Interação Homem-Computador

Avaliação de técnicas de interação e análise de resultados

Sumário da aula

- O método experimental
- Variáveis independentes e dependentes
- Tipos de amostras
- Análise de resultados quantitativos

Revisão

O MÉTODO EXPERIMENTAL

Tipos de avaliação

- Cognitive walkthrough (percurso cognitivo)
 - Avaliação feita por experts
 - Cada tarefa é questionada (passo a passo)
- Avaliação heurística
 - Feita por experts em interação, usando guidelines
- Avaliação formativa
 - Usada para refinar widgets, técnicas de interação, metáforas de interação
 - Estudos observacionais com usuários (sessões informais)
 - Questionários e entrevistas (resultados qualitativos)
- Avaliação somativa
 - Usada frequentemente para avaliar um produto finalizado
 - Avaliação de usabilidade baseada em tarefas
 - Experimentação formal (resultados quantitativos)

Experimento controlado: avaliação somativa

- Somativa: mede resultado final
 - Compara diferentes técnicas
 - Muitos usuários, protocolo estrito
 - Variáveis independentes e dependentes
 - Resultados quantitativos
 - Significância estatística

Medindo o desempenho do sistema

- Frame rate médio (fps)
- Latência média (msec)
- Variabilidade do frame rate/latência
- Atraso da rede
- Distorções

Medindo o desempenho do usuário nas tarefas

- Velocidade/eficiência
- Precisão: número de erros
- Métricas específicas do domínio
 - Educação: aprendizado
 - Treinamento: consciência espacial
 - Design: expressividade

 O que é quantitativo e o que é qualitativo?

Experimento com objeto virtual

Tarefa

 Um cubo semi-transparente vermelho deveria ser sobreposto pelo cubo azul opaco preso a mão do sujeito. O objeto foi colocado num ponto inicial variando de 0.1 a 0.6 metros, ou preso à mão dominante do sujeito

Condições

- Objetos presos a mão dominante (1)
- Objetos localizados a uma distância fixa (2)
- Objetos colocados a uma distância variável em relação à extensão do braço do sujeito (3)

Experimento com objeto virtual

- Critério
 - Rapidez para executar a tarefa
- Sujeitos
 - 7 mulheres e 11 homens
- Resultado
 - A comparação dos tempos mostrou que manipular objetos presos à mão foi significativamente mais rápido que manipular objetos localizados a uma distância fixa e objetos colocados a uma distância variável

Método científico

- 1. Formar hipóteses (hipótese real, hipótese nula)
- 2. Coletar dados (como planejar a amostragem?)
- 3. Analisar dados (o que usar?)
- 4. Aceitar/rejeitar hipóteses
- Como provar uma hipótese?
 - Mais fácil é comprovar o inverso de uma condição, por contra-exemplo
 - "Hipótese nula" = oposto da hipótese
 - Provar a falsidade da hipótese nula
 - Então, a hipótese fica provada como verdadeira

Experimento Empírico

- Questão típica:
 - Qual técnica de interação é melhor?

Raio virtual

VS.

LOP cursor

Causa e efeito

- Meta: determinar causa e efeito
 - Causa = técnica (Raio vs. LOP)
 - Efeito = tempo para completar a tarefa T
- Procedimento:
 - Variar a causa
 - Medir o efeito
- Problema: a causa é uma variação randômica?

Estatísticas

Meta:

 Provar que o efeito medido não é resultado de uma variação randômica no ambiente

Hipótese:

 Por exemplo, a causa do efeito é a tecnica de interação (Raio virtual ≠ LOP cursor)

Hipótese nula :

- A técnica de interação não tem efeito nenhum (ou tanto faz usar raio virtual ou LOP cursor: raio virtual = LOP cursor)
- Então: causa é variação randômica

Estatísticas:

- Se a hipótese nula é verdadeira, o efeito medido ocorre com probabilidade < 5%
- Mas se o efeito ocorreu, efeito medido >> variação randômica

Então:

- Hipótese nula provavelmente é falsa
- Hipótese provavelmente é verdadeira

Variáveis do experimento

- Variáveis independentes (o que se altera), e "tratamentos" (os valores das variáveis independentes):
 - Técnica de interação
 - Raio virtual, LOP cursor
 - Tamanho do objeto
 - 1cm, 2cm e 3cm
 - Densidade de objetos
 - Grid de 9x9, 18x18 e 27x27
- Variáveis dependentes (o que é medido)
 - Tempo para completar a tarefa
 - Número de erros

Exemplo: experimento com design 2 x 3

Var ind. 2: Tipo de tarefa

	Tarefa 1	Tarefa 2	Tarefa 3
Raio virtual			
LOP cursor			1

Var ind. 1: Técnica

• n usuários por célula

Var. depéndente (tempo de completude da tarefa)

Composição da amostra em grupos

- "With-in subjects" (medidas repetidas)
 - Todos os usuários executam todos os tratamentos
 - Eliminar o efeito de ordem de execução
 - Grupo 1: 5 usuários, Raio virtual e depois LOP cursor
 - Grupo 2: 4 usuários, LOP cursor e depois Raio virtual
 - Total: 9 usuários, 9 por célula
 - (mais usuários por vir)

Procedimento

Para cada um dos n usuários:

- Pre-survey de caracterização
- Instruções técnica 1
 - Não definir o objetivo do experimento
- Treinamento prévio da técnica 1
- Execução real com tomada de tempo da técnica 1
- Questinário sobre a técnica 1
- Instruções técnica 2
 - Não definir o objetivo do experimento
- Treinamento prévio da técnica 2
- Execução real com tomada de tempo da técnica 2
- Questinário sobre a técnica técnica 2
- Post-survey: medidas subjetivas para comparação

Dados

- Variáveis dependentes medidas
- Planilha

Usuário	LOP cursor			Raio virtual		
	tarefa1	tarefa2	tarefa3	tarefa1	tarefa2	tarefa3

Primeiro passo: ver dados brutos

- Observar fatos interessantes
 - Identificar padrões
 - Identificar outliers
- Conclusões qualitativas
- Determinar estatísticas
- Determinar futuros experimentos

Segundo passo: estatísticas

Var ind. 1: técnica

Var. dep: média de performance dos usuários

Atenção: correlação ≠ casualidade

Raio virtual melhor que LOP cursor?

- Raio virtual
 - 18,77% de seleções erradas erros
- LOPCursor
 - 1,75% de seleções erradas

Raio virtual melhor que LOP cursor?

- Problema com médias: há perdas
 - Comparação de somente 2 números
 - O que fazer com os 40 valores?

A realidade

• É necessário comparar todos os dados.

Análise quantitativa

- Como comparar médias e ver se são estatisticamente diferentes?
- Qual o "melhor" tratamento?
- Teste t de Student
 - Comparar 1 var. dependente obtida de 2 tratamentos de 1 variável independente
 - Comparar resultados de duas amostras

Análise quantitativa: teste t

Resultado

- p = probabilidade de que a diferença entre os resultados dos diferentes tratamentos seja randômica (hipótese nula)
- Nível de significância estatística
 - Valor típico: p < 0.05
 - Confiança na hipótese = 1 p, ou seja, 95 % de chance da hipótese ser verdadeira

Análise quantitativa: ANOVA

ANOVA: Analysis of Variance

- Comparar 1 var. dependente obtida de n tratamentos com m variáveis independentes.
 - Comparar resultados de n amostragens para 1 variável dependente

Resultado

- p = probabilidade de que a diferença entre os resultados dos diferentes tratamentos seja randômica (hipótese nula)
- Nível de significância estatística
 - Valor típico: p < 0.05</p>
 - Confiança na hipótese = 1 p, ou seja, 95 % de chance da hipótese ser verdadeira

Excel

 $t > t_{obtido}$ combinado com P(t): H₀ rejeitada, H aceita Inf

Quando p < 0.05

- Encontrada diferença significante estatisticamente
- As médias determinam o que é melhor
- Conclusão:
 - Causa = técnica de interação (e.g. Raio virtual; ≠ LOP cursor)
 - "A técnica de interação tem efeito sobre a performance do usuário na tarefa T ..."
 - 95% confiança de que Raio Virtual é melhor que LOP Cursor, por exemplo
 - 5% chance de estar errado

Quando p > 0.05

Quer dizer que n\u00e3o h\u00e1 diferen\u00e7a?

- Quer dizer que a técnica de interação não tem efeito sobre a performance na tarefa T?
- Quer dizer que Raio virtual = LOP cursor?

Errado:

- Apenas não foi detectada diferença!
- Efeito real não "venceu" a variação randômica
- Fornece indícios de que as técnicas são "iguais", mas não prova
- Ou seja, não se encontrou nada ⊗

Por quê?

- Número insuficiente de usuários?
- Tarefas mal especificadas?

Fim

- Leitura interessante:
 - http://norvig.com/experiment-design.html
- Teste de hipóteses:
 - http://www.mat.ufrgs.br/~viali/exatas/material/laminas/
 THipoteses_1.pdf
 - http://www.mat.ufrgs.br/~viali/exatas/material/laminas/
 THipoteses_2.pdf

