DS 320 FEMA & Census EDA

```
# Front Matter
rm(list = ls())
# Load packages
library(DataComputing)
library(mosaic)
library(ggplot2)
library(openintro)
library(dplyr)
library(stringr)
library(choroplethr)
library(usmap)
library(choroplethrMaps)
library(reshape2)
# Load datasets from FEMA and the United States Census
rawdata <- read.csv("DisasterDeclarationsSummaries.csv")
censusdata <- read.csv("county census data.csv")</pre>
PublicAssistanceData <- read.csv("PublicAssistanceData.csv")</pre>
# Select census variables of interest
census <- censusdata %>% dplyr::select(State, County, TotalPop, Men,
Women, Hispanic, White, Black, Native, Asian, Pacific, Income,
Poverty, Unemployment)
# Filter dataset to 2000 or later where public assistance funding did
occur; limit dataset to county data
data <- rawdata %>% filter(declarationType != "FM") %>%
filter(fyDeclared > 1999) %>% filter(paProgramDeclared == 1) %>%
filter(designatedArea != 'Statewide') %>%
dplyr::select(designatedArea, state, fipsCountyCode, fipsStateCode)
# Clean county variable for FIPS code integration
data$designatedArea <- str remove all(data$designatedArea, "(County)")</pre>
data$designatedArea <- str remove all(data$designatedArea, "(Parish)")</pre>
data$designatedArea <- str remove all(data$designatedArea,
"(Township)")
data$designatedArea <- gsub("\\(", " ", data$designatedArea)</pre>
data$designatedArea <- gsub("\\)", " ", data$designatedArea)</pre>
# Compute count of disasters per county
disaster data <- data %>% group by(designatedArea, state) %>%
mutate(count = n()) %>% unique()
```

```
# Prepare for FIPS code integration
disaster data$full county <-
paste0(str trim(disaster data$designatedArea),sep = " ",
disaster data$state)
census$county <- census$County</pre>
census$state <- census$State</pre>
# Limit public assistance dataset to 2000 or later
PublicAssistanceData$declarationDate <-
substr(PublicAssistanceData$declarationDate, 0, 4)
PublicAssistanceData <- PublicAssistanceData %>%
filter(declarationDate > 1999)
padata <- PublicAssistanceData %>% dplyr::select(state, stateCode,
disasterNumber, county, totalObligated, countyCode) %>%
group by(disasterNumber, county, state) %>% unique()
# Compute county total public assistance obligated
padata <- padata %>% group by(county, state) %>%
mutate(county disaster count = n()) %>% mutate(countyObligated =
sum(totalObligated))
padata <- padata %>% group by(county, state) %>% dplyr::select(county,
state, county disaster count, countyObligated, countyCode, stateCode)
%>% unique()
padata$full county <- paste0(padata$county, sep=" ", padata$stateCode)</pre>
# Merge census and FEMA public assistance data
newdata <- merge(padata, census, by=c("county", "state"))</pre>
newdata$County <- NULL
newdata$State <- NULL
newdata <- newdata %>% mutate(county disasters perCap =
county disaster count/TotalPop) %>% mutate(county obligated perCap =
countyObligated/TotalPop)
newdata <- newdata %>% unique() %>% arrange(-county obligated perCap)
# Create dataset for mapping
mappingdata <- merge(newdata, disaster data, by=c("full county"))</pre>
# Use R package to bring in FIPS codes for every county
for (row in 1:nrow(mappingdata)){
 mappingdata$region[[row]] <- 0</pre>
 newfips <- 0
  try(newfips <- fips(mappingdata$state.x[[row]],</pre>
mappingdata$county[[row]]))
  mappingdata$region[[row]] <- newfips</pre>
write.csv(mappingdata, "DS320Census-FEMA-Final.csv")
# Exploratory Data Analysis
```

```
# Fix "value" and "region" variables to create choropleth maps
mappingdata$value <- mappingdata$county_obligated_perCap
mappingdata <- mappingdata %>% group by(county, state.x) %>% unique()
```

Compute a diversity metric as a sum of all racial minority
population percentages
mappingdata <- mappingdata %>% rowwise() %>% mutate(diversity =
sum(Black, Hispanic, Native, Asian, Pacific))
mappingdata\$region <- mappingdata\$region %>% as.double()
penn <- mappingdata %>% filter(state.x == "Pennsylvania")

Create map of Pennsylvania for public assistance funding
county_choropleth(penn, title = "Public Assistance Per Capita in
Pennsylvania", legend = "Dollars Per Capita", state_zoom =
"pennsylvania")

The following regions were missing and are being set to NA: 42049

Public Assistance Per Capita in Pennsylvania

penn\$value <- penn\$diversity
county_choropleth(penn, title = "Racial Minority Population Density
for Pennsylvania Counties", legend = "% of Population Identifying as a
Racial Minority", state_zoom = "pennsylvania")
The following regions were missing and are being set to NA: 42049</pre>

Racial Minority Population Density for Pennsylvania Counties

penn\$value <- penn\$Income
county_choropleth(penn, title = "Median Household Income for
Pennsylvania Counties", legend = "Median Household Income", state_zoom
= "pennsylvania")
The following regions were missing and are being set to NA: 42049</pre>

Median Household Income for Pennsylvania Counties


```
cor(penn[, c('county_obligated_perCap', 'Income', 'diversity',
'county disaster count', 'county disasters perCap', 'Poverty')])
```

<pre>county_obligated_perCap</pre>			Income	diversity
ounty_disaster_count county_disasters_perCap		erCap	Poverty	
county_obligated_perCa	p 1.0	0000000	-0.08559873	-0.1519786
0.2497059 9	.386658e-01 -2.845	711e-02		
Income	-0.0	8559873	1.00000000	0.2425679
0.3197209 -1	.471124e-01 -7.282	2018e-01		
diversity	-0.1	L5197857	0.24256786	1.0000000
0.1770620 -2	.370823e-01 1.794	1566e-01		
county_disaster_count	0.2	4970590	0.31972086	0.1770620
1.0000000 2	.988764e-01 -1.337	672e-01		
county_disasters_perCa	p. 0.9	3866583	-0.14711242	-0.2370823
0.2988764 1	.000000e+00 -2.683	3122e-07		
Poverty	-0.0	2845711	-0.72820183	0.1794566
-0.1337672 -	2.683122e-07 1.00	0000e+00		

Create heatmap to visualize Pennsylvania correlation matrix
pennheat <- penn %>% select(county_obligated_perCap, Income, Poverty,
diversity, county_disaster_count, county_disasters_perCap)
Adding missing grouping variables: `county`, `state.x`
pennheat\$state.x <- NULL</pre>

cormatrix <- melt(round(cor(pennheat), 2))
ggplot(data = cormatrix, aes(x=Var1, y=Var2, fill=value)) +
geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid =
"white", midpoint = 0, limit = c(-1,1), space = "Lab",
name="Pearson\nCorrelation") + theme(axis.text.x = element_text(angle
= 45, vjust = 1, size = 12, hjust = 1)) + labs(title = "Pennsylvania
Correlation Heat Map")</pre>

Pennsylvania Correlation Heat Map

Explore California state data as a correlation matrix
cal <- mappingdata %>% filter(state.x == "California")
cor(cal[, c('county_obligated_perCap', 'Income', 'diversity',
'county disaster count', 'county disasters perCap', 'Poverty')])

	county_oblig	gated_perCap	Income	diversity
county_disaster_count of	ers_perCap	Poverty		
county_obligated_perCap	p	1.00000000	-0.2790185	-0.4370569
-0.08837728	0.70281882	0.07953493		
Income		-0.27901850	1.0000000	0.2288367
0.24780965	-0.15433557	-0.74895642		
diversity		-0.43705690	0.2288367	1.0000000
0.24096936	-0.28460435	0.24115115		
county_disaster_count		-0.08837728	0.2478097	0.2409694

Create choropleth map of California public assistance funding
county_choropleth(cal, title = "Public Assistance Per Capita in
California", legend = "Dollars Per Capita", state_zoom = "california")

Public Assistance Per Capita in California

Create choropleth map of California diversity
cal\$value <- cal\$diversity
county_choropleth(cal, title = "Racial Minority Population Density for
California Counties", legend = "% of Population Identifying as a
Racial Minority", state_zoom = "california")</pre>

Racial Minority Population Density for California Counties

Create choropleth map of California income
cal\$value <- cal\$Income
county_choropleth(cal, title = "Median Household Income for California
Counties", legend = "Median Household Income", state_zoom =
"california")</pre>

Median Household Income for California Counties

Conduct correlation testing to evaluate impact of diversity and income on California public assistance funding cor.test(cal\$county obligated perCap, cal\$diversity)

Pearson's product-moment correlation

cor.test(cal\$county obligated perCap, cal\$Income)

Pearson's product-moment correlation

```
data: x and y
t = -2.1743, df = 56, p-value = 0.03392
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
   -0.50119360 -0.02233219
```

sample estimates: cor

-0.2790185

Create a heatmap to visualize California correlation matrix
calheat <- cal %>% select(county_obligated_perCap, Income, Poverty,
diversity, county_disaster_count, county_disasters_perCap)
Adding missing grouping variables: `county`, `state.x`
calheat\$state.x <- NULL
calheat\$county <- NULL</pre>

cormatrix <- melt(round(cor(calheat), 2))
ggplot(data = cormatrix, aes(x=Var1, y=Var2, fill=value)) +
geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid =
"white", midpoint = 0, limit = c(-1,1), space = "Lab",
name="Pearson\nCorrelation") + theme(axis.text.x = element_text(angle
= 45, vjust = 1, size = 12, hjust = 1)) + labs(title = "California
Correlation Heat Map")</pre>

California Correlation Heat Map

Compute states with highest overall public assistance dollars
obligated since 2000
total_ob <- mappingdata %>% group_by(state.x) %>%
summarise(total_obligated = sum(countyObligated)) %>%
arrange(desc(total_obligated)) %>% head(10)

ggplot(total_ob, aes(x=reorder(state.x, -total_obligated),
y=total_obligated, fill=state.x)) + geom_bar(stat='identity') +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12,
hjust = 1)) + labs(title = "States with Top 10 Highest Public
Assistance Dollars", x = "State", y="Dollars Obligated") +
theme(legend.position = "none")

States with Top 10 Highest Public Assistance Dollars

Compute states with highest per capita public assistance funding
percap_ob <- mappingdata %>% group_by(state.x) %>%
summarise(percap_obligated = sum(county_obligated_perCap)) %>%
arrange(desc(percap_obligated)) %>% head(10)
ggplot(percap_ob, aes(x=reorder(state.x, -percap_obligated),
y=percap_obligated, fill=state.x)) + geom_bar(stat='identity') +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12,
hjust = 1)) + labs(title = "States with Top 10 Highest Per Capita
Public Assistance Dollars", x = "State", y="Dollars Obligated Per
Capita") + theme(legend.position = "none")

States with Top 10 Highest Per Capita Public Assistance Dollars

