

FCC Part 1 Subpart I FCC Part 2 Subpart J INDUSTRY CANADA RSS 102 ISSUE 5

RF EXPOSURE REPORT

FOR

ELETRIC TOOTHBRUSH WITH BLE

MODEL NUMBER: 3758

FCC ID: USQ3758 IC: 6856A-3758

REPORT NUMBER: 12751212-E7V1

ISSUE DATE: OCTOBER 14, 2019

Prepared for

BRAUN GMBH T-QTA FRANKFURTER STRASSE 145 KRONBERG TS, D-61476 DE

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 319-4000

FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	10/14/2019	Initial Issue	

TABLE OF CONTENTS

1.	ATI	TESTATION OF TEST RESULTS	4
		ST METHODOLOGY	
3.	REF	FERENCES	5
4.	FAC	CILITIES AND ACCREDITATION	5
5.	MA	XIMUM PERMISSIBLE RF EXPOSURE	6
į	5.1.	FCC RULES	6
į	5.2.	IC RULES	7
ŧ	5.3.	EQUATIONS	8
6.	STA	ANDALONE SAR TEST EXCLUSION CONSIDERATIONS	10
6	6.1.	FCC	10
í	3 2	INDLISTRY CANADA	1.

DATE: 10/14/2019

IC: 6856A-3758

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: BRAUN GMBH

T-QTA FRANKFURTER STRASSE 145

KRONBERG TS, D-61476 DE

ELECTRIC TOOTHBRUSH WITH BLUETOOTH LE

MODEL: 3758

SERIAL NUMBER: W477

DATE TESTED: JANUARY 14 TO JANUARY 16, 2019

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 1 SUBPART I & PART 2 SUBPART J Complies
INDUSTRY CANADA RSS 102 ISSUE 5 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Frank Ibrahim
Operations Leader
UL Verification Service Inc.

Prepared By:

Vien Tran

Senior Test Engineer

UL Verification Services Inc.

2. TEST METHODOLOGY

All calculations were made in accordance with FCC OET Bulletin 65 Edition 97-01 and IC Safety Code 6.

3. REFERENCES

All measurements were made as documented in test report UL Verification Services Inc. Document 12661160-E1V1for operation in the 2.4 GHz band and UL Verification Services Inc.

Output power, Duty cycle and Antenna gain data is excerpted from the applicable test reports.

4. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, and 47658 Kato Road, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street	47658 Kato Rd	
Chamber A (ISED:2324B-1)	Chamber D (ISED:22541-1)	Chamber I (ISED:2324A-5)	
Chamber B (ISED:2324B-2)	Chamber E (ISED:22541-2)	Chamber J (ISED:2324A-6)	
Chamber C (ISED:2324B-3)	Chamber F (ISED:22541-3)	Chamber K (ISED:2324A-1)	
	Chamber G (ISED:22541-4)	Chamber L (ISED:2324A-3)	
	Chamber H (ISED:22541-5)		

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers above are covered under Industry Canada company address and respective code

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0

5. MAXIMUM PERMISSIBLE RF EXPOSURE

5.1. FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
	(A) Limits for Oc	cupational/Controlled Ex	posure	
0.3-3.0	614	1.63	*100	6
3.0-30	1842/f	4.89/f	*900/f²	6
30-300	61.4	0.163	1.0	6
300-1,500			f/300	6
1,500-100,000			5	6
	(B) Limits for Genera	l Population/Uncontrolle	d Exposure	
0.3-1.34	614	1.63	*100	30
1.34-30	824/f	2.19/f	*180/f ²	30
30-300	27.5	0.073	0.2	30
300-1,500			f/1500	30
1,500-100,000			1.0	30

f = frequency in MHz

Notes:

- (1) Occupational/controlled exposure limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when a person is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
- (2) General population/uncontrolled exposure limits apply in situations in which the general public may be exposed, or in which persons who are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure

^{* =} Plane-wave equivalent power density

5.2. IC RULES

For the purpose of this standard, Industry Canada has adopted the SAR and RF field strength limits established in Health Canada's RF exposure guideline, Safety Code 6.

Table 4: RF Field Strength Limits for Devices Used by the General Public (Uncontrolled Environment)

Frequency RangeElectric Field Magnetic Field Power DentistyReference Period							
(MHz)	(V/m rms)	(A/m rms)	(W/m²)	(minutes)			
0.003-1021	83	90	-	Instantaneous*			
0.1-10	-	0.73/ f	-	6**			
1.1-10	87/ f 0.5	-	-	6**			
10-20	27.46	0.0728	-2	6			
20-48	58.07/ f ^{0.25}	0.1540/ f ^{0.25}	8.944/ f ^{0.5}	6			
48-300	22.06	0.05852	1.291	6			
300-6000	3.142 f 0.3417	$0.008335 f^{0.3417}$	$0.02619 f^{0.6834}$	6			
6000-15000	61.4	0.163	10	6			
15000-150000	61.4	0.163	10	616000/ f ^{1.2}			
150000-300000	0.158 f 0.5	$4.21 \times 10^{-4} f^{0.5}$	6.67 x 10 ⁻⁵ f	616000/f ^{1.2}			

Note: *f* is frequency in MHz.

^{*} Based on nerve stimulation (NS).

^{**} Based on specific absorption rate (SAR).

5.3. **EQUATIONS**

POWER DENSITY

Power density is given by:

 $S = EIRP / (4 * Pi * D^2)$

Where

S = Power density in mW/cm^2 EIRP = Equivalent Isotropic Radiated Power in mW D = Separation distance in cm

Power density in units of mW/cm² is converted to units of W/m² by multiplying by 10.

DISTANCE

Distance is given by:

D = SQRT (EIRP / (4 * Pi * S))

Where

D = Separation distance in cm EIRP = Equivalent Isotropic Radiated Power in mW S = Power density in mW/cm^2

SOURCE-BASED DUTY CYCLE

Where applicable (for example, multi-slot cell phone applications) a duty cycle factor may be applied.

Source-based time-averaged EIRP = (DC / 100) * EIRP

Where

DC = Duty Cycle in %, as applicable EIRP = Equivalent Isotropic Radiated Power in W

MIMO AND COLOCATED TRANSMITTERS (IDENTICAL LIMIT FOR ALL TRANSMITTERS)

For multiple chain devices, and colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the EIRP (in linear units) of each transmitter.

Total EIRP = (EIRP1) + (EIRP2) + ... + (EIRPn)

where

EIRPx = Source-based time-averaged EIRP of chain x or transmitter x

The total EIRP is then used to calculate the Power Density or the Distance as applicable.

MIMO AND COLOCATED TRANSMITTERS

For multiple colocated transmitters operating simultaneously in frequency bands where different limits apply:

The Power Density at the specified separation distance is calculated for each transmitter chain or transmitter.

The fraction of the exposure limit is calculated for each chain or transmitter as (Power Density of chain or transmitter) / (Limit applicable to that chain or transmitter).

The fractions are summed.

Compliance is established if the sum of the fractions is less than or equal to one.

6. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS

6.1. FCC

SAR test exclusion in accordance with KDB 447498.

a) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)]·[$\sqrt{f(GHz)}$] \leq 3.0, for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where

- f_(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

SAR Exclusion Calculations Table for Portable Devices (separation distance ≤ 50 mm)

Antenna	Tx	Frequency	Avg Output power		Separation	Calculated
Antenna	IX	(MHz)	dBm	mW	Distances (mm)	Threshold
Main Bluetooth	BLE	2402	0.41	1	0	0.3

Conclusion:

The computed value is \leq 3; therefore, EUT qualifies for Standalone 1-gm body SAR test exclusion. The computed value is \leq 7.5; therefore, EUT qualifies for Standalone 10-gm extremity SAR test exclusion.

6.2. INDUSTRY CANADA

Table 1: SAR evaluation - exemption limits for routine evaluation based on frequency and separation distance.

una separation distance							
	Exemption Limits (mW)						
Frequency MHz	At separation distance of ≤5mm	At separation distance of 10mm	At separation distance of 15mm	At separation distance of 20mm	At separation distance of 25mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

	Exemption Limits (mW)						
Frequency MHz	At separation distance of 30mm	At separation distance of 35mm	At separation distance of 40mm	At separation distance of 45mm	At separation distance of ≥50mm		
≤300	223 mW	254 mW	284 mW	315 mW	345 mW		
450	141 mW	159 mW	177 mW	195 mW	213 mW		
835	80 mW	92 mW	105 mW	117 mW	130 mW		
1900	99 mW	153 mW	225 mW	316 mW	431 mW		
2450	83 mW	123 mW	173 mW	235 mW	309 mW		
3500	86 mW	124 mW	170 mW	225 mW	290 mW		
5800	56 mW	71 mW	85 mW	97 mW	106 mW		

The minimum antenna to user distance that will be encountered in normal use is 0mm. This results in an exemption limit of 4mW at 2450 MHz.

As the maximum output power is 1.1mW (0.699mW EIRP) the DUT qualifies for SAR test exclusion.

END OF TEST REPORT