Cloth simulation

Dan Casas

Dressing humans

Simulación basada en triángulos [Baraff and Witkin, SIGGRAPH 98]

Dressing humans

Adaptative Remeshing for Cloth Simulation [Narain et al. SIGGRAPH Asia 2012]

Dressing humans

Simulación basada en hilos [Cirio SCA 2015]

Demo

WebGL cloth simulation

https://aatishb.com/drape/

• Sistema de masa-muelle

• Sistema de masa-muelle

- Partícula P_{ij} tiene:
 - masa m_{ij}
 - posición \mathbf{x}_{ij}
 - velocidad \mathbf{v}_{ij}

Sistema de masa-muelle

- Partícula P_{ij} tiene:
 - masa m_{ij}
 - posición \mathbf{x}_{ij}
 - velocidad \mathbf{v}_{ij}
- Muelle:
 - dumping (amortiguación)
 - stiffness (rigidez)
 - No tiene masa

Tipos de conexiones

Figure 3.2: Different types of springs in a mass-spring system: (a) structural springs, (b) shear springs, (c) bending springs and (d) all three types of springs.

- Fuerzas
 - Un sistema masa-muelle interactúa con el entorno mediante fuerzas: - externas
 - internas

- Fuerzas
 - Un sistema masa-muelle interactúa con el entorno mediante fuerzas: - externas
 - internas

 Fuerza en cada partícula tiene que cumplir la segunda ley de Newton

$$\mathbf{F}_{ij} = m_{ij} \cdot \mathbf{a}_{ij}$$

Tipos de fuerzas:

Fuerzas internas

- Stiffness (rigidez) coeficiente de rigidez $\mathbf{F}_s(P_{ij},P_{kl}) = -k_s \mathbf{x}_{ij,kl} \quad \text{desplazamiento}$

- Damping (amortiguación)

$$\mathbf{F}_d(P_{ij}) = -k_d \mathbf{v}_{ij}$$
 velocidad coeficiente de damping

Tipos de fuerzas:

Fuerzas externas

Causadas por el entorno (gravedad, viento, etc.) o colisiones

- Gravedad

$$\mathbf{F}_g(P_{ij}) = m_{ij}g$$

- Viento

$$\mathbf{F}_w(P_{ij}) = k_w[\mathbf{n}_{ij} \cdot (\mathbf{u}_w - \mathbf{v}_{ij})]\mathbf{n}_{ij}$$

Integración numérica

A partir de nuestro modelo masa-muelle, ¿cómo simulamos?

Para saber la velocidad y la posición de cada partícula en un instante de tiempo usamos:

- Integración explicita
- Integración implícita

Método de Euler

$$y_{n+1} = y_n + \Delta t f(t_n, y_n), \ n = 0, 1, \dots$$

más concretamente: (asumiendo $\mathbf{F}_{ij} = m_{ij} \cdot \mathbf{a}_{ij}$)

$$\mathbf{a}_{ij}(t) = \frac{1}{m_{ij}} \mathbf{F}_{ij}(t)$$

$$\mathbf{v}_{ij}(t + \Delta t) = \mathbf{v}_{ij}(t) + \Delta t \mathbf{a}_{ij}(t)$$

$$\mathbf{x}_{ij}(t + \Delta t) = \mathbf{x}_{ij}(t) + \Delta t \mathbf{v}_{ij}(t + \Delta t)$$

Método de Euler

$$y_{n+1} = y_n + \Delta t f(t_n, y_n), \ n = 0, 1, \dots$$

Método de Euler

$$y_{n+1} = y_n + \Delta t f(t_n, y_n), \ n = 0, 1, \dots$$

más concretamente: (asumiendo $\mathbf{F}_{ij} = m_{ij} \cdot \mathbf{a}_{ij}$)

$$\mathbf{a}_{ij}(t) = \frac{1}{m_{ij}} \mathbf{F}_{ij}(t)$$

Método de Euler

$$y_{n+1} = y_n + \Delta t f(t_n, y_n), \ n = 0, 1, \dots$$

más concretamente: (asumiendo $\mathbf{F}_{ij} = m_{ij} \cdot \mathbf{a}_{ij}$)

$$\mathbf{a}_{ij}(t) = \frac{1}{m_{ij}} \mathbf{F}_{ij}(t)$$

$$\mathbf{v}_{ij}(t + \Delta t) = \mathbf{v}_{ij}(t) + \Delta t \mathbf{a}_{ij}(t)$$

$$\mathbf{x}_{ij}(t + \Delta t) = \mathbf{x}_{ij}(t) + \Delta t \mathbf{v}_{ij}(t + \Delta t)$$

Simulación explicita

Para cada partícula

- 1. Calcular suma de todas las fuerzas
- 2. Calcular aceleración a partir de Newton 2nd's law: $\mathbf{F} = \mathbf{ma}$
- 3. Integrar para obtener posición x y velocidad v
- 4.GOTO 1

961 particles

$$y_{n+1} = y_n + \Delta t f(t_{n+1}, y_{n+1}), \ n = 0, 1, \dots$$

Requiere resolver un sistema de equaciones lineal

Simulación a nivel de hilo

Figure 5: a: Warp (u) and weft (v) yarns crossing at node q_0 , and the four adjacent yarn crossings. b: Bending angle θ between two adjacent warp segments. c: Forces producing normal compression at a crossing node. Subscripts s and b denote stretch and bending; superscripts + and - denote positive and negative yarn directions. d: Shear angle ϕ and shear jamming angle ϕ_j between two adjacent warp and weft yarns.

[Cirio SIGGRAPH Asia 2014]

Simulación a nivel de hilo

Blender demo

https://www.youtube.com/watch?v=z_c3LvrlOzk