- 1. Aşağıdaki soruları Yanıtlayınız:
- a) Kısa devre (direct path) akımlarının yol açacağı güç kaybı ile, yük sığası (C_L) arasında nasıl bir ilinti vardır? Bu kaybı azaltmak için C_L 'nin büyütülmesi mi, küçültülmesi mi gerekir? Niçin?

Yukarıdaki şekillerde de görüleceği gibi, V_{out} noktası, PMOS transistörün "source" terminalidir. Bu durumda büyük C_L değeri için (şekil-a) sığacın boşalma işlemi girdi sinyalinin yükselme süresine göre daha yavaş olacağından, girdi sinyali yükselirken, PMOS transistörün V_{GS} gerilimi de hızla düşer ve transistör "off" olur. Bu da I_{sc} akımının hemen hemen sıfır olması sonucunu doğurur. Oysa C_L küçükse (şekil-b), sığaç hızla boşalır ve girdi sinyalinin daha uzun süren yükseliş süresinin büyük bir kesimi boyunca yeterli V_{GS} gerilimine sahip olan PMOS transistör hep iletimde kalır ve maksimum I_{sc} akımı akar. Bu nedenle, kısa devre akımlarının yol açacağı güç kaybını azaltmak için C_L 'nin büyük olmasında yarar vardır.

- b) Aşağıdaki boşlukları doldurunuz:
 - Moore kuralına göre IC içindeki MOSFET sayısı her14-18 AYDA...... iki katına çıkmaktadır.
 - Hot-carrier" etkisi, eşik geriliminin genliğindeARTIŞA....... neden olur.
 - Eşik geriliminin azaltılması, performans ve statik güç tüketimini ...ARTTIRIR....
 - CMOS tersleyicide ...PMOS.... genişliği büyütülürse VTC'de geçiş bölgesi sağa doğru kayar.
 - CMOS üretim sürecinde "die" alanı artarsaYIELD... düser.
- c) CMOS yapılarda, PUN ve PDN bölümleri niçin sırası ile PMOS ve NMOS transistörlerden oluşur?

NMOS transistör PUN bölümünde yer aldığında, yandaki örnek devrede de görüleceği üzere, $V_{in} = V_{DD}$ olduğunda, C_L 'nin ON duruma geçen NMOS üzerinden dolması ve V_{out} 'un V_{DD} 'ye doğru yükselmesi beklenir. Ancak bu süreçte, NMOS tarafında $V_S = V_{out}$ ve $V_G = V_{in} = V_{DD}$ olduğundan, $V_{out} = V_{DD} - V_{Tn}$ gerilimine ulaştığında, $V_{GS} = V_G - V_S = V_{Tn}$ olacak ve NMOS cut-off durumuna geçecektir. Benzer şekilde $V_{in} = 0$ olduğunda, PMOS iletmeye başlayacak ve CL'nin PMOS üzerinden boşalması ve

 V_{out} 'un sıfır olması beklenir. Oysa bu kez de, $V_{out} = \left| V_{Tp} \right|$ gerilimine düştüğünde, PMOS için $V_{GS} = V_{Tp}$ olacağından PMOS cut-off durumuna geçecek ve V_{out} gerilimi toprağa kadar düşemeyecektir. Bu da çıkışta "rail-to-rail" salınım elde edilememesi sonucunu doğurur. Oysa PUN için PMOS, PDN için de NMOS kullanıldığında çıkışta "rail-to-rail" salınım elde edilebilir.

d) Bir CMOS Inverter'de, "switching treshold" (V_M) noktasında transistorler hangi durumdadır? Gerekçesi ile birlikte açıklayınız.

e) PMOS/NMOS oranının 2 olduğunu varsayarak, 2 girişli bir CMOS NOR geçiti için mantıksal eforu bulunuz.

PMOS/NMOS oranının 2 olabilmesi için 2 adet seri PMOS'un x4 büyütülmesi gerekir. Buna göre A veya B uçlarının her biri 1+4=5 C_{unit} sığa görecektir. Bir inverter için giriş ucunun göreceği sığanın 1+2=3 C_{unit} olacağı ve inverterin mantıksal eforunun 1 olduğu düşünülürse, 5 C_{unit} için mantıksal efor g=5/3 olacaktır.

2. $V_T = 0.4V$, $V_{DSAT} = 1V$ verilmiştir. Aşağıdaki tabloda V_{GS} ve V_{DS} değerlerine göre MOSFET'in içinde bulunduğu durumu (OFF, LIN, SAT, Velocity SAT) gerekçesini de açıklayarak belirtiniz.

$ m V_{GS}$	$ m V_{DS}$	Durum
0.3V	3V	V_{GS} =0.3V < V_T Kanal oluşmaz (OFF)
0.8	2V	$V_{GS}=0.8V > V_T, V_{DS}=2V > V_{DSAT} > V_{GS} - V_T (SAT)$
1	0.8V	$V_{GS}=1 V > V_T, V_{DSAT} > V_{DS}=0.8 V > V_{GS} - V_T (SAT)$
2	0.5V	$V_{GS}=2V > V_T, V_{GS} - V_T = 1.6V > V_{DSAT} > V_{DS} (LIN)$

3. Aşağıdaki "complementary CMOS" geçit devresinde $L_n = L_p$, $W_n = 1 \mu m$ için $R_n = 10 K$, $W_p = 1 \mu m$ için $R_p = 30 K$, çıkış yükü $C_L = 1 p F$ verilmiştir.

a) Devrenin gerçekleştirdiği Boolean işlevi bulunuz.

$$F = [A (B+C+D)]'$$

b) En kötümser (maksimum) t_{pLH} ve t_{pHL} değerlerini bulunuz.

En kötü (uzun) gecikme çıkışı V_{DD} ya da GND'ye bağlayan yollardan en büyük eşdeğer direnç gösteren yol üzerinden bulunur. Bu, PUN için D, C, B yoludur. PDN için A, B (ya da C ya da D) yoludur. Buna göre;

$$t_{pLHmax} = 0.69 (3 \text{ Rp}) C_L = 62.1 \text{ ns}.$$

 $t_{pHLmax} = 0.69 (2 Rn) C_L = 13.8 ns. Bulunur$

c) $t_{pLH} = t_{pHL}$ yapabilmek için uygun MOSFET büyüklüklerini bulunuz.

 $t_{pLH} = t_{pHL}$ için $R_{PUN} = R_{PDN}$ olmalı. B, C, D yolu üzerindeki PMOS W_p çarpanı X, NMOS W_n çarpanı Y olsun. En kötü gecikme için

$$R_{PUN} = 3 R_p / X = 90 / X olur.$$

$$R_{PDN} = 2 R_n / Y = 20 / Y olur.$$

$$=>R_{PUN}=R_{PDN}$$
 koşulunu $X=9$ Y/2 sağlar.

$$=>W_{nA}=W_{nB}=W_{nC}=W_{nD}=2\mu m\ olsun.$$

$$=>W_{pB}=W_{pC}=W_{pD}=9\mu m \ olur.$$

 W_{pA} için;

 $W_{pA}=9\mu m$ olmasına gerek yoktur. $R_{PUN}=R_{pA}=R_{PDN}=2$ $(R_n/2)=10K$ olursa $t_{pLH}=t_{pHL}$ sağlanmış olur. Buna göre $W_{pA}=(1\mu m)$ $R_p/10K=3\mu m$ olur.

d) A, B, C, D girişlerinden hangisinin 1 -> 0 geçişi çıkışta en uzun t_{pLH} değerine neden olur? Açıklayınız.

En kötü t_{pLH} için en büyük R_{PUN} yolu ve dolacak olan aradüğüm sığalarının boşaltılmış olma koşulu aranır. B, C, D yolu en büyük R_{PUN} vermektedir => A=1 olmalıdır. D ve C aradüğüm sığasının boş olması için çıkış 0V iken D=0 olmalıdır. C ve B aradüğüm sığasının boş olabilmesi için C=0 olmalıdır. O zaman A=1, C=0, D=0 iken B=1 -> 0 geçişi yaparken en kötü gecikme gerçekleşir.

- 4. A, B, ve C girişli NOR geçidi için
 - a) Çıkışın 1 olma olasılığını hesaplamız (herbir girişin 0 olma olasılığı 0.5'tir).
 - b) Çıkışın 0'dan 1'e geçme olasılığını hesaplayınız (herbir girişin 0 olma olasılığı 0.1'dir).
 - c) Bulduğunuz olasılığa göre, V_{DD}=2V, C_L = 1nF, sistem saat frekansı 1GHz için güç tüketimini hesaplayınız.

a) A, B, C girişli NOR çıkışı eşit olasılıklı girişler için
$$P(F=1) = 1/(2^3) = 1/8 = 0.125$$
 olur.
b) $P(F:0 \rightarrow 1) = P(F=0) P(F=1) = [1-P(F=1)] P(F=1)$ olur.
 $P(F=1) = P(A=0) P(B=0) P(C=0) = 0.001$ olur. Yerine koyarsak,
 $=> P(F:0 \rightarrow 1) = (1-0.001) (0.001) = 0.999 \ 10^{-3}$ bulunur. O da yaklaşık 0.001 'dir.
c) $P_d = V_{DD}^2 C_L$ frekans $P(F:0 \rightarrow 1) = 2^2 \ 10^{-9} \ 10^9 \ 10^{-3} = 4$ mW bulunur.

5. "Pass-Transistor Logic" devre tekniği ile (giriş sinyallerinin tersleri kullanılabilir) a) üç girişli AND geçit devresini dört NMOSFET kullanarak çiziniz,

b) çizdiğiniz devrenin V_{OH} , V_{OL} , ve çıkış V_{swing} değerlerini V_{Tn} =0.6V, V_{DD} =3V, V_{SS} =0V için bulunuz.

"Treshold drop" nedeniyle:
$$V_{OH} = V_{DD} - V_{Tn} = 2.4V$$
,
$$V_{OL} = 0V$$

$$V_{swing} = V_{OH} - V_{OL} = 2.4V$$

6. C_L=10⁵ C_g yükü sürebilmek için "effective fanout" f = 5 kullanılıp zincirleme tersleyiciler kullanılacaktır. İlk tersleyicideki W_p=4µm, W_n=2µm giriş sığası C_g ve kendinden gecikmesi ("intrinsic delay") t_{po} = 0.2ns ve tüm tersleyiciler için γ=1 verilmiştir.
a) Zincirdeki gittikçe büyüyen tersleyicilerin sayısını bulunuz.

$$f = (F)^{1/N} = (C_L / C_g)^{1/N} = 10^{5/N} = 5 => 5/N = \log(5) => N = 5 / \log(5) = 7.15.$$

Tersleyici sayısı 7.15'e en yakın tam sayı seçilir. => N = 7 olur.

b) Toplam gecikmeyi bulunuz.

$$t_p = N t_{po} (1 + f / \gamma) = (7)(0.2ns) (1 + 5) = 8.4ns$$
 bulunur.

c) Beşinci tersleyicideki PMOSFET ve NMOSFET büyüklüklerini hesaplayınız.

5'inci tersleyici birinciden f^4 kat büyüktür.

$$=>W_{n5}=W_n\;f^4=(2\mu m)(5^4)=1250\mu m$$

$$=>W_{p5}=W_p f^4=(4\mu m)(5^4)=2500\mu m$$

Puanlar:

Soru 1: 25p, her şık 5p Soru 2: 10p Soru 3: 20p Soru 4: 15p

Soru 5: 10p Soru 6: 20p