Thursday, January 24, 2019

11:24 PM

FRAME RELAY P1

Eric Scace: ver of X.25 protocol across ISDN int: Provided to support voice/data traffic bet LAN's over WAN

Each end usr gets private/leased line to Frame Relay node: Handles trans over freq changing path transparent to all end usrs

- CPE: Customer Premise Equip rtrs/other devices to comm w/SP FR switch
- SP configs FR switch: Keeps end-usr config to min

Disadvantage: Customers pay for leased lines w/fixed capacity: WAN traffic: Some capacity unused

• Each endpoint: Separate phys int on rtr: Increases equip costs: Any changes: Req site visit by carrier

Frame Relay: WAN protocol: L1/L2

- Req: Single access circuit to FR provider to comm w/other sites connected to same provider
- · Capacity bet any 2 sites vary

Benefits: Less suitable for WAN today: Still locs in world that rely on FR for WAN connectivity

• Greater BW/reliability/resiliency than private/leased line

PVC: Permanent Virtual Circuit: Logical path along originating FR link through network

- · Compared to phys path used by dedicated connection
- Network w/FR access? PVC defines path bet 2 endpoints

Cost Effective	 Dedicated lines: Customers pay for end-to-end connection: Includes local loop/network link
	■ Customers pay for local loop/BW purchased from provider
	■ Distance bet nodes not impt
	Dedicated line model: Provided: Increments: 64 kb/s
	■ FR customers: Can define virtual circuit needs
	• FR shares BW across larger base of customers: Provider can service 40+ 56 kb/s over
	1 T1
	 Dedicated lines: Would req more CSU/DSUs (1 for each line)/more complicated routing/switching
	 Providers save: Less equip to purchase/maintain

Flexibility Virtual circuit:

• SPAN wants to comm w/other SPAN? All needs is to connect to virtual circuit

End of each connection has # to ID it

- DLCI: Data Link Connection Identifier
- Any station can connect w/other simply by stating addr of station/DLCI # of line

VC: Virtual Circuit: Connection through FR network bet 2 DTEs

- Circuits virtual b/c no direct electrical connection from end to end
- Logical: Data moves end to end w/out direct electrical circuit
- FR shares BW among multiple usrs/any site can comm w/any other w/out multiple dedicated phys lines

2 ways to establish VCs:

SVC	Switched Virtual Circuits: • Established dynamically by sending sig msgs to network • CALL SETUP • DATA TRANSFER • IDLE • CALL TERMINATION
PVC	Permanent Virtual Circuits: • Preconfig by carrier • After set up: Only DATA TRANSFER/IDLE modes

More common

VC: Created by storing input-port to output-port mapping in mem of each switch

- Links 1 switch to another until continuous path from 1 end of circuit to other ID'd
- Can pass through any # of intermediate devices (switches) loc w/in FR network
- Bidirectional comm path from 1 device to another: ID'd by DLCIs

DLCI values: Typically assigned by FR SP: Local significance:

- · Values not unique in FR WAN
- · DLCI ID's VC to equip at endpoint
- No significance beyond single link
- 2 devices connected by VC may use diff DLCI value to refer to same connection
- Local addressing prevents customer from running out of DLCIs as network grows

DLCIs: 0-15/1,008-1,023: Reserved | **SP's typically assign range:** 16-1,007

Multiple VCs: FR: Statistically multiplexed: Transmits only 1 frame at time but many logical connects can co-exist on single phys line

FRAD: FR Access Device/rtr connected to FR network: May have multiple VCs connecting to various endpoints

• Multiple VCs on single phys line: Each VC has own DLCI

Encapsulation

FR: Takes packets from network layer protocol (IPv4/6):

- Encapsulates as data portion of FR frame
- · Passes frame to phys layer for delivery on wire

Takes packets from network layer protocol: Wraps w/address field: Contains DLCI/checksum

- Flag fields: Added to indicate beginning/end of frame: Always same
- Hex 7E || Bin 01111110

After packet encapsulated: FR passes frame to phys layer for transport

- CPE rtr encapsulates each L3 packet inside FR header/trailer before sending it across VC
- Header/trailer defined by LAPF: Link Access Procedure for FR: ITU Q.922-A

Header contains

DLCI	 10-bit: Impt field: Represents virtual connection bet DTE device/switch Each virtual connection multiplexed on phys chan represented by unique DLCI DLCI values only unique to phys chan which they reside Devices on opposite ends can use diff DLCIs to refer to same virtual connection
C/R	Bit follows most sig DLCI byte in Addr field
EA	 Extended Address If value of EA field 1: Current byte determined last DLCI octet Current FR implements use 2-octet DLCI Allows longer DLCIs in future 8th bit of each byte of Address field indicates EA
Congestion Control	3 FR congestion-notification bits 1. FECN: Fwd Explicit Congestion Notification 2. BECN: Backward Explicit Congestion Notification 3. Discard Eligible bits

Phys layer typically EIA/TIA-232/449/530/V.35/X.21: FR frame subset of HDLC frame type: Delimited w/flag fields

• 1-byte flag: Bit pattern 01111110

FCS determines whether errors in L2 addr field occurred during trans

- FCS calc prior to trans by sending node: Result: Inserted in FCS field
- At distant end: 2nd FCS value calc/compared to FCS in frame
- If results same: Frame processed | If diff: Frame discarded
 - FR doesn't notify source when frame discarded
- Error control: Left to upper layers of OSI

Topologies

Star (Hub & Spoke)	 Simplest WAN topology star Loc of hub usually chosen by lowest leased-line cost When implementing: Each remote site has access link to FR cloud w/single VC
Full Mesh	Dedicated lines: Connects every site to every other site • Using leased-line interconnections: Addl serial ints/lines add costs

	• Can build multiple connections simply by config addl VCs on each existing link
Partial Mesh	Large networks: Full mesh unaffordable b/c # of links req
	• Full mesh: Theoretical limit of less than 1,000 VCs per link
	 Partial: More interconnections than req for star, but not as many as for full
	Pattern dependent on data flow reqs

Address Mapping: Before Cisco rtr able to transmit data over FR:

- Needs to know which local DLCI maps to L3 address of remote dest
- Support all network layer protocols over FR: IPv4/6/IPX/AppleTalk
- Address-to-DLCI mapping can be accomplished by static/dynamic mapping

Inverse ARP: Primary tool of FR:

ARP translates L3 IPv4 addresses to L2 MACs: Inverse ARP does opposite

Corresponding L3 IPv4 addr must be avail before VCs used

FR IPv6 uses IND: Inverse Neighbor Discovery to obtain L3 IPv6 addr from L2 DLCI

- FR rtr sends IND Solicitation msg to req L3 IPv6 addr corresponding to L2 DLCI addr of remote FR rtr
- At same time: IND Solicitation msg provides sender's L2 DLCI addr to remote FR rtr

Dynamic Mapping: Relies on Inverse ARP to resolve next-hop IPv4 addr to local DLCI

- Rtr sends I.ARP reqs on its PVC to discover protocol addr of remote device connected to FR network
- Rtr uses responses to pop. address-to-DLCI mapping table on FR rtr/access server
- Rtr builds/maintains table: Contains all resolved I.ARP regs: Both dynamic/static mapping entries

Cisco: Inverse ARP enabled: Default: All protocols enabled on phys int

• Inverse ARP packets not sent out for protocols not enabled on int

Static FR Mapping: Override dynamic by supplying next-hop protocol addr to local DLCI

- Similar to dynamic I.ARP: Associates specified next-hop protocol addr to local FR DLCI
- Can't use I.ARP/map statement for same DLCI/protocol
- Hub & Spoke: Static mapping on spoke rtrs to provide spoke-to-spoke reachability
 - o Spoke rtrs: No direct connectivity w/each other: Dynamic wouldn't work bet them

Config Static Mapping:

R1(config)# int s0/0/1

R1(config-if)# ip address 10.1.1.1 255.255.255.0

R1(config-if)# encapsulation frame-relay

R1(config-if)# no frame-relay inverse-arp

R1(config-if)# frame-relay map ip 10.1.1.2 102 broadcast cisco

R1(config-if)# no shut

show frame-relay map

Map bet next hop protocol addr/DLCl dest addr:

R1(config)# frame-relay map protocol protocol-address dlci [broadcast] [ietf] [cisco]

• ietf Connect to non-Cisco rtr

broadcast Config of OSPF simplified by adding keyword

• Specifies broadcast/multicast traffic allowed over VC: Config permits use of dynamic r-protocols

LMI: Local Mgmt Int: Provides packet-switched data transfer w/min end-to-end delays

• Original design omits anything that might contribute to delay

LMI is a keepalive mech that provides status info about FR connections bet rtr (DTE) and FR switch (DCE)

- Every 10s/so: End device polls network: Req dumb seg response/chan status info
- If network doesn't respond w/req info: Usr device may consider connection down
- When network responds w/FULL STATUS response
 - o Includes status info about DLCIs allocated to that line
 - o End device can use info to determine whether logical connections able to pass data

show frame-relay Imi Shows LMI type used by FR int/counters for LMI status exchange seq

Includes errors like LMI timeouts

LMI: Def of msgs used bet DTE/DCE

- Encapsulation defines headers used by DTE to comm info to DTE at other end of VC
- Switch/connected rtr care about using same LMI
- Switch doesn't care about encapsulation

• Endpoint rtrs (DTEs) care about encapsulation

LMI Identifiers

VC Identifiers	VC Types
0	LMI link mgmt (ANSI/ITU)
1-15	Reserved for future use
16-991	Avail for VC endpoint assignment
992-1007	Optional L2 mgmt info
1008-1018	Reserved for future use (ANSI/ITU)
1019-1022	LMI Multicast
1023	LMI link mgmt (Cisco)

LMI Extensions

Standard FR Frame is basis for LMI frame

Flag	LMI DLCI	Un-#'d IE	Protocol Discriminator	Call Reference	LMI Msg Type	IE's	FCS	Flag
8	16	8	8	8	8	Var	16	8

In addition to FR protocol functions for transferring data: FR spec includes optional LMI extensions **Some extensions include:**

VC status msgs	Provide info about PVC integrity by comm/sync bet devices • Periodically reporting existence of new PVCs/del of already existing PVCs • VC status msgs prevent data from being sent into black holes (PVCs that no longer exist)
Multicasting	Allows sender to transmit single frame delivered to multiple recipients • Supports efficient delivery of r-protocol msgs/addr resolution procedures • Typically sent to many dest simultaneously
Global addressing	Provides connection IDs w/global rather than local sig: • Allowing them to be used to ID specific int to FR network • Global addressing makes FR network resemble LAN in terms of addressing/ARPs
Simple flow control	Provides XON/XOFF flow control mech that applies to entire FR int • Intended for devices that can't use congestion notification bits (FECN/BECN) • Would be leveraged by higher layers: Still req some IvI of flow control

LMI: Used to manage FR links:

- · Each LMI msg classified by DLCI appearing in LMI frame
- 10-bit DLCI field supports 1,024 VC IDs: 0-1,023
- LMI extensions reserve some of these VC IDs: Reducing # of permitted VCs
- LMI msgs exchanged between the DTE and DCE using these reserved DLCIs.

7 LMI types: Each incompatible w/others: LMI type config on rtr must match type used by SP **3 LMI Types Supported by Cisco rtrs:**

CISCO	Original LMI ext
ANSI	Corresponding to ANSI standard T1.617 Annex D
Q933A	Corresponding to ITU standard Q933 Annex A

#show int [type #] Display LMI msg info/associated DLCI #'s

Cisco uses DLCI 1023 to ID LMI msgs used for FR link mgmt

IOS 11.2+ : Default LMI autosense feature: Detects LMI type supported by directly connected FR switch

- Based on LMI status msgs from FR switch
- Rtr auto configs its int w/supported LMI type ack by FR switch

(config-if)# frame-relay Imi-type [cisco | ansi | q933a] [int config] Set LMI type: Disables autosense

In cases where FR switch uses non-default timeouts:

• Keepalive interval must also be config on FR int to prevent status exchange msgs from timing out **LMI status exchange msgs:** Determine status of PVC connection

- · Large mismatch in keepalive interval on rtr/switch can cause switch to declare rtr dead
- Impt to consult FR SP for info on how to mod keepalive setting
- Default: Keepalive 10s on Cisco serial ints

keepalive [int config] Can change keepalive interval w/cmd

- Status msgs help verify integrity of logical/phys links
- Info critical in routing env b/c r-protocols make decisions based on link integrity

Using LMI/I.ARP to Map Addresses

• LMI status msgs combined w/I.ARP msgs allow rtr to associate network layer/DLL addresses

I.ARP OpWhen int supporting I.ARP becomes active: Initiates I.ARP protocol/fmts Inverse ARP request for

- When int supporting LARP becomes active: Initiates LARP protocol/fmts Inverse ARP request for active VC
- I.ARP reg includes source HW/source L3 protocol address/known target HW addr
- It fills target L3 protocol addr field w/all 0s
- It encapsulates packet for specific network/sends directly to dest device using VC
- Upon receiving I.ARP req: Dest device will use addr of source device to create its own DLCI-to-L3 map
- Will then send I.ARP response that includes its L3 addr info
- When source device receives I.ARP response: Completes DLCI-to-L3 map using provided info
- When int on Cisco rtr is config to use FR encapsulation: I.ARP enabled by default