

24 MHz Rail-to-Rail Amplifiers with Shutdown Option

Data Sheet

AD8646/AD8647/AD8648

FEATURES

Offset voltage: 2.5 mV maximum Single-supply operation: 2.7 V to 5.5 V

Low noise: 8 nV/√Hz Wide bandwidth: 24 MHz Slew rate: 11 V/μs

Short-circuit output current: 120 mA Qualified for automotive applications

No phase reversal

Low input bias current: 1 pA

Low supply current per amplifier: 2 mA maximum

Unity gain stable

APPLICATIONS

Battery-powered instruments
Multipole filters
ADC front ends
Sensors
Barcode scanners
ASIC input or output amplifiers
Audio amplifiers
Photodiode amplifiers
Datapath/mux/switch control

PIN CONFIGURATIONS

Figure 3. 14-Lead SOIC and TSSOP

GENERAL DESCRIPTION

The AD8646 and the AD8647 are the dual, and the AD8648 is the quad, rail-to-rail, input and output, single-supply amplifiers featuring low offset voltage, wide signal bandwidth, low input voltage, and low current noise. The AD8647 also has a low power shutdown function.

The combination of 24 MHz bandwidth, low offset, low noise, and very low input bias current makes these amplifiers useful in a wide variety of applications. Filters, integrators, photodiode amplifiers, and high impedance sensors all benefit from the combination of performance features. AC applications benefit from the wide bandwidth and low distortion. The AD8646/

AD8647/AD8648 offer high output drive capability, which is excellent for audio line drivers and other low impedance applications. The AD8646 and AD8648 are available for automotive applications (see the Ordering Guide).

Applications include portable and low powered instrumentation, audio amplification for portable devices, portable phone headsets, barcode scanners, and multipole filters. The ability to swing rail to rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs, and other wide output swing devices in single-supply systems.

Deleted Figure 33......11

8/07—Revision 0: Initial Version

TABLE OF CONTENTS	
Features1	ESD Caution6
Applications	Typical Performance Characteristics7
Pin Configurations	Theory of Operation
General Description	Power-Down Operation
Revision History	Multiplexing Operation
Specifications	Outline Dimensions
Absolute Maximum Ratings6	Ordering Guide
Thermal Resistance	
REVISION HISTORY	
3/14—Rev. D to Rev. E	Revision History: AD8648
Changes to Differential Input Voltage, Table 36	10/07—Rev. A to Rev. B
4/10—Rev. C to Rev. D Changes to Features Section and General Description Section . 1 Updated Outline Dimensions	Combined with AD8646 Universal Added AD8647 Universal Deleted Figure 7 6 Deleted Figure 11 7 Deleted Figure 16 and Figure 17 8 Deleted Figure 24 9 Deleted Figure 27, Figure 28, Figure 31, and Figure 32 10 6/07—Rev. 0 to Rev. A Changes to General Description 1 Updated Outline Dimensions 12 Changes to Ordering Guide 12 1/06—Revision 0: Initial Version
10/07—Revision B: Initial Combined Version	
Revision History: AD8646	
10/07—Rev. 0 to Rev. B Combined with AD8648	
Added AD8647	

SPECIFICATIONS

 $V_{SY} = 5$ V, $V_{CM} = V_{SY}/2$, $T_A = +25$ °C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = 0 V \text{ to } 5 V$		0.6	2.5	mV
-		-40°C < T _A < +125°C			3.2	mV
Offset Voltage Drift	ΔV _{OS} /ΔΤ	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}$		1.8	7.5	μV/°C
Input Bias Current	I _B			0.3	1	pА
pat 2.a2 carrent	.5	$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$		0.0	50	pΑ
		-40°C < T _A < +125°C			550	pΑ
Input Offset Current	los	10 C (1A (1125 C		0.1	0.5	pΑ
input onset current	103	-40°C < T _A < +85°C		0.1	50	pΑ
		$-40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			250	I -
Input Voltage Range	V _{CM}	-40 C \ TA \ +123 C	0		5	pA V
	CMRR	$V_{CM} = 0 \text{ V to 5 V}$	67	84	3	dB
Common-Mode Rejection Ratio			-			
Large Signal Voltage Gain	A _{vo}	$R_L = 2 \text{ k}\Omega, V_O = 0.5 \text{ V to } 4.5 \text{ V}$	104	116		dB
Input Capacitance				2.5		_
Differential	C _{DIFF}			2.5		pF -
Common Mode	Ссм			6.7		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_{OUT} = 1 \text{ mA}$	4.98	4.99		V
		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$	4.90			V
		$I_{OUT} = 10 \text{ mA}$	4.85	4.92		V
		-40 °C < T_A < $+125$ °C	4.70			V
Output Voltage Low	V _{OL}	$I_{OUT} = 1 \text{ mA}$		8.4	20	mV
		-40° C < T _A < $+125^{\circ}$ C			40	mV
		I _{ΟUT} = 10 mA		78	145	mV
		-40°C < T _A < +125°C			200	mV
Output Current	I _{sc}	Short circuit		±120		mA
Closed-Loop Output Impedance	Z _{OUT}	At 1 MHz, A _V = 1		5		Ω
POWER SUPPLY		, ,				
Power Supply Rejection Ratio	PSRR	$V_{SY} = 2.7 \text{ V to } 5.5 \text{ V}$	63	80		dB
Supply Current per Amplifier	I _{SY}	731 2.7 7 60 3.3 7		1.5	2.0	mA
supply current per / impliner	151	-40°C < T _A < +125°C		1.5	2.5	mA
Supply Current Shutdown Mode	I _{SD}	Both amplifiers shut down,		10	2.5	nA
(AD8647 Only)	ISD	V _{IN_SDA} and V _{IN_SDB} = 0 V		10		11/1
(iboo ii o iii)		-40°C < T _A < +125°C			1	μΑ
SHUTDOWN INPUTS (AD8647)		10 0 3 10 3 1120 0			•	Pr 1
Logic High Voltage (Enabled)	V _{INH}	-40°C < T _A < +125°C	+2.0			٧
Logic Fight Voltage (Enabled) Logic Low Voltage (Power-Down)	VINH	$-40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$ $-40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	72.0		+0.8	V
Logic Low Voltage (Power-Down) Logic Input Current (Per Pin)		-40°C < T _A < +125°C			+0.6 1	
	I _{IN}			1	1	μA
Output Pin Leakage Current		-40°C < T _A < $+125$ °C (shutdown active)		1		nA
DYNAMIC PERFORMANCE				4.4		 ,,,
Slew Rate	SR	$R_L = 2 \text{ k}\Omega$		11		V/µs
Gain Bandwidth Product	GBP			24		MHz
Phase Margin	Ø _m			74		Degre
Settling Time	ts	To 0.1%		0.5		μs
Amplifier Turn-On Time (AD8647)	t _{on}	25°C, $A_V = 1$, $R_L = 1$ kΩ (see Figure 44)		1		μs
Amplifier Turn-Off Time (AD8647)	t _{off}	25°C, $A_V = 1$, $R_L = 1$ kΩ (see Figure 45)		1		μs

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
NOISE PERFORMANCE						
Peak-to-Peak Noise	e _n p-p	0.1 Hz to 10 Hz		2.3		μV
Voltage Noise Density	en	f = 1 kHz		8		nV/√Hz
		f = 10 kHz		6		nV/√Hz
Channel Separation	CS	f = 10 kHz		-115		dB
		f = 100 kHz		-110		dB
Total Harmonic Distortion Plus Noise	THD + N	$V p-p = 0.1 V$, $R_L = 600 \Omega$, $f = 25 \text{ kHz}$, $T_A = 25 ^{\circ}\text{C}$				
		$A_V = +1$		0.010		%
		$A_{V} = -10$		0.021		%

Data Sheet

 $V_{SY} = 2.7$ V, $V_{CM} = V_{SY}/2$, $T_A = +25$ °C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = 0 \text{ V to } 2.7 \text{ V}$		0.6	2.5	mV
, and the second		-40°C < T _A < +125°C			3.2	mV
Offset Voltage Drift	ΔV _{OS} /ΔΤ	-40°C < T _A < +125°C		1.8	7.0	μV/°C
Input Bias Current	I _B			0.2	1	pA
		-40°C < T _A < +85°C			50	pA
		-40°C < T _A < +125°C			550	pA
Input Offset Current	los			0.1	0.5	pA
pat onset can ent	103	-40°C < T _A < +85°C		•••	50	pA
		-40°C < T _A < +125°C			250	pA
Input Voltage Range	V_{CM}	10 0 11 1125 0	0		2.7	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 \text{ V to } 2.7 \text{ V}$	62	79	2.7	dB
Large Signal Voltage Gain	A _{vo}	$R_L = 2 k\Omega$, $V_O = 0.5 V$ to 2.2 V	95	102		dB
Input Capacitance	700	N _L = 2 N ₂ , v ₀ = 0.5 v to 2.2 v		102		ub ub
Differential	C _{DIFF}			2.5		pF
Common Mode	COM			7.8		
	Ссм			7.8		pF
OUTPUT CHARACTERISTICS	.,		2.65	2.60		
Output Voltage High	Vон	lout = 1 mA	2.65	2.68		V
		-40°C < T _A < +125°C	2.60			V
Output Voltage Low	V _{OL}	I _{OUT} = 1 mA		11	25	mV
		-40°C < T _A < +125°C			30	mV
Output Current	I _{sc}	Short circuit		±63		mA
Closed-Loop Output Impedance	Z _{оит}	At 1 MHz, $A_V = 1$		5		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 2.7 \text{ V to } 5.5 \text{ V}$	63	80		dB
Supply Current per Amplifier	I _{SY}			1.6	2.0	mA
		-40°C < T _A < +125°C			2.5	mA
Supply Current Shutdown Mode	I _{SD}	Both amplifiers shut down,		10		nA
(AD8647 Only)		V_{IN_SDA} and $V_{IN_SDB} = 0 V$				
		-40°C < T _A < +125°C			1	μΑ
SHUTDOWN INPUTS (AD8647)						
Logic High Voltage (Enabled)	V _{INH}	-40°C < T _A < +125°C	+2.0			V
Logic Low Voltage (Power-Down)	V _{INL}	-40°C < T _A < +125°C			+0.8	V
Logic Input Current (Per Pin)	I _{IN}	-40°C < T _A < +125°C			1	μΑ
Output Pin Leakage Current		-40°C < T _A < $+125$ °C (shutdown active)		1		nA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		11		V/µs
Gain Bandwidth Product	GBP			24		MHz
Phase Margin	Ø _m			53		Degrees
Settling Time	ts	To 0.1%		0.3		μs
Amplifier Turn-On Time (AD8647)	ton	25°C, $A_V = 1$, $R_L = 1$ kΩ (see Figure 41)		1.2		μs
Amplifier Turn-Off Time (AD8647)	t _{off}	25°C, $A_V = 1$, $R_L = 1$ kΩ (see Figure 42)		1		μs
NOISE PERFORMANCE		, , , , , , , , , , , , , , , , , , , ,				†
Peak-to-Peak Noise	e _n p-p	0.1 Hz to 10 Hz		2.3		μV
Voltage Noise Density	e _n P P	f = 1 kHz		8		nV/√Hz
	"					-
, ,		1 f = 10 kHz		6		I nv/\/Hz
Channel Separation	CS	f = 10 kHz f = 10 kHz		6 –115		nV/√Hz dB

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	GND to V _{SY}
Differential Input Voltage	±6 V
Output Short Circuit to GND	Indefinite
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Lead Temperature (Soldering 60 sec)	300°C
Junction Temperature	150°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θ _{JA}	θις	Unit
8-Lead SOIC_N	125	43	°C/W
8-Lead MSOP	210	45	°C/W
10-Lead MSOP	200	44	°C/W
14-Lead SOIC_N	120	36	°C/W
14-Lead TSSOP	180	35	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Input Offset Voltage Distribution

Figure 5. Vos Drift (TCVos) Distribution

Figure 6. Input Offset Voltage vs. Input Common-Mode Voltage

Figure 7. Input Offset Voltage Distribution

Figure 8. Vos Drift (TCVos) Distribution

Figure 9. Input Offset Voltage vs. Input Common-Mode Voltage

Figure 10. Output Saturation Voltage vs. Load Current

Figure 11. Output Saturation Voltage vs. Temperature

Figure 12. Input Bias Current vs. Common-Mode Voltage

Figure 13. Output Saturation Voltage vs. Load Current

Figure 14. Output Saturation Voltage vs. Temperature

Figure 15. Input Bias Current vs. Common-Mode Voltage

Figure 16. Open-Loop Gain and Phase vs. Frequency

Figure 17. Closed-Loop Gain vs. Frequency

Figure 18. Z_{OUT} vs. Frequency

Figure 19. Open-Loop Gain and Phase vs. Frequency

Figure 20. Closed-Loop Gain vs. Frequency

Figure 21. Zout vs. Frequency

Figure 22. CMRR vs. Frequency

Figure 23. PSRR vs. Frequency

Figure 24. Overshoot vs. Load Capacitance

Figure 25. CMRR vs. Frequency

Figure 26. PSRR vs. Frequency

Figure 27. Overshoot vs. Load Capacitance

Figure 28. Small-Signal Transient Response

Figure 29. Large-Signal Transient Response

Figure 30. THD + Noise vs. Frequency

Figure 31. Small-Signal Transient Response

Figure 32. Large-Signal Transient Response

Figure 33. THD + Noise vs. Frequency

Figure 34. 0.1 Hz to 10 Hz Voltage Noise

Figure 35. Voltage Noise Density vs. Frequency

Figure 36. Supply Current per Amplifier vs. Supply Voltage

Figure 37. THD + Noise vs. Output Amplitude

Figure 38. Input Bias Current vs. Temperature

Figure 39. Maximum Output Swing vs. Frequency

Figure 40. Supply Current per Amplifier vs. Temperature

Figure 42. Turn-Off Time

Figure 43. Channel Separation

Figure 44. Turn-On Time

Figure 45. Turn-Off Time

Figure 46. Supply Current with Op-Amp Shutdown vs. Temperature

Figure 47. Supply Current with Op-Amp Shutdown vs. Temperature

THEORY OF OPERATION POWER-DOWN OPERATION

The shutdown function of the AD8647 is referenced to the negative supply voltage of the operational amplifier. A logic level high (> 2.0 V) enables the device, while a logic level low (< 0.8 V) disables the device and places the output in a high impedance condition. Several outputs can be wire-ORed, thus eliminating a multiplexer. The logic input is a high impedance CMOS input. If dual or split supplies are used, the logic signals must be properly referred to the negative supply voltage.

MULTIPLEXING OPERATION

Because each op amp has a separate logic input enable pin, the outputs can be connected together if it can be guaranteed that only one op amp is active at any time. By connecting the op amps as shown in Figure 48, a multiplexer can be eliminated. With the reasonably short turn-on and turn-off times, low frequency signal paths can be smoothly selected. The turn-off time is slightly faster than the turn-on time so, even when using sections from two different packages, the overlap is less than 300 nanoseconds.

Figure 48. AD8647 Output Switching

Figure 49. Switching Waveforms

Figure 50. Supply Current Shutdown Mode, AD8647

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 51. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

Dimensions snown in minimeters

Figure 53. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

Figure 54. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 55. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option	Branding
AD8646ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8646ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8646ARZ-REEL7	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8646ARMZ	-40°C to +125°C	8-Lead MSOP	RM-8	A1V
AD8646ARMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	A1V
AD8646WARZ-RL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8646WARZ-R7	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8646WARMZ-RL	-40°C to +125°C	8-Lead MSOP	RM-8	A1V
AD8646WARMZ-R7	−40°C to +125°C	8-Lead MSOP	RM-8	A1V
AD8647ARMZ	-40°C to +125°C	10-Lead MSOP	RM-10	A1W
AD8647ARMZ-REEL	-40°C to +125°C	10-Lead MSOP	RM-10	A1W
AD8648ARZ	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8648ARZ-REEL	−40°C to +125°C	14-Lead SOIC_N	R-14	
AD8648ARZ-REEL7	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8648ARUZ	−40°C to +125°C	14-Lead TSSOP	RU-14	
AD8648ARUZ-REEL	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8648WARUZ	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8648WARUZ-RL	−40°C to +125°C	14-Lead TSSOP	RU-14	

¹ Z = RoHS Compliant Part.

² W = Qualified for Automotive Applications.

Data Sheet

AD8646/AD8647/AD8648

NOTES

NOTES