6.RflySimExtCtrl 底层控制算法开发

本章通过外部控制接口对智能体发送命令,去实现更上层的轨迹规划等控制功能。

序号	实验名称	简介	文件地址	版本
1	外部控制与轨迹规划 API	外部控制与轨迹规划开发所使用的 API 接口文档	<u>API.pdf</u>	免费版
	文件			
2	外部控制与轨迹规划课件	该文件全面的讲解了基于 RflySim 平台的外部控	PPT.pdf	免费版
		制与轨迹规划开发的实验以及效果展示。		
3	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的	0.ApiExps\Readme.pdf	免费版
		实验,旨在帮助用户快速熟悉本讲各种接口以便		
		于后续实验开发。		
4	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	1.BasicExps\Readme.pdf	免费版
		实验,用户可快速上手熟悉一些简单的功能性实		
		验。		
5	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,	2.AdvExps\Readme.pdf	个人集合版
		基于 0.ApiExps、1.BasicExps 文件夹中的实验,用		
		户在已经熟悉基于 RflySim 平台开发本章中的实		
		验,该文件夹中的实验均为本讲的进阶例程。		
6	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实	3.CustExps\Readme.pdf	完整版
		验,相比其他文件夹中的实验,该文件夹中的实		
		验更加完整、复杂,满足更多的项目或者科研需		
		求。		

7	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的	0.ApiExps\readme.pdf	免费版
		实验,旨在帮助用户快速熟悉本讲各种接口以便		
		于后续实验开发。		
8	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	1.BasicExps\readme.pdf	免费版
		实验,用户可快速上手熟悉一些简单的功能性实		
		验。		
9	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,	2.AdvExps\readme.pdf	个人集合版
		基于 0.ApiExps、1.BasicExps 文件夹中的实验,用		
		户在已经熟悉基于 RflySim 平台开发本章中的实		
		验,该文件夹中的实验均为本讲的进阶例程。		
10	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接口类实	2.AdvExps\e0_AdvApiExps\readme.pdf	个人版
		验, 基于 0.ApiExps、1.BasicExps 文件夹中的实验,		
		本文件夹中均为针对本章的进阶性接口类实验。		
11	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实	3.CustExps\readme.pdf	完整版
		验,相比其他文件夹中的实验,该文件夹中的实		
		验更加完整、复杂,满足更多的项目或者科研需		
		求。		
12	外部控制与轨迹规划例程	通过本文件,您可快速了解并掌握本讲全部的例	Readme.pdf	免费版
	检索文件	程简介和例程文件地址。		

所有文件列表

序	实验名称	简介	文件地址	版
号				本
1	底层控制算	本章通过外部控制接口对智能体发送命令,去实现更上层的轨迹	Readme.pdf	免
	法开发	规划等控制功能。		费
				版
2	基础接口类	本文件夹中的所有实验均为本讲中接口使用类的实验,旨在帮助	0.ApiExps\readme.pdf	免
	实验	用户快速熟悉本讲各种接口以便于后续实验开发。		费
				版
3	基础功能性	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快	1.BasicExps\readme.pdf	免
	实验	速上手熟悉一些简单的功能性实验。		费
				版
4	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,基于 0.ApiExps、	2.AdvExps\readme.pdf	个
		1.BasicExps 文件夹中的实验,用户在已经熟悉基于 RflySim 平台开		人
		发本章中的实验,该文件夹中的实验均为本讲的进阶例程。		集
				合
				版
5	进阶接口类	本文件夹中的所有实验均为本讲中进阶接口类实验,基于	2.AdvExps\e0_AdvApiExps\readme.pdf	个
	实验	0.ApiExps、1.BasicExps 文件夹中的实验,本文件夹中均为针对本		人
		章的进阶性接口类实验。		版
6	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实验,相比其他文	3.CustExps\readme.pdf	完
		件夹中的实验,该文件夹中的实验更加完整、复杂,满足更多的项		整
		目或者科研需求。		版

	11 3-13-11			
7	外部控制与	通过本文件,您可快速了解并掌握本讲全部的例程简介和例程文	Readme.pdf	免
	轨迹规划例	件地址。		费
	程检索文件			版
8	外部控制与	外部控制与轨迹规划开发所使用的 API 接口文档	<u>API.pdf</u>	免
	轨迹规划			费
	API 文件			版
9	外部控制与	该文件全面的讲解了基于 RflySim 平台的外部控制与轨迹规划开	PPT.pdf	免
	轨迹规划课	发的实验以及效果展示。		费
	件			版
1	基础接口类	本文件夹中的所有实验均为本讲中接口使用类的实验,旨在帮助	0.ApiExps\Readme.pdf	免
0	实验	 用户快速熟悉本讲各种接口以便于后续实验开发。		费
				版
1	无人机通过	通过使用平台提供的接口函数,通过 UDP_Full 通信给飞机发送指	0.ApiExps\e10_UDPMode0Test\Readme.pdf	免
1	UDP_Full 通	令。		费
	信实验			版
1	无人机通过	通过使用平台提供的接口函数,通过 UDP_Simple 通信给飞机发送	0.ApiExps\e11_UDPMode1Test\Readme.pdf	免
2	UDP_Simpl	指令。		费
	e 通信实验			版
1	无人机通过	通过使用平台提供的接口函数,通过 MAVLink_Full 通信给飞机发	0.ApiExps\e12_UDPMode2DefaultTest\Readme.pdf	免
3	MAVLink_F	送指令。		费
	ull 通信实			版
	验			
1	无人机通过	通过使用平台提供的接口函数,通过 MAVLink_Simple 通信给飞机	0.ApiExps\e13_UDPMode3Test\Readme.pdf	免
4	MAVLink_Si	发送指令。		费
	mple 通信			版
	实验			
		ı		

1	CopterSim-	通过使用平台提供的接口函数,通过 MAVLink_NoSend 模式对	0.ApiExps\e14_UDPMode4Test\Readme.pdf	免
5	UDP 通信模	CopterSim 给飞机发送指令。	O. Aprezpo (C14_OD) Mode+1 C3: (Redame.pdf	费
		Coptersint 妇 的权及自己。		
	式			版
1	飞机、物体、	通过 python 接口获取飞机、物体和相机的信息。	<pre>0.ApiExps\e15_CamObjGet\Readme.pdf</pre>	免
6	相机信息获			费
	取实验			版
1	时间戳获取	通过 python 接口获取时间戳数据。	0.ApiExps\e16_ReadTimeStmpGet\Readme.pdf	免
7	实验			费
				版
1	无人机控制	熟悉无人机 offboard 模式控制、状态数据获取和 RflySim3D 的控	0.ApiExps\e1_PX4MavCtrlAPITest\Readme.pdf	免
8	接口调试实	制接口,了解 SITL 通信框架。		费
	验			版
1	数传连接	用 MicroUSB 线连接电脑和 Pixhawk 6C 飞控,开启一个飞机的硬	0.ApiExps\e2_PX4ComAPITest\Readme.pdf	免
9	Pixhawk 6C	件在环仿真。		费
				版
	环仿真实验			
2	无人机飞行	通过 RflySim 平台提供的 SendPosGlobal 函数接口实现控制无人机	0.ApiExps\e3_PX4MavGPSCtrlTest\Readme.pdf	免
0	控制实验	移动。		费
	12.1937(32	12 -93 0		版
2	无人机电机	通过 RflySim 平台提供的 SendRCPwms 函数接口实现控制无人机	0.ApiExps\e4_PX4RcCtrlAPITest\Readme.pdf	免
1	转速 PWM	e机 PWM 值。	on please to i_i vi intoccin in intoccin coddinates	费
1	控制实验	الماري		版
2	多机 SITL 软	根据平台提供的接口函数进行四个飞机的 offboard 模式下的位置	0.ApiExps\e5_PX4MultiUavTest\Readme.pdf	免
			U.Apiexps (e5_FX4) viultioav rest (keaurre.pur	费
2	件在环控制	控制以及速度控制 SITL 软件在环仿真。		
	实验			版
2	无人机飞行	通过使用平台提供的接口函数,通过 SendAccPX4 接口给飞机发送	<pre>0.ApiExps\e6_PX4MavAccCtrlTest\Readme.pdf</pre>	免

3	加速度控制	加速度指令。		费
	实验			版
2	无人机飞行	通过利用 RflySim 平台提供的 SendAttPX4 接口给飞机发送期望姿	0.ApiExps\e7_PX4MavAttCtrlTest\Readme.pdf	免
4	控制实验	态和油门数据。		费
				版
2	UE 地图坐	熟悉无人机控制原点和 UE 地图原点坐标系转换。	<pre>0.ApiExps\e8_GeoAPITest\Readme.pdf</pre>	免
5	标系与无人			费
	机坐标系转			版
	换实验			
2	视觉控制撞	通过调用平台接口进行对 RflySim3D 软件内图像的捕获,并利用	0.ApiExps\e9_UDPMode1TestShootBall\Readme.pdf	免
6	击小球实验	opencv 进行图像处理,并进行控制指令解算,控制无人机运动。		费
				版
2	基础功能性	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快	1.BasicExps\Readme.pdf	免
7	实验	速上手熟悉一些简单的功能性实验。		费
				版
2	基础功能性	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快	1.BasicExps\e0_ExtAPIUsage\Readme.pdf	免
8	实验	速上手熟悉一些简单的功能性实验,本讲中包含有多旋翼动力系		费
		统建模、传感器标定、滤波器设计、姿态及位置控制器设计以及半		版
		自主失效保护逻辑设计实验等。		
2	资源文件夹	该文件夹中主要是包含有本讲(或平台)实验中,所用到的驱动、软	1.BasicExps\e0_ExtAPIUsage\0.ResourcesFile\Readme.pdf	免
9		件以及各种学习资源。		费
				版
3	MAVLink 模	MAVLink (Micro Air Vehicle Link)是一种用于小型无人载具的通	1.BasicExps\e0_ExtAPIUsage\1.MavLinkPackSimulink\Readme	免
0	块封装实验	信协议,于 2009 年首次发布。该协议广泛应用于地面站(Ground	.pdf	费
		Control Station,GCS)与无人载具(Unmanned vehicles)之间的		版
		通信,同时也应用在载具上机载计算机与 Pixhawk 之间的内部通		

3 1	MAVLink 数 据发接实验	信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载具。本实验。将基于Simulink对MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS消息进行数据发送模块和数据解析模块两部分。 MAVLink(Micro Air Vehicle Link)是一种用于小型无人载具的通信协议,于2009年首次发布。该协议广泛应用于地面站(Ground Control Station,GCS)与无人载具(Unmanned vehicles)之间的通信,同时也应用在载具上机载计算机与Pixhawk之间的内部通信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协	1.BasicExps\e0_ExtAPIUsage\2.MavlinkCodeDecode\Readme. pdf	免费版
		议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载具。本实验将基于"*\PX4PSP\RflySimAPIs\7.RflySimExtCtrl\1.BasicExps\e0_ExtAPIUsage\1.MavLinkPackSimulink"实验中建立的两个模块,模拟发送MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS消息并进行接收消息。		
3	资源文件夹	该文件夹中主要是包含有本讲(或平台)实验中,所用到的驱动、软	1.BasicExps\e0_ExtAPIUsage\0.ResourcesFile\Readme.pdf	免
2		件以及各种学习资源。		费 版
3	MAVLink 模	MAVLink (Micro Air Vehicle Link)是一种用于小型无人载具的通	1.BasicExps\e0_ExtAPIUsage\1.MavLinkPackSimulink\Readme	免
3	块封装实验	信协议,于 2009 年首次发布。该协议广泛应用于地面站 (Ground	<u>.pdf</u>	费
		Control Station,GCS)与无人载具(Unmanned vehicles)之间的 通信,同时也应用在载具上机载计算机与 Pixhawk 之间的内部通		版
		信用,例如也应用在软件工机软件操机与 Fixidawk 之间的内部通 信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协		
		议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载		
		具。本实验将基于 Simulink 对		

		MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS 消息进行数据发送模块和数据解析模块两部分。		
3	MAVLink 数	MAVLink (Micro Air Vehicle Link)是一种用于小型无人载具的通	1.BasicExps\e0_ExtAPIUsage\2.MavlinkCodeDecode\Readme.	免
4	据发接实验	信协议,于 2009 年首次发布。该协议广泛应用于地面站 (Ground	pdf	费
		Control Station,GCS)与无人载具(Unmanned vehicles)之间的		版
		通信,同时也应用在载具上机载计算机与 Pixhawk 之间的内部通		
		信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协		
		议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载		
		具 。 本 实 验 将 基 于		
		" *\PX4PSP\RflySimAPIs\7.RflySimExtCtrl\1.BasicExps\e0_ExtAPIUsa		
		ge\1.MavLinkPackSimulink"实验中建立的两个模块,模拟发送		
		MAVLINK_MSG_ID_HIL_ACTUATOR_CONTROLS 消息并进行接收		
		消息。		
3	Offboard 模	Offboard 模式是无人机的一种控制模式,通常给机载计算机或地	1.BasicExps\e1_PosCtrl\Readme.pdf	免
5	式控制无人	面计算机(上位机)实时控制飞机的速度、位置、姿态等,可以把		费
	机位置控制	飞机当成一个整体对象,专注于顶层的视觉与集群算法开发。该实		版
	实验	验主要讲位置控制实验。		
3	Offboard 模	Offboard 模式是无人机的一种控制模式,通常给机载计算机或地	1.BasicExps\e2_VelCtrl\Readme.pdf	免
6	式控制无人	面计算机(上位机)实时控制飞机的速度、位置、姿态等,可以把		费
	机速度控制	飞机当成一个整体对象,专注于顶层的视觉与集群算法开发。该实		版
	实验	验主要讲速度控制实验。		
3	遥控器模式	遥控器模式是人为操作无人机的一种控制方式,在一些无人机特	1.BasicExps\e3_RCCtrl\Readme.pdf	免
7	单机控制	技表演中有较好的效果,本节使用的遥控器是"美国手"的操作方		费
		式, 即左侧摇杆对应的油门与偏航控制量, 而右侧摇杆对应滚转与		版
		俯仰。本次实验由控制器代替遥控器进行试验。		
3	Python-	Offboard 模式是无人机的一种控制模式,通常给机载计算机或地	1.BasicExps\e4_PyOffboardCtrl\Readme.pdf	免

8	Offboard 单	面计算机(上位 机)实时控制飞机的速度、位置、姿态等,可以		费
	机控制实验	把飞机当成一个整体对象,专注于顶层的视觉与集群算法开发。		版
		Python 控制无人机是通过编程语言与无人机进行通信,其基本原		
		理是通过串口或网络连接无人机建立通信,以获取无人机的状态		
		信息和执行命令。使用 PX4 的 OffboardAPI 来控制车辆预期速度		
		和位置的演示程序。		
3	多旋翼路径	了解给定的多旋翼三通道线性化传递函数仿真模型和相应的轨	1.BasicExps\e6_PathTrackingCtrl\Readme.pdf	免
9	跟踪控制器	迹跟踪控制器,进行轨迹跟踪。		费
	仿真实验			版
4	基础功能性	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快	1.BasicExps\e7_MutUAVRemoteCtrl\Readme.pdf	免
0	实验	速上手熟悉一些简单的功能性实验。		费
				版
4	实验平台	本实验首先总体介绍本书使用的硬件平台和软件平台,然后详细	1.BasicExps\e7_MutUAVRemoteCtrl\0.SoftwareSimExps\Read	免
1	(定点控制	介绍仿真平台。其中,仿真平台包括仿真 1.0 和仿真 2.0 使用的	me.pdf	费
	实验)	MATLAB/Simulink 整体模块、多旋翼非线性系统模型、硬件在环仿		版
		真整体模块以及实飞实验模块。通过本章各模型和模块的介绍, 读		
		者能够初步了解基于半自主飞控的多旋翼远程控制实验平台的基		
		本构成, 掌握各个软件与硬件的基本功能与使用方式, 为后续的实		
		验打下基础,提高学习效率。		
4	基础功能性	本文件夹为滤波器设计实验,卡尔曼滤波是一种递推线性最小方	1.BasicExps\e7_MutUAVRemoteCtrl\2.KalmanFiltre\Readme.p	免
2	实验	差估计算法。	<u>df</u>	费
				版
4	滤波器设计	在包含控制器的多旋翼仿真模型中,将控制器中的速度反馈信号	1.BasicExps\e7_MutUAVRemoteCtrl\2.KalmanFiltre\e2.1\Read	免
3	实验 (基础	用卡尔曼滤波估计替代。给定期望输入信号为正弦波信号, 周期为	me.pdf	费
	实验)	10s, 幅值为 1。		版
4	滤波器设计	(1) 在仿真 1.0 中,调整卡尔曼滤波器中输入信号中测量噪声的	1.BasicExps\e7_MutUAVRemoteCtrl\2.KalmanFiltre\e2.2\Read	免
	1		I.	

4	ウル /八上			曲
4	实验 (分析	大小,重复实验过程。对比卡尔曼滤波器参数与测量噪声协方差之	me.pdf	费
	实验)	间的关系,最后分析原因。(2) 在仿真 1.0 中,调整卡尔曼滤波函		版
		数模块中的噪声协方差参数大小,观察获得的速度反馈信号的变		
		化。接下来,反复调整参数,使得每个通道的滤波效果达到最佳。		
		(3) 在仿真 2.0 中,分别调整卡尔曼滤波中噪声协方差的大小和		
		输入信号中测量噪声大小,对比仿真 1.0 与仿真 2.0 的滤波效果。		
4	滤波器设计	基础实验中所使用的卡尔曼滤波算法只是简单的单步更新卡尔曼	1.BasicExps\e7_MutUAVRemoteCtrl\2.KalmanFiltre\e2.3\Read	免
5	实验(定点	滤波算法, 这里在仿真 1.0 中设计新的卡尔曼滤波器, 观察控制效	me.pdf	费
	控制实验)	果。		版
4	滤波器设计	(1) 由于在实飞实验中,传感器信号反馈存在延时,因此基于设	1.BasicExps\e7_MutUAVRemoteCtrl\2.KalmanFiltre\e2.4\Read	免
6	实验(实飞	计实验中的扩维法设计新卡尔曼滤波器算法进行速度反馈,观察	me.pdf	费
	实验)	控制效果。(2) 将基于扩维法设计的新卡尔曼滤波器算法进行闭环		版
		控制,对比控制效果。		
4	基础功能性	本文件夹中为跟踪控制器设计实验的不同阶段例程,根据给定目	1.BasicExps\e7_MutUAVRemoteCtrl\3.TrajectoireFollowing_S	免
7	实验	标轨迹的不同,可将位置控制分为三类: 定点控制、轨迹跟踪和路	egment\Readme.pdf	费
		径跟随。		版
4	跟踪控制器	nan	1.BasicExps\e7_MutUAVRemoteCtrl\3.TrajectoireFollowing_S	免
8	设计实验		egment\e3.1\Readme.pdf	费
	(基础实验)			版
4	跟踪控制器	给定幅值为 1、响应时间为仿真第 5s 的阶跃信号,观察仿真模型	1.BasicExps\e7_MutUAVRemoteCtrl\3.TrajectoireFollowing_S	免
9	设计实验	的各通道稳态误差、超调量和调节时间。根据所获得的结果,使用	egment\e3.2\Readme.pdf	费
	(分析实验)	频率域方法设计控制器,满足如下性能要求。		版
5	跟踪控制器	对上述轨迹跟踪控制器进行改进, 加入偏航角的跟踪, 使得控制器	1.BasicExps\e7_MutUAVRemoteCtrl\3.TrajectoireFollowing_S	免
0	设计实验	可以在偏航角偏转的情况下稳定跟踪。更具体地,设计加性分解控	egment\e3.3\Readme.pdf	费
	(设计实验)	制器,控制多旋翼跟踪圆轨迹。已知所跟踪的圆轨迹圆心位于(0,0),		版
		半径为 1m,多旋翼初始位置随机,可定为(0,0),且在绕圆飞行过		

		程中,机头始终指向圆心。所设计的控制器有如下性能要求:		
5	基础功能性	本文件夹中为路径跟随控制器设计实验的不同阶段例程,根据给	1.BasicExps\e7_MutUAVRemoteCtrl\4.TrajectoirePlanning\Re	免
1	实验	定目标轨迹的不同,可将位置控制分为三类: 定点控制、轨迹跟踪	adme.pdf	费
		和路径跟随。		版
5	路径跟踪控	nan	1.BasicExps\e7_MutUAVRemoteCtrl\4.TrajectoirePlanning\e4.	免
2	制器设计实		1\Readme.pdf	费
	验 (基础实			版
	验)			
5	路径跟踪控	nan	1.BasicExps\e7_MutUAVRemoteCtrl\4.TrajectoirePlanning\e4.	免
3	制器设计实		2\Readme.pdf	费
	验 (分析实			版
	验)			
5	路径跟随控	nan	1.BasicExps\e7_MutUAVRemoteCtrl\4.TrajectoirePlanning\e4.	免
4	制器设计实		3\Readme.pdf	费
	验 (设计实			版
	验)			
5	路径跟随控	nan	1.BasicExps\e7_MutUAVRemoteCtrl\4.TrajectoirePlanning\e4.	免
5	制器设计实		4\Readme.pdf	费
	验(实飞实			版
	验)			
5	基础功能性	本文件夹中为避障控制器设计实验的不同阶段例程。	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\R	免
6	实验		eadme.pdf	费
				版
5	避障控制器	给定一个障碍物和一个多旋翼仿真模型,以及第6章6.2节设计的	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
7	设计实验	跟踪控制器, 利用人工势场法进行避障控制。假设多旋翼初始位置	5.1\Readme.pdf	费
	(基础实验)	为(0,0),障碍物位置为(12,0),障碍物半径为 2m,安全半径为 3m。		版

		如图 8.3 所示,目标位置分别设定为(25,6)、(25,0)和(25,-6),引导		
		多旋翼避开障碍物到达目的地,并记录多旋翼避障轨迹。本实验具		
		体目标包括以下几点:		
		(1) 理解与熟悉人工势场法的理论与推导过程;		
		(2) 实现单架多旋翼趋于不同目标点的避障控制;		
		(3) 使用相同的控制器进行仿真 2.0 实验,即非线性模型实验。		\perp
5	避障控制器	nan	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
8	设计实验		5.2\Readme.pdf	费
	(分析实验)			版
5	避障控制器	nan	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
9	设计实验		5.3\Readme.pdf	费
	(设计实验)			版
6	避障控制器	nan	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
0	设计实验		5.4\Readme.pdf	费
	(实飞实验)			版
6	避障控制器	给定一个障碍物和一个多旋翼仿真模型,以及第6章6.2节设计的	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
1	设计实验	跟踪控制器, 利用人工势场法进行避障控制。假设多旋翼初始位置	5.1\Readme.pdf	费
	(基础实验)	为(0,0),障碍物位置为(12,0),障碍物半径为 2m,安全半径为 3m。		版
		如图 8.3 所示,目标位置分别设定为(25,6)、(25,0)和(25,-6),引导		
		多旋翼避开障碍物到达目的地, 并记录多旋翼避障轨迹。本实验具		
		体目标包括以下几点:		
		(1) 理解与熟悉人工势场法的理论与推导过程;		
		(2) 实现单架多旋翼趋于不同目标点的避障控制;		
		(3) 使用相同的控制器进行仿真 2.0 实验,即非线性模型实验。		
6	避障控制器	nan	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
2	设计实验		5.2\Readme.pdf	费

	(分析实验)			版
6	避障控制器	nan	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
3	设计实验		5.3\Readme.pdf	费
	(设计实验)			版
6	避障控制器	nan	1.BasicExps\e7_MutUAVRemoteCtrl\5.Avoidance_Segment\e	免
4	设计实验		5.4\Readme.pdf	费
	(实飞实验)			版
6	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,基于 0.ApiExps、	2.AdvExps\Readme.pdf	个
5		1.BasicExps 文件夹中的实验,用户在已经熟悉基于 RflySim 平台开		人
		发本章中的实验,该文件夹中的实验均为本讲的进阶例程。		集
				合
				版
6	进阶接口类	本文件夹中的所有实验均为本讲中进阶接口类实验,基于	2.AdvExps\e0_AdvApiExps\.	个
6	实验	0.ApiExps、1.BasicExps 文件夹中的实验,本文件夹中均为针对本		人
		章的进阶性接口类实验。		版
6	进阶接口类	本文件夹中的所有实验均为本讲中进阶接口类实验,基于	2.AdvExps\e1_MavlinkCtrl\Readme.pdf	个
7	实验	0.ApiExps、1.BasicExps 文件夹中的实验。		人
				集
				合
				版
6	MAVSfun	MAVLink (Micro Air Vehicle Link)是一种用于小型无人载具的通	2.AdvExps\e1_MavlinkCtrl\1.MavSfunTest_Arm\Readme.pdf	个
8	解锁 HIL 实	信协议,于 2009 年首次发布。该协议广泛应用于地面站(Ground		人
	验	Control Station,GCS)与无人载具(Unmanned vehicles)之间的		集
		通信,同时也应用在载具上机载计算机与 Pixhawk 之间的内部通		合
		信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协		版
		议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载		

6 9	MAVLink 控 制 HIL 实验	具。本实验将通过 CopterSim 软件在硬件在环仿真时,通过 MAVLink 封装模块何 UDP 的方式,在 CopterSim 软件中显示解锁 信息。 MAVLink (Micro Air Vehicle Link)是一种用于小型无人载具的通 信协议,于 2009 年首次发布。本实验将基于 CopterSim 软件在硬件在环仿真时,通过 MAVLink 封装模块 UDP 的方式,实现无人机 姿态控制。	2.AdvExps\e1_MavlinkCtrl\2.MavSfunTest_Con\Readme.pdf	个人集合版
7 0	MAVSfun 解锁 HIL 实 验	MAVLink (Micro Air Vehicle Link) 是一种用于小型无人载具的通信协议,于 2009 年首次发布。该协议广泛应用于地面站(Ground Control Station,GCS)与无人载具(Unmanned vehicles)之间的通信,同时也应用在载具上机载计算机与 Pixhawk 之间的内部通信中,协议以消息库的形式定义了参数传输的规则。MAVLink 协议支持无人固定翼飞行器、无人旋翼飞行器、无人车辆等多种载具。本实验将通过 CopterSim 软件在硬件在环仿真时,通过MAVLink 封装模块何 UDP 的方式,在 CopterSim 软件中显示解锁信息。	2.AdvExps\e1_MavlinkCtrl\1.MavSfunTest_Arm\Readme.pdf	个人集合版
7	MAVLink 控 制 HIL 实验	MAVLink (Micro Air Vehicle Link) 是一种用于小型无人载具的通信协议,于 2009 年首次发布。本实验将基于 CopterSim 软件在硬件在环仿真时,通过 MAVLink 封装模块 UDP 的方式,实现无人机姿态控制。	2.AdvExps\e1_MavlinkCtrl\2.MavSfunTest_Con\Readme.pdf	个人集合版
7 2	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实验,相比其他文件夹中的实验,该文件夹中的实验更加完整、复杂,满足更多的项目或者科研需求。	3.CustExps\Readme.pdf	完整版

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。