

Huazhong University of Science & Technology

Electronic Circuit of Communications

School of Electronic Information and Commnications

Jiaqing Huang

Parallel Resonance

Frequency Selective Circuits

Parallel Resonant Circuit

Parallel Resonant Circuit—Impendance Z, Admittance Y

High Q, $\omega L \gg R$

Impendance
$$Z = \frac{(R+j\omega L)\frac{1}{j\omega C}}{(R+j\omega L)+\frac{1}{j\omega C}} = \frac{(R+j\omega L)\frac{1}{j\omega C}}{R+j(\omega L-\frac{1}{\omega C})}$$

$$\approx \frac{\frac{L}{C}}{R + j(\omega L - \frac{1}{\omega C})} = \frac{1}{\frac{CR}{L} + j(\omega C - \frac{1}{\omega L})}$$

Conductance
$$G = \frac{CR}{L}$$

Susceptance
$$B = \omega C - \frac{1}{\omega L}$$

$$R_p = \frac{1}{G} = \frac{L}{CR}$$

Parallel Resonant Circuit— R_p vs R

Parallel Resonant Circuit—Admittance Y

Susceptance

Susceptance
$$B = \omega C - \frac{1}{\omega L} \Leftarrow Y = G + jB = \frac{CR}{L} + j\left(\omega C - \frac{1}{\omega L}\right)$$

- 1) $\omega > \omega_p$, B>0 Capacitive, ICE
- 2) $\omega < \omega_p$, B < 0 Indutive, ELI
- 3) $\omega = \omega_p$, B = 0 purely resistive

Parallel Resonant Circuit—Admittance Y

B Susceptance

Susceptance
$$B = \omega C - \frac{1}{\omega L} \Leftarrow Y = G + jB = \frac{CR}{L} + j\left(\omega C - \frac{1}{\omega L}\right)$$

Parallel Resonant Circuit— Q

$$Q_p = rac{\omega_p L}{R} = rac{1}{\omega_p C} = rac{
ho}{R} = rac{(Reactance)X}{(Resistance)R}$$
 $Q_p = rac{1}{\omega_p L} \cdot R_p = \omega_p C \cdot R_p$
 $R_p = R_p = R_$

$$Q_p = \frac{\frac{1}{\omega_p L}}{G} = \frac{\omega_p C}{G} = \frac{(Susceptance)B}{(Conductance)G} < \underbrace{\begin{array}{c} G \text{ version} \\ Q_p \end{array}}$$

version Q_p $R_p = rac{1}{G} = rac{L}{CR}$

Reason: R and R_p

Parallel Resonant Circuit— Current Resonance

Voltage

> Parallel Resonant

$$\left(\dot{I}_{Cp} = j\omega_{p}C \cdot R_{p}\dot{I}_{s}\right) = j\omega_{p}C \cdot R_{p}\dot{I}_{s} = jQ_{p}\dot{I}_{s}$$

$$\begin{cases} \dot{I}_{Cp} = j\omega_{p}C \cdot R_{p}\dot{I}_{s} = j\omega_{p}C \cdot R_{p}\dot{I}_{s} = jQ_{p}\dot{I}_{s} \\ \dot{I}_{Lp} = \frac{1}{j\omega_{p}L} \cdot R_{p}\dot{I}_{s} = -j\frac{1}{\omega_{p}L}R_{p}\dot{I}_{s} = -jQ_{p}I_{s} \end{cases}$$

$$Q_p = \frac{1}{\omega_p L} \cdot R_p = \omega_p C \cdot R_p$$

 $\dot{I}_{Cp} = -\dot{I}_{Lp}$ same current value , Q_p times of source current

Resonance ,
$$Q_p = \frac{(Susceptance)_B}{(Conductance)_G}$$

Detuning ,
$$\xi = \frac{(Susceptance\ sum)B}{(Conductance)G} = \frac{\omega C - \frac{1}{\omega L}}{G}$$
 $\xi = 0$ denote resonance $\omega \approx \omega_p$

$$=\frac{\omega_p C}{G} \left(\frac{\omega}{\omega_p} - \frac{\omega_p}{\omega} \right) = Q_p \left(\frac{\omega}{\omega_p} - \frac{\omega_p}{\omega} \right) = Q_p \frac{(\omega + \omega_p)(\omega - \omega_p)}{\omega_p \omega}$$

$$\xi \approx Q_p \frac{2(\omega - \omega_p)}{\omega_p}$$

 $\xi \neq 0$ dennote detuning value

Parallel Resonant Circuit—Resonance Curve

$$Y = \frac{CR}{L} + j\left(\omega C - \frac{1}{\omega L}\right) = G_p + j\left(\omega C - \frac{1}{\omega L}\right)$$

$$Voltage: \dot{V} = \frac{\dot{I}_s}{Y} = \frac{\dot{I}_s}{G_p + j\left(\omega C - \frac{1}{\omega L}\right)} \sim \omega$$

> Resonance Curve :

$$N(f) = \frac{\dot{V}}{\dot{V}_0} = \frac{\frac{\dot{I}_S}{G_p + j\left(\omega C - \frac{1}{\omega L}\right)}}{\frac{\dot{I}_S}{G_p}} = \frac{G_p}{G_p + j\left(\omega C - \frac{1}{\omega L}\right)} = \frac{1}{1 + j\left(\frac{\omega C - \frac{1}{\omega L}}{G_p}\right)}$$

$$\Rightarrow N(f) = \frac{1}{1 + j\xi}$$

$$\xi = \frac{\omega C - \frac{1}{\omega L}}{G}$$

Amplitude-Frequency

Parallel Resonant Circuit— Bandwidth

 \triangleright Bandwidth: scope among \dot{V} drop to 0.707 of \dot{V}_0

$$B = 2\Delta f_{0.7} = |f_2 - f_1|$$

Curve
$$N(f) = \frac{\dot{V}}{\dot{V}_0} = \frac{1}{1+j\xi}$$

AF:
$$|N(f)| = \frac{1}{\sqrt{1+\xi^2}} = \frac{1}{\sqrt{2}}$$
 \Rightarrow if $2\Delta f_{0.7}$ $\xi = 1$

$$\Rightarrow$$
if $2\Delta f_{0.7}$ $\xi=1$

$$\left.egin{aligned} \xi = \mathbf{1} \ \xi = Q_p \cdot rac{2\Delta f_{0.7}}{f_p} \ \xi = Q_p \cdot rac{2\Delta f}{f_p} \ 2\Delta f = 2\Delta f_{0.7} \end{aligned}
ight.$$

$$\Rightarrow 1 = Q_p$$

$$1 = Q_p \cdot \frac{B}{f}$$

$$2\Delta f = 2\Delta f_{0.7}$$

Amplitude-Frequency (AF)

$$Q_p \cdot B = f_p$$

Parallel Resonant Circuit— Phase-Frequency (PF) Curve

$$N(f) = \frac{\dot{V}}{\dot{V}_0} = \frac{1}{1 + j\xi}$$

$$\Rightarrow \text{PF: } \psi = -arctg\xi$$

linearality ↓

Parallel Resonant Circuit - With Load

Unloaded $oldsymbol{Q}$:

$$Q_p = \frac{\omega_p L}{R} = \frac{1}{\omega_p L} \cdot R_p = \frac{1}{\omega_p L} \cdot \frac{1}{G_p}$$

Loaded Q:

$$Q_L = \frac{1}{\omega_p L} \cdot \frac{1}{G_p + \frac{G_s}{G_s} + \frac{G_L}{G_L}}$$

Consider source resistance & load resistance

$$Q_L \downarrow \Rightarrow B \uparrow$$

Summary—Parallel Resonant Circuit

Resonance Curve:
$$N(f) = \frac{\dot{v}}{\dot{v}_0} = \frac{1}{1+j\xi}$$
 $\because \rho = \omega_p L = \frac{1}{\omega_p C}$

Amplitude-Frequency $|N(f)| = \left|\frac{\dot{v}}{\dot{v}_0}\right|$
 $Q_p = \frac{\omega_p L}{R} = \frac{1}{\omega_p C}$
 $Q_p = \frac{1}{\omega_p L} \cdot R_p = \omega_p C \cdot R_p$
 $Q_p = \frac{(Susceptance)B}{(Conductance)G} = \frac{1}{G}$
 $Q_p = \frac{(Susceptance)B}{(Conductance)G} = \frac{\omega_p C}{G}$
 $Q_p = \frac{\omega_p C}{G}$
 $Q_p = \frac{\omega_p C}{(Conductance)G} = \frac{\omega_p C}{G}$
 $Q_p = \frac{\omega_p C}{G}$
 $Q_p = \frac{\omega_p C}{(Conductance)G} = \frac{\omega_p C}{G}$
 $Q_p =$