Team Programming Assignment: Reliable Transport Protocol Design Document

Authors: John Phillips, Matthew Lavengood, James Schreiner

Alternating Bit Protocol:

- Sending From A:
 - Make the packet containing the data, sequence, and checksum
 - Send the packet
 - Start the timer
 - Update A state
- Receive From B at A (wait phase):
 - Check if package is corrupt
 - Check if the sequence is the correct sequence
 - If corrupt or incorrect sequence:
 - Resend message and start A timer
 - If no message occurs within the timer limit, resend from A and restart timer
 - If the packet is not corrupt and the correct sequence, stop the timer.
 - Update A state
- Receive From A at B:
 - Check if corrupted
 - Check sequence number
 - If the sequence number is incorrect or is corrupted:
 - Send NACK to A with n+1 sequence number.
 - If the sequence number is correct and the packet is not corrupt:
 - Send ACK to A.
 - Update sequence number.

Go-Back-N:

- Sending from A:
 - Try to buffer the packet regardless of status. If buffer overflow occurs, exit the function
 - If next sequence number is less than window size (base + N)
 - Get a packet from buffered packets
 - Set packet fields with the next sequence number, data, and checksum
 - Send the packet to layer3
 - If the base equals the next sequence number:
 - Start our timer for A
 - Increment next sequence number

- Timeout at A:
 - Start the timer
 - Send all packets currently in our window (Starting at base and going to next sequence number - 1)
- Receiving at A from B:
 - If packet is corrupt, we do not update our base
 - Otherwise:
 - Base is equal to the packet acknowledgement number + 1
 - If base equals the next sequence number, we stop the time.
 - Otherwise, start the timer.
- Receiving at B from A:
 - If packet is not corrupted and has a sequence number equal to the expected sequence number:
 - Extract the data message from the packet
 - Pass the message to layer 3
 - Create the acknowledgement packet with our expected sequence number, acknowledgement number, and checksum
 - Send the packet back to A
 - Increment the expected sequence number
 - If it is corrupt or has an invalid sequence number, we send the default packet with our last correct sequence number