Question

• For Team 11 we have a=53, b=52 and c=33. r= (11%3)+1= 3

Centroid

Figure/ Area Fi	xi	yi	Ai	xiAi	yiAi
A (Small square)	111	190	2704	300144	513760
B (Quarter Circle)	29.93051	88.93051	2123.716634	63563.93	188863.2
C (Semicircle)	131	14.96526	1061.858317	139103.4	15890.98
D (Triangle)	205.01	105	1170.87	240040.1	122941.4
E (Large square)	121	95	19044	2304324	1809180
F (Cut out Circle)	131	111	-2206.18344	-289010	-244886
Total			23898.26151	2758165	2405749

Centroid of composite figure: $X = \sum (xiAi) / \sum (Ai)$ = 115.4128 $Y = \sum (xiAi) / \sum (Ai)$

 $Y = \sum (yiAi) / \sum (Ai)$ = 100.6663

Centroid

Red star: Centroid of Composite area Coordinates: G(115.4128, 100.6663)

Coordinates: A(111, 190)

Coordinates: B(299.93051, 88.93051)

Coordinates: C(131,14.96526) Coordinates: D(205.01, 105)

Coordinates: E(121,95)

Coordinates: F(131,111)

Moment of Inertia (Area)

Figure/ Area Fi	dxi	dyi	lui	lvi	lxi	lyi
A (Small square)	4.412805	89.33372	609301.33	609301.33	22188608	661955.9
B (Quarter Circle)	85.48229059	11.7357696	401261.48	401261.48	693757.3363	7849171
C (Semicircle)	15.58719	85.70103	50175.96	179363.08	7849171	437352
D (Triangle)	4.333716	4.333716	131907.88	131888.42	153898.1	153878.6
E (Large square)	5.587195	5.666284	30222828	30222828	30834269	30817320
F (Cut out Circle)	15.58719	10.33372	387126.72	387126.72	-622716	-923142
Total (MOI)				61096988	ly= 470	67095

Moment of Inertia (Area)

Resultant Force on Rigid Body

Resultant Force on Rigid Body

Fab=Fb-Fa	Fbc=Fc-Fb	Fcd=Fd-Fc	Fda=Fa-Fd	Resultant
-81.06948544	101.0694854	74.01	-94.01	0
-101.0694854	-73.96525728	90.03474272	85	0

Resultant Moment on Rigid Body about Centroid

	R	F	
	А	vB	
Х	-4.412805151	-81.06948545	
у	89.33371584	-101.0694854	
	ВС		
Х	-85.48229059	101.0694855	
у	-11.7357696	-73.96525725	

	R	F
	CI)
х	15.58719485	74.01000133
У	-85.70102688	90.03474163
	D/	4
X	89.59719485	-94.01
у	4.333715844	85

M_AB	M_BC	M_CD	M_DA	Total moment about centroid
7688.238322	7508.847809	7746.122174	8023.17418874444	30966.38249

The moment about centroid due to the forces is <u>30966.38249 Nm</u>
The body rotates in an anti-clockwise direction due to the forces

Excel Link

All calculations in the above problems have been done with the help of excel.

R and F were also obtained from excel

The cross product of R and F has been calculated separately and then values were entered

The link for excel:

Excel

- We have animated the route: $A \rightarrow C \rightarrow B \rightarrow D \rightarrow A$.
- We have taken extra points A_mid, C_mid where line from A to C touches and leaves the circle, respectively.
- We have also taken B_mid, D_mid where line from B to D touches and leaves the circle, respectively.

Figure of the particle after completing full motion (MATLAB)

Total distance travelled:

 $A \rightarrow A_mid=75.1082$ units

A_mid \rightarrow C_mid= 13.8754 units

C_mid → C=90.0098 units

 $C \rightarrow B = 125.2466 \text{ units}$

B → B_mid=99.7798 units

B_mid → D_mid=10.1753 units

D_mid → D=68.1025 units

 $D \to A=126.7394 \text{ units}$

Total= 610.9754 units

%Total distance

Distance=Dist_AtoA_mid+Dist_A_midtoC_mid+Dist_C_midtoC+Dist_CtoB+....

Dist BtoB mid+Dist B midtoD mid+Dist D midtoD+Dist DtoA;

Motion between these:

A→ A_mid is linear

A_mid→ C_mid is circular

Motion between these:

Motion between these:

Motion between these:

D_mid→ D is linear


```
Editor - C:\Users\angel\OneDrive\Documents\MATLAB\maths\physics\Phy proj\Phy_proj_Anima
  Phy_proj_Animation.m × +
        clc; clear all; clf;
 1 -
 2
      % Let us plot all the figures
 3
       %Shape A: Small square with side 52 units
       %Centroid of A
        Ac=[111 190];
 7 -
        plot(Ac(1), Ac(2), 'b.', 'MarkerSize', 18);
 8 -
        hold on;
        %Shape A plot
        x ofA=[85 85 137 137 85];
11 -
        y ofA=[164 216 216 164 164];
12 -
        plot(x ofA, y ofA, 'b');
        hold on;
13 -
14
        %Shape B: Quarter circle with radius 52
15
16 -
        r B=52;
        Center B circle=[52, 111];
17 -
        angle B= 180:1:270
18 -
19
        %Centroid of B
        Bc=[29.93 88.93];
20 -
21 -
        plot(Bc(1), Bc(2), 'g.', 'MarkerSize', 18);
        hold on;
22 -
        %Shape B plot
23
        x ofB = Center B circle(1)+r B*cosd(angle B) ;
24 -
        y ofB = Center B circle(2)+r B*sind(angle B);
25 -
26 -
        plot(x ofB ,y ofB,'g');
27 -
        plot([0 52], [111 111], 'g');
        plot([52 52], [111 59], 'g');
28 -
29 -
        hold on;
```

```
%Shape C: Semicircle with radius 26
r C=26;
Center C circle=[131,26];
angle C= 180:1:360;
%Centroid of C
Cc=[131 14.96];
plot(Cc(1), Cc(2), 'm.', 'MarkerSize', 18);
hold on;
%Shape C plot
x ofC = Center C circle(1)+r C*cosd(angle C) ;
y ofC = Center C circle(2)+r C*sind(angle C);
plot(x ofC ,y ofC,'m');
plot([105 157], [26 26], 'm');
hold on;
%Shape D: Triangle with base 52 and height 45.03
%Centroid of D
Dc=[205.01 105];
plot(Dc(1), Dc(2), 'r.', 'MarkerSize', 18);
hold on;
%Shape D plot
x ofD=[190 235.03 190 190];
y ofD=[131 105 79 131];
plot(x ofD, y ofD, 'r');
hold on;
```

```
%Shape E: Main square with side 138 units
%Centroid of E
Ec=[121 95];
plot(Ec(1), Ec(2), 'y.', 'MarkerSize', 18);
hold on;
%Shape E plot
x ofE=[52 52 190 190 52];
y ofE=[26 164 164 26 26];
plot(x ofE, y ofE, 'y');
hold on:
%Shape F: Circle cut out with radius 26.5
r F=26.5;
Center F circle=[131,111];
angle F = 0:1:360;
%Centroid of F
Fc=[131 111];
plot(Fc(1), Fc(2), 'c.', 'MarkerSize', 18);
hold on;
%Shape F plot
x ofF = Center F circle(1)+r F*cosd(angle F);
y ofF = Center F circle(2)+r F*sind(angle F);
plot(x ofF ,y ofF, 'c');
hold on:
```

```
%Now let us draw the x and y axis
plot([-10 300] , [0 0] , 'k--');
hold on;
plot([0 0] , [-10 300] , 'k--');
hold on;
axis equal;
%Now we plot centroid G of composite area
Gc=[115.4128,100.6663];
plot(Gc(1), Gc(2),'r*','MarkerSize',12);
hold on;
```

```
%Now we animate the route
 %A-->C-->B-->D-->A
 %for A-->C
 Ac=[111 190];
 A mid=[104.826 115.146];
 C mid=[106.26 101.503];
 Cc=[131 14.96];
\neg for lamda=0:0.05:1
 x=(1-lamda)*Ac+lamda*A mid;
 plot(x(1,1),x(1,2),'b.', 'MarkerSize', 12) % plots one point
 pause (0.05);
 hold on
 axis('equal') % command to take equal distribution of points in X and Y axis
 drawnow
 end
 %Distance A to A mid
 Dist_AtoA_mid=sqrt((((A_mid(1)-Ac(1))^2)+((A_mid(2)-Ac(2))^2)));
```

```
A mid angle=172;
 C mid angle=202;
 AngleAC=C mid angle-A mid angle;
 ThetaArray = linspace((A_mid_angle*pi)/180,(C_mid_angle*pi)/180,180);
 LengthOfThetaArray = length(ThetaArray);
 r F=26.5;
 %For moving outside the circle
☐ for index = 1:1:LengthOfThetaArray
     theta = ThetaArray(index);
     x = Fc(1) + r F*cos(theta);
     y = Fc(2) + r F*sin(theta);
     plot(x, y, 'b.', 'MarkerSize', 12);
     drawnow;
     pause (0);
 end
 %Distance A mid to C mid
 Dist A midtoC mid=r F*((AngleAC*pi)/180);
```

```
for lamda=0:0.05:1
  x=(1-lamda)*C_mid+lamda*Cc;
  plot(x(1,1),x(1,2),'b.', 'MarkerSize', 12) % plots one point
  pause(0.05);
  hold on
  axis('equal') % command to take equal distribution of points in X and Y axis
  drawnow
  end
  %Distance C_mid to C
  Dist_C_midtoC=sqrt((((Cc(1)-C_mid(1))^2)+((Cc(2)-C_mid(2))^2)));
```

```
%for C-->B
 Cc=[131 14.96];
 Bc=[29.93 88.93];
\Box for lamda=0:0.05:1
 x=(1-lamda)*Cc+lamda*Bc;
 plot(x(1,1),x(1,2),'m.', 'MarkerSize', 12) % plots one point
 pause (0.05);
 hold on
 axis('equal') % command to take equal distribution of points in X and Y axis
 drawnow
 end
 %Distance C to B
 Dist CtoB=sqrt((((Bc(1)-Cc(1))^2)+((Bc(2)-Cc(2))^2)));
```

```
%for B-->D
 Bc=[29.93 88.93];
 B mid=[129.613 84.5363];
 D mid=[139.628 85.9438];
 Dc=[205.01 105];
for lamda=0:0.05:1
 x=(1-lamda) *Bc+lamda*B mid;
 plot(x(1,1),x(1,2),'g.', 'MarkerSize', 12) % plots one point
 pause (0.05);
 hold on
 axis('equal') % command to take equal distribution of points in X and Y axis
 drawnow
 end
 %Distance B to B mid
 Dist_BtoB_mid=sqrt((((B_mid(1)-Bc(1))^2)+((B_mid(2)-Bc(2))^2)));
```

```
B mid angle=268;
 D mid angle=290;
 AngleBD=D mid angle-B mid angle;
 ThetaArray = linspace((B_mid_angle*pi)/180,(D_mid_angle*pi)/180,180);
 LengthOfThetaArray = length(ThetaArray);
 r F=26.5;
 %For moving outside the circle
☐ for index = 1:1:LengthOfThetaArray
     theta = ThetaArray(index);
     x = Fc(1) + r F*cos(theta);
     y = Fc(2) + r F*sin(theta);
     plot(x, y, 'g.', 'MarkerSize', 12);
     drawnow;
     pause(0);
 end
 %Distance B mid to D mid
 Dist_B_midtoD_mid=r_F*((AngleBD*pi)/180);
```

```
for lamda=0:0.05:1
    x=(1-lamda)*D_mid+lamda*Dc;
    plot(x(1,1),x(1,2),'g.', 'MarkerSize', 12) % plots one point
    pause(0.05);
    hold on
    axis('equal') % command to take equal distribution of points in X and Y axis
    drawnow
    end
    %Distance D_mid to D
    Dist_D_midtoD=sqrt((((Dc(1)-D_mid(1))^2)+((Dc(2)-D_mid(2))^2)));
```

```
%for D-->A
 Dc=[205.01 105];
 Ac=[111 190];
\exists for lamda=0:0.05:1
 x=(1-lamda)*Dc+lamda*Ac;
 plot(x(1,1),x(1,2),'r.', 'MarkerSize', 12) % plots one point
 pause (0.05);
 hold on
 axis('equal') % command to take equal distribution of points in X and Y axis
 drawnow
 end
 %Distance D to A
 Dist DtoA=sqrt((((Dc(1)-Ac(1))^2)+((Dc(2)-Ac(2))^2));
```