1logic

haize

August 6, 2024

Contents

1	Prop	positional Logic 2
	1.1	Logical Constants
	1.2	Variables
	1.3	Construction Trees
	1.4	Parsing Trees
	1.5	Truth Tables
	1.6	Tautologies
		1.6.1 Notation
	1.7	Contradictions
	1.8	Propositional Logical Consequence
		1.8.1 Consiquence is reducible to validity
	1.9	Sound Rules of propositional inference
	1.10	How to check correctness
	1.11	Fallacies of Implication (Derivative Implication)
	1.12	Truth assignments in propostional logical
	1.13	Logical Equivalence
		1.13.1 De' Morgans Law
		1.13.2 this one
	1.14	Relating Logical Equivalence, consequence and validity 5
	1.15	\equiv is an equivalence relation
	1.16	\equiv is a congruence wrt to logical connectives 5
		1.16.1 Important Logical Equivalence 6
	1.17	Inductive Definitions
		1.17.1 Structured induction
	1.18	Complex Proof

1 Propositional Logic

 $A \implies B$ This evalutes true if A is false **OR** B is true

1.1 Logical Constants

 \top : True propostion

 \perp : False propstion

1.2 Variables

 \bullet p, q, r : lower case roman letters.

1.3 Construction Trees

- Taking any subtree is a valid logical formulae itself
- the size of the graph is the number of nodes (variables + connectives)
- The main connective is the one applied last, non-leaf node
- create the tree from the inside

1.4 Parsing Trees

- Start constructing these from the main connective
- Top to bottom

1.5 Truth Tables

• ternary function mapping $\{0,1\} \rightarrow \{0,1\}$

1.6 Tautologies

• propositionnaly valid formula that is always True.

1.6.1 Notation

- $\bullet \models A$
- 1. Examples
 - |= p $\vee \neg$ p Law of excluded middle

- $\models \neg(p \land \neg p)$ Law of non-contradiction
- $\bullet \ \models ((p \ \land (p \ \Longrightarrow \ q)) \Longrightarrow \ q) \ \text{- modus ponents}$
 - Set q false, left must be true so all true.

1.7 Contradictions

- always false formula
- 1. If a formula is not a contradiction, then it is satisfiable

1.8 Propositional Logical Consequence

$$A_1, A_2, ..., A_n \models C$$

- if C is true whenever all A_i are true.
- Tautology is a special case of consequence

$$\phi \models C = \models C$$

1.8.1 Consiquence is reducible to validity

$$A_1,...,A_n \models B$$

is equivalent to: $A_1 \wedge ... \wedge A_n \models B$ then

$$\models (A_1 \land ... \land A_n) \implies B$$

1.9 Sound Rules of propositional inference

• A rule of propositional inference is a scheme where P_i are the premises we assume and C is the conclusion

$$\frac{P_1, ..., P_n}{C}$$

• An inference rule is **logically sound** if

$$P_1,...,P_n \models C$$

• Putting concrete propositions (substituting for variables) is a propositional inference.

1.10 How to check correctness

Check if a rule is sound:

$$\frac{S,S \implies h}{h}$$

so check if $S, S \implies h \stackrel{?}{\models} h$

... the inference is correct based on a sound rule, but can't say rules is sound

1.11 Fallacies of Implication (Derivative Implication)

- converse: $B \implies A$
- inverse: $\neg A \implies \neg B$
- contrapositve: $\neg B \implies \neg A$ this is **sound**.

1.12 Truth assignments in propostional logical

- PVAR : propostional variables (countably infinite)
- FOR : set of all propositional formulas

A truth assignment is a map \ v : PVAR \to {T, F} and \bar{v} :FORM \to {T,F}

- 1. Note the following:
 - $\bar{v}(\top) = \mathrm{T}$
 - $\bar{v}(\perp) = F$
 - $\bar{v}(p) = v(p)$
- * $\bar{v}(A) = T, (A) = F$

1.13 Logical Equivalence

 $A \equiv B$ both obtain the same truth value under all truth valuations

$$A \equiv B \iff \bar{v}(A) = \bar{v}(B)$$

for all truth assignments if v

1.13.1 De' Morgans Law

$$\neg(p \land q) \equiv \neg \ p \lor \neg \ q$$

1.13.2 this one

$$p \land (p \lor q) \equiv p \land p \equiv p \setminus$$

1.14 Relating Logical Equivalence, consequence and validity

1. Reducible to validity

$$A \equiv B \ iff \models A \iff B$$

- (a) Proof in notes Suppose $A \equiv B$ Let $v:PVAR \rightarrow \{T,F\}$ be arbitrary since $A \equiv B$, $\bar{v}(A) = \bar{v}(B)$ $\therefore \bar{v}(A \iff B) = T$ Since v was arbitrary we conclude $\models A \iff B$
- 2. Reducible to Logical Consequence $A \equiv B$ iff both $A \models B$ and $B \models A$

1.15 \equiv is an equivalence relation

- 1. reflexive $A \equiv A$
- 2. symmetric if $A \equiv B$ then $B \equiv A$
- 3. transitive if $A \equiv B$ and $B \equiv C$ then $A \equiv C$

1.16 \equiv is a congruence wrt to logical connectives

- if $A \equiv B$ then $\neg A \equiv \neg B$
- if $A_1 \equiv B_1$ and $A_2 \equiv B_2$ then $(A_1 \cdot A_2) \equiv (B_1 \cdot B_2)$ for all $\cdot = \{ \lor, \land, \implies, \iff \}$
- 1. Theorem Equivalent replacement if $A \equiv B$ then $C(A/p) \equiv C(B/p)$ We replace p with A all at once, the same for B
 - (a) Proof in notes → by induction on C By Induction on C:

i. C is
$$\perp$$
 Then $C(A/p) = \perp$ and $C(B/p) = \perp$

$$\therefore C(A/p) = \bot \equiv \bot = C(B/p)$$

- i. C is \top same as above.
- ii. 1. C is q where $q \neq p$, then C(A/p) = q and C(B/p) = q

SO
$$C(A/p) = q \equiv q = C(B/p)$$

i. 2. C is p, then

$$C(A/p) = A \equiv B = C(B/p)$$

Inductive Hypothesis: Suppose holds for formulas C_1 and C_2

$$C_1(A/p) \equiv C_1(B/p)$$
 and

$$C_2(A/p) \equiv C_2(B/p)$$

i. C is $\neg C$:

Then
$$C(A/p) = \mathcal{L}(A/p) \stackrel{\star}{=} \mathcal{L}(B/p) = C(B/p)$$
,

Where \star holds by the Inductive Hypothesis and the fact that \equiv is a congruence wrt to propositional connectives.

i.
$$C$$
 is $(C_1 \cdot C_2)$ for some $\cdot = \{ \land \lor \implies \iff \}$

Then $C(A/p) = (C_1(A/p) \cdot C_2(A/p))$ but by inductive hypothesis

$$C_1(A/p) \equiv C_1(B/p)$$
 and

$$C_2(A/p) \equiv C_2(B/p)$$

So by the fact that \equiv us a congruence wrt to propositional connectives;

$$C(A/p) = ((C_1(A/p) \cdot C_2(A/p)) \equiv (C(A/p) = (C_1(B/p) \cdot C_2(B/p)) = C(B/p)$$

$$\therefore C(A/p) \equiv C(B/p)$$

1.16.1 Important Logical Equivalence

- \bullet Idempotency : applying more than once makes no difference p^ p and p^ p
- Commutativity:
- Associativity:
- Distributivity:
- BUNCH OF STUFF AT THE END OF SECTION 1.3
- 1. Know important \equiv for negation how it affects \implies and \iff

1.17 Inductive Definitions

1.17.1 Structured induction

Important when an infinite set of structured objects are to be defined ${\tt BNF}$

$$w := \epsilon | wa$$

, where $a \in A$

1. Example proof The number of right parenthesis is the same as left in logical formalae ATTACH

 $l: \mathbf{FOR} \to \mathbb{N}$

 $r: \mathbf{FOR} \to \mathbb{N}$

To prove $/l/(\psi) = /r/(\psi) \ \forall \psi \in \mathbf{FORM}$

- (a) if ψ is \top , then $l(\psi) = l(\top) = 0 = r(\top) = r(\psi)$ if ψ is \bot , then $l(\psi) = l(\bot) = 0 = r(\bot) = r(\psi)$
- (b) if ψ is p then $l(\psi) = l(p) = 0 = r(p) = r(\psi)$
- (c) Suppose l(A) = r(A) and A is $\neg A$:

then
$$l\left(\psi\right)=l\left(\neg\:\mathrm{A}\right)=l\left(\mathrm{A}\right)=/\mathrm{r}/\left(\mathrm{A}\right)=r\left(\neg\:\mathrm{A}\right)=r\left(\psi\right)$$

(a) Suppose l/(A)=/r (A) and l (B) = r (B) and ψ is (A \cdot B), for $\cdot=\{\land,\lor,\implies,\iff\}$

Then
$$l(\psi) = l((A \cdot B) = l(A) + l(B) + 1$$

Now by IH = $r(A) + r(B) + 1 = r((A \cdot B)) = r(\psi)$

1.18 Complex Proof

We will prove $A \wedge B \implies B \implies A$ using natural deduction.

$$\begin{array}{c|c} A \wedge B & A \wedge B \\ \hline A & B \\ \hline B \wedge A \end{array}$$