Programme n°18

MECANIQUE

M3 Bases de la dynamique newtonienne (Cours et exercices)

M4 Approche énergétique du mouvement d'un point matériel (Cours uniquement)

• Travail et puissance - Puissance d'une force

- Travail élémentaire d'une force
- Travail d'une force au cours d'un déplacement
- Exemples
- → Forces perpendiculaires au déplacement
- → Force constante

• Energie cinétique

- Définition
- Théorème de l'énergie cinétique
- Exemple d'utilisation
- Forces conservatives, énergie potentielle
- Travail reçu par M soumis à une force conservative
- Exemples

- Energie mécanique
- Définition
- Cas où toutes les forces appliquées sont conservatives
- Cas où une des forces n'est pas conservative
- Exemple le ressort horizontal
- Exemple le pendule simple
- Condition de stabilité Problème unidimensionnel

2.2 Approche énergétique du mouvement d'un

- Mouvement au voisinage d'une position d'équilibre stable
- Analyse du mouvement à l'aide du graphe d'énergie potentielle
- Analyse qualitative
- En résumé

- Les portraits de phases
- Rappels
- Propriétés des portraits de phase
- Obtention du portrait de phase
- Exemple le pendule simple

point matériel	
Puissance et travail d'une force.	Reconnaître le caractère moteur ou résistant d'une
	force. Savoir que la puissance dépend du référentiel.
Loi de l'énergie cinétique et loi de la puissance	Utiliser la loi appropriée en fonction du contexte.
cinétique dans un référentiel galiléen.	
Énergie potentielle. Énergie mécanique.	Établir et connaître les expressions des énergies
	potentielles de pesanteur (champ uniforme), énergie
	potentielle gravitationnelle (champ créé par un astre
	ponctuel), énergie potentielle élastique, énergie
	électrostatique (champ uniforme et champ créé par
	une charge ponctuelle).
Mouvement conservatif.	Distinguer force conservative et force non
	conservative. Reconnaître les cas de conservation
	de l'énergie mécanique. Utiliser les conditions
	initiales.
Mouvement conservatif à une dimension.	
	Déduire d'un graphe d'énergie potentielle le
	comportement qualitatif : trajectoire bornée ou non,
	mouvement périodique, positions de vitesse nulle.
	Expliquer qualitativement le lien entre le profil
	d'énergie potentielle et le portrait de phase.
Positions d'équilibre. Stabilité.	Déduire d'un graphe d'énergie potentielle l'existence
Tookions a equilibre. Stabilite.	de positions d'équilibre, et la nature stable ou
	instable de ces positions.
Petits mouvements au voisinage d'une position	
d'équilibre stable, approximation locale par un puits	
de potentiel harmonique.	
	Approche numérique : utiliser les résultats fournis
	par une méthode numérique pour mettre en
	évidence des effets non linéaires.
Barrière de potentiel.	Évaluer l'énergie minimale nécessaire pour franchir
	la barrière.
•	

SOLUTIONS AQUEUSES

AQ1 Réactions acide- base en solution aqueuse (Cours et exercices)

Le calcul de pH ne doit faire intervenir qu'au maximum 2 espèces (2 acides ou 2 bases ou 1 acide et 1 base) <u>Dosages</u> (Cours uniquement)

- Généralités Principe
 - Réaction de dosage
 - Méthode de dosage
 - Le point d'équivalence
- Dosage conductimétrique
- Présentation définition
- Conductivité
- Ce qu'il faut savoir
- Méthode
- Exemples
- \rightarrow Dosage d'un acide fort par une base forte
- → Dosage d'un acide faible par une base forte
- Dosage pH métrique Principe d'un pH-mètre
 - Etalonnage
 - Dosage d'un acide fort par une base forte
 - Dosage d'un acide faible par une base forte

TP

Suivi conductimètrique d'une cinétique d'ordre 2