Point Estimation

Yanrong Yang

Research School of Finance, Actuarial Studies and Statistics The Australian National University

April 24, 2017

Content

- Estimation: Point Estimation and Interval Estimation
- 2 How to Judge an Estimator?
- Two Important Estimators
- Summary

Statistical Inference

With the knowledge of statistic, sampling distribution and central limit theorem, what should we do next? Statistical Inference!

- **1** Estimation: Point Estimation and Interval Estimation
- 4 Hypothesis Test

Point Estimator

Let X_1, \ldots, X_n be sampled from a population described by a pdf or pmf $f(x|\theta)$. The parameter θ is unknown. The goal is to find a good estimator for θ .

Definition (Point Estimator)

A point estimator is any function $W(X_1,\ldots,X_n;C)$ of a sample; that is, any statistic a point estimator.

Two jobs in point estimation:

- how to find a point estimator?
- 2 how to evaluate a candidate point estimator?

Example 1

Question: We have a bent coin and are interested in p, the probability of heads coming up on a single toss. How can we estimate p?

Analysis:

- **1** X_i denotes the *i*th toss result, i.e. 1 if head and 0 if tail. $i = 1, \ldots, n$.
- $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i.$

Remark

Some terminology is needed to be attention.

- p: target parameter or estimand;
- 2 \hat{p} : an estimator or a point estimator for p;
- **3** the value of \hat{p} : an estimate or a point estimate.

Criteria to Judge an Estimator

Two important concepts

- **1 Bias**: The bias of an estimator $\hat{\theta}$ of θ is $B\left(\hat{\theta}\right) = \mathbb{E}\left(\hat{\theta}\right) \theta$.
- **Q** Mean Square Error (MSE): The MSE of an estimator $\hat{\theta}$ of θ is $MSE(\hat{\theta}) = \mathbb{E}(\hat{\theta} \theta)^2$.

Remark

Attention to these two criteria from the following points.

- If $B(\hat{\theta}) = 0$, $\hat{\theta}$ is **unbiased** for θ .
- $MSE\left(\hat{\theta}\right) = Var\left(\hat{\theta}\right) + B\left(\hat{\theta}\right)^{2}.$
- Bias is used to assess accuracy while MSE can also measure precision.

Example 2

Question: Two numbers are randomly chosen between 0 and c. They are x=3.6 and y=5.4. Consider the two following estimates of c: $u=x+y=3.6+5.4=9.0,\ v=\max(x,y)=\max(3.6,5.4)=5.4.$ Which estimate should we choose? Why?

Analysis:

- **1** $X, Y \sim i.i.d.U(0, c)$.
- **2** U = X + Y and $V = \max(X, Y)$.
- **3** $\mathbb{E}(U) = \mathbb{E}(X+Y) = c$; $B(U) = \mathbb{E}(U) c = 0$; $MSE(U) = Var(U) = Var(X) + Var(Y) = c^2/6$.
- **○** CDF for V: $F(v) = P(V < v) = P(X < v, Y < v) = P(X < v)P(Y < v) = (v/c)^2$ and then its pdf is $f(v) = F'(v) = 2v/c^2$. So $\mathbb{E}V = \int_0^c v \frac{2v}{c^2} dv = \frac{2c}{3}$, $\mathbb{E}V^2 = \int_0^c v^2 \frac{2v}{c^2} dv = \frac{c^2}{2}$, $B(V) = -\frac{c}{3}$, $MSE(V) = \frac{c^2}{6}$.

Modification for an Estimator

Conclusion: the estimator U is unbiased but has larger MSE than the estimator V.

A modified estimator $W=\frac{3V}{2}$ is unbiased since $\mathbb{E}(V)=\frac{2c}{3}$. For this new estimator W, $MSE(W)=\frac{c^2}{8}$. In view of this, W is a better estimator than V and U.

Assess Two Important Estimators

Unbiased Specific Estimators:

Suppose that $X_1,\ldots,X_n\sim i.i.d.(\mu,\sigma^2)$. Consider the sample mean $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$ and the sample variance $S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\bar{X})^2$. Then $\mathbb{E}(\bar{X})=\mu$ and $\mathbb{E}(S^2)=\sigma^2$.

- $\mathbb{E}\left(S^{2}\right) = \frac{1}{n-1} \sum_{i=1}^{n} \mathbb{E}(X_{i} \bar{X})^{2} = \frac{n}{n-1} \mathbb{E}(X_{1} \bar{X})^{2} = \frac{n}{n-1} \left(Var(X_{1}) + Var(\bar{X}) 2Cov(X_{1}, \bar{X})\right) = \frac{n}{n-1} \left(\sigma^{2} + \frac{\sigma^{2}}{n} 2\frac{\sigma^{2}}{n}\right) = \sigma^{2}.$

Example 3

Question: A bottling machine dispenses volumes independently with mean μ and variance σ^2 . n=3 bottles are randomly sampled from the output of the machine, and their volumes are 1.9, 1.4, 1.8 litres. Find unbiased estimates of μ and σ^2 .

Analysis:

$$2 s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}) = 0.07.$$

Summary

- What is a point estimator?
- 4 How to find a point estimator?
- Mow to evaluate a point estimator? Unbiased, smaller MSE.