METODY NUMERYCZNE – LABORATORIUM

Zadanie 4

Opis rozwiązania

Zaimplementowano dwie metody całkowania numerycznego:

- 1. złożoną kwadraturę Newtona-Cotesa opartą na trzech węzłach (wzór Simpsona)
- 2. kwadraturę Gaussa (wariant 1) całkowanie na przedziale [-1; 1], z wagą $w(x) = \frac{1}{\sqrt{1-x^2}}$ (wielomiany Czebyszewa) całek postaci:

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} f(x) \, dx$$

Kwadratury złożone Newtona-Cotesa obliczane są iteracyjne z dokładnością podaną przez użytkownika.

Metoda Newtona-Cotesa (zamknięta)

$$I = \int_{a}^{b} f(x) dx \approx \sum_{i=0}^{n} f(x_{i}) h \int_{0}^{n} \prod_{\substack{j \neq i \\ j=0}}^{n} \frac{(x-j)}{(i-j)} dx$$

Dla n = 2:

$$h = \frac{b-a}{2}$$

$$x_i = a + hi$$

$$I \approx \frac{h}{3} (f(x_0) + 4f(x_1) + f(x_2))$$

Metoda Gaussa-Czebyszewa

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx \approx \sum_{i=0}^{n} w_i f(x_i)$$

Gdzie:

$$x_i = \cos\left(\frac{2i - 1}{2n}\pi\right)$$
$$w_i = \frac{\pi}{n}$$

Wyniki

1. Funkcja liniowa $f_1(x) = 2x + 1$

Dokładność: $\varepsilon = 0.01$

Metoda Newtona-Cotesa: 3.090300806800477

Metoda Gaussa-Czebyszewa:

Liczba węzłów	2	3	4	5
Wynik	3.141592653589793	3.141592653589793	3.141592653589793	3.141592653589793

2. Funkcja wielomianowa $f_2(x) = 3x^3 + 2x^2 + 5x + 7$

Dokładność: $\varepsilon = 0.01$

Metoda Newtona-Cotesa: 24.797089678954407

Metoda Gaussa-Czebyszewa:

THE COURT CALCULATION OF THE CAL					
Liczba węzłów	2	3	4	5	
Wynik	25.13274122871834	25.13274122871834	25.13274122871834	25.13274122871834	

3. Funkcja trygonometryczna $f_3(x) = \sin(x)$

Dokładność: $\varepsilon = 0.01$

Metoda Newtona-Cotesa: -0.011700148173926127

Metoda Gaussa-Czebyszewa:

	TOTOGRA CHARREN	200 / 520			
Ī	Liczba węzłów	2	3	4	5
ſ	Wynik	-2.2204460492e - 16	-1.11022302462e - 16	-1.11022302462e - 16	-1.11022302462e - 16

4. Złożenie funkcji $f_4(x)=(f_3\circ f_1)(x)=\sin{(2x+1)}$ Dokładność: $\varepsilon=0.01$

Metoda Newtona-Cotesa: 0.606145971929568

Metoda Gaussa-Czebyszewa:

Liczba węzłów	2	3	4	5
Wynik	0.41224636778335755	0.59822589279604	0.591751232650335	0.5918698284775143

Wnioski

Metody mają różną dokładność. Różnica w dokładności dla funkcji trygonometrycznych pomiędzy dwoma a trzema węzłami Czebyszewa jest większa niż pomiędzy kolejnymi. Metoda Gaussa jest dokładniejsza dla małych wartości epsilon w metodzie Newtona-Cotesa.