Analyze Stock (Price) Performance with Linear Regression and Hypothesis Testing Using Python

Task 1: Load and inspect the Stock Price Dataset

In []:	<pre>import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import statsmodels.formula.api as smf pd.options.display.float_format = "{:,.2f}".format</pre>											
In []:	<pre>prices = pd.read_csv("stock_prices.csv", index_col = "Date", parse_dates = prices</pre>											
Out[]:	Date	AAPL	AJG	AVB	DLR	ICE	INCY	кнс	LLY	МСНР	MDT	мон
	2019- 12-31	73.41	95.23	209.70	119.74	92.55	87.32	32.13	131.43	52.36	113.45	135.69
	2020- 01-02	75.09	95.51	207.24	118.00	92.67	85.97	31.61	132.21	53.80	114.56	133.37
	2020- 01-03	74.36	95.31	209.23	119.94	94.67	77.90	31.24	131.77	52.62	113.88	132.54
	2020- 01-06	74.95	95.75	209.58	118.86	94.70	77.34	31.31	132.26	51.87	114.89	137.35
	2020- 01-07	74.60	94.72	205.02	117.69	94.43	77.14	30.76	132.51	55.35	114.49	139.26
	•••	•••	•••	•••	•••	•••			•••	•••	•••	•••
	2022- 12-23	131.86	188.41	163.03	100.87	102.81	81.36	40.52	367.90	69.93	77.50	335.08
	2022- 12-27	130.03	189.28	162.80	100.35	102.11	79.59	40.96	364.88	69.03	77.64	334.37
	2022- 12-28	126.04	187.95	161.08	99.40	102.27	79.44	40.44	365.22	67.87	76.30	332.42
	2022- 12-29	129.61	190.17	162.65	101.30	104.10	79.48	40.68	367.02	70.45	77.81	333.27
	2022- 12-30	129.93	188.54	161.52	100.27	102.59	80.32	40.71	365.84	70.25	77.72	330.22
	757 rows × 15 columns											

Column Information (stock_prices.csv)

- AAPL: Daily Stock Prices for Apple Inc.
- AJG: Daily Stock Prices for Arthur J. Gallagher & Co.
- AVB: Daily Stock Prices for AvalonBay Communities Inc.

- DLR: Daily Stock Prices for Digital Realty Trust Inc.
- ICE: Daily Stock Prices for Intercontinental Exchange Inc.
- INCY: Daily Stock Prices for Incyte Corporation
- KHC: Daily Stock Prices for The Kraft Heinz Company
- LLY: Daily Stock Prices for Eli Lilly And Co.
- MCHP: Daily Stock Prices for Microchip Technology Inc.
- MDT: Daily Stock Prices for Medtronic PLC
- MOH: Daily Stock Prices for Molina Healthcare Inc.
- NDAQ: Daily Stock Prices for Nasdaq Inc.
- PRU: Daily Stock Prices for Prudential Financial Inc.
- STLD: Daily Stock Prices for Steel Dynamics
- TER: Daily Stock Prices for Teradyne Inc.

```
In [ ]: prices.info()
        <class 'pandas.core.frame.DataFrame'>
        DatetimeIndex: 757 entries, 2019-12-31 to 2022-12-30
        Data columns (total 15 columns):
         #
             Column Non-Null Count Dtype
         0
             AAPL
                     757 non-null
                                      float64
             AJG
                     757 non-null
                                      float64
         1
         2
                     757 non-null
                                      float64
             AVB
         3
             DLR
                     757 non-null
                                      float64
         4
             ICE
                     757 non-null
                                      float64
         5
                                      float64
             INCY
                     757 non-null
             KHC
                     757 non-null
                                      float64
         7
             LLY
                     757 non-null
                                      float64
                     757 non-null
                                      float64
         8
             MCHP
         9
             MDT
                     757 non-null
                                      float64
         10 MOH
                     757 non-null
                                      float64
         11 NDAQ
                     757 non-null
                                      float64
                                      float64
         12 PRU
                     757 non-null
         13
                     757 non-null
                                      float64
             STLD
         14
             TER
                     757 non-null
                                      float64
        dtypes: float64(15)
        memory usage: 94.6 KB
        symbols = prices.columns.to_list()
In []:
In []:
        prices.plot()
        <AxesSubplot:xlabel='Date'>
Out[ ]:
```



```
In [ ]: returns = prices.pct_change().dropna()*100
In [ ]: returns
```

								_						
Out[]:		AAPL	AJG	AVB	DLR	ICE	INCY	кнс	LLY	МСНР	MDT	мон	NDAQ	P
	Date													
	2020- 01-02	2.28	0.29	-1.17	-1.45	0.13	-1.55	-1.62	0.59	2.75	0.98	-1.71	0.67	,
	2020- 01-03	-0.97	-0.21	0.96	1.64	2.16	-9.39	-1.17	-0.33	-2.19	-0.59	-0.62	0.43	-1
	2020- 01-06	0.80	0.46	0.17	-0.90	0.03	-0.72	0.22	0.37	-1.43	0.89	3.63	-0.06	0
	2020- 01-07	-0.47	-1.08	-2.18	-0.98	-0.29	-0.26	-1.76	0.19	6.71	-0.35	1.39	-1.65	-(
	2020-	1.61	0.14	0.41	0.87	-0.88	-0.79	-0.55	0.91	-1.26	1.76	3.25	-0.55	0

2022- 12-27	-1.39	0.46	-0.14	-0.52	-0.68	-2.18	1.09	-0.82	-1.29	0.18	-0.21	-0.49	-(
2022- 12-28	-3.07	-0.70	-1.06	-0.95	0.16	-0.19	-1.27	0.09	-1.68	-1.73	-0.58	-0.46	-0
2022- 12-29	2.83	1.18	0.97	1.91	1.79	0.05	0.59	0.49	3.80	1.98	0.26	1.93	1
2022-	0.05	0.06	0.60	1.00	1 45	1.06	0.07	0.22	0.00	0.10	0.00	0.04	0

1.06

0.30

0.40

0.71

0.07 -0.32

0.03

0.47 -0.07

-0.28 -0.12 -0.92

0.36

-0.84 -0

756 rows × 15 columns

-0.28

0.20

0.73

0.25 -0.86 -0.69 -1.02 -1.45

1.01

0.34

01-08

2022-

12-23

12-30

In []:

Column Information (factors.csv)

The Return of the risk-free Asset:

RF: the one-month Treasury bill rate (from Ibbotson Associates).

Fama/French 5 Factors:

• The "MARKET RISK" factor:

MktPrem: Market Risk Premium (Rm-Rf). The excess return of the market portfolio (Rm) over the risk-free asset (Rf). Market Portfolio Return: Value-weight return of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or NASDAQ.

The "SIZE" factor:

SMB: SMB (Small Minus Big Company Size) is the average return on nine small stock portfolios minus the average return on nine big stock portfolios.

• The "VALUE" factor:

HML: HML (High Minus Low [Book Value/Market Value]) is the average return on two value portfolios (high book value/market value) minus the average return on two growth portfolios (low book value/market value).

• The "OPERATING PROFITABILITY" factor:

RMW: RMW (Robust Minus Weak) is the average return on two robust operating profitability portfolios minus the average return on two weak operating profitability portfolios.

• The "INVESTMENT" factor:

CMA: CMA (Conservative Minus Aggressive) is the average return on two conservative investment portfolios minus the average return on two aggressive investment portfolios.

```
In [ ]: factors = pd.read_csv('factors.csv',index_col='Date',parse_dates=(['Date']))
In [ ]: factors.info()
```

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 756 entries, 2020-01-02 to 2022-12-30

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	Mkt_Prem	756 non-null	float64
1	SMB	756 non-null	float64
2	HML	756 non-null	float64
3	RMW	756 non-null	float64
4	CMA	756 non-null	float64
5	RF	756 non-null	float64
	67 .6	4 (6)	

dtypes: float64(6) memory usage: 41.3 KB

```
In [ ]: factors.drop(['RF'],axis=1).plot()
```

Out[]: <AxesSubplot:xlabel='Date'>


```
In []: five_factors = factors.drop(['RF'],axis=1).columns.to_list()
In []: five_factors
Out[]: ['Mkt_Prem', 'SMB', 'HML', 'RMW', 'CMA']
In []: data = pd.concat([returns,factors],axis=1,join='inner')
In []: data
```

Out[]:		AAPL	AJG	AVB	DLR	ICE	INCY	кнс	LLY	МСНР	MDT	•••	NDAQ	PRU
	Date													
	2020- 01-02	2.28	0.29	-1.17	-1.45	0.13	-1.55	-1.62	0.59	2.75	0.98		0.67	1.17
	2020- 01-03	-0.97	-0.21	0.96	1.64	2.16	-9.39	-1.17	-0.33	-2.19	-0.59		0.43	-1.67
	2020- 01-06	0.80	0.46	0.17	-0.90	0.03	-0.72	0.22	0.37	-1.43	0.89		-0.06	0.25
	2020- 01-07	-0.47	-1.08	-2.18	-0.98	-0.29	-0.26	-1.76	0.19	6.71	-0.35		-1.65	-0.11
	2020- 01-08	1.61	0.14	0.41	0.87	-0.88	-0.79	-0.55	0.91	-1.26	1.76		-0.55	0.64
	•••									•••				
	2022- 12-23	-0.28	0.20	0.73	1.01	0.34	0.30	0.40	0.71	0.03	0.47		0.36	0.91
	2022- 12-27	-1.39	0.46	-0.14	-0.52	-0.68	-2.18	1.09	-0.82	-1.29	0.18		-0.49	-0.21
	2022- 12-28	-3.07	-0.70	-1.06	-0.95	0.16	-0.19	-1.27	0.09	-1.68	-1.73		-0.46	-0.99
	2022- 12-29	2.83	1.18	0.97	1.91	1.79	0.05	0.59	0.49	3.80	1.98		1.93	1.54
	2022- 12-30	0.25	-0.86	-0.69	-1.02	-1.45	1.06	0.07	-0.32	-0.28	-0.12		-0.84	-0.42

756 rows × 21 columns

```
In []: data[symbols] = data[symbols].sub(data['RF'],axis=0)
In []: data = data.drop(['RF'],axis=1)
In []: data
```

Out[]:		AAPL	AJG	AVB	DLR	ICE	INCY	кнс	LLY	МСНР	MDT	мон	NDAQ	Р
	Date													
	2020- 01-02	2.28	0.29	-1.18	-1.46	0.12	-1.55	-1.62	0.59	2.74	0.97	-1.72	0.67	1
	2020- 01-03	-0.98	-0.22	0.95	1.64	2.15	-9.39	-1.18	-0.34	-2.20	-0.60	-0.63	0.42	-1
	2020- 01-06	0.79	0.46	0.16	-0.91	0.03	-0.72	0.22	0.37	-1.44	0.88	3.62	-0.07	0
	2020- 01-07	-0.48	-1.08	-2.18	-0.99	-0.29	-0.26	-1.76	0.18	6.70	-0.35	1.38	-1.66	-(
	2020- 01-08	1.60	0.13	0.41	0.86	-0.88	-0.80	-0.56	0.90	-1.27	1.75	3.24	-0.56	0
	•••									•••				
	2022- 12-23	-0.30	0.19	0.71	1.00	0.33	0.28	0.38	0.69	0.01	0.45	-0.09	0.34	0
	2022- 12-27	-1.40	0.45	-0.16	-0.53	-0.70	-2.19	1.07	-0.84	-1.30	0.16	-0.23	-0.51	-0
	2022- 12-28	-3.08	-0.72	-1.07	-0.96	0.14	-0.20	-1.29	0.08	-1.70	-1.74	-0.60	-0.48	-1
	2022- 12-29	2.82	1.17	0.96	1.90	1.77	0.03	0.58	0.48	3.79	1.96	0.24	1.91	1
	2022- 12-30	0.23	-0.87	-0.71	-1.03	-1.47	1.04	0.06	-0.34	-0.30	-0.13	-0.93	-0.86	-0.

756 rows × 20 columns

```
In []: filter_list = five_factors + ['AAPL']
In []: apple_stock = data[filter_list]
In []: apple_stock
```

Out[]:		Mkt_Prem	SMB	HML	RMW	CMA	AAPL
	Date						
	2020-01-02	0.86	-0.97	-0.34	0.24	-0.22	2.28
	2020-01-03	-0.67	0.30	0.01	-0.14	-0.10	-0.98
	2020-01-06	0.36	-0.21	-0.55	-0.17	-0.26	0.79
	2020-01-07	-0.19	-0.03	-0.25	-0.13	-0.25	-0.48
	2020-01-08	0.47	-0.17	-0.64	-0.20	-0.17	1.60
	•••						
	2022-12-23	0.51	-0.34	1.15	0.86	0.46	-0.30
	2022-12-27	-0.51	-0.42	1.43	1.13	1.19	-1.40
	2022-12-28	-1.23	-0.30	-0.29	-0.96	-0.03	-3.08
	2022-12-29	1.87	1.03	-1.07	-1.01	-0.82	2.82
	2022-12-30	-0.22	0.12	-0.03	-0.53	0.01	0.23

756 rows × 6 columns

In []: apple_stock.corr()

Out[]:

	Mkt_Prem	SMB	HML	RMW	CMA	AAPL
Mkt_Prem	1.00	0.20	-0.04	-0.14	-0.30	0.82
SMB	0.20	1.00	0.33	-0.23	0.01	-0.06
HML	-0.04	0.33	1.00	0.46	0.64	-0.26
RMW	-0.14	-0.23	0.46	1.00	0.42	-0.06
СМА	-0.30	0.01	0.64	0.42	1.00	-0.21
AAPL	0.82	-0.06	-0.26	-0.06	-0.21	1.00

In []: sns.heatmap(apple_stock.corr(),cmap='RdBu',square=True,annot=True)

Out[]: <AxesSubplot:>

Mkt_Prem has the most correlation with the dependent variable AAPL

In []: sns.pairplot(apple_stock)

Out[]: <seaborn.axisgrid.PairGrid at 0x7f2fdc09ca60>

In []: sns.regplot(x='AAPL',y='Mkt_Prem',data=apple_stock)

Out[]: <AxesSubplot:xlabel='AAPL', ylabel='Mkt_Prem'>


```
In []: model = smf.ols('AAPL ~ Mkt_Prem + SMB + HML + RMW + CMA',data = apple_stock
In []: result = model.fit()
In []: result.summary()
```

Out[]:

OLS Regression Results

Dep. Variable:	AAPL	R-squared:	0.804
Model:	OLS	Adj. R-squared:	0.803
Method:	Least Squares	F-statistic:	615.7
Date:	Mon, 15 Jan 2024	Prob (F-statistic):	1.29e-262
Time:	21:51:14	Log-Likelihood:	-1094.5
No. Observations:	756	AIC:	2201.
Df Residuals:	750	BIC:	2229.
Df Model:	5		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0165	0.038	0.438	0.661	-0.058	0.091
Mkt_Prem	1.3084	0.025	52.765	0.000	1.260	1.357
SMB	-0.1903	0.053	-3.564	0.000	-0.295	-0.085
HML	-0.7681	0.045	-17.063	0.000	-0.857	-0.680
RMW	0.4220	0.065	6.502	0.000	0.295	0.549
СМА	1.0952	0.086	12.768	0.000	0.927	1.264

Omnibus:	137.137	Durbin-Watson:	1.880
Prob(Omnibus):	0.000	Jarque-Bera (JB):	839.010
Skew:	0.656	Prob(JB):	6.47e-183
Kurtosis:	7.991	Cond. No.	4.13

Notes:

coef

In []:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

file:///Users/kumarx/Documents/Time_Series_Regression.html

N	1.1	+		=
U	u	L	L	

	Intercept	Mkt_Prem	SMB	HML	RMW	СМА
AAPL	0.02	1.31	-0.19	-0.77	0.42	1.10
AJG	0.07	0.88	-0.25	0.24	0.07	-0.15
AVB	-0.06	0.88	-0.02	0.43	0.15	-0.11
DLR	-0.04	0.86	-0.48	-0.17	0.03	0.28
ICE	0.01	0.83	-0.32	0.12	-0.19	-0.10
INCY	-0.01	0.66	-0.12	-0.29	-0.34	0.41
КНС	-0.02	0.79	-0.34	0.19	0.20	0.77
LLY	0.10	0.74	-0.34	-0.28	0.13	0.82
МСНР	0.03	1.47	0.52	-0.28	0.30	-0.11
MDT	-0.07	0.82	-0.05	0.37	-0.00	-0.17
МОН	0.09	0.89	-0.05	-0.17	0.14	0.61
NDAQ	0.06	0.97	-0.36	0.02	-0.12	0.06
PRU	-0.01	1.29	-0.12	1.30	-0.23	-0.43
STLD	0.12	1.16	0.66	0.69	0.24	-0.09
TER	0.03	1.38	0.50	-0.48	0.12	0.05

In []: signif

\cap	1.1	+		- 1	=
U	u	L	L		=

	Intercept	Mkt_Prem	SMB	HML	RMW	СМА	rsquared
AAPL	False	True	True	True	True	True	0.80
AJG	False	True	True	True	False	False	0.58
AVB	False	True	False	True	False	False	0.49
DLR	False	True	True	True	False	True	0.40
ICE	False	True	True	True	True	False	0.55
INCY	False	True	False	True	True	True	0.28
кнс	False	True	True	True	True	True	0.42
LLY	False	True	True	True	False	True	0.28
МСНР	False	True	True	True	True	False	0.67
MDT	False	True	False	True	False	False	0.54
МОН	False	True	False	False	False	True	0.30
NDAQ	False	True	True	False	False	False	0.62
PRU	False	True	False	True	True	True	0.84
STLD	False	True	True	True	False	False	0.56
TER	False	True	True	True	False	False	0.60

In []: signif[five_factors].mean().sort_values(ascending=False).mul(100)

```
Out[]: Mkt_Prem 100.00
HML 86.67
SMB 66.67
CMA 46.67
RMW 40.00
dtype: float64
```

The Market Premium is always significant and the marginal benefits of adding more factors is declining.

```
In []: signif['rsquared'].mean()
Out[]: 0.5282455279880509
```

On average the Fama/French 5 factor model explains about 53% of the Stock performance.

```
In []:
```