David Gracobhi CPSC 260: Assignment #4

A-10 E-14 B-11 F-15 D-13

Textbook Practice Problems 2.14) Expression Value

2.14) Expression Value

0x20

x 1 y 0x7F

7x 1 my 0xDF Expression Value 0 × 0 1 x 44 Y x 11 14 0 × 0 0 x 青春 ~ y DX 00 $\bigcirc \times \bigcirc \setminus$ $\chi = 0x66 = 0110|0110 = 01100110$ y = 0 x 39 = 0011/1001 = 00111001 01100110 01100110 10011001 \$ 00111001 10011100L 111000110 00100000 = 0x20 011 | 111 = 0x7F 1101 | 111 01100110 |年|= 1 0 11 0 = 0 6 00000000 00000000 1111 = 1 1 = 1 x == y using bit-level and logic ops XOR: A !(x^y) so opposite output of XOR

2,16)	X	x 443		x >> 2 (logic)		x>>2 (arithmetic)	
Hex	Binary	Hex	Binary	Hex	Bihary	Hex	Bihary
(3	11000011	0x 18	00011000	0,30	00110000	Ox Fo	11110000
					00011101	0x 1D	00011101
					10000100	OX EI	11 100001
66	01100110	0x30	00110000	0x19	00011001	Ox 19	00011001
		1		, p	i right-	bit n	dht→

8421

bi right >> fill zero

fill w most left #

Stared v. 1	Insigned Table	Assuming C: int
	Signed	Unsigned
Min. Value	$-\left[-(2^{32}/2)-1\right]$	
Max. Value	$7(2^{32}/2)-1$	232-1
Symmetric Range	Yes	No

1- Byle	Signed Integers		
Decimal	Binary	Hex	2's Complement
27	00011011	OXIB	11100101
73	01001001	0×49	10110111
56	00111000	0×38	11001000
1	00000001	0 x 01	1111111
0	0000000	0 x 00	0000000

$$\frac{73-64=9-8=1-1=0}{56-32=24-16=8-8=0}$$

$$\sim 73 = 10|10|10$$

 $\sim 56 = 1|000|11$
 $\sim 1 = |11|11|10$
 $\sim 0 = |11|11|11$

$$2's$$
 (omplement: bitwise NOT plus | 128 + 64 + 4 + 2 + 1 = 192 + 7 = 199 | 199 + 1 = 200 - 192 = 8