

Chapitre I Éléments de logique

Calcul des propositions

Exercice 1

Construire les tables de vérité pour les formules suivantes :

- $(p \to q) \lor (q \to p)$
- $p \land (p \rightarrow \neg q) \land q$
- $(p \to (q \land r)) \leftrightarrow (p \to q) \land (p \to r)$
- $(p \to (q \to r)) \to ((p \land q) \to r)$

Exercice 2

- 1 Montrer que $\neg(\phi \rightarrow \psi) \equiv \phi \land \neg \psi$.
- 2 **a.** Montrer que le modus ponens $(\phi \land (\phi \rightarrow \psi)) \rightarrow \psi$ est une tautologie. Autrement dit, si on affirme a et $a \rightarrow b$, alors on affirme b.
 - **b.** Montrer que le modus tollens $((\phi \rightarrow \psi) \land \neg \psi) \rightarrow \neg \phi)$ est une tautologie. Autrement dit, si une proposition est vraie, alors il en est de même pour sa proposition contraposée.

Exercice 3

Écrire la négation de la formule $(P \land (Q \lor R))$.

Exercice 4

On juge un homme accusé d'avoir trempé dans un cambriolage.

Le procureur et l'avocat disent tour à tour :

- Le procureur : « Si l'accusé est coupable, alors il a un complice. »
- L'avocat : « C'est faux! »

Pourquoi est-ce la pire des choses que puisse dire l'avocat?

Exercice 5

Un cambriolage a eu lieu dans une bijouterie.Il y a trois suspects : A, B et C. Modéliser de manière indépendante chacune des règles suivantes :

- 1. Il y a au moins un coupable.
- 2. Il existe au plus deux coupables.
- **3.** Si A est coupable, alors il a un seul complice.
- **4.** Si B est innocent, alors C l'est aussi.
- 5. S'il y a exactement deux coupables, alors A est l'un d'entre eux.
- **6.** Si C est innocent, alors B l'est aussi.

1

Calcul des prédicats

Exercice 6

- Écrire, à l'aide des quantificateurs, la phrase suivante « Pour tout nombre réel, son carré est positif ».
- 2 Écrire la négation de cette phrase

Exercice 7

- Écrire, à l'aide des quantificateurs, la phrase suivante « Pour chaque réel, je peux trouver un entier relatif tel que leur produit soit strictement plus grand que 1 ».
- 2 Écrire la négation de cette phrase

Exercice 8

- Écrire, à l'aide des quantificateurs, la phrase suivante « Pour tout entier n, il existe un unique réel x tel que $\exp(x)$ égale n ».
- 2 Écrire la négation de cette phrase

Techniques de raisonnement

Exercice 9

Soient $a, b \in \mathbb{R}_+$.

Montrer, par raisonnement direct, que si $a \leqslant b$ alors $a \leqslant \frac{a+b}{2} \leqslant b$ et $a \leqslant \sqrt{ab} \leqslant b$.

Exercice 10

Montrer que pour tout $n \in \mathbb{N}$, n(n+1) est divisible par 2.

Indication: Distinguer les n pairs des n impairs.

Exercice 11

Soient $a, b \in \mathbb{Z}$.

Montrer que si $b \neq 0$ alors $a + b\sqrt{2} \notin \mathbb{Q}$.

Indication :On utilisera que $\sqrt{2} \notin \mathbb{Q}$.

Exercice 12

Soit $n \in \mathbb{N}^*$.

Montrer, par l'absurde, que $\sqrt{n^2+1}$ n'est pas un entier.

Exercice 13

Est-ce que pour tout $x \in \mathbb{R}$ on a $x < 2 \Longrightarrow x^2 < 4$?