Lecture 6: Linear Regression

Week 6

Lecturer: Tianyu Wang

1 Least Square Regression

Consider dataset $\{(x_i, y_i)\}_{i=1}^n$ $(x_i \in \mathbb{R}^d, y_i \in \mathbb{R})$. A least square regression model, or a least square regressor, learns a model $f(x) = \theta^\top x$ by minimizing the following objective

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n \left(\theta^\top x_i - y_i \right)^2.$$

Let

$$\ell(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\theta^{\top} x_i - y_i)^2 = \frac{1}{2} ||\mathbf{X}\theta - \mathbf{y}||_2^2,$$

where $\mathbf{X} = [x_1, x_2, \cdots, x_n]^{\top}$ and $\mathbf{y} = [y_1, y_2, \cdots, y_n]^{\top}$. This objective is convex in θ . We take the gradient with respect to θ to get

$$\nabla \ell(\theta) = \mathbf{X}^{\top} (\mathbf{X} \theta - \mathbf{y}).$$

Setting $\nabla \ell(\theta) = 0$ gives $\mathbf{X}^{\top} \mathbf{X} \theta = \mathbf{X}^{\top} \mathbf{y}$, or $\theta = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$, provided that $\mathbf{X}^{\top} \mathbf{X}$ is invertible.

1.1 Ridge Regression

The loss for ridge regression is

$$\ell(\theta) = \frac{1}{2} \|\mathbf{X}\theta - \mathbf{y}\|_2^2 + \frac{\alpha}{2} \|\theta\|_2^2,$$

where α is a hyperparameter. The $\frac{\alpha}{2} ||\theta||_2^2$ term is called the L_2 -regularization term or the L_2 -penalty term. The closed-form solution to ridge regression is

$$\theta = (\mathbf{X}^{\top}\mathbf{X} + \alpha I_d)^{-1}\mathbf{X}^{\top}\mathbf{y},$$

where I_d is the identity matrix of size $d \times d$.

1.1.1 Singular Value Decomposition (SVD)

Definition 1.1 (Singular Values). For any matrix $A \in \mathbb{R}^{n \times m}$ and $i = 1, 2, \dots, \min\{n, m\}$, let $\lambda_i(A^\top A)$ be the *i*-th eigenvalues of $A^\top A$. The *i*-th singular values of A is $\sigma_i(A) = \sqrt{\lambda_i(A^\top A)}$.

Definition 1.2 (Orthogonal Matrix). A non-singular matrix $Q \in \mathbb{R}^{n \times n}$ is orthogonal if $Q^{-1} = Q^{\top}$.

Definition 1.3 (Singular Value Decomposition). For any (non-zero) matrix $A \in \mathbb{R}^{n \times m}$, there exists a tuple of matrices (U, Σ, V) satisfying

- $A = U\Sigma V^{\top}$:
- (1) $U \in \mathbb{R}^{n \times n}$ and U is an orthogonal matrix, (2) $V \in \mathbb{R}^{m \times m}$ is an orthogonal matrix, (3) $\Sigma \in \mathbb{R}^{m \times n}$ is a matrix whose (i, i)-th entry is the i-th singular value of A, and all other entries are zero.

The decomposition $A = U\Sigma V^{\top}$ is called the singular value decomposition of A. The columns in U are called the left singular vectors of A, and the columns in V are called the right singular vectors of A.

Figure 1: SVD illustration.

Proposition 1.4 (Some properties of SVD). *Consider a matrix* $A \in \mathbb{R}^{n \times m}$, and use the notations described in the caption of Figure 2. The SVD and compact SVD of A has the following properties.

- The property described in the caption of Figure 2.
- The rank of matrix A equals the number of non-zero singular values of the SVD.
- The columns of U are the eigenvectors of AA^{\top} .
- The columns of V are the eigenvectors of $A^{\top}A$.

Figure 2: SVD illustration. Let $\Sigma_+ \in \mathbb{R}^{r \times r}$ be the square diagonal matrix of strictly positive singular values on its diagonal. The SVD gives the four fundamental spaces associated with a matrix. The columns of $U_+ \in \mathbb{R}^{n \times r}$ spans the column space of A; the columns of $U_0 \in \mathbb{R}^{n \times (n-r)}$ spans the left null space of A; the columns of $V_+ \in \mathbb{R}^{m \times r}$ (rows of V_+^\top) spans the row space of A; the columns of $V_0 \in \mathbb{R}^{m \times (m-r)}$ (rows of V_0^\top) spans the kernel space of A. It is easy to verify that $A = U \Sigma V^\top = U_+ \Sigma_+ V_+^\top$. We call $A = U_+ \Sigma_+ V_+^\top$ the compact SVD of A.

1.1.2 "Shrinkage" Effect via L_2 -regularization

Let $\mathbf{X} = U\Sigma V^{\top}$ be the singular value decomposition of the data matrix \mathbf{X} . Let θ^{LS} be the solution of the least square regression objective, and let θ^R be the solution of the ridge regression objective. Let's take a closer look at θ^{LS} and θ^R . We have

$$\begin{split} \theta^R &= \left(\mathbf{X}^\top \mathbf{X} + \alpha I_d\right)^{-1} \mathbf{X}^\top \mathbf{y} \\ &= \left(\left(U \Sigma V^\top\right)^\top \left(U \Sigma V^\top\right) + \alpha I_d\right)^{-1} \mathbf{X}^\top \mathbf{y} \\ &= \left(V \Sigma^\top \Sigma V^\top + \alpha I_d\right)^{-1} \mathbf{X}^\top \mathbf{y} \qquad \qquad (\text{since } U^\top U = U U^\top = I_n) \\ &= \left(V \Sigma^\top \Sigma V^\top + \alpha V V^\top\right)^{-1} \mathbf{X}^\top \mathbf{y} \qquad \qquad (\text{since } V V^\top = V^\top V = I_n) \\ &= \left(V \left(\Sigma^\top \Sigma + \alpha I_d\right) V^\top\right)^{-1} \mathbf{X}^\top \mathbf{y} \qquad \qquad (\text{since } V V^\top = V^\top V = I_n) \\ &= V \left(\Sigma^\top \Sigma + \alpha I_d\right)^{-1} V^\top \mathbf{X}^\top \mathbf{y}. \qquad (\text{since } \left(Q A Q^\top\right)^{-1} = Q A^{-1} Q^\top \text{ as long as } Q \text{ is orthogonal}) \end{split}$$

Note that $\Sigma^{\top}\Sigma$ is a square diagonal matrix. Let $\Sigma^{\top}\Sigma = diag(\lambda_1, \lambda_2, \dots, \lambda_d)$. We have

$$\theta^R = diag\left(\frac{1}{\lambda_1 + \alpha}, \frac{1}{\lambda_2 + \alpha}, \cdots, \frac{1}{\lambda_d + \alpha}\right) \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Similarly, we have

$$\theta^{LS} = diag\left(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_d}\right) \mathbf{X}^{\top} \mathbf{y}.$$

This means θ^R "shrinks" the values of θ^{LS} . This implies that the model given by θ^R is more conservative, and usually less likely to overfit.

1.2 Lasso Regression

The loss for lasso regression is

$$\ell(\theta) = \|\mathbf{X}\theta - \mathbf{y}\|_2^2 + \alpha \|\theta\|_1,$$

where α is a hyperparameter. The $\alpha \|\theta\|_1$ term is called the L_1 -regularization term or the L_1 -penalty term. Lasso regression can produce a sparse model, in which many entries of θ^{lasso} (the minimizer of the lasso regression loss) is zero.

Interpreting the objective as the Lagrangian of a contrained convex program, we get

$$\min_{\theta} \|\mathbf{X}\theta - \mathbf{y}\|_2^2 \quad \text{subject to } \|\theta\|_1 \le \alpha',$$

for some α' . Very likely, the optimal solution to this program lands at one of the vertices of $\{\theta : \|\theta\|_1 \le \alpha'\}$, in which cases some entries of θ are zero.

2 Matrix Norms

We will discuss some matrix norms related to singular values. Consider $A \in \mathbb{R}^{n \times m}$. The Frobenius norm of A is

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m a_{ij}^2}$$

$$= \sqrt{trace(A^\top A)}$$

$$= \sqrt{\sum_{i=1}^{\min\{m,n\}} \lambda_i(A^\top A)}$$

$$= \sqrt{\sum_{i=1}^{\min\{m,n\}} (\sigma_i(A))^2}.$$

The Schatten p-norm (or p-Schatten norm) of a matrix A is

$$||A||_p = \left(\sum_{i=1}^{\min\{m,n\}} (\sigma_i(A))^p\right)^{1/p}.$$

The induced p-norm a matrix A (also written $||A||_p$) is

$$||A||_p = \sup_{x:x\neq 0} \frac{||Ax||_p}{||x||_p}.$$

Note. The Schatten p-norm and the induced p-norm are different. For example, the induced 2-norm equals the Schatten ∞ -norm.

3 Some Applications of Singular Value Decomposition

Let $A = U\Sigma V^{\top}$ $(A \in \mathbb{R}^{n\times m})$ be the singular value decomposition of A. Let u_i be the columns of U and let v_i be the columns of V. We can write A as $A = \sum_{i=1}^r \sigma_i u_i v_i^{\top}$, where $r \leq \min\{m, n\}$, and σ_i are the non-zero singular values of A.

3.1 Image Compression

Consider approximating a matrix $A = \sum_{i=1}^r \sigma_i u_i v_i^{\top}$ by $\widehat{A} = \sum_{i=1}^s \sigma_i u_i v_i^{\top}$ for some s < r. Let's look at the difference between A and \widehat{A} :

$$||A - \widehat{A}||_F = ||\sum_{i=s+1}^r \sigma_i u_i v_i^\top||_F = \sqrt{\sum_{i=s+1}^r \sigma_i^2}.$$

One way for image compression is to do an SVD and take only several top singular values and singular vectors. If we keep top s singular values and top s singular vectors, we only need O((n+m)s) spaces to store the image. In the homework, you will need to use a Python package to write a program for image compression via SVD.

There are many ways for image compression, and SVD is only one of them.

3.2 Pseudo-inverse and Least Square Linear Regression

Consider a matrix $A \in \mathbb{R}^{n \times m}$, and let $A = U_+ \Sigma_+ V_+^{\top}$ be its compact SVD. The pseudoinverse of A is $A^{\dagger} = V_+ \Sigma_+^{-1} U_+^{\top}$. Note that pseudoinverse always exists, no matter whether the matrix is invertible or not.

As we have discussed before, the closed-form solution to least-square regression is

$$\theta = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y},$$

when $\mathbf{X}^{\top}\mathbf{X}$ is invertible. When $\mathbf{X}^{\top}\mathbf{X}$ is not invertible, we have

$$\theta = (\mathbf{X}^{\top} \mathbf{X})^{\dagger} \mathbf{X}^{\top} \mathbf{y}.$$

If the matrix $\mathbf{X}^{\top}\mathbf{X}$ is the not invertible, the prediction of the least square regression model is

$$\widehat{\mathbf{y}} = \mathbf{X}\boldsymbol{\theta} = (\mathbf{X}^{\top}\mathbf{X})^{\dagger}\mathbf{X}^{\top}\mathbf{y}.$$

Let $\mathbf{X} = U_+ \Sigma_+ V_+^{\top}$ ($\Sigma_+ \in \mathbb{R}^{r \times r}$) be the compact SVD of \mathbf{X} . We have

$$\begin{split} \widehat{\mathbf{y}} &= U_{+} \Sigma_{+} V_{+}^{\top} \left(V_{+} \Sigma_{+}^{-1} U_{+}^{\top} U_{+} \Sigma_{+}^{-1} V_{+}^{\top} \right) V_{+} \Sigma_{+} U_{+}^{\top} \mathbf{y} \\ &= U_{+} U_{+}^{\top} \mathbf{y}. \end{split} \tag{Note that } U_{+}^{\top} U_{+} = V_{+}^{\top} V_{+} = I_{r}.)$$

The columns of U_+ are orthonormal vectors. Let $u_{+,i}$ be the *i*-th column of U_+ . Thus we have

$$\widehat{\mathbf{y}} = U_+ U_+^\top \mathbf{y} = \sum_{i=1}^r u_{+,i} u_{+,i}^\top \mathbf{y},$$

which is the projection of y onto the column space of U_+ .

3.3 Principal Component Analysis (PCA)

Consider a data matrix X, and let $\mathbf{w}_{(0)} = 0$. The k-th principle component of X is

$$\mathbf{w}_{(k)} = \arg \max_{\mathbf{w}: \|w\|_2 = 1} \|\mathbf{X}_k \mathbf{w}\|_2^2,$$

where

$$\mathbf{X}_k = \mathbf{X} - \sum_{i=0}^{k-1} \mathbf{X} \mathbf{w}_{(i)} \mathbf{w}_{(i)}^{ op}.$$

By this objective, $\mathbf{w}_{(1)}$ is the direction along which the data points in \mathbf{X} vary the most. Similarly, $\mathbf{w}_{(k)}$ is the direction along which the data points in \mathbf{X}_k vary the most. Note that $\mathbf{w}_{(i)}\mathbf{w}_{(i)}^{\top}$ is the projection matrix as discussed previously. Thus \mathbf{X}_k has removed the components from $\mathbf{w}_{(1)}, \mathbf{w}_{(2)}, \cdots, \mathbf{w}_{(k-1)}$.

Note that

$$\mathbf{w}_{(1)} = \arg \max_{\mathbf{w}: \|\mathbf{w}\|_2 = 1} \|\mathbf{X}\mathbf{w}\|_2^2$$
$$= \arg \max_{\mathbf{w}: \|\mathbf{w}\|_2 = 1} \mathbf{w}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}.$$

This means $\mathbf{w}_{(1)}$ is the top eigenvalue of $\mathbf{X}^{\top}\mathbf{X}$ (homework exercise), which is the top right singular vector of \mathbf{X} . Similarly, $\mathbf{w}_{(k)}$ is the top eigenvalue of $\mathbf{X}_k^{\top}\mathbf{X}_k$.

An illustration of SVD and PCA is given in Figure 3.

Figure 3: Illustration of PCA. We can recover the data matrix $\mathbf{X} = U\Sigma V^{\top}$ ($\mathbf{X} \in \mathbb{R}^{n\times n}$) from left to right. The rightmost subfigure plots the data points in \mathbb{R}^m .

Acknowledgement

Reference: Machine Learning: A Probabilistic Perspective by Kevin Murphy. A thank you to wikipedia contributors.