

Motivation 28.8.18 ⟨Nr.>

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

1. Introduction 28.8.18

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

2.1 Preliminaries: Boolean Transition System

- \triangleright A Boolean Transition System S = (X, I, T) consists of
 - Set of boolean variables X
 - A conjunction representing the initial state I
 - A propositional formula T over variables in X and $X' = \{x \in X \mid x' \in X'\}$, called Transition Relation
- > States in S are cubes containing each variable from X with a boolean valuation of it
 - \rightarrow Finite number of states: $2^{|X|}$

➤ Transitions @Todo

2.1 Preliminaries: Formulas

 \triangleright Given a formula φ over X, we get a primed formula φ' by replacing each variable with its corresponding variable in X'

- > A literal is a variable or its negation
- > A cube is a conjunction of literals
- ➤ A clause is a disjunction of literals
 - → Negation of a cube is a clause and vice versa

- > A Safety Property P is a formula over X that should be satisfiable by every state reachable from I
 - $\rightarrow \bar{P}$ being a set of bad states

2.2 Algorithm: Overview

 \triangleright PDR on hardware checks if states in \overline{P} are reachable from I

- For that it uses cubes of clauses, called Frames
 - Frame F_i represents an over-approximation of reachable states in at most i transitions from I

 \triangleright PDR maintains sequence of frames $[F_0, F_1, ..., F_k]$, called trace

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Checking for 0-Counter-Example

 \triangleright Is $I \land \overline{P}$ satisfiable?

- → If satisfiable:
 - Algorithm terminates and returns that a bad state is reachable
- → If unsatisfiable:
 - Algorithm initializes the first frame in the trace: $F_0 = I$ and continues

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
                                  Next Transition Phase
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Next Transition Phase

- Checking if the next state is a good state:
 - \triangleright Let $[F_0, F_1, ..., F_k]$ be the current trace
 - ightharpoonup Is $F_k \wedge T \wedge \overline{P'}$ satisfiable?
 - → If satisfiable:
 - Take satisfying assignment $\vec{x} = \left\{x_1, x_2, \dots, x_{|X|}, x_1', x_2', \dots, x_{|X'|}'\right\}$
 - The algorithm gets new bad state: $b = x_1 \land x_2 \land ... \land x_{|X|}$
 - Construct the tuple t = (b, k), called proof-obligation

2.2 Algorithm: Next Transition Phase

- Checking if the next state is a good state:
 - \triangleright Let $[F_0, F_1, ..., F_k]$ be the current trace
 - ightharpoonup Is $F_k \wedge T \wedge \overline{P'}$ satisfiable?
 - → If unsatisfiable:
 - Continue with the next phase

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
                                                                            Blocking-Phase
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.2 Algorithm: Blocking-Phase

4: **loop**5: **while** \exists cube c, s.t. $trace.last() \land T \land c'$ is SAT and $c \Rightarrow \bar{P}$ **do**6: recursively block proof-obligation(c, trace.size() - 1)
7: and strengthen the frames of the trace.
8: **if** a proof-obligation(p, 0) is generated **then**9: **return** false

Proving that new bad states are not reachable

Note: useful to have Piece of pseudo-code?

- ➤ If there are proof-obligations:
 - Algorithm takes proof-obligation (b, i)
 - Tries to block bad state b by checking $F_{i-1} \wedge T \wedge b'$ for satisfiability

→ If satisfiable:

- Frame F_{i-1} is not strong enough to block b
- Take satisfying assignment $\vec{x} = \left\{x_1, x_2, \dots, x_{|X|}, x_1', x_2', \dots, x_{|X'|}'\right\}$
- The algorithm gets another new bad state: $c=x_1 \ \land \ x_2 \ \land \dots \ \land \ x_{|X|}$
- Construct new proof-obligation u = (c, i 1)

2.2 Algorithm: Blocking-Phase

- Proving that new bad states are not reachable
 - ➤ If there are proof-obligations:
 - Algorithm takes proof-obligation (b, i)
 - Tries to block bad state b by checking $F_{i-1} \wedge T \wedge b'$ for satisfiability
 - → If unsatisfiable:
 - Algorithm strengthens F_i with \bar{b}

$$\rightarrow F_i = F_i \wedge \bar{b}$$

Blocking bad state b at F_i

2.2 Algorithm: Blocking-Phase

- > This continues recursively until:
 - There are no proof-obligations left
 - → Algorithm continues with the next phase
 - A proof-obligation (d, 0) is created
 - → Proving that a bad state can be reached, terminating the algorithm

2.2 Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new \ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
                                                                      Propagation-Phase
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

- Propagating learned information:
 - \triangleright After no proof-obligations are left, the algorithm initializes new frame $F_{k+1}=P$
 - ➤ Algorithm passes on learned information, e.g., which states are blocked:
 - For each clause c in F_k check: $F_k \wedge T \wedge \bar{c}'$ for satisfiability
 - → If satisfiable:
 - Do nothing, continue with next clause

- Propagating learned information:
 - \triangleright After no proof-obligations are left, the algorithm initializes new frame $F_{k+1}=P$
 - > Algorithm passes on learned information, e.g., which states are blocked:
 - For each clause c in F_k check: $F_k \wedge T \wedge \bar{c}'$ for satisfiability
 - → If unsatisfiable:
 - Algorithm strengthens F_{k+1} with c

$$\rightarrow F_{k+1} = F_{k+1} \wedge c$$

- Check for termination:
 - \triangleright After all clauses have been tested, algorithm checks if $F_k \equiv F_{k+1}$
 - If so, the algorithm has found a fixpoint and terminates
 - \rightarrow No states of \overline{P} are reachable

- Check for termination:
 - \triangleright After all clauses have been tested, algorithm checks if $F_k \equiv F_{k+1}$
 - If not, the algorithm continues with a new Next Transition Phase

- Check for termination:
 - \triangleright After all clauses have been tested, algorithm checks if $F_k \equiv F_{k+1}$
 - If so, the algorithm has found a fixpoint and terminates
 - \rightarrow No states of \bar{P} are reachable
 - If not, the algorithm continues with a new Next Transition Phase

 \triangleright Algorithm repeats the three phases until a fixpoint is found, or a proof-obligation (d,0) is created

2.2 Algorithm: Pseudo-Code TEMPLATE

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
       trace.push(new\ frame(I))
 3:
        loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
               and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new \ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
           if trace.last() == F_{k+1} then
14:
               return true
15:
           trace.push(F_{k+1})
16:
```

2.3 Example 28.8.18 ⟨Nr.>

2.4 Possible Improvements

- ➤ Blocking one state at a time is ineffective:
 - Generalize blocked states
 - → Eliminate insignificant cubes from states, that are not used by UNSAT-cores

- > Ternary Simulation to reduce proof-obligations:
 - Extend binary variables with a new value: unknown
 - Check state variables of proof-obligations for importance
 - → Eliminate unimportant state variables

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

3.1 Preliminaries

For using PDR on software, lift the algorithm from propositional logic to first-order logic

→ We base our approach on the technique described by Lange et al.

3.1 Preliminaries: Control Flow Graph

- \triangleright A control flow graph (CFG) $A=(X,L,G,\ell_0,\ell_E)$ is a graph consisting of
 - A finite set of first-order variables X
 - A finite set of locations L
 - A finite set of transitions $G \subseteq L \times FO \times L$
 - \rightarrow FO being a quantifier free first-order logic formula over variables in X and $X' = \{x \in X \mid x' \in X'\}$
 - An initial location $\ell_0 \in L$
 - An error location $\ell_E \in L$

3.1 Preliminaries: Control Flow Graph

ightharpoonup The transition formula $T_{\ell_1 \to \ell_2}$ from location ℓ_1 to location ℓ_2 is defined as:

$$T_{\ell_1 \to \ell_2} = \begin{cases} (\ell_1, t, \ell_2), & (\ell_1, t, \ell_2) \in G \\ false, & otherwise \end{cases}$$

3.1 Preliminaries: Control Flow Graph

ightharpoonup The transition formula $T_{\ell_1 \to \ell_2}$ from location ℓ_1 to location ℓ_2 is defined as:

$$T_{\ell_1 \to \ell_2} = \begin{cases} (\ell_1, t, \ell_2), & (\ell_1, t, \ell_2) \in G \\ false, & otherwise \end{cases}$$

 \rightarrow Global Transition Formula $T = \bigvee_{(\ell_1, t, \ell_2) \in G} T_{\ell_1 \to \ell_2}$

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
        trace.push(new\ frame(I))
 3:
        loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
                recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
                if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
                return true
15:
16:
           trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L, G)
        check for 0-counter-example
        \ell_0.trace.push(new\ frame(true))
 3:
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
            get initial proof-obligations
11:
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                    return false
15:
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
       check for 0-counter-example
        trace.push(new\ frame(I))
 3:
        loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
                recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
                if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
                if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
                return true
15:
16:
           trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L,G)
       check for 0-counter-example
        \ell_0.trace.push(new\ frame(true))
 3:
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
            get initial proof-obligations
11:
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                    return false
15:
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

3.2 Lifted Algorithm: Checking for 0-Counter-Example

 \triangleright Is $\ell_0 = \ell_E$?

- → Yes:
 - lacktriangle Algorithm terminates, returning that ℓ_E is reachable
- → No:
 - Algorithm continues

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
        trace.push(new\ frame(I))
 3:
        loop
 4:
            while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
                recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
                if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
            F_{k+1} = new \ frame(P)
10:
            for all clause c \in trace.last() do
11:
                if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
                return true
15:
16:
            trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L,G)
        check for 0-counter-example
       \ell_0.trace.push(new\ frame(true))
 3:
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
            get initial proof-obligations
11:
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                    return false
15:
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
        trace.push(new\ frame(I))
 3:
        loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
                recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
                if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new \ frame(P)
10:
           for all clause c \in trace.last() do
11:
                if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
                return true
15:
16:
           trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L,G)
        check for 0-counter-example
       \ell_0.trace push(new\ frame(true))
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
            get initial proof-obligations
11:
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                    return false
15:
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

3.2 Lifted Algorithm: Local Traces

- \triangleright There is no global trace $[F_0, F_1, ..., F_k]$
 - \rightarrow Every location $\ell \in L \setminus \{\ell_E\}$ has its own local trace $[F_{0,\ell}, F_{1,\ell}, \dots, F_{k,\ell}]$
 - → Lifted frames are cubes of first-order formulas
 - → @ToDo, explain changes to proofobligations

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
       trace.push(new\ frame(I))
 3:
       loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new \ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \bar{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
               return true
15:
16:
           trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L,G)
        check for 0-counter-example
        \ell_0.trace.push(new\ frame(true))
 3:
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
            get initial proof-obligations
11:
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                    return false
15:
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

3.2 Lifted Algorithm: Initialization

Initialize each local frames:

$$F_{0,\ell} = \begin{cases} true, & \ell = \ell_0 \\ false, & otherwise \end{cases}$$

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
        trace.push(new\ frame(I))
 3:
        loop
 4:
            while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
                if a proof-obligation(p, 0) is generated then
 8:
                   return false
            F_{k+1} = new\ frame(P)
10:
           for all clause c \in trace.last() do
11:
               if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
                return true
15:
16:
           trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L,G)
        check for 0-counter-example
        \ell_0.trace.push(new\ frame(true))
 3:
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
                             Next Level Phase
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
            get initial proof-obligations
11:
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                    return false
15:
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

3.2 Lifted Algorithm: Next Level Phase

- Initializing the next level:
 - Let k be the current level:
 - \rightarrow Every location $\ell \in L \setminus \{\ell_E\}$ has trace $[F_{0,\ell}, ..., F_{k,\ell}]$
 - \triangleright Algorithm initializes new level k+1 for all locations $\ell \in L \setminus \{\ell_E\}$
 - \rightarrow Adding new frame $F_{k+1,\ell} = true$

3.2 Lifted Algorithm: Next Level Phase

- Initializing the next level:
 - Let k be the current level:
 - \rightarrow Every location $\ell \in L \setminus \{\ell_E\}$ has trace $[F_{0,\ell}, ..., F_{k,\ell}]$
 - > Additionally, the algorithm computes initial proof-obligations:
 - Because of the structure of CFGs, it is always known which transitions lead to ℓ_E
 - \rightarrow Check G for transitions of the form (ℓ, t, ℓ_E)
 - \rightarrow For each transition, get proof-obligation (t, ℓ, k)
 - @ToDo explain lifted proof-obligations

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
        trace.push(new\ frame(I))
 3:
        loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
               recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
               if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
           F_{k+1} = new \ frame(P)
10:
           for all clause c \in trace.last() do
11:
                if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
                return true
15:
16:
           trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L,G)
        check for 0-counter-example
        \ell_0.trace.push(new\ frame(true))
 3:
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
11:
            get initial proof-obligations
                                              Blocking-Phase
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                   return false
15:
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

- ➤ Blocking-Phase not nested in preceding phase:
 - → No longer optional:
 - In each iteration we have at least the initial proof-obligations

- Checking if bad transitions are reachable:
 - \triangleright Algorithm takes proof-obligation (t, ℓ, i) with the lowest i
 - For each predecessor location ℓ_{pre} of ℓ check if $F_{i-1,\ell_{pre}} \wedge T_{\ell_{pre} \to \ell} \wedge t'$ is satisfiable
 - → If satisfiable:
 - t could not be blocked at ℓ on level i
 - Get new proof-obligation $(p, \ell_{pre}, i-1)$
 - \rightarrow p being the weakest precondition of t and $T_{\ell_{pre} \rightarrow \ell}$

- Checking if bad transitions are reachable:
 - \triangleright Algorithm takes proof-obligation (t, ℓ, i) with the lowest i
 - For each predecessor location ℓ_{pre} of ℓ check if $F_{i-1,\ell_{pre}} \wedge T_{\ell_{pre} \to \ell} \wedge t'$ is satisfiable
 - → If unsatisfiable:
 - t is blocked at ℓ on level i
 - Strengthen each frame $F_{j,\ell}$, $j \leq i$ with \bar{t}

$$\rightarrow F_{j,\ell} = F_{j,\ell} \wedge \bar{t}$$

- > This continues recursively until:
 - → There are no proof-obligations left:
 - Algorithm continues with the next phase
 - \rightarrow A proof-obligation $(d, \ell, 0)$ is created
 - ullet Proving that there exists a feasible path to ℓ_E

3.2 Lifted Algorithm: Pseudo-Code

```
1: procedure PDR-PROVE(I, T, P)
        check for 0-counter-example
        trace.push(new\ frame(I))
 3:
        loop
 4:
           while \exists cube c, s.t. trace.last() \land T \land c' is SAT and c \Rightarrow \bar{P} do
 5:
                recursively block proof-obligation(c, trace.size() - 1)
 6:
                and strengthen the frames of the trace.
 7:
                if a proof-obligation(p, 0) is generated then
 8:
                   return false
 9:
            F_{k+1} = new\ frame(P)
10:
            for all clause c \in trace.last() do
11:
                if trace.last() \wedge T \wedge \overline{c}' is UNSAT then
12:
                   F_{k+1} = F_{k+1} \wedge c
13:
            if trace.last() == F_{k+1} then
14:
               return true
15:
16:
           trace.push(F_{k+1})
```

```
1: procedure LIFTED-PDR-PROVE(L,G)
        check for 0-counter-example
        \ell_0.trace.push(new\ frame(true))
 3:
        for all \ell \in L \setminus \{\ell_0, \ell_E\} do
 4:
            \ell.trace.push(new\ frame(false))
 5:
        level := 0
 6:
 7:
        loop
            for all \ell \in L \setminus \{\ell_E\} do
 8:
                \ell.trace.push(new\ frame(true))
 9:
            level := level + 1
10:
11:
            get initial proof-obligations
            while \exists proof-obligation (t, \ell, i), do
12:
                Recursively block proof-obligation
13:
                if a proof-obligation (p, \ell, 0) is generated then
14:
                    return false
15:
                                      Propagation-Phase
            for i = 0; i < level; i := i + 1 do
16:
                for \ell \in L \setminus \{l_E\} do
17:
                    if \ell.trace[i] \neq \ell.trace[i-1] then
18:
                        break
19:
20:
                return true
```

3.2 Lifted Algorithm: Propagation-Phase

➤ No more propagation of learned information

- Only checking for termination
 - Trying to find a global fixpoint:
 - Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for every $\ell \in L \setminus \{\ell_E\}$?

3.2 Lifted Algorithm: Propagation-Phase

➤ No more propagation of learned information

- Only checking for termination
 - Trying to find a global fixpoint:
 - Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for every $\ell \in L \setminus \{\ell_E\}$?
 - → Yes:
 - Algorithm terminates returning that there is no feasible path to ℓ_E

3.2 Lifted Algorithm: Propagation-Phase

➤ No more propagation of learned information

- Only checking for termination
 - Trying to find a global fixpoint:
 - Is there an i where $F_{i-1,\ell} = F_{i,\ell}$ for every $\ell \in L \setminus \{\ell_E\}$?
 - → No:
 - Algorithm continues with the next level

3.3 Example 28.8.18 ⟨Nr.>

3.4 Possible Improvements: Generalization of Proof-Obligations

- Using the weakest precondition:
 - Over approximation of predecessor states
 - → Algorithm does not need to generate an explicit proof-obligation for each predecessor state
- Using the disjunctive normal form (DNF):
 - → Negation of a cube is a clause:
 - Split large proof-obligations into smaller ones by taking each cube of the DNF as a separate proof-obligation

3.4 Possible Improvements: Generalization of Proof-Obligations

- Using Interpolation:
 - Instead of strengthening frames with the negated proof-obligation, compute an interpolant
 - @ToDo MOAR

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

4.1 Implementation: Introduction Ultimate

4.2 Implementation: CEGAR-Scheme with PDR

4.3 Implemented Improvements

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

5.1 Data Comparison 28.8.18

5.2 Discussion 28.8.18

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

6. Related Work

- There are several other techniques of using PDR on software:
- ➤ Bit-Blasting:
 - Encode variables as bitvectors
 - Use new variable pc to keep track of program location
 - Use unmodified hardware PDR algorithm on that
 - \rightarrow Drawback: tedious handling of pc variable

6. Related Work

- There are several other techniques of using PDR on software:
- Using Abstract Reachability Trees (ART):
 - Exploiting the partitioning of program's state space by unwinding the CFG into an ART
 - @ToDo: introducing ARTs and how algo works

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

7.1 Implementing Further Improvements

- There are possible ways to make our PDR algorithm more efficient:
- > Interpolation:
 - Ultimate already supports ways of computing interpolants
 - > Instead of strengthening frames with negated proof-obligation, add interpolant
 - → Helps with loops

7.1 Implementing Further Improvements

- There are possible ways to make our PDR algorithm more efficient:
- Dealing with procedures:
 - Ultimate verifies C programs that contain procedure calls
 - → Our algorithm cannot deal with them:
 - Problems arise due to PDR's linear backwards-search nature
 - → Possible solutions:
 - Modify PDR to deal with procedures non-linearly
 - Calculate procedure summary and attach that to the CFG, removing the procedure altogether

Overview

- 1. Introduction
- 2. Background: PDR on Hardware
- 3. PDR on Software
- 4. Implementation in Ultimate
- 5. Evaluation
- 6. Related Work
- 7. Future Work
- 8. Conclusion

8. Conclusion 28.8.18

