CAN-FD 양자내성암호 전환

유튜브 주소 : https://youtu.be/tOsMIL-_3CY

주요 자동차 내부 통신 프로토콜

- 대부분의 내부 통신 BUS는 실시간성을 위해 프레임 크기가 작음
 - 대용량 payload가 필요한 PQC는 적용 어려움

프로토콜	1-프레임 payload	지연 한계	현행 보안	KpqC 적용 가능성	비고	출처
CAN 2.0B	8 Byte	≤1 ms	X	X	클래식 CAN	[1]
CAN-FD	64 Byte	≤1 ms	X	조건부 적용 가능	차세대 CAN	[2]
LIN 2.x	8 Byte	≤ 10 ms	X	X	저속, 저가 네트워크 (창문·시트·조명 등 적용)	[3]
FlexRay (전자식 제동 통신)	254 Byte	≤ 2 ms	MAC(옵션)	조건부 적용 가능	과거 일부 고급 차량 적용 (보급률 추정치 ≈ 10 %)	[4]
100BASE-T1 (이더넷, ADAS)	최대 1,500 Byte	Class A ≤ 2 ms Class CDT ≤ 100 µs	TLS/DTLS	적용 가능	신차 위주 적용 (보급률 추정치 ≈ 30%)	[5]

^[1] https://www.iso.org/standard/86384.html

^[2] https://tekeye.uk/downloads/can fd spec.pdf

^[3] https://www.cs-group.de/wp-content/uploads/2016/11/LIN_Specification_Package_2.2A.pdf

^[4] https://www.iso.org/obp/ui/#iso:std:iso:17458:-4:ed-1:v1:en

^[5] Abdelgader, Abdeldime MS, and Wu Lenan. "The physical layer of the IEEE 802.11 p WAVE communication standard: the specifications and challenges." Proceedings of the world congress on engineering and computer science. Vol. 2, 2014.

CAN-FD 프로토콜

- CAN: ECU(전자제어장치) 간 실시간 통신 네트워크 표준(ISO 11898)
- CAN-FD: Classic CAN(2.0B) 확장 버전
 - 데이터 구간 속도 향상(BRS), 데이터 길이 확장(EDL)

항목	CAN 2.0B	CAN-FD[1]
최대 데이터 길이	8 Byte	64 Byte
비트레이트	단일 속도	이중 속도 Nominal 구간(Arbitration + Control + ACK Field): 1 Mbps 이하 Data 구간(Data + CRC Field): 2, 5, 8 Mbps[2]
CRC	15/17-bit	데이터 ≤ 16 byte: <mark>17-bit</mark> 데이터 > 16 byte: <mark>21-bit</mark>
Bit-Stuffing 방식	고정(비트5:1)	가변(비트0~5: 1)

<PQC 적용 시 고려 사항>

데이터 크기 최대 64 Byte -> PQC 데이터 전송 시 분할 필요(프레임 다량 발생) 가변 Stuff-bit: Worst-case 전송 지연 계산 필요

^[1] https://tekeye.uk/downloads/can fd spec.pdf

CAN-FD 실제 전송 시 패킷 크기

전송하고자 하는 데이터가 20~64 Byte 일 경우의 시나리오(1-프레임 안에 끝날 경우)

필드	길이 (bit)	비고 / 설명
SOF+ Arbitration + Control	23-bit	ID(우선순위 선정), FD 모드 플래그, DLC(데이터 길이 코드) 등
CRC + Stuff-counter + FSB	32-bit	데이터 ≥ 20 Byte면 CRC-21 사용
ACK + EOF + ITM	12-bit	ACK(수신 확인), EOF(프레임 종료 표시), ITM(프레임 간격 비트)
Data Field	0 ~ 512-bit	실제 사용자 데이터, DLC 값과 길이 매핑(E.g. DLC 15 -> 64 Byte)
가변 Stuff-bit	0 ~ 107-bit	worst-case: 원본 5-bit당 1-bit(20%)[1] -> 약 107-bit 원본: CRC 직전(Arbitration + Control ~ Data -> 535-bit)

<실제 전송 시 1-프레임 당 최대 패킷 크기>

고정 오버헤드(67-bits[2]) + 데이터 필드(512-bits) + 최대 Stuff-bit(107-bit) ≈ 86 Byte(686-bit)

(고정 오버헤드: SOF+ Arbitration + Control + CRC + Stuff-counter + FSB + ACK + EOF + ITM)

^[1] https://www.can-cia.org/fileadmin/cia/documents/proceedings/2012_oertel.pdf

CAN-FD 패킷 비교(KEM/DSA)

MTU(64 Byte)를 넘는 데이터 -> 64 Byte씩 분할하여 전송, 프레임당 최대 오버헤드 22 Byte 추가

알고리즘	보안 레벨	공개키 PK (Byte)	암호문, 서명 (Byte)	CAN 패킷 최대 크기 (Byte) (PK / CT, PK / Sig)	프레임 수 (PK / CT, PK / Sig)
ML-KEM512	1	800	768	1,086 / 1,032	13 / 12
HQC-128	1	2,249	4,433	3,041 / 5,973	36 / 70
SMAUG-T1	1	672	672	914 / 914	11 / 11
NTRU+KEM576	1	864	864	1,172 / 1,172	14 / 14
Falcon-512	1	897	666	1,227 / 908	15 / 11
SPHINCS+128s	1	32	7,856	54 / 10,562	1 / 123
SPHINCS+128f	1	32	17,088	54 / 22,962	1 / 267
AlMer128s	1	32	4,160	54 / 5,590	1 / 65
AlMer128f	1	32	5,888	54 / 7,912	1 / 92
ML-DSA44	2	1,312	2,420	1,774 / 3,256	21 / 38
HAETAE2	2	992	1,474	1,344 / 2,002	16 / 24

CAN-FD 전송 지연 산출

<1-프레임 지연 계산(worst case)>

- ① Nominal 구간 @1 Mbps
 - · Arbitration + Control = 22-bit \rightarrow 22 µs
 - · ACK + EOF + IFS = 12-bit \rightarrow **12** μ s
 - $+22 + 12 = 34 \mu s$
- ② Data 구간 @5 Mbps
 - · 데이터 64 B = 512-bit
 - · CRC + Stuff-counter + FSB = 32-bit
 - ・가변 Stuff-bit(≈ 107-bit)

| (512 + 32 + 107) bit ÷ 5 Mbps ≈ 130 μ s

└③ 합계 └ 34 µs + 163 µs = 0.164 ms

CAN-FD ECU 도메인 별 실시간성 및 PQC 적용 가능성 평가

- CAN 네트워크 상 ECU 도메인은 ASIL 등급[1]에 따라 구분 가능
 - ASIL: Automotive Safety Integrity Level(차량 안전 등급 체계)
 - A -> B -> C -> D 순으로 위험도 높음(더 엄격한 안전 조치, 검증 요구)

주요 ECU 도메인	ASIL 등급	지연 한계[2]	ECU 주요 신호	PQC 적용 가능성	
Power-train	D	≤1 ms	엔진 ECU, 변속기, 연료분사	불가능	
Chassis / ADAS	C~D	≤ 2 ms	ABS(브레이크 잠김 방지), EPS(전자식 조향), 레이더, 카메라	일부 알고리즘 가능	
Body / Comfort	A~B	≤ 50 ms	창문, 시트, 조명, 공조	대부분 알고리즘 가능	
Diagnostics / OTA	Diagnostics / OTA A		서비스 진단, 펌웨어 업데이트	네구正 글꼬니금 기증	

ASIL C,D 등급 도메인(브레이크,엔진 등)은 μs~ms 단위 실시간성 + 최고 무결성이 필수 PQC처럼 통신 부담이 큰 알고리즘은 사실상 부적합

^[1] Gheraibia, Youcef, et al. "An overview of the approaches for automotive safety integrity levels allocation." Journal of failure analysis and prevention 18 (2018): 707-720.

^[2] https://www.can-cia.org/fileadmin/cia/documents/publications/cnlm/june 2024/24-2 cnlm.pdf

CAN-FD PQC 적용 가능성

▲: 최적화 시 적용 가능성 있음 (비트레이트 향상, 프레임 재배치 등)

알고리즘	CT / Sig (Byte)	전송 지연 (ms)	Power-train (≤ 1 ms)	Chassis / ADAS (≤ 2 ms)	Body / Diagnostics (≤ 50 ms)
ML-KEM512	768	1.97	X	0	0
HQC-128	4,433	11.48	X	X	0
SMAUG-T1	672	1.8	X	0	0
NTRU+KEM576	864	2.3	X	_	0
Falcon-512	666	1.8	X	0	0
SPHINCS+128s	7,856	20.17	X	X	0
SPHINCS+128f	17,088	43.79	X	X	0
AlMer128s	4,160	10.66	X	X	0
AlMer128f	5,888	15.09	X	X	0
ML-DSA44	3,256	6.23	X	X	0
HAETAE-2	2,002	3.94	X	_	0

현행 CAN-FD 버스에 PQC를 <mark>전면 적용</mark>하기에는 지연·대역폭 제약이 크기에 <mark>불가능</mark> Power-train/Chassis 및 Body·Diagnostics에 PQC 적용을 도입하는 하이브리드 전략이 현실적

Q&A