

Agenda

- Importance of Stationarity
- Autocorrelation and Partial Autocorrelation
 - Basics on autocorrelation & partial autocorrelation functions (ACF & PACF)
 - Differences between ACF & PACF
- Time Series Models
 - AR & MA processes
 - ARIMA
 - SARIMA
- Model Evaluation and Forecasting
 - Model evaluation (AIC, BIC etc)
 - Forecasting using ARIMA models

Importance of Stationarity

Predictive Modeling Simplified

Simplified Analysis

- Makes it easier to identify and interpret relationships within the series.
- Consistent statistical inferences over time.

Enhanced Forecast Accuracy

- Stabilizes patterns to achieve better fitting models.
- Reliable parameter estimations and prediction intervals.

invariant

Time-Invariant Relationships

 Ensures consistent variable relationships over time, essential for multivariate models like VAR (Vector Autoregression)

This Photo by Unknown Author is licensed under CC BY-1

Assumptions

- Many statistical models (e.g., ARIMA, SARIMA) assume stationarity for optimal performance.
- Non-stationary data can cause trend dominance, leading to overfitting and inaccurate forecasts.

3

Autocorrelation

Autocorrelation

• Autocorrelation measures the correlation of a time series with its own past values.

$$r_k = rac{\sum_{t=k+1}^n (X_t - ar{X})(X_{t-k} - ar{X})}{\sum_{t=1}^n (X_t - ar{X})^2}$$

Where r_k is the autocorrelation at lag k, X_t is the time series, and \bar{X} is the mean of the series.

- Quantifies how the current value of the series is related to its lagged (previous) values.
- Used for
 - Identifying repeating patterns, such as seasonality or periodic behavior
 - Diagnosing time-series models like AR, MA, or ARIMA

SISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASI SISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASISONASI

5

Autocorrelation Function (ACF)

- Autocorrelation Function (ACF) shows the correlation between a time series and its lagged versions for multiple lags.
- The ACF plot displays the autocorrelation values at different lags.
- Plot helps determine the significant lags that contribute to the structure of the series.
 - A slow decay in ACF suggests possible non-stationarity
 - Significant spikes at specific lags in the ACF can indicate seasonality or lag-based dependencies

_

Partial Autocorrelation Function (PACF)

- Partial Autocorrelation Function (PACF) measures the correlation between a time series and its lagged values, removing the influence of intermediate lags.
- It is a key tool for identifying the order of autoregressive (AR) terms in a model.

$$X_t = \phi_{k1}X_{t-1} + \phi_{k2}X_{t-2} + \dots + \phi_{kk}X_{t-k} + \epsilon_t$$

Where:

- $\bullet \quad X_t \text{: Value of the series at time t}.$
- ϕ_{kj} : Partial autocorrelation coefficient at lag k.
- ϵ_t : Residual (error term) at time t.

In this equation:

• The ϕ_{kk} term represents the partial autocorrelation at lag k, obtained after removing the influence of the intermediate lags $1, 2, \dots, k-1$.

7

Autoregressive Process (AR)

• Model based on the relationship between current value and lagged values:

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \epsilon_t$$

- This is a stationary process if $abs(\phi) < 1$.
- Examples:

- AR(1)
$$X_t = c + \phi_1 X_{t-1}$$

- AR(2)
$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2}$$

Where:

- X_t : Current value.
- ϕ_p : AR coefficients.
- p: Number of lags.

Moving Average Process (MA)

• Model based on past error terms (residuals) to refine predictions:

$$X_t = c + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$

- This is a stationary process regardless of values of θ .
- Examples:

- MA(1)
$$X_t = c + \epsilon_t + heta_1 \epsilon_{t-1}$$

– MA(2)
$$X_t = c + \epsilon_t + heta_1 \epsilon_{t-1} + heta_2 \epsilon_{t-2}$$
 :

Where:

- ϵ_t : Error term.
- θ_q : MA coefficients.
- q: Number of lags.

11

Autoregressive Moving Average (ARMA)

Autoregressive (AR)

Model based on the relationship between current value and lagged values

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \epsilon_t$$

Moving Average (MA)

Uses past error terms (residuals) to refine predictions

$$X_t = c + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$

ARMA Model Equation:

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-i} + \epsilon_t + \sum_{j=1}^q heta_j \epsilon_{t-j}$$

* ARMA can be used ONLY when the series is stationary

Where:

- X_t : Current value of the series.
- ϕ_i : Coefficients of the AR terms.
- θ_i : Coefficients of the MA terms.
- ε_t: Error (random noise).
- p: Number of AR terms.
- q: Number of MA terms.

Autoregressive Integrated Moving Average (ARMA)

Autoregressive (AR)

Model based on the relationship between current value and lagged values

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + \epsilon_t$$

Integrated (I)

Represents the differencing step to make the series stationary

$$X_t^\prime = X_t - X_{t-1}$$

Moving Average (MA)

Uses past error terms (residuals) to refine predictions

$$X_t = c + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$

ARIMA Model Equation:

$$Y_t = X_t - X_{t-1} \quad \text{(for } d=1\text{)}$$

$$Y_t = c + \sum_{i=1}^p \phi_i Y_{t-i} + \epsilon_t + \sum_{j=1}^q heta_j \epsilon_{t-j}$$

When to use ARIMA

- When the series is non-stationary but lacks clear seasonality
- Differencing helps remove trends or cyclic behavior.

15

Seasonal Autoregressive Integrated Moving Average (SARIMA)

Non-Seasonal Components

Seasonal Components

Other Terms

- $\phi_p(B)$: Non-seasonal autoregressive (AR) operator of order p.
- ullet $(1-B)^d$: Non-seasonal differencing of order d.
- $\Phi_P(B^m)$: Seasonal autoregressive (SAR) operator of order P. B: Backshift operator (e.g., $BX_t = X_{t-1}$).
- $\bullet \ \, (1-B^m)^D \hbox{: Seasonal differencing of order D}.$
- $oldsymbol{ heta}_q(B)$: Non-seasonal moving average (MA) operator of order q. $oldsymbol{ heta}_Q(B^m)$: Seasonal moving average (SMA) operator of order Q. $oldsymbol{ heta}_m$: Seasonal period (e.g., m=12 for annual seasonality in monthly data).
 - ϵ_t : White noise (error term).

Non-Seasonal MA (q):

$$heta_q(B) = 1 + heta_1 B + heta_2 B^2 + \dots + heta_q B^q$$

$$\Theta_Q(B^m) = 1 + \Theta_1 B^m + \Theta_2 B^{2m} + \cdots + \Theta_Q B^{Qm}$$

Non-Seasonal AR (p):

$$\phi_p(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$

$$\Phi_P(B^m) = 1 - \Phi_1 B^m - \Phi_2 B^{2m} - \dots - \Phi_P B^{Pm}$$

SARIMA Model Equation

$$\Phi_P(B^m)\phi_p(B)(1-B)^d(1-B^m)^DX_t=\Theta_Q(B^m) heta_q(B)\epsilon_t$$
 . (P,D,Q) : Seasonal ARIMA terms.

- (p,d,q): Non-seasonal ARIMA terms.
- m: Seasonal period (e.g., m=12 for monthly seasonality).

When to use SARIMA

· When the time series exhibits clear seasonal patterns (e.g., monthly sales data)

Time Series Models Summary

	ARMA	ARIMA	SARIMA
Model Notation	ARMA(p,q)	ARIMA(p,d,q)	$SARIMA(p,d,q)\times(P,D,Q,s)$
Description	Combines autoregressive (AR) and moving average (MA) components for stationary series	Extends ARMA by adding differencing to handle non-stationary series	Extends ARIMA by including seasonal components for handling seasonal data
Components	- AR (p): Lagged values of the series. - MA (q): Lagged errors.	 - AR (p): Lagged values of the series. - MA (q): Lagged errors. - Differencing (d): To achieve stationarity. 	- Non-seasonal: <i>p,d,q</i> . - Seasonal: <i>P,D,Q,s</i> (e.g., quarterly data: <i>s</i> =4).
Stationarity	Series must be stationary.	Handles non-stationary series through differencing (<i>d</i>).	Handles both non-stationary and seasonal series through seasonal differencing (D)
Seasonality	Does not model seasonality	Cannot explicitly model seasonality	Explicitly models seasonality with seasonal terms (<i>P</i> , <i>D</i> , <i>Q</i> , <i>s</i>)
Complexity	Simpler	Moderate complexity	Higher complexity due to seasonal parameters
Data Examples	- Stock prices (short term) - Temperature anomalies	- GDP or inflation trends Long-term forecasting in financial data.	Retail sales (e.g., seasonal spikes during holidays). Energy consumption forecasting.

17

