1.
$$\int (x) = (\int (x), s(x), t(x))$$

$$J(x) = x^2 S(x) = \frac{\alpha}{4} t(x) = \frac{\alpha}{2}$$

$$L(\chi) = \frac{1}{1+\chi^2} \qquad R(\chi) = \frac{1}{1+2|\chi|}$$

L(x) and R(x) have no effect on value of integral of such fuzzy function.

$$\int_{1}^{4} \int_{1}^{4} (x) dx = \int_{1}^{4} x^{2} dx = \frac{x^{3}}{3} \Big|_{1}^{4} = 21$$

$$\int_{1}^{4} \int_{1}^{4} (x) dx = \int_{1}^{4} \frac{x}{4} dx = \frac{x^{2}}{3} \Big|_{1}^{4} = 1.875$$

$$\int_{1}^{4} \int_{1}^{4} (x) dx = \int_{1}^{4} \frac{x}{4} dx = \frac{x^{2}}{3} \Big|_{1}^{4} = 3.75$$

$$\int_{1}^{4} \int_{1}^{4} (x) dx = \int_{1}^{4} \frac{x}{4} dx = \frac{x^{3}}{6} \Big|_{1}^{4} = 3.75$$

Hence
$$\widetilde{I}(a,b) = (21,1.875,3.75)_{LR}$$

2.
$$\tilde{\alpha} = \{(4,0.8), (5,1), (6,0.4)\}$$
 $\tilde{b} = \{(6,0.7), (7,1), (8,0.2)\}$

$$\int_{a}^{b} J(x) dx = \int_{a}^{b} 2 dx \qquad \min(\mu_{\mathbf{A}}(a), \mu_{\mathbf{B}}(b))$$

$$6.7$$

0.2 8 [4,8] 2 [5,6] 4 [5,7] 0.2 [5,8] 0.4 [6,6] 6.4 [6,7] 4 0.2 [6,8]

$$\widetilde{I}(A,B) = \{ (0,04), (2,0.7), (4,1), (6,0.8), (8,0.2) \}$$

$$\frac{3}{2} \qquad \int (x) = 2x - 3 \qquad g(x) = 2x + 5$$

$$\tilde{\alpha} = \frac{2}{3}(1,0.8), (2,1), (3,0.4) \frac{3}{3}$$

$$\tilde{b} = \frac{2}{3}(3,0.7), (4,1), (5,0.3) \frac{3}{3}$$

$$\log = 2(2x + 5) - 3 = 4x + 10 - 3 = 4x + 7$$

$$go = 2(2x - 3) + 5 = 4x - 6 + 5 = 4x - 1$$

$$\begin{bmatrix} 2, 3 \end{bmatrix} \qquad 2 \qquad 0.7$$

$$\begin{bmatrix} 2, 4 \end{bmatrix} \qquad 6 \qquad 1$$

$$\begin{bmatrix} 2, 5 \end{bmatrix} \qquad 12 \qquad 0.3$$

$$\begin{bmatrix} 3, 3 \end{bmatrix} \qquad 0 \qquad 0.4$$

$$\begin{bmatrix} 3, 4 \end{bmatrix} \qquad 4 \qquad 0.4$$

$$\begin{bmatrix} 3, 5 \end{bmatrix} \qquad 10 \qquad 0.3$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,04), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,0.4), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (6,1), (12,0.3), (4,0.4), (10,0.3) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (0,0.7), (0,0.7), (0,0.7) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (2,0.7), (0,0.7), (0,0.7), (0,0.7) \end{cases}$$

$$\tilde{I}(A,B) = \begin{cases} (0,04), (0,0.7), (0,0.7), (0,0.7), (0,0.7) \end{cases}$$

(ii) [a,b] f	$\int_{a}^{b} J(x) dx = \int_{a}^{b} 2x + 5$	min { \mo(a), \ma(b) }
	$= x^2 + 5x \mid a$	
[1,3]	18	0.7
	8130	6 · 8
[1, 4]	44	0.3
[1,5]	10	6 · 7
[2,3]	,	Y
[2, 4]	22	630 1
[2, 5]	36	D • 3
[3, 3]	0	0.4
[3,4]	12	0.4

Scanned with CamScanner

Ĩ(A,B)={(0,0.4),(10,0.7),(12,0.4),(18,0.7),(22,1),(26,0.3),(30,0.8),(36,0.3),(44,0.3)}

(iii) I (iv)

[a,b]	5 4x+7	$\int_{a}^{b} 4x - 1$	min{ ya(a), yus (b) }
	$= 2x^2 + 7x \Big _a^b$	$=2x^2-x$	
[1,3]	30	14	0·8 0·4
[1,4]	51	27	6013
[1,5]	76	44	0.3
[2,3]	17	9	D.7
[2,4]	38	22	0023 1
[2,5]	63	39	0.43
[3,3]	0	® ∫ O	0.4
[3 , 4]	21	. 13	0.4
[3,5]	46	30	0.3
ı			

(iii)
$$\widetilde{I}(A,B) = \{(0,0.4), (17,0.7), (21,0.4), (30,0.7), (38,1), (46,0.3), (51,0.8), (63,0.3), (76,0.3)\}$$

$$(iv) \widetilde{I}(A,B) = \{ (0,0.4), (9,0.7), (13,0.4), (14,0.7), (22,1), (30,0.3)$$

$$(27,0.8), (39,0.3), (44,0.3) \}$$

$$\begin{cases} (n) = n^3 & \tilde{n} = \{(-1,0.4), (0,1), (1,0.6)\} \\ (1) = 3n^2 \\ (1) = \{(0,2), (3,0.6)\} \end{cases}$$

$$\begin{cases} (n) = n^2 + 1, g(n) = 2^{-n} \\ \tilde{n} = (1,2.3) \\ \tilde{n} = (3,4.5) \end{cases}$$

$$\begin{cases} (n) = n^3 + 2 \\ (n) = 3n^2 \end{cases}$$

$$\begin{cases} (n) = n^3 + 2 \\ (n) = 3n^2 \end{cases}$$

$$\begin{cases} (n) = 3n^2 \\ (n) = 3n^2 \end{cases}$$

$$\begin{cases} (n) = 3n^2 + 2n + 3 \\ (n) + g(n) = n^3 + 2n + 5 \\ (n) + g(n) = n^3 + 2n + 5 \end{cases}$$

$$\begin{cases} (n) = \{(3,0.6), (0,0.1)\} \\ (n) = \{(3,0.6), (2,0.1)\} \\ (n) = \{(3,0.6), (2,0.1)\} \\ (n) = \{(3,0.6), (2,0.1)\} \end{cases}$$
Hence, $\begin{cases} (1+g)(\tilde{n}_0) = \{(3,0.6), (2,0.1)\} \\ (n) = \{(3,0.6), (2,0.1)\} \end{cases}$

$$f(x, t) = \{(-2 + (-1 - 1), .5), (-1, .8), (2 + (1 - 1), 1)\}$$

$$(16 + (2 - 1), .8), (54 + (3 - 1), 1)\}$$

$$= \{(-4, .5), (-1, .8), (2, 1), (17, .8), (66, .4)\}$$

$$g(x_0) = \{(-2, .5), (-1, .8), (0, 1), (13, .8), (50, .4)\}$$

$$2HS = \{(-6, .5), (3, .5), (0, .5), (5, .5), (54, .4)\}$$

$$(-5, .5), (-2, .8), (1, .8), (16, .8), (55, .4), (-4, .5), (-1, .8), (2, 1), (17, .2), (56, .4), (19, .4), (19, .4), (106, .4), (106, .4)$$

$$(46, .4), (49, .4), (52, .4), (30, .2), (106, .4)$$

$$(415) = \{(-6, .5), (-2, .8), (2, .1), (30, .2), (106, .4)\}$$

$$(415) = \{(-6, .5), (-2, .8), (2, .1), (30, .2), (106, .4)\}$$

Since RHS part of LHS hence Proved.

Scanned with CamScanner

$$f(x) = \begin{cases} 2x^2 - 3 & -2 \le n \le 2 \\ 5 & \text{else where} \end{cases}$$

$$M_{\text{MGH}}(x) = f(x) - \inf(x)$$

$$= \sup(x) - \inf(x)$$

$$\sup(x) = 5$$

$$\inf(x) = -3$$

So for

$$M_{\rm M}(x) = \frac{2x^2 - 3 + 3}{5 - (-3)} = \frac{2x^2}{8} = \frac{2x^2}{4}$$

2) else where

$$u_{M}(u) = \frac{5+3}{5+3} = 1$$

$$U_{max}(x) = \frac{f(x) - inf(x)}{sup(x) - inf(x)}$$

10. (is. Yes

Classical functions ocan be defined as a Juzzy function mapping
from which to wrish set with membership value '1'.

(11) Yes

We can define juzzy junction, $j: X \to \widetilde{P}(Y)$ where $\widetilde{P}(Y)$ is juzzy power set of Y and $\mu_{J(x)}(y) = \mu_{R}(x,y) \ \forall \ x,y \in X \times Y$ where R is a juzzy relation.

(iv) Yes

If 'M' is the manimizing set of Juzzy Junction "f" then we say,
we get manimum value of "f" out "xo" if

(i) µm (xo) is maximum
(ii) µg (xo) is maximum

denotes membership of no in domain

(V) Yes

(Vi) Yes

Integration of eclish junction over jezzy domain:

Jendan f (b) - f (a) J This subtraction is entended subtraction and idone with conformation to extension sprinciple.

Integration of juzzy function cover chish domain:

I (a,6) = { (\$ y,(x) dx = } f(x) dx)} where y to and jet all d-level convey for pezzy yhundrois' j!

is also in conformity with entension principle.

(Vii) No The condition holds only if $\int_a^b \int_a^b \int_a$

The following wondition is valuary there: $\int_{a}^{b} (f+g) u \, du \subseteq \int_{a}^{b} f u \, du + \int_{a}^{b} g u \, du = \int_{a}^{b} f u \, du$

In given condition is true for Juzzy Jr over cusp edomain but not for cush fr over Juzzy domain

If (n)dn = \$ f(n)dn + \$ f(n)dn

To f (n)dn = \$ f(n) dn + \$ f(n)dn

To f (n)dn = \$ f(n) dn + \$ f(n)dn

Jos question 6, rondition was true.
Jos question 7, condition was not due.

(H) f(x) = x"+xc"-1 {(1,0.2), (2,0.6), (3,1), (4,0.6), (5,0.2)} 3 (around 3) = ((f(1), 0.2), (f(2), 0.6), (1(2), 1), (1(4),06),(1(5),02)} = \((1,0,2), (19,0,6), (89,1), (271,0,6), (649,0.2) \) b(x) = { (0.2.0.6), (0.6,0.7), (0.4,0.8), (0.8,0.9), (0.9,1),(1,1)} P(B) true = { (0.2,0.3), (0.3,0.8), (0.5,0.1), (0.7,0.4), (0.8,0.9), (0.4,0.7)} a) P(A) megation = { (0,1), (0.1,1), (0.2,1), (0.3,1), (0.4,1), (0.5, 0.4), (0.6, 0.3), (0.7, 0.2), (0.8, 0.1)} b) P(A) very true = { (0.5, 0.36), (0.6, 0.49), (0.7, 0.64), (0.8,0.81), (0.9,1), (1,1)} d) P(A) very true = { (0.5, 0.216), (0.6, 0.343), (0.7, 0.324), (08,0.729), (0.9,1), (1,1)y P(A) \ P(B) = { (0.5,0.1), (0.6,0), (0.7,0.4), (0.8,0.9), (0-9,0-7)} B) P(A) uP(B) = { (0.2,0.3), (0.3,0.8), (0.5,0.6), (06,0.7), (0.7,0.8), (0.8,0.9), (0.9,1),(1,1)} DP(A) -> P(B) = {(0,1), (0.1,1), (0.2,1), (0.3,1), (0.4,1), (0-5,0.4), (D.6,0.3), (0-7,0.4), (0.8,0.9), (0.9,0.7)}

Horing Lukasicuvicz cimplication $I(a_1b) = \min (1, 1-a+b)$ $\widetilde{R} = n_1 \quad \begin{cases} 1 & .9 \\ .9 & 1 \\ .8 & 1 \end{cases}$ $8' = \langle (y_1, .9), (y_2, .7) \rangle$ thing compositional rule of cinjunce $\mu_B(y_1) = \lim_{n \to \infty} \min \left[\mu_B(n), \mu_B(n, y_1) \right]$ $n \in X$ $= \max \left(\min \left(.6, 1 \right), \left(.9, 1 \right), \min \left(.7, 1 \right) \right)$ = 0.9.

VA. In this case,

 $M_{A'}(\pi_{1})_{g} = \sup_{y \in y} \min \{ \mu_{B}(y), \mu_{K}(\pi_{1}, y) \} = \max_{y \in Y} \{ \min(.9, 1), \min(.7, -9) \} = 0$

MAI(N) = sup min [MB(y), MR(x2,y)] = , 9

 $M_{A'}(n_3) = \sup_{y \in y} \min \left[\mu_B(y), \mu_N(n_3, y) \right] = 09$ Hence n is $\tilde{A'} = \{ (x_1, 0, 9), (x_2, 0, 9), (x_3, 0, 9) \}$

Merete anoccouri de gone altire at la phatale apago ano,
recele: e poso Pe, Ohero y oob
rale 2 e e g pii E cher 2 e e o o o o

For Ouch additional group reposition in a checking of any proposition in a checking of any proposition in the checking of the file of the child by letter up = 10 Alu), B(g) &

$$\begin{array}{lll}
\widetilde{R} = \{(x_1, 0.5), (x_2, 1), (x_3, 0.6)\} \\
\widetilde{B} = \{(y_1, 0.1), (y_2, 0.4)\} \\
\widetilde{C} = \{(z_1, 0.2), (z_2, 0.1)\} \\
\widetilde{I}(a,b) = \{(z_1, 0.2), (z_2, 0.1)\} \\
\widetilde{R}_1 = \{(z_1, 0.2), (z_2, 0.1)\} \\
\widetilde{R}_2 = \{(z_1, 0.2), (z_2, 0.1)\} \\
\widetilde{R}_3 = \{(z_1, 0.2), (z_2, 0.1)\} \\
\widetilde{R}_4 = \{(z_1, 0.2), (z_2, 0.1)\} \\
\widetilde{R}_7 = \{(z_$$

,	,	anb 1	CIL	(anb) =) c
a	ь / ,			
0	0	PO	1500	(2) Nas (12.3)
	1/2	0 1/2	1	1
D	12	1 . \	4100	1111-6
0	1	9 1, 1	11	
1/2	0	0 /2	1/2	
	1,	1/2	1/2	1
1/2	/2	12 12	12	V V
	1	1/2 1	1/2	1/3
1/2	,	12	0/2	, 2 , , ,
\	D	P 1	0	D J. ,
	1/		D	
1	/2	14		9
1	\	4)	0	D
•			l	

ii) (avb) (axb)

a	6	v	^ / (avb) (arb)
D \	0	0 \	\mathcal{D}	1 2 0
D	12	0	1/2	1/2
D	1	0	,	D
1/2	D	0	1/2	1/2
1/2	1/2	1/2	1/2	, I
1/2	1 -1 -	1/2		1/2
1	D	0	1 1	7
1	1/2	1/2	1.6	1/2
1	April 1	Roche	les hestages	June med

(a > b) > (a > b) (a>b) > (a>b) 1/2 of them - man of the factor (21,5 3) (1 0,1 3) } " 1/2 106,1), (c7,1), (c3,1) True = { (0.5, 0.3), (0.6, 0.6), (0.7, 0.8), (0.8, 0.9), (0.9,0.9), (1,.1)4 False = \((0,1), (0.1,0.9), (0.2,0.8), (0.3,0.6), (0.4,0.2), (0.5, 0.11)4 Not roue = True = \((0,1), (0.1), (0.2,1), (0.3,1), (0.4,1), (0.5,0.7), (06,0.4), (0.7,0.2), (0.8,0.1), (0.9,0.1), (1,0.9)4 Neither True nor false = (True , False) True U False = \((0,1), (0.1,0.7), (0-2,0.8), (0.3,06), (0.4,0-2), (0.5, 0.3), (0.6,0.6), (0.2,0.8), (0.8,0.7), (0-9,0.9), (1,0.1) Neitner true nor false = (Force Utalse) = \$(0.1,0.1),(0.2,0.2),(0.3,0.4),(0.4,0.8),(0.5,0.7), (0.6,0.4), (0.7,0.2), (0.8,0.1), (0.9,0.1), (1,0.9) }

Very true - True-false = Troue 1 False False = of (0.1,0.1), (0.2,0.2), (0.3,0.4), (0.4,0.8), (0.5,0.9), (0.6,1), (0.7,1), (0.8,1), (0.9,1), (1,1)} Very True = True 1 false = ((0.5,0.3), (0.6,0.6), (0.7,0.8), (0.8,0.9), (0.9,0.9), (1,0.1)4 Alenost true not false = True U false - \ (0.1,0.1), (0.2,0.2), (0.3,0.4), (0.4,0.5), (0.5,0.4), (0.6,1), (0.7,1), (0.8,1), (0.9,1), (1,1)} Jene 2 (12,03) (01,01) (13,03) (18,09) 1, 1 0 1 (1,8 1) (1,8 0) (10) (1,0) (= sum in all more and house the more more (1) 2 a) ((Coall) (callar (called soul) (see that) (mayor)

$$M_{RT}(A'/A)^{(8)} = M_{A}(x_{1}) = .9$$
 $M_{RT}(A'/A)(.6) = M_{A}(x_{2}) = .8$
 $M_{RT}(A'/A)(.5) = M_{A}(x_{3}) = .5$
 $M_{RT}(A'/A)(.5) = M_{A}(x_{3}) = .5$
 $M_{RT}(A'/A)(.4) = M_{A}(x_{4}) = .5$
 $M_{RT}(A'/A)(.4) = M_{A}(x_{4}) = .5$
 $M_{RT}(A'/A)(.5) = .5$
 $M_{RT}(A'/A)(.5) = .5$
 $M_{RT}(A'/A)(.5) = .5$
 $M_{RT}($

8

$$M_{RT}(B'/B) (b) = \max \left\{ \min (.9, S(I(.9,b))) \right\}$$

$$\min (.8, S(I(.8,b)))$$

$$\min (.5, S(I(.5,b)))$$

$$\min (.5, S(I(.5,b)))$$

$$y.$$

$$M_{8}(Y_{1}) = M_{RT}(B'/B)(\tilde{B}(Y_{1})) = M_{RT}(B'/B)(\cdot 2) = .5$$
 $M_{8}(Y_{2}) = M_{RT}(B'/B)(\tilde{B}(Y_{2})) = M_{RT}(B'/B)(\cdot 5) = .7$
 $M_{8}(Y_{3}) = M_{RT}(B'/B)(\tilde{B}(Y_{3})) = M_{RT}(B'/B)(\cdot 6) = .8$
 $B = \{ (Y_{1}, .5), (Y_{2}, .7), (Y_{3}, .8) \}.$

one 21
$$X = \{1, 2, 3, 4\}$$
 ; $\widetilde{A} = \{(1, 0), (2, .2), (3, .6), (4, 1)\}$

$$\vec{R} = 1 \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & .5 & 0 & 0 \\ 2 & .5 & 1 & .5 & 0 \\ 3 & 0 & .5 & 1 & .5 \\ 4 & 0 & 0 & .5 & 1 \end{bmatrix}$$

$$for x = x_1, z = z_1$$

 $\mu(x_1, z_1) = mox(min(0,1), min(.2,.5), min(.6,0), min(.6,0))$
 $= mox(0,.2,0,0) = .2$

for
$$x = x_1, z = z_2$$

 $\mu(x_1, z_2) = \max(\min(0, .5), \min(.2, 1), \min(.6, .5), \min(1, 0))$
 $= \max(0, .2, .5, 0) = .5$

for
$$k=21$$
, $z=23$
 $\mu(x_1, z_3) = mox(min(o,0), min(.2,.5), min(.6,1), min(1,.5))$
 $= mox(0,.2,.6,.5) = .6$

for
$$x = x_1, z = 74$$

 $\mu(x_1, z_4) = mox(min(o,0), min(-2,0), min(-6,.5), min(1,1))$
 $= mox(0,0,.5,1) = 1$

$$\beta = \{(1, 2), (2, .5), (3, .6), (4, 1)\}$$

Out? $X = \{1, 2, 3, 4, 5\}$; $\widetilde{A} = \{(1,1), (2,1,5), (3,14), (4,2), (5,0)\}$ At of $\widetilde{A} \circ \widetilde{K}$ be defined by \widetilde{B} wothin; $\widetilde{B} = \widetilde{A} \circ \widetilde{K}$ $= X \int_{1}^{4} \frac{4}{5} \frac{4}{5} \frac{4}{5} = 0$ $= X \int_{1}^{4} \frac{4}{5} \frac{4}{5} \frac{4}{5} = 0$

for x=x1, 2221

 $M(x_1, z_1) = max(min(1,1), min(.5, -8), min(.4,0), min(.2,0), min(0,0))$ = max(1,.5,0,0,0) = 1

 $M(x_1, z_2) = mox(min(1; .8), min(.5, 1), min(.4, .8), min(.2, 0), min(0, 0))$ = mox(.8, .5, .4, 0, 0) = .8

 $M(n_1, 23) = MOX(min(1,0), min(.5,.8), min(.4,1), min(.2,1), min(0,.8))$ = MOX(0,.5,.4,.2,0) = .5

 $M(x_{1}, z_{4}) = mox(mix(1,0), mix(.5,0), mix(.4,.8), mix(.2,1), mix(0,.8))$ = mox(0,0,.4,.2,0) = .4

 $M(x_{1}, z_{5}) = MOx(min(1,6), min(.5,0), min(.4,0), min(.2,.8), min(0,1))$ = MOx(0,0,0,.2,0) = .2

 $\vec{\beta} = \underbrace{\{(1,1), (2,.8), (3,.5), (4,.4), (5,.2)\}}$

$$\widetilde{A} = \{(100, .5), (120, .7), (140, .8), (160, 1)\}$$

$$\widetilde{B} = \{(10, .6), (12.8), (15, 1)\}$$

let ender of attractive con for diff combinations of mileage and top speed is denoted by relation $\tilde{\kappa}$.

3

$$\vec{R} = \begin{bmatrix} 10 & 0.6 \\ 12 & 0.8 \\ 15 & 1 \end{bmatrix} \circ \begin{bmatrix} 0.6 & 0.5 \\ 0.5 & 0.7 \\ 0.8 & 0.8 \end{bmatrix}$$

Mileage for most attractive con = 15 km/litre Top speed for most attractive con = 160 km/hr

 $\tilde{A} = \{(1,0.7), (2,0.4), (3,0.6), (4,0.5), (5,0.8), (6,0.2)\}$ $\tilde{B} = \{(1,0.8), (2,0.5), (3,0.6), (4,0.6), (5,0.9), (6,6.1)\}$

1 Zadeh Maximum

t(xi is k -> bj is B) = (1-MA(xi)) V (MA(xi) NMB(yj))

(2) Stardard Sequence

 $t(x_i \text{ is } \widetilde{A} \rightarrow y_j \text{ is } \widetilde{B}) = \begin{cases} 1 & \text{Mar(x_i)} \leq \text{Ms}(y_j) \\ 0 & \text{else} \end{cases}$

t =

A

В								
	1	2	3	4	5	6		
1	1	0	0	0	1	0		
2	O	1	1	1	1	0		
3	1	0	1	1	1	0		
4	1	1	1	1	1	0		
5	1	0	0	0	1	0		
6	1	1	1	-	-			
.5.		1 ,	['	l	1	0		

t-				В		ĭ	t
		1	1 2	3	4	5	6
	1	1	7/5	7/6	7/6	l	7
۸	2	2	1	1	1)	4
A	3	1	6/5	1)	l	6
	4	1	1	1	l	1	5
	5	1	8/5	4/3	4/3	1	8
	6	1	,)	1	1	1	2
						Į	

Conclusion is not same in all cases.