

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Espacio para la etiqueta identificativa con el código personal del **estudiante**.

Examen

Ficha técnica del examen

- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la cual estás matriculado.
- Debes pegar una sola etiqueta de estudiante en el espacio de esta hoja destinado a ello.
- No se puede añadir hojas adicionales.
- No se puede realizar las pruebas a lápiz o rotulador.
- Tiempo total 2 horas
- En el caso de que los estudiantes puedan consultar algún material durante el examen, ¿cuál o cuáles pueden consultar?: No se puede consultar ningún material.
- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 20%
- En el caso de que haya preguntas tipo test: ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de este examen

Enunciados

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Problema 1

a) Formalizad utilizando la lógica de enunciados las frases siguientes. Utilizad los átomos propuestos.

C: "Tener un buen caldo"

X: "Ser un buen cocinero"

P: "Tener paciencia"

A: "Hacer un buen arroz"

T: "Triunfar en la comida familiar"

1) Cuando tienes un buen caldo, no es necesario ser un buen cocinero ni tener paciencia para poder hacer un buen arroz.

$$C \rightarrow \neg (A \rightarrow X \land P)$$

2) Si no tienes un buen caldo ni eres un buen cocinero, puedes hacer un buen arroz si tienes paciencia. $\neg C \land \neg X \to (P \to A)$

3) Para triunfar en la comida familiar es necesario hacer un bon arroz.

 $\mathsf{T}\to\mathsf{A}$

b) Formalizad utilizando la lógica de predicados las frases siguientes. Utilizad los predicados propuestos.

Predicados:

M(x): x es un móvil

G(x): x tiene conexión 3G

S(x): x tiene conexión vía satélite

C(x): x tiene cobertura

O(x): x está en la cima de una montaña

A(x): es una antena de telefonía

E(x,y): x está cerca de y

T(x): x hace una llamada telefónica

Dominio: conjunto no vacío cualquiera

1) Todos los móviles tienen conexión 3G o conexión vía satélite $\forall x[M(x) \to G(x)^{\ \ \ }S(x)]$

2) Si una móvil está en la cima de una montaña y tiene cobertura, entonces es un móvil con conexión vía satélite o hay una antena de telefonía cerca de él

$$\forall x [M(x) \land O(x) \land C(x) \rightarrow S(x) \lor \exists y [A(y) \land E(y,x)]]$$

3) Si un móvil que tiene conexión 3G hace una llamada telefónica entonces hay una antena de telefonía cerca de él.

$$\forall x [M(x) \land G(x) \rightarrow (T(x) \rightarrow \exists y [A(y) \land E(y, x)])$$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Problema 2

Demostrad, utilizando la deducción natural, que el siguiente razonamiento es correcto. Utilizad solo las 9 reglas básicas (es decir, no utilicéis ni reglas derivadas ni equivalentes deductivos).

$$P\ ^{\vee}\ Q\ ,\ P\rightarrow R,\ \neg T\rightarrow \neg Q\ ..\ R\ ^{\vee}\ T$$

1.	P V Q			Р
2.	$P \to R$ $\neg T \to \neg Q$			Р
3.	$\neg T \rightarrow \neg Q$			Р
4.		Р		Н
5.		R		E→ 2,4
6.		R ^v T		I [×] 5
7.		Q		Н
8.			¬T	Н
9.			$\neg Q$	E→ 3,8
10.			Q	It 7
11.		$\neg \neg T$		l¬ 8, 9, 10
12.		Т		E¬ 11
13.		R ^v T		I ^v 12
14.	R ^v T			E ^v 1, 6, 13

Problema 3

Analizad la validez o invalidez del siguiente razonamiento utilitzando el método de resolución. Simplificad, si se puede, el conjunto de cláusulas resultante. Son consistentes las premisas?

$$A \rightarrow (B \rightarrow C)$$
, $\neg C \rightarrow \neg A$, $A \lor C$, $\neg B \rightarrow \neg C \therefore C$

Normalización de les premisas y de la negación de la conclusión:

$$A \rightarrow (B \rightarrow C) = \neg A \lor (\neg B \lor C) = \neg A \lor \neg B \lor C$$

$$\neg C \rightarrow \neg A = \neg \neg C \lor \neg A = C \lor \neg A$$

$$A \lor C = A \lor C$$

$$\neg B \rightarrow \neg C = \neg \neg B \lor \neg C = B \lor \neg C$$

$$\neg C = \neg C$$

Conjunto de cláusulas resultantes:

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

$$\neg A \lor \neg B \lor C, C \lor \neg A, A \lor C, B \lor \neg C, \neg C$$

(en **negrita**, el conjunto de soporte)

Observando las cláusulas obtenidas, observamos que no podemos eliminar ninguna por aplicación de la regla del literal puro. No obstante, la última cláusula (\neg C) subsume la cuarta (que también contiene \neg C) y que la segunda subsume a la primera (que también contiene los literales \neg A y C). Sin embargo, no podemos eliminar la cláusula quinta por aplicación de ninguna regla.

Entonces, el conjunto resultante de cláusulas es:

Resolución:

C [∨] ¬A	¬C
$\neg A$	A [∨] C
С	¬C
•	

Para comprobar la consistencia de les premisas, partimos del siguiente conjunto de cláusulas:

$$\neg A \lor \neg B \lor C, C \lor \neg A, A \lor C, B \lor \neg C$$

Por la regla de subsunción, podemos eliminar la primera cláusula (que contiene la segunda), con lo cual tenemos:

$$C \vee \neg A, A \vee C, B \vee \neg C$$

Por la regla del literal puro, podemos eliminar B $^{\vee}$ ¬C. Así pues, tenemos:

de donde, aplicando resolución, obtendremos C y no podremos, por tanto, llegar a la cláusula vacía. Por lo tanto, concluimos la consistencia de les premisas.

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Consideremos el siguiente razonamiento:

$$\begin{array}{l} \forall x[\ T(x) \rightarrow \ \exists y \ S(x,y)] \\ \exists x \ \forall y[S(x,y) \rightarrow M(y) \ ^T(a)] \\ \therefore \forall x \ \forall y(M(x) \ ^T(y) \rightarrow \neg S(x,y)) \end{array}$$

¿Cual de estas interpretaciones es un contraejemplo?

$$\begin{split} &\text{I1=} < \{1,2\}, \ T(1) = M(1) = M(2) = S(1,1) = S(2,1) = V \\ &\text{I2=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,1) = S(2,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,1) = S(2,1) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,1) = S(2,1) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,1) = S(2,1) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,1) = S(2,1) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = S(1,2) = V \\ &\text{I3=} < \{1,2\}, \ T(2) = M(1) = M(2) = M(2)$$

Solución:

Con dominio {1,2} la primera premisa $\forall x [T(x) \rightarrow \exists y \ S(x,y)]$ es equivalente a P1= $[T(1) \rightarrow S(1,1) \ ^{\vee}S(1,2)] \ ^{\wedge}[T(2) \rightarrow S(2,1) \ ^{\vee}S(2,2)]$

La segunda premisa $\exists x \ \forall y[S(x,y) \to M(y) \ ^T(a)]$ es equivalente a $P2=\{[S(1,1) \to M(1) \ ^T(a)] \ ^[S(1,2) \to M(1) \ ^T(a)]\} \ ^V$ $\{[S(2,1) \to M(2) \ ^T(a)] \ ^[S(2,2) \to M(2) \ ^T(a)]\}$

Comprobado por mí en ALURA

 $((S(1, 1) \rightarrow M(1)) \land (S(1, 2) \rightarrow M(2))) \lor ((S(2, 1) \rightarrow M(1)) \land (S(2, 2) \rightarrow M(2)))$ La conclusión $\forall x \ \forall y (M(x) \land T(y) \rightarrow \neg S(x,y))$ es equivalente a

$$C = (M(1) \ ^{\wedge} T(1) \rightarrow \neg S(1,1)) \ ^{\wedge} \ (M(1) \ ^{\wedge} T(2) \rightarrow \neg S(1,2)) \ ^{\wedge} \ (M(2) \ ^{\wedge} T(1) \rightarrow \neg S(2,1)) \ ^{\wedge} \ (M(2) \ ^{\wedge} T(2) \rightarrow \neg S(2,2))$$

Observemos que

	P1	P2	С
I1	V	V	F
I2	V	F	F
I3	V	V	V

Observemos que:

La interpretación I1 es un contraejemplo porque las premisas son ciertas y falsa la conclusión. La interpretación I2 no es un contrejemplo porque no todas las premisas son ciertas . La interpretación I3 no es un contrejemplo porque la conclusión es cierta

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	20/06/2012	09:00