2/3	
X - [X1 X1 X1 Y TOV = data point	
$X = \begin{bmatrix} X_{11} & \cdots & X_{1p} & \cdots & x_{1p} \\ \vdots & \ddots & \ddots & \vdots \\ X_{n1} & \cdots & X_{np} & \cdots & \vdots \\ & & & & & & & & & & & & & & & & &$	
L data set with a data points with an features each	
C PAIN SET DITH IN DOTA POINTS WITH IM TEATURES EACH	
feature space = Rn of X (# of ind cols)	
. 11 .1	
comparing data points	
Dissimilarity funct ontputs: 1 if dissimilar U if similar	Similarity funes: 1 if similar, L if dissimilar
- distance function: all must $d(i,j)=0$ iff $i=j$ d(i,j)=d(j,i) true $d(i,j)\leq d(i,k)+d(k,j)$	5 1 15 1 1 1 15 (1) 5 1x xyl
$\frac{-1151011(E-THRC)(DN-1-1045)}{1+46} = \frac{1}{2}(i,j) \leq 1(i,k) + 1(k,j)$	- Jaccard Similarity: $\int Sim(x,y) = \frac{1x - y!}{1x - y!}$: $\int Dist(x,y) = 1 - \int Sim(x,y)$ * use if data points are mostly similar/small difference is significant
	* use if rata points are mostly similar/small difference is significant
- Minkowski Pistance: Lp(x,y)= (\frac{1}{2}1\times-\times-101P)\times for d amount of x,y points p\geq 1, but dieset have to be a whole #	
p≥1, but diesent have to be a whale #	- Cosine Similarity: s(x,y)=cos(0) st 0=angle between x and y
P=1 > Man hattan dist 🕒	cos=1 -> proportiona
p=2-> Enclidian dist L	cos=0 > orthogonal (perpindicular/right angle) to get corresponding dissim func: cos=-1 > opposite d(x,y)=\frac{1}{5}(x,y) \text{ or } k-s(x,y)
aka Ip Norm	$cos > 1 \Rightarrow apposite$ $d(x,y) = \overline{s(x,y)}$ or $k = s(x,y)$
	*use when direction is more important than magnitude for some t
vec5 U V	
- J(A, B) = A-B , J(O, X) = X	
Made with North 350me reference to distance, but all dist tunes create a Norm	

	2/5
	clustering can be ambiguous-no 1 correct answer (but can be wrong ones)
	partional clustering - partition dataset into k partitions, such that
	partional clustering - partition dataset into k partitions, such that variance (cost function) is minimized
	cost function - how "good" a clustering is : high = bad (expensive), low = good (cheap)
	$\sum_{i} \sum_{x \neq c_i} J(x, \mu_i)^2 = \sum_{k=c_i \neq r_i = \{\mu_1, \dots, \mu_n\}}^{k=c_i \neq r_i = \{\mu_2, \dots, \mu_n\}} J = J_i \text{ is tance}$
	k: # clusters, n: #data points needs to be a balance between cost and # clusters - can't say lovest cost, bc cost=0 when k=n - k=1, k=n too easy - if X & R" st n>2, very difficult (can't visualize)
	needs to be a halance hetween cost and #clusters
	- can't say lovest cost, be cost=0 when k=n
	- k=1, k=n Hoo easy
	- if X = R" = + n>2, very difficult (cant visualize)
	Lloyd's alg:
	L'ear donning pick k data paints as centers
	2, un assign all points
	3, assign each point in clataset to closest center
	4. compute new centers as means of each cluster
	2. un assign all points 3. assign each point in clataset to closest center 4. compute new centers as means of each cluster 5. repeat 2-4 until done (centers don't change)
M	ade with Goodnotes