

Technische Universiteit
Eindhoven
University of Technology

Sheets are based on the those provided by Tan, Steinbach, and Kumar. *Introduction to Data Mining*

Where innovation starts

What happened before ...

- Classification:
 - Learning a model on labeled data for prediction.
- Models:
 - Decision trees (Hunt's algorithm)
 - Naïve Bayes Classifier
 - Nearest Neighbor Classifier
- Evaluation of models and classifiers

This lecture

- Combining classifiers
 - Bagging
 - Boosting
 - AdaBoost
 - Random Forest
- Conclusion
- Exercises

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, ε = 0.35
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a <u>wrong</u> prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

This lecture

- Combining classifiers
 - Bagging
 - Boosting
 - AdaBoost
 - Random Forest
- Exercises

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- Each sample has probability 1 (1 1/n)ⁿ of being selected

CART decision boundary

100 bagged trees

This lecture

- Combining classifiers
 - Bagging
 - Boosting
 - AdaBoost
 - Random Forest
- Conclusion
- Exercises

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Example: AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^{N} w_j \delta(C_i(x_j) \neq y_j)$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Example: AdaBoost

Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_{j} is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification:

$$C*(x) = \arg\max_{y} \sum_{j=1}^{T} \alpha_{j} \delta(C_{j}(x) = y)$$

$$\mathsf{TU}_{e} \overset{\text{Technische Universiteit Eindhoven University of Technology}}{\mathsf{University of Technology}}$$

Illustrating AdaBoost

One-dimensional input data:

- Base classifiers: decision stumps
 - Decision trees of height two, with one split

Maximal attainable accuracy: 80%

Illustrating AdaBoost

Illustrating AdaBoost

Boosting Example

http://www.cs.ucsd.edu/~yfreund/adaboost/index.html

Boosting Example

TU/e, 1.09.08

After one iteration

CART splits, larger points have great weight

TU/e, 1.09.08

After 3 iterations

TU/e, 1.09.08

22

After 20 iterations

TU/e, 1.09.08

Decision boundary after 100 iterations

Theoretical Bounds

- It can be shown on training data:
 - Let ε_t denote the error of the t-th base classifier (on the modified data)
 - Let $\gamma_t = \frac{1}{2} \varepsilon_t$

the training error is bounded by $\exp\left(-2\sum_t \gamma_t^2\right)$

Hence, decreasing exponentially fast

This lecture

- Combining classifiers
 - Bagging
 - Boosting
 - AdaBoost
 - Random Forest
- Conclusion
- Exercises

Random Forest

- Ensemble of decision trees
- Input set:
 - N tuples, M attributes
- Each tree is learned on a reduced training set
 - Randomly select F<<M attributes
 - Sample training data
 - with replacement
 - Only keep randomly selected attributes
- State-of-the-art technique

This lecture

- Combining classifiers
 - Bagging
 - Boosting
 - AdaBoost
 - Random Forest
- Conclusion
- Exercises

Conclusion

- Ensembles to combine classifiers
 - On which data learn the classifier
 - How to combine the final classifiers
 - Weak base classifiers combined into one strong one
- Different choices lead to different meta-learners
 - Bagging
 - Boosting
 - Random Forrest
- Over-fitting of base classifiers not always bad

Overfitting in Ensembles

- Not that much research has been done into this topic
- A surprising recent finding:
 - ensembles of overfitting base classifiers are in many cases better than the ensembles of non-overfitting base classifiers
- This is related most probably to the fact that in that case the ensemble diversity is much higher

This lecture

- Combining classifiers
 - Bagging
 - Boosting
 - AdaBoost
 - Random Forest
- Conclusion
- Exercises

Exercises

Decision tree: p. 198, Chapter 4, ex. 2

Naïve Bayes: p. 318, Chapter 5, ex 7

- Ensembles:
 - Why is it important to have weak base classifiers?
 - Think of examples where the combination of strong base classifiers can be useful

Table 4.1. Data set for Exercise 2.

Customer ID	Gender	Car Type Shirt Size		Class
1	M	Family	Family Small	
2	M	Sports Medium		C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	\mathbf{F}	Sports	$_{ m Small}$	C0
8	\mathbf{F}	Sports	Small	C0
9	\mathbf{F}	Sports Medium		C0
10	\mathbf{F}	Luxury Large		C0
11	M	Family Large		C1
12	M	Family Extra Large		C1
13	M	Family	Family Medium	
14	M	Luxury	Luxury Extra Large	
15	F	Luxury Small		C1
16	\mathbf{F}	Luxury Small		C1
17	\mathbf{F}	Luxury	Medium	C1
18	\mathbf{F}	Luxury	Medium	C1
19	\mathbf{F}	Luxury Medium		C1
20	F	Luxury	ixury Large	

Compute Gini-indices

What is the best split?

Why is it a bad idea to split on CustomerID?

Table 5.1. Data set for Exercise 7.

Record	A	B	C	Class
1	0	0	0	+
2	0	0	1	_
3	0	1	1	_
4	0	1	1	_
5	0	0	1	+
6	1	0	1	+
7	1	0	1	_
8	1	0	1	_
9	1	1	1	+
10	1	0	1	+

Give the model the Naïve Bayesian classifier learns

- a) Without m-estimate
- b) With m-estimate; p=1/2, m=4
- c) Predict in both cases the class of (A=0, B=1, C=0)