Jacob M. Graving

■ jgraving@gmail.com | ③ jakegraving.com | ⑤ github.com/jgraving

Max Planck Institute of Animal Behavior University of Konstanz, Department of Biology Universitätsstr. 10, Konstanz, Germany 78464

Summary

Research scientist and machine learning engineer with extensive experience in *statistical modeling*, *Bayesian inference*, and scalable *AI systems*. My work focuses on building interpretable models and reproducible pipelines to analyze high-dimensional, multimodal data—often in uncertain or noisy environments. I bring a strong record of leading cross-disciplinary research, mentoring teams, and translating complex data into interpretable, decision-relevant results. Experienced in collaborating with engineers and domain experts to deliver robust, deployable solutions grounded in scientific rigor.

Skills

Core strengths: Bayesian modeling, probabilistic programming, uncertainty quantification, deep learning, causal inference, time-series analysis

Tools: PyMC, NumPyro, Stan, PyTorch, JAX, TensorFlow, Git, Jupyter, R

- Built scalable pipelines for multimodal datasets and developed interpretable models for noisy real-world data
- Designed transformers and contrastive learning architectures for representation learning in behavioral time-series
- Mentored researchers on applied ML and open-source tools for behavioral science and neuroscience
- Proven ability to quickly adopt new technologies and apply them to real-world scientific problems

Experience

2020-present

Research Scientist

Advanced Research Technology Unit, Max Planck Institute of Animal Behavior

- Lead independent research at the interface of machine learning and behavioral science, developing general-purpose tools to measure and model animal behavior in both lab and field environments.
- Design and maintain scalable ETL pipelines for multimodal behavioral datasets, ensuring data integrity and reproducibility across experimental systems.
- Collaborate with interdisciplinary teams—including software engineers, neuroscientists, and field biologists—to build Al-driven tools for behavior analysis and experimental optimization.
- Apply Bayesian inference, causal modeling, and uncertainty quantification to large-scale time series and experimental data to generate interpretable, data-driven insights.
- Provide technical guidance and mentorship across collaborative projects, promoting reproducible science and statistical rigor.

Education

2021

Dr.rer.nat., **Biology** (0.0 'summa cum laude')

Max Planck Institute of Animal Behavior & University of Konstanz — Germany

International Max Planck Research School (IMPRS)

Thesis: Deep Learning and Computer Vision Methods for Measuring and Modeling Animal Behavior

Jacob M. Graving 1

2015

M.Sc., Biology — Bowling Green State University — USA

Focus: Animal Behavior, Neuroscience

2013

B.Sc., **Biology** — Bowling Green State University — *USA*

Recent & Selected Publications

In Prep

Graving, J.M. and Foster, J.J. (in prep). Unwrapping Circular Statistics: Bayesian Linear Models for Circular Data.

- Introduces a novel Bayesian generalized linear model framework for circular data by incorporating the von Mises distribution.
- Jointly models mean direction and variance to improve interpretability of circular outcomes.
- Offers practical guidelines and implementations using Bayesian toolkits such as PyMC and Stan.

Graving, J.M., Heins, C., Couzin, I.D. Revealing the Structure of Time-Series Data with Context Attraction-Repulsion Embeddings.

- Proposes a generalized contrastive learning framework for dimensionality reduction and visualization of time-series data using transformer-based sequence modeling.
- Demonstrates recovery of latent factors and interpretable structure from high-dimensional behavioral and synthetic datasets.
- Introduces a general tool for exploratory analysis and hypothesis generation in time-series modeling.

In Review

Bath, D.E., **Graving, J.M.**, Walter, T., Sridhar, V.H., Vizcaíno, J.P., Couzin, I.D. Collective detection and processing of distributed information by fish schools. In revision for *Current Biology*. *Code*: github.com/jgraving/bayesian beta regression

- Developed a Bayesian model to analyze collective information processing in fish schools.
- Modeled 3 billion behavioral observations across 400+ conditions using JAX and NumPyro.
- Revealed how distributed sensing shapes group-level responses to environmental signals.

2025

Sayin, S., Couzin-Fuchs, E., Petelski, I., Günzel, Y., Salahshour, M., Lee, C.-Y., **Graving, J.M.**, Li, L., Deussen, O., Sword, G.A., Couzin, I.D. (2025). The behavioral mechanisms governing collective motion in swarming locusts. *Science*, 387(6737), 995–1000. https://doi.org/10.1126/science.adq7832

Code: https://github.com/jgraving/sayin locust mixture model

- Led Bayesian modeling and statistical analysis of virtual reality (VR) behavioral data from locusts.
- Identified and solved a key methodological flaw in prior work—confounding of group coordination with group size.
- Helped validate the core findings and strengthen the paper's quantitative rigor.

2023

Koger, B., Deshpande, A., Kerby, J.T., **Graving, J.M.**, Costelloe, B. R., Couzin, I.D. (2023). Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision. *Journal of Animal Ecology*. doi:10.1111/1365-2656.13904 *Code*: github.com/benkoger/overhead-video-worked-examples

- Co-developed a computer vision pipeline combining drone footage and deep learning to extract 3D behavioral and environmental data from animal groups in natural settings.
- Integrated spatial context reconstruction with fine-scale movement tracking to support large-scale behavioral ecology studies.

Jacob M. Graving 2

2020

Li, L., Nagy, M., **Graving, J.M.**, Bak-Coleman, J., Guangming X., Couzin, I.D. (2020). Vortex phase matching as a strategy for schooling in robots and in fish. *Nature Communications*, 11, 5408. doi:10.1038/s41467-020-19086-0

- Analyzed high-resolution posture data of schooling fish to test energy-optimization strategies predicted by robotic models.
- Applied deep learning—based pose estimation and mechanistic modeling to quantify fluid-mediated interactions and coordinated motion patterns.

2019

Graving, J.M., Chae, D., Naik, H., Li, L., Koger, B., Costelloe, B.R., Couzin, I.D. (2019). DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. *eLife*, 8. doi:10.7554/elife.47994 *Press*: Quanta Magazine, Nature Methods, Nature News & Views, eLife Science Digests *Code*: github.com/jgraving/deepposekit

- Created a general-purpose, few-shot deep learning framework for high-speed, high-accuracy animal pose tracking in Python/TensorFlow.
- Supervised development of key components including a custom annotation GUI and augmentation tools for low-data regimes.

Teaching

2023

Konstanz School of Collective Behavior, University of Konstanz

• Designed and led a workshop on "Probabilistic Machine Learning" for 30+ international PhD students, covering Bayesian inference, causal inference, and information theory in practice. https://www.exc.uni-konstanz.de/kscb/

2022

Deep Learning Workshop, Max Planck Institute of Animal Behavior

Led an applied workshop introducing PyTorch and deep learning fundamentals to 15 researchers.

2019

ASAB 2019 Summer Conference, University of Konstanz

- Gave an invited seminar on "Machine Learning in the Behavioral Sciences" to an audience of 400+.
- Co-organized a workshop on behavioral quantification and modeling using ML methods (27 participants).

2016-2020

University of Konstanz, Department of Biology

- Co-developed and taught an intensive research course on collective behavior for Master's students.
- Supervised five Master's thesis projects across behavior, computation, and data science.
- Delivered lectures and practicals on computer vision for behavior analysis, data processing, and Python programming.

Jacob M. Graving 3