Chapter 4: The Relational Data Model and Relational Database Constraints

- The **relational data model** is based on having a set of relations with relationships between them.
- A relation looks like a **table** of values.
- A relation has columns (formally called attributes).
- A relation typically also contains a **set of rows (also called tuples)**.
- The data elements in each **row** represent certain facts that correspond to a real-world **entity** or **relationship**

Example #1 of a Relation

Citizens

Name	National_ID	Date_of_Birth
Sami Fahad	1078114611	01/04/1990
Ahmad Saad	1051111654	05/04/1991
Manal Khalid	105551231	09/11/1989

tuples<u></u>

Example #1 of a Relation

Relation name Citizens

	Name	National_ID	Date_of_Birth
	Sami Fahad	1078114611	01/04/1990
-	Ahmad Saad	1051111654	05/04/1991
•	Manal Khalid	105551231	09/11/1989

Attributes

Example #2 of a Relation

Figure 5.1
The attributes and tuples of a relation STUDENT.

Key of a relation

- Each relation must have a key
- Key: attribute which value in each row must be unique
- In the CITIZENS table, National_ID is the key
- In the STUDETN table, SSN is the key
- Key for table with cars dealership information?
- Key for table with flights information?

Key for tables with cars dealership information?

Key of a relation

- Primary key (PK): An attribute that identify all table records
- A primary key must only contain unique values
- It cannot have null values.
- If relation has more than one key, you can pick one as PK
- A PK can be two attributes combined (student id and section number)
- Surrogate key: Sometimes <u>row-ids</u> or sequential numbers are assigned as keys to identify the rows in a table

unique value for each row of data

Can not contain NULL values

should not be altered frequently

- The **Schema** (or description) of a Relation:
- Denoted by R (A₁, A₂, ... A_n)
- R is the **name** of the relation
- \bullet The **attributes** of the relation are A₁, A₂, ... A_n
- Example: CUSTOMER (Cust_id, Cust_name, Address, Phone#)
- CUSTOMER is the relation name
- Defined over the four attributes: Cust_id, Cust_name, Address, Phone#
- Each attribute has a <u>domain</u> or a set of valid values.
- For example, the domain of Cust_id is 6 digit numbers.

Schema (example)

```
create table emp(
          number(4,0),
 empno
          varchar2(10),
 ename
          varchar2(9),
 job
          number(4,0).
 mgr
 hiredate date,
          number(7,2),
 sal
          number(7,2),
 COMM
          number(2,0),
 deptno
  constraint pk emp primary key (empno),
  constraint fk_deptno foreign key (deptno) references dept (deptno)
```

Create the EMP table which has a foreign key reference to the DEPT table. The foreign key will require that the DEPTNO in the EMP table exist in the DEPTNO column in the DEPT table.

Data Types (example)

Data types are used to represent the nature of the data that can be stored in the database table.

Data types mainly classified into three categories for every database.

- String Data types
- Numeric Data types
- Date and time Data types

	Column Name	Data Type	Allow Nulls
₽Ÿ	PostID	int	
	StatusID	int	
	OwnerlD	int	
	PostCategoryID	int	
	ApprovalUserID	int	\checkmark
	VisitedCounter	int	
	Title	nvarchar(100)	
	ContentText	nvarchar(MAX)	
	CreatedDate	datetime2(7)	
	ModifiedDate	datetime2(7)	\checkmark
	ExpireDate	datetime2(7)	
	ApprovalDate	datetime2(7)	\checkmark

- A domain defines a structure or format that all values of an attribute must follow.
- For example, all phone numbers in Tunisia have to be 8 digits long and the first digit has to be zero.
- Domain also has a data-type
- For example, students' names must be a string
- A special **null** value is used to represent values that are unknown or not available or inapplicable.

Definition Summary

Informal Terms	Formal Terms
Table	Relation
Column	Attribute
All possible Column Values	Domain
Row	Tuple
Table Definition	Schema of a Relation
Populate Table	State of the Relation

Part 2: Constraints

Constraints

- Constraints determine which values are allowed and which are not in the database.
- Constraints are conditions that must hold on all valid relation states.
- Three main types of relational integrity constraints:
- 1. Key constraints
- 2. Entity integrity constraints
- 3. Referential integrity constraints

Key Constraints

- **Candidate key:** A super key with no repeated attribute is called candidate key.
- Relational schema may have more than one key.
- Orange Service Ser

CAR

License_number	Engine_serial_number	Make	Model	
Texas ABC-739	A69352	Ford	Mustang	
Florida TVP-347	B43696	Oldsmobile	Cutlass	
New York MPO-22	X83554	Oldsmobile	Delta	
California 432-TFY	C43742	Mercedes	190-D	
California RSK-629	Y82935	Toyota	Camry	
Texas RSK-629	U028365	Jaguar	XJS	

Key Constraints

- Candidate key: You can select either license number or the engine serial number as the primary key.
- Key constraint: Ensuring that all rows in a relation satisfy the rules of the PK.

Properties of Candidate key:

- Olt must contain unique values
- Candidate key may have multiple attributes
- Must not contain null values
- Olt should contain minimum fields to ensure uniqueness
- Uniquely identify each record in a table

Displaying PKs in a database schema

EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary	Super_ssn	Dno

DEPARTMENT

Dname Dnum	ber Mgr_ssn	Mgr_start_date
------------	-------------	----------------

DEPT_LOCATIONS

PROJECT

Pname	Pnumber	Plocation	Dnum

WORKS_ON

Essn	Pno	Hours

DEPENDENT

<u>Essn</u>	Dependent_name	Sex	Bdate	Relationship

Figure 5.5

Schema diagram for the COMPANY relational database schema.

- A constraint involving two relations (two tables).
- Foreign key: An attribute in R_1 where any value of the attribute must reference a primary key in R_2 .

DI	-		70	-	-	
	71	۱	и		ш	

Tiayer			
Online ID]	Date_of_Birth	Country
Maha1		03/12/1991	Saudi Arabia
Hassan99		09/01/1992	Egypt
Nassir_3		01/07/1995	Saudi Arabia

Game

Game ID	Player_1	Player_2	Winner
1	Maha1	Hassan99	Hassan99
9	Hassan99	Nassir_3	Nassir_3
12	Nassir_3	Maha1	Maha1
43	Maha1	Nassir_3	Maha1
5	Hassan99	Nassir_3	Hassan99
10	Nassir_3	Maha1	Maha1

League

zengue		
League ID	Online_ID	Status
0001	Maha1	Active
0002	Hassan99	Active
0003	Maha1	Inactive

PKs:

- Online_ID (Player)
- 2. Game_ID (Game)
- League_ID(League)

FKs:

- Player_1 and Player_2 are referencing Online_ID in the relation Player
- 2. Online_ID in League is referncing Online_ID in Player

Player

Online ID	Date_of_Birth	Country
Maha1	03/12/1991	Saudi Arabia
Hassan99	09/01/1992	Egypt
Nassir_3	01/07/1995	Saudi Arabia

Game

Game ID	Player_1	Player_2	Winner
1	Maha1	Hassan99	Hassan99
9	Hassan99	Nassir 3	Nassir 3
12	Nassir 3	Maha l	Maha1
43	Maha1	Nassir 3	Maha1
5	Hassan99	Nassir 3	Hassan99
10	Nassir 3	Maha1	Maha1

League

League ID	Online_ID	Status
0001	Maha1	Active
0002	Hassan99	Active
0003	Mahal	Inactive

- Statement of the constraint:
- - (1) a value of an existing primary key value of a corresponding primary key PK in the referenced relation R_2 , or (2) a null
- An FK can also be a PK
- An FK cannot be null if it's also a PK

Displaying a relational database schema and its constraints

- Each **relation schema** can be displayed as a row of attribute names
- The **name** of the relation is written above the attribute names
- The primary key attribute (or attributes) will be underlined
- A foreign key (referential integrity) constraints is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table

Referential Integrity Constraints Example

Figure 5.7

Referential integrity constraints displayed on the COMPANY relational database schema.

Entity Integrity

- The primary key attributes PK of each relation schema R cannot have null values in any tuple of r(R).
- This is because primary key values are used to identify the individual tuples.
- If PK has several attributes, null is not allowed in any of these attributes