Практическое занятие 12 Подсчет запасов конденсата и попутных полезных компонентов в газоконденсатной залежи

Цель: Приобретение навыков подсчета запасов конденсата и попутных полезных компонентов в газоконденсатной залежи.

Формируемые компетенции Данная работа направлена на формирование компетенции ПСК-3.5 (готовность производить оценку ресурсов и подсчет запасов нефти, горючих газов, газового конденсата).

Актуальность темы: знания о методах подсчета запасов конденсата и попутных полезных компонентов в газоконденсатной залежи необходимы в процессе подготовки данных для составления проектных документов при промышленном использовании залежей углеводородов и для обеспечения эффективного освоения недр.

Теоретическая часть

Пластовый газ газоконденсатной залежи представляет собой смесь близких по составу газообразных и жидких углеводородов, а также неуглеводородных газов, способных при определенных термобарических условиях взаимно растворяться друг в друге.

Для определения состава пластового газа необходимо в 2-3 наиболее продуктивных скважинах:

- 1. Отобрать и исследовать пробы газа;
- 2. Отобрать и исследовать пробы сырого конденсата;
- 3. Произвести замеры конденсатогазового фактора (КГФ).

Если газовая залежь имеет нефтяную оторочку или большой этаж газоносности (>300 м) пробы газа и конденсата должны характеризовать изменение содержания сырого конденсата и состава газа по высоте залежи.

При расчетах используются средневзвешенные по площади залежи значения содержания в газе этана, пропана, бутанов, C_5 +высш.

Отбор пластового газа осуществляется путем одноступенчатой сепарации, если температура сепарации равна температуре окружающей среды или ниже ее и путем двухступенчатой сепарации, если температура сепарации значительно выше температуры окружающего воздуха.

Изучение состава пластового газа осуществляется в лабораторных условиях с использованием проб отсепарированного газа и сырого конденсата.

Пробы сырого конденсата подвергаются последовательно дегазации, т.е. полному удалению метана (CH_4), углекислого газа (CO_2), азота (N_2), сероводорода (H_2S) и частичному удалению гомологов метана, а затем дебутанизации, т.е. полному удалению гомологов метана (этан, пропан, бутан).

Для определения содержания конденсата продукция газоконденсатных скважин сепарируется в промысловых условиях (одно- или двухступенчатая сепарация). Выпавший из сепаратора сырой конденсат затем стабилизируется при стандартных условиях (t=20 °C и P=0,1 МПа).

Схема исследования пластовой газоконденсатной системы может быть представлена в следующем виде (рисунок 19.1)

Рисунок 12.1 - Схема исследования пластовой газоконденсатной системы

Общее содержание стабильного конденсата в составе пластового газа (в грамм-молях) определяется путем суммирования содержаний:

- конденсата в газе сепарации;
- конденсата в газе дегазации;
- конденсата в газе дебутанизации;
- дебутанизированного конденсата.

В лаборатории определяется состав:

- отсепарированного газа;
- газа дегазации;
- газа дебутанизации.

Кроме этого замеряются содержащиеся в объеме контейнера количество газа, выделяемое при дегазации сырого конденсата (л); количество газа, выделяемое при дебутанизации конденсата (л); количество жидких углеводородов (C_{5+B}) в дебутанизированном конденсате (см³).

Вопросы и задания

Задание 1. Расчет состава пластового газа газоконденсатной залежи при одноступенчатой сепарации

Расчет состава пластового газа газоконденсатной залежи при одноступенчатой сепарации проводится исходя из 1000 грамм-молей отсепарированного газа по следующей схеме:

1.1 Определяем количество грамм-молей отдельных компонентов газа сепарации исходя из 1000 грамм-молей отсепарированного газа:

$$X_{Li} = \frac{Y_{Li} \cdot \sum X_{Li}}{100}; \sum X_{Li} = 1000$$
 (12.1)

Исходные данные и результаты расчетов представлены в таблицах 12.1, 12.2

1.2 Определяем количество газа (в грамм-молях), выделившегося при дегазации сырого конденсата:

$$\sum X_{Ai} = \frac{a \cdot K_G}{V} \tag{12.2}$$

где a — количество газа, выделившегося при дегазации сырого конденсата в объеме контейнера, л; K_G — конденсатогазовый фактор ($K\Gamma\Phi$), см³/м³. Рассчитывается как частное от деления объема сырого конденсата (см³), скопившегося в сепараторе, к объему газа (м³), прошедшего через ДИКТ за одно и тоже время (при давлении в сепараторе не выше 5 МПа)

$$K\Gamma\Phi = \frac{V_{Ki}}{V_{\Gamma i}}, cM^3/M^3$$
 (12.3)

где V – объем контейнера в который отобрали сырой конденсат, см³.

1.3 Определяем число грамм-молей отдельных компонентов газа дегазации исходя из общего числа грамм-молей газа дегазации и процентного содержания компонентов в составе пластового газа

$$X_{Ai} = \frac{\mathbf{Y}_{Ai} \cdot \sum \mathbf{X}_{Ai}}{100} \tag{12.4}$$

1.4 Определяем количество газа в грамм-молях, выделившегося при дебутанизации конденсата

$$\sum X_{\text{bi}} = \frac{\delta \cdot K_{\text{G}}}{V}$$
 (12.5)

где δ – количество газа дебутанизации в объеме контейнера, л.

1.5 Определяем количество грамм-молей отдельных компонентов газа дебутанизации:

$$X_{\mathcal{B}i} = \frac{\mathbf{Y}_{\mathbf{B}i} \cdot \sum \mathbf{X}_{\mathbf{B}i}}{100} \tag{12.6}$$

1.6 Определяем количество (в грамм-молях) пентанов и вышекипящих углеводородов ($C_{5+высшие}$), содержащихся в сыром конденсате

$$X_{Bi} = \frac{K_{G} \cdot \mathbf{B} \cdot g_{4(k)}^{20} \cdot 24,04}{V \cdot M_{k}}$$
(12.7)

где s — содержание жидких углеводородов ($C_{5+высшие}$) дебутанизированном конденсате в объеме контейнера, см³; $g_{4(k)}^{20}$ — относительная плотность $C_{5+высшие}$ при 20 0 С; M_{κ} — молекулярная масса $C_{5+высшие}$; 24,04 — газовая постоянная.

7. Определяем число грамм-молей отдельных компонентов пластового газа

$$X_i = X_{Li} + X_{Ai} + X_{Bi} + X_{Bi}$$
 (12.8)

определяется количество газа в грамм-молях как сумма X_i и рассчитывается процентное содержание каждого компонента в составе пластового газа:

$$Y_i = \frac{X_I}{\sum X_I} 100 {(12.9)}$$

Задание 2. Подсчет геологических запасов конденсата в газоконденсатной залежи

Для подсчета начальных балансовых запасов конденсата необходимы сведения о начальных балансовых запасах свободного газа в газоконденсатной залежи $(V_{\varepsilon\theta})$ и о начальном потенциальном содержании газоконденсата в пластовой газоконденсатной системе (Π_{κ}) .

Начальное потенциальное содержание конденсата Π_{κ} (г/м³), т.е. жидких углеводородов ($C_{5+высшие}$) в пластовой газоконденсатной системе при одноступенчатой сепарации определяется как сумма их содержания в газах сепарации (K_L), дегазации (K_A), дебутанизации (K_B) и в стабильном (дебутанизированном) конденсате (K_B) в граммах из расчета на 1 м³ пластового газа

2.1 Содержание С_{5+высшие} в газе сепарации рассчитываем по формуле

$$K_{L} = X_{L_{C_{5+}}} * \frac{M_{L_{C_{5+}}}}{24,04} = \frac{Y_{L_{C_{5+}}} \cdot \sum X_{Li}}{100} * \frac{M_{L_{C_{5+}}}}{24,04} = \frac{1000}{100} * \frac{Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}}}{24,04}$$
(12.10)

$$K_L = 0.416 \times 0.4 \times 40 = 6.7 \text{ г/m}^3$$

где $X_{L_{C_{5+}}}$ - количество грамм-молей жидких УВ ($C_{5+высшие}$) в газе сепарации; $Y_{L_{C_{5+}}}$ - содержание $C_{5+высшие}$ в газе сепарации в мольных (объемных) процентах; $\sum X_{L_{C_{5+}}}$ - общее количество газа сепарации (в грамм-молях). Принимается равным 1000; 24,04 - газовая

постоянная. $\mathbf{M}_{L_{C_{5+}}}$ - молекулярная масса $C_{5+_{\text{высшие}}}$ в отсепарированном газе. Определяется по специальному графику в зависимости от температуры сепарации.

2.2 Содержание С_{5+высшие} в газе дегазации рассчитываем по формуле

$$K_{A} = X_{A_{C_{5+}}} * \frac{M_{A_{C_{5+}}}}{24,04} = \frac{Y_{A_{C_{5+}}} \cdot \sum X_{A_{i}}}{100} * \frac{M_{A_{C_{5+}}}}{24,04} = \frac{a \cdot K_{G}}{V} * \frac{Y_{A_{C_{5+}}} \cdot M_{A_{C_{5+}}}}{24,04} =$$

$$= 0.03 * \frac{a \cdot K_{G} \cdot Y_{A_{C_{5+}}}}{V}$$

$$(12.11)$$

$$KA = 0.03 \times ((9.1 \times 152 \times 1.94)/85) = 0.9 \text{ } 2/\text{M}$$

где $X_{A_{C_{5+}}}$ - количество грамм-молей жидких УВ ($C_{5+высшие}$) в газе дегазации; $Y_{A_{C_{5+}}}$ - содержание $C_{5+высшие}$ в газе дегазации в мольных (объемных) процентах; $\sum X_{A_{C_{5+}}}$ - общее количество газа дегазации (в грамм-молях); $M_{A_{C_{5+}}}$ - молекулярная масса $C_{5+высшие}$ в газе дегазации. Экспериментально установлено, что величина данного параметра с приемлемой для расчетов точностью может быть принята равной 80; a - количество газа, выделяемое при дегазации сырого конденсата в объеме контейнера, π ; K_G - конденсатогазовый фактор, см $^3/$ м 3 .

2.3 Содержание в газе дебутанизации рассчитываем по формуле

$$K_{B} = X_{B_{C_{5+}}} * \frac{M_{B_{C_{5+}}}}{24,04} = \frac{Y_{B_{C_{5+}}} \cdot \sum X_{Bi}}{100} * \frac{M_{B_{C_{5+}}}}{24,04} = \frac{\delta \cdot K_{G}}{V} * \frac{Y_{B_{C_{5+}}} \cdot M_{B_{C_{5+}}}}{24,04} = \frac{(12.12)}{V}$$

$$= 0.03 * \frac{\delta \cdot K_{G} \cdot Y_{B_{C_{5+}}}}{V}$$

$$KB=0.03 \times ((1.1 \times 152 \times 11.45)/85)=0.7 \text{ c/m}3$$

где $X_{B_{C_{5+}}}$ - количество грамм-молей жидких УВ ($C_{5+высшие}$) в газе дебутанизации; $Y_{B_{C_{5+}}}$ - содержание $C_{5+высшие}$ в газе дебутанизации в мольных (объемных) процентах; $\sum X_{B_{C_{5+}}}$ - общее количество газа дебутанизации (в грамм-молях); $M_{B_{C_{5+}}}$ - молекулярная масса $C_{5+высшие}$ в газе дебутанизации. Принимается равной 80; δ — количество газа, выделяемое при дебутанизации сырого конденсата в объеме контейнера, π ;

2.4 Содержание $C_{5+высшие}$ в дебутанизированном конденсате рассчитываем по формуле

$$K_{B} = X_{B_{C_{5+}}} * \frac{M_{K}}{24.04} = \frac{e \cdot K_{G} \cdot g_{4(K)}^{20} \cdot 24.04}{V \cdot M_{K}} * \frac{M_{K}}{24.04} = \frac{e \cdot K_{G} \cdot g_{H(K)}^{20}}{V}$$
(12.13)

где $X_{B_{C_{5+}}}$ - количество грамм-молей $C_{5+высшие}$ в дебутанизированном (стабильном) конденсате; M_{κ} - молекулярная масса дебутанизированного (стабильного) конденсата; $g_{4(\kappa)}^{20}$ - относительная плотность дебутанизированного (стабильного) конденсата в стандартных условиях.

2.5 Начальное потенциальное содержание конденсата в пластовом газе в г/м³ может быть определено путем суммирования его слагаемых

$$\Pi_{K} = K_{L} + K_{A} + K_{B} + K_{B} = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + 0,03 * \frac{a \cdot K_{G} \cdot Y_{A_{C_{5+}}}}{V} + 0,03$$
(12.14)

$$*\frac{\delta \cdot K_{G} \cdot Y_{B_{C_{5+}}}}{V} + \frac{s \cdot K_{G} \cdot g_{H(K)}^{20}}{V} = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} \cdot M_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*a*Y_{A_{C_{5+}}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*A_{C_{5+}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*A_{C_{5+}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*A_{C_{5+}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*A_{C_{5+}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*A_{C_{5+}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*A_{C_{5+}} + \frac{K_{G}}{V}) = 0,416 \cdot Y_{L_{C_{5+}}} + \frac{K_{G}}{V} * (0,03*A_{C_{5+}} + \frac{K_{G}}{V}) = 0$$

$$+0.03*\delta*Y_{B_{C_{5}}} + e*g_{4(k)}^{20}$$

Геологические запасы стабильного конденсата (тыс.т) рассчитываем по формуле

$$Q_{\kappa 0} = V_{r0} * \Pi_{\kappa} * 10^{-3}, \text{ TMC.T}$$
 (12.15)

где V_{r0} - геологические запасы свободного газа, млн. м³.

Задание 3. Подсчет извлекаемых запасов конденсата в газоконденсатной залежи

Извлекаемые запасы стабильного конденсата рассчитываем по формуле

$$Q_{\kappa,u_{36}} = Q_{\kappa 0} * \eta_{\kappa} * \eta_{\varepsilon} \tag{12.16}$$

где η_{κ} - коэффициент извлечения конденсата; η_{Γ} - коэффициент извлечения газа, принимается равным 1.

Коэффициент извлечения конденсата представляет собой отношение разности начального потенциального содержания конденсата (Π_{κ}) и его ретроградных пластовых потерь ($q_{\pi,\pi\pi}$) к начальному потенциальному содержанию

$$\eta_{\kappa} = \frac{\prod_{\kappa} - \mathbf{q}_{\Pi,\Pi\Pi}}{\prod_{\kappa}} \tag{12.17}$$

Способы определения η_{κ} на залежах, работающих без ППД выбираются в зависимости от начального потенциального содержания конденсата в пластовом газе.

При Пк<30 г/л величина η_{κ} :

Определяется по графику зависимости $q_{\pi,\pi\pi}/\Pi_{\kappa}$ от фракционного состава конденсата для условий температур, при которых выкипает 90 % конденсата.

Может быть рассчитана по графику зависимости параметра $\frac{C_{_2}+C_{_3}+C_{_4}}{C_{_5}+}$ от

соотношения, вычисляемого по данным состава пластового газа.

В том случае, когда Пк >30 г/м3, коэффициент извлечения конденсата определяется с учетом величины пластовых потерь, устанавливаемых экспериментально до начала разработки залежи. Цель экспериментальных исследований заключается в выявлении закономерности изменения потенциального содержания конденсата при снижении пластового давления от начального до стандартного, равного 0,1 Мпа.

Определение пластовых потерь конденсата производится на установке УГК-3. По результатам исследований строится кривая дифференциальной конденсации (кривая потерь; рисунок 12.2).

Расчет коэффициента извлечения конденсата, производится следующим образом.

Согласно рисунку 12.2, при давлении 0,1МПа количество выделившегося конденсата составило 40 см3/м3. Допустим, что относительная плотность конденсата при давлении 0,1МПа равна 0,783, а начальная потенциальное содержание конденсата составляет 126 г/м3.

Тогда $k\kappa = (126-40*0,783)/126=0,752$

Если Пк <30 г/м3, определение коэффициента извлечения конденсата ведется на основе зависимости отношения величины пластовых потерь к начальному потенциальному содержанию конденсата (qп.пл/Пк) от фракционного состава конденсата, для температуры, при которых выкипает 90% (рисунок 12.3).

Например, если 90% конденсата выкипает при 220 0С, то отношение величины пластовых потерь к начальному потенциальному содержанию конденсата 0,1. Тогда

 $k\kappa=1$ - qп.пл/П $\kappa=1$ -0,1=0,9.

Рисунок 12.2 - Кривая дифференциальной конденсации

Рисунок 12.3 Зависимость отношения пластовых потерь конденсата к его начальному содержанию в газе

Задание

- 3.1 По графику (12.2 и 12.3) определить объем оставшегося в бомбе сырого конденсата ($V_{\kappa.oct}$) при P=0,1 МПа
 - 3.2; По зависимости 12.18 рассчитать коэффициент извлечения конденсата;
- 3.3 По зависимостям 12.15 и 12.16 подсчитать извлекаемые запасы стабильного конденсата.
 - 3.3. Результаты расчетов представить в виде таблицы 12.3

Таблица 12.1 Исходные данные к подсчету запасов конденсата

Состав	Содержан	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы газа
	и уі	и уді	иҮы	
			Вариант 1	
CH_4	81,9	62,2	-	Конденсатогазовый фактор Kg-120
C_2H_6	7,6	15,7	0,9	cm^{3}/m^{3} ;объем контейнера V-85 cm^{3} ;
C_3H_8	2,9	10,5	29,0	объем газа дегазации а-9,7 л;
iC_4H_{10}	0,7	1,9	19,3	содержание жидких УВ в стабильном конденсате b-47 см ³ ; относительная
nC ₄ H ₁₀	0,8	2,7	39,5	плотность стабильного конденсата рк-
С _{5+высш.}	2,5	7,0	11,3	0,667; объем газа
CO_2	0,9	-	-	дебутанизированного в контейнере δ-
N_2	2,7	-	-	$1,5$ л; температура сепарации- 15^{0} C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{\text{г.о.}}$ -27447 млн.м ³

Состав	Содержан	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы газа
	и уі	и уді	иҮы	
			Вариант 2	
CH ₄	85,0	68,7	-	Конденсатогазовый фактор Kg-55
C_2H_6	6,9	10,2	0,5	cm^{3}/m^{3} ;объем контейнера V-85 с m^{3} ;
C_3H_8	2,1	3,8	30,0	объем газа дегазации а-9,4 л;
iC ₄ H ₁₀	0,5	0,9	15,7	содержание жидких УВ в стабильном конденсате b-32 см ³ ; относительная
nC ₄ H ₁₀	0,6	1,0	42,0	плотность стабильного конденсата рк-
С _{5+высш.}	1,0	15,4	11,8	0,616; объем газа
CO_2	1,1	-	-	дебутанизированного в контейнере δ-
N_2	2,8	-	-	1,5 л; температура сепарации-20°C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{\text{г.о.}}$ -55378 млн.м ³

Состав	Содержан	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы газа
	и y _i	и уаі	иҮы	
			Вариант 3	
CH ₄	85,3	64,7	-	Конденсатогазовый фактор Kg-55
C_2H_6	5,0	17,6	1,2	cm^{3}/m^{3} ;объем контейнера V-85 cm^{3} ;
C_3H_8	1,7	5,9	27,1	объем газа дегазации а-9,6 л;
iC_4H_{10}	0,3	4,0	15,7	содержание жидких УВ в стабильном конденсате b-32 см ³ ; относительная
nC ₄ H ₁₀	0,3	4,1	15,7	плотность стабильного конденсата р _к -
$C_{5+высш.}$	2,1	3,7	43	0,620; объем газа
CO_2	1,4	-	-	дебутанизированного в контейнере δ-
N_2	3,9	-	-	$1,5$ л; температура сепарации- 10^{0} C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{\text{г.о.}}$ -18700 млн.м ³

Состав	Содержані	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы газа
	и y _i	и уді	иҮы	
			Вариант 4	
CH_4	87,7	60,0	-	Конденсатогазовый фактор Kg-50
C_2H_6	4,9	21,3	5,8	cm^{3}/m^{3} ;объем контейнера V-90 cm ³ ;
C_3H_8	1,9	4,2	10,2	объем газа дегазации а-9,6 л;
iC ₄ H ₁₀	0,4	2,6	25,8	содержание жидких УВ в стабильном конденсате b-28 см ³ ; относительная
nC_4H_{10}	0,5	2,9	26,3	плотность стабильного конденсата рк-
С _{5+высш.}	1,0	9,0	31,9	0,635; объем газа
CO_2	2,5	-	-	дебутанизированного в контейнере δ-
N_2	1,1	-	-	1,5 л; температура сепарации-15 ⁰ C;
H_2S	-	_	-	начальные геологические запасы газа $V_{\text{г.о.}}$ -48100 млн.м ³

Состав	Содержані	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы газа
	и y _i	и уді	иҮы	
			Вариант 5	
CH_4	94,1	75,4	-	Конденсатогазовый фактор Kg-20
C_2H_6	2,9	12,6	30,1] см ³ /м ³ ;объем контейнера V-85 см ³ ;
C_3H_8	0,6	5,1	10,2	объем газа дегазации а- 9,8 л;
iC_4H_{10}	0,2	2,6	5,6	содержание жидких УВ в стабильном конденсате b-21 см ³ ; относительная
nC ₄ H ₁₀	0,3	2,6	5,6	плотность стабильного конденсата рк-
$C_{5+высш.}$	0,6	1,7	48,5	0,579; объем газа
CO_2	0,5	-	-	дебутанизированного в контейнере δ-
N_2	0,8	-	-	1,6 л; температура сепарации-20°C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{\text{г.о.}}$ -491247 млн.м ³

Состав	Содержан	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы газа
	и y _i	и уді	иҮы	
			Вариант 6	
CH_4	74,56	58,96	-	Конденсатогазовый фактор Kg-350
C_2H_6	10,52	12,36	12,11	cm^{3}/m^{3} ;объем контейнера V-85 cm ³ ;
C_3H_8	2,53	10,68	12,36	объем газа дегазации а- 8,5 л;
iC ₄ H ₁₀	0,46	1,23	14,59	содержание жидких УВ в стабильном
nC ₄ H ₁₀	0,85	1,32	15,27	конденсате b-59 см ³ ; относительная плотность стабильного конденсата р _к -
С _{5+высш.}	5,25	15,45	45,67	0,728; объем газа
CO_2	3,11	-	-	дебутанизированного в контейнере δ-
N_2	2,72	-	-	1,8 л; температура сепарации-25°C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{r.o.}$ -1790 млн.м ³

Состав	Содержание (мольная доля,%) в газе	Условия и результаты исследования
--------	------------------------------------	-----------------------------------

газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы
	и y _i	и уді	и \mathbf{Y}_{Bi}	газа
			Вариант 7	
CH ₄	79,48	62,45	-	Конденсатогазовый фактор Kg-70
C_2H_6	9,74	19,60	7,64	cm^{3}/m^{3} ;объем контейнера V-85 cm^{3} ;
C_3H_8	2,01	7,89	14,25	объем газа дегазации а-9,5 л;
iC ₄ H ₁₀	0,22	3,25	25,69	содержание жидких УВ в стабильном конденсате b-40 см ³ ; относительная
nC ₄ H ₁₀	0,45	4,08	27,00	плотность стабильного конденсата рк-
$C_{5+_{\text{ВЫСШ.}}}$	1,57	2,73	25,42	0,683; объем газа
CO_2	4,84	-	-	дебутанизированного в контейнере δ-
N_2	1,69	-	_	1,5 л; температура сепарации-20°C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{\text{г.о.}}$ -936 млн.м ³

Состав	Содержані	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы
	и y _i	и уді	и Y_{Bi}	газа
			Вариант 8	
CH_4	69,0	58,9	-	Конденсатогазовый фактор Kg-742
C_2H_6	11,0	15,0	12,3	cm^3/m^3 ;объем контейнера V-90 cm^3 ;
C_3H_8	3,9	5,1	16,8	объем газа дегазации а-8,2 л;
iC_4H_{10}	0,6	0,8	20,1	содержание жидких УВ в стабильном
nC ₄ H ₁₀	0,9	0,5	18,7	конденсате b-69 см ³ ; относительная плотность стабильного конденсата р _к -
С _{5+высш.}	9,2	19,7	32,1	0,768; объем газа
CO_2	2,2	Ī	-	дебутанизированного в контейнере δ-
N_2	3,2	-	-	1,5 л; температура сепарации-15 ⁰ C;
II C				начальные геологические запасы газа
H_2S	-	ı	-	$V_{\text{г.о.}}$ -5572 млн.м ³

Состав	Содержані	ие (мольная	доля,%) в газе	Условия и результаты исследования
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы
	и y _i	и уді	иҮы	газа
			Вариант 9	
CH_4	77,5	70,0	-	Конденсатогазовый фактор Kg-190
C_2H_6	10,3	12,3	14,3	cm^3/m^3 ;объем контейнера V-95 cm ³ ;
C_3H_8	2,6	4,5	17,7	объем газа дегазации а-8,1 л;
iC ₄ H ₁₀				содержание жидких УВ в стабильном
nC ₄ H ₁₀	0,9	7,4	21,3	конденсате b-57 см ³ ; относительная плотность стабильного конденсата р _к -
$C_{5+_{\mathrm{BLICIII.}}}$	3,2	5,8	46,7	0,719; объем газа
CO_2	1,4	-	-	дебутанизированного в контейнере δ-
N_2	4,1	-	-	1,7 л; температура сепарации-10°C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{r.o.}$ -1328 млн.м ³

Состав	Содержание (мольная доля,%) в газе	Условия и результаты исследования

газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы
	и y _i	и уді	иҮы	газа
			Вариант 10	
CH ₄	75,80	54,60	-	Конденсатогазовый фактор Kg-420
C_2H_6	9,54	14,33	17,21	cm^{3}/m^{3} ;объем контейнера V-90 cm ³ ;
C_3H_8	3,37	12,61	13,25	объем газа дегазации а-8,7 л;
iC ₄ H ₁₀	0,51	7,03	27,40	содержание жидких УВ в стабильном
nC ₄ H ₁₀	0,96	8,07	26,00	конденсате b-62 см ³ ; относительная плотность стабильного конденсата р _к -
С _{5+высш.}	3,60	3,36	16,14	0,699; объем газа
CO_2	4,35	-	-	дебутанизированного в контейнере δ-
N_2	1,87	-	-	1,5 л; температура сепарации-25°C;
H ₂ S	-	-	-	начальные геологические запасы газа $V_{\text{г.о.}}$ -2161 млн.м ³

Состав	Содержані	ие (мольная	доля,%) в газе	Условия и результаты исследования							
газа	сепараци	дегазаци	дебутанизаци	пробы пластового флюида, запасы							
	и y _i	и уді	и \mathbf{Y}_{Bi}	газа							
Вариант 11											
CH ₄	77,16	65,01	-	Конденсатогазовый фактор Kg-142							
C_2H_6	8,95	10,12	25,96] см ³ /м ³ ;объем контейнера V-85 см ³ ;							
C_3H_8	3,22	5,63	27,14	объем газа дегазации а-8,7 л;							
iC ₄ H ₁₀	0,80	4,95	14,5	содержание жидких УВ в стабильном							
nC_4H_{10}	0,53	5,10	16,31	конденсате b-52,5 см ³ ; относительная плотность стабильного конденсата р _к -							
С5+высш.	1,98	9,19	16,09	0,664; объем газа							
CO_2	3,19	-	-	дебутанизированного в контейнере δ-							
N ₂	4,17	-	-	1,25 л; температура сепарации-15 ⁰ C;							
TT 0				начальные геологические запасы газа							
H_2S	-	-	-	$V_{\Gamma.o.}$ -1423 млн.м ³							

Таблица 12.2 - Исходные данные для расчета состава пластового газа газоконденсатной залежи при одноступенчатой сепарации

Номер варианта	M_{κ}	
1	8	
1	98	
2	98	
3	98	
4	98	
5	98	
6	98	
7	98	
8	98	
9	98	
10	98	
11	98	

Таблица 12.3 – Исходные данные и результаты расчетов состава пластового газа газоконденсатной залежи

Компонент	Содержание компонентов в смеси									
	Газ сепараци и		Газ дегазации		Газ дебутанизац ии		Жидкие УВ (С _{5+высшие}) в дебутанизированн ом конденсате	Пластовый газ		
	X _{Li} , г- мол ь	Y _{Li} , % мол	X _{Ai} , г- мол ь	Y _{Ai} , % мол	Х _{Бі} , г- моль	Y _{Бі} , % мол.	Х _{Ві} , г-моль	$egin{aligned} X_{i} &= X_{Li} + \ X_{Ai} + X_{Bi} + X \ & ext{Вi}, \ \Gamma\text{-МОЛЬ} \end{aligned}$	мол	
1	2	3	4	5	6	7	8	9	10	
CH ₄										
C_2H_6										
C_3H_8										
iC_4H_{10}										
nC_4H_{10}							,	Xi		
С _{5+высшие}								$Yi = \frac{Xi}{\sum Xi} \cdot 10$	υ,	
H_2S										
CO_2										
Сумма	100	100		100		100			100	

Вопросы для защиты работы:

- 1. Какие замеры и в каких скважинах необходимо произвести для определения состава пластового газа?
- 2. Приведите схему исследования пластовой газоконденсатной системы и охарактеризуйте компоненты каждой стадии
- 3. Каким образом определяется общее содержание стабильного конденсата в составе пластового газа (в грамм-молях)?
- 4. Приведите расчетные формулы для определения количества газа (в грамммолях), при дегазации и при дебутанизации.
- 5. По какой формуле определяется количество (в грамм-молях) пентанов и вышекипящих углеводородов, содержащихся в сыром конденсате? Охарактеризуйте данные величины.
- 6. Каким образом определяется число грамм-молей отдельных компонентов пластового газа?
- 7. Приведите формулу для расчета начального потенциального содержания конденсата в пластовом газе. Охарактеризуйте данные величины.

- 8. По какой формуле рассчитываются начальные балансовые запасы стабильного конденсата. Приведите единицы измерения каждого из параметров.
- 9. Что представляет собой коэффициент извлечения конденсата? Какова его расчетная формула? От чего зависят способы определения коэффициента извлечения конденсата?
- 10. По каким величинам строится кривая дифференциальной конденсации (пластовых потерь конденсата) при снижении давления от начального пластового до стандартного?

Список литературы

- 1. Андреев В.А. и др. Практикум по подсчету запасов свободного газа и газоконденсата/ В.М. Андреев, В.А. Гридин, Э.С. Сианесян, С.В. Сикорская; Южный федеральный университет. Ростов-на-Дону, 2014.-48 с.
- 2. Гутман, И. С. Методы подсчета запасов нефти и газа : учебник для вузов / И. С. Гутман. М. : Недра, 1985. 223 с.
- 3. Подсчет запасов нефти, газа, конденсата и содержащихся в них компонентов : справочник / под ред. В. В. Стасенкова, И. С. Гутмана. М. : Недра, 1989. 270 с. Библиогр.: с. 262-263. Предм. указ.: с. 264-267. ISBN 5-247-00646-1