4721 HW 6

Duncan Wilkie

6 April 2023

Problem 1. Common forms assumed for the momentum distributions of valence quarks in the proton are:

$$F_u = xu(x) = a(1-x)^3, \ F_d(x) = xd(x) = b(1-x)^3.$$

If the valence quarks account for half of the proton's momentum—i.e.

$$\int_{0}^{1} x u(x) dx + \int_{0}^{1} x d(x) dx = \frac{1}{2},$$

find the values of a and b. Hint: the u quarks carry approximately twice as much momentum as the d quarks in the proton.

Solution. Some calculus:

$$\int_0^1 (1-x)^3 dx = \int_1^0 u^3 \cdot -du = \frac{u^4}{4} \Big|_{u=0}^{u=1} = \frac{(1-x)^4}{4} \Big|_{x=1}^{x=0} = \frac{1}{4}$$

Accordingly,

$$\int_0^1 x u(x) dx + \int_0^1 x d(x) dx = \frac{1}{2} \Leftrightarrow a \int_0^1 (1-x)^3 dx + b \int_0^1 (1-x)^3 dx = \frac{1}{2} \Leftrightarrow \frac{a}{4} + \frac{b}{4} = \frac{1}{2} \Leftrightarrow a+b = 2.$$

There are two valence up quarks, and one valence down quark, so one would expect the total momentum in the up quarks to be double that of the down quark—accordingly,

$$2b + b = 2 \Leftrightarrow b = \frac{2}{3} \Rightarrow a = \frac{4}{3}.$$

Problem 2. What is the color wavefunction for mesons, in analogy to that for baryons of

$$y_{baryon} = y_{space}y_{spin}(rgb + gbr + brg - rbg - bgr - grb)$$
?

Explain your answer.

Solution. This baryon color wavefunction comes from noticing that baryons are made up of three quarks, all of different color charge (so as to produce a color-neutral baryon), and then requiring the resulting wavefunction to be antisymmetric under particle interchange, so as to produce a fermionic

composite particle. By contrast, mesons are bosonic, and so the color wavefunction must stay the same under particle interchange:

$$y_{meson} = y_{space} y_{spin} (r\bar{r} + g\bar{g} + b\bar{b}).$$

Problem 3. The diagram below shows the internal gluon interactions in a proton. Complete the diagram by labelling the color of the quarks and gluons.

Solution.

Problem 4. Which of the following processes are allowed? If not allowed, state why. If allowed, say whether the process is strong, weak, or electromagnetic.

- 1. $\nu_e + p \to e^- + \pi^+ + p$
- 2. $e^+ + e^- \rightarrow \mu^+ + \mu^-$
- 3. $\Sigma^- \rightarrow n + \pi^-$
- 4. $\bar{\nu}_e + p \to e^- + n$
- 5. $e^- + p \rightarrow \nu_e + \pi^0$

Solution.

- 1. Allowed; weak.
- 2. Allowed; electromagnetic.
- 3. Allowed; strong.
- 4. Disallowed; charge changes.
- 5. Disallowed; baryon number changes.

Problem 5 (Double Points). The differential cross section for $e^+ + e^- \rightarrow \mu^+ + \mu^-$ is given by

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\alpha^2}{4s} (\hbar c)^2 (1 + \cos^2 \theta)$$

in a collider experiment where $s = 4E_e$ and E_e is the electron/positron energy.

- 1. Integrate over the solid angle to obtain an expression for the total cross section.
- 2. If you use an electron beam energy of 4 GeV, what rate of production of $\mu^+\mu^-$ would you expect at a luminosity of 10^{33} Hz/cm²?
- 3. Calculate the ratio of the hadronic production cross section to that for $\mu^+\mu^-$ at $E_e=500\,\mathrm{GeV}$. If you use an electron beam energy of 500 GeV, what must the luminosity be to measure the hadronic cross section within 24 hours with 10% statistical uncertainty?

Solution.

1. We have a total cross-section

$$\int \frac{d\sigma}{d\Omega} d\Omega = \int_0^{2\pi} \int_0^{\pi} \frac{\alpha^2}{4s} (\hbar c)^2 (1 + \cos^2 \theta) \sin \theta d\theta d\phi = \frac{2\pi (\alpha \hbar c)^2}{4s} \int_0^{\pi} \sin \theta + \sin \theta \cos^2 \theta d\theta$$
$$= \frac{\pi (\alpha \hbar c)^2}{2s} \left(2 - \int_1^{-1} u^2 du \right) = \frac{\pi (\alpha \hbar c)^2}{2s} \left(2 + \frac{u^3}{3} \Big|_{-1}^{1} \right) = \frac{\pi (\alpha \hbar c)^2}{2s} \left(2 + \frac{2}{3} \right) = \frac{4\pi (\alpha \hbar c)^2}{3s}$$

2. If the electron beam energy is 4 GeV, $s=4\cdot E_e=16\,\mathrm{GeV}$, and at the given luminosity, the expected production rate is

$$L \cdot \sigma = 10^{33} \,\mathrm{Hz/cm^2} \cdot \frac{4\pi (\frac{1}{137} \cdot 3.16 \times 10^{-24} \,\mathrm{J \cdot cm})^2}{3 \cdot 16 \,\mathrm{GeV}} = 8.71 \times 10^{-10} \,\mathrm{Hz}$$

Problem 6 (Double Points). *In an* e^+e^- *collider experiment, a resonance* R *is observed at* $E_{cm}=10\,\text{GeV}$ *in both the* $\mu^+\mu^-$ *and hadronic final states. The integrated cross sections are*

$$\int \sigma_{\mu\mu}(E)dE = 10\,\mathrm{nb}\cdot\mathrm{GeV}$$

and

$$\int \sigma_h(E)dE = 300\,\mathrm{nb}\cdot\mathrm{GeV}.$$

Use a Breit-Wigner form for the resonance production to deduce the partial widths $\Gamma_{\mu\mu}$ and Γ_h in MeV for the decays $R \to \mu^+ \mu^-$ and $R \to hadrons$. Assume the integral

$$\int_{resonance} \frac{dE}{(E-Mc^2)+\Gamma^2/4} \approx \frac{2\pi}{\Gamma}.$$

Problem 7. Find the threshold kinetic energy for each of the following reactions, assuming the first particle to be incident on the second particle at rest:

- 1. $K^- + p \rightarrow \Xi^- + K^+$
- 2. $\bar{p} + p \rightarrow \Upsilon$
- 3. $\pi^- + p \rightarrow \omega + n$