Lending Club Loan Prediction

DATS 6103
Elizabeth Deschaine
Timur Mukhtarov

What is Lending Club

- Peer-to-peer lending platform
- Pioneer in the rapidly developing fintech industry
- Lower cost than traditional bank loan programs
- Fast loans, interesting investment
- 2006 Lending Club is born
- 2014 successful IPO
- 2016 Difficulty in attracting investors

How Peer Lending Works

Borrowers apply for loans. Investors open an account.

Borrowers get funded. Investors build a portfolio.

Borrowers repay automatically.
Investors earn & reinvest.

Grades and Interest Rate

Project Objective

- Provide a tool for potential investors to predict the probability that a loan will "succeed"
- Success is defined as the loan either paid off or current

Strategies

- Categorize the data based on the borrower's description
- Classify the loan status into Success (1) or Failure (0)
- Use interest rate, dti, and loan amount to predict loan status
- Build logistic regression and SVM models

The Data

Lending Club public data/Kaggle

887K 5()+

Rows in the original data set

Variables

Confused Data Science students

2 models

Logistic Regression

Support Vector Machine

Exploratory Data Analysis (EDA)

<u>Tableau</u>

Tools

- Python
 - Pandas
 - Numpy
 - Word Cloud
 - Natural Language Toolkit (NLTK)
 - Word Net
 - Sklearn
 - Logistic Regression
 - SVM
- Tableau
 - Visualizations

Generate Word Cloud

Python Library

Requires "list of words"

Way to check progress

Natural Language Toolkit

"[NLTK] provides easy-to-use interfaces... such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries"

```
for syn in wordnet.synsets(target_word):

for I in syn.lemmas():

local_list.append(l.name())
```

Synset: a set of synonyms that share a common meaning.

Each synset contains one or more lemmas, which represent a specific sense of a specific word.

Categories of Loans

```
category_list =
```

["home", "wedding", "medical", "business", "car", "vacation"]

Building a Logistic Regression model

Y = Loan Status (Success vs. Failure)

Features (Xi) = Interest Rate, Debt-to-Income ratio (DTI), Loan Amount

Data = Categorized Data

class_weight='balanced'

Predicting Probabilities

- Subset data based on category
- User selects interest rate, dti, loan amount
- Accuracy is based on Probability of class 1 or class 0

Support Vector Machines (SVM) model

- 50+ percent accuracy
- kernel='rbf'
- gamma=0.05
- C=1
- class_weight='balanced'
- Features: Interest Rate, Loan Amount

```
In [33]: print(metrics.confusion_matrix(yTest, svm_ypred2))
#accuracy is 56% here

[[ 36 55]
     [155 330]]
```

SVM graph

Conclusions

- Interactive visualizations on Tableau Public
- Successfully categorized "Other" loans
- A logistic regression model, 3 features, good accuracy
- A prototype of a program prospective lenders can use
- SVM model

Challenges

- SVM models with better accuracy
- Decision Tree models
- Neural Networks

Q&A