Determinación de la Constante de Propagación en Líneas de Transmisión mediante Análisis Matricial

Luis Guillermo Macias Rojas

30 de abril de 2025

Resumen: Este trabajo completa la caracterización de líneas de transmisión mediante: 1) Conversión de parámetros S a ABCD para obtener Z_c , 2) Cálculo de C y L a partir del producto γZ_c (parte real e imaginaria respectivamente), 3) Determinación de R y G mediante ADS, y 4) Validación con modelo distribuido de N etapas. Los resultados muestran que 32 etapas son suficientes para que el error entre las mediciones del VNA y los obtenidos por el modelo distribuido sea mínimo.

Introducción

Partiendo del trabajo previo donde se obtiene γ mediante el metodo unificado, se procede a calcular Z_c utilizando la ecuación (1); la cual se deriva de la relación entre los parámetros S y ABCD.

$$Z_c = \sqrt{\frac{B}{C}} \tag{1}$$

 Z_c es la impedancia característica de la línea de transmisión, que se relaciona con la constante de propagación γ a través de la ecuación (2).

$$\gamma = \frac{1}{Z_c} \left(R + j\omega L \right) \tag{2}$$

Metodología

Obteniendo Z_c de la ecuación (1), se procede a calcular C y L a partir del producto γZ_c . La relación entre C la parte real de Z_c está dada por la ecuación (3), donde el valor aproximado de $Re(Z_c)$ es de 60 Ω según simulaciones de ADS.

$$C = \frac{\beta}{Re(Z_c) \cdot \omega} \approx 80 \,\mathrm{pF} \tag{3}$$

Para calcular L_{∞} se utiliza la ecuación (4), donde el valor de $K_s \approx 0,0006$ como sugiere la Figura 1.

$$L_{\infty} = L - \frac{K_s}{2\pi\sqrt{f}} \approx 0.3\,\mu H\tag{4}$$

Figura 1: Gráfica de $\frac{K_s}{\sqrt{f}}$ vs f para determinar el valor de K_s .

Por último, se obtiene R y G en ADS y se determina de manera heurística el número de etapas mínimo para que los resultados sean similares a los medidos por el VNA.

Resultados

Figura 2: Reflexión (S_{11}) de línea de transmisión de 0.5": VNA (azul), modelo de 32 etapas (rojo).

Figura 3: Transmisión (S_{21}) de línea de transmisión de 0.5": VNA (azul), modelo de 32 etapas (rojo).

Conclusiones

El modelo distribuido resulta en una buena aproximación a la línea de transmisión. Se concluye que 32 etapas son suficientes para que el error entre las mediciones del VNA y los obtenidos por el modelo distribuido sea mínimo. Las aproximaciones de las ecuaciones (3) y (4) son válidas, pero requieren un ajuste fino heurístico para obtener resultados precisos.