CC3.7. Profil énergétique d'un choc

Le diagramme figurant ci-après représente les courbes de niveau de la surface d'énergie potentielle pour la réaction élémentaire : $F + H_2 \rightarrow FH + H$ au cours de laquelle les trois atomes restent alignés.

L'unité d'énergie pour les courbes de niveau est le kJ.mol⁻¹.

On porte sur les axes les distances interatomiques H-H (notée $d_{\rm HH}$) et F-H (notée $d_{\rm FH}$).

Ces distances sont provisoirement notées d_1 et d_2 sur le graphique ; on les attribuera à d_{HH} et d_{FH} dans la question 1.

- On sait qu'une molécule H₂ isolée a pour longueur de liaison ℓ_{HH} = 83 pm, alors qu'une molécule FH isolée a pour longueur de liaison ℓ_{FH} = 95 pm.
 Attribuer à d₁ et d₂ les distances interatomiques d_{HH} et d_{FH} et identifier, sur le diagramme, la région représentant les réactifs et celle correspondant aux produits. Expliquer.
- 2. Sur certaines courbes de niveau, l'énergie potentielle est négative, alors que sur d'autres, elle est positive : quelle référence, selon vous, a été choisie pour le « zéro » d'énergie ?
- 3. La réaction est-elle exo ou endothermique ? Évaluer, sur le diagramme, la variation d'énergie qui accompagne la réaction. L'énergie de liaison de H_2 est voisine de 436 kJ.mol⁻¹; en déduire l'énergie de liaison de FH.
- 4. Représenter, sur le diagramme, le chemin réactionnel le plus probable. Définir la coordonnée de réaction C.R. correspondante.
- 5. Représenter, sur un diagramme E = f(C.R.), l'évolution du système. Faire apparaître l'état de transition. Évaluer l'énergie d'activation. Cette énergie d'activation est-elle directement liée aux énergies de liaison de H_2 et de FH?