### 温馨提示

(1) 视频中提到的附件可在**售后群的群文件**中下载。



- (2) 关注我的微信公众号《数学建模学习交流》,后台发送"软件"两个字,可获得常见的建模软件下载方法;发送"数据"两个字,可获得建模数据的获取方法;发送"画图"两个字,可获得数学建模中常见的画图方法。另外,也可以看看公众号的历史文章,里面发布的都是对大家有帮助的技巧。
- (3) 购买更多优质精选的数学建模资料,可关注我的微信公众号《数学建模学习交流》, 在后台发送"买"这个字即可进入店铺进行购买。

# 基于熵权法对Topsis模型的修正

有n个要评价的对象,m个评价指标的标准化矩阵:

$$Z = egin{bmatrix} z_{11} & z_{12} & \cdots & z_{1m} \ z_{21} & z_{22} & \cdots & z_{2m} \ dots & dots & \ddots & dots \ z_{n1} & z_{n2} & \cdots & z_{nm} \end{bmatrix}$$

可以使用层次分析法给这m个评价指标确定权重:

$$\sum_{j=1}^{m} \omega_j = 1$$

### 层次分析法最大的缺点

判断矩阵的确定依赖于专家,如果专家的判断存在主观性的话,会对结果产生很大的影响。 (主观性太强)

### 熵权法是一种客观赋权方法

**依据的原理:** 指标的变异程度越小,所反映的信息量也越少,其对应的权值也应该越低。(客观 = 数据本身就可以告诉我们权重)

(一种极端的例子:对于所有的样本而言,这个指标都是相同的数值,那么我们可认为这个指标的权值为0,即这个指标对于我们的评价起不到任何帮助)



### 如何度量信息量的大小

小张和小王是两个高中生。小张学习很差,而小王是全校前几名的尖子生。

高考结束后,小张和小王都考上了清华。小王考上了清华,大家都会觉得很正常,里面没什么信息量,因为学习好上清华,天经地义,本来就应该如此的事情。

然鹅,如果是小张考上了清华,这就不一样了,这里面包含的信息量就非常大。怎么说?因为小张学习那么差,怎么会考上清华呢?把不可能的事情变成可能,这里面就有很多信息量。

注: 本例子来自微信公众号: "小宇治水"



上面的小例子告诉我们:

越有可能发生的事情,信息量越少,越不可能发生的事情,信息量就越多。

怎么衡量事情发生的可能性大小? 概率

## 如何度量信息量的大小

如果把信息量用字母I表示,概率用p表示,那么我们可以将它们建立一个函数关系:





假设x表示事件X可能发生的某种情况, p(x)表示这种情况发生的概率 我们可以定义:  $I(x) = -\ln(p(x))$  因为 $0 \le p(x) \le 1$ ,所以 $I(x) \ge 0$ 

# 信息熵的定义

假设x表示事件X可能发生的某种情况,p(x)表示这种情况发生的概率我们可以定义:  $I(x) = -\ln(p(x))$ ,因为 $0 \le p(x) \le 1$ ,所以 $I(x) \ge 0$ 如果事件X可能发生的情况分别为:  $x_1, x_2, \dots, x_n$ 那么我们可以定义事件X的信息熵为:

$$H(X) = \sum_{i=1}^{n} \left[p\left(x_i
ight)I\left(x_i
ight)
ight] = -\sum_{i=1}^{n} \left[p\left(x_i
ight)\ln(p\left(x_i
ight)
ight)
ight]$$

从上面的公式可以看出,信息熵的本质就是对信息量的期望值。

可以证明的是:

当
$$p(x_1) = p(x_2) = \cdots = p(x_n) = \frac{1}{n}$$
时, $H(x)$ 取最大值,此时 $H(x) = \ln n$ 



### 熵越大信息量越大还是越小?

知乎: 信息熵越大, 信息量到底是越大还是越小?

https://www.zhihu.com/question/274997106

有些说: 熵越大, 不确定性越大, 包含的信息越多。

百科和一些资料中说:指标的信息熵越小,提供的信息越大。

还各举出了一些例子, 感觉都很有道理。

甚至同一资料描述都相反,例如<u>浅谈信息熵(熵权法的应用) - 不矜不伐的小学生 - 博客园</u>:第四段说"高信息度的信息熵是很低的,低信息度的熵则高。"。而第六段的举例说"如果中国100%夺冠,那么熵是0,相当于没有任何信息。"

到底哪个正确?是我哪里理解错了吗



对于熵权法而言, 因为我们关注的是 已有的信息,所以 答案是越小。 (后面大家看到计 算步骤就会明白)

编辑于 2018-04-27

息量越小。

▲ 赞同 3 ▼ ● 1条评论 **7** 分享 ★ 收藏 ● 感谢

### 熵权法的计算步骤

(1) 判断输入的矩阵中是否存在负数,如果有则要重新标准化到非负区间 (后面计算概率时需要保证每一个元素为非负数)

假设有n个要评价的对象,m个评价指标(已经正向化了)构成的正向化矩阵如下:

$$X = egin{bmatrix} x_{11} & x_{12} & \cdots & x_{1m} \ x_{21} & x_{22} & \cdots & x_{2m} \ dots & dots & \ddots & dots \ x_{n1} & x_{n2} & \cdots & x_{nm} \end{bmatrix}$$

那么,对其标准化的矩阵记为Z,Z中的每一个元素:  $z_{ij} = x_{ij} \bigg/ \sqrt{\sum_{i=1}^n x_{ij}^2}$ 

判断Z矩阵中是否存在着负数,如果存在的话,需要对X使用另一种标准化方法 对矩阵X进行一次标准化得到 $\tilde{Z}$ 矩阵,其标准化的公式为:

$$ilde{z}_{ij} = rac{x_{ij} - \min\{x_{1j}, x_{2j}, \cdots, x_{nj}\}}{\max\{x_{1j}, x_{2j}, \cdots, x_{nj}\} - \min\{x_{1j}, x_{2j}, \cdots, x_{nj}\}}$$



### 熵权法的计算步骤

(2) 计算第j项指标下第i个样本所占的比重,并将其看作相对熵计算中用到的概率

假设有n个要评价的对象,m个评价指标,且经过了上一步处理得到的非负矩阵为:

$$ilde{Z} = egin{bmatrix} ilde{z}_{11} & ilde{z}_{12} & \cdots & ilde{z}_{1m} \ ilde{z}_{21} & ilde{z}_{22} & \cdots & ilde{z}_{2m} \ dots & dots & \ddots & dots \ ilde{z}_{n1} & ilde{z}_{n2} & \cdots & ilde{z}_{nm} \end{bmatrix}$$

我们计算概率矩阵P,其中P中每一个元素 $p_{ij}$ 的计算公式如下:

$$p_{ij} \; = \; rac{ ilde{z}_{ij}}{\displaystyle\sum_{i=1}^n} ilde{z}_{ij}$$

容易验证:  $\sum_{i=1}^{n} p_{ij} = 1$ , 即保证了每一个指标所对应的概率和为1.

### 熵权法的计算步骤

(3) 计算每个指标的信息熵, 并计算信息效用值, 并归一化得到每个指标的熵权

对于第j个指标而言,其信息熵的计算公式为:  $e_j = -\frac{1}{\ln n} \sum_{i=1}^n p_{ij} \ln(p_{ij}) \ (j=1,2,\cdots,m)$ 

(1)为什么这里要除以 $\ln n$ 这个常数?

在前面说过,当 $p(x_1) = p(x_2) = \cdots = p(x_n) = \frac{1}{n}$ 时,H(x)取最大值,此时 $H(x) = \ln n$ 这里除以 $\ln n$  能够使得信息熵的始终位于[0,1]区间上面。

(2)  $e_j$  越大,即第j个指标的信息熵越大,表明第j个指标的信息越多还是越少?

答案是越少,当 $p_{1j}=p_{2j}=\cdots=p_{nj}$ 时, $e_j=1$ ,此时上面定义的信息熵达到最大,

但是,因为 $p_{ij} = \tilde{z}_{ij} / \sum_{i=1}^{n} \tilde{z}_{ij}$ ,所以 $\tilde{z}_{1j} = \tilde{z}_{2j} = \dots = \tilde{z}_{nj}$ ,即所有样本的这个指标值都相同。

信息效用值的定义:  $d_i = 1 - e_i$ , 那么信息效用值越大,其对应的信息就越多。

将信息效用值进行归一化,我们就能够得到每个指标的<mark>熵权</mark>:  $W_j = d_j / \sum_{j=1}^m d_j \ (j=1,2,\cdots,m)$ 



### 熵权法背后的原理

### 熵权法是一种客观赋权方法

**依据的原理:** 指标的变异程度越小,所反映的信息量也越少,其对应的权值也应该越低。(客观 = 数据本身就可以告诉我们权重)

我们可以用指标的标准差来衡量样本的变异程度,指标的标准差越大,其信息熵越小。



左图是蒙特卡洛的结果 随机生成一组有30个样本且位于区间 [0,1]上的数据,计算其信息熵和标准差; 将上述步骤重复100次,我们能够得到 100组信息熵和标准差的取值,将其绘 制成散点图。

可以发现,两个指标之间有很明显的负相关关系。

code\_Monte\_Carlo.m



## 熵权法的讨论





### 熵权法的讨论







### 熵权法的讨论





以上是我之前的看法 现在我给大家一个答复吧 如果大家的论文要发表,别用熵权法 如果大家只是用这个方法进行比赛 那么可以随便用 因为这个方法总比你自己随意定义好

## 熵权法的代码实现

| 20条河流的水质情况数据.xlsx        | 2019/07/11 20:25 | Microsoft Excel | 13 KB |
|--------------------------|------------------|-----------------|-------|
| code_Monte_Carlo.m       | 2019/08/18 18:50 | M 文件            | 1 KB  |
| 🛅 data_water_quality.mat | 2019/06/30 13:08 | MATLAB Data     | 1 KB  |
| Entropy_Method.m         | 2019/08/18 19:53 | M 文件            | 1 KB  |
| Inter2Max.m              | 2019/08/07 14:20 | M 文件            | 1 KB  |
| Mid2Max.m                | 2019/08/07 14:20 | M 文件            | 1 KB  |
| Min2Max.m                | 2019/08/07 14:20 | M 文件            | 1 KB  |
| mylog.m                  | 2019/08/18 19:00 | M 文件            | 1 KB  |
| Positivization.m         | 2019/08/07 14:20 | M 文件            | 2 KB  |
| 🗐 topsis.m               | 2019/08/18 19:55 | M 文件            | 6 KB  |

#### function [W] = Entropy\_Method(Z)

% 计算有n个样本,m个指标的样本所对应的的熵权

%输入

% Z: n\*m的矩阵(要经过正向化和标准化处理,且元素中不存在负数)

%输出

%W: 熵权, m\*1的行向量



### 运行结果

```
共有20个评价对象, 4个评价指标
这4个指标是否需要经过正向化处理,需要请输入1 ,不需要输入0: 1
请输入需要正向化处理的指标所在的列,例如第2、3、6三列需要处理,那么你需要输入[2,3,6]: [2,3,4]
请输入需要处理的这些列的指标类型 (1: 极小型, 2: 中间型, 3: 区间型)
例如: 第2列是极小型, 第3列是区间型, 第6列是中间型, 就输入[1,3,2]: ([2,1,3]
第2列是中间型
请输入最佳的那一个值: 7
第2列中间型正向化处理完成
第3列是极小型,正在正向化
第3列极小型正向化处理完成
第4列是区间型
请输入区间的下界: 10
请输入区间的上界: 20
第4列区间型正向化处理完成
```

| 正向化后的统 | 矩阵 X = |         |        | 标准化矩阵  | <b>Z</b> = |        |        |
|--------|--------|---------|--------|--------|------------|--------|--------|
| 4.6900 | 0.7172 | 3.0000  | 1.0000 | 0.1622 | 0.2483     | 0.0245 | 0.3065 |
| 2.0300 | 0.4069 | 35.0000 | 0.6940 | 0.0702 | 0.1408     | 0.2863 | 0.2127 |
| 9.1100 | 0.5241 | 8.0000  | 0.9058 | 0.3150 | 0.1814     | 0.0655 | 0.2776 |
| 8.6100 | 0.9655 | 8.0000  | 0.4443 | 0.2977 | 0.3342     | 0.0655 | 0.1361 |

# 运行结果

请输入是否需要增加权重向量,需要输入1,不需要输入0请输入是否需要增加权重: 1

使用熵权法确定权重请输入1,否则输入0: 1

熵权法确定的权重为:

0.1411 0.2267 0.4409 0.1913

#### 最后的得分为:

stand\_S =

0.0390 0.0552

0.0411

0.0428

0.0362

0.0441

0.0489

0.0525

| sorted | S | = |
|--------|---|---|
|--------|---|---|

0.0755

0.0750

0.0716

0.0653

0.0643

0.0578

0.0552

0.0543

#### index =

11

9

10

12

20

15

2

13