

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 7: Noções de Aterramento Elétrico – Aula 15

Instalações Elétricas I Engenharia Elétrica

- Para uma falta não-direta ($R_F \neq 0$), a resistência de falta pode assumir valores elevados, fazendo com que o DTM não atue por curto-circuito.
- Para uma falta com $R_F >> R_{PE}$ com $V_C = V_F$ ($V_R = 0$), teríamos uma tensão de contato:

$$I_{F} = \frac{V_{fase}}{R_{fase} + R_{F} + R_{PE}} \quad V_{c} = \frac{R_{PE}}{R_{PE} + R_{F} + R_{fase}} V_{fase}$$

$$\downarrow^{\mathbf{R}_{\mathbf{fase}}} V_{\mathbf{fase}}$$

$$\downarrow^{\mathbf{R}_{\mathbf{fase}}} V_{\mathbf{fase}}$$

$$\downarrow^{\mathbf{R}_{\mathbf{Fase}}} V_{\mathbf{C}}$$

- I_F não seria muito elevada, logo $V_C \sim 0$.
- Logo a pessoa não sofreria um choque elétrico e o DTM não atuaria.
- Conclusão: O esquema TN-S é eficaz na proteção contra o choque elétrico!

O que ocorreria se a pessoa tocasse a massa energizada, sem o condutor PE?

R_{fase}: Resistência do condutor fase

R_F: Resistência de falta

R_{CH}: Resistência do corpo humano

R_{CT}: Resistência de contato

R_{AT}: Resistência de aterramento

I_{CH}: Corrente de choque elétrico

$$I_{CH} = \frac{V_{fase}}{R_{fase} + R_F + R_{CH} + R_{CT} + R_{AT}}$$
 e $V_C = R_{CH} * I_{CH}$

$$e V_C = R_{CH} * I_{CH}$$

Essa corrente é letal? O DTM atuaria?

Exemplo 5.3)

Em um sistema TN-S tem-se um DTM 25 A (Classe C) no circuito terminal de uma geladeira. Considere que a massa não está conectada ao condutor PE e ocorra uma falha na isolação. Calcule I_F e analise os efeitos para o ser humano ao tocar essa massa energizada. Adote R_F =0 (falta franca), R_{PE} = R_{fase} =0,1774 Ω (condutor de 2,5 mm², |Z|=8,87 Ω /Km, L=20 m) , R_{ch} =1 k Ω , R_{CT} =1,5 k Ω , R_{AT} =10 Ω e $V_{fase-terra}$ =127 V.

$$I_{F} = \frac{127}{0,1774 + 0,1774 + 10 + 1,5k + 1k} = 50,59mA$$

$$V_{c} = R_{ch}I_{F} = 50,59V$$

$$\frac{I_{F}}{I_{n}} = 2,02m$$

O DTM não atuaria e a pessoa estaria sujeita a efeitos graves, como definido pela Norma IEC:

Norma IEC - Efeitos fisiológicos da corrente

- Segundo sistema TN:
 - TN-C: as funções de neutro e de proteção são combinadas em um único condutor ao longo de todo o sistema (C).

• Falta Fase-Terra (I_F)

Falta Fase-Terra (I_F)

- Falta franca (R_F=0)
- $R_{\text{fase}} + R_{\text{F}} / / R_{\text{N}} + R_{\text{PEN}} \sim m\Omega$.
- I_F é muito elevada para R_F=0 (falta franca), logo o DTM deve atuar por curto-circuito.

• A NBR 5410 define para o esquema TN-C:

$$|Z_s|$$
. $I_a \leq U_o$ (1)

Onde:

Z_s é a impedância do percurso da corrente de falta;

I_a é a corrente que assegura a atuação do dispositivo de proteção num tempo no máximo igual ao especificado na tabela 20 ou a 5 s nos casos previstos na Nota de 5.1.3.1.3; e

Uo é a tensão nominal entre fase e terra.

Tabela 20 – Tempos de seccionamento máximos no esquema TN

U _o	Tempo de seccionamento (s)				
(V)	Situação 1	Situação 2			
115, 120, 127	0,8	0,35			
220	0,4	0,20			

- Se a condição (1) for atendida, ocorrerá seccionamento automático.
- Não pode ser usado DDR (Dispositivo Diferencial Residual). Mas por que?
- O que ocorreria se perdessemos o condutor PEN da instalação elétrica?
- Segundo a NBR 5410/2004, no esquema TN-C a seção mínima do condutor PEN deve ser de 10 mm². Por que?

• O que acontece quando ligamos o condutor PEN (esquema TN-C) a carcaça de um equipamento elétrico, e uma pessoa não isolada da terra toca no equipamento?

- Terceiro sistema TN:
 - TN-C-S as funções de neutro e de proteção são combinadas em um único condutor em uma parte do sistema e depois separadas.

esquema TN-C-S de aterramento.

• O que aconteceria se o condutor PEN fosse rompido?

7.5.2- Sistema TT

- O ponto de alimentação da instalação é diretamente aterrado (T).
- As massas são ligadas a eletrodos de aterramento independentes do eletrodo da alimentação (T). As massas podem ser aterradas individualmente ou em grupo.

Exemplo 5.4: Sistema TT, $R_{fase} = 0.1774 \ \Omega$ (condutor de 2,5 mm², $|Z| = 8.87 \ \Omega/Km$, L=20 m), $R_{AT} = R_{AT} = 10 \ \Omega$, $R_F = 0$ (Falta direta), $V_{fase} = 127V$, DTM com $I_n = 20$ A (Classe C), situação 1.

- O DTM não atua!
- Um corrente I_F iria propiciar uma tensão de contato.
- Em sistemas TT é obrigatório o uso de dispositivos diferenciais residuais.

• Como o DTM não atou no exemplo anterior, qual seria a tensão de contato?

 $Pior caso: V_C = V_F (V_R = 0)$

- $R_{fase} = 0.1774 \Omega$
- $R_{AT} = R_{AT} = 10 \Omega$
- $R_F = 0$
- $V_{\text{fase}} = 127V$

$$V_c = \frac{R_{AT}}{R_{fase} + R_{AT} + R_{AT'} + R_F} V_{fase}$$

$$V_c = 63 \text{ V} > 50 \text{ V}$$

• V_c irá gerar uma corrente fatal ao ser humano!

- Como no sistema TT as correntes de falta são pequenas, os disjuntores termomagnéticos não atuam.
- A NBR 5410/2004 obriga o uso de dispositivos diferenciais residuais no sistema TT.
- Prescrições da NBR 5410/2004 para o sistema TT:
 - a) todas as massas protegidas por um mesmo dispositivo de proteção devem ser ligadas por condutor de proteção a um mesmo eletrodo de aterramento. Se forem utilizados vários dispositivos em série, esta prescrição é aplicável a cada grupo de massas protegidas pelo mesmo dispositivo;
 - b) no esquema TT, a proteção contra contatos indiretos por seccionamento automático da alimentação deve ser assegurada por dispositivos a corrente diferencial-residual (dispositivos DR);
 - c) a seguinte condição deve ser atendida:

$$R_A \cdot I_{AD} \leq U_L$$

Onde:

R_A é a soma das resistências do eletrodo de aterramento e dos condutores de proteção das massas;

I_{An} é a corrente diferencial-residual nominal;

U₁ é a tensão de contato limite.

7.5.3- Sistema IT

- O ponto de alimentação não está diretamente aterrado, sendo isolada da terra ou aterrada por uma impedância Z (I), de valor elevado (400 a 1000 Ω).
- As massas podem ser aterradas individualmente ou em grupo. Ainda existe a possibilidade de usar o mesmo aterramento da fonte (T).
- Aplicações em instalações onde a continuidade de serviço é importante, em indústrias com fornos, siderúrgicas, instalações com mineração e hospitais.

• Falta Fase-Terra (I_F)

$$I_F = \frac{V_{fase}}{R_F + R_{AT} + R_{AT'} + Z}$$

Na falta:

- I_F é muito pequena
- $Z \sim 400 \text{ a } 1000 \Omega$

• Falta Fase-Terra (I_F)

Pior caso : $V_C = V_F (V_R = 0)$

Na falta:

• $V_C = R_{AT}I_F$ é muito pequena, logo a pessoa estaria protegida!

Exemplo 5.5) Em um sistema IT ocorre uma falta fase-terra franca (R_F =0) num equipamento de um centro cirúrgico. Adote R_{fase} =0,1774 Ω , R_{AT} = R_{AT} =10 Ω , Z= 1 k Ω , R_{CH} =1 k Ω , R_{CT} =2 k Ω e V_{fase} =220 V. Se uma pessoa tocar neste equipamento ela irá levar um choque elétrico?

$$I_{FT} = \frac{V_{fase}}{R_{fase} + R_F + R_{AT} / (R_{CH} + R_{CT}) + R_{AT'} + Z}$$

$$I_{FT} = 216mA$$

$$V_C = 2,16V$$

Logo a pessoa não levará um choque elétrico, pois V_c<50V.

$$I_{CH} = 1,08mA$$

- Qual o grande problema do Sistema IT?
 - Segunda falta fase-terra, e assim teríamos uma falta fase-fase.
 - Desta forma o sistema seria desligado devido a elevada corrente de falta.

- Prescrições da NBR 5410/2004:
- c) para que n\u00e3o seja imperativo o seccionamento autom\u00e1tico quando de uma primeira falta \u00e0 terra ou \u00e0
 massa, a seguinte condi\u00e7\u00e3o deve ser satisfeita:

$$R_A \cdot I_d \leq U_L$$

onde:

RA é a resistência do eletrodo de aterramento das massas, em ohms;

Id é a corrente de falta, em ampères, resultante de uma primeira falta direta entre um condutor de fase e uma massa. O valor de Id leva em conta as correntes de fuga naturais e a impedância global de aterramento da instalação;

U_L é a tensão de contato limite.

- f) no esquema IT, os seguintes dispositivos de proteção podem ser utilizados na proteção contra contatos indiretos:
 - dispositivos de proteção a sobrecorrente;
 - dispositivos de proteção a corrente diferencial-residual (dispositivos DR).

Tabela 26 — Tempos de seccionamento máximos no esquema IT (segunda falta)

Tensão nominal do circuito		Tempo de seccionamento s			
U	Uo	Neutro não distribuído		Neutro distribuído	
V	V	Situação 1	Situação 2	Situação 1	Situação 2
208, 220, 230	115, 120, 127	0,8	0,4	5	1

U_o-Tensão de fase

U-Tensão de linha

- Prescrições da NBR 5410/2004:
 - Em um sistema IT deve haver um DSI (dispositivo supervisor de isolamento), para indicar a existência de uma primeira falta fase-terra. Tal dispositivo deve acionar um sinal sonoro e/ou visual diretamente à equipe de manutenção.

