Linear Algebra

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 14 (Aug 27, 2019)

Sequences

Definition: A sequence of real numbers is a function $a : \mathbb{N} \longrightarrow \mathbb{R}$.

Notation: We usually write a_n for the image of n under a, rather than a(n). The values a_n are often called the elements of the sequence. To make a distinction between a sequence and one of its values it is often useful to denote the entire sequence by $(a_n)_{n=1}^{\infty}$, or just

$$\langle a_n \rangle = \langle a_1, a_2, \ldots, a_n, \cdots \rangle.$$

- The *n*th term a_n is the general term of the sequence $< a_n >$. At times, the general term is given by a formula. For example, $a_n = 1/n$ or $< \frac{1}{n} >$ —in this sequence, the *n*th term is $\frac{1}{n}$.
- The sequence can also be indicated by a pattern, e,g. $s=<1,2,3,1,2,3,1,2,3,\cdots>$. Here the pattern is easily understood, but not so easy to give via a formula.
- As can been seen that terms in a sequence need not be distinct.
- Sequences arise in many mathematical and scientific situations and applications.

- We will use the notation \mathbb{R}^{∞} for the set of all sequences with real terms. Similarly, \mathbb{C}^{∞} would be the set of all sequences with complex terms. We will breifly look into two aspects of sequences: algebraic and convergence.
- Algebra of Sequences: All sequences under consideration will be in \mathbb{R}^{∞} . But the approach is similar for $\mathbb{C}^{\infty}, \mathbb{Q}^{\infty}$ etc. We will define the following algebraic operations on \mathbb{R}^{∞} . If $< a_n >, < b_n >$ are sequences in \mathbb{R}^{∞} and $c \in \mathbb{R}$, then:
 - ① Addition: $\langle a_n \rangle + \langle b_n \rangle = \langle a_n + b_n \rangle$, i.e. the sequence whose general term is $a_n + b_n$.
 - ① Scalar multiplication: $c < a_n > = < ca_n >$, i.e. the sequence whose general term is ca_n .
 - Multiplication: $\langle a_n \rangle \langle b_n \rangle = \langle a_n b_n \rangle$, i.e. the sequence whose general term is $a_n b_n$.

Remark: With respect to operations in (i) and (ii) above, \mathbb{R}^{∞} is a vector space over the field \mathbb{R} .

- **Convergence of Sequences:** Convergence is concerned with the behaviour of a sequence as *n* gets very large. A sequence is said to converge, if there exists a real number *L* such that the terms of the sequence lie ultimately in any interval about *L*, however small.
- More formally, the sequence (a_n) is said to converge to a real number L if for each $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|a_n L| < \epsilon$ for all $n \ge n_0$.
- L is called the limit of the sequence. It is easy to see that any convergent sequence has precisely one limit.
- The phrases: $\langle a_n \rangle$ is convergent or L is the limit of $\langle a_n \rangle$ or $\langle a_n \rangle$ converges to the limit L means exactly the same thing.
- Notation: $\lim_{n\to\infty} a_n = L$ or $a_n \to L$ as $n\to\infty$
- A sequence which is not convergent is said to be divergent or we can say that the sequence diverges.

• Examples: Example of a convergent sequence:

$$<\frac{1}{n}>\to 0$$

Examples of Divergent Sequences:

$$< n >$$
 or $< 1, 2, 3, \cdots >$

$$<1,2,1,2,1,2,\cdots>$$

As the above examples illustrate, divergence can occur because the terms in the sequence are unbounded or because of oscillatory behaviour (or a mixture of both).

• The following basic results about limits are presented without proof. They follow from the basic idea that $a_n \to L$ and ϵ is any positive real number, however, small, the the terms of $< a_n >$ lie <u>ultimately</u> in the small interval $(L - \epsilon, L + \epsilon)$ i.e. there exists +ve integer k such that <u>all the terms</u> $a_k, a_{k+1}, a_{k+2}, \ldots$, etc must lie in the interval $(L - \epsilon, L + \epsilon)$. Proofs can be found in standard textbook of calculus, advanced calculus, or analysis.

Proposition: Suppose $\langle a_n \rangle \to L_1, \langle b_n \rangle \to L_2$ and $c \in \mathbb{R}$. Then:

- \emptyset $< a_n > + < b_n >$ is convergent and $< a_n + b_n > \rightarrow L_1 + L_2$.
- 0 $c < a_n >$ is convergent and $< ca_n > \rightarrow cL_1$.
- If $a_n \neq 0$ for all n and $L_1 \neq 0$, then the sequence $<\frac{1}{a_n}>$ is well-defined and $<\frac{1}{a_n}> \to \frac{1}{L_1}$.

We use c (italic) to denote the subset of \mathbb{R}^{∞} that consists of all convergent sequences. Using (i) and (ii) above, we can show that c is a (vector) subspace of \mathbb{R}^{∞} . Using Proposition 8 (to be stated in next few slides!):

- The zero sequence $<0>=<0,0,\cdots>$ is convergent, i.e. $<0>\in c$.
- ② Closed under addition follows from (i).
- Olosed under scalar multiplication follows from (ii).

- In principle, it is quite difficult to show that a sequence is convergent, since we have to first identify a possible limit *L* and then verify that *L* is indeed the limit. Hence, results that show a sequence is convergent without necessarily finding the limit are very useful. One of the most useful such results is:
- **Proposition**: Suppose $< a_n >$ is a monotonically non-decreasing sequence in \mathbb{R}^{∞} which is bounded above, i. e. $a_n \le a_{n+1}$ for all n and $a_n < M$ for some fixed real number M for all n. Then: $< a_n >$ is convergent.
- Example: Consider the sequence $< a_n >$ where $a_n = \left(1 + \frac{1}{n}\right)^n$. It can be shown that $a_n \le a_{n+1}$ for all n and $a_n < 3$ for all n. Therefore the sequence is convergent by above proposition. Its limit is denoted by e, the real number that plays a major role in mathematics.

Subspaces

Motivation: We may have noticed from the various examples that many of the examples of vector spaces were in fact subsets of each other:

- The space $\mathbb{R}_1[t]$ is a subset of $\mathbb{R}_2[t]$ which is a subset of $\mathbb{R}_3[t]$, etc. Moreover, all of these are subsets of the space $\mathbb{R}[t]$ of all polynomial functions on $\mathbb{R}: \mathbb{R}_1[t] \subseteq \mathbb{R}_2[t] \subset \mathbb{R}_3[t] \subseteq \cdots \subseteq \mathbb{R}[t]$.
- The space c of convergent real sequences is a subset of \mathbb{R}^{∞} the space of all real sequences.

Definition (Subspace): Let V be a vector space over a field \mathbb{F} . A (vector) subspace of V is a non-empty subset W of V which is itself a vector space over \mathbb{F} with the operations of vector addition and scalar multiplication taken from V.