Listas de Medida

henrique

September 4, 2025

Contents

U	Introdução e Notação	1
1	Lista 1 (15/08/2025)	2
2	Lista 2 (21/08/2025)	8
3	Lista 3 (28/08/2025)	13

0 Introdução e Notação

Ao decorrer do curso, vou escrever minhas resoluções dos exercícios nesse arquivo. Tem alguns motivos para isso:

- 1. Posso reutilizar resultados passados.
- 2. Está tudo organizado se um futuro henrique quiser rever.
- 3. Há uma certo senso de completude no final do curso.

Por isso, peço desculpa ao monitor e a professora se não gostarem desse formato, me avisem que eu posso separar os arquivos. O código fonte pode ser encontrado em https://github.com/hnrq104/medida.

Eu vou tentar usar uma notação menos esotérica, mas, ás vezes, uma vontade maior se expressa. Por enquanto encontrei os segundos usos no texto:

- 1. \bigcup_n ou \sum_n . Quando o intervalo de índices não está específicado, geralmente estou tomando a união ou o somatório sobre os naturais positivos.
- 2. $[n] = \{1, 2, ..., n\}$ é uma notação de combinatória que uso bastante.
- 3. "Observação" é algo que estou com muita preguiça de tentar provar (se estiver correto), espero poder perguntar em monitorias se a prova é necessária.
- 4. "a.e" significa "almost everywhere", geralmente sou contra anglicanismos descenessários, mas esse já está encravado em meu vocabulário.

1 Lista 1 (15/08/2025)

Listagem de problemas:

- 1. Exercício 1.1 : ✓
- 2. Exercício 1.2 : ✓
- 3. Exercício 1.3 : ✓
- 4. Exercício 1.4 : ✓
- 5. Exercício 1.5 : ✓
- 6. Exercício 1.6 : ✓

Problem 1.1.

Esse problema é muito bonitinho e a resposta é negativa. Para resolvê-lo, precisamos da seguinte observação.

Observation 1.1. A coleção de uniões enumeráveis de infinitos conjuntos não vazios disjuntos é não-enumerável. (quase um trava-língua)

Proof. Sejam $\{E_1, E_2, \dots, E_n, \dots\}$ infinitos conjuntos satisfazendo

- 1. $E_i \neq \emptyset \ \forall i \in \mathbb{N}$
- 2. $E_i \cap E_j = \emptyset \ \forall i \neq j \in \mathbb{N}$

A função $f:\{0,1\}^{\mathbb{N}} \to \mathbb{P}(\bigcup_{i\in\mathbb{N}} E_i)$ dada por

$$f(a_1, a_2, \dots, a_n, \dots) = \bigcup_{i \in \mathbb{N}} B_i$$

onde $B_i = \emptyset$ se $a_i = 0$ e $B_i = E_i$ se $a_i = 1$ é injetiva. Como $2^{\mathbb{N}}$ é não enumerável, temos o resultado.

Agora podemos dar continuidade a resolução.

Proposition 1.2. Seja (X, M) uma σ -algebra infinita, então M é não enumerável.

O que fiz antes tava errado :(. Segue a solução do João.

Proof. Suponha que M seja enumerável. Para cada $x \in X$, defina os conjuntos minimais E_x de M,

$$E_x := \bigcap_{\{E_k \in M \; ; \; x \in E_k\}} E_k$$

Como M é enumerável, essas interseções são enumeráveis e portanto pertencem a M.

A ideia da prova é mostrar que os E_x particionam o espaço em conjuntos disjuntos, depois ver que eles geram M e concluir que, como M é infinita, devem existir infinitos deles.

Vamos mostrar que o espaço é particionado em conjuntos disjuntos. Sejam x,y tal que $E_x \neq E_y$, afirmo que $x \notin E_y$. Suponha que $x \in E_y$, então pela definição de E_x , $E_x \subseteq E_y$. Do mesmo modo, se $y \in E_x$, então $E_y \subseteq E_x$ e $E_x = E_y$ (contradição). Se $y \notin E_x$, então $E_y - E_x$ é um conjunto disjunto de x que contém y, logo $x \notin E_y$. Para provar que a interseção é vazia, verificamos que se $x \notin E_y$, então $E_x \subset E_x - E_y$, portanto $E_x \cap E_y = \emptyset$.

O próximo passo é mostrar que esses conjuntos geram M. Afirmo que dado $E \in M$

$$E = \bigcup_{E_x \subset E} E_x$$

Claramente temos $\bigcup_{E_x \subset E} E_x \subset E$. Para a outra inclusão, seja $x \in E$, então $x \in E_x \subset E$, pois E é um conjunto que contém x.

Agora para matar a questão. Suponha que houvessem somente finitos E_x , digamos n. Haveria somente 2^n possíveis uniões desses conjuntos, como eles geram M e M é infinita temos uma contradição. Portanto, existem infinitos E_x disjuntos não vazios, M contém todas suas enumeráveis coleções, pela observação 1.1, M não pode ser contável.

Problem 1.2.

Proof. Dada uma sequência de funções mensuráveis $\{f_n\}: X \to [-\infty, \infty]$, sabemos que $I(x) = \liminf_n f_n(x)$ e $S(x) = \limsup_n f_n(x)$ são mensuráveis. Além disso, para cada $x \in X$, a sequência $f_n(x)$ converge se e somente se ela não tem valores tendendo para o infinito e I(x) = S(x). A partir dessa caracterização, definimos o conjunto A tal que:

$$A = I^{-1}((-\infty, \infty)) \cap S^{-1}((-\infty, \infty))$$

Isso é, A é o conjunto de pontos de X tal que a sequência $f_n(x)$ é limitada. Note que, como I e S são mensuráveis, A é interseção de conjuntos mensuráveis de X, logo é mensurável. Em particular, as funções $\mathbb{1}_A$ e $\mathbb{1}_{A^c}$ são mensuráveis. Como vimos que somas e multiplicações de funções mensuráveis é mensurável, podemos definir uma H mensurável dada por:

$$H(x) = \mathbb{1}_{A^c}(x) + \mathbb{1}_{A}(x) \cdot S(x) - \mathbb{1}_{A}(x) \cdot I(x)$$

Os pontos em que as f_n convergem é então dado por pelo conjunto mensurável $H^{-1}(\{0\})$. Para confirmar essa afirmação, note que se H(y)=0, então $H(y)\neq 1$, logo $y\notin A^c$. Temos que $y\in A$, $I(y)\in (-\infty,\infty)$ e $S(y)\in (-\infty,\infty)$, logo S(y)-I(y) está bem definido (nenhum dos dois é infinito de mesmo sinal) e, temos, S(y)=I(y), ou seja, a sequência $f_n(y)$ converge. Se $H(z)\neq 0$, ou $z\in A^c$, e portanto a sequência $f_n(z)$ não é limitada, ou $S(z)\neq I(z)$ e portanto, a sequência não converge.

Problem 1.3.

Proposition 1.3. \mathcal{M} é σ -álgebra. Isso é, satisfaz:

- 1. $X \in \mathcal{M}$
- 2. $E \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}$
- 3. $\{E_1, E_2, \dots, E_n, \dots\} \subset \mathcal{M} \Rightarrow \bigcup_{i \in \mathbb{N}} E_i \in \mathcal{M}$

Proof. (1). $X^c = \emptyset$ enumerável, logo $X \in \mathcal{M}$. (2). Por construção. (3). Dados contáveis conjuntos $C = \{E_1, E_2, \dots\}$ em \mathcal{M} , separe-os em incontáveis (A) e contáveis (B) de forma que:

$$\{E_1,E_2,\dots\}=A\cup B=\{E_i:E_i \text{ incontável}\}\cup \{E_j:E_j \text{ contável}\}$$

Seja então $H = \bigcup_{i \in \mathbb{N}} E_i = \bigcup_{A_i \in A} A_i \cup \bigcup_{B_i \in B} B_i$. Note que se A não é vazio, i.e. contém ao menos um elemento A_j , então $H^c \subset (A_j)^c$ que é contável. Se A é vazio, então $H = \bigcup_{B_i \in B} B_i$ é uma união enumerável de conjuntos contáveis, logo H é contável.

Proposition 1.4. μ é uma medida em \mathcal{M} .

Proof. Como \emptyset é contável, $\mu(\emptyset) = 0$, além disso, $\mu(E) \in \{0,1\} \subset [0,\infty]$. Então, basta mostrar que, dada uma coleção disjunta $C = \{E_1, E_2, \dots\} \subset \mathcal{M}$,

$$\sum_{E_i \in C} \mu(E_i) = \mu(\bigcup_{E_i \in C} E_i)$$

Como anteriormente escreva $C = A \cup B$, onde A são os conjuntos incontáveis e B são os contáveis. Se A for vazio, todos os conjuntos E_i são contáveis, então a união deles é contável e temos que os dois lados da equação são 0. Se A possui um conjunto E_j , ele obrigatóriamente é o único em A, pois, como os E_i são disjuntos, todos os outros E_i 's estão contidos em $(E_j)^c$ que é enumerável. Portanto, o somatório da esquerda possui somente um valor diferente de 0, vulgo $\mu(E_j) = 1$ e a união da direita contém E_j não enumerável, portanto vale 1 também.

Problem 1.4.

Vou supor de antemão que as medidas μ_1 e μ_2 são positivas, há um passo em que precisaremos dessa hipótese.

Proposition 1.5. $\mu(E) = \inf \{ \mu_1(E \cap F) + \mu_2(E - F) : F \in \mathcal{M} \}$ é uma medida positiva.

Proof. (1) Sendo ínfimo de valores positivos, claramente $\mu(E) \in [0, \infty]$. (2) $\mu(\varnothing) \leqslant \mu_1(\varnothing) + \mu_2(\varnothing) = 0$. (3) Considere em \mathcal{M} uma sequência qualquer de conjuntos disjuntos $(E_n)_{n \in \mathbb{N}}$. Queremos mostrar que:

$$\mu\bigg(\bigcup_n E_n\bigg) = \sum_n \mu(E_n)$$

Considere

$$\mu\left(\bigcup_{n} E_{n}\right) = \inf\left\{\mu_{1}\left(\bigcup_{n} E_{n} \cap F\right) + \mu_{2}\left(\bigcup_{n} E_{n} - F\right) : F \in \mathcal{M}\right\}$$

$$= \inf\left\{\sum_{n} \mu_{1}(E_{n} \cap F) + \sum_{n} \mu_{2}(E_{n} - F) : F \in \mathcal{M}\right\}$$

$$= \inf\left\{\sum_{n} (\mu_{1}(E_{n} \cap F) + \mu_{2}(E_{n} - F)) : F \in \mathcal{M}\right\}$$

Onde usamos na segunda igualdade o fato de que somatórios de valores positivos podem ser rearranjados (e portanto a hipótese de que μ_1 e μ_2 são positivas). Agora note que para todo $F \in \mathcal{M}$ e qualquer E_i temos

$$\inf\{\mu_1(E_i\cap \tilde{F}) + \mu_2(E_i-\tilde{F}) : \tilde{F}\in\mathcal{M}\} \leqslant \mu_1(E_i\cap F) + \mu_2(E_2-F)$$

Logo, termo a termo,

$$\sum_{n} \inf \{ \mu_1(E_n \cap \tilde{F}) + \mu_2(E_n - \tilde{F}) : \tilde{F} \in \mathcal{M} \} \leqslant \sum_{n} \mu_1(E_n \cap F) + \mu_2(E_n - F)$$

i.e.

$$\sum_{n} \mu(E_n) \leqslant \sum_{n} \mu_1(E_n \cap F) + \mu_2(E_n - F)$$

Como vale para todo F, temos, tomando ínfimos

$$\sum_{n} \mu(E_n) \leqslant \mu\bigg(\bigcup_{n} E_n\bigg)$$

Falta provar que $\mu(\bigcup_n E_n) \leqslant \sum_n \mu(E_n)$. Ou, mais sorreteiramente, que para todo $\varepsilon > 0$,

$$\mu\left(\bigcup_{n} E_{n}\right) \leqslant \left(\sum_{n} \mu(E_{n})\right) + \varepsilon = \sum_{n} (\mu(E_{n}) + \varepsilon/2^{n})$$

Para cada n, existe $F_n \in \mathcal{M}$ tal que $\mu(E_n) \leq \mu_1(E_n \cap F_n) + \mu_2(E_n - F_n) + \varepsilon/2^n$. Tome $F = \bigcup_n (F_i \cap E_i)$. Então,

$$\mu(\bigcup_{n} E_{n}) \leq \mu_{1}(\bigcup_{n} E_{n} \cap F) + \mu_{2}(\bigcup_{n} E_{n} - F)$$

$$= \sum_{n} \mu_{1}(E_{n} \cap F) + \mu_{2}(E_{n} - F)$$

$$= \sum_{n} \mu_{1}(E_{n} \cap F_{n}) + \mu_{2}(E_{n} - F_{n})$$

$$\leq \sum_{n} (\mu(E_{n}) + \varepsilon/2^{n})$$

$$= \sum_{n} \mu(E_{n}) + \varepsilon$$

Onde na segunda igualdade usamos o fato de que os E_n são disjuntos entre si e na segunda desigualdade, a definição dos F_n . Como isso vale para todo $\varepsilon > 0$, tomando $\varepsilon \to 0$, encontramos $(\bigcup_n E_n) = \sum_n \mu(E_n)$. \square

Proposition 1.6. μ é a maior medida menor que μ_1 e μ_2 .

Proof. Para todo $E \in \mathcal{M}$, $\mu(E) \leq \mu_1(E \cap X) + \mu_2(E - X) = \mu_1(E)$, semelhantemente, $\mu(E) \leq \mu_1(E \cap \emptyset) + \mu_2(E - \emptyset) = \mu_2(E)$. Portanto, $\mu(E) \leq \min(\mu_1(E), \mu_2(E))$. Agora seja $\tilde{\mu}$ qualquer medida também menor que μ_1 e μ_2 . Então, para todo F,

$$\tilde{\mu}(E) = \tilde{\mu}(E \cap F) + \tilde{\mu}(E - F) \leqslant \mu_1(E \cap F) + \mu_2(E - F)$$

Como isso vale para qualquer F, tomando ínfimos, temos

$$\tilde{\mu}(E) \leqslant \mu(E)$$

Problem 1.5.

Será útil para a letra (b) duas proposições importantes.

Proposition 1.7. Seja (X, \mathcal{T}) espaço topológico e \mathcal{B}_X sua σ -álgebra de Borel. Se $Y \in \mathcal{B}_X$ é um conjunto mensurável, então na topologia induzida $(Y, \mathcal{T} \cap Y)$, a σ -álgebra de Borel \mathcal{B}_Y coincide com o conjunto $\{E \cap Y : E \in \mathcal{B}_X\}$.

Proof. Vamos provar primeiro que $\mathcal{B}_Y \subseteq \{E \cap Y : E \in \mathcal{B}_X\}$. Então basta mostrar que o segundo conjunto é uma σ-álgebra que contem os abertos. Ele claramente contem os abertos de Y, pois esses são $Y \cap U$ para U aberto de X que são mensuráveis. Falta verificar as propriedades de σ-álgebra. (1) Y pertence ao conjunto, pois $Y = Y \cap Y$ e $Y \in \mathcal{B}_X$. (2) Se $A \cap Y$ é um elemento, então $(A \cap Y)_Y^c = Y - (A \cap Y) = Y \cap A^c$ também pertence, pois $A^c \in \mathcal{B}_X$. Sejam $(A_1 \cap Y, A_2 \cap Y, \dots)$ elementos do conjunto, então $\bigcup_n (A_n \cap Y) = (\bigcup_n A_n) \cap Y$ pertence também. Isso finaliza a primeira parte.

Falta mostrar que $\{E \cap Y : E \in \mathcal{B}_X\} \subseteq \mathcal{B}_Y$, isso não foi trivial para mim (tive que rever a prova do João na internet); Essa proposição é equivalente a $\{E \in \mathcal{B}_X : E \cap Y \in \mathcal{B}_Y\} = \mathcal{B}_X$, que segue diretamente do fato

que o conjunto da esquerda é uma σ -álgebra que contém os abertos de X. Vamos provar as propriedades: (1) $X \in \mathcal{B}_X$ e $X \cap Y = Y \in \mathcal{B}_Y$, logo X pertence ao conjunto. (2) Se $E \in \mathcal{B}_X$ é tal que $E \cap Y \in \mathcal{B}_Y$ então $E^c \in \mathcal{B}_X$ tem $E^c \cap Y = Y - E \in \mathcal{B}_Y$. (3) $\bigcup_n E_n$ é tal que $E_n \cap Y \in \mathcal{B}_Y$, então $\bigcup_n E_n \cap Y = \bigcup_n (E_n \cap Y) \in \mathcal{B}_Y$. Portanto, o conjunto que definimos é uma σ -álgebra. Falta verificar que contém os abertos de X, mas segue trivialmente do fato que os abertos de Y são justamente $U \cap Y \in \mathcal{B}_Y$.

O próximo é bem óbvio, estou inserindo por completude. (Mas é meio chato de provar).

Proposition 1.8. Se (X, \mathcal{T}) e (Y, \mathcal{S}) são espaços topológicos homeomorfos por um mapa $f: X \to Y$, então vale que $\mathcal{B}_Y = \{f(E_x) : E_x \in \mathcal{B}_X\}$ onde \mathcal{B}_X e \mathcal{B}_Y são as σ -álgebras de Borel em X e Y respectivamente.

Proof. Seja $\mathcal{M} = \{f(E_x) : E_x \in \mathcal{B}_X\}$. \mathcal{M} claramente contém os abertos de Y pois se $U \subset Y$ é aberto, $f^{-1}(U)$ é aberto pertencente a \mathcal{B}_X , logo $U = f(f^{-1}(U)) \in \mathcal{M}$. Vamos mostrar que é σ -álgebra. (1) $Y = f(X) \in \mathcal{M}$. (2) $f(E_x) \in \mathcal{M} \Rightarrow (f(E_x))^c = f(E_x^c) \in \mathcal{M}$. (3) $\bigcup_n f(E_x^n) = f(\bigcup_n E_x^n) \in \mathcal{M}$. Portanto mostramos que $\mathcal{B}_Y \subseteq \mathcal{M}$. Agora para mostrar que $\mathcal{M} \in \mathcal{B}_Y$ usamos mensurabilidade, sendo f^{-1} contínua, ela é mensurável entre σ -álgebras de Borel, logo se $A = f^{-1}(E_x) \in \mathcal{M}$, então, como $E_x \in \mathcal{B}_X$, $A \in \mathcal{B}_Y$. E terminamos a demonstração.

Agora as letras (a) e (b) saem quase que de graça.

- (a) Proof. Translações $f: \mathbb{R}^d \to \mathbb{R}^d$ tal que f(x) = f(x) + a para algum $a \in \mathbb{R}^d$ são homeomorfismo de \mathbb{R}^d para si próprio. Por 1.8, se $E \in \mathcal{B}^d$ então $f(E) = E + a \in \mathcal{B}^d$.
- (b) Proof. Vamos fazer para seções horizontais, a prova para seções verticais é análoga. Para $y \in \mathbb{R}$ e E Borel de \mathbb{R}^2 , definimos $E_y = E \cap (\mathbb{R} \times \{y\})$ boreliano. Note que $\mathbb{R} \times \{y\} = \bigcap_n \mathbb{R} \times \{a 1/n, a + 1/n\}$ é Borel de \mathbb{R}^2 . Pela proposição 1.7, $\{E_y : E \in \mathcal{B}^2\}$ é a σ -álgebra de Borel induzida por $\mathbb{R} \times \{y\}$, mas esse conjunto é trivialmente homeomorfo a reta \mathbb{R} com a projeção na primeira coordenada. Portanto, por 1.8, as seções horizontais definidas na questão são borelianos da reta.

Problem 1.6.

Essa questão é bem divertida, estende dupla contagem para medidas.

Proposition 1.9. (a) Os conjuntos H_k são mensuráveis.

Proof. Como cada E_i é mensurável, definimos as funções mensuráveis $(f_n)_{n\in\mathbb{N}}$ por:

$$f_n(x) = \sum_{j=1}^n \mathbb{1}_{E_j}(x)$$

Então $0 \le f_1 \le \ldots \le f_n \le f_{n+1} \le \ldots \le \infty$ é uma sequência crescente mensurável, e portanto:

$$F(x) = \sup_{n} f_n(x) = \lim_{n} f_n(x) = \#\{n : x \in E_n\}$$

é uma função mensurável. Temos que $H_k = F^{-1}([k,\infty])$ é um conjunto mensurável.

Agora vem a parte difícil. Para mostrar a letra (b), esqueçamos $(E_n)_{n\in\mathbb{N}}$ por enquanto, foquemos em $(E_n)_{n\in\mathbb{N}}$ finitos.

Definition 1.10. Dada uma sequência finita $(E_n)_{n\in[N]}$ de conjuntos de \mathcal{M} . Sejam $H_k^{(N)}$ da seguinte forma:

$$H_k^{(N)} = \{ x \in X : \#\{ n : x \in E_n \} \ge k \}$$

A mesma definição dos H_k , mas para uma coleção finita de no máximo N conjuntos.

Observation 1.11. Temos propriedades simples, que independem de N e da coleção escolhida:

- 1. Exatamente como na letra (a), $H_k^{(N)}$ é mensurável.
- 2. $H_0^{(N)} = X$
- 3. $H_{k+1}^{(N)} \subseteq H_k^{(N)}$
- 4. $H_{N+1}^{(N)} = \emptyset$, pois nenhum elemento pertence em mais que N conjuntos.

Para qualquer sequência infinita $(E_n)_{n\in\mathbb{N}}$ definimos os $H_k^{(N)}$ para os primeiros N conjuntos da sequência.

Lemma 1.12. Seja $(E_n)_{n\in\mathbb{N}}$ mensuráveis. Para todo $N\in\mathbb{N}$, vale:

$$\sum_{k=1}^{N} \mu(H_k^{(N)}) = \sum_{k=1}^{N} \mu(E_k)$$

Proof. Vamos seguir por indução. Para N=1, temos de graça que $E_1=H_1^{(1)}$, logo $\mu(H_1^{(1)})=\mu(E_1)$. Suponha que o resultado vale para N e olhemos para o caso N+1.

$$\sum_{n=1}^{N+1} \mu(E_n) = \mu(E_{N+1}) + \sum_{n=1}^{N} \mu(E_n)$$
$$= \mu(E_{N+1}) + \sum_{n=1}^{N} \mu(H_n^{(N)})$$

Onde usamos a hipótese de indução na segunda igualdade. Note que $H_k^{(N+1)}=(H_k^{(N)}-E_{N+1})\cup(H_{k-1}^{(N)}\cap E_{N+1})$. Pois se $x\in X$ aparece em k conjuntos de $(E_n)_{n\in[N+1]}$, ou ele aparece em k dos primeiros N conjuntos, ou aparece em E_{N+1} e pelo menos k-1 outros dos primeiros N. Para aproveitar dessa observação, podemos reescrever o somatório

$$\mu(E_{N+1}) + \sum_{n=1}^{N} \mu(H_n^{(N)}) = \mu(E_{N+1}) + \sum_{n=1}^{N} \mu(H_n^{(N)} - E_{N+1}) + \mu(H_n^{(N)} \cap E_{N+1})$$
$$= \mu(E_{N+1}) + \sum_{n=1}^{N+1} \mu(H_n^{(N)} - E_{N+1}) + \mu(H_n^{(N)} \cap E_{N+1})$$

Já que $H_{N+1}^{(N)}=\varnothing$. Agora escrevemos $\mu(E_{N+1})=\mu(H_0^{(N)}\cap E_{N+1})=\mu(X\cap E_{N+1})$ e reindexamos cada termo da direita no somatório, obtendo

$$\sum_{n=1}^{N+1} \mu(E_n) = \sum_{n=1}^{N+1} \mu(H_n^{(N)} - E_{N+1}) + \mu(H_{n-1}^{(N)} \cap E_{N+1})$$
$$= \sum_{k=1}^{N+1} \mu(H_k^{(N+1)})$$

Provando o passo indutivo.

Estamos quase finalizados, sentimos até vontade de passar o limite em 1.12 e obter o resultado, mas isso por si só não é suficiente.

Proposition 1.13. $\sum_{k=1}^{\infty} \mu(H_k) = \sum_{k=1}^{\infty} \mu(E_k)$

Proof. Tomando limites em N no Lema 1.12, temos que

$$\lim_{N \to \infty} \sum_{k=1}^{N} \mu(H_k^{(N)}) = \sum_{k=1}^{\infty} \mu(E_k)$$

Para obter o resultado, vamos mostrar que

$$\lim_{N \to \infty} \sum_{k=1}^{N} \mu(H_k^{(N)}) = \sum_{k=1}^{\infty} \mu(H_k)$$

Note que, pela definição dos $H_k^{(N)}$, temos uma sequência crescente $H_k^{(1)} \subseteq H_k^{(2)} \subseteq \cdots \subseteq H_k$, tal que

$$\bigcup_{n=1}^{\infty} H_k^{(n)} = H_k$$

Por conta das inclusões $H_N^{(N)} \subseteq H_N$ e μ ser uma medida positiva, temos, termo a termo, $\mu(H_N^{(N)}) \leqslant \mu(H_N)$. Portanto, já temos um lado da igualdade.

$$\lim_{N \to \infty} \sum_{k=1}^{N} \mu(H_k^{(N)}) \leqslant \sum_{k=1}^{\infty} \mu(H_k)$$

Para o outro lado, observamos que como $H_k^{(N)} \to H_k$ são mensuráveis, $\lim_{n \to \infty} \mu(H_N^{(n)}) = \mu(H_N)$. Portanto, para cada M > 0,

$$\lim_{N \to \infty} \sum_{k=1}^{N} \mu(H_k^{(N)}) \geqslant \lim_{N \to \infty} \sum_{k=1}^{M} \mu(H_k^N) = \sum_{k=1}^{M} \mu(H_k)$$

Como isso vale para todo M, $\lim_{N\to\infty} \sum_{k=1}^N \mu(H_k^{(N)}) \geqslant \sum_{k=1}^\infty \mu(H_k)$.

2 Lista 2 (21/08/2025)

Listagem de problemas:

- 1. Exercício 2.1 : ✓
- 2. Exercício 2.2 : \checkmark
- 3. Exercício 2.3 : ✓
- 4. Exercício 2.4 : \checkmark
- 5. Exercício 2.5 : ✓
- 6. Exercício 2.6 : ✓
- 7. Exercício 2.7 : ✓

Para a solução de vários problemas dessa lista, utilizaremos os três principais teoremas vistos em aula até agora. Vamos enunciá-los.

Theorem 2.1. (Convergência Monótona). Dada uma sequência crescente de funções mensuráveis $(f_n)_n$ de X para $[0,\infty]$, satisfazendo:

- (a) $0 \leqslant f_1(x) \leqslant f_2(x) \leqslant \ldots \leqslant \infty$ para todo $x \in X$
- (b) $f_n(x) \to f(x)$ para todo $x \in X$

Então f é mensurável, e

$$\int_X f_n \, d\mu \to \int_X f \, d\mu$$

Theorem 2.2. (Lema de Fatou). Se $f_n: X \to [0, \infty]$ é mensurável, para cada n, então

$$\int_{X} \left(\liminf_{n \to \infty} f_n \right) d\mu \leqslant \liminf_{n \to \infty} \int_{X} f_n d\mu$$

Theorem 2.3. (Convergência Dominada). Se $\{f_n\}$ é uma sequência de funções mensuráveis complexas de X tal que

$$f(x) = \lim_{n \to \infty} f_n(x)$$

existe para todo $x \in X$. Se existe uma função $g \in L^1(\mu)$ tal que, para todo n,

$$|f_n(x)| \leq |g(x)|$$

então $f \in L^1(\mu)$,

$$\lim_{n \to \infty} \int_X |f_n - f| \, d\mu = 0$$

e

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu$$

Problem 2.1.

Proof. Essa questão parece muito com a de interseção de conjuntos mensuráveis (Teorema 1.19 Rudin). Se $f_1 \in L^1(\mu)$, como ela é positiva, existe $0 \leq M < \infty$ tal que $\int_X f_1 d\mu \leq M$. Defina g_n mensurável por $g_n = f_1 - f_n$. Temos então que

- (a) $0 \leqslant g_1 \leqslant g_2 \leqslant \ldots \leqslant \infty$
- (b) $g_n(x) \to f_1(x) f(x)$ para todo $x \in X$.

Podemos aplicar convergência monótona [2.1] para encontrar:

$$\lim_{n \to \infty} \int_X f_1 - f_n \, d\mu = \int_X f_1 - f \, d\mu \tag{1}$$

$$\lim_{n \to \infty} \left(\int_X f_1 d\mu - \int_X f_n d\mu \right) = \int_X f_1 d\mu - \int_X f d\mu$$
 (2)

$$\int_{X} f_1 d\mu - \lim_{n \to \infty} \int_{X} f_n d\mu = \int_{X} f_1 d\mu - \int_{X} f d\mu$$
 (3)

$$\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu \tag{4}$$

Onde, crucialmente, usamos na segunda* igualdade que $\int_X f_1 \leq M < \infty$.

Se admitimos $f_1 \notin L^1(\mu)$, a igualdade pode não valer. Defina $f_n(x) = 1/n$ para todo $x \in \mathbb{R}$. Temos que $f_n \to f = 0$, logo $\int_{\mathbb{R}} f \, d\mu = 0$, mas $\int_{\mathbb{R}} f_n \, d\mu = \infty$ para todo n.

Problem 2.2.

Proof. Podemos usar diretamente o exemplo patológico da questão 2.1. Mas afim de fazer um diferente, seja $X = \{0,1\}$ com medida de contáveis. Defina as funções simples (e portanto mensuráveis) h e g dadas por

$$h(x) = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x = 1 \end{cases}$$

 \mathbf{e}

$$g(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x = 1 \end{cases}$$

Seja $\{f_n\}$, tal que $f_n = h$ se n for par, e $f_n = g$ se n for impar. Então claramente, $\liminf_n f_n(x) = 0$ para todo x, mas $\int_X f_n d\mu = 1$ para todo n. Portanto

$$0 = \int_{X} (\liminf_{n} f_{n}) d\mu < \liminf_{n} \int_{X} f_{n} d\mu = 1$$

Problem 2.3.

Proof. Esse problema é bem legal, envolve aproximar a função pontualmente e perceber que podemos aplicar nossos resultados. Antes de mais nada, dado $\alpha > 0$, defina $g_n : X \to [0, \infty]$, por

$$g_n(x) = n \log(1 + (f(x)/n)^{\alpha}) = n[\log(n^{\alpha} + f(x)^{\alpha}) - \log(n^{\alpha})]$$

 g_n é composição de uma função contínua por uma mensurável $f \ge 0$, é portanto mensurável e da forma que está definida, é positiva. $g(x) \in [0, \infty]$.

Agora, vamos tentar estimar g_n . Pelo teorema do valor médio, dado x fixo,

$$\log(n^{\alpha} + f(x)^{\alpha}) - \log(n^{\alpha}) = \frac{f(x)^{\alpha}}{y}$$

para $y \in (n^{\alpha}, n^{\alpha} + f(x)^{\alpha})$. Então, temos

$$n\frac{f(x)^{\alpha}}{n^{\alpha} + f(x)^{\alpha}} \leqslant g_n(x) \leqslant n\frac{f(x)^{\alpha}}{n^{\alpha}}$$

E isso já é suficiente para dois casos do problema.

Uma observação antes de brincar com as integrais é que como $\int_X f d\mu \in (0, \infty)$, notamos duas coisas.

- 1. O conjunto onde f vale infinito tem medida nula.
- 2. O conjunto onde f > 0 tem medida positiva.

O item (1) vale pois, caso contrário, $\int_X f d\mu$ valeria infinito. Da mesma forma, (2) vale pois, caso contrário, como f é positiva, a integral valeria 0. Disso segue que podemos supor, sem perda de generalidade, que f é estritamente positiva e não assume valores infinitos em X (onde f vale 0 não muda as integrais definidas). Agora, feita essa observação, podemos dar continuidade ao resultado.

Se $\alpha = 1$,

$$\frac{nf(x)}{n+f(x)} \leqslant g_n(x) \leqslant f(x)$$

Como o lado esquerdo tende a f(x), temos que $g_n(x) \to f(x)$. Além do mais, $g_n(x) \leqslant f(x) \in L^1(\mu)$, logo, por Convergência Dominada [2.3], temos que

$$\lim_{n \to \infty} \int_X n \log(1 + (f(x)/n)^{\alpha}) d\mu = \lim_{n \to \infty} \int_X g_n(x) d\mu = \int_X f d\mu = c$$

Se $\alpha < 1$, de $g_n(x) \ge nf(x)^{\alpha}/(n^{\alpha} + f(x)^{\alpha}) \to \infty$ temos que

$$\infty = \liminf_{n \to \infty} n f(x)^{\alpha} / (n^{\alpha} + f(x)^{\alpha}) \leqslant \liminf_{n \to \infty} g_n(x)$$

Usando o lema de Fatou [2.2],

$$\infty = \int_X \infty d\mu \leqslant \liminf_{n \to \infty} \int_X g_n d\mu = \liminf_{n \to \infty} \int_X n \log(1 + (f(x)/n)^\alpha) d\mu$$

que é o resultado esperado.

Para $\alpha>1$, terei que usar a dica do João, percebi que só conseguiria usar convergência dominada se $\int_X f^\alpha d\mu < \infty$, (mas não sabemos disso). Então precisamos fazer surgir f sem expoentes na estimativa de g_n , para isso consideramos a sequências de desigualdades, válida para $t\geqslant 0$, $\alpha>1$.

$$1 + t^{\alpha} \le (1 + x)^{\alpha} \le (e^x)^{\alpha} = e^{\alpha x}$$

Onde a primeira desigualdade sai, como observado pelo João, imediatamente de

$$\left(\frac{1}{1+t}\right)^{\alpha} + \left(\frac{t}{1+t}\right)^{\alpha} \leqslant 1$$

Tomando log's na equação,

$$\log(1+t^{\alpha}) \leq \log((1+t)^{\alpha}) \leq \log((e^t)^{\alpha}) = \alpha t$$

Portanto, $g_n(x) \leq n\alpha(f(x)/n) = \alpha f(x) \in L^1(\mu)$. Agora estamos muito felizes, pois sabemos que pontualmente (para cada x fixo).

$$g_n(x) \leqslant \frac{f(x)^{\alpha}}{n^{\alpha - 1}} \to 0$$

Logo, por convergência dominada [2.3],

$$\lim_{n \to \infty} \int_X n \log(1 + (f(x)/n)^\alpha) d\mu = \lim_{n \to \infty} \int_X g_n d\mu = \int_X 0 d\mu = 0$$

Problem 2.4.

Proof. Essa questão segue quase imediatamente da série de desigualdades

$$\lim_{n \to \infty} \left| \int_{Y} f_n d\mu - \int_{Y} f d\mu \right| \leqslant \lim_{n \to \infty} \int_{Y} |f_n - f| d\mu \tag{5}$$

$$\leq \lim_{n \to \infty} \int_X \sup_x \{ |f_n - f| \} d\mu \tag{6}$$

$$= \lim_{n \to \infty} \sup_{x} \{ |f_n - f| \} \mu(X) \to 0 \tag{7}$$

Onde em (7) usamos crucialmente que $\mu(X) < \infty$ e a sequência é uniformemente convergente.

Se $\mu(X) = \infty$, segue exatamente da solução do exercício 2.1, com $f_n = 1/n$, f = 0, $X = \mathbb{R}$, que a hipótese não pode ser omitida.

Problem 2.5.

Proof. Minha intuição Riemanianna me matou nessa questão, tenho que abandoná-la. Suponha que o resultado seja falso, i.e. $f \in L^1(\mu)$, mas existe $\varepsilon > 0$, tal que para todo $\delta > 0$ existe um mensurável E_{δ} com $\mu(E_{\delta}) < \delta$, mas

$$\int_{E_{\delta}} |f| d\mu > \varepsilon$$

Então, escolhemos uma sequência de $(E_n)_n$, com $\mu(E_n) < 2^{-n}$ e $\int_{E_n} |f| d\mu > \varepsilon$. Note que a união dos E_n tem medida finita.

$$A = \bigcup_{n} E_n \quad \Rightarrow \quad \mu(A) = \mu(\bigcup_{n} E_n) \leqslant \sum_{n} \mu(E_n) \leqslant 2$$

E se definirmos $A_m = \bigcup_{n \geqslant m} E_n$, achamos uma sequência decrescente de conjuntos de medida finita: $A = A_1 \supset A_2 \supset \ldots$ Além do mais,

$$\mu(A_m) \leqslant \sum_{n \geqslant m} \mu(E_n) \leqslant \sum_{n \geqslant m} 2^{-n} = 2^{-m+1} \to 0$$

Quando $m \to \infty$. Portanto, $\mu(\bigcap_m A_m) \to 0$.

A ideia da prova agora é mostrar que a integral sobre esse conjunto é um limite sobre integrais todas maiores que ε , mas então teríamos que a integral sobre um conjunto de medida nula maior que 0, absurdo. Para isso, defina, para cada m

$$f_m(x) = |f(x)| \mathbb{1}_{A_m}(x)$$

funções mensuráveis, decrescentes e todas dominadas por $|f| \in L^1(\mu)$. Chamando as interseções dos A_m de B, temos que $f_m \to |f| \cdot \mathbb{1}_B$. Pelo teorema da convergência dominada [2.3], temos que

$$\lim_{m \to \infty} \int_X |f| \cdot \mathbb{1}_{A_m} d\mu = \int_X |f| \cdot \mathbb{1}_B d\mu = \int_B |f| d\mu$$

Mas, por hipótese, $\int_X |f| \cdot \mathbbm{1}_{A_m} d\mu \geqslant \int_{E_m} |f| d\mu > \varepsilon$. Logo o limite da esquerda deve ser maior ou igual a $\varepsilon > 0$, mas a integral da direita - sobre um conjunto B de medida nula - deveria ser 0.

Problem 2.6.

Proof. A resolução dessa questão está no livro, cuja prova repetirei aqui. Note no entanto que ela segue diretamente da questão 1.6 da lista anterior, pois provamos que

$$\sum_{k=1}^{\infty} \mu(E_k) = \sum_{k=1}^{\infty} \mu(H_k)$$

como $H_1 \supset H_2 \supset \cdots \supset H_\infty$, se $\mu(H_\infty) > \varepsilon > 0$, então para todo k, $\mu(H_k) > \varepsilon$. Teríamos por fim que $\sum_{k=1}^{\infty} \mu(H_k) = \infty$.

Eu acho a solução do Rudin mais elegante, pois - ao menos para mim - foi trabalhoso estabelecer a igualdade entre os somatórios. Assim como antes, construa

$$f_N = \sum_{k=1}^N \mathbb{1}_{E_k}$$

Temos que f_N é uma sequência crescente de funções que tende a $\sum_{k=1}^{\infty} \mathbb{1}_{E_k}$. Pelo teorema da convergência monótona [2.1]

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu \tag{8}$$

O termo da esquerda é precisamente $\sum_{k=1}^{\infty} \mu(E_k)$ que estamos supondo ser $< \infty$. Agora, se a medida do conjunto $\{x: f(x) = \infty\}$ (os x's que aparecem em infinitos E_k 's) fosse positiva então estaríamos integrando infinito sobre um conjunto de medida não nula, e a integral da direita seria infinito. Simbólicamente:

$$\int_X f d\mu \geqslant \int_{f^{-1}(\infty)} f d\mu = \mu(f^{-1}(\infty)) \cdot \infty = \infty$$

O que contradiz (8).

Problem 2.7.

Proof. Eu não sei exatamente quanto queremos mostrar nessa questão, provamos em aula que para $f, g \in L^1(\mu)$ e $\alpha, \beta \in \mathbb{C}$, a função $\alpha f + \beta g$ é mensurável (onde está bem definida). Seja $A = f^{-1}(\infty) \cap g^{-1}(\infty)$, A é interseção de mensuráveis e portanto mensurável, definimos exatamente como no problema 1.2 a função mensurável

$$h = \mathbb{1}_A + \mathbb{1}_{A^c} f - \mathbb{1}_{A^c} g$$

h(z) é 0 se e somente se f(z) e g(z) não são infinitas e f(z)=g(z). Usando h, o conjunto

$${z: f(z) = g(z)} = h^{-1}(0) \cup A$$

 $\stackrel{\cdot}{=}$ mensurável.

3 Lista 3 (28/08/2025)

Listagem de problemas:

- 1. Exercício 3.1 : ✓
- 2. Exercício 3.2 : ✓
- 3. Exercício 3.3 : ✓
- 4. Exercício 3.4 : ✓
- 5. Exercício 3.5 : ✓
- 6. Exercício 3.6 : ✓

Problem 3.1.

Proof. A resposta dessa pergunta é positiva, mas eu penei um pouco para chegar nessa conclusão. Lembremos que para mostrar que f é Borel mensurável, basta mostrar que, para todo $c \in \mathbb{R}$, a pré-imagem $f^{-1}((c, +\infty))$ é mensurável. Vamos mostrar que essa pré-imagem é uma união enumerável de conjuntos Borel mensuráveis em \mathbb{R} .

Seja $A = f^{-1}((c, +\infty))$ e tome $a \in A$, i.e f(a) > c, pelas condições de continuidade em f, temos três casos possíveis:

- 1. f é contínua em a, logo $\exists \delta_a > 0$ tal que $(a \delta_a, a + \delta_a) \subset A$
- 2. f é contínua a esquerda em a, logo $\exists \delta_a > 0$ tal que $(a \delta_a, a] \subset A$
- 3. f é contínua a direita em a, logo $\exists \delta_a > 0$ tal que $[a, a + \delta_a) \subset A$

Vamos mostrar que A é a união enumerável de seus componentes conexos, como os componentes conexos são intervalos da reta, eles são borelianos e portanto A será boreliano. Para isso, basta notar que em cada componente conexo há um racional que determina ele completamente. Tome $x \in A$ de um componente, olhe para um racional no intervalo associado a x pela condição de continuidade, essa racional é representante da componente conexa. Como os racionais são enumeráveis, essas componentes são enumeráveis e A é mensurável.

Problem 3.2.

Proof. Basta lembrar bem da definição da integral de Riemann para perceber que a de Lebesgue generaliza ela. Por Riemann, toda função contínua num compacto é integrável e suas somas inferiores e superiores convergem. Seja $f:[a,b] \to \mathbb{R}^+$ contínua, temos

$$\int_{a}^{b} f(x)dx = \lim_{|P| \to 0} L(P, f)$$

onde P é um pontilhamento do compacto [a,b], L(f,P) é a soma inferior de f por P e |P| é o tamanho do maior intervalo do pontilhamento. Podemos expressar L(P,f) como uma soma, se P é $(a=t_0,\ldots t_n=b)$, temos

$$L(P, f) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}) = \sum_{i=1}^{n} m_i \mu([t_{i-1}, t_i))$$

onde $m_i = \inf\{f(x); x \in [t_{i-1}, t_i)\}.$

Olhando para essa fórmula é claro perceber que cada pontilhamento P está associado com uma função simples menor ou igual a f. A ideia da prova é escolher uma sequência de pontilhamento $(P_n)_n$ (diádicos por exemplo) cujo módulo $|P_n|$ tende a 0 e cada pontilhamento é um refinamento do anterior. Dessa forma, eles definirão uma sequência crescentes de funções que convergem para f, então, aplicando o Teorema da Convergência Monotona [2.1], teremos o resultado para funções positivas. Para estender para uma função g com valores reais quaisquer, escrevemos $g = g^+ - g^-$ e usando a linearidade da integral de Lebesgue e Riemann teremos o resultado para integrais de g também.

De agora em diante, seja $f:[a,b] \to \mathbb{R}^+$ uma função contínua positiva. Seja $P_0 = \{a,b\}$, definiremos indutivamente uma sequência de refinamentos (os diádicos). Dado $P_n = \{t_0 < t_1 < \cdots < t_m\}$, cortamos cada intervalo no meio, i.e.

$$P_{n+1} = P_n \cup \left\{ \frac{t_i + t_{i+1}}{2} : 0 \le i < m \right\}$$

Claramente, $|P_n| = (b-a)/2^n \to 0$ e, portanto, pelos teoremas da integral de Riemann,

$$\lim_{n \to \infty} L(P_n, f) \to \int_a^b f dx \tag{9}$$

Agora definimos uma função step s_n associada ao pontilhamento $P_n = \{t_0 < t_1 < \dots < t_m\},$

$$s_n(x) = \begin{cases} \inf\{f(a) : a \in [t_i, t_{i+1})\} & \text{se } x \in [t_i, t_{i+1}] \text{ para } i < m \\ \inf\{f(a) : a \in [t_{m-1}, t_m]\} & \text{se } x \in [t_{m-1}, t_m] \end{cases}$$

Separar o último caso não é necessário, coloquei somente por clareza. Da forma que estão definidos, os s_n são funções simples. Como os P_n são refinamentos, $s_n \leq s_{n+1}$ e, além do mais, sendo f uniformemente contínua em [a,b], temos que $s_n \to f$ uniformemente. Por [2.1],

$$\lim_{n \to \infty} \int_{[a,b]} s_n d\mu = \int_{[a,b]} f d\mu \tag{10}$$

Mas por serem funções simples,

$$\int_{[a,b]} s_n d\mu = L(P_n, f) \tag{11}$$

Juntando as equações 9, 10 e 11, obtemos o resultado.

$$\int_{a}^{b} f dx = \lim_{n \to \infty} L(P_n, f) = \lim_{n \to \infty} \int_{[a,b]} s_n d\mu = \int_{[a,b]} f d\mu$$

Para o caso de $g:[a,b]\to\mathbb{R}$ geral, temos

$$\int_{a}^{b} g dx = \int_{a}^{b} g^{+} dx - \int_{a}^{b} g^{-} dx = \int_{[a,b]} g^{+} d\mu - \int_{[a,b]} g^{-} d\mu = \int_{[a,b]} g d\mu$$

Problem 3.3.

Proof. Esse exercício é similar ao 2.5 da lista anterior, pelo menos a resolução do João. Sejam

$$A_n = \{x : |f_{n+1}(x) - f_n(x)| \ge \varepsilon_n\}$$

$$B_n = \bigcup_{m \ge n} A_m$$

Note que, sendo μ^* uma medida exterior,

$$\mu^*(B_N) \leqslant \sum_{m=N}^{\infty} \mu^*(A_m) \to 0$$

quando $N \to \infty$. Como os B_n são encaixados, isso é o mesmo que dizer $\mu^*(\bigcap_n B_n) = 0$. Agora seja $x \notin \bigcap_n^\infty B_n$, portanto existe n_0 tal que

$$x \notin B_{n_0}, B_{n_0+1}, \dots$$

e, da mesma forma,

$$x \notin A_{n_0}, A_{n_0+1}, \ldots$$

Isso significa que para todo $m > n_0$, $|f_{m+1}(x) - f_m(x)| \le \varepsilon_m$. Como $\sum_n \varepsilon_n < \infty$, pelo M-teste de Weierstrass, $f_n(x)$ converge. Ou seja, mostramos que $(f_n(x))$ converge em quase todo ponto.

Problem 3.4.

Lemma 3.1. Seja E um conjunto de Lebesgue em \mathbb{R} , existe um boreliano F_{σ} tal que $F_{\sigma} \subset E$ e $\mu(E-F_{\sigma})=0$.

Proof. Escreva $\mathbb{R} = \bigcup_n K_n$ para compactos K_n . Dado E conjunto de Lebesgue, afirmo que para qualquer $\varepsilon > 0$, existe um aberto $V \supset E$, tal que $\mu(V - E) < \varepsilon$. Escrevemos

$$E = \bigcup_{n} \mu(E \cap K_n)$$

Como $\mu(E \cap K_n) < \infty$, pois K_n é compacto, existe aberto $V_n \supset (E \cap K_n)$ com $\mu(V_n - (E \cap K_n)) < \varepsilon/2^n$. Tome $V = \bigcup_n V_n$ aberto, temos que $V - E \subset \bigcup_n V_n - (E \cap K_n)$ e

$$\mu(V-E) \leqslant \sum_{n=1}^{\infty} \mu(V_n - E \cap K_n) < \varepsilon$$

Isso implica que podemos aproximar por fechados por dentro também, pois aplicando a afirmação para E^c , conseguimos um aberto $W \supset E^c$ (com complementar $W^c \subset E$ fechado) tal que

$$\mu(E - W^c) = \mu(W - E^c) < \varepsilon$$

Para n natural, tome fechados $F_n \subset E$ com $\mu(E - F_n) < 1/n$. Seja $F_{\sigma} = \bigcup_n F_n \subset E$, então, sendo união enumerável de fechados, F_{σ} é Boreliano e vale que, para todo n,

$$\mu(E - F_{\sigma}) \leqslant \mu(E - F_n) < 1/n$$

logo, $\mu(E - F_{\sigma}) = 0$.

Lemma 3.2. Seja s uma função simples de Lebesgue, existe uma função simples h de Borel tal que $h \le s$ e s = h a.e.

Proof. Como s é simples, pode ser escrita da forma

$$s(x) = \sum_{n=1}^{N} a_n \mathbb{1}_{E_n}(x)$$

Para cada E_n , tome pelo lema anterior, um boreliano $B_n \subset E_n$ com $\mu(E_n - B_n) = 0$. A função

$$h(x) = \sum_{n=1}^{N} a_n \mathbb{1}_{B_n}(x)$$

Claramente satisfaz que

$$\mu(\lbrace x : s(x) \neq h(x)\rbrace) = \mu\left(\bigcup_{n} E_n - B_n\right) \leqslant \sum_{n} \mu(E_n - B_n) = 0$$

Lemma 3.3. Seja $f: \mathbb{R} \to \mathbb{R}^+$ limitada de Lebesgue, então existe função de Borel g tal que f = g a.e.

Proof. Seja f < M e escreva novamente $\mathbb{R} = \bigcup_n K_n$ união de compactos. Em cada compacto K_m ,

$$\int_{K_m} f d\mu \leqslant M\mu(K_m) < \infty$$

Seja $(s_n) \leq f$ sequência de funções simples $s_n : K_m \to \mathbb{R}^+$ de Lebesgue que aproximam f, ou seja:

$$\lim_{n \to \infty} \int_{K_m} s_n d\mu = \int_{K_m} f d\mu$$

Agora, para cada s_n , pelo lema anterior, encontre $h_n = s_n \leqslant f$ a.e. com $h_n \leqslant s_n$ Borel simples. Note que

$$\lim_{n \to \infty} \int_{K_m} h_n d\mu = \lim_{n \to \infty} \int_{K_m} s_n d\mu = \int_{K_m} f d\mu < \infty$$

Afirmo que $H = \sup_n h_n \leqslant f$ Borel mensurável é igual a f em quase todo ponto de K_m . Seja $A = \{x : H(x) \neq f(x)\}$, então

$$A = \bigcup_{k} \{x : f(x) - H(x) > 1/k\}$$

Suponha que $\mu(x: f(x) - H(x) > 1/k) = C > 0$ para algum k, vale que $\mu(x: f(x) - h_n(x) > 1/k) \ge C$ para todo n e portanto,

$$\int_{K_m} f - h_n d\mu \geqslant \frac{C}{k} > 0$$

o que é absurdo, pois $\int_{K_m} f - h_n d\mu \to 0$. Mostramos que $\mu(x: f(x) - H(x) > 1/k) = 0$ para todo k e como consequência que $\mu(A) = 0$.

Conseguimos o resultado para cada compacto K_m . Vamos estender para uma função definida em toda a reta. Para cada m, recupere função boreliana H_m com $H_m \leq f$ e $H_m = f$ a.e em K_m que valha 0 em K_m^c nossa construção anterior permite fazer essa escolha. Tome $G = \sup_m H_m$, teremos que G = f a.e. Para ver que isso vale, note que $G \leq f$ e escreva

$$Q = \{x : G(x) \neq f(x)\} = \bigcup_{m} \{x \in K_m : G(x) < f(x)\} \subset \bigcup_{m} \{x \in K_m : H_m(x) < f(x)\}$$

Q é uni \tilde{a} o enumerável de conjuntos de medida nula e portanto, tem medida nula.

Lemma 3.4. (Exercício) Seja $f: \mathbb{R} \to \mathbb{C}$ de Lebesgue, então existe função de Borel g tal que f = g a.e.

Proof. Vamos começar com funções $f: \mathbb{R} \to \mathbb{R}^+$ que não atingem infinito, $f(x) < \infty$ para todo x. Defina a sequência de funções Lebesgue $(F_n)_n: \mathbb{R} \to \mathbb{R}^+$ dadas por $F_n = \min(f, n)$. Como essas são todas limitadas, para cada n, pelo lema anterior, existe boreliana $G_n = F_n$ a.e com $G_n \le F_n$. Defina a boreliana $G = \sup_n G_n \le f$ (tomando sup pela milésima vez), temos que G = F a.e. Para ver isso, assim como antes, seja

$$A = \{x : G(x) \neq f(x)\} = \{x : G(x) < f(x)\} = \bigcup_n \{x : G(x) < f(x) < n\}$$

Mas, semelhantemente à prova anterior,

$$\bigcup_{n} \{x : G(x) < f(x) < n\} \subset \bigcup_{n} \{x : G_n(x) < F_n(x)\}$$

A é, portanto, união enumerável de conjuntos de medida nula, logo $\mu(A) = 0$.

Para dar o golpe de misericórdia nas funções reais positivas, se $\infty \in \{f(x) : x \in \mathbb{R}\}$, então seja $E = f^{-1}(\infty)$. Encontre, pelo lema 3.1, um boreliano $B \subset E$ com $\mu(E - B) = 0$ e uma boreliana $G = f\mathbb{1}_{E^c}$ a.e. Então, a função

$$H = G + \infty \cdot \mathbb{1}_B$$

é claramente igual a f a.e.

Para finalizar, estendendo para funções complexas, seja $f = u^+ - u^- + iv^+ - iv^-$ de Lebesgue, aproxime u^+, u^-, v^+, v^- respectivamente por borelianas a^+, a^-, b^+, b^- a.e. Então a função $g = a^+ - a^- + ib^+ - ib^-$ satisfaz que

$$\{x: f(x) \neq g(x)\} \subset [a^+ \neq u^+] \cup [a^- \neq u^-] \cup [b^+ \neq v^+] \cup [b^- \neq v^-]$$

que é união de conjuntos de medida nula.

Problem 3.5.

Essa questão é a mais simples e vou tentar transcrever o desenho que soluciona ela em palavras. A ideia aqui é que escrevamos uma sequência de funções trapezoidais em [0,1] que vão ficando cada vez mais fininhas, de forma que integrar sobre elas tenda a 0, mas que cada ponto de [0,1] chegue a valer 0 e 1 infinitas vezes.

Proof. Vamos construir uma sequência de funções contínuas espertas $(F_n)_n$ em [0,1].. Para $m \in \{2^k, 2^k + 1, \dots, 2^{k+1} - 1\}$, seja $n = m - 2^k$, definimos

$$F_m(x) = \begin{cases} 0 & \text{se } x \leqslant (n-1)2^{-k} \\ 2^k(x - (n-1)2^{-k}) & \text{se } (n-1)2^{-k} \leqslant x \leqslant n2^{-k} \\ 1 & \text{se } n2^{-k} \leqslant x \leqslant (n+1)2^{-k} \\ 1 - 2^k(x - (n+1)2^{-k}) & \text{se } (n+1)2^{-k} \leqslant x \leqslant (n+2)2^{-k} \\ 0 & \text{se } x \geqslant (n+2)2^{-k} \end{cases}$$

Onde óbiviamente F_m está definida definida dessa forma quando os casos fazem sentido. Por exemplo quando $m=2^k$, n=0 o primeiro e o segundo caso não aparecem. Quando $m=2^{k+1}-1$, $n=2^k-1$, o quarto e o último não aparecem. Essas funções são claramente contínuas, são trapézios que vão ficando cada vez menos espessos. Se $2^k \le m < 2^{k+1}$, uma soma simples sobre funções afins mostra que

$$\int_0^1 F_m dx \leqslant 2^{-k+1} \to 0$$

No entanto, é também fácil perceber que se k > 2, para qualquer $x \in [0,1]$, existem $2^k \le N, M < 2^{k+1}$ tais que $F_N(x) = 0$ e $F_M(x) = 1$. Portanto $F_m(x)$ não converge para nenhum ponto, mesmo que as integrais convirjam.

Problem 3.6.

Esse é o problema mais legal, não acredito que consiguiria fazê-lo sem uma dica da professora Cynthia. A única função não mensurável que conhecemos até agora é a característica de um conjunto não mensurável, a ideia é tentar formar essa característica somente no liminf. Vamos fazer isso removendo pontualmente o complementar de um conjunto não mensurável infinitas vezes. **Obs:** A escolha esquista de (0,1] nos conjuntos a seguir é para facilitar a colagem que precisaremos fazer para construir a função f.

Proof. Seja T um conjunto não mensurável de (0,1] e T'=(0,1]-T seu complementar em (0,1], note que T' também é não mensurável. Vamos definir uma função $g(x,t): \mathbb{R} \times (0,1] \to \{0,1\}$ que será a nossa ferramenta principal para construir f.

Dado t fixo, se $t \in T'$, seja $A_t = (0,1] - \{t\}$, então definimos

$$g(x,t) \begin{cases} \mathbb{1}_{A_t}(x) & \text{se } t \in T' \\ \mathbb{1}_{(0,1]}(x) & \text{se } t \notin T' \end{cases}$$

Note que, trivialmente, para todo $t \in (0,1]$, a função g(t,x) - com a variável em x - é mensurável, além do mais, sua integral sobre x é claramente 1.

Agora a ideia é de alguma forma colar infinitas cópias de g uma acima da outra. Separe (0,1] na união disjunta:

$$(0,1] = \bigcup_{n=1}^{\infty} (2^{-n}, 2^{-n+1}]$$

Definiremos $g_n(x,t): \mathbb{R} \times (2^{-n},2^{-n+1}] \to \{0,1\}$ da seguinte forma:

$$q_n(x,t) = q(x,t2^n - 1)$$

Por fim, defina $f: \mathbb{R}^2 \to \{0,1\}$ colando as g_n .

$$f(x,t) = \begin{cases} \mathbb{1}_{(0,1]}(x) & \text{se } t \leq 0 \ \lor \ t > 1 \\ g_n(x,t) & \text{se } t \in (2^{-n}, 2^{-n+1}] \end{cases}$$

Afirmo que f satisfaz as propriedades do exercício. Claramente, $\int_{\mathbb{R}} f(x,t)dx = 1$ para todo $t \in \mathbb{R}$, pois, fixando t, nossa função é sempre a indicadora de (0,1] salvo as vezes um único ponto. Para a segunda propriedade, vamos querer verificar que $h(x) = \liminf_{t\to 0} f(x,t)$ é justamente $\mathbb{1}_T(x)$ que não é mensurável. Para isso note que se $x \in T \subset [0,1]$, então g(x,t) = 1 para todo t e portanto, $g_n(x,t) = 1$ para qualquer t também. Logo f(x,t) = 1 para todo t e h(x) = 1. Se $x \in (0,1]^c$ então também, trivialmente f(x,t) = 0 para todo t e h(x) = 0. Agora, se t e t para todo t0, vale que

$$g_n\left(x, \frac{x+1}{2^n}\right) = \mathbb{1}_{A_x}(x) = 0$$

e, para qualquer outro $t \in (2^{-n}, 2^{-n+1}],$

$$g_n(x,t) = 1$$

Em particular, sendo colagem desses valores, vale que para valores arbitrariamente pequenos de t atingimos f(x,t)=0 e portanto $h(x)=\liminf_{t\to 0}f(x,t)=0$. Segue dos casos anteriores que $\liminf_{t\to 0}f(x,t)=\mathbbm{1}_T(x)$ que não é mensurável.