Recent Work

ZhengPu Shi

March 1, 2023

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CogMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- My Research Plan

About the CoqMatrix Library

This is an open-source formal matrix library implemented in Coq that supports multiple models¹ at the same time.

Supported models

```
DepList (DL) DepPair (DP) DepRec (DR) NatFun (NF) FinFun (FF) SafeNatFun (SF) ...
```

In addition to having formally verifying common operations and properties of matrices, it also includes the following features:

Features of CoqMatrix

- supports a unified interface for multiple models under one framework;
- supports conversion between all models, and initially constructs the isomorphism between these structures;
- supports the development of **vector** theory;
- fully supports Setoid equality instead of Leibniz equality;
- hierarchical design for matrix element types;
- hierarchical design for matrix theory.

¹Shi, Z., Chen G. Integration of Multiple Formal Matrix Models in Coq. SETTA 2022

The framework of the formal matrix theory

Figure: Relationship between FMLs, MApps, and CoqMatrix.

FML: Formal matrix library MApp: Matrix application

Implemented: the matrix theory implemented by at least one model.

Axiomed: the new matrix theory, not yet formalized by any models, but exists now.

The framework of the formal vector theory

Figure: Relationship between FVLs, VApps, and CoqMatrix.

FVL: Formal vector library VApp: Vector application

Installation & Basic usage

Installation

- The easist way is to install the stable version using OPAM
 - \$ opam repo add coq-released https://coq.inria.fr/opam/released
 - \$ opam install cog-matrix
- Use the project on github to get the latest version and contribute to development

```
$ git clone https://github.com/zhengpushi/CoqMatrix.git
$ cd CoqMatrix
$ make -j  # it takes < 25 seconds
$ make install</pre>
```

Now, we can use this matrix library with the logical-name "CoqMatrix"

Basic Usage

```
(* You should import the matrix library on different element types, such as Nat/Z/Q/Qc/R. *)
From CoqMatrix Require Import MatrixNat.
(* Now, all the types, functions, lemmas, notations are available *)
(* Or, import the vector library on different element types *)
From CoqMatrix Require Import VectorZ.
(* Or, use matrix library on your favorite model *)
From CoqMatrix Require Import MatrixQ.
Import MatrixQ_DL. (* DL/DP/DR/NF/FF/SF *)
(* Now. the matrix model is switched to DepList (DL) *)
```

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- My Research Plan

Example usage of CoqMatrix

```
(* import matrix library on Q (rational number) *)
From CogMatrix Require Import MatrixQ.
(* matrix type *)
Check mat.
                         (* : nat -> nat -> Type *)
(* construct a matrix with a list *)
Example m1 : mat 2 3 := 12m [[1;2;3];[4;5;6]].
(* construct a matrix with a function *)
Example m3 : mat 2 3 :=
  mk mat
    (fun i j =>
      match i, j with
      | 0%nat, 0%nat => 1
      | 1%nat, 2%nat => 2
       | _, _ => 0
      end).
(** show content *)
                     (* = [[1; 0; 0]; [0; 0; 2]] *)
Compute (m21 m3).
```

Example usage of CoqMatrix (cont.)

```
(* construct a matrix with every elements *)
Example m2 : mat 2 2 := mk_mat_2_2 1 2 3 4.
(** transpose a matrix *)
Compute m2l (m2\T). (* = [[1; 3]; [2; 4]] *)
(** matrix addition *)
Compute m21 (m2 + m2). (* = [[2; 4]; [6; 8]] *)
(** matrix scalar multiplication *)
Compute m21 (3 c* m2). (* = [[3; 6]; [9; 12]] *)
(** matrix multiplication *)
Compute m21 (m2 * m2). (* = [[7; 10]; [15; 22]] *)
(** identity matrix *)
Compute m21 (mat1 3). (* = [[1; 0; 0]; [0; 1; 0]; [0; 0; 1]] *)
```

More examples, see online README.md or Coq.

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- 2 My Research Plan

Publish a Coq library to the Coq Package Index

Reference: https://coq.inria.fr/opam-packaging.html

Prepare your package

- contain a Makefile providing two commands: make, make install.
- an archive which must be available to download, such as https://github.com/<you>/foo/archive/1.0.0.tar.gz

Prepare your local opam archive of Coq

- clone the repository
 - \$ git clone https://github.com/coq/opam-coq-archive -o upstream
- create sub-directory named as follows:
 - \$ mkdir -p released/packages/coq-foo/coq-foo.1.0.0
- create a text file "opam" in this directory, follows the template
- commit the new "opam" file

Publish a Coq library to the Coq Package Index (cont.)

Test your package locally

- lint your opam file
 - \$ opam lint --check-upstream released/packages/coq-foo/coq-foo.1.0.0/opam
- test your package
 - \$ opam repo add test ./released
 - \$ opam install -v coq-foo

Submit your package

- push your change to your personal fork
 - \$ git push origin coq-foo.1.0.0
- visit the GitHub page of your fork, click the new pull request button, and submit.
- the CI in GitHub will be triggered, be sure no errors in any toochains, and wait for merge by manager.

Search your package from Coq Package Index

https://coq.inria.fr/opam/www/

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- 2 My Research Plan

Setoid Equality instead of Leibniz Equality

What is the differences?

Leibniz equality is the standard way to define equality in Coq.

```
Inductive eq {A : Type} (x : A) : A \rightarrow Prop := eq_refl : eq x x. Infix "=" := eq.
```

Setoid equality defines equality in terms of an equivalence relationship.

Why is such a heavy approach needed?

- 1. setoid equality is a general case of leibniz equality;
- 2. to represent equality on some special matrix element types, such as rational numbers, residue classes, functions, and matrices themselves.

How to implement it?

- 1. use "==" instead of "=", from element to list, list of lists, matrix, and vector.
- $2.\ prove\ "operations respect the equality relation" to enable rewrite in Coq, e.g.,$

 $\label{lemma madd_meq_mor} \textbf{Lemma madd_meq_mor}: \textbf{Proper (meq} ==> \textbf{meq} ==> \textbf{meq}) \ \textbf{madd}, \ \textbf{means that},$

 $\forall \ r \ c \ (m_1 \ m_2 \ m_3 \ m_4 : mat \ r \ c), m_1 == m_2 \rightarrow m_3 == m_4 \rightarrow m_1 + m_3 == m_2 + m_4.$

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- My Research Plan

General mathematical properties and algebra structures

Figure: Hierarchical mathematical structures using typeclass.

Advantages of using typeclass in Coq to organize the definitions and propositions:

- the structure corresponds to mathematics concepts and can be easily combined;
- less code.

Details about typeclass can be refer to "A Tutorial on typeclasses in Coq" in vol4 of SF.

General mathematical properties and algebra structures (cont.)

Declare property or structure in Coq

```
Class Associative {A : Type} (Aop : A -> A -> A) (Aeq : A -> A -> Prop) := {
    associative : forall a b c, Aeq (Aop (Aop a b) c) (Aop a (Aop b c));
}.

Class Monoid {A : Type} (Aop : A -> A -> A) (Aeq : A -> A -> Prop) (AO : A) := {
    monoidAaddProper :> Proper (Aeq ==> Aeq ==> Aeq) Aadd;
    monoidEquiv :> Equivalence Aeq;
    monoidAssoc :> Associative Aadd Aeq;
    monoidIdL :> IdentityL Aadd AO Aeq;
    monoidIdR :> IdentityR Aadd AO Aeq;
}.
```

Here, syntax :> assures that a *Monoid* object also has the type on the right side.

Demo usage of monoid structure

```
\label{eq:context `\{M:Monoid\}. (* automatically declared A,Aadd,... too *) Infix "+" := Aop. Infix "==" := Aeq. \\ Goal \ \forall a \ b \ c : A, \ (a+b)+c+A0 == a+(b+c). \\ Proof. \\ intros. \\ rewrite monoidIdR. apply associative. \\ \end{cases}
```

We can observed that, the declaration of a structure only needs few code.

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- My Research Plan

Hierarchical matrix element types

Figure: Interface of the hierarchical matrix element types using Module & Module Type

Hierarchical matrix element types (cont.)

Abstract matrix element types in Coq

```
(** Type of element *)
Module Type ElementType.
 Parameter A : Type.
 Parameter AO: A.
 Parameter Aeq : relation A.
 Axiom Equiv_Aeq : Equivalence Aeq.
End ElementType.
(** Type of element with ring structure *)
Module Type RingElementType <: ElementType.
 Include ElementType.
 Parameter A1 : A.
 Parameter Aadd Amul : A \rightarrow A \rightarrow A.
 Parameter Appp : A \rightarrow A.
 Notation Asub := \lambda x y \Rightarrow Aadd x (Aopp y)
 Axiom Aadd_aeq_mor : Proper (Aeq ==> Aeq ==> Aeq) (Aadd).
 Axiom Aopp_aeq_mor : Proper (Aeq ==> Aeq) (Aopp).
 Axiom Amul_aeq_mor : Proper (Aeq ==> Aeq ==> Aeq) (Amul).
 Axiom Ring_thy : ring_theory AO A1 Aadd Amul Asub Aopp Aeq.
End RingElementType.
```

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- My Research Plan

Hierarchical matrix theory

Figure: Interface of the hierarchical matrix theory using Module & Module Type.

Hierarchical matrix theory (cont.)

Basic Matrix Theory

```
Module Type BasicMatrixTheory (E : ElementType).
  Export E.
  Parameter mat : nat \rightarrow nat \rightarrow Type.
  Parameter meq : \forall {r c}, mat r c \rightarrow mat r c \rightarrow Prop.
  Axiom meg_equiv : \forall {r c}, Equivalence (meg (r:=r) (c:=c)).
       Infix "==" := Aeg : A scope. Infix "==" := meg : mat scope.
  Parameter mnth : \forall {r c}, mat r c \rightarrow nat \rightarrow nat \rightarrow A.
  Axiom meq_iff_mnth: \forall {r c} (m1 m2: mat r c), m1 == m2 \rightarrow
  \forall ri ci, ri < r \rightarrow ci < c \rightarrow (mnth m1 ri ci == mnth m2 ri ci)).
  (** ** Convert between list list and matrix *)
  Parameter 12m : \forall {r c} (dl: list (list A)), mat r c.
  Parameter m21 : \forall {r c}, mat r c \rightarrow list (list A).
  (** ** Specific matrix *)
  Parameter mk mat 3 3 : \forall a1 a2 a3 b1 b2 b3 c1 c2 c3: A. mat 3 3.
  (** ** Matrix transposition *)
  Parameter mtrans : \forall {r c} (m: mat r c), mat c r.
  Axiom mtrans_trans : \forall {r c} (m: mat r c), mtrans (mtrans m) == m.
  (** ** Mapping of matrix *)
  Parameter mmap : \forall {r c} (f: A \rightarrow A) (m: mat r c), mat r c.
  Parameter mmap2 : \forall {r c} (f: A \rightarrow A \rightarrow A) (m1 m2: mat r c), mat r c.
End BasicMatrixTheory.
```

Hierarchical matrix theory (cont.)

Ring Matrix Theory

```
Module Type RingMatrixTheory (E:RingElementType) <: BasicMatrixTheory E.
  Include (BasicMatrixTheory E).
  Parameter mat0: ∀ {r c}, mat r c. Parameter mat1: ∀ {n}, mat n n.
  Parameter madd msub: \forall {r c}, mat r c \rightarrow mat r c \rightarrow mat r c.
  Parameter mopp: \forall {r c}. mat r c \rightarrow mat r c.
  Parameter mcmul: \forall \{r c\}, A \rightarrow mat r c \rightarrow mat r c.
  Parameter mmul: \forall {r c s}. mat r c \rightarrow mat c s \rightarrow mat r s.
       Infix "+" := madd. Infix "\times_c" := mcmul. Infix "\times" := mmul.
       Infix "-" := msub. Notation "-m" := (mopp m).
  Axiom madd_comm: \forall m1 m2, m1 + m2 == m2 + m1.
  Axiom madd_assoc: \forall m1 m2 m3, (m1 + m2) + m3 == m1 + (m2 + m3).
  Axiom madd_0_1: \forall m, mat0 + m == m.
  Axiom mopp opp: \forall m. - - m == m.
  Axiom madd_opp: \forall m, m + (- m) == mat0.
  Axiom msub comm: \forall m1 m2. m1 - m2 == - (m2 - m1).
  Axiom msub assoc: \forall m1 m2 m3, (m1 - m2) - m3 == m1 - (m2 + m3).
  Axiom msub_0_1: \forall m, mat0 - m == - m.
  Axiom mcmul_assoc: \forall a b m, a \times_c (b \times_c m) == (a * b) \times_c m.
  Axiom mcmul_perm : \forall a b m, a \times_c (b \times_c m) == b \times_c (a \times_c m).
  Axiom mcmulAddDistrL: \forall a m1 m2, a \times_c (m1 + m2) == (a \times_c m1) + (a \times_c m2).
  Axiom mcmul 1 1: \forall m. A1 \times m == m
  Axiom mmulAddDistrL: \forall m1 m2 m3, m1 \times (m2 + m3) == m1 \times m2 + m1 \times m3.
  Axiom mmul_assoc: \forall m1 m2 m3, (m1 \times m2) \times m3 == m1 \times (m2 \times m3).
  Axiom mmul 0 1: \forall m. mat0 \times m == mat0.
  Axiom mmul_1_1: \forall m, mat1 \times m == m.
End RingMatrixTheory.
```

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- 2 My Research Plan

Performance of the extracted OCaml program

To evaluate the performance differences of these models, we designed an experiment.

The steps of the experiment

- For some model M, set the initial matrix size n = 50 and go to the step (2).
- **②** Generate two sets DL_A and DL_B of dlist type of size $n \times n$ with random data.
- ② Calls the function $\mathbf{12m}$ on the model \mathbf{M} to construct the matrices $A_{n\times n}$ and $B_{n\times n}$ on the model with DL_A and DL_B , separately.
- Calls the function mmul on the model M to perform Matrix Multiplication $C = A \times B$.
- **3** Calls the function **m2l** on the model **M** to convert the matrix C into DL_C of dlist type;
- Calculate the elapsed time from steps (2) to (5); if the time exceeds one minute then exit the loop.
- Ohange the size of the matrix to n = n * 120%;
- Jump to (2) to continue the loop.

Thus, the performance differences is determined by step (3) to step (5), that is:

12m + mmul + m2l

Performance of the extracted OCaml program (cont.)

Figure: Performance comparison of OCaml programs extracted from multiple matrix models in Coq when performing matrix multiplication

Result of the experiment

- ullet Figure (a) shows, the performance of DR and DP are at the same level, and the size of the matrix they can process within 1 minute is about 1000×1000 .
- Figure (b) shows, the performance of DL and NF are similiar, and the size of the matrix they can process within 1 minute is about 250 × 250.
- ullet Figure (c) is the case of the FF model, which cannot handle a matrix of size 50×50 within 1 minute.
- In short, when performing the same operations here, the performance of each model from high to low is as follows: $DR \ge DP > NF \ge DL > FF$.

- CoqMatrix Library
 - Introduction to CoqMatrix
 - Example usage of CoqMatrix
 - Publish a Coq library to the Coq Package Index
 - Implementation details
 - Setoid Equality instead of Leibniz Equality
 - General mathematical properties and algebra structures
 - Hierarchical matrix element types
 - Hierarchical matrix theory
 - Performance of the extracted OCaml program
- 2 My Research Plan

My Research Plan

- My current research work:
 - FV of Quaternion, for coordinate sub-system in FCS.
 - § FV of Inversion Matrix Algorithm with Determinant and Adjoint Matrix, which is
 useful for symbol matrix.
 - FV of Quantity Calculus System, which support calculus with unit.
- My further research plan:
 - FV of Control Theory, which is the basis of Automatic Controls and Flight Control Systems, and heavily use matrix theory. The related concepts are:
 - State Space Description
 - Stability Analysis.
 - 2 FV of Complex Variable Function
 - Laplace transform
 - Transfer Function

Thank you!

Q&A