BGSE MSc in Data Science - Stochastic Models and Optimization Instructor: Mihalis G. Markakis

Problem Set 3

Problem 1 (Inventory Control with Forecasts - [B05] Exercise 4.3)

Consider an inventory control problem with no fixed ordering cost. At the beginning of each period k the inventory manager, in addition to knowing the current inventory level x_k , receives an accurate forecast that the demand w_k will be selected in accordance with one out of two probability distributions P_l , P_s (large demand, small demand). The a priori probability of a large demand forecast, q, is also known to the manager.

- (a) Obtain the optimal ordering policy for the standard Newsvendor problem (i.e., single period and accounting for inventory holding and backorder costs, but *not* for variable ordering cost). Is it an open-loop policy like in the no-forecast case, or a closed-loop one?
- (b) Obtain the optimal inventory replenishment policy for the standard multi-period problem (accounting for variable ordering, inventory holding, and backorder costs). *Hint:* Consider an augmented state for the system (x_k, y_k) , with x_k governed by the standard inventory dynamics while $y_{k+1} = \xi_k$, where ξ_k takes the value "large demand" with probability q, and the value "small demand" otherwise.

Problem 2 (Inventory Pooling)

Consider the single period multi-location Newsvendor model: n different locations face independent and Normally distributed demands with mean μ and variance σ^2 . The goal is to cover these demands with the minimum expected cost. The inventory holding cost and backorder cost parameters, h and b respectively, are the same in every location.

One approach is to cover each demand from an individual inventory repository at each location; we call this the *decentralized system*. Clearly, this is equivalent to having n standard (single period, single location) Newsvendor problems. Thus, the optimal order quantity at each location is Q^* and the optimal expected cost of the whole system equal to $nG(Q^*)$.

An alternative strategy is to satisfy all demands from a central inventory repository; we call this the *pooled system*. Let Q_p^* be the optimal order quantity in the pooled system and $G_p(Q_p^*)$ the optimal expected cost.

Show that $nG(Q^*)/G_p(Q_p^*) = \sqrt{n}$. How do you interpret this result?

Hint: First show that

$$Q_p^* = \sqrt{n}Q^* + \mu(n - \sqrt{n}),$$

and then use it to prove the desired result. Take advantage of the fact that if D_1, D_2, \ldots, D_n are independent random variables, distributed identically to a Normal distribution with mean μ and

finite variance, then

$$\sum_{i=1}^{n} D_i \stackrel{d}{=} \sqrt{n} D_1 + \mu (n - \sqrt{n}).$$

Problem 3 (An Investment Problem - [B05] Exercise 4.13)

An investor has the opportunity to make (up to) N sequential investments: at time k he may invest any amount $u_k \geq 0$ that does not exceed his current wealth x_k (defined to be his initial wealth, x_0 , plus his gain or minus his loss thus far). He wins his investment back and as much more with probability p, where 1/2 , and he loses his investment with probability <math>(1 - p). Find the optimal investment strategy.

Hint: Consider the logarithm of the investor's wealth after the N^{th} investment as the objective function, and prove that $J_k(x_k) = A_k + \ln(x_k)$, where A_k is independent of x_k .

Problem 4 (Asset Selling with Maintenance Cost - [B05] Exercise 4.16)

Suppose that a person wants to sell a house and an offer comes at the beginning of each day. We assume that successive offers are independent and an offer is w_j with probability p_j , j = 1, ..., n, where w_j are given nonnegative scalars. Any offer not immediately accepted is not lost but may be accepted at any later date. Also, a maintenance cost c is incurred for each day that the house remains unsold. The objective is to maximize the seller's profit when there is a deadline to sell the house within N days. Characterize the optimal policy.

Hint: Determine the one-step stopping set and use the fact that

$$h(x) = \sum_{j=1}^{n} p_j \max(x, w_j) - x$$

is a nonincreasing function.

Problem 5 (Scheduling Problem - [B05] Exercise 4.28)

Consider a quiz contest where a person is given a list of N questions and can answer these questions in any order she chooses. Question i will be answered correctly with probability p_i , and the contestant will then receive a reward $R_i > 0$; if the question is not answered correctly then the quiz terminates and the contestant is allowed to keep her previous earnings minus a penalty $F_i \geq 0$. The problem is to choose the ordering of questions so as to maximize expected rewards.

- (a) Use an interchange argument to show that it is optimal to answer the questions in order of decreasing $(p_iR_i (1-p_i)F_i)/(1-p_i)$.
 - (b) Solve a variant of the problem where there is a no-cost option to stop answering questions.

Hint: A simpler version of the quiz problem is solved in Lecture 6 of Dimitri Bertsekas' slides.