

Project 4: Machine Learning

Team #7: Michael Herold, Ralph Samer

Motivation

Stack Exchange:

- Experts can subscribe to tags
- Mandatory to assign proper tags to questions
- Users can create new or use existing tags
- Manual tagging may be challenging (e.g. ".Net" and "DotNet")
- Suggesting tags for new questions is crucial

Task

- Given: new question containing a title and a body
- Goal: suggest/assign up to 5 tags from a limited list of tags
- Analyse given data set
- Supervised:
 Train classifier on data set
- Unsupervised: Find patterns in data (e.g. groups)
- Evaluate results and compare both approaches

Data Set

- Stack Exchange Data Dump from March 1st, 2016
- Subgroup: <u>programmers.stackexchange.com</u>
- Packed size: 179.5 MB
- Post, tags and users are stored in separate XML files
- Tags consist of 1-5 words separated by "." and "-"

Characteristics of Data Set

Total num	ber of
Posts	38,315
Tags	1,614

Tags per	post
Min	1
Max	5
Average	2.68

Post length	n (words)
Min	6
Max	3,348
Average	178.65

Top 10 Tags

#	Tags
1	java
2	C#
3	design
4	design-patterns
5	object-oriented
6	C++
7	php
8	algorithms
9	javascript
10	architecture

Top 10 Tags

Cumulative Tag Frequency

Outlook

1. Preprocessing

- Parse XML from Stack Exchange Data Dump (title, body, tags)
- Strip html code from body
- Tokenize title + body (be careful: "C++" != "C" != "C#")
- Stop word removal
- Stemming
- Lemmatization (be careful: "Windows" (OS) != "window")
- POS-tagging
- Filter "rare"/"unique" tags > reduce dimensionality
 - Structure related tags (synonyms from Stack Exchange Data Explorer)

Content

Outlook

2. Supervised learning

- Separate data into test & training data
- Fit a supervised learning model
 - Naïve Bayes
 - Support Vector Machines (SVM)
 - k-Nearest Neighbors
- Evaluate best model
 - Precision
 - Recall
 - F1 measure

Outlook

3. Unsupervised learning

- Fit a model
 - k-means clustering
 - Hierarchical Agglomerative Clustering (HAC)
- Calculate TF--IDF (weighting)
- Evaluate best model
 - Precision, Recall, F1 measure
 - Rand Index

4. Compare both approaches

Thank you for your attention.

