

Пусть функция z(x;y)дифференцируема достаточное количество раз. Верно ли, что $d^2z=z_{xx}^{\prime\prime}\,dx+z_{yy}^{\prime\prime}\,dy$?

Выберите все верные утверждения, если u(x;y;z) – дифф. функция, \vec{l} – некоторый вектор в \mathbb{R}^3 , φ – угол между \vec{l} и $\operatorname{grad} u$, \vec{n} – вектор нормали к поверхности уровня функции u в $M(x_0,y_0,z_0)$

- $\frac{\partial u}{\partial \vec{l}} = \operatorname{grad} u \cdot \cos \varphi$
- $\frac{\partial u}{\partial \vec{l}} = \operatorname{grad} u \cdot \vec{l}$
- \Box grad $u(M) \parallel \vec{n}$
- $\frac{\partial u}{\partial \vec{l}} = \prod_{\vec{l}} \operatorname{grad} u$
- $\frac{\partial u}{\partial \vec{i}} = |\operatorname{grad} u| \cdot \cos \varphi$

Неправильный ответ на вопрос

Баллов: 0 из 1

Сообщить об ошибке (0)

Что в общем случае задаёт в пространстве \mathbb{R}^3 уравнение F(x;y)=0, если функция F определена на плоскости \mathbb{R}^2 ?

прямую (-ые)
✓ линию
плоскость (-и)
поверхность
тело
Неправильный ответ на вопрос

О точку (-и)

Баллов: 0 из 1

