Uvod v geometrijsko topologijo

Teoretična vprašanja

R	Za vsako ploskev X velja $X\#S^2 \approx X$.
R	Velja $\mathbb{R}P^1 \times \mathbb{R}P^1 \approx \mathbb{R}P^2$.
R	Vsak s potmi povezan podprostor absolutnega ekstenzorja je absolutni ekstenzor.
R	Unija dveh premic je absolutni ekstenzor za normalne prostore natanko tedaj, ko se premici sekata.
R	Množica vseh polinomov je gosta v ($C(\mathbb{R})$, TEK).
R	Neprazna odprta podmnožica mnogoterosti je mnogoterost.
R	Za poljubni točki x in y iz mnogoterosti M obstaja tak homeomorfizem $f\colon M\to M$, da velja $f(x)=y$.
R	Če je A_i retrakt prostora X_i za $i \in \{1,2\}$, je $A_1 \times A_2$ retrakt prostora $X_1 \times X_2$.
R	Identiteta $id: (C(X, Y), KOT) \rightarrow (C(X, Y), TKT)$ je vedno zvezna.
R	Kvocientni prostor 1-števnega prostora je 1-števen prostor.

1. NALOGA

Naj bo $X = \mathbb{R} \times \{1\}$, $Y = \mathbb{R} \times \{0\}$, $A = \mathbb{Z} \times \{1\} \subset X$ in naj bosta preslikavi $f, g: A \to Y$ definirani s predpisom f(n, 1) = (n, 0) ter g(n, 1) = (0, 0).

- (1) Poišči kakšen podprostor evklidskega prostora, ki je homeomorfen zlepku $X \cup_f Y$.
- (2) Zakaj zlepka $X \cup_{S} Y$ ni mogoče vložiti v evklidski prostor?

Rešitve in odgovore utemelji.

2. NALOGA

Za $K \subset [0, \infty)$ naj bo $X_K = ([0, 1] \times \{0\}) \cup (\{0, 1\} \times [0, 1]) \cup (\cup_{x \in K} [0, x] \times \{x\}) \subset \mathbb{R}^2$.

- (1) Poišči potreben in zadosten pogoj za **končno** množico K, da je prostor X_K absolutni ekstenzor za razred normalnih prostorov.
- (2) Ali obstaja taka neomejena množica K, da je X_K absolutni ekstenzor za razred normalnih prostorov?

Odgovora utemelji.

3. NALOGA

Klasificiraj ploskev:

