Выпускная аттестационная работа бакалавра

Тема: "Игровая программа для симуляции передвижения в специальных условиях"

Выполнил: ст. гр. ПИ-12-1 Шпетный Д.В. Руководитель: доцент Турута А.П.

Аналоги

Актуальные проблемы

Геймплей по большей части завязан на координацию ритма и действия.

Несовершенство алгоритмов.

Малое количество игр жанра.

Отсутствие более полного игрового взаимодействия

Использовать комплексный анализ аудиосигнала, охватывающий не только анализ тактов, но отслеживающий общую энергию произведения.

Теоретические сведения

Схематическое представление события

Алгоритм анализа

Спектр музыкальных инструментов

- Некоторые инструменты являются ключевыми для общей энергии
- Часть инструментов сложно отслеживать в связи с наложением сигналов
- Цифровые эффекты, накладываемые на сигнал мешают анализу

Алгоритм анализа тактов

$$C(\{t_i\}) = \sum_{i=1}^{N} O(t_i) + \alpha \sum_{i=2}^{N} F(t_i - t_{i-1}, \tau_p)$$

где {t_i} это последовательность из N найденных локальных тактов,

O(t) – пакет силы транзиент, найденный из аудио, который велик для моментов когда выбор такта хорош в следствии акустических характеристик,

α — коэффициент взвешенности для балансировки двух взаимосвязей,

 $F(\Delta t,\ t_p)$ это функция для измерения временного соответствия междутактового интервала Δt и идеального расстояния между тактами t_p который определяется исходя из конечного темпа

Алгоритм анализа тактов

$$F(\Delta t, \tau) = -\left(\log \frac{\Delta t}{\tau}\right)^2$$

Функция принимает свое максимальное значение 0 когда $\Delta t = \tau$ и становится значительно меньше нуля для более крупных отклонений. Она также симметрична на логарифической оси времени так, что $F(k\tau, \tau) = F(\tau/k, \tau)$

Алгоритм анализа тактов

$$C^*(t) = O(t) + \max_{\tau = 0...t} \left\{ \alpha F(t - \tau, \tau_p) + C^*(\tau) \right\}$$

Используем локальное значение и стоимость перехода от ожидаемого идеального значения.

Недостатки подхода

Первая часть симфонии №5 Бетховена

Средства разработки

- Языки программированния C#, Python
- Среда разработки Microsoft Visual Studio 2015 Express
- Платформа разработки, игровой движок Unity 3D

Фрагмент программной реализации отслеживания пиков

```
private void DetectPeaks()
double[] prunnedSpectralFlux = new double[m_threshold.Length];
for (int i = 0; i < m_threshold.Length; i++)</pre>
   prunnedSpectralFlux[i] = Math.Max(0, m_soundParser.SpectralFlux[i] - m_threshold[i]);
for (int i = 0; i < prunnedSpectralFlux.Length - 1; i++)</pre>
   if (prunnedSpectralFlux[i] > prunnedSpectralFlux[i + 1])
    m_peaks[i] = prunnedSpectralFlux[i];
   else
    m_peaks[i] = 0;
```

Для человеческого уха пиком в аудио можно считать то, что больше предыдущего значения.

Реализация на демонстрационного игрового уровня

Выводы

- проведен анализ алгоритмов обработки аудиосигнала
- рассмотрены преимущества и недостатки аналогов
- использован комплексный подход в анализе музыкального произведения
- реализована программная система комплексного анализа аудиосигнала
- разработан демонстрационный уровень