## 8장 머신 러닝: 인간의 학습 과정을 컴퓨터로 모방하기



출처: http://www.kdnuggets.com/2015/11/machine-learning-apis-data-science.html



출처: http://www.allchinatech.com/googles-alphago-beats-gos-world-champion-ke-jie-in-the-first-of-three-matches/









### 3 hours

AlphaGo Zero plays like a human beginner, forgoing long term strategy to focus on greedily capturing as many stones as possible.

Captured Stones



### 19 hours

AlphaGo Zero has learnt the fundamentals of more advanced Go strategies such as life-and-death, influence and territory.



### 70 hours

AlphaGo Zero plays at super-human level. The game is disciplined and involves multiple challenges across the board.

68 at 61

Captured Stones

4 of 4



출처: https://krify.co/ibm-watson-empowering-mobile-app-developers-artificial-intelligence/

## TIBC 10 Examples of Machine Learning

- Spam Detection
- Credit Card Fraud Detection
- Digit Recognition
- Speech Understanding
- Face Detection
- Shape Detection
- Product Recommendation
- Medical Diagnosis
- Stock Trading
- Customer Segmentation



http://machinelearningmastery.com/practical-machine-learning-problems/

-0

Copyright 2000-2016 TIBCO Software Inc.

출처: https://www.slideshare.net/KaiWaehner/ how-to-apply-machine-learning-with-r-h20-apache-spark-mllib-or-pmml-to-real-time-streaming-analytics



Pinterest improves Related Pins with deep learning, plans product recommendations using object recognition



https://www.youtube.com/watch?v=51FS0t8hCSQ



# 8장 머신 러닝: 인간의 학습 과정을 컴퓨터로 모방하기

## 학습 목표

- 머신 러닝의 기본 개념
- 머신 러닝의 기술적 분류

## 8.1 머신 러닝의 기본 개념

- 기본적인 방법론으로는 다음과 같은 개념이 있음.
  - 교육 학습: 교사의 지식을 형식 변환하여 기존 지식에 통합한다.
  - 연역 학습: 기존 지식으로부터 구체적인 개념을 생성하여 새로운 지식으로 추가한다.
  - **귀납 학습:** 기존 지식 또는 새로운 교사 사례로부터 공통 개념을 추 출하여 전체를 나타내는 지식으로 추가한다.
  - **강화 학습:** 환경과의 상호 작용에서 환경 적응 요인에 기초한 보상 을 확인하면서 지식을 정돈한다.
  - **딥 러닝:** 주어진 환경에 적응하는 요인 자체를 자동으로 추출하고 그것을 최대화하는 쪽으로 지식을 정돈한다.
- 처음 3가지는 교사 사례가 있고 나머지 2가지는 직접적인 교사 사례가 없지만 학습 힌트는 필요할지 모름.

## 8.1.1 교육 학습

- 교육 학습(Learning by Being Told)
  - 주어진 교사 사례를 그대로 기억하는 것.
  - 지식을 골라낼 때는 교사 사례(Learning Examples)와 완전히 같은 패턴으로 골라냄.
  - 말하자면, 학교 수업에서 학생이 선생님으로부터 배운 대로 대답하는 것과 같음.

## 8.1.2 연역 학습

- 연역 학습(Deductive Learning)
  - 교사 사례를 그대로 기억할 뿐만 아니라 그것들을 조합하여 새로운 형태의 지식을 생성하므로 교사 사례와 다른 패턴도 처리할 수 있음.
  - 예를 들어, 3단 논법에 따라 (1)'개는 동물이다', (2)'동물은 움직인다'
    는 지식으로부터 (3)'개는 움직인다'고 지식을 유도할 수 있음.
  - 기존의 지식을 조합하여 새로운 지식을 유도하는 기법을 규칙 합성 이라고 하며 증명 등에 응용 가능.
  - 단, 연역 학습에서는 기존 지식의 조합 범위에 머물러 교사 사례와 동등하거나 보다 상세화된 지식을 생성할 수는 있지만, 새로운 개념 을 생성하는 것은 아님.

## 8.1.3 귀납 학습

- 귀납 학습(Inductive Learning)
  - 교사 사례를 보다 상위의 새로운 개념으로 집약하는 것이 가능하며
    개념 학습에 상응.
  - 말하자면, 고등학교에 있어서 선생님이 말하고 있는 것은 결국 이런 것이구나 하고 학생들이 자신의 말로 이해하는 것.
  - 대표적인 기법으로는 복수의 교사 사례로부터 공통 요인을 추출하고 새로운 개념을 생성해 나가는 버전 공간법이 있음.
  - 이것은 개념화 기법으로, 고전적이기는 하지만 기본적인 개념이므로 나중에 자세히 설명함.

## 8.1.4 강화 학습

- 강화 학습(Reinforcement Learning)
  - 교사 사례를 사용하지 않는 대신에 환경 적응에 따른 보상을 확인 하면서 학습을 진행.
  - 대표적인 기법으로는 Q 값이라고 부르는 평가값을 설정하여 이를 높여가는 'Q 학습'이 있음.
  - 기본 원리는 매 time-step(t)마다 agent는 행동 $a_t$ 를 선택하게 되고, 보상 $r_t$ 를 받으며 새로운 상태  $s_{t+1}$  로 전이하고, Q 값이 갱신되는 과 정이 반복됨.

$$Q(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future}}\right)}_{a} \cdot \underbrace{\left(\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal$$

## 8.1.4 강화 학습

- α가 1에 가까울수록 Q 값의 변화가 심한 학습이 되지만, 보통 학 습 초기 단계에서는 α를 크게, 최종 단계에서는 작게 설정.
- 강화 학습 분야는 최근 학습 연구의 중심에 있음.
- 더욱 발전한 **발견 학습(Heuristic Learning)**이라는 형태로 데이터 마이닝과 클러스터링에 사용되며 빅데이터 해석에도 응용되고 있음.

## 8.1.5 딥 러닝

- 딥 러닝(Deep Learning)
  - 근래에 가장 주목 받는 기법으로, 교사 사례도 보상도 없는 상태에서 주어진 환경에 적응.
  - 예를 들어, 많은 사진 중에서 고양이에 공통된 개념을 자동 추출하여 새롭게 주어진 사진이 고양이인지 아닌지 판단.
  - 최근까지의 학습 기법에서는 교사 신호가 필요하거나 교사가 없는 경우에도 무엇에 주목하고 학습하는가 하는 특징을 인간이 주지 않으면 안 되었음.
  - 그러나 딥 러닝에서는 아무것도 주지 않아도 특징 자체를 추출하고 그 특징점에 따라 잡다한 데이터를 추상화 개념으로 정리하는 것이 가능함.

## 8.1.5 딥 러닝

 구글이 진행했던 고양이 인식은 고양이의 특징을 표현하는 데 필 요한 요인을 인간이 부여한 것이 아니라, 딥러닝에 따라 자동으로 생성하여 새로운 영상 속의 동물을 고양이로 판단할 수 있었다는 점이 대단한 성과.



출처: http://www.hardwarezone.com.my/feature-nvidia-gtc-2015-day-2-google-and-large-scale-deep-learning

## 8.1.5 딥 러닝

- 따라서 대량의 데이터를 정리하여 중요한 논점을 추출한다는 점 에서 **빅데이터 해석에는 최적**.
- 추출된 특징 개념을 어떻게 부를지는 사람이 정하겠지만, 고양이 등과 같은 기존 개념에 머무르지 않고 인간으로서는 생각해 낼 수 없었던 새로운 개념을 제시해 줄지도 모름.
- 이로 인해 바야흐로 **발견 학습**에 다가섰다고 말할 수 있음.
- 단, '주어진 데이터 또는 환경으로부터 완전히 기상천외한 아이 디어가 나올까?'라고 묻는다면, 그것은 아직 연구 단계에 있다고 생각됨.

## 8.2 머신 러닝의 기술적 분류

# 머신러닝의 세 가지 기본 학습 모드

- Supervised Learning (감독학습, 지도학습, 교사학습)
  - 레이블(미리 정해놓은 정답) 달린 예제로 학습하기
  - 예제가 매우 많은 경우 효과적인 학습이 가능하다
  - 예) 분류(classification): 레이블이 이산적인(discrete) 경우.
  - 예) 회귀(regression): 레이블이 연속적 값을 가지는 경우



- 데이터에 내재된 패턴, 특성, 구조를 학습을 통해 발견. 레이블은 고려하지 않음
- 학습 데이터는 개체에 대한 입력 속성만으로 구성됨 D={(x)}
- 예: 차원 축소(dimension reduction), 군집화(clustering)



- 시스템의 동작이 적절성(right/wrong)에 대한 피드백이 있는 학습
- 소프트웨어 에이전트가, 환경(environment) 내에서 보상(rewards)이 최대화 되는 일련의 행동(action)을 수행하도록 학습하는 기법
- 환경의 상태, 에이전트의 행동, 상태 전이 규칙 및 보상, 관측 범위를 고려한 학습
- Action selection, planning, policy learning













observation

## 8.2.1 머신 러닝의 기술적 주요 알고리즘

# Machine Learning Algorithms (sample)

### Unsupervised

- Clustering & Dimensionality Reduction
  - SVD
  - o PCA
  - K-means
- Association Analysis
  - Apriori
  - FP-Growth
- Hidden Markov Model

#### Supervised

- Regression
  - Linear
  - Polynomial
- Decision Trees
- Random Forests
- Classification
  - KNN
  - Trees
  - Logistic Regression
  - Naive-Bayes
  - SVM

출처: https://www.linkedin.com/pulse/machine-learning-primer-avinash-shenoy

## 8.2.2 Linear Regression



출처: https://docs.microsoft.com/ko-kr/azure/machine-learning/machine-learning-algorithm-choice

# \* Polynomial Regression



출처: https://www.w3schools.com/python/python\_ml\_polynomial\_regression.asp

# \* Overfitting, Underfitting



출처: https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

## 8.2.3 Decision Tree



### 8.2.3 Decision Tree



#### Welcome to the UC Irvine Machine Learning Repository!

We currently maintain 497 data sets as a service to the machine learning community. You may <u>view all data sets</u> through our searchable interface. For a general overview of the Repository, please visit our <u>About page</u>. For information about citing data sets in publications, please read our <u>citation policy</u>. If you wish to donate a data set, please consult our <u>donation policy</u>. For any other questions, feel free to <u>contact the</u> <u>Repository librarians</u>.



## 8.2.4 KNN(K-Nearest Neighbor)

### kNN 예제

Press Esc to exit full screen

• 발차기와, 키스라는 항목으로, ? 대상의 유형을 유추

| 제목                         | 발차기 | 키스  | 유형        | ? 와의 거리 |
|----------------------------|-----|-----|-----------|---------|
| Callifornia Man            | 3   | 104 | 로맨스       | 20.5    |
| He's Not Really into Dudes | 2   | 100 | 로맨스       | 18.7    |
| Beautiful Woman            | 1   | 81  | 로맨스       | 19.2    |
| Kevin Longblade            | 101 | 10  | 액션        | 115.3   |
| Robo Slayer 3000           | 99  | 5   | 액션        | 117.4   |
| Amped II                   | 98  | 2   | 액션        | 118.9   |
| ?                          | 18  | 90  | - (예측 대상) |         |



?(예측하고자 하는) 항목과 가장 거리가 가까운 항목의 "유형(라벨)"로 유출 → 영화,쇼핑몰등 추천 시스템에 사용

출처: https://www.slideshare.net/Byungwook/1-knn

# 8.2.5 SVM(Support Vector Machine)



출처: http://jangjy.tistory.com/96

## 8.2.6 K-means clustering



# 8.2.7 PCA(Principal Component Analysis)



출처: http://dokim.tistory.com/entry/PCA-Principal-Component-Analysis-주성분분석



출처: http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/



**cloud**Sight™

출처: https://blog.cloudsight.ai/chihuahua-or-muffin-1bdf02ec1680



출처: http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/



출처: http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/



출처: http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/



출처: http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/



출처: http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/



출처: http://twistedsifter.com/2016/03/puppy-or-bagel-meme-gallery/









## 8.4 머신 러닝 기능을 제공하는 상용 사이트

# 클라우드 기반 머신러닝 기술

클라우드(Cloud) 환경에서 빅데이터(Bid Data)를 활용하는 머신러닝(Machine Learning) 기술이 지능형 서비스/솔루션의 핵심 포맷으로 부각되고 있다.



© 2016 SNU Biointelligence Laboratory, http://bi.snu.ac.kr/

70

## 8.5 머신 러닝 관련 사이트

- 상용 사이트 주소
- https://console.bluemix.net/catalog/services/machine-learning
- https://aws.amazon.com/machine-learning/
- https://azure.microsoft.com/ko-kr/services/machine-learning/
- https://cloud.google.com/products/machine-learning/
- 학습 자료
- https://www.slideshare.net/Byungwook/1-knn
- https://www.slideshare.net/TerryTaewoongUm/machinelearning-54531674