bayes-theorem-book

Muthukrishnan

2025-09-02

Copyright

Cover Image Copyright 2023 Muthukrishnan. All Rights Reserved

The triangle featured on the cover page is known as the Penrose Triangle, also referred to as the impossible triangle. It is an optical illusion that depicts a three-dimensional figure in the form of a triangular loop, which, despite its appearance, cannot be constructed in a physical three-dimensional space. It was created by a Swedish artist Oscar Reutersvärd in the 1930s and was later brought to prominence by mathematician Roger Penrose in the 1950s. Although the Penrose Triangle cannot be realized as a physical object, it represents an intriguing example of how visual perception can be deceived to see an ostensibly impossible form. It has emerged as an iconic figure in the realm of optical illusions and is frequently employed to demonstrate ideas related to paradoxes and the visual perception in the fields of art and design.

Essential Search Algorithms: Navigating the Digital Maze Copyright 2023 Muthukrishnan. All Rights Reserved

No part of this publication may be reproduced or transmitted in any form whatsoever, electronic, or mechanical, including photocopying, recording, or by any informational storage or retrieval system without express written, dated and signed permission from the author.

Preface

Ever wonder how Google finds your perfect search result in milliseconds? Or how your GPS maps the fastest route to your destination? It's all thanks to the clever search algorithms invented by great software engineers who needed to solve some complex search problems.

Search algorithms are everywhere! From finding your friend's profile on Facebook to suggesting the best route on a map, these algorithms are constantly sifting through mountains of data, searching for what you're looking for. Search is at the core of all these real-world technology problems.

This book is your guide to essential search methods used across different fields. I've carefully curated these algorithms from a vast collection, selecting those that form the building blocks. Understanding and applying these algorithms will provide you with the necessary baseline to explore more complex ones. Plus, you might even be able to create your own algorithm tailored to the problem you're solving. Each section explains the ideas clearly and includes Python code you can use in your projects. All the code is free and available on my GitHub page under the MIT license.

By the end, you'll have the skills to explore both simple and complex decision-making. Whether it's managing supply chains or designing smart robots, these essential search methods will guide you through tough challenges and help you discover solutions you didn't know were there.

So, join me on a journey to understand how search works. Let's get started!

Muthukrishnan Bangalore, India 2023 For my parents, Amrita and Atharva

Table of contents

Preface		8
1.	Introduction	9
I.	Introduction to Bayesian Thinking	10
2.	Understanding Probability	11
3.	Bayes' Theorem Fundamentals	12
4.	Setting Up Python Environment	13
II.	Mathematical Foundations	14
5.	Probability Theory Essentials	15
6.	Statistical Concepts	16
7.	Linear Algebra Review	17
III	. Implementing Bayes' Theorem	18
8.	Basic Implementation	19
9.	Working with Continuous Distributions	20
10	. Discrete Probability Examples	21

IV. Bayesian Inference	22
11. Parameter Estimation	23
12. Conjugate Priors	
13. Prior Selection	25
V AA L CL ' AA (C L (AACAAC)	20
V. Markov Chain Monte Carlo (MCMC)	26
14. Introduction to MCMC	27
15. MCMC Algorithms	28
16. Implementation with PyMC3	29
VI. Practical Applications	30
17. A/B Testing	31
18. Text Classification	32
19. Medical Diagnosis	33
VII. Advanced Topics	34
20. Hierarchical Bayesian Models	35
21. Bayesian Neural Networks	36
22. Gaussian Processes	37
VIII.Real-World Applications	38
23. Finance	39
24. Marketing	40

25. Scientific Applications	41
IX. Best Practices and Advanced Tools	42
26. Code Organization	43
27. Performance Optimization	44
28. Modern Bayesian Libraries	45
29. Summary	46
References	47

Preface

This is a Quarto book.

To learn more about Quarto books visit https://quarto.org/docs/books.

1. Introduction

This is a book created from markdown and executable code. See Knuth (1984) for additional discussion of literate programming.

Part I.

Introduction to Bayesian Thinking

2. Understanding Probability

3. Bayes' Theorem Fundamentals

4. Setting Up Python Environment

Part II. Mathematical Foundations

5. Probability Theory Essentials

6. Statistical Concepts

7. Linear Algebra Review

Part III.

Implementing Bayes' Theorem

8. Basic Implementation

9. Working with Continuous Distributions

10. Discrete Probability Examples

Part IV. Bayesian Inference

11. Parameter Estimation

12. Conjugate Priors

13. Prior Selection

Part V.

Markov Chain Monte Carlo (MCMC)

14. Introduction to MCMC

15. MCMC Algorithms

16. Implementation with PyMC3

Part VI. Practical Applications

17. A/B Testing

18. Text Classification

19. Medical Diagnosis

Part VII. Advanced Topics

20. Hierarchical Bayesian Models

21. Bayesian Neural Networks

22. Gaussian Processes

Part VIII. Real-World Applications

23. Finance

24. Marketing

25. Scientific Applications

Part IX.

Best Practices and Advanced Tools

26. Code Organization

27. Performance Optimization

28. Modern Bayesian Libraries

29. Summary

In summary, this book has no content whatsoever.

References

Knuth, Donald E. 1984. "Literate Programming." $Comput.~\mathcal{J}.~27$ (2): 97–111. https://doi.org/10.1093/comjnl/27.2.97.