Synthèse technique – Mini-Réacteur DRI & Mini-Four à Arc

1. Mini-Réacteur de Réduction Directe du Fer (DRI)

Principe de fonctionnement

Le procédé consiste à réduire l'oxyde de fer (Fe_2O_3) en fer métallique à l'aide de gaz réducteur hydrogène (H_2) , à une température de 900 à 1000 °C. Le fer obtenu est à l'état solide (préréduit), utilisable en aval dans un four à arc.

Réaction chimique : $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$

Dimensionnement proposé (échelle laboratoire)

Élément	Spécifications
Type de réacteur	Four à cuve vertical (zones : réduction,
	transition, refroidissement)
Hauteur	0,5 m
Diamètre	0,1 m
Température de travail	900 – 1000 °C
Capacité de production	≈ 1 kg/h de fer préréduit
Chauffage	Résistances électriques ou brûleurs
	internes
Refroidissement	Par air ou eau (échangeur simple)
Capteurs intégrés	Température, débit, pression
Matériaux	Réfractaires haute température
Sécurité	Détecteurs H ₂ , soupapes, arrêt d'urgence

Consommation en hydrogène (H₂)

Réaction : $Fe_2O_3 + 3H_2 \rightarrow 2Fe + 3H_2O$

Données stœchiométriques :

- Masse molaire $Fe_2O_3 = 159.7$ g/mol
- Masse molaire $H_2 = 2 \text{ g/mol}$
- 6 g de H₂ permettent de produire 111.6 g de Fe
- \rightarrow Pour produire 1 kg de Fe : (6 / 111.6) × 1000 \approx 53.76 g de H₂
- \rightarrow Avec une marge de 20 % : 53.76 × 1.2 \approx 64.5 g de H₂/h

2. Mini-Four à Arc pour la Fusion du Fer

Principe de fonctionnement

Deux électrodes (carbone ou tungstène) génèrent un arc électrique qui permet de chauffer et fondre le fer à sa température de fusion (1538 °C). Ce procédé simule à petite échelle la fusion industrielle en four électrique.

Dimensionnement proposé (échelle laboratoire)

Élément	Spécifications
Dimensions internes	20 × 20 × 20 cm
Volume de la chambre	≈8 litres
Température de fusion	≈ 1538 °C
Puissance requise	12 à 15 kW
Tension / Courant	50 V / 250 A
Électrodes	Carbone ou tungstène, Ø 5–10 mm, L ≈ 18
	cm
Matériaux réfractaires	Briques réfractaires ou laine céramique
Contrôle thermique	Thermocouple ou pyromètre
Sécurité	Mise à la terre, fusibles, disjoncteurs,
	ventilation forcée

Conclusion

Les deux dispositifs proposés – le mini-réacteur DRI utilisant exclusivement Fe_2O_3 et le gaz H_2 , et le mini-four à arc – permettent une illustration pédagogique complète du processus sidérurgique, de la réduction à la fusion. Ils sont dimensionnés pour une utilisation

sécurisée en laboratoire, tout en respectant les conditions réalistes des procédés industriels.