Data Mining

DIS Exercise Course

Data Mining

- Applying efficient algorithms for pattern detection in large datasets
- Clustering
 - Automatic identification of a finite set of categories, classes or groups (clusters)
 - Comparison using distance functions
- Classification
 - Goal: learning a classifier (e.g. a decision tree)
 - Classes are known, training data are available
- Association Rules
 - Shopping cart analysis on transactional database
 - Example: buys(PC) => buys(printer)

>60

risk= low

age

risk= low

<=60

risk= high

Association Rules (1)

- Given:
 - Set of possible articles:
 - Multiset of transactions: $T \subseteq \operatorname{Bag}(\mathcal{P}(I))$
- Rules: $r \rightarrow k$ [support, confidence] with $r, k \subseteq I$ and $r \neq k$
- **Support**: share of transactions containing all objects r and k

$$\frac{|\{t \in T : r \cup k \subseteq t\}|}{|T|}$$

 Confidence: share of transactions containing r and following the rule

$$\frac{|\{t \in T : r \cup k \subseteq t\}|}{|\{t \in T : r \subseteq t\}|}$$

Association Rules (2)

Example:

- I = {Beer, Cigarettes, Coke, Peanuts, Chips}
- T= {{Beer, Coke, Peanuts}, {Beer, Chips, Cigarettes}, {Beer, Chips, Cigarettes, Coke}, {Beer, Cigarettes}}

TAID	Items
001	Beer, Coke, Peanuts
002	Beer, Chips, Cigarettes
003	Beer, Chips, Cigarettes, Coke
004	Beer, Cigarettes

Beer \rightarrow Coke: Confidence = 50% Coke \rightarrow Beer: Confidence = 100%

• • •

```
Support(Beer) = 100%
Support(Chips) = 50%
...
Support(Beer, Coke) = 50%
Support(Beer, Peanuts) = 25%
...
Support(Beer, Coke, Peanuts) = 25%
Support(Beer, Chips, Cigarettes) = 50%
```


Apriori Algorithm (1)

- Frequent itemset: itemset with support greater than threshold s
- Determining frequent itemsets is important for deriving association rules
- Efficient realisation via Apriori algorithm
- Exploitation of Apriori property:
 - Every subset of a frequent itemset is a frequent itemset itself
 - Support of no subset of a frequent itemset can be smaller than threshold s
- Efficient iterative implementation starting with 1-itemsets
 - Iterative evaluation of k-itemsets
 - Discard combinations containing itemsets with support less than s

Apriori Algorithm (2)

```
L_1 = find_frequent_1_itemsets();
                                             //initial 1-itemsets
for(k=2; L_{k-1}\neq\emptyset; k++) {
   C_k = generateCandidates(L_{k-1}); //all L_{k-1} possible k-itemsets
   for each transaction t {
         for each candidate c \in C_k {
            if (t contains c)
                  c.count++;
   L_k = \{c \in C_k \mid c.count >= MIN\_SUP\}
```


Apriori Algorithm (3)

```
//returns all L_{k-1} possible k-itemsets
procedure generateCandidates(L<sub>k-1</sub>) {
   for each itemset I_1 \in L_{k-1} {
          for each itemset I_2 \in L_{k-1} {
            if(I_1[1..k-2] == I_2[1..k-2] \&\& I_1[k-1] < I_2[k-1]) {
                    c = I_1[1..k-1], I_2[k-1];
                    //are all (k-1)-item subsets frequent itemsets?
                    if(!prune(c, L_{k-1}))
                              C_k.add(c);
   return C<sub>k</sub>;
```


Apriori Algorithm (4)

Apriori Algorithm: Example (1)

TAID	Items
001	I1, I2, I5
002	I2, I4
003	I2, I3
004	I1, I2, I4
005	I1, I3
006	I2, I3
007	I1, I3
008	I1, I2, I3, I5
009	I1, I2, I3

$$MIN_SUP = 2$$

k=1: c	Itemset	Sup #
c_1	{I1}	6
	{I2}	7
	{I3}	6
	{I4}	2
	{I5}	2

Itemset	Sup #
{I1}	6
{I2}	7
{I3}	6
{I4}	2
{I5}	2

k=2: C₂

Itemset	Sup #
{I1, I2}	4
{I1, I3}	4
{I1, I4}	1
{I1, I5}	2
{I2, I3}	4
{I2, I4}	2
{I2, I5}	2
{I3, I4}	0
{I3, I5}	1
{I4, I5}	0

no pruning for k=2, since all subsets are frequent

 $\begin{array}{c} \textbf{L}_2\\ \text{compare with}\\ \underline{\text{MIN_SUP}}\\ \end{array}$

Itemset	Sup #
{I1, I2}	4
{I1, I3}	4
{I1, I5}	2
{I2, I3}	4
{I2, I4}	2
{I2, I5}	2

Apriori Algorithm: Example (1)

1 _	Itemset	Sup #
L 2	{I1, I2}	4
	{I1, I3}	4
	{I1, I5}	2
	{I2, I3}	4
	{I2, I4}	2
	{I2 I5}	2

count support

{I1, I2, I3} compare with

MIN SUP

Itemset Sup # {I1, I2, I3}

$$k=4: C_4$$
 {I2, I3, I5} $\notin L_3$

Creating Association Rules

- Based on frequent itemsets
 - 1. For every frequent itemset I, create all subsets
 - 2. For every subset s of I, create rule $s \rightarrow (I s)$, if confidence($s \rightarrow (I s)$) > MIN_CONF

