

Calhoun: The NPS Institutional Archive DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1989-06

Graphical analysis of the sensitivities of ATCAL in the FORCEM model

Betack, Charles N.; Johnson, Laura D.

Monterey, California. Naval Postgraduate School

<http://hdl.handle.net/10945/27070>

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

B4548423

GRAPHICAL ANALYSIS OF THE SENSITIVITIES
OF ATCAL IN THE FORCEM MODEL

by

Charles N. Betack

June 1989

Thesis Advisor:

Laura D. Johnson

Approved for Public Release; Distribution is Unlimited.

T244036

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
OMB No 0704-0188

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b RESTRICTIVE MARKINGS			
2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.			
2b DECLASSIFICATION/DOWNGRADING SCHEDULE					
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)			
6a NAME OF PERFORMING ORGANIZATION NAVAL POSTGRADUATE SCHOOL	6b OFFICE SYMBOL <i>(If applicable)</i> 55	7a NAME OF MONITORING ORGANIZATION NAVAL POSTGRADUATE SCHOOL			
6c ADDRESS (City, State, and ZIP Code) MONTEREY, CA 93943-5000		7b ADDRESS (City, State, and ZIP Code) MONTEREY, CA 93943-5000			
8a NAME OF FUNDING/SPONSORING ORGANIZATION	Bb OFFICE SYMBOL <i>(If applicable)</i>	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
Bc ADDRESS (City, State, and ZIP Code)		10 SOURCE OF FUNDING NUMBERS			
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UNIT ACCESSION NO
11 TITLE <i>(Include Security Classification)</i> GRAPHICAL ANALYSIS OF THE SENSITIVITIES OF ATCAL IN THE FORCEM MODEL					
12 PERSONAL AUTHOR(S) BETACK, CHARLES N.					
13a TYPE OF REPORT MASTER'S THESIS	13b TIME COVERED FROM _____ TO _____		14 DATE OF REPORT (Year, Month, Day) 1989, JUNE	15 PAGE COUNT 69	
16 SUPPLEMENTARY NOTATION THE VIEWS EXPRESSED IN THIS THESIS ARE THOSE OF THE AUTHORS AND DO NOT REFLECT THE OFFICIAL POLICY OR POSITION OF THE DEPARTMENT OF DEFENSE OR THE U.S. GOVERNMENT.					
17 COSATI CODES			18 SUBJECT TERMS <i>(Continue on reverse if necessary and identify by block number)</i> ATTRITION MODEL, FORCEM, ATCAL		
19 ABSTRACT <i>(Continue on reverse if necessary and identify by block number)</i>					
<p>This is an analysis of an attrition process in the context of its theater model. A graphical data analysis of the sensitivities of ATCAL with respect to FORCEM operational data was performed. Given the ATCAL results from various FORCEM runs, the sensitivity of ATCAL within the FORCEM model to the effects of frontage of engagement and presence of important weapon systems was investigated.</p>					
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS			21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED		
22a NAME OF RESPONSIBLE INDIVIDUAL TATIRA D. JOHNSON			22b TELEPHONE <i>(Include Area Code)</i> (408) 646-2569	22c OFFICE SYMBOL 55 Jo	

Approved for public release; distribution is unlimited.

GRAPHICAL ANALYSIS OF THE SENSITIVITIES
OF ATCAL IN THE FORCEM MODEL

by

Charles N. Betack
Captain, United States Army
B.S., United States Military Academy, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 1989

ABSTRACT

This is an analysis of an attrition process in the context of its theater model. A graphical data analysis of the sensitivities of ATCAL with respect to FORCEM operational data was performed. Given the ATCAL results from various FORCEM runs, the sensitivity of ATCAL within the FORCEM model to the effects of frontage of engagement and presence of important weapon systems was investigated.

TABLE OF CONTENTS

I.	INTRODUCTION	1
A.	INTRODUCTION	1
B.	BACKGROUND	2
C.	PURPOSE OF RESEARCH EFFORT	4
II.	DATA AND METHODOLOGY	5
A.	DATA	5
B.	METHODOLOGY	7
III.	ANALYSIS OF FRONTEAGE EFFECTS	9
IV.	ABSENCE OF A MAJOR WEAPON SYSTEM	25
V.	CONCLUSIONS	36
A.	SUMMARY	36
B.	POSSIBLE CORRECTIONS	37
C.	ADDITIONAL POSSIBLE AREAS OF STUDY	37
APPENDIX A:	DATA	38
APPENDIX B:	CHI-SQUARE TEST FOR DIFFERENCE	57
LIST OF REFERENCES	61	
INITIAL DISTRIBUTION LIST	62	

LIST OF TABLES

I. DATA SETS	6
II. VARIABLES	6

LIST OF FIGURES

1.	Final Force Ratio Plotted as a Function of Initial Force Ratio and Frontage Size (N=143), Data=FC	12
2.	Empirical Densities of Initial and Final Force Ratios Conditioned on Frontage Size (N=143) (Data=FC)	13
3.	Conditional Scatter-plots of Final vs. Initial Force Ratios Conditioned on Frontage (Data=FC)	15
4.	Final Force Ratio Plotted as a Function of Initial Force Ratio and Frontage Size (N=133), Data=FR	16
5.	Empirical Densities of Initial and Final Force Ratios Conditioned on Frontage Size (N=133) (Data=FR)	17
6.	Conditional Scatter-plot of Final vs. Initial Force Ratios Conditioned on Frontage (Data=FR)	19
7.	Final Force Ratio Plotted as a Function of Initial Force Ratio and Frontage Size (N=408), Data=FB	20
8.	Empirical Densities of Initial and Final Force Ratios Conditioned on Frontage Size (N=408) (Data=FB)	22
9.	Conditioned Scatter-plots of Final vs. Initial Force Ratios Conditioned on Frontage (Data=FB)	23
10.	Scatter-plot of the Log of Difference Between Final Force Ratios vs. the Fractions of the Blue Force that is made up of Main Battle Tanks with a Least Squares Fit for the Straight Line (N=18) (Data=Subset of FR)	27
11.	Star Symbol Plot with the Rays Labeled to Represent the Star Symbol Plots in Figures 12 and 13	31
12.	Star Symbol Plot of the Blue Units with the Main Battle Tank	32
13.	Star Symbol Plot of the Blue Units Without the Main Battle Tank	33

I. INTRODUCTION

A. INTRODUCTION

Verification and validation of computer simulations of large complex systems such as theater level combat operations is difficult at best. In practice, this is not a single event, but continues to occur throughout the life of the models involved. While the basic intent is to insure that the model is true to its design and that the design reasonably approximates reality, the effort also yields insight into model sensitivity and possible utility of information generated by the model.

The purpose of this project is to analyze an attrition process in the context of its theater model. This study will examine sensitivity with respect to certain variables, to verify that the process, in this context, provides an intuitively appealing output, and to look for items which may be used as simple performance predictors in other aspects of the model. The process under investigation is the Attrition Calibration (ATCAL) process, used by the Army Concepts Analysis Agency (CAA) as the attrition mechanism in its theater-level models, Concepts Evaluation Model (CEM) and Force Evaluation Model (FORCEM).

B. BACKGROUND

CEM is a deterministic theater model of ground and air combat which has been developed through several versions since about 1970. [Ref. 1:pp. 1-11]

FORCEM is a more detailed computer simulation model portraying combat, combat support, and combat service support in a theater of operations. It is a fully-automated, deterministic, and time-stepped model, with a module for each major functional area being activated once each twelve-hour time cycle. It was developed by CAA during the period 1982-1984, and is now operational. Applications are in studies that determine the capabilities of current combat forces; requirements for support forces; and requirements for personnel, supplies, and major items of equipment. [Ref. 2:p. 2]

ATCAL is an Attrition Calibration Model which was developed in the early 1980's by CAA for use in the CEM and FORCEM theater level simulations. ATCAL consists of a number of non-linear equations which can be used to compute weapon systems attrition of opposing forces (if values for several input parameters are known). The same equations can be used "backwards" to determine values for the parameters from the output of a higher resolution model such as CAA's divisional Combat Sample Generator (COSAGE). The ATCAL process contains both an attrition model and a consistent calibration procedure.

The ATCAL model does not step through time, but rather reflects the casualty rates of the division level engagement to which it is calibrated. [Ref. 3:p. 6-1]

Operational use of FORCEM in 1987 and early 1988 generated a backlog of corrections, enhancements, and new developments which were desired in the model. In May 1988, a task force was constituted within CAA to address these needs in a two-phased program. As part of phase one, an analysis was conducted to determine how certain aspects of the model, including the mechanics of forming combat engagements and certain computer-science related issues, affected the attrition process.

Other tests have also been conducted at CAA which examined sensitivities of various aspects of the COSAGE-ATCAL-FORCEM integrated system of models. These controlled tests have generally shown ATCAL to be robust, but have pointed out some areas of interest for further testing. These areas and the areas of interest found through the task force phase one analysis form the base from which this study is derived. The specific focus of this study is to examine some of the sensitivities of ATCAL in its operational setting. [Ref. 4]

ATCAL itself is sensitive to rate of fire and engagement frontage [Ref. 3:pp. 6-11]. The actual effect of these sensitivities has never been analyzed in FORCEM operational data. It is appropriate to analyze model results with respect to these sensitivities to verify that the results are sensible

in the simulation. Where these parameters can be adequately controlled, they may also provide mechanisms through which other desired effects can be infused into the FORCEM Model [Ref. 5:p. 1].

C. PURPOSE OF RESEARCH EFFORT

The purpose of this study is to perform a graphical data analysis of the sensitivities of ATCAL with respect to FORCEM operational data. Given a history of ATCAL results from various FORCEM runs, appropriate graphical techniques will be applied to illustrate the sensitivity of ATCAL within the FORCEM Model to the effects of frontage of engagement and presence of important weapon systems.

This is important in light of the previous tests done on sensitivities of the COSAGE-ATCAL-FORCEM integrated system of models. Graphical analysis will provide the first step in the effort to understand the sensitivity of ATCAL within the FORCEM model.

III. DATA AND METHODOLOGY

A. DATA

The data used in this analysis is drawn from 20 day combat simulations between a Blue defending force and a Red attacking force. This FORCEM basic data will be referred to as FB. A comparative run was also made using a version of FORCEM which restricted the number of engagements each unit could be involved in per time period so that the number of extremely small engagements was reduced. This set of data of FORCEM restricted engagements will be referred to as FR.

A third set of data was developed by incorporating the version of ATCAL found in CEM into the FORCEM model. This was done to examine the effect in FORCEM of certain processing differences found in the CEM ATCAL. This data set will be referred to as FC.

The characteristics of each of the data sets can be seen in Tables I and II. The data sets were run through the Statistical Analysis System (SAS) using the procedure Univariate to get the results for Table I. The complete output for each of the data sets is in Appendix A.

TABLE I
DATA SETS

FB - FORCEM BASIC DATA		
FR - FORCEM RESTRICTED ENGAGEMENTS DATA		
FC - FORCEM DATA USING CEM's VERSION OF ATCAL		
DATA SET	NUMBER OF OBSERVATIONS	NUMBER OF VARIABLES
FB	47487	18
FR	19985	17
FC	652*	15

* ENGAGEMENT-LEVEL TOTALS ONLY

TABLE II
VARIABLES

TIME	Day or night engagement
BRD	Posture of the blue forces (i.e., defend, delay)
BLUE	Blue unit involved in the engagement
FBLUE	Fraction of the blue unit involved in the engagement (i.e., .33, .5)
RED	Red unit involved in the engagement
FRED	Fraction of the red unit involved in the engagement (i.e., .65, .10)
FRONT	How large a front size the engagement takes place on
AST	A number which represents the different assets of both the red and blue units (i.e., 5-tank for blue, 53-tank for red)
OHAND	The number of a particular asset which is available at the beginning of the engagement.
HITS	The number of that particular asset which were hit during the engagement
KKILL	The number of that particular asset which were killed during the engagement
GLOBE	The system value which is assigned that particular asset
TOASCW	The total combat worth of that asset (number of assets on-hand at the beginning of the engagement times their system value)

TABLE II (CONT)

LOASCW	The lost combat worth of that asset at the end of the engagement (the number of assets hit or killed times their system value)
TOBLCW	The total blue combat worth (all the blue assets time their system value sum together at the beginning of the engagement)
LOBLCW	The number of blue assets lost during the engagement times their system value.
INITRA	Initial force ratio (red's total combat worth/blue's total combat worth at the beginning of the engagement)
FINARA	Final force ratio (red's total combat worth at the end of the engagement/blue's total combat worth at the end of the engagement)
BTNKO	Number of red tanks on-hand at the beginning of the engagement
RTNKH	Number of red tanks hit during the engagement
RTNKK	Number of red tanks killed during the engagement
BTNKO	Number of blue tanks on-hand at the beginning of the engagement
BTNKH	Number of blue tanks hit during the engagement
BTNKK	Number of blue tanks killed during the engagement

B. METHODOLOGY

Exploratory data analysis techniques are to be utilized to analyze the data described above. The data will be manipulated first using SAS. Subsets of each of the data sets will be put into the GRAFSTAT Package to take advantage of the exploratory data analysis techniques which are available within this package.

Using the techniques provided by both SAS and GRAFSTAT this study will attempt to answer the following questions:

- What effects do frontage changes have on the response of ATCAL in FORCEM?
- Is an increase in final force ratio associated with an increase in frontage?

- How does the presence or absence of important weapon systems in an engagement change the performance of ATCAL in FORCEM results?
- Is there a noticeable change in results when a weapon is absent from an ATCAL engagement?

In reality, an increase in the frontage size might be expected to show an increase in the final force ratio if everything else in the engagement is held constant. We will investigate the response of ATCAL to changing frontage in this study. Similarly, if a weapon system is really important to a unit the absence of this system should cause noticeable changes in the results of the engagements. The killing potential of the unit should be less, so then there are fewer enemy assets being killed. We will attempt to determine if the results from ATCAL confirm this.

There will also be an attempt to identify questions which cannot be answered within the scope of this study or the data provided for future studies.

III. ANALYSIS OF FRONTAGE EFFECTS

Frontage is the width of the area that a defending unit must control. In the military sense, a unit can control the area by physically being there, or by having the ability to observe the area and deliver effective fire onto it.

Given a fixed size for a defending unit (i.e., a fixed combat worth), it would seem that, as the unit is assigned a larger frontage to defend, its ability to accomplish the mission would decrease as the size of the front increased. Alternatively, a fixed size unit attacking on decreasing frontages might expect increased losses as its maneuver room is reduced. Frontage changes would naturally be a part of any combat model which has attacking and defending forces.

In FORCEM, the frontage associated with a specific engagement is calculated as follows: Engagement Frontage = $1/2$ [Fraction of Red Division in that Engagement * Red Division Frontage + Fraction of Blue Division in that Engagement * Blue Division Frontage]. The division frontages are computed from corps frontages as $1/N * [\text{Corps Frontage}]$ where N is the number of divisions in the corps. Corps frontage is determined from the corps boundaries which are input by the model operator and intended to represent realistic frontages for the units and operations involved.

Units are apportioned for combat against enemy units by a process based on range. [Ref. 2:pp. 6-11]

The data sets from both versions of ATCAL were investigated to see if changes in frontage size had any effect on the final force ratio. Final force ratio is the ratio of the number of operational red weapon systems times their system values, divided by the number of operational blue weapon systems times their system values at the end of the engagement.

An example of how final force ratio is computed: At end of an engagement all the operational red weapon systems are counted, (5 Tanks, 6 BMPs, 4 Helicopters), the number of operational systems is then multiplied by the system value for that system (Tank = 1.0, BMP = .4, Helicopter = .7) and all of these numbers are added together to get the combat worth of the red unit which is also the numerator of the final force ratio. The system value of a system is input by the model operator. The same procedure is done for the blue units and this total combat worth is used as the denominator of the ratio. [Ref. 2]

It is important to take into account the initial force ratio when examining the relationship between frontage and final force ratio since this will also have an effect on final force ratio. The initial force ratio (that is the ratio of the number of red weapon systems times their system values, divided by the number of blue weapon systems times their

system values at the beginning of the engagement), final force ratio, and frontage size were the three variables in the data sets which were investigated.

To investigate the possibility that changes in the frontage size have no effect on the final force ratio a subset of each of the data sets were made. The subset contained all the engagements where the forces were in the most intense conflict during the day.

Figure 1 depicts a graph of the subset for data set FC. It shows the final force ratio grows rather slowly with the initial force ratio for any fixed range of frontage sizes. This is not what is expected to happen, there should be a tendency for the final force ratio to increase as the frontage size increases. Figure 2 displays two graphs. The top graph shows the empirical density of the initial force ratios vs. the different frontage sizes and the lower graph shows the empirical density of the final force ratios vs. the different frontage sizes. In comparing the two graphs it is apparent at all the frontage sizes that the final force ratios have longer tails toward the higher ratios than do the initial force ratios. The largest changes take place between a frontage size of 5500 meters and 6500 meters. Figure 2 does show that there is some change between final and initial force ratio at all frontage sizes. Although the greatest change takes place where the frontage sizes goes from 5500 meters to 6500 meters, this is not what is expected, the largest changes

Figure 1. Final Force Ratio Plotted as a Function of Initial Force Ratio and Frontage Size ($N=143$), Data=FC

Figure 2. Empirical Densities of Initial and Final Force Ratios Conditioned on Frontage Size ($N=143$) (Data=FC)

should be seen at the higher frontage sizes. Thus, increases in frontage size do not have a large effect on the final force ratio.

Figure 3 depicts the final force ratio plotted against the initial force ratio conditioned on the frontage size changes. For every point that lies above the line $y=x$, blue is losing his combat worth at a greater rate than red considering the initial force ratio and the frontage size. Below the line, red is losing at a greater rate. Thus, there is a tendency at the nominal Cosage 3:1 ratio (this is the ratio at which it would be favorable for a unit to attack and win the engagement), red is consistently losing a higher combat worth proportion relative to blue over all different frontage sizes. It is not until the initial force ratio is larger than 4:1 that the blue force consistently loses a higher combat worth proportion relative to red. It would seem appropriate that at high initial force ratios we should expect to see decisive outcomes, but this is not shown true in Figure 3. The growth of the final force ratio as the initial force ratio increases is relatively slow across the entire range.

A graph of the subset of FR data set is Figure 4. As with the FC data set it does not appear that there is any change in the final force ratio as the frontage increases from this view. The graph in Figure 5 represents the empirical densities of both the initial force ratio and final force ratio against different frontage sizes. The densities at all

Figure 3. Conditional Scatter-plots of Final vs. Initial Force Ratios Conditioned on Frontage (Data=FC)

Figure 4. Final Force Ratio Plotted as a Function of Initial Force Ratio and Frontage Size ($N=133$), Data=FR

Figure 5. Empirical Densities of Initial and Final Force Ratios Conditioned on Frontage Size ($N=133$) (Data=FR)

frontage sizes are less peaked in the graph of the final force ratios than in the graph of the initial force ratio. The tails in the final force ratio graph are longer toward the higher frontage sizes than are those in the initial force ratio graph. There is no particular region of frontage sizes where the increase of final force ratio is that much greater than the initial force ratio as shown in Figure 2. There is a change between the distribution of initial and final force ratios at all frontage sizes, but the change between the ratios does not tend to be higher at the high frontage sizes as would be expected. Figure 6 depicts the same graph as Figure 3, except that the subset of FR data set is used in place of the FC data set. Again it is shown that not until the red force has obtained an initial force ratio larger than a 4:1 ratio does the blue force consistently lose a higher combat worth proportion relative to the red force and this is true over the ranges of frontage sizes. There is no evidence of a decisive outcome at high initial force ratios.

The subset of FB data set is depicted in Figure 7. In this figure there appears to be an increase in the final force ratio as the frontage size increases. There also tend to be many more engagements taking place at smaller frontage sizes than were present in the other two data sets. This occurred because command and control rules in FORCEM allowed a unit to engage all enemy units in range. These rules were changed because it was believed so many small engagements are not

Figure 6. Conditional Scatter-plot of Final vs. Initial Force Ratios Conditioned on Frontage (Data=FR)

Figure 7. Final Force Ratio Plotted as a Function of Initial Force Ratio and Frontage Size (N=408), Data=FB

desirable in a theater level model. The graphs in Figure 8 display the empirical densities of both the initial force ratio and final force ratio against different frontage sizes. There is a noticeable difference between the density of the final force ratio and the initial force ratio with respect to the thickness of their tails at the higher ratios. A lower overall range of initial force ratios leads to a noticeable migration to lower final force ratios. The range of initial and final force ratios is lower than the range for the FR and FC data. The mode of distributions occurs at lower initial force ratios and is higher compared to the other data sets. Also, there is more spreading of the data in the final force ratio. Figure 9 indicates the same graph as seen in Figure 3 and 6 except with the subset of FB data set. As with the other graphs, the blue force does not consistently lose a higher combat worth proportion relative to the red force until the initial force ratio is higher than a 4 to 1. In fact, where the frontage size is between 2400 and 7650 meters the red force needs at least a 5 to 1 ratio to win consistently. Although in this figure it can be seen that narrow frontage does not point to high initial and final force ratio, it also points to many small engagements which is not considered desirable in a theater level model.

More specifically, in the investigation of changes of frontage size and how they affect the final force ratio in the FORCEM, the following information has been revealed:

Figure 8. Empirical Densities of Initial and Final Force Ratios Conditioned on Frontage Size (N=408) (Data=FB)

Figure 9. Conditioned Scatter-plots of Final vs. Initial Force Ratios Conditioned on Frontage (Data=FB)

- Changing of frontage sizes show no significant affect in the final force ratio. There is a slight tendency for the final force ratio to increase at all frontage sizes, but the increase is not significant at the larger frontage sizes as would be expected. Thus, frontage changes have no significant affect on final force ratio.
- In order for the red force to consistently lose a lower combat worth proportion relative to the blue force over all the frontage sizes, the red force must have an initial force ratio higher than 4 to 1. Decisive outcomes do not take place when the attacker has a 10:1 ratio and this is definitely opposite to what is expected in a model.
- The combat mechanism used in generating data set FB produces a large number of small frontage, low force ratio (and, therefore, small combat worth) engagements, which are far from the division vs. brigade type engagements which are desired in a theater level model. They dissipate the attackers force unrealistically.
- Between the data set FB and the data sets FC and FR there is a different response: In FB there are many low initial and final force ratios data points at all ranges, where as in FC and FR the initial and final force ratios data points change distribution with range. Also there are larger engagements in the FC and FR data sets. These last two observations are positive results for the model in that they are consistent with what is expected.

IV. ABSENCE OF A MAJOR WEAPON SYSTEM

A major weapon system is any weapon system which, when removed from a unit, will degrade the ability of that unit to accomplish its mission. The major weapon system which will be investigated in this thesis is the main battle tank. The main battle tank is the backbone of the heavy combat divisions deployed throughout the world. The question which will be investigated is: How does the absence of an important weapon system affect the performance of ATCAL in FORCEM results?

A subset of the FR data set which comprises all engagements where the forces were in the most intense conflict during the day was used to analyze the question.

The analysis was undertaken using two different approaches. In the first, a single set of data was analyzed to investigate the effect of removing an entire system type. However, problems were encountered with this portion of the analysis, so it was abandoned in favor of an approach which used two subsets of data with different force mixes to address the question. For the sake of completeness, the first method is described briefly before describing the second method.

In the first method, the final force ratios (red/blue) were calculated for a number of different engagements from the FORCEM results with all the weapons systems present. Then the

main battle tank was removed from the blue units and the final force ratios were recalculated.

The final force ratio without the main battle tank minus the final force ratio with the main battle tank was calculated for all the engagements. This difference was then plotted against the fraction of the force made up by the main battle tank. The logarithms of the force ratio differences were plotted to reduce the crowding of the points [Ref. 6:p. 178].

A linear regression of the log of the differences vs. the fraction of the force made up by the main battle tank was performed and the fitted line was drawn on the graph, using the least square and the scatter plot functions of GRAFSTAT. This was done to check if there existed an association between the log of the differences of the final force ratios and the fraction of the force made up by the main battle tank. The graph in Figure 10 displays the scatter plot with the fitted line. There does appear to be an increase in the difference of the final force ratios as the fraction of the force made up by the main battle tank increases. This increase cannot be proven statistically significant for at least two reasons: the plot of the residuals was not normal and the values for the correlation coefficient were low. This indicates a lack of confidence in the association seen; and is probably due to the relatively large variance in the predicted variable and possibly due to the lack of a linear relationship.

Figure 10. Scatter-plot of the Log of Difference Between Final Force Ratios vs. the Fractions of the Blue Force that is made up of Main Battle Tanks with a Least Squares Fit for the Straight Line (N=18) (Data=Subset of FR)

In order to prove statistically that the absence of an important weapon system affects the performance of ATCAL in FORCEM results a second analytical approach using the Chi-Square test for differences was undertaken [Ref. 7:p. 153]. To perform this test the tank loss fraction of the blue units with a certain main battle tank was calculated and it was also calculated for the blue units without that main battle tank. The tank loss fraction was calculated in the following manner:

$$\text{Tank loss fraction} = \frac{\text{Total combat worth of blue tanks lost}}{\text{Total combat worth of the blue tanks in the engagement}}$$

for both sets of blue units. The tank loss fraction was also calculated for red units with a certain red main battle tank and red units without that red main battle tank. Contingency tables were developed as follows:

TANK LOSS FRACTION OF RED UNITS	BLUE UNITS WITH MAIN BATTLE TANK	BLUE UNITS WITHOUT MAIN BATTLE TANK
0 - .1	f*	f
.1 - ∞	f	f

TANK LOSS FRACTION OF BLUE UNITS	BLUE UNITS WITH MAIN BATTLE TANK	BLUE UNITS WITHOUT MAIN BATTLE TANK
0 - .25	f	f
.25 - ∞	f	f

* Actual frequency will be placed in these cells

The first contingency table was used to test if there was a difference between the lethality of blue units with the main battle tank and the blue units without the main battle tanks. The second contingency table was used to test if there was a difference between the vulnerability of the blue units with the main battle tank and the blue units without the main battle tank. Similar contingency tables were used to test the red units to see if any difference existed between the units with the main battle tank and those without the main battle tank. The complete calculations are located in Appendix B for both the blue and red units. The results were that there was no significant difference found between the lethality of the red units with the main battle tank and those without the main battle tank. There was a significant difference between the lethality of the blue units with the main battle tank and the blue units without the main battle tank. There was no significant difference between the vulnerability of the blue units with the main battle tank and the blue units without the main battle tank. No difference was found between the vulnerability of the red units either.

These findings by themselves do not answer the question of whether the absence of a major weapon system affects the performance of ATCAL in FORCEM results, because certain characteristics of the forces or systems themselves may confound these results. For example, the tank absent from the blue force may actually be a more potent killer but have the

same vulnerability as the other tanks in the blue force, or it may be present in a force with some other potent killer which makes it appear more lethal in the red tank loss column. On the red side, the designated tank may be present or absent in numbers too small to affect the overall kill or vulnerability rates.

In order to qualitatively assess whether differences in force composition may be influencing the analysis, the star symbol plots will be used. The star symbol is an interesting way of graphing multivariate data so that you can visually compare the different units. Each star represents one blue unit. There will be two sets, the blue units with the designated main battle tank present and those without the main battle tank. For this study the rays will represent the number of tanks, helicopters (helos), and anti-armor guided missiles (ATGMS) the unit has. The helicopters and anti-armor guided missiles are the two other major tank killing systems in the battlefield within the model. [Ref. 6:pp. 155-159] Figure 11 shows a representative of the star symbol plot and it has each of the rays labeled with the weapon system it represents. This star symbol plot is the legend for the star symbol plots found in Figures 12 and 13.

The force composition may be compared both within and across the data sets using Figures 12 and 13. For instance, the units represented in Figure 12 appear to be reasonably homogeneous with a stable fraction of tanks, but with some

Figure 11. Star Symbol Plot with the Rays Labeled to Represent the Star Symbol Plots in Figures 12 and 13.

Figure 12. Star Symbol Plot of the Blue Units with the Main Battle Tank

13

14

15

9

10

11

12

5

6

7

8

1

2

3

4

Figure 13. Star Symbol Plot of the Blue Units Without the Main Battle Tank

fluctuation in the fraction of helicopters and ATGMS present. In Figure 13 there appears to be a stable tank fraction present, but more variability in the helicopter and ATGM fractions. Between Figures 12 and 13 these combined differences, while not excessive, may be enough to influence the loss fractions of tanks for the engagements used in this analysis. Because the data provided does not specify precisely which systems killed which, it is not possible to take the analysis any further.

No hard line conclusions can be drawn about the model due to the small sample size of data that was available to test for differences in ATCAL performance. However, the results seem to point to the fact that when a major weapon system is absent some other system or systems compensate for the absence of the major weapon system. This observation needs more definite data to study than is available for this study. From the results of the Chi-Square test for difference only one of the four tests made was able to reject the hypothesis that no difference existed between the units with the main battle tank and the units without the main battle tank. The graph in Figure 10 tends to show an increase in difference as the fraction of the force made up by the main battle tank increases, but no statistical significance can be proven.

The results from the Chi-Square tests for difference show less effect in the data due to the absence of a major weapon system than might be expected, but in light of other factors,

it is hard to attribute this observation to the performance of ATCAL. The small sample size available, differences in the forces involved, and lack of specific killer victim information all influence this analysis and weaken any conclusion with respect to ATCAL performance. However, the techniques employed here would be appropriate in conducting a controlled analysis of this question when more detailed data is available.

V. CONCLUSIONS

A. SUMMARY

The purpose of this thesis was to analyze an attrition process in the context of its theater model. A graphical data analysis of the sensitivities of ATCAL with respect to FORCEM operational data was performed. Given the ATCAL results from various FORCEM runs, the sensitivity of ATCAL within the FORCEM model to the effects of frontage of engagement and presence of important weapon systems was investigated. The following observations have been made:

- Changing of frontage size show no significant effect on the final force ratio.
- In order for the red force to consistently lose a lower combat worth proportion relative to the blue force over all the frontage sizes, the red force must have an initial force ratio higher than 4:1. Decisive outcomes do not take place when the attacker has a 10:1 ratio.
- Large numbers of small frontage, low force ratio engagements, which are far from the division versus brigade type engagements which are wanted in a theater level model, dissipate the attacker force.
- Restricting the number of engagements each unit can be involved in per time period so that the number of extremely small engagements are reduced causes the initial and final force ratios data points to change distribution with range. Also there are larger engagements taking place which are positive results for the model.
- Absence of a major weapon system seemed to have only limited effect on the ATCAL results tested, but several factors may have influenced these results. More detail and control is required in the data to be able to draw ATCAL specific conclusions.

B. POSSIBLE CORRECTIONS

The method which was used in data sets FR and FC so that the unit does not get involved in too many engagements in a time period should be retained in FORCEM so that the number of small engagements will be reduced.

The process for calculating the engagement frontage in FORCEM requires further testing and possible modification so that frontage will have a discernible effect on the outcome of battle.

C. ADDITIONAL POSSIBLE AREAS OF STUDY

If there is additional interest in the sensitivities of ATCAL with respect to FORCEM, topics remaining open for research are:

- The effect of removing a major weapon system needs to be further studied with more detailed data.
- What effect does the wide variation in size and force mix of engagements have on the performance of ATCAL?
- What important change in response is due to special systems such as close air support?

In order to perform any of the above mentioned areas of research basic knowledge of both the ATCAL and FORCEM model is recommended. Also close coordination with CAA is necessary to provide data with suitable detail to conduct the desired analysis.

APPENDIX A

DATA

1 FORCEM BASIC DATA (FB)

4 PROC UNIVARIATE DATA = DD1.E6;
5 VAR TIME--FINARA;

UNIVARIATE

VARIABLE=TIME

MOMENTS

N	47487	SUM	WGTS	47487
MEAN	4.87325			2314227
STD DEV	9.91525	VARIANCE		84.82527
SKWNESS	-0.071525	KURTOSIS		-1.1525
USS	1530697	CSS		4028058
CV	55.613	STD MEAN		0.0133653
T:MEAN=0	364.642	PROB> T		0.0001
SGN RANK	486720813	PROB> S		0.0001
NUM ~= 0	44123			

QUANTILES(DEF=4)

100% MAX	9.5	99% Q3	9.5	9.5
50% MED	7.5	50% Q1	6.5	9.5
25% Q1	2.5	10% MIN	1.0	0.5
RANGE	9.5		1.5	
Q3-Q1	7.0		0.5	
MODE	0		0	

EXTREMES

	LOWEST	HIGHEST
	0	9.5
	0	9.5
	0	9.5
	0	9.5

UNIVARIATE

VARIABLE=BRD

MOMENTS

N	47487	SUM	WGTS	47487
MEAN	12.6844	SUM		602342
STD DEV	12.6844	VARIANCE		29.90347
SKWNESS	0.70524	KURTOSIS		-1.391426
USS	1031720	CSS		42.6754
CV	62.6754	STD MEAN		0.0248404
T:MEAN=0	570.634	PROB> T		0.0001
SGN RANK	5637656	PROB> S		0.0001
NUM ~= 0	47487			

QUANTILES(DEF=4)

100% MAX	20	99% Q3	20	20
50% MED	18	50% Q1	10	20
25% Q1	10	10% MIN	6	20
RANGE	14		6	
Q3-Q1	12		6	
MODE	6		6	

EXTREMES

	LOWEST	HIGHEST
	6	20
	6	20
	6	20
	6	20

UNIVARIATE

VARIABLE=FRONT

MOMENTS

N	47487	SUM WGTS	47487
MEAN	326.633	SUM	15522734
STD. DEV	100.633	VARIANCE	10033333
SKEWNESS	1.019084	KURTOSIS	1.098137
USSNESS	6114676494	ESS	1047694739
CV	45.4723	STD. MEAN	0.681628
T: MEAN=0	479.226	PROB> T	0.0001
SGN. RANK	563765662	PROB> S	0.0001
NUM = 0	47487		

QUANTILES(DEF=4)

100% MAX	1046.66	99%	756.51
75% Q3	404.08	95%	603.31
50% MED	304.59	90%	543.1
25% Q1	214.29	10%	153.66
0% MIN	48.16	5%	134.83
RANGE		1%	95.14
Q3-Q1	189.79		
MODE	190.48		

EXTREMES

LOWEST	HIGHEST
48.16	1046.66
48.16	1046.66
48.16	1046.66
48.16	1046.66
48.16	1046.66

UNIVARIATE

VARIABLE=AST

MOMENTS

N	47487	SUM WGTS	47487
MEAN	61.5557	SUM	223030
STD. DEV	28.9998	VARIANCE	807.224
SKEWNESS	-0.19998	KURTOSIS	-0.972436
USSNESS	217131980	ESS	37254364
CV	45.4974	STD. MEAN	0.128517
T: MEAN=0	478.962	PROB> T	0.0001
SGN. RANK	563765662	PROB> S	0.0001
NUM = 0	47487		

QUANTILES(DEF=4)

100% MAX	102	99%	102
75% Q3	87	95%	98
50% MED	65	90%	96
25% Q1	40	10%	21
0% MIN	4	5%	15
RANGE	98	1%	4
Q3-Q1	47		
MODE	5		

EXTREMES

LOWEST	HIGHEST
4	102
4	102
4	102
4	102
4	102

UNIVARIATE

VARIABLE=OHAND

MOMENTS

	N	47487	SUM	WGTS	47487
MEAN		34.6687	SUM		1646311
STD DEV		153.033	VARIANCE		23419.1
SKEWNESS		13.4161	KURTOSIS		257.66
USS		1169154656	CSS		1112079265
CV		441.416	STD MEAN		0.70226
T: MEAN=0		49.3673	PROB> T		0.0001
SGN RANK		563763664	PROB> S		0.0001
NUM ~= 0		47487			

QUANTILES (DEF=4)

100% MAX	5186	99%	569.733
75% Q3	17.67	65%	108.736
50% MED	7.02	50%	4.8
25% Q1	2.78	10%	1.02
0% MIN	0.03	5%	0.21
RANGE	5185.97		
Q3-Q1	17.64		
MODE	4.32		

EXTREMES

	LOWEST	HIGHEST
	0.03	4351
	0.03	4429
	0.03	4784
	0.03	5148
	0.03	5186

UNIVARIATE

VARIABLE=HITS

MOMENTS

	N	47487	SUM	WGTS	47487
MEAN		1.83319	SUM		87052.7
STD DEV		5.74933	VARIANCE		33.0548
SKEWNESS		1.4.948	KURTOSIS		3586.03
USS		1729.225	CSS		1569.41
CV		313.625	STD MEAN		0.0263834
T: MEAN=0		69.4828	PROB> T		0.0001
SGN RANK		404221078	PROB> S		0.0001
NUM ~= 0		40210			

QUANTILES (DEF=4)

100% MAX	395.06	99%	23.8736
75% Q3	1.29	65%	8.56
50% MED	0.27	50%	4.57
25% Q1	0.03	10%	0
0% MIN	0	5%	0
RANGE	395.06		
Q3-Q1	1.26		
MODE	0		

EXTREMES

	LOWEST	HIGHEST
	0	138.55
	0	145.23
	0	158.21
	0	184.94
	0	395.06

UNIVARIATE

VARIABLE=TOASCW

MOMENTS

N	47487	SUM WGT\$	47487
MEAN	2.29722	SUM	108851
STD DEV	2.47512	VARIANCE	23.7816
SKWNESS	2.79519	KURTOSIS	42.4048
USS	1.67958	CSE	4.24002
CV	2.3889	STD MEAN	0.0251296
T: MEAN=0	91.2361	PROB> T	0.0001
SGN RANK	423402641	PROB> S	0.0001
NUM \neq 0	41533		

QUANTILES(DEF=4)

100% MAX	99.41	99%	26.98
75% Q3	1.85	95%	10.97
50% MED	0.85	90%	5.93
25% Q1	0.07	10%	0
0% MIN	0	5%	0
RANGE	99.41	1%	0
Q3-Q1	1.78		
MODE			0

EXTREMES

LOWEST	HIGHEST
0	90.73
0	99.84
0	94.9
0	99.7
0	99.41

UNIVARIATE

VARIABLE=LOASCW

MOMENTS

N	47487	SUM WGT\$	47487
MEAN	0.305974	SUM	148929.8
STD DEV	1.3988	VARIANCE	1.8664
SKWNESS	1.3988	KURTOSIS	42.3156
USS	0.306969	CSE	0.2915
CV	2.57362	STD MEAN	0.00641301
T: MEAN=0	4.7659	PROB> T	0.0001
SGN RANK	186001863	PROB> S	0.0001
NUM \neq 0	27276		

QUANTILES(DEF=4)

100% MAX	74.68	99%	5.0336
75% Q3	0.51	95%	0.59
50% MED	0.51	90%	0.59
25% Q1	0	10%	0
0% MIN	0	5%	0
RANGE	74.68	1%	0
Q3-Q1	0.12		
MODE			0

EXTREMES

LOWEST	HIGHEST
0	39.59
0	39.47
0	46.32
0	52.89
0	74.68

UNIVARIATE

VARIABLE=TOBLCW

MOMENTS					
N	47372	SUM WTGS	47372		
MEAN	24.7792	SUM	110.0617		
STD DEV	4.65579	VARIANCE	12.5386		
SKEWNESS	4.6558268	KURTOSIS	3.6552419		
USS	61130103	CSS	3.6552419		
CV	110.705	STD MEAN	0.132477		
T: MEAN=0	196.605	PROB> T	0.0001		
SGN RANK	561038439	PROB> S	0.0001		
NUM ~ = 0	47372				

QUANTILES(DEF=4)

100% MAX	275.11	99%	135.172		
75% Q3	28.38	95%	77.92		
50% MED	14.25	90%	54.187		
25% Q1	8.48	10%	5.65		
0% MIN	1.42	5%	4.27		
RANGE	273.69	1%	2.83		
Q3-Q1	19.9				
MODE	8.11				

EXTREMES

LOWEST	HIGHEST
1.42	275.11
1.42	375.11
1.42	375.11
1.42	375.11
1.42	375.11

MISSING VALUE COUNT % COUNT/NBDS 0.115
0.24

UNIVARIATE

VARIABLE=LOBLCW

MOMENTS

N	67372	SUM WTGS	67372
MEAN	2.07376	SUM	9842372
STD DEV	3.02657	VARIANCE	9.16014
SKEWNESS	4.40846	KURTOSIS	29.8451
USS	638441	CSS	433925
CV	145.663	STD MEAN	0.0139056
T: MEAN=0	149.421	PROB> T	0.0001
SGN RANK	561038439	PROB> S	0.0001
NUM ~ = 0	47372		

QUANTILES(DEF=4)

100% MAX	35.75	99%	15.44		
75% Q3	2.4	95%	6.98		
50% MED	1.09	90%	4.93		
25% Q1	0.49	10%	0.21		
0% MIN	0.01	5%	0.13		
RANGE	35.74	1%	0.05		
Q3-Q1	1.91				
MODE	0.18				

EXTREMES

LOWEST	HIGHEST
0.01	35.75
0.01	35.75
0.01	35.75
0.01	35.75
0.01	35.75

MISSING VALUE COUNT % COUNT/NBDS 0.115
0.24

UNIVARIATE

VARIABLE=INITRA

MOMENTS

N	47372	SUM WOTS	47372
MEAN	2.74719	SUM	130140
STD DEV	1.82658	VARIANCE	3.30639
SKEWNESS	1.42867	KURTOSIS	2.00028
USS	561038439	CSS	139028
CV	56.289	STD MEAN	0.00839223
T: MEAN=0	327.349	PROB> T	0.0001
SGN RANK	561038439	PROB> S	0.0001
NUM -z 0	47372		

QUANTILES(DEF=4)

100% MAX	9.96	9.9%	8.85
Q3	9.96	9.9%	8.85
MED	9.92	9.9%	8.85
Q1	9.92	9.9%	8.85
0% MIN	0.05	1.0%	0.53
RANGE	9.81		0.31
Q3-Q1	1.003		
MODE	1.53		

EXTREMES

	LOWEST	HIGHEST
	0.05	9.86
	0.05	9.86
	0.05	9.86
	0.05	9.86
	0.05	9.86
	0.05	9.86

MISSING VALUE COUNT % COUNT/NOBS 115
0.24

UNIVARIATE

VARIABLE=FINARA

MOMENTS

N	47372	SUM WOTS	47372
MEAN	2.77446	SUM	140905
STD DEV	1.97138	VARIANCE	10.399
SKEWNESS	5.86166	KURTOSIS	57.235
USS	907657	CSS	48.836
CV	107.965	STD MEAN	0.0147547
T: MEAN=0	201.594	PROB> T	0.0001
SGN RANK	561038439	PROB> S	0.0001
NUM -z 0	47372		

QUANTILES(DEF=4)

100% MAX	48.71	9.9%	14.46
Q3	48.71	9.9%	14.46
MED	48.71	9.9%	14.46
Q1	48.71	9.9%	14.46
0% MIN	0.08	5.0%	0.53
RANGE	48.63		0.53
Q3-Q1	1.003		
MODE	1.97		

EXTREMES

	LOWEST	HIGHEST
	0.08	48.71
	0.08	48.71
	0.08	48.71
	0.08	48.71
	0.08	48.71

MISSING VALUE COUNT % COUNT/NOBS 115
0.24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
FORCEM RESTRICTED ENGAGEMENTS DATA (FR)

INPUT TIME 3-5
 BRIE 10-8
 BLUE 17-21
 FBBLUE 17-21
 RED 17-28
 FRED 30-34
 FRONT 35-42
 AST 44-46
 OHAND 48-54
 HITS 56-92
 GLOBI 96-103
 TBLASCH 82-89
 LOASCH 82-89
 TOBLCW 89-94
 LOBLCW 96-101
 INITRA 103-107
 FINARA 109-114;
PROC UNIVARIATE DATA= E52 ;
VAR TIME--FINARA;

UNIVARIATE

VARIABLE=TIME

MOMENTS

N	19985	SUM WGTS	19985
MEAN	4.67245	SUM	89382
STD DEV	2.60391	VARIANCE	6.78035
SKEWNESS	0.0827013	KURTOSIS	-0.960139
USS	5532255	CSS	135499
CV	58.2244	STD MEAN	0.0184193
T-MEAN=0	74.420038	PROB> T	0.0001
SGN RANK	91934578	PROB> S	0.0001
NUM = 0	19176		

QUANTILES(DEF=4)

100% MAX	9.5	99%	9.5
75% Q3	6.5	95%	
50% MED	4.5	90%	
25% Q1	2.0	10%	
0% MIN	0	5%	0.5
RANGE	9.5	1%	1.0
Q3-Q1	4		
MODE	5		

EXTREMES

LOWEST	0	HIGHEST	9.5
	0		9.5
	0		9.5
	0		9.5
	0		9.5
	0		9.5

UNIVARIATE

VARIABLE=FBLUE

MOMENTS

	N	19985	SUM WGT\$	19985
MEAN	0.405909	SUM	8112.08	
STD DEV	0.294719	VARIANCE	0.0868594	
SKWNESS	0.906959	KURTOSIS	-0.284561	
USS	5028.56	CSS	1735.8	
CV	1.546073	STD MEAN	0.00208476	
T. MEAN=0		PROB> T	0.0001	
SGN RANK	9985+059	PROB> S	0.0001	
NUM = 0	19985			

QUANTILES(DEF=4)

100% MAX	0.54	1	99%	1
75% Q3 MED	0.493	1	95%	1
50% Q2	0.493	1	90%	1
25% Q1	0.016	1	0%	1
0% MIN	0.016	1		0.048
RANGE	0.984			
Q3-Q1	0.381	1		
MODE		1		

EXTREMES

LOWEST	HIGHEST
0.016	1
0.016	1
0.016	1
0.016	1
0.016	1

UNIVARIATE

VARIABLE=RED

MOMENTS

	N	19985	SUM WGT\$	19985
MEAN	10334.1	SUM	2065273784	
STD DEV	2144.63	VARIANCE	4599433	
SKWNESS	0.1343905	KURTOSIS	-1.38798	
USS	2.135E+14	CSS	9.192E+10	
CV	2.07519	STD MEAN	15.1705	
T. MEAN=0		PROB> T	0.0001	
SGN RANK	9985+059	PROB> S	0.0001	
NUM = 0	19985			

QUANTILES(DEF=4)

100% MAX	107025	99%	107025
75% Q3 MED	105025	95%	107024
50% Q2	102025	90%	107021
25% Q1	101034	10%	107032
0% MIN	101031	0%	107031
RANGE	5994		
Q3-Q1	3981		
MODE	101033		

EXTREMES

LOWEST	HIGHEST
101031	107025
101031	107024
101031	107021
101031	107032
101031	107031

UNIVARIATE

VARIABLE=FRED

MOMENTS

	N	19985	SUM WGTS	19985
MEAN	0.8717743	SUM	1745215	
STD DEV	0.229705	VARIANCE	0.0527645	
SKEWNESS	-1.39698	KURTOSIS	0.344504	
USS	16240.7	CSS	1054.45	
CV	26.351	STD MEAN	0.00162487	
T: MEAN=0	536.481	PROB> T	0.0001	
SGN RANK	99855053	PROB> S	0.0001	
NUM ~ = 0	19985			

QUANTILES(DEF=4)

	100% MAX	1	99% Q3	1
75% Q3			95%	
50% MED		1	90%	1
25% Q1	0.762		10%	0.476
0% MIN	0.095	5%		0.381
RANGE	0.905		1%	0.254
Q3-Q1	0.238			1
MODE				

EXTREMES

	LOWEST	HIGHEST
0.095		1
0.095		1
0.095		1
0.095		1
0.095		1
0.095		1

UNIVARIATE

VARIABLE=FRONT

MOMENTS

	N	19985	SUM WGTS	19985
MEAN	6880.49	SUM	137112300	
STD DEV	1789289	VARIANCE	29522363	
SKEWNESS	0.001E+12	KURTOSIS	1.35048	
USS	1.000E+12	CSS	5.984E+10	
CV	25.225	STD MEAN	12.2405	
T: MEAN=0	560.495	PROB> T	0.0001	
SGN RANK	99855053	PROB> S	0.0001	
NUM ~ = 0	19985			

QUANTILES(DEF=4)

	100% MAX	13005	99% Q3	11953.4
75% Q3	7748.3		95%	10119.0
50% MED	6428.6		90%	9170.0
25% Q1	5716.3		10%	5254.1
0% MIN	2448.1		5%	4591.0
RANGE	10556.9		1%	3172.2
Q3-Q1	2028			
MODE	11635			

EXTREMES

	LOWEST	HIGHEST
2448.1		13005
2448.1		13005
2448.1		13005
2448.1		13005
2448.1		13005
2448.1		13005

UNIVARIATE

VARIABLE=HITS

MOMENTS

N	19985	SUM	WGTS	19985
MEAN	3.6619	SUM		69186.195
STD DEV	7.33618	VARIANCE		53.8195
SKEWNESS	4.15319	KURTOSIS		231.85530
USS	1315045	CSS		1075530
CV	211.912	STD MEAN		0.0518941
T: MEAN=0	66.7109	PROB> T		0.0001
SGN RANK	7895.104	PROB> S		0.0001
NUM \neq 0	17767			

QUANTILES(DEF=4)

100% MAX	112.25	99%	36.17542
75% Q3	3.09	95%	1.776
50% MED	0.69	90%	0.784
25% Q1	0.07	10%	0
0% MIN	0	5%	0
RANGE	112.25	1%	0
Q3-Q1	3.02		
MODE	0		

EXTREMES

LOWEST	HIGHEST
0	80.17
0	81.26
0	82.39
0	83.66
0	112.25

UNIVARIATE

VARIABLE=GLOBI

MOMENTS

N	19985	SUM	WGTS	19985
MEAN	0.18315	SUM		3923.9836
STD DEV	0.277462	VARIANCE		0.076985
SKEWNESS	2.52159	KURTOSIS		7.50073
USS	2308.68	CSS		1538.47
CV	141.335	STD MEAN		0.00196269
T: MEAN=0	100.024	PROB> T		0.0001
SGN RANK	79856364	PROB> S		0.0001
NUM \neq 0	17872			

QUANTILES(DEF=4)

100% MAX	1.475	99%	1.475
75% Q3	0.2792	95%	0.7805
50% MED	0.0939	90%	0.5272
25% Q1	0.0092	10%	0
0% MIN	0	5%	0
RANGE	1.475	1%	0
Q3-Q1	0.2704		
MODE	0		

EXTREMES

LOWEST	HIGHEST
0	1.475
0	1.475
0	1.475
0	1.475
0	1.475

UNIVARIATE

VARIABLE=TOASCW

MOMENTS

	N	19985	SUM WGTs	19985
MEAN	7	19784	SUM	143849
STD DEV	15	7364	VARIANCE	2271634
SKEWNESS	4.82	5720	KURTOSIS	284.8709
USS	218.6265	CSS		
CV	218.6265	STD MEAN	0.11315	
T: MEAN=0	798029956	PROB> T	0.0001	
SGN RANK	798029956	PROB> S	0.0001	
NUM -= 0	17866			

QUANTILES(DEF=4)

100% MAX	188	99%	82.8442
75% Q3	5.66	95%	38.954
50% MED	4.46	90%	22.13
25% Q1	0.24	10%	0
0% MIN	0	5%	0
RANGE	188	1%	0
Q3-Q1	5.42		
MODE			

EXTREMES

	LOWEST	HIGHEST
	0	157.62
	0	164
	0	164
	0	188

UNIVARIATE

VARIABLE=LOASCW

MOMENTS

	N	19985	SUM WGTs	19985
MEAN	0.60957	SUM	12182.3	
STD DEV	1.96689	VARIANCE	3.86866	
SKEWNESS	6.75512	KURTOSIS	64.8071	
USS	884737.3	CSS	77311.4	
CV	322.669	STD MEAN	0.0139132	
T: MEAN=0	43.8122	PROB> T	0.0001	
SGN RANK	42481065	PROB> S	0.0001	
NUM -= 0	13035			

QUANTILES(DEF=4)

100% MAX	40.91	99%	10.37
75% Q3	0.28	95%	3.167
50% MED	0.03	90%	1.46
25% Q1	0	10%	0
0% MIN	0	5%	0
RANGE	40.91	1%	0
Q3-Q1	0.28		
MODE	0		

EXTREMES

	LOWEST	HIGHEST
	0	28.74
	0	30.25
	0	34.91
	0	40.91

UNIVARIATE

VARIABLE=TOBLCW

MOMENTS

N	19285	SUM	WTGS	19985
MEAN	74.1156	SUM		14803.43
STD DEV	84.1156	VARIANCE		7079.43
SKEWNESS	2.97826	KURTOSIS		10.8913
USS	251044164	CSS		141395447
CV	113.56	STD MEAN		0.55501
T: MEAN=0	124.487	PROB> T		0.0001
SGN RANK	998550553	PROB> S		0.0001
NUM -# 0	19985			

QUANTILES(DEF=4)

100% MAX	565.2	99%	456.04
75% Q3	89.21	65.99	25.55
50% MED	47.26	60.99	149.9
25% Q1	24.96	10.99	14.44
0% MIN	3.07	5.99	11.14
RANGE	562.13		6.33
Q3-Q1	64.23		
MODE	16.22		

EXTREMES

	LOWEST	HIGHEST
	3.07	565.5
	3.07	565.5
	3.07	565.2
	3.07	565.2
	3.07	565.2
	3.07	565.2

UNIVARIATE

VARIABLE=LOBLCW

MOMENTS

N	19285	SUM	WTGS	19985
MEAN	5.897997	SUM		117449
STD DEV	5.897997	VARIANCE		33.7691
SKEWNESS	1.96841	KURTOSIS		4.47506
USS	1295346	CSS		674842
CV	104.205	STD MEAN		0.0411062
T: MEAN=0	135.664	PROB> T		0.0001
SGN RANK	998550553	PROB> S		0.0001
NUM -# 0	19985			

QUANTILES(DEF=4)

100% MAX	34.62	99%	26.08
75% Q3	7.34	65.99	18.55
50% MED	3.33	60.99	13.48
25% Q1	1.66	10.99	0.98
0% MIN	0.06	5.99	0.63
RANGE	34.56		0.27
Q3-Q1	5.99		
MODE	1.66		

EXTREMES

	LOWEST	HIGHEST
	0.06	34.62
	0.06	34.62
	0.06	34.62
	0.06	34.62
	0.06	34.62
	0.06	34.62

UNIVARIATE

VARIABLE=INITRA

MOMENTS

N	19985	SUM WTGS	19985
MEAN	4.37361	SUM	87406.5
STD DEV	2.19756	VARIANCE	87619.5
SKEWNESS	2.41553	KURTOSIS	7.84487
USS	734391	CSS	352108
CV	95.9747	STD MEAN	0.0296924
T: MEAN=0	147.297	PROB> T	0.0001
SGN RANK	99855053	PROB> S	0.0001
NUM ~= 0	19985		

QUANTILES(DEF=4)

				LOWEST	HIGHEST
100% MAX	31.36	99%	22.11	0.19	31.36
50% Q3	5.58	55%	12.57	0.19	31.36
50% MED	3.55	90%	9.06	0.19	31.36
25% Q1	1.57	10%	0.93	0.19	31.36
0% MIN	0.19	5%	0.63	0.19	31.36
RANGE	31.17	1%	0.32	0.19	31.36
Q3-Q1	4.02				
MODE	5.46				

UNIVARIATE

VARIABLE=FINARA

MOMENTS

N	19985	SUM WTGS	19985
MEAN	4.86926	SUM	97130.7
STD DEV	2.58923	VARIANCE	23110.5
SKEWNESS	2.053765	KURTOSIS	58167.6
USS	111.004	CSS	58167.6
CV	127.354	STD MEAN	0.0381634
T: MEAN=0	127.354	PROB> T	0.0001
SGN RANK	99855053	PROB> S	0.0001
NUM ~= 0	19985		

QUANTILES(DEF=4)

				LOWEST	HIGHEST
100% MAX	43.4	99%	31.62	0.17	43.4
50% Q3	6.01	55%	10.53	0.17	43.4
50% MED	5.7	90%	10.44	0.17	43.4
25% Q1	1.54	10%	0.92	0.17	43.4
0% MIN	0.17	5%	0.59	0.17	43.4
RANGE	43.23	1%	0.31	0.17	43.4
Q3-Q1	4.47				
MODE	1.34				

1 FORCERM DATA USING CEM's VERSION OF ATCAL (FC)

```

4 INPUT TIME 1-5
5 BRD 6-8
6 BLUE 11-15
7 RED 4-6-21
8 FRONT 4-6-22
9 RTNKO 4-6-22
10 RTNKH 4-7-52
11 BTNKO 5-5-59
12 BTNKH 6-2-67
13 BTNKK 6-8-73
14 TOBLCW 6-1-86
15 LOBLCW 88-92
16 INTRA 95-100
17 FINARA 102-106;
18 PROC UNIVARIATE DATA=CEM;
19 VAR TIME--FINARA;
20
```

UNIVARIATE

VARIABLE=TIME

MOMENTS

	N	MEAN	651	SUM	WTGS	651
STD DEV	9.29	29.88	VARIANCE	24.16	7.24	
SKWNESS	-0.02	5.5744	KURTOSIS	-1.16	7.24	
USS	3721.381	CSS	1.56	7.45		
CV	53.3554	STD MEAN	0.194297			
T: MEAN=0	47.8229	PROB> T	0.0001			
SGN RANK	104491	PROB> S	0.0001			
NUM = 0	646					

QUANTILES(DEF=4)

	100% MAX	17.5	99%	17.5
75% Q3	13.5	95%	17	
50% MED	9.5	90%	16	
25% Q1	6.5	10%	2.5	
0% MIN	0	5%	1.5	
RANGE	17.5	1%	0.5	
MODE	8.5			

EXTREMES

	LOWEST	HIGHEST
	0	17.5
	0	17.
	0	17.
	0	17.5
	0	17.

MISSING VALUE
 COUNT 1
 % COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=RTNKO

MOMENTS

	N	651	SUM WTGS	651
MEAN	136.829	SUM	89088.6	
STD DEV	67.9056	VARIANCE	46111.17	
SKWNESS	1.13808655	KURTOSIS	39.643333	
USS	1313808655	CSS	39.945833	
CV%	51.820299	SD MEAN	2.664583	
T: MEAN=0	51.820299	PROB> T	0.0001	
SGN RANK	106113	PROB> S	0.0001	
NUM -= 0	651			

QUANTILES(DEF=4)

100% MAX	557	99.7	350
75% Q3	126	99.7	25.00
50% MED	912.8	99.7	25.14
25% Q1	12.6	99.7	25.14
0% MIN	14.6	99.7	24.66
RANGE	542.4		
Q3-Q1	82.2		
MODE	88		

EXTREMES

LOWEST	HIGHEST
14.6	250
12.0	241
10.2	220
22.5	337

MISSING VALUE

COUNT 1
 % COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=RTNKH

MOMENTS

	N	651	SUM WTGS	651
MEAN	11.1269	SUM	7243.1	
STD DEV	11.9062	VARIANCE	140.988	
SKWNESS	1.17306299	KURTOSIS	4.0889099	
USS	1172.306299	CSS	9.1289099	
CV%	106.96799	SD MEAN	0.465493	
T: MEAN=0	23.820299	PROB> T	0.0001	
SGN RANK	106113	PROB> S	0.0001	
NUM -= 0	651			

QUANTILES(DEF=4)

100% MAX	76.9	99.7	57.4
75% Q3	12.7	99.7	28.49
50% MED	5.4	99.7	28.49
25% Q1	5.4	99.7	28.49
0% MIN	0.1	99.7	0.15
RANGE	76.8		0.1
Q3-Q1	13.3		
MODE	1		

EXTREMES

LOWEST	HIGHEST
0.1	27.4
0.1	27.4
0.1	27.3
0.1	23.6
0.1	76.9

MISSING VALUE

COUNT 1
 % COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=RTNKK

MOMENTS

	N	651	SUM	WGTS	651
MEAN	58.816052	SUM	3828.25		
STD. DEV	9.168995	VARIANCE	83.1849		
SKEWNESS	1.61457	KURTOSIS	2.3162		
USS	48410.577	CSS	22764.90		
CV	107.577	STD. MEAN	0.247646		
T: MEAN=0	23.7176	PROB> T	0.0001		
SGN RANK	105463	PROB> S	0.0001		
NUM -= 0	649				

QUANTILES(DEF=4)

100%	MAX	50.1	99%	29.9
75%	Q3	57.9	95%	18.1
50%	MED	3.7	90%	14.68
25%	Q1	1.4	10%	0.6
0%	MIN	0	5%	0.3
RANGE		50.1	1%	0.1
Q3-Q1		6.3		
MODE		0.6		

EXTREMES

LOWEST	HIGHEST
0	29.9
0	29.9
0.1	39.4
0.1	30.1

MISSING VALUE COUNT 1
% COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=BTNK0

MOMENTS

	N	651	SUM	WGTS	651
MEAN	58.6608	SUM	38188.2		
STD. DEV	59.1802	VARIANCE	3502.29		
SKEWNESS	1.61457	KURTOSIS	2.3162		
USS	45164642	CSS	22764.90		
CV	100.29085	STD. MEAN	0.247646		
T: MEAN=0	25.29088	PROB> T	0.0001		
SGN RANK	106151	PROB> S	0.0001		
NUM -= 0	651				

QUANTILES(DEF=4)

100%	MAX	278	99%	266.88
75%	Q3	85.8	95%	198.18
50%	MED	36.7	90%	143.9
25%	Q1	15.5	10%	8.1
0%	MIN	1	5%	4.9
RANGE		277	1%	2.2
Q3-Q1		70.3		
MODE		24.6		

EXTREMES

LOWEST	HIGHEST
1.3	274
1.3	274
1.3	274
1.3	274
1.6	278

MISSING VALUE COUNT 1
% COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=BTNKH

MOMENTS

	651	SUM WTGS	651
MEAN	4.50768	SUM	2934.5
STD DEV	9.37402	VARIANCE	40.62825
SKWNESS	9.92123	KURTOSIS	10.82889
USS	39630.6	CSS	26.40834
CV	1.12046	MEAN	0.24088
T: MEAN=0	1.0439	PROB> t	0.0001
SGN RANK	103523	PROB> s	0.0001
NUM ~= 0	643		

QUANTILES(DEF=4)

	MAX	99%	34.336
100% MAX	48.9	99%	34.336
75% Q3	5.6	95%	18.46
50% MED	2.8	90%	11.78
25% Q1	0.8	10%	0.3
0% MIN	0	5%	0.1
RANGE	48.9		
Q3-Q1	4.8		
MODE	0.1		

EXTREMES

	LOWEST	HIGHEST
0	0	36.2
0	0	36.2
0	0	36.2
0	0	36.2
0	0	48.9
0	0	48.9

MISSING VALUE

COUNT	1
% COUNT/NOBS	0.15

UNIVARIATE

VARIABLE=BTNKK

MOMENTS

	651	SUM WTGS	651
MEAN	2.4533	SUM	1597.1
STD DEV	3.73902	VARIANCE	13.9802
SKWNESS	3.27652	KURTOSIS	14.9336
USS	4200.6	CSS	908.56
CV	1.22407	MEAN	0.14655
T: MEAN=0	1.7411	PROB> t	0.0001
SGN RANK	98439	PROB> s	0.0001
NUM ~= 0	627		

QUANTILES(DEF=4)

	MAX	99%	18.272
100% MAX	33.3	99%	18.272
75% Q3	2.9	95%	10.2
50% MED	0.1	90%	7.1
25% Q1	0.1	10%	0.1
0% MIN	0	5%	0.1
RANGE	33.3		
Q3-Q1	2.8		
MODE	0.1		

EXTREMES

	LOWEST	HIGHEST
0	0	20.9
0	0	21.9
0	0	21.9
0	0	21.9
0	0	33.3

MISSING VALUE

COUNT	1
% COUNT/NOBS	0.15

UNIVARIATE

VARIABLE=TOBLCW

MOMENTS

N	651	SUM WGTS	651
MEAN	57.9101	SUM	37699.58
STD DEV	57.6594	VARIANCE	33015.58
SKEWNESS	57.6554	KURTOSIS	10.0014
USS	57.29208	CSS	2146025
CV	58.2216	STD MEAN	2.25201
T: MEAN=0	25.7149	PROB> T	0.0001
SGN RANK	106113	PROB> S	0.0001
NUM => 0	651		

QUANTILES(DEF=4)

100% MAX	435.9	99%	263.648
75% Q3	73.7	95%	169.74
50% MED	39	90%	119.22
25% Q1	21.3	10%	12.72
0% MIN	4	5%	9.7
RANGE	431.9	1%	5.116
Q3-Q1	50.4		
MODE	18.7		

EXTREMES

LOWEST	4	HIGHEST
	4	275.1
	4	299.5
	4.1	422
	4.6	433
	4.6	435.9

MISSING VALUE COUNT 1
% COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=LOBLCW

MOMENTS

N	651	SUM WGTS	651
MEAN	3.76651	SUM	2455
STD DEV	2.25095	VARIANCE	18.0705
SKEWNESS	2.74596	KURTOSIS	10.0592
USS	2081.3	CSS	11745.8
CV	112.862	STD MEAN	0.66608
T: MEAN=0	2.50797	PROB> T	0.0001
SGN RANK	105358	PROB> S	0.0001
NUM => 0	648		

QUANTILES(DEF=4)

100% MAX	30.3	99%	23.468
75% Q3	24.9	95%	11.84
50% MED	2.4	90%	8.34
25% Q1	1.1	10%	0.9
0% MIN	0	5%	0.9
RANGE	30.3	1%	0.1
Q3-Q1	21.3		
MODE	1.1		

EXTREMES

LOWEST	0	HIGHEST
	0	23.4
	0	28.6
	0	30.0
	0.1	30.9

MISSING VALUE COUNT 1
% COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=INITRA

MOMENTS

	N	MEAN	4.14651	SUM	WGTS	651
	STD DEV	4.72637	VARIANCE	2695.824		
	SKEWNESS	2.25638	KURTOSIS	88.88561		
	USS	20187.8	CSS	9025.79		
	CV	89.9922	STD MEAN	0.146048		
T: MEAN=0		28.3521	PROB> T	0.0001		
SGN RANK		106113	PROB> S	0.0001		
NUM - 0		651				

QUANTILES(DEF=4)

100% MAX	31.65	99%	17.4344		
75% Q3	5.52	95%	11.518		
50% MED	3.05	90%	9.13		
25% Q1	1.57	10%	0.752		
0% MIN	0.17	5%	0.506		
RANGE	31.48	1%	0.2304		
Q3-Q1	3.35				
MODE	0.72				

EXTREMES

LOWEST	HIGHEST
0.17	18.85
0.19	19.14
0.2	20.83
0.22	29.37
	31.65

MISSING VALUE
COUNT 1
% COUNT/NOBS 0.15

UNIVARIATE

VARIABLE=FINARA

MOMENTS

	N	MEAN	4.43668	SUM	WGTS	651
	STD DEV	4.44017	VARIANCE	2888.728		
	SKEWNESS	2.77366	KURTOSIS	11.7151		
	USS	25629.2	CSS	12814.8		
	CV	100.079	STD MEAN	0.174024		
T: MEAN=0		25.4947	PROB> T	0.0001		
SGN RANK		106113	PROB> S	0.0001		
NUM - 0		651				

QUANTILES(DEF=4)

100% MAX	41.5	99%	20.624		
75% Q3	5.85	95%	13.054		
50% MED	3.3	90%	10.24		
25% Q1	1.55	10%	0.712		
0% MIN	0.17	5%	0.482		
RANGE	41.33	1%	0.21		
Q3-Q1	4.3				
MODE	1.47				

EXTREMES

LOWEST	HIGHEST
0.17	21.11
0.19	22.04
0.19	27.05
0.19	37.91
0.2	41.5

MISSING VALUE
COUNT 1
% COUNT/NOBS 0.15

APPENDIX B
CHI-SQUARE TEST FOR DIFFERENCE

TANK LOSS FRACTION			
BLUE UNITS WITH MAIN BATTLE TANK	BLUE UNITS WITHOUT MAIN BATTLE TANK	RED UNITS WITH MAIN BATTLE TANK	RED UNITS WITHOUT MAIN BATTLE TANK
.376	.208	.166	.160
.149	.244	.111	.145
.325	.358	.144	.065
.233	.352	.179	.184
.374	.274	.132	.042
.298	.258	.203	.158
.168	.309	.160	.031
.289	.254	.141	.173
.134	.314	.217	.051
.236	.392	.183	.137
.324	.106	.058	.132
.318	.261	.025	.052
.392	.349	.092	.034
.372	.197	.194	.063
.155	.261	.105	.109
	.349	.217	.075
	.197	.141	.049
	.261	.152	.097
	.261	.126	.118
	.275		
	.423		
	.151		
	.169		
	.136		
	.186		
	.117		

The following equation was used:

$$\chi^2 = \sum \left(\frac{f_{ij} - e_{ij}}{e_{ij}} \right)^2$$

f - Actual frequency
e - Expected frequency

$$e_{ij} = \frac{R_i C_j}{T} \quad e_{ij} \geq 5$$

R_i - Row total
C_j - Column total
T - Grand total

The level of significance-- $\alpha=.05$.

TANK LOSS FRACTION OF BLUE UNITS	BLUE UNITS WITH MAIN BATTLE TANK	BLUE UNITS WITHOUT MAIN BATTLE TANK	FREQUENCY ROW SUM	
0 - .25	5	9	14	
.25 - ∞	10	4	24	
COLUMN SUM	15	23	EXPECTED FREQUENCY	
	5.5	8.5		
	9.5	14.5		

H₀: There is no difference between the vulnerability of the blue units

H₁: There is a difference

$$\begin{array}{ll} \chi^2 = .117 & \chi^2 = 3.841 \\ df=1 & .95 \\ & df=1 \end{array}$$

Cannot reject H₀
No significant difference

TANK LOSS FRACTION OF RED UNITS	BLUE UNITS WITH MAIN BATTLE TANK	BLUE UNITS WITHOUT MAIN BATTLE TANK	FREQUENCY ROW SUM
0 - .1	9	4	13
.1 - ∞	6	19	25
COLUMN SUM	15	23	
	5.13	7.87	EXPECTED FREQUENCY
	9.87	15.13	

H_0 : There is no difference between the lethality of the blue units

H_1 : There is a difference

$$\chi^2 = 7.3 \quad \chi^2 = 3.841 \quad \text{df}=1 \quad .95 \quad \text{Reject } H_0 \text{ so there is a significant difference}$$

TANK LOSS FRACTION OF RED UNITS	RED UNITS WITH MAIN BATTLE TANK	RED UNITS WITHOUT MAIN BATTLE TANK	FREQUENCY ROW SUM
0 - .13	6	12	18
.13 - ∞	13	7	20
COLUMN SUM	19	19	
	9	9	EXPECTED FREQUENCY
	10	10	

H_0 : There is no difference between the vulnerability of the red units

H_1 : There is a difference

$$\chi^2 = 3.8 \quad \chi^2 = 3.841 \quad \text{df}=1 \quad .95 \quad \text{Cannot reject } H_0 \quad \text{No significant difference}$$

TANK LOSS FRACTION OF BLUE UNITS	RED UNITS WITH MAIN BATTLE TANK	RED UNITS WITHOUT MAIN BATTLE TANK	FREQUENCY ROW SUM
0 - .3	11	13	24
.3 - ∞	8	6	14
COLUMN SUM	19	19	
	12	12	EXPECTED FREQUENCY
	7	7	

H_0 : There is no difference between the lethality of the blue units

H_1 : There is a difference

$$\chi^2 = .4527.3 \quad df=1 \quad \chi^2 = 3.841 \quad .95$$

Cannot reject H_0
No significant difference

LIST OF REFERENCES

1. Hartman, James K., "AGGREGATION IN COMBAT MODELS," Lecture notes in AGGREGATED COMBAT MODELLING presented at the Naval Postgraduate School, Monterey, CA, 1985.
2. Metzger, J. J., "FORCE EVALUATION MODEL," paper U.S. Army Concepts Analysis Agency, Bethesda, MD.
3. Hartman, James K., "THE ATCAL ATTRITION MODEL," Lecture notes in AGGREGATED COMBAT MODELLING presented at the Naval Postgraduate School, Monterey, CA, 1985.
4. Telephone conversation between Maj. Cyrus Staniec, FOT, U.S. Army CAA and the author, 13 May 1989.
5. U.S. Army CAA Bethesda, MD, memorandum, Subject: FORCEM ATCAL ANALYSIS CONTINUATION, 31 October 1988.
6. Chambers, J. M., and others, "Graphical Methods for Data Analysis," Wadsworth International Group, 1983.
7. Conover, W. J., "Practical Nonparametric Statistics," 2d ed., John Wiley and Sons, 1980.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145	2
2. Library, Code 0142 Naval Postgraduate School Monterey, CA 93943-5002	2
3. Dr. Laura D. Johnson, Code 55Jo Department of Operations Research Naval Postgraduate School Monterey, CA 93943-5000	1
4. Maj. Cyrus Staniec, FOT U.S. Army Concepts Analysis Agency 8120 Woodmont Avenue Bethesda, MD 20814-2797	5
5. Director U.S. Army Concepts Analysis Agency 8120 Woodmont Avenue Bethesda, MD 20814-2797	1
6. Cpt. Charles Betack 101 Willow Street Schuylkill Haven, PA 17972	3

Thesis
B458823 Betack
c.1 Graphical analysis of
the sensitivites of
ATCAL in the FORCEM
model.

Thesis
B458823 Betack
c.1 Graphical analysis of
the sensitivites of
ATCAL in the FORCEM
model.

thes8458823
Graphical analysis of the sensitivities o

3 2768 000 83411 3
DUDLEY KNOX LIBRARY