HONG KONG BAPTIST UNIVERSITY SEMESTER 1 EXAMINATION, 1997-1998

Page:	1 of	4
_		

Total Number of Pages: 4

Subject Code:	COMP3010	Section No.:	1	Time Allowed:	3	. Hour(s)
Subject Title:	Artificial Intelligence		Total	Number of Pages:		4

Time allowed: 3 hours.

Answer all questions.

This is a closed book examination.

1a. Explain the criteria for evaluating a search strategy. (4 marks)

1b. Give the definitions of iterative-deepening and A* search.

(4 marks)

1c. Use the criteria explained in 1a. to evaluate iterative-deepening and A* search.

(4 marks)

- 2. Nine air-flights and their distances of an Airline-Company are shown in the following figure. Write a Prolog program to: (12 marks)
- 2a. find all routes from Beijing to H.K., calculate the distance of each route and list all the cities passed through by each route.
- 2b. find the shortest route from Beijing to H.K., calculate the distance of this route and list all the cities passed through by this route.
- 2c. find the shortest route from Beijing to H.K. without passing through Wu-Han because the airport of Wu-Han is closed for some reason

- 3. Compare two iterative improvement algorithms, Hill-climbing and Simulate-Annealing, with respect to their abilities to search the optimal solution. (8 marks)
- 4. Explain why an inductive bias is needed in Inductive Learning. Describe the biases used in Decision-Tree learning and Version Space learning. (8 marks)
- 5. Suppose that we want to choose a day for the BBQ in the country-side. Each candidate day will be evaluated according to 4 attributes:
 - (1) the Outlook of the sky,
 - (2) the Temperature-degree,
 - (3) the Humidity-degree, and
 - (4) the Wind-strength.

HONG KONG BAPTIST UNIVERSITY SEMESTER 1 EXAMINATION, 1997-1998

Page:		_of	4
-------	--	-----	---

Subject Code:	COMP3010	Section No.:	1	Time Allowed:	3	Hour(s)
Subject Title:	Artificial Intelligence		Total	Number of Pages	S:	4

The possible values of each attribute are:

- (1) the possible Outlook are Sunny, Overcast, Rain,
- (2) the possible Temperature-degree are Hot, Mild, Cool,
- (3) the possible Humidity-degree are Normal or High, and
- (4) the possible Wind-strength are Middle or Strong.

The candidates are classified into two classes: Suitable or Non-suitable. The training examples are presented in the following table:

No.	Outlook	utlook Temperature Humidity Wind		Wind	Class
1	Sunny	Mild	Normal	Middle	Suitable
2	Sunny	Mild	High	Middle	Suitable
3	Sunny	Hot	High	Strong	Suitable
4	Overcast	Mild	Normal	Middle	Suitable
5	Overcast	Hot	High	Middle	Non-suitable
6	Overcast	Cool	Normal	Middle	Suitable
7	Overcast	Cool	High	Middle	Non-suitable
8	Overcast	Mild	High	Middle	Non-suitable
9	Rain	Hot	Normal	Strong	Non-suitable
10	Rain	Mild	High	Strong	Non-suitable
11	Rain	Cool	Normal	Strong	Non-suitable
12	Rain	Cool	High	Middle	Non-suitable

- 5a. Calculate the Average Disorder of various attributes for each level of the decision tree. (6 marks)
- 5b. Construct a decision tree using the results of 5a. (4 marks)
- 5c. Predicate whether a candidate day is suitable. The information of the candidate is summarized in the following table: (2 marks)

Outlook	Temperature	Humidity	Wind
Overcast	Hot	Normal	Strong

5d. Discuss the overfitting phenomenon in Decision-Tree learning when adding the following incorrect example (noisy data) to the training set. (4 marks)

Outlook	Temperature	Humidity	Wind	Class
Overcast	Hot	Normal	Middle	Non-suitable

6. Consider a robot that collects TVs from the rooms of levels four and five in a building. The learning task is to derive rules that determines where a TV exists. The attributes and their features of the rooms are:

Department (History, Business), Master (Faculty, Technician, Student), Level (Four, Five).

HONG KONG BAPTIST UNIVERSITY SEMESTER 1 EXAMINATION, 1997-1998

Page: <u>3</u> of <u>4</u>

Subject Code: COMP3010 Section No.: _____1 Time Allowed: __3__ Hour(s)

Subject Title: Artificial Intelligence Total Number of Pages: 4

6a. The robot uses Candidate-Elimination algorithm to learn the rules. Explain, in general, how the most general boundary set G and the most specific boundary set S are updated when a new example (positive / negative) arrives. (6 marks)

6b. Give the most general boundary sets S and most specific boundary G of each version space produced when the following training examples are presented to the robot one by one. (6 marks)

No.	Department	Master	Level	Has a TV?
1	Business	Faculty	Four	yes
2	Business	Technician	Five	no
3	Business	Faculty	Five	yes
4	Business	Faculty	Four	no

6c. What are the rules produced?

(2 marks)

7a. Two sets of examples and a perceptron network are given as follows:

Set A of examples:

Set **B** of examples:

inputs:			outputs:	input	inputs:		output	
\mathbf{x}_{1}	\mathbf{X}_{2}	X_3	y	\mathbf{X}_1	X_2	X_3	у	
0	0	0	1	0	0	0	1	
1	1	1	1	1	1	1	1	
1	1	0	0	1	1	0	0	
0	0	1	0	0	1	0	0	

Execute the perceptron learning rule on the preceptron network by the two sets of examples respectively. Show the resulting weight vector if it is convergent; otherwise, explain why it is not convergent. Assume that the initial weight vector (w_0, w_1, w_2, w_3) is (1, -1, -1, -1) and the learning rate is 1. (12 marks)

7b. What type of problems (considering their attributes, noise, ...) are most appropriate for Neural-network learning? (6 marks)

HONG KONG BAPTIST UNIVERSITY Page: 4 of <u>4</u> **SEMESTER 1 EXAMINATION, 1997-1998** Subject Code: COMP3010 Section No.: _____1 Time Allowed: __3 Hour(s) Subject Title: Artificial Intelligence Total Number of Pages: 4 8a. Briefly state the key steps of Genetic algorithm. (6 marks) 8b. Consider the following two parental chromosomes, 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0 1 i) what are the two offspring chromosomes generated by performing a single-point crossover with the following crossover mask: (1 marks) 1 1 1 0 0 0 0 0 0 0 ii) what are the two offspring chromosomes generated by performing a two-point crossover with the following crossover mask: (2 marks) 0 0 1 1 1 1 0 0 0 0 iii) what are the two offspring chromosomes generated by performing a uniform crossover with the following crossover mask: (3 marks) 0 1 1 0 0 1 1 0 0 1