Problemas de integración.

1. Consideramos la función $f(x)=x^2$ definida en el intervalo [0,2]. Usando una sucesión de particiones $(P_n)_n$ con nodos equiespaciados, calcular la suma inferior y superior $L(f,P_n)$ y $U(f,P_n)$ y demostrar que $\lim_{n\to\infty}L(f,P_n)=\lim_{n\to\infty}U(f,P_n)$. Deducir que f es integrable en el intervalo [0,2] y hallar el valor de la integral \int_0^2f . Indicación: $\sum_{i=1}^ni^2=\frac{1}{6}n(n+1)(2n+1)$.

Solución

Las particiones de nodos equiespaciados y diámetro $\frac{2}{n}$ con $n \in \mathbb{N}$ son las siguientes:

$$P_n = \left\{ x_0 = 0 < x_1 = \frac{2}{n} < \dots < x_i = \frac{2i}{n} < \dots < x_n = 2 \right\}.$$

La suma inferior $L(f, P_n)$ usando que la función f(x) es creciente en el intervalo [0, 2] será:

$$L(f, P_n) = \sum_{i=1}^n m_i \cdot \frac{2}{n} = \sum_{i=1}^n \inf_{x \in [x_{i-1}, x_i]} x^2 \cdot \frac{2}{n} = \sum_{i=1}^n \frac{4(i-1)^2}{n^2} \cdot \frac{2}{n} = \frac{8}{n^3} \sum_{i=1}^n (i-1)^2 = \frac{8}{n^3} \sum_{i=1}^{n-1} i^2$$
$$= \frac{8}{n^3} \cdot \frac{1}{6} (n-1)n(2n-1) = \frac{4}{3} \frac{(n-1)(2n-1)}{n^2}.$$

La suma superior $U(f, P_n)$ usando nuevamente que la función f(x) es creciente en el intervalo [0, 2] será:

$$U(f, P_n) = \sum_{i=1}^n M_i \cdot \frac{2}{n} = \sum_{i=1}^n \sup_{x \in [x_{i-1}, x_i]} x^2 \cdot \frac{2}{n} = \sum_{i=1}^n \frac{4i^2}{n^2} \cdot \frac{2}{n} = \frac{8}{n^3} \sum_{i=1}^n i^2 = \frac{8}{n^3} \cdot \frac{1}{6} n(n+1)(2n+1)$$
$$= \frac{4}{3} \frac{(n+1)(2n+1)}{n^2}.$$

Como $\lim_{n\to\infty} L(f, P_n) = \lim_{n\to\infty} U(f, P_n) = \frac{8}{3}$, deducimos que f es integrable y además $\int_0^2 f = \frac{8}{3}$.

2. Consideramos la función $f(x) = 2^x$ definida en el intervalo [0,5]. Usando una sucesión de particiones $(P_n)_n$ con nodos equiespaciados, calcular la suma inferior y superior $L(f,P_n)$ y $U(f,P_n)$ y demostrar que $\lim_{n\to\infty} L(f,P_n) = \lim_{n\to\infty} U(f,P_n)$. Deducir que f es integrable en el intervalo [0,5] y hallar el valor de la integral $\int_0^2 f$.

Solución

Las particiones de nodos equiespaciados y diámetro $\frac{5}{n}$ con $n \in \mathbb{N}$ son las siguientes:

$$P_n = \left\{ x_0 = 0 < x_1 = \frac{2}{n} < \dots < x_i = \frac{5i}{n} < \dots < x_n = 5 \right\}.$$

La suma inferior $L(f, P_n)$ usando que la función f(x) es creciente en el intervalo [0, 5] será:

$$L(f, P_n) = \sum_{i=1}^n m_i \cdot \frac{5}{n} = \sum_{i=1}^n \inf_{x \in [x_{i-1}, x_i]} 2^x \cdot \frac{5}{n} = \sum_{i=1}^n 2^{\frac{5(i-1)}{n}} \cdot \frac{5}{n} = \frac{5}{n} \sum_{i=0}^{n-1} 2^{\frac{5i}{n}} = \frac{5}{n} \sum_{i=0}^{n-1} \left(2^{\frac{5}{n}}\right)^i$$

$$= \frac{5}{n} \cdot \frac{\left(2^{\frac{5}{n} \cdot n} - 1\right)}{\left(2^{\frac{5}{n}} - 1\right)} = \frac{5 \cdot 31}{n\left(2^{\frac{5}{n}} - 1\right)},$$

donde hemos usado la igualdad de la suma de la progresión geométrica: $\sum_{i=0}^{n-1} r^i = \frac{r^n-1}{r-1}, \text{ con } r = 2^{\frac{5}{n}}.$

La suma superior $U(f, P_n)$ usando que la función f(x) es creciente en el intervalo [0, 5] será:

$$U(f, P_n) = \sum_{i=1}^n M_i \cdot \frac{5}{n} = \sum_{i=1}^n \sup_{x \in [x_{i-1}, x_i]} 2^x \cdot \frac{5}{n} = \sum_{i=1}^n 2^{\frac{5i}{n}} \cdot \frac{5}{n} = \frac{5}{n} \sum_{i=1}^n \left(2^{\frac{5}{n}}\right)^i$$

$$= \frac{5}{n} \cdot \frac{\left(2^{\frac{5}{n} \cdot (n+1)} - 2^{\frac{5}{n}}\right)}{\left(2^{\frac{5}{n}} - 1\right)} = \frac{5}{n} \cdot \frac{\left(2^5 \cdot 2^{\frac{5}{n}} - 2^{\frac{5}{n}}\right)}{\left(2^{\frac{5}{n}} - 1\right)} = \frac{5}{n} \cdot \frac{2^{\frac{5}{n}} \left(2^5 - 1\right)}{\left(2^{\frac{5}{n}} - 1\right)} = \frac{5 \cdot 31 \cdot 2^{\frac{5}{n}}}{n \cdot 2^{\frac{5}{n}}},$$

donde hemos usado la igualdad de la suma de la progresión geométrica: $\sum_{i=1}^n r^i = \frac{r^{n+1}-r}{r-1}, \text{ con } r=2^{\frac{5}{n}}.$

A continuación, calculemos el límite $\lim_{n\to\infty} L(f, P_n)$:

$$\lim_{n\to\infty}L(f,P_n)=\lim_{n\to\infty}\frac{5\cdot 31}{n\left(2^{\frac{5}{n}}-1\right)}=\lim_{x\to\infty}\frac{5\cdot 31}{x\left(2^{\frac{5}{x}}-1\right)}.$$

Para resolver el límite anterior, hacemos el cambio $t = \frac{1}{x}$, de esta forma como $x \to \infty$, $t \to 0$. Para calcular el límite que nos queda en función de t, aplicamos la regla de l'Hôpital:

$$\lim_{n \to \infty} L(f, P_n) = \lim_{x \to \infty} \frac{5 \cdot 31}{x \left(2^{\frac{5}{x}} - 1\right)} = 5 \cdot 31 \cdot \lim_{t \to 0} \frac{t}{2^{5t} - 1} = 5 \cdot 31 \cdot \lim_{t \to 0} \frac{1}{2^{5t} \cdot 5 \cdot \ln 2} = \frac{31}{\ln 2}.$$

El límite $\lim_{n\to\infty} U(f,P_n)$ se calcula de forma parecida haciendo el mismo cambio anterior $t=\frac{1}{x}$:

$$\lim_{n \to \infty} U(f, P_n) = \lim_{n \to \infty} \frac{5 \cdot 31 \cdot 2^{\frac{5}{n}}}{n \left(2^{\frac{5}{n}} - 1\right)} = 5 \cdot 31 \cdot \lim_{x \to \infty} \frac{2^{\frac{5}{x}}}{x \left(2^{\frac{5}{x}} - 1\right)} = 5 \cdot 31 \cdot \lim_{t \to 0} \frac{t \cdot 2^{5t}}{(2^{5t} - 1)}$$
$$= 5 \cdot 31 \cdot \lim_{t \to 0} \frac{2^{5t} + t \cdot 2^{5t} \cdot 5 \cdot \ln 2}{2^{5t} \cdot 5 \cdot \ln 2} = \frac{31}{\ln 2}.$$

Como los dos límites anteriores son iguales, concluimos que f es integrable en el intervalo [0,5] y además $\int_0^5 f = \frac{31}{\ln 2}.$

- 3. a) Demostrar que, si g(x) = 0 para $0 \le x \le \frac{1}{2}$ y g(x) = 1 para $\frac{1}{2} < x \le 1$, entonces $\int_0^1 g = \frac{1}{2}$.
 - b) ¿Es válida la conclusión si se cambia el valor de g en el punto $\frac{1}{2}$ por 7?

Solución

a) Consideremos la sucesión de particiones siguiente:

$$P_n = \left\{ x_0 = 0 < x_1 = \frac{1}{2n} < \dots < x_i = \frac{i}{2n} < \dots < x_n = \frac{n}{2n} = \frac{1}{2} < \dots < x_{2n} = 1 \right\}.$$

Es decir, partimos el intervalo [0,1] en puntos de la forma $\frac{i}{2n}$ para $i=0,\ldots,2n$ ya que de esta forma el valor $\frac{1}{2}$ siempre estará en las particiones anteriores.

La suma inferior $L(f, P_n)$ será la siguiente:

$$L(f, P_n) = \sum_{i=1}^{2n} m_i \cdot \frac{1}{2n} = \frac{1}{2n} \cdot \left(\sum_{i=1}^n m_i + \sum_{i=n+1}^{2n} m_i \right) = \frac{1}{2n} \sum_{i=n+2}^{2n} 1 = \frac{n-1}{2n}.$$

La suma inferior $U(f, P_n)$ será la siguiente:

$$U(f, P_n) = \sum_{i=1}^{2n} M_i \cdot \frac{1}{2n} = \frac{1}{2n} \cdot \left(\sum_{i=1}^n M_i + \sum_{i=n+1}^{2n} M_i \right) = \frac{1}{2n} \left(1 + \sum_{i=n+1}^{2n} 1 \right) = \frac{n+1}{2n}.$$

Como $\lim_{n\to\infty} L(f,P_n) = \lim_{n\to\infty} U(f,P_n) = \frac{1}{2}$, la función g es integrable en [0,1] y además $\int_0^1 g = \frac{1}{2}$.

b) Si el valor de la función g se cambia de 0 a 7, las sumas inferiores y superiores serán:

$$L(f, P_n) = \sum_{i=1}^{2n} m_i \cdot \frac{1}{2n} = \frac{1}{2n} \cdot \left(\sum_{i=1}^n m_i + \sum_{i=n+1}^{2n} m_i \right) = \frac{1}{2n} \sum_{i=n+2}^{2n} 1 = \frac{n-1}{2n},$$

$$U(f, P_n) = \sum_{i=1}^{2n} M_i \cdot \frac{1}{2n} = \frac{1}{2n} \cdot \left(\sum_{i=1}^n M_i + \sum_{i=n+1}^{2n} M_i \right) = \frac{1}{2n} \left(7 + 7 + \sum_{i=n+2}^{2n} 1 \right) = \frac{14 + n - 1}{2n} = \frac{13 + n}{2n}.$$

Como también en este caso $\lim_{n\to\infty} L(f,P_n) = \lim_{n\to\infty} U(f,P_n) = \frac{1}{2}$, la función g es integrable en [0,1] y además $\int_0^1 g = \frac{1}{2}$.

4. Sea I = [a, b] un intervalo cerrado. Sean $f, g : I \longrightarrow \mathbb{R}$ acotadas tales que difieren sólo en un número finito de puntos. Provar que f es integrable si, y sólo si, lo es g y que se cumple $\int_{a}^{b} f = \int_{a}^{b} g$.

Solución

Demostraremos que si f es integrable, entonces también lo es g y además $\int_a^b f = \int_a^b g$.

Para demostrar la otra parte, es decir que si g es integrable, también lo es f, basta intercambiar los papeles de f y g en la demostración anterior.

Para demostrar la parte anterior demostraremos la proposición siguiente:

Sean $f, g: I \longrightarrow \mathbb{R}$ tales que difieren sólo en un punto c. Entonces si f es integrable, también lo es g y $\int_a^b f = \int_a^b g.$

Fijaos que si demostramos el resultado anterior, tenemos probado lo que pide el problema ya que basta aplicar el resultado un número finito de veces y se obtiene lo que se desea.

Veamos la proposición:

Hemos de demostrar lo siguiente:

$$\forall \epsilon > 0, \; \exists \; \text{partición} \; P \; \text{tal que} \; U(g,P) - L(g,P) < \epsilon.$$

Como f y g están acotadas, existe un valor K > 0 tal que para todo $x \in I$, $|f(x) - g(x)| \le K$.

Sabemos que como f es integrable, dado $\epsilon>0$ existe una partición P que podemos suponer que cumple que $|P|<\frac{\epsilon}{2K}$ tal que $U(f,P)-L(f,P)<\frac{\epsilon}{2}$.

Para esta partición P, sea I_c el subintervalo de la misma que contiene el punto c. Se verifica lo siguiente:

$$L(g, P) - L(f, P) = (m_{I_0}(g) - m_{I_0}(f)) \cdot |I_c|.$$

El valor $m_{I_c}(g) - m_{I_c}(f)$ estará acotado por K. Por tanto:

$$|L(g, P) - L(f, P)| = |(m_{I_c}(g) - m_{I_c}(f))| \cdot |I_c| \le K \cdot |P|.$$

De la misma manera y razonando de forma parecida, tenemos:

$$|U(g, P) - U(f, P)| = |(M_{I_0}(g) - M_{I_0}(f))| \cdot |I_c| \le K \cdot |P|.$$

Por tanto:

$$\begin{array}{ll} U(g,P) - L(g,P) &= U(g,P) - U(f,P) + U(f,P) + L(f,P) - L(g,P) - L(f,P) \\ &\leq |U(g,P) - U(f,P)| + |L(f,P) - L(g,P)| + U(f,P) - L(f,P) \\ &\leq 2K \cdot |P| + \frac{\epsilon}{2} \leq 2K \frac{\epsilon}{2K} + \frac{\epsilon}{2} = \epsilon, \end{array}$$

tal como queríamos demostrar.

5. Sigui I=[a,b] un intervalo cerrado y $f:I\longrightarrow\mathbb{R}$ continua. Supongamos que, para cualquier función integrable $g:I\longrightarrow\mathbb{R}$, el producto $f\cdot g$ es integrable $\int_a^b f\cdot g=0$. Demostrar que f(x)=0 para todo $x\in I$.

Solución

En particular, como f es continua, será integrable y si aplicamos el resultado del enunciado para g=f, tendremos que $\int_a^b f^2=0$.

Supongamos que existe un valor $x_0 \in I$ tal que $f(x_0) \neq 0$. Para este valor $f^2(x_0) > 0$. Usando un resultado visto en los apuntes, como $f^2(x) \geq 0$ para todo $x \in I$, se tiene que $\int_a^b f^2 > 0$, contradiciendo la hipótesis del enunciado.

Por tanto, f(x) = 0, para todo $x \in I$.