CS & IT ENGINEERING

THEORY OF COMPUTATION

Pushdown Automata

GATE WALLAH

By- Venkat sir

Lecture - 03

Recap of Previous Lecture

Topics to be Covered

Push down automat

Topic ?? CFL Detection

Topic ?? DCFL Detection

Topic

Topic

?? Closure properties of CFL & DCFL

Notations:-

Transition diagram

Transitions

PDA (Acceptor)

DPDA

NPDA

I dentify Language of following PDA?

Topic: Pushdown Automata

Langular

Regular

$$\begin{array}{l}
\delta(9_{0}, 0, 7_{0}) = (9_{1}, 7_{0}) \\
\delta(9_{0}, b, 7_{0}) = (9_{0}, 7_{0}) \\
\delta(9_{1}, 0, 7_{0}) = (9_{2}, 7_{0}) \\
\delta(9_{1}, b, 7_{0}) = (9_{2}, 7_{0}) \\
\delta(9_{2}, 0, 7_{0}) = (9_{2}, 7_{0}) \\
\delta(9_{2}, b, 7_{0}) = (9_{2}, 7_{0}) \\
\delta(9_{2}, 6_{2}, 7_{0}) = (9_{2}, 7_{0}) \\
\delta(9_{2}, 7_{0}) = (9_{2}, 7_{0}) \\
\delta(9_{2}, 7_{0}) = (9_{2}, 7_{0}) \\
\delta(9_{2}, 7_{0}) = (9_{2},$$

Construct PDA for

CFG-PDA

(1)
$$S(9_0, E, 7_0) = (9_1, S, 7_0)$$

2)
$$S(q_1, \epsilon, A) = (q_1, \alpha) \forall A \Rightarrow \alpha$$

 $S(q_1, \alpha, \alpha) = (q_1, \epsilon) \forall \alpha \in Textand$

(3)
$$\delta(9_{11}, \epsilon_{1}, \epsilon_{0}) = (9_{f_{1}}, \epsilon_{0})$$

CFG-PDA

$$S(9_{11}, \epsilon, A) = (9_{11}, \epsilon) \quad \forall A \rightarrow \epsilon$$

$$S(9_{11}, \epsilon, a) = (9_{11}, \epsilon) \quad \forall a \in \text{Texmod}$$

$$S(9_1, \epsilon_1 z_0) = (9_{f_1} z_0)$$

(2)
$$S(q_{1}, \epsilon, s) = (q_{1}, asb) (a) (q_{1}, ab)$$

 $S(q_{1}, a, a) = (q_{1}, \epsilon)$
 $S(q_{1}, b, b) = (q_{1}, \epsilon)$

$$S(9, \epsilon, B) = (9, bB) (0) (9, b)$$

$$S(q_1, q, q) = (q_1, \epsilon)$$

$$(3)$$
 $\delta(9_{11} \in 17_{0}) = (94,7_{0})$

CFL Detection

Which of the following language are

- 1. CLF and Regular
- 2. CFL but not regular
- Non CFL

1) Every finite dangular -> Regular -> CFL

4.
$$\{L = a^nb^m/n - m = 4\} = \{a^m + m\} \text{ infinite} \}$$
 CFL but not Regular.

9.
$$L = \{a^nb^m/n = m^2\}$$

1.
$$L = \{a^nb^m/n \le m\}$$
 CFL but not Regular.

1. $\{a^nb^mc^{n+m}/n m m \ge 1\}$ CFL but not Regular.

13.
$$L = \{L = \{b_a^{n}b_{n+m}/n, m = 1\}$$
 finite Regular—>CFL

14.
$$L = \{a^{m^2}b^{n^3}c^{k^5}/n, n, k > 1\}$$

(15)
$$L = \left\{ a_{*}^{3^{n}} b_{*}^{5^{k}} c^{2\ell} / n, k, \ell \ge 1 \right\}$$
 not in A.P. non CFL.

17)
$$L = \{a^ib^jc^k/i > j(or)j < k\} \longrightarrow (CFL) \rightarrow not DCFL \rightarrow not Regular$$

19.
$$L = \{a^i b^j c^k / j = max (i, k)$$

20.
$$L = \{a|b|c^k/j = i^2 + k^2\}$$

22.
$$L = \{a^i b^i c^k d^\ell / i = k \{and\} i = \ell \}$$

9, 6,

23.
$$L = \{a^i b^j c^k / d^\ell / (i = k) \text{ or } | j = \ell \}$$

5-,6,6,2

24.
$$L = \{a^ib^jc^k d^\ell \mid i = 2k(or)j \neq 5\ell\}$$
 CFL but not DCFL.

25.
$$L = \{a^ib^ic^k d^\ell | (i+j) = k+\ell\} \longrightarrow CFL but not Regular.$$

26.
$$L = \{a^ib^jc^k \ d^\ell \mid i = 4 \ \ell \ and \ j = 3 \ \} \rightarrow (F L but not Regular)$$

28.
$$\{a^{2^n}/n \ge 1\}^{\text{not in A-P}}$$
 non CFL

29.
$$\{a^{n^2}/n \ge 1\}$$
 not in A.P. non CFL

31.
$$L = \{a^P/P \text{ is prime number}\}$$

32.
$$L = \{a^k/k \text{ is odd number}\} \longrightarrow C^{-1}$$

If danguage formed over (1 Symbol them no difference in CFL & Regular. Hence

not in A.P-snow (FL

33.
$$L = \{wxw | w \in \{a, b\}^*\}$$

33.
$$L = \{wxw | w \in \{a, b\}^*\}$$

34. $L = \{wxxw | w, x \in \{a, b\}^*\}$

(416) regular — 7 CFL.

36.
$$\Sigma^* - \{ww/w \in \{a, b\}^+\}$$

37.
$$= \{ww^Rw/w \in \{a, b\}^+\}$$

38.
$$L = \{ww^R ww^R / w \in \{a, b\}^+\}$$

Mon CFL

40.)
$$\{L = \{x/x \in \{a, b, c\}^* n_a(x) = n_b(x) = n_c(x)\}\} \rightarrow Non CFL$$

41.)
$$L = \{x/x \in \{a, b, c\}^* | n_a(x) = n_b(x) + n_c(x) \}$$

42.
$$L = \{x/x \in \{a, b, c\}^* n_a(x) = n_b^2(x) + n_c^2(x) \} \longrightarrow M CFL$$

- 43. $L = \{x/x \in \{a, b\}^* n_a(x) \mod 5 \pmod n_b(x) \mod 4 = 0$
- 44. $L = \{a^nb^{2n}c^{3n}/n \ge 1\}$
- 45. $L = \{a^nb^nca^mb^m/n, m \ge 0\}$
- 46. $L = \{a^nb^mc^k/n \neq m \text{ or } m \neq k\}$ ~ CFL but not DCFL

S[an 12n 3n]

[Mm CFL]

Set of all odd length palindrome string of Hindi language

Set of all even length palindrome string of all language

Set of all balanced parenthesis

Q

Consider the following languages: $L_1 = \{a^n b^m c^{n+m} : m, n \ge 1\} \longrightarrow CFL$ $L_2 = \{a^n b^n c^{2n} : n \ge 1\} \longrightarrow Nm CFL$

Which one of the following is TRUE?

[2016(Set-2): 2 Marks]

- A Both L₁ and L₂ are context-free.
- B L₁ is context-free while L₂ is not context-free
- C L_2 is context-free while L_1 is not context-free
- Neither L₁ nor L₂ is context-free

Q

Consider the following language over the alphabet $\Sigma = \{a, b, c\}$.

Let
$$L_1 = \{a^n b^n c^m \mid m, n \ge 0\}$$
 and $L_2 = \{a^m b^n c^n \mid m, n \ge 0\}$.

Which of the following are context-free languages?

- I. $L_1 \cup L_2$
- II. $L_1 \cap L_2$

[2017(Set-1): 2 Marks]

- A I only
- B II only
- C I and II
- D Neither I nor II

Let L_1 , L_2 be any two context-free languages and R be any regular language. Then which of the following is/are CORRECT?

- I. $L_1 \cup L_2$ is context-free
- II. \overline{L}_1 is context-free
- III. $L_1 R$ is context-free
- IV. $L_1 \cap L_2$ is context-free

[2017(Set-2): 1 Marks]

- A I, II and IV only
- B I and III only
- C II and IV only
- D I only

Consider the following languages: $L_1 = \{a^p \mid p \text{ is a prime number}\}$ $L_2 = \{a^n b_1^m, c^{2m} | n \ge 0, m \ge 0\} \longrightarrow CFL$ $L_3 = \{a^n b^n c^{2n} | n \ge 0\}$ $L_{A} = \{a^{n} b^{n} \mid n \geq 1\} \longrightarrow CFL & DCFL$ Which of the following are CORRECT? L₁ is context-free but not regular. L₂ is not context-free. III. L₃ is not context-free but recursive. IV. L₄ is deterministic context-free.

[2017(Set-2): 2 Marks]

A I, II and IV only

B II and III only

I and IV only

I and IV only

Suppose that L_1 is a regular language and L_2 is a context-free language. Which one of the following languages is NOT necessarily context-free?

[2021(Set-1): 2 Marks]

$$A \qquad L_1 \cdot L_2$$

$$B \qquad L_1 \cup L_2$$

$$C$$
 $L_1 - L_2$

$$D$$
 $L_1 \cap L_2$

closure properties

Operation	CFL	DCFL
OUnion op		×
(2) Concatenation		X
(3) Complement	X	
(4) Intersection	X	X
6) Kleene clasure		X
(6) Positive clasure		X

	CFL	DCFL
(7) Intersection with Regular		
(8) Difference	*	X
9 d-Regular		
(10) Regular-L	X	
(I) Reversal (LP)		X
(12) Quotient	X	X

	CFL	DCFL
(3) Substitution		×
(14) Homomorphism		X
(B) Inverse Homomorphism		
(16) L V Regular		
(7) Prefix		
(8) Suffix		X
(19) Subset	X	X

2 mins Summary

Topic One

Topic Two

Topic Three

Topic Four

Topic Five

THANK - YOU