Print('____')

Print-Plant

Problemática

Los agricultores no presentan sistemas de información que los ayuden a prever los mejores momentos para cultivar.

Consecuencias

Las pérdidas de cosechas son comunes en el país debido a la incapacidad de predecir con mayor certeza la llegada y efecto del fenómeno del niño o de la niña.

Solución

Desarrollar un algoritmo que procese los datos disponibles y los presenta en una manera mas organizada y eficiente para encontrar los micro-climas mas óptimos para la producción agrícola de diferentes cultivos.

Print-Plant

Queremos que el agricultor pueda responder

¿Cuál es el porcentaje de éxito de cada cultivo en cada zona, teniendo en cuenta los datos históricos que se tienen? ¿Que zona es mejor para cada cultivo dependiendo el momento del año?

Cómo llegamos a la página

- Temperatura
- Humedad

import pandas as pd											
<pre>df = pd.read_csv('DatafE.csv') df</pre>											
	Fecha	RSSID	VBat	VIn	humedad	irradiancia	precipitacion	presion	temperatura	Nane	
0	2022-03-10	-54.352080	3.864793	3.443567	65.925216	13.257973	0.0	893.579773	26.471980	E2_00020	
1	2022-03-11	-47.095139	4.136003	4.982577	60.724895	6.209209	0.0	894.695983	26.917351	E2_00020	
2	2022-03-12	-47.492874	4.152114	4.982824	62.689425	4.593925	0.0	894.190516	27.236085	E2_00020	
3	2022-03-13	-52.373470	4.152721	4.984325	59.449725	4.107051	0.0	895.693409	26.911476	E2_00020	
4	2022-03-14	-52.306015	4.156373	4.984279	60.640508	3.773909	0.0	894.774151	27.534984	E2_00020	
1594	2022-02-13	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	E2_00015	
1595	2022-02-14	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	E2_00015	
1596	2022-02-15	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	E2_00015	
1597	2022-02-16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	E2_00015	
1598	2022-02-17	-53.360000	4.183000	0.000000	92.779814	32.727177	0.0	902.681177	25.786400	E2_00015	
1599 r	1599 rows × 10 columns										

Ecuación

$$\%Eficiencia = media \left(\frac{\sum f_{frec} \in temperatura}{\sum f_{frec} \in total} \right)$$

Trabajo a futuro

- Complementar el analisis con datos externos como los del IDEAM.
- Usar otros métodos como inteligencia artificial para estimar o realizar predicciones.
- Utilizar metodos para completar datos faltantes.