Aviation Accident Database & Synopses, up to 2023

Introduction.

Business understanding

A company is embarking on a strategic expansion into the aviation sector, aiming to diversify its investment portfolio by purchasing and operating planes for both commercial and private enterprises. As this venture is new to the organisation, there is limited internal knowledge about the aviation domain, particularly regarding safety and operational risk.

Business problem

The company must identify which aircraft models and types have the lowest operational risk to guide safe and cost-effective entry into the aviation market.

EDA objectives

This notebook explores aircraft risk patterns to support the Company's on safe aircraft acquisition decisions. The following objectives are structured around key EDA phases:

1. Data understanding

- Load and preview the dataset to understand its structure, size and key variables.
- Identify the most relevant columns for analyzing aviation safety.

2. Data cleaning

- Handle missing values and duplicated values.
- Check on inconsistent formatting in the key fields.
- Standardize categorical variables for accurate grouping.
- Check on outliers......

3. Univariate & Bivariate Analysis

- Explore the most common aircraft types and count how many incidents each has.
- Analyze incident trends over time to detect rising or declining risk patterns

4. Multivariate & Grouped Insights

 Compare incident frequencies by usage type (commercial vs private), age, or manufacturer.

5. Incident Causes & Locations

 Visualize the top causes of incidents and the regions with the highest incident density.

1. Data Understanding

- Import the necessary libraries required for the data.
- Load the Aviation.csv data

```
In [1]: # import the necessary libraries.
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
In [3]: # Load the data.
        df= pd.read_csv('AviationData.csv', encoding = 'latin1', low_memory = False)
In [5]: # Check the size of the data
        df.shape
Out[5]: (88889, 31)
In [7]: # check the columns of the data
        df.columns
Out[7]: Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date',
                'Location', 'Country', 'Latitude', 'Longitude', 'Airport.Code',
                'Airport.Name', 'Injury.Severity', 'Aircraft.damage',
                'Aircraft.Category', 'Registration.Number', 'Make', 'Model',
                'Amateur.Built', 'Number.of.Engines', 'Engine.Type', 'FAR.Description',
                'Schedule', 'Purpose.of.flight', 'Air.carrier', 'Total.Fatal.Injuries',
                'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured',
                'Weather.Condition', 'Broad.phase.of.flight', 'Report.Status',
                'Publication.Date'],
              dtype='object')
In [9]: # check the whole iformation of the data
        df.info()
```

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 88889 entries, 0 to 88888 Data columns (total 31 columns):

```
Column
                           Non-Null Count Dtype
--- -----
                            -----
0
    Event.Id
                           88889 non-null object
1
    Investigation.Type
                           88889 non-null object
 2
    Accident.Number
                           88889 non-null object
 3
    Event.Date
                           88889 non-null object
 4
    Location
                           88837 non-null object
 5
                           88663 non-null object
    Country
 6
    Latitude
                           34382 non-null object
 7
    Longitude
                           34373 non-null object
    Airport.Code
                           50132 non-null object
 9
    Airport.Name
                           52704 non-null object
 10 Injury.Severity
                           87889 non-null object
 11 Aircraft.damage
                           85695 non-null object
 12 Aircraft.Category
                           32287 non-null object
13 Registration.Number
                           87507 non-null object
 14 Make
                           88826 non-null object
15 Model
                           88797 non-null object
16 Amateur.Built
                           88787 non-null object
 17 Number.of.Engines
                           82805 non-null float64
18 Engine.Type
                           81793 non-null object
 19 FAR.Description
                           32023 non-null object
 20 Schedule
                           12582 non-null object
 21 Purpose.of.flight
                           82697 non-null object
 22 Air.carrier
                           16648 non-null object
 23 Total.Fatal.Injuries
                           77488 non-null float64
 24 Total.Serious.Injuries
                           76379 non-null float64
 25 Total.Minor.Injuries
                           76956 non-null float64
 26 Total.Uninjured
                           82977 non-null float64
 27 Weather.Condition
                           84397 non-null object
 28 Broad.phase.of.flight
                           61724 non-null object
 29 Report.Status
                           82505 non-null object
 30 Publication.Date
                           75118 non-null object
dtypes: float64(5), object(26)
```

memory usage: 21.0+ MB

```
In [11]: # check the first five rows
         df.head()
```

		Event.ld	Investigation. Type	Accident.Number	Event.Date	Location	Country
	0 200	01218X45444	Accident	SEA87LA080	1948-10- 24	MOOSE CREEK, ID	United State
	1 200	01218X45447	Accident	LAX94LA336	1962-07- 19	BRIDGEPORT, CA	United State
	2 20061025X015553 20001218X45448		Accident	NYC07LA005	1974-08- 30	Saltville, VA	United State
			Accident	LAX96LA321	1977-06- 19	EUREKA, CA	United State
	4 200	41105X01764	Accident	CHI79FA064	1979-08- 02	Canton, OH	United State
	5 rows >	31 columns					
	4						•
In [13]:	# chec	k the last 5 l()	rows				
Out[13]:		Even	t.Id Investigation.Ty	ype Accident.Nun	nber Event.	Date Locatio	n Coun
	88884	20221227106	491 Accid	ent ERA23LA	A093 2022	2-12- Annapolis 26 MI	
	88885	20221227106	494 Accid	ent ERA23LA	A095 2022	2-12- Hamptor 26 NI	
	88886	20221227106	497 Accid	ent WPR23LA	A075 2022	2-12- Paysor 26 A	
	88887	20221227106	498 Accid	ent WPR23LA	A076 2022	2-12- Morgar 26 U	
	00000	20221230106	513 Accid	ent ERA23LA	4097 2022	2-12- Athens 29 G	
	00000	20221230100					
		< 31 columns					
							>
In [13]:	5 rows >	k the Last 5	rows		02		2

file:///C:/Users/Admin/Downloads/Phase 1 project .html

df.describe()

Out[15]:

	Number.of.Engines	Total.Fatal.Injuries	Total.Serious.Injuries	Total.Minor.Injuries	Tot
count	82805.000000	77488.000000	76379.000000	76956.000000	8
mean	1.146585	0.647855	0.279881	0.357061	
std	0.446510	5.485960	1.544084	2.235625	
min	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	0.000000	0.000000	0.000000	
50%	1.000000	0.000000	0.000000	0.000000	
75%	1.000000	0.000000	0.000000	0.000000	
max	8.000000	349.000000	161.000000	380.000000	
1					•

For the column to be relevant to the analysis, it should answer the questions:

- Which? Answer types of aircraft or models.
- Why? Answers what caused the incident
- When? Answer the time trend
- What kind of incident happened? Answer types of incidents and which one of them is sever

2. Data cleaning

- Handle missing values and duplicated values.
- Check on inconsistent formatting in the key fields.
- Standardize categorical variables for accurate grouping.
- Check on outliers......

```
In [17]: # check on duplicated values
df.duplicated().any()
Out[17]: False
```

```
In [19]: # Check out the columns with missing values
df.isnull().any()
```

```
Out[19]: Event.Id
                                     False
          Investigation. Type
                                     False
          Accident.Number
                                     False
          Event.Date
                                     False
          Location
                                     True
                                     True
          Country
          Latitude
                                     True
                                     True
          Longitude
                                     True
          Airport.Code
          Airport.Name
                                     True
          Injury.Severity
                                      True
          Aircraft.damage
                                     True
                                     True
          Aircraft.Category
                                     True
          Registration.Number
          Make
                                     True
          Model
                                     True
          Amateur.Built
                                     True
          Number.of.Engines
                                      True
          Engine.Type
                                     True
          FAR.Description
                                     True
          Schedule
                                     True
          Purpose.of.flight
                                      True
          Air.carrier
                                      True
          Total.Fatal.Injuries
                                     True
          Total.Serious.Injuries
                                     True
          Total.Minor.Injuries
                                     True
          Total.Uninjured
                                     True
          Weather.Condition
                                     True
          Broad.phase.of.flight
                                     True
          Report.Status
                                     True
          Publication.Date
                                     True
          dtype: bool
```

In [21]: # check the columns missing values with their percentages
 df.isnull().mean().sort_values(ascending=False).round(2) * 100

```
86.0
Out[21]: Schedule
         Air.carrier
                                    81.0
          FAR.Description
                                    64.0
         Aircraft.Category
                                    64.0
                                    61.0
          Longitude
          Latitude
                                    61.0
         Airport.Code
                                    44.0
          Airport.Name
                                    41.0
          Broad.phase.of.flight
                                    31.0
          Publication.Date
                                   15.0
          Total.Serious.Injuries
                                   14.0
          Total.Minor.Injuries
                                    13.0
          Total.Fatal.Injuries
                                    13.0
          Engine.Type
                                     8.0
          Report.Status
                                     7.0
          Purpose.of.flight
                                     7.0
         Number.of.Engines
                                     7.0
          Total.Uninjured
                                     7.0
         Weather.Condition
                                     5.0
                                     4.0
         Aircraft.damage
          Registration.Number
                                     2.0
          Injury.Severity
                                     1.0
          Country
                                     0.0
          Amateur.Built
                                     0.0
         Model
                                     0.0
         Make
                                     0.0
         Location
                                     0.0
          Investigation.Type
                                     0.0
          Event.Date
                                     0.0
          Accident.Number
                                     0.0
          Event.Id
                                     0.0
          dtype: float64
In [23]: # Drop the unnecessary columns, I mean according to the analysis
         df.drop(['Schedule','Airport.Code', 'Registration.Number'],axis=1, inplace= True)
In [25]: # Replace columns with unknown values.
         # This is to avoid biased data.
         df['Air.carrier'] = df['Air.carrier'].fillna('Unknown Operator')
         df['FAR.Description'] = df['FAR.Description'].fillna('Unknown FAR Category')
         df['Aircraft.Category'] = df['Aircraft.Category'].fillna('Unknown Category')
         df['Airport.Name'] = df['Airport.Name'].fillna('Unknown Airport')
         df['Broad.phase.of.flight']=df['Broad.phase.of.flight'].fillna('Unknown Phase')
In [27]: # check for the remaining columns with missing values .
         df.isnull().sum().sort_values(ascending=False)
```

```
Out[27]: Longitude
                                    54516
         Latitude
                                    54507
          Publication.Date
                                    13771
          Total.Serious.Injuries
                                    12510
          Total.Minor.Injuries
                                    11933
          Total.Fatal.Injuries
                                    11401
          Engine.Type
                                     7096
          Report.Status
                                     6384
          Purpose.of.flight
                                     6192
          Number.of.Engines
                                     6084
          Total.Uninjured
                                     5912
         Weather.Condition
                                     4492
         Aircraft.damage
                                      3194
          Injury.Severity
                                     1000
          Country
                                       226
          Amateur.Built
                                       102
         Model
                                       92
         Make
                                        63
                                        52
          Location
                                         0
          Investigation. Type
          FAR.Description
                                         0
         Air.carrier
                                         0
         Aircraft.Category
                                         0
                                         0
         Airport.Name
                                         0
          Event.Date
                                         0
          Broad.phase.of.flight
         Accident.Number
                                         0
          Event.Id
                                         0
          dtype: int64
In [29]:
             lets check the mean and median of this columns
         cols_int = [
              'Total.Serious.Injuries',
              'Total.Minor.Injuries',
              'Total.Fatal.Injuries',
              'Total.Uninjured',
              'Number.of.Engines'
         ]
         # Check mean for all at once
         df[cols_int].mean()
         # check medians for the columns
         df[cols_int].median()
Out[29]: Total.Serious.Injuries
                                    0.0
         Total.Minor.Injuries
                                    0.0
          Total.Fatal.Injuries
                                    0.0
          Total.Uninjured
                                    1.0
          Number.of.Engines
                                    1.0
          dtype: float64
```

So, according to the data above we cannot fill the missing values of the injured columns with the mean and median but we can fill them with 0

```
In [31]: # fill the missing values of the injured cols with 0
  injury_cols = ['Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Fatal.Injur
  df[injury_cols] = df[injury_cols].fillna(0)
```

In [33]: # lets look into the number.of. Engines col using a visual to checkif the data is
import matplotlib.pyplot as plt

df['Number.of.Engines'].dropna().plot(kind='hist', bins=10, color='green', ec= 'bla
plt.title("Distribution of Number of Engines")
plt.show()

Distribution of Number of Engines


```
In [35]: # fill the data with median
    df['Number.of.Engines']= df['Number.of.Engines'].fillna(df['Number.of.Engines'].med

In [37]: # check for the remaining columns with missing values .
    df.isnull().sum().sort_values(ascending=False)
```

Out[37]:	Longitude	54516
	Latitude	54507
	Publication.Date	13771
	Engine.Type	7096
	Report.Status	6384
	Purpose.of.flight	6192
	Weather.Condition	4492
	Aircraft.damage	3194
	Injury.Severity	1000
	Country	226
	Amateur.Built	102
	Model	92
	Make	63
	Location	52
	Aircraft.Category	0
	Total.Serious.Injuries	0
	Accident.Number	0
	Broad.phase.of.flight	0
	Event.Date	0
	Total.Uninjured	0
	Total.Minor.Injuries	0
	Air.carrier	0
	Total.Fatal.Injuries	0
	FAR.Description	0
	Airport.Name	0
	Number.of.Engines	0
	Investigation.Type	0
	Event.Id	0
	dtype: int64	

In [39]: # ckeck the injury.severity col
df[df['Injury.Severity'].isnull()]

Out[39]:

	Event.ld	Investigation. Type	Accident.Number	Event.Date	Location	Coun
63918	20080111X00038	Incident	DCA08WA024	2008-01- 03	Deauville Saint, France	Frai
63962	20080204X00132	Accident	NYC08WA081	2008-01- 16	Kiteni, Peru	Р
63987	20080304X00254	Incident	ENG08RA015	2008-01- 24	Kingston, Jamaica	Jama
64026	20081219X65255	Incident	ENG08WA014	2008-02- 03	Nurnberg, Germany	Germa
64128	20080409X00444	Accident	NYC08WA121	2008-02- 28	Lago Ranco, Chile	Cl
•••						
88863	20221213106449	Accident	GAA22WA311	2022-12- 11	Kildare,	Irela
88874	20221215106462	Accident	CEN23LA064	2022-12- 15	Patterson, LA	Uni Sta
88879	20221219106472	Accident	DCA23LA096	2022-12- 18	Kahului, HI	Uni Sta
88885	20221227106494	Accident	ERA23LA095	2022-12- 26	Hampton, NH	Uni Sta
88887	20221227106498	Accident	WPR23LA076	2022-12- 26	Morgan, UT	Uni Sta
1000 ro	ws × 28 columns					
4						

```
In [41]: # We can fill up this column with the injury columns .
         def refer_severity(row):
             if row['Total.Fatal.Injuries'] > 0:
                 return 'Fatal'
             elif row['Total.Serious.Injuries'] > 0:
                 return 'Serious'
             elif row['Total.Minor.Injuries'] > 0:
                 return 'Minor'
             elif row['Total.Uninjured'] > 0:
                 return 'None'
             else:
                 return 'Unknown'
         df['Injury.Severity'] = df.apply(refer_severity, axis=1)
In [43]: df['Injury.Severity'].value_counts()
Out[43]: Injury.Severity
         None
                    47089
         Fatal
                    17813
         Minor
                   11488
         Serious 11190
                    1309
         Unknown
         Name: count, dtype: int64
In [45]: # check the country and location
         df[df['Country'].isnull()]
```

Out[45]:		Event.ld	Investigation. Type	Accident.Number	Event.Date	Location
	36	20020917X02410	Accident	MIA82FKA05	1982-01- 04	SAINT CROIX
	464	20020917X02358	Accident	MIA82DA062	1982-03- 02	HUMA CAO
	465	20020917X02026	Accident	FTW82DA076	1982-03- 02	MUSTANG BLK A11
	725	20020917X02377	Accident	MIA82DA091	1982-03- 31	MOCA
	831	20020917X02069	Accident	FTW82DA127	1982-04- 13	WEST DELTA 105D
	•••					
	52288	20020322X00387	Accident	DCA02MA029	2002-03- 22	int'l waters
	54284	20040528X00699	Accident	DCA03WA031	2003-03- 12	JOHANNESBURG
	56200	20040528X00697	Accident	DCA04WA026	2004-02- 10	Sharjah Airport
	58803	20050616X00790	Incident	DCA05WA073	2005-06- 10	Canada/US borde
	62530	20070518X00582	Incident	DCA07WA043	2007-05- 13	London Control
	226 row	s × 28 columns				
	1					>
In [47]:			ing cols with miss	_		

In [47] df.isnull().sum().sort_values(ascending=False)

```
Out[47]: Longitude
                                    54516
          Latitude
                                    54507
          Publication.Date
                                    13771
          Engine.Type
                                     7096
          Report.Status
                                     6384
          Purpose.of.flight
                                     6192
          Weather.Condition
                                     4492
          Aircraft.damage
                                     3194
          Country
                                      226
          Amateur.Built
                                      102
          Model
                                       92
          Make
                                       63
          Location
                                       52
          Injury.Severity
                                        0
          Total.Serious.Injuries
                                        0
          Accident.Number
                                        0
          Broad.phase.of.flight
                                        0
          Event.Date
                                        0
                                        0
          Total.Uninjured
          Total.Minor.Injuries
                                        0
          Air.carrier
                                        0
          Total.Fatal.Injuries
                                        0
          Aircraft.Category
                                        0
          FAR.Description
                                        0
          Airport.Name
                                        0
          Number.of.Engines
                                        0
          Investigation.Type
                                        0
          Event.Id
                                        0
          dtype: int64
In [49]: #Fill the remaining columns with unknowns.
          # To prevent data irrelevance or bias.
         rem_cols=['Engine.Type','Report.Status','Purpose.of.flight','Weather.Condition','Ai
                    'Country','Amateur.Built','Model','Make','Location']
         df[rem_cols] = df[rem_cols].fillna('Unknown')
In [51]: # check on the remaining cols with missing values.
         df.isnull().sum().sort_values(ascending=False)
```

```
Out[51]: Longitude
                                    54516
         Latitude
                                    54507
         Publication.Date
                                   13771
         Number.of.Engines
                                       0
         Report.Status
                                        0
         Broad.phase.of.flight
                                        0
         Weather.Condition
                                        0
         Total.Uninjured
                                       0
         Total.Minor.Injuries
                                       0
         Total.Serious.Injuries
                                       0
         Total.Fatal.Injuries
                                        0
         Air.carrier
                                        0
         Purpose.of.flight
                                       0
         FAR.Description
                                        0
                                        0
         Engine.Type
         Event.Id
                                        0
         Investigation.Type
         Model
                                        0
         Make
                                        0
         Aircraft.Category
                                        0
         Aircraft.damage
                                        0
         Injury.Severity
                                        0
         Airport.Name
                                        0
         Country
                                        0
                                        0
         Location
                                       0
         Event.Date
         Accident.Number
                                        0
         Amateur.Built
         dtype: int64
In [53]: # lets clean the latitude and longitude columns for Tableau mappings
         #Ensure 'Latitude' and 'Longitude' are numeric
         df['Latitude'] = pd.to_numeric(df['Latitude'], errors='coerce')
         df['Longitude'] = pd.to_numeric(df['Longitude'], errors='coerce')
In [55]: # Drop rows without coordinates needed for mapping
         df = df.dropna(subset=['Latitude', 'Longitude'])
In [57]: # Start fresh with a clean copy if you filtered before
         df = df.copy()
         #apply your parsing safely
         df['Publication.Date'] = pd.to_datetime(df['Publication.Date'], format='%d-%m-%Y',
In [59]: #create a display version that fills missing with 'Unknown'
         df['PubDate_Display'] = df['Publication.Date'].dt.strftime('%Y-%m-%d')
         df['PubDate_Display'] = df['PubDate_Display'].fillna('Unknown')
In [61]: # counter check if the data is ready for use.
         df.head(15)
```

Out[61]:		Event.ld	Investigation.Type	Accident.Number	Event.Date	Location	Coı
	2	20061025X01555	Accident	NYC07LA005	1974-08- 30	Saltville, VA	U
	5	20170710X52551	Accident	NYC79AA106	1979-09- 17	BOSTON, MA	U S
	593	20080417X00504	Accident	MIA08CA076	1982-03- 16	MOBILE, AL	U S
	3654	20051208X01953	Accident	SEA83LA209	1983-01- 08	Goldendale, WA	U S
	6202	20020904X01525	Accident	SEA83FA208	1983-09- 09	Kalispell, MT	U S
	22096	20001213X27446	Accident	LAX89LA068	1988-12- 23	Midway Islands, PO	U S
	24567	20021022X05356	Accident	CHI90LA280	1989-12- 01	ENGADINE, MI	U S
	26826	20030411X00484	Accident	ANC91GAMS1	1990-10- 11	Deadhorse, AK	U S
	31353	20170710X10920	Accident	FTW92FA224	1992-09- 05	Alpine, TX	U S
	38740	20011127X02295	Accident	NYC96FA192	1995-11- 28	Marlinton, WV	U S
	42691	20001208X08803	Accident	CHI97FA308	1997-09- 14	St. Ignaces, MI	U S
	44870	20001211X11043	Accident	FTW98FA380	1998-09- 11	HOUSTON, TX	U S
	45203	20041203X01907	Accident	ATL99FA136	1998-11- 04	Robbinsville, NC	U S
	45404	20001211X11573	Accident	LAX99FA051	1998-12- 17	LOS ANGELES, CA	U S
	45592	20001205X00119	Incident	ANC99IA027	1999-02- 05	FAIRBANKS, AK	U S

15 rows × 29 columns

In [63]: # check on outliers on the numeric columns
import seaborn as sns
Select numeric columns

```
numeric_cols = df.select_dtypes(include='number').columns
# Set the number of rows and columns for the subplot grid
nrows = 2
ncols = 3
# Create subplots
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(15, 8))
axes = axes.flatten() # Flatten for easy indexing
# Plot each numeric column
for i, col in enumerate(numeric_cols[:nrows * ncols]): # Limit to fit grid
    sns.boxplot(data=df, x=col, ax=axes[i], color='skyblue')
   axes[i].set_title(f'{col}')
   axes[i].set_xlabel('')
# Hide any unused subplots
for j in range(i + 1, len(axes)):
   fig.delaxes(axes[j])
plt.tight_layout()
plt.show()
```


3. Univariate & Bivariate Analysis

- Explore the most common aircraft types and count how many incidents each has.
- Analyze incident trends over time to detect rising or declining risk patterns

```
In [64]: # check the aircraft type and count how many incidents each has
df['Model'].value_counts().head()
```

```
Out[64]: Model
         152
                       195
         172N
                       175
         172S
                       154
         172
                       122
         PA-28-140
                       117
         Name: count, dtype: int64
In [67]: # Analyze incident trends over time to detect rising or declining risk patterns
         # Group the model data with the event year column.
         # Change the event date column to real-time dates
         df['Event.Date']=pd.to_datetime(df['Event.Date'], errors= 'coerce')
         # extract the years from the `df['Event.Date']`
         df['Event.Year']= df['Event.Date'].dt.year
In [69]: grouped_df=df.groupby(['Event.Year','Model']).size().reset_index(name= 'incident_tt
In [71]: top_models = df['Model'].value_counts().head().index
         grouped_df = grouped_df[grouped_df['Model'].isin(top_models)]
         grouped_df
```

	Event.Year	Model	incident_ttl
4319	2006	152	26
4326	2006	172	13
4341	2006	172N	22
4345	2006	172S	22
4948	2006	PA-28-140	19
5208	2007	152	24
5215	2007	172	20
5231	2007	172N	20
5235	2007	172S	27
5872	2007	PA-28-140	20

```
In [73]: # plot the data for better visualization
  plt.figure(figsize=(12, 6))
  sns.lineplot(data=grouped_df, x='Event.Year', y='incident_ttl', hue='Model', marker
  plt.title('Incident Trends Over Time by Aircraft Model')
  plt.xlabel('Year')
  plt.ylabel('Number of Incidents')
  plt.grid(True)
  plt.tight_layout()
  plt.show()
```



```
In [75]: grouped = df.groupby(['Event.Year', 'Model', 'Injury.Severity']).size().reset_index
grouped
```

Out[75]:		Event.Year	Model	Injury.Severity	Incident_ttl
	0	1974	172M	Fatal	1
	1	1979	DC9	Minor	1
	2	1982	C24R	Fatal	1
	3	1983	14-19-3	Fatal	1
	4	1983	182N	Fatal	1
	•••				
	8149	2021	T303	Fatal	1
	8150	2021	U206	None	1
	8151	2022	182	None	1
	8152	2022	M-7-235B	None	1
	8153	2022	PA-22-160	None	1

8154 rows × 4 columns

6/27/25, 7:25 PM

findings.

- The PA-28-140 Aircraft model has the highest constant incidents. It shows a high probability of danger, while the 172S model shows a minimal probability of danger.
- For further model analysis, will conduct on tableau for more insights.

4. Multivariate & Grouped Insights

Compare incident frequencies by usage type (commercial vs private), age, or manufacturer.

Changing the aircraft type from Model to Aircraft category for more simple and easy visualization creations.

```
In [81]: # retrieve the columns to be used
df['Aircraft.Category'].value_counts()
```

```
Out[81]: Aircraft.Category
         Unknown Category
                              8334
          Airplane
                              3084
          Helicopter
                               390
          Glider
                                88
          Balloon
                                40
          Gyrocraft
                                21
          Ultralight
                                 6
                                 3
          Blimp
          Powered-Lift
                                 2
          Name: count, dtype: int64
In [83]: # can be used for andvanced analysis of this objective .
         df['Purpose.of.flight'].value_counts()
Out[83]: Purpose.of.flight
                                       7044
          Personal
          Instructional
                                       1559
          Unknown
                                       1188
          Aerial Application
                                        483
          Business
                                        403
          Positioning
                                        374
          Other Work Use
                                        241
          Public Aircraft
                                        149
          Flight Test
                                        124
          Aerial Observation
                                         94
          Executive/corporate
                                         59
                                         58
          Ferry
          Air Race/show
                                         57
                                         31
          Skydiving
          Public Aircraft - Federal
                                         26
          Banner Tow
                                         23
          External Load
                                         17
          Public Aircraft - State
                                         14
          Glider Tow
                                         10
          Public Aircraft - Local
                                          9
          Firefighting
                                          4
          Air Drop
                                          1
          Name: count, dtype: int64
In [85]: df['FAR.Description'].value_counts()
```

```
Out[85]: FAR.Description
         Unknown FAR Category
                                            8330
         Part 91: General Aviation
                                            3244
         Part 137: Agricultural
                                             162
         Part 135: Air Taxi & Commuter
                                              85
          Part 121: Air Carrier
                                              44
         Non-U.S., Non-Commercial
                                              35
         Non-U.S., Commercial
                                              22
         Public Use
                                              18
         Unknown
                                               6
         Part 129: Foreign
         Part 133: Rotorcraft Ext. Load
                                               5
         NUSN
                                               5
         091
                                               3
         Part 91 Subpart K: Fractional
                                               1
         Part 125: 20+ Pax,6000+ lbs
                                               1
         Public Aircraft
                                               1
         NUSC
                                               1
         Name: count, dtype: int64
In [87]: df['Make'].value_counts()
Out[87]: Make
         Cessna
                                            3485
         Piper
                                            1854
         Beech
                                             751
          Bell
                                             361
          Robinson
                                             308
         Davenport (van's)
                                               1
         Dantzer Lawrence L
                                               1
         Aircraft Mfg & Development Co.
                                               1
         Murphy
         MAULE
         Name: count, Length: 1715, dtype: int64
In [89]: # Calculate the Aircraft age.
         # limitation: there is no manufacturing Date or Certificate. Issued. Date
         # For temporary trends, use the `Event.Year` to analyze usage .
In [91]: # use the df['FAR.Description'] to create a usage_type column
         def classify_usage(far):
             if pd.isna(far):
                  return 'Unknown'
             elif '121' in far or '135' in far:
                  return 'Commercial'
             elif '91' in far:
                  return 'Private'
             else:
                 return 'Other'
         df['Usage.Type'] = df['FAR.Description'].apply(classify_usage)
In [93]: # create a pivot table to create incidents by Aircraft Category and usage.
         pivot_t1=df.pivot_table(index= 'Aircraft.Category',
```

```
columns= 'Usage.Type',
     values= 'Event.Id',
     aggfunc='count',
     fill_value=0
)
pivot_t1
```

Out[93]: Usage.Type Commercial Other Private

Aircraft.Category			
Airplane	102	218	2764
Balloon	0	0	40
Blimp	0	0	3
Glider	0	1	87
Gyrocraft	0	0	21
Helicopter	27	42	321
Powered-Lift	0	0	2
Ultralight	0	0	6
Unknown Category	0	8330	4

Out[95]: **Usage.Type Commercial Other Private** Make Cessna **Boeing Beech** Bell **Mcdonnell Douglas** Fox Alfred C. **Found Aircraft Canada Inc Found Aircraft Canada Found Acft** Zorn

1715 rows × 3 columns

```
In [97]: # plot the pivot_t2 to check on the top ten manufacturers for the plane models.
Top_10=pivot_t2.head(10)
# plot a grouped bar chart
Top_10.plot(kind='bar', figsize=(12, 6))

# Label the chart
plt.title('Top 10 Manufacturers by incident_ttl (Commercial vs Private)')
plt.ylabel('Number of Incidents')
plt.xlabel('Manufacturer (Make)')
plt.xticks(rotation=45)
plt.legend(title='Usage Type')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```



```
In [99]: # plot the pivot_t1 to check on the top Aircraft category by usage type.
# plot a grouped barh graph.
pivot_t1.plot(kind='barh', figsize=(12, 6))
# Label chart
plt.title('Aircraft Category by Usage Type')
plt.xlabel('Number of Incidents')
plt.ylabel('Aircraft Category')
plt.legend(title='Usage Type')
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```



```
# Label chart
plt.title('Aircraft Category by Usage Type')
plt.xlabel('Number of Incidents')
plt.ylabel('Aircraft Category')
plt.legend(title='Usage Type', loc=4)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
plt.show()
```


My Findings

- according to the visualizations, private aviation has more incidents than the commercial ones.
- The manufacturers(Make) cessna and piper have high incidents do to their products esspecially on the private aircrafts

5. Incident Causes & Locations

• Visualize the top causes of incidents and the regions with the highest incident density.

```
df.columns
In [103...
Out[103...
           Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date',
                  'Location', 'Country', 'Latitude', 'Longitude', 'Airport.Name',
                  'Injury.Severity', 'Aircraft.damage', 'Aircraft.Category', 'Make',
                  'Model', 'Amateur.Built', 'Number.of.Engines', 'Engine.Type',
                  'FAR.Description', 'Purpose.of.flight', 'Air.carrier',
                  'Total.Fatal.Injuries', 'Total.Serious.Injuries',
                  'Total.Minor.Injuries', 'Total.Uninjured', 'Weather.Condition',
                  'Broad.phase.of.flight', 'Report.Status', 'Publication.Date',
                  'PubDate_Display', 'Event.Year', 'Usage.Type'],
                 dtype='object')
          # Let's Load the recommended columns
In [105...
          df['Broad.phase.of.flight'].value_counts()
```

```
Out[105...
           Broad.phase.of.flight
           Landing
                            3215
           Takeoff
                            2195
           Cruise
                            1775
           Maneuvering
                           1475
           Approach
                            1221
           Unknown Phase
                            483
           Taxi
                             377
           Descent
                             343
           Climb
                             339
           Go-around
                             263
           Standing
                             199
           Unknown
                              65
           Other
                              18
           Name: count, dtype: int64
In [107...
          df['Injury.Severity'].value_counts()
Out[107...
          Injury.Severity
           None
                      6337
           Fatal
                      2621
          Minor
                      1716
           Serious
                      1287
           Unknown
                         7
           Name: count, dtype: int64
In [109...
          # Group and reshape your clean data
          phase_severity = df.groupby(['Broad.phase.of.flight', 'Injury.Severity']).size().un
          phase_severity
```

Out[109...

Injury.Severity	Fatal	Minor	None	Serious	Unknown
Broad.phase.of.flight					
Approach	356	214	471	180	0
Climb	108	48	129	54	0
Cruise	534	302	735	204	0
Descent	92	63	139	49	0
Go-around	56	46	126	35	0
Landing	78	322	2650	165	0
Maneuvering	653	210	405	207	0
Other	3	3	8	4	0
Standing	21	28	128	22	0
Takeoff	370	419	1084	322	0
Тахі	7	18	333	19	0
Unknown	51	0	14	0	0
Unknown Phase	292	43	115	26	7

```
In [111... # Let's plot the two columns to plot a grouped bar
    # Sort by total incident count descending
    phase_severity = phase_severity.loc[phase_severity.sum(axis=1).sort_values(ascendin
    # Plot
    phase_severity.plot(kind='barh', stacked=True, figsize=(12, 6), colormap='Set2')

# Labels and formatting
    plt.title('Injury Severity by Phase of Flight')
    plt.xlabel('Number of Incidents')
    plt.ylabel('Phase of Flight')
    plt.legend(title='Injury Severity')
    plt.grid(axis='x', linestyle='--', alpha=0.6)
    plt.tight_layout()
    plt.show()
```


My Finding

The phase of flight with high incidents is landing.

5. Insights and Recommendations

- Other and Private usage types of aircraft have higher injury severity than the commercial ones. This suggests that general aviation poses a higher volume of safety incidents, possibly due to looser regulations, pilot experience, or maintenance variation.
- The Aircraft Category poses high incidents, most especially in private/personal aviation. However, the multi-engine aircraft categories, such as Gyrocraft, Powered-Lift, and Ultralight, have had slight incidents, but these aircraft can be suitable for starting a business venture in aviation.
- While the landing phase accounts for the highest number of incidents, most result in non-injury outcomes. In contrast, the maneuvering, takeoff, and cruise phases—though less frequent—are associated with high injury severity. This suggests a need to shift to a safety focus on in-flight operations, where risk per incident may be higher.

6. Challenges and conclusions

• The data had a lot of critical missing values.

```
In [115... # lets change the data back to csv for Tableau analysis.
df.to_csv('Aviation_clean_data.csv', index=False)
```