Restaurant Equities Pairs Trading & The Economy

Charles Sproul, Sean Moran, Piper Montesi, Thomas Nguyen, Abdullah Omer

Initial Hypothesis and Design

- Our original interest was prompted by pairs trading
- Do equities of similar companies move similarly?
- If so what factors cause these moves?
- How cyclical is the Restaurant Industry's financial performance and what specific economic factors are correlated to the Industry's performance?
- Comparing low end and high end restaurant pairs, Dominos and Papa Johns, and Ruth Chris' Steak house and Del Frisco's

Recap of Conclusion

- Inexpensive restaurants are more related to the industry movements, this could be due to the similarity between them and the index's larger components
- Expensive restaurants are more related to consumer sentiment, as hypothesised
- Company specific changes can cause volatile changes in share price, which may mute the effect of long-term economic effects
- Changes in stock price are only partially explained by our economic factors

Data

- 116 observations
- Monthly Data, 2009- 2018
 - U-6 Rates, Bureau of Labor Statistics: Unemployment rates
 - Historical Equity Prices, Yahoo Finance
 - o Russell 3000, Yahoo Finance: Market
 - Industry Index, FactSet: Restaurant industry
 - Consumer Sentiment, Michigan University

Restaurant Pair's Relations

Cost per Person per Meal				
\$	Under \$10			
\$\$	\$11-\$30			
\$\$\$	\$31-\$60			
\$\$\$\$	Above \$61			

To Get a Clearer Picture

- Including a mid ground pair of restaurants: Red Robin and Chili's
- Cointegration analysis

Pairs Trading

- Find a pair of stocks in the same market and that behave similarly
- Look for a long term mean/equilibrium between the pair based on their price ratio
- Observe deviations from the mean
- Trade based on the expectation that the prices will revert back to the mean

- Consumer spending makes up 68% of the U.S.
 economy, and restaurants are among some of the most volatile industries (1)
- Over the past decade, the Consumer Price
 Index (CPI) for all food (grocery store and restaurant food) rose by 24% a larger increase than the 19% rise in the all-items CPI
- On average, chain restaurants have had negative same-store sales (sales growth by new store sales) for more than a year now (3)

Restaurant Performance Index

Values Greater than 100 = Expansion; Values Less than 100 = Contraction

Source: National Restaurant Association

- In the past decade, the national employment rate grew 0.5 percent, but 2 percent within the restaurant industry. About 10 percent of working Americans. (4)
- Restaurant sales account for 4 percent of the United
 States' economic output (5)
- In 1955, only 25 percent of American dollars spent on food was spent at restaurants. Today, the restaurant industry's share of the American food dollar has risen to 48 percent and continues to grow

Literature

- Overall real sales in restaurants bare a high correlation to consumer confidence (87% since 2009). (7)
- As per our previous findings, even though consumer confidence does not prove causation, it is highly correlated

Red Robin (RRGB)

Dependent Variable: RRGBR Method: Least Squares Date: 03/10/19 Time: 14:32

Sample (adjusted): 2009M05 2018M12 Included observations: 116 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.019651	0.010253	-1.916526	0.0579
RRGBR(-1)	0.194988	0.085252	2.287192	0.0241
CSENTR	0.026067	0.176325	0.147834	0.8827
PCER	-0.709247	1.806045	-0.392707	0.6953
RUSSELLR	0.770003	0.215632	3.570916	0.0005
INDUSTRYR	0.486503	0.239056	2.035101	0.0443
U6R	-1.328667	0.455732	-2.915456	0.0043
R-squared	0.222427	Mean depend	dent var	0.002646
Adjusted R-squared	0.179625	S.D. depende	ent var	0.093499
S.E. of regression	0.084686	Akaike info cr	iterion	-2.041278
Sum squared resid	0.781723	Schwarz crite	rion	-1.875113
Log likelihood	125.3941	Hannan-Quin	n criter.	-1.973824
F-statistic	5.196628	Durbin-Watso	on stat	1.901439
Prob(F-statistic)	0.000098			

- Durbin-Watson: near 2
- Industry and Russell returns significant and positive
- U6 rate significant and negative
 - o Increasing U6, lower stock returns

Red Robin (RRGB)

Null Hypothesis:	Obs	F-Statistic	Prob.
RUSSELLR does not Granger Cause RRGBR	115	0.93002	0.3976
RRGBR does not Granger Cause RUSSELLR	0.00	0.32804	0.7210
INDUSTRYR does not Granger Cause RRGBR	115	0.17163	0.8425
RRGBR does not Granger Cause INDUSTRYR		9.36302	0.0002
U6R does not Granger Cause RRGBR	115	0.19936	0.8196
RRGBR does not Granger Cause U6R		0.42663	0.6538

Oorananoo	
Correlation	RRGBR
RRGBR	0.009731
SANS KING & C. KING SOOD	1.000000
RUSSELLR	0.001223
	0.330599
INDUSTRYR	0.000905
	0.254431
U6R	-0.000310
50/28530	-0.178608

Covariance

- No Granger Causality between RussellR and RRGBR
- RRGBR Granger causes IndustryR
- U6R does not Granger Cause RRGB or vice versa
- Represents RRGB consumption relationship based on broader economy

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.001350	0.008960	0.150651	0.8805
EATR(-1)	0.022100	0.086693	0.254925	0.7993
U6R	0.300590	0.397019	0.757117	0.4506
RUSSELLR	-0.076649	0.187849	-0.408035	0.6840
CSENTR	0.298295	0.152368	1.957733	0.0528
INDUSTRYR	0.656412	0.196435	3.341617	0.0011
PCER	0.399949	1.564046	0.255714	0.7987
R-squared	0.152053	Mean depend	lent var	0.010506
Adjusted R-squared	0.105377	S.D. depende	nt var	0.077273
S.E. of regression	0.073088	Akaike info cri	iterion	-2.335853
Sum squared resid	0.582265	Schwarz crite	rion	-2.169688
Log likelihood	142.4795	Hannan-Quin	n criter.	-2.268400
F-statistic	3.257619	Durbin-Watso	n stat	2.055217
Prob(F-statistic)	0.005521			

- Durbin-Watson: near 2
- Consumer Sentiment Statistically significant and positive
- Industry Statistically significant and positive
- U6 unemployment rate Positive coefficient

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
EATR(-1)	-0.071760	0.088700	-0.809023	0.4203
EATR(-2)	0.112048	0.081709	1.371313	0.1732
U6R	0.387542	0.393441	0.985005	0.3269
RUSSELLR	-0.134994	0.180796	-0.746667	0.4569
CSENTR	0.320655	0.151172	2.121121	0.0363
INDUSTRYR	0.631451	0.189128	3.338746	0.0012
PCER	1.644627	1.646116	0.999096	0.3200
PCER(-1)	5.033825	1.771242	2.841975	0.0054
PCER(-2)	3.814625	1.705035	2.237270	0.0274
С	-0.022704	0.011167	-2.033097	0.0446
R-squared	0.226063	Mean depend	lent var	0.009206
Adjusted R-squared	0.159726	S.D. depende	nt var	0.076326
S.E. of regression	0.069966	Akaike info cri	iterion	-2.398680
Sum squared resid	0.513997	Schwarz crite	rion	-2.159990
Log likelihood	147.9241	Hannan-Quin	n criter.	-2.301797
F-statistic	3.407780	Durbin-Watso	n stat	1.921497
Prob(F-statistic)	0.001039			

- Small increase in R-squared
- Consumer Sentiment became more statistically significant
- Industry remains statistically significant
- PCE with 1 and 2 lags is statistically significant
- U6 still positive coefficient

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.001688	0.009165	-0.184119	0.8543
U6R	0.264332	0.389293	0.679006	0.4986
U6R(-1)	-0.499298	0.385248	-1.296043	0.1977
RUSSELLR	-0.068840	0.184727	-0.372661	0.7101
CSENTR	0.304113	0.151088	2.012820	0.0466
INDUSTRYR	0.673289	0.195077	3.451397	0.0008
PCER	0.223567	1.550679	0.144174	0.8856
R-squared	0.164424	Mean depend	lent var	0.010506
Adjusted R-squared	0.118429	S.D. depende	ent var	0.077273
S.E. of regression	0.072553	Akaike info cr	iterion	-2.350550
Sum squared resid	0.573770	Schwarz crite	rion	-2.184385
Log likelihood	143.3319	Hannan-Quin	n criter.	-2.283097
F-statistic	3.574812	Durbin-Watso	on stat	1.998733
Prob(F-statistic)	0.002848			

• U6 lagged once gives the negative coefficient that was expected

Chili's and Maggiano's (EAT)

Null Hypothesis:	Obs	F-Statistic	Prob.
CSENTR does not Granger Cause EATR EATR does not Granger Cause CSENTR	115	0.06176 0.45150	0.9401 0.6378
Null Hypothesis:	Obs	F-Statistic	Prob.

- Neither Prob. is below .05
- Can not reject the null for Granger
 Causality between Chili's and
 Consumer Sentiment
- Can not reject the null for Granger
 Causality between Chili's and
 Industry

Restaurant Pairs Cointegration

		t-Statistic	Prob.*
Augmented Dickey-Ful	ler test statistic	-0.542810	0.8776
Test critical values:	1% level	-3.487046	ACK NOSO
	5% level	-2.886290	
	10% level	-2.580046	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(CHEAP_RESID) Method: Least Squares Date: 03/09/19 Time: 11:06 Sample (adjusted): 2009M04 2018M12 Included observations: 117 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
CHEAP RESID(-1)	-0.014049	0.025882	-0.542810	0.5883
С	-0.219161	0.376040	-0.582812	0.5612
R-squared	0.002556	Mean depend	dent var	-0.22349
Adjusted R-squared	-0.006118	S.D. depende	ent var	4.05419
S.E. of regression	4.066579	Akaike info cr	iterion	5.66042
Sum squared resid	1901,763	Schwarz crite	rion	5.70764
Log likelihood	-329,1350	Hannan-Quin	n criter.	5.67959
F-statistic	0.294642	Durbin-Watso	on stat	1.82582
Prob(F-statistic)	0.588311			

Null Hypothesis: EXPENSIVE_RESID has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-0.826937	0.8074
Test critical values:	1% level	-3.487046	111
	5% level	-2.886290	
	10% level	-2.580046	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(EXPENSIVE_RESID) Method: Least Squares Date: 03/09/19 Time: 11:10 Sample (adjusted): 2009M04 2018M12 Included observations: 117 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
EXPENSIVE RESID(-1)	-0.019403	0.023464	-0.826937	0.4100
С	-0.077310	0.169922	-0.454973	0.6500
R-squared	0.005911	Mean depend	lent var	-0.079431
Adjusted R-squared	-0.002733	S.D. depende	nt var	1.835272
S.E. of regression	1.837779	Akaike info cr	iterion	4.071938
Sum squared resid	388.4045	Schwarz crite	rion	4.119155
Log likelihood	-236.2084	Hannan-Quin	n criter.	4.091108
F-statistic	0.683824	Durbin-Watso	on stat	1.877700
Prob(F-statistic)	0.409985			

Average Expense Firm Cointegration

- Red Robin vs Chilli's and Maggiano's
- Cointegration at 1% level up until
 ~ 6/2018
- Monthly Error Correction of 17.10
- Slightly less than 6 months for correction

Through June 2018

Null Hypothesis: MIDDLE_RESID has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=12)

	t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		0.1877
1% level	-3.487046	
5% level	-2.886290	
10% level	-2.580046	
	1% level 5% level	ler test statistic

^{*}MacKinnon (1996) one-sided p-values.

Up to June 2018

Null Hypothesis: COINRESID has a unit root Exogenous: Constant Lag Length: 1 (Automatic - based on SIC, maxlag=12)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.504592	0.0096
Test critical values:	1% level	-3.490772	ANALON
	5% level	-2.887909	
	10% level	-2.580908	

Error Correction:	D(RED_RO	D(EAT_CLO
CointEq1	-0.171021	0.026140
	(0.04553)	(0.03111)
	[-3.75636]	[0.84037]

The Pairs Trade

Error Correction would be used as approximation for best holding period and holds true

Conclusion

- In addition to more expensive restaurants being statistically correlated with consumer sentiment, we have also found that mid-tier restaurants are also statistically correlated
- The mid-tier restaurants are also statistically correlated with the industry which we saw in the lower-tier restaurants
- Certain restaurant equities are not just correlated but also cointegrated, making pairs trading a viable investment strategy which if done correctly can produce great returns
- Changes in stock price are only partly due to economic factors, but using the pair trading strategy can help predict price changes and produce profits

References

- (1) Bureau of Economic Analysis
- (2) United States Department of Agriculture
- (3) Aaron Allen & Associates
- (4) Bureau of Labor Statistics
- (5) Committee for Economic Development
- (6) National Restaurant Association
- (7) Bureau of Labor Statistics