Introduction to Machine learning

Why learning

- Machine learning is programming computers to optimize a performance criterion using example data or past experience
 - Learning general models from a data of particular examples
 - Build a model that is a good and useful approximation to the data.

 Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.

When learning

- Machine learning is suitable for problems where:
 - A pattern exists
 - We can not pin it down mathematically
 - We have data on it

- Learning is used when:
 - Human expertise does not exist (navigating on Mars)
 - Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)

How to do the learning

If you don't know how to solve a problem, write it out as an optimization problem

Learning vs Programming

Traditional Programming

The Learning algorithm is implemented as a program

Learning vs Programming

The Learning algorithm is implemented as a program

Classification

Classification assigns data items to target categories or classes

Classification

The problem of classification is defined as:

• Given: A set of training data

 $(x_1, y_1), ... (x_n, y_n)$ where x_i in \mathbb{R}^n and y_i is the class label

• Find : A classification function

 $f: \mathbb{R}^n \to \{c_1, \dots, c_k\}$ which classifies well additional samples $\{x_k\}$

k is the number of classes

Classification

Binary vs multiclass classification

Classification vs regression

Regression

Regression is the task of predicting a continuous quantity

Classification is the task of predicting a discrete class label

But, generally models return numbers (probability,)

ML: Classification methods

Approaches to learn classifiers/predictors:

- Linear classifiers: linear Regression,
 Bayesian classifier
- Support Vector Machines (SVM)
- Decision trees
- Random Forest
- K-Nearest Neighbor
- Neural Networks

What the matter between the different machine learning algorithms?

ML: Main components

- Model representation (hypothesis space, aka learning model):
 - Structure of the functional form of the knowledge to be extracted (Trees, partition, graph,...)
- Search method (learning algorithm):
 - Strategy used to explore the search space and find the optimal or "good" model (backpropagation, local search, divide-and-conquer, greedy search, ...)
- Objectif function (cost function):
 - Measure the quality of the model (Gini, Entropy, RMSE, logloss, ...)

A toy model: Learning A Decision Stump "Search and Score"

Supervised Learning

Egg	Milk	Fish	Wheat	Shellfish	Peanuts		Sick?
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1
0.3	0	1.2	0.3	0.10	0.01		1

- Input for an example (day of the week) is a set of features/attributes (quantities of food).
- Output is a desired class label (whether or not we got sick).
- Our objective:
 - Use data to find a model that outputs the right label based on the features.
 Whether foods will make you sick (even with new combinations).
 - This framework can be applied any problem where we have input/output examples.

Decision Trees

- Decision trees are simple programs consisting of:
 - A nested sequence of "if-else" decisions based on the features (splitting rules).
 - A class label as a return value at the end of each sequence.
 - Example decision tree:

Can draw sequences of decisions as a tree:

Decision Trees

- There are many possible decision trees.
 - We're going to search for one that is good at our supervised learning problem.
- So our input is data and the output will be a program.
 - This is called "training" the supervised learning model.
 - Different than usual input/output specification for writing a program.
- Supervised learning is useful when you have lots of labeled data BUT:
 - 1. Problem is too complicated to write a program ourselves.
 - 2. Human expert can't explain why you assign certain labels. OR
 - 3. We don't have a human expert for the problem.

Decision Stumps

• - Simple decision tree with 1 splitting rule based on thresholding 1 feature.

- How do we find the best "rule" (feature, threshold, and leaf labels)?
 - 1. Define a 'score' for the rule.
 - 2. Search for the rule with the best score.

Decision Stumps: Accuracy Score

- Most intuitive score: classification accuracy.
 - "If we use this rule, how many examples do we label correctly?"
- Computing classification accuracy for (egg > 1):
 - Find most common labels if we use this rule:
 - When (egg > 1), we were "sick" 2 times out of 2.
 - When (eqq \leq 1), we were "not sick" 3 times out of 4.
 - Compute accuracy:
 - The accuracy ("score") of the rule (egg > 1) is 5 times out of 6.
- This "score" evaluates quality of a rule.
 - We "learn" a decision stump by finding the rule with the best score.

Milk	Fish	Egg
0.7	0	1
0.7	0	2
0	0	0
0.7	1.2	0
0	1.2	2
0	0	0

Si	ck?
	1
	1
	0
	0
	1
	0

Learning A Decision Stump: By Hand

• Let's search for the decision stump maximizing classification score:

Milk	Fish	Egg	Sick?
0.7	0	1	1
0.7	0	2	1
0	1.2	0	0
0.7	1.2	0	0
0	1.3	2	1
0	0	0	0

- First we check "baseline rule" of predicting mode (no split): this gets 3/6 accuracy.
- If (milk > 0) predict "sick" (2/3) else predict "not sick" (2/3): 4/6 accuracy
- If (fish > 0) predict "not sick" (2/3) else predict "sick" (2/3): 4/6 accuracy If (fish > 1.2) predict "sick" (1/1) else predict "not sick" (3/5): 5/6 accuracy
- If (egg > 0) predict "sick" (3/3) else predict "not sick" (3/3): 6/6 accuracy If (egg > 1) predict "sick" (2/2) else predict "not sick" (3/4): 5/6 accuracy
- Highest-scoring rule: (egg > o) with leaves "sick" and "not sick".
- Notice we only need to test feature thresholds that happen in the data:
 - There is no point in testing the rule (egg > 3), it gets the "baseline" score.
 - There is no point in testing the rule (egg > 0.5), it gets the (egg > 0) score.
 - Also note that we don't need to test "<", since it would give equivalent rules.

Learning A Decision Stump: Training

What we want to do is :

- Training phase:
 - Use 'X' and 'y' to find a 'model' (like a decision stump).
- Prediction phase:
 - Given an example x_i , use 'model' to predict a label ' y_i ' ("sick" or "not sick").
- Training error:
 - Fraction of times our prediction \$\frac{1}{2}_i\$ does not equal the true \$y_i\$ label

Learning A Decision Stump: Cost

- Assume we have:
 - 'n' examples (days that we measured).
 - 'd' features (foods that we measured).
 - 'k' thresholds (>0, >1, >2, ...) for each feature.
- Computing the score of one rule costs O(n):
 - We need to go through all 'n' examples to find most common labels.
 - We need to go through all 'n' examples again to compute the accuracy.
- We compute score for up to k*d rules ('k' thresholds for each of 'd' features):
 - So we need to do an O(n) operation k*d times, giving total cost of O(ndk).

Learning A Decision Stump: Cost

- Size of the input data is O(nd):
 - If 'k' is small then the cost is roughly the same cost as loading the data.
 - We should be happy about this, you can learn on any dataset you can load!
 - If 'k' is large then this could be too slow for large datasets.
- Example: if all our features are binary then k=1, just test (feature > 0):
 - Cost of fitting decision stump is O(nd), so we can fit huge datasets.
- Example: if all our features are numerical with unique values then k=n.
 - Cost of fitting decision stump is O(n²d).
 - We don't like having n² because we want to fit datasets where 'n' is large!

Learning A Decision Stump: conclusion

- Decision stumps have only 1 rule based on only 1 feature.
 - Very limited class of models: usually not very accurate for most tasks.

- Decision trees allow sequences of splits based on multiple features.
 - Very general class of models: can get very high accuracy.
 - However, it's computationally infeasible to find the best decision tree.

- Most common decision tree learning algorithm in practice:
 - Greedy recursive splitting.

Sick?

1

• Start with the full dataset:

Milk ...

0.7

0.7

0

Find the decision stump with the best score:

Split into two smaller datasets based on stump:

1	0.6	1				•		
_		_		Spl	it into	o two	smalle	r
1	0	0						ĺ
2	0.6	1		Egg	Milk	•••	Sick?	
		_		0	0		0	
0	1	1		1	0		0	
2	0	1)			U		U	
_	0.0			2	0		1	
0	0.3	0		0	0.3		0	
1	0.6	0	>	0	0.5		U	
_				2	0		1	
2	0	1						
				Ma	ilk 50	5		
				,,,	110 V	,		

sees basea on seomp.					
Egg	Milk		Sick?		
0	0.7		1		
1	0.7		1		
1	0.6		1		
2	0.6		1		
0	1		1		
1	0.6 70 5		0		
	30.5				

We now have a decision stump and two datasets:

Fit a decision stump to each leaf's data.

Milk		Sick?
0		0
0		0
0		1
0.3		0
0		1
	0 0 0 0.3	0 0 0 0.3

find stamp

Egg	Milk	 Sick?
0	0.7	1
1	0.7	1
1	0.6	1
2	0.6	1
0	1	1
1	0.6	0

We now have a decision stump and two datasets:

Egg	Milk	•••	Sick?
0	0		0
1	0		0
2	0		1
0	0.3		0
2	0		1

Egg	Milk	 Sick?
0	0.7	1
1	0.7	1
1	0.6	1
2	0.6	1
0	1	1
1	0.6	0

Fit a decision stump to each leaf's data. Then add these stumps to the tree.

This gives a "depth 2" decision tree:

It splits the two datasets into four datasets:

	γilK	< 0,5	dalu
Egg	Milk		Sick?
0	0		0
1	0		0
2	0		1
0	0.3		0
2	0		1

	Milk	70.5	data
Egg	Milk		Sick?
0	0.7		1
1	0.7		1
1	0.6		1
2	0.6		1
0	1		1
1	0.6		0

111-00-11

Much more accurate!

Egg	Milk	 Sick?
0	0	0
1	0	0
0	0.3	0

Egg	Milk	 Sick?
2	0	1
2	0	1

\	1 milk < 0.5, egg >1 milk > 0.5, lactuse €0 milk > 0.5, lactuse > 6										
V	mill	< U.	5, e 94 >	m	/k > 6.5	, la	ctuse = 0	milk	70.5	lucta	s _c >6
gg	Milk	•••	Sick?	Egg	Milk		Sick?	Egg	Milk		Sick?
2	0		1	0	0.7		1	1	0.6		0
2	0		1	1	0.7		1				
				1	0.6		1				
				2	0.6		1				

We could try to split the four leaves to make a "depth 3" decision tree:

We might continue splitting until:

- The leaves each have only one label.
- We reach a user-defined maximum depth.
- Shouldn't we just use accuracy score?
 - For leafs: yes, just maximize accuracy.
 - For internal nodes: not necessarily.
- Maybe no simple rule like (egg > 0.5) improves accuracy.
 - But this doesn't necessarily mean we should stop!

We could try to split the four leaves to make a "depth 3" decision tree:

We might continue splitting until:

- The leaves each have only one label.
- We reach a user-defined maximum depth.
- Shouldn't we just use accuracy score?
 - For leafs: yes, just maximize accuracy.
 - For internal nodes: not necessarily.
- Maybe no simple rule like (egg > 0.5) improves accuracy.
 - But this doesn't necessarily mean we should stop!

- Consider a dataset with 2 features and 2 classes ('x' and 'o').
 - Because there are 2 features, we can draw 'X' as a scatterplot.
 - Colours and shapes denote the class labels 'y'.

$$X = \begin{cases} 1.2 & 2.1 \\ 3.3 & 1.4 \\ 2.0 & 2.1 \\ 7.2 & 2.1 \\ 4.0 & 34 \end{cases}$$

$$Y = \begin{cases} 70 & 20 & 0.00 & 0.00 \\ 70$$

- A decision stump would divide space by a horizontal or vertical line.
 - Testing whether $x_{i_1} > t$ or whether $x_{i_2} > t$.
- On this dataset no horizontal/vertical line improves accuracy.
 - Baseline is 'o', but need to get many 'o' wrong to get one 'x' right.