Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию №6

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов»

Вариант 9/3/3

Выполнил: студент 102 группы Туниянц Б. А.

Преподаватель: Кулагин А. В.

Содержание

Постановка задачи	3
Математическое обоснование	4
Результаты экспериментов	6
Структура программы и спецификация функций	7
Сборка программы (Маке-файл)	9
Отладка программы, тестирование функций	10
Программа на Си и на Ассемблере	11
Анализ допущенных ошибок	12
Список цитируемой литературы	13

Постановка задачи

Требуется с точностью $\varepsilon = 0.001$ найти площадь плоской фигуры, ограниченной тремя заданными кривыми:

1)
$$f_1 = \frac{3}{(x-1)^2 + 1}$$

2)
$$f_2 = \sqrt{x + 0.5}$$

3)
$$f_3 = e^{-x}$$

В начале требуется найти точки пересечения кривых методом Ньютона, для которого предварительно определить отрезки, на которых будут пересечения. Далее требуется реализовать функцию интеграла, который будет рассчитываться через Формулу Симпсона. С помощью этой функции требуется найти искомую площадь. Обе функции должны быть предварительно протестированы.

Математическое обоснование

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

1. Выбор отрезков для поиска точек пересечений

Нахождение точек пересечений проводилось методом Ньютона с заданной погрешностью $\varepsilon_1 = 0.0001$. F(x) = f1(x) - f2(x) на [a,b] Берем а и b такие, чтобы выполнялось:

1) f1(x), f2(x) определены и непрерывны на [a, b], из чего следует, что F(x) также непрерывна на [a, b]

2)
$$F(x) * F(b) < 0$$

Заданные функции непрерывны на области определения, следовательно, непрерывна и F(x). Проверяя условия и пользуясь, для наглядности, построенным графиком, определяем отрезки, используемые для определения точек пересечения.

Такими отрезками будут:

[1.0, 2.0] для точки пересечения f_1 и f_2 [-1.0, 1.0] для точки пересечения f_2 и f_3 [-1.0, 1.0] для точки пересечения f_1 и f_3

2. Интегрирование и выбор ε_1 , ε_2

Интегрирование проводилось при помощи формулы Симпсона:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} * (f(a) + 4 * f(\frac{a+b}{2}) + f(b))$$

Для того, чтобы снизить погрешность вычислений, отрезок можно разбить и применить формулу Симпсона к каждому отрезку разбиения, а нужный интеграл будет равен сумме интегралов каждого из отрезков по свойству интегралов.

Погрешность вычислений при помощи формулы Симпсона составляет

$$f^{(4)}(x) * \frac{(b-a)^5}{2880}$$
.

Итого, для рассчета количества отрезков, на которое надо разбить исходный отрезок, надо решить неравенство:

$$f^{(4)}(x) * \frac{(b-a)^5}{2880} + 0.0001 < 0.001$$
 , $f^{(4)}(x)$ берем максимально

возможную на [a, b]. После решения данного неравенства, получается, что точно хватит 25 отрезков разбиения вычислений с заданной точностью.

Результаты экспериментов

Кривые	X	y
1 и 2	1.956153,	1.567212
2 и 3	0.187411	0.829103
1 и 3	-0.203335	1.225483

Таблица 1: Точки пересечения кривых

Рис 2: Жирными отмечены точки, ограничивающие искомую площадь

Структура программы и спецификация функций

Программа состоит из 1 модуля на языке С, 1 модуля на Ассемблере.

1. Модуль main.c.

- 1) int main(int argc, char const *argv[]): Функция начала программы; принимает на вход аргументы int argc, char const *argv[] из командной строки и обрабатывает их на совпадение с описанными флагами. Задана глобальная переменная iterations, которая выступает в роли счетчика количества итераций в Методе Ньютона.
- 2) void test_root(function fx1, function fx2, function fx3, function dfx1, function dfx2, function dfx3): Функция тестирования Метода Ньютона; принимает на вход три функции и соответствующие производные к ним.
- 3) void test_intg(function f1, function f2, function f3, double eps): Функция тестирование Формулы Симпсона; принимает на вход 3 функции и требуемую точность вычислений.
- 4) double integral(function f, double a, double b, double eps2): Функция подсчета интеграла при помощи формулы Симпсона; принимает на вход функцию, требуемую точность, левую и правую границу отрезка, на котором вычисляется интеграл.
- 5) double root(function fx1, function fx2, double a, double b, function dfx1, function dfx2, double eps1): Функция вычисления абсциссы пересечения кривых; принимает на вход 2 функции, левую и правую границу отрезка, на котором существует точка пересечения, а так же соответствующие производные для функций и требуемую точность вычислений.

2. Модуль f_asm.asm.

- 1) f1: функция принимает на вход double x, координату, и вычисляет в ней значение функции f_1 , описанной ранее в отчете.
- 2) f2: функция принимает на вход double x, координату, и вычисляет в ней значение функции f_2 , описанной ранее в отчете.
- 3) f2: функция принимает на вход double x, координату, и вычисляет в ней

значение функции f_3 , описанной ранее в отчете.

- 4) df1: функция принимает на вход double x, координату, и вычисляет в ней значение производной функции f_1 , описанной ранее в отчете.
- 5) df2: функция принимает на вход double x, координату, и вычисляет в ней значение производной функции , f_2 описанной ранее в отчете.
- 6) df3: функция принимает на вход double x, координату, и вычисляет в ней значение производной функции , f_3 описанной ранее в отчете.

Сборка программы (Маке-файл)

Makefile собирает модули в файл programm. Сборка осуществляется по ключу all, а удаление промежуточных файлов — по ключу clean.

```
all:

nasm -f elf -o f_asm.o f_asm.asm
gcc -m32 -c main.c -o main.o
gcc -m32 main.o f_asm.o -o meduzen -lm
clean:
rm *.o
```

Отладка программы, тестирование функций

Тестирование проводилось при помощи ключей -test-integral и -test-root.

Функция гоот тестируется непосредственно пользователем: ему предоставляется возможность указать пару из 2 функций, границы отрезка, на котором искать пересечение и точность вычислений. На входе из функции пользователь получит либо точку пересечения, либо сообщение, что точка не найдена на заданном интервале.

Функция integral тестировалась при следующих данных:

Уравнение	Левая граница	Правая граница	Результат
f1	0.000000	10.000000	6.736611
f1	-5.000000	1.000000	4.216943
f1	1.000000	17.000000	4.524961
f2	0.000000	1.000000	0.989043
f2	0.000000	3.000000	4.129565
f2	1.000000	17.000000	47.580416
f3	-2.000000	2.000000	7.253722
f3	-1.000000	7.000000	2.717380
f3	0.000000	1.000000	0.632121

Таблица 2: Результаты работы программы integral при тестировании

Проверка правильности вычисленных интегралов проводилась при помощи сервиса wolframalpha.com.

Проверка правильности вычисленных точек пересечения для заданных функций проводилась при помощи desmos.com.

Программа на Си и на Ассемблере

Тексты программ находятся в архиве meduzen.zip, приложенном к отчету.

Анализ допущенных ошибок

Ошибок не допущено.

Список литературы

- [1] AAK, 04/05/2021
- [2] Real Analysis: Bruce Blackadar, Department of Mathematics and Statistics, University of Nevada, Reno, 202
- [3] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. Т. 1 Москва: Наука, 1985.