Better Predicting the Stock Market By: Lauren Esser

PROBLEM STATEMENT

Can we use News Headlines to better predict when the S&P 500 will increase/decrease?

By creating a model that gives a high success rate of stock market predictions we can invest our money wisely to make good profits.

Stock Market: www.kibot.com/free historical data.aspx

Stock Market data comes from kibot.com which provides free historical intraday data on the S&P 500 dating back to September 2009.

News: https://www.kaggle.com/rmisra/news-category-dataset

News dataset contains around 200k news headlines from 2012 to 2018 obtained from the Huffington Post.

THE OSEMN PROCESS

OBTAIN – Data was obtained on Huffington Post News Headlines and the S&P 500

THE Huffington Post

SCRUB - Index converted to datetime, checked for nulls, and identified stop words, punctuation, and tokenizing in news dataset.

EXPLORE STOCKS - took a look at line plots, rolling statistics, dickey-fuller, density plots, and transformations.

EXPLORE NEWS - took a look headline by genre and year, as well as

the top recurring words.

MODEL 1:

Stocks Time Series

```
#plug in optimal parameter values
arima model = sm.tsa.statespace.SARIMAX(X train,
                                                        order = (2,1,2),
                                                        seasonal_order = (1,1,2,12),
                                                        enforce stationarity=False,
                                                        enforce invertibility=False)
#fit model
output = arima model.fit()
                                                                       Statespace Model Results
                                                                                         No. Observations: 1320
                                                   Dep. Variable:
                                                                Price
                                                      Model:
                                                                 SARIMAX(2, 1, 2)x(1, 1, 2, 12) Log Likelihood
                                                                                                        3600.164
                                                       Date:
                                                                 Tue, 01 Dec 2020
                                                                                                        -7184.327
display(output.summary())
                                                                                               AIC
                                                                 16:47:01
                                                                                               BIC
                                                                                                        -7143.090
                                                       Time:
                                                      Sample:
                                                                 01-30-2012
                                                                                              HQIC
                                                                                                        -7168.843
                                                                 - 02-17-2017
                                                  Covariance Type: opg
                                                                         z P>|z| [0.025 0.975]
                                                           coef std err
                                                    ar.L1 0.8463 1.272
                                                                        0.665 0.506 -1.648
                                                                                         3.340
                                                    ar.L2 -0.0281 1.052
                                                                        -0.027 0.979 -2.090
                                                                                         2.034
                                                   ma.L1 -1.2201 1.351
                                                                       -0.903 0.367 -3.869
                                                                                         1.429
                                                   ma.L2 0.0417 1.535
                                                                       0.027 0.978 -2.968
                                                                                         3.051
                                                  ar.S.L12 -0.6949 0.283 -2.459 0.014 -1.249
                                                                                         -0.141
                                                  ma.S.L12 -0.3230 0.294
                                                                       -1.100 0.271 -0.898
                                                                                         0.253
                                                  ma.S.L24 -0.6730 0.294
                                                                       -2.288 0.022 -1.250
                                                                                         -0.097
                                                   sigma2 0.0001 5.03e-05 2.883 0.004 4.65e-05 0.000
                                                     Ljung-Box (Q):
                                                                     38.05 Jarque-Bera (JB): 376.23
                                                        Prob(Q):
                                                                     0.56
                                                                              Prob(JB):
                                                                                         0.00
                                                  Heteroskedasticity (H): 2.26
                                                                               Skew:
                                                                                         -0.43
```

Prob(H) (two-sided): 0.00

Kurtosis:

5.51

MODEL 2: NLP CLASSIFICATION MODEL USING STOCK DATA: 53% Accuracy

```
model = Sequential()
model.add(Embedding(max words, 300)) #can change 100 for how many datapts
model.add(LSTM(64, activation = 'relu', return sequences=True,
               kernel regularizer=regularizers.11(0.001)))
model.add(Dropout(0.3))
model.add(LSTM(32, activation = 'relu', return sequences=False,
               kernel regularizer=regularizers.11(0.001)))
model.add(Dropout(0.5))
model.add(Dense(32, activation = 'relu', kernel regularizer=regularizers.11(0.001)))
model.add(Dense(1, activation = 'sigmoid'))
model.compile(optimizer= optimizers.Adam(), loss = 'binary crossentropy',
             metrics = ['acc', precision, recall])
#display(model.summary())
history = model.fit(X train padded, y train, batch size = 32, epochs = 8,
                    callbacks = callback, validation split = .1,
                    class weight = class weight)
```

MODEL 3: Using News Headlines to better predict the stock market


```
final model = Sequential()
final model.add(LSTM(64, activation = 'relu', input shape = input shape,
                     return sequences = True))
#final model.add(Dropout(0.5))
final model.add(LSTM(32, activation = 'relu', return sequences = False))
final model.add(Dense(1, activation = 'relu'))
final model.compile(optimizer = optimizers.Nadam(), loss = 'mse',
                    metrics = ['mse'])
display(final model.summary())
history = final model.fit(generator, epochs = 20)
Model: "sequential 2"
                             Output Shape
Layer (type)
1stm 3 (LSTM)
                              (None, 50, 64)
                                                        17152
1stm 4 (LSTM)
                              (None, 32)
                                                        12416
dense 3 (Dense)
                              (None, 1)
Total params: 29,601
Trainable params: 29,601
Non-trainable params: 0
```

Invest when positive words are present in news headlines.

03

USE SPECIFIC GENRE HEADLINE

- 1. Build a simple Time Series Model
- 2. Create a NLP Model to see what words cause the stock to increase or decrease
- 3. Build a Time Series Model to see which news headlines better predict the market.

- 1. Invest in the S&P 500 when positive words are present in the news headlines.
- 2. Wait to invest when the negative words are present in news headlines.
 - 3. Use specific genre headlines
- 4. Follow same path when creating your models.

FUTURE WORK

- 1. Separate News Headlines by Category to see which Category impacts the S&P 500 more.
- 2. Test different Headline Sources (ex. Wall Street Journal, New York Times, ESPN etc.) to see if one news source has a greater impact than others.
- 3. Test if categorical papers impact categorical stocks. Ex. sports headlines impacting sports company stocks.
- 4. Try different model types. Ex. PDArima model for initial time series model.

Thank you for your time and consideration!

QUESTIONS?

Feel free to e-mail me at Lauren.Esser02@gmail.com or reach out via LinkedIn

APPENDIX A1:

Neural Network Stocks Time Series

```
#define model
model = Sequential()
model.add(LSTM(units = 64, activation = 'relu', input shape = input shape))
model.add(Dense(1))
model.compile(optimizer= optimizers.Nadam(), loss = 'mse', metrics = ['mse'])
display(model.summary())
history = model.fit(generator, epochs = 20)
Model: "sequential"
Layer (type)
                             Output Shape
                                                        Param #
1stm (LSTM)
                             (None, 64)
                                                        16896
dense (Dense)
                              (None, 1)
Total params: 16,961
Trainable params: 16,961
Non-trainable params: 0
```

APPENDIX A2:

Appendix A3: SARMINA MODEL CHARTS

APPENDIX B1

	precision	recall	f1-score	support
Negative	0.00	0.00	0.00	136
Postive	0.53	1.00	0.70	156
accuracy			0.53	292
macro avg	0.27	0.50	0.35	292
weighted avg	0.29	0.53	0.37	292

APPENDIX B2

APPENDIX C: RANDOM FOREST FOR MODEL 2

		11	61	100000000000000000000000000000000000000
	precision	recall	fl-score	support
Negative	0.00	0.00	0.00	136
Positive	0.53	1.00	0.70	156
accuracy			0.53	292
macro avg	0.27	0.50	0.35	292
weighted avg	0.29	0.53	0.37	292

Testing Accuracy for Classifier: 53.42%