

Data-Driven Dark Energy: Probing w(a) with Flexknots

Adam Ormondroyd ano23@cam.ac.uk

Kavli Institute for Cosmology · Cavendish Laboratory · University of Cambridge

Cosmic acceleration is still a mystery: the standard Λ CDM model (w = -1) fits current data but offers no insight into the underlying physics. To let the data speak for themselves, we reconstructed the dark energy equation of state w(a)nonparametrically via a "flexknot" spline. Applying this to DESI BAO plus Pantheon+ or DES5Y Type Ia supernovae (SNe) uncovers a W-shaped w(a) – two distinct features at high and low redshift that simple wCDM or CPL cannot capture. Our results hint that dark energy may evolve in ways beyond standard parameterisations.

arXiv:2503.08658, arXiv:2503.17342 [1,2]

Flexknots

- Flexknots [3, 4] are a flexible parameterisation of 1D functions.
- The nested sampler [5, 6] PolyChord [7,8] was used to compute the evidence and produce posterior samples for flexknots with 1-20 knots.
- To produce an overall functional posterior, samples from all 20 flexknots are combined, weighted in proportion to their evidence.

Examples of flexknot w(a) with either two or three knots.

BAO and Ia SNe in

Off-the-shelf likelihoods for BAO and Type Ia SNe are widespread, such as Cobaya [9], but it was useful to write our own.

- Hidden decisions While convenient, these likelihoods may contain decisions which are not obvious to the user without reading the source code, such as the low-z cut in Cobaya's Pantheon+.
- Simplicity With no CMB, the cosmological distance calculations required are straightforward and require little other than numpy, scipy, and a 1D integration strategy.
- Analytic marginalisation The likelihoods themselves are Gaussian, we were able to analytically marginalise out the Hubble constant, H_0 , and the absolute magnitude of the Type Ia SNe, $M_{\rm B}$ [1].
- **vectorisation** We have implemented a JAX-based version of these distance calculations to work with David Yallup's blackjax nested sampler [10]. Λ CDM takes only a few seconds on a laptop!

$$\frac{D_{\mathsf{M}}(z)}{r_{\mathsf{d}}} = \frac{c}{r_{\mathsf{d}}} \int_{0}^{z} \frac{\mathrm{d}z'}{H(z')} = \frac{c}{r_{\mathsf{d}} H_{0}} \int_{0}^{z} \frac{\mathrm{d}z'}{h(z')}, \quad (\Omega_{k} = 0).$$

References

- [1] A. N. Ormondroyd, W. J. Handley, M. P. Hobson, and A. N. Lasenby. Nonparametric reconstructions of dynamical dark energy via flexknots. arXiv e-prints, page arXiv:2503.08658, March 2025. [2] A. N. Ormondroyd, W. J. Handley, M. P. Hobson, and A. N. Lasenby. Comparison of dynamical dark energy with ACDM in light of DESI DR2. arXiv e-prints, page arXiv:2503.17342, March 2025. [3] Stefan Heimersheim. What it takes to measure Reionization with Fast Radio Bursts. arXiv e-prints, page arXiv:2203.12645, March [4] Stefan Heimersheim, Leiv Rønneberg, Henry Linton, Filippo Pagani, and Anastasia Fialkov. FlexKnot and Gaussian Process for 21 cm global signal analysis and foreground separation. MNRAS, 527(4):11404-11421, February 2024 John Skilling. Nested Sampling. In Rainer Fischer, Roland Preuss, and Udo Von Toussaint, editors, Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 24th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, volume 735 of American Institute of Physics Conference Series, pages 395–405. AIP, November 2004. [6] Greg Ashton et al. Nested sampling for physical scientists. Nature Reviews Methods Primers, 2:39, May 2022. [7] W. J. Handley, M. P. Hobson, and A. N. Lasenby. polychord: nested sampling for cosmology. MNRAS, 450:L61-L65, June 2015. [8] W. J. Handley, M. P. Hobson, and A. N. Lasenby. POLYCHORD: next-generation nested sampling. MNRAS, 453(4):4384–4398, November 2015.
- [9] Jesús Torrado and Antony Lewis. Cobaya: Bayesian analysis in cosmology. Astrophysics Source Code Library, record ascl:1910.019, [10] David Yallup, Namu Kroupa, and Will Handley. Nested slice sampling. In Frontiers in Probabilistic Inference: Learning meets [11] S. Hee, W. J. Handley, M. P. Hobson, and A. N. Lasenby. Bayesian model selection without evidences: application to the dark energy
- equation-of-state. MNRAS, 455(3):2461-2473, January 2016. [12] S. Hee, J. A. Vázquez, W. J. Handley, M. P. Hobson, and A. N. Lasenby. Constraining the dark energy equation of state using Bayes theorem and the Kullback-Leibler divergence. MNRAS, 466(1):369-377, April 2017. [13] Will Handley. fgivenx: A Python package for functional posterior plotting. JOSS, 3(28):849, August 2018.
- [15] A. G. Adame et al. DESI 2024 VI: cosmological constraints from the measurements of baryon acoustic oscillations. JCAP, 2025(2):021, February 2025
- [16] Will Handley and Pablo Lemos. Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio. PRD, 100(4):043504, August 2019.

[17] DES Collaboration. The Dark Energy Survey: Cosmology Results with ~1500 New High-redshift Type Ia Supernovae Using the Full

5 yr Data Set., 973(1):L14, September 2024. [18] Dillon Brout et al. The Pantheon+ Analysis: Cosmological Constraints. , 938(2):110, October 2022.

[14] Will Handley. anesthetic: nested sampling visualisation. JOSS, 4:1414, May 2019.

DESI DR1 vs DR2

The Dark Energy Spectroscopic Instrument (DESI) [15] measures Baryon Acoustic Oscillations (BAO), echoes of pre-recombination sound waves imprinted in the large-scale structure of the universe.

DESI DR2 + Type Ia SNe

Combining Type Ia SNe [17, 18] with BAO measurements provides further constraints on the evolution of w(a). However, it is possible the data are in tension. This is quantified by the tension ratio [16]:

$$\log R = \log Z(\mathsf{BAO} + \mathsf{SNe}) - \log Z(\mathsf{BAO}) - \log Z(\mathsf{SNe}).$$

