Loan Data Modeling of LendingClub

By: Uyemaa Gantulga, Ayush Meshram, Aakash Singh, and Melissa Yago

Overview

Introduction	03
Research Questions	04
Question #1	05
Question #2	09
Question #3	13
Conclusion	15
Q&A	16

• Dataset (2013-2018)

Approved Loans Observations: 2.15 million

• Goal:

To analyze LendingClub's approved loan data to better understand factors that contribute to loan charge-offs.

Research Questions

- 1. **Features Impact:** Which combination of features from our initial EDA (interest rate, grade, annual income, etc.) provides the most reliable predictions of the 2013-2018 loan data?
- 2. **Model Performance:** How do logistic regression and random forest models compare in their ability to predict loan charge-offs when trained on 2013-2015 data and tested on holdout sets from 2013-2015 and 2016-2018 data?
- 3. **Model Accuracy Across Timeframes:** How accurately can we predict loan charge-offs for loans issued between 2015-2018 that are still active and might charge-off in future, using our 2013-2018 trained models from Question #2?

EDA Recap

Final Logistic Regression & Random Forest Model Features

Independent Variables

- Loan Amount
- Interest Rate
- Grade
- Sub Grade
- DTI (Debt to Income Ratio)
- Employment Length
- Annual Income
- open_acc_6m
- Fico Scores
 - FICO Range High/Low
 - Latest FICO Range High/Low

Dependent Variable

Loan Status

Logistic Regression Model Performance

Initial Model Creation

- Did not include FICO predictors initially
- All predictors included in the model are statistically significant.
- Coefficients
 - Loan Amount: 0.13
 - o Interest Rate: -0.62
 - Grade G: 5.29
 - Employment Length<1 Year: -0.24</p>

Model Testing

- 2013-2015 Test Data
 - Accuracy: 81.3%
 - Sensitivity: 2.59%
 - Specificity: 99.40%
 - o **AUC:** 0.705
- 2016-2018 Test Data
 - **Accuracy:** 77.4%
 - Sensitivity: 1.01%
 - Specificity: 99.69%
 - o AUC: 0.696

Model Accuracy Improvement

- Training Data
 - Combined Test datasets:
 - **(2013-2015)**
 - **(2016-2018)**
- Final Selected Features
 - loan_amnt, int_rate, grade, sub_grade, emp_length, annual_inc, dti, FICO ranges, open_acc_6m, loan_status
- Data Processing
 - MinMax normalization
 - o 70/15/15 train-eval-test split
 - Feature engineering: 55 new features
- Missing Data Treatment
 - Median imputation (numeric)
 - Mode imputation (categorical)
 - No missing loan_status found

Logistic Regression Model Performance

Hyperparameter Tuning

What We Tuned

- We tested 15 different model settings by adjusting two key parameters:
 - Alpha (mixing ratio): Controls the blend between Ridge and Lasso
 - Lambda (strength): Controls how strongly the model penalizes complex patterns

Testing Approach

- Used 3 alpha values: 0 (Ridge), 0.5 (Mix), 1 (Lasso)
- o Tested 5 lambda values from 0.001 to 0.1
- Used 5-fold cross-validation for reliable results
- Selected best model based on ROC score

Model Performance Metrics

Accuracy 85.70% CI: 85.50%-85.90% F1 Score 90.60% Specificity 90.90% AUC 93.60% Sensitivity 84.50%

Precision

97.60%

Predicting Loan Outcomes

Distribution Overview

Fully Paid (Expected): 585,406 loans (67.8%)
Charged Off (Expected): 278,207 loans (32.2%)
Total Active Loans: 863,613

Key Insights

Majority of loans (2/3) predicted to be paid fully About 1/3 of loans flagged as potential charge-offs Prediction based on optimal threshold from model

Random Forest

Why Random Forest

- Handling Non-Linear Relationships
- Feature Importance
- Robustness to Data Characteristics
- Overfitting and Regularization
- Class Imbalance

Handling Missing Values

- KNN Imputation on Numerical variables
- Mode Imputation on Categorical Variables
- Removed observations which had missing loan_status

Data Preparation

- Normalised the data using MinMax
- 70% train data, 15% evaluation data and 15% Test data

Hyper Parameter Tuning

• ntree: 25

• max_depth: default

• Max_nodes:17

Prob_threshold: 0.7

Threshold <dbl></dbl>	Precision <dbl></dbl>	Recall <dbl></dbl>	F1 <dbl></dbl>
0.0	0.2033213	1.00000000	0.3379336
0.1	0.6982398	0.86587325	0.7730735
0.2	0.7005778	0.86200269	0.7729521
0.3	0.7048330	0.85823745	0.7740074
0.4	0.7093961	0.85460386	0.7752592
0.5	0.7184072	0.84317649	0.7758074
0.6	0.7357871	0.81955818	0.7754167
0.7	0.7526005	0.79441270	0.7729415
0.8	0.7708723	0.73711788	0.7536173
0.9	0.8080633	0.38155296	0.5183503

Random Forest

Metrics

Class	Metrics	Train	Eval
Combined	Accuracy	0.9044	0.9054
Charged Off	Precision	0.833	0.835
Fully Paid		0.922	0.923
Charged Off	Recall	0.733	0.735
Fully Paid		0.955	0.956
Charged Off	F1	0.7801	0.782
Fully Paid		0.938	0.939

 Huge gap between Precision and Recall of Charged Off Predictions

\$eval_confusion_matrix Actual

Predicted Charged Off Fully Paid Charged Off 31143 10609 Fully Paid 6836 138204

Focus on Recall

- Recall measures the ability to correctly identify all actual charge-offs (true positives).
- Missing a charge-off (false negative) means the system fails to flag a potentially high-risk loan, which could lead to financial losses for the lender.
- High recall ensures that most risky loans are identified, reducing the likelihood of unpredicted financial defaults.
- We are choosing Probability Threshold as 0.7

Testing the Model on Test

Precision Recall Charged Off 0.7731904 0.7645941 Fully Paid 0.9392463 0.9419491

Question #3: Model Prediction Across Timeframes

How accurately can we predict loan charge-offs for Lending Club loans issued between 2015-2018 that are still active and might charge-off in future, using our 2013-2018 trained models from Question #2?

Model Predictions On 2015-2018 Active Loans

Logistic Regression

Outcome	Probability Threshold 0.5	Probability Threshold 0.7
Charged Off	115,242 (~13%)	76,601 (~8%)
Fully Paid	748,371	787,012

Random Forest

Outcome	Probability Threshold 0.5	Probability Threshold 0.7
Charged Off	196,234 (~22%)	164,248 (~19%)
Fully Paid	667,379	699,365

Conclusion

Key insights:

- Effective prediction relies on having FICO scores, loan grades and interest rates into modeling strategies
- Income levels and loan amounts are secondary predictors
- Continuous model refinement is necessary for evolving economic and borrower trends

Recommendations:

- Adopting hybrid modeling approach like combining logistic regression and random forest to maximize interpretability and recall
- Regularly update models with new data and external factors to maintain accuracy

Interest rates and FICO scores are the strongest predictors of loan charge offs, while <u>loan amount</u> does not significantly affect loan status.

Model performance comparison:

Logistic regression offers interpretability and stable accuracy. Random forest is excellent in recall, effectively identifying high-risk loans, but precision-recall trade-offs must be carefully managed.

Prediction accuracy across time frame:

Models trained on 2013-2015 data show low accuracy when applied to 2016-2018 loans due to borrower behaviour and policy changes

Post 2015 lending practices significantly impacted loan risk profiles, favoring lower-risk applicants.

