### **BLADE**:

# An Attack-Agnostic Approach for Preventing Drive-By Malware Infections

Long Lu<sup>1</sup>, Vinod Yegneswaran<sup>2</sup>, Phillip Porras<sup>2</sup>, Wenke Lee<sup>1</sup>

<sup>1</sup> Georgia Tech <sup>2</sup> SRI International Oct. 6th, 2010

### Malware Propagation Facts

One common path: the Internet



- Two fundamental approaches:
  - Drive-by download Vs. Social engineering

- Drive-by Download
  - most favored by today's attackers
  - Counts for more than 60% malware infections [ISC09, Dasiant10, Google10]

# Drive-by Download

- **Definition:** *Drive-by Download* An attack in which the mere connection to a website results in the installation of a binary executable without the web-user's authorization.
  - A click-then-infect scheme
  - Exploiting client-side vulnerabilities









# Regular browsing & downloading



Browser automatically saves and renders <u>supported</u> file types (\*.html, \*.js, \*.jpeg, etc.)

# Regular browsing & downloading



Browser asks for user consent before saving <u>unsupported</u> file types (\*.exe, \*.zip, \*.dll, etc.)

### Drive-by download attack









### Observations



#### Browsers handle

- supported content automatically
- unsupported content based on user's permissions

**Golden Rule:** Browsers should never automatically download and execute binary files without user consent.

<u>All</u> drive-by downloads inevitably break this rule. <u>No</u> drive-by download will succeed if this rule holds.

### **BLADE** Approach

- Goal: to eliminate drive-by malware infections
- Approach: unconsented execution prevention
  - Exploit and vulnerability agnostic
  - Browser independent

Essential steps:

- 1. Exploit
- 2. Download
- 3. Execute

#### **User Intent tracking**

#### **Consented download correlation**

Unconsented download execution prevention

### **BLADE** Design

#### **Assumptions**

- Browsers may be fully compromised;
- OS is trusted;
- H/W is trusted.

### **Design choices**

- BLADE is designed as a kernel driver;
- User intents are inferred from H/W and window events;
- Consented download is correlated and verified;
- Unconsented download are contained in "SecureZone".

### **BLADE** Architecture



# How it works – regular download

Screen Parser

- Locate consent button(s)
- Parse correlation information

H/W Evt. Tracer

Monitor mouse and keyboard input

1/0 Redirector

Redirect disk writes from browsers

Correlator

- Discover candidate and verify its origin
- Map it to the regular file system





### How it works – drive-by download

1/0 Redirector

Redirect disk writes from browsers

1/0 Redirector

Alert when execution is attempted



Zone

### Implementations

- Screen Reader
  - Monitors certain windowing events
  - Parses internal composition of consent dialogues



### Implementations

- H/W Event Tracer
  - Resides above device drivers
  - Listens to IRPs



### Implementations

- I/O Redirector
  - Built as a file system mini-filter
  - Redirects file accesses
  - Provides a merged view

- Correlator
  - Uses transport driver interface
  - Records streams coming from download sources
  - Content-base correlation and verification

### **Empirical Evaluation**

- An automated test bed
- Harvest new real-world malicious URLs daily
- VMs with various software configurations

3 months 18896 visits 7925 defended

0 missed

# **Empirical Evaluation**



### Attack Coverage Evaluation

- Using 19 specifically hand-crafted exploits
- Covering all common exploiting techniques
- Targeting at diverse vulnerabilities (11 zero-days)
- BLADE prevented all 19 infection attempts

| ID | Exploit<br>CVE-ID | Browser     | Exploit Payload   | Detected<br>By Blade | Vuln. Notes              |  |
|----|-------------------|-------------|-------------------|----------------------|--------------------------|--|
| 1  | 2006-3677         | Firefox 1.5 | Remote_shell_bind | YES                  | window.navigator         |  |
| 2  | 2005-1476         | Firefox 1.5 | Download_exec     | YES                  | InstallTrigger.install() |  |
| 3  | 2007-0038         | Firefox 2.0 | Download_exec     | YES                  | LoadAnilcon()            |  |
|    |                   |             | DII_injection     | YES                  | LoadAniicon()            |  |
| 4  | 2009-2477         | Firefox 3.5 | Download_exec     | YES                  | TraceMonkey              |  |
|    |                   | 0-day       |                   |                      |                          |  |

# Security analysis

Potential ways to evade/attack BLADE



- Fake GUI
- Fake user response



- Replace download file
- Piggybacking



- Execute in Secure Zone
- Evade I/O redirection

# Benign Website Evaluation

Normal file downloads









Normal site-browsing









### Performance Evaluation

- Per-component test
- End-to-end test
- Worst case overhead 3%
- Negligible on average

| Browser     | Time (sec) | Time (sec) | Delay |
|-------------|------------|------------|-------|
|             | w/o BLADE  | w/ BLADE   |       |
| Firefox 3.5 | 3.531      | 3.563      | 0.91% |
| IE 7.0      | 4.328      | 4.401      | 1.69% |
| IE 8.0      | 4.028      | 4.733      | 1.18% |

| File Size<br>(MB) | Time (sec)<br>w/o BLADE | Time (sec)<br>w/ BLADE | Delay |
|-------------------|-------------------------|------------------------|-------|
| 0.98              | 2.134                   | 2.201                  | 3.14% |
| 9.23              | 33.201                  | 33.879                 | 2.04% |
| 94.66             | 313.443                 | 316.003                | 0.81% |

### Limitations

Social engineering attacks

In-memory execution of shellcode

Only effective against binary executables





www.blade-defender.org