House Prices: Advanced Regression Techniques

Date:27.06.2018

Objectives

- 1. Data presentation and analysis
 - a. General exploration of the predictors and target variable
- 2. Data preprocessing & Feature engineering
 - a. missing values
 - b. outliers
 - c. Multicollinear
 - d. near zero variance predictors
 - e. Hot encoding of categorical variables
- 3. Principal component analysis Clustering
- 4. Prediction
 - a. Evaluation of different prediction algorithm
 - b. Tuning of the algorithm
 - c. Results

Introduction 1/2

- Kaggle Data set
- Predicting house price based on 79 variables
- Features describe every aspects of the house
- 1460 Individuals (training)
- Complex dataset
 - Many NAs, outliers, incorrect values...

Introduction 2/2

Early research conclusion about house pricing:

- **Location** location is key for high valuations, therefore having a safe, well facilitated and well positioned house within a good neighbourhood, is a large contributing factor.
- **Size** The more space, rooms and land that the house contains, the higher the valuation.
- Features the latest utilities and extras are highly desirable.

Preprocessing - Missing Data 1/6

35/79 features with missing values

Identified on:

- Missing for a reason (many): N/A represent e.g. No Pool
 - Solution: Impute value "none" or "0"
- Missing at random (some):
 - Solution: Impute value based on random forest or reasoning

Preprocessing - Outliers 2/6

Mahalanobis distance with a threshold of 30

7 outliers detected in that case

Preprocessing - One-Hot encoding of categorical values 3/6

All categorical non-ordinal predictor levels were converted into single numeric columns

Categorical feature "Street" with levels: "gravel" and "paved"

Encoded into new features "HasGarvel" and "hasPaved" - The numerical values are '1' for existing and '0' otherwise.

Increasement of dimensions: 78->110

Street	
gravel	
paved	

Street = gravel	Street = paved	
1	0	
0	1	

Some of these features have

become zero-variance predictors

Decision to remove them->

From 110 to 68 features

Preprocessing - Normality 4/6

Standardization of predictor features. Useful in distance-based algorithm (K-means) & optimization (Regression).

Data was skewed in many cases (positive above) so we applied **Log transformation** of the continuous variables.

Preprocessing - Multicollinearity 6/6

Creating new feature - geometric mean

-AreaInside and Greater Living area 96% correlated

-GarageArea and GarageCars 88% correlated

PCA and Cluster Analysis 1/3

Hierarchical clustering

agglomerative clustering

PCA and Cluster Analysis 3/3

c1 = 157470€ Age 70 years

c2 = 170673 €
Age 30 years
Overall Quality 6/10

c3 = 203424 € remodeled - median 1999

Regression

Lasso - imposes sparsity among the coefficients

Ridge - limits size of coefficient vector

elastic net - penalty term as a mix of lasso and ridge

Trees:

Random forest - fully grown decision trees XGBoost (boosted trees) - shallow trees

Predictive Analysis - results

Initial evaluation:

Method	test-rmse		
XgBoost	6540		
RandomForest	10321.12		
lasso	21133.27		
ridge	20179.57		
net	21184.43		

Winner - full evaluation:

Method	train-rmsle	test-rmsle	cross-validation-rmsle
xgBoost	0.055603	0.191394	0.202694
0.5*xgboost+ 0.25*regression+ 0.25*randomforest			0.195643

Conclusion

- Analysis and Pre-Processing was ~90% of the time
- First evaluation result in upper 15% percentage
- Managed to apply the course knowledge to compete on Kaggle
- XGBoost good, but does not extrapolate like regression
- Optimization is needed on a further step

Future Work

- Identify ordinal categorical distribution (One-hot encoding)
- Improve feature selection/engineering
 - Using the PCA analysis to create new features
 - Reasoning on correlation
 - Cluster Analysis results
- Evaluation of other prediction algorithm
- test prediction isolated on clusters
- Outlier detection on all relevant variables

