脳波を利用したオンライン講演の 感情フィードバック

金沢工業大学 工学研究科 情報工専攻 中沢研究室 常田

研究背景 問題点

オンラインコミュニケーションをサポートする 脳波デバイスが欲しい

問題点

- 脳波のデータセットが不十分
- 感情に関わる脳波が不明

研究目的

- 脳波データセットの作成
- 感情に関わる脳波の分析

関連研究

データセット

被験者:2~28人

感情:2~4つの感情

計測方法:1つのビデオに1つの評価

1つのビデオに複数の評価

XGBoost

脳波を利用したミュージックビデオ視聴中の感情 認識において複数の分る気の中で最も高い精度であっ *t*-

Classifier	Valence	Arousal	Dominance	Liking
Bayesian	0.7219	0.7128	0.7328	0.7422
KNN	0.7173	0.7167	0.7289	0.7525
C4.5	0.7249	0.7174	0.7336	0.7420
Decision Tree	0.7247	0.7200	0.7371	0.7456
Random Forest	0.7403	0.7356	0.7447	0.7587
XGBoost	0.7597	0.7420	0.7523	0.7642

出典:参考文献1

SHAP

XGBoostモデルにおいて 入力データと出力データ の貢献度を計算する ことができる

脳波と感情

前頭部:快・不快

頭頂・側頭部:ポジティブ

ネガティブ

後頭部:視覚情報

出典:参考文献3

研究目標

データセット作成

被験者:10人

ビデオ:5本(TED)

感情:4つの感情(通常、困惑、面白い、退屈)

計測方法:1つのビデオに複数の評価

感情に関わる脳波の分析

- SHAP値から脳波特性を分析する
- 分析結果から脳波と感情の関係を分析する

データセット

作成したデータセットでは、 ラベルの分布が偏っていた ため、ラベルの分布を修正 したデータを本研究で 利用する

XGBoostによる感情認識

表 2 分類結果

Emotions	Train_Data	Test_Data
Neutral	99.99 %	86.60 %
Confused	100.00 %	55.05 %
Interested	100.00 %	68.74 %
Bored	100.00 %	63.27 %
total	99.99 %	72.47 %

全体で72.47%の精度であっ たことから、XGBoostによ る感情認識で脳波から感情認 識を行うことができた

SHAPを利用した脳波分析

図 6 「困惑 (Confused)」における各特徴量の SHAP 値

図 8 「退屈 (Bored)」における各特徴量の SHAP 値

前頭部:困惑、退屈(**貢献度:高**) 頭頂・側頭部:- (貢献度:中)

後頭部:困惑、面白い、退屈(貢献度:低)

前頭部の貢献度が高いことが分かった

後頭部は貢献度が低いが実測値と貢献度の相関関 係があることが分かった

Point	Value	Neutral	Confused	Interested	Borec
F4	E(F4)	4135.40			
	σ	29.18			
	E(SHAP)	-0.05	-0.29	-0.10	-0.28
	σ	0.32	0.63	0.42	0.67
	r	-0.11	0.63	0.05	-0.62
O2	E(O2)	4129.88			
	σ	16.96			
	E(SHAP)	-0.03	-0.15	-0.07	-0.08
	σ	0.23	0.29	0.26	0.30
	r	-0.10	0.51	-0.53	0.41

- 前頭部 (F4) と後頭部 (O2) において相関関係 があった
- 02の貢献度を上げる ことにより精度が向上 する可能性がある

参考文献

- 1. Parui,S.,Kumar,A.,Samanta,D.,Chakravorty,N.: Emotion Recognition from EEG Signal using XGBoost Algorithm,IEEE India Conference,Vol.2019,pp.1-4(2019). 板橋将之、本田あおい、大北側:SHAP 値や重要度を用いたモデル解釈性:包除積分ネットワークと XGBoost の 比 較 情報 処理 学会 (https://www.ipsj-