

KOLEJ UNIVERSITI TUNKU ABDUL RAHMAN

FACULTY OF COMPUTING AND INFORMATION TECHNOLOGY

ACADEMIC YEAR 2022/2023

Assignment

MATHEMATICS AAMS1623 CALCULUS AND ALGEBRA

STUDENT'S DECLARATION OF ORIGINALITY

By submitting this assignment, we declare that this submitted work is free from all forms of plagiarism and for all intents and purposes is our own properly derived work. We understand that we have to bear the consequences if we fail to do so.

Program: DFT1 Tutorial Group: 14

Role	Name	ID	Contribution	Signature
Leader	SEM HONG FAI	22WMD07154		hf
Member 1	PO YI MING	22WMD07176		YM
Member 2	PHUA QING HAO	22WMD07147		QH

```
-1 x
              AAMS1623 Calculus and Algebra.
         (31) a) y= 2x2 + + + e)
                     49 = 4x - x 2 + 3e' 4
             b) y= e3x | h (2x+3x)
                                                             V= In (2x2 + 3x)
                 # = e1x 2(3x14)
                                                            dv = 12 + 3x x (1(2x) + 1(3))
                                                                = \frac{1}{3x^3 + 3x} \times (4x + 3)
= \frac{4x + 3}{3x^3 + 3x}
                     = 6x e3x3 × 6x
               # = (v x # ) + (u x # )
                   = (h(2x2+3x) x 6xe3x2)+ (e12 x 4x4
                    = 6xln (2x2+3x)e3x2
             c) y= 22+11
                                                 V = 22 + 1
                4=12
               선 = (vx했) - (ux봤)
                                                 4v = 2x
                   = \frac{(x^3+1)(x^3)-2x(2x)}{(x^3+1)^3}
                                                    1x^2 + 2 - 4x^2
                                                                              (x2+1)2 #
             d) y = (2ax + c) (bx - cx)
                                                            v V= (bx-cx)-1
           vu = ( 20x2 + c)1
                                                                                 y = ~ "
                                                     chain Man u = bx-cx
                                                              ☆ - b-c
                                                                                 4 = - U-2
              \frac{du}{dx} = 2\alpha \times 2x \qquad \frac{dy}{du} = 2u
                                                             ~ dv = - (bx-cx)-2 (b-c)
           ~ du = 2 (20x2+c) + 20x2x
Rodert Rule -> dy = [V x dw] + [u dv]
                   =[(bx-cx)-1 x 2(2ax+c)x2ax2x]+[(2ax+c)2 x (-(bx-cx)2 (b-c))]
```

e)
$$y = \frac{3}{5}bx + ac$$
 \sqrt{ax}
 $4x = \frac{3}{5}bx + ac$
 $\sqrt{bx} = \frac{1}{2}(ax)^{\frac{1}{2}}$
 $\sqrt{bx} = \frac{1}{2}(ax)^{\frac{1}{2}}(ax)^{-\frac{1}{2}}(ax)^$

2-)	$x = 2t$, $y = t^{4} + 1$; $t = 1 = 7x = 2$, $y = 2$ $\frac{dx}{dt} = 2$ $\frac{dy}{dt} = 4t^{3}$	
	$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$	
	= 4+3 × 1/2	
	= 2+3	
	= 7(1)3	
	= 2	
	y-2=2(x-2)	And the state of the state of
	4-2=2x-4	LACK LACK PLAN
	y=22-2 equation of tangent.	
	Mner - 2 =-1	
	Mnor = -1/2	
	y-2===(x-2)	
	y-2=======	
	y = - 1/2 x + 3 equation of normal.	

63)
$$y = x \int x+1$$
 $\frac{1}{2}x (x+1)^{\frac{1}{2}}$

$$\frac{dy}{dx} = x \left(\frac{1}{2\sqrt{x+1}}\right) + (x+1)$$

Gradient of the curve = $3\left(\frac{1}{2\sqrt{3+1}}\right) + (3+1)^{\frac{1}{2}}$

$$\frac{3}{4} + \frac{2}{1}$$

$$\frac{1}{2\sqrt{x+1}} + \frac{1}{2}x+1 = 0$$

$$x + \frac{1}{2\sqrt{x+1}} + \frac{1}{2}x+1 = 0$$

$$x + \frac{1}{2\sqrt{x+1}} + \frac{1}{2}x+1 = 0$$

$$x + \frac{1}{2x+2} +$$

4) $y = (2x+1)e^{-2x}$	
$u = 2x + 1 \qquad v = e^{-2x}$	
$\frac{dy}{dx} = 2 \qquad \frac{dy}{dx} = -2e^{-2x}$	
$\frac{dy}{dx} = e^{-2x}(x) + (2x+1)(-2e^{-2x})$ $= (2-4x-2)^{-2x}$	$\frac{\text{Determine}}{-4\pi e^{-2x}}$ $u = -4\pi \qquad v = e^{-2x}$
	du - 4 dv2 e-2x
$\frac{dy}{dx} = -4\pi e^{-2x}$	$\frac{du}{dx} = -4 \qquad \frac{dv}{dx} = -2e^{-2x}$
Stationary point = $\frac{dy}{dx} = 0$ $-4xe^{-2x} = 0$ $x = 0$ $y = (2(0)+1)e^{-2(0)} = 1$	$\frac{d^{2}y}{dx^{2}} = (e^{-2x})(-4) + (-4x)(-2e^{-2x})$ $= (-4 + 8x)e^{-2x}$ $= (-4 + 8(0))e^{-2(0)}$ $= -4$
$\frac{dy}{dx} = -4xe^{-2x}, \text{maxim}$	$\frac{d^2y}{dx^2} < 0$
(5) dr = 1.5 r= 5	dv = dv dr dt dr dt
dv = 7 dv = 411r²	dV 2 4111 = (1.5) 2 611 (5) ² 2 150 11 cm/s #

```
6) 400\pi = \pi r^2 h
          h = \frac{400\pi}{\pi r^2}= \frac{400}{r^2}
    A= nr2 + 2nr (400)
     = Tr2 + 800 Tr-1
     \frac{dr}{dr} = 2\pi r - 800\pi r^{-2}
        0 = \frac{2\pi r^2 - 800\pi}{r^2}
              2713-800 x = 0
             800\pi = 2\pi 13
               r3 = 800x
                         1x
                 r= 3/400
       A = \pi (3\sqrt{400})^{2} + 800 \pi (3\sqrt{400})^{-1}
          = T(203/20) + T(40 3/20)
          = 60 T $20
          = 162,865 R
      1. r = 7,368, Minimum surface area is 162.865 π. *
```

