Augmented Neural Architecture Search with REINFORCE

Olga Xu

Motivation and Related Work

- Hyperparameter search and model architecture design is an important research topic in machine learning field.
- Finding the best hyperparameter setting is crucial in solving machine learning tasks.
- We propose train a model that can automate the process of designing the model architecture
- Neural Architecture Search with Reinforcement Learning (NASRL) by Barret Zoph and Quoc V. Le

Hypothesis

- implement a similar model as NASRL
- However, there are some small alterations between our method and NASRL.
- We define a model architecture by a list of actions the RNN controller samples.
- The crucial assumption we made is that every sub-model of the optimal generated model is a good model (i.e. if the optimal model, $a_{1:T}$, has T layers, $a_{1:t}$ is a good model for every t such that t <= T).
- At each episode we use the RNN controller to generate a new model. At each time step, t, of every episode, we samples a layer(action), a_t , with probability calculated by the RNN controller and train architecture a_t to obtain its validation accuracy R_t . The assumption that we made previously helps us to define our return function to be $G_t=R_t+gamma^*G_{t-1}$
- Experience replay tree!

Recap: REINFORCE algorithm

```
REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic), for estimating \pi_{\theta} \approx \pi_*
```

```
Input: a differentiable policy parameterization \pi(a|s, \theta)
```

Algorithm parameter: step size $\alpha > 0$

Initialize policy parameter $\boldsymbol{\theta} \in \mathbb{R}^{d'}$ (e.g., to 0)

Loop forever (for each episode):

Generate an episode $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$, following $\pi(\cdot|\cdot, \boldsymbol{\theta})$

Loop for each step of the episode t = 0, ..., T - 1:

 $G \leftarrow \text{return from step } t \ (G_t)$

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \gamma^t G \nabla_{\boldsymbol{\theta}} \ln \pi (A_t | S_t, \boldsymbol{\theta})$

Agent

Update policy parameter by stochastic gradient ascent

Generate an episode: S₀, A₀, R₁, ..., S_{T-1}, A_{T-1}, R_T Interact with
the
environment
using the
updated policy
function

Environment

Neural Architecture Search using REINFORCE algorithm

Controller optimizes θ_c to maximize its expected reward, $J(\theta_c) = \mathbb{E}_{P(a_{1:T};\theta_c)}[R]$, where $\nabla J(\theta_c) = \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^T \nabla \theta_c \log P(a_t|a_{(t-1):1};\theta_c)(R_k-b)$

 $a_{1:T}$ is a list of action to design the child architecture and b is model baseline (in this experiment, b is the iterative average of the previous architecture accuracies)

Compute gradient of *P* and scale it by *R* to update the controller

Experience Replay

Sample architectures $a_0, a_1, ..., a_T$ with probability p

Trained Generated Model Environment

This environment will train the sampled architecture a_{1:T} and will received an accuracy R on the validation set. This R will be the "reward" used to update the controller

Experience Replay Tree and Model Results

- Every node corresponds to a layer of the classification network
- Every path from root is a possible architecture.
- Every node contains (1) layer's structure, (2) corresponding architecture's average accuracy (R) and (3) count of number
 of time that architecture has used.

An Architecture Found at episode #40 that Generates 86% Accuracy on CIFAR-10 dataset:

Results and More

Best Architecture found

Layer	Туре	Setting	
1	Residual	Channel=128; Stride=1	
2	Convolution	Channel=32; Kernel_size=3; Stride=1	
3	Convolution	Channel=32; Kernel_size=3; Stride=1	
4	Residual	Channel=64; Stride=1	
5	Pool	Kernel_size=2; Stride=2	
6	Residual	Channel=64; Stride=1	
7	Residual	Channel=64; Stride=1	
8	Convolution	Channel=128; Kernel_size=4; Stride=1	
9	Convolution	Channel=64; Kernel_size=3; Stride=1	
10	Linear+Softmax	-	

Result Table

	MNIST	CIFAR-10
NAS [B. Zoph et., 2016]	_	94.5
CNNAS [M. Phulsuksombati, 2014]	-	77.7
CNN [J. Mairal et., 2014]	99.5	82.18
Our NAS Model	99.2	86.13

Discussion

- Search space:
 - Number of possible layers: 24
 - Max number of layer: 15
 - Possible architecture: 24¹⁵ ≈ 5.04 x 10²⁰
- · Gradually increased the architectures's max layer bound and number of train iterations
- Total number of architectures trained: 437 (NAS [B. Zoph et., 2016] trained 12,800 architectures on 800 GPUs)
- The model found several interesting features about the architectures:
 - Pool and Max Pool layers doesn't work well as first layer of the architecture
 - 5 layers architecture works the best for MNIST and 10 layers architecture works the best for CIFAR-10