

RAPPORT DE STAGE

Étude des interactions entre adaptation spatiale par multirésolution et schémas numériques pour les équations d'advection-diffusion-réaction

Étudiant: Alexandre EDELINE

École : ENSTA Paris - Institut Polytechnique de Paris

Période: du 14/04/2025 au 17/10/2025

Laboratoire : CMAP - École Polytechnique

Maîtres de stage: Marc Massot et Christian Tenaud

Tuteur académique: Patrick CIARLET

Remerciements

Je remercie chaleureusement Marc Massot pour sa bienveillance, sa disponibilité et plus généralement pour m'avoir accompagné au cours de ce stage. Je tiens à faire particulièrement l'éloge de ses capacités de superviseur : guider la compréhension, encourager l'initiative, orienter la recherche et les expériences, aiguiller la rédaction; un authentique mentor.

J'exprime également toute ma gratitude à Christian Tenaud avec qui les échanges ont beaucoup oeuvré à la rigueur et la clarification de mes travaux.

Merci à toute l'équipe du HPC@Math qui m'a beaucoup soutenu et dont le travail a beaucoup facilité mes recherches. Je suis sincèrement reconnaissant à Pierre, Laurent et Loïc pour la *"hotline samurai"* et plus généralement pour leur aide efficace, patiente et bienveillante qui m'a permis de surpasser des problèmes informatiques parfois idiots, parfois insidieux et souvent obscurs... Je souligne au passage l'effort de l'équipe Samurai pour intégrer les fonctionnalités demandées en un temps record!

Je remercie Richard et Ward pour leur aimable relecture et leurs conseils. Je remercie Antoine pour m'avoir aidé sur un *bug* qui me semblait insurmontable. Je salue tous les doctorant du CMAP, les remerciant pour les débats passionnants (parfois absurdes) et je remercie tous les chercheurs, toujours disponible pour expliquer et vulgariser leurs recherches.

Je remercie Théophane, pour son soutiens et nos échanges. Je remercie enfin mes parents dont le soutient m'a toujours permis de me concentrer exclusivement et sans inquiétude sur mes études.

Abstracts

Résumé en Français

Mots-clés : Schémas Numériques, Simulation des EDP d'Évolution, Multirésolution Adaptative, Méthodes ImEx, Advection-Diffusion-Réaction, Analyse d'erreur numérique, Analyse de stabilité.

Les systèmes couplant mécanique des fluides et chimie complexe se modélisent par les équations d'advection-diffusion-réaction (ADR), une classe d'équations aux dérivées partielles dont la résolution numérique requiert à la fois des stratégies d'adaptation de maillage (par exemple la multirésolution adaptative, MRA) et des méthodes d'intégration temporelle spécifiques (splitting, schémas ImEx). Ce travail étudie les interactions entre ces deux composantes (adaptation spatiale et intégration temporelle). Il apporte (i) une comparaison empirique de l'effet de la MRA sur les schémas de splitting et les schémas ImEx, ainsi qu'une une analyse (ii) théorique et (iii) numérique des interactions entre schéma numérique et MRA sur des problèmes de diffusion et diffusion réaction.

English abstract

Keywords: Numerical Schemes, Evolution PDE Simulation, Adaptive Multiresolution, ImEx Methods, Advection-Diffusion-Reaction, Numerical Error Analysis, Stability Analysis.

Systems coupling fluid mechanics and complex chemistry are modeled by advection-diffusion-reaction (ADR) equations, a class of partial differential equations whose numerical resolution requires both spatial mesh adaptation strategies (such as adaptive multiresolution, MRA) and dedicated time integration methods (splitting, ImEx schemes). This work investigates the interactions between these two components (spatial adaptation and temporal integration). It provides (i) an empirical comparison of the effect of MRA on splitting and ImEx schemes, and (ii) a theoretical and (iii) numerical analysis of the interaction that emerges between the numerical scheme and MRA adaptation on a diffusion problem and a diffusion-reaction problem.

Table des matières

	Ren	nercien	nents	2
	Abs	tracts		3
	List	e des fi	gures	7
1	Intr	oducti	ion	8
	1.1	Prése	ntation du laboratoire	8
		1.1.1	Le laboratoire	8
		1.1.2	L'équipe HPC@Maths	8
	1.2	Prése	ntation du sujet	9
		1.2.1	Les difficultés des équations d'advection-diffusion-réaction	9
		1.2.2	Les stratégies de simulation des équations d'advection-diffusion-réaction	10
	1.3	Probl	ématique	13
	1.4	Organ	nisation du rapport	14
2	Pré	ambul	e mathématique	15
	2.1	Intégi	rations des EDOs	16
		2.1.1	Schémas explicites et implicites	16
		2.1.2	Ordre de convergence d'un schéma	16
		2.1.3	Stabilité linéaire et raideur	17
	2.2	Simul	lation des EDPs d'évolution	19
		2.2.1	Les méthodes des lignes.	19
		2.2.2	Les volumes finis	20
		2.2.3	Analyse de schéma numériques	21
	2.3	Les éc	quations d'advection-diffusion-réaction	24
		2.3.1	Trois opérateurs aux propriétés mathématiques très différentes	24
		2.3.2	Difficultés mathématiques intrinsèques	25
		2.3.3	Conclusion sur les équations d'ADR	26
	2.4	La Mı	ıltirésolution Adaptative	27
		2.4.1	La représentation multi-échelle	27
		2.4.2	L'adaptation de maillage grâce à la transformation multi-échelle	29
3	Con	ıtribut	ions	31
	3.1	Étude	e de méthodes ImEx sur une équation de diffusion-réaction	32
		3.1.1	L'équation de Nagumo	33
		3.1.2	Les méthodes ImEx	35
		313	Analyse de stabilité	38

TABLE DES MATIÈRES 5

Bi	bliog	graphie		74
4	Con	clusio	n	69
		3.3.7	Conclusion	68
		3.3.6	Extension sur une équation de diffusion-réaction	66
		3.3.5	Lien avec les équations équivalentes	63
		3.3.4	Expérience numérique avec une méthode explicite stabilisée	60
		3.3.3	Analyse de stabilité	59
		3.3.2	Expérience numérique avec une méthode Runge et Kutta explicite	58
		3.3.1	Les schémas paradigmes d'AMR comparés	57
	3.3	Impa	et de la qualité de reconstruction des flux pour les problèmes diffusion avec AMR.	57
		3.2.4	Conclusion	56
		3.2.3	Complément expérimental	54
		3.2.2	Les équations équivalentes	51
		3.2.1	Cadre de l'étude	47
		tative	sur un problème de diffusion	46
	3.2	Obten	tion de l'équation équivalente d'une méthode de lignes avec multirésolution adap-	
		3.1.6	Conclusion	45
			tation spatiale	44
		3.1.5	Mise en lumière expérimentale de couplages entre la méthode en temps et l'adap-	
		3.1.4	Étude de la convergence	43

Table des figures

1.1	Illustration des deux approches MRA étudiées	13
2.1	Illustration du comportement attendu de l'erreur d'un schéma d'ordre deux dont le seuil d'instabilité est $\Delta t > 10^{-3}$	18
2.2	Exemple de maillage adapté par multirésolution adaptative grâce au logiciel Samurai	27
2.3	Exemple de grille dyadique	28
3.1	Profils des ondes solutions de l'équation de Nagumo pour différents ratios k/D avec le produit $kD=1$ fixé (c'est à dire à vitesse fixée). L'augmentation du ratio k/D accentue le gradient spatial	33
3.2	Plage de valeurs du terme de réaction non-linéaire et de sa différentielle pour deux coefficients de réactions : $k = 1$ et $k = 10$.	34
3.3	Diagrammes de stabilité des méthodes ImEx comparés à ceux d'une méthode explicite	
0.4	à un schéma de splitting sur l'équation de Nagumo, pour différents couples D et k	39
3.4	Pour $k = 500$ et $D = 500$: diagrammes de stabilité des méthodes ImEx et de référence sur l'équation de Nagumo	42
3.5	Comparaison de la convergence du schéma de splitting avec celle des méthodes ImEx222	
	et ImEx232 sur l'équation de Nagumo avec $D=0.1$ et $k=10\ldots\ldots\ldots$	43
3.6	Convergence des schémas ImEx et de splitting, adaptés en espace par MRA, sur l'équa-	
	tion de Nagumo pour $k = 10$, $D = 0.1$. Les flux sont évalués au niveau courant (cf. 3.2),	
	la prédiction/reconstruction est assurée par un prédicteur à trois points et l'erreur est	
	comparé à une solution convergé en temps.	44
3.7	Illustration de la différence entre les schémas adaptés spatialement II et III. Le schéma	
	II utilise l'information au niveau de détail l pour calculer les flux numériques, c'est à	
	dire l'information brute à l'issue de la compression. En revanche, le schéma III recons-	
	truit par interpolation polynomiale cette information au niveau de détail le plus fin, sur	
	le schéma au niveau $l+3$	49
3.8	Illustration d'une simulation du cas test 3.50 avec conditions de Dirichlet homogène et	
	affichage de l'erreur locale au temps final	54
3.9	Saturation de la convergence temporelle avec une méthode RKE2 sur l'équation de dif-	
	fusion. L'erreur L^2 stagne malgré la diminution du pas de temps, illustrant la domina-	
	tion de l'erreur spatiale due à la contrainte CFL $\Delta t \propto \Delta x^2$	55
3.10	Convergence temporelle d'ordre 2 avec une méthode SDIRK-RK2 sur l'équation de dif-	
	fusion pour différentes profondeurs de maillages adaptés. L'ordre théorique est pré-	
	servé comme attendu, puisque les flux sont évalués au niveau courants.	56
3.11	Convergence pour les différentes méthodes numériques.	60

TABLE DES FIGURES 7

3.12 Pr	ronis d'erreur pour différentes valeurs de la constante de von Neumann (notée "CFL"	
su	ur les graphiques). Le pas d'espace est fixé, faire de contrainte de Von Neumann revient	
do	lonc simplement à varier linéairement le pas de temps.	62
3.13 Re	Régression entre l'erreur numérique expérimentale (AMR + reconstruction fine) et la	
d€	lérivées 4^e de la solution	64
3.14 Re	Régression entre l'erreur numérique expérimentale (AMR + reconstruction fine) et une	
cc	combinaison linéaire des dérivées 4^e et 6^e de la solution	65
3.15 Co	Courbes de convergence de chaque méthode d'AMR pour différents paramètres de l'équa-	
tio	ion. Plus k est élevé, plus le profil de l'onde est raide et plus la réaction domine. La	
cé	élérité de l'onde est néanmoins identique pour chaque jeu de paramètres puisque le	
pı	produit kD reste constant d'une expérience à l'autre	67

Chapitre 1

Introduction

1.1 Présentation du laboratoire

1.1.1 Le laboratoire.

Le Centre de Mathématiques Appliquées de l'École Polytechnique ¹ (CMAP) a été créé en 1974. Cette création répond au besoin émergent de mathématiques appliquées face au développement des méthodes de conception et de simulation par calcul numérique dans de nombreuses applications industrielles de l'époque (nucléaire, aéronautique, recherche pétrolière, spatial, automobile). Le laboratoire a été fondé grâce à l'impulsion de trois professeurs : Laurent SCHWARTZ, Jacques-Louis LIONS et Jacques NEVEU. Les premières recherches se concentraient principalement sur l'analyse numérique des équations aux dérivées partielles. Le CMAP s'est diversifié au fil des décennies, intégrant notamment les probabilités dès 1976, puis le traitement d'images dans les années 1990 et les mathématiques financières à partir de 1997.

Le laboratoire a formé plus de 230 docteurs depuis sa création et a donné naissance à plusieurs *startups* spécialisées dans les applications industrielles des mathématiques appliquées. Le CMAP comprend trois pôles de recherche : le pôle analyse, le pôle probabilités et le pôle décision et données. J'ai intégré l'équipe **HPC@Maths** du **pôle analyse**.

1.1.2 L'équipe HPC@Maths

L'équipe HPC@Maths ² travaille à l'interface des mathématiques, de l'informatique et de la physique pour développer des méthodes numériques efficaces pour la simulation des EDP. L'équipe s'intéresse entre-autre aux problèmes multi-échelles, au travers des équations d'advection-réaction-diffusion. Elle développe et analyse des méthodes numériques de nouvelle génération adapté à un contexte HPC (*high-performance computing*). Ce terme désigne l'usage optimal des ressources informatiques disponibles et de leur architectures. Chaque méthode est développée en se demandant si elle pourra être facilement parallélisée, si elle pourra être déployée sur GPU ou sur un cluster de calcul de manière efficace.

^{1.} https://cmap.ip-paris.fr

 $^{2. \} https://initiative-hpc-maths.gitlab.labos.polytechnique.fr/site/index.html\\$

1.2 Présentation du sujet

Des moteurs aux batteries, des enjeux de défenses au nucléaire civil en passant par les problématiques de sécurité, de nombreux problèmes industriels font intervenir des systèmes physico-chimiques modélisés par un couplage entre la mécanique des fluides et des cinétiques chimiques complexes. Ces modèles décrivent par exemple les problèmes de combustion [25, 14], d'électrochimie [29], de corrosion [4] de propagation d'effluents [16]. Ces modèles font souvent intervenir des équations d'advection-diffusion-réaction (ADR), une gamme d'équations au dérivées partielles (EDP). Elles comportent un opérateur d'*advection* (transport par un flux), un opérateur de *diffusion* (éparpillement de la matière par l'agitation thermique) et un opérateur de *réaction* (modélisant une ou plusieurs réactions chimiques).

Comme détaillé plus tard, ces équations sont difficiles à simuler avec précision (raideurs différentes, solution multi-échelles). L'objet du stage est donc de contribuer à l'élaboration de méthodes de résolution haute-résolution de ces EDPs.

Cette introduction présente d'abord les difficultés numériques liées aux équations d'ADR (1.2.1), puis réalise un état de l'art des stratégies pour surmonter ces difficultés (1.2.2), vient enfin la problématique à laquelle les contributions du stage répondent (1.3).

1.2.1 Les difficultés des équations d'advection-diffusion-réaction

Les équations d'ADR posent deux difficultés majeures aux numériciens :

- A. des opérateurs aux propriétés différentes et opposées, antagonistes
- B. des solutions multi-échelles en temps et en espace

A Des opérateurs aux propritétés antagonistes

Le terme antagoniste signifie que leurs propriétés sont très différentes et qu'alors, les méthodes numériques efficaces pour un opérateur sont inadaptées aux autres. (plus de détails en 2.3)

- ♦ les méthodes explicites³ sont adaptées à l'opérateur d'advection, mais présentent des problèmes de stabilité⁴ pour l'opérateur de réaction.
- ♦ le caractère local et très *raide*⁵ de l'opérateur de réaction ⁶ pousse à utiliser des *méthodes impli-cites*⁷, cependant le caractère non-local de la diffusion rend les coûts calculatoires prohibitifs en 3D.
- les méthodes explicites stabilisées comme [3] sont très adaptées à la résolution de l'opérateur de diffusion, mais leurs propriétés ne sont pas adaptés au opérateurs de réactions décrivant la chimie complexe (très forte raideur, spectre imaginaire...).

Ainsi, une approche monolithique (qui traiterait tous les opérateurs d'un bloc) échouera souvent à simuler avec précision le système en 3D.

- 3. Définition en 2.1
- 4. Définition de stabilité en 2.1
- 5. Définition d'opérateur raide en 2.1
- 6. Cette raideur viens des temps de relaxations très cours (quelques nanosecondes) des modèles de chimie complexe [5]
- 7. Définition en 2.1

B Des solutions multi-échelles

Les solutions des équations d'ADR sont souvent multi-échelles en temps et en espace [13] : pour obtenir une précision donnée, chaque zone spatio-temporelle requiert des niveau de résolution différents. Par exemple pour un problème de combustion, tant que l'allumage n'est pas initié, un pas de temps et une résolution spatiale grossiers représentent fidèlement le système. En revanche après l'allumage, le pas de temps doit être réduit drastiquement pour rendre compte de la complexité des réactions de combustion déclenchées ⁸ et, proche de la flamme, une résolution spatiale élevées est nécessaire pour rendre compte de sa structure complexe, alors que loin de la flamme une résolution plus grossière reste suffisante. Ainsi soit la résolution reste faible mais la précision médiocre; soit elle est élevée partout mais l'usage des ressources computationnelles et de la capacité mémoire est inefficace, car une part significative de la simulation ne requiert pas une telle résolution.

1.2.2 Les stratégies de simulation des équations d'advection-diffusion-réaction

Pour parer ces difficultés trois familles de stratégies existent :

- A. La séparation d'opérateurs, permet de développer des schémas non-monolithiques où chaque opérateur est traité indépendamment des autres avec une méthode adaptée à ses propriétés.
- B. L'adaptation en espace, permet d'adapter localement la finesse du maillage, une résolution spatiale où la structure de la solution le demande (forts gradients, discontinuités...) et une résolution plus faible où la solution est lisse, simple, régulière.
- C. L'adaptation du pas de temps (non-abordé ici mais traité par exemple en [13]).

Voici un bref état de l'art des stratégies de séparation d'opérateur et d'adaption en espace qui sont au coeur du stage.

A Les stratégies de séparation d'opérateurs

Deux approches de séparation d'opérateurs existent : la séparation (ou *splitting*) d'opérateurs classique et les méthodes implicites-explicites (ImEx). La frontière est poreuse entre ces deux concepts puisque certains schémas de *splitting* peuvent être vus comme des ImEx. Des détails mathématiques complémentaires sur les méthode ImEx sont présentés en 3.1.2.

Le splitting repose sur un développement de Taylor de l'exponentielle de matrice. Il s'agit en pratique de simuler les opérateurs les un après les autres de sorte que le résultat soit ne défèrent d'un schéma monolithique qu'à une erreur de *splitting* maîtrisée. Concrètement, la solution de l'EDP :

Pour U un espace fonctionnel sur \mathbb{R}^d et A et B deux opérateurs de U dans U,

trouver
$$u \in \mathcal{F}(\mathbb{R}^+, U)$$
 tel que :

$$\partial_t u = Au + Bu, \tag{1.1}$$

$$u(t = 0, \cdot) = u_0(\cdot) \in U.$$
 (1.2)

^{8.} Par exemple : création d'espèces intermédiaires à temps de vie court, couplage entre la réaction et la diffusion de chaleur...

s'écrit comme:

$$u(t,\cdot) = e^{t(A+B)} u_0(\cdot). \tag{1.3}$$

où $e^{\cdot (A+B)}: \mathbb{R}^+ \to U$ est le semi-groupe correspondant à l'EDP (si A et B sont des matrices, c'est simplement l'exponentielle de matrices). Le schéma de *splitting* de Lie, précis à l'ordre un, repose sur le développement suivant :

$$e^{\Delta t(A+B)}u_0 = e^{\Delta tB}\underbrace{\circ e^{\Delta tA}u_0}_{\tilde{u_0}} + \underbrace{\mathcal{O}(\Delta t^2)}_{\text{Erreur de }splitting}.$$
 (1.4)

En acceptant cette erreur de splitting local $\mathcal{O}(\Delta t^2)$, pour passer d'un état u_0 au temps t à un état u_1 au $t+\Delta t$, il suffit de simuler l'opérateur A à partir de u_0 pendant Δt pour obtenir un état intermédiaire \tilde{u}_0 , puis de simuler l'opérateur B à partir de \tilde{u}_0 pendant Δt pour obtenir u_1 . À aucun moment ne sont précisés les schémas utilisés pour simuler A et B, chacun peut être choisi spécifiquement pour l'opérateur simulé. De même pour simuler chaque opérateur sur le pas de temps de *splitting* Δt , chaque méthode est libre de faire du *sous-cyclage*, c'est à dire d'employer des sous-pas de temps adaptés à chaque opérateur 9 . L'avantage est la liberté totale concernant le choix des schémas simulant chaque opérateur. Cependant, le *splitting* vient au prix d'une solution entachée d'un terme d'erreur supplémentaire. Un des schémas de *splitting* les plus utilisés est le schéma de Strang [33], il permet de découpler deux opérateurs avec une précision d'ordre deux en temps.

Les méthodes ImEx se distinguent du *splitting* classique en imposant des conditions entre les schémas utilisés pour chaque opérateur, espérant tirer de cette contrainte une erreur plus faible et potentiellement monter en ordre plus facilement. Les premières méthodes ImEx (hors *splitting*) virent le jour à la fin des années 1990 avec les méthodes Runge et Kutta additives (ARK) par Ascher *et al* [5], complétées dans les année 2000 par [23] puis par [30]. Ces méthode reposent sur une combinaison de plusieurs méthodes Runge et Kutta (une par opérateur) préservant un ordre de convergence global. Cela a pavé la voie à des méthodes ImEx plus complexes intégrant par exemples des méthodes stabilisées [1] ou encore à des méthodes ImEx couplées espace-temps, faites sur mesures pour une équation spécifique [31].

La promesse des méthodes ImEx est d'avoir les même avantages computationnels que le *splitting* tout en s'affranchissant de l'erreur de découplage qu'il porte.

B Les stratégies d'adaptation en espace

L'objectif est ici d'utiliser le maillage avec le moins de points possibles tout en préservant une précision choisie.

- **B.i** Les stratégies *features-based* et *goal-based* Plusieurs stratégies d'adaptation en espace existent et se déclinent en deux grandes catégories [34] :
 - 1. Les approches *features-based* utilisent une quantité locale de la solution (par exemple la vitesse de l'écoulement) et ses gradients pour inférer localement le besoin de résolution spatiale et

^{9.} Par exemple, un seul pas peut suffire pour faire évoluer les opérateurs d'adection-diffusion de Δt alors que plusieurs peuvent être nécessaire pour une réaction complexe.

l'adapter en conséquence.

2. Les approches *goal-based* utilisent une fonction de coût reflétant la qualité globale de la solution selon l'adaptation choisie. Généralement la fonction de coût est issue d'un problème adjoint sur une quantité d'intérêt.

B.ii La multi-résolution adaptative (MRA) Le stage se centre sur la *multi-résolution adaptative* [19] qui ne tombe dans aucune des deux catégories précédente. Puisqu'elle est fondée avant tout sur des arguments issus de la théorie de l'information. lapplication de la multirésolution adaptative à la simulation numérique remonte aux travaux d'Ami Harten [19] dans les années 1990 qui adapte une méthode de compression de donnée par analyse multi-échelle aux algorithmes de simulation. Ces travaux furent par la suite prolongés entre autre dans [21, 9]. Cette technique permettant de réduire drastiquement les temps de simulation a été largement appliquée et est une approche très compétitive [12] pouvant tirer parti des infrastructures de calcul moderne (multi-coeur, GPU) [32, 13].

Une présentation mathématique est proposée dans le préambule mathématique en 2.4. Succinctement, avec un méthode MRA, la solution est représentée sur plusieurs grilles de finesses différentes. L'adaptation (compression) consiste à ignorer l'information superflue contenue sur les grilles les plus fines, là où la solution est assez régulière (la régularité est estimé grâce à la transformée en ondelette). À une erreur de compression/reconstruction près, un niveau de résolution maximal (grille fine) peut être retrouvé grâce à une reconstruction polynomiale (décompression/prédiction).

1.3 Problématique

L'adaptation spatiale est clé sur les problèmes advection-diffusion-réaction qui sont souvent multiéchelles. Cependant, cela introduit des perturbations susceptibles d'altérer les propriétés du schéma. Concernant l'adaptation par multirésolution adaptative, le travail [6] a récemment révélé et étudié ces perturbations sur des problèmes d'advection. Toutefois, ces interactions demeurent mal comprises d'un point de vue général. Cela dépend *a priori* de nombreux facteurs comme l'EDP, le schéma ou encore la façon dont la MRA est mise en place. En effet il existe plusieurs stratégies d'adaptation par multirésolution adaptative. Par exemple, ce stage se concentre sur les schémas volumes finis. Dans ce cadre, un *flux* numérique doit être évalué à l'interface de chaque cellule; cela mène à plusieurs stratégies d'adaptation par MRA (voir fig. ??):

- Une approche MRA sans reconstruction des flux où la solution évolue sur le maillage <u>adapté</u> (compressé) grâce à un *flux* évalué à partir des valeurs de la solution adaptée.
- Une approche MRA avec reconstruction des flux où la solution évolue sur le maillage <u>adapté</u>, mais grâce à un *flux* évalué à partir des valeurs de la solution <u>reconstruite</u>, décompressée, plus précises.

Les différences subtiles entre ces deux approches de la MRA suffisent à modifier les interactions avec le schéma; l'analyse devient d'autant plus difficile que les schémas d'ADR sont généralement complexes (ImEx, splitting, méthodes stabilisées, etc.).

La problématique du stage est donc :

Révéler et comprendre les interactions entre l'adaptation spatiale par multirésolution adaptative et les schémas numériques utilisés pour simuler les équations d'advection-diffusion-réaction. Pour aborder cette vaste problématique, mon travail se concentre sur les interactions de la MRA avec les schémas de diffusion et de diffusion-réaction ¹⁰. Il se focalisant sur différents points du problème :

- Quelles sont les propriétés des approches ImEx par rapport au splitting et surtout, quelle approche est la plus impactée par l'adaptation spatiale?
- ♦ D'où viennent les interactions entre l'adaptation spatiale et l'intégration en temps et comment les mitiger?

FIGURE 1.1 – Illustration des deux approches MRA étudiées.

^{10.} Ce choix est fait car les problèmes d'advections ont déjà été étudiés en [6] et que l'objectif à terme est de proposer une analyse sur les trois opérateurs combinés : advection, diffusion, réaction.

1.4 Organisation du rapport

Le rapport est structuré comme suit.

- o Ce chapitre pose le contexte, la problématique et les objectifs.
- Le Chapitre 2 sert de préambule mathématique et algorithmique : il rappelle les méthodes de discrétisation pour EDO et EDP, les équations d'advection-diffusion-réaction, quelques outils d'analyse de schémas numériques (stabilité, équations équivalentes), ainsi que les principes de la multirésolution adaptative; le lecteur expérimenté peut le parcourir rapidement et s'y référer au besoin.
- Le Chapitre 3 rassemble trois contributions :
 - ♦ (3.1): Une étude de la stabilité de deux méthodes ImEx ARK; suivie d'une comparaison avec un schéma de splitting de leur stabilité et convergence pour l'équation-test de Nagumo (réaction-diffusion).

 - ♦ (3.3): Une étude expérimentale des différences entre les trois schéma de MRA mentionné précédemment permettant de mettre en relation les résultats théoriques de la contributions 3.2 avec les observations expérimentales.
- Le dernier chapitre (chapitre 4) conclut en trois volets : scientifique, technique et personnel.

Chapitre 2

Préambule mathématique

Ce préambule mathématique présente divers concepts intervenant dans les travaux du stage. Le lecteur habitué peut ignorer ce chapitre et le consulter ponctuellement au besoin. Les sujets suivants y sont introduits :

- ♦ 2.1 Les méthodes de simulations des équations différentielles ordinaires (EDOs).
- ♦ 2.2 Les méthodes de simulations des équations aux dérivées partielles d'évolutions.
- ♦ 2.3 Les équations d'advection-réaction-diffusion et les difficultés numériques qu'elles posent.
- ♦ 2.4 La multi-résolution adaptative (MRA) comme méthode d'adaptation spatiale.

2.1 Intégrations des EDOs

Les techniques d'approximation d'EDPs d'évolution comportent souvent une étape nécessitant la résolution d'une équation différentielle ordinaire ¹ (EDO), c'est à dire une équation différentielle ne faisant intervenir qu'une seule variable différenciée, généralement le temps. Cette section rappelle quelques notions d'analyse et de simulation des EDOs du premier ordre.

Définition 2.1.1 (Équation différentielle ordinaire). Une équation différentielle ordinaire (du premier ordre) est une équation de la forme :

$$u' = A(u, t) \quad u: t \in \mathbb{R}^+ \mapsto u(t) \in \mathbb{R}^d$$

$$u(0) = u_0 \in \mathbb{R}^d.$$
(2.1)

2.1.1 Schémas explicites et implicites.

L'approximation des EDO se fait grâce à des schémas numériques, c'est à dire une suite d'élément (u^n) de \mathbb{R}^d . Donnés une EDO et un pas de discrétisation temporel Δt , $u^n \in \mathbb{R}^d$ est approxime la solution de l'EDO au temps $t^n = n\Delta t$. C'est à dire que la suite $(u^n)_{n\in\mathbb{N}} \in (\mathbb{R}^d)^{\mathbb{N}}$ définie par un schéma numérique cherche à avoir $u^n \approx u(t = n\Delta t)$. Deux catégories de schémas numériques existent : les schémas explicites et les schémas implicites

Définition 2.1.2 (Schéma explicite). Un schéma numérique est dit explicite si la solution au pas de temps n+1 est obtenue uniquement grâce à la solution au pas de temps précédent n. Cela se formule usuellement sous la forme :

$$u^{n+1} = u^n + f(u^n, \Delta t). (2.2)$$

Définition 2.1.3 (Schéma implicite). Un schéma numérique est dit implicite si la solution au pas de temps n+1 est obtenue au moins en partie grâce à la solution au pas de temps n+1. Cela peut s'écrire écrit comme :

$$u^{n+1} = u^n + f(u^{n+1}, \Delta t). \tag{2.3}$$

Comparaison entre ces deux classes de schémas: Une itération d'un schéma implicite nécessite donc l'inversion d'un système linéaire ou non linéaire sur \mathbb{R}^d . De fait, une itération implicite est généralement plus coûteuse qu'une itération d'un schéma explicite 2 . Cependant pour des raisons de stabilité (voir 2.1.3) les méthodes explicites peuvent nécessiter des pas de temps bien plus fins, et donc bien plus d'itérations. Le choix entre méthode explicite et implicite dépend de bien des facteurs (du problème, du niveau de précision voulu, de la difficulté d'implémentation etc...) c'est un enjeu central de la simulation numérique.

2.1.2 Ordre de convergence d'un schéma

L'ordre de convergence permet de lier l'erreur des solutions numérique au pas de temps, c'est-àdire de quantifier l'efficacité d'un schéma numérique. Pour définir la notion d'ordre de convergence

^{1.} On utilisera aussi le terme système dynamique, même si en toute rigueur ce concept est un peu plus large.

^{2.} En particulier si la dimension de la solution d est grande.

d'un schéma numérique, il faut d'abord définir son erreur.

Définition 2.1.4 (Erreur locale de troncature d'un schéma). L'erreur locale d'un schéma numérique de résolution d'une EDO est l'erreur que commet le schéma sur un pas de temps. Autrement dit si l'on note u la solution de l'EDO à partir d'un état initial $u_0 = u(t=0)$ et u_1 l'approximation numérique proposée par la schéma pour un pas de temps Δt à partir de l'état u_0 , l'erreur locale est :

$$e(\Delta t) = \|u(\Delta t) - u_1\|_{\mathbb{R}^d}. \tag{2.4}$$

Définition 2.1.5 (Erreur globale d'un schéma). L'erreur globale d'un schéma est l'erreur que commet le schéma sur plusieurs pas de temps. Si l'on note u^n la solution numérique au temps $t^n = n\Delta t$, alors l'erreur globale du schéma jusqu'au temps final $T = N\Delta t$ peut être définie comme :

$$E(\Delta t) = \max_{0 \le n \le N} \|u^n - u(t^n)\|_{\mathbb{R}^d}$$
 (2.5)

ou plus simplement:

$$E(\Delta t) = \|u^n - u(T)\|_{\mathbb{R}^d}.$$
 (2.6)

Définition 2.1.6 (Ordre de convergence). Un schéma numérique de résolution d'une EDO est dit d'ordre p si l'erreur globale vérifie : $E(\Delta t) = O(\Delta t^p)$

Pour montrer qu'un schéma converge à un ordre p, on a recourt au théorème de Lax-Richtmyer. Ce dernier requiert la notion de *stabilité au perturbations* :

Définition 2.1.7 (Stabilité aux perturbations). Soit le schéma définit par un état initial u_0 et la relation :

$$u^{n+1} = u^n + \Delta t f(u^n, t^n, \Delta t), \quad n \in \{0...N-1\}$$

Soit un schéma perturbé perturbé partant de ξ_0 et défini par la relation :

$$\xi^{n+1} = \xi^n + \Delta t f(u^n, t^n, \Delta t) + \eta_n$$
, où (η_n) est une suite de perturbations

Alors le schéma est stable aux perturbations s'il ne les amplifie par de manière incontrôlée. C'est-àdire qu'il existe M > 0 indépendant de Δt tel que :

$$\max_{n} |u_n - \xi_n \le M \left(|u_0 - \xi_0| + \sum_{n=0}^{N-1} \right)$$

Théorème 2.1.1 (Lax-Richtmyer [28]). Le théorème de Lax-Richtmyer affirme que pour un problème linéaire, le schéma converge à l'ordre p si l'erreur locale vérifie $e(\Delta t) = O(\Delta t^{p+1})$ et que le schéma est stable aux perturbations.

2.1.3 Stabilité linéaire et raideur

Un schéma numérique d'ordre p converge asymptotiquement en $O(\Delta t^p)$ vers la solution exacte d'une EDO lorsque Δt est assez petit. Cependant, cette convergence n'est effective que si le schéma est **linéairement stable**. Un schéma instable conduit à une divergence de la solution numérique :

en pratique, au-delà d'un pas de temps critique Δt_0 , la norme $\|u^n\|$ croît sans borne 3 , comme illustré figure 2.1. Ainsi, pour entrer dans le régime asymptotique de convergence, il faut respecter une contrainte de stabilité de type $\Delta t \leq \Delta t_0$. Lorsque ce seuil est très faible, la simulation devient coûteuse car elle nécessite un grand nombre d'itérations $T_{\rm final}/\Delta t$. De manière générale, les schémas explicites sont plus sensibles à ces contraintes que les schémas implicites.

FIGURE 2.1 – Illustration du comportement attendu de l'erreur d'un schéma d'ordre deux dont le seuil d'instabilité est $\Delta t > 10^{-3}$.

Pour définir la notion de stabilité linéaire, il faut introduire l'équation-test de Dahlquist dépendante d'un paramètre $\lambda \in \mathbb{C}$:

$$y' = \lambda y. \tag{2.7}$$

Si $\Re(\lambda) < 0$, alors la dynamique de la solution est dissipative c'est à dire $y(t) \to 0$. Un schéma numérique (u^n) est stable sur cette équation si et seulement si $\left|u^{n+1}/u^n\right| < 1$ (sinon la solution numérique diverge alors qu'elle est sensée tendre vers 0). Cette condition dépend de *l'indice spectral* $z = \Delta t \lambda$. Par exemple, le schéma un schéma d'Euler explicite s'écrit en fonction de z:

$$u^{n+1} = u^n + \Delta t \lambda u^n = (1+z)u^n.$$
 (2.8)

Et donc la stabilité linéaire est assurée $\iff \left| \frac{u^{n+1}}{u^n} \right| \le 1 \iff |1+z| \le 1$. Cela permet de définir la fonction de stabilité d'un schéma.

Définition 2.1.8 (Fonction de stabilité). Pour un schéma numérique, la fonction de stabilité S est

^{3.} Phénomène souvent appelé « explosion numérique ».

définie comme:

$$S(z) = u^1 / u^0. (2.9)$$

Où u^1 est l'évolution par le schéma de l'équation de Dhalquist à partir de $u_0 \in \mathbb{C}$ pour λ et Δt tels que $z = \lambda \Delta t$.

Définition 2.1.9 (Stabilité linéaire d'un schéma numérique). À pas de temps Δt fixé, un schéma numérique est linéairement stable pour intégrer le système dynamique

$$\frac{\mathrm{d}u}{\mathrm{d}t} = A(u, t), \qquad u(t) \in \mathbb{C}^d$$
 (2.10)

si pour toute valeur propre $\lambda \in Sp(A)$ telle que $\Re(\lambda) < 0$:

$$|S(z = \lambda \Delta t)| \le 1. \tag{2.11}$$

Pour aller plus loin, on peut introduire des notions plus fines (A-stabilité, L-stabilité), développées par exemple dans [18, 28]. La stabilité d'un schéma dépend directement du spectre de l'opérateur A dans l'équation différentielle. Lorsque A possède des valeurs propres à grande partie réelle négative, les méthodes explicites imposent des pas Δt extrêmement petits pour rester stables. Dans ce cas, le problème est qualifié de *raide*.

Définition 2.1.10 (Problème raide). Un système dynamique est raide si les méthode explicites ne sont pas adéquates pour le résoudre [18]; ou de façon plus formelle le système dynamique :

$$\frac{\mathrm{d}u}{\mathrm{d}t} = A(u, t), \qquad u(t) \in \mathbb{C}^d$$
 (2.12)

est dit raide si la jacobienne J_A admet des valeurs propres très négatives en valeur absolue, entraînant une condition de stabilité tellement restrictive que les méthodes explicites deviennent inutilisables en pratique.

2.2 Simulation des EDPs d'évolution

Cette section introduit divers éléments d'analyse et simulation pour équations aux dérivées partielles d'évolutions. Elle introduit d'abord la notion de méthode des lignes, une approche classique d'élaboration de schéma numériques pour les EDPs d'évolutions. Puis elle présente la notion de volume fini qui est le paradigme de discrétisation spatiale utilisé dans ce stage. Enfin elle détaille quelques outils d'analyse des schémas numériques pour les EDPs d'évolution (convergence, stabilité, analyse d'erreur).

2.2.1 Les méthodes des lignes.

Définition 2.2.1 (Méthode des lignes). Une méthode des lignes est une famille de méthodes numériques pour approximer les EDP d'évolutions Elle consiste à discrétiser les opérateurs spatiaux de l'équation afin d'obtenir une équation semi-discrétisée en espace, puis à utiliser une technique d'intégration en temps, pour obtenir la discrétisation complète de l'équation.

Il existe également des approches plus sophistiquées, comme les méthodes couplées espacetemps [11], mais ce stage se concentre sur les méthodes des lignes.

2.2.2 Les volumes finis

La technique de discrétisation spatiale utilisée dans ce travaille est celle des *volumes finis* [27]. Cette approche discrétise la valeur moyenne sur les cellules du maillage, là où les approches par *différences finies* [26] discrétisent la valeur au noeuds du maillage et celles par *éléments finis* [8] discrétisent l'espace fonctionnel lui même.

Définition 2.2.2 (Volumes finis). Donné une discrétisation d'un domaine Ω par un maillage de cellules $(C_j)_{j \in J}$ dont le volume de l'ordre Δx^d (où $d \in \{1,2,3\}$ est la dimension spatiale), la discrétisation par volume fini approxime les quantités :

$$U_j = \frac{1}{|C_j|} \int_{C_j} u(x) d\Omega. \tag{2.13}$$

Les volumes finis sont particulièrement pertinents pour la simulation des lois de conservations ⁴, c'est à dire les EDPs de la forme :

$$\partial_t u = di \, v(f(u)). \tag{2.14}$$

En effet lorsque cette relation est moyennée sur une cellule C_i du maillage, cela donne :

$$\int_{C_j} \partial_t u = \int_{C_j} di \, v(f(u)),\tag{2.15}$$

$$\partial_t U_j = \int_{\partial C_j} f(u). \tag{2.16}$$

La notions de flux est centrale dans l'approche par volume finie et très importante pour comprendre le travail réalisée en 3.2.

Définition 2.2.3 (Flux physique). Dans l'équation 2.16, le terme $\int_{\partial C_j} f(u)$ est appelé Φ_j le terme de flux de la cellule j; physiquement il quantifie "l'entrée de f(u)" au sein de la cellule C_j . En une dimension $\Phi_j = f(u_j^+) - f(u_j^-)$; le flux dépend simplement des valeurs à l'interface de la cellule.

La définition précédente est une intégrale de bord faisant intervenir les valeurs exactes de u le long de l'interface. Malheureusement, paradigme des volumes n'offre qu'un accès au valeurs moyennes de u sur chaque cellule. Ainsi, il faut approximer Φ_i à partir des valeurs moyennes.

Définition 2.2.4 (Flux numérique). Un *flux numérique* Ψ est fonction permettant dapproximer Φ_j à partir des valeurs moyennes sur la cellule j et les cellules voisines. En 1D cela s'écrit : $\Psi(U_{j-s},...,U_j,...,U_{j+s})$.

^{4.} En effet les solutions de ces équations sont généralement discontinues, la formulation intégrale des volumes finis permet d'assurer "facilement" la quantité conservée par l'équation est effectivement conservée par le schéma [27].

Le nombre de cellules de part intervenant dans le calcul de chaque côté de l'interface *s* est appelé le *stencil*.

Définition 2.2.5 (Flux numérique d'ordre p). Pour être exploitable, un flux numérique doit être *consistant* à un ordre $p \ge 1$ avec la loi de conservation étudiée. Donné une solution u de régularité C^{p+1} un flux numérique est dit consistant à l'ordre p si, $\forall j$:

$$|\Psi(\tilde{U}_{i-s}(t),\dots,\tilde{U}_{i}(t),\dots,\tilde{U}_{i+s}(t)) - \Phi_{i}| = O(\Delta x^{p}). \tag{2.17}$$

Où \tilde{U}_i désigne la moyenne exacte (et non une approximation) de u sur la cellule C_i .

D'un point de vue méthode des lignes, le paradigme des volumes finis donne l'équation semidiscrétisée en espace suivante :

$$\frac{d}{dt}U_{j}(t) = \Psi(U_{j-s}(t), ..., U_{j}(t), ..., U_{j+s}(t)), \tag{2.18}$$

il ne reste qu'à l'intégrer grâce à une méthode d'intégration des EDOs.

2.2.3 Analyse de schéma numériques

Pour qualifier une schéma numérique, sur différents sujets comme la faisabilité de sa mise en oeuvre, la qualité de la solution qu'il fourni ou encore la dynamique de l'erreur qu'il introduit, divers concepts ont étés développés. Ce qui suit introduit les notions pertinentes pour comprendre les travaux du stage :

- ♦ A L'analyse de stabilité.
- ♦ B.i La quantification de l'erreur grâce à l'étude de la convergence.
- ♦ B.ii La qualification de la dynamique de l'erreur grâce à la notion d'équation équivalente.

A Stabilité d'un schéma numérique

Les schémas simulant les équations au dérivées partielles ont les mêmes nécessités de stabilité, que ceux simulant les EDOs. D'ailleurs les méthodes des lignes transforment précisément une EDP en EDO. Pour éviter les redondances, le lecteur se référera à la partie 2.1. La seule différence entre la stabilité des schémas pour EDP et pour EDO est que, lorsque q'une EDP est résolue numériquement, la raideur de l'opérateur spatial discret dépend généralement explicitement du pas d'espace Δx . De fait condition de stabilité ne pas réellement EDP mais plutôt de l'EDO résultant de la discrétisation en espace. Cela mène à des conditions du type : $\Delta t \leq \lambda(\Delta x)$. La constante λ est appelée la constante de stabilité, ou de manière parfois incorrecte la constante de Courant-Friedrich-Levy (CFL).

B Analyse de l'erreure

L'analyse de l'ordre de convergence d'un schéma permet de quantifier l'erreur asymptotique (c'est à dire lorsque les pas de temps et d'espace sont "assez petits") que commet le schéma.

B.i Ordre de convergence d'un schéma Les schémas numériques sont désignés par $(U_j^n)_{n,j}$ où n représente le pas de temps et j la cellule. Ainsi, si la grille contient c cellules, pour tout n, U^n est un élément de l'espace vectoriel \mathbb{R}^c . Le vecteur $(u(x_j,t^n))_{j\in\{1,\dots,c\}}$ est noté $u(\cdot,t^n)$.

Définition 2.2.6 (Erreur globale). L'erreur globale E_G d'un schéma $(U_j^n)_{n,j}$ sur un temps $T_f = N_f \Delta t$ peut être définie comme l'erreur au temps final :

$$E_G = \Delta x^d \| U^{N_f} - u(\cdot, T_f) \|$$
 (2.19)

où $\|\cdot\|$ désigne une norme sur \mathbb{R}^c . Ou bien comme l'intégrale de l'erreur sur tous les pas de temps :

$$E_G = \sum_{k=0}^{N_f} \Delta x^d \| U^k - u(\cdot, t^k) \|$$
 (2.20)

Définition 2.2.7 (Ordre de convergence d'un schéma). Un schéma $\left(U_j^n\right)_{n,j}$ est dit convergent à l'ordre p en temps et q en espace si son erreur de globale s'écrit : $E_G = O(\Delta t^p + \Delta x^q)$.

B.ii Equation équivalente

Définition 2.2.8 (Équation équivalente). L'équation équivalente d'un schéma est l'EDP dont la solution satisfait le schéma. Elle est calculée par des développements de Taylor en temps et en espace. Comparer l'équation équivalente et l'équation cible fait alors naturellement apparaître les termes d'erreur et leur dynamique.

Ce qui suit décrit une méthode générique pour obtenir l'équation équivalente d'un schéma, la notion d'équation équivalente est clé dans la contribution en **??**.

Première étape : développement de Taylor L'existence d'une fonction assez régulière vérifiant le schéma est supposée. Dans le schéma numérique les termes $u_{k+\delta_x}^{n+\delta_t}$ sont remplacés par leur pendant continu : $u(x+\delta_x\Delta x,t+\delta_t\Delta t)$. Le développement de Taylor suivant est alors réalisé :

$$u(x + \delta_x \Delta x, t + \delta_t \Delta t) = u(x, t) + \sum_{i=1}^{\infty} \frac{(\delta_x \Delta x)^i}{i!} \frac{\partial^i u}{\partial x^i}(x, t)$$

$$+ \sum_{j=1}^{\infty} \frac{(\delta_t \Delta t)^j}{j!} \frac{\partial^j u}{\partial t^j}(x, t)$$

$$+ \sum_{i,j \ge 1} \frac{(\delta_x \Delta x)^i (\delta_t \Delta t)^j}{i! \cdot j!} \frac{\partial^{i+j} u}{\partial x^i \partial t^j}(x, t)$$
(2.21)

L'équation aux dérivées partielles qui apparaît est l'équation équivalente. Elle peut être tronquée à l'ordre voulu.

Deuxième étape : procédure de Cauchy-Kovaleskaya (optionnelle) Afin d'enrichir l'analyse, et permettre le développement de schémas couplés espace-temps, l'étape précédente peut être suivie d'une procédure de Cauchy-Kovaleskaya. La procédure de Cauchy-Kovaleskaya consiste à utiliser la relation entre les dérivées en espace et en temps données par l'équation cible et remplacer les dérivées en temps par des dérivées en espace dans l'équation équivalente. Par exemple, pour un schéma

ayant pour équation cible la diffusion $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$, cela consiste à écrire de manière itérée :

$$\frac{\partial^2 u}{\partial t^2} = D^2 \frac{\partial^4 u}{\partial x^4}
\frac{\partial^3 u}{\partial t^3} = D^3 \frac{\partial^6 u}{\partial x^6}
\vdots
\frac{\partial^n u}{\partial t^n} = D^n \frac{\partial^{2n} u}{\partial x^{2n}}$$
(2.22)

Dernière étape : relation entre le pas de temps et d'espace (optionnelle) Lorsque le schéma est utilisé en pratique, il est courant d'imposer une relation entre les pas d'espace et de temps, par exemple une condition de stabilité du type $\Delta t \propto \Delta x$ ou $\Delta t \propto \Delta x^2$. Il est donc utile d'injecter cette relation dans l'équation équivalente pour comprendre le comportement du schéma en conditions réelles.

Ces outils d'analyse numérique constituent les fondements nécessaires pour aborder la simulation numérique des EDPs. La section suivante présente la multi-résolution adaptative qui permet de réduire le coût en calcul et en mémoire de ces méthodes.

2.3 Les équations d'advection-diffusion-réaction

Le contexte physique naturel des équations d'advection, diffusion, réaction est le suivant : des particules sont placées dans un milieu fluide où elles **diffusent**. Ce milieu fluide est en mouvement, il déplace les particules, les **advecte**. Enfin les particules **réagissent** entre elles et ces réactions modifient les grandeurs thermodynamiques (température, pression) et *in fine* les propriétés du milieu fluide. Les équations d'advection, diffusion, réaction modélisent le couplage de ces trois phénomènes.

Cette partie présente les propriétés des trois opérateurs des équations d'ADR (2.3.1) et les difficultés liées à leur résolution numérique (2.3.2).

2.3.1 Trois opérateurs aux propriétés mathématiques très différentes

A Advection

L'advection désigne le transport d'une quantité par un flot. L'opérateur d'advection le plus simple est l'opérateur de transport linéaire $c\frac{\partial}{\partial x}$:

$$\frac{\partial u}{\partial t} = c \frac{\partial u}{\partial x}.$$
 (2.23)

De manière générale l'opérateur dadvection d'une quantité u par un flot \underline{a} s'écrit $\underline{a} \cdot \underline{\nabla} u$. Par exemple dans les équations de Navier-Stokes, le terme $\underline{v} \cdot \underline{\nabla} \underline{v}$ modélise la vitesse \underline{v} transportée par elle-même.

Le spectre des opérateurs d'advection sont généralement à valeurs propres imaginaires [26, Chap. 10]. Ainsi ils sont peu raides mais résonnants. Les méthodes explicites sont souvent les plus adaptées pour les traiter [26, Chap. 10].

B Diffusion

La diffusion désigne l'*éparpillement* de particules au sein d'un milieu fluide Ce phénomène est la limite macroscopique du déplacement microscopique des particules dû à l'agitation thermique. L'opérateur de diffusion le plus classique est celui de l'équation de la chaleur :

$$\frac{\partial u}{\partial t} = D\Delta u. \tag{2.24}$$

Le spectre l'opérateur de diffusion continu est \mathbb{R}^- , il est donc infiniment raide. L'opérateur discret correspondant ne capte qu'une partie de ce spectre et en pratique la raideur de l'opérateur discret augmente de manière quadratique avec la finesse de la discrétisation spatiale [26, Chap. 9].

Cet opérateur est moyennement raide. Ainsi on pourrait penser qu'une méthode implicite est adéquate. Cependant si le coefficient de diffusion n'est pas uniforme ou anisotrope, la matrice de l'opérateur discrétisé est inhomogène et évolue. Ainsi, à chaque itération il faut inverser un nouveau système non-trivial; en trois dimension la matrice est très grande rendant l'approche implicite très coûteuse. Il est plus pertinent d'utiliser des méthodes explicites stabilisées pensées pour les propriétés de l'opérateur de diffusion (spectre centré sur l'axe réel négatif, raideur moyenne) comme ROK2 ou ROK4[2]. Ces méthode permettent de traiter la diffusion de manière explicite avec une grande souplesse sur la conditions de stabilité. Sans entrer dans les détails, la clé de ces méthodes consiste à

prendre une méthode numérique explicite standard et lui ajouter des étages de sorte à ce que la fonction d'amplification résultante soit la fonction d'amplification de la méthode standard multipliée par un polynôme minimal sur \mathbb{R}^- comme un polynôme de Tchebitchev.

C Réaction

Les phénomènes de réaction sont en général bien adaptés aux méthodes implicites car ils sont locaux et extrêmement raides. En effet, les temps typiques d'une réaction chimique ⁵ sont de l'ordre de la nano-seconde [35]. De fait, les réactions chimiques sont très difficiles à simuler par des méthodes explicites. En revanche les méthodes implicites sont très efficaces dans ce contexte. En effet l'inversion de l'opérateur implicite peut être décomposé en plusieurs résolutions de petits systèmes ce qui est moins coûteux et parallélisable. Cela est permis grâce à la localité des réactions chimiques (à chaque pas de temps les particules au sein d'une cellule ne réagissent qu'avec les autres particules de la même cellule). En pratique cela signifie qu'il est possible de mettre en oeuvre une petite méthode implicite par cellule plutôt qu'une grande méthode globale; ce qui revient à inverser un opérateur de petite dimension en chaque cellule et non inverser un énorme système; en somme moins de calculs et des algorithmes parallélisables.

2.3.2 Difficultés mathématiques intrinsèques

La simulations des équations d'advection-réaction-diffusion se heurte à deux difficultés majeures, le couplage des trois opérateurs mentionnés précédemment et le caractère multi-échelles des solutions.

A Première difficulté : le couplage des opérateurs

Le développement précédent montre que résoudre chaque phénomène individuellement, n'est pas insurmontable. Toutefois, les résoudre tous en même temps, c'est-à-dire les coupler, est en pratique très difficile. En effet, lorsque ces trois opérateurs sont couplés, il en résulte un unique opérateur qui doit être traité par une méthode numérique. C'est là que surgissent les difficultés : si la méthode est explicite (éventuellement stabilisée), la raideur de la réaction impose des pas de temps extrêmement restrictifs, à l'inverse si la méthode est implicite, la non-localité de la diffusion demande l'inversion d'un système de taille déraisonnable. Cette approche naïve, monolithique, n'est donc pas adaptée. Il faut par conséquent, trouver d'autres stratégies.

B Seconde difficulté : le caractère multi-échelles des solutions

Les solutions étudiées sont souvent multi-échelles, en temps <u>et</u> en espace. Cela signifie que certaines zones spatio-temporelles requièrent une finesse d'approximation élevée pour pouvoir reproduire fidèlement le comportement physique, tandis qu'en d'autres zones une approximation grossière est suffisante. Prenons l'exemple d'un incendie. Au début le foyer est très restreint et seule cette zone doit être maillée finement, car partout ailleurs *il ne se passe rien*. Petit à petit l'incendie se propage et la zone à mailler finement augmente. Un autre exemple de phénomène multi-échelle est la

^{5.} En réalité une réaction chimique aussi simple en apparence qu'une combustion H_2/O_2 fait intervenir une dizaine de composés et réactions intermédiaires [10], dont les temps typiques sont très faibles.

détonation, il faut mailler finement, au foyer de l'explosion et le front de l'onde de choc. Mais la zone non atteinte par l'explosion, qui n'a pas encore reçu le choc, pourrait être maillée très grossièrement. Dans ces conditions, il est imaginable qu'un maillage naïf mène à ce qu'en certains instants, 90% du domaine soit maillé avec un pas d'espace 100 fois plus fin que nécessaire, or en trois dimensions, mailler cent fois trop finement multiplie par un million le nombre de cellules. Il y a alors une grande inefficacité computationnelle.

2.3.3 Conclusion sur les équations d'ADR

Les solutions multi-échelles ainsi que le couplage des trois opérateurs rendent les équations d'advectiondiffusion-réaction difficiles à résoudre numériquement. D'une part les trois ne peuvent être traitées efficacement par une approche monolithique classique. D'autre part, le caractère multi-échelle tend au gaspillage de ressources de calculs. Cette dernière difficulté pousse les numériciens vers des stratégies d'adaptation dynamiques du maillage, celle étudiée dans ce stage est la multi-résolution adaptative (MRA) dont les détails techniques sont donnés à la section suivante.

2.4 La Multirésolution Adaptative

La multi-résolution adaptative (MRA) est une méthode permettant de représenter une fonction selon différentes échelles. Cet outil mathématique peut être exploité pour réaliser l'adaptation en espace d'une solution physique pour concentrer les efforts computationnels là où ils sont nécessaires. Cette approche très efficace pour les problèmes multi-échelles. L'adaptation dynamique de maillage par MRA est très étudiée par l'équipe du CMAP qui a développé le code Samurai ⁶ centré sur cette méthode. Concrètement cela consiste à augmenter la résolution de la grille de calcul où la solution

FIGURE 2.2 – Exemple de maillage adapté par multirésolution adaptative grâce au logiciel Samurai.

est complexe et la diminuer où la solution est simple à décrire. La MRA est donc une méthode de HPC (*high performance computing*) puisqu'elle vise à optimiser l'allocation des ressources de calcul.

Cette partie introduit le lecteur à cette méthode en présentant d'abord le concept mathématique de transformée multi-échelle (ou transformée en ondelette). Puis il est expliqué comment la transformée multi-échelle permet d'adapter le maillage pour optimiser la charge computationnelle. Une fois ces prérequis établis, l'algorithme typique de mise en oeuvre de la multi-résolution adaptative est décrit. Vient enfin une présentation des différentes implémentations de la MRA.

2.4.1 La représentation multi-échelle

La représentation multi-échelle est la clé de voûte de l'adaptation par AMR. Cette partie traite le cas où l'on souhaite obtenir la représentation multi-échelle d'une fonction $u(\cdot) \in L^2[0,1]$, mais cela s'étend sans trop de difficulté au dimensions supérieures. La représentation multi-échelle se base une description de l'intervalle [0,1] en grilles dyadiques de résolutions différentes et sur deux opérateurs permettant de naviguer d'un niveau de résolution à l'autre : un opérateur de projection et un opérateur de prédiction.

^{6.} https://github.com/hpc-maths/samurai

A Les grilles dyadiques

La représentation multi-échelle permet de représenter la solution à différents niveaux de résolution. Ainsi si l'on choisit de représenter la solution entre des niveau de résolution $\overline{j} > \underline{j}$, il faut définir pour chaque niveau de résolution $j \in \left\{\underline{j},\ldots,\overline{j}\right\}$ une grille dyadique, c'est à dire une partition de [0,1] composée de cellules $\left(C_k^j\right)_{k \in \{0,\ldots 2^{j}-1\}}$ de tailles 2^{-j} où $C_k^j = \left[k2^{-j},(k+1)2^{-j}\right]$.

Dans le cadre des volumes finis, une fonction $u \in L^2([0,1])$ est discrétisée à un niveau de résolution j en associant la cellule C_k^j à la valeur moyenne de $u(\cdot)$ sur cette cellule :

$$u_k^j = \frac{1}{2^j} \int_{C_j} u(x) \, \mathrm{d}x. \tag{2.25}$$

Niveau de réso	de résolution $j = k = 0$					k = 1			
Niveau de réso	lutid≀n⊨jo= 2		k = 1		k = 2		<i>k</i> = 3		
Niveau de réso	lykt <u>io</u> 0	<i>jk</i> =31	<i>k</i> = 2	<i>k</i> = 3	<i>k</i> = 4	<i>k</i> = 5	<i>k</i> = 6	<i>k</i> = 7	

FIGURE 2.3 - Exemple de grille dyadique

B L'opérateur de projection

Cet opérateur permet de passer d'une représentation à un niveau de finesse j vers un niveau de représentation plus grossier sur le niveau j-1.

Définition 2.4.1 (Opérateur de projection). Donné un niveau de résolution j et deux cellules voisines d'indice 2k et 2k+1 l'opérateur de projection P^j_{j-1} du niveau j vers j-1, moyenne les valeurs des deux cellules : u^j_{2k} et u^j_{2k+1} pour obtenir la valeur moyenne sur la valeur de la cellule d'indice k du niveau plus grossier j-1: $u^{j-1}_k = \frac{u^j_{2k} + u^j_{2k+1}}{2}$. En notant $u^j = \left(u^j_k\right)_k$ l'ensemble des cellules du niveau j on à :

$$u^{j-1} = P_{j-1}^{j} \left(u^{j} \right). \tag{2.26}$$

C L'opérateur de prédiction

Cet opérateur permet de passer d'un niveau de résolution grossier j à un niveau plus fin j+1. Bien sûr lorsque l'on utilise cet opérateur de linformation est perdue, il donne accès à une *prédiction* $\underbrace{\tilde{u}_k^{j+1}}_{\text{pred.}} \neq \underbrace{u_k^{j+1}}_{\text{exa.}}$.

Définition 2.4.2 (Opérateur de prédiction). Il existe une infinité d'opérateurs de prédiction. Pour être un opérateur de prédiction Q_{j+1}^j du niveau j vers le niveau j+1 doit vérifier la condition suivante :

$$P_j^{j+1} \circ Q_{j+1}^j = Id. (2.27)$$

En pratique il s'agit d'un opérateur linéaire qui approxime les cellule u_{2k}^{j+1} et u_{2k+1}^{j+1} par une combinaison linéaire de u_k^j et de ses voisins.

Précision de l'opérateur de prédiction : On dit que le prédicteur est d'ordre p si pour toute fonction $u(\cdot)$ polynomiale d'ordre p échantillonné sur la grille de niveau j+1: u^{j+1} , on a exactement :

$$Q_{j+1}^{j} \circ P_{j}^{j+1} \left(u^{j+1} \right) = u^{j+1}.$$
 (2.28)

Cela signifie entre autre que Q_{j+1}^j est en mesure de reconstruire une fonction \mathscr{C}^p avec une précision $\mathscr{O}((2^{-j})^p)$.

D Les détails

Les détails quantifient l'écart entre la valeur réelle de la fonction et sa reconstruction. Ils permettent de quantifier la régularité locale de la fonction.

Définition 2.4.3 (Détails). Le niveau de détail d_k^j de la $k^{\text{ème}}$ cellule du niveau de résolution j est défini comme l'écart entre la valeur exacte u_k^j et la valeur prédite \tilde{u}_k^j :

$$d_k^j = u_k^j - \tilde{u}_k^j. \tag{2.29}$$

Cela peut être reliée à la théorie des ondelettes [20, 13] qui permet entre autre de justifier que de petits détails indiquent un haut niveau de régularité locale puisque, si la fonction est localement \mathscr{C}^p alors les détails vérifient [20] :

$$d_k^j = \mathcal{O}(2^{-pj}). \tag{2.30}$$

E Représentation multi-échelle

La représentation multi-échelle d'une fonction discrète se fait de la manière suivante. Au lieu de stocker la valeur de la fonction en chaque cellule de la grille la plus fine de niveau \overline{j} , mais conserver les valeurs projetées sur le niveau grossier $\underline{j}: \left(u^{\underline{j}}\right)_{j \in 0...2^{\underline{j}}-1}$ ainsi que les détails d_k^j pour chaque niveau de résolution $j \in \left\{\underline{j}+1...\overline{j}\right\}$, et chaque cellule $k \in \{0...2^j-1\}$.

Les valeurs sur la grille la plus fine sont obtenables en itérant à travers les différents niveaux l'opérateur de reconstruction et en corrigeant grâce aux détails d_k^j :

$$u^{\overline{j}} = Q_{\overline{j}-1}^{\overline{j}-1} \left(Q_{\overline{j}-1}^{\overline{j}-2} \left(\dots Q_{\underline{j}+1}^{\underline{j}} \left(u_{-}^{\underline{j}} \right) + d_{-}^{\underline{j}+1} \right) + \dots \right) + d^{\overline{j}}$$
(2.31)

2.4.2 L'adaptation de maillage grâce à la transformation multi-échelle

A L'adaptation grâce à la multirésolution

Le représentation multi-échelle (la multirésolution) peut être utilisée pour adapter dynamiquement le maillage.

Adaptation : La stratégie est de définir un seuil de compression $\varepsilon > 0$ duquel découle un seuil de compression pour chaque niveau de résolution typiquement $^7 \varepsilon_j = 2^{-j} \varepsilon$. Puis pour adapter le maillage il suffit d'ignorer tous les détails vérifiant $d_k^j < \varepsilon_j$. Cela permet de garder en mémoire seuls les détails nécessaires à une représentation fidèle à l'ordre ε de la solution.

^{7.} Cette relation est faite à grâce à (2.30) en fonction d'hypothèses de régularités sur la solution de l'EDP simulée.

Heuristique : Pour produire des résultats satisfaisant en simulation numérique, cette règle informationnelle est généralement enrichie d'une heuristique. La plus connue, lheuristique de Harten [19] stipule de conserver un détail $d_2^j k$ même s'il devrait être ignoré $(d_2^j k < \varepsilon_j)$ lorsque le détail précédent d_j^{j-1} est particulièrement élevé, typiquement si $d_j^{j-1} > 2\varepsilon_{j-1}$.

B Algorithme général

L'intégration de la MRA s'effectue ainsi : à intervalles réguliers, on adapte la grille en appliquant la transformée multi-échelle et en supprimant les coefficients de détail superflus, guidé par l'heuristique de Harten. Lorsqu'une zone compressée doit être raffinée de nouveau, seuls les détails nécessaires à la bonne résolution des flux sont reconstruits par le prédicteur polynomial. On ne reconstruit donc pas l'entièreté de la solution, uniquement les coefficients indispensables. La simulation se poursuit ensuite sur cette grille adaptée.

Ce processus permet d'économiser mémoire et temps de calcul, puisque l'on stocke et manipule uniquement les niveaux de détail requis par la dynamique de la solution.

C Le cas des volumes finis

Dans un cadre de volumes finis, \acute{n} poursuivre la simulation sur la grille adaptée \dot{z} signifie prédire, pour chaque cellule de taille variable, la valeur moyenne au pas de temps suivant. On procède en évaluant un flux numérique aux interfaces de chaque cellule à partir des valeurs disponibles. En régime classique, les schémas de volumes finis reposent sur des cellules de tailles homogènes d'ordre Δx^d . L'adaptation par MRA introduit une subtilité : les flux peuvent être calculés directement à partir des valeurs sur la grille adaptée (méthode dite *sans reconstruction*), ou bien à partir de valeurs reconstruites au niveau de détail le plus fin (méthode dite *avec reconstruction*). Dans le premier cas, on profite pleinement de la compression; dans le second, on limite le nombre de flux à calculer mais on reconstruit localement les valeurs pour obtenir une évaluation plus précise. Cette seconde approche non standard offre potentiellement un meilleur compromis entre coût et précision.

Chapitre 3

Contributions

Ce chapitre présente rassemble les trois contributions du stage :

- ♦ (3.1): Une étude de la stabilité de deux méthodes ImEx ARK; suivie d'une comparaison avec un schéma de splitting de leur stabilité et convergence pour l'équation-test de Nagumo (réactiondiffusion).
- (3.2): Une étude théorique, via le calcul d'équations équivalentes, du comportement de l'erreur d'une schéma méthode des lignes pour un problème de diffusion. Cela dans trois contextes:
 (1) sans multi-résolution adaptative, (II) avec MRA sans reconstruction des flux numériques,
 (III) avec MRA avec reconstruction des flux.
- ♦ (3.3): Une étude expérimentale des différences entre les trois schéma de MRA mentionné précédemment permettant de mettre en relation les résultats théoriques de la contributions 3.2 avec les observations expérimentales.

3.1 Étude de méthodes ImEx sur une équation de diffusion-réaction

L'objectif est de comparer la pertinence des méthodes Runge et Kutta implicites-explicites par rapport au *splitting* d'opérateurs traditionnel ainsi que leurs éventuelles interactions avec l'adaptation en espace par multirésolution adaptative. Pour introduire cette première étude l'équation de Nagumo est d'abord présentée comme un cas test idéal pour éprouver les méthodes de résolution des équations de diffusion-réaction (3.1.1). Dans un second temps les méthodes ImEx utilisées sont détaillées (3.1.2). Par la suite (3.1.3) leur stabilité est évaluée dans un contexte général; puis en se focalisant sur l'équation de Nagumo, où elles sont comparée à une méthode de séparation d'opérateur. Ceci permet de valider la pertinence *a priori* de ces méthodes sur les équations de réaction-diffusion, et mène naturellement à une étude de convergence expérimentale avec et sans adaptation de maillage (3.1.4).

3.1.1 L'équation de Nagumo

L'équation de Nagumo (ou FitzHugh-Nagumo) est issue de modèles de transmission de l'information nerveuse [15]. L'étude travaille sur la forme spatiale de l'équation [22] avec un terme de réaction cubique introduisant de la non-linéarité :

$$\partial_t u = \underbrace{D\partial_{xx} u}_{\text{diffusion}} - \underbrace{ku(1 - u^2)}_{\text{réaction}}.$$
(3.1)

A Solutions Analytiques

L'équation admet des solutions propagatives sous la forme ¹:

$$u(x-ct) = \frac{e^{\sqrt{\frac{k}{2D}}((x-x_0)-ct)}}{1+e^{-\sqrt{\frac{k}{2D}}((x-x_0)-ct)}}$$
(3.2)

Avec : $c = \sqrt{\frac{kD}{2}}$ et x_0 le point de départ de l'onde.

Ainsi, le produit kD fixe la vitesse et le ratio $\frac{k}{D}$ la magnitude du gradient d'espace.

Profils des ondes solutions de l'équation Nagumo (kD = 1 fixé)

FIGURE 3.1 – Profils des ondes solutions de l'équation de Nagumo pour différents ratios k/D avec le produit kD=1 fixé (c'est à dire à vitesse fixée). L'augmentation du ratio k/D accentue le gradient spatial.

B Analyse des opérateurs

Un analyse des deux opérateurs de l'EDP est nécessaire pur en saisir les enjeux. L'opérateur de diffusion est non-local et, discrétisé à l'ordre deux par n points et un pas Δx , les valeurs propres associées sont $\left\{\frac{2D}{\Delta x^2}\left(\cos\frac{p\pi}{n+1}-1\right)\mid p\in\{1,\ldots,n\}\right\}$ [7], ainsi la raideur du terme de diffusion croit linéairement avec le coefficient de diffusion D et de manière quadratique avec la finesse du maillage $1/\Delta x$. En effet les valeurs propres sont négatives et :

$$\max_{p} |\cos \frac{p\pi}{n+1} - 1| \sim 2,\tag{3.3}$$

$$\min_{p} |\cos \frac{p\pi}{n+1} - 1| \sim \frac{1}{2} \left(\frac{\pi}{n+1}\right)^{2}.$$
 (3.4)

^{1.} C'est une sigmoïde, qui se propage à vitesse $\sqrt{\frac{kD}{2}}$ [13].

Et donc:

$$\frac{\max_{p}|1-\cos\frac{p\pi}{n+1}|}{\min_{p}|1-\cos\frac{p\pi}{n+1}|} \approx n^2 \propto \left(\frac{1}{\Delta x}\right)^2. \tag{3.5}$$

Concernant *le terme de réaction*, en choisissant un état initial correspondant à 3.2, la solution reste entre 0 et 1. Ainsi le terme de réaction est local en espace, et ses valeurs propres sont comprises entre -k et 2k. En fonction de la valeur de u, la réaction se comporte localement (dans le temps et l'espace) comme une relaxation de temps caractéristique $\tau \sim \frac{1}{k}$ ou comme une explosion de temps caractéristique $\tau \sim \frac{1}{2k}$, en effet :

Terme de réaction :
$$R(u) = ku(1 - u^2)$$
, (3.6)

Valeurs propres de la réaction :
$$R'(u) = k(1 - 3u^2)$$
. (3.7)

Pour les valeurs étudiés, $k \le 20$, la réaction reste ainsi peu raide par rapport au "vraies" réactions chimiques (il faut avoir conscience de cette différence pour considérer ce cas test de la bonne manière, ici la réaction est le terme le moins raide alors que sur des "vrais" applications, ce n'est pas le cas).

FIGURE 3.2 – Plage de valeurs du terme de réaction non-linéaire et de sa différentielle pour deux coefficients de réactions : k = 1 et k = 10.

C Conclusion sur l'équation de Nagumo

Ainsi l'équation de Nagumo, présente un terme de réaction 2 , et un terme de diffusion. Cette équation fait émerger un front d'onde 3 et dispose de deux paramètre k et D pour piloter aisément les propriétés des solutions. Cela en fait donc une équation-test de choix pour étudier le comportement de diverses méthodes dédiées aux équations d'advections-réaction-diffusion.

^{2.} à noter qu'il n'est pas raide, comparé aux termes de réaction rencontrés en combustion.

^{3.} Cela permet de tester le comportement de la multi-résolution adaptative.

3.1.2 Les méthodes ImEx

Les méthodes ImEx étudiées sont les méthodes de Runge et Kutta additives (RK-ImEx ou RK-additive). Ces méthodes consistent à sommer plusieurs méthodes de Runge et Kutta appliquées chacune à un opérateur différent. L'objectif est d'intégrer chaque opérateurs avec des méthodes RK différentes (implicites ou explicites), en accord les spécificité de chaque opérateur et cela, indépendamment des autres opérateurs.

A Un exemple

Pour introduire la méthodes de Runge et Kutta additives, on commence par un exemple simple usant d'une méthode RK-ImEx d'ordre un. Cette ImEx naît de la conjugaison de deux méthodes Runge et Kutta à un étages (RK1). Cette méthode est notée ImEx111 [5]. Les méthodes RK1 servant de briques élémentaires à la RK111 sont : un schéma d'Euler explicite et un schéma d'Euler implicite. Soit une équation d'évolution faisant intervenir deux opérateurs :

- \diamond L'opérateur A^E se prêtant aux méthodes explicites (par exemple, un opérateur peu raide mais non local).
- \diamond L'opérateur A^I se prêtant aux méthodes implicites (par exemple un opérateur raide mais local). L'équation cible serait alors de la forme :

$$\partial_t u = A^E u + A^I u. (3.8)$$

A.i Résolution par approche monolithique En n'utilisant qu'une seule RK1 pour tout le problème (approche monolithique), la dynamique serait approchée d'une des façon suivante. En simulant avec un schéma d'Euler explicite monolithique, la méthode s'écrit alors :

$$u^{n+1} = u^n + \Delta t (A^E + A^I) u^n. (3.9)$$

Mais si l'opérateur A^I est très raide, la stabilité risque d'imposer un pas de temps très restrictif risquant de rendre la méthode <u>non viable</u>. En résolvant avec un schéma d'Euler implicite monolithique, la méthode s'écrit :

$$u^{n+1} = (Id - \Delta t(A^E + A^I))^{-1} u^n.$$
(3.10)

Mais si l'opérateur A^E rend l'inversion coûteuse; par exemple s'il est non-local (impliquant la résolution d'un gros système au lieu de plusieurs petits systèmes), et/ou s'il est non linéaire (nécessite d'être réinverser à chaque pas de temps); alors cette méthode ne sera pas viable non plus.

A.ii Résolution par une méthode ImEx : une Runge et Kutta Additive Lorsque la méthode ImEx111 est choisie, lapproximation au pas de temps n+1 s'écrit en sommant une contribution issue de la méthode Euler explicite (RKE1) et une contribution issue de la méthode Euler implicite (RKI1) :

$$u^{n+1} = u^n + \Delta t (\underbrace{k_1}_{\text{RKE1}} + \underbrace{k'_1}_{\text{RKI1}})$$
(3.11)

La contribution issue de la RKE1 appliquée à A^E s'écrit (Euler explicit) :

$$k_1 = A^E u^n. (3.12)$$

La contribution issue de la RKI1 appliquée à A^I s'écrit (Euler implicit) :

$$k_1' = A^I u^{n+1} (3.13)$$

Ainsi:

$$u^{n+1} = u^n + \Delta t (A^E u^n + A^I u^{n+1}),$$

$$donc: u^{n+1} - \Delta t A^I u^{n+1} = u^n + \Delta t A^E u^n,$$
et donc: $u^{n+1} = (Id - \Delta t A^I)^{-1} \circ (Id + \Delta t A^E) u^n.$
(3.14)

Ainsi dans cette méthode seul lopérateur $Id - \Delta t A^I$ est inversé et les problèmes de raideurs sont résolus; ce qui était lobjectif. Les traitements sur les opérateurs sont bien découplés lors de la résolution.

B Cadre mathématique général

Pour construire des méthodes plus complexes et d'ordres supérieurs introduisons le formalisme de [5] pour traiter les méthodes RK-additives. Ici, nous travaillons uniquement sur méthodes ImEx pour deux opérateurs mais théoriquement, il est possible de construire des méthodes ImEx pour traiter autant d'opérateurs que l'on le souhaite [23].

B.i Notations Une méthode ImEx additive est construite à partir d'une méthode implicite à s étages (une méthode DIRK et si possible SDIRK [24]) et d'une méthode explicite à s+1 étages ⁴. Pour uniformiser, le tableau de Butcher de la méthode implicite est complété par une ligne et une colonne de zéros afin que les deux méthodes s'écrivent comme si elles avaient le même nombre d'étages. Les tableaux de Butcher des deux méthodes s'écrivent alors :

Méthode RKE, s + 1 étages :

RKE:
$$\frac{\tilde{c}}{\tilde{b}^{T}} = \begin{bmatrix}
\tilde{a}_{10} & 0 & 0 & \cdots & 0 \\
\tilde{c}_{1} & \tilde{a}_{10} & 0 & 0 & \cdots & 0 \\
\tilde{c}_{2} & \tilde{a}_{20} & \tilde{a}_{21} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
\tilde{c}_{s} & \tilde{a}_{s0} & \tilde{a}_{s1} & \tilde{a}_{s2} & \cdots & 0 \\
& & \tilde{b}_{0} & \tilde{b}_{1} & \tilde{b}_{2} & \cdots & \tilde{b}_{s}
\end{bmatrix}$$
(3.15)

^{4.} Au besoin, la méthode explicite peut être à s étages, qui est un cas particulier d'une méthode à s+1 étages.

Méthode RKI (DIRK) s étages:

RKI:
$$\frac{c \mid A}{\mid b^{T} \mid} = \begin{cases}
0 & 0 & 0 & \cdots & 0 \\
c_{1} & 0 & a_{11} & 0 & \cdots & 0 \\
c_{2} & 0 & a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
c_{s} & 0 & a_{s1} & a_{s2} & \cdots & a_{ss} \\
\hline
0 & b_{1} & b_{2} & \cdots & b_{s}
\end{cases}$$
(3.16)

où les coefficients \tilde{a}_{ij} , \tilde{b}_i , \tilde{c}_i définissent la méthode explicite et les coefficients a_{ij} , b_i , c_i définissent la méthode implicite DIRK.

B.ii Schéma général d'une méthode RK-additive Une étape de la méthode RK-additive appliquée entre les pas de temps n et n+1 au système $\frac{du}{dt}=A^Eu+A^Iu$ s'écrit :

Calcul des approximations intermédiaires : Les calcul des approximations aux pas de temps intermédiaires $(u_i)_{i \in \{0,\dots,s\}}$ se fait grâce à la relation :

$$u_{i} = u^{n} + \Delta t \sum_{j=0}^{i-1} \tilde{a}_{ij} A^{E} u_{j} + \Delta t \sum_{j=0}^{i} a_{ij} A^{I} u_{j}, \qquad i = 0, 1, ..., s,$$
 (3.17)

En initialisant $u_0 = u^n$.

Soit en mettant en lumière le caractère implicite de la méthode sur A^I :

$$(Id - \Delta t a_{ii} A^{I}) u_{i} = u^{n} + \Delta t \sum_{j=0}^{i-1} (\tilde{a}_{ij} A^{E} u_{j} + a_{ij} A^{I} u_{j}), \qquad i = 0, 1, ..., s$$
 (3.18)

Calcul de l'approximation déinitive :

$$u^{n+1} = u^n + \Delta t \sum_{i=0}^{s} \tilde{b}_i A^E u_i + \Delta t \sum_{i=0}^{s} b_i A^I u_i$$
 (3.19)

Cette formulation générale permet de construire des méthodes d'ordre élevé.

B.iii Ordre de convergence L'ordre d'une méthode RK-additive est évidemment borné par l'ordre des méthodes RK individuelles convoquées. Naturellement, cette borne n'est pas nécessairement atteintes; des conditions d'ordre liant les coefficients des méthodes individuelles entre eux doivent être respectées. Le nombre de ses conditions augmente (très) rapidement avec l'ordre de la méthode et le nombre d'opérateurs à résoudre [23], le lecteur motivé se référera par exemple à [17].

3.1.3 Analyse de stabilité

L'objectif est d'appréhender la viabilité des ImEx ARK sur l'équation de Nagumo. Dans ce but, leur stabilité est étudiée. Dans un premier temps, une étude générale de la stabilité des ImEx ARK est menée. Puis, l'étude de stabilité se centre sur l'application à l'équation de Nagumo. L'ensemble des codes utilisés pour évaluer numériquement et afficher les domaines de stabilités sont disponibles à l'adresse : https://github.com/Ocelot-Pale/ImEx_stability_Nagumo.

A Étude de stabilité générale des RK-ImEx

Avec une méthode ImEx, les deux opérateurs de l'EDP sont découplés, c'est là l'intérêt. Cependant cela complexifie l'analyse usuelle de stabilité. En effet la fonction de stabilité attend alors deux variables, le coefficient spectral Z_E associé à l'opérateur traité explicitement et le coefficient spectral Z_I associé à l'opérateur traité implicitement. Ainsi, pour chaque couple (Z_E, Z_I) d'indices spectraux, la fonction de stabilité prend une valeur différente, et comme les coefficients spectraux sont des nombres complexes, on ne peut plus visualiser d'un simple coup d'oeil le domaine de stabilité, puisque celui-ci se trouve dans un espace de dimension quatre \mathbb{C}^2 .

A.i Calcul des fonctions d'amplification Afin d'étudier la stabilité linéaire des méthodes, les fonctions d'amplifications ont été évaluées numériquement. L'algorithme est le suivante :

- 1. Entrer les valeurs de (Z_E, Z_I) pour lesquelles la fonction de stabilité doit être évaluée
- 2. Simuler un pas du schéma en partant de $u_0 = 1$ appliqué à une équation du type Dahlquist : $\partial_t u = \lambda_E u + \lambda_I u$
 - (a) Construire toutes les approximations intermédiaires avec les valeurs
 - (b) Construire l'approximation finale u_1
- 3. Évaluer la norme de u_1

Cette l'étude générale, c'est à dire pour tout $(Z_E, Z_I) \in \mathbb{C}^2$ n'est pas détaillée ici, toutefois le lecteur intéressé pourra trouver les graphiques représentants les domaines de stabilité sur le Notebook en ligne.

B Étude de stabilité linéaire appliquée à l'équation de Nagumo

La démarche précédente est particularisée en se centrant sur l'équation de Nagumo; permettant d'étudier la stabilité des méthodes ImEx sur ce problème particulier.

B.i Valeurs propres mises en jeu Comme expliqué en 3.1.1 l'équation présente deux opérateurs :

- \diamond La diffusion dont le spectre s'étend de $\frac{-1}{L^2}$ à $\frac{-1}{\Delta x^2}$ (où L est la taille du domaine discrétisé).
- \diamond La réaction dont le spectre balaie continûment -k jusqu'à 2k

Pour particulariser l'analyse de stabilité il faut donc tracer le diagramme de stabilité des méthodes étudiées en prenant $Z_I \in \mathbb{R}^-$ et $Z_E \in [-k; 2k] \subset \mathbb{R}$ ce qui donne un espace à deux dimensions. Il est ensuite pertinent placer des couples (Z_E, Z_I) correspondant. Cela donne les diagrammes en fig. 3.3

(a) Cas standard D=1, k=1, dt=1.0e-03, dx=2.4e-03

(b) Cas diffusion plus raide, réaction moins raide D=10, k=0.1, dt=1.0e-02, dx=4.9e-03

(c) Cas diffusion moins raide, réaction plus raide D=2e-4, k=500, dt=1.0e-02, dx=4.9e-03

FIGURE 3.3 – Diagrammes de stabilité des méthodes Im \mathbb{E} x comparés à ceux d'une méthode explicite à un schéma de splitting sur l'équation de Nagumo, pour différents couples D et k.

- **B.ii Résultats** Ces diagrammes permettent d'analyser respectivement la stabilité de la méthode *ImEx232*, de la méthode *ImEx232*, et, à titre de comparaison, la stabilité d'une méthode *Runge et Kutta explicite* d'ordre 2⁵ et d'un *schéma de splitting de Strang* utilisant une RK explicite pour la réaction et une RK implicite pour la diffusion. Chaque colonne représente l'analyse d'une méthode différente.
 - ♦ La première ligne présente le domaine de stabilité en fonction des indices spectraux $Z_E \in \mathbb{R}$ et $Z_I \in \mathbb{R}^-$.
 - ♦ La seconde ligne est un zoom autour de ces indices spectraux.
 - \diamond Les points bleus représentent les couples d'indices spectraux intervenant dans la résolution de l'équation de Nagumo pour les paramètres d'équation choisis (D et k) et les paramètres de discrétisation retenus (Δt et Δx).
 - ♦ La dernière colonne (splitting) présente une disposition différente, puisque les opérateurs sont totalement découplés.
 - La première ligne correspond alors à la fonction de stabilité de la méthode explicite (avec un zoom autour des indices spectraux de la réaction) et
 - ♦ la seconde ligne représente la fonction de stabilité de la méthode implicite.
 - Dans les deux cas, l'intervalle tracé en bleu représente la plage de valeurs d'indices spectraux balayés par chaque opérateur.

B.iii Analyse

Analyse générale Analyse des domaines de stabilité (fig.fig. 3.3) :

- ♦ **Méthode explicite :** En troisième colonne, le diagramme de stabilité d'une méthode explicite RK explicite d'ordre deux, sert de référence. Le domaine de stabilité s'étend pour des indices spectraux négatifs jusqu'à −2 (résultat classique des méthodes EKR2). Le schéma traitant conjointement les deux opérateurs, l'indice spectral résultant est $Z = Z_E + Z_I$. De fait domaine de stabilité s'étend jusqu'à −2 selon l'axe Z_E tant que Z_I est négligeable et de même, le domaine de stabilité s'étend jusqu'à −2 selon Z_I tant que Z_E est négligeable. Enfin il y a une zone intermédiaire où Z_E et Z_I sont tous les deux de l'ordre de l'unité 6 .
- \diamond **Méthode ImEx232 :** La seconde colonne montre que la méthode ImEx232 maintient un domaine de stabilité restreint (jusqu'à -2) selon l'axe Z_E , mais présente un domaine de stabilité bien plus étendu selon l'axe Z_I . C'est logique puisque la valeurs propre Z_E est explicitée, sont domaine pris seul n'a évolué, et la valeur propre Z_I peut être très raide (très négative) puisque la méthode traite explicitement l'opérateur lié à Z_I .
- \diamond **Méthode ImEx222 :** Passant à la première colonne, le domaine de stabilité ImEx222 resemble beaucoup à celui de l'ImEx232. Néanmoins, le domaine de stabilité de lépateur explicité est considérablement élargit là où Z_I est assez grand. Cette propriété est remarquable : cela signifie que la stabilité de méthode ImEx résulte d'un couplage des raideurs; contrairement au splitting qui, par nature, découple totalement les problématiques stabilités. Plus précisément, plus l'opérateur implicité est raide, plus l'opérateur explicité peut être raide.

^{5.} Celle apparaissant dans ImEx222.

^{6.} Attention à l'échelle logarithmique.

Dépendance de la stabilité aux paramètres de l'équation k **et** D Grace au graphiques en fig. 3.3 la disposition couples de valeurs propres mis en jeu par l'équation de Nagumo peut être analysées selon les paramètre k et D.

Contexte : Les paramètres de simulation : Δt et Δx sont fixés. Les couples de paramètres choisis sont : $(k, D) = (1, 1), (k, D) = (0.1, 10), (k, D) = (500, 210^{-4})$. Le produit kD est maintenu égal à un, ainsi la vitesse de propagation est toujours la même (cf. 3.1.1). Ces couples de valeurs propres Z_E , Z_I sont en effet tracés en bleus sur le graphique 7 .

Analyse:

♦ **Cas standard,** (k, D) = (1, 1) - fig. 3.3a:

Dans ce cas, la raideur de la diffusion déstabilise la méthode RKE2 (de nombreux indices spectraux tombent dans le zones rouges à cause des grandes valeurs de Z_I). Pour ces valeurs de $(\Delta x, \Delta t)$ cette méthode n'est donc pas stable. C'est ce qui est attendu, les méthodes explicite imposent des pas de temps très restrictifs sur les problèmes de diffusion.

En revanche, les méthodes ImEx sont stables puisque le domaine de stabilité est infini vers $Z_I \to -\infty$. Certains couples de valeurs propres tombent malgré tout dans une zone instable (en bas à gauche). En réalité ce n'est pas un problème car il s'agit de couples où l'indice spectral Z_E associé à l'opérateur de réaction est positif. Donc ce n'est est pas vraiment une instabilité, la méthode elle reflète simplement la dynamique explosive de la réaction. D'ailleurs le graphique de la méthode explicite du splitting, il y a une zone où la fonction d'amplification est d'amplitude supérieure à un, le splitting reproduit donc fidèlement la dynamique de la réaction. En revanche, pour les méthodes ImEx, il existe des couples de d'indice spectraux propres où Z_E est positif alors que la fonction d'amplification est d'amplitude inférieure à un. Cela pourrait être un frein pour reproduire fidèlement la dynamique explosive de la réaction dans les zones concernées 8 .

♦ Cas diffusion raide, réaction peu raide, (k, D) = (0.1, 10) - fig. 3.3b:

Ici, D=10 donc toutes les valeurs propres liées à la diffusion sont multipliées par 10 par rapport au cas précédent. De fait la méthode RK2E de référence présente des instabilités pour encore plus de couples de valeurs propres est n'est pas pas viable. Concernant les méthodes ImEx222 et ImEx232 elles restent stables, et cette fois-ci tous les couples d'indices spectraux liés à la dynamique explosive de la réaction sont amortie ce qui n'est pas forcément incohérent puisque la diffusion domine.

♦ Cas diffusion peu raide, réaction très raide $(k, D) = (500, 210^{-4})$ - fig. 3.3c

Dans ce cas de figure, k=500. La grande valeur du coefficient de réaction rend cette dernière très raide. Cela a pour effet de dilater les couples d'indices spectraux selon l'axe des abscisse puisque $Z_E \in [-500\Delta t, +1000\Delta t]$ alors que pour k=1: $Z_E \in [-\Delta t, 2\Delta t]$. Ici la méthode explicite au sein des ImEx n'est plus stable pour la réaction, ainsi toutes les méthodes deviennent instables. Le splitting également devient instable car il utilise aussi la méthode RK2E pour la réaction. Le fait que la méthode explicite de l'ImEx soit instable pour l'opérateur explicité peu sembler un obstacle infranchissable, cependant ce n'est pas si simple. Pour illustrer ce point,

^{7.} Pour Z_E , le spectre est continu, il a donc fallut échantillonnés le long de l'axe Z_E

^{8.} Il n'est pas évident d'avoir *a priori* la bonne intuition car peut être que la diffusion calme en quelque sorte le caractère explosif de la réaction et qu'alors une fonction d'amplification d'amplitude < 1 est normal...

étendons l'analyse avec le cas spécial en fig. 3.4, dans ce cas la réaction est toujours raide k=500 mais la diffusion est également très raide car $D=500^9$ Alors la méthode ImEx222 devient stable, comme vu en B.iii, plus l'opérateur traité implicitement est raide, plus la méthode permet à l'opérateur traité explicitement d'être raide. C'est un cas remarquable ou le couplage intervenant au sein de la méthode ImEx la rend plus stable que le splitting!

FIGURE 3.4 – Pour k=500 et D=500 : diagrammes de stabilité des méthodes ImEx et de référence sur l'équation de Nagumo.

^{9.} Jusqu'ici, la vitesse de propagation était la même dans tous les scénarios puisque kD était maintenu constant. Dans le scénario présenté ici, ce n'est plus le cas

3.1.4 Étude de la convergence

À présent que les stabilités des deux méthodes ImEx ont été comparées au *splitting* d'opérateur, il est naturel de poursuivre par une expérience numérique pour évaluer la convergence de chaque méthode et d'évaluer la pertinence des méthodes ImEx face au *splitting*.

Présentation de l'expérience : L'expérience est réalisée sur l'équation de Nagumo 1D à partir d'une solution initiale correspondant au profil de l'onde propagative de l'équation (voir 3.1.1). A la simulation a lieu sur le domaine spatial [-20, +20] entre t=0 et t=3. La grille spatiale est divisée en 2^{13} cellules ce qui équivaut à un pas d'espace $\Delta t \approx 4.8 \, 10^{-3}$. Des conditions de Neumann homogènes et une vitesse de propagation adaptées permettent de maintenir le front d'onde au centre du domaine et de négliger les effets de bords afin de comparer à la solution analytique exacte d'onde propagative.

Résultats : Les résultats de l'expérience sont présentés en 3.5. Il apparaît que si le schéma de splitting et l'ImEx222 ont des performances similaires, la méthode ImEx232 présente une constante de convergence plus faible. De fait on voit que sur un maillage classique (non-adapté en espace), les méthodes ImEx peuvent apporter une cohérence globale qui mène a une meilleure précision. Dans la section suivante, l'expérience est réitérée sur un maillage adapté par multi-résolution adaptative pour étudier si l'adaptation en espace interagit différemment avec les méthodes ImEx et la méthode de splitting.

FIGURE 3.5 – Comparaison de la convergence du schéma de splitting avec celle des méthodes ImEx222 et ImEx232 sur l'équation de Nagumo avec D = 0.1 et k = 10

3.1.5 Mise en lumière expérimentale de couplages entre la méthode en temps et l'adaptation spatiale

Objectifs et contexte de l'étude : L'objectif est d'observer d'éventuelles interactions entre la méthode de découplage des opérateurs (ImEx/splitting) et l'adaptation en espace par multi-résolution adaptative. Pour ce faire la comparaison entre ImEx222, ImEx2332 et splitting a été refaite (fig 3.6) en adaptant spatialement chaque schéma par MRA. Si des différences par rapport à l'étude précédente (fig. 3.5) apparaissent, ils résultent nécessairement de couplages entre la méthode d'intégration en temps et l'adaptation spatiale.

Convergence d'un schéma MRA combiné à différentes méthodes de découplage (ImEx/splitting).

FIGURE 3.6 – Convergence des schémas ImEx et de splitting, adaptés en espace par MRA, sur l'équation de Nagumo pour k=10, D=0.1. Les flux sont évalués au niveau courant (cf. 3.2), la prédiction/reconstruction est assurée par un prédicteur à trois points et l'erreur est comparé à une solution convergé en temps.

Analyse des résultats: pour les grands pas de temps, la convergence est similaire au cas non-adapté (fig. 3.5). En particulier la méthode ImEx232 exhibe toujours une constante de convergence plus faible que le splitting. En revanche, lorsque l'erreur sature les méthodes ImEx offrent systématiquement des performances moins bonnes que le splitting. La solution est comparée à une méthode quasi-exacte en temps, la convergence s'infléchie donc lorsque les erreurs de liée à la MRA sont de l'ordre des erreurs en temps. Il semble donc que l'erreur plateau soit composée d'une erreur de compression (commune aux trois méthodes) et d'une erreur de couplage entre l'adaptation spatiale et le schéma. Plus précisément il semble que l'interaction adaptation-schéma soit plus néfaste pour les méthodes ImEx que pour le splitting.

3.1.6 Conclusion

Cette première contribution a comparé un schéma de splitting ERK2+IRK2 à deux schémas ImEx ARK en terme de stabilité et de convergence. L'étude de convergence a été réalisée dans deux contextes différents : sans adaptation spatiale et avec adaptation spatiale par multirésolution adaptative. Les principaux résultats sont :

- ❖ Stabilité: Tandis que par nature le splitting découple les problématiques de stabilités, celle des méthodes ARK résulte d'un couplage entre le spectre des deux opérateurs. Cela pourrait être exploité astucieusement puisque dans certains cas (cf. B.iii) un opérateur implicité très raide peut stabiliser la méthode explicite. Ce serait particulièrement intéressement pour des problèmes de diffusion-réaction où une réaction implicite très raide pourrait étendre la stabilité d'une diffusion explicite.
- ♦ Convergence : Les deux approches, ImEx ARK et splitting sont toutes les deux viables sur le maillage non-adapté. Il semble empiriquement que bien choisies, l'approche ImEx peut en effet offrir des constantes de convergences meilleures que le simple spitting.
- ◆ Couplage avec l'adaptation spatiale: Il a été monté empiriquement que les méthode ImEx peuvent interagir de manière négatives avec l'adaptation spatiale par MRA. Il est probable que les méthode de splitting interagissent également avec la MRA, mais cette interaction semble plus limité. Comme montré au chapitre suivant (chapitre 3.2) ce type d'interaction (méthode en temps adaptation spatiale) sont complexes et dépendent des schémas temporels ainsi que des modalités de mises en oeuvre de la MRA. Ainsi cette étude ne suffit pas à tirer des conclusions générales, en revanche elle confirme l'existence de telles interactions et qu'elles peuvent être importantes car (cf 3.1.5) une méthode ImEx meilleure que le splitting sur un schéma non-adapté devient moins bonne que le splitting pour un schéma adapté (dès lors que les erreurs de MRA ne sont plus négligeables).

3.2 Obtention de l'équation équivalente d'une méthode de lignes avec multirésolution adaptative sur un problème de diffusion.

Cette deuxième contribution étudie l'interaction entre la multirésolution adaptative (MRA) et le schéma d'intégration temporel, une interaction encore mal comprise. Une première analyse de ce type a été menée sur des problèmes d'advection en [6]. La présente étude se concentre sur les problèmes de diffusion. Pour analyser l'impact de la MRA, les équations équivalentes de trois schémas sont calculées (voir C) :

- I. Une méthode des lignes d'ordre deux servant de référence. Il s'agit d'une discrétisation spatiale d'ordre deux par volume finis, puis une intégrations temporelle par une méthode Runge et Kutta explicite d'ordre deux.
- II. Une méthode correspondant au schéma I mais adapté en espace par MRA, où les valeurs nécessaires à l'évaluation des flux numériques est évaluée au niveau de compression courant.
- III. Une méthode correspondant au schéma I avec MRA, où les valeurs nécessaires à l'évaluation des flux numériques sont systématiquement reconstruites au niveau de résolution le plus fin.

L'objectif est de comprendre, grâce aux équations équivalentes (*cf* ??), la nature, la dynamique et lamplitude de l'erreur qu'introduit la MRA selon l'approche utilisée. L'enjeux est de savoir si le gain de précision que le schéma III pourrait apporter justifierait le surcoût en calcul qu'il impose. En [6], il a été montré que cette approche améliore pourtant significativement la qualité des solutions numériques sur les problèmes d'advection. En sera-t-il de même pour la diffusion? La réponse est plus mitigée, cela motivera d'ailleurs la troisième contribution en 3.3.

3.2.1 Cadre de l'étude

Cette section présente en A le problème cible, en B le schéma I méthode des lignes servant de référence et en C la façon dont la MRA est utilisée pour obtenir les schémas II et III.

A Problème cible

L'étude se fait en dimension un, l'équation d'évolution à résoudre est donc :

$$u(t=0,\cdot) = u_0(\cdot)$$
 (3.20)

$$\partial_t u = \partial_x (D \partial_x u) \quad D > 0. \tag{3.21}$$

Le domaine est supposé infini (pas de problèmes de bord).

B Méthode des lignes utilisée

Pour résoudre cette équation aux dérivées partielles, une méthode des lignes est utilisée.

Discrétisation spatiale : La discrétisation spatiale se fait à l'ordre deux selon le paradigme des volumes finis. L'équation est d'abord intégrée sur une cellule C_k de taille Δx centrée sur x_k :

$$\int_{C_k} \partial_t u(x, t) \, dx = D \int_{C_k} \partial_{xx} u(x, t) \, dx \tag{3.22}$$

Puis posant la valeur moyenne sur la cellule : $U_k(t) = \frac{1}{\Delta x} \int_{C_k} u(x,t) dx$ et en évaluant l'intégrale de gauche :

$$\frac{d}{dt}U_k(t) = \frac{D}{\Delta x} \left[\partial_x u(x_k + \frac{\Delta x}{2}, t) - \partial_x u(x_k - \frac{\Delta x}{2}, t) \right]$$
(3.23)

Puis en approximant les dérivées spatiales à l'ordre deux, cela donne une équation semi-discrétisée en espace faisant apparaître les flux :

$$\frac{dU_k}{dt} = \frac{D}{\underbrace{\Delta x}} \left(\underbrace{\frac{U_{k+1} - U_k}{\Delta x}}_{\text{volume cellule}} - \underbrace{\frac{U_k - U_{k-1}}{\Delta x}}_{\text{approx. gradient}} - \underbrace{\frac{U_k - U_{k-1}}{\Delta x}}_{\text{approx. gradient}} \right)$$
(3.24)

On remarque que les Δx qui apparaissent ont des origines distinctes, d'une part la taille de la cellule pour obtenir une valeur moyenne et d'autre part la distance entre les deux points servant à approximer les gradients.

Intégration temporelle : en notant \mathbb{D} l'opérateur de diffusion spatial, l'intégration temporelle se fait grâce à la méthode Runge et Kutta explicite d'ordre deux suivant :

$$u^{n+1} = \left(Id + \Delta t \,\mathbb{D} + \frac{1}{2} \,\Delta t^2 \,\mathbb{D}^2\right) u^n. \tag{3.25}$$

C'est à dire:

$$U_{k}^{n+1} = U_{k}^{n}$$

$$+ D \frac{\Delta t}{\Delta x} \left(\frac{U_{k+1} - 2U_{k} + U_{k-1}}{\Delta x} \right) + \frac{1}{2} D^{2} \frac{\Delta t^{2}}{\Delta x^{2}} \left(\frac{U_{k+2} - 4U_{k+1} + 6U_{k} - 4U_{k-1} + U_{k-2}}{\Delta x^{2}} \right).$$
(3.26)
$$\frac{\Delta t}{\Delta x} \left(\frac{U_{k+1} - 2U_{k} + U_{k-1}}{\Delta x} \right) + \frac{1}{2} D^{2} \frac{\Delta t^{2}}{\Delta x^{2}} \left(\frac{U_{k+2} - 4U_{k+1} + 6U_{k} - 4U_{k-1} + U_{k-2}}{\Delta x^{2}} \right).$$
approx. gradients

Forme conservative : Ce schéma peut s'écrire sous forme conservative en exhibant les flux numériques suivants :

$$u_k^{n+1} = u_k^n + D\frac{\Delta t}{\Delta x} \left(\Phi_{k+1/2}^n - \Phi_{k-1/2}^n \right) + \left(D\frac{\Delta t}{\Delta x} \right)^2 \left(\Psi_{k+1/2}^n - \Psi_{k-1/2}^n \right)$$
(3.27)

Avec:

$$\Phi_{k+1/2}^{n} = \frac{1}{\Delta x} (u_{k+1}^{n} - u_{k}^{n}), \tag{3.28}$$

$$\Phi_{k-1/2}^{n} = \frac{1}{\Delta x} (u_{k}^{n} - u_{k-1}^{n}), \tag{3.29}$$

$$\Psi_{k+1/2}^{n} = \frac{1}{\Delta x^{2}} \left(\frac{1}{2} u_{k+2}^{n} - \frac{3}{2} u_{k+1}^{n} + \frac{3}{2} u_{k}^{n} - \frac{1}{2} u_{k-1}^{n} \right), \tag{3.49}$$

$$\Psi_{k-1/2}^{n} = \frac{1}{\Delta x^{2}} \left(\frac{1}{2} u_{k+1}^{n} - \frac{3}{2} u_{k}^{n} + \frac{3}{2} u_{k-1}^{n} - \frac{1}{2} u_{k-2}^{n} \right).$$

C La multirésolution adaptative, différents paradigmes?

La multirésolution adaptative est présentée avec plus de détails en 2.4. Cette partie clarifie surtout la différence entre les deux schémas MRA étudiés (schémas II et III). Pour rappel, la multirésolution adaptative consiste à compresser la solution sur plusieurs niveau de maillage, puis a effectuer les calculs sur la solution compressée. L'adaptation par MRA d'un schéma se fait de la manière suivante :

- 1. Partir d'un état compressé au pas de temps n.
- 2. Calculer la solution au pas de temps n+1
- 3. Compresser de nouveau selon un seuil de compression ε grâce à une transformée multiéchelle et à l'heuristique d'Harten.

La valeur d'une cellule à un niveau de détail donné est calculée au pas de temps suivant grâce à un flux numérique (*cf.* (3.27)). Cependant, la manière d'évaluer ce flux numérique n'est pas univoque et mène donc à plusieurs schémas numériques potentiels :

- Le schéma II calcule le flux numérique à partir des cellules voisines à l'interface évaluées au niveau de détail courant, c'est à dire au niveau de détail choisit par l'adaptation spatiale (voir 3.7). C'est la méthode dite sans reconstruction des flux. C'est la paradigme classique en MRA.
- Le schéma III calcule le flux numérique à partir des cellules voisines reconstruites au niveau de détail le plus fin (voir 3.7). C'est la méthode dite avec reconstruction des flux au niveau le plus fin. Cette approche n'est pas standard en MRA, elle est plus complexe à mettre en place et demande plus de calculs. Toutefois il est attendu que cela réduise l'erreur puisqu'elle permet d'évaluer le flux numérique à partir de valeurs plus précises. Pour des problèmes d'advection, ces gains ont été établis théoriquement et validé expérimentalement en [6].

FIGURE 3.7 – Illustration de la différence entre les schémas adaptés spatialement II et III. Le schéma II utilise l'information au niveau de détail l pour calculer les flux numériques, c'est à dire l'information brute à l'issue de la compression. En revanche, le schéma III reconstruit par interpolation polynomiale cette information au niveau de détail le plus fin, sur le schéma au niveau l+3.

Le travail suivant fournit donc les équations équivalentes du schéma I (non-adapté), du schéma II (adapté, sans reconstruction des flux) et du schéma III (adapté, avec reconstruction des flux). Grâce à ces résultat, les erreurs théoriques portées par chacune de ces approches sont alors comparées et analysées.

Dans la suite seul le schéma III est détaillé par soucis de concision.

L'opérateur de reconstruction Étant donné une cellule à un niveau de détail donné l, on cherche à la faire évoluer du pas de temps n vers le pas de temps n + 1. À cette fin, les flux numériques doivent être évalués à partir des cellules voisines reconstruites par un prédicteur à trois points (on dit qu'il a un stencil de un, car il prend en compte une cellule de part et d'autre de la cellule centrale).

L'opérateur de prédiction d'un niveau à l'autre s'écrit alors :

$$\hat{u}_{2k}^{l+1} = +\frac{1}{8}u_{k-1}^l + u_k^l - \frac{1}{8}u_{k+1}^l, \tag{3.30}$$

$$\hat{u}_{2k+1}^{l+1} = -\frac{1}{8}u_{k-1}^l + u_k^l + \frac{1}{8}u_{k+1}^l. \tag{3.31}$$

Puis en notant $\hat{u}_{(\cdot)}^{l+\Delta l}$ cet opérateur de prédiction itéré au travers de Δl niveaux :

$$\begin{bmatrix} \hat{u}_{2^{\Delta l}k-2}^{(l+\Delta l)} \\ \hat{u}_{2^{\Delta l}k-1}^{(l+\Delta l)} \\ \hat{u}_{2^{\Delta l}k-1}^{(l+\Delta l)} \\ \hat{u}_{2^{\Delta l}k+1}^{(l+\Delta l)} \end{bmatrix} = \begin{bmatrix} +1/8 & 1 & -1/8 & 0 \\ -1/8 & 1 & +1/8 & 0 \\ 0 & +1/8 & 1 & -1/8 \\ 0 & -1/8 & 1 & +1/8 \end{bmatrix} \cdot \begin{bmatrix} u_{k-2}^{l} \\ u_{k-1}^{l} \\ u_{k}^{l} \\ u_{k+1}^{l} \end{bmatrix}$$

$$(3.32)$$

$$Metrics depresses Property.$$

Flux reconstruits au niveau le plus fin : On travaille sur une cellule au niveau courant l (de taille $2^{\Delta l}\Delta x$) et l'on reconstruit les états au niveau $l+\Delta l$ grâce à des flux au niveau fin, dont les gradients sont approximés par un pas Δx . La mise à jour conservative utilisée est donc

$$u_k^{n+1} = u_k^n + \underbrace{\frac{D\Delta t}{\Delta x 2^{\Delta l}}}_{\text{cellule}} \left(\hat{\hat{\Phi}}_{k+\frac{1}{2}}^n - \hat{\hat{\Phi}}_{k-\frac{1}{2}}^n\right) + \left(\underbrace{\frac{D\Delta t}{\Delta x 2^{\Delta l}}}_{\text{cellule}}\right)^2 \left(\hat{\hat{\Psi}}_{k+\frac{1}{2}}^n - \hat{\hat{\Psi}}_{k-\frac{1}{2}}^n\right). \tag{3.33}$$

Les flux sont évalués au *niveau fin* (facteurs $1/\Delta x$ et $1/\Delta x^2$ portés par les flux) à partir d'états reconstruits $\hat{\hat{u}}^{l+\Delta l}$:

$$\hat{\hat{\Phi}}_{k-\frac{1}{2}}^{n} = \frac{1}{\Lambda x} \left(\hat{\hat{u}}_{2^{\Delta l}k}^{l+\Delta l} - \hat{\hat{u}}_{2^{\Delta l}k-1}^{l+\Delta l} \right), \tag{3.34}$$

$$\hat{\hat{\Phi}}_{k+\frac{1}{2}}^{n} = \frac{1}{\Lambda x} \left(\hat{\hat{u}}_{2^{\Delta l}(k+1)}^{l+\Delta l} - \hat{\hat{u}}_{2^{\Delta l}(k+1)-1}^{l+\Delta l} \right), \tag{3.35}$$

$$\hat{\Phi}_{k+\frac{1}{2}}^{n} = \frac{1}{\Delta x} \left(\hat{u}_{2^{\Delta l}(k+1)}^{l+\Delta l} - \hat{u}_{2^{\Delta l}(k+1)-1}^{l+\Delta l} \right),$$
(3.35)
$$\hat{\Psi}_{k-\frac{1}{2}}^{n} = \frac{1}{\Delta x^{2}} \left(\frac{1}{2} \hat{u}_{2^{\Delta l}k+1}^{l+\Delta l} - \frac{3}{2} \hat{u}_{2^{\Delta l}k+1}^{l+\Delta l} + \frac{3}{2} \hat{u}_{2^{\Delta l}k-1}^{l+\Delta l} - \frac{1}{2} \hat{u}_{2^{\Delta l}k-2}^{l+\Delta l} \right),$$
(3.36)
$$\hat{\Psi}_{k+\frac{1}{2}}^{n} = \frac{1}{\Delta x^{2}} \left(\frac{1}{2} \hat{u}_{2^{\Delta l}(k+1)+1}^{l+\Delta l} - \frac{3}{2} \hat{u}_{2^{\Delta l}(k+1)}^{l+\Delta l} + \frac{3}{2} \hat{u}_{2^{\Delta l}(k+1)-1}^{l+\Delta l} - \frac{1}{2} \hat{u}_{2^{\Delta l}(k+1)-2}^{l+\Delta l} \right).$$
(3.37)

$$\hat{\Psi}_{k+\frac{1}{2}}^{n} = \frac{1}{\Delta x^{2}} \left(\frac{1}{2} \hat{u}_{2^{\Delta l}(k+1)+1}^{l+\Delta l} - \frac{3}{2} \hat{u}_{2^{\Delta l}(k+1)}^{l+\Delta l} + \frac{3}{2} \hat{u}_{2^{\Delta l}(k+1)-1}^{l+\Delta l} - \frac{1}{2} \hat{u}_{2^{\Delta l}(k+1)-2}^{l+\Delta l} \right). \tag{3.37}$$

Forme matricielle du flux reconstruit : Pour simplifier l'usage les outils de calcul formel, il est pertinent de réécrire ce qui précède sous forme matricielle.

Pour les flux gauches:

$$\hat{\Phi}_{k-\frac{1}{2}}^{n} = \frac{1}{\Delta x} \begin{bmatrix} 0 \\ -1 \\ +1 \\ 0 \end{bmatrix}^{\top} \cdot \begin{bmatrix} \frac{1}{8} & 1 & -\frac{1}{8} & 0 \\ -\frac{1}{8} & 1 & +\frac{1}{8} & 0 \\ 0 & +\frac{1}{8} & 1 & -\frac{1}{8} \\ 0 & -\frac{1}{8} & 1 & +\frac{1}{8} \end{bmatrix}^{\Delta l} \cdot \begin{bmatrix} u_{k-2}^{l} \\ u_{k-1}^{l} \\ u_{k}^{l} \\ u_{k+1}^{l} \end{bmatrix},$$
(3.38)

$$\hat{\Psi}_{k-\frac{1}{2}}^{n} = \frac{1}{\Delta x^{2}} \begin{bmatrix} -\frac{1}{2} \\ +\frac{3}{2} \\ -\frac{3}{2} \\ +\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{8} & 1 & -\frac{1}{8} & 0 \\ -\frac{1}{8} & 1 & +\frac{1}{8} & 0 \\ 0 & +\frac{1}{8} & 1 & -\frac{1}{8} \\ 0 & -\frac{1}{8} & 1 & +\frac{1}{8} \end{bmatrix} \cdot \begin{bmatrix} u_{k-2}^{l} \\ u_{k-1}^{l} \\ u_{k}^{l} \\ u_{k+1}^{l} \end{bmatrix}.$$
(3.39)

Pour les flux droits:

$$\hat{\hat{\Phi}}_{k+\frac{1}{2}}^{n} = \frac{1}{\Delta x} \begin{bmatrix} 0 \\ -1 \\ +1 \\ 0 \end{bmatrix}^{\top} \cdot \begin{bmatrix} \frac{1}{8} & 1 & -\frac{1}{8} & 0 \\ -\frac{1}{8} & 1 & +\frac{1}{8} & 0 \\ 0 & +\frac{1}{8} & 1 & -\frac{1}{8} \\ 0 & -\frac{1}{8} & 1 & +\frac{1}{8} \end{bmatrix}^{\Delta l} \cdot \begin{bmatrix} u_{k-1}^{l} \\ u_{k}^{l} \\ u_{k+1}^{l} \\ u_{k+2}^{l} \end{bmatrix},$$
(3.40)

$$\hat{\Psi}_{k+\frac{1}{2}}^{n} = \frac{1}{\Delta x^{2}} \begin{bmatrix} -\frac{1}{2} \\ +\frac{3}{2} \\ -\frac{3}{2} \\ +\frac{1}{2} \end{bmatrix}^{\top} \cdot \begin{bmatrix} \frac{1}{8} & 1 & -\frac{1}{8} & 0 \\ -\frac{1}{8} & 1 & +\frac{1}{8} & 0 \\ 0 & +\frac{1}{8} & 1 & -\frac{1}{8} \\ 0 & -\frac{1}{8} & 1 & +\frac{1}{8} \end{bmatrix}^{\Delta l} \cdot \begin{bmatrix} u_{k-1}^{l} \\ u_{k}^{l} \\ u_{k+1}^{l} \\ u_{k+2}^{l} \end{bmatrix}.$$
(3.41)

3.2.2 Les équations équivalentes

A Calcul des équations équivalentes

Tout le calculs ont été réalisés grâce à la bibliothèque de calcul formel Sympy et les codes sont disponibles à l'adresse: https://github.com/Ocelot-Pale/etude_MR_RK2.

A.i Équation équivalente du schéma I - non adapté Le calcul de l'équation équivalente sans MRA donne :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{3.42}$$

Le schéma de référence est donc bien d'ordre deux en espace et en temps. En utilisant la constante constante de Von Neumann : $\lambda = D \frac{\Delta t}{\Delta x^2}$:

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \Delta x^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \lambda^2 \Delta x^4 \frac{D}{6} \frac{\partial^6 u}{\partial x^6} - \lambda^3 \Delta x^6 \frac{D}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^7). \tag{3.43}$$

A.ii Équation équivalente du schéma II - adapté *sans* reconstruction des flux Lorsque le schéma est adapté sans reconstruction des flux sur Δl niveaux de détails, l'équation du équivalente est :

$$\frac{\partial}{\partial t}u = D\frac{\partial^2 u}{\partial x^2} + (2^{\Delta l}\Delta x)^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^4, \Delta t^4). \tag{3.44}$$

En somme, sans reconstruction des flux, le schéma avec MRA se comporte comme le schéma de référence mais sur un maillage plus grossier. La constante d'erreur en espace est effet de l'ordre de $2^{2\Delta l} \frac{D}{12} \frac{\partial^4 u}{\partial x^4}$ au lieu de $\frac{D}{12} \frac{\partial^4 u}{\partial x^4}$. En injectant la constante de Von Neumann dans l'équation (3.44) :

$$\frac{\partial}{\partial t}u = D\frac{\partial^2 u}{\partial x^2} + (2^{\Delta l}\Delta x)^2 \frac{D}{12} \frac{\partial^4 u}{\partial x^4} - \lambda^2 \Delta x^4 \frac{D}{6} \frac{\partial^6 u}{\partial x^6} - \lambda^3 \Delta x^6 \frac{D}{24} \frac{\partial^8 u}{\partial x^8} + \mathcal{O}(\Delta x^7)$$
(3.45)

A.iii Équation équivalente du schéma III - adapté *avec* reconstruction des flux En évaluant les flux à partir des cellules reconstruites au niveau le plus fin, l'équation équivalente est :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}
- \frac{\Delta t}{2} D^2 \left(2^{2\Delta l} - 1 \right) \frac{\partial^4 u}{\partial x^4} - \Delta t^2 \frac{D^3}{6} \frac{\partial^6 u}{\partial x^6} - \Delta t^3 \frac{D^4}{24} \frac{\partial^8 u}{\partial x^8}
+ 2^{2\Delta l} \frac{D \Delta x^2}{12} \frac{\partial^4 u}{\partial x^4} - 2^{2\Delta l} \frac{D \Delta l \Delta x^2}{4} \frac{\partial^4 u}{\partial x^4} + \mathcal{O}(\Delta x^4, \Delta t^4).$$
(3.46)

Ce schéma est d'ordre un en temps contrastant avec l'ordre deux des deux schémas précédents. Ainsi, théoriquement la reconstruction au plus fin des flux réduit l'ordre de convergence temporelle de la méthode des lignes. En utilisant la constante constante de Von Neumann, l'équation (3.46) se réécrit :

$$\frac{\partial u}{\partial t} = +D \frac{\partial^2 u}{\partial x^2}
+ \Delta x^2 D \left(\frac{\lambda}{2} (2^{2\Delta l} - 1) + \frac{2^{2\Delta l}}{12} (1 - 3\Delta l) \right) \frac{\partial^4 u}{\partial x^4}
- \Delta x^4 \frac{D \lambda^2 \frac{\partial^6 u}{\partial x^6}}{6} - \Delta x^6 \frac{D \lambda^3 \frac{\partial^8 u}{\partial x^8}}{24} + \mathcal{O}(\Delta x^7).$$
(3.47)

B Comparaison

Pour comprendre le mécanisme menant à cette perte d'ordre, l'équation équivalente du schéma avec AMR et reconstruction des flux est comparée à celle du schéma de référence, **avant** d'appliquer la procédure de Cauchy-Kovaleskaya; c'est à dire sans exploiter $\partial_t u = D\partial_{xx} u$.

B.i Sans multirésolution (schéma de référence) L'équation modifiée sans multirésolution, avant procédure de Cauchy-Kovaleskaya est :

$$\frac{\partial u}{\partial t} = D \frac{\partial^{2} u}{\partial x^{2}}$$

$$+ \frac{1}{2} \underbrace{\left(D^{2} \frac{\partial^{4} u}{\partial x^{4}} - \frac{\partial^{2} u}{\partial t^{2}}\right)}_{\text{Se compense par la procédure de Cauchy-Kovaleskaya}} \Delta t + \frac{1}{12} \underbrace{\frac{\partial^{4} u}{\partial x^{4}} \Delta x^{2} - \frac{1}{24} \frac{\partial^{4} u}{\partial t^{4}} \Delta t^{3} - \frac{1}{6} \frac{\partial^{3} u}{\partial t^{3}} \Delta t^{2} + \mathcal{O}(\Delta x^{4}, \Delta t^{4})}_{\text{Canchy-Kovaleskaya}}$$

$$(3.48)$$

La méthode est bien d'ordre un, car à l'ordre un : $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$ et donc le terme $D^2 \frac{\partial^4 u}{\partial x^4} - \frac{\partial^2 u}{\partial t^2}$ se compense au cours de la procédure de Cauchy-Kovaleskaya.

B.ii multirésolution avec reconstruction des flux L'équation modifiée avec multirésolution et reconstruction des flux, sans appliquer procédure de Cauchy-Kovaleskaya est :

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + \frac{\Delta t}{2} \underbrace{\left(2^{2\Delta l} D^2 \frac{\partial^4 u}{\partial x^4} - \frac{\partial^2 u}{\partial t^2}\right) - \frac{\Delta t^3}{24} \frac{\partial^4 u}{\partial t^4} - \frac{\Delta t^2}{6} \frac{\partial^3 u}{\partial t^3} + \frac{\Delta x^2}{12} (1 - 3\Delta l) 2^{2\Delta l} D \frac{\partial^4 u}{\partial x^4} + \mathcal{O}(\Delta x^4, \Delta t^4).}$$
Ne se compensent plus.

Dans ce cas le terme en facteur du Δt ne se s'annule plus. En effet le terme $D^2 \frac{\partial^4 u}{\partial x^4}$ est devenu au cours de la reconstruction $2^{2\Delta l}D^2 \frac{\partial^4 u}{\partial x^4}$. En conséquence, la méthode perds un ordre de convergence temporel.

Ce mécanisme s'explique de la manière suivante : dans l'équation équivalente, le terme $\frac{\partial^2 u}{\partial t^2}$ apparaît indépendamment de la discrétisation spatiale 10 . La méthode des lignes initiale crée un terme *sur mesure* pour le compenser en approximant le terme spatial $D^2 \frac{\partial^4 u}{\partial x^4}$. Cependant au cours du processus de compression-reconstruction, cette approximation est entachée d'un facteur $2^{2\Delta l}$. En d'autres termes le terme spatial construit pour compenser un terme temporel a été modifié par la multirésolution, alors que le terme temporel lui n'est pas affecté par la multirésolution. Ainsi, les deux termes ne se compensent plus et l'ordre est perdu.

C Conclusion sur le résultat obtenu grâce aux équations équivalentes

Il a été ici mis en lumière que la reconstruction des flux au plus fin sur appliquée à méthode des lignes très simple peut théoriquement mener à un couplage des erreurs espace-temps polluant l'ordre initial de la méthode. Alors que cela n'arrive pas lorsque les flux sont évaluées plus grossièrement. En particulier l'étape de reconstruction-reconstruction altère des termes spatiaux qui ne compensent plus certaines erreurs temporelles et perturbent l'ordre de la méthode Runge et Kutta.

^{10.} Il emerge de la différence $u_k^{n+1} - u_k^n$ à k fixé.

3.2.3 Complément expérimental

A Présentation du cas test

Pour tâcher d'observer la perte d'ordre des expériences numériques ont été menées grâce au logiciel Samurai. Les expériences ont portées sur la simulation de l'équation de diffusion en 1D avec une solution initiale en forme de courbe de Gauß avec conditions de Dirichlet homogènes au bords. Pour limiter les effets de bords (qui non pris en compte dans l'analyse précédente) le domaine à été pris grand devant la largeur de la gaussienne initiale et le temps final assez petit pour que la diffusion n'atteigne pas le bord (qualitativement). L'erreur à été calculée comme la norme L^2 de l'erreur au temps final centrée sur la gaussienne 11 . Ce cas test est pertinent car il offre une solution lisse mais avec des gradients (donc l'AMR doit compresser à divers endroits) tout en offrant une solution analytique connue pour comparer l'erreur. En effet le problème posé sur $\mathbb{R}^+ \times \mathbb{R}$ (sans conditions de bord) :

$$\partial_t u = \partial_{xx} u, \tag{3.50}$$

$$u(t=0,x) = \frac{1}{\sqrt{4\pi a}} \exp\left(-\frac{x^2}{4a}\right).$$

Admet pour solution:

$$u(t=0,x) = \frac{1}{\sqrt{4\pi a(1+t)}} \exp\left(-\frac{x^2}{4a(1+t)}\right). \tag{3.51}$$

La solution numérique avec conditions de bord a été comparée avec la solution analytique sans conditions de bord, au vu de la taille du domaine et des temps de simulation cela ne devrait pas interférer de manière mesurable.

FIGURE 3.8 – Illustration d'une simulation du cas test 3.50 avec conditions de Dirichlet homogène et affichage de l'erreur locale au temps final.

^{11.} On calcul l'erreur autour de la gaussienne et pas sur tout le domaine car sinon elle serait artificiellement faible puisque la solution est quasi-nulle sur le reste du domaine qui a été pris grand pour éviter les effets de bord.

B Des défis expérimentaux

L'observation du mécanisme de perte d'ordre mis théoriquement à jour précédemment est une tâche ardue.

B.i Une expérience exacte impossible à reproduire Il n'est pas possible d'utiliser la méthode numérique utilisée dans l'étude théorique pour essayer de la valider expérimentalement. En effet, la méthode est une RK2 explicite, elle impose sur ce problème de diffusion une condition de stabilité du type $\Delta t \propto \Delta x^2$, ce qui en pratique donne $\Delta t \ll \Delta x$. De fait, la majorité des erreurs sont liés au pas d'espace "grand" devant le pas de temps, et donc si l'on fixe le pas d'espace pour faire converger la méthode en temps, l'erreur est déjà saturée en temps et on n'observe rien - c'est typiquement les inconvenance d'un problème raide.

Erreur L^2 en fonction de Δt

FIGURE 3.9 – Saturation de la convergence temporelle avec une méthode RKE2 sur l'équation de diffusion. L'erreur L^2 stagne malgré la diminution du pas de temps, illustrant la domination de l'erreur spatiale due à la contrainte CFL $\Delta t \propto \Delta x^2$.

B.ii Une tentative infructueuse Suite à cette limite, l'expérience a été retentée avec une méthode voisine mais sans contrainte de stabilité. Le code de calcul Samurai a donc été relancé avec une méthode RK implicite d'ordre deux, plus précisément une SDIRK. Cependant, la reconstruction des flux au niveau le plus fin est difficile à mettre en oeuvre pour les méthode implicites et donc le schéma n'a été éprouvé qu'avec la MRA classique. Dans ce cas l'ordre deux en temps est bien maintenu (voir fig. 3.10), comme ce que prévoyais l'équation équivalente pour la ERK2. Toutefois cela ne dit rien du comportement avec reconstruction au niveau le plus fin.

B.iii Des biais multiples D'autres biais expérimentaux peuvent expliquer l'invisibilité du phénomène. Par exemple l'étude précédente ne prend pas en compte les conditions de bord. Une autre hypothèse est peut être que le maillage n'est compressé que localement ce qui n'altère que peut être pas la convergence globale. Enfin, dans les calculs théoriques précédents, il a été fait l'hypothèse que l'évaluation est faite au niveau le plus fin (que la solution est entièrement reconstruite pour l'évaluation des flux), ce qui n'est pas fait en pratique. Cette idée viens du fait qu'intuitivement, si l'on reconstruit jusqu'au niveau le plus fin les termes servant dans le calcul des flux, alors l'erreur devrait

 $\Delta l = 0$ $\Delta l = 1$ $\Delta l = 2$

 $\propto \Delta t^2$

attendu, puisque les flux sont évalués au niveau courants.

Erreur L²

10-8

Erreur L^2 en fonction de Δt

 $\frac{4.8\text{e-}06}{\Delta t} = \frac{2.0\text{e-}05}{8.1\text{e-}05} = \frac{8.1\text{e-}05}{3.3\text{e-}04} = \frac{1.4\text{e-}03}{\Delta t} = \frac{5.6\text{e-}03}{2.3\text{e-}02} = \frac{9.5\text{e-}02}{9.5\text{e-}02}$ Figure 3.10 – Convergence temporelle d'ordre 2 avec une méthode SDIRK-RK2 sur l'équation de diffusion pour différentes profondeurs de maillages adaptés. L'ordre théorique est préservé comme

diminuer; c'est ce que suggère [6]. Cependant cette fonctionnalité n'étant pas encore disponible dans le logiciel de calcul, l'expérience a été réalisée sans reconstruire ls flux au niveau le plus fin mais en prenant la valeur disponible au niveau courant de compression. Il semble peu probable que ce soit la cause de la non-observation du phénomène de perte d'ordre mais cela reste un biais potentiel. Enfin peut être qu'un bug s'est glissé dans mon implémentation mais cela semble peu probable puisque ce serait une erreur d'implémentation qu'il "améliore" l'ordre de convergence...

3.2.4 Conclusion

En conclusion, en résolvant le problème de diffusion grâce à la méthode des lignes proposée, la multi-résolution adaptative usuelle (sans reconstruction des flux) préserve l'ordre du schéma. En revanche et contre toute attente, lorsque les flux sont reconstruits au niveau le plus fin, l'ordre deux en temps du semble formellement réduit à un. Malheureusement ce phénomène n'a pas pu être mis en lumière expérimentalement, notamment à cause de la contrainte de stabilité. Face à ces difficultés des expériences numériques plus ambitieuses ont été entreprises (méthodes stabilisées, différents niveaux de reconstruction, extension à d'autre cas que la diffusion "pure" etc...). C'est l'object de la contribution suivante qui étudie empiriquement l'impact de la reconstruction ou non du flux sur les problèmes de diffusion puis de diffusion-réaction.

3.3 Impact de la qualité de reconstruction des flux pour les problèmes diffusion avec AMR.

Cette troisième contribution prolonge empiriquement la précédente, étudiant *expérimentale-ment* l'impact de différentes approches de multirésolution adaptatives sur les solution numériques des problèmes diffusifs. Elle étudie trois manières de mettre en place l'adaptation spatiale par MRA : celle des schémas II (sans reconstruction des flux) et III (avec reconstruction des flux) de la contribution précédente ainsi qu'une approche *intermédiaire*.

Ce travail s'articule de la manière suivante :

- ♦ 3.3.1 Présentation des paradigmes MRA comparés.
- ♦ 3.3.2 Première expérience numériques comparant l'erreur en fonction du paradigme d'AMR choisi sur le problème de diffusion résolu par le schéma numériques de la contribution antérieure (3.2) méthode des lignes, Volumes Finis + Runge et Kutta explicite.
- ♦ 3.3.3 Les résultats, inattendus ont conduit à formuler l'hypothèse que les schéma *avec* reconstruction présenterai des problèmes de stabilité pour certains modes que le schéma *sans* reconstruction n'aurait pas. Cependant cette hypothèse est invalidée par une étude de stabilité linéaire.
- \diamond 3.3.4 La principale limite de l'étude antérieure est la contrainte de stabilités de la méthode explicite. Cela ne permet d'observer que des solutions convergées en temps (erreur spatiale dominante car stabilité $\Rightarrow \Delta t \ll \Delta x$). Pour poursuivre la comparaison dans un contexte où les erreurs temporelles ne sont pas négligeables, une seconde expérience est réalisée remplaçant la méthode ERK2 par la méthode *stabilisée* ROCK2 [2] permettant d'accéder à une plus large gamme de pas de temps.
- \$ 3.3.5 Les résultats numériques pour des pas de temps moins restreints sont encore plus inattendus que les précédents. Cependant en les reliant aux travaux théoriques précédents (3.2), l'ensemble des comportements obtenus est finalement compris et expliqué.

3.3.1 Les schémas paradigmes d'AMR comparés

Les schémas comparés dans cette étude sont ceux de l'étude précédente (3.2) : le schéma I non adapté (référence), le schéma II adapté sans reconstruction des flux, le schéma III adapté avec reconstruction des flux au niveau le plus fin. À ceux-ci s'ajoute une approche intermédiaire entre les schémas II et III : le schéma IV qui est adapté et qui reconstruit les flux avec <u>un</u> niveau de détails supplémentaire. C'est à dire que si en un point, la multirésolution adaptative représente la solution au niveau de détail l, et si le maillage propose un niveau de détail maximal $l^{\max} > l$; alors le schéma II calcule les flux à partir des données au niveau l, le schéma III calcule les flux à partir de données reconstruites du niveau l jusquau niveau l^{\max} (nécessitant $\Delta l = l^{\max} - l$ reconstructions) et le schéma IV calcul les flux à partir de données reconstruites du niveau l jusqu'au niveau l + 1 (nécessitant une seule reconstruction). L'objectif du schéma IV est d'être un bon compromis entre précision et coût computationnel.

3.3.2 Expérience numérique avec une méthode Runge et Kutta explicite

Cette première expérience résout numériquement l'équation de diffusion par le schéma de la contribution 3.2 (Volumes Finis + ERK2). Une méthode implicite pourrait paraître plus appropriée pour s'affranchir des problèmes de stabilité; cependant l'inversion d'un système linéaire rend la reconstruction des flux (schémas III et IV) trop complexes à implémenter. Ainsi, à cause de la contrainte de stabilité $\Delta t \propto \Delta x^2$, seules des solutions convergées en temps (erreur spatiale dominante puisque $\Delta t \ll \Delta x$) sont observées. Cette contrainte est levée dans l'expérience suivante en 3.3.4.

A Résultats numériques

Les résultats sont étonnants : parmi les schéma adaptés, le schéma II (le plus grossier) offre la plus faible erreur et plus l'algorithme reconstruit finement les flux plus l'erreur augmente. À titre d'exemple, pour la diffusion d'une Gaussienne (cf 3.2.3) et un seuil de compression $\varepsilon=10^{-4}$, les erreurs L^2 au temps final $T_f=1$ sont les suivantes :

Schéma nº	Niveau d'évaluation des flux	Erreur L^2
I	Ø MRA	2×10^{-5}
II	Courant	1×10^{-4}
III	Plus fin <i>l</i> ^{max}	3×10^{-4}
IV	Inférieur direct $(l+1)$	2×10^{-4}

L'erreur des différents schémas adaptés par MRA est de l'ordre du seuil de compression choisi $\varepsilon = 10^{-4}$ montrant que ce sont bien les effets de la MRA qui dominent ici.

B Analyse et hypothèses

Ce résultat est assez surprenant puisqu'on s'attendrait à ce qu'une reconstruction plus précise du flux donne de meilleurs résultats. Toutefois c'est assez cohérent avec l'analyse théorique en 3.2 qui prédit que reconstruire augmente le nombre de terme d'erreur (*cf.* 3.2.2). Face à ces résultats, plusieurs hypothèses sont émises :

- 1. La reconstruction introduit des *instabilités* dans le schéma.
- 2. Peut-être que cette tendance ne vaut que sur des solutions où l'erreur temporelle pure (sans prendre en compte une éventuelle interaction avec la MRA) est négligeable. En effet, le caractère explicite de la méthode ERK2 force le choix $\Delta t \propto \Delta x^2$ et donc en pratique $\Delta t \ll \Delta x$. Et donc le régime $\Delta t \sim \Delta x$ ne peut pas être exploré expérimentalement.

La première hypothèse est éprouvée dans la prochaine section 3.3.3 et une méthode explicite stabilisée est utilisée ¹² en 3.3.4 pour explorer numériquement la seconde.

^{12.} On préfère une méthode explicite stabilisée à une méthode implicite, car la reconstruction systématique des flux au niveau fin est très complexe pour une méthode implicite.

3.3.3 Analyse de stabilité

Le caractère inattendu du résultat précédent - le schéma AMR sans reconstruction des flux est meilleur que celui avec reconstruction - a fait émergé l'hypothèse que le schéma *avec reconstruction* présenterait des problèmes de stabilités pour certains modes de l'équation. Une étude comparative de la stabilité des deux méthodes a donc été réalisée par analyse de Fourrier - Von Neumann en adaptant le code de calcul formel ayant fourni les équations équivalente en 3.2. Une interface permettant de visualiser ces résultats est disponible à l'adresse : https://github.com/Ocelot-Pale/etude_MR_RK2/blob/main/code_2/stabilite_AMR_plotly.html.

La principale conclusion est que la méthode *avec* reconstruction ne présente pas plus de problème de stabilité que la méthode *sans* reconstruction.

3.3.4 Expérience numérique avec une méthode explicite stabilisée

Pour observer ce qui se produit lorsque l'erreur n'est pas saturée en espace mais que l'erreur temporelle intervient également, le logiciel Ponio ¹³ a été couplé à Samurai. Il permet d'utiliser facilement des méthodes d'intégration en temps complexe. Grâce à Ponio, l'expérience précédente a été réitérée en remplaçant la méthode ERK2 par la méthode stabilisée ROCK4 [3]. Cette méthode reste explicite (ce qui permet grâce à Samurai d'étudier facilement les différentes façons d'évaluer les flux) tout en assouplissant significativement la contrainte de stabilité.

A Résultats numériques

Les résultats sont présentés en fig. 3.11. Le graphique de droite correspond à un seuil de compression modéré ($\varepsilon=10^{-5}$) et celui de gauche à un seuil de compression plus restrictif ($\varepsilon=10^{-6}$). Les solutions sont comparées à une solution convergée en temps afin d'isoler les erreurs temporelles et celles liées à la MRA de l'erreur spatiale. La grille la plus fine du maillage de niveau 12, ce qui correspond à 2^{12} cellules et le maillage peut être représenté sur 7 niveaux, donc du niveau 12 au niveau 6. Sur chaque graphique l'erreur L^2 est tracée en fonction du pas de temps pour chaque méthode de calcul du flux numérique : sans MRA (grille fine); MRA niveau courant; reconstruction d'un niveau; reconstruction au niveau le plus fin. Les principales observations sont :

- 1. Pour un petit pas de temps : plus les flux sont reconstruit finement plus l'erreur augmente, ce qui est étonnant mais cohérent avec l'expérience numérique précédente.
- 2. Pour un grand pas de temps : la méthode d'évaluation du flux importe peu. Les erreurs en temps dominent les erreurs liés à la MRA.
- 3. Il existe une gamme de pas de temps intermédiaires où les méthodes reconstruisant les flux sur-performent la MRA classique **et** (étonnant!) la méthode sur grille fine.

Erreur par rapport à une solution convergée en temps selon la méthode d'évaluation des flux

FIGURE 3.11 – Convergence pour les différentes méthodes numériques.

Afin d'éclairer ces résultats surprenants, la figure 3.12 présente la distribution spatiale au temps final des erreurs pour différents régimes de pas de temps : petits, intermédiaires et grands.

^{13.} https://github.com/hpc-maths/ponio

Pour la méthode sur grille fine et la méthode MRA classique : la distribution de l'erreur présente une *cloche centrale* qui "s'écrase" au fur et à mesure que le pas de temps se réduit, de fait l'erreur chute avec le pas de temps.

En revanche pour les méthodes impliquant une reconstruction : la distribution de l'erreur présente également une *cloche centrale* mais au lieu de s'écraser, elle change progressivement de convexité et de signe. Elle est d'abord positive concave pour les grands pas de temps puis convexe négative pour les petits pas de temps. Pour un régime intermédiaire, la cloche est aplatie en zéro ce qui provoque pour ces pas de temps, la chute brutale de l'erreur.

Ce comportement très intéressant - le changement de signe de la cloche - résulte du couplage entre les erreurs en temps du schéma et les erreurs de la reconstruction de la MRA. Dans la suite, nous allons relier cette observations au équations équivalentes précédemment établies.

FIGURE 3.12 – Profils d'erreur pour différentes valeurs de la constante de Von Neumann (notée "CFL" sur les graphiques). Le pas d'espace est fixé, faire de contrainte de Von Neumann revient donc simplement à varier linéairement le pas de temps.

Rapport de stage - Alexandre Edeline

3.3.5 Lien avec les équations équivalentes

Pour comprendre les résultats de convergence précédents (3.3.4), le profil des erreurs a été tracé (voir 3.12) pour chaque méthode numérique et pour différents régimes de constante Von Neumann $\lambda = D\frac{\Delta t}{\Delta x^2}$; puis ces observations ont été reliées aux équations équivalentes développées en 3.2. Cette mise en relation est cohérente car les équations équivalentes ont été calculées pour un schéma d'intégration en temps ERK2 et l'expérience a été réalisée avec ROCK2 qui est une ERK2 stabilisée. Les résultats précédents sont confirmés :

- 1. Pour les petites constantes de Von Neumann, les méthodes avec reconstruction sont moins précisés que les méthodes sans reconstruction.
- 2. Il existe une gamme de constantes de Von Neumann très précise pour laquelle les schémas avec reconstruction sur-performent les autres méthodes.

Munis de ces nouveaux résultats, une première hypothèse est formulée puis invalidée, avant qu'une seconde ne soit proposée et validée.

A Première Hypothèse

L'observation suivante a de plus été faite : il semble que le profil de l'erreur avec reconstruction ressemble à la dérivée spatiale d'ordre quatre de la solution et que le signe de cette erreur change avec la constante de Von Neumann.

Une première hypothèse a d'abord été proposée : l'évolution du profil d'erreur selon la constante de Von Neumann s'explique par le terme $\Delta x^2 D\left(\frac{\lambda}{2}(2^{2\Delta l}-1)+\frac{2^{2\Delta l}}{12}(1-3\Delta l)\right)\frac{\partial^4 u}{\partial x^4}$ dans l'équation équivalente (3.47). En effet pour les grandes constantes de Von Neumann le coefficient $\frac{\lambda}{2}(2^{2\Delta l}-1)+\frac{2^{2\Delta l}}{12}(1-3\Delta l)$ est positif et pour les petites constantes de Von Neumann il est négatif, pour $\lambda=\frac{4^{\Delta l}}{6}\frac{3\Delta l-1}{4^{\Delta l}-1} > 0$ ce coefficient serait nul expliquant la chute de l'erreur pour ces valeurs, l'erreur s'allégeant du terme d'ordre deux.

Validation expérimentale : Pour valider cette hypothèse, une régression linéaire entre l'erreur numérique et la dérivée 4^e de la solution a été réalisée par une méthode des moindres carrées :

$$\min_{\alpha \in \mathbb{R}} \|\alpha \partial_x^4 u - \operatorname{err}\|^2.$$

Ce modèle (fig. 3.13) explique bien l'erreur pour les petites constantes de Von Neumann. En effet, pour la cellule i on note Err_i l'erreur numérique et Y_i la prédiction du modèle, le coefficient de détermination du modèle est $R^2 = 1 - \frac{\sum_i (\operatorname{Err}_i - \overline{Y_i})^2}{\sum_i (\operatorname{Err}_i - \overline{\operatorname{Err}})^2} > 0.9$. En revanche le modèle explique mal l'erreur pour les grandes constantes de Von Neumann ($R^2 \sim 0.2$).

FIGURE 3.13 – Régression entre l'erreur numérique expérimentale (AMR + reconstruction fine) et la dérivées 4^e de la solution.

B Seconde Hypothèse

Une seconde observation a alors révisé la première : à grande constante de Von Neumann, l'erreur ne ressemble pas à l'opposé de $\partial_x^4 u$ mais à $\partial_x^6 u$.

Une seconde hypothèse a alors été émise :

- \diamond Pour les grandes constantes de Von Neumann, le terme $-\Delta x^4 \frac{D}{6} \lambda^2 \partial_x^6 u$, quadratique en λ domine dans (3.47),
- \Rightarrow Pour les petites constantes de Von Neumann, le terme $\Delta x^2 D\left(\frac{\lambda}{2}(2^{2\Delta l}-1)+\frac{2^{2\Delta l}}{12}(1-3\Delta l)\right)\frac{\partial^4 u}{\partial x^4}$, affine en λ domine.

Le fait que pour les petites constantes de Von Neumann le schéma II (sans reconstruction) soit plus précis que le schéma III (avec reconstruction), s'explique simplement par le fait que la constante d'erreur pondérant terme d'erreur dominant $\Delta x^2 \partial_x^4 u$ est plus grand pour le schéma III :

Schéma nº	Évaluation des flux	Constante pondérant l'erreur en $\Delta x^2 \partial_x^4 u$ (dominante quand λ est petite)
I	Ø AMR	<u>D</u>
II	Sans reconstruction	$2^{\Delta l} \frac{D}{12}$
III	Avec reconstruction	$D\left(\frac{\lambda}{2} (2^{2\Delta l} - 1) + \frac{2^{2\Delta l}}{12} (1 - 3\Delta l)\right)$

Validation expérimentale: pour valider empiriquement cette nouvelle hypothèse, l'erreur a été modélisée par moindre carré comme err $\approx \alpha \partial_x^4 u + \beta \partial_x^6 u$. Ce modèle explique très bien l'erreur pour tous les régimes de constantes de Von Neumann (voir 3.14).

Remarque : la plage de constantes de Von Neumann où la méthode avec reconstruction est plus la précise correspond en fait au cas ou les profils de $\alpha \partial_x^4 u$ de $\beta \partial_x^6 u$ se compensent. C'est donc un comportement tout à fait accidentel lié au fait que les dérivées de la courbe de Gauss sont en quelque sorte "en opposition de phase".

-20

-15

-10

CFL=50 | dt=4.77e-03 | dx=9.77e-03 1.5 Erreur (u_num - u_exact 1.0 Fit $\propto \alpha \partial_{\nu}^{4} u + \beta \partial_{\nu}^{6} u$ (α =-8.0e-04, β =-5.7e-05, R^{2} =0.92) 0.5 0.0 -0.5 -1.0 CFL=700 | dt=6.68e-02 | dx=9.77e-03 1.5 Erreur (u_num - u_exact) 1.0 Fit $\propto \alpha \partial_x^4 u + \beta \partial_x^6 u$ (α =-8.4e-04, β =-1.1e-03, R²=0.75) 0.5 Ħ/ 0.0 -0.5 CFL=1000 | dt=9.54e-02 | dx=9.77e-031.5 Erreur (u_num - u_exact) 1.0 $\propto \alpha \partial_x^4 u + \beta \partial_x^6 u$ (α =-8.6e-04, β =-2.1e-03, R²=0.90) 0.0 -0.5-1.0

Correspondance Erreur Num. $\propto \alpha \partial_x^4 u + \beta \partial_x^6 u$

FIGURE 3.14 – Régression entre l'erreur numérique expérimentale (AMR + reconstruction fine) et une combinaison linéaire des dérivées 4^e et 6^e de la solution.

Position x

10

20

-5

Analyse retrospective : Le comportement observé s'explique par une *incohérence entre la précision du schéma et celle de la reconstruction*. Une prédiction à trois points n'apporte pas d'information supplémentaire par rapport au schéma spatial d'ordre deux : elle reste du même ordre de précision et ne réduit donc pas le terme d'erreur dominant. Dans ces conditions, la reconstruction ajoute de l'erreur au lieu d'améliorer la solution.

Complément important : Ce n'est pas présenté ici, mais le travail à été refait avec un prédicteur à 5 points, permettant d'approximer correctement la dérivée d'ordre quatre. Alors la reconstruction apporte un gain notable, les solutions numériques avec et sans MRA sont dans ce cas très proches.

3.3.6 Extension sur une équation de diffusion-réaction

Cette expérience permet d'observer l'impact du niveau de reconstruction des flux quand l'opérateur de diffusion est couplé à un opérateur de diffusion et faisant émerger des dynamiques de couplage. L'équation de diffusion est donc remplacée par l'équation de Nagumo (voir 3.1.1). Des ondes progressives sont solution de cette équation, le schéma numérique donc doit être en mesure de suivre la dynamique du front d'onde.

A Résumé de l'expérience

L'expérience à été réalisée dans des conditions similaires à l'expérience numérique 3.1. C'est à dire :

- ♦ Profil de l'onde propagative comme état initial.
- ♦ Domaine étendu avec conditions de Neumann aux limites pour limiter les effets de bord

L'unique différence majeur est le remplacement de la méthode Runge et Kutta ImEx par un schéma de séparation d'opérateur avec une méthode stabilisée explicite pour la diffusion (ROCK 2 [3]). Ce choix découle, comme précédemment expliqué, de la nécessité d'éviter toute inversion de système linéaire lorsque les flux sont reconstruits à partir de reconstructions fines.

B Résultats de l'expérience

Les résultats présentés à la figure 3.15 confirment les tendances observées sur la diffusion pure :

- Pas de temps élevés: l'erreur est dominée par la discrétisation temporelle. Les trois approches (sans reconstruction, reconstruction partielle ou complète) montrent alors des précisions quasi identiques.
- Pas de temps très faibles: lorsque l'erreur spatiale devient prépondérante, la reconstruction fine des flux dégrade la solution. Plus les flux sont reconstruits, plus l'erreur augmente.
- \diamond Influence des paramètres : cette conclusion générale reste valable quels que soient les paramètres k et D. Toutefois, lorsque la diffusion est prépondérante (valeurs de D élevées), l'écart de précision entre la méthode sans reconstruction et celle avec reconstruction fine se creuse nettement.
- Profils raides et pas intermédiaires: pour des ondes très raides (réaction dominante), on observe à nouveau un effondrement brutal de l'erreur sur une gamme de pas de temps intermédiaires. Cet effet, déjà mis en évidence dans le cas ROCK2 sans reconstruction (voir 3.3.5), semble lié à la géométrie du front d'onde et mériterait une investigation dédiée.

C Conclusion de l'expérience sur Nagumo

Cette série de simulations indique que l'ajout du terme de réaction dans l'équation de Nagumo ne modifie pas de façon radicale le couplage entre le schéma numérique et la MRA. Cela s'explique par le fait que la dégradation observée provient avant tout d'une prédiction des flux insuffisamment précise au regard de l'ordre spatial du schéma, indépendamment de la présence d'une réaction. On note en outre que l'erreur introduite lors de la résolution du terme diffusif ne semble pas se propager au terme de réaction : plus la diffusion domine (grand D), plus l'effet négatif de la reconstruction se renforce, ce qui suggère un découplage efficace assuré par le splitting de Strang. Pour aller plus loin, une étude utilisant des méthodes ImEx partitionnées - qui coupleraient peut-être plus les erreurs - telles que PIROCK [1], appliquée à une équation de diffusionréaction avec un terme réactif réellement raide 14 , serait pertinente afin de vérifier si ce comportement se maintient.

FIGURE 3.15 – Courbes de convergence de chaque méthode d'AMR pour différents paramètres de l'équation. Plus k est élevé, plus le profil de l'onde est raide et plus la réaction domine. La célérité de l'onde est néanmoins identique pour chaque jeu de paramètres puisque le produit kD reste constant d'une expérience à l'autre.

^{14.} On rappelle que la réaction dans l'équation de Nagumo n'est pas raide.

3.3.7 Conclusion

Le résultat principal est que, sur le schéma méthode des lignes étudié, la reconstruction systématique des flux n'est pas bénéfique car la reconstruction est faite par un prédicteur polynomial à trois points. La reconstruction des flux à partir d'un tel prédicteur apporte avant tout du bruit du même ordre que l'erreur du schéma original et dégrade la qualité de la solution numérique. **Il semble raisonnable de conjecturer que de manière générale, la reconstruction des flux est bénéfique si et seulement si sa précision est strictement supérieure à l'ordre spatial du schéma.** En somme pour un discrétisation spatiale est d'ordre k, la prédiction polynomiale doit au moins être d'ordre k+1 et donc se baser k+2 points, c'est à dire un stencil $s=\left\lceil\frac{k+1}{2}\right\rceil$.

Sur notre cas d'étude, le prédicteur prend trois points alors que la règle précédente en demanderait au moins quatre. Ainsi la prédiction polynomiale ajoute des erreurs du même ordre que le schéma, dégradant nettement la solution. De plus cela explique qu'avec un prédicteur à cinq points (cas présenté dans la soutenance de stage), la reconstruction mitige considérablement les perturbations induites par la multi-résolution adaptative.

Chapitre 4

Conclusion

Conclusion scientifique

Résultats Les principaux résultats du stage sont :

- ♦ L'interaction entre l'adaptation spatiale par multirésolution et le schéma numérique dépend directement du schéma d'intégration en temps utilisé. En effet, en 3.1.5, on constate expérimentalement qu'une méthode ImEx et un *splitting* des même ordre ne réagissent pas de la même manière face à l'adaptation spatiale. Sur le cas particulier étudié, le *splitting* d'opérateur semble moins impacté que la méthode ARK (mais il n'est absolument pas certain que cela se généralise).
- ♦ La reconstruction des flux au niveau le plus fin dégrade la solution numérique si l'erreur de reconstruction n'est pas négligeable devant l'erreur du schéma initial.

Perspectives Ce travail met en évidence l'importance d'une compréhension fine des interactions entre la multirésolution adaptative et le schéma numérique pour exploiter pleinement le potentiel de cette méthode. Il laisse penser que reconstruction des flux au niveau le plus fin améliorerait la qualité des solutions numériques à la condition que la prédiction polynomiale se fasse à partir d'au moins k+2 points, avec k l'ordre de discrétisation spatiale. Il faudrait donc reprendre l'analyse théorique (section 3.2) et expérimentale (section 3.3) en utilisant un prédicteur à cinq points pour la reconstruction des flux (au lieu d'un prédicteur à trois points ici). De plus une étude des coûts calculs de chaque approche devrait être réalisée pour évaluer le ratio coût/bénéfice d'une reconstruction des flux selon le stencil nécessaire. À plus long terme, une analyse théorique systématique du couplage entre méthodes ImEx et MRA serait nécessaire : les observations présentées en 3.1.5 suggèrent un comportement non trivial, propre à chaque intégrateur temporel.

Conclusion sur ma progression technique Sur le plan théorique, j'ai approfondi des domaines variés : méthodes de volumes finis [27], systèmes dynamiques et méthodes de Runge Kutta additives [18], ainsi que la théorie des ondelettes, en résonance avec mes cours antérieurs. Sur le plan pratique, je me suis familiarisé avec des outils puissants d'analyse (équations équivalentes, analyse de Von Neumann), avec des codes de recherche avancés tels que Samurai, et avec les exigences de la

simulation numérique (estimation rigoureuse des erreurs, gestion de grilles de taille différente, instabilités). J'ai aussi développé mes compétences de programmation scientifique en Python et en C++, ainsi que ma maîtrise de l'environnement Unix (terminal, git, bash). Enfin, j'ai renforcé mes capacités de communication scientifique, en diffusant mes codes pour en favoriser la reproductibilité et en produisant des graphiques complexes mais lisibles, parfois interactifs.

Conclusion personnelle Ce stage a renforcé mon intérêt pour les mathématiques appliquées, en me confrontant à la fois aux exigences théoriques de l'analyse et aux réalités concrètes de la mise en uvre computationnelle. Cela à révélé mon épanouissement au sein des environnements où les méthodes mathématiques contribuent directement à résoudre des problématiques complexes, qu'elles relèvent de la recherche scientifique ou d'applications technologiques. Les gains rendus possibles par la diversité de l'équipe, la réutilisation des outils développés et leur interopérabilité m'ont fait prendre conscience de l'importance du travail collectif et de la mise en commun des savoir-faire dans la réussite d'un projet scientifique.

Bibliographie

- [1] A. ABDULLE et G. VILMART. "PIROCK: A swiss-knife partitioned implicit–explicit orthogonal Runge–Kutta Chebyshev integrator for stiff diffusion–advection–reaction problems with or without noise". In: *Journal of Computational Physics* 242 (2013), p. 869-888.
- [2] Assyr Abdulle. "Fourth Order Chebyshev Methods with Recurrence Relation". In: *SIAM Journal on Scientific Computing* 23.6 (2002), p. 2041-2054. DOI: 10.1137/S1064827500379549.
- [3] Assyr Abdulle et Alexei A. Medovikov. "Second order Chebyshev methods based on orthogonal polynomials". In: *Numerische Mathematik* 90.1 (2001), p. 1-18. DOI: 10.1007/s002110100292.
- [4] Mojtaba ALIASGHAR-MAMAGHANI et al. "Multiphysics Modeling of Chloride-Induced Corrosion Damage in Concrete Structures". In: *Computers & Structures* 308 (2025), p. 107643. ISSN: 0045-7949. DOI: 10.1016/j.compstruc.2025.107643.
- [5] Uri M. ASCHER, Steven J. RUUTH et Raymond J. SPITERI. "Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations". In: Applied Numerical Mathematics 25.2 (1997). Special Issue on Time Integration, p. 151-167. ISSN: 0168-9274. DOI: https://doi.org/10.1016/S0168-9274(97)00056-1. URL: https://www.sciencedirect.com/science/article/pii/S0168927497000561.
- [6] Belloti et al. "Modified equation and error analyses on adaptative meshes for the resolution of evolutionary PDEs with Finite Volume schemes". In: (2025).
- [7] M. BOUCHET. *Le laplacien discret 1D*. Notes de cours. Agrégation externe de mathématiques 2019-2020, Leçons 144, 155, 222, 226, 233. ENS Rennes, 2020. URL: https://perso.eleves.ens-rennes.fr/~mbouc892/lapdisc1d.pdf.
- [8] Philippe G. Ciarlet. *Introduction à l'analyse numérique matricielle et à l'optimisation*. 1^{re} éd. Ouvrage de référence en analyse numérique et optimisation. Paris : Dunod, 1982. ISBN : 978-2-04-012365-3.
- [9] A. COHEN et al. "Fully adaptive multiresolution finite volume schemes for conservation laws". In: *Mathematics of Computation* 72 (2003).
- [10] Marcus Ó Conaire et al. "A Comprehensive Modeling Study of Hydrogen Oxidation". In: *International Journal of Chemical Kinetics* 36.11 (2004), p. 603-622. DOI: 10.1002/kin.20026.
- [11] V. Daru et C. Tenaud. "High order one-step monotonicity-preserving schemes for unsteady compressible flow calculations". In: *Journal of Computational Physics* 193.2 (2004), p. 563-594.

 ISSN: 0021-9991. Doi: https://doi.org/10.1016/j.jcp.2003.08.023. URL: https://www.sciencedirect.com/science/article/pii/S0021999103004327.

BIBLIOGRAPHIE 72

[12] Ralf Deiterding et al. "Comparison of Adaptive Multiresolution and Adaptive Mesh Refinement Applied to Simulations of the Compressible Euler Equations". In: SIAM Journal on Scientific Computing 38.5 (2016), S173-S193. DOI: 10.1137/15M1026043.

- [13] Max Pedro Duarte. "Méthodes numériques adaptives pour la simulation de la dynamique de fronts de réaction multi-échelle en temps et en espace". 2011ECAP0057. Thèse de doct. 2011. URL:http://www.theses.fr/2011ECAP0057/document.
- [14] Tarek ECHEKKI. "Multiscale methods in turbulent combustion: strategies and computational challenges". In: *Computational Science & Discovery* 2.1 (2009), p. 013001. DOI: 10.1088/1749-4699/2/1/013001.
- [15] Richard FITZHUGH. "Impulses and Physiological States in Theoretical Models of Nerve Membrane". In: Biophysical Journal 1.6 (1961), p. 445-466. ISSN: 0006-3495. DOI: https://doi.org/10.1016/S0006-3495(61)86902-6. URL: https://www.sciencedirect.com/science/article/pii/S0006349561869026.
- [16] V. GUVANASEN et R. E. VOLKER. "Numerical solutions for solute transport in unconfined aquifers". In: International Journal for Numerical Methods in Fluids 3.2 (1983), p. 103-123. DOI: https://doi.org/10.1002/fld.1650030203. eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.1650030203. URL:https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.1650030203.
- [17] E. HAIRER. "Order conditions for numerical methods for partitioned ordinary differential equations". In: *Numerische Mathematik* 36.4 (1981), p. 431-445. ISSN: 0945-3245. DOI: 10.1007/BF01395956. URL: https://doi.org/10.1007/BF01395956.
- [18] Ernst Hairer, Syvert P. Nørsett et Gerhard Wanner. *Solving Ordinary Differential Equations I: Nonstiff Problems*. 2^e éd. T. 8. Springer Series in Computational Mathematics. Springer Berlin, Heidelberg, 1993, p. XV, 528. ISBN: 978-3-540-56670-0. DOI: 10.1007/978-3-540-78862-1. URL: https://doi.org/10.1007/978-3-540-78862-1.
- [19] Ami Harten. "Adaptive Multiresolution Schemes for Shock Computations". In: Journal of Computational Physics 115.2 (1994), p. 319-338. ISSN: 0021-9991. DOI: https://doi.org/10.1006/jcph.1994.1199. URL: https://www.sciencedirect.com/science/article/pii/S0021999184711995.
- [20] Sidi Mahmoud Kaber et Marie Postel. "Finite volume schemes on triangles coupled with multiresolution analysis". In: *Comptes Rendus de l'Académie des Sciences Series I Mathematics* 328 (1999). Analyse numérique / Numerical Analysis, p. 817-822. ISSN: 0764-4442.
- [21] M. KAIBARA et S. M. GOMES. "A fully adaptive multiresolution scheme for shock computations". In: *Godunov Methods: Theory and Applications*. Sous la dir. d'E. F. TORO. Kluwer Academic/Plenum Publishers, 2001.
- [22] James Keener et James Sneyd. *Mathematical Physiology*. 1^{re} éd. Interdisciplinary Applied Mathematics. New York, NY: Springer, 1998, p. 281. ISBN: 978-0-387-22706-1. DOI: 10.1007/b98841.

BIBLIOGRAPHIE 73

[23] Christopher A. KENNEDY et Mark H. CARPENTER. "Additive RungeKutta schemes for convectiondiffusionreaction equations". In: *Applied Numerical Mathematics* 44.1 (2003), p. 139-181. ISSN: 0168-9274. DOI: https://doi.org/10.1016/S0168-9274(02)00138-1. URL: https://www.sciencedirect.com/science/article/pii/S0168927402001381.

- [24] Christopher A. Kennedy et Mark H. Carpenter. "Diagonally Implicit Runge-Kutta Methods for Ordinary Dierential Equations. A Review". In: *NASA STI Program* (2025).
- [25] Chung K. LAW. *Combustion Physics*. Cambridge: Cambridge University Press, 2006. DOI: 10. 1017/CB09780511754517.
- [26] Randall J. LeVeque. *Finite Difference Methods for Ordinary and Partial Differential Equations : Steady-State and Time-Dependent Problems.* Classics in Applied Mathematics. Philadelphia : Society for Industrial et Applied Mathematics, 2007. ISBN: 978-0-898716-29-0. DOI: 10.1137/1.9780898717839.
- [27] Randall J. LeVeque. *Numerical Methods for Conservation Laws*. Lectures in Mathematics ETH Zürich. Basel: Birkhäuser Verlag, 1990. ISBN: 978-3-7643-2464-3. DOI: 10.1007/978-3-0348-5116-9.
- [28] Marc Massot et Laurent Séries. Méthodes numériques avancées et HPC pour la simulation de phénomènes complexes: Cours 2 et 3 Méthodes temporelles à un pas et leur analyse. Palaiseau, France, 2023. URL: https://gitlab.labos.polytechnique.fr/cours_ams_x02/jupyterbook/-/raw/master/content/pdfs/Notes_AMSX02_AnalyseNumerique_Bases.pdf.
- [29] Iulian Munteanu et al. "Single-Particle Model of Li-ion Battery Model Calibration and Validation Against Real Data in an Electric Vehicular Application". In: IFAC-PapersOnLine 58.13 (2024). 12th IFAC Symposium on Control of Power & Energy Systems (CPES 2024), Rabat, Morocco, 10–12 July 2024, p. 23-30. ISSN: 2405-8963. DOI: 10.1016/j.ifacol.2024.07.454.
- [30] L. PARESCHI et G. RUSSO. *Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation*. 2010. arXiv:1009.2757 [math.NA]. URL:https://arxiv.org/abs/1009.2757.
- [31] Louis Reboul. "Development and analysis of efficient multi-scale numerical methods, with applications to plasma discharge simulations relying on multi-fluid models". 2024IPPAX134. Thèse de doct. 2024. URL: http://www.theses.fr/2024IPPAX134/document.
- [32] Diego ROSSINELLI et al. "Multicore/Multi-GPU Accelerated Simulations of Multiphase Compressible Flows Using Wavelet Adapted Grids". In: *SIAM Journal on Scientific Computing* 33.2 (2011), p. 512-540. DOI: 10.1137/100795930. URL: https://doi.org/10.1137/100795930.
- [33] Gilbert Strang. "On the construction and comparison of difference schemes". In: *SIAM Journal on Numerical Analysis* 5.3 (1968), p. 506-517.
- [34] Guglielmo VIVARELLI, Ning QIN et Shahrokh SHAHPAR. "A Review of Mesh Adaptation Technology Applied to Computational Fluid Dynamics". In: Fluids 10.5 (mai 2025). ISSN: 2311-5521. DOI: 10.3390/fluids10050129. URL: https://www.mdpi.com/2311-5521/10/5/129.

BIBLIOGRAPHIE 74

[35] Eva-Maria Wartha, Markus Bösenhofer et Michael Harasek. "Characteristic Chemical Time Scales for Reactive Flow Modeling". In: *Chemical Engineering & Technology* 44.7 (2021), p. 1240-1249. DOI: 10.1002/ceat.202000573.