《高等数学》试卷

(2011 期末理工类统考 时间 120 分钟, 总分 100)

成绩报告表序号: _____专业班____姓 名: ____学院(系) ____

一、填空题(共18分)

1. [3 分] 设
$$f(x)$$
 连续,则 $d\int f(x)dx = \underline{f(x)}dx$, $\int f'(x)dx = \underline{f(x)}+c$

2 . [3 分] sin x 带 有 皮 亚 诺 型 余 项 的 n 阶 麦 克 劳 林 公 式 为

$$\frac{x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots+(-1)^n\frac{x^{2n-1}}{(2n-1)!}+o\left(x^{2n}\right)}{2^n}$$

3. [3 分]曲线
$$y = x \ln\left(e + \frac{1}{x}\right)$$
的渐近线方程为 $y = x + \frac{1}{e}$

4. [3 分] 设
$$y = 2x^2 - x$$
,在 $x = 1$ 处,当 $\Delta x = 0.01$ 时,则应有 $dy = 0.03$

5. [3 \(\frac{\psi}{dx}\)]
$$\frac{d}{dx} \left(\int_{0}^{x^{2}} \sqrt{1+t^{2}} dt\right) = 2x\sqrt{1+x^{4}}$$

6、[3 分] 设
$$\vec{a} = \{-1, 2, 2\}, \vec{b} = \{2, -1, 2\}$$
,则 $\vec{a} \times \vec{b} = \{6, 6, -3\}$

1、[5 分] 求极限
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{4n^2-1}} + \frac{1}{\sqrt{4n^2-4}} + \dots + \frac{1}{\sqrt{4n^2-n^2}} \right)$$

$$(=\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} dx = \arcsin \frac{1}{2} = \frac{\pi}{6})$$

2、[5 分]求极限
$$\lim_{x\to 0} \frac{x-\tan x}{x^2 \sin x} \left(= \lim_{x\to 0} \frac{x-\tan x}{x^3} = \lim_{x\to 0} \frac{1-\sec^2 x}{3x^2} = -\frac{1}{3} \right)$$

3、[5 分] 求极限
$$\lim_{n\to\infty} \int_{0}^{\frac{1}{2}} \frac{x^{n}}{\sqrt{1+x^{2}}} dx \left(\lim_{n\to\infty} \frac{\xi^{n}}{2\sqrt{1+\xi^{2}}} = 0, \xi \in \left(0, \frac{1}{2}\right)$$
或用比较性质与夹逼准则)

4、[5 分]设函数
$$f(x) = \begin{cases} x \arctan \frac{1}{x^2}, x \neq 0 \\ 0, x = 0 \end{cases}$$
,讨论 $f'(x)$ 在点 $x = 0$ 处的连续性

(先求导函数,分段点用定义,其余点用法则公式;再用定义判断为连续

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \frac{\pi}{2}, \lim_{x \to 0} f'(x) = \lim_{x \to 0} \left(\arctan \frac{1}{x^2} - \frac{2x^2}{1 + x^4} \right) = f'(0)$$

三、解答下列各题[每小题 5 分, 共 15 分]

1.
$$\exists \exists \iint_{0}^{y} e^{t^{2}} dt + \int_{0}^{\sin x} \cos^{2} t dt = 0, \ \, \Re \frac{dy}{dx} \left(-\frac{\cos^{2}(\sin x)\cos x}{e^{y^{2}}} \right)$$

2. 设函数 $g(x) = (\sin 2x) f(x)$,其中 f(x)在 x = 0 处连续,问 g(x)在 x = 0 处是否可

导? 如果可导, 求出
$$g'(0)$$
. $(=\lim_{x\to \infty} \frac{g(x)-g(0)}{x} = \lim_{x\to \infty} \frac{(\sin 2x)f(x)}{x} = 2f(0))$

3. 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 确定,求 $\frac{d^2y}{dx^2}$

$$\left(=\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{\sin t}{1-\cos t}\right) = -\frac{1}{a\left(1-\cos t\right)^2}\right)$$

四、计算下列各题[每小题 5 分, 共 10 分]

1、 计算
$$\int \frac{dx}{\left(x^2+1\right)^{\frac{3}{2}}} \left(x = \tan t, I = \frac{x}{\sqrt{x^2+1}} + c\right)$$

2、计算 $\int (\sin x) \ln \tan x dx$ (= $\ln |\csc x - \cot x| - \cos x \cdot \ln \tan x + c$)

五、计算下列各题[每小题 5 分, 共 20 分]

1. 在下列两个积分 $\int_{0}^{\pi} e^{-x^2} \cos^2 x dx$, $\int_{\pi}^{2\pi} e^{-x^2} \cos^2 x dx$ 中确定哪个积分值大, 并说明理由.

$$\left(\int_{0}^{\pi} e^{-x^{2}} \cos^{2} x dx > \int_{\pi}^{2\pi} e^{-x^{2}} \cos^{2} x dx = \int_{0}^{\pi} e^{-(t+\pi)^{2}} \cos^{2} t dt, x = t + \pi \cancel{\cancel{4}} \cancel{\cancel{7}}\right)$$

2. 计算
$$\int_{1}^{1} \frac{x^2(1+\sin x)}{1+\sqrt{1-x^2}} dx$$

$$(= \int_{-1}^{1} \frac{x^2}{1 + \sqrt{1 - x^2}} dx = 2 \int_{0}^{1} \frac{x^2}{1 + \sqrt{1 - x^2}} dx = 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin^2 t \cos t}{1 + \cos t} dt = 2 - \frac{\pi}{2})$$

4.
$$\forall a > 0$$
, $\Re \int_{0}^{+\infty} e^{-ax} \sin x dx$ $(\frac{1}{1+a^2})$

六、解答下列各题[每小题 6 分, 共 12 分]

1. 求由曲线 $y = x^2$ 和 x = 2, y = 0 所围成的平面图形绕 y 轴旋转一周所得旋转体的体积. (=8 π)

2. 求心形线 $r = a(1 + \cos \theta)$ 的全长. (=8a)

七、证明题[本小题5分]

设函数 f(x) 在闭区间 [a,b] 上连续, g(x) 在 [a,b] 上不变号, 证明: 至少存在一点

$$\xi \in [a,b]$$
使得 $\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx$ (见教材,一考再考了)