COMP3052.SEC Computer Security

Session 12: Intrusion Detection

Acknowledgements

- Some of the materials we use this semester may come directly from previous teachers of this module, and other sources ...
- Thank you to (amongst others):
 - Michel Valstar, Milena Radenkovic, Mike Pound, ...

This Session

- Network Attack Models
 - Insider Attacks
- Intrusion Detection Systems
 - Network and Host-based
- Protocol Analysis
- Signature Detection
- Anomaly Detection

Intrusion & Detection

Security Intrusion:

'A security event, or a combination of multiple events that constitutes a security incident in which an intruder gains, or attempts to gain, access to a system or asset without authorisation.'

Intrusion Detection

'A security service which monitors and analyses system events for the purpose of finding and providing (near to) real-time warning of attempts to access assets in an unauthorised manner'

Internet Security Glossary RFC 2828

Network Attack Models

- Firewalls don't protect against:
 - Attacks using valid protocols
 - Insider attacks

Intruders

Masquerader

 An outsider who is an unauthorised individual who gains access via a legitimate user account

Misfeasor

 An insider who is a legitimate user, who misuses access permissions and privileges

Clandestine

Subject who seizes supervisory control to evade auditing

Insider Attacks

- The most difficult to detect and prevent
 - often simply an HR issue
- Employees will have intimate knowledge of both system layouts and potentially vulnerable services
- Motivated by revenge or entitlement
 - corporate espionage
 - More recently, whistleblowing
- Intrusion detection and system monitoring is the only defence against insiders

Anti-virus Teaser

Signature-based Detection:

- Store some small code signature for each virus
- Scan files either in bulk or at runtime, compare with the signatures on file
- Generic signatures

Heuristics:

- Determine what actions and rules a virus program will normally adopt
- Start the program in a VM and see what it does

Machine Learning

Misuse vs. Anomaly

- Misuse detection
 - Based on signatures
 - Can miss novel or variant attacks
 - Unsuitable for zero-day attack detection
- Anomaly detection
 - Detects deviations from normal behaviour
 - Can generate too many false alerts
 - What is defined as 'normal' can change over time

Current IDS Issues

- Misuse detection is pretty straightforward
 - need to increase the speed of updating the signature database
- Anomaly detection is by no means solved
 - still massive research effort worldwide
 - look for novel solutions outside of statistical machine learning
 - cope with changing user and network behaviour

Intrusion Detection/Prevention

- Intrusion Detection Systems (IDS)
 - Detects possible intrusion attempts
 - Generates alerts and logs for administrators

- Intrusion Prevention Systems (IPS)
 - Identical to IDS except also stops the attack

IDS Deployment

Network-based:

 Monitors network traffic and analyses a variety of packets from different protocols to identify suspicious activity

Host-based:

- Monitors the characteristics of a single host to find suspicious activity including resource / app usage
- In many ways modern Anti-Virus does this

Network-based IDS

- Placed at a viewpoint on a network to examine and analyse traffic
 - Installed on a firewall or in a DMZ
 - Installed behind a screened subnet
- May perform deeper analysis than many firewalls, e.g. stateful protocol analysis and deep packet inspection

Network-based IDS

- Can monitor traffic from multiple hosts
 - Enables use of correlation techniques
 - which can be very powerful
- Can be difficult to detect fragmented packet based attacks
- Harder to detect phishing or trojan attacks
- Better at detecting DDoS attacks
- Deep packet inspection rarely used

Host-based IDS

- Additional layer of security software running on a host within a protected LAN or VPN
- Creates a profile of usage for specific users
- Can monitor both the internals of a host including CPU, memory use, application use and the network stack

Host-based IDS

- Can easily correlate network with host behaviour
 - can inspect more useful data
- Can perform deep packet inspection
- Can deal with packet fragmentation
- Only gets insight from a single machine
- Lends itself more to anomaly-based techniques

Components of IDS

- Sensors / Agents: collect and collate data from multiple viewpoints on a network
- Analysers: ascertain if an intrusion has taken place
- Reporting: notify the administrators via alerts, usually a console or graphical interface is required

Multiple sensors allow us to distribute analysis, but centralise computing overhead

Detection Modes

- Stateful Protocol Analysis
 - More complex version of a stateful packet filter
- Signature-based Detection
 - Fingerprinting sequences of operations or packets
- Anomaly-based Detection
 - Build a model of "normal" and find deviations

Protocol Analysis

- Hold detailed session information on protocols being used, examine for attacks:
 - Why is this user logging in as root?
 - Why is this command being sent a 1000 byte buffer as a parameter?
- Computationally costly, and requires the IDS to have all possible versions of these protocols described in its database

Signature-based Systems

- Like antivirus, signatures are created and stored in a database
 - operations rather than binaries
- If operations match a defined signature, then an alarm is triggered
- Include some form of attack language
 - Mechanisms to describe sequences of events
 - Maintain and monitor intermediate states and event transitions

Signature-based Systems

- The pros and cons of these systems are identical to their anti-virus counterparts
 - Computationally efficient
 - Will always spot a known attack or vulnerability
 - Will always miss an unknown attack or vulnerability
 - Detailed signature databases must be kept up-to-date

Example Signature

- What are the signs that a host on the network is performing port scans?
 - Large amounts of ICMP traffic
 - Many TCP connection (SYN) packets
 - These connections going to a variety of other hosts

"If a host establishes more than three TCP connections to different hosts in five seconds, it is port scanning"

SNORT

Snort is a powerful and well established IDS

- Also free!
- Uses rules to analyse network packets, and then can provide alerts or logging

Snort Rule Example

Rule outline:

action proto src-ip src-port direction dst-ip dst-port (options)

Buffer Overflow?

```
activate tcp any any -> 192.168.1.21 22 (activates:1; msg:"Possible SSH exploit"; content:"|90|"; \ offset:\(\frac{4}{9}\); depth:75; dsize: >6000;)

dynamic tcp any any -> 192.168.1.21 22 (activated_by:1; count:100;)
```

Detecting Nmap

 Snort has built in rules for detecting Nmap, a logged scan may look like this:

```
08/xx-13:27:32.464097 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3537 \ dport: 5232 tgts: 1 ports: 11 flags: ******** event_id: 0
08/xx-13:27:32.464177 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3538 \ dport: 5002 tgts: 1 ports: 12 flags: ******** event id: 7
08/xx-13:27:32.464256 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3539 \ dport: 780 tgts: 1 ports: 13 flags: ******S* event_id: 7
08/xx-13:27:32.465642 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3540 \ dport: 1484 tgts: 1 ports: 14 flags: ************ event id: 7
08/xx-13:27:32.465722 TCP src: 10.0.4.100 dst: 10.0.4.1 sport: 3541 \ dport: 2002 tgts: 1 ports: 15 flags: ******** event_id: 7
etc. ...
```

Nmap Timings

- You can avoid detection when using Nmap by reducing the speed of the scan
- This makes port scanning very hard to distinguish from general network noise
- Nmap contains 6 timing options

Anomaly Detection

- Anomaly detection has wideranging applications from IDS to banking fraud
- Build up a picture of normal usage, and detect when usage moves beyond what is normal
 - This may involve usage of network, applications, storage, system calls etc.
- Always a trade off between false positives and false negatives

What is Normal?

- Run a host within a quarantined environment and collect training data
- Constructed by monitoring audit logs
- Sometimes rely on analysis of sequences of system calls through normal behaviour

What is THING HON?

Statistical Models of Normal

Probability density function

Measurable behaviour e.g. Network Bandwidth

Complex Behaviours

Profiles can be complex, and can change over time

Measurable behaviour e.g. Network Bandwidth

Machine Learning

- Machine learning approaches train a model to make predictions on data
- Support Vector Machines, Neural Networks etc. all see use in intrusion detection Hidden

Artificial Neural Networks are capable of modelling complex non-linear functions

Neural Networks for ID

- A network can be pre-trained
- Sensor measurements are then passed through the network
- Activations in the specific output neuron signal an alert

Drawbacks

- Scaling:
 - Search space can increase exponentially
 - Real-time data
- False negatives
 - Limits in the representation
 - What is normal can change
 - do we re-train and risk learning intruder behaviour?

Intrusion Prevention

- A common extension of IDS, often network based
- Actively monitors the system through stateful analysis
 - Setting alarms
 - Dropping packets, stalling connections, closing ports
 - Can be subverted to cause DoS

Summary

- Network Attack Models
 - Insider Attacks
- Intrusion Detection Systems
 - Network and Host-based
- Protocol Analysis
- Signature Detection
- Anomaly Detection

Anderson 21.4.2