Triangles algorithm specification How to build model for python's Triplot

Vertices

xy meshgrid

(0,0)	(1,0)	(2,0)	(3,0)	(4,0)	(5,0)	(6,0)	(7,0)	(8,0)	(9,0)
(0,1)									
(0,2)									
(0,3)									
(0,4)									
(0,5)									
(0,6)									
(0,7)									
(0,8)									
(0,9)									

Indexing = 'xy' format X = linspace(0,1, 10) Y= linspace(0,1,10)

xx meshgrid

0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1
0	0.111	0.222	0.333	0.444	0.555	0.666	0.777	0.888	1

yy meshgrid

0	0	0	0	0	0	0	0	0	0
0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111
0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222	0.222
0.333	0.333	0.333	0.333	0.333	0.333	0.333	0.333	0.333	0.333
0.444	0.444	0.444	0.444	0.444	0.444	0.444	0.444	0.444	0.444
0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555
0.666	0.666	0.666	0.666	0.666	0.666	0.666	0.666	0.666	0.666
0.777	0.777	0.777	0.777	0.777	0.777	0.777	0.777	0.777	0.777
0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888	0.888
1	1	1	1	1	1	1	1	1	1

Cell Indices

ij meshgrid

(0,0)	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)	(0,8)
(1,0)								
(2,0)								
(3,0)								
(4,0)								
(5,0)								
(6,0)								
(7,0)								
(8,0)								

Indexing = 'ij' format c_{ii} = arange(0,9) c_{jj} = arange(0,9)

ii meshgrid

0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8

jj meshgrid

0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8

jj cell vertices

_		_							
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8
	0	1	2	3	4	5	6	7	8

(_,1)

(1,_)

(1,_)

(_,1)

(0,_)

(0,_)

i component of cell vertices

_									
	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
	2	2	2	2	2	2	2	2	2
	3	3	3	3	3	3	3	3	3
	4	4	4	4	4	4	4	4	4
	5	5	5	5	5	5	5	5	5
	6	6	6	6	6	6	6	6	6
	7	7	7	7	7	7	7	7	7
	8	8	8	8	8	8	8	8	8

_ _ _ _ .

. - - - - - .

Indices are used to triangulate (create triangles)

For example, suppose triangulate function accepted [0, 1, 11]. The result is the triangle below:

Another example, suppose triangulate function accepted vertices arrays [0, 1, 11], [88, 89, 99]. The result is a triangle in the bottom left corner and top right corner

