Test 4

Logarithmic Functions & Continuous Random Variables

Semester One 2018

Year 12 Mathematics Methods **Calculator Assumed**

PERTH MODERN SCHOOL

receptional schooling Exceptional stodents.	d ²	<u>Teacher:</u>
Name:		Mr McClelland
Date: 7.45am		Mrs. Carter
You may have a calculator, a single-sided pasheet for this section of the test.	page of notes and a formula	Ms Cheng
Total/ marks	40 Minutes	Mr Strain
Questions 1		(7 marks)
Find the derivatives of the following. Do	not simplify your answer.	
(a) $ln(2x^3 - 3x^2 + 4x - 1)^3$		(2 marks)
$= 3(2x^3 - 3x^2 + 4x - 1)^2 \times (69)$	$x^2 - 6x + 4$) \checkmark (cha	in Rule)
$(2x^3 - 3x^2 + 4x - 1)^2$	3 / (dalnu=	1)
(b) $e^x \ln(x)$		(2 marks)
= ex lux + ex 1	(product rule)	
(c) $\ln(x)\cos(x) + \frac{\sin(x)}{x}$		(3 marks)
= \fraccosx + lnx (-sinx	$+\frac{\cos x \cdot (x) - \sin x^2}{x^2}$	(x)

Question 2

(4 marks)

(a) Use Polynomial Long division to simplify $\frac{x^2-2x+5}{x-3}$.

$$\frac{\chi^{2} - 1}{\chi^{2} - 2\chi + 5} = \frac{\chi^{2} - 2\chi + 5}{\chi^{2} - 3\chi} = (\chi + 1) + \frac{8}{\chi - 3}$$

$$\chi^{2} - 3\chi$$

$$\frac{\chi^2 - 2\chi + 5}{\chi - 3} = (\chi + 1) + \frac{8}{\chi - 3}$$

 $\frac{\chi - 3}{8}$ (b) Hence find $\int \frac{x^2 - 2x + 5}{x - 3} dx$.

(2 marks)

(5 marks)

- (a) Find the constants a and b given that for $\{x \in \mathbb{R}: x \neq 2, x \neq -3\}$. $\frac{a}{a} + \frac{b}{x + 2}$
- (3 marks)

$$\frac{\alpha(x+3)}{(x-2)(x+3)}$$

$$\frac{(x-2)(x+3)}{(x-2)(x+3)} + \frac{b(x-2)}{(x-2)(x+3)} = \frac{x-2^2 x+3}{(x-2)(x+3)}$$

 $\frac{1}{2a+2b} = \frac{1}{2} 0$ winder $\frac{1}{2a+2b} = \frac{1}{2} 0$

(b) Hence find $\int \frac{x+8}{x^2+x-6} dx$.

(2 marks)

$$\int \frac{x+8}{x^2+x-6} dx = \int \frac{2}{x-2} dx - \int \frac{1}{x+3} dx$$

$$= 2\ln(x-2) - \ln(x+3) + C \quad \text{for miss}$$

$$= \ln(x-2)^2 ? \quad \text{previous}$$

$$= \ln(x-2)^2 ? \quad \text{previous}$$

Question 6 (5 marks)

The graph of the function with the rule $y = 3\log_2(x+1) + 2$ intersects the axes at the points(a,0) and (0,b).

Find the exact values of a and b.

when
$$x = 0$$
 y-int

$$y = 3 \log_{10}(1) + 2$$

$$= \log_{10}(1) + 2 \log_{10}(1)$$

$$= \log_{10}(1) + 2 \log_{10}(1)$$

$$= \log_{10}(1) + 2 \log_{10}(1)$$

$$= 2 \log_{10}(1) + 2 \log_{10}(1)$$

$$= 2 \log_{10}(1) + 2 \log_{10}(1)$$

$$= 3 \log_{10}(1) + 2 \log_{10}(1)$$

$$= 2 \log_{10}(1) + 2 \log_{10}(1)$$

Question 4

(2 marks)

The rule for the function shown is $y = \ln(x - m) + n$. Find the values of m and n.

$$m=2$$
.
 $ln(e+2-a) + n = 3$
 $lne + n = 3$
 $ln=2$.

Question 5

(3 marks)

Solve the following equations for x. Show full algebraic reasoning.

$$3e^{2x} - 5e^x - 2 = 0$$

$$3 \times (e^{x})^{2} - 5(e^{x}) - 2 = 0$$
 $3 \times (e^{x})^{2} - 5(e^{x}) - 2 = 0$
 $(e^{x} - 2)(3e^{x} + 1) = 0$
 $e^{x} = 2$ i, $x = \ln 2$
 $e^{x} = -\frac{1}{3}$ (reject).

i. $x = \ln 2$

change - of - base)

Question 7

(8 marks)

There are two species of insects living in a suburb: the *Asla bibla* and the *Cutus pius*. The number of *Ala bibla* alive at time t days after 1 January 2000 is given by

$$N_A(t) = 10\ 000 + 1000t, \qquad 0 \le t \le 15$$

The number of Cutus pius alive at time t days after 1 January 2000 is given by

$$N_C(t) = 8000 + 3 \times 2^t$$
, $0 \le t \le 15$

(a) (i) Show that
$$N_A(t) = N_C(t)$$
 if and only if $t = 3log_2 10 + log_2 \left(\frac{2+t}{3}\right)$. (4 marks)

 $10000 + 1000t = 8000 + 3 \times 2^{\frac{t}{2}}$
 $2000 + 1000t = 3 \times 2^{\frac{t}{2}}$
 $2000 + 1000t = 3 \times 2^{\frac{t}{2}}$
 $2000 + 1000t$

Store +

(ii) Plot the graphs of y = x and $y = 3log_2 10 + log_2 \left(\frac{2+t}{3}\right)$, and find the coordinates of the point of intersection. (2 marks)

(12.21, (12.21) 1

(b) It is found by observation that the model for *Cutus pius* does not quite work. It is known that the model for the population of *Asla bible* is satisfactory. The form of the model for *Cutus pius* is $N_C(t) = 8000 + c \times 2^t$. Find the value of c, correct to two decimal places, if it is known that $N_A(15) = N_C(15)$.

 $8000 + C \times 2^{15} = 10000 + 1000 \times 15$ $C \times 2^{15} = 17000$ $C \times 2^{15} = 17000$