1. What is the minimum number of nodes that a balanced tree of height 15 can have?

The calculation can be solved with the recurrence $\mathcal{N}(h) = \mathcal{N}(h-1) + \mathcal{N}(h-2) + 1$. Which when solved for $\mathcal{N}(15)$ gives the value 2583.

2. Prove that if keys $1, 2, \ldots, 2^{k-1} - 1$ are inserted into an initially empty AVL tree, then the resulting tree is perfect.

We prove by induction. P(1) holds. Assume that the statement holds for all positive integers $i \leq k$ where k is also a positive integer. We show P(k+1) is true. We insert the first 2^k-1 integers into the AVL tree. By the induction hypothesis this results in an perfect tree. The root is the 2^{k-1} element with the left and right subtree having $2^{k-1}-1$ element each. We again add 2^{k-1} next elements to the right subtree resulting in 2^k-1 elements. Now the left subtree and right subtree differ by 1. Adding the next element would result in a right rotation resulting in the root now being the 2^k element and the left subtree contains $2^{k-1}+2^{k-1}-1=2^k-1$ elements and is perfect, with the right subtree now containing 2^{k-1} nodes. We now add the remaining $2^{k-1}-1$ keys. Ignoring the root and left subtree it is identical to the case where we have inserted the integers $2^k+1, 2^k+2, \ldots, 2^k+2^{k-1}-1$. By the induction hypothesis this result in the right subtree having 2^k-1 elements and is also perfect. Thus we have a perfect binary tree and P(k+1) holds. By the principle of mathematical induction the result holds for all integers n > 1.

3. Insert 2,1,4,5,9,3,6,7 into an initially empty AVL tree. Redraw the tree each time a rotation is required.

2,1,4,5,9,3,6,7

4. Consider the diagram on below that shows double rotation. List all of the pointers that need to be updated after the rotation. Provide the new value for each pointer.

k3.left = k2.right

k2.right.parent = k3

k2.parent = k3.parent

k3.parent = k2

 $k1.right \ = \ k2.left$

k2.left.parent = k1

k1.parent = k2

k2.left = k1