Introduction to Machine Learning

Maximum Likelihood Estimation vs. Empirical Risk Minimization

Learning goals

- Learn the correspondence of between a Laplacian error distributions and the L1 loss
- Learn that there is no error distribution for the Huber loss
- Learn the correpondence between Bernoulli-distributed targets and the Bernoulli loss

LAPLACE ERRORS - L1-LOSS

Let us assume that errors are Laplacian, i.e. ϵ follows a Laplace distribution which has the density

$$\frac{1}{2\sigma}\exp\left(-\frac{|x|}{\sigma}\right)\,,\sigma>0.$$

Then

$$y = f_{\mathsf{true}}(\mathbf{x}) + \epsilon$$

follows a Laplace distribution with mean $f(\mathbf{x}^{(i)} \mid \boldsymbol{\theta})$ and scale parameter σ .

LAPLACE ERRORS - L1-LOSS

The likelihood is then

$$\mathcal{L}(\boldsymbol{\theta}) = \prod_{i=1}^{n} \rho \left(y^{(i)} \mid f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right), \sigma \right)$$

$$\propto \exp \left(-\frac{1}{\sigma} \sum_{i=1}^{n} \left| y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) \right| \right).$$

The negative log-likelihood is

$$-\ell(\boldsymbol{\theta}) \propto -\sum_{i=1}^{n} \left| y^{(i)} - f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) \right|.$$

Minimizing the negative log-likelihood for Laplacian error terms corresponds to empirical risk minimization with L1-loss.

LAPLACE ERRORS - L1-LOSS

 Distribution of empirical residuals and their comparison to the theoretical quantiles of a Laplace-distribution.

OTHER ERROR DISTRIBUTIONS

 There are losses that do not correspond to "real" error densities, like the Huber loss. (In the QQ-plot below we show residuals against quantiles of a normal.)

OTHER ERROR DISTRIBUTIONS

However, intuitively, we see that a certain type of loss function corresponds to a certain error distribution.

Loss function	Error Distribution
L2-Loss	Gaussian Errors
L1-Loss	Laplace Errors
Huber Loss	"Huber Errors"

MAXIMUM LIKELIHOOD IN CLASSIFICATION

Let us assume the outputs $y^{(i)}$ to be Bernoulli-distributed, i.e.

$$y^{(i)} \sim \operatorname{Ber}(\pi(\mathbf{x}))$$

with probability $\pi(\mathbf{x})$ that depends on \mathbf{x} .

The maximization of the negative log-likelihood is based on

$$-\ell(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \log \rho \left(y^{(i)} \mid \mathbf{x}^{(i)}, \boldsymbol{\theta} \right)$$
$$= \sum_{i=1}^{n} -y^{(i)} \log[\pi \left(\mathbf{x}^{(i)} \right)] - \left(1 - y^{(i)} \right) \log[1 - \pi \left(\mathbf{x}^{(i)} \right)].$$

MAXIMUM LIKELIHOOD IN CLASSIFICATION

This gives rise to the following loss function

$$L_{0,1}(y,\pi(\mathbf{x})) = -y \ln(\pi(\mathbf{x})) - (1-y) \ln(1-\pi(\mathbf{x}))$$

which we introduced as Bernoulli loss.

