1 Простые поля, расширения полей, поле разложения многочлена

Определение 1.1 (Простое поле). Поле - простое, если его подалгебры не являются полями

Определение 1.2 (Собственное подполе).

Теорема 1.3. Любое просто поле изоморфно либо рациональным числам или полю вычетов по простому числу, то есть F - простое поле, тогда $F \simeq Q$ или $F \simeq \mathbb{Z}_p$, где $p \in \mathbb{Z}$ - простое

Доказательство. В поле есть 1, поэтому можно строить кратные суммы единиц (1+..+1). Строя такие суммы мы или никогда не получим 0 или получим

1. Никогда не получится 0, то есть $k \cdot 1 \neq 0$ ($-(k \cdot 1) \neq 0$) при k > 0. В поле для любого элемента есть обратный: $(k \cdot 1)^{-1}$ и $-(k \cdot 1)^{-1}$. В поле можно умножать: $(m \cdot 1)(k \cdot 1)^{-1}$. Так можно заметить что все элементы имеют вид

$$m \cdot 1 = (m \cdot 1)(1 \cdot 1)^{-1}$$

 $k \cdot 1 = (1 \cdot 1)(k \cdot 1)^{-1}$

Если $m \neq 0, k \neq 0$, то $(m \cdot 1)(k \cdot 1)^{-1} \neq 0$. Так как $\{(m \cdot 1)(k \cdot 1)^{-1}\}$ образует поле и F - простое, то $\{(m \cdot 1)(k \cdot 1)^{-1}\}$ образует всё поле.

Можно построить изоморфизм где $(m \cdot 1)(k \cdot 1)^{-1} \stackrel{\text{h}}{\to} \frac{m}{k}$. Покажем что это так. Сначала нужно доказать что это гомоморфизм:

Да, это гомоморфизм

Так как поле - это кольцо, для h существует $\operatorname{Ker} h$ и по $\ref{eq:constraint}$?? $\operatorname{Ker} h$ и деал. Так как поле - тело, то по $\ref{eq:constraint}$? существует только два идеала: F и $\{0\}$. Ядро гомоморфизма является одним из этих идеалов, и так как оно не может быть равно всему полю F оно равно $\{0\}$ Для того чтобы показать что h - изоморфизм, нужно показать что это инъекция и сюръекция

- (а) Так как $\operatorname{Ker} h = \{0\}$ то по $\ref{eq:hamiltonian}$? h разнозначно
- (b) для каждого образа $\frac{m}{k} \in \mathbb{Q}$ есть прообраз $(m \cdot 1)(k \cdot 1)^{-1} \in F$

Следовательно $F \simeq \mathbb{Q}$

2. $k \cdot 1 = 0$ для некоторого k > 0

Выберем наименьшее k>0 для которого $k\cdot 1=0$. Мы можем получить элементы $0,1,2\cdot 1,3\cdot 1,...,(k-1)\cdot 1$. Докажем от противного что k должно быть простым:

Так как k не простое, то оно раскладывается k = pq, где p, q > 1, p, q < k.

$$0 = k \cdot 1 = (p \cdot 1)(q \cdot 1)$$

поскольку p, q < k, то

$$(p \cdot 1) \neq 0 \neq (q \cdot 1)$$

делители нуля. Противоречие, число не составное.

Возьмём $p=k,\ \mathbb{Z}_p=\{0,...,p-1\}$ - это кольцо (ассоциативное, коммутативное, с единицей), остаётся проверить наличие обратного. Пусть $x\neq 0$ и $x\in \mathbb{Z}_p$, тогда $\mathrm{HOД}(x,p)=1$. Из этого следует что nx+mp=1 для некоторых $n,m\in \mathbb{Z}_p$

$$nx + mp = 1$$

$$(nx + mp) \mod p = 1 \mod p$$

$$nx \mod p + mp \mod p = 1$$

$$nx \mod p \cdot x \mod p = 1$$

$$n \mod p \cdot x = 1$$

 $n \bmod p$ - обратный для произвольного x, соответственно \mathbb{Z}_p - поле.

Следствие 1.4. Внутри каждого поля есть простое подполе

Определение 1.5 (Характеристика поля). Для некоторого поля F его характеристика это

- 1. если $k \cdot 1 \neq 0$ для всех k > 0, то 0 характеристика поля F
- 2. если $k \cdot 1 = 0$ для некоторого k > 0, то k характеристика поля F (F поле конечной характеристики)

Определение 1.6 (Неразложимый многочлен). Неразложимый многочлен - многочлен, который не раскладывается на множители, ни один из которых не является многочленом нулевой степени.

Пример 1.7 (Пример неразложимого многочлена).

Следствие 1.8. 1. Многочлен 1 степени всегда неразложим

- 2. Многочлен 2 или 3 степени неразложим ⇔ не имеет корней
- 3. Если многочлен степени большей 3 не разложим, то он не имеет корней

корпси	
Доказательство.	
Следствие 1.9. Неразложимый многочлены - простые з многочленов	элементы кольца
Доказательство.	

Теорема 1.10. R - кольцо главных идеалов, c - простой элемент, тогда cR - простой идеал

ДОКАЗАТЕЛЬСТВО. Пусть c - простой элемент, допустим что cR - не простой идеал, тогда найдутся $a,b \not\in cR$ такие что $ab \in cR$. Сумма идеалов dR = aR + cR - тоже идеал. Потом я не пойму ПОЧЕМУ.

Теорема 1.11. R - кольцо главных идеалов, I - простой идеал, тогда I - максимальный идеал

Доказательство. Пусть дан простой идеал I=cR, дальше магия \Box

Следствие 1.12. Если *p* - неразложимый многочлен, тогда порождённый им идеал является максимальным

Доказательство. Следует из двух предыдущих и 1.9 или из ?? и 1.9 🛚

Следствие 1.13. $F[x] \left/ \langle p \rangle \right.$ - поле

Доказательство. Следует из того что факторкольцо по протому элементу - это поле, но здесь такой теоремы (пока) нет

Теорема 1.14. Для каждого многочлена существует расширение поля, в котором он разложится на линейные множители.

Доказательство. Пусть $p(x) \in P[x]$. Индукция по степени многочлена p:

Базис. $\deg p=1.$ p(x)=ax+b - линейный, то есть уже разложен Индукционный шаг. Предположим p раскладывается на два многочлена $p=q\cdot s$, тогда по индукционному предположению для этих многочленов существует поле где они разложатся.

Теперь предположим что p не раскладывается. Построим $F[y]\left/\langle p(y)\rangle\right.=F'$ - расширение F. Это будет расширением потому что можно построить изоморфизм $h:F\to F',\ h(y)=y+\langle p(y)\rangle$

Пусть $\alpha = y + \langle p(y) \rangle$ - корень многочлена p в F', тогда

$$p(y + \langle p(y) \rangle) = \sum_{i=0}^{n} p_i (y + \langle p(y) \rangle)^i$$

$$= \sum_{i=0}^{n} p_i (y^i + \langle p(y) \rangle)$$

$$= (\sum_{i=0}^{n} p_i y^i) + \langle p(y) \rangle$$

$$= p(y) + \langle p(y) \rangle$$

$$= 0$$

действительно, $\alpha = y + \langle p(y) \rangle$ - корень многочлена p в F'

Пример 1.15 (Пример расширения поля).

Следствие 1.16. Если F - конечное поле, то поле расширений многочлена p тоже конечно

Доказательство. По индукции

Следствие 1.17. Пусть $p \in P[x]$ и $\deg p = n$, тогда количество корней p с учётом кратности будет $\leq n$ и существует поле где оно равно n

ДОКАЗАТЕЛЬСТВО. Пусть F' - расширение F, в над которым многочлен раскладывается на линейные множители. Тогда $p(x)=a_0(x-a_1)^{n_1}...(x-a_k)^{n_k}$. Если $\deg p=n$, то $n_1+...n_k=n$