Chapitre

Fonctions

3. Précisions sur les applications réciproques

Une application est bijective de $E \to F$ si $\forall y \in F, \exists ! x \in E, y = f(x)$.

On définit une application, appelée réciproque notée $f^{-1}: F \to F$ et $y \longmapsto x = f^{-1}(y)$, avec $\forall y \in F, x = f^{-1}(y) \iff x \in E$ et y = f(x). f est bijective donc f^{-1} est une application.

Propriétés:

- $f \circ f^{-1}(y) = y = Id_F$
- $f^{-1} \circ f(x) = x = Id_E$
- $f \circ Id_E = f : Id_E$ est le neutre à droite pour o
- $Id_E \circ f = f : Id_E$ est le neutre à gauche pour o

En effet, $f \circ f^{-1}(y) = f(f^{-1}(y)) = f(x) = y$.

Théorème 1.1 : Proposition

Soit $f: E \to F$ une application. S'il existe $g: F \to E$ une application telle que : $g \circ f = Id_E$ et $f \circ g = Id_F$. Alors f est bijective et g est la réciproque de f.

π Théorème 1.2 : Corrolaire

Si l'application réciproque exsiste, elle est unique

Exemple : $Id: R \to R$. $Id_R(\sqrt{2}) = \sqrt{2}$.

Conséquence

On peut donc montrer qu'une application est bijective en exhibant sa réciproque

Treuve 1.1:

Je suppose : $f: E \to F$. Soit $g: F \to E$ avec $g \circ f = Id_E$ et $f \circ g = Id_F$

• Montrons que f est bijective.

Soir $y \in F, E?x \in E$, tel que y = f(x), est unique?

$$y = f(x) \Rightarrow g(y) = g(f(x)) = x$$
, car $g \circ f = Id_E$.

Si g = f(x), alors x = g(y). y a au plus un antécédant et f est injective.

De plus, f(x) = f(g(y)) = y car $f \circ g = Id_F$. Donc x = g(y)est bien un antécédant de y par f et c'est le seul.

Conslusion : f est bijective de $E \rightarrow F$

• Montrons $q = f^{-1}$.

f bijective et $F \to E$ et $y \longmapsto x$.

$$f^{-1}(x) = x \iff y = f(x) \text{ et } x \in E.$$

Vérifions que $\forall y \in F, f^{-1}(y) = g(y)$.

 $f^{-1}(y) = x \iff f(x) = y \iff g \circ f(x) = g(y) \Rightarrow x = g(y).$ Donc $g(y) = f^{-1}(y) \forall y \in F$.

Donc l'implication est démontrée.

Théorème 1.3 : Proposition

Soit $f: E \to F$ et $g: F \Rightarrow G$ deux applications bijectives. $g \circ f:$ $E \to F \to G$ et $x \longmapsto f(x) \longmapsto g(f(x))$ Alors $g \circ f$ est bijective.

Théorème 1.4 : Proposition

Soit $f: E \to F$ bijective et notons $f^{-1}: F \Rightarrow E$ sa réciproque. Alors f^{-1} est bijective de réciproque f.

Û

Preuve 1.2:

Si f est bijective, alors $f\circ f^{-1}=Id_F$ et $f^{-1}\circ f=Id_E$. D'après la proposition précédante, f^{-1} est bijective

3. Généralités sur les fonctions de R dans R

3.2.1

Une fonction f de R dans R est une correspondance de R dans R telle que tout élément de l'ensemble de départ a au plus une image dans l'ensemble d'arrivée. On ne change pas le domaine d'arrivé mais on s'autorise à changer le domaine de départ.

Exemples:

- $R \to R$ et $x \longmapsto \sqrt{x-1}$ f(o) n'est pas définie
- $R \to R$ et $x \longmapsto \log(x)$. Log est une application de R_+^* dans R.

On note F(R,R) les fonctions de R dans R

Théorème 2.1 : Ensemble de définition

Soit f de R dans R une fonction. Le domaine de définition de f est l'ensemble, noté $Df=\{x\in R, f(x) \text{existe}\}$ Alors, $Df\to R$ est une application.

Exemple : $f:R\to R$, $x\longmapsto \sqrt{x^2-x-1}\ f$ est définie si le polynome est positif, i.e $x\le \alpha$ et $\ge \tau$

Exemple : $f:R\to R$, $x\longmapsto \log(\frac{1-x}{1+x})$. f est définie si la fraction est supérieure à o et $1+x\neq 0$ Donc le domaine de définition est]-1,1[

Remarque

Montrer que 2 fonctions sont égales : $\forall x \in D_f = D_g, f(x) = g(x)$

3.2. Monotonie

Soit f de R dans R une fonction. Elle est croissante sur R, respectivement strictement croissante si $\forall x, x' \in D_f, x \leq x' \Rightarrow f(x) \leq g(x)$ respectivement $\forall x, x' \in D_f, x < x' \Rightarrow f(x) < g(x)$.

Exemple : $f(x) = 2x \ \forall x, x' = 2x' - 2x = 2(x' - x) > 0$, donc elle est croissante.

Exemple : $g(x)=\frac{1}{x}$ est strictement décroissante : $\frac{1}{x'}-\frac{1}{x}=\frac{x-x'}{x'x}<0$. Donc g est bien décroissante sur R_+^* .

Si f est (strictement) croissante ou décroissante sur D_f , on dit qu'elle est (strictement) monotone sur D_f

Théorème 2.2: Proposition

Soit $f:I\to R$, si f est strictement monotone sur I, alors f est injective de I sur R.

Preuve 2.1

Pour une fonction strictement décroissante.

 $\forall x,x',x'>xf(x)>f(x')$ et donc $f(x)\neq f(x')$ $\forall x,x',x'< x,f(x)< f(x')$ et donc $f(x)\neq f(x')$

Donc, on a bien $\forall x \neq x' \Rightarrow f(x) \neq f(x')$

3.2. Fonctions majorées et minorées

Soit $f: R \to R$ Soit $I \in D_R$.

f est majorée sur I s'il existe $M \in R, \forall x \in I, f(x) \leq M$.

f est minorée sur I s'il existe $m \in R, \forall x \in I, f(x) \geq m$.

Elle est bornée sur I, si f est majorée et minorée sur $I \iff \exists M \in \mathbb{R}^+, \forall x \in I, |f(x) \leq M.$

Exemple de fonctions majorées

- $\cdot \cos(x) : \forall x \in \mathbb{R}, |\cos(x)| \le 1$
- $x \mapsto \exp(x)$ est minorée par o.
- $x \longmapsto -x^2$ est majorée par 30

Montrer que la fonction est non majorée

On montre que $\forall M \in \mathbb{R}, \exists x \in I, f(x) > M$.

3.2.4 mage directe et image récirproque

On se donne $f \in F(R,R)$.

Soit I un intervalle de \mathbb{R} . $f(I)=\{f(x),x\in I\}=\{y\in\mathbb{R},\exists x\in I,y=f(x)\}.$

Soit J un intervalle de \mathbb{R} . $f^{-1}(J) = \{x \in D_f, f(x) \in J\} = \{y \in \mathbb{R}, \exists x \in I, y = f(x)\}.$

3. Limites d'une fonction en un point ou en l'infini

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction.

3.3. Limite en un point

Voisinage épointé

Voisinage épointé de x_0

Un intervalle ouvert contenant x_0 , privé de x_0 . On le note V_{x_0} . $V_{x_0}=]x_0-\epsilon, x_0+\epsilon[\setminus\{x_0\}$

f a une limite finie si:

est définie sur un voisinage épointé de x_0 et pour toute suite (u_n) est convergente vers x_0 et à valeurs de x_0 ,

$$\lim_{\infty} f(u_n) = l$$

avec (u_n) tend vers x_0 .

Cela équivaut à : $\forall \varepsilon > 0, \exists \alpha > 0, \forall x, 0 < |x - x_0| < \alpha \Rightarrow |f(x) - l| < \epsilon.$

Exemple : $\lim_{x \to 0} \frac{0}{x} = 0$, car x est défini au voisinage épointé de o.

Limites infinies

f a une limite valant $+\infty$ si:

- f st définie sur un voisinage épointé de x_0
- pour toute suite (u_n) à valeurs dans V_{x_0} et de limite x_0 , on a :

$$\lim_{\infty} f(u_n) = +\infty$$

• $\forall A>0, \exists \alpha>0, 0<|x-x_0|<\alpha \Rightarrow f(x)>A$ (équivalente à la proposition précédente)

De même en $-\infty$:

- f st définie sur un voisinage épointé de x_0
- Pour toute suite (u_n) à valeurs dans V_{x_0} ,

$$\lim_{\infty} f(u_n) = -\infty$$

• $\forall A>0, \exists \alpha>0, 0<|x-x_0|<\alpha \Rightarrow f(x)<-A$ (équivalente à la proposition précédente)

3.3.2 imites en + l'infini

On se donne f définie au voisinage de $+\infty$: $\exists a \in \mathbb{R}$, f est définie sur $[a,+\infty[$.

Limite finie *l*

$$\forall \epsilon > 0, \exists A > 0, x > A \Rightarrow |f(x) - l| < \epsilon$$
 Schéma 2

Limite + infinie

La limite vaut $+\infty$ si $\forall A>0, \exists R>0, x>R \Rightarrow f(x)>A.$

Limite - infinie

Schéma 3 La limite vaut $-\infty$ si $\forall A>0, \exists R>0, x>R \Rightarrow f(x)<-A.$

3,3, Bimites en - l'infini

On se donne f définie au voisinage de $-\infty$: $\exists a \in \mathbb{R}$, f est définie sur $]-\infty,A[.$

MATHÉMATIQUES & Fonctions, Limites et opérations

Limite finie *l*

$$\forall \epsilon > 0, \exists R > 0, x < -R \Rightarrow |f(x) - l| < \epsilon$$

Limite + infinie

La limite vaut $+\infty$ si $\forall A>0, \exists R>0, x<-R\Rightarrow f(x)>A.$

Limite - infinie

La limite vaut $-\infty$ si $\forall A>0, \exists R>0, x<-R\Rightarrow f(x)<-A.$

3.4 imites et opérations

Soit $a\in\mathbb{R}\cup\{\pm\infty\}$, avec f,g définies sur un voisinage épointé de a. On suppose que f,g a une limite $b\in\mathbb{R}\cup\{\pm\infty\}$, alors on a pour f+g: Tableaux à récupérer :

3.4.\$omme

$\lim_{x \to \alpha} f$	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to \alpha} g$	ℓ'	$\pm \infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to \alpha} f + g$	$\ell + \ell'$	$\pm \infty$	$+\infty$	$-\infty$	F. I.

3.4. Produit

$\lim_{x \to \alpha} f$	ℓ	$\ell \neq 0$	0
		ou ±∞	
$\lim_{x \to \alpha} g$	ℓ'	$\pm\infty$	$\pm \infty$
$\lim_{x \to \alpha} f \times g$	$\ell \times \ell'$	$\pm \infty$	F. I.

3.4. Quotient

$\lim_{x \to \alpha} f$	ℓ	ℓ	0	$\ell \neq 0$	$\pm \infty$	$\pm \infty$
$\lim_{x \to \alpha} g$	$\ell' \neq 0$	$\pm\infty$	0	0	ℓ'	$\pm \infty$
$\lim_{x \to \alpha} \frac{f}{g}$	$\frac{\ell}{\ell'}$	0+ ou 0-	F. I.	$\pm \infty$	$\pm \infty$	F. I.

3.4.4 imite d'une fonction composée

```
Soit f = v \circ u.
\lim u(x) = b
\lim_{x \to 0} v(x) = c
\lim_{x \to \infty} f(x) = c
```

3. Fonctions continues

Soit I un intervalle ouvert de \mathbb{R} . Soit $f: I \to \mathbb{R}$, f est définie sur I.

3.5. Définition

f est continue en x_0 si $\lim_{x_0} f = f(x_0)$. Ce qui est équivalent à $\forall arepsilon >$ $0, \exists \alpha>0, |x-x_0|<lpha \Rightarrow |f(x)-f(x_0)|<arepsilon.$ Ce qui est équivalent à $\forall (U_n), \lim_{\infty} f(U_n) = f(x_0).$ On a donc $: \lim_{\infty} f(U_n) = f(\lim_{\infty} U_n).$

3.5 Exemples

- · Fonction polynomiales, sinus, cosinus, tangente, exponentielle, logarithme, sont
- · fonction valeur abosolue continue

On dit que f est continue sur l'intervalle I si elle est continue en tout x de I.

3. Continuité et opérations

On prend 2 fonctions f et g continues sur I. Alors f + g, fg sont continues sur I et $\frac{f}{g}$ est continue en tout point de I tel que $g(x) \neq 0$.

Théorème 6.1 : Continuité des composées

Soient $f: I \to J$ une fonction continue surI, à valeurs dans $I \in \mathbb{R}$ et $g:I\to J\in\mathbb{R}$. Alors $g\circ f$ est continue sur I.

Preuve 6.1

Soit $x_0 \in I$

Soit $\epsilon > 0 \exists ?\alpha > 0$, tel que $|x - x_0| < \alpha \Rightarrow |g(f(x)) - g(f(x_0))| < \varepsilon$.

Soit $\varepsilon > 0$ donné. On cherche α tel que $y_0 = f(x_0)$. Notons alors y=f(x). g est continue en x_0 , donc $\exists \eta>0$, $|y-y_0|<\eta\Rightarrow$ $|g(y)-g(y_0)|<\varepsilon.$

Or, f est continue en x_0 , donc $\exists \alpha > 0, |x - x_0| \Rightarrow |f(x) - f(x_0)| < 0$ $\eta \Rightarrow |g(f(x)) - g(f(x_0))| < \varepsilon \operatorname{Car}|y - y_0| < \eta \Rightarrow |g(y) - g(y_0)| < \varepsilon$

Donc $g \circ f$ est bien continue en x_0 .

3.6. Théorème des valeurs intermédiaires

Théorème 6.2: TVI

Soit $f: I \to \mathbb{R}$ une fonction et $(a \le b) \in I$. On suppose f continue sur [a,b].

Alors $\forall y_0 \in [f(a), f(b)], \exists x_0 \in [a, b], y_0 = f(x_0).$

Théorème 6.3 : Variante du TVI

Il est équivalent à :

si f est continue sur [a,b] et $f(a) \times f(b) \leq 0$, alors $\exists c \in [a,b], f(c) =$

π Preuve 6.2 : Par dichotomie

Supposons par exemple que $f(a) \leq 0 \leq f(b)$, de sorte que $0 \in$ [f(a), f(b)] (l'autre cas s'y ramène en considérant f). On construit par récurrence deux suites (a_n) et (b_n) de la façon suivante.

On part de $a_0 := a$, $b_0 := b$, et supposant construits a_n et b_n tels que $f(a_n) \le 0 \le f(b_n)$, on considère la valeur de f en $(a_n + b_n)/2$, milieu du segment $[a_n, b_n]$.

On construit alors a_{n+1} et b_{n+1} ainsi :

• si $f(\frac{a_n+b_n}{2}) < 0$, on pose $a_{n+1} = \frac{a_n+b_n}{2}$ et $b_{n+1} = b_n$.

· Sinon, c'est à dire si $f(\frac{a_n+b_n}{2})\geq 0$, on pose $a_{n+1}=a_n$ et $b_{n+1}=\frac{a_n+b_n}{2}$.

On voit ainsi que:

- 1. $a_n \le a_{n+1} \le b_{n+1} \le b_n$
- 2. $0 \le b_n a_n = \frac{b-a}{2^n}$ (On divise par 2 à chaque fois la longueur initiale b-a
- 3. $f(a_n) \le 0 \le f(b_n)$

En particulier, $\lim_{\infty} |b_n - a_n| = 0$ et les 2 suites sont adjacentes.

Elles convergent donc vers une unique limite c. On a $c \in [a,b]$ car $a_n \in [a,b]$ et comme f est continue, on a : $\lim_{\infty} f(a_n) = f(c) = f(b_n)$.

Les doubles inégalités 2 et 3 impliquent que c=0.

3.6.7 héorème de Heine

Théorème 6.4: Théorème de Heine

L'image continue d'un intervalle fermé et borné est un intervalle fermé et borné.

Soient $a < b \in \mathbb{R}$ et $f:[a,b] \to \mathbb{R}, f$ continue sur [a,b], alors $\exists m \in \mathbb{R}, M \in \mathbb{R}, m \leq M$ tels que f([a,b] = [m,M] en particulier $\exists x_0 \in [a,b], f(x_0) = m$ et $\exists x_1 \in [a,b], f(x_1) = M$

Corrlolaire : sif est continue sur [a,b], alors f est bornée sur [a,b] et atteint ses bornes.

Preuve 6.3

On montre d'abord que la fonction est bornée, puis qu'elle atteint ses bornes.

Montrons que la fonction est bornée. Soit $f:[a;b]\to\mathbb{R}$, avec a< b. On suppose la fonction f non majorée (hypothèse de la démonstration par l'absurde). Dans ce cas, $\forall M, \exists t\in [a,b], t\geq M$.

En posant $M=n\in\mathbb{N}$, on a $t_n\in[a,b], f(t_n)\geq n=M$. La suite obtenue est bornée, on peut en extraire une suite convergente (t_{n_k}) de limite α .

Nous avons donc $f(t_{n_k}) \geq n_k, \forall k \in \mathbb{N}$.

f est continue, donc la suite $(f(t_{n_k})) \to f(\alpha)$.

Or, d'après $f(t_{n_k}) \geq n_k$, la suite devrait tendre vers $+\infty$. Il y a contradiction, donc f est majorée. On applique ce qui précède pour montrer que f est minorée.

Montrons qu'elle atteint ses bornes.

Notons maintenant α sa borne inférieure et supposons qu'elle n'est pas atteinte pas f. Posons alors la fonction $g:[a,b]\to \mathbb{R}, g(t)=\frac{1}{f(t)-\alpha}.$ g est bien continue sur [a,b] par composition.

Soit M>0 donné. Par définition de la borne inférieure, nous savons qu'il existe $t\in [a,b]$ tel que $\alpha\leq f(t)<\alpha+\frac{1}{M}$, et donc que g(t)>M. M étant arbitraire, g n'est pas majorée. Or, cela contredit la première partie de la démonstration.

3.6. Réciproque d'une application continue strictement monotone

π Théorème 6.5 :

Si f est continue sur [a,b] et strictement monotone sur [a,b], alors f réalise une bijection de [a,b] dans J=[f(a),f(b)] et $f^{-1}:J\to I$ sa récirproque, de même monotonie sur J

3.6. Remarque

Non équivalence entre la dérivabilité et la continuité

Continuité ≠ dérivabilité : dérivabilité ⇒ continuité, mais pas l'inverse. La fonction valeur absolue est continue en o mais non dérivable en o.

3. Fonctions dérivables

Soient $a, b \in \mathbb{R}, a < b$.

3.7. Généralité

$\hat{\pi}$

Théorème 7.1: Définition 1

Soit $x_0 \in [a, b]$.

f est dérivable en x_0 si $\lim_{0} \frac{f(x_0+h)-f(x_0)}{h}$ existe et est finie. On note alors cette limite $f(x_0)$.

On dit que f est dérivable sur [a,b] si f est dérivable en tout $x_0 \in [a,b]$, et dérivable à droite en a et à gauche en b.

On définit $f':[a,b]\to\mathbb{R}, x\to f'(x)$.

 $\frac{f(x_0+h)-f(x_0)}{h}$ est la pente de la corde reliant $f(x_0+h)$ et $f(x_0)$.

$\widehat{\pi}$

Théorème 7.2 : Définition alternative et meilleure

Soit $x_0\in]a,b[$ f est dérivable en x_0 s'il existe $l\in \mathbb{R}$ et une fonction ε définie au voisinage de o tels que $f(x_0+h)=f(x_0)+lh+h\varepsilon(h)$ où $\lim_0 \varepsilon(h)=0$. On note $l=f'(x_0)$

On a : $f(x) = f(x_0) + f'(x_0)h + h\varepsilon(h)$ On a $f(x_0) + f'(x_0)h$ qui est l'équation de la tangente en x_0 à la courbe.

Preuve rapide : $f(x_0 + h) = f(x_0) + lh + h\varepsilon(h) \iff \varepsilon(h) = \frac{f(x_0+h)-f(x_0)}{h} - l$

3.7. Dérivées

 $(f \circ u)' = u' \times (f' \circ u)$

Théorème 7.3 : Dérivée de la réciproque

On donne un intervalle $I,J\in\mathbb{R}$ et $f:I\to J$. On suppose f dérivable sur I et que f est bijective de $I\to J$. On notte $f^{-1}:J\to I$ la réciproque. Elle est dérivable en $y_0\in J\iff f'(f^{-1}(y_0))\neq 0$ On alors : $(f^{-1})'_{y_0}=\frac{1}{f'(f^{-1}(y_0))}=\frac{1}{f'(x_0)}$ avec $x_0=f^{-1}(y_0)$.

Rappel : La courbe de f^{-1} est symétrique de la courbe de f par rapport à y=x

Moyen mnomotechnique : $f^{-1} \circ f = Id \iff f'(x)(f^{-1})'(f(x)) = 1$

Î

Preuve 7.1

On pose $f^{-1}(y_0) = x_0$ Si f^{-1} est dérivable en x.

On a
$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$
.

On pose alors y = f(x) et $x_0 = f^{-1}(y_0)$. Donc $y \to y_0 \iff x \to x_0$ car les fonctions sont continues.

Donc
$$\lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)} \text{ Si } f'(x_0) \neq 0.$$

3. Théorème des accroissements finis et de Rolle

a < b

3.8. Théorème des accroissements finis

Soit $f:[a,b]\to\mathbb{R}$. Si f est continue sur [a,b] et dérivable sur]a,b[. Alors $\exists c\in]a,b[,rac{f(b)-f(a)}{b-a}=f'(c)$

Preuve 8.1

On suppose f continue sur [a, b] et dérivable sur [a, b].

On considère une fonction auxilliaire $\varphi(t)=(t-a)(f(b)-f(a))-(b-a)(f(t)-f(a)).$

 φ est continue sur [a,b] et dérivable sur]a,b[car f l'est.

$$\varphi(b) = 0 = \varphi(a)$$

D'après le Théorème de Rolle, il existe $c \in]a,b[,\varphi'(c)=0.$

Or,
$$\varphi'(t)=f(b)-f(a)-(b-a)f'(t)$$
, donc $\varphi'(c)=0\iff f'(c)=\frac{f(b)-f(a)}{b-a}$.

3.8. Théorème de Rolle

Soit $f:[a,b]\to\mathbb{R}$. Si f est continue sur [a,b] et dérivable sur]a,b[et f(a)=f(b). Alors $\exists c\in]a,b[,f'(c)=0$

Î

Preuve 8.2

f étant continue sur [a,b], elle est bornée et atteint sa borne inférieure α et sa borne supérieure β . Prenons donc c et d dans [a,b] tels que $f(c)=\alpha$ et $f(d)=\alpha$.

Si $\alpha=\beta$, alors la fonction est en fait constante, et donc en tous les points $c\in]a,b[$, la dérivée s'annule.

Sinon, on a $\alpha \neq \beta$, et donc l'un des deux est différent de f(a) = f(b). Disons par exemple que $f(c) = \alpha < f(a) = f(b)$. Donc $c \neq a$ et $c \neq b$, soit $c \in]a,b[$ et f'(c) = 0.

En effet,
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - m}{x - x_0} \le 0.$$

$$\text{Mais } f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - m}{x - x_0} \ge 0.$$

Donc $f'(x_0) \ge 0$ et ≤ 0 , donc $f'(x_0) = 0$.

3. Méthode

3.9. Montrer la limite finie d'une fonction en un point x_0

On doit montrer que $\forall \varepsilon>0, \exists \alpha>0, \forall x,0<|x-x_0|<\alpha \Rightarrow |f(x)-l|<\epsilon.$ Pour un ε donné, il faut donc trouver un α .

Pour ce faire, on conserve dans la fonction ce qui tend vers o quand $x \to x_0$ et on majore en valeur absolue la limite du reste par une quantité dépendante de x_0 et non x.

Le but est d'obtenir une expression de α en fonction de ε .

Exemple : Montrons que $\lim_{x \to x_0} x^2 \to x_0^2$.

$$\forall \varepsilon > 0, \exists ?\alpha > 0, \forall x, 0 < |x - x_0| < \alpha \Rightarrow |f(x) - l| < \epsilon$$

$$f(x) - l = x^2 - x_0^2 = (x - x_0)(x + x_0)$$

 $x-x_0$ tend vers o et on veut montrer que $(x+x_0)$ est majorée par une quantité indépendante de x.

On pose $k_0 = \max(|x_0 - 1|; |x_0 + 1|) > 0$.

Donc, si
$$x \in]x_0 - 1; x_0 + 1[\iff |x - x_0| < 1$$
, on a $|x + x_0| \le 2k_0$.

Donc
$$|x - x_0| |x + x_0| \le 2k_0 |x - x_0| < \varepsilon$$
 et $|x^2 - x_0| \le 2k_0 |x - x_0| < \varepsilon$

On tire de l'égalité $2k_0|x-x_0|<\varepsilon$ que $|x-x_0|<\frac{\varepsilon}{2k_0}$.

Donc en choisissant $\alpha = \min(1; \frac{\varepsilon}{2k_0})$, on a bien l'implication souhaitée.

3.9. Lever une forme indéterminée

Le but est d'enlever le terme qui "perturbe notre analyse" en le factorisant puis en effectuant une simplification.

Ainsi, pour une $FI \frac{\infty}{\infty}$, on met le terme de plus haut degré en facteur.

En revanche, pour une FI 0/0, on met en facteur x- la valeur pour laquelle l'expression s'annule. Si elle s'annule 0, on met simplement x en facteur.

3.9. Montrer qu'une fonction n'a pas de limite en x_0

On utilise la définition de la limite avec les suites : $\lim_{\infty} f = l$ si $\forall (u_n), \lim_{\infty} U_n = l \Rightarrow \lim_{\infty} f(U_n) = l$. On montre donc qu'il y a 2 suites tendant vers la limite x_0 en ∞ , mais donc la limite de f quand on les injecte est différente.

Exemple

Montrons que $\sin(\frac{1}{x})$ n'a pas de limite en o.

Posons
$$u_k=rac{1}{2k\pi}$$
 Ici, $\lim_{\infty}\,u_k=0$

Posons
$$v_k=rac{1}{rac{\pi}{2}+2k\pi}$$
 Ici, $\lim_{\infty}\,v_k=0$

Les 2 suites tendent bien vers 0, pourtant $\lim_{\infty} \sin(\pi/2 + 2k\pi) = 1$ et $\lim_{\infty} \sin(2k\pi) = 0$.

Les limites sont différentes, donc $\sin(\frac{1}{x})$ n'a pas de limite en 0.

3.9. Étudier la continuité d'une fonction en un point

On donne la limite à droite et à gauche, puis la valeur atteinte par la fonction au point. Si les 3 valeurs sont égales, la fonction est continue en ce point.

3.9. Étudier la dérivabilité d'une fonction en un point

On étudie la limite du taux d'accroissement de la fonction en ce point : $\lim_{x\to x_0}=rac{f(x)-f(x_0)}{x-x_0}$, que l'on compare avec $f'(x_0)$.

3.9. Créer un intervalle fermé borné à partir d'intervalles infinis pour appliquer le TVI

Si $\lim_{+\infty}=+\infty$, par définition de la limite, $\forall A>0, \exists R>0, x>R\Rightarrow f(x)>A$. En particulier, pour $A=1, \exists R>0, x>R\Rightarrow f(x)>1$. Donc $\exists a=2R, f(a)>1$

Si $\lim_{-\infty}=-\infty$, par définition de la limite, $\forall A>0, \exists R'>0, x>R'\Rightarrow f(x)<-A$. En particulier, pour $A=1, \exists R'>0, x>R'\Rightarrow f(x)<-1$. Donc $\exists b=2R, f(b)<-1$

On peut désormais appliquer le TVI sur l'intervalle [a, b].

3.9. Résoudre un problème impliquant de montrer l'existence d'un intervalle

On doit montrer qu'il existe un intervalle τ durant lequel la fonction augmente de m points. On modélise la problème par une fonction continue sur un certain intervalle [a,b].

Il faut alors montrer que $\exists x \in [a,b], f(x)-f(x-\tau)=m \iff f(x)-f(x-\tau)-m=0$

On pose alors une fonction g sur l'intervalle $[a,b-\tau]$ telle que $g(x)=f(x)-f(x-\tau)-3$

On calcule g aux bornes de son intervalle, a et $b-\tau$ pour montrer que g(a) et $g(x-\tau)$ sont de signe opposé. Comme g est continue, d'après le TVI, il existe c tel que g(c)=0.