# ECLinPS and ECLinPS Lite™ SPICE Modeling Kit

Prepared by
Senad Lomigora, Paul Shockman
ON Semiconductor Logic Applications Engineering



http://onsemi.com

#### APPLICATION NOTE

 $V_{\rm EE}$ . A model can be used at the  $V_{\rm EE}$  pin: but is not necessary since the current in the  $V_{\rm EE}$  pin is a constant. The Appendix A includes explanation on the package models nodes. For package model CDIP–16 only a center and end pin values are provided. Remaining pins may be ratio values between those two given pins.

Table 2. Available Packages

| Package Model | Page Number |
|---------------|-------------|
| SO-8          | 15          |
| TSSOP-8       | 17          |
| SO-20         | 19          |
| PLCC-28       | 25          |
| PLCC-20       | 32          |
| CDIP-16       | 33          |

#### **Input Buffer**

The typical input buffer schematic is shown in Figure 2 (INBUFTYPICAL), and by netlist to represent the general structure currently in use on the existing devices in this family. The schematics require the addition of ESD models (Figure 9) and package models (see Table 2) to more accurately model behavior of the certain device. The internal input pulldown resistor, R<sub>PD</sub>, is shown in Figure 2. Single ended operation is shown although differential operation may be represented by changing V<sub>BB</sub> to INB (INVERTED INPUT TO CKT). The INB node will require ESD, package, and R<sub>PD</sub> models. Revise the netlist accordingly. It is unnecessary to include an ESD or Package model for the V<sub>BB</sub> pins of the models because V<sub>BB</sub> is intended as an internal node for most applications. If VBB is modeled as an external node it is usually bypassed because it is a constant voltage, and adding ESD and Package parameters provide no additional benefit.

#### **Output Buffer**

The output buffer schematics (see Table 3) and netlists may contain the temperature compensation structure, so only the ESD and package models need to be added. Use the proper ESD structure from Figure 9: for EL series devices use "ECLinPS Lite ESD Circuitry", and for E series devices use "ECLinPS ESD Circuitry". For the EL series Output

### **Objective**

The objective of this kit is to provide customers with enough circuit schematic and SPICE parameter information to allow them to perform system level interconnect modeling for the current devices of the standard ECLinPS and ECLinPS Lite logic line, ON Semiconductor's high performance ECL family. The kit is not intended to provide information necessary to perform circuit level modeling on ECLinPS devices. With packaged gate delays of 300 ps and output edge rates as low as 175 ps, this family defines the state—of—the—artin ECL logic. The ECLinPS line is one of ON Semiconductor's high performance ECL/PECL family of products.

## **Device Input and Output Buffers Schematic Information**

The kit contains representative input and output schematics, netlists, and waveform used for the standard ECLinPS and ECLinPS Lite devices. This application note will be modified as new devices are added.

There are four terminals on all transistor models: Emitter, Base, Collector, and Substrate (biased to  $V_{EE}$ ). Table 1 describes the nomenclature used in the schematics and netlists.

**Table 1. Schematics and Netlist Nomenclature** 

| V <sub>CC</sub>   | 5 V FOR PECL AND (0 V) FOR ECL           |
|-------------------|------------------------------------------|
| V <sub>EE</sub>   | -5 V FOR ECL AND (0 V) FOR PECL          |
| GND               | 0 V                                      |
| V <sub>TT</sub> * | V <sub>CC</sub> – 2 V TERMINATION PLANE* |
| IN                | TRUE INPUT TO CKT                        |
| INB or IN         | INVERTED INPUT TO CKT                    |
| Q                 | TRUE OUTPUT OF CKT                       |
| QB or Q           | INVERTED OUTPUT OF CKT                   |

\*Except for EL89, V<sub>TT</sub> = V<sub>CC</sub> - 3 V

### **Package**

A case model for various package types is included to improve the accuracy of the system model (see Table 2). The package model represents the parasitics as they are measured on a pin. The package pin model should be placed on each device input pin connecting to an input model, all device output pins connecting to an output model,  $V_{\rm CC}$ , and

modeling, delete the 185  $\Omega$  series resistor in the ESD schematic, ECLinPS Lite ESD Circuitry.

Any input or output that is driving or being driven by an off chip signal should include the ESD and package models. The output buffers show differential inputs and outputs. When simulating a single ended output, the termination or load resistor, package model, ESD structure and output emitter follower, of the unused output, should not be eliminated to simplify the system model.

#### **SPICE Netlists**

The netlists are organized as a group of subcircuits. In each subcircuit model netlist, the model name is followed by a list of node interconnects.

## Temperature Compensation Network for 100 Series

The output netlists include temperature compensation network circuitry for 100 style output buffers. The temperature compensation circuitry should be placed as pictured in the output buffer schematics with L and R representing left and right of the schematic. The circuit components of the temperature compensation networks are shown in Figure 8. For simulating 10 style outputs these components should either be deleted or commented out of the subcircuit netlists.

#### **SPICE Parameter Information**

In addition to the schematics and netlists is a listing of the SPICE parameters for the transistors referenced in the schematics and netlists. These parameters represent a typical device of a given transistor. Varying the typical parameters will affect the DC and AC performance of the structures; but for the type of modeling intended by this note, the actual delay times are not necessary and are not modeled, as a result variation of the device parameters are meaningless. The performance levels are more easily varied by other methods and will be discussed in the next section. The resistors referenced in the schematics are polysilicon and have little parasitic capacitance in the real circuit so none is required in the model. The schematics display the only devices needed in the SPICE netlists.

#### **Modeling Information**

The bias drivers for the devices are not detailed since their circuitry would result in a substantial increase of model complexity and simulation time. Instead, these internal reference voltages ( $V_{BB}$ , LVCS, Etc.) should be driven with ideal constant voltage sources.

The typical interconnect schematic has been modeled to provide an output waveform of the ECLinPS Line. The

typical input buffer may be driven with output buffer as shown in Figure 10. The schematics and SPICE parameters will provide a typical output waveshape, which can be seen in Figure 11. Simple adjustments can be made to the models allowing output characteristics to simulate conditions at or near the corners of some of the data book specifications. Consistent cross—point voltages need to be maintained.

#### To adjust rise and fall times:

Produce the desired rise and fall times output slew rates by adjusting collector load resistors to change the gates tail current. The  $V_{CS}$  voltage will affect the tail current in the output differential, which will interact with the load resistor and collector resistor to determine  $t_r$  and  $t_f$  at the output.

## • To adjust the V<sub>OH</sub>:

Adjust the  $V_{OH}$  and  $V_{OL}$  level by the same amount by varying  $V_{CC}$ . The output levels will follow changes in  $V_{CC}$  at a 1:1 ratio.

## $\bullet \quad \text{To adjust the $V_{OL}$ only:} \\$

Adjust the  $V_{OL}$  level independently of the  $V_{OH}$  level by increasing or decreasing the collector load resistance. Note that the  $V_{OH}$  level will also change slightly due to a  $I_{BASE}R$  drop across the collector load resistor.  $V_{OL}$  can be changed by varying the  $V_{CS}$  supply, and therefore the gate current through the current source resistor.

#### **Summary**

The information included in this kit provides adequate information to run a SPICE level system interconnect simulation. The block diagram in Figure 1 illustrates a typical situation which can be modeled using the information in this kit. Device input or output models are presented in Table 4 and Table 5.

**Table 3. Buffer Model Figures** 

| Buffer Model | Figure Number | Page Number |
|--------------|---------------|-------------|
| OBUF_A       | 3             | 6           |
| OBUF_B       | 4             | 7           |
| OBUF_C       | 5             | 8           |
| OBUF_D       | 6             | 9           |
| OBUF_E       | 7             | 10          |
| INBUFTYPICAL | 2             | 5           |



Figure 1. Typical Application for I/O SPICE Modeling Kit

Table 4. E Input/Output Selection

| Device | Function                                   | All Inputs   | Output |
|--------|--------------------------------------------|--------------|--------|
| E016   | 8 bit Sync. Binary Up Counter              | INBUFTYPICAL | OBUF_A |
| E101   | Quad 4 input OR/NOR Gate                   | INBUFTYPICAL | OBUF_A |
| E104   | Quint 2 input AND/NAND Gate                | INBUFTYPICAL | OBUF_A |
| E107   | Quint 2 input XOR/XNOR Gate                | INBUFTYPICAL | OBUF_A |
| E111   | 1:9 Diff. Clock Driver                     | INBUFTYPICAL | OBUF_A |
| E112   | Quad Driver                                | INBUFTYPICAL | OBUF_A |
| E116   | Quint Diff. Line Receiver                  | INBUFTYPICAL | OBUF_A |
| E122   | 9 Bit Buffer                               | INBUFTYPICAL | OBUF_A |
| E131   | 4 Bit D Flip–Flop                          | INBUFTYPICAL | OBUF_A |
| E136   | 6 Bit Universal Up/Down Counter            | INBUFTYPICAL | OBUF_A |
| E137   | 8 Bit Ripple Counter                       | INBUFTYPICAL | OBUF_A |
| E141   | 8 Bit Shift Register                       | INBUFTYPICAL | OBUF_A |
| E142   | 9 Bit Shift Register                       | INBUFTYPICAL | OBUF_A |
| E143   | 9 Bit Hold Register                        | INBUFTYPICAL | OBUF_A |
| E150   | 6 Bit D Latch                              | INBUFTYPICAL | OBUF_A |
| E151   | 6 Bit D Register                           | INBUFTYPICAL | OBUF_A |
| E154   | 5 Bit 2:1 Mux-Latch                        | INBUFTYPICAL | OBUF_A |
| E155   | 6 Bit 2:1 Mux-Latch                        | INBUFTYPICAL | OBUF_A |
| E156   | 3 Bit 4:1 Mux-Latch                        | INBUFTYPICAL | OBUF_A |
| E157   | Quad 2:1 Multiplexer                       | INBUFTYPICAL | OBUF_A |
| E158   | 5 Bit 2:1 Multiplexer                      | INBUFTYPICAL | OBUF_A |
| E160   | 12 Bit Parity Generator/Checker            | INBUFTYPICAL | OBUF_A |
| E163   | 2 Bit 8:1 Multiplexer                      | INBUFTYPICAL | OBUF_A |
| E164   | 16:1 Multiplexer                           | INBUFTYPICAL | OBUF_A |
| E166   | 9 Bit Magnitude Comparator                 | INBUFTYPICAL | OBUF_A |
| E167   | 6 Bit 2:1 Mux–Register                     | INBUFTYPICAL | OBUF_A |
| E171   | 3 Bit 4:1 Multiplexer                      | INBUFTYPICAL | OBUF_A |
| E175   | 9 Bit Latch with Parity                    | INBUFTYPICAL | OBUF_A |
| E193   | Error Detection/Correction Circuit         | INBUFTYPICAL | OBUF_A |
| E195   | Programmable Delay Chip                    | INBUFTYPICAL | OBUF_B |
| E196   | Programmable Delay Chip                    | INBUFTYPICAL | OBUF_B |
| E197   | Data Separator                             | INBUFTYPICAL | OBUF_A |
| E210   | Dual 1:4, 1:5 Diff. Fanout Buffer          | INBUFTYPICAL | OBUF_A |
| E211   | 1:6 Diff. Clock Distribution Chip          | INBUFTYPICAL | OBUF_B |
| E212   | 3 Bit Scannable Registered Address Driver  | INBUFTYPICAL | OBUF_B |
| E241   | 8 Bit Scannable Register                   | INBUFTYPICAL | OBUF_A |
| E256   | 3 Bit 4:1 Mux-Latch                        | INBUFTYPICAL | OBUF_A |
| E310   | Low Voltage 2:8 Diff. Fanout Buffer        | INBUFTYPICAL | OBUF_A |
| E336   | 3 Bit Registered Bus Transceiver           | INBUFTYPICAL | OBUF_C |
| E337   | 3 Bit Scannable Registered Bus Transceiver | INBUFTYPICAL | OBUF_C |
| E404   | Quad Diff. AND/NAND                        | INBUFTYPICAL | OBUF_B |
| E411   | 1:9 Diff. PECL/NECL RAMBus Clock Buffer    | INBUFTYPICAL | OBUF_A |

Table 4. E Input/Output Selection

| E416  | Quint Diff. Line Receiver                            | INBUFTYPICAL | OBUF_D |
|-------|------------------------------------------------------|--------------|--------|
| E431  | 3 Bit Diff. Flip–Flop                                | INBUFTYPICAL | OBUF_A |
| E445  | 4 Bit Serial/Parallel Converter (pins 17, 18 OBUF_B) | INBUFTYPICAL | OBUF_A |
| E446  | 4 Bit Parallel/Serial Converter (pins 14, 15 OBUF_B) | INBUFTYPICAL | OBUF_A |
| E451  | 6 Bit D Register Diff. Data and Clock                | INBUFTYPICAL | OBUF_A |
| E452  | 5 Bit Diff. Register                                 | INBUFTYPICAL | OBUF_A |
| E457  | Triple Diff. 2:1 Multiplexer                         | INBUFTYPICAL | OBUF_B |
| E1651 | Dual ECL Output Comparator with Latch                | INBUFTYPICAL | OBUF_A |
| E1652 | Dual ECL Output Comparator with Latch                | INBUFTYPICAL | OBUF_A |

Table 5. EL Input/Output Selection

| Device | Function                                              | All Inputs   | Output |
|--------|-------------------------------------------------------|--------------|--------|
| EL01   | 4 input OR/NOR                                        | INBUFTYPICAL | OBUF_B |
| EL04   | 2 input Diff. AND/NAND                                | INBUFTYPICAL | OBUF_B |
| EL05   | 3 input AND/NAND                                      | INBUFTYPICAL | OBUF_B |
| EL07   | 3 input XOR/XNOR                                      | INBUFTYPICAL | OBUF_B |
| EL11   | 1:2 Diff. Fanout Buffer                               | INBUFTYPICAL | OBUF_B |
| EL12   | Low Impedance Driver                                  | INBUFTYPICAL | OBUF_B |
| EL13   | Dual 1:3 Fanout Buffer                                | INBUFTYPICAL | OBUF_A |
| EL14   | 1:5 Clock Distribution Chip                           | INBUFTYPICAL | OBUF_A |
| EL15   | 1:4 Clock Distribution Chip                           | INBUFTYPICAL | OBUF_A |
| EL16   | Diff. Receiver                                        | INBUFTYPICAL | OBUF_B |
| EL17   | Quad Diff. Receiver                                   | INBUFTYPICAL | OBUF_A |
| EL29   | Dual Diff. Data and Clock D Flip-Flop with Set&Reset  | INBUFTYPICAL | OBUF_A |
| EL30   | D Flip-Flop with Set&Reset                            | INBUFTYPICAL | OBUF_A |
| EL31   | Triple D Flip-Flop with Set&Reset                     | INBUFTYPICAL | OBUF_B |
| EL32   | 2 Divider                                             | INBUFTYPICAL | OBUF_B |
| EL33   | 4 Divider                                             | INBUFTYPICAL | OBUF_B |
| EL34   | 2, 4, 8 Clock Generation Chip                         | INBUFTYPICAL | OBUF_A |
| EL35   | JK Flip-Flop                                          | INBUFTYPICAL | OBUF_B |
| EL38   | 2, 4/6 Clock Generation Chip                          | INBUFTYPICAL | OBUF_A |
| EL39   | 2/4, 4/6 Clock Generation Chip                        | INBUFTYPICAL | OBUF_A |
| EL51   | Diff. Clock D Flip-Flop                               | INBUFTYPICAL | OBUF_B |
| EL52   | Diff. Data and Clock D Flip-Flop                      | INBUFTYPICAL | OBUF_B |
| EL56   | Dual Diff. 2:1 Multiplexer                            | INBUFTYPICAL | OBUF_A |
| EL57   | 4:1 Diff. Multiplexer                                 | INBUFTYPICAL | OBUF_B |
| EL58   | 2:1 Multiplexer                                       | INBUFTYPICAL | OBUF_A |
| EL59   | Triple 2:1 Multiplexer                                | INBUFTYPICAL | OBUF_A |
| EL89 * | Coaxial Cable Driver *                                | INBUFTYPICAL | OBUF_E |
| EL90   | Triple ECL Input to PECL Output Translator            | INBUFTYPICAL | OBUF_A |
| EL91   | Triple LVPECL/PECL Input to -5V ECL Output Translator | INBUFTYPICAL | OBUF_A |

<sup>\*</sup>EL89 has an output swing of 1.6 V and it is terminated 50  $\Omega$  to V<sub>CC</sub> – 3 V (see Figure 7)

## **Netlists and Schematics**



Figure 2. Typical Input Buffer (INBUFTYPICAL)

| .SUBCK | I INBUFTYPICAL |
|--------|----------------|
| Q1     | 2 IN 4 TN6     |
| Q2     | 3 VBB 4 TN6    |
| Q3     | 4 VCS 5 TN6    |
| Q4     | VCC 3 Q TN6    |
| Q5     | VCC 2 QB TN6   |
| Q6     | QB QB 6 TN6    |
| Q7     | Q Q 7 TN6      |
| Q8     | 6 VCS 9 TN6    |
| Q9     | 7 VCS 8 TN6    |
| R1     | VCC 1 250      |
| R2     | 1 2 270        |
| R3     | 1 3 270        |
| R4     | 5 VEE 325      |
| R5     | 9 VEE 650      |
| R6     | 8 VEE 650      |
| RPD    | IN VEE 50K     |
| ENDS   | INBUFTYPICAL   |



Figure 3. Output Buffer (OBUF\_A)

```
.SUBCKT OBUF_A
          1 IN 3 TN13P5
Q_Q1
          2 INB 3 TN13P5
Q_Q2
Q_Q3
          3 VCS 4 TN13P5
Q_Q4
          VCC 1 OUTB TNECLIPS
Q_Q5
          VCC 2 OUT TNECLIPS
R_R1
          1 VCC
                 300
          2 VCC
                 300
R_R2
R_R3
          VEE 4 125
          VTT OUT 50
R_R4
          VTT OUTB 50
R_R5
V_IN
          IN 0 -1.33Vdc
V_INB
          INB 0
V_VCC
          VCC 0 0Vdc
V_VEE
          VEE 0 -5Vdc
          VTT 0 -2Vdc
V_{VTT}
          VCS 0 -3.7Vdc
V_VCS
+PULSE -0.95 -1.75 1n 0.35n 0.35n 1.5n 3.7n
.END OBUF_A
```



Figure 4. Output Buffer (OBUF\_B)

```
.SUBCKT OBUF_B
          1 IN 3 TN13P5
Q_Q1
Q_Q1a
          1 IN 3 TN13P5
Q_Q2
          2 INB 3 TN13P5
Q_Q2a
          2 INB 3 TN13P5
Q_Q3
          3 VCS 4 TN13P5
Q_Q3a
          3 VCS 4 TN13P5
          VCC 2 5 TNECLIPS
Q_Q4
          VCC 1 6 TNECLIPS
Q_Q5
          1 VCC
                150
R_R1
                150
R_R2
          2 VCC
          VEE 4
                 65
R_R3
R_R4
          OUT 5
R_R5
          OUTB 6 4
R_R6
          VTT OUT 50
          VTT OUTB 50
R_R7
          IN 0 -1.33Vdc
V_IN
V_INB
          INB 0
V_VCC
          VCC 0 0Vdc
V_VEE
          VEE 0 -5Vdc
          VCS 0 -3.7Vdc
V_VCS
V_VTT
          VTT 0 -2Vdc
+PULSE -0.95 -1.75 1n 0.35n 0.35n 2.5n 5.7n
.END OBUF_B
```



Figure 5. Output Buffer (OBUF\_C)

```
.SUBCKT OBUF_C
Q_Q1
          3 IN 5 TN13P5
          3 IN 5 TN13P5
Q_Q1a
Q_Q1b
          3 IN 5 TN13P5
Q_Q2
          4 INB 5 TN13P5
          4 INB 5 TN13P5
Q_Q2a
Q_Q2b
          4 INB 5 TN13P5
Q_Q3
          5 VCS 6 TN13P5
Q_Q3a
          5 VCS 6 TN13P5
          5 VCS 6 TN13P5
Q_Q3b
          VCC 3 7 TNECLIPS
Q_Q4
          VCC 3 7 TNECLIPS
Q_Q4a
R_R1
          1 VCC 100
R_R2
          2 VCC
                 100
          3 1 60
R_R3
          4 2 60
R_R4
R_R5
          VEE 6 40
R_R6
          BUS 7 4
R_R7
          VTT BUS 50
V_IN
          IN 0 -1.33Vdc
V_INB
          INB 0
          VCC 0 0Vdc
V_VCC
V_VEE
          VEE 0 -5Vdc
          VCS 0 -3.91Vdc
V_VCS
          VTT 0 -2Vdc
V_VTT
+PULSE -0.95 -1.75 1n 2n 2n 2n 8n
.END OBUF_C
```



Figure 6. Output Buffer (OBUF\_D)

```
.SUBCKT OBUF_D
Q_Q1
          1 IN 3 TN13P5
          1 IN 3 TN13P5
Q_Q1a
Q_Q1b
          1 IN 3 TN13P5
Q_Q2
          2 INB 3 TN13P5
Q_Q2a
          2 INB 3 TN13P5
          2 INB 3 TN13P5
Q_Q2b
Q_Q3
          3 N19458 4 TN13P5
          3 N19458 4 TN13P5
Q_Q3a
          3 N19458 4 TN13P5
Q_Q3b
          VCC 2 5 TNECLIPS
Q_Q4
          VCC 1 6 TNECLIPS
Q_Q5
R_R1
          1 VCC 100
R_R2
          2 VCC
                100
R R3
          VEE 4
                 43
R_R4
          OUT 5
R_R5
          OUTB 6 4
          VTT OUT 50
R_R6
R_R7
          VTT OUTB 50
V_INB
          INB 0
V_IN
          IN 0 -1.33Vdc
V_VCC
          VCC 0 0Vdc
V_VEE
          VEE 0 -5Vdc
V_VCS
          N19458 0 -3.7Vdc
V_VTT
          VTT 0 -2Vdc
+PULSE -0.95 -1.75 1n 0.35n 0.35n 2.5n 5.7n
.END OBUF_D
```



Figure 7. Output Buffer (OBUF\_E)

```
.SUBCKT OBUF_E
          1 4 3 TN13P5
Q_Q1
Q_Q1a
          1 4 3 TN13P5
Q_Q2
          2 8 3 TN13P5
Q_Q2a
          2 8 3 TN13P5
Q_Q3
          3 VCS 6 TN13P5
          3 VCS 6 TN13P5
Q_Q3a
          VCC 2 OUT TNECLIPS
Q_Q4
          VCC 1 OUTB TNECLIPS
Q_Q5
          VCC IN 4 TN8
Q_Q6
          4 VCS 5 TN8
Q_Q7
          VCC INB 8 TN8
Q_Q8
Q_Q9
          8 VCS 7 TN8
R_R1
          1 VCC
                280
R R2
          2 VCC
                 280
          VEE 5
                 323
R_R3
R_R4
          VEE 6 68
          VEE 7
R_R5
                 323
R_R6
          VTT OUT 50
R_R7
          VTT OUTB 50
V_IN
          IN 0 -1.33Vdc
V_INB
          INB 0
V_VCC
          VCC 0 0Vdc
V_VEE
          VEE 0 -5Vdc
V_VTT
          VTT 0 -3Vdc
V_VCS
          VCS 0 -3.67Vdc
+PULSE -0.95 -1.75 1n 0.2n 0.2n 2.2n 4.8n
.END OBUF_E
```



**Figure 8. Temperature Compensation Networks** 

**ECLinPS ESD Circuitry** 

## **ECLinPS Lite ESD Circuitry**



Figure 9. ESD Protection Circuitry



Figure 10. Typical Interconnect Schematic



Figure 11. Typical Output Waveform

Transistor and Diodes Nominal SPICE Models \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .MODEL TN4 NPN (IS=5.27E-18 BF=120 NF=1 VAF=30 IKF=6.48mA + ISE=2.75E-16 BR=10 NE=2 VAR=5 IKR=567uA + IRB=8.1uA RB=461.6 RBM=142.5 RE=21.6 RC=83.1 + CJE=19.9fF VJE=0.9 MJE=0.4 XTB=0.73 + CJC=25.1fF VJC=0.67 MJC=0.32 XCJC=0.3 + CJS=49.6fF VJS=0.6 MJS=0.4 FC=0.9 + TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=17.0mA + ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .MODEL TN6 NPN (IS=8.56E-18 BF=120 NF=1 VAF=30 IKF=10.5mA + ISE=4.48E-16 BR=10 NE=2 VAR=5 IKR=922uA + IRB=13.2uA RB=291.4 RBM=95.0 RE=13.3 RC=62.7 + CJE=29.9fF VJE=0.9 MJE=0.4 XTB=0.73 + CJC=31.2fF VJC=0.67 MJC=0.32 XCJC=0.3 + CJS=60.9fF VJS=0.6 MJS=0.4 FC=0.9 + TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=27.6mA + ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .MODEL TN13P5 NPN (IS=2.09E-17 BF=120 NF=1 VAF=30 IKF=25.7mA + ISE=1.09E-15 BR=10 NE=2 VAR=5 IKR=2.25mA + IRB=32.2uA RB=122.6 RBM=42.2 RE=5.44 RC=32.8 + CJE=67.4fF VJE=0.9 MJE=0.4 XTB=0.73 + CJC=53.8fF VJC=0.67 MJC=0.32 XCJC=0.3 + CJS=103fF VJS=0.6 MJS=0.4 FC=0.9 + TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=67.5mA + ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .MODEL TN8 NPN (IS=1.18E-17 BF=120 NF=1 VAF=30 IKF=14.6mA + ISE=6.20E-16 BR=10 NE=2 VAR=5 IKR=1.28mA + IRB=18.2uA RB=213.1 RBM=71.2 RE=9.60 RC=50.4 + CJE=39.9fF VJE=0.9 MJE=0.4 XTB=0.73 + CJC=37.2fF VJC=0.67 MJC=0.32 XCJC=0.3 + CJS=72.2fF VJS=0.6 MJS=0.4 FC=0.9 + TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=38.3mA + ISC=0 EG=1.11 XTI=5.2 PTF=0 KF=0 AF=1 NR=1 NC=2) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .MODEL TNECLIPS NPN (IS=2.27E-16 BF=120 NF=1 VAF=30 IKF=279mA + ISE=1.19E-14 BR=10 NE=2 VAR=5 IKR=24.4mA + IRB=349uA RB=15.98 RBM=4.17 RE=0.501 RC=11.1 + CJE=611fF VJE=0.9 MJE=0.4 XTB=0.73 + CJC=440fF VJC=0.67 MJC=0.32 XCJC=0.3 + CJS=668fF VJS=0.6 MJS=0.4 FC=0.9 + TF=8pS TR=1nS XTF=10 VTF=1.4V ITF=733mA + ISC=0 EG=1.11 XTI=4.0 PTF=0 KF=0 AF=1 NR=1 NC=2) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .MODEL CBVCC (IS=1.00E-15 CJO=527fF Vj=0.545 M=0.32 BV=14.5 IBV=0.1E-6 XTI=5 TT=1nS) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* .MODEL CBSUB (IS=1.00E-15 CJO=453fF TT=1nS) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

```
Package: SO-8
* SPICE subcircuit file of coupled transmission lines
* Transmission line model
* Conductor number-pin designation cross reference:
   Conductor
              Pin
      1
                 1
       2
                 2
      3
                 3
       4
                 4
      5
                 5
       6
       7
                 7
       8
* number of lumps:
* FASTEST APPLICABLE EDGE RATE:
                                   0.076 ns
* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050
* Connect chip side to N^*I and board side to N^*O
.SUBCKT LINES N011 N010 N021 N020 N031 N030 N041 N040
+ N05I N050 N06I N060 N07I N070 N08I N080
L01WB N01I N01M
                   1.367e-09
     N01M N01O
L01
                     7.794e-10
C01
      N01M 0
                    2.445e-13
L02WB N02I N02M
                   1.287e-09
L02 N02M N02O
                   5.473e-10
C02
     N02M 0
                    1.888e-13
L03WB N03I N03M
                   1.287e-09
L03
      N03M N03O
                   5.473e-10
     N03M 0
C03
                    1.901e-13
L04WB N04I N04M
                   1.367e-09
            N040
      N04M
                     7.723e-10
L04
C04
      N04M
             0
                     2.443e-13
L05WB N05I
             N05M
                     1.367e-09
L05
      N05M
             N050
                    7.710e-10
      N05M 0
C05
                     2.478e-13
L06WB N06I N06M
                     1.287e-09
T<sub>1</sub>06
     N06M N06O
                    5.489e-10
C06
      N06M 0
                    1.916e-13
L07WB N07I N07M
                   1.287e-09
L07
     N07M N07O
                   5.495e-10
C07
      N07M 0
                    1.930e-13
L08MB N08I N08M
                   1.367e-09
L08
      N08M N08O
                    7.786e-10
      M80N
              0
                     2.451e-13
C08
K0102 L01
             L02
                     0.1687
K0102WB L01WB L02WB 0.3400
C0102 N010
              N020
                     3.674e-14
K0103
      L01
              L03
                     0.0702
              L03WB 0.1847
K0103WB L01WB
K0203 L02
                     0.1822
              L03
K0203WB L02WB
             L03WB 0.3505
C0203 N020
              N030
                     3.521e-14
K0204 L02
                     0.0682
              L04
K0204WB L02WB L04WB 0.1847
K0304 L03
              L04
                     0.1694
```

K0304WB L03WB L04WB 0.3400

|                  | L04WB        | N040<br>L05WB<br>L05WB | 3.675e-14<br>0.1847<br>0.3455 |
|------------------|--------------|------------------------|-------------------------------|
| K0406WB<br>K0506 | L04WB<br>L05 | L06WB<br>L06           | 0.1847<br>0.1697              |
| K0506WB          | L05WB        | L06WB                  | 0.3400                        |
| C0506            | N050         | N060                   | 3.720e-14                     |
| K0507            | L05          | L07                    | 0.0682                        |
| K0507WB          | L05WB        | L07WB                  | 0.1847                        |
| K0607            | L06          | L07                    | 0.1824                        |
| K0607WB          | L06WB        | L07WB                  | 0.3505                        |
| C0607            | N060         | N070                   | 3.570e-14                     |
| K0608            | L06          | L08                    | 0.0702                        |
| K0608WB          | L06WB        | L08WB                  | 0.1847                        |
| K0708            | L07          | L08                    | 0.1691                        |
| K0708WB          | L07WB        | L08WB                  | 0.3400                        |
| C0708            | N070         | N080                   | 3.632e-14                     |
| .ENDS L          | INES         |                        |                               |

http://onsemi.com 16

Package: TSSOP-8 \* SPICE subcircuit file of coupled transmission lines \* Transmission line model \* Conductor number-pin designation cross reference: \* counter-clockwise Conductor Pin 1 1 2 2. 3 3 4 4 5 6 7 7 8 \* number of lumps: \* FASTEST APPLICABLE EDGE RATE: 0.048 ns \* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050 R\_SHORT 0 GND 0.0001 X\_777 N01I N010 N02I N020 N03I N030 N04I N040 + N051 N050 N061 N060 N071 N070 N081 N080 GND PACKAGE .SUBCKT PACKAGE N011 N010 N021 N020 N031 N030 N041 N040 + N051 N050 N061 N060 N071 N070 N081 N080 GND R01WB N01I N01W 4.727e-02 L01WB N01W N01R 1.158e-09 R01 N01R N01C 9.680e-04 GND N01C C01 8.978e-14 N010 7.466e-10 N01C L01 R02WB N02I N02W 3.815e-02 L02WB N02W N02R 9.835e-10 R02 N02R N02C 9.680e-04 C02 N02C GND 7.711e-14 N02C N020 L02 7.466e-10 3.815e-02 R03WB N03I N03W L03WB N03W N03R 9.835e-10 R03 N03R N03C 9.680e-04 C03 N03C GND 7.704e-14 L03 N03C N03O 7.465e-10 R04WB N04I N04W 4.727e-02 L04WB N04W N04R 1.158e-09 R04 N04R N04C 9.680e-04 N04C C04 GND 8.983e-14 N040 T<sub>1</sub>04 N04C 7.460e-10 R05WB N05I N05W 4.727e-02 L05WB N05W N05R 1.158e-09 R05 N05R N05C 9.680e-04 C05 N05C GND 8.983e-14 L05 N05C N050 7.460e-10 R06WB NOGI N06W 3.815e-02 L06WB N06W N06R 9.835e-10 R06 N06R N06C 9.680e-04 C06 N06C GND 7.704e-14 L06 N06C N06O 7.465e-10

3.815e-02

R07WB N07I N07W

| L07WB         | N07W  | N07R  | 9.835e-10 |  |
|---------------|-------|-------|-----------|--|
| R07           | N07R  | N07C  | 9.680e-04 |  |
| C07           | N07C  | GND   | 7.711e-14 |  |
| L07           | N07C  | N070  | 7.466e-10 |  |
| R08WB         | N08I  | M80N  | 4.727e-02 |  |
| L08WB         | M80N  | N08R  | 1.158e-09 |  |
| R08           | N08R  | N08C  | 9.680e-04 |  |
| C08           | N08C  | GND   | 8.978e-14 |  |
| L08           | N08C  | N080  | 7.466e-10 |  |
| K0102         | L01   | L02   | 0.2481    |  |
| K0102WB       | L01WB | L02WB | 0.1729    |  |
| C0102         | N01C  | N02C  | 2.283e-14 |  |
| K0103         | L01   | L03   | 0.1067    |  |
| K0103WB       | L01WB | L03WB | 0.0598    |  |
| K0104         | L01   | L04   | 0.0593    |  |
| K0203         | L02   | L03   | 0.2479    |  |
| K0203WB       | L02WB | L03WB | 0.1463    |  |
| C0203         | N02C  | N03C  | 2.136e-14 |  |
| K0204         | L02   | L04   | 0.1068    |  |
| K0204WB       | L02WB | L04WB | 0.0598    |  |
| K0304         | L03   | L04   | 0.2481    |  |
| K0304WB       | L03WB | L04WB | 0.1729    |  |
| C0304         | N03C  | N04C  | 2.279e-14 |  |
| K0506         | L05   | L06   | 0.2481    |  |
| K0506WB       | L05WB | L06WB | 0.1513    |  |
| C0506         | N05C  | N06C  | 2.279e-14 |  |
| K0507         | L05   | L07   | 0.1068    |  |
| K0507WB       | L05WB | L07WB | 0.0615    |  |
| K0508         | L05   | L08   | 0.0593    |  |
| K0607         | L06   | L07   | 0.2479    |  |
| K0607WB       | L06WB | L07WB | 0.1729    |  |
| C0607         | N06C  | N07C  | 2.136e-14 |  |
| K0608         | L06   | L08   | 0.1067    |  |
| K0608WB       | L06WB | L08WB | 0.0615    |  |
| K0708         | L07   | L08   | 0.2481    |  |
| K0708WB       | L07WB | L08WB | 0.1513    |  |
| C0708         | N07C  | N08C  | 2.283e-14 |  |
| .ENDS PACKAGE |       |       |           |  |

\_\_\_\_\_\_

-----

Package: SO-20 \* SPICE subcircuit file of coupled transmission lines \* Transmission line model \* Conductor number-pin designation cross reference: Conductor Pin 1 2. 2. 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 15 15 16 16 17 17 18 18 19 19 20 20 \* number of lumps: 1 0.275 ns \* FASTEST APPLICABLE EDGE RATE: \* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050 .SUBCKT PACKAGE N011 N010 N021 N020 N031 N030 N041 N040 + N051 N050 N061 N060 N071 N070 N081 N080 N091 N090 + N10I N100 N11I N110 N12I N120 N13I N130 N14I N140 + N15I N150 N16I N160 N17I N170 N18I N180 N19I N190 + N20I N200 BD\_GND R01WB N01I N01W 3.732e-02 L01WB N01W N01R 9.678e-10 R01 N01R N01C 1.700e-02 BD\_GND 4.680e-13 C01 N01C N01C N01O L01 3.814e-09 R02WB N02I N02W 8.086e-02 L02WB N02W N02R 1.822e-09 R02 N02R N02C 1.300e-02 C02 N02C BD\_GND 1.924e-13 2.724e-09 L02 N02C N02O R03WB N03I N03W 9.122e-02 L03WB N03W N03R 2.033e-09 R03 N03R N03C 9.000e-02 C03 N03C BD\_GND 1.377e-13 L03 N03C N03O 1.814e-09 R04WB N04I N04W 7.878e-02 L04WB N04W N04R 1.780e-09 R04 NO4R NO4C 8.000e-02 BD\_GND 1.484e-13 C04 N04C N04C N04O L04 1.551e-09

R05WB N05I

L05WB N05W

N05R

R05

N05W

N05C

N05R

6.634e-02

1.531e-09

7.000e-02

| C05        | N05C                 | BD_GND                 | 1.635e-13                           |
|------------|----------------------|------------------------|-------------------------------------|
| L05        | N05C                 | N050                   | 1.508e-09                           |
| R06WB      | N06I                 | N06W                   | 6.634e-02                           |
| L06WB      | N06W                 | N06R                   | 1.531e-09                           |
| R06        | N06R                 | N06C                   | 7.000e-02                           |
| C06        | N06C                 | BD_GND                 | 1.584e-13                           |
| L06        | NO6C                 | N060                   | 1.504c 15                           |
| R07WB      | NOOC<br>NOOI         | N000                   | 7.878e-02                           |
|            |                      |                        |                                     |
| L07WB      | NO7W                 | NO7R                   | 1.780e-09                           |
| R07        | NO7R                 | N07C                   | 8.000e-02                           |
| C07        | N07C                 | BD_GND                 | 1.476e-13                           |
| L07        | N07C                 | N070                   | 1.553e-09                           |
| R08WB      | N08I                 | N08W                   | 4.976e-02                           |
| L08WB      | M80N                 | N08R                   | 1.206e-09                           |
| R08        | N08R                 | N08C                   | 9.000e-02                           |
| C08        | N08C                 | BD_GND                 | 1.322e-13                           |
| L08        | N08C                 | N080                   | 1.820e-09                           |
| R09WB      | N09I                 | N09W                   | 8.086e-02                           |
| L09WB      | N09W                 | N09R                   | 1.822e-09                           |
| R09        | N09R                 | N09C                   | 1.300e-02                           |
| C09        | N09C                 | BD_GND                 | 1.864e-13                           |
| L09        | N09C                 | N090                   | 2.725e-09                           |
| R10WB      | N10I                 | N10W                   | 7.256e-02                           |
| L10WB      | N10W                 | N10R                   | 1.655e-09                           |
| R10        | N10R                 | N10C                   | 1.700e-02                           |
| C10        | N10C                 | BD_GND                 | 4.681e-13                           |
| L10        | N10C                 | N100                   | 3.814e-09                           |
| R11WB      | N11I                 | N11W                   | 3.732e-02                           |
| L11WB      | N11W                 | N11R                   | 9.678e-10                           |
| R11        | N11R                 | N11C                   | 1.700e-02                           |
| C11        | N11C                 | BD_GND                 | 4.761e-13                           |
| L11        |                      |                        | 3.795e-09                           |
|            | N11C                 | N110                   |                                     |
| R12WB      | N12I                 | N12W                   | 8.086e-02                           |
| L12WB      | N12W                 | N12R                   | 1.822e-09                           |
| R12        | N12R                 | N12C                   | 1.300e-02                           |
| C12        | N12C                 | BD_GND                 | 1.888e-13                           |
| L12        | N12C                 | N120                   | 2.745e-09                           |
| R13WB      | N13I                 | N13W                   | 9.122e-02                           |
| L13WB      | N13W                 | N13R                   | 2.033e-09                           |
| R13        | N13R                 | N13C                   | 9.000e-02                           |
| C13        | N13C                 | BD_GND                 | 1.346e-13                           |
| L13        | N13C                 | N130                   | 1.879e-09                           |
| R14WB      | N14I                 | N14W                   | 7.878e-02                           |
| L14WB      | N14W                 | N14R                   | 1.780e-09                           |
| R14        | N14R                 | N14C                   | 8.000e-02                           |
| C14        | N14C                 | BD_GND                 | 1.496e-13                           |
| L14        | N14C                 | N140                   | 1.436e-09                           |
| R15WB      | N15I                 | N15W                   | 6.634e-02                           |
| L15WB      | N15W                 | N15R                   | 1.531e-09                           |
| R15        | N15R                 | N15C                   | 7.000e-02                           |
| C15        | N15C                 | BD_GND                 | 1.550e-13                           |
| L15        | N15C                 | N150                   | 1.464e-09                           |
| R16WB      | N16I                 | N16W                   | 6.634e-02                           |
| L16WB      | N16W                 | N16R                   | 1.531e-09                           |
| R16        | N16R                 | N16C                   | 7.000e-02                           |
| C16        | N16C                 | BD_GND                 | 1.568e-13                           |
| L16        | N16C                 | N160                   | 1.465e-09                           |
| R17WB      | N17I                 | N17W                   | 7.878e-02                           |
| L17WB      | N17W                 | N17R                   | 1.780e-02                           |
| R17        | TAT \ AA             |                        |                                     |
| 1/1 /      | M17D                 | M1.1.7C                | 8 0000 00                           |
| C17        | N17R                 | N17C                   | 8.000e-02                           |
| C17<br>L17 | N17R<br>N17C<br>N17C | N17C<br>BD_GND<br>N17O | 8.000e-02<br>1.492e-13<br>1.437e-09 |

| R18WB          | N18I         | N18W           | 9.122e-02              |
|----------------|--------------|----------------|------------------------|
| L18WB          | N18W         | N18R           | 2.033e-09              |
| R18            | N18R         | N18C           | 9.000e-02              |
| C18            | N18C         | BD_GND         | 1.346e-13              |
| L18            | N18C         | N180           | 1.892e-09              |
| R19WB          | N19I         | N19W           | 8.086e-02              |
| L19WB          | N19W         | N19R           | 1.822e-09              |
| R19<br>C19     | N19R<br>N19C | N19C<br>BD_GND | 1.300e-02<br>1.880e-13 |
| L19            | N19C         | N190           | 2.767e-09              |
| R20WB          | N20I         | N20W           | 7.256e-02              |
| L20WB          | N20W         | N20R           | 1.655e-09              |
| R20            | N20R         | N20C           | 1.700e-02              |
| C20            | N20C         | BD_GND         | 4.712e-13              |
| L20            | N20C         | N200           | 3.825e-09              |
| K0102          | L01          | L02            | 0.4539                 |
| K0102WB        | L01WB        | L02WB          | 0.1239                 |
| C0102          | N01C         | N02C           | 2.674e-13              |
| K0103          | L01          | L03            | 0.2557                 |
| K0104          | L01          | L04            | 0.1742                 |
| K0105          | L01          | L05            | 0.1290                 |
| K0106          | L01          | L06            | 0.1011                 |
| K0107          | L01          | L07            | 0.0834                 |
| K0108<br>K0111 | L01          | L08            | 0.0636<br>-0.0789      |
| K0111          | L01<br>L01   | L11<br>L12     | -0.0769                |
| K0112<br>K0113 | L01          | L13            | -0.0733                |
| K0113          | L01          | L14            | -0.0594                |
| K0115          | L01          | L15            | -0.0669                |
| K0116          | L01          | L16            | -0.0657                |
| K0117          | L01          | L17            | -0.0672                |
| K0118          | L01          | L18            | -0.0625                |
| K0203          | L02          | L03            | 0.3964                 |
| K0203WB        | L02WB        | L03WB          | 0.1239                 |
| C0203          | N02C         | N03C           | 1.529e-13              |
| K0204          | L02          | L04            | 0.2341                 |
| K0205          | L02          | L05            | 0.1587                 |
| K0206          | L02          | L06            | 0.1206                 |
| K0207<br>K0208 | L02<br>L02   | L07<br>L08     | 0.0974<br>0.0760       |
| K0208<br>K0209 | L02          | L09            | 0.0554                 |
| K0203          | L02          | L11            | -0.0743                |
| K0211          | L02          | L12            | -0.0723                |
| K0213          | L02          | L13            | -0.0707                |
| K0214          | L02          | L14            | -0.0604                |
| K0215          | L02          | L15            | -0.0678                |
| K0216          | L02          | L16            | -0.0677                |
| K0217          | L02          | L17            | -0.0685                |
| K0218          | L02          | L18            | -0.0682                |
| K0304          | L03          | L04            | 0.3767                 |
| K0304WB        | L03WB        | L04WB          | 0.1239                 |
| C0304          | N03C         | N04C           | 1.006e-13              |
| K0305          | L03          | L05            | 0.2211                 |
| K0306          | T03          | L06            | 0.1564                 |
| К0307<br>К0308 | L03<br>L03   | L07            | 0.1219                 |
| K0308          | L03          | L08<br>L09     | 0.0956                 |
| K0309          | L03          | L10            | 0.0639                 |
| K0310          | L03          | L11            | -0.0654                |
| K0311          | L03          | L12            | -0.0662                |
| K0313          | L03          | L13            | -0.0688                |
| K0314          | L03          | L14            | -0.0614                |
|                |              |                |                        |

| K0315<br>K0316<br>K0317 | L03<br>L03<br>L03 | L15<br>L16<br>L17 | -0.0683<br>-0.0692<br>-0.0684 |
|-------------------------|-------------------|-------------------|-------------------------------|
| K0318                   | L03               | L18               | -0.0730                       |
| K0319                   | L03               | L19               | -0.0609                       |
| K0320                   | L03               | L20               | -0.0501                       |
| K0405                   | L04               | L05               | 0.3731                        |
| K0405WB                 | L04WB             | L05WB             | 0.1239                        |
| C0405<br>K0406          | N04C<br>L04       | N05C<br>L06       | 8.137e-14<br>0.2290           |
| K0407                   | L04               | L07               | 0.1637                        |
| K0408                   | L04               | L08               | 0.1218                        |
| K0409                   | L04               | L09               | 0.0976                        |
| K0410                   | L04               | L10               | 0.0836                        |
| K0411                   | L04               | L11               | -0.0645                       |
| K0412                   | L04               | L12               | -0.0673                       |
| K0413                   | L04               | L13               | -0.0722                       |
| K0414                   | L04               | L14               | -0.0658                       |
| K0415<br>K0416          | L04<br>L04        | L15<br>L16        | -0.0724 $-0.0733$             |
| K0410<br>K0417          | L04               | L17               | -0.0733                       |
| K0417                   | L04               | L18               | -0.0763                       |
| K0419                   | L04               | L19               | -0.0673                       |
| K0420                   | L04               | L20               | -0.0597                       |
| K0506                   | L05               | L06               | 0.3775                        |
| K0506WB                 | L05WB             | L06WB             | 0.1239                        |
| C0506                   | N05C              | N06C              | 8.844e-14                     |
| K0507                   | L05               | L07               | 0.2293                        |
| K0508                   | L05               | L08               | 0.1565                        |
| K0509<br>K0510          | L05<br>L05        | L09<br>L10        | 0.1208<br>0.1013              |
| K0510<br>K0511          | L05               | L11               | -0.0636                       |
| K0511                   | L05               | L12               | -0.0679                       |
| K0513                   | L05               | L13               | -0.0742                       |
| K0514                   | L05               | L14               | -0.0683                       |
| K0515                   | L05               | L15               | -0.0737                       |
| K0516                   | L05               | L16               | -0.0741                       |
| K0517                   | L05               | L17               | -0.0704                       |
| K0518                   | L05               | L18               | -0.0760                       |
| K0519<br>K0520          | L05<br>L05        | L19<br>L20        | -0.0684<br>-0.0622            |
| K0520                   | L05               | L07               | 0.3743                        |
| K0607<br>K0607WB        | L06WB             | L07WB             | 0.1239                        |
| C0607                   | N06C              | N07C              | 7.898e-14                     |
| K0608                   | L06               | L08               | 0.2214                        |
| K0609                   | L06               | L09               | 0.1591                        |
| K0610                   | L06               | L10               | 0.1293                        |
| K0611                   | L06               | L11               | -0.0607                       |
| K0612                   | L06               | L12               | -0.0668                       |
| K0613                   | L06               | L13               | -0.0752                       |
| K0614<br>K0615          | L06<br>L06        | L14<br>L15        | -0.0700<br>-0.0741            |
| K0616                   | L06               | L16               | -0.0741                       |
| K0617                   | L06               | L17               | -0.0690                       |
| K0618                   | L06               | L18               | -0.0754                       |
| K0619                   | L06               | L19               | -0.0697                       |
| K0620                   | L06               | L20               | -0.0652                       |
| K0708                   | L07               | L08               | 0.3762                        |
| K0708WB                 | L07WB             | L08WB             | 0.1239                        |
| C0708                   | N07C              | N08C              | 1.016e-13                     |
| K0709<br>K0710          | L07<br>L07        | L09<br>L10        | 0.2343<br>0.1746              |
| 10/10                   | 107               | -10               | 0.1/10                        |

| K0711   | L07   | L11   | -0.0581   |
|---------|-------|-------|-----------|
| K0712   |       | L12   | -0.0657   |
|         | L07   |       |           |
| K0713   | L07   | L13   | -0.0756   |
| K0714   | L07   | L14   | -0.0707   |
| K0715   | L07   | L15   | -0.0736   |
| K0716   | L07   | L16   | -0.0730   |
| K0717   | L07   | L17   | -0.0667   |
|         |       |       |           |
| K0718   | L07   | L18   | -0.0735   |
| K0719   | L07   | L19   | -0.0692   |
| K0720   | L07   | L20   | -0.0661   |
| К0809   | L08   | L09   | 0.3970    |
| K0809WB | L08WB | L09WB | 0.1239    |
| C0809   | N08C  | N09C  | 1.545e-13 |
|         |       |       |           |
| K0810   | L08   | L10   | 0.2564    |
| K0812   | L08   | L12   | -0.0591   |
| K0813   | L08   | L13   | -0.0723   |
| K0814   | L08   | L14   | -0.0685   |
| K0815   | L08   | L15   | -0.0698   |
| K0816   | L08   | L16   | -0.0693   |
|         |       |       |           |
| K0817   | L08   | L17   | -0.0624   |
| K0818   | L08   | L18   | -0.0702   |
| K0819   | L08   | L19   | -0.0681   |
| K0820   | L08   | L20   | -0.0670   |
| K0910   | L09   | L10   | 0.4542    |
| K0910WB | L09WB | L10WB | 0.1239    |
|         |       |       |           |
| C0910   | N09C  | N10C  | 2.677e-13 |
| K0913   | L09   | L13   | -0.0675   |
| K0914   | L09   | L14   | -0.0688   |
| K0915   | L09   | L15   | -0.0687   |
| K0916   | L09   | L16   | -0.0693   |
| K0917   | L09   | L17   | -0.0618   |
| K0917   |       |       | -0.0723   |
|         | L09   | L18   |           |
| K0919   | L09   | L19   | -0.0742   |
| K0920   | L09   | L20   | -0.0759   |
| K1011WB | L10WB | L11WB | 0.1239    |
| K1013   | L10   | L13   | -0.0616   |
| K1014   | L10   | L14   | -0.0675   |
| K1015   | L10   | L15   | -0.0668   |
| K1015   | L10   | L16   | -0.0685   |
|         |       |       |           |
| K1017   | L10   | L17   | -0.0609   |
| K1018   | L10   | L18   | -0.0731   |
| K1019   | L10   | L19   | -0.0773   |
| K1020   | L10   | L20   | -0.0803   |
| K1112   | L11   | L12   | 0.4562    |
| K1112WB | L11WB | L12WB | 0.1239    |
| C1112   | N11C  | N12C  | 2.679e-13 |
|         |       |       |           |
| K1113   | L11   | L13   | 0.2725    |
| K1114   | L11   | L14   | 0.1533    |
| K1115   | L11   | L15   | 0.1161    |
| K1116   | L11   | L16   | 0.0901    |
| K1117   | L11   | L17   | 0.0702    |
| K1118   | L11   | L18   | 0.0567    |
| K1113   | L12   | L13   | 0.4103    |
|         |       |       |           |
| K1213WB | L12WB | L13WB | 0.1239    |
| C1213   | N12C  | N13C  | 1.538e-13 |
| K1214   | L12   | L14   | 0.2091    |
| K1215   | L12   | L15   | 0.1398    |
| K1216   | L12   | L16   | 0.1055    |
| K1217   | L12   | L17   | 0.0812    |
| K1217   | L12   | L18   | 0.0684    |
|         |       |       |           |
| K1314   | L13   | L14   | 0.3577    |
| K1314WB | L13WB | L14WB | 0.1239    |

| 01214          | NT1 2.0     | N1 4 C      | 1.026e-13 |
|----------------|-------------|-------------|-----------|
| C1314<br>K1315 | N13C<br>L13 | N14C<br>L15 | 0.2088    |
| K1315          | ь13<br>L13  | L16         | 0.2000    |
| K1310          | ь13<br>L13  | L17         | 0.1074    |
| K1317          | ь13<br>L13  | L18         | 0.1074    |
| K1310          | L13         | L19         | 0.0693    |
| K1319          | ь13<br>L13  | L20         | 0.0578    |
| K1320          | L14         | L15         | 0.3383    |
| K1415WB        | L14WB       | L15WB       | 0.1239    |
| C1415          | N14C        | N15C        | 7.843e-14 |
| K1416          | L14         | L16         | 0.1987    |
| K1410<br>K1417 | L14         | ь10<br>ь17  | 0.1302    |
| K1417          | L14         | L18         | 0.1302    |
| K1410<br>K1419 | L14         | L19         | 0.0825    |
| K1419          | L14         | L20         | 0.0825    |
| K1420          | L14         | L16         | 0.3631    |
| K1516WB        | L15WB       | L16WB       | 0.1239    |
| C1516          | N15C        | N16C        | 9.179e-14 |
| K1517          | L15         | L17         | 0.1988    |
| K1517          | L15         | L17         | 0.1980    |
|                |             |             | 0.1480    |
| K1519<br>K1520 | L15         | L19<br>L20  | 0.1072    |
| K1520<br>K1617 | L15<br>L16  | L20<br>L17  | 0.0918    |
|                |             |             |           |
| K1617WB        | L16WB       | L17WB       | 0.1239    |
| C1617          | N16C        | N17C        | 7.810e-14 |
| K1618          | L16         | L18         | 0.2096    |
| K1619          | L16         | L19         | 0.1419    |
| K1620          | L16         | L20         | 0.1183    |
| K1718          | L17         | L18         | 0.3595    |
| K1718WB        | L17WB       | L18WB       | 0.1239    |
| C1718          | N17C        | N18C        | 1.034e-13 |
| K1719          | L17         | L19         | 0.2122    |
| K1720          | L17         | L20         | 0.1565    |
| K1819          | L18         | L19         | 0.4140    |
| K1819WB        | L18WB       | L19WB       | 0.1239    |
| C1819          | N18C        | N19C        | 1.536e-13 |
| K1820          | L18         | L20         | 0.2766    |
| K1920          | L19         | L20         | 0.4603    |
| K1920WB        | L19WB       | L20WB       | 0.1239    |
| C1920          | N19C        | N20C        | 2.679e-13 |
| .ENDS PA       | ACKAGE      |             |           |

Package: PLCC-28 \* SPICE subcircuit file of coupled transmission lines \* Transmission line model \* Note: \* 1. The model assume ground plane is 15 mil below package \* 2. The model assume flag is floating  $^{\star}$  3. The flag is 170 x 170 mil square, pin 1 starts from up left corner \* 4. The lead sequence is counter clockwise \* Conductor number-pin designation cross reference: Conductor Pin \* 2.7 \* number of lumps: \* FASTEST APPLICABLE EDGE RATE: 0.209 ns \* COMPRESSION OF SUBCIRCUITS PERFORMED: discard ratio is 0.050 \* ECLinPS usage requires the input nodes used in the subcircuit call \* statement (X\_777) that are tied to global ports(VCC, VCCO, and VEE internal st to the die) to have the same global names in the subcircuit call statement(X\_777). \* For example, if VCC is wirebonded to pin 20 for a certain design, then N20I \* should be relabeled to VCC. Again, the change needs only to be incorporated \* in the X\_777 subcircuit callout statement. Since this requires a change to \* the netlist below, it is necessary for each design to have a copy of this file with \* the appropriate changes made that are required for that design. \* R\_SHORT 0 ground 0.0001 X\_777 N01I N010 N02I N02O N03I N03O N04I N04O

+ N051 N050 N061 N060 N071 N070 N081 N080 N091 N090

```
+ N10I N100 N11I N110 N12I N120 N13I N130 N14I N140
+ N15I N150 N16I N160 N17I N170 N18I N180 N19I N190
+ N20I N200 N21I N210 N22I N220 N23I N230 N24I N240
+ N251 N250 N261 N260 N271 N270 N281 N280 ground PACKAGE
.SUBCKT PACKAGE N011 N010 N021 N020 N031 N030 N041 N040
+ N05I N050 N06I N060 N07I N070 N08I N080 N09I N090
+ N10I N100 N11I N110 N12I N120 N13I N130 N14I N140
+ N15I N150 N16I N160 N17I N170 N18I N180 N19I N190
+ N20I N200 N21I N210 N22I N220 N23I N230 N24I N240
+ N25I N250 N26I N260 N27I N270 N28I N280 ground
R01WB
       N01I
                N01W
                        1.124e-01
L01WB
        N01W
                N01R
                        2.474e-09
                        1.120e-02
R01
        N01R
                N01C
        N01C
                ground 3.919e-13
C01
L01
        N01C
                        2.346e-09
                N010
R02WB
        N02I
                N02W
                        9.952e-02
L02WB
        N02W
                N02R
                        2.204e-09
R02
        N02R
                N02C
                        1.120e-02
C02
        N02C
                ground 1.950e-13
L02
        N02C
                N020
                        2.180e-09
R03WB
        N03I
                N03W
                        9.164e-02
                        2.042e-09
L03WB
        N03W
                N03R
                        1.100e-02
R03
        N03R
                N03C
C03
        N03C
                ground 1.789e-13
L03
        N03C
                N030
                        2.050e-09
R04WB
        N04I
                N04W
                        9.039e-02
L04WB
        NO4W
                N04R
                        2.016e-09
R04
        N04R
                N04C
                        1.100e-02
C04
        N04C
                ground 1.748e-13
T<sub>1</sub>04
        N04C
                        2.030e-09
                N040
        N05I
R05WB
                N05W
                        9.164e-02
L05WB
        N05W
                N05R
                        2.042e-09
R05
        N05R
                N05C
                        1.100e-02
C05
        N05C
                ground 1.800e-13
L05
        N05C
                N050
                        2.049e-09
R06WB
        N06I
                N06W
                        9.952e-02
L06WB
        N06W
                N06R
                        2.204e-09
R06
        N06R
                N06C
                        1.120e-02
C06
        N06C
                ground 1.936e-13
L06
        N06C
                N060
                        2.184e-09
        N07I
R07WB
                N07W
                        1.124e-01
L07WB
        N07W
                N07R
                        2.474e-09
R07
        N07R
                N07C
                        1.120e-02
                ground 3.916e-13
C07
        N07C
L07
        N07C
                N070
                        2.341e-09
                        1.124e-01
R08WB
        180N
                M80M
TIO8WB
        M80N
                N08R
                        2.474e-09
R08
        N08R
                N08C
                        1.120e-02
C08
        N08C
                ground 3.916e-13
L08
        N08C
                N080
                        2.341e-09
R09WB
        N09I
                N09W
                        9.952e-02
L09WB
        N09W
                N09R
                        2.204e-09
R09
        N09R
                        1.120e-02
                N09C
C09
        N09C
                ground 1.936e-13
L09
        N09C
                        2.184e-09
                N090
R10WB
        N10I
                N10W
                        9.164e-02
L10WB
        N10W
                N10R
                        2.042e-09
R10
        N10R
                N10C
                        1.100e-02
C10
        N10C
                ground 1.800e-13
L10
        N10C
                N100
                        2.049e-09
                        9.039e-02
R11WB
       N11I
                N11W
```

| L11WB        | N11W         | N11R         | 2.016e-09              |
|--------------|--------------|--------------|------------------------|
| R11          | N11R         | N11C         | 1.100e-02              |
| C11          | N11C         | ground       | 1.748e-13              |
| L11          | N11C         | N110         | 2.030e-09              |
| R12WB        | N12I         | N12W         | 9.164e-02              |
| L12WB        | N12W         | N12R         | 2.042e-09              |
| R12          | N12R         | N12C         | 1.100e-02              |
| C12          | N12C         | ground       | 1.789e-13              |
| L12          | N12C         | N120         | 2.050e-09              |
| R13WB        | N13I         | N13W         | 9.952e-02              |
| L13WB        | N13W         | N13R         | 2.204e-09              |
| R13          | N13R         | N13C         | 1.120e-02              |
| C13          | N13C         | ground       | 1.950e-13              |
| L13          | N13C         | N130         | 2.180e-09              |
| R14WB        | N14I         | N14W         | 1.124e-01              |
| L14WB        | N14W         | N14R         | 2.474e-09              |
| R14          | N14R         | N14C         | 1.120e-02              |
| C14          | N14C         | ground       | 3.919e-13              |
| L14          | N14C         | N140         | 2.346e-09              |
| R15WB        | N15I         | N15W         | 1.124e-01              |
| L15WB        | N15W         | N15W<br>N15R | 2.474e-09              |
| R15          | N15W<br>N15R | N15R<br>N15C | 1.120e-02              |
|              |              |              |                        |
| C15<br>L15   | N15C         | ground       | 3.919e-13              |
|              | N15C         | N150         | 2.346e-09<br>9.952e-02 |
| R16WB        | N16I         | N16W         |                        |
| L16WB        | N16W         | N16R         | 2.204e-09              |
| R16          | N16R         | N16C         | 1.120e-02              |
| C16          | N16C         | ground       | 1.950e-13              |
| L16          | N16C         | N160         | 2.180e-09              |
| R17WB        | N17I         | N17W         | 9.164e-02              |
| L17WB        | N17W         | N17R         | 2.042e-09              |
| R17          | N17R         | N17C         | 1.100e-02              |
| C17          | N17C         | ground       | 1.789e-13              |
| L17          | N17C         | N170         | 2.050e-09              |
| R18WB        | N18I         | N18W         | 9.039e-02              |
| L18WB        | N18W         | N18R         | 2.016e-09              |
| R18          | N18R         | N18C         | 1.100e-02              |
| C18          | N18C         | ground       | 1.748e-13              |
| L18<br>R19WB | N18C         | N180         | 2.030e-09              |
|              | N19I         | N19W         | 9.164e-02              |
| L19WB        | N19W         | N19R         | 2.042e-09              |
| R19          | N19R         | N19C         | 1.100e-02              |
| C19          | N19C         | ground       |                        |
| L19          | N19C         | N190         | 2.049e-09              |
| R20WB        | N20I         | N20W         | 9.952e-02              |
| L20WB        | N20W         | N20R         | 2.204e-09              |
| R20          | N20R         | N20C         | 1.120e-02              |
| C20          | N20C         | ground       |                        |
| L20          | N20C         | N200         | 2.184e-09              |
| R21WB        | N21I         | N21W         | 1.124e-01              |
| L21WB        | N21W         | N21R         | 2.474e-09              |
| R21          | N21R         | N21C         | 1.120e-02              |
| C21          | N21C         | ground       | 3.916e-13              |
| L21          | N21C         | N210         | 2.341e-09              |
| R22WB        | N22I         | N22W         | 1.124e-01              |
| L22WB        | N22W         | N22R         | 2.474e-09              |
| R22          | N22R         | N22C         | 1.120e-02              |
| C22          | N22C         | ground       | 3.916e-13              |
| L22          | N22C         | N220         | 2.341e-09              |
| R23WB        | N23I         | N23W         | 9.952e-02              |
| L23WB        | N23W         | N23R         | 2.204e-09              |
| R23          | N23R         | N23C         | 1.120e-02              |
|              |              |              |                        |

| C23              | N23C         | ground       | 1.936e-13        |
|------------------|--------------|--------------|------------------|
| L23              | N23C         | N230         | 2.184e-09        |
| R24WB            | N24I         | N24W         | 9.164e-02        |
| L24WB            | N24W         | N24R         | 2.042e-09        |
| R24              | N24R         | N24C         | 1.100e-02        |
| C24              | N24C         | ground       | 1.800e-13        |
| L24              | N24C         | N240         | 2.049e-09        |
| R25WB            | N25I         | N25W         | 9.039e-02        |
| L25WB            | N25W         | N25R         | 2.016e-09        |
| R25              | N25W<br>N25R | N25C         | 1.100e-02        |
|                  |              |              | 1.748e-13        |
| C25              | N25C         | ground       |                  |
| L25              | N25C         | N250         | 2.030e-09        |
| R26WB            | N26I         | N26W         | 9.164e-02        |
| L26WB            | N26W         | N26R         | 2.042e-09        |
| R26              | N26R         | N26C         | 1.100e-02        |
| C26              | N26C         | ground       | 1.789e-13        |
| L26              | N26C         | N260         | 2.050e-09        |
| R27WB            | N27I         | N27W         | 9.952e-02        |
| L27WB            | N27W         | N27R         | 2.204e-09        |
| R27              | N27R         | N27C         | 1.120e-02        |
| C27              | N27C         | ground       | 1.950e-13        |
| L27              | N27C         | N270         | 2.180e-09        |
| R28WB            | N28I         | N28W         | 1.124e-01        |
| L28WB            | N28W         | N28R         | 2.474e-09        |
| R28              | N28R         | N28C         | 1.120e-02        |
| C28              | N28C         | ground       | 3.919e-13        |
| L28              | N28C         | N280         | 2.346e-09        |
| K0102            | L01          | L02          | 0.4380           |
| K0102WB          | L01WB        | L02WB        | 0.1463           |
| C0102WB          | N01C         | NO2C         | 2.394e-13        |
| K0103            | L01          | L03          | 0.2472           |
| K0103<br>K0103WB | L01WB        | L03          | 0.0501           |
|                  |              |              |                  |
| K0104            | L01          | L04          | 0.1557           |
| K0105            | L01          | L05          | 0.1083           |
| K0106            | L01          | L06          | 0.0742           |
| K0107            | L01          | L07          | 0.0543           |
| K0124            | L01          | L24          | 0.0506           |
| K0125            | L01          | L25          | 0.0745           |
| K0126            | L01          | L26          | 0.1092           |
| K0127            | L01          | L27          | 0.1565           |
| K0128            | L01          | L28          | 0.2194           |
| C0128            | N01C         | N28C         | 5.401e-14        |
| K0203            | L02          | L03          | 0.4331           |
| K0203WB          | L02WB        | L03WB        | 0.1463           |
| C0203            | N02C         | N03C         | 2.332e-13        |
| K0204            | L02          | L04          | 0.2413           |
| K0204WB          | L02WB        | L04WB        | 0.0708           |
| K0205            | L02          | L05          | 0.1554           |
| K0206            | L02          | L06          | 0.1051           |
| K0207            | L02          | L07          | 0.0741           |
| K0225            | L02          | L25          | 0.0619           |
| K0226            | L02          | L26          | 0.0898           |
| K0227            | L02          | L27          | 0.1237           |
| K0228            | L02          | L28          | 0.1565           |
| K0228            | L02          | L04          | 0.4342           |
| K0304<br>K0304WB | L03          | L04<br>L04WB | 0.2238           |
| C0304WB          |              |              | 2.254e-13        |
| K0305            | N03C         | N04C         | 0.2434           |
|                  | T03MD        | L05          |                  |
| K0305WB          | L03WB        | L05WB        | 0.0853           |
| K0306            | L03          | L06          | 0.1552           |
| K0307            |              |              | A 1 A A A        |
| K0308            | L03<br>L03   | L07<br>L08   | 0.1083<br>0.0506 |

| K0327   | L03   | L27   | 0.0898    |
|---------|-------|-------|-----------|
| K0328   | L03   | L28   | 0.1092    |
|         |       |       |           |
| K0405   | L04   | L05   | 0.4355    |
| K0405WB | L04WB | L05WB | 0.2238    |
| C0405   | N04C  | N05C  | 2.282e-13 |
| K0406   | L04   | L06   | 0.2418    |
|         |       |       |           |
| K0406WB | L04WB | L06WB | 0.0708    |
| K0407   | L04   | L07   | 0.1558    |
| K0408   | L04   | L08   | 0.0742    |
| K0409   | L04   | L09   | 0.0613    |
| K0427   |       |       |           |
|         | L04   | L27   | 0.0619    |
| K0428   | L04   | L28   | 0.0745    |
| K0506   | L05   | L06   | 0.4330    |
| K0506WB | L05WB | L06WB | 0.1463    |
| C0506   | N05C  | N06C  | 2.324e-13 |
|         |       |       |           |
| K0507   | L05   | L07   | 0.2474    |
| K0507WB | L05WB | L07WB | 0.0501    |
| K0508   | L05   | L08   | 0.1087    |
| K0509   | L05   | L09   | 0.0889    |
|         |       |       |           |
| K0528   | L05   | L28   | 0.0506    |
| K0607   | L06   | L07   | 0.4383    |
| K0607WB | L06WB | L07WB | 0.1463    |
| C0607   | N06C  | N07C  | 2.402e-13 |
| K0608   | L06   | L08   | 0.1558    |
|         |       |       |           |
| K0609   | L06   | L09   | 0.1228    |
| K0610   | L06   | L10   | 0.0889    |
| K0611   | L06   | L11   | 0.0613    |
| К0708   | L07   | L08   | 0.2174    |
|         |       |       |           |
| K0708WB | L07WB | L08WB | 0.0811    |
| C0708   | N07C  | N08C  | 5.266e-14 |
| K0709   | L07   | L09   | 0.1558    |
| K0710   | L07   | L10   | 0.1087    |
| K0711   | L07   | L11   | 0.0742    |
|         |       |       |           |
| K0712   | L07   | L12   | 0.0506    |
| K0809   | L08   | L09   | 0.4383    |
| K0809WB | L08WB | L09WB | 0.1463    |
| C0809   | N08C  | N09C  | 2.402e-13 |
| K0810   | L08   | L10   | 0.2474    |
|         |       |       |           |
| K0810WB | L08WB | L10WB | 0.0501    |
| K0811   | L08   | L11   | 0.1558    |
| K0812   | L08   | L12   | 0.1083    |
| K0813   | L08   | L13   | 0.0741    |
|         |       |       |           |
| K0814   | L08   | L14   | 0.0543    |
| K0910   | L09   | L10   | 0.4330    |
| K0910WB | L09WB | L10WB | 0.1463    |
| K0910   | N09C  | N10C  | 2.324e-13 |
| К0911   | L09   | L11   | 0.2418    |
|         |       |       |           |
| K0911WB | L09WB | L11WB | 0.0708    |
| K0912   | L09   | L12   | 0.1552    |
| K0913   | L09   | L13   | 0.1051    |
| K0914   | L09   | L14   | 0.0742    |
|         |       |       |           |
| K1011   | L10   | L11   | 0.4355    |
| K1011WB | L10WB | L11WB | 0.2238    |
| C1011   | N10C  | N11C  | 2.282e-13 |
| K1012   | L10   | L12   | 0.2434    |
| K1012WB | L10WB | L12WB | 0.0853    |
|         |       |       |           |
| K1013   | L10   | L13   | 0.1554    |
| K1014   | L10   | L14   | 0.1083    |
| K1015   | L10   | L15   | 0.0506    |
| K1112   | L11   | L12   | 0.4342    |
|         |       |       | 0.2238    |
| K1112WB | L11WB | L12WB |           |
| C1112   | N11C  | N12C  | 2.254e-13 |

| K1113   | L11   | L13   | 0.2413    |
|---------|-------|-------|-----------|
|         |       |       |           |
| K1113WB |       | L13WB | 0.0708    |
| K1114   | L11   | L14   | 0.1557    |
| K1115   | L11   | L15   | 0.0745    |
| K1116   | L11   | L16   | 0.0619    |
|         |       |       |           |
| K1213   | L12   | L13   | 0.4331    |
| K1213WB | L12WB | L13WB | 0.1463    |
| C1213   | N12C  | N13C  | 2.332e-13 |
| K1214   | L12   | L14   | 0.2472    |
|         |       |       |           |
| K1214WB | L12WB | L14WB | 0.0501    |
| K1215   | L12   | L15   | 0.1092    |
| K1216   | L12   | L16   | 0.0898    |
| K1314   | L13   | L14   | 0.4380    |
|         |       |       |           |
| K1314WB | L13WB | L14WB | 0.1463    |
| C1314   | N13C  | N14C  | 2.394e-13 |
| K1315   | L13   | L15   | 0.1565    |
| K1316   | L13   | L16   | 0.1237    |
|         |       |       |           |
| K1317   | L13   | L17   | 0.0898    |
| K1318   | L13   | L18   | 0.0619    |
| K1415   | L14   | L15   | 0.2194    |
| K1415WB |       | L15WB | 0.0811    |
|         |       |       |           |
| C1415   | N14C  | N15C  | 5.401e-14 |
| K1416   | L14   | L16   | 0.1565    |
| K1417   | L14   | L17   | 0.1092    |
| K1418   | L14   | L18   | 0.0745    |
|         |       |       |           |
| K1419   | L14   | L19   | 0.0506    |
| K1516   | L15   | L16   | 0.4380    |
| K1516WB | L15WB | L16WB | 0.1463    |
| C1516   | N15C  | N16C  | 2.394e-13 |
| K1517   | L15   | L17   | 0.2472    |
|         |       |       |           |
| K1517WB | L15WB | L17WB | 0.0501    |
| K1518   | L15   | L18   | 0.1557    |
| K1519   | L15   | L19   | 0.1083    |
| K1520   | L15   | L20   | 0.0742    |
| K1521   |       |       | 0.0543    |
|         | L15   | L21   |           |
| K1617   | L16   | L17   | 0.4331    |
| K1617WB | L16WB | L17WB | 0.1463    |
| C1617   | N16C  | N17C  | 2.332e-13 |
| K1618   | L16   | L18   | 0.2413    |
|         |       |       |           |
| K1618WB |       | L18WB | 0.0708    |
| K1619   | L16   | L19   | 0.1554    |
| K1620   | L16   | L20   | 0.1051    |
| K1621   | L16   | L21   | 0.0741    |
|         | L17   |       |           |
| K1718   |       | L18   | 0.4342    |
| K1718WB | L17WB | L18WB | 0.2238    |
| C1718   | N17C  | N18C  | 2.254e-13 |
| K1719   | L17   | L19   | 0.2434    |
| K1719WB | L17WB | L19WB | 0.0853    |
|         |       |       |           |
| K1720   | L17   | L20   | 0.1552    |
| K1721   | L17   | L21   | 0.1083    |
| K1722   | L17   | L22   | 0.0506    |
| K1819   | L18   | L19   | 0.4355    |
| K1819WB | L18WB | L19WB | 0.2238    |
|         |       |       |           |
| C1819   | N18C  | N19C  | 2.282e-13 |
| K1820   | L18   | L20   | 0.2418    |
| K1820WB | L18WB | L20WB | 0.0708    |
| K1821   | L18   | L21   | 0.1558    |
| K1822   | L18   | L22   | 0.0742    |
|         |       |       |           |
| K1823   | L18   | L23   | 0.0613    |
| K1920   | L19   | L20   | 0.4330    |
| K1920WB | L19WB | L20WB | 0.1463    |
| C1920   | N19C  | N20C  | 2.324e-13 |
| J       |       |       |           |

| K1921            | L19    | L21          | 0.2474              |
|------------------|--------|--------------|---------------------|
| K1921WB          | L19WB  | L21WB        | 0.0501              |
| K1922            | L19    | L22          | 0.1087              |
| K1923            | L19    | L23          | 0.0889              |
| K2021            | L20    | L21          | 0.4383              |
| K2021WB          | L20WB  | L21WB        | 0.1463              |
| C2021            | N20C   | N21C         | 2.402e-13           |
| K2022            | L20    | L22          | 0.1558              |
| K2023            | L20    | L23          | 0.1228              |
| K2024            | L20    | L24          | 0.0889              |
| K2025            | L20    | L25          | 0.0613              |
| K2122            | L21    | L22          | 0.2174              |
| K2122WB          | L21WB  | L22WB        | 0.0811              |
| C2122            | N21C   | N22C         | 5.266e-14           |
| K2123            | L21    | L23          | 0.1558              |
| K2124            | L21    | L24          | 0.1087              |
| K2125            | L21    | L25          | 0.0742              |
| K2126            | L21    | L26          | 0.0506              |
| K2223            | L22    | L23          | 0.4383              |
| K2223WB          |        |              | 0.1463              |
| C2223            | N22C   | N23C         | 2.402e-13           |
| K2224            | L22    | L24          | 0.2474              |
| K2224WB          | L22WB  | L24WB        | 0.0501              |
| K2225            | L22    | L25          | 0.1558              |
| K2226            | L22    | L26          | 0.1083              |
| K2227            | L22    | L27          | 0.0741              |
| K2228            | L22    | L28          | 0.0543              |
| K2324            | L23    | L24          | 0.4330              |
| K2324WB          |        | L24WB        | 0.1463              |
|                  | N23C   | N24C         | 2.324e-13           |
| K2325            |        | L25          | 0.2418              |
|                  | L23WB  |              |                     |
| K2326            | L23    | L26          | 0.1552              |
| K2327            | L23    | L27          | 0.1051              |
| K2328            | L23    | L28          | 0.0742              |
|                  | L24    | L25          | 0.4355              |
| K2425WB          |        | L25WB        | 0.2238              |
|                  | N24C   | N25C         | 2.282e-13           |
| K2426            |        | L26          | 0.2434              |
| K2426WB          |        |              | 0.0853              |
| K2427            |        | L27          | 0.1554              |
|                  | L24    |              |                     |
| K2526            |        |              | 0.4342              |
|                  | L25WB  |              | 0.2238              |
| C2526            |        | N26C         | 2.254e-13           |
|                  | L25    | L27          | 0.2413              |
|                  | L25WB  |              | 0.0708              |
| K2528            |        | L28          | 0.1557              |
| K2627            |        | L27          | 0.4331              |
| K2627WB          |        |              | 0.1463              |
| C2627<br>K2628   |        | N27C<br>L28  | 2.332e-13<br>0.2472 |
|                  |        | L28<br>L28WB |                     |
|                  |        |              | 0.4380              |
| K2728<br>K2728WB |        |              | 0.1463              |
| C2728            |        |              | 2.394e-13           |
| .ENDS PA         |        | 11200        | 2.J/TC 1J           |
| .ENDS PA         | ACNAGE |              |                     |
| *                |        |              |                     |

\_\_\_\_\_\_

#### Package: PLCC-20

```
* ECLinPS Package Model (20-lead PLCC)
* GND = 0V
* EXT = (External Input to Pin)
* INT = (Internal Output of the Pin)
.SUBCKT PKG20 EXT INT GND
CPKG
     82
             GND
                      0.65PF
RPKG1
       EXT
               82
                       750
      82
                       750
RPKG2
              83
       83
               INT
                      0.2
RPKG3
LPKG1
       EXT
               82
                       0.9NH
LPKG2
      82
               83
                      0.9NH
.ENDS PKG20
```

RPKG1 RPKG2
750 Ω 750 Ω

RPKG3
0.2 Ω

INT

LPKG1 LPKG2
0.9 nH

CPKG
0.65 pF

Package: CDIP-16 \_\_\_\_\_\_ \* ECLinPS Package Model (16-lead CERDIP END PIN) \* EXT = (External Input to Pin) INT = (Internal Output of the Pin) GND = (0V) .SUBCKT PKG16EP EXT INT GND CPKG 82 GND 1.3PF RPKG1 EXT 82 RPKG2 82 83 750 82 750 83 INT RPKG3 0.1 EXT LPKG1 82 5.5NH 83 LPKG2 82 5.5NH .ENDS PKG16EP \_\_\_\_\_ \* ECLinPS Package Model (16-lead CERDIP CENTER PIN) \* EXT = (External Input to Pin) INT = (Internal Output of the Pin) GND = (OV) \_\_\_\_\_ .SUBCKT PKG16CP EXT INT GND CPKG 82 GND 0.7PF RPKG1 EXT 82 RPKG2 82 83 RPKG3 83 INT 750 INT 0.1 82 2.5NH LPKG1 EXT 83 LPKG2 82 2.5NH .ENDS PKG16CP

#### **APPENDIX A**

#### **Package Models Help**

In the SPICE netlist, X\_777 is a circuit element (black box) with connections to a subcircuit:

The defined connection nodes of the circuit element are declared as:

```
N01I N010 N021 N020 N03I N030 N04I N040 N05I N050 N061 N060 N07I N070 N08I N080 GND
```

The subcircuit PACKAGE is connected to these same nodes:

```
.SUBCKT PACKAGE N011 N010 N021 N020 N031 N030 N041 N040 +N051 N050 N061 N060 N071 N070 N081 N080 GND
```

where:

N01I is the PACKAGE pin  $\sharp 1$  internal node connection to the chip pad N01O is the PACKAGE pin  $\sharp 1$  external node connecting to the lead

Internal to the subcircuit PACKAGE are several nodes for each pin (See Figure 7). For pin 2, of the 8 pin TSSOP, the netlist:

```
R02WB
        N02I
                 N02W
                         3.815e-02
L02WB
        N02W
                 N02R
                          9.835e-10
R02
        N02R
                 N02C
                          9.680e-04
C02
        N02C
                 GND
                          7.711e-14
L02
        N02C
                 N020
                          7.466e-10
```



Figure 12.

Parasitic Mutual inductance, K, and capacitance, C, is also represented. Such as "K0102", where inductance from Lead #1 (L01) to Lead #2 (L02) is indicated.

| K0102   | L01   | L02   | 0.2481    |
|---------|-------|-------|-----------|
| K0102WB | L01WB | L02WB | 0.1729    |
| C0102   | N01C  | N02C  | 2.283e-14 |
| K0103   | L01   | L03   | 0.1067    |
| K0103WB | L01WB | L03WB | 0.0598    |
| K0104   | L01   | L04   | 0.0593    |
| K0203   | L02   | L03   | 0.2479    |
| K0203WB | L02WB | L03WB | 0.1463    |
| C0203   | N02C  | N03C  | 2.136e-14 |
| K0204   | L02   | L04   | 0.1068    |
| K0204WB | L02WB | L04WB | 0.0598    |



Figure 13.

ECLinPS Plus and ECLinPS Lite are trademarks of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

#### **PUBLICATION ORDERING INFORMATION**

### Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

**Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

**JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.