Project Sigma

Algebraic Geometry

Yunhai Xiang

May 11, 2021

Contents

1 Affine Algebraic Sets

5

CONTENTS 4

Chapter 1

Affine Algebraic Sets

Let k be a field and $n \in \mathbb{N}$, then the *affine space* $\mathbf{A}^n(k)$ of dimension n, or simply \mathbf{A}^n if it does not cause confusion, is the same structure as the n-dimensional vector space k^n over k, except with affine maps as morphisms, where an affine map is a linear map shifted by a constant.

Definition 1.0.1. Suppose that $S \subseteq k[X_1, ..., X_n]$ for some $n \in \mathbb{N}$, we define

$$\mathcal{V}(S) = \{ x \in \mathbf{A}^n(k) : \forall f \in S, f(x) = 0 \}$$

as the zero-locus of S. A subset of $A^n(k)$ that is the zero-locus of some S is called (affine) algebraic.

For example, in $\mathbf{A}^2(\mathbf{R})$, the sets $\mathcal{V}(\{Y\})$ and $\mathcal{V}(\{X\})$ are the x-axis and the y-axis, the set $\mathcal{V}(\{X,Y\})$ is the origin. The set $\mathcal{V}(\{f\})$, where $f \in k[X,Y]$ is polynomial of degree 2, is known as a *conic section*, for example, the circle $\mathcal{V}(\{X^2+Y^2-1\})$, the parabola $\mathcal{V}(\{Y-X^2\})$, and the hyperbola $\mathcal{V}(\{XY-1\})$. These are all examples of algebraic sets. The set \mathbf{Z} considered as a subset of $\mathbf{A}^1(\mathbf{R})$ is obviously not algebraic, since a non-constant polynomial can not have infinitely many zeros. By the same reason, the set $\{(\cos t, \sin t, t) \in \mathbf{A}^3(\mathbf{R}) : t \in \mathbf{R}\}$ is also not algebraic, as the trig functions are 2π periodic. Next, we claim that to find all algebraic sets, we need not consider all subsets of $k[X_1, \ldots, X_n]$. Let R be a commutative ring, we recall the following theorems.

Theorem 1.0.2. *R* is noetherian iff all ideals $I \subseteq R$ are finitely generated.

Theorem 1.0.3 (Hilbert's Basis theorem). If R is noetherian, then so is $R[X_1, \ldots, X_n]$.

Therefore $k[X_1,\ldots,X_n]$ is noetherian, and hence every for each $S\subseteq k[X_1,\ldots,X_n]$, the ideal $\langle S\rangle$ is generated by some $f_1,\ldots,f_m\in k[X_1,\ldots,X_n]$. We claim that $\mathcal{V}(S)=\mathcal{V}(\langle S\rangle)=\mathcal{V}(\{f_1,\ldots,f_m\})$. First, we know that $\mathcal{V}(\langle S\rangle)\subseteq\mathcal{V}(S)$ since $S\subseteq \langle S\rangle$. Conversely, suppose that $f\in \langle S\rangle$, then there exists $g_1,\ldots,g_\ell\in S$ and $\lambda_1,\ldots,\lambda_\ell\in k[X_1,\ldots,X_n]$ with $f=\lambda_1g_1+\cdots+\lambda_\ell g_\ell$. Suppose that $p\in\mathcal{V}(S)$, then $f(p)=\lambda_1g_1(p)+\cdots+\lambda_\ell g_\ell(p)=0$. Since all $p\in\mathcal{V}(S)$ is a zero of all $f\in \langle S\rangle$, we must have $\mathcal{V}(S)\subseteq\mathcal{V}(\langle S\rangle)$, and hence $\mathcal{V}(S)=\mathcal{V}(\langle S\rangle)$. The equality $\mathcal{V}(\langle S\rangle)=\mathcal{V}(\{f_1,\ldots,f_m\})$ is derived similarly. Hence all algebraic sets are the zero loci of ideals, and also all algebraic sets are the zero loci of finite sets. Conversely, we can define an ideal $\mathcal{I}(X)$ for each $X\subseteq \mathbf{A}^n(k)$.

Definition 1.0.4. Let $X \subseteq \mathbf{A}^n(k)$, then define the ideal $\mathcal{I}(X)$ of $k[X_1, \dots, X_n]$ as

$$\mathcal{I}(X) = \{ f \in k[X_1, \dots, X_n] : \forall p \in X, f(p) = 0 \}$$

which is a well-defined ideal as we can verify easily.

In fact, not only is $\mathcal{I}(X)$ an ideal, it is also a radical ideal. We recall that an radical ideal of a commutative ring R is an ideal $I \subseteq R$ with $I = \sqrt{I}$ where $\sqrt{I} = \{r \in R : \exists m > 0, r^m \in I\}$. In other words, a radical ideal is an ideal $I \subseteq R$ where for all $r \in R$, if $r^m \in I$ for some m > 0, then $r \in I$. To see that $\mathcal{I}(X)$ is a radical ideal, note that if $f^m \in \mathcal{I}(X)$ for some m > 0, then $f^m(p) = 0$ for all $p \in X$, then f(p) = 0 for all $p \in X$ as k is a field, hence $f \in \mathcal{I}(X)$.

Similar to how $\mathcal{V}(S) \subseteq \mathcal{V}(T)$ when $T \subseteq S \subseteq k[X_1, \dots, X_n]$, we easily have $\mathcal{I}(X) \subseteq \mathcal{I}(Y)$ when $Y \subseteq X \subseteq \mathbf{A}^n(k)$. Let $f \in S \subseteq k[X_1, \dots, X_n]$, then by definition f vanishes on all of $\mathcal{V}(S)$, therefore $f \in \mathcal{I}(\mathcal{V}(S))$. Let $p \in X \subseteq \mathbf{A}^n(k)$, then by definition p is a zero of all polynomials of $\mathcal{I}(X)$, therefore $p \in \mathcal{V}(\mathcal{I}(X))$. Hence we have $S \subseteq \mathcal{I}(\mathcal{V}(S))$ and $X \subseteq \mathcal{V}(\mathcal{I}(X))$. From these facts, we derive that $\mathcal{I}(X) = \mathcal{I}(\mathcal{V}(\mathcal{I}(X)))$ and $\mathcal{V}(S) = \mathcal{V}(\mathcal{I}(\mathcal{V}(S)))$. In fact, we have the following.

```
Theorem 1.0.5. There is a bijective correspondance
```

```
\{ \text{radical ideals of } k[X_1, \dots, X_n] \} \longleftrightarrow \{ \text{algebraic sets of } \mathbf{A}^n(k) \} given by I \mapsto \mathcal{V}(I) and X \mapsto \mathcal{I}(X).
```

whose proof we will delay until later in this note. This observation is central to algebraic geometry. We observe that for a nonempty family of ideals $I_{\alpha} \subseteq k[X_1, \ldots, X_n]$ indexed by α , we have $\mathcal{V}(\sum_{\alpha} I_{\alpha}) = \mathcal{V}(\bigcup_{\alpha} I_{\alpha}) = \bigcap_{\alpha} \mathcal{V}(I_{\alpha})$. This should be easy to verify, and it tells us that the arbitrary intersection of algebraic sets is algebraic. Next, we observe that for ideals $I, J \subseteq k[X_1, \ldots, X_n]$, we have $\mathcal{V}(I \cap J) = \mathcal{V}(I \cup J) = \mathcal{V}(I) \cup \mathcal{V}(J)$, where the set $I \cdot J = \{fg : f \in I, g \in J\}$. Suppose that $p \in \mathcal{V}(I) \cup \mathcal{V}(J)$, assume without loss of generality that $p \in \mathcal{V}(I)$. For all $f \in I \cap J$, we have $f \in I$, so f(p) = 0, hence $p \in \mathcal{V}(I \cap J)$, thus $\mathcal{V}(I) \cup \mathcal{V}(J) \subseteq \mathcal{V}(I \cap J)$. On the other hand, for each $fg \in I \cdot J$, we have (fg)(p) = f(p)g(p) = 0, thus we have $\mathcal{V}(I) \cup \mathcal{V}(J) \subseteq \mathcal{V}(I \cdot J)$. Conversely, if $p \notin \mathcal{V}(I) \cup \mathcal{V}(J)$, then there exists $f \in \mathcal{V}(I)$ and $g \in \mathcal{V}(J)$ such that $f(p) \neq 0$ and $g(p) \neq 0$, and hence $(fg)(p) = f(p)g(p) \neq 0$ as k is a field. Since we know that $fg \in I \cdot J$ and $fg \in I \cap J$, we have $p \notin \mathcal{V}(I \cdot J)$ and $p \notin \mathcal{V}(I \cap J)$. Thus $\mathcal{V}(I \cap J)$, $\mathcal{V}(I \cdot J) \subseteq \mathcal{V}(I) \cup \mathcal{V}(J)$, and hence we completed the proof. Moreover, since $IJ \subseteq I \cap J$, we have $\mathcal{V}(I) \cup \mathcal{V}(J) = \mathcal{V}(I \cap J) \subseteq \mathcal{V}(IJ)$, and since $I \cdot J \subseteq IJ$, we have $\mathcal{V}(IJ) \subseteq \mathcal{V}(I \cdot J) = \mathcal{V}(I \cdot J) = \mathcal{V}(I) \cup \mathcal{V}(J)$. Hence $\mathcal{V}(IJ) = \mathcal{V}(I) \cup \mathcal{V}(J)$ as well.

Definition 1.0.6. An algebraic set V is *irreducible* if it cannot be written as $V = V_1 \cup V_2$ where the algebraic sets $V_1, V_2 \subset V$ properly, and such a set is called an (*algebraic*) variety.

Exercise 1.0.7. If $\mathcal{I}(X) = \mathcal{I}(Y)$ for algebraic sets X, Y, then X = Y.

Lemma 1.0.8. An algebraic set V is a variety iff $\mathcal{I}(V)$ is prime.

Proof. Suppose that $\mathcal{I}(V)$ is not prime, that $fg \in \mathcal{I}(V)$ and $f,g \notin \mathcal{I}(V)$. We claim that

$$V = (V \cap \mathcal{V}(\{f\})) \cup (V \cap \mathcal{V}(\{g\}))$$

Let $p \in V$, then (fg)(p) = f(p)g(p) = 0, thus f(p) = 0 or g(p) = 0 since k is a field. Hence we have $p \in \mathcal{V}(\{f\})$ or $p \in \mathcal{V}(\{g\})$. Therefore $V \subseteq (V \cap \mathcal{V}(\{f\})) \cup (V \cap \mathcal{V}(\{g\}))$, the other direction $(V \cap \mathcal{V}(\{f\})) \cup (V \cap \mathcal{V}(\{g\})) \subseteq V$ is obvious. Since $f \notin \mathcal{I}(V)$, exists $p \in V$ with $f(p) \neq 0$. Thus $p \notin \mathcal{V}(\{f\})$. Thus $V \neq V \cap \mathcal{V}(\{f\})$. Similarly, $V \neq V \cap \mathcal{V}(\{g\})$, so V is reducible. Conversely, assume $V = V_1 \cup V_2$ where $V_1, V_2 \subset V$ properly. We have $\mathcal{I}(V) \subset \mathcal{I}(V_1), \mathcal{I}(V_2)$ properly. Choose

 $f \in \mathcal{I}(V_1) \setminus \mathcal{I}(V)$ and $g \in \mathcal{I}(V_2) \setminus \mathcal{I}(V)$. For $p \in V$, we have $p \in V_1$ or $p \in V_2$, thus f(p) = 0 or g(p) = 0, so (fg)(p) = f(p)g(p) = 0. Hence $fg \in \mathcal{I}(V)$, so $\mathcal{I}(V)$ is not prime.

Take, for example, the algebraic set $V = \mathcal{V}(\{f,g\}) \subseteq \mathbf{A}^3(\mathbf{R})$ where $f(x,y,z) = x^2 + y^2 + z^2 - 4$ and $g(x,y,z) = y^2 + z^2 - 1$. Then V is the intersection of the sphere of radius 2, and the cylinder of radius 1. We will see later that we have a decomposition of V

$$V = \mathcal{V}(\{x - \sqrt{3}, y^2 + z^2 - 1\}) \cup \mathcal{V}(\{x + \sqrt{3}, y^2 + z^2 - 1\})$$

into algebraic varieties. This is easy to visualize and check that it is true. In fact, we can do even better. We will show that each algebraic set has a unique decomposition into algebraic varieties. Suppose that *R* is a commutative ring, we recall the following theorem.

Theorem 1.0.9. *R* is noetherian iff every nonempty set of ideals has a maximal element.

Theorem 1.0.10. If V is an algebraic set, then V has a unique decomposition $V = V_1 \cup \cdots \cup V_m$, where V_1, \ldots, V_m are varieties such that no one of them is contained in another.

Proof. Suppose that \mathcal{L} is the set of algebraic sets that do not admit a finite variety decomposition, we will show that $\mathcal{L} = \emptyset$. Suppose the contrary, then \mathcal{L} has a minimal element V w.r.t inclusion by Theorem 1.0.9 on $\mathcal{I}[\mathcal{L}]$. Since $V \in A$, we have V is reducible, hence $V = V_1 \cup V_2$ with algebraics sets $V_1, V_2 \subset V$ properly. Since V is minimal, we must have $V_1, V_2 \notin \mathcal{L}$. Thus V_1, V_2 admit finite variety decompositions, contradiction. Next, we show the uniqueness. Let $V = V_1 \cup \cdots \cup V_m = W_1 \cup \cdots \cup W_h$ be decompositions, then $V_i = (V_i \cap W_1) \cup \cdots \cup (V_i \cap W_h)$, which by the irreducibility of V_i , tells us that $V_i \subseteq W_{\sigma(i)}$ for some $\sigma(i)$. Similarly $W_j \subseteq V_{\delta(j)}$ for some $\delta(j)$. Thus $V_i \subseteq W_{\sigma(i)} \subseteq V_{\delta(\sigma(i))}$. However, $V_i \subseteq V_{\delta(\sigma(i))}$ implies that $V_i = V_{\delta(\sigma(i))}$, so $i = \delta(\sigma(i))$ and $V_i = W_{\sigma(i)}$.