$X = (X_1, \dots, X_n), Y = (Y_1, \dots, Y_n), Z = (X_1, \dots, X_n, Y_1, \dots, Y_n).$

$$K_1(Z) = \sum_{i,j=1}^{n} |X_i - Y_j|, \tag{1}$$

$$K_2(Z) = (\overline{X} - \overline{Y})^2, \tag{2}$$

$$L_1(Z) = \sum_{i,j=1}^n \ln(1+|X_i-Y_j|)$$
(3)

$$L_1^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)\right), \qquad C = \sum_{1 \le i < j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{4}$$

$$L_2(Z) = \sum_{i,j=1}^n \ln(1+|X_i-Y_j|^2)$$
 (5)

$$L_2^C(Z) = \sum_{i,j=1}^n \ln\left(1 + \left(\frac{|X_i - Y_j|}{C}\right)^2\right), \qquad C = \sum_{1 \le i \le j \le 2n} |Z_i - Z_j| / (n(2n-1)), \tag{6}$$

$$T_1(Z) = -\left(\sum_{i=1}^n \ln(1 + [X_i - Z_{cen}]_+) + \sum_{j=1}^n \ln(1 + [Z_{cen} - Y_j]_+)\right), \quad X_{cen} \le Y_{cen}, \quad [a]_+ = a \quad if \quad a > 0,$$
 (7)

$$NC = \frac{S_X^2 + (\bar{X} - \bar{Y})^2}{S_Y^2} + \frac{S_Y^2 + (\bar{X} - \bar{Y})^2}{S_Y^2}, \tag{8}$$

$$CC^{C} = \sum_{i=1}^{n} \left\{ \ln \left(1 + \frac{|X_i - Y_{cen}|}{Y_{sd}} \right) + \ln \left(1 + \frac{|Y_i - X_{cen}|}{X_{sd}} \right) \right\}, \tag{9}$$

(10)

(12)

(13)

$$CC_2^C = -\left(\sum_{i=1}^n \left\{ \ln\left(1 + \left(\frac{|X_i - X_{cen}|}{X_{sd}}\right)^2\right) + \ln\left(1 + \left(\frac{|Y_i - Y_{cen}|}{Y_{sd}}\right)^2\right) \right\} + n(\ln(X_{sd}) + \ln(Y_{sd})) \right),$$

$$CC_3^C = \sum_{i,j=1}^n \ln\left(1 + \left|\frac{X_i}{Y_{sd}} - \frac{Y_j}{X_{sd}}\right|^2\right),\tag{11}$$

 X_{cen}, X_{sd} — max likelihood estimations of mean and standard deviation with starting points the 24% trimmed mean and the interquartile range respectively.

Таблица 1: Мощность тестов при размерах выборок n=5

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t	w	ks	f
C(0, 1)	0.056	0.059	0.052	0.055	0.055	0.055	0.057	0.047	0.058	0.056	0.056	0.01	0.042	0.008	0.448
C(1, 1)	0.151	0.139	0.142	0.15	0.153	0.149	0.14	0.119	0.131	0.139	0.105	0.05	0.097	0.041	0.451
C(2, 1)	0.317	0.282	0.339	0.329	0.333	0.316	0.29	0.248	0.264	0.305	0.195	0.131	0.212	0.112	0.431
C(3, 1)	0.478	0.412	0.533	0.518	0.527	0.468	0.421	0.406	0.423	0.502	0.305	0.26	0.327	0.214	0.451
C(4, 1)	0.629	0.533	0.708	0.69	0.709	0.623	0.548	0.553	0.562	0.672	0.392	0.37	0.444	0.31	0.429
C(0, 1)	0.052	0.054	0.054	0.056	0.05	0.052	0.054	0.065	0.05	0.06	0.054	0.014	0.031	0.01	0.443
C(0, 3)	0.082	0.063	0.156	0.137	0.148	0.073	0.066	0.181	0.136	0.157	0.168	0.019	0.035	0.01	0.558
C(0, 5)	0.123	0.085	0.302	0.253	0.307	0.116	0.092	0.31	0.213	0.286	0.278	0.021	0.044	0.022	0.667
C(0, 7)	0.14	0.08	0.406	0.366	0.403	0.13	0.081	0.41	0.279	0.377	0.381	0.011	0.05	0.023	0.745
C(0, 9)	0.142	0.072	0.464	0.404	0.473	0.129	0.089	0.471	0.339	0.463	0.436	0.02	0.045	0.028	0.8
C(0, 1)	0.046	0.044	0.047	0.051	0.045	0.046	0.048	0.051	0.046	0.048	0.047	0.009	0.027	0.006	0.444
C(1, 2)	0.123	0.11	0.148	0.136	0.147	0.114	0.113	0.145	0.123	0.136	0.134	0.034	0.068	0.026	0.508
C(2, 3)	0.179	0.127	0.266	0.25	0.26	0.164	0.133	0.253	0.198	0.249	0.227	0.049	0.085	0.039	0.572
C(3, 4)	0.264	0.198	0.385	0.372	0.389	0.251	0.211	0.359	0.297	0.373	0.326	0.078	0.134	0.067	0.622
C(4, 5)	0.296	0.202	0.475	0.441	0.479	0.274	0.209	0.442	0.354	0.44	0.369	0.086	0.148	0.097	0.681
C(0, 1)	0.053	0.048	0.058	0.054	0.052	0.048	0.051	0.055	0.052	0.05	0.061	0.014	0.024	0.007	0.438
C(1, 3)	0.132	0.103	0.181	0.172	0.187	0.128	0.107	0.175	0.143	0.184	0.189	0.028	0.057	0.022	0.563
C(2, 5)	0.16	0.1	0.325	0.287	0.325	0.148	0.11	0.319	0.237	0.322	0.308	0.033	0.066	0.031	0.658
C(3, 7)	0.202	0.119	0.458	0.393	0.454	0.185	0.142	0.443	0.315	0.434	0.381	0.035	0.078	0.04	0.757
C(4, 9)	0.224	0.139	0.551	0.499	0.555	0.201	0.153	0.546	0.39	0.52	0.485	0.033	0.08	0.053	0.786

Таблица 2: Мощность тестов при размерах выборок n=50

F_2	K_1	K_2	L_1	L_1^C	L_2	L_2^C	T_1	NC	CC^C	CC_2^C	CC_3^C	t.	w	ks	f
C(0, 1)	0.043	0.047	0.041	0.041	0.039	0.045	0.039	0.052	0.046	0.038	0.041	0.017	0.043	0.037	0.828
C(0.5, 1)	0.176	0.068	$0.041 \\ 0.278$	0.225	0.256	0.049	0.033	0.052 0.057	0.361	0.307	0.166	0.036	0.284	0.3	0.827
C(0.5, 1)	0.496	0.109	0.804	0.229 0.704	0.789	0.143 0.405	$0.161 \\ 0.462$	0.061	0.807	0.795	0.589	0.055	0.708	0.798	0.819
	I	l	0.804		!	0.403 0.732		!	0.807			!	!		
C(1.5, 1)	0.871	0.22		0.973	0.99	1	0.801	0.078		0.95	0.879	0.136	0.958	0.991	0.821
C(2, 1)	0.966	0.311	0.999	0.993	0.999	0.866	0.945	0.074	0.98	0.99	0.951	0.212	0.995	1	0.841
C(0, 1)	0.056	0.056	0.051	0.053	0.051	0.053	0.061	0.051	0.054	0.05	0.045	0.025	0.058	0.05	0.831
C(0, 2)	0.271	0.053	0.51	0.415	0.506	0.232	0.061	0.177	0.315	0.525	0.608	0.023	0.049	0.184	0.861
C(0, 3)	0.581	0.044	0.904	0.802	0.902	0.447	0.051	0.296	0.691	0.885	0.901	0.021	0.061	0.438	0.877
C(0, 4)	0.81	0.05	0.985	0.946	0.985	0.66	0.066	0.425	0.861	0.95	0.955	0.022	0.066	0.708	0.89
C(0, 5)	0.927	0.059	1	0.992	1	0.77	0.068	0.556	0.929	0.98	0.965	0.023	0.075	0.855	0.932
C(0, 1)	0.057	0.047	0.048	0.051	0.051	0.054	0.049	0.047	0.059	0.048	0.045	0.023	0.051	0.042	0.819
C(0.5, 1.5)	0.194	0.08	0.359	0.289	0.35	0.154	0.141	0.095	0.327	0.385	0.359	0.037	0.177	0.243	0.831
C(1, 2)	0.531	0.093	0.835	0.733	0.832	0.425	0.286	0.194	0.715	0.8	0.809	0.042	0.417	0.646	0.867
C(1.5, 2.5)	0.76	0.1	0.969	0.919	0.967	0.602	0.424	0.244	0.868	0.916	0.924	0.046	0.61	0.854	0.883
C(2, 3)	0.896	0.12	0.998	0.983	0.998	0.744	0.535	0.355	0.951	0.976	0.962	0.065	0.702	0.943	0.87
C(0, 1)	0.052	0.05	0.051	0.053	0.053	0.043	0.055	0.05	0.058	0.05	0.056	0.019	0.048	0.038	0.807
C(0.5, 2)	0.34	0.061	0.626	0.504	0.616	0.274	0.101	0.157	0.441	0.613	0.659	0.03	0.137	0.308	0.854
C(1, 3)	0.737	0.086	0.966	0.906	0.966	0.572	0.236	0.346	0.837	0.918	0.936	0.041	0.298	0.734	0.89
C(1.5, 4)	0.898	0.079	0.998	0.988	0.999	0.751	0.297	0.456	0.931	0.982	0.964	0.033	0.398	0.891	0.921
C(2, 5)	0.945	0.112	0.999	0.993	0.999	0.808	0.346	0.523	0.947	0.992	0.959	0.056	0.449	0.951	0.93