Машинное обучение, 20!7

Спасибо К. В. Воронцову, МФТИ, Data Factory Яндекса и кофеину.

Малютин Е. А.

Содержание

Планчик

- Коротко о деревьях
- Случайные леса
- Композиции
- XGBoost

Деревья

Зачем?

- бывают категориальные данные
- бывают сложности с метриками
- обратимся, например, к регрессии
 - легко обучается
 - восстанавливает только простые зависимости
 - усложнение через спрямляющие пространства (и не только)

Рис.: Схема работы врача в Николаевской больнице 👩 🗸 😩 🖎 😩 🔊 🔾 🗞

Решающие деревья

Условия:

lacktriangle Самый популярный вариант: $[x_j < t]$

Прогноз в листе

- Регрессия
 - вещественное число
- Классификация
 - класс
 - распределение вероятностей над классами

Обучение деревьев

Поиск разбиения

- $lue{}$ пусть в вершине m оказалась выборка X_m
- $lackbox{ } Q(X_m,j,t)$ критерий ошибки условия $[x^j < t]$
- lacktriangle ищем лучшие параметры перебором j и t:

$$Q(X_m,j,t) \to \min_{j,t}$$

 \blacksquare разбиваем X_m на две части

$$X_I = \{x \in X_m \mid [x^j \le t]\}$$

$$X_r = \{x \in X_m \mid [x^j \le t]\}$$

смыть – повторить

Критерий останова:

■ В какой момент прекращать разбиение?

Критерии информативности

Обобщённый критерий ошибки:

$$Q(X_m, j, t) = \frac{|X_I|}{X_m} H(X_I) + \frac{|X_r|}{X_m} H(X_r)$$

Критерий информативности:

- *H*(*x*)
- \blacksquare Зависит от ответов на выборке X_m
- lacktriangle Чем меньше разброс ответов, тем меньше значение H(x)

Критерии информативности:

Регрессия

$$ar{y}(X) = rac{1}{|X_m|} \sum y_i$$
 – среднее

$$lackbr{\blacksquare} H(X) \; = \; rac{1}{|X_m|} \sum (y_i - ar{y}(X))^2 -$$
 банальная дисперсия

Критерии информативности

Классификация

Тут все немного сложнее:

■ Введём вспомогательную величину:

$$p_k = \frac{1}{|X|} \sum_{i \in X} [y_i = k]$$

■ Критерий Джини:

$$H(X) = \sum_{k=1}^K p_k (1 - p_k);$$

если
$$p_1=1$$
; $p_2=p_3=...=p_K=0$, то $H(X)=0$

Критерии информативности

Классификация

Тут все немного сложнее:

■ Введём вспомогательную величину:

$$p_k = \frac{1}{|X|} \sum_{i \in X} [y_i = k]$$

Критерий Джини:

$$H(X) = \sum_{k=1}^{K} p_k (1 - p_k);$$

если
$$p_1=1$$
; $p_2=p_3=...=p_K=0$, то $H(X)=0$

Энтропийный критерий:

$$H(X) = \sum_{k=1}^{K} p_k \ln(p_k);$$

Деревья

Резюме

- Легкость интерпретации результатов
- Не требует выбора входных атрибутов (сам выберет значимые)
- Точность модели сопоставима с другими методами (напр., НС (#антихайп))
- Быстрый процесс обучения
- Возможность обработки пропущенных значений
- Хорошо работают с категориальными типами данных
- Легко переобучаются
- Неустойчивы
- Пруннинг долго и дорого

Деревья

Рис.: Классификация здорового человека

Рис.: Классификация курильщика

Мотивация

Рис.: Переобучили

Рис.: Выкинули пару элементов

Идеи

■ Берём, и обучаем N деревьев

Идеи

- Берём, и обучаем N деревьев
- 1. Усредняем

Идеи

- Берём, и обучаем N деревьев
- 1. Усредняем

$$a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x) -$$
 для регрессии

Идеи

- Берём, и обучаем N деревьев
- 1. Усредняем
 - $a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$ для регрессии $a(x) = \frac{1}{N} sign(\sum_{n=1}^{N} b_n(x))$

Идеи

- Берём, и обучаем N деревьев
- 1. Усредняем
 - $a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x) -$ для регрессии
 $a(x) = \frac{1}{N} sign(\sum_{n=1}^{N} b_n(x))$
- 2. Рандомизация

Малютин Е. А. Композиции 12/24

Идеи

- Берём, и обучаем N деревьев
- 1. Усредняем
 - lacksquare $a(x) = rac{1}{N} \sum_{n=1}^{N} b_n(x)$ для регрессии
 - $a(x) = \frac{1}{N} sign(\sum_{n=1}^{N} b_n(x))$
- 2. Рандомизация
 - Бутстрап: выборка из I элементов с возвращениями. Вероятность конкретно элемента попасть в выборку $-\frac{2}{3}$

Идеи

- Берём, и обучаем N деревьев
- 1. Усредняем
 - lacksquare $a(x) = rac{1}{N} \sum_{n=1}^{N} b_n(x)$ для регрессии
 - $a(x) = \frac{1}{N} sign(\sum_{n=1}^{N} b_n(x))$
- 2. Рандомизация
 - Бутстрап: выборка из I элементов с возвращениями. Вероятность конкретно элемента попасть в выборку $-\frac{2}{3}$
 - Случайные подмножества: размер как гиперпараметр

Рис.: 100 деревьев на бутстрапе

Разложение ошибки:

- Шум компонента ошибки алгоритма, которая будет проявляться даже на идеальной модели в этой задаче.
- Смещение отклонение, усредненного по различным обучающим выборкам, прогноза заданной модели от прогноза идеальной модели.
- Разброс дисперсия ответов моделей, обученных по различным обучающим выборкам.

Для ошибок

■ Деревья:

Для ошибок

- Деревья:
 - низкое смещение

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс
- Линейные алгоритмы:

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс
- Линейные алгоритмы:
 - смещение может быть большим

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс
- Линейные алгоритмы:
 - смещение может быть большим
 - низкий разброс

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс
- Линейные алгоритмы:
 - смещение может быть большим
 - низкий разброс
- Композиция, в общем случае:

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс
- Линейные алгоритмы:
 - смещение может быть большим
 - низкий разброс
- Композиция, в общем случае:
 - не меняет смещение

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс
- Линейные алгоритмы:
 - смещение может быть большим
 - низкий разброс
- Композиция, в общем случае:
 - не меняет смещение
 - (разброс) = 1/N (разброс алгоритма) + (корреляция)

Для ошибок

- Деревья:
 - низкое смещение
 - большой разброс
- Линейные алгоритмы:
 - смещение может быть большим
 - низкий разброс
- Композиция, в общем случае:
 - не меняет смещение
 - (разброс) = 1/N (разброс алгоритма) + (корреляция)
 - При незалежності алгоритмов уменьшаем разброс в N раз!

Основы незалежності

■ Беггинг: Обучение базовых алгоритмов происходит на случайных подвыборках обучающей выборки. Причем чем меньше размер случайной подвыборки, тем более независимыми получаются базовые алгоритмы.

Основы незалежності

- Беггинг: Обучение базовых алгоритмов происходит на случайных подвыборках обучающей выборки. Причем чем меньше размер случайной подвыборки, тем более независимыми получаются базовые алгоритмы.
- Метод случайных подпространств: выбирается случайное подмножество признаков (столбцов матрицы "объекты—признаки") и очередной базовый алгоритм обучается только на этих признаках. Доля выбираемых признаков является гиперпараметром этого метода.

Случайные леса

• А можно ли рандомизировать сам процесс обучения дерева?

Случайные леса

- А можно ли рандомизировать сам процесс обучения дерева?
- Можно:

Случайные леса

- А можно ли рандомизировать сам процесс обучения дерева?
- Можно:
 - **как это происходит в дереве:** пусть в вершине m оказалась выборка X_m

- А можно ли рандомизировать сам процесс обучения дерева?
- Можно:
 - **как это происходит в дереве:** пусть в вершине m оказалась выборка X_m
 - lacksquare $Q(X_m,j,t)$ критерий ошибки условия $\left[x^j\leq t
 ight]$

- А можно ли рандомизировать сам процесс обучения дерева?
- Можно:
 - **как это происходит в дереве:** пусть в вершине m оказалась выборка X_m
 - lacksquare $Q(X_m,j,t)$ критерий ошибки условия $\left[x^j\leq t
 ight]$
 - $Q(X_m,j,t) \to \min_{j,t}$

- А можно ли рандомизировать сам процесс обучения дерева?
- Можно:
 - **как это происходит в дереве:** пусть в вершине m оказалась выборка X_m
 - $lackbox{ } Q(X_m,j,t)$ критерий ошибки условия $\left[x^j \leq t
 ight]$
 - $Q(X_m,j,t) \to \min_{j,t}$
 - lacktriangle случайный лес: ищем j среди подмножества признаков размера q

Эвристики для q

■ Регрессия: $q = \frac{d}{3}$

■ Классификация: $q = \sqrt{d}$

Рис.: Ошибка на тесте при росте числа деревьев,

Трюки

■ Распараллеливание. Леса – идеальный алгоритм для этих целей.

Минусы

- lacktriangle Много деревьев ightarrow много вычислительных ресурсов
- Ненаправленный

200

Трюки

- Распараллеливание. Леса идеальный алгоритм для этих целей.
- Оценка качества работы:

Минусы

- $lue{}$ Много деревьев ightarrow много вычислительных ресурсов
- Ненаправленный

Трюки

- Распараллеливание. Леса идеальный алгоритм для этих целей.
- Оценка качества работы:
 - $= \frac{1}{3}$ объектов в обучении не побывало

Минусы

- $lue{}$ Много деревьев ightarrow много вычислительных ресурсов
- Ненаправленный

Трюки

- Распараллеливание. Леса идеальный алгоритм для этих целей.
- Оценка качества работы:
 - $= \frac{1}{3}$ объектов в обучении не побывало
 - а значит их можно использовать для теста! OOB out-of-bag score:

$$OOB = \sum_{i=1}^{l} L(y_i, \frac{1}{\sum [x_i \notin X_n]} \sum [x_i \notin X_n] b_n(x_i))$$

Минусы

- lacktriangle Много деревьев ightarrow много вычислительных ресурсов
- Ненаправленный

Идея

■ последовательное обучение алгоритмов

Идея

- последовательное обучение алгоритмов
- каждый следующий исправляет ошибки предыдущих

Идея

- последовательное обучение алгоритмов
- каждый следующий исправляет ошибки предыдущих
- достаточно простых базовых алгоритмов

Идея

- последовательное обучение алгоритмов
- каждый следующий исправляет ошибки предыдущих
- достаточно простых базовых алгоритмов

Пример

lacktriangle регрессия на MSE: $MSE(a,X) = \sum$

Идея

- последовательное обучение алгоритмов
- каждый следующий исправляет ошибки предыдущих
- достаточно простых базовых алгоритмов

- lacktriangle регрессия на MSE: $MSE(a, X) = \sum$
- простой алгоритм: $b_1(x) = argmin_b \sum (b(x_i) y_i)^2$

Идея

- последовательное обучение алгоритмов
- каждый следующий исправляет ошибки предыдущих
- достаточно простых базовых алгоритмов

Пример

- \blacksquare регрессия на MSE: $MSE(a, X) = \sum$
- lacktriangle простой алгоритм: $b_1(x) = argmin_b \sum (b(x_i) y_i)^2$
- Второй строим так, что бы b1(x) + b2(x) имели наименьшую ошибку $b_2(x) = argmin \sum (b_1(x) + b_2(x) y_i)^2$

4) Q (4

Идея

- последовательное обучение алгоритмов
- каждый следующий исправляет ошибки предыдущих
- достаточно простых базовых алгоритмов

- \blacksquare регрессия на MSE: $MSE(a, X) = \sum$
- lacktriangle простой алгоритм: $b_1(x) = argmin_b \sum (b(x_i) y_i)^2$
- Второй строим так, что бы b1(x) + b2(x) имели наименьшую ошибку $b_2(x) = argmin \sum (b_1(x) + b_2(x) y_i)^2$
- lacktriangle в общем виде: $b_N(x) = \sum (b_N(x) y_i(x) + \sum_{i=1}^{N-1} (b_i(x)))^2$

Мотивация

■ инициализирующий алгоритм:

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм
 - $b_0(x) = 0$

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм

 - $b_0(x) = 0$ $b_0(x) = \frac{1}{l} \sum y_i \text{средний}$

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм
 - $b_0(x) = 0$
 - $b_0(x) = \frac{1}{l} \sum y_i \text{средний}$
 - $b_0(x) = \underset{argmax}{argmax} \sum [y = y_i]$ самый частый класс, для классификации

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм
 - $b_0(x) = 0$
 - $b_0(x) = \frac{1}{l} \sum y_i \text{средний}$
 - $lacktriangledown b_0(x) = \underset{}{argmax} \sum [y=y_i] \mathsf{самый}$ частый класс, для классификации
- $lacksymbol{a}_{N-1}(x) = \sum b_n(x)$ композиция N алгоритмов

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм
 - $b_0(x) = 0$
 - $b_0(x) = \frac{1}{l} \sum y_i \text{средний}$
 - $b_0(x) = argmax \sum [y = y_i]$ самый частый класс, для классификации
- $lacksquare a_{N-1}(x) = \sum b_n(x)$ композиция N алгоритмов
- lacksquare $\sum L(y_i, a_{N-1}(x_i) + b_i(x))
 ightarrow \min_b -$ задача оптимизации

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм
 - $b_0(x) = 0$
 - $b_0(x) = \frac{1}{l} \sum y_i \text{средний}$
 - $b_0(x) = argmax \sum [y = y_i]$ самый частый класс, для классификации
- $lacksymbol{a}_{N-1}(x) = \sum b_n(x)$ композиция N алгоритмов
- lacksquare $\sum L(y_i, a_{N-1}(x_i) + b_i(x))
 ightarrow \min_b$ задача оптимизации
- $s = (s_1, s_2...s_l)$ вектор сдвигов, переформулируем задачу в форме: $\sum L(y_i, a_{N-1}(x_i) + s_i) o \min_s$

Мотивация

- инициализирующий алгоритм:
 - $b_0(x)$ первый алгоритм
 - $b_0(x) = 0$
 - $b_0(x) = \frac{1}{I} \sum y_i \text{средний}$
 - $b_0(x) = argmax \sum [y = y_i]$ самый частый класс, для классификации
- $lacksquare a_{N-1}(x) = \sum b_n(x)$ композиция N алгоритмов
- lacksquare $\sum L(y_i, a_{N-1}(x_i) + b_i(x))
 ightarrow \min_b -$ задача оптимизации
- $s = (s_1, s_2...s_l)$ вектор сдвигов, переформулируем задачу в форме: $\sum L(y_i, a_{N-1}(x_i) + s_i) o \min_s$
- lacktriangle оптимальный сдвиг: $-\nabla F$, алгоритм учится предсказывать его

Алгоритм

1 Инициализация: инициализация композиции $a_0(x) = b_0(x)$, то есть построение простого алгоритма b_0 .

- Последовательно строим композицию
- Базовый алгоритм обучается на антиградиенте ошибки
- Результат градиентный спуск в пространстве алгоритмов

Алгоритм

- **1** Инициализация: инициализация композиции $a_0(x) = b_0(x)$, то есть построение простого алгоритма b_0 .
- 2 2. Шаг итерации:

- Последовательно строим композицию
- Базовый алгоритм обучается на антиградиенте ошибки
- Результат градиентный спуск в пространстве алгоритмов

Алгоритм

- **1** Инициализация: инициализация композиции $a_0(x) = b_0(x)$, то есть построение простого алгоритма b_0 .
- 2 2. Шаг итерации:
 - lacktriangle Вычисляется вектор сдвига: $s = -\nabla F = (-L_z^{'}(y_l,a_{n-1}(x_l)),...,-L_z^{'}(y_l,a_{n-1}(x_l)))$

- Последовательно строим композицию
- Базовый алгоритм обучается на антиградиенте ошибки
- Результат градиентный спуск в пространстве алгоритмов

Алгоритм

- **1** Инициализация: инициализация композиции $a_0(x) = b_0(x)$, то есть построение простого алгоритма b_0 .
- 2 2. Шаг итерации:
 - lacktriangle Вычисляется вектор сдвига: $s = -\nabla F = (-L_z^{'}(y_l,a_{n-1}(x_l)),...,-L_z^{'}(y_l,a_{n-1}(x_l)))$
 - Строится алгоритм: $b_n(x) = argmin \frac{1}{l} \sum (b(x_i) s_i)^2$

- Последовательно строим композицию
- Базовый алгоритм обучается на антиградиенте ошибки
- Результат градиентный спуск в пространстве алгоритмов

Алгоритм

- **1** Инициализация: инициализация композиции $a_0(x) = b_0(x)$, то есть построение простого алгоритма b_0 .
- 2 2. Шаг итерации:
 - lacktriangle Вычисляется вектор сдвига: $s = -\nabla F = (-L_z^{'}(y_l,a_{n-1}(x_l)),...,-L_z^{'}(y_l,a_{n-1}(x_l)))$
 - Строится алгоритм: $b_n(x) = argmin \frac{1}{l} \sum (b(x_i) s_i)^2$
 - lacktriangle Алгоритм $b_n(x)$ добавляется в композицию: $a_n(x) = \sum b_i(x)$

- Последовательно строим композицию
- Базовый алгоритм обучается на антиградиенте ошибки
- Результат градиентный спуск в пространстве алгоритмов

Алгоритм

- **1** Инициализация: инициализация композиции $a_0(x) = b_0(x)$, то есть построение простого алгоритма b_0 .
- 2 2. Шаг итерации:
 - lacktriangle Вычисляется вектор сдвига: $s = -\nabla F = (-L_z^{'}(y_l,a_{n-1}(x_l)),...,-L_z^{'}(y_l,a_{n-1}(x_l)))$
 - Строится алгоритм: $b_n(x) = argmin \frac{1}{l} \sum (b(x_i) s_i)^2$
 - Алгоритм $b_n(x)$ добавляется в композицию: $a_n(x) = \sum b_i(x)$
- 3 Если надо останавливаемся

- Последовательно строим композицию
- Базовый алгоритм обучается на антиградиенте ошибки
- Результат градиентный спуск в пространстве алгоритмов

Рис.: Красным – test; Синим – train

Переобучение

Почему

■ Алгоритм приближает вектор антиградиента

Что делать?

- $lacksymbol{a} a_N(x) = a_{N-1}(x) + \kappa a_N(x)$ сокращение размера шага
- Стохастический градиентный бустинг каждый алгоритм обучаем на подвыборках

Переобучение

Почему

- Алгоритм приближает вектор антиградиента
- Алгоритм слабый, приближение плохое

Что делать?

- $lacksquare a_N(x) = a_{N-1}(x) + \kappa a_N(x)$ сокращение размера шага
- Стохастический градиентный бустинг каждый алгоритм обучаем на подвыборках

Переобучение

Почему

- Алгоритм приближает вектор антиградиента
- Алгоритм слабый, приближение плохое
- Вместо градиентного спуска случайное блуждание

Что делать?

- $lacksquare a_N(x) = a_{N-1}(x) + \kappa a_N(x)$ сокращение размера шага
- Стохастический градиентный бустинг каждый алгоритм обучаем на подвыборках

Переобучение

