FairImpact

Influence Maximization with Fairness at Scale

Michael Golas, Emily Robles, Abhi Sharma, Justin Wong

W210 | Final Presentation | Week 14

Team

Justin Wong

Emily Robles

Michael Golas

Advisors: Puya Vahabi, Danielle Cummings, Yuting Feng

Combatting Polarization with FairImpact

Our research can help maximize influence while ensuring information spread is balanced with respect to sensitive demographic characteristics.

Social Media Growth and Demographic Imbalances

Users of Social Media (USA)

FB Users by Age Group and Gender (USA Aug 23)

Influence Maximization Algorithms

- Class of algorithms that aim to maximize information spread in a graph under some budget constraints
- Find K most influential (seed) nodes from which diffusion of a message should start
- Examples: Effective marketing, targeted social media, political campaigns, public health messaging

Information diffusion cascades

Fairness as a Constraint

Influence maximization alone has the potential to create *echo chambers* and *information asymmetry*

- Echo chambers accelerate the spread of rumors and misinformation on social media
 - Eg. misinformation about Hurricane Sandy and a false rumor about a White House explosion that injured
 President Obama
- Fairness constraint ensures demographic parity and fair dissemination of information

Goal: Ensure an individual's probability of being influenced is (almost) the same, regardless of group when split by a demographic attribute.

Focusing on Political Messaging

Real world implications of unfair information spread:

- Exposure to diverse perspectives is limited
- Politicians/political messages are shielded from scrutiny or questioning
- Misinformation goes unidentified and accelerates through echo chambers

Goal: Demonstrate use of FairImpact to identify ideal influencers for the fair spread of *political messaging*.

Influence Maximization Theory & Algorithms

Related Work

Genesis work: David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network, ACM SIGKDD

- Adopted by most of the literature that followed
- Uses diffusion graphs with edges weighted by a score of influence/spread.
- Selecting the seed nodes maximizing the expected spread is NP-hard.

Various other Graph Algorithms for Fair IM considered by researchers, differing in formulations and data assumptions, however, scalability remains a key issue

Most similar work: Khajehnejad et al. (Crosswalk and Adversarial Graph Embeddings)

- Used adversarial neural networks
- High computational cost

Yuting/Puya Research: learn node embedding models

- Efficient and flexible w.r.t. the spread effectiveness vs. fairness trade-off
- Applicable to arbitrary sets of sensitive attributes

Problem Definition

We are given:

- A social network G(V, A)

- C_{ς} of categorical, sensitive user attribute

- Cascades D (with each cascade $d \in D$ a set of pairs (v, t_v))

Summary

Create network from social media retweets

Model network as bipartite graph (influencers vs. other users)

Extract influencing aptitude and fairness from cascades & represent in MD space using neural network

Select top influencers that maximize spread of information, remove, & repeat

Formula to evaluate fairness across attributes:

$$\frac{|\Omega_i|}{|V_i|} \approx \frac{|\Omega_j|}{|V_j|} \approx \frac{|\Omega_k|}{|V_k|} \approx \dots \forall i, j, k, \dots \in C_s. \qquad \sigma = \sqrt{\frac{\sum_{i \in C_s} \left(\frac{|\Omega_i|}{|V_i|} - \mu\right)^2}{|C_s|}}$$

$$CV = \sigma/\mu, \qquad f_s = \frac{2}{1 + \exp(CV)}. \qquad \qquad \mu = \frac{1}{|C_s|} \sum_{i \in C_s} \frac{|\Omega_i|}{|V_i|}.$$

Dataset: Sina Weibo

Dataset Description

- Chinese Social Media network (like Twitter)
 - o 1.8M users, 308M relationships (in dataset 2012)
 - Founded 2009, Weibo is chinese for "microblogging"

Users	Follow Relationships	Original Microblogs	Retweets
1,776,950	308,489,739	300,000	23,755,810

5 Experiment Features

- 1. Gender from weibo dataset
- 2. Age from weibo dataset
- 3. Simulated Gender x Political Affiliation of US Population (Pew Research)
- 4. Simulated Age Group x Political Affiliation of US Population (Statista)
- 5. Simulated Age Group x Political Affiliation of US Population with Noise (Statista)

For each feature, we bucketed into categories that reflected their distributions. We used the weibo dataset as a proxy for user interactions.

Share of women who identify with or lean toward Democratic Party has risen since 2015

% of registered voters who identify as ...

PEW RESEARCH CENTER

Population distribution in the United States in 2022, by generation

Party identification in the United States in 2022, by generation

© Statista 2024 📭

Code Optimization

Code Refactor:

- Single Python notebook for improved readability
 - Summaries on functions and rewrite of functions for clarity
 - Output paths clearly defined
 - No hard coded variables (config driven)
 - Adding timing metrics around calls to identify bottlenecks
 - Automated data extraction one click run notebook
- Performance Improvements

Optimizations using e2-standard-32 machine (32 vCPUs, 128 GB RAM)

- Anecdotally, training iminfector algo typically takes 2-5 days.
- Practically, training for 1 epoch (3.6 hours) vs 10 epochs (36 hours) results in little fairness improvements.
 - Focus on running only 1 epoch for entire dataset
- 2 4x faster than previous approach for training IM Infector Algorithm
 - Allowed us to iterate on the entire dataset faster with different features.

Improvement per Epoch (Ignoring Data Load)	29.41% drop (291.44min to 216.7min)	
Parallelized batch compute_fair	89.82% drop (28.28min to 10.75 min)	
Caching mapped_uid	6.8% drop (.4938s to .4614s)	
Removing Duplicates	199% drop (61s to 13.8 ms)	


```
# iterate through the cascades line by line
for line in f:
    cascade = line.replace("\n", "").split(";")
    if INPUT FN == 'weibo':
                                                               In [25]: %%time
        cascade nodes = list(map(lambda x: x.split(" '
                                                                        remove_duplicates(cascade_nodes=nodes, cascade_times=timestamps)
        cascade times = list(map(lambda x:
                                                                        CPU times: user 1min 1s, sys: 390 ms, total: 1min 1s
                                                                        Wall time: 1min 1s
                                   int(((datetime.strptime
                                          datetime.strptime Out[25]: ([3, 4, 5, 7, 6],
                                                                         [datetime.datetime(2023, 9, 28, 19, 34, 48, 316655),
    else:
                                                                          datetime.datetime(2023, 5, 26, 22, 34, 57, 316655),
        cascade nodes = list(map(lambda x: x.split("
                                                                          datetime.datetime(2023, 10, 22, 7, 53, 56, 316655),
        cascade times = list(map(lambda x: int(x.repla
                                                                          datetime.datetime(2023, 11, 8, 4, 51, 3, 316655),
                                                                          datetime.datetime(2023, 12, 13, 23, 57, 5, 316655)])
                                                               In [26]: %%time
    cascade nodes, cascade times = remove duplicates(ca
                                                                        remove duplicates fast(cascade nodes=nodes, cascade times=timestamps)
                                                                        CPU times: user 7.1 ms, sys: 368 µs, total: 7.47 ms
                                                                        Wall time: 8.85 ms
                                                               Out[26]: ([3, 4, 5, 7, 6],
                                                                         [datetime.datetime(2023, 9, 28, 19, 34, 48, 316655),
                                                                          datetime.datetime(2023, 5, 26, 22, 34, 57, 316655),
                                                                          datetime.datetime(2023, 10, 22, 7, 53, 56, 316655),
```

datetime.datetime(2023, 11, 8, 4, 51, 3, 316655), datetime.datetime(2023, 12, 13, 23, 57, 5, 316655)])

Results and Impact

- Final seeds included ~500k nodes out of the 1.6M nodes
- Asymptotes at k = 1000
 - We don't need more than 1000 influencers for our graph
- If k is large enough, DNI seems to converge regardless of attributes
- For same (K, DNI) Fairness for "Age x political affiliation" is lower than:
 - Just "Age" OR
 - Just "Political Affiliation"

GitHub: https://github.com/abhisha1991/fair at scale

Website: https://sites.google.com/berkeley.edu/fairimpact/home

