2. Polynomial $P(x) = a_0 x + q_1 x + q_2 x^2 + + a_n x^n$ where a_0, a_1, \dots, a_n are real numbers. Degree of Polynomial: - The highestpower of variable in a polynomial Ep: (1) 4³ +74 +4 => Degree - 3 (11) $\frac{7}{6}y^6 + y^8 - 4y^2 \Rightarrow \text{Degree} = 8 \left[u^9 = 1\right]$ $\chi^2 + 2\chi^2 + 4 \rightarrow Not a Polynomia$ $y^{2} + 2 \xrightarrow{3} \xrightarrow{3} \xrightarrow{1}$ = y=1 y (17) y²+y-1 -> Not a Polynomia

Based on Degree, types of Prhynomial 1. Linear Polynomial > Degree of polynamial is 1.

So! 2x+1, y, etc. 2. Quadratic Polynomial > Degree - 2 Ex: $7x^2 + 4x$, $7y^2 + 3y - 2$ 3. Cubic Polynomial -> Degree = 3 $S_{p}: 7x^{3}+4x^{2}+2x$, $7y^{3}$, etc.

Zerses of Polynomial

$$P(x) = 5x^2 + 2x$$

$$[n = a] \rightarrow P(a) = 0$$

Zenoes of pohynomial.

Eq:
$$P(x) = x-1$$

$$x=1 P(1) = 1-1 = 0$$

$$P(x) = x - 1$$

Number of zeroes in any polynomial

= Degree of that polynomial

Linear Polynomial -> 1 zeroes

Quadratic "1 -> 2 zeroes.

Eg:- $7x^5 + 3x^3 + 2x \longrightarrow 5$ zeroes.

Quadratic Polynomial

General from: - ax2+bx+c

where a,b,c are coefficients & real number.

Real = R + IR

Natura Integer — mal

1 -> Rational

-5 -> Rational

2.2 -> 22 - 11

Quadratic polynomial has 2 zeroes. The zeroes are also called roots of polynomials So, In quadratic polynomial and pare roots of
Alpha
Beta quadratic polynomial. It means: -

= 0x2 + bx + C - 0 (because x is roof) $=) \quad \alpha \cdot x^2 + b \cdot x + c = 0$

$$P(p) = 0$$
 (because β is roof
=) $\alpha \cdot \beta^2 + b \cdot \beta + C = 6$

$$P(x) = ax^2 + bx + c$$

$$y = -b$$

$$+\beta = -\frac{5}{9}$$

$$A \cdot B = \frac{c}{a}$$

Geometrical meaning of Zeros of
Polynomial

P(X)

No. of intersecting point = No. of zows

(P(y)) = 3

1 3 4

(T) 7

=) If polynomial contains only variable
'i' then we check how many
points graph of that polynomial is intersecting on x-asis. =) If polynomial contains only Variable 'y' then we cheele how many points the graph es intersecting on y-apis.

Eq: - (1) P(x) > 2 Zerolz 7 (1) $P(x) \rightarrow 17ero$ $P(y) \rightarrow 0$ zeros.

Graph of linear polynomial, P(X)

It has 1 zero

A sero

Graph of Quadratic Polynomial

P(x) = ax² + bx + c

This shape is parabola.

values of XRB are distinct.

X=P3 X

X=15 B=15

> Here, both zeros of quadratic polynomial are same. So, X & B coincide at one posit

Graph of Cubic Polynomial

Product
$$-\frac{b}{c}$$

Sal. General form:
$$P(\pi) = ax^2 + bx + c$$

Given: $P(\pi) = Cx^2 + ax + b$
 $a = c, b = a, c = b - c$

Sum
$$\sqrt{\frac{2eros}{a}} = -\frac{b}{a} = -\frac{a}{c}$$

Product - $\sqrt{\frac{2eros}{a}} = -\frac{c}{a} = -\frac{b}{c}$

finding Roofs | zeros of Quadratic

Polynomial

8. find zeros of
$$f(x) = x^2 + 7x + 10$$

and verify the relationship.

$$F(x) = x^2 + 7x + 10$$

$$= x^2 + 2x + 5x + 10$$

$$= x(x+2) + 5(x+2)$$

$$= (x+2)(x+5)$$

$$= x+2 = 0$$

$$= x+5 = 0$$

$$= x+5 = 0$$

=) 2 = -5

$$\alpha x^2 + bx + c$$

$$\chi^2 + 7\chi + 10$$

(1) Sum of zeros =
$$-\frac{b}{a}$$

$$\frac{LHS}{}$$
: Sum of zeroes = $-2 + (-5)$

$$\frac{RHS:}{a} = -\frac{7}{1} = -7$$

LHS:- Product of Zeros =
$$(-2) \cdot (-5)$$

= 10
 $-x - = +$
 $+x - = -$
 $+x + = +$
 $\therefore LHS = -RHS$

Hence, tre relationship is verified. find zeros & verify relationship $9.1 + 4s^2 - 4s + 1$ $9.2. \times^2 - 2x - 8$

Sal. $45^2 - 45 + 1$ | Sum = -4 | Sof. $7^2 - 2x - 8$ | 5 = -2 | 9 = 4 | 9 = 4 | 9 = -8 |

$$(2S-1)$$
 $(2S-1)$ $-2\cdot -2=4$
 $S\cdot -\frac{1}{2}$, $\frac{1}{2}$

Q: If one zero of
$$P(x) = 6x^2 + 37x - (k-2)$$
is reciprocal of other, find value
of K .

Sal. The zeroes are
$$\alpha & 1$$

$$P(x) = 6x^2 + 37x - (K-2)$$

$$\alpha, \beta = \frac{c}{a}$$

$$=) \qquad \frac{1}{\kappa} = -\frac{(\kappa-2)}{6}$$

$$=)$$
 1×6 $=-(k-2)$

Q. If one zero of
$$P(x) = x^2 + 3x + k$$

$$P(x) = x^{2} + 3x + k$$

$$P(2) = 0$$

$$= 2^{2} + 3 \cdot 2 + 10^{2} = 0$$

2019

8. Find K such Heat-
$$p(n) = x^2 - (K+6)x + 2(2K-1)$$
 has sum

Of its zeroes equal to half of

Heir product.

Sol.
$$P(x) = x^2 - (k+6)x + 2(2k-1)$$

$$-$$
) $a - 1, b = -(K+6), c = 2(2k-1)$

MQ,

$$=\frac{1}{a} = \frac{1}{2} \times \frac{c}{a}$$

$$=) - (-(k+6)) - 1 \times 2(2k-1)$$

Aseign.

$$P(x) = 3x^2 - 8x + 2k+1$$

 $a : 3, b : -8, c = 2k+1$
Zeroes are $x = 8, 7x$

Sum of zeros =
$$-\frac{b}{a}$$

$$-)$$
 $x + 7x = -\frac{(-8)}{3}$

$$= \frac{8}{3}$$
 $= \frac{8}{3}$
 $= \frac{1}{3}$

$$=)$$
 $q.7d = 2k+1$

$$\frac{1}{3} \cdot \frac{7 \cdot 1}{3} = \frac{2K+1}{3}$$

$$=$$
 $2K = \frac{7-3}{3}$

$$\frac{2}{1} \times \frac{4}{2} \times \frac{2}{3} \times \frac{4}{3} \times \frac{2}{3} \times \frac{2}$$

Polynomials $\Rightarrow P(x) = ax^2 + bx + c$ Zeroes/Robs: - a & B Relation ① Sum = $-\frac{b}{a}$ ×+p=-ba 2 Product = ç x.p = ç a 3) finding roofs & Very. Griven: P(x) = 3x2-4x +5
Ask: Zeroes/Roofs. finding quadratic polynomial when sum of zeroes / product of zeroes / soots are known P(x) = x2-(Sum of Zeros)x+ Troduct

$$P(x) = x^2 - (\alpha + \beta)x + \alpha\beta$$

S. find quadratic polynomial whose sum & product are $\frac{1}{4}$, -1Sol. $x+\beta=\frac{1}{4}$, $x\beta=-1$ $x^2-(x+\beta)x+x\beta$

=)
$$\kappa \left(2^2 - \frac{1}{4} \times + (-1) \right)$$

$$=) K(x^2 - x - 1)w$$

$$\mathcal{K}\left(\frac{4x^2-x}{4}\right)$$

2f K = 4-> $P(a) = 4x^2 - x - 4$

A. Find a quadratic polynomial whose zeroes are $5-3\sqrt{2}$ and $5+3\sqrt{2}$.

Sol. Q = 5-352, B = 5+352

 $P(\chi) = \chi^{2} - (\chi + \beta)\chi + \chi\beta$ $= \chi^{2} - (5 - 3\sqrt{2} + 5 + 3\sqrt{2})\chi + (5 - 3\sqrt{2})(5 + 3\sqrt{2})$

 $-2^{2}-10x+\left(5^{2}-(3\sqrt{2})^{2}\right)$

 $-2^{2}-10x+(25-18)$

 $P(n) = \chi^2 - 10\chi + 7$

9. If $x \ge \beta$ are zeroes of $P(x) = x^2 - x - 2$ then find a

polynomial whose zeroes are $2\alpha + 1 \le 2\beta + 1$ Sat.

Let $x \ge \beta$ are zeroes of

Let $\alpha \otimes \beta$ are zeroes of β and β are zeroes of β and β are β are

-2 (+1) +2

- 12 + 2

Product of zeroes =
$$(2\alpha+1)(2\beta+1)$$

= $4\alpha\beta+2\alpha+2\beta+1$
= $4\cdot(-2)+a(\alpha+\beta)+1$
= $-8+2(1)+1$
= $-8+2+1$
= -5

Required Polynomial $- x^{2} - (Sum of zeros) x + Produt$ $= x^{2} - 4x - 5 - 2$

8. If
$$x_1 p$$
 are zeroes $g(x) = x^2 - x - y$
then find $\frac{1}{x} + \frac{1}{p}$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta}$$

$$= \frac{-1}{1}$$

$$\Rightarrow \frac{1}{x} + \frac{1}{p} = -1$$
As

8. If α & β are rooks of $\rho(x) = \chi^2 - 7\chi + 10$ then find polynomial whose α are α^2 and β^2 .

Sol.

P(x) = $\chi^2 - 7x + 10$ Where χ & χ are zeroes.

 $\frac{\alpha + \beta}{\alpha} = \frac{-b}{\alpha} = +7$ $\frac{C}{\alpha} = \frac{10}{2}$

New zeroes are χ^2 & β^2 Sum of zeroes = $\alpha^2 + \beta^2$ $(\alpha + \beta)^2 - \alpha^2 + \beta^2 + 2\alpha\beta$ $\Rightarrow \alpha^2 + \beta^2 - (\alpha + \beta)^2 - 2\alpha\beta$

$$= (7)^2 - 2.10$$

$$= 49 - 20$$

$$=)$$
 $x^2 + p^2 = 29$

Product of zeroes =
$$x^2$$
, β^2

$$= (x\beta)^2$$

$$= (10)^2$$

$$= 100$$

Required Polynomial

= $\chi^2 - (Sum of zeroes)\chi + Product$ = $\chi^2 - 29\chi + 100$

or If
$$x \in P$$
 are zeroes of $P(x) = x^2 - 6x + k$
then find k such that $x^2 + p^2 = 40$

A. If
$$\alpha$$
 and β are zeros of $\beta(x) = x^2 - x - \phi$
then find value of $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha \beta$

Sal.
$$P(x) = x^2 - x - 4$$

$$\frac{1}{\alpha} + \frac{1}{\beta} - \alpha \beta$$

$$\frac{\beta + \alpha}{\alpha \beta} - \alpha \beta$$

$$\frac{-(-1)}{-4}$$
 - (-4)

$$= \frac{1}{-4} + 4$$

$$= \frac{-1+16}{4} = \frac{1574}{4}$$

9. Find zeroes and verify relationship $2(y) = 7y^2 - \frac{11}{3}y - \frac{2}{3}$

$$50f.$$
 $2(y) = 7y^2 - 11y - \frac{2}{3}y$

$$-\frac{21y^2-11y-2}{3}=0$$

$$=$$
 $21y^2 - 11y - 2 = 0$

$$=) 21y^{2} - 14y + 3y - 2$$

$$= 7y(3y-2) + 1(3y-2)$$

$$= (3y-2)(7y+1)$$

$$= 3y-2 = 0$$

$$= y = \frac{2}{3}$$

$$y = -\frac{1}{7}$$

... 2 8 - 1 are zeroes of polynomial.

2023)
B. The number of polynomials having
-2 and 5 as zeroes is

6) 3 c) 2 d) Infinite a) 1

K [22-(X+B)x + 4B] > 00 polynomial.

8. A polynomial with zeroes -3 & 4
whose graph is parabola opening
upward is: a) $x^2 - x - 12$ b) x² - x + 7 2 + 2 + 2 + 12 3 = 0 $4 - x^2 - x + 12$ y = 0 < 022 - («+B)x +«B x2 - (- 3+4) x + (-3).4

x²-x-12_