renting_vizualisation

July 14, 2021

1 Exploration of all buildings in the Netherlands

1.1 by Yannick Mariman

1.2 Preliminary Wrangling

This dataset does preliminary explore a dataset of rented buildings in the Netherlands. The data and outcomes of this notebook are confidential should not be shared.

1.2.1 What is the structure of your dataset?

(534085, 15)			
Bron	object		
Bouwjaar	float64		
M2HuurPrijs	float64		
EnergieLabel	category		
GebruiksOppervlakte	int32		
AanmeldDatum	datetime64[ns]		
Postcode	object		
TypeWoning	object		
Looptijd	float64		
TransactieHuurPrijs	float64		
TransactieDatumOndertekeningAkte	datetime64[ns]		
OnderhoudsNiveauBinnen	category		
OnderhoudsNiveauBuiten	category		
GemeenteNaam	object		
GemeenteCat	category		
dtype: object			
Bron Bouwjaar M2HuurPrijs Ene	rgieLabel Gebru		

	Bron	Bouwjaar	M2HuurPrijs	EnergieLabel	GebruiksOppervlakte	\
0	TIARA	1997.0	8.500000	В	150	
1	TIARA	1937.0	7.307692	C	130	
3	TIARA	1785.0	10.583333	C	60	

4	TIARA	1937.0	7.727273	D	110
5	TIARA	2004.0	6.168831	В	154
7	TIARA	1970.0	6.818182	С	110
8	TIARA	1970.0	5.576923	D	130
9	TIARA	1900.0	7.160000	G	125

	${\tt AanmeldDatum}$	Postcode	TypeWoning	Looptijd	TransactieHuurPrijs	\
0	2006-01-10	2851CH	2-onder-1-kapwoning	23.0	1275.0	
1	2006-01-02	2025RB	Tussenwoning	25.0	950.0	
3	2006-01-10	2312XV	Bovenwoning	163.0	635.0	
4	2006-01-10	9722GP	Bovenwoning	133.0	850.0	
5	2006-01-12	2152EX	Hoekwoning	53.0	950.0	
7	2006-01-05	4538AM	2-onder-1-kapwoning	749.0	750.0	
8	2006-01-05	7741GT	Bovenwoning	68.0	725.0	
9	2006-01-13	2805AG	Hoekwoning	33.0	895.0	

\	${\tt OnderhoudsNiveauBinnen}$	${\tt TransactieDatumOndertekeningAkte}$	
	Goed	2006-02-02	0
	Goed	2006-01-27	1
	Goed	2006-06-22	3
	Goed	2006-05-23	4
	Uitstekend	2006-03-06	5
	Goed	2008-01-24	7
	Goed	2006-03-14	8
	Goed	2006-02-15	9

	OnderhoudsNiveauBuiten	${\tt GemeenteNaam}$	${\tt GemeenteCat}$
0	Goed	Krimpenerwaard	Overig
1	Goed	Haarlem	G40
3	Goed	Leiden	G40
4	Goed	Groningen	G40
5	Uitstekend	Haarlemmermeer	G40
7	Goed	Terneuzen	Overig
8	Goed	Coevorden	Overig
9	Goed	Gouda	G40

There are 15 features in the dataset:

Bron is the source from which the data is coming.

Bouwjaar is the year in which the building is build.

M2HuurPrijs is the square metre price for renting.

GebruiksOppervlakte is the usable square metres in a house.

AanmeldDatum is the date at which the building is put online.

Postcode is zipcode/postalcode.

TypeWoning is the type of house people live in.

Looptijd is the time between putting the house online and the signing of the contract.

TransactieHuurPrijs is the total amount of euros paid.

TransactieDatumOndertekeningAkte is the date that the contract is signed.

OnderhoudsNiveaBinnen is the maintenance level inside of the building.

OnderhoudsNiveaBuiten is the maintenance level outside of the building.

GemeenteNaam is the name of the municipality.

GemeenteCat is the category of municipality. The big four, number 5 until 45 and the rest.

OnderhoudsNiveauBinnen, OnderhoudsNiveauBuiten and Energielabels are ordinal features. They are sorted from 'bad' to 'better'. In the case of GemeenteCat (Municipality Category) it is sorted from bigger municipality category to smaller. 'EnergieLabel': ['G','F','E','D','C', 'B', 'A'] 'OnderhoudsNiveauBinnen': ['Slecht', 'Slecht tot matig', 'Matig', 'Matig tot redelijk', 'Redelijk', 'Redelijk', 'Goed', 'Goed', 'Goed tot uitstekend'] 'OnderhoudsNiveauBuiten': ['Slecht', 'Slecht tot matig', 'Matig', 'Matig tot redelijk', 'Redelijk', 'Redelijk tot goed', 'Goed', 'Goed tot uitstekend', 'Uitstekend'] 'GemeenteCat': ['G4', 'G40', 'Overig']

1.2.2 What is/are the main feature(s) of interest in your dataset?

The main feature of interest is 'M2HuurPrijs', else 'TransactieHuurPrijs'. Translated this means rental price which is actually being paid.

1.2.3 What features in the dataset do you think will help support your investigation into your feature(s) of interest?

The assumption is that Gebruiksoppervlakte (square metres), WijkNaam (districtname) and TypeWoning (House type) have 'relatively much' influence. The following features also have some influence but less EnergieLabel (EnergyLabel), SoortObject, OnderhoudsNiveauBinnen (maintenance level inside) and OnderhoudsNiveauBuiten (maintenance level outside).

It is hard to find enough datapoints in the WijkNaam column. Therefore, the main focus of the Univariate Exploration will be TypeWoning, EnergieLabel and GebruiksOppervlakte.

1.3 Univariate Exploration

C	249838
Α	121523
В	58778
D	42996
E	29412
F	17224
G	14314

Name: EnergieLabel, dtype: int64

Better energy labels are more common. Recall that A is best and G is worst.

Long tail on the price distribution. Maybe the square metre price can give us more information

Almost all houses are between 30 and 150 square meters. Long tail which are probably some outliers.

Really long tail. Try this with a logscale.

Overig 194919 G4 170945 G40 168221

Name: GemeenteCat, dtype: int64

This shows that there are roughly an equal amount of rental transactions in the G4, G40 and the rest.

1.3.1 Discuss the distribution(s) of your variable(s) of interest. Were there any unusual points? Did you need to perform any transformations?

There is a log transformation on the M2HuurPrijs column.

1.3.2 Of the features you investigated, were there any unusual distributions? Did you perform any operations on the data to tidy, adjust, or change the form of the data? If so, why did you do this?

Since it was my own dataset. All the operations are performed in the beginning.

1.4 Bivariate Exploration

In this section, investigate relationships between pairs of variables in your data. Make sure the variables that you cover here have been introduced in some fashion in the previous section (univariate exploration).

From the data above it is evident that there is no significant difference between the types. There are a lot of outliers in every category, especially 'Bovenwoning' has a lot of outliers.

Not a lot of difference is visible. Maybe this is clearer when M2HuurPrijs is capped.

Closer investigation shows that the M2HuurPrijs (recall that this is square metre price) also shows no difference.

Maintenance levels inside and outside show the same trend. Therefore, I won't make any difference in this in further exploration.

The distributions of G40 and Overig are somewhat comparable. However, G4 has a completely different shape. The shape is longer which means that there is more variation of the square metre prices in the G4. Whereas a mean is more obvious in the other two categories.

	Bron	Bouwjaar	M2Huu	rPriis	EnergieLa	abel	Gebruiks(Oppervlakte	\	
0	TIARA	1997.0		500000	O	В		150	•	
1	TIARA	1937.0	7.	307692		С		130		
3	TIARA	1785.0	10.	583333		С		60		
4	TIARA	1937.0	7.	727273		D		110		
5	TIARA	2004.0	6.	168831		В		154		
		Datum Pos			TypeWor	_	Looptijd	Transactie	J	\
0	2006-	01-10 2	851CH	2-onde	r-1-kapwo	_	23.0		1275.0	
1		01-02 2			Tussenwo	ning	25.0		950.0	
3	2006-	01-10 2	312XV		Bovenwo	ning	163.0		635.0	
4	2006-	01-10 9	722GP		Bovenwo	ning	133.0		850.0	
5	2006-	01-12 2	152EX		Hoekwo	ning	53.0		950.0	
	Trancac	tieDatumO	ndertek	ening Al	zta Ondari	noude	NiveauBinn	nen \		
0	Transac	CIEDACUMO		:006-02		iouus		oed		
1			_	:006-02 :006-01-	-			ped		
3				:006-06-				ped		
4				:006-05-				ped		
5				:006-03-			Uitsteke			
5			2	.006-03-	-06		Ultsteke	ena		
	Onderho	udsNiveau	Buiten	Geme	eenteNaam	Geme	enteCat			
0			Goed	Krimpe	enerwaard		Overig			
1			Goed	_	Haarlem		G40			
3			Goed		Leiden		G40			
4			Goed	(Groningen		G40			
5		Uits	tekend	Haarle	emmermeer		G40			

1.4.1 Talk about some of the relationships you observed in this part of the investigation. How did the feature(s) of interest vary with other features in the dataset?

Maintenance inside and outside have no significant different effect. Plotting for maintenance vs price/price per square metre seems to show the same trend.

1.4.2 Did you observe any interesting relationships between the other features (not the main feature(s) of interest)?

no

1.5 Multivariate Exploration

Create plots of three or more variables to investigate your data even further. Make sure that your investigations are justified, and follow from your work in the previous sections.

Since the data is more granular. Check if there are still enough data points in every category.

Less than 10 data points is not sufficient (dark green), between 10 and 100 data points is low reliability (light green). More than 100 data points is seen as sufficient to make assumptions. It is evident that maintenance level outside has to be atleast 'Matig tot redelijk' and maintenance level inside has to be atleast 'matig'.

Conclusions can not be drawn if maintenance levels inside as well as outside are 'Slecht' or 'Slecht tot matig'. (The worst two categories).

Investigating different municipality categories shows that maintenance levels can not be simply put together. G4 (the biggest 4 municipalities) have as expected the highest renting prices per square metre. 'Overig' (municipality 45 until 355 in order of magnitude) have the lowest renting prices.

For some reason 'Redelijk' (average) is a square metre price outlier, inside and outside. As is visible in the right heatmaps, this is not due to not sufficient data. The exact problem is most likely due to the 'standard' values of the form which is being filled in when a transaction is made. A domain expert is needed to explain this.

It is clearly seen that 'Benedenwoning', 'Bovenwoning' and 'Tussenverdieping' are the more expensive housing types. In all municipality categories.

Even though 'Vrijstaande woning' is one of the most luxurious ones. 'Benedenwoning', 'Bovenwoning' and 'Tussenverdieping' are appartment types and are more common in the city centre. Therefore, it could be more expensive. However, this is just an assumption.

1.5.1 Talk about some of the relationships you observed in this part of the investigation. Were there features that strengthened each other in terms of looking at your feature(s) of interest?

Maintenance levels inside as well as outside strengthened each other. A 'better' municipality categorie also strengthened the square metre price on top off that.

1.5.2 Were there any interesting or surprising interactions between features?

It was surprising that the most expensive house types were 'Benedenwoning', 'Bovenwoning' and 'Tussenverdieping'. Which means lower, middel and upper floor. Not 'vrijstaande woning' which is the most luxurious type of housing.

Maintenance level inside/outside 'mediocre' has a higher square metre price than 'mediocre/good', 'good', 'good/fantastic' and 'fantastic'. This is really contraintuitive and a domain expert indicated that 'mediocre' is the standard value for this field. Thus my assumption is that that could be the cause of the outlier.