Lecture 5: Edges and Smoothed Derivatives

Background Reading:

T&V Section 4.1 and 4.2

Forsyth&Ponce, Chapter 8

Jain et.al. Chapter 5

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (although an artist also relies on object-level knowledge)

Simple Edge Detection Using Gradients

A simple edge detector using gradient magnitude

- •Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters
- •Compute gradient magnitude at each pixel
- •If magnitude at a pixel exceeds a threshold, report a possible edge point.

Compute Spatial Image Gradients

$$\frac{I(x+1,y) - I(x-1,y)}{2}$$

Partial derivative wrt x

$$\frac{I(x,y+1) - I(x,y-1)}{}$$

2

Partial derivative wrt y

Simple Edge Detection Using Gradients

A simple edge detector using gradient magnitude

- •Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters
- •Compute gradient magnitude at each pixel
- •If magnitude at a pixel exceeds a threshold, report a possible edge point.

Compute Gradient Magnitude

Magnitude of gradient sqrt(Ix.^2 + Iy.^2)

Measures steepness of slope at each pixel (= edge contrast)

Simple Edge Detection Using Gradients

A simple edge detector using gradient magnitude

- •Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters
- •Compute gradient magnitude at each pixel
- •If magnitude at a pixel exceeds a threshold, report a possible edge point.

Threshold to Find Edge Pixels

• Example – cont.:

Binary edge image

Characterizing edges

Locate edges as maxima/minima of first derivative

Problem: Derivatives and Noise

derivative operator is affected by noise

• Numerical derivatives can <u>amplify</u> noise! (particularly higher order derivatives)

Due to noise, our computed gradient vectors may be wrong (e.g. incorrect direction and magnitude)!

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position

Where is the edge?

Robert Collins CMPEN454

Solution: Smooth before Applying Derivative Operator!

DerivFilter * (SmoothFilter * I)

Recall: Gaussian Smoothing Filter

- Smoothing filter that does weighted averaging.
 - The coefficients are a 2D Gaussian.
 - Gives more weight at the central pixels and less weights to the neighbors.
 - The farther away the neighbors,
 the smaller the weight.

$$G_{\sigma} \equiv \frac{1}{2\pi\sigma^2} \exp\left\{-\frac{x^2 + y^2}{2\sigma^2}\right\}$$

Solution: smooth first

• To find edges, look for extrema of $\frac{d}{dx}(f*g)$

Robert Collins CMPEN454

Solution: Smooth before Applying Derivative Operator!

DerivFilter * (SmoothFilter * I)

Question: Do we have to apply two linear operations here (convolutions)?

Math: Properties of Convolution

Commutative: f * g = g * f

Associative: (f * g) * h = f * (g * h)

Distributive: (f + g) * h = f * h + g * h

Linear: (a f + b g) * h = a f * h + b g * h

Shift Invariant: f(x+t) * h = (f * h)(x+t)

Differentiation rule:

$$\frac{\partial}{\partial x}(f * g) = \frac{\partial f}{\partial x} * g$$

Robert Collins CMPEN454

Solution: Smooth before Applying Derivative Operator!

DerivFilter * (SmoothFilter * I)

Question: Do we have to apply two linear operations here (convolutions)?

Smoothing and Differentiation

No, we can combine filters!

By associativity of convolution operator:

DerivFilter * (SmoothFilter * I)

= (DerivFilter * SmoothFilter) * I

we can precompute this part as a single kernel to apply

Recall: Convolution in Matlab

Imfilter(image,template{,option1,option2,...})

Boundary options: constant, symmetric, replicate, circular Output size options: same as image, or full size (includes partial values computed when mask is off the image). Corr or conv option: convolution rotates the template (as we have discussed). Correlation does not.

Pro tip: you typically want to use "full" size option when convolving two filters to get another filter.

Example: Prewitt Edge Operator

This filter is called the (vertical) Prewitt Edge Detector

Note: I am inventing notation here. Rot180 is meant to be used like the transpose operator, but it rotates by 180.

Example: Prewitt Edge Operator

This filter is called the (horizontal) Prewitt Edge Detector

Example: Sobel Edge Operator

rot180

rot180

Convolve with:

-1	0	1
-2	0	2
-1	0	1

Gives more weight to the 4-neighbors

and

-1	-2	-1
0	0	0
1	2	1

Important Observation

Note that a Prewitt operator is a box filter convolved with a derivative operator [using "full" option].

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
Simple box filter

Also note: a Sobel operator is a [1 2 1] filter convolved with a derivative operator.

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$
Simple Gaussian

Generalize: Smooth Derivatives

- Solution: First smooth the image by a Gaussian G_s and then take derivatives: $\underbrace{\frac{\partial f}{\partial r}}_{\approx} \approx \underbrace{\frac{\partial (G_{\sigma} * f)}{\partial r}}_{\text{dr}}$
- · Applying the differentiation property of the convolution:

$$\frac{\partial f}{\partial x} \approx \frac{\partial G_{\sigma}}{\partial x} * f$$

 Therefore, taking the derivative in x of the image can be done by convolution with the derivative of a Gaussian:

$$G_{\sigma}^{x} = \frac{\partial G_{\sigma}}{\partial x} = xe^{-\frac{x^{2} + y^{2}}{2\sigma^{2}}}$$

Derivative theorem of convolution

- Differentiation is convolution, and convolution satisfies the differentiation rule : $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Source: S. Seitz

First (partial) Derivative of a Gaussian

As a filter, it is also computing a difference (derivative)

Derivative of Gaussian Filter in 2D

Derivative of Gaussian Filter in 2D

Efficient Implementation

- Since 2D Gaussian filter is separable, derivative of Gaussian filter in 2D can also be separated into two 1D filters
- Example:
 - First convolve each row with a 1D Derivative of Gaussian
 - Then convolve each column with a 1D Gaussian

$$G_{\sigma}^{x} * f = g_{\sigma}^{x} * g_{\sigma\uparrow}^{x} * f$$

Summary: Smooth Derivatives

Compute Spatial Image Gradients

$$\frac{I(x+1,y) - I(x-1,y)}{2}$$

Partial derivative wrt x

Partial derivative wrt y

Replace with your favorite smoothing+derivative operator

