EXPERIMENT NO. 4

TITLE: Study of op-amp as a differential amplifier

OBJECTIVE: To study op-amp as a differential amplifier and observing its output at noisy signal common to both input terminal.

APPARATUS:

Sl.	Instruments/Apparatus	Instrument Serial No.	Range	Quantity
No.				
1	Experiment Board,	OP AMP CH TK –	110-220	1
	ST2322	IIT(ISM)/EE/SE/ANG/2012-13/06	V ±10%,	
			50/60 Hz	
2	Multi meter	DMM MECO-	0-5 V	1
		IIT(ISM)/EE/SE/ANG/2019-20/06		
3	Patch Cords	-	-	4

SETUP DIAGRAM:

Circuit Diagram of Op-amp as a differential amplifier is shown below:

DATA SHEET:

235€0145									
Observation Table:									
S.m.	Input Voltage	Input Voltage	Output	Output	Formon				
	(tre) V,	(- vr) V2	Voltage (Vous	Voltage &	Vous - Voice				
			(measured)	Calculated					
l	2.075	1.024	1.063	1.051	0.012				
2	2.528	r561.543	0.965	0.985	-0.020				
3 ·	2.863	2.367	0.494	0.496	-0.002				
4	3.207	2.364	0.838	0.843	-0,005				
5	3.950	2.900	1.047	01:05	-0.003				
6	2.858	2.858	-0.002	0.00	-0,002				
C-outh-									
Va	w = V,-V2		Sagnih 8/8/20						
2.075 - 1.024 = 1.063 V									
2-528 - 1-543 = 0.965V									
2.863 - 2.367 = 0.4944									
7									

RESULTS & COMMENTS:

The measured and calculated values of V_{out} are approximately equal, with an average error of about 0.003 V over six readings. The value of V_{out} was calculated as $V_{out} = V_1 - V_2$.

The errors are due to noise in the input voltages, imperfect grounding, resistor tolerance error, etc. For one of the readings, the input voltages were made exactly same by giving voltage through a single source. The value of V_{out} was found to be -0.002 V, which is very close but not equal to the calculated value of 0, mainly because of resistance tolerance error.