## **CSCIGA 2437**

# **Analysis of Cryptocurrency and Industry Stocks**

Yi Peng Chenmeinian Guo Xiao Lu Weizhou Ding

## Overview

- Abstract & Motivation
- Information Technology
- Real Estate
- Crypto
- Energy
- Summary



## **Abstract**

The purpose of this project is to use some data analysis methods to analyze historical data of stocks, cryptocurrencies, and real estate, study their relationships, and give some investment suggestions



## Motivation

### Who will benefit from this analytic?

Investors, financial analysts, and stock managers

### Why is this analytic important?

This analytic helps investors and analysts find links between cryptocurrencies and stocks, making it easier to manage risks, and boost returns. It's all about giving clear insights for smarter investment decisions in today's fast-moving markets.



### Using clustering to get correlations

Data ingestion

Data cleansing

Normalization

Clustering

Extract stocks whose stock sector is technology information and concentrate them into the same dataframe

Extract stock data from 2015 to 2019, remove outliers, and replace null values with 0

Considering the price differences between stocks, regularize the stock data and use the rate of change to represent the trend of the stock.

Use k-means to cluster stocks and divide them into 5 categories, using the rate of change as the dimension



**AMEX, NYSE, NASDAQ stock histories** 

End-of-day data of 8,000+ stocks trading on AMEX, NYSE, and NASDAQ





### "Information Technology" Stock

| lstock symbo | +<br>ls! 2      | :<br>:015-01-05  | 2015-01-15             | <br>2015-02-05          | 2015-02-10            |
|--------------|-----------------|------------------|------------------------|-------------------------|-----------------------|
| +HU          | +BS -0.00149429 | <br>881735 6.152 | +-<br>094369817895E-41 | <br>0.03959245038616732 | 0.010465022665288926  |
| I NO         | VTI-0.01187151  | .3960673431-0.02 | 25290998880917         | 7.391152312787863E-4    | 0.005860800435294     |
| I A          | PII             | 0.01             | 0.01                   | 0.01                    | 0.01                  |
| I SO         | NM I            | 0.01             | 0.01                   | 0.01                    | 0.01                  |
| I MT         | CHI             | 0.01             | 0.01                   | 0.01                    | 0.01                  |
| I CM         | CMI -0.4307012  | 370955561  -0.4  | 8994514255473631-      | -0.46096880561830855    | -0.445682794577900831 |
| l J          | BLI-0.07678201  | .4022934391-0.09 | 6977396344005481-      | -0.06186853074330       | -0.06854709359102473  |
| I TT         | WOI-0.03662362  | 1704443221-0.00  | 431340521930           | -0.01808869601015206    | -0.02661990689466     |
| I CS         | COI-0.16201027  | '845894045I-0.17 | 4439830925665061-      | -0.137828648647415291   | -0.1436791828345364   |
| Ī            | MXI-0.01639344  | 5063851-0.02     | 67788397832910         | 0.005280523149862271    | -0.00665332199414     |
| l G          | IB10.009157019  | 73625471210.009  | 56685092035769516      | 0.013118781170277316    | 0.013922271559746902  |
| I G          | ENI-0.04952820  | 109573586  0.02  | 3391790035497851       | 0.036299815105553581    | 0.0099999904632568361 |
| I T          | ELI-0.12098070  | 0494090041-0.12  | 105467337614684 -      | -0.09416167805818954    | -0.11269070477000276  |

Each cell represents the stock's rate of change for the day







| ++               | +       |
|------------------|---------|
| stock_symbol pre | diction |
| +                | +       |
| I JBLI           | 11      |
| I TELI           | 11      |
| I JNPRI          | 11      |
| I CMCM I         | 31      |
| l FENG!          | 31      |
| I AII            | 31      |
| l RSSS1          | 41      |
| l CSC01          | 21      |
| I DAKT I         | 21      |
| I WDC I          | 21      |
| I HUBS I         | 01      |
| I NOVT I         | 01      |
| I APII           | 01      |
| +                | +       |

### **Correlations**



- Get 5 clusters
- For every cluster, select 3 stocks
- Calculate the correlation

| ++                      |        |    |  |  |  |
|-------------------------|--------|----|--|--|--|
| stock_symbol prediction |        |    |  |  |  |
| +                       |        | +  |  |  |  |
| I                       | JBLI   | 11 |  |  |  |
| 1                       | TELI   | 11 |  |  |  |
| 1                       | JNPR I | 11 |  |  |  |
| I                       | CMCMI  | 31 |  |  |  |
| I                       | FENGI  | 31 |  |  |  |
| 1                       | AII    | 31 |  |  |  |
| 1                       | RSSSI  | 41 |  |  |  |
| Ī                       | CSC01  | 21 |  |  |  |
| 1                       | DAKTI  | 21 |  |  |  |
| T                       | WDCI   | 21 |  |  |  |
| I                       | HUBS I | 01 |  |  |  |
| 1                       | NOVTI  | 01 |  |  |  |
| 1                       | APII   | 01 |  |  |  |
| +                       |        | +  |  |  |  |

8

## **Real Estate**

#### **Dataset**

Publicly available NYC property sales dataset from Kaggle, containing property sale records:

BOROUGH, NEIGHBORHOOD, CATEGORY, SALE PRICE, SALE DATE, YEAR BUILT, RESIDENTIAL UNITS, TOTAL UNITS, etc.

The **focus** is on columns like SALE PRICE, CATEGORY, NEIGHBORHOOD, and SALE DATE for analysis.

#### **Overview**

#### **Data Processing**

#### Analysis:

- Zero Sale
- Category, Neighborhood, Zip Code
- Time (Month & Quarter)

#### Clustering







### **Current NYC Property Sales**

Dataset · 8mo ago · by Data Science Donut

15+ year's worth of sold NYC real estate properties. Updated monthly.

# **Data Processing**

#### **Steps for Cleaning the Data**

- 1. **Null/Invalid Value Handling**: Removed rows with critical null or just invalid values in columns such as SALE PRICE and ZIP CODE.
- 2. **Column Filtering**: Dropped irrelevant columns such as EASE-MENT and APARTMENT NUMBER.
- 3. **Outlier Removal**: Removed extreme values in columns like SALE PRICE, TOTAL SALES, and GROWTH RATE using 1st and 99th percentiles.

**Note:** An <u>easement</u> is a nonpossessory right that allows another party to use your land for specific purposes without owning the land itself.



## **Zero Sale Analysis**

About **27.8% of the records have SALE PRICE** = **0**. These often indicate non-standard transactions like inheritances, donations, family transfers, or government acquisitions. For example, neighborhoods like **Midtown West** (12,217) and **Flushing-North** (11,537) lead in a lot of zero-sale counts, potentially reflecting high activity in corporate or institutional transfers. In contrast, areas like **Bedford Stuyvesant** (8,930) and **Crown Heights** (5,160) might reflect more localized, community-driven property exchanges, such as inheritances or family transfers.

Understanding these patterns helps identify where such non-market activities are concentrated, providing insights into urban property trends and socio-economic behaviors within different neighborhoods.



## **Category Analysis**

#### **Some Findings from Category Analysis:**

- Growth Rate: Government related categories exhibited unusually high growth rates due to specific outliers.
- **High-Value Categories**: Theatres and Office Buildings had the highest average and median sale prices.
- Sales Volume: Residential categories (i.e. Coops Elevator Apartments, One Family Dwellings) had the highest total sales.



## Neighborhood Analysis

#### Some Findings from Neighborhood Analysis:

- **High-Value Neighborhoods**: Premium areas like Midtown West and Wall Street consistently had high average sale prices.
- **Localized Patterns**: Neighborhoods like Bedford Stuyvesant reflected community-driven transactions such as family transfers.



## Time-Based Analysis





#### **Key Insights from Temporal Analysis:**

#### Monthly Trends:

 December had the <u>highest average sale prices</u>, while June and August had the <u>highest total sales</u>.

#### Quarterly Trends:

- Q4 slightly outperformed other quarters in average sale prices.
- Q3 had the highest total sales volume, which potentially aligns with market activity in summer months.



## Clustering

- Grouped properties into **five clusters** based on SALE PRICE, GROWTH RATE, and TOTAL SALES using **K Means** Algorithm.
- Identified high-growth clusters with categories and neighborhoods showing promising market potential.
- PCA-based visualization highlighted clear segmentation.
- X-axis for the below two graphs are average sale price and growth rate, respectively.



## **Data Source**

Name: Crypto Currency pairs at 1-minute resolution

Description: This dataset provides open, high, low, close data at 1 minute resolution of BTC and

ETH from 2013 to 2023.

Size of data: 2.2 GB



#### 400+ crypto currency pairs at 1-minute resolution

**618** 

Dataset  $\cdot$  1y ago  $\cdot$  by Carsten

Historical crypto currency data from the Bitfinex exchange including Bitcoin

20,586 downloads

Name: Crypto-Currency: Bitcoin and Ethereum data

Description: This data provides daily BTC and ETH transaction data from 2018 through 2023

Size of data: 300 KB



## **Data Sample**

```
|12/28/2018|116.898201|137.647018| 115.69313|137.647018|137.647018|3.130201009E9|Etherium|
|12/29/2018|138.468781|147.034332|134.570175|138.018341|138.018341|3.169029972E9|Etherium|
|12/30/2018|137.627457|140.689087| 133.98233|139.859451|139.859451|2.660086834E9|Etherium|
|12/31/2018|140.031067|140.181152|132.519394|133.368256|133.368256|2.358360234E9|Etherium|
  1/1/2019|133.418152|141.397507|132.650711|140.819412|140.819412|2.258709868E9|Etherium|
  1/2/2019|141.519516|156.929138|140.650955|155.047684|155.047684|3.328240369E9|Etherium
  1/3/2019|155.196045|155.863052|147.198364| 149.13501| 149.13501| 2.67616488E9|Etherium|
  1/4/2019|148.912888|156.878983|147.907104| 154.58194| 154.58194|3.126192535E9|Etherium
  1/5/2019|154.337418| 160.82489|154.337418|155.638596|155.638596|3.338211928E9|Etherium|
  1/6/2019 | 155.80423 | 159.371445 | 152.085922 | 157.746201 | 157.746201 | 3.231294371E9 | Etherium
  1/7/2019|157.809494|158.450424|151.150726|151.699219|151.699219|2.712108388E9|Etherium|
  1/8/2019|151.967545|153.625778| 148.66954|150.359634|150.359634| 2.45980814E9|Etherium|
  1/9/2019|150.554688|153.622253|150.288376|150.803116|150.803116|2.369241197E9|Etherium|
 1/10/2019|150.843506| 152.14827|126.529373|128.625183|128.625183|3.397734456E9|Etherium|
 1/11/2019|127.813965|130.165939|125.244942|127.548325|127.548325|2.667585234E9|Etherium|
 1/12/2019|127.528084|128.666122|125.446754| 125.96653| 125.96653|2.212109224E9|Etherium|
 1/13/2019|125.907227|126.267876|116.085968|116.897804|116.897804|2.268263944E9|Etherium
```



# Design Diagram



Data Cleaning
Dealing with
missing values
Formatting all
the columns

Analysis
Finding data
distributions and
key patterns





Model Selection and Training random forest, gradient based tree and a self-made time series model Model Evaluation RMSE





# **Code Challenge 1**

### Standardizing the date formats across datasets

Use from\_unixtime to format

| 12/1/2018 | 113.397758 | 120.841454 | 111.619125 |
| 12/2/2018 | 118.26815 | 120.56205 | 116.092041 |
| 12/3/2018 | 116.378761 | 116.619064 | 107.415657 |
| 12/4/2018 | 108.803162 | 113.142914 | 107.402718 |
| 12/5/2018 | 110.335518 | 110.59861 | 102.475555 |
| 12/6/2018 | 102.450592 | 104.103493 | 91.761055 |
| 12/7/2018 | 91.649834 | 96.089844 | 83.469719 |
| 12/8/2018 | 93.41008 | 97.059883 | 86.825668 |
| 12/9/2018 | 92.035431 | 98.900032 | 91.031281 |

| 1/1/2019|133.418152|141.397507|132.650711|
| 1/2/2019|141.519516|156.929138|140.650955|
| 1/3/2019|155.196045|155.863052|147.198364|
| 1/4/2019|148.912888|156.878983|147.907104|
| 1/5/2019|154.337418| 160.82489|154.337418|
| 1/6/2019| 155.80423|159.371445|152.085922|
| 1/7/2019|157.809494|158.450424|151.150726|
| 1/8/2019|151.967545|153.625778| 148.66954|
| 1/9/2019|150.554688|153.622253|150.288376|
| 1/10/2019|150.843506| 152.14827|126.529373|

Use regular expressions



# Code Challenge 2

- Regression Task and nonlinear data
- Random Forest and Gradient Boosted Trees
- ARIMA
- Inconsistency with the current Scala versions
- A simple time series model using Linear Regression combined with lagged features



## Result





## Result



### **Data Source**

| Ticker   | Company Name                    | Primary Industry       | Secondary Industry                             | Tertiary Industry                            | Quaternary Industry              |
|----------|---------------------------------|------------------------|------------------------------------------------|----------------------------------------------|----------------------------------|
| A.N      | Agilent Technologies, Inc.      | Health Care            | Pharmaceuticals, Biotechnology & Life Sciences | Life Sciences Tools & Services III           | Life Sciences Tools & Services   |
| AA.N     | Alcoa Corporation               | Materials              | Materials II                                   | Metals & Mining                              | Aluminum                         |
| AACG.O   | ATA Creativity Global           | Consumer Discretionary | Consumer Services                              | Diversified Consumer Services                | Education Services               |
| AACT.N   | Ares Acquisition Corp II        | Financials             | Diversified Financials                         | Capital Markets                              | Investment Banking & Brokerage   |
| AACT_U.N | Ares Acquisition Corp II        | Financials             | Diversified Financials                         | Capital Markets                              | Investment Banking & Brokerage   |
| AADI.O   | Aadi Bioscience, Inc.           | Health Care            | Pharmaceuticals, Biotechnology & Life Sciences | Pharmaceuticals III                          | Pharmaceuticals                  |
| AAL.O    | American Airlines Group Inc.    | Industrials            | Transport                                      | Airlines III                                 | Airlines                         |
| AAM.N    | AA Mission Acquisition Corp.    | Financials             | Diversified Financials                         | Capital Markets                              | Investment Banking & Brokerage   |
| AAME.O   | Atlantic American Corporation   | Financials             | Insurance II                                   | Insurance III                                | Multi-line Insurance             |
| AAMU.N   | AA Mission Acquisition Corp.    | Financials             | Diversified Financials                         | Capital Markets                              | Investment Banking & Brokerage   |
| AAOI.O   | Applied Optoelectronics, Inc.   | Information Technology | Technology Hardware And Device                 | Communications Equipment III                 | Communications Equipment         |
| AAON.O   | AAON, Inc.                      | Industrials            | Capital Goods                                  | Building Products III                        | Building Products                |
| AAP.N    | Advance Auto Parts, Inc.        | Consumer Discretionary | Retailing                                      | Specialty Retail                             | Automotive Retail                |
| AAPL.O   | Apple Inc.                      | Information Technology | Technology Hardware And Device                 | Computers & Peripherals                      | Computer Hardware                |
| AAT.N    | American Assets Trust, Inc.     | Real Estate            | Real Estate II                                 | Equity Real Estate Investment Trusts (REITs) | Diversified REITs                |
| AB.N     | Alliancebernstein Holding L.P.  | Financials             | Diversified Financials                         | Capital Markets                              | Asset Management & Custody Banks |
| ABAT.O   | American Battery Technology Con | r Materials            | Materials II                                   | Metals & Mining                              | Diversified Metals & Mining      |
| ABBV.N   | Abbvie Inc.                     | Health Care            | Pharmaceuticals, Biotechnology & Life Sciences | Pharmaceuticals III                          | Pharmaceuticals                  |
| ABCB.N   | Ameris Bancorp                  | Financials             | Banks                                          | Commercial Banks                             | Regional Banks                   |
| ABCL.O   | Abcellera Biologics Inc.        | Health Care            | Pharmaceuticals, Biotechnology & Life Sciences | Biotechnology III                            | Biotechnology                    |
| ABEO.O   | Abeona Therapeutics Inc.        | Health Care            | Pharmaceuticals, Biotechnology & Life Sciences | Pharmaceuticals III                          | Pharmaceuticals                  |



Data Cleaning and Manipulation

- Selecting stocks
- Cleaning the data format
- Downloading the actual price data for later analysis



### Date in use

```
ACDC
        Date
                             AE ALTO
0 2022-05-13 18,110001 32,203209 4,86 8,433784 6,98 151,680298
1 2022-05-16 17.990000 31.971334 4.81 8.516552 7.33 143.772537
2 2022-05-17 18.080000 31.850763 4.88 8.789676 8.00 147.379929
3 2022-05-18 17.980000 32.110462 4.48 8.533106 7.70 144.987671 7.80
4 2022-05-19 16.879999 32.397991 4.33 8.351019 7.49 143.639633 7.63
        APA
                               WFRD
                                           WHD
                                                     WKC
            32.279999 ... 29.977989 46.279037
                                               22.015083
            33.939999 ... 30.942776 47.567005
                                               22.807402
            36.270000 ... 31.290894 47.586514
                                               22.581028
3 37.800991 34.799999 ... 29.600033 45.937531
                                               24.090200
4 38.146755 35.169998 ... 29.629871 46.679092 24.241116 30.836391
       WII
0 5.397073 7.200490
                    1.17 81.635147
```



### Daily Return

| Date      | ACDC_ret        | AE_ret          | ALTO_ret         | AM_ret         | AMPY_ret      | AMR   |
|-----------|-----------------|-----------------|------------------|----------------|---------------|-------|
| 2022/7/21 | -0.017292839    | 3.1769918034909 | -0.081967191     | -0.015151446   | -0.051724125  | -0    |
| 2022/7/22 | -0.049150454    | -0.006986319    | -0.045918383     | -0.010256383   | -0.039669461  | -     |
| 2022/7/25 | 0.068283324     | -0.001279266    | 0.03208553081633 | 0.031087998451 | 0.11703955852 | 0.0   |
| 2022/7/26 | 0.022102798     | 0.0156901115948 | -0.005181342     | 0.003598767    | -0.010785778  | -     |
| 2022/7/27 | 0.062536508     | -0.004413685    | 0.044270916      | 0.009221514    | 0.073208689   | 0.0   |
| 2022/7/28 | 0.004950503     | 0.0107663386018 | 0.004987526      | 0              | -0.029027549  | -0.0  |
| 2022/7/29 | 0.006020728     | 0.065162915     | 0.06699751       | 0.021319841    | 0.02391627    | 0.01  |
| 2022/8/1  | -0.02285093     | -0.0117647      | -0.020930267     | -0.001988214   | -0.048175172  | -0.0  |
| 2022/8/2  | 0.022828607     | -0.005952408    | 0.06175766       | 9.961997240792 | -0.003067482  | 4.430 |
| 2022/8/3  | -5.44E-04       | 0.0197605892611 | -0.008948538     | -0.002985289   | -0.049230796  | -0.0  |
| 2022/8/4  | -0.065359517    | -0.01673515     | -0.018058674     | -0.038922033   | -0.03398059   | -0.0  |
| 2022/8/5  | 0.0180652371036 | 0.041803468     | 0.082758653      | 0.00934553     | 0.008375242   | 0.0   |
| 2022/8/8  | 0.002862115     | -0.040412708    | 0.023354593      | 0.001029112    | -0.013289024  | 0.0   |
| 2022/8/9  | -0.027397233    | 5.9725833586386 | -0.01244812      | 0.014388364303 | 0.02693600098 | -0.0  |
| 2022/8/10 | 0.047535177     | 0.069552207     | 0.03781508816878 | 0.021276641871 | 0.027868865   | 0.0   |
| 2022/8/11 | 0.026330493     | -0.020373807    | -0.008097158     | 0.029761808    | 0.13556617340 | 0.0   |
| 2022/8/12 | 0.1080785794333 | -0.038461494    | 0.02857140076751 | 0.004817085    | 0.05617979    | 0.0   |
| 2022/8/15 | -0.033497459    | -0.094222455    | -0.053571425     | -0.016299228   | -0.019946821  | -0.0  |



### Annual Return and Volatility

```
// Annual return = (1 + daliy return)^(252) - 1
// Annudal volatity = daily std * sqrt(252)
val annualFactor = math.sqrt(252)
// avg return and stf
val meanAggExprs = retCols.map(c => mean(c).alias(c+" mean"))
val stdAggExprs = retCols.map(c => stddev(c).alias(c+" std"))
val aggExprs = retCols.flatMap(c => Seq(mean(c).alias(c+"_mean"), stddev(c).alias(c+"_std")))
val statsRow = dfRet.agg(aggExprs.head, aggExprs.tail:_*).first()
// (Stock, AnnualReturn, AnnualVol)
val stats = stockCols.map { s =>
 val meanVal = statsRow.getAs[Double](s+" ret mean")
 val stdVal = statsRow.getAs[Double](s+"_ret_std")
 val annualRet = math.pow(1.0 + meanVal, 252) - 1.0
 val annualVol = stdVal * annualFactor
 (s, annualRet, annualVol)
```

```
statsDF.show()
Stock
              AnnualReturn|
 ACDC -0.21029499005275976 0.6391526124167096
   AE 0.048701821034189186 0.40399807776080177
 ALTO -0.0316155464543727 0.7773455073746321
   AM 0.34039834112930256 0.23514694745993284
 AMPY 0.19982116975682107 0.5677459298670482
       0.3669534728158701 0.5215014775327921
 AMTX
       0.1532179755393679 0.9945778209173148
  APA -0.05739857075947874 0.4158401390193946
   AR -0.01480804956148... 0.4483932489475088
 ARCH 0.19110044084595024 0.4155889032966635
 AREC 0.06336099503454085 0.8340174702447463
 ARLP
        0.281631916616516 0.302783826194606
 AROC
       0.6588223687936339 0.34452030919017446
```



### Return and Volatility Threshold

```
val percentileAnnualRet = 0.8 // top 20% return
val percentileAnnualVol = 0.5 // top 50% low vol

def percentile(arr: Array[Double], p: Double): Double = {
  val sortedArr = arr.sorted
  val idx = ((sortedArr.length - 1) * p).toInt
  sortedArr(idx)
}

val returnsArray = stats.map(_._2).toArray
val volsArray = stats.map(_._3).toArray
val retThreshold = percentile(returnsArray, 1 - percentileAnnualRet)
val volThreshold = percentile(volsArray, percentileAnnualVol)

val selected = statsDF.filter(col("AnnualReturn") > retThreshold && col("AnnualVol") < volThreshold)
selected.show(false)</pre>
```



### Portfolio Management

- Sort high return and low volatility
- Adding them in order if cor < 0.3</li>

```
val filteredStocks = statsArr.filter { case (s, annRet, annVol) =>
  annRet > retThreshold && annVol < volThreshold
val sortedFiltered = filteredStocks.sortBy(..2)(Ordering[Double].reverse)
val stockIndexMap = stockCols.zipWithIndex.toMap
val corrThreshold = 0.3
var selectedStocks = Seq[String]()
for ((stk, ret, vol) <- sortedFiltered) {
 if (stockIndexMap.contains(stk)) {
    val idx = stockIndexMap(stk)
   val isLowCorr = selectedStocks.forall { chosen =>
     val chosenIdx = stockIndexMap(chosen)
     val corrVal = corrMatrix(idx, chosenIdx)
      math.abs(corrVal) < corrThreshold
   if (isLowCorr) {
      selectedStocks = selectedStocks :+ stk
```



## Results







## **Conclusions**

- Cisco and Western Digital also have a high positive correlation
- Bitcoin and TEL stock prices exhibit high positive correlation
- Consider Bitcoin for long-term diversification, but stay cautious due to its high volatility and market risks.





## Acknowledgements & References

Jiun Yen(2018)Stock diversity analysis 1. Kaggle.

https://www.kaggle.com/code/gks1lver/stock-diversity-analysis-1

Stoic\_Hedonist (2020) Time series analysis: LSTM - Bitcoin, Etherium 1. Kaggle

https://www.kaggle.com/code/zsinghrahulk/time-series-analysis-lstm-bitcoin-etherium



