BST169: Course Work Project

Students should work individually to study the following questions. Every student should submit an electronic copy of the report and the R script file(s) via Learning Central.

The project report should contain no more than 2,000 words (not including titles, appendices, formulas, tables and/or graphs). All pages, equations, tables and figures should be numbered. Tables and figures should be given proper captions and comments of explanation when necessary.

1. Consider the model,

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + e_i. \tag{1}$$

What is the requirement for e_i such that the following test statistics will be valid to test $H_0: \beta_1 + beta_2 = 1$?

- $W = N \frac{SSR_R SSR_U}{SSR_U}$ (Wald), $LM = N \frac{SSR_R SSR_U}{SSR_R}$ (Lagrange Multiplier),
- $LR = N \ln \frac{SSR_R}{SSR_U}$ (Likelihood Ratio)

where SSR_R is the sum of squared residuals obtained from the restricted model, while SSR_U is from the unrestricted model.

- 2. For the data set pbp.csv, can we use the three test statistics mentioned in the previous question to test $H_0: \beta_1 + \beta_2 = 1$? Why? If W and LM are not valid, how can one modify them for the test? What is your conclusion from the valid test?
- 3. Generate y_i from the following model,

$$y_i = \beta_0 + \beta_1 x_{1i} + (1 - \beta_1) x_{2i} + \sqrt{x_{1i}} \epsilon_i. \tag{2}$$

where x_{1i} follows chi-squared distribution with 2 degrees of freedom. Generate ϵ_i from student t distribution with 6 degrees of freedom and $x_{2i} \sim U(0,10)$. Check whether W, LM and LR in Question 1 follow chi-squared distribution by Monte Carlo. (The R command ks.test(, 'pchisq',2) can be used.) If W and LM are not valid, calculate the correct test statistics and also verify them by Monte Carlo. Please consider different sample sizes.

- 4. Compare the size of different test statistics (frequencies of making Type 1 error) from Monte Carlo using 5% level of significance for different sample sizes. Explain the results.
- 5. For the data set pbp.csv, suppose Equation (2) is the true model. Use proper bootstrapped errors from the true model to study whether different test statistics for $H_0: \beta_1 + \beta_2 = 1$ in the previous questions follow chi-squared distribution. Explain your results.