Game Theory and Applications (博弈论及其应用)

Chapter 8: Extensive Game

南京大学

高尉

Recap on Previous Chapter

- Two-Player Zero-Sum Game
 - Both players do not do too badly
 - For Player 1

• For player 2
$$u(a_1, a_2)$$
 $u(a_1, a_2)$ Player 2 $u(a_1, a_2)$ $u(a_$

The Minmax Theorem

$$\max_{p \in \Delta_1} \min_{q \in \Delta_2} pMq^{\top} = \min_{q \in \Delta_2} \max_{p \in \Delta_1} pMq^{\top}.$$

Main result: NE for two-player zero-sum game \rightarrow LP

Strategy Game

A strategy game consists of

- \triangleright A finite set N of players
- \triangleright A non-empty strategy set A_i for each player $i \in N$
- A payoff function $u_i: A_1 \times A_2 \times \cdots \times A_N \to R$ for $i \in N$ $G = \{N, \{A_i\}_{i=1}^N, \{u_i\}_{i=1}^N\}$

终于在这里看懂outcome是什么了 因为"可能是NE",所以其实就是每个玩家选一个策略的组合

An outcome $a^* = (a_1^*, a_2^*, ..., a_N^*)$ is a Nash Equilibrium (NE) if for each players i

 $u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \text{ for all } a_i \in A_i.$

How to find Nash Equilibria

- 1) Calculate directly
 - − i) find the best response functions
 - ii) calculate Nash equilibria

2) Eliminate all dominated strategy

3) For two-player zero-sum player, linear programming

Strategy Game

- Every player makes strategy once time simultaneously in strategy game
 - Each player make strategy without knowing the strategies of the other players

包含

 The game does not incorporate any information of sequence, time for players' strategies

Example

In some situation, players can observe others' strategy

before they make decision

- ◆ Simple Nim game
 - \triangleright There are n coins
 - Two players select 1 or 2 or 3 coins in turn
 - The winner is the one taking the last coin.

Strategy Game

- > Set of players
- > Set of strategies
- > Payoff functions

Extensive game provides more information

- > Sequences of players
- > Strategies available at different points in the game

Two variants

- ✓ perfect information extensive-form games
- ✓ imperfect-information extensive-form games

Entry Game

仔细考虑

Google is contemplating entering the Chinese market, and Baidu can either fight the entry or cooperate

Game Tree

- node
 - > non-terminal node
 - > terminal node
- branches
- players
- strategy
- payoff

Formal Definition of Extensive Game

An extensive game with perfect information includes

- Players *N* is the set of *N* players
- Strategies A is a set of all strategies
- Histories *H* is a set of strategy sequence (finite or infinite) s.t.
 - − The empty sequence $\emptyset \in H$
 - If $a^1 a^2 \dots a^k \in H$ then $a^1 a^2 \dots a^s \in H$ when $s \leq k$
 - If an infinite sequence $(a^k)_{k=1}^{\infty}$ satisfies $a^1a^2 \dots a^k \in H$ for each positive k, then $(a^k)_{k=1}^{\infty} \in H$ (为了定义的完整性)

Definition of Extensive Game

An extensive game with **perfect information** is defined by

- Players *N* is the set of *N* players
- Strategies A is a set of all strategies
- Histories *H* is a set of sequence (finite or infinite)
 - Each sequence in H is called a history; each component $a^i \in A$ is a strategy
 - Terminal history $a^1 \dots a^k \in H$ if $k = +\infty$ or $a^1 \dots a^{k+1} \notin H$ for any $a^{k+1} \in A$.
 - \triangleright Terminal history set Z={all terminal histories $a^1 \dots a^k \in H$ }

Definition of Extensive Game

An extensive game with perfect information is defined by

• Players *N* is the set of *N* players

这三页

• Strategies A is a set of all strategies

这几行 都一样

- Histories *H* is a set of sequence (finite or infinite)
- Player function
 - $P: H \setminus Z \to N$ assigns to **each non-terminal history** a player of N
 - -P(h) denotes the player who takes action after the history h
- Payoff function $u_i: Z \to R$

$$G = \{N, H, P, \{u_i\}\}$$

Ultimatum Game

$$G = \{N, H, P, \{u_i\}\}$$

 $N = \{A, B\}$
 $H = \{\emptyset, (2,0), (1,1), (0,2), ((2,0),y)\}$
 $10 \uparrow \cup \{((2,0),n), ((1,1),y), ((1,1),n)\}$
 $\cup \{((0,2),y), ((0,2),n)\}$
 $P : P(\emptyset) = A; P((2,0)) = B; P((1,1)) = B; P((0,2)) = B$
 $4 \uparrow$
 $u_1((2,0),y) = 2, u_1((2,0),n) = 0, u_1((1,1),y) = 1, u_1((1,1),n) = 0$
 $u_2((2,0),y) = 0, u_2((2,0),n) = 0, u_2((1,1),y) = 1, u_2((1,1),n) = 0$
 $6 \uparrow [\bot \top - \forall \beta - \uparrow, \lor 4]$

Example ^{已知G画树}

$$\bullet \quad G = \{N, H, P, \{u_i\}\}$$

- $N = \{1,2\}$
- $H = \{\emptyset, A, B, AL, AR\}$ 5 \uparrow
- $P: P(\emptyset)=1; P(A)=2$ 2

•
$$u_1(B) = 1, u_1(AL) = 0, u_1(AR) = 2$$

•
$$u_2(B) = 2$$
, $u_2(AL) = 0$, $u_2(AR) = 1$

Exercise

Definition: Given game $G = \{N, H, P, \{u_i\}\}$, the pure strategy for player i is given by the cross product $\times_{h \in H} \{a^s : (h, a^s) \in H, p(h) = i\}$.

A pure strategy for a player is a complete specification of which deterministic action to take at every node belonging to that player.

Pure Strategies

- How many pure strategies for each player?
- Player A: $\{(2,0),(1,1),(0,2)\}$ 3个 Or you can say $\{a,b,c\}$ 这里既是策略,也用收益值的形式命名了
- Player B: {yyy,yyn,yny,ynn,nyy,nyn,nny,nnn}

Pure Strategy Example

What are the pure strategies for players 1 and 2?

 $\{A,B\}X\{G,H\} \qquad \qquad \{C,D\}X\{E,F\}$

Nash Equilibrium

Based on the definition of pure strategy, we can define

- Mixed strategies

 P1 + P2 + P3 + P4 = 1

 CE CF DE DF
- ➤ Best response
- ➤ Nash equilibrium

Given extensive $G = \{N, H, P, \{u_i\}\}$, an strategy outcome $a^* = (a_1^*, a_2^*, ..., a_N^*)$ is a **Nash equilibrium** if and only if

 $u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*)$ for every a_i of player i

How to find Nash Equilibrium: Induced strategy game

Induced Strategy Game

Every extensive game can be converted to a strategy game

Remark: This conversion is not reverse

How many Nash Equilibria for ultimatum game?

Kuhn Theorem (1953)

Theorem Every extensive game with perfect information has at least one Pure Strategy Nash Equilibrium (PSNE).

Proof Constructive proof will be introduced later.

Example

Nash Equilibria are (B,L) and (A,R)

- (B,L) is a Nash equilibrium: if player 2 select L, then player 1 select B, and vice verse.
- Is (B,L) reasonable? 是NE,但不是子博弈完美均衡(SPNE)

(B,L) is an non-credible threat.

Subgame (子博弈)

Definition A subgame is a set of nodes, strategies and payoffs, following from a single node to the end of game.

A subgame is a part of the game tree such that

- It starts at a single strategy node
- It contains every successor to this node
- It contains all information in every successor

Example

Subgame Perfect Equilibrium

Definition An outcome is $a = (a_1^*, a_2^*, ..., a_N^*)$ is a subgame perfect (子博弈完美) if it is Nash Equilibrium in every subgame

- > Subgame perfect is a Nash Equilibrium
- This definition rules out "non-credible threat"

Theorem Every extensive game with perfect information has a subgame perfect.

Example

How to find the subgame perfect?

Ultimatum Game

How to find the subgame perfect?

Exercise

How to find the subgame perfect?

Summaries

- Formal definition of extensive game
- Pure strategy for each player and Nash Equilibrium
- How to find Nash Equilibrium
- Subgame
- Subgame Perfect