IBM HACKATHON PROJECT

NETWORK INTRUSION DETECTION

Problem statement No.40

Presented By

Faculty name: Dr. Diana Earshia

College Name & Department : Vel Tech & ECE

OUTLINE

- Problem Statement
- Technology used
- Wow factor
- End users
- Result
- Conclusion
- Git-hub Link
- Future scope
- IBM Certifications

PROBLEM STATEMENT

Modern communication networks face a growing volume and diversity of cyber-attacks that can disrupt services, exfiltrate data, and compromise critical infrastructure.

Proposed Solution:

Create a robust network intrusion detection system (NIDS) using machine learning. The system should be capable of analyzing network traffic data to identify and classify various types of cyber-attacks (e.g., DoS, Probe, R2L, U2R) and distinguish them from normal network activity. The goal is to build a model that can effectively secure communication networks by providing an early warning of malicious activities.

TECHNOLOGY USED

IBM cloud lite services

IBM Granite model

IBM CLOUD SERVICES USED

- IBM Cloud Watsonx Al Studio
- IBM Cloud Watsonx Al runtime and Associates

WOW FACTORS

This agent will provide **Accurate Classification of Network Traffic** by distinguishing between normal activity and multiple types of cyber-attacks (DoS, Probe, R2L, U2R).

Unique features:

- Real-Time Detection with Low Latency
- Adaptive Learning Against Evolving Threats
- High Accuracy on Rare Attack Types (R2L & U2R)
- Hybrid Detection
- Privacy-Preserving Traffic Analysis

END USERS

- Network Administrators
- Security Analysts
- Cloud Service Providers
- Enterprise Organizations
- Internet Service Providers
- Regulatory & Compliance Officers

Dataset - Kaggle dataset link – https://www.kaggle.com/datasets/sampadab17/network intrusion-detection

	Rank ↑	Name	Algorithm	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 2	O Snap Decision Tree Classifier	0.995	HPO-1	00:00:10
	2	Pipeline 1	O Snap Decision Tree Classifier	0.995	None	00:00:03
	3	Pipeline 6	O Decision Tree Classifier	0.994	HPO-1	00:00:09
	4	Pipeline 5	O Decision Tree Classifier	0.994	None	00:00:03

	Rank ↑	Name	Algorithm	Accuracy (Optimized) Cross Validation	Enhancements	Build time	^
	5	Pipeline 4	O Snap Decision Tree Classifier	0.994	HPO-1 FE HPO-2	00:00:47	1
	6	Pipeline 3	O Snap Decision Tree Classifier	0.994	HPO-1 FE	00:00:41	
	7	Pipeline 8	O Decision Tree Classifier	0.993	HPO-1 FE HPO-2	00:00:56	Ш
	8	Pipeline 7	O Decision Tree Classifier	0.993	HPO-1 FE	00:00:50	İİ
33°C Sunn			Q Search	<u> </u>		X ■ ENG	18 G F

Pipeline details

Pipeline 2

Rank Accuracy (Optimized) Algorithm Enhancements

1 0.998 (Holdout) Snap Decision Tree Classifier HPO-1 Save as

Precision recall curve

CONCLUSION

- The system strengthens network defenses by delivering alerts, that safeguards sensitive data, and enable proactive responses to cyber threats.
- It distinguishes normal traffic from malicious activities effectively and classifies diverse attack types such as DoS, Probe, R2L, and U2R with high accuracy.
- It delivers accurate alerts with low false positives and offering explainable insights.

GITHUB LINK

https://github.com/dianaearshia/IBM-FDP.git

FUTURE SCOPE

- Semi-/self-supervised learning for unknown attacks.
- Online learning with human-in-the-loop labeling.
- Federated/privacy-preserving training across organizations.

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Diana Earshia

Has successfully satisfied the requirements for:

Generative AI in Action

Issued on: Aug 18, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/66ab53ff-9948-443f-a368-ef7143903c83

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Diana Earshia

Has successfully satisfied the requirements for:

Code Generation and Optimization Using IBM Granite

Issued on: Aug 19, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/6e338c01-3f65-40c5-bac2-928ad819309f

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Diana Earshia

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 20 Aug 2025 (GMT)

Learning hours: 20 mins

THANK YOU

