

Trip-duration Prediction Report

NYC TAXI

Objectives

Understanding CRISP-DM

1

Example CRISP-DM Implementation

2

Table of Contents

	Page
CRISP-DM Explanation	
Business Understanding	
Data Understanding	
Data Preparation	
Modelling & Evaluation	
Conclusion	

What is CRISP-DM?

CRISP-DM Framework

Cross-Industry Standard Process for Data mining

Business Understanding

- Looking for problem base on business perspective.
- 2. Define decision base on problem that you find
- Looking for information that needed to inform those decision
- Determine type analysis can provide the information needed to inform those decisions

Data Understanding

CALL NYC
TAXI

- Initial data collection and proceeds with activities in order to get familiar with data,
- 2. To identify data quality problems and that's characteristics
- Discovered first insights into the data or to detect interesting subset to form hypotheses for hidden information

Data Preparation

CALL NYC
W TAXI

- 1. In this step we build dataset to make modeling from raw data.
- 2. We can iterate step until data is clean and great to make modeling.

Modelling

- Determine what methodology to use to solve the problem
- Determine the important factors or variables that will help solve the problem
- Build a model to solve the problem
- Run the model and move to the evaluation phase

Evaluation

- To checking the quality model objectively and how effective model to solve the problem
- 2. Observe the key results on the model
- 3. Ensure the results make sense within the content of the business problem
- 4. Determine whether to proceed to the next step or return to a previous phase
- 5. Repeat as many times necessary

Deployment/Presenting

CALL NYC
TAXI

Knowledge gained will need to be organized and presented in a way that the customer can use it. However, depending on the requirements, the deployment phase can be as simple as generating a report or as complex as implementing a repeatable data mining process across the enterprise.

Business Problems

The New York City taxicab had humble beginnings. When the "traditional" metered, gasoline-powered taxicabs began operating in October 1907, they were in tough competition with other forms of transportation throughout the city.

Nowadays, in the era of online transportation and application, one of the important thing that passenger need is the accurate trip duration information in the application. Providing accurate information about ETA is very challenging given road conditions and uncertain circumstances.

Objectives

Predict trip duration in real time

Success Criteria

Root Mean Square Logarithmic Error (RMSE) Root mean square logarithmic error is quadratic scoring rule that also measure the average magnitude of the error. It's the square root of the average of squared difference between prediction and actual observation with logarithmic condition.

$$\epsilon = \sqrt{rac{1}{n}\sum_{i=1}^n (\log(p_i+1) - \log(a_i+1))^2}$$

 ϵ = is the RMSLE value(score)

n = the total number of observations in the (public/private) data set,

pi = is your prediction of trip duration

ai = is the actual trip duration for i.

log(x) = is the natural logarithmic of x

Original Data

Data train

- id
- Vendor_id
- Pickup_time
- Dropoff_time
- Passenger_count
- Pickup_latitude
- Pickup_longitude
- Dropoff_longitude
- Dropoff_latitude
- Store_and_fwd_flag
- Trip_duration

Data test

- id
- Vendor id
- Pickup_time
- Passenger_count
- Pickup_latitude
- Pickup_longitude
- Dropoff_longitude
- Dropoff_latitude
- Store_and_fwd_flag
- Trip_duration

After use np.log

Adding New Data

Data train

- Hour
- Month
- weekofYear
- dayofMonth
- dayofWeek
- distance_haversine
- distance_dummy_manhattan
- direction

Data test

- Hour
- Month
- weekofYear
- dayofMonth
- dayofWeek
- distance_haversine
- distance_dummy_manhattan
- direction

After use np.log to normalize

After capping data

Modelling Technique

LightGBM Regressor

CatBoost

16 Features

LightGBM Result

train	Test	MALE	MSLE	RMSLE
0.78	0.78	0.24	0.11	0.34

CatBoost Result

train	Test	MALE	MSLE	RMSLE
0.82	0.81	0.22	0.10	0.31

Conclusion

	Train	Test	MALE	MSLE	RMSLE
LightGBM	0.78	0.78	0.25	0.11	0.34
CatBoost	0.82	0.82	0.22	0.10	0.31

We recommend, that CatBoost algorithm to solve in this case.

Thank You

Source:

CALL NYC

- https://www.kaggle.com/c/nyc-taxi-trip-duration/notebooks
- https://catboost.ai/docs/concepts/about.html
- https://lightgbm.readthedocs.io/en/latest/
- http://www.nyc.gov/html/media/totweb/taxioftomorrow_history.html