5

10

15

20

A circuit for processing broadcast signals comprising:

circuitry for receiving and processing broadcast signals, which signals contain audio information, and providing a first audio signal, and

circuitry for controlling the amplitude of a received second audio signal in response to a first control signal, and providing a third audio signal;

wherein the circuit for controlling the amplitude further comprises circuitry that receives the first audio signal and provides the second audio signal for automatically limiting the amplitude of the first audio signal in response to at least one reference signal.

A circuit according to claim 1, wherein the circuitry for automatically limiting the amplitude of the first audio signal comprises:

circuitry that receives the second audio signal, for providing an output signal in response to the amplitude of the second signal;

circuitry for comparing the output signal and said at least one reference signal and providing a second control signal in response to the output signal and said at least one reference signal; and

circuitry, that receives the first audio signal and that is controlled in response to the second control signal, for providing the second audio signal.

3. A circuit according to claim 2, wherein the circuitry for providing the output signal; the circuitry for providing the second sontrol signal; and the

the sheet of the first test of the soul state of the first first first test of the first f

circuitry for providing the second audio signal implemented by analog and/or digital means.

A circuit according to claim 2, wherein the circuitry for providing: the output signal; the second control signal; and for providing the second audio signal are implemented by hardware digital sircuitry.

5

A circuit according to claim 3, wherein the digital means can be represented by one or more digital signal processing algorithms and/or by one or more software routines

A circuit according to claim 5, wherein the digital means implemented by any combination of 15 hardware digital circuitry, one or more digital signal processing algorithms, and one or more software routines.

A circuit according to claim 2, wherein the circuitry for providing the output signal is a Root-Mean 20 Square extractor circuitry; the circuitry for providing the second control signal is an integrating comparator; and the circuitry for providing the second audio signal is an attenuator.

25

30

- 8. A circuit according to claim 7, wherein the Root-Mean Square extractor circuitry comprises a series connected rectifier and low pass filter.
- carcuit according to claim 7, wherein the providing the second control

Sub

comprises a current sourcing/sinking comparator having a reapacitor connected between its output terminal and a reference voltage.

5ub =

10. A circuit according to claim 7, wherein the circuitry for providing the second audio signal is a multiplying digital to-analog converter.

11. A circuit according to claim 1, wherein it is included in circuitry and/or an apparatus that receives television signals.

12. A circuit according to claim 11, wherein said apparatus is a television.

15 6

- 13. A circuit according to claim 1, wherein it is included in circuitry and/or an apparatus that receives satellite signals.
- 20 14. A circuit according to claim 13, wherein said apparatus is a satellite decoder.

15. A circuit according to claim 1, wherein it is included in circuitry and/or an apparatus that receives radio signals.

16. A circuit according to claim 15, wherein said apparatus is a radio.

30 A method for processing broadcast signals that comprises the steps of:

receiving and processing broadcast signals, which signals contain audio information, and providing a first audio signal; and

controlling the amplitude of a received second audio signal in response to a first control signal and providing a third audio signal; and

automatically limiting the amplitude of the first audio signal in response to at least one reference signal and providing a second audio signal.

10

15

5

18. A method according to claim 17, wherein the step of automatically limiting the amplitude of the first audio signal comprises:

providing an output signal in response to the amplitude of the second signal;

comparing the output signal and said at least one reference signal and providing a second control signal in response to the output signal and said at least one reference signal; and

20

30

receiving the first audio signal and controlling said first audio signal in response to the second control signal, for providing the second audio signal.

HUB 725

- 19. A method according to claim 17, wherein it is implemented in circuitry and/or an apparatus that receives television signals.
- 20. A method according to claim 17, wherein it is implemented in circuitry and/or an apparatus that receives satellite signals.

21 A method according to claim 17, wherein it is implemented in circuitry and/or an apparatus that receives radio signals.

5

add BI