³⁶Ar(d,t) 1970Wh04,2015Fr01

 $J^{\pi}=0^+$ for ³⁶Ar ground state.

1970Wh04: a 21.0-MeV deuteron beam was produced at the Yale MP tandem Van de Graaff accelerator. The target was a 36 Ar gas cell. Tritons were detected using a $140-\mu$ m- $530-\mu$ m thick Δ E-E telescope of silicon surface barrier detectors with FWHM=65-70 keV. Measured $\sigma(E_t,\theta)$. Deduced levels, L, and spectroscopic factors from JULIE-DWBA analysis of the measured $\sigma(\theta)$. Comparisons with shell-model calculations.

2015Fr01: E=22 MeV, 300-700 nA 2 H beams were produced at the Maier-Leibnitz Laboratorium (MLL) in Garching, Germany. The target was produced at the Center of Experimental Nuclear Physics and Astrophysics (CENPA) by implanting 3-6 μ g/cm 2 of 36 Ar ions into 30 μ g/cm 2 natural abundance carbon foils. Reaction products were momentum analyzed with a Q3D magnetic spectrograph. Measured E_t , $\sigma(E_t,\theta)$. Typical FWHM was \approx 9 keV, and 16 keV in the 54° spectrum. Deduced levels, proton resonance energies, level densities. Comparisons with shell-model calculations. Relevance to 34g,m Cl(p, γ) 35 Ar thermonuclear reaction rates, but adequate information (about widths) is still lacking to obtain these rates.

35 Ar Levels

Spectroscopic factor $C^2S = \sigma(\theta)_{exp}/\sigma(\theta)_{DWBA}/N$, where N=3.33 is a normalization factor adopted by 1970Wh04 from 1966Ba54.

E(level) [†]	J^{π}	L	C^2S	Comments
0	3/2+	2	3.4	
1180 <i>10</i>	$1/2^{+}$	0	1.4	
1700	$5/2^{+}$	(2)	< 0.2	
2635 20	3/2+	(2)	0.5	C ² S: for $J^{\pi}=3/2^+$. 1970Wh04 states that there is a large uncertainty in the spectroscopic strength. 1970Wh04 also gives S=0.11 or 0.032 assuming L=1, $J^{\pi}=3/2^-$.
2986 20	$5/2^{+}$	2	2.6	
3200 20	7/2-	(3)	0.33,0.11	C^2S : assuming r_{0n} =1.25 F and V_n 60 MeV, respectively. 1970Wh04 states that there is a large uncertainty in the spectroscopic strength.

[†] From 1970Wh04 for low-lying states and from 2015Fr01 for resonances.