Intro To Machine Learning – Assignment-3

UB PERSON NUMBER: 50425014
UB IT NAME: PARAVAMU

<u>TASK:</u> The goal of the assignment is to learn the trends in stock price and perform a series of trades over a period and end with a profit. In each trade you can either buy/sell/hold. You will start with an investment capital of \$100,000 and your performance is measured as a percentage of the return on investment.

You will use the Q-Learning algorithm for reinforcement learning to train an agent to learn the trends in stock price and perform a series of trades. You will implement Q-learning algorithm from scratch. The purpose of this assignment is to understand the benefits of using reinforcement learning to solve the real-world problem of stock trading.

STEPS INVOLVED:

1.) <u>IMPORTING NECESSARY LIBRARIES</u>

- □ Importing numpy and pandas for data processing
- ⇒ Importing Gym for developing our environment for the reinforcement problem.
- ⇒ Importing matplotlib to show images
- ⇒ Importing random for randomizing actions

```
[6] 1 # Imports
2 import gym
3 from gym import spaces
4 import math
5 import matplotlib.pyplot as plt
6 import numpy as np
7 import pandas as pd
8 import random
```

2.) IMPORTING THE DATASET

```
stock_trading_environment = StockTradingEnvironment('./NVDA.csv', number_of_days_to_consider=10)
```

- ⇒ The dataset given to our environment is the historical stock price for NVIDIA for the last 5 years
- ⇒ The features include information such as: Date, Open, High, Low, Close, Adj Close, Volume.
- ⇒ We split the data into train and test data
- ⇒ We use the train set for agent training and we use the test set for agent evaluation

3.) STOCK TRADINDG ENVIRONMENT

- Our stock trading environment has three main functions.
- ⇒ They are:
 - o Reset ()
 - Step ()
 - o Render ()

⇒ Reset ()

- o This method resets the environment and returns the initial observation
- There are 4 types of states or Observations ranging from 0 to 3
- Based on the observation vector it returns the observation

```
# Observation vector.
                 observation = [price_increase, price_decrease, 0, 1]
             if np.array_equal(observation, [1, 0, 0, 1]):
113
                observation = 0
114
             if np.array_equal(observation, [1, 0, 1, 0]):
116
                 observation = 1
             if np.array_equal(observation, [0, 1, 0, 1]):
                 observation = 2
             if np.array_equal(observation, [0, 1, 1, 0]):
119
                 observation = 3
120
121
             return observation
```

⇒ Step ()

- The step method takes an action as the input.
- There are three actions for us to consider
- Buy, Sell and Hold
- Based on the action given it returns the next Observation, Reward, If the episode is done or not and some info

```
336 return observation, reward, done, info
337
```

⇒ Render ()

 The render method is a function which uses matplotlib to plot the total account value over time.

```
plt.figure(figsize=(15, 10))
plt.plot(self.total_account_value_list, color='lightseagreen', linewidth=7)
plt.xlabel('Days', fontsize=32)
plt.ylabel('Total Account Value', fontsize=32)
plt.title('Total Account Value over Time', fontsize=38)
plt.grid()
plt.show()
```

4.) **QLEARNING IMPLEMENTATION**

- QLearning learns the underlying value of the possible actions in a particular observation or state.
- ⇒ Its model free unlike other reinforcement algorithms.
- It also takes a discount factor so it can determine the importance of the future reward.

5.) INITIALIZING THE PARAMETERS

⇒ We'll pass the stock trading environment as a parameter, so we can use all the methods provided by the environment

2 Agent = QLearning(stock_trading_environment)

- ⇒ Number of episodes denotes how many epochs the agent should train for.
- ⇒ We'll need the Qtable initialized with zeros so we can use it to fill the rewards and predict our actions.
- ⇒ We'll need all the parameters for making our epsilon decay algorithm.
- ⇒ Also, we'll need two lists to track the reward dynamics and epsilon decay.
- ⇒ We'll need to also initialize the possible actions, so we can later randomly pick an action to feed to our step function.

```
self.environment = environment
#no of epochs it should run for
self.numOfEpisodes = 500

self.numOfEpisodes = 500

#stores the epsilon decay over time
self.exploreProbabilityArray = []

#stores the reward over time
self.rewardsArray = []

#initializing the Qtable with zeros states x actions
self.Qtable = np.zeros([4,3])
self.epsilon = 0.9
self.epsilon = 0.9
self.epsilonMin = 0.00001 # minimum exploration probability
self.epsilonDecay = 0.000005 # exponential decay rate for exploration prob
self.initialState = self.environment.reset()
self.action = [0,1,2]
self.decayStep = 0
self.exploreProbability = 1;
```

6.) TRAINING OUR AGENT

⇒ The training runs the number of episodes given above.

```
42
43 | for episode in range(self.numOfEpisodes):
44
```

⇒ We get the initial state with the help of environment reset function.

```
#gets the initial state from the environment
currentState = self.environment.reset()
```

- ⇒ To denote an episode completion, the step function returns done.
- ⇒ So, till we get a done, we will run one episode.
- ⇒ About the Qtable, the Qtable can be formed with the help of Bellman Equation.

```
#we use belimans equation to form the qtable, with this we can get the actions self.Qtable[currentState,possibleAction] = nextReward + (self.epsilon*np.max(self.Qtable[nextState,: ]))
```

- ⇒ The Qtable will help us predict the actions.
- ⇒ But we don't know what action to start from (The action to be passed to the step function to get our next observation and its corresponding reward).
- ⇒ So we randomize the actions initially with the help of random.choice.
- ⇒ With the help of this we complete every episode and complete our Qtable.
- ⇒ But this is not enough. We are exploring 100% to complete the Qtable and this is not very efficient and not the expected result.
- ⇒ To make this efficient we use the Epsilon decay algorithm.
- ⇒ We make the nextState as the current State and run the algorithm till we get a done from the step function and complete all our episodes.
- ⇒ We append the cumulative reward for each episode also append the epsilon decay change over time.

⇒ The training iterations for few episodes are shown below:

```
[43] 1 Agent.train()
2

Episode Number: 0
Epsilon decay: 0.8959752709752474
Rewards: -2747.9922532831242

Episode Number: 1
Epsilon decay: 0.8919685404212803
Rewards: -2455.783088165446

Episode Number: 2
Epsilon decay: 0.8879797278494629
Rewards: -2506.967828303273

Episode Number: 3
Epsilon decay: 0.8840087531311016
Rewards: -2660.7703487069853

Episode Number: 4
Epsilon decay: 0.8800555364958373
Rewards: -2198.2140107772584

Episode Number: 5
Epsilon decay: 0.8761199985300405
Rewards: -2135.4274699228527
```

7.) EPSILON DECAY ALGORITHM

- ⇒ The epsilon decay algorithm controls two things:
 - How much should the algorithm explore.
 - How much should the algorithm exploit.
- ⇒ Exploitation is possible only if the exploration is done and tracked properly.
- ⇒ The act method contains the epsilon decay algorithm.
- ⇒ It has two choices based on the constraint.

- ⇒ It checks if the probability which slowly decreases over time is greater than randon.rand value (between 0 to 1).
- ⇒ We usually start with 1: which means that we ask the algorithm to explore 100% times.
- ⇒ But this slowly decreases over time and the probability of exploration decreases and we pick the argmax reward from the qtable [nextState row] to get the best possible action.

8.) EVALUATING OUR ALGORITHM

Now that the Qtable is completed, we can pick the best actions, observations and get the maximum total account value over time.

```
def evaluate(self):
    """This method evaluate the trained agent's performance."""
    self.environment.train = False
    #running it over test data
    self.environment.reset()
    for episode in range(1):
        currentState = self.environment.reset()
        done = False
        while not done:
        #picking actions based on qtable
        possibleAction = np.argmax(self.Qtable[currentState,:])
        nextState, nextReward,done,info = self.environment.step(possibleAction)
        currentState = nextState
        #to display the total account value over time
        self.environment.render()
```

⇒ We call the render method to view our results.

9.) PLOTTING OUR RESULTS

⇒ With the help of the plot function, we can visualize the reward dynamics over time

```
plt.figure(figsize=(15, 10))
plt.plot(self.rewardsArray, color='turquoise', linewidth=7)
plt.xlabel('Episodes', fontsize=32)
plt.ylabel('Rewards', fontsize=32)
plt.title('Reward over Episodes', fontsize=38)
plt.gid()
plt.grid()
plt.show()
```


⇒ We also plot the epsilon decay over the episodes

