SoTA Text to Image Adapting and Finetuning MensaFood

Andi Alidema, Wenyuan Sheng, Rona Latifaj University of Freiburg

Karim Farid and Leonhard Sommer

Introduction

Let's say you just walked into your first class of the day and are wondering what to eat after. You open the SWFR page and read what the mensa is offering today. Would it not be nice to see what the food would actually look like, prepared the same way it's served in our university mensa specifically? This is the challenge that we are tackling in this project.

The world of Al-generated images has seen massive breakthroughs in the last couple of years. Yet out-of-the-box models do not yet produce images we would call "exactly what the mensa served today." In this "SoTA Mensa Text to Image" project we are teaching these impressive visual generative models to capture specialized domains—like the familiar yet varied dishes served in University Mensa—and provide us with the exact foods we will be served later in the day.

Method

Quantitative Results

	model	FID sc	ore		
diffusion pretrained		398	200		
8	lora-v1	165	-		
	lora-v2	185			
	lora-v3	234			
	lora-v4	176			
	Table 2: CLIP & LL	M metric	s		
images		CLIP score		QWen score (0-100)	
		arith	geo	arith*	geo†
gt dataset		0.3098	0.3084	69.30	54.75
lora-v1 (raw image-text pairs)		0.3083	0.3078	73.17	68.42
lora-v2 (unique image-text pairs)		0.2858	0.2846	58.00	32.07
lora-v3 (English-text)		0.2805	0.2785	67.38	39.42
lora-v4 (v2 & v3 & image-a	aug & keyword prefix)	0.3009	0.3001	78.79	78.29
The evaluation dataset	is composed with 10 red descriptions in Dl		0	es and corr	responding
* arithmetic mean of each for	od object score across eval	$\begin{array}{c} { m limages} \\ { m images} \end{array}$			

You are my assistant to identify any objects and their {texture} in the image.

Evaluate if there are '{sliced pepper cucumber salad}' in the image according the criteria:

A: there are {pepper cucumber salad}, and {texture} is good. {sliced} are appropriate for

Table 1: FID eval

Limitations

the contents.

D: no {salad} in the image.

Predict

- Compositional accuracy: Model struggles with complex multi-item food <u>arrangements</u>, meat doneness <u>texture</u>, and realistic portion <u>scaling</u>;
- Results may not generalize equally to German prompts.

B: there are {pepper cucumber salad}, but {texture} is bad.

Provide a score (0-100) and explanation in JSON format

C: there is {salad}, but not all {pepper cucumber salad} appear.

 Future work could explore: higher-resolution training, adaptive LoRA rank selection to balance expressivity and efficiency, simultaneous fine-tuning of the text encoder and VAE for richer semantic alignment.

Experiments

Version	Resolution	Training Steps	Preprocessing	Human-Eye Performance
v1	$256{\times}256$	15000	Lang:German & raw data	Good
v2	512×512	15000	Unique pairs & Lang:German	Worst
v3	512×512	30000	Unique pairs & Lang:English	Second worst
v4	512×512	30000	Lang:English & Data Augmentation & UP	Best

Table 1: Comparison of Model Versions

Qualitative Results								
Prompt	Model Generated Image	Real Image						
Mensafood Breaded pork schnitzel or vegetable								

Mensafood Pasta-Kreationen aus unserer Pasta-Manufaktur mit verschiedenen Saucen und Toppings

schnitzel, roast gravy, and

French fries

Mensafood Stuffed peppers, baked potato and sweet-potato wedges, Spanish beans, and side salad

Mensafood Hamburger TS with beef, cheese, tomato, lettuce, and French fries

Mensafood Tortellini gefüllt mit Ricotta und SpinatBasilikum-Käsesauc e Frühlingszwiebel Tomatenwürfel und geriebener Emmentaler

References

- [1] Cuenca & Paul, Hugging Face Blog, Jan 2023. "Using LoRA for Efficient Stable Diffusion Fine-Tuning." [2] Heusel et al., NeurlPS 2017. "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
- Equilibrium." [3] Huang et al., IEEE TPAMI 2025. "T2I-CompBench++: An Enhanced and Comprehensive Benchmark for Compositional Text-to-Image Generation."