Formale Spezifikation und Verifikation

Wintersemester 2024

Prof. Dr. Gidon Ernst gidon.ernst@lmu.de

Software and Computational Systems Lab Ludwig-Maximilians-Universität München, Germany

September 30, 2024

Prof. Dr. Gidon Ernst 1/31

Erinnerung: assert im Kontrollflussautomat

Spezifikation durch Zusicherung assert ϕ ;

in einem Programm P

Verifikation

- Berechnung der erreichbaren Zustände σ^R von P: mit Hilfe des Transitionssystems und der expliziten Erreichbarkeitsanalyse
- Falls es einen Zustand $s \in \sigma^R$ gibt mit $s \models pc = err$, dann wurde ein Fehler gefunden

Heute

Nichtdeterministische Auswahl und Annahmen als Modellierungtechnik

```
    Methodenparameter: alle möglichen Aufrufe (@ForAll)
    Benutzereingaben: alle möglichen Eingaben (__VERIFIER_nondet_int())
    Abstraktion: alle möglichen Verhalten (post(on) = {off, broken})
```

- ightarrow Nichtdeterminismus pprox Mengen von Zuständen
- Zustandsmengen als Auswertung von Formeln
- Explizite Erreichbarkeitsanalyse auf Zustandsmengen
- Symbolische Repräsentation von Zustandsmengen
- Symbolische Erreichbarkeitsanalyse

Beispiel: viele Startzustände

Kontrollflussautomat

Transitionssystem

✓ kompakte Darstellung

Beispiel: viele Nachfolgerzustände

Kontrollflussautomat

Programm

```
int x = nondet_int();
...
Idee: x ist uneingeschränkt
```

Beispiel: viele Nachfolgerzustände

Kontrollflussautomat

start a x = nondet_int() b : :

Transitionssystem

Programm

```
int x = nondet_int();
...
```

ldee: x ist uneingeschränkt

Beispiel: viele Nachfolgerzustände

Kontrollflussautomat

Programm

ldee: x ist uneingeschränkt

Transitionssystem

 $\text{Ein Nachfolger pro } x \in \llbracket \text{int} \rrbracket$

- ▶ Auf 32-Bit Rechner: $[[int]] = \{-2^{31}, \dots, 2^{31} 1\}$
- Auf 64-Bit Rechner: $[\![\mathtt{int}]\!] = \{-2^{63}, \cdots, 2^{63}-1\}$
- lacksquare $\mathsf{Idealisiert}/\mathsf{Mathematisch}\colon \ \llbracket \mathsf{int}
 rbracket = \mathbb{Z}$
- ► Mit @ForAll Zufallsauswal

Äquivalente Spezifikationsansätze

```
Mit jqwik
void test(@ForAll
          @Positive int n)
{
    int m = sqrt(n);
    assert m <= n;
}</pre>
```

Äquivalente Spezifikationsansätze

```
Mit jqwik
void test(@ForAll
           @Positive int n)
    int m = sqrt(n);
    assert m <= n;</pre>
Mit Annahmen
(X Testen: vergebliche Versuche)
void test(@ForAll int n) {
    assume n > 0; // Filter
    int m = sqrt(n);
    assert m <= n;</pre>
```

Äquivalente Spezifikationsansätze

```
Mit jawik
void test(@ForAll
           @Positive int n)
    int m = sqrt(n);
    assert m <= n;</pre>
Mit Annahmen
(X Testen: vergebliche Versuche)
void test(@ForAll int n) {
    assume n > 0; // Filter
    int m = sqrt(n);
    assert m <= n;</pre>
```

Mit nichtdeterministischer Auswahl

```
void test() {
    // cf. Arbitrary.sample()
    int n = nondet_int();
    assume n > 0;
    int m = sqrt(n);
    assert m <= n;
}</pre>
```

Aquivalente Spezifikationsansätze

```
Mit jqwik
                                   Mit nichtdeterministischer Auswahl
void test(@ForAll
                                   void test() {
           @Positive int n)
                                        // cf. Arbitrary.sample()
                                        int n = nondet_int();
    int m = sqrt(n);
                                        assume n > 0;
    assert m <= n;</pre>
                                        int m = sqrt(n);
                                        assert m <= n;</pre>
                                   }
Mit Annahmen
(X Testen: vergebliche Versuche)
                                   Semantische Aussage über Programm
                                     \triangleright P: int m = sqrt(n);
void test(@ForAll int n) {
    assume n > 0; // Filter
                                     Sei T Transitionssystem von P
    int m = sqrt(n);
                                     assert m <= n;</pre>

ightharpoonup für alle Spuren (s_1,\ldots,s_n) durch T
                                                    s_1 \models \mathsf{n} > \mathsf{0} gegeben
                                     wobei
```

Modulare Spezifikation und Verifikation

Implementierung

```
class List<T extends Comparable> {
   void sort() {
        ...
        assert list.isSorted();
   }
}
```

Modulare Spezifikation und Verifikation

Implementierung

```
class List<T extends Comparable> {
   void sort() {
        ...
        assert list.isSorted();
   }
}
```

Aufrufer

```
List<String> names = ...;
names.sort();
assume names.isSorted();
String s0 = names.get(0);
String s1 = names.get(1);
assert s0.compareTo(s1) <= 0;</pre>
```

Modulare Spezifikation und Verifikation

Implementierung

class List<T extends Comparable> { void sort() { ... assert list.isSorted();

Aufrufer

```
List<String> names = ...;
names.sort();
assume names.isSorted();
String s0 = names.get(0);
String s1 = names.get(1);
assert s0.compareTo(s1) <= 0;</pre>
```

- Der Aufrufer braucht genaue Implementierung nicht zu kennen! Hier: assume ist immer gerechtfertigt.
- Ausblick: Design by Contract [Meyer, 1992]:
 Typischerweise spezielle Sprachkonstrukte (vgl. JML)
- Zum Nachdenken: welche Probleme verbleiben in obigem Code?

"Mathematische Beweise" als Programme

$$\forall n \in \mathbb{N}. \sum_{i=1..n} n = \frac{n \cdot (n+1)}{2}$$

```
int n = nondet_int(), sum = 0;
assume n >= 0;
for(int i=1; i<=n; i++) sum += n;
assert sum == n*(n+1) / 2;</pre>
```

Nicht-algorithmische Beschaffung von Werten mit bestimmten Eigenschaften, z.B.: Primfaktorzerlegung von Kryptographischem Schlüssel k:

```
Problembeschreibung:
int p = nondet_int();
int q = nondet_int();
int b = prime(p) && prime(q) && p*q == k;
Lösung erzwingen:
assume b;
```


- x = nondet_int()
 - Ergebnis x völlig beliebig
 - wir können nicht selbst wählen
 - Spezifikation von Möglichkeiten

- $x = nondet_int()$
 - Ergebnis x völlig beliebig
 - wir können nicht selbst wählen
 - Spezifikation von Möglichkeiten

assume ϕ ;

- ▶ nicht erfüllte Annahmen $s \not\models \phi$ brechen die Ausführung einfach ab
- man gibt vor dass nur bestimmte Fälle betrachtet werden sollen

- $x = nondet_int()$
 - Ergebnis x völlig beliebig
 - wir können nicht selbst wählen
 - Spezifikation von Möglichkeiten

assume ϕ ;

- \blacktriangleright nicht erfüllte Annahmen $s\not\models\phi$ brechen die Ausführung einfach ab
- man gibt vor dass nur bestimmte Fälle betrachtet werden sollen

Beide Konzepte sind *mirakulös* (nicht implementierbar) und erlauben es, zu *raten*! "Data refinement by miracles" [Morgan, 1988]

Spezifikationen mit Annahmen können nicht-berechenbare Probleme ausdrücken

```
void maybeExecute(TuringMachine M, Input in) {
    boolean b = nondet_bool();
    boolean steps = nondet_int();
    assume b == M.halts(in, steps);
    if(b) {
        M.run(in, steps);
    } else {
        throw new Exception("Would not terminate");
```

Beachte: Damit das Beispiel funktioniert, muss assume auch fordern dass M.halts(in, steps) terminiert. Diese Frage betrachten wir jetzt nicht und nehmen im Folgenden an, dass ϕ in assume ϕ keine solchen Probleme verursacht.

Annahmen im Kontrollflussautomat

Bedingung

if(ϕ) p_1 else p_2

Annahme

assume ϕ ;

Keine Kante für $\neg \phi$

Gegeben P als Kontrollflussautomat (L, ℓ_0, G) mit Kanten $\ell \xrightarrow{op} \ell'$

Konstruktion von Transitionen in $T = (\Sigma, \sigma^I, \rightarrow)$

- ▶ Transition $s \rightarrow s'$ mit
 - $ightharpoonup s = \{\mathsf{pc} \mapsto \ell, \vec{\mathsf{x}} \mapsto \vec{v}\}$
 - $ightharpoonup s' = \{\mathsf{pc} \mapsto \ell', \vec{\mathsf{x}} \mapsto \vec{v}'\},$

für Kanten in $\ell \xrightarrow{op} \ell' \in G$

Gegeben P als Kontrollflussautomat (L, ℓ_0, G) mit Kanten $\ell \xrightarrow{op} \ell'$

Konstruktion von Transitionen in $T = (\Sigma, \sigma^I, \rightarrow)$

- ightharpoonup Transition $s \rightarrow s'$ mit
 - $ightharpoonup s = \{\mathsf{pc} \mapsto \ell, \vec{\mathsf{x}} \mapsto \vec{v}\}$
 - $ightharpoonup s' = \{ \operatorname{pc} \mapsto \ell', \vec{\mathsf{x}} \mapsto \vec{v}' \},$

für Kanten in $\ell \xrightarrow{op} \ell' \in G$, sofern gilt dass

- ightharpoonup Zuweisung $\ell \xrightarrow[]{x_i=e} \ell'$: dann $v_i' = \llbracket e \rrbracket_s$ (Auswertung von e in s), $v_{j\neq i}' = v_j$
- ▶ Bedingung $\ell \xrightarrow{\phi} \ell'$: dann $s \models \phi$ und $\vec{v}' = \vec{v}$

Gegeben P als Kontrollflussautomat (L, ℓ_0, G) mit Kanten $\ell \xrightarrow{op} \ell'$

Konstruktion von Transitionen in $T = (\Sigma, \sigma^I, \rightarrow)$

- ▶ Transition $s \rightarrow s'$ mit
 - $ightharpoonup s = \{\mathsf{pc} \mapsto \ell, \vec{\mathsf{x}} \mapsto \vec{v}\}$
 - $ightharpoonup s' = \{ \operatorname{pc} \mapsto \ell', \vec{\mathsf{x}} \mapsto \vec{v}' \},$

für Kanten in $\ell \xrightarrow{op} \ell' \in G$, sofern gilt dass

- ightharpoonup Zuweisung $\ell \xrightarrow{x_i = e} \ell'$: dann $v_i' = \llbracket e \rrbracket_s$ (Auswertung von e in s), $v_{j \neq i}' = v_j$
- ▶ Bedingung $\ell \xrightarrow{\phi} \ell'$: dann $s \models \phi$ und $\vec{v}' = \vec{v}$
- Nichtdet. Zuweisung $\ell \xrightarrow{x_i = \text{nondet_int()}} \ell'$: dann $v'_i \in [[int]]$ beliebig

Gegeben P als Kontrollflussautomat (L, ℓ_0, G) mit Kanten $\ell \xrightarrow{op} \ell'$

Konstruktion von Transitionen in $T = (\Sigma, \sigma^I, \rightarrow)$

- ightharpoonup Transition $s \rightarrow s'$ mit
 - $ightharpoonup s = \{ \mathsf{pc} \mapsto \ell, \vec{\mathsf{x}} \mapsto \vec{v} \}$
 - $ightharpoonup s' = \{ \operatorname{pc} \mapsto \ell', \vec{\mathsf{x}} \mapsto \vec{v}' \},$

für Kanten in $\ell \xrightarrow{op} \ell' \in G$, sofern gilt dass

- ightharpoonup Zuweisung $\ell \xrightarrow{x_i = e} \ell'$: dann $v_i' = \llbracket e \rrbracket_s$ (Auswertung von e in s), $v_{j \neq i}' = v_j$
- ▶ Bedingung $\ell \xrightarrow{\phi} \ell'$: dann $s \models \phi$ und $\vec{v}' = \vec{v}$
- Nichtdet. Zuweisung $\ell \xrightarrow{\mathbf{x}_i = \mathsf{nondet_int()}} \ell'$: dann $v_i' \in \llbracket \mathsf{int} \rrbracket$ beliebig Problem: $|post(s)| = |\llbracket \mathsf{int} \rrbracket|$ sind sehr viele Nachfolger

Nichtdeterminismus vs Zufall

Eine *zufällige* Auswahl folgt immer einer *Wahrscheinlichkeitsverteilung*. Typische Frage: bei 1000 Experimenten, wie oft kommt Zahl 1?

Bei Nichtdeterminismus kann man diese Frage garnicht stellen! Es geht nur darum, dass wir als mögliche Ergebnisse $\{1,2,3,4,5,6\}$ haben.

Was man wissen sollte

- ▶ Wofür werden Nichtdeterminismus und Annahmen verwendet?
 - ✓ Spezifikation von Schnittstellen und Eingaben
 - ✓ Modellierung von Systemen
 - ✓ Modulare Beweise via Design by Contract
- Welche Probleme treten dann bei der expliziten Erreichbarkeitsanalyse auf?
 - Nichtdeterminismus: Zustandsexplosion
 - X Annahmen: abgebrochene Ausführungen
 - X Annahmen: müssen ausführbar sein
- Wie sind Annahmen im Kontrollflussautomat repräsentiert?
- ▶ Wie ist nichtdeterministische Auswahl im Transitionssystem repräsentiert?

Symbolische Erreichbarkeitsanalyse

Heute

✓ Nichtdeterministische Auswahl und Annahmen als Modellierungtechnik

```
    Methodenparameter: alle möglichen Aufrufe (@ForAll)
    Benutzereingaben: alle möglichen Eingaben (__VERIFIER_nondet_int())
    Abstraktion: alle möglichen Verhalten (post(on) = {off, broken})
```

- ightarrow Nichtdeterminismus pprox Mengen von Zuständen
- Zustandsmengen als Auswertung von Formeln
- Explizite Erreichbarkeitsanalyse auf Zustandsmengen
- Symbolische Repräsentation von Zustandsmengen
- Symbolische Erreichbarkeitsanalyse

Repräsentation von Zustandsmengen

Auszählung konkreter Zustände: $\left\{ \{\mathbf{x} \mapsto 1\}, \{\mathbf{x} \mapsto 2\}, \dots \right\}$

- √ konkret, Ausführungsnah
- 🗡 skaliert nicht, nur endliche Mengen

Repräsentation von Zustandsmengen

Auszählung konkreter Zustände: $\left\{ \{\mathbf{x} \mapsto 1\}, \{\mathbf{x} \mapsto 2\}, \dots \right\}$

- ✓ konkret, Ausführungsnah
- 🗡 skaliert nicht, nur endliche Mengen

Durch Formeln beschreiben: $\left\{ s \mid s \models \phi \right\}$

- √ kompakt
- ✓ effiziente Datenstrukturen und Algorithmen verfügbar

Notation für ϕ z.B. Java Ausrücke vom Typ **boolean**

Repräsentation von Zustandsmengen

Auszählung konkreter Zustände: $\left\{ \{\mathbf{x} \mapsto 1\}, \{\mathbf{x} \mapsto 2\}, \dots \right\}$

- ✓ konkret, Ausführungsnah
- 🗡 skaliert nicht, nur endliche Mengen

Durch Formeln beschreiben: $\left\{ s \mid s \models \phi \right\}$

- √ kompakt
- ✓ effiziente Datenstrukturen und Algorithmen verfügbar

Notation für ϕ z.B. Java Ausrücke vom Typ **boolean**

Beispiel ϕ : x > 0 für **int** x

$$\qquad \qquad \Big\{ s \mid s \models \phi \Big\} = \Big\{ s \mid s \models \mathbf{x} \, > \, \mathbf{0} \Big\} = \Big\{ \{ \mathbf{x} \mapsto x, \ldots \} \mid x \in \llbracket \mathrm{int} \rrbracket \text{ und } x > 0 \Big\}$$

Beispiele für Symbolische Zustandsmengen

Gegeben: int x,y;

Formel ϕ	Informell	Beispiele $s \models \phi$
$x = 9 \land y = x$	beide Variablen haben Wert 9	
x > 0	x positiv, y <i>beliebig</i>	$\overline{\{x\mapsto 2,y\mapsto -23\}}$
$x>0\landy\leq10$	x positiv, y höchtens 10	$\{\mathbf{x}\mapsto 2, \mathbf{y}\mapsto -23\}$
$x > 0 \Longrightarrow y > 0$	wenn x positiv, dann auch y	${\{x\mapsto 2,y\mapsto 1\}}$
		$\{\mathbf{x}\mapsto 0,\mathbf{y}\mapsto?\}$
x > y	x größer als Betrag von y	

Beispiele für Symbolische Zustandsmengen

Gegeben: int x,y;

Formel ϕ	Informell	Beispiele $s \models \phi$
$x = 9 \land y = x$	beide Variablen haben Wert 9	$\boxed{\{x\mapsto 9,y\mapsto 9\}}$
$\mathbf{x} > 0$	x positiv, y <i>beliebig</i>	$\overline{\{x\mapsto 2,y\mapsto -23\}}$
$\mathbf{x}>0 \land \mathbf{y} \leq 10$	x positiv, y höchtens 10	$\{\mathbf{x}\mapsto 2, \mathbf{y}\mapsto -23\}$
$x > 0 \Longrightarrow y > 0$	wenn x positiv, dann auch y	$\boxed{\{x\mapsto 2,y\mapsto 1\}}$
		$\{x\mapsto 0,y\mapsto?\}$
x > y	x größer als Betrag von y	

- Größe der symbolische Notation *nicht* proportional zur beschriebenen Zustandsmenge: 5 Symbole "0 < x < 10000" beschreiben 10^5 Zustände
- Wir kommen ganz ohne *explizite* Zustände *s* aus!

Beispiel: Nichtdeterministische Auswahl

Kontrollflussautomat

Programm

```
int x = nondet_int();
...
```

Beispiel: Nichtdeterministische Auswahl

Kontrollflussautomat

Programm

Erreichbare Zustände

$$\begin{array}{c} (\mathsf{pc} = \textcircled{1}) \\ \downarrow \\ (\mathsf{pc} = \textcircled{2} \land \mathsf{x} \in \llbracket \mathsf{int} \rrbracket) \\ \downarrow \\ \vdots \end{array}$$

Ein symbolischer Nachfolger

Explizite Erreichbarkeit mit Zustandsmengen

Bisheriger Algorithmus

```
\sigma^R := \emptyset schon erreicht
\tau \coloneqq \sigma^I noch zu besuchen
while \tau \neq \emptyset do
    choose s with s \in \tau
   \tau := \tau \setminus \{s\}
   if s \notin \sigma^R then
       \sigma^R := \sigma^R \cup \{s\}
       \tau := \tau \cup post(s)
    end if
end while
```

Explizite Erreichbarkeit mit Zustandsmengen

Bisheriger Algorithmus

```
\sigma^R := \emptyset schon erreicht
\tau := \sigma^I noch zu besuchen
while \tau \neq \emptyset do
   choose s with s \in \tau
   \tau := \tau \setminus \{s\}
   if s \notin \sigma^R then
       \sigma^R := \sigma^R \cup \{s\}
       \tau := \tau \cup post(s)
    end if
end while
```

Mit Mengenoperationen

$$\begin{split} \sigma^R &\coloneqq \varnothing \text{ schon erreicht} \\ \tau &\coloneqq \sigma^I \text{ noch zu besuchen} \\ \textbf{while not } \tau \subseteq \sigma^R \text{ do} \\ \sigma^R &\coloneqq \sigma^R \cup \tau \\ \tau &\coloneqq Post(\tau) \\ \textbf{end while} \end{split}$$

Wir benötigen

- ▶ Operationen \emptyset , \subseteq , \cup
- $Post(\sigma) = \bigcup_{s \in \sigma} post(s)$

Symbolische Erreichbarkeitsanalyse

Neuer Algorithmus

$$\begin{split} \sigma^R &\coloneqq \varnothing \text{ schon erreicht} \\ \tau &\coloneqq \sigma^I \text{ noch zu besuchen} \\ \textbf{while not } \tau \subseteq \sigma^R \textbf{ do} \\ \sigma^R &\coloneqq \sigma^R \cup \tau \\ \tau &\coloneqq Post(\tau) \\ \textbf{end while} \end{split}$$

Repräsentation (Grundidee):

Verwende Formeln statt Zustandsmengen! Wie sind \emptyset, \cup, \subset , und Post realisiert?

Symbolische Erreichbarkeitsanalyse

Neuer Algorithmus

$$\sigma^R \coloneqq \varnothing \text{ schon erreicht}$$

$$\tau \coloneqq \sigma^I \text{ noch zu besuchen}$$

$$\text{while not } \tau \subseteq \sigma^R \text{ do}$$

$$\sigma^R \coloneqq \sigma^R \cup \tau$$

$$\tau \coloneqq Post(\tau)$$

$$\text{end while}$$

Repräsentation (Grundidee):

Verwende Formeln statt Zustandsmengen! Wie sind $\varnothing, \cup, \subseteq$, und Post realisiert?

Einfach:

- \triangleright \varnothing \leadsto false
- - \leadsto $\phi_1 \land \neg \phi_2$ unerfüllbar

Symbolische Erreichbarkeitsanalyse

Neuer Algorithmus

$$\sigma^R \coloneqq \varnothing \text{ schon erreicht}$$

$$\tau \coloneqq \sigma^I \text{ noch zu besuchen}$$

$$\text{while not } \tau \subseteq \sigma^R \text{ do}$$

$$\sigma^R \coloneqq \sigma^R \cup \tau$$

$$\tau \coloneqq Post(\tau)$$

$$\text{end while}$$

Repräsentation (Grundidee):

Verwende Formeln statt Zustandsmengen! Wie sind $\emptyset, \cup, \subseteq$, und Post realisiert?

Einfach:

- \triangleright \varnothing \leadsto false

Noch unklar:

 $ightharpoonup Post(\phi)$

$$\sigma^R := (\mathsf{pc} = 5)$$

$$\sigma^R := (pc = 5)$$
$$\vee (pc = 6 \land x = 3)$$

$$\begin{split} \sigma^R := & (\mathsf{pc} = 5) \\ & \lor (\mathsf{pc} = 6 \land \mathsf{x} = 3) \\ & \lor (\mathsf{pc} = 8 \land \mathsf{x} = 3 \land \mathsf{y} = 5) \end{split}$$

$$\begin{split} \sigma^R &:= \quad (\mathsf{pc} = 5) \\ & \lor (\mathsf{pc} = 6 \land \mathsf{x} = 3) \\ & \lor (\mathsf{pc} = 8 \land \mathsf{x} = 3 \land \mathsf{y} = 5) \\ & \lor (\mathsf{pc} = 10 \land \mathsf{x} = 3 \land \mathsf{y} = 5 \land \mathsf{x} + \mathsf{y} \neq 8) \end{split}$$

$$\begin{split} \sigma^R &:= \quad (\mathsf{pc} = 5) \\ & \lor (\mathsf{pc} = 6 \land \mathsf{x} = 3) \\ & \lor (\mathsf{pc} = 8 \land \mathsf{x} = 3 \land \mathsf{y} = 5) \\ & \lor (\mathsf{pc} = 10 \land \mathsf{x} = 3 \land \mathsf{y} = 5 \land \mathsf{x} + \mathsf{y} \neq 8) \\ & \lor (\mathsf{pc} = 12 \land \mathsf{x} = 3 \land \mathsf{y} = 5 \land \mathsf{x} + \mathsf{y} = 8) \end{split}$$

$$\begin{split} \sigma^R &:= \quad (\text{pc} = 5) \\ & \lor (\text{pc} = 6 \land \text{x} = 3) \\ & \lor (\text{pc} = 8 \land \text{x} = 3 \land \text{y} = 5) \\ & \lor (\text{pc} = 10 \land \text{x} = 3 \land \text{y} = 5 \land \text{x} + \text{y} \neq 8) \\ & \lor (\text{pc} = 12 \land \text{x} = 3 \land \text{y} = 5 \land \text{x} + \text{y} = 8) \end{split}$$

Analog zur expliziten Erreichbarkeit, allerdings

- ▶ pc = 5 entspricht pc = $5 \land x \in \mathbb{Z} \land y \in \mathbb{Z}$: Startwerte können beliebig sein
- Zustand mit pc = 10 ist nicht erreichbar: Teilformel ist unerfüllbar (\iff false)

$$\sigma^R := (pc = 5)$$

$$\begin{split} \sigma^R := & \quad (\mathrm{pc} = 5) \\ & \quad \lor (\mathrm{pc} = 6 \land 2 < \mathsf{x} < 6) \end{split}$$

$$\begin{split} \sigma^R := & \quad (\mathrm{pc} = 5) \\ & \quad \lor (\mathrm{pc} = 6 \land 2 < \mathsf{x} < 6) \\ & \quad \lor (\mathrm{pc} = 8 \land 2 < \mathsf{x} < 6 \land \mathsf{y} = \mathsf{x} * \mathsf{x}) \end{split}$$

$$\begin{split} \sigma^R := & \text{ (pc} = 5) \\ & \text{ } \forall \text{ (pc} = 6 \land 2 < \text{x} < 6) \\ & \text{ } \forall \text{ (pc} = 8 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x}) \\ & \text{ } \forall \text{ (pc} = 10 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x} \land \text{x} + \text{y} \geq 23) \end{split}$$

$$\begin{split} \sigma^R := & \text{ (pc} = 5) \\ & \vee \text{ (pc} = 6 \land 2 < \text{x} < 6) \\ & \vee \text{ (pc} = 8 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x}) \\ & \vee \text{ (pc} = 10 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x} \land \text{x} + \text{y} \ge 23) \\ & \vee \text{ (pc} = 12 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x} \land \text{x} + \text{y} < 23) \end{split}$$

$$\begin{split} \sigma^R := & \text{ (pc} = 5) \\ & \vee \text{ (pc} = 6 \land 2 < \text{x} < 6) \\ & \vee \text{ (pc} = 8 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x}) \\ & \vee \text{ (pc} = 10 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x} \land \text{x} + \text{y} \geq 23) \\ & \vee \text{ (pc} = 12 \land 2 < \text{x} < 6 \land \text{y} = \text{x} * \text{x} \land \text{x} + \text{y} < 23) \end{split}$$

Finde Lösungen mit Constraint-Solvern, z.B.:

Skaliert für linearer Arithmetik auf sehr große Probleme

Beispiel: Lösen von Constraints mit SMT Solvern

Eingabedatei constraints.smt2

```
(set-logic ALL)
(set-option :produce-models true)
(declare-const pc Int)
(declare-const x Int)
(declare-const v Int)
(assert
   (or (and (= pc 5))
       (and (= pc 6) (< 2 x) (< x 6))
       (and (= pc 8) (< 2 x) (< x 6) (= y (* x x)))
       (and (= pc 10) (< 2 x) (< x 6) (= y (* x x)) (>= (+ x y) 23))
       (and (= pc 12) (< 2 x) (< x 6) (= v (* x x)) (< (+ x v) 23))))
(push)
   (assert (= pc 10))
   (check-sat)
   (get-model)
(gog)
(push)
   (assert (= pc 12))
   (check-sat)
   (get-model)
(pop)
```

Ausführung

z3 constraints.smt2

Ausgabe:

```
sat
(model
  (define-fun pc () Int
   10)
  (define-fun y () Int
   25)
  (define-fun x () Int
   5)
)
sat
(model
  (define-fun pc () Int
   12)
  (define-fun y () Int
   9)
  (define-fun y () Int
   9)
  (define-fun x () Int
   3)
)
```

Offene Frage: Berechnung von Post

Offene Frage: Berechnung von Post

Zuweisung als Gleichung?

$$x \ge 0 \xrightarrow{x = x+1} x \ge 0 \land x = x+1$$

Offene Frage: Berechnung von Post

Zuweisung als Gleichung?

$$x \ge 0 \xrightarrow{x = x+1} x \ge 0 \land x = x+1$$

Problem: unterschiedliche Versionen von x verglichen \rightarrow Formel wird unerfüllbar

Mögliche Ideen (Zuweisung)

Intuitiv

$$x \ge 0 \xrightarrow{x = x+1} x > 0$$
 oder $x \ge 0 \xrightarrow{x = x+1} x - 1 \ge 0$

)

Mögliche Ideen (Zuweisung)

Intuitiv (✓ reicht für Übung, ✗ nicht systematisch)

$$x \ge 0 \xrightarrow{x = x+1} x > 0$$
 oder $x \ge 0 \xrightarrow{x = x+1} x - 1 \ge 0$

)

Mögliche Ideen (Zuweisung)

Intuitiv (✓ reicht für Übung, ✗ nicht systematisch)

$$x \ge 0 \xrightarrow{x = x+1} x > 0$$
 oder $x \ge 0 \xrightarrow{x = x+1} x - 1 \ge 0$

Eine Variable pro Programmstelle

$$\mathbf{x}_{\ell} \geq 0 \xrightarrow{\mathbf{x} = \mathbf{x} + \mathbf{1}} \mathbf{x}_{\ell} > 0 \land \mathbf{x}_{\ell'} = \mathbf{x}_{\ell} + 1$$

Mögliche Ideen (Zuweisung)

Intuitiv (✓ reicht für Übung, ✗ nicht systematisch)

$$x \ge 0 \xrightarrow{x = x+1} x > 0$$
 oder $x \ge 0 \xrightarrow{x = x+1} x - 1 \ge 0$

Eine Variable pro Programmstelle (X Schleifen gehen so nicht¹)

$$\mathbf{x}_{\ell} \geq 0 \xrightarrow{\mathbf{x} = \mathbf{x} + \mathbf{1}} \mathbf{x}_{\ell} > 0 \land \mathbf{x}_{\ell'} = \mathbf{x}_{\ell} + 1$$

Mögliche Ideen (Zuweisung)

Intuitiv (✓ reicht für Übung, ✗ nicht systematisch)

$$x \ge 0 \xrightarrow{x = x+1} x > 0$$
 oder $x \ge 0 \xrightarrow{x = x+1} x - 1 \ge 0$

Eine Variable pro Programmstelle (X Schleifen gehen so nicht¹)

$$x_{\ell} \ge 0 \xrightarrow{x = x+1} x_{\ell} > 0 \land x_{\ell'} = x_{\ell} + 1$$

Neue Variablen für vorige Werte einführen

$$x > 0$$
 $\xrightarrow{x = x+1} x_0 > 0 \land x = x_0 + 1$

 $^{^{1}}_{\mathsf{Prof.\ Dr.\ Gidon\ Ernst}}\,\mathsf{Nachdenken:\ welcher\ (ganz\ einfache)}\, \underset{\mathsf{Symbolische}\ Erreichbarkeitsanalvse}{\mathsf{Schleifencode}}\,\,\mathsf{zeigt\ das\ Problem?}$

Mögliche Ideen (Zuweisung)

Intuitiv (✓ reicht für Übung, ✗ nicht systematisch)

$$x \ge 0 \xrightarrow{x = x+1} x > 0$$
 oder $x \ge 0 \xrightarrow{x = x+1} x - 1 \ge 0$

Eine Variable pro Programmstelle (X Schleifen gehen so nicht¹)

$$x_{\ell} \ge 0 \xrightarrow{x = x+1} x_{\ell} > 0 \land x_{\ell'} = x_{\ell} + 1$$

Neue Variablen für vorige Werte einführen (ok aber viele Variablen)

$$x > 0 \xrightarrow{x = x+1} x_0 > 0 \land x = x_0 + 1$$

 $^{^{1}}_{\mathsf{Prof.\ Dr.\ Gidon\ Ernst}}\,\mathsf{Nachdenken:\ welcher\ (ganz\ einfache)}\, \underset{\mathsf{Symbolische}\ Erreichbarkeitsanalvse}{\mathsf{Schleifencode}}\,\,\mathsf{zeigt\ das\ Problem?}$

Mögliche Ideen (Zuweisung)

Intuitiv (✓ reicht für Übung, ✗ nicht systematisch)

$$x \ge 0 \xrightarrow{x = x+1} x > 0$$
 oder $x \ge 0 \xrightarrow{x = x+1} x - 1 \ge 0$

Systematisch:

- Symbolic execution (nicht hier)
- ightharpoonup Hoare-Logik (ightharpoonup später)

Bedingungen (von if, while, assume)

Bedingungen (von if, while, assume)

Beachte: keine Änderung der Variablen!

$$\phi \xrightarrow{\psi} ???$$

Bedingungen (von if, while, assume)

Beachte: keine Änderung der Variablen!

Einfache Hinzunahme der neuen Bedingungen 🗸

$$\phi \xrightarrow{\psi} \phi \wedge \psi$$

Was man wissen sollte

- Welchen Vorteil hat die symbolische Zustandsrepräsentation?
- ▶ Wie werden Mengenoperationen auf Formeln abgebildet?
- In wie fern ist Post auf Formeln etwas schwierig?
- ▶ Welche Tools können Lösungen für Formeln finden?
- Zum Nachdenken: Wie könnte man die Algorithmen zur expliziten und symbolischen Suche optimieren, wenn eine Zielregion als Spezifikation bekannt ist z.B. bestimmte Zustände, oder *Invarianten* die in jedem Zustand gelten sollen?

License

©These slides are licensed under the creative commons license:

https://creativecommons.org/licenses/by-nc-nd/4.0/

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

- (give appropriate credit
- (=) distribute without modifications
- (\$) do not use for commercial purposes