← Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

	ngratulations! You passed! Next Item
	1/1 points
	s the "cache" used for in our implementation of forward propagation and backward gation?
	It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
\supset	It is used to cache the intermediate values of the cost function during training.
	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
)	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.
Corr	ect rect, the "cache" records values from the forward propagation units and sends it to the ward propagation units because it is needed to compute the chain rule derivatives.
	ect, the "cache" records values from the forward propagation units and sends it to the
Corr	rect, the "cache" records values from the forward propagation units and sends it to the award propagation units because it is needed to compute the chain rule derivatives.

Correct

learning rate $\boldsymbol{\alpha}$

Key concepts off Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions **Un-selected is correct**

	weight matrices $W^{\left[l ight]}$
Un-s	selected is correct
	activation values $a^{[l]}$
Un-s	selected is correct
	number of layers L in the neural network
Corr	rect
	number of iterations
Corr	rect
~	1 / 1 points
3. Which	of the following statements is true?
0	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
Corr	rect
	The earlier layers of a neural network are typically computing more complex features of the input than the deeper layers.
~	1/1 points
	rization allows you to compute forward propagation in an L -layer neural network without an it for-loop (or any other explicit iterative loop) over the layers l=1, 2,,L. True/False?
	True
0	False

Correct

Key confeepts on Deep Neutral Neitworks all the layers, although for shallow networks points (100%) we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correct

1/1 points

6.

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

The number of layers \boldsymbol{L} is 3. The number of hidden layers is 3.
The number of layers $\it L$ is 4. The number of hidden layers is 4.
The number of layers L is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False				

1/1 points

8.

There are certain functions with the following properties:

Key comcepts with Deapth Neithfals Networks k circuit, you will need a large network (whereveoints (100%) Quiz, 10 questions circuit, you need only an exponentially smaller network. True/False?

0	True			
Corre	ect			
	False			

/

1/1 points

9.

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

$$b^{[1]}$$
 will have shape (4, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

$W^{[1]}$ will have s	shape	(3. 4
-----------------------	-------	-------

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

$b^{\left[1 ight]}$ will have shape (3, 1)

Un-selected is correct

$W^{\left[2 ight]}$ will have shape (3, 4)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Un-selected is correct

Un-selected is correct

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

Un-selected is correct

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Un-selected is correct

Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

1/1 points

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

 $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

 $W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$

