$f_x = f(x) f(x)$ Consider the function f(x) = f(x)

a. By filling in the table of values, complete the limiting chord process for $f(x)=x^2$ at the

1 = x finiod

		1.000.1	Ţ
		1.001	Ţ
		10.1	Ţ
		1.05	Ţ
		1.1	I
		7.5	Ţ
	Ţ	7	Ţ
$\frac{p-q}{\binom{p}{f-}}$	<i>p</i> − <i>q</i> = <i>y</i>	q	p

b. The instantaneous rate of change of f(x) at $x=1 \ \mbox{is:}$

- 2. The daily net profit of an upmarket restaurant can be modelled by the equation $y = -16x^2 + 304x$, where x is the number of customers.
 - a. Find the value of y at x = 0.
 - b. Find the value of y at x = 9.
 - c. Hence find the average rate of change in net profit over the interval [0, 9].
- 3. Differentiate the function

$$f(x) = (3x-2)(4x^2-5).$$

You may use the substitution u = 3x - 2 and $v = 4x^2 - 5$ in your working.

4. Differentiate

$$f(x) = (x^2 + 3x - 2)(x^2 - 3x - 2).$$

You may use the substitution $u=x^2+3x-2$ and $v=x^2-3x-2$ in your working.

- $\mathbf{5} \cdot \mathbf{S}$ Suppose we want to differentiate $\mathbf{y} = \frac{9x}{6 x8}$
- using the Quotient Rule.
- a. Identify the function u_{\cdot}
- b. Identify the function ν .
- c. Find u^{\prime} .
- . $\ensuremath{\nu}$ bni<code>\femalfa</code> .b
- e. Hence find \mathcal{Y} .
- f. Is it possible for the derivative of this function to be zero?

- 6. Suppose we want to differentiate $y = \frac{x\xi}{\xi \zeta_x \zeta}$
- using the quotient rule.
- a. Identify the function u .
- b. Identify the function ν .
- c. Find u^{\prime} .
- .\forall bni\forall .b
- e. Hence find y', giving your answer in factorised form.

7 Consider the function

$$f(x) = (5x^3 + 8x^2 - 3x - 5)^6.$$

Redefine the function as composite functions f(u) and u(x), where u(x) is a polynomial.

$$u(x) = \square$$

$$f(u) = \left(\square \right)^{\square}$$

- **8.** Find the primitive function of $9x^2 8x 2$. Use C as the constant of integration.
- 9. Let $y = (x+3)^5$ be defined as a composition of the functions $y = u^5$ and u = x+3.
 - a. Determine $\frac{dy}{du}$.
 - b. Determine $\frac{du}{dx}$.
 - c. Hence determine $\frac{dy}{dx}$.

10.Find
$$y$$
 if $\frac{dy}{dx} = \frac{1}{(4x+9)^6}$.

Use C as the constant of integration.

11. The position (in metres) of an object along a straight line after t seconds is modelled by $s(t) = 3t^2 + 7t + 4$.

We want to find the velocity of the object after 4 seconds.

- a. Determine v(t), the velocity function.
- b. What is the velocity of the object after 4 seconds?
- 12. Find the equation of a curve given that the gradient at any point (x, y) is given by

$$\frac{dy}{dx} = (x+2)^2$$
, and that the point $(-5, -7)$

lies on the curve.

Use C as the constant of integration.