# Introduction to Machine Learning Regression and Classification Trees

Andres Mendez-Vazquez

January 26, 2023

### Outline

- 1 First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues





### Outline

- 1 First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees
- Decision Trees
- Deriving Why do they work?
  - Structure of Decision Trees
- Types of Decision Trees
- Regression Trees
- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning
- Classification Trees
- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



### Powerful/popular

For classification and prediction.

### Powerful/popular

For classification and prediction.

### Represent rules

• Rules can be expressed in English.

### Powerful/popular

For classification and prediction.

### Represent rules

- Rules can be expressed in English.
  - ▶ IF  $Age \le 43$  & Sex == Male AND  $Credit\ Card\ Insurance == No\ THEN$

 $Life\ Insurance\ Promotion = No$ 

### Powerful/popular

For classification and prediction.

### Represent rules

- Rules can be expressed in English.
  - ▶ IF  $Age \le 43$  & Sex == Male AND  $Credit\ Card\ Insurance == No\ THEN$

 $Life\ Insurance\ Promotion = No$ 

• Rules can be expressed using SQL for query.

### Powerful/popular

For classification and prediction.

### Represent rules

- Rules can be expressed in English.
  - ▶ IF  $Age \le 43$  & Sex == Male AND  $Credit\ Card\ Insurance == No\ THEN$

 $Life\ Insurance\ Promotion = No$ 

• Rules can be expressed using SQL for query.

### Useful to explore data to gain insight into relationships

Of a large number of candidate input variables to a target (output) variable.

### What are They?

#### Decision Tree

A structure that can be used to divide up a large collection of records into successively smaller sets of records by applying a sequence of simple decision rules.

### What are They?

#### Decision Tree

A structure that can be used to divide up a large collection of records into successively smaller sets of records by applying a sequence of simple decision rules.

### A decision tree model

Consists of a set of rules for dividing a large heterogeneous population into smaller, more homogeneous groups with respect to a particular target variable.

### **Decision Tree Types**

### Binary trees

• Only two choices in each split. Can be non-uniform (uneven) in depth.

### **Decision Tree Types**

### Binary trees

• Only two choices in each split. Can be non-uniform (uneven) in depth.

### N-way trees or Ternary trees

• Three or more choices in at least one of its splits (3-way, 4-way, etc.).

### Outline

- 1 First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



## An Example



### Another Example - Grades



### Yet Another Example



### Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees
- Decision Trees
- Decision Trees

  Deriving Why do they work?
  - Structure of Decision Trees
  - Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- Conclusions
  - First Some Remarks
  - Issues



### Assume

 $Consider \ a \ Regression \ Problem \ with:$ 



### Assume

Consider a Regression Problem with:

• Continuous Response *y*.

### Assume

Consider a Regression Problem with:

- Continuous Response y.
- ② Inputs  $x_1$  and  $x_2$  taking values in [0,1].

#### Assume

Consider a Regression Problem with:

- Continuous Response y.
- ② Inputs  $x_1$  and  $x_2$  taking values in [0,1].
- 3 We have only recursive binary decisions/partitions.

#### Assume

Consider a Regression Problem with:

- Continuous Response y.
- 2 Inputs  $x_1$  and  $x_2$  taking values in [0,1].
- We have only recursive binary decisions/partitions.

### Example of a partition



### Although

ullet In each partition element we can model Y with a different constant.

### Although

ullet In each partition element we can model Y with a different constant.

### There is a problem

• Each partitioning line has a simple description like  $x_1 = c!!!$ 

### Although

ullet In each partition element we can model Y with a different constant.

### There is a problem

- Each partitioning line has a simple description like  $x_1 = c!!!$
- The Resulting Regions are difficult to describe!!!

### Although

ullet In each partition element we can model Y with a different constant.

### There is a problem

- Each partitioning line has a simple description like  $x_1 = c!!!$
- The Resulting Regions are difficult to describe!!!

### Solving the Issue

### We do the following

• Chose a variable and split the space using  $x_i = c$ 

### Solving the Issue

### We do the following

ullet Chose a variable and split the space using  $x_i=c$ 

# Keep doing that using one of the variables until a rules stops the process



## The corresponding Regression Tree

### We have

$$\hat{y} = f(x) = \sum_{m=1}^{5} c_m I\{(x_1, x_2) \in R_m\}$$

### The corresponding Regression Tree

### We have

$$\hat{y} = f(x) = \sum_{m=1}^{6} c_m I\{(x_1, x_2) \in R_m\}$$

### This regression can be interpreted as



### Outline

- - Introduction
  - Examples of Trees
- **Decision Trees**
- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees

- Growing Regression Trees

  - Using the Sum of Squared Error
  - Pruning

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- - First Some Remarks
  - Issues



- Nodes
  - ► Appear as rectangles or circles



- Nodes
  - ► Appear as rectangles or circles
  - ► Represent test or decision

- Nodes
  - ► Appear as rectangles or circles
  - ► Represent test or decision
- Lines or branches represent outcome of a test

- Nodes
  - Appear as rectangles or circles
  - ► Represent test or decision
- Lines or branches represent outcome of a test
- Circles terminal (leaf) nodes.

#### Structure

- Nodes
  - ► Appear as rectangles or circles
  - ► Represent test or decision
- Lines or branches represent outcome of a test
- Circles terminal (leaf) nodes.

#### Nodes

• Top or starting node is root node

#### Structure

#### Structure

- Nodes
  - Appear as rectangles or circles
  - Represent test or decision
- Lines or branches represent outcome of a test
- Circles terminal (leaf) nodes.

#### Nodes

- Top or starting node is root node
- Internal nodes are used for decisions

#### Structure

#### Structure

- Nodes
  - Appear as rectangles or circles
  - Represent test or decision
- Lines or branches represent outcome of a test
- Circles terminal (leaf) nodes.

#### Nodes

- Top or starting node is root node
- Internal nodes are used for decisions
- Terminal Nodes or Leaves are the final results

## Outline

- 1 First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees
- Decision Trees
- Deriving Why do they work?
  - Structure of Decision Trees
  - Types of Decision Trees
- 3 Regression Trees
  - Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning
  - Classification Trees
- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



# Types of Decision Trees

## Regression Trees

The predicted outcome can be considered a number.

# Types of Decision Trees

## Regression Trees

The predicted outcome can be considered a number.

## Classification Trees

• The predicted outcome is the class to which the data belongs.

# Classification and Regression Trees (CART)

## **CART**

• The term CART is an umbrella term used to refer to both of the above procedures.

# Classification and Regression Trees (CART)

#### **CART**

• The term CART is an umbrella term used to refer to both of the above procedures.

## Introduced by

- It was introduced by Breiman et. al in the book
  - "Classification and Regression Trees"

# Classification and Regression Trees (CART)

#### **CART**

 The term CART is an umbrella term used to refer to both of the above procedures.

## Introduced by

- It was introduced by Breiman et. al in the book
  - "Classification and Regression Trees"

#### **Similarities**

Regression and Classification trees have some similarities –
 nevertheless they differ in the way the splitting at each node is done.



## Outline

- 1 First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
- Using the Sum of Squared Error
- Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



## Setup

## Data Consists on inputs of dimensionality d

$$\left\{ (x_i, y_i)_{i=1}^N \right\}$$

Where  $x_i = (x_{i1}, x_{i2}, ..., x_{id})^T$ .

# Setup

## Data Consists on inputs of dimensionality $\boldsymbol{d}$

$$\left\{ (x_i, y_i)_{i=1}^N \right\}$$

Where  $x_i = (x_{i1}, x_{i2}, ..., x_{id})^T$ .

## Here, we want an algorithm

• To do the splitting automatically

# Setup

## Data Consists on inputs of dimensionality d

$$\left\{ (x_i, y_i)_{i=1}^N \right\}$$

Where  $x_i = (x_{i1}, x_{i2}, ..., x_{id})^T$ .

## Here, we want an algorithm

To do the splitting automatically

## Thus, assume a initial M partition $R_1,R_2,...,R_M$

ullet We model the response as a constant  $c_m$  in each region

$$f\left(oldsymbol{x}
ight) = \sum_{m=1}^{M} c_{m} I\left(oldsymbol{x} \in R_{m}
ight)$$

## Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- Conclusions
  - First Some Remarks
  - Issues



#### We have then

## We adopt as our criterion minimization

$$L(c_1, c_2, ..., c_M) = \sum_{i=1}^{N} \sum_{i=1}^{M} (y_i - f(\mathbf{x}_i))^2$$

### We have then

## We adopt as our criterion minimization

$$L(c_1, c_2, ..., c_M) = \sum_{i=1}^{N} \sum_{j=1}^{M} (y_i - f(\mathbf{x}_i))^2$$

## Then using a classic derivative with respect to $c_m$

$$\frac{\partial L\left(c_{1}, c_{2}, ..., c_{M}\right)}{\partial c_{m}} = -2\sum_{i=1}^{N} \left(y_{i} - \sum_{m=1}^{M} c_{m} I\left(\boldsymbol{x}_{i} \in R_{m}\right)\right) I\left(\boldsymbol{x}_{i} \in R_{m}\right)$$

## We have then

## We adopt as our criterion minimization

$$L(c_1, c_2, ..., c_M) = \sum_{i=1}^{N} \sum_{j=1}^{M} (y_i - f(\mathbf{x}_i))^2$$

## Then using a classic derivative with respect to $c_m$

$$\frac{\partial L\left(c_{1},c_{2},...,c_{M}\right)}{\partial c_{m}}=-2\sum_{i=1}^{N}\left(y_{i}-\sum_{m=1}^{M}c_{m}I\left(\boldsymbol{x}_{i}\in R_{m}\right)\right)I\left(\boldsymbol{x}_{i}\in R_{m}\right)$$

#### Then

$$\sum_{y_i \mid \boldsymbol{x}_i \in R_m} y_i - \sum_{i=1}^{N} I\left(\boldsymbol{x}_i \in R_m\right) \sum_{m=1}^{M} c_m I\left(\boldsymbol{x}_i \in R_m\right) = 0$$

Cinvestav

# The simplest function for $c_m$

## Something Notable

$$\sum_{\boldsymbol{x}_i \in R_m} c_m = \sum_{y_i | \boldsymbol{x}_i \in R_m} y_i$$

# The simplest function for $c_m$

## Something Notable

$$\sum_{\boldsymbol{x}_i \in R_m} c_m = \sum_{\boldsymbol{y}_i | \boldsymbol{x}_i \in R_m} y_i$$

#### Then

$$c_m = \frac{1}{N_m} \sum_{y_i | \boldsymbol{x}_i \in R_m} y_i$$

# The simplest function for $c_m$

## Something Notable

$$\sum_{\boldsymbol{x}_i \in R_m} c_m = \sum_{y_i | \boldsymbol{x}_i \in R_m} y_i$$

#### Then

$$c_m = \frac{1}{N_m} \sum_{y_i | \boldsymbol{x}_i \in R_m} y_i$$

#### **Problem**

 $\bullet$  Finding the best binary partition in terms of minimum sum of squares is generally  $O\left(2^N\right)$  a NP Problem!!!

#### What to do?

## Consider a splitting variable j and split point s

• Define the pair of half-planes

$$R_1(j,s) = \{ x | x_j \le s \} \text{ and } R_2(j,s) = \{ x | x_j > s \}$$

#### What to do?

## Consider a splitting variable j and split point s

• Define the pair of half-planes

$$R_1(j,s) = \{ x | x_j \le s \} \text{ and } R_2(j,s) = \{ x | x_j > s \}$$

## Using an Optimization Problem

$$\min_{j,s} \left\{ \min_{c_1} \sum_{\boldsymbol{x}_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{\boldsymbol{x}_i \in R_2(j,s)} (y_i - c_2)^2 \right\}$$

## What to do?

## Consider a splitting variable j and split point s

• Define the pair of half-planes

$$R_1(j,s) = \{ x | x_j \le s \} \text{ and } R_2(j,s) = \{ x | x_j > s \}$$

## Using an Optimization Problem

$$\min_{j,s} \left\{ \min_{c_1} \sum_{\boldsymbol{x}_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{\boldsymbol{x}_i \in R_2(j,s)} (y_i - c_2)^2 \right\}$$

## The nice part of this

ullet For any choice j and s, the inner minimization is solved by

$$\widehat{c}_1 = \frac{1}{N_1} \sum_{y_i \mid \boldsymbol{x}_i \in R_1(j,s)} y_i \text{ and } \widehat{c}_2 = \frac{1}{N_1} \sum_{y_i \mid \boldsymbol{x}_i \in R_2(j,s)} y_i$$

## For each splitting variable j

ullet Finding s is done quickly!!!

## For each splitting variable j

• Finding s is done quickly!!!

## We can repeat this process

• Problem, we can finish with an over-fitting tree/a very large tree.

## For each splitting variable j

• Finding s is done quickly!!!

## We can repeat this process

• Problem, we can finish with an over-fitting tree/a very large tree.

#### How do we solve?

• Tree size is an hyper-parameter governing the model's complexity.

## We have that

• Tree size is a tuning parameter governing the model's complexity

## We have that

• Tree size is a tuning parameter governing the model's complexity

## A preferred strategy

• Grow the tree until some minimum size node is done.

### We have that

• Tree size is a tuning parameter governing the model's complexity

## A preferred strategy

• Grow the tree until some minimum size node is done.

#### Then

• This large tree is pruned using cost-complexity pruning.

## Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees

### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- Conclusions
  - First Some Remarks
  - Issues



# We need to define something

#### Definition

- We define a subtree  $T \subseteq T_0$  to be any tree that can be obtained by pruning  $T_0$ :
  - ▶ By collapsing any number of its internal (non-terminal) nodes.

# We need to define something

#### Definition

- We define a subtree  $T \subseteq T_0$  to be any tree that can be obtained by pruning  $T_0$ :
  - ▶ By collapsing any number of its internal (non-terminal) nodes.

## Given that each $R_m$ is indexed by m

• Let |T| denote the number of terminal nodes in T:

$$N_m = |R_m|, \ \widehat{c}_m = \frac{1}{N_m} \sum_{y_i \mid x_i \in R_m} y_i \ \text{and} \ Q_m\left(T\right) = \frac{1}{N_m} \left(\widehat{c}_m - y_i\right)^2$$

### Thus

## Define the cost complexity criterion with $\alpha \geq 0$

$$C_{\alpha}\left(T\right) = \sum_{m=1}^{|T|} N_{m}Q_{m}\left(T\right) + \alpha \left|T\right|$$



## Thus

## Define the cost complexity criterion with $\alpha \geq 0$

$$C_{\alpha}(T) = \sum_{m=1}^{|T|} N_{m} Q_{m}(T) + \alpha |T|$$

## Finally

• The idea is to find, for each  $\alpha$ , the subtree  $T_{\alpha}\subseteq T_0$  to minimize  $C_{\alpha}\left(T\right)$ 

## Thus

## Define the cost complexity criterion with $\alpha \geq 0$

$$C_{\alpha}\left(T\right) = \sum_{m=1}^{|T|} N_{m} Q_{m}\left(T\right) + \alpha \left|T\right|$$

## Finally

• The idea is to find, for each  $\alpha$ , the subtree  $T_{\alpha}\subseteq T_0$  to minimize  $C_{\alpha}\left(T\right)$ 

## Properties of $\alpha$

- Large values of  $\alpha$  result in smaller  $T_{\alpha}$
- Small values of  $\alpha$  result in larger  $T_{\alpha}$



## **Furthermore**

# For each $\alpha$ one can show the existence of unique smallest subtree $T_\alpha$

• How do we find  $T_{\alpha}$ ?

## **Furthermore**

# For each $\alpha$ one can show the existence of unique smallest subtree $T_{\alpha}$

• How do we find  $T_{\alpha}$ ?

## Using weakest link pruning

• We successively collapse the internal node that produces the smallest per-node increase in

$$\sum_{m=1}^{|T|} N_m Q_m \left(T\right)$$

### **Furthermore**

# For each $\alpha$ one can show the existence of unique smallest subtree $T_{\alpha}$

• How do we find  $T_{\alpha}$ ?

# Using weakest link pruning

• We successively collapse the internal node that produces the smallest per-node increase in

$$\sum_{m=1}^{|T|} N_m Q_m \left(T\right)$$

# Until you get a single-node (root) and a sequence

$$T \supseteq T_1 \supseteq T_2 \supseteq \cdots \supseteq T_N$$

# We get that

ullet  $T_{lpha}$  is one of the threes in the in the sequence.



#### We get that

 $\bullet$   $T_{\alpha}$  is one of the threes in the in the sequence.

# Estimation of $\alpha$ is achieved by cross-validation

- $\bullet$  We choose the value  $\widehat{\alpha}$  to minimize the cross-validated sum of squares.
  - ▶ This is the final  $T_{\widehat{\alpha}}$

#### We get that

ullet  $T_{\alpha}$  is one of the threes in the in the sequence.

# Estimation of $\alpha$ is achieved by cross-validation

- $\bullet$  We choose the value  $\widehat{\alpha}$  to minimize the cross-validated sum of squares.
  - ▶ This is the final  $T_{\widehat{\alpha}}$

### For Details

"Pattern Recognition and Neural Networks" by Brian D. Ripley



# Outline

- 1 First Principles, Marcus Aurelius (Circa 170 AD
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
  - Structure of Decision Trees
- Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

#### Definition

- Training
- The Sought Criterion
- Probabilistic Impurity
- Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



#### Most of the work

It focuses on deciding which property test or query should be performed at the node!!!

#### Most of the work

It focuses on deciding which property test or query should be performed at the node!!!

#### If the data test is numerical in nature

There is a way to visualize the decision boundaries produced by the decision trees.

# **Definition OBCT**

### Definition

They are binary decision trees where the basic question is  $x_i \leq a_i$ ?

# **Definition OBCT**

# Definition

They are binary decision trees where the basic question is  $x_i \leq a_i$ ?



# Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
  - Structure of Decision Trees
- Types of Decision Trees

#### Pogression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



# Training of a OBCT

#### We need first

• At each node, the set of candidate questions to be asked has to be decided.

# Training of a OBCT

#### We need first

- At each node, the set of candidate questions to be asked has to be decided.
- Each question corresponds to a specific binary split into two descendant nodes.

# Training of a OBCT

#### We need first

- At each node, the set of candidate questions to be asked has to be decided.
- Each question corresponds to a specific binary split into two descendant nodes.
- Each node, t, is associated with a specific subset  $X_t$  of the training set X.

# Splitting the Node $X_t$

Basically, we want to split the node into two groups with questions  $t_Y = "YES"$  and  $t_N = "NO"$ 





# Splitting the Node $X_t$

Basically, we want to split the node into two groups with questions  $t_Y = "YES"$  and  $t_N = "NO"$ 



# With Properties

- $X_{tY} \cap X_{tN} = \emptyset$ .
- $X_{tY} \cup X_{tN} = X_t$

# Given the question for each feature k "Is $x_k < \alpha$ "

For each feature, every possible value of the threshold  $\alpha$  defines a specific split of the subset  $X_t$ .

# Given the question for each feature k "Is $x_k \leq \alpha$ "

For each feature, every possible value of the threshold  $\alpha$  defines a specific split of the subset  $X_t$ .

## Thus in theory

An infinite set of questions has to be asked if  $\alpha$  is an interval  $Y_{\alpha} \subseteq \mathbb{R}$ .

# Given the question for each feature k "Is $x_k \leq \alpha$ "

For each feature, every possible value of the threshold  $\alpha$  defines a specific split of the subset  $X_t$ .

#### Thus in theory

An infinite set of questions has to be asked if  $\alpha$  is an interval  $Y_{\alpha} \subseteq \mathbb{R}$ .

### In practice

only a finite set of questions can be considered.

# For example

# Since the number, N, of training points in X is finite

Any of the features  $x_k$  with k=1,...,l can take at most  $N_t \leq N$  different values

# For example

# Since the number, N, of training points in X is finite

Any of the features  $x_k$  with k=1,...,l can take at most  $N_t \leq N$  different values

### Where

 $N_t = |X_t|$  with  $X_t \subset X$ 

# For example

# Since the number, N, of training points in X is finite

Any of the features  $x_k$  with k=1,...,l can take at most  $N_t \leq N$  different values

#### Where

 $N_t = |X_t|$  with  $X_t \subset X$ 

#### Then

For feature  $x_k$ , one can use  $\alpha_{kn}$  with  $n=1,2,...,N_{tk}$  and  $N_{tk} \leq N_t$  where  $\alpha_{kn}$  are taken halfway between consecutive distinct values of  $x_k$  in the training subset  $X_t$ .

### We repeat this with all features

In such a case, the total number of candidate questions is

$$\sum_{k=1}^{l} N_{tk} \tag{1}$$

# We repeat this with all features

In such a case, the total number of candidate questions is

$$\sum_{k=1}^{l} N_{tk} \tag{1}$$

#### However

Only one of them has to be chosen to provide the binary split at the current node, t, of the tree.



### We repeat this with all features

In such a case, the total number of candidate questions is

$$\sum_{k=1}^{l} N_{tk} \tag{1}$$

#### However

Only one of them has to be chosen to provide the binary split at the current node, t, of the tree.

#### Thus

 This is selected to be the one that leads to the best split of the associated subset X<sub>t</sub>.

#### We repeat this with all features

In such a case, the total number of candidate questions is

$$\sum_{k=1}^{l} N_{tk} \tag{1}$$

#### However

Only one of them has to be chosen to provide the binary split at the current node, t, of the tree.

### Thus

- This is selected to be the one that leads to the best split of the associated subset  $X_t$ .
- The best split is decided according to a **splitting criterion**.

# Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees
  - Decision Trees
  - Deriving Why do they work?
  - Structure of Decision Trees
  - Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- Conclusions
  - First Some Remarks
  - Issues



### Criterion's to be Found

### Splitting criterion

• A splitting criterion must be adopted according to which the best split from the set of candidate ones is chosen.

### Criterion's to be Found

### Splitting criterion

 A splitting criterion must be adopted according to which the best split from the set of candidate ones is chosen.

# Stop-splitting rule

A stop-splitting rule is required that controls the growth of the tree, and a node is declared as a terminal one (leaf).

### Criterion's to be Found

#### Splitting criterion

 A splitting criterion must be adopted according to which the best split from the set of candidate ones is chosen.

# Stop-splitting rule

A stop-splitting rule is required that controls the growth of the tree, and a node is declared as a terminal one (leaf).

### Rule

A rule is required that assigns each leaf to a specific class.



# Looking for Homogeneity!!!

# In order for the tree growing methodology

From the root node down to the leaves every split must generate a subsets that are more homogeneous compared to the ancestor's subset  $X_t$ .

# Looking for Homogeneity!!!

# In order for the tree growing methodology

From the root node down to the leaves every split must generate a subsets that are more homogeneous compared to the ancestor's subset  $X_t$ .

### Meaning

The training feature vectors in each one of the new subsets show, whereas data in  $X_t$  are more equally distributed among the classes.

# Looking for Homogeneity!!!

# In order for the tree growing methodology

From the root node down to the leaves every split must generate a subsets that are more homogeneous compared to the ancestor's subset  $X_t$ .

# Meaning

The training feature vectors in each one of the new subsets show, whereas data in  $X_t$  are more equally distributed among the classes.

### For example

Consider the task of classifying four classes  $\{\omega_1,\omega_2,\omega_3,\omega_4\}$  and assume that the vectors in subset  $X_t$  are distributed among the classes with equal probability.

# Thus

# If we split the node so

- ullet  $\omega_1$  and  $\omega_2$  form  $X_{tY}$
- $\bullet \ \omega_3 \ \text{and} \ \omega_4 \ \text{form} \ X_{tN}$

# Thus

# If we split the node so

- ullet  $\omega_1$  and  $\omega_2$  form  $X_{tY}$
- ullet  $\omega_3$  and  $\omega_4$  form  $X_{tN}$

### Then

 $X_{tY}$  and  $X_{tN}$  are more homogeneous compared to  $X_t$ .

# Thus

# If we split the node so

- $\bullet$   $\omega_1$  and  $\omega_2$  form  $X_{tY}$
- ullet  $\omega_3$  and  $\omega_4$  form  $X_{tN}$

#### Then

 $X_{tY}$  and  $X_{tN}$  are more homogeneous compared to  $X_t$ .

### In other words

"Purer" in the decision tree terminology.

# Our Goal

# We need

To define a measure that quantifies node impurity.

### Our Goal

#### We need

To define a measure that quantifies node impurity.

## Thus

The Overall Impurity of the descendant nodes is optimally decreased with respect to the ancestor node's impurity.

## Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
  - Structure of Decision Trees
- Types of Decision Trees

#### 3 Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



# Probabilistic Impurity



# Probabilistic Impurity

Assume the following probability of a vector in  $\boldsymbol{X}_t$  belongs to class  $\omega_i$ 

$$P(\omega_i|t) \text{ for } i=1,\cdots,M$$
 (2)

# A Common Impurity

## We define one of the most common impurities

$$I(t) = -\sum_{i=1}^{M} P(\omega_i|t) \log_2 P(\omega_i|t)$$

# A Common Impurity

## We define one of the most common impurities

$$I(t) = -\sum_{i=1}^{M} P(\omega_i|t) \log_2 P(\omega_i|t)$$

### This is nothing more than the Shannon's Entropy!!!

- Facts:
  - ightharpoonup I(t) reaches its maximum when

$$P(\omega_i|t) = \frac{1}{M}$$

ightharpoonup I(t)=0 if all data belongs to a single class i.e.

 $P\left(\omega_{i}|t\right)=1$  for only one class, and  $P\left(\omega_{j}|t,j\neq i\right)=0$  for everybody else.

# A Common Impurity

## We define one of the most common impurities

$$I(t) = -\sum_{i=1}^{M} P(\omega_i|t) \log_2 P(\omega_i|t)$$

### This is nothing more than the Shannon's Entropy!!!

- Facts:
  - ightharpoonup I(t) reaches its maximum when

$$P(\omega_i|t) = \frac{1}{M}$$

ightharpoonup I(t)=0 if all data belongs to a single class i.e.

 $P\left(\omega_{i}|t\right)=1$  for only one class, and  $P\left(\omega_{j}|t,j\neq i\right)=0$  for everybody else.

# In reality...

#### We estimate

$$P\left(\omega_i|t\right) = \frac{N_t^i}{N_t}$$

Where  $|\omega_i|=N_t^i$  as the number of points in  $X_t$ that belongs to class  $\omega_i.$ 

# In reality...

#### We estimate

$$P\left(\omega_i|t\right) = \frac{N_t^i}{N_t}$$

Where  $|\omega_i|=N_t^i$  as the number of points in  $X_t$ that belongs to class  $\omega_i.$ 

#### Assume now

If we perform a split,  $N_{tY}$  points are sent into the "YES" node  $X_{tY}$  and  $N_{tN}$  into the "NO" node  $X_{tN}$ 

# Decrease in node impurity

### Then

In a recursive way we define the term decrease in node impurity as:

$$\Delta I\left(t\right) = I\left(t\right) - \frac{N_{tY}}{N_{t}}I\left(t_{Y}\right) - \frac{N_{tN}}{N_{t}}I\left(t_{N}\right)$$

where  $I(t_Y)$  and  $I(t_N)$  are the impurities of the  $t_Y$  and  $t_N$  nodes.

(3)

### The Final Goal

#### The Final Goal

To adopt from the set of candidate questions the one that performs the split with the highest decrease of impurity.

#### Now

The natural question that now arises is when one decides to stop splitting a node and declares it as a leaf of the tree.

#### Now

The natural question that now arises is when one decides to stop splitting a node and declares it as a leaf of the tree.

### For example you can adopt

A threshold T and stop splitting if the maximum value of  $\Delta I\left(t\right)$  over all possible splits is less than T.

#### Now

The natural question that now arises is when one decides to stop splitting a node and declares it as a leaf of the tree.

### For example you can adopt

A threshold T and stop splitting if the maximum value of  $\Delta I\left(t\right)$  over all possible splits is less than T.

## Other posibilities

• If the subset  $X_t$  is small enough.

#### Now

The natural question that now arises is when one decides to stop splitting a node and declares it as a leaf of the tree.

### For example you can adopt

A threshold T and stop splitting if the maximum value of  $\Delta I\left(t\right)$  over all possible splits is less than T.

### Other posibilities

- If the subset  $X_t$  is small enough.
- If the subset  $X_t$  is pure, in the sense that all points in it belong to a single class.

## Once a node is declared to be a leaf

# Class Assignment Rule

Once a node is declared a leaf, we assign the leaf to a class using the rule:

$$j = \arg \max_{i} P(\omega_i | t)$$
.

## Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees

#### Decision Trees

- Deriving Why do they work?
  - Structure of Decision Trees
- Types of Decision Trees

#### Regression Trees

- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning

#### Classification Trees

- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- 5 Conclusions
  - First Some Remarks
  - Issues



# Algorithm

**1** Begin with the root node, that is,  $X_t = X$ .

- **1** Begin with the root node, that is,  $X_t = X$ .
- $\textbf{ 2} \quad \text{For each new node } t \\$

- **1** Begin with the root node, that is,  $X_t = X$ .
- $\bigcirc$  For each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:

- **1** Begin with the root node, that is,  $X_t = X$ .
- 2 For each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n=1,2,...,N_{tk}$

- **1** Begin with the root node, that is,  $X_t = X$ .
- 2 For each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n=1,2,...,N_{tk}$
- Generate  $X_{tY}$  and  $X_{tN}$  according to the answer in the question:

- **1** Begin with the root node, that is,  $X_t = X$ .
- 2 For each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n=1,2,...,N_{tk}$
- Generate  $X_{tY}$  and  $X_{tN}$  according to the answer in the question:
- $\text{"Is } x_k(i) \le \alpha_{kn}, \text{"} i = 1, 2, ..., N_t$

- **1** Begin with the root node, that is,  $X_t = X$ .
- Por each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n = 1, 2, ..., N_{tk}$
- 6 "Is  $x_k(i) \le \alpha_{kn}$ ,"  $i = 1, 2, ..., N_t$
- Compute the impurity decrease

- **1** Begin with the root node, that is,  $X_t = X$ .
- Por each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n = 1, 2, ..., N_{tk}$
- Generate  $X_{tY}$  and  $X_{tN}$  according to the answer in the question:
- 6 "Is  $x_k(i) \le \alpha_{kn}$ ,"  $i = 1, 2, ..., N_t$
- Compute the impurity decrease
- Choose  $\alpha_{kn_0}$  leading to the maximum decrease w.r. to  $x_k$ .

- **1** Begin with the root node, that is,  $X_t = X$ .
- Por each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n = 1, 2, ..., N_{tk}$
- Generate  $X_{tY}$  and  $X_{tN}$  according to the answer in the question:
- 6 "Is  $x_k(i) \leq \alpha_{kn}$ ,"  $i = 1, 2, ..., N_t$
- Compute the impurity decrease
- $\textbf{ Choose } \alpha_{kn_0} \text{ leading to the maximum decrease w.r. to } x_k.$
- **2** Choose  $x_{k_0}$  and associated  $\alpha_{k_0n_0}$  for overall maximum decrease of impurity.

#### Algorithm

6

- **1** Begin with the root node, that is,  $X_t = X$ .
- 2 For each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n=1,2,...,N_{tk}$
- Generate  $X_{tY}$  and  $X_{tN}$  according to the answer in the question:
  - "Is  $x_k(i) \le \alpha_{kn}$ ,"  $i = 1, 2, ..., N_t$
- Compute the impurity decrease
- 8 Choose  $\alpha_{kn_0}$  leading to the maximum decrease w.r. to  $x_k$ .
- **9** Choose  $x_{k_0}$  and associated  $\alpha_{k_0n_0}$  for overall maximum decrease of impurity.
- $oldsymbol{0}$  If the stop-splitting rule is met, declare node t as a leaf and label a class

#### Algorithm

6

- **1** Begin with the root node, that is,  $X_t = X$ .
- Por each new node t
- For every feature  $x_k$ , k = 1, 2, ..., l:
- For every value  $\alpha_{kn}$ ,  $n = 1, 2, ..., N_{tk}$
- Generate  $X_{tY}$  and  $X_{tN}$  according to the answer in the question:
  - "Is  $x_k(i) \le \alpha_{kn}$ ,"  $i = 1, 2, ..., N_t$
- Compute the impurity decrease
- **8** Choose  $\alpha_{kn_0}$  leading to the maximum decrease w.r. to  $x_k$ .
- **2** Choose  $x_{k_0}$  and associated  $\alpha_{k_0n_0}$  for overall maximum decrease of impurity.
- f 0 If the stop-splitting rule is met, declare node t as a leaf and label a class
- - depending on the answer to the question: is  $x_{k_0} \leq \alpha$ ?

57 / 65

## Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees
- Decision Trees
- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees
- Regression Trees
  - Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning
  - Classification Trees
- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- Conclusions

  First Some Remarks
  - Issues



# Popular Classification Methods

• Decision trees have emerged as one of the most popular methods of classification.

## Popular Classification Methods

• Decision trees have emerged as one of the most popular methods of classification.

### More Impurity Measures

• A variety of node impurity measures can be defined.

### Popular Classification Methods

• Decision trees have emerged as one of the most popular methods of classification.

### More Impurity Measures

• A variety of node impurity measures can be defined.

#### The size of the three need to be controlled

ullet The threshold T leads incorrect sizes.

# Why Binary Splits?

• We could consider a Multi-way split

## Why Binary Splits?

• We could consider a Multi-way split

#### However

• That will fragment the data too fast.

## Why Binary Splits?

We could consider a Multi-way split

#### **However**

• That will fragment the data too fast.

## We would rather do only split when necessary

• After all a Multi-way split can be achieved with multiple binary split.

## Linear Combination Splits

• Instead of doing simple splittings, we could use

$$\sum_{j=1}^{d} a_i x_i < s$$

### Linear Combination Splits

• Instead of doing simple splittings, we could use

$$\sum_{j=1}^{d} a_i x_i < s$$

## This improve the predictive power of the tree

• It can hurts interpretability

#### Linear Combination Splits

• Instead of doing simple splittings, we could use

$$\sum_{j=1}^{d} a_i x_i < s$$

## This improve the predictive power of the tree

It can hurts interpretability

#### Better use

• Hierarchical Mixture of Experts (HME).



## Outline

- First Principles, Marcus Aurelius (Circa 170 AD)
  - Introduction
  - Examples of Trees
- Decision Trees
- Deriving Why do they work?
- Structure of Decision Trees
- Types of Decision Trees
- Regression Trees
- Growing Regression Trees
  - Using the Sum of Squared Error
  - Pruning
  - Classification Trees
- Definition
  - Training
  - The Sought Criterion
  - Probabilistic Impurity
  - Final Algorithm
- Conclusions
  - First Some Remarks
  - Issues



# One of the biggest issues

• One major problem with trees is their high variance.



## One of the biggest issues

• One major problem with trees is their high variance.

# A small change in the data can result in a very different series of splits

Making interpretability precarious!!!



## Lack of Smoothness

• Another limitation of trees is the lack of smoothness of the prediction surface



#### Lack of Smoothness

• Another limitation of trees is the lack of smoothness of the prediction surface

## Thus strategies to alleviate this problem are necessary

• Multivariate Adaptive Regression Splines (MARS) procedure



## The CART trees are bad at modeling additive structures

For Example

$$y = c_1 I\left(x_1 < t_1\right) + c_2 I\left(x_2 < t_2\right) + \epsilon \text{ with } \epsilon \sim N\left(0, \sigma^2\right)$$

## The CART trees are bad at modeling additive structures

For Example

$$y = c_1 I\left(x_1 < t_1\right) + c_2 I\left(x_2 < t_2\right) + \epsilon \text{ with } \epsilon \sim N\left(0, \sigma^2\right)$$

## Problem, CART has no special encouragement to capture this model

 Again MARS can help for this given its no dependency to the binary tree structure