Machine Learning for Metagenomics

X Data Science Summer School 2018

git clone https://github.com/rmenegaux/2018_DS3_metagenomics.git

Metagenomics:

Studying an environment from its genomic material

Metagenomics:

Studying an environment from its genomic material

• Uses:

- Bacterial fauna characterisation (e.g. stomach, mouth)
- Medical diagnosis

 Output of DNA sequencer: billions of short reads (~100-300 bp)

• Goal: match reads to their parent genome

Alignment-based methods

- Based on exact matching, or matching up to a fixed number of errors
- State of the art: BWA-MEM (2009)
- Good accuracy, robust to sequencing errors

Alignment-based methods

- Based on exact matching, or matching up to a fixed number of errors
- State of the art: BWA-MEM (2009)
- Good accuracy, robust to sequencing errors
- Can we do faster?

Machine learning (compositional) approach

- Treat as a classification problem
- Class/label = species, features = ?

- k-mer, or bag-of-words approach
- Represent read as a binary-vector, with 4^k entries

AAGCTGGAAATCCTGGTAA

k = 5

- k-mer, or bag-of-words approach
- Represent read as a binary-vector, with 4^k entries

A A G C T G G A A A T C C T G G T A A

- k-mer, or bag-of-words approach
- Represent read as a binary-vector, with 4^k entries
- Train a linear model

 Almost same performance as BWA

- Almost same performance as BWA
- Faster (5-15 times)
 prediction times

computation times - small reference database

BUT:

 Performance degrades with sequencing errors

BUT:

- Performance degrades with sequencing errors
- High memory cost to store the n_classes x 4^12 weights

Other approach: Convolutional Nets

AAGCTGGAAATCCTGGTAA

2/5

AAGCTGGAAATCCTGGTAA

Advantage compared to k-mer representation: Keep positional info Filter Output

AAAAA

Filter Output

AAAAA
GTCCA

Filter

Output

AAAA

GTCCA

-

-

.

Output of first layer:

ITERATE!

In practice:

```
A A G C T .... G G T A A

1 1 0 0 0 .... 0 0 0 1 1

0 0 0 1 0 .... 0 0 0 0 0

0 0 1 0 0 .... 1 1 0 0 0

0 0 0 0 1 .... 0 0 1 0 0
```

One-hot encoding

In practice:

4 x 200 binary matrix

Other possible approaches:

- Recurrent Networks
- Linear models with richer features,
 e.g. Bloom filters

Practical session

- Data:
 - training: 10 full bacterial genomes
 - validation: 10000 fragments (100bp long)
- Linear model (scikit-learn)
- Convolutional network (keras)

git clone https://github.com/rmenegaux/2018_DS3_metagenomics.git