Lecture 7: Probabilistic Graphical Models

Vlad Niculae & André Martins

Deep Structured Learning Course, Fall 2019

Graphical Models

In this unit, we will formalize & extend these graphical representations encountered in previous lectures.

Outline

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov networks

Factor graphs

Outline

Directed Models

Bayes networks

Conditional independence and D-separatior Causal graphs & the *do* operator

Undirected Models

Markov networks

Factor graphs

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

P(E	3)	B=yes	B=no
		.05	.95
P(A	B)	A=on	A=off
B=y	/es	.99	.01
B=	no	.10	.90

•
$$P(B | A) = ?$$

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

				_
	P(B)	B=yes	B=no	
		.05	.95	_
F	P(A B,	W)	A=on	A=off
В=у	es	W=lo	.99	.01
В=у	es V	/=med	.99	.01
В=у	es	W=hi	.999	.001
B=r	10	W=lo	.01	.99
B=r	no V	/=med	.05	.95
B=r	10	W=hi	.25	.75

- $P(B \mid A) = ?$
- Can we observe wind? $P(B \mid A, W) = ?$

- Common task: Characterize how some related events co-occur.
 Specifically, in terms of probabilities!
- A car alarm is going off. Was there a break-in?

_				_
	P(B)	B=yes	B=no	
		.05	.95	_
F	P(A B,	W)	A=on	A=off
В=уе	es	W=lo	.99	.01
В=уе	es W	=med	.99	.01
В=уе	es	W=hi	.999	.001
B=n	10	W=lo	.01	.99
B=n	o W	=med	.05	.95
B=n	10	W=hi	.25	.75

- $P(B \mid A) = ?$
- Can we observe wind? $P(B \mid A, W) = ?$

Bayes networks

Toolkit for encoding knowledge about interaction structures between random variables.

Directed acyclic graph (DAG). Nodes = variables. Arrows = statistical dependencies.

In general:
$$P(X_1, ..., X_n) = \prod_i P(X_i \mid parents(X_i))$$

For example: P(Break-in, Wind, Alarm, Barometer)

 $= P(Break-in) P(Wind) P(Alarm \mid Break-in, Wind) P(Barometer \mid Wind)$

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р	Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243	no	lo	on	lo	0.0047
yes	lo	on	med	0.0002	no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002	no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002	no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06	no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06	no	lo	off	hi	0.0047
yes	med	on	lo	0.0001	no	med	on	lo	0.0001
yes	med	on	med	0.0146	no	med	on	med	0.0140
yes	med	on	hi	0.0001	no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06	no	med	off	lo	0.0027
yes	med	off	med	0.0001	no	med	off	med	0.2653
yes	med	off	hi	1.50e-06	no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05	no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05	no	hi	on	med	0.0005
yes	hi	on	hi	0.0098	no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07	no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07	no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06	no	hi	off	hi	0.1397

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р	Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243	no	lo	on	lo	0.0047
yes	lo	on	med	0.0002	no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002	no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002	no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06	no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06	no	lo	off	hi	0.0047
yes	med	on	lo	0.0001	no	med	on	lo	0.0001
yes	med	on	med	0.0146	no	med	on	med	0.0140
yes	med	on	hi	0.0001	no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06	no	med	off	lo	0.0027
yes	med	off	med	0.0001	no	med	off	med	0.2653
yes	med	off	hi	1.50e-06	no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05	no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05	no	hi	on	med	0.0005
yes	hi	on	hi	0.0098	no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07	no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07	no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06	no	hi	off	hi	0.1397

P(Break-in=yes, Alarm=on) = 0.0496

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р	_	Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243		no	lo	on	lo	0.0047
yes	lo	on	med	0.0002		no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002		no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002		no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06		no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06		no	lo	off	hi	0.0047
yes	med	on	lo	0.0001		no	med	on	lo	0.0001
yes	med	on	med	0.0146		no	med	on	med	0.0140
yes	med	on	hi	0.0001		no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06		no	med	off	lo	0.0027
yes	med	off	med	0.0001		no	med	off	med	0.2653
yes	med	off	hi	1.50e-06		no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05		no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05		no	hi	on	med	0.0005
yes	hi	on	hi	0.0098		no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07		no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07		no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06		no	hi	off	hi	0.1397

P(Break-in=yes, Alarm=on) = 0.0496

P(Break-in=no, Alarm=on) = 0.0665

Without any structure, P(Break-in, Wind, Alarm, Barometer) would have to be stored & estimated like

Brk.	Wind	Alarm	Bar.	Р	Brk.	Wind	Alarm	Bar.	Р
yes	lo	on	lo	0.0243	no	lo	on	lo	0.0047
yes	lo	on	med	0.0002	no	lo	on	med	4.75e-05
yes	lo	on	hi	0.0002	no	lo	on	hi	4.75e-05
yes	lo	off	lo	0.0002	no	lo	off	lo	0.4608
yes	lo	off	med	2.50e-06	no	lo	off	med	0.0047
yes	lo	off	hi	2.50e-06	no	lo	off	hi	0.0047
yes	med	on	lo	0.0001	no	med	on	lo	0.0001
yes	med	on	med	0.0146	no	med	on	med	0.0140
yes	med	on	hi	0.0001	no	med	on	hi	0.0001
yes	med	off	lo	1.50e-06	no	med	off	lo	0.0027
yes	med	off	med	0.0001	no	med	off	med	0.2653
yes	med	off	hi	1.50e-06	no	med	off	hi	0.0027
yes	hi	on	lo	9.99e-05	no	hi	on	lo	0.0005
yes	hi	on	med	9.99e-05	no	hi	on	med	0.0005
yes	hi	on	hi	0.0098	no	hi	on	hi	0.0466
yes	hi	off	lo	1.00e-07	no	hi	off	lo	0.0014
yes	hi	off	med	1.00e-07	no	hi	off	med	0.0014
yes	hi	off	hi	9.80e-06	no	hi	off	hi	0.1397

P(Break-in=yes, Alarm=on) = 0.0496P(Break-in=no, Alarm=on) = 0.0665 $P(Break-in=yes \mid Alarm=on) = \frac{P(Break-in=yes, Alarm=on)}{\sum_{b} P(Break-in=b, Alarm=on)}$

= .427

Knowing the model structure (statistical dependencies), complicated models become manageable.

$$\begin{split} &P(Br,W,A,Ba)\\ &=P(Br)\,P(W)\,P(A\mid Br,W)\,P(Ba\mid W) \end{split}$$

P(Br)	yes	no
	.05	.95

P(W)	lo	mid	hi
	.5	.3	.2

P(A	Br, W)	on	off
Br=yes	W=lo	.99	.01
Br=yes	W=med	.99	.01
Br=yes	W=hi	.999	.001
Br=no	W=lo	.01	.99
Br=no	W=med	.05	.95
Br=no	W=hi	.25	.75

P(Ba W)	lo	mid	hi
W=lo	.98	.01	.01
W=mid	.01	.98	.01
W=hi	.01	.01	.98

Knowing the model structure (statistical dependencies), complicated models become manageable.

$$\begin{split} &P(Br,W,A,Ba)\\ &=P(Br)\,P(W)\,P(A\mid Br,W)\,P(Ba\mid W) \end{split}$$

 Can estimate parts in isolation e.g. P(Wind) from weather history.

P(Br)	yes	no
	.05	.95

P(W)	lo	mid	hi
	.5	.3	.2

P(A Br, W)		on	off
Br=yes	W=lo	.99	.01
Br=yes	W=med	.99	.01
Br=yes	W=hi	.999	.001
Br=no	W=lo	.01	.99
Br=no	W=med	.05	.95
Br=no	W=hi	.25	.75

P(Ba W)	lo	mid	hi
W=lo W=mid	.98 .01	.01 .98	.01 .01
W=hi	.01	.01	.98

Knowing the model structure (statistical dependencies), complicated models become manageable.

P(Br, W, A, Ba) $= P(Br) P(W) P(A \mid Br, W) P(Ba \mid W)$

- Can estimate parts in isolation e.g. P(Wind) from weather history.
- Can sample by following the graph from roots to leaves.

P(Br)	yes	no
	.05	.95

P(W)	lo	mid	hi
	.5	.3	.2

P(A	P(A Br, W)		off
Br=yes	W=lo	.99	.01
Br=yes	W=med	.99	.01
Br=yes	W=hi	.999	.001
Br=no	W=lo	.01	.99
Br=no	W=med	.05	.95
Br=no	W=hi	.25	.75

P(Ba W)	lo	mid	hi
W=lo	.98	.01	.01
W=mid	.01	.98	.01
W=hi	.01	.01	.98

Bayes Nets:

reduce number of parameters & aid estimation let us reason about **independencies** in a model are a building-block for modeling **causality**

Bayes Nets:

are not neural network diagrams
encode structure, not parametrization
are non-unique for a distribution
encode independence **requirements**, not necessarily all

BN are not neural net diagrams

Recall the RNN language model:

• In statistical terms, what are we modeling?

BN are not neural net diagrams

Recall the RNN language model:

• In statistical terms, what are we modeling?

$$P(X_1,...,X_n) = P(X_1) P(X_2 \mid X_1) P(X_3 \mid X_1,X_2)...$$

BN are not neural net diagrams

Recall the RNN language model:

In statistical terms, what are we modeling?

$$P(X_1,...,X_n) = P(X_1) P(X_2 | X_1) P(X_3 | X_1,X_2)...$$

Bayes Net:

Not useful! Everything conditionally-depends on everything. (more later)

Neural net diagrams (and computation graphs) show **how to compute something** Bayes networks show **how a distribution factorizes** (what is assumed independent)

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

A BN tells us: **how the distribution decomposes** A BN can't tell us: **what the probabilities are!**

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(Y)$$
: uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$,

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

P(Y): uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$, or estimated from data.

 $P(X \mid Y)$ (remember: values of X are sentences)

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(X \mid Y)$$
 (remember: values of X are sentences)

$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$
 Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid X_{j-1}, Y)$$

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$
 Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid X_{j-1}, Y)$$

Per-class recurrent NN language model
$$P(X \mid Y) = LSTM(x_1, ..., x_L; w_y)$$

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

P(Y): uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$, or estimated from data.

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$
 Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid X_{j-1}, Y)$$

Per-class recurrent NN language model
$$P(X \mid Y) = LSTM(x_1, ..., x_L; w_y)$$

 $P(X \mid Y)$ need not be parametrized as a table.

A BN tells us: how the distribution decomposes A BN can't tell us: what the probabilities are!

Example: $X \in \mathcal{X} = \text{all English sentences}, Y \in \{\text{sports}, \text{music}, \dots\}.$

BN for a generative model:

We must posit what are P(Y) and $P(X \mid Y)$. Many possible options!

P(Y): uniform: $P(Y = sports) = P(Y = music) = \frac{1}{|Y|}$, or estimated from data.

$$P(X \mid Y)$$
 (remember: values of X are sentences)

Naive Bayes
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid Y)$$
 Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid X_{j-1}, Y)$$

Per-class Markov language model
$$P(X \mid Y) = \prod_{j=1}^{L} P(X_j \mid X_{j-1}, Y)$$

Per-class recurrent NN language model
$$P(X \mid Y) = LSTM(x_1, ..., x_L; w_y)$$

 $P(X \mid Y)$ need not be parametrized as a table.

Variables need not be discrete! mixture of Gaussians: $P(X \mid Y = y) \sim \mathcal{N}(\mu_{V}, \Sigma_{V})$.

There are many possible factorizations! P(X, Y) =

There are many possible factorizations! P(X, Y) =

 $P(X) P(Y \mid X)$

There are many possible factorizations! P(X, Y) =

$$P(X) P(Y \mid X)$$

$$P(Y) P(X \mid Y)$$

There are many possible factorizations! P(X, Y) =

 $P(Y) P(X \mid Y)$

P(X) P(Y)

There are many possible factorizations! P(X, Y) =

$$P(X) P(Y \mid X)$$

$$P(Y) P(X \mid Y)$$

The first two are valid Bayes nets for **any** P(X, Y)!

Equivalent factorizations

There are many possible factorizations! P(X, Y) =

$$P(X) P(Y \mid X)$$

$$P(Y) P(X \mid Y)$$

The first two are valid Bayes nets for any P(X, Y)!

In fact, recall generative vs discriminative classifiers!

- Generative (e.g. naïve Bayes):
 - To classify, we would compute $P(Y \mid X)$ via Bayes' rule.
- Discriminative (e.g. logistic regression)

in LR, we don't model P(X), we assume X is always observed (gray).

Equivalent factorizations

There are many possible factorizations! P(X, Y) =

$$P(X) P(Y \mid X)$$

 $P(Y) P(X \mid Y)$

The first two are valid Bayes nets for any P(X, Y)!

In fact, recall generative vs discriminative classifiers!

Generative (e.g. naïve Bayes):

- To classify, we would compute $P(Y \mid X)$ via Bayes' rule.
- Discriminative (e.g. logistic regression) in LR, we don't model P(X), we assume X is always observed (gray).

Some arrow direction choices are harder to estimate.

Some make more sense (why?): (Barmtr.)

Recall, we say $X \perp \!\!\! \perp Y$ iff. P(X,Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1): (x

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Example parametrization:

		<u> </u>			
ı	P(X)	A+	Α	В	
		.01	.02	.04	
P	(Y)	Jan	Feb	Mar	
		.10	.12	.09	

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Example parametrization:

P(X)	A+	Α	В	
	.01	.02	.04	
P(Y)	Jan	Feb	Mar	
	.10	.12	.09	

BN (1) imposes $X \perp \!\!\! \perp Y$ in **any parametrization**.

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Bayes net (2):

Example parametrization:

Example parametrization.							
P(X)	A+	Α	В				
	.01	.02	.04				
P(Y)	Jan	Feb	Mar				
	.10	.12	.09				

Does it mean we must have $X \not\perp \!\!\! \perp Y$?

BN (1) imposes $X \perp \!\!\! \perp Y$ in **any parametrization**.

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Y

Bayes net (2):

Example parametrization:

P(X)	A+	Α	В				
	.01	.02	.04				
P(Y)	Jan	Feb	Mar	•••			
	.10	.12	.09				

BN (1) imposes $X \perp \!\!\! \perp Y$ in any parametrization.

Does it mean we must have $X \perp \!\!\! \perp Y$? **NO!**

P(Y)	Jan	F	eb	Mar	
	.10		12	.09	
$P(X \mid Y)$	/) A	\ +	Α	В	
Y=Ja	ın .	01	.02	.04	
Y=Fe	b .	01	.02	.04	
Y=Ma	ar .	01	.02	.04	
	•••				

Recall, we say $X \perp Y$ iff. P(X, Y) = P(X)P(Y)Let X = grade in DSL, Y = month you were born.

Bayes net (1):

Bayes net (2):

Example parametrization:

	<u> </u>			
P(X)	A+	Α	В	
	.01	.02	.04	
P(Y)	Jan	Feb	Mar	
	.10	.12	.09	

BN (1) imposes $X \perp \!\!\! \perp Y$ in **any parametrization**.

Does it mean we must have $X \perp \!\!\! \perp Y$? **NO!**

P(Y)	Jan	Feb	Mar	
	.10	.12	.09	
$P(X \mid Y)$	′) A+	- A	В	
Y=Ja	n .01	.02	.04	
Y=Fe	b .01	.02	.04	
Y=Ma	ar .01	.02	.04	

A BN constraints what independences **must be** in the model **as a minimum**.

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov networks

Conditional independence in Bayes nets

Identifying independences in a distribution is generally hard.

Bayes nets let us reason about it via graph algorithms!

Definition (conditional independence)

A is independent of B given a set of variables $\mathcal{C} = \{C_1, \dots, C_n\}$, denoted as

$$A \perp \!\!\! \perp B \mid \mathcal{C},$$

if and only if

$$P(A,B \mid C_1,\ldots,C_n) = P(A \mid C_1,\ldots,C_n) P(B \mid C_1,\ldots,C_n).$$

Note. Equivalently, $P(A|B, C_1, ..., C_n) = P(A \mid C_1, ..., C_n)$. Intuitively: if we observe \mathcal{C} , does observing B too bring us more info about A?

Three fundamental relationships in BN

The Fork

The Chain

The Collider

$A \perp \!\!\!\perp B \mid C$

Given C, A and B are independent. Example: Alarm \leftarrow Wind \rightarrow Barometer

$A \perp \!\!\!\perp B \mid C$

After observing C,

further observing A would not tell us about B. Example: Burglary \rightarrow Alarm \rightarrow Vlad distracted

> Surprisingly, $A \perp \!\!\! \perp B$ but **not** $A \perp \!\!\! \perp B \mid C!$

Example: Burglary \rightarrow Alarm \leftarrow Wind Burglaries occur regardless how windy it is. If alarm rings, hearing wind makes burglary less likely! Burglary is "explained away" by wind.

Detecting independence: d-separation

Algorithm for deciding if A and B are **d-separated** given set C, implying:

$$A \perp \!\!\! \perp B \mid \mathcal{C}$$
.

For all paths *P* from *A* to *B* in the **skeleton** of the BN, at least one holds:

1 P includes a fork with observed parent:

$$X \leftarrow C \rightarrow Y$$
 (with $C \in \mathcal{C}$)

2 P includes a chain with observed middle:

$$X \to C \to Y$$
 or $X \leftarrow C \leftarrow Y$ (with $C \in \mathcal{C}$)

3 Pincludes a collider

$$X \to U \leftarrow Y$$
 (with $U \notin \mathcal{C}$)

Wind ⊥ Barometer?

Wind ⊥ Barometer? No

Wind \perp Barometer? **No** Break-in \perp Wind?

Wind ⊥ Barometer? **No**Break-in ⊥ Wind? **Yes**

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer?

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes Break-in ⊥ Barometer | Alarm?

Wind ⊥ Barometer? No Break-in ⊥ Wind? Yes Break-in ⊥ Barometer? Yes Break-in ⊥ Barometer | Alarm? No

$$Y_{i+1} \perp \!\!\!\perp Y_{i-1}$$
?

$$Y_{i+1} \perp \!\!\!\perp Y_{i-1}$$
? No

$$Y_{i+1} \perp \!\!\!\perp Y_{i-1}$$
? **No** $Y_{i+1} \perp \!\!\!\perp Y_{i-1} \mid Y_i$?

$$Y_{i+1} \perp \!\!\!\perp Y_{i-1}$$
? No $Y_{i+1} \perp \!\!\!\perp Y_{i-1} \mid Y_i$? Yes

$$Y_{i+1} \perp \!\!\!\perp Y_{i-1}$$
? No $Y_{i+1} \perp \!\!\!\perp Y_{i-1} \mid Y_i$? Yes $Y_{i+1} \perp \!\!\!\perp X_i$?

$$Y_{i+1} \perp \perp Y_{i-1}$$
? No $Y_{i+1} \perp \perp Y_{i-1} \mid Y_i$? Yes $Y_{i+1} \perp \perp X_i$? No

$$Y_{i+1} \perp \!\!\! \perp Y_{i-1}$$
? No $Y_{i+1} \perp \!\!\! \perp Y_{i-1} \mid Y_i$? Yes $Y_{i+1} \perp \!\!\! \perp X_i$? No $Y_{i+1} \perp \!\!\! \perp X_i \mid Y_i$?

$$Y_{i+1} \perp \!\!\! \perp Y_{i-1}$$
? No $Y_{i+1} \perp \!\!\! \perp Y_{i-1} \mid Y_i$? Yes $Y_{i+1} \perp \!\!\! \perp X_i$? No $Y_{i+1} \perp \!\!\! \perp X_i \mid Y_i$? Yes

Generative stories and plate notation

In papers, you'll see statistical models defined through *generative stories*:

$$\mu \sim \mathsf{Uniform}([-1,1])$$
 $\sigma \sim \mathsf{Uniform}([1,2])$ $\mathit{X} \mid \mu, \sigma \sim \mathsf{Normal}(\mu, \sigma)$

Plate notation is a way to denote repetition of templates:

$$\mu \sim \mathsf{Uniform}([-1,1])$$
 $\sigma \sim \mathsf{Uniform}([1,2])$ $X_n \mid \mu, \sigma \sim \mathsf{Normal}(\mu,\sigma) \quad i=1,\ldots,N$

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov networks

Correlation does not imply causation; but then, what does?

Seeing versus doing

Bayes nets only model independence assumptions.

The correlation between the a barometer reading *B* and wind strength *W* can be represented either way:

Seeing that the barometer reading is high, we can forecast wind.

P(W B)	lo	mid	hi
B = lo $B = mid$ $B = hi$.98	.01	.01
	.01	.98	.01
	.01	.01	.98

But **setting** the barometer needle to high manually **won't cause wind!**

We write: $P(W \mid do(B = hi)) = ?$

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov networks

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov networks

Directed Models

Bayes networks

Conditional independence and D-separation

Causal graphs & the do operator

Undirected Models

Markov networks