Unit 7: Differentiation

Subunit 7.3: Applications of differentiation

TUDUGA GUGSUUH NU.	To	pical	Questic	on No:	1
--------------------	----	-------	---------	--------	---

Determine whether f is an increas	sing function a decreasing function or neither	
Determine whether I is an increas	sing function, a decreasing function or neither.	

and the x -coordinate of P .	[4

The diagram shows the curve with equation $y = 9(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}})$. The curve crosses the *x*-axis at the point *A*.

(a)	Find the x -coordinate of A .	[2]
		•••••
		•••••
(b)	Find the equation of the tangent to the curve at <i>A</i> .	[4]
(c)	Find the <i>x</i> -coordinate of the maximum point of the curve.	[2]
		•••••

(a)	Find the rate of increase at <i>A</i> of the <i>x</i> -coordinate of the point.	
		••••••
		•••••
(b)	Find the equation of the curve.	

(a)	Show that $k = -2$.
(b)	Find the equation of the curve.
(c)	Find the coordinates of the stationary point.

	Find the x -coordinate of the point on the curve at which the x - and y -coordinates are increasing at same rate.
•	
•	
•	
•	

5

A curve has the equation $y = \frac{3}{2x^2 - 5}$.
Find the equation of the normal to the curve at the point $(2,1)$, giving your answer in the form $ax + by + c = 0$, where a , b and c are integers.

DO NOT WRITE IN THIS I

(b)

Z

The diagram shows the curve with equation $y = 2x^2 - \frac{5}{x} + 3$. The curve crosses the x-axis at the point P(1,0) and M is a minimum point.

)	Find the gradient of the curve at P.	[2]
)	Find the coordinates of M . Give each coordinate correct to 3 significant figures.	[3]

The diagram shows part of the curve with equation $y = x^3 - 2bx^2 + b^2x$ and the line OA, where A is the maximum point on the curve. The x-coordinate of A is a and the curve has a minimum point at (b, 0), where a and b are positive constants.

(a)	Show that $b = 3a$.	[4]
(b)	Show that the area of the shaded region between the line and the curve is ka^4 , v to be found.	where k is a fraction [7]

rate	oint <i>P</i> is moving along a curve in such a way that the <i>x</i> -coordinate of <i>P</i> is increasing at a cons of 2 units per minute. The equation of the curve is $y = (5x - 1)^{\frac{1}{2}}$.
(a)	Find the rate at which the <i>y</i> -coordinate is increasing when $x = 1$.
(b)	Find the value of x when the y-coordinate is increasing at $\frac{5}{8}$ units per minute.

11

The	equation of a curve is $y = 2\sqrt{3x+4} - x$.
(a)	Find the equation of the normal to the curve at the point $(4, 4)$, giving your answer in the for $y = mx + c$.
(b)	Find the coordinates of the stationary point.
(c)	Determine the nature of the stationary point.
(c)	Determine the nature of the stationary point.
(c)	Determine the nature of the stationary point.
(c)	Determine the nature of the stationary point.

The equation of a curve is $y = (2k-3)x^2 - kx - (k-2)$, where k is a constant. The line $y = 3x - 4$ is tangent to the curve.
Find the value of k . [5]

	A(2, k)	B (2.9, 2.8025)	C (2.99, 2.9800)	D (2.999, 2.9980)	E(3, 3)
(a)	Find k , given	ving your answer con	rrect to 4 decimal plac	ees.	[1]
(b)	Find the g	radient of AE , giving	g your answer correct	to 4 decimal places.	[1]
	gradients eectively.	of BE , CE and DE	rounded to 4 decin	nal places, are 1.9748.	, 1.9975 and 1.9997
(c)		ng a reason for your f the curve at the poi		lues of the four gradien	nts suggest about the [2]

The equation of a curve is $y = (x - 3)\sqrt{x + 1} + 3$. The following points lie on the curve. Non-exact values are rounded to 4 decimal places.

The diagram shows part of the curve with equation $y = x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}$, where k is a positive constant.

(a) Find the coordinates of the minimum point of the curve, giving your answer in terms of k. [4]

The	tangent at the point on the curve where $x = 4k^2$ intersects the y-axis at P.
(b)	Find the y-coordinate of P in terms of k . [4]

Fin	If the maximum possible value of the constant a .
••••	
••••	
••••	
••••	
••••	
••••	
••••	

The diagram shows the curve with equation $y = x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}$. The line y = 5 intersects the curve at the points A(1, 5) and B(16, 5).

(a) Find the equation of the tangent to the curve at the point A.

[4]

b)	Calculate the area of the shaded region. [4]

Find the rate at which h is increasing at the instant when $h = 10 \mathrm{cm}$.	
	•••••
	•••••
At another instant, the rate at which h is increasing is $0.075 \mathrm{cm}$ per second.	
Find the value of V at this instant.	

11	The	agustian	of o		:.
11	rne	equation	or a	curve	18

$$y = k\sqrt{4x + 1} - x + 5,$$

where k is a positive constant.

(a)	Find $\frac{dy}{dx}$.	[2]
		••••
(b)	Find the x -coordinate of the stationary point in terms of k .	[2]
		· • • • • • •
		•••••
		•••••
		•••••
(c)	Given that $k = 10.5$, find the equation of the normal to the curve at the point where the tanto the curve makes an angle of $\tan^{-1}(2)$ with the positive x-axis.	

The diagram shows the points $A\left(1\frac{1}{2}, 5\frac{1}{2}\right)$ and $B\left(7\frac{1}{2}, 3\frac{1}{2}\right)$ lying on the curve with equation $y = 9x - (2x+1)^{\frac{3}{2}}$.

(a)	Find the coordinates of the maximum point of the curve.	[4]
(b)	Verify that the line AB is the normal to the curve at A .	[3]

	Find the equation of the curve.	[4
		•••
•		•••
		•••
••		•••
		•••
1	tangent to the curve at $(0, 3)$ intersects the curve again at one other point, P .	
	Show that the x-coordinate of P satisfies the equation $(2x + 1)(x - 1)^2 - 1 = 0$.	[4
		•••

A function is defined by $f(x) = \frac{4}{x^3} - \frac{3}{x} + 2$ for $x \ne 0$. The graph of y = f(x) is shown in the diagram.

[5]

(a) Find the set of values of x for which f(x) is decreasing.

b)	A triangle is bounded by the y-axis, the normal to the curve at the point where $x = 1$ and the tangent to the curve at the point where $x = -1$.
	Find the area of the triangle. Give your answer correct to 3 significant figures. [8]

A point P is moving along the curve in such a way that the y -coordinate of point P is decreas 5 units per second.
Find the rate at which the x-coordinate of point P is increasing when $y = 32$.
Point A on the curve has y -coordinate 32. Point B on the curve is such that the gradient of the at B is -3 .
Find the equation of the perpendicular bisector of AB. Give your answer in the $ax + by + c = 0$, where a, b and c are integers.

]	Determine the set of values of x for which $f(x)$ is decreasing.	[4
		••••
		••••
•	Given that $f(1) = -1$, find $f(x)$.	[4
		••••
		••••

Question No: 24			
6	arve passes through the point $\left(\frac{4}{5}, -3\right)$ and is such that $\frac{dy}{dx} = \frac{-20}{(5x-3)^2}$.		
		Find the equation of the curve. [4]	
	(b)	The curve is transformed by a stretch in the <i>x</i> -direction with scale factor $\frac{1}{2}$ followed by a translation of $\begin{pmatrix} 2 \\ 10 \end{pmatrix}$.	
		Find the equation of the new curve. [3]	

SITE IN THIS MARGIN

DO NOT WRITE IN THIS M.

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MA

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

RITE IN THIS MARGIN

The diagram shows the curve with equation $y = \sqrt{2x^3 + 10}$.

(a) Find the equation of the tangent to the curve at the point where x = 3. Give your answer in the form ax + by + c = 0 where a, b and c are integers. [5]

••

.

(b) The region shaded in the diagram is enclosed by the curve and the straight lines x = 1, x = 3 and y = 0.

Find the volume of the solid obtained when the shaded region is rotated through 360° about the *x*-axis. [3]

	equation of a curve is such that $\frac{dy}{dx} = 4(2x-5)^3 - 9x^{\frac{1}{2}}$. The curve passes through the point
A(4	$(1, -\frac{11}{2})$.
(a)	Find the gradient of the normal to the curve at the point A . [2]
(b)	Find the equation of the curve. [4]

DO NOT WRITE IN THIS I

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

WRITE IN THIS MARGIN

- 7 The equation of a curve is $y = 4x^2 + \frac{9}{x^2} 8$.
 - (a) A point P is moving along the curve in such a way that its y-coordinate is decreasing at 5 units per second

DO NOT WRITE IN THIS I

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

WRITE IN THIS MARGIN

F	find the rate at which the x-coordinate of point P is changing when $x = 2$.	
 F	ind the coordinates of the stationary points of the curve and determine their nature.	
1	and the coordinates of the stationary points of the curve and determine their nature.	
••		
••		