

Vstupní signály pro identifikaci systémů

Ing. Petr Blaha, PhD.

16. prosince 2017

Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193

Úvod

Úvod

Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení Používané typy vstupních signálů

- skoková změna
- pseudonáhodná binární posloupnost
- součet harmonických průběhů

Neparametrické metody - skoková změna, puls Korelační analýza - PRBS

Výběr vhodného vstupního signálu a jeho nastavení významnou měrou ovlivňuje kvalitu identifikace.

Motivační příklad

Úvod

Motivační příklad

Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení Uvažujme systém popsaný rovnicí

$$y(k+1) = -a_1 y(k) + b_1 u(k)$$

Odhadovaný výstup z modelu je roven

$$\hat{y}(k+1) = -\hat{a}_1 y(k) + \hat{b}_1 u(k)$$

Uvažujme konstantní vstupní signál u(t)= konst. a že parametry vyhovují následující rovnici

$$\frac{b_1}{1+a_1} = \frac{\hat{b}_1}{1+\hat{a}_1}$$

Tato rovnice znamená, že systém a model mají shodné statické zesílení.

Motivační příklad-pokračování

Úvod

Motivační příklad

Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení Chyba mezi skutečným a odhadovaným výstupem

$$\varepsilon(k+1) = y(k+1) - \hat{y}(k+1) = 0$$

ikdyž se parametry vzájemně nerovnají $(\hat{a}_1 \neq a_1 \text{ a } \hat{b}_1 \neq b_1)$

Z toho plyne závěr, že pomocí konstantního vstupního signálu nelze identifikovat parametry systému.

Otázka: Dá se tento systém identifikovat pomocí jednoho harmonického průběhu?

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

Skoková změna

Použití

PRBS

Součet harmonických signálů

Stupeň persistentního buzení

Skoková změna

Skoková změna

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

Skoková změna

Použití

PRBS

Součet harmonických signálů

Stupeň persistentního buzení Skoková změna se dá popsat rovnicí

$$u(t) = \begin{cases} 0 & t < 0 \\ u_0 & t \ge 0 \end{cases}$$

Jediný volitelný parametr je amplituda skoku u_0 . Volí se s ohledem na

- odstup signálu a šumu
- linearitu systému
- možnost vybuzení

Použití

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

Skoková změna

Použití

PRBS

Součet harmonických signálů

Stupeň persistentního buzení

Umožňuje nám jednoduše zjistit

- statické zesílení
- dobu náběhu (dominantní časová konstanta)
- překmit (rezonance)

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Binární pseudonáhodná posloupnost

Binární pseudonáhodná posloupnost

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Pseudo Random Binary Sequence - PRBS

Binární (nabývá pouze dvou hodnot) **pseudonáhodná** (kovarianční funkce obdobná jako u bílého šumu, přesto se dá vždy určit následující prvek) **posloupnost**.

Generuje se pomocí posuvného registru a sčítaček modulo 2. Jsou povoleny všechny stavy, kromě samých nul. Pokud se vystřídají všechny povolené stavy, hovoříme o PRBS maximální délky M

$$M = 2^N - 1$$

kde N je počet posuvných registrů.

Blokové schéma generátoru PRBS

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Sčítačka modulo 2 se chová podle tabulky

u_1	u_2	$u_1 \oplus u_2$
0	0	0
0	1	1
1	0	1
1	1	0

Zpětnovazební koeficienty $a_1, a_2, \ldots a_n$ jsou rovny 0 nebo 1.

Vzorkování generátoru se může lišit od vzorkování systému.

Stavový popis PRBS

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Maticový zápis generátoru PRBS

$$\boldsymbol{x}(k+1) = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_{n-1} & a_n \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix} \boldsymbol{x}(k)$$

$$u(k) = \begin{pmatrix} 0 & 0 & \dots & 1 \end{pmatrix} \boldsymbol{x}(k)$$

Všechny operace sčítání jsou prováděny v modulo 2. Jedná se o konečný automat - konečný počet stavů.

Posunutí PRBS

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení Vytvoření PRBS, kde se střídají na výstupu hodnoty a a b

$$u'(k) = a + (b - a)u(k)$$

Příklad: Vygenerujte PRBS signál střídající hodnoty ± 1 (a=-1 a b=1)

$$u'(k) = -1 + 2u(k)$$

Vytvoření PRBS maximální délky M závisí na použitých zpětných vazbách

Příklady

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Uvažujme generátor se třemi posuvnými registry (n=3) a počátečním stavem $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$ Zpětná vazba od stavů 1 a 2 $(a_1=1,a_2=1 \text{ a } a_3=0)$

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix},$$

Zpětná vazba od stavů 1 a 3 ($a_1 = 1, a_2 = 0$ a $a_3 = 1$)

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1$$

Cvičně zpětná vazba od všech stavů.

PRBS maximální délky

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet

harmonických

signálů

Stupeň persistentního buzení

její korelační funkce se podobá korelační funkci bílého šumu (není zajištěno u PRBS s kratší délkou než maximální)

Zpětné vazby zajišťující maximální délku PRBS

Počet registrů n	Délka periody M	Vazby od
2	3	a_1 a a_2
3	7	a_1 a a_3
4	15	a_3 a a_4
5	31	a_3 a a_5
6	63	a_5 a a_6
7	127	a_4 a a_7
8	255	a_2 , a_3 , a_4 a a_8
9	511	a_5 a a_9
10	1023	a_7 a a_{10}

Střední hodnota PRBS

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení Pro PRBS maximální délky platí, že během jedné periody $M=2^n-1$ je zde $(M+1)/2=2^{n-1}$ jedniček a $(M-1)/2=2^{n-1}-1$ nul. Odtud vychází střední hodnota

$$m = \frac{1}{M} \sum_{k=1}^{M} y(k) = \frac{1}{M} \frac{M+1}{2} = \frac{1}{2} + \frac{1}{2M}$$

Střední hodnota je o něco málo větší než 0.5.

Rozptyl PRBS

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Pro rozptyl platí

$$R(0) = \frac{1}{M} \sum_{k=1}^{M} [y(k) - m]^2 =$$

$$= \frac{1}{M} \sum_{k=1}^{M} [y^2(k) - 2y(k)m + m^2] =$$

$$= \frac{1}{M} \sum_{k=1}^{M} y^2(k) - \frac{2m}{M} \sum_{k=1}^{M} y(k) + m^2$$

$$= \frac{1}{M} \sum_{k=1}^{M} y^2(k) - 2m^2 + m^2 = m(1 - m) = \frac{M^2 - 1}{4M^2}$$

Rozptyl je o něco menší než 0.25.

Kovariance PRBS pro $\tau \neq 0$ a $|\tau| < M$

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení Výběr amplitudy

Součet

harmonických

signálů

Stupeň persistentního buzení

$$r(\tau) = \frac{1}{M} \sum_{k=1}^{M} [y(k+\tau) - m][y(k) - m] =$$

$$= \frac{1}{M} \sum_{k=1}^{M} y(k+\tau)y(k) - m^2 =$$

$$= \dots = \frac{m}{2} - m^2 = -\frac{M+1}{4M^2}$$

Je vidět, že pro velké M jsou hodnoty kovariancí pro $\tau \neq 0$ a a $|\tau| < M$ přibližně rovny nule.

Příklad

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Příklad: Určete střední hodnotu, rozptyl a kovarianční funkci posunuté PRBS

$$u'(k) = -1 + 2u(k)$$

Střední hodnota je $m_{y'}=\frac{1}{M}\approx 0$, rozptyl $r_{y'}(0)=1-\frac{1}{M^2}\approx 1$ a kovariance $r_{y'}=-\frac{1}{M}-\frac{1}{M^2}\approx -\frac{1}{M}$ pro $\tau\neq 0$ a $|\tau|< M$.

Je vidět že kovariance této PRBS se přibližně shodují s kovariancemi **bílého šumu** s rozptylem rovným 1.

Vhodné nastavení PRBS pro identifikaci

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Pro správnou identifikaci statického zesílení je třeba, aby délka nejdelšího impulsu T_{max} byla větší než doba náběhu t_n $T_{max}=n\cdot T_{vz}>t_n.$

Na základě této rovnice určíme n a tím i délku PRBS $M=2^n-1$.

Pokud je n příliš velké, dá se nastavit perioda vzorkování PRBS jako p násobek periody vzorkování T_{vz} , kde $p=1,2,\ldots$ Potom platí rovnice $T_{max}=p\cdot n\cdot T_{vz}>t_n$

Další podmínkou je, abychom postihli co nejvíce frekvencí, t.j. volíme délku experimentu L delší nebo rovnu maximální délce PRBS M. Pokud je délka experimentu zadaná, musí platit podmínka $M=2^n-1 < L$

Výběr vhodné amplitudy

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

PRBS

Schéma

Stavový popis

Posunutí

Příklady

Maximální délka

Střední hodnota

Rozptyl

Kovariance

Příklad

Vhodné nastavení

Výběr amplitudy

Součet harmonických signálů

Stupeň persistentního buzení

Výběr vhodné amplitudy se řídí stejnými pravidly jako výběr amplitudy u signálu se skokovou změnou

- úroveň PRBS by měla převyšovat úroveň šumu
- při identifikaci nelineárního systému nesmí být úroveň PRBS příliš velká, abychom dostali správný linearizovaný model kolem pracovního bodu

V případě nízkého poměru signál/šum lze prodloužením délky trvání experimentu zvýšit přesnost identifikovaných parametrů (když nemůžeme zvýšit amplitudu PRBS).

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Součet harmonických signálů Určení nutného počtu harmonických

Stupeň persistentního buzení

Součet harmonických signálů

Součet harmonických signálů

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Součet harmonických signálů

Určení nutného počtu harmonických

Stupeň persistentního buzení Vstupní signál je určen

$$u(t) = \sum_{j=1}^{m} a_j \sin(\omega_j t + \varphi_j)$$

kde $0 \le \omega_1 < \omega_2 < \ldots < \omega_m \le \pi$ Musí se zvolit amplitudy, frekvence a fáze.

 $\omega_1=0$ - odpovídá stejnosměrné složce

 $\omega_m=\pi$ - odpovídá složce, která v každém kroku mění své znaménko

Určení nutného počtu harmonických

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Součet harmonických signálů

Určení nutného počtu harmonických

Stupeň persistentního buzení Uvažujme identifikaci parametrů systému

$$y(k) = -\sum_{i=1}^{n_a} a_i y(k-i) + \sum_{i=1}^{n_b} b_i u(k-i)$$

Neznámých parametrů je $n = n_a + n_b$.

Pokud je n sudé, potřebujeme $m \geq \frac{n}{2}$. Pokud je n liché, potřebujeme $m \geq \frac{n+1}{2}$.

Jinými slovy, čím je bohatší spektrum signálu, tím je identifikace snazší (bílý šum, PRBS).

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení

Stupeň persistentního buzení

Příklady

Příklady pokračování

Poznámky

Stupeň persistentního buzení

Stupeň persistentního buzení

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení

Stupeň persistentního buzení

Příklady Příklady pokračování Poznámky Signál u(t) je **persistentně budicí stupně** n, pokud současně platí

1. existuje limita

$$r_u(\tau) = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} u(t+\tau)u^T(t)$$

2. následující matice je positivně definitní

$$R_{u}(n) = \begin{pmatrix} r_{u}(0) & r_{u}(1) & r_{u}(2) & \cdots & r_{u}(n-1) \\ r_{u}(-1) & r_{u}(0) & r_{u}(1) & \cdots & r_{u}(n-2) \\ \vdots & \vdots & & \ddots & \vdots \\ r_{u}(1-n) & r_{u}(2-n) & r_{u}(3-n) & \cdots & r_{u}(0) \end{pmatrix}$$

Příklady

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení Stupeň

persistentního buzení

Příklady

Příklady pokračování Poznámky **Příklad:** Určete stupeň persistentního vybuzení bílého šumu u(t) s nulovou střední hodnotou a rozptylem σ^2 .

$$r_u(\tau) = \sigma^2 \delta_{0,\tau}$$

$$R_u(n) = \sigma^2 \boldsymbol{I}_n$$

kde $R_u(n)$ je vždycky positivně definitní \rightarrow persistentní vybuzení všech řádů.

Příklad: Určete stupeň persistentního vybuzení skokové změny u(t) o hodnotu $\sigma.$

$$r_u(au) = \sigma^2$$
 pro všechna au

Proto je $R_u(n)$ nesingulární jen pro n=1

Příklady pokračování

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení

Stupeň persistentního buzení

Příklady

Příklady pokračování

Poznámky

Příklad: Určete stupeň persistentního vybuzení impulsu u(t) = 1 pro t = 0, jinak u(t) = 0.

$$r_u(\tau) = 0$$
 pro všechna τ

Proto je $R_u(n)=0$. Impuls není persistentně budícím signálem žádného řádu.

Poznámky

Úvod Motivační příklad Motivační příklad-pokračování

Skoková změna

PRBS

Součet harmonických signálů

Stupeň persistentního buzení Stupeň persistentního

persistentního buzení

Příklady

Příklady pokračování

Poznámky

Nutnou podmínkou pro správnou identifikaci systému n-tého řádu je budicí signál se stupněm persistentního vybuzení rovným $2 \cdot n$. Při použití metody nejmenších čtverců je postačující stupeň n.

Podmínka pro persistentní vybuzení platí u systémů, které jsou zašuměné. To vyžaduje zpracovávat $N \to \infty$ dat. U systémů bez šumu lze provést identifikaci z konečného množství dat i z odezvy na impuls případně na skokovou změnu vstupního signálu.

