Robot Mapping

EKF SLAM

Gian Diego Tipaldi, Luciano Spinello, Wolfram Burgard

Simultaneous Localization and Mapping (SLAM)

- Building a map and locating the robot in the map at the same time
- Chicken-or-egg problem

Definition of the SLAM Problem

Given

The robot's controls

$$u_{1:T} = \{u_1, u_2, u_3, \dots, u_T\}$$

Observations

$$z_{1:T} = \{z_1, z_2, z_3, \dots, z_T\}$$

Wanted

Map of the environment

Path of the robot

$$x_{0:T} = \{x_0, x_1, x_2, \dots, x_T\}$$

Three Main Paradigms

Kalman filter

Particle filter

Graphbased

Bayes Filter

Recursive filter with prediction and correction step

Prediction

$$\overline{bel}(x_t) = \int p(x_t \mid u_t, x_{t-1}) \ bel(x_{t-1}) \ dx_{t-1}$$

Correction

$$bel(x_t) = \eta \ p(z_t \mid x_t) \ \overline{bel}(x_t)$$

EKF for Online SLAM

 We consider here the Kalman filter as a solution to the online SLAM problem

$$p(x_t, m \mid z_{1:t}, u_{1:t})$$

Courtesy: Thrun, Burgard, Fox

Extended Kalman Filter Algorithm

```
Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
   \bar{\mu}_t = g(u_t, \mu_{t-1})
\dot{\bar{\Sigma}}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t
      K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}
      \mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))
    \Sigma_t = (I - K_t H_t) \, \bar{\Sigma}_t
     return \mu_t, \Sigma_t
```

EKF SLAM

- Application of the EKF to SLAM
- Estimate robot's pose and locations of landmarks in the environment
- Assumption: known correspondences
- State space (for the 2D plane) is

$$x_t = (\underbrace{x, y, \theta}_{\text{robot's pose landmark 1}}, \underbrace{m_{1,x}, m_{1,y}}_{\text{landmark n}}, \ldots, \underbrace{m_{n,x}, m_{n,y}}_{\text{landmark n}})^T$$

EKF SLAM: State Representation

- Map with n landmarks: (3+2n)-dimensional Gaussian
- Belief is represented by

EKF SLAM: State Representation

More compactly

EKF SLAM: State Representation

• Even more compactly (note: $x_R o x$)

EKF SLAM: Filter Cycle

- 1. State prediction
- 2. Measurement prediction
- 3. Measurement
- 4. Data association
- 5. Update

EKF SLAM: State Prediction

EKF SLAM: Measurement Prediction

EKF SLAM: Obtained Measurement

EKF SLAM: Data Association and Difference Between h(x) and z

16

EKF SLAM: Update Step

EKF SLAM: Concrete Example

Setup

- Robot moves in the 2D plane
- Velocity-based motion model
- Robot observes point landmarks
- Range-bearing sensor
- Known data association
- Known number of landmarks

Initialization

- Robot starts in its own reference frame (all landmarks unknown)
- 2N+3 dimensions

$$\Sigma_0 = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \infty & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \infty \end{pmatrix}$$

Extended Kalman Filter Algorithm

```
Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
2: \bar{\mu}_t = g(u_t, \mu_{t-1})

3: \bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t
            K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}
            \mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))
        \Sigma_t = (I - K_t H_t) \bar{\Sigma}_t
         return \mu_t, \Sigma_t
```

Prediction Step (Motion)

- Goal: Update state space based on the robot's motion
- Robot motion in the plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

$$g_{x,y,\theta}(u_t,(x,y,\theta)^T)$$

• How to map that to the 2N+3 dim space?

Update the State Space

From the motion in the plane

$$\begin{pmatrix} x' \\ y' \\ \theta' \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

to the 2N+3 dimensional space

$$\begin{pmatrix} x' \\ y' \\ \theta' \\ \vdots \end{pmatrix} = \begin{pmatrix} x \\ y \\ \theta \\ \vdots \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 \dots 0 \\ 0 & 1 & 0 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \\ 0 & 0 & 1 & 0 \dots 0 \end{pmatrix}^{T} \begin{pmatrix} -\frac{v_{t}}{\omega_{t}} \sin \theta + \frac{v_{t}}{\omega_{t}} \sin(\theta + \omega_{t} \Delta t) \\ \frac{v_{t}}{\omega_{t}} \cos \theta - \frac{v_{t}}{\omega_{t}} \cos(\theta + \omega_{t} \Delta t) \\ \omega_{t} \Delta t \end{pmatrix}$$

 $q(u_t,x_t)$

Extended Kalman Filter Algorithm

```
Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
  \bar{\mu}_t = g(u_t, \mu_{t-1}) done
\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t
K_t = \bar{\Sigma}_t \ H_t^T (H_t \ \bar{\Sigma}_t \ H_t^T + Q_t)^{-1}
   \mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))
\Sigma_t = (I - K_t H_t) \bar{\Sigma}_t
 return \mu_t, \Sigma_t
```

Update Covariance

 The function g only affects the robot's motion and not the landmarks

$$G_t^x = \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right]$$

$$G_t^x = \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right]$$

$$= I + \frac{\partial}{\partial (x, y, \theta)^T} \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

$$G_t^x = \frac{\partial}{\partial (x, y, \theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right]$$

$$= I + \frac{\partial}{\partial (x, y, \theta)^T} \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

$$= I + \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

$$G_t^x = \frac{\partial}{\partial(x,y,\theta)^T} \left[\begin{pmatrix} x \\ y \\ \theta \end{pmatrix} + \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix} \right]$$

$$= I + \frac{\partial}{\partial(x,y,\theta)^T} \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \theta - \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

$$= I + \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & -\frac{v_t}{\omega_t} \cos \theta + \frac{v_t}{\omega_t} \cos(\theta + \omega_t \Delta t) \\ 0 & 1 & -\frac{v_t}{\omega_t} \sin \theta + \frac{v_t}{\omega_t} \sin(\theta + \omega_t \Delta t) \\ 0 & 0 & 1 \end{pmatrix}$$

This Leads to the Update

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): 2: $\bar{\mu}_t = g(u_t, \mu_{t-1})$ Apply & DONE 3: $\stackrel{\bar{\Sigma}}{\Longrightarrow} \bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t$ $= G_t \Sigma_{t-1} G_t^T + R_t$ $= \begin{pmatrix} G_t^x & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} \Sigma_{xx} & \Sigma_{xm} \\ \Sigma_{mx} & \Sigma_{mm} \end{pmatrix} \begin{pmatrix} (G_t^x)^T & 0 \\ 0 & I \end{pmatrix} + R_t$

 $= \begin{pmatrix} G_t^x \Sigma_{xx} (G_t^x)^T & G_t^x \Sigma_{xm} \\ (G_t^x \Sigma_{xm})^T & \Sigma_{mm} \end{pmatrix} + R_t$

Extended Kalman Filter Algorithm

```
Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
\bar{\mu}_t = g(u_t, \mu_{t-1}) done
\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t \;  DONE
    K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}
    \mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))
 \Sigma_t = (I - K_t H_t) \, \bar{\Sigma}_t
  return \mu_t, \Sigma_t
```

EKF SLAM:Prediction Step

EKF_SLAM_Prediction($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t, c_t, R_t$):

$$2: F_x = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix}$$

3:
$$\bar{\mu}_t = \mu_{t-1} + F_x^T \begin{pmatrix} -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} - \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ \omega_t \Delta t \end{pmatrix}$$

4:
$$G_t = I + F_x^T \begin{pmatrix} 0 & 0 & -\frac{v_t}{\omega_t} \cos \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \cos(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & -\frac{v_t}{\omega_t} \sin \mu_{t-1,\theta} + \frac{v_t}{\omega_t} \sin(\mu_{t-1,\theta} + \omega_t \Delta t) \\ 0 & 0 & 0 \end{pmatrix} F_x$$

5:
$$\bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + \underbrace{F_x^T \; R_t^x \; F_x}_{R_t}$$

Extended Kalman Filter Algorithm

```
Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
  \bar{\mu}_t = g(u_t, \mu_{t-1}) Done
ar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t Apply & DONE
   K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}
   \mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))
 \Sigma_t = (I - K_t H_t) \, \bar{\Sigma}_t
  return \mu_t, \Sigma_t
```

EKF SLAM: Correction Step

- Known data association
- $c_t^i = j$: i-th measurement at time to observes the landmark with index j
- Initialize landmark if unobserved
- Compute the expected observation
- Compute the Jacobian of h
- Proceed with computing the Kalman gain

Range-Bearing Observation

- Range-Bearing observation $z_t^i = (r_t^i, \phi_t^i)^T$
- If landmark has not been observed

$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_t^i \cos(\phi_t^i + \bar{\mu}_{t,\theta}) \\ r_t^i \sin(\phi_t^i + \bar{\mu}_{t,\theta}) \end{pmatrix}$$

observed estimated location of landmark j

robot's location

relative measurement

Expected Observation

 Compute expected observation according to the current estimate

$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$

$$q = \delta^T \delta$$

$$\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

$$= h(\bar{\mu}_t)$$

Jacobian for the Observation

■ Based on
$$\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$
 $q = \delta^T \delta$
 $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

Compute the Jacobian

low-dim space $(x, y, \theta, m_{i,x}, m_{i,y})$

Jacobian for the Observation

■ Based on $\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$ $q = \delta^T \delta$ $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

Compute the Jacobian

$$\frac{\partial h(\bar{\mu}_t)}{\partial \bar{\mu}_t} = \frac{\partial h(\bar{\mu}_t)}{\partial \bar{\mu}_t} = \begin{pmatrix} \frac{\partial \sqrt{q}}{\partial x} & \frac{\partial \sqrt{q}}{\partial y} & \dots \\ \frac{\partial \text{atan2}(\dots)}{\partial x} & \frac{\partial \text{atan2}(\dots)}{\partial y} & \dots \end{pmatrix}$$

The First Component

■ Based on $\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$ $q = \delta^T \delta$ $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

We obtain (by applying the chain rule)

$$\frac{\partial \sqrt{q}}{\partial x} = \frac{1}{2} \frac{1}{\sqrt{q}} 2 \delta_x (-1)$$
$$= \frac{1}{q} (-\sqrt{q} \delta_x)$$

Jacobian for the Observation

■ Based on $\delta = \begin{pmatrix} \delta_x \\ \delta_y \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$ $q = \delta^T \delta$ $\hat{z}_t^i = \begin{pmatrix} \sqrt{q} \\ \arctan 2(\delta_y, \delta_x) - \bar{\mu}_{t,\theta} \end{pmatrix}$

Compute the Jacobian

$$\begin{aligned}
&\text{low} H_t^i &= \frac{\partial h(\bar{\mu}_t)}{\partial \bar{\mu}_t} \\
&= \frac{1}{q} \begin{pmatrix} -\sqrt{q} \delta_x & -\sqrt{q} \delta_y & 0 & +\sqrt{q} \delta_x & \sqrt{q} \delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}
\end{aligned}$$

Jacobian for the Observation

Use the computed Jacobian

$$^{\text{low}}H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & \delta_x \end{pmatrix}$$

map it to the high dimensional space

40

Next Steps as Specified...

```
Extended_Kalman_filter(\mu_{t-1}, \Sigma_{t-1}, u_t, z_t):
2: \bar{\mu}_t = g(u_t, \mu_{t-1}) DONE
3: \bar{\Sigma}_t = G_t \; \Sigma_{t-1} \; G_t^T + R_t \; \text{DONE}
4: \longrightarrow K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}
5: \mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))
6: \Sigma_t = (I - K_t H_t) \bar{\Sigma}_t
7: return \mu_t, \Sigma_t
```

Extended Kalman Filter Algorithm

Extended_Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$): $\bar{\mu}_t = g(u_t, \mu_{t-1})$ done 3: $\bar{\Sigma}_t = G_t \Sigma_{t-1} G_t^T + R_t$ DONE 4: $K_t = \bar{\Sigma}_t H_t^T (H_t \bar{\Sigma}_t H_t^T + Q_t)^{-1}$ Apply & DONE 5: $\mu_t = \bar{\mu}_t + K_t(z_t - h(\bar{\mu}_t))$ Apply & DONE $\Sigma_t = (I - K_t \; H_t) \; ar{\Sigma}_t$ Apply & DONE 7: \longrightarrow return μ_t, Σ_t

EKF SLAM - Correction (1/2)

EKF_SLAM_Correction

6:
$$Q_{t} = \begin{pmatrix} \sigma_{r}^{2} & 0 \\ 0 & \sigma_{\phi}^{2} \end{pmatrix}$$
7: for all observed features $z_{t}^{i} = (r_{t}^{i}, \phi_{t}^{i})^{T}$ do
8: $j = c_{t}^{i}$
9: if landmark j never seen before
10:
$$\begin{pmatrix} \bar{\mu}_{j,x} \\ \bar{\mu}_{j,y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{t,x} \\ \bar{\mu}_{t,y} \end{pmatrix} + \begin{pmatrix} r_{t}^{i} \cos(\phi_{t}^{i} + \bar{\mu}_{t,\theta}) \\ r_{t}^{i} \sin(\phi_{t}^{i} + \bar{\mu}_{t,\theta}) \end{pmatrix}$$
11: endif
12:
$$\delta = \begin{pmatrix} \delta_{x} \\ \delta_{y} \end{pmatrix} = \begin{pmatrix} \bar{\mu}_{j,x} - \bar{\mu}_{t,x} \\ \bar{\mu}_{j,y} - \bar{\mu}_{t,y} \end{pmatrix}$$
13: $q = \delta^{T} \delta$
14:
$$\hat{z}_{t}^{i} = \begin{pmatrix} \sqrt{q} \\ \operatorname{atan2}(\delta_{y}, \delta_{x}) - \bar{\mu}_{t,\theta} \end{pmatrix}$$

EKF SLAM - Correction (2/2)

15:
$$F_{x,j} = \begin{pmatrix} 1 & 0 & 0 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 1 & 0 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 0 & 1 & 0 \cdots 0 & 0 & 0 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 1 & 0 & 0 \cdots 0 \\ 0 & 0 & 0 & 0 \cdots 0 & 0 & 1 & 0 \cdots 0 \end{pmatrix}$$
16:
$$H_t^i = \frac{1}{q} \begin{pmatrix} -\sqrt{q}\delta_x & -\sqrt{q}\delta_y & 0 & +\sqrt{q}\delta_x & \sqrt{q}\delta_y \\ \delta_y & -\delta_x & -q & -\delta_y & +\delta_x \end{pmatrix} F_{x,j}$$
17:
$$K_t^i = \bar{\Sigma}_t H_t^{iT} (H_t^i \bar{\Sigma}_t H_t^{iT} + Q_t)^{-1}$$
18:
$$\bar{\mu}_t = \bar{\mu}_t + K_t^i (z_t^i - \hat{z}_t^i)$$
19:
$$\bar{\Sigma}_t = (I - K_t^i H_t^i) \bar{\Sigma}_t$$
20: endfor
21:
$$\mu_t = \bar{\mu}_t$$
22:
$$\Sigma_t = \bar{\Sigma}_t$$
23: return μ_t, Σ_t

Implementation Notes

- Measurement update in a single step requires only one full belief update
- Always normalize the angular components
- You may not need to create the F matrices explicitly (e.g., in Octave)

Done!

Loop Closing

- Loop closing means recognizing an already mapped area
- Data association under
 - high ambiguity
 - possible environment symmetries
- Uncertainties collapse after a loop closure (whether the closure was correct or not)

Before the Loop Closure

Courtesy: K. Arras

After the Loop Closure

Courtesy: K. Arras

Loop Closures in SLAM

- Loop closing reduces the uncertainty in robot and landmark estimates
- This can be exploited when exploring an environment for the sake of better (e.g. more accurate) maps
- Wrong loop closures lead to filter divergence

 In the limit, the landmark estimates become fully correlated

Map

Correlation matrix

Courtesy: M. Montemerlo

Map

Correlation matrix

Courtesy: M. Montemerlo

Map

Correlation matrix

Courtesy: M. Montemerlo

- The correlation between the robot's pose and the landmarks cannot be ignored
- Assuming independence generates too optimistic estimates of the uncertainty

EKF SLAM Uncertainties

- The determinant of any sub-matrix of the map covariance matrix decreases monotonically
- New landmarks are initialized with maximum uncertainty

EKF SLAM in the Limit

 In the limit, the covariance associated with any single landmark location estimate is determined only by the initial covariance in the vehicle location estimate.

Courtesy: Dissanayake

Example: Victoria Park Dataset

Courtesy: E. Nebot

Victoria Park: Data Acquisition

Courtesy: E. Nebot

Victoria Park: EKF Estimate

Victoria Park: Landmarks

Courtesy: E. Nebot

Example: Tennis Court Dataset

Courtesy: J. Leonard and M. Walter

EKF SLAM on a Tennis Court

Courtesy: J. Leonard and M. Walter

EKF SLAM Complexity

- Cubic complexity depends only on the measurement dimensionality
- Cost per step: dominated by the number of landmarks: $O(n^2)$
- Memory consumption: $O(n^2)$
- The EKF becomes computationally intractable for large maps!

EKF SLAM Summary

- The first SLAM solution
- Convergence proof for the linear Gaussian case
- Can diverge if non-linearities are large (and the reality is non-linear...)
- Can deal only with a single mode
- Successful in medium-scale scenes
- Approximations exists to reduce the computational complexity

Literature

EKF SLAM

 Thrun et al.: "Probabilistic Robotics", Chapter 10

Slide Information

- These slides have been created by Cyrill Stachniss as part of the robot mapping course taught in 2012/13 and 2013/14.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, I appreciate a short email notice in case you use the material in your course.
- My video recordings are available through YouTube: http://www.youtube.com/playlist?list=PLgnQpQtFTOGQrZ4O5QzbIHgl3b1JHimN_&feature=g-list

Cyrill Stachniss, 2014 cyrill.stachniss@igg.uni-bonn.de,7