This Page Is Inserted by IFW Operations and is not a part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) *HU*[‡] .

MAGYAR NÉPKÖZTÁRSASÁG

SZABADALM **LEÍRÁS**

183 831 P0202027

ORSZÁGOS TALÁLMÁNYI HIVATAL

A bejelentés napja: (22) 82. 02. 23.

(21) 541/82

A bejelentés elsőbbsége:

A közzététel napja: (41) (42) 83. 10. 28.

Megjelent: (45) 87. 12. 28.

(33)

(32)81.02.23.

(31)(810547) Nemzetközi osztályjelzet: (51) NSZO₃

H 01 L 33/00; H 05 B 33/12

A1,2,7,16,16 18,21,22,23, 7.0. 2.4

Feltaláló(k): (72)

Antson Jorma Olavi mérnők, Lindfors Sven Gunnar kutató, Suntola Tuomo Sakari technológus, Ylilammi Markku mérnök, Espoo, Pakkala Arto Juhani mérnök, Evitskog, Skarp Jarmo mérnök, Helsinki, FI

Szabadalmas: (73) Oy Lohja AB, Virkkala FI

1-5 a bya.

(54)

ELEKTROLUMINESZCENS VÉKONYRÉTEG SZERKEZET

(57) KIVONAT

A találmány elektrolumineszcens vékonyréteg szerkezetre vonatkozik, amely

- legalább egy például üvegből készült szubsztrátré-
- legalább egy első elektródrétegből,
- legalább egy, az első elektródrétegtől bizonyos távolságra elhelyezkedő második elektródrétegből,
- az első és a második elektródréteg között elhelyezkedő lumineszcensrétegből és
- az áram korlátozására és kémiai védelemre szolgáló, az elektródrétegek és a lumineszcensréteg közé elhelyezett további rétegszerkezetekből

A találmány szerinti szerkezetet az jellemzi, hogy

- a két elektródaréteg és a lumineszcensréteg között egy kémiai védelemre szolgáló első és második további rétegszerkezet helyezkedik el, és
- az áram korlátozására szolgáló harmadik további rétegszerkezet lényegében csak a második elektródaréteg és a lumineszcensréteg között helyezkedik el.

1. Stra

4

A találmány elektrolumineszcens vékonyréteg szerkezetre vonatkozik, amely

- legalább egy például üvegből készült szubsztrátrétegből,
- legalább egy első elektródrétegből,
- legalább egy, az első elektródrétegtől bizonyos távolságra elhelyezkedő második elektródrétegből,
- az első és a második elektródréteg között elhelyezkedő lumineszcensrétegből és
- az áram korlátozására és kémiai védelemre szolgáló, az elektródrétegek és a lumineszcensréteg közé elhelyezett további rétegszerkezetekből

Az elektrolumineszcencia jelensége az 1930-as évektől ismert. Az, hogy a jelenség gyakorlati felhasználására hosszú ideig mégsem került sor, főként azzal magyarázható, hogy az elektrolumineszcens szerkezetek élettartama és megbízhatósága nem felelt meg a gyakorlati követelményeknek. A vékonyréteg elektrolumineszcens elemeket az 1960-as évek elejétől tanulmányozzák intenzívebben. Az alapvizsgálatokat cink-szulfidon végezték, amelyből vákuum párologtatással készítettek vékonyrétegeket. A cink-szulfidnagy tilossáv szélességű félvezető anyag (tilossáv szélesség: kb. 4 eV), amelynek viszonylag alacsony a fajlagos vezetőképessége ($\approx 10^9 \Omega$ cm).

Az elektrolumineszcencia kiváltásához megfelelő aktivátorokra van szükség a cink-szulfid anyagban, és bizonyos nagyságú áramot kell az anyagon átfolyatni. A nemötvözött cink-szulfid esetében igen nagy elektromos térre van szükség ahhoz, hogy megfelelő áramsűrűséget érjünk el (106 V/cm nagyságrend). Ilyen elektromos tér rákapcsolása egy vékonyrétegre megköveteli, hogy a cink-szulfid anyag elektromosan és szerkezetileg igen homogén legyen. Miután azonban a cink-szulfid vezetőképessége nő a hőmérséklet emelkedésével, a szóban forgó nagy térerő hatása alatt a cink-szulfid vékonyréteg nagyon érzékeny az úgynevezett termikus letörésre. Termikus letörésre akkor kerül sor, amikor az áramsűrűség az anyag egy bizonyos pontján megnő, és az adott ponton extra hő fejlődik ki. A hőmérséklet emelkedése ugyanis megnöveli a szóban forgó pont vezetőképességét, ami pozitív visszacsatolásként ismét az áram megnövekedéséhez vezet.

A gyakorlatban az ötvözetlen cink-szulfid alapú szerkezetek önmagukban nem bizonyultak megfelelőnek. Ezért, lényeges javításként, olyan szerkezetet javasoltak [W. J. Harper, J. Elektrochem, Soc., 109, 103 (1962)], amelyben a termikus letörést sorosan kötött impedanciákkal akadályozták meg, ily módon korlátozva a cink-szulfid rétegen keresztülfolyó áramot. Miután a szóban forgó soros impedancia kapacitív, általában AC lumineszcens szerkezetről beszélünk ilyen esetben. Ha a szóban forgó soros impedancia ellenállás jellegű, direkt áramfolyást is megengedünk a rendszerben, és ilyenkor DC lumineszcens szerkezetről beszélhetünk.

A gyakorlatban a vékonyréteg szerkezetek közül az AC szerkezet jobb eredményt nyújtott, mint a DC szerkezet, mind az optikai viselkedés, mint az élettartam tekintetében. A korábban ismert módszerek közül az AC szerkezetre a legjobb megoldást a Sharp Corporation (T. Inoguchi és mtsai., Journal of Electronic Engineering, 1974. okt. 44) dolgozta ki. Ez az úgynevezett kettős szigetelő szerkezet volt [M. J. Russ, D. I. Kennedy, J. Elektrochem. Soc., 114, 1066 (1967)], amelyben a cink-szulfid réteg mindkét oldalán dielektromos réteg van. A kettős szigetelő szerkezet hátránya, hogy a két szigetelőn maradó feszültség növeli a teljes szerkezet működési feszültségét. A nagy működési feszültség pedig, különösen az elektrolumineszcens elemet szabályozó elektronika szempontjából hátrányos.

"Találmányunk azon a megfigyelésen alapul, hogy az elektrolumineszcens eszközök élettartalma nagymértékben függ a cink-szulfid és az elektródák vagy az elektródákon kívüli anyagok kémiai kölcsönhatásaitól. Egy elektrolumineszcens szerkezetben ennek következtében a szigetelés funkciója nem csak az elektromos átütést megakadályozása, hanem az is, hogy gátolja a cink-szulfid és környezete közötti kémiai kölcsönhatást. Ezt a szerepet a legtöbb dielektromos anyag be tudja tölteni, az ionok kis mozgékonysága következtében. A kettősszigetelő szerkezetekkel elért viszonylag jó eredmények az üzemeltetés során elért élettartammal kapcsolatban elsősorban annak a körülménynek tulajdoníthatók, hogy az áram korlátozására beiktatott szigetelőrétegek kémiai gátként is működnek a cink-szulfid és környezete között.

A találmány szerinti szerkezet azon az elgondoláson alapul, hogy a kémiai gát és az áramkorlátozás funkciói elkülöníthetők egymástól, minek következtében a kémiai védelem önmagában feszültségveszteség nélkül létrehozható, más szóval, a kémiai védelem megoldható egy olyan anyaggal, amelynek elektromos vezetőképessége lényegesen nagyobb, mint az áramkorlátozó elektromos vezetőké-

Közelebbről, a találmány szerinti szerkezetet az jellem-

- mindkét elektród réteg és a lumineszcensréteg közé egy első és egy második további réteget helyezünk el, amelyek feladata a kémiai védelem ellátása, és
- egy az áram korlátozására szolgáló, harmadik további réteget helyezünk el, általában csak a második elektródréteg és a lumineszcensréteg közé.

Más szóval, a találmány szerinti elektrolumineszcens szerkezetet az jellemzi, hogy a cink-szulfid mindkét oldalán kémiai gátként funkcionáló réteg van, míg az áram korlátozására csak egyik oldalon kerül sor, vagy különálló ellenállás vagy dielektromos réteg formájában, vagy a kémiai gátként szolgáló anyagba integrálódott réteg formájában.

A találmány szerinti szerkezet egy előnyös kiviteli alakja szerint a lumineszcensrétegnek legalább az egyik oldalára egy meglehetősen vékony további szigetelőréteget helyezünk, amely átmeneti rétegként funkcionál.

A találmány szerinti szerkezet egy további előnyös kiviteli alakját az jellemzi, hogy a lumineszcensréteget egyik oldalon egy elektromosan szigetelő kémiai védőréteggel látjuk el, míg a másik oldalon egy meglehetősen vékony további szigetelőréteg, amely átmeneti rétegként szolgál, és egy elektromosan vezető kémiai védőréteg kombinációját

A felsorolt megoldások segítségével jelentős előnyök érhetők el. Így a vezető védőréteg és az áram korlátozó réteg elválasztásával lehetővé vált az elektrolumineszcens szerkezet leegyszerűsítése. Egy igen vékony alumínium-oxid réteg kialakításával a lumineszcensréteg egyik felületén pedig elértük, hogy jó fényemissziót kapjunk, függetlenül az áram pillanatnyi irányától. Más szóval, a további réteg beiktatásával a fényemisszió szimmetriáját sikerült biztosítani a lumineszcens szerkezetben. A találmány szerinti szerkezet a változtatások ellenére mind AC, mind DC üzemmódban üzemeltethető.

The second secon

Találmányunkat a következőkben a csatolt rajzok szerinti speciális kiviteli alakok segítségével szemléltetjük.

35

Az 1—5. ábrák a találmány szerinti elektrolumineszcens szerkezet különféle lehetséges kiviteli alakjainak sematikus, keresztmetszeti képei.

A 6. ábra a 4. ábrán bemutatott szerkezet AC feszültségfényesség görbéjét mutatja.

A 7. ábra a 4. ábrán bemutatott szerkezet izzítási és roncsolási feszültségét mutatja a védőréteg vastagságának függvényében.

A 8. ábra egy találmány szerinti szerkezet DC feszültségfényesség görbéjét szemlélteti.

Az 1. ábra egy olyan találmány szerinti elektrolumineszcens szerkezetet mutat, amely legegyszerűbb formájában AC üzemeltetésre készül. A szerkezetben egy 1 szubsztrát rétegre, amely például üveg lehet, egymás után egy első 2 elektródréteget, egy első elektromosan vezető kémiai 3 védőréteget, egy első kémiai 4 védőréteget, amely dielektromos anyagból készült, egy meglehetősen vékony további 5 szigetelőréteget, amely átmeneti rétegként funkcionál, egy 6 lumineszcensréteget, egy további 7 szigetelőréteget, egy második dielektromos 8 védőréteget, egy második vezető 9 védőréteget, és egy 10 második elektródréteget viszünk fel. Szaggatott vonalakkal egy 1' szubsztrátréteget ábrázolunk, amelyet kívánt esetben a szerkezet másik oldalán is kiépíthetünk.

A 3 és 4 védőrétegből álló, első további rétegszerkezet, és a 8 és 9 védőrétegből álló, második további rétegszerkezet a kémiai védelemre szolgál. A 4 és 8 védőrétegek, amelyek az első és második további rétegszerkezet belső részét alkotják, az áram korlátozását célozzák.

A 2. ábrán bemutatott szerkezet hasonló az 1. ábrán bemutatotthoz, azzal a különbséggel, hogy nem tartalmazza az első dielektromos 4 védőréteget.

A 3. ábra hasonlít a 2. ábra szerinti szerkezethez, azzal az eltéréssel, hogy nem tartalmazza a második védő-vezető réteget.

A 4. ábrán bemutatott szerkezet hasonlít a 3. ábra szerinti szerkezethez, azzal az eltéréssel, hogy itt hiányzik a második további 7 szigetelőréteg.

Az 5. ábrán bemutatott szerkezet hasonlít a 4. ábrán bemutatott szerkezethez, azzal az eltéréssel, hogy itt az első további 5 szigetelőréteg is hiányzik.

A következőkben részletesebben a 4. ábra szerinti szerkezetet vizsgáljuk, mert ezen az optimális megoldás egy lehetséges módozata jól bemutatható. Az anyagot megválasztása és a használt dimenziók azonban az 1—3. és az 5. ábra 45 szerinti szerkezetekre is alkalmazhatók.

A 4. ábra szerinti szerkezetben egy dielektromos anyagból készült védőréteget (az 1. ábrán a 4 védőréteg) egy elektromosan vezető kémiai 3 védőréteggel.

Másrészt, a 8 védőrétegben használt vegyes szigetelő, a tantál-titán-oxid (TTO) elektromos szigetelésre és úgynevezett áramkorlátozó rétegként egyaránt szolgál, ugyanakkor a felső kémiai védőréteg szerepét is betölti.

A 3 védőrétegben használt titán-oxid, amely megfelelő elektromos vezetőképességgel rendelkezik, az alsó 2 elektróda és a 6 lumineszcens rétegben levő cink-szulfid kémiai elválasztására szolgál. A titán-oxid és a cink-szulfid között egy nagyon vékony alumínium-oxidból készült 5 szigetelőréteg helyezkedik el, amely bizonyos tulajdonságainál fogva javítja a lumineszcenciát, de ugyanakkor az elektromos védelemben kifejtett szerepe csekély.

Miután az áram korlátozó réteget és a vezető kémiai védőréteget ily módon elválasztottuk egymástól, a különböző rétegvastagságok külön-külön a két tulajdonság szempontjából optimizálhatók.

A 6. ábra egy jellegzetes feszültség fényesség görbét mutat. A görbéből megállapítható, hogy a működési feszültség 100 Vp alatti szintre csökkent. A jó áramkorlátozás következtében a feszültség a széleken igen magas. A gyorsított élettartam-vizsgálatok szerint a kémiai stabilitás jó.

A 3, 5, 6, és 8 rétegeket úgynevezett ALE (Atomic Layer Epitaxy = atomos réteg epitaxia) módszerrel alakítottuk ki. Az indium-6n-oxid (ITO) rétegeket (a 2 és 10) reaktív porlasztással növesztettük.

10 Az 1 szubsztrátréteg akár közönséges szóda-mész üveg, nátrium-mentes üveg, például Corning 7059 üveg lehet.

A szubsztrát mellett egy áttetsző vezető réteg, például indium-ón-oxid (ITO) réteg van (2).

A 3 védőréteg titán-oxidból (TiO2) készül. A réteg fajlagos ellenállása 10³—10⁵ Ohm-cm. Ez olyan szerkezetekben, amelyekben az alsó 2 elektródaréteg az ITO réteg, a titán-oxid réteg vastagságát 100 nm alá korlátozza. Ez arra vezethető vissza, hogy kívánatos, hogy a laterális vezetést alacsony szinten tartsuk, annak érdekében, hogy az alsó ábra széle éles maradjon. Ha az alsó vezető 2 elektródaréteg integrált megoldású, ez a követelmény nem érvényes, mert az ábra pontosságát a felső vezető 10 elektródaréteg határozza meg.

A titán-oxid meglenetősen jó vezetőképességéből következik, hogy nem marad feszültség a filmen, ami bizonyos előnnyel jár. Az 1 szubsztrát üvegből diffundáló szennyezések nem befolyásolják a titán-oxid elektromos tulajdonságait, a szigetelőrétegtől eltérően. Ugyancsak nem mutat a titán-oxid az elektromos teret elősegítő diffúziót.

30 A titán-oxid kémiailag nagyon stabil, például kémiai marása igen nehéz.

A 6 lumineszcens, illetve a 3 védőréteget alkotó cinkszulfid és titán-oxid rétegek között egy nagyon vékony alumínium-oxid 5 szigetelőréteg helyezkedik el. Ez a réteg három funkciót lát el: stabil szubsztrátot alkot a cinkszulfid növesztéséhez, ugyanakkor jól gátolja az injekciót, végül megakadályozhatja az alacsony energiájú elektronok haladását a szerkezetben.

Az alumínium-oxid szigetelőanyag is, amely növeli a szerkezet működési feszültségét. Ezért kell az alumínium-oxid réteget a lehető legvékonyabbra kialakítani, ügyelve azonban, hogy egyéb jó tulajdonságai megmaradjanak.

Az aktív 6 lumineszcens réteg mangánnal ötvözött cinkszulfid. A cink-szulfid réteg vastagsága meghatározza az izzási feszültséget és, AC üzemmódban, a maximális fényességet is. A cink-szulfid réteg vastagságának növelésével e két faktor mindegyike nő.

Ha figyelembe vesszük a megadott szempontokat, a cink-szulfid réteg vastagságának megválasztásánál kompromisszumra van szükség. Úgy találjuk, hogy az optimális vastagság 300 nm körül van.

Közvetlenül a cink-szulfid rétegen egy tantál-oxid réteg van. Ennek jelölésére a TTO jelölést használjuk.

A TTO réteget 2:1 arány mellett alakítottuk ki. Kísérleteket folytattunk más arányokkal is. A határ, amelynél a TTO Ta2Os típusú szigetelőből TiO2 nemszigetelő anyaggá alakul, igen éles. Ha a határ egyik oldalán maradunk, az előállítási eljárás során használt arány nincs észlelhető hatással a réteg tulajdonságaira.

A TTO igen hasonló a Ta₂O₅-hoz. A TTO dielektromos állandója l kHz frekvenciánál 20. A TTO átütési feszültsége 7 MV cm⁻¹. Ez a érték megegyezik a Ta₂O₅ réteg esetében mért értékkel. Amikor azonban vékonyréteg szerkezetekről van szó, az anyag tömb tulajdonságain kívül más körülmények is befolyásolják az át

.3

ütési frekvenciát. Általában a réteg teljes átütés előtti roncsolódásáért például a kristályosodási tulajdonságok felelősek. Ebben a tekintetben a TTO réteg eltér a Ta2O5 vékonyrétegtől.

Ha a TTO réteget áramkorlátozásra használjuk a lumineszcens szerkezetben, a működési feszültség érdekes jelleget mutat. A 7. ábra egy a 4. ábra szerinti szerkezet izzási feszültségét és roncsolási feszültségét mutatja a TTO réteg vastagságának függvényében. Az hogy a rendszer jól tolerálja a növekvő feszültséget, a szerkezet megbízhatóságát igazolja.

A találmány keretein belül a fentiekben részletezett, speciális kiviteli alakokon kívül egyéb megoldási lehetőségek is léteznek. Így a TTO réteg a cink-szulfid anyagú 6 lumineszcensréteg alatt is elhelyezhető, vagy megosztható, és a cink-szulfid réteg két oldalán helyezhető el. Az utóbbi esetben azonban a szigetelőréteg vastagsága nem lehet az egyoldalas szigetelésnél használt vastagság fele, mert a tűlyukak sűrűsége egy szigetelőben erősen függ a réteg vastagságától. Ha a réteget vékonyítjuk, nő a tűlyukak száma. Ha elektromos határt akarunk tartani, a kétoldalú szigetelés vastagsága duplája az egyoldalú szigetelés vastagságának. Ez ismét növeli a működési feszültséget.

A TTO réteg tetejére titán-oxid réteget is helyezhetünk, ha a kémiai tartósságot kívánjuk növelni.

A cink-szulfid és a TTO rétegek között Al2O3 anyagú 5 szigetelőréteg is kialakítható. Bizonyos esetekben az Al2O3 réteg el is hagyható (5. és 6. ábrák).

További lehetőségként megemlítjük, hogy a szigetelő 8 védőréteg bárium-titán-oxidból (Ba_xTi_yO_z) vagy ólomtitán-oxidból (PbTiO3) is készülhet.

A dielektromos védőréteg vastagsága például 100 és 300 nm között, előnyösen 50 nm körül lehet.

A vezető 3 védőréteg ón-oxidból is készülhet (SnO2).

A vezető 3 védőréteg vastagsága 50-100 nm, előnyösen 35 körülbelül 70 nm.

A további 5 (vagy 7) szigetelőréteg, amely átmeneti rétegként szolgál, tantál-titán-oxidból is készülhet, és vastagsága például 5-100 nm, előnyösen mintegy 20 nm.

Az eddigiekben a találmány szerinti szerkezetet elsősorban AC üzemmodban tanulmanyoztuk. Meg kell azonban jegyezni, hogy a találmány szerinti szerkezet DC feszültséggel is működtethető. Ez feltételezi, hogy az áramot limitáló réteg vagy rétegek ellenállás jellegűek.

A következőkben a 4. ábra szerinti szerkezetet DC üzemmódot feltételezve elemezzük. Ebben az esetben az 1, 2, 3, 5 és 6 rétegek azonosak lehetnek a korábban elmondottakkal. Az ellenállás jellegű 8 védőréteg tantál-titán-oxidból is készülhet, amint már említettük, és vastagsága például 200-300 nm, előnyösen mintegy 250 nm lehet.

Második alternatívaként megemlítjük, hogy a kémiai védőréteg ellenállás jellegű anyaga Ta2Os, amelynek vastagsága 50-1000 nm, előnyösen mintegy 100 nm.

A 10 második elektródaréteg alumíniumból készülhet. A 8. ábrán a fenti szerkezet feszültség-fényesség görbéjét mutatjuk be, 1 kHz-en, 10%-os DC impulzusokkal mérve.

egalább egy, az első elektródrétegtől (2) adott távolságra elhelyezkedő második elektródrétegből (10),

- az első (2) és a második elektródaréteg (10) közé elhelye-

zett lumineszcensrétegből (6) és

az elektróda rétegek (2 és 10) és a lumineszcensréteg (6) közé elhelyezett további rétegszerkezetekből (3 - 5, 7 - 9) áll, amelyek az áram korlátozására és kémiai védelemre szolgálnak, azzal jellemezve, hogy

 a két elektródaréteg (2 és 10) és a lumineszcensréteg (10) között egy kémiai védelemre szolgáló első és második további védőréteg (3, 4 ill. 8, 9) helyezkedik el, és

az áram korlátozására szolgáló harmadik további védőréteg (4,8) a második elektróda réteg (10) és a lumineszcens réteg (6) között helyezkedik el.

2. Az 1. igénypont szerinti elektrolumineszcens szerkezet, azzal jellemezve, hogy a harmadik további védőréteg (4, 8) az első (3, 4) és/vagy a második további réteg (8, 9) részét képezi.

3. Az 1. igénypont szerinti elektrolumineszcens szerkezet, azzai jellemezve, nogy a harmadik további védőréteg (8) külön, dielektromos anyagból, előnyösen tantál-titánoxidból (TTO), bárium-titán-oxidból (BaxTiyOz) vagy ólom-titán-oxidból (PbTiO3) készült kémiai védőréteg, és a réteg vastagsága 100-1000 nm, előnyösen 200 nm.

4. Az 1. igénypont szerinti elektrolumineszcens szerke-25 zet, azzal jellemezve, hogy az első további védőréteg (3) egy elektromosan vezető anyagból, például TiO2-ból vagy SnO2-ból készült külön kémiai védőréteg (3), amelynek vastagsága 50 - 1000 nm.

5. Az 1. igénypont szerinti elektrolumineszcens szerkezet, azzal jellemezve, hogy az elektrolumineszcens réteg (6) legalább egyik oldalán egy Al2O3-ból vagy tantál-titánoxidból (TTO) álló és átmeneti rétegként működő vékony további szigetelőréteg (5 és 7) van.

医骨髓 医骨髓 安阳 医三

三 明明一種変

e | 6-1

Mary William St.

A 4. igénypont szerinti elektrolumineszcens szerkezet, amelyben a vezető védőréteg (3) TiO2-ból készült, azzal jellemezve, hogy a védőréteg (3) vastagsága 50-100 nm, előnyösen 70 nm.

7. Az 5. igénypont szerinti elektrolumineszcens szerkezet, azzal jellemezve, hogy a további szigetelőrétegek (5,7) vastagsága 5-100 nm, előnyösen 20 nm.

8. A 3. és 5.-7. igénypontok bármelyike szerinti elektrolumineszcens szerkezet, amelyben a dielektromos védőréteg (8) tantál-titán-oxidból (TTO) áll, azzal jellemezve, hogy a dielektromos védőréteg (8) és a lumineszcensréteg (6) között egy átmeneti rétegként funkcionáló vékony Al2O3 szigetelőréteg (5) van.

A 3—7. igénypontok bármelyike szerinti elektrolumineszcens szerkezet, azzal jellemezve, hogy a vezető védőréteg (3) és a lumineszcensréteg (6) között egy további átmeneti rétegként funkcionáló szigetelő réteg (5) van.

10. Az 1. igénypont szerinti elektrolumineszcens szerkezet, azzal jellemezve, hogy a harmadik további rétegszerkezet egy ellenállás jellegű anyagból készült külön kémiai védőréteg (8), így például Ta2O3 vagy tantál-titán-oxid (TTO), ahol a (8) réteg vastagsága 50-1000 nm, előnyösen 100 — 300 nm.

Szabadalmi igénypontok

1. Elektrolumineszcens vékonyréteg szerkezet, amely — legalább egy — előnyösen üvegből készült — szubsztrátrétegből (1), "好"。"我们,这是是有

- legalább egy első elektródarétegből (2),

60

8 db ábra

183 831

NSZO₃: H 01 L 33/00; H 05 B 33/12

NSZO₃: H 01 L 33/00; H 05 B 33/12

6 Ahra

33 831 H 01 L 33/00; 5 B 33/12 NSZO3: H 01 L 33/00; H 05 B 33/12

Hin A

Kiadja az Országos Találmányi Hivatal Felelős kiadó: Himer Zoltán osztályvezető Megjelent a Műszaki Könyvkiadó gondozásában 86.979. Állami Nyomda, Budapest Felelős vezető: Mihalek Sándor igazgató