Text classification

- Dataset
- Data Preprocessing
- Transformers for Classification

Dataset

News_train.json

- Size: Over 135,000 labeled news samples
- Format: Each entry is a JSON object

Fields:

- id: Sample index
- headline: News headline
- short_description: Summary of the news article
- label: Numeric category of the article

News_test.json

- Size: 1,000 unlabeled news samples
- Format: Similarly to News_train.json, but without the label field.

Label Mapping

- POLITICS → 0
- WELLNESS → 1
- ENTERTAINMENT → 2
- TRAVEL → 3
- STYLE & BEAUTY → 4
- PARENTING → 5
- HEALTHY LIVING → 6
- QUEER VOICES → 7
- FOOD & DRINK → 8
- BUSINESS → 9
- COMEDY → 10
- SPORTS → 11
- BLACK VOICES → 12
- HOME & LIVING → 13
- PARENTS → 14

Text preprocessing: Cleaning

Lowercasing

Convert all text to lowercase for consistency.

Removing Punctuation & Special Characters

Eliminate symbols like . , ! ?@# that don't add semantic value.

Stop-Words Removal

Remove common words (e.g., *the, is, in*) that carry little meaning.

"The cats are running quickly!"

"the cats are running quickly!"

"the cats are running quickly"

"cats running quickly"

Text preprocessing: Cleaning

Stemming

Reduce words to their root form. E.g., "running" → "run"

Tokenization

Split text into tokens (words or subwords).

Token-to-ID (Indexing / Encoding)

Map tokens to numerical values by vocabulary ids.

"cats running quickly"

"cats run quickly"

["cats", "run", "quickly"]

[257,14,80]

Text preprocessing: Special Tokens

Special tokens are reserved symbols added to text during preprocessing to help models understand structure, context, and boundaries.

Common Special Tokens		
Token	Purpose	
<cls></cls>	Added at the start of input for classification tasks	
<sep></sep>	Separates two segments (e.g., sentence pairs)	
<pad></pad>	Used to pad input sequences to the same length	
<mask></mask>	Used for masked language modeling (e.g., BERT pretraining)	
<unk></unk>	Represents unknown or out-of-vocabulary tokens	

Input:

"NLP is amazing!"

After tokenization and special tokens:

<CLS> NLP is amazing ! <SEP>

Converted to IDs:

[101, 2342, 2003, 6429, 999, 102]

Transformers for Classification

Objective

Implement a Transformer-based model for text classification, using PyTorch or TensorFlow.

- Restrictions
 - X Do not use high-level libraries such as Hugging Face
 - Use built-in Transformer blocks (e.g., encoder layers, positional encoding)

Transformers for Classification

Build a Transformer consisting of:

Transformer Encoder

Stack multiple layers for deeper models

Positional Encoding

Add information about the position of each token in a sequence

Input Embedding

Token embedding layer

Batch Processing

batching of input sequences

Training Function

Custom train() function and manual training loop

Classification Head

Use [CLS] token or pooling strategy

Fully connected output layer for class prediction

Evaluation

Accuracy, loss tracking, optional validation

Diffusion model

Inference

The Input of Diffusion Model

The Inside of Diffusion Model

Training Step

Denoising Diffusion Probabilistic Models

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T, \dots, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: end for 6: return \mathbf{x}_{0}

Fréchet Inception Distance

• FID does not directly compare image pixels. Instead, it uses a pre-trained model (usually **Inception v3**) to extract high-level features from the images, and then compares the distributions of these features.

$$FID(x,g) = \left|\mu_x - \mu_g\right|^2 + Tr\left(\Sigma_x + \Sigma_g - 2\sqrt{\Sigma_x \Sigma_g}\right)$$

Diffusion code

https://colab.research.google.com/drive/1F6pkuAADeOWzdVa9zlmMmm-VYKDEf -oZ?usp=sharing

How to Fine-Tune Llama 3.2 Vision (11B)

Sample Code