祖冲之序列密码算法

ZUC stream cipher algorithm

目 次

目			次	I I
祖〉	中之月	序列	密码算法	3
			义	
2 7	夺号系	口缩	略语	3
2	.1 ž	5算		3
2	.2 名	守号		4
2	.3 绰	諸略	语	4
3 🛊	拿法指	描述		4
			整体结构	
3	.2 叁	钱性	反馈移位寄存器 LFSR	5
3	.3 E	比特	重组 BR	6
3	.4 🗐	丰线	性函数 F	6
3	. 5 窖	否钥	装入	6
3	.6 舅	캁法	运行	7
附	录	A	S 盒	8
附	录	В	模 2³¹-1 乘法和模 2³¹-1 加法的实现	10
附	录	С	算法计算实例	11
参	考文南	;		15

祖冲之序列密码算法

1 术语和定义

下列术语和定义适用于本文件。

1. 1

比特 bit

二进制字符0或1称之为比特。

1. 2

字节 byte

由8个比特组成的比特串称之为字节。

1.3

字 word

由2个以上(包含2个)比特组成的比特串称之为字。 本文主要使用31比特字和32比特字。

1.4

字表示 word representation

本文字默认采用十进制表示。当字采用其它进制表示时,总是在字的表示之前或之后添加指示符。 例如,前缀0x指示该字采用十六进制表示,后缀下角标2指示该字采用二进制表示。

1.5

高低位顺序 bit ordering

本文规定字的最高位总是位于字表示中的最左边,最低位总是位于字表示中的最右边。

2 符号和缩略语

2.1 运算符

- + 算术加法运算
- ab 整数a和b的乘积
- = 赋值操作符
- mod 整数模运算
- ⊕ 按比特位逐位异或运算
- 田 模232加法运算
- || 字符串或字节串连接符
- · 取字的最高16比特
- 取字的最低16比特
- <<<k 32比特字循环左移k位

>>k 32比特字右移k位

a→b 向量a赋值给向量b,即按分量逐分量赋值

2.2 符号

下列符号适用于本文:

 $s_0, s_1, s_2, \dots, s_{15}$ 线性反馈移位寄存器的 16 个 31 比特寄存器单元变量

X₀, X₁, X₂, X₃ 比特重组输出的 4 个 32 比特字

R₁, R₂ 非线性函数 F 的 2 个 32 比特记忆单元变量

W 非线性函数 F 输出的 32 比特字

 W_1 R_1 与 X_1 进行模 2^{32} 加法运算输出的 32 比特字 W_2 R_2 与 X_2 按比特位逐位异或运算输出的 32 比特字

Z 算法每拍输出的 32 比特密钥字

 k
 初始种子密钥

 iv
 初始向量

d_i 15 比特的字符串常量, i=0,1,2,…15

 F
 非线性函数

 L
 输出密钥字长度

2.3 缩略语

下列缩略语适用于本文:

ZUC 祖冲之序列密码算法或者祖冲之算法

LFSR 线性反馈移位寄存器

BR 比特重组

3 算法描述

3.1 算法整体结构

祖冲之算法逻辑上分为上中下层,见图1。上层是16级线性反馈移位寄存器(LFSR);中层是比特重组(BR);下层是非线性函数F。

图 1 祖冲之算法结构图

3.2 线性反馈移位寄存器 LFSR

3.2.1 概述

LFSR 包括 16 个 31 比特寄存器单元变量 s_0 , s_1 , …, s_{15} 。 LFSR 的运行模式有 2 种: 初始化模式和工作模式。

3.2.2 初始化模式

在初始化模式下,LFSR 接收一个 31 比特字 u。u 是由非线性函数 F的 32 比特输出 W通过舍弃最低位比特得到,即 u=w>>1。 在初始化模式下,LFSR 计算过程如下:

3.2.3 工作模式

```
在工作模式下,LFSR 不接收任何输入。其计算过程如下:
LFSRWithWorkMode()
{
```

```
(1) s_{16} = 2^{15} s_{15} + 2^{17} s_{13} + 2^{21} s_{10} + 2^{20} s_4 + (1 + 2^8) s_0 \mod (2^{31}-1);
(2) 如果 s_{16}=0,则置 s_{16}=2^{31}-1;
(3) (s_1, s_2, \dots, s_{15}, s_{16}) \rightarrow (s_0, s_1, \dots, s_{14}, s_{15})。
```

3.3 比特重组 BR

}

输入为 LFSR 寄存器单元变量 s_0 , s_2 , s_5 , s_7 , s_9 , s_{11} , s_{14} , s_{15} , 输出为 4 个 32 比特字 X_0 、 X_1 、 X_2 、 X_3 。 计算过程如下:

```
BitReconstruction() {  (1) \  \  \, X_0 = s_{15\text{H}} \parallel s_{14\text{L}}; \\ (2) \  \  \, X_1 = s_{11\text{L}} \parallel s_{9\text{H}}; \\ (3) \  \  \, X_2 = s_{7\text{L}} \parallel s_{5\text{H}}; \\ (4) \  \  \, X_3 = s_{2\text{L}} \parallel s_{0\text{H}} \circ  }
```

3.4 非线性函数 F

F包含2个32比特记忆单元变量 R和 R。

F 的输入为 3 个 32 比特字 X_0 、 X_1 、 X_2 ,输出为一个 32 比特字 W_0 计算过程如下:

```
F (X_0, X_1, X_2)
```

```
(1) \quad \mathbb{W} = (X_0 \oplus R_1) \quad \mathbf{\square} \quad R_2;
```

- $(2) W_1 = R_1 \coprod X_1;$
- (3) $W_2 = R_2 \oplus X_2$;
- (4) $R_1 = S(L_1(W_{1L} || W_{2H}));$
- (5) $R_2 = S(L_2(W_{2L} \parallel W_{1H}))$.

其中 S为 32 比特的 S盒变换, S盒定义见附录 A; L和 L为 32 比特线性变换,定义如下:

$$L_1(X) = X \oplus (X \iff 2) \oplus (X \iff 10) \oplus (X \iff 18) \oplus (X \iff 24),$$

 $L_2(X) = X \oplus (X \iff 8) \oplus (X \iff 14) \oplus (X \iff 22) \oplus (X \iff 30).$

3.5 密钥装入

将初始密钥 k 和初始向量 iv 分别扩展为 16 个 31 比特字作为 LFSR 寄存器单元变量 s_0 , s_1 , …, s_{15} 的初始状态。设 k 和 iv 分别为

$$k_0 \parallel k_1 \parallel \cdots \parallel k_{15}$$

和

$$i_{V_0} \parallel i_{V_1} \parallel \cdots \parallel i_{V_{15}},$$

其中 k_i 和 iv_i 均为 8 比特字节, $0 \le i \le 15$ 。密钥装入过程如下:

(1) D为240比特的常量,可按如下方式分成16个15比特的字串:

$$D = d_0 \| d_1 \| \cdots \| d_{15}$$

其中:

$$d_0 = 100010011010111_2$$
,
 $d_1 = 010011010111100_2$,
 $d_2 = 110001001101011_2$,
 $d_3 = 001001101011110_2$,

 d_4 = 101011110001001₂, d_5 = 011010111100010₂, d_6 = 1110001001101011₂, d_7 = 000100110101111₂, d_8 = 1001101011111000₂, d_9 = 010111100010011₂, d_{10} = 110101111000100₂, d_{11} = 001101011110001₂, d_{12} = 101111000100110₂, d_{13} = 011110001001101₂, d_{14} = 111100010011012, d_{15} = 100011110101100₂.

(2) 对 0 \leq i \leq 15, 有 $s_i = k_i \parallel d_i \parallel iv_i$ 。

3.6 算法运行

3.6.1 初始化阶段

首先把128比特的初始密钥k和初始向量iv按照3.5的密钥装入方法装到LFSR的寄存器单元变量 s_0 , s_1 , …, s_{15} 中,作为LFSR的初态,并置32比特记忆单元变量 R_1 和 R_2 为全0。然后执行下述操作: 重复下述过程32次:

- (1) BitReconstruction();
- (2) W= F(X0, X1, X2);
- (3) 输出 32 比特字 W;
- (4) LFSRWithInitialisationMode (W >> 1).

3.6.2 工作阶段

首先执行下列过程一次,并将 F的输出 W舍弃:

- (1) BitReconstruction();
- (2) F (X0, X1, X2);
- (3) LFSRWithWorkMode().

然后进入密钥输出阶段。在密钥输出阶段,每运行一个节拍,执行下列过程一次,并输出一个 32 比特的密钥字 2:

- (1) BitReconstruction();
- (2) $Z = F (X0, X1, X2) \oplus X3;$
- (3) 输出 32 比特密钥字 Z;
- (4) LFSRWithWorkMode().

附 录 A S 盒

32 比特 S 盒 S 由 4 个小的 8×8 的 S 盒并置而成,即 S=(S₀, S₁, S₂, S₃),其中 S₃=S₃。S₄ 和 S₁ 的定义分别见表 A. 1 和表 2。设 S₃(或 S₃)的 8 比特输入为 S₃。将 S₄ 视作两个 16 进制数的连接,即 S₅+S₆ 以 (或 S₅)中第 S₆ 行和第 S₇ 列交叉的元素即为 S₆(或 S₅)的输出 S₆(S₇)。

设 S 盒 S 的 32 比特输入 X 和 32 比特输出 Y 分别为:

其中 x_i 和 y_i 均为 8 比特字节, i = 0, 1, 2, 3。则有 y_i = $S_i(x_i)$, i = 0, 1, 2, 3。

	表 A. Ⅰ S ₀ 温															
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	3E	72	5B	47	CA	EO	00	33	04	D1	54	98	09	В9	6D	СВ
1	7B	1B	F9	32	AF	9D	6A	A5	В8	2D	FC	1D	08	53	03	90
2	4D	4E	84	99	E4	CE	D9	91	DD	В6	85	48	8B	29	6E	AC
3	CD	C1	F8	1E	73	43	69	C6	В5	BD	FD	39	63	20	D4	38
4	76	7D	В2	A7	CF	ED	57	C5	F3	2C	BB	14	21	06	55	9B
5	ЕЗ	EF	5E	31	4F	7F	5A	A4	OD	82	51	49	5F	BA	58	1C
6	4A	16	D5	17	A8	92	24	1F	8C	FF	D8	AE	2E	01	D3	AD
7	3B	4B	DA	46	EB	С9	DE	9A	8F	87	D7	3A	80	6F	2F	C8
8	B1	B4	37	F7	OA	22	13	28	7C	CC	3C	89	С7	СЗ	96	56
9	07	BF	7E	F0	OB	2B	97	52	35	41	79	61	A6	4C	10	FE
A	BC	26	95	88	8A	ВО	А3	FB	CO	18	94	F2	E1	E5	E9	5D
В	D0	DC	11	66	64	5C	EC	59	42	75	12	F5	74	9C	AA	23
С	OE	86	AB	BE	2A	02	E7	67	E6	44	A2	6C	C2	93	9F	F1
D	F6	FA	36	D2	50	68	9E	62	71	15	3D	D6	40	C4	E2	0F
Е	8E	83	77	6B	25	05	3F	0C	30	EA	70	В7	A1	E8	A9	65
F	8D	27	1A	DB	81	В3	AO	F4	45	7A	19	DF	EE	78	34	60

表 A. 1 S。 盒

耒	٨	2	c	<u></u>
ᅏ	Α		· .	=

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	55	C2	63	71	ЗВ	C8	47	86	9F	3C	DA	5B	29	AA	FD	77
1	8C	C5	94	0C	A6	1A	13	00	ЕЗ	A8	16	72	40	F9	F8	42
2	44	26	68	96	81	D9	45	3E	10	76	C6	A7	8B	39	43	E1
3	3A	В5	56	2A	C0	6D	ВЗ	05	22	66	BF	DC	0B	FA	62	48
4	DD	20	11	06	36	С9	C1	CF	F6	27	52	BB	69	F5	D4	87
5	7F	84	4C	D2	9C	57	A4	BC	4F	9A	DF	FE	D6	8D	7A	EB
6	2B	53	D8	5C	A1	14	17	FB	23	D5	7D	30	67	73	08	09
7	EE	В7	70	3F	61	B2	19	8E	4E	E5	4B	93	8F	5D	DB	A9
8	AD	F1	AE	2E	СВ	OD	FC	F4	2D	46	6E	1D	97	E8	D1	E9
9	4D	37	A5	75	5E	83	9E	AB	82	9D	В9	1C	EO	CD	49	89

表 A. 2 S, 盒 (续)

A	01	В6	BD	58	24	A2	5F	38	78	99	15	90	50	В8	95	E4
В	DO	91	C7	CE	ED	0F	B4	6F	AO	CC	F0	02	4A	79	СЗ	DE
С	A3	EF	EA	51	E6	6B	18	EC	1B	2C	80	F7	74	E7	FF	21
D	5A	6A	54	1E	41	31	92	35	C4	33	07	OA	BA	7E	OE	34
Е	88	B1	98	7C	F3	3D	60	6C	7B	CA	D3	1F	32	65	04	28
F	64	BE	85	9B	2F	59	8A	D7	ВО	25	AC	AF	12	03	E2	F2

注: S。盒和 S. 盒数据均为十六进制表示。

附 录 B 模 2³¹-1 乘法和模 2³¹-1 加法的实现

B. 1 模 2³¹-1 乘法

两个 31 比特字模 2^{31} —1 乘法可以快速实现。特别地,当其中一个字具有较低的汉明重量时,可以通过 31 比特的循环移位运算和模 2^{31} —1 加法运算实现。例如,计算 $ab \mod (2^{31}$ —1),其中 $b=2^{i}+2^{j}+2^{k}$ 。则

 $ab \mod (2^{31}-1) = (a <<<_{31} i) + (a <<<_{31} j) + (a <<<_{31} k) \mod (2^{31}-1)$,其中:</<>

B. 2 模 2³¹-1 加法

在 32 位处理平台上,两个 31 比特字 a 和 b 模 2^{31} –1 加法运算 $c=a+b \mod (2^{31}–1)$ 可以通过下面的两步计算实现:

- 1) c = a + b;
- 2) c = (c & 0x7FFFFFFF) + (c >> 31).

附 录 C 算法计算实例

C.1 测试向量1(全0)

输入:

输出:

 z_1 : 27bede74

z₂: 018082da

初始化:

线性反馈移位寄存器初态:

		177 -7 11 HH	N4,701.					
i	S_{0+i}	\boldsymbol{S}_{1^+i}	$S_{2^{\pm}i}$	$S_{3\text{+}\mathrm{i}}$	S_{4+i}	$S_{5+\mathbf{i}}$	$S_{\rm 6+i}$	S_{7+i}
0	0044d700	0026bc00	00626b00	00135e00	00578900	0035e200	00713500	0009af00
8	004d7800	002f1300	006bc400	001af100	005e2600	003c4d00	00789a00	0047ac00
t	X _o	X_1	X_2	X_3	R_1	R_2	W	S ₁₅
0	008f9a00	f100005e	af00006b	6b000089	67822141	62a3a55f	008f9a00	4563cb1b
1	8ac7ac00	260000d7	780000e2	5e00004d	474a2e7e	119e94bb	4fe932a0	28652a0f
2	50cacb1b	4d000035	13000013	890000c4	c29687a5	e9b6eb51	291f7a20	7464f744
3	e8c92a0f	9a0000bc	c400009a	e2000026	29c272f3	8cac7f5d	141698fb	3f5644ba
4	7eacf744	ac000078	f100005e	350000af	2c85a655	24259cb0	e41b0514	006a144c
5	00d444ba	cb1b00f1	260000d7	af00006b	cbfbc5c0	44c10b3a	50777f9f	07038b9b
6	0e07144c	2a0f008f	4d000035	780000e2	e083c8d3	7abf7679	0abddcc6	69b90e2b
7	d3728b9b	f7448ac7	9a0000bc	13000013	147e14f4	b669e72d	aeb0b9c1	62a913ea
8	c5520e2b	44ba50ca	ac000078	c400009a	982834a0	f095d694	8796020c	7b591cc0
9	f6b213ea	144ce8c9	cb1b00f1	f100005e	e14727d6	d0225869	5f2ffdde	70e21147
礻	刃始化后约	线性反馈移	8位寄存器	状态:				
i	S_{0+i}	S_{1+i}	S_{2+i}	S_{3+i}	S_{4+i}	S_{5+i}	S_{6+i}	S_{7+i}
0	7ce15b8b	747ca0c4	6259dd0b	47a94c2b	3a89c82e	32b433fc	231ea13f	31711e42
8	4ccce955	3fb6071e	161d3512	7114b136	5154d452	78c69a74	4f26ba6b	3e1b8d6a
有	1. 思状太和	内部状态	•					

有限状态机内部状态:

 $R_1 = 14cfd44c$

 $R_2 = 8c6de800$

密钥流:

t	X _o	X_1	X_2	X_3	R_1	R_2	Z	S ₁₅
0	7c37ba6b	b1367f6c	1e426568	dd0bf9c2	3512bf50	a0920453	286dafe5	7f08e141
1	fell8d6a	d4522c3a	e955463d	4c2be8f9	c7ee7f13	0c0fa817	27bede74	3d383d04
2	7a70e141	9a74e229	071e62e2	c82ec4b3	dde63da7	b9dd6a41	018082da	13d6d780

C. 2 测试向量 2 (全 1)

输入:

输出:

z₁: 0657cfa0

z₂: 7096398b

初始化:

线性反馈移位寄存器初态:

i	S_{0+i}	$S_{1^{+}i}$	$S_{2^{+}i}$	S_{3+i}	S_{4^+i}	S_{5+i}	$S_{6^{+}i}$	S_{7+i}
0	7fc4d7ff	7fa6bcff	7fe26bff	7f935eff	7fd789ff	7fb5e2ff	7ff135ff	7f89afff
8	7fcd78ff	7faf13ff	7febc4ff	7f9af1ff	7fde26ff	7fbc4dff	7ff89aff	7fc7acff
t	X _o	X_1	X_2	X_3	$R_{\scriptscriptstyle 1}$	R_2	W	S ₁₅
0	ff8f9aff	f1ffff5e	afffff6b	6bffff89	b51c2110	30a3629a	ff8f9aff	76e49a1a
1	edc9acff	26ffffd7	78ffffe2	5effff4d	a75b6f4b	1a079628	8978f089	5e2d8983
2	bc5b9a1a	4dffff35	13ffff13	89ffffc4	9810b315	99296735	35088b79	5b9484b8
3	b7298983	9affffbc	c4ffff9a	e2ffff26	4c5bd8eb	2d577790	c862a1cb	2db5c755
4	5b6b84b8	acffff78	f1ffff5e	35ffffaf	a13dcb66	21d0939f	4487d3e3	60579232
5	c0afc755	9alafffl	26ffffd7	afffff6b	cc5ce260	0c50a8e2	83629fd2	29d4e960
6	53a99232	8983ff8f	4dffff35	78ffffe2	dada0730	b516b128	ac461934	5e02d9e5
7	bc05e960	84b8edc9	9affffbc	13ffff13	2bbe53a4	12a8a16e	1bf69f78	7904dddc
8	f209d9e5	c755bc5b	acffff78	c4ffff9a	4a90d661	d9c744b4	ec602baf	0c3c9016
9	1879dddc	9232b729	9alafff1	f1ffff5e	76bc13d7	a49ea404	2cb05071	0b9d257b
Ž	l 初始化后约	线性反馈移	8位寄存器	} 状态:				

i	S_{0+i}	\boldsymbol{S}_{1^+i}	$S_{2^{+}i}$	$S_{3\text{+}\mathrm{i}}$	S_{4^+i}	$S_{5+\mathbf{i}}$	$S_{\rm 6+i}$	S_{7+i}				
0	09a339ad	1291d190	25554227	36c09187	0697773b	443cf9cd	6a4cd899	49e34bd0				
8	56130b14	20e8f24c	7a5b1dcc	0c3cc2d1	1cc082c8	7f5904a2	55b61ce8	1fe46106				
有	有限状态机内部状态:											

 $R_1 = b8017bd5$

 $R_2 = 9ce2de5c$

密钥流:

t	X_0	X_1	X_2	X_3	R_1	R_2	Z	S_{15}
0	3fc81ce8	c2d141d1	4bd08879	42271346	aa131b11	09d7706c	668b56df	13f56dbf
1	27ea6106	82c8f4b6	0b14d499	91872523	251e7804	caac5d66	0657cfa0	0c0fe353
2	181f6dbf	04a21879	f24c93c6	773b4aaa	d94e9228	91d88fba	7096398b	10fleecf

C. 3 测试向量 3 (随机)

输入:

密钥 k: 3d 4c 4b e9 6a 82 fd ae b5 8f 64 1d b1 7b 45 5b

初始向量 iv: 84 31 9a a8 de 69 15 ca 1f 6b da 6b fb d8 c7 66

输出:

 z_1 : 14f1c272

z₂: 3279c419

初始化:

线性反馈移位寄存器初态:

i	S_{0+i}	$S_{\rm 1+i}$	$S_{2^{\pm}i}$	$S_{3^{\pm}i}$	$S_{4^{\pm}i}$	$S_{5+\mathbf{i}}$	$S_{\rm 6+i}$	$S_{7^{\pm}\mathrm{i}}$
0	1ec4d784	2626bc31	25e26b9a	74935ea8	355789de	4135e269	7ef13515	5709afca
8	5acd781f	47af136b	326bc4da	0e9af16b	58de26fb	3dbc4dd8	22f89ac7	2dc7ac66
t	X _o	X_1	X_2	X_3	$R_{\scriptscriptstyle 1}$	R_2	W	S ₁₅
0	5b8f9ac7	f16b8f5e	afca826b	6b9a3d89	9c62829f	5df00831	5b8f9ac7	3c7b93c0
1	78f7ac66	26fb64d7	781ffde2	5ea84c4d	3d533f3a	80ff1faf	4285372a	41901ee9
2	832093c0	4dd81d35	136bae13	89de4bc4	2ca57e9d	d1db72f9	3f72cca9	411efa99

3 823d1ee9 9ac7b1bc c4dab59a e269e926 0e8dc40f 60921a4f 8073d36d 24b3f49f 4 | 4967fa99 ac667b78 f16b8f5e 35156aaf 16c81467 da8e7d8a a87c58e5 74265785 5 e84cf49f 93c045f1 26fb64d7 afca826b 50c9eaa4 3c3b2dfd d9135e82 481c5b9d 6 90385785 1ee95b8f 4dd81d35 781ffde2 59857b80 be0fbdc1 fd2ceble 4b7f87ed 7 | 96ff5b9d | fa9978f7 | 9ac7b1bc | 136bae13 | 9528f8ea | bcc7f7eb | 8d89ddde | 0e633ce7 8 | 1cc687ed f49f8320 ac667b78 c4dab59a c59d2932 e1098a64 46b676f2 643ae5a6 9 c8753ce7 5785823d 93c045f1 f16b8f5e 755ebae8 3f9e6e86 eef1a039 625ac5d7

初始化后线性反馈移位寄存器状态:

i S_{0+i} S_{1+i} S_{2+i} S_{3+i} S_{4+i} S_{5+i} S_{6+i} 0 10da5941 5b6acbf6 17060ce1 35368174 5cf4385a 479943df 2753bab2 73775d6a 8 | 43930a37 | 77b4af31 | 15b2e89f | 24ff6e20 | 740c40b9 | 026a5503 | 194b2a57 | 7a9a1cff 有限状态机内部状态:

 $R_1 = 860a7dfa$

 $R_2 = bf0e0ffc$

密钥流:

t	X_0	X_1	X_2	X_3	R_1	R_2	Z	S_{15}
0	f5342a57	6e20ef69	5d6a8f32	0ce121b4	129d8b39	2d7cdce1	3ead461d	3d4aa9e7
1	7a951cff	40b92b65	0a374ea7	8174b6d5	ab7cf688	c1598aa6	14f1c272	71db1828
2	e3b6a9e7	550349fe	af31e6ee	385a2e0c	3cec1a4a	9053cc0e	3279c419	258937da

注:上述祖冲之算法计算实例中数据全部采用十六进制表示。

参考文献

- [1] ETSI/SAGE TS 35.221. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 1: 128-EEA3 and 128-EIA3 Specification.
- [2] ETSI/SAGE TS 35.222. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification.
- [3] ETSI/SAGE TS 35.223. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 3: Implementor's Test Data.
- [4] ETSI/SAGE TR 35.924. Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 4: Design and Evaluation Report.