

Arquitetura de computadores Estrutura do Processador

ARQUITETURA DE COMPUTADORES

PROF. Alex Lima

Introdução

- Arquitetura de computadores
 - Visão geral
 - Memória e I/O
 - •ULA (Unidade Lógica e Aritmética)
 - Conjunto de instruções
 - Unidade de Controle
 - Paralelismo

Introdução

- Processador
 - Estrutura e funcionamento de um processador
 - Unidade de controle

Paralelismo

Introdução

- Processador
 - Estrutura e funcionamento de um processador
 - Organização de registradores

Ciclo de instrução

Pipeline de instruções

Função do processador

- Buscar instruções
- Decodificar instruções
- Obter dados
- Processar dados
- Gravar dados

Barramento do sistema

Ciclo de instrução

- 1. A UC busca a instrução na memória, no endereço armazenado no PC
- 2. A instrução é carregada da memória para o IR
- 3. A instrução é decodificada
- 4. O endereço do operando é carregado no MAR
- 5. A UC busca o operando na memória, no endereço armazenado no MAR
- 6. Os operandos são carregados da memória para o MBR
- 7. A ULA executa a instrução
- 8. A UC envia o resultado para o endereço do operando destino.

- Registradores visíveis ao usuário/programador
 - · Possibilita que o programador minimize as referências à memória.

- Registradores de controle e estado
 - <u>Unidade de controle</u>: Controle de operações
 - <u>Sistema Operacional</u>: Controle de programas

- Registradores visíveis ao usuário/programador
 - •São registradores que podem ser referenciados pelos recursos de uma linguagem de máquina.
 - Registradores de propósito geral
 - Registradores de dados
 - Registradores de endereços
 - Códigos condicionais

- Registradores de propósito geral
 - Armazenar dados conforme o código do programador
 - Em algumas arquiteturas, há separação entre registradores de dados e de endereços.
 - No MIPS, há 32 registradores de propósito geral (*).

Registradores de dados

- Armazenar dados.
- Não podem ser utilizados para calcular o endereço de operandos.

Registradores de endereços

- Armazenar endereços.
- Podem ser reservados para uso de um <u>modo de endereçamento</u> específico.

- Registradores de endereços
 - Ponteiros de segmento
 - · Armazena o endereço base de um segmento de memória
 - Registradores de índice
 - Usados para indexar endereços de memória
 - Ponteiros de pilha
 - Demarca o topo de uma pilha de endereços

- Registradores de códigos condicionais (flags)
 - Flags são sinais ativados de acordo com alguma condição.
 - As flags são parcialmente acessíveis ao programador.
 - Uma flag pode ser ativada como resultado de uma operação.
 - Exemplos:
 - Overflow
 - Carry
 - I/O

Fatores de impacto

- Número de registradores
 - Buscas na memória / Maior campo de endereço.
- Tamanho dos registradores
 - Registradores de tamanho geral/ Múltiplos registradores para dados de tamanho maior.

• Registradores de controle e estado

Controle de operações

Armazenar status

- Registradores de controle e estado
 - Exemplo
 - PC (Program Counter)
 - IR (Instruction Register)
 - MAR (Memory Address Register)
 - MBR (Memory Buffer Register)
 - · Cada arquitetura possui seus próprios registradores de uso especial.

- Registradores de controle e <u>estado</u>
 - Exemplo
 - PSW (Program Status Word) ou Palavra de Estado do Programa
 - Conjunto de registradores que armazenam informações de estado (flags).
 - Cada registrador armazena uma flag.
 - Cada flag informa sobre o estado de algum elemento na CPU.

• Registradores de controle e <u>estado</u>

- Exemplo de flags
 - Sinal: Sinal de um operando ou do resultado de uma operação.
 - **Zero:** Ativado quando o resultado é zero.
 - Carry: Ativado quando ocorre carry-in ou carry-out na operação.
 - Ativar/Desativar Interrupção: Indica quando uma interrupção está ativa.
 - <u>Supervisor</u>: Indica se o processador está executando no modo supervisor ou no modo usuário.

Interrupção

- 1. Módulo de E/S emite um sinal de interrupção
- 2. A CPU finaliza a instrução atual
- 3. O processador reconhece a interrupção
- 4. A CPU salva o estado atual dos registradores
- 5. A CPU atualiza o PC com o endereço da rotina de interrupção
- 6. A CPU processa a interrupção
- 7. A CPU restaura o estado anterior dos registradores

- Registradores de controle e <u>estado</u>
 - Modo de execução do processador
 - Modo supervisor
 - Rotinas do sistema operacional
 - Modo usuário
 - Rotinas do usuário

PRÁTICA

- Quais as funções de um processador?
- Liste e descreva a função dos registradores de uso especial de uma CPU.
- Defina modo de execução do processador.
- Diferencie o modo supervisor do modo usuário.

Modos do processador

- Modo supervisor
- Modo de abortamento
- Modo indefinido
- Modo de interrupção
- Modo de interrupção rápido
- Modo de sistema