

ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Biometric authentication system - IT4432E

2D-Face authorization

Members:

- Chu Trung Anh 20225564
- Bui Duy Anh 20225563
- Pham Minh Tien 20225555

Supervisor:

- Dr.Ngo Thanh Trung
- Dr.Tran Nguyen Ngoc

ONE LOVE. ONE FUTURE.

Content

- 1. Introduction
- 2. Dataset
- 3. Our pipeline
- 4. Evaluation
- 5. Application
- 6. Future improvement

1. Introduction

In today's world, strong security is more important than ever because traditional methods like passwords can be easily hacked

Pros:

 Easier and fast way to verify access

Cons:

 Can be inefficient due to noise or face spoofing

Facial authentication is an advanced solution that uses your unique facial features to verify your identity

1. Introduction

Reason why we choose this approach to the problem:

- Easy to implemented in real-life situation
- High universality and acceptability
- Security enhancement
- Broad application: in company, government, individual,...
- Secure physical spaces(room, safe, building,...)
- Secure digital system(laptop, phone,...)

1. Introduction

Dependenices

• Backend:

• GUI:

2. Dataset

• Our project used three source of data:

2. Dataset

• Data structure:

• 250x250 jpg format

2. Dataset

• Data argumentation:

3.1.1 Train model - pipeline 1

3.1.1 Train model - pipeline 1

3.1.2 Train model - pipeline 2

Our network architecture:

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf

3.1.2 Train model – pipeline 2

Our network architecture:

Layer (type)	Output Shape	Param #
input_image (InputLayer)	(None, 100, 100, 3)	0
conv2d (Conv2D)	(None, 91, 91, 64)	19,264
max_pooling2d (MaxPooling2D)	(None, 46, 46, 64)	0
conv2d_1 (Conv2D)	(None, 40, 40, 128)	401,536
max_pooling2d_1 (MaxPooling2D)	(None, 20, 20, 128)	0
conv2d_2 (Conv2D)	(None, 17, 17, 128)	262,272
max_pooling2d_2 (MaxPooling2D)	(None, 9, 9, 128)	0
conv2d_3 (Conv2D)	(None, 6, 6, 256)	524,544
flatten (Flatten)	(None, 9216)	0
dense (Dense)	(None, 4096)	37,752,832

3.1.2 Train model – pipeline 2

3.1.2 Train model - pipeline 2

3.1.2 Train model - pipeline 2

3.1.2 Train model - pipeline 2

3.1.2 Train model – pipeline 2

3.1.2 Train model – pipeline 2

3.2 Enrollment/Login

application_data/validation_images/tom cruise

User scan images

4. Evaluation

4.1 Pipeline 1

4. Evaluation

4.2 Pipeline 2

Precision: 0.8278145695364238

Recall: 0.6067961165048543

5. Demo

5.1 Camera detection

If file settings. json already existed, no not camera detection window

5. Demo

5.2 Enrollment

5. Demo 5.3 Login

6. Future Improvement

- Trying other models to optimize the price per performance (time reduce;
 requires less powerful resources like camera, processor,...
- Build a more user-friendly UI, easier to interact.
- Deploy using docker, package in .exe, .deb for end-user
- Collect more quality data to reduce biases
- Handle variations like glass, mask, make-up,...
- Quality control: Reject image that's too bright, dark, unable to recognize
- Implement multi –instance verification of login images
- Implement multi –thread for faster response time

Thank you for your listening!