

قضیهای جالب در نظریهی مقدماتی گروهها خشایار فیلُم

هدف این مقالهی کوتاه معرفی قضیهای به نام "قضیهی شور" در جبر مقدماتی و حل سه مسالهی ابتکاری به کمک این قضیه است. در واقع برای فهمیدن صورت قضیهی مذکور و مسایل مرتبط، همان گونه که در ادامه خواهید دید به هیچ چیز بیشتر از اطلاعات جبر ۱ نیاز نیست ولی این مسائل به هیچ وجه بدیهی نیستند. قبل از بیان صورت این قضیه نمادگذاریهایی را که در ادامه به کار خواهیم برد، شرح می دهیم.

نمادگذاری و پادآوری

 $x\in G$ فرض کنید G یک گروه است و H زیرگروهی از آن باشد و

- این را که H زیرگروه G است به صورت H < G مینویسیم.
 - عنصر همانی G را به e نشان می دهیم.
- . و مشتق G را به G' و مرکز G را به را نمایش می دهیم.
- مشتق G کوچترین زیرگروهی از G است که در G نرمال است و گروه خارجقسمتی حاصل از آن آبلی است. به عبارت درگ:

است.
$$G$$
در G نرمال و G آبلی است. $H\iff G'\subset H$

- مرتبه ی عنصر x را با o(x) نشان می دهیم.
- منظور از [G:H] اندیس H در G است.
- :ست: G است در G د
- کلاس تزویجی $\{axa^{-1} \mid a \in G\}$ در G یعنی مجموعه G در G در تناظر یکبه یک است با مجموعه G در تناظر یکبه یک است با مجموعه محمد همدسته های چپ (یا راست) زیرگروه (G, G) از G. لذا اگر G در ایا راست و برابر G خواهد بود.
 - در G به صورت H (normalizer) نرمال ساز H (normalizer) در $N_G(H) = \{x \in G \mid xHx^{-1} = H\}$

تعریف می شود و بزرگترین زیرگروه G شامل H است که H در آن نرمال است. تعداد مزدوج های H یعنی تعداد زیرگروه های H از $G:N_G(H)$ از $G:N_G(H)$ از $G:X_G(H)$

• قضیهی ساختاری گروههای آبلی با تولید متناهی: اگر G آبلی و "با تولید متناهی" (finitely generated) باشد، آنگاه G را می توان به صورت جمع مستقیم تعداد متناهی از گروههای دوری نوشت:

 $G \cong \mathbb{Z}^m \oplus \mathbb{Z}_{m_1} \oplus \cdots \oplus \mathbb{Z}_{m_k}$

که در آن برای هر ۲ $n\geq n$ ، منظور از \mathbb{Z}_n گروه دوری n عضوی \mathbb{Z}/n است.

حال به بیان صورت قضیهی شور میپردازیم:

قضیه ی شور (Schur): فرض کنید G گروهی باشد که برای آن $G:Z(G)]<\infty$ در این صورت G متناهی است. اثبات این قضیه را می توانید در کتاب An Introduction to the Theory of Groups نوشته ی G بیابید. در ادامه، به حل سه مسئله به کمک این قضیه می پردازیم.

هساله ۱. فرض کنید G یک گروه نامتناهی است که اندیس هر زیرگروه نابدیهی آن متناهی است. ثابت کنید G دوری است.

اندیس ابتدا ثابت می کنیم G آبلی است. اگر G G و G و G آنگاه G هم در ویژگی مذکور صدق می کند یعنی اندیس هر زیرگروه غیربدیهی آن متناهی است. چرا که بنابر فرض G بنابر فرض G G و اگر G G و اگر G و اگر G و اگر بنابراین به دلیل G این میناهی است. چرا که بنابر آور و خواهیم داشت: G این به دلیل G اگر G و اگر G و اگر G این از G و اگر این مور G و اگر از G و اگر این مور G و اگر از G و اگر از G و اگر از G و اگر این مور G و متناهی بودن G امکان پذیری نیست. پس اگر G و اگر این برای زیرگروههای غیربدیهی G گروه با خاصیت مساله در صورت نابدیهی بودن مرکزش آبلی است. از آنچه پیشتر گفته شده، این برای زیرگروههای غیربدیهی G هم برقرار خواهدبود. یعنی ثابت کردیم که:

انت. H یا H آبلی است. $H \neq \{e\}$ یا $H \neq \{e\}$ است. (*)

حال برای اثبات آبلی بودن G از برهان خلف استفاده می کنیم: فرض کنید G آبلی نباشد. ادعا می کنیم که:

x با x,y,z با x,y,z با x,y,z با x,y,z با شدن در x,y,z ترایایی است: اگر x,y,z عناصری غیربدیهی از x,y,z با یکدیگر هم جابه جا می شوند.

حال به کمک (**) فرض خلف مبنی بر غیرآبلی بودن G را به تناقض می کشانیم: چون G آبلی نیست، $a,b \in G$ موجودند $a,b \neq ba$ موجودند که $a,b \neq ba$ لذا از فرض مساله $a,b \neq ba$ و لذا از فرض مساله $a,b \neq ba$ موجودند که $a,b \neq ba$ متناهی است. بنابراین مجموعه ی و لذا از فرض مساله $a,b \neq ba$ متناهی است. این نشان که نتیجه می دهد تعداد اعضای کلاس تزویجی a متناهی است. بنابراین مجموعه ی و $a,b^{r-s} = b^{r}$ متناهی است. این نشان $a,b^{r-s} = b^{r-s}$ با $a,b^{r-s} = b^{r-s}a$ آنگاه می دهد که $a,b^{r-s} = b^{r-s}a$ با به عبارت دیگر $a,b^{r-s} = b^{r-s}a$ آنگاه $a,b^{r-s} = b^{r-s}a$ با می خیربدیهی $a,b = b^{r-s}a$ با مرتناهی است. این با فرض مساله تناقض دارد. پس $a,b \neq a$ برای آن $a,b^{r-s} = b^{r-s}a$ با مرسیم و می بنابر (**) رابطه ی جابه جا شدن بر $a,b,b^{r-s} = a$ ترایایی است. $a,b,b^{r-s} = a$ با هم جابه جا می شوند که تناقض است. پس به تناقض می رسیم و a آبلی است.

حال به راحتی می توان دید که G با تولید متناهی است: فرض کنید $\{e\}$. پس طبق فرض ∞ که رساله حل است. در غیر این صورت یک عنصر $(x_1,x_2)=0$ که مساله حل است. در غیر این صورت یک عنصر $(x_1,x_2)=0$ که مساله حل است. در غیر این صورت یک عنصر $(x_1,x_2)=0$ که حکم مساله حل است. در غیر این صورت $(x_1,x_2)=0$ که حکم مساله حل است. در غیر این صورت $(x_1,x_2)=0$ را در نظر می گیریم و چون در هر مرحله اندیس زیرگروه جدید کم می شود، این فرایند سرانجام به پایان می رسد و $(x_1,x_2)=0$ موجود خواهد بود که برای آن $(x_1,x_2)=0$ و با تولید متناهی است. حال بنابر قضیه ساختاری گروه های آبلی با تولید متناهی $(x_1,x_2)=0$ و با تولید متناهی $(x_1,x_2)=0$ که در آن $(x_1,x_2)=0$ که در آن $(x_1,x_2)=0$ که در آن $(x_1,x_2)=0$ که زیرگروه دوری تولید شده توسط چنین عنصری یک زیرگروه متناهی غیربدیهی خواهد بود که اندیس آن در $(x_1,x_2)=0$ مناهی نیست و این بنابر فرض مساله نمی تواند رخ دهد. لذا $(x_1,x_2)=0$ که در آن $(x_1,x_2)=0$ که در آن

زیرگروه غیربدیهی از اندیس نامتناهی به صورت $\{(a,\circ,\dots,\circ)\mid a\in\mathbb{Z}\}$ دارد که باز هم با شرطی که روی G داریم در تناقض است. بنابراین $M=\mathbb{Z}$ و دوری است.

مساله ۲. فرض کنید G گروهی باشد که در آن مرتبهی هر عنصری به جز همانی نامتناهی است. ثابت کنید اگر G یک زیرگروه دوری از اندیس متناهی داشته باشد، آنگاه G دوری است.

اثبات. زیرگروه دوری مذکور از G را H می نامیم بنابراین [G:H]. ابتدا توجه کنید که بدون کاسته شدن از کلیت می توان فرض کرد که $[G:N_G(H)] \leq [G:H] < \infty$ و لذا $G:N_G(H) \leq [G:H] \leq H$ علاوه بر داشتن خواص فوق، نرمال هم هست. چرا که $g_1,\ldots,g_s \in G$ موجودند که پس تعداد مزدوجهای G متناهی است بنابراین G می می می تعداد مزدوجهای G می می تعداد مزدوجهای G می تعداد می

 $\{xHx^{-1} \mid x \in G\} = \{g_1Hg_1^{-1}, \dots, g_sHg_s^{-1}\}\$

در نتيجه

$$\bigcap_{x \in G} x H x^{-1} = \bigcap_{t=1}^{s} g_t H g_t^{-1}$$

و با استفاده از این تساوی

$$[G: \cap_{x \in G} x H x^{-1}] = [G: \cap_{t=1}^{s} g_{t} H g_{t}^{-1}] \le \prod_{t=1}^{s} [G: g_{t} H g_{t}^{-1}] = ([G: H])^{s} < \infty$$

همچنین $\bigcap_{x\in G}xHx^{-1}$ به وضوح زیرگروهی نرمال از G است و به دلیل آنکه مشمول در زیرگروه دوری $\bigcap_{x\in G}xHx^{-1}$ است، خود دوری $\bigcap_{x\in G}xHx^{-1}$ است. لذا زیرگروه $\bigcap_{x\in G}xHx^{-1}$ از $\bigcap_{x\in G}xHx^{-1}$ علاوه بر آن که تمامی خواص $\bigcap_{x\in G}xHx^{-1}$ موجود است که $\bigcap_{x\in G}xHx^{-1}$ در صورت لزوم می توان فرض کرد که $\bigcap_{x\in G}xHx^{-1}$ در اندیس متناهی است پس $\bigcap_{x\in G}xHx^{-1}$ موجود است که $\bigcap_{x\in G}xHx^{-1}$ فرض کنید $\bigcap_{x\in G}xHx^{-1}$ اگر وه دوری نرمال با اندیس متناهی است پس $\bigcap_{x\in G}xHx^{-1}$ موجود است که $\bigcap_{x\in G}xHx^{-1}$ در آن از فرض کنید $\bigcap_{x\in G}xHx^{-1}$ در $\bigcap_{x\in G}xHx^{-1}$ در

 $x^N \in \langle y \rangle$ ، $x \in G$ برای هر:(۱)

حال $x\in G$ را دلخواه بگیرید. نشان می دهیم x با y جابهجا می شود. چون $\langle y \rangle$ در x نرمال بود، به ازای $x\in G$ ای $x\in G$ با $x\in G$ را طوری گرفت که $xyx^{-1}=y^m$. در استقرابی ساده نتیجه می دهد برای هر $x\in G$ به xy^k با xy^k با به عاد xy^k و در نتیجه می دهد که xy^k با به عاد xy^k وی بنابر ورض مساله xy^k عنصر غیرهمانی از مرتبهی متناهی ندارد و در نتیجه چون xy^k و بنابراین xy وی بنابر ورض مساله xy متناهی است و لذا از شرط مساله xy و بنابراین xy باز هم xy متناهی است و لذا از شرط مساله xy و دلخواه با xy جابهجا می شود و بنابراین عددی بود که xy و بنابراین xy و بنابراین xy و بنابراین xy حال داریم xy حال داریم xy

$$[G:Z(G)] \geq [G:\langle y \rangle] = N < \infty$$

به کار بردن قضیهی شور نتیجه می دهد که G' متناهی است. پس تمامی عناصر G' از مرتبهی متناهی اند و حال دوباره چون بنابر فرض عناصر مرتبهی متناهی G همانی اند پس $G' = \{e\}$ و لذا G آبلی است.

علاوه بر آبلی بودن، G از تولید متناهی هم هست. داریم G از اگر همدسته های چپ $\langle y \rangle$ در G را به صورت علاوه بر آبلی بودن، G از تولید متناهی هم هست. داریم G و در نتیجه و د

بنابر (۱) برای هر $x\in G$ داشتیم $x\in G$ داشتیم $x^N\in \langle y
angle$. پس اگر تحت یکریختی y ، y به عنصر y ، ود:

$$\forall (a_1, \dots, a_m) \in \mathbb{Z}^m : (Na_1, \dots, Na_m) \in \{(tb_1, \dots, tb_m) \mid t \in \mathbb{Z}\}$$

گزاره ی فوق نتیجه می دهد که هر دو عضو \mathbb{Z}^m بر \mathbb{Z} وابسته ی خطی اند که به وضوح در حالت ۲ $m \geq 1$ امکان پذیر نیست. پس $m \geq 1$ که اثبات را تمام می کند. $m \geq 1$

در نهایت به مسالهی آخر که شاید جالبتر از مسائل قبلی باشد می پردازیم.

مساله m. فرض کنید G گروهی است که تعداد عناصر از مرتبهی متناهی آن متناهی است. ثابت کنید این عناصر تشکیل یک زیرگروه می دهند.

G اثبات. مجموعه A را عناصر از مرتبه A متناهی در G بگیرید. پس طبق قرض A | و باید نشان دهیم که A زیرگروه A است. ابتدا توجه کنید که بدون کاسته شدن از کلیت می توان فرض کرد که A گروه A را تولید می کند. چرا که اگر A خواهد بود و حال زیرگروهی از A باشد که عناصر A تولید می کنند، A زیرمجموعه A زیرمجموعه ناصر از مرتبه A متناهی A خواهد بود و حال اثبات حکم برای A نتیجه می دهد که A زیرگروهی از A و لذا چون A خود زیرگروهی از A خواهد بود، یک زیرگروه A است. پس فرض می کنیم که عناصر متعلق به A گروه A را تولید می کنند یعنی A .

اگر $A\in A$ ، تمامی عناصر کلاس تزویجی x همانند خود x از مرتبهی متناهیاند. بنابراین بنابر شرط مساله روی G ، تعداد x عناصر کلاس تزویجی x در G متناهی است. ولی تعداد عناصر این کلاس برابر با $G:C_G(x)$ که در آن $G:C_G(x)$ مرکزساز $G:C_G(x)$ است. لذا برای هر $G:C_G(x)$ میتوان نتیجه گرفت: $G:C_G(x)$

توجه کنید که $G=\langle A \rangle$ یک عنصر $G=\langle A \rangle$ و مرکز قرار $A \mid < \infty$ به دلیل یک $\prod_{x \in A} [G:C_G(x)]$ به دلیل توجه کنید که $\prod_{x \in A} [G:C_G(x)]$ به دلیل یک عنصر $G:C_G(x)$ به دلیل یک عنصر $G:C_G(x)$ بنتیجه می دهد که دارد اگر و تنها اگر با تمامی عناصر $G:C_G(x)$ جابه با بنابر قضیه ی شور زیرگروه مشتق $G:C_G(x)$ متناهی است. حال ادعا می کنیم:

ادعا: برای هر $x \in G$ مرتبهی x در گروه G متناهی است اگر و تنها اگر مرتبهی xG' در گروه G/G' متناهی باشد.

G/G' ورد نتیجه در گروه $x^n=e$ این اثبات این ادعا توجه کنید که اگر در G ، G ، G ، G آنگاه به ازای $x^n=e$ ای $x^n=e$ و در نتیجه در گروه کنید که اگر در $x^n=e$ که اگر مرتبه $x^n=e$ این $x^n=e$ این $x^n=e$ که اگر مرتبه $x^n=e$ متناهی بود و بنابراین در $x^n=e$ داریم که اگر مرتبه $x^n=e$ در گروه $x^n=e$ متناهی بود و بنابراین در $x^n=e$ در گروه کنید کنید و بنابراین در $x^n=e$ در گروه کنید کنید که اگر مرتبه که نتیجه می دهد $x^n=e$ و طرف دیگر هم ثابت می شود.

حال به کمک ادعای فوق نشان می دهیم که A < G . چون A بنابر تعریف مجموعه عناصر از مرتبه ی متناهی G بود، عنصر همانی G را در بردارد. برای هر G > X = G ، $G(x^{-1}) = G(x^{-1})$ که نشان می دهد اگر G > X = G آنگاه G > X = G . پس تنها قسمت باقیمانده در اثبات گروه بودن $G(x^{-1}) = G(x^{-1})$ نسبت به ضرب است. اگر G > X = G و G > X = G عناصر از مرتبه ی متناهی G > G = G انگاه G > X = G عناصر از مرتبه ی متناهی G > G = G این گروه آبلی است. در نتیجه مرتبه ی متناهی G > G = G هم در این گروه متناهی است و حال استفاده مجدد از ادعای بالا نتیجه می دهد که مرتبه ی G > G = G هم در این گروه متناهی است و حال استفاده مجدد از ادعای بالا نتیجه می دهد که مرتبه ی متناهی است یا معاد G > G = G و این حل مساله را به اتمام می رساند.