1 Orientované a neorientované grafy, souvislost, silná souvislost, stromy a kostry, Eulerovy grafy, Hamiltonovy grafy, nezávislé množiny, barvení grafu. (A0B01LGR)

1.1 Definice orientovaného grafu

Orientovaný graf je trojice $G=(V,E,\epsilon)$, kde V je konečná množina vrcholů (též zvaných uzlů), E je konečná množina jmen hran (též nazývaných orientovaných hran) a \epsilon) je přiřazení, které každé hraně e \epsilon E přiřazuje uspořádanou dvojici vrcholů a nazývá se vztah incidence.

Jestliže $\varepsilon(e)=(u,v)$ pro $u,v\in V$, říkáme, že vrchol u je počáteční vrchol hrany e a vrchol v je koncový vrchol hrany e; značíme PV(e)=u a KV(e)=v. O vrcholech u,v říkáme, že jsou krajní vrcholy hrany e, též že jsou incidentní s hranou e. Jestliže počátční vrchol a koncový vrchol jsou stejné, říkáme, že hrana e je orientovaná smyčka.

1.2 Definice neorientovaného grafu

Nerientovaný graf je trojice $G=(V,E,\varepsilon)$, kde V je konečná množina vrcholů (též zvaných uzlů), E je konečná množina jmen hran a ε je přiřazení, které každé hraně $e \in E$ přiřazuje množinu $\{u,v\}$ pro vrcholy $u,v \in V$ a nazývá se vztah incidence. Jestliže $\varepsilon(e)=\{u,v\}$ pro $u,v \in V$, říkáme, že u,v jsou krajní vrcholy hrany e, též že jsou incidentní s hranou e. Je-li u=v, říkáme že e je (neorientovaná) smyčka.

1.3 Stromy

Orientovaný nebo neorientovaný graf se nazývá strom, je-li souvislý a neobsahuje-li kružnici

V každém stromu s alespoň dvěma vrcholy existuje vrchol stupně 1. Každý strom o n vrcholech má n-1 hran.

Poznámka Mějme souvislý graf G. Přidáme-li k němu hranu (aniž bychom zvětšili množinu vrcholů), zůstane graf souvislý. Mějme graf G bez kružnic. Odebereme-li v grafu G hranu, vzniklý graf opět nebude obsahovat kružnici.

Strom je graf, který má nejmenší počet hran aby mohl být souvislý a současně největší počet hran aby v něm neexistovala kružnice.

Tvrzení Je dán graf G, pak následující je ekvivalentní

- 1. G je strom
- 2. Graf G nemá kružnice a přidáme-li ke grafu libovolnou hranu uzavřeme přesně jednu kružnici.
- 3. Graf G je souvislý a odebráním libovolné hrany přestane být souvislý.

Poznamenejme, že přidáním hrany zde rozumíme přidání hrany mezi již existující vrcholy (další vrcholy nepřidáváme)

1

1.4 Souvislost

1.4.1 Souvislé grafy

Řekneme, že graf je souvislý, jestliže pro každé dva vrcholy u, v grafu existuje neorientovaná cesta z u do v. Poznamenejme, že vždy existuje cesta z vrcholu u do sebe, totiž triviální cesta. Také platí, že neorientovaná cesta z vrcholu u do vrcholu v je také neorientovanou cestou z v do u.

1.4.2 Komponenty souvislosti

Máme dán graf G. Komponenta souvislosti (někdy též komponenta slabé souvislosti) je maximální množina vrcholů A taková, že indukovaný podgraf určený A je souvislý.

Maximální množinou zde rozumíme takovou množinu A, pro kterou platí, že přidámeli k množině A libovolný vrchol, podgraf indukovaný touto větší množinou už souvislý nebude.

2

1.5 Silná souvislost

1.5.1 Silně souvislé grafy

Řekneme, že orientovaný graf G je silně souvislý, jestliže pro každé dva vrcholy u, v existuje orientovaná cesta z vrcholu u do vrcholu v a orientovaná cesta z vrcholu v do vrcholu u.

¹//see also: podgrafy

 $^{^2//{\}rm see}$ also: paralelní hrany, prostý graf, stupně vrcholů, matice incidence, sled, tah a cesta

Poznámka V definici silně souvislého grafu jsme mohli požadovat pouze existenci orientované cesty z vrcholu u do vrcholu v. Je to proto, že existenci takové cesty vyžadujeme pro všechny dvojice vrcholů, tedy i pro dvojici v, u. Dále si uvědomte, že vždy existuje orientovaná cesta z vrcholu do sebe – je to triviální cesta.

Souvislý graf je silně souvislý právě tehdy, když každá hrana leží v nějakém cyklu.

1.6 Minimální kostra

1.6.1 Kostra grafu

Je dán souvislý graf G. Faktor grafu G, který je stromem, se nazývá kostra grafu G. Připomeňme, že faktor grafu G je podgraf grafu G, který má stejnou množinu vrcholů jako G.

1.6.2 Minimální kostra

Je dán souvislý graf G spolu s ohodnocením hran c, tj. pro každou hranu $e \in E(G)$ je dáno číslo c(e) (číslo c(e) nazýváme cenou hrany e).

Minimální kostra grafu G=(V,E) je taková kostra grafu K=(V,L), že $\sum e \in Lc(e)$ je nejmenší (mezi všemi kostrami grafu G).

1.6.2.1 Tvrzení

V každém souvislém ohodnoceném grafu existuje minimální kostra. Nemusí však být jediná. Obecný postup pro hledání minimální kostry

1.6.3 Obecný postup pro hledání minimální kostry

Je dán souvislý graf G=(V,E) a ohodnocení hran c.

- 1. Na začátku máme L=0. Označíme S množinu všech komponent souvislosti grafu K=(V,L); tj. na začátku je $s=v; v\in V$.
- 2. Dokud není graf K=(V,L) souvislý (tj. dokud S se neskládá z jediné množiny), vybereme hranu e podle následujících pravidel:
 - a) E spojuje dvě různé komponenty souvislosti S,S' grafu K (tj. dvě množiny z S)
 - b) A pro S nebo S' je nejlevnější hranou která vede z komponenty ven

Hranu e přidáme do množiny L a množiny S a S' nahradíme jejich sjednocením.

3. Postup ukončíme, jestliže jsme přidali n-1 hran (tj. jestliže se S skládá z jediné množiny).

 $^{^3}$ //See also: Silně souvislé komponenty, kondenzace grafu, hledání silně souvislých komponent, Tarjanův algoritmus pro nalezení silně souvislých komponent

1.6.4 Kruskalův algoritmus

Jedná se o modifikaci obecného postupu pro hledání minimální kostry:

- 1. Setřídíme hrany podle ceny do neklesající posloupnosti, tj. $c(e1) \le c(e2) \le ... \le c(em)$. Položíme L=0, $S = v; v \in V$.
- 2. Probíráme hrany v daném pořadí. Hranu ei přidáme do L, jestliže má oba krajní vrcholy v různých množinách $S, S' \in S$. V S množiny S a S' nahradíme jejich sjednocením. V opačném případě hranu přeskočíme.
- 3. Algoritmus končí, jestliže jsme přidali n-1 hran (tj. S se skládá z jediné množiny).

1.6.5 Primův algoritmus

Jedná se o modifikaci obecného postupu pro hledání minimální kostry:

- 1. Vybereme libovolný vrchol v. Položíme L=0, S={v}.
- 2. Vybereme nejlevnější hranu e, která spojuje některý vrchol x z množiny S s vrcholem y, který v S neleží. Vrchol y přidáme do množiny S a hranu e přidáme do L.
- 3. Opakujeme krok 2 dokud nejsou všechny vrcholy v množině S.

1.6.6 Jádro grafu

Podmnožina vrcholů K orientovaného grafu G se nazývá jádro grafu, jestliže splňuje následující podmínky:

- 1. Pro každou hranu e s počátečním vrcholem PV(e) ε K platí KV(e) (NENÍ)ε K. (Neexistuje hrana, která by vedla z množiny K do sebe)
- 2. Pro každý vrchol v, který neleží v K, existuje hrana e s PV(e)=v a KV(e) є K. (z každého vrcholu, který leží mimo K, se můžeme dostat po hraně zpět do K)

4

1.7 Eulerovy grafy

Tah je sled, ve kterém se neopakují hrany. Jinými slovy, tah obsahuje hrany grafu vždy nejvýše jedenkrát.

1.7.1 Eulerovské tahy

Tah v grafu se nazývá eulerovský, jestliže prochází každou hranou; jinými slovy, obsahujeli každou hranu přesně jedenkrát. Eulerovské tahy se dělí na uzavřené a otevřené, orientované a neorientované.

 $^{^4//{\}rm See}$ also: Kořenové stromy, kořen, následník, předchůdce a list, výška kořenového stromu, binární kořenové stromy, halda

1.7.2 Eulerův graf

Graf G se nazývá eulerovský graf, jestliže v něm existuje uzavřený eulerovský tah. V případě, že graf G je orientovaný, požadujeme existenci orientovaného uzavřeného eulerovského tahu.

Aplikace eulerovských tahů

- Kreslení s co nejmenším počtem tahů
- Úloha čínského pošťáka
- De Bruijnova posloupnost

V silně souvisém orientovaném grafu existuje uzavřený orientovaný eulerovský tah právě tehdy, když pro každý vrchol v grafu platí d - (v) = d + (v) (Tj. v každém vrcholu končí stejný počet hran jako v něm začíná).

V souvislém grafu existuje uzavřený neorientovaný eulerovský tah právě tehdy, když každý vrchol má sudý stupeň.

1.7.3 Postup na hledání uzavřeného orientovaného eulerovského tahu

Vybereme libovolný vrchol v grafu. Protože graf je souvislý, v každém vrcholu začíná i končí alespoň jedna hrana. Z vrcholu v vytváříme náhodně orientovaný tah; tj. procházíme hrany tak, abychom žádnou hranou neprošli dvakrát. Takto pokračujeme, dokud je to možné, tj. dokud se nevrátíme do výchozího vrcholu v a ve vrcholu v již nezačíná žádná dosud nepoužitá hrana. Tím jsme dostali uzavřený tah. Jestliže tento tah obsahuje všechny hrany, je to hledaný uzavřený eulerovský tah. Neobsahuje-li takto zkonstruovaný tah všechny hrany, pak na tahu existuje vrchol w takový, že v něm začíná nepoužitý hrana. (To vyplývá ze souvislosti grafu.) Získaný tah ve vrcholu w rozpojíme a náhodně konstruujeme uzavřený tah (z dosud nepoužitých hran) začínající a končící ve vrcholu w. Tento postup opakujeme, dokud nedostaneme tah obsahující všechny hrany.

Tvrzení V souvislém orientovaném grafu existuje otevřený orientovaný eulerovský tah právě tehdy, když existují vrcholy u1, u2 takové, že d-(u1)=d+(u1)+1, d-(u2)=d+(u2)-1, a pro každý jiný vrchol v grafu platí d-(v)=d+(v).

V souvislém grafu existuje otevřený neorientovaný eulerovský tah právě tehdy, když v grafu existují přesně dva vrcholy lichého stupně.

Tvrzení Je dán souvislý neorientovaný graf G s 2k vrcholy lichého stupně. Pak existuje k hranově disjunktních otevřených tahů takových, že každá hrana grafu G leží v právě jednom z těchto tahů. Ke grafu G přidáme k hran a to tak, že každá nově přidaná hrana spojuje vždy dva vrcholy lichého stupně. Tím dostaneme eulerovský graf G" (ano, každý vrchol má již sudý stupeň). V grafu G" najdeme eulerovský uzavřený tah. Jestliže z něj odstraníme všechny přidané vrcholy, rozpadne se na k hranově disjunktních tahů. Tyto tahy splňují podmínky tvrzení.

1.8 Hamiltonovské grafy

Připomeňme, že cesta je tah, ve kterém se neopakují vrcholy (s výjimkou uzavřené cesty, kdy se první vrchol rovná poslednímu).

1.8.1 Hamiltonovské cesty, kružnice, cykly

Je dán graf G. Otevřená cesta se nazývá hamiltonovská cesta, obsahuje-li všechny vrcholy (a tudíž všechny vrcholy přesně jedenkrát). Obdobně hamiltonovská kružnice je kružnice, která obsahuje každý vrchol grafu; hamiltonovský cyklus je cyklus, který obsahuje každý vrchol v grafu.

Úlohy dělíme na existenční a optimalizační. V existenční úloze jde o to, zjistit zda v daném grafu existuje hamiltonovská cesta, kružnice nebo cyklus. V optimalizačních úlohách máme hrany grafu navíc ohodnoceny délkami a požaduje se nalezení hamiltonovské cesty, kružnice nebo cyklu s co nejmenším součtem délek jednotlivých hran tvořících cestu, kružnici nebo cyklus.

Na rozdíl od hledání eulerovských tahů, je hledání hamiltonovských cest, kružnic nebo cyklů velmi obtížná úloha. Přesněji, zjištění, zda v daném grafu existuje hamiltonovská cesta, kružnice nebo cyklus je tzv. NP-úplná úloha. Přesto, nebo právě proto, jsou úlohy tohoto typu v praxi rozšířené.

Aplikace

- Problém obchodného cestujícího
- Dopravní úlohy
- Plánování procesů

Jednoduché nutné podmínky pro existenci hamiltonovské cesty, kružnice nebo cyklu

- Existuje-li v grafu hamiltonovská cesta, musí být graf souvislý
- \bullet Existuje-li v grafu hamiltonovská kružnice, musí mít každý vrchol stupeň alespoň 2
- Existuje-li v grafu G hamiltonovský cyklus, musí být graf silně souvislý

Netriviální nutná a postačující podmínka pro zjištění, zda daný graf obsahuje hamiltonovskou cestu, kružnici nebo cyklus, není známa.

1.9 Nezávislé množiny

Je dán neorientovaný (orientovaný) graf G. Množina vrcholů A se nazývá nezávislá množina vrcholů, jestliže žádná hrana grafu G nemá oba krajní vrcholy v množině A. Jinými slovy, podgraf indukovaný množinou A je diskrétní.

⁵//See also: Metoda větví a mezí

1.9.1 Maximální nezávislá množina

Je dán graf G. Nezávislá množina N se nazývá maximální nezávislá množina, jestliže jakákoli její nadmnožina už není nezávislá. Jinými slovy, N je maximální nezávislá množina, jestliže pro každý vrchol v, který neleží v N, existuje vrchol w ε N takový, že v G existuje hrana mezi v a w.

1.9.2 Nezávislost grafu

Je dán neorientovaný nebo orientovaný graf G. Počet vrcholů v nejpočetnější nezávislé množině grafu G se nazývá nezávislost grafu G a značíme jej $\alpha(G)$.

Nejpočetnější nezávislá množina je jistě také maximální, ale ne každá maximální nezávislá množina je současně nejpočetnější.

Poznámka Jádro orientovaného grafu G je nezávislá množina grafu G; to vyplývá z první podmínky, kterou jádro musí splňovat. Ovšem ne každá nezávislá množina orientovaného grafu G je současně jádrem grafu G; jádro musí splňovat obě podmínky (viz výše).

Úplný neorientovaný graf G nazýváme úplným grafem, jestliže je prostý, nemá smyčky a každé dva různé vrcholy jsou spojené hranou. Úplný neorientovaný graf G s n vrcholy má (n(n-1))/2 hran.

1.10 Obarvení grafu

Je dán neorientovaný graf G bez smyček. Barevnost grafu G (též chromatické číslo grafu G) je nejmenší k takové, že G je k-barevný. Barevnost grafu G značíme $\chi(G)$.

Množina vrcholů obarvená stejnou barvou tvoří nezávislou množinu grafu. Graf je jednobarevný právě tehdy, když nemá žádnou hranu.

Graf G je dvoubarevný právě tehdy, když neobsahuje kružnici liché délky.

1.10.1 Dvoubarevné grafy

Zjistit, zda je daný graf dvoubarevný, se dá jednoduchou modifikací prohledávání do šířky: Provedeme prohledání grafu do šířky. Vrcholům, které ležely v sudých hladinách, přiřadíme barvu 1; vrcholům, které ležely v lichých hladinách, přiřadíme barvu 2.

Jestliže graf neobsahoval kružnici liché délky, jedná se o obarvení grafu a graf je tedy dvoubarevný. Vede-li hrana mezi dvěma vrcholy v hladinách stejné parity, obsahuje graf kružnici liché délky a není proto dvoubarevný.

Poznámka Zjistit, zda daný graf je tříbarevný, je těžký problém (obecně NP-úplný problém). Pro každý graf G, který mý m hran platí

$$\chi(G) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}}$$

Tvrzení označíme Δ největší stupeň vrcholu grafu G. Pak $\chi(G) <= \Delta + 1$ Sekvenční barvení

Následující postup obarví graf $\Delta+1$ barvami. Označíme množinu barev $B=\{1,\ldots,\Delta+1\}$.

- 1. Seřadíme vrcholy do posloupnosti (libovolně). Např. v1,v2,...,vn
- 2. Probíráme vrcholy v tomto pořadí a vrcholu vi přiřadíme vždy tu nejmenší barvu, kterou nemá žádný jeho soused vrcholu.

Tento algoritmus dává horní odhad pro barevnost grafu. Jedná se ovšem o odhad, který může být velmi vzdálen od barevnosti grafu. Přesněji, existují dvoubarevné grafy, které při nevhodném uspořádání vrcholů v kroku 1, algoritmus obarví n/2 barvami (kde n je počet vrcholů grafu)

Tvrzení Pro každý neorientovaný graf G bez smyček platí: $\alpha(G) + \chi(G) \le n + 1$. Kde n je počet vrcholů grafu G. ⁶

⁶//See also: Biparitní grafy, klika v grafu, doplňkový graf