2 M を 2 以上の自然数 , p を実数として , 次の条件によって定められる 3M 個の項からなる数列 $a_1,\,a_2,\,a_3,\,\cdots,\,a_{3M}$ を考える。

$$a_{n+2} - 2a_{n+1} + a_n = \frac{3n+p}{27M^3}, \quad a_1 = 0, \quad a_2 = 0$$

- (1) $b_n=a_{n+1}-a_n\;(n=1,\,2,\,\cdots,\,3M-1)$ とするとき,数列 $b_1,\,b_2,\,b_3,\,\cdots,\,b_{3M-1}$ の一般項 b_n を求めよ。
- (2) 数列 $a_1,\,a_2,\,a_3,\,\cdots,\,a_{3M}$ の一般項 a_n を求めよ。 さらに, $a_{3M}=0$ を満たす p を p_M とするとき, p_M を M の式で表せ。
- (3) (2) で求めた p_M について, $p=p_M$ の場合における数列 $a_1,\,a_2,\,a_3,\,\cdots,\,a_{3M}$ の中で最小の項を c_M とする。 $a_n=c_M$ となるすべての n を M の式で表せ。さらに, $\lim_{M\to\infty}c_M$ を求めよ。