32031 Feedback Quiz, 2022/23 S2, Week 09: Cyclic codes

Open books. Not for credit

Recall that a **cyclic** code is a code $C \subseteq \mathbb{F}_q^n$ which is **linear** and **closed under the cyclic shift**:

$$(a_0,a_1,\ldots,a_{n-1})\in C$$
 \Longrightarrow $(a_{n-1},a_0,\ldots,a_{n-2})\in C.$

When studying cyclic codes, the key tool is converting vectors to polynomials:

$$(a_0, a_1, \dots, a_{n-1}) \in \mathbb{F}_q^n \mapsto a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in \mathbb{F}_q[x].$$

If a code C is cyclic, it has exactly one **generator polynomial** g(x). This is the monic polynomial of least degree among the code polynomials of C; it is always a factor of $x^n - 1$ in $\mathbb{F}_q[x]$. All the code polynomials are u(x)g(x) where $u(x) \in \mathbb{F}_q[x]$ and $\deg u(x)g(x) < n$. Thus, cyclic codes in \mathbb{F}_q^n are in one-to-one correspondence with monic divisors of $x^n - 1$ in $\mathbb{F}_q[x]$.

You are given that $x^8 - 1 = (x - 1)(x + 1)(x^2 + 1)(x^2 + x - 1)(x^2 - x - 1)$ in $\mathbb{F}_3[x]$, a factorisation into monic irreducible polynomials. (*Irreducible* means that they cannot be factorised any further.)

Question 1 \(\bigsep\$ What are the possible **dimensions** of cyclic ternary codes of length 8?

	$\bigcirc 0$	$\bigcirc 1$	\bigcirc 2	\bigcirc 3	\bigcirc 4	\bigcirc 5	\bigcirc 6	\bigcirc 7	\bigcirc 8	O_{δ}
--	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------

Question 2 How many cyclic ternary codes of length 8 are there?

$$\bigcirc 8 \quad \bigcirc 256 \quad \bigcirc 3^5 \quad \bigcirc 32 \quad \bigcirc 5$$

Question 3 Select the polynomials which are generator polynomials of cyclic ternary codes of length 8.

$$\bigcap x-1$$
 $\bigcap x^2-1$ $\bigcap 1$ $\bigcap 1+x-x^2$ $\bigcap x^4+1$

An extra question about binary codes — attempt if you have done Q1-3.

Question 4 \clubsuit Various data transfer protocols such as USB, DECT (cordless phones), Bluetooth etc protect data from errors by using a binary cyclic code with the following properties: length $2^{15} - 1$, dimension 32751, can detect up to 3 bit errors in a codevector. On the basis of these properties, select the polynomials that <u>could be</u> generator polynomials for such a code.

CORRECTED

32031 Feedback Quiz, 2022/23 S2, Week 09: Cyclic codes

Open books. Not for credit

Recall that a **cyclic** code is a code $C \subseteq \mathbb{F}_q^n$ which is **linear** and **closed under the cyclic shift**:

$$(a_0, a_1, \dots, a_{n-1}) \in C \implies (a_{n-1}, a_0, \dots, a_{n-2}) \in C.$$

When studying cyclic codes, the key tool is converting vectors to polynomials:

$$(a_0, a_1, \dots, a_{n-1}) \in \mathbb{F}_q^n \mapsto a_0 + a_1 x + \dots + a_{n-1} x^{n-1} \in \mathbb{F}_q[x].$$

If a code C is cyclic, it has exactly one **generator polynomial** g(x). This is the monic polynomial of least degree among the code polynomials of C; it is always a factor of $x^n - 1$ in $\mathbb{F}_q[x]$. All the code polynomials are u(x)g(x) where $u(x) \in \mathbb{F}_q[x]$ and $\deg u(x)g(x) < n$. Thus, cyclic codes in \mathbb{F}_q^n are in one-to-one correspondence with monic divisors of $x^n - 1$ in $\mathbb{F}_q[x]$.

You are given that $x^8 - 1 = (x - 1)(x + 1)(x^2 + 1)(x^2 + x - 1)(x^2 - x - 1)$ in $\mathbb{F}_3[x]$, a factorisation into monic irreducible polynomials. (*Irreducible* means that they cannot be factorised any further.)

Question 1 \(\bigsep\$ What are the possible **dimensions** of cyclic ternary codes of length 8?

$$\bigotimes 0$$
 $\bigotimes 1$ $\bigotimes 2$ $\bigotimes 3$ $\bigotimes 4$ $\bigotimes 5$ $\bigotimes 6$ $\bigotimes 7$ $\bigotimes 8$ $\bigotimes 9$

Explanation: Cyclic codes in \mathbb{F}_q^n are in 1-to-1 correspondence with monic polynomials g(x) that divide x^n-1 , referred to as generator polynomials. The dimension of a cyclic code is $k=n-\deg g(x)$. From the factorisation of x^8-1 it is clear that one can form polynomials g(x) of degrees $0,1,\ldots,8$ by multiplying some of the factors of x^8-1 . Degree 0: g(x)=1. Degree 1: g(x)=x-1. Degree 2: x^2+1 . Degree 3: $(x-1)(x^2+1)$. Degree 4: $(x+1)(x-1)(x^2+1)$. For each g(x), the polynomial $(x^8-1)/g(x)$ is also a generator polynomial, of degree $8-\deg g(x)$; this covers degrees 5,6,7,8. Dimension 9 is of course impossible if the length is 8. Special cases: 0-dimensional code is $\{000000000\}$, cyclic; 8-dimensional code is the trivial code \mathbb{F}_3^8 , also cyclic.

Question 2 How many cyclic ternary codes of length 8 are there?

Explanation: A generator polynomial is a product of a subset of the five monic irreducible factors of $x^8 - 1$ which are all distinct. There are $2^5 = 32$ ways to choose a subset of a set of 5 elements.

Question 3 Select the polynomials which are generator polynomials of cyclic ternary codes of length 8.

CORRECTED

$$\bigotimes x - 1$$
 $\bigotimes x^2 - 1$ $\bigotimes 1$ $O 1 + x - x^2$ $\bigotimes x^4 + 1$

Explanation: From the factorisation we can see that x - 1 and $x^2 - 1 = (x - 1)(x + 1)$ divide $x^8 - 1$; they are monic, hence they are generator polynomials.

Trivially, 1 divides $x^8 - 1$, and 1 is a generator polynomial: 1 generates the trivial code \mathbb{F}_3^8 . The polynomial $1 + x - x^2$ is not monic (leading coefficient is -1) so it is not a generator polynomial.

Note that $x^4 + 1$ is monic and divides $x^8 - 1$ as we have $x^8 - 1 = (x^4 - 1)(x^4 + 1)$, so is a generator polynomial. Incidentally $x^4 + 1 = (x^2 + x - 1)(x^2 - x - 1)$ in $\mathbb{F}_3[x]$.

An extra question about binary codes — attempt if you have done Q1-3.

Question 4 • Various data transfer protocols such as USB, DECT (cordless phones), Bluetooth etc protect data from errors by using a binary cyclic code with the following properties: **length** $2^{15} - 1$, **dimension** 32751, **can detect up to** 3 **bit errors** in a codevector. On the basis of these properties, select the polynomials that <u>could be</u> generator polynomials for such a code. *Explanation:* Note that $\deg g(x) = n - k = (2^{15} - 1) - 32751 = 32767 - 32751 = 16$.

$$\int x^{32751} + x^{32740} + 1$$

Explanation: No: degree is not 16

$$\int x^{16} + x^5 + 1$$

Explanation: No: the corresponding codevector 1000010000000001000... has weight 3 hence 3 undetected bit errors are possible — the code cannot detect 3 errors

$$\int x^{32751} + x^{15} + x^2 + x$$

Explanation: No: degree is not 16

$$x^{16} + x^{10} + x^8 + x^7 + x^3 + 1$$

Explanation: Yes; generates the CRC-16-DECT cyclic code. Although the generator polynomial is written as a vector of weight 6, the weight of the code is in fact 4 as there are codevectors of weight 4

$$\bigcap x^{16} + x^8 + x^7 + x$$

Explanation: No: is a multiple of x hence cannot divide $x^n - 1$ which is not a multiple of x

$$x^{16} + x^{15} + x^2 + 1$$

Explanation: Yes; in fact, this generates the CRC-16-IBM cyclic code

Explanation: No: degree is not 16