# Latent Variables and Lossless Compression



James Townsend

Stanford IT Forum 28/10/2022

- 1. Latent variable methods
- 2. Lossless compression and asymmetric numeral systems
- 3. Combining 1 and 2

- 1. Latent variable *methods*
- 2. Lossless compression and asymmetric numeral systems
- 3. Combining 1 and 2

- 1. Latent variable *methods*
- 2. Lossless compression and asymmetric numeral systems
- 3. Combining 1 and 2

We have data x, modelled with some distribution P(x).

Suppose modelling x is *difficult* in some way, it might be

- difficult to sample from P
- difficult to evaluate P
- difficult to compress x using P

We have data x, modelled with some distribution P(x).

Suppose modelling x is *difficult* in some way, it might be

- difficult to sample from P
- difficult to evaluate P
- difficult to compress x using P

Old, useful idea:

Introduce extra randomness\* z, correlated with x, such that  $P(x) = \int P(x, z)dz...$ 

<sup>\*</sup>aka entropy: H(x, z) > H(x)

We have data x, modelled with some distribution P(x).

Suppose modelling x is *difficult* in some way, it might be

- difficult to sample from P
- difficult to evaluate P
- difficult to compress x using P

Old, useful idea:

Introduce extra randomness\* z, correlated with x, such that  $P(x) = \int P(x, z)dz...$ 

This is called a *latent* variable

\*aka entropy: H(x, z) > H(x)

We have data x, modelled with some distribution P(x).

Suppose modelling x is *difficult* in some way, it might be

- difficult to sample from P
- difficult to evaluate P
- difficult to compress x using P

Old, useful idea:

Introduce extra randomness\* z, correlated with x, such that  $P(x) = \int P(x, z)dz...$ 

<sup>\*</sup>aka entropy: H(x, z) > H(x)

We have data x, modelled with some distribution P(x).

Suppose modelling x is *difficult* in some way, it might be

- difficult to sample from P
- difficult to evaluate P
- difficult to compress x using P

#### Old, useful idea:

Introduce extra randomness\* z, correlated with x, such that  $P(x) = \int P(x, z)dz...$ 









#### $P(x) = c_1 N(x; \mu_1, \sigma_1) + c_2 N(x; \mu_2, \sigma_2)$

P(x)

#### 'Latent variable methods'

We have data x, mor

Suppose modelling

- difficult to samp
- difficult to evalu
- difficult to comp

Old, useful idea:

Claim: this is a common pattern. It's useful to notice it.



 $P(x \mid z = 1)$ 

Introduce extra randomness\* z, correlated with x, such that  $P(x) = \int P(x, z)dz...$ 

\*aka entropy: H(x, z) > H(x)

How do you sample a discrete random variable?



| x    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.24 | 0.40 | 0.19 |

How do you sample a discrete random variable?



| u | 0 |   |   |   |   | 1<br><b>–</b> |
|---|---|---|---|---|---|---------------|
| Х | a | b | С | + | d | -             |

| X    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.24 | 0.40 | 0.19 |

Answer: compute

| F(x) 0.00 0.17 0.41 0.81 |
|--------------------------|
|--------------------------|

Sample u ~ Uniform [0, 1)

Then search for  $\underset{x}{\operatorname{arg max}} F(x) < u$ 

How do you sample a discrete random variable?





| X    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.24 | 0.40 | 0.19 |

In numpy.random.choice():

```
cdf = p.cumsum()
cdf /= cdf[-1]
uniform_samples = self.random_sample(shape)
idx = cdf.searchsorted(uniform_samples, side='right')
# searchsorted returns a scalar
# force cast to int for LLP64
idx = np.array(idx, copy=False).astype(int, casting='unsafe')
```

How do you sample a discrete random variable?



The variable u is a latent variable.

We have  $P(x) = \int P(x, u) du$ and H(x, u) > H(x).

| b    | С    | d    |
|------|------|------|
| 0.24 | 0.40 | 0.19 |

/te()

```
cdf = p.cumsum()
cdf /= cdf[-1]
uniform_samples = self.random_sample(shape)
idx = cdf.searchsorted(uniform_samples, side='right')
# searchsorted returns a scalar
# force cast to int for LLP64
idx = np.array(idx, copy=False).astype(int, casting='unsafe')
```

# Example 2: the alias method (Walker, 1974)

#### Fast sampling from a categorical...

...2 table lookups + 2 samples from uniform distribution, *no search*.



| x    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.28 | 0.36 | 0.19 |



| X             | а    | b    | С    | d    |
|---------------|------|------|------|------|
| alias(x)      | С    | С    | -    | b    |
| P(switch   i) | 0.32 | 0.12 | 0.00 | 0.24 |

# Example 2: the alias method (Walker, 1974)

#### Fast sampling from a categorical...

...2 table lookups + 2 samples from uniform distribution, *no search*.

```
sample i ~ Uniform { a , b , c , d }
sample u ~ Uniform [0, 1)

if u < P(switch | i):
    x = alias(x)
else:
    x = i</pre>
```



| Х             | а    | b    | С    | d    |
|---------------|------|------|------|------|
| alias(x)      | С    | С    | -    | b    |
| P(switch   i) | 0.32 | 0.12 | 0.00 | 0.24 |

# Example 2: the alias method (Walker, 1974)

Fast sampling from a categorical...



# Example 3: latent variable *models* (VAEs)



## Example 3: latent variable *models* (VAEs)



**Joint distribution**  $p(x, z) = p(x \mid z)p(z)$  factors:

**Prior** over latent z

$$p(z) = N(z; 0, I)$$

**Conditional** over x

$$p(x \mid z; \theta) = m(x; \mu(z; \theta))$$

•  $\mu$  is a **neural network**,  $\theta$  parameters

## Example 3: latent variable *models* (VAEs)



Optimize *lower bound* on marginal

$$\log p(x) \ge L(\theta, \varphi) \triangleq E_{q(z; x)}[\log p_{\theta}(x, z) - \log q_{\varphi}(z; x)]$$

$$\mathbf{q}_{\varphi}(\mathbf{z}; \mathbf{x}) = \mathbf{N}(\mathbf{z}; \boldsymbol{\mu}_{\mathbf{q}}(\mathbf{x}; \varphi), \boldsymbol{\Sigma}_{\mathbf{q}}(\mathbf{x}; \varphi))$$

q approximates the posterior

$$q(z; x) \approx p(z \mid x)$$

•  $\Sigma_{\mathbf{q}}(\mathbf{x}; \varphi)$  usually **diagonal** ('mean field')

- 1. Latent variable *methods*
- 2. Lossless compression and asymmetric numeral systems
- 3. Combining 1 and 2

- 1. Latent variable *methods*
- 2. Lossless compression and asymmetric numeral systems
- 3. Combining 1 and 2

A relatively simple 'arithmetic coding' method:

```
# Assuming s in {0, 1, ...} and u in {0, 1, ..., N - 1}
encode(s, u) := N * s + u

# Reverse operation:
decode(s') := (s' // N, s' % N)
```



A relatively simple 'arithmetic coding' method:

```
# Assuming s in \{0, 1, ...\} and u in \{0, 1, ..., N - 1\}
encode(s, u) := N * s + u
# Reverse operation:
decode(s') := (s' // N, s' % N)
Can compress/decompress a list:
s = 0
for u in reversed(us):
  s = encode(s, u)
# to undo the above:
us = []
for i in range(length):
  s, u = decode(s)
  us.append(u)
```



A relatively simple 'arithmetic coding' method:

```
# Assuming s in {0, 1, ...} and u in {0, 1, ..., N - 1}
encode(s, u) := N * s + u

# Reverse operation:
decode(s') := (s' // N, s' % N)
```

#### Genius work by Duda (2009) showed that

- You can address the issue of s growing
- size(encode(s, u)) ≈ size(s) + log2(N). Great if u is really uniform distributed, because then H(u) = log2(N).

Intuitively:  $log2(encode(s, u)) = log2(N * s + u) \approx log2(s) + log2(N)$ 



Jarek Duda

A relatively simple 'arithmetic coding' method:

```
# Assuming s in {0, 1, ...} and u in {0, 1, ..., N - 1}
encode(s, u) := N * s + u

# Reverse operation:
decode(s') := (s' // N, s' % N)
```



#### Genius work by Duda (2009) showed that

- You can address the issue of s growing
- size(encode(s, u)) ≈ s
   really uniform distributed

This guy has done two PhDs!

Intuitively:  $log2(encode(s, u)) = log2(N * s + u) \approx log2(s) + log2(N)$ 



Jarek Duda

- 1. Latent variable *methods*
- 2. Lossless compression and asymmetric numeral systems
- 3. Combining 1 and 2

- 1. Latent variable *methods*
- 2. Lossless compression and asymmetric numeral systems
- 3. Combining 1 and 2

# Compressing with latent variables ('bits-back' coding)

'Operationalize' the identity  $H(X) = H(X, Z) - H(Z \mid X)$ .

# Compressing with latent variables ('bits-back' coding)

'Operationalize' the identity  $H(X) = H(X, Z) - H(Z \mid X)$ .

#### If we have

- an encoder/decoder for (X, Z), Δsize(s) = H(X, Z)
- an encoder/decoder for Z | X, Δsize(s) = H(Z | X)

Then we can build an encoder/decoder for x with  $\Delta$ size(s) = H(X):

# Compressing with latent variables ('bits-back' coding)

'Operationalize' the identity  $H(X) = H(X, Z) - H(Z \mid X)$ .

If we have

- an encoder/decoder for (X, Z), Δsize(s) = H(X, Z)
- an encoder/decoder for Z | X, Δsize(s) = H(Z | X)

Then we can build an encoder/decoder for x with  $\Delta$ size(s) = H(X):

How do you sample a discrete random variable?





| x    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.24 | 0.40 | 0.19 |

Answer: compute

| F(x) 0.00 | 0.17 0.41 | 0.81 |
|-----------|-----------|------|
|-----------|-----------|------|

Sample u ~ Uniform [0, 1)

Then search for  $\underset{x}{\operatorname{arg max}} F(x) < u$ 

How do you sample a discrete random variable?





| X    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.24 | 0.40 | 0.19 |

Answer: compute

| F(x) 0.00 | 0.17 0.41 | 0.81 |
|-----------|-----------|------|
|-----------|-----------|------|

Sample u ~ Uniform [0, 1)

Then search for  $\underset{x}{\operatorname{arg max}} F(x) < u$ 

How do you compress a discrete random variable?



| x    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.24 | 0.40 | 0.19 |



How do you compress a discrete random variable?



| x    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 3/20 | 5/20 | 8/20 | 4/20 |



How do you compress a discrete random variable?



| х    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 3/20 | 5/20 | 8/20 | 4/20 |
| M(x) | 3    | 5    | 8    | 4    |





| x    | а | b | С | d |
|------|---|---|---|---|
| M(x) | 3 | 5 | 8 | 4 |





| x    | а | b | С | d |
|------|---|---|---|---|
| M(x) | 3 | 5 | 8 | 4 |



| Х    | а | b | С | d |
|------|---|---|---|---|
| M(x) | 3 | 5 | 8 | 4 |

```
def encode_x(s, x):
    s, u = decode_ugx(x)(s)
    s = encode_xu(s, (x, u))
    return s

def decode_x(s):
    s, (x, u) = decode_xu(s)
    s = encode_ugx(x)(s, u)
    return s
```



| X    | а | b | С | d |
|------|---|---|---|---|
| M(x) | 3 | 5 | 8 | 4 |

```
def encode_x(s, x):
    s, u = decode_ugx(x)(s)
    s = encode_xu(s, (x, u))
    return s

def decode_x(s):
    s, (x, u) = decode_xu(s)
    s = encode_ugx(x)(s, u)
    return s
```

```
def encode_xu(s, (x , u)):
    # x deterministic given u, so only need to encode
    # u...
    return encode_uniform(20)(s, u)
```



| X    | а | b | С | d |
|------|---|---|---|---|
| M(x) | 3 | 5 | 8 | 4 |

```
def encode_x(s, x):
    s, u = decode_ugx(x)(s)
    s = encode_xu(s, (x, u))
    return s

def decode_x(s):
    s, (x, u) = decode_xu(s)
    s = encode_ugx(x)(s, u)
    return s
```

```
def encode_xu(s, (x , u)):
    # x deterministic given u, so only need to encode
    # u...
    return encode_uniform(20)(s, u)

def decode_xu(s):
    # First decode u
    s, u = decode_uniform(20)(s)
    # Then search
    x = cdf_lookup(u)
    return s, (x, u)
```



| Х    | а | b | С | d |
|------|---|---|---|---|
| M(x) | 3 | 5 | 8 | 4 |

```
def encode_x(s, x):
    s, u = decode_ugx(x)(s)
    s = encode_xu(s, (x, u))
    return s

def decode_x(s):
    s, (x, u) = decode_xu(s)
    s = encode_ugx(x)(s, u)
    return s
```



| X    | а | b | С | d |
|------|---|---|---|---|
| M(x) | 3 | 5 | 8 | 4 |

```
def encode_x(s, x):
    s, u = decode_ugx(x)(s)
    s = encode_xu(s, (x, u))
    return s

def decode_x(s):
    s, (x, u) = decode_xu(s)
    s = encode_ugx(x)(s, u)
    return s
```



| X    | а | b | С | d  |
|------|---|---|---|----|
| M(x) | 3 | 5 | 8 | 4  |
| F(x) | 0 | 3 | 8 | 16 |

```
def encode_x(s, x):
    s, u = decode_ugx(x)(s)
    s = encode_xu(s, (x, u))
    return s

def decode_x(s):
    s, (x, u) = decode_xu(s)
    s = encode_ugx(x)(s, u)
    return s
```

```
def encode_ugx(x):
    def enc(s, u):
        # u ~ Uniform {F(x), F(x)+1, ..., F(x) + M(x)}
        return encode_uniform(M(x))(u - F(x))
    return enc

def decode_ugx(x):
    def dec(s):
        s, i = decode_uniform(M(x))(s)
        return s, i + F(x)
    return dec
```



# Example 2: the alias method (Walker, 1974)

#### Fast sampling from a categorical...



| x    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.28 | 0.36 | 0.19 |



| X             | а    | b    | С    | d    |
|---------------|------|------|------|------|
| alias(x)      | С    | С    | -    | b    |
| P(switch   i) | 0.32 | 0.12 | 0.00 | 0.24 |

# Example 2: the alias method (Walker, 1974)

#### Fast sampling from a categorical...



| х    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.28 | 0.36 | 0.19 |



| х             | а    | b    | С    | d    |
|---------------|------|------|------|------|
| alias(x)      | С    | С    | -    | b    |
| P(switch   i) | 0.32 | 0.12 | 0.00 | 0.24 |

#### Fast decoding from a categorical...



| х    | а    | b    | С    | d    |
|------|------|------|------|------|
| P(x) | 0.17 | 0.28 | 0.36 | 0.19 |



| х             | а    | b    | С    | d    |
|---------------|------|------|------|------|
| alias(x)      | С    | С    | -    | b    |
| P(switch   i) | 0.32 | 0.12 | 0.00 | 0.24 |

Fast decoding from a categorical...



| x             | а    | b    | С    | d    |
|---------------|------|------|------|------|
| alias(x)      | С    | С    | -    | b    |
| P(switch   i) | 0.32 | 0.12 | 0.00 | 0.24 |

Fast decoding from a categorical...



| х             | а | b | С | d |
|---------------|---|---|---|---|
| alias(x)      | С | С | - | b |
| M(switch   i) | 8 | 3 | 0 | 6 |

#### Fast decoding from a categorical...



| х             | а | b | С | d |
|---------------|---|---|---|---|
| alias(x)      | С | С | - | b |
| M(switch   i) | 8 | 3 | 0 | 6 |

#### Fast decoding from a categorical...



#### Fast decoding from a categorical...





#### Fast decoding from a categorical...

...2 table lookups + 2 decodes from uniform distribution, *no search*.



Decoding (u, i) | x requires search!

Fast decoding from a categorical...

...2 table lookups + 2 decodes from uniform distribution, *no search*\*.



Decoding (u, i) | x requires search!

Fast decoding from a categorical...

...2 table lookups + 2 decodes from uniform distribution, *no search*\*.

def encode\_x(s, x):
 s, (u, i) = decode\_uigx(x)
 s = encode\_xui(s,
 return s

def decode\_x(s):
 s, (x, u, i) = decode\_xui(
 s = encode\_uigx
 return s

Key point: alias method *moves* work from the decoder to the encoder...

total complexity of encoding + decoding stays the same





Decoding (u, i) | x requires search!

# Example 3: latent variable *models*



## Example 3: latent variable *models*



Train a VAE model on images...

...directly apply latent variable compression.

Result: a good (formerly SOTA) lossless image compression rate, with fast-ish decoding.

### Example 3: latent variable *models*



Train a VAE model on images...

...directly apply latent variable compression.

Result: a good (formerly SOTA) lossless image compression rate, with fast-ish decoding.



Townsend et al. (2019)

#### More!

- Optimal compression of multisets (Severo et al., 2022)
- Optimal compression of unlabelled random graphs (unpublished)
- Compression with latent state space models (Townsend and Murray, 2021)
- Compression with hierarchical LVMs (Townsend et al., 2020; F. Kingma et al. 2020)
- Compression with diffusion models (D. Kingma et al., 2021)

#### More!

- Optimal compression of *multisets* (Severo et al., 2022)
- Optimal compression of unlabelled random graphs (unpublished)
- Compression with latent state space models (Townsend and Murray, 2021)
- Compression with hierarchical LVMs (Townsend et al., 2020; F. Kingma et al. 2020)
- Compression with diffusion models (D. Kingma et al., 2021)

All use the pattern discussed in this talk. There are probably more examples, still to be discovered.

# The end. Thanks for listening.



James Townsend

Stanford IT Forum 28/10/2022

#### References

- 1. Walker, A. J. (April 1974). "New fast method for generating discrete random numbers with arbitrary frequency distributions". *Electronics Letters*. **10** (8): 127.
- 2. Duda, J. (2009). "Asymmetric numeral systems". https://arxiv.org/abs/0902.0271.
- 3. Townsend, James, Thomas Bird, and David Barber. 'Practical Lossless Compression with Latent Variables Using Bits Back Coding', 2019. <a href="https://openreview.net/forum?id=ryE98iR5tm">https://openreview.net/forum?id=ryE98iR5tm</a>.
- 4. Daniel Severo\*, James Townsend\*, Ashish Khisti, Alireza Makhzani, and Karen Ullrich, <u>Compressing Multisets with Large Alphabets</u>, appearing at the Data Compression Conference (DCC), 2022.
- 5. James Townsend and Iain Murray, <u>Lossless Compression with State Space Models Using Bits Back Coding</u>, Neural Compression: From Information Theory to Applications -- Workshop @ ICLR 2021.
- 6. James Townsend\*, Thomas Bird\*, Julius Kunze, and David Barber, <u>HiLLoC: Lossless Image Compression with Hierarchical Latent Variable Models</u>, International Conference on Learning Representations (ICLR), 2020. \*Equal contribution.
- 7. Friso Kingma, Pieter Abbeel, Jonathan Ho. Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables. *Proceedings of the 36th International Conference on Machine Learning*, PMLR 97:3408-3417, 2019.
- 8. Kingma, Diederik P., Tim Salimans, Ben Poole, and Jonathan Ho. 'Variational Diffusion Models', 2022. <a href="https://openreview.net/forum?id=2LdBgxc1Yv">https://openreview.net/forum?id=2LdBgxc1Yv</a>.