

Modulhandbuch Bachelor Wirtschaftsinformatik (WI B.Sc.)

FAKULTÄT INFORMATIK HOCHSCHULE REUTLINGEN

Stand: 18.12.2024

Inhalt	
Modulliste	
Grafische Darstellung: Curriculum Bachelor Wirtschaftsinformatik	
Grundlagen der Betriebswirtschaftslehre	
Einführung in die Wirtschaftsinformatik	8
Statistik	11
Diskrete Mathematik	14
Grundlagen Informatik	17
Praktikum Programmierung	20
Betriebliches Rechnungswesen	23
Digital Marketing and Sales	25
Wirtschaftsmathematik und Induktive Statistik	28
Algorithmen und Datenstrukturen	31
Computernetzwerke	33
Fortgeschrittene Programmierung	37
Logistik und Produktion - Industrie 4.0	40
Rhetorik und Kommunikationsverhalten	43
Software - Engineering	45
Relationale Datenbanken	49
Datenbanken Praktikum	51
Web-Programmierung	53
Berufspraktisches Semester	56
Corporate Finance	59
Management und Controlling	61
Business Consulting	64
Systeme und Sicherheit	66
Entrepreneurship	68
Verteilte Systeme	71
Unternehmensmodellierung	74
Wahlfach: Blockchain Technologie und Anwendungen	77
Wahlfach: BPM: Optimierung und Automatisierung von Geschäftsprozessen	80
Wahlfach: Deep Learning mit Python	83
Wahlfach: E-Commerce und E-Business	86
Wahlfach: Maschinelles Lernen	88
Wahlfach: NoSQL Datenbanksysteme	90
Wahlfach: Practical Systems & Cybersecurity Engineering	92
Wahlfach: Psychologie	
Wahlfach: Sales System and Sales Processes	96
Wahlfach: Sustainability Management	100
Wahlfach: Webapplikationsentwicklung mit SAP Fiori	103

Wissenschaftliches Arbeiten	106
Bachelor Thesis	108

Im Folgenden werden die einzelnen Module im Detail beschrieben. Wird nichts Anderes erwähnt, sind die zu erbringenden Prüfungsleistungen benotet.

Modulliste

1. Semester 30 WIB11 Grundlagen der Betriebswirtschaftsiehre 5 WIB12 Einführung in die Wirtschaftsinformatik 5 WIB13 Statistik 5 WIB14 Diskrete Mathematik 5 WIB15 Grundlagen der Informatik 5 WIB16 Praktikum Programmierung 5 2. Semester 30 WIB21 Betriebliches Rechnungswesen 5 WIB22 Digital Marketing and Sales 5 WIB23 Wirtschaftsmathematik und induktive Statistik 5 WIB24 Algorithmen und Datenstrukturen 5 WIB25 Computerretzte 5 WIB26 Fortgeschrittene Programmierung 5 3. Semester 30 WIB31 Logistik und Produktion – Industrie 4.0 5 WIB3	Semester	Module/Vorlesung	ECTS
WIB12 Einführung in die Wirtschaftsinformatik 5 WIB13 Statistik 5 WIB14 Diskrete Mathematik 5 WIB15 Grundlagen der Informatik 5 WIB16 Praktikum Programmierung 5 Z. Semester 30 WIB21 Betriebliches Rechnungswesen 5 WIB22 Digital Marketing and Sales 5 WIB23 Wirtschaftsmathematik und induktive Statistik 5 WIB24 Algorithmen und Datenstrukturen 5 WIB25 Computernetzte 5 WIB25 Computernetzte 5 WIB25 Computernetzte 5 WIB26 Fortgeschrittene Programmierung 5 3. Semester 30 WIB31 Logistik und Produktion – Industrie 4.0 5 WIB32 Rhetorik und Kommunikationsverhalten 5 WIB33 Software – Engineering 5 WIB34 Relationale Datenbanken 5 WIB35 Datenbanken Praktikum 5 WIB4	1. Semester		30
2. Semester 30 WIB21 Betriebliches Rechnungswesen 5 WIB22 Digital Marketing and Sales 5 WIB233 Wirtschaftsmathematik und induktive Statistik 5 WIB244 Algorithmen und Datenstrukturen 5 WIB25 Computernetzte 5 WIB26 Fortgeschrittene Programmierung 5 3. Semester 30 WIB31 Logistik und Produktion – Industrie 4.0 5 WIB32 Rhetorik und Kommunikationsverhalten 5 WIB33 Software – Engineering 5 WIB34 Relationale Datenbanken 5 WIB35 Datenbanken Praktikum 5 WIB36 Web-Programmierung 5 4. Semester 30 WIB41 Berufspraktisches Semester 30 WIB52 Management und Controlling 5 WIB53 Business Consulting 5 WIB54 Systeme und Sicherheit 5 WIB55 Entrepreneurship 5 WIB56 Verteilte Systeme 5 6. Semester 30	WIB11 WIB12 WIB13 WIB14 WIB15	Einführung in die Wirtschaftsinformatik Statistik Diskrete Mathematik Grundlagen der Informatik	5 5 5 5 5
WIB22 Digital Marketing and Sales WIB23 Wirtschaftsmathematik und induktive Statistik S WIB24 Algorithmen und Datenstrukturen S WIB25 Computernetzte S WIB26 Fortgeschrittene Programmierung S S WIB31 Logistik und Produktion – Industrie 4.0 S WIB32 Rhetorik und Kommunikationsverhalten S WIB33 Software – Engineering S WIB34 Relationale Datenbanken S WIB35 Datenbanken Praktikum S WIB36 Web-Programmierung S 4.Semester 30 WIB41 Berufspraktisches Semester 30 WIB41 Berufspraktisches Semester 30 WIB51 Corporate Finance WIB52 Management und Controlling WIB53 Business Consulting S WIB53 Business Consulting S WIB54 Systeme und Sicherheit S WIB55 Entrepreneurship S WIB56 Verteilte Systeme S 6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 WIB71 Unternehmensmodellierung WIB72 Wahlpflichtmodul 1 WIB73 Wahlpflichtmodul 2 S WIB74 Wissenschaftliches Arbeiten 30 WIB75 Thesis			
WIB31 Logistik und Produktion – Industrie 4.0 5 WIB32 Rhetorik und Kommunikationsverhalten 5 WIB33 Software – Engineering 5 WIB34 Relationale Datenbanken 5 WIB35 Datenbanken Praktikum 5 WIB36 Web-Programmierung 5 4.Semester 30 WIB41 Berufspraktisches Semester 30 5. Semester 30 WIB51 Corporate Finance 5 WIB52 Management und Controlling 5 WIB53 Business Consulting 5 WIB54 Systeme und Sicherheit 5 WIB55 Entrepreneurship 5 WIB56 Verteilte Systeme 5 6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 VB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	WIB21 WIB22 WIB23 WIB24 WIB25	Digital Marketing and Sales Wirtschaftsmathematik und induktive Statistik Algorithmen und Datenstrukturen Computernetzte	5 5 5 5 5
WIB32 Rhetorik und Kommunikationsverhalten 5 WIB33 Software - Engineering 5 WIB34 Relationale Datenbanken 5 WIB35 Datenbanken Praktikum 5 WIB36 Web-Programmierung 5 4.Semester 30 WIB41 Berufspraktisches Semester 30 5. Semester 30 WIB51 Corporate Finance 5 WIB52 Management und Controlling 5 WIB53 Business Consulting 5 WIB54 Systeme und Sicherheit 5 WIB55 Entrepreneurship 5 WIB56 Verteilte Systeme 5 6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 VIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	3. Semester		30
4.Semester 30 WIB41 Berufspraktisches Semester 30 5. Semester 30 WIB51 Corporate Finance 5 WIB52 Management und Controlling 5 WIB53 Business Consulting 5 WIB54 Systeme und Sicherheit 5 WIB55 Entrepreneurship 5 WIB56 Verteilte Systeme 5 6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 WIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	WIB32 WIB33 WIB34 WIB35	Rhetorik und Kommunikationsverhalten Software – Engineering Relationale Datenbanken Datenbanken Praktikum	5 5 5 5
5. Semester 30 WIB51 Corporate Finance 5 WIB52 Management und Controlling 5 WIB53 Business Consulting 5 WIB54 Systeme und Sicherheit 5 WIB55 Entrepreneurship 5 WIB56 Verteilte Systeme 5 6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 7. Semester 30 WIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	4.Semester		
WIB51 Corporate Finance 5 WIB52 Management und Controlling 5 WIB53 Business Consulting 5 WIB54 Systeme und Sicherheit 5 WIB55 Entrepreneurship 5 WIB56 Verteilte Systeme 5 6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 7. Semester 30 WIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	WIB41	Berufspraktisches Semester	30
WIB52 Management und Controlling 5 WIB53 Business Consulting 5 WIB54 Systeme und Sicherheit 5 WIB55 Entrepreneurship 5 WIB56 Verteilte Systeme 5 6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 WIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12			
6. Semester 30 WIB61/WIB62 Auslands-/Spezialisierungssemester 30 7. Semester 30 WIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	WIB52 WIB53 WIB54 WIB55	Management und Controlling Business Consulting Systeme und Sicherheit Entrepreneurship	5 5 5 5
7. Semester WIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	6. Semester		30
WIB71 Unternehmensmodellierung 5 WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	WIB61/WIB62	Auslands-/Spezialisierungssemester	30
WIB72 Wahlpflichtmodul 1 5 WIB73 Wahlpflichtmodul 2 5 WIB74 Wissenschaftliches Arbeiten 3 WIB75 Thesis 12	7. Semester		30
Summe 210	WIB72 WIB73 WIB74	Wahlpflichtmodul 1 Wahlpflichtmodul 2 Wissenschaftliches Arbeiten	5 5 3

Grafische Darstellung: Curriculum Bachelor Wirtschaftsinformatik

Wirtschaftsinformatik Semester	ormatik		Abschluss Bachelor of Sience				Semester
7	Wahlpflichtmodul 1 2 - 4 SWS	Wahlpflichtmodul 2 2 - 4 SWS	Unternehmens- modellierung 4 SWS	Bac	Bachelor Thesis	Wissensch. Arbeiten 2 SWS	7
9			Auslandssemester (Spezialisierungssemester)	zialisierungssemester)			9
വ	Verteilte Systeme 4 SWS	Systeme und Sicherheit 4 SWS	Entrepreneurship 4 SWS	Business Consulting 4 SWS	Management und Controlling 4 SWS	Corporate Finance 4 SWS	5
4			Berufspraktisches Semester	hes Semester			4
ю	Web- Programmierung 4 SWS	Datenbanken Praktikum 2 SWS	Relationale Datenbanken 4 SWS	Software-Engineering 4 SWS	Logistik & Produktion Industrie 4.0 4 SWS	Rhetorik und Kommunikation 4 SWS	3
2	Fortgeschrittene Programmierung 4 SWS	Algorithmen und Datenstrukturen 4 SWS	Computer- netzwerke 4 SWS	Digital Marketing and Sales 4 SWS	Betriebliches Rechnungswesen 4 SWS	Wirtschaftsmathe- matik u. ind. Statistik 4 SWS	2
1	Grundlagen der Informatik 4 SWS	Praktikum Programmierung 2 SWS	Einführung in die Wirtschaftsinformatik 4 SWS	Grundlagen der BWL 4 SWS	Diskrete Mathematik 4 SWS	Statistik 4 SWS	1
ECTS	1 2 3 4 5 6 7 SWS = Semesterwochenstunde (45 Minuten)	6 8	13 14 15 30 Stunden Aufwand	16 17 18 19 20 Präsenz&Eigen)	21 22 23 24 25	26 27 28 29 30	ECTS
	Inesis / Fraktik	Inesis / Fraktikum/ Ausiand / Wanibereich Wirtschaftsinfo	rmatik im e	Weitere Grundlagen geren Sinne	diagen		
	Infor	Informatik Grundlagen	Š	Wirtschaftswissenschaftliche Grundlagen	tliche Grundlagen		

Modul:	Grundlagen der
	Rotriohewirtechaftelahro

Betriebswirtschaftslehre

Kürzel: wiB11

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Josef Schürle

Dozent(in): Prof. Dr. Josef Schürle

Prof. Dr. Dennis Schlegel

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 1 Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Modulziele:

Das Modul führt in die Betriebswirtschaftslehre ein. Ziel ist es, grundlegende Inhalte und grundlegendes betriebswirtschaftliches Denken zu vermitteln.

Auf diesen Grundlagen bauen die betriebswirtschaftlichen Schwerpunkte des weiteren Studiums auf

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden kennen grundlegende Begriffe aus der Betriebswirtschaftslehre und verstehen ihre Bedeutung. Die Studierenden verstehen betriebswirtschaftliche Zielkonzeptionen sowie insbesondere die wertorientierte Unternehmensführung als zentralen Erfolgsmaßstab. Die Studierenden kennen wesentliche Eigenschaften der bedeutendsten Rechtsformen in Deutschland und sind in der Lage, die sich aus den jeweiligen Rechtsformen ergebenden

betriebswirtschaftlichen Konsequenzen zu beurteilen. Die Studierenden kennen unterschiedliche Formen der Kooperation von Unternehmen bzw. Formen von Unternehmenszusammenschlüssen sowie ausgewählte Aspekte der Unternehmensführung. Fertigkeiten:

Die Studierenden wenden das theoretische Fachwissen auf konkrete betriebswirtschaftliche Fragestellungen an. Sie sind in der Lage, quantitative Ergebnisse abzuleiten, anhand derer Entscheidungsalternativen zu beurteilen und daraus Entscheidungsvorschläge abzuleiten.

Kompetenzen:

Die Studierenden denken in wirtschaftlichen Zusammenhängen und sind in der Lage, sich bezüglich grundlegender betriebswirtschaftlicher Sachverhalte eine fundierte Meinung zu bilden. Sie verstehen die grundlegenden Konzepte zur Beurteilung wirtschaftlichen Erfolgs sowie den Zusammengang zwischen Ergebnis- und Risikoverteilung. Die Studierenden sind in der Lage, dieses Wissen auf ihr Handeln zu überragen.

Inhalt:

- Grundbegriffe und Erfolgsmaßstäbe der Betriebswirtschaftslehre
- Betriebswirtschaftliche Zielkonzeption
- Grundlagen der wertorientierten Unternehmensführung
- Rechtsformen und deren betriebswirtschaftliche Konsequenzen (insb. Unternehmensführung, Gewinnverteilung, Haftung, Finanzierung und Steuern)
- · Unternehmenszusammenschlüsse
- Ausgewählte Aspekte der Unternehmensführung (Organisation, Personal)

Medienformen:

Vermittlung der theoretischen Grundlagen mittels Beamer-Präsentation, ergänzt durch Tafelanschriebe. Gemeinsame Besprechung und Analyse aktueller wirtschaftlicher Ereignisse anhand von Presseartikeln. Studierende erarbeiten Lösungen zu Übungsaufgaben in Gruppenarbeit und präsentieren ihre Ergebnisse im Plenum

- Jung (2013): Allgemeine Betriebswirtschaftslehre. 13. Auflage. Berlin: De Gruyter.
- Wöhe (2016): Einführung in die Allgemeine Betriebswirtschaftslehre. 26. Auflage.
 München: Vahlen
- Wöhe / Kaiser / Döring (2016): Übungsbuch zur allgemeinen Betriebswirtschaftslehre.
 15. Auflage. München: Vahlen

Modul:	Einführung in die
	Wirtschaftsinformatik

Kürzel: wiB12

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Dietmar Bönke

Dozent(in): Prof. Dr. Dietmar Bönke

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 1 Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Modulziele

In dieser einführenden Grundlagenveranstaltung zur Wirtschaftsinformatik werden elementare Erkenntnis- und Gestaltungsansätze des Faches vermittelt. Dabei werden auf interdisziplinärer Basis sowohl übergreifende Kenntnisse als auch Einblicke in Teilgebiete des Faches vermittelt.

Es werden grundlegende Bildungsziele der Wirtschaftsinformatik mit Bezug zu einer Reihe wissenschaftlicher und praxisorientierter Methoden für die nachhaltige und erfolgreiche Positionierung der Absolventen erreicht. Grundlegend ist für die Studierenden die Fähigkeit zur Abstraktion und Modellbildung – zum Zweck der praktischen Analyse, Konzeption und Gestaltung von Geschäftsprozessen und zugehörigen Informationssystemen.

Angestrebte Lernergebnisse

Kenntnisse:

- Erkenntnis- und Gestaltungsziele der Wirtschaftsinformatik kennen
- Top-down-Ansatz einem gesamtheitlichen Verständnis zuführen können
- Kenntnis unternehmensbezogener Informations- und Kommunikationssysteme
- Logischen Aufbau betriebswirtschaftliche Funktionsbereiche inner- und überbetrieblicher Wertschöpfungsketten nachvollziehen können
- Methoden der IT-orientierte Prozessgestaltung verstehen
- Aufbau und Bedienung von Standardbüroanwendungen kennen und verstehen
- Kenntnis der Zahlensysteme, Grundbegriffe der Logik und den Aufbau eines Computers

Fertigkeiten:

Die Teilnehmer erfahren, welche Erkenntnis- und Gestaltungsziele die wissenschaftliche Disziplin Wirtschaftsinformatik verfolgt. Sie können einordnen, in welchen Beziehungen die Wirtschaftsinformatik zu anderen Disziplinen steht. Wichtig ist das Erkennen des Gestaltungspotentials der Wirtschaftsinformatik in den Wechselwirkungen von Theorie und Anwendung sowie von informationstechnischen und fachlich-funktionalen Dimensionen. In die für die Wirtschaftsinformatik grundlegende Denk- und Vorgehensweisen soll eingeführt werden. Den Teilnehmern wird vermittelt, dass den Einzelwissenschaften unterschiedliche Sichtweisen (Paradigmen) zugrunde liegen.

Komponenten und Aufbauprinzipien betrieblicher Informationssysteme sollen eingeordnet werden können. Kleinere Referate und Projekte sollten vorbereitet und präsentiert werden. Dafür werden die im Wissenschaftsbetrieb üblichen Strukturierungs- und Darstellungskriterien bekannt gemacht.

Es wird ein systematischer Überblick über die Grundlagen und die weiteren Entwicklungsansätze der Wirtschaftsinformatik vermittelt, der den Teilnehmern die eigenständige logische Einordnung der weiteren Lehrveranstaltungen ermöglicht. Zielsetzungen unternehmensbezogener Informations- und Kommunikationssysteme können erkannt werden. Informations- und Kommunikationssysteme können in den unternehmerischen Kontext eingeordnet werden.

Kompetenzen:

Nach Abschluss des Moduls sind die Studierenden in der Lage:

LE#		
LE1	Erkenntnis- und Gestaltungsziele der Wirtschaftsinformatik zu kennen	
LE2	top-down-Ansatz einem gesamtheitlichen Verständnis zuführen zu können	
LE3	Kenntnis unternehmensbezogenen Informations- und Kommunikationssystemen aufzuweisen	
LE4	Logischen Aufbau betriebswirtschaftliche Funktionsbereiche inner- und überbetrieblicher Wertschöpfungsketten nachvollziehen zu können	
LE5	Methoden der IT-orientierte Prozessgestaltung zu verstehen	
LE6	Aufbau und Bedienung von Standardbüroanwendungen zu kennen und zu verstehen	

LE7	Kenntnis der Zahlensysteme, Grundbegriffe der Logik und den Aufbau eines Computers aufzuweisen
LE8	Einordnung von Informations- und Kommunikationssystemen in den unternehmerischen Kontext

Inhalt:

Das Modul führt in die wissenschaftliche Disziplin Wirtschaftsinformatik ein. Es werden Erkenntnisund Gestaltungsziele der Wirtschaftsinformatik vorgestellt. Abgrenzung und Beziehungen zu anderen wissenschaftlichen Disziplinen werden aufgezeigt. Wichtige Teilsysteme von unternehmensbezogenen Informations- und Kommunikationssystemen werden vorgestellt und in einem top-down-Ansatz einem gesamtheitlichen Verständnis zugeführt. Hierzu zählen Hard- und Softwarekomponenten sowie Architekturen der Infrastruktur von informationstechnischen Umgebungen zur Lösung unternehmerischer Aufgabenstellungen. Präsentiert werden ausgewählte, besonders relevante, betriebswirtschaftliche Funktionsbereiche, um den logischen Aufbau inner- und überbetrieblicher Wertschöpfungsketten verständlich zu machen. Besonderen Stellenwert erfährt dabei die Unterstützung der Abläufe durch IT-orientierte Prozessgestaltung. Unternehmerische Informations- und Kommunikationssysteme werden im Kontext integrierter Systeme vorgestellt.

Medienformen:

Die Veranstaltung wird als Vorlesung durchgeführt. Dabei werden spezifische Denk- und Vorgehensweisen vermittelt. Betont werden die unterschiedlichen Methoden zum Aufbau von Expertenwissen und deren mediale Vermittlung. Es werden jeweils disziplinspezifische Materialien verwendet, die die Verständnisbildung für die spezifischen Denk- und Vorgehensweisen unterstützen.

Literatur:

Hansen, Hans Robert; Mendling, Jan; Neumann, Gustaf: Wirtschaftsinformatik, 12., überarbeitete und erweiterte Auflage, ISBN 978-3-11-060873-1, De Gruyter, Oldenbourg, 2019

Modul: Statistik

Kürzel: wiB13

Untertitel:

Lehrveranstaltungen: Vorlesung und Übung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Christian Decker

Dozent(in): Prof. Dr. Christian Decker

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 1 Semester

Lehrform / SWS: Vorlesung: 2 SWS Übung: 2 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Online-Testat bestanden

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur, Testat

Modulziele:

- Die Studierenden lernen Teilgebiete von Mathematik und Statistik und deren Denkweisen kennen.
- Sind in der Lage Beobachtungen und Zusammenhänge mathematisch zu beschreiben.
- Können mathematische Modelle aufstellen, Aussagen ableiten und diese korrekt interpretieren.
- Erlernen die Fähigkeit zur systematischen, methodischen Beschreibung und Problemlösung mit Hilfe mathematischer Modelle

Angestrebte Lernergebnisse

Kenntnisse:

- Kenntnisse der grundlegenden Modelle und Methoden der Statistik
- Grundbausteine formaler Systeme, die zur mathematischen Modellierung eingesetzt werden können

- Deskriptive Beschreibung statistischer Zusammenhänge durch Lage-, Streuungs- und Zusammenhangsmaße
- Modellierung linearer Regressionen
- Wissen um den Wahrscheinlichkeitsbegriff und Rechnen mit Wahrscheinlichkeiten
- Modellierung von Wahrscheinlichkeitsaussagen mit Hilfe von Zufallsvariablen und Verteilungsfunktionen

Fertigkeiten:

- Können Beobachtungen statistisch mit Hilfe von Lage-, Streuungs- und
- Zusammenhangsmaßen beschreiben, darstellen und untersuchen
- Können einfache statistische Regressionsmodelle aufstellen und korrekt interpretieren
- Können zufällige Ereignisse beschreiben und Wahrscheinlichkeiten zuordnen
- Modellieren wahrscheinlichkeitstheoretische Zusammenhänge und Beobachtungen mit Zufallsvariablen und Verteilungsfunktionen und leiten Wahrscheinlichkeitsaussagen ab

Kompetenzen:

Lernergebnis (LE)	Geprüft durch
Grundverständnis statistischer Beschreibungen und mathematischer Modellierung von Beobachtungen.	Klausur
 Grundbegriffe der Wahrscheinlichkeitsrechnung verstehen und damit zufällige Ereignisse zu modellieren 	
Sind in der Lage wahrscheinlichkeitstheoretische Situationen mit Zufallsvariablen zu beschreiben, mit Funktionen zu modellieren und Wahrscheinlichkeitsaussagen abzuleiten	
 Fähigkeit zur systematischen, methodischen Problemlösung 	Vorrechnen von Übungsaufgaben in zwei
Mathematische Denkweisen und Modellierung anwenden	verschiedenen Übungsveranstaltungen
Eigene Lösungswege entwickeln	

Inhalt:

In der Statistik-Vorlesung geht es um die Beschreibung einzelner sowie gemeinsam auftretender Merkmale, um einfache mathematische Modellierung und Regressionsrechnung, sowie die Beschreibung zufälliger Ereignisse. Es werden die mathematischen Begriffe, Methoden und Instrumente für einen formalen Umgang mit Beobachtungsdaten vermittelt.

Deskriptive Statistik

- Merkmale und Häufigkeiten
- Lagemaße: Mittelwert, Median, Modus
- Streuungsmaße: Varianz, Spannweite, Variationskoeffizient
- Zusammenhangsmaße: Kovarianz, Korrelation

Einfache Modellierung

• Lineare Regression, 1-dimensional

Wahrscheinlichkeitstheorie

- Ereignisraum, Elementarereignis, Ereignis
- Rechenregeln mit Wahrscheinlichkeiten
- Laplace Wahrscheinlichkeit
- Wahrscheinlichkeitsbaum
- Zufallsvariablen und Verteilungsfunktionen
- Grundlagen und Modellierung mit Hilfe von Zufallsvariablen und Verteilungsfunktionen
- Diskrete Verteilungen: Zähldichte, Verteilung, Erwartungswert, Varianz
- Stetige Verteilungen: Dichte, Verteilung, Erwartungswert, Varianz
- Spezielle Verteilungen: Normalverteilung und Quantile, Binomialverteilung

Medienformen:

Vorlesung mit begleitenden Übungen sowie seminaristischer Unterricht mit Tafelanschrieb. Die Studierenden bearbeiten zu Hause individuell Übungsaufgaben schriftlich und präsentieren diese persönlich in mindestens zwei verschiedenen Übungsveranstaltungen.

Vorlesungsbegleitendes Material: Kurzskript, Formelsammlung, Übungsaufgaben

Literatur:

Nollau/Partzsch/Storm/Lange: Wahrscheinlichkeitsrechnung und Statistik in Beispielen und Aufgaben, Teubner (1997).

Modul:	Diskrete Mathema	atik
Kürzel:	wiB14	
Untertitel:		
Lehrveranstaltungen:	Vorlesung und Übung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Bernhard Möß	Bner
Dozent(in):	Prof. Dr. Bernhard Möß	Bner
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Pflichtmodul, 1 Semes	ter
Lehrform / SWS:	Vorlesung: 2 SWS Übu	ing: 2 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Online-Testat bestande	en
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Klausur, Te	stat
Modulziele:		
Die Studierenden können grundlegende Begriffe und Methoden der diskreten Mathematil anwenden. Diese bilden das theoretische Fundament für viele Anwendungen in der Informatik aber auch im Bereich Wirtschaft. Die Studierenden erkennen Mathematik als Sprache, die zu Abstraktion dient. Sie können konkrete Problemstellungen mathematisch modellieren und mittels formaler Arbeitsweisen analysieren.		
Angestrebte Lernergebnisse		

Kenntnisse:

Die Studierenden kennen die Grundlagen der Logik, Mengenlehre und der linearen Algebra sowie fundamentale Beweistechniken, wie z.B. vollständige Induktion. Sie können die vier Grund-modelle der Kombinatorik identifizieren.

Fertigkeiten:

Die Studierenden können Aussagen durch logische Formeln beschreiben, diese auswerten und umformen. Sie können konkrete Problemstellungen abstrahieren und durch die Grundobjekte der Mengenlehre, Mengen, Relationen und Funktionen, beschreiben. Die Studierenden können lineare Gleichungssysteme aufstellen und lösen. Sie können einfache mathematische Aussagen beweisen, z.B. mit vollständiger Induktion. Die Studierenden können die formalen Methoden, der in diesem Modul behandelten Gebiete der diskreten Mathematik anwenden. Kompetenzen:

Die Studierenden können Modellierungen konkreter Problemstellungen mittels Aussagenlogik, Prädikatenlogik oder Mengenlehre konstruieren. Dabei können Sie die verwendete Abstraktion identifizieren. Die Studierenden können selbständig Lösungen erarbeiten und diese präsentieren.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Mit aussagenlogischen und prädikatenlogischen Formeln umgehen.	Klausur
LE2	Modellierung von Problemstellungen mit Mengen, Relationen und Funktionen.	Klausur
LE3	Lineare Gleichungssysteme aufstellen und lösen.	Klausur
LE4	Beweistechniken durchführen.	Klausur
LE5	Kombinatorische Modelle anwenden.	Klausur
LE6	Lösungen erarbeiten und vorstellen.	Praktikum

Inhalt:

m Bereich der Logik werden Aussagenlogik, aussagenlogische Verknüpfungen, Wahrheits-tabellen, semantische Äquivalenz von Aussagen, Prädikatenlogik, Quantoren und Negation von Quantoren behandelt. Im Bereich der Mengenlehre werden Mengen, Operationen mit Mengen, Relationen, Funktionen und deren elementare Eigenschaften vorgestellt. Die Beweistechniken direkter Beweis, Widerspruchsbeweis und vollständige Induktion werden betrachtet. In der linearen Algebra werden Vektoren, Matrizen, lineare Gleichungssysteme und deren Lösungs-verfahren behandelt. Aus der Kombinatorik werden die vier Grundmodelle, Urnenmodell mit und ohne Zurücklegen, bzw. mit und ohne Berücksichtigung der Reihenfolge untersucht.

Medienformen:

Das Modul besteht aus einer zweistündigen Vorlesung mit einem zweistündigen Praktikum. Die Vorlesung findet in seminaristischem Stiel mit Tafelanschrieb und PC-Projektion statt. Die Studierenden erhalten jede Wochen Übungen, die sie selbständig oder in kleinen Gruppen lösen. Die Ergebnisse sollen dann im Praktikum präsentiert werden. Hier können offene Fragen diskutiert werden und auch alternative Lösungsvorschläge besprochen werden.

Zur Vorlesung wird ein Kurzskript angeboten, das alle Definition und Sätze enthält, zum Praktikum werden wöchentlich Aufgabenblätter mit den Übungsaufgaben ausgeteilt.

Prüfungsleistungen:

Zu Beginn des Semesters wird ein einstündiger Multiple-Choice Online-Test durchgeführt, der mathematische Grundfertigkeiten, die zum Schulstoff gehören, abfragt. Dieser Test kann eine Woche vor der Prüfungsanmeldung wiederholt werden. Das Bestehen dieses Tests ist Voraussetzung, um an der Klausur teilnehmen zu können.

- C. Meinel und M. Mundhenk (2015): Mathematische Grundlagen der Informatik: Mathematisches Denken und Beweisen. Eine Einführung. 6. überarb. Auflage. Wiesbaden: Springer Vieweg.
- G. Teschl und S. Teschl (2013): Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. 4. überarb. Auflage. Berlin, Heidelberg: Spring Spektrum.
- C. Mayer, C. Weber und D. Francas (2017): Lineare Algebra für Wirtschaftswissenschaftler: Mit Aufgaben und Lösungen. 6. überarb. Auflage. Wiesbaden, Springer Gabler.
- J. Dassow (2005): Logik für Informatiker. 1. Auflage. Stuttgart; Leipzig; Wiesbaden: Teubner.
- F. Staab (2012): Logik und Algebra: Eine praxisbezogene Einführung für Informatiker und Wirtschaftsinformatiker. 2. Auflage. Berlin: De Gruyter Oldenbourg.

Modul:	Grundlagen Infor	matik
Kürzel:	wiB15	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Elena Kuß	
Dozent(in):	Prof. Dr. Elena Kuß	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Pflichtfach, 1 Semester	
Lehrform / SWS:	Vorlesung	4 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Klausur	
Modulziele:		

Modulziele:

Dieses Modul soll Studierenden die grundlegenden Konzepte und Methoden der Informatik vermitteln. Es schafft somit die Grundlagen für das Verständnis weiterführender Informatik-Veranstaltungen im Curriculum. Die Vorlesung thematisiert dazu insbesondere ausgewählte Kernbereiche der praktischen Informatik, einschließlich grundlegenden Konzepten des maschinellen Lernens als Teilgebiet der künstlichen Intelligenz (KI).

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden sind mit wesentlichen Grundkonzepten der praktischen Informatik vertraut. Sie kennen wichtige Verfahren zur Codierung und Verarbeitung von Information. Sie verstehen den Aufbau und die Funktionsweise von Computern auf Basis der von-Neumann-Architektur. Sie kennen wichtige Konzepte der Programmiersprachen, der Programmierung und der Programmausführung. Sie kennen grundlegende Datenstrukturen und Algorithmen und sind mit einfachen Methoden zur Komplexitätsanalyse von Algorithmen vertraut. Darüber hinaus werden Grundlagen der Netzwerktechnik behandelt.

Zudem erhalten die Studierenden einen Einblick in einfache Methoden des maschinellen Lernens und wie sich das Gebiet des maschinellen Lernens in den Kontext der Künstlichen Intelligenz einbettet.

Fertigkeiten:

Die Studierenden können Zahlen in unterschiedliche Darstellungen konvertieren und Rechenoperationen im Dualsystem durchführen. Sie sind in der Lage grundlegende Eigenschaften von Rechnerarchitekturen hinsichtlich ihrer Auswirkung auf die Leistungsfähigkeit eines Rechnersystems zu beurteilen. Sie sind mit den Grundlagen der Computervernetzung vertraut und kennen unterschiedliche Referenzmodelle.

Kompetenzen:

Die Studierenden besitzen das logische Denkvermögen, um wichtige Grundprinzipien der Informatik, wie etwa Abstraktion und Algorithmisierung anzuwenden. Sie sind in der Lage, weiterführenden Informatik-Vorlesungen zu folgen. Die Studierenden sind befähigt, sich selbständig in neue Konzepte und Methoden der Informatik einzuarbeiten.

Inhalt:

- Darstellung und Interpretation von Information
- Positionssysteme
- Dual- und Zweierkomplement Darstellung
- IEEE Gleitpunktzahlen
- ASCII und Unicode
- Rechneraufbau
- · Aufbau und Funktionsweise der von-Neumann-Architektur
- Parallelität in Rechnersystemen
- Vom Programm zum Maschinenprogramm
- Programm-Interpretation vs. Programm-Übersetzung
- Virtuelle Maschinen
- Konzepte von Programmiersprachen
- Klassifikation h\u00f6herer Programmiersprachen
- Elementare Konzepte imperativer Programmiersprachen
- Speicherorganisation von Programmen
- Unterprogramme
- Rekursion
- Komplexe Datentypen

- Grundlegende Datenstrukturen und Algorithmen
- Liste, Queue, Stack
- Darstellungsformen f

 ür Algorithmen
- Laufzeit- und Speicherkomplexität von Algorithmen
- Parallele/serielle Datenübertragung
- Netzwerktopologien
- Referenzmodelle
- Frequenz, Bandbreite und Latenz
- Überwachtes-, Unüberwachtes- und Selbstverstärkendes Lernen

Medienformen:

Folien, Videos, Praktische Demonstrationen, Übungen und Live-Quizze

- Helmut Herold, Bruno Lurz und Jürgen Wohlrab (2012): Grundlagen der Informatik. 2. Auflage. Pearson Studium.
- Wolfgang Küchlin und Andreas Weber (2005): Einführung in die Informatik. 3. Auflage. Springer.

ktikum Programmierung	3
K	tikum Programmierung

Kürzel: wiB16

Untertitel:

Lehrveranstaltungen: Praktikum

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Wolfgang Blochinger

Dozent(in): Prof. Dr. Wolfgang Blochinger

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 1 Semester

Lehrform / SWS: Praktikum 2 SWS

Arbeitsaufwand: Präsenzstudium 30 Stunden

Eigenstudium 120 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Praktikum: Praktikum

Modulziele:

Dieses Modul soll Studierenden die Grundlagen der objektorientierten Programmierung anhand der Programmiersprache Java vermitteln und sie in die Lage versetzen, selbständig einfachere Java Programme zu entwerfen und zu implementieren. Das Praktikum folgt der Objects First Lernmethode, bei der die grundlegenden objektorientierten Programmierkonzepte im Vordergrund stehen. Die Lerninhalte werden nach dem Prinzip der Iteration vermittelt, so dass die wichtigsten Konzepte früh und häufig (in unterschiedlichem Kontext) geschult werden. Der Präsenzunterricht beruht auf einem Wechsel aus kurzen Vorstellungen neuer Konzepte durch den Dozenten und zugehörigen betreuten Übungen am Rechner. Diese Form der praktischen Wissensvermittlung wird durch Zuhilfenahme der speziell hierfür entwickelten Programmierumgebung BlueJ ermöglicht. Der gelernte Stoff wird für jede Lerneinheit mittels Übungsaufgaben im Selbststudium weiter eingeübt und vertieft.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden kennen die wesentlichen Konzepte und Konstrukte prozeduraler und objektorientierter Programmiersprachen sowie die grundlegenden Entwurfsprinzipien entsprechender Programme. Sie kennen die wichtigsten Werkzeuge für die Programmentwicklung und deren Funktionsweise sowie die Arbeitsabläufe bei deren Anwendung. Sie kennen die gebräuchlichsten Klassen der Java Klassenbibliothek und sind mit deren Integration in eigene Programme vertraut.

Fertigkeiten:

Die Studierenden können unter Berücksichtigung der grundlegenden prozeduralen und objektorientierten Entwurfsprinzipien einfachere Java Programme entwickeln. Sie können dazu eine integrierte Programmierumgebung einsetzen. Die Studierenden sind in der Lage, komplexere Java-Quelltexte zu analysieren und sich mittels der zugehörigen Dokumentation systematisch über die Funktionalität der Klassen der Klassenbibliothek zu informieren. Sie können Programmtexte auf syntaktische und semantische Fehler untersuchen.

Kompetenzen:

Die Studierenden besitzen das logische und abstrakte Denkvermögen, um ausgehend von einer Problemstellung strukturiert ein korrektes und effizientes Programm zu entwickeln. Sie sind befähigt, sich selbständig in weitere objektorientierte und prozedurale Programmiersprachen einzuarbeiten, sowie fortgeschrittene Konzepte und Konstrukte der Programmiersprache Java zu verstehen. Sie beherrschen das relevante Fachvokabular und können dieses im Dialog mit Fachkollegen zur Kommunikation komplexer Sachverhalte der Programmentwicklung einsetzen.

Inhalt:

- Klassen, Objekte, Datenfelder, Konstruktoren, Methoden
- Variablen und Datentypen, Objektreferenzen
- Sichtbarkeit und Lebensdauer von Variablen
- Arithmetische und logische Ausdrücke
- Bedinge Anweisungen
- Schleifenkonstrukte
- Klassen- und Objektdiagramme
- Verwendung der Klassenbibliothek
- Objektsammlungen
- Entwurfsprinzipien: Abstraktion, Modularisierung, Kapselung
- Vererbung, Klassenhierarchie, Variablen- und Methoden-Polymorphie

 Abstrakte Methoden und Klassen, Typhierarchie, Interfaces

Medienformen:

Betreute Rechnerübungen, Folien, Tafel

- David J. Barnes und Michael Kölling (2017): Java lernen mit BlueJ: Objects first Eine Einführung in Java. 6. Auflage. Pearson Studium.
- Marcus Deininger und Thomas Kessel (2016): Fit für die Prüfung: Java (Lernbuch und Lerntafel). UTB.
- Christian Ullenboom (2016): Java ist auch eine Insel: Einführung, Ausbildung, Praxis. 12.
 Auflage. Rheinwerk Computing.

Modul:	Betriebliches Rechnungswesen	
Kürzel:	wiB21	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Dennis Schlegel	
Dozent(in):	Prof. Dr. Dennis Schlegel	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Pflichtfach, 2 Semester	
Lehrform / SWS:	Vorlesung	4 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Klausur	
Modulziele:		
Ziel des Moduls ist es, den Studierenden eine t Rechnungswesen eines Unternehmens zu geben Unterschiede verstehen, sowie die grundlegender kennen.	. Die Studierenden solle	en Gemeinsamkeiten und
Angestrebte Lernergebnisse		

Kenntnisse:

Die Studierenden kennen die wesentlichen Ziele sowie Gemeinsamkeiten und Unterschiede des internen und des externen Rechnungswesens. Sie beherrschen die grundlegenden Begriffe und können Geschäftsvorfälle entsprechend abgrenzen. Die Studierenden kennen die Grundlagen sowie wesentliche Methoden des externen wie des internen Rechnungswesens.

Fertigkeiten:

Die Studierenden können Geschäftsvorfälle nach den Grundsätzen des internen und externen Rechnungswesens bewerten. Sie sind in der Lage, die Wirkungen differenziert einzuschätzen und die Konsequenzen für betriebliche Entscheidungen zu beurteilen.

Kompetenzen:

Die Studierenden besitzen die fachliche und methodische Kompetenz, die vermittelten betriebswirtschaftlichen Kenntnisse in den Bereichen des internen und des externen Rechnungswesens anzuwenden. Sie können die Aussagekraft und Bedeutung von externen Bilanzen im Vergleich zu internen Unternehmenszahlen einschätzen und die richtigen Schlüsse daraus ziehen.

Inhalt:

Grundlagen des betrieblichen Rechnungswesens

- Ziele und Unterschiede des internen und des externen Rechnungswesens
- Grundbegriffe (Einzahlungen/Auszahlungen, Einnahmen/Ausgaben, Erträge/Aufwendungen, Erlöse/Kosten)

Einführung in das externe Rechnungswesen

- Grundlagen der Bilanzierung
- Buchen auf Bestandskonten und Erfolgskonten.
- · Jahresabschluss nach HGB.

Einführung in das interne Rechnungswesen

- Kostenarten-, Kostenstellen- und Kostenträgerrechnung
- Kurzfristige Erfolgsrechnung
- Plankostenrechnung

Medienformen:

Vermittlung der theoretischen Grundlagen mittels Beamer-Präsentation, ergänzt durch Tafelanschriebe. Besprechung von Lösungen der Übungsaufgaben.

- Coenenberg / Haller / Mattner / Schultze: Einführung in das Rechnungswesen -
- Grundlagen der Buchführung und Bilanzierung. 6. Auflage. Stuttgart: Schäffer-Poeschel
- Eisele / Knobloch (2018): Technik des betrieblichen Rechnungswesens. 9. Auflage. München: Vahlen
- Friedl / Hofmann / Pedell (2017): Kostenrechnung Eine entscheidungsorientierte Einführung. 3. Auflage. München: Vahlen
- Wöhe (2016): Einführung in die Allgemeine Betriebswirtschaftslehre. 26. Auflage. München: Vahlen

Modul Digital Marketing and Sales

Kürzel wiB22

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Alexander Rossmann

Dozent(in): Prof. Dr. Alexander Rossmann

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 2 Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Continuous Assessment,

Hausarbeit, Referat

Modulziele:

Das Modul "Digital Marketing and Sales" bezieht sich auf die Nutzung digitaler Kanäle für unterschiedliche Teilfragen der Marketing- und Vertriebsstrategie. Dabei liegt das Ziel des Moduls in einer Einordnung der Begriffe Online Marketing und eCommerce und der Verortung in der gesamten Marketing- und Unternehmensstrategie. Auf dieser Grundlage werden wesentliche Ansätze und Methoden zur Entwicklung und Umsetzung einer digitalen Marketing- und Vertriebsstrategie entwickelt. Dies umfasst im Kern die Analyse und Entwicklung der Customer Journey über unterschiedliche Kundenkontaktpunkte. Im Detail werden auf dieser Grundlage einzelne Möglichkeiten für die Gestaltung digitaler Kontaktpunkte vertieft, z.B. in den Bereichen Search, Display, Social, eMail sowie in Bezug auf die Gestaltung von Online Shops. Das Ziel des Moduls liegt auch in einer integrierten Analyse und Betrachtung der unterschiedlichen digitalen Marketing- und Vertriebskanäle im Sinne einer modernen Multi-Channel Marketingkonzeption.

Angestrebte Lernergebnisse

Kenntnisse:

Die Teilnehmer bauen einerseits Kenntnisse zu Grundfragen der Gestaltung einer Marketing- und Vertriebskonzeption unter der Nutzung digitaler Technologien auf. Dabei werden auch Kenntnisse zu Aufbau und Gestaltung einer digitalen Marketing- und Vertriebsstrategie vermittelt. Darüber hinaus erwerben die Teilnehmer Kenntnisse zu unterschiedlichen Kanälen und Gestaltungsmöglichkeiten, v.a. mit Hinblick auf Search, Social, Display, eMail-Marketing und Online Shops.

Fertigkeiten:

Die Fertigkeiten nach Abschluss des Moduls beziehen sich auf die systematische Anwendung von Marketing- und Vertriebstechniken und Werkzeugen im Kontext der Gestaltung einzelner digitaler Kontaktpunkte. Darüber hinaus erwerben die Teilnehmer die Fertigkeit, die einzelnen digitalen Marketing- und Vertriebsansätze im Gesamtzusammenhang zu analysieren.

Kompetenzen:

Die Teilnehmer erwerben eine Grundkompetenz in Bezug auf die Entwicklung und Umsetzung digitaler Marketing- und Vertriebsstrategien. Diese wird v.a. auf der Grundlage von Fallstudien vermittelt. Darüber hinaus ist die Kompetenz der Teilnehmer zur Anwendung einzelner Marketing- und Vertriebsansätze nach Abschluss des Moduls deutlich ausgebaut.

Inhalt:

- Grundlagen zu Digital Marketing und eCommerce, Kernbegriffe, historische Entwicklung.
- Entwicklung und Umsetzung einer digitalen Marketing- und Vertriebsstrategie, Einbettung von
- Online in die Marketing- und Unternehmensstrategie, Unterschiede von Online und OfflineMarketing und Vertrieb, neue Rollenkonzepte für das Marketing durch die Entwicklung digitaler Kanäle.
- Gestaltung der Customer Experience, agile Vorgehensmodelle in Marketing und Vertrieb, datenbasierte Entscheidung im Marketing, Modellierung der Consumer Journey, Messung einzelner Touchpoints.
- Inhalte als Grundlage für das Marketing in digitalen Kanälen, grundsätzliche Ansätze für das Content Marketing, unterschiedliche Arten und Formen von Content, Integration und Kuration von Content, interne Organisation der Contentstrategie.
- Search Engine Marketing (SEA), Advertising mit Google, Management eines AdWord
 Accounts, Umsetzung von AdWord-Kampagnen, Grundlagen der Suchmaschinen optimerung (SEO), SEO Strategien in der Unternehmenspraxis.
- Vorgehensmodelle für das Display Advertising, unterschiedliche Formen von Displays, Preismodelle für Displays, Optimierung der Conversion.
- Social Media Marketing, Werbung im Kontext von Social Media, Vernetzung von Social Media mit anderen Kanälen.
- Einführung in das eMail Marketing, Gestaltung von Newsletterformaten, Permission Based Marketing, Einholung von Subscriptions, Verbesserung der Datenqualität.
- Aufbau und Gestaltung von Online Shops, Online Shop Systeme, Optimierung der Conversion in Online Shops.

• Integration der verschiedenen Marketingkanäle, Omni-Channel Marketing, Integration von Marketingansätzen in andere Funktionsbereiche.

Medienformen:

Vorlesung, Übungsaufgaben, Fallstudien, Skript mit PPT-Folien, beispielhafte Publikationen, Hausarbeiten, Präsentationen, Projektarbeiten.

- Chaffey, D., Smith, P. R., & Smith, P. R. (2012). eMarketing eXcellence: Planning and optimizing your digital marketing. Routledge.
- Kreutzer, R. T. (2012). Praxisorientiertes online-marketing. Konzepte-Instrumente-Checklisten, Wiesbaden.
- Lammenett, E. (2015). Praxiswissen Online-Marketing. Springer Fachmedien.
- Miller, M. (2012). B2B digital marketing: Using the web to market directly to businesses.
 Que Publishing.
- Ryan, D. (2014). Understanding digital marketing: marketing strategies for engaging the digital generation. Kogan Page Publishers

Modul: Wirtschaftsmathematik und Induktive Statistik Kürzel: wiB23 Untertitel: Untertitel: Vorlesung und Übung Lehrveranstaltungen: Studiensemester: Jedes Semester Prof. Dr. Josef Schürle Modulverantwortlicher: Dozent(in): Dr. Jos Höll Sprache: Deutsch **Zuordnung zum Curriculum:** Pflichtfach, 2 Semester Lehrform / SWS: Vorlesung: 2 SWS Übung: 2 SWS Arbeitsaufwand: Präsenzstudium 60 Stunden 90 Stunden Eigenstudium Kreditpunkte: 5 ECTS Voraussetzungen nach StuPro: Online Testat bestanden **Empfohlene Voraussetzung:** Statistik Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur, Testat Modulziele:

Ziel des Moduls ist zum einen die Vermittlung mathematischer Grundlagen, die zur Lösung vielfacher betriebswirtschaftlicher Fragestellungen notwendig sind. Zum anderen werden Grundlagen der induktiven Statistik behandelt. Diese sind einerseits zur Bearbeitung von betriebswirtschaftlichen Fragestellungen unter Unsicherheit erforderlich. Andererseits bildet die induktive Statistik das Fundament vieler aktueller und fortgeschrittener Themen der Wirtschaftsinformatik, beispielsweise für einige Verfahren aus den Bereichen Predictive Analytics oder Machine Learning. Ziel ist es, dass sich die Studierenden später aufbauend auf den erlernten Grundlagen die fortgeschrittenen Methoden erarbeiten können.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden beherrschen Grundlage der Analysis und kennen die Techniken, mit denen die Aufgaben aus diesem Bereich zu lösen sind. Die Studierenden kennen die Grundbegriffe der Wahrscheinlichkeitstheorie sowie wesentliche stetige und diskrete Verteilungen. Sie verstehen die für viele Anwendungen erforderlichen Konzepte der Parameterschätzung und der Hypothesentests und wissen für Beispielsituationen, wie die Berechnungen durchzuführen sind. Fertigkeiten:

Die Studierenden lösen Aufgaben der Analysis und der induktiven Statistik unter Anwendung der erlernten Theorie. Sie verstehen, wann die Voraussetzungen zur Anwendung der Methoden erfüllt sind, wie rechnerisch ein Ergebnis ermittelt wird und wie die Ergebnisse korrekt zu interpretieren sind.

Kompetenzen:

Die Studierenden sind in der Lage, gängige quantitative betriebswirtschaftliche bzw. statistische Fragestellung mit Hilfe der Mathematik und der Statistik zu lösen. Dazu haben sie sich ein grundlegendes Verständnis erarbeitet, das es ihnen ermöglicht, ggf. notwendige weiterführende Techniken im Selbststudium zu erlernen. Dieses grundlegende Verständnis ermöglicht es den Studierenden auch, sich mit fortgeschrittenen Verfahren (beispielsweise aus dem Bereich der Datenanalyse) auseinander zu setzen und diese zu erlernen.

Inhalt:

Wirtschaftsmathematik:

- Aufbau des Zahlensystems
- Gleichungen, Ungleichungen, Summen und Produkte
- Reellwertige Funktionen
- Folgen und Grenzwerte von Folgen
- Stetige Funktionen
- · Differenzierbare Funktionen und ihre Anwendung

Induktive Statistik:

- Grundbegriffe der Wahrscheinlichkeitstheorie
- Wichtige stetige und diskrete Verteilungen sowie deren wesentliche Eigenschaften
- Parameterschätzung (Punkt- und Intervallschätzung)
- Testen von Hypothesen

Medienformen:

Vermittlung der theoretischen Grundlagen mittels Beamer-Präsentation, ergänzt durch Tafelanschriebe. Besprechung von Lösungen der Übungsaufgaben.

- Fahrmeir / Heumann / Künstler / Pigeot / Tutz (2016): Statistik Der Weg zur Datenanalyse. 8. Auflage. Wiesbaden: SpringerSpektrum.
- Merz / Wüthrich (2013): Mathematik für Wirtschaftswissenschaftler. München: Vahlen.
- Papula (2014): Mathematik für Ingenieure und Naturwissenschaftler Band 1: Ein Lehrund Arbeitsbuch für das Grundstudium. 14. Auflage. Wiesbaden: SpringerVieweg.
- Papula (2016): Mathematik für Ingenieure und Naturwissenschaftler Band 3: Band 3: Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung. 7. Auflage. Wiesbaden: SpringerVieweg.
- Tietze (2013): Einführung in die angewandte Wirtschaftsmathematik. 17. Auflage. Wiesbaden: Springer Spektrum.

Modul:	Algorithmen und	Datenstrukturen
Kürzel:	wiB24	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Elena Kuß	
Dozent(in):	Prof. Dr. Elena Kuß	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Pflichtfach, 2 Semest	er
Lehrform / SWS:	Vorlesung 4 SWS mit integrierten Übun	gen
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Klausur, P	raktikum
Modulziele:		
Ziel des Moduls ist es die Informatikgrundlagen d wichtige, auch für Geschäftsanwendungen gru kennen und können diese im Hinblick auf Eff Programmcode hinsichtlich seiner Effizienz beur Code sensibilisiert.	undlegende, Algorithm fizienz bewerten. So I	en und Datenstrukturen können die Studierenden
Angestrebte Lernergebnisse:		

Kenntnisse:

Neben grundlegenden Kenntnissen über Entwurfsmethoden von Algorithmen und zur Komplexität bzw. asymptotischen Analyse werden sowohl Kenntnisse über grundlegende Datenstrukturen als auch wichtige Algorithmen zum Suchen, Sortieren und dem Hashing erworben. Im Verlauf der Lehrveranstaltung erwerben die Studierenden auch Kenntnisse über fortgeschrittene Themen wie Bäume, (ungerichtete und gerichtete) Graphen, sowie ausgewählten Algorithmen auf diesen

Strukturen. Darüber hinaus erhalten die Studierenden einen kurzen Einblick in den Bereich der künstlichen Intelligenz. Es werden neuronale Netze als gerichtete Graphen behandelt. Fertigkeiten:

Die Studierenden erlangen Fertigkeiten im Entwurf von effizienten Algorithmen und Datenstrukturen für ausgewählte Problemstellungen. Zudem erlangen Sie Fertigkeiten zur Einschätzung ihrer Komplexität und Implementierung.

Kompetenzen:

Die Studierenden erlangen die Kompetenz zur Beurteilung von Anwendungsproblemstellungen in Bezug auf ihre Komplexität und zur Modellierung einer effizienten Lösung dieser Problemstellungen in Form von Algorithmen und adäquaten Datenstrukturen. Diese Kompetenzen werden durch eigene Vorträge, eine schriftliche Klausur, Übungen und Quizze abgeprüft.

Inhalt:

- Einführung: Algorithmen und Datenstrukturen, Entwurfsmethoden, Komplexität bzw. asymptotische Analyse
- Suchen und Sortieren: Verschiedene Sortierverfahren, vergleichsbasierte versus nichtvergleichsbasierte Sortieralgorithmen, lineare versus binäre Suche
- Hashing
- Grundlegende Datenstrukturen: Listen, Stapel, Warteschlangen
- Grundlagen von Graphen und Graphenalgorithmen: gerichtete und ungerichtete Graphen, Graphen-Repräsentation, Eulerzüge, Hamiltonkreise, kürzeste Wege Algorithmen
- Bäume bzw. Binärbäume und Algorithmen wie z.B. Heap-Sort
- Neuronale Netze als gerichtete Graphen
- Entscheidungsbäume

Medienformen:

Das Modul besteht aus einer Vorlesung mit integrierten Übungen welche mit Methoden des "Inverted Classroom" umgesetzt werden. Dazu arbeiten sich die Studierenden in kleinen Gruppen eigenständig in Themengebiete ein, die sie den anderen Studierenden präsentieren. Darüber hinaus werden Inhalte sowohl asynchron über Lehrvideos als auch synchronen vermittelt und der Lernfortschritt wird in unbenoteten offenen Quizzen abgefragt.

- Saake, Gunter; Sattler, Kai-Uwe (2014): Algorithmen und Datenstrukturen. Eine Einführung mit Java. 5. Auflage, dpunkt.verlag.
- Sedgewick, Robert; Wayne, Kevin (2014): Algorithmen und Datenstrukturen, 4. Auflage, Hallbergmoos Pearson.
- Ottmann, Thomas; Widmayer, Peter (2017): Algorithmen und Datenstrukturen. 6. Auflage, Springer Vieweg.

Modul: Computernetzwerke

Kürzel: wiB25

Untertitel:

Lehrveranstaltungen: Vorlesung mit integrierter Übung

Studiensemester: jedes Semester

Modulverantwortlicher: Prof. Dr. Christian Decker

Dozent(in): Prof. Dr. Christian Decker

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 2 Semester

Lehrform / SWS: Vorlesung 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Modulziele:

Internet: Grundlagen und Kommunikationsmodell

- Kennenlernen wesentlicher techn. Komponenten der Rechnerkommunikation
- Kennenlernen der Begriffe für die allgemeine Beschreibung der Kommunikation in Rechnernetzen
- Verstehen des Schichtenmodells und dessen Funktionsweise

Anwendungsprotokolle

- Wissen über die Zusammenarbeit von Anwendungsprozessen und Protokollstapel
- Verständnis der Konzeption und Implementierung von Protokollen der Anwendungsschicht

Transportprotokolle

- Wissen und Verständnis über grundlegender Eigenschaften von Diensten der Transportschicht
- Zusammenspiel zw. Anwendungsschicht und Transportschicht nachvollziehen können
- Komplexe Protokolle besser verstehen durch das erfolgreiche Anwenden erlernter Konzepte auf Transportschicht-Protokolle

Vermittlungsprotokolle

- Wissen und Verständnis über grundlegende Eigenschaften von den Diensten der Netzwerkschicht
- Weiterleitung und Routing unterscheiden können
- Routing Algorithmen kennen und vergleichen
- IP: Einsatz und Funktionalitäten verstehen und in Beispielen erklären können, z.B. Subnetze, Adressierung, NAT, DHCP

Protokolle der Sicherungsschicht

- Grundlegende Dienste der Sicherungsschicht kennen
- Funktionen der Sicherungsschicht in den Protokollstapel einordnen können
- Adressierung und Kommunikation von Rechnersystemen in lokalen Netzwerken verstehen
- Konkrete Implementierungen kennen

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden erlangen grundlegende Kenntnisse über das Kommunikationsmodell, Kommunikationsdienste und Protokolle des Internets. Dies umfasst insbesondere Wissen über

- Internet: Grundlagen und Kommunikationsmodell, insb. Schichtenmodell, Konzept der Kapselung
- Anwendungsprotokolle, insb. HTTP, SMTP, DNS
- Transportprotokolle, insb. Multiplexing, zuverlässige Übertragung mit ARQ Protokollen, TCP und UDP
- Vermittlungsprotokolle, insb. Adressierung, Subnetze, Routing, IPv4, DHCP, NAT
- Protokolle der Sicherungsschicht, insb. Medienzugriff, Medium Access Control (MAC), Medienzugriff, Medium Access Control, Adressierung, ARP

Fertigkeiten:

Studierende erlangen die folgenden Fertigkeiten

- Wissen um den Aufbau des Internets und können Anwendungen und Funktionen den verschiedenen Bestandteilen zuordnen
- Können Schichten im Kommunikationsmodell und deren Dienste identifizieren und klassifizieren. Sie können sowohl Aufgaben und die sie realisierenden Protokolle nennen.
- Verstehen bekannte Protokolle, können deren Nachrichtenformate erläutern und Funktionsweisen erklären.
- Verstehen wie Teilnetze logisch und technisch gebildet werden und können Rechnersysteme den Teilnetzen zuordnen

Kompetenzen:

Verstehen internetbasierte Anwendungen und Systeme auch in neuen Anwendungsumgebungen und können Grundbegriffe korrekt in diesen Umgebungen anwenden Verstehen den Wert von Computernetzwerken und können Anwendungen wie auch technische Systeme korrekt einordnen. Können Entwurf und grundlegende Funktionsprinzipien internetbasierter Anwendungen nachvollziehen Verstehen Funktionsweise und Designentscheidungen neuer Protokolle, die nicht Bestandteil der Vorlesung sind.

Lernergebnis (LE)	Geprüft durch
 Verstehen internetbasierte Anwendungen und Systeme auch in neuen Anwendungsumgebungen und können Grundbegriffe korrekt in diesen Umgebungen anwenden 	
 Verstehen den Wert von Computernetzwerken und können Anwendungen wie auch technische Systeme korrekt einordnen. 	
 Können Entwurf und grundlegende Funktionsprinzipien internetbasierter Anwendungen nachvollziehen 	
Verstehen Funktionsweise und Designentscheidungen neuer Protokolle, die nicht Bestandteil der Vorlesung sind.	

Inhalt:

"Today's Internet is a global resource connecting millions of users that began as an experiment over 20 years ago by the U.S. Department of Defense." Quelle: RFC 1462, 1993

Das Internet dominiert weltweit die Art und Weise wie wir kommunizieren, Informationen konsumieren und produzieren und Geschäftsprozesse abwickeln. Neue Anwendungen können extrem schnell angeschlossen werden und erreichen sofort alle Teilnehmer. Der Wert von Netzen ergibt sich aus dem Vernetzungsgrad. Netzwerken kommt eine extrem hohe wirtschaftliche Relevanz zu, da die Geschäftsmodelle fast aller Unternehmen auf funktionierende Netze angewiesen sind. Diese Vorlesung erläutert die Prinzipien und die technischen Funktionsweise des Internets. Sie erklärt, warum das Internet erfolgreich ist und es möglich ist, neue internetbasierte Anwendungen quasi über Nacht allen Teilnehmern zur Verfügung zu stellen.

Die folgenden Themenbereiche werden behandelt:

Internet: Grundlagen und Kommunikationsmodell

- Geschichte des Internet
- Einführung Internet und allgemeiner Aufbau
- Dienste und Protokolle anhand von Beispielen
- Schichtenmodell
- Konzept der Kapselung und das Zusammenspiel der Protokollschichten

Anwendungsprotokolle

- Architekturen von Netzwerkanwendungen
- Kennenlernen konkreter Protokolle, z.B. HTTP, SMTP, DNS

Transportprotokolle

- Verfahren des Multiplexing/Demultiplexing, Zuverlässiger Transport von Daten, Flusskontrolle, Überlastkontrolle
- Wichtige Protokolle: TCP, UDP

Vermittlungsprotokolle

- Vermittlung von Daten in den Kernsystemen des Internet
- Adressierung und Adresszuweisung von Endsystemen
- Router und Routing (Wegewahl von Datenpaketen)
- Wichtige Protokolle: IPv4 und IPv6, ICMP, DHCP, NAT

Protokolle der Sicherungsschicht

- Dienste der Sicherungsschicht
- Medienzugriff, Medium Access Control
- Adressierung, ARP
- Ethernet und Switches

Medienformen:

PDF der Folien aus der Vorlesung. Weiteres Material wird während der Vorlesung bekannt gegeben.

Literatur:

J. F. Kurose, K. W. Ross: Computernetze; Pearson Studium 2014"

Modul:	Fortgeschrittene Programmierung

Kürzel: wiB26

Untertitel:

Lehrveranstaltungen: Vorlesung und Praktikum

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Martin Schmollinger

Dozent(in): Prof. Dr. Martin Schmollinger

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 2 Semester

Lehrform / SWS: Vorlesung 2 SWS

Praktikum 2 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Grundlagen der Informatik

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur, Praktikum

Modulziele:

Ziel des Modules ist es die Informatikgrundlagen der Studierenden zu vertiefen. Insbesondere werden die Fähigkeiten bei der objektorientierten Programmierung gefestigt und erweitert. Ergänzend sollen auch die Fähigkeiten bei der Verwendung einer konkreten Programmierplattform (aktuell Java) und aktueller Entwicklungswerkzeuge verbessert werden.

Die aus den Modulen "Grundlagen der Informatik" und "Praktikum Programmierung" erworbenen Kompetenzen sind Grundvoraussetzung. Die Module "Datenbanken", "Software Engineering", "Webprogrammierung", "Systeme und Sicherheit" und "Verteilte Systeme" bauen auf den vermittelten Kompetenzen auf.

Angestrebte Lernergebnisse

Kenntnisse:

• Kenntnisse in der Objekttechnologie, insbesondere über generischen Klassen und Datenstrukturen, sowie Entwurfsmuster.

- Kenntnisse über die Modularisierung komplexer Programme.
- Kenntnisse über Konzepte funktionaler Programmierung die Anwendung in objektorientierten Sprachen finden.
- Kenntnis des typischen Aufbaus und der Funktionsweise von Bibliotheken für grafische Benutzeroberflächen, Dateisystemzugriffe und Algorithmen und Datenstrukturen.
- Kenntnisse über aktuelle Entwicklungswerkzeuge, wie IDE, Build-Werkzeuge und Unit-Testing.

Die Studierenden können Desktop-Anwendungen mittels einer aktuellen objektorientierten Programmiersprache unter Verwendung professioneller Entwicklungswerkzeuge implementieren und testen. Dabei können Sie ausgewählte Architektur- und Entwurfsmuster, sowie grundlegende Algorithmen und Datenstrukturen sicher einsetzen. Des Weiteren sind Sie sind in der Lage einfache grafische Benutzeroberflächen für ihre Anwendung zu implementieren und können Objekte im Dateisystem speichern.

Kompetenzen:

Das Modul trägt zur technologischen Qualifikation der Studierenden bei und stärkt das Grundlagenwissen der Informatik. Die Methodenkompetenz wird im Modul durch das tiefere Verständnis der Objektorientierung und die Architektur von Anwendungen gefördert. Des Weiteren wird im Praktikum auch die soziale Kompetenz durch Gruppenarbeit gefördert. Die Studierenden sind nach Abschluss des Moduls in der Lage für ein gegebenes Problem einen objektorientierten Programmentwurf und die dazugehörige Implementierung anzufertigen.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Desktop-Anwendungen mit Hilfe einer objektorientierten Sprache entwickeln können.	Klausur / Laborarbeiten
LE2	Entwicklungs- und Testwerkzeuge verwenden können.	Laborarbeiten
LE3	Grundlegende Entwurfsmuster erklären, einsetzen und implementieren können.	Klausur / Laborarbeiten
LE4	Grundlegende Algorithmen und Datenstrukturen unterscheiden und einsetzen können	Klausur / Laborarbeiten
LE5	Ausgewählte Bibliotheken für wichtige Aspekte von Anwendungen einer Programmierplattform anwenden können (UI, IO, Algorithmen und Datenstrukturen, Testing).	Klausur / Laborarbeiten

Inhalt:

Im Modul wird die Entwicklung von Desktop-Applikationen mit einer objektorientierten Sprache thematisiert. Dazu müssen die Kenntnisse über objektorientierte Programmierung, insbesondere über Entwurfsmuster, generische Klassen, funktionale Programmierung und die Gestaltung objektorientierter Frameworks vertieft werden. Aktuelle Programmierplattformen bieten Bibliotheken für wichtige Aspekte moderner Anwendungen an. In der Veranstaltung werden Bibliotheken für grafische Oberflächen, sowie Algorithmen und Datenstrukturen vorgestellt und verwendet. Des Weiteren wird der Zugriff auf Betriebssystemressourcen wie z.B. das Dateisystem besprochen. Die Übungen werden mit Unterstützung von aktuellen Entwicklungswerkzeugen durchgeführt.

Medienformen:

Das Modul wird gemäß der Inverted-Class-Room-Methode durchgeführt. Die Studierenden bereiten wochenweise ein Thema vor. Dabei wird über die Lehrplattform Lernmaterial in Form von Videos, Folien, E-Books und ein Übungsbuch bereitgestellt. Das Thema wird dann in der darauffolgenden Vorlesung im seminaristischem Stil mit Tafelanschrieb (oder digitalem Whiteboard) sowie anhand der Folien besprochen. In den Übungen werden vergangene Aufgaben nachbesprochen, neue Aufgaben vorgestellt und gemeinsam begonnen. Insbesondere das gemeinsame Programmieren soll die Hürde beim Erlernen der Programmierung mit professionellen Werkzeugen verkleinern. Die begonnenen Übungsaufgaben müssen dann bis zum nächsten Termin selbständig fertiggestellt werden. Die praktischen Arbeiten werden mit Hilfe von aktuellen Entwicklungswerkzeugen durchgeführt. Das Material zu den Veranstaltungen gibt es in elektronischer Form: Videos, Folienskripte zu den Vorlesungen, Übungsbuch, sowie ausgewählte Kapitel aus E-Books.

- Bloch, Joshua (2018): Effective Java. 3. Auflage, dpunkt Verlag.
- Charatan, Kans: "Java in Two Semesters Featuring JavaFX", 4. Auflage, Springer Verlag, 2019.
- Dörn: "Java lernen in abgeschlossenen Lerneinheiten", Springer Vieweg, 2019.
- Epple, Anton (2015): JavaFX 8 Grundlagen und fortgeschrittene Techniken. dpunkt.verlag
- Freeman, Eric et al. (2015): Entwurfsmuster von Kopf bis Fuß, 2. Auflage, O'Reilly.
- Gamma, Erich (1995): Design patterns. Elements of reusable object-oriented software. Reading, Mass.: Addison-Wesley.
- Inden, Michael (2018): Java die Neuerungen in Version 9 bis 12. dpunkt.verlag.
- Inden: "Der Weg zum Java-Profi", 2. Auflage, dpunkt Verlag, 2018
- Müller: "Java Eine Einführung in die Programmierung", 2. Auflage, Hanser Verlag, 2018.
- Mössenböck, Hanspeter (2014): Sprechen Sie Java? Eine Einführung in das systematische Programmieren. dpunkt.verlag.
- Ratz, Dietmar, Schulmeister-Zimolong, Dennis, Seese, Detlef, und Wiesenberger, Jan: "Grundkurs Programmieren in Java", Auflage: 8, Hanser-Verlag 2018
- Saake, Gunter; Sattler, Kai-Uwe (2014): Algorithmen und Datenstrukturen. Eine Einführung mit Java. 5. Auflage, dpunkt.verlag.

Modul:	Logistik und Produktion - Industrie 4.0
Kürzel:	wiB31
Untertitel:	
Lehrveranstaltungen:	Vorlesung
Studiensemester:	Jedes Semester
Modulverantwortlicher:	Prof. Dr. Philipp Zeise
Dozent(in):	Prof. Dr. Philipp Zeise
Sprache:	Deutsch
Zuordnung zum Curriculum:	Pflichtfach, 3 Semester
Lehrform / SWS:	Vorlesung / 4 SWS
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden
Kreditpunkte:	5 ECTS
Voraussetzungen nach StuPro:	Keine
Empfohlene Voraussetzung:	Keine
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Klausur

Modulziele:

Die Studierenden haben ein Grundverständnis für Planungsvorgänge und Entscheidungsprobleme in verschiedenen Logistik- und Produktionsumgebungen und können diese selbständig modellieren und lösen. Sie sind zudem in der Lage, diese Entscheidungsprobleme mit Hilfe von Softwaretools zu lösen.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden kennen

- die Grundbegriffe des Produktions- und Logistikmanagements
- die grundlegenden betriebswirtschaftlichen Entscheidungsprobleme in Industrieunternehmen in den Bereichen Distribution, Produktion, Beschaffung und Logistik
- den Einsatz und die Grenzen von ERP-Systemen zur Lösung dieser Entscheidungsprobleme

- die grundlegenden mathematischen Modelle und Lösungsmethoden zu den Entscheidungsproblemen der Standortplanung, Nachfrageprognose, Hauptproduktionsprogrammplanung, Materialbedarfsplanung, Losgrößen- und Terminplanung, Kommissionierung und Tourenplanung
- Standardsoftware zur Lösung dieser Entscheidungsprobleme

Die Studierenden können

- mathematische Modelle zu betriebswirtschaftlichen Entscheidungsproblemen im Bereich des Produktions- und Logistikmanagements aufstellen und modifizieren
- Algorithmen zur Lösung betriebswirtschaftlicher Entscheidungsprobleme im Bereich des Produktions- und Logistikmanagements einsetzen
- Standardsoftware zur Lösung betriebswirtschaftlicher Entscheidungsprobleme im Bereich des Produktions- und Logistikmanagements einsetzen

Kompetenzen:

Die Studierenden können

- Entscheidungsprobleme im Bereich des Produktions- und Logistikmanagement durch eine strukturierte Herangehensweise analysieren, modellieren und durch Anwendung bekannter Verfahren lösen
- diese Herangehensweise auf ähnliche Entscheidungsprobleme übertragen

Inhalt:

Das Produktions- und Logistikmanagement hat das übergeordnete Ziel, effiziente und reibungslose Abläufe in der Produktion und Logistik eines Unternehmens sicherzustellen. Es umfasst eine Vielzahl von Planungsaufgaben, die darauf abzielen, die Produktivität zu steigern, Kosten zu reduzieren und die Kundenzufriedenheit zu erhöhen.

Der Kurs beginnt mit einer Einführung in die Grundlagen des Produktions- und Logistikmanagements, um ein gemeinsames Verständnis für die zentralen Begriffe und Konzepte zu schaffen. Dabei werden die Bedeutung der Supply Chain, die verschiedenen Produktionsstrategien und die Rolle der Logistik in der Wertschöpfungskette erläutert.

Im weiteren Verlauf der Vorlesung werden verschiedene Aspekte des Produktionsmanagements behandelt. Dazu gehören u.a. die Produktionsprogrammplanung sowie die Terminplanung. Ein weiterer Schwerpunkt der Vorlesung liegt auf dem Logistikmanagement, das die Planung, Umsetzung und Kontrolle des Materialflusses, der Lagerhaltung, des Transports und der Distribution umfasst.

Des Weiteren werden Themen wie Nachhaltigkeit und Umweltverträglichkeit in der Produktionsund Logistikbranche behandelt. Die Studierenden werden darüber informiert, wie nachhaltige Praktiken und Green Logistics dazu beitragen können, die Umweltbelastung zu reduzieren und gleichzeitig die Effizienz und Wirtschaftlichkeit zu steigern.

Medienformen:

Die Studierenden erhalten in der Vorlesung mittels Vorlesungsfolien Grundlagenwissen zu Entscheidungsproblemen in den Bereichen Produktion und Logistik. Anschließend werden den Studierenden komplexere Planungsaufgaben, die in der Praxis auftreten, als Übungsaufgaben bereitgestellt. Die Lernenden sollen die neuen Planungsaufgaben in mathematischen Modellen abbilden, d.h. diese Modelle müssen selbstständig an die neue Aufgabe angepasst werden.

Die Lernenden sollen so aktiv vorhandenes Wissen reflektieren und transferfähiges Wissen und fachspezifische Lern- und Denkstrategien aufbauen, indem auf Basis des Vorwissens miteinander Know-how vernetzt, bestehendes in neuem "Wissen" verknüpft, das Know-how in immer wieder neuen Situationen verwendet wird und konkrete Lernerfahrungen dann zu einem Zuwachs an individuellem Know-how führen (Problemorientiertes Lernen).

- H.-O. Günther, H. Tempelmeier (2009): Produktion und Logistik (Springer-Lehrbuch), Springer-Verlag Berlin Heidelberg
- H.-O. Günther, H. Tempelmeier (2005): Übungsbuch Produktion und Logistik (Springer-Lehrbuch), Springer-Verlag Berlin Heidelberg
- L. März, W. Krug, O. Rose, G. Weigert (Hrsg.) (2010): Simulation und Optimierung in Produktion und Logistik: Praxisorientierter Leitfaden mit Fallbeispielen, Springer-Verlag Berlin Heidelberg

Modul:	Rhetorik und Kommunikationsverhalten	
Kürzel:	wiB32	
Untertitel:		
Lehrveranstaltungen:	Seminar	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. DiplKfm. Armin Roth	
Dozent(in):	Prof. DiplKfm. Armin Roth	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Pflichtfach, 3 Semester	
Lehrform / SWS:	Vorlesung:	4 SWS
Arbeitsaufwand:	Präsenzstudium: Eigenstudium	000.
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:		
Empfohlene Voraussetzung:		
Studien-/Prüfungsleistungen/ Prüfungsform:	Seminar: Referat	
Modulziele:		

Ziel des Moduls ist es, die Studierenden für die Wichtigkeit des Themas Kommunikation und Rhetorik zu sensibilisieren. Die Studierenden werden für unterschiedliche Kommunikationsbeziehungen (Vier- Augengespräch, in der Gruppe, vor einem Auditorium, etc.) vorbereitet. Des Weiteren lernen sie Inhalte sprachlich und visuell aufzubereiten um Projekte und Ergebnisse erfolgreich und zielgerichtet präsentieren zu können.

Angestrebte Lernergebnisse:

Kenntnisse:

- Grundlagen der Kommunikation und der Rhetorik
- Vermittlung der Prinzipien einer erfolgreichen Präsentation
- · Einführung in die professionelle Gesprächsführung
- Kenntnisse Moderationstechnik ermöglichen es den Studierenden die Rolle des Moderators in Diskussionen zu übernehmen.

Die Studierenden können anhand von theoretischen und praktischen Beispielen eine wirkungsvolle und zielführende Kommunikationsbeziehung sowohl bilateral, im Team als auch im Auditorium aufbauen. Sie beherrschen die Techniken der Präsentation, um erfolgreich Ergebnisse oder Informationen vorstellen zu können. Die Anwendung der Argumentation- und der Moderationstechnik für die jeweilige Kommunikationsbeziehung bildet zu überzeugenden Kommunikationspartnern aus.

Kompetenzen:

Durch die Erfahrungen und das "praktische Erleben" von konkreten Gesprächssituationen bilden sich bei den Studierenden Schlüsselkompetenzen wie Sozialkompetenz, Kommunikations- und Teamkompetenz weiter aus. Die Studierenden sind in der Lage, gelungene Kommunikationsbeziehungen aufzubauen und zu erkennen. Sie können mittels Reflexion Verbesserungspotentiale und gruppendynamische Prozesse einordnen.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Freie Rede.	Stegreifreden, Meinungsreden
LE2	Fachvortrag	Diverse Präsentationen
LE3	Erhöhung der Argumentationskompetenz	Diverse Rollenspiele

Inhalt:

In diesem Modul sollen Grundlagen der Kommunikation und der Rhetorik vermittelt werden. Präsentations- und Gesprächsführungstechniken werden behandelt. Außerdem wird in die Moderationstechnik eingeführt.

Medienformen:

Seminar, Gruppen- und Einzelarbeit, Rollenspiele, Vorlesungsfolien, Präsentations- und Moderationsmaterial

- Lay, R.; Birkenbihl, V.: Kommunikationstraining, mgv-Verlag, neueste Aufl.
- Alteneder, A.: Der erfolgreiche Fachvortrag, München 1996.
- Cialdini, R.: Die Psychologie des Überzeugens, Huber Bern 1998.
- Fey, Gudrun/ Heinrich Fey (1996): Redetraining als Persönlichkeitsbildung. Praktische
- Rhetorik zum Selbststudium und für die Arbeit in Gruppen. Walhalla Jens, Walther (1972):
 Von deutscher Rede. München.
- Lay, Ruppert (1983): Dialektik für Manager.
- Schulz von Thun, Friedemann: Miteinander reden, Bd.1. Störungen und Klärungen. Allgemeine Psychologie der Kommunikation. Rowohlt: Reinbek bei Hamburg.

Modul:	Software - Engineering
	OUICHAIO EIIGIIIOUIIIG

Kürzel: wiB33

Untertitel:

Lehrveranstaltungen: Vorlesung mit integrierter Übung

Studiensemester: jedes Semester

Modulverantwortlicher: Prof. Dr. Christian Decker

Dozent(in): Prof. Dr. Christian Decker

Sprache: Englisch

Zuordnung zum Curriculum: Pflichtfach, 3. Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium: 60 Stunden

Eigenstudium: 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur, Referat

Modulziele:

Softwareprozesse

- Grundlegendes Verständnis von Softwareprozessen und Vorgehensmodellen
- Wissen, wann kennengelernte Vorgehensmodelle angewendet werden können
- Kennen der grundlegenden Prozessaktivitäten

Agile Softwareentwicklung

- · Verstehen des Managementproblems der SW Entwicklung
- Grundlagenkenntnisse f
 ür sp
 ätere
 Übung
- Wissen über Agile SW Entwicklung am Bsp. XP

Requirements Engineering

- Begriffe und Elemente der Anforderungserfassung kennen
- Anforderungen systematisch darstellen und formulieren können

Systemmodellierung

• Struktur und Verhalten von SW Systemen schematisch mittels UML beschreiben können Systemanalyse durchführen können.

Softwareentwurf mit Mustern

- Systematische Vorgehensweise, um Systementwürfe zu beschreiben kennen
- Bestehendes Erfahrungswissen für Entwürfe verstehen und erfolgreich anwenden können

Testen

- Testen als Teil der Qualitätssicherung von SW verstehen
- Verschiedene Prüfmethoden kennen und Eignung und Zweck erläutern können

Grundlagen Projektmanagement

 Kenntnisse über Grundbegriffe, die Methoden und die systematische Vorgehensweisen des Management von SW Projekten

Tooleinsatz

• Projekte mit Hilfe von MS Project planen und verfolgen können

Ausgewählte Praktiken: Recherche, Einschätzung, Anwendung

 Können verschiedene Praktiken des Projektmanagement recherchieren, bewerten und exemplarisch anwenden

Angestrebte Lernergebnisse

Kenntnisse:

- Kenntnis der Produkte, Methoden, Standards, Prozesse und Instrumente für ein zukunftsweisendes Softwareengineering, die Erstellung softwareintensiver Produkte und des Softwareprojektmanagement
- Kenntnisse über Software-Prozessmodelle, Software-Design und grundlegenden Abläufen und Rollen des Softwarengineerings
- Kenntnis von grundlegenden Fragestellungen im Projektmanagement
- Ermittlung von Anforderungen und Formulierung von Spezifikationen
- Systematische Einordnung und Anwendung von Themenbereichen aus Softwaretechnik und Softwareprojektmanagement.
- Wissen um die Modellierung, Validierung und Test von Softwaresystemen

Fertigkeiten:

Studierende können die Konzepte, Prozesse und Methoden systematisch einordnen und anwenden. Mithilfe verschiedener Projekte erlernen die Studierenden theoretische Konzepte und Methoden praktisch in der Arbeit im Projektteam umzusetzen. Sie können Themen des Softwareengineerungs und Projektmanagements selbständig erarbeiten und in Verbindung mit dem vermittelten Wissen einsetzen.Bei verschiedenen Themenstellungen erlernen sie den praktischen Umgang mit Tools und Methoden.

Kompetenzen:

Lernergebnis (LE)	Geprüft durch
Sind in der Lage Softwareprojekte plangesteuert wie auch agil zu führen und entsprechend der geschäftlichen Umgebung und Praxis in Einklang mit den Geschäftszielen geeignete Methoden begründbar auszuwählen.	Klausur
Können verschiedene Praktiken des Softwareengineerings und des Projektmanagements selbständig recherchieren, bewerten und exemplarisch anwenden. Sie setzen dabei erlernte Instrumente und/oder Tools ein und schaffen die Abgrenzung zu Alternativen.	Referat

Inhalt:

Software stellt einen immer größeren Faktor der Wertschöpfung von Produkten dar. Softwareintensive Produkte werden weiter zunehmen. Die zielgerichtet und ingenieursmäßige Entwicklung von Softwareprodukten sowie und das Management von Softwareprojekten sind die Inhalte dieser Vorlesung. Die folgenden Themenbereiche werden behandelt:

Softwareprozesse

- Verschiedene Softwareprozesse, insb. Wasserfall, inkrementelle Entwicklung und andere
- · Diskussion der Vor- und Nachteile
- Umgang mit Änderungen: Änderungstoleranz und Änderungsvermeidung

Agile Softwareentwicklung

- Herleitung und Einordnung Agiler SW Entwicklung
- Prinzipien von Extreme Programming (XP)

Requirements Engineering

- Motivation, Gründe für das Scheitern von SW Projekten
- Grundbegriffe: Systemspezifikation, Lasten- und Pflichtenheft, Anforderungsarten
- Erfassung der Anforderungen mit Use Case Diagrammen

Systemmodellierung

- Einordnung in das SW Engineering
- UML Diagramme: Use Case, Sequenz-, Zustands-, Klassendiagramm ☐ Einführung in OOA/D

Softwareentwurf mit Mustern

- Architekturmuster, z.B. MVC, MVP
- Design Pattern: Singelton, Observer, Dekorierer
- Objektorientierter Schnittstellenentwurf: Interface vs. Mehrfachvererbung

Testen

- Dynamisches Testen: Testarten und Testmethoden, z.B. Blackbox, Whitebox
- Testgetriebene Entwicklung
- · Statisches Testen: Benutzertests

Grundlagen Projektmanagement

- Stakeholder, Projektorganisation, Vorgehensmodell, Roles and Reponsibilities
- · Leistungsverzeichnis, Initial Project Description, Projektauftrag, Projekt Charter, Scope

Statement

- Project Report, Milestone Diagram, Quality management Report
- Change Request Management, Exemplarische Change Requests

Tooleinsatz

Projektplanung mit MS Project

Ausgewählte Praktiken: Recherche, Einschätzung, Anwendung, u.a. mit folgenden Teilthemen

- Anforderungsmanagement
- Earned Value Analyse
- Business Case
- Zielkonfliktmatrix

Risikograph, ALARP

- Six Sigma
- V-Modell http://www.vmodellxt.de/
- Agile Softwareentwicklung / Scrum

Medienformen:

PDF der Folien aus der Vorlesung. Weiteres Material wird während der Vorlesung bekannt gegeben.

Literatur:

 Ian Sommerville. Software Engineering (9. aktualisierte Auflage). Pearson, Deutschland, ISBN: 978-3-8632-6512-0

Modul Relationale Datenbanken

Kürzel wiB 34

Untertitel

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Ilja Petrov

Dozent(in): Prof. Dr. Ilja Petrov

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 3 Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Grundlagen der Informatik, Statistik, Diskrete

Mathematik, Fortgeschrittenen

Programmierung,

Algorithmen und Datenstrukturen

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Modulziele:

Das Ziel des Moduls ist es, den Studierenden eine allgemeine Einführung in das Themengebiet Datenbank- und Informationssystemen zu geben. Auch sollen die Studierenden in die Lage zu versetzt werden, mit Daten-Modellen und Konzepten umzugehen und Kenntnisse im Bereich der Entwicklung und Programmierung von Datenbankanwendungen zu sammeln

Angestrebte Lernergebnisse:

Kenntnisse:

- Verschiedenen Datenmodelle (Entity-Relationship- und das relationale Datenmodell) kennenlernen
- Konzepte zur objektorientierten Datenmodellierung benennen und erklären können
- Das Prinzip der Normalisierung beschreiben können
- Deklarative Abfragesprachen (SQL) und das Konzept der Transaktionen kennen
- Datenbank-Schnittstellen sowie Entwürfe von Datenbankanwendungen kennen

- Inhalte zu Datensicherungs- und Wiederherstellungsmaßnahmen von Datenbanksystemen kennen und beschreiben können
- Programmierung von Datenbanken mit JDBC

Nachdem Studierende die Veranstaltung besucht haben modellieren und entwerfen sie methodisch Datenbanken. Sie realisieren diese in exemplarischen Anwendungen. Bei allen Hauptphasen des typischen Lebenszyklus der Datenbankanwendungen werden Fertigkeiten durch Übungsaufgaben erworben und vertieft. Die Datenbank-Modellierung (erstellen von ER-Modellen), die Abbildung von ER-Diagrammen auf Relationen und die Erstellung von Datenbankschemata werden in der Praxis trainiert. Außerdem wird der Umgang mit SQL und deren Sprachteilen (DDL, DML, DCL) erlernt (SQL als Abfragesprache, Abfragetypen und Alternativen). Der Umgang mit Transaktionen und den Isolationsstufen des SQL Standards wird erlernt. Datenbankschnittstellen, wie JDBC, und Programmierung von Datenbankanwendungen schließt das Modul mit ein.

Kompetenzen:

Nach Abschluss des Moduls sind die Studierenden in der Lage methodisch Datenbanken zu modellieren, zu entwerfen und zu realisieren.

Inhalt:

- ANSI/SPARC, Entity-Relationship Modell, objektorientierte Konzepte und Modellierung
- Relationales Modell, Normalisierung, Semantik von Beziehungen, praktische Entwurfsregeln
- SQL (Structured Query Language)
- Transaktionskonzepte, Serialisierbarkeit, Zwei-Phasen-Sperrprotokoll, Datensicherungsund Wiederherstellungsmaßnahmen, Abfrageoptimierung, Programmierschnittstellen (JDBC).

Medienformen:

Seminaristischer Unterricht, Tafel, PPT-Vortrag, Demos, Übungsaufgaben im Praktikum, Skript mit PPT-Folien, Übungsaufgaben, SQL-Lernprogramm

- Ramez Elmasri, Shamkant Navathe. Grundlagen von Datenbanksystemen, Bachelorausgabe. 3. Auflage. Pearson Studium, 2009, ISBN: 978-3-8689-4012-1
- Alfons Kemper, André Eickler, Datenbanksysteme. Eine Einführung. 8., Auflage, Oldenbourg Verlag, 2011. ISBN: 978-3-486-59834-6
- Gottfried Vossen. Datenmodelle, Datenbanksprachen und Datenbankmanagementsysteme, Oldenbourg Verlag, 2008. ISBN 978-3-486-27574-2
- Härder, Rahm: "Datenbanksysteme. Konzepte und Techniken der Implementierung", Springer, 2. Auflage 2001
- C. J. Date: An introduction to database systems, 8th Ed., Addison-Wesley 2004
- Th. Connolly / C. Begg: Database Systems, 4th Ed, Addison Wesley 2004

Modul Datenbanken Praktikum

Kürzel wiB 35

Untertitel

Lehrveranstaltungen: Praktikum

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Ilja Petrov

Dozent(in): Prof. Dr. Ilja Petrov

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 3 Semester

Lehrform / SWS: Praktikum: 2 SWS

Arbeitsaufwand: Präsenzstudium: 30 Stunden

Eigenstudium: 120 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Statistik, Diskrete Mathematik, Grundlagen der

Informatik, Fortgeschrittenen Programmierung,

Algorithmen und Datenstrukturen

Studien-/Prüfungsleistungen/ Prüfungsform: Praktikum: Continuous Assessment

Modulziele:

Das Ziel des Moduls ist es, den Studierenden eine allgemeine praktische Übung in das Themengebiet der relationalen Datenbanksysteme zu geben. Auch sollen die Studierenden in die Lage zu versetzt werden, mit Daten-Modellen und Konzepten umzugehen und Kenntnisse im Bereich der Entwicklung und Programmierung von Datenbankanwendungen zu sammeln und diese im Rahmen der Übung praktisch anzuwenden.

Angestrebte Lernergebnisse

Kenntnisse:

- ER-Modellierung
- Abbildung von ER-Modellen auf das relationale Modell
- das Prinzip der Normalisierung beschreiben können
- SQL-Programmierung: Basis-Konstrukte und erweiterte SQL-Ansätze
- Transaktionen: Umsetzung, Isolationsstufen, Sperrmechanismen
- Datenbank Schnittstellen sowie Entwürfe von Datenbankanwendungen kennen

- Inhalte zu Datensicherungs- und Wiederherstellungsmaßnahmen von Datenbanksystemen kennen beschreiben können
- Programmierung von Datenbanken mit JDBC kennen lernen

Nachdem Studierende die Veranstaltung besucht haben modellieren und entwerfen sie methodisch Datenbanken. Sie realisieren diese in exemplarischen Anwendungen. Bei allen Hauptphasen des typischen Lebenszyklus der Datenbankanwendungen werden Fertigkeiten durch Übungsaufgaben erworben und vertieft. Die Datenbank-Modellierung (erstellen von ER-Modellen), die Abbildung von ER-Diagrammen auf Relationen und die Erstellung von Datenbankschemata werden in der Praxis trainiert. Außerdem wird der Umgang mit SQL und deren Sprachteilen (DDL, DML, DCL) erlernt (SQL als Abfragesprache, Abfragetypen und Alternativen). Der Umgang mit Transaktionen und den Isolationsstufen des SQL Standards wird erlernt. Datenbankschnittstellen, wie JDBC, und Programmierung von Datenbankanwendungen schließt das Modul mit ein.

Kompetenzen:

Nach Abschluss des Moduls sind die Studierenden in der Lage methodisch zu modellieren, Datenbank-Schemata zu entwerfen, Datenbanken zu realisieren und relationale Datenbanksysteme zu bedienen.

Inhalt:

- ANSI/SPARC, Entity-Relationship-Modell, objektorientierte Konzepte und Modellierung
- Relationales Modell, Normalisierung, Semantik von Beziehungen, praktische Entwurfsregeln
- SQL (Structured Query Language)
- Transaktionskonzepte, Serialisierbarkeit, Zwei-Phasen-Sperrprotokoll, Datensicherungsund Wiederherstellungsmaßnahmen, Abfrageoptimierung, Programmierschnittstellen (JDBC, Embedded SQL).

Medienformen:

Seminaristischer Unterricht, Tafel, PPT-Vortrag, Demos, Übungsaufgaben im Praktikum, Skript mit PPT-Folien, Übungsaufgaben, SQL-Lernprogramm

- Ramez Elmasri, Shamkant Navathe. Grundlagen von Datenbanksystemen, Bachelorausgabe. 3. Auflage. Pearson Studium, 2009, ISBN: 978-3-8689-4012-1
- Alfons Kemper, André Eickler, Datenbanksysteme. Eine Einführung. 8., Auflage, Oldenbourg Verlag, 2011. ISBN: 978-3-486-59834-6
- Gottfried Vossen. Datenmodelle, Datenbanksprachen und Datenbankmanagementsysteme, Oldenbourg Verlag, 2008. ISBN 978-3-486-27574-2
- Härder, Rahm: "Datenbanksysteme. Konzepte und Techniken der Implementierung", Springer, 2. Auflage 2001
- C. J. Date: An introduction to database systems, 8th Ed., Addison-Wesley 2004
- Th. Connolly / C. Begg: Database Systems, 4th Ed, Addison Wesley 2004

Modul Web-Programmierung

Kürzel

Untertitel

Lehrveranstaltungen: Vorlesung und Praktikum

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Martin Schmollinger

Dozent(in): Matthias Gutbrod

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 2 Semester

Lehrform / SWS: Vorlesung 2 SWS

Praktikum 2 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Grundlagen der Informatik, Fortgeschrittene

Programmierung

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Praktikum: Praktikum

Modulziele:

Das Ziel des Moduls ist es, den Studierenden eine Einführung in die Technologien, den Aufbau und die Programmierung von Webanwendungen zu geben. Die erworbenen Kompetenzen aus dem Modul "Grundlagen der Informatik" sind Grundvoraussetzung. Ein Großteil der Anwendungen, die in Unternehmen zum Einsatz kommen, sind Webanwendungen. Die im Modul vermittelten Kompetenzen sind elementar für das Verständnis der Funktionsweise dieser Anwendungen und damit für viele Berufe des Wirtschaftsinformatikers. Aspekte der Modulinhalte werden in den Modulen "Datenbanken", "Netzwerke", "Systeme und Sicherheit" und "Verteilte Systeme" vertieft.

Angestrebte Lernergebnisse

Kenntnisse:

- · Kenntnis der Architekturen von Webanwendungen.
- Zugrundeliegende Technologien benennen, sowie ihr Zusammenspiel beschreiben können.

- Grundlegendes Wissen über Programmiersprachen und Datenbanken zur Realisierung von Webanwendungen.
- Werkzeuge zur Entwicklung von Webanwendungen, sowie ihrer Absicherung verstehen und anwenden können.
- Gefahren für Webanwendungen benennen und geeignete Gegenmaßnahmen erläutern und einsetzen können.

Die Studierenden sind in der Lage eigene Webanwendungen auf Basistechnologien zu entwickeln. Sie verwenden dabei gängige Programmierplattformen, -werkzeuge und Systeme. Clientseitig liegt der Schwerpunkt dabei auf HTML/CSS und JavaScript. Die serverseitige Programmierung wird mit aktuellen Frameworks, wie PHP, Java oder Node.js (JavaScript) durchgeführt. Die Studierenden sind in der Lage Basistechnologien von Webanwendungen und unterschiedliche Ansätze der Webprogrammierung unter Einbindung einer Datenbank anzuwenden und diese dann auch abzusichern.

Kompetenzen:

Das Modul trägt zur technologischen Qualifikation der Studierenden bei und stärkt das Wissen über Programmiertechnologien und Softwarearchitekturen. Die Studierenden kennen nach Abschluss des Moduls die Architektur von Webanwendungen und sind in der Lage eine entsprechende Umgebung aufzusetzen. Sie kennen die Webtechnologien der verschiedenen Architekturschichten und können diese mit ausgewählten Werkzeugen zur Anwendungsentwicklung einsetzen. Des Weiteren sind sie bzgl. sicherheitsrelevanter Fragestellungen im Rahmen von Webanwendungen sensibilisiert.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Architekturen von Webanwendungen fundiert kommunizieren, präsentieren und diskutieren.	Klausur/Praktische Arbeit
LE2	Webtechnologien der verschiedenen Architekturschichten einsetzen können.	Klausur/Praktische Arbeit
LE3	Webanwendungen unter Einsatz aktueller Programmierwerkzeuge entwickeln können.	Klausur/Praktische Arbeit
LE4	Beurteilung von Webanwendungen hinsichtlich sicherheitsrelevanter Fragestellungen.	Klausur/Praktische Arbeit

Inhalt:

Das Modul vermittelt grundlegende Technologien von Webanwendungen. Inhalte der Veranstaltung sind die Basistechnologien und ausgewählte Varianten der client- und serverseitigen Programmierung von Webanwendungen (Z.B. JavaScript, Java, PHP). Des Weiteren werden ausgewählte Grundlagen der Absicherung von Webanwendungen vorgestellt

- · Architekturen von Webanwendungen.
- Basistechnologien HTTP, URI/URL, HTML/CSS.
- Serverseitige Programmierung (z.B. PHP, Java, Java Frameworks, Node.js o.a.).
- Clientseitige Programmierung mit JavaScript.
- Auszugsweise Weiterführende JavaScript-Frameworks (z.B. React, Angular o.a.)
- Grundlagen der Absicherung von Webanwendungen.

Medienformen:

Das Modul besteht aus einer Vorlesung in seminaristischem Stil mit Tafelanschrieb, Tageslichtprojektion und PC-Projektion, sowie einem Praktikum zur Einübung der Vorlesungsinhalte. Die praktischen Arbeiten werden mit Hilfe von aktuellen Software-Entwicklungswerkzeugen durchgeführt. Das Material zu den Veranstaltungen gibt es in elektronischer Form:

Folienskript zu den Vorlesungen, Übungsblätter mit Aufgaben.

- Ackermann, Philip (2016). JavaScript: Das umfassende Handbuch für Einsteiger, Fortgeschrittene und Profis. Rheinwerk Computing.
- Balzert, Heide (2017): Basiswissen Web-Programmierung. 2. Auflage, Springer Campus.
- Theis, Thomas (2016): Einstieg in PHP 7 und MySQL. Rheinwerk Computing.
- Zeigermann, Oliver (2015) JavaScript für Java-Entwickler, 3. Auflage, Entwickler.press

900 Stunden

Modul:	Berufspraktisches Semester
Kürzel:	wiB41
Untertitel:	
Lehrveranstaltungen:	
Studiensemester:	jedes Semester
Modulverantwortlicher:	Prof. Dr. Alexander Rossmann
Dozent(in):	Prof. Dr. Alexander Rossmann
Sprache:	Deutsch
Zuordnung zum Curriculum:	Pflichtfach, 4 Semester

Kreditpunkte: 30 ECTS

Voraussetzungen nach StuPro: Bestandene Zwischenprüfung

Empfohlene Voraussetzung: alle Module der Semester 1 - 3

Studien-/Prüfungsleistungen/ Prüfungsform: Berufspraktisches Semester: Praktikum,

Referat

Praxis

Eigenstudium:

Modulziele:

Lehrform / SWS:

Arbeitsaufwand:

Die Praxisphase des Studienganges Wirtschaftsinformatik dient der Vermittlung praktischer Kenntnisse und der Einübung von Schlüsselqualifikationen. In geeigneten Ausbildungsbetrieben sollen dazu praktische Erfahrungen betrieblicher Abläufe und Verfahrensweisen vermittelt werden, und zwar insbesondere unter dem Gesichtspunkt der Integration von betriebswirtschaftlichem Wissen und Informatiktechnologien zur Gestaltung und/oder zum Einsatz von betrieblichen Informations- und Kommunikationssystemen. Die Professoren des Studiengangs leiten die Praxisphase abgestimmt mit den Betreuern in den Ausbildungsbetrieben. Die Praxisphase kann auch im Ausland absolviert werden. Sie beträgt in der Regel 6 Monate.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden wissen um den Stellenwert der betrieblichen Praxis im Hinblick auf ihr theoretisches Studium. Sie sind sensibilisiert dafür, Anforderungen aus der Praxis in die theoretische Überlegung einzubeziehen. Denn die Differenzen zwischen Theorie und Praxis werden im betrieblichen Alltag besonders deutlich.

Die Studierenden kennen die Vorgehensweise, um eine adäquate Praxisstelle zu finden.

Die Studierenden haben die Praxis betrieblichen Vorgehens in ausgewählten Teilbereichen exemplarisch kennengelernt. Sie haben die Inhalte des bisherigen Studiums in der betrieblichen Praxis angewandt und mit den Anforderungen der betrieblichen Praxis in Bezug gesetzt, so dass sie im weiteren Studium die theoretischen Inhalte aus Sicht der Praxis kritisch zu beurteilen vermögen.

Sie haben im kommunikativen Umgang mit dem Betreuer und den Arbeitskollegen soziale Fähigkeiten ausgebildet sowie als verbindliche und kompetente Teammitglieder Teamaufgaben diskutiert, übernommen und mit anderen Teammitgliedern abgeglichen.

Sie sind befähigt, unter der Anleitung der Betreuer in sämtlichen Abschnitten der Praxisphase aufkommende Probleme weitgehend selbstständig und eigenverantwortlich zu lösen.

Kompetenzen:

Die Studierenden sind in der Lage, praktische Aufgabenstellungen angemessen mündlich und schriftlich zu präsentieren und die gefundenen Problemlösungen zu verteidigen. Sie weisen nach, dass sie die Inhalte der betrieblichen Praxis wissenschaftlich reflektieren können. Durch die Erfahrungen in der Praxisphase bilden die Studierenden Schlüssel-kompetenzen aus, hier insbesondere Sozialkompetenzen, Kommunikationskompetenzen und Teamkompetenzen.

Vorbereitungsveranstaltungen zu Form und Inhalt der betrieblichen Praxisphase:

Den Studierenden wird vermittelt, welcher Stellenwert der betrieblichen Praxis im Zusammenhang mit ihrem theoretischen Studium zukommt. Sie lernen die Vorgehensweisen zur Findung einer adäquaten Praxisstelle und die Bewerbungstechniken sowie die Maßstäbe der Personalbeurteilung kennen.

Mögliche Reaktionen auf Ausnahmesituationen während der Praxisphase werden besprochen. Die notwendige Form, der Aufbau und der Inhalt des Praxisberichtes werden erörtert und diskutiert. Den Studierenden wird ermöglicht, an den Präsentationen und Referaten von Absolventen der Praxisphase teilzunehmen und individuelle Fragen während der Suche nach einer Praxisstelle mit den betreuenden Professoren zu klären.

Praxisphase:

Die konkreten, den Studierenden übertragenen Aufgaben und das vermittelte Wissen können entsprechend der Unternehmenspraxis unterschiedlich sein. Wichtig ist, dass die Studierenden exemplarische Einsichten im Rahmen des Studienzieles gewinnen. Damit soll die Theorie/Praxis - Beziehung des Wirtschaftsinformatikstudiums unterstützt werden. Den Studierenden ist Gelegenheit zu geben, bei der Planung, Analyse, Konzeption, Entwicklung, dem Betrieb oder der Anwendung von Informationssystemen für einen der betriebswirtschaftlichen Funktionsbereiche wie Marketing, Rechnungswesen, Logistik, Produktion etc. in einem Projekt aktiv mitzuarbeiten. Die erfolgreiche Absolvierung der Praxisphase wird vom betreuenden Professor in Abstimmung mit dem Betreuer im Ausbildungsbetrieb und dem Leiter des Praktikantenamtes bestätigt.

Nachbereitungsseminar: Referat und Kolloquium

Nach der Praxisphase hat der Studierende in einem Referat sowohl den Praxisplatz bzw. das Praxisunternehmen vorzustellen und die inhaltliche Bearbeitung seiner Arbeits- und Projektbeiträge zu erläutern. Im Anschluss an das Referat werden ausgewählte Arbeitsgebiete und die dabei berührten Wissensgebiete im Rahmen eines Kolloquiums diskutiert.

- Vorbereitungsveranstaltungen zu Form und Inhalt der betrieblichen Praxisphase: Verweise auf Internet-Quellen.
- Praxisphase:
 Aufgabenorientierte, selbst zu recherchierende Wissensquellen.
- Nachbereitungsseminar: Referat und Kolloquium, Aufgabenorientierte, selbst zu recherchierende Wissensquellen.

Modul:	Corporate Finance
--------	-------------------

Kürzel: wiB51

Untertitel:

Lehrveranstaltungen: Vorlesung:

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Josef Schürle

Dozent(in): Prof. Dr. Josef Schürle

Sprache: Englisch

Zuordnung zum Curriculum: Pflichtfach, 5 Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium: 60 Stunden

Eigenstudium: 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: keine

Empfohlene Voraussetzung: Grundlagen der BWL, Betriebliches

Rechnungswesen

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Modulziele:

Ziel des Moduls ist es, den Studierenden eine Vertiefung in das Themengebiet der betrieblichen Finanzwirtschaft zu geben. Studierende sollen dadurch in die Lage versetzt werden, wirtschaftliche Sachverhalte aus der Finanzperspektive beurteilen und Investitionsentscheidungen aus Risiko-/Rendite-Gesichtspunkten treffen zu können. Darüber hinaus sollen Studierende die Grundprobleme der Finanzierung verstehen und spezifische Finanzierungsformen als Lösungsmöglichkeiten kennen.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden beherrschen die Grundlagen der Finanzmathematik und wenden diese auf Investitionsentscheidungen unter Sicherheit und unter Risiko an. Sie verstehen, wodurch eine betriebswirtschaftlich optimale Investitionsentscheidung charakterisiert ist. Die Studierenden kennen die Grundprobleme der Finanzierung und besitzen einen strukturierten Überblick über konkrete Finanzierungsformen.

Die Studierenden wenden Verfahren der betrieblichen Finanzwirtschaft auf konkrete Investitionsentscheidungen an ein leiten daraus betriebswirtschaftlich fundierte Entscheidungsvorschläge ab. Sie planen Liquiditätsentwicklungen mit vollständigen Finanzplänen und schließen Finanzierungslücken mit geeigneten Finanzierungsinstrumenten. Studierende beherrschen die Grundlagen der Programmiersprache R.

Kompetenzen:

Die Studierenden sind in der Lage, Investitionsalternativen strukturiert auf Basis finanzwirtschaftlicher Überlegungen zu beurteilen und daraus Entscheidungsvorschläge abzuleiten. Sie besitzen eine fundierte betriebswirtschaftliche Beurteilungskompetenz und lassen bei Bewertungsfragen auch Risikoaspekte einfließen. Zur Lösung von Finanzierungsproblemen sind die Studierenden in der Lage, die konkreten Rahmenbedingungen fundiert zu beurteilen und daraus aus einem breiten Finanzierungsspektrum eine passende Alternative auszuwählen.

Inhalt:

- Grundlagen der Finanzmathematik (Zins-, Renten- und Tilgungsrechnung) und Statistik
- Investitionsentscheidungen unter Sicherheit (Vollständiger Finanzplan, Kapitalwertmethode, Annuitätenmethode, Flache und Nicht-Flache Zinskurven)
- Investitionsentscheidungen unter Unsicherheit (Entscheidung unter Risiko, PortfolioTheorie, CAPM, Kapitalkosten)
- Corporate Finance-Lab mit R

Medienformen:

Vermittlung der theoretischen Grundlagen mittels Beamer-Präsentation, ergänzt durch Tafelanschriebe. Besprechung von Lösungen der Übungsaufgaben. Labor-Arbeit mit R.

- Copeland, Thomas E. / Weston, J. Fred / Shastri, Kuldeep (2005): Financial Theory and Corporate Policy. 4th Edition, Pearson.
- Berk, Jonathan / DeMarzo, Peter (2017): Corporate Finance. 4th Edition, Pearson.
- Berk, Jonathan / DeMarzo, Peter (2019): Grundlagen der Finanzwirtschaft. 4., aktualisierte Auflage, Pearson.
- Brealey, Richard A. / Myers, Stewart C. / Allen, Franklin (2020): Principles of Corporate Finance. 13th Edition. McGraw-Hill.
- Kruschwitz / Husmann (2012): Finanzierung und Investition. 7. Auflage, De Gruyter.
- Kruschwitz (2010): Finanzmathematik. 5. Auflage, De Gruyter.
- Kruschwitz (2014): Investitionsrechnung. 14. Auflage, De Gruyter.

Modul: Manager	ment und Controlling
Modul: Manager	ment und Controllir

Kürzel: wiB52

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dipl.-Kfm. Armin Roth

Dozent(in): Prof. Dipl.-Kfm. Armin Roth

Sprache: Englisch

Zuordnung zum Curriculum: Pflichtfach, 5 Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium: 60 Stunden

Eigenstudium: 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: keine

Empfohlene Voraussetzung: Grundlagen der BWL; Betriebliches

Rechnungswesen

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Referat, Hausarbeit

Modulziele:

Innerhalb des Moduls wird der Managementprozess ganzheitlich vorgestellt und diskutiert. Der "Lebenszyklus" eines Unternehmens von der Geschäftsidee bis zum Unternehmensverkauf wird aus der Perspektive des Managers beleuchtet. Ziel des Moduls ist es, den unternehmerischen Blickwinkel zu schärfen und die Aufgaben und Methoden von Controlling und Management zu vermitteln.

Angestrebte Lernergebnisse

Kenntnisse:

- Instrumente, Methoden und Prozesse der Unternehmensführung kennen lernen und benennen.
- Methoden zum strategischen Vorgehen in Management und Controlling benennen und einsetzen können
- Organisationsregeln kennen lernen
- Grundlagen der Unternehmenskulturen kennen
- Change-Management beschreiben können

- Personalmanagement kennen und anwenden können
- Basiswissen von Führungsmodellen, Führungsinformationssystemen und des Informationsmanagements beschreiben und erklären können
- Kennzahlensysteme und Berichterstattungssysteme der Performance-Messung im jeweiligen Kontext kennen und einsetzen können.

Die Studierenden sind in der Lage den kompletten "Lebenszyklus" von Unternehmen von der Geschäftsidee bis zum Unternehmensverkauf aus der Management- und Controllingperspektive zu beleuchten.

Anhand von Beispielen werden Kenntnisse über die Prozesse und Instrumente des strategischen und operativen Managements erworben. Es werden Führungsmodelle erstellt. Durch Einblicke in das Personalmanagement wird die Fähigkeit zu effizientem Personaleinsatz vermittelt.

Kompetenzen:

Die Studierenden schätzen die Aktionsparameter des Managements ein und diskutieren die unterschiedlichen Managementmethoden im Hinblick auf deren Eignung für den praktischen Einsatz. Sie sind in der Lage, diese zu reflektieren. Die Studierenden können sich zielorientiert und praxisnah mit dem Lehrgebiet aus der Perspektive des Managements auseinandersetzen.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Management- und Controllingprozesse verstehen und beschreiben können	Referat; Fallstudienarbeit, Hausarbeit
LE2	Aktionsparameter des Managements kennen und beurteilen können	Referat; Fallstudienarbeit, Hausarbeit
LE3	Unterschiedliche Managementmethoden und Controllinginstrumente beschreiben und anwenden können	Referat; Fallstudienarbeit Hausarbeit

Inhalt:

Anhand des Management-Prozesses (Planung, Organisation, Personaleinsatz, Führung und Kontrolle) werden die jeweiligen Prozessschritte betrachtet und die jeweils aktuellen Instrumente und Methoden vorgestellt. Im Einzelnen werden folgende Themenbereiche behandelt:

- Grundlagen der Unternehmensführung
- Strategisches Management & Controlling: Prozess und Instrumente
- Operatives Management & Controlling: Prozess und Instrumente
- Organisation
- Unternehmenskultur
- Change-Management
- Personalmanagement
- Berichterstattung/ Kennzahlensysteme der Performance-Messung
- Führungsinformationssysteme und Informationsmanagement
- Führung/Führungsmodelle

Medienformen:

Vorlesung, Kleingruppenarbeit, Fallstudien, Präsentation und schriftliche Ausarbeitung, Planspiel.

- Staehle, W.: Management, Vahlen, jeweils neueste Auflage.
- Steinmann, H.; Schreyögg, G.: Management, jeweils neueste Auflage
- Horváth, P.: Controlling, jeweils neueste Auflage
- Reichmann, T.: Controlling mit Kennzahlen und Managementberichten, jeweils neueste Auflage, München.
- Roth, A.; Behme, W. (1997): Organisation und Steuerung von dezentralen Unternehmenseinheiten, Wiesbaden: Gabler.
- Roth, A. (2014): Ganzheitliches Performance Management, München: Haufe.
- Roth, A. (2016): Einführung und Umsetzung von Industrie 4.0, Heidelberg/Berlin: Springer.
- Schweitzer, M.; Küpper H.-U.: Systeme der Kosten- und Erlösrechnung, jeweils neueste Auflage, München
- Weber, J.: Einführung in das Controlling, jeweils neueste Auflage, Stuttgart
- fallstudienbezogene Literatur

Modul Business Consulting

Kürzel wiB 53

Untertitel

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Dennis Schlegel

Dozent(in): Prof. Dr. Dennis Schlegel

Sprache: Englisch

Zuordnung zum Curriculum: Pflichtfach, 5. Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Kenntnisse der englischen Sprache auf dem

Niveau B2

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Modulziele:

Die Teilnehmer erwerben die notwendige Qualifikation, grundlegende Consulting-Methoden in betrieblichen Situationen anzuwenden. Die erworbene Qualifikation befähigt die Teilnehmer, im beruflichen Alltag einen Beitrag zur Lösung praktischer Problemstellungen aus betriebswirtschaftlicher Sicht sowie an der Schnittstelle von Fachbereich und IT zu leisten.

Angestrebte Lernergebnisse:

Kenntnisse:

Die Studierenden kennen grundlegende Consulting-Methoden und können diese in den betrieblichen Kontext einordnen. Sie kennen insbesondere die gängigen Methoden des Business Process Management sowie des Projektmanagement und können die Vor- und Nachteile verschiedener Konzepte beurteilen.

Die Studierenden sind in der Lage, Beratungsaufgaben von der methodischen Herangehensweise zu planen und durchzuführen. Sie können ein Projekt strukturieren, Datenerhebungen planen und Workshops vorbereiten.

Kompetenzen:

Die Teilnehmer können die erworbenen fachlichen Kenntnisse auf konkrete betriebliche Problemstellungen anwenden. Sie können eine Vermittlerrolle zwischen Fachbereich und IT einnehmen und strukturiert Lösungsansätze erarbeiten. Sie sind in der Lage, strukturierte Interviews zu führen und Workshops zu moderieren.

LE#	Lernergebnis (LE)	Geprüft durch
LE1	Kenntnis grundlegender Beratungsmethoden	Schriftliche Prüfung
LE2	Befähigung zur methodischen Planung und Durchführung von Beratungsaufgaben	Schriftliche Prüfung
LE3	Befähigung zur Anwendung der erlernten Methoden auf konkrete Problemstellungen	Schriftliche Prüfung

Inhalt:

- Introduction to business consulting (e.g. consulting methods and industry)
- Strategy and performance management (e.g. strategy mapping and KPIs)
- Business process management (e.g. business background, process discovery, process analysis, process redesign)
- Project management (e.g. project organization, work breakdown structure, project timeline)

Medienformen:

Vermittlung der theoretischen und methodischen Grundlagen durch interaktive Vorlesungseinheiten sowie gemeinsame Lektüre und Diskussion englischsprachiger Originalquellen (z.B. Zeitschriftenartikel). Selbstständige Bearbeitung von Übungen und Fallstudien in Gruppen- und Einzelarbeit innerhalb der Präsenzzeit.

- Andler: Tools for Project Management, Workshops and Consulting. Publicis
- Dumas, La Rosa, Mendling and Reijers: Fundamentals of Business Process Management.
 Springer International Publishing
- Kaplan and Norton: How Strategy Maps Frame an Organization's Objectives, in: Financial Executive, Mar/Apr2004, Vol. 20 Issue 2, pp.40-45.
- Kubr: Management Consulting. A Guide to the Profession. Geneva: International Labour Office
- Milani: Digital Business Analysis. Springer International Publishing

Modul Systeme und Sicherheit

Kürzel wiB 54

Untertitel

Lehrveranstaltungen: Vorlesung:

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Wolfgang Blochinger

Dozent(in): Prof. Dr. Wolfgang Blochinger

Sprache: Deutsch

Zuordnung zum Curriculum: Pflichtfach, 5 Semester

Lehrform / SWS: Vorlesung: 4 SWS

Arbeitsaufwand: Präsenzstudium: 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Klausur

Modulziele:

Dieses Modul soll Studierenden sowohl im Bereich der Systemkonzepte als auch im Bereich der IT-Sicherheit jeweils umfassende Kenntnisse vermitteln. Die integrierte Betrachtung dieser beiden Themen innerhalb eines Moduls trägt dem Umstand Rechnung, dass das Gebiet IT-Sicherheit einen ausgeprägten Querschnittscharakter besitzt: Sicherheitsaspekte von IT-Systemen betreffen aufgrund ihrer grundlegenden Funktionalitäten in besonderem Maße Betriebssysteme und Systemsoftware. Ein weitergehendes Verständnis von Schwachstellen und Sicherheitslücken erfordert zudem eine vertiefte Kenntnis der Funktionsweise von Systemen.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden sind mit den wesentlichen Systemkonzepten sowie deren Anwendung und Zusammenwirken bei Betriebssystemen und anderer komplexer Systemsoftware vertraut. Sie kennen die grundlegenden Schutzziele der IT-Sicherheit und verstehen die relevanten Konzepten zu deren technischen und organisatorischen Umsetzung. Sie kennen die wichtigsten

Bedrohungen gegen die Sicherheit von IT-Systemen und entsprechende Gegenmaßnahmen. Sie kennen aktuelle Beispiele für Sicherheitslücken und Schadprogramme.

Fertigkeiten:

Die Studierenden sind in der Lage die komplexen Abläufe bei IT-Systemen sowie das Zusammenwirken der Komponenten zu begreifen und damit bei Entwurfsentscheidungen einzubeziehen. Sie können bei Entwurfsentscheidungen zudem die Umsetzung der Schutzziele der IT-Sicherheit berücksichtigen. Sie können Bedrohungen der Sicherheit von IT-Systemen analysieren und daraus resultierende Risiken bestimmen sowie geeignete Gegenmaßnahmen entwickeln.

Kompetenzen:

Die Studierenden beherrschen das einschlägige Fachvokabular und sind in der Lage adäquat mit Fachvertretern sowie fachfremden Personen über Sicherheitsaspekte von IT-Systemen in Dialog zu treten. Sie sind befähigt spezifische Rollen (z.B. Data Security Officer, DSO) einschlägiger Unternehmensprozesse der IT-Sicherheit einzunehmen.

Inhalt:

- Aufgaben, Aufbau und grundlegende Funktionsweise von Systemsoftware
- Ablaufplanung, Prozesse und Threads
- Schutzmechanismen
- Speicherverwaltung, Virtueller Speicher
- Parallelität und Nebenläufigkeit
- Koordination und Synchronisation
- Virtualisierung auf System- und Prozessebene
- Grundlegende Begriffe und Konzepte
- Schutzziele der IT-Sicherheit
- Symmetrische und asymmetrische kryptografische Verfahren
- Schlüsselmanagement, Zertifikate
- Digitale Unterschrift
- Authentifizierung
- Sicherheitsmanagement
- Sicherheitslücken und Schadsoftware
- Aktuelle fortgeschrittene Anwendungsbeispiele

Medienformen:

Folien, Tafel, Demonstrationen und Übungen am Rechner

- Eckert, Claudia (2014): IT-Sicherheit. Konzepte Verfahren Protokolle. 9. Aufl. München: Oldenbourg.
- Ertel, Wolfgang (2012): Angewandte Kryptographie. 4. Aufl. München: Hanser.
- Mandl, Peter (2014): Grundkurs Betriebssysteme. 4. Aufl. Springer Vieweg.
- Tanenbaum, Andrew; Bos, Herbert (2014): Modern Operating Systems. 4. Aufl. Pearson.

Modul:	Entrepreneurship	
Kürzel:	wiB55	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Jürgen Münch	
Dozent(in):	Prof. Dr. Jürgen Münch	
Sprache:	Englisch	
Zuordnung zum Curriculum:	Pflichtfach, 5. Semester	
Lehrform / SWS:	Vorlesung	4 SWS
Arbeitsaufwand:	Präsenzstudium Eigenstudium	60 Stunden 90 Stunden
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung: Projektarbeit	

Modulziele

Das Modul "Entrepreneurship" vermittelt Ihnen wesentliche Prinzipien, Methoden und Erkenntnisse des Intra- und Entrepreneurships und befähigt Sie, bei der Gründung eines Startups sowie beim Agieren in innovativen Organisationen unternehmerisch zu handeln. Sie bekommen einen umfassenden Einblick in wichtige Themen für Entrepreneure wie die Entwicklung und Umsetzung einer Produktidee, den Aufbau einer agilen Organisation, die Führung von Teams, die Finanzierung von Startups und Innovationsprojekten, sowie die Entwicklung, Transformation und Validierung von Geschäftsmodellen. Hierbei stehen technologiegetriebene und software-basierte Innovationen und Geschäftsideen im Vordergrund. Anhand vieler Praxisbeispiele, Erkenntnisse und Tools Iernen Sie, technologische Möglichkeiten und Innovationspotentiale in tragfähige Geschäftsmodelle umzusetzen.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden kennen wichtige Grundlagen, Methoden und Werkzeuge des Innovationsmanagements und der Geschäftsmodellierung. Sie können Innovationspotentiale ermitteln und bewerten. Sie können erklären, mit welchen Schritten sich Innovationspotentiale in nachhaltige, skalierbare Geschäftsmodelle umsetzen lassen. Die Studierenden kennen die Besonderheiten von Intrapreneurship bzw. Corporate Entrepreneurship in Organisationen. Die Studierenden können erklären, wie man agile Methoden nutzt, um erfolgreich mit Unsicherheiten und Risiken umzugehen.

Fertigkeiten:

Die Studierenden sind in der Lage, die erworbenen Kenntnisse auf konkrete Fälle und Fragestellungen anzuwenden. Sie entwickeln Geschäftsmodelle aus Ideen, nehmen Abschätzungen der Wirtschaftlichkeit von Geschäftsmodellen vor, validieren einzelne Bestandteile von Geschäftsmodellen und setzen die mit Geschäftsmodellen verbundenen Lösungen prototypisch um. Sie definieren Strategien und Roadmaps für die Entwicklung von Produkten und Dienstleistungen. Die Studierenden sind in der Lage, Innovations- und Gründungsprozesse selbständig zu planen. Nach Abschluss des Moduls sind die Studierenden sensibilisiert für unternehmerisches Denken und die besonderen Herausforderungen und Randbedingungen von Innovationsprojekten.

Kompetenzen:

Die Studierenden ordnen erworbenes Wissen fachgerecht ein, können Zusammenhänge erklären, und können das erlernte Wissen auf eigene oder vorgegebene Innovationsideen in Startups oder etablierten Unternehmen anwenden. Die Studierenden können eigene Innovationsideen und deren Umsetzung in Form von Pitches (d.h., prägnanten Kurzpräsentationen vor potentiellen Investoren) präsentieren.

Inhalt:

- Techniken, Methoden, Werkzeuge und organisatorische Aspekte des Intra- und Entrepreneurships
- Innovations- und Gründungsprozesse
- Lean Startup und Running Lean
- Problem Solution Fit
- Geschäftsideengenerierung
- Geschäftsmodellierung
- Customer Development, Problemvalidierung und Interviews
- Traction Modeling, Finanzplanung
- Product Market Fit
- Identifikation wichtiger Annahmen und Hypothesen
- Geschäftsmodellvalidation und Experimentieren
- Minimum Viable Products
- Ideation und Prototyping
- Pricing
- Branding
- Strategien f
 ür Entrepreneurs und Innovatoren

- Storytelling und Pitching
- Skalierung und Growth Hacking
- Lean Analytics und Innovationsmetriken
- Kohortenanalyse
- Expansionsstrategien
- Design Sprints
- Finanzierung
- Modelle von Venture-Capital-Unternehmen
- Gründungsförderung
- Kapitalbeschaffung
- Unternehmensführung und -organisation (z.B. mit OKR, Lean Enterprise) ☐ Fallstudien aus der Praxis

Medienformen:

- Vorlesung mit begleitenden Übungen
- Bearbeitung von Fallstudien und Aufgaben in Teams
- Vorlesungsmaterial in elektronischer Form

- Bland, D. et al. (2019): Testing Business Ideas: A Field Guide for Rapid Experimentation,
 Wiley
- Constable, G. (2014): Talking to Humans
- Cagan, M. (2018): INSPIRED: How to Create Tech Products Customers Love, 2. Auflage, Wiley
- Faltin, G. (2011): Kopf schlägt Kapital. Die ganz andere Art, ein Unternehmen zu gründen. Von der Lust, ein Entrepreneur zu sein, 1. Auflage, Hanser
- Maurya, A. (2012): Running Lean: Iterate from Plan A to a Plan That Works. 2. Auflage, O'Reilly
- Maurya, A. (2016): Scaling Lean: Mastering the Key Metrics for Startup Growth. Portfolio.
- Osterwalder, A., & Pigneur, Y. (2010): Business model canvas. John Wiley & Sons
- Ries, E. (2011): The lean startup: How today's entrepreneurs use continuous innovation to create radically successful businesses. Crown Books
- Sivers, Derek (2015): Anything You Want: 40 Lessons for a New Kind of Entrepreneur, Penguin
- Viki, T. und Toma, D. (2017): The Corporate Startup: How Established Companies Can Develop Successful Innovation Ecosystems. Vakmedianet Management bv.

Modul Verteilte Systeme

Kürzel wiB56

Untertitel Grundlagen für die Programmierung von

Unternehmensanwendungen.

Lehrveranstaltungen: Vorlesung und Übung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Martin Schmollinger

Dozent(in): Prof. Dr. Martin Schmollinger

Sprache: Englisch

Zuordnung zum Curriculum: Pflichtfach, 5. Semester

Lehrform / SWS: Vorlesung: 2 SWS, Übung: 2 SWS

Arbeitsaufwand: Präsenzstudium: 60 Stunden

Eigenstudium: 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Informatikmodule der vorliegenden Semester

Studien-/Prüfungsleistungen/ Prüfungsform: Klausur und erfolgreiche Teilnahme an den

Übungen

Modulziele:

Moderne Unternehmensanwendungen werden heute als Verteilte Systeme entwickelt und in Cloud-Umgebungen betrieben. Im Rahmen des Moduls sollen grundlegende Kenntnisse, Fertigkeiten und Kompetenzen vermittelt und erworben werden, die den Einstieg in diese Welt ermöglichen.

Angestrebte Lernergebnisse:

Kenntnisse:

Die Studierenden entwickeln Verständnis für das Zusammenwirken von Anwendungen und Programmteilen in verteilten Umgebungen, insbesondere auch die dabei auftretenden neuen Problemstellungen relativ zu nicht verteilten Anwendungen ("Fallacies of distributed computing"). Programmier- und Implementierungsansätze werden kennengelernt.

Die Studierenden werden in die Lage versetzt, Anforderungen und Merkmale verteilter Systeme/Anwendungen (bestehende oder neu zu entwickelnde) einzuschätzen und entsprechende Umsetzungstechnologien zur Anpassung oder Neuentwicklung auswählen und einsetzen zu können. Sie erlernen dabei insbesondere wichtige (Programmier-) Ansätze zur Umsetzung von verteilten Anwendungen und verfestigen dies durch Übungen. Dabei kommen aktuelle Programmiersprachen, -frameworks und -werkzeuge zum Einsatz. Aktuell Java, Spring Boot, Gradle und Visual Studio Code, sowie Docker als Grundlage für den Betrieb in der Cloud.

Kompetenzen:

Übergeordnet steht das Ziel, komplexe Anwendungssysteme in verteilten Umgebungen sowohl zu verstehen als auch entwerfen, entwickeln und bereitstellen zu können. Dazu gehört insbesondere die Erlangung von Realisierungs- und Methoden-Kompetenzen. Diese Kompetenzen werden durch eine Klausur und durch bearbeitete Übungsaufgaben im Praktikum abgeprüft.

Inhalt:

- Definitionen und Terminologie
- Prozesse und Threads
 - Threads in nicht verteilten Systemen
 - Thread-Implementierungen
 - Threads in Verteilten Systemen
- Java Threads
- Architekturstile
- Spring Boot
- Microservices
- Kommunikationsstile
 - Von der In-Prozess- zur Inter-Prozess-Kommunikation
 - Kollaborationsstile und ihre Implementierungsoptionen
- Grundlagen für den Betrieb verteilter Systeme in der Cloud

Medienformen:

Vorlesung:

Vorlesung im seminaristischen Stil mit Folienskript zu den Inhalten des Moduls.

Praktikum/Übungen:

- Entwickeln von verteilten Anwendungslösungen,
- Lösen von Programmieraufgaben.

Bereitstellung von Lernvideos zu Programmierwerkzeugen, sowie eines umfangreichen Übungsbuchs. Lösungen zu den Übungen werden besprochen und online zur Verfügung gestellt.

- van Steen, Tanenbaum: Distributed Systems, Published by Martin van Steen (previously published by Prentice Hall) (2017)
- Newman, Building Microservices, O'Reilly (2015/2021)
- Heckler, Spring Boot Up & Running, O'Reilly (2021)
- Friesen, Java Threads and the Concurrency Utilities, APress (2015)
- Gonzales, Mastering Concurrency Programming with Java 9, Packt Publishing (2017)
- Bullington-McGuire et al., Docker for Developers, Packt (2020)

Modul:	Unternehmensmodellierung
Kürzel:	wiB71

Untertitel: Business modeling

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Prof. Dr. Philipp Zeise

Dozent(in): Prof. Dr. Philipp Zeise

Sprache: Englisch

Zuordnung zum Curriculum: Pflichtfach, 7. Semester

Lehrform / SWS: Vorlesung / 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Vorlesung: Projektarbeit, Referat

Modulziele:

Vor dem Hintergrund aktueller Herausforderungen, welche Unternehmen bei der Einführung und Nutzung von ERP-Systemen bewältigen müssen, wird den Studierenden die zentrale Bedeutung der Unternehmensmodellierung, insbesondere der Geschäftsprozessmodellierung, verdeutlicht. Zudem erlernen die Studierenden anhand eines Beispielunternehmens Modellierungsmethoden und den Umgang mit Standardsoftware zur Erstellung von Unternehmensmodellen. Hierzu nehmen die Studierenden im Rahmen eines Modellierungsprojektes die Rolle eines Unternehmensberaters ein.

Den Studierenden wird darüber hinaus die grundlegende Aufbauorganisation eines ERP-Systems (SAP S/4HANA®) vermittelt. Für das modellierte Beispielunternehmen implementieren die Studierenden ein solches System in den Bereichen Verkauf und Versand, Materialwirtschaft sowie Produktionsplanung und -steuerung. Hierzu nehmen die Studierenden im Rahmen eines Implementierungsprojektes erneut die Rolle eines Unternehmensberaters ein. Weiterhin erlernen die Studierenden die Ausführung der modellierten Geschäftsprozesse auf Systemebene (SAP S/4HANA®).

Angestrebte Lernergebnisse:

Kenntnisse:

- Die Studierenden verstehen, welche Merkmale einen Geschäftsprozess kennzeichnen.
- Die Studierenden kennen Modellierungstechniken und -werkzeuge zum Erstellen von Geschäftsprozessmodellen.
- Die Studierenden verstehen den Ablauf einer Geschäftsprozessanalyse.
- Die Studierenden lernen relevante Aspekte von ERP-Systemen kennen und im beruflichen Umfeld einzuordnen.
- Die Studierenden verstehen das Zusammenspiel verschiedener SAP Module im Gesamtprozess.
- Die Studierenden kennen den Verwendungszweck und das Zusammenspiel von Organisationsstruktur und Stammdaten im SAP S/4HANA®.
- Die Studierenden erlernen die relevanten Transaktionen zur Ausführung von Geschäftsprozessen im SAP S/4HANA®.

Fertigkeiten:

- Die Studierenden sind in der Lage, komplexe Geschäftsprozesse mittels BPMN 2.0 zu modellieren.
- Die Studierenden können modellierte Geschäftsprozesse analysieren und optimieren.
- Die Studierenden sind in der Lage, eine umfangreiche Organisationsstruktur und Stammdaten im SAP S/4HANA® aufzubauen.
- Die Studierenden können relevante Testdokumente erstellen und eine systematische Analyse von Fehlersituationen durchführen.
- Die Studierenden sind in der Lage, Geschäftsprozesse im SAP S/4HANA® auszuführen.

Kompetenzen:

- Die Studierenden verstehen, dass im Rahmen der Geschäftsprozessmodellierung viele Unternehmensbereiche konstruktiv zusammenarbeiten müssen.
- Die Studierenden sind in der Lage ein ERP-System zur Kontrolle und Steuerung eines komplexen Geschäftsprozesses zu implementieren und verwenden.
- Die Studierenden sind in der Lage, selbstorganisiert ein Projekt mit dem Ziel der Geschäftsprozessmodellierung und ERP-Systemimplementierung zu konzipieren. Sie verteilen hierzu eigenständig klar abgegrenzte Aufgaben.

Inhalt:

- Zielsetzung und Ausrichtung der Geschäftsprozessmodellierung
- · Methodik der Geschäftsprozessmodellierung
- Ansätze und Werkzeuge der Geschäftsprozessmodellierung
- Modellierung von Anwendungsfällen (Order-to-Cash-Prozess)
- Systemarchitektur SAP S/4HANA®
- Implementierung SAP S/4HANA®
- Ausführung von Geschäftsprozessen im SAP S/4HANA®

Medienformen:

Das Modul besteht sowohl aus einer Vorlesung mit integrierten Übungen als auch einer umfassenden Projektarbeit, welche mit Methoden und Medien des "Blended Learning" umgesetzt werden.

Die Studierenden erhalten Materialien zur Vermittlung von Grundlagenwissen, unterschiedliche Aufgabenstellungen und Daten zur Fallstudie in elektronischer Form. Inhalte werden sowohl synchron über Präsenzveranstaltungen als auch asynchron über Teletutoring vermittelt. Darüber hinaus arbeiten sich die Studierenden in kleinen Gruppen eigenständig in Themengebiete ein, die sie den anderen Studierenden präsentieren.

Nach dem Erwerb des notwendigen Grundlagenwissens wird ein SAP S/4HANA®-Implementierungsprojekt durch eine von den Studierenden selbständig organisierte Projektarbeit in Gruppen von 3 - 4 Personen simuliert.

- Thomas Allweyer: BPMN 2.0 Business Process Management, Books on Demand, Norderstedt, 2015
- Oliver Baltes, Heribert Lakomy, Petra Spieß, Elke Wörmann-Wiese: SAP© Materialwirtschaft: Das Praxishandbuch, Rheinwerk Verlag, Bonn 2017
- Jawad Akhtar: Production Planning and Control with SAP© ERP, Rheinwerk Publishing, Boston 2018
- Tobias Then: Vertrieb mit SAP©: Der Grundkurs für Anwender, Rheinwerk Verlag, Bonn 2017

Modul:	Wahlfach:
	Blockchain Technologie und
	A

Anwendungen

Kürzel:

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Semester

Modulverantwortlicher: Studiendekan WIB

Dozent(in): Herr Wickert

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlfach

Lehrform / SWS: Vorlesung / 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Continuous Assessment, Referat

Max. Teilnehmerzahl 20

Modulziele:

Der Kurs vermittelt den Studierenden einen breiten Überblick über Grundlagen, Funktionsweise, Einsatzzweck, Varianten und Attribute der Blockchain (BC) als Anwendungsfall der Distributed Ledger Technology (DLT). Neben der vorbereitenden Theorie wird anhand der Ethereum-BC ein möglicher Anwendungsfall praktisch betrachtet und erprobt. Den Studierenden werden im Zuge der Vorlesung insbesondere die wichtigsten Anwendungsfälle und Potentiale für Unternehmen in verschiedenen Branchen aufgezeigt. Vor diesem Hintergrund verinnerlichen die Studierenden auch informationstechnologische Bestandteile der BC wie Kryptografie in Form von Hashes, Merkle Tree und digitale Signaturen. Die Studierenden erfahren, welche Vorteile und Herausforderungen der Einsatz und Nutzen der BC-Technologie für Privatanwender und Unternehmen bedeutet und können im Anschluss selbstständig hinterfragen, wann der Einsatz von DLT sinnvoll sein kann. Hierzu gehört auch das vollumfängliche Durchdringen des Konzepts der Dezentralisierung und die praktische Auseinandersetzung mit dem Aufbau und der Erstellung einer BC im Ethereum Testnetzwerk.

Angestrebte Lernergebnisse:

Kenntnisse:

- Die Studierenden kennen die Grundprinzipien und Eigenschaften der BC und der Dezentralisierung
- Die Studierenden kennen die einzelnen informationstechnologischen Bestandteile der Blockchain-Technologie, wie Kryptographie, Konsensalgorithmen sowie Smart Contracts und können diese beschreiben
- Die Studierenden verstehen Herausforderungen bei der Erstellung von Non Fungible Tokens und den entsprechenden Oracle-Ansätzen, um externe Systeme mit der BC zu verschmelzen
- Die Studierenden erhalten Hintergrundwissen, u.a. zu BC-Wallets, Metaverse, Decentralized Finances (DeFi) und Decentralized Exchanges (Dex) sowie zu Interoperabilität
- Den Studierenden sind die rechtlichen, regulatorischen und ethischen Herausforderungen bekannt und sie sind in der Lage Fragestellungen dazu zu erarbeiten und zu diskutieren

Fertigkeiten:

- Die Studierenden k\u00f6nnen Vorteile und Herausforderungen des Einsatzes der BC-Technologie selbstst\u00e4ndig erl\u00e4utern und f\u00fcr unterschiedliche Anwendungszwecke bewerten
- Die Studierenden k\u00f6nnen die aus den Eigenschaften der Blockchain resultierenden Vorteile und Herausforderungen im Vergleich zu bekannten Datenstrukturen erl\u00e4utern und abgrenzen
- Die Studierenden sind in der Lage verschiedene BC-Anwendungsfälle aufgrund ihres technischen Hintergrundes zu analysieren und zu bewerten
- Die Studierenden können verschiedene Konzepte wie die Tokenisierung und deren Auswirkungen auf das Asset Management selbstständig bewerten
- Die Studierenden sind in der Lage mit Hilfe des Ethereum-Testnets und der BC-Programmiersprache Solidity einen möglichen Aufbau einer BC im Detail zu betrachten, sowie einen eigenen Anwendungsfall umzusetzen
- Die Studierenden sind in der Lage BC-Anwendungsfälle in verschiedenen Branchen zu identifizieren und deren Potential zu analysieren
- Die Studierenden können anhand subjektiver Prioritäten verschiedene BC-Netzwerke analysieren, abgrenzen und bewerten

Kompetenzen:

- Die Studierenden können das vermittelte Wissen nutzen, um Zusammenhänge fachgerecht zu erläutern und auf neue Problemstellungen in Unternehmen anwenden
- Die Studierenden sind in der Lage wirtschaftliche Chancen und Risiken für den Einsatz in Unternehmen eigenständig zu bewerten und Anwendungsfälle in verschiedenen Branchen zu identifizieren und zu analysieren
- Die Studierenden sind dazu befähigt sich in neue Teilbereiche und Aspekte der Blockchain-Technologie und deren möglichen Anwendungsfällen einzuarbeiten und dabei rechtliche, regulatorische und ethische Herausforderungen zu diskutieren
- Die Studierenden k\u00f6nnen ihre Erfahrungen mit Solidity auch auf andere Programmiersprachen zum Aufbau einer BC \u00fcbertragen und auch mit Hilfe anderer Frameworks umsetzen

• Sie sind dazu befähigt Stakeholdern die Potentiale, die Relevanz und die Folgen von unterschiedlichen, möglichen BC-Anwendungsfällen für das Unternehmen und Projekte zu erläutern und differenziert zu präsentieren

Inhalt:

- Einführung in die BC-Technologie und die historische Entwicklung der BC-Bestandteile
- Eigenschaften und Grundprinzipien einer BC
- Unterschiedliche BC-Anwendungen und Use Cases, wie z.B. Finanzwesen und Kryptowährungen, Versorgungskettenmanagement und Logistik, Gesundheitswesen und Patientendatenmanagement, Identitätsverwaltung und Authentifizierung, etc.
- Rechtliche und Ethische Aspekte der BC, wie Datenschutz und Datensicherheit, Regulierung von Kryptowährungen, Smart Contracts und Vertragsrecht sowie Ethik und Nachhaltigkeit in der Blockchain-Nutzung im Allgemeinen
- Praktische Umsetzung und Anwendungsprojekte durch:
 - Implementierung von Smart Contracts auf ausgewählten Plattformen
 - Hands-on-Übungen zur Nutzung von Blockchain-Tools
 - Gruppenprojekte zur Entwicklung von Blockchain-Anwendungsfällen

Medienformen:

Vorlesung, Gruppenarbeiten und Diskussionen, Übungen

- Nakamoto, Satoshi, 2008: Bitcoin: A Peer-to-Peer Electronic Cash System.
- Rosenbaum, Kalle, 2019: Grokking Bitcoin. Manning.
- Antonopoulos, Andreas M., 2017. Mastering Bitcoin: Programing the Open Blockchain. O'Reilly.
- · Weitere Literatur wird in der Vorlesung bekannt gegeben

Modulziele

Modul:	Wahlfach: BPM: Optimierung und Automatisierung von Geschäftsprozessen	
Kürzel:		
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Wintersemester	
Modulverantwortlicher:	Studiendekan WIB	
Dozent(in):	Dr. Felix Schiele	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	WI-Wahlfach	
Lehrform / SWS:	Vorlesung / 4 SWS	
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden	
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:		
Studien-/Prüfungsleistungen/ Prüfungsform:	Projekt/Referat	
Max. Teilnehmerzahl	12	

Das Wahlfach vermittelt den Studierenden fundierte Kenntnisse und praxisnahe Fertigkeiten zur Modellierung, Analyse und Optimierung von Geschäftsprozessen. Dabei werden sowohl klassische Modellierungstechniken als auch moderne Technologien wie Process Mining und Robotic Process Automation (RPA) behandelt. Ziel ist es, den Studierenden zu ermöglichen, Prozesse effizient zu gestalten, bestehende Prozesse zu optimieren und Automatisierungspotenziale zu erkennen.

Durch die praxisnahe Auseinandersetzung mit Modellierungsstandards und Analysemethoden wird den Studierenden vermittelt, wie Prozesse in verschiedenen Unternehmensbereichen erfasst, analysiert und optimiert werden können. Die Studierenden sollen lernen, Prozesse nicht nur technisch, sondern auch organisatorisch und ökonomisch zu verstehen und zu verbessern.

Angestrebte Lernergebnisse

Kenntnisse

Die Studierenden kennen die Grundlagen und Prinzipien des Business Process Managements (BPM) und die verschiedenen Perspektiven der Prozessmodellierung. Die Studierenden verstehen gängige Modellierungsstandards wie BPMN und EPK sowie deren Einsatzmöglichkeiten. Sie kennen Analysemethoden zur Identifikation von Schwachstellen in bestehenden Prozessen und können Optimierungspotenziale aufzeigen. Die Studierenden verstehen moderne Technologien und Ansätze wie Process Mining, Robotic Process Automation (RPA) und Workflow-Management-Systeme.

Fertigkeiten

Die Studierenden sind in der Lage, Geschäftsprozesse methodisch zu modellieren und dabei geeignete Modellierungstechniken einzusetzen. Die Studierenden können Prozessautomatisierungspotenziale identifizieren und Prozessoptimierungen anhand von Fallstudien und Praxisbeispielen planen und durchführen.

Kompetenzen

Die Studierenden können das erworbene Wissen nutzen, um Geschäftsprozesse zu analysieren, Schwachstellen zu identifizieren und nachhaltige Optimierungsvorschläge zu entwickeln. Sie sind in der Lage, technische und organisatorische Herausforderungen zu verstehen und Anpassungen im Prozessdesign vorzunehmen. Die Studierenden sind in der Lage, ethische und regulatorische Fragestellungen im Kontext der Prozessautomatisierung und -optimierung zu identifizieren und zu reflektieren.

Inhalt

- Grundlagen des Business Process Managements: Einführung in BPM, Ziele und Nutzen für Unternehmen.
- Modellierungsmethoden: Einführung in BPMN und weiterer Methoden zur Modellierung von Organisation, Daten und Funktionen im Geschäftsprozesskontext.
- Prozessanalyse und -optimierung: Methoden zur Prozessanalyse, Schwachstellenidentifikation, Prozesskennzahlen und Benchmarking.
- Process Mining und Data-Driven Process Management: Konzepte des Process Mining, Einsatz von Process Mining zur Erkennung und Analyse realer Prozessdaten.
- Automatisierung und Digitalisierung von Prozessen: Technologische Anforderungen und Einsatz von Workflow-Management-Systemen und Robotic Process Automation (RPA).
- Ethische und regulatorische Aspekte: Datenschutz, ethische Fragestellungen und regulatorische Anforderungen in der Prozessautomatisierung.

Literatur:

• Becker, J., Kugeler, M., & Rosemann, M. (Hrsg.). (2012). Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung. Springer.

- Langmann, C., Turi, D. (2021) Robotic Process Automation (RPA) Digitalisierung und Automatisierung von Prozessen: Voraussetzungen, Funktionsweise und Implementierung am Beispiel des Controllings und Rechnungswesens. Springer Gabler.
- Van der Aalst, W. (2016). Process Mining: Data Science in Action. Springer.
- Schmelzer, H. J., Sesselmann, W. (2020). Geschäftsprozessmanagement in der Praxis Kunden zufrieden stellen Produktivität steigern Wert erhöhen (9th ed.). München: Hanser, Carl.
- Weitere aktuelle Literatur wird in der Veranstaltung bekannt gegeben.

Modul:	Wahlfach: Deep Learning mit Python	
Kürzel:	, 5	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Studiendekan WIB	
Dozent(in):	Herr Prof. Höll	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Wahlfach	
Lehrform / SWS:	Vorlesung / 4 SWS	
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden	
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Projektarbeit	
Max. Teilnehmerzahl	15	

Modulziele:

Im praktischen Arbeitsalltag spielt der Einsatz künstlicher Intelligenz eine immer zentralere Rolle. Ob bei der Erkennung des Verkehrs für das autonome Fahren oder der Zeitreihenvorhersage in Wirtschaftsmodellen: Der Einsatz von KI-Modellen ist in vielen Bereichen ein zentraler Baustein geworden. Hierfür müssen KI-Technologien und Tools evaluiert, deren Einsatz abgewogen und gegebenenfalls realisiert werden. Dabei sind vertiefte Kenntnisse über die Funktionsweisen des Maschinellen Lernens und die Fähigkeit, konkrete Neuronale Netze zu implementieren, notwendig. Oft stehen hier Methoden des Deep Learning im Vordergrund.

Python ist zur zentralen Programmiersprache im Maschinellen Lernen geworden. Dieser Kurs fokussiert das Teilgebiet des Deep Learning und vermittelt Kenntnisse über die Umsetzung in Python, die eine direkte Anwendung in Industrie und Wirtschaft ermöglichen. Hierbei wird außerdem ein tiefes Verständnis über das Deep Learning sowie eine Übersicht anderer Teilgebiete des Maschinellen Lernens entwickelt, welche dazu befähigt, im Arbeitsalltag fundierte Entscheidungen über den Einsatz von KI-Technologien zu treffen und diese umzusetzen.

Angestrebte Lernergebnisse:

Kenntnisse:

Es werden zunächst Basiskenntnisse und Grundbegriffe aus dem maschinellen Lernen vermittelt sowie eine Einordnung des Deep Learning vorgenommen. Anhand konkreter Problemstellungen können die Studierenden eine geeignete Architektur eines neuronalen Netzes erstellen und dieses in Python umsetzen. Sie können ein Neuronales Netz trainieren und auswerten. Den Studierenden sind mit den zentralen Problematiken in Bezug auf die Vorbereitung der Daten, dem Design des neuronalen Netzes und der Wahl der Trainingsparameter vertraut. Auftauchende Schwierigkeiten, wie beispielsweise verschwindende Gradienten, zu langsames Lernen oder Overfitting, können von den Studierenden erkannt, analysiert und behoben werden. Für Programmiertätigkeiten können die Studierenden aktuelle KI-Tools zur Codegenerierung einsetzen.

Fertigkeiten:

Die Studierenden erwerben praktische Fähigkeiten zur Nutzung des Deep Learning in Python. Die Studierenden können klassische Aufgabenstellungen aus dem Deep Learning analysieren und geeignete KI-Modelle in Python erstellen. Die Studierenden haben praktische Erfahrung in den zugehörigen Schritten von Datenaufbereitung bis zur Evaluation der trainierten Modelle. Hierbei steht die konkrete Arbeit mit Python im Bereich neuronaler Netze im Vordergrund.

Inhalt:

- Praktische Grundlagen in Python
- Grundlagen des Deep Learning:
 - Neuronale Netze
 - Lernalgorithmen
 - Aktivierungsfunktion, Lossfunktion
 - Lern-Rate und andere Trainingsparameter
- · Praktische Umsetzung:
 - Vorbereitung der Daten
 - Wahl der richtigen Architektur
 - Aufbau eines neuronalen Netzes
 - Durchführen des Trainings
 - Evaluierung der Ergebnisse
- Projektarbeiten anhand von konkreten Problemstellungen mit z.B. einer der folgenden Methoden:
 - Multi-Layer Perceptron
 - Klassifikation
 - Bilderkennung mit CNNs
 - Zeitreihenvorhersage mit LSTMs

Medienformen:

Die Veranstaltung beginnt mit einer Einführung und geht dann in die praktische Phase über: Wir starten mit einer Einführung in Python sowie in die Grundlagen des Deep Learning. Hierfür werden insbesondere Fachbücher, aktuelle Beiträge in Fachzeitschriften, Skripte und Videos eingesetzt.

Die Studierenden werden in kleine Gruppen aufgeteilt und bearbeiten jeweils ein aktuelles Problem mit einer bestimmten Methode des maschinellen Lernens. Dieses Problem wird dann konkret in Python umgesetzt. Hierfür werden aktuelle KI-Tools zur Codegenerierung eingesetzt.

Die Studierenden stellen ihre Lösungsstrategie sowie die konkrete Implementierung in Python in einem Referat vor.

Modul:	Wahlfach: E-Commerce und E-Business
Kürzel:	2 Commerce and 2 Daomese
Untertitel:	
Lehrveranstaltungen:	Vorlesung
Studiensemester:	Jedes Semester
Modulverantwortlicher:	Studiendekan WIB
Dozent(in):	Herr Hartmann
Sprache:	Deutsch
Zuordnung zum Curriculum:	Wahlfach
Lehrform / SWS:	Vorlesung / 4 SWS
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden
Kreditpunkte:	5 ECTS
Voraussetzungen nach StuPro:	Keine
Empfohlene Voraussetzung:	keine
Studien-/Prüfungsleistungen/ Prüfungsform:	Referat, Hausarbeit
Max. Teilnehmerzahl	40
Modulziele:	

Das Wahlfach eCommerce und eBusiness komplettiert die bisher gesammelte wissensbasierte Wertschöpfungskette in dem es diverse Themen wieder aufgreift und im Kontext des Themas integriert. Die Studierenden lernen die Plattformen, die Transaktionsmodelle und die damit einhergehenden Architekturansätze von integrierten eCommerce Systemen kennen. Darüber hinaus bewerten sie die Risiken und lernen diese zu klassifizieren und wenden Strategien und Methoden an, ihnen zu begegnen. Eingebettet werden die Inhalte in konkrete Übungen in denen ebenfalls verschiedene Vorgehensmodelle diskutiert werden die Methodiken des Projekt- und Qualitätsmanagement Anwendung finden.

Angestrebte Lernergebnisse:

Kenntnisse:

Die Studierenden lernen neben den Plattformen die Digitalisierungsmethoden und Ihrer konkreten Anwendung in komplexen verteilten B2B Anwendungssystemen kennen. Die Anwendung klassischer und agiler Projektmanagementmethoden wird an Praxisbeispielen ebenfalls vertieft. Darüber hinaus werden vertiefte Kenntnisse im Umgang mit Datenschutzrichtlinien und Ihre Umsetzung in eCommerce Systemen vermittelt.

Fertigkeiten:

Die Studierenden können die Risiken im eCommerce bewerten und lernen geeignete Methoden kennen, um ihnen angemessen zu begegnen. Des Weiteren erwerben sie Fertigkeiten, die passenden PM-Methoden bezogen auf die Komplexität einzusetzen und anzuwenden.

Kompetenzen:

Kompetenzen im Spannungsfeld Datenschutz vs. Notwendiger Profilinformationen und personalisiertes Marketing werden im Rahmen des Wahlfachs eCommerce & eBusiuness ebenfalls vermittelt.

Inhalt:

- Prozesse und Plattformen des eCommerce & eBusiness
- Digitalisierung am Beispiel der digitale Transformation vom stationären zum Online-Handel
- eCommerce & eBusiness im Einklang mit Datenschutz
- Gängige Vorgehensmodelle und klassische vs. Agile Projektmanagement Methoden im Kontext von eCommerce Projekten
- · Transaktionsmodelle im eCommerce und deren Bedeutung
- Chancen und Risiken von sozial Media und eCommerce

Medienformen:

Skript

Modul:	Wahlfach: Maschinelles Lernen	
Kürzel:	Maschillenes Lernen	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. Elena Kuß	
Dozent(in):	Prof. Dr. Elena Kuß	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Wahlfach	
Lehrform / SWS:	Vorlesung / 4 SWS	
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden	
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Englischkenntnisse, um Fachliteratur auch i Englisch durchzuarbeiten	
Studien-/Prüfungsleistungen/ Prüfungsform:	Referat, Hausarbeit	
Max. Teilnehmerzahl	15	
Modulziele:		
Ziel des Moduls ist das Verständnis von g	grundlegenden Konzepten und Methoden de	

Ziel des Moduls ist das Verstandnis von grundlegenden Konzepten und Methoden des maschinellen Lernens. Die Studierenden verstehen, wie sich maschinelles Lernen in den Kontext der Künstlichen Intelligenz einbettet. Die Studierenden erarbeiten sich selbstständig Fachliteratur, um diese in der Gruppe zu diskutieren.

Angestrebte Lernergebnisse:

Kenntnisse:

Die Studierenden sind mit wesentlichen Grundkonzepten des maschinellen Lernens vertraut. Darüber hinaus kennen Sie unterschiedliche Methoden des maschinellen Lernens und deren Anwendung in der Praxis.

Fertigkeiten und Kompetenzen:

Die Studierenden sind in der Lage über das Themengebiet des maschinellen Lernen zu diskutieren. Darüber hinaus können die Studierenden Methoden des maschinellen Lernens kritisch hinterfragen und deren Stärken und Schwächen je nach Anwendungsgebiet realistisch einschätzen.

Inhalt:

- Grundlagen des maschinellen Lernens
- · Datenrepräsentation und -vorverarbeitung
- Trainings- und Testdaten
- Überwachtes Lernen
- Unüberwachtes Lernen
- Reinforcement Learning
- Klassifikation
- Regression
- Clusteranalyse
- Neuronale Netze
- Deep Learning
- Evaluierung

Medienformen:

Folien, Videos, Vorträge

Modul:	Wahlfach: NoSQL Datenbanksysteme
Kürzel:	
Untertitel:	
Lehrveranstaltungen:	Vorlesung
Studiensemester:	Jedes Wintersemester
Modulverantwortlicher:	Prof. Petrov
Dozent(in):	Prof. Petrov
Sprache:	Deutsch
Zuordnung zum Curriculum:	Wahlfach
Lehrform / SWS:	Vorlesung / 4 SWS
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden
Kreditpunkte:	5 ECTS
Voraussetzungen nach StuPro:	Keine
Empfohlene Voraussetzung:	keine
Studien-/Prüfungsleistungen/ Prüfungsform:	Referat, Hausarbeit
Max. Teilnehmerzahl	10
Modulziele:	

Datenbanksystemen und die

Diese Veranstaltung bietet einen Überblick über die verschiedenen Arten von NoSQL NoSQL Landschaft. Wir betrachten näher die Anwendungsbereiche, (b) Eigenschaften, (c) Architekturen sowie (d) tragende Datenstrukturen der verschieden Systemarten. Konkret werden Key/Values Stores, Document Stores, Wide-column Stores sowie Graph-DBMS (z.B. neo4j) näher beleuchtet. Ergänzend, wird auf die im Unternehmenskontext etablierten Hauptspeicherdatenbanken und Cloud-DBMS näher eingegangen, auch wenn sie keine NoSQL DBMS sind.

Angestrebte Lernergebnisse:

Das übergeordnete Ziel ist es die Studierenden in die Lage zu versetzen, geeignete NoSQL DBMS für Ihre Anwendungen auszuwählen, gemäß Datengröße und -Beschaffenheit, Arbeitslast, Datenanalyse oder Kopplung an weitere Systeme. Ein weiteres Ziel ist die Vermittlung von Eigenschaften von NoSQL Systemen. Somit sollen die Studierenden projektbezogene oder Management-Entscheidungen hinsichtlich der Wirtschaftlichkeit und der technologischen Eigenschaften solcher Systeme treffen können. Ergänzend sollen die Studierenden praktische Erfahrungen sammeln, durch gezieltes Experimentieren mit NoSQL Systemen.

Medienformen:

Die Veranstaltung beruht auf einer Mischung aus verschieden Lehrformen, wie klassische Vorlesungen, Paper-Diskussionen, praktische Übungen und Eigenarbeit.

Modul: Kürzel:	Wahlfach: Practical Systems & Cybersecurity Engineering
Untertitel:	
Lehrveranstaltungen:	Vorlesung
Studiensemester:	Jedes Wintersemester
Modulverantwortlicher:	Prof. Dr. Wolfgang Blochinger
Dozent(in):	Prof. Dr. Wolfgang Blochinger
Sprache:	Deutsch
Zuordnung zum Curriculum:	Wahlfach
Lehrform / SWS:	Vorlesung / 4 SWS
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden
Kreditpunkte:	5 ECTS
Voraussetzungen nach StuPro:	Keine
Empfohlene Voraussetzung:	Modul "Systeme und Sicherheit" (WIB-5)
Studien-/Prüfungsleistungen/ Prüfungsform:	Projektarbeit
Max. Teilnehmerzahl	15
Modulziele	

Dieses Wahlfach knüpft thematisch an das Pflichtmodul "Systeme und Sicherheit" an und führt die integrierte Diskussion dieser Themen vertiefend fort. Es widmet sich insbesondere praktischer Methoden zur Untersuchung und systematischen (Weiter-)Entwicklung komplexer IT-Systeme. Dabei soll die Betrachtung von fortgeschrittenen Sicherheitsaspekten im Mittelpunkt stehen.

Angestrebte Lernergebnisse

Kenntnisse

Die Studierenden haben vertiefte Kenntnisse über komplexe Bedrohungen gegen die Sicherheit von (verteilten) IT-Systemen und kennen wirksame Gegenmaßnahmen. Sie sind mit den zugrunde liegenden Systemkonzepten in der erforderlichen Tiefe und Breite vertraut.

Fertigkeiten

Die Studierenden können unter Einsatz praktischer Methoden die Schwachstellen komplexer, verteilter IT-Systeme evaluieren (inkl. Durchführung systematischer Penetration Tests) und geeignete technische Gegenmaßnahmen auswählen sowie praktisch umsetzen. Sie können fachlich fundierte Entwurfsentscheidungen treffen, um komplexe, verteilte IT-Systeme proaktiv gegen Angriffe abzusichern.

Kompetenzen

Die Studierenden sind in der Lage, sich bei der Erörterung technischer Sicherheitsaspekte komplexer IT-Systeme in einem Fachkollegium federführend einzubringen. Sie sind befähigt, verantwortlich Unternehmensprozesse der IT-Sicherheit auf der systemtechnischen Ebene umzusetzen.

Inhalt

- Experimentelle Untersuchungen zur Funktionsweise und Abwehr wesentlicher Angriffstechniken auf IT-Systeme (Virtual Hackers' Lab).
- Systematische Penetration Tests.
- Praktische Evaluierung fortgeschrittener Verfahren der Kryptanalyse (Code Breaking).
- Experimentelle Untersuchungen zu Social Engineering Methoden.
- Grundlegende Cloud-Technologien, insbesondere Untersuchung der Sicherheits- und Isolationsmechanismen.
- Systemprogrammierung und praktischer Umgang mit Systemen.
- · Weitere aktuelle Themen aus dem Bereich Systeme und Sicherheit.

- Erickson, Jon (2007): Hacking: The Art of Exploitation. 2. Edition. No Starch Press.
- Kofler, Michael; et al. (2022): Hacking u. Security: Das umfassende Hacking-Handbuch.
 3. Aufl. Rheinwerk Computing.
- Eckert, Claudia (2023): IT-Sicherheit. Konzepte Verfahren Protokolle. 11. Aufl. Oldenbourg.
- Ehses, Erich; et al. (2011): Systemprogrammierung in UNIX / Linux: Grundlegende Betriebssystemkonzepte und praxisorientierte Anwendungen. Vieweg + Teubner.
- Weitere aktuelle Literatur wird in der Veranstaltung bekannt gegeben.

Modul:	Wahlfach: Psychologie
Kürzel:	,
Untertitel:	
Lehrveranstaltungen:	Seminar/Vorlesung
Studiensemester:	Jedes Semester
Modulverantwortlicher:	Studiendekan WIB
Dozent(in):	Dr. Andreas Rupp
Sprache:	Deutsch
Zuordnung zum Curriculum:	Wahlfach
Lehrform / SWS:	Vorlesung / 4 SWS
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden
Kreditpunkte:	5 ECTS
Voraussetzungen nach StuPro:	Keine
Empfohlene Voraussetzung:	Keine
Studien-/Prüfungsleistungen/ Prüfungsform:	Vorlesung/Referat/Hausarbeit
Max. Teilnehmerzahl	20

Modulziele

Ziel des Moduls ist der Erwerb grundlegender Kenntnisse über Theorien und Konzepte der Arbeits-, Lern- und Organisationspsychologie mit dem Schwerpunkt Leadership. Einen weiteren Schwerpunkt bildet das Verstehen, Analysieren und Bewerten von Führungsverhalten in komplexen Organisationsformen.

Angestrebte Lernergebnisse

Kenntnisse

- Zentrale Theorien und Modelle der Arbeitspsychologie, einschließlich Kommunikation, Motivation, Arbeitszufriedenheit und Stressbewältigung
- Theorien und Konzepten aus dem Bereich der Lernpsychologie
- Konzepte und Methoden der Organisationspsychologie
- Aspekte des Lernens in Organisationen, der Personalentwicklung sowie Führungsansätze kennen und beurteilen lernen

Fertigkeiten

- Kritische Bewertung von Führungskonzepten und deren Relevanz für die Arbeitswelt
- Kritische Bewertung von Lernmodellen und deren Relevanz für die Arbeitswelt.
- Anwendung lernpsychologischer Konzepte zur Gestaltung effektiver Lernumgebungen am Arbeitsplatz.
- Anwendung von Organisationsdiagnosen zur Identifikation von Stärken und Schwächen innerhalb einer Organisation.
- Kritische Bewertung und Anwendung von Führungsansätzen zur Förderung eines positiven und produktiven Arbeitsumfeldes.
- Fähigkeit zur Analyse von Organisationen.

Kompetenzen

- Anwendung von Methoden zur Messung und Bewertung von Arbeitszufriedenheit und Kommunikationsverhaltensweisen.
- Reflexion des eigenen Lernverhaltens und der eigenen Lernstrategien.

Inhalt

- Leadership Konzepte
- Führungsstile und deren Auswirkungen auf Mitarbeiter und Organisation.
- Grundlegenden Theorien der Lernpsychologie, einschließlich behavioristischer, kognitiver und sozialer Lerntheorien.
- Struktur, Kultur und Dynamik von Organisationen.
- Teamarbeit in Organisationen.
- Weitere aktuelle Themen aus den Bereichen Arbeits,- Lern- und Organisationspsychologie.

- Johnson, D. W., Johnson, F. P. (2016). Joining Together: Group Theory and Group Skills (12th ed.). Pearson.
- Luthans, F. (2010). Organizational behavior (12th ed.). McGraw-Hill.
- Rupp, A. (2023). Fachinhalte vermitteln und präsentieren: Effektiv und nachhaltig ausund weiterbilden. Expert.
- Rupp, A. (2024). Effective Lecturing. Peter Lang.
- Rupp, A. & Huang, Y. (2025). Improving Intercultural Communication: Navigating the Complexities of Cultural Interactions. In V. Hammler Kennon, J. E. Bartlett & T. Cooper (Eds.) Global Handbook Workplace Learning: Navigating the Global Workforce: A Bold Careers Perspective on Workplace Learning and Professional Development. IGI Global.
- Yukl, G. & Yukl, G. A. (2019). Leadership in Organizations (9th ed.). Pearson.

Modul:	Wahlfach: Sales System and Sales Processes	
Kürzel:	SSSP	
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Studiendekan WIB	
Dozent(in):	Dr. Stefan A. Knopf	
Sprache:	Deutsch	
Zuordnung zum Curriculum:	Wahlfach	
Lehrform / SWS:	Vorlesung / 4 SWS	
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 60 Stunden	
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:		
Studien-/Prüfungsleistungen/ Prüfungsform:	Projekt/Referat	
Max. Teilnehmerzahl	20	
Modulziele		
Was ist ein Vertriebssystem?		
Des Vertriebes retern unefeset alle Ourene Machenen und Otrolleuren die die det de		

Das Vertriebssystem umfasst alle Organe, Maßnahmen und Strukturen, die eingerichtet oder genutzt werden, um den Vertrieb von Produkten oder Dienstleistungen zu sichern. Das Vertriebssystem steht in einem ständigen Austausch mit dem Marketing, zu dem es gezählt werden kann.

Wofür nutzt man die Vertriebs-Methoden?

Eine Vertriebsmethode umfasst eine Reihe von Schritten, die beschreiben, wie man an Leads in Ihrem Markt verkauft. Sie zeigt Vertriebsmitarbeitern, wie sie Leads erfolgreich in potenzielle Kunden und letztendlich in wahrhaftige Kunden konvertieren können.

Was sind typische praktische Herausforderungen?

- Preisverhandlungen erfolgreich durchführen
- Verkaufsprozess orchestrieren
- Verkaufserfolg durch gelebte Kundenorientierung
- Prozessoptimierung im Verkauf
- Kunden-Verkäufer-Beziehungen: Wertschätzung nach innen Freundlichkeit nach außen
- Umgang mit Kundendaten
- Verhandlungen erfolgreich gestalten

Angestrebte Lernergebnisse

Kenntnisse

Die Studierenden kennen Theorien, Modelle und Instrumente von Vertriebssystemen. Sie können diese beschreiben und systematisch darstellen.

Fertigkeiten

Die Studierenden sind in der Lage, unterschiedliche Lösungsansätze für vertriebliche Herausforderungen miteinander zu vergleichen und können mit Hilfe Ihres Wissens plausible Argumentationen und Schlüsse ableiten. Sie entwickeln ein kritisches Verständnis der Fachinhalte und können die Anwendbarkeit von Instrumenten in der Praxis einschätzen.

Kompetenzen

Somit stärken die Studierenden Ihre Fach- und Methodenkompetenz in vertrieblichen Zusammenhängen und Entwickeln Ihre persönliche-, soziale- und übergreifende Handlungskompetenz.

Inhalt

Teil 1: Vertriebssysteme, Vertriebsplanung und -organisation

- 1. Die Rolle des Vertriebs im Marketing-Mix unter besonderer Berücksichtigung der Schnittstellen zur Distributions- und Kommunikationspolitik
- 2. Zusammenhänge zw. Güter- und Dienstleistungsmärkten mit Vertriebssystemen bzw. Vertriebskanälen
- 3. Unterschiede im Vertrieb von Produkten und Dienstleistungen
- 4. Direkt-Vertrieb (C2C; B2C; B2B) und Indirekt-Vertrieb (B2B2C und B2B) Besonderheiten im Vertrieb von konsumtiven sowie investiven Industriegütern und Dienstleistungen; Einkaufsverhalten / Procurement von Unternehmen
- 5. Aspekte des Vertriebsmanagements sowie organisationale Verankerung von Marketing und Vertrieb
- 6. Stellenpositionen und Verzahnung im Vertrieb (z.B. Außen-/Innendienst; KAM; Vertriebsleiter)

- 7. Grundformen der Verkaufsorganisation (z.B. Regional-, Kundengruppen- und Produktvertrieb)
- 8. Vertriebs- und Lieferantenpartner-/Absatzmittler-Management (insbesondere Zulieferer, Handel und Franchise-Partner)
- 9. Best-Practice-Beispiele für Aufbauorganisationen im Vertrieb

Teil 2: Vertriebsprozessmanagement

- 1. Grundlagen der Prozessgestaltung: Analyse und Optimierung von Vertriebsprozessen
- 2. Soft- und Hardwareeinsatz in der Ausgestaltung von (Online-) Vertriebsprozessen
- Vertriebslogistikprozesse (u.a. Grundlagen des Supply Chain Management und der Marketinglogistik), Sales und Service Cycle-Prozesse (z.B. Verkaufsvorgänge im Verkaufstrichter)

Medienformen:

Ganztagstermine: Jeweils vormittags Theorie, nachmittags Video-Analyse in Gruppenarbeit und Präsentationen der Arbeitsthemen pro Gruppe

- W. Lasko, L. Lasko, 2018, "Internationale Vertriebsteuerung by Result Framing", 2. Auflage, Springer Gabler; ISBN 978-3-658-18582-4 ISBN 978-3-658-18583-1 (eBook); https://doi.org/10.1007/978-3-658-18583-1
- S. Albers, M. Krafft, 2013, "Vertriebsmanagement", Springer Gabler; ISBN: 978-3-409-11965-8 ISBN 978-3-8349-3663-9 (eBook); https://doi.org/10.1007/978-3-8349-3663-9
- W. Lasko, L. Lasko, 2016, "Deal Resulting", Springer Gabler; ISBN 978-3-658-14119-6
 ISBN 978-3-658-14120-2 (eBook); https://doi.org/10.1007/978-3-658-14120-2
- H. Biesel, H. Hame, 2018, "Vertrieb und Marketing in der digitalen Welt" Springer Gabler;
 ISBN 978-3-658-17531-3 ISBN 978-3-658-17532-0 (eBook);
 https://doi.org/10.1007/978-3-658-17532-0
- C. Homburg, 2017, "Marketingmanagament", 6. Auflage, Springer Gabler; ISBN 978-3-658-13655-0 ISBN 978-3-658-13656-7 (eBook); ; https://doi.org/10.1007/978-3-658-13656-7
- Helmut Hausner, Vertriebsmanagement: https://lecture2go.uni-hamburg.de/l2go/-/get/v/13543
- S. Knopf, 2007; Wertorientierte Preisfiindung für industrielle Softwarelösungen am Beispiel der Energiewirtschaft.
- Rick Page, 2002. Hope is not a strategy; The 6 Keys to Winning the Complex Sale
- The Art of selling by Alec Baldwin "Get them to sign on the line which is dotted" Quelle: https://www.youtube.com/watch?v=v9XW6P0tiVc
- Tim Taxix; GEDANKENtanken: https://www.youtube.com/watch?v=MwDUPDOygWY
 Verhandeln für Profis So setzt du deine Preise durch
- Wie wir besser verhandeln // Prof. Dr. Jack Nasher https://youtu.be/KcyyKLSn5jQ
- Die 4 tierischen Menschentypen // Tobias Beck https://youtu.be/-IOp9qrjLJU
- https://sevdesk.de/lexikon/distributionspolitik/

- https://wirtschaftslexikon.gabler.de/definition/kommunikationspolitik-39592. https://wirtschaftslexikon.gabler.de/definition/kommunikationspolitik-39592/version-262997
- Rainer Elste Paradigmenwechsel im Vertrieb Konsequenzen neuer Technologien für das Kundenmanagement
- https://www.schranner.com/de/institute/matthias-schranner-ceo

Modul:	Wahlfach: Sustainability Management	
Kürzel:		
Untertitel:		
Lehrveranstaltungen:	Vorlesung	
Studiensemester:	Jedes Semester	
Modulverantwortlicher:	Prof. Dr. David Feierabend	
Dozent(in):	Prof. Dr. David Feierabend	
Sprache:	Englisch	
Zuordnung zum Curriculum:	Wahlfach	
Lehrform / SWS:	Vorlesung / 4 SWS	
Arbeitsaufwand:	Präsenzstudium 60 Stunden Eigenstudium 90 Stunden	
Kreditpunkte:	5 ECTS	
Voraussetzungen nach StuPro:	Keine	
Empfohlene Voraussetzung:	Keine	
Studien-/Prüfungsleistungen/ Prüfungsform:	Referat, Continuous Assessment	
Max. Teilnehmerzahl	15	
Modulziele:		
Dieser Kurs bietet eine Einführung in das Nachhaltigkeitsmanagement, die Rolle de Informationstechnologie bei der Unterstützung von Nachhaltigkeitspraktiken in Unternehmen und die wachsende Bedeutung der ESG-Berichterstattung (Environmental, Social, and Governance) für Unternehmen. Die Studierenden Iernen die wichtigsten Herausforderungen und Chancen der Nachhaltigkeit, nachhaltige Geschäftsmodelle, ESG-Berichtsrahmen und die neuesteitechnologischen Entwicklungen und Innovationen auf dem Gebiet des Nachhaltigkeitsmanagements kennen. Die Studierenden verstehen, wie die Informationstechnologie die Praktiker des Nachhaltigkeitsmanagements in verschiedenen Bereichen unterstützen kann, von Datenmanagement über geschäftsmodellspezifische Applikationen bis hin zur Berichtserstattung		
Angestrebte Lernergebnisse:		
Kenntnisse:		

- Die Studierenden kennen die Definition und Grundsätze von Nachhaltigkeit und des Nachhaltigkeitsmanagements
- Sie können den Business Case für Nachhaltigkeit erläutern und mit den UN-Zielen für nachhaltige Entwicklung (SDGs) in Zusammenhang setzen
- Die Studierenden verstehen die wichtigsten Herausforderungen und Chancen der Nachhaltigkeit für Unternehmen
- Die Studierenden kennen nachhaltige Geschäftsmodelle und -praktiken. Sie sind mit den Prinzipien der Kreislaufwirtschaft und des nachhaltigen Lieferkettenmanagements vertraut.
- Sie können verschiedener ESG-Berichtsrahmen und -anforderungen evaluieren und sind mit deren Umsetzung in Informationssystemen vertraut
- Sie haben Kenntnis von aktuellen technologischen Entwicklungen und Innovationen im Nachhaltigkeitsmanagement, beispielsweise intelligente Energiesysteme, intelligente Verkehrssysteme und nachhaltige Finanzen

Fertigkeiten:

- Die Studierenden k\u00f6nnen Herausforderungen und Chancen der Nachhaltigkeit f\u00fcr Unternehmen bewerten
- Sie können die vorgestellten ESG-Berichtsrahmen und Nachhaltigkeitskennzahlen analysieren sowie unternehmerische ESG-Kommunikation kritisch hinterfragen
- Die Studierenden k\u00f6nnen IT-Systeme zur Unterst\u00fctzung von Nachhaltigkeitsmanagementpraktiken, wie z. B. ESG-Reporting, nachhaltiges Lieferkettenmanagement oder nachhaltiges Energiemanagement hinsichtlich der Anforderungen aus der Praxis evaluieren
- Die Studierenden können Strategien für den Umgang mit Nachhaltigkeit im Unternehmen entwickeln.

Kompetenzen:

- Die Studierenden sind in der Lage, ihr erworbenes Wissen fachgerecht einzuordnen, Zusammenhänge zu erklären und in der beruflichen Praxis anzuwenden. Die Vorlesung legt dabei die Grundlagen für eine Tätigkeit im Umfeld des Nachhaltigkeitsmanagements oder in der Entwicklung von IT-Systemen zur Erfüllung von Nachhaltigkeitsanforderungen.
- Die Studierenden sind befähigt, sich allgemein in neue Teilbereiche der Nachhaltigkeit einzuarbeiten und im Speziellen mit den Anforderungen neuer ESG-Standards umzugehen.
- Außerdem verfügen die Studierenden über Modelle und Frameworks, um Nachhaltigkeitsfragestellungen im Unternehmen zu analysieren und Lösungsvorschläge zu erarbeiten.
- Sie sind in der Lage in Nachhaltigkeitsfragen Führungsrollen zu übernehmen und Stakeholdern die Relevanz und Folgen einer an Nachhaltigkeit orientierten Unternehmensführung zu vermitteln

Inhalt:

- Definition und Grundsätze der Nachhaltigkeit und des Nachhaltigkeitsmanagements
- Der Business Case für Nachhaltigkeit
- Die Rolle der öffentlichen Politik und Regulierung im Nachhaltigkeitsmanagement
- Die UN-Ziele für nachhaltige Entwicklung (SDGs) und wie Unternehmen zu ihnen beitragen können

- Stakeholder-Engagement und soziale Verantwortung der Unternehmen (CSR)
- Grundsätze und Praktiken der Kreislaufwirtschaft
- ESG Reporting- & Kennzahlensysteme
- Lebenszyklusbewertung und Nachhaltigkeitsmetriken
- Herausforderungen in der Praxis: Nachhaltigkeitsberichterstattung und Datenmanagement
- Anwendungsfälle und IT-Systeme: Umweltmanagementsysteme, Energiemanagement, Gebäudeplanung, Verkehr, etc.

Medienformen:

Vorlesung, Übungen und Fallstudien

- Combe, C. (2022). Introduction to Global Sustainable Management. SAGE.
- Weitere Literatur wird in der Vorlesung bekannt gegeben

Modul: Wahlfach:

Webapplikationsentwicklung mit SAP

Fiori

Kürzel: WIBW02

Untertitel:

Lehrveranstaltungen: Vorlesung

Studiensemester: Jedes Sommersemester

Modulverantwortlicher: Prof. Dr. Philipp Zeise

Dozent(in): Prof. Dr. Philipp Zeise

Sprache: Deutsch

Zuordnung zum Curriculum: Wahlfach

Lehrform / SWS: Vorlesung / 4 SWS

Arbeitsaufwand: Präsenzstudium 60 Stunden

Eigenstudium 90 Stunden

Kreditpunkte: 5 ECTS

Voraussetzungen nach StuPro: Keine

Empfohlene Voraussetzung: Keine

Studien-/Prüfungsleistungen/ Prüfungsform: Projektarbeit, Referat

Max. Teilnehmerzahl 15

Modulziele:

Im Rahmen der fortschreitenden Digitalisierung hat sich die Art, wie in vielen Unternehmen gearbeitet wird, grundlegend verändert. So ist im Geschäftsalltag u.a. ein standort- und geräteunabhängiger Zugriff auf die im Unternehmen verwendeten SAP-Systeme immer wichtiger geworden.

Mit SAP Fiori Applikationen (Apps) ist ein solcher Zugriff möglich. Diese Apps lassen sich über den Browser auch auf mobilen Endgeräten öffnen und passen sich der jeweiligen Displaygröße an, sodass MitarbeiterInnen von jedem Ort aus und zu jedem Zeitpunkt in Geschäftsprozesse eingreifen und Datenanalysen abrufen können. Hierfür hat die SAP bereits Standard-Apps, die nutzerspezifisch konfiguriert werden können, zur Verfügung gestellt.

Mit SAPUI5, der Frontend-Technologie zur Erstellung von SAP Fiori Apps, lassen sich aber auch individuelle, exakt auf Geschäftsprozesse und Anwendergruppen zugeschnittene Fiori Apps erstellen. Um eine effiziente Arbeitsweise mit diesen Apps zu ermöglichen (User Experience), hat die SAP Design-Richtlinien veröffentlicht, welche die Regeln für eine Entwicklung qualitativ hochwertiger SAP Fiori Apps festlegen.

Das Ziel dieses Moduls ist daher die Konzipierung und Entwicklung eines Mitarbeiterportals in Form mehrerer Webapplikationen, welche auf SAP Fiori und SAP S/4HANA basieren.

Angestrebte Lernergebnisse:

Kenntnisse:

Die Studierenden verstehen die Architektur und den Aufbau moderner Webapplikationen auf Basis von SAP Fiori. Dazu gehört:

- SAP Design-Richtlinien zur Entwicklung von SAP Fiori Apps
- SAP Fiori Launchpad (Startseite, welche den Zugriff auf Fiori Apps bietet)
- HTML5 (Basissprache zum Erstellen von Webseiten)
- JavaScript (Skriptsprache)
- SAPUI5 (Frontendtechnologie zur Erstellung von Fiori Apps)
- Open Data Protocol (OData), welches die Schnittstelle zwischen dem SAPUI5-Frontend (Fiori App) und dem SAP-Backend (SAP S/4HANA) bildet
- SAP Gateway (Ermöglicht einer App mittels OData den Zugriff auf Daten im SAP S/4HANA)
- SAP Web IDE (Entwicklungsumgebung zur Erstellung von SAP Fiori Apps)

Fertigkeiten:

- Die Studierenden sind in der Lage, SAP Fiori Apps zu designen und zu entwickeln
- Die Studierenden sind in der Lage, OData Services am SAP-Backend zu erstellen
- Die Studierenden sind vertraut mit modernen Entwicklungsumgebungen, um Applikationen für den Einsatz einer Business-Softwarelösung zu implementieren
- Die Studierenden k\u00f6nnen ausgew\u00e4hlte Gesch\u00e4ftsprozesse konfigurieren und \u00fcber eine SAP Fiori App ausf\u00fchren

Kompetenzen:

- Die Studierenden erlangen Kompetenzen für die App-Konzepterstellung, indem sie auf Basis einer umfassenden Fallstudie eine Rolle in einem Entwicklungsprojektteam einnehmen
- Die Studierenden erlangen die Kompetenz zur Analyse und Strukturierung komplexer Aufgabenstellungen, indem sie die erworbenen Kenntnisse und Fertigkeiten anhand der Fallstudie selbständig umsetzen
- Die Studierenden erlangen Problemlösungskompetenz, indem sie anhand praxisrelevanter Entscheidungsprobleme die erworbenen Kenntnisse selbständig umsetzen

Inhalt:

In diesem Modul Iernen die Studierenden anhand verschiedener auf mobilen Endgeräten nutzbarer Apps wie die modernen SAP-Technologien rund um Fiori und SAPUI5 zusammenhängen, aufgebaut sind und zum Einsatz kommen.

Es werden Anwendungen auf Basis von SAP Fiori realisiert sowie zugehörige OData Backend Services programmiert. Vom Datenmodell im Backend bis zur Oberflächengestaltung und - realisierung werden alle Aufgaben in kleinen Projektgruppen bearbeitet, was die Nachhaltigkeit des Lernerfolges sicherstellt.

Medienformen:

Das Modul besteht sowohl aus einer Vorlesung mit integrierten Übungen als auch einer umfassenden Projektarbeit, welche mit Methoden und Medien des "Blended Learning" umgesetzt werden.

Die Studierenden erhalten Materialien zur Vermittlung von Grundlagenwissen, unterschiedliche Aufgabenstellungen und Daten zur Fallstudie in elektronischer Form. Inhalte werden sowohl synchron über Präsenzveranstaltungen als auch asynchron über Teletutoring vermittelt. Darüber hinaus arbeiten sich die Studierenden in kleinen Gruppen eigenständig in Themengebiete ein, die sie den anderen Studierenden präsentieren.

Nach dem Erwerb des notwendigen Grundlagenwissens wird ein Entwicklungsprojekt durch eine von den Studierenden selbständig organisierte Projektarbeit in Gruppen von 3 - 4 Personen zu den Themen App-Konzept, App-Design, App-Entwicklung und Teststrategien simuliert.

- Michael Englbrecht: SAP Fiori©: Implementierung und Entwicklung, Rheinwerk Verlag, Bonn 2020
- Miroslav Antolovic: Einführung in SAPUI5, Rheinwerk Verlag, Bonn 2016
- Paul Fuchs: HTML5 und CSS3 für Einsteiger, BMU Media GmbH, Landshut 2019
- Thomas Theis: Einstieg in JavaScript, Rheinwerk Verlag, Bonn 2018

Modul:	Wissenschaftliches Arbeiten		
Kürzel:	wiB74		
Untertitel:			
Lehrveranstaltungen:			
Studiensemester:	Jedes Semester		
Modulverantwortlicher:	Frau Christa Biberacher		
Dozent(in):	Frau Christa Biberacher		
Sprache:	Deutsch		
Zuordnung zum Curriculum:	Pflichtfach, 7. Semester		
Lehrform / SWS:	Seminar 2 SWS		
Arbeitsaufwand:	Präsenzstudium Eigenstudium	30 Stunden 60 Stunden	
Kreditpunkte:	3 ECTS		
Voraussetzungen nach StuPro:	Keine		
Empfohlene Voraussetzung:	Alle Module der ersten 4 Semester		
Studien-/Prüfungsleistungen/ Prüfungsform:	Seminar: Klausur		
Modulziele:			
Das Modul lehrt Kompetenzen zum wissenschaftlichen Lesen und Schreiben. Es vermittelt Kenntnisse zur Anwendung wissenschaftlicher Methoden und Vorgehensweisen für die Erstellung der Bachelor-Thesis.			
Angestrebte Lernergebnisse:			
Kenntnisse:			

Die Studierenden recherchieren fundiert zu einem Fachgebiet in geeigneten Quellen und wenden Kriterien der Zitierwürdigkeit an. Dabei lernen sie ein Themengebiet systematisch zu erschließen und zu exzerpieren. Sie lernen Sachverhalte von Behauptungen zu trennen. Sie können die Begriffe Hypothese, These und Antithese differenziert anwenden. Sie erlernen logisch schlüssig zu argumentieren.

Fertigkeiten:

Die Studierenden erlangen Fertigkeiten im Erstellen von wissenschaftlichen Ausarbeitungen von der Themenfindung, Informationsbeschaffung und -bearbeitung, kritischen Beurteilung bis zur Texterstellung.

Kompetenzen:

Nach Abschluss des Moduls sind die Studierenden in der Lage:

- Quellen zu recherchieren und reflektiert zu beurteilen
- Sachverhalte sinnvoll zu strukturieren
- Eigene Ideen von anderen abzugrenzen und korrekt zu zitieren
- Eine wissenschaftliche Ausarbeitung zu erstellen

Inhalt:

- Empirische und formale Methoden
- Qualitätskriterien der Wissenschaftsethik
- Themenauswahl und Arbeitskonzept
- Literaturrecherche
- Beurteilung von Publikationen
- Zitierwürdigkeit von Quellen
- Zitierstile und korrektes zitieren
- Plagiate
- Lesetechniken
- Exzerpieren und wissenschaftliches Schreiben
- Bewertungskriterien f
 ür Abschlussarbeiten

- Balzert, Helmut; Schröder, Marion; Schäfer, Christian (2013): Wissenschaftliches Arbeiten. 2. Auflage, Dortmund: W3L.
- Deininger, Marcus; Lichter, Horst et al. (2005): Studien-Arbeiten. Ein Leitfaden zur Vorbereitung, Durchführung und Betreuung von Studien-, Diplom-, Abschluss- und Doktorarbeiten am Beispiel Informatik. 5. Auflage, Zürich: vdf.
- Esselborn-Krumbiegel, Helga (2022): Richtig wissenschatlich schreiben: Wissenschaftssprache in Regeln und Übungen. 7. Auflage, Paderborn: Schöningh.
- Kruse, Otto (2017): Kritisches Denken und Argumentieren. Konstanz: UVK.
- Kühtz Stefan (2020): Wissenschaftlich formulieren, 6. Auflage, Paderborn: Ferdinand Schöningh.
- Voss Rödiger (2020): Wissenschaftliches arbeiten. ...leicht verständlich!, 7. Auflage, München: UVK.

Modul:	Bachelor Thesis
Kürzel:	
Untertitel:	
Lehrveranstaltungen:	
Studiensemester:	
Modulverantwortlicher:	Studiendekan WIB
Dozent(in):	Alle Dozenten der Fakultät
Sprache:	Deutsch
Zuordnung zum Curriculum:	Pflichtfach, 7. Semester
Lehrform / SWS:	
Arbeitsaufwand:	
Kreditpunkte:	12 ECTS
Voraussetzungen nach StuPro:	Mindestens 140 ECTS, Modul Auslandssemester oder Spezialisierungssemester wurde absolviert
Empfohlene Voraussetzung:	Keine
Studien-/Prüfungsleistungen/ Prüfungsform:	Bachelor-Thesis
Modulziele:	
Die Bachelor-Thesis ist eine abschließende Prüfungsarbeit, mit der die Studierenden nachweisen	

Die Bachelor-Thesis ist eine abschließende Prüfungsarbeit, mit der die Studierenden nachweisen, dass sie eine interdisziplinäre Aufgabenstellung der Wirtschaftsinformatik selbstständig nach grundlegenden wissenschaftlichen Methoden in einem vorgegebenen Zeitrahmen bearbeiten können.

Die Bachelor-Thesis trägt zu den Gesamtlehrzielen der Wirtschaftsinformatik wie folgt bei:

- Breites interdisziplinäres Fachwissen und umfassende Methodenkompetenz: Die Bearbeitung von Bachelorarbeiten erfordert Kenntnisse und die Beherrschung von Methoden aus verschiedenen Disziplinen. Sie umfassen informatische, softwaretechnische, mediale, psychologische, didaktische, wirtschaftliche und andere Aspekte.
- Attraktive Berufsperspektive: Bachelorarbeiten befassen sich mit Problemen, die in der betrieblichen Praxis der Informatik zukünftig relevant sein werden. Bachelorarbeiten können als externe Arbeiten in Kooperation mit Unternehmen durchgeführt werden.
- Internationalität: Bachelorarbeiten können in englischer Sprache verfasst werden. Sie können auch in Kooperation mit ausländischen Institutionen durchgeführt werden.

Die Bachelor-Thesis trägt entscheidend zur Eignung für das Weiterstudium, insbesondere in einem Masterstudiengang an derselben oder einer anderen Hochschule, bei.

Angestrebte Lernergebnisse

Kenntnisse:

Die Studierenden besitzen einen breiten Überblick über das notwendige Fachwissen in dem bearbeiteten Themengebiet. Sie sind in der Lage, nach seriösen Quellen zu suchen und diese korrekt zu zitieren bzw. zu referenzieren. Die Studierenden können das Thema, den Kontext sowie den Stand der Wissenschaft präzise darstellen sowie Forschungsfragen und Ziele einer Arbeit beschreiben. Die Studierenden können schlüssig argumentieren und Behauptungen begründen sowie die geleistete Arbeit verständlich und überzeugend darstellen.

Fertigkeiten:

Die Studierenden führen eine Literaturrecherche nach wissenschaftlichen Quellen durch. Sie bereiten den Stand des Wissens kritisch auf. Sie analysieren Probleme, stellen Hypothesen auf, definieren Anforderungen und leiten Kriterien ab, nach denen Alternativen systematisch evaluiert werden. Die Studierenden strukturieren Problemstellungen in Teilaufgaben, entwickeln Lösungskonzepte und überprüfen kritisch die Ergebnisse. Sie realisieren einsatzfähige Prototypen.

Kompetenzen:

Die Studierenden sind nach Abschluss der Bachelor-Thesis in der Lage, Aufgabenstellungen der Wirtschaftsinformatik selbstständig zu lösen. Hierzu haben die Studierenden die Fähigkeit erworben, Aufgabenstellungen interdisziplinär zu hinterfragen und in eine integrierte, disziplinübergreifende Lösung zu überführen. Die Studierenden kommunizieren die Ergebnisse dazu klar und in angemessener Form

Inhalt:

Themen von Bachelorarbeiten beziehen sich auf Aufgabenstellungen der Wirtschaftsinformatik, die aktuell und in der absehbaren Zukunft in der Disziplin relevant sind. Sie beinhalten mehrere informatische, softwaretechnische, mediale, psychologische, didaktische, wirtschaftliche oder andere Aspekte, die in unmittelbarem Zusammenhang mit der Lösung der Aufgabe stehen.

Medienformen:

Fachliche und methodische Betreuung der Bachelorarbeit durch Beratungs- und Betreuungsgespräche, die bei unternehmensnahen Arbeiten auch vor Ort stattfinden.

Literatur:

Abhängig von der jeweiligen Aufgabenstellung.