Jorge Pais Professor Adjunto

Área Departamental de Engenharia de Electrónica e Telecomunicações e de Computadores Instituto Superior de Engenharia de Lisboa

Theoretical trajectory 1

Consider a goal point (x_f, y_f, f_f) where $x_f > y_f$. When a straight line intersects both (x_f, y_f) with angle ϕ_f and the axis x_i in a point value greater than zero, by other words $(d_{X_if} < = x_f)$.

The theoretical trajectory can be, curveLeft(r, 90- α) straight(2*r), curveLeft(r, ϕ_f -(90- α)).

Practical Trajectory 1

Considering d_{bw} =9,5cm, v_{robot} =40, v_{min} =20, v_{max} =80, f>1 and $radius_t$ =25,68cm then the theoretical left velocity is: f=(25,68+4,75)/(25,68-4,75)=1,454,

 $v_{left} = 2/(2,454)*40 = 32,60$

Then, the practical values are:

v_{left}=32, v_{right}=48, f=1,5,

radius_p= $(d_{bW}/2)*((f+1)/(f-1)=23,75cm$

by pitagoras theorem,
$$(2*r)^2 = (x_f - sen(\phi_f) * r)^2 + (y_f + (cos(\phi_f) - 1) * r)^2,$$

the coeficients of resolvent formula are, $a=2+2*\cos(\phi_f)$; $b=2*y_f*(1-\cos(\phi_f))+2*x_f*\sin(\phi_f)$; $c=-(x_f^2+y_f^2)$

- 1. Calculate c2 with r=23,75 and (70,40,70), $x_{C2} = x_f r^* sen(\phi_f) = 70-22,32=47,68, \ y_{C2} = y_f + r^* cos(\phi_f) = 40+8,12=48,12.$
- 2. Calculate distance d_{12} between c_1 and c_2 , d_{12} = $((x_{c_1}$ - $x_{c_2})^2 + (y_{c_1}$ - $y_{c_2})^2)^{0,5}$ d_{12} = 53,55
- 3. Calculate α_1 and α_2 , α_1 =arc $\cos(x_{C_2}/d_{12})$ = 27,08 α_2 = ϕ_f - α_1 = 42,92

using these coeficients in a resolvent formula, we get r=25.68

- 2. Calculate angle α sen(α)= (x_f -r*sen(ϕ_f))/2*r α = arcsen((x_f -r*sen(ϕ_f))/2*r) in example, α = 63,27.
 - 3. The theoretical trajectory is, curveLeft(25.68, 26.73), straight(51.36), curveLeft(25.68, 43.27).
- 4. The practical trajectory is, curveLeft(23.75, 27.08), straight(53.55), curveLeft(23.75, 42.92).