

Computer Vision

Exercise Session 2

Assignment 2

- 4 Tasks:
 - Image capturing
 - Fundamental matrix, eight-point algorithm
 - Essential matrix, eight-point algorithm
 - Camera matrix
- Good reference: Multiple View Geometry in computer vision (Richard Hartley & Andrew Zisserman)

Image capturing

- Capture two images from same static scene
- The two images should be taken from different viewpoints
- Undistort the images, using Bouget's calibration toolbox

📣 Camera Calibration Toolbox - Standard Version			
Image names	Read images	Extract grid corners	Calibration
Show Extrinsic	Reproject on images	Analyse error	Recomp. corners
Add/Suppress images	Save	Load	Exit
Comp. Extrinsic	Undistort image	Export calib data	Show calib results

Fundamental matrix

Epipolar constraint $x'^T Fx = 0$

Fundamental matrix

F is the unique 3x3 rank 2 matrix that satisfies $x'^TFx=0$ for all $x\leftrightarrow x'$

- (i) Transpose: if F is fundamental matrix for (P,P'), then F^T is fundamental matrix for (P',P)
- (ii) Epipolar lines: $|'=F \times \& |=F^T \times '$
- (iii)Epipoles: on all epipolar lines, thus e'^TFx=0, ∀x ⇒e'^TF=0, similarly Fe=0
- (iv)F has 7 d.o.f., i.e. 3x3-1(homogeneous)-1(rank2)

Eight-point algorithm

Epipolar constraint $x^T Fx = 0$

$$x = (x, y, 1)^{T} \qquad x' = (x', y', 1)^{T}$$

$$(x' \quad y' \quad 1) \begin{bmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{bmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = 0$$

$$(x'_{1} x_{1} \quad x'_{1} y_{1} \quad x'_{1} \quad y'_{1} x_{1} \quad y'_{1} y_{1} \quad y'_{1} \quad x_{1} \quad y_{1} \quad 1 \end{pmatrix} F_{22} = 0$$

$$(x'_{1} x_{1} \quad x'_{1} y_{1} \quad x'_{1} \quad y'_{1} x_{1} \quad y'_{1} y_{1} \quad y'_{1} \quad x_{1} \quad y_{1} \quad 1 \end{bmatrix} F_{32}$$

$$(x'_{1} x_{1} \quad x'_{1} y_{1} \quad x'_{1} \quad y'_{1} x_{1} \quad y'_{1} x_{1} \quad y'_{1} \quad x'_{1} \quad x$$

$$\begin{pmatrix} x'_1 x_1 & x'_1 y_1 & x'_1 & y'_1 x_1 & y'_1 y_1 & y'_1 & x_1 & y_1 & 1 \\ & & & & & & & \\ x'_n x_n & x'_n y_n & x'_n & y'_n x_n & y'_n y_n & y'_n & x_n & y_n & 1 \end{pmatrix} f = 0$$

Use SVD to solve for F

Eight-point algorithm

- Enforce the singularity constraint on F
 - Factorize F using SVD
 - Set the third singular value of F to zero

Essential matrix (calibrated cameras)

Essential matrix (5 d.o.f)

$$nx'Enx = 0 E = [t]_{\times}R [t]_{\times} = \begin{bmatrix} 0 & t_z & -t_y \\ -t_z & 0 & t_x \\ t_y & -t_x & 0 \end{bmatrix}$$

 $nx' \leftrightarrow nx$ are the normalized image coordinates

$$nx = K^{-1}x \qquad nx' = K^{-1}x'$$

- K^{-1} inverse camera calibration matrix
- Linear solution for E using 8 point correspondences
- Enforce the property of E that the first two singular values are equal and the third is zero
- Compare F with $K^{-T}EK^{-1}$

Essential matrix (calibrated cameras)

- Enforce the property of *E* that the first two singular values are equal and the third is zero.
 - Factorize E using SVD, where S is the diagonal matrix with the singular values, S = diag(r, s, t).
 - Replace S with dig((r+s)/2,(r+s)/2,0).

Essential Matrix

- Decompose $E = [t]_{\times}R$
 - Translation t is the left null-vector of E (ie last column of U if $E = UDV^T$)
 - lacktriangle The length of t is unknown and can be set to 1
 - Rotation matrix is obtained by decomposing

$$E = USV^{T}$$

$$R_{1} = UWV^{T}, R_{2} = UW^{T}V^{T} \text{ with } W = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

For RHS coordinate system:

$$\det(R) = 1$$

Essential Matrix

We obtain four possible solutions

$$P_1 = R_1[I_{3\times3}|t], P_2 = R_1[I_{3\times3}|-t], P_3 = R_2[I_{3\times3}|t], P_4 = R_2[I_{3\times3}|-t]$$

Correct solution -> triangulated points in front of both cameras

Hand-in

- Assignment 2 should be submitted latest by
 - 1300hrs, 10-Oct-2013
 - bastien.jacquet@inf.ethz.ch
- Late submissions:
 - No more than 2 days in total for all assignments.
 - No more than 1 days for one assignment.
 - Student will receive zero for assignments handed in after the grace period.

