Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

Лабораторная работа №2-1

Измерение э. д. с. методом компенсации на реохорде

Руководитель: Старший преподаватель КОиЭФ Абдрашитов С. В. Работу выполнили: Левин Н. Н. Высоцкий М. Ю.

1 Теоретическое введение

Цель работы: изучение компенсационного метода измерения электродвижущей силы (ЭДС).

Электродвижущая сила (ЭДС) - скалярная физическая величина, характеризующая работу сторонних сил. В общем виде определяется как отношение работы внешних сил к величине перемещаемого в цепи заряда:

$$\mathcal{E} = \frac{A}{a},$$

где A - работа сил, q - заряд, на который действуют силы.

Также мы пользуемся законом Ома для замкнутой цепи:

$$I = \frac{\mathcal{E}}{R},\tag{1}$$

где \mathcal{E} - ЭДС, действующая в цепи, R - суммарное сопротивление всей цепи, включая внутренее сопротивление источника.

2 Компенсационный метод

В данной работе используется компенсационный метод измерения ЭДС, который заключается в сравнении ЭДС нужного нам компонента с ЭДС нормального элемента по компенсационной схеме. В нашем случае нормальный элемент - ртутно-кадмиевый элемент Вестона. Данный элемент слабо теряет ЭДС со временем и температурой, что позволяет использовать его как эталон. Он требует бережного отношения, и при t = 20°C его ЭДС составляет $\mathcal{E} = 1,0183$ В.

Рис. 1: Компенсационная схема

Здесь: \mathcal{E} - источник питания \mathcal{E}_x - исследуемый элемент \mathcal{E}_n - нормальный (контрольный) элемент, G - гальванометр.

Если подключить вольтметр напрямую к источнику ЭДС, то полное сопротивление будет состоять не только из сопротивления вольтметра, но и из сопротивления источника:

$$R = R_V + r$$

где R_V - сопротивление вольтметра, r - сопротивление источника ЭДС. Из (1) следует:

$$\mathcal{E} = IR_V + Ir \tag{2}$$

Слагаемое IR_V представляет собой напряжение, которое показывает вольтметр, и это показание отличается от ЭДС на величину падения напряжения на внутреннем сопротивлении источника.

И если подключить \mathcal{E} и \mathcal{E}_x параллельно, и $\mathcal{E} > \mathcal{E}_x$, то на реохорде AB мы сможем найти точку C, при которой ток на AMNC будет равен нулю. Применив второй закон Кирхгофа для контура AMNCA, имеем:

$$I_2 R_{AMNC} - I_1 R_{AC} = -\mathcal{E}_x \tag{3}$$

И так как $I_2 = 0$:

$$I_1 R_{AC} = \mathcal{E} \tag{4}$$

Таким образом, падение напряжения на AC, создаваемое \mathcal{E} компенсирует ЭДС исследуемого нами элемента.

Затем мы меняем \mathcal{E}_x на \mathcal{E}_n (нормальный источник). Передвигая C мы добиваемся $I_2 = 0$ и в этом случае падение напряжение на AD компенсирует ЭДС нормального элемента;

$$I_1 R_{AD} = \mathcal{E} \tag{5}$$

Также нужно учесть, что I_1 в (4) и (5) не меняется, так как данный ток идёт по контуру AB, который, вообще говоря, не меняется. Откуда мы получаем:

$$\mathcal{E}_x = \mathcal{E}_n \frac{R_{AC}}{R_{AD}} \tag{6}$$

Так как сопротивление на любом участке реохорда равно:

$$R = \rho \frac{l}{S},$$

где l - длина проводника, S - площадь поперечное сечение, ρ - удельное электрическое сопротивление (зависящее от свойств материала). В нашем случае ρ , S=const, при подставлении в (6) данные константы сократятся, и мы получим:

$$\mathcal{E}_x = \mathcal{E}_n \frac{l_{AC}}{l_{AD}},\tag{7}$$

где l_{AC} и l_{AD} - длины участков реохорда AC и AD соответственно.

3 План работы

- 1. Собрать схему как на рисунке. Кнопочный ключ K_1 используется для предохранения схемы от экстратоков замыкания.
- 2. Магазины сопротивлений M.C. поставить на максимум.
- 3. Двойным ключом K_2 подсоединить неизвестный элемент \mathcal{E}_x
- 4. Замнуть ключ K_1 и, двигая рычаг реохорда, выставить точку C, при которой ток I_2 на гальванометре G будет равен нулю.
- 5. Уменьшая сопротивление M.C. ожидать окончательной компенсации тока.
- 6. Снять значение l_x соответствующее длине участка AC при полной компенсации.
- 7. Вернуть M.C. в максимальное значение.
- 8. Переключить ключ K_2 на нормальный элемент. Повторить пункты (4, 5) Снять значение l_n .
- 9. Провести вышеуказанные пункты несколько раз для выявления случайной погрешности.
- 10. Внести полученные данные в таблицу.

4 Ход работы

Рис. 2: Схема установки

Полученные в ходе работы данные указаны ниже:

$N_{\overline{0}}$	$l_x \pm \Delta l_x$, mm	$l_n \pm \Delta l_n$, mm	\mathcal{E}_n , B	\mathcal{E}_x , B
1	84.7 ± 0.5	90.5 ± 0.6	1,0183	0.954 ± 0.009
2	$85,2 \pm 0,5$	$89,6 \pm 0,6$	1,0183	0.969 ± 0.009
3	$85,4 \pm 0,5$	$90,6 \pm 0,6$	1,0183	0.960 ± 0.009
4	$85,3 \pm 0,5$	90.3 ± 0.6	1,0183	0.962 ± 0.009
5	84.6 ± 0.5	$90,9 \pm 0,6$	1,0183	0.947 ± 0.009

Таблица 1: Результаты измерений

Случайная погрешность для l_n и l_x рассчитывалась по следующей формуле:

$$\Delta l_x = t_{\alpha,n} \sqrt{\frac{\sum_{k=1}^{n} (l_{x_i} - \langle l_x \rangle)^2}{n(n-1)}},$$

где n - количество измерений, $\alpha=0,95$ - доверительный интервал, $t_{\alpha,n}$ - коэффициент Стьюдента, $< l_x>$ - среднее значение рассматриваемой величины.

Для определения косвенной погрешности \mathcal{E}_x использовалась следующая формула:

$$\Delta \mathcal{E}_x = \sqrt{\left(\frac{\partial \mathcal{E}_x}{\partial l_x} * \Delta l_x\right)^2 + \left(\frac{\partial \mathcal{E}_n}{\partial l_n} * \Delta l_n\right)^2}$$