Referat 2 – Ecuații diferențiale și cu derivate parțiale

Referat 2:

Considerați o problemă Cauchy pentru o ecuație diferențială a cărei soluție se poate obține explicit. Aproximați soluția folosind metoda lui Euler și metoda Rune-Kutta de ordin patru. Reprezentați grafic soluția exactă și cele două soluții obținute cu metodele precizate. Calculați erorile.

Cerință:

Considerăm problema Cauchy: y' = 3*(x**2)*y, y(1) = 1.

Ecuatia este omogena de ordinul intai (p(x) = 3x**2, q(x) = 0). Solutia generala este y(x) = Ke la integrala din p(x) dx = K*e la x**3.

Cum y(1) = 1, obtinem K = e la -1/3, deci solutia exacta este y(x) = e la $x^**3-1/3$, $x \in R$.

Rezolvare:

1) Metoda lui Euler: alegem xmax = 1.5, h = 0.1.

Tabelul:

Codul in python:

```
import numpy as np
import matplotlib.pyplot as plt
def f(x, y):
```

return 3*x**2*y

```
x_{min}, x_{max} = 1, 1.5
h = 0.1
x = np.arange(x_min, x_max + h, h)
y_euler = np.zeros(len(x))
y_euler[0] = 1
for i in range(len(x) - 1):
  y_{euler[i+1]} = y_{euler[i]} + h*f(x[i], y_{euler[i]})
y_exact = np.exp(0.5*(x**3 - 1))
error_euler = np.abs(y_exact - y_euler)
print(" x | y_exact | y_euler | error ")
print("-----|-----")
for i in range(len(x)):
  print(" {:.1f} | {:.4f} | {:.4f} ".format(x[i], y_exact[i], y_euler[i],
error_euler[i]))
# Plot the solutions
plt.plot(x, y_exact, label='Exact solution')
plt.plot(x, y_euler, label='Euler method')
```

```
plt.legend()
plt.show()

# Plot the error
plt.plot(x, error_euler, label='Euler method error')
plt.legend()
plt.show()
```

Reprezentare grafică:

2) Metoda Runge Kutta de ordin 4: alegem xmax = 1.5, h = 0.1

Tabelul:

Codul in python:

```
import numpy as np
import matplotlib.pyplot as plt

def f(x, y):
    return 3*x**2*y
```

```
x min, x max = 1, 1.5
h = 0.1
x = np.arange(x_min, x_max + h, h)
y_rk4 = np.zeros(len(x))
y rk4[0] = 1
for i in range(len(x) - 1):
  k1 = f(x[i], y rk4[i])
  k2 = f(x[i] + h/2, y_rk4[i] + (h/2)*k1)
  k3 = f(x[i] + h/2, y rk4[i] + (h/2)*k2)
  k4 = f(x[i] + h, y_rk4[i] + h*k3)
  y rk4[i+1] = y rk4[i] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
y = xact = np.exp(0.5*(x**3 - 1))
error rk4 = np.abs(y exact - y rk4)
print(" x | y_exact | y_rk4 | error ")
print("-----|-----")
for i in range(len(x)):
  print("{:.1f} | {:.6f} | {:.6f} | {:.6f}".format(x[i], y_exact[i], y_rk4[i],
error_rk4[i]))
```

```
plt.plot(x, y_exact, label='Solutia exacta')
plt.plot(x, y_rk4, label='Metoda Runge-Kutta de ordin 4')
plt.legend()
plt.show()

plt.plot(x, error_rk4, label='Metoda Runge-Kutta de ordin 4 eroare')
plt.legend()
plt.show()
```

Reprezentare grafică:

2) Compararea metodelor

X	y_exact	y_euler	y_rk4	y_taylor_4	error_euler	error_rk4	error_taylor_4
1.0	1.0000	1.0000	1.0000	1.0000	0.0000	0.0000	0.0000
1.1	1.1800	1.3000	1.3923	1.3707	0.1200	0.2123	0.1907
1.2	1.4391	1.7719	2.0707	2.0762	0.3328	0.6317	0.6371
1.3	1.8194	2.5374	3.3094	3.7977	0.7180	1.4900	1.9783
1.4	2.3917	3.8238	5.7173	12.0516	1.4321	3.3257	9.6599
1.5	3.2789	6.0722	10.7402	480.2822	2.7933	7.4613	477.0033
1.6	4.7021	10.1709	22.0669	1568111214	.8584 5.	4689 17	.3649 1568111210.1564

Metoda Taylor, cat si eroarea sa, au valoarea mult prea mare pentru a fi reprezentate grafic cu celelalte metode. Reprezentarea arata asa:

