Ein topologischer Raum ist ein Paar (X,\mathfrak{T}) bestehend aus einer Menge X und $\mathfrak{T}\subseteq \mathcal{P}(X)$ mit folgenden Eigenschaften

- (i) $\emptyset, X \in \mathfrak{T}$
- (ii) Sind $U_1, U_2 \in \mathfrak{T}$, so ist $U_1 \cap U_2 \in \mathfrak{T}$
- (iii) Ist I eine Menge und $U_i \in \mathfrak{T}$ für jedes $i \in I$, so ist $\bigcup_{i \in I} U_i \in \mathfrak{T}$

Die Elemente von $\mathfrak T$ heißen **offene Teilmengen** von X.

 $A \subseteq X$ heißt **abgeschlossen**, wenn $X \setminus A$ offen ist.

Definition 2

Sei (X, \mathfrak{T}) ein topologischer Raum und $x \in X$.

Eine Teilmenge $U \subseteq X$ heißt **Umgebung** von x, wenn es ein $U_0 \in \mathfrak{T}$ gibt mit $x \in U_0$ und $U_0 \subseteq U$.

Definition 3

Sei (X,\mathfrak{T}) ein topologischer Raum und $M\subseteq X$ eine Teilmenge.

a)
$$M^\circ:=\{\,x\in M\mid M \text{ ist Umgebung von }x\,\}=\bigcup_{U\subseteq M\atop U\in\mathfrak{T}}U$$
heißt In-

neres oder offener Kern von M.

b)
$$\overline{M}:=\bigcap_{M\subseteq A\atop A\text{ abgeschlossen}}A$$
heißt abgeschlossene Hülle oder Ab-

schluss von M.

- c) $\partial M := \overline{M} \setminus M^{\circ}$ heißt **Rand** von M.
- d) M heißt **dicht** in X, wenn $\overline{M} = X$ ist.

Definition 4

Sei (X,\mathfrak{T}) ein topologischer Raum.

- a) $\mathfrak{B}\subseteq\mathfrak{T}$ heißt **Basis** der Topologie \mathfrak{T} , wenn jedes $U\in\mathfrak{T}$ Vereinigung von Elementen aus \mathfrak{B} ist.
- b) $\mathfrak{B} \subseteq \mathfrak{T}$ heißt **Subbasis**, wenn jedes $U \in \mathfrak{T}$ Vereinigung von endlich vielen Durchschnitten von Elementen aus \mathfrak{B} ist.

Sei (X,\mathfrak{T}) ein topologischer Raum und $Y\subseteq X$. $\mathfrak{T}_Y:=\{\ U\cap Y\mid U\in\mathfrak{T}\ \}$ ist eine Topologie auf Y.

 \mathfrak{T}_Y heißt **Spurtopologie** und (Y,\mathfrak{T}_Y) heißt ein **Teilraum** von (X,\mathfrak{T})

Definition 6

Seien X_1, X_2 topologische Räume.

 $U \subseteq X_1 \times X_2$ sei offen, wenn es zu jedem $x = (x_1, x_2) \in U$ Umgebungen U_i um x_i mit i = 1, 2 gibt, sodass $U_1 \times U_2 \subseteq U$ gilt.

 $\mathfrak{T}=\{U\subseteq X_1\times X_2\mid U \text{ offen }\}$ ist eine Topologie auf $X_1\times X_2$. Sie heißt **Produkttopologie**. $\mathfrak{B}=\{U_1\times U_2\mid U_i \text{ offen in } X_i, i=1,2\}$ ist eine Basis von \mathfrak{T} .

Definition 7

Sei X ein topologischer Raum, \sim eine Äquivalenzrelation auf X, $\overline{X} = X/_{\sim}$ sei die Menge der Äquivalenzklassen, $\pi : x \to \overline{x}, \quad x \mapsto [x]_{\sim}$.

$$\mathfrak{T}_{\overline{X}} := \left\{ U \subseteq \overline{X} \mid \pi^{-1}(U) \in \mathfrak{T}_X \right\}$$

 $(\overline{X}, \mathfrak{T}_{\overline{X}})$ heißt **Quotiententopologie**.

Definition 8

Sei X eine Menge. Eine Abbildung $d: X \times X \to \mathbb{R}_0^+$ heißt **Metrik**, wenn gilt:

- (i) Definitheit: $d(x,y) = 0 \Leftrightarrow x = y \quad \forall x, y \in X$
- (ii) Symmetrie: $d(x,y) = d(y,x) \quad \forall x,y \in X$
- (iii) Dreiecksungleichung: $d(x,z) \leq d(x,y) + d(y,z) \quad \forall x,y,z \in X$

Das Paar (X, d) heißt ein **metrischer Raum**.

Definition 9

Ein topologischer Raum X heißt **hausdorffsch**, wenn es für je zwei Punkte $x \neq y$ in X Umgebungen U_x um x und U_y um y gibt, sodass $U_x \cap U_y = \emptyset$.

Definition 10

Sei X ein topologischer Raum und $(x)_{n\in\mathbb{N}}$ eine Folge in X. $x\in X$ heißt **Grenzwert** oder **Limes** von (x_n) , wenn es für jede Umgebung U von x ein n_0 gibt, sodass $x_n\in U$ für alle $n\geq n_0$.

Seien X, Y topologische Räume und $f: X \to Y$ eine Abbildung.

- a) f heißt **stetig**, wenn für jedes offene $U\subseteq Y$ auch $f^{-1}(U)\subseteq X$ offen ist.
- b) f heißt **Homöomorphismus**, wenn f stetig ist und es eine stetige Abbildung $g:Y\to X$ gibt, sodass $g\circ f=\mathrm{id}_X$ und $f\circ g=\mathrm{id}_Y$.

Definition 12

Ein Raum X heißt **zusammenhängend**, wenn es keine offenen, nichtleeren Teilmengen U_1, U_2 von X gibt mit $U_1 \cap U_2 = \emptyset$ und $U_1 \cup U_2 = X$.

Definition 13

Sei X ein topologischer Raum.

Für $x \in X$ sei

$$Z(x) := \bigcup_{\substack{A \subseteq X \text{zhgd.} \\ X \in A}} A$$

Z(x) heißt **Zusammenhangskomponente**.

Definition 14

Sei X eine Menge und $T \subseteq \mathcal{P}(X)$.

T heißt eine **Überdeckung** von X, wenn gilt:

$$\forall x \in X : \exists M \in T : x \in M$$

Definition 15

Ein topologischer Raum X heißt **kompakt**, wenn jede offene Überdeckung $\mathfrak U$ von X eine endliche Teilüberdeckung besitzt.

$$\mathfrak{U} = \left\{ \left. U_i \right. \right\}_{i \in I}, \quad U_i \text{ offen in } X, \quad \bigcup_{i \in I} U_i = X$$

Definition 16

Sei X ein topologischer Raum.

- a) Ein **Weg** in X ist eine stetige Abbildung $\gamma:[0,1]\to X$.
- b) γ heißt **geschlossen**, wenn $\gamma(1) = \gamma(0)$ gilt.

c) γ heißt **einfach**, wenn $\gamma|_{[0,1]}$ injektiv ist.

Definition 17

Ein topologischer Raum X heißt wegzusammenhängend, wenn es zu je zwei Punkten $x,y\in X$ einen Weg $\gamma:[0,1]\to X$ gibt mit $\gamma(0)=x$ und $\gamma(1)=y$.

Definition 18

Sei X ein topologischer Raum. Eine (geschlossene) **Jordankurve** in X ist ein Homöomorphismus $\gamma:[0,1]\to C\subseteq X$ $(\gamma:S^1\to C\subseteq X)$

Definition 19

Eine geschlossene Jordankurve in \mathbb{R}^3 heißt **Knoten**.

Definition 20

Zwei Knoten $\gamma_1, \gamma_2 : S^1 \to \mathbb{R}^3$ heißen **äquivalent**, wenn es eine stetige Abbildung $H: S^1 \times [0,1] \Rightarrow \mathbb{R}^3$ gibt mit $H(z,0) = \gamma_1(z), H(z,1) = \gamma_2(z)$ und für jedes feste $t \in [0,1]$ ist $H_z: S^1 \to \mathbb{R}^2, z \mapsto H(z,t)$ ein Knoten. Die Abbildung H heißt **Isotopie** zwischen γ_1 und γ_2 .

Definition 21

Ein **Knotendiagramm** eines Knotens γ ist eine Projektion $\pi : \mathbb{R}^3 \to E$ auf eine Ebene E, sodass $|(\pi|C)^{-1}(x)| \le 2$ für jedes $x \in D$.

Ist $(\pi|C)^{-1}(x) = \{y_1, y_2\}$, so **liegt** y_1 **über** y_2 , wenn $(y_1 - x) = \lambda(y_2 - x)$ für ein $\lambda > 1$ ist.

Definition 22

Ein Knotendiagramm heißt **3-färbbar**, wenn jeder Bogen von D so mit einer Farbe gefärbt werden kann, dass an jeder Kreuzung eine oder 3 Farben auftreten und alle 3 Farben auftreten.

Definition 23

Sei X ein topologischer Raum und $n \in \mathbb{N}$.

- a) Eine n-dimensionale **Karte** auf X ist ein Paar (U, φ) , wobei $U \subseteq X$ offen und $\varphi : U \to V$ Homöomorphismus von U auf eine offene Teilmenge $V \subseteq \mathbb{R}^n$.
- b) Ein *n*-dimensionaler **Atlas** \mathcal{A} auf X ist eine Familie $(U_i, \varphi_i)_{i \in I}$ von Karten auf X, sodass $\bigcup_{i \in I} U_i = X$.
- c) X heißt (topologische) n-dimensionale **Mannigfaltigkeit**, wenn X hausdorffsch ist, eine abzählbare Basis der Topologie hat und ein n-dimensionalen Atlas besitzt.

Seien X,Y n-dimensionale Mannigfaltigkeiten, $U\subseteq X$ und $V\subseteq Y$ offen, $\Phi:U\to V$ ein Homöomorphismus $Z=(X\mathop{\dot{\cup}} Y)/_{\sim}$ mit der von $u\sim\Phi(u)\ \forall u\in U$ erzeugten Äquivalenzrelation und der von \sim induzierten Quotiententopologie.

Zheißt **Verklebung** von Xund Ylängs Uund $V.\ Z$ besitzt einen Atlas aus n-dimensionalen Karten. Falls Zhausdorffsch ist, ist Zeinen-dimensionale Mannigfaltigkeit.

Definition 25

Sei X ein Hausdorffraum mit abzählbarer Basis der Topologie. X heißt n-dimensionale **Mannigfaltigkeit mit Rand**, wenn es einen Atlas (U_i, φ_i) gibt, wobei $U_i \subseteq X_i$ offen und φ_i ein Homöomorphismus auf eine offene Teilmenge von

$$R_{+,0}^n := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_m \ge 0 \}$$

ist. $\mathbb{R}^n_{+,0}$ ist ein "Halbraum".

Definition 26

Sei X eine n-dimensionale Mannigfaltigkeit mit Rand und Atlas (U_i, φ_i) . Dann heißt

$$\partial X := \bigcup_{i \in I} \{ x \in U_i \mid \varphi_i(x)_n = 0 \}$$

Rand von X.

Definition 27

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$

Für $i,j \in I$ mit $U_i,U_j \neq \emptyset$ heißt

$$\varphi_{ij} := \varphi_j \circ \varphi_i^{-1}$$
$$\varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$$

Kartenwechsel oder Übergangsfunktion.

Definition 28

Sei X eine n-dimensionale Mannigfaltigkeit mit Atlas $(U_i, \varphi_i)_{i \in I}$.

a) X heißt differenzierbare Mannigfaltigkeit der Klasse C^k , wenn jede Kartenwechselabbildung φ_{ij} , $i, j \in I$ k-mal stetig differenzierbar ist.

b) X heißt differenzierbare Mannigfaltigkeit, wenn X eine differenzierbare Mannigfaltigkeit der Klasse C^{∞} ist.

Definition 29

Sei X eine differenzierbare Mannigfaltigkeit der Klasse C^k $(k \in \mathbb{N} \cup \{\infty\})$ mit Atlas $(U_i, \varphi_i)_{i \in I}$.

- a) Eine Karte (U,φ) auf X heißt **verträglich** mit \mathcal{A} , wenn alle Kartenwechsel $\varphi \circ \varphi_i^{-1}$ und $\varphi_i \circ \varphi^{-1}$ $(i \in I \text{ mit } U_i \cap U \neq \emptyset)$ differenzierbar von Klasse C^k sind.
- b) Die Menge aller mit \mathcal{A} verträglichen Karten auf X bildet einen maximalen Atlas von Klasse C^k . Er heißt C^k -Struktur auf X. Eine C^{∞} -Struktur heißt auch **differenzierbare Struktur** auf X.

Definition 30

Seien X,Y differenzierbare Mannigfaltigkeiten der Dimension n bzw. $m,\,x\in X.$

- a) Eine stetige Abbildung $f: X \to Y$ heißt **differenzierbar** in x (von Klasse C^k), wenn es Karten (U, φ) von X mit $x \in U$ und (V, ψ) von Y mit $f(U) \subseteq V$ gibt, sodass $\psi \circ f \circ \varphi^{-1}$ stetig differenzierbar von Klasse C^k in $\varphi(x)$ ist.
- b) f heißt **differenzierbar** (von Klasse C^k), wenn f in jedem $x \in X$ differenzierbar ist.
- c) f heißt **Diffeomorphismus**, wenn f differenzierbar von Klasse C^{∞} ist und es eine differenzierbare Abbildung $g:Y\to X$ von Klasse C^{∞} gibt mit $g\circ f=\mathrm{id}_X$ und $f\circ g=\mathrm{id}_Y$.

Definition 31

 $S \subseteq \mathbb{R}^3$ heißt **reguläre Fläche** : $\Leftrightarrow \forall s \in S \exists \text{ Umgebung } V(s) \subseteq \mathbb{R}^3 \exists U \subseteq \mathbb{R}^2 \text{ offen: } \exists \text{ differenzierbare Abbildung } F: U \to V \cap S: \text{Rg}(J_F(u)) = 2 \quad \forall u \in U.$

F heißt (lokale) reguläre Parametrisierung von S.

$$F(u,v) = (x(u,v), y(u,v), z(u,v))$$

$$J_F(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u}(p) & \frac{\partial x}{\partial v}(p) \\ \frac{\partial y}{\partial u}(p) & \frac{\partial y}{\partial v}(p) \\ \frac{\partial z}{\partial u}(p) & \frac{\partial z}{\partial v}(p) \end{pmatrix}$$

Sei G eine Mannigfaltigkeit, $\circ: G \times G \to G$ eine Abbildung, $(g,h) \mapsto g \cdot h$, sodass (G, \circ) eine Gruppe ist.

(a) G heißt **topologische Gruppe**, wenn die Abbildungen $\circ: G \times G \to G$ und $\iota: G \to G$.

$$(g,h) \mapsto g \cdot h \quad g \mapsto g^{-1}$$

stetig sind.

(b) Ist G eine differenzierbare Mannigfaltigkeit, so heißt G Lie-Gruppe, wenn (G, \circ) und (G, ι) differenzierbar sind.

Definition 33

Seien $v_0, \ldots, v_k \in \mathbb{R}^n$ Punkte.

- a) v_0, \ldots, v_k sind **in allgemeiner Lage** \Leftrightarrow es gibt keinen (k-1)-dimensionalen affinen Untervektorraum, der v_0, \ldots, v_k enthält $\Leftrightarrow v_1 v_0, \ldots, v_k v_0$ sind linear abhängig.
- b) $\operatorname{conv}(v_0, \dots, v_k) = \left\{ \sum_{i=0}^k \lambda_i v_i \mid \lambda_i \ge 0, \sum_{i=0}^k \lambda_i = 1 \right\}$

Definition 34

a) Sei $\Delta^k=\mathrm{conv}(e_0,\ldots,e_k)\subseteq\mathbb{R}^{n+1}$ die konvexe Hülle der Standard-Basisvektoren e_0,\ldots,e_k .

Dann heißt Δ^k Standard-Simplex und k die Dimension des Simplex.

- b) Für Punkte v_0, \ldots, v_k im \mathbb{R}^n in allgemeiner Lage heißt $\delta(v_0, \ldots, v_k) = \operatorname{conv}(v_0, \ldots, v_k)$ ein k-Simplex in \mathbb{R}^n .
- c) Ist $\Delta(v_0, \ldots, v_k)$ ein k-Simplex und $I = \{i_0, \ldots, i_r\} \subseteq \{0, \ldots, k\}$, so heißt $s_{i_0, \ldots, i_r} := \operatorname{conv}(v_{i_0}, \ldots, v_{i_r})$ Teilsimplex oder Seite von Δ .

 $s_{i_0,...,i_r}$ ist r-Simplex.

Definition 35

- a) Eine endliche Menge K von Simplizes im \mathbb{R}^n heißt (endlicher) Simplizialkomplex, wenn gilt:
 - (i) Für $\Delta \in K$ und $S \subseteq \Delta$ Teilsimplex ist $S \in K$
 - (ii) Für $\Delta_1,\Delta_2\in K$ ist $\Delta_1\cap\Delta_2$ leer oder ein Teilsimplex von Δ_1 und von Δ_2
- b) $|K| := \bigcup_{\Delta \in K} \Delta$ (mit Spurtopologie) heißt **geometrische Realisierung** von K.
- c) Ist $d = \max \{ k \mid K \text{ enthält } k \text{Simplex} \}$, so heißt d **Dimension** von K.

Definition 36

Seien K, L Simplizialkomplexe. Eine stetige Abbildung

$$f: |K| \to |L|$$

heißt **simplizial**, wenn für jedes $\Delta \in K$ gilt:

- (i) $f(\Delta) \in L$
- (ii) $f|_{\Delta}: \Delta \to f(\Delta)$ ist eine affine Abbildung.

Definition 37

Sei K ein endlicher Simplizialkomplex. Für $n \geq 0$ sei $a_n(K)$ die Anzahl der n-Simplizes in K.

Dann heißt

$$\chi(K) := \sum_{k=0}^{\dim K} (-1)^n a_n(K)$$

Euler-Charakteristik) von K.

Definition 38

- a) Ein 1D-Simplizialkomplex heißt **Graph**.
- b) Ein Graph, der homö
omorph zu S^1 ist, heißt **Kreis**.
- c) Ein zusammenhängender Graph heißt ${\bf Baum}$, wenn er keinen Kreis enthält.

Sei $Z_n := \operatorname{Kern}(d_n) \subseteq C_n$ und $B_n := \operatorname{Bild}(d_{n+1}) \subseteq C_n$.

- a) $H_n = H_n(K, \mathbb{R}) := Z_n/B_n$ heißt n-te **Homotopiegruppe** von K.
- b) $b_n(K) := \dim_{\mathbb{R}} H_n$ heißt n-te **Belti-Zahl** von K.

Definition 40

Sei X ein topologischer Raum, $a,b\in X,\,\gamma_1,\gamma_2:[0,1]\to X$ Wege von a nach b, d. h. $\gamma_1(0)=\gamma_2(0)=a,\,\gamma_1(1)=\gamma_2(1)=b$

a) γ_1 und γ_2 heißen **homotop**, wenn es eine stetige Abbildung

$$H(t,0) = \gamma_1(t), H(t,1) = \gamma_2(t) \quad \forall t \in [0,1] =: I$$

und H(0,s)=a und H(1,s)=b für alle $s\in I$ gibt. Dann schreibt man: $\gamma_1\sim\gamma_2$

H heißt **Homotopie** zwischen γ_1 und γ_2 .

b) $\gamma_s:I\to X, \gamma_s(t)=H(t,s)$ ist Weg in Xvon anach b für jedes $s\in I.$

Definition 41

Seien γ_1, γ_2 Wege in X mit $\gamma_1(1) = \gamma_2(0)$. Dann ist

$$\gamma(t) = \begin{cases} \gamma_1(2t) & \text{falls } 0 \le t < \frac{1}{2} \\ \gamma_2(2t-1) & \text{falls } \frac{1}{2} \le t \le 1 \end{cases}$$

ein Weg in X. Er heißt zusammengesetzter Weg und man schreibt $\gamma = \gamma_1 * \gamma_2$.

Definition 42

Sei Xein topologischer Raum und $x \in X.$ Sei außerdem

$$\pi_1(X,x) := \{ [\gamma] \mid \gamma \text{ ist Weg in } X \text{ mit } \gamma(0) = \gamma(1) = x \}$$

Durch $[\gamma_1] *_G [\gamma_2] := [\gamma_1 * \gamma_2]$ wird $\pi_1(X, x)$ zu einer Gruppe. Diese Gruppe heißt **Fundamentalgruppe** in X im Basispunkt x.

Definition 43

Ein wegzusammenhängender topologischer Raum X heißt **einfach** zusammenhängend, wenn $\pi_1(X,x) = \{e\}$ für ein (jedes) $x \in X$.

was denn nun?

Seien X, Y topologische Räume, $x_0 \in X, y_0 \in Y, f, g : X \to Y$ stetig mit $f(x_0) = y_0 = g(x_0)$.

f und g heißen **homotop** $(f \sim g)$, wenn es eine stetige Abbildung $H: X \times I \to Y$ gibt mit H(X,0) = f(X), H(X,1) = g(x) für alle $x \in X$ und $H(x_0, S) = y_0$ für alle $s \in I$.

Definition 45

Es seien X,Yzusammenhängende topologische Räume und $p:Y\to X$ eine stetige Abbildung.

p heißt Überlagerung, wenn jedes $x \in X$ eine offene Umgebung $U = U(x) \subseteq X$ besitzt, sodass $p^{-1}(U)$ disjunkte Vereinigung von offenen Teilmengen $V_j \subseteq Y$ ist $(j \in I)$ und $p|_{V_j} : V_j \to U$ ein Homöomorphismus ist.

Definition 46

Seien X, Y topologische Räume und $f: X \to Y$ eine Abbildung.

f heißt **offen** : $\Leftrightarrow \forall V \subseteq X$ offen: f(V) ist offen in Y.

Definition 47

Sei M eine Menge und X ein topologischer Raum.

M heißt **diskret** in X, wenn M in X keinen Häufungspunkt hat.

Definition 48

Sei $p:Y\to X$ Überlagerung, Zein weiterer topologischer Raum, $f:Z\to X$ stetig.

Eine stetige Abbildung $\tilde{f}:Z\to Y$ heißt **Liftung** von f, wenn $p\circ \tilde{f}=f$ ist

Definition 49

Eine Überlagerung $p:\tilde{X}\to X$ heißt **universell**, wenn \tilde{X} einfach zusammenhängend ist.

Definition 50

Es sei $p:Y\to X$ eine Überlagerung und $f:Y\to Y$ ein Homö
omorphismus.

f heißt **Decktransformation** von $p :\Leftrightarrow p \circ f = p$.

Ist p eine Decktransformation und $|\operatorname{Deck}(Y/X)| = \deg p$, so heißt p regulär.

Sei (G, \cdot) eine Gruppe und X eine Menge.

Eine **Gruppenoperation** von G auf X ist eine Abbildung \circ :

$$\circ: G\times X\to X, \quad (g,x)\mapsto g\cdot x,$$

für die gilt:

- (i) $1_G \circ x = x \quad \forall x \in X$
- (ii) $(g \cdot h) \circ x = g \circ (h \circ x) \quad \forall g, h \in G \forall x \in X$

Definition 52

Sei Geine Gruppe, Xein topologischer Raum und $\circ:G\times X\to X$ eine Gruppenoperation.

a) Goperiert durch Homomorphismen, wenn für jedes $g \in G$ die Abbildung

$$m_g: X \to X, x \mapsto g \cdot X$$

ein Homöomorphismus ist.

b) Ist G eine topologische Gruppe, so heißt die Gruppenoperation \circ **stetig**, wenn $\circ: G \times X \to X$ stetig ist.

Definition 53

Eine euklidische Ebene ist ein metrischer Raum (X,d) zusammen mit einer Teilmenge $\emptyset \neq G \subseteq \mathcal{P}(X)$, sodass die Axiome ?? - ?? erfüllt sind:

- §1) Inzidenzaxiome:
 - (i) Zu $P \neq Q \in X$ gibt es genau ein $g \in G$ mit $\{P,Q\} \subseteq g$.
 - (ii) $|g| \ge 2 \quad \forall g \in G$
 - (iii) $X \notin G$
- §2) **Abstandsaxiom**: Zu $P,Q,R\in X$ gibt es genau dann ein $g\in G$ mit $\{P,Q,R\}\subseteq g$, wenn gilt:
 - d(P,R) = d(P,Q) + d(Q,R) oder
 - d(P,Q) = d(P,R) + d(R,Q) oder

•
$$d(Q,R) = d(Q,P) + d(P,R)$$

- a) P, Q, R liegen **kollinear**, wenn es $g \in G$ gibt mit $\{P, Q, R\} \subseteq g$.
- b) Q liegt zwischen P und R, wenn d(P,R) = d(P,Q) + d(Q,R)
- c) Strecke $\overline{PR} := \{ Q \in X \mid Q \text{ liegt zwischen } P \text{ und } R \}$
- d) Halbgeraden:

 $PR^+ := \{ \ Q \in X \mid Q \ \text{liegt zwischen} \ P \ \text{und} \ R \ \text{oder} \ R \ \text{liegt zwischen} \ P \ \text{und} \ Q \ \}$ $PR^- := \{ \ Q \in X \mid P \ \text{liegt zwischen} \ Q \ \text{und} \ R \ \}$

Definition 55

- §3) Anordnungsaxiome
 - (i) Zu jedem $P \in X$ jeder Halbgerade H mit Anfangspunkt P und jedem $r \in \mathbb{R}_{\geq 0}$ gibt es genau ein $Q \in H$ mit d(P,Q) = r.
 - (ii) Jede Gerade zerlegt $X \setminus g = H_1 \stackrel{.}{\cup} H_2$ in zwei nichtleere Teilmengen H_1, H_2 , sodass für alle $A \in H_i$, $B \in H_j$ mit $i, j \in \{1, 2\}$ gilt: $\overline{AB} \cap g \neq \emptyset \Leftrightarrow i \neq j$.
 - Diese Teilmengen H_i heißen **Halbebenen** bzgl. g.
- §4) **Bewegungsaxiom**: Zu $P,Q,P',Q' \in X$ mit d(P,Q) = d(P',Q'). Isometrien φ_1, φ_2 mit $\varphi_i(P) = P'$ und $\varphi_i(Q) = Q', i = 1, 2$ (Spiegelung an der Gerade durch P und Q ist nach Identifizierung von $P \cong P'$ und $Q \cong Q'$ eine weitere Isometrie.)
- §5) **Parallelenaxiom**: Für jedes $g \in G$ und jedes $P \in X \setminus g$ gibt es höchstens ein $h \in G$ mit $h \cap g = \emptyset$.

Definition 56

- a) Ein Winkel ist ein Punkt $P \in X$ zusammen mit 2 Halbgeraden mit Anfangspunkt P.

 Man schreibt: $\angle R_1 P R_2$ bzw. $\angle R_2 P R_1^2$
- b) Zwei Winkel sind **gleich**, wenn es eine Isometrie gibt, die den einen Winkel auf den anderen abbildet.

 $^{^{1}}h$ heißt "Parallele zu g durch P".

²Für dieses Skript gilt: $\angle R_1PR_2 = \angle R_2PR_1$. Also sind insbesondere alle Winkel $< 180^{\circ}$.

- c) $\angle R_1'P'R_2'$ heißt **kleiner** als $\angle R_1PR_2$, wenn es eine Isometrie φ gibt, mit $\varphi(P)=P',\ \varphi(PR_1'+)=P'R_1+$ und $\varphi(R_2')$ liegt in der gleichen Halbebene bzgl. PR_1 wie R_2 und in der gleichen Halbebene bzgl. PR_2 wie R_1
- d) Im Dreieck $\triangle PQR$ gibt es Innenwinkel und Außenwinkel.

"Simplizialkomplexe" in euklidischer Ebene (X,d) heißen flächengleich, wenn sie sich in kongruente Dreiecke zerlegen lassen.