Problems	5.6(4)	5.11	5.15(no normal)	5.17	5.23	Total
Points						

Forest Kobayashi Math 147 HW 5 Solutions 03/13/2019

5.6(4). Show that \mathbb{R}^2 with the standard topology is normal.

Solution. First, we introduce some notation.

Notational Note: Let (X,\mathcal{F}) be a topological space. Let $x \in X$, and let $Y \subset X$. Then

$$d(x,Y) = \inf_{y \in Y} d(x,y)$$

Main Proof: Let A, B be disjoint closed subsets of \mathbb{R}^2 . For each $a \in A, b \in B$, let

$$\varepsilon_a = \frac{d(a, B)}{3}$$

$$\varepsilon_b = \frac{d(b, A)}{3}$$

and note that by part (1), $\varepsilon_a, \varepsilon_b > 0$. Define

$$U = \bigcup_{a \in A} B_{\varepsilon_a}(a)$$

$$U = \bigcup_{a \in A} B_{\varepsilon_a}(a) \qquad \qquad V = \bigcup_{b \in B} B_{\varepsilon_b}(b)$$

and observe $U, V \in \mathcal{T}_{\mathrm{std}}$, with $A \subset U$ and $B \subset V$.

Suppose, to obtain a contradiction, that $U \cap V \neq \emptyset$. Let $x \in U \cap V$. Then there exist $a \in A$, $b \in B$ such that $x \in B_{\varepsilon_a}(a) \cap B_{\varepsilon_b}(b)$. It follows that

$$d(a,b) \le d(a,x) + d(x,b)$$

 $\le \varepsilon_a + \varepsilon_b$

WLOG, suppose $\varepsilon_b \leq \varepsilon_a$. Then

$$d(a,b) \le 2\varepsilon_a$$
$$= \frac{2}{3}d(a,B)$$

a contradiction. Hence $U \cap V = \emptyset$, so \mathbb{R}^2 is normal, as desired.

Clarifying Note: Why is this a contradiction? Because

$$d(a,B) = \inf_{b \in B} d(a,b)$$

 $d(a,B)=\inf_{b\in B}d(a,b)$ hence for all $b'\in B,$ $d(a,B)\leq d(a,b').$ Thus our result would imply $d(a,b)\leq \frac{2}{3}d(a,b),$ which holds iff d(a,b)=0, a contradiction.

$$d(a,b) \le \frac{2}{3}d(a,b),$$

5.11 (The Incredible Shrinking Theorem). A topological space X is normal if and only if for each pair of open sets U, V such that $U \cup V = X$, there exist open sets U', V' such that $\overline{U'} \subset U$ and $\overline{V'} \subset V$, and $U' \cup V' = X$.

 \blacksquare

5.15. A space (X,\mathcal{T}) is T_1 if and only if every point in X is a closed set.

Solution. Order topologies are T_1 , Hausdorff, and regular.

5.17. Let X and Y be regular. Then $X \times Y$ is regular.

Solution.

5.23. Let A be a closed subset of a normal space X. Then A is normal when given the relative topology.

Solution.