An Energy Cost Aware Cumulative

Helmut Simonis and Tarik Hadzic

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

Modref 2010, St. Andrews

What You Need to Remember

- Propose extension of Cumulative
- CumulativeCost to handle time and volume dependent resource cost
- Use Case 1: Electricity costs based on new tariffs
- Use Case 2: Manpower scheduling
- Compare several lower bounds
- Best results obtained with LP model based on Hooker

Outline

- Motivation
- 2 Lower Bounds
- 3 Results

Background

- Funded by Science Foundation Ireland (SFI)
- TIDA project: Application oriented research
- Cooperation with IBM, United Technologies
- Aim: Develop scheduling tools for energy cost efficient scheduling

Use Case 1: Electricity Tariffs

- Wholesale electricity price changes with demand
- Peak demand requires inefficient(=expensive) generation plant
- Off-peak price low due to baseload (always on) plant
- End users' tariffs can follow the wholesale price
- Question: How to react to changing electricity cost?

Irish Electricity Price (Source:

http://allislandmarket.com/)

Extension of Use Case 1: Volume Dependent Cost

- Many plants use co-generation
- Or limited renewable source like windpower
- This is cheaper than grid electricity, but limited in volume
- Cost changes with volume and time
- Assumption: Extra energy is always more expensive

Use Case 2: Manpower Cost

- Scheduling problems with manpower costs
- Man/hour cost varies over time
- Office Hours/Nights/Weekends/Holidays
- Extra staff costs more: Temps/Freelance
- Natural, otherwise change hire rules

Reminder: Cumulative

- Aggoun, Beldiceanu 1993
- Core global constraint for constraint-based scheduling
- Large number of algorithmic developments, few changes of basic constraint
- Time/volume dependent resource cost not considered so far

Cumulative(
$$[s_1, s_2, ...s_n], [d_1, d_2, ...d_n], [r_1, r_2, ...r_n], I, p$$
),

New Constraint Variant: CumulativeCost

- Add cost element
- Per unit cost expressed with areas
- Intersection of resource use profile with areas defines cost
- Global reasoning required

Formally: CumulativeCost

$$\forall \ 0 \leq t
$$\forall \ 1 \leq i \leq n : \quad 0 \leq s_i < s_i + d_i \leq p$$

$$\text{ov}(t, pr_t, A_j) := \begin{cases} \max(0, \min(y_j + h_j, pr_t) - y_j) & x_j \leq t < x_j + w_j \\ 0 & \text{otherwise} \end{cases}$$

$$\forall \ 1 \leq j \leq m : \quad a_j = \sum_{0 \leq t < p} \text{ov}(t, pr_t, A_j)$$

$$\text{cost} = \sum_{0 \leq t < p} a_j c_j$$$$

Running Example

Outline

- Motivation
- 2 Lower Bounds
- 3 Results

Fundamental Question: How to Estimate Cost?

- We already have core cumulative constraints (15 years of algorithm development)
- Need good lower bound estimate to prune search
- Also want to use cost information to restrict task start times
- Need to answer cost estimate choice before writing pruning methods

Strategy: Explore Possible Lower Bounds

- Decomposition with Cumulative
 - Based on Element
 - Flow Model and Extensions
 - Greedy Methods
- Direct LP Formulation Based on Hooker

Element Model

- For each task, consider all possible start times
- For each start time, estimate cost for this task
- Ignore interaction of tasks, capacity limits
- Total cost estimate: take cheapest estimate for each task

Element Model

cumulative(
$$[s_1, s_2, ...s_n], [d_1, d_2, ...d_n], [r_1, r_2, ...r_n], I, p$$
),

$$1b = \min \sum_{i=1}^{n} u_i$$

$$\forall \ 1 \leq i \leq n$$
: element $(s_i, [v_{i1}, v_{i2}, ..., v_{ip}], u_i)$

Running Example: Element Model

Flow Model

- Many global constraints are based on flow models
- Consider flow from tasks to areas
- Good view of capacity of areas
- Allows to split tasks into cheapest areas

Min Cost Flow Model

Non-zero Cost

Flow Equations

$$1b = \min \sum_{j=1}^{m} a_{j}c_{j}$$

$$\forall 1 \leq j \leq m : \quad a_{j} = \sum_{i=1}^{n} f_{ij}$$

$$\forall 1 \leq i \leq n, \forall 1 \leq j \leq m : \quad \underline{f_{ij}} \leq f_{ij} \leq \overline{f_{ij}}$$

$$\forall 1 \leq j \leq m : \quad 0 \leq \underline{a_{j}} \leq a_{j} \leq \overline{a_{j}} \leq w_{j}h_{j}$$

$$\forall 1 \leq i \leq n : \quad \sum_{j=1}^{m} f_{ij} = d_{i}r_{i}$$

$$\forall 1 \leq i \leq n : \quad \sum_{i=1}^{n} d_{i}r_{i} = \sum_{j=1}^{m} a_{j}$$

Computing $\overline{f_{ij}}$

$$\overline{f_{ij}} = \max_{t \in d(s_i)} \max(0, (\min(x_j + w_j, t + d_i) - \max(x_j, t))) * \min(h_j, r_i)$$

Flow Example

Assignment

Extensions to Flow Model

- Often: If task uses one cheap area, it can not also use other cheap areas
- Consider how much of a task can be placed in cheap areas
- b_{ii} how much of task i can be placed into all areas 1..j
- Add this as a constraint to flow model
- Results in general LP model

Extending Flow Model: LP 1 Model

- Add one constraint for each increasing group of areas
- Aggregate information from multiple tasks, less precise

$$\forall \ 1 \leq j \leq m: \quad \sum_{i=1}^n \sum_{k=1}^j f_{ik} = \sum_{k=1}^j a_k \leq \overline{B_j} = \sum_{i=1}^n \overline{b_{ij}}$$

f_{ij} and b_{ij}

$\overline{b_{ij}}$	1	2	3	4	5
1	2	2	2	2	2
2	2	2	2	4	4
3	3	3	3	3	3
$\overline{B_j}$	2 2 3 7	7	7	9	9

Extending Flow Model: LP 2 Model

- State constraint for each task, and increasing groups of areas
- Improved accuracy
- Larger number of constraints

$$\forall \ 1 \leq i \leq n, \forall \ 1 \leq j \leq m : \sum_{k=1}^{j} f_{ik} \leq \overline{b_{ij}}$$

This is Getting Expensive!

- Solving LP at each step is quite expensive
- Can we obtain similar bounds more cheaply?
- Greedy methods
- Fill areas with tasks, starting with cheapest area
- Compute how much can go into each area

Algorithm A

$$1b = \sum_{j=1}^{m} u_j c_j$$

$$\forall \ 1 \leq j \leq m: \quad u_j = \min(\sum_{i=1}^n d_i r_i - \sum_{k=1}^{j-1} u_k, \sum_{i=1}^n \overline{f_{ij}}, w_j h_j)$$

Example Run: Algorithm A

uj	rem		$\sum_{i=1}^{n} \overline{f_{ij}}$			$w_j h_j$	lb
3	9	9		7		3	0
3	6	6		7		3	3
3	3	3		5		3	9
0	0	0		-		-	9
0	0	0		-		-	9
,	1	1	1	1	1		, I
	2	3	5	4	1	$\leftarrow j$	
3	1	2	4	3	0	$\leftarrow c_j$	a
	3	3	0	0	3	$\leftarrow a_j^{\text{lp}} =$	9

Extension

- Also consider $\overline{b_{ij}}$ limits in greedy method
- Easy to add
- Requires computation of $\overline{b_{ij}}$ at each step

Algorithm B

$$1b = \sum_{j=1}^{m} u_j c_j$$

$$\forall \ 1 \leq j \leq m: \quad u_{j} = \min(\sum_{i=1}^{n} d_{i}r_{i} - \sum_{k=1}^{j-1} u_{k}, \sum_{i=1}^{n} \overline{f_{ij}}, w_{j}h_{j}, \sum_{i=1}^{n} \overline{b_{ij}} - \sum_{k=1}^{j-1} u_{k})$$

Example Run: Algorithm B

u_j	rem	$\sum_{i=1}^n \overline{f_{ij}}$	$w_j h_j$	$\sum_{i=1}^n \overline{b_{ij}} - \sum_{k=1}^{j-1} u_k$	lb
3	9	7	3	7	0
3	6	7	3	7-3	3
1	3	5	3	7-6	5
2	2	7	3	9-7	11
0	0	-	-	-	11

Direct Model

- Express cumulative and cost consideration as one linear model
- Based on Cumulative relaxation by Hooker
- y_{it} 0/1 variable, task i starts at time t
- Enforcing integrality leads to MIP
- Possibly very expensive due to number of time points
- Integrate with finite domain Cumulative for best results

Direct LP

$$\begin{aligned} \text{lb} &= \min \sum_{j=1}^{m} a_{j} c_{j} \\ ≺_{t} \in [0, I], \ y_{it} \in \{0, 1\}, \ z_{jt} \in [0, h_{j}] \\ &\forall \ 1 \leq j \leq m : \quad 0 \leq \underline{a_{j}} \leq a_{j} \leq \overline{a_{j}} \leq w_{j} h_{j} \\ &\forall \ 1 \leq i \leq n : \quad s_{i} = \sum_{t=0}^{p-1} t y_{it} \\ &\forall \ 1 \leq i \leq n : \quad \sum_{t=0}^{p-1} y_{it} = 1 \\ &\forall \ 0 \leq t$$

Example for Direct Models

Direct LP

Direct MIP

Theorem: Comparative Power of Algorithms

Example: Element and Flow Models stronger than DLP

$$\begin{array}{c|c} \text{lb(Element)=2} > \text{lb(DLP)=0} \\ \text{lb(Alg A)=2} > \text{lb(DLP)=0} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

2

Model Comparison

Method	Single Area Capacity	Multi Area Capacity	Earliest Start Latest End	Task Profile
Element	no	no	yes	yes
Flow	yes	no	yes	\leq height
LP 1	yes	$\overline{B_j}$	yes	\leq height
LP 2	yes	$\overline{b_{ij}}$	yes	\leq height
Alg A	yes	no	no	no
Alg B	yes	$\overline{B_i}$	no	no
DLP	yes	yes	yes	width
DMIP	yes	yes	yes	yes

©onstraint Computation

Outline

- Motivation
- 2 Lower Bounds
- Results

Experiments

- Done with Choco, CPLEX 12.1
- First set, 100 tasks each
- Evaluation of algorithms for $d_{max} = r_{max} = 8$ and $\Delta = 10$
- Vary utilization between 30% and 80%
- Try with cost function shown above and random cost
- Test each lower bound and compare to DMIP solution
- DMIP can be expensive for high utilization (max. 8,121 sec)

Experiments: 100 Tasks, fixed and random cost profiles

Scenario Element A B Flow LP1 LP2 DLF	•
util=30 92 92 0 0 0 0 0 0 0 0 0 0 93	100
fixed 99.998 99.876 57.268 33.055 99.77 99.337 97.429 94.665 99.77 99.337 99.77 99.337 99.999 99	9.994
185 509 8 73 12 126 34 138 150 277 211 617 111	380
util=50 2 2 0 0 0 0 0 0 0 0 0 7	100
fixed 99.038 94.641 68.789 54.22 99.131 95.963 97.816 95.89 99.407 97.773 99.435 97.913 99.948 9	9.358
176 243 6 12 7 94 33 130 139 274 194 275 96	181
util=70 0 0 0 0 0 0 0 0 0 1 0 5 0 6 1	100
fixed 93.541 81.603 84.572 69.953 96.495 87.884 99.1 96.994 99.24 97.838 99.346 98.071 99.764 96	8.992
177 242 7 103 8 72 34 97 136 239 213 1,798 110	1,551
util=80 0 0 0 0 0 1 0 4 0 20 0 21 0	100
fixed 88.561 70.901 92.633 81.302 96.163 89.437 99.34 96.728 99.354 96.737 99.392 96.737 99.649 96	8.528
206 450 10 67 15 96 38 124 156 235 220 426 125	299
util=30 94 94 0 0 0 0 0 0 0 0 0 97	100
random 99.996 99.872 58.094 41.953 96.965 93.237 73.759 54.641 96.965 93.237 96.966 93.254 99.999 99	9.977
192 427 7 24 8 42 32 94 145 224 203 361 99	274
util=50 0 0 2 8 2 8 2 8 2 8 5	100
random 88.277 30.379 76.457 57.049 96.585 92.563 83.314 69.178 96.619 92.604 96.861 93.242 99.93 99.9	9.724
202 814 10 99 13 131 43 177 165 380 238 903 108	327
util=70 0 0 0 0 0 0 0 0 0 0 0 0 0	100
random 91.045 72.06 89.784 75.822 95.242 90.496 92.953 84.277 95.953 92.24 96.947 94.012 99.697 9	9.374
226 436 13 74 26 98 70 178 223 543 280 566 152	428 ©ork
util=80 0 0 0 0 0 0 0 0 0 0 0 0 0	100 onstraint
random 86.377 72.566 94.813 88.039 96.092 89.233 97.231 93.919 97.658 94.917 98.426 96.342 99.626 99	
320 2,148 16 100 31 180 63 370 223 1,586 363 23,91 286	7,242 ©entre

Element

I D1

I Do

DI D

Algorithm Comparison

- Around 2000 instances
- For each pair of algorithms, count number of winners
- Also count average and max improvement
- Columns marked (-), winning not possible due to ordering
- Empty columns, no winning scenario found (but possible)

Pairwise Comparison

	_	Eleme		Α			В			Flow			LP1			LP2				DLP		
DMIP	1802	26.39	88.62	1944	17.4	7 68.5	5194	4 3.9	9 30).71	1944	9.85	68.55	1944	3.49	30.71	1944	3.24	30.7	1387	7 0.18	3 1.47
EL	-	-	-	1034	25.6	2 66.9	5 65	3.	0 22	2.07	856	15.65	65.82	650	3.01	22.07	621	3.04	22.0	7		
		38.1				-	-	-	-	-	-	-	-	-	-	-	-		-	-		
		29.22						-				11.02	51.86	-	-	-	-		-	-		
		33.97										-	-	-	-	-	-		-	-		
		29.74													-	-	-		-	-		
LP2	1465	29.44	88.61	1441	19.19	9 66.6	5 84	3 1.7	1 10).64	1425	9.02	51.86	690	0.7	5.09	-		-	-		
DLP	1802	26.24	88.61	1752	19.2	4 68.5	5175	1 4.2	8 30).71	1747	10.82	68.55	1727	3.78	30.71	1725	3.51	30.7	1	-	-

Impact of Number of Tasks

- Tested between 50 and 400 tasks
- Does not seem to be limiting factor

Increasing Number of Tasks

Scenario	Element		Element A			3	Fi	ow	LI	P1	LI	P2	DLP	
n=50	0	0	0	0	0	0	0	0	0	0	0	0	0	100
	89.331	71.865	88.833	70.372	93.991	86.143	92.384	84.589	94.863	87.417	95.899	89.937	98.664	95.523
	102	314	8	83	6	36	23	78	93	254	132	298	75	233
n=100	0	0	0	0	0	0	0	0	0	0	0	0	0	100
	91.045	72.06	89.784	75.822	95.242	90.496	92.953	84.277	95.953	92.24	96.947	94.012	99.697	99.374
	226	436	13	74	26	98	70	178	223	543	280	566	152	428
n=200	0	0	0	0	0	0	0	0	0	0	0	0	0	100
	92.537	84.06	89.819	79.862	95.885	93.01	92.566	83.516	96.48	93.328	97.158	93.885	99.936	99.833
	395	700	19	148	22	113	83	208	341	533	468	638	226	456
n=400	0	0	0	0	0	0	0	0	0	0	0	0	0	100
	93.239	86.419	90.417	84.205	96.3	92.721	92.939	86.658	96.716	93.275	97.23	95.013	99.985	99.961
	831	1,222	31	164	36	189	181	305	923	3,053	1,214	3,434	484	871

Evaluation

- DLP is clear winner
 - Much more consistent than other models
 - But quite expensive
- LP1, LP2 too expensive
- Flow, Alg. A too weak
- Element only good for low utilization
- Alg. B: good value for money

Future Work

- Domain Pruning based on DLP
 - Fairy straightforward reduced-cost filtering
 - Removes many values inside domains
- Pruning based on Algorithm B
- Classifier for algorithm selection
- Specific search strategies
- Talk this afternoon in CROCS workshop!

