Latencia Promedio vs. Iteración - Lectura Intensa

Lectura Intensa	1	2	3	4	5	8	10
1	98.3009	142.4327	209.9072	293.7348	302.0592	495.3986	657.1816
2	100.427	154.7393	193.3041	287.7561	368.4279	556.7961	590.7187
3	97.9001	148.7165	222.3325	297.0776	292.6338	374.564	587.6329
4	95.3056	153.5184	218.1556	251.4451	342.9003	481.2769	683.1981
5	96.2633	166.6888	193.0482	284.2849	348.9442	539.3699	752.8037
Promedio	97.63938	153.21914	207.34952	282.8597	330.99308	489.4811	654.307

Para este experimento su carga de trabajo tuvo las siguientes características:

- · Carga previa de 10.000 registros
- Numero de operaciones 10.000
- 100% de operaciones eran lecturas
- El tamaño del registro es de 100 bytes

El experimento consiste en variar la cantidad de hilos (1,2,3,4,5,8 y 10) con respecto a la carga de trabajo, para observar como se ve afectada la latencia de la base Redis.

El experimento se ejecuto 5 veces para obtener un valor promedio general de Latencia.

Los resultados muestran que, mientras la cantidad de hilos aumenta su latencia también aumenta, podemos argumentar los siguientes puntos

- 1. Redis sin importar la operación que se encuentre ejecutando mientras aumente la cantidad de hilos, aumentara su latencia. Esto se debe al diseño que tiene Redis al momento de atender las peticiones.
- 2. Mientras mas aumenta la cantidad de hilos entonces mas aumenta la variación de sus latencias, esto es debido a que Redis esta diseñado para no bloquearse en llamadas al sistema, como lectura o escritura a un socket, no importa cuando tiempo tome, las ejecuta secuencialmente.