Day 2

高天宇 2017年7月26日

编译命令	g++ -o * *.cpp
	gcc -o * *.c
	fpc *.pas
编译器版本	$g++/gcc \ 4.9.2$
	fpc 2.6.2
评测环境	64 位 Linux, 3.3GHZ CPU
评测软件	Lemon
评测方式	忽略行末空格和回车

特别注意: c/c++ 选手使用 printf 输出 64 位整数请使用%lld

A 债务

文件名	输入文件	输出文件	时间限制	空间限制
debt.pas/c/cpp	debt.in	debt.out	1s	128MB

题目描述

小 G 有一群好朋友,他们经常互相借钱。假如说有三个好朋友 A, B, C。 A 欠 B 20 元, B 欠 C 20 元,总债务规模为 20+20=40 元。小 G 是个追求简约的人,他觉得这样的债务太繁杂了。他认为,上面的债务可以完全等价为 A 欠 C 20 元,B 既不欠别人,别人也不欠他。这样总债务规模就压缩到了 20 元。

现在给定n个人和m条债务关系。小G想找到一种新的债务方案,使得每个人欠钱的总数不变,或被欠钱的总数不变(但是对象可以发生变化),并且使得总债务规模最小。

输入格式

输入文件第一行两个数字 n, m, 含义如题目所述。

接下来 m 行, 每行三个数字 a_i, b_i, c_i , 表示 a_i 欠 b_i 的钱数为 c_i 。

注意,数据中关于某两个人 A 和 B 的债务信息可能出现多次,将其累加即可。如"A 欠 B 20 元"、"A 欠 B 30 元"、"B 欠 A 10 元",其等价为"A 欠 B 40 元"。

输出格式

输出文件共一行,输出最小的总债务规模。

样例输入 1

- 5 3
- 1 2 10
- 2 3 1
- 2 4 1

样例输出 1

10

样例输入 2

- 4 3
- 1 2 1
- 2 3 1
- 3 1 1

样例输出 2

0

数据范围

- 对于 30% 的数据, $1 \le n \le 10$, $1 \le m \le 10$.
- 对于 60% 的数据, $1 \le n \le 100$, $1 \le m \le 10^4$ 。
- 对于 80% 的数据, $1 \le n \le 10^4$, $1 \le m \le 10^4$ 。
- 对于 100% 的数据, $1 \le n \le 10^6$, $1 \le m \le 10^6$ 。
- 对于所有的数据,保证 $1 \le a_i, b_i \le n, 0 < c_i \le 100$ 。

B 排列

文件名	输入文件	输出文件	时间限制	空间限制
perm.pas/c/cpp	perm.in	perm.out	1s	128MB

题目描述

小 G 喜欢玩排列。现在他手头有两个 n 的排列。n 的排列是由 0,1,2,...,n-1 这 n 的数字组成的。对于一个排列 p, Order(p) 表示 p 是字典序第 Order(p) 小的排列 (从 0 开始计数)。对于小于 n! 的非负数 x, Perm(x) 表示字典序第 x 小的排列。

现在,小 G 想求一下他手头两个排列的和。两个排列 p 和 q 的和为 sum = Perm((Order(p) + Order(q))%n!)。

输入格式

输入文件第一行一个数字 n, 含义如题。

接下来两行,每行n个用空格隔开的数字,表示小G手头的两个排列。

输出格式

输出一行 n 个数字, 用空格隔开, 表示两个排列的和。

样例输入 1

2

0 1

1 0

样例输出 1

1 0

样例输入 2

3

1 2 0

2 1 0

样例输出 2

1 0 2

数据范围

- 1、2、3、4 测试点, $1 \le n \le 10$ 。
- 5、6、7 测试点, $1 \le n \le 5000$,保证第二个排列的 $Order \le 10^5$ 。
- 8、9、10 测试点, $1 \le n \le 5000$ 。

C 剪树枝

文件名	输入文件	输出文件	时间限制	空间限制
tree.pas/c/cpp	tree.in	tree.out	1s	128MB

题目描述

rzyz 有一棵苹果树。苹果树有 n 个节点(也就是苹果), n-1 条边(也就是树枝)。调皮的小 G 爬到苹果树上。他发现这棵苹果树上的苹果有两种:一种是黑苹果,一种是红苹果。小 G 想要剪掉 k 条树枝,将整棵树分成 k+1 个部分。他想要保证每个部分里面有且仅有一个黑苹果。请问他一共有多少种剪树枝的方案?

输入格式

第一行一个数字 n,表示苹果树的节点(苹果)个数。

第二行一共 n-1 个数字 $p_0, p_1, p_2, p_3, ..., p_{n-2}, p_i$ 表示第 i+1 个节点和 p_i 节点之间有一条边。注意,点的编号是 0 到 n-1。

第三行一共 n 个数字 $x_0, x_1, x_2, x_3, ..., x_{n-1}$ 。如果 x_i 是 1,表示 i 号节点是黑苹果;如果 x_i 是 0,表示 i 号节点是红苹果。

输出格式

输出一个数字,表示总方案数。答案对 $10^9 + 7$ 取模。

样例输入 1

3

0 0

0 1 1

样例输出 1

2

样例输入 2

6

0 1 1 0 4

1 1 0 0 1 0

样例输出 2

1

样例输入3

10

0 1 2 1 4 4 4 0 8

0 0 0 1 0 1 1 0 0 1

样例输出3

27

数据范围

对于 30% 的数据, $1 \le n \le 10$ 。

对于 60% 的数据, $1 \le n \le 100$ 。

对于 80% 的数据, $1 \le n \le 1000$ 。

对于 100% 的数据, $1 \le n \le 10^5$ 。

对于所有数据点,都有 $0 \le p_i \le n-1$, $x_i = 0$ 或 $x_i = 1$ 。

特别地,60%中、80%中、100%中各有一个点,树的形态是一条链。