HW#4 Report

-Calculation about electrical parameters of NMOS-

♦ Reference: "Effects of high-K dielectrics with metal gate for electrical characteristics of 18nm NMOS device", Norani Bte Atan, Ibrahim Bin Ahmad, ICSE2014, 27-29 Aug. 2014. (DOI: 10.1109/SMELEC.2014.6920794)

Purpose

We will understand the electrical characteristics of NMOS for several dielectrics. Additionally, there are no mention about the width(W) of NMOS in this reference. Thus, we'll calculate the value of W by using the saturation mode I_D equation.

Parameters

- L = 18nm
- temperature = 25°C
- dielectric thickness = 130Å
- dielectric material = $Al_2O_3(k\sim9)$, $HfO_2(k\sim25)$, $TiO_2(k\sim85)$

♦ I_D-V_D, I_D-V_G characteristics

Figure 1. I_D - V_D characteristic at V_{GS} =2.6V

Figure 2. I_D - V_G characteristic at V_{DS} =1.4V

♦ I_{ON}, I_{OFF} characteristics

Figure 3. I_{ON} for each dielectrics

Figure 4. I_{off} for each dielectrics(V_{GS}=0V, V_{DS}=V_{DD})

Figure 5. I_{ON} / I_{OFF} ratio for each dielectrics

- We will analyze the electrical characteristics for only Al₂O₃ case.

Parameter	Al ₂ O ₃
V _{th} (V)	0.302651
I _{ON} (A/μm)	4.721x10 ⁻⁴
I _{OFF} (A/μm)	2.365x10 ⁻¹⁵
I _{ON} / I _{OFF}	1.996x10 ¹¹

Table 1. Specific values for Al_2O_3 case (I fixed the value of I_{ON} , I_{OFF})

The I_{OFF} value of AI_2O_3 is $2.365x10^{-6}$ nA/ μ m and the I_{OFF} value of our text book Fig. 2.20, oxide case, is $27nA/\mu$ m. I think that there is something wrong calculation with the I_{OFF} value of this paper because it's much smaller than our text book value. Of course the temperature of our text book is 70° C, and the temperature of this reference is 25° C, so the leakage current of our text book should be higher than this reference. However, even with this in mind, this difference is too huge. Thus, this value should be modified.

♦ C_{ox} calculation

$$C_{Al_2O_3} = \frac{\varepsilon_{Al_2O_3}}{t_{Al_2O_2}} = \frac{9.34 \times 8.85 \times 10^{-12}}{130 \times 10^{-10}} = 6.358 \text{ fF/}\mu\text{m}^2$$

\spadesuit μ_{eff-n} calculation

- We will use Eq. 2.23 from our text book to evaluate the μ_{eff-n} , value with the conditions from **Figure 1.**; V_{GS} =2.6V, V_{th} = 0.3026V, t_{Al2O3} =13nm.

$$\mu_{eff-n} = \frac{540}{1 + \left(\frac{2.6 + 0.3026}{0.54 \times 13}\right)^{1.85}} = 451.8 \frac{cm^2}{V \cdot s} = 451.8 \times 10^8 \frac{\mu m^2}{V \cdot s}$$

Of course, this equation is valid for oxide interface, but we'll use this equation for convenience.

♦ W calculation

- From **Figure 1.**, we can know that I_D =0.0001A at V_{GS} =2.6V. Thus, we can calculate width of this NMOS device by those parameters.

$$W = \frac{2LI_D}{\mu_{eff,n}C_{Al_2O_3}V_{ov}^2} = 2.369 \text{ nm}$$

Thus, we can calculate the width of this NMOS device to 2.369 nm. Although there are some assumptions for Al_2O_3 dielectric, but our result may near with the real width because the result has nm scale.