

Machine Learning

Linear Algebra review (optional)

Matrices and vectors

Matrix: Rectangular array of numbers:

Dimension of matrix: number of rows x number of columns

Matrix Elements (entries of matrix)

$$A = \begin{bmatrix} 1402 & 191 \\ 1371 & 821 \\ 949 & 1437 \\ 147 & 1448 \end{bmatrix}$$

$$A_{ij} =$$
 "i,jentry" in the i^{th} row, j^{th} column.

Vector: An n x 1 matrix.

$$y = \begin{vmatrix} 460 \\ 232 \\ 315 \\ 178 \end{vmatrix}$$

$$y_i = i^{th}$$
 element

1-indexed vs 0-indexed:

$$y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \qquad y = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

Linear Algebra review (optional)

Addition and scalar multiplication

Matrix Addition

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \\ 0 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 0 \\ 2 & 5 \\ 3 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 0.5 \\ 2 & 5 \end{bmatrix} =$$

Scalar Multiplication

$$\begin{vmatrix}
1 & 0 \\
2 & 5 \\
3 & 1
\end{vmatrix} =$$

$$\begin{bmatrix} 4 & 0 \\ 6 & 3 \end{bmatrix} / 4 =$$

Combination of Operands

$$3 \times \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} - \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} / 3$$

Linear Algebra review (optional)

Matrix-vector multiplication

Example

$$\begin{bmatrix} 1 & 3 \\ 4 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} =$$

Details:

To get y_i , multiply A's i^{th} row with elements of vector x, and add them up.

Example

$$\begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 4 \\ -1 & -2 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix} =$$

House sizes:

21041416

1534

852

$$h_{\theta}(x) = -40 + 0.25x$$

Linear Algebra review (optional)

Matrix-matrix multiplication

Example

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \\ 5 & 2 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 5 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} =$$

Details:

The i^{th} column of the matrix C is obtained by multiplying A with the i^{th} column of B. (for i = 1,2,...,0)

Example

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} =$$

House sizes:

Have 3 competing hypotheses:

852

1.
$$h_{\theta}(x) = -40 + 0.25x$$

2.
$$h_{\theta}(x) = 200 + 0.1x$$

3.
$$h_{\theta}(x) = -150 + 0.4x$$

Matrix

Matrix

IVIACIIX			IVIatrix					486	4
	1	2104				_		314	
	1	1416		$\begin{bmatrix} -40 \\ 0.25 \end{bmatrix}$	$200 \\ 0.1$	$\begin{bmatrix} -150 \\ 0.4 \end{bmatrix}$	=	344	
	1	1534	× [1 73	2
	4								

Linear Algebra review (optional)

Matrix multiplication properties

Let A and B be matrices. Then in general, $A \times B \neq B \times A$. (not commutative.)

E.g.
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 2 & 2 \end{bmatrix}$$

$$A \times B \times C$$
.

Let $D = B \times C$. Compute $A \times D$.

Let $E = A \times B$. Compute $E \times C$.

Identity Matrix

Denoted I (or $I_{n \times n}$).

Examples of identity matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$3 \times 3 \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

For any matrix A,

$$A \cdot I = I \cdot A = A$$

Linear Algebra review (optional)

Inverse and transpose

Not all numbers have an inverse.

Matrix inverse:

If A is an m x m matrix, and if it has an inverse,

$$AA^{-1} = A^{-1}A = I.$$

Matrices that don't have an inverse are "singular" or "degenerate"

Matrix Transpose

Example:
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 5 & 9 \end{bmatrix}$$
 $A^T = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ 0 & 9 \end{bmatrix}$

Let A be an m x n matrix, and let $B=A^T$. Then B is an n x m matrix, and

$$B_{ij} = A_{ji}$$
.