INTRODUCTION TO ARTIFICIAL INTELLIGENCE

6. INTRODUCTION TO MACHINE LEARNING: EVALUATION

The plan for today

- Continue our discussion on Neural Networks
 - Introduce Multi-Layer Networks (not assessed in exam)
- Learn how we can evaluate the performance of algorithms (with a focus on classifiers)
 - Bootstrapping and cross-validation methods
 - Confusion Matrix
 - Visualise performance with a ROC graph
- Discuss overfitting

Lela Koulouri

- Decision tree pruning
- Work on some sample exam questions.

_

Last week: perceptron

- Simplest NN
- Single-layer, feed-forward NN

Used for binary classification

- X_i is a vector of inputs
- W_i is the weight (real numbers expressing the importance of the respective input to the output)
- F is a function, called activation function
- Y is the output, which is a single binary value
- Θ is the threshold (can also be considered a weight)

Calculating the output

•
$$x_1 = 2$$
 and $x_2 = 1$
$$Y = \begin{cases} +1, & \text{if } \sum_i w_i x_i + \theta \ge 0 \\ 0, & \text{if } \sum_i w_i x_i + \theta < 0 \end{cases}$$

$$(0.5 * 2) + (0.3 * 1) - 1 = 0.3$$

As 0.3 > 0, the output Y will be +1

Learning (updating weights/threshold)

- $x_1 = 2$, $x_2 = 1$ $w_1 = 0.5$, $w_2 = 0.3$, $\theta = -1$
- The output was calculated as Y = 1
- However, the true output is Yd = 0
- How should I update the weights and threshold?

$$W_i(p+1) = W_i(p) + \Delta W_i(p)$$

$$\theta(p+1) = \theta(p) + \Delta \theta(p)$$

$$\Delta w_{i}(p) = (Y^{d} - Y)x_{i}$$
$$\Delta \theta(p) = (Y^{d} - Y)$$

Learning

•
$$x_1 = 2$$
, $x_2 = 1$
 $w_1 = -1.5$, $w_2 = -0.7$, $\theta = -2$

$$Y = \begin{cases} +1, & if \sum_{i} w_{i} x_{i} + \theta \geq 0\\ 0, & if \sum_{i} w_{i} x_{i} + \theta < 0 \end{cases}$$

- The output was calculated as Y = 1
- However, the true output is Y^d = 0
- How should I update the weights and threshold?

What is the output Y now?

Perceptron - summary

- Usually the perceptron is initialised with random weights between 0 and 1
- Cases are presented to the perceptron one by one and the weights updated
- If at least one error has been made during this epoch then the entire set of cases are presented again
- Repeated until no error is made
- This learning procedure is guaranteed to converge to a solution if the problem is linearly separable

Perceptron example

- Example: logical AND operator
- Weights and threshold:

$$W_1 = 1$$
, $W_2 = 1$, $\Theta = -1.5$

Activation function: Step

$$Y = \begin{cases} +1, & \text{if } \sum_{i} w_{i} x_{i} + \theta \geq 0 \\ 0, & \text{if } \sum_{i} w_{i} x_{i} + \theta < 0 \end{cases}$$

- For inputs 0/1, it correctly classifies to
 0/1
 - remember the truth-tables

X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1

Let's plot the inputs

Let's separate the outputs

10

This is an example of linearly separable data!

Example: XOR

- Can the perceptron model XOR operation and correctly classify to 0/1?
- Inputs x₁, x₂: 0, 1

Will the algorithm ever converge by

updating weights?

Input variables		Exclusive-OR
X ₁	<i>X</i> ₂	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Let's plot the inputs

Input variables		Exclusive-OR
X1	<i>x</i> ₂	$ extbf{ extit{X}}_{ extbf{1}} \oplus extbf{ extit{X}}_{ extbf{2}}$
0	0	0
0	1	1
1	0	1
1	1	0

Let's separate the outputs...?

Input variables		Exclusive-OR
X ₁	<i>x</i> ₂	$ extbf{ extit{x}_1} \oplus extbf{ extit{x}_2}$
0	0	0
0	1	1
1	0	1
1	1	0

Let's separate the outputs...?

The outputs are not linearly separable

Input variables		Exclusive-OR
X1	<i>x</i> ₂	$ extbf{ extit{X}}_{ extbf{1}} \oplus extbf{ extit{X}}_{ extbf{2}}$
0	0	0
0	1	1
1	0	1
1	1	0

The XOR Problem

- The 'single-layer' perceptron can't model XOR.
- The reason is because the classes in XOR are not linearly separable.
 - You cannot draw a straight line to separate the points (0,0),(1,1) from the points (0,1),(1,0).
- Led to invention of multi-layer networks.

- Natural extension to the perceptron
- Deals with non-linearly classifiable data
- Essentially involves linking numerous perceptrons together
- Fully connected: All nodes from one layer connected to next
- Can be extended to any number of outputs and hidden layers

18

- This MNN can model XOR
- Use inputs (x_1, x_2) 0 and 1 and check.

Input variables		Exclusive-OR
X ₁	<i>X</i> ₂	$\mathbf{x_1} \oplus \mathbf{x_2}$
0	0	0
0	1	1
1	0	1
1	1	0

- This MNN can model XOR
- Use inputs (x_1, x_2) 0 and 1 and check.

Input (1,1)

- Calculate output for Node 1:
- Calculate output for Node 2:
- Calculate output, Y₃, for Node
 3:

$$Y = \begin{cases} +1, & \text{if } \sum_{i} w_i x_i + \theta \ge 0\\ 0, & \text{if } \sum_{i} w_i x_i + \theta < 0 \end{cases}$$

- This MNN can model XOR
- Use inputs (x_1, x_2) 0 and 1 and check.

Lela Koulouri

Input (1,1)

Node 1: 1*1+1*1-1.5 = 0.5(Step function) $y_1 = 1$ Node 2: 1*1+1*1-0.5 = 1.5(Step function) $y_2 = 1$ Node 3: $-2*y_1 + 1*y_2 - 0.5 = -2 + 1 - 0.5 = -1.5$ (Step function) $y_3 = 0$

- This MNN can model XOR
- Use inputs (x_1, x_2) 0 and 1 and check.

Lela Koulouri

Input (1,0)

Node 1: 1*1+1*0-1.5 = -0.5(Step function) $y_1 = 0$ Node 2: 1*1+1*0-0.5 = 0.5(Step function) $y_2 = 1$ Node 3: $-2*y_1 + 1*y_2 - 0.5 = 0 + 1 - 0.5 = 0.5$ (Step function) $y_3 = 1$

More complex MNNs

 Complex MNNs typically use functions, like the Sigmoid Function, rather than Step/Sign

$$\sigma(x) = 1 / (1 + \exp(-x))$$

- Output not just 0 or 1, output can now be any continuous value between 0...1
 - E.g., in pattern recognition (recognition of hand-written digits), the output can represent the intensity of each pixel that combined together will indicate the digit.

More complex NNs: Backpropagation

- Two stages in the backpropagation algorithm:
 - Forward propagation of the input pattern form input to output layer
 - Back propagation of the error from output to the input layer
- Learning rate and error derivative used to scale the weight adjustment
- Because of the multiple layers, the input to unit j may be outputs of a unit in previous layer y;

$$w_{ij}(p+1) = w_{ij}(p) + \Delta w_{ij}(p)$$

$$\theta_{i}(p+1) = \theta_{i}(p) + \Delta \theta_{i}(p)$$

$$\Delta w_{ij}(p) = \alpha (errdrv)_{j} y_{i}$$
$$\Delta \theta_{j}(p) = \alpha (errdrv)_{j}$$

Model Evaluation

 How do we know that our classification model is 'good'?

- Need a way to score the 'predictive power' of the model
 - That is, how well can it classify new unseen data?

Training and Test Sets

- Obviously a good idea to split data into a training set and a test set
 - Known as the holdout method
- Use training set to learn model
- Use test set to score accuracy
- Ideally the two sets are independent (generated separately)
- •Many methods:
 - K-fold cross validation
 - Bootstrapping

29

Training and Test Sets

Training and Test Sets

Model Evaluation

•We could use a simple error rate to assess our classifiers:

Error rate = number of errors/number of test cases

- For example:

5 incorrect classifications out of 50 test records 5/50 = 0.1 →10% error rate

K-fold cross validation method

- K-fold cross validation algorithm:
 - Randomly split the data up into k subsets of equal size
 - Remove one of the subsets and train classifier on remaining subsets
 - Test on the removed subset
 - Get error rate
 - Repeat for all subsets (k times) so that each subset is used as test subset once.
 - The accuracy estimate for the classifier is the mean of each iteration.
- Procedure has been found to work well when sufficient data is available
- k = 10 has been found to be adequate and Lela Kouloum accurate

33

Cross Validation

Bootstrapping

- Given a dataset of size n, a sample is randomly selected n times and used to train the model
 - So, a sample may be selected more than once
- Cases that were not used for training are used for the testing
- Usually 2/3 of data end up being used for training, and 1/3 for testing
- Procedure repeated and average of error rates used to indicate accuracy
- Many iterations needed if small dataset

Evaluation: Confusion matrix

- But errors are of differing importance
 - E.g. failing to diagnose a disease can be more serious than diagnosing one that is not present
- Such evaluation is based on the count of test records that were correctly/incorrectly classified.
- In table format, it is called the Confusion Matrix
 - Actual Class vs Predicted Class
 - Binary classification models only

Confusion matrix

	ACTUAL CLASS			
		Class=Yes	Class=No	
PREDICTED CLASS	Class=Yes	TP	FP	
	Class=No	FN	TN	

- IS IT SPAM?

<u>True positive</u>: Email is **spam** and classifier correctly identifies it as **spam**<u>False positive</u>: Email is **not spam**, but classifier incorrectly identified it as

spam

<u>True negative</u>: Email is **not spam** and classifier correctly identified it as **not spam**

<u>False negative</u>: Email is **spam**, but classifier incorrectly identified it as **not spam**

Confusion matrix

	ACTUAL CLASS			
	Class=Yes Class=N			
PREDICTED CLASS	Class=Yes	TP	FP	
	Class=No	FN	TN	

- Sensitivity: TP / (TP + FN)
- Specificity: TN / (FP + TN)
- Accuracy: (TP + TN) / (TP + FN + FP + TN)

38

Sensitivity and Specificity

- For example, a classifier can have high sensitivity if it correctly classifies all sick people as having an illness (many TPs)
- ... but low **specificity** if it also classifies lots of healthy people as having an illness (many FPs).

The trade-off is plotted as a ROC curve

	ACTUAL CLASS			
	Class=Yes Class=No			
PREDICTED	Class=Yes	10	3	
CLASS	Class=No	15	22	

- Sensitivity: TP / (TP + FN)=
- Specificity: TN / (FP + TN) =

	ACTUAL CLASS			
		Class=Yes	Class=No	
PREDICTED CLASS	Class=Yes	10	3	
	Class=No	15	22	

- Sensitivity: TP / (TP + FN) = 10/25 = 0.4
- Specificity: TN / (FP + TN) = 22/25 = 0.88

	ACTUAL CLASS			
		Class=Yes	Class=No	
PREDICTED CLASS	Class=Yes	3	18	
	Class=No	22	7	

- Sensitivity: TP / (TP + FN) =
- Specificity: TN / (FP + TN) =

	ACTUAL CLASS			
		Class=Yes	Class=No	
PREDICTED CLASS	Class=Yes	3	18	
	Class=No	22	7	

- Sensitivity: TP / (TP + FN) = 3/25 = 0.12
- Specificity: TN / (FP + TN) = 7/25 = 0.28

 Calculate the sensitivity and specificity of the following classifiers.

	ACTUAL CLASS			
		Class=Yes	Class=No	
PREDICTED CLASS	Class=Yes	24	12	
	Class=No	1	13	

- Sensitivity: TP / (TP + FN) =
- Specificity: TN / (FP + TN) =

44

	ACTUAL CLASS			
		Class=Yes	Class=No	
PREDICTED CLASS	Class=Yes	24	12	
	Class=No	1	13	

- Sensitivity: TP / (TP + FN) = 24/25 = 0.96
- Specificity: TN / (FP + TN) = 13/25 = 0.52

Receiver Operating Characteristics (ROC) graphs

- Used to visualise the performance of classifiers
- Depict the trade-off between true positives
 (Sensitivity) and false positives (1 Specificity).
- Comparing 5 classifiers (A, B, C, D, E)
- The diagonal line means random classification
- D's performance is perfect
- One classifier is better than another if it is closer to the upper left

46

Receiver Operating Characteristics (ROC) graphs

- A is more conservative than B
 - A has fewer true positives but also very few false positive errors, because it uses strict evidence
 - B makes more positive classifications but more false positive errors, because it uses weaker evidence
 - Most real-world domains have negative instances, so far LHS is more interesting
- Generally:
 - RHS: conservative classifiers

- LHS: liberal classifiers

Receiver Operating Characteristics (ROC) graphs

- Diagonal line represents random performance
- C's performance is random
- Any classifier below the diagonal can be negated and it will produce correct classifications (that is, reverse its decisions in every case).
- So ¬E is as good as B

48

Exercise

 Show the performance of the 3 classifiers of the previous exercise using a ROC curve?

Classifier 1: Sensitivity: 0.4, Specificity: 0.88 Classifier 2: Sensitivity: 0.12, Specificity: 0.28 Classifier 3: Sensitivity: 0.96, Specificity: 0.52

- Which would be most suitable for detecting patients with high-risk of cancer and refer them for follow up tests?
- Which would be best for selecting patients to undergo high-risk surgery?
- Is Classifier 2 just useless?

ROC graph

Exercise

 Show the performance of the 3 classifiers of the previous exercise using a ROC curve?

Classifier 1: Sensitivity: 0.4, Specificity: 0.88

Classifier 2: Sensitivity: 0.12, Specificity: 0.28

Classifier 3: Sensitivity: 0.96, Specificity: 0.52

- Which would be most suitable for detecting patients with high-risk of cancer and refer them for follow up tests?
 - C3, because high TP rate
- Which would be best for selecting patients to undergo high-risk surgery?
 - C1, because low FP rate (low probability that healthy people are incorrectly being sent to undergo high-risk surgery)
- Is Classifier 2 just useless?

51

Classifier 2's decisions:

	ACTUAL CLASS		
		Class=Yes	Class=No
PREDICTED CLASS	Class=Yes	3	18
	Class=No	22	7

- Sensitivity: TP / (TP + FN) = 3/25 = 0.12
- Specificity: TN / (FP + TN) = 7/25 = 0.28

• Simply reverse C2's decisions, and we have the best performing classifier!

	ACTUAL CLASS			
		Class=Yes	Class=No	
PREDICTED CLASS	Class=Yes	18	3	
	Class=No	7	22	

- Sensitivity: TP / (TP + FN) = 18/25 = 0.77
- Specificity: TN / (FP + TN) = 22/25 = 0.8

ROC Graph

Some other evaluation criteria

- Speed
 - Time or computation cost of constructing the model (e.g. a decision tree)
- Robustness
 - Data typically have errors so method should produce good results in spite of some errors or missing values
- Scalability
 - Algorithms should work for small and large datasets efficiently
- Interpretability
 - The end user should be able to understand and gain insight by the results produced by the method
- Goodness of the model
 - Does the method have a good fit of the data, or does it overfit/underfit?

Underfitting and overfitting in models

- Underfitting refers to a model that cannot model the training data well, and does not perform well on new data either
- Overfitting refers to a model that models the training data too well, but then cannot perform well on new data.

56

Underfitting and overfitting in models

- Underfitting refers to a model that cannot model the training data well, and does not perform well on new data either
- Overfitting refers to a model that models the training data too well, and then cannot perform well on new data.

Decision tree: example from tax

categorical continuous

	\cup	\cup	O	_
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

fraud Splitting Attributes Refund? Yes No. Marital Cheat = No Status Single/Di Married vorced Cheat = No Income <=80 >80 Cheat = No Cheat = Yes

Training Data

Model: Decision Tree

Decision tree

Model: Decision Tree

59

Test Data

Refund		Taxable Income	Cheat?
No	Married	80K	?

Overfitting in decision trees

- The decision tree algorithm continues until either all nodes are terminal nodes or no more attributes are available.
- But when training objects have a large number of attributes, the tree will keep growing to fit the training data, but will not be able to generalise to new data

Overfitting in decision trees

Name	Body	Skin	Gives	Aquatic	Aerial	Has	Hiber-	Class
	Temperature	Cover	Birth	Creature	Creature	Legs	nates	Label
human	warm-blooded	hair	yes	no	no	yes	no	mammal
python	cold-blooded	scales	no	no	no	no	yes	reptile
salmon	cold-blooded	scales	no	yes	no	no	no	fish
whale	warm-blooded	hair	yes	yes	no	no	no	mammal
frog	cold-blooded	none	no	semi	no	yes	yes	amphibian
komodo	cold-blooded	scales	100	no	no	yes	no	reptile
dragon								
bat	warm-blooded	hair	yes	no	yes	yes	yes	mammal
pigeon	warm-blooded	feathers	no	no	yes	yes	no	bird
cat	warm-blooded	fur	yes	no	no	yes	no	mammal
leopard	cold-blooded	scales	yes	yes	no	no	no	fish
shark								
turtle	cold-blooded	scales	110	semi	no	yes	no	reptile
penguin	warm-blooded	feathers	no	semi	no	yes	no	bird
porcupine	warm-blooded	quills	yes	no	no	yes	yes	mammal
eel	cold-blooded	scales	110	yes	no	no	no	fish
salamander	cold-blooded	none	100	semi	no	yes	yes	amphibian

Model 1

mammals

Model 2

Is model 2 too simple?

Model selection criteria

- Model selection criteria attempt to find a good compromise between:
 - a)The model's complexity
 - b)The model's prediction accuracy on unseen data
- Reasoning: a good model is a simple model that achieves high accuracy on the given data
- Also known as Occam's Razor: the best theory is the smallest one that describes all the facts

Pruning to avoid overfitting

- We perform pruning (removing nodes) to avoiding overfitting in building decision trees. Two approaches:
- Pre-pruning that stop growing the tree earlier, before it perfectly classifies the training set.
- Post-pruning that allows the tree to perfectly classify the training set, and then post prune the tree.
 - Post-pruning is more successful because it is not easy to precisely estimate when to stop growing the tree.
- Post-pruning procedure:
 - The available data are separated into two sets of examples: a training set, which is used to build the decision tree, and a validation set, which is used to evaluate the impact of pruning the tree.

Model selection

Evaluate the 2 models

• Test data:

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Human	Warm-blooded	Yes	No	No	Yes
Pigeon	Warm-blooded	No	No	No	No
Elephant	Warm-blooded	Yes	Yes	No	Yes
Leopard shark	Cold-blooded	Yes	No	No	No
Turtle	Cold-blooded	No	Yes	No	No
Penguin	Cold-blooded	No	No	No	No
Eel	Cold-blooded	No	No	No	No
Dolphin	Warm-blooded	Yes	No	No	Yes
Spiny anteater	Warm-blooded	No	Yes	Yes	Yes
Gila monster	Cold-blooded	No	Yes	Yes	No

Evaluate the 2 models

Lela Koulouri 66

So Model 2 is better

spiny anteater)

Some causes of overfitting

- Overfitting due to noise in the data
 - Example training data set for classifying mammals and non-mammals. The set contains mislabellings (denoted with a *)

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Porcupine	Warm-blooded	Yes	Yes	Yes	Yes
Cat	Warm-blooded	Yes	Yes	No	Yes
Bat	Warm-blooded	Yes	No	Yes	No*
Whale	Warm-blooded	Yes	No	No	No*
Salamander	Cold-blooded	No	Yes	Yes	No
Komodo dragon	Cold-blooded	No	Yes	No	No
Python	Cold-blooded	No	No	Yes	No
Salmon	Cold-blooded	No	No	No	No
Eagle	Warm-blooded	No	No	No	No
Guppy	Cold-blooded	Yes	No	No	No

Produces Model 1

Model 1

mammals

Model 1 incorrectly classifies 'human' and 'dolphin'. 20% error rate (as previously seen)

Some causes of overfitting

- Overfitting due to small training data set
 - Data set with only 5 training examples

Name	Body Temperature	Gives Birth	Four-legged	Hibernates	Class Label
Salamander	Cold-blooded	No	Yes	Yes	No
Guppy	Cold-blooded	Yes	No	No	No
Eagle	Warm-blooded	No	No	No	No
Poorwill	Warm-blooded	No	No	Yes	No
Platypus	Warm-blooded	No	Yes	Yes	Yes

Produces the following model

This model incorrectly classifies 'human', 'elephant' and 'dolphin'.

... 30% error rate. The tree arrives at this classification because there was only one training record (eagle) that is warmblooded and does not hibernate, classified as nonmammal.

70

Evaluation of **clustering** algorithms

- Calculate number of correct 'classifications' of objects to clusters
 - Can use confusion matrix
 - 'Is object X classified to cluster A?'
- Calculate ratio of intra-cluster and intercluster distances
 - The tighter and more well-separated the clusters are, the better the performance
 - Calculate average sum of squared distance of each object in a cluster from cluster centroid (I)
 - Calculate average sum of squared pairwise distances between the clusters (E)

E/I

Software implementations of ML algorithms

- R *
- Weka *
- ScipY and scikit-learn python libraries *
- Orange *
- MATLAB
- SPSS
- SAS
- STATA
- SQL Server Analysis Services
- * Free software/OS licence

Exam 2016

- Which of the following best describes reinforcement learning?
 - a) Learning without any pre-defined 'correct' answers, e.g. Clustering.
 - b) A non-parametric approach to learning from previous examples, e.g. K-Nearest Neighbour.
 - c) Learning through the use of repeated punishment and reward 'signals'
 - d) Learning to accurately predict the class label of previously unseen records.

Exam 2016

- The K-Means algorithm terminates when
 - a) a user-defined minimum value for the summation of squared error differences between instances and their corresponding cluster centre is seen.
 - b) the cluster centres for the current iteration are identical to the cluster centres for the previous iteration.
 - c) the number of instances in each cluster for the current iteration is identical to the number of instances in each cluster of the previous iteration.
 - d) the number of clusters formed for the current iteration is identical to the number of clusters formed in the previous iteration.

Exam 2016

- Which one of the following is not true about clustering?
 - a) The clusters are suggested by the data, and are not defined beforehand.
 - b) The aim of clustering is often exploratory.
 - c) Objects in each cluster tend to be similar to each other and dissimilar to objects in the other clusters.
 - d) Training data must be available.

- What are hidden nodes?
 - a) Nodes that do not do any computation and so do not assist in producing the output
 - b) Nodes that have '0' as an input value
 - c) Nodes that have no direct connection to the input or the output
 - d) Nodes that have no direct connections to any other nodes

- The values input into a feed-forward neural network
 - a) may be categorical or numeric.
 - b) must be either all categorical or all numeric but not both.
 - c) must be numeric.
 - d) must be categorical.

- Which of the following activities is more likely to be a regression problem?
 - a) Dividing the customers of a company according to their profitability
 - b) Predicting the future stock price of a company using historical records.
 - c) Discriminating high-risk and low-risk patients
 - d) Recognising hand-written alphanumeric characters.

 Which algorithm starts with as many clusters as there are records, with each cluster having only one record?

- a) Hierarchical agglomerative clustering.
- b) KNN
- c) K-means
- d) Decision tree

- Which of the following two-input logic operation is linearly inseparable?
- (i) AND (ii) OR (iii) XOR (iv) NAND (v) NOT XOR
 - a) (ii) and (iii)
 - b) (iii) only
 - c) (iii) and (v)
 - d) (i), (ii), and (iv)

Additional resources

Further Reading:

- Model Evaluation & Overfitting:
 - Tan et al. 'Introduction to Data Mining'
 - http://wwwusers.cs.umn.edu/~kumar/dmbook/index.php
 - Chapter 4
- Multi-layer Networks:
 - Russell and Norvig textbook, section 19.4

Watching:

 Andrew Ng's Stanford Machine Learning lectures.

Brilliant module – it covers everything in ML!

81