INFO-F-302 : Informatique Fondamentale Projet - Rapport

Jérôme HELLINCKX Thomas HERMAN

17 mai 2016

1 Le problème

Le problème de base consiste à essayer d'enchâsser un ensemble de rectangles dans la surface d'un grand rectangle. Ce problème se complexifie au fil des questions posées.

2 Définitions

Quelques termes et notations utilisés dans ce rapport :

- largeur, la dimension verticale d'un rectangle;
- longueur, la dimension horizontale d'un rectangle;
- \bullet R le grand rectangle dans lequel les autres rectangles doivent être enchâssés;
- $n, m \in \mathbb{N}_{>0}$ la largeur et longueur du rectangle R;
- l'ensemble $K = \{r_1, \dots, r_k\}$ de k rectangles r plus petits que R;
- $\mathcal{X}: \{1,\ldots,k\} \mapsto \mathbb{N}_{>0}$, fonction nous donnant la longueur d'un rectangle;
- $\mathcal{Y}: \{1,\ldots,k\} \mapsto \mathbb{N}_{>0}$, fonction nous donnant la largeur d'un rectangle;
- μ : $\{1, ..., k\} \mapsto \{1, ..., m\} \times \{1, ..., n\}$ fonction d'assignation d'un rectangle à une position contenue dans R tel que si $\mu(i) \mapsto (a, b)$ alors les sommets du rectangle r_i sont $(a, b), (a, \mathcal{Y}(i) + b), (\mathcal{X}(i) + a, \mathcal{Y}(i) + b), (\mathcal{X}(i) + a, b)$.

Variables booléennes utilisées :

- $\gamma_{x,y}$, vrai ssi $x \geq y$ avec $x, y \in \mathbb{N}$
- $\xi_{x,y}$, vrai ssi $x \leq y$ avec $x, y \in \mathbb{N}$
- $\lambda_{x,y}$ vrai ssi $x \neq y$ avec $x, y \in \mathbb{N}$

3 Questions

3.1 Écrire en langage mathématique les contraintes que doit satisfaire μ permettant de dire si μ est correcte

- 1. $\forall i \in \{1, ..., k\}, \mu(i) \mapsto (a, b) : a \ge 0$
- 2. $\forall i \in \{1, ..., k\}, \mu(i) \mapsto (a, b) : a + \mathcal{X}(i) \leq m$
- 3. $\forall i \in \{1, ..., k\}, \mu(i) \mapsto (a, b) : b \ge 0$
- 4. $\forall i \in \{1, ..., k\}, \mu(i) \mapsto (a, b) : b + \mathcal{Y}(i) \le n$
- 5. $\forall i, j \in \{1, \dots, k\}, \mu(i) \mapsto (a, b), \mu(j) \mapsto (e, f) : i \neq j \rightarrow a + \mathcal{X}(i) \leq e \lor a \geq e + \mathcal{X}(j) \lor b + \mathcal{Y}(i) \leq f \lor b \geq f + \mathcal{Y}(j)$

3.2 Construire une formule Φ en FNC de la logique propositionnelle

Notons que les notations (a, b) et (e, f) utilisées sont les mêmes que précédemment :

1.
$$C_1 = \bigwedge_{i \in K} \gamma_{a,0}$$

$$2. C_2 = \bigwedge_{i \in K} \xi_{a+\mathcal{X}(i),m}$$

3.
$$C_3 = \bigwedge_{i \in K} \gamma_{b,0}$$

4.
$$C_4 = \bigwedge_{i \in K} \xi_{b+\mathcal{Y}(i),n}$$

5.
$$C_5 = \bigwedge_{i \in K} \bigwedge_{j \in K} \neg \delta_{i,j} \lor (\xi_{a+\mathcal{X}(i),e} \lor \gamma_{a,e+\mathcal{X}(j)} \lor \xi_{b+\mathcal{Y}(i),f} \lor \gamma_{b,f+\mathcal{Y}(j)})$$

La mise en FNC complète de Φ est donc

$$\bigwedge_{i \in K} \left[\bigwedge_{j \in K} \left[\neg \delta_{i,j} \vee \xi_{a+\mathcal{X}(i),c} \vee \gamma_{a,c+\mathcal{X}(j)} \vee \xi_{b+\mathcal{Y}(i),d} \vee \gamma_{b,d+\mathcal{Y}(j)} \right] \wedge \gamma_{a,0} \wedge \xi_{a+\mathcal{X}(i),m} \wedge \gamma_{b,0} \wedge \xi_{b+\mathcal{Y}(i),n} \right] \right] \wedge \gamma_{a,0} \wedge \gamma_{b,0} \wedge$$

3.3 Implémentation et tests

Montrer des résultats, expliquer l'implémentation vite fait

3.4 Calculer la plus petite dimension du carré R admettant une solution

Est-ce qu'on reçoit un n en entrée? Si oui, recherche dichotomique, si non on prend $n = \dim r1 + \dim r2$ tel que r1 et r2 sont les plus grands rectangles de K?

3.5 Calculer la plus petite dimension du carré R avec r_i de dimension $i \times i \ \forall i \le n$

Même chose que question précédente ...

3.6 Ajout d'une troisième dimension

Par soucis de compréhension, notons tout d'abord le développement de la fonction d'assignation $\mu:\{1,\ldots,k\}\mapsto\{1,\ldots,m\}\times\{1,\ldots,n\}\times\{1,\ldots,h\}$ et donc nous utiliserons $\mu(i)\mapsto(a,b,c)$ et $\mu(j)\mapsto(d,e,f)$. Nous appliquons ensuite le même raisonnement que celui utilisé pour déterminer les contraintes en deux dimensions. Nous considérons dans un premier temps la contrainte triviale qui sert à border la hauteur des rectangles $\{r_1,\ldots,r_k\}$ entre 0 et la hauteur h de R:

$$C_6 = \bigwedge_{i \in K} \gamma_{c,0}$$

$$C_7 = \bigwedge_{i \in K} \xi_{c+\mathcal{Z}(i),h}$$

Dans un second temps, nous adaptons C_5 définie lors de la construction de Φ précédente en remarquant que si un rectangle r_1 se trouve plus haut ou plus bas qu'un rectangle r_2 , r_1 et r_2 ne se superposent pas. Répétons que cette observation est directement déduite de C_5 qui devient alors :

$$C_5 = \bigwedge_{i \in K} \bigwedge_{j \in K} \neg \delta_{i,j} \lor \xi_{a+\mathcal{X}(i),e} \lor \gamma_{a,e+\mathcal{X}(j)} \lor \xi_{b+\mathcal{Y}(i),f} \lor \gamma_{b,f+\mathcal{Y}(j)} \lor \xi_{c+\mathcal{Z}(i),g} \lor \gamma_{c,g+\mathcal{Z}(j)}$$

3.7 Ajout de contraintes qui ne fassent pas flotter les parallélépipèdes

Pour qu'un parallélépipède i ne flotte pas, il faut que sa composante c assignée par $\mu(i) \mapsto (a,b,c)$ vale soit 0, soit $g + \mathcal{Z}(j)$ où j est un autre parallélépipède qui lui ne flotte pas et g la composante g de j assignée par $\mu(j) \mapsto (e,f,g)$:

$$C_8 = \bigwedge_{i \in K} \left[\bigvee_{j \in K} \left[\neg \delta_{c,g+\mathcal{Z}(j)} \right] \lor \neg \delta_{c,0} \right]$$

3.8 Solution avec pivot

3.9 Minimum de p unités de contact entre les rectangles et les bords de R

Il est nécessaire de d'abord déterminer si un rectangle r_i touche un des bords du rectangle R, c'est-à-dire si un de ses côtés touche un bord de R. Nous obtenons donc que r_i touche R si $\forall i \in \{1,\ldots,k\}, \mu(i) \mapsto (a,b): (a=0)(\forall a+\mathcal{X}(i)=m) \vee (b=0) \vee (b+\mathcal{Y}(i)=n)$. Il faut ensuite faire le somme de chaque côté de r_i qui touche un bord de R (si nous posons qu'une unité p vaut 1). Pour traduire cette contrainte en FNC, nous définissons la variable $\omega_{i,p}$ qui est vrai ssi les rectangles $\{r_1,\ldots,r_i\}\subseteq K$ au minimum p unités de contact avec les bords de R:

$$C_9 = \bigwedge_{i \in K}$$

3.10 Utilisation du mode MAX-SAT pour maximiser le contact entre rectangles et les bords de R