Supervised Classification

Contents

• kNN classifier •

Confusion Matrix •

Conclusions

Types of Machine Learning

Supervised Learning Workflow

Instance Based Classifiers

- First Example of Supervised Classification
- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

Nearest neighbor

 Uses k "closest" points (nearest neighbors) for performing classification

Instance-Based Classifiers

Set of Stored Cases

Atr1 AtrN Class A

B

В

 \mathbf{C}

Α

C

B

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1 AtrN

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Compute Distance

Test Record

Choose k of the "nearest" records

Training Records

Nearest-Neighbor Classifiers

Unknown record

- Requires three things
- The set of stored records –
 Distance Metric to compute
 distance between records
- The value of k, the number of nearest neighbors to retrieve
- □ To classify an unknown record: Compute distance to other training records
- Identify k nearest neighbors
 Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

XXX

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$= \sum_{\substack{d \ p \ q \ p_{i}q_{i} \geq i}} - \left(\begin{array}{c} \\ \\ \\ \end{array} \right) \left(\begin{array}{c} \\ \\ \\ \end{array} \right) = \sum_{\substack{d \ p \ q \ abs \ p_{i}q_{i} \\ \\ \end{array}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k
 nearest neighbors
 - Weigh the vote according to distance

• weight factor, $w = 1/d^2$

Example (NN Classifier)

F1	F2	Class
1	5	0
0	8	0
0	6	1
1	2	1

1	3	?
---	----------	---

1	4	?
0	3	?
0	4	?

Training Data Test Data

Example (NN Classifier)

Step 1: Computer Distance from Test Sample 1 to Training Data Step 2:

1	1-1 + 3-5 = 0 + 2 = 2	0
2	1-0 + 3-8 = 1 + 5 = 6	0
3	1-0 + 3-6 = 1 + 3 = 4	1
4	1-1 + 3-2 = 0 + 1 = 1	1

Step 3: Assign the Test Sample to Class with minimum Distance, Here is Class 1. So Test Sample 1 belongs to Class 1

Example (NN Classifier) Exercise: Calculate for

other 3 Test Samples

1	0	1
2	0	0
3	1	1
4	1	0 or 1

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points If k is too large, neighborhood may include points from

other classes

Χ

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m

- weight of a person may vary from 90lb to 300lb
- income of a person may vary from \$10K to \$1M

Example (NN Classifier)

Normalize Data from 0 to 1

F1	F2	Class
1	0.5	0
0	1	0
0	0.667	1
1	0	1

1	0.167	?
1	0.334	?.
0	0.167	?.
0	0.334	?

Training Data Test Data

Example (NN Classifier)

After Normalization

1	0	1
2	0	0

3	1	1
4	1	1

Confusion Matrix

 In the field of machine learning, a confusion matrix is a specific table layout that allows visualization of the performance of an algorithm

	Predicted Negative	Predicted Positive
Actual Negative	True Negative	False Positive
Actual Positive	False Negative	True Positive

Confusion Matrix

- <u>TN</u> is the number of correct predictions that an instance is negative
- *FP* is the number of incorrect predictions that an instance is positive
- <u>FN</u> is the number of incorrect predictions that an instance is negative
- <u>TP</u> is the number of correct predictions that an instance is positive

Confusion Matrix

 Confusion Matrix from the example of Lecture 2 (without Normalization)

1	1	1
2	0	0
3	1	1
4	1	0

Negative		
	TN = 1	FP = 0
Positive	FN = 1	TP = 2

Confusion Matrix

- Several standard terms have been defined for the 2 class matrix
- The *accuracy* (*AC*) is the proportion of the total number of predictions that were correct

Accuracy = 3 / 4 = 75%

Confusion Matrix

 The recall or true positive rate (TPR) is the proportion of positive cases that were correctly identified

$$TP TPR + TP FN$$

 The false positive rate (FPR) is the proportion of negatives cases that were incorrectly classified as positive

$$FP FPR$$
 + $= FP TN$

• TPR or recall = 2 / 3 = 66.7%

•
$$FPR = 0 / 1 = 0 \%$$

Confusion Matrix

 The true negative rate (TNR) is defined as the proportion of negatives cases that were classified correctly,

$$TN TNR = FP TN$$

 The false negative rate (FNR) is the proportion of positives cases that were incorrectly classified as

negative
$$- TNR = 1 / 1 = FN FNR + 100\% - FNR = 1 / 3 = 33.3\%$$

FN TP

Confusion Matrix

 precision (P) is the proportion of the predicted positive cases that were correct,

= 100%

tp fp

• precision = 2/2 =

 F measure is harmonic mean of precision and recall

$$F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

• F1 = (2 * 1 * 0.667)/(1+0.667) = 0.8

Exercise

		9760
Ne _ξ	Positive	140

References

- Introduction to Data Mining by Tan, Steinbach, Kumar (Lecture Slides)
- http://robotics.stanford.edu/~ronnyk/glossary.html
 http://www.cs.tufts.edu/comp/135/Handouts/introduction
 lecture-12-handout.pdf

Questions!