

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- 60V,104A, $R_{DS(on),max} = 4.6 \text{m}\Omega @V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 60V \\ R_{DS(on),max} @ V_{GS} {=} 10V & 4.6 m\Omega \\ I_D & 104A \end{array}$

Pin Configuration

20C Schematic

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	60	V
Continuous drain current (T _C = 25°C)		104	Α
(T _C = 100°C)	I _D	65	Α
Pulsed drain current ¹⁾	I _{DM}	312	А
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ²⁾	Eas	28	mJ
Power Dissipation	P _D	89	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	Rejc	1.4	°C/W
Thermal Resistance Junction-to-Ambient	ReJA	55	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking	Units/Tube
VST06N046-TC	TO-220C	VST06N046-TC	50

Electrical Characteristics T_L = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics	'					
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	60			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2.0	3.0	4.0	V
Drain-source leakage current	I _{DSS}	V _{DS} =60 V, V _{GS} =0V			1	μΑ
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =20 A		3.6	4.6	mΩ
Forward transconductance	g _{fs}	V _{DS} =5V , I _D =20A		66		S
Dynamic characteristics						
Input capacitance	C _{iss}	V _{DS} = 30 V, V _{GS} = 0 V, F = 1MHz		3511		
Output capacitance	Coss			1176		pF
Reverse transfer capacitance	C _{rss}			67		
Turn-on delay time	t _{d(on)}			20.3		
Rise time	t _r	$V_{DD} = 30V, V_{GS} = 10V, I_D = 20A$		9.6		ns
Turn-off delay time	t _{d(off)}	R_G =3 Ω		61		
Fall time	t _f			15.2		
Gate resistance	Rg	V _{GS} =0 V,V _{DS} =0 V, F=1MHz		1.1		Ω
Gate charge characteristics						
Gate to source charge	Q _{gs}	V 00V I 00A		15.5		
Gate to drain charge	Q _{gd}	V_{DS} =30V, I_{D} =20A,		9.5		nC
Gate charge total	Qg	- V _{GS} = 10 V		48		
Drain-Source diode characterist	ics and Maxi	mum Ratings				
Continuous Source Current	Is				74	А
Pulsed Source Current ³⁾	I _{SM}				222	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =20A, T _J =25℃			1.2	V
Reverse recovery time	t _{rr}	I _F =20A,dI _F /dt=100 A/µs		24		ns
Reverse recovery charge	Qrr			85		nC

Notes:

- 1: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2: V_{DD} =50V, V_{GS} =10V, L=0.1mH, I_{AS} =24A, Starting T_J =25 $^{\circ}$ C.
- 3: Pulse Test: Pulse Width $\leqslant\!300~\mu$ s, Duty Cycle $\!\!\leqslant\!2\%$.

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature

Figure 8. V_{GS(th)}-Junction Temperature

Figure 9. On-Resistance vs. Gate-to-Source voltage

Figure 10: Safe Operating Area

Figure 11. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

