

Harsh Arya (B20043)

1 a.

Table 1 Minimum and Maximum Attribute Values Before and After Min-Max Normalization

S. No.	Attribute	Before Min-Max Normalization		After Min-Max Normalization	
		Minimum	Maximum	Minimum	Maximum
1	Temperature (in °C)	10.085	31.375	3.0	9.0
2	Humidity (in g.m ⁻³)	34.206	99.720	3.0	9.0
3	Pressure (in mb)	992.654	1037.604	3.0	9.0
4	Rain (in ml)	0.000	2470.500	3.0	9.0
5	Lightavgw/o0 (in lux)	0.000	10565.352	3.0	9.0
6	Lightmax (in lux)	2259.000	54612.000	3.0	9.0
7	Moisture (in %)	0.000	100.000	3.0	9.0

Inferences:

- 1. Outliers are replaced with median of the remaining data. It is necessary as outliers affects the range of the data.
- 2. Before normalization the range of attributes were different. After normalization the range of all attributes becomes the same (3-9).
- 3. Normalization helps to prevent attributes with large ranges from overweighting attributes with smaller attributes.

b.

Table 2 Mean and Standard Deviation Before and After Standardization

S. No.	Attribute	Before Standardization		After Standardization	
		Mean	Std. Deviation	Mean	Std. Deviation
1	Temperature (in °C)	21.370	4.125	0.0	1.0
2	Humidity (in g.m ⁻³)	83.992	17.566	0.0	1.0
3	Pressure (in mb)	1014.760	6.121	0.0	1.0
4	Rain (in ml)	168.400	399.689	0.0	1.0
5	Lightavgw/o0 (in lux)	2197.392	2220.820	0.0	1.0
6	Lightmax (in lux)	21788.623	22064.993	0.0	1.0
7	Moisture (in %)	32.386	33.653	0.0	1.0

Harsh Arya (B20043)

- 1. Before standardization the mean and standard deviation of the attributes are of different values. After standardization the mean becomes 0 and the standard deviation becomes 1 for all attributes in the data.
- 2. It is useful when the actual minimum and maximum of attribute are unknown.

2 a.

Figure 1 Scatter Plot of 2D Synthetic Data of 1000 samples Inferences:

- 1. Attributes seem to have a strong positive correlation. As the value of x1 increases x2 also increases. On computation the Pearson's correlation coefficient is around 0.82 same as expected from the covariance matrix.
- 2. The plot has high density around origin (mean value). The variance of x1 is smaller than that of x2 as expected
- 3. The plot shows the Gaussian bivariate distribution.

Harsh Arya (B20043)

Figure 2 Plot of 2D Synthetic Data and Eigen Directions

Inferences:

- 1. Eigen value1: 1.703, Eigen vector1: [-0.833, 0.554]
- 2. Eigen value2: 19.688, Eigen vector2: [-0.554, -0.833]
- 3. We can observe that the spread of the data is more across 2nd eigen vector than the 1st. This is because the magnitude of eigen value 2 is greater than eigen value 1.
- 4. The plot has high density around the origin (point of intersection of eigen axes), since it is the mean of the distribution as we move away along 2 axes the density decreases.
- 5. Larger the eigen value, larger the distribution of data along the corresponding eigen vector.

c.

Harsh Arya (B20043)

Figure 3 Projected Eigen Directions onto the Scatter Plot with 1st Eigen Direction highlighted

Figure 4 Projected Eigen Directions onto the Scatter Plot with 2nd Eigen Direction highlighted

Assignment 3 Harsh Arya (B20043)

Inferences:

- 1. Eigen value1: 1.703, Eigen value2: 19.688. Eigen value ∝ variance in projection.
- 2. Variance of data along eigen vector2> variance of data along eigen vector2. Variance along eigen vector ∝ spread of data along eigen vector 1/∝ density of data. Variance along eigen vector = Magnitude of eigen value.
- 3. Larger the eigen value, larger the information content in the direction of corresponding eigen vector.
- **d.** Reconstruction Error = 0.000

- 1. Magnitude of reconstruction error \propto Loss of information in compressed data.
- 2. Reconstruction Error= 0 <=> The data reduction is called lossless.

Harsh Arya (B20043)

Table 3 Variance and Eigen Values of the projected data along the two directions

Direction	Variance	Eigen Value		
1	2.1999	2.2022		
2	1.4193	1.4208		

Inferences:

1. Eigenvalues and variances of the directions of projection in this reduced data are numerically very close meaning eigenvalues signify the spread/variance of data around a direction of projection.

Figure 5 Plot of Landslide Data after dimensionality reduction

Harsh Arya (B20043)

- 1. Since the number of eigendirections and the original dimensions of the data are the same, no actual dimension reduction has been performed. The data points only have been projected onto a new basis.
- 2. Therefore, the MSE calculated for this instance is vanishingly close to zero as the "reduced data" takes up the same number of dimensions as previous data.
- 3. From the plot the median of both attributes of the reduced data seem to be less than the mean (positively skewed).
- 4. The reduced data is uncorrelated.

b)

Figure 6 Plot of Eigen Values in descending order

- 1. Eigen values decrease gradually.
- 2. Highest rate of decrease is from eigen value 1 to eigen value 2.

Harsh Arya (B20043)

c.

Figure 7 Line Plot to demonstrate Reconstruction Error vs. Components

- 1. Magnitude of reconstruction error $1/\alpha$ the quality of reconstruction.
- 2. As I -> d, reconstruction error -> 0.
- 3. Reconstruction error = $0 \Rightarrow Data$ reduction is lossless. If reconstruction error $\neq 0 \Rightarrow Data$ reduction is called lossy.