Exercice 1 -

— Voir correction —

Soit $A = \begin{pmatrix} 0 & 8 \\ 1 & -7 \end{pmatrix}$. Montrer qu'il existe une matrice $B \in \mathcal{M}_2(\mathbb{R})$ telle que $B^3 = A$.

Exercice 2 -

Voir correction —

Soit A une matrice carrée de taille n telle que $A^4 = I_n$ et $A^3 \neq A$. Montrer que A n'est pas diagonalisable.

- Exercice 3 -

Soit ϕ l'application qui à tout polynôme P(X) associe le polynôme $\phi(P) = P(X) - (X-1)P'(X) + \frac{(X-1)^2}{2}P''(X)$.

- 1) Pour tout entier positif n, montrer que ϕ définit un endomorphisme sur $\mathbb{R}_n[x]$. déterminer son noyau.
- 2) On se place dans cette question uniquement dans le cas n=2 :déterminer la matrice représentative de ϕ dans la base canonique de $\mathbb{R}_2[X]$.
- 3) En fonction de n, combien ϕ admet-il de valeurs propres distinctes?

Exercice 4

Voir correction -

Soit $n \in \mathbb{N}^*$ et soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB est diagonalisable.

- 1) Montrer que si A ou B est inversible, alors BA est diagonalisable.
- 2) Si A et B ne sont pas inversible, a-t-on toujours ce résultat?

Exercice 5

—— Voir correction —

Soit a un réel non nul et $A=\begin{pmatrix}1&a&a^2\\1/a&1&a\\1/a^2&1/a&1\end{pmatrix}.$

1) Déterminer les valeurs propres et vecteurs propres de A. A est-elle diagonalisable?

On fixe un entier $n \ge 1$ et 2n réels a_1, \ldots, a_n et b_1, \ldots, b_n (certains d'entre eux peuvent être nuls). On note M la matrice $(a_ib_j)_{1 \leq i,j \leq n}$.

- 2) Montrer que M = A pour des paramètres n, a_i et b_j à préciser.
- 3) Donner les valeurs propres de M (et leur multiplicité) en fonction des a_i et des b_i dans le cas général, et indiquer une condition nécessaire et suffisante de diagonalisabilité de M.

Exercice 6 -

Voir correction —

On pose $E = \mathbb{R}_n[X]$ et on considère l'endomorphisme $f \in \mathcal{L}(E)$ défini par

$$\forall P \in \mathbb{R}_n[X], \quad f(P) = [(X^2 - 1)P']'$$

- 1) Calculer la matrice de f dans la base canonique.
- 2) Déterminer les valeurs propres de f.
- 3) Montrer que f est diagonalisable.

- Exercice 7 -

Voir correction -

Soit f un endomorphisme de $E = \mathbb{R}^n$ avec $n \ge 2$ tel que $\operatorname{rg}(f) \le 1$ et $f^3 + f = 0$.

- 1) Montrer que 0 est l'unique valeur propre de f.
- 2) On suppose que $f \neq 0_{\mathcal{L}(E)}$.
 - a) Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$
 - b) En déduire une contradiction. Conclure.

* * * *
Exercice 8 — Voir correction —

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que $u^3 - 5u^2 + 6u = 0$. Étudier la diagonalisabilité de u.

Soit E un \mathbb{R} -espace vectoriel de dimension n et u un endomorphisme nilpotent de E, de rang n-1.

- 1) Montrer que pour tout $k \in [0, n]$, $0 \le \dim(\operatorname{Im}(u^k)) \dim(\operatorname{Im}(u^{k+1})) \le 1$ Indication : appliquer le théorème du rang à la restriction de u à $\operatorname{Im}(u^k)$
- 2) Montrer que s'il existe $k_0 \in [0, n-1]$ tel que $\operatorname{Ker}(u^{k_0}) = \operatorname{Ker}(u^{k_0+1})$, alors $\operatorname{Ker}(u^{k_0}) = E$.
- 3) En déduire que la suite $(\dim(\operatorname{Ker}(u^k)))_{0 \leq k \leq n}$ forme une suite strictement croissante, puis que $\dim(\operatorname{Ker}(u^k)) = k$ pour tout $k \in [0, n]$.
- 4) Montrer que les seuls sous-espaces vectoriels de E stables par u sont les $Ker(u^k)$ pour $k \in [0, n]$.

On appelle **matrice stochastique** une matrice carrée à coefficients positifs telle que la somme des coefficients de chaque ligne soit égale à 1.

$$A = (a_{i,j})_{1 \leqslant i,j \leqslant n} \text{ est une matrice stochastique si } \left\{ \begin{array}{c} \forall (i,j) \in \llbracket 1,n \rrbracket^2, \ a_{i,j} \geq 0 \\ \forall i \in \llbracket 1,n \rrbracket, \ \sum_{j=1}^n a_{i,j} = 1 \end{array} \right..$$

- 1) Montrer que si A, B sont deux matrices stochastiques, alors AB est stochastique.
- 2) Montrer que si A est une matrice stochastique, alors 1 est valeur propre de A.
- 3) Montrer que toute valeur propre λ de A vérifie $|\lambda| \leq 1$

Soient A et B deux éléments de $\mathcal{M}_n(\mathbb{R})$, et I la matrice identité de taille n.

- 1) Montrer que s'il existe $\alpha \in \mathbb{R}$ tel que $AB BA = \alpha I$, alors A et B commutent.
- 2) Soit $W \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
 - a) Montrer que si W est diagonalisable, alors $tr(W) \neq 0$
 - b) Montrer que si $tr(W) \neq 0$, alors W est diagonalisable.
 - c) Montrer que si la trace de W est nulle, alors $W^2 = 0$
- 3) On suppose que V = AB BA est de rang 1. Montrer que pour tout entier k, $VA^kV = 0$. On pourra commencer par montrer que $(VA^k)^2 = 0$.

Le coin des khûbes

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que AB - BA = A

- 1) Pour tout $k \in \mathbb{N}$, montrer l'égalité $A^k B B A^k = k A^k$
- 2) L'ensemble des matrices nilpotentes forme-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?
- 3) Montrer que A est nilpotente en étudiant l'application $\varphi: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto MB BM$.

Soit E un \mathbb{R} -espace vectoriel de dimension finie et a et b deux réels **distincts**. on note Id_E l'application identité de E. Dans tout l'exercice, f désigne un endomorphisme de E vérifiant :

$$f^2 - (a+b)f + ab\mathrm{Id}_E = 0 \tag{1}$$

- 1) Quelles sont les homothéties vérifiant la relation (1)?
- 2) a) Déterminer une condition suffisante portant sur les deux réels a et b pour que f soit bijective. Calculer alors f^{-1} .
 - b) On suppose que f n'est pas une homothétie. Déterminer une condition nécessaire et suffisante portant sur les deux réels a et b pour que f soit un projecteur.

On suppose désormais que f n'est pas une homothétie.

- 3) a) Déterminer deux réels λ et μ tels que $f = \lambda(f a\mathrm{Id}_E) + \mu(f b\mathrm{Id}_E)$
 - b) En déduire qu'il existe deux projecteurs p et q tels que f = bp + aq et $p \circ p = p \circ q = 0$
- 4) On suppose désormais que a et b sont non nuls. Montrer que pour tout $n \in \mathbb{N}$, on a :

$$f^n = b^n p + a^n q \tag{2}$$

Pour tout entier n > 0 si f est bijective, on définit f^{-n} par $f^{-n} = (f^{-1})^n$. La relation (2) est-elle vérifiée pour tout $n \in \mathbb{Z}$?

Soit E un \mathbb{R} -espace vectoriel de dimension fini.

- 1) Soit u un endomorphisme diagonalisable de E. Montrer que si F est un sous-espace vectoriel de E stable par u, alors $u_{|F}$ est diagonalisable.
- 2) Soient u et v deux endomorphismes diagonalisables de E qui commutent. Montrer que u et v possèdent une base commune de diagonalisation, c'est à dire qu'il existe une base \mathcal{B} telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ et $\mathrm{Mat}_{\mathcal{B}}(v)$ sont toutes deux diagonales.
- 3) Soit f un endomorphisme inversible de E tel que f^2 et f^3 sont diagonalisables. Montrer que f est diagonalisable.

Correction des exercice

Correction de l'exercice 1 : L'idée est de d'abord diagonaliser A.

 $\det(A - XI) = (-5 - X)(-2 - X) - 18 = X^2 + 7X - 8 = (X + 8)(X - 1).$ Ce trinôme a deux racines : $X_1 = -8$ et $X_2 = 1$, donc

A a deux valeurs propres distinctes, 1 et
$$-8$$
. On en déduit que A est diagonalisable, donc qu'il existe une matrice P inversible telle que $P^{-1}AP = \begin{pmatrix} 1 & 0 \\ 0 & -8 \end{pmatrix}$. En posant $B = P \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} P^{-1}$, on a donc $B^3 = P \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}^3 P^{-1} = P \begin{pmatrix} 1 & 0 \\ 0 & -8 \end{pmatrix} P^{-1} = A$. Correction de l'exercice 2: X^4-1 est un polynôme annulateur de A et $X^4-1 = (X^2-1)(X^2+1) = (X-1)(X+1)(X^2+1)$.

Ses seules racines sont -1 et 1 donc ce sont les seules valeurs propres possibles de A.

Élever au carré une matrice diagonale avec seulement des -1 et des 1 sur la diagonale donne la matrice identité, Si A était diagonalisable, A^2 serait sembable à I_n donc égale à I_n . L'égalité $A^2 = I_n$ donnerait ensuite $A^3 = A$, ce qui contredit les hypothèses de l'énoncé. On en conclut que A n'est pas diagonalisable.

Correction de l'exercice 3:

- 1) Toutes les dérivées d'un polynôme sont des polynômes, un produit et une somme de polynôme est un polynôme donc si $P \in \mathbb{R}_n[x]$, $\phi(P)$ est un polynôme et on a : $\deg((X-1)P'(X)) = \deg(X-1) + \deg(P'(X)) \le 1 + n - 1 \le n$ et $\deg(\frac{(X-1)^2}{2}P''(X)) = \deg(\frac{(X-1)^2}{2}) + \deg(P''(X)) \le 2 + n - 2 \le n$, donc par somme $\deg(\phi(P)) \le n$ donc
- 2) Dans le cas n=2, une base possible de $\mathbb{R}_2[x]$ est $(1,X,X^2)$. On a $\phi(1)=1, \phi(X)=X-(X-1)=1$ et $\phi(X^2)=1$ $X^2 - 2X(X - 1) + 2\frac{(X - 1)^2}{2} = -X^2 + 2X + X^2 - 2X + 1 = 1.$ La matrice de ϕ dans cette base est donc $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
- 3) On peut constater que si P est de degré $k \leq n$, alors $\phi(P)$ est de degré inférieur ou égal à k. Ainsi, dans la base canonique $(1, X, X^2, \dots, X^n)$, la matrice de ϕ est triangulaire supérieure et ses valeurs propres se lisent alors sur la diagonale.

$$\forall k \in [\![,2,n]\!], \quad \phi(X^k) = X^k - k(X-1)X^{k-1} + k(k-1)\frac{X^2 - 2X + 1}{2}X^{k-2}$$

Le terme de degré k de $\phi(X^k)$ est donc $1-k+\frac{k(k-1)}{2}=\frac{k^2-3k+2}{2}$. La fonction $f:x\mapsto \frac{1}{2}(x^2-3x+2)$ a pour dérivée $f'(x)=x-\frac{3}{2}$ donc est strictement croissante sur $[2;+\infty[$. Ainsi, les valeurs $\frac{k^2-3k+2}{2}$ sont toutes distinctes lorsque k parcours $\mathbb{N}\setminus\{0,1\}$.

De plus, f(0) = 1 et f(1) = 0, et on savait déjà que 0 et 1 était valeur propre grâce à la question précédente. f(2) = 0redonne la valeur propre 0 et f(3) = 1 redonne la valeur propre 1. À partir de k = 4 on a $f(k) \ge 3$ donc on obtient uniquement de nouvelles valeurs propres

En conclusion, les valeurs propres de ϕ sont $\left\{\frac{k^2-3k+2}{2} \ , \ k \in [\![2,n]\!]\right\}$, cet endomorphisme possède doncn-1 valeurs propres distinctes.

Correction de l'exercice 4:

1) Supposons A inversible, alors $BA = A^{-1}ABA$ donc BA est semblable à AB. Puisque AB est diagonalisable, BA est semblable à une matrice diagonalisable donc diagonalisable. (En effet, il existe P inversible et D diagonale telles que $AB = PDP^{-1}$ donc $BA = A^{-1}PDP^{-1}A = (P^{-1}A)^{-1}D(P^{-1}A)$).

De même, supposons B inversible, alors $BA = BABB^{-1}$ donc BA est semblable à AB, donc est diagonalisable

2) Si A et B ne sont pas inversible ce résultat n'est plus vrai. On a par exemple avec $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, et $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ on a $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ donc AB est diagonale donc diagonalisable, mais $BA = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. BA n'est pas diagonalisable : en effet elle est triangulaire supérieure avec uniquement des 0 sur la diagonale. Si elle était diagonalisable elle aurait pour seule

Dans cet exemple AB est donc diagonalisable mais BA ne l'est pas.

valeur propre 0 donc serait égale à la matrice nulle.

Correction de l'exercice 5 :

1) On remarque que les trois colonnes de A sont colinéaires à la première, en la multipliant par a et par a².

Ainsi, A est de rang 1 donc son noyau est de dimension 2. De plus, on remarque que $A \begin{pmatrix} a^2 \\ a \\ 1 \end{pmatrix} = \begin{pmatrix} 3a^2 \\ 3a \\ 3 \end{pmatrix} = 3X$ donc

$$X = \begin{pmatrix} a^2 \\ a \\ 1 \end{pmatrix}$$
 est un vecteur propre associé à la valeur propre 3.

La somme des dimensions des sous espaces propres associés aux valeurs propres 3 et 0 est supérieure ou égale à 3 donc A est diagonalisable.

- 2) Pour n = 3 et $(a_1, a_2, a_3) = (1, a, a^2)$ et $(b_1, b_2, b_3) = (1, 1/a, 1/a^2)$ (c'est à dire $a_i = a^{i-1}$ et $b_j = a^{1-j}$) on a $a_i b_j = a^{i-j}$ et donc on a bien $A = (a_i b_j)_{1 \le i, j \le n}$.
- 3) Si M=0, elle est diagonalisable avec pour seule valeur propre 0.

Sinon, M est de rang 1 car toutes ses colonnes sont de la forme $b_j \cdot \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ donc toutes colinéaires. Ainsi 0 est valeur propre de M de multiplicité n-1.

Raisonnons par analyse synthèse : soit $\lambda \in \mathbb{R}^*$ et supposons qu'il existe $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que

$$MX = \lambda X$$
Puisque $\operatorname{Im}(M) = \operatorname{Vect}\left(\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}\right)$ et que $\lambda X \in \operatorname{Im}(M)$ alors $X \in \operatorname{Im}(M)$, il existe donc un réel μ tel que $X = \mu \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$.

On a alors

$$MX = \mu \cdot \begin{pmatrix} \sum_{j=1}^{n} a_1 b_j a_j \\ \sum_{j=1}^{n} a_2 b_j a_j \\ \vdots \\ \sum_{j=1}^{n} a_n b_j a_j \end{pmatrix} = \sum_{j=1}^{n} b_j a_j \begin{pmatrix} \mu a_1 \\ \mu a_2 \\ \vdots \\ \mu a_n \end{pmatrix} = \text{tr}(M) \cdot X$$

donc la valeur propre associée à X est tr(M).

Réciproquement, le même calcul montre que $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$ est un vecteur propre de M associé à la valeur propre $\operatorname{tr}(M)$.

En conclusion, il y a trois cas possibles :

- Ou bien $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = 0$, auquel cas M = 0 donc M est diagonalisable.
- Ou bien $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \neq 0$, et $\operatorname{tr}(M) \neq 0$, auquel cas M admet deux valeurs propres : 0, de multiplicité n-1, et $\operatorname{tr}(M)$, de multiplicité 1, et donc M est diagonalisable.
- Ou bien $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \neq 0$, $\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \neq 0$, et tr(M) = 0. Dans ce cas, la seule valeur propre de M est 0 mais M n'est pas la matrice nulle, donc M n'est pas diagonalisable.

Ainsi M est diagonalisable si et seulement si M = 0 ou si $tr(M) \neq 0$.

Correction de l'exercice 6 :

1) Pour P = 1, P' = 0 donc f(P) = 0Pour P = X, P' = 1 donc $f(P) = (X^2 - 1)' = 2X$ Pour $P = X^2$, P' = 2X donc $f(P) = (2(X^2 - 1)X)' = 4X^2 + 2(X^2 - 1) = 6X^2 - 2$ Pour $P = X^k$, $P' = kX^{k-1}$ donc $f(P) = (k(X^2 - 1)X^{k-1})' = 2kXX^{k-1} + k(k-1)(X^2 - 1)X^{k-2} = (k+k^2)X^k - (k^2 - k)X^{k-2}$.

2) Dans la base canonique, la matrice de f est une matrice triangulaire supérieure :

$$\operatorname{Mat}_{\mathcal{B}_0}(f) = \begin{pmatrix} 0 & 0 & -2 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 2 & 0 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & 6 & 0 & \cdots & \cdots & \cdots & 0 \\ \vdots & & \ddots & & & & \vdots \\ 0 & \cdots & \cdots & 0 & k^2 + k & 0 & \cdots & 0 \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & \cdots & \cdots & n^2 + n \end{pmatrix}$$

dont les coefficients diagonaux sont $(k^2 + k)_{0 \le k \le n}$. Ainsi, $sp(f) = \{k^2 + k \mid k \in [0, n]\}$.

3) Les valeurs propres de f sont toutes distinctes car la suite $(k^2 + k)_{k \in \mathbb{N}}$ est strictement croissante (différentes façon de le montrer : montrer que $u_{n+1} - u_n > 0$, montrer que $x \mapsto x^2 + x$ est strictement croissante sur $[0; +\infty[$, etc...). La matrice de f est de taille n+1 et elle a n+1 valeurs propres distinctes donc elle est diagonalisable.

Correction de l'exercice 7:

- 1) $X^3 + X$ est un polynôme annulateur de f. Comme $X^3 + X = X(X^2 + 1)$, sa seule racine est 0 donc la seule valeur propre possible de f est 0.
 - Comme f est de rang 0 ou 1 et que $\dim(E) \ge 2$, alors le théorème du rang donne $\dim(\operatorname{Ker}(f)) \ge 1$ donc 0 est valeur propre de f.
- 2) Supposons $f \neq 0$
 - a) Si f est de rang 0, alors f = 0 et le résultat est évident. Si f est de rang 1, il existe $x_0 \in E$ tel que $f(x_0) \neq 0$ et $\operatorname{Im}(f) = \operatorname{Vect}(x_0)$. De plus, $f(x_0) \in \operatorname{Im}(f)$ donc il existe λ_0 tel que $f(x_0) = \lambda_0 x_0$. Or 0 est la seule valeur propre de f donc $\lambda_0 = 0$. Ainsi, $f(x_0) = 0$ donc pour tout $y \in \operatorname{Im}(f)$, il existe μ tel que $y = \mu x_0$ et $f(y) = \mu f(x_0) = 0$. On en déduit que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$.
 - b) Pour tout $x \in E$, $f(x) \in \text{Im}(f)$ donc $f(x) \in \text{Ker}(f)$ et ainsi $f^2(x) = 0$. On a donc $f^2 = 0$ donc $f^3 = 0$ et donc f = 0, ce qui contredit l'hypothèse $f \neq 0$.

On en conclut que le seul endomorphisme f de E vérifiant $rg(f) \le 1$ et $f^3 + f = 0$ est l'endomorphisme nul.

Correction de l'exercice 8 : On remarque que $u^3 - 5u^2 + 6u = u \circ (u^2 - 5u + 6\mathrm{id}) = u \circ (u - 2\mathrm{id}) \circ (u - 3\mathrm{id})$. Ainsi, $\operatorname{Ker}(u \circ (u - 2\mathrm{id}) \circ (u - 3\mathrm{id})) = \operatorname{Ker}(0_{\mathcal{L}(E)}) = E$.

Première Méthode (avec $\dim(\operatorname{Ker}(f)\circ g)) \leq \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(g))$:

Montrons préalablement que si f et g sont deux endomorphismes d'un espace vectoriel E de dimension finie, alors $\dim(\operatorname{Ker}(f \circ g)) \leq \dim(\operatorname{Ker}(f)) + \dim(\operatorname{Ker}(g))$:

La restriction $f_{|\operatorname{Im}(g)}$ de f à $\operatorname{Im}(g)$ vérifie $\operatorname{Im}(f_{|\operatorname{Im}(g)}) = \operatorname{Im}(f \circ g)$, si on applique le théorème du rang à $f_{|\operatorname{Im}(g)}$ on obtient donc :

$$\dim(\operatorname{Im}(g)) = \operatorname{rg}(f_{|\operatorname{Im}(g)}) + \dim(\operatorname{Ker}(f_{|\operatorname{Im}(g)}))$$

$$n - \dim(\operatorname{Ker}(g)) = \operatorname{rg}(f \circ g) + \dim(\operatorname{Ker}(f_{|\operatorname{Im}(g)}))$$

$$n - \dim(\operatorname{Ker}(g)) = n - \dim(\operatorname{Ker}(f \circ g)) + \dim(\operatorname{Ker}(f_{|\operatorname{Im}(g)}))$$

d'où dim $(\text{Ker}(f \circ g)) = \text{dim}(\text{Ker}(g)) + \text{dim}(\text{Ker}(f_{|\text{Im}(g)}))$. Or $\text{Ker}(f_{|\text{Im}(g)}) \subset \text{Ker}(f)$ (car $x \in \text{Ker}(f_{|\text{Im}(g)}) \Rightarrow f_{|\text{Im}(g)}(x) = 0 \Rightarrow f(x) = 0$), d'où l'inégalité voulue.

D'après le cours, Ker(u), Ker(u-2id) et Ker(u-3id) sont en somme directe (avec éventuellement certains des ces sous-espaces vectoriels réduits à $\{0\}$). On a donc

$$\operatorname{Ker}(u) \oplus \operatorname{Ker}(u - 2\operatorname{id}) \oplus \operatorname{Ker}(u - 3\operatorname{id}) \subset E$$
 (1)

et puisque la somme est directe on a $\dim(\operatorname{Ker}(u) \oplus \operatorname{Ker}(u-2\operatorname{id}) \oplus \operatorname{Ker}(u-3\operatorname{id})) = \dim(\operatorname{Ker}(u)) + \dim(\operatorname{Ker}(u-2\operatorname{id})) + \dim(\operatorname{Ker}(u-3\operatorname{id})).$

D'après l'inégalité sur les noyaux montrée (qui s'étend par récurrence immédiate à une composition de plusieurs endomorphismes) :

$$\dim(\operatorname{Ker}(u \circ (u - 2\operatorname{id}) \circ (u - 3\operatorname{id})) \leq \underbrace{\dim(\operatorname{Ker}(u)) + \dim(\operatorname{Ker}(u - 2\operatorname{id})) + \dim(\operatorname{Ker}(u - 3\operatorname{id}))}_{=\dim(\operatorname{Ker}(u) \oplus \operatorname{Ker}(u - 2\operatorname{id}) \oplus \operatorname{Ker}(u - 3\operatorname{id}))}$$
(2)

Or $u \circ (u - 2id) \circ (u - 3id) = 0$ donc $\operatorname{Ker}(u \circ (u - 2id) \circ (u - 3id)) = \operatorname{Ker}(0) = E$ et donc l'inégalité (2) donne

$$\dim(E) \leq \dim(\operatorname{Ker}(u) \oplus \operatorname{Ker}(u-2\mathrm{id}) \oplus \operatorname{Ker}(u-3\mathrm{id})) \leq \dim(E)$$

Donc toutes ces inégalités sont des égalités et l'inclusion (1) est une égalité. Ainsi, $E = \text{Ker}(u) \oplus \text{Ker}(u - 2\text{Id}) \oplus \text{Ker}(u - 3\text{Id})$ donc u est diagonalisable avec $\text{Sp}(u) \subset \{0, 2, 3\}$.

Remarque : On peut appliquer cette méthode dès lors qu'on dispose d'un polynôme annulateur de u qui est scindé à racines simples, c'est à dire qui s'écrit sous la forme $\prod_{k=1}^{n} (X - \lambda_k)$ avec tous les λ_k distincts.

Seconde méthode (par analyse-synthèse) : Soit $x \in E$. On cherche à écrire x sous la forme $x = x_1 + x_2 + x_3$ avec $x_1 \in \text{Ker}(u), x_2 \in \text{Ker}(u-2\text{id})$ et $x_3 \in \text{Ker}(u-3\text{id})$. Supposons que ce soit le cas et appliquons u, on obtient

$$u(x) = 0 + 2x_2 + 3x_3$$

en appliquant de nouveau u:

$$u^2(x) = 4x_2 + 9x_3$$

On résout le système
$$\begin{cases} 2x_2 + 3x_3 &= u(x) \\ 4x_2 + 9x_3 &= u^2(x) \end{cases}$$
 et on trouve
$$\begin{cases} x_2 &= \frac{1}{2}(3u(x) - u^2(x)) \\ x_3 &= \frac{1}{3}(-2u(x) + u^2(x)) \end{cases}$$
.

Réciproquement, si on pose $x_2 = \frac{1}{2}(3u(x) - u^2(x)), x_3 = \frac{1}{3}(-2u(x) + u^2(x))$ et $x_1 = x - x_2 - x_3 = x - \frac{5}{6}u(x) + \frac{1}{6}u^2(x)$, alors

$$u(x_2) - 2x_2 = \frac{1}{2}(3u^2(x) - u^3(x)) - 3u(x) + u^2(x) = \frac{1}{2}(-u^3(x) + 5u^2(x) - 6u(x)) = 0 \quad \text{car } u^3 - 5u^2 + 6u = 0$$

on a bien $x_2 \in \text{Ker}(u - 2id)$.

$$u(x_3) - 3x_3 = \frac{1}{3}(-2u^2(x) + u^3(x)) + 2u(x) - u^2(x) = \frac{1}{3}(u^3(x) - 5u^2(x) + 6u(x)) = 0$$

on a bien $x_3 \in \text{Ker}(u - 3id)$

$$u(x_1) = u(x) - \frac{5}{6}u^2(x) + \frac{1}{6}u^3(x) = \frac{1}{6}(u^3(x) - 5u^2(x) + 6u(x)) = 0$$

On a bien $x_1 \in \text{Ker}(u)$.

 $\overline{\text{Ainsi}, x \in \text{Ker}(u) + \text{Ker}(u - 2\text{id})} + \text{Ker}(u - 3\text{id}), \text{ donc } E = \text{Ker}(u) \oplus \text{Ker}(u - 2\text{id}) \oplus \text{Ker}(u - 3\text{id}), u \text{ est donc diagonalisable avec } \operatorname{Sp}(u) \subset \{0; 2; 3\}.$

Correction de l'exercice 9 :

1) On sait que pour tout $k \in \mathbb{N}$, $\operatorname{Im}(u^{k+1}) \subset \operatorname{Im}(u^k)$ donc $\operatorname{dim}(\operatorname{Im}(u^k)) - \operatorname{dim}(\operatorname{Im}(u^{k+1})) \geq 0$. Considérons la restriction de u à $\operatorname{Im}(u^k)$ et appliquons le théorème du rang

$$\dim(\operatorname{Im}(u^k)) = \operatorname{rg}(u_{|\operatorname{Im}(u^k)}) + \dim(\operatorname{Ker}(u_{|\operatorname{Im}(u^k)}))$$
$$= \operatorname{rg}(u^{k+1}) + \dim(\operatorname{Ker}(u) \cap \operatorname{Im}(u^k))$$

Or $\operatorname{rg}(u) = n - 1$ donc $\dim(\operatorname{Ker}(u)) = 1$ et donc $\dim(\operatorname{Ker}(u) \cap \operatorname{Im}(u^k)) \leq 1$, d'où le résultat.

- 2) Supposons qu'il existe $k_0 \in [0, n-1]$ tel que $\operatorname{Ker}(u^{k_0}) = \operatorname{Ker}(u^{k_0+1})$. Montrons par récurrence la propriété $\mathcal{P}(k)$: $\operatorname{Ker}(u^k) = \operatorname{Ker}(u^{k+1})$ pour $k \geq k_0$
 - Initialisation : La propriété est vraie pour $k=k_0$ par hypothèse
 - **Hérédité :** Supposons la propriété vraie pour un rang k. On sait que $Ker(u^{k+1}) \subset Ker(u^{k+2})$, montrons l'inclusion réciproque :

soit $x \in \text{Ker}(u^{k+2})$. Alors $u(x) \in \text{Ker}(u^{k+1})$ mais $\text{Ker}(u^{k+1}) = \text{Ker}(u^k)$ par hypothèse de récurrence, donc $u^k(u(x)) = 0$, autrement dit $u^{k+1}(x) = 0$ et donc $x \in \text{Ker}(u^{k+1})$. Ainsi $\text{Ker}(u^{k+2}) \subset \text{Ker}(u^{k+1})$

— Conclusion : Par principe de récurrence on en conclut que pour tout $k \ge k_0$ on a $\operatorname{Ker}(u^k) = \operatorname{Ker}(u^{k+1})$

Or on sait que u est nilpotente donc $u^n = 0$, et $Ker(u^n) = Ker(0) = E$, donc $Ker(u^{k_0}) = E$.

3) Pour tout $k \in [0, n-1]$, $\operatorname{Ker}(u^k) \subset \operatorname{Ker}(u^{k+1})$ donc la suite $(\dim(\operatorname{Ker}(u^k)))_{0 \le k \le n}$ est croissante. Supposons qu'elle ne soit pas strictement croissante, alors il existe un rang $k_0 \in [0, n-1]$ tel que $\dim(\operatorname{Ker}(u^{k_0})) = \dim(\operatorname{Ker}(u^{k_0+1}))$, donc $\operatorname{Ker}(u^{k_0}) = \operatorname{Ker}(u^{k_0+1})$. On en déduit d'après la question précédente que $\operatorname{Ker}(u^{k_0}) = E$.

Ainsi d'après le théorème du rang, $\dim(\operatorname{Im}(u^{k_0})) = 0$. Mais $\operatorname{rg}(u) = n - 1$ et le rang de u^k ne décroit au plus que de 1 en 1 d'après la question 1. On ne peut donc avoir $\dim(u^k) = 0$ que pour $k \geq n$. Contradiction, donc la suite $\dim(\operatorname{Ker}(u^k))_{0 \leq k \leq n}$ est strictement croissante.

Puisque $\dim(\operatorname{Ker}(u^0)) = \dim(\operatorname{Ker}(\operatorname{id})) = 0$ et que $\dim(\operatorname{Ker}(u^n)) = n$, on en déduit que pour tout $k \in [0, n]$, $\dim(\operatorname{Ker}(u^k)) = k$.

4) Les $\operatorname{Ker}(u^k)$ sont stables par uRéciproquement, soit F un sous-espace vectoriel de E stable par u. $u_{|F}$ est aussi nilpotente donc en prenant $k = \dim(F)$ on a $u_{|F}^k = 0$. Ainsi, $F \subset \operatorname{Ker}(u^k)$, et puisque $\dim(\operatorname{Ker}(u^k)) = k$ on en conclut par égalité des dimensions que $F = \operatorname{Ker}(u^k)$. Ainsi, les seuls sous-espaces vectoriels de E stables par u sont bien les $\operatorname{Ker}(u^k)$.

Correction de l'exercice 10:

1) Supposons que $A=(a_{i,j})_{1\leqslant i,j\leqslant n}$ et $B=(b_{i,j})_{1\leqslant i,j\leqslant n}$ sont deux matrices stochastiques. Posons $C=(c_{i,j})_{1\leqslant i,j\leqslant n}=AB$. Alors pour tout $(i,j)\in [\![1,n]\!]^2$, $c_{i,j}=\sum_{k=1}^n a_{i,k}b_{k,j}$ donc $c_{i,j}\geq 0$ comme somme de termes positifs, et

$$\forall i \in [\![1,n]\!], \quad \sum_{j=1}^n c_{i,j} = \sum_{j=1}^n \sum_{k=1}^n a_{i,k} b_{k,j}$$

$$= \sum_{k=1}^n a_{i,k} \sum_{j=1}^n b_{k,j}$$

$$= \sum_{k=1}^n a_{i,k} \qquad \text{car } B \text{ est stochastique}$$

$$= 1 \qquad \text{car } A \text{ est stochastique}$$

donc C = AB est stochastique.

- 2) 1
est valeur propre de A pour le vecteur $\begin{pmatrix} 1\\1\\.\\.\\1 \end{pmatrix}$
- 3) Soit λ une valeur propre de A. Alors il existe un vecteur colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $AX = \lambda X$, ce qui se traduit par

$$\forall i \in [1, n], \quad \sum_{j=1}^{n} a_{i,j} x_j = \lambda x_i$$

Choisissons $i_0 \in [\![1,n]\!]$ tel que $|x_{i_0}| = \max_{i \in [\![1,n]\!]} |x_i|$ et appliquons la valeur absolue à l'égalité précédemment obtenue :

$$\left| \sum_{j=1}^{n} a_{i_0,j} x_j \right| = |\lambda| \times |x_{i_0}|$$

donc par inégalité triangulaire :

$$|\lambda| \times |x_{i_0}| \le \sum_{j=1}^n a_{i_0,j}|x_j| \le \sum_{j=1}^n a_{i_0,j}|x_{i_0}|$$

par définition de i_0 , et car pour tout (i,j), $a_{i,j} \ge 0$. Puisque $\sum_{j=1}^n a_{i_0,j} = 1$, on en déduit finalement que $|\lambda| \times |x_{i_0}| \le |x_{i_0}|$. Or x_{i_0} est nécessairement non nul car $X \ne 0$. On en déduit finalement que $|\lambda| \le 1$.

Correction de l'exercice 11:

- 1) Si $AB BA = \alpha I$ avec $\alpha \in \mathbb{R}$, alors $\operatorname{tr}(AB BA) = \operatorname{tr}(\alpha I) = n\alpha$. Or, $\operatorname{tr}(AB BA) = \operatorname{tr}(AB) \operatorname{tr}(BA) = 0$ donc nécessairement $\alpha = 0$ et on a alors AB BA = 0 donc AB = BA.
- 2) a) Supposons W diagonalisable. Puisque W est de rang 1, donc 0 est valeur propre de W et le sous-espace propre associé, $\operatorname{Ker}(W)$, est de dimension n-1. W a donc au plus une autre valeur propre λ , et $\lambda \neq 0$ sinon W serait nulle donc de rang 0. Le sous-espace propre associé à λ est de dimension 1 donc il existe une matrice inversible P

telle que
$$W = PDP^{-1}$$
 avec $D = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$.

On a alors $tr(W) = \lambda \neq 0$.

b) Supposons que $tr(W) \neq 0$

Soit $w \in \mathcal{L}(\mathbb{R}^n)$ l'application canoniquement associée à W. Im(w) est de dimension 1 donc si $e_1 \in \text{Im}(w)$ est non nul on peut le compléter en une base (e_1, e_2, \dots, e_n) de \mathbb{R}^n . Dans cette base, la matrice de w est de la forme

$$W' = \begin{pmatrix} w_1 & w_2 & \cdots & w_n \\ 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{pmatrix} \text{ avec } (w_1, w_2, \dots, w_n) \neq (0, 0, \dots, 0) \text{ et } W \text{ est donc semblable à cette matrice.}$$

Deux matrices semblable ont la même trace donc $\operatorname{tr}(W) = w_1$. Si $\operatorname{tr}(W) \neq 0$, alors $w_1 \neq 0$ donc w_1 est une valeur propre non nulle de W' donc de W (car W' est triangulaire supérieure). On en déduit que W est diagonalisable $\operatorname{car} \dim(\operatorname{Ker}(W)) = n - 1$ et $\dim(E_{w_1}) \geq 1$.

- c) Si $\operatorname{tr}(W) = 0$, alors $w(e_1) = 0$ et puisque $\forall k \geq 2$, $w(e_k) = w_k \cdot e_1$ on a $w^2(e_k) = w_k \cdot w(e_1) = 0$. Puisque w^2 est nulle sur une base de \mathbb{R}^n elle est nulle sur \mathbb{R}^n , donc $W^2 = 0$.
- 3) Soit $k \in \mathbb{N}$. V est de rang 1 donc VA^k est de rang inférieur ou égal à 1. Si VA^k est de rang 0, alors $VA^kV = 0$ et il n'y a plus rien à montrer.

Supposons donc que VA^k est de rang 1 alors on peut appliquer les résultats de la question 2. Puisque $\operatorname{tr}(VA^k) = \operatorname{tr}(ABA^k - BA^{k+1}) = \operatorname{tr}(ABA^k) - \operatorname{tr}(BA^{k+1}) = \operatorname{tr}(BA^{k+1}) - \operatorname{tr}(BA^{k+1}) = 0$, on a $(VA^k)^2 = 0$ d'après la question 2)c).

Cela implique que $\operatorname{Im}(VA^k) \subset \operatorname{Ker}(VA^k)$.

Puisque V est de rang 1 et que $\operatorname{Im}(VA^k) \subset \operatorname{Im}(V)$, on a $\operatorname{Im}(V) = \operatorname{Im}(VA^k)$ par égalité des dimensions, donc $\operatorname{Im}(V) \subset \operatorname{Ker}(VA^k)$ d'où $VA^kV = 0$.

Correction de l'exercice 12:

1) Pour k = 0 on a:

$$A^k B - BA^k = B - B = 0 \quad \text{et} \quad kA^k = 0$$

donc l'égalité est vraie pour k=0.

Si elle est vraie pour un entier k, alors

$$kA^{k+1} = A(A^kB - BA^k)$$
$$= A^{k+1}B - ABA^k$$

Or on a AB = A + BA d'après l'égalité de départ donc :

$$= A^{k+1}B - (A + BA)A^{k}$$
$$= A^{k+1}B - BA^{k+1} - A^{k+1}$$

d'où $A^{k+1}B - BA^{k+1} = kA^{k+1} + A^{k+1} = (k+1)A^{k+1}$.

- 2) Non, par exemple pour n = 2 si $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ alors $A^2 = B^2 = 0$ et pourtant $A + B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ne l'est pas, donc l'ensemble des matrices nilpotentes n'est pas stable par addition.
- 3) φ est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$ (facile) et d'après la question 1), A^k est valeur propre de φ associé à la valeur propre k pour tout entier k.

Si on avait $A^k = \neq 0$ pour une infinité de valeurs de k, alors φ aurait une infinité de valeurs propres distinctes correspondant à ces valeurs de k. Ceci est impossible donc il existe $k \in \mathbb{N}$ tel que $A^k = 0$.

Correction de l'exercice 13:

1) Supposons que f est une homothétie de rapport $\lambda \in \mathbb{R}$ vérifiant la relation (1). On a $f = \lambda \operatorname{Id}_E$ donc $f^2 = \lambda^2 \operatorname{Id}_E$ et ainsi :

$$f^{2} - (a+b)f + ab\operatorname{Id}_{E} = 0 \Longrightarrow (\lambda^{2} - (a+b)\lambda + ab)\operatorname{Id}_{E} = 0$$
$$\Longrightarrow \lambda^{2} - (a+b)\lambda + ab = 0$$
$$\Longrightarrow (\lambda - a)(\lambda - b) = 0$$
$$\Longrightarrow \lambda = a \quad \text{ou} \quad \lambda = b$$

donc $\lambda \in \{a; b\}$. Réciproquement, si $\lambda = a$ alors $f^2 - (a+b)f + ab \operatorname{Id}_E = (a^2 - (a+b)a + ab)\operatorname{Id}_E = 0$ et de même si $\lambda = b$.

Les homothéties qui vérifient (1) sont donc les homothéties de rapport a ou b.

2) La relation (1) est équivalente à $f \circ (f - (a + b) Id_E) = -ab Id_E$. Si a et b sont non nuls, alors $ab \neq 0$ et on peut écrire :

$$f \circ \frac{-1}{ab}(f - (a+b)\mathrm{Id}_E) = \mathrm{Id}_E$$

donc f est inversible et $f^{-1} = \frac{-1}{ab}(f - (a+b)\mathrm{Id}_E)$.

3) Raisonnons par analyse synthèse : si f est un projecteur, alors $f^2=f$ donc la relation (1) donne :

$$(1 - a - b)f + ab\mathrm{Id}_E = 0$$

Si $a + b \neq 1$, alors $f = -\frac{ab}{1 - a - b} Id_E$ donc f est un homothétie. On a donc nécessairement a + b = 1 et la relation 1 donne $abId_E = 0$ donc a = 0 ou b = 0.

On a donc nécessairement $(a, b) \in \{(1, 0); (0, 1)\}.$

Réciproquement, supposons que a = 1 et b = 0, alors la relation (1) donne :

$$f^2 - f = 0$$

donc f est un projecteur.

4) Raisonnons par analyse-synthèse : supposons que λ et μ sont deux réels tels que $f = \lambda(f - a \operatorname{Id}_E) + \mu(f - b \operatorname{Id}_E)$. Alors :

$$(1 - \lambda - \mu)f + (\lambda a + \mu b)\mathrm{Id}_E = 0$$

or f n'est pas une homothétie donc la famille (Id_E, f) est libre donc

$$\begin{cases} 1 - \lambda - \mu &= 0 \\ \lambda a + \mu b &= 0 \end{cases}$$

d'où l'on déduit que $\lambda = \frac{b}{b-a}$ et $\mu = \frac{a}{a-b}$ (car a et b sont distincts).

Réciproquement, on a bien :

$$\frac{b}{b-a}(f-a\mathrm{Id}_E) + \frac{a}{a-b}(f-b\mathrm{Id}_E) = \left(\frac{b}{b-a} - \frac{a}{b-a}\right)f + \left(\frac{-ab}{b-a} + \frac{-ab}{a-b}\right)\mathrm{Id}_E$$
$$= f$$

5) Posons $p = \frac{1}{h-a}(f-a\mathrm{Id}_E)$ et $q = \frac{1}{a-b}(f-b\mathrm{Id}_E)$. On a alors:

$$p^{2} = \frac{1}{(b-a)^{2}} (f^{2} - 2af + a^{2} \operatorname{Id}_{E})$$

$$= \frac{1}{(b-a)^{2}} ((a+b)f - ab \operatorname{Id}_{E} - 2af + a^{2} \operatorname{Id}_{E})$$

$$= \frac{1}{(b-a)^{2}} ((b-a)f - a(b-a) \operatorname{Id}_{E})$$

$$= \frac{1}{b-a} (f - a \operatorname{Id}_{E})$$

$$= p$$
en utilisant (1) pour exprimer f^{2}

et on vérifie de même que $q^2 = q$.

On a aussi:

$$p \circ q = \frac{-1}{(b-a)^2} (f - a \operatorname{Id}_E) \circ (f - b \operatorname{Id}_E)$$

$$= 0 \qquad \operatorname{car} (X - a)(X - b) \text{ est un polynôme annulateur de } f \text{ d'après } (1)$$

et $p \circ q = q \circ p$ car deux polynômes de l'endomorphisme f commutent.

6) La relation est vraie pour n=1 d'après la question précédente et si $f^n=b^np+a^nq$ pour un certain entier n alors :

$$f^{n+1} = (bp + aq) \circ (b^n p + a^n q)$$

$$= b^{n+1} p^2 + b \underbrace{p \circ q}_{=0} + a \underbrace{q \circ p}_{=0} + a^{n+1} q^2$$

$$= b^{n+1} p + a^{n+1} q$$

donc par récurrence elle est vraie pour tout entier n.

Montrons que $f^{-1} = b^{-1}p + a^{-1}q$:

$$(b^{-1}p + a^{-1}q) \circ (bp + aq) = bb^{-1}p^2 + aa^{-1}q = p^2 + q^2 = p + q$$

Or $p+q=\frac{1}{b-a}(f-a\mathrm{Id}_E)-\frac{1}{b-a}(f-b\mathrm{Id}_E)=\frac{b-a}{b-a}\mathrm{Id}_E=\mathrm{Id}_E$ donc $b^{-1}p+a^{-1}q$ est bien l'inverse de f, et par récurrence immédiate on montre de même que $f^{-n}=(f^{-1})^n=b^{-n}p+a^{-n}q$. La relation (1) est donc vérifiée pour tout entier $n\in\mathbb{Z}^*$.

Enfin, $f^0 = \operatorname{Id}_E$ et $b^0 p + a^0 q = p + q = \operatorname{Id}_E$

Correction de l'exercice 14:

1) Soient $E_{\lambda_1},...,E_{\lambda_r}$ les sous-espaces propres de u. On a alors $E=E_{\lambda_1}\oplus...\oplus E_{\lambda_r}$. Pour tout $k\in\{1,...,r\}$ posons $F_k=F\cap E_{\lambda_k}$ et montrons que

$$F = F_1 + \cdots + F_r$$

Attention : dans le cas général on a $F \cap (E_1 + \cdots + E_r) \neq (F \cap E_1) + \cdots + (F \cap E_r)$ (ex avec F = Vect((1, 1)), $E_1 = \text{Vect}((1, 0))$ et $E_2 = \text{Vect}((0, 1))$, il faut donc utiliser ici le fait que F est stable par u.

Soit $x \in F \cap (E_{\lambda_1} + \dots + E_{\lambda_r})$, alors $x = x_1 + \dots + x_r$ avec pour tout $k \in \{1, \dots, r\}$, $x_k \in E_{\lambda_k}$ et $x \in F$.

Alors $u(x) = \lambda_1 x_1 + \dots + \lambda_r x_r \in F$ et $\lambda_r x = \lambda_r x_1 + \dots + \lambda_r x_r \in F$ donc en faisant la différence en obtient :

$$(\lambda_1 - \lambda_r)x_1 + \dots + (\lambda_{r-1} - \lambda_r)x_r \in F$$

On réitère jusqu'à obtenir x_1 in F, puis on déduit en remontant les itérations $x_2 \in F$ et ainsi de suite jusqu'à $x_r \in F$. Ainsi on a bien $x \in (F \cap E_1) + \cdots + (F \cap E_r)$.

De plus, les (F_k) sont en somme directe car les E_{λ_k} le sont d'après le cours, donc finalement $F = F_1 \oplus F_2 \oplus \cdots \oplus F_r$. Sur chaque F_k on a $u_{F_k} = \lambda_k \operatorname{Id}_{F_k}$ donc F est somme de sous-espaces propres de u_F , donc u_F est diagonalisable.

2) Commençons par montrer que les sous-espaces propres de u sont stables par v: notons $(E_{\lambda})_{\lambda \in Spec(u)}$ les sous-espaces propres de u. Soit $\lambda \in Spec(u)$, alors pour tout $x \in E_{\lambda}$ on a $u(v(x)) = v(u(x)) = v(\lambda x) = \lambda v(x)$ car u et v commutent, donc $v(x) \in E_{\lambda}$. Ainsi E_{λ} est stable par v.

Chaque restriction $v_{|E_{\lambda}}$ est diagonalisable sur E_{λ} d'après la 1ère question car v est diagonalisable. Ainsi pour chaque $\lambda \in Spec(u)$ il existe une base $\mathcal{B}_{\lambda} = (e_1^{\lambda},...,e_{r_{\lambda}}^{\lambda})$ de E_{λ} dans laquelle v est diagonale, et tous les vecteurs de cette base sont des vecteurs propres de u puisqu'ils sont dans E_{λ} .

En regroupant toutes les bases \mathcal{B}_{λ} pour toutes les valeurs de λ dans Spec(u) on obtient une base de E dans laquelle les matrices de u et v sont diagonale.

3) f^2 et f^3 commutent car $f^2 \circ f^3 = f^5 = f^3 \circ f^2$, donc d'après la question 2) il existe une base \mathcal{B} telle que $\mathrm{Mat}_{\mathcal{B}}(f^2)$ et $\mathrm{Mat}_{\mathcal{B}}(f^3)$ sont diagonales. Leurs valeurs propres sont non nulles car f est inversible donc f^2 et f^3 le sont aussi.

Pour un vecteur e de la base \mathcal{B} , il existe $\lambda \in \mathbb{R}^*$ et $\mu \in \mathbb{R}^*$ tels que $f^2(e) = \lambda e$ et $f^3(e) = \mu e$.

Alors $f^2(e) = \lambda e \Rightarrow f^3(e) = \lambda f(e)$ donc $\mu e = \lambda f(e)$ donc $f(e) = \frac{\mu}{\lambda} e$. Ainsi e est un vecteur propre de f associé à la valeur propre $\frac{\mu}{\lambda}$.

La base \mathcal{B} est donc une base de vecteurs propres de f, la matrice représentative de f dans cette base est donc diagonale donc f est diagonalisable.

