$$\psi$$
(2 S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

See the Review on " $\psi(2S)$ and χ_c branching ratios" before the $\chi_{c0}(1P)$ Listings.

$\psi(2S)$ MASS

OUR FIT includes measurements of $m_{\psi(2S)}$, $m_{\psi(3770)}$, and $m_{\psi(3770)}-m_{\psi(2S)}$.

EVTS	DOCUMENT ID	TECN	COMMENT
F Error	includes scale factor o	of 2.6.	
'ERAGE			
4k			
413			
	³ ARMSTRONG 9	3B E760	$\overline{p}p \rightarrow e^+e^-$
following	data for averages, fits	s, limits, etc	2. ● ● ●
	⁴ ANASHIN 1	2 KEDR	$e^+e^- o$ hadrons
413	⁵ ZHOLENTZ 8	0 OLYA	e^+e^-
	Ferror Fe	Ferror includes scale factor of terage 1 ANASHIN 1 4k AAIJ 1 413 2 ARTAMONOV 0 3 ARMSTRONG 9 following data for averages, fit 4 ANASHIN 1 AULCHENKO 0	1 ANASHIN 15 KEDR 4k AAIJ 12H LHCB 413 2 ARTAMONOV 00 OLYA 3 ARMSTRONG 93B E760 following data for averages, fits, limits, etc 4 ANASHIN 12 KEDR AULCHENKO 03 KEDR

¹ Supersedes AULCHENKO 03 and ANASHIN 12.

$m_{\psi(2S)}-m_{J/\psi(1S)}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
589.188 ± 0.028 OUR AVERAGE	E			
$589.194 \pm 0.027 \pm 0.011$	¹ AULCHENKO	03	KEDR	$e^+e^- o$ hadrons
589.7 ± 1.2				185 π^- Be $\rightarrow \gamma \mu^+ \mu^-$ A
589.07 ± 0.13	$^{ m 1}$ ZHOLENTZ	80	OLYA	e^+e^-
588.7 ± 0.8	LUTH	75	MRK1	
• • • We do not use the follow	ing data for avera	iges, f	fits, limit	s, etc. ● ●
588 ±1	² BAI	98E	BES	e^+e^-
¹ Redundant with data in ma ² Systematic errors not evalua	ss above. ated.			

 $^{^2}$ Reanalysis of ZHOLENTZ 80 using new electron mass (COHEN 87) and radiative corrections (KURAEV 85).

 $^{^3}$ Mass central value and systematic error recalculated by us according to Eq. (16) in ARMSTRONG 93B, using the value for the $J/\psi(1S)$ mass from AULCHENKO 03.

 $^{^4}$ From the scans in 2004 and 2006. ANASHIN 12 reports the value 3686.114 \pm 0.007 \pm 0.011 $^+0.002_{-0.012}$ MeV, where the third uncertainty is due to assumptions on the interference between the resonance and hadronic continuum. We combined the two systematic uncertainties.

⁵ Superseded by ARTAMONOV 00.

$\psi(2S)$ WIDTH

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT
296 ± 8 OUR FIT					
286±16 OUR AVERAGE	=				
$358 \pm 88 \pm 4$		ABLIKIM	08 B	BES2	$e^+e^- o$ hadrons
$290 \pm 25 \pm 4$	2.7k	ANDREOTTI			$p\overline{p} ightarrow e^+e^-$, $J/\psi X$
$331\pm58\pm~2$		ABLIKIM	06L	BES2	$e^+e^- o$ hadrons
264 ± 27			-	_	e^+e^-
$287 \pm 37 \pm 16$		² ARMSTRONG	93 B	E760	$\overline{p}p \rightarrow e^+e^-$

 $^{^1}$ From a simultaneous fit to the hadronic and $\mu^+\,\mu^-$ cross section, assuming $\Gamma=\Gamma_h^-+\Gamma_e^-+\Gamma_\mu^-+\Gamma_\tau^-$ and lepton universality. Does not include vacuum polarization correction.

ψ (2 S) DECAY MODES								
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level					
Γ_7	$\begin{array}{l} hadrons \\ virtual \gamma \to hadrons \\ g g g \\ \gamma g g \\ light hadrons \\ e^+ e^- \\ \mu^+ \mu^- \end{array}$	(97.85 ± 0.13) (1.73 ± 0.14) (10.6 ± 1.6) (1.03 ± 0.29) (15.4 ± 1.5) (7.89 ± 0.17) (7.9 ± 0.9)	% S=1.5 % % % % < 10 ⁻³ < 10 ⁻³					
Γ ₈	$\tau^+\tau^-$	(3.1 ±0.4) >	< 10 ^{−3}					
Γ_{10} Γ_{11} Γ_{12} Γ_{13}	Decays into $J/\psi(1)$ $J/\psi(1S)$ anything $J/\psi(1S)$ neutrals $J/\psi(1S)\pi^+\pi^ J/\psi(1S)\pi^0\pi^0$ $J/\psi(1S)\eta$ $J/\psi(1S)\pi^0$	(61.0 ± 0.6) 9 (25.14 ± 0.33) 9 (34.49 ± 0.30) 9 (18.17 ± 0.31) 9 (3.36 ± 0.05) 9 (1.268 ± 0.032)	% % % %					
г.	Hadronic $\pi^0 h_c(1P)$	decays (8.6 ± 1.3) >	· 10 ⁻⁴					
Γ_{16} Γ_{17} Γ_{18} Γ_{19} Γ_{20} Γ_{21} Γ_{22} Γ_{23} Γ_{24}	$3(\pi^+\pi^-)\pi^0 \ 2(\pi^+\pi^-)\pi^0$	$(3.5 \pm 1.6) \times (2.9 \pm 1.0) \times (2.6 \pm 0.9) \times (2.88 \pm 0.10) \times (1.28 \pm 0.35) \times (2.9) \times (2.5 \pm 0.4) \times (1.00 \pm 0.14) \times (1.8 \pm 0.4) \times (2.8 \pm 0.6) \times $	< 10 ⁻³ < 10 ⁻³ < 10 ⁻⁴ < 10 ⁻⁴ < 10 ⁻⁴ < 10 ⁻⁶ < 10 ⁻⁵ < 10 ⁻⁴ < 10 ⁻⁴					

HTTP://PDG.LBL.GOV

Page 2

 $^{^2}$ The initial-state radiation correction reevaluated by ANDREOTTI 07 in its Ref. [4].

Γ ₂₈ Γ ₂₉ Γ ₃₀ Γ ₃₁ Γ ₃₂ Γ ₃₃	$ \Lambda \overline{\lambda} $ $ \Lambda \overline{\Sigma}^{+} \pi^{-} + \text{c.c.} $ $ \Lambda \overline{\Sigma}^{-} \pi^{+} + \text{c.c.} $ $ \Sigma^{0} \overline{p} K^{+} + \text{c.c.} $ $ \Sigma^{+} \overline{\Sigma}^{-} $ $ \Sigma^{0} \overline{\Sigma}^{0} $ $ \Sigma(1385)^{+} \overline{\Sigma}(1385)^{-} $ $ \Sigma(1385)^{-} \overline{\Sigma}(1385)^{+} $ $ \Xi^{-} \overline{\Xi}^{+} $ $ \Xi^{0} \overline{\Xi}^{0} $	(1.40 (1.54 (1.67 (2.51 (2.32 (8.5 (8.5 (2.72	$\begin{array}{l} \pm 0.13 \\ \pm 0.14 \\ \pm 0.18 \\ \pm 0.21 \\ \pm 0.16 \\ \pm 0.7 \\ \pm 0.8 \\ \pm 0.12 \end{array}$	$) \times 10^{-4}$ $) \times 10^{-4}$ $) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-4}$ $) \times 10^{-5}$ $) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-4}$	
Γ ₃₆	$\Xi(1530)^0 \overline{\Xi}(1530)^0$) × 10 ⁻⁵	
31	$K^- \Lambda \overline{\Xi}^+ + \text{c.c.}$			$) \times 10^{-5}$	
Γ ₃₈	$\overline{\Xi}(1690)^{-}\overline{\overline{\Xi}}^{+} \rightarrow K^{-}\Lambda\overline{\overline{\Xi}}^{+}+$	(5.2	± 1.6	$) \times 10^{-6}$	
	Ξ (1820) $^{-}\overline{\Xi}^{+} \rightarrow \mathcal{K}^{-}\Lambda\overline{\Xi}^{+}+$	(1.20	± 0.32	$)\times 10^{-5}$	
Γ ₄₀	$K^{-}\Sigma^{0}\frac{\overline{\Xi}}{\Xi}^{+}$ + c.c.	(3.7	± 0.4	$) \times 10^{-5}$	
Γ ₄₁	$\Omega^{-}\overline{\Omega}{}^{+}$			$) \times 10^{-5}$	
Γ_{42}	$\pi^0 p \overline{p}$			$) \times 10^{-4}$	
Γ ₄₃	$N(940)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(6.4	$^{+1.8}_{-1.3}$	$) \times 10^{-5}$	
Γ_{44}	$N(1440)\overline{p} + \text{c.c.} \rightarrow \pi^0 p\overline{p}$	(7.3	$^{+1.7}_{-1.5}$	$) \times 10^{-5}$	S=2.5
Γ_{45}	$N(1520)\overline{p}+ ext{c.c.} ightarrow \ \pi^0p\overline{p}$	(6.4	$+2.3 \\ -1.8$	$) \times 10^{-6}$	
Γ ₄₆	$N(1535)\overline{p}+ ext{c.c.} ightarrow \ \pi^0p\overline{p}$	(2.5	± 1.0	$) \times 10^{-5}$	
Γ ₄₇	$N(1650)\overline{p} + \text{c.c.} \rightarrow \pi^0 p\overline{p}$	(3.8	$^{+1.4}_{-1.7}$	$) \times 10^{-5}$	
Γ ₄₈	$N(1720)\overline{p} + \text{c.c.} \rightarrow \pi^0 p\overline{p}$	(1.79	$^{+0.26}_{-0.70}$	$)\times10^{-5}$	
Γ_{49}	$N(2300)\overline{p} + \text{c.c.} \rightarrow \pi^0 p\overline{p}$	(2.6	$^{+1.2}_{-0.7}$	$)\times10^{-5}$	
Γ ₅₀	$N(2570)\overline{p} + \text{c.c.} \rightarrow \pi^0 p\overline{p}$	(2.13	$^{+0.40}_{-0.31}$	$)\times10^{-5}$	
Γ_{51}	$\pi^0 f_0(2100) \rightarrow \pi^0 \rho \overline{\rho}$	(1.1	± 0.4	$) \times 10^{-5}$	
	$\eta p \overline{p}$	(6.0	± 0.4	$) \times 10^{-5}$	
	$\eta f_0(2100) \rightarrow \eta p \overline{p}$	(1.2	± 0.4	$) \times 10^{-5}$	
	$N(1535)\overline{p} \rightarrow \eta p \overline{p}$			$) \times 10^{-5}$	
	$\omega p \overline{p}$			$) \times 10^{-5}$.
	φp p -+ -	< 2.4		$\times 10^{-5}$	CL=90%
I 57 Г	$\pi^+\pi^-p\overline{p}$ $p\overline{n}\pi^-$ or c.c.	,		$) \times 10^{-4}$ $) \times 10^{-4}$	
1 58 F-0	$p\overline{n}\pi^-\pi^0$			$) \times 10^{-4}$	
1 59 [60	$2(\pi^{+}\pi^{-}\pi^{0})$			$) \times 10^{-3}$	
	$\eta \pi^+ \pi^-$	< 1.6		× 10 ⁻⁴	CL=90%
Γ_{62}	$\eta \pi^{+} \pi^{-} \pi^{0}$			$) \times 10^{-4}$	3070
Γ ₆₃	$2(\pi^+\pi^-)\eta$			$) \times 10^{-3}$	
-					

Γ ₆₄	$\eta' \pi^+ \pi^- \pi^0$	$(4.5 \pm 2.1) \times 10^{-1}$	4
Γ ₆₅	$\omega \pi^+ \pi^-$	$(7.3 \pm 1.2) \times 10^{-1}$	4 S=2.1
Γ ₆₆	$b_1^\pm\pi^\mp$	$(4.0 \pm 0.6) \times 10^{-}$	
Γ ₆₇	$b_1^{ar{0}}\pi^0$	$(2.4 \pm 0.6) \times 10^{-}$	
Γ ₆₈	$\omega f_2(1270)$	$(2.2 \pm 0.4) \times 10^{-}$	
Γ ₆₉	$\pi^{0}\pi^{0}K^{+}K^{-}$	$(2.6 \pm 1.3) \times 10^{-}$	4
Γ ₇₀	$\pi^+\pi^-K^+K^-$	$(7.3 \pm 0.5) \times 10^{-}$	4
Γ ₇₁	$\rho^0 K^+ K^-$	$(2.2 \pm 0.4) \times 10^{-4}$	
	$K^*(892)^0 \overline{K}_2^*(1430)^0$	$(1.9 \pm 0.5) \times 10^{-}$	
	$K^{+}K^{-}\pi^{+}\pi^{-}\eta$	$(1.3 \pm 0.7) \times 10^{-1}$	
	$K + K - 2(\pi^+ \pi^-) \pi^0$	$(1.00 \pm 0.31) \times 10^{-1}$	
	$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(1.00 \pm 0.31) \times 10^{-1}$ $(1.9 \pm 0.9) \times 10^{-1}$	
	$K_1(1270)^{\pm}K^{\mp}$	$(1.90 \pm 0.90) \times 10^{-1}$ $(1.00 \pm 0.28) \times 10^{-1}$	
	$K_0^1(1270) K^2 K_0^2 K_0^2 \pi^+ \pi^-$		
Γ ₇₇	3 , 3	$(2.2 \pm 0.4) \times 10^{-1}$	
Γ ₇₈	$\rho^0 p \overline{p}$	$(5.0 \pm 2.2) \times 10^{-1}$.4
	$K + \overline{K}^* (892)^0 \pi^- + \text{c.c.}$	$(6.7 \pm 2.5) \times 10^{-1}$	
Γ ₈₀		$(2.4 \pm 0.6) \times 10^{-1}$	
Γ ₈₁	$\rho^0 \pi^+ \pi^-$	$(2.2 \pm 0.6) \times 10^{-1}$	
02	$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.26 \pm 0.09) \times 10^{-}$	5
Γ ₈₃	$\omega f_0(1710) \rightarrow \omega K^+ K^-$	$(5.9 \pm 2.2) \times 10^{-1}$	
• .	$K^*(892)^0 K^- \pi^+ \pi^0 + \text{c.c.}$	$(8.6 \pm 2.2) \times 10^{-1}$	
Γ ₈₅	$K^*(892)^+ K^- \pi^+ \pi^- + \text{c.c.}$	$(9.6 \pm 2.8) \times 10^{-1}$	
Γ ₈₆	$K^*(892)^+ K^- \rho^0 + \text{c.c.}$	$(7.3 \pm 2.6) \times 10^{-1}$	
Γ ₈₇	$K^*(892)^0 K^- \rho^+ + \text{c.c.}$	$(6.1 \pm 1.8) \times 10^{-1}$	
Γ ₈₈	$\eta K^+ K^-$, no $\eta \phi$	(3.1 ± 0.4) \times 10 ⁻	
	$\omega K^+ K^-$	(1.62 ± 0.11) \times 10^{-}	
	$\omega K^*(892)^+ K^- + \text{c.c.}$	$(2.07 \pm 0.26) \times 10^{-1}$	
Γ ₉₁	$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	(6.1 ± 1.2) \times 10 ⁻	
Γ_{92}	$\omega \overline{K}^*(892)^0 K^0$	(1.68 ± 0.30) \times 10^{-}	
Γ_{93}	$\omega \overline{K}_2^* (1430)^0 K^0$	(5.8 ± 2.2) \times 10 $^-$	5
Γ ₉₄	$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	(1.6 ± 0.4) $ imes 10^-$.5
_	C.C. (1440) (4+44-1)	(5
	$\omega X(1440) \rightarrow \omega K^{+} K^{-} \pi^{0}$	$(1.09 \pm 0.26) \times 10^{-1}$	
I ₉₆	$\omega f_1(1285) \rightarrow \omega K_S^0 K^- \pi^+ +$	$(3.0 \pm 1.0) \times 10^{-1}$.0
Γ07	$\omega f_1(1285) ightarrow \omega K^+ K^- \pi^0$	$(1.2 \pm 0.7) \times 10^{-}$	6
Γοο	$3(\pi^{+}\pi^{-})$	$(3.5 \pm 2.0) \times 10^{-}$	
Γ00	$p \overline{p} \pi^+ \pi^- \pi^0$	$(7.3 \pm 0.7) \times 10^{-}$	
Γ ₁₀₀	K+ K-	$(7.5 \pm 0.5) \times 10^{-1}$	
L101	$K_S^0 K_L^0$	$(5.34 \pm 0.33) \times 10^{-}$	5
. 101	$\pi^+\pi^-\pi^0$	$(2.01 \pm 0.17) \times 10^{-1}$	
	$\rho(2150)\pi \to \pi^+\pi^-\pi^0$	$(1.9 \begin{array}{c} +1.2 \\ -0.4 \end{array}) \times 10^{-1}$	
Γ ₁₀₄	$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(3.2 ± 1.2) \times 10	S=1.8

Γ_{105}	$\pi^{+}\pi^{-}$	(7.8		$) \times 10^{-6}$	
Γ_{106}	$K_1(1400)^\pmK^\mp$	<	3.1		\times 10 ⁻⁴	CL=90%
Γ_{107}	$K_2^*(1430)^{\pm} K^{\mp}$	(7.1	$+1.3 \\ -0.9$	$) \times 10^{-5}$	
Γ ₁₀₈	$\kappa^+ \kappa^- \pi^0$				$) \times 10^{-5}$	
Γ_{109}	$K^+ K^* (892)^- + \text{c.c.}$	`	2.9		$) \times 10^{-5}$	
Γ ₁₁₀	$K^*(892)^0 K^0 + \text{c.c.}$				$) \times 10^{-4}$	
Γ_{111}	$\phi \pi^+ \pi^-$	(1.18	±0.26	$) \times 10^{-4}$	S=1.5
Γ_{112}	$\phi f_0(980) \rightarrow \pi^+ \pi^-$	(7.5	± 3.3	$) \times 10^{-5}$	S=1.6
Γ_{113}	$2(K^+K^-)$				$) \times 10^{-5}$	
Γ ₁₁₄	$\phi K^+ K^-$				$) \times 10^{-5}$	
	$2(K^+K^-)\pi^0$				$) \times 10^{-4}$	
Γ ₁₁₆					$) \times 10^{-5}$	
Γ ₁₁₇					$) \times 10^{-5}$	
Γ ₁₁₈		(3.2	+2.5 -2.1	$) \times 10^{-5}$	
Γ ₁₁₉	$\omega \pi^0$	(2.1	±0.6	$) \times 10^{-5}$	
Γ_{120}	$ ho\eta'$	(1.9	$+1.7 \\ -1.2$	$) \times 10^{-5}$	
Γ_{121}	$ ho\eta$	(2.2	± 0.6	$) \times 10^{-5}$	S=1.1
Γ_{122}	$\omega \eta$	<	1.1		$\times 10^{-5}$	
Γ_{123}	$\phi \pi^0$	<	4		\times 10 ⁻⁷	CL=90%
Γ ₁₂₄	$\eta_c \pi^+ \pi^- \pi^0$		1.0		\times 10 ⁻³	
Γ_{125}	$p\overline{p}K^+K^-$				$) \times 10^{-5}$	
	$\overline{\Lambda}nK_S^0$ + c.c.				$) \times 10^{-5}$	
	$\phi f_2'(1525)$			± 1.6	$) \times 10^{-5}$	
Γ ₁₂₈	$\Theta(1540)\overline{\Theta}(1540) \rightarrow$	<	8.8		\times 10 ⁻⁶	CL=90%
_	$K_0^0 p K^- \overline{n} + \text{c.c.}$				_	
	$\Theta(1540)K^{-}\overline{n} \rightarrow K_{S}^{0}pK^{-}\overline{n}$		1.0			CL=90%
	$\Theta(1540) K_S^0 \overline{p} \rightarrow K_S^0 \overline{p} K^+ n$		7.0			CL=90%
	$\overline{\Theta}(1540)K^+ n \rightarrow K_S^0 \overline{p}K^+ n$		2.6		$\times 10^{-5}$	
	$\overline{\Theta}(1540)K_S^0 p \rightarrow K_S^0 p K^- \overline{n}$		6.0		$\times 10^{-6}$	
1 ₁₃₃	$K_S^0 K_S^0$	<	4.6		$\times 10^{-6}$	
	Radiative de	cays				
Γ_{134}	$\gamma \chi_{c0}(1P)$	(9.99	±0.27) %	
	$\gamma \chi_{c1}(1P)$	(9.55	±0.31) %	
	$\gamma \chi_{c2}(1P)$			±0.31		
	$\gamma \eta_c(1S)$				$) \times 10^{-3}$	S=1.3
Γ ₁₃₈	$\gamma \eta_{c}(2S)$ $\gamma \pi^{0}$	•			$) \times 10^{-4}$	
I ₁₃₉	$\gamma \pi^{0}$				$) \times 10^{-6}$	
	$\gamma \eta'(958)$				$) \times 10^{-4}$	
	$\gamma f_2(1270)$			00	$) \times 10^{-4}$	S=1.8
	$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$				$) \times 10^{-5}$	
Γ ₁₄₃	$\gamma f_0(1500)$	(9.2	± 1.9	$) \times 10^{-5}$	
	D //DDC/1D/ COV		_		= /00 /0	

 $\mathsf{HTTP://PDG.LBL.GOV} \qquad \qquad \mathsf{Page} \ 5 \qquad \qquad \mathsf{Created:} \ 5/30/2017 \ 17{:}21$

```
(3.3 \pm 0.8) \times 10^{-5}
\Gamma_{144} \quad \gamma f_2'(1525)
\Gamma_{145} \quad \gamma f_0(1710)
                                                                                      (3.5 \pm 0.6) \times 10^{-5}
\Gamma_{146} \qquad \gamma f_0(1710) \rightarrow \gamma \pi \pi
\Gamma_{147} \qquad \gamma f_0(1710) \rightarrow \gamma K \overline{K}
                                                                                    (6.6 \pm 0.7) \times 10^{-5}
\Gamma_{148} \quad \gamma f_0(2100) \rightarrow \gamma \pi \pi
                                                                                   (4.8 \pm 1.0) \times 10^{-6}
\Gamma_{149} \gamma f_0(2200) \rightarrow \gamma K \overline{K}
                                                                                   (3.2 \pm 1.0) \times 10^{-6}
\Gamma_{150} \gamma f_J(2220) \rightarrow \gamma \pi \pi
                                                                                                              \times 10^{-6}
                                                                                    < 5.8
                                                                                                                                   CL=90%
\Gamma_{151} \quad \gamma f_J(2220) \rightarrow \gamma K K
                                                                                    < 9.5
                                                                                                                 \times 10^{-6}
                                                                                                                                   CL=90%
\Gamma_{152} \gamma \gamma
                                                                                                                 \times 10^{-4}
                                                                                                                                   CL=90%
                                                                                    < 1.5
                                                                                    (1.4 \pm 0.5) \times 10^{-6}
\Gamma_{153} \gamma \eta
\Gamma_{154} \gamma \eta \pi^+ \pi^-
                                                                                      (8.7 \pm 2.1) \times 10^{-4}
\Gamma_{155} \ \gamma \eta (1405)
\Gamma_{156} \qquad \gamma \eta(1405) \rightarrow \gamma K \overline{K} \pi
                                                                                    < 9
                                                                                                                 \times 10^{-5}
                                                                                                                                   CL=90%
\Gamma_{157}^{-33} \gamma \eta (1405) \rightarrow \eta \pi^+ \pi^-
                                                                                   (3.6 \pm 2.5) \times 10^{-5}
\Gamma_{158} \quad \gamma \, \eta(1475)
\Gamma_{159} \qquad \gamma \eta(1475) \rightarrow K \overline{K} \pi
                                                                                    < 1.4
                                                                                                               \times 10^{-4}
                                                                                                                                   CL=90%
\Gamma_{160} \qquad \gamma \eta(1475) \rightarrow \eta \pi^+ \pi^-
                                                                                    < 8.8
                                                                                                               \times 10^{-5}
                                                                                                                                   CL=90%
\Gamma_{161} \ \gamma 2(\pi^+\pi^-)
                                                                                    (4.0 \pm 0.6) \times 10^{-4}
\Gamma_{162} \gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}
                                                                                   (3.7 \pm 0.9) \times 10^{-4}
\Gamma_{163} \quad \gamma K^{*0} \overline{K}^{*0}
                                                                                   (2.4 \pm 0.7) \times 10^{-4}
\Gamma_{164} \gamma K_S^0 K^+ \pi^- + \text{c.c.}
                                                                                     (2.6 \pm 0.5) \times 10^{-4}
\Gamma_{165} \gamma K^{+} K^{-} \pi^{+} \pi^{-}
                                                                                      (1.9 \pm 0.5) \times 10^{-4}
\Gamma_{166} \gamma p \overline{p}
                                                                                      (3.9 \pm 0.5) \times 10^{-5}
                                                                                                                                       S = 2.0
\begin{array}{ll} \Gamma_{167} & \gamma \, f_2(1950) \rightarrow \gamma \, p \, \overline{p} \\ \Gamma_{168} & \gamma \, f_2(2150) \rightarrow \gamma \, p \, \overline{p} \end{array}
                                                                                      (1.20 \pm 0.22) \times 10^{-5}
                                                                                      (7.2 \pm 1.8) \times 10^{-6}
                                                                                      ( 4.6 \quad {}^{+\, 1.8}_{-\, 4.0} \quad ) \times 10^{-6}
\Gamma_{169} \qquad \gamma X(1835) \rightarrow \gamma p \overline{p}
\Gamma_{170} \qquad \gamma X \rightarrow \gamma p \overline{p}
                                                                                                                  \times 10^{-6}
                                                                          [a] < 2
                                                                                                                                   CL=90%
\Gamma_{171} \quad \gamma \pi^+ \pi^- p \overline{p}
                                                                                  (2.8 \pm 1.4) \times 10^{-5}
\Gamma_{172} \quad \gamma \, 2(\pi^+ \pi^-) \, K^+ \, K^-
                                                                                                                 \times 10^{-4}
                                                                                    < 2.2
                                                                                                                                   CL=90%
\Gamma_{173} \ \gamma 3(\pi^+\pi^-)
                                                                                                                 \times 10^{-4}
                                                                                    < 1.7
                                                                                                                                   CL=90%
\Gamma_{174} \gamma K^+ K^- K^+ K^-
                                                                                    < 4
                                                                                                                 \times 10^{-5}
                                                                                                                                   CL=90%
                                                                                      ( 3.1 \quad {+1.0 \atop -1.2} \quad ) \times 10^{-4}
\Gamma_{175} \gamma \gamma J/\psi
```

Other decays

 Γ_{176} invisible < 1.6 % CL=90%

[a] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.

CONSTRAINED FIT INFORMATION

A multiparticle fit to $\chi_{c1}(1P)$, $\chi_{c0}(1P)$, $\chi_{c2}(1P)$, and $\psi(2S)$ with 4 total widths, a partial width, 25 combinations of partial widths obtained from integrated cross section, and 84 branching ratios uses 239 measurements to determine 49 parameters. The overall fit has a $\chi^2=342.4$ for 190 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta p_i \delta p_j \right\rangle / (\delta p_i \cdot \delta p_j)$, in percent, from the fit to parameters p_i , including the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\mathsf{total}}$.

<i>x</i> ₇	3									
<i>x</i> ₈	1	0								
<i>×</i> ₁₁	30	8	2							
<i>x</i> ₁₂	29	5	1	49						
<i>×</i> 13	13	3	1	36	16					
<i>x</i> ₁₉	0	0	0	5	3	2				
^X 134	1	0	0	3	1	1	0			
<i>×</i> 135	2	0	0	4	1	1	0	0		
<i>×</i> 136	1	0	0	4	1	1	0	0	0	
Γ	-81	-3	-1	-39	-35	-17	-8	-1	-2	-2
	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₁₁	<i>x</i> ₁₂	<i>x</i> ₁₃	<i>x</i> ₁₉	<i>x</i> ₁₃₄	<i>x</i> 135	<i>x</i> 136

$\psi(2S)$ PARTIAL WIDTHS

Γ(hadrons)						Γ_1
VALUE (keV)	DOCUME	NT ID		TECN	COMMENT	
ullet $ullet$ We do not use the fol	lowing data for a	verage	s, fits,	limits, e	etc. • • •	
$258 \!\pm\! 26$	BAI		02 B	BES2	e^+e^-	
224 ± 56	LUTH		75	MRK1	e^+e^-	
$\Gamma(e^+e^-)$						Γ ₆
VALUE (keV)	DOCUMENT ID		TECN	СОММ	ENT	
2.34 ± 0.04 OUR FIT						
2.30 ± 0.06 OUR AVERAG	E					
$2.24 \pm 0.10 \pm 0.02$	¹ ABLIKIM	15∨	BES3	4.0-4.	$4 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}$	J/ψ
$2.338 \!\pm\! 0.037 \!\pm\! 0.096$	ABLIKIM	08 B	BES2	e^+e^-	$^{-} ightarrow$ hadrons	
$2.330 \pm 0.036 \pm 0.110$	ABLIKIM	06L	BES2	e^+e^-	→ hadrons	
2.44 ± 0.21	² BAI	02 B	BES2	e^+e^-	-	
2.14 ± 0.21	ALEXANDER	89	RVUE	See γ	mini-review	
ullet $ullet$ We do not use the fol	lowing data for a	verage	s, fits,	limits, e	etc. • • •	
2.0 ± 0.3	BRANDELIK	79 C	DASP	e^+e^-	-	
2.1 ± 0.3	³ LUTH	75	MRK1	e^+e^-	-	

¹ ABLIKIM 15V reports $2.213 \pm 0.018 \pm 0.099$ keV from a measurement of $[\Gamma(\psi(2S) \rightarrow e^+e^-)] \times [B(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-)]$ assuming $B(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) = (34.95 \pm 0.45) \times 10^{-2}$, which we rescale to our best value $B(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) = (34.49 \pm 0.30) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² From a simultaneous fit to e^+e^- , $\mu^+\mu^-$, and hadronic channel, assuming $\Gamma_e=\Gamma_\mu=\Gamma_\tau/0.38847$.

³ From a simultaneous fit to e^+e^- , $\mu^+\mu^-$, and hadronic channels assuming $\Gamma(e^+e^-)$ = $\Gamma(\mu^+\mu^-)$.

$\psi(2S) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into e^+e^- and with the total width is obtained from the integrated cross section into channel(i) in the e^+e^- annihilation. We list only data that have not been used to determine the partial width $\Gamma(i)$ or the branching ratio $\Gamma(i)$ /total.

$\Gamma(\text{hadrons}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_1\Gamma_6/\Gamma$

2.2 ± 0.4 ABRAMS 75 MRK1 $e^{+}e^{-}$

$$\Gamma(au^+ au^-)\, imes\,\Gamma(e^+e^-)/\Gamma_{ ext{total}}$$

VALUE (eV) EVTS DOCUMENT ID TECN COMMENT

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

9.0 \pm 2.6 79 ¹ ANASHIN 07 KEDR $e^+e^-
ightarrow \psi(2S)
ightarrow au^+ au^-$

$$\Gamma(J/\psi(1S)\pi^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$$

 $\Gamma_{11}\Gamma_6/\Gamma$

Created: 5/30/2017 17:21

 $\Gamma_8\Gamma_6/\Gamma$

VALUE (keV) EVTS DOCUMENT ID TECN COMMENT

0.807 ± 0.013 OUR FIT

 0.837 ± 0.025 **OUR AVERAGE** Error includes scale factor of 1.3. See the ideogram below.

• • • We do not use the following data for averages, fits, limits, etc. • • •

0.88 ± 0.08 ± 0.03 256 3 AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow J/\psi \pi^+\pi^- \gamma$ 0.755 $\pm 0.048 \pm 0.004$ 544 4 AUBERT 05D BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^-\mu^+\mu^- \gamma$

 $^{^1}$ ANASHIN 12 reports the value 2.233 \pm 0.015 \pm 0.037 \pm 0.020 keV, where the third uncertainty is due to assumptions on the interference between the resonance and hadronic continuum. We combined the two systematic uncertainties.

 $^{^{1}}$ Using $\psi(2S)$ total width of 337 \pm 13 keV. Systematic errors not evaluated.

 1 LEES 12E reports $[\Gamma(\psi(2S)\to J/\psi(1S)\pi^+\pi^-)\times\Gamma(\psi(2S)\to e^+e^-)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to \mu^+\mu^-)]=(49.9\pm1.3\pm1.0)\times10^{-3}$ keV which we divide by our best value $B(J/\psi(1S)\to \mu^+\mu^-)=(5.961\pm0.033)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. 2 The value of $\Gamma(e^+e^-)$ quoted in BAI 98E is derived using $B(\psi(2S)\to J/\psi(1S)\pi^+\pi^-)=(32.4\pm2.6)\times10^{-2}$ and $B(J/\psi(1S)\to \ell^+\ell^-)=0.1203\pm0.0038.$ Recalculated by us using $B(J/\psi(1S)\to \ell^+\ell^-)=0.1181\pm0.0020.$

³ AUBERT 07AU reports $[\Gamma(\psi(2S) \to J/\psi(1S)\pi^+\pi^-) \times \Gamma(\psi(2S) \to e^+e^-)/\Gamma_{total}] \times [B(J/\psi(1S) \to \pi^+\pi^-\pi^0)] = 0.0186 \pm 0.0012 \pm 0.0011$ keV which we divide by our best value $B(J/\psi(1S) \to \pi^+\pi^-\pi^0) = (2.11 \pm 0.07) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ AUBERT 05D reports $[\Gamma(\psi(2S) \to J/\psi(1S)\pi^+\pi^-) \times \Gamma(\psi(2S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to \mu^+\mu^-)] = 0.0450 \pm 0.0018 \pm 0.0022$ keV which we divide by our best value $B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by LEES 12E.

WEIGHTED AVERAGE 0.837±0.025 (Error scaled by 1.3)

 $\Gamma(J/\psi(1S)\pi^0\pi^0)$ × $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{12}\Gamma_6/\Gamma$ VALUE (keV) EVTS DOCUMENT ID TECN COMMENT $O.425\pm0.009 \text{ OUR FIT}$ $O.411\pm0.008\pm0.018$ $3.6k\pm96$ ADAM OCCOMENT OCCO

```
\Gamma(J/\psi(1S)\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{13}\Gamma_6/\Gamma
VALUE (eV)
                                                 DOCUMENT ID
78.6± 1.6 OUR FIT
87 \pm 9 OUR AVERAGE
                                                                    07AU BABR 10.6 e^+e^-_{\mu}
                                               <sup>1</sup> AUBERT
83 \pm 25 \pm 5
                                                                             CLEO 3.773 e^+e^- \rightarrow \gamma \psi(2S)
88 \pm 6 \pm 7
                           291 \pm 24
                                                 ADAM
   ^1 AUBERT 07AU quotes \Gamma^{\psi(2S)}_{ee}\cdot B(\psi(2S) 
ightarrow \ J/\psi\eta)\cdot B(J/\psi 
ightarrow \ \mu^+\mu^-)\cdot B(\eta 
ightarrow
     \pi^{+}\pi^{-}\pi^{0}) = 1.11 ± 0.33 ± 0.07 eV.
\Gamma(J/\psi(1S)\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{14}\Gamma_{6}/\Gamma
                                                DOCUMENT ID
                                                                             TECN COMMENT
                                                                          CLEO 3.773 e^+e^- \rightarrow \gamma \psi(2S)
                                                ADAM
\Gamma(p\overline{p}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{19}\Gamma_{6}/\Gamma
VALUE (eV)
                                                                               TECN
                                                                                          COMMENT
0.673 ± 0.023 OUR FIT
0.63 \pm 0.05 OUR AVERAGE
                                           Error includes scale factor of 1.2.
                                               <sup>1</sup> LEES
                                                                       130 BABR e^+e^- \rightarrow p\overline{p}\gamma
0.67 \pm 0.12 \pm 0.02
                                                <sup>2</sup> LEES
                                                                        13Y BABR e^+e^- \rightarrow p\overline{p}\gamma
0.74 \pm 0.07 \pm 0.04
                                   142
                                                  ANDREOTTI 07 E835 p\overline{p} \rightarrow e^+e^-, J/\psi X
0.579 \pm 0.038 \pm 0.036
                                   2.7k
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                <sup>3</sup> AUBERT
                                                                        06B BABR e^+e^- \rightarrow p\overline{p}\gamma
0.70 \pm 0.17 \pm 0.03
   <sup>1</sup>ISR photon reconstructed in the detector
   <sup>2</sup>ISR photon undetected
   <sup>3</sup>Superseded by LEES 130
\Gamma(\Lambda \overline{\Lambda}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{26}\Gamma_6/\Gamma
VALUE (eV)
                                                                          TECN COMMENT
                                                  AUBERT
                                                                      07BD BABR 10.6 e^+e^- \rightarrow \Lambda \overline{\Lambda} \gamma
1.5\pm0.4\pm0.1
\Gamma(2(\pi^+\pi^-\pi^0)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{60}\Gamma_{6}/\Gamma
                                        DOCUMENT ID
                                                              06D BABR 10.6 e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-}\pi^{0})\gamma
11.2 \pm 3.3 \pm 1.3
                                        AUBERT
\Gamma(\pi^0\pi^0K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{69}\Gamma_6/\Gamma
                                                  DOCUMENT ID
                                  EVTS
                                                                               TECN COMMENT
0.60\pm0.31\pm0.03
                                     17
                                                  LEES
\Gamma(K^+K^-2(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{75}\Gamma_6/\Gamma
                                  EVTS
                                                  DOCUMENT ID
                                                                               TECN <u>COMMENT</u>
                                                                        06D BABR 10.6 e^+e^- \rightarrow
4.4±2.1±0.3
                                                  AUBERT
                                                                                              K^{+}K^{-}2(\pi^{+}\pi^{-})\gamma
```

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(\pi^+\pi^-K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{70}\Gamma_6/\Gamma$ BABR 10.6 $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma$ 12F $1.92\pm0.30\pm0.06$ 133 **LEES** • • We do not use the following data for averages, fits, limits, etc. • ¹ AUBERT 07AK BABR 10.6 $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}K^{+}K^{-}\gamma$ ¹ Superseded by LEES 12F. $\Gamma(\phi f_0(980) \rightarrow \pi^+\pi^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{112}\Gamma_6/\Gamma$ VALUE (eV) TECN $0.347 \pm 0.129 \pm 0.003$ 12F BABR • • We do not use the following data for averages, fits, limits, etc. 6 ± 3 ² AUBERT 07AK BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^- K^+ K^- \gamma$ $0.347 \pm 0.168 \pm 0.003$ ¹LEES 12F reports $[\Gamma(\psi(2S) \rightarrow \phi f_0(980) \rightarrow \pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{total}]$ \times [B(ϕ (1020) \rightarrow K⁺K⁻)] = 0.17 \pm 0.06 \pm 0.02 eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. 2 Superseded by LEES 12F. AUBERT 07AK reports [$\Gamma(\psi(2S) o\phi f_0(980) o\pi^+\pi^-) imes$ $\Gamma(\psi(2S) \to e^+e^-)/\Gamma_{\text{total}} \times [B(\phi(1020) \to K^+K^-)] = 0.17 \pm 0.08 \pm 0.02 \text{ eV}$ which we divide by our best value B($\phi(1020) \rightarrow K^+K^-$) = (48.9 \pm 0.5) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(2(K^+K^-)) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{113}\Gamma_6/\Gamma$ BABR 10.6 $e^+e^- \rightarrow K^+K^-K^+K^-\gamma$ $0.22\pm0.10\pm0.02$ 13 LEES

 $\Gamma(\phi\pi^+\pi^-) \times \Gamma(e^+e^-)$ $\Gamma_{111}\Gamma_6/\Gamma$ DOCUMENT ID ¹ LEES BABR 10.6 $e^+e^- \to K^+K^-\pi^+\pi^-\gamma$ $0.55\pm0.19\pm0.01$ 12F

• We do not use the following data for averages, fits, limits, etc. • •

² AUBERT,BE 06D BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$ ¹LEES 12F reports $[\Gamma(\psi(2S) \rightarrow \phi\pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{total}] \times$ $[B(\phi(1020) \rightarrow K^+K^-)] = 0.27 \pm 0.09 \pm 0.02$ eV which we divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Superseded by LEES 12F. AUBERT,BE 06D reports $[\Gamma(\psi(2S)
ightarrow \phi \pi^+ \pi^-) imes 1$ $\Gamma(\psi(2S) \to e^+e^-)/\Gamma_{\text{total}}] \times [B(\phi(1020) \to K^+K^-)] = 0.28 \pm 0.11 \pm 0.02 \text{ eV}$ which we divide by our best value B($\phi(1020) \rightarrow K^+K^-$) = $(48.9 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(2(\pi^+\pi^-)\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\Gamma_{17}\Gamma_6/\Gamma$ DOCUMENT ID TECN 07AU BABR 10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\gamma$ 29.7±2.2±1.8 **AUBERT**

$\Gamma(\omega\pi^+\pi^-)$ × Γ	(e^+e^-)	$/\Gamma_{ ext{total}}$			$\Gamma_{65}\Gamma_6/\Gamma$
VALUE (eV)	EVTS	DOCUMENT ID	TECN	COMMENT	
$3.01 \pm 0.84 \pm 0.02$	37	¹ AUBERT	07AU BABF	R 10.6 e^+e^-	$\rightarrow \omega \pi^+ \pi^- \gamma$
¹ AUBERT 07AU	reports [$\Gamma(\psi(2S) \rightarrow \omega \pi^+$	$\pi^-) \times \Gamma($	$\psi(2S) \rightarrow e^+$	$(e^-)/\Gamma_{total}] \times$
$[B(\omega(782) \rightarrow \pi)]$	$+_{\pi} - {}_{\pi} 0$)] = $2.69 \pm 0.73 \pm$	0.16 eV wh	ich we divide by	y our best value
$B(\omega(782) \rightarrow \pi)$	$+_{\pi}{\pi} 0$	$= (89.2 \pm 0.7) \times$	10^{-2} . Our	first error is the	eir experiment's

 $\Gamma(2(\pi^+\pi^-)\eta) \, imes \, \Gamma(e^+e^-)/\Gamma_{
m total}$ $\Gamma_{63}\Gamma_{6}/\Gamma$ DOCUMENT ID TECN COMMENT

AUBERT 07AU BABR $10.6 \ e^+e^-
ightarrow 2(\pi^+\pi^-)\eta\gamma$ $2.87 \pm 1.41 \pm 0.01$

error and our second error is the systematic error from using our best value.

 1 AUBERT 07AU reports $[\Gamma(\psi(2S)\to 2(\pi^+\pi^-)\eta)\times\Gamma(\psi(2S)\to e^+e^-)/\Gamma_{\rm total}]\times[B(\eta\to 2\gamma)]=1.13\pm0.55\pm0.08$ eV which we divide by our best value $B(\eta\to 2\gamma)=1.13\pm0.55\pm0.08$ $(39.41 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $\Gamma(K^+K^-\pi^+\pi^-\pi^0) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT 07AU BABR $10.6 e^+e^- \rightarrow K^+K^-\pi^+\pi^-\pi^0\gamma$ $4.4 \pm 1.3 \pm 0.3$ **AUBERT**

 $\Gamma(K^+K^-\pi^+\pi^-\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ $\frac{\textit{DOCUMENT ID}}{1} \underbrace{\textit{TECN}}_{\text{AUBERT 07AU BABR}} \underbrace{\textit{COMMENT}}_{\text{10.6 e}^+e^- \rightarrow \textit{K}^+\textit{K}^-\pi^+\pi^-\eta\gamma}$

$\Gamma(K^+K^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_{100}\Gamma_6/\Gamma$

Created: 5/30/2017 17:21

VALUE (eV)	EVTS	DOCUMENT I	D TECN COMMENT	
• • • We do not use th	ne followin	g data for avera	ges, fits, limits, etc. ● ●	
$0.147 \pm 0.035 \pm 0.005$	66	¹ LEES	15J BABR $e^+e^- ightarrow K^+K^-$	γ
$0.197 \!\pm\! 0.035 \!\pm\! 0.005$	66	² LEES	15J BABR $e^+e^- ightarrow K^+K^-$	γ
$0.35 \ \pm 0.14 \ \pm 0.03$	11	³ LEES	13Q BABR $e^+e^- ightarrow K^+K^-$	γ
$1 \sin \phi > 0$.				

$\psi(2S)$ BRANCHING RATIOS

 $\Gamma(\text{hadrons})/\Gamma_{\text{total}}$ Γ_1/Γ TECN COMMENT 0.9785 ± 0.0013 OUR AVERAGE 1 BAI 02B BES2 $e^{+}e^{-}$ 0.9779 ± 0.0015 ¹ LUTH 75 MRK1 $e^+e^ 0.981 \pm 0.003$

 $^{^{1}}$ AUBERT 07AU reports [$\Gamma(\psi(2S)\to K^{+}K^{-}\pi^{+}\pi^{-}\eta)\times \Gamma(\psi(2S)\to e^{+}e^{-})/\Gamma_{total}]\times [\mathrm{B}(\eta\to 2\gamma)]=1.2\pm0.7\pm0.1$ eV which we divide by our best value $\mathrm{B}(\eta\to 2\gamma)=1.0$ $(39.41 \pm 0.20) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³Interference with non-resonant K^+K^- production not taken into account.

¹ Includes cascade decay into $J/\psi(1S)$.

$\Gamma(\text{virtual}\,\gamma \rightarrow \text{hadrons})/\Gamma_{\text{total}}$ Γ_2/Γ DOCUMENT ID TECN COMMENT 0.0173 ± 0.0014 OUR AVERAGE Error includes scale factor of 1.5. ^{1,2} SETH 0.0166 ± 0.0010 ¹ BAI 02B BES2 0.0199 ± 0.0019 • • We do not use the following data for averages, fits, limits, etc. ¹ LUTH MRK1 e^+e^- ¹ Included in $\Gamma(\text{hadrons})/\Gamma_{\text{total}}$. ² Using B($\psi(2S) \to \ell^+\ell^-$) = (0.73 \pm 0.04)% from RPP-2002 and R = 2.28 \pm 0.04 determined by a fit to data from BAI 00 and BAI 02C. $\Gamma(ggg)/\Gamma_{\text{total}}$ Γ_3/Γ VALUE (units 10^{-2}) 10.58 ± 1.62 ¹ Calculated using $\Gamma(\gamma g g)/\Gamma(g g g)=0.097\pm0.026\pm0.016$ from LIBBY 09, B $(\psi(2S)\to$ XJ/ψ) relative and absolute branching fractions from MENDEZ 08, B($\psi(2S) \rightarrow \gamma \eta_c$) from MITCHELL 09, and B($\psi(2S) \to \text{virtual } \gamma \to \text{hadrons}$), B($\psi(2S) \to \gamma \chi_{c,I}$), and $B(\psi(2S) \to \ell^+\ell^-)$ from PDG 08. The statistical error is negligible and the systematic error is largely uncorrelated with that of $\Gamma(\gamma gg)/\Gamma_{total}$ LIBBY 09 measurement. Γ_4/Γ $\Gamma(\gamma g g)/\Gamma_{\text{total}}$ VALUE (units 10^{-2}) TECN COMMENT ¹LIBBY 1.025 ± 0.288 200 k 09 CLEO $\psi(2S) \rightarrow \gamma + \text{hadrons}$ 1 Calculated using $\Gamma(\gamma gg)/\Gamma(ggg)=0.097\pm0.026\pm0.016$ from LIBBY 09. The statistical error is negligible and the systematic error is largely uncorrelated with that of $\Gamma(ggg)/\Gamma_{total}$ LIBBY 09 measurement. $\Gamma(\gamma gg)/\Gamma(ggg)$ Γ_4/Γ_3 VALUE (units 10^{-2}) **EVTS** DOCUMENT ID TECN COMMENT $9.7 \pm 2.6 \pm 1.6$ 2.9 M CLEO $\psi(2S) \rightarrow (\gamma +)$ hadrons **LIBBY** $\Gamma(\text{light hadrons})/\Gamma_{\text{total}}$ Γ_5/Γ **VALUE** ¹ MENDEZ CLEO $e^+e^- \rightarrow \psi(2S)$ 0.154 ± 0.015 • • We do not use the following data for averages, fits, limits, etc. ² ADAM 05A CLEO $e^+e^- \rightarrow \psi(2S)$ 0.169 ± 0.026 ¹ Uses B($\psi(2S) \rightarrow J/\psi X$) from MENDEZ 08 and other branching fractions from PDG 07. 2 Uses B(J/ ψ X) from ADAM 05A, B($\chi_{cJ}\gamma$), B($\eta_{c}\gamma$) from ATHAR 04 and B($\ell^+\ell^-$) from PDG 04. Superseded by MENDEZ 08. $\Gamma(e^+e^-)/\Gamma_{\text{total}}$ Γ_6/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT 78.9± 1.7 OUR FIT • • We do not use the following data for averages, fits, limits, etc. ¹ FFI DMAN 77 RVUE e^+e^- ¹ From an overall fit assuming equal partial widths for e^+e^- and $\mu^+\mu^-$. For a measurement of the ratio see the entry $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$ below. Includes LUTH 75, HILGER 75, BURMESTER 77.

$\Gamma(\mu^+\mu^-)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 79±9 OUR FIT	DOCUMENT ID	_		Γ ₇ /Γ
$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$	DOCUMENT ID	<u>TECN</u>	<u>COMMENT</u>	Γ ₇ /Γ ₆
1.00±0.11 OUR FIT • • • We do not use the followin	σ data for averages fi	ts limits (etc • • •	
0.89±0.16		oc MRK1		
$\Gamma(au^+ au^-)/\Gamma_{ m total}$				Γ ₈ /Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT	
31 ±4 OUR FIT 30.8±2.1±3.8	¹ ABLIKIM 06	Sw BES	$e^+e^- o \psi$	v(2 <i>S</i>)
¹ Computed using PDG 02 valu			•	` '
the total number of $\psi(2S)$ ev		,		
——— DECAYS IN	ITO $J/\psi(1S)$ AND	ANYTH	IING ——	
$\Gamma(J/\psi(1S))$ anything $\Gamma(J/\psi(1S))$ anything $\Gamma(J/\psi(1S))$	DOCUMENT ID	<u>TECN</u>	<u>COMMENT</u>	Г9/Г
0.610 ±0.006 OUR FIT 0.55 ±0.07 OUR AVERAGE				
$\begin{array}{ccc} 0.51 & \pm 0.12 \\ 0.57 & \pm 0.08 \end{array}$		75B MRK	$1 e^+e^- \rightarrow$	
• • We do not use the followin				.1
$0.6254 \pm 0.0016 \pm 0.0155$ 1.1M $0.5950 \pm 0.0015 \pm 0.0190$ 151k			$\psi(2S) ightarrow 0$ Repl. by M	
$^{ m 1}$ Not independent from other r	neasurements of MEN	DEZ 08.		
$\Gammaig(e^+e^-ig)/\Gammaig(J/\psi(1S)ig)$ anythi $\Gamma_6/\Gamma_9=\Gamma_6/(1S)$	ng) (Г ₁₁ +Г ₁₂ +Г ₁₃ +0.3	339Г ₁₃₅ ⊣	-0.192Γ ₁₃₆)	
VALUE (units 10^{-2}) EVTS	•	TEC		
1.294±0.026 OUR FIT 1.28 ±0.04 OUR AVERAGE E 1.22 ±0.02 ±0.05 5097 ± 73	Error includes scale fac			
1.28 ±0.03 ±0.02 1.44 ±0.08 ±0.02	¹ AMBROGIAN ¹ ARMSTRONG	I 00A E83	${ m e^+ e^-}$ ${ m p} ightarrow \psi($	(25)
1 Using B $(J/\psi(1S) ightarrow e^{+}e^{-})$	$)=0.0593\pm0.0010.$			

 $\Gamma\!\left(e^+\,e^-\right)/\Gamma\!\left(J/\psi(1S)\,{\rm anything}\right)$ (units 10^{-2})

$\Gamma(\mu^+\mu^-)/\Gamma(J/\psi(1S))$ anything)

 $\Gamma_7/\Gamma_9 = \Gamma_7/(\Gamma_{11} + \Gamma_{12} + \Gamma_{13} + 0.339\Gamma_{135} + 0.192\Gamma_{136})$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.0130±0.0014 OUR FIT				
0.014 ± 0.003	HILGER	75	SPEC	e^+e^-

 $\Gamma(J/\psi(1S) \text{ neutrals})/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{10}}/\Gamma$

VALUE DOCUMENT ID

 0.2514 ± 0.0033 OUR FIT

 $\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma_{ ext{total}}$ VALUE

0.3449 ± 0.0030 OUR FIT

0.348 ± 0.005 OUR AVERAGE
below.

0.3498 ± 0.0002 ± 0.0045 20M

ABLIKIM

13R

BES3 $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$

0.3504 \pm 0.0007 \pm 0.0077 565k MENDEZ 08 CLEO $\psi(2S) \rightarrow \ell^+ \ell^- \pi^+ \pi^-$ 0.323 \pm 0.014 BAI 02B BES2 $e^+ e^-$ 0.32 \pm 0.04 ABRAMS 75B MRK1 $e^+ e^- \rightarrow J/\psi \pi^+ \pi^-$

• • We do not use the following data for averages, fits, limits, etc. • •

 $0.3354\pm0.0014\pm0.0110$ 60k 1 ADAM 05A CLEO Repl. by MENDEZ 08

¹ Not independent from other values reported by ADAM 05A.

$\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma(J/\psi(1S))$ anything Γ_{11}/Γ_{9} TECN COMMENT 0.5653 ± 0.0026 OUR FI 0.554 ± 0.008 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. CLEO $\psi(2S) \rightarrow \ell^+ \ell^- \pi^+ \pi^ 0.5604 \pm 0.0009 \pm 0.0062$ 565k **MENDEZ** $\psi(2S) \rightarrow J/\psi X$ $0.525 \pm 0.009 \pm 0.022$ 4k ANDREOTTI 05 E835 ^{1,2}ABLIKIM $0.536\ \pm0.007\ \pm0.016$ 20k BES $\psi(2S) \rightarrow J/\psi X$ **04**B 0.496 ± 0.037 ARMSTRONG 97 E760 $\overline{p}p \rightarrow \psi(2S)$ • • We do not use the following data for averages, fits, limits, etc. $0.5637 \pm 0.0027 \pm 0.0046$ 05A CLEO Repl. by MENDEZ 08 60k ADAM ¹ From a fit to the J/ψ recoil mass spectra. ² ABLIKIM 04B quotes B($\psi(2S) \rightarrow J/\psi X$) / B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$). WEIGHTED AVERAGE 0.554±0.008 (Error scaled by 1.3) Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not necessarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information. 08 **CLEO** MENDEZ E835 ANDREOTTI 05 1.5 **ABLIKIM** 04B BES 1.1 ARMSTRONG 97 E760 3.6 (Confidence Level = 0.168) 0.45 0.5 0.55 0.6 0.65 0.7 $\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma(J/\psi(1S))$ anything Γ_{11}/Γ_{9} $\Gamma(J/\psi(1S) \text{ neutrals})/\Gamma(J/\psi(1S)\pi^+\pi^-)$ $\Gamma_{10}/\Gamma_{11} = (0.9761\Gamma_{12} + 0.719\Gamma_{13} + 0.339\Gamma_{135} + 0.192\Gamma_{136})/\Gamma_{11}$ TECN COMMENT 0.729 ± 0.008 OUR FIT 0.73 ± 0.09 TANENBAUM 76 MRK1 $e^+e^ \Gamma(J/\psi(1S)\pi^0\pi^0)/\Gamma_{\text{total}}$ Γ_{12}/Γ <u>COMM</u>ENT DOCUMENT ID TECN • • We do not use the following data for averages, fits, limits, etc. ¹ MENDEZ CLEO $\psi(2S) \rightarrow \ell^+ \ell^- 2\pi^0$ $0.1769 \pm 0.0008 \pm 0.0053$ 61k

HTTP://PDG.LBL.GOV

 $0.1652 \pm 0.0014 \pm 0.0058$ 13.4k

Page 17

05A CLEO Repl. by MENDEZ 08

Created: 5/30/2017 17:21

² ADAM

² Not independent from other values reported by ADAM 05A.

$\Gamma(J/\psi(1S)\pi^0\pi^0)/\Gamma(J/\psi(1S))$ anything									
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
0.2977 ± 0.0031 OUR F	IT								
0.320 ± 0.012 OUR A	VERAGE								
$0.300\ \pm0.008\ \pm0.022$	1655 ± 44	ANDREOTTI	05	E835	$\psi(2S) ightarrow J/\psi X$				
$0.328 \pm 0.013 \pm 0.008$		AMBROGIAN	I 00A	E835	$p\overline{p} \rightarrow \psi(2S)$				
0.323 ± 0.033		ARMSTRONG	97	E760	$\overline{p}p \rightarrow \psi(2S)$				
• • • We do not use th	ne following dat	ta for averages,	fits, li	mits, etc	5. ● ● ●				
$0.2829 \pm 0.0012 \pm 0.0050$	6 61k	MENDEZ	08	CLEO	$\psi(2S) \rightarrow \ell^+\ell^-2\pi^0$				
$0.2776 \pm 0.0025 \pm 0.0043$	3 13.4k	ADAM			Repl. by MENDEZ 08				
					, ,				
$\Gammaig(J/\psi(1S)\pi^0\pi^0ig)/\Gamma$	$\overline{(J/\psi(1S)\pi^{-1})}$	$^{+}\pi^{-})$			Γ_{12}/Γ_{11}				
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT				
0.527 ± 0.008 OUR F	IT								
0.513 ± 0.022 OUR A	VERAGE Err	or includes scale	facto	or of 2.2.					
$0.5047 \pm 0.0022 \pm 0.0102$	2 61k	MENDEZ	80	CLEO	$\psi(2S) \rightarrow \ell^+ \ell^- 2\pi^0$				
$0.570 \pm 0.009 \pm 0.026$	14k ¹	ABLIKIM	04 B	BES	$\psi(2S) ightarrow J/\psi X$				
• • • We do not use th	ne following dat	ta for averages,	fits, li	mits, etc	C. • • •				
$0.4924 \pm 0.0047 \pm 0.0086$	5 73k ^{2,3}	B ADAM	05A	CLEO	Repl. by MENDEZ 08				
$0.571 \pm 0.018 \pm 0.044$	4	ANDREOTTI			$\psi(2S) \rightarrow J/\psi X$				
0.53 ± 0.06		TANENBAUM							
0.64 ± 0.15	5	_		SPEC					
1 From a fit to the J_j	/a/s rocoil mass			_					
				054					
² Not independent fro									
3 Using 13,217 $J/\psi\pi$, .			-				

⁴ Not independent from other values reported by ANDREOTTI 05.

$\Gamma(J/\psi(1S)\eta)/\Gamma_{\mathsf{total}}$

 Γ_{13}/Γ

$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT
33.6 ± 0.5 OUR FIT					
32.9 \pm 1.7 OUR AVE	RAGE Er	ror includes scale f	actor	of 2.1. S	See the ideogram below.
$33.75 \pm 0.17 \pm 0.86$	68.2k	ABLIKIM	12M	BES3	$e^+e^- \rightarrow \ell^+\ell^-2\gamma$
$29.8 \pm 0.9 \pm 2.3$	5.7k	BAI	041	BES2	ψ (2S) $ ightarrow$ J/ $\psi \gamma \gamma$
$25.5~\pm~2.9$	386	¹ OREGLIA	80	CBAL	$e^+e^- ightarrow~J/\psi2\gamma$
45 ±12	17	² BRANDELIK	79 B	DASP	$e^+e^- o J/\psi 2\gamma$
42 ± 6	164	² BARTEL	78 B	CNTR	e^+e^-
• • • We do not use th	e following	data for averages,	fits, I	mits, etc	C. ● ● ●
$34.3 \pm 0.4 \pm 0.9$	18.4k	³ MENDEZ	08	CLEO	$\psi(2S) \rightarrow \ell^+\ell^-\eta$
$32.5 \pm 0.6 \pm 1.1$	2.8k	⁴ ADAM	05A	CLEO	Repl. by MENDEZ 08
43 ± 8	44	TANENBAUM	1 76	MRK1	e^+e^-
1 Pacalculated by us	using D(I/a	(15) (+ (-)	_ 0 11	01 1 0	0020

¹ Recalculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020.

 $^{^{1}\,\}mathrm{Not}$ independent from other measurements of MENDEZ 08.

 $^{^5}$ Ignoring the $J/\psi(1S)\,\eta$ and $J/\psi(1S)\,\gamma\,\gamma$ decays.

² Recalculated by us using B($J/\psi(1S) \rightarrow \mu^+\mu^-$) = 0.0588 \pm 0.0010.

³ Not independent from other measurements of MENDEZ 08.

⁴ Not independent from other values reported by ADAM 05A.

$\Gamma ig(J/\psi(1S) \eta ig)/\Gamma ig(J/\psi(1S)$ anythingig)

 Γ_{13}/Γ_{0}

$\Gamma(J/\psi(IJ)\eta)/\Gamma(J/\psi)$	' 13/ ' 9			
VALUE	EVTS	DOCUMENT ID	TECN	COMMENT
0.0551±0.0008 OUR FIT	-			
0.058 ±0.007 OUR AV	ERAGE Erro	r includes scale	factor of 1.4.	See the ideogram
below.				_
$0.050 \pm 0.006 \pm 0.003$	298 ± 20	ANDREOTTI	05 E835	$\psi(2S) \rightarrow J/\psi X$
0.072 ± 0.009		AMBROGIANI	00A E835	$ p \overline{p} \rightarrow \psi(2S) $
0.061 ± 0.015		ARMSTRONG	97 E760	$\overline{p}p \rightarrow \psi(2S)$
ullet $ullet$ We do not use the	following data	a for averages, fi	ts, limits, etc	5. ● ● ●
$0.0549 \pm 0.0006 \pm 0.0009$	18.4k ¹	MENDEZ	08 CLEO	$\psi(2S) \rightarrow \ell^+\ell^-\eta$
$0.0546 \pm 0.0010 \pm 0.0007$	2.8k	ADAM	05A CLEO	Repl. by MENDEZ 08

¹ Not independent from other measurements of MENDEZ 08.

WEIGHTED AVERAGE 0.058±0.007 (Error scaled by 1.4)

$\Gamma(J/\psi(1S)\eta)/\Gamma(J/\psi(1S)\pi^{+}\pi^{-})$

 Γ_{13}/Γ_{11}

	` '	,			10/ 11
VALUE		DOCUMENT ID		TECN	COMMENT
0.0974±0.0014 OUR FIT	-				
0.0979±0.0018 OUR AV	ERAGE				
$0.0979 \pm 0.0010 \pm 0.0015$	18.4k	MENDEZ			$\psi(2S) \rightarrow \ell^+ \ell^- \eta$
$0.098\ \pm0.005\ \pm0.010$	2k				$\psi(2S) \rightarrow J/\psi X$
$0.091\ \pm0.021$		² HIMEL	80	MRK2	$e^+e^- o \psi(2S)X$
• • • We do not use the	following	$data\ for\ averages,$	fits, li	mits, etc	2. ● ● ●
$0.0968\!\pm\!0.0019\!\pm\!0.0013$	2.8k	³ ADAM	05A	CLEO	Repl. by MENDEZ 08
$0.095\ \pm0.007\ \pm0.007$		⁴ ANDREOTTI	05	E835	$\psi(2S) \rightarrow J/\psi X$
1		acc chactra			

¹ From a fit to the J/ψ recoil mass spectra.

$\Gamma(J/\psi(1S)\pi^0)/\Gamma_{\mathsf{total}}$

 Γ_{14}/Γ

VALUE (units		<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT
12.68 ± 0.32	OUR AVERA	GE				
$12.6\ \pm0.2$	± 0.3	4.1k	ABLIKIM	12M	BES3	$e^+e^- \rightarrow \ell^+\ell^-2\gamma$
$13.3\ \pm0.8$	± 0.3	530	MENDEZ	80	CLEO	$\psi(2S) \rightarrow \ell^+\ell^-2\gamma$
$14.3\ \pm1.4$	± 1.2	280	BAI	041	BES2	$\psi(2S) ightarrow J/\psi \gamma \gamma$
14 ± 6		7	HIMEL	80	MRK2	e^+e^-
9 ± 2	± 1	23 1	OREGLIA	80	CBAL	$\psi(2S) ightarrow J/\psi 2\gamma$
 ● ● We d 	o not use the	following da	ata for averages,	fits, I	imits, et	C. • • •
13 ±1	± 1	88	ADAM	05A	CLEO	Repl. by MENDEZ 08

HTTP://PDG.LBL.GOV

Page 20

² The value for B($\psi(2S) \to J/\psi(1s) \dot{\eta}$) reported in HIMEL 80 is derived using B($\psi(2S)$) $\to J/\psi(1S) \pi^+ \pi^-$) = (33 ± 3))% and B($J/\psi(1S) \to \ell^+ \ell^-$) = 0.138 ± 0.018. Calculated by us using B($J/\psi(1S) \to \ell^+ \ell^-$) = (0.1181 ± 0.0020).

³ Not independent from other values reported by ADAM 05A.

⁴ Not independent from other values reported by ANDREOTTI 05.

¹ Recalculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.1181 \pm 0.0020.

$$\begin{split} \Gamma\big(J/\psi(1S)\pi^0\big)/\Gamma\big(J/\psi(1S) \text{ anything}\big) \\ \Gamma_{14}/\Gamma_9 &= \Gamma_{14}/(\Gamma_{11} + \Gamma_{12} + \Gamma_{13} + 0.339\Gamma_{135} + 0.192\Gamma_{136}) \end{split}$$

VALUE (units 10^{-2})EVTSDOCUMENT IDTECNCOMMENT• • • We do not use the following data for averages, fits, limits, etc. • • •0.213±0.012±0.003527 $\frac{1}{2}$ MENDEZ08CLEO $e^+e^- \rightarrow J/\psi\gamma\gamma$ 0.22 ±0.02 ±0.01 $\frac{1}{2}$ ADAM05ACLEO $e^+e^- \rightarrow \psi(2S) \rightarrow J/\psi\gamma\gamma$

$\Gamma(J/\psi(1S)\pi^0)/\Gamma(J/\psi(1S)\pi^+\pi^-)$

 Γ_{14}/Γ_{11}

<i>VALUE</i> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	data for averages	s, fits,	limits, e	tc. • • •
$\begin{array}{ccc} 0.380 \pm 0.022 \pm 0.005 \\ 0.39 \ \pm 0.04 \ \pm 0.01 \end{array}$	527	¹ MENDEZ ² ADAM			$e^+e^- ightarrow J/\psi\gamma\gamma \ e^+e^- ightarrow \psi(2S) ightarrow \ J/\psi\gamma\gamma$

¹ Not independent from other values reported by MENDEZ 08. Supersedes ADAM 05A.

HADRONIC DECAYS -

$\Gamma(\pi^0 \, h_c(1P))/\Gamma_{\rm total}$

 Γ_{15}/Γ

VALUE (units	s 10 ⁻⁴) EVTS	DOCUMENT	ID	TECN	COMMENT	
8.6±1.3 C	UR AVERAGE					
$9.0 \!\pm\! 1.5 \!\pm\!$	1.3 3k	1 GE				$\pi^{f 0}$ anything
$8.4 \pm 1.3 \pm$	1.0 11k	ABLIKIM	10 B	BES3	ψ (2 S) $ ightarrow$	$\pi^0 h_c$
• • • We	do not use the follo	owing data for ave	rages, fits	, limits,	etc. • • •	_
seen	$92 {+ 23 \atop - 22}$	ADAMS				$2\pi^{+}2\pi^{-}2\pi^{0}$
seen	1282	DOBBS	08A	CLEO	$\psi(2S) ightarrow \ \psi(2S) ightarrow$	$\pi^0 \eta_c \gamma$
seen	168 ± 40	ROSNER	05	CLEO	ψ (2 S) $ ightarrow$	$\pi^0 \eta_c \gamma$
-						_

 $^{^1}$ Assuming a width $\Gamma(h_{\mathcal{C}}(1P))=0.86$ MeV $\equiv \Gamma_0$, a measured dependence of the central value of $B=(7.6+1.4~\times~\Gamma(h_{\mathcal{C}}(1P)/\Gamma_0)~\times~10^{-4},$ and with a systematic error that accounts for the width variation range 0.43–1.29 MeV.

$\Gamma(3(\pi^+\pi^-)\pi^0)/\Gamma_{\rm total}$

 Γ_{16}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
35±16	6	FRANKLIN	83	MRK2	$e^+e^- o hadrons$

$\Gamma(2(\pi^+\pi^-)\pi^0)/\Gamma_{\text{total}}$

 Γ_{17}/Γ

VALUE (units 10^{-4})	EVTS	DOCUMENT IE)	TECN	COMMENT
29 ±10 OUR	AVERAGE	Error includes	scale	factor c	of 4.7. See the ideogram below.
$24.9 \pm 0.7 \pm 3.6$					$e^+e^- ightarrow \psi(2S)$
$127\pm12\pm2$					10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\gamma$
$26.1 \pm 0.7 \pm 3.0$	1703	BRIERE	05	CLEO	$e^+e^- ightarrow \ \psi(2S) ightarrow$
					$2(\pi^{+}\pi^{-})\pi^{0}$
30 ± 8	42	FRANKLIN	83	MRK2	e^+e^-

HTTP://PDG.LBL.GOV

Page 21

¹ Not independent from other values reported by MENDEZ 08. Supersedes ADAM 05A.

² Not independent from other values reported by ADAM 05A.

 $^{^2}$ Not independent from other values reported by ADAM 05A.

 1 AUBERT 07AU reports $[\Gamma(\psi(2S)\to~2(\pi^+\pi^-)\pi^0)/\Gamma_{\rm total}]\times [\Gamma(\psi(2S)\to~e^+e^-)]=(297\pm22\pm18)\times10^{-4}$ keV which we divide by our best value $\Gamma(\psi(2S)\to~e^+e^-)=2.34\pm0.04$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\rho a_2(1320))/\Gamma_{\text{total}}$

 Γ_{18}/Γ

Created: 5/30/2017 17:21

					-
$VALUE$ (units 10^{-4})	CL% EVTS	DOCUMENT ID	TECN	COMMENT	
2.55±0.73±0.47	112 ± 31	BAI	04c BES2	ψ (2 S) $ ightarrow$	$2(\pi^{+}\pi^{-})\pi^{0}$
ullet $ullet$ We do not	use the following	data for averages,	fits, limits,	etc. • • •	
<2.3	90	BAI	98J BES	e^+e^-	

 $\Gamma(p\overline{p})/\Gamma_{\text{total}}$ Γ_{19}/Γ

(// total						==,
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.88±0.10 OUR FIT						
3.00 ± 0.13 OUR AVE	RAGE	Error includes scale	factor	of 1.1.		
$3.08\!\pm\!0.05\!\pm\!0.18$	4.5k	¹ DOBBS	14		$e^+e^- \rightarrow \psi(2S)$	$\rightarrow p\overline{p}$
$3.36\!\pm\!0.09\!\pm\!0.25$	1.6k		07 C	BES	$e^+e^- \rightarrow \psi(2S)$	$\rightarrow p\overline{p}$
$2.87\!\pm\!0.12\!\pm\!0.15$	557	PEDLAR	05	CLEO	$e^+e^- \rightarrow \psi(2S)$	$\rightarrow p\overline{p}$
1.4 ± 0.8	4	BRANDELIK	7 9C	DASP	$e^+e^- \rightarrow \psi(2S)$	$\rightarrow p\overline{p}$
2.3 ± 0.7		FELDMAN	77	MRK1	$e^+e^- \rightarrow \psi(2S)$	$\rightarrow p\overline{p}$

 $^{^{1}\,\}mathrm{Using}$ CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(p\overline{p})/\Gamma(J/\psi(1S))$ VALUE (units 10^{-4})	$(\pi^+\pi^-)$	DOCUMENT ID	7	TECN	Γ ₁₉ /Γ ₁₁
8.34±0.28 OUR FIT	•				$e^+e^- \rightarrow \psi(2S) \rightarrow p\overline{p}$
6.98±0.49±0.97		BAI C)1 E	3E5 ($e \cdot e \rightarrow \psi(2S) \rightarrow pp$
$\Gamma(\Delta^{++}\overline{\Delta}^{})/\Gamma_{t}$					Γ ₂₀ /Γ
<u>VALUE</u> (units 10 ⁻⁵) <u>E</u>		OCUMENT ID		N CON	
12.8±1.0±3.4	157 ¹ B	AI 01	BES		$e^- ightarrow \ \psi(2S) ightarrow$ nadrons
$^{ m 1}$ Estimated using	$B(\psi(2S) o$	$J/\psi \pi^+ \pi^-) = 0.3$	310 ±	0.028.	
$\Gamma(\Lambda\overline{\Lambda}\pi^0)/\Gamma_{ m total}$					Γ ₂₁ /Γ
<u>VALUE</u> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	•
< 0.29					$\psi(2S) \rightarrow p \overline{p} \pi^+ \pi^- \gamma \gamma$
● ● ● We do not use					
<12	90	² ABLIKIM	07н	BES2	$e^+e^- ightarrow \psi(2S)$
$\frac{1}{2}$ Using B($\Lambda \to \pi$					
² Using B($\Lambda \to \pi$	(-p) = 63.9%	6 and $B(\eta o \ \gamma \gamma)$) = 39	9.4%.	
$\Gamma(\Lambda\overline{\Lambda}\eta)/\Gamma_{total}$					Γ ₂₂ /Γ
$VALUE$ (units 10^{-5})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
$2.48 \pm 0.34 \pm 0.19$	60	$^{ m 1}$ ABLIKIM	13F	BES3	$\psi(2S) \rightarrow p \overline{p} \pi^+ \pi^- \gamma \gamma$
• • • We do not use					
<4.9	90	² ABLIKIM	07н	BES2	$e^+e^- ightarrow \psi(2S)$
1 Using B($\Lambda \rightarrow \pi^{2}$ Using B($\Lambda \rightarrow \pi^{2}$,	• • • • • • • • • • • • • • • • • • • •) = 39	9.31%.	
$\Gamma(\Lambda \overline{p} K^+)/\Gamma_{\text{total}}$					Γ ₂₃ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	
1.0±0.1±0.1	74.0	BRIERE	05	CLEO	$e^+e^- ightarrow \psi(2S) ightarrow$
					$p \overline{p} K^+ \pi^-$
$\Gamma(\Lambda \overline{\rho} K^+ \pi^+ \pi^-)$	/Γ _{total}				Γ ₂₄ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
1.8±0.3±0.3	45.8	BRIERE			$e^+e^- \rightarrow \psi(2S) \rightarrow$
			-	_	$p\overline{p}K^{+}\pi^{+}\pi^{-}\pi^{-}$
$\Gamma(\Lambda\overline{\Lambda}\pi^{+}\pi^{-})/\Gamma_{to}$	*~I				Γ ₂₅ /Γ
<i>VALUE</i> (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT 25/1
2.8±0.4±0.5	73.4	BRIERE	05		$e^+e^- \rightarrow \psi(2S) \rightarrow$
		2	-	55	$p\overline{p}2(\pi^{+}\pi^{-})$

$\Gamma(\Lambda\overline{\Lambda})/\Gamma_{\text{total}}$							Γ_{26}/Γ
<i>VALUE</i> (units 10^{-4}) <i>CL</i> %	EVTS	DOCUMENT II)	TECN	COMN	MENT	
3.57 ± 0.18 OUR AVE	RAGE	_					
$3.75\!\pm\!0.09\!\pm\!0.23$	1.9k	¹ DOBBS	14		e^+e^-	$^- ightarrow ~\psi(2S) ightarrow$	hadrons
$3.39\!\pm\!0.20\!\pm\!0.32$	337	ABLIKIM				$^- \rightarrow \ \psi(2S) \rightarrow$	hadrons
$6.4 \pm 1.8 \pm 0.1$		² AUBERT	07 BE			$e^+e^- \rightarrow \Lambda \overline{\Lambda} \gamma$	
$3.28 \pm 0.23 \pm 0.25$		PEDLAR	05			$^- o \ \psi(2S) o$	hadrons
• • • We do not use t	the follow	ing data for av	erage/	s, fits,	limits,	etc. • • •	
$1.81 \pm 0.20 \pm 0.27$ < 4 90	80	³ BAI FELDMAN	-			$\stackrel{-}{-} \rightarrow \psi(2S) \rightarrow \\ \stackrel{-}{-} \rightarrow \psi(2S) \rightarrow$	
1 Using CLEO-c data but not authored by the CLEO Collaboration. 2 AUBERT 07BD reports $[\Gamma(\psi(2S)\to \Lambda\overline{\Lambda})/\Gamma_{\rm total}]\times [\Gamma(\psi(2S)\to e^+e^-)]=(15\pm 4\pm$							
1) × 10 ⁻⁴ keV wh keV. Our first erro error from using or ³ Estimated using B	or is thei ur best va	r experiment's alue.	error	and o	ur secor	$e^+e^-)=2.34$ error is the sy	4 ± 0.04 stematic
$\Gamma(\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.})$	/Γ _{total}						Γ ₂₇ /Γ
VALUE (units 10^{-4})	EVTS	DOCUME	VT ID		TECN	COMMENT	
$1.40\pm0.03\pm0.13$	2.8k	ABLIKIN	Λ	13W	BES3	ψ (2 S) $ ightarrow$ hadro	ns
$\Gamma(\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.})$	/Γ _{total}						Γ ₂₈ /Γ
VALUE (units 10^{-4})	EVTS	DOCUME	VT ID		TECN	COMMENT	
$1.54 \pm 0.04 \pm 0.13$	2.8k	ABLIKIN	Λ	13W	BES3	ψ (2 S) $ ightarrow$ hadro	ns
$\Gamma(\Sigma^0 \overline{p} K^+ + \text{c.c.})/$							Γ ₂₉ /Γ
VALUE (units 10^{-5})	EVTS	DOCUME					
$1.67 \pm 0.13 \pm 0.12$	276	¹ ABLIKIN	Λ	13 D	BES3	$\psi(2S) \rightarrow \gamma \Lambda \overline{p}$	κ^+
1 Using B($arLambda ightarrow p\pi$	⁻) = 63.	9%, and B(Σ^0	\rightarrow .	$(1) = (1)^{-1}$	100%.		
$\Gamma(\Sigma^{+}\overline{\Sigma}^{-})/\Gamma_{total}$							Γ ₃₀ /Γ
VALUE (units 10 ⁻⁴) EV7		DOCUMENT ID		TECN	COMN	MENT	
2.51±0.21 OUR AVE	_						
$2.51\pm0.15\pm0.16$ 28 $2.57\pm0.44\pm0.68$ 3		DOBBS PEDLAR	14 05			$^- ightarrow \; \psi(2S) ightarrow \ ^- ightarrow \; \psi(2S) ightarrow \;$	
¹ Using CLEO-c data	a but not	authored by t	he CL	EO Co	llaborat	ion.	
$\Gamma(\Sigma^0\overline{\Sigma}^0)/\Gamma_{ ext{total}}$							Γ ₃₁ /Γ
VALUE (units 10^{-4}) EV7	<u>rs</u>	DOCUMENT ID		TECN	СОМ	MENT	
2.32±0.16 OUR AVE	RAGE						
$2.25\pm0.11\pm0.16$ 43	9 1	DOBBS				$^- ightarrow ~\psi$ (2 S) $ ightarrow$	
$2.35 \pm 0.36 \pm 0.32$ 5	9	ABLIKIM	07C			$^- ightarrow \psi(2S) ightarrow$	
$2.63\pm0.35\pm0.21$ 5	8	PEDLAR	05			$^- ightarrow \psi(2S) ightarrow$	
• • • We do not use t	the follow	ing data for av	/erage	s, fits,	limits, e	etc. • • •	
		BAI	01			$^- ightarrow \; \psi$ (2S) $ ightarrow$	hadrons
¹ Using CLEO-c dat ² Estimated using B	a but not $(\psi(2S)$ –	authored by t $J/\psi \pi^+\pi^-$	he CL	.EO Co	llaborat		
UTTD //DDC 151	601		0.4		6	L 5/00/001	

$\Gamma(\Sigma(1385)^{+}\overline{\Sigma}$	(1385) [—])	$/\Gamma_{\text{total}}$					Γ ₃₂ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	СОММЕ	NT	
8.5±0.7 OUR A	VERAGE						
$8.4\!\pm\!0.5\!\pm\!0.5$		ABLIKIM					
$11 \pm 3 \pm 3$	14	¹ BAI	01	BES	e^+e^-	$\rightarrow \ \psi(2S) \rightarrow$	hadrons
$^{ m 1}$ Estimated usin	ng B $(\psi(2S))$	$J/\psi \pi^+ \pi$	·-)= 0	.310 ±	0.028.		
$\Gamma(\Sigma(1385)^{-}\overline{\Sigma}$	(1385) ⁺)	$/\Gamma_{\text{total}}$					Γ ₃₃ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMME	NT	
$8.5 \pm 0.6 \pm 0.6$	1.4K	ABLIKIM	16L	BES3	ψ (2 S)	$\rightarrow \Sigma(1385)^{-\frac{1}{2}}$	$\overline{\Sigma}(1385)^{+}$
$\Gamma(\Xi^-\overline{\Xi}^+)/\Gamma_{ m to}$	tal						Γ ₃₄ /Γ
$VALUE$ (units 10^{-4})	CL% EVTS	<u>DOCUMENT</u>	「 ID	TECN	СОМ	<i>MENT</i>	
2.72±0.12 OUI	R AVERAG	SE .					
$2.78 \pm 0.05 \pm 0.1$		ABLIKIM					
$2.66 \pm 0.12 \pm 0.2$							
$3.03 \pm 0.40 \pm 0.3$		ABLIKIM	070	BES	e^+e^-	$^- ightarrow ~\psi(2S) ~-$	hadrons
$2.38 \pm 0.30 \pm 0.2$						$^- ightarrow \psi(2S) -$	hadrons
• • • We do not							
$0.94 \pm 0.27 \pm 0.1$	15 12						
<2	90	FELDMAN	N 77	MRK	$1 e^+ e^-$	$^- ightarrow ~\psi$ (2 ${\cal S}$) $-$	→ hadrons
¹ Using CLEO-c	data but	not authored by	the C	LEO C	ollaborat	ion.	
² Estimated usin							
$\Gamma(\Xi^0\overline{\Xi}^0)/\Gamma_{\rm tota}$	al						Γ ₃₅ /Γ
$VALUE$ (units 10^{-4})		DOCUMENT II	D	TECN	СОМ	<i>MENT</i>	
2.07±0.23 OUR				_			
$2.02\!\pm\!0.19\!\pm\!0.15$	112					$^- ightarrow ~\psi$ (2 S) $-$	
$2.75\!\pm\!0.64\!\pm\!0.61$	19	PEDLAR	05	CLEC	O e ⁺ e	$^- ightarrow \psi(2S) -$	→ hadrons
$^{ m 1}$ Using CLEO-c	data but	not authored by	the C	LEO C	ollaborat	ion.	
Γ(Ξ(1530) ⁰ Ξ̄(1530) ⁰)/	Γ _{total}					Γ ₃₆ /Γ
$VALUE$ (units 10^{-5})	- ,		ΛΕΝΤ IL)	TECN	COMMENT	
$5.2 \pm 0.3 {+3.2 \atop -1.2}$	52	27 ¹ ABLIF	MIX	13 S	BES3	$\psi(2S) ightarrow \eta p$	p
ullet $ullet$ We do not	use the fol	lowing data for	averag	ges, fits,	limits, o	etc. • • •	
<32	90	PEDL	AR			$e^+e^- \rightarrow \psi$	
< 8.1	90	² BAI		01	BES	$e^+e^- ightarrow \psi$ (hadrons	$(2S) \rightarrow$
¹ With <i>N</i> (1535)	decaving	to nn				Haufons	
² Estimated usin			·-)= 0	.310 ±	0.028.		
$\Gamma(K^-\Lambda \overline{\Xi}^+ + c$.c.)/Γ _{tota}	al					Γ ₃₇ /Γ
$VALUE$ (units 10^{-5})	*		ΛΕΝΤ ΙΙ)	TECN	COMMENT	-
$3.86 \pm 0.27 \pm 0.32$						$e^+e^- \rightarrow \psi$	(2 <i>S</i>) →
						$K^-\Lambda \overline{\Xi}^+$,

Γ(Ξ(1690) ⁻ Ξ̄+	→ K-Λ <u>Ξ</u> +.	+ c.c.)/Γ _{total}			Γ ₃₈ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT
5.21±1.48±0.57	74	ABLIKIM	151	BES3	$e^+e^- \rightarrow \psi(2S) \rightarrow K^- \Lambda \overline{\Xi}^+ + c.c.$
Γ(Ξ(1820) ⁻ Ξ̄+	→ K-N\=+	+ c.c.)/Γ _{total}			Γ ₃₉ /Γ
$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID		TECN	COMMENT
$12.03 \pm 2.94 \pm 1.22$	136	ABLIKIM	151	BES3	$e^+e^- ightarrow \ \psi(2S) ightarrow$
					$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$
$\Gamma(K^-\Sigma^0\overline{\Xi}^++c)$	*				Γ ₄₀ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
$3.67 \pm 0.33 \pm 0.28$	142	ABLIKIM	151	BES3	$e^+e^- \rightarrow \psi(2S) \rightarrow K^- \Sigma^0 \overline{\Xi}^+ + c.c.$
$\Gamma(\Omega^-\overline{\Omega}^+)/\Gamma_{tota}$	I				Γ ₄₁ /Γ
$VALUE$ (units 10^{-4})	CL% EVTS	DOCUMENT ID	1	TECN	COMMENT
$0.47 \pm 0.09 \pm 0.05$	27	¹ DOBBS	14		$e^+e^- o\psi(2S) o$ hadrons
• • • We do not us	e the following	data for averages	, fits,	limits, e	etc. • • •
<1.5	90	ABLIKIM	12	Q BES2	$e^+e^- ightarrow \psi(2S) ightarrow$ hadrons
<1.6	90	PEDLAR	05	CLEC	$e^+e^- ightarrow \psi(2S) ightarrow hadrons$
< 0.73	90	² BAI	01	BES	$e^+e^- o \psi(2S) o$
¹ Using CLEO-c d	ata but not aut	hored by the CLE	O C	ollaborat	

² Estimated using B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$)= 0.310 \pm 0.028.

$\Gamma(\pi^0 p \overline{p})/\Gamma_{\text{total}}$				Γ ₄₂ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
1.53±0.07 OUR A	/ERAGE			
$1.65\!\pm\!0.03\!\pm\!0.15$	4.5k	ABLIKIM 13		$\psi(2S) \rightarrow \rho \overline{\rho} \pi^0$
$1.54\!\pm\!0.06\!\pm\!0.06$	948	ALEXANDER 10		$\psi(2S) \rightarrow \pi^0 \rho \overline{\rho}$
$1.32\!\pm\!0.10\!\pm\!0.15$	256	¹ ABLIKIM 0!		$e^+e^- o \psi(2S) o p\overline{p}\gamma\gamma$
1.4 ± 0.5	9	FRANKLIN 83	3 MRK2	e^+e^-
$^{ m 1}$ Computed using	g B(π^0 –	$\gamma \gamma$) = (98.80 \pm 0.0	03)%.	
$\Gamma(N(940)\overline{p}+c.c)$	$. o \pi^0$	ρ ρ)/Γ _{total}		Γ ₄₃ /Γ
$VALUE$ (units 10^{-5})	EV	TS DOCUMENT IE	TE	COMMENT

 $^{6.42 \}pm 0.20 ^{+1.78}_{-1.28}$ 1 ABLIKIM 13A BES3 $\psi(2S)
ightarrow p \overline{p} \pi^{0}$ 1.9k

 $^{^1\,{\}rm From}$ a fit of $\pi^0\,p\,\overline{p}$ data to eight distinct intermediate $N\,\overline{p}$ resonant states.

$\Gamma(N(1440)\overline{p}+c.c.$	$\rightarrow \pi^0 \rho \overline{\rho}$	i)/Γ _{total}			Γ ₄₄ /Γ
$VALUE$ (units 10^{-5})		DOCUMENT ID		TECN	COMMENT
7.3 $^{+1.7}_{-1.5}$ OUR AVER	RAGE Er	ror includes scale fa	actor c	of 2.5.	
$3.58 \pm 0.25 + 1.59 \\ -0.84$	1.1k	$^{ m 1}$ ABLIKIM	13A	BES3	$\psi(2S) \rightarrow \rho \overline{\rho} \pi^0$
$8.1 \pm 0.7 \pm 0.3$	474	² ALEXANDER	10	CLEO	$\psi(2S) \rightarrow \pi^0 \rho \overline{\rho}$
1 From a fit of $\pi^{0} p_{\overline{p}}^{2}$ 2 From a fit of the $\pi^{0} f_{0}(2100)$, and to	$p\overline{p}$ and	$p\pi^0$ mass distribu	itions	to a co	sonant states. ombination of $N(1440)\overline{ ho}$
$\Gamma(N(1520)\overline{p}+\text{c.c.}$	$\rightarrow \pi^0 \rho \overline{\rho}$	i)/Γ _{total}			Γ ₄₅ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
$0.64 \pm 0.05 {+0.22 \atop -0.17}$	0.2k	¹ ABLIKIM	13A	BES3	$\psi(2S) \rightarrow \rho \overline{\rho} \pi^0$
1 From a fit of $\pi^0 p_F^{\overline{p}}$	data to e	eight distinct intern	nediate	e N p res	sonant states.
$\Gamma(N(1535)\overline{p}+c.c.$	$\rightarrow \pi^0 \rho \overline{\rho}$)/Γ _{total}			Γ ₄₆ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.47 \pm 0.28 ^{+0.99}_{-0.97}$	0.7k	$^{ m 1}$ ABLIKIM	13A	BES3	$\psi(2S) \rightarrow p \overline{p} \pi^0$
1 From a fit of $\pi^0 p \overline{p}$	data to e	eight distinct intern	nediate	e N p res	sonant states.
$\Gamma(N(1650)\overline{p}+c.c.$	$\rightarrow \pi^0 \rho \overline{\rho}$	i)/Γ _{total}			Γ ₄₇ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
$3.76 \pm 0.28 ^{+1.37}_{-1.66}$	1.1k	$^{ m 1}$ ABLIKIM	13A	BES3	$\psi(2S) \rightarrow p \overline{p} \pi^0$
1 From a fit of $\pi^0 p_F^{\overline{p}}$	data to e	eight distinct intern	nediate	e N p res	sonant states.
$\Gamma(N(1720)\overline{p}+c.c.$	$\rightarrow \pi^0 \rho \overline{\rho}$	i)/Γ _{total}			Γ ₄₈ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.79 \pm 0.10 {+0.24 top 0.71}$	0.5k	$^{ m 1}$ ABLIKIM	13A	BES3	$\psi(2S) \rightarrow p \overline{p} \pi^0$
1 From a fit of π^0 n	data to e	eight distinct intern	nediate	e N p res	sonant states.
From a fit of π - ρ_{μ}					F /F
	$\rightarrow \pi^0 \rho \overline{\rho}$)/Γ _{total}			Γ ₄₉ /Γ
$\Gamma(N(2300)\overline{p}+c.c.$				TECN	,
	EVTS	DOCUMENT ID			COMMENT
$\Gamma(N(2300)\overline{p}+c.c.$ VALUE (units 10^{-5})	0.9k	DOCUMENT ID 1 ABLIKIM	13A	BES3	$\frac{\textit{COMMENT}}{\psi(2S) \rightarrow \ p \overline{p} \pi^0}$
$\Gamma(N(2300)\overline{p} + \text{c.c.} - \frac{VALUE \text{ (units } 10^{-5})}{2.62 \pm 0.28 + 1.12}$	0.9k	DOCUMENT ID 1 ABLIKIM eight distinct intern	13A	BES3	$\frac{\textit{COMMENT}}{\psi(2S) \rightarrow \ p \overline{p} \pi^0}$

 $^{^{}m 1}$ ABLIKIM $^1\,{\rm From}$ a fit of $\pi^0\,\rho\,\overline{\rho}$ data to eight distinct intermediate $N\,\overline{\rho}$ resonant states.

0.8k

13A BES3 $\psi(2S)
ightarrow
ho \, \overline{
ho} \pi^0$

$\Gamma(\pi^0 f_0(2100) -$	→ $\pi^0 p \overline{p}) / \Gamma_{ m tot}$	al			Γ ₅₁ /Ι
VALUE (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT	
$1.1 \pm 0.4 \pm 0.1$		¹ ALEXANDER 1	0 CLEO	$\psi(2S) \rightarrow \pi^0$	p p
$^{ m 1}$ From a fit of	the $p\overline{p}$ and $p\tau$	τ ⁰ mass distribution	ıs to a coı	mbination of N^3	$(1440)^{\frac{1}{p}}$
		oad, unestablished re		•	-
$\Gamma(\eta p \overline{p})/\Gamma_{\text{total}}$					Γ ₅₂ /Ι
$VALUE$ (units 10^{-5})	<u>EVTS</u>	DOCUMENT ID	TEC	N <u>COMMENT</u>	
6.0±0.4 OUR AVE					
$6.4 \pm 0.2 \pm 0.6$	679	¹ ABLIKIM ¹ ALEXANDER	13s BES	$63 \psi(2S) \rightarrow \tau$	η ρ
$5.6 \pm 0.6 \pm 0.3$	154	¹ ALEXANDER	10 CLE	$\psi(2S) \rightarrow i$	η p p
$5.8 \pm 1.1 \pm 0.7$	44.8 ± 8.5	² ABLIKIM	05E BES	$62 e^+e^- \rightarrow 6$	ψ (2S) $-$
8 ±3 ±3	9.8	BRIERE	05 CLE	$60 e^{+} e^{-} \rightarrow$	$\psi(2S) =$
				$p\overline{p}\pi^+\pi$	
_	ing B $(\eta o \gamma \gamma)$ =	$= (39.43 \pm 0.26)\%.$			
$\Gamma(\eta f_0(2100) \rightarrow$					Γ ₅₃ /Ι
<i>VALUE</i> (units 10 ⁻⁵)	<u>EVTS</u>	DOCUMENT ID	TECN	COMMENT	
VALUE (units 10 ⁻⁵) 1.2±0.4±0.1	<u>EVTS</u> 31	1 ALEXANDER 1	0 CLEO	$\psi(2S) \rightarrow \eta p$	p
		$\frac{DOCUMENT\ ID}{1}$ ALEXANDER 10 tributions to a combi			
¹ From a fit of th	ne $p\overline{p}$ and $p\eta$ dis				f ₀ (2100)
1 From a fit of th $\Gamma(N(1535)\overline{p} \rightarrow$	ne $p\overline{p}$ and $p\eta$ dis $\eta p\overline{p}ig)/\Gamma_{ ext{total}}$	tributions to a combi	nation of Λ	$J^*(1535)\overline{p}$ and η	Γ ₅₄ /Ι
¹ From a fit of th $\Gamma(N(1535)\overline{p} \rightarrow VALUE \text{ (units } 10^{-5}\text{)}$	ne $p\overline{p}$ and $p\eta$ dis $\eta p\overline{p}ig)/\Gamma_{ ext{total}}$	tributions to a combi	nation of Λ	$J^*(1535)\overline{p}$ and η	Γ ₅₄ /Ι
¹ From a fit of th $\Gamma(N(1535)\overline{\rho} \rightarrow VALUE \text{ (units } 10^{-5}\text{)}$ 4.4±0.6±0.3	ne $p\overline{p}$ and $p\eta$ disonormal displays $\frac{\eta p\overline{p}}{F}/\Gamma_{\text{total}}$ $\frac{EVTS}{123}$	tributions to a combi	nation of A TECN CLEO	$J^*(1535)\overline{p}$ and η $rac{COMMENT}{\psi(2S) ightarrow \eta p^{-1}}$	Γ ₅₄ /Ι
¹ From a fit of th $\Gamma(N(1535)\overline{p} \rightarrow VALUE \text{ (units } 10^{-5}\text{)}$ 4.4±0.6±0.3 ¹ From a fit of th	ne $p\overline{p}$ and $p\eta$ disonormal displays $\frac{\eta p\overline{p}}{F}/\Gamma_{\text{total}}$ $\frac{EVTS}{123}$	tributions to a combi DOCUMENT ID ALEXANDER 1	nation of A TECN CLEO	$J^*(1535)\overline{p}$ and η $rac{COMMENT}{\psi(2S) ightarrow \eta p^{-1}}$	r_{54}/r_{0}
1 From a fit of the $\Gamma(N(1535)\overline{\rho} \rightarrow VALUE \text{ (units } 10^{-5}\text{)}$ 4.4±0.6±0.3 1 From a fit of the $\Gamma(\omega \rho \overline{\rho})/\Gamma_{\text{total}}$	ne $p\overline{p}$ and $p\eta$ dis $\eta p\overline{p}$)/ $\Gamma_{ ext{total}}$ $= \frac{EVTS}{123}$ The $p\overline{p}$ and $p\eta$ discovered by p	tributions to a combi	nation of A TECN CLEO nation of A	$J^*(1535)\overline{p}$ and η $rac{COMMENT}{\psi(2S) ightarrow \eta p \eta}$ $J^*(1535)\overline{p}$ and η	r_{54}/r_{0}
1 From a fit of the $\Gamma(N(1535)\overline{\rho} \rightarrow VALUE \text{ (units } 10^{-5}\text{)}$ 4.4±0.6±0.3 1 From a fit of the $\Gamma(\omega \rho \overline{\rho})/\Gamma_{\text{total}}$	ne $p\overline{p}$ and $p\eta$ dis $\eta p\overline{p}$)/ $\Gamma_{ ext{total}}$ $= \frac{EVTS}{123}$ The $p\overline{p}$ and $p\eta$ discovered by p	DOCUMENT ID ALEXANDER 1 tributions to a combi	TECN TECN TECN TECN TECN	$J^*(1535)\overline{p}$ and η $COMMENT$ $\psi(2S) ightarrow \eta p \eta$ $J^*(1535)\overline{p}$ and η $COMMENT$	r_{54}/r_{0} r_{54}/r_{0} r_{54}/r_{0} r_{55}/r_{0}
¹ From a fit of the $\Gamma(N(1535)\overline{p} \rightarrow VALUE \text{ (units } 10^{-5})$ 4.4±0.6±0.3 ¹ From a fit of the $\Gamma(\omega p\overline{p})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 0.69±0.21 OUR A	ne $p\overline{p}$ and $p\eta$ dis $\eta p\overline{p}$)/ $\Gamma_{ ext{total}}$ $= \frac{EVTS}{123}$ The $p\overline{p}$ and $p\eta$ discovered by p	DOCUMENT ID ALEXANDER 1 tributions to a combi	TECN TECN TECN TECN TECN	$J^*(1535)\overline{p}$ and η $COMMENT$ $\psi(2S) ightarrow \eta p \eta$ $J^*(1535)\overline{p}$ and η $COMMENT$	Γ ₅₄ /Ι Γ ₅₄ /Ι
¹ From a fit of the $\Gamma(N(1535)\overline{p} \rightarrow VALUE \text{ (units } 10^{-5})$ 4.4±0.6±0.3 ¹ From a fit of the $\Gamma(\omega p\overline{p})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 0.69±0.21 OUR A 0.6 ±0.2 ±0.2	ne $p\overline{p}$ and $p\eta$ distance $p\overline{p}$ distance $p\overline{p}$ and $p\eta$ distance $p\overline{p}$ di	DOCUMENT ID 1 ALEXANDER 10 tributions to a combi	TECN TECN TECN TECN TECN	$J^*(1535)\overline{p}$ and η $COMMENT$ $\psi(2S) ightarrow \eta p \eta$ $J^*(1535)\overline{p}$ and η $COMMENT$	r_{54}/r_{0} r_{54}/r_{0} r_{54}/r_{0} r_{55}/r_{0}
¹ From a fit of the $\Gamma(N(1535)\overline{p} \rightarrow VALUE \text{ (units } 10^{-5})$ 4.4±0.6±0.3 ¹ From a fit of the $\Gamma(\omega p\overline{p})/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) 0.69±0.21 OUR A 0.6 ±0.2 ±0.2 0.8 ±0.3 ±0.1	ne $p\overline{p}$ and $p\eta$ discrete $p\overline{p}$ discrete $p\overline{p}$ and $p\eta$ discrete $p\overline{p}$ discrete pp	DOCUMENT ID 1 ALEXANDER 10 tributions to a combi	TECN O CLEO nation of A TECN CLEO	$J^*(1535)\overline{p}$ and η $rac{COMMENT}{\psi(2S) ightarrow \eta p \eta}$ $J^*(1535)\overline{p}$ and η	r_{54}/r_{0} r_{54}/r_{0} r_{54}/r_{0} r_{55}/r_{0}

$\Gamma(\phi p \overline{p})/\Gamma_{total}$					Γ ₅₆ /Γ	
$^{ m 1}$ Normalized to B	$B(\psi(2S) \rightarrow J)$	$I/\psi \pi^{+} \pi^{-})$	$= 0.305 \pm 0.016.$			
$0.8 \pm 0.3 \pm 0.1$ 1	14.9 ± 0.1	+ BAI	03B BES	$\psi(25) \rightarrow pp\pi^{-1}$	π π	

90 BRIERE CLEO $e^+e^-
ightarrow \psi(2S)
ightarrow$

• • • We do not use the following data for averages, fits, limits, etc. • • •

(0.26
$$90 1 BAI 03B BES \psi(2S) \to K^+K^-p\overline{p}$$

 $^{^{1}}$ Normalized to B($\psi(2S) \rightarrow ~J/\psi\,\pi^{+}\,\pi^{-}) = 0.305\,\pm\,0.016.$

$\Gamma(\pi^+\pi^-p\overline{p})/\Gamma_{\rm tota}$	I					Γ ₅₇ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
6.0±0.4 OUR AVERA	GE					
$5.9 \pm 0.2 \pm 0.4$	904.5	BRIERE	05		$e^+e^- \rightarrow \psi(2S)$ $p\overline{p}\pi^+\pi^-$	$(5) \rightarrow$
8 ±2		¹ TANENBAUM	l 78	MRK1	e^+e^-	
¹ Assuming entirely	strong decay	<i>/</i> .				
$\Gamma(p\overline{n}\pi^- \text{ or c.c.})/\Gamma_{t}$						Γ ₅₈ /Γ
VALUE (units 10 ⁻⁴)		DOCUMENT ID		TECN	COMMENT	
2.48±0.17 OUR AVEF	RAGE					
$2.45\!\pm\!0.11\!\pm\!0.21$	851	ABLIKIM	061		$e^+e^- o p\pi^-$	
$2.52\!\pm\!0.12\!\pm\!0.22$	849	ABLIKIM	061	BES2	$e^+e^- ightarrow \overline{p}\pi^+$	X
$\Gamma(ho \overline{n} \pi^- \pi^0)/\Gamma_{ m total}$						Γ ₅₉ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT I	D	TECN	COMMENT	
3.18±0.50±0.50	$\overline{135\pm21}$	ABLIKIM	061	BES2	$e^+e^- \rightarrow p\pi^-$	$-\pi^0 X$
$\Gamma(\eta\pi^+\pi^-)/\Gamma_{ ext{total}}$						Γ_{61}/Γ
VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID				
<1.6	90	BRIERE	05	CLEO	$e^{+}e^{-} \rightarrow \psi(25)$ $2(\pi^{+}\pi^{-})\pi^{0}$	
$\Gamma(\eta\pi^+\pi^-\pi^0)/\Gamma_{\rm tot}$:al					Γ ₆₂ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	7	TECN (COMMENT	
9.5±0.7±1.5	1	BRIERE	05 C	CLEO 6	$e^+e^- \rightarrow \psi(2S)$	\rightarrow
• • • We do not use t	he following	data for average	s, fits,	limits, e	etc. • • •	
$10.3\!\pm\!0.8\!\pm\!1.4$	201.7	² BRIERE	05 C	CLEO 6	$e^+e^- ightarrow \psi(2S) \ \eta 3\pi(\eta ightarrow \gamma\gamma)$	
$8.1 \pm 1.4 \pm 1.6$	50.0	² BRIERE	05 C	CLEO 6	$e^+e^- ightarrow \psi(2S) \ \eta3\pi(\eta ightarrow3\pi)$	\rightarrow
1 Average of $\eta ightarrow \gamma$ Not independent fi					7-1 (7 -11)	
$\Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{tot}}$						Γ ₆₃ /Γ
VALUE (units 10^{-3}) EV7	<u>DOC</u>	CUMENT ID	TECN	COMN	MENT	
					$e^+e^- \rightarrow 2(\pi^+)$	
¹ AUBERT 07AU quo	otes $\Gamma_{ee}^{\psi(2S)}$.	$B(\psi(2S) \to 2(\pi^{-1}))$	$^{+}\pi)\eta)$	$\cdot B(\eta \to$	$\gamma\gamma)=1.2\pm0.7$	⊢0.1 eV.
$\Gamma(\eta'\pi^+\pi^-\pi^0)/\Gamma_{ m to}$	tal					Γ ₆₄ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	7	TECN (COMMENT	
					$e^+e^- ightarrow \psi(2S)$	\rightarrow

 $\Gamma(\omega \pi^+ \pi^-)/\Gamma_{\text{total}}$ Γ_{65}/Γ

VALUE (units 10⁻⁴) EVTS TECN COMMENT **7.3±1.2 OUR AVERAGE** Error includes scale factor of 2.1. See the ideogram below. 07D BES2 $e^+e^- \rightarrow \psi(2S)$ **ABLIKIM** $8.4 \pm 0.5 \pm 1.2$ 386 07AU BABR 10.6 $e^+e^- \rightarrow \omega \pi^+\pi^- \gamma$ 05 CLEO $e^+e^- \rightarrow \psi(2S) \rightarrow$ ¹ AUBERT $12.2\!\pm\!2.2\!\pm\!0.7$ 37 $8.2 \pm 0.5 \pm 0.7$ 391 BRIERE $2(\pi^{+}\pi^{-})\pi^{0}$ $\psi(2S) \rightarrow 2(\pi^{+}\pi^{-})\pi^{0}$ ² BAI $4.8\!\pm\!0.6\!\pm\!0.7$ $100\,\pm\,22$ 03B BES 1 AUBERT 07AU quotes $\Gamma_{ee}^{\psi(2S)}\cdot$ B $(\psi(2S)
ightarrow ~\omega \,\pi^+ \,\pi^-)\cdot$ B $(\omega
ightarrow ~3\pi)=2.69\pm0.73\pm0.00$

WEIGHTED AVERAGE 7.3±1.2 (Error scaled by 2.1)

$\Gamma(b_1^{\pm}\pi^{\mp})/\Gamma_{\text{total}}$

 Γ_{66}/Γ

\ <u> </u>	,				00,
VALUE (units :	10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
4.0 ± 0.6	OUR AV	ERAGE Er	ror includes scale fact	tor of 1.1.	
5.1 ±0.6 =	±0.8	202	ABLIKIM	07D BES2	$e^+e^- ightarrow \psi(2S)$
$4.18^{+0.43}_{-0.42}$	±0.92	170	ADAM	05 CLEO	$e^+e^- ightarrow \psi(2S)$
3.2 ±0.6 =	±0.5	61 ± 11	1,2 BAI	03B BES	$\psi(2S) \to 2(\pi^+\pi^-)\pi^0$
• • • We d	o not use	e the following	ng data for averages,	fits, limits, e	etc. • • •
5.2 ±0.8 =	±1.0		1 BAI	99c BES	Repl. by BAI 03B
¹ Assumir	ng B(<i>b</i> ₁ -	$\rightarrow \omega \pi)=1.$			
			. 1 .		

² Normalized to B($\psi(2S) \to J/\psi \pi^+ \pi^-$) = 0.305 ± 0.016.

^{0.10} eV. ² Normalized to B($\psi(2S) \to J/\psi \pi^+ \pi^-$) = 0.305 \pm 0.016.

$\Gamma(b_1^0\pi^0)/\Gamma_{ m total}$					Γ ₆₇ /Γ
\underline{VALUE} (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$2.35^{+0.47}_{-0.42}\pm0.40$	45	ADAM	05	CLEO	$e^+e^- ightarrow \psi(2S)$
$\Gamma(\omega f_2(1270))/\Gamma$	total				Γ ₆₈ /Γ
VALUE (units 10 ⁻⁴) 2.2 ±0.4 OUR A		DOCUMENT II	D	TECN	COMMENT
$2.3 \pm 0.5 \pm 0.4$ $2.05\pm 0.41\pm 0.38$	$57\\62\pm12$	ABLIKIM BAI			$e^+e^- \rightarrow \psi(2S)$ $\psi(2S) \rightarrow 2(\pi^+\pi^-)\pi^0$
• • • We do not u	se the following	data for average	s, fits,	limits, e	etc. • • •
• -	90 90	¹ BAI BAI			$\psi(2S) ightarrow 2(\pi^+\pi^-)\pi^0$ Repl. by BAI 03B
1 Normalized to					
$\Gamma(\pi^+\pi^-K^+K^-)$		γ n	,		Γ ₇₀ /Γ
VALUE (units 10^{-4})	<u>EVTS</u> D	OCUMENT ID	TE	CN CC	DMMENT
7.3±0.5 OUR AV		FFC 10	\- D/	VDD 10	c + -
$8.1 \pm 1.3 \pm 0.3$: CI	LO -⊣	$ \begin{array}{ccc} .6 & e^{+}e^{-} \rightarrow \\ \pi^{+}\pi^{-}K^{+}K^{-}\gamma & \\ -e^{-} \rightarrow \psi(2S) \rightarrow \end{array} $
$7.1 \pm 0.3 \pm 0.4$		RIERE 05			$K^+K^-\pi^+\pi^-$
16 ±4 • • • We do not u		ANENBAUM 78		RK1 e^+	
$10.9 \pm 1.9 \pm 0.2$		_			$0.6 e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma$
$ imes$ $[\Gamma(\psi(2S) ightarrow$ best value $\Gamma(\psi(2S))$	LEES 12F. AUBE $e^+e^-)] = (2(2S) \rightarrow e^+e^-)$	ERT 07AK reports $0.56\pm0.42\pm0.1$.6) × 1 keV. C	10 ^{—3} ke Our first	$\pi^+\pi^-K^+K^-)/\Gamma_{\rm total}$ V which we divide by our error is their experiment's our best value.
$\Gamma(ho^0 K^+ K^-)/\Gamma$	total				Γ ₇₁ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
2.2±0.2±0.4	223.8	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi(2S) \rightarrow K^+K^-\pi^+\pi^-$
$\Gamma(K^*(892)^0\overline{K}_2^*($	$(1430)^0)/\Gamma_{tota}$	ıl			Γ ₇₂ /Γ
$VALUE$ (units 10^{-4})	CL% EVTS	DOCUMENT II	D T	ECN C	OMMENT
1.86±0.32±0.43 • • • We do not u					$e(2S) ightarrow K^+ K^- \pi^+ \pi^-$ etc. $ullet$ $ullet$
<1.2	90	BAI	98J B	ES e	+ _e -
$\Gamma(K^+K^-\pi^+\pi^-$	$(\eta)/\Gamma_{total}$				Γ ₇₃ /Γ
<i>VALUE</i> (units 10^{-3})	<u>DOCUM</u>	ENT ID TEC	N C	OMMENT	$\frac{1}{1- \rightarrow K^+ K^- \pi^+ \pi^- \eta \gamma}$
¹ AUBERT 07AU	quotes $\Gamma_{ee}^{\psi(2S)}\cdotF_{ee}$	$B(\psi(2S) o 2(\pi^{-1}))$	$^{\vdash}\pi)\eta)$	$\cdot B(\eta \to$	$\gamma \gamma$) = 1.2 ± 0.7 ± 0.1 eV.
HTTP://PDG.L	BL.GOV	Page 31		Creat	red: 5/30/2017 17:21

$\Gamma(K^+K^-2(\pi^+$	$(\pi^-)\pi^0)/\Gamma_{total}$				Γ ₇₄ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
10.0±2.5±1.8					$e^+e^- \rightarrow \psi(2S)$
$\Gamma(K_1(1270)^{\pm}K$	([∓]) /Γ _{total}				Γ ₇₆ /Γ
•	•	DOCUMENT ID		TECN	
VALUE (units 10 ⁻⁴)		DOCUMENT ID			
$10.0 \pm 1.8 \pm 2.1$		BAI	99C	BE2	e ' e
¹ Assuming B(<i>I</i>	$K_1(1270) \rightarrow K\rho)=$	$=0.42 \pm 0.06$			
$\Gamma(K_S^0K_S^0\pi^+\pi^-)$	-)/Γ _{total}				Γ ₇₇ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT	- ID	TEC	N COMMENT
$2.20\pm0.25\pm0.37$		ABLIKIM		050 BES	$62 ext{ } e^+e^- ightarrow \psi(2S)$
$\Gamma(\rho^0 p \overline{p})/\Gamma_{\text{tota}}$					Γ ₇₈ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	,
0.5±0.1±0.2					$e^+e^- \rightarrow \psi(2S) \rightarrow$
0.5±0.1±0.2	61.1	BRIERE	05	CLEO	$e \cdot e \rightarrow \psi(25) \rightarrow \rho \overline{\rho} \pi^{+} \pi^{-}$
Γ(K+ <u>K</u> *(892)	$^{0}\pi^{-}$ + c.c.)/ Γ_{to}				Γ ₇₉ /Γ
•	•			TECN	,
VALUE (units 10 ⁻⁴)		DOCUMENT ID			
6.7±2.5		TANENBAUM	78	MRK1	e ⁺ e ⁻
$\Gamma(2(\pi^+\pi^-))/\Gamma$	total				Γ ₈₀ /Γ
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
	ERAGE Error inc				
$2.2 \pm 0.2 \pm 0.2$	308	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi(2S) \rightarrow$
45140		TANENBAUM	70	MOLG	$2(\pi^{+}\pi^{-})$
4.5 ± 1.0		TANENBAUM	78	MKKI	e ' e
$\Gamma(ho^0\pi^+\pi^-)/\Gamma$	total				Γ ₈₁ /Γ
$VALUE$ (units 10^{-4})		DOCUMENT ID			COMMENT
2.2±0.6 OUR AV	ERAGE Error inc				
$2.0 \pm 0.2 \pm 0.4$	285.5	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi(2S) \rightarrow$
					$2(\pi^{+}\pi^{-})$
4.2 ± 1.5		TANENBAUM	78	MRK1	e ⁺ e ⁻
$\Gamma(K^+K^-\pi^+\pi$	$(-\pi^0)/\Gamma_{total}$				Γ ₈₂ /Γ
<u>VALUE (units 10⁻⁴)</u> 12.6±0.9 OUR A	EVTS DOCU	MENT ID	TECN	COMM	1ENT
12.6±0.9 OUR A	VERAGE	_			
$18.8 \pm 5.7 \pm 0.3$	32 ¹ AUBI	ERT 07AU	BABI	R 10.6 6	$e^+e^- ightarrow + e^-\pi^+\pi^-\pi^0\gamma$
$11.7\!\pm\!1.0\!\pm\!1.5$	597 ABLI	KIM 06G	BES2	$\psi(2S)$	$) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$
$12.7\!\pm\!0.5\!\pm\!1.0$	711.6 BRIE	RE 05	CLEC) e ⁺ e ⁻	$\psi(2S) \rightarrow \psi(2S)$
_				K ⁻	$+_{K}^{-}{}_{\pi}^{+}{}_{\pi}^{-}{}_{\pi}^{0}$
¹ AUBERT 07	AU reports $[\Gamma(\psi(2$	$S) \rightarrow K^+K^-$	$-\pi^+$	$\pi^{-}\pi^{0})/$	$[\Gamma_{total}] \times [\Gamma(\psi(2S)) \rightarrow$
$e^+e^-)] = (4$	$44 \pm 13 \pm 3) \times 10^{-3}$	$^{-4}$ keV which w	e div	ide by οι	ur best value $\Gamma(\psi(2S) ightarrow$
$e^+e^-) = 2.3$	34 ± 0.04 keV. Ou	ır first error is t	heir e	xperimer	nt's error and our second
error is the sy	stematic error from	using our best	value		

Page 32

Created: 5/30/2017 17:21

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$\Gamma(\omega f_0(1710) \rightarrow$)/Γ _{total}			Γ ₈₃ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
5.9±2.0±0.9	19	ABLIKIM	06 G	BES2	$\psi(2S) \to \atop K^+ K^- \pi^+ \pi^- \pi^0$
Γ(K*(892) ⁰ K ⁻	$\pi^{+}\pi^{0} + $	c.c.)/Γ _{total}			Γ ₈₄ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
8.6±1.3±1.8	238	ABLIKIM	06 G	BES2	$\psi(2S) \to \atop K^+ K^- \pi^+ \pi^- \pi^0$
Γ(K*(892)+K-	$\pi^{+}\pi^{-} +$	c.c.)/ $\Gamma_{ ext{total}}$			Γ ₈₅ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
9.6±2.2±1.7	133	ABLIKIM	06 G	BES2	$\psi(2S) \to \atop K^+ K^- \pi^+ \pi^- \pi^0$
Γ(<i>K</i> *(892) ⁺ <i>K</i> ⁻	$-\rho^0 + c.c.$	$(-)/\Gamma_{total}$			Γ ₈₆ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
7.3±2.2±1.4	78	ABLIKIM	06 G	BES2	$\psi(2S) \to \atop K^+ K^- \pi^+ \pi^- \pi^0$
Γ(<i>K</i> *(892) ⁰ <i>K</i> ⁻	ρ^+ + c.c.	.)/Γ _{total}			Γ ₈₇ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
6.1±1.3±1.2	125	ABLIKIM	06 G	BES2	$\psi(2S) \to \atop K^+ K^- \pi^+ \pi^- \pi^0$
$\Gamma(\eta K^+ K^-, no)$	•				Г ₈₈ /Г
·		VTS DOCUME			
$3.08\pm0.29\pm0.$					SES3 $\psi(2S) \rightarrow K^+ K^- \gamma \gamma$
<13	90	wing data for avera BRIERE			SLEO $e^+e^- \rightarrow \psi(2S) \rightarrow K^+K^-\pi^+\pi^-\pi^0$
1					7 7 7 7 7 7
¹ Excluding $\eta \phi$.					
$\Gamma(\omega K^+ K^-)/\Gamma_1$:otal				Γ ₈₉ /Γ
$\Gamma(\omega K^+ K^-)/\Gamma_0$ VALUE (units 10^{-4})	EVTS	DOCUMENT ID			COMMENT
$\Gamma(\omega K^+ K^-)/\Gamma_0$ $VALUE \text{ (units } 10^{-4})$ 1.62±0.11 OUR A	EVTS WERAGE	Error includes scale	e fac	tor of 1.	COMMENT 1.
$\Gamma(\omega K^+ K^-)/\Gamma_0$ $\frac{VALUE \text{ (units } 10^{-4})}{1.62 \pm 0.11 \text{ OUR } A}$ $1.56 \pm 0.04 \pm 0.11$	EVTS VERAGE 2.8k	Error includes scale ABLIKIM 1	e fac L4G	tor of 1. BES3	$ \frac{COMMENT}{1.} $ $ \psi(2S) \to K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0} $
$\Gamma(\omega K^+ K^-)/\Gamma_0$ $VALUE \text{ (units } 10^{-4})$ $1.62 \pm 0.11 \text{ OUR } A$ $1.56 \pm 0.04 \pm 0.11$ $2.38 \pm 0.37 \pm 0.29$	EVTS VERAGE 2.8k 78	Error includes scale ABLIKIM 1 ABLIKIM 0	e fac L4G 06G	tor of 1. BES3 BES2	COMMENT 1. $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$
$\Gamma(\omega K^+ K^-)/\Gamma_0$ $VALUE \text{ (units } 10^{-4})$ $1.62 \pm 0.11 \text{ OUR } A$ $1.56 \pm 0.04 \pm 0.11$ $2.38 \pm 0.37 \pm 0.29$	EVTS VERAGE 2.8k	Error includes scale ABLIKIM 1 ABLIKIM 0 BRIERE 0	e fac 14G 06G 05	tor of 1. BES3 BES2 CLEO	COMMENT 1. $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-} \rightarrow \psi(2S) \rightarrow$
$\Gamma(\omega K^+ K^-)/\Gamma_0$ $VALUE \text{ (units } 10^{-4})$ $1.62 \pm 0.11 \text{ OUR } A$ $1.56 \pm 0.04 \pm 0.11$ $2.38 \pm 0.37 \pm 0.29$ $1.9 \pm 0.3 \pm 0.3$ $1.5 \pm 0.3 \pm 0.2$	EVTS VERAGE 2.8k 78 76.8	Error includes scale ABLIKIM 1 ABLIKIM 0 BRIERE 0	e fac L4G)6G)5	tor of 1. BES3 BES2 CLEO BES	COMMENT 1. $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ e^+ e^- \to \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $
$\Gamma(\omega K^+ K^-)/\Gamma_0$ $VALUE \text{ (units } 10^{-4})$ $1.62\pm0.11 \text{ OUR } A$ $1.56\pm0.04\pm0.11$ $2.38\pm0.37\pm0.29$ $1.9 \pm0.3 \pm0.3$ $1.5 \pm0.3 \pm0.2$	EVTS VERAGE 2.8k 78 76.8	Error includes scale ABLIKIM 1 ABLIKIM 0 BRIERE 0	e fac L4G)6G)5	tor of 1. BES3 BES2 CLEO BES	COMMENT 1. $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ e^+ e^- \to \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $ $ \psi(2S) \to K^+ K^- \pi^+ \pi^- \pi^0 $
Γ($ω$ K^+ K^-)/Γ ₁ VALUE (units 10^{-4}) 1.62±0.11 OUR A 1.56±0.04±0.11 2.38±0.37±0.29 1.9 ±0.3 ±0.3 1.5 ±0.3 ±0.2 1 Normalized to Γ($ω$ K^* (892)+ K^-	EVTS EVTS EVTS VERAGE 2.8k 78 76.8 23 $B(\psi(2S) \rightarrow \psi(2S) \rightarrow \psi(2S) \rightarrow \psi(2S) \rightarrow \psi(2S) \rightarrow \psi(2S)$	Error includes scale ABLIKIM 1 ABLIKIM 0 BRIERE 0 1 BAI 0 $J/\psi \pi^+ \pi^-$ = 0 / Γ_{total}	e fac L4G D6G D5 D3B D.305	tor of 1. BES3 BES2 CLEO BES ± 0.01	COMMENT 1. $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-} \rightarrow \psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ 0.5 Fg0/F
Γ($ω$ K^+ K^-)/Γ ₁ VALUE (units 10^{-4}) 1.62±0.11 OUR A 1.56±0.04±0.11 2.38±0.37±0.29 1.9 ±0.3 ±0.3 1.5 ±0.3 ±0.2 1 Normalized to Γ($ω$ K^* (892)+ K^* VALUE (units 10^{-5})	EVTS 2.8k 78 76.8 23 $B(\psi(2S) \rightarrow e^{-} + c.c.)$ EVTS	Error includes scale ABLIKIM 1 ABLIKIM 0 BRIERE 0 1 BAI 0 $J/\psi \pi^+ \pi^-$ = 0 / Γ_{total}	e fac L4G D6G D5 D3B D.305	tor of 1. BES3 BES2 CLEO BES ± 0.01	COMMENT 1. $\psi(2S) \to K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \to K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-} \to \psi(2S) \to K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \to K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \to K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ 5.
Γ($ω$ K^+ K^-)/Γ ₁ NALUE (units 10^{-4}) 1.62±0.11 OUR A 1.56±0.04±0.11 2.38±0.37±0.29 1.9 ±0.3 ±0.3 1.5 ±0.3 ±0.2 1 Normalized to Γ($ω$ K^* (892)+ $ω$ NALUE (units 10^{-5}) 20.7±2.6 OUR AN	$EVTS$ NVERAGE 2.8k 78 76.8 23 $B(\psi(2S) \rightarrow EVTS)$ EVTS /ERAGE	Error includes scale ABLIKIM 1 ABLIKIM 0 BRIERE 0 1 BAI 0 $J/\psi\pi^+\pi^-$ = 0 //\(\begin{align*}	e fac L4G D6G D5 D3B D.305	tor of 1. BES3 BES2 CLEO BES ± 0.010	COMMENT 1. $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-} \rightarrow \psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ 6. Γ_{90}/Γ $K = COMMENT$
Γ($ω$ K^+ K^-)/Γ ₁ VALUE (units 10^{-4}) 1.62±0.11 OUR A 1.56±0.04±0.11 2.38±0.37±0.29 1.9 ±0.3 ±0.3 1.5 ±0.3 ±0.2 1 Normalized to Γ($ω$ K^* (892)+ K^* VALUE (units 10^{-5})	EVTS 2.8k 78 76.8 23 $B(\psi(2S) \rightarrow e^{-} + c.c.)$ EVTS	Error includes scale ABLIKIM 1 ABLIKIM 0 BRIERE 0 1 BAI 0 $J/\psi \pi^+ \pi^-$ = 0 / Γ_{total}	e fac L4G D6G D5 D3B D.305	tor of 1. BES3 BES2 CLEO BES ± 0.010	COMMENT 1. $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $e^{+}e^{-} \rightarrow \psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ $\psi(2S) \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$ 0.5 Fg0/F

$\Gamma(\omega K_2^*(1430)^+ K^-$	-+ c.c.)/	Γ _{total}			Г	₉₁ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	
6.1 ±1.2 OUR AVE						
$6.39 \pm 1.50 \pm 0.78$	128	ABLIKIM			$\psi(2S) \rightarrow \omega K_S^0 K_S^0$	
$5.86 \pm 1.61 \pm 0.83$	143	ABLIKIM	13M	BES3	$\psi(2S) \rightarrow \omega K^+ K$	$-\pi^0$
$\Gamma(\omega \overline{K}^*(892)^0 K^0)$					ſ	₉₂ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID				
$16.8 \pm 2.5 \pm 1.6$	356	ABLIKIM	13M	BES3	$\psi(2S) \rightarrow \omega K_S^0 K_S^0$	$-\pi^+$
$\Gamma(\omega \overline{K}_2^*(1430)^0 K^0)$	•				Γ	₉₃ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID				
$5.82 \pm 2.08 \pm 0.72$	116	ABLIKIM	13M	BES3	$\psi(2S) \rightarrow \omega K_S^0 K_S^0$	$-\pi^+$
$\Gamma(\omega X(1440) \rightarrow \omega)$	$K_S^0 K^- \pi^-$	$^+$ + c.c.)/ Γ_{total}			Γ	- 94/Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
1.60±0.27±0.24	109	$^{ m 1}$ ABLIKIM	1 3M	BES3	$\psi(2S) \rightarrow \omega K_S^0 K_S^0$	$-\pi^+$
$^1X(1440)$ compatib	ole with $\eta($	1405) and $\eta($ 1475 $).$	A <i>f</i> ₁	(1420)	s also possible.	
$\Gamma(\omega X(1440) \rightarrow \omega$,				₉₅ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
1 00 1 0 00 1 0 16		1				Λ
		$^{ m 1}$ ABLIKIM				$(-\pi^0$
$1.09 \pm 0.20 \pm 0.16$ 1 X(1440) compatib						(-πυ
	ole with $\eta($	1405) and $\eta($ 1475 $).$			s also possible.	- _π υ - ₉₆ /Γ
$^1X(1440)$ compatib	ble with $\eta($	1405) and $\eta($ 1475 $).$	A <i>f</i> ₁	(1420) i	s also possible.	
$^1 X(1440)$ compatible $\Gamma(\omega f_1(1285) \rightarrow \omega f_1(1285))$	ble with $\eta(x)$ $K_S^0 K^- \pi^{-1}$	1405) and η(1475). + + c.c.)/Γ _{total}	A <i>f</i> ₁	(1420) i	s also possible. [COMMENT	₉₆ /Г
$^{1}X(1440)$ compatible $\Gamma(\omega f_{1}(1285) \rightarrow \omega f_{1}(1285) \rightarrow \omega f_{2}(1285) \rightarrow \omega$	ble with $\eta($ $K_S^0 K^- \pi^ \frac{EVTS}{22}$	1405) and $\eta(1475)$. + + c.c.)/ Γ_{total} $\frac{DOCUMENT\ ID}{1\ \text{ABLIKIM}}$	A f ₁	(1420) i	s also possible. [COMMENT	- ₉₆ /Γ
1 $X(1440)$ compatible $\Gamma(\omega f_1(1285) \rightarrow \omega f_1(1285) \rightarrow \omega f_2(1285) \rightarrow \omega f_3(1285) \rightarrow $	ble with $\eta($ $K_S^0K^-\pi^ \frac{EVTS}{22}$ $R = 4.5 \sigma$. $K^+K^-\pi^-$	1405) and $\eta(1475)$. ++c.c.)/ Γ_{total} $\frac{DOCUMENT\ ID}{1}$ ABLIKIM This measurement in the second s	13M	(1420) i <u>TECN</u> BES3 ivalent t	s also possible. $\frac{\textit{COMMENT}}{\psi(2S) \to \omega \textit{K}_S^0 \textit{K}}$ to a limit of $< 0.478 \times 10^{-2}$	- ₉₆ /Γ - _π + - ₁₀ -5 - ₉₇ /Γ
1 $X(1440)$ compatible $\Gamma(\omega f_1(1285) \rightarrow \omega f_1(1285) \rightarrow \omega f_2(1285) \rightarrow \omega f_3(1285) \rightarrow $	ble with $\eta($ $K_S^0K^-\pi^ \frac{EVTS}{22}$ $R = 4.5 \sigma$. $K^+K^-\pi^-$	1405) and $\eta(1475)$. ++c.c.)/ Γ_{total} $\frac{DOCUMENT\ ID}{1\ \text{ABLIKIM}}$ This measurement is 0)/ Γ_{total}	A f ₁	TECN BES3 ivalent t	s also possible. $\frac{COMMENT}{\psi(2S) \rightarrow \omega K_S^0 K_S^0}$ to a limit of $< 0.478 \times 10^{-2}$	- ₉₆ /Γ - _π + - ₁₀ -5
1 X(1440) compatible $\Gamma(\omega f_{1}(1285) \rightarrow \omega f_{1}(1285) \rightarrow \omega f_{2}(1285)$ 0.302±0.098±0.027 1 Statistical signfication at 90% C.L.	ble with $\eta($ $K_S^0K^-\pi^ \frac{EVTS}{22}$ $R = 4.5 \sigma$. $K^+K^-\pi^-$	1405) and $\eta(1475)$. ++c.c.)/ Γ_{total} $\frac{DOCUMENT\ ID}{1\ \text{ABLIKIM}}$ This measurement is 0)/ Γ_{total}	A f ₁	TECN BES3 ivalent t	s also possible. $\frac{COMMENT}{\psi(2S) \rightarrow \omega K_S^0 K_S^0}$ to a limit of $< 0.478 \times 10^{-2}$	- ₉₆ /Γ - _π + - ₁₀ -5
1 X(1440) compatible $\Gamma(\omega f_1(1285) \rightarrow \omega f_1(1285))$ $VALUE \text{ (units } 10^{-5}\text{)}$ 0.302±0.098±0.027 1 Statistical signification at 90% C.L. $\Gamma(\omega f_1(1285) \rightarrow \omega f_1(1285))$ $VALUE \text{ (units } 10^{-5}\text{)}$ 0.125±0.070±0.013	ble with $\eta($ $K_S^0 K^- \pi^ \frac{EVTS}{22}$ 10 10	1405) and η(1475). + + c.c.)/Γ _{total} DOCUMENT ID 1 ABLIKIM This measurement in 0)/Γ _{total} DOCUMENT ID 1 ABLIKIM	A f ₁ 13M s equi	TECN BES3 ivalent to	s also possible. $\frac{\textit{COMMENT}}{\psi(2S) \to \omega \textit{K}_S^0 \textit{K}}$ to a limit of $< 0.478 \times 10^{-2}$	- ₉₆ /Γ - _π + - ₁₀ -5 - ₉₇ /Γ - _π 0
1 X(1440) compatible $\Gamma(\omega f_{1}(1285) \rightarrow \omega f_{1}(1285) \rightarrow \omega f_{2}(1285)$ 0.302±0.098±0.027 1 Statistical signfication at 90% C.L. $\Gamma(\omega f_{1}(1285) \rightarrow \omega f_{2}(1285) \rightarrow \omega f_{2}(1285)$ 0.125±0.070±0.013 1 Statistical signfication signfication is signfication.	ble with $\eta($ $K_S^0 K^- \pi^ \frac{EVTS}{22}$ 10 $K^+ K^- \pi^ \frac{EVTS}{10}$ 10 10	1405) and η(1475). + + c.c.)/Γ _{total} DOCUMENT ID 1 ABLIKIM This measurement in 0)/Γ _{total} DOCUMENT ID 1 ABLIKIM	A f ₁ 13M s equi	TECN BES3 ivalent to	s also possible. $\frac{COMMENT}{\psi(2S) \to \omega K_S^0 K}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$	- ₉₆ /Γ - _π + - ₁₀ -5 - ₉₇ /Γ - _π 0
1 X(1440) compatible Γ(ω f_1 (1285) → ω f_1 VALUE (units f_1 0-5) 0.302±0.098±0.027 1 Statistical signficate at 90% C.L. Γ(ω f_1 (1285) → ω f_1 0.125±0.070±0.013 1 Statistical signficate at 90% C.L. Γ(3(π + π -))/Γ _{total VALUE (units $f_1$0-4)}	ble with $\eta($ $K_S^0 K^- \pi^ EVTS$ 22 10 $EVTS$ 10 10 10 10 10 10 10 10	1405) and η(1475). + + c.c.)/Γ _{total} DOCUMENT ID 1 ABLIKIM This measurement is 0)/Γ _{total} DOCUMENT ID 1 ABLIKIM This measurement is	13M s equi	TECN TECN TECN TECN TECN TECN	s also possible. $\frac{COMMENT}{\psi(2S) \rightarrow \omega K_S^0 K}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$	-π+ 10 ⁻⁵ -7/Γ -97/Γ -10 ⁻⁵
1 X(1440) compatible Γ(ω f_1 (1285) → ω f_1 VALUE (units f_1 0-5) 0.302±0.098±0.027 1 Statistical signficate at 90% C.L. Γ(ω f_1 (1285) → ω f_2 0.125±0.070±0.013 1 Statistical signficate at 90% C.L. Γ(3(π + π -))/Γ _{total} 0 VALUE (units f_2 0-4) 3.5 ±2.0 OUR AVE	ble with $\eta($ $K_S^0K^-\pi^ \frac{EVTS}{22}$ 10 10 10 10 10 10 10 10	1405) and η(1475). + + c.c.)/Γ _{total} DOCUMENT ID 1 ABLIKIM This measurement is 0)/Γ _{total} DOCUMENT ID 1 ABLIKIM This measurement is	13M s equi	TECN BES3 ivalent to TECN BES3 ivalent to	s also possible. $\frac{COMMENT}{\psi(2S) \to \omega K_S^0 K_S^0}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$	-π+ 10 ⁻⁵ -π ⁷ -97/Γ -π ⁰ 10 ⁻⁵
1 X(1440) compatible Γ(ω f_1 (1285) → ω f_1 VALUE (units f_1 0-5) 0.302±0.098±0.027 1 Statistical signficate at 90% C.L. Γ(ω f_1 (1285) → ω f_1 0.125±0.070±0.013 1 Statistical signficate at 90% C.L. Γ(3(π + π -))/Γ _{total VALUE (units $f_1$0-4)}	ble with $\eta($ $K_S^0 K^- \pi^ EVTS$ 22 10 $EVTS$ 10 10 10 10 10 10 10 10	1405) and $\eta(1475)$. + + c.c.)/ Γ_{total} DOCUMENT ID 1 ABLIKIM This measurement is 0)/ Γ_{total} DOCUMENT ID 1 ABLIKIM This measurement is DOCUMENT ID Tror includes scale for ABLIKIM	13M is equi	TECN BES3 ivalent to TECN BES3 ivalent to	s also possible. $\frac{COMMENT}{\psi(2S) \rightarrow \omega K_S^0 K^0}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$ to a limit of < 0.221	-π+ 10 ⁻⁵ -π ⁷ -97/Γ -π ⁰ 10 ⁻⁵
1 X(1440) compatible Γ(ω f_1 (1285) → ω f_1 VALUE (units f_1 0-5) 0.302±0.098±0.027 1 Statistical signficate at 90% C.L. Γ(ω f_1 (1285) → ω f_2 0.125±0.070±0.013 1 Statistical signficate at 90% C.L. Γ(3(π + π -))/Γ _{total} 0 VALUE (units f_2 0-4) 3.5 ±2.0 OUR AVE	ble with $\eta($ $K_S^0K^-\pi^ \frac{EVTS}{22}$ 10 10 10 10 10 10 10 10	1405) and $\eta(1475)$. + + c.c.)/ Γ_{total} DOCUMENT ID 1 ABLIKIM This measurement is 0)/ Γ_{total} DOCUMENT ID 1 ABLIKIM This measurement is DOCUMENT ID Tror includes scale for ABLIKIM	13M is equi	TECN BES3 ivalent to TECN BES3 ivalent to	s also possible. $\frac{COMMENT}{\psi(2S) \rightarrow \omega K_S^0 K^0}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$ to a limit of < 0.221	-π+ 10 ⁻⁵ -π ⁷ -97/Γ -π ⁰ 10 ⁻⁵
1 X(1440) compatible Γ(ω f_1 (1285) → ω f_1 VALUE (units f_1 0-5) 0.302±0.098±0.027 1 Statistical signficate at 90% C.L. Γ(ω f_1 (1285) → ω f_1 VALUE (units f_1 0-5) 0.125±0.070±0.013 1 Statistical signficate at 90% C.L. Γ(3(π + π -))/Γ _{total} VALUE (units f_1 0-4) 3.5 ±2.0 OUR AVE 5.45±0.42±0.87	ble with $\eta($ $K_S^0 K^- \pi^ \frac{EVTS}{22}$ 10 10 10 10 10 10 10 10	1405) and $\eta(1475)$. + + c.c.)/ Γ_{total} DOCUMENT ID 1 ABLIKIM This measurement is 0)/ Γ_{total} DOCUMENT ID 1 ABLIKIM This measurement is ror includes scale for ABLIKIM 1 TANENBAUM	13M is equi	TECN BES3 ivalent to TECN BES3 ivalent to	s also possible. $\frac{COMMENT}{\psi(2S) \rightarrow \omega K_S^0 K^0}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.478 \times 10^{-2}$ to a limit of $< 0.221 \times 10^{-2}$ to a limit of < 0.221	-π+ 10 ⁻⁵ -π ⁷ -97/Γ -π ⁰ 10 ⁻⁵

$\Gamma(K^+K^-)/\Gamma_{\text{total}}$ Γ_{100}/Γ

$VALUE$ (units 10^{-5})	CL%	EVTS	DOCUMENT ID	TECN	COMMENT
7.48±0.23±0.39		1.3k	¹ METREVELI	12	$\overline{\psi(2S)} ightarrow K^+ K^-$

• • • We do not use the following data for averages, fits, limits, etc. • •

-	± 1.5				^{2,3} LEES			$e^+e^- \rightarrow K^+K^-\gamma$
8.3	± 1.5	± 0.2		66		15J	BABR	$e^+e^- \rightarrow K^+K^-\gamma$
6.3	± 0.6	± 0.3					CLEO	
10	± 7				⁵ BRANDELIK		_	
< 5			90		FELDMAN	77	MRK1	e^+e^-

¹Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(K_S^0 K_L^0)/\Gamma_{\text{total}}$ Γ_{101}/Γ

\ U =/-				
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT
5.34±0.33 OUR A	VERAGE			
$5.28\!\pm\!0.25\!\pm\!0.34$	478 ± 23	$^{ m 1}$ METREVELI	12	$\psi(2S) \rightarrow K_S^0 K_I^0$
$5.8 \pm 0.8 \pm 0.4$		DOBBS	06A CLEO	e^+e^-
$5.24\!\pm\!0.47\!\pm\!0.48$	156 ± 14	² BAI	04B BES2	$\psi(2S) \rightarrow K_S^0 K_I^0 \rightarrow$
				$\pi^+\pi^-\chi$

 $^{^1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration. 2 Using B($\mathcal{K}^0_S \to \ \pi^+ \, \pi^-) = 0.6860 \pm 0.0027.$

$\Gamma(\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{102}/Γ

$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID	TECN	COMMENT
2.01 ± 0.17 OUR AVE	RAGE Error in	ncludes scale fact	or of 1.7. Se	e the ideogram below.
$2.14 \pm 0.03 {+0.12 \atop -0.11}$	7k	¹ ABLIKIM	12H BES3	$e^+e^- ightarrow \ \psi(2S)$
$1.81\!\pm\!0.18\!\pm\!0.19$	260 ± 19	² ABLIKIM	05J BES2	$e^+e^- ightarrow \ \psi(2S)$
$1.88^{+0.16}_{-0.15}{\pm}0.28$	194	ADAM	05 CLEO	$e^+e^- ightarrow \ \psi(2S)$
0.85 ± 0.46	4	FRANKLIN	83 MRK2	$e^+e^- o$ hadrons

¹ From $\psi(2S) \to \pi^+\pi^-\pi^0$ events directly. The quoted systematic error includes a contribution of 4% (added in quadrature) from the uncertainty on the number of $\psi(2S)$ events.

 $^{^2\}sin\phi > 0$.

 $^{^3}$ Using $\Gamma(\psi(2S) \to e^+e^-) = (2.37 \pm 0.04)$ keV.

 $^{^4\}sin\phi < 0$

⁵ Interference with non-resonant K^+K^- production not taken into account.

events. ² From a PW analysis of $\psi(2S) \rightarrow \pi^+\pi^-\pi^0$.

$$\Gamma(\rho(2150)\pi \to \pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$$

 Γ_{103}/Γ

VALUE (units 10^{-4})

DOCUMENT ID TECN COMMENT

1.94 ± 0.25 ^{+1.15}_{-0.34} 1 ABLIKIM 05J BES2 $\psi(2S) \rightarrow \rho(2150)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$

$\Gamma(\rho(770)\pi \to \pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$

 Γ_{104}/Γ

VALUE (units 10^{-4}) CL%	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
0.32±0.12 OUR AVERAGE					
$0.51 \pm 0.07 \pm 0.11$		¹ ABLIKIM	05 J	BES2	$\psi(2S) \rightarrow \rho(770)\pi \rightarrow \pi^+\pi^-\pi^0$
					$_{\pi}^{+}$ $_{\pi}^{-}$ $_{\pi}^{0}$
$0.24^{igoplus 0.08}_{-0.07} \pm 0.02$	22	ADAM	05	CLEO	$e^+e^- ightarrow \psi(2S)$
• • • We do not use the fo	llowing da	ata for averages,	fits,	limits, et	tc. • • •
					1

< 0.83	90	1	FRANKLIN	83	MRK2	e^+e^-
<10	90		BARTEL	76	CNTR	e^+e^-
<10	90		² ABRAMS	75	MRK1	e^+e^-

 $^{^{1}}$ From a PW analysis of $\psi(2S) \rightarrow \pi^{+}\pi^{-}\pi^{0}$. 2 Final state $\rho^{0}\pi^{0}$.

$\Gamma(\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{105}/Γ

VALUE (units 10 °)	CL% EVIS	DOCUMENT ID	IECN	COMMENT
0.78±0.26 OUR AV	ERAGE			
$0.76 \pm 0.25 \pm 0.06$	30	$^{ m 1}$ METREVELI	12	ψ (2S) $\rightarrow \pi^+\pi^-$
8 ± 5		BRANDELIK	79C DASP	e^+e^-

HTTP://PDG.LBL.GOV

Page 36

¹ From a PW analysis of $\psi(2S) \rightarrow \pi^+\pi^-\pi^0$.

• • • We do not use the following data for averages, fits, limits, etc. • • • 06A CLEO $e^+e^- \rightarrow \psi(2S)$ **DOBBS** 90 MRK1 e^+e^- 90 <5 **FELDMAN** $^{
m 1}$ Obtained by analyzing CLEO-c data but not authored by the CLEO Collaboration. Using $\psi(3770) \rightarrow \pi^+\pi^-$ for continuum subtraction. $\Gamma(K_1(1400)^{\pm}K^{\mp})/\Gamma_{\text{total}}$ Γ_{106}/Γ VALUE (units 10^{-4}) <3.1 90 99C BES ¹ Assuming B($K_1(1400) \rightarrow K^*\pi$)=0.94 ± 0.06 $\Gamma(K_2^*(1430)^{\pm}K^{\mp})/\Gamma_{\text{total}}$ Γ_{107}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT $7.12\pm0.62^{+1.13}_{-0.61}$ 12L BES3 $e^+e^- \rightarrow \psi(2S)$ $251\,\pm\,22$ **ABLIKIM** $\Gamma(K^+K^-\pi^0)/\Gamma_{\text{total}}$ Γ_{108}/Γ VALUE (units 10^{-5}) CL% EVTS DOCUMENT ID TECN COMMENT $4.07 \pm 0.16 \pm 0.26$ 0.9k12L BES3 $e^+e^- \rightarrow \psi(2S)$ **ABLIKIM** • • We do not use the following data for averages, fits, limits, etc. MRK2 $e^+e^- \rightarrow \text{hadrons}$ < 8.9 90 **FRANKLIN** 83 $\Gamma(K^{+}K^{*}(892)^{-} + \text{c.c.})/\Gamma_{\text{total}}$ Γ_{109}/Γ VALUE (units 10^{-5}) CL%**EVTS** DOCUMENT ID TECN COMMENT **2.9** \pm **0.4 OUR AVERAGE** Error includes scale factor of 1.2. $3.18 \pm 0.30 ^{+0.26}_{-0.31}$ 12L BES3 $e^+e^- \rightarrow \psi(2S)$ 0.2k **ABLIKIM** $2.9 \begin{array}{c} +1.3 \\ -1.7 \end{array} \pm 0.4$ 05I BES2 $e^+e^- \to \psi(2S)$ 9.6 ± 4.2 **ABLIKIM** $1.3 \begin{array}{c} +1.0 \\ -0.7 \end{array} \pm 0.3$ 05 CLEO $e^+e^- \rightarrow \psi(2S)$ **ADAM** • • • We do not use the following data for averages, fits, limits, etc. • • • 83 MRK2 $e^+e^- \rightarrow \text{hadrons}$ < 5.4 90 **FRANKLIN** $\Gamma(K^*(892)^0\overline{K}^0 + \text{c.c.})/\Gamma_{\text{total}}$ Γ_{110}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT 10.9 ± 2.0 OUR AVERAGE $13.3^{+2.4}_{-2.8}\pm 1.7$ $65.6\,\pm\,9.0$ 05I BES2 $e^+e^- \to \psi(2S)$ **ABLIKIM** $9.2^{+2.7}_{-2.2}\pm0.9$ 05 CLEO $e^+e^- \rightarrow \psi(2S)$ 25 **ADAM** $\Gamma(K^+K^*(892)^- + \text{c.c.})/\Gamma(K^*(892)^0 \overline{K}{}^0 + \text{c.c.})$ $\Gamma_{109}/\Gamma_{110}$ DOCUMENT ID TECN COMMENT 0.16±0.06 OUR AVERAGE $0.22 ^{\,+\, 0.10}_{\,-\, 0.14}$ 05I BES2 $e^+e^- \rightarrow \psi(2S)$ **ABLIKIM** $0.14^{+0.08}_{-0.06}$ CLEO $e^+e^- \rightarrow \psi(2S)$ **ADAM** 05

Page 37

Created: 5/30/2017 17:21

HTTP://PDG.LBL.GOV

 $\Gamma(\phi\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{111}/Γ

VALUE (units 10^{-4}) **EVTS** DOCUMENT ID TECN 1.18±0.26 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below. $2.3 \pm 0.8 \pm 0.1$ 19 ± 6 **LEES** 12F BABR $10.6 e^{+}e^{-}$ - $0.9 \pm 0.2 \pm 0.1$ 47.6 **BRIERE** $\rightarrow \psi(2S) \rightarrow$ 1 BAI $1.5 \ \pm 0.2 \ \pm 0.2 \ 51.5 \pm 8.3$ 03B BES • We do not use the following data for averages, fits, limits, etc. 07AK BABR 10.6 $e^+e^-\rightarrow \pi^+\pi^-K^+K^-\gamma$ ^{2,3} AUBERT $2.44 \pm 0.96 \pm 0.04$ 10 ± 4

³ Using B($\phi \to K^+K^-$) = (49.3 ± 0.6)%.

WEIGHTED AVERAGE

1.18±0.26 (Error scaled by 1.5)

$\Gamma(\phi f_0(980) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{112}/Γ

Created: 5/30/2017 17:21

VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT **0.75 ± 0.33 OUR AVERAGE** Error includes scale factor of 1.6. $1.5 \ \pm 0.5 \ \pm 0.1$ 12 ± 4 **LEES BABR** ¹ BAI $0.6 \pm 0.2 \pm 0.1 \quad 18.4 \pm 6.4$ $\psi(2S) \to K^+ K^- \pi^+ \pi^-$ 03B BES • • • We do not use the following data for averages, fits, limits, etc. • 07AK BABR 10.6 $e^+e^-_{\pi^+\pi^-K^+K^-\gamma}$ ^{2,3} AUBERT 6 ± 3 $1.45\!\pm\!0.70\!\pm\!0.02$

HTTP://PDG.LBL.GOV

Page 38

¹ Normalized to B($\psi(2S) \to J/\psi \pi^+ \pi^-$) = 0.305 ± 0.016.

 $^{^2}$ Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(\psi(2S)\to\phi\pi^+\pi^-)/\Gamma_{\text{total}}]\times [\Gamma(\psi(2S)\to e^+e^-)]=(0.57\pm0.22\pm0.04)\times 10^{-3}$ keV which we divide by our best value $\Gamma(\psi(2S)\to e^+e^-)=2.34\pm0.04$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Superseded by LEES 12F. AUBERT 07AK reports $[\Gamma(\psi(2S) \to \phi f_0(980) \to \pi^+\pi^-)/\Gamma_{total}] \times [\Gamma(\psi(2S) \to e^+e^-)] = (0.34 \pm 0.16 \pm 0.04) \times 10^{-3}$ keV which we divide by our best value $\Gamma(\psi(2S) \to e^+e^-) = 2.34 \pm 0.04$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value. ³ Using $B(\phi \to K^+K^-) = (49.3 \pm 0.6)\%$.

$\Gamma(2(K^+K^-))/\Gamma$	total				Γ ₁₁₃ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
0.63 ± 0.13 OUR A	VERAGE				
$0.9 \pm 0.4 \pm 0.1$	13	LEES	12F	BABR	$10.6 e^+e^- \rightarrow 2(K^+K^-)\gamma$
$0.6 \pm 0.1 \pm 0.1$	59.2	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi(2S) \rightarrow 2(K^+K^-)$
$\Gamma(\phi K^+ K^-)/\Gamma_{tc}$	otal				Γ ₁₁₄ /Γ
$VALUE$ (units 10^{-4})		DOCUMENT ID		TECN	COMMENT
0.70±0.16 OUR A	VERAGE				
$0.8 \pm 0.2 \pm 0.1$	36.8	BRIERE	05	CLEO	$e^+e^- ightarrow \psi(2S) ightarrow 2(K^+K^-)$
$0.6\ \pm0.2\ \pm0.1$	16.1 ± 5.0	1 BAI	03 B	BES	$\psi(2S) \rightarrow 2(K^+K^-)$
$^{ m 1}$ Normalized to E	$B(\psi(2S) \rightarrow J/$	$(\psi \pi^+ \pi^-) = 0.30$	5 ± 0	.016.	
$\Gamma(2(K^+K^-)\pi^0)$	/Γ _{total}				Γ ₁₁₅ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
1.1±0.2±0.2	44.7	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi(2S) \rightarrow$
					$2(K^{+}K^{-})\pi^{0}$
$\Gammaig(\phi\etaig)/\Gamma_{ m total}$					Γ ₁₁₆ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
3.10±0.31 OUR A	VERAGE				
$3.14\!\pm\!0.23\!\pm\!0.23$	0.2k	ABLIKIM	12L	BES3	$e^+e^- o \psi(2S)$
$2.0 \ ^{+1.5}_{-1.1} \ \pm 0.4$	6	ADAM	05	CLEO	$e^+e^- ightarrow \psi(2S)$
$3.3 \pm 1.1 \pm 0.5$	17	ABLIKIM	04K	BES	$\mathrm{e^+e^-} ightarrow \psi(2S)$
$\Gamma(\phi\eta')/\Gamma_{total}$					Γ ₁₁₇ /Γ
$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
3.1±1.4±0.7	8				$e^+e^- \rightarrow \psi(2S)$
$^{ m 1}$ Calculated com	bining $\eta' o \gamma$	$ ho$ and $\eta\pi^+\pi^-$ ch	annel	s.	
$\Gamma(\omega\eta')/\Gamma_{ ext{total}}$					Γ ₁₁₈ /Γ
· · ·	EVTS	DOCUMENT ID		TECN	COMMENT
$3.2^{+2.4}_{-2.0}\pm0.7$	4	¹ ABLIKIM	04K	BES	$e^+e^- \rightarrow \psi(2S)$

¹ Calculated combining $\eta' \rightarrow \gamma \rho$ and $\eta \pi^+ \pi^-$ channels.

¹ Normalized to B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$) = 0.305 \pm 0.016.

$\Gamma(\omega\pi^0)/\Gamma_{ m total}$						Γ ₁₁₉ /Γ
$\frac{VALUE \text{ (units } 10^{-5})}{2.1 \pm 0.6 \text{ OUR AV}}$	EVTS	DOCUMENT ID)	TECN	COMMENT	
2.1 ± 0.6 OUR AV	ERAGE					
$2.5 \ ^{+1.2}_{-1.0} \ \pm 0.2$	14	ADAM	05	CLEO	$e^+e^- \rightarrow$	ψ (2 S)
$1.87^{\color{red}+0.68}_{-0.62}\!\pm\!0.28$	14	ABLIKIM	04L	BES	$e^+e^-\to$	ψ (2 S)
$\Gamma(\rho\eta')/\Gamma_{total}$						Γ ₁₂₀ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID)	TECN	COMMENT	
$1.87^{f +1.64}_{-1.11} \pm 0.33$	2	ABLIKIM	04L	BES	$e^{+}e^{-}\rightarrow$	$\psi(2S)$
$\Gamma(ho\eta)/\Gamma_{ m total}$						Γ ₁₂₁ /Γ
VALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID)	TECN	COMMENT	
2.2 ±0.6 OUR AV	ERAGE Erro	r includes scale f	factor c	of 1.1.		
$3.0 \begin{array}{c} +1.1 \\ -0.9 \end{array} \pm 0.2$	18	ADAM	05	CLEO	$e^+e^- \rightarrow$	ψ (2 S)
$1.78^{igoplus 0.67}_{-0.62} \pm 0.17$	13	ABLIKIM	04L	BES	$e^+e^- \rightarrow$	ψ (2 S)
$\Gamma(\omega\eta)/\Gamma_{total}$						Γ ₁₂₂ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID)	TECN	COMMENT	
<1.1	90	ADAM	05	CLEO	e^+e^-	ψ (2 S)
• • • We do not use	e the following	data for averag	es, fits,	limits, e	etc. • • •	
<3.1	90	ABLIKIM	04K	BES	$e^+e^- \rightarrow$	ψ (2 S)
$\Gamma ig(\phi \pi^0ig)/\Gamma_{ ext{total}}$						Γ ₁₂₃ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID)	TECN	COMMENT	
<0.04	90	ABLIKIM	12L	BES3	$e^+e^- \rightarrow$	ψ (2 S)
• • • We do not use	e the following	data for averag	es, fits,	limits, e	etc. • • •	
< 0.7	90	ADAM			e^+e^-	,
< 0.4	90	ABLIKIM	04K	BES	e^+e^-	ψ (2 S)
$\Gamma(\eta_c \pi^+ \pi^- \pi^0)/\Gamma$	total					Γ ₁₂₄ /Γ
VALUE (units 10 ⁻³)		DOCUMENT ID				
<1.0	90	PEDLAR	07	CLEO	$e^+e^- \rightarrow$	ψ (2 S)
$\Gamma(\rho \overline{\rho} K^+ K^-)/\Gamma_{\rm t}$						Γ ₁₂₅ /Γ
VALUE (units 10^{-5})		DOCUMENT ID				
2.7±0.6±0.4	30.1	BRIERE	05	CLEO	$e^+e^- \rightarrow p\overline{p}K^+$	
$\Gamma(\overline{\Lambda}nK_S^0 + \text{c.c.})/$						Γ ₁₂₆ /Γ
VALUE (units 10 ⁻⁴) 0.81±0.11±0.14	EVTS	DOCUMENT ID)	TECN	COMMENT	
$0.81 \pm 0.11 \pm 0.14$	50	¹ ABLIKIM	08 C	BES2	$e^+e^- \rightarrow$	J/ψ
1 Using B $(\overline{\varLambda} ightarrow \ \overline{ ho}$	$(\pi^+) = 63.9\%$	and B(${\mathcal K}^0_S \to$	$\pi^+\pi^-$) = 69.2	2%.	

$\Gamma(\phi f_2'(1525))/$	Γ _{total}							Γ ₁₂₇ /Γ
$VALUE$ (units 10^{-4})	CL%	EVTS	<u></u>	OCUMENT	ID	TECN	COMMENT	
$0.44 \pm 0.12 \pm 0.11$		20 ± 6	Е	BAI	04	С	ψ (2 S) $ ightarrow$	$2(K^+K^-)$
• • • We do not	use the	e following	data f	or average	s, fits,	limits, e	etc. • • •	
< 0.45	90		Е	BAI	98.	J BES	$e^+e^- \rightarrow$	$2(K^+K^-)$
$\Gamma(\Theta(1540)\overline{\Theta}($	L 540) -	$\rightarrow K_S^0 p$	K-π-	+ c.c.)/Γ ₁	total			Γ ₁₂₈ /Γ
VALUE (units 10^{-5})		CL%	DOC	UMENT ID		TECN	COMMENT	
<0.88		90						
Γ(Θ(1540) <i>K</i> -	<u>n</u> → 1	K ⁰ _S pK ⁻	π)/Γ _t	otal				Γ ₁₂₉ /Γ
$VALUE$ (units 10^{-5})		•	•			TECN	COMMENT	
<1.0		90	BAI			BES2		
$\Gamma(\Theta(1540)K_S^0)$	$\overline{p} \rightarrow I$	$K_{S}^{0}\overline{p}K^{+}$	n)/Γ _t	otal				Γ ₁₃₀ /Γ
$VALUE$ (units 10^{-5})		•	•			TECN	COMMENT	
<0.70		90	BAI			BES2		
Γ(Θ (1540) <i>K</i> +	$n \rightarrow 1$	K ⁰ , p K+	n)/Γ _t	otal				Γ ₁₃₁ /Γ
$VALUE$ (units 10^{-5})		_	, .			TECN	COMMENT	-0-7
<2.6		90	BAI			BES2		
$\Gamma(\overline{\Theta}(1540)K_S^0$	$p \rightarrow I$	K ⁰ ₅ pK -	<u>π</u>)/Γ _t ,	otal				Γ ₁₃₂ /Γ
$VALUE$ (units 10^{-5})		•	*			TECN	COMMENT	
<0.60		90	BAI			BES2		
$\Gamma(K_S^0 K_S^0)/\Gamma_{\text{tot}}$	tal							Γ ₁₃₃ /Γ
$VALUE$ (units 10^{-4})			DOC	UMENT ID		TECN	COMMENT	•
<0.046			1 BAI		04 D	BES	e^+e^-	
$^{ m 1}$ Forbidden by	CP.							
		—— R	ADIA	TIVE DE	CAYS	s —		
$\Gamma(\gamma \chi_{c0}(1P))/\Gamma$	Г							Γ ₁₃₄ /Γ
VALUE (units 10^{-2})		EV/TC	DOC	CUMENT ID		TECN	COMMENT	. 134/ .
9.99±0.27 OUR		LVIS	<u>DOC</u>	ONLIVI ID		TLCIV	COMMENT	
9.2 ±0.4 OUR		GE						
$9.22\!\pm\!0.11\!\pm\!0.46$		72600	_	HAR	04		$e^+e^- \rightarrow$	
$9.9\ \pm 0.5\ \pm 0.8$			¹ GAI		86		$e^+e^- \rightarrow$,
$7.2\ \pm2.3$				DICK	77		$e^+e^- \rightarrow$	γX
7.5 ± 2.6			1 WH	ITAKER	76	MRK1	e^+e^-	
$^{ m 1}$ Angular distri	bution	$(1+\cos^2\theta)$) assun	ned.				

$\Gamma(\gamma \chi_{c1}(1P))/\Gamma_{\text{tot}}$:al					Γ ₁₃₅ /Γ
$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
9.55 ± 0.31 OUR FIT						
8.9 \pm 0.5 OUR AVE	RAGE					
$9.07\!\pm\!0.11\!\pm\!0.54$	76700	ATHAR			$e^+e^- \rightarrow$,
$9.0 \pm 0.5 \pm 0.7$		¹ GAISER			$e^+e^- \rightarrow$	
7.1 ± 1.9		² BIDDICK	77	CNTR	$e^+e^- \rightarrow$	γX
¹ Angular distribution	on (1-0.189	$\cos^2\theta$) assumed.				
² Valid for isotropic	distribution	of the photon.				
$\Gamma(\gamma \chi_{c2}(1P))/\Gamma_{\text{tot}}$:al					Γ ₁₃₆ /Γ
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	_
9.11±0.31 OUR FIT	<u> </u>			·		_
8.8 \pm 0.5 OUR AVE	RAGE Erro	or includes scale f	actor o	of 1.1.		
$9.33 \pm 0.14 \pm 0.61$	79300	ATHAR	04	CLEO	$e^+e^- \rightarrow$	γX
$8.0 \pm 0.5 \pm 0.7$		$^{ m 1}$ GAISER	86	CBAL	$e^+e^- ightarrow$	γX
7.0 ± 2.0		² BIDDICK	77	CNTR	$e^+e^- \rightarrow$	γX
¹ Angular distribution	on (1-0.052	$\cos^2\theta$) assumed.				
² Valid for isotropic						
			7			
$\left[\Gamma\left(\gamma\chi_{c0}(1P)\right)+\Gamma\right]$	$(\gamma \chi_{c1}(1P))$	$\Gamma)) + \Gamma(\gamma \chi_{c2}(1$.P))],	/Γ _{total}	$(\Gamma_{134}+\Gamma_{13}$	₅ +Г ₁₃₆)/Г
VALUE		DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use	the following	g data for average	es, fits,	, limits, e	etc. • • •	
$27.6 \pm 0.3 \pm 2.0$		¹ ATHAR	04	CLEO	$e^+e^- \rightarrow$	γX
¹ Not independent t	from ATHAF	R 04 measuremen	ts of B	$S(\gamma \gamma, \tau)$.		,
				$(/\lambda c_J)$.		
$\Gamma(\gamma \chi_{c0}(1P))/\Gamma(\gamma$	$\chi_{c1}(1P)$					$\Gamma_{134}/\Gamma_{135}$
VALUE	•	DOCUMENT ID		TECN	COMMENT	
• • • We do not use	the following	g data for average	es, fits,	limits, e	etc. • • •	
$1.02 \pm 0.01 \pm 0.07$		¹ ATHAR	04	CLEO	$e^+e^- \rightarrow$	γX
¹ Not independent t	from ATUAE					7
Not independent	IIOIII ATTIAI	C 04 measuremen	ts of D	$\gamma(\gamma \chi_{cJ})$.		
$\Gamma(\gamma \chi_{c2}(1P))/\Gamma(\gamma$	$\chi_{c1}(1P)$					$\Gamma_{136}/\Gamma_{135}$
VALUE	/tc1(//	DOCUMENT ID		TECN	COMMENT	100/ 100
• • • We do not use	the following					
$1.03 \pm 0.02 \pm 0.03$		¹ ATHAR			e^+e^-	~ Y
						γ 🔨
¹ Not independent f	from ATHAF	R 04 measuremen	ts of B	$S(\gamma \chi_{cJ})$.		
$\Gamma(\gamma \chi_{c0}(1P))/\Gamma(\gamma$	v ~(1P))					$\Gamma_{134}/\Gamma_{136}$
\(\lambda \text{Xc0}(\pm 1)\rangle\)\(\text{1}\)	Xc2(±1))	DOCUMENT ID		TECN	COMMENT	134/1136
	the following	DOCUMENT ID				
	the following					
$0.99 \pm 0.02 \pm 0.08$		¹ ATHAR			$e^+e^- \rightarrow$	γX
¹ Not independent f	from ATHAF	R 04 measuremen	ts of B	$S(\gamma \chi_{cJ}).$		

 $\Gamma(\gamma \eta_c(1S))/\Gamma_{\text{total}}$

 Γ_{137}/Γ

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
0.34 ±0.05 OUR AV	ERAGE	Error includes scale	factor	of 1.3.	See the ideogram below.
$0.432 \pm 0.016 \pm 0.060$					$e^+e^- \rightarrow \gamma X$
$0.32\ \pm0.04\ \pm0.06$	2560				$e^+e^- \rightarrow \gamma X$
0.28 ± 0.06		² GAISER	86	CBAL	$e^+e^- ightarrow \gamma X$

 $^{^{1}\,\}mathrm{ATHAR}$ 04 used $\Gamma_{\eta_{\mathcal{C}}(1S)}=$ 24.8 \pm 4.9 MeV to obtain this result.

 $^{^2\, {\}rm GAISER}$ 86 used $\Gamma_{\eta_c(1S)} = 11.5 \pm 4.5$ MeV to obtain this result.

 $\Gamma(\gamma \eta_c(1S))/\Gamma_{\text{total}} \text{ (units } 10^{-2})$

$\Gamma(\gamma \eta_c(2S))/\Gamma_{\text{total}}$

 Γ_{138}/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
7±2±4		¹ ABLIKIM	12G	BES3	$\psi(2S) \rightarrow \gamma K^0 K \pi, K K \pi^0$
• • • We do not us	e the follo	wing data for ave	rages,	fits, lim	its, etc. • • •
		2			<u> </u>

< 8	90	² CRONIN-HEN	l10	CLEO	$\psi(2S) \rightarrow \gamma K \overline{K} \pi$
<20	90	ATHAR	04	CLEO	$e^+e^- o \gamma X$
20-130	95	EDWARDS	82C	CBAL	$e^+e^- ightarrow \gamma X$

 $^{^1}$ ABLIKIM 12G reports $[\Gamma(\psi(2S)\to \gamma\eta_{\rm c}(2S))/\Gamma_{\rm total}]\times [{\rm B}(\eta_{\rm c}(2S)\to K\overline{K}\pi)]=(1.30\pm0.20\pm0.30)\times 10^{-5}$ which we divide by our best value ${\rm B}(\eta_{\rm c}(2S)\to K\overline{K}\pi)$ $=(1.9\pm1.2)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² CRONIN-HENNESSY 10 reports $[\Gamma(\psi(2S) \to \gamma \eta_c(2S))/\Gamma_{\text{total}}] \times [B(\eta_c(2S) \to \kappa \overline{\kappa} \pi)] < 14.5 \times 10^{-6}$ which we divide by our best value $B(\eta_c(2S) \to \kappa \overline{\kappa} \pi) = 0$ 1.9×10^{-2} . This measurement assumes $\Gamma(\eta_{c}(2S)) = 14$ MeV. CRONIN-HENNESSY 10gives the analytic dependence of limits on width.

$\Gamma(\gamma\pi^0)/\Gamma_{\text{total}}$		DOCUMENT IS		TECN	Γ ₁₃₉ ,
		DOCUMENT ID			
1.58±0.40±0		ABLIKIM data for averages, fit			$\psi(2S) \rightarrow \gamma \pi^0$
< 5	90	PEDLAR			$\psi(2S) \rightarrow \gamma X$
< 5400	95	¹ LIBERMAN			
$< 1 \times 10^4$	90				e^+e^-
		$\mu^{+}\mu^{-}) = 0.007$			
$\Gamma(\gamma\eta'(958))/\Gamma_{\rm to}$.a.l	,			Γ ₁₄₀ ,
<u>VALUE</u> (units 10 ⁻⁴)		DOCUMENT ID	TE	ECN CO	OMMENT
1.23±0.06 OUR A\		DOCOMENT ID		.civ c	OWNIENT
$1.26\pm0.03\pm0.08$	2226	¹ ABLIKIM 1	LOF BE	ES3 ψ	$2(2S) \rightarrow 3\gamma \pi^+ \pi^-$ $2\gamma \pi^+ \pi^-$
$1.19 \pm 0.08 \pm 0.03$		PEDLAR ()9 CL	-E3 ψ	$\gamma(2S) \rightarrow \gamma X$
$1.24 \pm 0.27 \pm 0.15$	23				$\stackrel{ ightharpoonup}{+} e^{\stackrel{\prime}{-}} ightarrow \psi(2S)$
$1.54\!\pm\!0.31\!\pm\!0.20$	\sim 43	BAI 9	98F BE	ES ψ	$\pi(2S) \rightarrow \pi^+\pi^-2$
< 60	90	² BRAUNSCH 7	77 D/	م SP	+
< 11 1 Combining the 2 Restated by us 3 The value is not	90 results from η' – using total decay rmalized to the b	³ BARTEL 7 $\pi^+\pi^-\eta$ and η'	76 CN $\rightarrow \pi^+$	NTR e^{-} $\pi^{-}\gamma$ de	+ _e - ecay modes. total
< 11 ¹ Combining the 2 Restated by us 3 The value is not $\Gamma(\gamma f_2(1270))/\Gamma_t$	90 results from η' – using total decay rmalized to the b	³ BARTEL 7 $\pi^+\pi^-\eta$ and η' - width 228 keV. Franching ratio for Γ	76 CN $\rightarrow \pi^+$ $\left(J/\psi(1)\right)$	NTR $e^{ au}$ $\pi^- \gamma$ do $(S) \eta) / \Gamma$	+ _e - ecay modes. total· Γ ₁₄₁ ,
< 11 1 Combining the 2 Restated by us 3 The value is not $\Gamma(\gamma f_2(1270))/\Gamma_t$ VALUE (units $^{10^{-4}}$)	90 results from η' — using total decay rmalized to the bester $\frac{EVTS}{2}$	3 BARTEL 7 $\rightarrow \pi^+\pi^-\eta$ and η' 7 width 228 keV. Franching ratio for Γ **DOCUMENT ID**	76 CN $\rightarrow \pi^+$ $(J/\psi(1)$	NTR $e^{-}\gamma$ do $(S)\eta)/\Gamma$	+ _e - ecay modes. total
< 11 1 Combining the $\frac{1}{2}$ Restated by us $\frac{3}{3}$ The value is not $\Gamma(\gamma f_2(1270))/\Gamma_{t}$ $\frac{VALUE \text{ (units } 10^{-4}\text{)}}{2.73 + 0.29} \text{ OUR AN}$	90 results from η' — using total decay rmalized to the bester $\frac{EVTS}{2}$	³ BARTEL 7 $\pi^+\pi^-\eta$ and η' - width 228 keV. Franching ratio for Γ	76 CN $\rightarrow \pi^+$ $(J/\psi(1)$	NTR $e^{-}\gamma$ do $(S)\eta)/\Gamma$	+ _e - ecay modes. total· Γ ₁₄₁ ,
< 11 1 Combining the $\frac{1}{2}$ Restated by us $\frac{3}{3}$ The value is not $\Gamma(\gamma f_2(1270))/\Gamma_{t}$ $\frac{VALUE \text{ (units } 10^{-4}\text{)}}{2.73 + 0.29} \text{ OUR AN}$	90 results from η' — using total decay rmalized to the bester $\frac{EVTS}{2}$	3 BARTEL 7 $\rightarrow \pi^+\pi^-\eta$ and η' 7 width 228 keV. Franching ratio for Γ **DOCUMENT ID**	76 CN $\rightarrow \pi^+$ $(J/\psi(1)$	NTR e^{i} $\pi^{-}\gamma$ d $^{\prime}$ $S)\eta)/\Gamma$	+ _e - ecay modes. total· Γ ₁₄₁ ,
< 11 1 Combining the 2 Restated by us 3 The value is not $\Gamma(\gamma f_2(1270))/\Gamma_t$ VALUE (units 10^{-4}) 2.73 $^{+0.29}_{-0.25}$ OUR AND 10^{-4}	90 results from η' — using total decay rmalized to the b total EVTS VERAGE Error	3 BARTEL 7 3 7 7 7 7 7 width 228 keV. Franching ratio for Γ **DOCUMENT ID** Includes scale factors	76 CN $\rightarrow \pi^+$ $(J/\psi(1.5)$ of 1.8.	NTR e^{i} $\pi^{-}\gamma$ do $(S)\eta)/\Gamma_{i}$ $TECN$	$+_e-$ ecay modes. Total Γ_{141} $COMMENT$ $\psi(2S) ightarrow \gamma \pi \pi$
< 11 1 Combining the 2 Restated by us 3 The value is not $\Gamma(\gamma f_2(1270))/\Gamma_0$ VALUE (units $^{10^{-4}}$) 2.73 $^{+0.29}_{-0.25}$ OUR AN 2.84 \pm 0.15 $^{+0.03}_{-0.10}$ 2.12 \pm 0.19 \pm 0.32	90 results from η' — using total decay rmalized to the b total EVTS VERAGE Error 1.9k	3 BARTEL 7 $\rightarrow \pi^+\pi^-\eta$ and η' $\rightarrow \psi$ width 228 keV. Franching ratio for Γ 0 0 0 0 0 0 0	76 CN $\rightarrow \pi^+$ $(J/\psi(1.5)$ 7 of 1.8. 15 03C E	NTR e^{i} $\pi^{-}\gamma$ do $S(t)\eta / \Gamma(t)$.	$+_e-$ ecay modes. total: Γ_{141} $\underline{COMMENT}$ $\psi(2S) o \gamma \pi \pi$ $\psi(2S) o \gamma \pi \pi$
< 11 1 Combining the 2 Restated by us 3 The value is not $\Gamma(\gamma f_2(1270))/\Gamma_0$ VALUE (units $^{10^{-4}}$) 2.73 $^{+0.29}_{-0.25}$ OUR AN 2.84 \pm 0.15 $^{+0.03}_{-0.10}$ 2.12 \pm 0.19 \pm 0.32	90 results from η' — using total decay rmalized to the best total EVTS VERAGE Error 1.9k se the following of 200.6 \pm 18.8	3 BARTEL 7 $\rightarrow \pi^+\pi^-\eta$ and η' $\rightarrow width 228 keV$. Franching ratio for Γ	76 CN $\rightarrow \pi^+$ $(J/\psi(1.5)$ ~ 15	NTR $e^{-}\gamma$ do $S(S)\eta)/\Gamma(S(S)\eta)$	$+_e-$ ecay modes. total: Γ_{141} $\underline{COMMENT}$ $\psi(2S) \rightarrow \gamma \pi \pi$ $\psi(2S) \rightarrow \gamma \pi \pi$
< 11 1 Combining the 12 Restated by us 3 The value is not T($\gamma f_2(1270)$)/ Γ_1 VALUE (units 10^{-4}) 2.73 $^{+0.29}_{-0.25}$ OUR AN 2.84 \pm 0.15 $^{+0.03}_{-0.10}$ 2.12 \pm 0.19 \pm 0.32 • • We do not us 2.08 \pm 0.19 \pm 0.33 2.90 \pm 1.08 \pm 1.07 1 Using CLEO-c $^{-1}$ 0 Cleon Combined (a) $^{-1}$ 1 Using CLEO-c $^{-1}$ 2 DOBBS 15 representation (a) $^{-1}$ 3 Normalized to E	results from η' — using total decay remaized to the best total $EVTS$ VERAGE Error 1.9k se the following of 200.6 ± 18.8 29.9 ± 11.1 data but not authorits $[\Gamma(\psi(2S), 0.09) \times 10^{-4} \text{ w}]$ 0.0^{-2} . Our first elerror from using $(3(\psi(2S)) \rightarrow J/\psi)$	3 BARTEL 7 $^{\rightarrow}$ $\pi^+\pi^-\eta$ and η' $^{\prime}$ width 228 keV. Franching ratio for Γ DOCUMENT ID includes scale factor 1,2 DOBBS 3,4 BAI data for averages, fit 3 BAI 3 BAI nored by the CLEO $^{\circ}$ $^{\rightarrow}$ $\gamma f_2(1270))/\Gamma_{to}$ hich we divide by outerror is their experim	76 CN $\rightarrow \pi^+$ $(J/\psi(1.5)^{-1})^{-1}$ $(J/\psi$	NTR e^{t} $\pi^{-}\gamma$ do $S(t)\eta/\Gamma(t)$ TECN BES S, etc. of BES	$+_e-$ ecay modes. Total: Γ_{141} $COMMENT$ $\psi(2S) \rightarrow \gamma \pi \pi$ $\psi(2S) \rightarrow \gamma \pi \pi$ $\psi(2S) \rightarrow \gamma \pi^+ \pi$ $\psi(2S) \rightarrow \gamma \pi^0 \pi^0$ $(1270) \rightarrow \pi \pi)$ $(f_2(1270) \rightarrow \pi \pi)$

175

 $^{^{1}\,\}mathrm{Using}$ CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(\gamma f_0(1500))/\Gamma_{\text{total}}$

 Γ_{143}/Γ

$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID		COMMENT
9.2±1.8±0.6	274	1,2 DOBBS	15	$\psi(2S) \rightarrow \gamma \pi \pi$

¹ DOBBS 15 reports $[\Gamma(\psi(2S) \to \gamma f_0(1500))/\Gamma_{total}] \times [B(f_0(1500) \to \pi\pi)] = (3.2 \pm 0.6 \pm 0.2) \times 10^{-5}$ which we divide by our best value $B(f_0(1500) \to \pi\pi) = (34.9 \pm 2.3) \times 10^{-5}$ 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\gamma f_2'(1525))/\Gamma_{\text{total}}$

 Γ_{144}/Γ

<i>VALUE</i> (units 10^{-5})	EVTS	DOCUMENT ID		COMMENT
3.3±0.8±0.1	136	1,2 DOBBS	15	$\psi(2S) \rightarrow \gamma K \overline{K}$
$^{ m 1}$ DOBBS 15 reports [I	$\Gamma(\psi(2S)$	$\rightarrow \gamma f_2'(1525))/\Gamma_{t}$	otal]	$\times [B(f_2'(1525) \to K\overline{K})] = (2.9 \pm$
$0.6 \pm 0.3) \times 10^{-5}$ v	which we	e divide by our best	value	$e B(f'_{2}(1525) \to K\overline{K}) = (88.7 \pm$
$2.2) \times 10^{-2}$. Our	first erro	or is their experime	ent's (error and our second error is the
systematic error from	n iising d	our hest value		

$\Gamma(\gamma f_0(1710) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}$

 Γ_{146}/Γ

$VALUE$ (units 10^{-5})	EVTS	DOCUMENT ID	TECN	COMMENT
3.5 ±0.6 OUR AVE	RAGE			
$3.6 \pm 0.4 \pm 0.5$	290	¹ DOBBS	15	$\psi(2S) ightarrow \gamma \pi \pi$
$3.01 \pm 0.41 \pm 1.24$	35.6 ± 4.8	² BAI	03C BES	$\psi(2S) \rightarrow \gamma \pi^+ \pi^-$

 $^{^{}m 1}$ Using CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(\gamma f_0(1710) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$

 Γ_{147}/Γ

	,			•
$VALUE$ (units 10^{-5})	CL% EVTS	DOCUMENT	T ID TECN	COMMENT
6.6 ±0.7 OUR AVE				
$6.7\ \pm0.6\ \pm0.6$	375	$^{ m 1}$ DOBBS	15	$\psi(2S) ightarrow \gamma K \overline{K}$
$6.04 \pm 0.90 \pm 1.32$	39.6 ± 5.9	^{2,3} BAI	03C BES	$\psi(2S) \rightarrow \gamma K^+ K^-$
 ● ● We do not use 	the following dat	a for averages, f	its, limits, etc	. • • •
< 15.6	90 6.8 ± 3.1	^{2,3} BAI	03c BES	$\psi(2S) \rightarrow \gamma K_S^0 K_S^0$

¹ Using CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(\gamma f_0(2100) \rightarrow \gamma \pi \pi)/\Gamma_{\text{total}}$

 Γ_{148}/Γ

$VALUE$ (units 10^{-6})	EVTS	DOCUMENT ID		COMMENT
4.8±0.5±0.9	373	¹ DOBBS	15	$\overline{\psi(2S)} \rightarrow \gamma \pi \pi$

¹Using CLEO-c data but not authored by the CLEO Collaboration.

$\Gamma(\gamma f_0(2200) \rightarrow \gamma K \overline{K})/\Gamma_{\text{total}}$

 Γ_{149}/Γ

Created: 5/30/2017 17:21

<i>VALUE</i> (units 10 ⁻⁶)	EVTS	DOCUMENT ID		COMMENT
3.2±0.6±0.8	207	¹ DOBBS	15	$\overline{\psi(2S)} ightarrow \gamma K \overline{K}$

¹ Using CLEO-c data but not authored by the CLEO Collaboration.

HTTP://PDG.LBL.GOV

Page 45

² Using CLEO-c data but not authored by the CLEO Collaboration.

systematic error from using our best value. ² Using CLEO-c data but not authored by the CLEO Collaboration.

² Normalized to B($\psi(2S) \to J/\psi \pi^+ \pi^-$) = 0.305 ± 0.016.

² Includes unknown branching fractions to K^+K^- or $K^0_SK^0_S$. We have multiplied the K^+K^- result by a factor of 2 and the $K^0_S\,K^0_S$ result by a factor of 4 to obtain the $K\,\overline{K}$ 3 result. Normalized to B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$) = 0.305 \pm 0.016.

$\Gamma(\gamma f_J(2220) \rightarrow VALUE)$	γππ)/Γ _{tα}		ENT ID	COMM	Γ ₁₅₀ /Γ
<5.8 × 10 ⁻⁶	90	1,2 DOBBS		$\psi(2S)$	
¹ Using CLEO-c	data but no MeV, the 9	t authored by 0% CL upper I	the CLEO	Collaborat	,
$\Gamma(\gamma f_J(2220) \rightarrow VALUE)$, .	total <u>DOCUM</u>	FNT ID	СОММЕ	Γ ₁₅₁ /Γ
<9.5 × 10 ⁻⁶	90	1,2 DOBBS	5 15	$\psi(2S)$	$\rightarrow \gamma K \overline{K}$
1 Using CLEO-c 2 For $\Gamma=20/50$ and $3.7/5.5 \times$	MeV, the 90	% CL upper lir	the CLEO nits for <i>K</i> ⁺	Collaborat K^- and I	tion. $K_S^0 K_S^0$ are $2.1/4.3 \! imes \! 10^{-6}$
$\Gamma(\gamma\eta)/\Gamma_{total}$					Γ ₁₅₃ /Γ
$\underline{\mathit{VALUE}}$ (units 10^{-6})	<u>CL%</u> <u>E</u>	VTS <u>DOC</u>	UMENT ID	TECN	COMMENT
1.38±0.48±0		13 ¹ ABL		.0F BES3	$\gamma_{3\pi}^{0}$
• • • We do not i	use the follo	wing data for a			
< 2	90				$\psi(2S) \rightarrow \gamma X$
< 90	90	BAI			$\psi(2S) \rightarrow \pi^+\pi^-3\gamma$
<200	90				$e^+e^- ightarrow 3\gamma$
1 Combining the $\Gamma(\gamma\eta\pi^{+}\pi^{-})/\Gamma$	total				Γ ₁₅₄ /Γ
VALUE (units 10 ⁻⁴)	EVTS	DOCUM			COMMENT
$8.71 \pm 1.25 \pm 1.64$	418	ABLIK	IM 06	SR BES2	$\psi(2S) \rightarrow \gamma \eta \pi^+ \pi^-$
$\Gamma(\gamma\eta(1405) \rightarrow VALUE \text{ (units } 10^{-4}\text{)}$, .		TEC	V <i>COMM</i> .	Γ ₁₅₆ /Γ
<0.9		ABLIKIM			$\rightarrow \gamma K_S^0 K^+ \pi^- + \text{c.c.}$
• • • We do not i					<i>5</i>
<1.3					
<1.2	90 1 9	CHARRE	80 MRI	<1 e ⁺ e ⁻	$\rightarrow \gamma K^+ K^- \pi^0$
¹ Includes unkno					
$\Gamma(\gamma\eta(1405) \rightarrow$					Γ ₁₅₇ /Γ
VALUE (units 10 ⁻⁴)	EVTS				COMMENT
$0.36 \pm 0.25 \pm 0.05$	10	ABLIK	IM 06	R BES2	$\psi(2S) \rightarrow \gamma \eta \pi^+ \pi^-$
$\Gamma(\gamma\eta(1475) \rightarrow$,, -				Γ ₁₅₉ /Γ
VALUE (units 10 ⁻⁴)	<u>CL%</u> <u>D</u>	OCUMENT ID	TECN	COMME	N1 n
<1.4					$\rightarrow \gamma K^+ K^- \pi^0$
• • • We do not i					_
<1.5	90 A	BLIKIM	UOR BES2	$\psi(25)$	$\rightarrow \gamma K_S^0 K^+ \pi^- + \text{c.c.}$

$\Gamma(\gamma\eta(1475) \rightarrow \eta\pi^+$	π^-)/ $\Gamma_{ m tot}$	al			Γ ₁₆₀ /Γ
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<0.88	90	ABLIKIM	06 R	BES2	$\psi(2S) \rightarrow \gamma \eta \pi^+ \pi^-$
$\Gamma(\gamma 2(\pi^+\pi^-))/\Gamma_{\text{tot}}$	al				Γ ₁₆₁ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
39.6±2.8±5.0	583	ABLIKIM	07 D	BES2	$e^+e^- o \psi(2S)$
$\Gamma(\gamma K^{*0}K^+\pi^- + c.$	c.)/ Γ_{total}				Γ ₁₆₂ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT
37.0±6.1±7.2	237	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi(2S)$
$\Gamma(\gamma K^{*0} \overline{K}^{*0})/\Gamma_{\text{total}}$	l				Γ ₁₆₃ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
24.0±4.5±5.0	41	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi(2S)$
$\Gamma(\gamma K_5^0 K^+ \pi^- + c.c)$:.)/Γ _{total}				Γ ₁₆₄ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
25.6±3.6±3.6	115	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi(2S)$
$\Gamma(\gamma K^+ K^- \pi^+ \pi^-)$	$/\Gamma_{ ext{total}}$				Γ ₁₆₅ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
19.1±2.7±4.3	132	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi(2S)$
$\Gamma(\gamma p \overline{p})/\Gamma_{total}$					Γ ₁₆₆ /Γ
	EVTS	DOCUMENT ID			COMMENT
3.9 \pm 0.5 OUR AVER					· (0.6)
$4.18 \pm 0.26 \pm 0.18$ $2.9 \pm 0.4 \pm 0.4$	348	¹ ALEXANDER ABLIKIM			$\psi(2S) \rightarrow \gamma p p$ $e^+e^- \rightarrow \psi(2S)$
					, ,
¹ From a fit of the $p\overline{p}$ mass distribution to a combination of $\gamma f_2(1950)$, $\gamma f_2(2150)$, and $\gamma p\overline{p}$ phase space, for $M(p\overline{p} < 2.85 \text{ GeV})$, and accounting for backgrounds from $\psi(2S) \rightarrow \pi^0 p\overline{p}$ and continuum.					
$\Gamma(\gamma f_2(1950) \rightarrow \gamma \rho)$	$\overline{p})/\Gamma_{\text{total}}$				Γ ₁₆₇ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT
VALUE (units 10 ⁻⁵) 1.2±0.2±0.1	111	¹ ALEXANDER	10	CLEO	$\psi(2S) \rightarrow \gamma p \overline{p}$
$^{ m 1}$ From a fit of the p	\overline{p} mass distrongram $M(p\overline{p} < 2)$	ribution to a com	binati	on of γ	$f_2(1950), \ \gamma f_2(2150), \ { m and} \ { m ckgrounds from} \ \psi(2S) ightarrow$
$\Gamma(\gamma f_2(2150) \rightarrow \gamma \rho)$,				Γ ₁₆₈ /Γ
$VALUE (units 10^{-5})$ 0.72±0.18±0.03	EVTS	DOCUMENT ID		TECN	COMMENT
$0.72 \pm 0.18 \pm 0.03$	73	¹ ALEXANDER	10	CLEO	$\psi(2S) \rightarrow \gamma p \overline{p}$
1 From a fit of the p $\gamma p \overline{p}$ phase space, for $\pi^0 p \overline{p}$ and continuous	or $M(p\overline{p} < 2)$	ribution to a com 2.85 GeV, and acc	binati ountii	on of γ	$f_2(1950), \ \gamma f_2(2150), \ ext{and} $ ckgrounds from $\psi(2S) ightarrow$

HTTP://PDG.LBL.GOV

$\Gamma(\gamma X(1835) \rightarrow \gamma \rho \overline{\rho}$	δ)/Γ _{total}					Γ ₁₆₉ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$4.57 \pm 0.36 ^{+1.77}_{-4.26}$		ABLIKIM	12 D	BES3	$J/\psi ightarrow \gamma p \overline{p}$	5
• • • We do not use th	e following o	data for averages	s, fits,	limits, e	etc. • • •	
<1.6	90	ALEXANDER	10	CLEO	$\psi(2S) \rightarrow \gamma$	p p
< 5.4	90	ABLIKIM	07 D	BES	$\psi(2S) \rightarrow \gamma$	p p
$\Gamma(\gamma X \to \gamma p \overline{p})/\Gamma_{\text{tot}}$ For a narrow reson	al nance in the	range 2.2 < <i>M</i>	'(X) <	< 2.8 Ge	eV.	Γ ₁₇₀ /Γ
_		DOCUMENT ID				
<2		ALEXANDER				p p
$\Gamma(\gamma\pi^+\pi^-\rho\overline{\rho})/\Gamma_{\text{tota}}$						Γ ₁₇₁ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID				
$2.8 \pm 1.2 \pm 0.7$	17	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi$	v(2S)
$\Gamma(\gamma 2(\pi^+\pi^-)K^+K^-)$	*					Γ ₁₇₂ /Γ
VALUE (units 10^{-5})		DOCUMENT ID				
<22	90	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi$	(2S)
$\Gamma(\gamma 3(\pi^+\pi^-))/\Gamma_{\text{tota}}$						Γ ₁₇₃ /Γ
VALUE (units 10^{-5})	<u>CL%</u>	DOCUMENT ID				
<17	90	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi$	(2S)
$\Gamma(\gamma K^+ K^- K^+ K^-)$	$/\Gamma_{ ext{total}}$					Γ ₁₇₄ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<4	90	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi$	(25)
$\Gammaig(\gamma\gamma J/\psiig)/\Gamma_{ ext{total}}$						Γ ₁₇₅ /Γ
$VALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.1 \pm 0.6 ^{+0.8}_{-1.0}$	1.1k	ABLIKIM	120	BES3	$e^+e^- o \psi$	(25)
	(OTHER DECA	YS ·		_	
$\Gamma(\text{invisible})/\Gamma(e^+e^-$	·)					Γ_{176}/Γ_{6}
VALUE		DOCUMENT ID				
<2.0	90	LEES	131	BABR	$B \rightarrow K^{(*)} y$	b(2S)
//00	CDOCC D	ADTICLE DD	ANC	I IIAIC I		

$\psi(2S)$ CROSS-PARTICLE BRANCHING RATIOS

For measurements involving B($\psi(2S) \to \gamma \chi_{cJ}(1P)$)×B($\chi_{cJ}(1P) \to X$) see the corresponding entries in the $\chi_{cJ}(1P)$ sections.

MULTIPOLE AMPLITUDE RATIOS IN RADIATIVE DECAYS $\psi(2S) \rightarrow \gamma \chi_{cJ}(1P)$ and $\chi_{cJ} \rightarrow \gamma J/\psi(1S)$

$a_2(\chi_{c1})/a_2(\chi_{c2})$ Magnetic quadrupole transition amplitude ratio

$VALUE$ (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
67^{+19}_{-13}	59k	$^{ m 1}$ ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

¹ Statistical and systematic errors combined. Using values from fits with floating M2 amplitudes $a_2(\chi_{c1})$, $a_2(\chi_{c2})$, $b_2(\chi_{c1})$, $b_2(\chi_{c2})$ and fixed E3 amplitudes of $a_3(\chi_{c2}) = b_3(\chi_{c2}) = 0$. Not independent of values for $a_2(\chi_{c1}(1P))$ and $a_2(\chi_{c2}(1P))$ from ARTUSO 09.

$b_2(\chi_{c2})/b_2(\chi_{c1})$ Magnetic quadrupole transition amplitude ratio

<i>VALUE</i> (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
37 ⁺⁵³	59k	¹ ARTUSO	09	CLEO	$\psi(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

¹ Statistical and systematic errors combined. Using values from fits with floating M2 amplitudes $a_2(\chi_{c1}),\ a_2(\chi_{c2}),\ b_2(\chi_{c1}),\ b_2(\chi_{c2})$ and fixed E3 amplitudes of $a_3(\chi_{c2})=b_3(\chi_{c2})=0$. Not independent of values for $b_2(\chi_{c1}(1P))$ and $b_2(\chi_{c2}(1P))$ from ARTUSO 09.

$\psi(2S)$ REFERENCES

ABLIKIM 12D PRL 108 112003 M. Ablikim et al. (BES III Co ABLIKIM 12G PRL 109 042003 M. Ablikim et al. (BES III Co ABLIKIM 12H PL B710 594 M. Ablikim et al. (BES III Co ABLIKIM 12L PR D86 072011 M. Ablikim et al. (BES III Co ABLIKIM 12L PR D86 092008 M. Ablikim et al. (BES III Co ABLIKIM 12O PRL 109 172002 M. Ablikim et al. (BES III Co ABLIKIM 12Q CP C36 1040 M. Ablikim et al. (BES III Co ANASHIN 12 PL B711 280 V.V. Anashin et al. (BES III Co ANASHIN 12 PR D85 112009 J.P. Lees et al. (BABAR Co LEES 12F PR D86 012008 J.P. Lees et al. (BABAR Co METREVELI 12 PR D85 092007 Z. Metreveli et al. (NWES, FLOR, WAY GE 11 PR D84 032008 J.Y. Ge et al. (BES III Co ABLIKIM 10B PRL 104 132002 M. Ablikim et al. (BES III Co ABLIKIM 10F PRL 105 261801 M. Ablikim et al. (BES III Co ALEXANDER 10 PR D82 092002 J.P. Alexander et al. (CLEO Co CRONIN-HEN 10 PR D81 052002 D. Cronin-Hennessey et al. (CLEO Co ADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Co CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Co CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Co CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Co CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Co CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO Co CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CADAMS 09 PR D80 051106 G.S. Adams et al. (CLEO CO CO CADAMS 09 PR D80 051106
ALEXANDER 10 PR D82 092002 J.P. Alexander et al. (CLEO Co CRONIN-HEN 10 PR D81 052002 D. Cronin-Hennessey et al. (CLEO Co
ARTUSO 09 PR D80 112003 M. Artuso et al. (CLEO Co LIBBY 09 PR D80 072002 J. Libby et al. (CLEO Co MITCHELL 09 PRL 102 011801 R.E. Mitchell et al. (CLEO Co

HTTP://PDG.LBL.GOV Page 49 Created: 5/30/2017 17:21

PEDLAR	09	PR D79 111101	T.K. Pedlar et al.	(CLEO Collab.)
ABLIKIM	08B	PL B659 74	M. Ablikim et al.	` (BES Collab.)
ABLIKIM	08C	PL B659 789	M. Ablikim et al.	(BES Collab.)
DOBBS	08A	PRL 101 182003	S. Dobbs <i>et al.</i>	(CLEO Collab.)
MENDEZ PDG	08 08	PR D78 011102 PL B667 1	H. Mendez <i>et al.</i> C. Amsler <i>et al.</i>	(CLEO Collab.) (PDG Collab.)
ABLIKIM	07C	PL B648 149	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	07D	PRL 99 011802	M. Ablikim <i>et al.</i>	(BES II Collab.)
ABLIKIM	07H	PR D76 092003	M. Ablikim et al.	` (BES Collab.)
ANASHIN	07	JETPL 85 347	V.V. Anashin <i>et al.</i>	(KEDR Collab.)
ANDREOTTI	07	Translated from ZETFP 8 PL B654 74	35 429. M. Andreotti <i>et al.</i>	(Femilab E835 Collab.)
AUBERT		PR D76 012008	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D76 092005	B. Aubert <i>et al.</i>	(BABAR Collab.)
Also		PR D77 119902E (errat.)		(BABAR Collab.)
AUBERT		PR D76 092006	B. Aubert <i>et al.</i>	(BABAR Collab.)
PDG PEDLAR	07 07	Unofficial 2007 WWW ed PR D75 011102	lition T.K. Pedlar <i>et al.</i>	(PDG Collab.) (CLEO Collab.)
ABLIKIM	06G	PR D73 052004	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06I	PR D74 012004	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06L	PRL 97 121801	M. Ablikim et al.	(BES Collab.)
ABLIKIM	06R	PR D74 072001	M. Ablikim et al.	(BES Collab.)
ABLIKIM	06W	PR D74 112003	M. Ablikim et al.	(BES Collab.)
ADAM	06 06B	PRL 96 082004	N.E. Adam <i>et al.</i> B. Aubert <i>et al.</i>	(CLEO Collab.)
AUBERT AUBERT	06B 06D	PR D73 012005 PR D73 052003	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT,BE	06D	PR D74 091103	B. Aubert et al.	(BABAR Collab.)
DOBBS	06A	PR D74 011105	S. Dobbs et al.	(CLEO Collab.)
ABLIKIM	05E	PR D71 072006	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05H	PR D72 012002	M. Ablikim et al.	(BES Collab.)
ABLIKIM	05I	PL B614 37	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM ABLIKIM	05J 05O	PL B619 247 PL B630 21	M. Ablikim <i>et al.</i>	(BES Collab.) (BES Collab.)
ADAM	05	PRL 94 012005	N.E. Adam <i>et al.</i>	(CLEO Collab.)
ADAM	05A	PRL 94 232002	N.E. Adam et al.	(CLEO Collab.)
ANDREOTTI	05	PR D71 032006	M. Andreotti et al.	(FNAL E835 Collab.)
AUBERT	05D	PR D71 052001	B. Aubert <i>et al.</i>	(BABAR Collab.)
BRIERE PEDLAR	05 05	PRL 95 062001 PR D72 051108	R.A. Briere <i>et al.</i> T.K. Pedlar <i>et al.</i>	(CLEO Collab.)
ROSNER	05	PRL 95 102003	J.L. Rosner <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
ABLIKIM	04B	PR D70 012003	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	04K	PR D70 112003	M. Ablikim et al.	(BES Collab.)
ABLIKIM	04L	PR D70 112007	M. Ablikim et al.	(BES Collab.)
ATHAR	04	PR D70 112002	S.B. Athar et al.	(CLEO Collab.)
BAI BAI	04B 04C	PRL 92 052001 PR D69 072001	J.Z. Bai <i>et al.</i> J.Z. Bai <i>et al.</i>	(BES Collab.) (BES Collab.)
BAI	04C 04D	PL B589 7	J.Z. Bai et al.	(BES Collab.)
BAI	04G	PR D70 012004	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	041	PR D70 012006	J.Z. Bai <i>et al.</i>	(BES Collab.)
PDG	04	PL B592 1	S. Eidelman et al.	(PDG Collab.)
SETH	04	PR D69 097503	K.K. Seth	(KEDD Callah)
AULCHENKO BAI	03 03B	PL B573 63 PR D67 052002	V.M. Aulchenko <i>et al.</i> J.Z. Bai <i>et al.</i>	(KEDR Collab.) (BES Collab.)
BAI	03C	PR D67 032004	J.Z. Bai et al.	(BES Collab.)
AUBERT	02B	PR D65 031101	B. Aubert et al.	(BABAR Collab.)
BAI	02	PR D65 052004	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	02B	PL B550 24	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI PDG	02C 02	PRL 88 101802 PR D66 010001	J.Z. Bai <i>et al.</i> K. Hagiwara <i>et al.</i>	(BES Collab.) (PDG Collab.)
BAI	01	PR D63 032002	J.Z. Bai <i>et al.</i>	(BES Collab.)
AMBROGIANI	00A	PR D62 032004	M. Ambrogiani <i>et al.</i>	(FNAL E835 Collab.)
ARTAMONOV	00	PL B474 427	A.S. Artamonov et al.	`
BAI	00	PRL 84 594	J.Z. Bai et al.	(BES Collab.)
BAI	99C	PRL 83 1918	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI BAI	98E 98F	PR D57 3854 PR D58 097101	J.Z. Bai <i>et al.</i> J.Z. Bai <i>et al.</i>	(BES Collab.) (BES Collab.)
BAI	98J	PRL 81 5080	J.Z. Bai et al.	(BES Collab.)
ARMSTRONG	97	PR D55 1153	T.A. Armstrong et al.	(E760 Collab.)
GRIBUSHIN	96	PR D53 4723	A. Gribushin et al.	(E672 Collab., E706 Collab.)
ARMSTRONG	93B	PR D47 772	T.A. Armstrong et al.	(FNAL E760 Collab.)
ALEXANDER	89	NP B320 45	J.P. Alexander <i>et al.</i>	(LBL, MICH, SLAC)

COHEN GAISER KURAEV	87 86 85	RMP 59 1121 PR D34 711 SJNP 41 466 Translated from YAF 41	E.R. Cohen, B.N. Taylor J. Gaiser <i>et al.</i> E.A. Kuraev, V.S. Fadin	(RISC, NBS) (Crystal Ball Collab.) (NOVO)
FRANKLIN EDWARDS LEMOIGNE HIMEL OREGLIA SCHARRE ZHOLENTZ	83 82C 82 80 80 80	PRL 51 963 PRL 48 70 PL 113B 509 PRL 44 920 PRL 45 959 PL 97B 329 PL 96B 214	M.E.B. Franklin et al. C. Edwards et al. Y. Lemoigne et al. T. Himel et al. M.J. Oreglia et al. D.L. Scharre et al. A.A. Zholents et al.	(LBL, SLAC) (CIT, HARV, PRIN+) (SACL, LOIC, SHMP+) (LBL, SLAC) (SLAC, CIT, HARV+) (SLAC, LBL) (NOVO)
Also		SJNP 34 814 Translated from VAF 34	A.A. Zholents <i>et al.</i>	(NOVO)
BRANDELIK BRANDELIK BARTEL TANENBAUM BIDDICK BRAUNSCH BURMESTER FELDMAN YAMADA BARTEL TANENBAUM WHITAKER ABRAMS ABRAMS BOYARSKI	79B 79C 78B 78 77 77 77 77 76 76 76 75 75B	Translated from YAF 34 NP B160 426 ZPHY C1 233 PL 79B 492 PR D17 1731 PRL 38 1324 PL 67B 249 PL 66B 395 PRPL 33C 285 Hamburg Conf. 69 PL 64B 483 PRL 36 402 PRL 37 1596 Stanford Symp. 25 PRL 34 1181 Palermo Conf. 54	1471. R. Brandelik et al. R. Brandelik et al. W. Bartel et al. W.M. Tanenbaum et al. C.J. Biddick et al. W. Braunschweig et al. J. Burmester et al. G.J. Feldman, M.L. Perl S. Yamada W. Bartel et al. W.M. Tanenbaum et al. J.S. Whitaker et al. G.S. Abrams G.S. Abrams et al. A.M. Boyarski et al.	(DASP Collab.) (DASP Collab.) (DASP Collab.) (DESY, HEIDP) (SLAC, LBL) (UCSD, UMD, PAVI+) (DASP Collab.) (DESY, HAMB, SIEG+) (LBL, SLAC) (DASP Collab.) (DESY, HEIDP) (SLAC, LBL) IG (SLAC, LBL) (LBL, SLAC) (LBL, SLAC) (SLAC, LBL)
HILGER LIBERMAN LUTH WIIK	75 75 75 75	PRL 35 625 Stanford Symp. 55 PRL 35 1124 Stanford Symp. 69	E. Hilger <i>et al.</i> A.D. Liberman V. Luth <i>et al.</i> B.H. Wiik	(STAN, PENN) (STAN) (SLAC, LBL) JPC (DESY)