d	<pre>grom utils.gradient_check import eval_numerical_gradient, eval_numerical_gradient_array grom utils.solver import Solver matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' for auto-reloading external modules fisee http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython pload_ext autoreload autoreload 2 lef rel_error(x, y): """ returns relative error """ return np.max(np.abs(x - y) / (np.maximum(le-8, np.abs(x) + np.abs(y))))</pre>
X_ Y_ X_ Y_ X_ Y_	<pre>lata = get_CIFAR10_data() for k in data.keys(): print('{}: {} '.format(k, data[k].shape)) train: (49000, 3, 32, 32) train: (49000,) val: (1000, 3, 32, 32) val: (1000,) test: (1000, 3, 32, 32) test: (1000,)</pre> uilding upon your HW #3 implementation
•	relu_forward in nndl/layers.py relu_backward in nndl/layers.py affine_relu_forward in nndl/layer_utils.py
a a r r a f If	<pre>from nndl.layer_tests import * Iffine_forward_test(); print('\n') Iffine_backward_test(); print('\n') Iffine_backward_test(); print('\n') Iffine_relu_test(); print('\n') Iffine_relu_test(); print('\n') Iffine_relu_test(); print('\n') Ifference: 9.7698500479884e-10</pre> If affine_backward is working, error should be less than 1e-9: Iffine_backward is workin
dw dk If di If d> If d>	Frelu_forward function is working, difference should be around 1e-8: Efference: 4.999999798022158e-08 Frelu_forward function is working, error should be less than 1e-9: Error: 3.275609924020855e-12 Eaffine_relu_forward and affine_relu_backward are working, error should be less than 1e-9: Exeror: 4.193242049578614e-10 Freror: 1.1689170621578504e-09 Error: 3.5259804817210733e-12
Ir Ru Ir In g	mining check with reg = 0 mitial loss: 0.0 mining check with reg = 3.14 mitial loss: 0.0 raining a larger model general, proceeding with vanilla stochastic gradient descent to optimize models may be fraught with problems and limitations, as scussed in class. Thus, we implement optimizers that improve on SGD. GD + momentum
In timp	the following section, implement SGD with momentum. Read the nndl/optim.py API, and be sure you understand it. After, plement sgd_momentum in nndl/optim.py. Test your implementation of sgd_momentum by running the cell below. From nndl.optim import sgd_momentum I, D = 4, 5 I = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) I = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) I = np.linspace(0.6, 0.9, num=N*D).reshape(N, D)
p	<pre>expected_next_w = np.asarray([[0.1406,</pre>
S(Implementation of the state o	Complement sgd_nesterov_momentum in ndl/optim.py. Size nndl.optim import sgd_nesterov_momentum If, D = 4, 5 If = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) If = np.linspace(-0.6, 0.9, num=N*D).reshape(N, D) If = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) If = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) If = np.linspace(0.6, 0.9, num=N*D).reshape(N, D)
e	<pre>config = {'learning_rate': 1e-3, 'velocity': v} mext_w, _ = sgd_nesterov_momentum(w, dw, config=config) expected_next_w = np.asarray([[0.08714,</pre>
Ru SG acc	ext_w error: 1.0875186845081027e-08 elocity error: 4.269287743278663e-09 valuating SGD, SGD+Momentum, and SGD+NesterovMomentum In the following cell to train a 6 layer FC net with SGD, SGD+momentum, and SGD+Nesterov momentum. You should see that ED+momentum achieves a better loss than SGD, and that SGD+Nesterov momentum achieves a slightly better loss (and training curacy) than SGD+momentum.
} s	<pre>imall_data = { 'X_train': data['X_train'][:num_train], 'y_train': data['y_train'][:num_train], 'X_val': data['X_val'], 'y_val': data['y_val'], index colorer = {} for update_rule in ['sgd', 'sgd_momentum', 'sgd_nesterov_momentum']: print('Optimizing with {}'.format(update_rule)) model = FullyConnectedNet([100, 100, 100, 100], weight_scale=5e-2) solver = Solver(model, small_data,</pre>
p p	<pre>update_rule=update_rule,</pre>
p p	<pre>plt.subplot(3, 1, 3) plt.title('Validation accuracy') plt.xlabel('Epoch') for update_rule, solver in solvers.items(): plt.subplot(3, 1, 1) plt.plot(solver.loss_history, 'o', label=update_rule) plt.subplot(3, 1, 2) plt.plot(solver.train_acc_history, '-o', label=update_rule) plt.subplot(3, 1, 3) plt.plot(solver.val_acc_history, '-o', label=update_rule)</pre>
or or or or or d	plt.subplot(3, 1, i) plt.legend(loc='upper center', ncol=4) plt.legend(loc='upper center', ncol=4) plt.spf().set_size_inches(15, 15) plt.show() putimizing with sgd putimizing with sgd_momentum primizing with sgd_nesterov_momentum python-input-13-52ffd8523dca>:39: MatplotlibDeprecationWarning: Adding an axes using the same arguments a revious axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a ulabel to each axes instance. plt.subplot(3, 1, 1) python-input-13-52ffd8523dca>:42: MatplotlibDeprecationWarning: Adding an axes using the same arguments a
prde e <ipre><ipre>c i prd e</ipre></ipre>	revious axes currently reuses the earlier instance. In a future version, a new instance will always be created returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a ulabel to each axes instance. plt.subplot(3, 1, 2) python-input-13-52ffd8523dca>:45: MatplotlibDeprecationWarning: Adding an axes using the same arguments a revious axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a ulabel to each axes instance. plt.subplot(3, 1, 3) python-input-13-52ffd8523dca>:49: MatplotlibDeprecationWarning: Adding an axes using the same arguments a revious axes currently reuses the earlier instance. In a future version, a new instance will always be created returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a ulabel to each axes instance. plt.subplot(3, 1, i) Training loss
2.5 2.6 1.5 1.5	50 - 25 - 20 - 25 - 25 - 25 - 25 - 25 -
(0 25 50 75 100 125 150 175 20 Iteration Training accuracy
0.3	O.1 - O 1 2 Epoch Validation accuracy Sign Sign Sign Sign Sign Sign Sign Sign
o.: RI	MSProp w we go to techniques that adapt the gradient. Implement rmsprop in nndl/optim.py . Test your implementation by running e cell below.
N d a	<pre>from nndl.optim import rmsprop I, D = 4, 5</pre>
p p	<pre>[0.38739248, 0.43947102, 0.49155973, 0.54365823, 0.59576619]]) expected_cache = np.asarray([[0.5976,</pre>
## ff N w d v a	www, implement adam in nndl/optim.py . Test your implementation by running the cell below. Test Adam implementation; you should see errors around 1e-7 or less from nndl.optim import adam I, D = 4, 5 y = np.linspace(-0.4, 0.6, num=N*D).reshape(N, D) w = np.linspace(-0.6, 0.4, num=N*D).reshape(N, D) y = np.linspace(0.6, 0.9, num=N*D).reshape(N, D) x = np.linspace(0.7, 0.5, num=N*D).reshape(N, D) tonfig = {'learning_rate': 1e-2, 'v': v, 'a': a, 't': 5} text_w, _ = adam(w, dw, config=config)
е	<pre>expected_next_w = np.asarray([[-0.40094747, -0.34836187, -0.29577703, -0.24319299, -0.19060977], [-0.1380274, -0.08544591, -0.03286534, 0.01971428, 0.0722929], [0.1248705, 0.17744702, 0.23002243, 0.28259667, 0.33516969], [0.38774145, 0.44031188, 0.49288093, 0.54544852, 0.59801459]]) expected_a = np.asarray([[0.69966,</pre>
ne a v	orint('next_w error: {}'.format(rel_error(expected_next_w, next_w))) orint('a error: {}'.format(rel_error(expected_next_w, next_w))) orint('v error: {}'.format(rel_error(expected_a, config['a']))) orint('v error: {}'.format(rel_error(expected_v, config['v']))) ext_w error: 1.1395691798535431e-07 error: 4.208314038113071e-09 error: 4.214963193114416e-09 omparing SGD, SGD+NesterovMomentum, RMSProp, and Adam. e following code will compare optimization with SGD, Momentum, Nesterov Momentum, RMSProp and Adam. In our code, we fire the DMSProp. Adam and COD. Nesterov Momentum, RMSProp and Adam. In our code, we fire the DMSProp. Adam and COD. Nesterov Momentum, RMSProp and Adam. In our code, we fire the DMSProp. Adam and COD.
1	<pre>at RMSProp, Adam, and SGD + Nesterov Momentum achieve approximately the same training error after a few training epochs. dearning_rates = {'rmsprop': 2e-4, 'adam': 1e-3} for update_rule in ['adam', 'rmsprop']: print('Optimizing with {}'.format(update_rule)) model = FullyConnectedNet([100, 100, 100, 100], weight_scale=5e-2) solver = Solver(model, small_data,</pre>
p p p	<pre>solvers[update_rule] = solver solver.train() print plt.subplot(3, 1, 1) plt.title('Training loss') plt.xlabel('Iteration') plt.subplot(3, 1, 2) plt.title('Training accuracy') plt.xlabel('Epoch') plt.subplot(3, 1, 3) plt.title('Validation accuracy')</pre>
f	<pre>colt.xlabel('Epoch') cor update_rule, solver in solvers.items(): plt.subplot(3, 1, 1) plt.plot(solver.loss_history, 'o', label=update_rule) plt.subplot(3, 1, 2) plt.plot(solver.train_acc_history, '-o', label=update_rule) plt.subplot(3, 1, 3) plt.plot(solver.val_acc_history, '-o', label=update_rule) cor i in [1, 2, 3]: plt.subplot(3, 1, i) plt.legend(loc='upper center', ncol=4)</pre>
Or Or Or or d e <ipr d e</ipr 	olt.gcf().set_size_inches(15, 15) olt.show() otimizing with adam otimizing with rmsprop python-input-16-27795ef4623c>:31: MatplotlibDeprecationWarning: Adding an axes using the same arguments are vious axes currently reuses the earlier instance. In a future version, a new instance will always be considered and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a considered axes instance. plt.subplot(3, 1, 1) python-input-16-27795ef4623c>:34: MatplotlibDeprecationWarning: Adding an axes using the same arguments are vious axes currently reuses the earlier instance. In a future version, a new instance will always be considered and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a considered axes instance. plt.subplot(3, 1, 2) python-input-16-27795ef4623c>:37: MatplotlibDeprecationWarning: Adding an axes using the same arguments are plt.subplot(3, 1, 2) python-input-16-27795ef4623c>:37: MatplotlibDeprecationWarning: Adding an axes using the same arguments are plt.subplot(3, 1, 2) python-input-16-27795ef4623c>:37: MatplotlibDeprecationWarning: Adding an axes using the same arguments are purplessed.
d e <ippr d="" e<="" th=""><th>revious axes currently reuses the earlier instance. In a future version, a new instance will always be created returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a plabel to each axes instance. plt.subplot(3, 1, 3) python-input-16-27795ef4623c>:41: MatplotlibDeprecationWarning: Adding an axes using the same arguments a revious axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a plabel to each axes instance. plt.subplot(3, 1, i) Training loss **Sgd** sgd_nesterov_momentum** adam** mmsprop** **sgd_momentum** **Sgd_momentum** sgd_momentum** adam** mmsprop** **sgd_momentum** sgd_momentum** adam** mmsprop** sgd_momentum** sgd_mo</th></ippr>	revious axes currently reuses the earlier instance. In a future version, a new instance will always be created returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a plabel to each axes instance. plt.subplot(3, 1, 3) python-input-16-27795ef4623c>:41: MatplotlibDeprecationWarning: Adding an axes using the same arguments a revious axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a plabel to each axes instance. plt.subplot(3, 1, i) Training loss **Sgd** sgd_nesterov_momentum** adam** mmsprop** **sgd_momentum** **Sgd_momentum** sgd_momentum** adam** mmsprop** **sgd_momentum** sgd_momentum** adam** mmsprop** sgd_momentum** sgd_mo
1.5 1.5 1.0	00
0	0.4 0.1 0 1 2 Epoch Validation accuracy sgd sgd nesterov momentum adam msprop
0.3 0.3 0.3	35 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -
In that	asier optimization the following cell, we'll train a 4 layer neural network having 500 units in each hidden layer with the different optimizers, and find at it is far easier to get up to 50+% performance on CIFAR-10. After we implement batchnorm and dropout, we'll ask you to get +% on CIFAR-10. **petimizer = 'adam'** **pest_model = None** **ayer_dims = [500, 500, 500, 500]
l l m	<pre>reight_scale = 0.01 earning_rate = 1e-3 r_decay = 0.9 rodel = FullyConnectedNet(layer_dims, weight_scale=weight_scale,</pre>
(I (I) (I) (I) (I) (I) (I) (I)	Tetration 1 / 4900) loss: 2.315005 Epoch 0 / 10) train acc: 0.220000; val_acc: 0.228000 Iteration 51 / 4900) loss: 1.864788 Iteration 101 / 4900) loss: 1.814898 Iteration 151 / 4900) loss: 1.680357 Iteration 201 / 4900) loss: 1.647855 Iteration 251 / 4900) loss: 1.691966 Iteration 301 / 4900) loss: 1.588605 Iteration 351 / 4900) loss: 1.450832 Iteration 451 / 4900) loss: 1.290359 Iteration 451 / 4900) loss: 1.574712 Epoch 1 / 10) train acc: 0.470000; val_acc: 0.469000 Iteration 501 / 4900) loss: 1.247711 Iteration 551 / 4900) loss: 1.323890
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Eteration 601 / 4900) loss: 1.375390 Eteration 651 / 4900) loss: 1.478475 Eteration 701 / 4900) loss: 1.488726 Eteration 751 / 4900) loss: 1.323479 Eteration 801 / 4900) loss: 1.281338 Eteration 851 / 4900) loss: 1.297834 Eteration 901 / 4900) loss: 1.372141 Eteration 951 / 4900) loss: 1.372006 Eteration 1001 / 4900) loss: 1.347674 Eteration 1001 / 4900) loss: 1.327676 Eteration 1101 / 4900) loss: 1.334121 Eteration 1101 / 4900) loss: 1.334121 Eteration 1201 / 4900) loss: 1.301055 Eteration 1201 / 4900) loss: 1.318984
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Eteration 1301 / 4900) loss: 1.100919 Eteration 1351 / 4900) loss: 1.166260 Eteration 1401 / 4900) loss: 1.141566 Eteration 1451 / 4900) loss: 1.175509 Epoch 3 / 10) train acc: 0.609000; val_acc: 0.543000 Eteration 1501 / 4900) loss: 1.126933 Eteration 1501 / 4900) loss: 1.296700 Eteration 1601 / 4900) loss: 1.380581 Eteration 1601 / 4900) loss: 1.113789 Eteration 1701 / 4900) loss: 1.272931 Eteration 1701 / 4900) loss: 1.081576 Eteration 1801 / 4900) loss: 1.010462 Eteration 1801 / 4900) loss: 0.956299 Eteration 1901 / 4900) loss: 0.956299 Eteration 1901 / 4900) loss: 1.177089 Epoch 4 / 10) train acc: 0.653000; val_acc: 0.543000 Eteration 2001 / 4900) loss: 1.058792
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Eteration 2801 / 4900) loss: 0.856401 Eteration 2851 / 4900) loss: 0.808079 Eteration 2901 / 4900) loss: 1.106153 Epoch 6 / 10) train acc: 0.698000; val_acc: 0.567000 Eteration 2951 / 4900) loss: 0.848023 Eteration 3001 / 4900) loss: 0.918981 Eteration 3051 / 4900) loss: 0.827083 Eteration 3101 / 4900) loss: 0.968952 Eteration 3101 / 4900) loss: 0.680711 Eteration 3201 / 4900) loss: 0.903641 Eteration 3201 / 4900) loss: 0.874697 Eteration 3301 / 4900) loss: 0.761590 Eteration 3301 / 4900) loss: 0.909224 Eteration 3401 / 4900) loss: 0.914316 Epoch 7 / 10) train acc: 0.751000; val_acc: 0.569000
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Eteration 3451 / 4900) loss: 0.668846 Eteration 3501 / 4900) loss: 0.819629 Eteration 3551 / 4900) loss: 0.729733 Eteration 3601 / 4900) loss: 0.749533 Eteration 3651 / 4900) loss: 0.780315 Eteration 3701 / 4900) loss: 0.929955 Eteration 3751 / 4900) loss: 0.786720 Eteration 3801 / 4900) loss: 0.743872 Eteration 3801 / 4900) loss: 0.679362 Eteration 3901 / 4900) loss: 0.853759 Expoch 8 / 10) train acc: 0.765000; val_acc: 0.560000 Eteration 3951 / 4900) loss: 0.670979 Eteration 4001 / 4900) loss: 0.692255 Eteration 4001 / 4900) loss: 0.767967 Eteration 4051 / 4900) loss: 0.831596 Eteration 4101 / 4900) loss: 0.600710 Eteration 4201 / 4900) loss: 0.600710
(] (] (] (E (]	Iteration 4201 / 4900) loss: 0.504331
[) [) [) [)	Eteration 4251 / 4900) loss: 0.603222 Eteration 4301 / 4900) loss: 0.549388 Eteration 4351 / 4900) loss: 0.561547 Eteration 4401 / 4900) loss: 0.604804 Epoch 9 / 10) train acc: 0.806000; val_acc: 0.558000 Eteration 4451 / 4900) loss: 0.723019 Eteration 4501 / 4900) loss: 0.590441 Eteration 4551 / 4900) loss: 0.633496 Eteration 4651 / 4900) loss: 0.536210 Eteration 4651 / 4900) loss: 0.432799 Eteration 4701 / 4900) loss: 0.505955 Eteration 4701 / 4900) loss: 0.572317 Eteration 4801 / 4900) loss: 0.573821 Epoch 10 / 10) train acc: 0.835000; val acc: 0.558000

	<pre>Inputs: - x: A numpy array containing input data, of shape (N, d_1,, d_k) - w: A numpy array of weights, of shape (D, M)</pre>
	- w: A numpy array of weights, of shape (D, M) - b: A numpy array of biases, of shape (M,) Returns a tuple of: - out: output, of shape (N, M) - cache: (x, w, b) """ # ===============================
	<pre>x_res = x.reshape((x.shape[0], w.shape[0])) # Shape of N * D out = x_res.dot(w) + b.reshape((1, b.shape[0])) # Shape of N * M # ==================================</pre>
d	<pre>ef affine_backward(dout, cache): """ Computes the backward pass for an affine layer. Inputs: dout: Upstream derivative, of shape (N, M) cache: Tuple of: - x: A numpy array containing input data, of shape (N, d_1,, d_k) - w: A numpy array of weights, of shape (D, M) - b: A numpy array of biases, of shape (M,)</pre>
	Returns a tuple of: - dx: Gradient with respect to x, of shape (N, dl,, d_k) - dw: Gradient with respect to w, of shape (D, M) - db: Gradient with respect to b, of shape (M,) """ x, w, b = cache dx, dw, db = None, None, None # ===================================
	# dx should be N x d1 x x dk; it relates to dout through multiplication with w, which is D x M # dw should be D x M; it relates to dout through multiplication with x, which is N x D after reshapin # db should be M; it is just the sum over dout examples # ====================================
d	<pre># ====================================</pre>
	Returns a tuple of: - out: Output, of the same shape as x - cache: x """ # ================================
d	<pre># END YOUR CODE HERE # ====================================</pre>
	- cache: Input x, of same shape as dout Returns: - dx: Gradient with respect to x """ x = cache # ===================================
d	<pre># ====================================</pre>
	computed from minibatch statistics and used to normalize the incoming data. During training we also keep an exponentially decaying running mean of the mean and variance of each feature, and these averages are used to normalize data at test-time. At each timestep we update the running averages for mean and variance using an exponential decay based on the momentum parameter: running_mean = momentum * running_mean + (1 - momentum) * sample_mean running_var = momentum * running_var + (1 - momentum) * sample_var Note that the batch normalization paper suggests a different test-time
	<pre>behavior: they compute sample mean and variance for each feature using a large number of training images rather than using a running average. For this implementation we have chosen to use running averages instead since they do not require an additional estimation step; the torch7 implementation of batch normalization also uses running averages. Input: x: Data of shape (N, D) gamma: Scale parameter of shape (D,) beta: Shift paremeter of shape (D,) bn_param: Dictionary with the following keys: mode: 'train' or 'test'; required eps: Constant for numeric stability</pre>
	<pre>- momentum: Constant for running mean / variance running_mean: Array of shape (D,) giving running mean of features - running_var Array of shape (D,) giving running variance of features Returns a tuple of: - out: of shape (N, D) - cache: A tuple of values needed in the backward pass """ mode = bn_param['mode'] eps = bn_param.get('eps', 1e-5) momentum = bn_param.get('momentum', 0.9)</pre> N, D = x.shape
	<pre>running_mean = bn_param.get('running_mean', np.zeros(D, dtype=x.dtype)) running_var = bn_param.get('running_var', np.zeros(D, dtype=x.dtype)) out, cache = None, None if mode == 'train': # ===================================</pre>
	<pre># the 'cache' variable. # ====================================</pre>
	<pre>var_running = momentum * var_running + (1 - momentum) * var_minibatch bn_param['running_mean'] = mean_running bn_param['running_var'] = var_running cache = { 'minibatch_var': var_minibatch, 'x_centralize': (x - mean_minibatch), 'x_normalize': x_normalize, 'gamma': gamma, 'eps': eps }</pre>
	<pre># ============ # # END YOUR CODE HERE # =========== # elif mode == 'test': # YOUR CODE HERE: # Calculate the testing time normalized activation. Normalize using # the running mean and variance, and then scale and shift appropriately.</pre>
	# Store the output as 'out'. # ===================================
d	<pre>bn_param['running_mean'] = running_mean bn_param['running_var'] = running_var return out, cache ef batchnorm_backward(dout, cache): """ Backward pass for batch normalization. For this implementation, you should write out a computation graph for batch normalization on paper and propagate gradients backward through intermediate nodes.</pre>
	<pre>Inputs: dout: Upstream derivatives, of shape (N, D) cache: Variable of intermediates from batchnorm_forward. Returns a tuple of: dx: Gradient with respect to inputs x, of shape (N, D) dgamma: Gradient with respect to scale parameter gamma, of shape (D,) dbeta: Gradient with respect to shift parameter beta, of shape (D,) """ dx, dgamma, dbeta = None, None, None</pre>
	<pre># YOUR CODE HERE: # Implement the batchnorm backward pass, calculating dx, dgamma, and dbeta. # ====================================</pre>
	<pre>dxmu1 = dxhat / np.sqrt(minibatch_var + eps) sqrt_var = np.sqrt(minibatch_var + eps) dsqrt_var = -np.sum(dxhat * x_centralize, axis=0) / (sqrt_var**2) dvar = dsqrt_var * 0.5 / sqrt_var dxmu2 = 2 * x_centralize * dvar * np.ones_like(dout) / N dx1 = dxmu1 + dxmu2 dx2 = -np.sum(dx1, axis=0) * np.ones_like(dout) / N dx = dx1 + dx2 # calculate dbeta and dgamma dbeta = np.sum(dout, axis=0) dgamma = np.sum(dout * x_normalize, axis=0) # ====================================</pre>
d	<pre># ====================================</pre>
	<pre>if the mode is test, then just return the input seed: Seed for the random number generator. Passing seed makes this function deterministic, which is needed for gradient checking but not in real networks. Outputs: - out: Array of the same shape as x cache: A tuple (dropout_param, mask). In training mode, mask is the dropout mask that was used to multiply the input; in test mode, mask is None. """ p, mode = dropout_param['p'], dropout_param['mode'] if 'seed' in dropout_param:</pre>
	<pre>np.random.seed(dropout_param['seed']) mask = None out = None if mode == 'train': # ================================</pre>
	<pre>mask = (np.random.random_sample(x.shape) >= p) / (1 - p) out = x * mask # ===================================</pre>
d	<pre>out = x # ================================</pre>
	<pre>Perform the backward pass for (inverted) dropout. Inputs: dout: Upstream derivatives, of any shape cache: (dropout_param, mask) from dropout_forward. """ dropout_param, mask = cache mode = dropout_param['mode'] dx = None if mode == 'train': # ===========# # YOUR CODE HERE:</pre>
	<pre># Implement the inverted dropout backward pass during training time. # ====================================</pre>
d	<pre>dx = dout # ===================================</pre>
	<pre>- x: Input data, of shape (N, C) where x[i, j] is the score for the jth class for the ith input y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and 0 <= y[i] < C Returns a tuple of: - loss: Scalar giving the loss - dx: Gradient of the loss with respect to x """ N = x.shape[0] correct_class_scores = x[np.arange(N), y] margins = np.maximum(0, x - correct_class_scores[:, np.newaxis] + 1.0) margins[np.arange(N), y] = 0</pre>
d	<pre>loss = np.sum(margins) / N num_pos = np.sum(margins > 0, axis=1) dx = np.zeros_like(x) dx[margins > 0] = 1 dx[np.arange(N), y] -= num_pos dx /= N return loss, dx ef softmax_loss(x, y): """ Computes the loss and gradient for softmax classification.</pre>
	<pre>Inputs: - x: Input data, of shape (N, C) where x[i, j] is the score for the jth class for the ith input y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and 0 <= y[i] < C Returns a tuple of: - loss: Scalar giving the loss - dx: Gradient of the loss with respect to x """ probs = np.exp(x - np.max(x, axis=1, keepdims=True)) probs /= np.sum(probs, axis=1, keepdims=True)</pre>
	<pre>N = x.shape[0] loss = -np.sum(np.log(probs[np.arange(N), y])) / N dx = probs.copy() dx[np.arange(N), y] -= 1 dx /= N return loss, dx rom .layers import * ef affine_relu_forward(x, w, b): """</pre>
	<pre>Convenience layer that performs an affine transform followed by a ReLU Inputs: x: Input to the affine layer w, b: Weights for the affine layer Returns a tuple of: out: Output from the ReLU cache: Object to give to the backward pass """ a, fc_cache = affine_forward(x, w, b) out, relu_cache = relu_forward(a) cache = (fc cache, relu cache)</pre>
d	<pre>return out, cache ef affine_relu_backward(dout, cache): """ Backward pass for the affine-relu convenience layer """ fc_cache, relu_cache = cache da = relu_backward(dout, relu_cache) dx, dw, db = affine_backward(da, fc_cache) return dx, dw, db</pre>
f	<pre>mport numpy as np rom .layers import * rom .layer_utils import * lass TwoLayerNet(object): """ A two-layer fully-connected neural network with ReLU nonlinearity and softmax loss that uses a modular layer design. We assume an input dimension of D, a hidden dimension of H, and perform classification over C classes. The architecure should be affine - relu - affine - softmax.</pre>
	Note that this class does not implement gradient descent; instead, it will interact with a separate Solver object that is responsible for running optimization. The learnable parameters of the model are stored in the dictionary self.params that maps parameter names to numpy arrays. """ definit(self, input_dim=3*32*32, hidden_dims=100, num_classes=10,
	<pre>Inputs: input_dim: An integer giving the size of the input hidden_dims: An integer giving the size of the hidden layer num_classes: An integer giving the number of classes to classify dropout: Scalar between 0 and 1 giving dropout strength. weight_scale: Scalar giving the standard deviation for random initialization of the weights. reg: Scalar giving L2 regularization strength. """ self.params = {} self.reg = reg</pre> ##
	<pre># YOUR CODE HERE: # Initialize W1, W2, b1, and b2. Store these as self.params['W1'], # self.params['W2'], self.params['b1'] and self.params['b2']. The # biases are initialized to zero and the weights are initialized # so that each parameter has mean 0 and standard deviation weight scale.</pre>
	<pre># The dimensions of W1 should be (input_dim, hidden_dim) and the # dimensions of W2 should be (hidden_dims, num_classes) # ====================================</pre>
	<pre># The dimensions of W1 should be (input_dim, hidden_dim) and the # dimensions of W2 should be (hidden_dims, num_classes) # ====================================</pre>
	# The dimensions of WI should be (input_dim, hidden_dim) and the # dimensions of W2 should be (hidden_dims, num_classes) # """ WI_size = (input_dim, hidden_dims) W2_size = (hidden_dims, num_classes) self.params['WI'] = np.random.normal(loc=0.0,scale=weight_scale,size = WI_size) self.params['W2'] = np.random.normal(loc=0.0,scale=weight_scale,size = W2_size) self.params['W2'] = np.random.normal(loc=0.0,scale=weight_scale,size = W2_size) self.params['W2'] = np.zeros(num_classes) # END YOUR CODE HERE # """ Compute loss and gradient for a minibatch of data. Inputs: - X: Array of input data of shape (N, d_1,, d_k) - y: Array of labels, of shape (N,). y[i] gives the label for X[i]. Returns: If y is None, then run a test-time forward pass of the model and return: - scores: Array of shape (N, C) giving classification scores, where scores[i, c] is the classification score for X[i] and class c. If y is not None, then run a training-time forward and backward pass and return a tuple of: - loss: Scalar value giving the loss - grads: Dictionary with the same keys as self.params, mapping parameter
	# The dimensions of W1 should be (hidden_dime, num_classes) # dimensions of W2 should be (hidden_dime, num_classes) # """ W1_size = (input_dim, hidden_dime) W2_size = (input_dim, hidden_dime) self.params['W1'] = np.random.normal(loc=0.0, scale=weight_scale, size = W1_size) self.params['W1'] = np.random.normal(loc=0.0, scale=weight_scale, size = W2_size) self.params['W2'] = np.random.normal(loc=0.0, scale=weight_scale, size = W1_size) self.params['W2'] = np.random.normal(loc=0.0, scale=weight_scale, size = W1_size) self.params['W2'] = np.random.normal(loc=0.0, scale=weight_scale, size = W1_size) self.params['W1'] = np.random.normal(loc=0.0, scale=weight_scale, size = W1_size) self.params['W1']
	<pre>% The diseasions of W is should be (input dise, hidden dise) and closes) % diseasions of W should be (hidden dise, now closes) % wi_size = (input_dise, hidden_disa) Wi_size = (hidden_dise, now closes) self.params['Wi'] = np.random.normal(lor=0.0,scale=weight_scale,size = Wi_size) self.params['Wi'] = np.random.normal(lor=0.0,scale=weight_scale,size = Wi_size) self.params['Wi'] = np.random.normal(lor=0.0,scale=weight, scale,size = Wi_size) self.params['Wi'] = np.random.normal(lor=0.0,scale=weight,</pre>
	# Simple and the state of the s
	i ofmensions of 20 about to a (input_oin, rinput_oin) and the i ofmensions of 20 at
	# The edimensions of Michaeland on (Antonia dam.) Academy (Antonia dam.) Academy (Antonia dam.) # Inside = (Antonia _Antonia _Antonia dam.) **Visite = (Antonia _Antonia _Antonia _Antonia dam.) **Visite = (Antonia _Antonia _Antonia _Antonia dam.) **Visite = (Antonia _Antonia _An
	# The discensions of My decords on (Arthony, Charles, Charles, Charles) # anthony control My decords on (Arthony, Charles, Charles) # The class = import wite, stocker without # The class = import wite = import wite # The class = import wite = import wite # The class = import wite = import wite # The class = import wite = import wite = import wite # The class = import wite = import wite = import wite # The class = import wite = import wite = import wite # The class = import wite = import wite = import wite # The class = import wite = import wite = import wite # The class = import wite = import wite = import wite # The class = import wite = import wite = import wite # The class = import wite = import wite
	The disconnection of a change of a change of change of the change of an analysis of a change of the
	Security of the property of the control to the c
	# The Assessment of the Parks of Copyel and Assessment Services (1998) and the Services of Copyel and Assessment Services (1998) and the Services of Copyel and Assessment Services (1998) and the Services of Copyel and Assessment Services (1998) and the Services of Copyel and Assessment Services (1998) and the Services of Copyel and Assessment Services (1998) and the Services (1998) and t
	The control of the co
	The second content of the company of the content
	Supplies the control of the control
	Section of the control of the contro
	Section Company of the Company o
	de contraction de Con
	# Supplier and Committees of the Committees of t
	# The content and the continue when the continue that the property of the content and the property of the content and the property of the content and the cont
	The control of the co
	Section of the process of the proc
	Section of the content of the cont
	The content of the
	The content of the
	The content of the

Security that make they will also the control security will also the control security and also t	lon'])
def cytics, 10, configuration Formation of the control of the cytics of	lon'])
set constitutions are considered to the constitution of the consti	lon'])
semantical indicate between 3 and 1 subscript the minimum values, we contigo the properties of the granteries. If could, is the properties of the granteries of the continue	lon'])
# Typeword for specific money and the second part of a conting for second part of the sec	lon'])
design performancements, day contignational; **Economic strains** **Seconomic strains**	lon'])
According to the Desire to the Company of the Community with a community of the gradient of the Community of the gradient of	lon'])
# control of the manufacture of the formula. Association and decided weights for an enter of an enter of the control of the co	lon'])
<pre>def insource() de, contig=None): return next_y, contig def insource() de, contig=None): The cont</pre>	lon'])
- Low-ring_more: Scaler Learning rate densy_mate: Scaler Learning rate densy_mate: Scaler Learning rate densy_mate: Scaler Learning and cardinate of gradients specient Samilar scaler used for smoothing to evoid dividing by zero specient Samilar scaler used for smoothing to evoid dividing by zero specient Samilar cardinate of gradients specient Samilar (learning_mate', 10-3) - specient Samilar (learning_mate') - specient Samilar (learning_mate') - specient Samilar (learning_mate') - specient Samilar (learning_mate') - specient specient Samilar (learning_mate') - specient specient Samilar (learning_mate') - specient Samilar (learning_mate'	lon'])
config.setofault('a', np.zeros_lke(w)) moxi_w = None * Type Concurse. * Implement MMSPRop. Force the next value of w as next w. You need * to also storm in config('a') the moving average of the occord * moment gradients, so they can be used for future gradients. Concretely, * config('a') = config('decay rate')*config('a') + (1-config('decay rate'))*(dw**2) moxi_w = w - morig('lecaning rate')*config('a') + (1-config('decay rate'))*(dw**2) moxi_w = w - morig('lecaning rate')*dw/(up.mgr)(config('a'))*config('pesiton')) * ENO YOUR CODE HERE * return next_w, config def admix, dw, config*None): """ """ """ """ """ """ """	lon'])
<pre>config('a') = config('decay_rate')*config('a') + (1-config('debay_rate'))*(de**2) next_w = w = config('learning_rate')*dw/(np.agrt(config('a'))*config('epsilon')) # ==================================</pre>	lon'])
Uses the Adam update rule, which incorporates moving averages of both the gradient and its square and a bias correction term. config format: learning rate: Scalar learning rate. betal: Decay rate for moving average of first moment of gradient. betal: Decay rate for moving average of second moment of gradient. epsilon: Small scalar used for smoothing to avoid dividing by zero. m: Moving average of gradient. v: Moving average of gradient. v: Moving average of sequared gradient. v: Eleration number. if config is None: config = {} config, setdefault('learning rate', le-3) config, setdefault('peral', 0.99) config.setdefault('peral', 0.99) config.setdefault('peral', 10.9) config.setdefault('v', np.zeros_like(w)) config.setdefau	lon'])
<pre>if config is None: config = {} config.setdefault('learning_rate', le-3) config.setdefault('betal', 0.9) config.setdefault('betal', 0.99) config.setdefault('betal', 0.999) config.setdefault('vo', np.zeros_like(w)) config.setdefault('v', np.zeros_like(w)) config.setdefault('t', 0) next_w = None #</pre>	lon'])
<pre># YOUR CODE HERE: # Implement Adam. Store the next value of w as next_w. You need # to also store in config['a'] the moving average of the second # moment gradients, and in config['v'] the moving average of the # first moments. Finally, store in config['t'] the increasing time. # ====================================</pre>	lon'])
<pre>t = config['t'] + 1 v = beta1 * config['v'] + (1 - beta1) * dw a = beta2 * config['a'] + (1 - beta2) * (dw**2) v_corrected = v/(1 - beta1**t) a_corrected = a/(1 - beta2**t) next_w = w - config['learning_rate'] * v_corrected / (np.sqrt(a_corrected) + config['epsi2'] config['v'] = v config['a'] = a config['t'] = t # ================================</pre>	lon'])
# # # END YOUR CODE HERE # #	