RSCORE Tutorial for HECA

Please notice that, we use an updated BioGRID PPI (Version: 3.5.174, provided, previous version: 3.5.173), thus the result maybe a little different, but the conclusions are consistent with our study.

load the HECA data

```
Hide
```

```
# change the directory to yours
setwd("F:/Github/HECA/RSCORE_Tutorial_for_HECA/")
Cortex <- readRDS("../Cortex_UMI_counts_filtered.rds")
FGC <- readRDS("../FGC_UMI_counts_filtered.rds")
Heart <- readRDS("../Heart_UMI_counts_filtered.rds")
Kidney <- readRDS("../Kidney_UMI_counts_filtered.rds")
PFC <- readRDS("../PFC_UMI_counts_filtered.rds")
#combine all the five datasets
HECA <- cbind(Cortex, FGC, Heart, Kidney, PFC)
#check the data size
dim(HECA)</pre>
```

[1] 33694 17010

Construct a Seurat V3 object

Hide

Feature names cannot have underscores ('_'), replacing with dashes ('-')

Check the data quality

Hide

```
\label{eq:heca_seurat} \mbox{HECA\_seurat, subset = nFeature\_RNA > 1000 \& nCount\_RNA > 10000 \& nCount\_RNA < 150000 0 \& percent.mt < 20)}
```

Since we use the UMI count, we need to nomalize the data. We use 100,000 because our data is high-quality rather than 10X data (where you should use 10,000). If you load an already normalized dataset, please skip this step

Hide

```
HECA_seurat <- NormalizeData(HECA_seurat, normalization.method = "LogNormalize", scale.factor = 100000)
```

You can use either method to remove low-quality genes, mean.var.plot or vst. Please keep enough genes for the downstream network inference For SMART-seq2 based scRNA-seq, we recommends ~8000 genes, while 10X based data, ~6000 genes. You can also try different gene number to obtain optimal results.

Hide

```
\label{eq:heca_seurat} \begin{tabular}{ll} HECA\_seurat, & selection.method = "mean.var.plot", \\ & mean.cutoff = c(0.1,Inf), & dispersion.cutoff = c(0.1,Inf)) \end{tabular}
```

```
Calculating gene means
  10
     20
       30
          40
            50 60
                  70
                     80
                       90
                          100%
**************
Calculating gene variance to mean ratios
    20 30 40
             50
               60
                  70
                     80
[----|----|----|----|----|
*************
```

Hide

```
#HECA_seurat <- FindVariableFeatures(object = HECA_seurat, selection.method = 'vst', nfeatures = 10000)
#check the number of selected genes
length(VariableFeatures(HECA_seurat))</pre>
```

```
[1] 8844
```

Scale the data

Hide

```
HECA_seurat <- ScaleData(object = HECA_seurat)
```

PPI data is necessary. You can provide the adjacent matrix of PPI network by yourself or use our function to build a PPI network easily.

Hide

```
# change the directory to yours
hs_network <- as.matrix(readRDS("hs_ppi_matrix_BioGRID-3.5.174.Rda"))</pre>
```

```
DefaultAssay(HECA_seurat) <- "RNA"

HECA_seurat <- R.SCORE(Data = HECA_seurat, PPI = hs_network, max_step = 10, nCores = 4)
```

The result is saved in 'Net' assay of RCA seurat (it has been set as default assay). You can plot the UMAP

Hide

Now we can do clustering, you can change the parameters to obtan optimal results

Hide

```
HECA_seurat <- FindNeighbors(HECA_seurat, reduction = "NetPCA", dims = 1:50, k.param = 10)
HECA_seurat <- FindClusters(HECA_seurat, resolution = 0.8)</pre>
```

Hide

```
#Net_umap_cluster <- DimPlot(HECA_seurat, reduction = "NetUMAP", pt.size = 1, label = T)
#Net_umap_origin <- DimPlot(HECA_seurat, reduction = "NetUMAP", pt.size = 1, group.by = 'orig.ident', label
= T)
CombinePlots(plots = list(Net_umap_origin, Net_umap_cluster))</pre>
```


Hide

```
FeaturePlot(HECA_seurat, reduction = "NetUMAP", c('PTPRC', 'ALAS2', 'CDH5', 'PECAM1'))
```

Hide

```
#Identify the DEGs using genesorteR
SCORE_DEGs_list <- Find_Markers(object = HECA_seurat, assay = 'RNA', FoldChange = 1.5)
```

Select the top n marker genes of each cluster

Hide

Select the top n marker modules of each cluster

Hide

You can also show steiner tree of given cluster

Hide

PlotSteinertree(HECA_seurat, ident = '0')

calculate tree

