Чистяков Глеб, группа 167

13 июня 2017 г.

№1

 $\mathbb{F}_8=\mathbb{F}_{2^3}=\mathbb{F}_2[x]/(f(x)),$ где f(x) – неприводимый над \mathbb{F}_2 и deg(f(x))=3.

Перечислим все многочлены:

- x^3 приводимый
- $x^3 + 1$ приводимый
- $x^3 + x$ приводимый
- $x^3 + x^2 приводимый$
- ullet x^3+x+1 неприводимый
- $x^3 + x^2 + 1$ неприводимый
- $x^3 + x^2 + x$ приводимый
- $x^3 + x^2 + x + 1$ приводимый

Рассмотрим $S(x) + (x^3 + x + 1)$, где S(x): 0, 1, x, x + 1, x^2 , $x^2 + 1$, $x^2 + x$, $x^2 + x + 1$

+	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
1	1	0	x+1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
x	x	x+1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
x+1	x+1	x	1	0		$x^2 + x$	$x^2 + 1$	x^2
x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	x	x+1
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$		1	0	x+1	x
$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	x	x+1	0	1
$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x+1	x	1	0

×	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	x+1	1	$x^2 + x + 1$	$x^2 + 1$
x+1	0	x+1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x
x^2	0	x^2	x+1	$x^2 + x + 1$	$x^2 + x$	1	$x^2 + 1$	1
$x^2 + 1$	0	$x^2 + 1$	1	x^2	1	$x^2 + x + 1$	x+1	$x^2 + x$
$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x+1	x	x^2
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	x	1	$x^2 + 1$	x^2	x+1

№2

Реализуем поле \mathbb{F}_9 в виде $\mathbb{Z}_3[x]/(x^2+1)$. А теперь рассмотрим элементы, являющиеся порождающими циклической группы \mathbb{F}_9^{\times} :

Порядки каждого элемента, за исключением нуля, будут:

- $1^1 = 1$
- $2^2 = 4 = 1$
- $x^4 = 1$
- $(x+1)^8 = 1$
- $(x+2)^8 = 1$
- $(2x)^4 = 1$
- $\bullet (2x+1)^8 = 1$
- \bullet $(2x+2)^8=1$

В силу того, что мы можем рассматривать $\mathbb{F}_9 \cong \mathbb{Z}_8$, то порождающими элементами циклической группы \mathbb{F}_9^{\times} будут элементы порядка 8, а именно -x+1, x+2, 2x+1, 2x+2.

№3

Проверим многочлены $x^2 + 1$ и $y^2 - y - 1$ на неприводимость над $\mathbb{Z}[3]$:

Подставляем 0,1,2 и видим, что они не являются корнями этих многочленов \Rightarrow многочлены неприводимые.

Установим изоморфизм $\mathbb{Z}_3[x]/(x^2+1) \cong \mathbb{Z}_3[y]/(y^2-y-1)$:

- $0 \longrightarrow 0$
- $1 \longrightarrow 1$
- $2 \longrightarrow 2$
- $x \longrightarrow a$

Здесь нам достаточно рассмотреть только x, так как если $x \longrightarrow a$, то $x^2 + 1 \longrightarrow a^2 + 1$, то есть мы сможем так выразить все элементы.

Рассмотрим $x^2 + 1 = 0$, то есть $a^2 + 1 = 0$: пусть $a = y + 1 \Rightarrow$

$$(y+1)^2 + 1 = 0 \Leftrightarrow y^2 + 2y + 2 = 0 \Leftrightarrow y^2 - y - 1 = 0$$

Таким образом, мы явно установили изоморфизм $\mathbb{Z}_3[x]/(x^2+1)\cong \mathbb{Z}_3[y]/(y^2-y-1).$