Análisis Armónico: Taller 3

25 de julio de 2025

Universidad Nacional de Colombia

Ricardo Ariel Pastrán Ramirez

Andrés David Cadena Simons

acadenas@unal.edu.co

Problema 1:

Pruebe que el operador \mathcal{F} de la transformada de Fourier es un isomorfismo de $\mathcal{S}'(\mathbb{R}^n)$ en si mismo. Dada $\Psi \in \mathcal{S}'(\mathbb{R}^n)$ y $\alpha \in \mathbb{N}^n$ multi-índice, pruebe que:

- (I) $\widehat{\partial^{\alpha}\Psi} = (2\pi i)^{|\alpha|} \xi^{\alpha} \widehat{\Psi};$
- (II) $(-2\pi i)^{|\alpha|} \widehat{x^{\alpha} \Psi} = \partial^{\alpha} \widehat{\Psi};$
- (III) $\check{\widehat{\Psi}} = \Psi = \hat{\widecheck{\Psi}};$
- (IV) $\mathcal{F}^4 = Id$.

Solución:

Veamos que el operador \mathcal{F} de la transformada de Fourier es un isomorfismo de $\mathcal{S}'(\mathbb{R}^n)$ en si mismo.

Para esto primero mostremos que es un operador inyectivo, esto ya que si suponemos que dados $\Psi_1, \Psi_2 \in \mathcal{S}'(\mathbb{R}^n)$ tales que $\widehat{\Psi_1} = \widehat{\Psi_2}$ se puede concluir que para toda $\phi \in \mathcal{S}(\mathbb{R}^n)$ se cumple que

$$\Psi_1(\widehat{\phi}) = \widehat{\Psi}_1(\phi),$$

$$= \widehat{\Psi}_2(\phi),$$

$$= \Psi_2(\widehat{\phi}).$$

De lo que se puede afirmar que $\Psi_1 = \Psi_2$, lo que demuestra que \mathcal{F} es un operador inyectivo. Ahora veamos que \mathcal{F} es un operador sobreyectivo, ya que si definimos $\mathcal{F}^{-1}: \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$ tal que si tomamos $\Psi \in \mathcal{S}'(\mathbb{R}^n)$, entonces $\check{\Psi}(\phi) = \Psi(\check{\phi})$, entonces de forma análoga a \mathcal{F} se puede demostrar que \mathcal{F}^{-1} es un operador inyectivo, luego dado $\Psi \in \mathcal{S}'(\mathbb{R}^n)$ se sabe que existe $\check{\Psi} \in \mathcal{S}'(\mathbb{R}^n)$ tal que $\hat{\Psi} = \Psi$, lo que demuestra que \mathcal{F} es un operador sobreyectivo y por ende bivectivo.

Ahora, veamos que es un operador continuo, sea $\{\psi_j\}\subset \mathcal{S}'(\mathbb{R}^n)$ tal que $\psi_j\to\psi$ cuando $j\to\infty$ en el sentido de $\mathcal{S}'(\mathbb{R}^n)$, veamos que $\widehat{\psi_j}\to\widehat{\psi}$ cuando $j\to\infty$ en el sentido de $\mathcal{S}'(\mathbb{R}^n)$ ya que

$$\lim_{j \to \infty} \widehat{\psi_j}(\phi) = \lim_{j \to \infty} \psi_j(\widehat{\phi}),$$

$$= \phi_{\widehat{\phi}},$$

$$= \widehat{\psi}(\phi).$$

Luego aplicando el mismo razonamiento con \mathcal{F}^{-1} nosotros podemos concluir que el operador \mathcal{F} de la transformada de Fourier es un isomorfismo de $\mathcal{S}'(\mathbb{R}^n)$ en si mismo.

1.

Problema 2:

Pregunta

Solución:

Problema 3:

Pregunta

Solución:

Problema 4:

Pregunta

Solución:

Problema 5:

Pregunta

Solución: