12.281

Namaswi-EE25BTECH11060

october,2025

Question

 \boldsymbol{A} is a 2×2 matrix with det $\boldsymbol{A}=2$.Then det $2\boldsymbol{A}$ is

Solution

Given

$$\det(\mathbf{A}) = 2 \tag{1}$$

We want to find $det(2\mathbf{A})$.

As For any $n \times n$ matrix A and scalar k, we have

$$\det(k\mathbf{A}) = k^n \det(\mathbf{A}) \tag{2}$$

Since **A** is 2×2 , n = 2. Therefore,

$$\det(2A) = 2^2 \det(A) \tag{3}$$

$$=4\times2\tag{4}$$

$$=8\tag{5}$$

Solution

Verification using eigenvalues:

Let the eigenvalues of **A** be λ_1 and λ_2 .

We know:

$$\det(\mathbf{A}) = \lambda_1 \lambda_2 = 2 \tag{6}$$

The eigenvalues of 2**A** are:

$$2\lambda_1$$
 and $2\lambda_2$ (7)

Thus,

$$\det(2\mathbf{A}) = (2\lambda_1)(2\lambda_2) \tag{8}$$

$$=4\lambda_1\lambda_2\tag{9}$$

$$=4\times 2\tag{10}$$

$$= 8 \tag{11}$$

C Code

```
#include <stdio.h>
int main() {
    double detA = 2.0;
    int n = 2;
    double k = 2.0;
    double det2A = detA * (k * k); // Since n = 2
    printf("Determinant of 2A is: %.0lf\n", det2A);
    return 0;
}
```