2010 G3

Ezra Guerrero Alvarez

February 6, 2022

2010 G3

2010 G3

Let $A_1A_2...A_n$ be a convex polygon. Point P inside this polygon is chosen so that its projections $P_1,...,P_n$ onto lines $A_1A_2,...,A_nA_1$ respectively lie on the sides of the polygon. Prove that for arbitrary points $X_1,...,X_n$ on sides $A_1A_2,...,A_nA_1$ respectively,

$$\max \left\{ \frac{X_1 X_2}{P_1 P_2}, \dots, \frac{X_n X_1}{P_n P_1} \right\} \ge 1.$$

Let θ_j be the measure of the (counter-clockwise) angle $\angle X_{j-1}PX_j$, where we take $X_0=X_n$. If we had $\theta_j+\angle A_j<180^\circ$ for all j, then adding over all of them would give

$$360^{\circ} + (n-2)180^{\circ} < n180^{\circ},$$

which is a clear contradiction. Hence, there exists some j for which $\theta_j \geq 180^{\circ} - \angle A_j$. This implies that P lies inside of the circumcircle of $\triangle X_{j-1}A_jX_j$. Therefore, if its diameter is D, we have $A_jP \leq D$. Then, by the law of sines, we have

$$\frac{X_{j-1}X_j}{\sin \angle A_j} = D, \quad \frac{P_{j-1}P_j}{\sin \angle A_j} = A_jP,$$

noting that A_jP is the diameter of $(P_{j-1}A_jP_j)$. Hence,

$$\frac{X_{j-1}X_j}{P_{j-1}P_j} = \frac{D}{A_jP} \ge 1,$$

implying the desired result.