

RÉSOLUTION DE PROBLÈMES, GÉNÉRATION DE MOTS-CROISÉS

Androide M1 – RP

Enseignants:

Thibault GIGANT Laura GREIGE

Patrice Perny Morgan Chopin

Table des matières

Introduction	1
1 Modélisation par un CSP et résolution	1
Conclusion	1

Introduction

1 Modélisation par un CSP et résolution

Pour résoudre ce problème, on peut le modéliser comme un problème de satisfaction de contraintes en associant une variable à chaque mot de la grille. Supposons qu'il y ait m mots dans la grille.

Variables: x_i , $\forall i \in \{1,...,m\}$

Domaines : Soit dict un dictionnaire de mots admissibles :

$$D(x_i) = \{X \in dict\}$$

Contraintes : Soit l_i la taille du mot en i :

$$len(x_i) = l_i \tag{1}$$

Pour tous mots x_i et x_j qui se croisent à la q-ième lettre de x_i et à la p-ième lettre de x_j , on a :

$$x_i[q] = x_j[p] \tag{2}$$

Si l'on ajoute la contrainte supplémentaire qu'un même mot ne peut apparaître plus d'une fois dans la grille, il suffit d'ajouter la contrainte AllDiff:

$$AllDiff(x_1, x_2, ... x_m) \tag{3}$$

2 Expérimentation

3 Extension au cas pondéré

${\bf Conclusion}$