Math 623 Fall 2015

Problem Set # 6

(1) Let $f \in L^1(\mathbb{R}^d)$ with $f \geq 0$ a.e. Given any Lebesgue measurable set E, define

$$\mu(E) := \int_E f \ dv$$

Show the following absolute continuity property: for any $\varepsilon > 0$ there exists $\delta > 0$ such that if A and B are measurable sets such that

$$m(A\Delta B) \le \delta$$

then $|\mu(A) - \mu(B)| \le \varepsilon$ $(m(\cdot))$ denotes -as usual- Lebesgue measure in \mathbb{R}^d).

(2) Let $\{x_1, \ldots, x_N\}$ be a finite set of points in \mathbb{R}^d and $\alpha_1, \ldots, \alpha_N$ positive numbers. Define the set function

$$\mu(E) = \sum_{k|x_k \in E} \alpha_k, \quad \text{for any Borel set } E.$$

Show that

- (a) This is a σ -additive measure on the σ -Algebra of Borel sets of \mathbb{R}^d .
- (b) This measure is not absolutely continuous.
- (c) There is no function $L^1(\mathbb{R}^d)$ such that $\mu(E) = \int_E f(x) dx$ for all E.

(3) Let f(x,y) be a positive, differentiable function defined in the unit disc $D \subset \mathbb{R}^2$ and let

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 < 1, \ z = f(x, y)\}$$

Given $A \subset S$, Borel subset of S, define $\pi(A) := \{(x,y) \in D \mid (x,y,f(x,y)) \in A\} \subset D$, and

$$m(A) := \int_{\pi(A)} \sqrt{1 + f_x^2 + f_y^2} \ dx dy$$

Show that $m(\cdot)$ defines a Borel regular measure in S.

- (4) Let $f(x,y) = \sqrt{1-x^2-y^2}$, defined for $x^2+y^2 < 1$. Compute m(S) (you are free to use double integrals since this Lebesgue integral agrees with a Riemann integral).
- (5) Let (X, \mathcal{M}, μ) be a measure space. One can define the **completion** of this space as follows. Let $\overline{\mathcal{M}}$ be the collection of all sets of the form $E \cup Z$ with $E \in \mathcal{M}$ and $Z \subset F$ with $F \in \mathcal{M}$ and $\mu(F) = 0$. Also define $\overline{\mu}(E \cup Z) = \mu(E)$. Then:
 - (a) $\overline{\mathcal{M}}$ is the smallest σ -algebra containing \mathcal{M} and all subsets of elements of \mathcal{M} of measure zero.
 - (b) The function $\overline{\mu}$ is a measure on $\overline{\mathcal{M}}$, and this measure is complete.
- (6) Let (X, \mathcal{M}, μ) be a measure space. Show a) given f, g two measurable functions in X then f+g and fg are also measurable functions b) Given a sequence $\{f_n\}_n$ of measurable functions then $\sup_n f_n(x)$ and $\limsup_n f_n(x)$ are also measurable functions c) If $f(x) = \lim_n f_n(x)$ where $\{f_n\}_n$ is a sequence of measurable functions in X then f is also measurable.

(7) Let (X, \mathcal{M}, μ) be a σ -finite measure space. Show that given any measurable function f in X there exists a sequence of simple functions $\{f_n\}_{n\in\mathbb{N}}$ with $f_n(x) \leq f_{n+1}(x)$ for every x and such that

$$\lim_{n \to \infty} f_n(x) = f(x) \text{ for all } x.$$

(For the **next three problems**, assume always that you are dealing with a σ -finite measure space (X, \mathcal{M}, μ)).

- (8) State and prove the analogue of Egorov's theorem for (X, \mathcal{M}, μ) .
- (9) State and prove the analogue of Fatou's lemma for (X, \mathcal{M}, μ) .
- (10) State and prove the analogue of the Dominated Convergence Theorem for (X, \mathcal{M}, μ) .
- (11) (The Saga of the Change of Variables Formula, Part 1) Let $L: \mathbb{R}^d \to \mathbb{R}^d$ be a linear transformation.
 - (a) Show that there is always some M > 0 such that $|Lx Ly| \le M|x y| \ \forall \ x, y \in \mathbb{R}^d$.
 - (b) Show that if E is compact, then so is L(E). For d=2, provide an example of a linear transformation L and some compact set E such that $L^{-1}(E)$ is no longer compact.
 - (c) Show that if E is a F_{σ} set, so is L(E). Note: See the discussion before Corollary 3.5 in SS Chapter I for the definition of F_{σ} sets.
 - (d) Show that if E is a set of measure zero, then L(E) is also a set of measure zero.
 - (e) Show that if E is a measurable set then L(E) and $L^{-1}(E)$ are also measurabe sets.
- (12) (The Saga of the Change of Variables Formula, Part $1\frac{1}{2}$) Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation. Show that given any measurable set E, then $m(L(E)) = |\det(L)| m(E)$. Hint: Prove the result when E is a square, then use the results from the previous exercise to deal with a general E.
- (13) *Given a set $E \subset \mathbb{R}^2$ and $y \in \mathbb{R}$, we define the "slice"

$$E^y := \{ x \in \mathbb{R} \mid (x, y) \in E \}$$

Show that if E is a Borel set in \mathbb{R}^2 , then E^y is a Borel set for every y.

(14) *Let $X = \mathbb{R}^2_+$ be the upper half plane, thought of as a subset of \mathbb{C} ,

$$\mathbb{R}^2_+ = \{ z \in \mathbb{C} \mid z = x + iy, \quad x, y \in \mathbb{R}, y > 0 \}$$

Given a matrix $A \in SL(\mathbb{R}^2)$, i.e.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a, b, c, d \in \mathbb{R}, \quad ab - dc = 1$$

we define a **fractional linear transformation**, $T: X \to X$, by

$$T(z) = \frac{az+b}{cz+d}$$

Then,

- (a) Check that indeed, $T(z) \in X$ if $z \in X$.
- (b) Compute the Jacobian matrix of T in terms a, b, c and d.
- (c) Given two matrices A_1 and A_2 , call their respective linear transformations T_1 and T_2 . How are the compositions $T_1 \circ T_2, T_2 \circ T_1$ related to the matrices A_1A_2, A_2A_1 ?
- (d) Show that if E is a set of measure zero, then T(E) and $T^{-1}(E)$ are also sets of measure zero.