Chapter 9 Arithmetic

Chapter Outline

- Adders, subtractors, multipliers, and dividers
- High-speed adders
 using carry-lookahead
- High-speed multipliers
 using carry-save addition trees
- IEEE standard floating-point arithmetic

Addition

- Full adder (FA) logic circuit:
 adds two bits of the same weight, along
 with a carry-in bit, and produces a sum bit
 and a carry-out bit
- Ripple-carry adder:

 a chain of n FA stages, linked by carry bits,
 can add two n-bit numbers

x_i	y_i	Carry-in c_i	Sum s _i	Carry-out c_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$\begin{split} s_i &= \overline{x_i} \overline{y_i} c_i + \overline{x_i} y_i \overline{c_i} + x_i \overline{y_i} \overline{c_i} + x_i y_i c_i = x_i \oplus y_i \oplus c_i \\ c_{i+1} &= y_i c_i + x_i c_i + x_i y_i \end{split}$$

Example:

$$\frac{X}{+Y} = \frac{7}{+6} = \frac{0}{+0} \cdot \frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{0} \cdot \frac$$

(a) Logic for a single stage

(b) An *n*-bit ripple-carry adder

Addition/subtraction circuit

- An n-bit adder with external XOR gates can add or subtract two operands
- An FA stage produces its outputs after 2 logic gate delays
- Longest delay path through the adder/subtractor circuit: 2n gate delays, assuming a ripple-carry design

Carry-lookahead addition

- Delay reduction: produce carry signals in parallel using carry-lookahead circuits
- First, form generate and propagate functions in each stage i

$$C_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

 $C_{i+1} = x_i y_i + (x_i + y_i)c_i$
 $G_i = x_i y_i$ $P_i = x_i + y_i$
 $C_{i+1} = G_i + P_i c_i$

 P_i can be treated as XOR of x_i and y_i (Why??)

Carry-lookahead circuits

A 4-bit adder has four carry-out signals:

$$c_1 = G_0 + P_0 c_0$$

$$c_2 = G_1 + P_1G_0 + P_1P_0c_0$$

$$c_3 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0c_0$$

$$c_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0c_0$$

Delay in 4-bit adder

Ripple-carry design:

```
8 gate delays: (2 for each FA) \times 4
```

Carry-lookahead design:

```
1 for all P<sub>i</sub> and G<sub>i</sub>
```

2 for all c_i

+ 1 for all s_i

4 gate delays

Carry-lookahead for larger n

- Ideally, 2 gate delays for all c_i regardless of n
- But max. number of inputs for AND/OR gates increases linearly with n
- Fan-in constraints for actual logic gates makes 2-level logic for c_i less practical for n > 4
- Therefore, higher-level gen./prop. functions are used to produce carry bits in parallel for 4-bit and 16-bit adder blocks

Delays in larger adders using higher-level gen./prop.

- 16-bit adder:
 - 8 gate delays for carry-lookahead using 4-bit adder blocks (pure ripple-carry requires 32 gate delays)
- 64-bit adder:
 - 12 gate delays for carry-lookahead using four of the above 16-bit adders (pure ripple-carry requires 128 gate delays)
- Higher-level gen./prop. adder still much faster

Multiplication

- Two, n-bit, unsigned numbers produce a 2n-bit product when they are multiplied
- Multiplication can be done in a 2-dimensional combinational array composed of n² basic cells, each containing an FA block, arranged in a trapezoidal shape
- Longest delay path is approx. 6n gate delays, along the right edge and across the bottom of the array

(a) Manual multiplication algorithm

(b) Array implementation

Multiplication

- Sequential circuit multiplier
 is composed of three n-bit registers, an
 n-bit adder, and a control sequencer
- A sequence of n addition cycles generates a 2n-bit product

Register A (initially 0)

(b) Multiplication example

Multiplying signed numbers

- The next six figures, Figures 6.8 through 6.13 from the textbook, show how to perform multiplication of signed numbers in 2's-complement representation
- Dealing with a negative multiplicand with basic sign extension is described first
- Then, the Booth algorithm is introduced
 as a way to deal with negative multipliers
- Benefit of Booth: potentially fewer additions

Sign extension of negative multiplicand.

Booth Multiplication

	0011110	This suggests that the product can be generated by a 2 ⁵ times the multiplicand to		
	0100000	(32)	1	
_	0000010	(2)	the 2's-complement of 2^1 times the multiplicand.	
	0011110	(20)	For convenience, we can describe the	
	0011110	(30)		

sequence of required operations by recoding the preceding multiplier as $0 + 1 \ 0 \ 0 \ -1 \ 0$.

Normal and Booth multiplication schemes.

Booth multiplication with a negative multiplier.

Mul	tiplier	Version of multiplicand selected by bit <i>i</i>
Bit i	Bit $i-1$	
0	0	$0 \times M$
0	1	$+ 1 \times M$
1	0	$-1 \times M$
1	1	$0 \times \mathbf{M}$

Booth multiplier recoding table.

High-speed multipliers

- Neither the combinational array nor the sequential circuit multiplier are fast enough for high performance processors
- Two approaches are used for higher speed:
 - 1. Reduce the number of summands
 - 2. Use more parallelism in adding them

Reducing summands

- Normally, to multiply a number M by 15_{10} (=1111 $_2$), four shifted versions of M are added
- Alternatively, the same result is obtained by computing 16M – M, where 16M is formed by shifting M to the left 4 times
- This basic idea, derived from the Booth algorithm, can be applied to reduce the number of summands

Reducing summands

- Each pair of multiplier bits selects one summand from 5 possible versions of the multiplicand M: 0, M, -M, 2M, -2M
- Example: 6-bit, 2's-complement operands

```
Multiplier Q = 1 \ 1 \ 1 \ 0 \ 1 \ 0
-----

M version selected = 0 \ -1 \ -2
```


(a) Example of bit-pair recoding derived from Booth recoding

Multiplier bit-pair recoding

- The full table of multiplicand selection decisions based on bit-pairing of the multiplier is shown in the next figure
- Since only one version of the multiplicand is added into the partial product for each pair of multiplier bits, only n/2 summands are added to do an n x n multiplication

Multiplication requiring only n/2 summands.

Parallelism in adding summands

- Three n-bit summands can be reduced to two by using n FA blocks, operating independently and in parallel
- This technique can be applied in the array multiplier, as shown in the next two figures
- The technique is called carry-save addition

(a) Ripple-carry array

(b) Carry-save array

Carry-save addition

- More parallelism than exploited in the previous figure can be achieved
- Group summands in threes and reduce each group to two in parallel
- Repeat until only two summands remain
- Add them in a conventional adder to generate the final sum

A multiplication example used to illustrate carry-save addition.

Schematic representation of carry-save addition requirements.

Division

Longhand division examples.

A restoring-division example.

A nonrestoring-division example.

Floating-point (FP) numbers

 IEEE standard 754-2008 defines representation and operations for floating-point numbers

The 32-bit single-precision format is:

```
A sign bit: S (0 for +, 1 for -)
An 8-bit signed exponent: E (base = 2)
A 23-bit mantissa fraction magnitude: M
```

FP numbers

The value represented is

$$+/- 1.M \times 2^{E}$$

E is actually encoded as E' = E + 127

which is called an excess-127 representation

FP numbers

Example of 32-bit number representation:

• Value represented (with E = E' - 127 = 133 - 127 = 6):

$$+ 1.0110 \times 2^{6}$$

- This is a called a normalized representation, with binary point to the right of first significant bit
- 64-bit double-precision is similar with more bits for E' & M

Value represented = $\pm 1.M \times 2^{E'-127}$

(a) Single precision

Value represented = $1.001010 \dots 0 \times 2^{-87}$

(b) Example of a single-precision number

Value represented = $\pm 1.M \times 2^{E' - 1023}$

(c) Double precision

```
excess-127 exponent
```

(There is no implicit 1 to the left of the binary point.)

Value represented =
$$+0.0010110... \times 2^9$$

(a) Unnormalized value

Value represented =
$$+1.0110... \times 2^6$$

(b) Normalized version

Try examples at: http://evanw.github.io/float-toy/

Overflow/ Underflow

- During computation, a number outside the representable range might be generated
- In single precision, this means normalized representation requires an exponent less than -126 or greater than +127
- In the first case, we say that underflow has occurred
- In the second case, we say that overflow has occurred

Special Values

- End values 0 and 255 of the excess-127 exponent E' are used to represent special values.
 - When E' = 0 and the mantissa fraction M is zero, the value 0 is represented.
 - When E' = 255 and M = 0, the value ∞ is represented, where ∞ is the result of dividing a normal number by zero. The sign bit is still used in these representations, so there are representations for +/- 0 and +/- ∞
 - When E' = 255 and M ≠ 0, the value represented is called Not a Number (NaN). A NaN represents the result of performing an invalid operation such as 0/0 or sqrt(-1).

FP Addition/Subtraction

- Add/Subtract procedure:
 - 1. Shift mantissa of number with smaller exponent to the right
 - 2. Set exponent of result to larger exponent
 - 3. Perform addition/subtraction of mantissas and set sign of result
 - 4. Normalize the result, if necessary

FP Addition example

```
    Perform C = A + B for

     A = 0 10000101 0110...
     B = 0 \ 10000011 \ 1010...
  1. Shift mantissa of B two places to right
  2. Set exponent of C to 10000101
  3. Add mantissas
           1.011000...
         + 0.011010...
           1.110010...
  4. C = 0 10000101 110010...
```

FP Multiplication

- Multiply procedure:
 - Add exponents and subtract 127
 (to maintain excess-127 representation)
 - 2. Multiply mantissas, determine sign of result

3. Normalize result, if necessary

FP Division

- Divide procedure:
 - Subtract exponents and add 127 (to maintain excess-127 representation)
 - 2. Divide mantissas, determine sign of result
 - 3. Normalize result, if necessary

Truncation of FP mantissas

- The mantissa resulting from an arithmetic operation on two floating-point numbers may be longer than 24 bits
- It must be truncated to 24 bits (for 32-bit FP)
- The IEEE standard requires that rounding to the nearest 24-bit value is the truncation method to be used

Rounding an FP mantissa

 Consider examples of rounding an 8-bit mantissa to a 5-bit length to illustrate the rounding operation:

```
Ex. 1: Round 1.1011011

Result = 1.1011

Ex. 2: Round 1.1011110

1.1011

+ 0.0001

Result = 1.1100
```

Implementation of FP operations

- A considerable amount of logic circuitry is needed to implement floating-point operations in hardware, especially if high performance is needed
- It is also possible to implement floating-point operations in software
- A hardware addition/subtraction unit is shown in the next figure

Floating-point addition-subtraction unit.

Sections to Read (From Hamacher's Book)

- Chapter on Arithmetic
 - All sections and sub-sections <u>EXCEPT</u>
 - Summand Addition Tree using 4-2 Reducers
 - Guard Bits and Truncation
 - Decimal to Binary Conversion