CHEM 20100 (Inorganic Chemistry I) Notes

Steven Labalme

January 26, 2021

Topics

U	Course Prep	1
	0.1 Chapter 1: Introduction to Inorganic Chemistry	. 1
	0.2 Chapter 2: Atomic Structure	
Ι	Review of VSEPR Theory	20
	I.1 Module 1: Course Logistics and History	. 20
	I.2 Module 2: Molecular Geometries and VSEPR	. 21
	I.3 Chapter 3: Simple Bonding Theory	
II	Symmetry and Group Theory in Chemistry	25
	II.1 Module 3: Symmetry Elements and Operations	. 25
	II.2 Module 4: Symmetry Point Groups	
	II.3 Module 5: Group Theory 101	
	II.4 Module 6: Representations	
	II.5 Module 7: Characters and Character Tables	
	II.6 Module 8: Using Character Tables	
	II.7 TA Review Session 1	
	II.8 Module 9: Molecular Vibrations	
	II.9 Module 10: IR and Raman Active Vibrations	
	II.10 Chapter 4: Symmetry and Group Theory	
	II.11 Nocera Lecture 3	
\mathbf{R}^{ϵ}	ferences	45

List of Figures

0.1	Examples of bonding interactions	1
0.2	Inorganic compounds containing bridging hydrogens and alkyl groups	2
0.3	Tetrahedral geometry without a central atom	2
0.4	Hydrogen atom energy levels	4
0.5	Particle in a box: Wave functions and their squares at different energy levels	7
0.6	Spherical coordinates	10
0.7	Radial wave functions	11
0.8	Radial probability functions	12
0.9	Coulombic energy of repulsion and exchange energy	15
	Schematic energy levels for transition elements	17
0.11	First and second ionization energies and electron affinities	19
I.1	VSEPR structure of BrF ₃	21
I.2	Lewis structure of PF_2Cl_3 .	
1.2	Lewis soluceure of 11 2013	21
II.1	Methane's S_4 symmetry	26
	Low symmetry point groups	
	Symmetry elements for H_2O	
II.4	A character table.	33
II.5	XeOF ₄	37
II.6	Rotations of a snowflake design	42

List of Tables

0.1	Quantum numbers and their properties
0.2	Hydrogen atom wave functions: Angular functions
0.3	Hydrogen atom wave functions: Radial functions
0.4	Hund's rule and multiplicity
I.1	VSEPR predictions
	Electronegativity and bond angles
II.1	Group multiplication table for the C_{2h} point group
II.2	Group multiplication table for the C_{3v} point group
II.3	Character table for the D_3 point group
II.4	Changes in the fluorine atoms of XeOF ₄ under the C_{4v} symmetry operations
II.5	Character table for the D_{3h} point group

Topic 0

Course Prep

0.1 Chapter 1: Introduction to Inorganic Chemistry

From Miessler et al. (2014).

12/21:

- **Inorganic chemistry**: The chemistry of everything that is not organic chemistry, which is the chemistry of hydrocarbon compounds and their derivatives.
- Organometallic chemistry: The chemistry of compounds containing metal-carbon bonds and the catalysis of many organic reactions.
- There is also both bioinorganic chemistry and environmental chemistry (Miessler et al., 2014, p. 1), as well as analytical chemistry, physical chemistry, petroleum chemistry, and polymer chemistry (Miessler et al., 2014, p. 4).
 - Note, though, that there are no strict dividing lines between subfields of chemistry nowadays, and most professionals work in multiple fields.
- Single, double, and triple bonds (both metal-metal and metal-carbon bonds) are found in organic and inorganic chemistry.
- Quadruple bonds exist between metal atoms in some compounds.

Figure 0.1: Examples of bonding interactions.

- No such bonds exist between carbon atoms because two carbon atoms max out at a triple bond.
- Quadruple bonds possess one sigma bond, two pi bonds, and one delta (δ) bond.
- The delta bond is only possible with metal atoms because these atoms possess energetically accessible d orbitals.
- Quintuple bonds between transition metals have been reported, but scientists have not yet reached a consensus on to what extent these exist.
- Hydrogen atoms and alkyl groups can act as bridges in inorganic chemistry, excessively disobeying the octet rule (see Figure 0.2).
- Coordination number: The number of other atoms, molecules, or ions to which an atom is bonded.

Figure 0.2: Inorganic compounds containing bridging hydrogens and alkyl groups.

- "Numerous inorganic compounds have central atoms with coordination numbers of five, six, seven, and higher" (Miessler et al., 2014, p. 2).
 - The most common coordination geometry for transition metals is octahedral.
- 4-coordinate carbon is almost always tetrahedral. 4-coordinate metals and nonmetals can be either tetrahedral or square planar.
- Coordination complex: A compound with a metal as the central atom or ion and some number of ligands bonded to it.
- Ligand: An anion or neutral molecule bonded to a central atom (frequently through N, O, or S).
- Organometallic complex: A coordination complex where carbon (potentially bonded to other things) is one of the ligands.

Figure 0.3: Tetrahedral geometry without a central atom.

- There are multiple kinds of tetrahedral structures. There is the standard arrangement seen in molecules such as methane, but there is also a form that lacks a central atom, as in elemental phosphorous P₄ (see Figure 0.3).
 - Other atoms such as boron and carbon also form units that surround a central cavity (e.g., icosahedral B_{12} and buckyballs C_{60}).
- Aromatic rings can bond to metals using all of their pi orbitals. This results in a metal suspended above the ring's center.
- Cluster compound: A compound where "a carbon atom is at the center of a polyhedron of metal atoms" (Miessler et al., 2014, p. 3).
 - There exist examples of carbon surrounded by five, six, or more metal atoms^[1].
- Many new forms of elemental carbon have been discovered since the mid-1980s, notably including fullerenes (such as buckminsterfullerene, or buckyballs), carbon nanotubes, graphene, and polyyne wires.
- Miessler et al. (2014) give a brief history of inorganic chemistry for context.
 - Be aware of **crystal field theory** and **ligand field theory**.

¹This provides a challenge to theoretical inorganic chemists.

0.2 Chapter 2: Atomic Structure

From Miessler et al. (2014).

- Coinage metals: Copper, silver, and gold, i.e., the transition metals in IUPAC Group 11.
 - Chalcogens: Oxygen, sulfur, selenium, tellurium, and polonium, i.e., the nonmetals in Group 16.
 - The energies of visible light emitted by the hydrogen atom are given by [2]

$$E = R_H \left(\frac{1}{2^2} - \frac{1}{n_h^2} \right)$$

where n_h is an integer greater than 2 and R_H is the Rydberg constant for hydrogen (H).

- Note that $R_H = 1.097 \times 10^7 \,\mathrm{m}^{-1} = 2.179 \times 10^{-18} \,\mathrm{J} = 13.61 \,\mathrm{eV}.$
- This equation was first discovered by Johann Balmer in 1885.
- Infrared and ultraviolet emissions can be described by replacing 2^2 with integers n_l^2 in the above equation on the condition that $n_l < n_h^{[3]}$.
- The energy of the light emitted is related to its wavelength, frequency, and wavenumber by the equations

$$E = h\nu = \frac{hc}{\lambda} = hc\bar{\nu}$$

where h is Planck's constant $(6.626 \times 10^{-34} \,\mathrm{J\,s})$, c is the speed of light $(2.998 \times 10^8 \,\mathrm{m\,s^{-1}})$, ν is the frequency of the light, λ is the wavelength of the light, and $\bar{\nu}$ is the wavenumber of the light.

- Wavenumber: The number of waves that exist between two points along the light's path a given distance apart. *Measured in* waves per centimeter (SI: cm⁻¹).
 - Wavenumber is proportional to energy. This is why m⁻¹ or cm⁻¹ can be used as an energy unit.
- Principal quantum number: One of the quantities n in Balmer's equation.
- Bohr's atomic theory first explained the phenomenon of Balmer's equation, positing that "electrons may absorb light of certain specific energies and be excited to orbits of higher energy; they may also emit light of specific energies and fall to orbits of lower energy" (Miessler et al., 2014, pp. 11–12).
 - Bohr rewrote the Rydberg constant in terms of other quantities:

$$R = \frac{2\pi^2 \mu Z^2 e^4}{(4\pi\varepsilon_0)^2 h^2}$$

where...

- μ is the reduced mass of the electron/nucleus combination $\frac{1}{\mu} = \frac{1}{m_e} + \frac{1}{m_{\text{nucleus}}}$, where $m_e = 9.11 \times 10^{-31}$ kg is the mass of the electron and m_{nucleus} is the mass of the nucleus.
- \blacksquare Z is the nuclear charge.
- \bullet $e = 1.602 \times 10^{-19} \,\mathrm{C}$ is the charge of the electron.
- \blacksquare h is Planck's constant.
- $\blacksquare 4\pi\varepsilon_0$ is the permittivity of a vacuum.
- Importantly, note that the Rydberg constant for hydrogen R_H is not universal, and changes for the atom at hand based on factors like the mass of the nucleus.
- Also note that some of the terms cancel or can be written in terms of others, making the above equation equivalent to the one given in Chapter 7 of Labalme (2020a).

²Refer to Labalme (2020a), specifically Figure 7.6 and the accompanying discussion.

 $^{^3}n_l$ denotes the lower final energy level while n_h denotes the higher initial energy level

Figure 0.4: Hydrogen atom energy levels.

- Balmer series: The four main electron transitions in hydrogen that release electromagnetic radiation in the visible spectrum.
- Lyman series: The five main electron transitions in hydrogen that release electromagnetic radiation in the ultraviolet spectrum.
- Paschen series: The three main electron transitions in hydrogen that release electromagnetic radiation in the infrared spectrum.
- "The inverse square dependence of energy on n results in energy levels that are far apart in energy at small n and become much closer in energy at larger n" (Miessler et al., 2014, p. 12)

- Individual electrons can have more energy than they would possess in the infinite energy level, but at and above this point, the nucleus and electron are considered to be separate entities.
- **Heisenberg's uncertainty principle**: "There is a relationship between the inherent uncertainties in the location and momentum of an electron" (Miessler et al., 2014, p. 14).

$$\Delta x \, \Delta p_x \ge \frac{h}{4\pi}$$

- The above equation describes the x-component of the uncertainty, where Δx is the uncertainty in the position of the electron and Δp_x is the uncertainty in the momentum of the electron in the x-direction.
- Because of the uncertainty principle, we cannot treat electrons as particles with precisely described motion; instead, we must describe them in **orbitals**.
- Orbital: A region that describes the probable locations of an electron.
- **Electron density**: "The probability of finding the electron at a particular point in space" (Miessler et al., 2014, p. 14).
 - This can be calculated in principle.
- Schrödinger and Heisenberg published (in 1926 and 1927, respectively) papers on atomic wave mechanics. Although they used very different mathematical techniques, their theories can be shown to be equivalent. However, we will introduce Schrödinger's more commonly used differential equations.
- "The Schrödinger equation describes the wave properties of an electron in terms of its position, mass, total energy, and potential energy" (Miessler et al., 2014, p. 14).

$$H\Psi = E\Psi$$

- In its simplest form, it is given by the above, where H is the **Hamiltonian operator**, E is the energy of the electron, and Ψ is the **wave function**.
- Wave function: A function that describes an electron wave in space, i.e., an atomic orbital.
- Energy values are another way of describing the quantization introduced with the Bohr model; different orbitals, characterized by different wave functions, each have characteristic energies.
- **Operator**: "An instruction or set of instructions that states what to do with the function that follows it" (Miessler et al., 2014, p. 14).
- Hamiltonian operator: An operator including derivatives that transforms the wave function into a constant (the energy) times Ψ . Also known as \hat{H} .

$$H = \frac{-h^2}{8\pi^2 m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) - \frac{Ze^2}{4\pi\varepsilon_0 \sqrt{x^2 + y^2 + z^2}}$$

- In the form used for calculating the energy levels of one-electron systems, it is given by the above, where...
 - \blacksquare h is Planck's constant.
 - \blacksquare m is the mass of the electron.
 - \blacksquare e is the charge of the electron.
 - $\sqrt{x^2 + y^2 + z^2} = r$ is the distance from the nucleus.
 - \blacksquare Z is the charge of the nucleus.
 - $4\pi\varepsilon_0$ is the permittivity of a vacuum.
- The first part describes the kinetic energy of the electron, its energy of motion.

- The second part describes the potential energy of the electron, the result of the electrostatic attraction between it and the nucleus. It is commonly designated as V(x, y, z).
- "Because n varies from 1 to ∞ , and every atomic orbital is described by a unique Ψ , there is no limit to the number of solutions of the Schrödinger equation for an atom. Each Ψ describes the wave properties of a given electron in a particular orbital" (Miessler et al., 2014, p. 15).
- Electron density is proportional to Ψ^2 .
- Necessary conditions for a physically realistic solution for Ψ :
 - 1. Ψ must be single-valued: There cannot be two probabilities for an electron at any position in space.
 - 2. Ψ and its first derivatives must be continuous: The probability must be defined at all positions in space and cannot change abruptly from one point to the next.
 - 3. Ψ must approach zero as $r \to \infty$: For large distances from the nucleus, the probability must grow smaller and smaller (the atom must be finite).
 - 4. The integral

$$\int_{\text{all space}} \Psi_A \Psi_A^* \, \mathrm{d}\tau = 1$$

The total probability of an electron being somewhere in space must be 1. Applying this stipulation is called **normalizing** the wave function^[4].

5. The integral

$$\int_{\text{all space}} \Psi_A \Psi_B^* \, \mathrm{d}\tau = 0$$

 Ψ_A and Ψ_B are different orbitals within the same atom, and this stipulation reflects the fact that all orbitals in the same atom must be **orthogonal** to each other.

- 12/23: The Particle in a Box.
 - Imagine a one-dimensional "box" between x = 0 and x = a with potential energy everywhere zero inside the "box" and everywhere infinite outside the box.
 - These energy constraints mean that the particle is completely trapped within the box (it would take an infinite amount of energy to leave), but also that no forces act on it within the box.
 - It follows that the wave equation for locations within the box is

$$\frac{-h^2}{8\pi^2 m} \left(\frac{\partial^2 \Psi(x)}{\partial x^2} \right) = E \Psi(x)$$

 Since sine and cosine functions have properties associated with waves, we propose that a general solution describing possible waves in the box is

$$\Psi(x) = A\sin rx + B\cos sx$$

where A, B, r, s are constants.

As seen in Problem 2.8a, substituting the above general solution into the wave equation allows us
to solve for

$$r = s = \sqrt{2mE} \frac{2\pi}{h}$$

 $^{^4\}Psi_A{}^*$ denotes the complex conjugate of Ψ_A . This is necessary because wave functions may have imaginary values. However, in many cases, the wave functions are real and the integrand reduces to Ψ_A^2 .

- Because Ψ must be continuous and equal 0 for x < 0 and x > a, Ψ must approach 0 as $x \to 0$ and $x \to a$. Since $\cos(s \cdot 0) = 1$, $\Psi(0)$ can only equal 0 if B = 0. Therefore, the wave function reduces to

$$\Psi(x) = A\sin rx$$

- We must also have $\Psi(a) = 0$, which is only possible if rx is an integer multiple of π . This means that

$$ra = \pm n\pi$$
$$r = \frac{\pm n\pi}{a}$$

- Combining the two expressions for r, we can solve for E:

$$E = \frac{n^2 h^2}{8ma^2}$$

- "These are the energy levels predicted by the particle-in-a-box model for any particle in a one dimensional box of length a. The energy levels are quantized according to quantum numbers $n = 1, 2, 3, \ldots$ " (Miessler et al., 2014, p. 17).
- As seen in Problem 2.8d, substituting $r = n\pi/a$ into $\Psi(x)$ and applying the normalizing requirement allows us to solve for the total solution

$$\Psi(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$

Figure 0.5: Particle in a box: Wave functions and their squares at different energy levels.

- The predicted probability densities for an electron at different energy levels (see Figure 0.5) showcase a difference between classical mechanics' and quantum mechanics' predictions about the behavior of this particle: Classical predicts an equal probability at any point in the box, but the (quantum) wave nature of the particle predicts varied probabilities in different locations.
 - "The greater the square of the electron amplitude, the greater the probability of the electron being located at the specified coordinate when at the quantized energy defined by Ψ " (Miessler et al., 2014, p. 17).
- Atomic orbitals, mathematically, are discrete solutions of the three-dimensional Schrödinger equations.
 - These orbital equations include four quantum numbers (see Table 0.1).
 - Orbitals with l values $0, 1, 2, 3, 4, \ldots$ are known by the labels s, p, d, f, g, \ldots (continuing alphabetically), respectively, derived from early terms for different families of spectroscopic lines.

Symbol	Name	Values	Role
n	Principal	$1,2,3,\ldots$	Determines the major part of the energy.
l	Angular momentum ^[5]	$0,1,2,\ldots,n-1$	Describes angular dependence and contributes to the energy.
m_l	Magnetic	$0,\pm 1,\pm 2,\ldots,\pm l$	Describes orientation in space (angular momentum in the z -direction).
m_s	Spin	$\pm \frac{1}{2}$	Describes orientation of the electron spin (magnetic moment) in space.

Table 0.1: Quantum numbers and their properties.

- -n is the primary quantum number affecting the overall energy.
- -l determines the type of shape. See Table 0.2.
- $-m_l$ determines the "orientation of the angular momentum vector in a magnetic field, or the position of the orbital in space" (Miessler et al., 2014, p. 18). See Table 0.2.
- $-m_s$ determines the electron spin^[6] in the orbital, or "the orientation of the electron's magnetic moment in a magnetic field, either in the direction of the field $(+\frac{1}{2})$ or opposed to it $(-\frac{1}{2})$ " (Miessler et al., 2014, p. 18).
- -n, l, and m_l specify an orbital; m_s specifies one of the two electrons in the orbital.
- A note on $i = \sqrt{-1}$ in Table 0.2:
 - Any linear combination of solutions to the wave equation is another solution.
 - Because it is more convenient to work with real functions as opposed to complex functions, we
 make use of the above fact to decomplexify the solutions, as in the following examples.

$$\begin{split} \Psi_{2p_x} &= \frac{1}{\sqrt{2}} (\Psi_{+1} + \Psi_{-1}) \\ &= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2\pi}} \mathrm{e}^{i\phi} \cdot \frac{\sqrt{3}}{2} \sin\theta \cdot [R(r)] + \frac{1}{\sqrt{2\pi}} \mathrm{e}^{-i\phi} \cdot \frac{\sqrt{3}}{2} \sin\theta \cdot [R(r)] \right) \\ &= \left(\frac{1}{\sqrt{\pi}} \frac{\sqrt{3}}{2} [R(r)] \sin\theta \right) \frac{\mathrm{e}^{i\phi} + \mathrm{e}^{-i\phi}}{2} \\ &= \frac{1}{2} \sqrt{\frac{3}{\pi}} [R(r)] \sin\theta \cos\phi \end{split}$$

$$\begin{split} \Psi_{2p_y} &= \frac{-i}{\sqrt{2}} (\Psi_{+1} - \Psi_{-1})^{[7]} \\ &= \left(\frac{1}{\sqrt{\pi}} \frac{\sqrt{3}}{2} [R(r)] \sin \theta\right) \frac{\mathrm{e}^{i\phi} - \mathrm{e}^{-i\phi}}{2i} \\ &= \frac{1}{2} \sqrt{\frac{3}{\pi}} [R(r)] \sin \theta \sin \phi \end{split}$$

⁵ Also known as **azimuthal** (quantum number).

⁶Note that the spin of an electron is purely quantum mechanical, and should not be related back to classical mechanics.

⁷Errata: Miessler et al. (2014) incorrectly normalizes this expression with $i/\sqrt{2}$.

12/25:

Angular factors	Real Wave Functions				
Related to Angular Momentum	Functions of θ	In Polar Coordinates	In Cartesian Coordinates	Shapes	Label
$l = m_l \Phi \qquad \qquad \Theta$		$\Theta\Phi(heta,\phi)$	$\Theta\Phi(x,y,z)$		
$0(s) 0 \qquad \frac{1}{\sqrt{2\pi}} \qquad \qquad \frac{1}{\sqrt{2}}$		$\frac{1}{2\sqrt{\pi}}$	$\frac{1}{2\sqrt{\pi}}$		8
$1(p) 0 \qquad \frac{1}{\sqrt{2\pi}} \qquad \qquad \frac{\sqrt{6}}{2}\cos\theta$		$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{z}{r}$	x	p_z
$+1 \frac{1}{\sqrt{2\pi}} e^{i\phi} \frac{\sqrt{3}}{2} \sin \theta$		$\begin{cases} \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin\theta\cos\phi \\ \frac{1}{2}\sqrt{\frac{3}{\pi}}\sin\theta\sin\phi \end{cases}$	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{x}{r}$	-	p_x
$-1 \frac{1}{\sqrt{2\pi}} e^{-i\phi} \frac{\sqrt{3}}{2} \sin \theta$		$\frac{1}{2}\sqrt{\frac{3}{\pi}}\sin\theta\sin\phi$	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{y}{r}$		p_y
$2(d) \ 0 \ \frac{1}{\sqrt{2\pi}} \ \frac{1}{2}\sqrt{\frac{5}{2}}(3\cos^2\theta - 1)$		$\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^2\theta - 1)$	$\frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{2z^2 - x^2 - y^2}{r^2}$		d_{z^2}
$+1 \frac{1}{\sqrt{2\pi}} e^{i\phi} \frac{\sqrt{15}}{2} \cos \theta \sin \theta$ $-1 \frac{1}{\sqrt{2\pi}} e^{-i\phi} \frac{\sqrt{15}}{2} \cos \theta \sin \theta$		$\int \frac{1}{2} \sqrt{\frac{15}{\pi}} \cos \theta \sin \theta \cos \phi$	$\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xz}{r^2}$		d_{xz}
$-1 \frac{1}{\sqrt{2\pi}} e^{-i\phi} \frac{\sqrt{15}}{2} \cos\theta \sin\theta$		$\frac{1}{2}\sqrt{\frac{15}{\pi}}\cos\theta\sin\theta\sin\phi$	$\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2}$		d_{yz}
$+2 \frac{1}{\sqrt{2\pi}} e^{2i\phi} \frac{\sqrt{15}}{4} \sin^2 \theta$		$\begin{cases} \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta\cos 2\phi \\ \\ \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta\sin 2\phi \end{cases}$	$\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2 - y^2}{r^2}$		$d_{x^2-y^2}$
$-2 \frac{1}{\sqrt{2\pi}} e^{-2i\phi} \frac{\sqrt{15}}{4} \sin^2 \theta$		$\begin{cases} \frac{1}{4}\sqrt{\frac{15}{\pi}}\sin^2\theta\sin2\phi \end{cases}$	$\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2}$		d_{xy}

Table 0.2: Hydrogen atom wave functions: Angular functions.

- Note that d_{z^2} actually uses the function $2z^2 x^2 y^2$, so we should write $d_{2z^2 x^2 y^2}$ but we shorthand for convenience.
- Since the functions in the polar and Cartesian coordinates columns of Table 0.2 are real, $\Psi = \Psi^*$ and $\Psi \Psi^* = \Psi^2$.
- Ψ may be expressed in terms of Cartesian coordinates (x, y, z) or in terms of spherical coordinates (r, θ, ϕ) .
 - Using spherical coordinates comes with the advantage that r is the distance from the nucleus (see Figure 0.6).

12/23:

Radial Functions $R(r), ext{ with } \sigma = Zr/a_0$							
Orbital	\boldsymbol{n}	l	R(r)				
1s	1	0	$R_{1s} = 2\left[\frac{Z}{a_0}\right]^{3/2} e^{-\sigma}$				
2s	2	0	$R_{2s} = \left[\frac{Z}{2a_0}\right]^{3/2} (2-\sigma) e^{-\sigma/2[8]}$				
2p		1	$R_{2p} = \frac{1}{\sqrt{3}} \left[\frac{Z}{2a_0} \right]^{3/2} \sigma e^{-\sigma/2}$				
3s	3	0	$R_{3s} = \frac{2}{27} \left[\frac{Z}{3a_0} \right]^{3/2} (27 - 18\sigma + 2\sigma^2) e^{-\sigma/3}$				
3p		1	$R_{3p} = \frac{1}{81\sqrt{3}} \left[\frac{2Z}{a_0} \right]^{3/2} (6 - \sigma) \sigma e^{-\sigma/3}$				
3d		2	$R_{3d} = \frac{1}{81\sqrt{15}} \left[\frac{2Z}{a_0} \right]^{3/2} \sigma^2 e^{-\sigma/3}$				

Table 0.3: Hydrogen atom wave functions: Radial functions.

12/25:

Figure 0.6: Spherical coordinates.

- Know the following volume element conversions^[9].

$$dV = dx dy dz = r^2 \sin \theta d\theta d\phi dr$$

– The volume of the thin shell between r and r + dr is as follows^[10], and is useful for describing the electron density as a function of distance from the nucleus.

$$\int_0^{2\pi} \int_0^{\pi} 1 r^2 \sin \theta \, d\theta \, d\phi \, dr = \int_0^{2\pi} 2r^2 \, d\phi \, dr$$
$$= 4\pi r^2 \, dr$$

⁸Errata: This differs from the corresponding equation in Miessler et al. (2014) because the textbook is wrong.

⁹Refer to Labalme (2020b), specifically Figure 16.9 and the accompanying discussion.

¹⁰Errata: Miessler et al. (2014) flips the bounds over which θ and ϕ should be evaluated, but I use the right ones.

- Ψ can be factored into a **radial component** R and two **angular components** Θ and Φ , which are sometimes combined into a single component Y:

$$\Psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi) = R(r)Y(\theta, \phi)$$

- Refer to Table 0.2 for examples of Θ and Φ , and Table 0.3 for examples of R.
- Note that in Table 0.2, the shaded orbital lobes correspond to where the wave function is negative. Distinguishing regions of opposite signs is useful for bonding purposes.
- The radial component can also be manipulated to give the radial probability function $4\pi r^2 R^2$.
 - R is the radial function, so R^2 is the probability function (think $\Psi = RY$, so $\Psi^2 = R^2Y^2$).

Figure 0.7: Radial wave functions.

Figure 0.8: Radial probability functions.

- Radial component: The part of Ψ that describes "electron density at different distances from the nucleus" (Miessler et al., 2014, p. 20).
 - Determined by quantum numbers n and l.
 - Plotted for the n = 1, 2, 3 orbitals in Figure 0.7.
- Angular components: The parts of Ψ that describe "the shape of the orbital and its orientation in space" (Miessler et al., 2014, p. 20).
 - Determined by quantum number l and m_l .
- Radial probability function: The function describing "the probability of finding the electron at a given distance from the nucleus, summed over all angles, with the $4\pi r^2$ factor the result of integrating over all angles" (Miessler et al., 2014, p. 21).

- Plotted for the n = 1, 2, 3 orbitals in Figure 0.8.
- Bohr radius: "The value of r at the maximum of Ψ^2 for a hydrogen 1s orbital (the most probable distance from the hydrogen nucleus for the 1s electron), and it is also the radius of the n=1 orbit according to the Bohr model" (Miessler et al., 2014, p. 23).
 - See Figure 0.8a.
 - Its value is $a_0 = 52.9 \,\mathrm{pm}$.
 - It is a common unit in quantum mechanics.
 - It is used to scale the functions in Figures 0.7 and 0.8 to give reasonable axis units^[11].
- Figure 0.8 shows that the electron density falls off rapidly after the absolute maximum in every case.
 - However, it falls off more quickly for lower energy levels.
- The electron density at the nucleus is always zero.
 - Mathematically, this is because $4\pi r^2 R^2$ naturally equals zero when r=0.
- "Because chemical reactions depend on the shape and extent of orbitals at large distances from the nucleus, the radial probability functions help show which orbitals are most likely to be involved in reactions" (Miessler et al., 2014, p. 23).
- Nodal surface: A surface within an orbital having zero electron density.
 - The wave function is zero at these because it is changing sign.
 - Knowing where the wave function is positive and negative can be useful when working with molecular orbitals.
 - To find nodal surfaces, we must find places where

$$0 = \Psi^2 = \Psi = R(r)Y(\theta, \phi)$$

or where

$$0 = R(r) 0 = Y(\theta, \phi)$$

- "The total number of nodes in any orbital is n-1 if the conical nodes of some d and f orbitals count as two nodes" (Miessler et al., 2014, p. 23).
 - The conical node of the d_{z^2} orbital (see Table 0.2) is mathematically one surface, but we must count it as two (perhaps think of it as a top and bottom section) to fit the pattern.
- Angular node: A node that results when Y = 0.
 - There are l angular nodes in any orbital.
- Radial node: A node that results when R = 0. Also known as spherical nodes.
 - There are n-l-1 radial nodes in any orbital.
- Note that on the basis of relativity, electron density at nodes may not be zero but may in fact be a very small finite value.
 - Alternatively, if we think of an electron wave like a wave in a violin string, which also has places
 of zero vibration where the string still exists, nodes may just be places where electron waves have
 zero amplitude, not places where they don't exist.

¹¹Errata?: Should the y-axis in Figure 0.8 be $a_0^3 r^2 R^2$?

- A further possible explanation is that electrons can 'teleport' between two places without ever passing in between.
- We now look at a few examples of finding nodes in orbitals.
- Nodal structure of p_z :
 - From Table 0.2, the angular factor of this orbital in Cartesian coordinates is

$$Y = \frac{1}{2} \sqrt{\frac{3}{\pi}} \frac{z}{r}$$

- When we set this equal to zero, we find that the above is only equal to zero when z=0.
- Indeed, z = 0, i.e., the xy-plane, is an angular node in the p_z orbital, as we can see in Table 0.2.
- Additionally, we can tell from the above equation that the wave function is positive when z > 0 and negative when z < 0; this is also reflected in Table 0.2.
- Nodal structure of $d_{x^2-y^2}$:
 - The angular factor:

$$Y = \frac{1}{4} \sqrt{\frac{15}{\pi}} \frac{x^2 - y^2}{r^2}$$

- This is only equal to zero when

$$0 = x^{2} - y^{2}$$
$$y^{2} = x^{2}$$
$$y = \pm x$$

- This translates to Table 0.2, where we can see that the planes x = y and x = -y, i.e., those that contain the z-axis and make 45° angles with the x- and y-axes, are nodes.
- Additionally, the function is positive where |x| > |y| and negative where $|x| < |y|^{[12]}$, and we can see this in Table 0.2.
- Be aware of lines/surfaces of constant electron density.
- When filling orbitals in polyelectronic atoms, "we start with the lowest n, l, and m_l values (1, 0, and 0, respectively) and either of the m_s values (we will arbitrarily use $+\frac{1}{2}$ first)" (Miessler et al., 2014, p. 26). We then utilize the three following rules.
 - See them used to fill a p orbital in Table 0.4.
- **Aufbau principle**: The buildup of electrons in atoms results from continually increasing the quantum numbers. *Etymology* **aufbau** from German "building up."
 - "Electrons are placed in orbitals to give the lowest total electronic energy to the atom. This means that the lowest values of n and l are filled first. Because the orbitals within each subshell (p, d, etc.) have the same energy, the orders for values of m_l and m_s are indeterminate" (Miessler et al., 2014, p. 26).
- Pauli exclusion principle: Each electron in an atom must have a unique set of quantum numbers.
 - Note that this is experimentally derived, and does not follow from the Schrödinger equation.
- **Hund's rule** (of maximum multiplicity): Electrons must be placed in orbitals to give the maximum total spin (the maximum number of parallel spins).
 - This is a consequence of the Aufbau principle, as two electrons in the same orbital have higher energy than two in different orbitals due to electrostatic repulsions.

¹²Errata: Miessler et al. (2014) incorrectly use x > y and x < y.

Number of electrons	Arrangement	${\bf Unpaired} {\bf e}^-$	Multiplicity
1	<u> </u>	1	2
2	<u> </u>	2	3
3	<u> </u>	3	4
4	<u> </u>	2	3
5	$\uparrow\downarrow$ $\uparrow\downarrow$ \uparrow	1	2
6	$\uparrow\downarrow$ $\uparrow\downarrow$ $\uparrow\downarrow$	0	1

Table 0.4: Hund's rule and multiplicity.

• Spin multiplicity: The number of unpaired electrons plus 1.

Figure 0.9: Coulombic energy of repulsion and exchange energy.

- Coulombic energy of repulsion: The potential energy of two negatively charged electrons that occupy the same orbital (as opposed to separate orbitals). Denoted by Π_c .
 - Note that all polyelectronic species are subject to some Coulombic repulsions, but the contribution is significantly higher for paired electrons.
- Exchange energy: The potential energy of two electrons that have opposite spins (as opposed to the same spin). Denoted by Π_e .
 - This arises from purely quantum mechanical considerations.
 - Basically, there are three possible ways to arrange two electrons in degenerate orbitals (see Figure 0.9). The exchange energy between two of the states reflects the fact that electrons with opposite spins are distinguishable, but electrons with identical spins can be exchanged (can switch places) and no observer would be the wiser. This event, when it happens, is called **one exchange of parallel electrons**; the fact that it can happen lowers the energy of the system with electrons of identical spin simply by virtue of creating more possible states that each electron can occupy.

12/27: • Energies with oxygen:

- Three possible configurations: $\uparrow\downarrow$ $\uparrow\downarrow$ _____, $\uparrow\downarrow$ _____, and $\uparrow\downarrow$ \uparrow _____.
- In the first one, we have two pairs of electrons (so $2\Pi_c$) and two possible exchanges (one for each pair of electrons with like spin, so $2\Pi_e$).

- In the second one, we have one pair of electrons (so $1\Pi_c$) and two possible exchanges (one for each pair of electrons with like spin, so $2\Pi_e$).
- In the third one, we have one pair of electrons (so $1\Pi_c$) and three possible exchanges (1-2, 1-3, and 2-3, so $3\Pi_e$).
- Thus, the energies from greatest to least are 1, 2, 3, and indeed the three rules suggest that the third one is how we should put four electrons into a p orbital.
- Degenerate (orbitals): Orbitals with the same energy.
- Energy minimization is the driving force determining the ground state, and this usually means that lower subshells are filled before higher ones.
 - However, in some transition elements, subshells are so close in energy (4s and 3d, for example) that the sum of the Coulombic and exchange terms can exceed the energy difference between subshells.
- **Klechkowsky's rule**: "The order of filling of the orbitals proceeds from the lowest available value for the sum n + l. When two combinations have the same value, the one with the smaller value of n is filled first" (Miessler et al., 2014, p. 29).
- The periodic table can also be used to predict orbital filling.
 - Both Klechkowsky's rule and the periodic table method are imperfect, but they work for the majority of atoms and provide starting points for the others.
- Miessler et al. (2014) includes a table listing ground state electron configurations for every atom, including variant ones.
- **Shielding**: "Each electron acts as a shield for electrons farther from the nucleus, reducing the attraction between the nucleus and the more distant electrons" (Miessler et al., 2014, p. 30).
- As Z increases, orbital energies decrease (electrons are pulled closer to the nucleus).
- When ranking higher energy orbitals, l must be considered in addition to n (e.g., to know that 4s fills before 3d)^[13].
- Slater's rules: Four rules that approximately determine the magnitude of the effective nuclear charge $Z^* = Z S$, where Z is the nuclear charge and S is the shielding constant.
 - 1. Write the atom's electronic structure in order of increasing quantum numbers n and l, grouped as follows:

$$(1s) (2s, 2p) (3s, 3p) (3d) (4s, 4p) (4d) (4f) (5s, 5p) (5d)$$
 (and so on)

- 2. Electrons in groups to the right in this list do not shield electrons to their left.
- 3. We may now determine S. For ns and np valence electrons:
 - a. Each electron in the same group contributes 0.35 to the value of S for each other electron in the group, with one exception: A 1s electron contributes 0.30 to S for another 1s electron.
 - b. Each electron in n-1 groups contributes 0.85 to S.
 - c. Each electron in n-2 or lower groups contributes 1.00 to S.
- 4. For nd and nf valence electrons:
 - a. Each electron in the same group contributes 0.35 to the value of S for each other electron in the group^[14].
 - b. Each electron in groups to the left contributes 1.00 to S.

¹³See Labalme (2020a), specifically Figure 7.12.

 $^{^{14}}$ This is the same as Rule 3a.

- Slater's rules for nickel:
 - Rule 1: The electron configuration is written $(1s^2)(2s^2, 2p^6)(3s^2, 3p^6)(3d^8)(4s^2)$.
 - For a 3d electron:
 - Rule 4a: Each other electron in the $(3d^8)$ group contributes 0.35 to S, so the total contribution is $7 \times 0.35 = 2.45$.
 - Rule 4b: Each electron in groups to the left of $(3d^8)$ contributes 1.00 to S, so the total contribution is $18 \times 1.00 = 18.00$.
 - Thus, S = 2.45 + 18.00 = 20.45, so $Z^* = 28 20.45 = 7.55$.
 - For a 4s electron:
 - Rule 3a: The other electron in the $(4s^2)$ group contributes 0.35 to S.
 - Rule 3b: Each electron in the n-1 groups $(3s^2, 3p^6)(3d^8)$ contributes 0.85 to S, so the total contribution is $16 \times 0.85 = 13.60$.
 - Rule 3c: Each other electron to the left contributes 1.00 to S, so the total contribution is $10 \times 1.00 = 10.00$.
 - Thus, S = 0.35 + 13.60 + 10.00 = 23.95, so $Z^* = 28 23.95 = 4.05$.
 - Note that the fact that the 4s electrons are held less tightly than the 3d electrons is reflected in the fact that when Ni \longrightarrow Ni²⁺ + 2 e⁻, the two electrons removed are the 4s electrons.
- Slater's rules are justified by electron probability curves (see Figure 0.8) and experimental data.
- Rich provided another explanation of orbital filling (refer to Figure 0.10 throughout the following discussion).

Figure 0.10: Schematic energy levels for transition elements.

- Each orbital can be conceived as two half-orbitals, separated energetically by a variable electron pairing energy of the form $a\Pi_c + b\Pi_e$ where $a, b \in \mathbb{Z}^+$.
 - Take Fe, for example. If one of the 3d electrons with $m_s = -\frac{1}{2}$ were changed to have $m_s = +\frac{1}{2}$ (i.e., paired with another electron), we would expect the energy of the system to increase by $\Pi_c + 4\Pi_e$.

- Each of these half orbitals naturally decreases in energy (is pulled closer to the nucleus) as Z increases.
- Since orbitals in lower energy levels have shorter most probable distances to the nucleus, they are stabilized more as Z increases (this is why the slope of the 3d half orbitals is steeper).
- Electrons are placed into the lowest energy positions possible.
 - Thus, the 4s orbital usually fills up first, but there are exceptions since, for example, the 3d half orbital with $m_s = -\frac{1}{2}$ crosses over the 4s half orbital with $m_s = +\frac{1}{2}$ between V and Cr (at the dot) as opposed to somewhere after Cr.
- Note that as electrons are sequentially added, Figure 0.10 shows them generally having the same spin, in accordance with Hund's rule.
- For ions, the crossover points shift left.
 - This is because the removal of the electron causes Z^* to increase dramatically for all electrons, but more for (n-1)d orbitals than ns orbitals.
- "This approach to electron configurations of transition metals does not depend on the stability of half-filled shells or other additional factors" (Miessler et al., 2014, p. 36).
- Introductory chem: Electrons in the highest energy level are always removed first when ionizing transition metals. This chem: "Regardless of which electron is lost to form a transition metal ion, the lowest energy electron configuration of the resulting ion will always exhibit the vacancy in the ns orbital" (Miessler et al., 2014, p. 36).
- Similar but more complex diagrams can treat other situations in higher energy levels and subshells.
- Since the periodic table arranges^[15] atoms on the basis of similar electronic configurations, a given atom's position provides information about its properties.
- Ionization energy: The energy required to remove an electron from a gaseous atom or ion. Also known as ionization potential.

$$A^{n+}_{(g)} + \Delta U \longrightarrow A^{(n+1)+}_{(g)} + e^{-}$$

- When n = 0, ΔU is the first ionization energy IE₁. When n = 1, ΔU is the second ionization energy IE₂. The pattern continues.
- Ionization energy trends^[16]:
 - Increases across a period (the major change).
 - Decreases down a group (a minor change; occurs because an increase in quantum number is associated with a much higher energy, and electrons with more energy need less to make it to the infinite energy level).
 - The trend breaks at boron and oxygen due to core shielding and Π_c , respectively.
 - Such trends are most pronounced in the main group elements; in the transition metals, the lanthanides, and the actinides, "the effects of shielding and increasing nuclear charge [are] more nearly in balance" (Miessler et al., 2014, p. 37).
- Electron affinity: The energy required to remove an electron from a negative ion. Also known as zeroth ionization energy.

$$A_{(g)}^- + \Delta U \longrightarrow A_{(g)} + e^-$$

- Electron affinity is often thought of as the energy released by adding an electron to a neutral atom, but taking this perspective facilitates comparisons with ionization energy.
- This reaction is endothermic, except for the noble gases and the alkaline earth elements.
- Trends are similar to those for ionization energy, but "for one larger Z value (one more electron for each species^[17]) and with much smaller absolute numbers" (Miessler et al., 2014, p. 37).
 - The magnitude decreases because outer electrons in anions are better shielded.

¹⁵Errata: Miessler et al. (2014) misspells arrangement as "arrangement" (p. 36).

 $^{^{16}}$ Refer to Labalme (2020a), specifically Figure 7.19 as well as Exercise on $Z_{\rm eff}$.

¹⁷Think isoelectricity (see Figure 0.11).

Figure 0.11: First and second ionization energies and electron affinities.

- Atomic radius decreases across periods and increases down groups.
- Nonpolar covalent radius: The radius of an atom as determined from bond lengths in nonpolar molecules.
- Van der Waals radius: The radius of an atom as determined from collisions with other atoms.
 - Because compounds vary so much, it is hard to use either of these or any method to definitively determine atomic radius.
- Pauling's approach: A method for determining ionic radii based on the assumption that the ratio of the radii of isoelectronic atoms equals the ratio of their effective nuclear charges.
 - This is not entirely accurate. Modern cation **crystal radii** differ by +14 pm, and such anion radii differ by -14 pm.
- Factors that influence ionic size: "the coordination number of the ion, the covalent character of the bonding, distortions of regular crystal geometries, and delocalization of electrons (metallic or semiconducting character...)" (Miessler et al., 2014, p. 40).

Topic I

Review of VSEPR Theory

I.1 Module 1: Course Logistics and History

- 1/11: Homework questions will be similar to exam questions, so although you probably *can* find answers online, you shouldn't.
 - Submit Psets to chem201hw@gmail.com.
 - Watch modules before office hours and bring questions.
 - If you have a question outside of office hours, post it on Slack.
 - It's a difficult class, but he is open to and welcomes our feedback (via Slack, again).
 - You do need to read from Miessler et al. (2014), too; his class is not a replacement for this textbook.
 - He is a big fan of Cotton (1990).
 - There is an extra, new textbook to look for!
 - Convince yourself not to be afraid of time-independent quantum mechanics (we won't go too deep, but know wave functions and the like).
 - Exams will probably be open book/open note.
 - Inorganic chemistry contains too much information to rationalize empirically, so we need a system (the development of this system will be the focus of this course).
 - Reviews history of chemistry from Miessler et al. (2014) Chapter 1.
 - What is Nickel's electron configuration?
 - When Nickel is a free atom, the $[Ar]4s^23d^8$ electron configuration is the lowest energy.
 - When Nickel is chemically bound, the $[Ar]3d^{10}$ electron configuration is the lowest energy because it is energetically unfavorable to have a large 4s orbital pushing the bounds of the atom.
 - What is a **term symbol**?
 - Homework: Refresh Chapter 2 in Miessler et al. (2014).
 - Covalent bond: The sharing of pairs of electrons...?
 - G. N. Lewis predicts in 1916 (before Rutherford) that the atom has a positive **kernel** surrounded by a shell containing up to 8 electrons.
 - Also orbital penetration.
 - He recommends that we read the full paper: Lewis (1916).

I.2 Module 2: Molecular Geometries and VSEPR

- The easiest way to approach a new Lewis structure:
 - 1. Draw a valid Lewis structure for a molecule.
 - 2. Place electron pairs in the valence shell as far away from each other as possible. Use the σ -bond framework first.
 - 3. Add π -bonds to complete the molecule.
- Through the VSEPR approach, think of a molecule as arranged around a central atom A by m atoms or groups of atoms X and n lone electron pairs E.
- Steric number: The sum n+m of groups and electron pairs around the central atom.
- Steric numbers correspond to geometries.
- VSEPR is ok but it doesn't capture reality too well.
- Consider trimethyl boron (BMe₃).
 - Trigonal planar (D_{3h}) .
- Octahedral: O_h .
- Bent: C_{2v} .
- Order of the repulsive forces: lone pair lone pair lone pair bonding pair bonding pair bonding pair -
- In SF₄ (see-saw), will the lone pair be axial or equatorial?
 - Equatorial $2 \times 120^{\circ}$ and $2 \times 90^{\circ}$ vs. $3 \times 90^{\circ}$.
- In $BrF_3...$

Figure I.1: VSEPR structure of BrF₃.

- T-shaped \rightarrow Distorted T $4 \times 90^{\circ}$ vs. $6 \times 90^{\circ}$ or lone pairs in cis-position.
- In ions such as ICl_4^- , we get square planar (D_{4h}) .
- With mixed substituents (such as PF₂Cl₃)...

Figure I.2: Lewis structure of PF₂Cl₃.

- We need Bent's rule, which tells us that atoms share electrons from p- or d-orbitals to a greater extent than they do from s-orbitals.
- Thus, when phosphorous excites $3s^23p^3$ to $3s^13p_x^13p_y^1ep_z^13d_{z^2}^2$ and then rehybridizes to create three sp^2 orbitals (each composed of $s+p_x+p_y$) and two "pd" hybrid orbitals (each composed of $p_z+d_{z^2}$), the equatorial sp^2 orbitals bond to the more **electropositive** chlorines and the axial "pd" hybrid orbitals bond to the remaining more electronegative fluorines.
- There is also sometimes a tendency for symmetry.
- Bent's rule: Atomic s-character concentrates in orbitals directed toward electropositive substituents.
- Electropositive (species): A species that has relatively lower electronegativity than another.
- For molecules with multiple bonds, ignore π -bonds.
- Linear: $D_{\infty h}$.
- Problems with VSEPR:
 - XeF₆ with 14 bonding electrons (7 pairs) is supposed to be pentagonal bipyramidal, but is actually octahedral (a known problem for $14\,\mathrm{e^-}$ systems).
 - Heavy main group elements with no hybridization.
 - H-C=C-H is linear, but H-Si=Si-H is not.
 - No σ -bond exists in the latter species it's all π -bonding interactions.
- You maybe don't have to watch the modules and textbook and attend class.

I.3 Chapter 3: Simple Bonding Theory

From Miessler et al. (2014).

- 1/14: **Hypervalent** (central atom): A central atom that has an electron count greater than the atom's usual requirement.
 - There are rarely more than 18 electrons around a central atom (2 for s, 6 for p, 10 for d). Even heavier atoms with energetically accessible f orbitals usually don't have more surrounding electrons because of crowding.
 - With BeF₂, instead of getting the predicted double-bonded lewis structure, it forms a complex network with Be having coordination number 4.
 - BeCl₂ dimerizes to a 3-coordinate structure in the vapor phase.
 - Boron trihalides exhibit partial double bond character.
 - It is also possible that the high polarity of B-X bonds and the **ligand-close packing** (LCP) model account for the observed shorter bond length.
 - Boron trihalides also act as Lewis acids.
- 1/17: The variety of structures means that one unified VSEPR theory will not likely^[1] work.
 - Not stereochemically active (lone pair): "A lone pair that appears in the Lewis-dot structure but has no apparent effect on the molecular geometry" (Miessler et al., 2014, p. 54).
 - Double and triple bonds have slightly greater repulsive effects than single bonds in the VSEPR model.
 - Multiple bonds tend to occupy the same positions as lone pairs.

 $^{^1}$ Eratta: "unlikely."

1/14:

Steric Number	Geometry	Examples	Calculated Bond Angles	
2	Linear	CO_2	180°	O = C = O
3	Trigonal (triangular)	SO_3	120°	
4	Tetrahedral	CH_4	109.5°	H H C H
5	Trigonal bipyrimidal	PCl ₅	120°, 90°	Cl
6	Octahedral	${ m SF}_6$	90°	$F \xrightarrow{F} F$ $F \xrightarrow{F} F$
7	Pentagonal bipyrimidal	IF_7	72°,90°	F F F F
8	Square antiprismatic	$[\mathrm{TaF_8}]^{3-}$	70.5°, 9.6°, 109.5°	$F \xrightarrow{Ta} F$ $F \xrightarrow{Ta} F$

Table I.1: VSEPR predictions.

1/17: • Electronegativity varies for a given atom based on the neighboring atom to which it is bonded.

- "With the exception of helium and neon, which have large calculated electronegativities and no known stable compounds, fluorine has the largest value" (Miessler et al., 2014, p. 59).
- Although usually classified with Group 1, Hydrogen's chemistry is distinct from that of the alkali metals and actually all of the groups.
- Some bond angle trends can be explained by electronegativity (see Table I.2).
 - For instance, electronegative outer atoms pull electrons away from the central atom, allowing lone pairs to further push together such atoms.
 - Electronegative central atoms pull electrons toward the central atom, pushing bonding pairs farther apart.
- Atomic size can also have effects on VSEPR predictions.

Molecule	X-P-X Angle (°)	Molecule	Bond Angle (°)
PF_3	97.8	H_2O	104.5
PCl_3	100.3	H_2S	92.1
PBr_3	101.0	H_2Se	90.6

Table I.2: Electronegativity and bond angles.

- For example, the C-N-C angle in N(CF₃)₃ is larger than that of N(CH₃)₃ despite the prediction we'd make based on electronegativity alone. This is because F atoms are significantly larger than H atoms and we get some steric hindrance.
- In molecules with steric number 5, axial bond length is greater than equatorial.
- $\bullet\,$ Symmetric structures are often preferred.
- Groups (such as CH₃ and CF₃) have the ability to attract electrons, too thus, they are also assigned electronegativities.
- **Ligand close-packing**: A model that uses the distances between outer atoms in molecules as a guide to molecular shapes. *Also known as* **LCP**.
 - Works off of the observation that the nonbonded distances between outer atoms are consistent across molecules with the same central atom, but the bond angles and lengths change.
 - This stands in contrast to VSEPR theory's concern with the central atom, as opposed to the ligands.
- **Dielectric constant**: "The ratio of the capacitance of a cell filled with the substance to be measured to the capacitance of the same cell with a vacuum between the electrodes" (Miessler et al., 2014, p. 66).
 - This is measured to experimentally determine the polarity of molecules.
- **Dipole moment**: The product Qr of the distance r between two charges' centers and the difference Q between the charges. Also known as μ .
 - This is calculated by measuring the dielectric constant at different temperatures.
 - SI unit: Coulomb meter; C m. Common unit: Debye; $1D = 3.33564 \times 10^{-30}$ C m.

Topic II

Symmetry and Group Theory in Chemistry

II.1 Module 3: Symmetry Elements and Operations

1/13: • He will upload lecture slides in advance in the future.

- An object is symmetric if one part is the same as other parts.
- The symmetry of discrete objects is described using **Point Symmetry**.
- Point groups (~ 32 for molecules) provide us with a way to indicate the symmetry unambiguously.
- Point groups have symmetry about a single point at the center of mass of the system.
- Extended objects (e.g., crystals) have **translational symmetry** described by **Space groups**^[1] (230 total).
- Reading: Miessler et al. (2014) Chapter 4 and https://en.wikipedia.org/wiki/Molecular_symmetry.
- **Symmetry elements**: Geometric entities about which a **symmetry operation** can be performed. In a point group, all symmetry elements must pass through the center of mass (the point).
- Symmetry operation: The action that produces an object identical to the initial object.

Element	Operation		
Identity, E	nothing		
Rotation axis, C_n	<i>n</i> -fold rotation		
Improper rotation axis, S_n	<i>n</i> -fold improper rotation		
Plane of symmetry, σ	Reflection		
Center of symmetry, i	Inversion		

- Identity: Does nothing to the object, but is necessary for mathematical completeness.
- *n*-fold rotation: A rotation of $360^{\circ}/n$ about the C_n axis $(n \in [1, \infty))$.
 - In H_2O , there is a C_2 axis, so we can perform a 2-fold (180°) rotation to get the same molecule.
 - Remember, because of quantum mechanical properties, the hydrogens are indistinguishable so when we rotate it 180°, we cannot tell it apart from the unrotated molecule.
 - Rotations are considered positive in the counterclockwise direction.

¹Not covered in this course.

- Each possible rotation operation is assigned using a superscript integer m of the form C_n^m . m is the number of sequential applications.
- The rotation $C_n^n \equiv E$ is equivalent to the identity operation (nothing is moved).
- Linear molecules have an infinite number of rotational options C_{∞} because any rotation on the molecular axis will give the same arrangement.
- Principal axis: The highest order rotation axis.
 - By convention, the principal axis is assigned to the z-axis if we are using Cartesian coordinates.
- Reflection: Exchanges one half of the object with the reflection of the other half.
- Vertical mirror plane: A mirror plane that contains the principal axis. Also known as σ_v .
- Horizontal mirror plane: A mirror plane that is perpendicular to the principal axis. Also known as σ_h .
- Dihedral mirror planes: A special type of σ_v that is between sides or planes. Also known as σ_d .
 - For example, we might have vertical mirror planes in the xz- or yz-planes. In this case, the dihedral planes would contain the lines $y=\pm x$.
- Two successive reflections are equivalent to the identity operation.
- **Inversion**: Every part of the object is reflected through the inversion center, which must be at the center of mass of the object.

$$-(x,y,z) \xrightarrow{i} (-x,-y,-z).$$

• n-fold improper rotation: This operation involves a rotation of $360^{\circ}/n$ followed by a reflection perpendicular to the axis. It is a single operation and is labeled in the same manner as "proper" rotations. Also known as S_n^m , rotation-reflection operation.

Figure II.1: Methane's S_4 symmetry.

- Methane has S_4 symmetry.
- Note that $S_1 \equiv \sigma_h$, $S_2 \equiv i$, and sometimes $S_{2n} \equiv C_n$. In methane, for example, $S_4^2 \equiv C_2$.
- Applied to a triangular prism, is a good example.
- If n is even, we have n unique operations. There should be $C_{n/2}$.
- If n is odd, we have 2n unique operations. There should be C_n and σ_h .
- The absence of an S_n axis is the defining symmetry property of **chiral** molecules.
 - Formerly, we learned that chiral molecules should not have mirror planes and inversion centers.
 - Rigorously, chiral molecules must not have any improper rotation axes.

II.2 Module 4: Symmetry Point Groups

- Identifying the point groups:
 - 1. Determine if the symmetry is special (e.g., octahedral).
 - 2. Determine if there is a principal rotation axis.
 - 3. Determine if there are rotation axes perpendicular to the principal axis.
 - 4. Determine if there are mirror planes.
 - 5. Assign point groups.
- High symmetry and low symmetry groups are the most difficult to identify.
- High symmetry:
 - Perfect tetrahedral (T_d) , e.g., P_4 and CH_4 .
 - Perfect octahedral (O_h) , e.g., SF₆.
 - Perfect icosahedral (I_h) , e.g., C_{60} and $B_{12}H_{12}^{2-}$.
- Low symmetry:

Figure II.2: Low symmetry point groups.

- Only an improper axis: S_n .
- Only a mirror plane: C_s .
- Only an inversion center: C_i .
- No symmetry: C_1 .
- C_n groups:
 - Only a C_n axis. Note that conformation is important.
- C_{nh} groups have a C_n axis and a σ_h reflection plane (such as B(OH)₃).
 - H_2O_2 has C_{2h} symmetry.
- All symmetry elements are listed in the top row of the corresponding characters table (Appendix C in Miessler et al. (2014)).
- C_{nv} groups have a C_n axis and a σ_v reflection plane.
 - NH₃ has C_{3v} symmetry.
 - CO has $C_{\infty v}$ symmetry since there are an infinite number of both C_n axes and σ_v mirror planes.
- D_{nh} groups: A C_n axis, n perpendicular C_2 axes, and a σ_h reflection plane.

- BH₃ has D_{3h} symmetry.
- A square prism has D_{4h} symmetry.
- CO_2 has $D_{\infty h}$ symmetry.
- D_n groups: A C_n axis, n perpendicular C_2 axes, and no mirror planes.
 - A 3-bladed propeller has D_3 symmetry.
- D_{nd} groups: A C_n axis, n perpendicular C_2 axes, and a σ_d .
 - Ethane in the staggered conformation has D_{3d} symmetry.
- Local symmetry:
 - Sometimes, rigorous math analysis needs to be adjusted to physical reality.
 - If a cyclopentane ring is bonded through the center to $Mn(CO)_3$, this molecule has only C_s symmetry.
 - However, spectroscopically, there is fast rotation about the Mn–Cp bond. This means that the Mn(CO)₃ fragment exhibits pseudo- C_{3v} symmetry while the C₅H₅ ligand exhibits pseudo- C_{5v} symmetry.
 - Often, the absolute symmetry of a molecule is very low, but the interactions are far away from the centers of interest, and do not perturb them significantly.
 - If we have platinum as a central atom bonded to two chlorines and two P(Et)₃ groups, this molecule technically has C_1 symmetry due to the orientations of atoms within R groups (staggered), but IR spectroscopy is characteristic of highly symmetric species (D_{2h}) .

II.3 Module 5: Group Theory 101

- **Group**: A set of elements together with an operation that combines any two of its elements to form a third element satisfying four conditions called the group axioms.
 - Closure: All binary products must be members of the group.
 - Associativity: Associative law of multiplication must hold.
 - **Identity**: A group must contain the identity operator.
 - Inverse: Every operator must have an inverse.
 - The integers with the addition operation form a group, for example.
 - History:

1/15:

- Early group theory was driven by the quest for solutions of polynomial equations of degree 5 and above.
- Early 1800s: Evariste Galois realized that the algebraic solution to a polynomial equation is related to the structure of a group of permutations associated with the roots off the polynomial, the Galois group of the polynomial.
 - Link to Galois video here.
- 1920s: Group theory was applied to physics and chemistry.
- 1931: It is often hard or even impossible to obtain a solution of the Schrödinger equation however, a large part of qualitative results can be obtained by group theory. Almost all the rules of spectroscopy follow from the symmetry of a problem.
- We will use group theory for describing symmetry of molecules. We will use group theory to understand the bonding and spectroscopic features of molecules.

- For us, a group consists of a set of symmetry elements (and associated symmetry operations) that completely describes the symmetry of a molecule.
- Order (of a group): The total number of elements (i.e., symmetry operations) in the group. Also known as h.
- Rule 1: Closure.

Figure II.3: Symmetry elements for H₂O.

- H_2O is of the C_{2v} point group (refer to Figure II.3).
 - Symmetry operations: $E, C_2, \sigma_{v(xz)}, \text{ and } \sigma'_{v(yz)}$.

 - The above property (order does not matter) shows that C_{2v} is an **Abelian group**.
- NH₃ is of the C_{2v} point group.
 - Symmetry operations: $E, C_3^+, C_3^-, \sigma_v, \sigma_v'$, and σ_v'' .
 - $\sigma_v'' \cdot C_3 = \sigma_v$, but $C_3 \cdot \sigma_v'' = C_3^- = C_3^2$.
 - The above property (order does matter) shows that C_{3v} is a non-Abelian group.
- Rule 2: Associativity.
 - H_2O is of the C_{2v} point group (refer to Figure II.3).

$$\begin{split} \sigma'_v C_2 \sigma_v(1,2) &= \sigma'_v C_2(2,1) & \sigma'_v(C_2 \sigma_v)(1,2) = \sigma'_v E(1,2) & (\sigma'_v C_2) \sigma_v(1,2) = \sigma_v \sigma_v(1,2) \\ &= \sigma'_v(1,2) &= \sigma_v(1,2) &= \sigma_v(2,1) \\ &= (1,2) &= (1,2) &= (1,2) \end{split}$$

- Rule 3: Identity.
- Rule 4: Inverse.
 - For a C_{2v} point group:

$$E \cdot E = E$$
 $C_2 \cdot C_2 = E$ $\sigma_v \cdot \sigma_v = E$ $\sigma_v' \cdot \sigma_v' = E$

• Group multiplication tables.

C_{2h}	$oldsymbol{E}$	C_2	σ_h	\boldsymbol{i}
E	E	C_2	σ_h	i
C_2	C_2	E	i	σ_h
σ_h	σ_h	i	E	C_2
$oldsymbol{i}$	i	σ_h	C_2	E

Table II.1: Group multiplication table for the C_{2h} point group.

- Table II.1 corresponds to the C_{2h} point group, which has E, C_2, σ_h , and i operations.
- Note that the operation in the top row is the one that's applied first, while the one in the left column will be applied second.
- Subgroup: Fractional parts of groups that are groups, too.

C_{3v}	E	C_3	$C_3{}^2$	σ_v	σ_v'	$\sigma_v^{\prime\prime}$
E C_3 C_3^2	E	C_3	C_3^2	σ_v	σ'_v	$\sigma_v^{\prime\prime}$
C_3	C_3	C_3^2	E	$\sigma_v^{\prime\prime}$	σ_v	σ_v'
C_3^2	C_3^2	E	C_3	σ_v'	$\sigma_v^{\prime\prime}$	σ_v
σ_v	σ_v	σ_v'	$\sigma_v^{\prime\prime}$	E	C_3	C_3^2
σ_v'	$\sigma_v^{\prime\prime}$	σ_v	σ_v'' σ_v' σ_v	C_3	C_3^2	E
$\sigma_v^{\prime\prime}$	σ_v'	$\sigma_v^{\prime\prime}$	σ_v	C_3^2	E	C_3

Table II.2: Group multiplication table for the C_{3v} point group.

- If h = 6 (as in the C_{3v} group), subgroup order can be h = 3, 2, 1. Why only these?
- The order 1 and 3 charts are subgroups.
- The order 2 chart is not a subgroup because C_3^2 is not an operation in the group (therefore, the "subgroup" is not closed).
- We use subgroups because they can make complex problems simpler.
 - For example, calculating the vibrational modes of CO_2 .
 - As another example, D_{2h} is a subgroup of $D_{\infty h}$.

II.4 Module 6: Representations

- Items of the same point group have the same vibration modes.
- Representation (of a group): Any collection of quantities (or symbols) which obey the multiplication table of a group. Also known as Γ .
- For our purposes, these quantities are the matrices that show how certain characteristic of a molecule behave under the symmetry operations of the group.
- Operations (on a point (x, y, z) in Cartesian coordinates):
 - E(x, y, z) = (x, y, z).
 - $\sigma_{xz}(x, y, z) = (x, -y, z).$
 - -i(x, y, z) = (-x, -y, -z).
 - C_n : Convention is a counterclockwise rotation of the point by $\theta = \frac{2\pi}{n}$ radians.
 - S_n : Convention is a clockwise rotation of the point C_n followed by a σ through a plane perpendicular to C.

• Matrix forms of operations:

$$- \text{ Identity: } E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

– One example of a reflection (there are two more):
$$\sigma_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
.

- Inversion:
$$i = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
.

- Rotation: Counterclockwise is
$$C_n(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and clockwise is $C_n(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- A derivation of this matrix can be found in the slides.
- Improper rotation: $S_n(\theta) = \sigma_h C_n(\theta)$.

• Reducible representations (Γ) :

- A representation of a symmetry operation of a group.
- Can be expressed in terms of a representation of lower dimension.
- Can be broken down into a simpler form.
- Characters can be further diagonalized.
- Are composed of the direct sum of irreducible representations.
- Infinite possibilities.

• Irreducible representations (Γ_i) :

- A fundamental representation of a symmetry operation of a group.
- Cannot be expressed in terms of a representation of lower dimension.
- Cannot be broken down into a simpler form.
- Characters cannot be further diagonalized.
- Small finite number dictated by point group.
- Good example of reducible/irreducible representations?
- A representation shows how certain characteristics of an object (a basis) behave under the symmetry operation of the group.
- ullet Conjugate elements: Two elements X and Y for which there exists an element Z in the group such that

$$Z^{-1} \cdot X \cdot Z = Y$$

- Every element is conjugated with itself (let Z = E).
- If X is conjugated with Y, then Y is conjugated with X.
- If X is conjugated with Y and W, then Y and W are also conjugate.
- Class: A complete set of elements of a group that are conjugate to one another.
 - Geometric meaning: operations in the same class can be converted into one another by changing the axis system through application of some symmetry operation of the group.
- Find the conjugates to C_3 in the C_{3v} point group (refer to Table II.2 throughout the following discussion).

- Let $X = C_3$, let Z iterate through the six symmetry elements $(E, C_3, C_3^2, \sigma_v, \sigma'_v, \sigma''_v)$, and let Z^{-1} iterate through the corresponding inverses $(E, C_3^2, C_3, \sigma_v, \sigma'_v, \sigma''_v)$.
- Thus, we have

$$E \cdot C_3 \cdot E = C_3$$

$$C_3^2 \cdot C_3 \cdot C_3 = C_3$$

$$C_3 \cdot C_3 \cdot C_3^2 = C_3$$

$$\sigma_v \cdot C_3 \cdot \sigma_v = C_3^2$$

$$\sigma'_v \cdot C_3 \cdot \sigma'_v = C_3^2$$

$$\sigma''_v \cdot C_3 \cdot \sigma''_v = C_3^2$$

- It follows from the above that C_3 and C_3 are conjugates, and C_3 and C_3 are conjugates.
- Thus, C_3 and C_3^2 are in the same class.
- We can use a similar method to prove that σ_v , σ'_v , and σ''_v are all in the same class within the C_{3v} point group.
- Likewise E is in a class by itself.
- Thus, for the C_{3v} point group, E forms a class of order 1, C_3 , C_3^2 form a class of order 2, and $\sigma_v, \sigma'_v, \sigma''_v$ form a class of order 3.
- Similarity transformation: The transformation

$$v^{-1} \cdot A \cdot v = A'$$

- -A is a representation for some type of symmetry operation.
- -v is a similarity transform operator.
- $-v^{-1}$ is the inverse of the similarity transform operator.
- -A' is the product.
- -A and A' are conjugates, and we say that A' is the similarity transform of A by v.
- Block-diagonal (matrix): A matrix with nonzero values only in square blocks along the diagonal from the top left to the bottom right.

$$\begin{bmatrix} 2 & 3 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

- The above matrix is an example of a block-diagonal matrix.
- Irreducible representations are the ones where the matrices have the most block-diagonalized form that they can.

II.5 Module 7: Characters and Character Tables

- 1/19: Nocera Lecture 3 notes (on Canvas) explain how reducible and irreducible transformations are related to each other through the similarity transformations.
 - \bullet For H_2O , each atom has 3 Cartesian coordinates, so our transformation matrix^[2] is 9-square.

²Some values in it are negative because of the cosine/sine definition of a rotation matrix for $\theta = 180^{\circ}$.

- However, we can also apply a smaller matrix to the molecule as a whole and invoke symmetry to find the position of the individual atoms.
- Characters (of a representation): The traces (i.e., sums of the diagonal matrix elements) of the representation matrices for each operation. Also known as χ .
 - The character is an invariant for each type of symmetry operation (e.g., regardless of the axis about which a C_n operation is performed, the trace of the corresponding matrix will be the same).
- Common characters:
 - C_n character: $\chi = 2\cos\theta + 1$.
 - $-\sigma_v, \sigma_d$ character: $\chi = 1$.
 - $-S_2 \equiv i \text{ character: } \chi = -3.$
 - $-S_n$ character: $\chi = 2\cos\theta 1$.
 - $-\perp C_2$ axes character: $\chi=-1$.
- Character table: The collection of characters for a given irreducible representation, under the operations of a group. Also known as χ table.

Group Symbol			Symi	metry Elen	nents			
	C_{2v}	\dot{E}	C_2	$\sigma_v(xz)$	$\sigma'_v(yz)$	linear	quadratic	
Irreducible Represen- tations	A_1	1	1	1	1	z	x^2, y^2, z^2	
	A_2	1	1	-1	-1	R_z	xy	
	B_1	1	-1	1	-1	x, R_y	xz	
	B_2	1	-1	-1	1	y, R_x	yz	
		_	Characters			Basis Functions		

Figure II.4: A character table.

- Character tables for all point groups are listed in Appendix C of Miessler et al. (2014).
- Mulliken symbols are used to classify irreducible representations based on degeneracy and symmetry.
 - A or B: singly degenerate (the maximum block size in the block-diagonalized irreducible transformation matrix is 1×1).
 - E: Doubly degenerate (the maximum block size in the block-diagonalized irreducible transformation matrix is 2×2).
 - T: Triply degenerate (the maximum block size in the block-diagonalized irreducible transformation matrix is 3×3).
 - A: symmetric (+) with respect to C_n .
 - B: anti-symmetric (-) with respect to C_n .
 - Subscript g: symmetric (+) with respect to i. Etymology short for gerade (German for symmetric).
 - Subscript u: anti-symmetric (-) with respect to i. Etymology short for ungerade (German for unsymmetric).
 - \blacksquare If the molecule has a center of inversion, we label irreducible representations with q or u.
 - Subscript 1: symmetric (+) with respect to $\perp C_2$ or σ_v .
 - Subscript 2: anti-symmetric (-) with respect to $\perp C_2$ or σ_v .
 - Superscript ': symmetric (+) under σ_h (if no i).
 - Superscript ": anti-symmetric (-) under σ_h (if no i).

- Don't mistake the operation E for the Mulliken symbol E!
- To assign Mulliken symbols, use the character table.
 - Assigning the main letter:
 - If E-character = 1 and C_n -character = 1: A.
 - If E-character = 1 and C_n -character = -1: B.
 - If E-character = 2: E.
 - If E-character = 3: T.
 - Assigning a subscript g or u:
 - If *i*-character = 1: g.
 - If *i*-character = -1: u.
 - \blacksquare This subscript can be assigned to A, B, E, T representations.
 - Assigning a superscript ' or ":
 - If σ_h -character = 1: '.
 - If σ_h -character = -1: ".
 - \blacksquare This subscript can be assigned to A, B representations.
 - Assigning a subscript 1 or 2:
 - If $\perp C_2$ or σ_v -character = 1: 1.
 - If $\perp C_2$ or σ_v -character = -1: 2.
 - \blacksquare This subscript can be assigned to A, B representations.
- σ , π , and δ bonds come from the Mulliken symbols!
 - Infinity tables use Greek rather than Latin letters.

D_3	E	$2C_3(z)$	$3C_2'$	linear	quadratic
$\overline{A_1}$	1	1	1		$x^2 + y^2, z^2$
A_2	1	1		z, R_z	
E	2	-1	0	$(x,y)(R_x,R_y)$	$(x^2 - y^2, xy)(xz, yz).$

Table II.3: Character table for the D_3 point group.

- In character tables, we need to multiply each symmetry operation by the number of types there are (see Table II.3).
- Basis functions show us how different functions transform under different symmetry operations.
- In the C_{2v} point group:
 - The p_x orbital has B_1 symmetry.
 - $-p_x$ transforms as B_1 .
 - $-p_x$ has the same symmetry as B_1 .
 - $-p_x$ forms a basis for the B_1 irreducible representation.
 - p_x is B_1 because (see Table 0.2 and Figure II.4) it does not change under E, it inverts under C_2 , it does not change under $\sigma_v(xz)$, and it inverts under $\sigma'_v(yz)$.
- We can apply the same procedure to other more complex functions.
 - For example, in the C_{2v} point group, we know that (with respect to orbitals):
 - $\blacksquare p_y \text{ is } B_2.$

- $\blacksquare p_z \text{ is } A_1.$
- $\blacksquare d_{z^2} \text{ is } A_1.$
- $\blacksquare d_{x^2-y^2} \text{ is } A_1.$
- \blacksquare d_{yz} is B_2 .
- \blacksquare d_{xy} is A_2 .
- \blacksquare d_{xz} is B_1 .
- \blacksquare We can even go into the cubic functions describing the f orbitals and assign them Mulliken symbols.
- Essentially, the right hand side of a character table tells you how atomic orbitals will transform under certain symmetry operations.
- Properties of a character table:
 - 1. The characters of all matrices belonging to the operations in the same class are identical in a given irreducible representation.
 - As such, we form **classes** of operations.
 - We most commonly form a **rotational class** and a **reflection class**.
 - 2. The number of irreducible representations in a group is equal to the number of classes of that group.
 - 3. There is always a totally symmetric representation for any group.
 - I.e., a representation where every character is 1.
 - 4. The sum of the squares of the **dimensionality** of all the irreducible representations is equal to the order of the group. Mathematically,

$$h = \sum_{i} [\chi_i(E)]^2$$

- For example, the dimensionalities of the D_3 point group (see Table II.3) are 1, 1, and 2, and the order is, indeed, $6 = 1^2 + 1^2 + 2^2$.
- 5. The sum of the squares of the characters multiplied by the number of operations in the class equals the order of the group. Mathematically,

$$h = \sum_{R_c} g_c [\chi_i(R_c)]^2$$

- For example, with respect to the D_3 point group (see Table II.3),

$$6 = (1)(1)^{2} + (2)(1)^{2} + (3)(1)^{2}$$
$$= (1)(1)^{2} + (2)(1)^{2} + (3)(-1)^{2}$$
$$= (1)(2)^{2} + (2)(-1)^{2} + (3)(0)^{2}$$

6. The sum of the products of the corresponding characters of any two different irreducible representations of the same group is zero. Mathematically,

$$\sum_{R_c} g_c \chi_i(R_c) \chi_f(R_c) = 0$$

- Basically, this means that if we treat irreducible representations as vectors in h-space, they
 are orthogonal.
- For example, with respect to the D_3 point group (see Table II.3),

$$0 = 1(1)(1) + 2(1)(1) + 3(1)(-1)$$

= 1(1)(2) + 2(1)(-1) + 3(1)(0)
= 1(1)(2) + 2(1)(-1) + 3(-1)(0)

• Dimensionality: The character of the identity operation E. Also known as dimension.

II.6 Module 8: Using Character Tables

• A reducible representation of a group is any representation Γ of the form

$$\Gamma = \sum_{i} a_i \Gamma_i$$

where each Γ_i is an irreducible representation of the group and a_i is a real scalar.

- Basically, a reducible representation is any nontrivial linear combination of irreducible representations.
- For example, with respect to the C_{2v} point group (see Figure II.4), $\Gamma = (7, 1, 5, 3) = 4A_1 + 2B_1 + B_2$ is a reducible representation.
- We may "factor" reducible representations by inspection, or by the...
- Decomposition/reduction formula for a reducible representation:

$$a_i = \frac{1}{h} \sum_{Q} N \cdot \chi(R)_Q \cdot \chi_i(R)_Q$$

- a_i is the number of times the irreducible representation appears in Γ_1 .
- -h is the order of the group.
- -N is the number of operations in class Q.
- $-\chi(R)_Q$ is the character of the reducible representation.
- $-\chi_i(R)_Q$ is the character of the irreducible representation.
- This formula cannot be applied to $D_{\infty h}$ and $C_{\infty v}$.
- Let's look at decomposing $\Gamma = (7, 1, 5, 3)$ into its component irreducible point groups using the above formula.

$$a_{A_1} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot 1 + 1 \cdot 5 \cdot 1 + 1 \cdot 3 \cdot 1) = 4$$

$$a_{A_2} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot 1 + 1 \cdot 5 \cdot -1 + 1 \cdot 3 \cdot -1) = 0$$

$$a_{B_1} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot -1 + 1 \cdot 5 \cdot 1 + 1 \cdot 3 \cdot -1) = 2$$

$$a_{B_2} = \frac{1}{4}(1 \cdot 7 \cdot 1 + 1 \cdot 1 \cdot -1 + 1 \cdot 5 \cdot -1 + 1 \cdot 3 \cdot 1) = 1$$

- You can also find websites that will apply the formula for you.
- Basis \rightarrow reducible representation \rightarrow irreducible representations workflow:
 - 1. Assign a point group.
 - 2. Choose a basis function (bond, vibration, orbital, angle, etc.).
 - 3. Apply operations.
 - The following shortcuts allow us to skip matrix math in certain situations.
 - If the basis stays the same: +1.
 - If the basis is reversed: -1.
 - If it is a more complicated change: 0.
 - 4. Generate a reducible representation.
 - 5. Reduce to irreducible representation.

- We now look at an example of applying the above method to H₂O.
 - H_2O is of the C_{2v} point group.
 - The 9×9 identity matrix represents the identity operation on the 3 atoms in H₂O, each described by 3 Cartesian coordinates. Thus, $\chi(E) = 9$.
 - The following matrix represents the C_2 symmetry operation. Thus, $\chi(C_2)=-1$.

- Note that atoms moved during the transformation do not contribute to the character of the transformation matrix.
- Since under $\sigma_v(xz)$ only O is unshifted, we need only consider its part of the transformation matrix (as follows) when looking for the character. Thus, $\chi(\sigma_v(xz)) = 1^{[3]}$.

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$$

- Since under $\sigma_v(yz)$ no atom is shifted, we need to consider each (identical) part of the transformation matrix (as follows) when looking for the character. Thus, $\chi(\sigma_v(yz)) = 3$.

$$\begin{bmatrix} x'\\y'\\z' \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\z \end{bmatrix}$$

- Thus, the characters of our final reducible representation is $\Gamma_{3N} = (9, -1, 1, 3)$.
 - This representation represents fully unrestricted motion of all 3 ambiguities of freedom.
- Another example: XeOF₄.

Figure II.5: XeOF₄.

- Point group: C_{4v} .
- Basis function: F atoms.
- Let's see what happens to the fluorine atoms under the C_{4v} operations (remember that if a basis element (a fluroine atom) stays the same, it contributes +1 to the character of an operation, and if it moves, it contributes 0 to the character).

³Note also that $a_{11}=1$ since the x-vector (a basis) is unchanged under $\sigma_v(xz)$, $a_{22}=-1$ since the y-vector is reversed under $\sigma_v(xz)$, and $a_{33}=1$ since the z vector is unchanged under $\sigma_v(xz)$.

E	all unchanged	4
C_4	all move	0
C_2	all move	0
$2\sigma_v$	2 move, 2 unchanged	2
$2\sigma_d$	all move	0

Table II.4: Changes in the fluorine atoms of XeOF₄ under the C_{4v} symmetry operations.

- Thus, $\Gamma = (4, 0, 0, 2, 0)$.
- With the C_{4v} character table and the decomposition formula, we can discover that $\Gamma = A_1 + B_1 + E$.

II.7 TA Review Session 1

- 1/22: We also don't need to show the equatorial electron pair in the shape picture.
 - For SeCl₄, we need to show that the axial bonds are longer and are not straight up and down.
 - For I_3^- , it's trigonal bipyrimidal EPA and linear molecular geometry there's an extra electron pair around the central iodine atom. This makes it $D_{\infty h}$ point group.
 - For SeOCl₄, we should also make the axials longer and bent away from the oxygen atom.
 - This molecule is sp^3d hybridized, not sp^2d^2 , as it would be if the oxygen were axial.
 - For IO(OH)₅, we should show the equatorial OH's pushed away from the oxygen atom. The oxygen bond should also be a bit shorter.
 - In the exam, they will specify whether we need to consider the hydrogens or not when calculating symmetry.
 - For ClOF₄⁻, one or the other of the lone pair/oxygen will push the equatorial fluorines a bit. You don't have to know witch, just show bent.
 - For XeO₂F₂, show the lone pair pushing the axial fluorines away.
 - For ${\rm IF_3}^{2-}$, show that this is a distorted T.
 - A tennis ball belongs to the D_{2d} point group since you have perpendicular C_2 axes punching through the seam and mirror planes at 45° angles to the C_2 axes (i.e., dihedral).
 - FeF_6^{3-} also loses 4 C_2 axes.
 - There are three possible isomers of IF₃O₂ (see Figure I.1), but the one with equatorial oxygens is the most stable.
 - The structure analogous to Figure I.1a has C_{2v} symmetry.
 - The structure analogous to Figure I.1b has D_{3h} symmetry.
 - The structure analogous to Figure I.1c has C_s symmetry.
 - Determine the point group of NO₃²⁻, HFC=C=CHF, H₂C=CF₂, and C₂H₆ (consider three possible conformers).
 - NO_3^{2-} is of the D_{3h} point group.
 - HFC=C=CHF is of the C_2 point group.
 - $H_2C=CF_2$ is of the C_{2v} point group.
 - C_2H_6 eclipsed has D_{3h} symmetry, staggered has D_{3d} symmetry, and others have D_3 symmetry.

II.8 Module 9: Molecular Vibrations

- 1/25: If you have a nonlinear triatomic molecule (like H_2O), we have 3 atoms \times 3 DOF = 9 DOF.
 - This accounts for any possible perturbations of our molecules.
 - We can break this down into three types of motion:
 - Translational motion along the x-, y-, and z-axes (3 DOFs).
 - Rotational motion about the x-, y-, and z-axes (3 more DOFs).
 - The remaining degrees of freedom are vibrational.
 - Every nonlinear molecule has 3 translational and 3 rotational DOFs.
 - The number of vibrations is 3N-6, where N is the number of atoms.
 - Every linear molecule has 3 translational and 2 rotational DOFs.
 - The number of vibrations is 3N-5, where N is the number of atoms.
 - Vibrational mode: A perturbation of molecular structure that keeps the center of mass of the molecule in one place.
 - For H₂O, there are three vibrational modes: antisymmetric stretch (one H moves away from the O as the other moves in, and then the process reverses), symmetric stretch (both H's move away from the O and then move back in), and scissoring bend (the bond angle changes).
 - For molecules in general, there are these three and an additional three: wagging (in H₂O, the H's rotate out of the plane of the molecule and then back), twisting (in H₂O, both H's rotate out of the plane of the molecule, but one in one direction and one in the other), and rocking (in H₂O, both H's rotate about the O within the plane of the molecule preserving the bond angle, and then go back).
 - What vibrational modes a molecule can and cannot have is governed by its point group and group theory.
 - Each normal mode of vibration forms a basis for an irreducible representation of the point group of the molecule.
 - Workflow to identify the vibrational properties of a molecule:
 - 1. Find number/symmetry of vibrational modes.
 - 2. Assign the symmetry of known vibrations.
 - 3. What does the vibration look like?
 - 4. Find if a vibrational mode is IR or Raman Active.
 - To find vibrational modes, follow the 5-step Basis → reducible representation → irreducible representation workflow and then subtract translational and rotational motion.
 - For example, with H_2O , as before, we have C_{2v} point group, 3N basis, $\Gamma_{3N} = (9, -1, 1, 3)$, and $\Gamma_{3N} = 3A_1 + A_2 + 2B_1 + 3B_2$.
 - We now need to use the basis functions in the C_{2v} character table to determine the translational and rotational degrees of freedom. From Figure II.4, the x, y, z-translational modes come from the B_1 , B_2 , and A_1 Γ_i 's, respectively. Thus, the total translational mode, sufficient to describe all possible translations in 3 DOFs, is trans = $A_1 + B_1 + B_2$. Similarly, we can determine that the total rotational mode is rot = $A_2 + B_1 + B_2$.
 - Thus, we can determine that the total vibrational mode is Γ_{3N} trans rot = $2A_1 + B_2$.

- When H_2O scissors or symmetrically stretches, it maintains its C_{2v} symmetry. Thus, both of these vibrations are represented by the totally symmetric irreducible representation A_1 (hence the $2A_1$ component).
- As to asymmetric stretch, there exist points in time where H_2O lowers its symmetry from C_{2v} to C_s , losing its C_2 and $\sigma_v(xz)$ symmetry elements but maintaining E and $\sigma_v(yz)$. This shift is encapsulated by the B_2 irreducible representation.
- We can see all of these modes in H₂O's infrared absorption spectrum.
 - Note that this spectrum does not tell us the energy of vibrations (we can model this with quantum mechanics), or if it is IR or Raman active (which modes will appear in the respective spectrum).
- Determine the number and symmetry types for the translations, vibrations, and rotations of PF₅.
 - Point group: D_{3h} .

D_{3h}	E	$2C_3$	$3C_2$	σ_h	$2S_c$	$3\sigma_v$	linear	quadratic
A_1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A_2'	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x, y)	$(x^2 - y^2, xy)$
A_1''	1	1	1	-1	-1	-1		
A_2''	1	1	-1	-1	-1	1	z	
$E^{\prime\prime}$	2	-1	0	-2	1	0	(R_x, R_y)	$x^{2} + y^{2}, z^{2}$ $(x^{2} - y^{2}, xy)$ (xz, yz)

Table II.5: Character table for the D_{3h} point group.

– We could write out all 18 x, y, z-vectors, or we can use a shortcut: To construct Γ_{3N} , we can, for each symmetry element, multiply the number of atoms atoms unmoved under the operation by the corresponding character the representation that accounts for x, y, z-movements.

$$\Gamma_{3N} = (\Gamma_{x,y,z}) \cdot (\# \text{ unmoved atoms})$$

Applying this shortcut, we have $\Gamma_{x,y,z} = E' + A_2'' = (3,0,-1,1,-2,1)$. We also have # unmoved atoms = (6,3,2,4,1,4). Thus, $\Gamma_{3N} = (18,0,-2,4,-2,4)$.

- We can now reduce it into $\Gamma_{3N} = 2A'_1 + A'_2 + 4E' + 3A''_2 + 2E''$.
 - Note that we still have our 18 degrees of freedom because each E is double degenerate, meaning that 4E' counts for 8 degrees of freedom and 2E'' counts for 4 degrees of freedom.
- This combined with the fact that $\Gamma_{\text{trans}} = \Gamma_{x,y,z} = E' + A''_2$ and $\Gamma_{\text{rot}} = A'_2 + E''$ implies that $\Gamma_{\text{vibs}} = 2A'_1 + 3E' + 2A''_2 + E''$.
 - For a similar reason to the note above, we can count 12 = 3N 6 degrees of freedom (vibrational modes) in Γ_{vibs} .
- Although degenerate modes count for multiple DOFs, the multiple modes they count for are of the same type.
 - \blacksquare In an ideal world, those modes corresponding to E would be twice as intense as the others.
 - From the definition of Γ_{vibs} and the above discussion, we know that PF₅ has 2+3+2+1=8 distinct vibrational modes.
- There are (broadly) two types of vibrations: **stretches** (ν) and **bends** (δ).
 - These two types appear in different energies in IR and Raman spectra.
- To differentiate between stretching and bending modes: Look at how the stretching modes transform. Each stretch happens along a single vector from central atom to ligand. Thus, if we let these vectors be our basis and look at how many vectors stay the same (+1) or change (-1) under each operation, we will have a reducible representation that can be decomposed. Its components will be the stretching modes and $\Gamma_{\text{vibs}} \Gamma_{\nu}$ will equal Γ_{δ} .

- Applied to PF₅, we have $\Gamma_{\nu} = (5, 2, 1, 3, 0, 3) = 2A'_1 + E' + A''_2$.
- Thus, both A'_1 representations, one E' representation, and one A''_2 representation correspond to stretching modes. Consequently, the other two E' representations, the other A''_2 representation, and the E'' representation correspond to bending modes.

II.9 Module 10: IR and Raman Active Vibrations

- Today, we will learn what we need to know for PSet 2. Tomorrow, we will introduce a more rigorous, quantum mechanical foundation.
- Molecular vibrations can be experimentally observed by infrared spectroscopy or Raman spectroscopy.
- Infrared spectroscopy: A method of measuring the change in dipole moment during a vibration^[4]. Also known as IR spectroscopy.
- Raman spectroscopy: A method of measuring the change in the polarizability during a vibration. We imping upon a sample of a substance with an incident light (a powerful laser). Most of the light that scatters will be a **Raleigh scatter**, but some will be a **Raman scatter** (a new wavelength).
- Raleigh scatter: The same wavelength is emitted as was impinged by the incident light because the laser was elastically scattered. The electrons fell the same number of energy levels that they rose after absorbing the light.
- Raman scatter: A new wavelength is emitted, different than the one impinged by the incident light. The electrons fell fewer (Stokes Raman scattering) or more (Anti-Stokes Raman scattering) energy levels than they rose after absorbing the light.
- IR active (vibration): A vibration that transforms with the same symmetry as the \vec{x} , \vec{y} , and \vec{z} vectors (see the χ tables).
- Raman active (vibration): A vibration having the same symmetry as the quadratic x, y, z terms, i.e., x^2, z^2, yz , etc.
- For molecules possessing inversion centers, IR and Raman activity will be mutually exclusive.
- Activity data comes from character tables.
 - All vibration representations that have a linear term are IR active, while those that have a
 quadratic term are Raman active.
- Continuing with the PF₅ example...
 - Table II.5 tells us that E' and A''_2 vibrations are IR active, and A'_1 , E', and E'' are Raman active.
 - Thus, since $\Gamma_{\text{vibs}} = 2A'_1 + 3E' + 2A''_2 + E''$, there are 3 + 2 = 5 IR active bonds (corresponding to $3 \cdot 2 + 2 = 8$ vibrations) and 2 + 3 + 1 = 6 Raman active bonds (corresponding to $2 + 3 \cdot 2 + 1 \cdot 2 = 10$ vibrations).

II.10 Chapter 4: Symmetry and Group Theory

From Miessler et al. (2014).

- 1/18: Coincident (axes): Two identical axes.
 - For example, the C_3 rotation axis of CHCl₃ is **coincident** with the C-H bond axis.

⁴Refer to Labalme (2020a), specifically the discussion of spectroscopy in Chapter 13.

- Snowflakes, which are often planar and have hexagonal symmetry, have a twofold (C_2) , threefold (C_3) , and sixfold (C_6) axis through their center and perpendicular to their plane.
 - Rotations C_3^2 and C_6^5 are also symmetry operations.

1/19:

- (a) About the principal axis.
- (b) About perpendicular axes.

Figure II.6: Rotations of a snowflake design.

- 1/18: "When necessary, the C_2 axes perpendicular to the principal axis are designated with primes; a single prime (C_2') indicates that the axis passes through several atoms of the molecule, whereas a double prime (C_2'') indicates that it passes between the outer atoms" (Miessler et al., 2014, p. 77).
- 1/19: Even though $S_2 \equiv i$ and $S_1 \equiv \sigma$, the *i* and σ notations are preferred because of the group theory requirement of maximizing the number of unique classes of symmetry operations associated with a molecule.
 - Point group: A set of symmetry operations that describes a molecule's overall symmetry.
 - Alternative steps for assigning point groups:
 - 1. Determine whether the molecule exhibits very low symmetry (C_1, C_s, C_i) or high symmetry $(T_d, O_h, C_{\infty v}, D_{\infty h}, I_h)$.
 - 2. If not, find the highest order C_n axis for the molecule.
 - 3. Does the molecule have any C_2 axes perpendicular to the principal C_n axis? If it does, there will be n of such C_2 axes, and the molecule is in the D set of groups. If not, it is in the C or S set.
 - 4. Does the molecule have a mirror plane (σ_h) perpendicular to the principal C_n axis? If so, it is classified as C_{nh} or D_{nh} . If not, continue with Step 5.
 - 5. Does the molecule have any mirror planes that contain the principal C_n axis $(\sigma_v \text{ or } \sigma_d)$? If so, it is classified as C_{nv} or D_{nd} . If not, but it is in the D set, it is classified as D_n . If the molecule is in the C or S set, continue with Step 6.
 - 6. Is there an S_{2n} axis collinear with the principal C_n axis? If so, it is classified as S_{2n} . If not, the molecule is classified as C_n .
 - Groups of high symmetry:
 - $-C_{\infty v}$ (linear): These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They do not have a center of inversion.
 - $-D_{\infty h}$ (linear): These molecules are linear, with an infinite number of rotations and an infinite number of reflection planes containing the rotation axis. They also have perpendicular C_2 axes, a perpendicular reflection plane, and an inversion center.
 - T_d (tetrahedral): Most (but not all) molecules in this point group have the familiar tetrahedral geometry. They have four C_3 axes, three C_2 axes, three S_4 axes, and six σ_d planes. They have no C_4 axes.

- Look for C_3 and C_2 axes.
- O_h (octahedral): These molecules include those of octahedral structure, although some other geometrical forms, such as the cube, share the same set of symmetry operations. Among their 48 symmetry operations are four C_3 rotations, three C_4 rotations, and an inversion.
 - Look for C_4 , C_3 , and C_2 axes.
- I_h (icosahedral): Icosahedral structures are best recognized by their six C_5 axes, as well as many other symmetry operations 120 in all.
 - Look for C_5 , C_3 , and C_2 axes.
- T_h : Adds i to T_d . Example: W[N(CH₃)₂]₆.
- 1/24: When we have a block-diagonalized reducible representation, the irreducible representations can be obtained from the individual blocks.
 - This is because we will find that an analogous set of blocks satisfies the multiplication table for the group.
 - For the C_{2v} point group, we have the following reducible representation that can be applied to each coordinate.

$$E: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad C_2: \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_v(xz): \begin{bmatrix} 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \sigma_v(yz): \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- The above matrices are block diagonalized. Thus, the sets of a_{11} , a_{22} and a_{33} form three irreducible representations (and we can confirm that these obey the C_{2v} group multiplication table).

$$\begin{array}{lll} E: \begin{bmatrix} 1 \end{bmatrix} & C_2: \begin{bmatrix} -1 \end{bmatrix} & \sigma_v(xz): \begin{bmatrix} 1 \end{bmatrix} & \sigma_v(yz): \begin{bmatrix} -1 \end{bmatrix} \\ E: \begin{bmatrix} 1 \end{bmatrix} & C_2: \begin{bmatrix} -1 \end{bmatrix} & \sigma_v(xz): \begin{bmatrix} -1 \end{bmatrix} & \sigma_v(yz): \begin{bmatrix} 1 \end{bmatrix} \\ E: \begin{bmatrix} 1 \end{bmatrix} & C_2: \begin{bmatrix} 1 \end{bmatrix} & \sigma_v(xz): \begin{bmatrix} 1 \end{bmatrix} & \sigma_v(yz): \begin{bmatrix} 1 \end{bmatrix} \\ \end{array}$$

- Three of the C_{2v} irreducible representations can be found in this way. The fourth can be found w/ linear algebra and the character table properties (or by inspection).
- If one matrix in the reducible representation cannot be blocked past having a 2×2 chunk, per se, then the others must also have that 2×2 chunk (so that we have an irreducible 2×2 representation).
- "Matching the symmetry operations of a molecule with those listed in the top row of the character table will confirm any point group assignment" (Miessler et al., 2014, p. 99).
- **Symmetric**: Character of 1.
- Antisymmetric: Character of -1.
- Mulliken symbol rules:
 - 1. "Letters are assigned according to the dimension of the irreducible representation" (Miessler et al., 2014, p. 99).
 - Assign A if the dimension is 1 and the representation is symmetric to the principal rotation operation $(\chi(C_n) = 1)$.
 - Assign B if the dimension is 1 and the representation is antisymmetric to the principal rotation operation $(\chi(C_n) = -1)$, or if $\chi(S_{2n}) = -1$ even if $\chi(C_n) = 1$.
 - Assign E if the dimension is 2.
 - Assign T if the dimension is 3.

- 2. "Subscript 1 designates a representation symmetric to a C_2 rotation perpendicular to the principal axis, and subscript 2 designates a representation antisymmetric to the C_2 . If there are no perpendicular C_2 axes, 1 designates a representation symmetric to a vertical plane, and 2 designates a representation antisymmetric to a vertical plane" (Miessler et al., 2014, p. 100).
- 3. "Subscript g designates representations symmetric to inversion, and subscript u designates representations antisymmetric to inversion" (Miessler et al., 2014, p. 100).
- 4. "Single primes are symmetric to σ_h and double primes are antisymmetric to σ_h when a distinction between representations is needed $(C_{3h}, C_{5h}, D_{3h}, D_{5h})$ " (Miessler et al., 2014, p. 100).

II.11 Nocera Lecture 3

From Nocera (2008).

1/25:

- Corresponding blocks within block-diagonalized matrices obey the same multiplication properties as the block-diagonalized matrices, themselves.
- One basis may not uncover all irreducible representations.
 - For example, we can use a Cartesian basis to uncover the A_1 and E irreducible representations of the D_3 point group (see Table II.3) and the basis function R_z ($E: R_z \to R_z$, $C_3: R_z \to R_z$, $\sigma_v: R_z \to \bar{R}_z$) to uncover the A_2 irreducible representation.
- We can also construct a character table algebraically. Continuing with the D_3 example...
 - There is one totally symmetric representation $\Gamma_i = (1, 1, 1)$.
 - $-h=6=\sum_i [\chi_i(E)]^2$. Since each $\chi_i(E)$ can only be 1, 2, or 3, we know that $\chi_1(E)=\chi_2(E)=1$ and $\chi_3(E)=2$.
 - This combines with orthogonality to reveal that

$$0 = \sum_{R_c} g_c \chi_1(R_c) \chi_2(R_c)$$

= 1 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot \chi_2(C_3) + 3 \cdot 1 \cdot \chi_2(\sigma_v)
= 1 + 2\chi_2(C_3) + 3\chi_2(\sigma_v)

i.e., $\Gamma_i = (1, 1, -1)$.

To determine the last representation, we can use two rules and solve as a system of equations.

$$0 = \sum_{R_c} g_c \chi_1(R_c) \chi_3(R_c)$$

$$= 2 + 2\chi_3(C_3) + 3\chi_3(\sigma_v)$$

$$6 = \sum_{R_c} g_c [\chi_3(R_c)]^2$$

$$= 4 + 2[\chi_3(C_3)]^2 + 3[\chi_3(\sigma_v)]^2$$

From this, we can determine that $\chi_3(C_3) = -1$ and $\chi_3(\sigma_v) = 0$. Therefore, $\Gamma_i = (2, -1, 0)$.

References

- Cotton, F. A. (1990). Chemical applications of group theory (third). John Wiley & Sons.
- Labalme, S. (2020a). AP chemistry notes (Accessed 22 December 2020.). https://github.com/shadypuck/APChemNotes/blob/master/main.pdf
- Labalme, S. (2020b). CAAG Thomas notes (Accessed 25 December 2020.). https://github.com/shadypuck/CAAGThomasNotes/blob/master/main.pdf
- Lewis, G. N. (1916). The atom and the molecule. Journal of the American Chemical Society, 38(4), 762-785. https://doi.org/10.1021/ja02261a002
- Miessler, G. L., Fischer, P. J., & Tarr, D. A. (2014). Inorganic chemistry (fifth). Pearson Education.
- Nocera, D. (2008). Principles of inorganic chemistry ii: 5.04. Massachusetts Institute of Technology: MIT OpenCourseWare. https://ocw.mit.edu License: Creative Commons BY-NC-SA