Mathematical Structures of Programs – Specification and Implementation –

Zhenjiang Hu

National Institue of Informatics

May - June, 2011

Outline

- Specification and Implementation
- 2 Homomorphism
- Foldr
- 4 Application: Parallelization

Specification and Implementation

- A specification
 - describes what task an algorithm is to perform,
 - expresses the programmers' intent,
 - should be as clear as possible.

Specification and Implementation

A specification

- describes what task an algorithm is to perform,
- expresses the programmers' intent,
- should be as clear as possible.

An implementation

- describes how task is to perform,
- expresses an algorithm (an execution),
- should be efficiently done within the time and space available.

Specification and Implementation

A specification

- describes what task an algorithm is to perform,
- expresses the programmers' intent,
- should be as clear as possible.

An implementation

- describes how task is to perform,
- expresses an algorithm (an execution),
- should be efficiently done within the time and space available.

The link is that the implementation should be proved to satisfy the specification.

How to write a specification?

 By predicates: describing intended relationship between input and output of an algorithm.

How to write a specification?

- By predicates: describing intended relationship between input and output of an algorithm.
- By functions: describing straightforward functional mapping from input to output of an algorithm, which is executable but could be terribly inefficient.

Specifying Algorithms by Predicates (1/3)

Specification: describing intended relationship between input and output of an algorithm.

Specifying Algorithms by Predicates (1/3)

Specification: describing intended relationship between input and output of an algorithm.

Example: increase

The specification

```
increase :: Int \rightarrow Int increase x > square x
```

says that the result of *increase* should be strictly greater than the square of its input, where *square* x = x * x.

Specifying Algorithms by Predicates (2/3)

In this case, an Implementation is first given and then proved to satisfy the specification.

Specifying Algorithms by Predicates (2/3)

In this case, an Implementation is first given and then proved to satisfy the specification.

Example: increase (continue)

One implementation is

increase
$$x = square x + 1$$

which can be proved by the following simple calculation.

```
increase x
= { definition of increase }
square x + 1
> { arithmetic property }
square x
```

Specifying Algorithms by Predicates (3/3)

Exercise S1

Give another implementation of *increase* and prove that your implementation meets its specification.

Specifying Algorithms by Functions (1/3)

Specification: describing straightforward functional mapping from input to output of an algorithm, which is executable but could be terribly inefficient.

Specifying Algorithms by Functions (1/3)

Specification: describing straightforward functional mapping from input to output of an algorithm, which is executable but could be terribly inefficient.

Example: quad

The specification for computing quadruple of a number can be described straightforwardly by

$$quad x = x * x * x * x$$

which is not efficient in the sense that multiplications are used three times.

Specifying Algorithms by Functions (2/3)

With functional specification, we do not need to invent the implementation; just to improve specification via calculation.

Specifying Algorithms by Functions (2/3)

With functional specification, we do not need to invent the implementation; just to improve specification via calculation.

Example: quad (continue)

We derive (develop) an efficient algorithm with only two multiplications by the following calcualtion.

```
quad x
= { specification }
    x * x * x * x
= { since x is associative }
    (x * x) * (x * x)
= { definition of square }
    square x * square x
= { definition of square }
    square (aquare x)
```

Specifying Algorithms by Functions (3/3)

Exercise S2

Extend the idea in the derivation of efficient *quad* to develop an efficient algorithm for computing *exp* defined by

$$exp(x, n) = x^n$$
.

• Functional specification is executable.

- Functional specification is executable.
- Functional specification is powerful to express intended mappings directly by functions or through their composition.

- Functional specification is executable.
- Functional specification is powerful to express intended mappings directly by functions or through their composition.
- Functional specification is suitable for reasoning, when functions used are well-structured with good algebraic properties.

- Functional specification is executable.
- Functional specification is powerful to express intended mappings directly by functions or through their composition.
- Functional specification is suitable for reasoning, when functions used are well-structured with good algebraic properties.

In this course, we will consider functional specification.

Mathematical Structures in Programs – Homomorphism –

Zhenjiang Hu

National Institute of Informatics

May 30, 2010

Outline

- Specification and Implementation
- 2 Homomorphism
- Foldr
- 4 Application: Parallelization

Longest Even Segment Problem

Given is a sequence x and a predicate p. Required is an efficient algorithm for computing some longest segment of x, all of whose elements satisfy p.

$$\textit{lsp even } [3,1,4,1,5,9,2,6,5] = [2,6]$$

Homomorphisms

A homomorphism from a monoid $(\alpha, \oplus, id_{\oplus})$ to a monoid $(\beta, \otimes, id_{\otimes})$ is a function h satisfying the two equations:

$$h id_{\oplus} = id_{\otimes}$$

 $h (x \oplus y) = h \times \otimes h y$

Lemma (Promotion)

h is a homomorphism if and only if the following holds.

$$h \cdot \oplus / = \otimes / \cdot h *$$

Lemma (Promotion)

h is a homomorphism if and only if the following holds.

$$h \cdot \oplus / = \otimes / \cdot h *$$

Proof Sketch.

- ←: simple.
- \Rightarrow : by induction.

Lemma (Promotion)

h is a homomorphism if and only if the following holds.

$$h \cdot \oplus / = \otimes / \cdot h *$$

Proof Sketch.

- ←: simple.
- ⇒: by induction.

So we have

$$f * \cdot ++ / = ++ / \cdot f * * \oplus / \cdot ++ / = \oplus / \cdot (\oplus /) *$$

Characterization of Homomorphisms

Lemma

h is a homomorphism from the list monoid if and only if there exists f and \oplus such that

$$h = \oplus / \cdot f *$$

Proof

 \Rightarrow :

```
h
         { definition of id }
     h · id
= { identity lemma (can you prove it?) }
     h \cdot ++ / \cdot [\cdot] *
= { h is a homomorphism }
     \oplus / \cdot h * \cdot [\cdot] *
= { map distributivity }
     \oplus / \cdot (h \cdot [\cdot]) *
= { definition of h on singleton }
     \oplus / \cdot f *
```

Proof (Cont.)

 \Leftarrow : We reason that $h = \oplus / \cdot f *$ is a homomorphism by calculating

Examples of Homomorphisms

• #: compute the length of a list.

$$\# = +/\cdot \textit{K}_1 *$$

Examples of Homomorphisms

• #: compute the length of a list.

$$\# = +/\cdot K_1*$$

• reverse: reverses the order of the elements in a list.

$$\textit{reverse} = \tilde{+} / \cdot [\cdot] *$$

Here,
$$x \tilde{\oplus} y = y \oplus x$$
.

• sort: reorders the elements of a list into ascending order.

$$sort = \wedge \wedge / \cdot [\cdot] *$$

Here, $\wedge \wedge$ (pronounced merge) is defined by the equations:

$$x \wedge []$$
 = x
 $[] \wedge y$ = y
 $([a] ++ x) \wedge ([b] ++ y)$ = $[a] ++ (x \wedge ([b] ++ y))$, if $a \leq b$
= $[b] ++ (([a] ++ x) \wedge y)$, otherwise

• all p: returns True if every element of the input list satisfies the predicate p.

all
$$p = \wedge / \cdot p*$$

 all p: returns True if every element of the input list satisfies the predicate p.

all
$$p = \wedge / \cdot p*$$

• some p: returns True if at least one element of the input list satisfies the predicate p.

some
$$p = \lor / \cdot p*$$

• *split*: splits a non-empty list into its last element and the remainder.

split :
$$[\alpha]^+ \rightarrow ([\alpha], \alpha)$$

split $[a]$ = $([], a)$
split $(x ++ y)$ = split $x \oplus$ split y
where $(x, a) \oplus (y, b) = (x ++ [a] ++ y, b)$

• *split*: splits a non-empty list into its last element and the remainder.

split :
$$[\alpha]^+ \to ([\alpha], \alpha)$$

split $[a]$ = $([], a)$
split $(x ++ y)$ = split $x \oplus$ split y
where $(x, a) \oplus (y, b) = (x ++ [a] ++ y, b)$

Note: split is a homomorphism on the semigroup ($[\alpha]^+, +$).

 split: splits a non-empty list into its last element and the remainder.

$$\begin{array}{lll} \textit{split} & : & [\alpha]^+ \to ([\alpha], \alpha) \\ \textit{split} \ [a] & = & ([], a) \\ \textit{split} \ (x +\!\!\!\!\!+ y) & = & \textit{split} \ x \oplus \textit{split} \ y \\ & & & \text{where} \ (x, a) \oplus (y, b) = (x +\!\!\!\!\!+ [a] +\!\!\!\!\!+ y, b) \\ \end{array}$$

Note: *split* is a homomorphism on the semigroup ($[\alpha]^+, +$).

Exercise: Let $init = \pi_1 \cdot split$, where π_1 (a, b) = a. Show that init is not a homomorphism.

All applied to

The operator $^{\circ}$ (pronounced all applied to) takes a sequence of functions and a value and returns the result of applying each function to the value.

$$[f,g,\ldots,h]^{\circ}a=[f\ a,g\ a,\ldots,h\ a]$$

Formally, we have

$$[]^o a = []$$

 $[f]^o a = [f a]$
 $(fs ++ gs)^o a = (fs^o a) ++ (gs^o a)$

so, (o a) is a homomorphism.

Exercise: Show that $[\cdot] = [id]^o$.

Conditional Expressions

The conditional notation

$$h x = f x$$
, if $p x$
= $g x$, otherwise

will be written by the McCarthy conditional form:

$$h = (p \rightarrow f, g)$$

Conditional Expressions

The conditional notation

$$h x = f x$$
, if $p x$
= $g x$, otherwise

will be written by the McCarthy conditional form:

$$h = (p \rightarrow f, g)$$

Laws on Conditional Forms

$$h \cdot (p \to f, g) = (p \to h \cdot f, h \cdot g)$$

$$(p \to f, g) \cdot h = (p \cdot h \to f \cdot h, g \cdot h)$$

$$(p \to f, f) = f$$

(Note: all functions are assumed to be total.)

Filter

The operator \triangleleft (pronounced filter) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Filter

The operator \triangleleft (pronounced filter) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Exercise: Prove that the filter satisfies the filter promotion property:

$$(p\triangleleft)\cdot ++/=++/\cdot (p\triangleleft)*$$

Filter

The operator \triangleleft (pronounced filter) takes a predicate p and a list x and returns the sublist of x consisting, in order, of all those elements of x that satisfy p.

$$p \triangleleft = ++ / \cdot (p \rightarrow [id]^o, []^o) *$$

Exercise: Prove that the filter satisfies the filter promotion property:

$$(p\triangleleft)\cdot ++/=++/\cdot (p\triangleleft)*$$

Exercise: Prove that the filter satisfies the map-filter swap property:

$$(p \triangleleft) \cdot f * = f * \cdot (p \cdot f) \triangleleft$$

Cross-product

 X_{\oplus} is a binary operator that takes two lists x and y and returns a list of values of the form $a \oplus b$ for all a in x and b in y.

$$[a,b]X_{\oplus}[c,d,e] = [a \oplus c, b \oplus c, a \oplus d, b \oplus d, a \oplus e, b \oplus e]$$

Formally, we define X_{\oplus} by three equations:

$$\begin{array}{rcl} xX_{\oplus}[\,] & = & [\,] \\ xX_{\oplus}[a] & = & (\oplus a) * x \\ xX_{\oplus}(y +\!\!\!+ z) & = & (xX_{\oplus}y) +\!\!\!\!+ (xX_{\oplus}z) \end{array}$$

Thus xX_{\oplus} is a homomorphism.

Properties

[] is the zero element of X_{\oplus} :

$$[]X_{\oplus}x = xX_{\oplus}[] = []$$

We have cross promotion rules:

$$f * * \cdot X_{++} / = X_{++} / \cdot f * * * \oplus / \cdot X_{++} / = X_{\oplus} / \cdot (X_{\oplus} /) *$$

Example Uses of Cross-product

 cp: takes a list of lists and returns a list of lists of elements, one from each component.

$$cp [[a, b], [c], [d, e]] = [[a, c, d], [b, c, d], [a, c, e], [b, c, e]]$$

$$cp = X_{++} / \cdot ([id]^o *) *$$

• subs: computes all subsequences of a list.

subs
$$[a, b, c] = [[], [a], [b], [a, b], [c], [a, c], [b, c], [a, b, c]]$$

$$subs = X_{++} / \cdot [[]^o, [id]^o]^o *$$

• subs: computes all subsequences of a list.

subs
$$[a, b, c] = [[], [a], [b], [a, b], [c], [a, c], [b, c], [a, b, c]]$$

$$subs = X_{++} / \cdot [[]^o, [id]^o]^o *$$

Note:
$$subs = cp \cdot [[]^o, [id]^o] *.$$

• (all p)⊲:

$$(\textit{all even}) \triangleleft [[1, 3], [2, 4], [1, 2, 3]] = [[2, 4]]$$
 $(\textit{all p}) \triangleleft = ++ / \cdot (X_{++} / \cdot (p \rightarrow [[id]^o]^o, []^o)*)*$

Selection Operators

Suppose f is a numeric valued function. We want to define an operator \uparrow_f such that

- $\mathbf{0} \uparrow_f$ is associative, commutative and idempotent;
- \bigcirc \uparrow_f is selective in that

$$x \uparrow_f y = x$$
 or $x \uparrow_f y = y$

 \bigcirc \uparrow_f is maximizing in that

$$f(x \uparrow_f y) = f x \uparrow f y$$

Selection Operators

Suppose f is a numeric valued function. We want to define an operator \uparrow_f such that

- $\mathbf{0} \uparrow_f$ is associative, commutative and idempotent;
- \bigcirc \uparrow_f is selective in that

$$x \uparrow_f y = x$$
 or $x \uparrow_f y = y$

 \bigcirc \uparrow_f is maximizing in that

$$f(x \uparrow_f y) = f x \uparrow f y$$

Condition: f should be injective.

An Example: ↑#

But if f is not injective, then $x \uparrow_f y$ is not specified when $x \neq y$ but f x = f y.

$$[1,2] \uparrow_{\#} [3,4]$$

An Example: $\uparrow_{\#}$

But if f is not injective, then $x \uparrow_f y$ is not specified when $x \neq y$ but f x = f y.

$$[1,2]\uparrow_{\#}[3,4]$$

To solve this problem, we may *refine* f to an injective function f' such that

$$f x < f y \Rightarrow f' x < f' y$$
.

An Example: ↑#

But if f is not injective, then $x \uparrow_f y$ is not specified when $x \neq y$ but f x = f y.

$$[1,2]\uparrow_{\#}[3,4]$$

To solve this problem, we may *refine* f to an injective function f' such that

$$f x < f y \Rightarrow f' x < f' y$$
.

So we may select the *lexicographically* least sequence as the value of $x \uparrow_{\#} y$ when #x = #y.

In this case, ++ distributes through $\uparrow_{\#}$:

$$x ++ (y \uparrow_{\#} z) = (x ++ y) \uparrow_{\#} (x ++ z)$$

 $(x \uparrow_{\#} y) ++ z = (x ++ z) \uparrow_{\#} (y ++ z)$

That is,

$$(x ++) \cdot \uparrow_{\#} / = \uparrow_{\#} / \cdot (x ++) * (++ x) \cdot \uparrow_{\#} / = \uparrow_{\#} / \cdot (++ x) * .$$

We assume $\omega=\uparrow_\#/[]$, satisfying $\#\omega=-\infty$. (ω is the zero element of #)

A short calculation

```
\uparrow_{\#} / \cdot (all \ p) \lhd
= \qquad \{ \text{ definition before } \}
\uparrow_{\#} / \cdot ++ / \cdot (X_{++} / \cdot (p \to [[id]^o]^o, []^o) *) *
= \qquad \{ \text{ reduce promotion } \}
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot X_{++} / \cdot (p \to [[id]^o]^o, []^o) *) *
= \qquad \{ \text{ # distributes over } \uparrow_{\#} \}
\uparrow_{\#} / \cdot (++ / \cdot (\uparrow_{\#} /) * \cdot (p \to [[id]^o]^o, []^o) *) *
= \qquad \{ \text{ many steps ... } \}
\uparrow_{\#} / \cdot (++ / \cdot (p \to [id]^o, K_\omega) *) *
```

Existence of Homomorphism

Existence Lemma

The list function h is a homomorphism iff the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v ++ w) = h (x ++ y)$$

holds for all lists v, w, x, y.

Existence of Homomorphism

Existence Lemma

The list function h is a homomorphism iff the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v ++ w) = h (x ++ y)$$

holds for all lists v, w, x, y.

Proof Sketch.

• \Rightarrow : obvious by assuming $h = \odot / \cdot f *$.

Existence of Homomorphism

Existence Lemma

The list function h is a homomorphism iff the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v ++ w) = h (x ++ y)$$

holds for all lists v, w, x, y.

Proof Sketch.

- \Rightarrow : obvious by assuming $h = \odot / \cdot f *$.
- \Leftarrow : Define \odot by $t \odot u = h (g t + + g u)$. for some g such that $h = h \cdot g \cdot h$ (such a g exisits!). Thus

$$h(x + y) = h x \odot h y.$$

Reference

Lemma

For every computatble total function h with enumerable domain, there is a computatble (but possibly partial) function g such that $h \cdot g \cdot h = h$.

Reference

Lemma

For every computatble total function h with enumerable domain, there is a computatble (but possibly partial) function g such that $h \cdot g \cdot h = h$.

Proof. Here is one suitable definition of g.

$$g t = head [x \mid h x = t]$$

If t is in the range of h then this process terminates.

Specification of the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$lsp = \uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs$$

Specification of the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$lsp = \uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs$$

Property: *lsp* is not a homomorphism.

Specification of the Problem

Recall the problem of computing the longest segment of a list, all of whose elements satisfied some given property p.

$$lsp = \uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs$$

Property: *Isp* is not a homomorphism.

This is because:

$$lsp [2,1] = lsp [2] = [2]$$

 $lsp [4] = lsp [4] = [4]$

does not imply

$$lsp([2,1] ++ [4]) = lsp([2] ++ [4]).$$

Calculating a Solution to the Problem

```
\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs
= \{ \text{ segment decomposition } \}
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot tails) * \cdot inits \}
= \{ \text{ result before } \}
\uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (+ + / \cdot (p \rightarrow [id]^o, K_\omega) *) * \cdot tails) * \cdot inits \}
= \{ \text{ Horner's rule with } x \odot a = (x + + (p \ a \rightarrow [a], \omega) \uparrow_{\#} [] \} \}
\uparrow_{\#} \cdot \odot \not \rightarrow [] * \cdot inits \}
= \{ \text{ accumulation lemma } \}
\uparrow_{\#} \cdot \odot \not \rightarrow []
```

Calculating a Solution to the Problem

```
\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot segs
= \begin{cases} \text{segment decomposition } \\ \uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (all \ p) \triangleleft \cdot tails) * \cdot inits \end{cases}
= \begin{cases} \text{result before } \} \\ \uparrow_{\#} / \cdot (\uparrow_{\#} / \cdot (++ / \cdot (p \rightarrow [id]^o, K_\omega) *) * \cdot tails) * \cdot inits \end{cases}
= \begin{cases} \text{Horner's rule with } x \odot a = (x ++ (p \ a \rightarrow [a], \omega) \uparrow_{\#} [] \end{cases} \}
\uparrow_{\#} \cdot \odot \not \to_{[]} * \cdot inits \end{cases}
= \begin{cases} \text{accumulation lemma } \}
\uparrow_{\#} \cdot \odot \not \to_{[]} \end{cases}
```

Exercise: Show the final program is linear in the number of calculation of p.

Outline

- Specification and Implementation
- 2 Homomorphism
- Foldr
 - Definition
 - Fusion
 - Tupling
- 4 Application: Parallelization

Mathematical Structures in Programs – Foldr (Catamorphism, Right Reduction) –

Zhenjiang Hu

National Institue of Informatics

June 6, 2011

Foldr

Foldr is the most essential and simplest computation pattern on the cons lists.

$$[\alpha] = [\] \mid \alpha : [\alpha]$$

Foldr

Foldr is the most essential and simplest computation pattern on the cons lists.

$$[\alpha] = [] \mid \alpha : [\alpha]$$

Given e and \oplus , the following computation pattern

$$h[] = e$$

 $h(x:xs) = x \oplus h xs$

takes a lists, replaces [] by e and (:) by \oplus , and evaluates the result.

Foldr

Foldr is the most essential and simplest computation pattern on the cons lists.

$$[\alpha] = [] \mid \alpha : [\alpha]$$

Given e and \oplus , the following computation pattern

$$h[] = e$$

 $h(x:xs) = x \oplus h xs$

takes a lists, replaces [] by e and (:) by \oplus , and evaluates the result.

Example

$$x_1: (x_2: (x_3: (x_4: []))) \xrightarrow{[]\Rightarrow e \Rightarrow \oplus} x_1 \oplus (x_2 \oplus (x_3 \oplus (x_4 \oplus e)))$$

foldr

The pattern of computation by h is captured by a higher order function foldr.

foldr ::
$$(\alpha \to \beta \to \beta) \to \beta \to [\alpha] \to \beta$$

foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

foldr

The pattern of computation by h is captured by a higher order function foldr.

foldr ::
$$(\alpha \to \beta \to \beta) \to \beta \to [\alpha] \to \beta$$

foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

Example: h in foldr

$$h = foldr(\oplus) e$$

Specification with foldr

Many list functions can be specified by a single foldr.

Specification with foldr

Functions in foldr

concat

Many list functions can be specified by a single foldr.

```
sum = foldr (+) 0
product = foldr (*) 1
and = foldr (\land) True
or = foldr (\lor) False
maximum = foldr max (-\infty)
minimum = foldr min \infty
```

length = foldr one plus 0

= foldr (++)

where one plus x r = 1 + r

Problem

Write a foldr specification for reversing a list.

reverse
$$[x_1, x_2, ..., x_n] \rightarrow [x_n, ..., x_2, x_1]$$

Problem

Write a foldr specification for reversing a list.

reverse
$$[x_1, x_2, ..., x_n] \rightarrow [x_n, ..., x_2, x_1]$$

Idea: Assuming $reverse = foldr \ (\oplus) \ e$, we obtain e and \oplus by considering the following two questions.

- What is the result of reverse []? This helps derive e.
- How to obtain the result of reverse (x : xs) from x and r, given that r is the result of reverse xs. This helps derive \oplus .

Problem

Write a foldr specification for reversing a list.

reverse
$$[x_1, x_2, ..., x_n] \rightarrow [x_n, ..., x_2, x_1]$$

Idea: Assuming $reverse = foldr \ (\oplus) \ e$, we obtain e and \oplus by considering the following two questions.

- What is the result of reverse []? []
- How to obtain the result of reverse (x : xs) from x and r, given that r is the result of reverse xs. This helps derive \oplus .

Problem

Write a foldr specification for reversing a list.

reverse
$$[x_1, x_2, ..., x_n] \rightarrow [x_n, ..., x_2, x_1]$$

Idea: Assuming $reverse = foldr \ (\oplus) \ e$, we obtain e and \oplus by considering the following two questions.

- What is the result of reverse []? []
- How to obtain the result of reverse (x : xs) from x and r, given that r is the result of reverse xs. r ++ [x]

Problem

Write a foldr specification for reversing a list.

reverse
$$[x_1, x_2, ..., x_n] \rightarrow [x_n, ..., x_2, x_1]$$

Idea: Assuming $reverse = foldr \ (\oplus) \ e$, we obtain e and \oplus by considering the following two questions.

- What is the result of reverse []? []
- How to obtain the result of reverse (x : xs) from x and r, given that r is the result of reverse xs. r ++ [x]

Answer

$$reverse = foldr \ (\oplus) \ []$$
 where $x \oplus r = r ++ [x]$

How expressive is a *foldr*?

Many list functions can be described by a single *foldr*, but not all list functions can be described by a single foldr.

How expressive is a foldr?

Many list functions can be described by a single *foldr*, but not all list functions can be described by a single foldr.

Example

The decimal function cannot be described by a single foldr.

decimal
$$[x_0, ..., x_n] = \sum_{k=0}^{n} x_k 10^{n-k}$$

How expressive is a foldr?

Many list functions can be described by a single *foldr*, but not all list functions can be described by a single foldr.

Example

The decimal function cannot be described by a single foldr.

decimal
$$[x_0, ..., x_n] = \sum_{k=0}^{n} x_k 10^{n-k}$$

Proof Sketch. Suppose decimal = foldr (\oplus) e. Then contradiction happens.

$$\begin{array}{rcl} 123 & = & \textit{decimal} \ [1,2,3] \\ & = & 1 \oplus \textit{decimal} \ [2,3] \\ & = & 1 \oplus 23 \\ & = & 1 \oplus \textit{decimal} \ [0,2,3] \\ & = & \textit{decimal} \ [1,0,2,3] \\ & = & 1023 \end{array}$$

When can a function be described by a foldr?

Theorem (Gibbons&Hutton:2001)

A list function h can be described by a *foldr*, if and only if for all x, xs, ys,

$$h xs = h ys \Rightarrow h(x : xs) = h(x : ys).$$

When can a function be described by a foldr?

Theorem (Gibbons&Hutton:2001)

A list function h can be described by a *foldr*, if and only if for all x, xs, ys,

$$h xs = h ys \Rightarrow h(x : xs) = h(x : ys).$$

Exercise L3-6

Use the above theorem to prove that *sum* can be described by a fold, whereas *decimal* cannot.

When can a function be described in terms of foldr?

Theoretically, we have the following theorem.

Theorem

Any list function can be described by a foldr followed by a project function.

When can a function be described in terms of foldr?

Theoretically, we have the following theorem.

Theorem

Any list function can be described by a foldr followed by a project function.

Proof Sketch. Let *h* be a list function. It is always possible to define it as follows.

$$fst \cdot foldr \ (\oplus) \ (h \ [], [])$$

where $x \oplus (r_1, r_2) = (h \ (x : r_2), x : r_2)$

When can a function be described in terms of foldr?

Theoretically, we have the following theorem.

Theorem

Any list function can be described by a foldr followed by a project function.

Proof Sketch. Let *h* be a list function. It is always possible to define it as follows.

$$fst \cdot foldr \ (\oplus) \ (h \ [\], [\])$$

where $x \oplus (r_1, r_2) = (h \ (x : r_2), x : r_2)$

Practically, this is not useful because it never reuses the recursive results at all.

Mathematical Structures in Programming – Fusion –

Zhenjiang Hu

National Institute of Informatics

June 6, 2011

max

Consider the function to compute the maximum of a list:

$$max$$
 : $[Int] \rightarrow Int$
 $max = head \cdot sort$

where sort is defined by

```
sort = foldr insert []

insert a [] = [a]

insert a (b:x) = if a \ge b then a:(b:x)

else b:insert \ a \ x.
```

How to eliminate all intermediate results in computing max?

reverse

Consider the following function to reverse a list:

rev x = fastrev' x []
fastrev' x y = reverse x ++ y
where

$$reverse = foldr (\lambda a r. r ++ [a]) []$$

How to eliminate the intermediate list in computing fastrev'?

sumsq

Consider the function to compute the sum of squares of numbers from one number to the other.

How to eliminate all intermediate results in computing sumsq?

Fusion Law for Foldr

Lemma (Foldr Fusion)

$$\frac{f(a \oplus r) = a \otimes f \ r}{f \circ foldr \ (\oplus) \ e = foldr \ (\otimes) \ (f \ e)}$$

Fusion: max

Consider the fusion for max:

$$max = head \circ foldr insert []$$

where we assume that head [] = $-\infty$.

Fusion: max

Consider the fusion for *max*:

$$max = head \circ foldr insert []$$

where we assume that head [] = $-\infty$.

To apply the foldr fusion lemma, we consider calculation of head (insert a r).

We calculate as follows.

• For the case of r = [], we have:

Fusion Example: max

• For the case of r = b : x, we have:

```
head (insert a (b:x))
= { def. of insert }
head (if a \ge b then a:(b:x) else b:insert a x)
= { distribute head over if }
if a \ge b then head (a:(b:x)) else head (b:insert a x)
= { def. of head }
if a \ge b then a else b
= { assumption: r = b:x }
if a \ge head r then a else head r
```

In summary, we have

head (insert a
$$r$$
) = $a \otimes head \ r$
where $a \otimes r =$ if $a \ge r$ then a else r

It follows from the foldr fusion lemma that we get the following new definition for *max*.

$$max = foldr (\otimes) (-\infty)$$

A linear time program!

Fusion Example: Fast Reverse

Consider fusion of the following program:

$$fastrev' \times y = reverse \times ++ y$$

Fusion Example: Fast Reverse

Consider fusion of the following program:

$$fastrev' \times y = reverse \times ++ y$$

Exercise

What is the intermediate list in the above computation?

Fusion Example: Fast Reverse

Consider fusion of the following program:

$$fastrev' \times y = reverse \times ++ y$$

Exercise

What is the intermediate list in the above computation?

We can see where fusion calculation is application if we rewrite the definition.

$$fastrev' x = (+) (reverse x)$$

$$= (+) \circ foldr (\lambda a r. r ++ [a]) []) x$$

Let us calculate the fusion condition:

$$(++) (r ++ [a])$$

$$= \{ \eta \text{ expansion } \}$$

$$\lambda y. (++) (r ++ [a]) y$$

$$= \{ \text{ section notation } \}$$

$$\lambda y. (r ++ [a]) ++ y$$

$$= \{ \text{ associativity of } ++ \}$$

$$\lambda y. r ++ ([a] ++ y)$$

Marching it with $a \otimes ((++) r)$ gives

$$a \otimes r' = \lambda y. r' ([a] ++ y)$$

So we get

fastrev'
$$x = foldr (\otimes) ((+) []) x$$

where $a \otimes r' = \lambda y. r' ([a] ++ y)$

So we get

$$fastrev' \ x = foldr \ (\otimes) \ ((+) \ []) \ x$$

where $a \otimes r' = \lambda y \cdot r' \ ([a] + y)$

That is,

$$fastrev'$$
 [] $y = y$
 $fastrev'$ (a:r) $y = fastrev'$ r (a:y)

So we get

$$fastrev' \ x = foldr \ (\otimes) \ ((+) \ []) \ x$$

where $a \otimes r' = \lambda y \cdot r' \ ([a] + + y)$

That is,

$$fastrev'$$
 [] $y = y$
 $fastrev'$ (a:r) $y = fastrev'$ r (a:y)

A linear time algorithm!

Fusion Example: sumsq

Fusion of sumsq

Unfolding the definition of *hylo* yields the following recursive definition.

sumsq
$$(m, n)$$
 = if $m > n$ then 0
else square $m + sumsq (m + 1, n)$

Fusion of sumsq

Unfolding the definition of *hylo* yields the following recursive definition.

sumsq
$$(m, n)$$
 = if $m > n$ then 0
else square $m + sumsq (m + 1, n)$

No intermediate list exisits now!

Mathematical Structures in Programming – Tupling –

Zhenjiang Hu

National Institute of Informatics

June 6, 2011

Enumerating Bigger Elements

Enumerate all bigger elements in a list. An element is bigger if it is greater than the sum of the elements that follow it till the end of the list.

biggers
$$[3, 10, 4, -2, 1, 3] = [10, 4, -3]$$

Enumerating Bigger Elements

Enumerate all bigger elements in a list. An element is bigger if it is greater than the sum of the elements that follow it till the end of the list.

biggers
$$[3, 10, 4, -2, 1, 3] = [10, 4, -3]$$

biggers [] = []biggers (a : x) = if a > sum x then a : biggers x else biggers x sum [] = 0sum (a : x) = a + sum x

Enumerating Bigger Elements

Enumerate all bigger elements in a list. An element is bigger if it is greater than the sum of the elements that follow it till the end of the list.

biggers
$$[3, 10, 4, -2, 1, 3] = [10, 4, -3]$$

biggers
$$[] = []$$

biggers $(a : x) = if$ $a > sum x$ then $a : biggers x$ else biggers x sum $[] = 0$
sum $(a : x) = a + sum x$

How can we optimize this program?

Definition (Mutumorphism)

Functions f_1, \ldots, f_n are said to form a mutumorphism if each f_i $(i = 1, 2, \ldots, n)$ is defined in the following form:

$$f_i [] = e_i$$

 $f_i (a:x) = a \oplus_i (f_1 x, f_2 x, ..., f_n x)$

where e_i $(i=1,2,\ldots,n)$ are given constants and \oplus_i $(i=1,2,\ldots,n)$ are given binary functions. We represent the function f $x=(f_1$ x,\ldots,f_n x) as follows.

$$f = \llbracket (e_1, \ldots, e_n), (\oplus_1, \ldots, \oplus_n) \rrbracket.$$

Expressive Power of Mutumorphism

• foldr is a special case:

$$foldr \ (\oplus) \ e = \llbracket (e), (oplus)
rbracket$$

It covers all primitive recursive functions on lists.

$$prim[] = e$$

 $prim(a:x) = F(a,x,prim x)$

This is because we can consider *prim* is mutually defined with the identity function on lists.

biggers as a Mutumorphism

biggers = fst
$$\circ$$
 $[([], 0), (\oplus_1, \oplus_2)]$
where $a \oplus_1 (r, s) = \text{if } a > s \text{ then } a : r \text{ else } r$
 $a \oplus_2 (r, s) = a + s$

Lemma (Mutu-Tupling)

Consider, as an example, to apply the mutu-tupling lemma to biggers.

```
\begin{array}{ll} \textit{biggers} \\ = & \{ \text{ mutumorphism for } \textit{biggers} \ \} \\ \textit{fst} \circ \llbracket (\llbracket (\rrbracket, 0), (\oplus_1, \oplus_2) \rrbracket \\ = & \{ \text{ mutu-tupling lemma} \ \} \\ \textit{fst} \circ \textit{foldr (oplus)} (\llbracket , 0) \\ & \text{ where } a \oplus (r,s) = (\text{if } a > s \text{ then } a : r \text{ else } r, a + s) \end{array}
```

Inlining *foldr* in the derived program gives the following readable recursive program:

```
biggers x = \text{let } (r, s) = tup \ x \text{ in } r

where tup [] = ([], 0)

tup (a : x) = \text{let } (r, s) = tup \ x

in (if a > s \text{ then } a : r \text{ else } r, a + s)
```

Lemma (Foldr-Tupling)

(foldr
$$(\oplus_1)$$
 e_1 x , foldr (\oplus_2) e_2 x) = foldr (\oplus) (e_1, e_2) x where $a \oplus (r_1, r_2) = (a \oplus_1 r_1, a \oplus_2 r_2)$

For example, the following program for computing the average of a list:

average
$$x = sum \ x/length \ x$$

can be transformed into the following with the foldr-tupling lemma.

average
$$x = \text{let } (s, l) = tup \times \text{in } s/l$$

where $tup = foldr (\lambda a (s, l). (a + s, 1 + l)) (0, 0)$

Outline

- Specification and Implementation
- 2 Homomorphism
- Foldr
- 4 Application: Parallelization
 - List Homomorphism and Parallel Programming
 - Towards Generic D&C Parallel Programs

Mathematical Structures in Programming — Calculational Parallelization —

Zhenjiang Hu

National Institute of Informatics

Februry 9, 2010

Maximum Prefix Sum Problem

Design a D&C parallel program that computes the maximum of all the prefix sums of a list.

$$mps [1, -2, 3, -9, 5, 7, -10, 8, -9, 10] = 5$$

List Homomorphism

Function h on lists is a list homomorphism, if

$$h[] = e$$

$$h[a] = f a$$

$$h(x++y) = h x \odot h y$$

for some \odot .

Properties

- Suitable for parallel computation in the D&C style
- Basic concept for skeletal parallel programming
- Enjoy many nice algebraic properties (1st, 2nd, 3rd Homomorphism theorems)

The Third Homomorphism Theorem (Gibbons:JFP95)

A function f can be described as a foldl and a foldr

$$f = foldr(\oplus) e$$

 $f = foldl(\otimes) e$

that is,

$$f(a:x) = a \oplus f x$$

 $f(x++[a]) = f x \otimes a$

iff there exists an associative operator ⊙ such that

$$f(x +\!\!\!\!+ y) = f \ x \odot f \ y.$$

The Third Homomorphism Theorem (Gibbons:JFP95)

A function f can be described as a foldl and a foldr

$$f = foldr(\oplus) e$$

 $f = foldl(\otimes) e$

that is,

$$f(a:x) = a \oplus f x$$

 $f(x +++ [a]) = f x \otimes a$

iff there exists an associative operator ⊙ such that

$$f(x +\!\!\!+ y) = f \ x \odot f \ y.$$

Two sequential programs guarantee existence of a parallel program!

The Third Homomorphism Theorem (Gibbons:JFP95)

A function f can be described as a foldl and a foldr

$$f = foldr(\oplus) e$$

 $f = foldl(\otimes) e$

that is,

$$f(a:x) = a \oplus f x$$

 $f(x++[a]) = f x \otimes a$

iff there exists an associative operator \odot such that

$$f(x +\!\!\!\!+ y) = f \ x \odot f \ y.$$

Two sequential programs guarantee existence of a parallel program! A cons-list cata + A snoc-list cata \Leftrightarrow A join-list cata

Existence of Homomorphism (Review)

Existence Lemma

The list function h is a homomorphism iff the implication

$$h v = h x \wedge h w = h y \Rightarrow h (v ++ w) = h (x ++ y)$$

holds for all lists v, w, x, y.

Proof of the Third Homomorphism Theorem

Proof. Let h v = h x and h w = h y. Then:

Here by the Existence Lemma, h is a homomorphism.

Examples

• sum [1, 2, 3] = 6

$$sum(a:x) = a + sum x$$

 $sum(x++[a]) = sum x + a$

Examples

• sum [1, 2, 3] = 6

$$sum (a:x) = a + sum x$$

 $sum (x ++ [a]) = sum x + a$

• sort [1,3,2] = [1,2,3]

$$sort (a:x) = insert a (sort x)$$

 $sort (x ++ [b]) = insert b (sort x)$

Examples

• sum [1, 2, 3] = 6

$$sum(a:x) = a + sum x$$

 $sum(x++[a]) = sum x + a$

• sort [1,3,2] = [1,2,3]

$$sort (a:x) = insert a (sort x)$$

 $sort (x ++ [b]) = insert b (sort x)$

• psums [1, 2, 3] = [1, 1 + 2, 1 + 2 + 3]

$$psums (a : x) = a : map (a+) (psums x)$$

 $psums (x ++ [b]) = psums x ++ [last (psums x) + b]$

A Challenge Problem

It remains as a challenge to automatically derive *efficient* an associative operator \odot from \oplus and \otimes .

Parallelization Theorem

Let f° denote a weak right inverse of f.

$$f(a:x) = a \oplus f x$$

$$f(x++[b]) = f x \otimes b$$

$$f(x++y) = f x \odot f y$$
where $a \odot b = f(f \circ a ++ f \circ b)$

Weak (Right) Inverse

• g is an inverse of f, if

$$g y = x \Leftrightarrow f x = y$$

• g is a weak (right) inverse of f, if for $y \in \text{image}(f)$

$$g y = x \Rightarrow f x = y$$

Properties of Weak Inverse

• Weak inverse always exists but may not be unique.

Example: Function sum

$$sum [] = 0$$

 $sum (a : x) = a + sum x$

can have infinite number of weak inverse:

Properties of Weak Inverse

• Weak inverse always exists but may not be unique.

Example: Function sum

$$sum [] = 0$$

 $sum (a:x) = a + sum x$

can have infinite number of weak inverse:

$$g_1 y = [y]$$

$$g_2 y = [0, y]$$

Parallelizing sum

From

- ② sum(x ++ [b]) = sum x + b
- \circ sum \circ y = [y]

we soon obtain

$$sum (x ++ y) = sum x \odot sum y$$

where
 $a \odot b = sum (sum^\circ a ++ sum^\circ b)$
 $= sum ([a] ++ [b])$
 $= a + b$

Parallelizing sum

From

1
$$sum(a:x) = a + sum x$$

②
$$sum(x ++ [b]) = sum x + b$$

sum
$$^{\circ} y = [y]$$

we soon obtain

$$sum (x ++ y) = sum x \odot sum y$$

where
 $a \odot b = sum (sum^\circ a ++ sum^\circ b)$
 $= sum ([a] ++ [b])$
 $= a + b$

That is.

$$sum(x ++ y) = sum x + sum y.$$

Weak inversion is not easy!

• What is a weak inverse for *sum*?

$$sum[] = 0$$

 $sum(a:x) = a + sum x$

Weak inversion is not easy!

• What is a weak inverse for sum? $sum^{\circ} y = [y]$

$$sum [] = 0$$

 $sum (a : x) = a + sum x$

Weak inversion is not easy!

• What is a weak inverse for sum? $\underline{sum}^{\circ} y = [y]$

$$sum [] = 0$$

 $sum (a : x) = a + sum x$

What is it for mps?

$$mps[] = 0$$
 $mps(a:x) = 0 \uparrow a \uparrow (a + mps x)$

Weak inversion is not easy!

• What is a weak inverse for sum? $\underline{sum}^{\circ} y = [y]$

$$sum [] = 0$$

 $sum (a:x) = a + sum x$

• What is it for *mps*? $\underline{mps} \circ y = [y]$

$$mps[] = 0$$

 $mps(a:x) = 0 \uparrow a \uparrow (a + mps x)$

Weak inversion is not easy!

• What is a weak inverse for sum? $\underline{sum}^{\circ} y = [y]$

$$sum [] = 0$$

 $sum (a : x) = a + sum x$

• What is it for *mps*? $\underline{mps} \circ y = [y]$

$$mps[] = 0$$

 $mps(a:x) = 0 \uparrow a \uparrow (a + mps x)$

• What is it for $f = mps \triangle sum$?

$$f x = (mps x, sum x)$$

Weak inversion is not easy!

• What is a weak inverse for sum? $\underline{sum}^{\circ} y = [y]$

$$sum [] = 0$$

 $sum (a:x) = a + sum x$

• What is it for *mps*? $\underline{mps} \circ y = [y]$

$$mps[] = 0$$

 $mps(a:x) = 0 \uparrow a \uparrow (a + mps x)$

• What is it for $f = mps \triangle sum$? $\underline{f} \circ (p, s) = [p, s - p]$ $f \times = (mps \times sum \times$

Weak inversion is challenging

Can you find a weak inverse for f?

$$f x = (mss x, mps x, mts x, sum x)$$

where

$$mss [] = 0$$

$$mss (a:x) = (a + mps x) \uparrow mss x \uparrow 0$$

$$mts [] = 0$$

$$mts (a:x) = (a + sum x) \uparrow mts x \uparrow 0$$

Weak inversion is challenging

Can you find a weak inverse for f?

$$f x = (mss x, mps x, mts x, sum x)$$

where

$$\begin{array}{lll} \mathit{mss} \ [\] & = & 0 \\ \mathit{mss} \ (a : x) & = & (a + \mathit{mps} \ x) \uparrow \mathit{mss} \ x \uparrow 0 \\ \mathit{mts} \ [\] & = & 0 \\ \mathit{mts} \ (a : x) & = & (a + \mathit{sum} \ x) \uparrow \mathit{mts} \ x \uparrow 0 \end{array}$$

$$f^{\circ}(m,p,t,s) = [p,s-p-t,m,t-m]$$

Idea:

deriving a weak right inverse

↓
solving conditional linear equations

Idea:

deriving a weak right inverse

solving conditional linear equations

Consider to find a weak right inverse for f defined by

$$f x = (mps x, sum x)$$

Let x_1, x_2 be a solution to the following equations:

$$mps [x_1, x_2] = p$$

 $sum [x_1, x_2] = s$

$$f^{\circ}(p,s)=[x_1,x_2]$$

Idea:

deriving a weak right inverse

solving conditional linear equations

• Consider to find a weak right inverse for f defined by

$$f x = (mps x, sum x)$$

Let x_1, x_2 be a solution to the following equations:

$$0 \uparrow x_1 \uparrow (x_1 + x_2) = p$$

$$x_1 + x_2 = s$$

$$f^{\circ}(p,s)=[x_1,x_2]$$

Idea:

deriving a weak right inverse

solving conditional linear equations

Consider to find a weak right inverse for f defined by

$$f x = (mps x, sum x)$$

Let x_1, x_2 be a solution to the following equations:

$$x_1 = p$$

 $x_2 = s - p$

$$f^{\circ}(p,s)=[x_1,x_2]$$

Idea:

deriving a weak right inverse

solving conditional linear equations

Consider to find a weak right inverse for f defined by

$$f x = (mps x, sum x)$$

Let x_1, x_2 be a solution to the following equations:

$$x_1 = p$$

 $x_2 = s - p$

$$f^{\circ}(p,s)=[p,s-p]$$

Conditional Linear Equations

$$t_1(x_1, x_2, ..., x_m) = c_1$$

 $t_2(x_1, x_2, ..., x_m) = c_2$
 \vdots
 $t_m(x_1, x_2, ..., x_m) = c_m$

Conditional Linear Equations

$$\begin{array}{rcl} t_1(x_1,x_2,\ldots,x_m) & = & c_1 \\ t_2(x_1,x_2,\ldots,x_m) & = & c_2 \\ & & \vdots \\ t_m(x_1,x_2,\ldots,x_m) & = & c_m \end{array}$$

$$\begin{array}{rcl} t & ::= & n \mid x \mid n \mid x \mid t_1 + t_2 \mid p \rightarrow t_1; t_2 \\ p & ::= & t_1 < t_2 \mid t_1 = t_2 \mid \neg p \mid p_1 \land p_2 \mid p_1 \lor p_2 \end{array}$$

Conditional Linear Equations

$$t_{1}(x_{1}, x_{2}, ..., x_{m}) = c_{1}$$

$$t_{2}(x_{1}, x_{2}, ..., x_{m}) = c_{2}$$

$$\vdots$$

$$t_{m}(x_{1}, x_{2}, ..., x_{m}) = c_{m}$$

Conditional linear equations can be efficiently solved by using Mathematica. [PLDI'07]

Can we generalize the idea from lists to trees?

$$f(a:x) = a \oplus f x$$

$$f(x ++ [b]) = f x \otimes b$$

$$f(x ++ y) = f x \odot f y$$
where $a \odot b = f(f \circ a ++ f \circ b)$

f is a bottom-up tree reduction f is a top-down tree reduction

$$f(t_1 \triangleleft t_2) = f \ t_1 \odot f \ t_2$$

where $a \odot b = f(f^{\circ} \ a \triangleleft f^{\circ} \ b)$

(Binary) Trees

Definition:

Tree
$$a = N \ a \ (Tree \ a) \ (Tree \ a)$$
 | E | \bullet

We assume that every tree contains one and only one hole •.

Hole Filling Operator ⊲

Definition:

Hole Filling Operator ⊲

Definition:

• (\triangleleft, \bullet) forms a monoid.

$$(t_1 \triangleleft t_2) \triangleleft t_3 = t_1 \triangleleft (t_2 \triangleleft t_3)$$

$$\bullet \triangleleft t = t \triangleleft \bullet = t$$

Bottom-up Tree Reduction

 Definition: f is a bottom-up tree reduction, if there exists a function k such that

$$f(Nalr) = ka(fl)(fr).$$

Top-Down Tree Reduction

 Definition: f is a top-down tree reduction, if there exist two functions k_l and k_r such that:

$$f(t \triangleleft (N \ a \ l \bullet)) = k_l \ a \ (f \ t) \ (f \ l),$$

$$f(t \triangleleft (N \ a \bullet r)) = k_r \ a \ (f \ t) \ (f \ r).$$

Tree Homomorphism

 Definition: h is a tree homomorphism if there exists an associative operator ⊕ such that:

$$h(t_1 \triangleleft t_2) = h t_1 \oplus h t_2.$$

The Tree Homomorphism Theorem

There exist k, k_l and k_r such that the function f can be defined in the following form

$$f(N a l r) = k a (f l) (f r)$$

$$f(t \triangleleft (N a l \bullet)) = k_l a (f t) (f l)$$

$$f(t \triangleleft (N a \bullet r)) = k_r a (f t) (f r)$$

if and only if

$$f(t_1 \triangleleft t_2) = f t_1 \odot f t_2$$

where $a \odot b = f(f^o a \triangleleft f^o b)$

where f^o is a weak (right) inverse of f.