Analyse complexe

Fonctions holomorphes

Question 1/8

f est analytique sur U un ouvert de $\mathbb C$

Réponse 1/8

Pour tout $z \in U$, f est développable en série entière en z

Question 2/8

Lemme de Hadamard pour les séries entières

Réponse 2/8

$$R^{-1} = \limsup_{n \in \mathbb{N}} \left(|a_n|^{\frac{1}{n}} \right)$$

Question 3/8

f est holomorphe sur U un ouvert de $\mathbb C$

Réponse 3/8

$$\forall z_0 \in U$$
, $\lim_{z \to z_0} \left(\frac{f(z) - f(z_0)}{z - z_0} \right) = f'(z_0)$ existe

Question 4/8

Condition de Cauchy-Riemann

Réponse 4/8

$$f(x + iy) = P(x, y) + iQ(x, y)$$
 est holomorphe si et seulement si $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$ et $\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$

Question 5/8

$$\frac{\partial f(x + \mathrm{i}y)}{\partial z}$$

Réponse 5/8

$$\frac{1}{2} \left(\frac{\partial f(x + iy)}{\partial x} - i \frac{\partial f(x + iy)}{\partial y} \right)$$

Question 6/8

Théorème d'inversion locale pour une fonction holomorphe

Réponse 6/8

Si f est holomorphe et de classe \mathcal{C}^1 sur U tel que $f(z_0) \neq 0$ alors il existe $V \in \mathcal{V}(z_0)$ et $W \in \mathcal{V}(f(z_0))$ tels que f induit un biholomorphisme de V dans W (ie bijectif, holomorphe de réciproque holomorphe)

Question 7/8

Non-existence d'une réciproques de exp

Réponse 7/8

Il n'existe pas de fonction f continue sur \mathbb{C}^* vérifiant $\exp \circ f = \mathrm{id}$

Question 8/8

$$\frac{\partial f(x + \mathrm{i}y)}{\partial \overline{z}}$$

Réponse 8/8

$$\frac{1}{2} \left(\frac{\partial f(x + iy)}{\partial x} + i \frac{\partial f(x + iy)}{\partial y} \right)$$