определить амплитудное значение вынуждающей силы, если резонансная амплитуда $A_{\rm pes}=0,5\,$ см и частота ν_0 собственных колебаний равна 10 Γ ц.

6.73. Амплитуды вынужденных гармонических колебаний при частоте $\nu_1=400~\Gamma$ ц и $\nu_2=600~\Gamma$ ц равны между собой. Определить

резонансную частоту $\nu_{\rm pes}$. Затуханием пренебречь.

- 6.74. К спиральной пружине жесткостью k=10 H/м подвесили грузик массой m=10 г и погрузили всю систему в вязкую среду. Приняв коэффициент сопротивления r равным 0,1 кг/с, определить: 1) частоту ν_0 собственных колебаний; 2) резонансную частоту $\nu_{\rm pes}$; 3) резонансную амплитуду $A_{\rm pes}$, если вынуждающая сила изменяется по гармоническому закону и ее амплитудное значение $F_0=0,02$ H; 4) отношение резонансной амплитуды к статическому смещению под действием силы F_0 .
- 6.75. Во сколько раз амплитуда вынужденных колебаний будет меньше резонансной амплитуды, если частота изменения вынуждающей силы будет больше резонансной частоты: 1) на 10%? 2) в два раза? Коэффициент затухания δ в обоих случаях принять равным $0,1\omega_0$ (ω_0 угловая частота собственных колебаний).

§ 7. ВОЛНЫ В УПРУГОЙ СРЕДЕ. АКУСТИКА

Основные формулы

• Уравнение плоской волны

$$\xi(x,t) = A\cos w(t-x/v)$$
, или $\xi(x,t) = A\cos(\omega t - kx)$,

где $\xi(x,t)$ — смещение точек среды с координатой x в момент времени t; ω — угловая частота; v — скорость распространения колебаний в среде (фазовая скорость); k — волновое число; $k=2\pi/\lambda$; λ — длина волны.

ullet Длина волны связана с периодом T колебаний и частотой u соотношениями

$$\lambda = vT$$
 и $\lambda = v/\nu$.

ullet Разность фаз колебаний двух точек среды, расстояние между которыми (разность хода) равно Δx ,

$$\Delta \varphi = (2\pi/\lambda)\Delta x,$$

где λ — длина волны.

• Уравнение стоячей волны

$$\xi(x,t) = A\cos\omegarac{x}{v}\cdot\cos\omega t,$$
 или $\xi(x,t) = A\cos kx\cdot\cos\omega t.$

• Фазовая скорость продольных волн в упругой среде:

в твердых телах $v=\sqrt{E/\rho}$, где E — модуль Юнга; ρ — плотность вещества;

в газах $v=\sqrt{\gamma RT/M}$, или $v=\sqrt{\gamma p/\rho}$, где γ — показатель адиабаты ($\gamma=c_p/c_V$ — отношение удельных теплоемкостей газа

при постоянных давлении и объеме); R — молярная газовая по-CTOЯННАЯ; T — термодинамическая температура; M — молярная масса; р — давление газа.

• Акустический эффект Доплера

$$\nu = \frac{v + u_{\rm np}}{v - u_{\rm ncr}} \nu_0,$$

где ν — частота звука, воспринимаемого движущимся прибором относительно среды; $u_{\rm ист}$ — скорость источника звука относительно среды; ν_0 — частота звука, испускаемого источником.

• Амплитуда звукового давления

$$p_0 = 2\pi\nu\rho v A$$

 $\dot{}$ где ν — частота звука; A — амплитуда колебаний частиц среды; v — скорость звука в среде; ρ — ее плотность.

• Средняя объемная плотность энергии звукового поля

$$\langle w \rangle = \frac{1}{2} \rho \dot{\xi}_0^2 = \frac{1}{2} \frac{p_0^2}{m^2} = \rho \omega^2 A^2$$

 $\langle w \rangle = \frac{1}{2} \rho \dot{\xi}_0^2 = \frac{1}{2} \frac{p_0^2}{\rho v^2} = \rho \omega^2 A^2,$ где $\dot{\xi}_0$ — амплитуда скорости частиц среды; ω — угловая частота звуковых волн.

 \bullet Энергия звукового поля, заключенного в некотором объеме V,

$$W = \langle w \rangle V.$$

• Поток звуковой энергии

$$\Phi = W/t$$

где W — энергия, переносимая через данную поверхность за время t.

• Интенсивность звука (плотность потока звуковой энергии)

$$I = \Phi/S$$
.

• Интенсивность звука связана со средней объемной плотностью энергии звукового поля соотношением

$$I=\langle w\rangle v,$$

где v — скорость звука в среде.

ullet Связь мощности N точечного изотропного источника звука с интенсивностью звука

$$I=N/(4\pi r^2),$$

где r — расстояние от источника звука до точки звукового поля, в которой определяется интенсивность.

• Удельное акустическое сопротивление среды

$$Z_S = \rho v.$$

• Акустическое сопротивление

$$Z_{\mathbf{a}} = Z_S/S,$$

где S — площадь сечения участка акустического поля (например, площадь поперечного сечения трубы при распространении в ней звука).

• Уровень интенсивности звука (уровень звуковой мощности) (дБ)

$$L_P = 10 \lg (I/I_0),$$

где I_0 — условная интенсивность, соответствующая нулевому уровню интенсивности ($I_0 = 1$ пВт/м²).

Кривые уровней громкости

• Уровень громкости звука L_N в общем случае является сложной функцией уровня интенсивности и частоты звука и определяется по кривым уровня громкости (рис. 7.1). На ґрафике по горизонтальной оси отложены логарифмы частот звука (сами частоты указаны под соответствующими им логарифмами). На вертикальной оси отложены уровни интенсивности звука в децибелах. Уровни громкости звука отложены по вертикальной оси, соответствующей эталонной частоте $\nu = 1000~\Gamma$ ц. Для этой частоты уровень громкости, выраженный в децибелах, равен уровню интенсивности в децибелах. Уровень громкости звуков других частот определяется по кривым громкости, приведенным на графике. Каждая кривая соответствует определенному уровню громкости.

Примеры решения задач

Пример 1. Поперечная волна распространяется вдоль упругого шнура со скоростью v=15 м/с. Период T колебаний точек шнура равен 1,2 с, амплитуда A=2 см. Определить: 1) длину волны λ ; 2) фазу φ колебаний, смещение ξ , скорость $\dot{\xi}$ и ускорение $\ddot{\xi}$ точки, отстоящей на расстоянии x=45 м от источника волн в момент t=4 с; 3) разность фаз $\Delta \varphi$ колебаний двух точек, лежащих на луче и отстоящих от источника волн на расстояниях $x_1=20$ м и $x_2=30$ м.