A04 – Predikcia kvality vína, lineárna regresia pomocou L^1 , L^∞

Piati proti optimalizácii Tomáš Antal, Erik Božík, Róbert Kendereš, Teo Pazera, Andrej Špitalský 2DAV

Január 2024

Predstavenie projektu – lineárna regresia

lacktriangle lineárna regresia — predikcia závislej premennej $y\in\mathbb{R}^n$ pomocou nezávislých $x_1,\ldots,x_k\in\mathbb{R}^n$

$$\min ||y - \hat{y}||$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

atribúty	x_1	x_2	 x_k	y
pozorovanie 1	1	0.84	 121	4.25
:	:	•	:	•
pozorovanie n	4	0.12	 117	5.68

ightharpoonup vyjadriteľné ako úloha lineárneho programovania – L^1 , L^{∞}

Predstavenie projektu – obsah

- ► formulácia LP úloh a dokázanie optimality
- implementácia v Python-e a predikcia kvality vína
- lacktriangle počítanie a interpretácia R^2 koeficientu
- lacktriangle implementácia všeobecnej triedy na počítanie L^1 a L^∞ lineárnej regresie
- minimalizácia váženej sumy noriem

Formulácia úloh lineárneho programovania

Úloha

Nájsť koeficienty $\beta_0, \beta_1, \ldots, \beta_k$ tak, aby predikovaný vektor

$$\hat{y} = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k \tag{1}$$

bol čo najbližšie k výstupu y, kde y označuje závislú premennú a $x_1,x_2,\ldots,x_k\in\mathbb{R}^n$ označujú nezávislé premenné. Túto vzdialenosť $||y-\hat{y}||$ sme minimalizovali L^1 a L^∞ normami

Minimalizovanie L^1 normy

Chceme minimalizovať normu $||y-\hat{y}||_1$ označíme:

$$\mathbf{A} := (\mathbf{1}_{\mathbf{n}}, x_1, \dots, x_k)$$

$$\beta := (\beta_0, \beta_1, \dots, \beta_k)^T$$
(2)

Problém prevedieme do tvaru:

$$\min \ c^T x$$

$$\mathbf{A} x > b$$

Minimalizovanie L^{∞} normy

Zavedieme nový vektor $t \in \mathbb{R}^n$, ktorým ohraničíme $y - \mathbf{A} \beta$

Minimalizovanie L^1 normy ako úloha lineárneho programovania:

$$\min \left(\mathbf{0}_{k+1}^{T} \middle| \mathbf{1}_{n}^{T}\right) \left(\frac{\beta}{t}\right)$$

$$\left(\frac{\mathbf{A}}{-\mathbf{A}} \middle| \mathbb{I}_{n}\right) \left(\frac{\beta}{t}\right) \ge \left(\frac{y}{-y}\right)$$

$$\beta \in \mathbb{R}^{k+1}, \ t \ge \mathbf{0}_{n}$$

Minimalizovanie L^{∞} normy

Chceme minimalizovať normu $||y - \hat{y}||_{\infty}$

Zavedieme skalárnu premennú $\gamma \in \mathbb{R}$, prevedieme na úlohu LP

$$-\gamma \mathbf{1}_n \le y - \mathbf{A}\beta \le \gamma \mathbf{1}_n$$

Pomocou značenia z (2), výsledná úloha:

$$\min \left(\mathbf{0}_{k+1}^T \middle| 1 \right) \left(\frac{\beta}{\gamma} \right)$$

$$\left(\frac{\mathbf{A}}{-\mathbf{A}} \middle| \mathbf{1}_n \right) \left(\frac{\beta}{\gamma} \right) \ge \left(\frac{y}{-y} \right)$$

$$\beta \in \mathbb{R}^{k+1}, \ \gamma > 0$$

В

. . .

Predikcia kvality vína - dáta

Nezávislé premenné

- množstvo dažďa v zime
- priemerná teplota počas zretia vína
- množstvo dažďa počas zberu
- vek vína
- populácia Francúzska

Závislá premenná

cena

Orley Ashenfelter

Predikcia kvality vína - výsledky

 L^1

- L^{∞}
- + vplyv teploty počas zretia

lacktriangle rovnaké poradie ako L^1

+ vplyv veku vína

ale – vplyv veku vína

- vplyv dažďu počas zberu
- + vplyv dažďu počas zimy
- vplyv populácie Francúzska

$$\beta_0^{(1)} \approx -8.88 \cdot 10^{-1} \quad \beta_1^{(1)} \approx 1.58 \cdot 10^{-3} \quad \beta_2^{(1)} \approx 5.21 \cdot 10^{-1}$$

$$\beta_3^{(1)} \approx -4.51 \cdot 10^{-3} \quad \beta_4^{(1)} \approx 1.13 \cdot 10^{-2} \quad \beta_5^{(1)} \approx -2.21 \cdot 10^{-5}$$

D

. . .

Všeobecná trieda pre L^1 a L^∞ lineárnu regresiu

```
from models.models import L1Model, LInfModel
```

- zovšeobecnenie problému
- voľnosť dimenzionality
- lacktriangle vstupný vektor y a matica ${f X}$
- hodnoty β výstupom

```
# inicializacia
model1 = L1Model(y, X)
model2 = LInfModel(y, X)
# riesenie
beta1 = model1.solve()
beta2 = model2.solve()
```

Všeobecná trieda pre L^1 a L^∞ lineárnu regresiu

- ightharpoonup hodnota R^2
- vizualizácia pre 2D a 3D

Porovnanie L^1 a L^{∞} lineárnej regresie

- $ightharpoonup L^1$ veľmi dobre zachytáva lineárny vzťah, môže viesť k overfittingu
- $ightharpoonup L^{\infty}$ príliš ovplyňovaná outliermi

Minimalizácia váženého súčtu noriem

lacktriangleright redukcia overfittingu L^1 regresie váženým súčtom s L^∞ normou

min
$$\omega ||y - \hat{y}||_1 + (1 - \omega)||y - \hat{y}||_{\infty}, \ \omega \in [0; 1]$$

> stále implementovateľné ako úloha lineárneho programovania

$$\min \ \left(\begin{array}{c|c} \mathbf{0}_{k+1}^T & \omega \mathbf{1}_n^T & (1-\omega) \end{array} \right) \left(\frac{\beta}{t} \\ \hline \frac{\mathbf{A}}{\gamma} \right), \ \omega \in [0;1] \\ \left(\begin{array}{c|c} \mathbf{A} & \mathbb{I}_n & \mathbf{0}_n \\ \hline -\mathbf{A} & \mathbb{I}_n & \mathbf{0}_n \\ \hline -\mathbf{A} & \mathbf{0}_{n \times n} & \mathbf{1}_n \\ \hline -\mathbf{A} & \mathbf{0}_{n \times n} & \mathbf{1}_n \end{array} \right) \left(\frac{\beta}{t} \\ \hline \gamma \right) \geq \left(\begin{array}{c} y \\ \hline -y \\ \hline -y \end{array} \right)$$

Minimalizácia váženého súčtu noriem

implementované ako WeightedL1LInfModel

Zhrnutie

- ► formulácia lineárnej regresie ako úlohy LP
- predikcia ceny vín
- lacktriangle jednoduchý framework na počítanie lineárnej regresie pomocou L^1 a L^∞ noriem, resp. ich váženej sumy

Ďalšie kroky

- analýza časovej zložitosti, napr. voči najmenším štvorcom
- porovnanie vhodnosti jednotlivých prístupov podľa vstupných dát