# Red Flagging Fake News

# Suhas Gupta, Kevin Drever, Imran Manji

```
# load packages
library(data.table)
library(foreign)
library(sandwich)
library(lmtest)
library(stargazer)
library(lfe)
library(car)
library(ggplot2)
library(data.table)
library(knitr)
# options(kableExtra.latex.load packages = FALSE)
library(kableExtra)
library(rgeolocate)
library(data.table)
library(knitr)
library(lmtest)
library(ri2)
library(dplyr)
library(forcats)
```

# Null & Alternate Hypothesis

- NULL Hypothesis: Make people aware of the prevalence of fake news has no effect on its believability
- Alternate Hypothesis: General flags about fake news reduce its believability

## Calculating the sample size

In this section, we calculate the minimum required sample size for our experiment.

The statistical power of an experiment is the experiment's ability to reject the NULL hypothesis when a specific alternate hypothesis is true.

$$\alpha = P(\text{reject } H_0|H_0)$$

where  $\alpha$  is the significance level. We select a significance level of  $\alpha = 0.05$  as a tolerance for Type I errors in our experiment.

Now that we have chosen our significance level, we would like to minimize the probability of Type II error. i.e. we would like to **maximize** the power of our test against the relevan alternative. Mathematically, power is

$$power = 1 - P_r(\text{Type II Error}) = P_r(\text{reject } H_0 | H_1 \text{is true})$$

- We would set the required power of our experiment to be 80% for this study as a reasonable expectation.
- To calculate the power for the test, we need to conjecture an expected ATE and the standard deviation for the outcome in the experiment.
- The outcome is a rating on a scale of 0-10 on how successfull the red flag was in reducing the believability of the fake/misleading social media post. We would like our experiment to be able detect a difference in means of minimum 2 points on this scale.
- We do expect the measured values for this rating to vary significantly as we poll subjects with different political opinions, life experiences and political affiliations. To be on the conservative side, we would like to have enough power in our experiment to minimize Type II errors when the std. deviation is at least 2.5 times the minimum detectable treatment effect.

```
power_sim <- function(ate,sig_level=0.05,power=0.8,alternate_hyp="two.sided", sd = 1){</pre>
    result <- NA
    sims \leftarrow seq(1e-5, sd, by=0.1)
    for(i in seq_along(sims)){
        result[i] <- power.t.test(d=ate,
                                 sig.level=sig_level,
                                 power=power,
                                 sd=sims[i],
                                 alternative=alternate_hyp) $n
        }
    return(result)
    }
sd <- 3
expected_ate <- 0.5
x \leftarrow seq(1e-5, sd, by = 0.1)
samples <- power_sim(ate=expected_ate,sd = sd)</pre>
plot(x = x, y=samples,col = 'blue',
     xlab="Std. Dev",
     ylab = 'Number of subjects',
     main = "Sample size vs. expected variance in outcome (Power = 0.8)")
abline(v=1.0,col='black',lwd=1)
```

# Sample size vs. expected variance in outcome (Power = 0.8)



The above plot shows that we need a minimum sample size of 100 to achieve a power of 0.8 when the outcome variable has a standard deviation 1.0 times the treatment effect. The plot below, validates that the absolute value of minimum treatment effect doesn't change the sample size requirement significantly and that this is determined mostly by the expected variance in the measurement data.

```
power_sim_by_ate <- function(ate_vector,sig_level=0.05,power=0.8,alternate_hyp="two.sided",sd = 1){</pre>
    result <- NA
    for(i in seq_along(ate_vector)){
        result[i] <- power.t.test(d=ate_vector[i],
                                sig.level=sig_level,
                                power=power,
                                sd=sd,
                                alternative=alternate_hyp) $n
        }
    return(result)
sd <- 1
expected_ate <- 3
x <- seq(1e-5, expected_ate, by=0.01)
samples <- power_sim_by_ate(ate=x,sd = sd)</pre>
plot(x = x, y=samples,col = 'blue',
     xlab= "Desired treatment effect",
     ylab = 'Number of samples',ylim=c(0,100),
     main = "Sample size vs. minimum detectable treatment effect (Power = 0.8)")
abline(v=0.5,col='black',lwd=1)
```

# Sample size vs. minimum detectable treatment effect (Power = 0.8)



# Covariate questions in the survey

- Age
- Political affiliation
- Registered Voter / non-voter
- race
- are you active on social media?
- education (< high school, high school , undergrad, grad)

# Covariates in regression (not in survey)

- Mturk subject
- location of subject

# Experimental Design

#### 2 x 2

- treatment :
  - banner or no banner
  - tweet is false or true
- block by party affiliation and gender

## Treatment & control assginment

• how to randomly assign while blocking for above

## Regression Models

Outcome: Score on how many headlines were correctly identified by subjects (equally balanced True and False posts)

- Baseline model
   outcome ~ general\_flag on survey page
   Model with co-variates
   outcome ~ red\_flag \* gender + red\_flag \* political\_affiliation + factor(age\_group) + factor(education) + red\_flag \* location + registered\_voter + race + social\_media\_active
  - 3. Model with treatment-covariate interactions
    - Test if fake news red flagging affects democrats and republicans differently
    - Test if fake news red flagging affects different age groups differently
    - Test if fake news red flagging affects voters and non voters differently

#### Define functions

```
prune_data <- function(dataset){</pre>
    data_pruned <- dataset[ 3:nrow(dataset),]</pre>
    data\_pruned[, c(6,7)] \leftarrow lapply(data\_pruned[, c(6,7)], as.numeric)
    question_col_names <- c('8B','9B','10B','11B','12B','13B','14B','15B','16B','17B',
                             '8A','9A','10A','11A','12A','13A','14A','15A','16A','17A')
    # Set NA for empty empty strings in question columns (either in treatment or control but not both)
    for(i in c(31:length(names(data_pruned)))){
        data_pruned[[i]][data_pruned[[i]]==''] <- NA</pre>
    # Set assignment group variable (treatment = 1 , control = 0)
    data_pruned[, assignment := ifelse(is.na(data_pruned[,'8B']),0,1)]
    return(data pruned)
}
compute_score <- function(dataset,answer_guide){</pre>
  # compute full score
  for(i in 1:nrow(dataset)){
          dataset[i,"score"] <- sum(dataset[i,31:50] == answer_guide,na.rm=TRUE)</pre>
          dataset[i, "score_false"] <- sum(dataset[i, c(33,35,36,39,40,43,45,46,49,50)] == answer_guide[
          dataset[i, "score_true"] <- sum(dataset[i,c(31,32,34,37,38,41,42,44,47,48)] == answer_guide[c
    }
  return(dataset)
rename_cols <- function(dataset){</pre>
    dt <- rename(dataset,
     Gender = Q1,
     Reg_Voter = Q2,
     Age_bin = Q3,
     Party = Q4,
     Education = Q5,
     Ethnicity = Q6,
     Soc_Med_Active = Q7,
     Voted_2012 = Q38,
```

```
Voted 2016 = Q39,
     Marital_status = Q37,
     Income = Q36,
     Language = Q40
     dt$Gender[dataset$Gender == ''] <-"Unanswered"</pre>
     return(dt)
}
create_question_column <- function(dataset){</pre>
  dataset[, TestQ1 := ifelse(is.na(dataset$'8B'), dataset$'8A', dataset$'8B')]
  dataset[, TestQ2 := ifelse(is.na(dataset$'9B'), dataset$'9A', dataset$'9B')]
  dataset[, TestQ3 := ifelse(is.na(dataset$'10B'), dataset$'10A', dataset$'10B')]
  dataset[, TestQ4 := ifelse(is.na(dataset$'11B'), dataset$'11A', dataset$'11B')]
  dataset[, TestQ5 := ifelse(is.na(dataset$'12B'), dataset$'12A', dataset$'12B')]
  dataset[, TestQ6 := ifelse(is.na(dataset$'13B'), dataset$'13A', dataset$'13B')]
  dataset[, TestQ7 := ifelse(is.na(dataset$'14B'), dataset$'14A', dataset$'14B')]
  dataset[, TestQ8 := ifelse(is.na(dataset$'15B'), dataset$'15A', dataset$'15B')]
  dataset[, TestQ9 := ifelse(is.na(dataset$'16B'), dataset$'16A', dataset$'16B')]
  dataset[, TestQ10 := ifelse(is.na(dataset$'17B'), dataset$'17A', dataset$'17B')]
 return(dataset)
}
# Color palette for qqplot
cbPalette <- c("#009999", "#AA9900")
compute_robust_ci<- function(mod,type="HC",clustering = FALSE,data=NA) {</pre>
  coefs <- names(mod$coefficients)</pre>
  if (clustering){
    # calculate robust clustered standard errors
    robust_se <- sqrt(diag(vcovCL(mod,cluster = data,type=type)))</pre>
  }
  else{
    # calculate robust standard errors without clustering
    robust_se <- sqrt(diag(vcovHC(mod,type=type)))</pre>
  ci_11 <- NA
  ci_ul <- NA
  for(i in 1:length(coefs)){
    ci_ll[i] <- mod$coefficients[[coefs[i]]] - 1.96 * robust_se[i]</pre>
    ci_ul[i] <- mod$coefficients[[coefs[i]]] + 1.96 * robust_se[i]</pre>
    ci_custom <- matrix(c(ci_ll,ci_ul), nrow = length(coefs), byrow = FALSE)</pre>
    return(ci_custom)
}
compute_robust_se<- function(mod,type="HC",clustering = FALSE,data=NA) {</pre>
  coefs <- names(mod$coefficients)</pre>
  if (clustering){
    # calculate robust clustered standard errors
```

```
robust_se <- sqrt(diag(vcovCL(mod,cluster = data,type=type)))</pre>
  }
  else{
    # calculate robust standard errors without clustering
    robust_se <- sqrt(diag(vcovHC(mod,type=type)))</pre>
    return(robust se)
}
```

## Import data

Study 1: Mturk survey 1 was done with a higher reward and no check for BOTs. The survey subject count was 104 and responses were obtained within 24 hours due to the high reward (5-8 min task paid \$1.5).

Study 2: Mturk survey 2 was done with a higher reward and no check for BOTs. The survey subject count was 132 and responses were obtained over a period of 5 days

Study3: Personal and professional network of the experimenters

```
study1_data <- fread('./data/Mturk_nocaptcha/data.csv')</pre>
study2_data <- fread('./data/Mturk_captcha/data.csv')</pre>
study3_data <- fread("./data/NonMturk_wCaptcha/data.csv")</pre>
# head(study1 data)
# head(study2_data)
# head(study3 data)
# names(study1_data)[31:51]
# names(study2_data)[31:51]
# names(study3_data)[31:51]
```

#### Modify data

```
study1_data_pruned <- prune_data(study1_data)</pre>
## Warning in lapply(data_pruned[, c(6, 7)], as.numeric): NAs introduced by
## coercion
## Warning in `[.data.table`(data_pruned, , `:=`(assignment,
## ifelse(is.na(data_pruned[, : Invalid .internal.selfref detected and fixed by
## taking a (shallow) copy of the data.table so that := can add this new column
## by reference. At an earlier point, this data.table has been copied by R (or
## was created manually using structure() or similar). Avoid names<- and attr<-
## which in R currently (and oddly) may copy the whole data.table. Use set* syntax
## instead to avoid copying: ?set, ?setnames and ?setattr. If this message doesn't
## help, please report your use case to the data.table issue tracker so the root
## cause can be fixed or this message improved.
study2_data_pruned <- prune_data(study2_data)</pre>
## Warning in lapply(data_pruned[, c(6, 7)], as.numeric): NAs introduced by
## coercion
## Warning in lapply(data_pruned[, c(6, 7)], as.numeric): Invalid .internal.selfref
## detected and fixed by taking a (shallow) copy of the data.table so that :=
## can add this new column by reference. At an earlier point, this data.table
## has been copied by R (or was created manually using structure() or similar).
## Avoid names <- and attr <- which in R currently (and oddly) may copy the whole
```

```
## data.table. Use set* syntax instead to avoid copying: ?set, ?setnames and ?
## setattr. If this message doesn't help, please report your use case to the
## data.table issue tracker so the root cause can be fixed or this message
## improved.
study3_data_pruned <- prune_data(study3_data)</pre>
## Warning in lapply(data_pruned[, c(6, 7)], as.numeric): NAs introduced by
## coercion
## Warning in lapply(data_pruned[, c(6, 7)], as.numeric): Invalid .internal.selfref
## detected and fixed by taking a (shallow) copy of the data.table so that :=
## can add this new column by reference. At an earlier point, this data.table
## has been copied by R (or was created manually using structure() or similar).
## Avoid names <- and attr <- which in R currently (and oddly) may copy the whole
## data.table. Use set* syntax instead to avoid copying: ?set, ?setnames and ?
## setattr. If this message doesn't help, please report your use case to the
## data.table issue tracker so the root cause can be fixed or this message
## improved.
# Rename the covariate columns
study1_data_temp <- rename_cols(study1_data_pruned)</pre>
study2_data_temp <- rename_cols(study2_data_pruned)</pre>
study3_data_temp <- rename_cols(study3_data_pruned)</pre>
# Add score columns
answer_guide <- c('Yes','Yes','No','Yes','No','Yes','Yes','Yes','No','No',</pre>
                  'Yes','Yes','No','Yes','No','Yes','Yes','No','No')
study1 data mod <- compute score(study1 data temp, answer guide = answer guide )
study2 data mod <- compute score(study2 data temp, answer guide = answer guide )
study3_data_mod <- compute_score(study3_data_temp, answer_guide = answer_guide )
# Add indicator variables
study1_data_mod[, Mturk := 1]
study1_data_mod[, captcha := 0]
study2_data_mod[, Mturk := 1]
study2_data_mod[, captcha := 1]
study3 data mod[, Mturk := 0]
study3_data_mod[, captcha := 1]
# Check the data
# head(study1 data mod)
# head(study2_data_mod)
# head(study3 data mod)
```

#### Combine data sets from all studies

```
# combine data set
dt <- rbind(study1_data_mod,study2_data_mod,study3_data_mod)
data_full <- create_question_column(dt)</pre>
```

# Hypothesis

The primary hypothesis and effect that we have set out to test is the following:

H1: Reminding subjects about possiblity of misleading tweets using a genral warning will reduce the perceived accuracy of false headlines relative to a no-warning scenario.

We also want to check the spillover effect of this general warning about fake news on people's trust in true news/headlines.

H2: Reminding subjects about possiblity of misleading tweets using a genral warning will also reduce their trust in true headlines/news relative to a no-warning scenario.

### **Experimental Method**

## **Participants**

The study was conducted online through survey forms created using the Qualtric Survey service provided to us by the University of California, Berkeley. There were two types of participants recruited for this study:

- 1. Participants recruited using the Amazon Mechanical Turk service
- Although samples from Mturk are not nationally respresentative, results from the study closely match those obtained from other samples (e.g., Berinsky et al. 2012; Coppock 2016; Horton et al. 2011; Mullinix et al. 2015)
- Non-US residents, were not allowed to participate.
- 2. Participants recruited through experimenters' personal and professional network using personal contacts, direct messages, social media network and email.

< Fill in the text about sample distribution from the data analysis>

#### **Procedure**

The experiment design used individual random assignment to place subjects in treatment and control. Table 1 shows the distribution of subject randomly assigned to treatment and control for each of the participant group described above. The survey would display warning before presenting the test questions to a subjects if the subject was placed in the treatment group. If the subject was placed in the control group, then no warning would be displayed on the questions. We focused on posts made on the social media platform Twitter as the source for all headlines used in the survey. The tweets were mainly from three broad categories 1) US politics 2) Climate change and general belief in science 3) Random facts about US. After each headline, the question asked the participant whether they believe the information in the headline is true or not. The scoring was based on the total number of correct responses (responses that match the group truth about each headline).

```
col1 <- c("Treatment", "Control")
col2 <- c("General Warning", "No Warning")
col3 <- c("X", "Y")
dt<- data.table(col1,col2,col3)

colnames(dt) <- c("Assignment Group", "Flag", "N")
kable(dt, "latex", booktabs=T)</pre>
```

| Assignment Group | Flag            | N |
|------------------|-----------------|---|
| Treatment        | General Warning | X |
| Control          | No Warning      | Y |

#### check experimental data

#### Randomization

The randomization worked well in the survey software and we had an equal allocation to treatment and control groups in the experiment

```
dt <- data_full[, .(count = .N), by=assignment]
ggplot(dt, aes(x = assignment, y = count)) +
   geom_bar(stat="identity", fill="steelblue")</pre>
```



#### Power

The data collected has 80% power in detecting any treatment effect that may exist in this experiment

```
## Power calculation
d <- data_full[, .(score_false = mean(score_false)), by = assignment]</pre>
ate <- diff(d$score_false)</pre>
sd <- data_full[, sd(score_false)]</pre>
power.t.test(d=ate,sig.level=0.95,n=nrow(data_full),sd=sd,alternative="one.sided")
##
##
        Two-sample t test power calculation
##
##
                  n = 313
              delta = 0.062
##
##
                 sd = 1.6
         sig.level = 0.95
##
```

```
## power = 0.98
## alternative = one.sided
##
## NOTE: n is number in *each* group
```

#### **EDA**

Figure 1 summarizes the score of subjects in each assignment group (treatment/control) and for true and false tweets. The table and figures indicate that a general flag slightly decreased the overall score for the subjects ability to detect whether a tweet was true or false. Looking at the third and fourth column of Table1, we see that the detection ability (score) for true tweets decreased slightly in the presence of the general warning flag while the score for detecting false tweets improved slightly. This suggests that though the general warning flag about fake news might improve people's ability to accurately detect false information, it also reduces the belief in true information as well. We will test our hypothesis and research questions more formally in the upcoming sections.

```
dt <- data_full[, .(mean_total_score = mean(score), mean_true_score = mean(score_true), mean_false_score
dt$Warning Flag[dt$assignment == 0] <- "No Flag"</pre>
dt$Warning Flag[dt$assignment == 1] <- "Flag"</pre>
dfm <- melt(dt[,c('Warning_Flag','mean_total_score')],id.vars = 1)</pre>
dfm <- rename(dfm,</pre>
       Assignment = Warning_Flag,
       Score_Type = variable,
       Score = value)
ggplot(dfm, aes(x = Assignment, y = Score, label=sprintf("%0.2f", round(Score, digits = 2)))) +
  geom_bar(stat="identity", fill="steelblue", width = 0.5) +
  geom_text(size=3.5, color="white", vjust=1.5) +
  ggtitle("Figure 1. Average score for all tweets by survey assignment group") +
  ylab("Mean Total Score") +
  xlab("Survey Group")
  theme(plot.title = element_text(hjust = 0.5)) +
  theme minimal()
```







Figure 2. General warning effect on true and false tweets

We find from figures 3 and 4 that a large majority of users identified themselves as being active on social media and most of the survewy participants were registered voters in the united states.

A large portion of survey subjects said that they considered themselves to be active on social media

```
data_full$Soc_Med_Active[data_full$Soc_Med_Active == ''] <- "Unanswered"
ggplot(data_full) + geom_bar(aes(x = Soc_Med_Active))</pre>
```



Alse, majority of survey subjects said that they were registered as a voter

```
data_full$Reg_Voter[data_full$Reg_Voter == ''] <- "Unanswered"
ggplot(data_full) + geom_bar(aes(x = Reg_Voter))</pre>
```



There appears to be an increase of 6% in score of participants for correctly identifying the false tweets with a confidence interval of (-0.3,0.420) before including control for mechanical turk participants and BOT checks. We added indicator variables for participants recruited on mechanical turk as participants on amazon's mechanical turk may not be accurate representatives of general US population. Futhermore, we also added an indicator variable for a BOT check being present in the survey to control for any malignant activity on mechanical turk (using BOTs to answer survey and earn monetray rewards). Since the CAPTCHA verification was added in the latter half of the experiment, we added an indicator variable in regression to control for errors due to BOT activity. We see that the 95% confidence intervals shrink slightly when we control for these covariates. The model in the third column will be our baseline model. The coefficient for assignment variable in the table is not statistically significant in this model.

```
mod1 <- lm(score_false ~ assignment, data_full)
mod2 <- lm(score_false ~ assignment+Mturk, data_full)
mod3 <- lm(score_false ~ assignment+Mturk+captcha, data_full)
ci_custom1 <- compute_robust_ci(mod1)
ci_custom2 <- compute_robust_ci(mod2)
ci_custom3 <- compute_robust_ci(mod3)
se_custom1 <- compute_robust_se(mod1)
se_custom2 <- compute_robust_se(mod2)
se_custom3 <- compute_robust_se(mod3)
# stargazer(mod1, mod2, mod3, type="text", ci.custom = list(ci_custom1, ci_custom2, ci_custom3))
stargazer(mod1, mod2, mod3, type="latex", se = list(se_custom1, se_custom2, se_custom3))</pre>
```

% Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harvard.edu % Date and time: Sat, Aug 08, 2020 - 20:48:54

Figure 5 examines the distribution of the survey participants by Gender and shows that we have a well balanced data set in terms of gender distribution.

Table 1:

|                         |                      | $Dependent\ variable:$       |                              |  |
|-------------------------|----------------------|------------------------------|------------------------------|--|
|                         |                      | $score\_false$               |                              |  |
|                         | (1)                  | (2)                          | (3)                          |  |
| assignment              | 0.062                | 0.056                        | 0.061                        |  |
|                         | (0.180)              | (0.170)                      | (0.140)                      |  |
| Mturk                   |                      | $-1.200^{***}$               | -0.180                       |  |
|                         |                      | (0.150)                      | (0.120)                      |  |
| captcha                 |                      |                              | 2.300***                     |  |
| •                       |                      |                              | (0.190)                      |  |
| Constant                | 3.500***             | 4.400***                     | 2.100***                     |  |
|                         | (0.130)              | (0.130)                      | (0.220)                      |  |
| Observations            | 313                  | 313                          | 313                          |  |
| $\mathbb{R}^2$          | 0.0004               | 0.096                        | 0.450                        |  |
| Adjusted R <sup>2</sup> | -0.003               | 0.090                        | 0.440                        |  |
| Residual Std. Error     | 1.600 (df = 311)     | 1.600 (df = 310)             | 1.200 (df = 309)             |  |
| F Statistic             | 0.110  (df = 1; 311) | $16.000^{***} (df = 2; 310)$ | $83.000^{***} (df = 3; 309)$ |  |
| Note:                   |                      | *p<0.1; **p<0.05; ***p<0.01  |                              |  |

```
dt <- data_full[, .(count = .N), by=Gender]
dt$Gender[dt$Gender == ''] <- "Unanswered"

ggplot(dt, aes(x = Gender, y = count)) +
   geom_bar(aes(fill=count), stat="identity", width = 0.5) +
   ggtitle("Figure 5. Gender distribution of survey takers") +
   ylab("Count") + xlab("Gender") +
   theme(plot.title = element_text(hjust = 0.5))</pre>
```



Figure 5. Gender distribution of survey takers

**Figure 6** examines the data distribution based on party affiliation. We see that the Male and Female genders are well balanced for Democrats and Republicans parties while there is a slight skew towards males in *Other* party affiliations. The unanswered or non-conforming genders are only 2 counts in the data set and hence not represented well in this experimental data.

```
data_full$Party[data_full$Party == ''] <- "Unanswered"

dt <- data_full[, .(count = .N), by=.(Gender,Party)]
dt$Gender[dt$Gender == ''] <- "Unanswered"

ggplot(dt, aes(x = Party, y = count)) +
  geom_bar(aes(fill=Gender), stat="identity", width = 0.5) +
  ggtitle("Figure 6. Gender distribution by party affiliation") +
  ylab("Count") + xlab("Gender") +
  theme(plot.title = element_text(hjust = 0.5))</pre>
```





```
dt <- data_full[, .(mean_score_by_gender = mean(score_false)), by=Gender]
dt$Gender[dt$Gender == ''] <- "Other"
ggplot(dt, aes(x = Gender, y = mean_score_by_gender)) +
   geom_bar(aes(Gender), stat="identity", width = 0.5) +
   ggtitle("Figure X. Mean scores by Gender") +
   ylab("Score on False Tweets") + xlab("Gender") +
   theme(plot.title = element_text(hjust = 0.5))</pre>
```



Figure X. Mean scores by Gender

The tweets selected for our experiment deal with US politics, climate change and general US current affair topics. Believability in social media news/headlines/tweets (and thus ability to score correctly on the survey) can have large variation between Republicans vs Democrats or Male vs Female, depending on the type of the tweets selected. Therefore, we next test the affect of displaying a general warning flag on participant score by including interaction terms on top of the baseline regression model. The mean score of different gender identities is different from each other and we will control for this in the regression model to get a better estimate of the treatment effect.

```
mod4 <- lm(score_false ~ assignment*factor(Gender)+Mturk+captcha, data_full)
mod5 <- lm(score_false ~ assignment*factor(Party)+Mturk+captcha, data_full)
mod6 <- lm(score_false ~ assignment*factor(Gender)+assignment*factor(Party)+Mturk+captcha, data_full)
ci_custom4 <- compute_robust_ci(mod4)
ci_custom5 <- compute_robust_ci(mod5)
ci_custom6 <- compute_robust_ci(mod6)

se_custom4 <- compute_robust_se(mod4)
se_custom5 <- compute_robust_se(mod5)
se_custom6 <- compute_robust_se(mod6)

stargazer(mod4,mod5,mod6,type="text",se=list(se_custom4,se_custom5,se_custom6))</pre>
```



```
## assignment
                                          -0.038
                                                                -0.037
                                                                                       -0.160
##
                                          (0.190)
                                                                (0.170)
                                                                                      (0.240)
##
## factor(Gender)Female
                                         -1.100***
                                                                                     -1.000***
                                          (0.290)
                                                                                      (0.280)
##
## factor(Gender)Male
                                         -0.670***
                                                                                     -0.660***
                                          (0.220)
##
                                                                                      (0.200)
##
## factor(Party)Other
                                                                0.280
                                                                                       0.260
##
                                                                (0.230)
                                                                                      (0.230)
##
## factor(Party)Republican
                                                               -0.540**
                                                                                      -0.540**
                                                                (0.260)
##
                                                                                      (0.250)
##
## Mturk
                                          -0.180
                                                                -0.120
                                                                                      -0.130
##
                                          (0.120)
                                                                (0.120)
                                                                                      (0.120)
##
## captcha
                                         2.300***
                                                               2.100***
                                                                                      2.100***
##
                                          (0.190)
                                                                (0.190)
                                                                                      (0.190)
##
## assignment:factor(Gender)Female
                                          0.180
                                                                                      0.230
                                          (0.280)
##
                                                                                      (0.280)
##
## assignment:factor(Gender)Male
##
##
## assignment:factor(Party)Other
                                                                 0.250
                                                                                       0.250
                                                                (0.300)
##
                                                                                      (0.310)
## assignment:factor(Party)Republican
                                                                0.120
                                                                                      0.130
##
                                                                (0.350)
                                                                                      (0.350)
##
## Constant
                                         3.000***
                                                              2.300***
                                                                                      3.200***
##
                                          (0.290)
                                                                (0.240)
                                                                                      (0.300)
## -----
## Observations
                                           313
                                                                 313
                                                                                       313
## R2
                                          0.460
                                                                0.470
                                                                                       0.480
## Adjusted R2
                                          0.450
                                                                0.460
                                                                                       0.470
                                    1.200 (df = 306)
                                                          1.200 (df = 305)
## Residual Std. Error
                                                                                 1.200 (df = 3)
                                 43.000*** (df = 6; 306) 39.000*** (df = 7; 305) 28.000*** (df = 1
## F Statistic
## Note:
                                                                           *p<0.1; **p<0.05; **
mod11a <- lm(score_false ~ assignment+TestQ3+Mturk+captcha, data_full)</pre>
mod11b <- lm(score_false ~ assignment+TestQ5+Mturk+captcha, data_full)</pre>
mod11c <- lm(score_false ~ assignment+TestQ6+Mturk+captcha, data_full)</pre>
mod11d <- lm(score_false ~ assignment+TestQ9+Mturk+captcha, data_full)</pre>
mod11e <- lm(score_false ~ assignment+TestQ3+TestQ5+TestQ6+TestQ9+TestQ10+Mturk+captcha, data_full)
stargazer(mod11a,mod11b,mod11c,mod11d,mod11e,type="text")
##
```

```
##
                                                                                      Dependent
##
##
                                                                                          score
##
                              (1)
                                                      (2)
                                                                             (3)
                             0.087
                                                    0.085
                                                                           0.200*
## assignment
                            (0.100)
                                                    (0.110)
                                                                           (0.100)
##
                          -2.400***
## TestQ3Yes
##
                            (0.150)
                                                   -1.500***
## TestQ5Yes
                                                    (0.120)
##
## TestQ6Yes
                                                                          -2.300***
##
                                                                           (0.150)
##
## TestQ9Yes
##
##
## TestQ10Yes
##
##
## Mturk
                             -0.200
                                                    -0.130
                                                                            -0.120
##
                             (0.130)
                                                    (0.140)
                                                                           (0.130)
## captcha
                             0.980***
                                                    1.600***
                                                                           1.200***
                             (0.140)
                                                    (0.140)
                                                                           (0.140)
##
                            3.600***
                                                    3.300***
                                                                           3.300***
## Constant
##
                             (0.190)
                                                    (0.200)
                                                                           (0.180)
## Observations
                             313
                                                     313
                                                                             313
                             0.690
                                                     0.630
                                                                            0.680
## Adjusted R2
                             0.690
                                                     0.620
                                                                            0.680
## Residual Std. Error 0.910 (df = 308)
                                              1.000 (df = 308)
                                                                      0.930 \text{ (df} = 308)
## F Statistic 174.000*** (df = 4; 308) 129.000*** (df = 4; 308) 166.000*** (df = 4; 308) 186.0
mod11a <- lm(score_true ~ assignment+TestQ3+Mturk+captcha, data_full)</pre>
mod11b <- lm(score_true ~ assignment+TestQ5+Mturk+captcha, data_full)</pre>
mod11c <- lm(score_true ~ assignment+TestQ3+TestQ5+TestQ6+Mturk+captcha, data_full)</pre>
mod11d <- lm(score_true ~ assignment+TestQ9+Mturk+captcha, data_full)</pre>
mod11e <- lm(score_true ~ assignment+TestQ3+TestQ5+TestQ6+TestQ9+TestQ10+Mturk+captcha, data_full)
stargazer(mod11a,mod11b,mod11c,mod11d,mod11e,type="text",
add.lines=list(c("Question Fixed Effects", rep("Yes",5))))
                                                                     Dependent variable:
##
```

score\_true

##

```
(1)
                                                      (2)
                                                                            (3)
## assignment
                               -0.190*
                                                     -0.180
                                                                          -0.200*
##
                               (0.110)
                                                     (0.110)
                                                                          (0.110)
##
## TestQ3Yes
                              0.560***
                                                                          0.450**
                               (0.160)
                                                                          (0.180)
##
## TestQ5Yes
                                                     0.130
                                                                           0.074
##
                                                     (0.120)
                                                                          (0.120)
## TestQ6Yes
                                                                           0.220
                                                                          (0.180)
##
## TestQ9Yes
##
##
## TestQ10Yes
##
##
## Mturk
                                0.047
                                                     0.037
                                                                           0.038
##
                               (0.140)
                                                     (0.140)
                                                                          (0.140)
##
                              -0.400**
                                                    -0.640***
                                                                          -0.320*
## captcha
##
                               (0.160)
                                                    (0.140)
                                                                          (0.170)
## Constant
                              3.700***
                                                    4.000***
                                                                          3.600***
                               (0.200)
                                                     (0.200)
##
                                                                          (0.220)
## Question Fixed Effects Yes
## Observations
                                 313
                                                      313
                                                                            313
## R2
                                0.140
                                                     0.110
                                                                           0.140
                                0.130
                                                     0.098
## Adjusted R2
                                                                           0.130
## Residual Std. Error 0.980 (df = 308) 1.000 (df = 308) 0.980 (df = 306)
## F Statistic
                      12.000*** (df = 4; 308) 9.500*** (df = 4; 308) 8.600*** (df = 6; 306) 9.300**
## -----
## Note:
data_full[, score_TestQ1 := ifelse(TestQ1 == "Yes", 1, 0)]
data_full[, score_TestQ2 := ifelse(TestQ2 == "Yes", 1, 0)]
data_full[, score_TestQ3 := ifelse(TestQ3 == "No", 1, 0)]
data_full[, score_TestQ4 := ifelse(TestQ4 == "Yes", 1, 0)]
data_full[, score_TestQ5 := ifelse(TestQ5 == "No", 1, 0)]
data_full[, score_TestQ6 := ifelse(TestQ6 == "No", 1, 0)]
data_full[, score_TestQ7 := ifelse(TestQ7 == "Yes", 1, 0)]
data_full[, score_TestQ8 := ifelse(TestQ8 == "Yes", 1, 0)]
data_full[, score_TestQ9 := ifelse(TestQ9 == "No", 1, 0)]
data_full[, score_TestQ10 := ifelse(TestQ10 == "No", 1, 0)]
dt <- data_full[, .(countQ1 = sum(score_TestQ1),</pre>
            countQ2 = sum(score_TestQ2),
            countQ3 = sum(score_TestQ3),
            countQ4 = sum(score_TestQ4),
```

```
countQ5 = sum(score_TestQ5),
              countQ6 = sum(score TestQ6),
              countQ7 = sum(score_TestQ7),
              countQ8 = sum(score_TestQ8),
              countQ9 = sum(score_TestQ9),
              countQ10 = sum(score_TestQ10)
              )]
d2 <- data_full[, .(countQ1 = sum(score_TestQ1),</pre>
              countQ2 = sum(score_TestQ2),
              countQ3 = sum(score_TestQ3),
              countQ4 = sum(score_TestQ4),
              countQ5 = sum(score TestQ5),
              countQ6 = sum(score_TestQ6),
              countQ7 = sum(score_TestQ7),
              countQ8 = sum(score_TestQ8),
              countQ9 = sum(score_TestQ9),
              countQ10 = sum(score_TestQ10)
              ), by =assignment]
barplot(dt[,c(countQ3,countQ5,countQ6,countQ9,countQ10)],
        col = c('blue', 'gold'),
        ylab = "Percentage score for correct answer",
        xlab = "Scores for each survey question",
        names.arg= c("Q3","Q5","Q6","Q9","Q10")
      )
```



# Scores for each survey question

```
d2$Warning_Flag[d2$assignment == 0] <- "No"
d2$Warning_Flag[d2$assignment == 1] <- "Yes"

dfm <- melt(d2[,c('Warning_Flag','countQ3','countQ5','countQ6','countQ9','countQ10')],id.vars = 1)
levels(dfm$variable) = c("Q3","Q5","Q6","Q9","Q10")</pre>
```

```
p <- ggplot(dfm,aes(x = variable,y = value)) +
   geom_bar(aes(fill = Warning_Flag),stat = "identity", width=0.7, position=position_dodge(width=0.8)) +
   ggtitle("Figure2. General warning effect on scores for each tweet ") +
   ylab("Percentage score for correct answer") +
   xlab("Question Number") +
   theme(plot.title = element_text(hjust = 0.5)) +
   scale_fill_manual(values = c("blue", "gold"))
</pre>
```

Figure 2. General warning effect on scores for each tweet



• \*\*Score on question 10 is collinear with the scores on other questions. Running regression with the fixed effects of question 10 leads to singularities.

```
mod1 <- lm(score_false ~ assignment+score_TestQ3+score_TestQ5+score_TestQ6, data = data_full)
se_custom1 <- compute_robust_se(mod1)
stargazer(mod1,type="text",se=list(se_custom1))</pre>
```

```
##
## Dependent variable:
## score_false
## one of the state of the st
```

```
##
                                 (0.120)
##
## score_TestQ5
                                1.300***
##
                                 (0.065)
##
## score TestQ6
                               1.500***
                                 (0.120)
##
##
## Constant
                                0.340***
                                 (0.080)
##
##
## Observations
                                   313
## R2
                                  0.900
## Adjusted R2
                                  0.900
## Residual Std. Error 0.520 (df = 308)
## F Statistic 703.000*** (df = 4; 308)
*p<0.1; **p<0.05; ***p<0.01
## Note:
# mod1 <- lm(score_TestQ1 ~ assignment, data = data_full)</pre>
# mod2 <- lm(score_TestQ2 ~ assignment, data = data_full)</pre>
# mod3 <- lm(score_TestQ3 ~ assignment, data = data_full)</pre>
# mod4 <- lm(score_TestQ4 ~ assignment, data = data_full)</pre>
# mod5 <- lm(score_TestQ5 ~ assignment, data = data_full)</pre>
# mod6 <- lm(score_TestQ6 ~ assignment, data = data_full)</pre>
# mod7 <- lm(score_TestQ7 ~ assignment, data = data_full)</pre>
# mod8 <- lm(score_TestQ8 ~ assignment, data = data_full)</pre>
# mod9 <- lm(score_TestQ9 ~ assignment, data = data_full)</pre>
# mod10 <- lm(score_TestQ10 ~ assignment, data = data_full)</pre>
mod11 <- lm(score_false ~ assignment*Ethnicity+TestQ3+TestQ5+TestQ6, data_full)</pre>
mod12 <- lm(score_false ~ assignment*Gender+TestQ3+TestQ5+TestQ6, data_full)</pre>
mod13 <- lm(score_false ~ assignment*Education+TestQ3+TestQ5+TestQ6, data_full)</pre>
mod14 <- lm(score_false ~ assignment*factor(Income)+TestQ3+TestQ5+TestQ6, data_full)</pre>
\#stargazer(mod1, mod2, mod3, mod4, mod5, mod6, mod7, mod8, mod9, mod10, mod11, type="text")
stargazer(mod11,mod12,mod13,mod14,type="text")
##
                                                                                      Dependent variable
##
##
                                                                                          score_false
                                                        (1)
                                                                                 (2)
## -----
                                                       0.010
## assignment
                                                                               0.240***
##
                                                      (0.140)
                                                                               (0.082)
## EthnicityBlack / African
                                                     -0.610***
##
                                                      (0.180)
## EthnicityCaucasian
                                                      -0.190
##
                                                      (0.120)
##
## EthnicityHispanic / Latinx
                                                      -0.250
```

| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.170)          |           |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| ##<br>## | EthnicityNative American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.390           |           |
| ##       | Islando Island | (0.240)          |           |
| ##       | EthnicityOthon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.100            |           |
| ##       | EthnicityOther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.120<br>(0.380) |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
|          | GenderFemale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  | 0.470     |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (0.380)   |
|          | GenderMale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 0.400     |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (0.370)   |
| ##       | EducationGraduate degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |           |
| ##       | Laucationoraduate degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
| ##<br>## | EducationHigh school graduate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
|          | EducationLess than high school                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
| ##       | EducationSome college                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |           |
| ##       | Educationsome College                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
|          | 250000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
|          | 250000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
| ##       | 150000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           |
| ##       | 130000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
|          | TestQ3Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.700***        | -1.700*** |
| ##<br>## |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.092)          | (0.090)   |
|          | TestQ5Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.300***        | -1.300*** |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.062)          | (0.063)   |
| ##       | TestQ6Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.500***        | -1.500*** |
| ##       | 165040165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.093)          | (0.092)   |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
|          | assignment:EthnicityBlack / African                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.820***         |           |
| ##<br>## |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.260)          |           |
|          | assignment:EthnicityCaucasian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.130            |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.150)          |           |
| ##<br>## | assignment:EthnicityHispanic / Latinx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.510*           |           |
| ##       | abbigiment. Demiioreynispanic / Latinx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (0.280)          |           |
| ##       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |           |
| ##       | assignment:EthnicityNative American                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.280            |           |

```
##
                                                 (0.310)
##
## assignment:EthnicityOther
                                                 -0.170
                                                 (0.450)
##
##
## assignment:GenderFemale
                                                                         -0.085
                                                                        (0.120)
##
##
## assignment:GenderMale
##
##
  assignment: Education Graduate degree
##
##
##
## assignment:EducationHigh school graduate
##
##
  assignment: EducationLess than high school
##
##
## assignment:EducationSome college
##
##
## 250000
##
## 250000
##
##
## 150000
##
##
                                                5.000***
                                                                        4.400***
## Constant
##
                                                 (0.110)
                                                                        (0.380)
## Observations
                                                  313
                                                                         313
## R2
                                                                        0.900
                                                  0.910
## Adjusted R2
                                                  0.900
                                                                         0.900
                                            0.510 \text{ (df = } 298)
## Residual Std. Error
                                                                   0.520 \text{ (df = } 305)
                                                                                           0.5
## F Statistic
                                        207.000*** (df = 14; 298) 401.000*** (df = 7; 305) 232.000
```

• The SEs don't appear to be changing with different question fixed effects but the magnitude of the coefficient is changing. We will exploring cummulating the fixed effects from false questions.

```
mod11a <- lm(score_true ~ assignment+TestQ3+Mturk+captcha, data_full)
mod11b <- lm(score_true ~ assignment+TestQ3+TestQ5+Mturk+captcha, data_full)
mod11c <- lm(score_true ~ assignment+TestQ3+TestQ5+TestQ6+Mturk+captcha, data_full)
mod11d <- lm(score_true ~ assignment+TestQ3+TestQ5+TestQ6+TestQ9+Mturk+captcha, data_full)
mod11e <- lm(score_true ~ assignment+TestQ3+TestQ5+TestQ6+TestQ9+TestQ10+Mturk+captcha, data_full)
stargazer(mod11a,mod11b,mod11c,mod11d,mod11e,type="text")</pre>
```

| ##<br>##                                               |                                 |                                                         | Dependent variable:       |          |
|--------------------------------------------------------|---------------------------------|---------------------------------------------------------|---------------------------|----------|
| ##<br>##                                               | (1)                             | (2)                                                     | score_true<br>(3)         |          |
| ##<br>## assignment<br>##                              | -0.190*<br>(0.110)              | -0.190*<br>(0.110)                                      | -0.200*<br>(0.110)        | -0<br>(0 |
| ##<br>## TestQ3Yes                                     | 0.560***                        | 0.550***                                                | 0.450**                   | 0.       |
| *#<br>*#                                               | (0.160)                         | (0.170)                                                 | (0.180)                   | (0       |
| ## TestQ5Yes<br>##                                     |                                 | 0.090<br>(0.120)                                        | 0.074<br>(0.120)          | 0        |
| ##<br>## TestQ6Yes<br>##<br>##                         |                                 |                                                         | 0.220<br>(0.180)          | 0 (0     |
| <br>## TestQ9Yes<br>##<br>##                           |                                 |                                                         |                           | (0       |
| ## TestQ10Yes<br>##<br>##                              |                                 |                                                         |                           |          |
| +#<br>## Mturk<br>##<br>##                             | 0.047<br>(0.140)                | 0.044<br>(0.140)                                        | 0.038<br>(0.140)          | ()       |
| ## captcha<br>##<br>##                                 | -0.400**<br>(0.160)             | -0.360**<br>(0.160)                                     | -0.320*<br>(0.170)        | -0<br>(0 |
| ## Constant<br>##<br>##                                | 3.700***<br>(0.200)             | 3.700***<br>(0.220)                                     | 3.600***<br>(0.220)       | 3.       |
| ##<br>## Observations<br>## R2                         | 313<br>0.140                    | 313<br>0.140                                            | 313<br>0.140              |          |
| ## Adjusted R2<br>## Residual Std. I<br>## F Statistic | 0.130<br>Error 0.980 (df = 308) | 0.130<br>0.980 (df = 307)<br>3) 10.000*** (df = 5; 307) | 0.130<br>0.980 (df = 306) | 0.980    |

Our dataset does appear to consist mostly of people with at least a college degree or higher and the participants mostly belong to the 21-40 age bucket.

```
ggplot(data_full) + geom_bar(aes(x = Education,fill=Age_bin))
```



Education

mod7 <- lm(score\_false ~ assignment\*factor(Party)+factor(Gender)+assignment\*factor(Age\_bin)+Mturk+captor</pre> mod8 <- lm(score\_false ~ assignment\*factor(Age\_bin)+assignment\*factor(Party)+Mturk+captcha, data\_full)</pre> se\_custom7 <- compute\_robust\_se(mod7)</pre> se\_custom8 <- compute\_robust\_se(mod8)</pre> stargazer(mod7,mod8,type="text",se=list(se\_custom7,se\_custom8))

| ## |                         |           |           |   |
|----|-------------------------|-----------|-----------|---|
| ## |                         |           |           | = |
| ## |                         | Dependent | variable: |   |
| ## |                         |           |           | - |
| ## |                         | score_    | false     |   |
| ## |                         | (1)       | (2)       |   |
| ## |                         |           |           | - |
| ## | assignment              | -0.780**  | -0.950*** |   |
| ## |                         | (0.350)   | (0.320)   |   |
| ## |                         |           |           |   |
| ## | factor(Party)Other      | 0.280     | 0.290     |   |
| ## |                         | (0.230)   | (0.230)   |   |
| ## |                         |           |           |   |
| ## | factor(Party)Republican | -0.510**  | -0.510**  |   |
| ## |                         | (0.260)   | (0.260)   |   |
| ## |                         |           |           |   |
| ## | factor(Gender)Female    | -0.810*** |           |   |
| ## |                         | (0.190)   |           |   |
| ## |                         |           |           |   |
| ## | factor(Gender)Male      | -0.560*** |           |   |
| ## |                         | (0.200)   |           |   |

```
##
## factor(Age_bin)21-40
                                            -0.240
                                                                   -0.350
                                           (0.270)
                                                                   (0.280)
##
## factor(Age_bin)41-60
                                            -0.360
                                                                   -0.480
                                           (0.320)
                                                                   (0.320)
##
## factor(Age_bin)61+
                                            -0.600
                                                                   -0.800
##
                                           (0.590)
                                                                   (0.590)
##
## Mturk
                                            -0.085
                                                                   -0.086
##
                                           (0.130)
                                                                   (0.130)
##
                                           2.200***
## captcha
                                                                   2.100***
##
                                           (0.190)
                                                                   (0.200)
##
## assignment:factor(Party)Other
                                            0.160
                                                                   0.200
##
                                           (0.300)
                                                                   (0.300)
##
## assignment:factor(Party)Republican
                                           0.068
                                                                   0.074
##
                                           (0.350)
                                                                   (0.350)
## assignment:factor(Age_bin)21-40
                                           0.780**
                                                                  0.950***
##
                                           (0.360)
                                                                   (0.330)
##
## assignment:factor(Age_bin)41-60
                                           0.880**
                                                                  1.100***
##
                                           (0.400)
                                                                   (0.370)
## assignment:factor(Age_bin)61+
                                           0.480
                                                                   0.720
                                           (0.710)
                                                                   (0.700)
##
##
## Constant
                                           3.200***
                                                                  2.700***
                                                                  (0.330)
##
                                           (0.340)
##
## Observations
                                             313
                                                                    313
## R2
                                            0.490
                                                                   0.480
## Adjusted R2
                                            0.460
                                                                   0.460
                                       1.200 (df = 297)
## Residual Std. Error
                                                              1.200 (df = 299)
                                   19.000*** (df = 15; 297) 22.000*** (df = 13; 299)
## F Statistic
## -----
## Note:
                                                        *p<0.1; **p<0.05; ***p<0.01
ggplot(mutate(data_full, Age = fct_infreq(Age_bin))) + geom_bar(aes(x = Age_bin))
```



data\_full[, .N, by=.(Party,Age\_bin)]

```
##
             Party Age_bin
##
    1:
          {\tt Democrat}
                      21-40 126
    2: Republican
##
                      21-40
                              52
##
    3:
             Other
                      21-40
                              31
    4: Republican
##
                      41-60
                              26
##
    5:
             Other
                      41-60
                              20
##
    6:
          Democrat
                      41-60
                              37
          Democrat
                        61+
##
    7:
                               8
##
    8: Republican
                         61+
                               5
##
    9:
          Democrat
                       0-20
                               3
## 10:
             Other
                         61+
                               1
## 11:
             Other
                       0-20
                               3
## 12: Republican
                       0-20
```

In terms of ethinicity of the randomly sampled subjects, the majority were Caucasian followed by approximately equal counts of Hispanic and Native americans, followed by african americans and asians.

# data\_full[, .N, by=Ethnicity]

```
##
              Ethnicity
                           N
## 1:
              Caucasian 192
## 2: Hispanic / Latinx
## 3:
        Native American
## 4:
        Black / African
                          21
## 5:
                          58
                   Asian
## 6:
                   Other
                           7
```



```
dt <- data_full[, .(mean_score_by_Ethnicity = mean(score_false)), by=Ethnicity]
dt$Gender[dt$Gender == ''] <- "Other"
ggplot(dt, aes(x = Ethnicity, y = mean_score_by_Ethnicity)) +
    geom_bar(aes(Ethnicity), stat="identity", width = 0.5) +
    ggtitle("Figure X. Mean scores by Ethnicity") +
    ylab("Score on False Tweets") + xlab("Ethnicity") +
    theme(plot.title = element_text(hjust = 0.5))</pre>
```





| ##                                      |                     |           |  |
|-----------------------------------------|---------------------|-----------|--|
| ## ==================================== |                     |           |  |
| ##                                      | Dependent variable: |           |  |
| ##                                      |                     |           |  |
| ##                                      | score_              | _         |  |
| ##                                      | (1)                 | (2)       |  |
| ##                                      |                     |           |  |
| ## assignment                           | -0.660*             | -0.770**  |  |
| ##                                      | (0.350)             | (0.320)   |  |
| ##                                      |                     |           |  |
| ## Age_bin21-40                         | -0.180              | -0.490    |  |
| ##                                      | (0.280)             | (0.360)   |  |
| ##                                      |                     |           |  |
| ## Age_bin41-60                         | -0.390              | -1.500**  |  |
| ##                                      | (0.320)             | (0.660)   |  |
| ##                                      |                     |           |  |
| ## Age_bin61+                           | -0.420              | 0.360     |  |
| ##                                      | (0.530)             | (0.710)   |  |
| ##                                      |                     |           |  |
| ## GenderFemale                         | -0.720***           | -0.620*** |  |

| ##<br>##       |                                       | (0.160)             | (0.160)              |
|----------------|---------------------------------------|---------------------|----------------------|
|                | GenderMale                            | -0.420**<br>(0.170) | -0.400**<br>(0.170)  |
|                | PartyOther                            | 0.340**<br>(0.160)  | 0.390**<br>(0.150)   |
|                | PartyRepublican                       | -0.450**<br>(0.190) | -0.390**<br>(0.190)  |
|                | EthnicityBlack / African              | -0.090<br>(0.330)   | -0.850**<br>(0.400)  |
| ##<br>##       | EthnicityCaucasian                    | 0.200<br>(0.160)    | -0.390<br>(0.290)    |
| ##             | EthnicityHispanic / Latinx            | -0.360<br>(0.330)   | -2.600***<br>(0.820) |
| ##             | EthnicityNative American              | -0.710*<br>(0.390)  | -2.600***<br>(0.820) |
| ##             | EthnicityOther                        | -0.320<br>(0.410)   | -0.092<br>(0.360)    |
| ##             | Mturk                                 | -0.150<br>(0.140)   | -0.230<br>(0.140)    |
| ##             | captcha                               | 2.000*** (0.200)    | 1.900*** (0.210)     |
| ##             | assignment:EthnicityBlack / African   |                     | 0.850**<br>(0.400)   |
| ##             | assignment:EthnicityCaucasian         |                     | -0.230<br>(0.320)    |
| ##             | assignment:EthnicityHispanic / Latinx |                     | -0.500<br>(0.690)    |
| ##<br>##<br>## | assignment:EthnicityNative American   |                     | 2.200*<br>(1.200)    |
| ##             | assignment:EthnicityOther             |                     | -0.440<br>(0.650)    |
| ##             | assignment:Age_bin21-40               | 0.700*<br>(0.390)   | 0.880**<br>(0.420)   |
| ##<br>##<br>## | assignment:Age_bin41-60               | 0.840**<br>(0.420)  | 1.800**<br>(0.730)   |
| ##<br>##       | assignment:Age_bin61+                 | 0.380               | -0.360               |

| ##                   |                                                    | (0.700) | (0.700)              |
|----------------------|----------------------------------------------------|---------|----------------------|
| ##<br>##<br>##<br>## | EthnicityBlack / African:Age_bin21-40              |         | 0.750<br>(0.620)     |
|                      | EthnicityCaucasian:Age_bin21-40                    |         | 0.510<br>(0.410)     |
|                      | EthnicityHispanic / Latinx:Age_bin21-40            |         | 2.400*** (0.910)     |
|                      | EthnicityNative American:Age_bin21-40              |         | 1.600<br>(0.980)     |
| ##<br>##             | EthnicityOther:Age_bin21-40                        |         |                      |
| ##                   | EthnicityBlack / African:Age_bin41-60              |         | -0.071<br>(0.710)    |
| ##                   | EthnicityCaucasian:Age_bin41-60                    |         | 1.600**              |
| ##                   | EthnicityHispanic / Latinx:Age_bin41-60            |         | 2.100*<br>(1.100)    |
| ##                   | EthnicityNative American:Age_bin41-60              |         | 2.500*** (0.970)     |
| ##                   | EthnicityOther:Age_bin41-60                        |         |                      |
| ##                   | EthnicityBlack / African:Age_bin61+                |         | 1.000*** (0.00000)   |
| ##                   | EthnicityCaucasian:Age_bin61+                      |         | 0.074<br>(0.560)     |
| ##                   | EthnicityHispanic / Latinx:Age_bin61+              |         |                      |
| ##                   | EthnicityNative American:Age_bin61+                |         |                      |
| ##                   | EthnicityOther:Age_bin61+                          |         |                      |
| ##                   | assignment:EthnicityBlack / African:Age_bin21-40   |         | -2.600***<br>(0.690) |
| ##                   | assignment:EthnicityCaucasian:Age_bin21-40         |         | 0.230<br>(0.480)     |
| ##<br>##             | assignment:EthnicityHispanic / Latinx:Age_bin21-40 |         |                      |

```
##
##
##
  assignment: EthnicityNative American: Age_bin21-40
                                                                               -1.900
                                                                               (1.500)
##
##
## assignment:EthnicityOther:Age_bin21-40
##
##
  assignment:EthnicityBlack / African:Age_bin41-60
                                                                                0.300
##
                                                                               (0.830)
##
  assignment:EthnicityCaucasian:Age_bin41-60
                                                                               -0.900
##
                                                                               (0.770)
##
##
  assignment:EthnicityHispanic / Latinx:Age_bin41-60
##
##
  assignment: EthnicityNative American: Age_bin41-60
##
##
## assignment:EthnicityOther:Age_bin41-60
##
  assignment:EthnicityBlack / African:Age_bin61+
##
##
##
##
  assignment:EthnicityCaucasian:Age_bin61+
##
##
  assignment:EthnicityHispanic / Latinx:Age_bin61+
##
##
  assignment:EthnicityNative American:Age_bin61+
##
##
## assignment:EthnicityOther:Age_bin61+
##
##
                                                        3.100***
                                                                              3.500***
## Constant
                                                                               (0.340)
##
                                                        (0.280)
## -----
## Observations
                                                          313
                                                                                 313
## R2
                                                         0.510
                                                                                0.530
## Adjusted R2
                                                         0.480
                                                                                0.470
## Residual Std. Error
                                                     1.200 \text{ (df = } 294) 1.200 \text{ (df = } 274)
                                                 17.000*** (df = 18; 294) 8.200*** (df = 38; 274)
## F Statistic
## Note:
                                                                    *p<0.1; **p<0.05; ***p<0.01
mod1a <- lm(score_true ~ assignment, data_full)</pre>
mod2a <- lm(score_true ~ assignment+Mturk, data_full)</pre>
mod3a <- lm(score_true ~ assignment+Mturk+captcha+Age_bin+Party+Gender+Ethnicity, data_full)</pre>
ci_custom1a <- compute_robust_ci(mod1a)</pre>
```

```
ci_custom2a <- compute_robust_ci(mod2a)</pre>
ci_custom3a <- compute_robust_ci(mod3a)</pre>
stargazer(mod1a,mod2a,mod3a, type="text",ci.custom = list(ci_custom1a,ci_custom2a,ci_custom3a))
##
                                           Dependent variable:
                        ______
##
##
                                              score_true
##
                              (1)
                                                                   (3)
## -----
## assignment
                             -0.180
                                             -0.180
                                                                  -0.150
                         (-0.410, 0.051) (-0.410, 0.050) (-0.380, 0.075)
##
##
                                               0.340**
## Mturk
                                                                  0.050
                                           (0.072, 0.610)
##
                                                              (-0.310, 0.410)
##
## captcha
                                                                 -0.600***
                                                              (-0.890, -0.320)
##
## Age_bin21-40
                                                                  -0.190
##
                                                              (-0.670, 0.280)
##
                                                                  -0.300
## Age_bin41-60
                                                              (-0.800, 0.200)
##
##
## Age_bin61+
                                                                  -0.560
##
                                                               (-1.400, 0.260)
##
## PartyOther
                                                                  0.085
                                                               (-0.230, 0.400)
##
##
## PartyRepublican
                                                                  -0.067
                                                              (-0.350, 0.210)
##
##
## GenderFemale
                                                                   1.100
##
                                                               (0.750, 1.400)
##
## GenderMale
                                                                  1.000
                                                               (0.740, 1.300)
##
##
## EthnicityBlack / African
                                                                  -0.084
##
                                                               (-0.640, 0.470)
##
## EthnicityCaucasian
                                                                   0.098
##
                                                               (-0.240, 0.440)
## EthnicityHispanic / Latinx
                                                                  0.280
##
                                                               (-0.190, 0.750)
                                                                  0.710**
## EthnicityNative American
##
                                                               (0.120, 1.300)
##
## EthnicityOther
                                                                  -0.160
```

```
##
                                                                  (-0.890, 0.570)
##
                              3.600***
                                                3.400***
                                                                    3.100***
## Constant
##
                           (3.500, 3.800)
                                           (3.100, 3.600)
                                                                (2.500, 3.700)
## -----
                                                 313
## Observations
                                                                    0.140
                              0.007
                                                 0.028
## R2
                                            0.028
## Adjusted R2 0.004 0.021 0.094 ## Residual Std. Error 1.100 (df = 311) 1.000 (df = 310) 1.000 (df = 297)
## F Statistic 2.300 (df = 1; 311) 4.400** (df = 2; 310) 3.200*** (df = 15; 297)
*p<0.1; **p<0.05; ***p<0.01
## Note:
mod4a <- lm(score_true ~ assignment*factor(Gender)+factor(Party)+Mturk+captcha, data_full)</pre>
mod5a <- lm(score_true ~ assignment*factor(Party)+factor(Gender)+Mturk+captcha, data_full)</pre>
mod6a <- lm(score_true ~ assignment*factor(Gender)*factor(Party)+Mturk+captcha, data_full)</pre>
ci_custom4a <- compute_robust_ci(mod4a)</pre>
ci_custom5a <- compute_robust_ci(mod5a)</pre>
ci_custom6a <- compute_robust_ci(mod6a)</pre>
se_custom4a <- compute_robust_se(mod4a)</pre>
se_custom5a <- compute_robust_se(mod5a)</pre>
se_custom6a <- compute_robust_se(mod6a)</pre>
stargazer(mod4a,mod5a,mod6a,type="text",se=list(se_custom4a,se_custom5a,se_custom6a))
```

##

| ## |                         | .====================================== |                   |
|----|-------------------------|-----------------------------------------|-------------------|
| ## |                         |                                         | Dependent variabl |
| ## |                         |                                         |                   |
| ## |                         |                                         | score_true        |
| ## |                         | (1)                                     | (2)               |
| ## |                         |                                         |                   |
| ## | assignment              | -0.150                                  | 0.022             |
| ## |                         | (0.160)                                 | (0.150)           |
| ## |                         |                                         |                   |
| ## | factor(Gender)Female    | 1.100***                                | 1.200***          |
| ## |                         | (0.220)                                 | (0.150)           |
| ## |                         |                                         |                   |
| ## | factor(Gender)Male      | 1.100***                                | 1.200***          |
| ## |                         | (0.150)                                 | (0.140)           |
| ## |                         |                                         |                   |
| ## | factor(Party)Other      | 0.059                                   | 0.170             |
| ## |                         | (0.150)                                 | (0.220)           |
| ## |                         |                                         |                   |
| ## | factor(Party)Republican | -0.051                                  | 0.220             |
| ## |                         | (0.150)                                 | (0.180)           |
| ## |                         |                                         |                   |
| ## | Mturk                   | 0.038                                   | 0.046             |
| ## |                         | (0.150)                                 | (0.150)           |
| ## |                         |                                         |                   |
| ## | captcha                 | -0.720***                               | -0.710***         |
| ## |                         | (0.130)                                 | (0.130)           |
| ## |                         |                                         |                   |

```
## assignment:factor(Gender)Female
                                                                     -0.045
##
                                                                    (0.230)
##
## assignment:factor(Gender)Male
##
##
## assignment:factor(Party)Other
                                                                                             -0.210
                                                                                            (0.310)
##
##
## assignment:factor(Party)Republican
                                                                                            -0.580**
##
                                                                                            (0.270)
##
## factor(Gender)Female:factor(Party)Other
##
##
## factor(Gender)Male:factor(Party)Other
##
##
## factor(Gender)Female:factor(Party)Republican
##
## factor(Gender)Male:factor(Party)Republican
##
##
## assignment:factor(Gender)Female:factor(Party)Other
##
##
## assignment:factor(Gender)Male:factor(Party)Other
##
##
## assignment:factor(Gender)Female:factor(Party)Republican
##
##
## assignment:factor(Gender)Male:factor(Party)Republican
##
##
                                                                    3.000***
## Constant
                                                                                           2.800***
##
                                                                    (0.220)
                                                                                            (0.210)
## Observations
                                                                      313
                                                                                             313
## R2
                                                                     0.120
                                                                                            0.130
## Adjusted R2
                                                                     0.091
                                                                                            0.100
## Residual Std. Error
                                                                1.000 (df = 304)
                                                                                      1.000 (df = 303)
## F Statistic
                                                            4.900*** (df = 8; 304) 4.900*** (df = 9; 303)
## Note:
```

\*p