DM – Introduction to graphs

NGUYEN Hoang Thach nhthach@math.ac.vn

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

Some examples

Figure: Regional routes of VNA (as of 2017).¹

 $¹_{\hbox{Source: https://www.viags.vn/tin-tuc/tin-chuyen-nganh/vietnam-airlines-routemap-wordwide}}$

Some examples

Figure: Map of human protein interaction.²

 $²_{Source:\ https://www.mdc-berlin.de/news/archive/2008/20080910-erwin_schr_dinger_prize_2008_goes_to_resea}$

Graph

- Each vertex is represented by a dot or a circle
- Each edge is represented by a line connecting its endpoints

Definition

A (undirected) graph G = (V, E) is defined by:

- A non-empty set V of vertices;
- ② A set E of edges, which are unordered pairs of vertices.

Note: In this course, we only consider *finite* graphs.

H.-T. Nguyen Graph 6 / 49

Graphs

- $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$
- $\bullet \ E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}$

Multigraph and loop

Definition

- A graph is simple if there is at most one edge between any pair of vertices.
- Edges connecting the same pair of vertices are called multiple edges. A graph having multiple edges is also called a multigraph.
- A loop is an edge connecting a vertex to itself.

Figure: Rosen, p. 650

Note: By convention, "graphs" refer to simple graphs without loops unless otherwise stated.

Social networks:

- Each vertex represents a person
- Two friends are connected by an edge

Figure: Rosen, p. 645

Niche overlap graphs (ecology):

- Each vertex represents a species
- Two competing species are connected by an edge

Figure: Rosen, p. 648

Protein interaction graphs (biology):

- Each vertex represents a protein
- Two proteins that interact are connected by an edge

Figure: Rosen, p. 648

Computer networks:

- Each vertex represents a server
- Each edge represents a link

Figure: Rosen, p. 642

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

An example

Figure: A map of science disciplines.³

H.-T. Nguyen Graph

14 / 49

³Source: http://images.math.cnrs.fr/Representer-les-mondes.html

Directed graph

Definition

A directed graph (or digraph) G = (V, A) is defined by:

- A non-empty set V of vertices (or nodes);
- A set A of arcs, which are ordered pairs of vertices.

The notions of *simple directed graphs*, *multiple arcs*, *loops* and *directed multigraphs* are defined similarly to the undirected case.

Figure: Rosen, p. 650

Round-robin tournament:

- Each node represents a team
- Each team play against every other team, an arc goes from the winning team to the losing team (assume that there are no ties)

Figure: Rosen, p. 649

Dependency (software):

- Each node represents a module
- An arc (a, b) is added if module b depends on module a

Figure: Rosen, p. 647

Precedence graph:

- Each node represents a statement
- An arc (S_i, S_j) is added if statement S_i must wait for statement S_j to be executed

Figure: Rosen, p. 647

... and many other examples:

- citation graphs (academic)
- co-author graphs (academic)
- genealogical graphs
- road networks
- the Web
- etc.

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

Adjacency, neighborhood

Let G = (V, E) be a graph.

Definition

- Two vertices u and v are adjacent if they are endpoints of the same edge e. In this case, u is a neighbor of v and the edge e is incident with the vertices II and v.
- The set of all neighbors of a vertex v is the neighborhood of v and is denoted by N(v). The neighborhood of a set A of vertices is the union of the neighborhoods of the vertices in A: $N(A) = \bigcup N(v)$. $v \in A$

Graph

21 / 49

Adjacency, neighborhood

Example:

- v_1 is adjacent to v_2 ;
- v_4 is not adjacent to v_2 ;
- $N(v_2) = \{v_1, v_3, v_5, v_6\};$
- $N(\{v_1, v_2\}) = \{v_1, v_2, v_3, v_5, v_6\};$
- $N(\{v_2, v_3\}) = V$.

Degree

Definition

The degree of a vertex v, denoted by deg(v) or simply d(v), is the number of edges incident with it. A loop contributes 2 to the degree of its endpoint.

 $\deg(v_1)=1,\deg(v_2)=4.$

Degree

Note:

- A vertex is *isolated* if it has degree 0; it is *pendant* if it has degree 1.
- In a multigraph, the degree of a vertex may be greater than the number of its neighbors!

Figure: Rosen, p. 652

The handshaking theorem

Theorem

Let G = (V, E) be an undirected graph. Then

$$\sum_{v\in V} \deg(v) = 2 |E|.$$

Proof: Each edge contributes 2 to the sum of degrees of all the vertices.

Corollary

There are an even number of vertices of odd degrees.

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

Adjacency

Let G = (V, A) be a digraph.

Definition

If a = (u, v) is an arc, then u is adjacent to v and v is adjacent from u; u is the initial node and v is the end node of a; a is an out-going arc of u and an in-going arc of v.

Figure: Rosen, p. 650

- a is adjacent to b, b is adjacent from a;
- b is not adjacent to a, a is not adjacent from b.
- *e* is adjacent to and from itself.

Degrees

Definition

The out-degree (resp. in-degree) of a node v, denoted by $\deg^+(v)$ or $d^+(v)$ (resp. $\deg^-(v)$ or $d^-(v)$), is the number of out-going (resp. in-going) arcs of v.

•
$$d^+(a) = 3$$
, $d^-(a) = 1$;

•
$$d^+(d) = 1$$
, $d^-(d) = 5$.

Figure: Rosen, p. 650

Theorem

Let G = (V, A) be a directed graph. Then

$$\sum_{v \in V} \mathsf{deg}^+(v) = \sum_{v \in V} \mathsf{deg}^-(v) = |A|.$$

Complete graphs

Definition

A complete graph of n vertices, denoted by K_n , is a simple graph having n vertices and such that every pair of vertices is connected by an edge.

Figure: Rosen, p. 655

Paths

Definition

A path on n vertices, denoted by P_n , is a simple graph having n vertices $\{v_1, v_2, \dots, v_n\}$ and n-1 edges $\{\{v_i, v_{i+1}\} | 1 \le i \le n-1\}$.

Figure: P_6

Cycles

Definition

A cycle on $n \ge 3$ vertices, denoted by C_n , is a simple graph having n vertices $\{v_1, v_2, \ldots, v_n\}$ and n edges $\{\{v_i, v_{i+1}\} | 1 \le i \le n\}$ $(v_{n+1} \equiv v_1)$.

Figure: Rosen, p. 655

Wheel graphs

Definition

A wheel graph of n+1 vertices ($n \ge 3$), denoted by W_n , is a simple graph obtained from C_n by adding a new vertex and connecting it to every vertex of C_n .

Figure: Rosen, p. 655

Hypercubes

Definition

A *n*-dimensional hypercube, or an *n*-cube, denoted by Q_n , is a simple graph in which

- the vertices are the binary strings of length n
- two strings are adjacent iff. they differs at only one position.

Figure: Rosen, p. 655

H.-T. Nguyen

Hypercubes

Construction of Q_{n+1} from Q_n :

- **1** Consider two copies Q_n : Q_n and Q'_n
- ② Change the labels of Q_n and Q'_n :
 - Q_n : $s \to 0s$
 - Q_n' : $s \to 1s$
- **3** Add the edges $\{0s, 1s\}$

Bipartite graphs

Definition

A graph G = (V, E) is a bipartite graph if V can be partitioned into two sets V_1 and V_2 so that every edge connects a vertex in V_1 and a vertex in V_2 . The pair (V_1, V_2) is a bipartition of the vertices of G.

Figure: A bipartite graph.

Bipartite graphs

Examples:

- The path P_5 is a bipartite graph.
- The cycle C_6 is a bipartite graph.
- The cycle C_3 is *not* a bipartite graph.
- The complete graph K_4 is *not* a bipartite graph.
- The hypercubes Q_1, Q_2, Q_3 are bipartite graphs.

Recognizing bipartite graphs

Is this graph bipartite?

Figure: Rosen, p. 656

It is.

Recognizing bipartite graphs

Theorem

A simple graph is bipartite iff. its vertices can be colored by two different colors so that no two adjacent vertices have the same color.

Examples:

- C_n is bipartite iff. n is even.
- P_n is bipartite for all n.
- Q_n is bipartite for all n.

Complete bipartite graphs

Definition

A complete bipartite graph $K_{m,n}$ is a bipartite graph with bipartition $V = V_1 \cup V_2$ such that:

- V_1 has m vertices, V_2 has n vertices;
- Two vertices are connected by an edge iff. one vertex is in V_1 , the other is in V_2 .

Figure: Rosen, p. 658

H.-T. Nguyen Graph 39/49

Subgraphs

Definition

A subgraph of a graph G = (V, E) is a graph H = (W, F) where $W \subset V, F \subset E$.

Examples:

- Every graph is a subgraph of itself.
- The path P_n is a subgraph of the cycle C_m if $n \leq m$.
- The cycle C_n is a subgraph of the wheel W_n .
- Every graph on n vertices is a subgraph of K_n .

Subgraphs

Definition

Let G = (V, E) be a simple graph and let W be a subset of vertices. The subgraph induced by W is the subgraph of G where:

- The set of vertices is W;
- The set of edges consists of all edges having both endpoints in W.

Examples:

- C_n is the subgraph of W_n induced by the "outer" vertices.
- If $m \le n$, K_m is the subgraph of K_n induced by a subset of m vertices.
- P_n is *not* an induced subgraph of C_n .
- Q_{n-1} is the subgraph of Q_n induced by all vertices whose labels starts with 0.

Some operations on graphs

Let G = (V, E) be a simple graph.

Edge removal:

- $G e = (V, E \setminus \{e\}).$
- Result: a subgraph of G.

Vertex removal:

- $G v = (V \setminus \{v\}, E \setminus \{e \mid e \text{ is incidence with } v\}).$
- Result: a subgraph of G.

Edge contraction:

- Remove an edge, then merge its endpoints.
- Result: not necessarily a subgraph!

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

Adjacency list

TABLE 1 An Adjacency List for a Simple Graph.		
Vertex	Adjacent Vertices	
а	b, c, e	
b	а	
c	a, d, e	
d	c, e	
e	a, c, d	

Figure: Rosen, p. 668

Adjacency list

TABLE 2 An Adjacency List for a Directed Graph.		
Initial Vertex	Terminal Vertices	
а	b, c, d, e	
b	b, d	
c	a, c, e	
d		
e	b, c, d	

Figure: Rosen, p. 669

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

Adjacency matrix

Definition

The adjacency matrix of a graph G = (V, E) is a $V \times V$ matrix of integer entries $A = (a_{u,v})$ such that:

$$a_{u,v} = egin{cases} 1 & \textit{if } u,v \textit{ are adjacent,} \\ 0 & \textit{otherwise.} \end{cases}$$

Example: (with vertex ordering a, b, c, d, e)

$$A = \left(egin{array}{ccccc} 0 & 1 & 1 & 0 & 1 \ 1 & 0 & 0 & 0 & 0 \ 1 & 0 & 0 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 1 & 0 \end{array}
ight)$$

Outline

- Graph Definition and examples
 - (Undirected) Graph
 - Directed graph
- Basic properties of graphs
 - Undirected case
 - Directed case
- Some special simple graphs
- Subgraphs and graph operations
- Graph representation
 - Adjacency list
 - Adjacency matrix
 - Incidence matrix

Incidence matrix

Definition

The incidence matrix of a graph G = (V, E) is a $V \times E$ matrix of integer entries $M = (m_{v,e})$ such that:

$$m_{v,e} = egin{cases} 1 & \textit{if e is incident with } v, \\ 0 & \textit{otherwise}. \end{cases}$$

Example:

Note: The notions of adjacency matrix and incidence matrix can be extended for multigraphs, for directed graphs, etc.