

Modül 13: Adres Çözünürlük

Ağ Temelleri (BNET)

Modül Hedefleri

Modül Başlığı: Adres Çözümlemesi

Modül Amacı: ARP'nin bir ağ üzerinde iletişimi nasıl sağladığını açıklayın.

Konu Başlığı	Konu Amaç	
MAC ve IP	MAC adresi ve IP adresinin rollerini karşılaştırın.	
Yayın Kısıtlaması	Yayınların bir ağ içerisinde tutulmasının neden önemli olduğunu açıklayın.	

13.1 MAC ve IP

Aynı Ağ Üzerindeki Hedef

- Bir ana bilgisayar bir mesaj göndermek zorunda kaldığında, hedef cihazın MAC adresini bilmesi gerekir, ancak yalnızca hedef cihazın IP adresini bilir.
- İşte tam bu noktada adres çözümlemesi kritik hale geliyor.
- Ethernet LAN'daki bir cihaza atanan iki birincil adres vardır:
 - Fiziksel adres((MAC adresi) Aynı Ethernet ağında NIC-NIC iletişimleri için kullanılır.
 - Mantıksal adres(IP adresi) Paketi kaynak cihazdan hedef cihaza göndermek için kullanılır. Hedef IP adresi kaynakla aynı IP ağında olabilir veya uzak bir ağda olabilir.
- Katman 2 fiziksel adresleri (yani Ethernet MAC adresleri), kapsüllenmiş IP paketiyle veri bağlantı çerçevesini aynı ağdaki bir NIC'den başka bir NIC'ye iletmek için kullanılır.
- Hedef IP adresi aynı ağ üzerinde ise hedef MAC adresi hedef cihazın adresi olacaktır.

athatha

CISCO

Aynı Ağ Üzerindeki Hedef (Devamı)

- PC1, PC2'ye bir paket göndermek istiyor.
- Şekilde PC1'den gönderilen pakete dahil edilecek Katman 2 hedef ve kaynak MAC adresleri ve Katman 3 IPv4 adreslemesi gösterilmektedir.
- Katman 2 Ethernet çerçevesi aşağıdakileri içerir:
 - Hedef MAC adresi-Bu PC2'nin basitleştirilmiş MAC adresidir, 55-55-55.
 - Kaynak MAC adresi–Bu, PC1'deki Ethernet NIC'nin basitleştirilmiş MAC adresidir, aa-aa-aa.
- Katman 3 IP paketi aşağıdakileri içerir:
 - Kaynak IPv4 adresi-Bu PC1'in IPv4 adresidir, 192.168.10.10.
 - Hedef IPv4 adresi-Bu PC2'nin IPv4 adresidir, 192.168.10.11.

-12

Uzak Ağdaki Hedef

- Hedef IP adresi (IPv4 veya IPv6) uzak bir ağda olduğunda, hedef MAC adresi ana bilgisayarın varsayılan ağ geçidinin (yani yönlendirici arayüzünün) adresi olacaktır.
- Bu örnekte, PC1 uzak bir ağda bulunan PC2'ye bir paket göndermek istiyor.
- PC1 ile aynı yerel ağda olmadıkları için hedef MAC adresi, yönlendiricideki yerel varsayılan ağ geçidinin MAC adresidir.
- Yönlendiriciler, IPv4 paketini iletmek için en iyi yolu belirlemek amacıyla hedef IPv4 adresini inceler.
- Yönlendirici Ethernet çerçevesini aldığında, Katman 2 bilgilerini kapsülden çıkarır.
- Hedef IPv4 adresini kullanarak bir sonraki atlama cihazını belirler ve ardından IPv4 paketini giden arayüz için yeni bir veri bağlantı çerçevesine kapsüller.

Destination	Source	Source IPv4	Destination
MAC	MAC		IPv4
bb-bb-bb	aa-aa-aa	192.168.10.10	10.1.1.10

 R1 artık paketi şekilde gösterildiği gibi yeni Katman 2 adres bilgileriyle kapsülleyecektir.

Uzak Ağdaki Hedef (Devamı)

- Yeni hedef MAC adresi R2 G0/0/1 arayüzünün, yeni kaynak MAC adresi ise R1 G0/0/1 arayüzünün olacaktır.
- Bir yoldaki her bağlantı boyunca bir IP paketi bir çerçeveye kapsüllenir.
- Çerçeve, Ethernet gibi söz konusu bağlantıyla ilişkili veri bağlantı teknolojisine özgüdür.
- Bir sonraki atlama aygıtı son hedef ise, hedef MAC adresi şekilde gösterildiği gibi aygıtın Ethernet NIC'sinin adresi olacaktır.
- Bir veri akışındaki IP paketlerinin IP adresleri, ağdaki MAC adresleriyle nasıl ilişkilendirilir? Hedefe giden yoldaki her bağlantı?
- IPv4 paketleri için bu, ARP adı verilen bir işlemle yapılır.
- IPv6 paketleri için işlem ICMPv6 Komşu Keşfi'dir (ND).

Destination	Source	Source IPv4	Destination
MAC	MAC		IPv4
55-55-55	ee-ee-ee	192.168.10.10	10.1.1.10

Paket İzleyici - MAC ve IP Adreslerini Tanımlayın

Bu Paket İzleyici etkinliğinde aşağıdaki hedefleri tamamlayacaksınız:

- Yerel ağ iletişimi için PDU bilgilerini toplayın.
- Uzak ağ iletişimi için PDU bilgilerini toplayın.
- Bu etkinlik PDU'ları görüntülemek için optimize edilmiştir.
- Cihazlar zaten yapılandırılmıştır. Simülasyon modunda PDU bilgilerini toplayacaksınız ve topladığınız veriler hakkında bir dizi soruyu yanıtlayacaksınız.

13.2 Yayının Sınırlandırılması

Video - Ethernet Yayını

Bu videoda Ethernet yayınına bakacağız.

Yayın Alanları

- Bir ana bilgisayar yayın adresine hitap eden bir mesaj aldığında, mesaj doğrudan kendisine hitap edilmiş gibi mesajı kabul eder ve işler.
- Bir ana bilgisayar bir yayın mesajı gönderdiğinde, anahtarlar mesajı aynı yerel ağ içindeki bağlı her ana bilgisayara iletir.
- Bu nedenle, bir veya daha fazla Ethernet anahtarından oluşan bir ağ olan yerel alan ağı, yayın alanı olarak da adlandırılır.
- Aynı yayın etki alanına çok fazla sayıda ana bilgisayar bağlanırsa, yayın trafiği aşırı hale gelebilir.
- Yerel ağda desteklenebilecek ana bilgisayar sayısı ve ağ trafiği miktarı, bunları birbirine bağlamak için kullanılan anahtarların yetenekleriyle sınırlıdır.
- Ağ büyüdükçe ve daha fazla ana bilgisayar eklendikçe, yayın trafiği de dahil olmak üzere ağ trafiği artar.

Yayın Alanları (Devamı)

- Performansı artırmak için, genellikle bir yerel ağı, şekilde gösterildiği gibi, birden fazla ağa veya yayın alanına bölmek gerekir.
- Yönlendiriciler, ağı birden fazla yayın alanına bölmek için kullanılır.

Erişim Katmanı İletişimi

- Yerel bir Ethernet ağında, bir NIC yalnızca hedef adresin yayın MAC adresi olması veya NIC'nin MAC adresine karşılık gelmesi durumunda bir çerçeveyi kabul eder.
- Ancak çoğu ağ uygulaması mantıksal Sunucuların ve istemcilerin yerini belirlemek için hedef IP adresi.
- Şekil, gönderen ana bilgisayarın yalnızca hedef ana bilgisayarın mantıksal IP adresine sahip olması durumunda ortaya çıkan sorunu göstermektedir.
- Gönderen ana bilgisayar, çerçeve içinde hangi adresin kullanılacağını belirlemek için aynı yerel ağdaki herhangi bir ana bilgisayarın MAC adresini keşfetmek amacıyla ARP adı verilen bir IPv4 protokolünü kullanabilir.
- IPv6, Komşu Keşfi olarak bilinen benzer bir yöntemi kullanır.

Video - Adres Çözümleme Protokolü

Bu videoda Adres Çözümleme Protokolü (ARP)'ne giriş yapılmaktadır.

ARP

- ARP, yalnızca ana bilgisayarın IPv4 adresi bilindiğinde, yerel ağdaki bir ana bilgisayarın MAC adresini keşfetmek ve depolamak için üç adımlı bir süreç kullanır:
 - 1. Gönderen ana bilgisayar, yayın MAC adresine adreslenen bir çerçeve oluşturur ve gönderir. Çerçevede, amaçlanan hedef ana bilgisayarın IPv4 adresini içeren bir mesaj bulunur.
 - 2. Ağdaki her ana bilgisayar yayın çerçevesini alır ve mesajdaki IPv4 adresini yapılandırılmış IPv4 adresiyle karşılaştırır. Eşleşen IPv4 adresine sahip ana bilgisayar, MAC adresini orijinal gönderen ana bilgisayara geri gönderir.
 - 3. Gönderen bilgisayar mesajı alır ve MAC adresi ve IPv4 adresi bilgilerini ARP tablosu adı verilen bir tabloda depolar.
- Gönderen bilgisayar, ARP tablosunda hedef bilgisayarın MAC adresine sahip olduğunda, ARP isteği yapmadan doğrudan hedefe çerçeveler gönderebilir.
- ARP mesajları istekleri iletmek için yayın çerçevelerine dayandığından, yerel IPv4 ağındaki tüm ana bilgisayarlar aynı yayın etki alanında olmalıdır.

13.3 Adres Çözümleme Özeti

Adres Çözüm Özeti

Bu Modülde Neler Öğrendim?

- Bir ana bilgisayar bir mesaj göndermek istediğinde, o cihazın IP adresini ve MAC adresini bilmesi gerekir.
- MAC adresi, adres çözümlemesi kullanılarak bulunabilir.
- Ethernet LAN'ındaki bir cihaza atanan iki birincil adres vardır: fiziksel adres (MAC adresi) ve mantıksal adres (IP adresi).
- Hedef IP adresi (IPv4 veya IPv6) uzak bir ağda olduğunda, hedef MAC adresi ana bilgisayarın varsayılan ağ geçidinin (yani yönlendirici arayüzünün) adresi olacaktır.
- Yönlendiriciler, IPv4 paketini iletmek için en iyi yolu belirlemek amacıyla hedef IPv4 adresini inceler.
- Yönlendirici Ethernet çerçevesini aldığında, Katman 2 bilgilerini kapsülden çıkarır.
- Hedef IPv4 adresini kullanarak bir sonraki atlama cihazını belirler ve ardından IPv4 paketini giden arayüz için yeni bir veri bağlantı çerçevesine kapsüller.
- Bir yoldaki her bağlantı boyunca bir IP paketi bir çerçeveye kapsüllenir.
- Çerçeve, Ethernet gibi söz konusu bağlantıyla ilişkili veri bağlantı teknolojisine özgüdür.
- Bir sonraki atlama aygıtı son hedef ise, hedef MAC adresi aygıtın Ethernet NIC'sinin adresi olacaktır.
- Bir mesaj yalnızca bir hedef MAC adresi içerebilir.
- Adres çözümlemesi, bir ana bilgisayarın tüm ana bilgisayarlar tarafından tanınan benzersiz bir MAC adresine yayın mesajı göndermesine olanak tanır.

Adres Çözüm Özeti

Bu Modülde Neler Öğrendim? (Devamı)

- Yayın MAC adresi, tamamı birlerden oluşan 48 bitlik bir adrestir ve genellikle onaltılık gösterimle (FFFF.FFFF) temsil edilir.
- Onaltılık gösterimdeki her F, ikili adreste dört tane biri temsil eder.
- Bir ana bilgisayar bir yayın mesajı gönderdiğinde, anahtarlar mesajı aynı yerel ağ içindeki bağlı her ana bilgisayara iletir.
- Bir veya daha fazla Ethernet anahtarından oluşan yerel alan ağı, yayın alanı olarak da adlandırılır.
- Aynı yayın etki alanına çok fazla sayıda ana bilgisayar bağlanırsa, yayın trafiği aşırı hale gelebilir.
- Yerel ağda desteklenebilecek ana bilgisayar sayısı ve ağ trafiği miktarı, bunları birbirine bağlamak için kullanılan anahtarların yetenekleriyle sınırlıdır.
- Performansı artırmak için, bir yerel ağı birden fazla ağa (yayın etki alanlarına) bölmek için yönlendiriciler kullanılır.
- Yerel bir Ethernet ağında, bir NIC yalnızca hedef adresin yayın MAC adresi olması veya NIC'nin MAC adresine karşılık gelmesi durumunda bir çerçeveyi kabul eder.
- Çoğu ağ uygulaması, sunucuların ve istemcilerin konumunu belirlemek için mantıksal hedef IP adresine güvenir.
- ARP, yalnızca ana bilgisayarın IPv4 adresi bilindiğinde yerel ağdaki bir ana bilgisayarın MAC adresini keşfetmek ve depolamak için üç adımlı bir süreç kullanır
- IPv6, Komşu Keşfi olarak bilinen benzer bir yöntemi kullanır.