Глубокое обучение для обработки изображений

Лекция 9

Обучение с учителем и без учителя

Обучение с учителем:

Есть входные данные \boldsymbol{x} и лейблы/метки \boldsymbol{y}

Цель: обучить функцию $f: x \to y$

Классификация, регрессия, детекция объектов, семантическая сегментация и т.д.

Обучение без учителя:

Есть только входные данные \boldsymbol{x}

Цель: найти некоторые особенности, структуру данных

Кластеризация, понижение размерности и т.д.

Автокодировщик (Autoencoder)

Понижающие и повышающие автокодировщики

С помощью архитектуры понижающего (undercomplete) автокодировщика мы пытаемся наилучшим образом сжать данные, чтобы затем их возможно было восстановить

Повышающий автокодировщик (overcomplete)
Вместо того, чтобы ограничивать емкость модели, стремясь сделать кодировщик и декодер мелкими, а размер кода малым, используют функцию потерь с регуляризацией, которая побуждает модель приобретать полезные свойства

Регуляризированные автокодировщики

Для разреженного (sparse autoencoder) и сжимающего (contractive autoencoder, CAE) автокодировщиков в функцию потерь добавляется штрафное слагаемое:

$$\mathcal{L}(\mathbf{x}, g(f(\mathbf{x})) + \Omega(\mathbf{h}, \mathbf{x}).$$

Например, для САЕ штраф имеет вид:

$$\Omega(\boldsymbol{h}, \boldsymbol{x}) = \lambda \sum_{i} \|\nabla h_{i}\|^{2},$$

который способствует обучению функции, которая слабо изменяется при малом изменении \boldsymbol{x} .

Регуляризированные автокодировщики

Заставлять модель выучивать важные и интересные признаки можно и без добавления регуляризационного члена.

В шумоподавляющем автоэнкодере (denoising autoencoder, DAE) мы минимизируем следующую функцию потерь:

 $\mathcal{L}(\mathbf{x}, g(f(\widetilde{\mathbf{x}})))$

Input Encoder Decoder Output

В архитектуре можно использовать и линейные, и сверточные слои.