

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

Analysis of multiway networks

Vladimir Batagelj IMFM Ljubljana

1327. sredin seminar Ljubljana, 9. november 2022

Outline

Multi-way networks

V. Batagelj

Multi-wa networks

Implementation

References

- 1 Multi-way networks
- 2 Implementation
- 3 References

Vladimir Batagelj: vladimir.batagelj@fmf.uni-lj.si

Current version of slides (November 6, 2022 at 16:33): slides PDF

https://github.com/bavla/NormNet/blob/main/docs/

IFCS 2022

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

Blockmodeling

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

Viszards 2009

Indirect block modeling of 3-mode data

Multi-way networks

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

A multi-way network N = (V, L, w) is based on nodes from k pairwise disjoint sets (ways or dimensions)

$$V = \{V_1, V_2, \dots, V_k\}, \quad V_i \cap V_j = \emptyset \text{ for } i \neq j$$

The set of links $L \subseteq V_1 \times V_2 \times \cdots \times V_k$. The weight $w : L \to \mathbb{R}$. It can be represented by a k-dimensional array W

$$W[v_1, v_2, \dots, v_k] = w(v_1, v_2, \dots, v_k)$$
 for $(v_1, v_2, \dots, v_k) \in L$ otherwise $W[v_1, v_2, \dots, v_k] = 0$.

Multiway analysis

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

Transformations

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

In data analysis of multi-way networks, some transformations could prove to be useful:

- reordering of ways
- joining the ways
- flattening of a way
- projection to a selected way
- normalization
- recoding (binarization)

Reordering of ways

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

Trivial.

Joining the ways

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

Selected ways V_i and V_j , i < j, are replaced by a new joint way

$$V_{ij} = \{(u:v): u \in V_i \land v \in V_j \land \exists (\ldots, u, \ldots, v, \ldots) \in L\}$$

*** add a detailed description of the transformed network.

This transformation reduces the number of ways for 1.

"Commutativity".

Flattening of a way

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

A selected way V_i is removed from the network.

$$V' = \{V_1, V_2, \dots, V_{i-1}, V_{i+1}, \dots, V_k\}$$

$$w'(v_1, v_2, \ldots, v_{i-1}, v_{i+1}, \ldots, v_k) = \sum w(v_1, v_2, \ldots, v_{i-1}, v, v_{i+1}, \ldots, v_k)$$

This transformation reduces the number of ways for 1.

"Commutativity".

Normalization

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

TBA

Recoding

Multi-way networks

V. Batagelj

Multi-way networks

Implementatio

References

Let $P = \{P_1, P_2, \dots, P_p\}$ be a partition of \mathbb{R} . The recoding transformation transforms the weight function w into a new weight w' determined for a link $(v_1, v_2, \dots, v_k) \in L$ as

$$w'(v_1, v_2, \ldots, v_k) = i \Leftrightarrow w(v_1, v_2, \ldots, v_k) \in P_i$$

Code 0 corresponds to the case $(v_1, v_2, \ldots, v_k) \notin L$ which is usually equivalent to $w(v_1, v_2, \ldots, v_k) = 0$ in the array representation. If 0 is also a legal weight value we have to introduce another zero, \Box , that indicates the absence of a link.

A special case is a binarization for which $P_0 = \{0\}$ and $P_1 = \mathbb{R} \setminus P_0$. Recoding is often used to get more readable matrix visualizations of a given network.

Projection to a selected way

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

Because of the reordering option, we can assume that we selected the way V_1 . A projection to a selected way is a generalization of the projection of two-mode networks. The projection creates an ordinary weighted network (V_1,A,p) , $A\subseteq V_1\times V_1$ and $p:A\to\mathbb{R}$. Let $u,t\in V_1$ then

$$p(u,t) = \sum_{(v_2,\ldots,v_k)\in V_2\times\cdots\times V_k} w(u,v_2,\ldots,v_k)\cdot w(t,v_2,\ldots,v_k)$$

This network can be analyzed using traditional methods for the analysis of weighted networks. Sometimes it is more appropriate to apply projection(s) to a normalized version of the original multi-way network.

From the projection p we can get the corresponding measure of similarity – Salton index S(u, t)

$$S(u,t) = \frac{p(u,t)}{\sqrt{p(u,u) \cdot p(t,t)}}$$

Salton index has the following properties

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

The Salton index has the following properties

1
$$S(u,t) \in [-1,1]$$

2
$$S(u,t) = S(t,u)$$

3
$$S(u, u) = 1$$

4
$$w: L \to \mathbb{R}_0^+ \Rightarrow S(u,t) \in [0,1]$$

5
$$S(\alpha u, \beta t) = S(u, t), \quad \alpha, \beta > 0$$

6
$$S(\alpha u, u) = 1, \quad \alpha > 0$$

Representation

Multi-way networks

V. Batagelj

Multi-wa networks

Implementation

References

A natural representation of a weighted multi-way network is by a multi-dimensional array. In real-life networks many (most of) array entries have the value 0. In such cases, this representation is computationally inefficient – takes more space and requires unnecessary computations with 0s.

Representation

Multi-way networks

V. Batagelj

Multi-way networks

Implementation

References

```
An alternative representation follows the formal definition
```

```
title = "TITLE";
nodes1 = ["v11", ..., "v1n1"];
nodesk = ["vk1", ..., "vknk"];
nodes = [ nodes1, ..., nodesk ];
links = [
[link: [v1, v2, ..., vk], w: W];
. . .
```


Acknowledgments

Multi-way networks

V. Batagelj

Multi-wa networks

Implementation

References

This work is supported in part by the Slovenian Research Agency (research program P1-0294 and research projects J1-9187 and J5-2557), and prepared within the framework of the HSE University Basic Research Program.

References I

Multi-way networks

V. Batagelj

Multi-way

Implementatio

References

Batagelj, V, Cerinšek, M.: On bibliographic networks. Scientometrics 96 (2013), pages 845–864. Springer

Batagelj, V.: On fractional approach to the analysis of linked networks. Scientometrics 123 (2020), pages621–633. Springer

Batagelj, V, Ferligoj, A, Doreian, P: Indirect Blockmodeling of 3-Way Networks. In: Brito, P, Cucumel, G, Bertrand, P, de Carvalho, F (eds) Selected Contributions in Data Analysis and Classification pp 151–159 Springer, 2007; preprint.

Borgatti, SP, Everett, MG: Regular blockmodels of multiway, multimode matrices. Social Networks 14(1992)1-2, 91–120.

Everett, MG, Borgatti, SP: Chapter 9, Partitioning Multimode Networks. In *** Patrick Doreian, Vladimir Batagelj, Anuška Ferligoj (Eds): Wiley, 2019.