Objectives

Solve logarithmic equations

A logarithmic equation is one that involves logarithmic functions.

A logarithmic equation is one that involves logarithmic functions.

$$\log_2(x) = 3$$

A logarithmic equation is one that involves logarithmic functions.

$$\log_2(x) = 3$$

General Techniques for Solving Logarithmic Equations

• Isolate the logarithmic function.

General Techniques for Solving Logarithmic Equations

- Isolate the logarithmic function.
 - If convenient, express both sides as logs with the same base and equate the arguments of the log functions.

General Techniques for Solving Logarithmic Equations

- Isolate the logarithmic function.
 - If convenient, express both sides as logs with the same base and equate the arguments of the log functions.
 - Else, rewrite the log equation as an exponential equation.

For Instance

$$\log_2(x) = 3$$

For Instance

$$\log_2(x) = 3$$
$$2^3 = x$$

For Instance

$$\log_2(x) = 3$$
$$2^3 = x$$
$$x = 8$$

Domain Issues

Important

The domain of $\log_b(x)$ is x > 0

Check your answers!!!

(a)
$$\log_{117}(1-3x) = \log_{117}(x^2-3)$$

(a)
$$\log_{117}(1-3x) = \log_{117}(x^2-3)$$

 $1-3x = x^2-3$ Equality Prop.
 $x^2+3x-4=0$

(a)
$$\log_{117}(1-3x) = \log_{117}(x^2-3)$$

 $1-3x = x^2-3$ Equality Prop.
 $x^2+3x-4=0$
 $x=-4,\ 1$

Checking x = -4:

Checking
$$x = -4$$
:

Checking x = -4:

Checking x = 1:

Checking x = -4:

Checking x = 1: X

Checking
$$x = -4$$
:

Checking
$$x = 1$$
: X

$$x = -4$$

(b)
$$2 - \ln(x - 3) = 1$$

(b)
$$2 - \ln(x - 3) = 1$$

 $- \ln(x - 3) = -1$

(b)
$$2 - \ln(x - 3) = 1$$

 $- \ln(x - 3) = -1$
 $\ln(x - 3) = 1$

(b)
$$2 - \ln(x - 3) = 1$$

 $-\ln(x - 3) = -1$
 $\ln(x - 3) = 1$
 $e^1 = x - 3$ Write in expon. form

(b)
$$2 - \ln(x - 3) = 1$$

 $-\ln(x - 3) = -1$
 $\ln(x - 3) = 1$
 $e^1 = x - 3$ Write in expon. form
 $x = e + 3$

(b)
$$2 - \ln(x - 3) = 1$$

 $-\ln(x - 3) = -1$
 $\ln(x - 3) = 1$
 $e^1 = x - 3$ Write in expon. form
 $x = e + 3$
 $x \approx 5.7183$

Checking x = e + 3:

Checking
$$x = e + 3$$
:

Checking
$$x = e + 3$$
: $\sqrt{ }$ $x = e + 3 \approx 5.7183$

(c)
$$\log_6(x+4) + \log_6(3-x) = 1$$

(c)
$$\log_6(x+4) + \log_6(3-x) = 1$$

 $\log_6((x+4)(3-x)) = 1$ Prod. Property

(c)
$$\log_6(x+4) + \log_6(3-x) = 1$$
 $\log_6((x+4)(3-x)) = 1$ Prod. Property $\log_6(-x^2-x+12) = 1$

(c)
$$\log_6(x+4)+\log_6(3-x)=1$$
 $\log_6((x+4)(3-x))=1$ Prod. Property $\log_6(-x^2-x+12)=1$ Write in expon. form

Example 1
$$\log_6(x+4) + \log_6(3-x) = 1$$

Checking x = -3:

Example 1
$$\log_6(x+4) + \log_6(3-x) = 1$$

Checking
$$x = -3$$
:

Example 1 $\log_6(x+4) + \log_6(3-x) = 1$

Checking x = -3:

Checking x = 2:

Example 1 $\log_6(x+4) + \log_6(3-x) = 1$

Checking
$$x = -3$$
:

Checking
$$x = 2$$
:

Example 1 $\log_6(x+4) + \log_6(3-x) = 1$

Checking
$$x = -3$$
: ✓

Checking
$$x = 2$$
:

$$x = -3, 2$$

(d)
$$\log_7(1-2x) = 1 - \log_7(3-x)$$

(d)
$$\log_7(1-2x) = 1 - \log_7(3-x)$$

 $\log_7(1-2x) + \log_7(3-x) = 1$

(d)
$$\log_7(1-2x) = 1 - \log_7(3-x)$$

 $\log_7(1-2x) + \log_7(3-x) = 1$
 $\log_7((1-2x)(3-x)) = 1$

Prod. Prop.

(d)
$$\log_7(1-2x) = 1 - \log_7(3-x)$$

 $\log_7(1-2x) + \log_7(3-x) = 1$
 $\log_7((1-2x)(3-x)) = 1$
 $\log_7(2x^2 - 7x + 3) = 1$

Prod. Prop.

(d)
$$\log_7(1-2x) = 1 - \log_7(3-x)$$

 $\log_7(1-2x) + \log_7(3-x) = 1$
 $\log_7\left((1-2x)(3-x)\right) = 1$ Prod. Prop.
 $\log_7\left(2x^2 - 7x + 3\right) = 1$
 $2x^2 - 7x + 3 = 7$ Write in expon. form

(d)
$$\log_7(1-2x)=1-\log_7(3-x)$$
 $\log_7(1-2x)+\log_7(3-x)=1$ $\log_7\left((1-2x)(3-x)\right)=1$ Prod. Prop. $\log_7\left(2x^2-7x+3\right)=1$ $2x^2-7x+3=7$ Write in expon. form $2x^2-7x-4=0$

(d)
$$\log_7(1-2x) = 1 - \log_7(3-x)$$

 $\log_7(1-2x) + \log_7(3-x) = 1$
 $\log_7\left((1-2x)(3-x)\right) = 1$ Prod. Prop.
 $\log_7\left(2x^2 - 7x + 3\right) = 1$
 $2x^2 - 7x + 3 = 7$ Write in expon. form
 $2x^2 - 7x - 4 = 0$
 $x = -\frac{1}{2}, 4$

Checking
$$x = -\frac{1}{2}$$

Example 1
$$\log_7(1-2x) = 1 - \log_7(3-x)$$

Checking
$$x = -\frac{1}{2}$$

Checking
$$x = -\frac{1}{2}$$
 \checkmark

Checking
$$x = 4$$

Checking
$$x = -\frac{1}{2}$$
 \checkmark

Checking
$$x = 4$$
 X

Checking
$$x = -\frac{1}{2}$$
 \checkmark

Checking
$$x = 4$$
 X

$$x = -\frac{1}{2}$$

(e)
$$\log_2(x+3) = \log_2(6-x) + 3$$

(e)
$$\log_2(x+3) = \log_2(6-x) + 3$$

 $\log_2(x+3) - \log_2(6-x) = 3$

(e)
$$\log_2(x+3) = \log_2(6-x) + 3$$

 $\log_2(x+3) - \log_2(6-x) = 3$
 $\log_2\left(\frac{x+3}{6-x}\right) = 3$

Quotient Prop.

(e)
$$\log_2(x+3) = \log_2(6-x) + 3$$

$$\log_2(x+3) - \log_2(6-x) = 3$$

$$\log_2\left(\frac{x+3}{6-x}\right) = 3$$
 Quotient Prop.
$$\frac{x+3}{6-x} = 2^3$$
 Write in expon. form

(e)
$$\log_2(x+3) = \log_2(6-x) + 3$$

 $\log_2(x+3) - \log_2(6-x) = 3$
 $\log_2\left(\frac{x+3}{6-x}\right) = 3$ Quotient Prop.
 $\frac{x+3}{6-x} = 2^3$ Write in expon. form
 $\frac{x+3}{6-x} = 8$ $2^3 = 8$

(e)
$$\log_2(x+3) = \log_2(6-x) + 3$$
 $\log_2(x+3) - \log_2(6-x) = 3$ Quotient Prop.
$$\frac{x+3}{6-x} = 2^3$$
 Write in expon. form
$$\frac{x+3}{6-x} = 8$$
 $2^3 = 8$
$$x+3 = 8(6-x)$$
 Eliminate the fraction

Example 1
$$\log_2(x+3) = \log_2(6-x) + 3$$

$$x+3=8(6-x)$$

$$x + 3 = 8(6 - x)$$

 $x + 3 = 48 - 8x$

$$x + 3 = 8(6 - x)$$
$$x + 3 = 48 - 8x$$
$$x = 5$$

$$x + 3 = 8(6 - x)$$
$$x + 3 = 48 - 8x$$
$$x = 5$$

Checking x = 5:

$$x + 3 = 8(6 - x)$$
$$x + 3 = 48 - 8x$$
$$x = 5$$

Checking
$$x = 5$$
:

(f)
$$1 + 2\log_4(x+1) = 2\log_2(x)$$

(f)
$$1 + 2\log_4(x+1) = 2\log_2(x)$$

$$\log_4(x+1) = \frac{\log_2(x+1)}{\log_2(4)}$$

(f)
$$1 + 2\log_4(x+1) = 2\log_2(x)$$

$$\log_4(x+1) = \frac{\log_2(x+1)}{\log_2(4)}$$

$$= \frac{\log_2(x+1)}{2}$$

(f)
$$1 + 2\log_4(x+1) = 2\log_2(x)$$
$$\log_4(x+1) = \frac{\log_2(x+1)}{\log_2(4)}$$
$$= \frac{\log_2(x+1)}{2}$$
$$1 + 2\left(\frac{\log_2(x+1)}{2}\right) = 2\log_2(x)$$

(f)
$$1 + 2\log_4(x+1) = 2\log_2(x)$$
$$\log_4(x+1) = \frac{\log_2(x+1)}{\log_2(4)}$$
$$= \frac{\log_2(x+1)}{2}$$
$$1 + 2\left(\frac{\log_2(x+1)}{2}\right) = 2\log_2(x)$$
$$1 + \log_2(x+1) = \log_2(x^2)$$

(f)
$$1 + 2\log_4(x+1) = 2\log_2(x)$$
$$\log_4(x+1) = \frac{\log_2(x+1)}{\log_2(4)}$$
$$= \frac{\log_2(x+1)}{2}$$
$$1 + 2\left(\frac{\log_2(x+1)}{2}\right) = 2\log_2(x)$$
$$1 + \log_2(x+1) = \log_2(x^2)$$
$$1 = \log_2(x^2) - \log_2(x+1)$$

Example 1
$$1 + 2 \log_4(x+1) = 2 \log_2(x)$$

$$1 = \log_2\left(\frac{x^2}{x+1}\right)$$

$$1 = \log_2\left(\frac{x^2}{x+1}\right)$$
$$2^1 = \frac{x^2}{x+1}$$

$$1 = \log_2\left(\frac{x^2}{x+1}\right)$$
$$2^1 = \frac{x^2}{x+1}$$
$$2 = \frac{x^2}{x+1}$$

$$1 = \log_2\left(\frac{x^2}{x+1}\right)$$
$$2^1 = \frac{x^2}{x+1}$$
$$2 = \frac{x^2}{x+1}$$
$$2x + 2 = x^2$$

$$1 = \log_2\left(\frac{x^2}{x+1}\right)$$
$$2^1 = \frac{x^2}{x+1}$$
$$2 = \frac{x^2}{x+1}$$
$$2x + 2 = x^2$$
$$x^2 - 2x - 2 = 0$$

$$1 = \log_2\left(\frac{x^2}{x+1}\right)$$
$$2^1 = \frac{x^2}{x+1}$$
$$2 = \frac{x^2}{x+1}$$
$$2x + 2 = x^2$$
$$x^2 - 2x - 2 = 0$$
$$x = 1 \pm \sqrt{3}$$

$$x = 1 + \sqrt{3} \qquad \qquad x = 1 - \sqrt{3}$$

$$x = 1 + \sqrt{3}$$
 $x = 1 - \sqrt{3}$ $x \approx 2.7321$ $x \approx -0.7321$

$$x = 1 + \sqrt{3}$$
 $x = 1 - \sqrt{3}$ $x \approx 2.7321$ $x \approx -0.7321$

$$x = 1 + \sqrt{3}$$
 $x = 1 - \sqrt{3}$ $x \approx 2.7321$ $x \approx -0.7321$

 $x \approx 2.7321$