

Cambridge Assessment International Education

Cambridge International Advanced Level

CANDIDATE NAME								
CENTRE NUMBER					CANDIDATE NUMBER			
FURTHER MAT	HEMATIC	s						9231/2
Paper 2					0	ctobe	r/Nove	ember 201
								3 hour
Candidates answ	ver on the	Questic	on Pape	r.				
Additional Mater	ials:	List of Fo	ormulae	(MF10)				

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

Where a numerical value is necessary, take the acceleration due to gravity to be 10 m s⁻².

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 23 printed pages and 1 blank page.

Cambridge Assessment

The International Education

[Turn over

BLANK PAGE

	3 0 11	18	rına	tne i	nagr	mua	2 01	me t	rans	verse	e con	троп	ent o	n the	acce	ierau	on oi	P at	this in	sta
••••	• • • • • • • •	• • • • • • • • •	•••••	• • • • • • •	•••••	•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••
••••	••••••		•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••
				•••••			•••••				•••••									•••
••••	•••••	• • • • • • • •	•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		••••••	• • • • • • • • • • • • • • • • • • • •	••••
																			•••••	••••
• • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••
				• • • • • • • • • • • • • • • • • • • •			•••••													••••
••••	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • •	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••
			•••••				•••••			•••••	•••••	•••••			•••••	•••••				•••
• • • • •	•••••	• • • • • • • •	•••••	• • • • • • •	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • •	••••
• • • • •			•••••				•••••			•••••	•••••	•••••			•••••	•••••			•••••	••••
••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••
			•••••				•••••					•••••							• • • • • • • • • • • • • • • • • • • •	•••
• • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••
					•									•	•	•				

2

A uniform square lamina ABCD of side 4a and weight W rests in a vertical plane with the edge AB inclined at an angle θ to the horizontal, where $\tan \theta = \frac{1}{3}$. The vertex B is in contact with a rough horizontal surface for which the coefficient of friction is μ . The lamina is supported by a smooth peg at the point E on AB, where BE = 3a (see diagram).

(i)	Find expressions in terms of W for the normal reaction forces at E and B .	[5]

(ii)	Given that the lamina is about to slip, find the value of μ . [3]

***	ith speed u .
i)	Show that the speed of A after its collision with B is $\frac{1}{2}u(1-e)$ and find the speed of B.
	ere B now collides with sphere C . Subsequently there are no further collisions between any of the eres.
he	
he	eres.

of the P is	article P of mass m is attached to one end of a light inextensible string of length a . The other end e string is attached to a fixed point O and P is held with the string taut and horizontal. The particle projected vertically downwards with speed $\sqrt{(2ag)}$ so that it begins to move along a circular path. string becomes slack when OP makes an angle θ with the upward vertical through O .
(i)	Show that $\cos \theta = \frac{2}{3}$. [5]

(ii)	Find the greatest height, above the horizontal through O , reached by P in its subsequent motion. [4]

5

A thin uniform rod AB has mass λM and length 2a. The end A of the rod is rigidly attached to the surface of a uniform hollow sphere (spherical shell) with centre O, mass 3M and radius a. The end B of the rod is rigidly attached to the surface of a uniform solid sphere with centre C, mass 5M and radius a. The rod lies along the line joining the centres of the spheres, so that CBAO is a straight line. The horizontal axis L is perpendicular to the rod and passes through the point of the rod that is a distance $\frac{1}{2}a$ from B (see diagram). The object consisting of the rod and the two spheres can rotate freely about L.

(i)	Show that the moment of inertia of the object about L is $\left(\frac{408 + 7\lambda}{12}\right)Ma^2$.	,]
		••
		••
		••

	period of small oscillations of the object about L is $5\pi\sqrt{\left(\frac{2a}{g}\right)}$.
(ii)	Find the value of λ . [6]

	ributed. A 95% confidence interval for the population mean height, μ metres, is calculate as $1.65 \le \mu \le 1.85$.	
(i)	Find an unbiased estimate for the population variance.	[
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	9 membe
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	
(ii)	Denoting the height of a member of the club by x metres, find Σx^2 for this sample of	

	$F(t) = \begin{cases} 1 - e^{-at} \\ 0 \end{cases}$	$t \ge 0$, otherwise,	
where a is a positive con	stant. The mean value of	T is 200.	
(i) Write down the value	ue of a.		[1
(ii) Find the probability	that an electrical compon	ent of this type develops a fa	ult in less than 150 day
			ι-
		onents, which develop fault tone of the <i>n</i> components h	
other. The probability the s greater than 0.99.	aat, after 150 days, at leas	onents, which develop fault tone of the <i>n</i> components h	as not developed a fau
other. The probability the s greater than 0.99.	aat, after 150 days, at leas		as not developed a fau
other. The probability the segreater than 0.99.	aat, after 150 days, at leas		as not developed a fau
other. The probability the s greater than 0.99.	aat, after 150 days, at leas		as not developed a fau
other. The probability the segreater than 0.99.	aat, after 150 days, at leas		as not developed a fau
other. The probability the s greater than 0.99.	aat, after 150 days, at leas		
other. The probability the s greater than 0.99.	aat, after 150 days, at leas		as not developed a fau
	aat, after 150 days, at leas		as not developed a fau
other. The probability the s greater than 0.99.	aat, after 150 days, at leas		as not developed a fau
other. The probability the s greater than 0.99.	aat, after 150 days, at leas		as not developed a fau

				$\Sigma x = 3$	2.4	$\Sigma x^2 = 13$	31.82				
3.78 teleph at the	onnes and ants in reg	d an unbigions A a	iased var and <i>B</i> are e level w	iance es both as hether th	timate c sumed t	of 0.1555 o be norm n weight	tonnes ² . mal with toof elepha	The distri the same parts in reg	butions of copulation A is t	ample mean of the weights of variance. Tes he same as the	f
•••••	••••••	•••••	••••••	•••••	•••••	•••••	•••••	••••••	•••••		•
		•••••			••••••						•
											•
			•••••	•••••				•••••			•
			•		••••••						•
•••••			•••••	•••••	••••••	•••••	•••••	•••••		••••••	•
•••••			•••••	••••••	•••••		••••••		•••••		•
			•••••	••••••	•••••		••••••		•••••		•
					•••••						•
					•••••						•
							•••••	•••••	•••••		•
				•••••							•

9 A random sample of five pairs of values of x and y is taken from a bivariate distribution. The values are shown in the following table, where p and q are constants.

x	1	2	3	4	5
y	4	p	q	2	1

The equation of the regression line of y on x is y = -0.5x + 3.5.

(i)	Find the values of p and q .	[7]
		•••••
		••••••
		•••••
		•••••
		•••••
		••••••
		••••••
		••••••
		••••••
		•••••
		•••••
		••••••
		••••••
		••••••
		••••••

		•
		•
		•
		•
		•
(ii)	Find the value of the product moment correlation coefficient. [3]
		_
		•
		•

10	The random	variable 2	X has	probability	density	function	f given	by

$$f(x) = \begin{cases} \frac{1}{30} \left(\frac{8}{x^2} + 3x^2 - 14 \right) & 2 \le x \le 4, \\ 0 & \text{otherwise.} \end{cases}$$

(i)	Find the distribution function of X .	[3]
	random variable Y is defined by $Y = X^2$.	
(ii)	Find the probability density function of <i>Y</i> .	[4]

		••••
		••••
		••••
		••••
		••••
		••••
		••••
(iii)	Find the value of y such that $P(Y < y) = 0.8$.	[3]
		••••
		••••

11 Answer only **one** of the following two alternatives.

EITHER

The points A and B are a distance 1.2 m apart on a smooth horizontal surface. A particle P of mass $\frac{2}{3}$ kg is attached to one end of a light spring of natural length 0.6 m and modulus of elasticity 10 N. The other end of the spring is attached to the point A. A second light spring, of natural length 0.4 m and modulus of elasticity 20 N, has one end attached to P and the other end attached to B.

	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
particle P is displaced by 0.05 m from the equilibrium position towards A and then	released
particle P is displaced by 0.05 m from the equilibrium position towards A and then Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	
Show that P performs simple harmonic motion and state the period of the motion.	

(iii)	Find the speed of P when it passes through the equilibrium position. [2]
(iv)	Find the speed of P when its acceleration is equal to half of its maximum value. [3]

OR

The number of puncture repairs carried out each week by a small repair shop is recorded over a period of 40 weeks. The results are shown in the following table.

Number of repairs in a week	0	1	2	3	4	5	≥ 6
Number of weeks	6	15	9	6	3	1	0

) Calculate the mean and variance for the number of repairs in a week and comment on the suitability of a Poisson distribution to model the data.									
				••••••	•••••	•••••	•••••			
		••••••			•••••	•••••				
					•••••					
following table sho 40 weeks using a F Number of repai	oisson distrib				$\frac{1}{3}$	lecimal pl	aces, for	a period of ≥ 6		
Expected freque		8.076	12.921	10.337	5.513	2.205	а	b		
(ii) Show that <i>a</i> =	0.706 and fir	nd the val	ue of the c	constant <i>b</i>				[3]		
			•••••		•••••	••••••				
					•••••					
		••••••	•••••		•••••	•••••				

(iii)	Carry out a goodness of fit test of a Poisson distribution with mean 1.6, using a 10% significance level. [8]

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.