THEORY:

of a matrix & satisfying the relation 17,1212... 2121, then I've called the dominant (absolutely largest) eigen value and the eigen vector corresponding to this eigen value is known as dominant eigen vector.

Working mocedure:

Start with a column vector $\chi^{(0)}$, which is as near the solution as possible and evaluate $A\chi^{(1)}$, which is written as $\chi^{(1)}\chi^{(1)}$ after normalization. This given the first approximation $\chi^{(0)}$ to the eigen vector. Similarly, we evaluate $A\chi^{(1)}=\chi^{(2)}\chi^{(2)}$ which gives the second approximation. We repeat this process till $\chi^{(1)}=\chi^{($

ALGORITHM:

- 1. Start
- a. Input order of matrix A,n.
- 3. Anput matrix A' and column vector X
- 4. For i=1 ton, loop.

For j= 1 to n, loop.

End Gop

End loop

End if

End Goop

```
7. For is 1 ton, loop,
    Gnd Goop
 9. For i=1 to n, loop,
       E; = 112:1- 1x:11
     End loop
 9. Emar = EL
 10. For i= 2 ton, loop,
        af Ei>Emax, then,
Emax=Ei
        End if
    End loop
11. For i= 1 ton, loop,
        Ki = Z;
    End loop
12. If Emax > 0.001, then
        40to 4
    End if
13. For i= 1 ton, loop,
       Display Zi
```

End loop

14. Stop

```
SOURCE CODE.
# include < stdio-n>
# include < math h>
int main () {
     int injuri
     float Acuoscuos, ncuos, zcuos, ecuos, zmax, emax.
     bunkli, Enter orger of wapis: "].
     Sound (" 1.d ", Rn),
     printfl" Enter matrix elements . In");
      pr(1=0,1en,1+1){
          for(j=0, j<n, j++) {
               scanfi" "/j", RACIJ[j]);
      ξ
       printfi" Enter the column vector : In");
       for ( i= 0 , i < n , i ++) {
           scan/(" 1./", &n(i1);
       3
       90 }
           forli=0,icn,i++) {
               for(1=0), jen, (++) {
                   ( Ti) 18 * [ J. Li) 2 + Ti) 2 : [ Ti) 2
               ζ
            Zmax=fabs(2[0]),
           for (1:17, icn', i+1){
               if (fabs(ZCi]) > Zmar) {
                    Zmax = fabs (Z[i]);
            ζ
```

```
for Liso, ich, i++) {
         ift zail= zailzmar,
  for (i=0; icn; itt) {
         e [i] : fobs (fabs(z[i]) -fabs(n[i]));
  emar: e(0];
  for ( i = 1', i < n', i++) {
        if (e [i] > emax) {
emax > e [i];
  for (i=D; i<n', i++) {
printfi" The eigen value is 1.4 4 2 mar);
printf (" The eigen vector is: In");
 for ( i= 0; i < n', i++) {
    brint ( " 1. 4 ( m", 2011);
return 0;
```

```
0
 Enter the order of matrix: 2
  Enter matrix elements:
   1 5
   42
   Enter the column vector:
   The eigen value is 5.9985
The eigen vector is:
    0.9996
     1.0000
 2
   Enter the order of matrix: 3
   Enter matrix elements:
    154
    487
    210
    Enter the column rector:
     2
     3
    The eigen value is 11.4692
The eigen vector is:
     0.5474
      1.0000
      0.1826
```

```
3
Enter the order of matrix : 4
Enler matrix elements.
2 457
Enter the column vector:
2
The eigen value is 16.5639.
```

The eigenvector is:

0.8403

0.75 05

0.4467

1. 0000

DISCUSSIONI:

We were of arrighed to write a program to find eigenvalue and eigenvector of a square matrix using power method. For that purpose, a program was written in C using Visual Studio Code, which was then compiled using GNU C Compiler CGCC). Then different test coses were given and the output obtained was expected which Showed that the magram worked.