

MMF Background

- CAM3 is run with cloud-resolving model (SAM) in place of cumulus parameterization.
 - •2D CRM simulation with 32 4-km horizontal grid spacing.
 - vertical levels in SAM same as those used in CAM3.
- Radiative calculations performed on SAM grid.
 Surface fluxes computed on CAM3 grid.

Basic comparisons - OLR 1998

CAM3

MMF

NOAA

Precipitable Water (mm) - 1998

CAM3

MMF

Cloud Water (kg/kg) - 1998 CAM3

MMF

Vertical Motion (Pa/s) - 1998

CAM3

MMF

ERA40

How do the two simulations produce marine Sc clouds?

Standard CAM

▶ cloud is assumed to be located in the model layer below the strongest stability jump between 750 mb and the surface. If no two layers present a stability in excess of -0.125 K/mb, no cloud is diagnosed (after Klein and Hartmann, 1995).

MMF CAM

SAM is simply given surface and momentum fluxes, and left to its own devices.

MMF fine-scale analysis

- Randomly selected a 5-day period to save hourly fullresolution SAM output
 - ▶ July 1-5, 1998
 - Saved SAM output at 32 columns x 4-km resolution x 28 vertical levels (coincident with CAM3 vertical levels).
- Examine marine Sc clouds, Sc-Cu transition clouds, and deep convective clouds along cross-section.

29N: hourly SAM output

29N: an area-averaged perspective

- •IR cooling coincident with maximum cloud water
- w variance coincident with IR cooling
- all three vary diurnally

29N: what drives sub-cloud turbulence?

26N (transition zone) animation

26N (transition zone): mean diurnal cycle

NIGHT

- -chick, drizgling stratogumatus. shallow, weak cumulus. --driggle filling subcloud.
- --lowest mean cloud

(highness)

--highest mean cloud base

-- highest mean LCL

MORNING

5-drying of cloud laner -warming in strains. layer beneath the inversion. —leo nemerous. increasingly vigorous. committee. -highest mean cloud. thickness and lowest recent along base due to 1

combination of thick

-measurable surface

stratoguerality and does 1

AFTERNOON

-warming through most of the cloud layer. -increasing stability in transition layer. accumulation of water vapor in the subcload. Layer during late. afternoon. -increasing CAPE in the 1 layer, not reaching subpload layer

seith mesespale. organization. charing late afternoon. -largest satface drigste rates of the day.

EVENING

complex.

drivate.

TCZ: Deep convection animation

Summary

- The good news
 - MMF appears to produce reasonable marine
 Sc clouds and cloud behavior despite relatively coarse resolution.
 - Transition zone PBL height variability is properly simulated.
- The bad news
 - MMF shifts ITCZ convection too far north compared to observations.