Assignment

Assignment 02

- Build linear regression model
 - Among numeric variables, select input variables
 - Describe reasons for variable selection
 - You can apply variable transformation
 - Describe reasons of variable transformation
 - You can discard some rows satisfying specific conditions
 - Specify conditions
- Summarize the process and result using Power Point
 - Some students have to create video clip to explain their results

Submit both slide and python code

Add constant

□ When you use OLS of statsmodels with intercept term (β_0) , you should add a constant column

import statsmodels.api as sm

X2=sm.add_constant(X)

Model without constant

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		price OLS Least Squares , 14 Sep 2020 20:14:43 21613 21602	R-squared (uncentered): Adj. R-squared (uncentered): F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:			0.860 0.860 1.209e+04 0.00 -2.9879e+05 5.976e+05 5.977e+05	
Covariance Type====================================	coef 	It is unit	ncent is no		R ² , 4	0.975]4.2e+04 9354.626 0.188 2.84e+04 7.97e+05 254.217 297.941	
yr_built yr_renovated sqft_living15 sqft_lot15	-10.8950 68.5709 78.6768 -0.8858	4.282 4.169 3.850 0.088	-2.544 16.447 20.435 -10.023	0.011 0.000 0.000 0.000	-19.289 60.399 71.130 -1.059	-2.501 76.743 86.223 -0.713	

Model with constant

OLS Regression Results

Dep. Variable:	price	R-squared:	0.598
Model:	0LS	Adj. R-squared:	0.598
Method:	Least Squares	F-statistic:	2923.
Date:	Mon, 14 Sep 2020	Prob (F-statistic):	0.00
Time:	20:16:16	Log-Likelihood:	-2.9775e+05
No. Observations:	21613	AIC:	5.955e+05
Df Residuals:	21601	BIC:	5.956e+05
Df Model:	11		

Covariance Type: nonrobust

==========						
	coef	std err	t	P>¦t¦	[0.025	0.975]
const	6.418e+06	1.38e+05	46.627	0.000	6.15e+06	6.69e+06
bedrooms	-5.813e+04	2150.015	-27.038	0.000	-6.23e+04	-5.39e+04
bathrooms	6.615e+04	3737.401	17.701	0.000	5.88e+04	7.35e+04
sqft_lot	0.0371	0.055	0.671	0.502	-0.071	0.145
floors	5.498e+04	4020.903	13.673	0.000	4.71e+04	6.29e+04
waterfront	7.247e+05	1.86e+04	39.027	0.000	6.88e+05	7.61e+05
sqft_above	239.6824	3.895	61.538	0.000	232.048	247.317
sqft_basement	243.7353	4.812	50.654	0.000	234.304	253.167
yr_built	-3338.9292	71.492	-46.703	0.000	-3479.059	-3198.799
yr_renovated	11.9013	4.156	2.864	0.004	3.756	20.047
sqft_living15	90.4224	3.679	24.581	0.000	83.212	97.633
sqft_lot15	-0.7360	0.084	-8.731	0.000	-0.901	-0.571

Comparation using MSE

Using House sales prices in King County data

```
varlist=['bedrooms','bathrooms','sqft_lot','floors','waterfront','sqft_abo
ve','sqft_basement','yr_built','yr_renovated','sqft_living15','sqft_lot15']
X=house[varlist]
y=house['price']
X2=sm.add constant(X)
reg1=sm.OLS(y,X)
result1=reg1.fit()
y_pred1=result1.predict(X)
reg2=sm.OLS(y,X2)
                                               np.mean((y-y_pred1)**2)
result2=reg2.fit()
                                               59610125773.46967
y_pred2=result2.predict(X2)
np.mean((y-y_pred1)**2)
                                               np.mean((y-y_pred2)**2)
                                               54159131608.177925
np.mean((y-y pred2)**2)
```