

Context-Free Grammars (CFG)
Parsing and Ambiguity
CFG and Programming Languages

Needs for CFG

- RL is effective in describing certain simple pattern
- Regular expressions were inadequate to define all interesting languages, such as (()), nested structure in programming languages
- CFL has important applications in the design of programming languages as well as in the construction of efficient compilers

4

5.1 Context-Free Grammars

Definition 5.1

- A grammar G = (V, T, S, P) is said to be context-free if all productions in P have the form
 - $A \rightarrow X$
 - where $A \in V$ and $x \in (V \cup T)^*$.
- A language L is said to be context-free if and only if there is a CFG G such that L = L(G)

Grammar Set Notations: a concise way of design description

$$G = (V, T, S, P)$$

T – a set of terminal symbols

V – a set of nonterminal symbols

S – a element of V, starting symbol

P – a set of production rules with certain format restrictions

Write out the production rule format in set notation for each of the following grammars:

- RG
- CFG

Context Free Grammar (CFG): the representation defining CFL

- A grammar is said to be context-free if all productions in P have the form
 - $A \rightarrow X$
 - English description:
 - where A is a single nonterminal and x can be any string of terminals or/and nonterminals
 - Single nonterminal of the left handside of the production rule makes the grammar context free
 - Set notation:
 - where $A \in V$ and $x \in (V \cup T)^*$

Regular Grammars (RG): one of 4 representations of RL

- A subset of CFG
- A CFG is said to be regular grammar if all productions in P have the form
 - A \rightarrow xB, A \rightarrow x; or A \rightarrow Bx, A \rightarrow x
 - English:
 - Where A is a single nonterminal and x can be word (string of terminals) or semiword (a string of terminals ended or starting with a nonterminals
 - Set notation:
 - Where A, B \in V, and x \in T*

Example 5.1

$$G = (\{S\}, \{a, b\}, S, P\}$$

- is context-free with productions
 - \blacksquare S \rightarrow aSa
 - $S \rightarrow bSb$
 - $S \rightarrow \lambda$
- A derivation in this grammar is
 - S ⇒aSa ⇒aaSaa ⇒aabSbaa ⇒aabbaa.
 - We can derive that $L(G) = \{ww^R : w \in \{a, b\}^*\}$.
 - The language is context-free, but is not regular (as shown in Example 4.8)

Example 5.2

- The grammar G is context-free with productions
 - \blacksquare S \rightarrow abB
 - \bullet A \rightarrow aaBb
 - \blacksquare B \rightarrow bbAa
 - $A \rightarrow \lambda$
- Show that
 - $L(G) = \{ab(bbaa)^nbba(ba)^n : n \ge 0\}.$

Example 5.3 -- 1

To show $L = \{a^nb^m : n \neq m\}$ is context-free

- We need to produce a CFG for L
- We know how to produce a CFG with n = m
 - Write out
- Now we need to add 2 sets of productions
 - For the case n > m we add the first set
 - $S \rightarrow AS_1$
 - $S_1 \rightarrow a S_1 b | \lambda$
 - $A \rightarrow aA|a$

Example 5.3 -- 2

To show $L = \{a^nb^m : n \neq m\}$ is context-free

- For the case n < m, we add another similar set, and we get the answer
 - $S \rightarrow AS_1 | S_1B$
 - $S_1 \rightarrow a S_1 b | \lambda$
 - $A \rightarrow aA|a$
 - $B \rightarrow bB|b$
- The resulting grammar is context-free, hence L is CFL.

Example 5.4

programming language L₂ include strings such as (()) and ()()()

- CFL L can be generated by CFG with productions
 - S \rightarrow aSb|SS| λ
 - Substitute a with (and b with) in the productions, we can generate L₂ above
 - L = {w ∈ {a, b}* : $n_a(w) = n_b(w)$ and $n_a(v)$ $\ge n_b(v)$, where v is any prefix of w}

Definition 5.2

A derivation is said to be **leftmost** if in each step the leftmost variable in the sentential form is replaced. If in each step the right most variable is replaced, we call the derivation **rightmost**.

Example 5.5

Leftmost and Rightmost Derivations

- \blacksquare S \rightarrow aAB
- \bullet A \rightarrow bBb
- B \rightarrow A| λ
 - Leftmost derivation of abbbb
 - S⇒aAB ⇒abBbB ⇒abAbB ⇒abbBbB ⇒abbbbB ⇒abbbb
 - Rightmost derivation of abbbb
 - \blacksquare S⇒aAB ⇒aA ⇒abBb ⇒abAb ⇒abbBbb ⇒abbbb

5.2 Derivation Trees/Parse Trees

- A second way of showing derivations, independent of the order in which productions are used
- Definition 5.3 (page 130, a formal definition of derivation tree and partial derivation tree)

Example 5.6: Partial derivation tree $S \rightarrow aAB$, $A \rightarrow bBb$, $B \rightarrow A|\lambda$

Example 5.6: a complete Derivation tree $S \rightarrow aAB, A \rightarrow bBb, B \rightarrow A|\lambda$

Parsing and Ambiguity

- Parsing finding a sequence of productions by which a w ∈ L(G) is derived
- Definition 5.5
 - A CFG G is said to be **ambiguous** if there exists some w ∈ L(G) that has at least two distinct derivation trees. Alternatively ambiguity implies the existence of two or more leftmost or rightmost derivations

Example 5.10

Grammar S \rightarrow aSb|SS| λ , is ambiguous since aabb has the two derivation trees shown

Example 5.11 -- 1

- and productions
 - $\blacksquare E \to I \mid E+E \mid E*E \mid (E)$
 - $I \rightarrow a \mid b \mid c$
- The grammar is ambiguous since a+b*c has two different derivation trees
 - Try to draw the two different derivation trees

Example 5.11 – 2 $E \rightarrow I \mid E+E \mid E*E \mid (E), I \rightarrow a \mid b \mid c$ a+b*c has two different derivation trees

Example 5.12 -- 1 Rewrite the grammar

- One way to resolve the ambiguity is to associate precedence rules with the operators + and *
- * has higher precedence than +
 - + is one level closer to root of the derivation tree,
- We introduce new variables
 - V = {E, T, F, I}
 - Replace productions in such a way that + is closer to E than * in the derivation tree

Example 5.12 – 2 Rewrite the productions

- ambiguous
- $\blacksquare E \to I \mid E+E \mid E*E \mid (E)$
- $I \rightarrow a \mid b \mid c$

Rewrite to remove ambiguity

- $\blacksquare E \to E + T \mid T$
- $T \rightarrow T * F \mid F$
- $\blacksquare \mathsf{F} \to (\mathsf{E})|\mathsf{I}$
- $I \rightarrow a|b|c$

Example 5.12 – 3:

a unique derivation tree of a+b*c (using new grammar)

A Practical Problem

Assume the following rules of associativity and precedence for expressions

Precedence:

```
    Highest *, /, not
    +, -, &, mod
    - (unary)
    =, ≠, <, ≤, ≥, >
    and
    Lowest or, xor
```

- Associativity: left to right
- Write a CFG for the expression. Assume the only operands are the names a, b, c, d, and e.

Recursion to specify associativity Precedence cascade to specify precedence

CFG and Programming Languages

- One of the most important uses of the computing theory is in
 - the definition of programming language
 - the construction of interpreters/compilers
 - Both RL and CFL are used in model all aspects
 - We can define a programming language by a grammar

BNF and **CFG**

- A traditional notation in writing on programming languages is called the Backus-Naur form or BNF
- BNF is in essence the same as notation we use for CFG here

27

- <expression>::= <term>|<expression>+<term>
- <term>::= <factor>|<term>*<factor>
- <while_statement>::=while<expression><statement>

Major Operations in a Compiler

The Phases of a Compiler

In-class exercise: for given grammar, show BNF, EBNF, Syntax Diagram, first and follow sets

- Write G₃ in EBNF
- Draw syntax diagrams
- What are the 2 requirements for a predictive parser to be able to distinguish between choices in the grammar rule?
- Give the first sets/follow sets of G₃.
- Do we need to compute follow set for G₃?

-

G_3 in BNF \rightarrow EBNF -- 1

- **To** remove recursion and ε
- $V \rightarrow SR$ \$
- \bullet S \rightarrow + $| | \varepsilon$
- \blacksquare R \rightarrow .dN | dN.N
- N \rightarrow dN | ε

$BNF \rightarrow EBNF -- 2$

- **To** remove recursion and ε
- V → SR\$
- \bullet S \rightarrow + $| | \varepsilon$
- \blacksquare R \rightarrow .dN | dN.N
- N \rightarrow dN | ε

- V ::= SR\$
- S ::= [+ |]
- $R ::= .dN \mid dN.N$
- $N ::= \{d\}$

- Draw syntax diagrams for each variable
- Can we simplify EBNF more?

What are the 2 requirements for a predictive parser to be able to distinguish between choices in the grammar rule? (Hint: use first and follow sets)

- 1. Given $A \rightarrow B \mid C$
- 2. Given $A \rightarrow D[E]F$

4

Two Requirements

(1) Given A \rightarrow B | C First (B) \cap first (C) = \emptyset

(2) Given A \rightarrow D[E]F First (E) \cap follow (E) = \emptyset

EBNF to Syntax Diagram first sets and follow sets -1

- V ::= SR\$
- S ::= [+ |]
- R ::= .dN | dN.N
- N ::= {d}

first sets and follow sets - 2

first
$$(S) = \{+, -\}$$

first
$$(R) = \{., d\}$$

first
$$(N) = \{d\}$$

• Follow (N) =
$$\{.\} \cup \text{follow } (R) = \{., \$\}$$

EBNF

using substitution to simplify

- V ::= SR\$
- S ::= [+ |]
- R ::= .dN | dN.N
- N ::= {d}

- V ::= [+|-] R \$
- \blacksquare R ::= .d{d} |d{d}.{d}

A Top-down Parser - 1

```
G_3 = (\{V, S, R, N\}, \{+, -, ., d, \bot\}, P, V), \text{ where P is:}
                       { L is a stop symbol }
                   (e is the empty string)
                      {d is a decimal digit}
     R → .dN
  6. R → dN.N
  7. N \rightarrow dN
                                                    Next token
                       Left-most
                        Exposed .
                    Nonterminal
                   Figure 2.16. A top-down LL(1) parsing table for grammar G<sub>3</sub>.
```

A Top-down Parser - 2

Frontier	Remaining Input	Production
	111 111	
V	-ddd.dd⊥	3
SRI	$-ddd.dd\bot$	
$-R \perp$	$-ddd.dd\bot$	(match, drop -)
R⊥	ddd.dd⊥	6
dN.NL	ddd.dd⊥	(match)
N.N.L	dd.dd⊥	. 7
dN.NL	dd.dd_	(match)
N.N.	d.ddl	7
dN.NL	d.dd⊥	(match)
N.N.L	.dd⊥	8
.N.L	.dd⊥	(match) — ddd!ddL
NI	dd⊥	7
dNT	dd⊥	(match)
NT	d⊥	Ž
	dΤ	(match)
dNT		8
ИТ	1	(match and halt)
1	T	(Illaton with Mary)

A Bottom-up Parser

