Proof : Rolling Around Sai Theja K.

Proposition 1. Locus of a point on a smaller circle (radius = R) rolling (without slipping) on the inner surface of a larger circle (radius = 2R) is a straight line through the center of the larger circle.

Figure 1: Schematic of motion

Proof. Let the point, center of smaller circle and the center of the larger circle (origin) (say P, C and O respectively) be represented in cylindrical co-ordinates by (r_P, θ_P) , (r_C, θ_C) and (r_O, θ_O) . The schematic is shown in Figure 1. By definition, $(r_O, \theta_O) = (0, 0)$

1 Locus of P

Let's consider a point P on the smaller circle whose radius makes an angle α with the x-axis. P is represented as (r_P, θ_P) and let us derive the expression for r_P during this rolling motion. From $\triangle OCP$, $\overline{OP}(r_P)$ can be calculated using cosine law.

$$\overline{OP}^2 = \overline{OC}^2 + \overline{CP}^2 - 2 \overline{OC} \overline{CP} \cos(\angle OCP) \tag{1}$$

 $\angle OCP$ can be calculated as the other two angles in $\triangle OCP$ are equal (isosceles triangle) to $(\theta_C - \theta_P)$.

$$\overline{OC} = R = \overline{PC} \implies \angle CPO = \angle POC = \theta_C - \theta_P$$

 $\therefore \angle OCP = \pi - \angle CPO - \angle POC = \pi - 2(\theta_C - \theta_P)$

 r_P can be calculated from Equation 1 as follows:

$$r_P^2 = R^2 + R^2 - 2 \times R \times R \times \cos(\pi - 2(\theta_C - \theta_P))$$

$$= 2R^2 \left\{ 1 + \cos\left(2(\theta_C - \theta_P)\right) \right\} = 2R^2 \left\{ 2\cos^2(\theta_C - \theta_P) \right\}$$

$$\Longrightarrow \boxed{r_P = 2R\cos(\theta_C - \theta_P)}$$
(2)

1.1 Relation between ω_{CO} and ω_{PC}

Consider the point T on the smaller circle in contact with the larger circle. The no-slip condition dictates that there will be no relative motion between the surfaces at the point of contact T.

$$\vec{V}_{TO} = 0 = \vec{V}_{TC} + \vec{V}_{CO}$$
 (No-Slip Condition)

This condition gives us a relation between the angular velocities $\vec{\omega}_{CO}$ ($\dot{\theta}_{C}$) and $\vec{\omega}_{TC}$ ($\dot{\alpha}$):

$$\vec{\omega}_{CO} = \vec{r}_{CO} \times \vec{V}_{CO}$$

$$\vec{\omega}_{TC} = \vec{r}_{TC} \times \vec{V}_{TC} = \vec{r}_{TC} \times -\vec{V}_{CO} = -\vec{\omega}_{CO}$$

$$\vec{\omega}_{TC} = \left[\frac{d\alpha}{dt} = -\frac{d\theta_C}{dt} \right] = -\vec{\omega}_{CO}$$
(3)

For deriving α , consider the following in $\triangle CNP$,

- $\angle CPN = \angle CPO = \theta_C \theta_P$
- $\angle CNP$ and θ_P are supplementary angles $\implies \angle CNP = \pi \theta_P$
- Thus, we can find the third angle $\angle PCN(\alpha)$

$$\angle PCN = \alpha = 2\theta_P - \theta_C = \pi - \angle CPN - \angle CNP$$
 (4)

From Equations 3 and 4:

$$2\frac{d\theta_P}{dt} - \frac{d\theta_C}{dt} = \frac{d\alpha}{dt} = -\frac{d\theta_C}{dt} \implies \boxed{\frac{d\theta_P}{dt} = 0}$$
 (5)

2 Conclusion

For the trajectory of P i.e., time evolution of position of P, consider a general case where initially $\theta_C(t=0) = \theta_C^0$, $\theta_P(t=0) = \theta_P^0$ and $\dot{\theta}_C = \omega$ (constant)

$$\begin{bmatrix}
\theta_P = \theta_P^0 \\
\theta_C = \theta_C^0 + \omega t
\end{bmatrix}$$
(6)

$$r_P = 2R\cos(\theta_C - \theta_P)$$

$$\implies r_P = 2R\cos(\theta_C^0 + \omega t - \theta_P^0)$$
(7)

From Equation 6, we can see that the angle P makes with the x-axis (θ_P) remains constant and from Equation 7 that r_P goes to zero periodically. Therefore, P passes through origin O while maintaining a constant slope $(\tan(\theta_P))$ and thus it slides on a straight line through the origin during the rolling motion as proposed originally.