

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 2 of 12

CLAIM AMENDMENTS

Please amend the claims as follows without adding new matter, so that a complete listing of the currently pending claims reads as follows:

1. (Previously Presented) A method for decoding a packet transmitted over a channel, the packet including a plurality of samples, said method comprising:
 - in a first iteration, generating a first set of soft estimates of bits based upon a computation of a first feed-forward filter and a first feedback filter as a function of an estimate of the channel; and
 - in a second iteration, generating a second set of soft estimates of bits based upon a computation of a second feed-forward filter and a second feedback filter as a function of a first set of soft symbol estimates obtained during the first iteration.
2. (Original) The method of claim 1, further comprising:
generating a set of hard estimates of bits based upon a computation of a third feed-forward filter and a third feedback filter as a function of a second set of soft symbol estimates.
3. (Previously Presented) A device for decoding a packet transmitted over a channel, the packet including a plurality of samples, said device comprising:
means for generating in a first iteration, a first set of soft estimates of bits based upon a computation of a first feed-forward filter and a first feedback filter as a function of an estimate of the channel; and
means for generating in a second iteration, a second set of soft estimates of bits based upon a computation of a second feed-forward filter and a second feedback filter as a function of a first set of soft symbol estimates obtained during the first iteration.

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 3 of 12

4. (Original) The device of claim 3, further comprising:
means for generating a set of hard estimates of bits based upon a computation of a third feed-forward filter and a third feedback filter as a function of a second set of soft symbol estimates.

5. (Currently Amended) A method for decoding a packet transmitted over a channel, the packet including a plurality of samples, said method comprising:
providing a first set of soft symbol estimates; and
computing a first feed-forward filter and a first feedback filter as a function of the first set of soft symbol estimates;
wherein the first feed-forward filter and the first feedback filter are computed according to:

$$\mathbf{x} = \begin{bmatrix} \mathbf{y}(i) \\ \hat{\mathbf{s}}_{\delta}^{(n)}(i) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}^{(n)} \\ \mathbf{b}^{(n)} \end{bmatrix} = \mathbf{R}_{\mathbf{x}\mathbf{x}}^{-1} \mathbf{R}_{\mathbf{x}\hat{\mathbf{s}}_{\delta}^{(n)}}, \quad \text{where}$$

, wherein $\mathbf{y}(i)$ is the samples, $\hat{\mathbf{s}}_{\delta}^{(n)}(i)$ is the vector

$$\mathbf{R}_{\mathbf{x}\mathbf{x}} = \sum_{i=0}^{M-1} \mathbf{x}(i) \mathbf{x}^H(i)$$

$$\mathbf{R}_{\mathbf{x}\hat{\mathbf{s}}_{\delta}^{(n)}} = \sum_{i=0}^{M-1} \mathbf{x}(i) (\hat{\mathbf{s}}_{\delta}^{(n)}(i))^*$$

$\hat{\mathbf{s}}_{\delta}^{(n)}(i)$ whose oth element has been set to zero, $\mathbf{f}^{(n)}$ is the feed-forward filter, and $\mathbf{b}^{(n)}$ is the feedback filter.

6. (Cancelled)

7. (Original) The method of claim 5, further comprising:
filtering the plurality of samples through the first feed-forward filter; and
filtering the first set of soft symbol estimates through the first feedback filter.

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 4 of 12

8. (Original) The method of claim 7, further comprising:
providing a first set of decision feedback equalization outputs in response to a filtering of the plurality of samples through the first feed-forward filter and a filtering of the first set of soft symbol estimates through the first feedback filter.

9. (Original) The method of claim 8, wherein the a first set of decision feedback equalization outputs are computed according to:

$$z^{(n)}(t) = (\mathbf{f}^{(n)})^H \mathbf{y}(t) + (\mathbf{b}^{(n)})^H \hat{\mathbf{s}}^{(n)}(t)$$

10. (Original) The method of claim 8, further comprising:
providing a second set of soft symbol estimates; and
computing a second feed-forward filter and a second feedback filter as a function of the second set of soft symbol estimates.

11. (Original) The method of claim 10, further comprising:
filtering the plurality of samples through the second feed-forward filter; and
filtering the second set of soft symbol estimates through the second feedback filter.

12. (Original) The method of claim 11, further comprising:
providing a second set of decision feedback equalization outputs in response to a filtering of the plurality of samples through the second feed-forward filter and a filtering of the second set of soft symbol estimates through the second feedback filter.

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 5 of 12

13. (Currently Amended) A device for decoding a packet transmitted over a channel, the packet including a plurality of samples, said device comprising:

a soft symbol estimator providing a first set of soft symbol estimates in response to a reception of the packet by said device;

a first feed-forward filter computed as a function of the first set of soft symbol estimates; and

a first feedback filter computed as a function of the first set of soft symbol estimates;

wherein said first feed-forward filter and said first feedback filter are computed according to:

$$\mathbf{x} = \begin{bmatrix} \mathbf{y}(i) \\ \hat{\mathbf{s}}_{\delta}^{(n)}(i) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}^{(n)} \\ \mathbf{b}^{(n)} \end{bmatrix} = \mathbf{R}_{\mathbf{xx}}^{-1} \mathbf{R}_{\mathbf{xy}^{(n)}}, \quad \text{where}$$

$$\mathbf{R}_{\mathbf{xx}} = \sum_{i=0}^{M-1} \mathbf{x}(i) \mathbf{x}^H(i)$$

$$\mathbf{R}_{\mathbf{xy}^{(n)}} = \sum_{i=0}^{M-1} \mathbf{x}(i) (\hat{\mathbf{s}}_{\delta}^{(n)}(i))^T$$

, wherein $\mathbf{y}(i)$ is the received samples, $\hat{\mathbf{s}}_{\delta}^{(n)}(i)$ is the

vector $\hat{\mathbf{s}}_{\delta}^{(n)}(i)$ whose δ th element has been set to zero, $\mathbf{f}^{(n)}$ is the feed-forward filter, and

14. (Cancelled).

15. (Previously Presented) The device of claim 13, wherein said first feed-forward filter filters the plurality of samples upon a computation of said first feed-forward filter; and

said feedback filter filters the first set of soft symbol estimates upon a computation of said first feedback filter.

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 6 of 12

16. (Previously Presented) The device of claim 15, further comprising:
an adder providing a first set of decision feedback equalization outputs in
response to a filtering of the plurality of samples through said first feed-forward filter and
a filtering of the first set of soft symbol estimates through said first feedback filter.

17. (Original) The device of claim 16, wherein the a first set of decision feedback
equalization outputs are computed in according to:

$$z^{(n)}(i) = (\mathbf{f}^{(n)})^H \mathbf{y}(i) + (\mathbf{b}^{(n)})^H \tilde{\mathbf{s}}^{(n)}(i)$$

18. (Previously Presented) The device of claim 16, further comprising:
a second feed-forward filter computed as a function of a second set of soft symbol
estimates; and
a second feedback filter computed as a function of the second set of soft symbol
estimates,

wherein said soft symbol estimator provides the second set of soft symbol
estimates in response to said adder providing said first set of decision feedback
equalization outputs.

19. (Original) The device of claim 18, wherein:
said second feed-forward filters the plurality of samples upon a computation of
said second feed-forward filter; and
said second feedback filter filters the second set of soft symbol estimates upon a
computation of said second feedback filter.

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 7 of 12

20. (Original) The device of claim 19, wherein
said adder further provides a second set of decision feedback equalization outputs
in response to a filtering of the plurality of samples through said second feed-forward
filter and a filtering of the second set of soft symbol estimates through said second
feedback filter.

21. (Previously Presented) A computer readable medium storing a computer
program comprising:

computer readable code for generating during a first iteration, a first set of soft
estimates of a plurality of bits based upon a computation of a first feed-forward filter and
a first feedback filter as a function of an estimate of a channel; and

computer readable code for generating during a second iteration, a second set of
soft estimates of the plurality of bits based upon a computation of a second feed-forward
filter and a second feedback filter as a function of a first set of soft symbol estimates
obtained during the first iteration.

22. (Original) The computer readable medium of claim 21, further comprising:
computer readable code for generating a set of hard estimates of the plurality of
bits based upon a computation of a third feed-forward filter and a third feedback filter as
a function of a second set of soft symbol estimates.

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 8 of 12

23. (Currently Amended) A computer readable medium storing a computer program comprising:

computer readable code for providing a first set of soft symbol estimates; and
computer readable code for computing a first feed-forward filter and a first feedback filter as a function of the first set of soft symbol estimates;

wherein the first feed-forward filter and the first feedback filter are computed according to:

$$\mathbf{x} = \begin{bmatrix} \mathbf{y}(i) \\ \hat{\mathbf{s}}_{\delta}^{(n)}(i) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{f}^{(n)} \\ \mathbf{b}^{(n)} \end{bmatrix} = \mathbf{R}_{\mathbf{xx}}^{-1} \mathbf{R}_{\mathbf{x}\hat{\mathbf{s}}^{(n)}}, \quad \text{where}$$

$$\mathbf{R}_{\mathbf{xx}} = \sum_{i=0}^{M-1} \mathbf{x}(i) \mathbf{x}^H(i)$$

$$\mathbf{R}_{\mathbf{x}\hat{\mathbf{s}}^{(n)}} = \sum_{i=0}^{M-1} \mathbf{x}(i) \left(\hat{\mathbf{s}}_{\delta}^{(n)}(i) \right)^*$$

wherein y(i) is the received samples, $\hat{\mathbf{s}}_{\delta}^{(n)}(i)$ is the

vector $\hat{\mathbf{s}}^{(n)}(i)$ whose δ element has been set to zero, $\mathbf{f}^{(n)}$ is the feed-forward filter, and

24. (Cancelled)

25. (Original) The computer readable medium of claim 24, further comprising:
computer readable code for filtering the plurality of samples through the first feed-forward filter; and

computer readable code for filtering the first set of soft symbol estimates through the first feedback filter.

December 16, 2005
Case No. CR00302M (9640/87)
Serial No.: 10/046,444
Filed: October 19, 2001
Page 9 of 12

26. (Original) The computer readable medium of claim 25, further comprising:
computer readable code for providing a first set of decision feedback equalization
outputs in response to a filtering of the plurality of samples through the first feed-forward
filter and a filtering of the first set of soft symbol estimates through the first feedback
filter.

27. (Original) The computer readable medium of claim 26, wherein the a first set
of decision feedback equalization outputs are computed according to:

$$z^{(n)}(i) = (\mathbf{f}^{(n)})^H \mathbf{y}(i) + (\mathbf{b}^{(n)})^H \hat{s}^{(n)}(i)$$

28. (Original) The computer readable medium of claim 26, further comprising:
computer readable code for providing a second set of soft symbol estimates; and
computer readable code for computing a second feed-forward filter and a second
feedback filter as a function of the second set of soft symbol estimates.

29. (Original) The computer readable medium of claim 28, further comprising:
computer readable code for filtering the plurality of samples through the second
feed-forward filter; and
computer readable code for filtering the second set of soft symbol estimates
through the second feedback filter.

30. (Original) The computer readable medium of claim 29, further comprising:
computer readable code for providing a second set of decision feedback
equalization outputs in response to a filtering of the plurality of samples through the
second feed-forward filter and a filtering of the second set of soft symbol estimates
through the second feedback filter.