

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

DEPARTMENTS.

DISCUSSION.

THE EVALUATION OF
$$\int_0^\pi \frac{\sin mx}{x} dx$$
.

By S. A. COREY, Hiteman, Iowa.

The following solution of problem 203, Calculus, the evaluation of the definite integral $\int_{a}^{\pi} \frac{\sin mx}{x} dx$ (*m* an integer), involves several points of interest.

$$\int_0^{\pi} \frac{\sin mx}{x} dx = \int_0^{m\pi} \frac{\sin x}{x} dx.$$

Developing $\int \frac{\sin x}{x} dx$ by the formula,*

$$f(x) = f(0) + \frac{x}{r^2} \left\{ \left[f'(x) + f'(0) \right] + 2 \left[f'\left[\frac{x}{r} \right] + f'\left[\frac{2x}{r} \right] + f'\left[\frac{3x}{r} \right] + \dots \right\} \right\}$$

$$+ f' \left[\frac{r-1}{r} x \right] \right] \right\} - \frac{B_1 \, x^2}{r^2 \cdot 2 \, !} [f''(x) - f''(0)] + \frac{B_2 \, x^4}{r^4 \cdot 4 \, !} [f^{iv}(x) - f^{iv}(0)]$$

$$-\frac{B_3 x^6}{r^6 \cdot 6!} [f^{'vi}(x) - f^{vi}(0)] + \dots + (-1)^n \frac{B_n x^{(2n)}}{r^{(2n)} \cdot (2n)!} [f^{(2n)}(x) - f^{(2n)}(0)] + \dots (1),$$

 $(B_1, B_2, B_3, \dots, being Bernoulli's numbers)$, and taking r=2m, we get

$$\int \frac{\sin x}{x} dx = c + \frac{x}{(2m) \cdot 2!} \left\{ \left[\frac{\sin x}{x} + 1 \right] + 2 \left\{ \frac{\sin \left[\frac{x}{2m} \right]}{\frac{x}{2m}} + \frac{\sin \left[\frac{2x}{2m} \right]}{\frac{2x}{2m}} + \frac{\sin \left[\frac{3x}{2m} \right]}{\frac{3x}{2m}} \right\} \right\}$$

$$+ \dots + \frac{\sin\left[\frac{2m-1}{2m}x\right]}{\frac{(2m-1)x}{2m}} - \frac{x^2}{6\cdot(2m)^2\cdot 2!} \left[\frac{x\cos x - \sin x}{x^2}\right]$$

$$+\frac{x^2}{30.(2m)^4.4!}\left[\left(\frac{6-x^2}{x^3}\right)\cos x+\left(\frac{6-3x^2}{x^4}\right)\sin x\right]....(2).$$

^{*}Annals of Mathematics, Vol. V, No. 4, July, 1904.

But as m is an integer, $\int_0^{m\pi} \frac{\sin x}{x} dx$ develops by means of (2) into

$$\frac{1}{4}\pi + \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - (-1)^{m} \frac{1}{(2m-1)}\right) \pm \pi \left(\frac{1}{6 \cdot 2^{2} \cdot m \cdot 2!} + \frac{(m\pi)^{2} - 6}{30 \cdot 2^{4} \cdot m^{3} \cdot 4!} + \frac{(m\pi)^{4} - 20 (m\pi)^{2} + 120}{42 \cdot 2^{6} \cdot m^{5} \cdot 6!} + \dots \right) \dots (3),$$

according as m is odd or even.

For convenient use in numerical computation (3) may be put into the form

$$\int_{0}^{m\pi} \frac{\sin x}{x} dx = \frac{1}{4}\pi + \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots - (-1)^{m} \frac{1}{(2m-1)}\right)$$

$$\pm \left(\frac{c_{1}}{m} - \frac{c_{3}}{m^{3}} + \frac{c_{5}}{m^{5}} - \dots - (4),\right)$$

where $c_1 = .0682995$, $c_3 = .0019567$, $c_5 = .0001948$, approximately.

By means of (4) the values of the definite integral corresponding to a few values of m are readily found to be as follows:

SOLUTIONS OF PROBLEMS.

ALGEBRA.

247. Proposed by PROFESSOR G. W. GREENWOOD, M. A., McKendree College, Lebanon, Ill.

Find the sum, to n terms, of

$$1 + \frac{n}{2} + \frac{n(n+2)}{2.4} + \frac{n(n+2)(n+4)}{2.4.6} + \dots$$

I. Solution by the PROPOSER.

The series is the coefficient of x^{n-1} in $(1-x)^{-\frac{1}{2}n}(1-x)^{-1}$; *i. e.*, in $(1-x)^{-(\frac{1}{2}n+1)}$. Hence the required sum is

$$\frac{(n+2)(n+4)....(3n-2)}{2.4...(2n-2)}.$$