PROPRIEDADES DA INTEGRAL

1.
$$\int_a^b c \, dx = c(b-a)$$
, onde c é qualquer constante

2.
$$\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$$

3.
$$\int_a^b cf(x) dx = c \int_a^b f(x) dx$$
, onde c é qualquer constante

4.
$$\int_a^b [f(x) - g(x)] dx = \int_a^b f(x) dx - \int_a^b g(x) dx$$

$$5-\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

$$6-\int_a^a f(x)dx=0$$

1 Cálculo de áreas

Exercício: 1) Esboce a região delimitada pelas curvas dadas e calcule a área da região.

a)
$$x = \frac{1}{2}, x = \sqrt{y} e y = -x + 2$$

b)
$$y = 5 - x^2 e y = x + 3$$

c)
$$y = 1 - x^2 e y = -3$$

d)
$$y = e^x$$
, $x = 0$, $x = 1$ e $y = 0$

e)
$$y = x^3 - x$$
 e $y = 0$

f)
$$x = y^3$$
 e $x = y$

g)
$$y = \ln x$$
, $y = 0$ e $x = 4$

h)
$$y = \operatorname{sen} x$$
, $y = -\operatorname{sen} x$ e $0 \le x \le 2\pi$

i)
$$y = -1 - x^2$$
, $y = -2x - 4$

j)
$$y = 4 - x^2$$
 e $y = x^2 - 14$

k)
$$y = |x - 2|$$
 e $y = 2 - (x - 2)^2$

l)
$$x = y^2 e y = -\frac{x}{2}$$

m)
$$y = x + 1$$
, $y = 9 - x^2$, $x = -1$, $x = 2$

n)
$$y = 12 - x^2$$
 e $y = x^2 - 6$

Respostas:

a)
$$\frac{1}{3}$$

b)
$$\frac{9}{2}$$

c)
$$\frac{32}{3}$$

d) e - 1

h) 8

1) $\frac{4}{3}$

e) $\frac{1}{2}$

i) $\frac{32}{3}$

f) $\frac{1}{2}$

j) 72

m) 19, 5

g) $8 \ln 2 - 3$

 $k) \frac{7}{3}$

n) 72

2) Calcule a área do triângulo com vértices dados por (0,0), (2,1) e (-1,6). Resposta: 6,5

3) Encontre o número b tal que a reta y=b divida a região delimitada pelas curvas $y=x^2$ e y=4 em duas regiões de áreas iguais.

Resposta: $b = \sqrt[3]{16}$

4) Encontre os valores de c tal que a área da região limitada pelas parábolas $y=x^2-c^2$ e $y=c^2-x^2$ seja 576.

Resposta: $c = \pm 6$