PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 11

Álgebra I - MAT2227

Fecha: 2019/10/10

0) Escriba la definición de Anillo

1) Demuestre que los siguientes conjuntos son anillos con las operaciones usuales:

(a) \mathbb{Z}

 $(d) \mathbb{C}$

(g) $\mathbb{Q}[x]$

(j) $\mathbb{Z}_n[x]$

(b) Q

(e) \mathbb{Z}_n (h) $\mathbb{R}[x]$

(k) Los pares

 $(c) \mathbb{R}$

(f) $\mathbb{Z}[x]$

(i) $\mathbb{C}[x]$

 $(1) \{0\}$

2) Demuestre que dado un anillo R, R[x] los polinomios con coeficientes en R es un anillo.

3) Dado dos anillos R y S, se definen las siguientes operaciones:

$$(R \times S) \times (R \times S) \to R \times S$$

$$(r_1, s_1) \cdot (r_2, s_2) \mapsto (r_1 \cdot r_2, s_1 \cdot s_2)$$

$$+ : (R \times S) \times (R \times S) \to R \times S$$

$$(r_1, s_1) + (r_2, s_2) \mapsto (r_1 + r_2, s_1 + s_2)$$

Demuestre que $R \times S$ es un anillo con esas operaciones.

- 4) Sea S un conjunto, demuestre que $(P(S), \Delta, \cap, \emptyset)^1$ es un anillo.
- 5) Sea S un conjunto y R un anillo, demuestre que el conjunto de funciones de S a R es un anillo con la suma punto a punto y la multiplicación punto a punto.

 $^{^{-1}\}Delta$ es la diferencia simetrica y se toma como la suma, \cap es la intersección y se toma como la multiplicación