Sequences, Limits, Etc.

David Carlson

2021

Sequences, Limits, Etc.

We're often interested in determining if a function f approaches some number L as its independent variable x moves to some number c (usually 0 or $\pm \infty$).

We're often interested in determining if a function f approaches some number L as its independent variable x moves to some number c (usually 0 or $\pm \infty$). If it does, we say that f(x) approaches L as x approaches c, or $\lim_{x\to c} f(x) = L$.

We're often interested in determining if a function f approaches some number L as its independent variable x moves to some number c (usually 0 or $\pm \infty$). If it does, we say that f(x) approaches L as x approaches c, or $\lim_{x\to c} f(x) = L$.

The limit of a function

Let f be defined at each point in some open interval containing the point c, although possibly not defined at c itself.

We're often interested in determining if a function f approaches some number L as its independent variable x moves to some number c (usually 0 or $\pm \infty$). If it does, we say that f(x) approaches L as x approaches c, or $\lim_{x\to c} f(x) = L$.

The limit of a function

Let f be defined at each point in some open interval containing the point c, although possibly not defined at c itself. Then $\lim_{x \to c} f(x) = L$ if for any (small positive) number ϵ , there exists a corresponding number $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

Basic examples

- $\lim_{x \to \infty} |x| = 0$

Basic examples

```
\lim_{x\to c} k = k
\lim_{x \to c} x = c
```

xlab="x", ylab="f(x)", type="l")

$$\lim_{x \to 0} \left(1 + \frac{1}{x^2} \right) = \infty$$

$$\text{plot(seq(-2, 2, by=.1), 1+1/(seq(-2, 2, by=.1))^2, }$$

$$\text{xlab="x", ylab="f(x)", type="l")}$$

Let f and g be functions with $\lim_{x\to c} f(x) = A$ and $\lim_{x\to c} g(x) = B$.

$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = A + B$$

Let f and g be functions with $\lim_{x\to c} f(x) = A$ and $\lim_{x\to c} g(x) = B$.

- - $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} \hat{f(x)} + \lim_{x \to c} g(x) = \hat{A} + \hat{B}$ $\lim_{x \to \infty} \alpha f(x) = \alpha \lim_{x \to \infty} f(x) = \alpha A$

Let f and g be functions with $\lim_{x\to c} f(x) = A$ and $\lim_{x\to c} g(x) = B$.

- - $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = A + B$
 - $\lim_{x \to c} \alpha f(x) = \alpha \lim_{x \to c} f(x) = \alpha A$
 - $\lim_{x \to \infty} f(x)g(x) = [\lim_{x \to \infty} f(x)][\lim_{x \to \infty} g(x)] = AB$

Let f and g be functions with $\lim_{x \to c} f(x) = A$ and $\lim_{x \to c} g(x) = B$.

Let f and g be functions with
$$\lim_{x \to c} f(x) = A$$
 and $\lim_{x \to c} g(x) = B$.

$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = A + B$$

$$\lim_{\substack{x \to c \\ x \to c}} \alpha f(x) = \alpha \lim_{\substack{x \to c \\ x \to c}} f(x) = \alpha A$$

$$\lim_{\substack{x \to c \\ x \to c}} f(x)g(x) = \lim_{\substack{x \to c \\ x \to c}} f(x) \left[\lim_{\substack{x \to c \\ x \to c}} g(x)\right] = AB$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f(x)}{\lim_{x \to c} g(x)} = \frac{A}{B}, \text{ provided } B \neq 0$$

Examples

$$\lim_{x \to 2} (2x - 3) = 2 \lim_{x \to 2} x - 3 \lim_{x \to 2} 1 = 2 \times 2 - 3 \times 1 = 1$$

Examples

$$\lim_{\substack{x \to 2 \\ \lim_{x \to c} x}} (2x - 3) = 2 \lim_{\substack{x \to 2 \\ \lim_{x \to c} x}} x - 3 \lim_{\substack{x \to 2 \\ \lim_{x \to c} x}} 1 = 2 \times 2 - 3 \times 1 = 1$$

Other types of limits:

▶ Right-hand limit: $\lim_{x\to c^+} f(x) = L$, if

$$c < x < c + \delta \Longrightarrow |f(x) - L| < \epsilon$$

Example: $\lim_{x\to 0^+} \sqrt{x} = 0$

Other types of limits:

▶ **Right-hand limit**:
$$\lim_{x \to c^+} f(x) = L$$
, if

$$c < x < c + \delta \Longrightarrow |f(x) - L| < \epsilon$$

Example:
$$\lim_{x \to 0^+} \sqrt{x} = 0$$

• Left-hand limit: $\lim_{x \to 0^+} f(x) = I$, if

Left-hand limit:
$$\lim_{x \to c^-} f(x) = L$$
, if $c - \delta < x < c \Longrightarrow |f(x) - L| < \epsilon$

▶ Infinity:
$$\lim_{x\to\infty} f(x) = L$$
, if $x > N \Longrightarrow |f(x) - L| < \epsilon$

$$\lim_{x\to\infty} r(x) = L, \text{ if } x > N \longrightarrow |r(x) - L|$$

► -Infinity:
$$\lim_{x \to -\infty} f(x) = L$$
, if $x < -N \Longrightarrow |f(x) - L| < \epsilon$

Example: $\lim_{x \to \infty} 1/x = \lim_{x \to -\infty} 1/x = 0$

Caution

In some situations, you will not be able to calculate a limit. For instance, $\lim_{x\to\infty}\frac{x}{-x}.$ The numerator is headed towards ∞ while the denominator is headed towards $-\infty.$ In this case the limit does not exist. In other circumstances, the limit may exist but additional steps need to be taken.

Existence of a limit

The limit of a function exists only if the left and right hand limits are equal to the same value.

$$\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x)$$

Find the limits (if they exist):

$$\lim_{x\to 5}\frac{1}{(x-5)^2}$$

2.

$$\lim_{x\to 5} 2x^2 - 5x + 7$$

3.

$$\lim_{y\to\infty}\frac{1}{y^6}$$

4.

$$\lim_{y\to 0}\frac{1}{y^6}$$

5.

$$\lim_{x \to 20} \frac{2x+3}{5x^2}$$

Continuity

Continuity: Suppose that the domain of the function f includes an open interval containing the point c. Then f is continuous at c if $\lim_{x\to c} f(x)$ exists and if $\lim_{x\to c} f(x) = f(c)$.

Continuity

Continuity: Suppose that the domain of the function f includes an open interval containing the point c. Then f is continuous at c if $\lim_{x\to c} f(x)$ exists and if $\lim_{x\to c} f(x) = f(c)$.

Further, f is continuous on an open interval (a, b) if it is continuous at each point in the interval.

Examples: Continuous functions.

$$f(x) = \sqrt{x}$$
$$f(x) = e^x$$

Examples: Continuous functions.

$$f(x) = \sqrt{x}$$
$$f(x) = e^x$$

Examples: Discontinuous functions.

$$f(x) = floor(x)$$

$$f(x) = 1 + \frac{1}{x^2}$$

Basic properties of continuous functions

If f and g are continuous at point c, then

▶ f + g, f - g, $f \times g$, |f|, and αf are continuous.

Basic properties of continuous functions

If f and g are continuous at point c, then

- \blacktriangleright f+g, f-g, $f\times g$, |f|, and αf are continuous.
- f/g is continuous, provided $g(c) \neq 0$.

Boundedness

If f is continuous on the closed bounded interval [a, b], then there is a number K such that $|f(x)| \le K$ for each x in [a, b].

Boundedness

If f is continuous on the closed bounded interval [a, b], then there is a number K such that $|f(x)| \le K$ for each x in [a, b].

Max/min:

If f is continous on the closed bounded interval [a, b], then f has a maximum and a minimum on [a, b], possibly at the end points. The range of a closed bounded interval [a, b] under a continuous function f is also a closed bounded interval [m, M].

Some practice

- 1. Show whether $f(x) = x + x^3$ has a limit at x = 3 and, if so, the value of the limit.
- 2. Find $\lim_{x\to 4} (x-3)(x+5)$
- 3. Find $\lim_{x\to 2} \frac{3x^2-12}{x-2}$
- 4. Find $\lim_{x\to 2} \frac{x^3-4}{x-2}$
- 5. Is the function $f(x) = \frac{\ln(x)}{x}$ continuous for $x \in [2, \infty)$?
- 6. Is the function below continuous? If not, what could be done to make it so?

$$f(x) = \begin{cases} x^3 - 3x + 4 & x \le 3 \\ x^2 & x > 3 \end{cases}$$

Sequences

A **sequence** $\{y_n\} = \{y_1, y_2, y_3, \dots, y_n\}$ is an ordered set of real numbers, where y_1 is the first term in the sequence and y_n is the nth term. Generally, a sequence extends to $n = \infty$. We can also write the sequence as $\{y_n\}_{n=1}^{\infty}$.

Example sequences

Think of sequences like functions. Before, we had y = f(x) with x specified over some domain. Now we have $\{y_n\} = \{f(n)\}$ with $n = 1, 2, 3, \ldots$

Example sequences

Think of sequences like functions. Before, we had y = f(x) with x specified over some domain. Now we have $\{y_n\} = \{f(n)\}$ with

$$n = 1, 2, 3, \dots$$

1.
$$\{y_n\} = \left\{2 - \frac{1}{n^2}\right\} = \left\{1, \frac{7}{4}, \frac{17}{9}, \frac{31}{16}, \ldots\right\}$$

2.
$$\{y_n\} = \left\{\frac{n^2+1}{n}\right\} = \left\{2, \frac{5}{2}, \frac{10}{3}, \ldots\right\}$$

3.
$$\{y_n\} = \{(-1)^n (1 - \frac{1}{n})\} = \{0, \frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, \ldots\}$$

Example sequences

Think of sequences like functions. Before, we had y = f(x) with x specified over some domain. Now we have $\{y_n\} = \{f(n)\}$ with

- $n = 1, 2, 3, \dots$
 - 1. $\{y_n\} = \left\{2 \frac{1}{n^2}\right\} = \left\{1, \frac{7}{4}, \frac{17}{9}, \frac{31}{16}, \dots\right\}$
 - 2. $\{y_n\} = \left\{\frac{n^2+1}{n}\right\} = \left\{2, \frac{5}{2}, \frac{10}{3}, \dots\right\}$
 - 3. $\{y_n\} = \left\{ (-1)^n \left(1 \frac{1}{n}\right) \right\} = \{0, \frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, \ldots \}$
 - Sequences like 1 above that converge to a limit.
 - ▶ Sequences like 2 above that increase without bound.
 - ▶ Sequences like 3 above that neither converge nor increase
- ► Why? Let's draw them.

Bounded: if $|y_n| \le K$ for all n

- **Bounded**: if $|y_n| \le K$ for all n
- ▶ Monotone Increasing: $y_{n+1} > y_n$ for all n

- **Bounded**: if $|y_n| \le K$ for all n
- ▶ Monotone Increasing: $y_{n+1} > y_n$ for all n
- ▶ Monotone Decreasing: $y_{n+1} < y_n$ for all n

- **Bounded**: if $|y_n| \le K$ for all n
- ▶ Monotone Increasing: $y_{n+1} > y_n$ for all n
- ▶ Monotone Decreasing: $y_{n+1} < y_n$ for all n
- **Subsequence**: Choose a (possibly infinite) collection of entries from $\{y_n\}$, retaining their order.

We're often interested in whether a sequence **converges** to a **limit**. Limits of sequences are conceptually similar to the limits of functions addressed earlier.

We're often interested in whether a sequence **converges** to a **limit**. Limits of sequences are conceptually similar to the limits of

functions addressed earlier.

The sequence $\{v_i\}$ has the **limit** I, that is $\lim_{t \to 0} v_i = I$, if

The sequence $\{y_n\}$ has the **limit** L, that is $\lim_{n\to\infty} y_n = L$, if for any $\epsilon > 0$ there is an integer N (which depends on ϵ) with the property that $|y_n - L| < \epsilon$ for each n > N. $\{y_n\}$ is said to converge to L. If the above does not hold, then $\{y_n\}$ diverges.

We're often interested in whether a sequence **converges** to a **limit**. Limits of sequences are conceptually similar to the limits of

functions addressed earlier.

The sequence $\{v_i\}$ has the **limit** I, that is $\lim_{t \to 0} v_i = I$, if

The sequence $\{y_n\}$ has the **limit** L, that is $\lim_{n\to\infty} y_n = L$, if for any $\epsilon > 0$ there is an integer N (which depends on ϵ) with the property that $|y_n - L| < \epsilon$ for each n > N. $\{y_n\}$ is said to converge to L. If the above does not hold, then $\{y_n\}$ diverges.

We're often interested in whether a sequence **converges** to a **limit**. Limits of sequences are conceptually similar to the limits of

functions addressed earlier.

The sequence $\{y_n\}$ has the **limit** L, that is $\lim_{n\to\infty}y_n=L$, if for any $\epsilon>0$ there is an integer N (which depends on ϵ) with the property that $|y_n-L|<\epsilon$ for each n>N. $\{y_n\}$ is said to converge to L. If the above does not hold, then $\{y_n\}$ diverges.

$$\{y_n\} = \left\{2 - \frac{1}{n^2}\right\} = \left\{1, \frac{7}{4}, \frac{17}{9}, \frac{31}{16}, \dots\right\}$$

Limits of a vector of sequences

Finding the limit of a sequence in \mathbb{R}^n is similar to that in \mathbb{R}^1 .

The sequence of vectors $\{\mathbf{y_n}\}$ has the limit \mathbf{L} , that is $\lim_{n\to\infty}\mathbf{y_n}=\mathbf{L}$, if for any ϵ there is an integer N where $||\mathbf{y_n}-\mathbf{L}||<\epsilon$ for each n>N. The sequence of vectors $\{\mathbf{y_n}\}$ is said to converge to the vector \mathbf{L} — and the distances between $\mathbf{y_n}$ and \mathbf{L} converge to zero.

Limits of a vector of sequences

Finding the limit of a sequence in \mathbb{R}^n is similar to that in \mathbb{R}^1 .

- The sequence of vectors $\{\mathbf{y_n}\}$ has the limit \mathbf{L} , that is $\lim_{n \to \infty} \mathbf{y_n} = \mathbf{L}$, if for any ϵ there is an integer N where $||\mathbf{y_n} \mathbf{L}|| < \epsilon$ for each n > N. The sequence of vectors $\{\mathbf{y_n}\}$ is said to converge to the vector \mathbf{L} and the distances between $\mathbf{y_n}$ and \mathbf{L} converge to zero.
 - ► Think of each coordinate of the vector y_n as being part of its own sequence over n. Then a sequence of vectors in Rⁿ converges if and only if all n sequences of its components converge.

Examples:

- 1. The sequence $\{y_n\}$ where $y_n = \left(\frac{1}{n}, 2 \frac{1}{n^2}\right)$ converges to (0, 2).
- 2. The sequence $\{y_n\}$ where $y_n = \left(\frac{1}{n}, (-1)^n\right)$ does not converge, since $\{(-1)^n\}$ does not converge.

 $\lim_{n\to\infty} \left\{ \frac{4^n}{n!} \right\} = ?$

▶ Show $\sum_{k=0}^{4} ar^k$. Then find $\lim_{K\to\infty} \sum_{k=0}^{K} ar^k$, where |r|<1.