PHYS:5905 Homework 10

Chuan Lu

April 5, 2019

1. Problem 1

(a) The output is as follows.

Hello World! I am processor 4 of 16 processors. Hello World! I am processor 8 of 16 processors. Hello World! I am processor 9 of 16 processors. Hello World! I am processor 10 of 16 processors. Hello World! I am processor 11 of 16 processors. Hello World! I am processor 12 of 16 processors. Hello World! I am processor 13 of 16 processors. Hello World! I am processor 15 of 16 processors. Hello World! I am processor 16 of 16 processors. Hello World! I am processor 16 of 16 processors. Hello World! I am processor 3 of 16 processors. Hello World! I am processor 5 of 16 processors. Hello World! I am processor 7 of 16 processors. Hello World! I am processor 14 of 16 processors. Hello World! I am processor 14 of 16 processors. Hello World! I am processor 14 of 16 processors. Hello World! I am processor 2 of 16 processors.

(b) My method is to use MPI_Barrier() to block $(i+1)^{th}, \dots, n^{th}$ processors until the i^{th} processor has executed its code.

2. Problem 2

The plot is shown as follows. I excluded all initialization time in time calculation.

Figure 1: Computation time vs. number of processors.