dtc, filled =True)
          plt.show()
```



```
In [264... f = open("ML Model/DecisionTree_Model.yml", "wb")
pickle.dump(dtc ,f )
f.close()
```

Accuracy

- **LogisticRegression-:** We get accuracy with using LogisticRegression of Training Dataset is :- **86.73%** and test Dataset with score of **77.46%**
- **DecisionTree Classifier-:** We Get Accuracy With Using DecisionTree Classifier of Training Dataset is :- **85.84%** and test Dataset with score of **80.28%**

So we use **DecisionTree Classifier** for model **DecisionTree Classifier**.