Theorem 2.9: Continuity Rules

If f and g are continuous at a, then the following functions are also continuous at a. Assume c is a constant and n > 0 is an integer.

a) f + g

b) f - g

c) *cf*

d) *fg*

e) f/g, provided that $g(a) \neq 0$.

f) $(f(x))^n$

Theorem 2.10: Polynomial and Rational Functions

- a) A polynomial function is continuous for all x.
- b) A rational function (a function of the form $\frac{p}{q}$, where p and q are polynomials) is continuous for all x for which $q(x) \neq 0$.

Theorem 2.11: Continuity of Composite Functions at a Point

If q is continuous at a and f is continuous at q(a), then the composite function $f \circ q$ is continuous at a.

Theorem 2.12: Limits of Composite Functions

1. If g is continuous at a and f is continuous at g(a), then

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$$

2. If $\lim_{x\to a} g(x) = L$ and f is continuous at L, then

$$\lim_{x \to a} f(g(x)) = f\Big(\lim_{x \to a} g(x)\Big).$$

Theorem 2.13: Continuity of Functions with Roots

Assume n is a positive integer. If n is an odd integer, then $(f(x))^{1/n}$ is continuous at all points at which f is continuous.

If n is even, then $(f(x))^{1/n}$ is continuous at all points a at which f is continuous at f(a) > 0.

Theorem 2.14: Continuity of Inverse Functions

If a function f is continuous on an interval I and has an inverse on I, then its inverse f^{-1} is also continuous (on the interval consisting of the points f(x), where x is in I).

Theorem 2.15: Continuity of Transcendental Functions

The following functions are continuous at all points of their domains.

Trigonometric		Inverse Trigonometric		Exponential	
$\sin x$	$\cos x$	$\sin^{-1} x$	$\cos^{-1} x$	b^x	e^x
$\tan x$	$\cot x$	$\tan^{-1} x$	$\cot^{-1} x$	Logarithmic	
$\sec x$	$\csc x$	$\sec^{-1} x$	$\csc^{-1} x$	$\log_b x$	$\ln x$