The Membrane Voltage

Neurons are excitable cells

Computational Neuroscience University of Bristol

M Rule

Learning outcomes:

► The effective RC circuit for passive membrane

Remember these?

V = IR Ohm's law

I = gV Ohm's law, conductance form

 $I = C\dot{v}(t)$ Definition of capacitence

$$C_m \dot{v} = g_\ell (E_\ell - v)$$

$$C_m = 100 \times 10^{-12} \, \text{Farads}$$
 (100 picofarads) cell membrane capacitance $E_\ell = -70 \times 10^{-3} \, \text{Volts}$ (-70 millivolts) resting potential $q_\ell = 10 \times 10^{-9} \, \text{Siemens}$ (10 nanosiemens) leak conductance

$$C_m \dot{v} = g_\ell (E_\ell - v)$$

$$C_m = 100 \times 10^{-12} \, \text{Farads}$$
 (100 picofarads) cell membrane capacitance $E_\ell = -70 \times 10^{-3} \, \text{Volts}$ (-70 millivolts) resting potential $q_\ell = 10 \times 10^{-9} \, \text{Siemens}$ (10 nanosiemens) leak conductance

$$C_m \dot{v} = g_\ell (E_\ell - v)$$
$$\tau_m \dot{v} = E_\ell - v$$

$$C_m = 100 \times 10^{-12} \,\text{Farads}$$
 (100 picofarads)

 $E_{\ell} = -70 \times 10^{-3} \text{ Volts}$ (-70 millivolts)

 $g_{\ell} = 10 \times 10^{-9}$ Siemens (10 nanosiemens)

 $R_m = 1/g_\ell = 100 \times 10^6$ Ohms (100 megaohms)

 $\tau_m = r_m C_m = 10 \times 10^{-3} \text{ seconds (10 milliseconds)}$

cell membrane capacitance

resting potential

leak conductance

membrane resistance

membrane time constant

Model: A neuron with applied current

$$\tau_m \dot{v} = E_\ell - v + I$$

Jargon

depolarize v_m increases

repolarize v_m decreases towards resting potential

hyperpolarize v_m is driven below resting potential

Sign conventions

Let $v_m = v_{interior} - v_{exterior}$ denote a neuron's membrane voltage

A positive current applied to a neuron makes v_m _____?

- ► Engineer: increase
- Electrophysiologst: decrease!

Compromise:

- inward current makes the voltage inside the cell more positive, relative to the outside
- outward current makes the voltage inside the cell more negative, relative to the outside

