SEQUENCES AND SERIES

ARITHMETIC	GEOMETRIC
first term = a, T, or S,	first term = a, T., S,
Common difference = d , d=Tn-Tn-1	Common ratio = V , $r = \frac{T_n}{T_{n-1}}$
the nth term, Tn = at (n-1)d	the nth term, Tn= arn-1
the sum of the first n terms, Sn = T, +T2+T3++ Tn	
$S_n = \frac{n}{2} \left(2a + (n-1)d \right)$	$S_n = \frac{\alpha(1-r^n)}{1-r} , r < 1$
$S_n = \frac{n}{2}(a+l)$, liest term	$S_{n} = \frac{a(r^n-1)}{r-1}$, $ r > 1$
	The sum to infinity, $S_{\infty} = \frac{a}{1-r}$, $ r < 1$
How to find In without the values of a, d, r?	
(If only Sn given in the question.)	
$T_n = S_n - S_{n-1}$	

BINOMIAL EXPANSION	
0 H,	nez [†] ,
	$(a+b)^n = a^n + \binom{n}{2}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$
	General term of $(atb)^n = T_{r+1} = \binom{n}{r} a^{n-r} b^r$
3 If	netoned,
	$(1+\alpha x)^n = 1 + n(\alpha x) + \frac{n(n-1)}{2!}(\alpha x)^2 + \frac{n(n-1)(n-2)}{3!}(\alpha x)^3 +$
11	we expansion is valid for $ x < \frac{1}{ a }$