

Gmsh Reference Manual

 ${\it The documentation for Gmsh 4.6.0}$ A finite element mesh generator with built-in pre- and post-processing facilities

22 June 2020

Christophe Geuzaine Jean-François Remacle

Short Contents

Obt	taining Gmsh
Cop	ying conditions
1	Overview
2	How to read this reference manual?
3	Running Gmsh on your system
4	General tools
5	Geometry module
6	Mesh module
7	Solver module
8	Post-processing module
9	File formats
Α	Tutorial
В	Options
С	Compiling the source code
D	Gmsh API
\mathbf{E}	Information for developers
F	Frequently asked questions
G	Version history
Η	Copyright and credits
Ι	License
Con	acept index
Syn	tax index

Table of Contents

O	Obtaining Gmsh	1
C	Copying conditions	3
1	Overview	5
	1.1 Geometry: model entity creation. 1.2 Mesh: finite element mesh generation. 1.3 Solver: external solver interface. 1.4 Post-processing: scalar, vector and tensor field visualization. 1.5 What Gmsh is pretty good at . 1.6 and what Gmsh is not so good at . 1.7 Bug reports.	5 6 6 6 7
2	How to read this reference manual?	. 9
	2.1 Syntactic rules used in the manual	9
3	Running Gmsh on your system	11
	3.1 Interactive mode	
	3.2 Non-interactive mode	
	3.3 Command-line options	
	3.4 Mouse actions	
	3.5 Keyboard shortcuts	. 10
4	General tools	2 1
	4.1 Comments	
	4.2 Expressions	
	4.2.1 Floating point expressions	
	4.2.3 Color expressions	
	4.3 Operators	
	4.4 Built-in functions	
	4.5 User-defined macros	
	4.6 Loops and conditionals	
	4.8 General options	
		0.5
5		
	5.1 Geometry commands	
	5.1.1 Points	
	5.1.3 Surfaces	
	5.1.4 Volumes	
	5.1.5 Extrusions	
	5.1.6 Boolean operations	
	5.1.7 Transformations	
	5.1.8 Wiscenaneous. 5.2 Geometry options	

iv Gmsh 4.6.0

6	Mesh module	45
	6.1 Choosing the right unstructured algorithm	45
	6.2 Elementary entities vs. physical groups	
	6.3 Mesh commands	
	6.3.1 Specifying mesh element sizes	47
	6.3.2 Structured grids	63
	6.3.3 Miscellaneous	
	6.4 Mesh options	69
7	Solver module	71
8	Post-processing module	73
	8.1 Post-processing commands	73
	8.2 Post-processing plugins	77
	8.3 Post-processing options	103
9	File formats	. 105
	9.1 MSH file format	
	9.2 Node ordering	
	9.2.1 Low order elements	
	9.2.2 High-order elements	
	9.3 Legacy formats	
	9.3.1 MSH file format version 2 (Legacy)	115
	9.3.2 MSH file format version 1 (Legacy)	120
	9.3.3 POS ASCII file format (Legacy)	
	9.3.4 POS binary file format (Legacy)	124
A	Appendix A Tutorial	. 127
	A.1 t1: Geometry basics, elementary entities, physical groups	127
	A.2 t2: Transformations, extruded geometries, volumes	
	A.3 t3: Extruded meshes, parameters, options	131
	A.4 t4: Built-in functions, holes in surfaces, annotations, entity colors	
	A.5 t5: Characteristic lengths, macros, loops, holes in volumes	
	A.6 t6: Transfinite meshes	
	A.7 t7: Background meshes	
	A.8 t8: Post-processing and animations	
	A.9 t9: Plugins	
	A.10 t10: Mesh size fields	
	A.12 t12: Cross-patch meshing with compounds	
	A.13 t13: Remeshing an STL file without an underlying CAD model	
	A.14 t14: Homology and cohomology computation	
	A.15 t15: Embedded points, lines and surfaces	
	A.16 t16: Constructive Solid Geometry, OpenCASCADE geometry kernel	
	A.17 t17: Anisotropic background mesh	
	A.18 t18: Periodic meshes	
	A.19 t19: Thrusections, fillets, pipes, mesh size from curvature	154
	A.20 t20: STEP import and manipulation, geometry partitioning	
	A.21 t21: Mesh partitioning	
	A.22 x1: Geometry and mesh data	
	A.23 x2: Mesh import, discrete entities, hybrid models, terrain meshing	160

Appe	ndix B	Options	165
B.1	General opt	ions list	165
B.2	_	ptions list	
B.3		as list	
B.4	_	ons list	
B.5	_	sing options list	
Appe	ndix C	Compiling the source code	241
Appe	ndix D	Gmsh API	245
D.1	Namespace	gmsh: top-level functions	246
D.2	Namespace	gmsh/option: option handling functions	248
D.3	Namespace	<pre>gmsh/model: model functions</pre>	249
D.4	Namespace	gmsh/model/mesh: mesh functions	257
D.5	Namespace	<pre>gmsh/model/mesh/field: mesh size field functions</pre>	273
D.6	Namespace	gmsh/model/geo: built-in CAD kernel functions	274
D.7	Namespace	gmsh/model/geo/mesh: built-in CAD kernel meshing constraints	280
D.8	Namespace	gmsh/model/occ: OpenCASCADE CAD kernel functions	282
D.9	-	gmsh/model/occ/mesh: OpenCASCADE CAD kernel meshing cons	
	_	•	
D.10	Namespace	e gmsh/view: post-processing view functions	294
D.11	_	e gmsh/plugin: plugin functions	
D.12	_	e gmsh/graphics: graphics functions	
D.13		e gmsh/fltk: FLTK graphical user interface functions	
D.14		e gmsh/onelab: ONELAB server functions	
D.15	_	e gmsh/logger: information logging functions	
	1		
Appe	ndix E	Information for developers	303
E.1	Source code	structure	303
E.2	Coding style	ee	303
E.3	Adding a ne	ew option	304
Appe	ndix F	Frequently asked questions	305
F.1	The basics.		305
F.2	Installation	problems	305
F.3	General que	stions	305
F.4	Geometry n	nodule	306
F.5		le	
F.6	Solver modu	ıle	309
F.7	Post-process	sing module	310
Appe	ndix G	Version history	313
Appe	ndix H	Copyright and credits	327
Appe	ndix I	License	331
Conc	ept index	ζ	337
Synta	x index .		339

Obtaining Gmsh

Obtaining Gmsh

The source code and various pre-compiled versions of Gmsh (for Windows, Mac and Unix) can be downloaded from https://gmsh.info. Gmsh is also directly available in pre-packaged form in various Linux and BSD distributions (Debian, Ubuntu, FreeBSD, ...).

If you use Gmsh, we would appreciate that you mention it in your work by citing the following paper: "C. Geuzaine and J.-F. Remacle, *Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities.* International Journal for Numerical Methods in Engineering, Volume 79, Issue 11, pages 1309-1331, 2009". A preprint of that paper as well as other references and the latest news about Gmsh development are available on https://gmsh.info.

Copying conditions 3

Copying conditions

Gmsh is "free software"; this means that everyone is free to use it and to redistribute it on a free basis. Gmsh is not in the public domain; it is copyrighted and there are restrictions on its distribution, but these restrictions are designed to permit everything that a good cooperating citizen would want to do. What is not allowed is to try to prevent others from further sharing any version of Gmsh that they might get from you.

Specifically, we want to make sure that you have the right to give away copies of Gmsh, that you receive source code or else can get it if you want it, that you can change Gmsh or use pieces of Gmsh in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of these rights. For example, if you distribute copies of Gmsh, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no warranty for Gmsh. If Gmsh is modified by someone else and passed on, we want their recipients to know that what they have is not what we distributed, so that any problems introduced by others will not reflect on our reputation.

The precise conditions of the license for Gmsh are found in the General Public License that accompanies the source code (see Appendix I [License], page 331). Further information about this license is available from the GNU Project webpage https://www.gnu.org/copyleft/gpl-faq.html. Detailed copyright information can be found in Appendix H [Copyright and credits], page 327.

If you want to integrate parts of Gmsh into a closed-source software, or want to sell a modified closed-source version of Gmsh, you will need to obtain a different license. Please contact us directly for more information.

1 Overview

Gmsh is a three-dimensional finite element mesh generator with a build-in CAD engine and post-processor. Its design goal is to provide a fast, light and user-friendly meshing tool with parametric input and advanced visualization capabilities.

Gmsh is built around four modules: geometry, mesh, solver and post-processing. All geometrical, mesh, solver and post-processing instructions are prescribed either interactively using the graphical user interface (GUI) or in text files using Gmsh's own scripting language. Interactive actions generate language bits in the input files, and vice versa. A programming API is also available, for integrating Gmsh in your own C++, C, Python or Julia code: see Appendix D [Gmsh API], page 245. A brief description of the four modules is given hereafter.

1.1 Geometry: model entity creation

A model in Gmsh is defined using its Boundary Representation (BRep): a volume is bounded by a set of surfaces, a surface is bounded by a series of curves, and a curve is bounded by two end points. Model entities are topological entities, i.e., they only deal with adjacencies in the model, and are implemented as a set of abstract topological classes. This BRep is extended by the definition of embedded, or internal, model entities: internal points, edges and surfaces can be embedded in volumes; and internal points and curves can be embedded in surfaces.

The geometry of model entities can be provided by different CAD kernels. The two default kernels interfaced by Gmsh are the "Built-in" kernel and the "OpenCASCADE" kernel. Gmsh does not translate the geometrical representation from one kernel to another, or from these kernels to some neutral representation. Instead, Gmsh directly queries the native data for each CAD kernel, which avoids data loss and is crucial for complex models where translations invariably introduce issues linked to slightly different representations.

Gmsh's scripting language and the Gmsh API allow to parametrize all model entities. The entities can either be built in a "bottom-up" manner (first points, then curves, surfaces and volumes) or in a "Constructive Solid Geometry" fashion (solids on which boolean operations are performed). Both methodologies can also be combined. Finally, groups of model entities (called "physical groups") can be defined, based on the elementary geometric entities.

1.2 Mesh: finite element mesh generation

A finite element mesh of a model is a tessellation of its geometry by simple geometrical elements of various shapes (in Gmsh: lines, triangles, quadrangles, tetrahedra, prisms, hexahedra and pyramids), arranged in such a way that if two of them intersect, they do so along a face, an edge or a node, and never otherwise. This defines a so-called "conformal" mesh. Gmsh implements several algorithms to generate such meshes automatically. All the meshes produced by Gmsh are considered as "unstructured", even if they were generated in a "structured" way (e.g., by extrusion). This implies that the mesh elements are completely defined simply by an ordered list of their nodes, and that no predefined ordering relation is assumed between any two elements.

In order to guarantee the conformity of the mesh, mesh generation is performed in a bottom-up flow: curves are discretized first; the mesh of the curves is then used to mesh the surfaces; then the mesh of the surfaces is used to mesh the volumes. In this process, the mesh of an entity is only constrained by the mesh of its boundary, unless entities of lower dimensions are explicitly embedded in entities of higher dimension. For example, in three dimensions, the triangles discretizing a surface will be forced to be faces of tetrahedra in the final 3D mesh only if the surface is part of the boundary of a volume, or if that surface has been explicitly embedded in the volume. This automatically ensures the conformity of the mesh when, for example, two volumes share a common surface. Every meshing step is constrained by a "size field" (also called "characteristic length field"), which prescribes the desired size of the elements in the mesh. This

size field can be uniform, specified by values associated with points in the geometry, or defined by general "fields" (for example related to the distance to some boundary, to a arbitrary scalar field defined on another mesh, etc.): see Section 6.3.1 [Specifying mesh element sizes], page 47. For each meshing step, all structured mesh directives are executed first, and serve as additional constraints for the unstructured parts.

1.3 Solver: external solver interface

Gmsh implements a ONELAB (http://onelab.info) server to pilot external solvers (called "clients"). The ONELAB interface allows to call such clients and have them share parameters and modeling information. The implementation is based on a client-server model, with a server-side database and local or remote clients communicating in-memory or through TCP/IP sockets. Contrary to most solver interfaces, the ONELAB server has no a priori knowledge about any specifics (input file format, syntax, ...) of the clients. This is made possible by having any simulation preceded by an analysis phase, during which the clients are asked to upload their parameter set to the server. The issues of completeness and consistency of the parameter sets are completely dealt with on the client side: the role of ONELAB is limited to data centralization, modification and re-dispatching.

Examples on how to interface solvers are available in the source distribution (see utils/solvers). A full-featured solver interfaced in this manner is GetDP (https://getdp.info), a general finite elements solver using mixed finite elements.

Using the Gmsh API, Gmsh can also be embedded directly in your own solver, and ONELAB parameters can be used to interactively drive it. Examples on how to embed Gmsh in your solver, and build a custom graphical user interface to control it, are available in demos/api. See in particular custom_gui.py and custom_gui.cpp.

1.4 Post-processing: scalar, vector and tensor field visualization

Gmsh can load and manipulate multiple post-processing scalar, vector or tensor fields along with the geometry and the mesh. Such fields, together with visualization options, are called "post-processing views" (or simply "views"). Scalar views can be represented by iso-curves, iso-surfaces or color maps, while vector views can be represented by three-dimensional arrows or displacement maps. Post-processing functions include section computation, offset, elevation, boundary and component extraction, color map and range modification, animation, vector graphic output, etc. All the post-processing options can be accessed either interactively, through the input script files or through the API. Various operations on the post-processing data can also be performed through plugins (see Section 8.2 [Post-processing plugins], page 77).

1.5 What Gmsh is pretty good at ...

Here is a tentative list of what Gmsh does best:

- quickly describe simple and/or "repetitive" geometries with the built-in scripting language, thanks to user-defined macros, loops, conditionals and includes (see Section 4.5 [User-defined macros], page 27, Section 4.6 [Loops and conditionals], page 28, and Section 4.7 [General commands], page 29). For more advanced geometries, using the Gmsh API (see Appendix D [Gmsh API], page 245) in the language of your choice (C++, C, Python or Julia) brings even greater flexibility, the only downside being that you need to either compile your code (for C++ and C) or to configure and install an interpreter (Python or Julia) in addition to Gmsh. A binary Software Development Kit (SDK) is distributed on the Gmsh web site to make the process easier;
- parametrize these geometries. Gmsh's scripting language or the Gmsh API enable all commands and command arguments to depend on previous calculations (see Section 4.2 [Expressions], page 21, Section 5.1 [Geometry commands], page 35, and Appendix D [Gmsh

API], page 245). Using the OpenCASCADE geometry kernel, Gmsh gives access to all usual constructive solid geometry operations;

- import geometries from other CAD software in standard exchange formats. Gmsh uses OpenCASCADE to import such files, including label and color information from STEP and IGES files;
- generate 1D, 2D and 3D simplicial (i.e., using line segments, triangles and tetrahedra) finite element meshes (see Chapter 6 [Mesh module], page 45), with fine control over the element size (see Section 6.3.1 [Specifying mesh element sizes], page 47);
- create simple extruded geometries and meshes (see Section 5.1 [Geometry commands], page 35, and Section 6.3 [Mesh commands], page 47), and allow to automatically couple such structured meshes with unstructured ones (using a layer of pyramids in 3D);
- generate high-order (curved) meshes that conform to the CAD model geometry. High-order mesh optimization tools allow to guarantee the validity of such curved meshes;
- interact with external solvers by defining ONELAB parameters, shared between Gmsh and the solvers and easily modifiable in the GUI (see Chapter 7 [Solver module], page 71);
- visualize and export computational results in a great variety of ways. Gmsh can display scalar, vector and tensor datasets, perform various operations on the resulting post-processing views (see Chapter 8 [Post-processing module], page 73), can export plots in many different formats (see Section B.1 [General options list], page 165), and can generate complex animations (see Chapter 4 [General tools], page 21, and Section A.8 [t8], page 140);
- run on low end machines and/or machines with no graphical interface. Gmsh can be compiled with or without the GUI (see Appendix C [Compiling the source code], page 241), and all versions can be used either interactively or directly from the command line (see Chapter 3 [Running Gmsh on your system], page 11);
- configure your preferred options. Gmsh has a large number of configuration options that can be set interactively using the GUI, scattered inside script files, changed through the API, set in per-user configuration files and specified on the command-line (see Chapter 3 [Running Gmsh on your system], page 11 and Appendix B [Options], page 165);
- and do all the above on various platforms (Windows, Mac and Unix), for free (see [Copying conditions], page 3)!

1.6 ... and what Gmsh is not so good at

Here are some known weaknesses of Gmsh:

- Gmsh is not a multi-bloc mesh generator: all meshes produced by Gmsh are conforming in the sense of finite element meshes;
- Gmsh's user interface is only exposing a limited number of the available features, and many aspects of the interface could be enhanced (especially manipulators).
- Your complaints about Gmsh here :-)

If you have the skills and some free time, feel free to join the project: we gladly accept any code contributions (see Appendix E [Information for developers], page 303) to remedy the aforementioned (and all other) shortcomings!

1.7 Bug reports

Please file issues on https://gitlab.onelab.info/gmsh/gmsh/issues. Provide as precise a description of the problem as you can, including sample input files that produce the bug. Don't forget to mention both the version of Gmsh and the version of your operation system (see Section 3.3 [Command-line options], page 12 to see how to get this information).

See Appendix F [Frequently asked questions], page 305, and the bug tracking system to see which problems we already know about.

2 How to read this reference manual?

Gmsh can be used at three levels:

- 1. as a stand-alone application manipulated through its graphical user interface (GUI);
- 2. as a stand-alone script-driven application;
- 3. as a library.

You can skip most of this reference manual if you only want to use Gmsh at the first level (i.e., interactively with the GUI). Just read the next chapter (see Chapter 3 [Running Gmsh on your system], page 11) to learn how to launch Gmsh on your system, then go experiment with the GUI and the tutorial files (see Appendix A [Tutorial], page 127) provided in the distribution. Screencasts that show how to use the GUI are available here: https://gmsh.info/screencasts/.

The aim of the reference manual is to explain everything you need to use Gmsh at the second level, i.e., using the built-in scripting language. A Gmsh script file is an ASCII text file that contains instructions in Gmsh's built-in scripting language. Such a file is interpreted by Gmsh's parser, and can be given any extension (or no extension at all). By convention, Gmsh uses the '.geo' extension for geometry scripts, and the '.pos' extension for parsed post-processing datasets. Once you master the tutorial (read the source files: they are heavily commented!), start reading chapter Chapter 4 [General tools], page 21, then proceed with the next four chapters, which detail the syntax of the geometry, mesh, solver and post-processing scripting commands. You will see that most of the interactive actions in the GUI have a direct equivalent in the scripting language. If you want to use Gmsh as a pre- or post-processor for your own software, you will also want to learn about the non-scripting input/output files that Gmsh can read/write. In addition to Gmsh's native "MSH" file format (see Chapter 9 [File formats], page 105), Gmsh can read/write many standard mesh files, depending on how it was built: check the 'File->Export' menu for a list of available formats.

Finally, to use Gmsh at the third level (i.e., to link the Gmsh library with your own code), you will need to learn the Gmsh Application Programming Interface (API). This API is available in C++, C, Python and Julia, and is fully documented in Appendix D [Gmsh API], page 245.

2.1 Syntactic rules used in the manual

Here are the rules we tried to follow when writing this reference manual. Note that metasyntactic variable definitions stay valid throughout the manual (and not only in the sections where the definitions appear).

- 1. Keywords and literal symbols are printed like this.
- 2. Metasyntactic variables (i.e., text bits that are not part of the syntax, but stand for other text bits) are printed like *this*.
- 3. A colon (:) after a metasyntactic variable separates the variable from its definition.
- 4. Optional rules are enclosed in < > pairs.
- 5. Multiple choices are separated by |.
- 6. Three dots (...) indicate a possible (multiple) repetition of the preceding rule.

3 Running Gmsh on your system

3.1 Interactive mode

To launch Gmsh in interactive mode, just double-click on the Gmsh icon, or type

> gmsh

at your shell prompt in a terminal. This will open the main Gmsh window, with a tree-like menu on the left, a graphic area on the right, and a status bar at the bottom. (You can detach the tree menu using 'Window->Attach/Detach Menu'.)

To open the first tutorial file (see Appendix A [Tutorial], page 127), select the 'File->Open' menu, and choose t1.geo. When using a terminal, you can specify the file name directly on the command line, i.e.:

> gmsh t1.geo

To perform the mesh generation, go to the mesh module (by selecting 'Mesh' in the tree) and choose the dimension ('1D' will mesh all the curves; '2D' will mesh all the surfaces—as well as all the curves if '1D' was not called before; '3D' will mesh all the volumes—and all the surfaces if '2D' was not called before). To save the resulting mesh in the current mesh format click on 'Save', or select the appropriate format and file name with the 'File->Export' menu. The default mesh file name is based on the name of the current active model, with an appended extension depending on the mesh format¹.

To create a new geometry or to modify an existing geometry, select 'Geometry' in the tree. For example, to create a spline, select 'Elementary entities', 'Add', 'New' and 'Spline'. You will then be asked to select a list of points, and to type e to finish the selection (or q to abort it). Once the interactive command is completed, a text string is automatically added at the end of the current script file. You can edit the script file by hand at any time by pressing the 'Edit' button in the 'Geometry' menu and then reloading the model by pressing 'Reload'. For example, it is often faster to define variables and points directly in the script file, and then use the GUI to define the curves, the surfaces and the volumes interactively.

Several files can be loaded simultaneously in Gmsh. When specified on the command line, the first one defines the active model and the others are 'merged' into this model. You can merge such files with the 'File->Merge' menu. For example, to merge the post-processing views contained in the files view1.pos and view5.msh together with the geometry of the first tutorial Section A.1 [t1], page 127, you can type the following command:

> gmsh t1.geo view1.pos view5.msh

In the Post-Processing module (select 'Post-Processing' in the tree), three items will appear, respectively labeled 'A scalar map', 'Nodal scalar map' and 'Element 1 vector'. In this example the views contain several time steps: you can loop through them with the small "remote-control" icons in the status bar. A mouse click on the view name will toggle the visibility of the selected view, while a click on the arrow button on the right will provide access to the view's options.

Note that all the options specified interactively can also be directly specified in the script files. You can save the current options of the current active model with the 'File->Save Model Options'. This will create a new option file with the same filename as the active model, but with an extra '.opt' extension added. The next time you open this model, the associated options will be automatically loaded, too. To save the current options as your default preferences for all future Gmsh sessions, use the 'File->Save Options As Default' menu instead. Finally, you can also save the current options in an arbitrary file by choosing the 'Gmsh options' format in 'File->Export'.

¹ Nearly all the interactive commands have keyboard shortcuts: see Section 3.5 [Keyboard shortcuts], page 16, or select 'Help->Keyboard and Mouse Usage' in the menu. For example, to quickly save a mesh, you can press Ctrl+Shift+s.

For more information about available options (and how to reset them to their default values), see Appendix B [Options], page 165. A full list of options with their current values is also available in the 'Help->Current Options' menu.

3.2 Non-interactive mode

Gmsh can be run non-interactively in 'batch' mode, without GUI². For example, to mesh the first tutorial in batch mode, just type:

```
> gmsh t1.geo -2
```

To mesh the same example, but with the background mesh available in the file bgmesh.pos, type:

```
> gmsh t1.geo -2 -bgm bgmesh.pos
```

For the list of all command-line options, see Section 3.3 [Command-line options], page 12. In particular, any complicated workflow can be written in a .geo file, and this file can be executed as a script using

```
> gmsh script.geo -
```

The script can contain e.g. meshing commands, like Mesh 3;.

3.3 Command-line options

(Related option names, if any, are given between parentheses)

Geometry:

-0 Output model, then exit

-tol value

Set geometrical tolerance (Geometry. Tolerance)

-match Match geometries and meshes

Mesh:

-1, -2, -3

Perform 1D, 2D or 3D mesh generation, then exit

-save Save mesh, then exit

-o file Specify output file name

-format string

Select output mesh format: auto, msh1, msh2, msh22, msh3, msh4, msh40, msh41, msh, unv, vtk, wrl, mail, stl, p3d, mesh, bdf, cgns, med, diff, ir3, inp, ply2, celum, su2, x3d, dat, neu, m, key (Mesh.Format)

-bin Create binary files when possible (Mesh.Binary)

-refine Perform uniform mesh refinement, then exit

-barycentric_refine

Perform barycentric mesh refinement, then exit

-reclassify angle

Reclassify surface mesh, then exit

-reparam angle

Reparametrize surface mesh, then exit

² If you compile Gmsh without the GUI (see Appendix C [Compiling the source code], page 241), this is the only mode you have access to.

-part int Partition after batch mesh generation (Mesh.NbPartitions)

-part_weight [tri,quad,tet,hex,pri,pyr,trih] int

Weight of a triangle/quad/etc. during partitioning (Mesh.Partition[Tri,Quad,...]Weight)

-part_split

Save mesh partitions in separate files (Mesh.PartitionSplitMeshFiles)

-part_[no_]topo

Create the partition topology (Mesh.PartitionCreateTopology)

-part_[no_]ghosts

Create ghost cells (Mesh.PartitionCreateGhostCells)

-part_[no_]physicals

Create physical groups for partitions (Mesh.PartitionCreatePhysicals)

-part_topo_pro

Save the partition topology .pro file (Mesh.PartitionTopologyFile)

-preserve_numbering_msh2

Preserve element numbering in MSH2 format (Mesh.PreserveNumberingMsh2)

-save_all

Save all elements (Mesh.SaveAll)

-save_parametric

Save nodes with their parametric coordinates (Mesh.SaveParametric)

-save_topology

Save model topology (Mesh.SaveTopology)

-algo string

Select mesh algorithm: auto, meshadapt, del2d, front2d, delquad, pack, initial2d, del3d, front3d, mmg3d, hxt, initial3d (Mesh.Algorithm and Mesh.Algorithm3D)

-smooth int

Set number of mesh smoothing steps (Mesh.Smoothing)

-order int

Set mesh order (Mesh.ElementOrder)

-optimize[_netgen]

Optimize quality of tetrahedral elements (Mesh.Optimize[Netgen])

-optimize_threshold

Optimize tetrahedral elements that have a quality less than a threshold (Mesh.OptimizeThreshold)

-optimize_ho

Optimize high order meshes (Mesh.HighOrderOptimize)

-ho_[min,max,nlayers]

 $\begin{array}{ll} High-order & optimization & parameters & (Mesh.HighOrderThreshold[Min,Max], \\ Mesh.HighOrderNumLayers) \end{array}$

-clscale value

Set mesh element size factor (Mesh.CharacteristicLengthFactor)

-clmin value

Set minimum mesh element size (Mesh.CharacteristicLengthMin)

-clmax value

Set maximum mesh element size (Mesh.CharacteristicLengthMax)

-clcurv value

Compute mesh element size from curvature, with given minimum number of elements per 2*pi radians (Mesh.CharacteristicLengthFromCurvature and Mesh.MinimumElementsPerTwoPi)

-aniso max value

Set maximum anisotropy for bamg (Mesh.AnisoMax)

-smooth_ratio value

Set smoothing ration between mesh sizes at nodes of a same edge for bamg (Mesh.SmoothRatio)

-epslc1d value

Set accuracy of evaluation of mesh size field for 1D mesh (Mesh.LcIntegrationPrecision)

-swapangle value

Set the threshold angle (in degrees) between two adjacent faces below which a swap is allowed (Mesh.AllowSwapAngle)

-rand value

Set random perturbation factor (Mesh.RandomFactor)

- -bgm file Load background mesh from file
- -check Perform various consistency checks on mesh

-ignore_periocity

Ignore periodic boundaries (Mesh.IgnorePeriodicity)

Post-processing:

- -link int Select link mode between views (PostProcessing.Link)
- -combine Combine views having identical names into multi-time-step views

Solver:

-listen Always listen to incoming connection requests (Solver.AlwaysListen)

-minterpreter string

Name of Octave interpreter (Solver.OctaveInterpreter)

-pyinterpreter string

Name of Python interpreter (Solver.OctaveInterpreter)

-run Run ONELAB solver(s)

Display:

- -n Hide all meshes and post-processing views on startup (View.Visible, Mesh.[Points,Lines,SurfaceEdges,...])
- -nodb Disable double buffering (General.DoubleBuffer)

-numsubedges

Set num of subdivisions for high order element display (Mesh.NumSubEdges)

-fontsize int

Specify the font size for the GUI (General.FontSize)

-theme string

Specify FLTK GUI theme (General.FltkTheme)

-display string

Specify display (General.Display)

-camera Use camera mode view (General.CameraMode)

-stereo OpenGL quad-buffered stereo rendering (General.Stereo)

-gamepad Use gamepad controller if available

Other:

-, -parse_and_exit

Parse input files, then exit

-new Create new model before merge next file

-merge Merge next files

-open Open next files

-log filename

Log all messages to filename

-a, -g, -m, -s, -p

Start in automatic, geometry, mesh, solver or post-processing mode (General.InitialModule)

-pid Print process id on stdout

-watch pattern

Pattern of files to merge as they become available (General.WatchFilePattern)

-bg file Load background (image or PDF) file (General.BackgroundImageFileName)

-v int Set verbosity level (General. Verbosity)

-nopopup Don't popup dialog windows in scripts (General.NoPopup)

-string "string"

Parse command string at startup

-setnumber name value

Set constant or option number name=value

-setstring name value

Set constant or option string name=value

-option file

Parse option file at startup

-convert files

Convert files into latest binary formats, then exit

-nt int Set number of threads (General.NumThreads)

-cpu Report CPU times for all operations

-version Show version number

-info Show detailed version information

-help Show command line usage

-help_options

Show all options

3.4 Mouse actions

Move Highlight the entity under the mouse pointer and display its properties / Resize a

lasso zoom or a lasso (un)selection

Left button

Rotate / Select an entity / Accept a lasso zoom or a lasso selection

Ctrl+Left button

Start a lasso zoom or a lasso (un)selection

Middle button

Zoom / Unselect an entity / Accept a lasso zoom or a lasso unselection

Ctrl+Middle button

Orthogonalize display

Right button

Pan / Cancel a lasso zoom or a lasso (un)selection / Pop-up menu on post-processing view button

Ctrl+Right button

Reset to default viewpoint

For a 2 button mouse, Middle button = Shift+Left button.

For a 1 button mouse, Middle button = Shift+Left button, Right button = Alt+Left button.

3.5 Keyboard shortcuts

(On Mac Ctrl is replaced by Cmd (the 'Apple key') in the shortcuts below.)

Left arrow

Go to previous time step

Right arrow

Go to next time step

Up arrow Make previous view visible

Down arrow

Make next view visible

O Reload geometry

Ctrl+0 or 9

Reload full project

1 or F1 Mesh lines

2 or F2 Mesh surfaces

3 or F3 Mesh volumes

Escape Cancel lasso zoom/selection, toggle mouse selection ON/OFF

e End/accept selection in geometry creation mode

g Go to geometry module

m Go to mesh module

p Go to post-processing module

q Abort selection in geometry creation mode

s	Go to solver module
X	Toogle x coordinate freeze in geometry creation mode
У	Toogle y coordinate freeze in geometry creation mode
z	Toogle z coordinate freeze in geometry creation mode
Shift+a	Bring all windows to front
Shift+g	Show geometry options
Shift+m	Show mesh options
Shift+o	Show general options
Shift+p	Show post-processing options
Shift+s	Show solver options
Shift+u	Show post-processing view plugins
Shift+w	Show post-processing view options
Shift+x	Move only along x coordinate in geometry creation mode
Shift+y	Move only along y coordinate in geometry creation mode
Shift+z	Move only along z coordinate in geometry creation mode
Shift+Esca	-
	Enable full mouse selection
Ctrl+d	Attach/detach menu
Ctrl+e	Export project
Ctrl+f	Enter full screen
Ctrl+i	Show statistics window
Ctrl+j	Save model options
Ctrl+l	Show message console
Ctrl+m	Minimize window
Ctrl+n	Create new project file
Ctrl+o	Open project file
Ctrl+q	Quit
Ctrl+r	Rename project file
Ctrl+s	Save mesh in default format
Shift+Ctrl	l+c Show clipping plane window
Shift+Ctrl	l+h Show current options and workspace window
Shift+Ctrl	l+j Save options as default

Shift+Ctrl+m

Show manipulator window

Shift+Ctrl+n Show option window Shift+Ctrl+o Merge file(s) Shift+Ctrl+u Show plugin window Shift+Ctrl+v Show visibility window Alt+a Loop through axes modes Hide/show bounding boxes Alt+b Loop through predefined color schemes Alt+cAlt+e Hide/Show element outlines for visible post-pro views Change redraw mode (fast/full) Alt+f Alt+h Hide/show all post-processing views Hide/show all post-processing view scales Alt+i Alt+l Hide/show geometry lines Toggle visibility of all mesh entities Alt+m Hide/show all post-processing view annotations Alt+n Change projection mode (orthographic/perspective) Alt+o Alt+p Hide/show geometry points Alt+r Loop through range modes for visible post-pro views Alt+s Hide/show geometry surfaces Loop through interval modes for visible post-pro views Alt+t Alt+v Hide/show geometry volumes Enable/disable all lighting Alt+w Set X view Alt+xAlt+y Set Y view Alt+z Set Z view Alt+Shift+a Hide/show small axes Alt+Shift+b Hide/show mesh volume faces Alt+Shift+c Loop through predefined colormaps Alt+Shift+d Hide/show mesh surface faces Alt+Shift+l Hide/show mesh lines Alt+Shift+p

Hide/show mesh points

Alt+Shift+s

Hide/show mesh surface edges

Alt+Shift+t

Same as Alt+t, but with numeric mode included

Alt+Shift+v

Hide/show mesh volume edges

Alt+Shift+x

Set -X view

Alt+Shift+y

Set -Y view

Alt+Shift+z

Set -Z view

4 General tools

This chapter describes the general commands and options that can be used in Gmsh's script files. By "general", we mean "not specifically related to one of the geometry, mesh, solver or post-processing modules". Commands peculiar to these modules will be introduced in Chapter 5 [Geometry module], page 35, Chapter 6 [Mesh module], page 45, Chapter 7 [Solver module], page 71, and Chapter 8 [Post-processing module], page 73, respectively.

If you plan to use Gmsh through its API (see Appendix D [Gmsh API], page 245) instead of the built-in scripting language, you can skip this chapter entirely.

4.1 Comments

Gmsh script files support both C and C++ style comments:

- 1. any text comprised between /* and */ pairs is ignored;
- 2. the rest of a line after a double slash // is ignored.

These commands won't have the described effects inside double quotes or inside keywords. Also note that 'white space' (spaces, tabs, new line characters) is ignored inside all expressions.

4.2 Expressions

The two constant types used in Gmsh scripts are *real* and *string* (there is no integer type). These types have the same meaning and syntax as in the C or C++ programming languages.

4.2.1 Floating point expressions

Floating point expressions (or, more simply, "expressions") are denoted by the metasyntactic variable expression (remember the definition of the syntactic rules in Section 2.1 [Syntactic rules], page 9), and are evaluated during the parsing of the script file:

```
expression:
 real |
 string |
 string ~ { expression }
 string [ expression ] |
 # string [ ] |
  ( expression ) |
  operator-unary-left expression |
  expression operator-unary-right |
  expression operator-binary expression |
  expression operator-ternary-left expression
    operator-ternary-right expression |
 built-in-function |
 real-option |
 Find(expression-list-item, expression-list-item) |
 StrFind(char-expression, char-expression) |
 StrCmp(char-expression, char-expression) |
 StrLen(char-expression) |
 TextAttributes(char-expression<, char-expression...>) |
 Exists(string) | Exists(string~{ expression }) |
 FileExists(char-expression) |
 StringToName(char-expression) | S2N(char-expression) |
 GetNumber(char-expression <,expression>) |
 GetValue("string", expression) |
```

DefineNumber(expression, onelab-options)

Such expressions are used in most of Gmsh's scripting commands. When "{expression} is appended to a string string, the result is a new string formed by the concatenation of string, _ (an underscore) and the value of the expression. This is most useful in loops (see Section 4.6 [Loops and conditionals], page 28), where it permits to define unique strings automatically. For example,

```
For i In {1:3}
    x~{i} = i;
EndFor
is the same as
    x_1 = 1;
    x_2 = 2;
    x 3 = 3:
```

The brackets [] permit to extract one item from a list (parentheses can also be used instead of brackets). The # permits to get the size of a list. The operators operator-unary-left, operatorunary-right, operator-binary, operator-ternary-left and operator-ternary-right are defined in Section 4.3 [Operators], page 25. For the definition of built-in-functions, see Section 4.4 [Built-in functions], page 26. The various real-options are listed in Appendix B [Options], page 165. Find searches for occurrences of the first expression in the second (both of which can be lists). StrFind searches the first char-expression for any occurrence of the second char-expression. StrCmp compares the two strings (returns an integer greater than, equal to, or less than 0, according as the first string is greater than, equal to, or less than the second string). StrLen returns the length of the string. TextAttributes creates attributes for text strings. Exists checks if a variable with the given name exists (i.e., has been defined previously), and FileExists checks if the file with the given name exists. StringToName creates a name from the provided string. GetNumber allows to get the value of a ONELAB variable (the optional second argument is the default value returned if the variable does not exist). GetValue allows to ask the user for a value interactively (the second argument is the value returned in non-interactive mode). For example, inserting GetValue("Value of parameter alpha?", 5.76) in an input file will query the user for the value of a certain parameter alpha, assuming the default value is 5.76. If the option General. NoPopup is set (see Section B.1 [General options list], page 165), no question is asked and the default value is automatically used.

DefineNumber allows to define a ONELAB variable in-line. The expression given as the first argument is the default value; this is followed by the various ONELAB options. See the ONELAB tutorial wiki for more information.

List of expressions are also widely used, and are defined as:

```
expression-list:
    expression-list-item <, expression-list-item> ...
with

expression-list-item:
    expression |
    expression : expression |
    expression : expression |
    string [] | string () |
    List [ string ] |
    List [ expression-list-item ] |
    List [ { expression-list-item ] |
    Abs [ expression-list-item ] |
    ListFromFile [ expression-char ] |
```

```
LinSpace[ expression, expression, expression ] |
LogSpace[ expression, expression, expression ] |
string [ { expression-list } ] |
Point { expression } |
transform |
extrude |
boolean |
Point|Curve|Surface|Volume In BoundingBox { expression-list } |
BoundingBox Point|Curve|Surface|Volume { expression-list } |
Mass Curve|Surface|Volume { expression } |
CenterOfMass Curve|Surface|Volume { expression } |
Point { expression } |
Physical Point|Curve|Surface|Volume { expression-list } |
Physical> Point|Curve|Surface|Volume { expression-list } |
```

The second case in this last definition permits to create a list containing the range of numbers comprised between two expressions, with a unit incrementation step. The third case also permits to create a list containing the range of numbers comprised between two expressions, but with a positive or negative incrementation step equal to the third expression. The fourth, fifth and sixth cases permit to reference an expression list (parentheses can also be used instead of brackets). Unique sorts the entries in the list and removes all duplicates. Abs takes the absolute value of all entries in the list. ListFromFile reads a list of numbers from a file. LinSpace and LogSpace construct lists using linear or logarithmic spacing. The next two cases permit to reference an expression sublist (whose elements are those corresponding to the indices provided by the expression-list). The next cases permit to retrieve the indices of entities created through geometrical transformations, extrusions and boolean operations (see Section 5.1.7 [Transformations], page 41, Section 5.1.5 [Extrusions], page 39 and Section 5.1.6 [Boolean operations], page 41).

The next two cases allow to retrieve entities in a given bounding box, or get the bounding box of a given entity. The last five cases permit to retrieve the mass or the center of mass of an entity, the coordinates of a given geometry point (see Section 5.1.1 [Points], page 35), the elementary entities making up physical groups, and the tags of all (physical or elementary) points, curves, surfaces or volumes in the model. These operations all trigger a synchronization of the CAD model with the internal Gmsh model.

To see the practical use of such expressions, have a look at the first couple of examples in Appendix A [Tutorial], page 127. Note that, in order to lighten the syntax, you can omit the braces {} enclosing an expression-list if this expression-list only contains a single item. Also note that a braced expression-list can be preceded by a minus sign in order to change the sign of all the expression-list-items.

For some commands it makes sense to specify all the possible expressions in a list. This is achieved with expression-list-or-all, defined as:

```
expression-list-or-all:
  expression-list | :
```

The meaning of "all" (:) depends on context. For example, Curve { : } will get the ids of all the existing curves in the model, while Surface { : } will get the ids of all existing surfaces.

4.2.2 Character expressions

Character expressions are defined as:

```
char-expression:
  "string" |
  string | string[ expression ] |
```

```
Today | OnelabAction | GmshExecutableName |
CurrentDirectory | CurrentDir | CurrentFileName
StrPrefix ( char-expression ) |
StrRelative ( char-expression ) |
StrCat ( char-expression <,...> ) |
Str ( char-expression <,...> ) |
StrChoice ( expression, char-expression, char-expression ) |
StrSub( char-expression, expression, expression ) |
StrSub( char-expression, expression ) |
UpperCase ( char-expression ) |
AbsolutePath ( char-expression ) |
DirName ( char-expression ) |
Sprintf ( char-expression , expression-list ) |
Sprintf (char-expression)
Sprintf ( char-option ) |
GetEnv ( char-expression ) |
GetString ( char-expression <, char-expression>) |
GetStringValue ( char-expression , char-expression ) |
StrReplace ( char-expression , char-expression , char-expression )
NameToString ( string ) | N2S ( string ) |
<Physical> Point|Curve|Surface|Volume { expression } |
DefineString(char-expression, onelab-options)
```

Today returns the current date. OnelabAction returns the current ONELAB action (e.g. check or compute). GmshExecutableName returns the full path of the Gmsh executable. CurrentDirectory (or CurrentDir) and CurrentFileName return the directory and file name of the script being parsed. StrPrefix and StrRelative take the prefix (e.g. to remove the extension) or the relative path of a given file name. StrCat and Str concatenate character expressions (Str adds a newline character after each string except the last). StrChoice returns the first or second char-expression depending on the value of expression. StrSub returns the portion of the string that starts at the character position given by the first expression and spans the number of characters given by the second expression or until the end of the string (whichever comes first; or always if the second expression is not provided). UpperCase converts the charexpression to upper case. AbsolutePath returns the absolute path of a file. DirName returns the directory of a file. Sprintf is equivalent to the sprintf C function (where char-expression is a format string that can contain floating point formatting characters: %e, %g, etc.) The various char-options are listed in Appendix B [Options], page 165. GetEnvThe gets the value of an environment variable from the operating system. GetString allows to get a ONELAB string value (the second optional argument is the default value returned if the variable does not exist). GetStringValue asks the user for a value interactively (the second argument is the value used in non-interactive mode). StrReplace's arguments are: input string, old substring, new substring (brackets can be used instead of parentheses in Str and Sprintf). Physical Point, etc., or Point, etc., retrieve the name of the physical or elementary entity, if any. NameToString converts a variable name into a string.

DefineString allows to define a ONELAB variable in-line. The *char-expression* given as the first argument is the default value; this is followed by the various ONELAB options. See the ONELAB tutorial wiki for more information.

Character expressions are mostly used to specify non-numeric options and input/output file names. See Section A.8 [t8], page 140, for an interesting usage of *char-expressions* in an animation script.

List of character expressions are defined as:

```
char-expression-list:
```

```
char-expression <,...>
```

4.2.3 Color expressions

Colors expressions are hybrids between fixed-length braced expression-lists and strings:

```
color-expression:
  char-expression |
  { expression, expression, expression } |
  { expression, expression, expression, expression } |
  color-option
```

The first case permits to use the X Windows names to refer to colors, e.g., Red, SpringGreen, LavenderBlush3, . . . (see Common/Colors.h in the source code for a complete list). The second case permits to define colors by using three expressions to specify their red, green and blue components (with values comprised between 0 and 255). The third case permits to define colors by using their red, green and blue color components as well as their alpha channel. The last case permits to use the value of a color-option as a color-expression. The various color-options are listed in Appendix B [Options], page 165.

See Section A.3 [t3], page 131, for an example of the use of color expressions.

4.3 Operators

Gmsh's operators are similar to the corresponding operators in \mathcal{C} and $\mathcal{C}++$. Here is the list of the unary, binary and ternary operators currently implemented.

operator-unary-left:

```
Unary minus.
Logical not.
operator-unary-right:
++ Post-incrementation.
-- Post-decrementation.
operator-binary:
Exponentiation.
* Multiplication.
/ Division.
% Modulo.
```

Addition.

Subtraction.

== Equality.

!= Inequality.

> Greater.

>= Greater or equality.

< Less.

<= Less or equality.

&& Logical 'and'.

 $Gmsh \ 4.6.0$

Logical 'or'. (Warning: the logical 'or' always implies the evaluation of both arguments. That is, unlike in C or C++, the second operand of | | is evaluated even if the first one is true).

operator-ternary-left:

7

operator-ternary-right:

The only ternary operator, formed by operator-ternary-left and operator-ternary-right, returns the value of its second argument if the first argument is non-zero; otherwise it returns the value of its third argument.

The evaluation priorities are summarized below¹ (from stronger to weaker, i.e., * has a highest evaluation priority than +). Parentheses () may be used anywhere to change the order of evaluation:

```
1. (), [], ., #
2. ^
3. !, ++, --, - (unary)
4. *, /, %
5. +, -
6. <, >, <=, >=
7. ==, !=
8. &&
9. ||
10. ?:
11. =, +=, -=, *=, /=
```

4.4 Built-in functions

A built-in function is composed of an identifier followed by a pair of parentheses containing an expression-list, the list of its arguments. This list of arguments can also be provided in between brackets, instead of parentheses. Here is the list of the built-in functions currently implemented: build-in-function:

```
Accosine (inverse cosine) of an expression in [-1,1]. Returns a value in [0,Pi].

Asin (expression)
Arc sine (inverse sine) of an expression in [-1,1]. Returns a value in [-Pi/2,Pi/2].

Atan (expression)
Arc tangent (inverse tangent) of expression. Returns a value in [-Pi/2,Pi/2].

Atan2 (expression, expression)
Arc tangent (inverse tangent) of the first expression divided by the second. Returns a value in [-Pi,Pi].

Ceil (expression)
Rounds expression up to the nearest integer.

Cos (expression)
Cosine of expression.
```

¹ The affectation operators are introduced in Section 4.7 [General commands], page 29.

```
Cosh ( expression )
           Hyperbolic cosine of expression.
Exp ( expression )
           Returns the value of e (the base of natural logarithms) raised to the power of ex-
           pression.
Fabs (expression)
           Absolute value of expression.
Fmod (expression, expression)
           Remainder of the division of the first expression by the second, with the sign of the
           first.
Floor (expression)
           Rounds expression down to the nearest integer.
Hypot ( expression, expression )
           Returns the square root of the sum of the square of its two arguments.
Log (expression)
           Natural logarithm of expression (expression > 0).
Log10 (expression)
           Base 10 logarithm of expression (expression > 0).
Max (expression, expression)
           Maximum of the two arguments.
Min (expression, expression)
           Minimum of the two arguments.
Modulo (expression, expression)
           see Fmod( expression, expression ).
Rand (expression)
           Random number between zero and expression.
Round (expression)
           Rounds expression to the nearest integer.
Sqrt ( expression )
           Square root of expression (expression \geq 0).
Sin (expression)
           Sine of expression.
Sinh (expression)
           Hyperbolic sine of expression.
Tan (expression)
           Tangent of expression.
Tanh ( expression )
           Hyperbolic tangent of expression.
```

4.5 User-defined macros

User-defined macros take no arguments, and are evaluated as if a file containing the macro body was included at the location of the Call statement.

Macro string | char-expression

Begins the declaration of a user-defined macro named *string*. The body of the macro starts on the line after 'Macro *string*', and can contain any Gmsh command. A synonym for Macro is Function.

Return Ends the body of the current user-defined macro. Macro declarations cannot be imbricated.

Call string | char-expression ;

Executes the body of a (previously defined) macro named string.

See Section A.5 [t5], page 135, for an example of a user-defined macro. A shortcoming of Gmsh's scripting language is that all variables are "public". Variables defined inside the body of a macro will thus be available outside, too!

4.6 Loops and conditionals

Loops and conditionals are defined as follows, and can be imbricated:

For (expression : expression)

Iterates from the value of the first expression to the value of the second expression, with a unit incrementation step. At each iteration, the commands comprised between 'For (expression : expression)' and the matching EndFor are executed.

For (expression: expression: expression)

Iterates from the value of the first expression to the value of the second expression, with a positive or negative incrementation step equal to the third expression. At each iteration, the commands comprised between 'For (expression: expression: expression)' and the matching EndFor are executed.

For string In { expression : expression }

Iterates from the value of the first expression to the value of the second expression, with a unit incrementation step. At each iteration, the value of the iterate is affected to an expression named string, and the commands comprised between 'For string In { expression : expression }' and the matching EndFor are executed.

For string In { expression : expression : expression }

Iterates from the value of the first expression to the value of the second expression, with a positive or negative incrementation step equal to the third expression. At each iteration, the value of the iterate is affected to an expression named string, and the commands comprised between 'For string In { expression : expression : expression }' and the matching EndFor are executed.

EndFor Ends a matching For command.

If (expression)

The body enclosed between 'If (expression)' and the matching ElseIf, Else or EndIf, is evaluated if expression is non-zero.

ElseIf (expression)

The body enclosed between 'ElseIf (expression)' and the next matching ElseIf, Else or EndIf, is evaluated if expression is non-zero and none of the expression of the previous matching codes If and ElseIf were non-zero.

Else The body enclosed between Else and the matching EndIf is evaluated if none of the expression of the previous matching codes If and ElseIf were non-zero.

EndIf Ends a matching If command.

See Section A.5 [t5], page 135, for an example of For and If commands. Gmsh does not provide any Else (or similar) command at the time of this writing.

4.7 General commands

The following commands can be used anywhere in a Gmsh script:

string = expression;

Creates a new expression identifier *string*, or affects *expression* to an existing expression identifier. The following expression identifiers are predefined (hardcoded in Gmsh's parser):

Pi Returns 3.1415926535897932.

GMSH_MAJOR_VERSION

Returns Gmsh's major version number.

GMSH MINOR VERSION

Returns Gmsh's minor version number.

GMSH_PATCH_VERSION

Returns Gmsh's patch version number.

MPI_Size Returns the number of processors on which Gmsh is running. It is always 1, except if you compiled Gmsh with ENABLE_MPI (see Appendix C [Compiling the source code], page 241).

MPI_Rank Returns the rank of the current processor.

Cpu Returns the current CPU time (in seconds).

Memory Returns the current memory usage (in Mb).

TotalMemory

Returns the total memory available (in Mb).

newp Returns the next available point tag. As explained in Chapter 5 [Geometry module], page 35, a unique tag must be associated with every geometrical point: newp permits to know the highest tag already attributed (plus one). This is mostly useful when writing user-defined macros (see Section 4.5 [User-defined macros], page 27) or general geometric primitives, when one does not know a priori which tags are already attributed, and which ones are still available.

newl Returns the next available curve tag.

news Returns the next available surface tag.

newv Returns the next available volume tag.

newll Returns the next available curve loop tag.

newsl Returns the next available surface loop tag.

newreg Returns the next available region tag. That is, newreg returns the maximum of newp, newl, news, newv, newll, newsl and all physical group tags².

string = { };

Creates a new expression list identifier string with an empty list.

string[] = { expression-list };

Creates a new expression list identifier *string* with the list *expression-list*, or affects *expression-list* to an existing expression list identifier. Parentheses are also allowed

² For compatibility purposes, the behavior of newl, news, newv and newreg can be modified with the Geometry.OldNewReg option (see Section B.2 [Geometry options list], page 192).

instead of square brackets; although not recommended, brackets and parentheses can also be completely ommitted.

string [{ expression-list }] = { expression-list };

Affects each item in the right hand side expression-list to the elements (indexed by the left hand side expression-list) of an existing expression list identifier. The two expression-lists must contain the same number of items. Parentheses can also be used instead of brackets.

string += expression;

Adds and affects expression to an existing expression identifier.

string -= expression;

Subtracts and affects expression to an existing expression identifier.

string *= expression;

Multiplies and affects expression to an existing expression identifier.

string /= expression;

Divides and affects expression to an existing expression identifier.

string += { expression-list };

Appends expression-list to an existing expression list or creates a new expression list with expression-list.

string -= { expression-list };

Removes the items in expression-list from the existing expression list.

string [{ expression-list }] += { expression-list };

Adds and affects, item per item, the right hand side expression-list to an existing expression list identifier. Parentheses can also be used instead of brackets.

string [{ expression-list }] -= { expression-list };

Subtracts and affects, item per item, the right hand side expression-list to an existing expression list identifier. Parentheses can also be used instead of brackets.

string [{ expression-list }] *= { expression-list };

Multiplies and affects, item per item, the right hand side expression-list to an existing expression list identifier. Parentheses can also be used instead of brackets.

string [{ expression-list }] /= { expression-list };

Divides and affects, item per item, the right hand side expression-list to an existing expression list identifier. Parentheses can also be used instead of brackets.

string = char-expression;

Creates a new character expression identifier string with a given char-expression.

string[] = Str(char-expression-list);

Creates a new character expression list identifier *string* with a given *charexpression-list*. Parentheses can also be used instead of brackets.

string[] += Str(char-expression-list);

Appends a character expression list to an existing list. Parentheses can also be used instead of brackets.

DefineConstant[string = expression | char-expression <, ...>];

Creates a new expression identifier *string*, with value *expression*, only if has not been defined before.

DefineConstant[string = { expression | char-expression, onelab-options } <, ...>];
Same as the previous case, except that the variable is also exchanged with the ONELAB database if it has not been defined before. See the ONELAB tutorial wiki for more information.

SetNumber(char-expression , expression);

Sets the value a numeric ONELAB variable char-expression.

SetString(char-expression , char-expression);

Sets the value a string ONELAB variable char-expression.

real-option = expression;

Affects expression to a real option.

char-option = char-expression;

Affects char-expression to a character option.

color-option = color-expression;

Affects color-expression to a color option.

real-option += expression;

Adds and affects expression to a real option.

real-option -= expression;

Subtracts and affects expression to a real option.

real-option *= expression;

Multiplies and affects expression to a real option.

real-option /= expression;

Divides and affects expression to a real option.

Abort; Aborts the current script.

Exit; Exits Gmsh.

CreateDir char-expression;

Create the directory char-expression.

Printf (char-expression <, expression-list>);

Prints a character expression in the information window and/or on the terminal. Printf is equivalent to the printf C function: char-expression is a format string that can contain formatting characters (%f, %e, etc.). Note that all expressions are evaluated as floating point values in Gmsh (see Section 4.2 [Expressions], page 21), so that only valid floating point formatting characters make sense in char-expression. See Section A.5 [t5], page 135, for an example of the use of Printf.

Printf (char-expression , expression-list) > char-expression;

Same as Printf above, but output the expression in a file.

Printf (char-expression , expression-list) >> char-expression;

Same as Printf above, but appends the expression at the end of the file.

Warning|Error (char-expression <, expression-list>);

Same as Printf, but raises a warning or an error.

Merge char-expression;

Merges a file named *char-expression*. This command is equivalent to the 'File>Merge' menu in the GUI. If the path in *char-expression* is not absolute, *char-expression* is appended to the path of the current file. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

ShapeFromFile(char-expression);

Merges a BREP, STEP or IGES file and returns the tags of the highest-dimensional entities. Only available with the OpenCASCADE geometry kernel.

Draw; Redraws the scene.

SetChanged;

Force the mesh and post-processing vertex arrays to be regenerated. Useful e.g. for creating animations with changing clipping planes, etc.

BoundingBox;

Recomputes the bounding box of the scene (which is normally computed only after new model entities are added or after files are included or merged). The bounding box is computed as follows:

- 1. If there is a mesh (i.e., at least one mesh node), the bounding box is taken as the box enclosing all the mesh nodes;
- 2. If there is no mesh but there is a geometry (i.e., at least one geometrical point), the bounding box is taken as the box enclosing all the geometrical points;
- 3. If there is no mesh and no geometry, but there are some post-processing views, the bounding box is taken as the box enclosing all the primitives in the views.

This operation triggers a synchronization of the CAD model with the internal Gmsh model.

BoundingBox { expression, expression, expression, expression, expression, expression };

Forces the bounding box of the scene to the given expressions (X min, X max, Y min, Y max, Z min, Z max).

Delete Model;

Deletes the current model (all model entities and their associated meshes).

Delete Physicals;

Deletes all physical groups.

Delete Variables;

Deletes all the expressions.

Delete Options;

Deletes the current options and revert to the default values.

Delete string;

Deletes the expression *string*.

Print char-expression;

Prints the graphic window in a file named *char-expression*, using the current Print.Format (see Section B.1 [General options list], page 165). If the path in *char-expression* is not absolute, *char-expression* is appended to the path of the current file. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Sleep expression;

Suspends the execution of Gmsh during expression seconds.

SystemCall char-expression;

Executes a (blocking) system call.

NonBlockingSystemCall char-expression;

Executes a (non-blocking) system call.

OnelabRun (char-expression <, char-expression >)

Runs a ONELAB client (first argument is the client name, second optional arguement is the command line).

SetName char-expression;

Changes the name of the current model.

SetFactory(char-expression);

Changes the current geometry kernel (i.e. determines the CAD kernel that is used for all subsequent geometrical commands). Currently available kernels: "Built-in" and "OpenCASCADE".

SyncModel;

Forces an immediate transfer from the old geometrical database into the new one (this transfer normally occurs right after a file is read).

NewModel:

Creates a new current model.

Include char-expression;

Includes the file named *char-expression* at the current position in the input file. The include command should be given on a line of its own. If the path in *char-expression* is not absolute, *char-expression* is appended to the path of the current file.

4.8 General options

The list of all the general char-options, real-options and color-options (in that order—check the default values to see the actual types) is given in Section B.1 [General options list], page 165. Most of these options are accessible in the GUI, but not all of them. When running Gmsh interactively, changing an option in the script file will modify the option in the GUI in real time. This permits for example to resize the graphical window in a script, or to interact with animations in the script and in the GUI at the same time.

5 Geometry module

Geometries can be constructed in Gmsh using different underlying CAD kernels. Selecting the CAD kernel in .geo files is done with the SetFactory command. In the Gmsh API, the kernel appears explicitly in all the relevant functions from the gmsh/model namespace, with geo or occ prefixes for the built-in and OpenCASCADE kernel, respectively.

The built-in CAD kernel (SetFactory("Built-in")) provides a simple CAD engine based on a bottom-up boundary representation approach: you need to first define points (using the Point command: see below), then curves (using Line, Circle, Spline, . . . , commands or by extruding points), then surfaces (using for example the Plane Surface or Surface commands, or by extruding curves), and finally volumes (using the Volume command or by extruding surfaces). The OpenCASCADE kernel (SetFactory("OpenCASCADE")) allows to build models in the same bottom-up manner, or by using a constructive solid geometry approach where solids are defined first. Boolean operations can then be performed to modify them.

These geometrical model entities are also referred to as "elementary entities" in Gmsh, and are assigned tags (strictly positive global identification numbers) when they are created:

- 1. each point must possess a unique tag;
- 2. each curve must possess a unique tag;
- 3. each surface must possess a unique tag;
- 4. each volume must possess a unique tag.

Elementary entities can then be manipulated in various ways, for example using the Translate, Rotate, Scale or Symmetry commands. They can be deleted with the Delete command, provided that no higher-dimension entity references them. Zero or negative tags are reserved by the system for special uses: do not use them in your scripts.

Groups of elementary entities can also be defined and are called "physical" groups. These physical groups cannot be modified by geometry commands: their only purpose is to assemble elementary entities into larger groups so that they can be referred to later as single entities. As is the case with elementary entities, each physical point, physical curve, physical surface or physical volume must be assigned a unique tag. See Chapter 6 [Mesh module], page 45, for more information about how physical groups affect the way meshes are saved.

5.1 Geometry commands

The next subsections describe all the available geometry commands in the scripting language. For the equivalent commands in the Gmsh API, see the gmsh/model/geo and gmsh/model/occ namespaces in Appendix D [Gmsh API], page 245.

Note that the following general syntax rule is followed for the definition of model entities: "If an expression defines a new entity, it is enclosed between parentheses. If an expression refers to a previously defined entity, it is enclosed between braces."

5.1.1 Points

Point (expression) = { expression, expression < , expression > };

Creates a point. The expression inside the parentheses is the point's tag; the three first expressions inside the braces on the right hand side give the three X, Y and Z coordinates of the point in the three-dimensional Euclidean space; the optional last expression sets the prescribed mesh element size at that point. See Section 6.3.1 [Specifying mesh element sizes], page 47, for more information about how this value is used in the meshing process.

Physical Point (expression | char-expression <, expression>) <+|->= { expression-list };

Creates a physical point. The expression inside the parentheses is the physical point's tag; the expression-list on the right hand side should contain the tags of all the elementary points that need to be grouped inside the physical point. If a charexpression is given instead instead of expression inside the parentheses, a string label is associated with the physical tag, which can be either provided explicitly (after the comma) or not (in which case a unique tag is automatically created).

5.1.2 Curves

Line (expression) = { expression, expression };

Creates a straight line segment. The expression inside the parentheses is the line segment's tag; the two expressions inside the braces on the right hand side give tags of the start and end points of the segment.

Bezier (expression) = { expression-list };

Creates a Bezier curve. The expression-list contains the tags of the control points.

BSpline (expression) = { expression-list };

Creates a cubic BSpline. The expression-list contains the tags of the control points. Creates a periodic curve if the first and last points are identical.

Spline (expression) = { expression-list };

Creates a spline going through the points in expression-list. With the built-in geometry kernel this constructs a Catmull-Rom spline. With the OpenCASCADE kernel, this constructs a C2 BSpline. Creates a periodic curve if the first and last points are identical.

Circle (expression) = { expression, expression, expression <, ...> };

Creates a circle arc. The three expressions on the right-hand-side define the start point, the center and the end point of the arc. With the built-in geometry kernel the arc should be strictly smaller than Pi. With the OpenCASCADE kernel additional expressions can be provided to define a full circle (4th expression is the radius) or a circle arc between two angles (next 2 expressions).

Ellipse (expression) = { expression, expression, <, ...> };

Creates an ellipse arc. If four expressions are provided on the right-hand-side they define the start point, the center point, a point anywhere on the major axis and the end point. If the first point is a major axis point, the third expression can be ommitted. With the OpenCASCADE kernel, if between 5 and 7 expressions are provided, the first three define the coordinates of the center, the next two define the major (along the x-axis) and minor radii (along the y-axis), and the next two the start and end angle. Note that OpenCASCADE does not allow creating ellipse arcs with the major radius smaller than the minor radius.

Compound Spline | BSpline (expression) = { expression-list } Using expression;

Creates a spline or a BSpline from control points sampled on the curves in expression-list. Using expression specifies the number of intervals on each curve to compute the sampling points. Compound splines and BSplines are only available with the built-in geometry kernel.

Curve Loop (expression) = { expression-list };

Creates an oriented loop of curves, i.e. a closed wire. The expression inside the parentheses is the curve loop's tag; the expression-list on the right hand side should contain the tags of all the curves that constitute the curve loop. A curve loop must

be a closed loop, and the curves should be ordered and oriented (using negative tags to specify reverse orientation). If the orientation is correct, but the ordering is wrong, Gmsh will actually reorder the list internally to create a consistent loop. Although Gmsh supports it, it is not recommended to specify multiple curve loops (or subloops) in a single Curve Loop command. (Curve loops are used to create surfaces: see Section 5.1.3 [Surfaces], page 37.)

Wire (expression) = { expression-list };

Creates a path made of curves. Wires are only available with the OpenCASCADE kernel. They are used to create ThruSections and extrusions along paths.

Physical Curve (expression | char-expression <, expression>) <+|->= { expression-list };

Creates a physical curve. The expression inside the parentheses is the physical curve's tag; the expression-list on the right hand side should contain the tags of all the elementary curves that need to be grouped inside the physical curve. If a charexpression is given instead instead of expression inside the parentheses, a string label is associated with the physical tag, which can be either provided explicitly (after the comma) or not (in which case a unique tag is automatically created). In some mesh file formats (e.g. MSH2), specifying negative tags in the expression-list will reverse the orientation of the mesh elements belonging to the corresponding elementary curves in the saved mesh file.

5.1.3 Surfaces

Plane Surface (expression) = { expression-list };

Creates a plane surface. The expression inside the parentheses is the plane surface's tag; the expression-list on the right hand side should contain the tags of all the curve loops defining the surface. The first curve loop defines the exterior boundary of the surface; all other curve loops define holes in the surface. A curve loop defining a hole should not have any curves in common with the exterior curve loop (in which case it is not a hole, and the two surfaces should be defined separately). Likewise, a curve loop defining a hole should not have any curves in common with another curve loop defining a hole in the same surface (in which case the two curve loops should be combined).

Surface (expression) = { expression-list } < In Sphere { expression } >;

Creates a surface filling. With the built-in kernel, the first curve loop should be composed of either three or four curves. With the built-in kernel, the optional In Sphere argument forces the surface to be a spherical patch (the extra parameter gives the tag of the center of the sphere).

BSpline Surface (expression) = { expression-list };

Creates a BSpline surface filling. Only a single curve loop made of 2, 3 or 4 BSpline curves can be provided. BSpline Surface is only available with the OpenCAS-CADE kernel.

Bezier Surface (expression) = { expression-list };

Creates a Bezier surface filling. Only a single curve loop made of 2, 3 or 4 Bezier curves can be provided. Bezier Surface is only available with the OpenCASCADE kernel.

Disk (expression) = { expression-list };

Creates a disk. When four expressions are provided on the right hand side (3 coordinates of the center and the radius), the disk is circular. A fifth expression defines the radius along Y, leading to an ellipse. Disk is only available with the OpenCASCADE kernel.

Rectangle (expression) = { expression-list };

Creates a rectangle. The 3 first expressions define the lower-left corner; the next 2 define the width and height. If a 6th expression is provided, it defines a radius to round the rectangle corners. Rectangle is only available with the OpenCASCADE kernel.

Surface Loop (expression) = { expression-list } < Using Sewing >;

Creates a surface loop (a shell). The expression inside the parentheses is the surface loop's tag; the expression-list on the right hand side should contain the tags of all the surfaces that constitute the surface loop. A surface loop must always represent a closed shell, and the surfaces should be oriented consistently (using negative tags to specify reverse orientation). (Surface loops are used to create volumes: see Section 5.1.4 [Volumes], page 38.) With the OpenCASCADE kernel, the optional Using Sewing argument allows to build a shell made of surfaces that share geometrically identical (but topologically different) curves.

Physical Surface (expression | char-expression <, expression>) <+|->= { expression-list };

Creates a physical surface. The expression inside the parentheses is the physical surface's tag; the expression-list on the right hand side should contain the tags of all the elementary surfaces that need to be grouped inside the physical surface. If a char-expression is given instead instead of expression inside the parentheses, a string label is associated with the physical tag, which can be either provided explicitly (after the comma) or not (in which case a unique tag is automatically created). In some mesh file formats (e.g. MSH2), specifying negative tags in the expression-list will reverse the orientation of the mesh elements belonging to the corresponding elementary surfaces in the saved mesh file.

5.1.4 Volumes

Volume (expression) = { expression-list };

Creates a volume. The expression inside the parentheses is the volume's tag; the expression-list on the right hand side should contain the tags of all the surface loops defining the volume. The first surface loop defines the exterior boundary of the volume; all other surface loops define holes in the volume. A surface loop defining a hole should not have any surfaces in common with the exterior surface loop (in which case it is not a hole, and the two volumes should be defined separately). Likewise, a surface loop defining a hole should not have any surfaces in common with another surface loop defining a hole in the same volume (in which case the two surface loops should be combined).

Sphere (expression) = { expression-list };

Creates a sphere, defined by the 3 coordinates of its center and a radius. Additional expressions define 3 angle limits. **Sphere** is only available with the OpenCASCADE kernel.

Box (expression) = { expression-list };

Creates a box, defined by the 3 coordinates of a point and the 3 extents. Box is only available with the OpenCASCADE kernel.

Cylinder (expression) = { expression-list };

Creates a cylinder, defined by the 3 coordinates of the center of the first circular face, the 3 components of the vector defining its axis and its radius. An additional expression defines the angular opening. Cylinder is only available with the OpenCASCADE kernel.

Torus (expression) = { expression-list };

Creates a torus, defined by the 3 coordinates of its center and 2 radii. An additional expression defines the angular opening. Torus is only available with the OpenCASCADE kernel.

Cone (expression) = { expression-list };

Creates a cone, defined by the 3 coordinates of the center of the first circular face, the 3 components of the vector defining its axis and the two radii of the faces (these radii can be zero). An additional expression defines the angular opening. Cone is only available with the OpenCASCADE kernel.

Wedge (expression) = { expression-list };

Creates a right angular wedge, defined by the 3 coordinates of the right-angle point and the 3 extends. An additional parameter defines the top X extent (zero by default). Wedge is only available with the OpenCASCADE kernel.

ThruSections (expression) = { expression-list };

Creates a volume defined through curve loops. ThruSections is only available with the OpenCASCADE kernel.

Ruled ThruSections (expression) = { expression-list };

Same as ThruSections, but the surfaces created on the boundary are forced to be ruled. Ruled ThruSections is only available with the OpenCASCADE kernel.

Physical Volume (expression | char-expression <, expression>) <+|->= { expression-list };

Creates a physical volume. The expression inside the parentheses is the physical volume's tag; the expression-list on the right hand side should contain the tags of all the elementary volumes that need to be grouped inside the physical volume. If a char-expression is given instead instead of expression inside the parentheses, a string label is associated with the physical tag, which can be either provided explicitly (after the comma) or not (in which case a unique tag is automatically created).

5.1.5 Extrusions

Curves, surfaces and volumes can also be created through extrusion of points, curves and surfaces, respectively. Here is the syntax of the geometrical extrusion commands (go to Section 6.3.2 [Structured grids], page 63, to see how these commands can be extended in order to also extrude the mesh):

extrude:

Extrude { expression-list } { extrude-list }

Extrudes all elementary entities (points, curves or surfaces) in extrude-list using a translation. The expression-list should contain three expressions giving the X, Y and Z components of the translation vector.

Extrude { { expression-list }, { expression-list }, expression } { extrude-list } Extrudes all elementary entities (points, curves or surfaces) in extrude-list using a rotation. The first expression-list should contain three expressions giving the X, Y and Z direction of the rotation axis; the second expression-list should contain three expressions giving the X, Y and Z components of any point on this axis; the last expression should contain the rotation angle (in radians). With the built-in geometry kernel the angle should be strictly smaller than Pi.

Extrude { { expression-list }, { expression-list }, { expression-list }, expression } { extrude-list }

Extrudes all elementary entities (points, curves or surfaces) in extrude-list using a translation combined with a rotation (to produce a "twist"). The first expression-list should contain three expressions giving the X, Y and Z components of the translation vector; the second expression-list should contain three expressions giving the X, Y and Z direction of the rotation axis, which should match the direction of the translation; the third expression-list should contain three expressions giving the X, Y and Z components of any point on this axis; the last expression should contain the rotation angle (in radians). With the built-in geometry kernel the angle should be strictly smaller than Pi.

Extrude { extrude-list }

Extrudes entities in extrude-list using a translation along their normal. Only available with the built-in geometry kernel.

Extrude { extrude-list } Using Wire { expression-list }

Extrudes entities in extrude-list along the give wire. Only available with the Open-CASCADE geometry kernel.

ThruSections { expression-list }

Creates surfaces through the given curve loops or wires. ThruSections is only available with the OpenCASCADE kernel.

Ruled ThruSections { expression-list }

Creates ruled surfaces through the given curve loops or wires. Ruled ThruSections is only available with the OpenCASCADE kernel.

Fillet { expression-list } { expression-list } { expression-list }

Fillets volumes (first list) on some curves (second list), using the provided radii (third list). The radius list can either contain a single radius, as many radii as curves, or twice as many as curves (in which case different radii are provided for the begin and end points of the curves). Fillet is only available with the OpenCASCADE kernel.

Chamfer { expression-list } { expression-list } { expression-list } { expression-list }

Chamfer volumes (first list) on some curves (second list), using the provided distance (fourth list) measured on the given surfaces (third list). The distance list can either contain a single distance, as many distances as curves, or twice as many as curves (in which case the first in each pair is measured on the given corresponding surface). Chamfer is only available with the OpenCASCADE kernel.

with

```
extrude-list:
```

```
<Physical> Point | Curve | Surface { expression-list-or-all }; ...
```

As explained in Section 4.2.1 [Floating point expressions], page 21, extrude can be used in an expression, in which case it returns a list of tags. By default, the list contains the "top" of the extruded entity at index 0 and the extruded entity at index 1, followed by the "sides" of the extruded entity at indices 2, 3, etc. For example:

```
Point(1) = {0,0,0};
Point(2) = {1,0,0};
Line(1) = {1, 2};
out[] = Extrude{0,1,0}{ Curve{1}; };
Printf("top curve = %g", out[0]);
Printf("surface = %g", out[1]);
```

```
Printf("side curves = %g and %g", out[2], out[3]);
```

This behaviour can be changed with the Geometry.ExtrudeReturnLateralEntities option (see Section B.2 [Geometry options list], page 192).

5.1.6 Boolean operations

Boolean operations can be applied on curves, surfaces and volumes. All boolean operation act on two lists of elementary entities. The first list represents the object; the second represents the tool. The general syntax for boolean operations is as follows:

boolean:

```
BooleanIntersection { boolean-list } { boolean-list }
```

Computes the intersection of the object and the tool.

```
BooleanUnion { boolean-list } { boolean-list }
```

Computes the union of the object and the tool.

```
BooleanDifference { boolean-list } { boolean-list }
```

Subtract the tool from the object.

```
BooleanFragments { boolean-list } { boolean-list }
```

Computes all the fragments resulting from the intersection of the entities in the object and in the tool, and makes all interfaces unique.

with

```
boolean-list:
```

```
<Physical> Curve | Surface | Volume { expression-list-or-all }; ... |
Delete ;
```

If Delete is specified in the boolean-list, the tool and/or the object is deleted.

As explained in Section 4.2.1 [Floating point expressions], page 21, boolean can be used in an expression, in which case it returns the list of tags of the highest dimensional entities created by the boolean operation. See demos/boolean for examples.

An alternative syntax exists for boolean operations, which can be used when it is known beforehand that the operation will result in a single (highest-dimensional) entity:

boolean-explicit:

```
BooleanIntersection ( expression ) = { boolean-list } { boolean-list };
```

Computes the intersection of the object and the tool and assign the result the tag expression.

```
BooleanUnion { boolean-list } { boolean-list }
```

Computes the union of the object and the tool and assign the result the tag expression.

```
BooleanDifference { boolean-list } { boolean-list }
```

Subtract the tool from the object and assign the result the tag expression.

Again, see demos/boolean for examples.

Boolean operations are only available with the OpenCASCADE geometry kernel.

5.1.7 Transformations

Geometrical transformations can be applied to elementary entities, or to copies of elementary entities (using the Duplicata command: see below). The syntax of the transformation commands is:

transform:

Dilate { { expression-list }, expression } { transform-list }

Scales all elementary entities in *transform-list* by a factor expression. The expression-list should contain three expressions giving the X, Y, and Z coordinates of the center of the homothetic transformation.

Dilate { { expression-list }, { expression, expression, expression } } { transform-list }

Scales all elementary entities in *transform-list* using different factors along X, Y and Z (the three expressions). The expression-list should contain three expressions giving the X, Y, and Z coordinates of the center of the homothetic transformation.

Rotate { { expression-list }, { expression-list }, expression } { transform-list } Rotates all elementary entities in transform-list by an angle of expression radians. The first expression-list should contain three expressions giving the X, Y and Z direction of the rotation axis; the second expression-list should contain three expressions giving the X, Y and Z components of any point on this axis.

Symmetry { expression-list } { transform-list }

Transforms all elementary entities symmetrically to a plane. The expression-list should contain four expressions giving the coefficients of the plane's equation.

Affine { expression-list } { transform-list }

Applies a 4 x 4 affine transformation matrix (16 entries given by row; only 12 can be provided for convenience) to all elementary entities. Currently only available with the OpenCASCADE kernel.

Translate { expression-list } { transform-list }

Translates all elementary entities in transform-list. The expression-list should contain three expressions giving the X, Y and Z components of the translation vector.

Boundary { transform-list }

(Not a transformation per-se.) Returns the entities on the boundary of the elementary entities in *transform-list*, with signs indicating their orientation in the boundary. To get unsigned tags (e.g. to reuse the output in other commands), apply the Abs function on the returned list. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

CombinedBoundary { transform-list }

(Not a transformation per-se.) Returns the boundary of the elementary entities, combined as if a single entity, in *transform-list*. Useful to compute the boundary of a complex part. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

PointsOf { transform-list }

(Not a transformation per-se.) Returns all the geometrical points on the boundary of the elementary entities. Useful to compute the boundary of a complex part. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Intersect Curve { expression-list } Surface { expression }

(Not a transformation per-se.) Returns the intersections of the curves given in expression-list with the specified surface. Currently only available with the built-in kernel.

Split Curve { expression } Point { expression-list }

(Not a transformation per-se.) Returns the curves created by splitting curve expression on the speficied points. Currently only available with the built-in kernel.

with

```
transform-list:
  <Physical> Point | Curve | Surface | Volume
      { expression-list-or-all }; ... |
    Duplicata { <Physical> Point | Curve | Surface | Volume
      { expression-list-or-all }; ... } |
    transform
```

5.1.8 Miscellaneous

Here is a list of all other geometry commands currently available:

Coherence;

Removes all duplicate elementary entities (e.g., points having identical coordinates). Note that with the built-in geometry kernel Gmsh executes the Coherence command automatically after each geometrical transformation, unless Geometry.AutoCoherence is set to zero (see Section B.2 [Geometry options list], page 192). With the OpenCASCADE geoemtry kernel, Coherence is simply a shortcut for a BooleanFragments operation on all entities.

```
< Recursive > Delete { <Physical> Point | Curve | Surface | Volume {
expression-list-or-all }; ... }
```

Deletes all elementary entities whose tags are given in expression-list-or-all. If an entity is linked to another entity (for example, if a point is used as a control point of a curve), Delete has no effect (the curve will have to be deleted before the point can). The Recursive variant deletes the entities as well as all its sub-entities of lower dimension. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

```
Delete Embedded { <Physical> Point | Curve | Surface | Volume {
  expression-list-or-all }; ... }
```

Deletes all the embedded entities in the elementary entities whose tags are given in expression-list-or-all. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

```
SetMaxTag Point | Curve | Surface | Volume ( expression )
```

Forces the maximum tag for a category of entities to a given value, so that subsequently created entities in the same category will not have tags smaller than the given value.

```
< Recursive > Hide { <Physical> Point | Curve | Surface | Volume {
expression-list-or-all }; ... }
```

Hide the entities listed in expression-list-or-all, if General.VisibilityMode is set to 0 or 1.

```
Hide { : }
```

Hide all entities, if General. VisibilityMode is set to 0 or 1.

```
< Recursive > Show { <Physical> Point | Curve | Surface | Volume {
expression-list-or-all }; ... }
```

Show the entities listed in expression-list-or-all, if General.VisibilityMode is set to 0 or 1.

```
Show { : }
```

Show all entities, if General.VisibilityMode is set to 0 or 1.

5.2 Geometry options

The list of all the options that control the behavior of geometry commands, as well as the way model entities are handled in the GUI, is given in Section B.2 [Geometry options list], page 192.

6 Mesh module

Gmsh's mesh module regroups several 1D, 2D and 3D meshing algorithms, all producing grids conforming in the sense of finite elements (see Section 1.2 [Mesh], page 5):

- The 2D *unstructured* algorithms generate triangles and/or quadrangles (when recombination commands or options are used). The 3D *unstructured* algorithms generate tetrahedra, or tetrahedra and pyramids (when the boundary mesh contains quadrangles).
- The 2D structured algorithms (transfinite and extrusion) generate triangles by default, but quadrangles can be obtained by using the Recombine commands (see Section 6.3.2 [Structured grids], page 63, and Section 6.3.3 [Miscellaneous mesh commands], page 65). The 3D structured algorithms generate tetrahedra, hexahedra, prisms and pyramids, depending on the type of the surface meshes they are based on.

All meshes can be subdivided to generate fully quadrangular or fully hexahedral meshes with the Mesh.SubdivisionAlgorihm option (see Section B.3 [Mesh options list], page 199).

6.1 Choosing the right unstructured algorithm

Gmsh provides a choice between several 2D and 3D unstructured algorithms. Each algorithm has its own advantages and disadvantages.

For all 2D unstructured algorithms a Delaunay mesh that contains all the points of the 1D mesh is initially constructed using a divide-and-conquer algorithm¹. Missing edges are recovered using edge swaps². After this initial step several algorithms can be applied to generate the final mesh:

- The "MeshAdapt" algorithm³ is based on local mesh modifications. This technique makes use of edge swaps, splits, and collapses: long edges are split, short edges are collapsed, and edges are swapped if a better geometrical configuration is obtained.
- The "Delaunay" algorithm is inspired by the work of the GAMMA team at INRIA⁴. New points are inserted sequentially at the circumcenter of the element that has the largest adimensional circumradius. The mesh is then reconnected using an anisotropic Delaunay criterion.
- The "Frontal-Delaunay" algorithm is inspired by the work of S. Rebay⁵.
- Other experimental algorithms with specific features are also available. In particular, "Frontal-Delaunay for Quads" is a variant of the "Frontal-Delaunay" algorithm aiming at generating right-angle triangles suitable for recombination; and "BAMG" allows to generate anisotropic triangulations.

For very complex curved surfaces the "MeshAdapt" algorithm is the most robust. When high element quality is important, the "Frontal-Delaunay" algorithm should be tried. For very large

R. A. Dwyer, A simple divide-and-conquer algorithm for computing Delaunay triangulations in O(n log n) expected time, In Proceedings of the second annual symposium on computational geometry, Yorktown Heights, 2–4 June 1986.

² N. P. Weatherill, *The integrity of geometrical boundaries in the two-dimensional Delaunay triangulation*, Commun. Appl. Numer. Methods 6(2), pp. 101–109, 1990.

³ C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering 79(11), pp. 1309–1331, 2009.

 $^{^4\,}$ P.-L. George and P. Frey, Mesh~generation, Hermes, Lyon, 2000.

S. Rebay, Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm, J. Comput. Phys. 106, pp. 25–138, 1993.

⁶ J.-F. Remacle, F. Henrotte, T. Carrier-Baudouin, E. Bchet, E. Marchandise, C. Geuzaine and T. Mouton, A frontal Delaunay quad mesh generator using the Linf norm, International Journal for Numerical Methods in Engineering, 94(5), pp. 494-512, 2013.

⁷ F. Hecht, BAMG: bidimensional anisotropic mesh generator, User Guide, INRIA, Rocquencourt, 1998.

meshes of plane surfaces the "Delaunay" algorithm is the fastest; it usually also handles complex mesh size fields better than the "Frontal-Delaunay". When the "Delaunay" or "Frontal-Delaunay" algorithms fail, "MeshAdapt" is automatically triggered. The "Automatic" algorithm uses "Delaunay" for plane surfaces and "MeshAdapt" for all other surfaces.

Several 3D unstructured algorithms are also available:

- The "Delaunay" algorithm is split into three separate steps. First, an initial mesh of the union of all the volumes in the model is performed, without inserting points in the volume. The surface mesh is then recovered using H. Si's boundary recovery algorithm Tetgen/BR. Then a three-dimensional version of the 2D Delaunay algorithm described above is applied to insert points in the volume to respect the mesh size constraints.
- The "Frontal" algorithm uses J. Schoeberl's Netgen algorithm⁸.
- The "HXT" algorithm⁹ is a new efficient and parallel reimplementation of the Delaunay algorithm.
- Other experimental algorithms with specific features are also available. In particular, "MMG3D" ¹⁰ allows to generate anisotropic tetrahedralizations.

The "Delaunay" algorithm is currently the most robust and is the only one that supports the automatic generation of hybrid meshes with pyramids. Embedded model entities and the Field mechanism to specify element sizes (see Section 6.3.1 [Specifying mesh element sizes], page 47) are currently only supported by the "Delaunay" and "HXT" algorithms.

If your version of Gmsh is compiled with OpenMP support (see Appendix C [Compiling the source code], page 241), most of the meshing steps can be performed in parallel:

- 1D and 2D meshing is parallelized using a coarse-grained approach, i.e. curves (resp. surfaces) are each meshed sequentially, but several curves (resp. surfaces) can be meshed at the same time.
- 3D meshing using HXT is parallelized using a fine-grained approach, i.e. the actual meshing procedure for a single volume is done is parallel.

The number of threads can be controlled with the -nt flag on the command line (see Section 3.3 [Command-line options], page 12), or with the General.NumThreads, Mesh.MaxNumThreads1D, Mesh.MaxNumThreads2D and Mesh.MaxNumThreads3D options (see Section B.1 [General options list], page 165 and Section B.3 [Mesh options list], page 199).

6.2 Elementary entities vs. physical groups

It is usually convenient to combine elementary geometrical entities into more meaningful groups, e.g. to define some mathematical ("domain", "boundary with Neumann condition"), functional ("left wing", "fuselage") or material ("steel", "carbon") properties. Such grouping is done in Gmsh's geometry module (see Chapter 5 [Geometry module], page 35) through "physical groups".

By default in the MSH file format and in most other formats (see Chapter 9 [File formats], page 105), if physical groups are defined, the output mesh only contains those elements that belong to at least one physical group. (Different mesh file formats treat physical groups in slightly different ways, depending on their capability to define groups.)

To save all mesh elements wether or not physical groups are defined, use the Mesh.SaveAll option (see Section B.3 [Mesh options list], page 199) or specify -save_all on the command

⁸ J. Schoeberl, Netgen, an advancing front 2d/3d-mesh generator based on abstract rules, Comput. Visual. Sci., 1, pp. 41–52, 1997.

⁹ C. Marot, J. Pellerin and J.F. Remacle, *One machine, one minute, three billion tetrahedra*, International Journal for Numerical Methods in Engineering 117.9, pp 967-990, 2019.

¹⁰ C. Dobrzynski, MMG3D: user quide, INRIA, 2012.

line. In some formats (e.g. MSH2), setting Mesh.SaveAll=1 will however discard all physical group definitions.

6.3 Mesh commands

The mesh module commands allow to modify the mesh element sizes and specify structured grid parameters. Certain mesh "actions" (i.e., "mesh the curves", "mesh the surfaces" and "mesh the volumes") can also be specified in the script files but are usually performed either in the GUI or on the command line (see Chapter 3 [Running Gmsh on your system], page 11, and Section 3.3 [Command-line options], page 12).

In the Gmsh API, the mesh commands are available in the gmsh/model/mesh module (see Appendix D [Gmsh API], page 245).

6.3.1 Specifying mesh element sizes

There are several ways to specify the size of the mesh elements for a given geometry:

- 1. First, if the two options Mesh.CharacteristicLengthFromPoints and Mesh.CharacteristicLengthExtendFromBoundary are set (they are by default; see Section B.3 [Mesh options list], page 199), you can simply specify desired mesh element sizes at the geometrical points of the model. The size of the mesh elements will then be computed by interpolating these values inside the domain during mesh generation. This might sometimes lead to over-refinement in some areas, so that you may have to add "dummy" geometrical entities in the model in order to get the desired element sizes or use more advanced methods explained below.
- 2. Second, if Mesh.CharacteristicLengthFromCurvature is set (it is not by default), the mesh will be adapted with respect to the curvature of the model entities and the value of Mesh.MinimumElementsPerTwoPi, which gives the number of elements per 2 Pi radians.
- 3. Finally, you can specify a general background mesh size, expressed as a combination of so-called mesh size fields:
 - The Box field specifies the size of the elements inside and outside of a parallelepipedic region.
 - The Distance field specifies the size of the mesh according to the distance to some model entities.
 - The MathEval field specifies the size of the mesh using an explicit mathematical function.
 - The PostView field specifies an explicit background mesh in the form of a scalar post-processing view (see Section 8.1 [Post-processing commands], page 73, and Chapter 9 [File formats], page 105) in which the nodal values are the target element sizes. This method is very general but it requires a first (usually rough) mesh and a way to compute the target sizes on this mesh (usually through an error estimation procedure, in an iterative process of mesh adaptation). Warning: only parsed ('.pos') files can currently be used as background meshes ('.msh' files cannot be used, since the mesh used to define the field will be destroyed during the meshing process). (Note that you can also load a background mesh directly from the command line using the -bgm option (see Section 3.3 [Command-line options], page 12), or in the GUI by selecting 'Apply as background mesh' in the post-processing view option menu.)
 - The Min field specifies the size as the minimum of the sizes computed using other fields.
 - . . .

The list of available fields with their options is given below. An example is available in Section A.10 [t10], page 143.

The three aforementioned methods can be used simultaneously, in which case the smallest element size is selected at any given point. In addition, boundary mesh sizes (on curves or surfaces) are interpolated inside the enclosed entity (surface or volume, respectively) if the option Mesh.CharacteristicLengthExtendFromBoundary is set (it is by default).

All element sizes are further constrained in the interval [Mesh.CharacteristicLengthMin, Mesh.CharacteristicLengthMax] (which can also be provided on the command line with -clmin and -clmax). The resulting value is then finally multiplied by Mesh.CharacteristicLengthFactor (-clscale on the command line).

Note that when the element size is fully specified by a background mesh field, it is thus often desirable to set

```
Mesh.CharacteristicLengthFromPoints = 0;
Mesh.CharacteristicLengthFromCurvature = 0;
Mesh.CharacteristicLengthExtendFromBoundary = 0;
```

to prevent over-refinement inside an entity due to small mesh sizes on its boundary.

Here are the mesh commands that are related to the specification of mesh element sizes:

Characteristic Length { expression-list } = expression;

Modify the prescribed mesh element size of the points whose tags are listed in expression-list. The new value is given by expression.

Field[expression] = string;

Create a new field (with tag expression), of type string.

```
Field[expression].string = char-expression | expression | expression-list;
Set the option string of the expression-th field.
```

Background Field = expression;

Select the expression-th field as the one used to compute element sizes. Only one background field can be given; if you want to combine several field, use the Min or Max field (see below).

Here is the list of all available fields with their associated options:

Attractor

Compute the distance from the nearest node in a list. It can also be used to compute the distance from curves, in which case each curve is replaced by NNodesByEdge equidistant nodes and the distance from those nodes is computed. Attractor is deprecated: use Distance instead.

Options:

EdgesList

Tags of curves in the geometric model type: list default value: {}

FacesList

Tags of surfaces in the geometric model (Warning, this feature is still experimental. It might (read: will probably) give wrong results for complex surfaces)

type: list

default value: {}

FieldX Id of the field to use as x coordinate.

type: integer default value: -1 FieldY Id of the field to use as y coordinate.

type: integer default value: -1

FieldZ Id of the field to use as z coordinate.

type: integer default value: -1

NNodesByEdge

Number of nodes used to discretized each curve

type: integer default value: 20

NodesList

Tags of points in the geometric model

type: list

default value: {}

AttractorAnisoCurve

Compute the distance from the nearest curve in a list. Then the mesh size can be specified independently in the direction normal to the curve and in the direction parallel to the curve (Each curve is replaced by NNodesByEdge equidistant nodes and the distance from those nodes is computed.) Options:

EdgesList

Tags of curves in the geometric model

type: list

default value: {}

NNodesByEdge

Number of nodes used to discretized each curve

type: integer default value: 20

dMax Maxmium distance, above this distance from the curves, prescribe the

maximum mesh sizes.

type: float

default value: 0.5

dMin Minimum distance, below this distance from the curves, prescribe the

minimum mesh sizes.

type: float

default value: 0.1

1MaxNormal

Maximum mesh size in the direction normal to the closest curve.

type: float

default value: 0.5

1MaxTangent

Maximum mesh size in the direction tangeant to the closest curve.

type: float

default value: 0.5

1MinNormal

Minimum mesh size in the direction normal to the closest curve.

type: float

default value: 0.05

lMinTangent

Minimum mesh size in the direction tangeant to the closest curve.

type: float

default value: 0.5

AutomaticMeshSizeField

Compute a mesh size field that is quite automatic Takes into account surface curvatures and closeness of objects

Options:

NRefine Initial refinement level for the octree

type: integer default value: 5

gradientMax

Maximun gradient of the size field

type: float

default value: 1.4

hBulk Size everywhere no size is prescribed

type: float default value: 0.1

nPointsPerCircle

Number of points per circle (adapt to curvature of surfaces)

type: integer default value: 55

nPointsPerGap

Number of points in thin layers

type: integer default value: 5

Ball The value of this field is VIn inside a spherical ball, VOut outside. The ball is defined by

$$||dX||^2 < R^2 \&\& dX = (X - XC)^2 + (Y-YC)^2 + (Z-ZC)^2$$

If Thickness is > 0, the mesh size is interpolated between VIn and VOut in a layer around the ball of the prescribed thickness.

Options:

Radius Radius

type: float default value: 0

Thickness

Thickness of a transition layer outside the ball

type: float default value: 0 VIn Value inside the ball

type: float default value: 0

VOut Value outside the ball

type: float default value: 0

XCenter X coordinate of the ball center

type: float default value: 0

YCenter Y coordinate of the ball center

type: float default value: 0

ZCenter Z coordinate of the ball center

type: float default value: 0

BoundaryLayer

hwall * ratio (dist/hwall)

Options:

AnisoMax Threshold angle for creating a mesh fan in the boundary layer

type: float

default value: 1000000000

EdgesList

Tags of curves in the geometric model for which a boundary layer is

needed type: list

default value: {}

ExcludedFaceList

Tags of surfaces in the geometric model where the boundary layer should

not be applied type: list

default value: {}

FanNodesList

Tags of points in the geometric model for which a fan is created

type: list

default value: {}

 ${\tt IntersectMetrics}$

Intersect metrics of all faces

type: integer default value: 0

NodesList

Tags of points in the geometric model for which a boundary layer ends

type: list

default value: {}

Quads Generate recombined elements in the boundary layer

type: integer default value: 0

hfar Element size far from the wall

type: float default value: 1

hwall_n Mesh Size Normal to the The Wall

type: float default value: 0.1

hwall_n_nodes

Mesh Size Normal to the The Wall at nodes (overwrite hwall_n when

defined)

type: list_double
default value: {}

ratio Size Ratio Between Two Successive Layers

type: float default value: 1.1

thickness

Maximal thickness of the boundary layer

type: float

default value: 0.01

Box The value of this field is VIn inside the box, VOut outside the box. The box is defined by

Xmin <= x <= XMax && YMin <= y <= YMax && ZMin <= z <= ZMax

If Thickness is > 0, the mesh size is interpolated between VIn and VOut in a layer around the box of the prescribed thickness.

Options:

Thickness

Thickness of a transition layer outside the box

type: float default value: 0

VIn Value inside the box

type: float default value: 0

VOut Value outside the box

type: float default value: 0

XMax Maximum X coordinate of the box

type: float default value: 0

XMin Minimum X coordinate of the box

type: float default value: 0

YMax Maximum Y coordinate of the box

type: float default value: 0 YMin Minimum Y coordinate of the box

type: float default value: 0

ZMax Maximum Z coordinate of the box

type: float default value: 0

ZMin Minimum Z coordinate of the box

type: float default value: 0

Curvature

Compute the curvature of Field[IField]:

F = div(norm(grad(Field[IField])))Options:

Delta Step of the finite differences

type: float default value: 0

IField Field index

type: integer default value: 1

Cylinder The value of this field is VIn inside a frustrated cylinder, VOut outside. The cylinder is given by

 $\begin{array}{l} |\,|\,dX\,|\,|\,^2 < R^2 \&\& \\ (X-X0).A < |\,|\,A\,|\,|\,^2 \\ dX = (X-X0) - ((X-X0).A)/(\,|\,|\,A\,|\,|\,^2) \ . \ A \\ \text{Options:} \end{array}$

Radius Radius

type: float default value: 0

VIn Value inside the cylinder

type: float default value: 0

VOut Value outside the cylinder

type: float default value: 0

XAxis X component of the cylinder axis

type: float default value: 0

XCenter X coordinate of the cylinder center

type: float default value: 0

YAxis Y component of the cylinder axis

type: float default value: 0

YCenter Y coordinate of the cylinder center

type: float default value: 0

ZAxis Z component of the cylinder axis

type: float default value: 1

ZCenter Z coordinate of the cylinder center

type: float default value: 0

Distance

Compute the distance from the nearest node in a list. It can also be used to compute the distance from curves, in which case each curve is replaced by NNodesByEdge equidistant nodes and the distance from those nodes is computed. Options:

EdgesList

Tags of curves in the geometric model

type: list

default value: {}

FacesList

Tags of surfaces in the geometric model (Warning, this feature is still experimental. It might (read: will probably) give wrong results for complex surfaces)

type: list

default value: {}

FieldX Id of the field to use as x coordinate.

type: integer default value: -1

FieldY Id of the field to use as y coordinate.

type: integer default value: -1

FieldZ Id of the field to use as z coordinate.

type: integer default value: -1

NNodesByEdge

Number of nodes used to discretized each curve

type: integer default value: 20

NodesList

Tags of points in the geometric model

type: list

default value: {}

ExternalProcess

This Field is experimental

Call an external process that received coordinates triple (x,y,z) as binary double precision numbers on stdin and is supposed to write the field value on stdout as a binary double precision number.

NaN, NaN, NaN is sent as coordinate to indicate the end of the process.

```
Example of client (python2):
import os
import struct
import math
import sys
if sys.platform == "win32":
import msvcrt
msvcrt.setmode(0, os.O_BINARY)
msvcrt.setmode(1, os.O_BINARY)
while(True):
_{---}xyz = struct.unpack("ddd", os.read(0,24))
\_\_if math.isnan(xyz[0]):
____break
_{---}f = 0.001 + xyz[1]*0.009
___os.write(1,struct.pack("d",f))
Example of client (python3):
import struct
import sys
import math
while(True):
___xyz = struct.unpack("ddd", sys.stdin.buffer.read(24))
\_\_if math.isnan(xyz[0]):
____break
_{---}f = 0.001 + xyz[1]*0.009
___sys.stdout.buffer.write(struct.pack("d",f))
___sys.stdout.flush()
Example of client (c, unix):
#include <unistd.h>
int main(int argc, char **argv) {
_{-}double xyz[3];
_while(read(STDIN_FILENO, &xyz, 3*sizeof(double)) == 3*sizeof(double)) {
= if (xyz[0] != xyz[0]) break; //nan
----double f = 0.001 + 0.009 * xyz[1];
___write(STDOUT_FILENO, &f, sizeof(double));
__}
__return 0;
}
Example of client (c, windows):
#include <stdio.h>
#include <io.h>
#include <fcntl.h>
int main(int argc, char **argv) {
__double xyz[3];
__setmode(fileno(stdin),O_BINARY);
__setmode(fileno(stdout),O_BINARY);
_while(read(fileno(stdin), &xyz, 3*sizeof(double)) == 3*sizeof(double)) {
_{---}if (xyz[0] != xyz[0])
____break;
```

```
___double f = f = 0.01 + 0.09 * xyz[1];
___write(fileno(stdout), &f, sizeof(double));
__}
}
```

Options:

CommandLine

Command line to launch.

type: string default value: ""

Frustum

This field is an extended cylinder with inner (i) and outer (o) radiuses on both endpoints (1 and 2). Length scale is bilinearly interpolated between these locations (inner and outer radiuses, endpoints 1 and 2) The field values for a point P are given by : u = P1P. P1P2/||P1P2|| r = || P1P - u*P1P2 || Ri = (1-u)*R1i + u*R2i Ro = (1-u)*R1o + u*R2o v = (r-Ri)/(Ro-Ri) lc = (1-v)* (1-u)*v1i + u*v2i) + v* (1-u)*v1o + u*v2o) where (u,v) in [0,1]x[0,1] Options:

R1_inner Inner radius of Frustum at endpoint 1

type: float default value: 0

R1_outer Outer radius of Frustum at endpoint 1

type: float default value: 1

R2_inner Inner radius of Frustum at endpoint 2

type: float default value: 0

R2_outer Outer radius of Frustum at endpoint 2

type: float default value: 1

V1_inner Element size at point 1, inner radius

type: float default value: 0.1

V1_outer Element size at point 1, outer radius

type: float default value: 1

V2_inner Element size at point 2, inner radius

type: float default value: 0.1

V2_outer Element size at point 2, outer radius

type: float default value: 1

X1 X coordinate of endpoint 1

type: float default value: 0 X2 X coordinate of endpoint 2

type: float default value: 0

Y1 Y coordinate of endpoint 1

type: float default value: 0

Y2 Y coordinate of endpoint 2

type: float default value: 0

Z1 Z coordinate of endpoint 1

type: float default value: 1

Z2 Z coordinate of endpoint 2

type: float

default value: 1.455171629957881e-152

Gradient Compute the finite difference gradient of Field[IField]:

 $F = (\mathrm{Field}[\mathrm{IField}](X + \mathrm{Delta}/2)$ - $\mathrm{Field}[\mathrm{IField}](X - \mathrm{Delta}/2))$ / Delta Options:

Delta Finite difference step

type: float default value: 0

IField Field index

type: integer default value: 1

Kind Component of the gradient to evaluate: 0 for X, 1 for Y, 2 for Z, 3 for

the norm type: integer default value: 0

IntersectAniso

Take the intersection of 2 anisotropic fields according to Alauzet.

Options:

FieldsList

Field indices type: list default value: {}

Laplacian

Compute finite difference the Laplacian of Field[IField]:

$$\begin{split} F &= G(x+d,y,z) + G(x-d,y,z) + \\ G(x,y+d,z) + G(x,y-d,z) + \\ G(x,y,z+d) + G(x,y,z-d) - 6 * G(x,y,z), \end{split}$$

where G=Field[IField] and d=Delta Options:

Delta Finite difference step

type: float

default value: 0.1

IField Field index

type: integer default value: 1

LonLat Evaluate Field[IField] in geographic coordinates (longitude, latitude):

 $F = Field[IField](atan(y/x), \, asin(z/sqrt(x^2+y^2+z^2)) \\ Options:$

FromStereo

if = 1, the mesh is in stereographic coordinates. xi = 2Rx/(R+z), eta = 2Ry/(R+z)

type: integer default value: 0

IField Index of the field to evaluate.

type: integer default value: 1

RadiusStereo

radius of the sphere of the stereograpic coordinates

type: float

default value: 6371000

MathEval Evaluate a mathematical expression. The expression can contain x, y, z for spatial coordinates, F0, F1, ... for field values, and and mathematical functions.

Options:

F Mathematical function to evaluate.

type: string

default value: "F2 + Sin(z)"

MathEvalAniso

Evaluate a metric expression. The expressions can contain x, y, z for spatial coordinates, F0, F1, ... for field values, and and mathematical functions. Options:

m11 element 11 of the metric tensor.

type: string

default value: "F2 + Sin(z)"

m12 element 12 of the metric tensor.

type: string

default value: "F2 + Sin(z)"

m13 element 13 of the metric tensor.

type: string

default value: "F2 + Sin(z)"

m22 element 22 of the metric tensor.

type: string

default value: "F2 + Sin(z)"

m23 element 23 of the metric tensor.

type: string

default value: "F2 + Sin(z)"

m33 element 33 of the metric tensor.

type: string

default value: "F2 + Sin(z)"

Max Take the maximum value of a list of fields.

Options:

FieldsList

Field indices type: list

default value: {}

MaxEigenHessian

Compute the maximum eigenvalue of the Hessian matrix of Field[IField], with the gradients evaluated by finite differences:

 $F = \max(eig(grad(grad(Field[IField]))))$ Options:

Delta Step used for the finite differences

type: float default value: 0

IField Field index

type: integer default value: 1

Mean Simple smoother:

F = (G(x+delta,y,z) + G(x-delta,y,z) + G(x,y+delta,z) + G(x,y-delta,z) + G(x,y,z+delta) + G(x,y,z-delta) + G(x,y,z) / 7,

where G=Field[IField] Options:

Delta Distance used to compute the mean value

type: float

default value: 0.0003464101615137755

IField Field index

type: integer default value: 0

Min Take the minimum value of a list of fields.

Options:

FieldsList

Field indices type: list

default value: {}

MinAniso Take the intersection of a list of possibly anisotropic fields.

Options:

FieldsList

Field indices type: list

default value: {}

Octree Pre compute another field on an octree to speed-up evalution

Options:

InField Id of the field to use as x coordinate.

type: integer

default value: 746138744

Param Evaluate Field IField in parametric coordinates:

F = Field[IField](FX,FY,FZ)

See the MathEval Field help to get a description of valid FX, FY and FZ expressions. Options:

FX X component of parametric function

type: string default value: ""

FY Y component of parametric function

type: string default value: ""

FZ Z component of parametric function

type: string default value: ""

IField Field index

type: integer default value: 1

PostView Evaluate the post processing view IView.

Options:

CropNegativeValues

return LC_MAX instead of a negative value (this option is needed for

backward compatibility with the BackgroundMesh option

type: boolean default value: 1

IView Post-processing view index

type: integer default value: 0 ViewTag Post-processing view tag

type: integer default value: -1

Restrict Restrict the application of a field to a given list of geometrical points, curves, surfaces or volumes.

Options:

EdgesList

Curve tags type: list default value: {}

FacesList

Surface tags type: list default value: {}

IField Field index

type: integer default value: 1

RegionsList

Volume tags type: list default value: {}

VerticesList

Point tags type: list default value: {}

Structured

Linearly interpolate between data provided on a 3D rectangular structured grid.

The format of the input file is:

```
Ox Oy Oz Dx Dy Dz nx ny nz v(0,0,0) v(0,0,1) v(0,0,2) ... v(0,1,0) v(0,1,1) v(0,1,2) ... v(0,2,0) v(0,2,1) v(0,2,2) ... ... v(1,0,0) ... ...
```

where O are the coordinates of the first node, D are the distances between nodes in each direction, n are the numbers of nodes in each direction, and v are the values on each node.

Options:

FileName Name of the input file

type: path default value: ""

OutsideValue

Value of the field outside the grid (only used if the "SetOutsideValue" option is true).

type: float default value: 0

SetOutsideValue

True to use the "OutsideValue" option. If False, the last values of the grid are used.

type: boolean default value: 0

TextFormat

True for ASCII input files, false for binary files (4 bite signed integers for n, double precision floating points for v, D and O)

type: boolean default value: 0

Threshold

 $F = LCMin if Field[IField] \le DistMin,$

F = LCMax if Field[IField] >= DistMax,

 ${\bf F}={\bf interpolation}$ between LcMin and LcMax if DistMin < Field[IField] < DistMax Options:

DistMax Distance from entity after which element size will be LcMax

type: float default value: 10

DistMin Distance from entity up to which element size will be LcMin

type: float default value: 1

IField Index of the field to evaluate

type: integer default value: 0

LcMax Element size outside DistMax

type: float default value: 1

LcMin Element size inside DistMin

type: float default value: 0.1

Sigmoid True to interpolate between LcMin and LcMax using a sigmoid, false to

interpolate linearly

type: boolean default value: 0

StopAtDistMax

True to not impose element size outside DistMax (i.e., F = a very big value if Field[IField] > DistMax)

type: boolean default value: 0

6.3.2 Structured grids

Extrude { expression-list } { extrude-list layers }

Extrudes both the geometry and the mesh using a translation (see Section 5.1.5 [Extrusions], page 39). The *layers* option determines how the mesh is extruded and has the following syntax:

```
layers:
  Layers { expression } |
  Layers { expression-list }, { expression-list } } |
  Recombine < expression >; ...
  QuadTriNoNewVerts <RecombLaterals>; |
  QuadTriAddVerts <RecombLaterals>; ...
```

In the first Layers form, expression gives the number of elements to be created in the (single) layer. In the second form, the first expression-list defines how many elements should be created in each extruded layer, and the second expression-list gives the normalized height of each layer (the list should contain a sequence of n numbers 0 < h1 < h2 < ... < hn <= 1). See Section A.3 [t3], page 131, for an example.

For curve extrusions, the Recombine option will recombine triangles into quadrangles when possible. For surface extrusions, the Recombine option will recombine tetrahedra into prisms, hexahedra or pyramids.

Please note that, starting with Gmsh 2.0, region tags cannot be specified explicitly anymore in Layers commands. Instead, as with all other geometry commands, you must use the automatically created entity identifier created by the extrusion command. For example, the following extrusion command will return the tag of the new "top" surface in num[0] and the tag of the new volume in num[1]:

```
num[] = Extrude {0,0,1} { Surface{1}; Layers{10}; };
```

QuadTriNoNewVerts and QuadTriAddVerts allow to connect structured, extruded volumes containing quadrangle-faced elements to structured or unstructured tetrahedral volumes, by subdividing into triangles any quadrangles on boundary surfaces shared with tetrahedral volumes. (They have no effect for 1D or 2D extrusions.) QuadTriNoNewVerts subdivides any of the region's quad-faced 3D elements that touch these boundary triangles into pyramids, prisms, or tetrahedra as necessary, all WITHOUT adding new nodes. QuadTriAddVerts works in a simular way, but subdivides 3D elements touching the boundary triangles by adding a new node inside each element at the node-based centroid. Either method results in a structured extrusion with an outer layer of subdivided elements that interface the inner, unmodified elements to the triangle-meshed region boundaries.

In some rare cases, due to certain lateral boundary conditions, it may not be possible make a valid element subdivision with QuadTriNoNewVerts without adding additional nodes. In this case, an internal node is created at the node-based centroid of the element. The element is then divided using that node. When an internal node is created with QuadTriNoNewVerts, the user is alerted by a warning message sent for each instance; however, the mesh will still be valid and conformal.

Both QuadTriNoNewVerts and QuadTriAddVerts can be used with the optional RecombLaterals keyword. By default, the QuadTri algorithms will mesh any free laterals as triangles, if possible. RecombLaterals forces any free laterals to remain as quadrangles, if possible. Lateral surfaces between two QuadTri regions will always be meshed as quadrangles.

Note that the QuadTri algorithms will handle all potential meshing conflicts along the lateral surfaces of the extrusion. In other words, QuadTri will not subdivide a

lateral that must remain as quadrangles, nor will it leave a lateral as quadrangles if it *must* be divided. The user should therefore feel free to mix different types of neighboring regions with a QuadTri meshed region; the mesh should work. However, be aware that the top surface of the QuadTri extrusion will always be meshed as triangles, unless it is extruded back onto the original source in a toroidal loop (a case which also works with QuadTri).

QuadTriNoNewVerts and QuadTriAddVerts may be used interchangeably, but QuadTriAddVerts often gives better element quality.

If the user wishes to interface a structured extrusion to a tetrahedral volume without modifying the original structured mesh, the user may create dedicated interface volumes around the structured geometry and apply a QuadTri algorithm to those volumes only.

Extrude { { expression-list }, { expression-list }, expression } { extrude-list layers }

Extrudes both the geometry and the mesh using a rotation (see Section 5.1.5 [Extrusions], page 39). The layers option is defined as above. With the built-in geometry kernel the angle should be strictly smaller than Pi. With the OpenCASCADE kernel the angle should be strictly smaller than 2 Pi.

Extrude { { expression-list }, { expression-list }, { expression-list },
expression } { extrude-list layers }

Extrudes both the geometry and the mesh using a combined translation and rotation (see Section 5.1.5 [Extrusions], page 39). The *layers* option is defined as above. With the built-in geometry kernel the angle should be strictly smaller than Pi. With the OpenCASCADE kernel the angle should be strictly smaller than 2 Pi.

Extrude { Surface { expression-list }; layers < Using Index[expr]; > < Using
View[expr]; > < ScaleLastLayer; > }

Extrudes a boundary layer from the specified surfaces. If no view is specified, the boundary layer is created using gouraud-shaped (smoothed) normal field. Specifying a boundary layer index allows to extrude several independent boundary layers (with independent normal smoothing).

ScaleLastLayer scales the height of the last (top) layer of each normal's extrusion by the average length of the edges in all the source elements that contain the source node (actually, the average of the averages for each element-edges actually touching the source node are counted twice). This allows the height of the last layer to vary along with the size of the source elements in order to achieve better element quality. For example, in a boundary layer extruded with the Layers definition 'Layers $\{1,4,2\}$, $\{0.5,0.6,1.6\}$,' a source node adjacent to elements with an overall average edge length of 5.0 will extrude to have a last layer height = (1.6-0.6) * 5.0 = 5.0.

Transfinite Curve { expression-list-or-all } = expression < Using Progression |
Bump expression >;

Selects the curves in expression-list to be meshed with the 1D transfinite algorithm. The expression on the right hand side gives the number of nodes that will be created on the curve (this overrides any other mesh element size prescription—see Section 6.3.1 [Specifying mesh element sizes], page 47). The optional argument 'Using Progression expression' instructs the transfinite algorithm to distribute the nodes following a geometric progression (Progression 2 meaning for example that each line element in the series will be twice as long as the preceding one). The optional argument 'Using Bump expression' instructs the transfinite algorithm to distribute the nodes with a refinement at both ends of the curve. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Transfinite Surface { expression-list-or-all } < = { expression-list } > < Left | Right | Alternate | AlternateRight | AlternateLeft > ;

Selects surfaces to be meshed with the 2D transfinite algorithm. The expression-list on the right-hand-side should contain the tags of three or four points on the boundary of the surface that define the corners of the transfinite interpolation. If no tags are given, the transfinite algorithm will try to find the corners automatically. The optional argument specifies the way the triangles are oriented when the mesh is not recombined. Alternate is a synonym for AlternateRight. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Transfinite Volume { expression-list } < = { expression-list } > ;

Selects five- or six-face volumes to be meshed with the 3D transfinite algorithm. The expression-list on the right-hand-side should contain the tags of the six or eight points on the boundary of the volume that define the corners of the transfinite interpolation. If no tags are given, the transfinite algorithm will try to find the corners automatically. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

TransfQuadTri { expression-list } ;

Applies the transfinite QuadTri algorithm on the expression-list list of volumes. A transfinite volume with any combination of recombined and un-recombined transfinite boundary surfaces is valid when meshed with TransfQuadTri. When applied to non-Transfinite volumes, TransfQuadTri has no effect on those volumes. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

6.3.3 Miscellaneous

Here is a list of all other mesh commands currently available:

Mesh expression;

Generates expression-D mesh. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

RefineMesh:

Refines the current mesh by splitting all elements. If Mesh.SecondOrderLinear is set, the new nodes are inserted by linear interpolatinon. Otherwise they are snapped on the actual geometry. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

OptimizeMesh char-expression;

Optimizes the current mesh with the given algorithm (currently "Gmsh" for default tetrahedral mesh optimizer, "Netgen" for Netgen optimizer, "HighOrder" for direct high-order mesh optimizer, "HighOrderElastic" for high-order elastic smoother, "HighOrderFastCurving" for fast curving algorithm, "Laplace2D" for Laplace smoothing, "Relocate2D" and "Relocate3D" for node relocation).

AdaptMesh { expression-list } { expression-list } { { expression-list < , ... > } }; Performs adaptive mesh generation. Documentation not yet available.

RelocateMesh Point | Curve | Surface { expression-list-or-all };

Relocates the mesh nodes on the given entities using the parametric coordinates stored in the nodes. Useful for creating perturbation of meshes e.g. for sensitivity analyzes. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

RecombineMesh;

Recombine the current mesh into quadrangles. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

SetOrder expression;

Changes the order of the elements in the current mesh.

PartitionMesh expression;

Partitions the mesh into expression, using current partitioning options.

Point | Curve { expression-list } In Surface { expression };

Embed the point(s) or curve(s) in the given surface. The surface mesh will conform to the mesh of the point(s) or curves(s). This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Point | Curve | Surface { expression-list } In Volume { expression };

Embed the point(s), curve(s) or surface(s) in the given volume. The volume mesh will conform to the mesh of the corresponding point(s), curve(s) or surface(s). This is only supported with the 3D Delaunay algorithm. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Periodic Curve { expression-list } = { expression-list } ;

Force the mesh of the curves on the left-hand side to match the mesh of the curves on the right-hand side (masters). If used after meshing, generate the periodic node correspondence information assuming the mesh of the curves on the left-hand side effectively matches the mesh of the curves on the right-hand side. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Periodic Surface expression { expression-list } = expression { expression-list } ; Force the mesh of the surface on the left-hand side (with boundary edges specified

between braces) to match the mesh of the master surface on the right-hand side (with boundary edges specified between braces). If used after meshing, generate the periodic node correspondence information assuming the mesh of the surface on the left-hand side effectively matches the mesh of the master surface on the right-hand side (useful for structured and extruded meshes). This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Periodic Curve | Surface { expression-list } = { expression-list } Affine | Translate { expression-list };

Force mesh of curves or surfaces on the left-hand side to match the mesh of the curves or surfaces on the right-hand side (masters), using prescribed geometrical transformations. If used after meshing, generate the periodic node correspondence information assuming the mesh of the curves or surfaces on the left-hand side effectively matches the mesh of the curves or surfaces on the right-hand side (useful for structured and extruded meshes). Affine takes a 4 x 4 affine transformation matrix given by row (only 12 entries can be provided for convenience); Translate takes the 3 components of the translation as in Section 5.1.7 [Transformations], page 41. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Periodic Curve | Surface { expression-list } = { expression-list } Rotate { expression-list }, { expression-list }, expression };

Force the mesh of curves or surfaces on the left-hand side to match the mesh of the curves on the right-hand side (masters), using a rotation specified as in Section 5.1.7 [Transformations], page 41. If used after meshing, generate the periodic node correspondence information assuming the mesh of the curves or surfaces on the left-hand

side effectively matches the mesh of the curves or surfaces on the right-hand side (useful for structured and extruded meshes). This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Coherence Mesh;

Removes all duplicate mesh nodes.

CreateTopology;

Creates a boundary representation from the mesh of the current model if the model does not have one (e.g. when imported from mesh file formats with no BRep representation of the underlying model), clears any built-in CAD kernel entities, and exports the discrete entities in the built-in CAD kernel.

CreateGeometry < { <Physical> Point | Curve | Surface | Volume { expression-list-or-all }; ... } >;

Creates a geometry for discrete entities (represented solely by a mesh, without an underlying CAD description), i.e. create a parametrization for discrete curves and surfaces, assuming that each can be parametrized with a single map. If no entities are given, create a geometry for all discrete entities.

ClassifySurfaces { expression , expression < , expression > };

Classify ("color") the surface mesh based on an angle threshold (the first argument, in radians), and create new discrete surfaces, curves and points accordingly. If the second argument is set, also create discrete curves on the boundary if the surface is open. If the third argument is set, create edges and surfaces than can be reparametrized with <code>CreateGeometry</code>. The last optional argument sets an angle threshold to force splitting of the generated curves.

RenumberMeshNodes;

Renumbers the node tags in the current mesh in a continuous sequence.

RenumberMeshElements;

Renumbers the elements tags in the current mesh in a contiunous sequence.

< Recursive > Color color-expression { <Physical> Point | Curve | Surface | Volume { expression-list-or-all }; ... }

Sets the mesh color of the entities in expression-list to color-expression. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

```
< Recursive > Hide { <Physical> Point | Curve | Surface | Volume {
expression-list-or-all }; ... }
```

Hides the mesh of the entities in expression-list, if General.VisibilityMode is set to 0 or 2. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Hide { : }

Hide the mesh of all entities, if General. VisibilityMode is set to 0 or 2. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Recombine Surface { expression-list-or-all } < = expression >;

Recombines the triangular meshes of the surfaces listed in expression-list into mixed triangular/quadrangular meshes. The optional expression on the right hand side specifies the maximum difference (in degrees) allowed between the largest angle of a quadrangle and a right angle (a value of 0 would only accept quadrangles with right angles; a value of 90 would allow degenerate quadrangles; default value is 45). This operation triggers a synchronization of the CAD model with the internal Gmsh model.

MeshAlgorithm Surface { expression-list } = expression;

Forces the meshing algorithm per surface.

MeshSizeFromBoundary Surface { expression-list } = expression;

Forces the mesh size to be extended from the boudnary, or not, per surface.

Compound Curve | Surface { expression-list-or-all } ;

Treats the given entities as a single entity when meshing, i.e. perform cross-patch meshing of the entities.

ReverseMesh Curve | Surface { expression-list-or-all } ;

Reverses the mesh of the given curve(s) or surface(s). This operation triggers a synchronization of the CAD model with the internal Gmsh model.

ReorientMesh Volume { expression-list } ;

Reorients the meshes of the bounding surfaces of the given volumes so that the normals point outward to the volumes. Currently only available with the Open-CASCADE kernel, as it relies on the STL triangulation. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Save char-expression;

Saves the mesh in a file named *char-expression*, using the current Mesh.Format (see Section B.3 [Mesh options list], page 199). If the path in *char-expression* is not absolute, *char-expression* is appended to the path of the current file. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

< Recursive > Show { <Physical> Point | Curve | Surface | Volume { expression-list-or-all }; ... }

Shows the mesh of the entities in *expression-list*, if General.VisibilityMode is set to 0 or 2. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Show { : };

Shows the mesh of all entities, if General. VisibilityMode is set to 0 or 2. This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Smoother Surface { expression-list } = expression;

Sets number of elliptic smoothing steps for the surfaces listed in expression-list (smoothing only applies to transfinite meshes at the moment). This operation triggers a synchronization of the CAD model with the internal Gmsh model.

Homology ({ expression-list }) { { expression-list } , { expression-list } };

Compute a basis representation for homology spaces after a mesh has been generated. The first expression-list is a list of dimensions whose homology bases are computed; if empty, all bases are computed. The second expression-list is a list physical groups that constitute the computation domain; if empty, the whole mesh is the domain. The third expression-list is a list of physical groups that constitute the relative subdomain of relative homology computation; if empty, absolute homology is computed. Resulting basis representation chains are stored as physical groups in the mesh.

Cohomology ({ expression-list }) { { expression-list } , { expression-list } }; Similar to command Homology, but computes a basis representation for cohomology spaces instead.

6.4 Mesh options

The list of all the options that control the behavior of mesh commands, as well as the way meshes are displayed in the GUI, is given in Section B.3 [Mesh options list], page 199.

7 Solver module

Solvers and other external codes can be driven by Gmsh through the ONELAB interface (see http://www.onelab.info), which allows to have them share parameters and modeling information. To add a new external solver, you need to specify its name (Solver.NameO, Solver.Name1, etc.) and the path to the executable (Solver.ExecutableO, Solver.ExecutableI, etc.). The list of all the solver options is given in Section B.4 [Solver options list], page 217. Examples on how to interface solvers are available in the source distribution (in the utils/solvers directory). A full-featured solver interfaced in this manner is GetDP (https://getdp.info), a general finite element solver using mixed finite elements.

Using the Gmsh API, you can also directly embed Gmsh in your own solver, and use ONELAB for interactive parameter definition and modification. See custom_gui.py and custom_gui.cpp) for examples.

8 Post-processing module

Gmsh's post-processing module can handle multiple scalar, vector or tensor datasets along with the geometry and the mesh. The datasets can be given in several formats: in human-readable "parsed" format (these are just part of a standard input script, but are usually put in separate files with a '.pos' extension), in native MSH files (ASCII or binary files with '.msh' extensions: see Chapter 9 [File formats], page 105), or in standard third-party formats.

Once loaded into Gmsh, scalar fields can be displayed as iso-curves, iso-surfaces or color maps, whereas vector fields can be represented either by three-dimensional arrows or by displacement maps. Tensor fields can be displayed as Von-Mises effective stresses, min/max eigenvalues, eigenvectors, ellipses or ellipsoids. (To display other (combinations of) components, you can use the Force scalar or Force vector options, or use Plugin(MathEval): see Section 8.2 [Post-processing plugins], page 77.)

In Gmsh's jargon, each dataset, along with the visualization options, is called a "post-processing view", or simply a "view". Each view is given a name, and can be manipulated either individually (each view has its own button in the GUI and can be referred to by its index in a script or in the API) or globally (see the PostProcessing.Link option in Section B.5 [Post-processing options list], page 222).

By default, Gmsh treats all post-processing views as three-dimensional plots, i.e., draws the scalar, vector and tensor primitives (points, curves, triangles, tetrahedra, etc.) in 3D space. But Gmsh can also represent each post-processing view containing *scalar points* as two-dimensional ("X-Y") plots, either space- or time-oriented:

- in a '2D space' plot, the scalar points are taken in the same order as they are defined in the post-processing view: the abscissa of the 2D graph is the curvilinear abscissa of the curve defined by the point series, and only one curve is drawn using the values associated with the points. If several time steps are available, each time step generates a new curve;
- in a '2D time' plot, one curve is drawn for each scalar point in the view and the abscissa is the time step.

Although visualization is usually mostly an interactive task, Gmsh exposes all the post-processing commands and options to the user in its scripting language and through the API to permit a complete automation of the post-processing process (see e.g., Section A.8 [t8], page 140, and Section A.9 [t9], page 142).

The two following sections summarize all available post-processing commands and options. Most options apply to both 2D and 3D plots (colormaps, point/line sizes, interval types, time step selection, etc.), but some are peculiar to 3D (lightning, element selection, etc.) or 2D plots (abscissa labels, etc.). Note that 2D plots can be positioned explicitly inside the graphical window, or be automatically positioned in order to avoid overlaps.

Sample post-processing files in human-readable "parsed" format and in the native MSH file format are available in the tutorial directory of Gmsh's distribution ('.pos' and '.msh' files). The "parsed" format is defined in the next section (cf. the View command); the MSH format is defined in Chapter 9 [File formats], page 105.

8.1 Post-processing commands

This section describes the post-processing commands available in the scripting language. For the equivalent commands in the Gmsh API, see the gmsh/view module in Appendix D [Gmsh API], page 245.

Alias View[expression];

Creates an alias of the expression-th post-processing view.

Note that Alias creates a logical duplicate of the view without actually duplicating the data in memory. This is very useful when you want multiple simultaneous renderings of the same large dataset (usually with different display options), but you cannot afford to store all copies in memory. If what you really want is multiple physical copies of the data, just merge the file containing the post-processing view multiple times.

AliasWithOptions View[expression];

Creates an alias of the *expression*-th post-processing view and copies all the options of the *expression*-th view to the new aliased view.

CopyOptions View[expression, expression];

Copy all the options from the first expression-th post-processing view to the second one.

Combine ElementsBvViewName;

Combines all the post-processing views having the same name into new views. The combination is done "spatially", i.e., simply by appending the elements at the end of the new views.

Combine ElementsFromAllViews | Combine Views;

Combines all the post-processing views into a single new view. The combination is done "spatially", i.e., simply by appending the elements at the end of the new view.

Combine ElementsFromVisibleViews;

Combines all the visible post-processing views into a single new view. The combination is done "spatially", i.e., simply by appending the elements at the end of the new view.

Combine TimeStepsByViewName | Combine TimeSteps;

Combines the data from all the post-processing views having the same name into new multi-time-step views. The combination is done "temporally", i.e., as if the data in each view corresponds to a different time instant. The combination will fail if the meshes in all the views are not identical.

Combine TimeStepsFromAllViews;

Combines the data from all the post-processing views into a new multi-time-step view. The combination is done "temporally", i.e., as if the data in each view corresponds to a different time instant. The combination will fail if the meshes in all the views are not identical.

Combine TimeStepsFromVisibleViews;

Combines the data from all the visible post-processing views into a new multi-timestep view. The combination is done "temporally", i.e., as if the data in each view corresponds to a different time instant. The combination will fail if the meshes in all the views are not identical.

Delete View[expression];

Deletes (removes) the expression-th post-processing view. Note that post-processing view indices start at 0.

Delete Empty Views;

Deletes (removes) all the empty post-processing views.

Background Mesh View[expression];

Applies the expression-th post-processing view as the current background mesh. Note that post-processing view indices start at 0.

Plugin (string) . Run;

Executes the plugin string. The list of default plugins is given in Section 8.2 [Post-processing plugins], page 77.

Plugin (string) . string = expression | char-expression;

Sets an option for a given plugin. See Section 8.2 [Post-processing plugins], page 77, for a list of default plugins and Section A.9 [t9], page 142, for some examples.

Save View[expression] char-expression;

Saves the expression-th post-processing view in a file named char-expression. If the path in char-expression is not absolute, char-expression is appended to the path of the current file.

SendToServer View[expression] char-expression;

Sends the expression-th post-processing view to the ONELAB server, with parameter name char-expression.

```
View "string" { string < ( expression-list ) > { expression-list }; ... };
```

Creates a new post-processing view, named "string". This is an easy and quite powerful way to import post-processing data: all the values are expressions, you can embed datasets directly into your geometrical descriptions (see, e.g., Section A.4 [t4], page 133), the data can be easily generated "on-the-fly" (there is no header containing a priori information on the size of the dataset). The syntax is also very permissive, which makes it ideal for testing purposes.

However this "parsed format" is read by Gmsh's script parser, which makes it inefficient if there are many elements in the dataset. Also, there is no connectivity information in parsed views and all the elements are independent (all fields can be discontinuous), so a lot of information can be duplicated. For large datasets, you should thus use the mesh-based post-processing file format described in Chapter 9 [File formats], page 105, or use one of the standard formats like MED.

More explicitly, the syntax for a parsed View is the following

where the 47 object types that can be displayed are:

type	#list-of-cod	rds	#list-of-values	;
SP	3	1	* nb-time-steps	
VP	3	3	* nb-time-steps	
TP	3	9	* nb-time-steps	
SL	6	2	* nb-time-steps	
VL	6	6	* nb-time-steps	
TL	6	18	* nb-time-steps	
ST	9	3	* nb-time-steps	
VT	9	9	* nb-time-steps	
TT	9	27	* nb-time-steps	
SQ	12	4	* nb-time-steps	
VQ	12	12	* nb-time-steps	
TQ	12	36	* nb-time-steps	
SS	12	4	* nb-time-steps	
VS	12	12	* nb-time-steps	
TS	12	36	* nb-time-steps	
SH	24	8	* nb-time-steps	
	SP VP TP SL VL TL ST VT TT SQ VQ TQ SS VS TS	SP 3 VP 3 TP 3 SL 6 VL 6 TL 6 ST 9 VT 9 TT 9 SQ 12 VQ 12 TQ 12 TQ 12 SS 12 VS 12 TS 12	SP 3 1 VP 3 3 TP 3 9 SL 6 2 VL 6 6 TL 6 18 ST 9 3 VT 9 9 TT 9 27 SQ 12 4 VQ 12 12 TQ 12 36 SS 12 4 VS 12 12 TS 12 36	SP 3 1 * nb-time-steps VP 3 3 * nb-time-steps TP 3 9 * nb-time-steps SL 6 2 * nb-time-steps VL 6 6 * nb-time-steps TL 6 18 * nb-time-steps ST 9 3 * nb-time-steps VT 9 9 * nb-time-steps TT 9 27 * nb-time-steps SQ 12 4 * nb-time-steps VQ 12 12 * nb-time-steps TQ 12 36 * nb-time-steps SS 12 4 * nb-time-steps VS 12 12 * nb-time-steps VS 12 12 * nb-time-steps TS 12 36 * nb-time-steps

Vector hexahedron	VH	24	24 * nb-time-steps
Tensor hexahedron	TH	24	72 * nb-time-steps
Scalar prism	SI	18	6 * nb-time-steps
Vector prism	VI	18	18 * nb-time-steps
Tensor prism	TI	18	54 * nb-time-steps
Scalar pyramid	SY	15	5 * nb-time-steps
Vector pyramid	VY	15	15 * nb-time-steps
Tensor pyramid	TY	15	45 * nb-time-steps
2D text	T2	3	arbitrary
3D text	Т3	4	arbitrary

The coordinates are given 'by node', i.e.,

- (coord1, coord2, coord3) for a point,
- (coord1-node1, coord2-node1, coord3-node1, coord1-node2, coord2-node2, coord3-node2) for a line,
- (coord1-node1, coord2-node1, coord3-node1, coord1-node2, coord2-node2, coord3-node2, coord1-node3, coord2-node3, coord3-node3) for a triangle,
- etc.

The ordering of the nodes is given in Section 9.2 [Node ordering], page 112. The values are given by time step, by node and by component, i.e.:

```
comp1-node1-time1, comp2-node1-time1, comp3-node1-time1,
comp1-node2-time1, comp2-node2-time1, comp3-node2-time1,
comp1-node3-time1, comp2-node3-time1, comp3-node3-time1,
comp1-node1-time2, comp2-node1-time2, comp3-node1-time2,
comp1-node2-time2, comp2-node2-time2, comp3-node2-time2,
comp1-node3-time2, comp2-node3-time2, comp3-node3-time2,
```

For the 2D text objects, the two first expressions in list-of-coords give the X-Y position of the string in screen coordinates, measured from the top-left corner of the window. If the first (respectively second) expression is negative, the position is measured from the right (respectively bottom) edge of the window. If the value of the first (respectively second) expression is larger than 99999, the string is centered horizontally (respectively vertically). If the third expression is equal to zero, the text is aligned bottom-left and displayed using the default font and size. Otherwise, the third expression is converted into an integer whose eight lower bits give the font size, whose eight next bits select the font (the index corresponds to the position in the font menu in the GUI), and whose eight next bits define the text alignment (0=bottom-left, 1=bottom-center, 2=bottom-right, 3=top-left, 4=top-center, 5=top-right, 6=center-left, 7=center-center, 8=center-right).

For the 3D text objects, the three first expressions in list-of-coords give the XYZ position of the string in model (real world) coordinates. The fourth expression has the same meaning as the third expression in 2D text objects.

For both 2D and 3D text objects, the *list-of-values* can contain an arbitrary number of *char-expressions*. If the *char-expression* starts with file://, the remainder of the string is interpreted as the name of an image file, and the image is displayed instead of the string. A format string in the form @wxh or @wxh,wx,wy,wz,hx,hy,hz, where w and h are the width and height (in model coordinates for T3 or in pixels for T2) of the image, wx,wy,wz is the direction of the bottom edge of the image and hx,hy,hz is the direction of the left edge of the image.

The optional TIME list can contain a list of expressions giving the value of the time (or any other variable) for which an evolution was saved.

The optional INTERPOLATION_SCHEME lists can contain the interpolation matrices used for high-order adaptive visualization.

Let us assume that the approximation of the view's value over an element is written as a linear combination of d basis functions f[i], i=0, ..., d-1 (the coefficients being stored in list-of-values). Defining f[i] = Sum(j=0, ..., d-1) F[i][j] p[j], with $p[j] = u^P[j][0]$ $v^P[j][1]$ $w^P[j][2]$ (u, v and w being the coordinates in the element's parameter space), then val-coef-matrix denotes the $d \times d$ matrix F and val-exp-matrix denotes the $d \times d$ matrix F.

In the same way, let us also assume that the coordinates x, y and z of the element are obtained through a geometrical mapping from parameter space as a linear combination of m basis functions g[i], i=0, ..., m-1 (the coefficients being stored in list-of-coords). Defining $g[i] = \operatorname{Sum}(j=0, ..., m-1)$ G[i][j] q[j], with $q[j] = u^{2}Q[j][0]$ $v^{2}Q[j][1]$ $v^{2}Q[j][2]$, then geo-coef-matrix denotes the $m \times m$ matrix G and geo-exp-matrix denotes the $m \times 3$ matrix G.

Here are for example the interpolation matrices for a first order quadrangle:

```
INTERPOLATION_SCHEME {
    {1/4,-1/4, 1/4,-1/4},
    {1/4, 1/4,-1/4,-1/4},
    {1/4, 1/4, 1/4, 1/4},
    {1/4,-1/4,-1/4, 1/4}
}
{
    {0, 0, 0},
    {1, 0, 0},
    {0, 1, 0},
    {1, 1, 0}
}
```

8.2 Post-processing plugins

Post-processing plugins permit to extend the functionality of Gmsh's post-processing module. The difference between regular post-processing options (see Section B.5 [Post-processing options list], page 222) and post-processing plugins is that regular post-processing options only change the way the data is displayed, while post-processing plugins either create new post-processing views, or modify the data stored in a view (in a destructive, non-reversible way).

Plugins are available in the GUI by right-clicking on a view button (or by clicking on the black arrow next to the view button) and then selecting the 'Plugin' submenu. In the API, plugins are available in the gmsh/plugin module (see Appendix D [Gmsh API], page 245).

Here is the list of the plugins that are shipped by default with Gmsh:

Plugin(AnalyseMeshQuality)

Plugin(AnalyseMeshQuality) analyses the quality of all the elements of a given dimension. Depending on what is asked, it computes the minimum of the Jacobian determinant (J), the IGE quality measure (Inverse Gradient Error) and/or the ICN quality measure (Inverse Condition Number). Statistics are printed and, if requested, a post-processing view is created for each quality measure. The plugin hides elements for which the measure is greater than 'Hiding threshold'.

J is faster to compute but gives information only on element validity while the other measures also give information on element quality.

The IGE measure is related to the error on the gradient of the finite element solution. It is the scaled Jacobian for quads and hexes and a new measure for triangles and tetrahedra.

The ICN measure is related to the condition number of the stiffness matrix. (See the article "Efficient computation of the minimum of shape quality measures on curvilinear finite elements" for details.)

Parameters:

- JacobianDeterminant = $\{0, 1\}$
- $IGEMeasure = \{0, 1\}$
- ICNMeasure = $\{0, 1\}$
- HidingThreshold = [0, 1]: Hides all elements for which min(mu) is strictly greater than the threshold, where mu is ICN ifICNMeasure == 1, otherwise it is IGE if IGEMeasure == 1. If ICNMeasure == IGEMeasure == 0, nothing happens. If threshold == 0, hides all elements except invalid elements.
- CreateView = $\{0, 1\}$: Creates a post-processing view of $\min(J)/\max(J)$, $\min(IGE)$ and/or $\min(ICN)$. If 'Recompute' = 1, new views are created.
- Recompute = $\{0,1\}$: Should be 1 if the mesh has changed.
- DimensionOfElements = $\{-1, 1, 2, 3, 4\}$: If == -1, analyse element of the highest dimension. If == 4, analyse 2D and 3D elements. Numeric options:

JacobianDeterminant

Default value: 0

IGEMeasure

Default value: 0

ICNMeasure

Default value: 0

HidingThreshold

Default value: 9

CreateView

Default value: 0

Recompute

Default value: 0

DimensionOfElements

Default value: -1

Plugin(Annotate)

Plugin(Annotate) adds the text string 'Text', in font 'Font' and size 'FontSize', in the view 'View'. The string is aligned according to 'Align'.

If 'ThreeD' is equal to 1, the plugin inserts the string in model coordinates at the position ('X','Y','Z'). If 'ThreeD' is equal to 0, the plugin inserts the string in screen coordinates at the position ('X','Y').

If 'View' < 0, the plugin is run on the current view.

Plugin(Annotate) is executed in-place for list-based datasets or creates a new view for other datasets. String options:

Text Default value: "My Text"

Font Default value: "Helvetica"

Align Default value: "Left"

Numeric options:

X Default value: 50

Y Default value: 30

Z Default value: 0

ThreeD Default value: 0

FontSize Default value: 14

View Default value: -1

Plugin(BoundaryAngles)

Plugin(Boundary Angles) computes the (interior) angles between the line elements on the boundary of all surfaces. The angles, computed modulo 2*Pi, are stored in a new post-processing view, one for each surface. The plugin currently only works for planar surfaces. Available options:- Visible (1=True, 0 = False, Default = 1): Visibility of the Views in the GUI - Save (1=True, 0 = False, Default = 0): Save the Views on disk?- Remove (1=True, 0 = False, Default = 0): Remove the View from the memory after execution?- Filename (Default = 'Angles_Surface'): Root name for the Views (in case of save / Visibility)- Dir (Default = "): Output directory (possibly nested) String options:

Filename Default value: "Angles_Surface"

Dir Default value: ""

Numeric options:

View Default value: -1

Save Default value: 0

Visible Default value: 0

Remove Default value: 0

Plugin(Bubbles)

Plugin(Bubbles) constructs a geometry consisting of 'bubbles' inscribed in the Voronoi of an input triangulation. 'ShrinkFactor' allows to change the size of the bubbles. The plugin expects a triangulation in the 'z = 0' plane to exist in the current model.

Plugin(Bubbles) creates one '.geo' file. String options:

OutputFile

Default value: "bubbles.geo"

Numeric options:

ShrinkFactor

Default value: 0

Plugin(Crack)

Plugin(Crack) creates a crack around the physical group 'PhysicalGroup' of dimension 'Dimension' (1 or 2), embedded in a mesh of dimension 'Dimension' + 1. The plugin duplicates the nodes and the elements on the crack and stores them in a new discrete curve ('Dimension' = 1) or surface ('Dimension' = 2). The elements touching the crack on the "negative" side are modified to use the newly generated nodes. If 'OpenBoundaryPhysicalGroup' is given (> 0), its nodes are duplicated and the crack will be left open on that (part of the) boundary. Otherwise, the lips of the crack are sealed, i.e., its nodes are not duplicated. For 1D cracks, 'NormalX', 'NormalY' and 'NormalZ' provide the reference normal of the surface in which the crack is supposed to be embedded. Numeric options:

Dimension

Default value: 1

PhysicalGroup

Default value: 1

OpenBoundaryPhysicalGroup

Default value: 0

NormalX Default value: 0

NormalY Default value: 0

NormalZ Default value: 1

Plugin(Curl)

Plugin(Curl) computes the curl of the field in the view 'View'.

If 'View' < 0, the plugin is run on the current view.

Plugin(Curl) creates one new view. Numeric options:

View Default value: -1

Plugin(CurvedBndDist)

Plugin(CurvedBndDist) ...

Plugin(CutBox)

Plugin(CutBox) cuts the view 'View' with a rectangular box defined by the 4 points ('X0','Y0','Z0') (origin), ('X1','Y1','Z1') (axis of U), ('X2','Y2','Z2') (axis of V) and ('X3','Y3','Z3') (axis of W).

The number of points along U, V, W is set with the options 'NumPointsU', 'NumPointsV' and 'NumPointsW'.

If 'ConnectPoints' is zero, the plugin creates points; otherwise, the plugin generates hexahedra, quadrangles, lines or points depending on the values of 'NumPointsU', 'NumPointsV' and 'NumPointsW'.

If 'Boundary' is zero, the plugin interpolates the view inside the box; otherwise the plugin interpolates the view at its boundary.

If 'View' < 0, the plugin is run on the current view.

Plugin(CutBox) creates one new view. Numeric options:

XO	Default value:	0		
YO	Default value:	0		
ZO	Default value:	0		
X1	Default value:	1		
Y1	Default value:	0		
Z1	Default value:	0		
X2	Default value:	0		
Y2	Default value:	1		
Z2	Default value:	0		
ХЗ	Default value:	0		
Y3	Default value:	0		
Z3	Default value:	1		
NumPointsU				

Default value: 20

NumPointsV

Default value: 20

NumPointsW

Default value: 20

ConnectPoints

Default value: 1

Boundary Default value: 1

Default value: -1 View

Plugin(CutGrid)

Plugin(CutGrid) cuts the view 'View' with a rectangular grid defined by the 3 points ('X0', 'Y0', 'Z0') (origin), ('X1', 'Y1', 'Z1') (axis of U) and ('X2', 'Y2', 'Z2') (axis of V).

The number of points along U and V is set with the options 'NumPointsU' and 'NumPointsV'.

If 'ConnectPoints' is zero, the plugin creates points; otherwise, the plugin generates quadrangles, lines or points depending on the values of 'NumPointsU' and 'Num-PointsV'.

If 'View' < 0, the plugin is run on the current view.

Plugin(CutGrid) creates one new view. Numeric options:

ΧO Default value: 0 Default value: 0 YΟ Z0 Default value: 0 Default value: 1 Х1 Default value: 0 Υ1

Z1 Default value: 0

X2 Default value: 0

Y2 Default value: 1

Z2 Default value: 0

NumPointsU

Default value: 20

NumPointsV

Default value: 20

ConnectPoints

Default value: 1

View Default value: -1

Plugin(CutMesh)

Plugin(CutMesh) cuts the mesh of the current GModel with the zero value of the levelset defined with the view 'View'.Sub-elements are created in the new model (polygons in 2D and polyhedra in 3D) and border elements are created on the zero-levelset.

If 'Split' is nonzero, the plugin splits the meshalong the edges of the cut elements in the positive side.

If 'SaveTri' is nonzero, the sub-elements are saved as simplices.

Plugin(CutMesh) creates one new GModel. Numeric options:

View Default value: -1

Default value: 0

SaveTri Default value: 0

Plugin(CutParametric)

Split

Plugin(CutParametric) cuts the view 'View' with the parametric function ('X'(u,v), 'Y'(u,v), 'Z'(u,v)), using 'NumPointsU' values of the parameter u in ['MinU', 'MaxU'] and 'NumPointsV' values of the parameter v in ['MinV', 'MaxV'].

If 'ConnectPoints' is set, the plugin creates surface or line elements; otherwise, the plugin generates points.

If 'View' < 0, the plugin is run on the current view.

Plugin(CutParametric) creates one new view. String options:

X Default value: "2 * Cos(u) * Sin(v)"

Y Default value: "4 * Sin(u) * Sin(v)"

Z Default value: "0.1 + 0.5 * Cos(v)"

Numeric options:

MinU Default value: 0

MaxU Default value: 6.2832

NumPointsU

Default value: 180

MinV Default value: 0

MaxV Default value: 6.2832

NumPointsV

Default value: 180

ConnectPoints

Default value: 0

View Default value: -1

Plugin(CutPlane)

Plugin(CutPlane) cuts the view 'View' with the plane 'A'*X + 'B'*Y + 'C'*Z + 'D' = 0.

If 'ExtractVolume' is nonzero, the plugin extracts the elements on one side of the plane (depending on the sign of 'ExtractVolume').

If 'View' < 0, the plugin is run on the current view.

Plugin(CutPlane) creates one new view. Numeric options:

A Default value: 1

B Default value: 0

C Default value: 0

Default value: -0.01

ExtractVolume

Default value: 0

RecurLevel

Default value: 4

TargetError

Default value: 0

View Default value: -1

Plugin(CutSphere)

Plugin(CutSphere) cuts the view 'View' with the sphere $(X-'Xc')^2 + (Y-'Yc')^2 + (Z-'Zc')^2 = R'^2$.

If 'ExtractVolume' is nonzero, the plugin extracts the elements inside (if 'ExtractVolume' < 0) or outside (if 'ExtractVolume' > 0) the sphere.

If 'View' < 0, the plugin is run on the current view.

Plugin(CutSphere) creates one new view. Numeric options:

Xc Default value: 0

Yc Default value: 0

Zc Default value: 0

R Default value: 0.25

ExtractVolume

Default value: 0

RecurLevel

Default value: 4

TargetError

Default value: 0

View Default value: -1

Plugin(DiscretizationError)

Plugin(DiscretizationError) computes the error between the mesh and the geometry. It does so by supersampling the elements and computing the distance between the supersampled points dans their projection on the geometry. Numeric options:

SuperSamplingNodes

Default value: 10

Plugin(Distance)

Plugin(Distance) computes distances to entities in a mesh.

If 'PhysicalPoint', 'PhysicalLine' and 'PhysicalSurface' are 0, the distance is computed to all the boundaries. Otherwise the distance is computed to the given physical group.

If 'DistanceType' is 0, the plugin computes the geometrical Euclidean distance using the naive $O(N^2)$ algorithm. If 'DistanceType' > 0, the plugin computes an approximate distance by solving a PDE with a diffusion constant equal to 'DistanceType' time the maximum size of the bounding box of the mesh as in [Legrand et al. 2006].

Positive 'MinScale' and 'MaxScale' scale the distance function.

Plugin(Distance) creates one new view. Numeric options:

PhysicalPoint

Default value: 0

PhysicalLine

Default value: 0

PhysicalSurface

Default value: 0

DistanceType

Default value: 0

MinScale Default value: 0

MaxScale Default value: 0

Plugin(Divergence)

Plugin(Divergence) computes the divergence of the field in the view 'View'.

If 'View' < 0, the plugin is run on the current view.

Plugin(Divergence) creates one new view. Numeric options:

View Default value: -1

Plugin(Eigenvalues)

Plugin(Eigenvalues) computes the three real eigenvalues of each tensor in the view 'View'.

If 'View' < 0, the plugin is run on the current view.

Plugin(Eigenvalues) creates three new scalar views. Numeric options:

View Default value: -1

Plugin(Eigenvectors)

Plugin(Eigenvectors) computes the three (right) eigenvectors of each tensor in the view 'View' and sorts them according to the value of the associated eigenvalues.

If 'ScaleByEigenvalues' is set, each eigenvector is scaled by its associated eigenvalue. The plugin gives an error if the eigenvectors are complex.

If 'View' < 0, the plugin is run on the current view.

Plugin(Eigenvectors) creates three new vector view. Numeric options:

ScaleByEigenvalues

Default value: 1

View Default value: -1

Plugin(ExtractEdges)

Plugin(ExtractEdges) extracts sharp edges from a triangular mesh.

Plugin(ExtractEdges) creates one new view. Numeric options:

Angle Default value: 40

IncludeBoundary

Default value: 1

Plugin(ExtractElements)

Plugin(ExtractElements) extracts some elements from the view 'View'. If 'MinVal' != 'MaxVal', it extracts the elements whose 'TimeStep'-th values (averaged by element) are comprised between 'MinVal' and 'MaxVal'. If 'Visible' != 0, it extracts visible elements.

If 'View' < 0, the plugin is run on the current view.

Plugin(ExtractElements) creates one new view. Numeric options:

MinVal Default value: 0

MaxVal Default value: 0

TimeStep Default value: 0

Visible Default value: 1

Dimension

Default value: -1

View Default value: -1

Plugin(FieldFromAmplitudePhase)

Plugin(FieldFromAmplitudePhase) builds a complex field 'u' from amplitude 'a' (complex) and phase 'phi' given in two different 'Views' $u = a * \exp(k*phi)$, with k the wavenumber.

The result is to be interpolated in a sufficiently fine mesh: 'MeshFile'.

Plugin(FieldFromAmplitudePhase) generates one new view. String options:

MeshFile Default value: "fine.msh"

Numeric options:

Wavenumber

Default value: 5

AmplitudeView

Default value: 0

PhaseView

Default value: 1

Plugin(GaussPoints)

Given an input mesh, Plugin(GaussPoints) creates a view containing the Gauss points for a given polynomial 'Order'.

If 'PhysicalGroup' is nonzero, the plugin only creates points for the elements belonging to the group. Numeric options:

Order Default value: 0

Dimension

Default value: 2

PhysicalGroup

Default value: 0

Plugin(Gradient)

Plugin(Gradient) computes the gradient of the field in the view 'View'.

If 'View' < 0, the plugin is run on the current view.

Plugin(Gradient) creates one new view. Numeric options:

View Default value: -1

Plugin(HarmonicToTime)

Plugin(HarmonicToTime) takes the values in the time steps 'RealPart' and 'ImaginaryPart' of the view 'View', and creates a new view containing

```
'View'
['RealPart'] * \cos(p) +- 'View'
['ImaginaryPart'] * \sin(p) with
```

p = 2*Pi*k/'NumSteps', k = 0, ..., 'NumSteps'-1

and 'NumSteps' the total number of time steps

over 'NumPeriods' periods at frequency 'Frequency' [Hz].

The '+' sign is used if 'TimeSign'>0, the '-' sign otherwise.

If 'View' < 0, the plugin is run on the current view.

Plugin(HarmonicToTime) creates one new view. Numeric options:

RealPart Default value: 0

ImaginaryPart

Default value: 1

NumSteps Default value: 20

TimeSign Default value: -1

Frequency

Default value: 1

NumPeriods

Default value: 1

View Default value: -1

Plugin(HomologyComputation)

Plugin(HomologyComputation) computes representative chains of basis elements of (relative) homology and cohomology spaces.

Define physical groups in order to specify the computation domain and the relative subdomain. Otherwise the whole mesh is the domain and the relative subdomain is empty.

Plugin(HomologyComputation) creates new views, one for each basis element. The resulting basis chains of desired dimension together with the mesh are saved to the given file. String options:

DomainPhysicalGroups

Default value: ""

SubdomainPhysicalGroups

Default value: ""

ReductionImmunePhysicalGroups

Default value: ""

DimensionOfChainsToSave

Default value: "0, 1, 2, 3"

Filename Default value: "homology.msh"

Numeric options:

ComputeHomology

Default value: 1

ComputeCohomology

Default value: 0

 ${\tt HomologyPhysicalGroupsBegin}$

Default value: -1

CohomologyPhysicalGroupsBegin

Default value: -1

CreatePostProcessingViews

Default value: 1

ReductionOmit

Default value: 1

ReductionCombine

Default value: 3

PostProcessSimplify

Default value: 1

ReductionHeuristic

Default value: 1

Plugin(HomologyPostProcessing)

Plugin(HomologyPostProcessing) operates on representative basis chains of homology and cohomology spaces. Functionality:

1. (co)homology basis transformation:

'TransformationMatrix': Integer matrix of the transformation.

'PhysicalGroupsOfOperatedChains': (Co)chains of a (co)homology space basis to be transformed.

Results a new (co)chain basis that is an integer cobination of the given basis.

2. Make basis representations of a homology space and a cohomology space compatible:

'PhysicalGroupsOfOperatedChains': Chains of a homology space basis.

'PhysicalGroupsOfOperatedChains2': Cochains of a cohomology space basis.

Results a new basis for the homology space such that the incidence matrix of the new basis and the basis of the cohomology space is the identity matrix.

Options:

'PhysicalGroupsToTraceResults': Trace the resulting (co)chains to the given physical groups.

'PhysicalGroupsToProjectResults': Project the resulting (co)chains to the complement of the given physical groups.

'NameForResultChains': Post-processing view name prefix for the results.

'ApplyBoundaryOperatorToResults': Apply boundary operator to the resulting chains.

String options:

TransformationMatrix

Default value: "1, 0; 0, 1"

PhysicalGroupsOfOperatedChains

Default value: "1, 2"

PhysicalGroupsOfOperatedChains2

Default value: ""

PhysicalGroupsToTraceResults

Default value: ""

PhysicalGroupsToProjectResults

Default value: ""

NameForResultChains

Default value: "c"

Numeric options:

ApplyBoundaryOperatorToResults

Default value: 0

Plugin(Integrate)

Plugin(Integrate) integrates a scalar field over all the elements of the view 'View' (if 'Dimension' < 0), or over all elements of the prescribed dimension (if 'Dimension' > 0). If the field is a vector field, the circulation/flux of the field over line/surface elements is calculated.

If 'View' < 0, the plugin is run on the current view.

If 'OverTime' = i > -1 , the plugin integrates the scalar view over time instead of over space, starting at iteration i.If 'Visible' = 1, the plugin only integrates overvisible entities.

Plugin(Integrate) creates one new view. Numeric options:

View Default value: -1

OverTime Default value: -1

Dimension

Default value: -1

Visible Default value: 1

Plugin(Isosurface)

Plugin(Isosurface) extracts the isosurface of value 'Value' from the view 'View', and draws the 'OtherTimeStep'-th step of the view 'OtherView' on this isosurface.

If 'ExtractVolume' is nonzero, the plugin extracts the isovolume with values greater (if 'ExtractVolume' > 0) or smaller (if 'ExtractVolume' < 0) than the isosurface 'Value'.

If 'OtherTimeStep' < 0, the plugin uses, for each time step in 'View', the corresponding time step in 'OtherView'. If 'OtherView' < 0, the plugin uses 'View' as the value source.

If 'View' < 0, the plugin is run on the current view.

Plugin(Isosurface) creates as many views as there are time steps in 'View'. Numeric options:

Value Default value: 0

ExtractVolume

Default value: 0

RecurLevel

Default value: 4

TargetError

Default value: 0

View Default value: -1

OtherTimeStep

Default value: -1

OtherView

Default value: -1

Plugin(Lambda2)

Plugin(Lambda2) computes the eigenvalues Lambda(1,2,3) of the tensor (S_ik S_kj + Om_ik Om_kj), where S_ij = 0.5 (ui,j + uj,i) and Om_ij = 0.5 (ui,j - uj,i) are respectively the symmetric and antisymmetric parts of the velocity gradient tensor.

Vortices are well represented by regions where Lambda(2) is negative.

If 'View' contains tensor elements, the plugin directly uses the tensors as the values of the velocity gradient tensor; if 'View' contains vector elements, the plugin uses them as the velocities from which to derive the velocity gradient tensor.

If 'View' < 0, the plugin is run on the current view.

Plugin(Lambda2) creates one new view. Numeric options:

Eigenvalue

Default value: 2

View Default value: -1

Plugin(LongitudeLatitude)

Plugin(LongituteLatitude) projects the view 'View' in longitude-latitude.

If 'View' < 0, the plugin is run on the current view.

Plugin(LongituteLatitude) is executed in place. Numeric options:

View Default value: -1

Plugin(MakeSimplex)

Plugin(MakeSimplex) decomposes all non-simplectic elements (quadrangles, prisms, hexahedra, pyramids) in the view 'View' into simplices (triangles, tetrahedra).

If 'View' < 0, the plugin is run on the current view.

Plugin(MakeSimplex) is executed in-place. Numeric options:

View Default value: -1

Plugin(MathEval)

Plugin(MathEval) creates a new view using data from the time step 'TimeStep' in the view 'View'.

If only 'Expression0' is given (and 'Expression1', ..., 'Expression8' are all empty), the plugin creates a scalar view. If 'Expression0', 'Expression1' and/or 'Expression2' are given (and 'Expression3', ..., 'Expression8' are all empty) the plugin creates a vector view. Otherwise the plugin creates a tensor view.

In addition to the usual mathematical functions (Exp, Log, Sqrt, Sin, Cos, Fabs, etc.) and operators $(+, -, *, /, ^)$, all expressions can contain:

- the symbols v0, v1, v2, ..., vn, which represent the n components in 'View';
- the symbols w0, w1, w2, ..., wn, which represent the n components of 'OtherView', at time step 'OtherTimeStep';

- the symbols x, y and z, which represent the three spatial coordinates.

If 'TimeStep' < 0, the plugin extracts data from all the time steps in the view.

If 'View' < 0, the plugin is run on the current view.

Plugin(MathEval) creates one new view. If 'PhysicalRegion' < 0, the plugin is run on all physical regions.

Plugin(MathEval) creates one new view. String options:

Expression0

Default value: $"Sqrt(v0^2+v1^2+v2^2)"$

Expression1

Default value: ""

Expression2

Default value: ""

Expression3

Default value: ""

Expression4

Default value: ""

Expression5

Default value: ""

Expression6

Default value: ""

Expression7

Default value: ""

Expression8

Default value: ""

Numeric options:

TimeStep Default value: -1

View Default value: -1

OtherTimeStep

Default value: -1

OtherView

Default value: -1

ForceInterpolation

Default value: 0

PhysicalRegion

Default value: -1

Plugin(MeshSizeFieldView)

Plugin(MeshSizeFieldView) evaluates the mesh size field 'MeshSizeField' on specified 'Component' (0 for scalar) of the post-processing view 'View'. Numeric options:

MeshSizeField

Default value: 0

View Default value: -1

Component

Default value: 0

Plugin (MeshSubEntities)

Plugin(MeshSubEntities) creates mesh elements for the entities of dimension 'OutputDimension' (0 for vertices, 1 for edges, 2 for faces) of the 'InputPhysicalGroup' of dimension 'InputDimension'. The plugin creates new elements belonging to 'OutputPhysicalGroup'. Numeric options:

InputDimension

Default value: 1

InputPhysicalGroup

Default value: 1

OuputDimension

Default value: 0

OuputPhysicalGroup

Default value: 2000

Plugin(MeshVolume)

Plugin(MeshVolume) computes the volume of the mesh.

Only the elements in the physical group 'PhysicalGroup' of dimension 'Dimension' are taken into account, unless 'PhysicalGroup' is negative, in which case all the elements of the given 'Dimension' are considered. If 'Dimension' is negative, all the elements are considered.

Plugin(MeshVolume) creates one new view. Numeric options:

PhysicalGroup

Default value: -1

Dimension

Default value: 3

Plugin (MinMax)

Plugin(MinMax) computes the min/max of a view.

If 'View' < 0, the plugin is run on the current view. If 'OverTime' = 1, the plugin calculates the min/max over space and time. If 'Argument' = 1, the plugin calculates the min/max and the argmin/argmax. If 'Visible' = 1, the plugin is only applied to visible entities.

Plugin(MinMax) creates two new views. Numeric options:

View Default value: -1

OverTime Default value: 0

Argument Default value: 0

Visible Default value: 1

Plugin(ModifyComponents)

Plugin(ModifyComponents) modifies the components of the 'TimeStep'-th time step in the view 'View', using the expressions provided in 'Expression0', ..., 'Expression8'.

If an expression is empty, the corresponding component in the view is not modified.

The expressions can contain:

- the usual mathematical functions (Log, Sqrt, Sin, Cos, Fabs, ...) and operators $(+, -, *, /, ^{\circ})$;
- the symbols x, y and z, to retrieve the coordinates of the current node;
- the symbols Time and TimeStep, to retrieve the current time and time step values;
- the symbols v0, v1, v2, ..., v8, to retrieve each component of the field in 'View' at the 'TimeStep'-th time step;
- the symbols w0, w1, w2, ..., w8, to retrieve each component of the field in 'OtherView' at the 'OtherTimeStep'-th time step. If 'OtherView' and 'View' are based on different spatial grids, or if their data types are different, 'OtherView' is interpolated onto 'View'.

If 'TimeStep' < 0, the plugin automatically loops over all the time steps in 'View' and evaluates the expressions for each one.

If 'OtherTimeStep' <0, the plugin uses 'TimeStep' instead.

If 'View' < 0, the plugin is run on the current view.

If 'OtherView' < 0, the plugin uses 'View' instead.

Plugin(ModifyComponents) is executed in-place. String options:

Expression0

Default value: "v0 * Sin(x)"

Expression1

Default value: ""

Expression2

Default value: ""

Expression3

Default value: ""

Expression4

Default value: ""

Expression5

Default value: ""

Expression6

Default value: ""

Expression7

Default value: ""

Expression8

Default value: ""

Numeric options:

TimeStep Default value: -1

View Default value: -1

OtherTimeStep

Default value: -1

OtherView

Default value: -1

ForceInterpolation

Default value: 0

Plugin(ModulusPhase)

Plugin(ModulusPhase) interprets the time steps 'realPart' and 'imaginaryPart' in the view 'View' as the real and imaginary parts of a complex field and replaces them with their corresponding modulus and phase.

If 'View' < 0, the plugin is run on the current view.

Plugin(ModulusPhase) is executed in-place. Numeric options:

RealPart Default value: 0

ImaginaryPart

Default value: 1

View Default value: -1

Plugin(NearToFarField)

Plugin(NearToFarField) computes the far field pattern from the near electric E and magnetic H fields on a surface enclosing the radiating device (antenna).

Parameters: the wavenumber, the angular discretisation (phi in [0, 2*Pi] and theta in [0, Pi]) of the far field sphere and the indices of the views containing the complex-valued E and H fields. If 'Normalize' is set, the far field is normalized to 1. If 'dB' is set, the far field is computed in dB. If 'NegativeTime' is set, E and H are assumed to have exp(-iwt) time dependency; otherwise they are assume to have exp(+iwt) time dependency. If 'MatlabOutputFile' is given the raw far field data is also exported in Matlab format.

Plugin(NearToFarField) creates one new view. String options:

MatlabOutputFile

Default value: "farfield.m"

Numeric options:

Wavenumber

Default value: 1

PhiStart Default value: 0

PhiEnd Default value: 6.28319

NumPointsPhi

Default value: 60

ThetaStart

Default value: 0

ThetaEnd Default value: 3.14159

NumPointsTheta

Default value: 30

EView Default value: 0

HView Default value: 1

Normalize

Default value: 1

dB Default value: 1

NegativeTime

Default value: 0

RFar Default value: 0

Plugin(NearestNeighbor)

Plugin(NearestNeighbor) computes the distance from each point in 'View' to its nearest neighbor.

If 'View' < 0, the plugin is run on the current view.

Plugin(NearestNeighbor) is executed in-place. Numeric options:

View Default value: -1

Plugin(NewView)

Plugin(NewView) creates a new model-based view from the current mesh, with 'NumComp' field components, set to value 'Value'.

If 'ViewTag' is positive, force that tag for the created view. String options:

Type Default value: "NodeData"

Numeric options:

NumComp Default value: 1

Value Default value: 0

ViewTag Default value: -1

Plugin(Particles)

Plugin(Particles) computes the trajectory of particules in the force field given by the 'TimeStep'-th time step of a vector view 'View'.

The plugin takes as input a grid defined by the 3 points ('X0','Y0','Z0') (origin), ('X1','Y1','Z1') (axis of U) and ('X2','Y2','Z2') (axis of V).

The number of particles along U and V that are to be transported is set with the options 'NumPointsU' and 'NumPointsV'. The equation

$$A2 * d^2X(t)/dt^2 + A1 * dX(t)/dt + A0 * X(t) = F$$

is then solved with the initial conditions X(t=0) chosen as the grid, dX/dt(t=0)=0, and with F interpolated from the vector view.

Time stepping is done using a Newmark scheme with step size 'DT' and 'MaxIter' maximum number of iterations.

If 'View' < 0, the plugin is run on the current view.

Plugin(Particles) creates one new view containing multi-step vector points. Numeric options:

XO	Default value:	0
YO	Default value:	0
ZO	Default value:	0
X1	Default value:	1
Y1	Default value:	0
Z1	Default value:	0
X2	Default value:	0
Y2	Default value:	1
Z2	Default value:	0

NumPointsU

Default value: 10

NumPointsV

Default value: 1

A2 Default value: 1

A1 Default value: 0

A0 Default value: 0

DT Default value: 0.1

MaxIter Default value: 100

TimeStep Default value: 0

View Default value: -1

Plugin(Probe)

Plugin(Probe) gets the value of the view 'View' at the point ('X', 'Y', 'Z').

If 'View' < 0, the plugin is run on the current view.

Plugin(Probe) creates one new view. Numeric options:

X Default value: 0
 Y Default value: 0
 Z Default value: 0
 View Default value: -1

Plugin(Remove)

Plugin(Remove) removes the marked items from the view 'View'.

If 'View' < 0, the plugin is run on the current view.

Plugin(Remove) is executed in-place. Numeric options:

Text2D Default value: 1
Text3D Default value: 1
Points Default value: 0
Lines Default value: 0

Triangles

Default value: 0

Quadrangles

Default value: 0

Tetrahedra

Default value: 0

Hexahedra

Default value: 0

Prisms Default value: 0
Pyramids Default value: 0
Scalar Default value: 1
Vector Default value: 1
Tensor Default value: 1

View Default value: -1

Plugin(Scal2Tens)

Plugin(Scal2Tens) converts some scalar fields into a tensor field. The number of components must be given (max. 9). The new view 'NameNewView' contains the new tensor field. If the number of a view is -1, the value of the corresponding component is 0. String options:

NameNewView

Default value: "NewView"

Numeric options:

NumberOfComponents

Default value: 9

View0 Default value: -1

View1 Default value: -1

View2 Default value: -1

View3 Default value: -1

View4 Default value: -1

View5 Default value: -1

View6 Default value: -1

View7 Default value: -1

View8 Default value: -1

Plugin(Scal2Vec)

Plugin(Scal2Vec) converts the scalar fields into a vectorial field. The new view 'NameNewView' contains it. If the number of a view is -1, the value of the corresponding component of the vector field is 0. String options:

NameNewView

Default value: "NewView"

Numeric options:

ViewX Default value: -1
ViewY Default value: -1
ViewZ Default value: -1

Plugin(ShowNeighborElements)

Plugin(ShowNeighborElements) sets visible some elements and a layer of elements around them, the other being set invisible. Numeric options:

NumLayers

Default value: 1

Element1 Default value: 0

Element2 Default value: 0

Element3 Default value: 0

Element4 Default value: 0

Element5 Default value: 0

Plugin(SimplePartition)

Plugin(SimplePartition) partitions the current mesh into 'NumSlicesX', 'NumSlicesY' and 'NumSlicesZ' slices along the X-, Y- and Z-axis, respectively. The distribtion of these slices is governed by 'MappingX', 'MappingY' and 'MappingZ', where 't' is a normalized absissa along each direction. (Setting 'MappingX' to 't' will thus lead to equidistant slices along the X-axis.)

The plugin creates the topology of the partitioned entities if 'CreateTopology' is set. String options:

MappingX Default value: "t"

MappingY Default value: "t"

MappingZ Default value: "t"

Numeric options:

NumSlicesX

Default value: 4

NumSlicesY

Default value: 1

NumSlicesZ

Default value: 1

CreateTopology

Default value: 1

Plugin(Skin)

Plugin(Skin) extracts the boundary (skin) of the current mesh (if 'FromMesh' = 1), or from the the view 'View' (in which case it creates a new view). If 'View' < 0 and 'FromMesh' = 0, the plugin is run on the current view.

If 'Visible' is set, the plugin only extracts the skin of visible entities. Numeric options:

Visible Default value: 1
FromMesh Default value: 0
View Default value: -1

Plugin(Smooth)

Plugin(Smooth) averages the values at the nodes of the view 'View'.

If 'View' < 0, the plugin is run on the current view.

Plugin(Smooth) is executed in-place. Numeric options:

View Default value: -1

Plugin(SpanningTree)

Plugin(SpanningTree) builds a tree spanning every vertex of a mesh and stores it directly in the model.

The tree is constructed by starting first on the curves, then on the surfaces and finally on the volumes.

Parameters

- PhysicalVolumes: list of the physical volumes upon which the tree must be built.
- PhysicalSurfaces: list of the physical surfaces upon which the tree must be built.
- PhysicalCurves: list of the physical curves upon which the tree must be built.
- OutputPhysical: physical tag of the generated tree (-1 will select a new tag automatically).

Note - Lists must be comma separated integers and spaces are ignored.

Remark - This plugin does not overwrite a physical group. Therefore, if an existing physical tag is used in OutputPhysical, the edges of the tree will be /added/ to the specified group. String options:

PhysicalVolumes

Default value: ""

PhysicalSurfaces

Default value: ""

PhysicalCurves

Default value: ""

Numeric options:

OutputPhysical

Default value: -1

Plugin(SphericalRaise)

Plugin(SphericalRaise) transforms the coordinates of the elements in the view 'View' using the values associated with the 'TimeStep'-th time step.

Instead of elevating the nodes along the X, Y and Z axes as with the View['View'].RaiseX, View['View'].RaiseY and View['View'].RaiseZ options, the raise is applied along the radius of a sphere centered at ('Xc', 'Yc', 'Zc').

To produce a standard radiation pattern, set 'Offset' to minus the radius of the sphere the original data lives on.

If 'View' < 0, the plugin is run on the current view.

Plugin(SphericalRaise) is executed in-place. Numeric options:

Xc Default value: 0
Yc Default value: 0
Zc Default value: 0
Raise Default value: 1
Offset Default value: 0
TimeStep Default value: 0
View Default value: -1

Plugin(StreamLines)

Plugin(StreamLines) computes stream lines from the 'TimeStep'-th time step of a vector view 'View' and optionally interpolates the scalar view 'OtherView' on the resulting stream lines.

The plugin takes as input a grid defined by the 3 points ('X0','Y0','Z0') (origin), ('X1','Y1','Z1') (axis of U) and ('X2','Y2','Z2') (axis of V).

The number of points along U and V that are to be transported is set with the options 'NumPointsU' and 'NumPointsV'. The equation

$$dX(t)/dt = V(x,y,z)$$

is then solved with the initial condition X(t=0) chosen as the grid and with V(x,y,z) interpolated on the vector view.

The time stepping scheme is a RK44 with step size 'DT' and 'MaxIter' maximum number of iterations.

If 'TimeStep' < 0, the plugin tries to compute streamlines of the unsteady flow.

If 'View' < 0, the plugin is run on the current view.

Plugin(StreamLines) creates one new view. This view contains multi-step vector points if 'OtherView' < 0, or single-step scalar lines if 'OtherView' >= 0. Numeric options:

XO	Default value:	0
YO	Default value:	0
ZO	Default value:	0
X1	Default value:	1
Y1	Default value:	0
Z1	Default value:	0
X2	Default value:	0
Y2	Default value:	1
Z2	Default value:	0

NumPointsU

Default value: 10

NumPointsV

Default value: 1

DT Default value: 0.1

MaxIter Default value: 100

TimeStep Default value: 0

View Default value: -1

OtherView

Default value: -1

Plugin(Summation)

Plugin(Summation) sums every time steps of 'Reference View' and (every) 'Other View X'and store the result in a new view.

If 'View 0' < 0 then the current view is selected.

If 'View 1...8' < 0 then this view is skipped.

Views can have diffrent number of time steps

Warning: the Plugin assume that every views sharethe same mesh and that meshes do not move between time steps! String options:

Resuling View Name

Default value: "default"

Numeric options:

View 0 Default value: -1

View 1 Default value: -1

View 2 Default value: -1

View 3 Default value: -1

View 4 Default value: -1

View 5 Default value: -1

View 6 Default value: -1

View 7 Default value: -1

Plugin(Tetrahedralize)

Plugin(Tetrahedralize) tetrahedralizes the points in the view 'View'.

If 'View' < 0, the plugin is run on the current view.

Plugin(Tetrahedralize) creates one new view. Numeric options:

View Default value: -1

Plugin(Transform)

Plugin(Transform) transforms the homogeneous node coordinates (x,y,z,1) of the elements in the view 'View' by the matrix

['A11' 'A12' 'A13' 'Tx']

['A21' 'A22' 'A23' 'Ty']

['A31' 'A32' 'A33' 'Tz'].

If 'SwapOrientation' is set, the orientation of the elements is reversed.

If 'View' < 0, the plugin is run on the current view.

Plugin(Transform) is executed in-place. Numeric options:

Default value: 1 A11 Default value: 0 A12 Default value: 0 A13 Default value: 0 A21 A22 Default value: 1 Default value: 0 A23 Default value: 0 A31 Default value: 0 A32 A33 Default value: 1 Default value: 0 Tx Ty Default value: 0 Tz Default value: 0 SwapOrientation

Default value: 0

View Default value: -1

Plugin(Triangulate)

Plugin(Triangulate) triangulates the points in the view 'View', assuming that all the points belong to a surface that can be projected one-to-one onto a plane. Algorithm selects the old (0) or new (1) meshing algorithm.

If 'View' < 0, the plugin is run on the current view.

Plugin(Triangulate) creates one new view. Numeric options:

Algorithm

Default value: 1

View Default value: -1

Plugin(VoroMetal)

Plugin(VoroMetal) creates microstructures using Voronoi diagrams.

String options:

SeedsFile

Default value: "seeds.txt"

Numeric options:

ComputeBestSeeds

Default value: 0

ComputeMicrostructure

Default value: 1

Plugin(Warp)

Plugin(Warp) transforms the elements in the view 'View' by adding to their node coordinates the vector field stored in the 'TimeStep'-th time step of the view 'OtherView', scaled by 'Factor'.

If 'View' < 0, the plugin is run on the current view.

If 'OtherView' < 0, the vector field is taken as the field of surface normals multiplied by the 'TimeStep' value in 'View'. (The smoothing of the surface normals is controlled by the 'SmoothingAngle' parameter.)

Plugin(Warp) is executed in-place. Numeric options:

Factor Default value: 1
TimeStep Default value: 0

SmoothingAngle

Default value: 180

View Default value: -1

OtherView

Default value: -1

8.3 Post-processing options

General post-processing option names have the form 'PostProcessing.string'. Options peculiar to post-processing views take two forms.

- 1. options that should apply to all views can be set through 'View.string', before any view is loaded;
- 2. options that should apply only to the *n*-th view take the form 'View[n].string' (n = 0, 1, 2, ...), after the n-th view is loaded.

The list of all post-processing and view options is given in Section B.5 [Post-processing options list], page 222. See Section A.8 [t8], page 140, and Section A.9 [t9], page 142, for some examples.

9 File formats

This chapter describes Gmsh's native "MSH" file format, used to store meshes and associated post-processing datasets. The MSH format exists in two flavors: ASCII and binary. The format has a version number that is independent of Gmsh's main version number.

(Remember that for small post-processing datasets you can also use human-readable "parsed" post-processing views, as described in Section 8.1 [Post-processing commands], page 73. Such "parsed" views do not require an underlying mesh, and can therefore be easier to use in some cases.)

9.1 MSH file format

The MSH file format version 4 (current revision: version 4.1) contains one mandatory section giving information about the file (\$MeshFormat), followed by several optional sections defining the physical group names (\$PhysicalName), the elementary model entities (\$Entities), the partitioned entities (\$PartitionedEntities), the nodes (\$Nodes), the elements (\$Elements), the periodicity relations (\$Periodic), the ghost elements (\$GhostElements), the parametrizations (\$Parametrizations) and the post-processing datasets (\$NodeData, \$ElementData, \$ElementNodeData). The sections reflect the underlying Gmsh data model: \$Entities store the boundary representation of the model geometrical entities, \$Nodes and \$Elements store mesh data classified on these entities, and \$NodeData, \$ElementData, \$ElementNodeData store post-processing data (views). (See Appendix D [Gmsh API], page 245 and Section E.1 [Source code structure], page 303 for a more detailed description of the internal Gmsh data model.)

To represent a simple mesh, the minimal sections that should be present in the file are \$MeshFormat, \$Nodes and \$Elements. Nodes are assumed to be defined before elements. To represent a mesh with the full topology (BRep) of the model and associated physical groups, an \$Entities section should be present before the \$Nodes section. Sections can be repeated in the same file, and post-processing sections can be put into separate files (e.g. one file per time step). Any section with an unrecognized header is simply ignored: you can thus add comments in a '.msh' file by putting them e.g. inside a \$Comments/\$EndComments section.

All the node, element and entity tags (their global identification numbers) should be strictly positive. (Tag 0 is reserved for internal use.) Important note about efficiency: tags can be "sparse", i.e., do not have to constitute a continuous list of numbers (the format even allows them to not be ordered). However, using sparse tags can lead to performance degradation. For meshes, sparse indexing can¹ force Gmsh to use a map instead of a vector to access nodes and elements. The performance hit is on speed. For post-processing datasets, which always use vectors to access data, the performance hit is on memory. A \$NodeData with two nodes, tagged 1 and 1000000, will allocate a (mostly empty) vector of 1000000 elements. By default, for non-partitioned, single file meshes, Gmsh will create files with a continuous ordering of node and element tags, starting at 1. Detecting if the numbering is continuous can be done easily when reading a file by inspecting numNodes, minNodeTag and maxNodeTag in the \$Nodes section; and numElements, minElementTag and maxElementTag in the \$Elements section.

In binary mode (Mesh.Binary=1 or -bin on the command line), all the numerical values (integer and floating point) not marked as ASCII in the format description below are written in binary form, using the type given between parentheses. The block structure of the \$Nodes and \$Elements sections allows to read integer and floating point data in each block in a single step (e.g. using fread in C).

The format is defined as follows:

¹ If the numbering is not too sparse, Gmsh will still use a vector.

```
$MeshFormat // same as MSH version 2
  version(ASCII double; currently 4.1)
    file-type(ASCII int; 0 for ASCII mode, 1 for binary mode)
    data-size(ASCII int; sizeof(size_t))
  < int with value one; only in binary mode, to detect endianness >
$EndMeshFormat
$PhysicalNames // same as MSH version 2
  numPhysicalNames(ASCII int)
 dimension(ASCII int) physicalTag(ASCII int) "name"(127 characters max)
$EndPhysicalNames
$Entities
 numPoints(size_t) numCurves(size_t)
    numSurfaces(size_t) numVolumes(size_t)
 pointTag(int) X(double) Y(double) Z(double)
    numPhysicalTags(size_t) physicalTag(int) ...
  curveTag(int) minX(double) minY(double) minZ(double)
    maxX(double) maxY(double) maxZ(double)
    numPhysicalTags(size_t) physicalTag(int) ...
    numBoundingPoints(size_t) pointTag(int) ...
  surfaceTag(int) minX(double) minY(double) minZ(double)
    maxX(double) maxY(double) maxZ(double)
    numPhysicalTags(size_t) physicalTag(int) ...
    numBoundingCurves(size_t) curveTag(int) ...
  volumeTag(int) minX(double) minY(double) minZ(double)
    maxX(double) maxY(double) maxZ(double)
    numPhysicalTags(size_t) physicalTag(int) ...
   numBoundngSurfaces(size_t) surfaceTag(int) ...
$EndEntities
$PartitionedEntities
 numPartitions(size_t)
 numGhostEntities(size_t)
    ghostEntityTag(int) partition(int)
 numPoints(size_t) numCurves(size_t)
    numSurfaces(size_t) numVolumes(size_t)
 pointTag(int) parentDim(int) parentTag(int)
    numPartitions(size_t) partitionTag(int) ...
    X(double) Y(double) Z(double)
    numPhysicalTags(size_t) physicalTag(int) ...
  curveTag(int) parentDim(int) parentTag(int)
    numPartitions(size_t) partitionTag(int) ...
    minX(double) minY(double) minZ(double)
    maxX(double) maxY(double) maxZ(double)
```

```
numPhysicalTags(size_t) physicalTag(int) ...
   numBoundingPoints(size_t) pointTag(int) ...
  surfaceTag(int) parentDim(int) parentTag(int)
    numPartitions(size_t) partitionTag(int) ...
    minX(double) minY(double) minZ(double)
    maxX(double) maxY(double) maxZ(double)
    numPhysicalTags(size_t) physicalTag(int) ...
    numBoundingCurves(size_t) curveTag(int) ...
  volumeTag(int) parentDim(int) parentTag(int)
    numPartitions(size_t) partitionTag(int) ...
    minX(double) minY(double) minZ(double)
    maxX(double) maxY(double) maxZ(double)
    numPhysicalTags(size_t) physicalTag(int) ...
   numBoundingSurfaces(size_t) surfaceTag(int) ...
$EndPartitionedEntities
$Nodes
 numEntityBlocks(size_t) numNodes(size_t)
   minNodeTag(size_t) maxNodeTag(size_t)
  entityDim(int) entityTag(int) parametric(int; 0 or 1)
    numNodesInBlock(size_t)
   nodeTag(size_t)
    x(double) y(double) z(double)
       < u(double; if parametric and entityDim >= 1) >
       < v(double; if parametric and entityDim >= 2) >
       < w(double; if parametric and entityDim == 3) >
$EndNodes
$Elements
 numEntityBlocks(size_t) numElements(size_t)
   minElementTag(size_t) maxElementTag(size_t)
  entityDim(int) entityTag(int) elementType(int; see below)
    numElementsInBlock(size_t)
    elementTag(size_t) nodeTag(size_t) ...
$EndElements
$Periodic
 numPeriodicLinks(size_t)
  entityDim(int) entityTag(int) entityTagMaster(int)
 numAffine(size_t) value(double) ...
 numCorrespondingNodes(size_t)
    nodeTag(size_t) nodeTagMaster(size_t)
  . . .
```

```
$EndPeriodic
$GhostElements
 numGhostElements(size_t)
  elementTag(size_t) partitionTag(int)
   numGhostPartitions(size_t) ghostPartitionTag(int) ...
$EndGhostElements
$Parametrizations
 numCurveParam(size_t) numSurfaceParam(size_t)
  curveTag(int) numNodes(size_t)
   nodeX(double) nodeY(double) nodeZ(double) nodeU(double)
  surfaceTag(int) numNodes(size_t) numTriangles(size_t)
   nodeX(double) nodeY(double) nodeZ(double)
      nodeU(double) nodeV(double)
      curvMaxX(double) curvMaxY(double) curvMaxZ(double)
      curvMinX(double) curvMinY(double) curvMinZ(double)
   nodeIndex1(int) nodeIndex2(int) nodeIndex3(int)
$EndParametrizations
$NodeData
 numStringTags(ASCII int)
 stringTag(string) ...
 numRealTags(ASCII int)
 realTag(ASCII double) ...
 numIntegerTags(ASCII int)
  integerTag(ASCII int) ...
 nodeTag(size_t) value(double) ...
$EndNodeData
$ElementData
 numStringTags(ASCII int)
  stringTag(string) ...
 numRealTags(ASCII int)
 realTag(ASCII double) ...
 numIntegerTags(ASCII int)
  integerTag(ASCII int) ...
  elementTag(size_t) value(double) ...
$EndElementData
$ElementNodeData
 numStringTags(ASCII int)
  stringTag(string) ...
 numRealTags(ASCII int)
```

```
realTag(ASCII double) ...
       numIntegerTags(ASCII int)
        integerTag(ASCII int) ...
        elementTag(size_t) numNodesPerElement(int) value(double) ...
      $EndElementNodeData
     $InterpolationScheme
       name(string)
       numElementTopologies(ASCII int)
        elementTopology
       numInterpolationMatrices(ASCII int)
       numRows(ASCII int) numColumns(ASCII int) value(ASCII double) ...
     $EndInterpolationScheme
In the format description above, elementType is e.g.:
           2-node line.
1
2
           3-node triangle.
3
           4-node quadrangle.
4
           4-node tetrahedron.
           8-node hexahedron.
5
6
           6-node prism.
7
           5-node pyramid.
8
           3-node second order line (2 nodes associated with the vertices and 1 with the edge).
           6-node second order triangle (3 nodes associated with the vertices and 3 with the
9
           edges).
10
           9-node second order quadrangle (4 nodes associated with the vertices, 4 with the
           edges and 1 with the face).
           10-node second order tetrahedron (4 nodes associated with the vertices and 6 with
11
           the edges).
12
           27-node second order hexahedron (8 nodes associated with the vertices, 12 with the
           edges, 6 with the faces and 1 with the volume).
13
           18-node second order prism (6 nodes associated with the vertices, 9 with the edges
           and 3 with the quadrangular faces).
           14-node second order pyramid (5 nodes associated with the vertices, 8 with the
14
           edges and 1 with the quadrangular face).
           1-node point.
15
           8-node second order quadrangle (4 nodes associated with the vertices and 4 with
16
           the edges).
           20-node second order hexahedron (8 nodes associated with the vertices and 12 with
17
           the edges).
18
           15-node second order prism (6 nodes associated with the vertices and 9 with the
           13-node second order pyramid (5 nodes associated with the vertices and 8 with the
19
           edges).
```

20	9-node third order incomplete triangle (3 nodes associated with the vertices, 6 with the edges) $$
21	10-node third order triangle (3 nodes associated with the vertices, 6 with the edges, 1 with the face)
22	12-node fourth order incomplete triangle (3 nodes associated with the vertices, 9 with the edges) $$
23	15-node fourth order triangle (3 nodes associated with the vertices, 9 with the edges, 3 with the face)
24	$15\text{-}\mathrm{node}$ fifth order incomplete triangle (3 nodes associated with the vertices, 12 with the edges)
25	$21\mbox{-}\mathrm{node}$ fifth order complete triangle (3 nodes associated with the vertices, 12 with the edges, 6 with the face)
26	4-node third order edge (2 nodes associated with the vertices, 2 internal to the edge)
27	5-node fourth order edge (2 nodes associated with the vertices, 3 internal to the edge) $^{-1}$
28	6-node fifth order edge (2 nodes associated with the vertices, 4 internal to the edge)
29	20-node third order tetrahedron (4 nodes associated with the vertices, 12 with the edges, 4 with the faces)
30	35-node fourth order tetrahedron (4 nodes associated with the vertices, 18 with the edges, 12 with the faces, 1 in the volume)
31	56-node fifth order tetrahedron (4 nodes associated with the vertices, 24 with the edges, 24 with the faces, 4 in the volume)
92	64-node third order hexahedron (8 nodes associated with the vertices, 24 with the edges, 24 with the faces, 8 in the volume)
93	125-node fourth order hexahedron (8 nodes associated with the vertices, 36 with the edges, 54 with the faces, 27 in the volume)

. . .

All the currently supported elements in the format are defined in GmshDefines.h. See Section 9.2 [Node ordering], page 112 for the ordering of the nodes.

The post-processing sections (\$NodeData, \$ElementData, \$ElementNodeData) can contain numStringTags string tags, numRealTags real value tags and numIntegerTags integer tags. The default set of tags understood by Gmsh is as follows:

stringTag

The first is interpreted as the name of the post-processing view and the second as the name of the interpolation scheme, as provided in the \$InterpolationScheme section.

realTag The first is interpreted as a time value associated with the dataset.

integerTag

The first is interpreted as a time step index (starting at 0), the second as the number of field components of the data in the view (1, 3 or 9), the third as the number of entities (nodes or elements) in the view, and the fourth as the partition index for the view data (0 for no partition).

In the \$InterpolationScheme section:

numElementTopologies

is the number of element topologies for which interpolation matrices are provided.

elementTopology

is the id tag of a given element topology: 1 for points, 2 for lines, 3 for triangles, 4 for quadrangles, 5 for tetrahedra, 6 for pyramids, 7 for prisms, 8 for hexahedra, 9 for polygons and 10 for polyhedra.

numInterpolationMatrices

is the number of interpolation matrices provided for the given element topology. Currently you should provide 2 matrices, i.e., the matrices that specify how to interpolate the data (they have the same meaning as in Section 8.1 [Post-processing commands], page 73). The matrices are specified by 2 integers (numRows and numColumns) followed by the values, by row.

Here is a small example of a minimal ASCII MSH4.1 file, with a mesh consisting of two quadrangles and an associated nodal scalar dataset (the comments are not part of the actual file):

```
$MeshFormat
4.1 0 8
                MSH4.1, ASCII
$EndMeshFormat
$Nodes
1 6 1 6
                1 entity bloc, 6 nodes total, min/max node tags: 1 and 6
2 1 0 6
                2D entity (surface) 1, no parametric coordinates, 6 nodes
                  node tag #1
2
                  node tag #2
                   etc.
5
                 node #1 coordinates (0., 0., 0.)
0. 0. 0.
1. 0. 0.
                  node #2 coordinates (1., 0., 0.)
1. 1. 0.
                  etc.
0.1.0.
2. 0. 0.
2. 1. 0.
$EndNodes
$Elements
1 2 1 2
                1 entity bloc, 2 elements total, min/max element tags: 1 and 2
2 1 3 2
                2D entity (surface) 1, element type 3 (4-node quad), 2 elements
1 1 2 3 4
                 quad tag #1, nodes 1 2 3 4
2 2 5 6 3
                  quad tag #2, nodes 2 5 6 3
$EndElements
$NodeData
                1 string tag:
"A scalar view"
                 the name of the view ("A scalar view")
1
                1 real tag:
                  the time value (0.0)
0.0
                3 integer tags:
3
                  the time step (0; time steps always start at 0)
0
1
                  1-component (scalar) field
6
                  6 associated nodal values
1 0.0
                value associated with node #1 (0.0)
2 0.1
                value associated with node #2 (0.1)
3 0.2
                etc.
4 0.0
5 0.2
6 0.4
$EndNodeData
```

The 4.1 revision of the format includes the following modifications with respect to the initial 4.0 version:

• All the unsigned long entries have been changed to size_t. All the entries designating counts which were previously encoded as int have also been changed to size_t. (This only impacts binary files.)

- The \$Entities section is now optional.
- Integer and floating point data in the \$Nodes section is not mixed anymore: all the tags are given first, followed by all the coordinates.
- The bounding box for point entities has been replaced simply by the 3 coordinates of the point (instead of the six bounding box values).
- The entityDim and entityTag values have been switched in the \$Nodes and \$Elements sections (for consistency with the ordering used elsewhere in the file and in the Appendix D [Gmsh API], page 245).
- The minimum and the maximum tag of nodes (resp. elements) have been added in the header of the \$Nodes (resp. \$Elements) section, to facilitate the detection of sparse or dense numberings when reading the file.
- The \$Periodic section has been changed to always provide the number of values in the affine transform (which can be zero, if the transform is not provided).

The following changes are foreseen in a future revision of the MSH format:

• The \$GhostElements, \$NodeData, \$ElementData and \$ElementNodeData will be reworked for greater IO efficiency, with separation of entries by type and a block structure with predictable sizes.

9.2 Node ordering

Historically, Gmsh first supported linear elements (lines, triangles, quadrangles, tetrahedra, prisms and hexahedra). Then, support for second and some third order elements has been added. Below we distinguish such "low order elements", which are hardcoded (i.e. they are explicitly defined in the code), and general "high-order elements", that have been coded in a more general fashion, theoretically valid for any order.

9.2.1 Low order elements

For all mesh and post-processing file formats, the reference elements are defined as follows.

Tetrahedron: Tetrahedron10:

9.2.2 High-order elements

The node ordering of a higher order (possibly curved) element is compatible with the numbering of low order element (it is a generalization). We number nodes in the following order:

- the element principal or corner vertices;
- the internal nodes for each edge;
- the internal nodes for each face;
- the volume internal nodes.

The numbering for internal nodes is recursive, i.e. the numbering follows that of the nodes of an embedded edge/face/volume of lower order. The higher order nodes are assumed to be equispaced. Edges and faces are numbered following the lowest order template that generates a single high-order on this edge/face. Furthermore, an edge is oriented from the node with the lowest to the highest index. The orientation of a face is such that the computed normal points outward; the starting point is the node with the lowest index.

9.3 Legacy formats

This section describes Gmsh's older native file formats. Future versions of Gmsh will continue to support these formats, but we recommend that you do not use them in new applications.

9.3.1 MSH file format version 2 (Legacy)

The MSH file format version 2 is Gmsh's previous native mesh file format, now superseded by the format described in Section 9.1 [MSH file format], page 105. It is defined as follows:

```
$MeshFormat
version-number file-type data-size
$EndMeshFormat
$PhysicalNames
number-of-names
physical-dimension physical-tag "physical-name"
$EndPhysicalNames
$Nodes
number-of-nodes
node-number x-coord y-coord z-coord
$EndNodes
$Elements
number-of-elements
elm-number elm-type number-of-tags < tag > ... node-number-list
$EndElements
$Periodic
number-of-periodic-entities
dimension entity-tag master-entity-tag
number-of-nodes
node-number master-node-number
$EndPeriodic
$NodeData
number-of-string-tags
< "string-tag" >
number-of-real-tags
< real-tag >
number-of-integer-tags
< integer-tag >
node-number value ...
$EndNodeData
$ElementData
number-of-string-tags
< "string-tag" >
number-of-real-tags
< real-tag >
number-of-integer-tags
< integer-tag >
. . .
```

```
elm-number value ...
     $EndElementData
     $ElementNodeData
     number-of-string-tags
     < "string-tag" >
     number-of-real-tags
     < real-tag >
     number-of-integer-tags
     < integer-tag >
     elm-number number-of-nodes-per-element value ...
     $EndElementNodeData
     $InterpolationScheme
     "name"
     number-of-element-topologies
     elm-topology
     number-of-interpolation-matrices
     num-rows num-columns value ...
     $EndInterpolationScheme
where
version-number
           is a real number equal to 2.2
file-type
           is an integer equal to 0 in the ASCII file format.
data-size
           is an integer equal to the size of the floating point numbers used in the file (currently
           only data-size = sizeof(double) is supported).
number-of-nodes
           is the number of nodes in the mesh.
node-number
           is the number (index) of the n-th node in the mesh; node-number must be a postive
           (non-zero) integer. Note that the node-numbers do not necessarily have to form a
           dense nor an ordered sequence.
x-coord y-coord z-coord
           are the floating point values giving the X, Y and Z coordinates of the n-th node.
number-of-elements
           is the number of elements in the mesh.
elm-number
           is the number (index) of the n-th element in the mesh; elm-number must be a postive
           (non-zero) integer. Note that the elm-numbers do not necessarily have to form a
           dense nor an ordered sequence.
          defines the geometrical type of the n-th element: see Section 9.1 [MSH file format],
elm-type
```

page 105.

number-of-tags

gives the number of integer tags that follow for the *n*-th element. By default, the first tag is the tag of the physical entity to which the element belongs; the second is the tag of the elementary model entity to which the element belongs; the third is the number of mesh partitions to which the element belongs, followed by the partition ids (negative partition ids indicate ghost cells). A zero tag is equivalent to no tag. Gmsh and most codes using the MSH 2 format require at least the first two tags (physical and elementary tags).

node-number-list

is the list of the node numbers of the *n*-th element. The ordering of the nodes is given in Section 9.2 [Node ordering], page 112.

number-of-string-tags

gives the number of string tags that follow. By default the first *string-tag* is interpreted as the name of the post-processing view and the second as the name of the interpolation scheme. The interpolation scheme is provided in the \$InterpolationScheme section (see below).

number-of-real-tags

gives the number of real number tags that follow. By default the first real-tag is interpreted as a time value associated with the dataset.

number-of-integer-tags

gives the number of integer tags that follow. By default the first *integer-tag* is interpreted as a time step index (starting at 0), the second as the number of field components of the data in the view (1, 3 or 9), the third as the number of entities (nodes or elements) in the view, and the fourth as the partition index for the view data (0 for no partition).

number-of-nodes-per-elements

gives the number of node values for an element in an element-based view.

is a real number giving the value associated with a node or an element. For NodeData (respectively ElementData) views, there are ncomp values per node (resp. per element), where ncomp is the number of field components. For ElementNodeData views, there are ncomp times number-of-nodes-per-elements values per element.

number-of-element-topologies

is the number of element topologies for which interpolation matrices are provided

elm-topology

is the id tag of a given element topology: 1 for points, 2 for lines, 3 for triangles, 4 for quadrangles, 5 for tetrahedra, 6 for pyramids, 7 for prisms, 8 for hexahedra, 9 for polygons and 10 for polyhedra.

number-of-interpolation-matrices

is the number of interpolation matrices provided for the element topology elmtopology. Currently you should provide 2 matrices, i.e., the matrices that specify how to interpolate the data (they have the same meaning as in Section 8.1 [Postprocessing commands], page 73). The matrices are specified by 2 integers (num-rows and num-columns) followed by the values.

Below is a small example (a mesh consisting of two quadrangles with an associated nodal scalar dataset; the comments are not part of the actual file!):

\$MeshFormat
2.2 0 8

\$EndMeshFormat

```
$Nodes
                     six mesh nodes:
1 0.0 0.0 0.0
                      node #1: coordinates (0.0, 0.0, 0.0)
2 1.0 0.0 0.0
                       node #2: coordinates (1.0, 0.0, 0.0)
3 1.0 1.0 0.0
                       etc.
4 0.0 1.0 0.0
5 2.0 0.0 0.0
6 2.0 1.0 0.0
$EndNodes
$Elements
                     two elements:
                      quad #1: type 3, physical 99, elementary 2, nodes 1 2 3 4
1 3 2 99 2 1 2 3 4
2 3 2 99 2 2 5 6 3
                       quad #2: type 3, physical 99, elementary 2, nodes 2 5 6 3
$EndElements
$NodeData
                      one string tag:
"A scalar view"
                       the name of the view ("A scalar view")
                      one real tag:
0.0
                        the time value (0.0)
                      three integer tags:
0
                       the time step (0; time steps always start at 0)
1
                       1-component (scalar) field
                       six associated nodal values
6
1 0.0
                      value associated with node #1 (0.0)
2 0.1
                      value associated with node #2 (0.1)
3 0.2
                      etc.
4 0.0
5 0.2
6 0.4
$EndNodeData
```

The binary file format is similar to the ASCII format described above:

```
$MeshFormat
version-number file-type data-size
one-binary
$EndMeshFormat
$Nodes
number-of-nodes
nodes-binary
$EndNodes
$Elements
number-of-elements
element-header-binary
elements-binary
element-header-binary
elements-binary
. . .
$EndElements
[ All other sections are identical to ASCII, except that
  node-number, elm-number, number-of-nodes-per-element
  and values are written in binary format. Beware that all the
  $End tags must start on a new line. ]
```

where

version-number

is a real number equal to 2.2.

file-type

is an integer equal to 1.

data-size

has the same meaning as in the ASCII file format. Currently only data-size = sizeof(double) is supported.

one-binary

is an integer of value 1 written in binary form. This integer is used for detecting if the computer on which the binary file was written and the computer on which the file is read are of the same type (little or big endian).

Here is a pseudo C code to write one-binary:

```
int one = 1;
fwrite(&one, sizeof(int), 1, file);
```

number-of-nodes

has the same meaning as in the ASCII file format.

nodes-binary

is the list of nodes in binary form, i.e., a array of number-of-nodes * (4 + 3 * data-size) bytes. For each node, the first 4 bytes contain the node number and the next (3 * data-size) bytes contain the three floating point coordinates.

Here is a pseudo C code to write nodes-binary:

```
for(i = 0; i < number_of_nodes; i++){
  fwrite(&num_i, sizeof(int), 1, file);
  double xyz[3] = {node_i_x, node_i_y, node_i_z};
  fwrite(xyz, sizeof(double), 3, file);
}</pre>
```

number-of-elements

has the same meaning as in the ASCII file format.

element-header-binary

is a list of 3 integers in binary form, i.e., an array of (3 * 4) bytes: the first four bytes contain the type of the elements that follow (same as *elm-type* in the ASCII format), the next four contain the number of elements that follow, and the last four contain the number of tags per element (same as *number-of-tags* in the ASCII format).

Here is a pseudo C code to write element-header-binary:

```
int header[3] = {elm_type, num_elm_follow, num_tags};
fwrite(header, sizeof(int), 3, file);
```

elements-binary

is a list of elements in binary form, i.e., an array of "number of elements that follow" *(4 + number-of-tags * 4 + #node-number-list * 4) bytes. For each element, the first four bytes contain the element number, the next (number-of-tags * 4) contain the tags, and the last (#node-number-list * 4) contain the node indices.

Here is a pseudo C code to write *elements-binary* for triangles with the 2 standard tags (the physical and elementary regions):

9.3.2 MSH file format version 1 (Legacy)

The MSH file format version 1 is Gmsh's original native mesh file format, now superseded by the format described in Section 9.1 [MSH file format], page 105. It is defined as follows:

```
$NOD
number-of-nodes
node-number x-coord y-coord z-coord
...
$ENDNOD
$ELM
number-of-elements
elm-number elm-type reg-phys reg-elem number-of-nodes node-number-list
...
$ENDELM
```

where

number-of-nodes

is the number of nodes in the mesh.

node-number

is the number (index) of the *n*-th node in the mesh; node-number must be a postive (non-zero) integer. Note that the node-numbers do not necessarily have to form a dense nor an ordered sequence.

x-coord y-coord z-coord

are the floating point values giving the X, Y and Z coordinates of the n-th node.

number-of-elements

is the number of elements in the mesh.

elm-number

is the number (index) of the *n*-th element in the mesh; *elm-number* must be a postive (non-zero) integer. Note that the *elm-numbers* do not necessarily have to form a dense nor an ordered sequence.

elm-type defines the geometrical type of the n-th element:

- 1 2-node line.
- 2 3-node triangle.
- 3 4-node quadrangle.
- 4 4-node tetrahedron.
- 5 8-node hexahedron.
- 6 6-node prism.
- 7 5-node pyramid.
- 8 3-node second order line (2 nodes associated with the vertices and 1 with the edge).
- 9 6-node second order triangle (3 nodes associated with the vertices and 3 with the edges).
- 9-node second order quadrangle (4 nodes associated with the vertices, 4 with the edges and 1 with the face).
- 10-node second order tetrahedron (4 nodes associated with the vertices and 6 with the edges).

12	27-node second order hexahedron (8 nodes associated with the vertices,
	12 with the edges, 6 with the faces and 1 with the volume).

- 13 18-node second order prism (6 nodes associated with the vertices, 9 with the edges and 3 with the quadrangular faces).
- 14 14-node second order pyramid (5 nodes associated with the vertices, 8 with the edges and 1 with the quadrangular face).
- 15 1-node point.
- 8-node second order quadrangle (4 nodes associated with the vertices and 4 with the edges).
- 20-node second order hexahedron (8 nodes associated with the vertices and 12 with the edges).
- 18 15-node second order prism (6 nodes associated with the vertices and 9 with the edges).
- 19 13-node second order pyramid (5 nodes associated with the vertices and 8 with the edges).

See below for the ordering of the nodes.

reg-phys is the tag of the physical entity to which the element belongs; reg-phys must be a postive integer, or zero. If reg-phys is equal to zero, the element is considered not to belong to any physical entity.

reg-elem is the tag of the elementary entity to which the element belongs; reg-elem must be a postive (non-zero) integer.

number-of-nodes

is the number of nodes for the n-th element. This is redundant, but kept for backward compatibility.

node-number-list

is the list of the *number-of-nodes* node numbers of the *n*-th element. The ordering of the nodes is given in Section 9.2 [Node ordering], page 112.

9.3.3 POS ASCII file format (Legacy)

The POS ASCII file is Gmsh's old native post-processing format, now superseded by the format described in Section 9.1 [MSH file format], page 105. It is defined as follows:

```
$PostFormat

1.4 file-type data-size
$EndPostFormat
$View
view-name nb-time-steps
nb-scalar-points nb-vector-points nb-tensor-points
nb-scalar-lines nb-vector-lines nb-tensor-lines
nb-scalar-triangles nb-vector-triangles nb-tensor-triangles
nb-scalar-quadrangles nb-vector-quadrangles nb-tensor-quadrangles
nb-scalar-tetrahedra nb-vector-tetrahedra nb-tensor-tetrahedra
nb-scalar-hexahedra nb-vector-hexahedra nb-tensor-hexahedra
nb-scalar-prisms nb-vector-prisms nb-tensor-prisms
nb-scalar-pyramids nb-vector-pyramids nb-tensor-pyramids
nb-scalar-lines2 nb-vector-lines2 nb-tensor-lines2
nb-scalar-triangles2 nb-vector-triangles2 nb-tensor-triangles2
```

```
nb-scalar-quadrangles2 nb-vector-quadrangles2 nb-tensor-quadrangles2
     nb-scalar-tetrahedra2 nb-vector-tetrahedra2 nb-tensor-tetrahedra2
     nb-scalar-hexahedra2 nb-vector-hexahedra2 nb-tensor-hexahedra2
     nb-scalar-prisms2 nb-vector-prisms2 nb-tensor-prisms2
     nb-scalar-pyramids2 nb-vector-pyramids2 nb-tensor-pyramids2
     nb-text2d nb-text2d-chars nb-text3d nb-text3d-chars
     time-step-values
     < scalar-point-value > ... < vector-point-value > ...
         < tensor-point-value > ...
     < scalar-line-value > ... < vector-line-value > ...
         < tensor-line-value > ...
     < scalar-triangle-value > ... < vector-triangle-value > ...
         < tensor-triangle-value > ...
     < scalar-quadrangle-value > ... < vector-quadrangle-value > ...
         < tensor-quadrangle-value > ...
     < scalar-tetrahedron-value > ... < vector-tetrahedron-value > ...
         < tensor-tetrahedron-value > ...
     < scalar-hexahedron-value > ... < vector-hexahedron-value > ...
         < tensor-hexahedron-value > ...
     < scalar-prism-value > ... < vector-prism-value > ...
         < tensor-prism-value > ...
     < scalar-pyramid-value > ... < vector-pyramid-value > ...
         < tensor-pyramid-value > ...
     < scalar-line2-value > ... < vector-line2-value > ...
         < tensor-line2-value > ...
     < scalar-triangle2-value > ... < vector-triangle2-value > ...
         < tensor-triangle2-value > ...
     < scalar-quadrangle2-value > ... < vector-quadrangle2-value > ...
         < tensor-quadrangle2-value > ...
     < scalar-tetrahedron2-value > ... < vector-tetrahedron2-value > ...
         < tensor-tetrahedron2-value > ...
     < scalar-hexahedron2-value > ... < vector-hexahedron2-value > ...
         < tensor-hexahedron2-value > ...
     < scalar-prism2-value > ... < vector-prism2-value > ...
         < tensor-prism2-value > ...
     < scalar-pyramid2-value > ... < vector-pyramid2-value > ...
         < tensor-pyramid2-value > ...
     < text2d > ... < text2d-chars > ...
     < text3d > ... < text3d-chars > ...
     $EndView
where
file-type
          is an integer equal to 0 in the ASCII file format.
data-size
          is an integer equal to the size of the floating point numbers used in the file (usually,
          data-size = sizeof(double)).
          is a string containing the name of the view (max. 256 characters).
nb-time-steps
          is an integer giving the number of time steps in the view.
```

```
nb-scalar-points
nb-vector-points
```

... are integers giving the number of scalar points, vector points, ..., in the view.

nb-text2d nb-text3d

are integers giving the number of 2D and 3D text strings in the view.

nb-text2d-chars
nb-text3d-chars

are integers giving the total number of characters in the 2D and 3D strings.

time-step-values

is a list of *nb-time-steps* double precision numbers giving the value of the time (or any other variable) for which an evolution was saved.

```
scalar-point-value
vector-point-value
```

are lists of double precision numbers giving the node coordinates and the values associated with the nodes of the *nb-scalar-points* scalar points, *nb-vector-points* vector points, ..., for each of the *time-step-values*.

For example, vector-triangle-value is defined as:

```
coord1-node1 coord1-node2 coord1-node3
coord2-node1 coord2-node2 coord2-node3
coord3-node1 coord3-node2 coord3-node3
comp1-node1-time1 comp2-node1-time1 comp3-node1-time1
comp1-node2-time1 comp2-node2-time1 comp3-node2-time1
comp1-node3-time1 comp2-node3-time1 comp3-node3-time1
comp1-node1-time2 comp2-node1-time2 comp3-node1-time2
comp1-node2-time2 comp2-node2-time2 comp3-node2-time2
comp1-node3-time2 comp2-node3-time2 comp3-node3-time2
```

The ordering of the nodes is given in Section 9.2 [Node ordering], page 112.

text2d is a list of 4 double precision numbers:

```
coord1 coord2 style index
```

where coord1 and coord2 give the X-Y position of the 2D string in screen coordinates (measured from the top-left corner of the window) and where index gives the starting index of the string in text2d-chars. If coord1 (respectively coord2) is negative, the position is measured from the right (respectively bottom) edge of the window. If coord1 (respectively coord2) is larger than 99999, the string is centered horizontally (respectively vertically). If style is equal to zero, the text is aligned bottom-left and displayed using the default font and size. Otherwise, style is converted into an integer whose eight lower bits give the font size, whose eight next bits select the font (the index corresponds to the position in the font menu in the GUI), and whose eight next bits define the text alignment (0=bottom-left, 1=bottom-center, 2=bottom-right, 3=top-left, 4=top-center, 5=top-right, 6=center-left, 7=center-center, 8=center-right).

text2d-chars

is a list of nb-text2d-chars characters. Substrings are separated with the null ' $\0$ ' character.

text3d is a list of 5 double precision numbers

coord1 coord2 coord3 style index

where coord1, coord2 and coord3 give the XYZ coordinates of the string in model (real world) coordinates, index gives the starting index of the string in text3d-chars, and style has the same meaning as in text2d.

text3d-chars

is a list of nb-text3d-chars chars. Substrings are separated with the null ' $\backslash 0$ ' character.

9.3.4 POS binary file format (Legacy)

The POS binary file format is the same as the POS ASCII file format described in Section 9.3.3 [POS ASCII file format (Legacy)], page 121, except that:

- 1. file-type equals 1.
- 2. all lists of floating point numbers and characters are written in binary format
- 3. there is an additional integer, of value 1, written before *time-step-values*. This integer is used for detecting if the computer on which the binary file was written and the computer on which the file is read are of the same type (little or big endian).

Here is a pseudo C code to write a post-processing file in binary format:

```
int one = 1;
fprintf(file, "$PostFormat\n");
fprintf(file, "%g %d %d\n", 1.4, 1, sizeof(double));
fprintf(file, "$EndPostFormat\n");
fprintf(file, "$View\n");
fprintf(file, "%s %d "
  "%d %d %d %d %d %d %d %d "
  "%d %d %d %d %d %d %d %d "
  "%d %d %d %d %d %d %d %d "
  "%d %d %d %d %d %d %d %d "
  "%d %d %d %d %d %d %d %d "
  "%d %d %d %d\n",
 view-name, nb-time-steps,
 nb-scalar-points, nb-vector-points, nb-tensor-points,
 nb-scalar-lines, nb-vector-lines, nb-tensor-lines,
 nb-scalar-triangles, nb-vector-triangles, nb-tensor-triangles,
 nb-scalar-quadrangles, nb-vector-quadrangles, nb-tensor-quadrangles,
 nb-scalar-tetrahedra, nb-vector-tetrahedra, nb-tensor-tetrahedra,
 nb-scalar-hexahedra, nb-vector-hexahedra, nb-tensor-hexahedra,
 nb-scalar-prisms, nb-vector-prisms, nb-tensor-prisms,
 nb-scalar-pyramids, nb-vector-pyramids, nb-tensor-pyramids,
 nb-scalar-lines2, nb-vector-lines2, nb-tensor-lines2,
 nb-scalar-triangles2, nb-vector-triangles2, nb-tensor-triangles2,
 nb-scalar-quadrangles2, nb-vector-quadrangles2,
 nb-tensor-quadrangles2,
 nb-scalar-tetrahedra2, nb-vector-tetrahedra2, nb-tensor-tetrahedra2,
 nb-scalar-hexahedra2, nb-vector-hexahedra2, nb-tensor-hexahedra2,
 nb-scalar-prisms2, nb-vector-prisms2, nb-tensor-prisms2,
 nb-scalar-pyramids2, nb-vector-pyramids2, nb-tensor-pyramids2,
 nb-text2d, nb-text2d-chars, nb-text3d, nb-text3d-chars);
fwrite(&one, sizeof(int), 1, file);
fwrite(time-step-values, sizeof(double), nb-time-steps, file);
```

```
fwrite(all-scalar-point-values, sizeof(double), ..., file);
...
fprintf(file, "\n$EndView\n");
```

In this pseudo-code, all-scalar-point-values is the array of double precision numbers containing all the scalar-point-value lists, put one after each other in order to form a long array of doubles. The principle is the same for all other kinds of values.

Appendix A Tutorial

The following tutorials introduce new features gradually, starting with Section A.1 [t1], page 127. The corresponding files are available in the tutorial directory of the Gmsh distribution. The files starting with t introduce features available both in .geo scripts and through the Appendix D [Gmsh API], page 245. The files starting with x introduce features that are only available via the API.

To learn how to run Gmsh on your computer, see Chapter 3 [Running Gmsh on your system], page 11. Screencasts that show how to use the GUI are available on https://gmsh.info/screencasts/. To learn how to run the C++, C, Python and Julia API examples, see the respective subdirectories in tutorial.

A.1 t1: Geometry basics, elementary entities, physical groups

```
See t1.geo. Also available in C++ (t1.cpp), C (t1.c), Python (t1.py) and Julia (t1.jl).
//
// Gmsh GEO tutorial 1
// Geometry basics, elementary entities, physical groups
// The simplest construction in Gmsh's scripting language is the
// 'affectation'. The following command defines a new variable 'lc':
1c = 1e-2;
// This variable can then be used in the definition of Gmsh's simplest
// 'elementary entity', a 'Point'. A Point is uniquely identified by a tag (a
// strictly positive integer; here '1') and defined by a list of four numbers:
// three coordinates (X, Y and Z), and a characteristic length (1c) that sets
// the target element size at the point:
Point(1) = \{0, 0, 0, 1c\};
// The distribution of the mesh element sizes will then be obtained by
// interpolation of these characteristic lengths throughout the
// geometry. Another method to specify characteristic lengths is to use general
// mesh size Fields (see 't10.geo'). A particular case is the use of a
// background mesh (see 't7.geo').
// If no target mesh size of provided, a default uniform coarse size will be
// used for the model, based on the overall model size.
// We can then define some additional points. All points should have different
// tags:
Point(2) = {.1, 0, 0, 1c};
Point(3) = {.1, .3, 0, lc};
Point(4) = {0, .3, 0, 1c};
// Curves are Gmsh's second type of elementary entities, and, amongst curves,
// straight lines are the simplest. A straight line is identified by a tag and
// is defined by a list of two point tags. In the commands below, for example,
// the line 1 starts at point 1 and ends at point 2.
//
// Note that curve tags are separate from point tags - hence we can reuse tag
// '1' for our first curve. And as a general rule, elementary entity tags in
// Gmsh have to be unique per geometrical dimension.
```

```
Line(1) = \{1, 2\};
Line(2) = \{3, 2\};
Line(3) = \{3, 4\};
Line(4) = \{4, 1\};
// The third elementary entity is the surface. In order to define a simple
// rectangular surface from the four curves defined above, a curve loop has
// first to be defined. A curve loop is also identified by a tag (unique amongst
/\!/ curve loops) and defined by an ordered list of connected curves, a sign being
// associated with each curve (depending on the orientation of the curve to form
// a loop):
Curve Loop(1) = \{4, 1, -2, 3\};
// We can then define the surface as a list of curve loops (only one here,
// representing the external contour, since there are no holes--see 't4.geo' for
// an example of a surface with a hole):
Plane Surface(1) = {1};
// At this level, Gmsh knows everything to display the rectangular surface 1 and
// to mesh it. An optional step is needed if we want to group elementary
// geometrical entities into more meaningful groups, e.g. to define some
// mathematical ("domain", "boundary"), functional ("left wing", "fuselage") or
// material ("steel", "carbon") properties.
// Such groups are called "Physical Groups" in Gmsh. By default, if physical
// groups are defined, Gmsh will export in output files only mesh elements that
// belong to at least one physical group. (To force Gmsh to save all elements,
// whether they belong to physical groups or not, set 'Mesh.SaveAll=1;', or
// specify '-save_all' on the command line.) Physical groups are also identified // by tags, i.e. strictly positive integers, that should be unique per dimension
// (OD, 1D, 2D or 3D). Physical groups can also be given names.
//
// Here we define a physical curve that groups the left, bottom and right curves
// in a single group (with prescribed tag 5); and a physical surface with name
// "My surface" (with an automatic tag) containing the geometrical surface 1:
Physical Curve(5) = \{1, 2, 4\};
Physical Surface("My surface") = {1};
// Now that the geometry is complete, you can
// - either open this file with Gmsh and select '2D' in the 'Mesh' module to
// create a mesh; then select 'Save' to save it to disk in the default format
// (or use 'File->Export' to export in other formats);
// - or run 'gmsh t1.geo -2' to mesh in batch mode on the command line.
// You could also uncomment the following lines in this script:
//
//
    Mesh 2;
    Save "t1.msh";
//
// which would lead Gmsh to mesh and save the mesh every time the file is
// parsed. (To simply parse the file from the command line, you can use 'gmsh
// t1.geo -')
// By default, Gmsh saves meshes in the latest version of the Gmsh mesh file
// format (the 'MSH' format). You can save meshes in other mesh formats by
// specifying a filename with a different extension in the GUI, on the command
// line or in scripts. For example
//
//
    Save "t1.unv";
//
// will save the mesh in the UNV format. You can also save the mesh in older
// versions of the MSH format:
```

```
// - In the GUI: open 'File->Export', enter your 'filename.msh' and then pick
    the version in the dropdown menu.
// - On the command line: use the '-format' option (e.g. 'gmsh file.geo -format
// msh2 -2').
// - In a '.geo' script: add 'Mesh.MshFileVersion = x.y;' for any version
// number 'x.y'.
// - As an alternative method, you can also not specify the format explicitly,
   and just choose a filename with the '.msh2' or '.msh4' extension.
// Note that starting with Gmsh 3.0, models can be built using other geometry
// kernels than the default built-in kernel. By specifying
//
//
    SetFactory("OpenCASCADE");
//
// any subsequent command in the '.geo' file would be handled by the {\tt OpenCASCADE}
// geometry kernel instead of the built-in kernel. Different geometry kernels
// have different features. With OpenCASCADE, instead of defining the surface by
// successively defining 4 points, 4 curves and 1 curve loop, one can define the
// rectangular surface directly with
//
    Rectangle(2) = \{.2, 0, 0, .1, .3\};
//
//
// The underlying curves and points could be accessed with the 'Boundary' or
// 'CombinedBoundary' operators.
// See e.g. 't16.geo', 't18.geo', 't19.geo' or 't20.geo' for complete examples
// based on OpenCASCADE, and 'demos/boolean' for more.
```

A.2 t2: Transformations, extruded geometries, volumes

```
See t2.geo. Also available in C++ (t2.cpp), Python (t2.py) and Julia (t2.jl).
//
// Gmsh GEO tutorial 2
// Transformations, extruded geometries, volumes
// -----
// We first include the previous tutorial file, in order to use it as a basis
// for this one. Including a file is equivalent to copy-pasting its contents:
Include "t1.geo";
// We can then add new points and curves in the same way as we did in 't1.geo':
Point(5) = \{0, .4, 0, 1c\};
Line(5) = \{4, 5\};
// Gmsh also provides tools to transform (translate, rotate, etc.)
// elementary entities or copies of elementary entities. For example, point
// 5 can be moved by 0.02 to the left with:
Translate {-0.02, 0, 0} { Point{5}; }
// And it can be further rotated by -Pi/4 around (0, 0.3, 0) (with the rotation
// along the z axis) with:
Rotate {{0,0,1}, {0,0.3,0}, -Pi/4} { Point{5}; }
// Note that there are no units in Gmsh: coordinates are just numbers - it's up
// to the user to associate a meaning to them.
```

```
// Point 3 can be duplicated and translated by 0.05 along the y axis:
Translate {0, 0.05, 0} { Duplicata{ Point{3}; } }
// This command created a new point with an automatically assigned tag. This tag
// can be obtained using the graphical user interface by hovering the mouse over
// the point: in this case, the new point has tag '6'.
Line(7) = {3, 6};
Line(8) = \{6, 5\};
Curve Loop(10) = \{5,-8,-7,3\};
Plane Surface(11) = {10};
// To automate the workflow, instead of using the graphical user interface to
// obtain the tags of newly created entities, one can use the return value of
// the transformation commands directly. For example, the 'Translate' command
// returns a list containing the tags of the translated entities. Let's
// translate copies of the two surfaces 1 and 11 to the right with the following
// command:
my_new_surfs[] = Translate {0.12, 0, 0} { Duplicata{ Surface{1, 11}; } };
// my_new_surfs[] (note the square brackets, and the ';' at the end of the
// command) denotes a list, which contains the tags of the two new surfaces
// (check 'Tools->Message console' to see the message):
\label{lem:printf("New surfaces '%g' and '%g'", my_new_surfs[0], my_new_surfs[1]);}
// In Gmsh lists use square brackets for their definition (mylist[] = {1, 2,
// 3};) as well as to access their elements (myotherlist[] = \{mylist[0], 
// mylist[2]; mythirdlist[] = myotherlist[];), with list indexing starting at
// 0. To get the size of a list, use the hash (pound): len = #mylist[].
// Note that parentheses can also be used instead of square brackets, so that we
// could also write 'myfourthlist() = {mylist(0), mylist(1)};'.
// Volumes are the fourth type of elementary entities in Gmsh. In the same way
// one defines curve loops to build surfaces, one has to define surface loops
// (i.e. 'shells') to build volumes. The following volume does not have holes
// and thus consists of a single surface loop:
Point(100) = {0., 0.3, 0.12, 1c}; Point(101) = {0.1, 0.3, 0.12, 1c};
Point(102) = \{0.1, 0.35, 0.12, 1c\};
xyz[] = Point{5}; // Get coordinates of point 5
Point(103) = \{xyz[0], xyz[1], 0.12, 1c\};
Line(110) = \{4, 100\}; Line(111) = \{3, 101\};
Line(112) = \{6, 102\}; Line(113) = \{5, 103\};
Line(114) = \{103, 100\}; Line(115) = \{100, 101\};
Line(116) = \{101, 102\}; Line(117) = \{102, 103\};
Curve Loop(118) = {115, -111, 3, 110}; Plane Surface(119) = {118};
Curve Loop(120) = {111, 116, -112, -7}; Plane Surface(121) = {120};
Curve Loop(122) = {112, 117, -113, -8}; Plane Surface(123) = {122};
Curve Loop(124) = \{114, -110, 5, 113\}; Plane Surface(125) = \{124\};
Curve Loop(126) = {115, 116, 117, 114}; Plane Surface(127) = {126};
Surface Loop(128) = \{127, 119, 121, 123, 125, 11\};
Volume(129) = \{128\};
// When a volume can be extruded from a surface, it is usually easier to use the
// 'Extrude' command directly instead of creating all the points, curves and
// surfaces by hand. For example, the following command extrudes the surface 11
// along the z axis and automatically creates a new volume (as well as all the
```

h = 0.1;

Extrude {0,0,h} {

```
// needed points, curves and surfaces):
Extrude {0, 0, 0.12} { Surface{my_new_surfs[1]}; }
// The following command permits to manually assign a characteristic length to
// some of the new points:
Characteristic Length \{103, 105, 109, 102, 28, 24, 6, 5\} = 1c * 3;
// We finally group volumes 129 and 130 in a single physical group with tag '1'
// and name "The volume":
Physical Volume("The volume", 1) = {129,130};
// Note that, if the transformation tools are handy to create complex
// geometries, it is also sometimes useful to generate the 'flat' geometry, with
// an explicit representation of all the elementary entities.
// With the built-in geometry kernel, this can be achieved with 'File->Export' by
// selecting the 'Gmsh Unrolled GEO' format, or by adding
   Save "file.geo_unrolled";
//
// in the script. It can also be achieved with 'gmsh t2.geo -0' on the command
// line.
// With the OpenCASCADE geometry kernel, unrolling the geometry can be achieved
// with 'File->Export' by selecting the 'OpenCASCADE BRep' format, or by adding
//
   Save "file.brep";
//
//
// in the script. (OpenCASCADE geometries can also be exported to STEP.)
// It is important to note that Gmsh never translates geometry data into a
// common representation: all the operations on a geometrical entity are
// performed natively with the associated geometry kernel. Consequently, one
// cannot export a geometry constructed with the built-in kernel as an
// OpenCASCADE BRep file; or export an OpenCASCADE model as an Unrolled GEO
// file.
A.3 t3: Extruded meshes, parameters, options
See t3.geo. Also available in C++ (t3.cpp), Python (t3.py) and Julia (t3.jl).
// -----
//
// Gmsh GEO tutorial 3
// Extruded meshes, parameters, options
// Again, we start by including the first tutorial:
Include "t1.geo";
// As in 't2.geo', we plan to perform an extrusion along the z axis. But here,
// instead of only extruding the geometry, we also want to extrude the 2D
// mesh. This is done with the same 'Extrude' command, but by specifying element
// 'Layers' (2 layers in this case, the first one with 8 subdivisions and the
// second one with 2 subdivisions, both with a height of h/2):
```

```
Surface{1}; Layers{ {8,2}, {0.5,1} };
// The extrusion can also be performed with a rotation instead of a translation,
// and the resulting mesh can be recombined into prisms (we use only one layer
// here, with 7 subdivisions). All rotations are specified by an axis direction
// ({0,1,0}), an axis point ({-0.1,0,0.1}) and a rotation angle (-Pi/2):
Extrude { \{0,1,0\} , \{-0.1,0,0.1\} , -Pi/2 } {
  Surface{28}; Layers{7}; Recombine;
// Using the built-in geometry kernel, only rotations with angles < Pi are
// supported. To do a full turn, you will thus need to apply at least 3
// rotations. The OpenCASCADE geometry kernel does not have this limitation.
// Note that a translation (\{-2*h,0,0\}) and a rotation (\{1,0,0\},\{0,0.15,0.25\},
// Pi/2) can also be combined to form a "twist". Here the angle is specified as
// a ONELAB parameter, using the 'DefineConstant' syntax. ONELAB parameters can
// be modified interactively in the GUI, and can be exchanged with other codes
// connected to the same ONELAB database:
DefineConstant[ angle = {90, Min 0, Max 120, Step 1,
                          Name "Parameters/Twisting angle"} ];
// In more details, 'DefineConstant' allows you to assign the value of the
// ONELAB parameter "Parameters/Twisting angle" to the variable 'angle'. If the
// ONELAB parameter does not exist in the database, 'DefineConstant' will create
/\!/ it and assign the default value '90'. Moreover, if the variable 'angle' was
// defined before the call to 'DefineConstant', the 'DefineConstant' call would
// simply be skipped. This allows to build generic parametric models, whose
/\!/ parameters can be frozen from the outside – the parameters ceasing to be /\!/ "parameters".
//
// An interesting use of this feature is in conjunction with the '-setnumber
// name value' command line switch, which defines a variable 'name' with value
// 'value'. Calling 'gmsh t2.geo -setnumber angle 30' would define 'angle'
// before the 'DefineConstant', making 't2.geo' non-parametric
// ("Parameters/Twisting angle" will not be created in the ONELAB database and
// will not be available for modification in the graphical user interface).
out[] = Extrude { \{-2*h,0,0\}, \{1,0,0\}, \{0,0.15,0.25\}, angle * Pi / 180 } {
  Surface{50}; Layers{10}; Recombine;
};
// In this last extrusion command we retrieved the volume number
// programmatically by using the return value (a list) of the 'Extrude'
// command. This list contains the "top" of the extruded surface (in 'out[0]'),
// the newly created volume (in 'out[1]') and the tags of the lateral surfaces
// (in 'out[2]', 'out[3]', ...).
// We can then define a new physical volume (with tag 101) to group all the
// elementary volumes:
Physical Volume(101) = {1, 2, out[1]};
// Let us now change some options... Since all interactive options are
// accessible in Gmsh's scripting language, we can for example make point tags
// visible or redefine some colors directly in the input file:
Geometry.PointNumbers = 1;
Geometry.Color.Points = Orange;
General.Color.Text = White;
Mesh.Color.Points = \{255, 0, 0\};
```

```
// Note that all colors can be defined literally or numerically, i.e.
// 'Mesh.Color.Points = Red' is equivalent to 'Mesh.Color.Points = {255,0,0}';
// and also note that, as with user-defined variables, the options can be used
// either as right or left hand sides, so that the following command will set
// the surface color to the same color as the points:

Geometry.Color.Surfaces = Geometry.Color.Points;

// You can use the 'Help->Current Options and Workspace' menu to see the current
// values of all options. To save all the options in a file, use
// 'File->Export->Gmsh Options'. To associate the current options with the
// current file use 'File->Save Model Options'. To save the current options for
// all future Gmsh sessions use 'File->Save Options As Default'.
```

A.4 t4: Built-in functions, holes in surfaces, annotations, entity colors

```
See t4.geo. Also available in C++ (t4.cpp), Python (t4.py) and Julia (t4.jl).
// -----
//
// Gmsh GEO tutorial 4
// Built-in functions, holes in surfaces, annotations, entity colors
//
// As usual, we start by defining some variables:
cm = 1e-02;
e1 = 4.5 * cm; e2 = 6 * cm / 2; e3 = 5 * cm / 2;
h1 = 5 * cm; h2 = 10 * cm; h3 = 5 * cm; h4 = 2 * cm; h5 = 4.5 * cm;
R1 = 1 * cm; R2 = 1.5 * cm; r = 1 * cm;
Lc1 = 0.01;
Lc2 = 0.003;
// We can use all the usual mathematical functions (note the capitalized first
// letters), plus some useful functions like Hypot(a, b) := Sqrt(a^2 + b^2):
ccos = (-h5*R1 + e2 * Hypot(h5, Hypot(e2, R1))) / (h5^2 + e2^2);
ssin = Sqrt(1 - ccos^2);
// Then we define some points and some lines using these variables:
\label{eq:point}  \text{Point(1) = {-e1-e2, 0}} \quad \text{, 0, Lc1}; \; \text{Point(2) = {-e1-e2, h1}} \quad \text{, 0, Lc1}; 
, 0, Lc1};
Point(13)= { e2 , 0
Point(14)= { R1 / ssin, h5+R1*ccos, 0, Lc2};
Point(15)= { 0 , h5 , 0, Lc2};
Point(16)= {-R1 / ssin, h5+R1*ccos, 0, Lc2};
Point(17)= {-e2 , 0.0 , 0, Lc1};
Point(18) = \{-R2, h1+h3, 0, Lc2\}; Point(19) = \{-R2, h1+h3+h4, 0, Lc2\};
\label{eq:point(20)= { 0 , h1+h3+h4, 0, Lc2}; Point(21)= { R2 , h1+h3+h4, 0, Lc2}; }
Point(22)= { R2 , h1+h3 , 0, Lc2}; Point(23)= { 0 , h1+h3 , 0, Lc2};
Point(24)= { 0, h1+h3+h4+R2, 0, Lc2}; Point(25)= { 0, h1+h3-R2,
Line(1) = \{1, 17\};
Line(2) = \{17, 16\};
```

```
// Gmsh provides other curve primitives than straight lines: splines, B-splines,
// circle arcs, ellipse arcs, etc. Here we define a new circle arc, starting at
// point 14 and ending at point 16, with the circle's center being the point 15:
Circle(3) = \{14,15,16\};
// Note that, in Gmsh, circle arcs should always be smaller than Pi. The
// OpenCASCADE geometry kernel does not have this limitation.
// We can then define additional lines and circles, as well as a new surface:
Line(4) = \{14, 13\}; Line(5) = \{13, 12\}; Line(6)
                                                           = \{12, 11\};
Line(7) = \{11, 10\}; Circle(8) = \{8, 9, 10\}; Line(9)
                                                         = {8, 7};
Line(10) = {7, 6}; Line(11) = {6, 5};
Line(13) = {3, 2}; Line(14) = {2, 1};
                                               Circle(12) = \{3, 4, 5\};
                                               Line(15)
                                                          = {18, 19};
Circle(16) = {21, 20, 24}; Circle(17) = {24, 20, 19}; Circle(18) = {18, 23, 25}; Circle(19) = {25, 23, 22};
Line(20) = \{21, 22\};
Curve Loop(21) = \{17, -15, 18, 19, -20, 16\};
Plane Surface(22) = {21};
// But we still need to define the exterior surface. Since this surface has a
// hole, its definition now requires two curves loops:
Curve Loop(23) = \{11, -12, 13, 14, 1, 2, -3, 4, 5, 6, 7, -8, 9, 10\};
Plane Surface(24) = \{23, 21\};
// As a general rule, if a surface has N holes, it is defined by N+1 curve loops:
// the first loop defines the exterior boundary; the other loops define the
// boundaries of the holes.
// Finally, we can add some comments by embedding a post-processing view
// containing some strings:
View "comments" {
  // Add a text string in window coordinates, 10 pixels from the left and 10
  // pixels from the bottom, using the 'StrCat' function to concatenate strings:
T2(10, -10, 0){ StrCat("Created on ", Today, " with Gmsh") };
  // Add a text string in model coordinates centered at (X,Y,Z) = (0, 0.11, 0):
  T3(0, 0.11, 0, TextAttributes("Align", "Center", "Font", "Helvetica")){ "Hole" };
  // If a string starts with 'file://', the rest is interpreted as an image
  // file. For 3D annotations, the size in model coordinates can be specified
  // after a '@' symbol in the form 'widthxheight' (if one of 'width' or
  // 'height' is zero, natural scaling is used; if both are zero, original image
  // dimensions in pixels are used):
  T3(0, 0.09, 0, TextAttributes("Align", "Center")){    "file://t4_image.png@0.01x0" };
  // The 3D orientation of the image can be specified by proving the direction
  // of the bottom and left edge of the image in model space:
  T3(-0.01, 0.09, 0, 0){ "file://t4_image.png@0.01x0,0,0,1,0,1,0" };
  // The image can also be drawn in "billboard" mode, i.e. always parallel to
  // the camera, by using the '#' symbol:
  T3(0, 0.12, 0, TextAttributes("Align", "Center")){    "file://t4_image.png@0.01x0#" };
  // The size of 2D annotations is given directly in pixels:
  T2(350, -7, 0){ "file://t4_image.png@20x0" };
// This post-processing view is in the "parsed" format, i.e. it is interpreted
// using the same parser as the '.geo' file. For large post-processing datasets,
```

A.5 t5: Characteristic lengths, macros, loops, holes in volumes

```
See t5.geo. Also available in C++ (t5.cpp), Python (t5.py) and Julia (t5.jl).
//
// Gmsh GEO tutorial 5
// Characteristic lengths, macros, loops, holes in volumes % \frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) \left( \frac{
// We start by defining some target mesh sizes:
lcar1 = .1;
lcar2 = .0005;
1car3 = .055;
// If we wanted to change these mesh sizes globally (without changing the above
// definitions), we could give a global scaling factor for all characteristic
// lengths on the command line with the '-clscale' option (or with
// 'Mesh.CharacteristicLengthFactor' in an option file). For example, with:
//
// > gmsh t5.geo -clscale 1
// this input file produces a mesh of approximately 3000 nodes and 14,000
// tetrahedra. With
//
// > gmsh t5.geo -clscale 0.2
// the mesh counts approximately 231,000 nodes and 1,360,000 tetrahedra. You can
// check mesh statistics in the graphical user interface with the
 // 'Tools->Statistics' menu.
//
// See 't10.geo' for more information about mesh sizes.
// We proceed by defining some elementary entities describing a truncated cube:
Point(1) = \{0.5, 0.5, 0.5, 1car2\}; Point(2) = \{0.5, 0.5, 0, 1car1\};
Point(3) = \{0,0.5,0.5,lcar1\}; Point(4) = \{0,0,0.5,lcar1\};
Point(5) = \{0.5,0,0.5,lcar1\}; Point(6) = \{0.5,0,0,lcar1\};
Point(7) = {0,0.5,0,lcar1}; Point(8) = {0,1,0,lcar1}; Point(9) = {1,1,0,lcar1}; Point(10) = {0,0,1,lcar1}; Point(11) = {0,1,1,lcar1}; Point(12) = {1,1,1,lcar1}; Point(13) = {1,0,1,lcar1}; Point(14) = {1,0,0,lcar1};
```

```
Line(10) = {10,4}; Line(11) = {4,5}; Line(12) = {5,6};
Line(13) = {6,2}; Line(14) = {2,1}; Line(15) = {1,3};
Line(16) = \{3,7\}; Line(17) = \{7,2\}; Line(18) = \{3,4\};
Line(19) = \{5,1\}; Line(20) = \{7,8\}; Line(21) = \{6,14\};
Curve Loop(22) = {-11,-19,-15,-18}; Plane Surface(23) = {22};
Curve Loop(24) = \{16,17,14,15\};
                                       Plane Surface(25) = {24};
Curve Loop(26) = \{-17, 20, 1, 5, -21, 13\}; Plane Surface(27) = \{26\};
                                   Plane Surface(29) = {28};
Curve Loop(28) = \{-4,-1,-2,-3\};
Curve Loop(30) = \{-7, 2, -5, -6\};
                                      Plane Surface(31) = \{30\};
Curve Loop(32) = \{6,-9,10,11,12,21\}; Plane Surface(33) = \{32\};
Curve Loop(34) = \{7,3,8,9\};
                                      Plane Surface(35) = {34};
Curve Loop(36) = \{-10,18,-16,-20,4,-8\}; Plane Surface(37) = \{36\};
Curve Loop(38) = \{-14, -13, -12, 19\};
                                     Plane Surface(39) = \{38\};
// Instead of using included files, we now use a user-defined macro in order
// to carve some holes in the cube:
Macro CheeseHole
  // In the following commands we use the reserved variable name 'newp', which
  // automatically selects a new point tag. Analogously to 'newp', the special
  // variables 'newl', 'newll, 'news', 'newsl' and 'newv' select new curve,
  // curve loop, surface, surface loop and volume tags.
  // If 'Geometry.OldNewReg' is set to 0, the new tags are chosen as the highest
  // current tag for each category (points, curves, curve loops, ...), plus
  // one. By default, for backward compatibility, 'Geometry.OldNewReg' is set
  // to 1, and only two categories are used: one for points and one for the
  // rest.
  p1 = newp; Point(p1) = {x, y, z, lcar3};
  p2 = newp; Point(p2) = {x+r,y, z, lcar3};
  p3 = newp; Point(p3) = {x, y+r,z, lcar3};
  p4 = newp; Point(p4) = {x, y, z+r,lcar3};
 p5 = newp; Point(p5) = {x-r,y, z, lcar3};
p6 = newp; Point(p6) = {x, y-r,z, lcar3};
p7 = newp; Point(p7) = {x, y, z-r,lcar3};
  c1 = newc; Circle(c1) = {p2,p1,p7}; c2 = newc; Circle(c2) = {p7,p1,p5};
  {\tt c3 = newc; Circle(c3) = \{p5,p1,p4\}; c4 = newc; Circle(c4) = \{p4,p1,p2\};}
  c5 = newc; Circle(c5) = {p2,p1,p3}; c6 = newc; Circle(c6) = {p3,p1,p5};
  {\tt c7 = newc; Circle(c7) = \{p5,p1,p6\}; c8 = newc; Circle(c8) = \{p6,p1,p2\};}
  c9 = newc; Circle(c9) = {p7,p1,p3}; c10 = newc; Circle(c10) = {p3,p1,p4};
  c11 = newc; Circle(c11) = {p4,p1,p6}; c12 = newc; Circle(c12) = {p6,p1,p7};
  // We need non-plane surfaces to define the spherical holes. Here we use
  \ensuremath{//} 'Surface', which can be used for surfaces with 3 or 4 curves on their
  // boundary. With the he built-in kernel, if the curves are circle arcs, ruled
  // surfaces are created; otherwise transfinite interpolation is used.
  // With the OpenCASCADE kernel, 'Surface' uses a much more general generic
  // surface filling algorithm, creating a BSpline surface passing through an
  // arbitrary number of boundary curves; and 'ThruSections' allows to create
  // ruled surfaces (see 't19.geo').
  11 = newll; Curve Loop(11) = {c5,c10,c4};
  12 = new11; Curve Loop(12) = \{c9, -c5, c1\};
  13 = \text{newll}; Curve Loop(13) = {c12,-c8,-c1};
  14 = \text{newll}; Curve Loop(14) = {c8,-c4,c11};
  15 = \text{newll}; Curve Loop(15) = {-c10,c6,c3};
  16 = newll; Curve Loop(16) = {-c11,-c3,c7};
```

```
17 = \text{newll}; Curve Loop(17) = {-c2,-c7,-c12};
  18 = newl1; Curve Loop(18) = {-c6,-c9,c2};
  s1 = news; Surface(s1) = {11};
  s2 = news; Surface(s2) = \{12\};
  s3 = news; Surface(s3) = \{13\};
  s4 = news; Surface(s4) = \{14\};
  s5 = news; Surface(s5) = \{15\};
  s6 = news; Surface(s6) = \{16\};
  s7 = news; Surface(s7) = \{17\};
 s8 = news; Surface(s8) = \{18\};
  // We then store the surface loops tags in a list for later reference (we will
  // need these to define the final volume):
  theloops[t] = newsl;
  Surface Loop(theloops[t]) = {s1, s2, s3, s4, s5, s6, s7, s8};
  thehole = newv;
  Volume(thehole) = theloops[t];
Return
// We can use a 'For' loop to generate five holes in the cube:
x = 0; y = 0.75; z = 0; r = 0.09;
For t In {1:5}
  x += 0.166;
  z += 0.166;
  // We call the 'CheeseHole' macro:
  Call CheeseHole;
  // We define a physical volume for each hole:
 Physical Volume (t) = thehole;
  // We also print some variables on the terminal (note that, since all
  // variables in '.geo' files are treated internally as floating point numbers,
  // the format string should only contain valid floating point format
  // specifiers like '%g', '%f', '%e', etc.):
  \label{eq:printf}  \text{Printf("Hole $\%g$ (center = {\%g,\%g,\%g}), radius = \%g) has number $\%g!",} 
           t, x, y, z, r, thehole);
EndFor
// We can then define the surface loop for the exterior surface of the cube:
theloops[0] = newreg;
Surface Loop(theloops[0]) = {23:39:2};
// The volume of the cube, without the 5 holes, is now defined by 6 surface
// loops: the first surface loop defines the exterior surface; the surface loops
// other than the first one define holes. (Again, to reference an array of
// variables, its identifier is followed by square brackets):
Volume(186) = {theloops[]};
// Note that using solid modelling with the OpenCASCADE geometry kernel, the
// same geometry could be built quite differently: see 't16.geo'.
```

```
// We finally define a physical volume for the elements discretizing the cube,
// without the holes (for which physical groups were already created in the
// 'For' loop):
Physical Volume (10) = 186;
// We could make only part of the model visible to only mesh this subset:
//
// Hide {:}
// Recursive Show { Volume{129}; }
// Mesh.MeshOnlyVisible=1;
// Meshing algorithms can changed globally using options:
Mesh.Algorithm = 6; // Frontal-Delaunay for 2D meshes
// They can also be set for individual surfaces, e.g.
MeshAlgorithm Surface {31, 35} = 1; // MeshAdapt on surfaces 31 and 35
// To generate a curvilinear mesh and optimize it to produce provably valid
// curved elements (see A. Johnen, J.-F. Remacle and C. Geuzaine. Geometric
// validity of curvilinear finite elements. Journal of Computational Physics
// 233, pp. 359-372, 2013; and T. Toulorge, C. Geuzaine, J.-F. Remacle,
// J. Lambrechts. Robust untangling of curvilinear meshes. Journal of
// Computational Physics 254, pp. 8-26, 2013), you can uncomment the following
// lines:
// Mesh.ElementOrder = 2;
// Mesh.HighOrderOptimize = 2;
A.6 t6: Transfinite meshes
See t6.geo. Also available in C++ (t6.cpp) and Python (t6.py).
// ------
// Gmsh GEO tutorial 6
//
// Transfinite meshes
// -----
// Let's use the geometry from the first tutorial as a basis for this one:
Include "t1.geo";
// Delete the surface and the left line, and replace the line with 3 new ones:
Delete{ Surface{1}; Curve{4}; }
p1 = newp; Point(p1) = {-0.05, 0.05, 0, 1c};
p2 = newp; Point(p2) = {-0.05, 0.1, 0, 1c};
11 = newl; Line(11) = \{1, p1\};
12 = newl; Line(12) = \{p1, p2\};
13 = new1; Line(13) = \{p2, 4\};
// Create a surface:
Curve Loop(2) = \{2, -1, 11, 12, 13, -3\};
Plane Surface(1) = \{-2\};
// The 'Transfinite Curve' meshing constraints explicitly specifies the location
// of the nodes on the curve. For example, the following command forces 20
// uniformly placed nodes on curve 2 (including the nodes on the two end
// points):
```

Transfinite Curve{2} = 20;

```
// Let's put 20 points total on combination of curves '11', '12' and '13'
// (beware that the points 'p1' and 'p2' are shared by the curves, so we do not
// create 6 + 6 + 10 = 22 nodes, but 20!)
Transfinite Curve{11} = 6;
Transfinite Curve{12} = 6;
Transfinite Curve{13} = 10;
// Finally, we put 30 nodes following a geometric progression on curve 1
// (reversed) and on curve 3:
Transfinite Curve{-1, 3} = 30 Using Progression 1.2;
// The 'Transfinite Surface' meshing constraint uses a transfinite interpolation
// algorithm in the parametric plane of the surface to connect the nodes on the
// boundary using a structured grid. If the surface has more than 4 corner
// points, the corners of the transfinite interpolation have to be specified by
// hand:
Transfinite Surface\{1\} = \{1, 2, 3, 4\};
// To create quadrangles instead of triangles, one can use the 'Recombine'
// command:
Recombine Surface{1};
// When the surface has only 3 or 4 points on its boundary the list of corners
// can be omitted in the 'Transfinite Surface' constraint:
Point(7) = \{0.2, 0.2, 0, 1.0\};
Point(8) = \{0.2, 0.1, 0, 1.0\};
Point(9) = \{-0, 0.3, 0, 1.0\};
Point(10) = \{0.25, 0.2, 0, 1.0\};
Point(11) = {0.3, 0.1, 0, 1.0};
Line(10) = \{8, 11\};
Line(11) = \{11, 10\};
Line(12) = \{10, 7\};
Line(13) = \{7, 8\};
Curve Loop(14) = \{13, 10, 11, 12\};
Plane Surface(15) = {14};
Transfinite Curve {10:13} = 10;
Transfinite Surface{15};
// The way triangles are generated can be controlled by appending "Left",
// "Right" or "Alternate" after the 'Transfinite Surface' command. Try e.g.
//
// Transfinite Surface{15} Alternate;
// Finally we apply an elliptic smoother to the grid to have a more regular
// mesh:
Mesh.Smoothing = 100;
```

A.7 t7: Background meshes

```
// Merge a post-processing view containing the target mesh sizes
Merge "t7_bgmesh.pos";

// Apply the view as the current background mesh
Background Mesh View[0];

// Background meshes are actually a particular case of general mesh size
// fields: see 't10.geo'.
```

A.8 t8: Post-processing and animations

```
See t8.geo. Also available in C++ (t8.cpp) and Python (t8.py).
//
// Gmsh GEO tutorial 8
//
// Post-processing and animations
/\!/ In addition to creating geometries and meshes, GEO scripts can also be used
// to manipulate post-processing datasets (called "views" in {\tt Gmsh})\,.
// We first include 't1.geo' as well as some post-processing views:
Include "t1.geo";
Include "view1.pos";
Include "view1.pos";
Include "view4.pos";
// Gmsh can read post-processing views in various formats. Here the 'view1.pos'
// and 'view4.pos' files are in the Gmsh "parsed" format, which is interpreted
// directly by the GEO script parser. The parsed format should only be used for
// relatively small datasets of course: for larger datasets using e.g. MSH files
// is much more efficient.
// We then set some general options:
General.Trackball = 0;
General.RotationX = 0; General.RotationY = 0; General.RotationZ = 0;
General.Color.Background = White; General.Color.Foreground = Black;
General.Color.Text = Black;
General.Orthographic = 0;
General.Axes = 0; General.SmallAxes = 0;
// We also set some options for each post-processing view:
v0 = PostProcessing.NbViews-4;
v1 = v0+1; v2 = v0+2; v3 = v0+3;
View[v0].IntervalsType = 2;
View[v0].OffsetZ = 0.05;
View[v0].RaiseZ = 0;
View[v0].Light = 1;
View[v0].ShowScale = 0;
View[v0].SmoothNormals = 1;
View[v1].IntervalsType = 1;
View[v1].ColorTable = { Green, Blue };
View[v1].NbIso = 10;
View[v1].ShowScale = 0;
View[v2].Name = "Test...";
```

```
View[v2].Axes = 1;
View[v2].Color.Axes = Black;
View[v2].IntervalsType = 2;
View[v2].Type = 2;
View[v2].IntervalsType = 2;
View[v2].AutoPosition = 0;
View[v2].PositionX = 85;
View[v2].PositionY = 50;
View[v2].Width = 200;
View[v2].Height = 130;
View[v3].Visible = 0;
// You can save an MPEG movie directly by selecting 'File->Export' in the
// GUI. Several predefined animations are setup, for looping on all the time
// steps in views, or for looping between views.
// But a script can be used to build much more complex animations, by changing
// options at run-time and re-rendering the graphics. Each frame can then be
// saved to disk as an image, and multiple frames can be encoded to form a
// movie. Below is an example of such a custom animation.
t = 0; // Initial step
// Loop on num from 1 to 3
For num In {1:3}
  View[v0].TimeStep = t; // Set time step
  View[v1].TimeStep = t;
  View[v2].TimeStep = t;
  View[v3].TimeStep = t;
  t = (View[v0].TimeStep < View[v0].NbTimeStep-1) ? t+1 : 0; // Increment
  View[v0].RaiseZ += 0.01/View[v0].Max * t; // Raise view v0
  If (num == 3)
    // Resize the graphics when num == 3, to create 640x480 frames
    General.GraphicsWidth = General.MenuWidth + 640;
    General.GraphicsHeight = 480;
  EndIf
  frames = 50;
  // Loop on num2 from 1 to frames
  For num2 In {1:frames}
    // Incrementally rotate the scene
    General.RotationX += 10;
    General.RotationY = General.RotationX / 3;
    General.RotationZ += 0.1;
    // Sleep for 0.01 second
    Sleep 0.01;
    // Draw the scene (one could use 'DrawForceChanged' instead to force the
    // reconstruction of the vertex arrays, e.g. if changing element clipping)
   Draw;
    If (num == 3)
     // Uncomment the following lines to save each frame to an image file (the
     // 'Print' command saves the graphical window; the 'Sprintf' function
     // permits to create the file names on the fly):
     // Print Sprintf("t8-%02g.gif", num2);
```

```
// Print Sprintf("t8-%02g.ppm", num2);
     // Print Sprintf("t8-%02g.jpg", num2);
   EndIf
 EndFor
 If (num == 3)
   // Here we could make a system call to generate a movie. For example,
   // with whirlgif:
   /*
   System "whirlgif -minimize -loop -o t8.gif t8-*.gif";
   // with mpeg_encode (create parameter file first, then run encoder):
   Printf("PATTERN I") > "t8.par";
   Printf("BASE_FILE_FORMAT PPM") >> "t8.par";
   Printf("GOP_SIZE 1") >> "t8.par";
   Printf("SLICES_PER_FRAME 1") >> "t8.par";
   Printf("PIXEL HALF") >> "t8.par";
   Printf("RANGE 10") >> "t8.par";
   Printf("PSEARCH_ALG EXHAUSTIVE") >> "t8.par";
   Printf("BSEARCH_ALG CROSS2") >> "t8.par";
   Printf("IQSCALE 1") >> "t8.par";
   Printf("PQSCALE 1") >> "t8.par";
   Printf("BQSCALE 25") >> "t8.par";
   Printf("REFERENCE_FRAME DECODED") >> "t8.par";
   Printf("OUTPUT t8.mpg") >> "t8.par";
   Printf("INPUT_CONVERT *") >> "t8.par";
   Printf("INPUT_DIR .") >> "t8.par";
   Printf("INPUT") >> "t8.par";
   tmp = Sprintf("t8-*.ppm [01-%02g]", frames);
   Printf(tmp) >> "t8.par";
   Printf("END_INPUT") >> "t8.par";
   System "mpeg_encode t8.par";
   */
   // with mencoder:
   /*
   System "mencoder 'mf://*.jpg' -mf fps=5 -o t8.mpg -ovc lavc
           -lavcopts vcodec=mpeg1video:vhq";
   System "mencoder 'mf://*.jpg' -mf fps=5 -o t8.mpg -ovc lavc
          -lavcopts vcodec=mpeg4:vhq";
   */
   // with ffmpeg:
   System "ffmpeg -hq -r 5 -b 800 -vcodec mpeg1video
           -i t8-%02d.jpg t8.mpg"
   System "ffmpeg -hq -r 5 -b 800 -i t8-%02d.jpg t8.asf"
   */
 EndIf
EndFor
A.9 t9: Plugins
See t9.geo. Also available in C++ (t9.cpp) and Python (t9.py).
// ------
//
// Gmsh GEO tutorial 9
// Plugins
```

```
// Plugins can be added to Gmsh in order to extend its capabilities. For
// example, post-processing plugins can modify views, or create new views based
// on previously loaded views. Several default plugins are statically linked
// with Gmsh, e.g. Isosurface, CutPlane, CutSphere, Skin, Transform or Smooth.
//
// Plugins can be controlled in the same way as other options: either from the
// graphical interface (right click on the view button, then 'Plugins'), or from
// the command file.
// Let us for example include a three-dimensional scalar view:
Include "view3.pos" ;
// We then set some options for the 'Isosurface' plugin (which extracts an
// isosurface from a 3D scalar view), and run it:
Plugin(Isosurface).Value = 0.67 ; // Iso-value level
Plugin(Isosurface).View = 0 ; // Source view is View[0]
{\tt Plugin(Isosurface).Run} \ ; \ // \ {\tt Run} \ {\tt the} \ {\tt plugin!}
// We also set some options for the 'CutPlane' plugin (which computes a section
// of a 3D view using the plane A*x+B*y+C*z+D=0), and then run it:
Plugin(CutPlane).A = 0 ;
Plugin(CutPlane).B = 0.2 ;
Plugin(CutPlane).C = 1;
Plugin(CutPlane).D = 0 ;
Plugin(CutPlane).View = 0 ;
Plugin(CutPlane).Run ;
// Add a title (By convention, for window coordinates a value greater than 99999
// represents the center. We could also use 'General.GraphicsWidth / 2', but
// that would only center the string for the current window size.):
Plugin(Annotate).Text = "A nice title" ;
Plugin(Annotate).X = 1.e5;
Plugin(Annotate).Y = 50 ;
Plugin(Annotate).Font = "Times-BoldItalic" ;
Plugin(Annotate).FontSize = 28 ;
Plugin(Annotate).Align = "Center" ;
Plugin(Annotate).View = 0 ;
Plugin(Annotate).Run ;
Plugin(Annotate).Text = "(and a small subtitle)" ;
Plugin(Annotate).Y = 70;
Plugin(Annotate).Font = "Times-Roman" ;
Plugin(Annotate).FontSize = 12 ;
Plugin(Annotate).Run ;
// We finish by setting some options:
View[0].Light = 1;
View[0].IntervalsType = 1;
View[0].NbIso = 6;
View[0].SmoothNormals = 1;
View[1].IntervalsType = 2;
View[2].IntervalsType = 2;
```

A.10 t10: Mesh size fields

See t10.geo. Also available in C++ (t10.cpp) and Python (t10.py).

```
// -----
//
// Gmsh GEO tutorial 10
//
// Mesh size fields
// In addition to specifying target mesh sizes at the points of the geometry
// (see 't1.geo') or using a background mesh (see 't7.geo'), you can use general
// mesh size "Fields".
// Let's create a simple rectangular geometry
1c = .15;
Point(1) = \{0.0,0.0,0,lc\}; Point(2) = \{1,0.0,0,lc\};
Point(3) = \{1,1,0,1c\};
                        Point(4) = \{0,1,0,1c\};
Point(5) = \{0.2, .5, 0, 1c\};
Line(1) = \{1,2\}; Line(2) = \{2,3\}; Line(3) = \{3,4\}; Line(4) = \{4,1\};
Curve Loop(5) = \{1,2,3,4\}; Plane Surface(6) = \{5\};
// Say we would like to obtain mesh elements with size 1c/30 near curve 2 and
\ensuremath{//} point 5, and size lc elsewhere. To achieve this, we can use two fields:
// "Distance", and "Threshold". We first define a Distance field ('Field[1]') on
/\!/ points 5 and on curve 2. This field returns the distance to point 5 and to
// (100 equidistant points on) curve 2.
Field[1] = Distance;
Field[1].NodesList = {5};
Field[1].NNodesByEdge = 100;
Field[1].EdgesList = {2};
// We then define a 'Threshold' field, which uses the return value of the
// 'Distance' field 1 in order to define a simple change in element size
// depending on the computed distances
//
// LcMax -
//
//
// LcMin -o----/
    //
       Point
                      DistMin DistMax
Field[2] = Threshold;
Field[2].IField = 1;
Field[2].LcMin = lc / 30;
Field[2].LcMax = lc;
Field[2].DistMin = 0.15;
Field[2].DistMax = 0.5;
// Say we want to modulate the mesh element sizes using a mathematical function
// of the spatial coordinates. We can do this with the MathEval field:
Field[3] = MathEval;
Field[3].F = "Cos(4*3.14*x) * Sin(4*3.14*y) / 10 + 0.101";
// We could also combine MathEval with values coming from other fields. For
// example, let's define a 'Distance' field around point 1
Field[4] = Distance;
Field[4].NodesList = {1};
// We can then create a 'MathEval' field with a function that depends on the
// return value of the 'Distance' field 4, i.e., depending on the distance to
// point 1 (here using a cubic law, with minimum element size = lc / 100)
Field[5] = MathEval;
Field[5].F = Sprintf("F4^3 + %g", lc / 100);
```

```
// We could also use a 'Box' field to impose a step change in element sizes
// inside a box
Field[6] = Box;
Field[6].VIn = lc / 15;
Field[6].VOut = lc;
Field[6].XMin = 0.3;
Field[6].XMax = 0.6;
Field[6].YMin = 0.3;
Field[6].YMax = 0.6;
// Many other types of fields are available: see the reference manual for a
// complete list. You can also create fields directly in the graphical user
// interface by selecting 'Define->Fields' in the 'Mesh' module.
// Finally, let's use the minimum of all the fields as the background mesh field
Field[7] = Min;
Field[7].FieldsList = {2, 3, 5, 6};
Background Field = 7;
// To determine the size of mesh elements, Gmsh locally computes the minimum of
// 1) the size of the model bounding box;
// 2) if 'Mesh.CharacteristicLengthFromPoints' is set, the mesh size specified
// at geometrical points;
// 3) if {}^{\bar{i}}\text{Mesh.CharacteristicLengthFromCurvature'} is set, the mesh size based on
// the curvature and 'Mesh.MinimumElementsPerTwoPi';
// 4) the background mesh field;
// 5) any per-entity mesh size constraint.
// This value is then constrained in the interval
// ['Mesh.CharacteristicLengthMin', 'Mesh.CharacteristicLengthMax'] and
// multiplied by 'Mesh.CharacteristicLengthFactor'. In addition, boundary mesh
// sizes (on curves or surfaces) are interpolated inside the enclosed entity
// (surface or volume, respectively) if the option
// 'Mesh.CharacteristicLengthExtendFromBoundary' is set (which is the case by
// default).
//
// When the element size is fully specified by a background mesh (as it is in
// this example), it is thus often desirable to set
Mesh.CharacteristicLengthExtendFromBoundary = 0;
Mesh.CharacteristicLengthFromPoints = 0;
Mesh.CharacteristicLengthFromCurvature = 0;
// This will prevent over-refinement due to small mesh sizes on the boundary.
```

A.11 t11: Unstructured quadrangular meshes

```
Point(3) = \{1.25, 1.25, 0\}; Point(4) = \{-1.25, 1.25, 0\};
Line(1) = \{1, 2\}; Line(2) = \{2, 3\};
Line(3) = \{3, 4\}; Line(4) = \{4, 1\};
Curve Loop(4) = \{1, 2, 3, 4\}; Plane Surface(100) = \{4\};
Field[1] = MathEval;
Field[1].F = "0.01*(1.0+30.*(y-x*x)*(y-x*x) + (1-x)*(1-x)";
Background Field = 1;
// To generate quadrangles instead of triangles, we can simply add
// Recombine Surface{100};
// If we'd had several surfaces, we could have used 'Recombine Surface {:};'.
// Yet another way would be to specify the global option "Mesh.RecombineAll =
// 1;".
// The default recombination algorithm is called "Blossom": it uses a minimum
// cost perfect matching algorithm to generate fully quadrilateral meshes from
\ensuremath{/\!/} triangulations. More details about the algorithm can be found in the
// following paper: J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise,
// A. Johnen and C. Geuzaine, "Blossom-Quad: a non-uniform quadrilateral mesh
// generator using a minimum cost perfect matching algorithm", International
// Journal for Numerical Methods in Engineering 89, pp. 1102-1119, 2012.
// For even better 2D (planar) quadrilateral meshes, you can try the
// experimental "Frontal-Delaunay for quads" meshing algorithm, which is a
\ensuremath{//} triangulation algorithm that enables to create right triangles almost
// everywhere: J.-F. Remacle, F. Henrotte, T. Carrier-Baudouin, E. Bechet,
// E. Marchandise, C. Geuzaine and T. Mouton. A frontal Delaunay quad mesh
// generator using the L^inf norm. International Journal for Numerical Methods
// in Engineering, 94, pp. 494-512, 2013. Uncomment the following line to try
// the Frontal-Delaunay algorithms for quads:
//
// Mesh.Algorithm = 8;
// The default recombination algorithm might leave some triangles in the mesh,
// if recombining all the triangles leads to badly shaped quads. In such cases,
// to generate full-quad meshes, you can either subdivide the resulting hybrid
// mesh (with Mesh.SubdivisionAlgorithm = 1), or use the full-quad recombination
// algorithm, which will automatically perform a coarser mesh followed by
// recombination, smoothing and subdivision. Uncomment the following line to try
// the full-quad algorithm:
//
// Mesh.RecombinationAlgorithm = 2; // or 3
// Note that you could also apply the recombination algorithm and/or the
// subdivision step explicitly after meshing, as follows:
//
// Mesh 2;
// RecombineMesh;
// Mesh.SubdivisionAlgorithm = 1;
// RefineMesh;
```

A.12 t12: Cross-patch meshing with compounds

```
// "Compound" meshing constraints allow to generate meshes across surface
// boundaries, which can be useful e.g. for imported CAD models (e.g. STEP) with
// undesired small features.
// When a 'Compound Curve' or 'Compound Surface' meshing constraint is given,
// at mesh generation time Gmsh
// 1. meshes the underlying elementary geometrical entities, individually
// 2. creates a discrete entity that combines all the individual meshes
// 3. computes a discrete parametrization (i.e. a piece-wise linear mapping)
      on this discrete entity
// 4. meshes the discrete entity using this discrete parametrization instead
       of the underlying geometrical description of the underlying elementary
//
       entities making up the compound
//
// 5. optionally, reclassifies the mesh elements and nodes on the original
       entities
// Step 3. above can only be performed if the mesh resulting from the
// combination of the individual meshes can be reparametrized, i.e. if the shape
// is "simple enough". If the shape is not amenable to reparametrization, you
// should create a full mesh of the geometry and first re-classify it to
// generate patches amenable to reparametrization (see 't13.geo').
// The mesh of the individual entities performed in Step 1. should usually be
// finer than the desired final mesh; this can be controlled with the
// 'Mesh.CompoundCharacteristicLengthFactor' option.
// The optional reclassification on the underlying elementary entities in Step
// 5. is governed by the 'Mesh.CompoundClassify' option.
1c = 0.1;
Point(1) = {0, 0, 0, 1c}; Point(2) = {1, 0, 0, 1c}; Point(3) = {1, 1, 0.5, 1c}; Point(4) = {0, 1, 0.4, 1c};
Point(5) = \{0.3, 0.2, 0, 1c\}; Point(6) = \{0, 0.01, 0.01, 1c\};
Point(7) = \{0, 0.02, 0.02, 1c\}; Point(8) = \{1, 0.05, 0.02, 1c\};
Point(9) = \{1, 0.32, 0.02, 1c\};
Line(1) = \{1, 2\}; Line(2) = \{2, 8\}; Line(3) = \{8, 9\};
Line(4) = \{9, 3\}; Line(5) = \{3, 4\}; Line(6) = \{4, 7\};
Line(7) = \{7, 6\}; Line(8) = \{6, 1\}; Spline(9) = \{7, 5, 9\};
Line(10) = \{6, 8\};
Curve Loop(11) = \{5, 6, 9, 4\};
                                  Surface(1) = \{11\};
Curve Loop(13) = \{-9, 3, 10, 7\}; Surface(5) = \{13\};
Curve Loop(15) = \{-10, 2, 1, 8\}; Surface(10) = \{15\};
// Treat curves 2, 3 and 4 as a single curve when meshing (i.e. mesh across
// points 6 and 7)
Compound Curve{2, 3, 4};
// Idem with curves 6, 7 and 8
Compound Curve{6, 7, 8};
// Treat surfaces 1, 5 and 10 as a single surface when meshing (i.e. mesh across
// curves 9 and 10)
Compound Surface{1, 5, 10};
```

A.13 t13: Remeshing an STL file without an underlying CAD model

See t13.geo. Also available in C++ (t13.cpp) and Python (t13.py).

```
// -----
// Gmsh GEO tutorial 13
//
// Remeshing an STL file without an underlying CAD model
// Let's merge an STL mesh that we would like to remesh.
Merge "t13_data.stl";
// We first classify ("color") the surfaces by splitting the original surface
// along sharp geometrical features. This will create new discrete surfaces,
// curves and points.
DefineConstant[
  // Angle between two triangles above which an edge is considered as sharp
  angle = {40, Min 20, Max 120, Step 1,
   Name "Parameters/Angle for surface detection"},
  // For complex geometries, patches can be too complex, too elongated or too
  // large to be parametrized; setting the following option will force the
  // creation of patches that are amenable to reparametrization:
  forceParametrizablePatches = {0, Choices{0,1},
   Name "Parameters/Create surfaces guaranteed to be parametrizable"},
  // For open surfaces include the boundary edges in the classification process:
  includeBoundary = 1,
  \ensuremath{//} Force curves to be split on given angle:
 curveAngle = 180
];
ClassifySurfaces{angle * Pi/180, includeBoundary, forceParametrizablePatches,
                curveAngle * Pi / 180};
// Create a geometry for all the discrete curves and surfaces in the mesh, by
// computing a parametrization for each one
CreateGeometry;
// In batch mode the two steps above can be performed with 'gmsh t13.stl
// -reparam 40', which will save 't13.msh' containing the parametrizations, and
// which can thus subsequently be remeshed.
// Create a volume as usual
Surface Loop(1) = Surface{:};
Volume(1) = \{1\};
// We specify element sizes imposed by a size field, just because we can :-)
funny = DefineNumber[0, Choices{0,1},
  Name "Parameters/Apply funny mesh size field?" ];
Field[1] = MathEval;
If(funny)
  Field[1].F = "2*Sin((x+y)/5) + 3";
  Field[1].F = "4";
Background Field = 1;
```

A.14 t14: Homology and cohomology computation

```
See t14.geo. Also available in C++ (t14.cpp) and Python (t14.py).
// -----
//
// Gmsh GEO tutorial 14
// Homology and cohomology computation
```

```
// Homology computation in Gmsh finds representative chains of (relative)
// chains are stored in the mesh as physical groups of Gmsh, one for each chain.
// Create an example geometry
m = 0.5; // mesh characteristic length
h = 2; // height in the z-direction
Point(1) = \{0, 0, 0, m\}; Point(2) = \{10, 0, 0, m\};
Point(3) = \{10, 10, 0, m\}; Point(4) = \{0, 10, 0, m\};
Point(5) = \{4, 4, 0, m\}; Point(6) = \{6, 4, 0, m\}; Point(7) = \{6, 6, 0, m\}; Point(8) = \{4, 6, 0, m\};
Point(9) = \{2, 0, 0, m\}; Point(10) = \{8, 0, 0, m\};
Point(11) = \{2, 10, 0, m\}; Point(12) = \{8, 10, 0, m\};
Line(1) = \{1, 9\}; Line(2) = \{9, 10\}; Line(3) = \{10, 2\};
Line(4) = \{2, 3\}; Line(5) = \{3, 12\}; Line(6) = \{12, 11\};
Line(7) = \{11, 4\}; Line(8) = \{4, 1\}; Line(9) = \{5, 6\};
Line(10) = \{6, 7\}; Line(11) = \{7, 8\}; Line(12) = \{8, 5\};
Curve Loop(13) = \{6, 7, 8, 1, 2, 3, 4, 5\};
Curve Loop(14) = \{11, 12, 9, 10\};
Plane Surface(15) = \{13, 14\};
e() = Extrude {0, 0, h}{ Surface{15}; };
// Create physical groups, which are used to define the domain of the
// (co)homology computation and the subdomain of the relative (co)homology
// computation.
// Whole domain
Physical Volume(1) = {e(1)};
// Four "terminals" of the model
Physical Surface(70) = \{e(3)\};
Physical Surface(71) = {e(5)};
Physical Surface(72) = \{e(7)\};
Physical Surface(73) = \{e(9)\};
// Whole domain surface
bnd() = Boundary{ Volume{e(1)}; };
Physical Surface(80) = bnd();
// Complement of the domain surface with respect to the four terminals
bnd() -= \{e(3), e(5), e(7), e(9)\};
Physical Surface(75) = bnd();
// Find bases for relative homology spaces of the domain modulo the four
Homology {{1}, {70, 71, 72, 73}};
// Find homology space bases isomorphic to the previous bases: homology spaces
// modulo the non-terminal domain surface, a.k.a the thin cuts.
Homology {{1}, {75}};
// Find cohomology space bases isomorphic to the previous bases: cohomology
// spaces of the domain modulo the four terminals, a.k.a the thick cuts.
Cohomology {{1}, {70, 71, 72, 73}};
// More examples:
```

```
// Homology {1};
// Homology;
// Homology {{1}, {80}};
// Homology {{}, {80}};

// For more information, see M. Pellikka, S. Suuriniemi, L. Kettunen and
// C. Geuzaine. Homology and cohomology computation in finite element
// modeling. SIAM Journal on Scientific Computing 35(5), pp. 1195-1214, 2013.
```

A.15 t15: Embedded points, lines and surfaces

```
See t15.geo. Also available in C++ (t15.cpp) and Python (t15.py).
// -----
//
// Gmsh GEO tutorial 15
//
// Embedded points, lines and surfaces
// ------
// By default, across geometrical dimensions meshes generated by Gmsh are only
\ensuremath{//} conformal if lower dimensional entities are on the boundary of higher
// dimensional ones (i.e. if points, curves or surfaces are part of the boundary
// of volumes).
// Embedding constraints allow to force a mesh to be conformal to other lower
// dimensional entities.
// We start one again by including the first tutorial:
Include "t1.geo";
// We change the mesh size to generate coarser mesh
1c = 1c * 4;
Characteristic Length {1:4} = lc;
// We define a new point
Point(5) = \{0.02, 0.02, 0, 1c\};
// One can force this point to be included ("embedded") in the 2D mesh, using
// the 'Point In Surface' command:
Point{5} In Surface{1};
// In the same way, one can force a curve to be embedded in the 2D mesh using
// the 'Curve in Surface' command:
Point(6) = {0.02, 0.12, 0, 1c};
Point(7) = \{0.04, 0.18, 0, 1c\};
Line(5) = \{6, 7\};
Curve{5} In Surface{1};
// One can also embed points and curves in a volume using the 'Curve/Point In
// Volume' commands:
Extrude {0, 0, 0.1}{ Surface {1}; }
p = newp;
Point(p) = {0.07, 0.15, 0.025, 1c};
Point{p} In Volume {1};
l = newl;
Point(p+1) = {0.025, 0.15, 0.025, 1c};
Line(1) = \{7, p+1\};
Curve{l} In Volume {1};
// Finally, one can also embed a surface in a volume using the 'Surface In
// Volume' command:
```

```
Point(p+2) = \{0.02, 0.12, 0.05, 1c\};
Point(p+3) = \{0.04, 0.12, 0.05, 1c\};
Point(p+4) = \{0.04, 0.18, 0.05, 1c\};
Point(p+5) = {0.02, 0.18, 0.05, 1c};
Line(1+1) = \{p+2, p+3\};
Line(1+2) = \{p+3, p+4\};
Line(1+3) = \{p+4, p+5\};
Line(1+4) = \{p+5, p+2\};
11 = newl1;
Curve Loop(ll) = \{1+1:1+4\};
s = news;
Plane Surface(s) = {11};
Surface{s} In Volume {1};
// Note that with the OpenCASCADE kernel (see 't16.geo'), when the
// 'BooleanFragments' command is applied to entities of different dimensions,
// the lower dimensional entities will be autmatically embedded in the higher
// dimensional entities if necessary.
Physical Point("Embedded point") = {p};
Physical Curve("Embdded curve") = {1};
Physical Surface("Embedded surface") = {s};
Physical Volume("Volume") = {1};
```

A.16 t16: Constructive Solid Geometry, OpenCASCADE geometry kernel

```
See t16.geo. Also available in C++ (t16.cpp), Python (t16.py) and Julia (t16.jl).
//
// Gmsh GEO tutorial 16
//
// Constructive Solid Geometry, OpenCASCADE geometry kernel
// Instead of constructing a model in a bottom-up fashion with Gmsh's built-in
// geometry kernel, starting with version 3 Gmsh allows you to directly use
// alternative geometry kernels. Here we use the OpenCASCADE kernel:
SetFactory("OpenCASCADE");
// Let's build the same model as in 't5.geo', but using constructive solid
// geometry.
// We first create two cubes:
Box(1) = \{0,0,0,1,1,1\};
Box(2) = \{0,0,0,0.5,0.5,0.5\};
// We apply a boolean difference to create the "cube minus one eigth" shape:
BooleanDifference(3) = { Volume{1}; Delete; }{ Volume{2}; Delete; };
// Boolean operations with OpenCASCADE always create new entities. Adding
// 'Delete' in the arguments allows to automatically delete the original
// entities.
// We then create the five spheres:
x = 0; y = 0.75; z = 0; r = 0.09;
For t In {1:5}
 x += 0.166;
 z += 0.166;
 Sphere(3 + t) = \{x,y,z,r\};
 Physical Volume(t) = \{3 + t\};
EndFor
```

```
// If we had wanted five empty holes we would have used 'BooleanDifference'
// again. Here we want five spherical inclusions, whose mesh should be conformal
// with the mesh of the cube: we thus use 'BooleanFragments', which intersects
// all volumes in a conformal manner (without creating duplicate interfaces):
v() = BooleanFragments{ Volume{3}; Delete; }{ Volume{3 + 1 : 3 + 5}; Delete; };
/\!/ When the boolean operation leads to simple modifications of entities, and if
// one deletes the original entities with 'Delete', Gmsh tries to assign the
// same tag to the new entities. (This behavior is governed by the
// 'Geometry.OCCBooleanPreserveNumbering' option.)
// Here the 'Physical Volume' definitions made above will thus still work, as
// the five spheres (volumes 4, 5, 6, 7 and 8), which will be deleted by the
// fragment operations, will be recreated identically (albeit with new surfaces)
// with the same tags.
// The tag of the cube will change though, so we need to access it
// programmatically:
Physical Volume(10) = v(\#v()-1);
// Creating entities using constructive solid geometry is very powerful, but can
// lead to practical issues for e.g. setting mesh sizes at points, or
// identifying boundaries.
// To identify points or other bounding entities you can take advantage of the
// 'PointfsOf' (a special case of the more general 'Boundary' command) and the
// 'In BoundingBox' commands.
lcar1 = .1;
lcar2 = .0005;
lcar3 = .055;
eps = 1e-3;
// Assign a mesh size to all the points of all the volumes:
Characteristic Length{ PointsOf{ Volume{:}; } } = lcar1;
\ensuremath{//} Override this constraint on the points of the five spheres:
Characteristic Length{ PointsOf{ Volume{3 + 1 : 3 + 5}; } } = lcar3;
// Select the corner point by searching for it geometrically:
p() = Point In BoundingBox{0.5-eps, 0.5-eps, 0.5-eps,
                           0.5+eps, 0.5+eps, 0.5+eps};
Characteristic Length{ p() } = lcar2;
// Additional examples created with the {\tt OpenCASCADE} geometry kernel are
// available in 't18.geo', 't19.geo' and 't20.geo', as well as in the
// 'demos/boolean' directory.
```

A.17 t17: Anisotropic background mesh

Box(10) = $\{2, 0, 0, 1, 1, 1\}$; x = 2-0.3; y = 0; z = 0;

```
// a square. One should use bamg as 2d mesh generator to enable anisotropic
// meshes in 2D.
SetFactory("OpenCASCADE");
// Create a square
Rectangle(1) = \{-1, -1, 0, 2, 2\};
// Merge a post-processing view containing the target anisotropic mesh sizes
Merge "t17_bgmesh.pos";
// Apply the view as the current background mesh
Background Mesh View[0];
// Use bamg
Mesh.SmoothRatio = 3;
Mesh.AnisoMax = 1000;
Mesh.Algorithm = 7;
A.18 t18: Periodic meshes
See t18.geo. Also available in C++ (t18.cpp) and Python (t18.py).
//
// Gmsh GEO tutorial 18
// Periodic meshes
// Periodic meshing constraints can be imposed on surfaces and curves.
// Let's use the OpenCASCADE geometry kernel to build two geometries.
SetFactory("OpenCASCADE");
// The first geometry is very simple: a unit cube with a non-uniform mesh size
// constraint (set on purpose to be able to verify visually that the periodicity
// constraint works!):
Box(1) = \{0, 0, 0, 1, 1, 1\};
Characteristic Length {:} = 0.1;
Characteristic Length {1} = 0.02;
// To impose that the mesh on surface 2 (the right side of the cube) should
// match the mesh from surface 1 (the left side), the following periodicity
// constraint is set:
Periodic Surface {2} = {1} Translate {1, 0, 0};
// During mesh generation, the mesh on surface 2 will be created by copying the
// mesh from surface 1. Periodicity constraints can be specified with a
// 'Translation', a 'Rotation' or a general 'Affine' transform.
// Multiple periodicities can be imposed in the same way:
Periodic Surface {6} = {5} Translate {0, 0, 1};
Periodic Surface {4} = {3} Translate {0, 1, 0};
// For more complicated cases, finding the corresponding surfaces by hand can be
// tedious, especially when geometries are created through solid
// modelling. Let's construct a slightly more complicated geometry.
// We start with a cube and some spheres:
```

```
Sphere(11) = \{x, y, z, 0.35\};
Sphere(12) = \{x+1, y, z, 0.35\};
Sphere(13) = \{x, y+1, z, 0.35\};
Sphere(14) = \{x, y, z+1, 0.35\};
Sphere(15) = \{x+1, y+1, z, 0.35\};
Sphere(16) = \{x, y+1, z+1, 0.35\};
Sphere(17) = \{x+1, y, z+1, 0.35\};
Sphere(18) = \{x+1, y+1, z+1, 0.35\};
// We first fragment all the volumes, which will leave parts of spheres
// protruding outside the cube:
v() = BooleanFragments { Volume{10}; Delete; }{ Volume{11:18}; Delete; };
// Ask OpenCASCADE to compute more accurate bounding boxes of entities using the
// STL mesh:
Geometry.OCCBoundsUseStl = 1;
// We then retrieve all the volumes in the bounding box of the original cube,
// and delete all the parts outside it:
eps = 1e-3;
vin() = Volume In BoundingBox {2-eps,-eps,-eps, 2+1+eps,1+eps,1+eps};
v() -= vin();
Recursive Delete{ Volume{v()}; }
// We now set a non-uniform mesh size constraint (again to check results
// visually):
Characteristic Length { PointsOf{ Volume{vin()}; }} = 0.1;
p() = Point In BoundingBox{2-eps, -eps, -eps, 2+eps, eps, eps};
Characteristic Length \{p()\} = 0.001;
// We now identify corresponding surfaces on the left and right sides of the
// geometry automatically.
// First we get all surfaces on the left:
Sxmin() = Surface In BoundingBox{2-eps, -eps, -eps, 2+eps, 1+eps};
For i In {0:#Sxmin()-1}
  // Then we get the bounding box of each left surface
  bb() = BoundingBox Surface { Sxmin(i) };
  // We translate the bounding box to the right and look for surfaces inside i
  Sxmax() = Surface In BoundingBox { bb(0)-eps+1, bb(1)-eps, bb(2)-eps,
                                     bb(3)+eps+1, bb(4)+eps, bb(5)+eps };
  // For all the matches, we compare the corresponding bounding boxes...
  For j In \{0: \#Sxmax()-1\}
    bb2() = BoundingBox Surface { Sxmax(j) };
    bb2(0) = 1;
    bb2(3) = 1;
    // ...and if they match, we apply the periodicity constraint
    If(Fabs(bb2(0)-bb(0)) < eps \&\& Fabs(bb2(1)-bb(1)) < eps \&\&
       Fabs(bb2(2)-bb(2)) < eps \&\& Fabs(bb2(3)-bb(3)) < eps \&\&
       Fabs(bb2(4)-bb(4)) < eps && Fabs(bb2(5)-bb(5)) < eps)
      Periodic Surface {Sxmax(j)} = {Sxmin(i)} Translate {1,0,0};
    EndIf
  EndFor
EndFor
```

A.19 t19: Thrusections, fillets, pipes, mesh size from curvature

```
// The OpenCASCADE geometry kernel supports several useful features for solid
// modelling.
SetFactory("OpenCASCADE");
// Volumes can be constructed from (closed) curve loops thanks to the
// 'ThruSections' command
Circle(1) = \{0,0,0,0,0.5\};
                               Curve Loop(1) = 1;
Circle(2) = {0.1,0.05,1, 0.1}; Curve Loop(2) = 2;
Circle(3) = \{-0.1, -0.1, 2, 0.3\}; Curve Loop(3) = 3;
ThruSections(1) = \{1:3\};
// With 'Ruled ThruSections' you can force the use of ruled surfaces:
Circle(13) = \{2-0.1, -0.1, 2, 0.3\}; Curve Loop(13) = 13;
Ruled ThruSections(11) = {11:13};
// We copy the first volume, and fillet all its edges:
v() = Translate{4, 0, 0} { Duplicata{ Volume{1}; } };
f() = Abs(Boundary{ Volume{v(0)}; });
e() = Unique(Abs(Boundary{ Surface{f()}; }));
Fillet{v(0)}{e()}{0.1}
// OpenCASCADE also allows general extrusions along a smooth path. Let's first
// define a spline curve:
nturns = DefineNumber[ 1, Min 0.1, Max 3, Step 0.01, Name "Parameters/Turn" ];
npts = 20;
r = 1;
h = 1 * nturns;
For i In {0 : npts - 1}
 theta = i * 2*Pi*nturns/npts;
 Point(1000 + i) = \{r * Cos(theta), r * Sin(theta), i * h/npts\};
EndFor
Spline(1000) = \{1000 : 1000 + npts - 1\};
// A wire is like a curve loop, but open:
Wire(1000) = \{1000\};
// We define the shape we would like to extrude along the spline (a disk):
Disk(1000) = \{1,0,0,0.2\};
Rotate {{1, 0, 0}, {0, 0, 0}, Pi/2} { Surface{1000}; }
// We extrude the disk along the spline to create a pipe:
Extrude { Surface{1000}; } Using Wire {1000}
// We delete the source surface, and increase the number of sub-edges for a
// nicer display of the geometry:
Delete{ Surface{1000}; }
Geometry.NumSubEdges = 1000;
// We can activate the calculation of mesh element sizes based on curvature:
Mesh.CharacteristicLengthFromCurvature = 1;
// And we set the minimum number of elements per 2*Pi radians:
Mesh.MinimumElementsPerTwoPi = 20;
// We can constraint the min and max element sizes to stay within reasonnable
// values (see 't10.geo' for more details):
Mesh.CharacteristicLengthMin = 0.001;
Mesh.CharacteristicLengthMax = 0.3;
```

A.20 t20: STEP import and manipulation, geometry partitioning

```
See t20.geo. Also available in C++ (t20.cpp) and Python (t20.py).
// -----
//
// Gmsh GEO tutorial 20
//
// STEP import and manipulation, geometry partitioning
// The OpenCASCADE geometry kernel allows to import STEP files and to modify
// them. In this tutorial we will load a STEP geometry and partition it into
// slices.
SetFactory("OpenCASCADE");
// Load a STEP file (using 'ShapeFromFile' instead of 'Merge' allows to directly
// retrieve the tags of the highest dimensional imported entities):
v() = ShapeFromFile("t20_data.step");
// If we had specified
// Geometry.OCCTargetUnit = "M";
//
// before merging the STEP file, OpenCASCADE would have converted the units to
// meters (instead of the default, which is millimeters).
// Get the bounding box of the volume:
bbox() = BoundingBox Volume{v()};
xmin = bbox(0);
ymin = bbox(1);
zmin = bbox(2);
xmax = bbox(3);
ymax = bbox(4);
zmax = bbox(5);
// We want to slice the model into N slices, and either keep the volume slices
// or just the surfaces obtained by the cutting:
DefineConstant[
 N = {5, Min 2, Max 100, Step 1, Name "Parameters/ONumber of slices"}
 dir = {0, Choices{0="X", 1="Y", 2="Z"}, Name "Parameters/1Direction"}
 surf = {0, Choices{0, 1}, Name "Parameters/2Keep only surfaces?"}
];
dx = (xmax - xmin);
dy = (ymax - ymin);
dz = (zmax - zmin);
L = (dir == 0) ? dz : dx;
H = (dir == 1) ? dz : dy;
// Create the first cutting plane:
s() = {news};
Rectangle(s(0)) = {xmin, ymin, zmin, L, H};
If(dir == 0)
  Rotate{ {0, 1, 0}, {xmin, ymin, zmin}, -Pi/2 } { Surface{s(0)}; }
ElseIf(dir == 1)
 Rotate{ {1, 0, 0}, {xmin, ymin, zmin}, Pi/2 } { Surface{s(0)}; }
tx = (dir == 0) ? dx / N : 0;
ty = (dir == 1) ? dy / N : 0;
tz = (dir == 2) ? dz / N : 0;
Translate{tx, ty, tz} { Surface{s(0)}; }
// Create the other cutting planes:
```

```
For i In {1:N-2}
 s() += Translate{i * tx, i * ty, i * tz} { Duplicata{ Surface{s(0)}; } };
EndFor
// Fragment (i.e. intersect) the volume with all the cutting planes:
BooleanFragments{ Volume{v()}; Delete; }{ Surface{s()}; Delete; }
// Now remove all the surfaces (and their bounding entities) that are not on the
// boundary of a volume, i.e. the parts of the cutting planes that "stick out"
// of the volume:
Recursive Delete { Surface{:}; }
If(surf)
  // If we want to only keep the surfaces, retrieve the surfaces in bounding
 // boxes around the cutting planes...
 eps = 1e-4;
 s() = {};
 For i In {1:N-1}
   xx = (dir == 0) ? xmin : xmax;
   yy = (dir == 1) ? ymin : ymax;
   zz = (dir == 2) ? zmin : zmax;
   s() += Surface In BoundingBox
     {\rm xmin - eps + i * tx, ymin - eps + i * ty, zmin - eps + i * tz,}
      xx + eps + i * tx, yy + eps + i * ty, zz + eps + i * tz};
  // ...and remove all the other entities:
 dels = Surface{:};
 dels = s();
 Delete { Volume{:}; Surface{dels()}; Curve{:}; Point{:}; }
// Finally, let's specify a global mesh size:
Mesh.CharacteristicLengthMin = 3;
Mesh.CharacteristicLengthMax = 3;
// To partition the mesh instead of the geometry, see 't21.geo'.
A.21 t21: Mesh partitioning
See t21.geo. Also available in C++ (t21.cpp) and Python (t21.py).
// -----
//
// Gmsh GEO tutorial 21
//
// Mesh partitioning
//
// -----
// Gmsh can partition meshes using different algorithms, e.g. the graph
// partitioner Metis or the 'SimplePartition' plugin. For all the partitining
// algorithms, the relationship between mesh elements and mesh partitions is
// encoded through the creation of new (discrete) elementary entities, called
// "partition entities".
//
// Partition entities behave exactly like other discrete elementary entities;
// the only difference is that they keep track of both a mesh partition index
// and their parent elementary entity.
//
// The major advantage of this approach is that it allows to maintain a full
// boundary representation of the partition entities, which Gmsh creates
// automatically if 'Mesh.PartitionCreateTopology' is set.
```

// Let us start by creating a simple geometry with two adjacent squares sharing

// an edge:

```
SetFactory("OpenCASCADE");
Rectangle(1) = {0, 0, 0, 1, 1};
Rectangle(2) = \{1, 0, 0, 1, 1\};
BooleanFragments{ Surface{1}; Delete; }{ Surface{2}; Delete; }
Characteristic Length {:} = 0.05;
// We create one physical group for each square, and we mesh the resulting
// geometry:
Physical Surface("Left", 100) = 1;
Physical Surface("Right", 200) = 2;
Mesh 2:
// We now define several constants to fine-tune how the mesh will be partitioned
DefineConstant[
 partitioner = {0, Choices{0="Metis", 1="SimplePartition"},
   Name "Parameters/OMesh partitioner"}
  N = \{3, Min 1, Max 256, Step 1,
   Name "Parameters/1Number of partitions"}
  topology = {1, Choices{0, 1},
   Name "Parameters/2Create partition topology (BRep)?"}
  ghosts = \{0, \text{Choices}\{0, 1\},
    Name "Parameters/3Create ghost cells?"}
  physicals = {0, Choices{0, 1},
    Name "Parameters/3Create new physical groups?"}
  write = \{1, \text{ Choices } \{0, 1\},
    Name "Parameters/3Write file to disk?"}
  split = \{0, Choices \{0, 1\},
    Name "Parameters/4Write one file per partition?"}
];
// Should we create the boundary representation of the partition entities?
Mesh.PartitionCreateTopology = topology;
// Should we create ghost cells?
Mesh.PartitionCreateGhostCells = ghosts;
// Should we automatically create new physical groups on the partition entities?
Mesh.PartitionCreatePhysicals = physicals;
// Should we keep backward compatibility with pre-Gmsh 4, e.g. to save the mesh
// in MSH2 format?
Mesh.PartitionOldStyleMsh2 = 0;
// Should we save one mesh file per partition?
Mesh.PartitionSplitMeshFiles = split;
If (partitioner == 0)
 // Use Metis to create N partitions
 PartitionMesh N;
 // Several options can be set to control Metis: 'Mesh.MetisAlgorithm' (1:
  // Recursive, 2: K-way), 'Mesh.MetisObjective' (1: min. edge-cut, 2:
 // min. communication volume), 'Mesh.PartitionTriWeight' (weight of
 // triangles), 'Mesh.PartitionQuadWeight' (weight of quads), ...
  // Use the 'SimplePartition' plugin to create chessboard-like partitions
 Plugin(SimplePartition).NumSlicesX = N;
 Plugin(SimplePartition).NumSlicesY = 1;
  Plugin(SimplePartition).NumSlicesZ = 1;
 Plugin(SimplePartition).Run;
// Save mesh file (or files, if 'Mesh.PartitionSplitMeshFiles' is set):
If(write)
 Save "t21.msh";
EndIf
```

A.22 x1: Geometry and mesh data

```
See x1.py. Also available in C++ (x1.cpp).
# Gmsh Python extended tutorial 1
# Geometry and mesh data
# The Python API allows to do much more than what can be done in .geo files. These
# additional features are introduced gradually in the extended tutorials,
# starting with 'x1.py'.
# In this first extended tutorial, we start by using the API to access basic
# geometrical and mesh data.
import gmsh
import sys
if len(sys.argv) < 2:</pre>
    print("Usage: " + sys.argv[0] + " file")
    exit
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 1)
# You can run this tutorial on any file that Gmsh can read, e.g. a mesh file in
# the MSH format: 'python t1.py file.msh'
gmsh.open(sys.argv[1])
# Print the model name and dimension:
print('Model ' + gmsh.model.getCurrent() + ' (' +
      str(gmsh.model.getDimension()) + 'D)')
# Geometrical data is made of elementary model 'entities', called 'points'
# (entities of dimension 0), 'curves' (entities of dimension 1), 'surfaces'
# (entities of dimension 2) and 'volumes' (entities of dimension 3). As we have
# seen in the other Python tutorials, elementary model entities are identified
# by their dimension and by a 'tag': a strictly positive identification
# number. Model entities can be either CAD entities (from the built-in 'geo'
# kernel or from the OpenCASCADE 'occ' kernel) or 'discrete' entities (defined
# by a mesh). 'Physical groups' are collections of model entities and are also
\mbox{\tt\#} identified by their dimension and by a tag.
# Get all the elementary entities in the model, as a vector of (dimension, tag)
# pairs:
entities = gmsh.model.getEntities()
for e in entities:
    # Mesh data is made of 'elements' (points, lines, triangles, ...), defined
    # by an ordered list of their 'nodes'. Elements and nodes are identified by
    # 'tags' as well (strictly positive identification numbers), and are stored
    # ("classified") in the model entity they discretize. Tags for elements and
    # nodes are globally unique (and not only per dimension, like entities).
    # A model entity of dimension O (a geometrical point) will contain a mesh
    # element of type point, as well as a mesh node. A model curve will contain
    # line elements as well as its interior nodes, while its boundary nodes will
    # be stored in the bounding model points. A model surface will contain
    # triangular and/or quadrangular elements and all the nodes not classified
    # on its boundary or on its embedded entities. A model volume will contain
    # tetrahedra, hexahedra, etc. and all the nodes not classified on its
```

```
# boundary or on its embedded entities.
    # Dimension and tag of the entity:
    dim = e[0]
    tag = e[1]
    # Get the mesh nodes for the entity (dim, tag):
    nodeTags, nodeCoords, nodeParams = gmsh.model.mesh.getNodes(dim, tag)
    # Get the mesh elements for the entity (dim, tag):
    elemTypes, elemTags, elemNodeTags = gmsh.model.mesh.getElements(dim, tag)
    # Let's print a summary of the information available on the entity and its
    # mesh.
    # * Type and name of the entity:
    type = gmsh.model.getType(e[0], e[1])
    name = gmsh.model.getEntityName(e[0], e[1])
    if len(name): name += ', '
   print("Entity " + name + str(e) + " of type " + type)
    # * Number of mesh nodes and elements:
   numElem = sum(len(i) for i in elemTags)
   print(" - Mesh has " + str(len(nodeTags)) + " nodes and " + str(numElem) +
          " elements")
   # * Entities on its boundary:
    boundary = gmsh.model.getBoundary([e])
    if len(boundary):
       print(" - Boundary entities: " + str(boundary))
    # * Does the entity belong to physical groups?
   physicalTags = gmsh.model.getPhysicalGroupsForEntity(dim, tag)
    if len(physicalTags):
        for p in physicalTags:
           n = gmsh.model.getPhysicalName(dim, p)
           if n: n += ', '
           s += n + '(' + str(dim) + ', ' + str(p) + ') '
        print(" - Physical groups: " + s)
   # * Is the entity a partition entity? If so, what is its parent entity?
   partitions = gmsh.model.getPartitions(e[0], e[1])
    if len(partitions):
        print(" - Partition tags: " + str(partitions) + " - parent entity " +
              str(gmsh.model.getParent(e[0], e[1])))
    # * List all types of elements making up the mesh of the entity:
   for t in elemTypes:
       name, dim, order, numv, parv, _ = gmsh.model.mesh.getElementProperties(
           t)
        print(" - Element type: " + name + ", order " + str(order) + " (" +
              str(numv) + " nodes in param coord: " + str(parv) + ")")
# We can use this to clear all the model data:
gmsh.clear()
gmsh.finalize()
```

A.23 x2: Mesh import, discrete entities, hybrid models, terrain meshing

```
See x2.py. Also available in C++ (x2.cpp).
```

```
# Gmsh Python extended tutorial 2
#
# Mesh import, discrete entities, hybrid models, terrain meshing
import gmsh
import sys
import math
# The API can be used to import a mesh without reading it from a file, by
# creating nodes and elements on the fly and storing them in model
# entities. These model entities can be existing CAD entities, or can be
# discrete entities, entirely defined by the mesh.
# Discrete entities can be reparametrized (see 't13.py') so that they can be
# remeshed later on; and they can also be combined with CAD entities to produce
# hybrid models.
# We combine all these features in this tutorial to perform terrain meshing,
\mbox{\tt\#} where the terrain is described by a discrete surface (that we then
# reparametrize) combined with a CAD representation of the underground.
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 1)
gmsh.model.add("x2")
# We will create the terrain surface mesh from N x N input data points:
# Helper function to return a node tag given two indices i and j:
def tag(i, j):
    return (N + 1) * i + j + 1
\# The x, y, z coordinates of all the nodes:
# The tags of the corresponding nodes:
nodes = []
# The connectivities of the triangle elements (3 node tags per triangle) on the
# terrain surface:
tris = []
# The connectivities of the line elements on the 4 boundaries (2 node tags
# for each line element):
lin = [[], [], [], []]
# The connectivities of the point elements on the 4 corners (1 node tag for each
# point element):
pnt = [tag(0, 0), tag(N, 0), tag(N, N), tag(0, N)]
for i in range(N + 1):
    for j in range (N + 1):
        nodes.append(tag(i, j))
        coords.extend([
            float(i) / N,
            float(j) / N, 0.05 * math.sin(10 * float(i + j) / N)
        ])
        if i > 0 and j > 0:
            tris.extend([tag(i - 1, j - 1), tag(i, j - 1), tag(i - 1, j)])
            tris.extend([tag(i, j - 1), tag(i, j), tag(i - 1, j)])
```

```
if (i == 0 or i == N) and j > 0:
            lin[3 if i == 0 else 1].extend([tag(i, j - 1), tag(i, j)])
        if (j == 0 \text{ or } j == N) and i > 0:
            lin[0 \text{ if } j == 0 \text{ else } 2].extend([tag(i - 1, j), tag(i, j)])
# Create 4 discrete points for the 4 corners of the terrain surface:
for i in range(4):
    gmsh.model.addDiscreteEntity(0, i + 1)
gmsh.model.setCoordinates(1, 0, 0, coords[3 * tag(0, 0) - 1])
gmsh.model.setCoordinates(2, 1, 0, coords[3 * tag(N, 0) - 1])
gmsh.model.setCoordinates(3, 1, 1, coords[3 * tag(N, N) - 1])
gmsh.model.setCoordinates(4, 0, 1, coords[3 * tag(0, N) - 1])
# Create 4 discrete bounding curves, with their boundary points:
for i in range(4):
    gmsh.model.addDiscreteEntity(1, i + 1, [i + 1, i + 2 if i < 3 else 1])</pre>
# Create one discrete surface, with its bounding curves:
gmsh.model.addDiscreteEntity(2, 1, [1, 2, -3, -4])
# Add all the nodes on the surface (for simplicity... see below):
gmsh.model.mesh.addNodes(2, 1, nodes, coords)
# Add point elements on the 4 points, line elements on the 4 curves, and
# triangle elements on the surface:
for i in range(4):
    # Type 15 for point elements:
    gmsh.model.mesh.addElementsByType(i + 1, 15, [], [pnt[i]])
    # Type 1 for 2-node line elements:
    gmsh.model.mesh.addElementsByType(i + 1, 1, [], lin[i])
# Type 2 for 3-node triangle elements:
gmsh.model.mesh.addElementsByType(1, 2, [], tris)
# Reclassify the nodes on the curves and the points (since we put them all on
# the surface before with 'addNodes' for simplicity)
gmsh.model.mesh.reclassifyNodes()
# Create a geometry for the discrete curves and surfaces, so that we can remesh
# them later on:
gmsh.model.mesh.createGeometry()
# Note that for more complicated meshes, e.g. for on input unstructured STL
# mesh, we could use 'classifySurfaces()' to automatically create the discrete
# entities and the topology; but we would then have to extract the boundaries
# afterwards.
# Create other CAD entities to form one volume below the terrain surface:
p1 = gmsh.model.geo.addPoint(0, 0, -0.5)
p2 = gmsh.model.geo.addPoint(1, 0, -0.5)
p3 = gmsh.model.geo.addPoint(1, 1, -0.5)
p4 = gmsh.model.geo.addPoint(0, 1, -0.5)
c1 = gmsh.model.geo.addLine(p1, p2)
c2 = gmsh.model.geo.addLine(p2, p3)
c3 = gmsh.model.geo.addLine(p3, p4)
c4 = gmsh.model.geo.addLine(p4, p1)
c10 = gmsh.model.geo.addLine(p1, 1)
c11 = gmsh.model.geo.addLine(p2, 2)
c12 = gmsh.model.geo.addLine(p3, 3)
c13 = gmsh.model.geo.addLine(p4, 4)
111 = gmsh.model.geo.addCurveLoop([c1, c2, c3, c4])
s1 = gmsh.model.geo.addPlaneSurface([111])
113 = gmsh.model.geo.addCurveLoop([c1, c11, -1, -c10])
s3 = gmsh.model.geo.addPlaneSurface([113])
114 = gmsh.model.geo.addCurveLoop([c2, c12, -2, -c11])
s4 = gmsh.model.geo.addPlaneSurface([114])
```

```
115 = gmsh.model.geo.addCurveLoop([c3, c13, 3, -c12])
s5 = gmsh.model.geo.addPlaneSurface([115])
116 = gmsh.model.geo.addCurveLoop([c4, c10, 4, -c13])
s6 = gmsh.model.geo.addPlaneSurface([116])
sl1 = gmsh.model.geo.addSurfaceLoop([s1, s3, s4, s5, s6, 1])
v1 = gmsh.model.geo.addVolume([sl1])
gmsh.model.geo.synchronize()
# Set this to True to build a fully hex mesh:
#transfinite = True
transfinite = False
if transfinite:
   NN = 30
    for c in gmsh.model.getEntities(1):
        gmsh.model.mesh.setTransfiniteCurve(c[1], NN)
    for s in gmsh.model.getEntities(2):
        gmsh.model.mesh.setTransfiniteSurface(s[1])
        gmsh.model.mesh.setRecombine(s[0], s[1])
        gmsh.model.mesh.setSmoothing(s[0], s[1], 100)
    gmsh.model.mesh.setTransfiniteVolume(v1)
else:
    {\tt gmsh.option.setNumber('Mesh.CharacteristicLengthMin',\ 0.05)}
    {\tt gmsh.option.setNumber('Mesh.CharacteristicLengthMax',\ 0.05)}
gmsh.model.mesh.generate(3)
gmsh.write('x2.msh')
# gmsh.fltk.run()
gmsh.finalize()
```

Appendix B Options

This appendix lists all the available options. Gmsh's default behavior is to save some of these options in a per-user "session resource" file (cf. "Saved in: General.SessionFileName" in the lists below) every time Gmsh is shut down. This permits for example to automatically remember the size and location of the windows or which fonts to use. A second set of options can be saved (automatically or manually with the 'File->Save Options->As Default' menu) in a per-user "option" file (cf. "Saved in: General.OptionsFileName" in the lists below), automatically loaded by Gmsh every time it starts up. Finally, other options are only saved to disk manually, either by explicitly saving an option file with 'File->Export', or when saving per-model options with 'File->Save Options->For Current File' (cf. "Saved in: -" in the lists below).

To reset all options to their default values, use the 'Restore default options' button in 'Tools->Options->General->Advanced', or erase the General.SessionFileName and General.OptionsFileName files by hand.

All the options can be manipulated through the Gmsh API through the gmsh/option namespace (see Appendix D [Gmsh API], page 245).

B.1 General options list

General.AxesFormatX

Number format for X-axis (in standard C form)

Default value: "%.3g"

Saved in: General.OptionsFileName

General.AxesFormatY

Number format for Y-axis (in standard C form)

Default value: "%.3g"

Saved in: General.OptionsFileName

General.AxesFormatZ

Number format for Z-axis (in standard C form)

Default value: "%.3g"

Saved in: General.OptionsFileName

General.AxesLabelX

X-axis label

Default value: ""

Saved in: General.OptionsFileName

General.AxesLabelY

Y-axis label

Default value: ""

Saved in: General.OptionsFileName

General.AxesLabelZ

Z-axis label

Default value: ""

Saved in: General.OptionsFileName

General.BackgroundImageFileName

Background image file in JPEG, PNG or PDF format

Default value: ""

Saved in: General.OptionsFileName

General.BuildInfo

Gmsh build information (read-only)

Default value: "Version: 4.6.0-git-5f0460a88; License: GNU General Public License; Build OS: MacOSX-sdk; Build date: 20200527; Build host: Christophes-MacBook-Pro.local; Build options: 64Bit ALGLIB Ann Bamg Blas[veclib] Blossom Cairo Cgns DIntegration Dlopen DomHex Fltk GMP Gmm Hxt Jpeg Kbipack Lapack[veclib] MathEx Med Mesh Metis Mmg3d Mpeg Netgen ONELAB ONELABMetamodel OpenCASCADE OpenCASCADE-CAF OpenGL OpenMP[usr/local] OptHom ParasolidSTEP Parser Plugins Png Post QuadTri Solver TetGen/BR TouchBar Voro++ Zlib; FLTK version: 1.4.0; OCC version: 7.4.1; MED version: 4.0.0;

Packaged by: geuzaine; Web site: http://gmsh.info; Issue tracker:

https://gitlab.onelab.info/gmsh/gmsh/issues"

Saved in: -

General.BuildOptions

Gmsh build options (read-only)

Default value: "64Bit ALGLIB Ann Bamg Blas[veclib] Blossom Cairo Cgns DIntegration Dlopen DomHex Fltk GMP Gmm Hxt Jpeg Kbipack Lapack[veclib] MathEx Med Mesh Metis Mmg3d Mpeg Netgen ONELAB ONELABMetamodel OpenCASCADE OpenCASCADE-CAF OpenGL OpenMP[usr/local] OptHom ParasolidSTEP Parser Plugins Png Post QuadTri Solver TetGen/BR TouchBar Voro++ Zlib"

General.DefaultFileName

Default project file name

Default value: "untitled.geo"
Saved in: General.OptionsFileName

General.Display

X server to use (only for Unix versions)

Default value: ""

Saved in: -

General.ErrorFileName

File into which the log is saved if a fatal error occurs

Default value: ".gmsh-errors"
Saved in: General.OptionsFileName

General.ExecutableFileName

File name of the Gmsh executable (read-only)

Default value: ""

Saved in: General.SessionFileName

General.FileName

Current project file name (read-only)

Default value: ""

Saved in: -

General.FltkTheme

FLTK user interface theme (try e.g. plastic or gtk+)

Default value: ""

Saved in: General.SessionFileName

General.GraphicsFont

Font used in the graphic window Default value: "Helvetica"

Saved in: General.OptionsFileName

General.GraphicsFontEngine

Set graphics font engine (Native, Cairo)

Default value: "Native"

Saved in: General.OptionsFileName

General.GraphicsFontTitle

Font used in the graphic window for titles

Default value: "Helvetica"

Saved in: General.OptionsFileName

General.OptionsFileName

Option file created with 'Tools->Options->Save'; automatically read on startup

Default value: ".gmsh-options"
Saved in: General.SessionFileName

General.RecentFileO

Most recent opened file

Default value: "untitled.geo"

Saved in: General.SessionFileName

General.RecentFile1

2nd most recent opened file

Default value: "untitled.geo"

 ${\bf Saved\ in:\ General.SessionFileName}$

General.RecentFile2

3rd most recent opened file

Default value: "untitled.geo"

Saved in: General.SessionFileName

General.RecentFile3

4th most recent opened file

Default value: "untitled.geo"

Saved in: General.SessionFileName

General.RecentFile4

5th most recent opened file

Default value: "untitled.geo"

Saved in: General.SessionFileName

General.RecentFile5

6th most recent opened file

Default value: "untitled.geo"

Saved in: General.SessionFileName

General.RecentFile6

7th most recent opened file

Default value: "untitled.geo"

Saved in: General.SessionFileName

General.RecentFile7

8th most recent opened file

Default value: "untitled.geo"

Saved in: General.SessionFileName

General.RecentFile8

9th most recent opened file Default value: "untitled.geo" Saved in: General.SessionFileName

General.RecentFile9

10th most recent opened file Default value: "untitled.geo" Saved in: General.SessionFileName

General.SessionFileName

Option file into which session specific information is saved; automatically read on startup

Default value: ".gmshrc"

Saved in: -

General.TextEditor

System command to launch a text editor

Default value: "open -t '%s'"

Saved in: General.OptionsFileName

General.TmpFileName

Temporary file used by the geometry module

Default value: ".gmsh-tmp"

Saved in: General.SessionFileName

General. Version

Gmsh version (read-only)

Default value: "4.6.0-git-5f0460a88"

Saved in: -

General.WatchFilePattern

Pattern of files to merge as they become available

Default value: ""

Saved in: -

General.AbortOnError

Abort on error? (0: no, 1: abort meshing, 2: throw an exception, 3: exit)

Default value: 0

Saved in: General.OptionsFileName

General.AlphaBlending

Enable alpha blending (transparency) in post-processing views

Default value: 1

Saved in: General.OptionsFileName

General.Antialiasing

Use multisample antialiasing (will slow down rendering)

Default value: 0

Saved in: General.OptionsFileName

General.ArrowHeadRadius

Relative radius of arrow head

Default value: 0.12

Saved in: General.OptionsFileName

General.ArrowStemLength

Relative length of arrow stem

Default value: 0.56

Saved in: General.OptionsFileName

General.ArrowStemRadius

Relative radius of arrow stem

Default value: 0.02

Saved in: General.OptionsFileName

General.Axes

Axes (0: none, 1: simple axes, 2: box, 3: full grid, 4: open grid, 5: ruler)

Default value: 0

Saved in: General.OptionsFileName

General.AxesMikado

Mikado axes style Default value: 0

Saved in: General.OptionsFileName

General.AxesAutoPosition

Position the axes automatically

Default value: 1

Saved in: General.OptionsFileName

General.AxesForceValue

Force values on axes (otherwise use natural coordinates)

Default value: 0

 $Saved \ in: \ {\tt General.0ptionsFileName}$

General.AxesMaxX

Maximum X-axis coordinate

Default value: 1

Saved in: General.OptionsFileName

General.AxesMaxY

Maximum Y-axis coordinate

Default value: 1

 ${\bf Saved\ in:\ General.OptionsFileName}$

General.AxesMaxZ

Maximum Z-axis coordinate

Default value: 1

Saved in: General.OptionsFileName

General.AxesMinX

Minimum X-axis coordinate

Default value: 0

Saved in: General.OptionsFileName

General.AxesMinY

Minimum Y-axis coordinate

Default value: 0

 ${\it Saved in: General.OptionsFileName}$

General.AxesMinZ

Minimum Z-axis coordinate

Default value: 0

Saved in: General.OptionsFileName

General.AxesTicsX

Number of tics on the X-axis

Default value: 5

Saved in: General.OptionsFileName

General.AxesTicsY

Number of tics on the Y-axis

Default value: 5

Saved in: General.OptionsFileName

General.AxesTicsZ

Number of tics on the Z-axis

Default value: 5

Saved in: General.OptionsFileName

General.AxesValueMaxX

Maximum X-axis forced value

Default value: 1

Saved in: General.OptionsFileName

General.AxesValueMaxY

Maximum Y-axis forced value

Default value: 1

Saved in: General.OptionsFileName

General.AxesValueMaxZ

Maximum Z-axis forced value

Default value: 1

Saved in: General.OptionsFileName

General.AxesValueMinX

Minimum X-axis forced value

Default value: 0

Saved in: General.OptionsFileName

General.AxesValueMinY

Minimum Y-axis forced value

Default value: 0

Saved in: General.OptionsFileName

General.AxesValueMinZ

Minimum Z-axis forced value

Default value: 0

 ${\bf Saved\ in:\ General.OptionsFileName}$

General.BackgroundGradient

Draw background gradient (0: none, 1: vertical, 2: horizontal, 3: radial)

Default value: 1

Saved in: General.OptionsFileName

General.BackgroundImage3D

Create background image in the 3D model (units = model units) or as 2D back-

ground (units = pixels)

Default value: 0

 ${\bf Saved~in:~General.0ptionsFileName}$

${\tt General.BackgroundImagePage}$

Page to render in the background image (for multi-page PDFs)

Default value: 0

Saved in: General.OptionsFileName

General.BackgroundImagePositionX

X position of background image (for 2D background: < 0: measure from right

window edge; >= 1e5: centered)

Default value: 0

Saved in: General.OptionsFileName

General.BackgroundImagePositionY

Y position of background image (for 2D background: < 0: measure from bottom

window edge; >= 1e5: centered)

Default value: 0

 ${\it Saved in: General.OptionsFileName}$

General.BackgroundImageWidth

Width of background image (0: actual width if height = 0, natural scaling if not;

-1: graphic window width)

Default value: -1

Saved in: General.OptionsFileName

General.BackgroundImageHeight

Height of background image (0: actual height if width = 0, natural scaling if not;

-1: graphic window height)

Default value: -1

Saved in: General.OptionsFileName

General.BoundingBoxSize

Overall bounding box size (read-only)

Default value: 1

Saved in: General.OptionsFileName

General.Camera

Enable camera view mode

Default value: 0

Saved in: General.OptionsFileName

General.CameraAperture

Camera aperture in degrees

Default value: 40

 ${\bf Saved\ in:\ General.0ptionsFileName}$

General.CameraEyeSeparationRatio

Eye separation ratio in % for stereo rendering

Default value: 1.5

Saved in: General.OptionsFileName

General.CameraFocalLengthRatio

Camera Focal length ratio

Default value: 1

Saved in: General.OptionsFileName

General.ClipOA

First coefficient in equation for clipping plane 0 ('A' in 'AX+BY+CZ+D=0')

Default value: 1

Saved in: -

General.ClipOB Second coefficient in equation for clipping plane 0 ('B' in 'AX+BY+CZ+D=0') Default value: 0 Saved in: -General.ClipOC Third coefficient in equation for clipping plane 0 ('C' in 'AX+BY+CZ+D=0') Default value: 0 Saved in: -General.ClipOD Fourth coefficient in equation for clipping plane 0 ('D' in 'AX+BY+CZ+D=0') Default value: 0 Saved in: -General.Clip1A First coefficient in equation for clipping plane 1 Default value: 0 Saved in: -General.Clip1B Second coefficient in equation for clipping plane 1 Default value: 1 Saved in: -General.Clip1C Third coefficient in equation for clipping plane 1 Default value: 0 Saved in: -General.Clip1D Fourth coefficient in equation for clipping plane 1 Default value: 0 Saved in: -General.Clip2A First coefficient in equation for clipping plane 2 Default value: 0 Saved in: -General.Clip2B Second coefficient in equation for clipping plane 2 Default value: 0 Saved in: -General.Clip2C Third coefficient in equation for clipping plane 2 Default value: 1 Saved in: -General.Clip2D Fourth coefficient in equation for clipping plane 2 Default value: 0 Saved in: -General.Clip3A

First coefficient in equation for clipping plane 3

Default value: -1 Saved in: -

General.Clip3B

Second coefficient in equation for clipping plane 3

Default value: 0 Saved in: -

General.Clip3C

Third coefficient in equation for clipping plane 3

Default value: 0 Saved in: -

General.Clip3D

Fourth coefficient in equation for clipping plane 3

Default value: 1 Saved in: -

General.Clip4A

First coefficient in equation for clipping plane 4

Default value: 0 Saved in: -

General.Clip4B

Second coefficient in equation for clipping plane 4

Default value: -1 Saved in: -

General.Clip4C

Third coefficient in equation for clipping plane 4

Default value: 0 Saved in: -

General.Clip4D

Fourth coefficient in equation for clipping plane 4

Default value: 1 Saved in: -

General.Clip5A

First coefficient in equation for clipping plane 5

Default value: 0 Saved in: -

General.Clip5B

Second coefficient in equation for clipping plane 5

Default value: 0 Saved in: -

General.Clip5C

Third coefficient in equation for clipping plane 5

Default value: -1 Saved in: -

General.Clip5D

Fourth coefficient in equation for clipping plane 5

Default value: 1 Saved in: -

General.ClipFactor

Near and far clipping plane distance factor (decrease value for better z-buffer resolution)

Default value: 5 Saved in: -

${\tt General.ClipOnlyDrawIntersectingVolume}$

Only draw layer of elements that intersect the clipping plane

Default value: 0

Saved in: General.OptionsFileName

General.ClipOnlyVolume

Only clip volume elements

Default value: 0

Saved in: General.OptionsFileName

General.ClipPositionX

Horizontal position (in pixels) of the upper left corner of the clipping planes window

Default value: 650

Saved in: General.SessionFileName

General.ClipPositionY

Vertical position (in pixels) of the upper left corner of the clipping planes window

Default value: 150

Saved in: General.SessionFileName

General.ClipWholeElements

Clip whole elements

Default value: 0

Saved in: General.OptionsFileName

General.ColorScheme

Default color scheme for graphics (0: light, 1: default, 2: grayscale, 3: dark)

Default value: 1

Saved in: General.SessionFileName

General.ConfirmOverwrite

Ask confirmation before overwriting files?

Default value: 1

Saved in: General.OptionsFileName

General.ContextPositionX

Horizontal position (in pixels) of the upper left corner of the contextual windows

Default value: 650

 $Saved \ in: \ {\tt General.SessionFileName}$

General.ContextPositionY

Vertical position (in pixels) of the upper left corner of the contextual windows

Default value: 150

Saved in: General.SessionFileName

General.DetachedMenu

Should the menu window be detached from the graphic window?

Default value: 0

Saved in: General.SessionFileName

General.DisplayBorderFactor

Border factor for model display (0: model fits window size exactly)

Default value: 0.2

General.DoubleBuffer

Use a double buffered graphic window (on Unix, should be set to 0 when working on a remote host without GLX)

Default value: 1

Saved in: General.OptionsFileName

General.DrawBoundingBoxes

Draw bounding boxes

Default value: 0

Saved in: General.OptionsFileName

General.ExpertMode

Enable expert mode (to disable all the messages meant for inexperienced users)

Default value: 0

Saved in: General.OptionsFileName

General.ExtraPositionX

Horizontal position (in pixels) of the upper left corner of the generic extra window

Default value: 650

Saved in: General.SessionFileName

General.ExtraPositionY

Vertical position (in pixels) of the upper left corner of the generic extra window

Default value: 350

Saved in: General.SessionFileName

General.ExtraHeight

Height (in pixels) of the generic extra window

Default value: 100

Saved in: General.SessionFileName

General.ExtraWidth

Width (in pixels) of the generic extra window

Default value: 100

Saved in: General.SessionFileName

General.FastRedraw

Draw simplified model while rotating, panning and zooming

Default value: 0

Saved in: General.OptionsFileName

General.FieldPositionX

Horizontal position (in pixels) of the upper left corner of the field window

Default value: 650

Saved in: General.SessionFileName

General.FieldPositionY

Vertical position (in pixels) of the upper left corner of the field window

Default value: 550

Saved in: General.SessionFileName

General.FieldHeight

Height (in pixels) of the field window

Default value: 320

Saved in: General.SessionFileName

General.FieldWidth

Width (in pixels) of the field window

Default value: 420

Saved in: General.SessionFileName

General.FileChooserPositionX

Horizontal position (in pixels) of the upper left corner of the file chooser windows

Default value: 200

Saved in: General.SessionFileName

General.FileChooserPositionY

Vertical position (in pixels) of the upper left corner of the file chooser windows

Default value: 200

Saved in: General.SessionFileName

General.FltkColorScheme

FLTK user interface color theme (0: standard, 1:dark)

Default value: 0

Saved in: General.SessionFileName

General.FontSize

Size of the font in the user interface, in pixels (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

General.GraphicsFontSize

Size of the font in the graphic window, in pixels

Default value: 15

Saved in: General.OptionsFileName

General.GraphicsFontSizeTitle

Size of the font in the graphic window for titles, in pixels

Default value: 18

Saved in: General.OptionsFileName

General.GraphicsHeight

Height (in pixels) of the graphic window

Default value: 600

Saved in: General.SessionFileName

General.GraphicsPositionX

Horizontal position (in pixels) of the upper left corner of the graphic window

Default value: 50

Saved in: General.SessionFileName

General.GraphicsPositionY

Vertical position (in pixels) of the upper left corner of the graphic window

Default value: 50

Saved in: General.SessionFileName

General.GraphicsWidth

Width (in pixels) of the graphic window

Default value: 800

Saved in: General.SessionFileName

General.HighOrderToolsPositionX

Horizontal position (in pixels) of the upper left corner of the high-order tools window

Default value: 650

Saved in: General.SessionFileName

General.HighOrderToolsPositionY

Vertical position (in pixels) of the upper left corner of the high-order tools window

Default value: 150

Saved in: General.SessionFileName

General.HighResolutionGraphics

Use high-resolution OpenGL graphics (e.g. for Macs with retina displays)

Default value: 1

Saved in: General.OptionsFileName

General.HighResolutionPointSizeFactor

Point size factor when using high-resolution OpenGL graphics

Default value: 2

Saved in: General.OptionsFileName

General.InitialModule

Module launched on startup (0: automatic, 1: geometry, 2: mesh, 3: solver, 4:

post-processing) Default value: 0

Saved in: General.OptionsFileName

General.InputScrolling

Enable numerical input scrolling in user interface (moving the mouse to change

numbers)
Default value: 1

Saved in: General.OptionsFileName

General.Light0

Enable light source 0

Default value: 1

Saved in: General.OptionsFileName

General.LightOX

X position of light source 0

Default value: 0.65

Saved in: General.OptionsFileName

General.LightOY

Y position of light source 0

Default value: 0.65

Saved in: General.OptionsFileName

${\tt General.Light0Z}$

Z position of light source 0

Default value: 1

Saved in: General.OptionsFileName

General.LightOW

Divisor of the X, Y and Z coordinates of light source 0 (W=0 means infinitely far

source)

Default value: 0

Saved in: General.OptionsFileName

General.Light1

Enable light source 1 Default value: 0

General.Light1X

X position of light source 1

Default value: 0.5

Saved in: General.OptionsFileName

General.Light1Y

Y position of light source 1

Default value: 0.3

Saved in: General.OptionsFileName

General.Light1Z

Z position of light source 1

Default value: 1

Saved in: General.OptionsFileName

General.Light1W

Divisor of the X, Y and Z coordinates of light source 1 (W=0 means infinitely far source)

Default value: 0

Saved in: General.OptionsFileName

General.Light2

Enable light source 2

Default value: 0

Saved in: General.OptionsFileName

General.Light2X

X position of light source 2

Default value: 0.5

Saved in: General.OptionsFileName

General.Light2Y

Y position of light source 2

Default value: 0.3

Saved in: General.OptionsFileName

General.Light2Z

Z position of light source 2

Default value: 1

Saved in: General.OptionsFileName

General.Light2W

Divisor of the X, Y and Z coordinates of light source 2 (W=0 means infinitely far

source)

Default value: 0

Saved in: General.OptionsFileName

General.Light3

Enable light source 3

Default value: 0

Saved in: General.OptionsFileName

General.Light3X

X position of light source 3

Default value: 0.5

General.Light3Y

Y position of light source 3

Default value: 0.3

Saved in: General.OptionsFileName

General.Light3Z

Z position of light source 3

Default value: 1

 ${\bf Saved~in:~General.0ptionsFileName}$

General.Light3W

Divisor of the X, Y and Z coordinates of light source 3 (W=0 means infinitely far

source)

Default value: 0

Saved in: General.OptionsFileName

General.Light4

Enable light source 4

Default value: 0

Saved in: General.OptionsFileName

General.Light4X

X position of light source 4

Default value: 0.5

Saved in: General.OptionsFileName

General.Light4Y

Y position of light source 4

Default value: 0.3

Saved in: General.OptionsFileName

General.Light4Z

Z position of light source 4

Default value: 1

Saved in: General.OptionsFileName

General.Light4W

Divisor of the X, Y and Z coordinates of light source 4 (W=0 means infinitely far

source)

Default value: 0

Saved in: General.OptionsFileName

General.Light5

Enable light source 5

Default value: 0

 ${\bf Saved~in:~General.0ptionsFileName}$

General.Light5X

X position of light source 5

Default value: 0.5

Saved in: General.OptionsFileName

General.Light5Y

Y position of light source 5

Default value: 0.3

General.Light5Z

Z position of light source 5

Default value: 1

Saved in: General.OptionsFileName

General.Light5W

Divisor of the X, Y and Z coordinates of light source 5 (W=0 means infinitely far

source)

Default value: 0

Saved in: General.OptionsFileName

General.LineWidth

Display width of lines (in pixels)

Default value: 1

Saved in: General.OptionsFileName

General.ManipulatorPositionX

Horizontal position (in pixels) of the upper left corner of the manipulator window

Default value: 650

Saved in: General.SessionFileName

General.ManipulatorPositionY

Vertical position (in pixels) of the upper left corner of the manipulator window

Default value: 150

Saved in: General.SessionFileName

General.MaxX

Maximum model coordinate along the X-axis (read-only)

Default value: 0 Saved in: -

General.MaxY

Maximum model coordinate along the Y-axis (read-only)

Default value: 0 Saved in: -

General.MaxZ

Maximum model coordinate along the Z-axis (read-only)

Default value: 0 Saved in: -

General.MenuWidth

Width (in pixels) of the menu tree

Default value: 200

Saved in: General.SessionFileName

General.MenuHeight

Height (in pixels) of the (detached) menu tree

Default value: 200

Saved in: General.SessionFileName

General.MenuPositionX

Horizontal position (in pixels) of the (detached) menu tree

Default value: 400

Saved in: General.SessionFileName

General.MenuPositionY

Vertical position (in pixels) of the (detached) menu tree

Default value: 400

Saved in: General.SessionFileName

General.MessageFontSize

Size of the font in the message window, in pixels (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

General.MessageHeight

Height (in pixels) of the message console when it is visible (should be > 0)

Default value: 300

Saved in: General.SessionFileName

General.MinX

Minimum model coordinate along the X-axis (read-only)

Default value: 0 Saved in: -

General.MinY

Minimum model coordinate along the Y-axis (read-only)

Default value: 0 Saved in: -

General.MinZ

Minimum model coordinate along the Z-axis (read-only)

Default value: 0 Saved in: -

General.MouseHoverMeshes

Enable mouse hover on meshes

Default value: 0

Saved in: General.OptionsFileName

General.MouseSelection

Enable mouse selection

Default value: 1

 ${\bf Saved\ in:\ General.0ptionsFileName}$

General.MouseInvertZoom

Invert mouse wheel zoom direction

Default value: 0

Saved in: General.OptionsFileName

General.NativeFileChooser

Use the native file chooser?

Default value: 1

Saved in: General.SessionFileName

General.NonModalWindows

Force all control windows to be on top of the graphic window ("non-modal")

Default value: 1

Saved in: General.SessionFileName

General.NoPopup

Disable interactive dialog windows in scripts (and use default values instead)

Default value: 0

General.NumThreads

Set (maximum) number of threads (0: use system default, i.e. OMP_NUM_THREADS)

Default value: 1

Saved in: General.OptionsFileName

General.OptionsPositionX

Horizontal position (in pixels) of the upper left corner of the option window

Default value: 650

Saved in: General.SessionFileName

General.OptionsPositionY

Vertical position (in pixels) of the upper left corner of the option window

Default value: 150

Saved in: General.SessionFileName

General.Orthographic

Orthographic projection mode (0: perspective projection)

Default value: 1

Saved in: General.OptionsFileName

General.PluginPositionX

Horizontal position (in pixels) of the upper left corner of the plugin window

Default value: 650

Saved in: General.SessionFileName

General.PluginPositionY

Vertical position (in pixels) of the upper left corner of the plugin window

Default value: 550

Saved in: General.SessionFileName

General.PluginHeight

Height (in pixels) of the plugin window

Default value: 320

Saved in: General.SessionFileName

General.PluginWidth

Width (in pixels) of the plugin window

Default value: 420

Saved in: General.SessionFileName

General.PointSize

Display size of points (in pixels)

Default value: 3

Saved in: General.OptionsFileName

General.PolygonOffsetAlwaysOn

Always apply polygon offset, instead of trying to detect when it is required

Default value: 0

Saved in: General.OptionsFileName

General.PolygonOffsetFactor

Polygon offset factor (offset = factor * DZ + r * units)

Default value: 0.5

General.PolygonOffsetUnits

Polygon offset units (offset = factor * DZ + r * units)

Default value: 1

Saved in: General.OptionsFileName

General.ProgressMeterStep

Increment (in percent) of the progress meter bar

Default value: 10

Saved in: General.OptionsFileName

General.QuadricSubdivisions

Number of subdivisions used to draw points or lines as spheres or cylinders

Default value: 6

Saved in: General.OptionsFileName

General.RotationX

First Euler angle (used if Trackball=0)

Default value: 0 Saved in: -

General.RotationY

Second Euler angle (used if Trackball=0)

Default value: 0 Saved in: -

General.RotationZ

Third Euler angle (used if Trackball=0)

Default value: 0 Saved in: -

General.RotationCenterGravity

Rotate around the (pseudo) center of mass instead of (RotationCenterX, Rotation-

CenterY, RotationCenterZ)

Default value: 1

Saved in: General.OptionsFileName

General.RotationCenterX

X coordinate of the center of rotation

Default value: 0 Saved in: -

General.RotationCenterY

Y coordinate of the center of rotation

Default value: 0 Saved in: -

General.RotationCenterZ

Z coordinate of the center of rotation

Default value: 0 Saved in: -

General.SaveOptions

Automatically save current options in General. Options FileName (1) or per model (2) each time you quit Gmsh?

Default value: 0

Saved in: General.SessionFileName

General.SaveSession

 $Automatically \ save \ session \ specific \ information \ in \ General. Session File Name \ each$

time you quit Gmsh? Default value: 1

Saved in: General.SessionFileName

General.ScaleX

X-axis scale factor Default value: 1 Saved in: -

General.ScaleY

Y-axis scale factor Default value: 1 Saved in: -

General.ScaleZ

Z-axis scale factor Default value: 1 Saved in: -

General.Shininess

Material shininess Default value: 0.4

Saved in: General.OptionsFileName

General.ShininessExponent

Material shininess exponent (between 0 and 128)

Default value: 40

Saved in: General.OptionsFileName

General.ShowModuleMenu

Show the standard Gmsh menu in the tree

Default value: 1

Saved in: General.OptionsFileName

General.ShowOptionsOnStartup

Show option window on startup

Default value: 0

Saved in: General.OptionsFileName

${\tt General.Show} {\tt MessagesOnStartup}$

Show message window on startup

Default value: 0

 ${\bf Saved\ in:\ General.0ptionsFileName}$

General.SmallAxes

Display the small axes

Default value: 1

Saved in: General.OptionsFileName

General.SmallAxesPositionX

X position (in pixels) of small axes (< 0: measure from right window edge; >= 1e5: centered)

Default value: -60

General.SmallAxesPositionY

Y position (in pixels) of small axes (< 0: measure from bottom window edge; >=

1e5: centered)
Default value: -40

Saved in: General.OptionsFileName

General.SmallAxesSize

Size (in pixels) of small axes

Default value: 30

Saved in: General.OptionsFileName

General.StatisticsPositionX

Horizontal position (in pixels) of the upper left corner of the statistic window

Default value: 650

Saved in: General.SessionFileName

General.StatisticsPositionY

Vertical position (in pixels) of the upper left corner of the statistic window

Default value: 150

Saved in: General.SessionFileName

General.Stereo

Use stereo rendering

Default value: 0

Saved in: General.OptionsFileName

General.SystemMenuBar

Use the system menu bar on Mac OS X?

Default value: 1

Saved in: General.SessionFileName

General.Terminal

Should information be printed on the terminal (if available)?

Default value: 0

Saved in: General.OptionsFileName

General.Tooltips

Show tooltips in the user interface

Default value: 1

Saved in: General.OptionsFileName

General.Trackball

Use trackball rotation mode

Default value: 1

Saved in: General.OptionsFileName

General.TrackballHyperbolicSheet

Use hyperbolic sheet away from trackball center for z-rotations

Default value: 1

Saved in: General.OptionsFileName

General.TrackballQuaternionO

First trackball quaternion component (used if General.Trackball=1)

Default value: 0 Saved in: -

General.TrackballQuaternion1

Second trackball quaternion component (used if General.Trackball=1)

Default value: 0 Saved in: -

General.TrackballQuaternion2

Third trackball quaternion component (used if General.Trackball=1)

Default value: 0 Saved in: -

General.TrackballQuaternion3

Fourth trackball quaternion component (used if General.Trackball=1)

Default value: 1 Saved in: -

General.TranslationX

X-axis translation (in model units)

Default value: 0 Saved in: -

General.TranslationY

Y-axis translation (in model units)

Default value: 0 Saved in: -

General.TranslationZ

Z-axis translation (in model units)

Default value: 0 Saved in: -

General.VectorType

Default vector display type (for normals, etc.)

Default value: 4

Saved in: General.OptionsFileName

General.Verbosity

Level of information printed during processing (0: no information)

Default value: 5

 ${\bf Saved~in:~General.0ptionsFileName}$

General.VisibilityPositionX

Horizontal position (in pixels) of the upper left corner of the visibility window

Default value: 650

Saved in: General.SessionFileName

General.VisibilityPositionY

Vertical position (in pixels) of the upper left corner of the visibility window

Default value: 150

Saved in: General.SessionFileName

General.ZoomFactor

Middle mouse button zoom acceleration factor

Default value: 4

Saved in: General.OptionsFileName

General.Color.Background

Background color

Default value: {255,255,255} Saved in: General.OptionsFileName

General.Color.BackgroundGradient

Background gradient color Default value: {208,215,255}

Saved in: General.OptionsFileName

General.Color.Foreground

Foreground color

Default value: {85,85,85}

Saved in: General.OptionsFileName

General.Color.Text

Text color

Default value: $\{0,0,0\}$

Saved in: General.OptionsFileName

General.Color.Axes

Axes color

Default value: $\{0,0,0\}$

Saved in: General.OptionsFileName

General.Color.SmallAxes

Small axes color

Default value: {0,0,0}

Saved in: General.OptionsFileName

General.Color.AmbientLight

Ambient light color

Default value: {25,25,25}

Saved in: General.OptionsFileName

General.Color.DiffuseLight

Diffuse light color

Default value: {255,255,255}

Saved in: General.OptionsFileName

General.Color.SpecularLight

Specular light color

Default value: {255,255,255}

Saved in: General.OptionsFileName

Print.ParameterCommand

Command parsed when the print parameter is changed

Default value: "Mesh.Clip=1; View.Clip=1; General.ClipWholeElements=1;

General.ClipOD=Print.Parameter; SetChanged;"

Saved in: General.OptionsFileName

Print.Parameter

Current value of the print parameter

Default value: 0

 ${\bf Saved~in:~General.0ptionsFileName}$

Print.ParameterFirst

First value of print parameter in loop

Default value: -1

Print.ParameterLast

Last value of print parameter in loop

Default value: 1

Saved in: General.OptionsFileName

Print.ParameterSteps

Number of steps in loop over print parameter

Default value: 10

Saved in: General.OptionsFileName

Print.Background

Print background (gradient and image)?

Default value: 0

Saved in: General.OptionsFileName

Print.CompositeWindows

Composite all window tiles in the same output image (for bitmap output only)

Default value: 0

Saved in: General.OptionsFileName

Print.DeleteTemporaryFiles

Delete temporary files used during printing

Default value: 1

Saved in: General.OptionsFileName

Print.EpsBestRoot

Try to minimize primitive splitting in BSP tree sorted PostScript/PDF output

Default value: 1

Saved in: General.OptionsFileName

Print.EpsCompress

Compress PostScript/PDF output using zlib

Default value: 0

Saved in: General.OptionsFileName

Print.EpsLineWidthFactor

Width factor for lines in PostScript/PDF output

Default value: 1

Saved in: General.OptionsFileName

Print.EpsOcclusionCulling

Cull occluded primitives (to reduce PostScript/PDF file size)

Default value: 1

Saved in: General.OptionsFileName

Print.EpsPointSizeFactor

Size factor for points in PostScript/PDF output

Default value: 1

 $Saved \ in: \ {\tt General.OptionsFileName}$

Print.EpsPS3Shading

Enable PostScript Level 3 shading

Default value: 0

Saved in: General.OptionsFileName

Print.EpsQuality

PostScript/PDF quality (0: bitmap, 1: vector (simple sort), 2: vector (accurate sort), 3: vector (unsorted)

Default value: 1

Saved in: General.OptionsFileName

Print.Format

File format (10: automatic)

Default value: 10

Saved in: General.OptionsFileName

Print.GeoLabels

Save labels in unrolled Gmsh geometries

Default value: 1

Saved in: General.OptionsFileName

Print.GeoOnlyPhysicals

Only save entities that belong to physical groups

Default value: 0

Saved in: General.OptionsFileName

Print.GifDither

Apply dithering to GIF output

Default value: 0

Saved in: General.OptionsFileName

Print.GifInterlace

 ${\bf Interlace}~{\bf GIF}~{\bf output}$

Default value: 0

Saved in: General.OptionsFileName

Print.GifSort

Sort the colormap in GIF output

Default value: 1

Saved in: General.OptionsFileName

Print.GifTransparent

Output transparent GIF image

Default value: 0

Saved in: General.OptionsFileName

Print.Height

Height of printed image; use (possibly scaled) current height if < 0

Default value: -1

Saved in: General.OptionsFileName

Print.JpegQuality

JPEG quality (between 1 and 100)

Default value: 100

Saved in: General.OptionsFileName

Print.JpegSmoothing

JPEG smoothing (between 0 and 100)

Default value: 0

 ${\bf Saved\ in:\ General.0ptionsFileName}$

Print.PgfTwoDim

Output PGF format for two dimensions. Mostly irrelevant if 'PgfExportAxis=0'.

Default '1' (yes). Default value: 1

Print.PgfExportAxis

Include axis in export pgf code (not in the png). Default '0' (no).

Default value: 0

Saved in: General.OptionsFileName

Print.PgfHorizontalBar

Use a horizontal color bar in the pgf output. Default '0' (no).

Default value: 0

Saved in: General.OptionsFileName

Print.PostElementary

Save elementary region tags in mesh statistics exported as post-processing views

Default value: 1

Saved in: General.OptionsFileName

Print.PostElement

Save element tags in mesh statistics exported as post-processing views

Default value: 0

Saved in: General.OptionsFileName

Print.PostGamma

Save Gamma quality measure in mesh statistics exported as post-processing views

Default value: 0

Saved in: General.OptionsFileName

Print.PostEta

Save Eta quality measure in mesh statistics exported as post-processing views

Default value: 0

Saved in: General.OptionsFileName

Print.PostSICN

Save SICN (signed inverse condition number) quality measure in mesh statistics exported as post-processing views

Default value: 0

Saved in: General.OptionsFileName

Print.PostSIGE

Save SIGE (signed inverse gradient error) quality measure in mesh statistics exported as post-processing views

Default value: 0

Saved in: General.OptionsFileName

Print.PostDisto

Save Disto quality measure in mesh statistics exported as post-processing views

Default value: 0

Saved in: General.OptionsFileName

Print.TexAsEquation

Print all TeX strings as equations

Default value: 0

Saved in: General.OptionsFileName

Print.TexForceFontSize

Force font size of TeX strings to fontsize in the graphic window

Default value: $\tt 0$

Print.TexWidthInMm

Width of tex graphics in mm (use 0 for the natural width inferred from the image width in pixels)

Default value: 150

Saved in: General.OptionsFileName

Print.Text

Print text strings? Default value: 1

Saved in: General.OptionsFileName

Print.X3dCompatibility

Produce highly compatible X3D output (no scale bar)

Default value: 0

Saved in: General.OptionsFileName

Print.X3dPrecision

Precision of X3D output Default value: 1e-09

Saved in: General.OptionsFileName

Print.X3dRemoveInnerBorders

Remove inner borders in X3D output

Default value: 0

Saved in: General.OptionsFileName

Print.X3dTransparency

Transparency for X3D output

Default value: 0

Saved in: General.OptionsFileName

Print.X3dSurfaces

Save surfaces in CAD X3D output (0: no, 1: yes in a single X3D object,2: one X3D object per geometrical surface, 3: one X3D object perphysical surface)

Default value: 1

Saved in: General.OptionsFileName

Print.X3dEdges

Save edges in CAD X3D output (0: no, 1: yes in a single X3D object,2: one X3D

object per geometrical edge, 3: one X3D object perphysical edge)

Default value: 0

Saved in: General.OptionsFileName

Print.X3dVertices

Save vertices in CAD X3D output (0: no, 1: yes)

Default value: 0

Saved in: General.OptionsFileName

Print.Width

Width of printed image; use (possibly scaled) current width if < 0)

Default value: -1

B.2 Geometry options list

Geometry.DoubleClickedPointCommand

Command parsed when double-clicking on a point

Default value: ""

Saved in: General.OptionsFileName

Geometry.DoubleClickedLineCommand

Command parsed when double-clicking on a line

Default value: ""

Saved in: General.OptionsFileName

Geometry.DoubleClickedSurfaceCommand

Command parsed when double-clicking on a surface

Default value: ""

Saved in: General.OptionsFileName

Geometry.DoubleClickedVolumeCommand

Command parsed when double-clicking on a volume

Default value: ""

Saved in: General.OptionsFileName

Geometry.OCCTargetUnit

Length unit to which coordinates from STEP and IGES files are converted to when imported by OpenCASCADE, e.g. 'M' for meters (leave empty to use OpenCAS-

CADE default bahavior)

Default value: ""

Saved in: General.OptionsFileName

Geometry.AutoCoherence

Should all duplicate entities be automatically removed with the built-in geometry kernel? If Geometry. AutoCoherence =2, also remove degenerate entities. The option has no effect with the OpenCASCADE kernel

Default value: 1

Saved in: General.OptionsFileName

Geometry.Clip

Enable clipping planes? (Plane[i]=2^i, i=0,...,5)

Default value: 0 Saved in: -

Geometry.CopyMeshingMethod

Copy meshing method (unstructured or transfinite) when duplicating geometrical entities with built-in geometry kernel?

Default value: 0

Saved in: General.OptionsFileName

Geometry.DoubleClickedEntityTag

Tag of last double-clicked geometrical entity

Default value: 0 Saved in: -

Geometry.ExactExtrusion

Use exact extrusion formula in interpolations (set to 0 to allow geometrical transformations of extruded entities)

Default value: 1

Geometry.ExtrudeReturnLateralEntities

Add lateral entities in lists returned by extrusion commands?

Default value: 1

Saved in: General.OptionsFileName

Geometry.ExtrudeSplinePoints

Number of control points for splines created during extrusion

Default value: 5

 ${\it Saved in: General.OptionsFileName}$

Geometry.HighlightOrphans

Highlight orphan entities (lines connected to a single surface, etc.)?

Default value: 0

Saved in: General.OptionsFileName

Geometry.LabelType

Type of entity label (0: description, 1: elementary entity tag, 2: physical group tag)

Default value: 0

Saved in: General.OptionsFileName

Geometry.Light

Enable lighting for the geometry

Default value: 1

Saved in: General.OptionsFileName

Geometry.LightTwoSide

Light both sides of surfaces (leads to slower rendering)

Default value: 1

 $Saved \ in: \ {\tt General.0ptionsFileName}$

Geometry.Lines

Display geometry curves?

Default value: 1

Saved in: General.OptionsFileName

Geometry.LineNumbers

Display curve labels?

Default value: 0

 ${\bf Saved\ in:\ General.OptionsFileName}$

Geometry.LineSelectWidth

Display width of selected curves (in pixels)

Default value: 3

Saved in: General.OptionsFileName

Geometry.LineType

Display curves as solid color segments (0), 3D cylinders (1) or tapered cylinders (2)

Default value: 0

Saved in: General.OptionsFileName

Geometry.LineWidth

Display width of lines (in pixels)

Default value: 2

Saved in: General.OptionsFileName

${\tt Geometry.MatchGeomAndMesh}$

Matches geometries and meshes

Default value: 0

Geometry.MatchMeshScaleFactor

Rescaling factor for the mesh to correspond to size of the geometry

Default value: 1

Saved in: General.OptionsFileName

Geometry.MatchMeshTolerance

Tolerance for matching mesh and geometry

Default value: 1e-06

Saved in: General.OptionsFileName

Geometry.Normals

Display size of normal vectors (in pixels)

Default value: 0

Saved in: General.OptionsFileName

Geometry.NumSubEdges

Number of edge subdivisions between control points when displaying curves

Default value: 40

Saved in: General.OptionsFileName

Geometry.OCCAutoFix

Automatically fix orientation of wires, faces, shells and volumes when creating new entities with the OpenCASCADE kernel

Default value: 1

Saved in: General.OptionsFileName

Geometry.OCCBooleanPreserveNumbering

Try to preserve the numbering of entities through OpenCASCADE boolean opera-

D C 1

Default value: 1

Saved in: General.OptionsFileName

Geometry.OCCBoundsUseStl

Use STL mesh for computing bounds of OpenCASCADE shapes (more accurate,

but slower)
Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCDisableStl

Disable STL creation in OpenCASCADE kernel

Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCFixDegenerated

Fix degenerated edges/faces when importing STEP, IGES and BRep models with the OpenCASCADE kernel

Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCFixSmallEdges

Fix small edges when importing STEP, IGES and BRep models with the OpenCAS-

CADE kernel Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCFixSmallFaces

Fix small faces when importing STEP, IGES and BRep models with the OpenCAS-CADE kernel

Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCImportLabels

Import labels and colors when importing STEP models with the OpenCASCADE

kernel

Default value: 1

Saved in: General.OptionsFileName

Geometry.OCCMakeSolids

Fix shells and make solids when importing STEP, IGES and BRep models with the

OpenCASCADE kernel

Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCParallel

Use multi-threaded OpenCASCADE boolean operators

Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCScaling

Scale STEP, IGES and BRep models by the given factor when importing them with

the OpenCASCADE kernel

Default value: 1

 $Saved \ in: {\tt General.OptionsFileName}$

Geometry.OCCSewFaces

Sew faces when importing STEP, IGES and BRep models with the OpenCASCADE

kernel

Default value: 0

Saved in: General.OptionsFileName

Geometry.OCCThruSectionsDegree

Maximum degree of surfaces generated by thrusections with the OpenCASCADE

kernel, if not explicitly specified (default OCC value if negative)

Default value: -1

Saved in: General.OptionsFileName

Geometry.OCCUnionUnify

Try to unify faces and edges (remove internal seams) which lie on the same geometry

after performing a boolean union with the OpenCASCADE kernel

Default value: 1

 $Saved \ in: \ {\tt General.0ptionsFileName}$

Geometry.OffsetX

Model display offset along X-axis (in model coordinates)

Default value: 0

Saved in: -

Geometry.OffsetY

Model display offset along Y-axis (in model coordinates)

Default value: 0

Saved in: -

Geometry.OffsetZ

Model display offset along Z-axis (in model coordinates)

Default value: 0

Saved in: -

Geometry.OldCircle

Use old circle description (compatibility option for old Gmsh geometries)

Default value: 0

Saved in: General.OptionsFileName

Geometry.OldRuledSurface

Use old 3-sided ruled surface interpolation (compatibility option for old Gmsh ge-

ometries)
Default value: 0

Saved in: General.OptionsFileName

Geometry.OldNewReg

Use old newreg definition for geometrical transformations (compatibility option for

old Gmsh geometries)

Default value: 1

Saved in: General.OptionsFileName

Geometry.Points

Display geometry points?

Default value: 1

Saved in: General.OptionsFileName

Geometry.PointNumbers

Display points labels?

Default value: 0

Saved in: General.OptionsFileName

Geometry.PointSelectSize

Display size of selected points (in pixels)

Default value: 6

Saved in: General.OptionsFileName

Geometry.PointSize

Display size of points (in pixels)

Default value: 4

Saved in: General.OptionsFileName

Geometry.PointType

Display points as solid color dots (0) or 3D spheres (1)

Default value: 0

Saved in: General.OptionsFileName

Geometry.ReparamOnFaceRobust

Use projection for reparametrization of a point classified on GEdge on a GFace

Default value: 0

Saved in: General.OptionsFileName

Geometry.ScalingFactor

Global geometry scaling factor

Default value: 1

Saved in: General.OptionsFileName

Geometry.OrientedPhysicals

Use sign of elementary entity in physical definition as orientation indicator

Default value: 1

Geometry.SnapX

Snapping grid spacing along the X-axis

Default value: 0.1

Saved in: General.OptionsFileName

Geometry.SnapY

Snapping grid spacing along the Y-axis

Default value: 0.1

Saved in: General.OptionsFileName

Geometry.SnapZ

Snapping grid spacing along the Z-axis

Default value: 0.1

Saved in: General.OptionsFileName

Geometry.Surfaces

Display geometry surfaces?

Default value: 0

Saved in: General.OptionsFileName

Geometry.SurfaceNumbers

Display surface labels?

Default value: 0

Saved in: General.OptionsFileName

Geometry.SurfaceType

Surface display type (0: cross, 1: wireframe, 2: solid). Wireframe and solid are not available with the built-in geometry kernel.

Default value: 0

Saved in: General.OptionsFileName

Geometry. Tangents

Display size of tangent vectors (in pixels)

Default value: 0

Saved in: General.OptionsFileName

Geometry.Tolerance

Geometrical tolerance

Default value: 1e-08

Saved in: General.OptionsFileName

Geometry.ToleranceBoolean

Geometrical tolerance for boolean operations

Default value: 0

Saved in: General.OptionsFileName

Geometry.Transform

Transform model display coordinates (0: no, 1: scale)

Default value: 0

Saved in: -

Geometry.TransformXX

Element (1,1) of the 3x3 model display transformation matrix

Default value: 1 Saved in: -

Geometry.TransformXY

Element (1,2) of the 3x3 model display transformation matrix

Default value: 0 Saved in: -

Geometry.TransformXZ

Element (1,3) of the 3x3 model display transformation matrix

Default value: 0 Saved in: -

Geometry.TransformYX

Element (2,1) of the 3x3 model display transformation matrix

Default value: 0 Saved in: -

Geometry.TransformYY

Element (2,2) of the 3x3 model display transformation matrix

Default value: 1 Saved in: -

Geometry.TransformYZ

Element (2,3) of the 3x3 model display transformation matrix

Default value: 0 Saved in: -

Geometry.TransformZX

Element (3,1) of the 3x3 model display transformation matrix

Default value: 0 Saved in: -

Geometry.TransformZY

Element (3,2) of the 3x3 model display transformation matrix

Default value: 0 Saved in: -

${\tt Geometry.TransformZZ}$

Element (3,3) of the 3x3 model display transformation matrix

Default value: 1 Saved in: -

Geometry.Volumes

Display geometry volumes?

Default value: 0

Saved in: General.OptionsFileName

Geometry.VolumeNumbers

Display volume labels?

Default value: 0

Saved in: General.OptionsFileName

Geometry.Color.Points

Normal geometry point color Default value: {90,90,90}

Saved in: General.OptionsFileName

Geometry.Color.Lines

Normal geometry curve color Default value: {0,0,255}

Geometry.Color.Surfaces

Normal geometry surface color Default value: {128,128,128}

Saved in: General.OptionsFileName

Geometry.Color.Volumes

Normal geometry volume color Default value: {255,255,0}

Saved in: General.OptionsFileName

Geometry.Color.Selection

Selected geometry color Default value: {255,0,0}

Saved in: General.OptionsFileName

Geometry.Color.HighlightZero

Highlight 0 color

Default value: {255,0,0}

Saved in: General.OptionsFileName

Geometry.Color.HighlightOne

Highlight 1 color

Default value: {255,150,0}

Saved in: General.OptionsFileName

Geometry.Color.HighlightTwo

Highlight 2 color

Default value: {255,255,0}

 ${\bf Saved\ in:\ General.0ptionsFileName}$

Geometry.Color.Tangents

Tangent geometry vectors color Default value: {255,255,0}

Saved in: General.OptionsFileName

Geometry.Color.Normals

Normal geometry vectors color Default value: {255,0,0}

Saved in: General.OptionsFileName

Geometry.Color.Projection

Projection surface color Default value: {0,255,0}

Saved in: General.OptionsFileName

B.3 Mesh options list

Mesh.Algorithm

2D mesh algorithm (1: MeshAdapt, 2: Automatic, 3: Initial mesh only, 5: Delaunay, 6: Frontal-Delaunay, 7: BAMG, 8: Frontal-Delaunay for Quads, 9: Packing of

Parallelograms) Default value: 6

Saved in: General.OptionsFileName

Mesh.Algorithm3D

3D mesh algorithm (1: Delaunay, 3: Initial mesh only, 4: Frontal, 7: MMG3D, 9: R-tree, 10: HXT)

Default value: 1

Saved in: General.OptionsFileName

Mesh.AlgorithmSwitchOnFailure

Switch meshing algorithm on failure? (Currently only for 2D Delaunay-based algorithms, switching to MeshAdapt)

Default value: 1

Saved in: General.OptionsFileName

Mesh.AngleSmoothNormals

Threshold angle below which normals are not smoothed

Default value: 30

Saved in: General.OptionsFileName

Mesh.AngleToleranceFacetOverlap

Consider connected facets as overlapping when the dihedral angle between the facets is smaller than the user's defined tolerance

Default value: 0.1

Saved in: General.OptionsFileName

Mesh.AnisoMax

Maximum anisotropy of the mesh

Default value: 1e+33

Saved in: General.OptionsFileName

Mesh.AllowSwapAngle

Threshold angle (in degrees) between faces normals under which we allow an edge

swap

Default value: 10

Saved in: General.OptionsFileName

Mesh.BdfFieldFormat

Field format for Nastran BDF files (0: free, 1: small, 2: large)

Default value: 1

Saved in: General.OptionsFileName

Mesh.Binary

Write mesh files in binary format (if possible)

Default value: 0

Saved in: General.OptionsFileName

Mesh.BoundaryLayerFanPoints

Number of points (per Pi radians) for 2D boundary layer fans

Default value: 5

Saved in: General.OptionsFileName

Mesh.CgnsImportOrder

Order of the mesh to be created by coarsening CGNS structured zones (1 to 4)

Default value: 1

Saved in: General.OptionsFileName

Mesh.CgnsImportIgnoreBC

Ignore information in ZoneBC structures when reading a CGNS file

Default value: 0

Mesh.CgnsImportIgnoreSolution

Ignore solution when reading a CGNS file

Default value: 0

Saved in: General.OptionsFileName

Mesh.CgnsConstructTopology

Reconstruct the model topology (BREP) after reading a CGNS file

Default value: 0

Saved in: General.OptionsFileName

Mesh.CgnsExportCPEX0045

Use the CPEX0045 convention when exporting a high-order mesh to CGNS

Default value: 0

Saved in: General.OptionsFileName

${\tt Mesh.CharacteristicLengthExtendFromBoundary}$

Extend computation of mesh element sizes from the boundaries into the interior (for

3D Delaunay, use 1: longest or 2: shortest surface edge length)

Default value: 1

Saved in: General.OptionsFileName

Mesh.CharacteristicLengthFactor

Factor applied to all mesh element sizes

Default value: 1

Saved in: General.OptionsFileName

Mesh.CharacteristicLengthMin

Minimum mesh element size

Default value: 0

Saved in: General.OptionsFileName

${\tt Mesh.CharacteristicLengthMax}$

Maximum mesh element size

Default value: 1e+22

Saved in: General.OptionsFileName

Mesh.CharacteristicLengthFromCurvature

Automatically compute mesh element sizes from curvature

Default value: 0

Saved in: General.OptionsFileName

Mesh.CharacteristicLengthFromPoints

Compute mesh element sizes from values given at geometry points

Default value: 1

 $Saved \ in: \ {\tt General.0ptionsFileName}$

${\tt Mesh.CharacteristicLengthFromParametricPoints}$

Compute mesh element sizes from values given at geometry points defining para-

metric curves Default value: 0

Saved in: General.OptionsFileName

Mesh.Clip

Enable clipping planes? (Plane[i]=2^i, i=0,...,5)

Default value: 0 Saved in: -

Mesh.ColorCarousel

Mesh coloring (0: by element type, 1: by elementary entity, 2: by physical group,

3: by mesh partition)
Default value: 1

Saved in: General.OptionsFileName

Mesh.CompoundClassify

How are surface mesh elements classified on compounds? (0: on the new discrete surface, 1: on the original geometrical surfaces - incompatible with e.g. high-order meshing)

Default value: 1

Saved in: General.OptionsFileName

Mesh.CompoundCharacteristicLengthFactor

Mesh size factor applied to compound parts

Default value: 0.5

Saved in: General.OptionsFileName

Mesh.CpuTime

CPU time (in seconds) for the generation of the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.DrawSkinOnly

Draw only the skin of 3D meshes?

Default value: 0

Saved in: General.OptionsFileName

Mesh.Dual

Display the dual mesh obtained by barycentric subdivision

Default value: 0

Saved in: General.OptionsFileName

Mesh.ElementOrder

Element order (1: first order elements)

Default value: 1

Saved in: General.OptionsFileName

Mesh.Explode

Element shrinking factor (between 0 and 1)

Default value: 1

Saved in: General.OptionsFileName

Mesh.FirstElementTag

First tag (≥ 1) of mesh elements

Default value: 1

Saved in: General.OptionsFileName

Mesh.FirstNodeTag

First tag (≥ 1) of mesh nodes

Default value: 1

Saved in: General.OptionsFileName

Mesh.FlexibleTransfinite

Allow transfinite constraints to be modified for recombination (e.g. Blossom) or by global mesh size factor

Default value: 0

Mesh.Format

Mesh output format (1: msh, 2: unv, 10: auto, 16: vtk, 19: vrml, 21: mail, 26: pos stat, 27: stl, 28: p3d, 30: mesh, 31: bdf, 32: cgns, 33: med, 34: diff, 38: ir3, 39: inp, 40: ply2, 41: celum, 42: su2, 47: tochnog, 49: neu, 50: matlab)

Default value: 10

Saved in: General.OptionsFileName

Mesh.Hexahedra

Display mesh hexahedra?

Default value: 1

Saved in: General.OptionsFileName

Mesh.HighOrderIterMax

Maximum number of iterations in high-order optimization pass

Default value: 100

Saved in: General.OptionsFileName

Mesh.HighOrderNumLayers

Number of layers around a problematic element to consider for high-order optimiza-

tion

Default value: 6

Saved in: General.OptionsFileName

Mesh.HighOrderOptimize

Optimize high-order meshes? (0: none, 1: optimization, 2: elastic+optimization, 3:

elastic, 4: fast curving)

Default value: 0

Saved in: General.OptionsFileName

${\tt Mesh.HighOrderPassMax}$

Maximum number of high-order optimization passes (moving barrier)

Default value: 25

 $Saved \ in: \ {\tt General.OptionsFileName}$

Mesh.HighOrderPeriodic

Force location of nodes for periodic meshes using periodicity transform (0: assume identical parametrisations, 1: invert parametrisations, 2: compute closest point

Default value: 0

Saved in: General.OptionsFileName

Mesh.HighOrderPoissonRatio

Poisson ratio of the material used in the elastic smoother for high-order meshes (between -1.0 and 0.5, excluded)

Default value: 0.33

Saved in: General.OptionsFileName

Mesh.HighOrderPrimSurfMesh

Try to fix flipped surface mesh elements in high-order optimizer?

Default value: 0

Saved in: General.OptionsFileName

Mesh.HighOrderDistCAD

Try to optimize distance to CAD in high-order optimizer?

Default value: 0

Mesh.HighOrderThresholdMin

Minimum threshold for high-order element optimization

Default value: 0.1

Saved in: General.OptionsFileName

Mesh.HighOrderThresholdMax

Maximum threshold for high-order element optimization

Default value: 2

Saved in: General.OptionsFileName

Mesh.LabelSampling

Label sampling rate (display one label every 'LabelSampling' elements)

Default value: 1

Saved in: General.OptionsFileName

Mesh.LabelType

Type of element label (0: node/element tag, 1: elementary entity tag, 2: physical

entity tag, 3: partition, 4: coordinates)

Default value: 0

Saved in: General.OptionsFileName

Mesh.LcIntegrationPrecision

Accuracy of evaluation of the LC field for 1D mesh generation

Default value: 1e-09

Saved in: General.OptionsFileName

Mesh.Light

Enable lighting for the mesh

Default value: 1

Saved in: General.OptionsFileName

Mesh.LightLines

Enable lighting for mesh edges (0: no, 1: surfaces, 2: surfaces+volumes

Default value: 2

Saved in: General.OptionsFileName

Mesh.LightTwoSide

Light both sides of surfaces (leads to slower rendering)

Default value: 1

 $Saved \ in: \ {\tt General.0ptionsFileName}$

Mesh.Lines

Display mesh lines (1D elements)?

Default value: 0

Saved in: General.OptionsFileName

Mesh.LineNumbers

Display mesh line labels?

Default value: 0

Saved in: General.OptionsFileName

Mesh.LineWidth

Display width of mesh lines (in pixels)

Default value: 1

Saved in: General.OptionsFileName

Mesh.MaxIterDelaunay3D

Maximum number of point insertion iterations in 3D Delaunay mesher (0: unlimited)

Default value: 0

Saved in: General.OptionsFileName

Mesh.MaxNumThreads1D

Maximum number of threads for 1D meshing (0: use default)

Default value: 0

Saved in: General.OptionsFileName

Mesh.MaxNumThreads2D

Maximum number of threads for 2D meshing (0: use default)

Default value: 0

Saved in: General.OptionsFileName

Mesh.MaxNumThreads3D

Maximum number of threads for 3D meshing (0: use default)

Default value: 0

Saved in: General.OptionsFileName

Mesh.MaxRetries

Maximum number of times meshing is retried on curves and surfaces with a pending

mesh

Default value: 10

Saved in: General.OptionsFileName

Mesh.MeshOnlyVisible

Mesh only visible entities (experimental)

Default value: 0

Saved in: General.OptionsFileName

Mesh.MeshOnlyEmpty

Mesh only entities that have no existing mesh

Default value: 0

Saved in: General.OptionsFileName

${\tt Mesh.MetisAlgorithm}$

METIS partitioning algorithm 'ptype' (1: Recursive, 2: K-way)

Default value: 1

 ${\bf Saved\ in:\ General.0ptionsFileName}$

Mesh.MetisEdgeMatching

METIS edge matching type 'ctype' (1: Random, 2: Sorted Heavy-Edge)

Default value: 2

Saved in: General.OptionsFileName

${\tt Mesh.MetisMaxLoadImbalance}$

METIS maximum load imbalance 'ufactor' (-1: default, i.e. 30 for K-way and 1 for

Recursive)

Default value: -1

Saved in: General.OptionsFileName

Mesh.MetisObjective

METIS objective type 'objtype' (1: min. edge-cut, 2: min. communication volume)

Default value: 1

Saved in: General.OptionsFileName

Mesh.MetisMinConn

METIS minimize maximum connectivity of partitions 'minconn' (-1: default)

Default value: -1

Mesh.MetisRefinementAlgorithm

METIS algorithm for k-way refinement 'rtype' (1: FM-based cut, 2: Greedy, 3:

Two-sided node FM, 4: One-sided node FM)

Default value: 2

Saved in: General.OptionsFileName

Mesh.MinimumCirclePoints

Minimum number of nodes used to mesh circles and ellipses

Default value: 7

Saved in: General.OptionsFileName

Mesh.MinimumCurvePoints

Minimum number of points used to mesh curves other than lines, circles and ellipses

Default value: 3

Saved in: General.OptionsFileName

Mesh.MinimumElementsPerTwoPi

Minimum number of elements per 2 * Pi radians when the mesh size is adapted to

the curvature Default value: 6

Saved in: General.OptionsFileName

Mesh.MshFileVersion

Version of the MSH file format to use

Default value: 4.1

Saved in: General.OptionsFileName

Mesh.MedFileMinorVersion

Minor version of the MED file format to use (-1: use minor version of the MED

library)

Default value: -1

Saved in: General.OptionsFileName

Mesh.MedImportGroupsOfNodes

Import groups of nodes (0: no; 1: create geometrical point for each node)?

Default value: 0

Saved in: General.OptionsFileName

Mesh.MedSingleModel

Import MED meshes in the current model, even if several MED mesh names exist

Default value: 0

Saved in: General.OptionsFileName

Mesh.PartitionHexWeight

Weight of hexahedral element for METIS load balancing (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

Mesh.PartitionLineWeight

Weight of line element for METIS load balancing (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

Mesh.PartitionPrismWeight

Weight of prismatic element (wedge) for METIS load balancing (-1: automatic)

Default value: -1

Mesh.PartitionPyramidWeight

Weight of pyramidal element for METIS load balancing (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

Mesh.PartitionQuadWeight

Weight of quadrangle for METIS load balancing (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

Mesh.PartitionTrihedronWeight

Weight of trihedron element for METIS load balancing (-1: automatic)

Default value: 0

Saved in: General.OptionsFileName

Mesh.PartitionTetWeight

Weight of tetrahedral element for METIS load balancing (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

Mesh.PartitionTriWeight

Weight of triangle element for METIS load balancing (-1: automatic)

Default value: -1

Saved in: General.OptionsFileName

Mesh.PartitionCreateTopology

Create boundary representation of partitions

Default value: 1

Saved in: General.OptionsFileName

${\tt Mesh.PartitionCreatePhysicals}$

Create physical groups for partitions, based on existing physical groups

Default value: 1

Saved in: General.OptionsFileName

Mesh.PartitionCreateGhostCells

Create ghost cells, i.e. create for each partition a ghost entity containing elements connected to neighboring partitions by at least one node.

Default value: 0

Saved in: General.OptionsFileName

Mesh.PartitionSplitMeshFiles

Write one file for each mesh partition

Default value: 0

Saved in: General.OptionsFileName

Mesh.PartitionTopologyFile

Write a .pro file with the partition topology

Default value: 0

Saved in: General.OptionsFileName

${\tt Mesh.PartitionOldStyleMsh2}$

Write partitioned meshes in MSH2 format using old style (i.e. by not referencing new partitioned entities, except on partition boundaries), for backward compatibility

Default value: 1

${\tt Mesh.ReparamMaxTriangles}$

Maximum number of triangles in a single parametrization patch

Default value: 250000

Saved in: General.OptionsFileName

Mesh.NbHexahedra

Number of hexahedra in the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.NbNodes

Number of nodes in the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.NbPartitions

Number of partitions Default value: 0

Saved in: General.OptionsFileName

Mesh.NbPrisms

Number of prisms in the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.NbPyramids

Number of pyramids in the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.NbTrihedra

Number of trihedra in the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.NbQuadrangles

Number of quadrangles in the current mesh (read-only)

Default value: 0
Saved in: -

Mesh.NbTetrahedra

Number of tetrahedra in the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.NbTriangles

Number of triangles in the current mesh (read-only)

Default value: 0 Saved in: -

Mesh.NewtonConvergenceTestXYZ

Force inverse surface mapping algorithm (Newton-Raphson) to converge in real coordinates (experimental)

Default value: 0

Mesh.Normals

Display size of normal vectors (in pixels)

Default value: 0

Saved in: General.OptionsFileName

Mesh.NumSubEdges

Number of edge subdivisions when displaying high-order elements

Default value: 2

Saved in: General.OptionsFileName

Mesh.Optimize

Optimize the mesh to improve the quality of tetrahedral elements

Default value: 1

Saved in: General.OptionsFileName

Mesh.OptimizeThreshold

Optimize tetrahedra that have a quality below ...

Default value: 0.3

 ${\bf Saved\ in:\ General.OptionsFileName}$

Mesh.OptimizeNetgen

Optimize the mesh using Netgen to improve the quality of tetrahedral elements

Default value: 0

Saved in: General.OptionsFileName

Mesh.Points

Display mesh nodes (vertices)?

Default value: 0

 $Saved \ in: \ {\tt General.0ptionsFileName}$

Mesh.PointNumbers

Display mesh node labels?

Default value: 0

Saved in: General.OptionsFileName

Mesh.PointSize

Display size of mesh nodes (in pixels)

Default value: 4

 ${\bf Saved~in:~General.0ptionsFileName}$

Mesh.PointType

Display mesh nodes as solid color dots (0) or 3D spheres (1)

Default value: 0

Saved in: General.OptionsFileName

Mesh.Prisms

Display mesh prisms?

Default value: 1

Saved in: General.OptionsFileName

Mesh.Pyramids

Display mesh pyramids?

Default value: 1

Saved in: General.OptionsFileName

Mesh.Trihedra

Display mesh trihedra?

Default value: 1

Mesh.Quadrangles

Display mesh quadrangles?

Default value: 1

Saved in: General.OptionsFileName

Mesh.QualityInf

Only display elements whose quality measure is greater than QualityInf

Default value: 0

Saved in: General.OptionsFileName

Mesh.QualitySup

Only display elements whose quality measure is smaller than QualitySup

Default value: 0

Saved in: General.OptionsFileName

Mesh.QualityType

Type of quality measure (0: SICN signed inverse condition number, 1: SIGE signed inverse gradient error, 2: gamma vol/sum_face/max_edge, 3: Disto minJ/maxJ

Default value: 2

Saved in: General.OptionsFileName

Mesh.RadiusInf

Only display elements whose longest edge is greater than RadiusInf

Default value: 0

Saved in: General.OptionsFileName

Mesh.RadiusSup

Only display elements whose longest edge is smaller than RadiusSup

Default value: 0

Saved in: General.OptionsFileName

Mesh.RandomFactor

Random factor used in the 2D meshing algorithm (should be increased if Random-

Factor * size(triangle)/size(model) approaches machine accuracy)

Default value: 1e-09

Saved in: General.OptionsFileName

Mesh.RandomFactor3D

Random factor used in the 3D meshing algorithm

Default value: 1e-12

Saved in: General.OptionsFileName

Mesh.RandomSeed

Seed of pseudo-random number generator

Default value: 1

Saved in: General.OptionsFileName

Mesh.PreserveNumberingMsh2

Preserve element numbering in MSH2 format (will break meshes with multiple physical groups for a single elementary entity)

Default value: 0

Saved in: General.OptionsFileName

Mesh.IgnoreParametrization

Skip parametrization section when reading meshes in the MSH4 format.

Default value: 0

Mesh.IgnorePeriodicity

Skip periodic node section and skip periodic boundary alignement step when reading meshes in the MSH2 format.

Default value: 1

Saved in: General.OptionsFileName

Mesh.RecombinationAlgorithm

Mesh recombination algorithm (0: simple, 1: blossom, 2: simple full-quad, 3: blossom full-quad)

Default value: 1

Saved in: General.OptionsFileName

Mesh.RecombineAll

Apply recombination algorithm to all surfaces, ignoring per-surface spec

Default value: 0

Saved in: General.OptionsFileName

Mesh.RecombineOptimizeTopology

Number of topological optimization passes (removal of diamonds, \dots) of recombined surface meshes

Default value: 5

Saved in: General.OptionsFileName

Mesh.Recombine3DA11

Apply recombination 3D algorithm to all volumes, ignoring per-volume spec (experimental)

Default value: 0

Saved in: General.OptionsFileName

Mesh.Recombine3DLevel

3d recombination level (0: hex, 1: hex+prisms, 2: hex+prism+pyramids) (experi-

mental)

Default value: 0

Saved in: General.OptionsFileName

Mesh.Recombine3DConformity

3d recombination conformity type (0: nonconforming, 1: trihedra, 2: pyramids+trihedra, 3:pyramids+hexSplit+trihedra, 4:hexSplit+trihedra)(experimental)

Default value: 0

Saved in: General.OptionsFileName

Mesh.RefineSteps

Number of refinement steps in the MeshAdapt-based 2D algorithms

Default value: 10

Saved in: General.OptionsFileName

Mesh.Renumber

Renumber nodes and elements in a continuous sequence after mesh generation

Default value: 1

Saved in: General.OptionsFileName

Mesh.SaveAll

Save all elements, even if they don't belong to physical groups (for some mesh formats, this removes physical groups altogether)

Default value: 0 Saved in: -

Mesh.SaveElementTagType

Type of the element tag saved in mesh formats that don't support saving physical or partition ids (1: elementary, 2: physical, 3: partition)

Default value: 1

Saved in: General.OptionsFileName

Mesh.SaveTopology

Save model topology in MSH2 output files (this is always saved in MSH3)

Default value: 0

Saved in: General.OptionsFileName

Mesh.SaveParametric

Save parametric coordinates of nodes

Default value: 0

Saved in: General.OptionsFileName

Mesh.SaveGroupsOfElements

Save groups of elements for each physical group (for INP mesh format)

Default value: 1

Saved in: General.OptionsFileName

Mesh.SaveGroupsOfNodes

Save groups of nodes for each physical group (for UNV, INP and Tochnog mesh formats). For the INP format, a negative value will save a group of node for each entity of dimension = (-Mesh.SaveGroupsOfNodes)

Default value: 0

Saved in: General.OptionsFileName

Mesh.ScalingFactor

Global scaling factor applied to the saved mesh

Default value: 1

Saved in: General.OptionsFileName

Mesh.SecondOrderIncomplete

Create incomplete second order elements? (8-node quads, 20-node hexas, etc.)

Default value: 0

Saved in: General.OptionsFileName

Mesh.SecondOrderLinear

Should second order nodes (as well as nodes generated with subdivision algorithms) simply be created by linear interpolation?

Default value: 0

Saved in: General.OptionsFileName

Mesh.Smoothing

Number of smoothing steps applied to the final mesh

Default value: 1

Saved in: General.OptionsFileName

Mesh.SmoothCrossField

Apply n barycentric smoothing passes to the 3D cross field

Default value: 0

Saved in: General.OptionsFileName

Mesh.CrossFieldClosestPoint

Use closest point to compute 2D crossfield

Default value: 1

Mesh.SmoothNormals

Smooth the mesh normals?

Default value: 0

Saved in: General.OptionsFileName

Mesh.SmoothRatio

Ratio between mesh sizes at nodes of a same edge (used in BAMG)

Default value: 1.8

Saved in: General.OptionsFileName

Mesh.StlAngularDeflection

Maximum angular deflection when creating STL representation of surfaces (currently only used with the OpenCASCADE kernel)

Default value: 0.35

Saved in: General.OptionsFileName

Mesh.StlLinearDeflection

Maximum linear deflection when creating STL representation of surfaces (currently only used with the OpenCASCADE kernel)

Default value: 0.01

Saved in: General.OptionsFileName

Mesh.StlOneSolidPerSurface

Create one solid per surface when exporting STL files? (0: single solid, 1: one solid per face, 2: one solid per physical surface)

Default value: 0

Saved in: General.OptionsFileName

${\tt Mesh.StlRemoveDuplicateTriangles}$

Remove duplicate triangles when importing STL files?

Default value: 0

Saved in: General.OptionsFileName

Mesh.SubdivisionAlgorithm

Mesh subdivision algorithm (0: none, 1: all quadrangles, 2: all hexahedra, 3:

barycentric)
Default value: 0

Saved in: General.OptionsFileName

Mesh.SurfaceEdges

Display edges of surface mesh?

Default value: 1

Saved in: General.OptionsFileName

Mesh.SurfaceFaces

Display faces of surface mesh?

Default value: 0

Saved in: General.OptionsFileName

Mesh.SurfaceNumbers

Display surface mesh element labels?

Default value: 0

Saved in: General.OptionsFileName

Mesh.SwitchElementTags

Invert elementary and physical tags when reading the mesh

Default value: 0

Mesh.Tangents

Display size of tangent vectors (in pixels)

Default value: 0

Saved in: General.OptionsFileName

Mesh.Tetrahedra

Display mesh tetrahedra?

Default value: 1

Saved in: General.OptionsFileName

Mesh.ToleranceEdgeLength

Skip a model edge in mesh generation if its length is less than user's defined tolerance

Default value: 0

Saved in: General.OptionsFileName

Mesh.ToleranceInitialDelaunay

Tolerance for initial 3D Delaunay mesher

Default value: 1e-08

Saved in: General.OptionsFileName

Mesh.Triangles

Display mesh triangles?

Default value: 1

Saved in: General.OptionsFileName

Mesh.UnvStrictFormat

Use strict format specification for UNV files, with 'D' for exponents (instead of 'E'

as used by some tools)

Default value: 1

Saved in: General.OptionsFileName

Mesh.VolumeEdges

Display edges of volume mesh?

Default value: 1

Saved in: General.OptionsFileName

Mesh.VolumeFaces

Display faces of volume mesh?

Default value: 0

Saved in: General.OptionsFileName

Mesh.VolumeNumbers

Display volume mesh element labels?

Default value: 0

Saved in: General.OptionsFileName

Mesh.Voronoi

Display the voronoi diagram

Default value: 0

Saved in: General.OptionsFileName

Mesh.ZoneDefinition

Method for defining a zone (0: single zone, 1: by partition, 2: by physical)

Default value: 0

Mesh.Color.Points

Mesh node color

Default value: {0,0,255}

Saved in: General.OptionsFileName

Mesh.Color.PointsSup

Second order mesh node color Default value: {255,0,255}

Saved in: General.OptionsFileName

Mesh.Color.Lines

Mesh line color

Default value: {0,0,0}

Saved in: General.OptionsFileName

Mesh.Color.Triangles

Mesh triangle color (if Mesh.ColorCarousel=0)

Default value: {160,150,255}

Saved in: General.OptionsFileName

Mesh.Color.Quadrangles

Mesh quadrangle color (if Mesh.ColorCarousel=0)

Default value: {130,120,225} Saved in: General.OptionsFileName

Mesh.Color.Tetrahedra

Mesh tetrahedron color (if Mesh.ColorCarousel=0)

Default value: {160,150,255}

Saved in: General.OptionsFileName

Mesh.Color.Hexahedra

Mesh hexahedron color (if Mesh.ColorCarousel=0)

Default value: {130,120,225}

Saved in: General.OptionsFileName

Mesh.Color.Prisms

Mesh prism color (if Mesh.ColorCarousel=0)

Default value: {232,210,23}

Saved in: General.OptionsFileName

Mesh.Color.Pyramids

Mesh pyramid color (if Mesh.ColorCarousel=0)

Default value: {217,113,38}

Saved in: General.OptionsFileName

Mesh.Color.Trihedra

Mesh trihedron color (if Mesh.ColorCarousel=0)

Default value: {20,255,0}

Saved in: General.OptionsFileName

Mesh.Color.Tangents

Tangent mesh vector color Default value: {255,255,0}

Saved in: General.OptionsFileName

Mesh.Color.Normals

Normal mesh vector color Default value: {255,0,0}

Mesh.Color.Zero

Color 0 in color carousel
Default value: {255,120,0}

Saved in: General.OptionsFileName

Mesh.Color.One

Color 1 in color carousel Default value: {0,255,132}

Saved in: General.OptionsFileName

Mesh.Color.Two

Color 2 in color carousel Default value: {255,160,0}

Saved in: General.OptionsFileName

Mesh.Color.Three

Color 3 in color carousel Default value: {0,255,192}

Saved in: General.OptionsFileName

Mesh.Color.Four

Color 4 in color carousel Default value: {255,200,0}

Saved in: General.OptionsFileName

Mesh.Color.Five

Color 5 in color carousel Default value: {0,216,255}

Saved in: General.OptionsFileName

Mesh.Color.Six

Color 6 in color carousel Default value: {255,240,0}

Saved in: General.OptionsFileName

Mesh.Color.Seven

Color 7 in color carousel Default value: {0,176,255}

 ${\bf Saved~in:~General.0ptionsFileName}$

Mesh.Color.Eight

Color 8 in color carousel Default value: {228,255,0}

Saved in: General.OptionsFileName

Mesh.Color.Nine

Color 9 in color carousel Default value: {0,116,255}

Saved in: General.OptionsFileName

Mesh.Color.Ten

Color 10 in color carousel Default value: {188,255,0}

Saved in: General.OptionsFileName

Mesh.Color.Eleven

Color 11 in color carousel Default value: {0,76,255}

Mesh.Color.Twelve

Color 12 in color carousel Default value: {148,255,0}

Saved in: General.OptionsFileName

Mesh.Color.Thirteen

Color 13 in color carousel Default value: {24,0,255}

Saved in: General.OptionsFileName

Mesh.Color.Fourteen

Color 14 in color carousel Default value: {108,255,0}

Saved in: General.OptionsFileName

Mesh.Color.Fifteen

Color 15 in color carousel Default value: {84,0,255}

Saved in: General.OptionsFileName

Mesh.Color.Sixteen

Color 16 in color carousel Default value: {68,255,0}

Saved in: General.OptionsFileName

Mesh.Color.Seventeen

Color 17 in color carousel Default value: {104,0,255}

Saved in: General.OptionsFileName

Mesh.Color.Eighteen

Color 18 in color carousel Default value: {0,255,52}

Saved in: General.OptionsFileName

Mesh.Color.Nineteen

Color 19 in color carousel Default value: {184,0,255}

Saved in: General.OptionsFileName

B.4 Solver options list

Solver.Executable0

System command to launch solver 0

Default value: ""

Saved in: General.SessionFileName

Solver.Executable1

System command to launch solver 1

Default value: ""

Saved in: General.SessionFileName

Solver.Executable2

System command to launch solver 2

Default value: ""

Solver.Executable3

System command to launch solver 3

Default value: ""

Saved in: General.SessionFileName

Solver.Executable4

System command to launch solver 4

Default value: ""

Saved in: General.SessionFileName

Solver.Executable5

System command to launch solver 5

Default value: ""

Saved in: General.SessionFileName

Solver.Executable6

System command to launch solver 6

Default value: ""

Saved in: General.SessionFileName

Solver.Executable7

System command to launch solver 7

Default value: ""

Saved in: General.SessionFileName

Solver.Executable8

System command to launch solver 8

Default value: ""

Saved in: General.SessionFileName

Solver.Executable9

System command to launch solver 9

Default value: ""

Saved in: General.SessionFileName

Solver.NameO

Name of solver 0

Default value: "GetDP"

 $Saved \ in: \ {\tt General.SessionFileName}$

Solver.Name1

Name of solver 1

Default value: ""

Saved in: General.SessionFileName

Solver.Name2

Name of solver 2

Default value: ""

Saved in: General.SessionFileName

Solver.Name3

Name of solver 3

Default value: ""

Saved in: General.SessionFileName

Solver.Name4

Name of solver 4

Default value: ""

Solver.Name5

Name of solver 5
Default value: ""

Saved in: General.SessionFileName

Solver.Name6

Name of solver 6 Default value: ""

Saved in: General.SessionFileName

Solver.Name7

Name of solver 7 Default value: ""

Saved in: General.SessionFileName

Solver.Name8

Name of solver 8 Default value: ""

Saved in: General.SessionFileName

Solver.Name9

Name of solver 9 Default value: ""

Saved in: General.SessionFileName

Solver.Extension0

File extension for solver 0 Default value: ".pro"

Saved in: General.SessionFileName

Solver.Extension1

File extension for solver 1

Default value: ""

Saved in: General.SessionFileName

Solver.Extension2

File extension for solver 2

Default value: ""

 $Saved \ in: \ {\tt General.SessionFileName}$

Solver.Extension3

File extension for solver 3

Default value: ""

Saved in: General.SessionFileName

Solver.Extension4

File extension for solver 4

Default value: ""

Saved in: General.SessionFileName

Solver.Extension5

File extension for solver 5

Default value: ""

Saved in: General.SessionFileName

Solver.Extension6

File extension for solver 6

Default value: ""

Solver.Extension7

File extension for solver 7

Default value: ""

Saved in: General.SessionFileName

Solver.Extension8

File extension for solver 8

Default value: ""

Saved in: General.SessionFileName

Solver.Extension9

File extension for solver 9

Default value: ""

Saved in: General.SessionFileName

Solver.OctaveInterpreter

Name of the Octave interpreter (used to run .m files)

Default value: "octave"

Saved in: General.SessionFileName

Solver.PythonInterpreter

Name of the Python interpreter (used to run .py files if they are not executable)

Default value: "python"

Saved in: General.SessionFileName

Solver.RemoteLogin0

Command to login to a remote host to launch solver 0

Default value: ""

Saved in: General.SessionFileName

Solver.RemoteLogin1

Command to login to a remote host to launch solver 1

Default value: ""

Saved in: General.SessionFileName

${\tt Solver.RemoteLogin2}$

Command to login to a remote host to launch solver 2

Default value: ""

Saved in: General.SessionFileName

Solver.RemoteLogin3

Command to login to a remote host to launch solver 3

Default value: ""

Saved in: General.SessionFileName

Solver.RemoteLogin4

Command to login to a remote host to launch solver 4

Default value: ""

Saved in: General.SessionFileName

Solver.RemoteLogin5

Command to login to a remote host to launch solver 5

Default value: ""

Saved in: General.SessionFileName

Solver.RemoteLogin6

Command to login to a remote host to launch solver 6

Default value: ""

Solver.RemoteLogin7

Command to login to a remote host to launch solver 7

Default value: ""

Saved in: General.SessionFileName

Solver.RemoteLogin8

Command to login to a remote host to launch solver 8

Default value: ""

Saved in: General.SessionFileName

Solver.RemoteLogin9

Command to login to a remote host to launch solver 9

Default value: ""

Saved in: General.SessionFileName

Solver.SocketName

Base name of socket (UNIX socket if the name does not contain a colon, TCP/IP otherwise, in the form 'host:baseport'; the actual name/port is constructed by appending the unique client id. If baseport is 0 or is not provided, the port is chosen automatically (recommended))

Default value: ".gmshsock"

Saved in: General.OptionsFileName

Solver.AlwaysListen

Always listen to incoming connection requests?

Default value: 0

Saved in: General.OptionsFileName

Solver.AutoArchiveOutputFiles

Automatically archive output files after each computation

Default value: 0

Saved in: General.OptionsFileName

Solver.AutoCheck

Automatically check model every time a parameter is changed

Default value: 1

Saved in: General.OptionsFileName

Solver.AutoLoadDatabase

Automatically load the ONELAB database when launching a solver

Default value: 0

 ${\bf Saved~in:~General.OptionsFileName}$

Solver.AutoSaveDatabase

Automatically save the ONELAB database after each computation

Default value: 1

Saved in: General.OptionsFileName

Solver.AutoMesh

Automatically mesh (0: never; 1: if geometry changed, but use existing mesh on disk if available; 2: if geometry changed; -1: the geometry script creates the mesh)

Default value: 2

Saved in: General.OptionsFileName

Solver.AutoMergeFile

Automatically merge result files

Default value: 1

Solver.AutoShowViews

Automatically show newly merged results (0: none; 1: all; 2: last one)

Default value: 2

Saved in: General.OptionsFileName

Solver.AutoShowLastStep

Automatically show the last step in newly merged results, if there are more than 2

steps

Default value: 1

Saved in: General.OptionsFileName

Solver.Plugins

Enable default solver plugins?

Default value: 0

Saved in: General.OptionsFileName

Solver.ShowInvisibleParameters

Show all parameters, even those marked invisible

Default value: 0

Saved in: General.OptionsFileName

Solver.Timeout

Time (in seconds) before closing the socket if no connection is happening

Default value: 5

Saved in: General.OptionsFileName

B.5 Post-processing options list

${\tt PostProcessing.DoubleClickedGraphPointCommand}$

Command parsed when double-clicking on a graph data point (e.g. Merge Sprintf('file_%g.pos', PostProcessing.GraphPointX);)

Default value: ""

Saved in: General.OptionsFileName

PostProcessing.GraphPointCommand

 $Synonym\ for\ `DoubleClickedGraphPointCommand'$

Default value: ""

Saved in: General.OptionsFileName

PostProcessing.AnimationDelay

Delay (in seconds) between frames in automatic animation mode

Default value: 0.1

Saved in: General.OptionsFileName

PostProcessing.AnimationCycle

Cycle through time steps (0) or views (1) for animations

Default value: 0

Saved in: General.OptionsFileName

PostProcessing.AnimationStep

Step increment for animations

Default value: 1

Saved in: General.OptionsFileName

PostProcessing.CombineRemoveOriginal

Remove original views after a Combine operation

Default value: 1

PostProcessing.CombineCopyOptions

Copy options during Combine operation

Default value: 1

Saved in: General.OptionsFileName

PostProcessing.DoubleClickedGraphPointX

Abscissa of last double-clicked graph point

Default value: 0 Saved in: -

${\tt PostProcessing.DoubleClickedGraphPointY}$

Ordinate of last double-clicked graph point

Default value: 0 Saved in: -

PostProcessing.DoubleClickedView

Index of last double-clicked view

Default value: 0 Saved in: -

PostProcessing.ForceElementData

Try to force saving datasets as ElementData

Default value: 0

Saved in: General.OptionsFileName

PostProcessing.ForceNodeData

Try to force saving datasets as NodeData

Default value: 0

Saved in: General.OptionsFileName

PostProcessing.Format

Default file format for post-processing views (0: ASCII view, 1: binary view, 2: parsed view, 3: STL triangulation, 4: raw text, 5: Gmsh mesh, 6: MED file, 10: automatic)

Default value: 10

Saved in: General.OptionsFileName

PostProcessing.GraphPointX

Synonym for 'DoubleClickedGraphPointX'

Default value: 0 Saved in: -

PostProcessing.GraphPointY

Synonym for 'DoubleClickedGraphPointY'

Default value: 0 Saved in: -

PostProcessing.HorizontalScales

Display value scales horizontally

Default value: 1

Saved in: General.OptionsFileName

PostProcessing.Link

Post-processing view links (0: apply next option changes to selected views, 1: force same options for all selected views)

Default value: 0

PostProcessing.NbViews

Current number of views merged (read-only)

Default value: 0 Saved in: -

PostProcessing.Plugins

Enable default post-processing plugins?

Default value: 1

Saved in: General.OptionsFileName

PostProcessing.SaveInterpolationMatrices

Save the interpolation matrices when exporting model-based data

Default value: 1

Saved in: General.OptionsFileName

PostProcessing.SaveMesh

Save the mesh when exporting model-based data

Default value: 1

Saved in: General.OptionsFileName

PostProcessing.Smoothing

Apply (non-reversible) smoothing to post-processing view when merged

Default value: 0

Saved in: General.OptionsFileName

View.Attributes

Optional string attached to the view. If the string contains 'Always Visible', the view will not be hidden when new ones are merged.

Default value: ""

Saved in: General.OptionsFileName

View.AxesFormatX

Number format for X-axis (in standard C form)

Default value: "%.3g"

Saved in: General.OptionsFileName

View.AxesFormatY

Number format for Y-axis (in standard C form)

Default value: "%.3g"

Saved in: General.OptionsFileName

View.AxesFormatZ

Number format for Z-axis (in standard C form)

Default value: "%.3g"

Saved in: General.OptionsFileName

View.AxesLabelX

X-axis label

Default value: ""

Saved in: General.OptionsFileName

View.AxesLabelY

Y-axis label

Default value: ""

View.AxesLabelZ

Z-axis label

Default value: ""

Saved in: General.OptionsFileName

View.DoubleClickedCommand

Command parsed when double-clicking on the view

Default value: ""

 ${\bf Saved~in:~General.0ptionsFileName}$

View.FileName

Default post-processing view file name

Default value: ""
Saved in: -

View.Format

Number format (in standard C form)

Default value: "%.3g"

Saved in: General.OptionsFileName

View.GeneralizedRaiseX

Generalized elevation of the view along X-axis (in model coordinates, using formula possibly containing x, y, z, s[tep], t[ime], v0, ... v8)

Default value: "v0"

Saved in: General.OptionsFileName

View.GeneralizedRaiseY

Generalized elevation of the view along Y-axis (in model coordinates, using formula possibly containing x, y, z, s[tep], t[ime], v0, ... v8)

Default value: "v1"

Saved in: General.OptionsFileName

View.GeneralizedRaiseZ

Generalized elevation of the view along Z-axis (in model coordinates, using formula possibly containing x, y, z, s[tep], t[ime], v0, ... v8)

Default value: "v2"

Saved in: General.OptionsFileName

View.Group

Group to which this view belongs

Default value: ""

Saved in: General.OptionsFileName

View.Name

Default post-processing view name

Default value: ""

Saved in: -

View.Stipple0

First stippling pattern

Default value: "1*0x1F1F"

Saved in: General.OptionsFileName

View.Stipple1

Second stippling pattern Default value: "1*0x3333"

View.Stipple2

Third stippling pattern
Default value: "1*0x087F"

Saved in: General.OptionsFileName

View.Stipple3

Fourth stippling pattern Default value: "1*0xCCCF"

Saved in: General.OptionsFileName

View.Stipple4

Fifth stippling pattern
Default value: "2*0x1111"

 $Saved \ in: \ {\tt General.0ptionsFileName}$

View.Stipple5

Sixth stippling pattern Default value: "2*0x0F0F"

Saved in: General.OptionsFileName

View.Stipple6

Seventh stippling pattern Default value: "1*0xCFFF"

Saved in: General.OptionsFileName

View.Stipple7

Eighth stippling pattern Default value: "2*0x0202"

Saved in: General.OptionsFileName

View.Stipple8

Ninth stippling pattern Default value: "2*0x087F"

Saved in: General.OptionsFileName

View.Stipple9

Tenth stippling pattern Default value: "1*0xFFFF"

Saved in: General.OptionsFileName

View.AbscissaRangeType

Ascissa scale range type (1: default, 2: custom)

Default value: 1

Saved in: General.OptionsFileName

View.AdaptVisualizationGrid

Use adaptive visualization grid (for high-order elements)?

Default value: 0

Saved in: General.OptionsFileName

View.AngleSmoothNormals

Threshold angle below which normals are not smoothed

Default value: 30

Saved in: General.OptionsFileName

View.ArrowSizeMax

Maximum display size of arrows (in pixels)

Default value: 60

View.ArrowSizeMin

Minimum display size of arrows (in pixels)

Default value: 0

Saved in: General.OptionsFileName

View.AutoPosition

Position the scale or 2D plot automatically (0: manual, 1: automatic, 2: top left, 3: top right, 4: bottom left, 5: bottom right, 6: top, 7: bottom, 8: left, 9: right, 10:

full, 11: top third, 12: in model coordinates)

Default value: 1

Saved in: General.OptionsFileName

View.Axes

Axes (0: none, 1: simple axes, 2: box, 3: full grid, 4: open grid, 5: ruler)

Default value: 0

Saved in: General.OptionsFileName

View.AxesMikado

Mikado axes style Default value: 0

Saved in: General.OptionsFileName

View.AxesAutoPosition

Position the axes automatically

Default value: 1

Saved in: General.OptionsFileName

View.AxesMaxX

Maximum X-axis coordinate

Default value: 1

Saved in: General.OptionsFileName

View.AxesMaxY

Maximum Y-axis coordinate

Default value: 1

Saved in: General.OptionsFileName

View.AxesMaxZ

Maximum Z-axis coordinate

Default value: 1

Saved in: General.OptionsFileName

View.AxesMinX

Minimum X-axis coordinate

Default value: 0

 ${\bf Saved\ in:\ General.OptionsFileName}$

View.AxesMinY

Minimum Y-axis coordinate

Default value: 0

Saved in: General.OptionsFileName

View.AxesMinZ

Minimum Z-axis coordinate

Default value: 0

View.AxesTicsX

Number of tics on the X-axis

Default value: 5

Saved in: General.OptionsFileName

View.AxesTicsY

Number of tics on the Y-axis

Default value: 5

Saved in: General.OptionsFileName

View.AxesTicsZ

Number of tics on the Z-axis

Default value: 5

Saved in: General.OptionsFileName

View.Boundary

Draw the 'N minus b'-dimensional boundary of the element (N: element dimension,

b: option value)Default value: 0

Saved in: General.OptionsFileName

View.CenterGlyphs

Center glyphs (arrows, numbers, etc.)? (0: left, 1: centered, 2: right)

Default value: 0

Saved in: General.OptionsFileName

View.Clip

Enable clipping planes? (Plane[i]=2^i, i=0,...,5)

Default value: 0 Saved in: -

View.Closed

Close the subtree containing this view

Default value: 0

Saved in: General.OptionsFileName

View.ColormapAlpha

Colormap alpha channel value (used only if != 1)

Default value: 1

Saved in: General.OptionsFileName

View.ColormapAlphaPower

Colormap alpha channel power

Default value: 0

Saved in: General.OptionsFileName

View.ColormapBeta

Colormap beta parameter (gamma = 1-beta)

Default value: 0

 ${\bf Saved~in:~General.0ptionsFileName}$

View.ColormapBias

Colormap bias Default value: 0

View.ColormapCurvature

Colormap curvature or slope coefficient

Default value: 0

Saved in: General.OptionsFileName

View.ColormapInvert

Invert the color values, i.e., replace x with (255-x) in the colormap?

Default value: 0

Saved in: General.OptionsFileName

View.ColormapNumber

Default colormap number (0: black, 1: vis5d, 2: jet, 3: lucie, 4: rainbow, 5: emc2000, 6: incadescent, 7: hot, 8: pink, 9: grayscale, 10: french, 11: hsv, 12: spectrum, 13: bone, 14: spring, 15: summer, 16: autumm, 17: winter, 18: cool, 19: copper, 20: magma, 21: inferno, 22: plasma, 23: viridis)

Default value: 2

 ${\it Saved in: General.OptionsFileName}$

View.ColormapRotation

Incremental colormap rotation

Default value: 0

Saved in: General.OptionsFileName

View.ColormapSwap

Swap the min/max values in the colormap?

Default value: 0

Saved in: General.OptionsFileName

View.ComponentMap0

Forced component 0 (if View.ForceComponents > 0)

Default value: 0

Saved in: General.OptionsFileName

View.ComponentMap1

Forced component 1 (if View.ForceComponents > 0)

Default value: 1

Saved in: General.OptionsFileName

View.ComponentMap2

Forced component 2 (if View.ForceComponents > 0)

Default value: 2

Saved in: General.OptionsFileName

View.ComponentMap3

Forced component 3 (if View.ForceComponents > 0)

Default value: 3

Saved in: General.OptionsFileName

View.ComponentMap4

Forced component 4 (if View.ForceComponents > 0)

Default value: 4

Saved in: General.OptionsFileName

View.ComponentMap5

Forced component 5 (if View.ForceComponents > 0)

Default value: 5

View.ComponentMap6

Forced component 6 (if View.ForceComponents > 0)

Default value: 6

Saved in: General.OptionsFileName

View.ComponentMap7

Forced component 7 (if View.ForceComponents > 0)

Default value: 7

Saved in: General.OptionsFileName

View.ComponentMap8

Forced component 8 (if View.ForceComponents > 0)

Default value: 8

Saved in: General.OptionsFileName

View.CustomAbscissaMax

User-defined maximum abscissa value

Default value: 0
Saved in: -

View.CustomAbscissaMin

User-defined minimum abscissa value

Default value: 0 Saved in: -

View.CustomMax

User-defined maximum value to be displayed

Default value: 0 Saved in: -

View.CustomMin

User-defined minimum value to be displayed

Default value: 0 Saved in: -

View.DisplacementFactor

Displacement amplification

Default value: 1

 ${\bf Saved~in:~General.0ptionsFileName}$

View.DrawHexahedra

Display post-processing hexahedra?

Default value: 1

Saved in: General.OptionsFileName

View.DrawLines

Display post-processing lines?

Default value: 1

Saved in: General.OptionsFileName

View.DrawPoints

Display post-processing points?

Default value: 1

Saved in: General.OptionsFileName

View.DrawPrisms

Display post-processing prisms?

Default value: 1

View.DrawPyramids

Display post-processing pyramids?

Default value: 1

Saved in: General.OptionsFileName

View.DrawTrihedra

Display post-processing trihedra?

Default value: 1

Saved in: General.OptionsFileName

View.DrawQuadrangles

Display post-processing quadrangles?

Default value: 1

 $Saved \ in: \ {\tt General.0ptionsFileName}$

View.DrawScalars

Display scalar values?

Default value: 1

Saved in: General.OptionsFileName

View.DrawSkinOnly

Draw only the skin of 3D scalar views?

Default value: 0

Saved in: General.OptionsFileName

View.DrawStrings

Display post-processing annotation strings?

Default value: 1

Saved in: General.OptionsFileName

View.DrawTensors

Display tensor values?

Default value: 1

Saved in: General.OptionsFileName

View.DrawTetrahedra

Display post-processing tetrahedra?

Default value: 1

 ${\bf Saved\ in:\ General.OptionsFileName}$

View.DrawTriangles

Display post-processing triangles?

Default value: 1

Saved in: General.OptionsFileName

View.DrawVectors

Display vector values?

Default value: 1

Saved in: General.OptionsFileName

View.Explode

Element shrinking factor (between 0 and 1)

Default value: 1

Saved in: General.OptionsFileName

View.ExternalView

Index of the view used to color vector fields (-1: self)

Default value: -1

 ${\bf Saved\ in:\ General.0ptionsFileName}$

View.FakeTransparency

Use fake transparency (cheaper than the real thing, but incorrect)

Default value: 0

Saved in: General.OptionsFileName

View.ForceNumComponents

Force number of components to display (see View.ComponentMapN for mapping)

Default value: 0

Saved in: General.OptionsFileName

View.GeneralizedRaiseFactor

Generalized raise amplification factor

Default value: 1

 $Saved \ in: \ {\tt General.0ptionsFileName}$

View.GeneralizedRaiseView

Index of the view used for generalized raise (-1: self)

Default value: -1

Saved in: General.OptionsFileName

View.GlyphLocation

Glyph (arrow, number, etc.) location (1: center of gravity, 2: node)

Default value: 1

Saved in: General.OptionsFileName

View.Height

Height (in pixels) of the scale or 2D plot

Default value: 200

 ${\bf Saved\ in:\ General.0ptionsFileName}$

View.IntervalsType

Type of interval display (1: iso, 2: continuous, 3: discrete, 4: numeric)

Default value: 2

Saved in: General.OptionsFileName

View.Light

Enable lighting for the view

Default value: 1

Saved in: General.OptionsFileName

View.LightLines

Light element edges

Default value: 1

Saved in: General.OptionsFileName

View.LightTwoSide

Light both sides of surfaces (leads to slower rendering)

Default value: 1

Saved in: General.OptionsFileName

View.LineType

Display lines as solid color segments (0) or 3D cylinders (1)

Default value: 0

Saved in: General.OptionsFileName

View.LineWidth

Display width of lines (in pixels)

Default value: 1

View.MaxRecursionLevel

Maximum recursion level for adaptive views

Default value: 0

Saved in: General.OptionsFileName

View.Max Maximum value in the view (read-only)

Default value: 0 Saved in: -

View.MaxVisible

Maximum value in the visible parts of the view, taking current time step and tensor display type into account (read-only)

Default value: 0 Saved in: -

View.MaxX

Maximum view coordinate along the X-axis (read-only)

Default value: 0 Saved in: -

View.MaxY

Maximum view coordinate along the Y-axis (read-only)

Default value: 0 Saved in: -

View.MaxZ

Maximum view coordinate along the Z-axis (read-only)

Default value: 0 Saved in: -

View.Min Minimum value in the view (read-only)

Default value: 0 Saved in: -

View.MinVisible

Minimum value in the visible parts of the view, taking current time step and tensor display type into account (read-only)

Default value: 0 Saved in: -

View.MinX

Minimum view coordinate along the X-axis (read-only)

Default value: 0 Saved in: -

View.MinY

Minimum view coordinate along the Y-axis (read-only)

Default value: 0 Saved in: -

View.MinZ

Minimum view coordinate along the Z-axis (read-only)

Default value: 0 Saved in: -

View.NbIso

Number of intervals Default value: 10

View.NbTimeStep

Number of time steps in the view (do not change this!)

Default value: 1 Saved in: -

View.NormalRaise

Elevation of the view along the normal (in model coordinates)

Default value: 0 Saved in: -

View.Normals

Display size of normal vectors (in pixels)

Default value: 0

Saved in: General.OptionsFileName

View.OffsetX

Translation of the view along X-axis (in model coordinates)

Default value: 0 Saved in: -

View.OffsetY

Translation of the view along Y-axis (in model coordinates)

Default value: 0 Saved in: -

View.OffsetZ

Translation of the view along Z-axis (in model coordinates)

Default value: 0 Saved in: -

View.PointSize

Display size of points (in pixels)

Default value: 3

Saved in: General.OptionsFileName

View.PointType

Display points as solid color dots (0), 3D spheres (1), scaled dots (2) or scaled spheres (3)

Default value: 0

Saved in: General.OptionsFileName

View.PositionX

X position (in pixels) of the scale or 2D plot (< 0: measure from right edge; >= 1e5: centered)

Default value: 100

Saved in: General.OptionsFileName

View.PositionY

Y position (in pixels) of the scale or 2D plot (< 0: measure from bottom edge; >=

1e5: centered) Default value: 50

Saved in: General.OptionsFileName

View.RaiseX

Elevation of the view along X-axis (in model coordinates)

Default value: 0 Saved in: -

View.RaiseY

Elevation of the view along Y-axis (in model coordinates)

Default value: 0 Saved in: -

View.RaiseZ

Elevation of the view along Z-axis (in model coordinates)

Default value: 0 Saved in: -

View.RangeType

Value scale range type (1: default, 2: custom, 3: per time step)

Default value: 1

Saved in: General.OptionsFileName

View.Sampling

Element sampling rate (draw one out every 'Sampling' elements)

Default value: 1

Saved in: General.OptionsFileName

View.SaturateValues

Saturate the view values to custom min and max (1: true, 0: false)

Default value: 0

Saved in: General.OptionsFileName

View.ScaleType

Value scale type (1: linear, 2: logarithmic, 3: double logarithmic)

Default value: 1

Saved in: General.OptionsFileName

View.ShowElement

Show element boundaries?

Default value: 0

Saved in: General.OptionsFileName

View.ShowScale

Show value scale? Default value: 1

Saved in: General.OptionsFileName

View.ShowTime

Time display mode (0: none, 1: time series, 2: harmonic data, 3: automatic, 4: step

data, 5: multi-step data, 6: real eigenvalues, 7: complex eigenvalues)

Default value: 3

Saved in: General.OptionsFileName

View.SmoothNormals

Smooth the normals?

Default value: 0

Saved in: General.OptionsFileName

View.Stipple

Stipple curves in 2D and line plots?

Default value: 0

View.Tangents

Display size of tangent vectors (in pixels)

Default value: 0

Saved in: General.OptionsFileName

View.TargetError

Target representation error for adaptive views

Default value: 0.01

Saved in: General.OptionsFileName

View.TensorType

Tensor display type (1: Von-Mises, 2: maximum eigenvalue, 3: minimum eigenvalue,

4: eigenvectors, 5: ellipse, 6: ellipsoid, 7: frame)

Default value: 1

Saved in: General.OptionsFileName

View.TimeStep

Current time step displayed

Default value: 0
Saved in: -

View.Time

Current time displayed (if positive, sets the time step corresponding the given time

value)

Default value: 0 Saved in: -

View.TransformXX

Element (1,1) of the 3x3 coordinate transformation matrix

Default value: 1 Saved in: -

View.TransformXY

Element (1,2) of the 3x3 coordinate transformation matrix

Default value: 0 Saved in: -

View.TransformXZ

Element (1,3) of the 3x3 coordinate transformation matrix

Default value: 0 Saved in: -

View.TransformYX

Element (2,1) of the 3x3 coordinate transformation matrix

Default value: 0 Saved in: -

View.TransformYY

Element (2,2) of the 3x3 coordinate transformation matrix

Default value: 1 Saved in: -

View.TransformYZ

Element (2,3) of the 3x3 coordinate transformation matrix

Default value: 0 Saved in: -

View.TransformZX

Element (3,1) of the 3x3 coordinate transformation matrix

Default value: 0 Saved in: -

View.TransformZY

Element (3,2) of the 3x3 coordinate transformation matrix

Default value: 0 Saved in: -

View.TransformZZ

Element (3,3) of the 3x3 coordinate transformation matrix

Default value: 1 Saved in: -

View.Type

Type of plot (1: 3D, 2: 2D space, 3: 2D time, 4: 2D)

Default value: 1
Saved in: -

View.UseGeneralizedRaise

Use generalized raise?

Default value: 0

Saved in: General.OptionsFileName

View.VectorType

Vector display type (1: segment, 2: arrow, 3: pyramid, 4: 3D arrow, 5: displace-

ment, 6: comet)
Default value: 4

Saved in: General.OptionsFileName

View. Visible

Is the view visible? Default value: 1

Saved in: -

View.Width

Width (in pixels) of the scale or 2D plot

Default value: 300

Saved in: General.OptionsFileName

View.Color.Points

Point color

Default value: $\{0,0,0\}$

Saved in: General.OptionsFileName

View.Color.Lines

Line color

Default value: {0,0,0}

Saved in: General.OptionsFileName

View.Color.Triangles

Triangle color

Default value: $\{0,0,0\}$

View.Color.Quadrangles

 ${\bf Quadrangle~color}$

Default value: {0,0,0}

Saved in: General.OptionsFileName

View.Color.Tetrahedra

Tetrahedron color

Default value: $\{0,0,0\}$

Saved in: General.OptionsFileName

View.Color.Hexahedra

Hexahedron color

Default value: {0,0,0}

 $Saved \ in: \ {\tt General.0ptionsFileName}$

View.Color.Prisms

Prism color

Default value: {0,0,0}

Saved in: General.OptionsFileName

View.Color.Pyramids

Pyramid color

Default value: $\{0,0,0\}$

 $Saved \ in: \ {\tt General.0ptionsFileName}$

View.Color.Trihedra

Trihedron color

Default value: {0,0,0}

 $Saved \ in: \ {\tt General.0ptionsFileName}$

View.Color.Tangents

Tangent vector color

Default value: {255,255,0}

Saved in: General.OptionsFileName

View.Color.Normals

 $Normal\ vector\ color$

Default value: $\{255,0,0\}$

Saved in: General.OptionsFileName

View.Color.Text2D

2D text color

Default value: $\{0,0,0\}$

Saved in: General.OptionsFileName

View.Color.Text3D

3D text color

Default value: {0,0,0}

Saved in: General.OptionsFileName

View.Color.Axes

Axes color

Default value: {0,0,0}

Saved in: General.OptionsFileName

View.Color.Background2D

Bacground color for 2D plots

Default value: {255,255,255}

View.ColorTable

Color table used to draw the view Saved in: General.OptionsFileName

Appendix C Compiling the source code

Stable releases and source snapshots are available from https://gmsh.info/src/. You can also access the Git repository directly:

1. The first time you want to download the latest full source, type:

```
git clone https://gitlab.onelab.info/gmsh/gmsh.git
```

2. To update your local version to the latest and greatest, go in the gmsh directory and type: git pull

Once you have the source code, you need to run CMake to configure your build (see the README.txt file in the top-level source directory for detailed information on how to run CMake).

Each build can be configured using a series of options, to selectively enable optional modules or features. Here is the list of CMake options:

ENABLE_3M

Enable proprietary 3M extension (default: OFF)

ENABLE_ALGLIB

Enable ALGLIB (used by some mesh optimizers) (default: ON)

ENABLE_ANN

Enable ANN (used for fast point search in mesh/post) (default: ON)

ENABLE_BAMG

Enable Bamg 2D anisotropic mesh generator (default: ON)

ENABLE_BLAS_LAPACK

Enable BLAS/Lapack for linear algebra (required for meshing) (default: ON)

ENABLE_BLOSSOM

Enable Blossom algorithm (needed for full quad meshing) (default: ON)

ENABLE_BUILD_LIB

Enable 'lib' target for building static Gmsh library (default: OFF)

ENABLE_BUILD_SHARED

Enable 'shared' target for building shared Gmsh library (default: OFF)

ENABLE_BUILD_DYNAMIC

Enable dynamic Gmsh executable (linked with shared library) (default: OFF)

ENABLE_BUILD_ANDROID

Enable Android NDK library target (experimental) (default: OFF)

ENABLE_BUILD_IOS

Enable iOS library target (experimental) (default: OFF)

ENABLE_CGNS

Enable CGNS import/export (experimental) (default: ON)

ENABLE_CGNS_CPEX0045

Enable high-order CGNS import/export following CPEX0045 (experimental) (default: OFF)

ENABLE_CAIRO

Enable Cairo to render fonts (experimental) (default: ON)

ENABLE_CXX11

Enable C++11 (default: ON)

ENABLE_C99 Enable C99 (default: ON) ENABLE_PROFILE Enable profiling compiler flags (default: OFF) ENABLE_DINTEGRATION Enable discrete integration (needed for levelsets) (default: ON) ENABLE_DOMHEX Enable experimental DOMHEX code (default: ON) ENABLE_FLTK Enable FLTK graphical user interface (requires mesh/post) (default: ON) ENABLE_GETDP Enable GetDP solver (linked as a library, experimental) (default: ON) ENABLE_GMM Enable GMM linear solvers (simple alternative to PETSc) (default: ON) ENABLE_GMP Enable GMP for Kbipack (advanced) (default: ON) ENABLE_GRAPHICS Enable building graphics lib even without GUI (advanced) (default: OFF) ENABLE_HXT Enable HXT library (for reparametrization and meshing) (default: ON) ENABLE_KBIPACK Enable Kbipack (needed by homology solver) (default: ON) ENABLE_MATHEX Enable Mathex expression parser (used by plugins and options) (default: ON) ENABLE_MED Enable MED mesh and post file formats (default: ON) ENABLE_MESH Enable mesh module (required by GUI) (default: ON) ENABLE_METIS Enable Metis mesh partitioner (default: ON) ENABLE_MMG3D Enable MMG3D 3D anisotropic mesh refinement (default: ON) ENABLE_MPEG_ENCODE Enable built-in MPEG movie encoder (default: ON) ENABLE_MPI Enable MPI (experimental, not used for meshing) (default: OFF) ENABLE_MSVC_STATIC_RUNTIME Enable static Visual C++ runtime (default: OFF) ENABLE_MUMPS

Enable MUMPS sparse direct linear solver (default: OFF)

Enable Netgen 3D frontal mesh generator (default: ON)

ENABLE_NETGEN

ENABLE_NUMPY

Enable fullMatrix and numpy array conversion for private API (default: OFF)

ENABLE_PETSC4PY

Enable petsc4py wrappers for petsc matrices for private API (default: OFF)

ENABLE_OCC

Enable OpenCASCADE CAD kernel (default: ON)

ENABLE_OCC_CAF

Enable OpenCASCADE CAF module (for STEP/IGES attributes) (default: ON)

ENABLE_OCC_STATIC

Link OpenCASCADE static instead of dynamic libraries (requires ENABLE_OCC) (default: OFF)

ENABLE_OCC_TBB

Add TBB libraries in list of OCC libraries (default: OFF)

ENABLE_ONELAB

Enable ONELAB solver interface (default: ON)

ENABLE_ONELAB_METAMODEL

Enable ONELAB metamodels (experimental) (default: ON)

ENABLE_OPENACC

Enable OpenACC (default: OFF)

ENABLE_OPENMP

Enable OpenMP (default: OFF)

ENABLE_OPTHOM

Enable high-order mesh optimization tools (default: ON)

ENABLE_OS_SPECIFIC_INSTALL

Enable OS-specific (e.g. app bundle) installation (default: OFF)

ENABLE_OSMESA

Enable OSMesa for offscreen rendering (experimental) (default: OFF)

ENABLE_P4EST

Enable p4est for enabling automatic mesh size field (experimental) (default: OFF)

ENABLE_PACKAGE_STRIP

Strip symbols in install packages to reduce install size (default: ON)

ENABLE_PARSER

Enable GEO file parser (required for .geo/.pos scripts) (default: ON)

ENABLE_PETSC

Enable PETSc linear solvers (required for SLEPc) (default: OFF)

ENABLE_PLUGINS

Enable post-processing plugins (default: ON)

ENABLE_POST

Enable post-processing module (required by GUI) (default: ON)

ENABLE_POPPLER

Enable Poppler for displaying PDF documents (experimental) (default: OFF)

ENABLE_PRIVATE_API

Enable private API (default: OFF)

ENABLE_PRO

Enable PRO extensions (default: ON)

ENABLE_QUADTRI

Enable QuadTri structured meshing extensions (default: ON)

ENABLE_REVOROPT

Enable Revoropt (used for CVT remeshing) (default: OFF)

ENABLE_RPATH

Use RPATH in dynamically linked targets (default: ON)

ENABLE_SLEPC

Enable SLEPc eigensolvers (default: OFF)

ENABLE_SOLVER

Enable built-in finite element solvers (required for reparametrization) (default: ON)

ENABLE_SYSTEM_CONTRIB

Use system versions of contrib libraries, when possible (default: OFF)

ENABLE_TCMALLOC

Enable libtemalloc (fast malloc that does not release memory) (default: OFF)

ENABLE_TOUCHBAR

Enable Apple Touch bar (default: ON)

ENABLE_VISUDEV

Enable additional visualization capabilities for development purposes (default: OFF)

ENABLE_VOROPP

Enable voro++ (for hex meshing, experimental) (default: ON)

ENABLE_WRAP_JAVA

Generate SWIG Java wrappers for private API (default: OFF)

ENABLE_WRAP_PYTHON

Generate SWIG Python wrappers for private API (not used by public API) (default: OFF)

ENABLE_ZIPPER

Enable Zip file compression/decompression (default: OFF)

The wiki (https://gitlab.onelab.info/gmsh/gmsh/wikis/Gmsh-compilation) contains more detailed instructions on how to compile Gmsh, including the compilation of common dependencies.

Appendix D Gmsh API

The Gmsh Application Programming Interface (API) allows you to integrate the Gmsh library in your own application. By design, the Gmsh API is purely functional, and only uses elementary types from the target language. Currently supported languages are C++, C, Python and Julia. See the tutorial/c++, tutorial/c, tutorial/python and tutorial/julia directories for the API Appendix A [Tutorial], page 127. Other API examples are available in the demos/api directory. The different versions of the API are generated automatically from the master API definition file api/gen.py:

C++ API: gmsh.h
C API: gmshc.h
Python API: gmsh.py
Julia API: gmsh.jl

The additional gmsh.h_cwrap header redefines the C++ API in terms of the C API. This is provided as a convenience for users of the binary Gmsh Software Development Kit (SDK) whose C++ compiler Application Binary Interface (ABI) is not compatible with the ABI of the C++ compiler used to create the SDK. To use these C++ bindings of the C API instead of the native C++ API, simply rename gmsh.h_cwrap as gmsh.h. Note that this will lead to (slightly) reduced performance compared to using the native Gmsh C++ API, as it entails additional data copies between the C++ wrapper, the C API and the native C++ code.

The structure of the API reflects the underlying Gmsh data model (see also Section E.1 [Source code structure], page 303):

- There are two main data containers: models (which hold the geometrical and the mesh data) and views (which hold post-processing data). These are manipulated by the API functions in the top-level namespaces gmsh/model and gmsh/view, respectively. The other top-level namespaces are gmsh/option (which handles all options), gmsh/plugin (which handles extensions to core Gmsh functionality), gmsh/graphics (which handles drawing), gmsh/fltk (which handles the graphical user interface), gmsh/onelab (which handles ONELAB parameters and communications with external codes) and gmsh/logger (which handles information logging).
- Geometrical data is made of model entities, called points (entities of dimension 0), curves (entities of dimension 1), surfaces (entities of dimension 2) or volumes (entities of dimension 3). Model entities are stored using a boundary representation: a volume is bounded by a set of surfaces, a surface is bounded by a series of curves, and a curve is bounded by two end points. Volumes and surfaces can also store embedded entities of lower dimension, to force a subsequent mesh to be conformal to internal features like a point in the middle of a surface. Model entities are identified by their dimension and by a tag: a strictly positive identification number. Physical groups are collections of model entities and are identified by their dimension and by a tag. Operations which do not directly reference a model are performed on the current model.
- Model entities can be either CAD entities (from the built-in geo kernel or from the Open-CASCADE occ kernel) or discrete entities (defined by a mesh). Operations on CAD entities are performed directly within their respective CAD kernels (i.e. using functions from the gmsh/model/geo or gmsh/model/occ namespaces, respectively), as Gmsh does not translate across CAD formats but rather directly accesses the native representation. CAD entities must be synchronized with the model in order to be meshed. 1D and 2D meshing algorithms use the parametrization of the underlying geometrical curve or surface to generate the mesh. Discrete entities can be remeshed provided that a parametrization is explicitly recomputed for them.

• Mesh data is made of elements (points, lines, triangles, quadrangles, tetrahedra, hexahedra, prisms, pyramids, ...), defined by an ordered list of their nodes. Elements and nodes are identified by tags (strictly positive identification numbers), and are stored (classified) in the model entity they discretize. Once meshed, a model entity of dimension 0 (a geometrical point) will thus contain a mesh element of type point (MSH type 15: cf. Section 9.1 [MSH file format], page 105), as well as a mesh node. A model curve will contain line elements (e.g. of MSH type 1 or 8 for first order or second order meshes, respectively) as well as its interior nodes, while its boundary nodes will be stored in the bounding model points. A model surface will contain triangular and/or quadrangular elements and all the nodes not classified on its boundary or on its embedded entities (curves and points). A model volume will contain tetrahedra, hexahedra, etc. and all the nodes not classified on its boundary or on its embedded entities (surfaces, curves and points). This data model allows to easily and efficiently handle the creation, modification and destruction of conformal meshes. All the mesh-related functions are provided in the gmsh/model/mesh namespace.

• Post-processing data is made of views. Each view is identified by a tag, and can also be accessed by its index (which can change when views are sorted, added or deleted). A view stores both display options and data, unless the view is an alias of another view (in which case it only stores display options, and the data points to a reference view). View data can contain several steps (e.g. to store time series) and can be either linked to one or more models¹ (mesh-based data, as stored in MSH files: cf. Section 9.1 [MSH file format], page 105) or independent from any model (list-based data, as stored in parsed POS files: cf. Section 8.1 [Post-processing commands], page 73). Various plugins exist to modify and create views.

All the functions available in the API are given below. See the relevant header/module file for the exact definition in each supported language: in C++ gmsh/model/geo/addPoint will lead to a namespaced function gmsh::model::geo::addPoint, while in Python and Julia it will lead to gmsh.model.geo.addPoint, and in C to gmshModelGeoAddPoint. Output values are passed by reference in C++, as pointers in C and directly returned (after the return value, if any) in Python and Julia.

D.1 Namespace gmsh: top-level functions

gmsh/initialize

Initialize Gmsh. This must be called before any call to the other functions in the API. If argc and argv (or just argv in Python or Julia) are provided, they will be handled in the same way as the command line arguments in the Gmsh app. If readConfigFiles is set, read system Gmsh configuration files (gmshrc and gmshoptions).

Input: (argc = 0), argv = [], readConfigFiles = True

Output: -

Return: -

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t4.cpp, t5.cpp, ...), Python (t1.py, t2.py, t3.py, t4.py, t5.py, ...)

gmsh/finalize

Finalize Gmsh. This must be called when you are done using the Gmsh API.

Input: -

¹ Each step can be linked to a different model, which allows to have a single time series based on multiple (e.g. deforming or moving) meshes.

Output: -

Return: -

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t4.cpp, t5.cpp, ...), Python (t1.py, t2.py,

t3.py, t4.py, t5.py, ...)

gmsh/open

Open a file. Equivalent to the File->Open menu in the Gmsh app. Handling of the file depends on its extension and/or its contents: opening a file with model data will create a new model.

Input: fileName

Output: -

Return: -

Examples: C++ (x1.cpp, explore.cpp, onelab_data.cpp, open.cpp), Python (x1.py,

explore.py, flatten.py, heal.py, onelab_data.py, ...)

gmsh/merge

Merge a file. Equivalent to the File->Merge menu in the Gmsh app. Handling of the file depends on its extension and/or its contents. Merging a file with model data will add the data to the current model.

Input: fileName

Output: -

Return: -

Examples: C++ (t7.cpp, t8.cpp, t9.cpp, t13.cpp, t17.cpp), Python (t7.py, t8.py,

t9.py, t13.py, t17.py, ...)

gmsh/write

Write a file. The export format is determined by the file extension.

Input: fileName

Output: -

Return: -

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t4.cpp, t5.cpp, ...), Python (t1.py, t2.py,

t3.py, t4.py, t5.py, ...)

gmsh/clear

Clear all loaded models and post-processing data, and add a new empty model.

Input: -

Output: -

Return: -

Examples: C++(x1.cpp), Python (x1.py)

D.2 Namespace gmsh/option: option handling functions

gmsh/option/setNumber

Set a numerical option to value. name is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.

Input: name, value

Output: -

Return:

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t4.cpp, t5.cpp, ...), Python (t1.py, t2.py, t3.py, t4.py, t5.py, ...)

gmsh/option/getNumber

Get the value of a numerical option. name is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.

Input: name

Output: value

Return: -

Examples: C++ (t8.cpp), Python (t8.py, test.py)

gmsh/option/setString

Set a string option to value. name is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.

Input: name, value

Output: Return: -

Examples: C++ (t1.cpp, t4.cpp, t8.cpp, t20.cpp), Python (t1.py, t4.py, t8.py, t20.py)

gmsh/option/getString

Get the value of a string option. name is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual.

Input: name

Output: value

Return: -

Examples: Python (test.py)

gmsh/option/setColor

Set a color option to the RGBA value (r, g, b, a), where where r, g, b and a should be integers between 0 and 255. name is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual, with the "Color." middle string removed.

Input: name, r, g, b, a = 255

Output: -

Return: -

Examples: C++ (t3.cpp, t8.cpp), Python (t3.py, t8.py)

gmsh/option/getColor

Get the r, g, b, a value of a color option. name is of the form "category.option" or "category[num].option". Available categories and options are listed in the Gmsh reference manual, with the "Color." middle string removed.

Input: name

Output: r, g, b, a

Return: -

Examples: C++(t3.cpp), Python (t3.py)

D.3 Namespace gmsh/model: model functions

gmsh/model/add

Add a new model, with name name, and set it as the current model.

Input: name

Output: -

Return: -

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t4.cpp, t6.cpp, ...), Python (t1.py, t2.py,

t3.py, t4.py, t5.py, ...)

gmsh/model/remove

Remove the current model.

Input: -

Output: -

Return: -

gmsh/model/list

List the names of all models.

Input:

Output: names

Return: -

gmsh/model/getCurrent

Get the name of the current model.

Input: -

Output: name

Return: -

Examples: C++ (x1.cpp), Python (x1.py, explore.py)

gmsh/model/setCurrent

Set the current model to the model with name name. If several models have the same name, select the one that was added first.

Input: name

Output: -

Return: -

Examples: Python (x3.py)

gmsh/model/getEntities

Get all the entities in the current model. If \dim is >=0, return only the entities of the specified dimension (e.g. points if \dim == 0). The entities are returned as a vector of (dim, tag) integer pairs.

Input: dim = -1

Output: dimTags

Return: -

Examples: C++ (t5.cpp, t13.cpp, t16.cpp, t18.cpp, t20.cpp, ...), Python (t5.py,

t13.py, t16.py, t18.py, t20.py, ...)

gmsh/model/setEntityName

Set the name of the entity of dimension dim and tag tag.

Input: dim, tag, name

Output: Return: -

gmsh/model/getEntityName

Get the name of the entity of dimension dim and tag tag.

Input: dim, tag

Output: name

Return: -

Examples: C++ (x1.cpp), Python (x1.py, step_assembly.py)

gmsh/model/getPhysicalGroups

Get all the physical groups in the current model. If \dim is >=0, return only the entities of the specified dimension (e.g. physical points if \dim == 0). The entities are returned as a vector of (dim, tag) integer pairs.

Input: dim = -1

Output: dimTags

Return: -

Examples: Python (poisson.py)

gmsh/model/getEntitiesForPhysicalGroup

Get the tags of the model entities making up the physical group of dimension dim and tag tag.

Input: dim, tag

Output: tags

Return: -

Examples: Python (poisson.py, test.py)

${\tt gmsh/model/getPhysicalGroupsForEntity}$

Get the tags of the physical groups (if any) to which the model entity of dimension dim and tag tag belongs.

Input: dim, tag

Output: physicalTags

Return: -

Examples: C++(x1.cpp), Python (x1.py)

gmsh/model/addPhysicalGroup

Add a physical group of dimension dim, grouping the model entities with tags tags. Return the tag of the physical group, equal to tag if tag is positive, or a new tag if tag < 0.

Input: \dim , tags, tag = -1

Output: -

Return: integer value

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t5.cpp, t14.cpp, ...), Python (t1.py, t2.py, t3.py, t5.py, t14.py, ...)

gmsh/model/setPhysicalName

Set the name of the physical group of dimension dim and tag tag.

Input: dim, tag, name

Output: Return: -

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t14.cpp, t21.cpp), Python (t1.py, t2.py, t3.py, t14.py, t21.py, ...)

gmsh/model/getPhysicalName

Get the name of the physical group of dimension dim and tag tag.

Input: dim, tag
Output: name

Return: -

Examples: C++(x1.cpp), Python (x1.py, poisson.py)

gmsh/model/getBoundary

Get the boundary of the model entities dimTags. Return in outDimTags the boundary of the individual entities (if combined is false) or the boundary of the combined geometrical shape formed by all input entities (if combined is true). Return tags multiplied by the sign of the boundary entity if oriented is true. Apply the boundary operator recursively down to dimension 0 (i.e. to points) if recursive is true.

Input: dimTags, combined = True, oriented = True, recursive = False

Output: outDimTags

Return: -

Examples: C++ (t1.cpp, t14.cpp, t16.cpp, t18.cpp, t19.cpp, ...), Python (t1.py, t14.py, t16.py, t18.py, t19.py, ...)

gmsh/model/getEntitiesInBoundingBox

Get the model entities in the bounding box defined by the two points (xmin, ymin, zmin) and (xmax, ymax, zmax). If dim is >= 0, return only the entities of the specified dimension (e.g. points if dim == 0).

Input: xmin, ymin, zmin, xmax, ymax, zmax, dim = -1

Output: tags

Return: -

Examples: C++ (t16.cpp, t18.cpp, t20.cpp), Python (t16.py, t18.py, t20.py)

gmsh/model/getBoundingBox

Get the bounding box (xmin, ymin, zmin), (xmax, ymax, zmax) of the model entity of dimension dim and tag tag. If dim and tag are negative, get the bounding box of the whole model.

Input: dim, tag

Output: xmin, ymin, zmin, xmax, ymax, zmax

Return: -

Examples: C++ (t18.cpp, t20.cpp), Python (t18.py, t20.py)

gmsh/model/getDimension

Get the geometrical dimension of the current model.

Input: Output: -

Return: integer value

Examples: C++(x1.cpp), Python (x1.py)

gmsh/model/addDiscreteEntity

Add a discrete model entity (defined by a mesh) of dimension dim in the current model. Return the tag of the new discrete entity, equal to tag if tag is positive, or a new tag if tag < 0. boundary specifies the tags of the entities on the boundary of the discrete entity, if any. Specifying boundary allows Gmsh to construct the topology of the overall model.

Input: $\dim, \tan = -1, \text{ boundary } = []$

Output: -

Return: integer value

Examples: C++ (x2.cpp, discrete.cpp, edges.cpp, faces.cpp, plugin.cpp, ...), Python

(x2.py, x3.py, discrete.py, mesh_from_discrete_curve.py, plugin.py, ...)

gmsh/model/removeEntities

Remove the entities dimTags of the current model. If recursive is true, remove all the entities on their boundaries, down to dimension 0.

Input: dimTags, recursive = False

Output: Return: -

Examples: C++ (t18.cpp, t20.cpp), Python (t18.py, t20.py, spherical_surf.py)

gmsh/model/removeEntityName

Remove the entity name name from the current model.

Input: name

Output: -

Return: -

gmsh/model/removePhysicalGroups

Remove the physical groups dimTags of the current model. If dimTags is empty, remove all groups.

Input: dimTags = []

Output: Return: -

gmsh/model/removePhysicalName

Remove the physical name name from the current model.

Input: name

Output: -

Return: -

gmsh/model/getType

Get the type of the entity of dimension dim and tag tag.

Input: dim, tag

Output: entityType

Return: -

Examples: C++ (t21.cpp, x1.cpp, explore.cpp, partition.cpp), Python (t21.py,

x1.py, explore.py, partition.py)

gmsh/model/getParent

In a partitioned model, get the parent of the entity of dimension dim and tag tag, i.e. from which the entity is a part of, if any. parentDim and parentTag are set to -1 if the entity has no parent.

Input: dim, tag

Output: parentDim, parentTag

Return: -

Examples: C++ (t21.cpp, x1.cpp, explore.cpp, partition.cpp), Python (t21.py,

x1.py, explore.py, partition.py)

gmsh/model/getPartitions

In a partitioned model, return the tags of the partition(s) to which the entity belongs.

Input: dim, tag

Output: partitions

Return: -

Examples: C++ (t21.cpp, x1.cpp, explore.cpp, partition.cpp), Python (t21.py,

x1.py, explore.py, partition.py)

gmsh/model/getValue

Evaluate the parametrization of the entity of dimension dim and tag tag at the parametric coordinates parametricCoord. Only valid for dim equal to 0 (with empty parametricCoord), 1 (with parametricCoord containing parametric coordinates on the curve) or 2 (with parametricCoord containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). Return triplets of x, y, z coordinates in coord, concatenated: [p1x, p1y, p1z, p2x, ...].

Input: dim, tag, parametricCoord

Output: coord

Return: -

Examples: C++ (t2.cpp), Python (t2.py, reparamOnFace.py, terrain_stl.py)

gmsh/model/getDerivative

Evaluate the derivative of the parametrization of the entity of dimension dim and tag tag at the parametric coordinates parametricCoord. Only valid for dim equal to 1 (with parametricCoord containing parametric coordinates on the curve) or 2 (with parametricCoord containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]). For dim equal to 1 return the x, y, z components of the derivative with respect to u [d1ux, d1uy, d1uz, d2ux, ...]; for dim equal to 2 return the x, y, z components of the derivate with respect to u and v: [d1ux, d1uy, d1uz, d1vx, d1vy, d1vz, d2ux, ...].

Input: dim, tag, parametricCoord

Output: derivatives

Return: -

gmsh/model/getCurvature

Evaluate the (maximum) curvature of the entity of dimension dim and tag tag at the parametric coordinates parametricCoord. Only valid for dim equal to 1 (with parametricCoord containing parametric coordinates on the curve) or 2 (with parametricCoord containing pairs of u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]).

Input: dim, tag, parametricCoord

Output: curvatures

Return: -

Examples: Python (normals.py)

gmsh/model/getPrincipalCurvatures

Evaluate the principal curvatures of the surface with tag tag at the parametric coordinates parametricCoord, as well as their respective directions. parametricCoord are given by pair of u and v coordinates, concatenated: [p1u, p1v, p2u, ...].

Input: tag, parametricCoord

Output: curvatureMax, curvatureMin, directionMax, directionMin

Return: -

gmsh/model/getNormal

Get the normal to the surface with tag tag at the parametric coordinates parametricCoord. parametricCoord are given by pairs of u and v coordinates, concatenated: [p1u, p1v, p2u, ...]. normals are returned as triplets of x, y, z components, concatenated: [n1x, n1y, n1z, n2x, ...].

Input: tag, parametricCoord

Output: normals

Return: -

Examples: Python (normals.py)

gmsh/model/getParametrization

Get the parametric coordinates parametricCoord for the points coord on the entity of dimension dim and tag tag. coord are given as triplets of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...]. parametricCoord returns the parametric coordinates t on the curve (if dim = 1) or pairs of u and v coordinates concatenated on the surface (if dim = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...].

Input: dim, tag, coord

Output: parametricCoord

Return: -

gmsh/model/getParametrizationBounds

Get the min and max bounds of the parametric coordinates for the entity of dimension dim and tag tag.

Input: dim, tag
Output: min, max

Return: -

Examples: Python (reparamOnFace.py)

gmsh/model/isInside

Check if the parametric coordinates provided in parametricCoord correspond to points inside the entitiy of dimension dim and tag tag, and return the number of points inside. This feature is only available for a subset of curves and surfaces, depending on the underlying geometrical representation.

Input: dim, tag, parametricCoord

Output: -

Return: integer value

gmsh/model/getClosestPoint

Get the points closestCoord on the entity of dimension dim and tag tag to the points coord, by orthogonal projection. coord and closestCoord are given as triplets of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...]. parametricCoord returns the parametric coordinates t on the curve (if dim = 1) or pairs of u and v coordinates concatenated on the surface (if dim = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...].

Input: dim, tag, coord

Output: closestCoord, parametricCoord

Return: -

Examples: Python (closest_point.py)

gmsh/model/reparametrizeOnSurface

Reparametrize the boundary entity (point or curve, i.e. with dim == 0 or dim == 1) of tag tag on the surface surfaceTag. If dim == 1, reparametrize all the points corresponding to the parametric coordinates parametricCoord. Multiple matches in case of periodic surfaces can be selected with which. This feature is only available for a subset of entities, depending on the underlying geometrical representation.

Input: dim, tag, parametricCoord, surfaceTag, which = 0

Output: surfaceParametricCoord

```
Return: -
```

Examples: Python (reparamOnFace.py)

gmsh/model/setVisibility

Set the visibility of the model entities dimTags to value. Apply the visibility setting recursively if recursive is true.

Input: dimTags, value, recursive = False

Output: -

Return:

Examples: C++ (t5.cpp), Python (t5.py, gui.py)

gmsh/model/getVisibility

Get the visibility of the model entity of dimension dim and tag tag.

Input: dim, tag

Output: value

Return: -

gmsh/model/setColor

Set the color of the model entities dimTags to the RGBA value (r, g, b, a), where r, g, b and a should be integers between 0 and 255. Apply the color setting recursively if recursive is true.

Input: dimTags, r, g, b, a = 255, recursive = False

Output: -

Return: -

Examples: C++ (t4.cpp), Python (t4.py, gui.py)

gmsh/model/getColor

Get the color of the model entity of dimension dim and tag tag.

Input: dim, tag

Output: r, g, b, a

Return: -

Examples: Python (step_boundary_colors.py)

gmsh/model/setCoordinates

Set the x, y, z coordinates of a geometrical point.

Input: tag, x, y, z

Output: -

Return: -

Examples: C++ (x2.cpp), Python (x2.py, reparamOnFace.py)

D.4 Namespace gmsh/model/mesh: mesh functions

gmsh/model/mesh/generate

Generate a mesh of the current model, up to dimension dim (0, 1, 2 or 3).

Input: dim = 3

Output: Return: -

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t4.cpp, t5.cpp, ...), Python (t1.py, t2.py, t3.py, t4.py, t5.py, ...)

gmsh/model/mesh/partition

Partition the mesh of the current model into numPart partitions.

Input: numPart

Output: Return: -

Examples: C++ (t21.cpp, boolean.cpp, partition.cpp), Python (t21.py, boolean.py,

partition.py)

gmsh/model/mesh/unpartition

Unpartition the mesh of the current model.

Input: Output: Return: -

gmsh/model/mesh/optimize

Optimize the mesh of the current model using method (empty for default tetrahedral mesh optimizer, "Netgen" for Netgen optimizer, "HighOrder" for direct high-order mesh optimizer, "HighOrderElastic" for high-order elastic smoother, "HighOrder-FastCurving" for fast curving algorithm, "Laplace2D" for Laplace smoothing, "Relocate2D" and "Relocate3D" for node relocation). If force is set apply the optimization also to discrete entities. If dimTags is given, only apply the optimizer to the given entities.

Input: method, force = False, niter = 1, dimTags = []

Output: Return: -

Examples: Python (opt.py)

gmsh/model/mesh/recombine

Recombine the mesh of the current model.

Input: Output: Return: -

Examples: C++ (t11.cpp), Python (t11.py)

gmsh/model/mesh/refine

Refine the mesh of the current model by uniformly splitting the elements.

Input: Output: Return: -

Examples: C++ (t11.cpp, boolean.cpp), Python (t11.py, boolean.py)

gmsh/model/mesh/setOrder

Set the order of the elements in the mesh of the current model to order.

Input: order

Output: Return: -

Examples: C++ (boolean.cpp), Python (boolean.py, periodic.py)

gmsh/model/mesh/getLastEntityError

Get the last entities (if any) where a meshing error occurred. Currently only populated by the new 3D meshing algorithms.

Input: -

Output: dimTags

Return: -

gmsh/model/mesh/getLastNodeError

Get the last nodes (if any) where a meshing error occurred. Currently only populated by the new 3D meshing algorithms.

Input: -

Output: nodeTags

Return: -

gmsh/model/mesh/clear

Clear the mesh, i.e. delete all the nodes and elements, for the entities dimTags. if dimTags is empty, clear the whole mesh. Note that the mesh of an entity can only be cleared if this entity is not on the boundary of another entity with a non-empty mesh.

Input: dimTags = []

Output: Return: -

Examples: Python (flatten.py)

gmsh/model/mesh/getNodes

Get the nodes classified on the entity of dimension dim and tag tag. If tag < 0, get the nodes for all entities of dimension dim. If dim and tag are negative, get all the nodes in the mesh. nodeTags contains the node tags (their unique, strictly positive identification numbers). coord is a vector of length 3 times the length of nodeTags that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. If dim >= 0 and returnParamtricCoord is set, parametricCoord contains the parametric coordinates ([u1, u2, ...] or [u1, v1, u2, ...]) of the nodes, if available. The length of parametricCoord can be 0 or dim times the length of nodeTags. If includeBoundary is set, also return the nodes classified on the boundary of the entity (which will be reparametrized on the entity if dim >= 0 in order to compute their parametric coordinates).

Input: dim = -1, tag = -1, includeBoundary = False,

returnParametricCoord = True

Output: nodeTags, coord, parametricCoord

Return: -

adapt_mesh.py, explore.py, flatten.py, normals.py, ...)

gmsh/model/mesh/getNodesByElementType

Get the nodes classified on the entity of tag tag, for all the elements of type elementType. The other arguments are treated as in getNodes.

Input: elementType, tag = -1, returnParametricCoord = True

Output: nodeTags, coord, parametricCoord

Return: -

gmsh/model/mesh/getNode

Get the coordinates and the parametric coordinates (if any) of the node with tag tag. This function relies on an internal cache (a vector in case of dense node numbering, a map otherwise); for large meshes accessing nodes in bulk is often preferable.

Input: nodeTag

Output: coord, parametricCoord

Return: -

gmsh/model/mesh/setNode

Set the coordinates and the parametric coordinates (if any) of the node with tag tag. This function relies on an internal cache (a vector in case of dense node numbering, a map otherwise); for large meshes accessing nodes in bulk is often preferable.

Input: nodeTag, coord, parametricCoord

Output: Return: -

gmsh/model/mesh/rebuildNodeCache

Rebuild the node cache.

Input: onlyIfNecessary = True

Output: Return: -

gmsh/model/mesh/rebuildElementCache

Rebuild the element cache.

Input: onlyIfNecessary = True

Output: Return: -

gmsh/model/mesh/getNodesForPhysicalGroup

Get the nodes from all the elements belonging to the physical group of dimension dim and tag tag. nodeTags contains the node tags; coord is a vector of length 3 times the length of nodeTags that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...].

Input: dim, tag

Output: nodeTags, coord

Return: -

gmsh/model/mesh/addNodes

Add nodes classified on the model entity of dimension dim and tag tag. nodeTags contains the node tags (their unique, strictly positive identification numbers). coord is a vector of length 3 times the length of nodeTags that contains the x, y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. The optional parametricCoord vector contains the parametric coordinates of the nodes, if any. The length of parametricCoord can be 0 or dim times the length of nodeTags. If the nodeTags vector is empty, new tags are automatically assigned to the nodes.

Input: dim, tag, nodeTags, coord, parametricCoord = []

Output: Return: -

Examples: C++ (x2.cpp, discrete.cpp, plugin.cpp, view.cpp), Python (x2.py, x3.py,

discrete.py, flatten.py, mesh_from_discrete_curve.py, ...)

gmsh/model/mesh/reclassifyNodes

Reclassify all nodes on their associated model entity, based on the elements. Can be used when importing nodes in bulk (e.g. by associating them all to a single volume), to reclassify them correctly on model surfaces, curves, etc. after the elements have been set.

Input: Output: Return: -

Examples: C++(x2.cpp), Python (x2.py, terrain.py)

gmsh/model/mesh/relocateNodes

Relocate the nodes classified on the entity of dimension dim and tag tag using their parametric coordinates. If tag < 0, relocate the nodes for all entities of dimension dim. If dim and tag are negative, relocate all the nodes in the mesh.

Input: dim = -1, tag = -1

Output: Return: -

gmsh/model/mesh/getElements

Get the elements classified on the entity of dimension dim and tag tag. If tag < 0, get the elements for all entities of dimension dim. If dim and tag are negative, get all the elements in the mesh. elementTypes contains the MSH types of the elements (e.g. 2 for 3-node triangles: see getElementProperties to obtain the properties for a given element type). elementTags is a vector of the same length as elementTypes; each entry is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. nodeTags is also a vector of the same length as elementTypes; each entry is a vector of length equal to the number of elements of the given type times the number N of nodes for this type of element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...].

Input: dim = -1, tag = -1

Output: elementTypes, elementTags, nodeTags

Return: -

Examples: C++ (x1.cpp, adapt_mesh.cpp, explore.cpp), Python (x1.py, explore.py,

flatten.py, test.py)

gmsh/model/mesh/getElement

Get the type and node tags of the element with tag tag. This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing elements in bulk is often preferable.

Input: elementTag

Output: elementType, nodeTags

Return: -

gmsh/model/mesh/getElementByCoordinates

Search the mesh for an element located at coordinates (x, y, z). This function performs a search in a spatial octree. If an element is found, return its tag, type and node tags, as well as the local coordinates (u, v, w) within the reference element corresponding to search location. If dim is >= 0, only search for elements of the given dimension. If strict is not set, use a tolerance to find elements near the search location.

Input: x, y, z, dim = -1, strict = False

Output: elementTag, elementType, nodeTags, u, v, w

Return: -

gmsh/model/mesh/getElementsByCoordinates

Search the mesh for element(s) located at coordinates (x, y, z). This function performs a search in a spatial octree. Return the tags of all found elements in elementTags. Additional information about the elements can be accessed through getElement and getLocalCoordinatesInElement. If dim is ≥ 0 , only search for elements of the given dimension. If strict is not set, use a tolerance to find elements near the search location.

Input: x, y, z, dim = -1, strict = False

Output: elementTags

Return: -

gmsh/model/mesh/getLocalCoordinatesInElement

Return the local coordinates (u, v, w) within the element elementTag corresponding to the model coordinates (x, y, z). This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing elements in bulk is often preferable.

Input: elementTag, x, y, z

Output: u, v, w

Return: -

gmsh/model/mesh/getElementTypes

Get the types of elements in the entity of dimension dim and tag tag. If tag < 0, get the types for all entities of dimension dim. If dim and tag are negative, get all the types in the mesh.

Input: dim = -1, tag = -1

Output: elementTypes

Return: -

Examples: C++ (edges.cpp, faces.cpp), Python (poisson.py)

gmsh/model/mesh/getElementType

Return an element type given its family name familyName ("point", "line", "triangle", "quadrangle", "tetrahedron", "pyramid", "prism", "hexahedron") and polynomial order order. If serendip is true, return the corresponding serendip element type (element without interior nodes).

Input: familyName, order, serendip = False

Output: -

Return: integer value

Examples: C++ (edges.cpp, faces.cpp)

gmsh/model/mesh/getElementProperties

Get the properties of an element of type elementType: its name (elementName), dimension (dim), order (order), number of nodes (numNodes), local coordinates of the nodes in the reference element (localNodeCoord vector, of length dim times numNodes) and number of primary (first order) nodes (numPrimaryNodes).

Input: elementType

Output: elementName, dim, order, numNodes, localNodeCoord,

numPrimaryNodes

Return: -

Examples: C++ (x1.cpp, edges.cpp, explore.cpp, faces.cpp), Python (x1.py,

explore.py, poisson.py)

gmsh/model/mesh/getElementsByType

Get the elements of type elementType classified on the entity of tag tag. If tag < 0, get the elements for all entities. elementTags is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. nodeTags is a vector of length equal to the number of elements of the given type times the number N of nodes for this type of element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. If numTasks > 1, only compute and return the part of the data indexed by task.

Input: elementType, tag = -1, task = 0, numTasks = 1

Output: elementTags, nodeTags

Return: -

poisson.py)

gmsh/model/mesh/preallocateElementsByType

Preallocate data before calling getElementsByType with numTasks > 1. For C and C++ only.

Input: elementType, elementTag, nodeTag, tag = -1

Output: elementTags, nodeTags

Return: -

gmsh/model/mesh/addElements

Add elements classified on the entity of dimension dim and tag tag. types contains the MSH types of the elements (e.g. 2 for 3-node triangles: see the Gmsh reference manual). elementTags is a vector of the same length as types; each entry is a vector containing the tags (unique, strictly positive identifiers) of the elements of the corresponding type. nodeTags is also a vector of the same length as types; each entry is a vector of length equal to the number of elements of the given type times the number N of nodes per element, that contains the node tags of all the elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...].

Input: dim, tag, elementTypes, elementTags, nodeTags

Output: Return: -

Examples: C++ (discrete.cpp, plugin.cpp, view.cpp), Python (discrete.py,

flatten.py, mesh_from_discrete_curve.py, plugin.py, test.py, ...)

gmsh/model/mesh/addElementsByType

Add elements of type elementType classified on the entity of tag tag. elementTags contains the tags (unique, strictly positive identifiers) of the elements of the corresponding type. nodeTags is a vector of length equal to the number of elements times the number N of nodes per element, that contains the node tags of all the elements, concatenated: [eln1, eln2, ..., elnN, e2n1, ...]. If the elementTag vector is empty, new tags are automatically assigned to the elements.

Input: tag, elementType, elementTags, nodeTags

Output: Return: -

Examples: C++ (x2.cpp, edges.cpp, faces.cpp), Python (x2.py, x3.py, terrain.py)

gmsh/model/mesh/getIntegrationPoints

Get the numerical quadrature information for the given element type elementType and integration rule integrationType (e.g. "Gauss4" for a Gauss quadrature suited for integrating 4th order polynomials). localCoord contains the u, v, w coordinates of the G integration points in the reference element: [g1u, g1v, g1w, ..., gGu, gGv, gGw]. weights contains the associated weights: [g1q, ..., gGq].

Input: elementType, integrationType

Output: localCoord, weights

Return: -

Examples: C++ (adapt_mesh.cpp, edges.cpp, faces.cpp), Python (adapt_mesh.py,

poisson.py)

gmsh/model/mesh/getJacobians

Get the Jacobians of all the elements of type elementType classified on the entity of tag tag, at the G evaluation points localCoord given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. Data is returned by element, with elements in the same order as in getElements and getElementsByType. jacobians contains for each element the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu,

...], with Jxu=dx/du, Jyu=dy/du, etc. determinants contains for each element the determinant of the Jacobian matrix at each evaluation point: [e1g1, e1g2, ... e1gG, e2g1, ...]. coord contains for each element the x, y, z coordinates of the evaluation points. If tag < 0, get the Jacobian data for all entities. If numTasks > 1, only compute and return the part of the data indexed by task.

Input: elementType, localCoord, tag = -1, task = 0, numTasks = 1

Output: jacobians, determinants, coord

Return: -

Examples: C++ (adapt_mesh.cpp, edges.cpp, faces.cpp), Python (adapt_mesh.py,

poisson.py)

gmsh/model/mesh/preallocateJacobians

Preallocate data before calling getJacobians with numTasks > 1. For C and C++ only.

Input: elementType, numEvaluationPoints, allocateJacobians,

allocateDeterminants, allocateCoord, tag = -1

Output: jacobians, determinants, coord

Return: -

gmsh/model/mesh/getJacobian

Get the Jacobian for a single element elementTag, at the G evaluation points localCoord given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. jacobians contains the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with Jxu=dx/du, Jyu=dy/du, etc. determinants contains the determinant of the Jacobian matrix at each evaluation point. coord contains the x, y, z coordinates of the evaluation points. This function relies on an internal cache (a vector in case of dense element numbering, a map otherwise); for large meshes accessing Jacobians in bulk is often preferable.

Input: elementTag, localCoord

Output: jacobians, determinants, coord

Return: -

gmsh/model/mesh/getBasisFunctions

Get the basis functions of the element of type elementType at the evaluation points localCoord (given as concatenated triplets of coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]), for the function space functionSpaceType (e.g. "Lagrange" or "GradLagrange" for Lagrange basis functions or their gradient, in the u, v, w coordinates of the reference element; or "H1Legendre3" or "GradH1Legendre3" for 3rd order hierarchical H1 Legendre functions). numComponents returns the number C of components of a basis function. basisFunctions returns the value of the N basis functions at the evaluation points, i.e. [g1f1, g1f2, ..., g1fN, g2f1, ...] when C == 1 or [g1f1u, g1f1v, g1f1w, g1f2u, ..., g1fNw, g2f1u, ...] when C == 3. For basis functions that depend on the orientation of the elements, all values for the first orientation are returned first, followed by values for the second, etc. numOrientations returns the overall number of orientations. If wantedOrientations is not empty, only return the values for the desired orientation indices.

Input: elementType, localCoord, functionSpaceType, wantedOrientations

= []

Output: numComponents, basisFunctions, numOrientations

Return: -

Examples: C++ (edges.cpp, faces.cpp), Python (adapt_mesh.py, poisson.py)

gmsh/model/mesh/getBasisFunctionsOrientationForElements

Get the orientation index of the elements of type elementType in the entity of tag tag. The arguments have the same meaning as in getBasisFunctions. basisFunctionsOrientation is a vector giving for each element the orientation index in the values returned by getBasisFunctions. For Lagrange basis functions the call is superfluous as it will return a vector of zeros.

Input: elementType, functionSpaceType, tag = -1, task = 0, numTasks = 1

Output: basisFunctionsOrientation

Return: -

gmsh/model/mesh/getBasisFunctionsOrientationForElement

Get the orientation of a single element elementTag.

Input: elementTag, functionSpaceType

Output: basisFunctionsOrientation

Return: -

gmsh/model/mesh/getNumberOfOrientations

Get the number of possible orientations for elements of type elementType and function space named functionSpaceType.

Input: elementType, functionSpaceType

Output: -

Return: integer value

gmsh/model/mesh/preallocateBasisFunctionsOrientationForElements

Preallocate data before calling getBasisFunctionsOrientationForElements with numTasks > 1. For C and C++ only.

Input: elementType, tag = -1

Output: basisFunctionsOrientation

Return: -

gmsh/model/mesh/getEdgeNumber

Get the global edge identifier edgeNum for an input list of node pairs, concatenated in the vector edgeNodes. Warning: this is an experimental feature and will probably change in a future release.

Input: edgeNodes
Output: edgeNum

Return: -

gmsh/model/mesh/getLocalMultipliersForHcurl0

Get the local multipliers (to guarantee H(curl)-conformity) of the order 0 H(curl) basis functions. Warning: this is an experimental feature and will probably change in a future release.

Input: elementType, tag = -1

Output: localMultipliers

Return: -

gmsh/model/mesh/getKeysForElements

Generate the keys for the elements of type elementType in the entity of tag tag, for the functionSpaceType function space. Each key uniquely identifies a basis function in the function space. If returnCoord is set, the coord vector contains the x, y, z coordinates locating basis functions for sorting purposes. Warning: this is an experimental feature and will probably change in a future release.

Input: elementType, functionSpaceType, tag = -1, returnCoord = True

Output: keys, coord

Return: -

gmsh/model/mesh/getKeysForElement

Get the keys for a single element elementTag.

Input: elementTag, functionSpaceType, returnCoord = True

Output: keys, coord

Return: -

gmsh/model/mesh/getNumberOfKeysForElements

Get the number of keys by elements of type elementType for function space named functionSpaceType.

Input: elementType, functionSpaceType

Output: -

Return: integer value

gmsh/model/mesh/getInformationForElements

Get information about the keys. infoKeys returns information about the functions associated with the keys. infoKeys[0].first describes the type of function (0 for vertex function, 1 for edge function, 2 for face function and 3 for bubble function). infoKeys[0].second gives the order of the function associated with the key. Warning: this is an experimental feature and will probably change in a future release.

Input: keys, elementType, functionSpaceType

Output: infoKeys

Return: -

gmsh/model/mesh/getBarycenters

Get the barycenters of all elements of type elementType classified on the entity of tag tag. If primary is set, only the primary nodes of the elements are taken into account for the barycenter calculation. If fast is set, the function returns the sum of the primary node coordinates (without normalizing by the number of nodes). If tag < 0, get the barycenters for all entities. If numTasks > 1, only compute and return the part of the data indexed by task.

Input: elementType, tag, fast, primary, task = 0, numTasks = 1

Output: barycenters

Return: -

gmsh/model/mesh/preallocateBarycenters

Preallocate data before calling getBarycenters with numTasks > 1. For C and C++ only.

Input: elementType, tag = -1

Output: barycenters

Return: -

gmsh/model/mesh/getElementEdgeNodes

Get the nodes on the edges of all elements of type elementType classified on the entity of tag tag. nodeTags contains the node tags of the edges for all the elements: [ela1n1, ela1n2, ela2n1, ...]. Data is returned by element, with elements in the same order as in getElements and getElementsByType. If primary is set, only the primary (begin/end) nodes of the edges are returned. If tag < 0, get the edge nodes for all entities. If numTasks > 1, only compute and return the part of the data indexed by task.

Input: elementType, tag = -1, primary = False, task = 0, numTasks = 1

Output: nodeTags

Return: -

Examples: C++ (edges.cpp)

gmsh/model/mesh/getElementFaceNodes

Get the nodes on the faces of type faceType (3 for triangular faces, 4 for quadrangular faces) of all elements of type elementType classified on the entity of tag tag. nodeTags contains the node tags of the faces for all elements: [e1f1n1, ..., e1f1nFaceType, e1f2n1, ...]. Data is returned by element, with elements in the same order as in getElements and getElementsByType. If primary is set, only the primary (corner) nodes of the faces are returned. If tag < 0, get the face nodes for all entities. If numTasks > 1, only compute and return the part of the data indexed by task.

Input: elementType, faceType, tag = -1, primary = False, task = 0,

numTasks = 1

Output: nodeTags

Return: -

Examples: C++ (faces.cpp), Python (neighbors.py)

${\tt gmsh/model/mesh/getGhostElements}$

Get the ghost elements elementTags and their associated partitions stored in the ghost entity of dimension dim and tag tag.

Input: dim, tag

Output: elementTags, partitions

Return: -

gmsh/model/mesh/setSize

Set a mesh size constraint on the model entities dimTags. Currently only entities of dimension 0 (points) are handled.

Input: dimTags, size

Output: Return: -

Examples: C++ (t16.cpp, t18.cpp, t21.cpp, adapt_mesh.cpp), Python (t16.py, t18.py, t21.py, adapt_mesh.py, periodic.py, ...)

gmsh/model/mesh/setSizeAtParametricPoints

Set mesh size constraints at the given parametric points parametricCoord on the model entity of dimension dim and tag tag. Currently only entities of dimension 1 (lines) are handled.

Input: dim, tag, parametricCoord, sizes

Output: Return: -

gmsh/model/mesh/setTransfiniteCurve

Set a transfinite meshing constraint on the curve tag, with numNodes nodes distributed according to meshType and coef. Currently supported types are "Progression" (geometrical progression with power coef) and "Bump" (refinement toward both extremities of the curve).

Input: tag, numNodes, meshType = "Progression", coef = 1.

Output: Return: -

Examples: C++ (x2.cpp), Python (x2.py, terrain_stl.py)

gmsh/model/mesh/setTransfiniteSurface

Set a transfinite meshing constraint on the surface tag. arrangement describes the arrangement of the triangles when the surface is not flagged as recombined: currently supported values are "Left", "Right", "AlternateLeft" and "AlternateRight". cornerTags can be used to specify the (3 or 4) corners of the transfinite interpolation explicitly; specifying the corners explicitly is mandatory if the surface has more that 3 or 4 points on its boundary.

Input: tag, arrangement = "Left", cornerTags = []

Output: Return: -

Examples: C++ (x2.cpp, perf.cpp, square.cpp), Python (x2.py, perf.py, terrain.py,

terrain_stl.py)

gmsh/model/mesh/setTransfiniteVolume

Set a transfinite meshing constraint on the surface tag. cornerTags can be used to specify the (6 or 8) corners of the transfinite interpolation explicitly.

Input: tag, cornerTags = []

Output: Return: -

Examples: C++ (x2.cpp), Python (x2.py, terrain.py, terrain_stl.py)

gmsh/model/mesh/setRecombine

Set a recombination meshing constraint on the model entity of dimension dim and tag tag. Currently only entities of dimension 2 (to recombine triangles into quadrangles) are supported.

Input: dim, tag

Output: Return: -

Examples: C++ (t11.cpp, x2.cpp), Python (t11.py, x2.py, poisson.py, terrain.py,

terrain_stl.py)

gmsh/model/mesh/setSmoothing

Set a smoothing meshing constraint on the model entity of dimension dim and tag tag. val iterations of a Laplace smoother are applied.

Input: dim, tag, val

Output: Return: -

Examples: C++ (x2.cpp), Python (x2.py, terrain_stl.py)

gmsh/model/mesh/setReverse

Set a reverse meshing constraint on the model entity of dimension dim and tag tag. If val is true, the mesh orientation will be reversed with respect to the natural mesh orientation (i.e. the orientation consistent with the orientation of the geometry). If val is false, the mesh is left as-is.

Input: dim, tag, val = True

Output: Return: -

gmsh/model/mesh/setAlgorithm

Set the meshing algorithm on the model entity of dimension \dim and tag tag. Currently only supported for $\dim == 2$.

Input: dim, tag, val

Output: Return: -

Examples: C++(t5.cpp), Python (t5.py)

gmsh/model/mesh/setSizeFromBoundary

Force the mesh size to be extended from the boundary, or not, for the model entity of dimension dim and tag tag. Currently only supported for dim == 2.

Input: dim, tag, val

Output: Return: -

gmsh/model/mesh/setCompound

Set a compound meshing constraint on the model entities of dimension dim and tags tags. During meshing, compound entities are treated as a single discrete entity, which is automatically reparametrized.

Input: dim, tags

Output: -

Return: -

```
Examples: C++(t12.cpp), Python (t12.py)
```

gmsh/model/mesh/setOutwardOrientation

Set meshing constraints on the bounding surfaces of the volume of tag tag so that all surfaces are oriented with outward pointing normals. Currently only available with the OpenCASCADE kernel, as it relies on the STL triangulation.

Input: tag
Output: Return: -

gmsh/model/mesh/embed

Embed the model entities of dimension dim and tags tags in the (inDim, inTag) model entity. The dimension dim can 0, 1 or 2 and must be strictly smaller than inDim, which must be either 2 or 3. The embedded entities should not be part of the boundary of the entity inTag, whose mesh will conform to the mesh of the embedded entities.

Input: dim, tags, inDim, inTag

Output: Return: -

Examples: C++ (t15.cpp), Python (t15.py)

gmsh/model/mesh/removeEmbedded

Remove embedded entities from the model entities dimTags. if dim is >= 0, only remove embedded entities of the given dimension (e.g. embedded points if dim == 0).

Input: dimTags, dim = -1

Output: Return: -

gmsh/model/mesh/reorderElements

Reorder the elements of type elementType classified on the entity of tag tag according to ordering.

Input: elementType, tag, ordering

Output: Return: -

gmsh/model/mesh/renumberNodes

Renumber the node tags in a continuous sequence.

Input: Output: Return: -

gmsh/model/mesh/renumberElements

Renumber the element tags in a continuous sequence.

Input: Output: Return: -

gmsh/model/mesh/setPeriodic

Set the meshes of the entities of dimension dim and tag tags as periodic copies of the meshes of entities tagsMaster, using the affine transformation specified in affineTransformation (16 entries of a 4x4 matrix, by row). If used after meshing, generate the periodic node correspondence information assuming the meshes of entities tags effectively match the meshes of entities tagsMaster (useful for structured and extruded meshes). Currently only available for dim == 1 and dim == 2.

Input: dim, tags, tagsMaster, affineTransform

Output: Return: -

Examples: C++ (t18.cpp), Python (t18.py, periodic.py)

gmsh/model/mesh/getPeriodicNodes

Get the master entity tagMaster, the node tags nodeTags and their corresponding master node tags nodeTagsMaster, and the affine transform affineTransform for the entity of dimension dim and tag tag. If includeHighOrderNodes is set, include high-order nodes in the returned data.

Input: dim, tag, includeHighOrderNodes = False

Output: tagMaster, nodeTags, nodeTagsMaster, affineTransform

Return: -

Examples: Python (periodic.py)

gmsh/model/mesh/removeDuplicateNodes

Remove duplicate nodes in the mesh of the current model.

Input: Output: Return: -

Examples: Python (glue_and_remesh_stl.py)

gmsh/model/mesh/splitQuadrangles

Split (into two triangles) all quadrangles in surface tag whose quality is lower than quality. If tag < 0, split quadrangles in all surfaces.

Input: quality = 1., tag = -1

Output: Return: -

gmsh/model/mesh/classifySurfaces

Classify ("color") the surface mesh based on the angle threshold angle (in radians), and create new discrete surfaces, curves and points accordingly. If boundary is set, also create discrete curves on the boundary if the surface is open. If forReparametrization is set, create edges and surfaces that can be reparametrized using a single map. If curveAngle is less than Pi, also force curves to be split according to curveAngle.

Input: angle, boundary = True, forReparametrization = False,

curveAngle = pi

Output: -

Return: -

Examples: C++ (t13.cpp), Python (t13.py, glue_and_remesh_stl.py, remesh_stl.py, terrain_stl.py)

gmsh/model/mesh/createGeometry

Create a geometry for the discrete entities dimTags (represented solely by a mesh, without an underlying CAD description), i.e. create a parametrization for discrete curves and surfaces, assuming that each can be parametrized with a single map. If dimTags is empty, create a geometry for all the discrete entities.

Input: dimTags = []

Output: Return: -

Examples: C++ (t13.cpp, x2.cpp), Python (t13.py, x2.py, glue_and_remesh_stl.py,

remesh_stl.py, terrain.py, ...)

gmsh/model/mesh/createTopology

Create a boundary representation from the mesh if the model does not have one (e.g. when imported from mesh file formats with no BRep representation of the underlying model). If makeSimplyConnected is set, enforce simply connected discrete surfaces and volumes. If exportDiscrete is set, clear any built-in CAD kernel entities and export the discrete entities in the built- in CAD kernel.

Input: makeSimplyConnected = True, exportDiscrete = True

Output: Return: -

Examples: Python (glue_and_remesh_stl.py)

gmsh/model/mesh/computeHomology

Compute a basis representation for homology spaces after a mesh has been generated. The computation domain is given in a list of physical group tags domainTags; if empty, the whole mesh is the domain. The computation subdomain for relative homology computation is given in a list of physical group tags subdomainTags; if empty, absolute homology is computed. The dimensions homology bases to be computed are given in the list dim; if empty, all bases are computed. Resulting basis representation chains are stored as physical groups in the mesh.

Input: domainTags = [], subdomainTags = [], dims = []

Output: Return: -

Examples: C++(t14.cpp), Python (t14.py)

gmsh/model/mesh/computeCohomology

Compute a basis representation for cohomology spaces after a mesh has been generated. The computation domain is given in a list of physical group tags domainTags; if empty, the whole mesh is the domain. The computation subdomain for relative cohomology computation is given in a list of physical group tags subdomainTags; if empty, absolute cohomology is computed. The dimensions homology bases to be computed are given in the list dim; if empty, all bases are computed. Resulting basis representation cochains are stored as physical groups in the mesh.

Input: domainTags = [], subdomainTags = [], dims = []

Output: Return: -

Examples: C++ (t14.cpp), Python (t14.py)

gmsh/model/mesh/computeCrossField

Compute a cross field for the current mesh. The function creates 3 views: the H function, the Theta function and cross directions. Return the tags of the views

Input: -

Output: viewTags

Return: -

D.5 Namespace gmsh/model/mesh/field: mesh size field functions

gmsh/model/mesh/field/add

Add a new mesh size field of type fieldType. If tag is positive, assign the tag explicitly; otherwise a new tag is assigned automatically. Return the field tag.

Input: fieldType, tag = -1

Output: -

Return: integer value

 $\mbox{Examples:} \ \ \mbox{C++} \ \ (\mbox{t7.cpp}, \ \mbox{t10.cpp}, \ \mbox{t11.cpp}, \ \mbox{t13.cpp}, \ \mbox{t17.cpp}, \ \mbox{...}), \ \mbox{Python} \ \ (\mbox{t7.py}, \ \mbox{t10.cpp}, \mbox{t10.cpp}, \ \mbox{t10.cpp}, \ \mbox{t10.cpp}, \ \mbox{t10.cpp}, \ \mbox{t10.cpp}, \ \mbox{t10.cpp}, \mbox{t$

t10.py, t13.py, t17.py, adapt_mesh.py)

gmsh/model/mesh/field/remove

Remove the field with tag tag.

Input: tag
Output: Return: -

gmsh/model/mesh/field/setNumber

Set the numerical option option to value value for field tag.

Input: tag, option, value

Output: Return: -

Examples: C++ (t10.cpp, adapt_mesh.cpp), Python (t10.py, adapt_mesh.py)

gmsh/model/mesh/field/setString

Set the string option option to value value for field tag.

Input: tag, option, value

Output: Return: -

Examples: C++ (t10.cpp, t11.cpp, t13.cpp), Python (t10.py, t13.py)

gmsh/model/mesh/field/setNumbers

Set the numerical list option option to value value for field tag.

Input: tag, option, value

Output: Return: -

Examples: C++ (t10.cpp), Python (t10.py)

gmsh/model/mesh/field/setAsBackgroundMesh

Set the field tag as the background mesh size field.

Input: tag
Output: Return: -

Examples: C++ (t7.cpp, t10.cpp, t11.cpp, t13.cpp, t17.cpp, ...), Python (t7.py, t10.py, t13.py, t17.py, adapt_mesh.py)

gmsh/model/mesh/field/setAsBoundaryLayer

Set the field tag as a boundary layer size field.

Input: tag
Output: Return: -

D.6 Namespace gmsh/model/geo: built-in CAD kernel functions

gmsh/model/geo/addPoint

Add a geometrical point in the built-in CAD representation, at coordinates (x, y, z). If meshSize is > 0, add a meshing constraint at that point. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the point. (Note that the point will be added in the current model only after synchronize is called. This behavior holds for all the entities added in the geo module.)

Input: x, y, z, meshSize = 0., tag = -1

Output: -

Return: integer value

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t5.cpp, t6.cpp, ...), Python (t1.py, t2.py, t3.py, t5.py, t6.py, ...)

gmsh/model/geo/addLine

Add a straight line segment between the two points with tags startTag and endTag. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the line.

Input: startTag, endTag, tag = -1

Output: -

Return: integer value

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t5.cpp, t6.cpp, ...), Python (t1.py, t2.py, t3.py, t5.py, t6.py, ...)

gmsh/model/geo/addCircleArc

Add a circle arc (strictly smaller than Pi) between the two points with tags startTag and endTag, with center centertag. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. If (nx, ny, nz) != (0, 0, 0), explicitly set the plane of the circle arc. Return the tag of the circle arc.

Input: startTag, centerTag, endTag, tag = -1, nx = 0., ny = 0., nz = 0.

Output: -

Return: integer value

Examples: C++(t5.cpp), Python (t5.py)

gmsh/model/geo/addEllipseArc

Add an ellipse arc (strictly smaller than Pi) between the two points startTag and endTag, with center centerTag and major axis point majorTag. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. If (nx, ny, nz)!= (0, 0, 0), explicitly set the plane of the circle arc. Return the tag of the ellipse arc.

Input: startTag, centerTag, majorTag, endTag, tag = -1, nx = 0., ny = 0.,

nz = 0.

Output: -

Return: integer value

gmsh/model/geo/addSpline

Add a spline (Catmull-Rom) curve going through the points pointTags. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the spline curve.

Input: pointTags, tag = -1

Output: -

Return: integer value

Examples: C++ (t12.cpp), Python (t12.py)

gmsh/model/geo/addBSpline

Add a cubic b-spline curve with pointTags control points. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Creates a periodic curve if the first and last points are the same. Return the tag of the b-spline curve.

Input: pointTags, tag = -1

Output: -

Return: integer value

gmsh/model/geo/addBezier

Add a Bezier curve with pointTags control points. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the Bezier curve.

Input: pointTags, tag = -1

Output: -

Return: integer value

gmsh/model/geo/addCompoundSpline

Add a spline (Catmull-Rom) going through points sampling the curves in curveTags. The density of sampling points on each curve is governed by numIntervals. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the spline.

Input: curveTags, numIntervals = 5, tag = -1

Output: -

Return: integer value

${\tt gmsh/model/geo/addCompoundBSpline}$

Add a b-spline with control points sampling the curves in curveTags. The density of sampling points on each curve is governed by numIntervals. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the b-spline.

Input: curveTags, numIntervals = 20, tag = -1

Output: -

Return: integer value

gmsh/model/geo/addCurveLoop

Add a curve loop (a closed wire) formed by the curves curveTags. curveTags should contain (signed) tags of model enties of dimension 1 forming a closed loop: a negative tag signifies that the underlying curve is considered with reversed orientation. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the curve loop.

Input: curveTags, tag = -1

Output: -

Return: integer value

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t5.cpp, t6.cpp, ...), Python (t1.py, t2.py, t3.py, t5.py, t6.py, ...)

gmsh/model/geo/addPlaneSurface

Add a plane surface defined by one or more curve loops wireTags. The first curve loop defines the exterior contour; additional curve loop define holes. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.

Input: wireTags, tag = -1

Output: -

Return: integer value

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t5.cpp, t6.cpp, ...), Python (t1.py, t2.py, t3.py, t5.py, t6.py, ...)

gmsh/model/geo/addSurfaceFilling

Add a surface filling the curve loops in wireTags. Currently only a single curve loop is supported; this curve loop should be composed by 3 or 4 curves only. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.

Input: wireTags, tag = -1, sphereCenterTag = -1

Output: -

Return: integer value

Examples: C++ (t5.cpp, t12.cpp), Python (t5.py, t12.py)

gmsh/model/geo/addSurfaceLoop

Add a surface loop (a closed shell) formed by surfaceTags. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the shell.

Input: surfaceTags, tag = -1

Output: -

Return: integer value

Examples: C++ (t2.cpp, t5.cpp, t13.cpp, x2.cpp), Python (t2.py, t5.py, t13.py, x2.py, glue_and_remesh_stl.py, ...)

gmsh/model/geo/addVolume

Add a volume (a region) defined by one or more shells shellTags. The first surface loop defines the exterior boundary; additional surface loop define holes. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the volume.

Input: shellTags, tag = -1

Output: -

Return: integer value

Examples: C++ (t2.cpp, t5.cpp, t13.cpp, x2.cpp), Python (t2.py, t5.py, t13.py,

x2.py, glue_and_remesh_stl.py, ...)

gmsh/model/geo/extrude

Extrude the model entities dimTags by translation along (dx, dy, dz). Return extruded entities in outDimTags. If numElements is not empty, also extrude the mesh: the entries in numElements give the number of elements in each layer. If height is not empty, it provides the (cumulative) height of the different layers, normalized to 1. If dx == dy == dz == 0, the entities are extruded along their normal.

Input: dimTags, dx, dy, dz, numElements = [], heights = [], recombine =

False

Output: outDimTags

Return: -

Examples: C++ (t2.cpp, t3.cpp, t14.cpp, t15.cpp), Python (t2.py, t3.py, t14.py, t15.py, hex.py)

gmsh/model/geo/revolve

Extrude the model entities dimTags by rotation of angle radians around the axis of revolution defined by the point (x, y, z) and the direction (ax, ay, az). The angle should be strictly smaller than Pi. Return extruded entities in outDimTags. If numElements is not empty, also extrude the mesh: the entries in numElements give the number of elements in each layer. If height is not empty, it provides the (cumulative) height of the different layers, normalized to 1.

Input: dimTags, x, y, z, ax, ay, az, angle, numElements = [], heights = [],

recombine = False

Output: outDimTags

Return: -

Examples: C++ (t3.cpp), Python (t3.py)

gmsh/model/geo/twist

Extrude the model entities dimTags by a combined translation and rotation of angle radians, along (dx, dy, dz) and around the axis of revolution defined by the point (x, y, z) and the direction (ax, ay, az). The angle should be strictly smaller than Pi. Return extruded entities in outDimTags. If numElements is not empty, also extrude the mesh: the entries in numElements give the number of elements in each layer. If height is not empty, it provides the (cumulative) height of the different layers, normalized to 1.

Input: dimTags, x, y, z, dx, dy, dz, ax, ay, az, angle, numElements = [],

heights = [], recombine = False

Output: outDimTags

Return: -

Examples: C++(t3.cpp), Python (t3.py)

gmsh/model/geo/translate

Translate the model entities dimTags along (dx, dy, dz).

Input: dimTags, dx, dy, dz

Output: Return: -

Examples: C++ (t2.cpp), Python (t2.py)

gmsh/model/geo/rotate

Rotate the model entities dimTags of angle radians around the axis of revolution defined by the point (x, y, z) and the direction (ax, ay, az).

Input: dimTags, x, y, z, ax, ay, az, angle

Output: Return: -

Examples: C++(t2.cpp), Python (t2.py)

gmsh/model/geo/dilate

Scale the model entities dimTag by factors a, b and c along the three coordinate axes; use (x, y, z) as the center of the homothetic transformation.

Input: dimTags, x, y, z, a, b, c

Output: Return: -

gmsh/model/geo/mirror

Mirror the model entities dimTag, with respect to the plane of equation a * x + b * y + c * z + d = 0.

Input: dimTags, a, b, c, d

Output: Return: -

gmsh/model/geo/symmetrize

Mirror the model entities dimTag, with respect to the plane of equation a * x + b * y + c * z + d = 0. (This is a synonym for mirror, which will be deprecated in a future release.)

Input: dimTags, a, b, c, d

Output: Return: -

gmsh/model/geo/copy

Copy the entities dimTags; the new entities are returned in outDimTags.

Input: dimTags

Output: outDimTags

Return: -

Examples: C++ (t2.cpp), Python (t2.py)

gmsh/model/geo/remove

Remove the entities dimTags. If recursive is true, remove all the entities on their boundaries, down to dimension 0.

Input: dimTags, recursive = False

Output: Return: -

Examples: C++(t6.cpp), Python (t6.py)

gmsh/model/geo/removeAllDuplicates

Remove all duplicate entities (different entities at the same geometrical location).

Input: Output: Return: -

gmsh/model/geo/splitCurve

Split the model curve of tag tag on the control points pointTags. Return the tags curveTags of the newly created curves.

Input: tag, pointTags

Output: curveTags

Return: -

gmsh/model/geo/getMaxTag

Get the maximum tag of entities of dimension dim in the built-in CAD representation.

Input: dim
Output: -

Return: integer value

gmsh/model/geo/setMaxTag

Set the maximum tag maxTag for entities of dimension dim in the built-in CAD representation.

Input: dim, maxTag

Output: -

Return:

gmsh/model/geo/synchronize

Synchronize the built-in CAD representation with the current Gmsh model. This can be called at any time, but since it involves a non trivial amount of processing, the number of synchronization points should normally be minimized.

Input: Output: Return: -

Examples: C++ (t1.cpp, t2.cpp, t3.cpp, t5.cpp, t6.cpp, ...), Python (t1.py, t2.py, t3.py, t5.py, t6.py, ...)

D.7 Namespace gmsh/model/geo/mesh: built-in CAD kernel meshing constraints

gmsh/model/geo/mesh/setSize

Set a mesh size constraint on the model entities dimTags. Currently only entities of dimension 0 (points) are handled.

Input: dimTags, size

Output: Return: -

Examples: C++ (t2.cpp, t15.cpp), Python (t2.py, t15.py)

gmsh/model/geo/mesh/setTransfiniteCurve

Set a transfinite meshing constraint on the curve tag, with numNodes nodes distributed according to meshType and coef. Currently supported types are "Progression" (geometrical progression with power coef) and "Bump" (refinement toward both extremities of the curve).

Input: tag, nPoints, meshType = "Progression", coef = 1.

Output: Return: -

Examples: C++(t6.cpp), Python (t6.py)

gmsh/model/geo/mesh/setTransfiniteSurface

Set a transfinite meshing constraint on the surface tag. arrangement describes the arrangement of the triangles when the surface is not flagged as recombined: currently supported values are "Left", "Right", "AlternateLeft" and "AlternateRight". cornerTags can be used to specify the (3 or 4) corners of the transfinite interpolation explicitly; specifying the corners explicitly is mandatory if the surface has more that 3 or 4 points on its boundary.

Input: tag, arrangement = "Left", cornerTags = []

Output: Return: -

Examples: C++(t6.cpp), Python (t6.py)

gmsh/model/geo/mesh/setTransfiniteVolume

Set a transfinite meshing constraint on the surface tag. cornerTags can be used to specify the (6 or 8) corners of the transfinite interpolation explicitly.

Input: tag, cornerTags = []

Output: -

Return: -

gmsh/model/geo/mesh/setRecombine

Set a recombination meshing constraint on the model entity of dimension dim and tag tag. Currently only entities of dimension 2 (to recombine triangles into quadrangles) are supported.

Input: dim, tag, angle = 45.

Output: -

Return: -

Examples: C++(t6.cpp), Python (t6.py)

gmsh/model/geo/mesh/setSmoothing

Set a smoothing meshing constraint on the model entity of dimension dim and tag tag. val iterations of a Laplace smoother are applied.

Input: dim, tag, val

Output: -

Return: -

gmsh/model/geo/mesh/setReverse

Set a reverse meshing constraint on the model entity of dimension dim and tag tag. If val is true, the mesh orientation will be reversed with respect to the natural mesh orientation (i.e. the orientation consistent with the orientation of the geometry). If val is false, the mesh is left as-is.

Input: dim, tag, val = True

Output: -

Return: -

gmsh/model/geo/mesh/setAlgorithm

Set the meshing algorithm on the model entity of dimension \dim and tag tag. Currently only supported for $\dim == 2$.

Input: dim, tag, val

Output: -

Return: -

gmsh/model/geo/mesh/setSizeFromBoundary

Force the mesh size to be extended from the boundary, or not, for the model entity of dimension dim and tag tag. Currently only supported for dim == 2.

Input: dim, tag, val

Output: -

Return: -

D.8 Namespace gmsh/model/occ: OpenCASCADE CAD kernel functions

gmsh/model/occ/addPoint

Add a geometrical point in the OpenCASCADE CAD representation, at coordinates (x, y, z). If meshSize is > 0, add a meshing constraint at that point. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the point. (Note that the point will be added in the current model only after synchronize is called. This behavior holds for all the entities added in the occ module.)

Input: x, y, z, meshSize = 0., tag = -1

Output: -

Return: integer value

Examples: C++ (t19.cpp, spline.cpp), Python (t19.py, bspline_bezier_patches.py,

bspline_filling.py, closest_point.py, crack.py, ...)

gmsh/model/occ/addLine

Add a straight line segment between the two points with tags startTag and endTag. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the line.

Input: startTag, endTag, tag = -1

Output: -

Return: integer value

Examples: Python (crack.py)

gmsh/model/occ/addCircleArc

Add a circle arc between the two points with tags startTag and endTag, with center centerTag. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the circle arc.

Input: startTag, centerTag, endTag, tag = -1

Output: -

Return: integer value

gmsh/model/occ/addCircle

Add a circle of center (x, y, z) and radius r. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. If angle1 and angle2 are specified, create a circle arc between the two angles. Return the tag of the circle.

Input: x, y, z, r, tag = -1, angle1 = 0., angle2 = 2*pi

Output: -

Return: integer value

Examples: C++ (t19.cpp), Python (t19.py, closest_point.py)

gmsh/model/occ/addEllipseArc

Add an ellipse arc between the two points startTag and endTag, with center centerTag and major axis point majorTag. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the ellipse arc. Note that OpenCASCADE does not allow creating ellipse arcs with the major radius smaller than the minor radius.

Input: startTag, centerTag, majorTag, endTag, tag = -1

Output: -

Return: integer value

gmsh/model/occ/addEllipse

Add an ellipse of center (x, y, z) and radii r1 and r2 along the x- and y-axes respectively. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. If angle1 and angle2 are specified, create an ellipse arc between the two angles. Return the tag of the ellipse. Note that OpenCASCADE does not allow creating ellipses with the major radius (along the x-axis) smaller than or equal to the minor radius (along the y-axis): rotate the shape or use addCircle in such cases.

Input: x, y, z, r1, r2, tag = -1, angle1 = 0., angle2 = 2*pi

Output: -

Return: integer value

gmsh/model/occ/addSpline

Add a spline (C2 b-spline) curve going through the points pointTags. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the spline curve.

Input: pointTags, tag = -1

Output: -

Return: integer value

Examples: C++ (t19.cpp, spline.cpp), Python (t19.py, spline.py)

gmsh/model/occ/addBSpline

Add a b-spline curve of degree degree with pointTags control points. If weights, knots or multiplicities are not provided, default parameters are computed automatically. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Create a periodic curve if the first and last points are the same. Return the tag of the b-spline curve.

Input: pointTags, tag = -1, degree = 3, weights = [], knots = [],

multiplicities = []

Output: -

Return: integer value

Examples: C++ (spline.cpp), Python (bspline_filling.py, spline.py)

gmsh/model/occ/addBezier

Add a Bezier curve with pointTags control points. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the Bezier curve.

Input: pointTags, tag = -1

Output: -

Return: integer value

Examples: C++ (spline.cpp), Python (spline.py)

gmsh/model/occ/addWire

Add a wire (open or closed) formed by the curves curveTags. Note that an Open-CASCADE wire can be made of curves that share geometrically identical (but topologically different) points. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the wire.

Input: curveTags, tag = -1, checkClosed = False

Output: -

Return: integer value

Examples: C++ (t19.cpp), Python (t19.py, bspline_filling.py)

gmsh/model/occ/addCurveLoop

Add a curve loop (a closed wire) formed by the curves curveTags. curveTags should contain tags of curves forming a closed loop. Note that an OpenCASCADE curve loop can be made of curves that share geometrically identical (but topologically different) points. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the curve loop.

Input: curveTags, tag = -1

Output: -

Return: integer value

Examples: C++ (t19.cpp), Python (t19.py)

gmsh/model/occ/addRectangle

Add a rectangle with lower left corner at (x, y, z) and upper right corner at (x + dx, y + dy, z). If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Round the corners if roundedRadius is nonzero. Return the tag of the rectangle.

Input: x, y, z, dx, dy, tag = -1, roundedRadius = 0.

Output: -

Return: integer value

Examples: C++ (t1.cpp, t17.cpp, t20.cpp, t21.cpp, adapt_mesh.cpp, ...), Python (t1.py, t17.py, t20.py, t21.py, adapt_mesh.py, ...)

gmsh/model/occ/addDisk

Add a disk with center (xc, yc, zc) and radius rx along the x-axis and ry along the y-axis. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the disk.

Input: xc, yc, zc, rx, ry, tag = -1

Output: -

Return: integer value

Examples: C++ (t19.cpp, edges.cpp), Python (t19.py, poisson.py)

gmsh/model/occ/addPlaneSurface

Add a plane surface defined by one or more curve loops (or closed wires) wireTags. The first curve loop defines the exterior contour; additional curve loop define holes. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.

Input: wireTags, tag = -1

Output: -

Return: integer value

gmsh/model/occ/addSurfaceFilling

Add a surface filling the curve loop wireTag. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface. If pointTags are provided, force the surface to pass through the given points.

Input: wireTag, tag = -1, pointTags = []

Output: -

Return: integer value

Examples: C++(t5.cpp), Python (t5.py)

gmsh/model/occ/addBSplineFilling

Add a BSpline surface filling the curve loop wireTag. The curve loop should be made of 2, 3 or 4 BSpline curves. The optional type argument specifies the type of filling: "Stretch" creates the flattest patch, "Curved" (the default) creates the most rounded patch, and "Coons" creates a rounded patch with less depth than "Curved". If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.

Input: wireTag, tag = -1, type = ""

Output: -

Return: integer value

Examples: Python (bspline_filling.py)

gmsh/model/occ/addBezierFilling

Add a Bezier surface filling the curve loop wireTag. The curve loop should be made of 2, 3 or 4 Bezier curves. The optional type argument specifies the type of filling: "Stretch" creates the flattest patch, "Curved" (the default) creates the most rounded patch, and "Coons" creates a rounded patch with less depth than "Curved". If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface.

Input: wireTag, tag = -1, type = ""

Output: -

Return: integer value

gmsh/model/occ/addBSplineSurface

Add a b-spline surface of degree degreeU x degreeV with pointTags control points given as a single vector [Pulv1, ... PunumPointsUv1, Pulv2, ...]. If weights, knotsU, knotsV, multiplicitiesU or multiplicitiesV are not provided, default parameters are computed automatically. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the b-spline surface.

Input: pointTags, numPointsU, tag = -1, degreeU = 3, degreeV = 3,

weights = [], knotsU = [], knotsV = [], multiplicitiesU = [],

multiplicitiesV = []

Output: -

Return: integer value

Examples: Python (bspline_bezier_patches.py)

gmsh/model/occ/addBezierSurface

Add a Bezier surface with pointTags control points given as a single vector [Pu1v1, ... PunumPointsUv1, Pu1v2, ...]. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the b-spline surface.

Input: pointTags, numPointsU, tag = -1

Output: -

Return: integer value

Examples: Python (bspline_bezier_patches.py)

gmsh/model/occ/addSurfaceLoop

Add a surface loop (a closed shell) formed by surfaceTags. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the surface loop. Setting sewing allows to build a shell made of surfaces that share geometrically identical (but topologically different) curves.

Input: surfaceTags, tag = -1, sewing = False

Output: -

Return: integer value

gmsh/model/occ/addVolume

Add a volume (a region) defined by one or more surface loops shellTags. The first surface loop defines the exterior boundary; additional surface loop define holes. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the volume.

Input: shellTags, tag = -1

Output: -

Return: integer value

gmsh/model/occ/addSphere

Add a sphere of center (xc, yc, zc) and radius r. The optional angle1 and angle2 arguments define the polar angle opening (from -Pi/2 to Pi/2). The optional angle3 argument defines the azimuthal opening (from 0 to 2*Pi). If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the sphere.

Input: xc, yc, zc, radius, tag = -1, angle1 = -pi/2, angle2 = pi/2, angle3

= 2*pi

Output: -

Return: integer value

Examples: C++ (t16.cpp, t18.cpp, boolean.cpp, faces.cpp, gui.cpp), Python (t16.py,

t18.py, boolean.py, gui.py, normals.py, ...)

gmsh/model/occ/addBox

Add a parallelepipedic box defined by a point (x, y, z) and the extents along the x-, y- and z-axes. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the box.

Input: x, y, z, dx, dy, dz, tag = -1

Output: -

Return: integer value

Examples: C++ (t16.cpp, t18.cpp, boolean.cpp, faces.cpp, gui.cpp), Python (t16.py, t18.py, boolean.py, gui.py, neighbors.py, ...)

gmsh/model/occ/addCylinder

Add a cylinder, defined by the center (x, y, z) of its first circular face, the 3 components (dx, dy, dz) of the vector defining its axis and its radius r. The optional angle argument defines the angular opening (from 0 to 2*Pi). If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. Return the tag of the cylinder.

Input: x, y, z, dx, dy, dz, r, tag = -1, angle = 2*pi

Output: -

Return: integer value

Examples: C++ (boolean.cpp, gui.cpp), Python (boolean.py, gui.py)

gmsh/model/occ/addCone

Add a cone, defined by the center (x, y, z) of its first circular face, the 3 components of the vector (dx, dy, dz) defining its axis and the two radii r1 and r2 of the faces (these radii can be zero). If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. angle defines the optional angular opening (from 0 to 2*Pi). Return the tag of the cone.

Input: x, y, z, dx, dy, dz, r1, r2, tag = -1, angle = 2*pi

Output: -

Return: integer value

gmsh/model/occ/addWedge

Add a right angular wedge, defined by the right-angle point (x, y, z) and the 3 extends along the x-, y- and z-axes (dx, dy, dz). If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. The optional argument 1tx defines the top extent along the x-axis. Return the tag of the wedge.

Input: x, y, z, dx, dy, dz, tag = -1, ltx = 0.

Output: -

Return: integer value

gmsh/model/occ/addTorus

Add a torus, defined by its center (x, y, z) and its 2 radii r and r2. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. The optional argument angle defines the angular opening (from 0 to 2*Pi). Return the tag of the wedge.

Input: x, y, z, r1, r2, tag = -1, angle = 2*pi

Output: -

Return: integer value

gmsh/model/occ/addThruSections

Add a volume (if the optional argument makeSolid is set) or surfaces defined through the open or closed wires wireTags. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically. The new entities are returned in outDimTags. If the optional argument makeRuled is set, the surfaces created on the boundary are forced to be ruled surfaces. If maxDegree is positive, set the maximal degree of resulting surface.

Input: wireTags, tag = -1, makeSolid = True, makeRuled = False,

maxDegree = -1

Output: outDimTags

Return: -

Examples: C++ (t19.cpp), Python (t19.py)

gmsh/model/occ/addThickSolid

Add a hollowed volume built from an initial volume volumeTag and a set of faces from this volume excludeSurfaceTags, which are to be removed. The remaining faces of the volume become the walls of the hollowed solid, with thickness offset. If tag is positive, set the tag explicitly; otherwise a new tag is selected automatically.

Input: volumeTag, excludeSurfaceTags, offset, tag = -1

Output: outDimTags

Return: -

gmsh/model/occ/extrude

Extrude the model entities dimTags by translation along (dx, dy, dz). Return extruded entities in outDimTags. If numElements is not empty, also extrude the mesh: the entries in numElements give the number of elements in each layer. If height is not empty, it provides the (cumulative) height of the different layers, normalized to 1.

Input: dimTags, dx, dy, dz, numElements = [], heights = [], recombine =

False

Output: outDimTags

Return: -

gmsh/model/occ/revolve

Extrude the model entities dimTags by rotation of angle radians around the axis of revolution defined by the point (x, y, z) and the direction (ax, ay, az). Return extruded entities in outDimTags. If numElements is not empty, also extrude the mesh: the entries in numElements give the number of elements in each layer. If height is not empty, it provides the (cumulative) height of the different layers, normalized to 1. When the mesh is extruded the angle should be strictly smaller than 2*Pi.

Input: dimTags, x, y, z, ax, ay, az, angle, numElements = [], heights = [],

recombine = False

Output: outDimTags

Return: -

gmsh/model/occ/addPipe

Add a pipe by extruding the entities dimTags along the wire wireTag. Return the pipe in outDimTags.

Input: dimTags, wireTag

Output: outDimTags

Return: -

Examples: C++ (t19.cpp), Python (t19.py)

gmsh/model/occ/fillet

Fillet the volumes volumeTags on the curves curveTags with radii radii. The radii vector can either contain a single radius, as many radii as curveTags, or twice as many as curveTags (in which case different radii are provided for the begin and end points of the curves). Return the filleted entities in outDimTags. Remove the original volume if removeVolume is set.

Input: volumeTags, curveTags, radii, removeVolume = True

Output: outDimTags

Return: -

Examples: C++ (t19.cpp), Python (t19.py)

gmsh/model/occ/chamfer

Chamfer the volumes volumeTags on the curves curveTags with distances distances measured on surfaces surfaceTags. The distances vector can either contain a single distance, as many distances as curveTags and surfaceTags, or twice as many as curveTags and surfaceTags (in which case the first in each pair is measured on the corresponding surface in surfaceTags, the other on the other adjacent surface). Return the chamfered entities in outDimTags. Remove the original volume if removeVolume is set.

Input: volumeTags, curveTags, surfaceTags, distances, removeVolume =

True

Output: outDimTags

Return: -

gmsh/model/occ/fuse

Compute the boolean union (the fusion) of the entities objectDimTags and toolDimTags. Return the resulting entities in outDimTags. If tag is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if removeObject is set. Remove the tool if removeTool is set.

Input: objectDimTags, toolDimTags, tag = -1, removeObject = True,

removeTool = True

Output: outDimTags, outDimTagsMap

Return: -

Examples: C++ (boolean.cpp, gui.cpp), Python (boolean.py, gui.py)

gmsh/model/occ/intersect

Compute the boolean intersection (the common parts) of the entities objectDimTags and toolDimTags. Return the resulting entities in outDimTags. If tag is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if removeObject is set. Remove the tool if removeTool is set.

Input: objectDimTags, toolDimTags, tag = -1, removeObject = True,

removeTool = True

Output: outDimTags, outDimTagsMap

Return: -

Examples: C++ (boolean.cpp, gui.cpp), Python (boolean.py, gui.py)

gmsh/model/occ/cut

Compute the boolean difference between the entities objectDimTags and toolDimTags. Return the resulting entities in outDimTags. If tag is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if removeObject is set. Remove the tool if removeTool is set.

Input: objectDimTags, toolDimTags, tag = -1, removeObject = True,

removeTool = True

Output: outDimTags, outDimTagsMap

Return: -

Examples: C++ (t16.cpp, boolean.cpp, gui.cpp), Python (t16.py, boolean.py,

gui.py, spherical_surf.py)

gmsh/model/occ/fragment

Compute the boolean fragments (general fuse) of the entities objectDimTags and toolDimTags. Return the resulting entities in outDimTags. If tag is positive, try to set the tag explicitly (only valid if the boolean operation results in a single entity). Remove the object if removeObject is set. Remove the tool if removeTool is set.

Input: objectDimTags, toolDimTags, tag = -1, removeObject = True,

removeTool = True

Output: outDimTags, outDimTagsMap

Return: -

 $\label{eq:complex} \textbf{Examples:} \quad \textbf{C++} \text{ $(\texttt{t}16.\texttt{cpp},\,\texttt{t}18.\texttt{cpp},\,\texttt{t}20.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\texttt{edges.\texttt{cpp}},\,\ldots)$, Python $(\texttt{t}16.\texttt{py},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\texttt{edges.\texttt{cpp}},\,\ldots)$, Python $(\texttt{t}16.\texttt{py},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\ldots)$, Python $(\texttt{t}16.\texttt{py},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\ldots)$, Python $(\texttt{t}16.\texttt{py},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\ldots)$, Python $(\texttt{t}16.\texttt{py},\,\texttt{t}21.\texttt{cpp},\,\texttt{t}21.\texttt{cpp},\,\ldots)$, Python $(\texttt{t}16.\texttt{$

t18.py, t20.py, t21.py, bspline_bezier_patches.py, ...)

gmsh/model/occ/translate

Translate the model entities dimTags along (dx, dy, dz).

Input: dimTags, dx, dy, dz

Output: Return: -

Examples: C++ (t19.cpp, t20.cpp), Python (t19.py, t20.py)

gmsh/model/occ/rotate

Rotate the model entities dimTags of angle radians around the axis of revolution defined by the point (x, y, z) and the direction (ax, ay, az).

Input: dimTags, x, y, z, ax, ay, az, angle

Output: Return: -

Examples: C++ (t19.cpp, t20.cpp), Python (t19.py, t20.py)

gmsh/model/occ/dilate

Scale the model entities dimTag by factors a, b and c along the three coordinate axes; use (x, y, z) as the center of the homothetic transformation.

Input: dimTags, x, y, z, a, b, c

Output: -

Return:

gmsh/model/occ/mirror

Apply a symmetry transformation to the model entities dimTag, with respect to the plane of equation a * x + b * y + c * z + d = 0.

Input: dimTags, a, b, c, d

Output: Return: -

gmsh/model/occ/symmetrize

Apply a symmetry transformation to the model entities dimTag, with respect to the plane of equation a * x + b * y + c * z + d = 0. (This is a synonym for mirror, which will be deprecated in a future release.)

Input: dimTags, a, b, c, d

Output: Return: -

gmsh/model/occ/affineTransform

Apply a general affine transformation matrix a (16 entries of a 4x4 matrix, by row; only the 12 first can be provided for convenience) to the model entities dimTag.

Input: dimTags, a

Output: Return: -

gmsh/model/occ/copy

Copy the entities dimTags; the new entities are returned in outDimTags.

Input: dimTags

Output: outDimTags

Return: -

Examples: C++ (t19.cpp, t20.cpp), Python (t19.py, t20.py)

gmsh/model/occ/remove

Remove the entities dimTags. If recursive is true, remove all the entities on their boundaries, down to dimension 0.

Input: dimTags, recursive = False

Output: Return: -

Examples: C++ (t19.cpp, t20.cpp), Python (t19.py, t20.py)

gmsh/model/occ/removeAllDuplicates

Remove all duplicate entities (different entities at the same geometrical location) after intersecting (using boolean fragments) all highest dimensional entities.

Input: -

Output: -

Return: -

Examples: Python (bspline_bezier_patches.py)

gmsh/model/occ/healShapes

Apply various healing procedures to the entities dimTags (or to all the entities in the model if dimTags is empty). Return the healed entities in outDimTags. Available healing options are listed in the Gmsh reference manual.

Input: dimTags = [], tolerance = 1e-8, fixDegenerated = True,

fixSmallEdges = True, fixSmallFaces = True, sewFaces = True,

makeSolids = True

Output: outDimTags

Return: -

Examples: Python (bspline_bezier_patches.py, heal.py)

gmsh/model/occ/importShapes

Import BREP, STEP or IGES shapes from the file fileName. The imported entities are returned in outDimTags. If the optional argument highestDimOnly is set, only import the highest dimensional entities in the file. The optional argument format can be used to force the format of the file (currently "brep", "step" or "iges").

Input: fileName, highestDimOnly = True, format = ""

Output: outDimTags

Return: -

Examples: C++(t20.cpp), Python (t20.py)

gmsh/model/occ/importShapesNativePointer

Imports an OpenCASCADE shape by providing a pointer to a native OpenCASCADE TopoDS_Shape object (passed as a pointer to void). The imported entities are returned in outDimTags. If the optional argument highestDimOnly is set, only import the highest dimensional entities in shape. For C and C++ only. Warning: this function is unsafe, as providing an invalid pointer will lead to undefined behavior.

Input: shape, highestDimOnly = True

Output: outDimTags

Return: -

gmsh/model/occ/getEntities

Get all the OpenCASCADE entities. If \dim is ≥ 0 , return only the entities of the specified dimension (e.g. points if $\dim == 0$). The entities are returned as a vector of (\dim , tag) integer pairs.

Input: dim = -1

Output: dimTags

Return: -

Examples: C++ (t20.cpp), Python (t20.py, bspline_bezier_patches.py)

gmsh/model/occ/getEntitiesInBoundingBox

Get the OpenCASCADE entities in the bounding box defined by the two points (xmin, ymin, zmin) and (xmax, ymax, zmax). If dim is >= 0, return only the entities of the specified dimension (e.g. points if dim == 0).

Input: xmin, ymin, zmin, xmax, ymax, zmax, dim = -1

Output: tags

Return: -

gmsh/model/occ/getBoundingBox

Get the bounding box (xmin, ymin, zmin), (xmax, ymax, zmax) of the OpenCAS-CADE entity of dimension dim and tag tag.

Input: dim, tag

Output: xmin, ymin, zmin, xmax, ymax, zmax

Return: -

Examples: C++(t20.cpp), Python (t20.py)

gmsh/model/occ/getMass

Get the mass of the OpenCASCADE entity of dimension dim and tag tag.

Input: dim, tag
Output: mass

Return: -

Examples: Python (step_assembly.py, volume.py)

gmsh/model/occ/getCenterOfMass

Get the center of mass of the OpenCASCADE entity of dimension dim and tag tag.

Input: dim, tag
Output: x, y, z

Return: -

gmsh/model/occ/getMatrixOfInertia

Get the matrix of inertia (by row) of the OpenCASCADE entity of dimension dim and tag tag.

Input: dim, tag

Output: mat

Return: -

gmsh/model/occ/getMaxTag

Get the maximum tag of entities of dimension dim in the OpenCASCADE CAD representation.

Input: dim

Output: -

Return: integer value

gmsh/model/occ/setMaxTag

Set the maximum tag maxTag for entities of dimension dim in the OpenCASCADE CAD representation.

Input: dim, maxTag

Output: Return: -

gmsh/model/occ/synchronize

Synchronize the OpenCASCADE CAD representation with the current Gmsh model. This can be called at any time, but since it involves a non trivial amount of processing, the number of synchronization points should normally be minimized.

```
Input: -
Output: -
Return: -
```

Examples: C++ (t1.cpp, t16.cpp, t17.cpp, t18.cpp, t19.cpp, ...), Python (t1.py,

t16.py, t17.py, t18.py, t19.py, ...)

D.9 Namespace gmsh/model/occ/mesh: OpenCASCADE CAD kernel meshing constraints

gmsh/model/occ/mesh/setSize

Set a mesh size constraint on the model entities dimTags. Currently only entities of dimension 0 (points) are handled.

Input: dimTags, size

Output: Return: -

D.10 Namespace gmsh/view: post-processing view functions

gmsh/view/add

Add a new post-processing view, with name name. If tag is positive use it (and remove the view with that tag if it already exists), otherwise associate a new tag. Return the view tag.

Input: name, tag = -1

Output: -

Return: integer value

Examples: C++ (t4.cpp, adapt_mesh.cpp, plugin.cpp, view.cpp, viewlist.cpp),

Python (t4.py, x3.py, adapt_mesh.py, normals.py, plugin.py, ...)

gmsh/view/remove

Remove the view with tag tag.

Input: tag
Output: Return: -

Examples: C++ (plugin.cpp), Python (plugin.py)

gmsh/view/getIndex

Get the index of the view with tag tag in the list of currently loaded views. This dynamic index (it can change when views are removed) is used to access view options.

Input: tag
Output: -

Return: integer value Examples: Python (t8.py)

gmsh/view/getTags

Get the tags of all views.

Input: -

Output: tags

Return: -

Examples: C++ (plugin.cpp), Python (t8.py, plugin.py)

gmsh/view/addModelData

Add model-based post-processing data to the view with tag tag. modelName identifies the model the data is attached to. dataType specifies the type of data, currently either "NodeData", "ElementData" or "ElementNodeData". step specifies the identifier (>= 0) of the data in a sequence. tags gives the tags of the nodes or elements in the mesh to which the data is associated. data is a vector of the same length as tags: each entry is the vector of double precision numbers representing the data associated with the corresponding tag. The optional time argument associate a time value with the data. numComponents gives the number of data components (1 for scalar data, 3 for vector data, etc.) per entity; if negative, it is automatically inferred (when possible) from the input data. partition allows to specify data in several sub-sets.

 $\label{eq:local_equation} Input: \qquad \texttt{tag}, \quad \texttt{step}, \quad \texttt{modelName}, \quad \texttt{dataType}, \quad \texttt{tags}, \quad \texttt{data}, \quad \texttt{time} = \texttt{O.},$

numComponents = -1, partition = 0

Output: -

Return: -

adapt_mesh.py, plugin.py, poisson.py, view.py)

gmsh/view/addHomogeneousModelData

Add homogeneous model-based post-processing data to the view with tag tag. The arguments have the same meaning as in addModelData, except that data is supposed to be homogeneous and is thus flattened in a single vector. This is always possible e.g. for "NodeData" and "ElementData", but only if data is associated to elements of the same type for "ElementNodeData".

Input: tag, step, modelName, dataType, tags, data, time = 0.,

numComponents = -1, partition = 0

Output: -

Return: -

Examples: Python (x3.py)

gmsh/view/getModelData

Get model-based post-processing data from the view with tag tag at step step. Return the data associated to the nodes or the elements with tags tags, as well as the dataType and the number of components numComponents.

Input: tag, step

Output: dataType, tags, data, time, numComponents

Return: -

Examples: C++ (perf.cpp, plugin.cpp), Python (perf.py, plugin.py)

gmsh/view/addListData

Add list-based post-processing data to the view with tag tag. dataType identifies the data: "SP" for scalar points, "VP", for vector points, etc. numEle gives the number of elements in the data. data contains the data for the numEle elements.

Input: tag, dataType, numEle, data

Output: Return: -

Examples: C++ (viewlist.cpp), Python (x3.py, normals.py, view_combine.py,

viewlist.py)

gmsh/view/getListData

Get list-based post-processing data from the view with tag tag. Return the types dataTypes, the number of elements numElements for each data type and the data for each data type.

Input: tag

Output: dataType, numElements, data

Return: -

Examples: C++ (plugin.cpp), Python (plugin.py, volume.py)

gmsh/view/addListDataString

Add a string to a list-based post-processing view with tag tag. If coord contains 3 coordinates the string is positioned in the 3D model space ("3D string"); if it contains 2 coordinates it is positioned in the 2D graphics viewport ("2D string"). data contains one or more (for multistep views) strings. style contains pairs of styling parameters, concatenated.

Input: tag, coord, data, style = []

Output: Return: -

Examples: C++(t4.cpp), Python (t4.py, x3.py)

gmsh/view/getListDataStrings

Get list-based post-processing data strings (2D strings if dim = 2, 3D strings if dim = 3) from the view with tag tag. Return the coordinates in coord, the strings in data and the styles in style.

Input: tag, dim

Output: coord, data, style

Return: -

gmsh/view/addAlias

Add a post-processing view as an alias of the reference view with tag refTag. If copyOptions is set, copy the options of the reference view. If tag is positive use it (and remove the view with that tag if it already exists), otherwise associate a new tag. Return the view tag.

Input: refTag, copyOptions = False, tag = -1

Output: -

Return: integer value

Examples: Python (view_combine.py)

gmsh/view/copyOptions

Copy the options from the view with tag refTag to the view with tag tag.

Input: refTag, tag

Output: Return: -

gmsh/view/combine

Combine elements (if what == "elements") or steps (if what == "steps") of all views (how == "all"), all visible views (how == "visible") or all views having the same name (how == "name"). Remove original views if remove is set.

Input: what, how, remove = True, copyOptions = True

Output: Return: -

Examples: Python (view_combine.py)

gmsh/view/probe

Probe the view tag for its value at point (x, y, z). Return only the value at step step is step is positive. Return only values with numComp if numComp is positive. Return the gradient of the value if gradient is set. Probes with a geometrical tolerance (in the reference unit cube) of tolerance if tolerance is not zero. Return the result from the element described by its coordinates if xElementCoord, yElementCoord and zElementCoord are provided.

Input: tag, x, y, z, step = -1, numComp = -1, gradient = False, tolerance

= 0., xElemCoord = [], yElemCoord = [], zElemCoord = []

Output: value

Return: -

gmsh/view/write

Write the view to a file fileName. The export format is determined by the file extension. Append to the file if append is set.

Input: tag, fileName, append = False

Output: Return: -

Examples: C++ (adapt_mesh.cpp, plugin.cpp, view.cpp, viewlist.cpp), Python

(x3.py, adapt_mesh.py, normals.py, plugin.py, view.py, ...)

D.11 Namespace gmsh/plugin: plugin functions

gmsh/plugin/setNumber

Set the numerical option option to the value value for plugin name.

Input: name, option, value

Output: Return: -

 $\ \, \text{Examples:} \ \, \text{C++} \; (\text{t9.cpp, t21.cpp, partition.cpp, plugin.cpp}), \, \text{Python} \; (\text{t9.py, t21.py}, \, \text{t21.py}), \, \text{t21.py}, \, \text{$

crack.py, partition.py, plugin.py, ...)

gmsh/plugin/setString

Set the string option option to the value value for plugin name.

Input: name, option, value

```
Output: -
Return: -
```

Examples: C++ (t9.cpp), Python (t9.py)

gmsh/plugin/run

Run the plugin name.

Input: name
Output: Return: -

Examples: C++ (t9.cpp, t21.cpp, partition.cpp, perf.cpp, plugin.cpp), Python

(t9.py, t21.py, crack.py, partition.py, perf.py, ...)

D.12 Namespace gmsh/graphics: graphics functions

gmsh/graphics/draw

Draw all the OpenGL scenes.

Input: Output: Return: -

Examples: C++ (t8.cpp, gui.cpp), Python (t8.py, gui.py)

D.13 Namespace gmsh/fltk: FLTK graphical user interface functions

gmsh/fltk/initialize

Create the FLTK graphical user interface. Can only be called in the main thread.

Input: Output: Return: -

Examples: C++ (t8.cpp, custom_gui.cpp, gui.cpp), Python (t8.py, custom_gui.py,

gui.py)

gmsh/fltk/wait

Wait at most time seconds for user interface events and return. If time < 0, wait indefinitely. First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread.

Input: time = -1.

Output: Return: -

Examples: C++ (custom_gui.cpp, gui.cpp), Python (custom_gui.py, gui.py)

gmsh/fltk/update

Update the user interface (potentially creating new widgets and windows). First automatically create the user interface if it has not yet been initialized. Can only be called in the main thread: use awake("update") to trigger an update of the user interface from another thread.

```
Input:
           Output:
           Return:
           Examples: C++ (custom_gui.cpp), Python (custom_gui.py)
gmsh/fltk/awake
           Awake the main user interface thread and process pending events, and optionally
           perform an action (currently the only action allowed is "update").
                       action = ""
           Input:
           Output:
           Return:
           Examples: C++ (custom_gui.cpp), Python (custom_gui.py)
gmsh/fltk/lock
           Block the current thread until it can safely modify the user interface.
           Input:
           Output:
           Return:
           Examples: C++ (custom_gui.cpp), Python (custom_gui.py)
gmsh/fltk/unlock
           Release the lock that was set using lock.
           Input:
           Output:
           Return:
           Examples: C++ (custom_gui.cpp), Python (custom_gui.py)
gmsh/fltk/run
           Run the event loop of the graphical user interface, i.e. repeatedly call wait(). First
           automatically create the user interface if it has not yet been initialized. Can only
           be called in the main thread.
           Input:
           Output:
           Return:
           Examples: C++ (t1.cpp, t3.cpp, t4.cpp, t5.cpp, t7.cpp, ...), Python (t1.py, t3.py,
                       t4.py, t5.py, t7.py, ...)
gmsh/fltk/isAvailable
           Check if the user interface is available (e.g. to detect if it has been closed).
           Input:
           Output:
           Return:
                       integer value
```

Examples: C++ (custom_gui.cpp), Python (custom_gui.py)

gmsh/fltk/selectEntities

Select entities in the user interface. If \dim is >=0, return only the entities of the specified dimension (e.g. points if \dim == 0).

Input: dim = -1
Output: dimTags
Return: integer value

gmsh/fltk/selectElements

Select elements in the user interface.

Input: -

Output: elementTags
Return: integer value

gmsh/fltk/selectViews

Select views in the user interface.

Input: -

Output: viewTags
Return: integer value

D.14 Namespace gmsh/onelab: ONELAB server functions

gmsh/onelab/set

Set one or more parameters in the ONELAB database, encoded in format.

Input: data, format = "json"

Output: Return: -

Examples: C++ (custom_gui.cpp), Python (custom_gui.py, onelab_test.py)

gmsh/onelab/get

Get all the parameters (or a single one if name is specified) from the ONELAB database, encoded in format.

Input: name = "", format = "json"

Output: data

Return: -

Examples: C++ (onelab_data.cpp), Python (onelab_data.py, onelab_test.py)

gmsh/onelab/setNumber

Set the value of the number parameter name in the ONELAB database. Create the parameter if it does not exist; update the value if the parameter exists.

Input: name, value

Output: Return: -

Examples: C++ (custom_gui.cpp), Python (custom_gui.py, onelab_test.py)

gmsh/onelab/setString

Set the value of the string parameter name in the ONELAB database. Create the parameter if it does not exist; update the value if the parameter exists.

Input: name, value

Output: Return: -

Examples: C++ (custom_gui.cpp), Python (custom_gui.py, onelab_test.py)

gmsh/onelab/getNumber

Get the value of the number parameter name from the ONELAB database. Return an empty vector if the parameter does not exist.

Input: name

Output: value

Return: -

Examples: C++ (custom_gui.cpp), Python (custom_gui.py)

gmsh/onelab/getString

Get the value of the string parameter name from the ONELAB database. Return an empty vector if the parameter does not exist.

Input: name

Output: value

Return: -

Examples: C++ (custom_gui.cpp), Python (custom_gui.py)

gmsh/onelab/clear

Clear the ONELAB database, or remove a single parameter if name is given.

Input: name = ""

Output: -

Return: -

Examples: Python (onelab_test.py)

gmsh/onelab/run

Run a ONELAB client. If name is provided, create a new ONELAB client with name name and executes command. If not, try to run a client that might be linked to the processed input files.

Input: name = "", command = ""

Output: Return: -

Examples: C++ (onelab_data.cpp), Python (onelab_data.py)

D.15 Namespace gmsh/logger: information logging functions

gmsh/logger/write

Write a message. level can be "info", "warning" or "error".

Input: message, level = "info"

Output: -

Return: -

```
Examples: C++ (t7.cpp, t8.cpp, t9.cpp, t13.cpp, t16.cpp, ...), Python
                      (custom_gui.py, terrain_stl.py)
gmsh/logger/start
           Start logging messages.
           Input:
           Output:
           Return:
           Examples: C++(t16.cpp), Python (t16.py)
gmsh/logger/get
           Get logged messages.
           Input:
           Output:
                      log
           Return:
           Examples: C++(t16.cpp), Python (t16.py)
gmsh/logger/stop
           Stop logging messages.
           Input:
           Output:
           Return:
           Examples: C++(t16.cpp), Python (t16.py)
gmsh/logger/getWallTime
           Return wall clock time.
           Input:
           Output:
           Return:
                      floating point value
           Examples: C++ (custom_gui.cpp)
gmsh/logger/getCpuTime
           Return CPU time.
           Input:
           Output:
           Return:
                      floating point value
```

Appendix E Information for developers

Gmsh is written in C++, the scripting language is parsed using Lex and Yacc (actually, Flex and Bison), and the GUI relies on OpenGL for the 3D graphics and FLTK (http://www.fltk.org) for the widgets (menus, buttons, etc.). Gmsh's build system is based on CMake (http://www.cmake.org). Practical notes on how to compile Gmsh's source code are provided in Appendix C [Compiling the source code], page 241 (see also Appendix F [Frequently asked questions], page 305).

This section is for developers who would like to contribute directly to the Gmsh source code. Gmsh's official Git repository is located at https://gitlab.onelab.info/gmsh/gmsh. The wiki (https://gitlab.onelab.info/gmsh/gmsh/wikis/Git-cheat-sheet) contains instructions on how to create feature branches and submit merge requests.

E.1 Source code structure

Gmsh's code is structured in several subdirectories, roughly separated between the four core modules (Geo, Mesh, Solver, Post) and associated utilities (Common, Numeric) on one hand, and the graphics (Graphics) and interface (Fltk, Parser, api) code on the other.

The geometry module is based on a model class (Geo/GModel.h), and abstract entity classes for geometrical points (Geo/GVertex.h), curves (Geo/GEdge.h), surfaces (Geo/GFace.h) and volumes (Geo/GRegion.h). Concrete implementations of these classes are provided for each supported CAD kernel (e.g. Geo/gmshVertex.h for points in Gmsh's built-in CAD kernel, or Geo/OCCVertex.h for points from OpenCASCADE). All these elementary model entities derive from Geo/GEntity.h. Physical groups are simply stored as integer tags in the entities.

A mesh is composed of elements: mesh points (Geo/MPoint.h), lines (Geo/MLine.h), triangles (Geo/MTriangle.h), quadrangles (Geo/MQuadrangle.h), tetrahedra (Geo/MTetrahedron.h), etc. All the mesh elements are derived from Geo/MElement.h, and are stored in the corresponding model entities: one mesh point per geometrical point, mesh lines in geometrical curves, triangles and quadrangles in surfaces, etc. The elements are defined in terms of their nodes (Geo/MVertex.h). Each model entity stores only its internal nodes: nodes on boundaries or on embedded entities are stored in the associated bounding/embedded entity.

The post-processing module is based on the concept of views (Post/PView.h) and abstract data containers (derived from Post/PViewData.h). Data can be either mesh-based (Post/PViewDataGModel.h), in which case the view is linked to one or more models, or list-based (Post/PViewDataLis.h), in which case all the relevant geometrical information is self-contained in the view.

E.2 Coding style

If you plan to contribute code to the Gmsh project, here are some easy rules to make the code easy to read/debug/maintain:

- See https://gitlab.onelab.info/gmsh/gmsh/wikis/Git-cheat-sheet for instructions on how to contribute to Gmsh's Git source code repository. All branches are tested; make sure that all tests pass and that your code does not produce any warnings before submitting merge requests.
- Follow the style used in the existing code when adding something new: indent using 2 spaces (never use tabs!), put 1 space after commas, put opening braces for functions on a separate line, opening braces for loops and tests on the same line, etc. You can use the clang-format tool to apply these rules automatically (the rules are defined in the .clang-format file.)
- Always use the Msg:: class to print information or errors

• Use memory checking tools to detect memory leaks and other nasty memory problems. For example, on Linux you can use valgrind --leak-check=full gmsh file.geo -3.

E.3 Adding a new option

To add a new option in Gmsh:

- 1. create the option in the CTX class (Common/Context.h if it's a classical option, or in the PViewOptions class (Post/PViewOptions.h) if it's a post-processing view-dependent option;
- 2. in Common/DefaultOptions.h, give a name (for the parser to be able to access it), a reference to a handling routine (i.e. opt_XXX) and a default value for this option;
- 3. create the handling routine opt_XXX in Common/Options.cpp (and add the prototype in Common/Options.h);
- 4. optional: create the associated widget in Fltk/optionWindow.h;

Appendix F Frequently asked questions

F.1 The basics

1. What is Gmsh?

Gmsh is an automatic three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. With Gmsh you can create or import 1D, 2D and 3D geometrical models, mesh them, launch external finite element solvers and visualize solutions. Gmsh can be used either as a stand-alone program (graphical or not) or as a library to integrate in C++, C, Python or Julia codes.

2. What are the terms and conditions of use?

Gmsh is distributed under the terms of the GNU General Public License, with an exception to allow for easier linking with external libraries. See Appendix I [License], page 331 for more information.

3. What does 'Gmsh' mean?

Nothing... The name was derived from a previous version called "msh" (a shortcut for "mesh"), with the "g" prefix added to differentiate it. The default mesh file format used by Gmsh still uses the '.msh' extension.

In English people tend to pronounce 'Gmsh' as "gee-mesh".

4. Can I embed 'Gmsh' in my own software?

Yes, using the Gmsh API (see Appendix D [Gmsh API], page 245). See [Copying conditions], page 3 for the licensing constraints.

5. Where can I find more information?

https://gmsh.info is the primary location to obtain information about Gmsh. There you will for example find the complete reference manual and the bug tracking database.

F.2 Installation problems

1. Which OSes does Gmsh run on?

Gmsh runs on Windows, Mac OS X, Linux and most Unix variants. Gmsh is also available as part of the ONELAB package on Android and iOS tablets and phones.

2. Are there additional requirements to run Gmsh?

You should have the OpenGL libraries installed on your system, and in the path of the library loader. A free replacement for OpenGL can be found at http://www.mesa3d.org.

3. How do I compile Gmsh from the source code?

You need cmake (http://www.cmake.org) and a C++ compiler. See Appendix C [Compiling the source code], page 241 for more information.

4. Where does Gmsh save its configuration files?

Gmsh will attempt to save temporary files and persistent configuration options first in the \$GMSH_HOME directory, then in \$APPDATA (on Windows) or \$HOME (on other OSes), then in \$TMP, and finally in \$TEMP, in that order. If none of these variables are defined, Gmsh will try to save/load its configuration files from the current working directory.

F.3 General questions

1. Gmsh (from a binary distribution) complains about missing libraries.

On Windows, if your system complains about missing 'OPENGL32.DLL' or 'GLU32.DLL' libraries, then OpenGL is not properly installed on your machine. You can download OpenGL from Microsoft's web site, or directly from http://www.opengl.org.

On Unix try 'ldd gmsh' (or 'otool -L gmsh' on Mac OS X) to check if all the required shared libraries are installed on your system. If not, install them. If it still doesn't work, recompile Gmsh from the source code.

2. Gmsh keeps re-displaying its graphics when other windows partially hide the graphical window.

Disable opaque move in your window manager.

3. The graphics display very slowly.

Are you are executing Gmsh from a remote host (via the network) without GLX? You should turn double buffering off (with the '-nodb' command line option).

4. There is an ugly "ghost triangulation" in the vector PostScript/PDF files generated by Gmsh!

No, there isn't. This "ghost triangulation" is due to the fact that most PostScript previewers nowadays antialias the graphic primitives when they display the page on screen. (For example, in gv, you can disable antialising with the 'State->Antialias' menu.) You should not see this ghost triangulation in the printed output (on paper).

5. How can I save GIF, JPEG, ..., images?

Just choose the appropriate format in 'File->Export'. By default Gmsh guesses the format from the file extension, so you can just type 'myfile.jpg' in the dialog and Gmsh will automatically create a JPEG image file.

6. How save high-resolution images?

You can specify the dimension in the dialog (e.g. set the width of the image to 5000 pixels; leaving one dimension negative will rescale using the natural aspect ratio), or through the Print.Width and Print.Height options. The maximum image size is graphics hardware dependent.

7. How can I save MPEG, AVI, ..., animations?

You can create simple MPEG animations by choosing MPEG as the format in 'File->Export': this allows you to loop over time steps or post-processing data sets, or to change parameters according to Print.Parameter. To create fully customized animations or to use different output formats (AVI, MP4, etc.) you should write a script. Have a look at Section A.8 [t8], page 140 or demos/post_processing/anim.script for some examples.

8. Can I change values in input fields with the mouse in the GUI?

Yes: dragging the mouse in a numeric input field slides the value! The left button moves one step per pixel, the middle by '10*step', and the right button by '100*step'.

9. Can I copy messages to the clipboard?

Yes: selecting the content of an input field, or lines in the message console ('Tools->Message Console'), copies the selected text to the clipboard.

F.4 Geometry module

1. Does Gmsh support trimmed NURBS surfaces?

Yes, but only with the OpenCASCADE kernel.

2. Gmsh is very slow when I use many transformations (Translate, Rotate, Symmetry, Extrude, etc.) with the built-in CAD kernel. What's wrong?

The default behavior of Gmsh is to check and suppress all duplicate entities (points, curves and surfaces) each time a transformation command is issued with the built-in CAD kernel. This can slow down things a lot if many transformations are performed. There are two solutions to this problem:

- you may save the unrolled geometry in another file (e.g. with gmsh file.geo -0), and use this new file for subsequent computations;
- or you may set the Geometry.AutoCoherence option to 0. This will prevent any automatic duplicate check/replacement. If you still need to remove the duplicates entities, simply add Coherence; at strategic locations in your .geo files (e.g. before the creation of curve loops, etc.).
- 3. How can I display only selected parts of my model?

Use 'Tools->Visibility'. This allows you to select elementary entities and physical groups, as well as mesh elements, in a variety of ways (in a list or tree browser, by tag, interactively, or per window).

4. Can I edit STEP/IGES/BRep models?

Yes: with the OpenCASCADE kernel (SetFactory("OpenCASCADE");), load the file (Merge "file.step"; or ShapeFromFile("file.step");) and add the relevant scripting commands after that to delete parts, create new parts or apply boolean operators. See e.g. demos/boolean/import.geo.

5. Why are there surfaces missing when I export a STEP as an unrolled .geo file?

You should *not* export STEP models as .geo files. By design, Gmsh never translates from one CAD format to another. The "unrolled GEO" feature is there for unrolling complex GEO scripts. While it can indeed export a limited subset of geometrical entities created by other CAD kernels, it's there only for debugging purposes. If you want to modify a STEP model, see the previous question.

6. How can I build modular geometries?

Define common geometrical objects and options in separate files or using Macro, reusable in all your problem definition structures. Or use the features of your language of choice and the Gmsh API.

7. Some files take much more time to load with Gmsh 4 compared to Gmsh 3: what's happening?

In Gmsh 4, some operations (Color, Show, Hide, BoundingBox, Boundary, PointsOf, Periodic, In embedding constraints, ..) are now applied directly on the internal Gmsh model, instead of being handled at the level of the CAD kernel. This implies a synchronization between the CAD kernel and the Gmsh model. To minimize the number of synchronizations (which can become costly for large models), you should always create your geometry first; and use these commands once the geometry has been created.

F.5 Mesh module

1. What should I do when the 2D unstructured algorithm fails?

Verify that the curves in the model do not self-intersect. If 'Mesh.RandomFactor * size of triangle / size of model' approaches machine accuracy, increase Mesh.RandomFactor.

If everything fails file a bug report with the version of your operating system and the full geometry.

2. What should I do when the 3D unstructured algorithm fails?

Verify that the surfaces in your model do not self-intersect or partially overlap. If they don't, try the other 3D algorithms ('Tool->Options->Mesh->General->3D algorithm') or try to adapt the mesh element sizes in your input file so that the surface mesh better matches the geometrical details of the model.

If nothing works, file a bug report with the version of your operating system and the full geometry.

3. How can I only save tetrahedral elements (not triangles and lines)?

By default, if physical groups are defined, the output mesh only contains those elements that belong to physical entities. So to save only 3D elements, simply define one (or more) physical volume(s) and don't define any physical surfaces, physical curves or physical points.

4. How can I remove mesh nodes for geometrical construction points (centers of spheres, etc.) from output mesh file?

By default Gmsh saves all the geometrical entities and their associated mesh. In particular, since each geometry point is meshed with a point element, defined by a mesh node, the output file will contain one 0-D mesh element and one mesh node for each geometry point. To remove such elements/nodes from the mesh, simply define physical groups for the entities you want to save (see previous question).

5. My 2D meshes of IGES files present gaps between surfaces

IGES files do not contain the topology of the model, and tolerance problems can thus appear when the OpenCASCADE importer cannot identify two (close) curves as actually being identical.

The best solution is to *not use IGES* and *use STEP* instead. If you really have to use IGES, check that you don't have duplicate curves (e.g. by displaying their tags in the GUI with 'Tools->Options->Geometry->Visibility->Curve labels'). If there are duplicates, try to change the geometrical tolerance and sew the faces (see options in 'Tools->Options->Geometry->General').

6. The quality of the elements generated by the 3D algorithm is very bad.

Use 'Optimize quality' in the mesh menu.

7. Non-recombined 3D extruded meshes sometimes fail.

The swapping algorithm is not very clever. Try to change the surface mesh a bit, or recombine your mesh to generate prisms or hexahedra instead of tetrahedra.

8. Does Gmsh automatically couple unstructured tetrahedral meshes and structured hexahedral meshed using pyramids?

Yes, but only if pyramids need to be created on a single side of the quadrangular surface mesh.

9. Can I explicitly assign region tags to extruded layers?

No, this feature has been removed in Gmsh 2.0. You must use the standard entity tag instead.

10. Did you remove the elliptic mesh generator in Gmsh 2.0?

Yes. You can achieve the same result by using the transfinite algorithm with smoothing (e.g., with Mesh.Smoothing = 10).

11. Does Gmsh support curved elements?

Yes, just choose the appropriate order in the mesh menu after the mesh is completed. High-order optimization tools are also available in the mesh menu. You can select the order on the command line with e.g. -order 2, and activcate high-order optimization with -optimize_ho.

12. Can I import an existing surface mesh in Gmsh and use it to build a 3D mesh?

Yes, you can import a surface mesh in any one of the supported mesh file formats, define a volume, and mesh it. For an example see demos/simple_geo/sphere-discrete.geo.

13. How do I define boundary conditions or material properties in Gmsh?

By design, Gmsh does not try to incorporate every possible definition of boundary conditions or material properties—this is a job best left to the solver. Instead, Gmsh provides a simple mechanism to tag groups of elements, and it is up to the solver to interpret these tags as

boundary conditions, materials, etc. Associating tags with elements in Gmsh is done by defining physical groups (Physical Points, Physical Curves, Physical Surfaces and Physical Volumes). See the reference manual as well as the tutorials (in particular Section A.1 [t1], page 127) for a detailed description and some examples.

- 14. How can I display only the mesh associated with selected geometrical entities? See "How can I display only selected parts of my model?".
- 15. How can I "explore" a mesh (for example, to see inside a complex structure)?

You can use 'Tools->Clipping Planes' to clip the region of interest. You can define up to 6 clipping planes in Gmsh (i.e., enough to define a "cube" inside your model) and each plane can clip either the geometry, the mesh, the post-processing views, or any combination of the above. The clipping planes are defined using the four coefficients A,B,C,D of the equation A*x+B*y+C*y+D=0, which can be adjusted interactively by dragging the mouse in the input fields.

16. What is the signification of SICN, Gamma and SIGE in Tools->Statistics?

They measure the quality of the tetrahedra in a mesh:

- SICN: signed inverse condition number
- Gamma: inscribed radius / circumscribed radius
- SIGE: signed inverse error on the gradient of FE solution

For the exact definitions, see Geo/MElement.cpp. The graphs plot the number of elements vs. the quality measure.

- 17. How can I save a mesh file with a given (e.g. older) MSH file format version?
 - In the GUI: open 'File->Export', enter your 'filename.msh' and then pick the version in the dropdown menu.
 - On the command line: use the -format option (e.g. gmsh file.geo -format msh2 -2).
 - In a .geo script: add the line Mesh.MshFileVersion = x.y; for any version number x.y. You can also save this in your default options.
 - In the API: gmsh::option::setNumber("Mesh.MshFileVersion", x.y).

As an alternative method, you can also not specify the format explicitly, and just choose a filename with the .msh2 or .msh4 extension.

18. Why isn't neighboring element information stored in the MSH file?

Each numerical method has its own requirements: it might need neighboring elements connected by a node, an edge or a face; it might require a single layer or multiple layers; it should include elements of lower dimension (boundaries) or not, go across geometrical entities or mesh partitions or not, etc. Given the number of possibilities, generating the appropriate information is thus best performed in the numerical solver itself. The Gmsh API makes these computations easy: see for example demos/api/neighbors.py.

19. Could mesh edges/faces be stored in the MSH file?

Edge/faces can be easily generated from the information already available in the file (i.e. nodes and elements), or through the Gmsh API: see for example demos/api/faces.cpp.

F.6 Solver module

1. How do I integrate my own solver with Gmsh?

Gmsh uses the ONELAB interface (http://www.onelab.info) to interact with external solvers. See Chapter 7 [Solver module], page 71.

2. Can I launch Gmsh from my solver (instead of launching my solver from Gmsh) in order to monitor a solution?

The simplest (but rather crude) approach if to re-launch Gmsh everytime you want to visualize something (a simple C program showing how to do this is given in utils/misc/callgmsh.c). Another approach is to modify your program so that it can communicate with Gmsh through ONELAB over a socket, select 'Always listen to incoming connection requests' in the solver option panel (or run gmsh with the -listen command line option), and Gmsh will always listen for your program on the Solver.SocketName socket.

Using the Gmsh API, you can also directly embed Gmsh in your own solver, and use ONELAB for interactive parameter definition and modification. See custom_gui.py and custom_gui.cpp) for examples.

F.7 Post-processing module

- 1. How do I compute a section of a plot? Use 'Tools->Plugins->Cut Plane'.
- 2. Can I save an isosurface to a file?

Yes: first run 'Tools->Plugins->Cut Map' to extract the isosurface, then use 'View->Export' to save the new view.

3. Can Gmsh generate isovolumes?

Yes, with the CutMap plugin (set the ExtractVolume option to -1 or 1 to extract the negative or positive levelset).

4. How do I animate my plots?

If the views contain multiple time steps, you can press the 'play' button at the bottom of the graphic window, or change the time step by hand in the view option panel. You can also use the left and right arrow keys on your keyboard to change the time step in all visible views in real time.

If you want to loop through different views instead of time steps, you can use the 'Loop through views instead of time steps' option in the view option panel, or use the up and down arrow keys on your keyboard.

5. How do I visualize a deformed mesh?

Load a vector view containing the displacement field, and set 'Vector display' to 'Displacement' in 'View->Options->Aspect'. If the displacement is too small (or too large), you can scale it with the 'Displacement factor' option. (Remember that you can drag the mouse in all numeric input fields to slide the value!)

Another option is to use the 'General transformation expressions' (in View->Options->Offset) on a scalar view, with the displacement map selected as the data source.

6. Can I visualize a field on a deformed mesh?

Yes, there are several ways to do that.

The easiest is to load two views: the first one containing a displacement field (a vector view that will be used to deform the mesh), and the second one containing the field you want to display (this view has to contain the same number of elements as the displacement view). You should then set 'Vector display' to 'Displacement' in the first view, as well as set 'Data source' to point to the second view. (You might want to make the second view invisible, too. If you want to amplify or decrease the amount of deformation, just modify the 'Displacement factor' option.)

Another solution is to use the 'General transformation expressions' (in 'View->Options->Offset') on the field you want to display, with the displacement map selected as the data source.

And yet another solution is to use the Warp plugin.

7. Can I color the arrows representing a vector field with data from a scalar field?

Yes: load both the vector and the scalar fields (the two views must have the same number of elements) and, in the vector field options, select the scalar view in 'Data source'.

8. Can I color isovalue surfaces with data from another scalar view?

Yes, using either the CutMap plugin (with the 'dView' option) or the Evaluate plugin.

9. Is there a way to save animations?

You can save simple MPEG animations directly from the 'File->Export' menu. For other formats you should write a script. Have a look at Section A.8 [t8], page 140 or demos/post_processing/anim.script for some examples.

10. Is there a way to visualize only certain components of vector/tensor fields?

Yes, by using either the "Force field" options in 'Tools->Options->View->Visibility', or by using 'Tools->Plugins->MathEval'.

11. Can I do arithmetic operations on a view? Can I perform operations involving different views?

Yes, with the Evaluate plugin.

12. Some plugins seem to create empty views. What's wrong?

There can be several reasons:

- the plugin might be written for specific element types only (for example, only for scalar triangles or tetrahedra). In that case, you should transform your view before running the plugin (you can use Plugin(DecomposeinSimplex) to transform all quads, hexas, prisms and pyramids into triangles and tetrahedra).
- the plugin might expect a mesh while all you provide is a point cloud. In 2D, you can use Plugin(Triangulate) to transform a point cloud into a triangulated surface. In 3D you can use Plugin(Tetrahedralize).
- the input parameters are out of range.

In any case, you can automatically remove all empty views with 'View->Remove->Empty Views' in the GUI, or with Delete Empty Views; in a script.

13. How can I see "inside" a complicated post-processing view?

Use 'Tools->Clipping Planes'.

When viewing 3D scalar fields, you can also modify the colormap ('Tools->Options->View->Map') to make the iso-surfaces "transparent": either by holding 'Ctrl' while dragging the mouse to draw the alpha channel by hand, or by using the 'a', 'Ctrl+a', 'p' and 'Ctrl+p' keyboard shortcuts.

Yet another (destructive) option is to use the ExtractVolume option in the CutSphere or CutPlane plugins.

14. I am loading a valid 3D scalar view but Gmsh does not display anything!

If your dataset is constant per element make sure you don't use the 'Iso-values' interval type in 'Tools->Options->View->Range'.

Appendix G Version history

- 4.6.0 (June 22, 2020): new options to only generate initial 2D or 3D meshes (without node insertion), and to only mesh non-meshed entities; added ability to only remesh parts of discrete models; added support for mesh size fields and embedded entities in HXT; improved reparametrization and partitioning code; new OCC API functions to reduce the number of synchronizations for complex models; new OCC spline surface interfaces; new functions and options to control the first tag of entities, nodes and elements; fixed duplicated entities in STEP output; improved mesh subdivision and high-order pipeline; MED output now preserves node and element tags; small bug fixes.
- * Incompatible API changes: new optional arguments to mesh/clear, mesh/createTopology, mesh/createGeometry, occ/addThruSections, mesh/getPeriodicNodes; new arguments to mesh/getBasisFunctions; removed mesh/preallocateBasisFunctions, mesh/precomputeBasisFunctions and mesh/getBasisFunctionsForElements; renamed occ/setMeshSize as occ/mesh/setSize
- 4.5.6 (March 30, 2020): better calculation of OCC bounding boxes using STL; API tutorials; small bug fixes.
- 4.5.5 (March 21, 2020): tooltips in GUI to help discovery of scripting options; fixed MED IO of high-order elements; fixed OCC attribute search by bounding box; fix parsing of mac-encoded scripts; new RecombineMesh command; added support for extrusion of mixed-dimension entities with OCC; small bug fixes.
- 4.5.4 (February 29, 2020): periodic mesh optimization now ensures that the master mesh is not modified; code cleanup; small bug fixes.
- 4.5.3 (February 22, 2020): improved positioning of corresponding nodes on periodic entities; improved LaTeX output; improved curve splitting in reparametrization; new binary PLY reader; small compilation fixes.
- 4.5.2 (January 30, 2020): periodic meshes now obey reorientation constraints; physical group definitions now follow compound meshing constraints; small bug fixes and improvements.
- 4.5.1 (December 28, 2019): new Min and Max commands in .geo files; Mesh.MinimumCirclePoints now behaves the same with all geometry kernels; fixed issue with UTF16-encoded home directories on Windows.
- 4.5.0 (December 21, 2019): changed default 2D meshing algorithm to Frontal-Delaunay; new compound Spline/BSpline commands; new MeshSizeFromBoundary command; new CGNS importer/exporter; new X3D exporter for geometries and meshes; improved surface mesh reclassification; new separate option to govern curvature adapted meshes (Mesh.MinimumElementsPerTwoPi and "-clcurv val"); improved handling of anisotropic surface meshes in 3D Delaunay; improved high-order periodic meshing; improved 2D boolean unions; file chooser type is now changeable at runtime; FLTK GUI can now be created and destroyed at will through the API; fixed regression in MeshAdapt for non-periodic surfaces with singularities; combining views now copies options; added API support for mesh compounds, per-surface mesh algorithm and mesh size from boundary; renamed plugin AnalyseCurvedMesh to AnalyseMeshQuality; fixed regression for built-in kernel BSplines on non-flat geometries (Sphere, PolarSphere); small fixes and improvements.
- * Incompatible API changes: removed mesh/smooth (now handled by mesh/optimize like all other mesh optimizers); renamed logger/time to logger/getWallTime and logger/cputime to logger/getCpuTime; new arguments to mesh/optimize, mesh/getElementProperties and occ/healShapes; added optional argument to mesh/classifySurfaces and view/combine.
- 4.4.1 (July 25, 2019): small improvements (transfinite with degenerate curves, renumbering for some mesh formats, empty MSH file sections, tunable accuracy of compound meshes) and bug fixes (ellipse < pi, orientation and reclassification

of compound parts, serendip pyramids, periodic MeshAdapt robustness, invalidate cache after mesh/addNodes).

- 4.4.0 (July 1, 2019): new STL remeshing workflow (with new ClassifySurfaces command in .geo files); added API support for color options, mesh optimization, recombination, smoothing and shape healing; exposed additional METIS options; improved support for periodic entities (multiple curves with the same start/end points, legacy MSH2 format, periodic surfaces with embedded entities); added mesh renumbering also after interactive mesh modifications; improved support for OpenCASCADE ellipse arcs; new interactive filter in visibility window; flatter GUI; small bug fixes.
- * Incompatible API changes: mesh/getJacobians and mesh/getBasisFunctions now take integration points explicitely; mesh/setNodes and mesh/setElements have been replaced by mesh/addNodes and mesh/addElements; added optional arguments to mesh/classifySurfaces and occ/addSurfaceLoop; changed arguments of occ/addEllipseArc to follow geo/addEllipseArc.
- 4.3.0 (April 19, 2019): improved meshing of surfaces with singular parametrizations; added API support for aliasing and combining views, copying view options, setting point coordinates, extruding built-in CAD entities along normals and retrieving mass, center of mass and inertia from OpenCASCADE CAD entities; fixed regression introduced in 4.1.4 that could lead to non-deterministic 2D meshes; small bug fixes.
- * Incompatible API changes: added optional arguments to mesh/getNodes and mesh/getElementByCoordinates
- 4.2.3 (April 3, 2019): added STL export by physical surface; added ability to remove embedded entities; added handling of boundary entities in addDiscreteEntity; small bug fixes.
- 4.2.2 (March 13, 2019): fixed regression in reading of extruded meshes; added ability to export one solid per surface in STL format.
- 4.2.1 (March 7, 2019): fixed regression for STEP files without global compound shape; added support for reading IGES labels and colors; improved search for shared library in Python and Julia modules; improved Plugin(MeshVolume); updates to the reference manual.
- 4.2.0 (March 5, 2019): new MSH4.1 revision of the MSH file format, with support for size_t node and element tags (see the reference manual for detailed changes); added support for reading STEP labels and colors with OCC CAF; changed default "Geometry.OCCTargetUnit" value to none (i.e. use STEP file coordinates as-is, without conversion); improved high-order mesh optimization; added ability to import groups of nodes from MED files; enhanced Plugin(Distance) and Plugin(SimplePartition); removed unmaintained plugins; removed default dependency on PETSc; small improvements and bug fixes.
- * Incompatible API changes: changed type of node and element tags from int to size_t to support (very) large meshes; changed logger/start, mesh/getPeriodicNodes and mesh/setElementsByType.
- 4.1.5 (February 14, 2019): improved OpenMP parallelization, STL remeshing, mesh partitioning and high-order mesh optimization; added classifySurfaces in API; bug fixes.
- 4.1.4 (February 3, 2019): improved ghost cell I/O; added getGhostElements, relocateNodes, getElementType, getElementFaceNodes, getElementEdgeNodes functions in API; small improvements and bug fixes.
- 4.1.3 (January 23, 2019): improved quad meshing; new options for automatic full-quad meshes; save nodesets also for physical points (Abaqus, Tochnog); new getPartitions, unpartition and removePhysicalName functions in API; small bug fixes.

- 4.1.2 (January 21, 2019): fixed full-quad subdivision if Mesh.SecondOrderLinear is set; fixed packing of parallelograms regression in 4.1.1.
- 4.1.1 (January 20, 2019): added support for general affine transformations with OpenCASCADE kernel; improved handling of boolean tolerance (snap vertices); faster crossfield calculation by default (e.g. for Frontal-Delauany for quads algorithm); fixed face vertices for PyramidN; renamed ONELAB "Action" and "Button" parameters "ONELAB/Action" and "ONELAB/Button"; added support for actions on any ONELAB button; added API functions for selections in user interface.
- 4.1.0 (January 13, 2019): improved ONELAB and Fltk support in API; improved renumbering of mesh nodes/elements; major code refactoring.
- * Incompatible API changes: changed onelab/get.
- 4.0.7 (December 9, 2018): fixed small memory leaks; removed unused code.
- 4.0.6 (November 25, 2018): moved private API wrappers to utils/wrappers; improved Gmsh 3 compatibility for high-order periodic meshes; fixed '-v 0' not being completely silent; fixed rendering of image textures on some OSes; small compilation fixes.
- 4.0.5 (November 17, 2018): new automatic hybrid mesh generation (pyramid layer) when 3D Delaunay algorithm is applied to a volume with quadrangles on boundary; improved robustness of 2D MeshAdapt algorithm; bug fixes.
- 4.0.4 (October 19, 2018): fixed physical names regression in 4.0.3.
- 4.0.3 (October 18, 2018): bug fixes.
- 4.0.2 (September 26, 2018): added support for creating MED files with specific MED (minor) version; small bug fixes.
- 4.0.1 (September 7, 2018): renumber mesh nodes/elements by default; new SendToServer command for nodal views; added color and visibility handling in API; small bug fixes.
- 4.0.0 (August 22, 2018): new C++, C, Python and Julia API; new MSH4 format; new mesh partitioning code based on Metis 5; new 3D tetrahedralization algorithm as default; new workflow for remeshing (compound entities as meshing constraints, CreateGeometry for mesh reparametrization); added support for general BSplines, fillets and chamfers with OpenCASCADE kernel and changed default BSpline parameters with the built-in kernel to match OpenCASCADE's; STEP files are now be default interpreted in MKS units (see Geometry.OCCTargetUnit); improved meshing of surfaces with singular parametrizations (spheres, etc.); uniformized entity naming conventions (line/curve, vertex/node, etc.); generalized handling of "all" entities in geo file (using {:} notation); added support for creating LSDYNA mesh files; removed old CAD creation factory (GModelFactory), old reparametrization code (G{Edge, Face, Region}Compound) and old partitioning code (Metis 4 and Chaco); various cleanups, bug fixes and enhancements.
- 3.0.6 (November 5, 2017): improved meshing of spheres; improved handling of mesh size constraints with OpenCASCADE kernel; implemented "Coherence" for OpenCASCADE kernel (shortcut for BooleanFragments); added GAMBIT Neutral File export; small improvements and bug fixes.
- 3.0.5 (September 6, 2017): bug fixes.
- 3.0.4 (July 28, 2017): moved vorometal code to plugin; OpenMP improvements; bug fixes.
- 3.0.3 (June 27, 2017): new element quality measures; Block->Box; minor fixes.

3.0.2 (May 13, 2017): improved handling of meshing constraints and entity numbering after boolean operations; improved handling of fast coarseness transitions in MeshAdapt; new TIKZ export; small bug fixes.

- 3.0.1 (April 14, 2017): fixed OpenCASCADE plane surfaces with holes.
- 3.0.0 (April 13, 2017): new constructive solid geometry features and boolean operations using OpenCASCADE; improved graphical user interface for interactive, parametric geometry construction; new or modified commands in .geo files: SetFactory, Circle, Ellipse, Wire, Surface, Sphere, Block, Torus, Rectangle, Disk, Cylinder, Cone, Wedge, ThickSolid, ThruSections, Ruled ThruSections, Fillet, Extrude, BooleanUnion, BooleanIntersection, BooleanDifference, BooleanFragments, ShapeFromFile, Recursive Delete, Unique; "Surface" replaces the deprecated "Ruled Surface" command; faster 3D tetrahedral mesh optimization enabled by default; major code refactoring and numerous bug fixes.
- 2.16.0 (January 3, 2017): small improvements (list functions, second order hexes for MED, GUI) and bug fixes.
- 2.15.0 (December 4, 2016): fixed several regressions (multi-file partitioned grid export, mesh subdivision, old compound mesher); improved 2D boundary layer field & removed non-functional 3D boundary layer field; faster rendering of large meshes.
- 2.14.1 (October 30, 2016): fixed regression in periodic meshes; small bug fixes and code cleanups.
- 2.14.0 (October 9, 2016): new Tochnog file format export; added ability to remove last command in scripts generated interactively; ONELAB 1.3 with usability and performance improvements; faster "Coherence Mesh".
- 2.13.2 (August 18, 2016)): small improvements (scale labels, periodic and high-order meshes) and bug fixes.
- 2.13.1 (July 15, 2016): small bug fixes.
- 2.13.0 (July 11, 2016): new ONELAB 1.2 protocol with native support for lists; new experimental 3D boundary recovery code and 3D refinement algorithm; better adaptive visualization of quads and hexahedra; fixed several regressions introduced in 2.12.
- 2.12.0 (March 5, 2016): improved interactive definition of physical groups and handling of ONELAB clients; improved full quad algorithm; added support for list of strings, trihedra elements and X3D format; improved message console; new colormaps; various bugs fixes and small improvements all over.
- 2.11.0 (November 7, 2015): new Else/ElseIf commands; new OptimizeMesh command; Plugin(ModifyComponents) replaces Plugin(ModifyComponent); new VTK and X3D outputs; separate O/Ctrl+O shortcuts for geometry/full model reload; small bug fixes in homology solver, handling of embedded entities, and Plugin(Crack).
- 2.10.1 (July 30, 2015): minor fixes.
- 2.10.0 (July 21, 2015): improved periodic meshing constraints; new Physical specification with both label and numeric id; images can now be used as glyphs in post-processing views, using text annotations with the 'file://' prefix; Views can be grouped and organized in subtrees; improved visibility browser navigation; geometrical entities and post-processing views can now react to double-clicks, via new generic DoubleClicked options; new Get/SetNumber and Get/SetString for direct access to ONELAB variables; small bug fixes and code cleanups.
- 2.9.3 (April 18, 2015): updated versions of PETSc/SLEPc and OpenCASCADE/OCE libraries used in official binary builds; new Find() command; miscellaneous code cleanups and small fixes.

- 2.9.2 (March 31, 2015): added support for extrusion of embedded points/curves; improved hex-dominant algorithm; fixed crashes in quad algorithm; fix regression in MED reader introduced in 2.9.0; new dark interface mode.
- 2.9.1 (March 18, 2015): minor bug fixes.
- 2.9.0 (March 12, 2015): improved robustness of spatial searches (extruded meshes, geometry coherence); improved reproductibility of 2D and 3D meshes; added support for high resolution ("retina") graphics; interactive graph point commands; on-the-fly creation of onelab clients in scripts; general periodic meshes using afine transforms; scripted selection of entities in bounding boxes; extended string and list handling functions; many small improvements and bug fixes.
- 2.8.5 (Jul 9, 2014): improved stability and error handling, better Coherence function, updated onelab API version and inline parameter definitions, new background image modes, more robust Triangulate/Tetrahedralize plugins, new PGF output, improved support for string~index variable names in parser, small improvements and bug fixes all over the place.
- 2.8.4 (Feb 7, 2014): better reproductibility of 2D meshes; new mandatory 'Name' attribute to define onelab variables in DefineConstant[] & co; new -setnumber/-setstring command line arguments; small improvements and bug fixes.
- 2.8.3 (Sep 27, 2013): new quick access menu and multiple view selection in GUI; enhanced animation creation; many small enhancements and bug fixes.
- 2.8.2 (Jul 16, 2013): improved high order tools interface; minor bug fixes.
- 2.8.1 (Jul 11, 2013): improved compound surfaces and transfinite arrangements.
- 2.8.0 (Jul 8, 2013): improved Delaunay point insertion; fixed mesh orientation of plane surfaces; fixed mesh size prescribed at embedded points; improved display of vectors at COG; new experimental text string display engines; improved fullscreen mode; access time/step in transformations; new experimental features: AdaptMesh and Surface In Volume; accept unicode file paths on Windows; compilation and bug fixes.
- 2.7.1 (May 11, 2013): improved Delaunay point insertion; updated onelab; better Abaqus and UNV export; small bug and compilation fixes.
- 2.7.0 (Mar 9, 2013): new single-window GUI, with dynamically customizable widget tree; faster STEP/BRep import; arbitrary size image export; faster 2D Delaunay/Frontal algorithms; full option viewer/editor; many bug fixes.
- 2.6.1 (Jul 15, 2012): minor improvements and bug fixes.
- 2.6.0 (Jun 19, 2012): new quadrilateral meshing algorithms (Blossom and Delaunay-Frontal for quads); new solver module based on ONELAB project (requires FLTK 1.3); new tensor field visualization modes (eigenvectors, ellipsoid, etc.); added support for interpolation schemes in .msh file; added support for MED3 format; rescale viewport around visible entities (shift+1:1 in GUI); unified post-processing field export; new experimental stereo+camera visualization mode; added experimental BAMG & MMG3D support for anisotropic mesh generation; new OCC cut & merge algorithm imported from Salome; new ability to connect extruded meshes to tetrahedral grids using pyramids; new homology solver; Abaqus (INP) mesh export; new Python and Java wrappers; bug fixes and small improvements all over the place.
- 2.5.0 (Oct 15, 2010): new compound geometrical entities (for remeshing and/or trans-patch meshing); improved mesh reclassification tool; new client/server visualization mode; new ability to watch a pattern of files to merge; new integrated MPEG export; new option to force the type of views dynamically; bumped mesh version format to 2.2 (small change in the meaning of the partition

tags; this only affects partitioned (i.e. parallel) meshes); renamed several post-processing plugins (as well as plugin options) to make them easier to understand; many bug fixes and usability improvements all over the place.

- 2.4.2 (Sep 21, 2009): solver code refactoring + better IDE integration.
- 2.4.1 (Sep 1, 2009): fixed surface mesh orientation bug introduced in 2.4.0; mesh and graphics code refactoring, small usability enhancements and bug fixes.
- 2.4.0 (Aug 22, 2009): switched build system to CMake; optionally copy transfinite mesh constraints during geometry transformations; bumped mesh version format to 2.1 (small change in the \$PhysicalNames section, where the group dimension is now required); ported most plugins to the new post-processing API; switched from MathEval to MathEx and Flu_Tree_Browser to Fl_Tree; small bug fixes and improvements all over the place.
- 2.3.1 (Mar 18, 2009): removed GSL dependency (Gmsh now simply uses Blas and Lapack); new per-window visibility; added support for composite window printing and background images; fixed string option affectation in parser; fixed surface mesh orientation for OpenCASCADE models; fixed random triangle orientations in Delaunay and Frontal algorithms.
- 2.3.0 (Jan 23, 2009): major graphics and GUI code refactoring; new full-quad/hexa subdivision algorithm; improved automatic transfinite corner selection (now also for volumes); improved visibility browser; new automatic adaptive visualization for high-order simplices; modified arrow size, clipping planes and transform options; many improvements and bug fixes all over the place.
- 2.2.6 (Nov 21, 2008): better transfinite smoothing and automatic corner selection; fixed high order meshing crashes on Windows and Linux; new uniform mesh refinement (thanks Brian!); fixed various other small bugs.
- 2.2.5 (Oct 25, 2008): Gmsh now requires FLTK 1.1.7 or above; various small improvements (STL and VTK mesh I/O, Netgen upgrade, Visual C++ support, Fields, Mesh.{Msh,Stl,...}Binary changed to Mesh.Binary) and bug fixes (pyramid interpolation, Chaco crashes).
- 2.2.4 (Aug 14, 2008): integrated Metis and Chaco mesh partitioners; variables can now be deleted in geo files; added support for point datasets in model-based postprocessing views; small bug fixes.
- 2.2.3 (Jul 14, 2008): enhanced clipping interface; API cleanup; fixed various bugs (Plugin(Integrate), high order meshes, surface info crash).
- 2.2.2 (Jun 20, 2008): added geometrical transformations on volumes; fixed bug in high order mesh generation.
- 2.2.1 (Jun 15, 2008): various small improvements (adaptive views, GUI, code cleanup) and bug fixes (high order meshes, Netgen interface).
- 2.2.0 (Apr 19, 2008): new model-based post-processing backend; added MED I/O for mesh and post-processing; fixed BDF vertex ordering for 2nd order elements; replaced Mesh.ConstrainedBackgroundMesh with Mesh.CharacteristicLength{FromPoints,ExtendFromBoundary}; new Fields interface; control windows are now non-modal by default; new experimental 2D frontal algorithm; fixed various bugs.
- 2.1.1 (Mar 1, 2008): small bug fixes (second order meshes, combine views, divide and conquer crash, \dots).
- 2.1.0 (Feb 23, 2008): new post-processing database; complete rewrite of post-processing drawing code; improved surface mesh algorithms; improved STEP/IGES/BREP support; new 3D mesh optimization algorithm; new default native file choosers; fixed 'could not find extruded vertex' in extrusions; many

improvements and bug fixes all over the place.

- 2.0.8 (Jul 13, 2007): unused vertices are not saved in mesh files anymore; new plugin GUI; automatic GUI font size selection; renamed Plugin(DecomposeInSimplex) into Plugin(MakeSimplex); reintroduced enhanced Plugin(SphericalRaise); clarified meshing algo names; new option to save groups of nodes in UNV meshes; new background mesh infrastructure; many small improvements and small bug fixes.
- 2.0.7 (Apr 3, 2007): volumes can now be defined from external CAD surfaces; Delaunay/Tetgen algorithm is now used by default when available; re-added support for Plot3D structured mesh format; added ability to export external CAD models as GEO files (this only works for the limited set of geometrical primitives available in the GEO language, of course--so trying to convert e.g. a trimmed NURBS from a STEP file into a GEO file will fail); "lateral" entities are now added at the end of the list returned by extrusion commands; fixed various bugs.
- 2.0.0 (Feb 5, 2007): new geometry and mesh databases, with support for STEP and IGES import via OpenCASCADE; complete rewrite of geometry and mesh drawing code; complete rewrite of mesh I/O layer (with new native binary MSH format and support for import/export of I-deas UNV, Nastran BDF, STL, Medit MESH and VRML 1.0 files); added support for incomplete second order elements; new 2D and 3D meshing algorithms; improved integration of Netgen and TetGen algorithms; removed anisotropic meshing algorithm (as well as attractors); removed explicit region number specification in extrusions; option changes in the graphical interface are now applied instantaneously; added support for offscreen rendering using OSMesa; added support for SVG output; added string labels for Physical entities; lots of other improvements all over the place.
- 1.65 (May 15, 2006): new Plugin(ExtractEdges); fixed compilation errors with gcc4.1; replaced Plugin(DisplacementRaise) and Plugin(SphericalRaise) with the more flexible Plugin(Warp); better handling of discrete curves; new Status command in parser; added option to renumber nodes in .msh files (to avoid holes in the numbering sequence); fixed 2 special cases in quad->prism extrusion; fixed saving of 2nd order hexas with negative volume; small bug fixes and cleanups.
- 1.64 (Mar 18, 2006): Windows versions do no depend on Cygwin anymore; various bug fixes and cleanups.
- 1.63 (Feb 01, 2006): post-processing views can now be exported as meshes; improved background mesh handling (a lot faster, and more accurate); improved support for input images; new Plugin(ExtractElements); small bug fixes and enhancements.
- 1.62 (Jan 15, 2006): new option to draw color gradients in the background; enhanced perspective projection mode; new "lasso" selection mode (same as "lasso" zoom, but in selection mode); new "invert selection" button in the visibility browser; new snapping grid when adding points in the GUI; nicer normal smoothing; new extrude syntax (old syntax still available, but deprecated); various small bug fixes and enhancements.
- 1.61 (Nov 29, 2005): added support for second order (curved) elements in post-processor; new version (1.4) of post-processing file formats; new stippling options for 2D plots; removed limit on allowed number of files on command line; all "Combine" operations are now available in the parser; changed View.ArrowLocation into View.GlyphLocation; optimized memory usage when loading many (>1000) views; optimized loading and drawing of line meshes and 2D iso views; optimized handling of meshes with large number of physical entities; optimized vertex array creation for large post-processing views on Windows/Cygwin; removed Discrete Line and Discrete Surface commands (the same functionality can now be obtained by simply loading a mesh in .msh format); fixed coloring by mesh partition; added option to light wireframe meshes and views; new "mesh statistics" export format; new full-quad recombine option; new

Plugin(ModulusPhase); hexas and prisms are now always saved with positive volume; improved interactive entity selection; new experimental Tetgen integration; new experimental STL remeshing algorithm; various small bug fixes and improvements.

- 1.60 (Mar 15, 2005): added support for discrete curves; new Window menu on Mac OS X; generalized all octree-based plugins (CutGrid, StreamLines, Probe, etc.) to handle all element types (and not only scalar and vector triangles+tetrahedra); generalized Plugin(Evaluate), Plugin(Extract) and Plugin(Annotate); enhanced clipping plane interface; new grid/axes/rulers for 3D post-processing views (renamed the AbscissaName, NbAbscissa and AbscissaFormat options to more general names in the process); better automatic positioning of 2D graphs; new manipulator dialog to specify rotations, translations and scalings "by hand"; various small enhancements and bug fixes.
- 1.59 (Feb 06, 2005): added support for discrete (triangulated) surfaces, either in STL format or with the new "Discrete Surface" command; added STL and Text output format for post-processing views and STL output format for surface meshes; all levelset-based plugins can now also compute isovolumes; generalized Plugin(Evaluate) to handle external view data (based on the same or on a different mesh); generalized Plugin(CutGrid); new plugins (Eigenvalues, Gradient, Curl, Divergence); changed default colormap to match Matlab's "Jet" colormap; new transformation matrix option for views (for non-destructive rotations, symmetries, etc.); improved solver interface to keep the GUI responsive during solver calls; new C++ and Python solver examples; simplified Tools->Visibility GUI; transfinite lines with "Progression" now allow negative line numbers to reverse the progression; added ability to retrieve Gmsh's version number in the parser (to help write backward compatible scripts); fixed white space in unv mesh output; fixed various small bugs.
- 1.58 (Jan 01, 2005): fixed UNIX socket interface on Windows (broken by the TCP solver patch in 1.57); bumped version number of default post-processing file formats to 1.3 (the only small modification is the handling of the end-of-string character for text2d and text3d objects in the ASCII format); new File->Rename menu; new colormaps+improved colormap handling; new color+min/max options in views; new GetValue() function to ask for values interactively in scripts; generalized For/EndFor loops in parser; new plugins (Annotate, Remove, Probe); new text attributes in views; renamed some shortcuts; fixed TeX output for large scenes; new option dialogs for various output formats; fixed many small memory leaks in parser; many small enhancements to polish the graphics and the user interface.
- 1.57 (Dec 23, 2004): generalized displacement maps to display arbitrary view types; the arrows representing a vector field can now also be colored by the values from other scalar, vector or tensor fields; new adaptive high order visualization mode; new options (Solver.SocketCommand, Solver.NameCommand, View.ArrowSizeProportional, View.Normals, View.Tangents and General.ClipFactor); fixed display of undesired solver plugin popups; enhanced interactive plugin behavior; new plugins (HarmonicToTime, Integrate, Eigenvectors); tetrahedral mesh file reading speedup (50% faster on large meshes); large memory footprint reduction (up to 50%) for the visualization of triangular/tetrahedral meshes; the solver interface now supports TCP/IP connections; new generalized raise mode (allows to use complex expressions to offset post-processing maps); upgraded Netgen kernel to version 4.4; new optional TIME list in parsed views to specify the values of the time steps; several bug fixes in the Elliptic mesh algorithm; various other small bug fixes and enhancements.
- 1.56 (Oct 17, 2004): new post-processing option to draw a scalar view raised by a displacement view without using Plugin(DisplacementRaise) (makes drawing arbitrary scalar fields on deformed meshes much easier); better post-processing menu (arbitrary number of views+scrollable+show view number); improved view->combine; new horizontal post-processing scales; new option to draw the mesh nodes per element; views can now also be saved in "parsed" format; fixed various path problems on Windows; small bug fixes.

- 1.55 (Aug 21, 2004): added background mesh support for Triangle; meshes can now be displayed using "smoothed" normals (like post-processing views); added GUI for clipping planes; new interactive clipping/cutting plane definition; reorganized the Options GUI; enhanced 3D iso computation; enhanced lighting; many small bug fixes.
- 1.54 (Jul 03, 2004): integrated Netgen (3D mesh quality optimization + alternative 3D algorithm); Extrude Surface now always automatically creates a new volume (in the same way Extrude Point or Extrude Line create new lines and surfaces, respectively); fixed UNV output; made the "Layers" region numbering consistent between lines, surfaces and volumes; fixed home directory problem on Win98; new Plugin(CutParametric); the default project file is now created in the home directory if no current directory is defined (e.g., when double-clicking on the icon on Windows/Mac); fixed the discrepancy between the orientation of geometrical surfaces and the associated surface meshes; added automatic orientation of surfaces in surface loops; generalized Plugin(Triangulate) to handle vector and tensor views; much nicer display of discrete iso-surfaces and custom ranges using smooth normals; small bug fixes and cleanups.
- 1.53 (Jun 04, 2004): completed support for second order elements in the mesh module (line, triangles, quadrangles, tetrahedra, hexahedra, prisms and pyramids); various background mesh fixes and enhancements; major performance improvements in mesh and post-processing drawing routines (OpenGL vertex arrays for tri/quads); new Plugin(Evaluate) to evaluate arbitrary expressions on post-processing views; generalized Plugin(Extract) to handle any combination of components; generalized "Coherence" to handle transfinite surface/volume attributes; plugin options can now be set in the option file (like all other options); added "undo" capability during geometry creation; rewrote the contour guessing routines so that entities can be selected in an arbitrary order; Mac users can now double click on geo/msh/pos files in the Finder to launch Gmsh; removed support for FLTK 1.0; rewrote most of the code related to quadrangles; fixed 2d elliptic algorithm; removed all OpenGL display list code and options; fixed light positioning; new BoundingBox command to set the bounding box explicitly; added support for inexpensive "fake" transparency mode; many code cleanups.
- 1.52 (May 06, 2004): new raster ("bitmap") PostScript/EPS/PDF output formats; new Plugin(Extract) to extract a given component from a post-processing view; new Plugin(CutGrid) and Plugin(StreamLines); improved mesh projection on non-planar surfaces; added support for second order tetrahedral elements; added interactive control of element order; refined mesh entity drawing selection (and renamed most of the corresponding options); enhanced log scale in post-processing; better font selection; simplified View.Raise{X,Y,Z} by removing the scaling; various bug fixes (default postscript printing mode, drawing of 3D arrows/cylinders on Linux, default home directory on Windows, default initial file browser directory, extrusion of points with non-normalized axes of rotation, computation of the scene bounding box in scripts, + the usual documentation updates).
- 1.51 (Feb 29, 2004): initial support for visualizing mesh partitions; integrated version 2.0 of the MSH mesh file format; new option to compute post-processing ranges (min/max) per time step; Multiple views can now be combined into multi time step ones (e.g. for programs that generate data one time step at a time); new syntax: #var[] returns the size of the list var[]; enhanced "gmsh -convert"; temporary and error files are now created in the home directory to avoid file permission issues; new 3D arrows; better lighting support; STL facets can now be converted into individual geometrical surfaces; many other small improvements and bug fixes (multi timestep tensors, color by physical entity, parser cleanup, etc.).
- 1.50 (Dec 06, 2003): small changes to the visibility browser + made visibility scriptable (new Show/Hide commands); fixed (rare) crash when deleting views; split File->Open into File->Open and File->New to behave like most other programs; Mac versions now use the system menu bar by default (if possible); fixed bug leading to degenerate and/or duplicate tetrahedra in extruded meshes;

fixed crash when reloading sms meshes.

1.49 (Nov 30, 2003): made Merge, Save and Print behave like Include (i.e., open files in the same directory as the main project file if the path is relative); new Plugin(DecomposeInSimplex); new option View.AlphaChannel to set the transparency factor globally for a post-processing view; new "Combine Views" command; various bug fixes and cleanups.

- 1.48 (Nov 23, 2003): new DisplacementRaise plugin to plot arbitrary fields on deformed meshes; generalized CutMap, CutPlane, CutSphere and Skin plugins to handle all kinds of elements and fields; new "Save View[n]" command to save views from a script; many small bug fixes (configure tests for libpng, handling of erroneous options, multi time step scalar prism drawings, copy of surface mesh attributes, etc.).
- 1.47 (Nov 12, 2003): fixed extrusion of surfaces defined by only two curves; new syntax to retrieve point coordinates and indices of entities created through geometrical transformations; new PDF and compressed PostScript output formats; fixed numbering of elements created with "Extrude Point/Line"; use \$GMSH_HOME as home directory if defined.
- 1.46 (Aug 23, 2003): fixed crash for very long command lines; new options for setting the displacement factor and Triangle's parameters + renamed a couple of options to more sensible names (View.VectorType, View.ArrowSize); various small bug fixes; documentation update.
- 1.45 (Jun 14, 2003): small bug fixes (min/max computation for tensor views, missing physical points in read mesh, "jumping" geometry during interactive manipulation of large models, etc.); variable definition speedup; restored support for second order elements in one- and two-dimensional meshes; documentation updates.
- 1.44 (Apr 21, 2003): new reference manual; added support for PNG output; fixed small configure script bugs.
- 1.43 (Mar 28, 2003): fixed solver interface problem on Mac OS X; new option to specify the interactive rotation center (default is now the pseudo "center of gravity" of the object, instead of (0,0,0)).
- 1.42 (Mar 19, 2003): suppressed the automatic addition of a ".geo" extension if the file given on the command line is not recognized; added missing Layer option for Extrude Point; fixed various small bugs.
- 1.41 (Mar 04, 2003): Gmsh is now licensed under the GNU General Public License; general code cleanup (indent).
- 1.40 (Feb 26, 2003): various small bug fixes (mainly GSL-related).
- 1.39 (Feb 23, 2003): removed all non-free routines; more build system work; implemented Von-Mises tensor display for all element types; fixed small GUI bugs.
- 1.38 (Feb 17, 2003): fixed custom range selection for 3D iso graphs; new build system based on autoconf; new image reading code to import bitmaps as post-processing views.
- 1.37 (Jan 25, 2003): generalized smoothing and cuts of post-processing views; better Windows integration (solvers, external editors, etc.); small bug fixes.
- 1.36 (Nov 20, 2002): enhanced view duplication (one can now use "Duplicata View[num]" in the input file); merged all option dialogs in a new general option window; enhanced discoverability of the view option menus; new 3D point and line display; many small bug fixes and enhancements ("Print" format in parser, post-processing statistics, smooth normals, save window positions, restore default options, etc.).

- 1.35 (Sep 11, 2002): graphical user interface upgraded to FLTK 1.1 (tooltips, new file chooser with multiple selection, full keyboard navigation, cut/paste of messages, etc.); colors can be now be directly assigned to mesh entities; initial tensor visualization; new keyboard animation (right/left arrow for time steps; up/down arrow for view cycling); new VRML output format for surface meshes; new plugin for spherical elevation plots; new post-processing file format (version 1.2) supporting quadrangles, hexahedra, prisms and pyramids; transparency is now enabled by default for post-processing plots; many small bug fixes (read mesh, ...).
- 1.34 (Feb 18, 2002): improved surface mesh of non-plane surfaces; fixed orientation of elements in 2D anisotropic algorithm; minor user interface polish and additions (mostly in post-processing options); various small bug fixes.
- 1.33 (Jan 24, 2002): new parameterizable solver interface (allowing up to 5 user-defined solvers); enhanced 2D aniso algorithm; 3D initial mesh speedup.
- 1.32 (Oct 04, 2001): new visibility browser; better floating point exception checks; fixed infinite looping when merging meshes in project files; various small clean ups (degenerate 2D extrusion, view->reload, ...).
- 1.31 (Nov 30, 2001): corrected ellipses; PostScript output update (better shading, new combined PS/LaTeX output format); more interface polish; fixed extra memory allocation in 2D meshes; Physical Volume handling in unv format; various small fixes.
- 1.30 (Nov 16, 2001): interface polish; fix crash when extruding quadrangles.
- 1.29 (Nov 12, 2001): translations and rotations can now be combined in extrusions; fixed coherence bug in Extrude Line; various small bug fixes and additions.
- 1.28 (Oct 30, 2001): corrected the 'Using Progression' attribute for tranfinite meshes to actually match a real geometric progression; new Triangulate plugin; new 2D graphs (space+time charts); better performance of geometrical transformations (warning: the numbering of some automatically created entities has changed); new text primitives in post-processing views (file format updated to version 1.1); more robust mean plane computation and error checks; various other small additions and clean-ups.
- 1.27 (Oct 05, 2001): added ability to extrude curves with Layers/Recombine attributes; new PointSize/LineWidth options; fixed For/EndFor loops in included files; fixed error messages (line numbers+file names) in loops and functions; made the automatic removal of duplicate geometrical entities optional (Geometry.AutoCoherence=0); various other small bug fixes and clean-ups.
- 1.26 (Sep 06, 2001): enhanced 2D anisotropic mesh generator (metric intersections); fixed small bug in 3D initial mesh; added alternative syntax for built-in functions (for GetDP compatibility); added line element display; Gmsh now saves all the elements in the mesh if no physical groups are defined (or if Mesh.SaveAll=1).
- 1.25 (Sep 01, 2001): fixed bug with mixed recombined/non-recombined extruded meshes; Linux versions are now build with no optimization, due to bugs in gcc 2.95.X.
- 1.24 (Aug 30, 2001): fixed characteristic length interpolation for Splines; fixed edge swapping bug in 3D initial mesh; fixed degenerated case in geometrical extrusion (ruled surface with 3 borders); fixed generation of degenerated hexahedra and prisms for recombined+extruded meshes; added BSplines creation in the GUI; integrated Jonathan Shewchuk's Triangle as an alternative isotropic 2D mesh generator; added AngleSmoothNormals to control sharp edge display with smoothed normals; fixed random crash for lighted 3D iso surfaces.

1.23 (Aug, 2001): fixed duplicate elements generation + non-matching tetrahedra faces in 3D extruded meshes; better display of displacement maps; fixed interactive ellipsis construction; generalized boundary operator; added new explode option for post-processing views; enhanced link view behavior (to update only the changed items); added new default plugins: Skin, Transform, Smooth; fixed various other small bugs (mostly in the post-processing module and for extruded meshes).

- 1.22 (Aug 03, 2001): fixed (yet another) bug for 2D mesh in the mean plane; fixed surface coherence bug in extruded meshes; new double logarithmic scale, saturate value and smoothed normals option for post-processing views; plugins are now enabled by default; three new experimental statically linked plugins: CutMap (extracts a given iso surface from a 3D scalar map), CutPlane (cuts a 3D scalar map with a plane section), CutSphere (cuts a 3D scalar map with a sphere); various other bug fixes, additions and clean-ups.
- 1.21 (Jul 25, 2001): fixed more memory leaks; added -opt command line option to parse definitions directly from the command line; fixed missing screen refreshes during contour/surface/volume selection; enhanced string manipulation functions (Sprintf, StrCat, StrPrefix); many other small fixes and clean-ups.
- 1.20 (Jun 14, 2001): fixed various bugs (memory leaks, functions in included files, solver command selection, ColorTable option, duplicate nodes in extruded meshes (not finished yet), infinite loop on empty views, orientation of recombined quadrangles, ...); reorganized the interface menus; added constrained background mesh and mesh visibility options; added mesh quality histograms; changed default mesh colors; reintegrated the old command-line extrusion mesh generator.
- 1.19 (May 07, 2001): fixed seg. fault for scalar simplex post-processing; new Solver menu; interface for GetDP solver through sockets; fixed multiple scale alignment; added some options + full option descriptions.
- 1.18 (Apr 26, 2001): fixed many small bugs and incoherences in post-processing; fixed broken background mesh in 1D mesh generation.
- 1.17 (Apr 17, 2001): corrected physical points saving; fixed parsing of DOS files (carriage return problems); easier geometrical selections (cursor change); plugin manager; enhanced variable arrays (sublist selection and affectation); line loop check; New arrow display; reduced number of 'fatal' errors + better handling in interactive mode; fixed bug when opening meshes; enhanced File->Open behavior for meshes and post-processing views.
- 1.16 (Feb 26, 2001): added single/double buffer selection (only useful for Unix versions of Gmsh run from remote hosts without GLX); fixed a bug for recent versions of the opengl32.dll on Windows, which caused OpenGL fonts not to show up.
- 1.15 (Feb 23, 2001): added automatic visibility setting during entity selection; corrected geometrical extrusion bug.
- 1.14 (Feb 17, 2001): corrected a few bugs in the GUI (most of them were introduced in 1.13); added interactive color selection; made the option database bidirectional (i.e. scripts now correctly update the GUI); default options can now be saved and automatically reloaded at startup; made some changes to the scripting syntax (PostProcessing.View[n] becomes View[n]; OffsetO becomes OffsetX, etc.); corrected the handling of simple triangular surfaces with large characteristic lengths in the 2D isotropic algorithm; added an ASCII to binary post-processing view converter.
- 1.13 (Feb 09, 2001): added support for JPEG output on Windows.
- 1.12: corrected vector lines in the post-processing parsed format; corrected animation on Windows; corrected file creation in scripts on Windows; direct affectation of variable arrays.

- 1.11 (Feb 07, 2001): corrected included file loading problem.
- 1.10 (Feb 04, 2001): switched from Motif to FLTK for the GUI. Many small tweaks.
- 1.00 (Jan 15, 2001): added PPM and YUV output; corrected nested If/Endif; Corrected several bugs for pixel output and enhanced GIF output (dithering, transparency); slightly changed the post-processing file format to allow both single and double precision numbers.
- 0.999 (Dec 20, 2000): added JPEG output and easy MPEG generation (see t8.geo in the tutorial); clean up of export functions; small fixes; Linux versions are now compiled with gcc 2.95.2, which should fix the problems encountered with Mandrake 7.2.
- 0.998 (Dec 19, 2000): corrected bug introduced in 0.997 in the generation of the initial 3D mesh.
- 0.997 (Dec 14, 2000): corrected bug in interactive surface/volume selection; Added interactive symmetry; corrected geometrical extrusion with rotation in degenerated or partially degenerated cases; corrected bug in 2D mesh when meshing in the mean plane.
- 0.996: arrays of variables; enhanced Printf and Sprintf; Simplified options (suppression of option arrays).
- 0.995 (Dec 11, 2000): totally rewritten geometrical database (performance has been drastically improved for all geometrical transformations, and most notably for extrusion). As a consequence, the internal numbering of geometrical entities has changed: this will cause incompatibilities with old .geo files, and will require a partial rewrite of your old .geo files if these files made use of geometrical transformations. The syntax of the .geo file has also been $\frac{1}{2}$ clarified. Many additions for scripting purposes. New extrusion mesh generator. Preliminary version of the coupling between extruded and Delaunay meshes. New option and procedural database. All interactive operations can be scripted in the input files. See the last example in the tutorial for an example. Many stability enhancements in the 2D and 3D mesh algorithms. Performance boost of the 3D algorithm. Gmsh is still slow, but the performance becomes acceptable. An average 1000 tetrahedra/second is obtained on a 600Mhz computer for a mesh of one million tetrahedra. New anisotropic 2D mesh algorithm. New (ASCII and binary) post-processing file format and clarified mesh file format. New handling for interactive rotations (trackball mode). New didactic interactive mesh construction (watch the Delaunay algorithm in real time on complex geometries: that's exciting ;-). And many, many bug fixes and cleanups.
- 0.992 (Nov 13, 2000): corrected recombined extrusion; corrected ellipses; added simple automatic animation of post-processing maps; fixed various bugs.
- 0.991 (Oct 24, 2000): fixed a serious allocation bug in 2D algorithm, which caused random crashes. All users should upgrade to 0.991.
- 0.990: bug fix in non-recombined 3D transfinite meshes.
- 0.989 (Sep 01, 2000): added ability to reload previously saved meshes; some new command line options; reorganization of the scale menu; GIF output.
- 0.987: fixed bug with smoothing (leading to the possible generation of erroneous 3d meshes); corrected bug for mixed 3D meshes; moved the 'toggle view link' option to Opt->Postprocessing_Options.
- 0.986: fixed overlay problems; SGI version should now also run on 32 bits machines; fixed small 3d mesh bug.
- 0.985: corrected colormap bug on HP, SUN, SGI and IBM versions; corrected small

initialization bug in postscript output.

0.984: corrected bug in display lists; added some options in $\mbox{Opt-}{\mbox{-}}\mbox{General}.$

0.983: corrected some seg. faults in interactive mode; corrected bug in rotations; changed default window sizes for better match with 1024x768 screens (default X resources can be changed: see ex03.geo).

0.982: lighting for mesh and post-processing; corrected 2nd order mesh on non plane surfaces; added example 13.

Appendix H Copyright and credits

Gmsh is copyright (C) 1997-2020

Christophe Geuzaine <cgeuzaine at uliege.be>

and

Jean-Francois Remacle <jean-francois.remacle at uclouvain.be>

Code contributions to Gmsh have been provided by David Colignon (colormaps), Emilie Marchandise (old compound geometrical entities), Gaetan Bricteux (Gauss integration and levelsets), Jacques Lechelle (DIFFPACK export), Jonathan Lambrechts (mesh size fields, solver, Python wrappers), Jozef Vesely (old Tetgen integration), Koen Hillewaert (high order elements, generalized periodic meshes), Laurent Stainier (eigenvalue solvers, tensor display and help with MacOS port), Marc Ume (original list and tree code), Mark van Doesburg (old OpenCASCADE face connection), Matt Gundry (Plot3d export), Matti Pellikka (cell complex and homology solver), Nicolas Tardieu (help with Netgen integration), Pascale Noyret (MED mesh IO), Pierre Badel (root finding and minimization), Ruth Sabariego (pyramids), Stephen Guzik (old CGNS IO, old partitioning code), Bastien Gorissen (parallel remote post-processing), Eric Bechet (solver), Gilles Marckmann (camera and stero mode, X3D export), Ashish Negi (Netgen CAD healing), Trevor Strickler (hybrid structured mesh coupling with pyramids), Amaury Johnen (Bezier code, high-order element validity), Benjamin Ruard (old Java wrappers), Maxime Graulich (iOS/Android port), Francois Henrotte (ONELAB metamodels), Sebastian Eiser (PGF export), Alexis Salzman (compressed IO), Hang Si (TetGen/BR boundary recovery code), Fernando Lorenzo (Tochnog export), Larry Price (Gambit export), Anthony Royer (new partitioning code, MSH4 IO), Darcy Beurle (code cleanup and performance improvements), Celestin Marot (${\tt HXT/tetMesh}$), Pierre-Alexandre Beaufort (HXT/reparam), Zhidong Han (LSDYNA export), Ismail Badia (hierarchical basis functions), Jeremy Theler (X3D export), Thomas Toulorge (high order mesh optimizer, new CGNS IO), Max Orok (binary PLY), Marek Wojciechowski (PyPi packaging). See comments in the sources for more information. If we forgot to list your contributions please send us an email!

Thanks to the following folks who have contributed by providing fresh ideas on theoretical or programming topics, who have sent patches, requests for changes or improvements, or who gave us access to exotic machines for testing Gmsh: Juan Abanto, Olivier Adam, Guillaume Alleon, Laurent Champaney, Pascal Dupuis, Patrick Dular, Philippe Geuzaine, Johan Gyselinck, Francois Henrotte, Benoit Meys, Nicolas Moes, Osamu Nakamura, Chad Schmutzer, Jean-Luc Fl'ejou, Xavier Dardenne, Christophe Prud'homme, Sebastien Clerc, Jose Miguel Pasini, Philippe Lussou, Jacques Kools, Bayram Yenikaya, Peter Hornby, Krishna Mohan Gundu, Christopher Stott, Timmy Schumacher, Carl Osterwisch, Bruno Frackowiak, Philip Kelleners, Romuald Conty, Renaud Sizaire, Michel Benhamou, Tom De Vuyst, Kris Van den Abeele, Simon Vun, Simon Corbin, Thomas De-Soza, Marcus Drosson, Antoine Dechaume, Jose Paulo Moitinho de Almeida, Thomas Pinchard, Corrado Chisari, Axel Hackbarth, Peter Wainwright, Jiri Hnidek, Thierry Thomas, Konstantinos Poulios, Laurent Van Miegroet, Shahrokh Ghavamian, Geordie McBain, Jose Paulo Moitinho de Almeida, Guillaume Demesy, Wendy Merks-Swolfs, Cosmin Stefan Deaconu, Nigel Nunn, Serban Georgescu, Julien Troufflard, Michele Mocciola, Matthijs Sypkens Smit, Sauli Ruuska, Romain Boman, Fredrik Ekre, Mark Burton, Max Orok, Paul Cristini, Isuru Fernando, Jose Paulo Moitinho de Almeida, Sophie Le Bras, Alberto Escrig, Samy Mukadi, Peter Johnston, Bruno de Sousa Alves, Stefan Bruens, Luca Verzeroli, Tristan Seidlhofer, Ding Jiaming, Joost Gevaert, Marcus Calhoun-Lopez, Michel Zou.

Special thanks to Bill Spitzak, Michael Sweet, Matthias Melcher, Greg Ercolano and others for the Fast Light Tool Kit on which Gmsh's GUI is based. See http://www.fltk.org for more info on this excellent object-oriented, cross-platform toolkit. Special thanks also to EDF for funding the original OpenCASCADE and MED integration in 2006-2007.

The TetGen/BR code (Mesh/tetgenBR.{cpp,h}) is copyright (c) 2016 Hang Si, Weierstrass Institute for Applied Analysis and Stochatics. It is relicensed under the terms of LICENSE.txt for use in Gmsh thanks to a Software License Agreement between Weierstrass Institute for Applied Analysis and Stochastics and GMESH SPRL.

The AVL tree code (Common/avl.{cpp,h}) and the YUV image code (Graphics/gl2yuv.{cpp,h}) are copyright (C) 1988-1993, 1995 The Regents of the University of California. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of the University of California not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. The University of California makes no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty.

The picojson code (Common/picojson.h) is Copyright 2009-2010 Cybozu Labs, Inc., Copyright 2011-2014 Kazuho Oku, All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The nanoflann code (Numeric/nanoflann.hpp) is Copyright 2008-2009 Marius Muja, 2008-2009 David G. Lowe, 2011-2016 Jose Luis Blanco. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The trackball code (Graphics/Trackball.{cpp.h}) is copyright (C) 1993, 1994, Silicon Graphics, Inc. ALL RIGHTS RESERVED. Permission to use, copy, modify, and distribute this software for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both the copyright notice and this permission notice appear in supporting documentation, and that the name of Silicon Graphics, Inc. not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission.

The GIF and PPM routines (Graphics/gl2gif.cpp) are based on code copyright (C) 1989, 1991, Jef Poskanzer. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. This software is provided "as is" without express or implied warranty.

The colorbar widget (Fltk/colorbarWindow.cpp) was inspired by code from the Vis5d program for visualizing five dimensional gridded data sets, copyright (C) 1990-1995, Bill Hibbard, Brian Paul, Dave Santek, and Andre Battaiola.

In addition, this version of Gmsh may contain the following contributed, optional codes in the contrib/ directory, each governed by their own license:

- * contrib/ANN copyright (C) 1997-2005 University of Maryland and Sunil Arya and David Mount;
- * contrib/gmm copyright (C) 2002-2008 Yves Renard;
- * contrib/hxt Copyright (C) 2017-2018 Universite catholique de Louvain;
- * contrib/kbipack copyright (C) 2005 Saku Suuriniemi;
- * contrib/MathEx based in part on the work of the SSCILIB Library, copyright (C) 2000-2003 Sadao Massago;
- * contrib/metis written by George Karypis (karypis at cs.umn.edu), copyright (C) 1995-2013 Regents of the University of Minnesota;
- * contrib/mpeg_encode copyright (c) 1995 The Regents of the University of California:
- * contrib/Netgen copyright (C) 1994-2004 Joachim Sch"oberl;
- * contrib/bamg from Freefem++ copyright (C) Frederic Hecht;
- * contrib/ALGLIB (C) Sergey Bochkanov (ALGLIB project);
- * contrib/mmg3d from MMG3D Version 4.0 (C) 2004-2011 Cecile Dobrzynski and Pascal Frey (IPB UPMC INRIA);
- * contrib/blossom copyright (C) 1995-1997 Bill Cook et al.;
- * contrib/bamg from Freefem++ copyright (C) Frederic Hecht;
- * contrib/voro++ from Voro++ Copyright (c) 2008, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved;
- * contrib/zipper from MiniZip Copyright (c) 1998-2010 by Gilles Vollant version 1.1 64 bits from Mathias Svensson.

heck the configuration options to see which have been enabled.

Appendix I License

Gmsh is provided under the terms of the GNU General Public License (GPL), Version 2 or later, with the following exception:

The copyright holders of Gmsh give you permission to combine Gmsh with code included in the standard release of Netgen (from Joachim Sch"oberl), METIS (from George Karypis at the University of Minnesota), OpenCASCADE (from Open CASCADE S.A.S) and ParaView (from Kitware, Inc.) under their respective licenses. You may copy and distribute such a system following the terms of the GNU GPL for Gmsh and the licenses of the other code concerned, provided that you include the source code of that other code when and as the GNU GPL requires distribution of source code.

Note that people who make modified versions of Gmsh are not obligated to grant this special exception for their modified versions; it is their choice whether to do so. The GNU General Public License gives permission to release a modified version without this exception; this exception also makes it possible to release a modified version which carries forward this exception.

End of exception.

GNU GENERAL PUBLIC LICENSE Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

O. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be distributed under the terms of this General Public License. The "Program", below, refers to any such program or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the Program (independent of having been made by running the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

- 2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:
 - a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.
 - b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.
 - c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a

notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

- 3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:
 - a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,
 - b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,
 - c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source code distributed need not include anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

- 5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or works based on it.
- 6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.
- 7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented by public license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the original copyright holder who places the Program under this License may add an explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it and "any later version", you have the option of following the terms and conditions either of that version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

- 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
- 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, the commands you use may be called something other than 'show w' and 'show c'; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

Concept index 337

Concept index

2	Expressions, identifiers
2D plots	Expressions, lists
	Extrusion, geometry
3	Dati usion, mesii
3D plots	D
5D plots	\mathbf{F}
•	FAQ
A	File format, mesh
Acknowledgments	File formats
API	File, comments
	Frequently asked questions
В	Functions, built-in
Background mesh	,
Binary operators	\mathbf{G}
Bindings, keyboard	
Bindings, mouse	General commands
Boolean operations, geometry 41	Geometry commands
Bugs, reporting	Geometry, boolean operations
	Geometry, difference 41 Geometry, extrusion 39
\mathbf{C}	Geometry, fragments
	Geometry, intersection
Changelog	Geometry, module
Characteristic lengths	Geometry, options
Command-line options	Geometry, transformations 41
Commands, general	Geometry, union
Commands, geometry	Graphs
Commands, mesh	
Commands, post-processing	H
Comments	
Concepts, index	History, versions
Conditionals	
Constants	I
Contributors, list 327 Copyright 3, 327	Index, concepts
Credits	Index, syntax
Curves, elementary	Interactive mode
Curves, physical	Internet address
	Introduction 5
D	
	K
Developer, information	Keyboard, shortcuts
Document syntax	Keywords, index
Download	v ,
E	${f L}$
Elementary curves	License
Elementary points	Lines
Elementary surfaces	Loops
Elementary volumes	
Evaluation order	\mathbf{M}
Examples	
Expressions, affectation	Macros, user-defined
Expressions, character	Mesh background
Expressions, color 25 Expressions, definition 21	Mesh, background
Expressions, floating point	Mesh, extrusion 65
Empressions, nowing point	1.10021, 02101 GD1011

Mesh, file format	Q
Mesh, module 45 Mesh, options 69 Mesh, transfinite 63	Questions, frequently asked
Module, geometry	\mathbf{R}
Module, Mesh	
Module, Post-processing	Real numbers
Module, Solver	Rotation
Mouse, actions	Rules, syntactic
MSH4 file	Running Gmsh
N	
	S
Nodes, ordering	Scale
Non-interactive mode	Shortcuts, keyboard
Numbers, real	Size, elements
	Solver, module
0	Strings
	Surfaces, elementary
Operating system	Surfaces, physical
Operator precedence	Symmetry
Operators, definition	Syntax, index
Options, command-line	Syntax, rules
Options, geometry	
Options, mesh	Т
Options, post-processing	1
Order, evaluation 26 Overview 5	Ternary operators
Overview	Transfinite, mesh
	Transformations, geometry 41
P	Translation
Physical curves	Tutorial
Physical points	
Physical surfaces	\mathbf{U}
Physical volumes	_
Plots	Unary operators
Plugins, post-processing	
Points, elementary	\mathbf{V}
Points, physical	•
Post-processing commands	Versions
Post-processing plugins	Views
Post-processing, module	Volumes, elementary
Post-processing, options	Volumes, physical
Precedence, operators	
Programming, API	\mathbf{W}
Programming, notes	Web site

!		-info	15
I	25	-link int	14
!=	25	-listen	
		-log filename	
07		-match	
%		-merge	
%	25	-minterpreter string	
		-n	
&		-newnodb	
		-nopopup	
&&	25	-nt int	
		-numsubedges	
(-o file	
(-open	
()	26	-optimize[_netgen]	
		-optimize_ho	
*		-optimize_threshold	
	25	-option file	
*		-order int	13
*=	29	-part int	13
		-part_[no_]ghosts	13
+		-part_[no_]physicals	13
+	25	-part_[no_]topo	13
++		-part_split	13
+=		-part_topo_pro	
	20	<pre>-part_weight [tri,quad,tet,hex,pri,pyr,trih]</pre>	
		int	
-		-pid	
	25	-preserve_numbering_msh2	
-, -parse_and_exit		-pyinterpreter string	
		-rand value	
-=		-reclassify angle	
-0	12	-refine	
-1, -2, -3	12	-reparam angle	
-a, -g, -m, -s, -p	15	-run	
-algo string	13	-save	
-aniso_max value	14	-save_all	
-barycentric_refine	12	-save_parametric	
-bg file		-save_topology	
-bgm file	14	-setnumber name value	
-bin		-setstring name valuesmooth int	
-camera		-smooth_ratio value	
-check		-stereo	
-clcurv value		-string "string"	
-clmax value		-swapangle value	
-clmin value		-theme string	
-clscale valuecombine		-tol value	
-convert files		-v int	
-convert liles		-version	
-cpucpu		-watch pattern	
-epslc1d value		•	
-fontsize int			
-format string			
-gamepad		<i>' '</i>	25
-help		/*, */	
-help_options		///	
-ho_[min,max,nlayers]		/=	
-ignore periocity	14	/	29

•	<pre>Bezier (expression) = { expression-list };</pre>
:	Bezier Surface (expression) = {
<	expression-list };
	boolean
<	
<pre>< Recursive > Color color-expression {</pre>	boolean-list }
<pre><physical> Point Curve Surface Volume {</physical></pre>	BooleanFragments { boolean-list } {
expression-list-or-all }; } 67	boolean-list }
<pre>< Recursive > Delete { <physical> Point Curve </physical></pre>	BooleanIntersection (expression) = {
Surface Volume { expression-list-or-all	boolean-list } { boolean-list }; 41
}; }	BooleanIntersection { boolean-list } {
<pre>< Recursive > Hide { <physical> Point Curve </physical></pre>	boolean-list }
Surface Volume { expression-list-or-all	<pre>BooleanUnion { boolean-list } { boolean-list }</pre>
}; }	
<pre>< Recursive > Show { <physical> Point Curve </physical></pre>	Boundary { transform-list }
Surface Volume { expression-list-or-all	BoundaryLayer
}; }	BoundingBox { expression, expression,
<=	expression, expression, expression,
	expression };
_	BoundingBox;
_	Box
=	BSpline (expression) = { expression-list }; 50
==	
	BSpline Surface (expression) = {
>	expression-list };
	build-in-function
>	build in lunction
>=	
	\mathbf{C}
?	Call string char-expression; 28
	Ceil (expression)26
?	<pre>Chamfer { expression-list } { expression-list }</pre>
	{ expression-list } { expression-list } 40
^	char-option = char-expression;
	Characteristic Length { expression-list } =
^ 25	expression; 48
	Circle (expression) = { expression,
	expression, expression <,> }; 36
	<pre>ClassifySurfaces { expression , expression ,</pre>
11	expression < , expression > }; 67
	Coherence Mesh; 67
\mathbf{A}	Coherence;
Λ	<pre>Cohomology ({ expression-list }) { {</pre>
Abort;	<pre>expression-list } , { expression-list } };</pre>
Acos (expression)	68
AdaptMesh { expression-list } { expression-list	color-option = color-expression;
} { { expression-list < , > } }; 65	Combine ElementsByViewName; 74
Affine { expression-list } { transform-list }	Combine ElementsFromAllViews Combine Views;
42	
Alias View[expression];	Combine ElementsFromVisibleViews;
AliasWithOptions View[expression];74	Combine TimeStepsByViewName Combine
Asin (expression)	TimeSteps;
Atan (expression)	Combine TimeStepsFromAllViews;
Atan2 (expression, expression)	Combine TimeStepsFromVisibleViews;
Attractor	CombinedBoundary { transform-list }
AttractorAnisoCurve	Compound Curve Surface {
AutomaticMeshSizeField	expression-list-or-all };
	Compound Spline BSpline (expression) = {
B	expression-list } Using expression; 36
Rackground Field = avaraggion:	ConvOntions Viou [avprossion avprossion]: 74
Background Field = expression;	CopyOptions View[expression, expression]; 74 Cos (expression)
Ball	Cosh (expression)
2022	0001 (CAPTODDIOI) 21

Cpu	ENABLE_GETDP242
CreateDir char-expression; 31	ENABLE_GMM
CreateGeometry < { <physical> Point Curve </physical>	ENABLE_GMP
Surface Volume { expression-list-or-all	ENABLE_GRAPHICS
}; } > ;	ENABLE_HXT
CreateTopology; 67 Curvature 53	ENABLE_KBIPACK 242 ENABLE_MATHEX 242
Curve Loop (expression) = { expression-list };	ENABLE_MED
	ENABLE_MESH 242
Cylinder	ENABLE_METIS
<pre>Cylinder (expression) = { expression-list };</pre>	ENABLE_MMG3D
38	ENABLE_MPEG_ENCODE
	ENABLE_MPI
D	ENABLE_MSVC_STATIC_RUNTIME
D	ENABLE_MUMPS242
<pre>DefineConstant[string = {</pre>	ENABLE_NETGEN
expression char-expression, onelab-options	ENABLE_NUMPY
} <,>];	ENABLE_OCC
DefineConstant[string =	ENABLE_OCC_CAF
expression char-expression <,>]; 30	ENABLE_OCC_STATIC
Delete Embedded { < Physical > Point Curve	ENABLE_OCC_TBB
Surface Volume { expression-list-or-all	ENABLE_ONELAB
}; }	ENABLE_ONELAB_METAMODEL
Delete Empty Views;	ENABLE_OPENACC
Delete Model;	ENABLE_OPENMP
Delete Options; 32 Delete Physicals; 32	ENABLE_OPTHOM
· · · · · · · · · · · · · · · · · · ·	ENABLE_OS_SPECIFIC_INSTALL
Delete string; 32 Delete Variables; 32	ENABLE_OSMESA
Delete View[expression];	ENABLE_P4EST
Dilate { { expression-list }, { expression,	ENABLE_PACKAGE_STRIP
expression, expression } { transform-list	ENABLE_PARSER
}	ENABLE_PETSC
Dilate { { expression-list }, expression } {	ENABLE_PETSC4PY
transform-list \\	ENABLE_PLUGINS 243 ENABLE_POPPLER 243
Disk (expression) = { expression-list }; 37	
Distance	ENABLE_POST 243 ENABLE_PRIVATE_API 243
Draw;	ENABLE_PRO
,	ENABLE_PROFILE
_	ENABLE_QUADTRI 244
\mathbf{E}	ENABLE_REVOROPT
<pre>Ellipse (expression) = { expression,</pre>	ENABLE_RPATH
expression, expression, <,> }; 36	ENABLE_SLEPC
Else	ENABLE SOLVER
ElseIf (expression)	ENABLE_SYSTEM_CONTRIB
ENABLE_3M	ENABLE_TCMALLOC
ENABLE_ALGLIB	ENABLE_TOUCHBAR
ENABLE_ANN	ENABLE_VISUDEV 244
ENABLE_BAMG	ENABLE_VOROPP
ENABLE_BLAS_LAPACK	ENABLE_WRAP_JAVA244
ENABLE_BLOSSOM	ENABLE_WRAP_PYTHON244
ENABLE_BUILD_ANDROID 241	ENABLE_ZIPPER244
ENABLE_BUILD_DYNAMIC 241	EndFor
ENABLE_BUILD_IOS	EndIf
ENABLE_BUILD_LIB	Exit;
ENABLE_BUILD_SHARED	Exp (expression)
ENABLE_C99	ExternalProcess
ENABLE_CAIRO	extrude 39
ENABLE_CGNS	<pre>Extrude { { expression-list }, { expression-list</pre>
ENABLE_CGNS_CPEX0045	<pre>}, { expression-list }, expression } {</pre>
ENABLE_CXX11	extrude-list $\}$
ENABLE_DINTEGRATION	<pre>Extrude { { expression-list }, { expression-list</pre>
ENABLE_DOMHEX	<pre>}, { expression-list }, expression } {</pre>
ENABLE_FLTK	extrude-list layers } 64

<pre>Extrude { { expression-list }, { expression-list</pre>	General.AxesValueMinY	170
<pre>}, expression } { extrude-list }</pre>	General.AxesValueMinZ	
<pre>Extrude { { expression-list }, { expression-list</pre>	General.BackgroundGradient	170
}, expression } { extrude-list layers } 64	General.BackgroundImage3D	170
<pre>Extrude { expression-list } { extrude-list }</pre>	General.BackgroundImageFileName	165
	General.BackgroundImageHeight	171
<pre>Extrude { expression-list } { extrude-list</pre>	General.BackgroundImagePage	171
layers $\}$ 63	General.BackgroundImagePositionX	
Extrude { extrude-list } 40	General.BackgroundImagePositionY	
<pre>Extrude { extrude-list } Using Wire {</pre>	General.BackgroundImageWidth	
expression-list $\}$	General.BoundingBoxSize	
<pre>Extrude { Surface { expression-list }; layers <</pre>	General.BuildInfo	
<pre>Using Index[expr]; > < Using View[expr]; > <</pre>	General.BuildOptions	
ScaleLastLayer; > $\}$	General.Camera	
	General.CameraAperture	
F	General.CameraEyeSeparationRatio	
Γ	General.CameraFocalLengthRatio	
Fabs (expression)	General.ClipOA	
Field[expression] = string;	General.ClipOB	
<pre>Field[expression].string = char-expression </pre>	General ClipOC	
expression expression-list; 48	General ClipOD	
<pre>Fillet { expression-list } { expression-list } {</pre>	General.Clip1AGeneral.Clip1B	
expression-list $\}$	General.Clip1C	
Floor (expression)	General.Clip1D	
Fmod (expression, expression)27	General.Clip2A	
For (expression: expression)	General.Clip2B	
For (expression : expression)	General.Clip2C	
	General.Clip2D	
For string In { expression : expression :	General.Clip3A	
expression }	General.Clip3B	
For string In { expression : expression } 28	General.Clip3C	
Frustum	General.Clip3D	
	General. Clipod	
\mathbf{G}	General.Clip4A	173
\mathbf{G}		173 173
General.AbortOnError	General.Clip4AGeneral.Clip4B	173 173 173
General.AbortOnError 168 General.AlphaBlending 168	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A	173 173 173 173 173
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B	173 173 173 173 173 173
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168 General.ArrowHeadRadius 168	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5C	173 173 173 173 173 173 173
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168 General.ArrowHeadRadius 168 General.ArrowStemLength 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5C General.Clip5D	173 173 173 173 173 173 173
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168 General.ArrowHeadRadius 168 General.ArrowStemLength 169 General.ArrowStemRadius 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.Clip5D	173 173 173 173 173 173 173 173
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168 General.ArrowHeadRadius 168 General.ArrowStemLength 169 General.ArrowStemRadius 169 General.Axes 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume	173 173 173 173 173 173 173 174
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168 General.ArrowHeadRadius 168 General.ArrowStemLength 169 General.ArrowStemRadius 169 General.Axes 169 General.Axes 169 General.AxesAutoPosition 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume	173 173 173 173 173 173 173 174 174
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168 General.ArrowHeadRadius 168 General.ArrowStemLength 169 General.ArrowStemRadius 169 General.Axes 169 General.AxesAutoPosition 169 General.AxesForceValue 169	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipPositionX	173 173 173 173 173 173 173 174 174 174
General.AbortOnError 168 General.AlphaBlending 168 General.Antialiasing 168 General.ArrowHeadRadius 168 General.ArrowStemLength 169 General.ArrowStemRadius 169 General.Axes 169 General.AxesAutoPosition 169 General.AxesForceValue 169 General.AxesFormatX 165	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipPositionX General.ClipPositionY	173 173 173 173 173 173 173 173 174 174 174 174
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General AxesAutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements	173 173 173 173 173 173 173 173 174 174 174 174 174
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General AxesAutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight	173 173 173 173 173 173 173 173 174 174 174 174 174 174
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General AxesAutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnsitionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Axes	173 173 173 173 173 173 173 173 174 174 174 174 174 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Background	173 173 173 173 173 173 173 173 174 174 174 174 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General AxesAutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5C General.Clip5D General.Clip5D General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.BackgroundGradient	173 173 173 173 173 173 173 173 174 174 174 174 187 186 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5D General.Clip5D General.Clip5D General.Clip5D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip0nlyVolume General.Clip0nlyVolume General.ClipPositionX General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.DiffuseLight	173 173 173 173 173 173 173 173 174 174 174 174 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General AxesAutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5B General.Clip5D General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.DiffuseLight General.Color.Foreground	173 173 173 173 173 173 173 173 174 174 174 174 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5B General.Clip5D General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.DiffuseLight General.Color.Foreground General.Color.SmallAxes	173 173 173 173 173 173 173 173 174 174 174 174 187 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMaxZ 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5B General.Clip5D General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.ClipWholeElements General.Color.Axes General.Color.Background General.Color.Background General.Color.Foreground General.Color.SpecularLight	173 173 173 173 173 173 173 173 174 174 174 174 187 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMaxZ 169 General AxesMikado 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5B General.Clip5D General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.DiffuseLight General.Color.Foreground General.Color.SmallAxes	173 173 173 173 173 173 173 173 173 174 174 174 187 187 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMixAdo 169 General AxesMikado 169 General AxesMixA 169 General AxesMixA 169	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5B General.Clip5D General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.ClipWholeElements General.Color.Axes General.Color.Background General.Color.Background General.Color.Foreground General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight	173 173 173 173 173 173 173 173 173 174 174 174 187 187 187 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General AxesAutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMixado 169 General AxesMixado 169 General AxesMix 169 General AxesMinX 169	General.Clip4A General.Clip4B General.Clip4C General.Clip5D General.Clip5B General.Clip5D General.Clip5D General.Clip5D General.Clip5D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip0nlyDrawIntersectingVolume General.Clip0nlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.ClipWholeElements General.Color.Axes General.Color.Background General.Color.Background General.Color.DiffuseLight General.Color.Foreground General.Color.SpecularLight General.Color.SpecularLight General.Color.Text General.ColorScheme	173 173 173 173 173 173 173 173 173 174 174 174 187 187 187 187 187 187 147 147 147 147 147 147 147 147 147 14
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMixado 169 General AxesMixado 169 General AxesMinX 169 General AxesMinY 169 General AxesMinY 169 General AxesMinY 169 General AxesMinZ 169 General AxesMinY 169 General AxesMinY 169 General AxesMinY 1	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5B General.Clip5D General.Clip5D General.Clip5D General.ClipFactor General.Clip0nlyDrawIntersectingVolume General.Clip0nlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.DiffuseLight General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight General.Color.Text General.ColorScheme General.ColorScheme General.ColorScheme	173 173 173 173 173 173 173 173 173 174 174 174 187 187 187 187 187 187 147 174 174
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMixado 169 General AxesMix 169 General AxesMinX 169 General AxesMinY 169 General AxesMinZ 169<	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5A General.Clip5B General.Clip5D General.Clip5D General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.SpecularLight General.ColorScheme General.ConfirmOverwrite General.ContextPositionX	173 173 173 173 173 173 173 173 173 174 174 174 187 187 187 187 187 187 147 174 174 174 174 174 174 174 174 17
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMixAdo 169 General AxesMix 169 General AxesMinX 169 General AxesMinY 169 General AxesMinZ 169 General AxesMinZ 169 General AxesMinZ 169 General AxesMinZ 169 General AxesTicsX 170 General AxesTicsY 170	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5B General.Clip5C General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.BiffuseLight General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight General.Color.Text General.ColorScheme General.ContextPositionX General.ContextPositionX General.DefaultFileName General.DetachedMenu	173 173 173 173 173 173 173 173 174 174 174 174 187 187 187 187 187 187 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMixado 169 General AxesMix 169 General AxesMinX 169 General AxesMinY 169 General AxesMinZ 169 General AxesMinZ 169 General AxesTicsX 170 General AxesTicsY 170 General AxesTicsZ 170	General.Clip4A General.Clip4B General.Clip4C General.Clip5A General.Clip5B General.Clip5B General.Clip5D General.Clip5D General.Clip5D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip6D General.Clip7O General.Clip7O General.Clip8D General.Color.AmbientLight General.Color.Background General.Color.Background General.Color.BiffuseLight General.Color.SmallAxes General.Color.SmallAxes General.Color.SpecularLight General.Color.Text General.ColorScheme General.Confirm0verwrite General.ContextPositionX General.ContextPositionX General.DefaultFileName	173 173 173 173 173 173 173 173 174 174 174 174 187 187 187 187 187 187 187 187 187 187
General AbortOnError 168 General AlphaBlending 168 General Antialiasing 168 General ArrowHeadRadius 168 General ArrowStemLength 169 General ArrowStemRadius 169 General Axes 169 General Axes AutoPosition 169 General AxesForceValue 169 General AxesFormatX 165 General AxesFormatY 165 General AxesFormatZ 165 General AxesLabelX 165 General AxesLabelY 165 General AxesLabelZ 165 General AxesMaxX 169 General AxesMaxY 169 General AxesMixA 169 General AxesMinX 169 General AxesMinY 169 General AxesMinZ 169 General AxesMinZ 169 General AxesTicsX 170 General AxesTicsZ 170 General AxesValueMaxX 170	General.Clip4A General.Clip4B General.Clip4C General.Clip4D General.Clip5A General.Clip5B General.Clip5B General.Clip5C General.Clip5D General.ClipFactor General.ClipFactor General.ClipOnlyDrawIntersectingVolume General.ClipOnlyVolume General.ClipPositionX General.ClipPositionY General.ClipWholeElements General.Color.AmbientLight General.Color.Background General.Color.BiffuseLight General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight General.Color.SpecularLight General.Color.Text General.ColorScheme General.ContextPositionX General.ContextPositionX General.DefaultFileName General.DetachedMenu	173 173 173 173 173 173 173 173 174 174 174 174 187 187 187 187 187 187 187 187 187 187

General.DrawBoundingBoxes	175	General.ManipulatorPositionX	180
General.ErrorFileName	166	General.ManipulatorPositionY	
General.ExecutableFileName	166	General.MaxX	180
General.ExpertMode	175	General.MaxY	180
General.ExtraHeight	175	General.MaxZ	180
General.ExtraPositionX		General.MenuHeight	180
General.ExtraPositionY		General.MenuPositionX	
General.ExtraWidth		General.MenuPositionY	
General.FastRedraw		General.MenuWidth	
General.FieldHeight		General.MessageFontSize	
General.FieldPositionX		General.MessageHeight	
General.FieldPositionY		General.MinX	
		General.MinY	
General.FieldWidth			
General.FileChooserPositionX		General.MinZ	
General.FileChooserPositionY		General.MouseHoverMeshes	
General.FileName		General.MouseInvertZoom	
General.FltkColorScheme		General.MouseSelection	
General.FltkTheme		General.NativeFileChooser	
General.FontSize		General.NonModalWindows	
General.GraphicsFont		General.NoPopup	181
General.GraphicsFontEngine	167	General.NumThreads	182
General.GraphicsFontSize	176	General.OptionsFileName	
General.GraphicsFontSizeTitle	176	General.OptionsPositionX	182
General.GraphicsFontTitle	167	General.OptionsPositionY	182
General.GraphicsHeight		General.Orthographic	
General.GraphicsPositionX		General.PluginHeight	
General.GraphicsPositionY		General.PluginPositionX	
General.GraphicsWidth		General.PluginPositionY	182
General.HighOrderToolsPositionX		General.PluginWidth	182
General.HighOrderToolsPositionY		General.PointSize	
General.HighResolutionGraphics		General.PolygonOffsetAlwaysOn	
General.HighResolutionPointSizeFactor		General.PolygonOffsetFactor	
General.InitialModule		General.PolygonOffsetUnits	
General.InputScrolling		General.ProgressMeterStep	
General.Light0		General.QuadricSubdivisions	
General.LightOW		General.RecentFile0	
General.LightOX		General.RecentFile1	
General.LightOY		General.RecentFile2	
General.Light0Z	177	General.RecentFile3	
General.Light1		General.RecentFile4	167
General.Light1W	178	General.RecentFile5	167
General.Light1X	178	General.RecentFile6	167
General.Light1Y	178	General.RecentFile7	167
General.Light1Z		General.RecentFile8	168
General.Light2		General.RecentFile9	168
General.Light2W		General.RotationCenterGravity	
General.Light2X		General.RotationCenterX	
General.Light2Y			
General.Light2Z		General.KotationGentery	
		General RotationCenter7	
	178	General.RotationCenterZ	183
General.Light3	178 178	General.RotationCenterZGeneral.RotationX	183 183
General.Light3General.Light3W	178 178 179	General.RotationCenterZGeneral.RotationXGeneral.RotationY	183 183 183
General.Light3General.Light3WGeneral.Light3X	178 178 179 178	General.RotationCenterZGeneral.RotationXGeneral.RotationYGeneral.RotationZ	183 183 183 183
General.Light3W	178 178 179 178 179	General.RotationCenterZ	183 183 183 183 183
General.Light3W	178 178 179 178 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession.	183 183 183 183 183 184
General.Light3W	178 179 178 179 178 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX.	183 183 183 183 183 184 184
General.Light3 General.Light3W General.Light3Y General.Light3Y General.Light3Z General.Light4 General.Light4W	178 179 179 178 179 179 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX. General.ScaleY.	183 183 183 183 183 184 184 184
General.Light3W	178 179 179 178 179 179 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX. General.ScaleY. General.ScaleZ.	183 183 183 183 184 184 184 184
General.Light3 General.Light3W General.Light3Y General.Light3Y General.Light3Z General.Light4 General.Light4W	178 179 179 178 179 179 179 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX. General.ScaleY. General.ScaleZ. General.SessionFileName.	183 183 183 183 184 184 184 184 168
General.Light3 General.Light3W General.Light3X General.Light3Y General.Light3Z General.Light4 General.Light4W General.Light4X	178 179 179 178 179 179 179 179 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX. General.ScaleY. General.ScaleZ.	183 183 183 183 184 184 184 184 168
General.Light3 General.Light3W General.Light3X General.Light3Y General.Light3Z General.Light4 General.Light4W General.Light4X General.Light4Y	178 178 179 178 179 179 179 179 179 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX General.ScaleY General.ScaleZ General.ScssionFileName	183 183 183 183 184 184 184 184 168
General.Light3 General.Light3W General.Light3X General.Light3Y General.Light3Z General.Light4 General.Light4W General.Light4X General.Light4Y General.Light4Y General.Light4Y	178 178 179 178 179 179 179 179 179 179 179 179 179	General.RotationCenterZ General.RotationX General.RotationY General.RotationZ General.SaveOptions General.SaveSession General.ScaleX General.ScaleY General.ScaleZ General.ScaleZ General.SessionFileName General.Shininess	183 183 183 183 184 184 184 184 168 184
General.Light3 General.Light3W General.Light3Y General.Light3Z General.Light4 General.Light4W General.Light4X General.Light4Y General.Light4Z General.Light5 General.Light5	178 178 179 178 179 179 179 179 179 179 179 179 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX. General.ScaleY. General.ScaleZ. General.SessionFileName. General.Shininess. General.ShininessExponent.	183 183 183 183 184 184 184 168 184 184
General.Light3 General.Light3W General.Light3Y General.Light3Z General.Light4 General.Light4W General.Light4X General.Light4Y General.Light4Z General.Light5 General.Light5W General.Light5W	178 178 179 178 179 179 179 179 179 179 179 179 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX. General.ScaleY. General.ScaleZ. General.SessionFileName. General.Shininess. General.ShininessExponent. General.ShowMessagesOnStartup General.ShowModuleMenu	183 183 183 183 184 184 184 168 184 184 184
General.Light3 General.Light3W General.Light3Y General.Light3Z General.Light4 General.Light4W General.Light4X General.Light4Y General.Light4Z General.Light5 General.Light5	178 178 179 178 179 179 179 179 179 179 179 179 179 180 179 179	General.RotationCenterZ. General.RotationX. General.RotationY. General.RotationZ. General.SaveOptions. General.SaveSession. General.ScaleX. General.ScaleY. General.ScaleZ. General.SessionFileName. General.Shininess General.ShininessExponent. General.ShowMessagesOnStartup	183 183 183 183 184 184 184 168 184 184 184 184

General.SmallAxesPositionY	195	Geometry.OCCDisableStl	104
General.SmallAxesSize		Geometry.OCCFixDegenerated	
General.StatisticsPositionX		Geometry.OCCFixSmallEdges	
General.StatisticsPositionY		Geometry.OCCFixSmallFaces	194
General.Stereo		Geometry.OCCImportLabels	
General.SystemMenuBar	185	Geometry.OCCMakeSolids	
General.Terminal	185	Geometry.OCCParallel	195
General.TextEditor	168	Geometry.OCCScaling	195
General.TmpFileName		Geometry.OCCSewFaces	
General.Tooltips		Geometry.OCCTargetUnit	
General.Trackball		Geometry.OCCThruSectionsDegree	
General.TrackballHyperbolicSheet		Geometry.OCCUnionUnify	
· -			
General.TrackballQuaternion0		Geometry.OffsetX	
General.TrackballQuaternion1		Geometry.OffsetY	
General.TrackballQuaternion2		Geometry.OffsetZ	
General.TrackballQuaternion3		Geometry.OldCircle	
General.TranslationX	186	Geometry.OldNewReg	196
General.TranslationY	186	Geometry.OldRuledSurface	196
General.TranslationZ	186	Geometry.OrientedPhysicals	196
General.VectorType	186	Geometry.PointNumbers	
General.Verbosity		Geometry.Points	
General.Version		Geometry.PointSelectSize	
General.VisibilityPositionX		Geometry.PointSize	
General.VisibilityPositionY		Geometry.PointType	
General.WatchFilePattern		Geometry.ReparamOnFaceRobust	
General.ZoomFactor		Geometry.ScalingFactor	
Geometry.AutoCoherence		Geometry.SnapX	
Geometry.Clip		Geometry.SnapY	
Geometry.Color.HighlightOne		Geometry.SnapZ	
Geometry.Color.HighlightTwo	199	Geometry.SurfaceNumbers	197
Geometry.Color.HighlightZero	199	Geometry.Surfaces	197
Geometry.Color.Lines	198	Geometry.SurfaceType	197
Geometry.Color.Normals		Geometry.Tangents	
Geometry.Color.Points		Geometry.Tolerance	
Geometry.Color.Projection		Geometry.ToleranceBoolean	197
Geometry.Color.Selection		Geometry.Transform	
Geometry.Color.Surfaces		Geometry.TransformXX	
Geometry.Color.Tangents			
		Geometry.TransformXY	
Geometry.Color.Volumes		Geometry.TransformXZ	
Geometry.CopyMeshingMethod		Geometry.TransformYX	
${\tt Geometry.DoubleClickedEntityTag}$		Geometry.TransformYY	
${\tt Geometry.DoubleClickedLineCommand}$		Geometry.TransformYZ	
${\tt Geometry.DoubleClickedPointCommand} \dots \dots$	192	Geometry.TransformZX	198
${\tt Geometry.DoubleClickedSurfaceCommand}$	192	Geometry.TransformZY	198
Geometry.DoubleClickedVolumeCommand	192	Geometry.TransformZZ	198
Geometry.ExactExtrusion	192	Geometry.VolumeNumbers	198
Geometry.ExtrudeReturnLateralEntities		Geometry.Volumes	
Geometry.ExtrudeSplinePoints		gmsh/clear	
Geometry.HighlightOrphans		gmsh/finalize	
Geometry.LabelType		gmsh/fltk/awake	
Geometry.Light		gmsh/fltk/initialize	
Geometry.LightTwoSide		gmsh/fltk/isAvailable	
Geometry.LineNumbers		gmsh/fltk/lock	
Geometry.Lines		gmsh/fltk/run	
Geometry.LineSelectWidth		gmsh/fltk/selectElements	
Geometry.LineType		gmsh/fltk/selectEntities	
Geometry.LineWidth		gmsh/fltk/selectViews	300
Geometry.MatchGeomAndMesh	193	gmsh/fltk/unlock	299
Geometry.MatchMeshScaleFactor		gmsh/fltk/update	298
Geometry.MatchMeshTolerance		gmsh/fltk/wait	
Geometry.Normals		gmsh/graphics/draw	
Geometry.NumSubEdges		gmsh/initialize	
Geometry.OCCAutoFix		gmsh/logger/get	
Geometry.OCCBooleanPreserveNumbering		gmsh/logger/getCpuTime	
Geometry.OCCBoundsUseStl		gmsh/logger/getWallTime	
GEOME CIY. DOODOUMGSUSED LI	194	KINDIT/ TOKKET/ KECMQTTITIIIE	002

gmsh/logger/start	302	<pre>gmsh/model/getPhysicalName</pre>	251
<pre>gmsh/logger/stop</pre>	302	<pre>gmsh/model/getPrincipalCurvatures</pre>	
gmsh/logger/write	301	<pre>gmsh/model/getType</pre>	
gmsh/merge	247	<pre>gmsh/model/getValue</pre>	253
gmsh/model/add		<pre>gmsh/model/getVisibility</pre>	256
<pre>gmsh/model/addDiscreteEntity</pre>	252	gmsh/model/isInside	255
<pre>gmsh/model/addPhysicalGroup</pre>	251	gmsh/model/list	249
<pre>gmsh/model/geo/addBezier</pre>	275	<pre>gmsh/model/mesh/addElements</pre>	263
<pre>gmsh/model/geo/addBSpline</pre>		<pre>gmsh/model/mesh/addElementsByType</pre>	263
<pre>gmsh/model/geo/addCircleArc</pre>	274	gmsh/model/mesh/addNodes	260
${\tt gmsh/model/geo/addCompoundBSpline}$	276	<pre>gmsh/model/mesh/classifySurfaces</pre>	271
${\tt gmsh/model/geo/addCompoundSpline}$		gmsh/model/mesh/clear	258
<pre>gmsh/model/geo/addCurveLoop</pre>		<pre>gmsh/model/mesh/computeCohomology</pre>	272
<pre>gmsh/model/geo/addEllipseArc</pre>		<pre>gmsh/model/mesh/computeCrossField</pre>	
<pre>gmsh/model/geo/addLine</pre>		<pre>gmsh/model/mesh/computeHomology</pre>	272
${\tt gmsh/model/geo/addPlaneSurface}$		<pre>gmsh/model/mesh/createGeometry</pre>	272
<pre>gmsh/model/geo/addPoint</pre>	274	<pre>gmsh/model/mesh/createTopology</pre>	272
<pre>gmsh/model/geo/addSpline</pre>	275	gmsh/model/mesh/embed	
<pre>gmsh/model/geo/addSurfaceFilling</pre>		<pre>gmsh/model/mesh/field/add</pre>	
${\tt gmsh/model/geo/addSurfaceLoop}$		<pre>gmsh/model/mesh/field/remove</pre>	273
<pre>gmsh/model/geo/addVolume</pre>		<pre>gmsh/model/mesh/field/setAsBackgroundMesh</pre>	
gmsh/model/geo/copy	279		274
gmsh/model/geo/dilate		<pre>gmsh/model/mesh/field/setAsBoundaryLayer</pre>	274
<pre>gmsh/model/geo/extrude</pre>	277	<pre>gmsh/model/mesh/field/setNumber</pre>	273
<pre>gmsh/model/geo/getMaxTag</pre>	279	<pre>gmsh/model/mesh/field/setNumbers</pre>	273
<pre>gmsh/model/geo/mesh/setAlgorithm</pre>	281	<pre>gmsh/model/mesh/field/setString</pre>	273
<pre>gmsh/model/geo/mesh/setRecombine</pre>		gmsh/model/mesh/generate	257
<pre>gmsh/model/geo/mesh/setReverse</pre>	281	<pre>gmsh/model/mesh/getBarycenters</pre>	
<pre>gmsh/model/geo/mesh/setSize</pre>	280	<pre>gmsh/model/mesh/getBasisFunctions</pre>	
<pre>gmsh/model/geo/mesh/setSizeFromBoundary</pre>	281	<pre>gmsh/model/mesh/getBasisFunctionsOrientatio</pre>	nForElement
<pre>gmsh/model/geo/mesh/setSmoothing</pre>			
<pre>gmsh/model/geo/mesh/setTransfiniteCurve</pre>	280	<pre>gmsh/model/mesh/getBasisFunctionsOrientatio</pre>	nForElements
<pre>gmsh/model/geo/mesh/setTransfiniteSurface</pre>			265
		gmsh/model/mesh/getEdgeNumber	
<pre>gmsh/model/geo/mesh/setTransfiniteVolume</pre>		<pre>gmsh/model/mesh/getElement</pre>	
gmsh/model/geo/mirror		<pre>gmsh/model/mesh/getElementByCoordinates</pre>	
gmsh/model/geo/remove		<pre>gmsh/model/mesh/getElementEdgeNodes</pre>	
gmsh/model/geo/removeAllDuplicates		gmsh/model/mesh/getElementFaceNodes	
gmsh/model/geo/revolve		gmsh/model/mesh/getElementProperties	
gmsh/model/geo/rotate		gmsh/model/mesh/getElements	
gmsh/model/geo/setMaxTag		gmsh/model/mesh/getElementsByCoordinates	
gmsh/model/geo/splitCurve		gmsh/model/mesh/getElementsByType	
gmsh/model/geo/symmetrize		gmsh/model/mesh/getElementType	
gmsh/model/geo/synchronize		gmsh/model/mesh/getElementTypes	
gmsh/model/geo/translate		gmsh/model/mesh/getGhostElements	267
gmsh/model/geo/twist		gmsh/model/mesh/getInformationForElements	200
gmsh/model/getBoundary			
gmsh/model/getBoundingBox	252	gmsh/model/mesh/getIntegrationPoints	
gmsh/model/getClosestPoint		gmsh/model/mesh/getJacobian	
gmsh/model/getColor		gmsh/model/mesh/getJacobians	
gmsh/model/getCurrent		gmsh/model/mesh/getKeysForElement	
gmsh/model/getCurvature	204	gmsh/model/mesh/getKeysForElements	
gmsh/model/getDerivative	204	gmsh/model/mesh/getLastEntityError	
gmsh/model/getDimension	252	gmsh/model/mesh/getLastNodeError	
gmsh/model/getEntities	200 250	gmsh/model/mesh/getLocalCoordinatesInElemen	
gmsh/model/getEntitiesForPhysicalGroup			
gmsh/model/getEntitiesInBoundingBox		<pre>gmsh/model/mesh/getLocalMultipliersForHcurl</pre>	
gmsh/model/getEntityName		amah /madal /madh /mat Nada	
gmsh/model/getNormal		gmsh/model/mesh/getNode	
gmsh/model/getParametrization		gmsh/model/mesh/getNodes	
gmsh/model/getParametrizationBounds		gmsh/model/mesh/getNodesByElementType	
gmsh/model/getParent		<pre>gmsh/model/mesh/getNodesForPhysicalGroup gmsh/model/mesh/getNumberOfKeysForElements</pre>	208
gmsh/model/getPartitionsgmsh/model/getPhysicalGroups			266
gmsh/model/getPhysicalGroupsForEntity		gmsh/model/mesh/getNumberOfOrientations	
SHOTH HORET SEPTING TOTAL OUDDE OF EUR FILLS STORE SHOW	400	Empn, moder, mepn, Recommendation of temper (1011)	200

<pre>gmsh/model/mesh/getPeriodicNodes</pre>		gmsh/model/occ/addVolume	286
<pre>gmsh/model/mesh/optimize</pre>	257	gmsh/model/occ/addWedge	287
<pre>gmsh/model/mesh/partition</pre>	257	<pre>gmsh/model/occ/addWire</pre>	284
<pre>gmsh/model/mesh/preallocateBarycenters</pre>		<pre>gmsh/model/occ/affineTransform</pre>	291
gmsh/model/mesh/preallocateBasisFunctionsOn	rientati	igmEdn/Fibenedn/tosc/chamfer	289
		gmsh/model/occ/copy	
<pre>gmsh/model/mesh/preallocateElementsByType</pre>		gmsh/model/occ/cut	
6,,, _F , _J - J _F -	262	gmsh/model/occ/dilate	
gmsh/model/mesh/preallocateJacobians		gmsh/model/occ/extrude	
gmsh/model/mesh/rebuildElementCache		gmsh/model/occ/fillet	
gmsh/model/mesh/rebuildNodeCache		gmsh/model/occ/fragment	
gmsh/model/mesh/reclassifyNodes		gmsh/model/occ/fuse	
gmsh/model/mesh/recombine		gmsh/model/occ/getBoundingBox	293
gmsh/model/mesh/refine		gmsh/model/occ/getCenterOfMass	203
gmsh/model/mesh/relocateNodes		gmsh/model/occ/getEntities	
gmsh/model/mesh/removeDuplicateNodes		gmsh/model/occ/getEntitiesgmsh/model/occ/getEntitiesInBoundingBox	
gmsh/model/mesh/removeEmbedded		gmsh/model/occ/getMass	
gmsh/model/mesh/renumberElements		gmsh/model/occ/getMatrixOfInertia	
gmsh/model/mesh/renumberNodes		gmsh/model/occ/getMaxTag	
gmsh/model/mesh/reorderElements		gmsh/model/occ/healShapes	
gmsh/model/mesh/setAlgorithm	269	<pre>gmsh/model/occ/importShapes</pre>	
<pre>gmsh/model/mesh/setCompound</pre>		<pre>gmsh/model/occ/importShapesNativePointer</pre>	
<pre>gmsh/model/mesh/setNode</pre>		<pre>gmsh/model/occ/intersect</pre>	
<pre>gmsh/model/mesh/setOrder</pre>		<pre>gmsh/model/occ/mesh/setSize</pre>	
<pre>gmsh/model/mesh/setOutwardOrientation</pre>	270	gmsh/model/occ/mirror	
<pre>gmsh/model/mesh/setPeriodic</pre>	271	gmsh/model/occ/remove	291
<pre>gmsh/model/mesh/setRecombine</pre>	268	<pre>gmsh/model/occ/removeAllDuplicates</pre>	291
<pre>gmsh/model/mesh/setReverse</pre>	269	<pre>gmsh/model/occ/revolve</pre>	288
gmsh/model/mesh/setSize	267	gmsh/model/occ/rotate	290
<pre>gmsh/model/mesh/setSizeAtParametricPoints</pre>		gmsh/model/occ/setMaxTag	293
	268	gmsh/model/occ/symmetrize	
<pre>gmsh/model/mesh/setSizeFromBoundary</pre>	269	gmsh/model/occ/synchronize	293
gmsh/model/mesh/setSmoothing	269	gmsh/model/occ/translate	290
gmsh/model/mesh/setTransfiniteCurve		gmsh/model/remove	
gmsh/model/mesh/setTransfiniteSurface		gmsh/model/removeEntities	
gmsh/model/mesh/setTransfiniteVolume		gmsh/model/removeEntityName	
gmsh/model/mesh/splitQuadrangles		gmsh/model/removePhysicalGroups	
gmsh/model/mesh/unpartition		gmsh/model/removePhysicalName	
gmsh/model/occ/addBezier		gmsh/model/reparametrizeOnSurface	
gmsh/model/occ/addBezierFilling		gmsh/model/setColor	
gmsh/model/occ/addBezierSurface		gmsh/model/setCoordinates	
gmsh/model/occ/addBox	286	gmsh/model/setCurrent	
gmsh/model/occ/addBSpline		gmsh/model/setEntityName	
gmsh/model/occ/addBSplineFilling		gmsh/model/setPhysicalName	
gmsh/model/occ/addBSplineSurface		gmsh/model/setVisibility	
gmsh/model/occ/addCircle		gmsh/onelab/clear	
gmsh/model/occ/addCircleArc			
		gmsh/onelab/get	
gmsh/model/occ/addCone		gmsh/onelab/getNumber	301
gmsh/model/occ/addCurveLoop		gmsh/onelab/getString	301
gmsh/model/occ/addCylinder		gmsh/onelab/run	301
gmsh/model/occ/addDisk		gmsh/onelab/set	
gmsh/model/occ/addEllipse		gmsh/onelab/setNumber	
gmsh/model/occ/addEllipseArc		gmsh/onelab/setString	300
<pre>gmsh/model/occ/addLine</pre>		gmsh/open	247
gmsh/model/occ/addPipe		gmsh/option/getColor	249
<pre>gmsh/model/occ/addPlaneSurface</pre>		gmsh/option/getNumber	248
<pre>gmsh/model/occ/addPoint</pre>		<pre>gmsh/option/getString</pre>	248
<pre>gmsh/model/occ/addRectangle</pre>	284	<pre>gmsh/option/setColor</pre>	248
gmsh/model/occ/addSphere	286	gmsh/option/setNumber	248
gmsh/model/occ/addSpline		gmsh/option/setString	248
gmsh/model/occ/addSurfaceFilling		gmsh/plugin/run	298
gmsh/model/occ/addSurfaceLoop		gmsh/plugin/setNumber	297
gmsh/model/occ/addThickSolid		gmsh/plugin/setString	297
gmsh/model/occ/addThruSections		gmsh/view/add	
gmsh/model/occ/addTorus	287	gmsh/view/addAlias	296

gmsh/view/addHomogeneousModelData	Mesh.BdfFieldFormat	200
gmsh/view/addListData	Mesh.Binary	200
gmsh/view/addListDataString	Mesh.BoundaryLayerFanPoints	200
gmsh/view/addModelData	Mesh.CgnsConstructTopology	201
gmsh/view/combine	Mesh.CgnsExportCPEX0045	201
gmsh/view/copyOptions	Mesh.CgnsImportIgnoreBC	200
gmsh/view/getIndex294	Mesh.CgnsImportIgnoreSolution	201
gmsh/view/getListData	Mesh.CgnsImportOrder	200
gmsh/view/getListDataStrings	Mesh.CharacteristicLengthExtendFromBoundary	J
gmsh/view/getModelData		201
gmsh/view/getTags	Mesh.CharacteristicLengthFactor	201
gmsh/view/probe	${\tt Mesh.CharacteristicLengthFromCurvature}$	
gmsh/view/remove	${\tt Mesh.CharacteristicLengthFromParametricPoint}$	ıts
gmsh/view/write		
gmsh/write	Mesh.CharacteristicLengthFromPoints	
GMSH_MAJOR_VERSION	Mesh.CharacteristicLengthMax	
GMSH_MINOR_VERSION	Mesh.CharacteristicLengthMin	
GMSH_PATCH_VERSION	Mesh.Clip	
Gradient 57	Mesh.Color.Eight	
	Mesh.Color.Eighteen	
H	Mesh.Color.Eleven	
11	Mesh.Color.Fifteen	
Hide { : }	Mesh.Color.Five	
<pre>Homology ({ expression-list }) { {</pre>	Mesh.Color.Four	
<pre>expression-list } , { expression-list } };</pre>	Mesh.Color.Fourteen	
	Mesh.Color.Hexahedra	
Hypot (expression, expression)	Mesh.Color.Lines	
	Mesh.Color.Nine	
т	Mesh.Color.Nineteen	
I	Mesh.Color.Normals	
If (expression)	Mesh.Color.One	
Include char-expression;	Mesh Color Points	
<pre>Intersect Curve { expression-list } Surface {</pre>	Mesh Color Prigra	
expression }	Mesh Color Prisms	
IntersectAniso	Mesh.Color.Pyramids	
	Mesh.Color.Seven	
L	Mesh.Color.Seventeen	
п	Mesh.Color.Six	
Laplacian	Mesh.Color.Sixteen	
Line (expression) = { expression, expression	Mesh.Color.Tangents	
} ;	Mesh.Color.Ten	
Log (expression)	Mesh.Color.Tetrahedra	
Log10 (expression)	Mesh.Color.Thirteen	
LonLat	Mesh.Color.Three	216
	Mesh.Color.Triangles	215
M	Mesh.Color.Trihedra	
1V1	Mesh.Color.Twelve	217
Macro string char-expression	Mesh.Color.Two	216
MathEval 58	Mesh.Color.Zero	216
MathEvalAniso	Mesh.ColorCarousel	202
Max 59	${\tt Mesh.CompoundCharacteristicLengthFactor}$	202
Max (expression, expression)	Mesh.CompoundClassify	202
MaxEigenHessian 59	Mesh.CpuTime	
Mean	Mesh.CrossFieldClosestPoint	212
Memory	Mesh.DrawSkinOnly	202
Merge char-expression;	Mesh.Dual	
Mesh expression;	Mesh.ElementOrder	
Mesh.Algorithm	Mesh.Explode	
Mesh. Algorithm3D	Mesh.FirstElementTag	
Mesh.AlgorithmSwitchOnFailure	Mesh.FirstNodeTag	
Mesh. AllowSwapAngle	Mesh.FlexibleTransfinite	
Mesh AngleSmoothNormals	Mesh Heyshedra	
Mesh.AngleToleranceFacetOverlap 200 Mesh.AnisoMax 200	Mesh.Hexahedra	
ricon.aliiourida	HESH.HIKHULUEIDISIOAD	400

Mesh.HighOrderIterMax	203	Mesh.PartitionTetWeight	207
Mesh.HighOrderNumLayers	203	Mesh.PartitionTopologyFile	207
Mesh.HighOrderOptimize		Mesh.PartitionTrihedronWeight	207
Mesh.HighOrderPassMax	203	Mesh.PartitionTriWeight	207
Mesh.HighOrderPeriodic	203	Mesh.PointNumbers	
Mesh.HighOrderPoissonRatio		Mesh.Points	
Mesh.HighOrderPrimSurfMesh		Mesh.PointSize	209
Mesh.HighOrderThresholdMax	204	Mesh.PointType	209
Mesh.HighOrderThresholdMin	204	Mesh.PreserveNumberingMsh2	210
Mesh.IgnoreParametrization	210	Mesh.Prisms	209
Mesh.IgnorePeriodicity	211	Mesh.Pyramids	209
Mesh.LabelSampling	204	Mesh.Quadrangles	
Mesh.LabelType	204	Mesh.QualityInf	210
${\tt Mesh.LcIntegrationPrecision} \dots \dots \dots \dots \dots$		Mesh.QualitySup	
Mesh.Light		Mesh.QualityType	
Mesh.LightLines		Mesh.RadiusInf	
Mesh.LightTwoSide		Mesh.RadiusSup	
Mesh.LineNumbers		Mesh.RandomFactor	
Mesh.Lines		Mesh.RandomFactor3D	
Mesh.LineWidth	_	Mesh.RandomSeed	
Mesh.MaxIterDelaunay3D		Mesh.RecombinationAlgorithm	
Mesh.MaxNumThreads1D		Mesh.Recombine3DAll	
Mesh.MaxNumThreads2D		Mesh.Recombine3DConformity	211
Mesh.MaxNumThreads3D		Mesh.Recombine3DLevel	
Mesh.MaxRetries		Mesh.RecombineAll	
Mesh.MedFileMinorVersion		Mesh.RecombineOptimizeTopology	
Mesh.MedImportGroupsOfNodes		Mesh.RefineSteps	
Mesh.MedSingleModel		Mesh.Renumber	
Mesh.MeshOnlyEmpty		Mesh.ReparamMaxTriangles	
Mesh.MeshOnlyVisible		Mesh.SaveAll	
Mesh.MetisAlgorithm		Mesh.SaveElementTagType	
Mesh.MetisEdgeMatching		Mesh.SaveGroupsOfElements	
Mesh.MetisMaxLoadImbalance		Mesh.SaveGroupsOfNodes	
Mesh.MetisMinConn		Mesh.SaveParametric	
Mesh.MetisObjective		Mesh.SaveTopology	
Mesh.MetisRefinementAlgorithm		Mesh.ScalingFactor	
Mesh.MinimumCurvePoints		Mesh.SecondOrderIncomplete Mesh.SecondOrderLinear	
Mesh.MinimumElementsPerTwoPi		Mesh.SmoothCrossField	
Mesh.MshFileVersion		Mesh.Smoothing	
Mesh.NbHexahedra		Mesh.SmoothNormals	
Mesh. NbNodes		Mesh.SmoothRatio	
Mesh.NbPartitions		Mesh.StlAngularDeflection	
Mesh.NbPrisms		Mesh.StlLinearDeflection	
Mesh.NbPyramids		Mesh.StlOneSolidPerSurface	
Mesh.NbQuadrangles		Mesh.StlRemoveDuplicateTriangles	
Mesh.NbTetrahedra		Mesh.SubdivisionAlgorithm	
Mesh.NbTriangles		Mesh.SurfaceEdges	
Mesh.NbTrihedra		Mesh.SurfaceFaces	
Mesh.NewtonConvergenceTestXYZ		Mesh.SurfaceNumbers	
Mesh.Normals		Mesh.SwitchElementTags	
Mesh.NumSubEdges	209	Mesh.Tangents	
Mesh.Optimize	209	Mesh.Tetrahedra	
Mesh.OptimizeNetgen		Mesh.ToleranceEdgeLength	214
Mesh.OptimizeThreshold		Mesh.ToleranceInitialDelaunay	214
Mesh.PartitionCreateGhostCells	207	Mesh.Triangles	214
${\tt Mesh.PartitionCreatePhysicals}$	207	Mesh.Trihedra	209
Mesh.PartitionCreateTopology	207	Mesh.UnvStrictFormat	214
Mesh.PartitionHexWeight		Mesh.VolumeEdges	214
${\tt Mesh.PartitionLineWeight}$	206	Mesh.VolumeFaces	214
Mesh.PartitionOldStyleMsh2		Mesh.VolumeNumbers	
Mesh.PartitionPrismWeight		Mesh.Voronoi	
Mesh.PartitionPyramidWeight		Mesh.ZoneDefinition	214
Mesh.PartitionQuadWeight		<pre>MeshAlgorithm Surface { expression-list } =</pre>	
Mesh.PartitionSplitMeshFiles	207	expression:	. 68

MeshSizeFromBoundary Surface { expression-lis		Plugin (string) . string = expression	
} = expression;		char-expression;	
Min		Plugin(AnalyseMeshQuality)	
Min (expression, expression)		Plugin(Annotate)	
MinAniso		Plugin(BoundaryAngles)	
Modulo (expression, expression)		Plugin(Bubbles)	
MPI_Rank		Plugin(Crack) Plugin(Curl)	
MPI_Size		Plugin(CurvedBndDist)	
		Plugin(CutBox)	
N		Plugin(CutGrid)	
		Plugin(CutMesh)	
newl	29	Plugin(CutParametric)	
newll	29	Plugin(CutPlane)	
NewModel;	33	Plugin(CutSphere)	
newp		Plugin(DiscretizationError)	84
newregnews	20	Plugin(Distance)	
	00	Plugin(Divergence)	
newslnewv	20	Plugin(Eigenvalues)	
NonBlockingSystemCall char-expression;	90	Plugin(Eigenvectors)	
NonDiockingbystemodif char expression,		Plugin(ExtractEdges)	
		Plugin(ExtractElements)	
0		Plugin(FieldFromAmplitudePhase)	
October		Plugin(GaussPoints)	
Octree		Plugin(HarmonicToTime)	
OnelabRun (char-expression <, char-expression >)		Plugin(HomologyComputation)	
operator-binary		Plugin(HomologyPostProcessing)	
operator-ternary-left		Plugin(Integrate)	
operator-ternary-right	-	Plugin(Isosurface)	
operator-unary-left		Plugin(Lambda2)	
operator-unary-right		Plugin(LongitudeLatitude)	
OptimizeMesh char-expression;		Plugin(MakeSimplex)	90
op-122-11001 01111 011-1111111111111111111		Plugin(MathEval)	90
		Plugin(MeshSizeFieldView)	
P		Plugin(MeshSubEntities)	
Param		Plugin(MeshVolume)	
PartitionMesh expression;	0.0	Plugin(MinMax)	
Periodic Curve { expression-list } = {		Plugin (Modulus Dhaga)	
expression-list };		Plugin(ModulusPhase)	
<pre>Periodic Curve Surface { expression-list } =</pre>	•	Plugin(NearToFarField)	
expression-list } Affine Translate {		Plugin(NewView)	
expression-list } ;		Plugin(Particles)	
<pre>Periodic Curve Surface { expression-list } =</pre>		Plugin(Probe)	
<pre>expression-list } Rotate { expression-list</pre>	t	Plugin(Remove)	
<pre>}, { expression-list }, expression };</pre>	66	Plugin(Scal2Tens)	
Periodic Surface expression { expression-list		Plugin(Scal2Vec)	
= expression { expression-list } ;		Plugin(ShowNeighborElements)	
Physical Curve (expression char-expression		Plugin(SimplePartition)	
<pre><, expression>) <+ ->= { expression-list }</pre>		Plugin(Skin)	
};Physical Point (expression char-expression		Plugin(Smooth)	
<pre><, expression>) <+ ->= { expression-list</pre>		Plugin(SpanningTree)	
};		Plugin(SphericalRaise)	
Physical Surface (expression char-expression		Plugin(Summation)	
<pre><, expression>) <+ ->= { expression-list</pre>		Plugin(Tetrahedralize)	
};		Plugin(Transform)	
Physical Volume (expression char-expression		Plugin(Triangulate)	
<, expression>) <+ ->= { expression-list		Plugin(VoroMetal)1	
};	39	Plugin(Warp)	103
Pi	29	Point (expression) = { expression, expression	n,
Plane Surface (expression) = { expression-list		expression <, expression > };	
};		Point Curve { expression-list } In Surface {	
Plugin (string) . Run;	75	expression };	66

Point Curve Surface { expression-list } ii		Print.lext
Volume { expression };		Print.TexWidthInMm
PointsOf { transform-list }		Print.Width
PostProcessing.AnimationCycle		Print.X3dCompatibility
PostProcessing. AnimationDelay		Print.X3dEdges
PostProcessing. AnimationStep		Print.X3dPrecision
PostProcessing.CombineCopyOptions		Print.X3dRemoveInnerBorders
PostProcessing.CombineRemoveOriginal		Print.X3dSurfaces
PostProcessing.DoubleClickedGraphPointComma		Print.X3dTransparency
PostProcessing.DoubleClickedGraphPointX		Print.X3dVertices
PostProcessing.DoubleClickedGraphPointY		<pre>Printf (char-expression , expression-list) ></pre>
PostProcessing.DoubleClickedView		char-expression;
PostProcessing.ForceElementData		<pre>Printf (char-expression , expression-list) >></pre>
PostProcessing.ForceNodeData		char-expression;
PostProcessing.Format		<pre>Printf (char-expression <, expression-list>);</pre>
PostProcessing.GraphPointCommand		3
PostProcessing.GraphPointX		
PostProcessing.GraphPointY		R
PostProcessing.HorizontalScales		Don'd (commercian)
PostProcessing.Link		Rand (expression)
PostProcessing.NbViews		real-option *= expression;
PostProcessing.Plugins		real-option += expression;
PostProcessing.SaveInterpolationMatrices		real-option -= expression;
PostProcessing.SaveMesh		real-option /= expression;
PostProcessing.Smoothing		real-option = expression;
PostView		Recombine Surface { expression-list-or-all } < expression >;
Print char-expression;		RecombineMesh; 6
Print.Background		Rectangle (expression) = { expression-list };
Print.CompositeWindows		nectangle (expression) - { expression-iist },
Print.DeleteTemporaryFiles		RefineMesh; 6
Print.EpsBestRoot		RelocateMesh Point Curve Surface {
Print.EpsCompress		expression-list-or-all };
Print.EpsLineWidthFactor		RenumberMeshElements; 6
Print.EpsOcclusionCulling	188	RenumberMeshNodes; 6
Print.EpsPointSizeFactor	188	ReorientMesh Volume { expression-list }; 6
Print.EpsPS3Shading	188	Restrict
Print.EpsQuality	188	Return
Print.Format		ReverseMesh Curve Surface {
Print.GeoLabels		expression-list-or-all };6
Print.GeoOnlyPhysicals		Rotate { { expression-list }, { expression-list
Print.GifDither		}, expression } { transform-list } 4
Print.GifInterlace		Round (expression)
Print.GifSort		Ruled ThruSections (expression) = {
Print.GifTransparent		expression-list };
Print.Height		Ruled ThruSections { expression-list } 4
Print.JpegQuality		Todalog initiation (onproperties 1120)
Print.JpegSmoothing		
Print.Parameter		\mathbf{S}
Print.ParameterCommand		Same about amountains.
Print.ParameterFirst		Save Char-expression; 6 Save View[expression] char-expression; 7
Print.ParameterLast		SendToServer View[expression] char-expression;
Print.ParameterSteps		Sendroserver view[expression] char-expression;
Print.PgfExportAxis		
Print.PgfHorizontalBar		SetChanged;
Print.PgfTwoDim		SetFactory(char-expression);
Print PostFlowert		
Print PostElement		expression)
Print PostElementary		SetName char-expression; 3
Print.PostEtaPrint.PostGamma		SetNumber(char-expression, expression); 3 SetOrder expression;
Print.PostGamma		SetString(char-expression , char-expression)
Print.PostSIGE		setstring char-expression, char-expression ;
Print.TexAsEquation		ShapeFromFile(char-expression);
Print.TexForceFontSize		Show { : }
1 1 110 1 1 CAI OI COI OII OD 12 G	100	D110 11 11 11 11 11 11 11 11 11 11 11 11

Show { : };	<pre>Split Curve { expression } Point {</pre>
Sin (expression)	expression-list $\}$
Sinh (expression)27	Sqrt (expression)27
Sleep expression;	string *= expression; 30
<pre>Smoother Surface { expression-list } =</pre>	string += { expression-list }; 30
expression; 68	string += expression;30
Solver.AlwaysListen	string -= { expression-list }; 30
Solver.AutoArchiveOutputFiles	string -= expression; 30
Solver.AutoCheck	string /= expression;
Solver.AutoLoadDatabase	string = { };
Solver.AutoMergeFile	string = char-expression; 30
Solver.AutoMesh	string = expression;
Solver.AutoSaveDatabase	<pre>string [{ expression-list }] *= {</pre>
Solver.AutoShowLastStep	expression-list };
Solver.AutoShowViews	<pre>string [{ expression-list }] += {</pre>
Solver.Executable0	expression-list };
Solver.Executable1	<pre>string [{ expression-list }] -= {</pre>
Solver.Executable2	expression-list };
Solver.Executable3	string [{ expression-list }] /= {
Solver.Executable4	expression-list };30
Solver.Executable5	<pre>string [{ expression-list }] = {</pre>
Solver.Executable6	expression-list $\};$
Solver.Executable7	<pre>string[] += Str(char-expression-list); 30</pre>
Solver.Executable8	string[] = { expression-list };
Solver.Executable9	<pre>string[] = Str(char-expression-list); 30</pre>
Solver.Extension0	Structured
Solver.Extension1	<pre>Surface (expression) = { expression-list } <</pre>
Solver.Extension2	In Sphere { expression } >;
Solver.Extension3	<pre>Surface Loop (expression) = { expression-list</pre>
Solver.Extension4 219 Solver.Extension5 219	} < Using Sewing >;
Solver.Extension6 219	<pre>Symmetry { expression-list } { transform-list }</pre>
Solver.Extension7	
Solver Extension8	SyncModel;
Solver.Extension9	SystemCall char-expression;
Solver.Name0	
Solver.Name1	\mathbf{T}
Solver.Name2	_
Solver.Name3	Tan (expression)
Solver.Name4	Tanh (expression)
Solver.Name5	Threshold
Solver.Name6	ThruSections (expression) = { expression-list
Solver.Name7	};39
Solver.Name8	ThruSections { expression-list } 40
Solver.Name9	Torus (expression) = { expression-list }; 39
Solver.OctaveInterpreter	TotalMemory
Solver.Plugins	<pre>Transfinite Curve { expression-list-or-all } =</pre>
Solver.PythonInterpreter	expression < Using Progression Bump
Solver.RemoteLogin0	expression >;
Solver.RemoteLogin1	Transfinite Surface { expression-list-or-all }
Solver.RemoteLogin2	<= { expression-list } > < Left Right
Solver.RemoteLogin3	Alternate AlternateRight AlternateLeft
Solver.RemoteLogin4	> ;
Solver.RemoteLogin5	Transfinite Volume { expression-list } < = {
Solver.RemoteLogin6	expression-list } > ; 65 transform 41
Solver.RemoteLogin7	TransfQuadTri { expression-list } ;
Solver.RemoteLogin8	Translate { expression-list } { transform-list
Solver.RemoteLogin9	}42
Solver SocketName 222	j±2
Solver Timoout	
Sphere (expression) = f expression-list b	\mathbf{V}
Sphere (expression) = { expression-list }; 	<pre>View "string" { string < (expression-list) > {</pre>
<pre>Spline (expression) = { expression-list };</pre>	expression-list }; };
	View.AbscissaRangeType

View.AdaptVisualizationGrid	226	View.CustomMin	230
View.AngleSmoothNormals	226	View.DisplacementFactor	230
View.ArrowSizeMax	226	View.DoubleClickedCommand	225
View.ArrowSizeMin	227	View.DrawHexahedra	230
View.Attributes	224	View.DrawLines	230
View.AutoPosition		View.DrawPoints	230
View.Axes	227	View.DrawPrisms	230
View.AxesAutoPosition		View.DrawPyramids	
View.AxesFormatX		View.DrawQuadrangles	
View.AxesFormatY		View.DrawScalars	
View.AxesFormatZ		View.DrawSkinOnly	
View.AxesLabelX		View.DrawStrings	
View.AxesLabelY		View.DrawTensors	
View.AxesLabelI		View.DrawTetrahedra	
View.AxesMaxX		View.DrawTriangles	
View.AxesMaxY		View.DrawTrihedra	
		View.DrawVectors	
View.AxesMaxZ			
View.AxesMikado		View.Explode	
View.AxesMinX		View.ExternalView	
View.AxesMinY		View.FakeTransparency	
View.AxesMinZ		View.FileName	
View.AxesTicsX		View.ForceNumComponents	
View.AxesTicsY		View.Format	
View.AxesTicsZ		View.GeneralizedRaiseFactor	_
View.Boundary		View.GeneralizedRaiseView	232
View.CenterGlyphs		View.GeneralizedRaiseX	
View.Clip	228	View.GeneralizedRaiseY	225
View.Closed	228	View.GeneralizedRaiseZ	225
View.Color.Axes	238	View.GlyphLocation	232
View.Color.Background2D	238	View.Group	225
View.Color.Hexahedra	238	View.Height	232
View.Color.Lines	237	View.IntervalsType	
View.Color.Normals	238	View.Light	
View.Color.Points	237	View.LightLines	
View.Color.Prisms		View.LightTwoSide	
View.Color.Pyramids		View.LineType	
View.Color.Quadrangles		View.LineWidth	
View.Color.Tangents		View.Max	
View.Color.Tetrahedra		View.MaxRecursionLevel	
View.Color.Text2D		View.MaxVisible	
View.Color.Text3D		View.MaxX	
View.Color.Triangles		View.MaxY	
View.Color.Trihedra		View.MaxZ	
View.ColormapAlpha		View.Min	
1 1		View.MinVisible	
View.ColormapAlphaPower		View.MinX	
View.ColormapBeta			
View.ColormapBias		View.MinY	
View.ColormapCurvature		View.MinZ	
View.ColormapInvert		View.Name	
View.ColormapNumber		View.NbIso	
View.ColormapRotation		View.NbTimeStep	
View.ColormapSwap		View.NormalRaise	
View.ColorTable		View.Normals	
View.ComponentMap0		View.OffsetX	
View.ComponentMap1		View.OffsetY	
${\tt View.ComponentMap2}$		View.OffsetZ	
View.ComponentMap3		View.PointSize	
${\tt View.ComponentMap4}$	229	View.PointType	
${\tt View.ComponentMap5}$	229	View.PositionX	234
View.ComponentMap6	230	View.PositionY	234
View.ComponentMap7	230	View.RaiseX	234
View.ComponentMap8		View.RaiseY	235
View.CustomAbscissaMax		View.RaiseZ	235
View.CustomAbscissaMin		View.RangeType	
View CustomMax	230		235

View.SaturateValues	235	View.TransformXY	236
View.ScaleType	235	View.TransformXZ	236
View.ShowElement	235	View.TransformYX	236
View.ShowScale	235	View.TransformYY	236
View.ShowTime	235	View.TransformYZ	236
View.SmoothNormals	235	View.TransformZX	237
View.Stipple	235	View.TransformZY	
View.Stipple0	225	View.TransformZZ	
View.Stipple1	225	View.Type	
View.Stipple2	226	View.UseGeneralizedRaise	
View.Stipple3	226	View.VectorType	
View.Stipple4	226	View.Visible	
View.Stipple5	226	View.Width	
View.Stipple6	226	<pre>Volume (expression) = { expression-list };</pre>	101
View.Stipple7	226	volume (expression) - { expression-iist };	90
View.Stipple8	226		30
View.Stipple9	226		
View.Tangents	236	\mathbf{W}	
View.TargetError	236	**	
View.TensorType	236	Warning Error (char-expression <,	
View.Time	236	expression-list>);	31
View.TimeStep	236	<pre>Wedge (expression) = { expression-list };</pre>	39
View.TransformXX	236	<pre>Wire (expression) = { expression-list };</pre>	37