методы отчислений

Лектор: Б. А. Самокиш

10.01.2019 версия от 08.01.2019 20:16:44, до экзамена 38 часов

Оглавление

1	Одн	ородные дифференциальные уравнения	3
	§1	Краевая задача для ОДУ 2 порядка и сведение к задаче Коши	3
	§ 2	Метод дифференциальной прогонки	4
	§ 3	Метод прогонки для систем ОДУ	5
		1. Метод начальных данных	5
		2. Метод прогонки,	5
	§ 4	Ортогональная прогонка	6
	§ 5	Разностный метод для краевой задачи 2 порядка	7
		1. Алгоритм	7
		2. Формулы численного дифференцирования	7
		3. Разностное уравнение	7
		4. Граничные условия	8
		5. Составление системы линейных уравнений	9
	§ 6	Метод разностной прогонки	9
	§ 7	Лемма об оценке для системы разностных уравений	10
	§ 8	Теорема о сходимости разностного метода	11
	§ 9	Жёсткие системы ОДУ	12
		1. Методы численного интегрирования ОДУ	12
		2. Жёсткие системы	13
	§ 10) Неявные методы Рунге-Кутты	15
			47
2		оды линейной алгебры	17 17
	81	Устойчивость собственных чисел при возмущении матрицы	17
			19
	5.7	2. Поиск собственных чисел	20
		Теорема Бауэра-Файка	20
			21
	_		22
	§ 5	Обратный степенной метод	23
	§ 6		24
	§ 7		25
			26
	_		27
			27
		Теорема о сходимости и терированных подпространств	
		Ортогонально-степенной метод	
		. Сртогонально-степенной метод	29
	_	- LR-алгоритм. Практическая реализация	
	2 12	- QK-алі оритм. практическая реализация	50
3	Инте	егральные уравнения	31
	§1	Интегральное уравнение II рода, метод замены ядра на вырожденное	31
	§ 2	Метод квадратур для интегрального уравнения	35
	§ 3	Вариационный принцип для ограниченного оператора; метод Ритца для интеграль-	
		ного уравнения II рода	36
	§ 4	Интегральное уравнение I рода и его некорректность	38

	§ 5	Условная корректность по Тихонову, метод квазирешений	39
	§ 6	Метод регуляризации для уравнения I рода, сходимость	40
4	§1 §2 §3 §4 §5	вариационные методы Вариационный принцип для уравнения с неограниченным оператором	43 45 46
5		ения в частных производных Разностный метод для общего уравнения теплопроводности, явная схема	49 49
Δ	Ввел	цение в функциональный анализ	51
	§1 §2 §3	Пространства, отображения	51 51 52
		Компактные операторы	
		Спектры компактных операторов	
	§ 6	Альтернатива Фредгольма	54
R	Offor	вначения	55

Однородные дифференциальные уравнения

§ 1. Краевая задача для ОДУ 2 порядка и сведение к задаче Коши

Определение 1. Рассмотрим ОДУ 2 порядка

$$y'' + p(x)y' + q(x)y = f(x)$$
 $y \in C^2([a;b])$

и 3 варианта условий на у

$$| y(a) = A, \quad y(b) = B$$

If
$$y'(a) = A$$
, $y'(b) = B$

III
$$y'(a) = \alpha y(a) + A$$
, $y'(b) = \beta y(b) + B$

Если y — решение для которого выполнено какое-то из условий выше, то y — решение граничной задачи.

Определение 2 (Однородная краевая задача). Положим $f \equiv 0$ в 1.1.1.

Определение 3 (Однородные граничные условия). Положим A=B=0 в граничных условиях в 1.1.1

Теорема 1 (об альтернативе). Рассмотрим однородную граничную задачу с однородными граничными условиями. Пусть y_H — решение однородной задачи.

Тогда

- 1. $y_0 \equiv 0$ единственное решение однородной задачи \Rightarrow неоднородная краевая задача имеет единственное решение
- 2. $y_0 \equiv 0$ неединственное решение однородной задачи \Rightarrow неоднородная краевая задача имеет бесконечно много или не имеет решений вовсе
- \square Рассмотреть решение неоднородной краевой в виде $y(x) = y_0(x) + c_1 y_1(x) + c_2 y_2(x)$ и подставить граничные условия, а дальше все следует из линейной алгебры.

Разберёмся как численно найти y_0, y_1, y_2 , потребовавшиеся в предыдущем доказательстве. Будем считать что p, q, f определены на $I \ni [a; b]$, так что y можно продолжить на $(a - \varepsilon; b + \varepsilon)$.

- 1. y(a) = 0, y'(a) = 0. Поскольку 0 явно решение однородной задачи, то что мы найдем будет как раз частным решением неоднородной задачи (Коши!).
- 2. $y_H(a)=1, y_H'(a)=0$ и решаем мы тут однородную задачу (Коши!). Будем считать то что нашлось y_1
- 3. $y_H(a)=0, y_H'(a)=1$. Скажем что это y_2 . Здесь важно заметить про линейную независимость y_1 и y_2 . Найдем определитель Вронского в точке a

$$W = \begin{vmatrix} y_1(a) & y_2(a) \\ y_1'(a) & y_2'(a) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0$$

А тогда он нигде не ноль. А значит y_1 и y_2 линейно независимы.

Всё это называется методом начальных данных для решения краевой задачи.

В рассуждении выше можно было бы взять другие начальные данные дабы упростить себе жизнь. Ведь никто не запрещает запихать, например, кусок y_2 в y_0 (если мы уже знаем правильное c_2). Нам просто были нужны какие-то линейно независимые решения однородной задачи.

Рассмотрим граничную задачу в форме III

- 1. y(a) = 0, y'(a) = A, нашли y_0 .
- 2. $y_H(a) = 1, y_H'(a) = \alpha$, нашли y_1 .
- 3. $y_H(a)=0$, $y_H'(a)=0$. Мы просто решили что $y_2\equiv 0$. Эту ЗК мы даже не решаем, а сразу знаем ответ.

При таком раскладе $y(x) = y_0(x) + c_1 y_1(x)$. Проверим левое граничное условие

$$y(a) = y_0(a) + c_1 y_1(a) = 0 + c_1 1 = c_1$$

$$y'(a) = y'_0(a) + c_1 y'_1(a) = A + c_1 \alpha = A + \alpha y(a)$$

Как видно, всё получилось.

В случае І можно сделать так:

- 1. y(a) = A, y'(a) = 0, нашли y_0 .
- 2. $y_H(a) = 0$, $y'_H(a) = 1$, нашли y_1 .

Как видно, свободы в выборе c_1 хватает чтобы разобраться с правой границей.

Пример 1.
$$y'' - q^2y = 0$$
, $y(0) = 1$, $y(b) = 1$

⟨匁⟩, а он важный вообще-то, из него необходимость метода прогонки следует.

§ 2. Метод дифференциальной прогонки

Здесь будем решать краевую задачу с граничными условиями в форме III.

Рассмотрим $\alpha(x)$, $\beta(x)$: (прогоночные коэффициенты)

$$y'(x) = \alpha(x)y(x) + \beta(x) \tag{1.1}$$

Такая форма напрашивается при вспоминании трюка, который мы делали в прошлом параграфе. Там как раз $y'(a) = y_0(a) + c_1 \, y_1(a)$, а $c_1 = y(a)$. Здесь мы пока вводим прогоночные коэффициенты формально, а существование покажем конструктивно.

Найдем уравнения на lpha,eta

$$y' = \alpha y + \beta$$

$$y'' = \alpha y' + \alpha' y + \beta' \Rightarrow y'' + py' + qy = f$$

$$\Leftrightarrow \alpha y' + \alpha' y + \beta' + p(\alpha y + \beta) + qy = f$$

$$\Leftrightarrow y(\alpha^2 + \alpha' + p\alpha + q) + \alpha\beta + \beta' + p\beta = f$$

В итоге получаем систему ОДУ первого порядка

$$\alpha' = -\alpha^2 - p\alpha - q$$

$$\beta' = f - p\beta - \alpha\beta$$
(1.2)

Посмотрим что происходит на правом конце¹

Сам метод выглядит так:

прямая прогонка: решаем систему (1.2) с начальными данными $\alpha(a) = \alpha$, $\beta(a) = A$.

обратная прогонка: уже зная $\alpha(x)$, $\beta(x)$ решаем (1.1) с начальными данными $y(b) = \frac{B - \beta(b)}{\alpha(b) - \beta}$.

Замечание 1. Рассмотрим однородную задачу с однородными граничными условиями. Тогда (1.1) переходит в $y'(x) = \alpha(x) \, y(x)$. Если при этом $\exists \, c \in (a;b) : \ y(c) = 0 \land y'(c) \neq 0$, то $\alpha(c)$ не существует. Так что, как видно, не всякое решение краевой задачи можно найти методом прогонки.

 $^{^{1}}$ а что делать если lpha(b)=eta неясно

§ 3. Метод прогонки для систем ОДУ

Определение 1. Рассмотрим ОДУ

$$y' = \hat{A}(x) y + f(x)$$
 $y \in C^{2}([a;b]), y : [a;b] \to \mathbb{R}^{s}$ (1.1)

и условия вида

$$x = a$$
 $\hat{\alpha} y(a) = \beta$ $\hat{\alpha} : \mathbb{R}^s \to \mathbb{R}^p$
 $x = b$ $\hat{\gamma} y(b) = \delta$ $\hat{\gamma} : \mathbb{R}^s \to \mathbb{R}^q$
 $s = p + q$

Если y — решение для которого выполнено условие выше, то y — решение граничной задачи.

Замечание 1. Вообще, граничные условия бывают куда более общего вида, но мы их не рассматриваем. То, что у нас — это линейные распадающиеся граничные условия.

А вот так выглядят нераспадающиеся:

$$\hat{\alpha} \mathbf{y}(a) + \hat{\gamma} \mathbf{y}(b) = \boldsymbol{\beta}, \qquad \hat{\alpha}, \hat{\gamma} : \mathbb{R}^s \to \mathbb{R}^s$$

Общее решение задачи Коши 1.1 имеет вид

$$\mathbf{y}(x) = \mathbf{y}_0(x) + \sum_{i=1}^{s} c_i \mathbf{y}_j(x)$$

где как обычно y_0 — решение неоднородной задачи Коши, а $\{y_j\}$ — фундаментальная система решений однородной.

1. Метод начальных данных такой же в $\S 1$ — находим из граничных условий $\{c_j\}$ в общем решении.

Чтобы добыть решения задач Коши можно взять $\mathbf{y}_j(a) = \mathbf{e}_j$ (это единичный вектор с 1 на jом месте), $\mathbf{y}_0(a) = 0$

Можно снова уменьшить количество работы

- 1. в качестве начальных данных для y_0 какое-нибудь решение системы $\hat{\alpha}y=\beta$
- 2. в качестве начальных данных для $y_j, j \in p+1$.. s-q линейно независимых решений $\hat{\alpha}y=0$
- 3. $y_i \equiv 0, j \in 1...p$

В итоге решение примет вид

$$\mathbf{y}(x) = \mathbf{y}_0(x) + \sum_{j=p+1}^{s} c_j \mathbf{y}_j(x)$$

<+здесь снова этот понятный кусок про экспоненты и беды вычислений+> $\langle \mathfrak{X} \rangle$

2. Метод прогонки, в котором снова зададим $\hat{\alpha}$, β

$$\hat{\alpha}(x) \mathbf{y}(x) = \boldsymbol{\beta}(x), \qquad \hat{\alpha} : [\alpha; b] \times \mathbb{R}^s \to \mathbb{R}^p$$
 (1.2)

При таком условии $\forall x :: y(x) \in M \subset \mathbb{R}^s$, $\dim M = s - p$ (предполагая что $\operatorname{rk} \hat{\alpha}(x) = p$) Найдем уравнения на $\hat{\alpha}(x)$, $\beta(x)$

$$\hat{\alpha}\mathbf{y} = \mathbf{\beta}
\hat{\alpha}\mathbf{y}' + \hat{\alpha}'\mathbf{y} = \mathbf{\beta}' \Rightarrow \mathbf{y}' = \hat{A}\mathbf{y} + \mathbf{f}
\hat{\alpha}\hat{A}\mathbf{y} + \hat{\alpha}\mathbf{f} + \hat{\alpha}'\mathbf{y} = \mathbf{\beta}'
\Leftrightarrow (\hat{\alpha}\hat{A} + \hat{\alpha}')\mathbf{y} - \mathbf{\beta}' = -\hat{\alpha}\mathbf{f}$$

Пусть $lpha_j$ — строка \hat{lpha} . Тогда мы получаем систему ОДУ первого порядка

$$\alpha'_{j} = -\hat{A}^{T} \alpha_{j}$$

$$\beta'_{j} = (\alpha_{j}, \mathbf{f})$$
(1.3)

Посмотрим что происходит на правом конце

$$\begin{cases} \hat{\alpha}(b) \, \mathbf{y}(b) = \boldsymbol{\beta}(b) \\ \hat{\gamma} \, \mathbf{y}(b) = \boldsymbol{\delta} \end{cases} \tag{1.4}$$

это просто линейная система порядка s на y(b), решаем и находим.

Сам метод выглядит так:

прямая прогонка: решаем прогоночные уравения(1.3) с начальными данными $\hat{\alpha}(a) = \hat{\alpha}, \beta(a) = \beta$.

обратная прогонка: уже зная $\alpha(x)$, $\beta(x)$ решаем (1.2) с начальными данными y(b), найденным из системы (1.4).

Замечание 2. $\langle ? \rangle$ Метод с заменой \hat{A} на сопряженную в прогоночных уравениях уже пафосно называется методом сопряжённых систем, но ничем кроме названия по сути не отличается.

Замечание 3. Вообще, этот метод накладывает слишком жёсткие условия на $\hat{\alpha}$, $\hat{\beta}$. Например краевая задача из §1 им не решается. Проблема возникает в том месте, где из $(\hat{\alpha}\hat{A}+\hat{\alpha}')$ y=0 выводится $\hat{\alpha}\hat{A}+\hat{\alpha}'=0$. Произвольностью y мы вообще-то пользоваться не можем, так как на него есть условие $\hat{\alpha}(x)$ $y(x)=\beta(x)$.

Замечание 4. У вышеописанного метода есть ещё пара недостатков:

- 1. $\alpha_j' = -\hat{A}^T \alpha_j$ отличается от исходной системы только отсутствием неоднородности, так от проблем связанных с потерей точности из-за собственных чисел разного знака в решениях задач Коши мы убежать не смогли.
- 2. $\hat{\alpha}\hat{\alpha}^T$ может быть плохо обусловленной и ища y(b) мы потеряем точность. ¹

Собственно, для того чтобы обойти эти проблемы и нужен § 4.

§ 4. Ортогональная прогонка

«будем решать немного другую задачу» Заменим уравенение для α̂ в методе выше.

$$\hat{\alpha}' = -\hat{\alpha}\hat{A} \longrightarrow \hat{\alpha}' = -\hat{\alpha}\hat{A} + \hat{\alpha}\hat{A}\hat{\alpha}^T (\hat{\alpha}\hat{\alpha}^T)^{-1}\hat{\alpha}$$

Крокодил в формуле сверху — ортогонанальная проекция $\hat{\alpha}\hat{A}$ на $\hat{\alpha}$, а скалярное произведение имеет вид $(\hat{\alpha},\hat{\beta})=\hat{\alpha}\hat{\beta}^{T2}$. Так что по идее, раз мы проекцию на $\hat{\alpha}$ вычли, $(\hat{\alpha}',\hat{\alpha})=0$. Проверим:

$$\hat{\alpha}'\hat{\alpha}^T = -\hat{\alpha}\hat{A}\hat{\alpha}^T + \hat{\alpha}\hat{A}\hat{\alpha}^T \left(\hat{\alpha}\hat{\alpha}^T\right)^{-1}\hat{\alpha}\hat{\alpha}^T = -\hat{\alpha}\hat{A}\hat{\alpha}^T + \hat{\alpha}\hat{A}\hat{\alpha}^T = 0$$

Отсюда следует, что $\frac{\mathrm{d}}{\mathrm{d}x}\left(\hat{\alpha}\hat{\alpha}^T\right)=0$, так что матрица $\hat{\alpha}\hat{\alpha}^T$ постоянна на всём [a;b] Получим уравнения на прогоночные коэффициенты

$$\hat{\alpha}\hat{A}\mathbf{y} + \hat{\alpha}\mathbf{f} + \hat{\alpha}'\mathbf{y} = \mathbf{\beta}'$$

$$\Leftrightarrow \hat{\alpha}\hat{A}\mathbf{y} + \hat{\alpha}\mathbf{f} - \hat{\alpha}\hat{A}\mathbf{y} + \hat{\alpha}\hat{A}\hat{\alpha}^T \left(\hat{\alpha}\hat{\alpha}^T\right)^{-1} \underbrace{\hat{\alpha}\mathbf{y}}_{\mathbf{\beta}} = \mathbf{\beta}'$$

В итоге

$$\hat{\alpha}' = -\hat{\alpha}\hat{A} + \hat{\alpha}\hat{A}\hat{\alpha}^T \left(\hat{\alpha}\hat{\alpha}^T\right)^{-1}\hat{\alpha}$$

$$\boldsymbol{\beta}' = \hat{\alpha}\boldsymbol{f} + \hat{\alpha}\hat{A}\hat{\alpha}^T \left(\hat{\alpha}\hat{\alpha}^T\right)^{-1}\boldsymbol{\beta}$$
(1.1)

Разберёмся что делать с $\left(\alpha\alpha^T\right)^{-1}$. Не очень приятно каждый раз искать обратную матрицу. На левой границе $\hat{\alpha}(a)\mathbf{y}(a) = \boldsymbol{\beta}(a)$. Проведём процесс Грамма-Шмидта и ортогонализуем строчки $\hat{\alpha}(a)$. При этом заменили переменную в исходном уравении, соответственно поменялись $\hat{A} \to \hat{B}$, $\mathbf{f} \to \mathbf{g}$. Зато $\hat{\alpha}(a)\hat{\alpha}(a)^T = I$. Так что прогоночные уравения принимают вид

$$\hat{\alpha}' = -\hat{\alpha}\hat{B} + \hat{\alpha}\hat{B}\hat{\alpha}^T\hat{\alpha}$$

$$\beta' = \hat{\alpha}\mathbf{g} + \hat{\alpha}\hat{B}\hat{\alpha}^T\boldsymbol{\beta}$$
(1.2)

 $^{^1}$ rk $\hat{lpha}\hat{lpha}^T\geqslant 2$ rk $\hat{lpha}-s$ из теоремы Сильвестра о ранге, так что так в одну сторону вроде можно

² на самом деле оно несимметрично. Нужно здесь понимать матрицу как набор векторов-строк. Тогда какой-то смысл есть.

Поскольку $\hat{\alpha}\hat{\alpha}^T$ постоянна на [a;b] (всюду I), то проблем с её плохой обусловленностью в x=b нет. Правое граничное условие решится.

Судя по всему, это же условие исключает быстрый рост компонент $\hat{\alpha}$. Так что обе проблемы из замечания в конце предыдущего параграфа снимаются. $\langle ? \rangle^1$

Вышеописанный метод ещё называется методом Абрамова.

§ 5. Разностный метод для краевой задачи 2 порядка

Предупреждение: в силу повышенной техничности этого параграфа он написан в соответствующем стиле. Что поделать. Приятного прочтения.

Решать краевую задачу для дифференциального уравения второго порядка

$$y'' + p(x)y' + q(x)y = f(x) y \in C^{2}([a;b]) (1.1)$$

1. Алгоритм

Определение 1 (Метод разностной прогонки). Пусть задано дифференциальное уравнение с граничными условиями. Методом разностной прогонки называет следующий алгоритм:

- 1. Выбор сетки: узлы, шаг (если она равномерная)
- 2. Построение сеточных уравений
 - (а) Диффур в узлах сетки
 - (b) Все производные через конечные разности
- 3. Решение получившейся линейной системы

Будем дальше всюду считать, что решение задано на [a;b]

$$n$$
 узлов $h = \frac{b-a}{n}$ $x_k = a + kh$

2. Формулы численного дифференцирования Здесь $M_n = \max |y^{(m)}(x)|$

$$y'(x) = \frac{y(x+h) - y(x)}{h} + R \qquad |R| \leqslant \frac{hM_2}{2}$$
 (1.2)

$$y'(x) = \frac{y(x) - y(x - h)}{h} + R \qquad |R| \leqslant \frac{hM_2}{2}$$
 (1.3)

$$y'(x) = \frac{-y(x+2h) + 4y(x+h) - 3y(x)}{2h} + R \qquad |R| \leqslant \frac{h^2 M_3}{3}$$
 (1.4)

$$y'(x) = \frac{3y(x) - 4y(x - h) + y(x - 2h)}{2h} + R \qquad |R| \leqslant \frac{h^2 M_3}{3}$$
 (1.5)

$$y'(x) = \frac{y(x+h) - y(x-h)}{2h} + R \qquad |R| \leqslant \frac{h^2 M_3}{6}$$
 (1.6)

$$y''(x) = \frac{y(x+h) - 2y(x) + y(x-h)}{h^2} + R \qquad |R| \leqslant \frac{h^2 M_4}{12}$$
 (1.7)

Схемы 1.2 и 1.3 называются простейшими.

3. Разностное уравнение

$$\frac{y(x_{k+1}) - 2y(x_k) + y(x_{k-1})}{h^2} + R_1 + p(x_k) \frac{y(x_{k+1}) - y(x_{k-1})}{2h} + p(x_k) R_2 + q(x_k) y(x_k) = f(x_k)$$

Можно заметить, что $R_1+p(x_k)R_2=O(h^2)$. Так что можно вместо $y(x_k)$ получить приближённое решение y_k (по сути, решение уже совсем другой задачи). Попутно, обозначим

$$p(x_k) = p_k,$$
 $q(x_k) = q_k,$ $f(x_k) = f_k.$

Получится

¹про это два слова в Крылове написано и больше нигде нет.

- **4. Граничные условия** будут рассматриваться **III** типа, но вообще это неважно. Всё равно раскрывать не будем.
 - 1. Трёхточечная односторонняя аппроксимация

$$y'(x) = \frac{-y(x+2h) + 4y(x+h) - 3y(x)}{2h} + O(h^2)$$

Запишем это выражение для границ:

$$y'(a) = \frac{-y(a+2h) + 4y(a+h) - 3y(a)}{2h} + O(h^2) \rightarrow \alpha y_0 + A = \frac{-y_2 + 4y_1 - 3y_0}{2h}$$
$$y'(b) = \frac{3y(b) - 4y(b-h) + y(b-2h)}{2h} + O(h^2) \rightarrow \beta y_n + B = \frac{3y_n - 4y_{n-1} + y_{n-2}}{2h}$$

- 2. Метод фиктивных узлов
 - (a) Введём $y_{-1} = y(a-h), y_{n+1} = y(b+h)$

$$y'(x) = \frac{y(x+h) - y(x-h)}{2h} + O(h^2)$$

Запишем это выражение для границ:

$$y'(a) = \frac{y(a+h) - y(a-h)}{2h} + O(h^2) \rightarrow \alpha y_0 + A = \frac{y_1 - y_{-1}}{2h}$$

$$y'(b) = \frac{y(b+h) - y(b-h)}{2h} + O(h^2) \rightarrow \beta y_n + B = \frac{y_{n+1} - y_{n-1}}{2h}$$

Как правило, решение можно продолжить с отрезка на интервал побольше, подберём $h: y(a-h) \in I \land y(b+h) \in I$. Так что такой метод имеет смысл.

(b) Сдвинем сетку на h/2, $x_0 = a - h/2$, $x_{n+1} = b + h/2$

$$x_k = a - h/2 + kh$$
 $k = 0, 1 ... n + 1$

Значения в узлах сетки при этом придётся вводить с помощью интерполяции

$$y(a) = \frac{y(a - h/2) + y(a + h/2)}{2}$$

Сами выражения для производной имеют вид

$$y'(x) = \frac{y(x + h/2) - y(x - h/2)}{h} + O(h^2)$$

Запишем это выражение для границ:

$$y'(a) = \frac{y(a + h/2) - y(a - h/2)}{h} + O(h^2) \rightarrow \alpha \frac{y_0 + y_1}{2} + A = \frac{y_1 - y_0}{h}$$
$$y'(b) = \frac{y(b + h/2) - y(b - h/2)}{h} + O(h^2) \rightarrow \beta \frac{y_{n+1} + y_n}{2} + B = \frac{y_{n+1} - y_n}{h}$$

Такой подход не очень удобен если нужны значения в узлах. Придётся уменьшать шаг в 2 раза.

3. Использование ДУ для исключения главного члена простейшей формулы

$$y'(x) = \frac{y(x+h) - y(x)}{h} + R, \quad R = O(h)$$

Теперь запишем разложение в ряд Тейлора:

$$y(x+h) = y(x) + hy'(x) + \frac{h^2}{2}y''(x) + O(h^3) \iff y'(x) = \frac{y(x+h) - y(x)}{h} - \frac{h}{2}y''(x) + O(h^2)$$

Из исходного уравнения (1.1) подстановкой простейшей формулы получаем

$$y''(x) = -\left(p(x)y'(x) + q(x)y(x)\right) + f(x) = -\left(p(x)\frac{y(x+h) - y(x)}{h} + p(x)O(h) + q(x)y(x)\right) + f(x)$$

$$\Rightarrow -\frac{h}{2}y''(x) = \frac{p(x)}{2}\left(y(x+h) - y(x)\right) + \frac{h}{2}\left(q(x)y(x) - f(x)\right) + O(h^2)$$

Оценка производной на краю

$$y'(a) = \frac{y(a+h) - y(a)}{h} + \frac{p(a)}{2} \left(y(a+h) - y(a) \right) + \frac{h}{2} \left(q(a)y(a) - f(a) \right) + O(h^2)$$

$$y'(b) = \frac{y(b) - y(b-h)}{h} - \frac{p(b)}{2} \left(y(b) - y(b-h) \right) - \frac{h}{2} \left(q(b)y(b) - f(b) \right) + O(h^2)$$

На сетке оно имеет вид

$$\alpha y_0 + A = \frac{y_1 - y_0}{h} + \frac{p_0}{2} (y_1 - y_0) + \frac{h}{2} (q_0 y_0 - f_0)$$

$$\beta y_n + B = \frac{y_n - y_{n-1}}{h} - \frac{p_n}{2} (y_n - y_{n-1}) - \frac{h}{2} (q_n y_n - f_n)$$

5. Составление системы линейных уравнений

$$c_{0}y_{1} - b_{0}y_{0} = d_{0}$$

$$c_{k}y_{k+1} - b_{k}y_{k} + y_{k-1}a_{k} = d_{k}, \quad k = 1 \dots n-1$$

$$-b_{n}y_{n} + a_{n}y_{n-1} = d_{n}$$
(1.9)

Из разностного уравнения (1.8) можно найти a_k, c_k, b_k, d_k

$$a_k = 1 - \frac{h}{2} p_k$$
 $b_k = 2 - h^2 q_k$ $c_k = 1 + \frac{h}{2} p_k$ $d_k = h^2 f_k$

Явные выражения для a_0,b_0,c_0,d_0 и a_n,b_n,c_n,d_n зависят от способа учета граничных условий. Разве что $a_0=0 \land c_0=0$. Оставим остальные читателям из Беларуси в качестве упражнения.

§ 6. Метод разностной прогонки

Вспомним систему линейную систему 1.9. Её матрица, как видно чуть ниже, трёхдиагональная.

$$\begin{pmatrix} -b_0 & c_0 & & & 0 \\ a_1 & -b_1 & c_1 & & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & -b_{n-1} & c_{n-1} \\ 0 & & & a_n & -b_n \end{pmatrix}$$

Такие СЛУ можно решать не за $O(n^3)$, а за O(n). Опишем, как именно.

Преобразум систему: уберём поддиагональ, на самой диагонали оставим всюду 1. Тогда можно написать прогоночное соотношение, очень похожее на такое же для дифференциальной прогонки (в § 2).

$$y_k = \alpha_k y_{k+1} + \beta_k \tag{1.1}$$

Свяжем α , β с a, b, c, d.

$$\begin{cases} y_{k-1} = \alpha_{k-1} y_k + \beta_{k-1} \\ a_k y_{k-1} - b_k y_k + c_k y_{k+1} = d_k \end{cases} \Rightarrow a_k \alpha_{k-1} y_k + a_k \beta_{k-1} - b_k y_k + c_k y_{k+1} = d_k \\ \Leftrightarrow y_k = \frac{c_k}{b_k - a_k \alpha_{k-1}} y_{k+1} + \frac{a_k \beta_{k-1} - d_k}{b_k - a_k \alpha_{k-1}} \end{cases}$$

Отсюда получаются удобные рекурсивные соотношения для α_k, β_k

$$\alpha_k = \frac{c_k}{b_k - a_k \alpha_{k-1}}; \qquad \beta_k = \frac{a_k \beta_{k-1} - d_k}{b_k - a_k \alpha_{k-1}}$$
 (1.2)

Начальные значения α_k, β_k легко определяются из линейной системы на a_k, b_k, c_k, d_k (1.9). Итак, алгоритм, следующий

прямая прогонка: решаем прогоночные уравения (1.2) с начальными данными $\alpha_0 = \frac{c_0}{b_0}$, $\beta_0 = -\frac{d_0}{b_0}$.

обратная прогонка: уже зная α_k , β_k решаем прогоночное соотношение (1.1) с начальными данными $y_n = \beta_n$ ($c_n = 0 \Rightarrow \alpha_n = 0$).

Как видно, что прямая, что обратная прогонка имеют асимптотику O(n), что не может не радовать. Теперь подумаем над корректностью метода.

§ 7. Лемма об оценке для системы разностных уравений

Утверждение 1 (Достаточное условие). Пусть $\forall k :: a_k, c_k > 0$ ($c_n, a_0 = 0$), и СЛУ имеет диагональное преобладание: $b_k \geqslant a_k + c_k$.

Тогда если $\exists \, k \, : \, b_k > a_k + c_k$ прогоночные уравнения 1.2 разрешимы

▶ Проблемы у нас возникнут только если знаменатели обратятся в 0. Учитывая диагональное преобладание, это эквивалентно $\alpha_{k-1} \geqslant 1$.

$$(!)$$
 0 < α_{k-1} ≤ 1 (по индукции)

база: $\alpha_0 = \frac{c_0}{b_0}$, $b_0 \geqslant c_0 > 0$, $c_0 \leqslant b_0$. Кажется, все верно.

переход: Знаем что $\alpha_{k-1} \leqslant 1$. Так что из условий теоремы

$$b_k - \alpha_{k-1} a_k \geqslant b_k - a_k \geqslant c_k > 0 \implies 0 < \alpha_k = \frac{c_k}{b_k - a_k \alpha_{k-1}} \leqslant 1$$

Если $\alpha_{k-1} < 1$, то $\alpha_k < 1$, поскольку $b_k - \alpha_{k-1} a_k > b_k - a_k \geqslant c_k$. Это означает, что если уж неравенство стало строгим, оно таким и останется.

Таким образом, все знаменатели кроме последнего > 0. В нём $c_n = 0 > 0$.

Разберёмся, что с ним делать. Поскольку мы предположили что диагональное преобладание хоть где-то строгое (в k_0), возможны варианты:

1.
$$k_0 < n \ \Rightarrow \ \alpha_{n-1} < 1$$
. Тогда $b_n - a_n \alpha_{n-1} > b_n - a_n \geqslant 0$

2.
$$k_0 = n \implies \alpha_{n-1} \leqslant 1$$
. Тогда $b_n - a_n \alpha_{n-1} \geqslant b_n - a_n > 0$

Как видно, даже последний знаменатель $\neq 0$

Посмотрим, какие условия утверждение выше накладывает на уравнение. Вспомним выражения для a_k , ...

$$a_k = 1 - \frac{h}{2} p_k$$
 $b_k = 2 - h^2 q_k$ $c_k = 1 + \frac{h}{2} p_k$ $d_k = h^2 f_k$

Отсюда

$$\begin{array}{lll} a_k > 0 & \Leftarrow & h < \frac{2}{\max|p_k|} \\ c_k > 0 & \Leftarrow & h < \frac{2}{\max|p_k|} \\ b_k \geqslant c_k + a_k & \Leftrightarrow & \boxed{q_k \leqslant 0} \end{array}$$

Можно ещё подумать про граничные условия. Тут всё зависит от способа вычисления производной на границе.

Пример 1. Оценим производную по простейшей схеме

$$\frac{y_1 - y_0}{h} = \alpha y_0 + A$$

Тогда

$$y_1 + y_0(-1 - \alpha h) = Ah \Rightarrow b_0 = 1 + \alpha h$$

 $c_0 = 1$

И по сути нам нужно $\boxed{lpha\geqslant 0}$. Аналогично с правой границей, там $\boxed{eta\leqslant 0}$

 $^{^{1}}$ здесь бы и хотелось сразу $lpha_0 < 1$, да $a_0 = 0$, так что неравенство $c_0 \leqslant b_0$ нестрогое

Если хотя бы одно из трёх условий в рамке строгое, прямая прогонка сработает.

Замечание 1. Рассмотрим однородную задачу с однородным левым граничным условияем (A=0). Тогда $d_k=0 \Rightarrow \beta_k=0$ при k < n. Прогоночное соотношение примет вид $y_k=\alpha_k y_{k+1}$. Если один из узлов находится вблизи y(x)=0, α_k окажется большим, что не очень хорошо с вычислительной точки зрения. Но, вообще, вероятность этого низкая, и можно просто узлы сдвинуть если что-то сломается.

Теперь видимо то, что в названии

Лемма 1. Пусть выполено условие достаточности прогонки 1.7.1 в усиленном виде:

$$b_k \geqslant a_k + c_k + \delta$$
, $\delta > 0$.

Тогда

$$\max_k |y_k| \leqslant \delta^{-1} \max_k |d_k|$$

Пусть $M = \max |y_k| = y_{k_0}$ (их же конечное число). Тогда из разностной СЛУ (1.9)

$$\begin{split} b_{k_0} y_{k_0} &= a_{k_0} y_{k_0-1} + c_{k_0} y_{k_0+1} - d_{k_0} \\ \Rightarrow & \ b_{k_0} M \leqslant a_{k_0} M + c_{k_0} M - d_{k_0} \\ & \Rightarrow & \ \delta M \leqslant (b_{k_0} - a_{k_0} - c_{k_0}) \, M \leqslant \left| d_{k_0} \right| \leqslant \max |d_k| \end{split}$$

§ 8. Теорема о сходимости разностного метода

Теорема 1. Рассмотрим краевую задачу III типа для уравнения второго порядка. Пусть

- 1. $p, q, f \in C^2([a; b])$
- 2. $q(x) \le -q_0, q_0 > 0$
- 3. $\alpha < 0, \beta > 0$

Тогда разностный метод сходится:

$$\forall k :: |y(x_k) - y_k| < Ch^2$$
, $C = \text{const}$

□ Запишем уравнение на сетке:

$$\frac{y(x_{k+1}) - 2y(x_k) + y(x_{k-1})}{h^2} + R_1 + p(x_k) \frac{y(x_{k+1}) - y(x_{k-1})}{2h} + p(x_k) R_2 + q(x_k) y(x_k) = f(x_k)$$

Вычтем теперь из него разностное (которое (1.8)), вводя $w_k = y(x_k) - y_k$

$$\frac{w_{k+1} - 2w_k + w_{k-1}}{h^2} + p_k \frac{w_{k+1} - w_{k-1}}{2h} + q_k w_k = R, \quad R = -R_1 - p_k R_2$$

Если вспомнить как выглядят оценки R_1 и R_2 то становится понятно зачем нужен первый пункт в условиях теоремы. Но мы вспоминать точный вид не будем, а просто запишем $R=Lh^2$

Чтобы оценить произодную на границе, можно воспользоваться формулой с фиктивными узлами и сдвинутой сеткой (на h/2), тогда:

$$\frac{w_1 - w_0}{h} = \alpha \frac{w_0 + w_1}{2} + R_0 \quad \frac{w_{n+1} - w_n}{h} = \beta \frac{w_{n+1} + w_n}{2} + R_{n+1}$$

Выражения для R снова квадратичны по h, запишем их так: $R_0 = L_0 h^2$, $R_{n+1} = L_{n+1} h^2$. Запишем выражения для коэффициентов линейной системы с w_k :

$$a_k = \frac{1}{h^2} - \frac{p_k}{2h}$$
 $b_k = \frac{2}{h^2} - q_k$ $c_k = \frac{1}{h^2} + \frac{p_k}{2h}$ $d_k = h^2 L$

(они такие же как и раньше, только правая часть в уравении поменялась)

Подгоним под условия леммы 1.7.1

$$b_k \geqslant a_k + c_k + \delta \Leftrightarrow -q_k \geqslant \delta \Leftarrow \delta = q_0$$

На границах

$$a_0 = 0 \qquad b_0 = \frac{1}{h} + \frac{\alpha}{2} \qquad c_0 = \frac{1}{h} - \frac{\alpha}{2} \qquad d_0 = h^2 L_0$$

$$a_{n+1} = \frac{1}{h} + \frac{\beta}{2} \quad b_{n+1} = \frac{1}{h} - \frac{\beta}{2} \quad c_{n+1} = 0 \qquad d_{n+1} = -h^2 L_{n+1}$$

Снова найдём δ

Выберем:

$$\delta = \min \left\{ q_0, \alpha, -\beta \right\} \quad C = \max \left\{ \left| L \right|, \left| L_0 \right|, \left| L_1 \right| \right\}$$

Тогда по лемме

$$\max |w_k| \le \delta^{-1} \max |d_k| \Rightarrow \max |y(x_k) - y_k| \le \delta^{-1} Ch^2$$

<+дальше идет каша из всяких обобщений, не буду пока их писать+>

§ 9. Жёсткие системы ОДУ

Будем рассматривать задачу Коши для системы обыкновенных дифференциальных уравнений.

$$y'(x) = f(x, y(x)),$$
 $y(x_0) = y_0$

Пусть x_n — узлы равномерной сетки с шагом h.

1. Методы численного интегрирования ОДУ

1. Метод Эйлера

$$\boldsymbol{y}_{n+1} = \boldsymbol{y}_n + h f(\boldsymbol{x}_n, \boldsymbol{y}_n)$$

2. Неявный метод Эйлера

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$

оба метода выше имеют ошибку $\sim O(h)$. Поэтому они и называются простейшими. Рассмотрим более точные методы

3. Улучшенный метод Эйлера

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{2} \Big(f(x_n, \mathbf{y}_n) + f(x_{n+1}, \mathbf{y}_n + hf(x_n, \mathbf{y}_n)) \Big)$$

4. Метод трапеций

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \frac{h}{2} \Big(f(x_n, \mathbf{y}_n) + f(x_{n+1}, \mathbf{y}_{n+1}) \Big)$$

5. Метод средних прямоугольников

$$y_{n+1} = y_n + hf\left(x_n + \frac{h}{2}, \frac{y_n + y_{n+1}}{2}\right)$$

6. Весовая формула трапеций

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h \Big((1 - \theta) f(x_n, \mathbf{y}_n) + \theta f(x_{n+1}, \mathbf{y}_{n+1}) \Big), \quad 0 \leqslant \theta \leqslant 1$$

7. Весовая формула прямоугольников

$$\mathbf{y}_{n+1} = \mathbf{y}_n + hf(\mathbf{x}_n + \theta h, (1 - \theta) \mathbf{y}_n + \theta \mathbf{y}_{n+1}), \quad 0 \le \theta \le 1$$

Как видно, только первый метод явный, остальные неявные в той или иной степени. <+можно их точность оценить+>

2. Жёсткие системы

Определение 1. Формального полного определения жёсткости нет.

Замечание 1. Обычно под жёсткими системами понимают следующую ситуацию: пусть в решении системы есть две области

- 1. «переходный слой» где решение быстро изменяется, как правило небольшой
- 2. область плавного изменения решения

Проблема исключительно вычислительная — хочется интегрировать переходный слой малым шагом, а область плавного изменения большим. А она может быть довольно большой. И времени у нас не вечность. И вот в процессе перехода от малого шага к большому и возникают некоторые трудности. Для систем эти области ещё могут перекрываться.

Если такие подобные трудности возникают, то система — жёсткая.

Пример 1. Рассмотрим f(x,y) = Ay, y(0) = 1 (всё одномерное). Его решение $-y = e^{Ax}$. Попробуем решить методом Эйлера

$$y_{n+1} = y_n + hAy_n = y_n(1 + hA) = y_0(1 + hA)^{n+1}$$

Из определения e при $h \to 0$ получается истинное решение. Однако, рассмотрим что происходит при $A \ll 0$.

1. A < 0, 1 < |Ah| < 2. Тогда -1 < 1 + hA < 0, $(1 + hA)^n$ меняет знак. При этом численное решение осциллирует, но осцилляции затухают. Истинное решение, как мы помним, убывающая экспонента. С ней такого точно не бывает.

Выглядит это примерно вот так:

2. A < 0, $|Ah| \geqslant 2$. Тогда $1 + hA \leqslant -1$. Здесь колебания даже не затухают, а вообще растут. Чтото никак не связанное с экспонентой.

Пример 2. Снова рассмотрим f(x,y) = Ay, y(0) = 1 (всё одномерное). Его решение $-y = e^{Ax}$. Такую штуку называют пробным уравнением

Попробуем решить неявным методом Эйлера

$$y_{n+1} = y_n + hAy_{n+1} \ \Rightarrow \ y_{n+1} = \frac{1}{1-Ah}y_n = \left(\frac{1}{1-Ah}\right)^{n+1}y_0$$

И вот здесь никаких проблем с A < 0 нету, какое бы оно большое не было. Сравним его с явным методом Эйлера

Пример 3.

$$f(x, \mathbf{y}) = \begin{pmatrix} A & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad -A \gg 1, \ a \sim 1$$

вот такая штука точно жёсткая: на одном и том же отрезке один кусок решения резко изменяется, а другой ведёт себя весьма плавно.

В качестве некоторой попытки формализации рассуждений иногда вводят такое определение:

Определение 2. Пусть $f(x, y) = \hat{A}y$, λ_i — собственные числа \hat{A} . Тогда если

$$\frac{\max_{i} \left\{ |\operatorname{Re} \lambda_{i}| \right\}}{\min_{i} \left\{ |\operatorname{Re} \lambda_{i}| \right\}} \gg 1$$

систему называют жёсткой.

Определение 3. Рассмотрим одношаговый метод для y' = Ay, R(z): $y_{n+1} = R(Ah)y_n$ — функция устойчивости $\langle ? \rangle$ переходный множитель $\langle ? \rangle \langle x \rangle$

Определение 4. Одношаговый метод называется A-устойчивым, если для него $|R(z)| \leqslant 1$ в левой полуплоскости.

Определение 5. $\{z \mid |R(z) \le 1| \le 1\}$ называется областью A-устойчивости метода.

Пример 4. Явный метод Эйлера устойчив в круге |z+1| < 1: для него R(z) = 1+z.

§ 10. Неявные методы Рунге-Кутты

Определение 1. Одношаговый метод называется L-устойчивым, если он A-устойчив и $\lim_{z \to \infty} R(z) = 0$. например, тот же неявный метод Эйлера.

Прежде чем вводить методы Рунге-Кутты, разберёмся с устойчивостью оставшихся методов 3–7

• Улучшенный метод Эйлера

$$R(z) = 1 + z + \frac{z^2}{2}$$

совсем неустойчив

• Метод трапеций/метод средних прямоугольников

$$R(z) = \frac{1 + z/2}{1 - z/2}$$

• Весовая формула

$$R(z) = \frac{1 + (1 - \theta)z}{1 - \theta z}$$

A-устойчива при $heta\geqslant rac{1}{2}$. Просто при таком преобразовании прообразом единичного круга будет круг/внешность круга с центром в $heta-rac{1}{2}$ и радиусом $| heta-rac{1}{2}|$.

Всё, можно бросаться сеять паслёновые определения

Определение 2 (q-этапный метод РК).

$$k_i = f\left(x_n + \alpha_i h, y_n + h \sum_{j=1}^{i-1} \beta_{ij} k_j\right)$$
$$y_{n+1} = y_n + h \sum_{j=1}^{q} \gamma_j k_j$$

а $lpha_i$, $eta_{i\,i}$, γ_i уже зависят от метода.

Определение 3. Неявным методом называется такой вариант метода РК, где у матрицы eta_{ij} ненулевые диагональные и/или наддиагональные члены.

Определение 4. Диагональным неявным методом называется такой вариант метода РК, где у матрицы β_{ij} ненулевые диагональные члены, а наддиагональные все нулевые.

Закопаемся в варианты реализации этих методов. Все примеры будут иметь такой вид: $\frac{\alpha \mid \beta}{\gamma}$ Сначала стоит заметить чем хороши неявные методы РК.

Утверждение 1. Существует реализация неявного метода с p = 2q, где p — порядок точности

Собственно, просто берём узлы и коэффициенты гауссовой квадратурной формулы. Ещё стоит отметить что неявные методы A-устойчивы, а вот диагональные как повезёт.

Пример 1 (обычный rk4).

Пример 2. (основанная на методе Гаусса)

$$\begin{array}{c|ccccc} \frac{1}{2} - \frac{\sqrt{3}}{6} & \frac{1}{4} & \frac{1}{4} - \frac{\sqrt{3}}{6} \\ \frac{1}{2} + \frac{\sqrt{3}}{6} & \frac{1}{4} - \frac{\sqrt{3}}{6} & \frac{1}{4} \\ & \frac{1}{2} & \frac{1}{2} \end{array}$$

Пример 3. (дигонального неявного РК)

$$\gamma \qquad \gamma \qquad 0$$

$$1 - \gamma \qquad 1 - 2\gamma \qquad \gamma \qquad \gamma = \frac{1}{2} + \frac{\sqrt{6}}{3}$$

$$\frac{1}{2} \qquad \frac{1}{2}$$

<+ещё примеры?+>

2 Методы линейной алгебры

§ 1. Устойчивость собственных чисел при возмущении матрицы

Пусть A — линейный оператор $\mathbb{R}^s \to \mathbb{R}^s$, x, b — векторы-столбцы в \mathbb{R}^s . Здесь будет столько матриц и векторов, что рисовать шляпы не будем, и так понятно кто есть кто.

Какие задачи вообще можно здесь решать

- 1. Решение линейной системы Ax = b
- 2. Поиск собственных чисел $Ax = \lambda x$

Какие при этом могут возникнуть ошибки

- 1. Ошибки округления (алгоритма)
- 2. Ошибки начальных данных (неустранимые)

Посмотрим, как оценить ошибки вычисления. Пусть ∘ — какая-то операция, а ⊚ — её машинное представление. Существуют два подхода

1. Прямой анализ ошибок

Просто учитываем погрешность $a \circ b$ как ошибку округления. Часто делают так (ε_M — «машинный эпсилон»):

$$a \odot b = a \circ b (1 + \varepsilon), \quad \varepsilon \leqslant \varepsilon_M$$

2. Обратный анализ ошибок (метод эквивалентных возмущений)

Сводим все ошибки к возмущениям начальных данных:

$$a \odot b = \tilde{a} \circ \tilde{b}, \quad \tilde{a} = a + \Delta a, \ \tilde{b} = b + \Delta b.$$

- (а) оцениваем эквивалентные возмущения
- (b) оцениваем влияние возмущений

получается, что мы все ошибки записали в неустранимые погрешности начальных данных

Первый метод частно выдает неправданно большие оценки погрешности, так что займёмся в основном вторым.

Разберёмся с корректностью задач.

1. Решение ЛСУ

Определение 1 (мера обусловленности). $\mu = \|A\| \|A^{-1}\|$

Почему она так выглядит? Посмотрим какие вообще есть способы оценки вырожденности A

- 1. $\det A$. Почти не бывает равным 0. К тому же, перемешивает большие и маленькие собственные числа.
- 2. $\frac{\|Ax\|}{\|x\|}$. Здесь мы пытаемся смотреть на ЛЗ строчек матрицы. Но не очень понятно с чем сравнить, чтобы понять близость к ЛЗ. Может быть компоненты матрицы маленькие.

3. $\frac{\max \frac{\|Ax\|}{\|x\|}}{\min \frac{\|Ax\|}{\|x\|}}$ уже выглядит разумно. Преобразуем, используя определение нормы (конечномерного) оператора

$$\begin{aligned} \max \frac{\|Ax\|}{\|x\|} &= \|A\| \\ \min \frac{\|Ax\|}{\|x\|} &= \min \frac{\|y\|}{\|A^{-1}y\|} = \frac{1}{\frac{\|A^{-1}y\|}{\|y\|}} = \left\|A^{-1}\right\|^{-1}. \end{aligned}$$

А это очень похоже на определение выше.

Лемма 1.
$$||B|| < 1 \implies \exists (I - B)^{-1} \land ||(I - B)^{-1}|| \leqslant \frac{1}{1 - ||B||}$$

Рассмотрим систему x-Bx=y. Будем искать решение методом простой итерации: $x_{n+1}=f(x_n)=Bx_n+y$. Покажем, что он сходится. Для этого нужно убедиться что f — сжимающее отображение.

$$||f(x) - f(x')|| = ||B(x - x')|| \le ||B|| \, ||x - x'|| < ||x - x'||$$

Решение нашлось $\forall y \Rightarrow \exists (I - B)^{-1}$. Теперь получим оценку нормы

$$\forall x :: x = Bx + y \implies ||x|| \le ||B|| \, ||x|| + ||y|| \implies ||x|| \le \frac{1}{1 - ||B||} \, ||y||$$

Тогда это верно и для $\max \|x\| / \|y\| = \|(I - B)^{-1}\|$

Теперь, оценим, наконец, погрешность решения СЛУ.

Теорема 1. Рассмотрим возмущенную задачу: $\widetilde{A}x = \widetilde{b}$. Введём относительную и абсолютную погрешность A, x, b:

$$\Delta A = \widetilde{A} - A, \quad \Delta x = x - x^*, \qquad \Delta b = \widetilde{b} - b$$

$$\delta_A = \frac{\|\Delta A\|}{\|A\|}, \quad \delta_x = \frac{\|\Delta x\|}{\|x*\|}, \qquad \delta_b = \frac{\|\Delta b\|}{\|b\|}$$

 x^* — невозмущенное пещение

Тогда

$$\delta_x \leqslant \frac{\mu(A)}{1 - \mu(A)\delta_A} \left(\delta_A + \delta_b\right)$$

 \Box Раз x^* — решение $Ax^* = b$, провернём пару скучных манёвров

$$A'x = b' \Leftrightarrow (A + \Delta A)(x^* + \Delta x) = b + \Delta b \Leftrightarrow (A + \Delta A)\Delta x = -\Delta A x^* + \Delta b$$
$$\Leftrightarrow \left(I - (-A^{-1}\Delta A)\right) \frac{\Delta x}{x^*} = -A^{-1}\Delta A + A^{-1} \frac{\Delta b}{x^*}$$

Из леммы выше

$$\left\| \frac{\Delta x}{x^*} \right\| \leqslant \frac{1}{1 - \|A^{-1}\| \|\Delta A\|} \left(\|A^{-1}\| \|\Delta A\| + \|A^{-1}\| \left\| \frac{\Delta b}{x^*} \right\| \right)$$

Из невозмущённой системы $\|x^*\| \geqslant \|A\|^{-1}\|b\|$, вспомнив определение числа обусловленности осознаем $\|A^{-1}\|\|\Delta A\| = \mu(A)\,\delta_A$. Осталось переписать остальное через δ и получить утверждение теоремы.

Замечание 1. Из этой теоремы можно прикинуть ошибку решения ЛСУ. Будем, как и обещали, использовать обратный анализ ошибок. Из-за неточного представления в памяти $\delta_A, \delta_b \sim \varepsilon_M$ (ну никак не меньше), так что $\delta_x \sim C(s)\,\mu(A)\,\varepsilon_M$, C(s) — функция параметров задачи.

Замечание 2. На оценку погрешности ещё влияют индивидуальные особенности методов. Например, в методе исключения Гаусса часто накапливается ошибка из-за деления на маленькие ведущие элементы.

2. Поиск собственных чисел

Некий полезный набор фактов из линейной алгебры, который совсем не стоит забывать

- 1. $Au \lambda u$ уравнение на собственные числа и собственные вектора.
- 2. $p_A(t) = \det(A tI)$ характеристический многочлен.
- 3. матрицы можно приводить к ЖНФ
- 4. ЖНФ диагональ из жордановых клеток:

$$J_p(a) = \begin{pmatrix} a & 1 \\ & \ddots & 1 \\ & & a \end{pmatrix} : p \times p, \qquad p_{J_p(a)}(t) = (a-t)^p$$

- 5. алгебраическая кратность собственного числа кратность его как корня характеристического многочлена. Совпадает с размерностью корневого подпространства $(V(\lambda))$.
- 6. Γ геометрическая кратность размерность собственного подпространства (V_{λ}).
- 7. геометрическая кратность \leqslant алгебраической, ибо dim $V_{\lambda} \leqslant V(\lambda)$.
- 8. собственные числа самосопряженных операторов вещественные.
- 9. из собственных векторов самосопряжённого оператора можно собрать ортогональный базис.

Утверждение 1. Для самосопряжённого положительно определённого оператора

$$\max \lambda_A = \max \frac{(Au,u)}{(u,u)}, \quad \min \lambda_A = \min \frac{(Au,u)}{(u,u)}$$

▶ Например, через теорему об условном экстремуме

Утверждение 2. $||A||_2 = \sqrt{\max \lambda_{A^*A}}$

▶ Эвклидова норма согласована со скалярным произведением, так что

$$\max \frac{\|Ax\|_2}{\|x\|_2} = \max \frac{(Ax, Ax)}{(x, x)} = \max \frac{(A^*Ax, x)}{(x, x)}.$$

А дальше можно глянуть утверждение выше.

В принципе это сработает для любой нормы, согласованной со скалярным произведением. А если это не так, то мы уже явно переусложнили себе жизнб для линейной алгебры.

Теперь наконец обсудим устойчивость

Пример 1. Пусть

$$A=J_p(a),\quad \varepsilon B\ :\ (\varepsilon B)_{ij}=\delta_{ip}\delta_{j1},\quad \widetilde{A}=A+\varepsilon B$$

Оценим ошибку собственного числа. Попреобразовываем систему..

$$Ax + \varepsilon Bx = \lambda x \iff \begin{cases} ax_k + x_{k+1} = \lambda x_k, & k \in 1 .. p - 1 \\ \varepsilon x_1 + ax_p = \lambda x_p \end{cases} \Rightarrow \varepsilon x_1 = (\lambda - a)^p x_1$$

В итоге получается, что $\lambda = a + \varepsilon^{1/s}$

Пусть $\varepsilon=10^{-16}$ (удвоенная точность). Тогда уже на матрицах порядка 15 ошибка ~ 0.1 . Грустная оценка получилась.

 $^{^{1}}$ можно конечно корень из 1 в $\mathbb C$ посчитать, но идея не изменится

§ 2. Теорема Бауэра-Файка

ситуация немного лучше, когда матрицы симметричные. Можно придумать не такие грустные оценки, как в примере в предыдущем параграфе.

Теорема 1. Пусть A — диагонализуемая матрица, $D^{-1}AD = \Lambda$. Тогда

$$\lambda_{A+B} - \text{c.4.} \ A + B \ \Rightarrow \ \exists \ \lambda_A \ : \ \left| \lambda_{A+B} - \lambda_A \right| \leqslant \mu(D) \, \|B\|$$

□ Построим отрицание

$$\forall \lambda_A :: |z - \lambda_A| > \mu(D) ||B|| \Rightarrow z - \text{He c.u. } A + B$$

и будем его доказывать. Пусть $|z - \lambda_A| > ||B||$. (!) A + B - zI — неособая

$$A - zI + B = D^{-1} (\Lambda - zI + DBD^{-1}) D = D^{-1} (\Lambda - zI) \left(I + \underbrace{(\Lambda - zI)^{-1}DBD^{-1}}_{C} \right) D$$

D, $(\Lambda-zI)$ неособые по условию. Воспользуемся леммой об обратимости (2.1.1). Для этого нужно $\|C\|<1$:

$$||C|| \le ||(\Lambda - zI)^{-1}|| \underbrace{||D^{-1}|| \, ||B|| \, ||D||}_{u(D)||B||}$$

Из утверждения в предыдущем параграфе, и отрицания к предположению теоремы

$$\|(\Lambda - zI)^{-1}\| = \sqrt{\max_k |\lambda_k - z|^{-2}} = \sqrt{\frac{1}{\min_k |\lambda_k - z|^2}} < \frac{1}{\mu(D) \, \|B\|}$$

Как видно, у нас как раз получилось что ||C|| < 1. А тогда и матрица выше обратима.

Следствие 1. Для самосопряженных матриц

$$\lambda_{A+B}$$
 — с.ч. $A+B \Rightarrow \exists \lambda_A : |\lambda_{A+B} - \lambda_A| \leqslant ||B||$

Для них просто D — унитарная, $||D|| = ||D^{-1}|| = 1$.

Минутка троллинга: что будет, если сразу выбрать базис, где A диагональная. Куда число обусловленности подевалось?

По сути мы сейчас доказали что собственные числа устойчивы к возмущениям матрицы. А вот что там с собственными векторами?

§ 3. Устойчивость собственных векторов при возмущении матрицы

Сразу поясним, какие вообще возникнут проблемы

Пример 1. Пусть A_1, A_2 имеют разные с.ч. и с.в, а

$$C = \begin{cases} I + \varepsilon A_1, & \varepsilon \geqslant 0 \\ I + \varepsilon A_2, & \varepsilon < 0 \end{cases}.$$

Тогда, как видно

$$\lambda_C = \begin{cases} 1 + \varepsilon \lambda_1, & \varepsilon \geqslant 0 \\ 1 + \varepsilon \lambda_2, & \varepsilon < 0 \end{cases}, \quad u_C = \begin{cases} u_1, & \varepsilon \geqslant 0 \\ u_2, & \varepsilon < 0 \end{cases}$$

и в u никакого ε нету. Направление у них изменяется скачком при проходе через 0. А вот с λ всё хорошо.

Проблемы, как видно, возникают в окрестности кратных собственных чисел, снятие вырождения радикально меняет собственные подпространства. Давайте не делать кратных собственных чисел. Может быть так всё будет хорошо?

Утверждение 1. Пусть (λ_i, u_i) — собственные числа и векторы A, (μ_i, v_i) — A^* , все λ_i разные. Короче говоря, A диагонализуема, но может быть не самосопряжённой. Рассмотрим возмущенную задачу на собственные числа и векторы: $(A + \Delta A) x = (\lambda + \Delta \lambda) x$.

Тогда в линейном приближении¹

•
$$p_i = \frac{\|u_i\| \|v_i\|}{(u_i, v_i)}$$

1.
$$||\Delta \lambda_i|| \leq p_i ||\Delta A||$$

2.
$$\delta u_i \leqslant \sum_{k=1}^{s} \frac{p_k}{|\lambda_i - \lambda_k|} ||\Delta A||$$

▶ Пойдём по порядку.

1.
$$\lambda_i = \overline{\mu_i}$$

2.
$$(u_i, v_k) = 0$$
 при $i \neq k$

$$\begin{aligned} &(Au_i, v_k) = \lambda_i(u_i, v_k) \\ &(u_i, A^*v_k) = \overline{\mu_k}(u_i, v_k) \end{aligned} \Rightarrow (\lambda_i - \overline{\mu_k})(u_i, v_k) = 0 \Rightarrow (\lambda_i - \lambda_k)(u_i, v_k) = 0$$

3.
$$(Ax, v_i) = \overline{\mu_i}(x, v_i) = \lambda_i(x, v_i)$$

4.
$$\Delta \lambda_i(u_i, v_i) = (\Delta A u_i, v_i)$$

$$(\widetilde{A}\widetilde{u}_i, v_i) = (\widetilde{\lambda}_i \widetilde{u}_i, v_i) \Rightarrow (\Delta A u_i, v_i) + (A \Delta u_i, v_i) = \Delta \lambda_i (u_i, v_i) + \lambda_i (\Delta u_i, v_i)$$

отсюда уже легко вывести первый пункт.

5. $(\Delta u_i, v_k) = (1 - \delta_{ik}) \frac{(\Delta A u_i, v_k)}{(\lambda_i, \lambda_k)}$, аналогично предыдущему пункту. Здесь выбрали $(\Delta u_i, v_i) = 0$ пожертвовав нормированностью v_i . Всё равно одна лишняя степень свободы была.

6.
$$\Delta u_i = \sum_{k=1}^{s} \gamma_k u_k^2, \gamma_k = \frac{(\Delta u_i, v_k)}{(u_k, v_k)}$$

7.
$$\Delta u_i = \sum_{k=1}^s \frac{(\Delta A u_i, v_k)}{(\lambda_i - \lambda_k)} \frac{1}{(u_i, v_k)}$$
, отсюда очевиден второй

§ 4. Степенной метод

Определение 1 (Степенной метод). Пусть A — диагонализуемая матрица порядка s. Построим итерации такого сорта, x_0 выбирается случайно.

$$ilde{x}_{n+1} = A x_n, \quad x_{n+1} = rac{ ilde{x}_{n+1}}{ ilde{x}_{n+1}^1} \quad$$
 (делим на первую компоненту)

Будем брать \tilde{x}_{n+1}^1 как оценку наибольшего собственного числа A

Мотивировка у такого определения понятная — если x_n разложить по собственным векторам A, то через много шагов наибольшее собственное число забьет все остальные. Однако, нужно аккуратно сформулировать условия сходимости.

Утверждение 1. Пусть для собственных чисел A выполнено условие:

$$|\lambda_1| > |\lambda_2| \geqslant \cdots \geqslant |\lambda_s|$$

Тогда степенной метод сходится к λ_1

¹а если нет, то надо думать

 $^{^{2}}u_{i}$ образуют базис, раз матрица диагонализуема; корневые подпространства совпадают с собственными

Из определения степенного метода

$$x_n = \frac{\tilde{x}_n}{\tilde{x}_n^1} = \frac{Ax_{n-1}}{\left\{Ax_{n-1}\right\}^1} = \frac{\left(\tilde{x}_{n-1}^1\right)^{-1} A\tilde{x}_{n-1}}{\left(\tilde{x}_{n-1}^1\right)^{-1} \left\{A\tilde{x}_{n-1}\right\}^1} = \dots = \frac{A^n x_0}{\left\{A^n x_0\right\}^1}$$

Разложим x_0 по собственным векторам A, тогда

$$x_0 = \sum_{k=1}^{s} c_k u_k \implies A^n x_0 = c_1 \lambda_1^n u_1 + \sum_{k=2}^{s} c_k \lambda_k^n u_k$$

Отсюда переходим к пределу

$$x_{n} = \frac{A^{n}x_{0}}{\left\{A^{n}x_{0}\right\}^{1}} = \frac{c_{1}\lambda_{1}^{n}u_{1} + \sum_{k=2}^{s}c_{k}\lambda_{k}^{n}u_{k}}{c_{1}\lambda_{1}^{n}u_{1}^{1} + \sum_{k=2}^{s}c_{k}\lambda_{k}^{n}u_{k}^{1}} = \frac{\frac{u_{1}}{u_{1}^{1}} + \sum_{k=2}^{s}c_{k}'\left(\frac{\lambda_{k}}{\lambda_{1}}\right)^{n}u_{k}'}{1 + \sum_{k=2}^{s}c_{k}'\left(\frac{\lambda_{k}}{\lambda_{1}}\right)^{n}u_{k}'^{1}} \xrightarrow[n \to \infty]{} \frac{u_{1}}{u_{1}^{1}}$$

$$\Rightarrow \tilde{x}_{n+1}^{1} = \left\{Ax_{n}\right\}^{1} \xrightarrow[n \to \infty]{} \frac{\left\{\lambda_{1}u_{1}\right\}^{1}}{u_{1}^{1}} = \lambda_{1}$$

Так сработает для комплексных λ , поскольку

$$\lim_{x \to \infty} \left| \left(\frac{\lambda_k}{\lambda_1} \right)^n - 0 \right| = \lim_{x \to \infty} \left(\frac{|\lambda_k|}{|\lambda_1|} \right)^n = 0$$

Посмотрим, что будет если нарушить условия утверждения выше

Пример 1. $\lambda_1 = \lambda_2 = \lambda$: ну это одно и тоже число, так неинтересно

Пример 2. $\lambda_1 = -\lambda_2 = \lambda$

$$\begin{split} x_{2n} &\to \frac{c_1 u_1 + c_2 u_2}{c_1 u_1^1 + c_2 u_2^1}, \quad \tilde{x}_{2n+1}^1 \to \lambda \frac{c_1 u_1^1 - c_2 u_2^1}{c_1 u_1^1 + c_2 u_2^1} \\ x_{2n+1} &\to \frac{c_1 u_1 - c_2 u_2}{c_1 u_1^1 - c_2 u_2^1}, \quad \tilde{x}_{2n+2}^1 \to \lambda \frac{c_1 u_1^1 + c_2 u_2^1}{c_1 u_1^1 + c_2 u_2^1} \end{split}$$

подпоследовательности сходятся к разным числам

Пример 3. $\lambda_1=Re^{i\theta}$, $\lambda_2=Re^{-i\theta}$, раз матрица вещественная $c_2=\overline{c_1}$, $u_2=\overline{u_1}$

$$x_n \to \frac{2\operatorname{Re}(c_1u_1e^{in\theta})}{2\operatorname{Re}(c_1u_1^1e^{in\theta})}, \quad \tilde{x}_{n+1}^1 \to R\frac{\operatorname{Re}\left(c_1u_1^1e^{i(n+1)\theta}\right)}{\operatorname{Re}\left(c_1u_1^1e^{in\theta}\right)}$$

кажется это вообще никуда не сходится.

Для недиагонализуемых может сходиться, но медленно. <+пример с матрицей-производной+>

Определение 2 (Степенной метод со сдвигом). Рассмотрим в степенном методе матрицу A-tI вместо A. При этом ищется наиболее удалённое по модулю от t собственное число.

какой-то не очень полезный метод

§ 5. Обратный степенной метод

Определение 1 (Обратный степенной метод). Пусть матрица A — неособая. Будем применять степенной метод для A^{-1} . Решим, что то, что нашлось — наименьшее по модулю собственное число.

Утверждение 1. Пусть для собственных чисел A выполнено условие:

$$|\lambda_1| < |\lambda_2| \leq \cdots \leq |\lambda_s|$$

Тогда обратный степенной метод сходится к λ_1^{-1}

$$\begin{split} A^{-1}x &= \lambda_* x \iff \lambda x = \lambda_*^{-1} x = A x \\ |\lambda_1| &< |\lambda_2| \leqslant \cdots \leqslant |\lambda_s| \iff \left|\lambda_1^{-1}\right| > \left|\lambda_2^{-1}\right| \geqslant \cdots \geqslant \left|\lambda_s^{-1}\right| \end{split}$$

Определение 2 (Обратный степенной метод со сдвигом). Рассмотрим в обратном степенном методе матрицу A-tI вместо A. Метод при этом будет искать ближайшее к t собственное число

вот это уже полезно. Можно взять грубую оценку с.ч. и уточнить её таким методом.

Определение 3 (Обратный степенной метод с переменным сдвигом). Возьмём обратный степенной метод и слегка изменим шаг итерации. Помимо махинаций с \tilde{x}_{n+1} ,

$$t_{n+1} = t_n + \mu_n^{-1}, \qquad \mu_n = \tilde{x}_{n+1}^1$$

Метод при этом будет искать ближайшее к t_0 собственное число

Доказывать что такой алгоритм сходится мы не будем. Зато можно понять почему он так устроен. Поскольку \tilde{x}_{n+1} — текущее приближение собственного вектора

$$\tilde{x}_{n+1} = (A - tI)^{-1} x_n \iff (A - tI)\tilde{x}_{n+1} = x_n \iff \tilde{x}_{n+1} = (\lambda_A - t)^{-1} x_n$$

На каждом шаге $x_n^1 = 1$, так что

$$\mu = \tilde{x}_{n+1}^1 = (\lambda_A - t)^{-1} \iff \lambda_A = t + \mu^{-1}$$

§ 6. Двумерные вращения

Будем рассматривать матрицы самосопряженных операторов. На всякий случай, снова приведём набор полезных фактов из линейной алгебры.

1. Унитарные операторы — такие, что сохраняют скалярное произведение:

$$U: (Ux, Uy) = (x, y)$$

- 2. $U^*U = 1 \implies U^{-1} = U^*$
- 3. Если A самосопряженный, $\exists U : A = U^{-1} \Lambda U$, Λ тут диагональная.
- 4. Произведение унитарных операторов унитарный оператор

Вернёмся на скучную вещественную прямую. Матрицы операторов сменили названия

унитарные
$$\to$$
 ортогональные \to симметричные

Все утверждения выше спокойно сохранились. Запишем ещё пару специфических для \mathbb{R}^n фактов

5. Существует базис, в котором матрица ортогонального оператора — диагональ из блоков такого сорта:

тождество:
$$\boxed{1}$$
 отражение: $\boxed{-1}$ вращение: $\begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$

6. Если вся ортогональная матрица единичная кроме одного одинокого грустного блока, то она простое отражение/вращение.

Простые вращения ещё называются двумерными вращениями. Все потому, что блоки такого сорта соответствуют двумерным инвариантным подпространстрам.

Будем потихоньку приводить матрицу A к (по возможности) диагональному виду. Посмотрим, как выглядит один шаг такого приведения

$$A \rightarrow C = O^T A O$$
, $O -$ ортогональная

Если продраться через паслёновые заросли (для краткости переобозначив \cos , \sin), получит- \cos явное выражение для компонент \cos

$$c_{ij} = a_{ij}, i, j \neq p, q$$

$$c_{pj} = c_{jp} = c \, a_{pj} + s \, a_{qj}, j \neq p, q$$

$$c_{qj} = c_{jq} = -s \, a_{pj} + c \, a_{qj}, j \neq p, q$$

$$c_{pp} = a_{pp} \, c^2 + 2 \, a_{pq} \, cs + a_{qq} s^2$$

$$c_{pq} = c_{qp} = (a_{qq} - a_{pp}) \, cs + a_{pq} \, (c^2 - s^2)$$

$$c_{qq} = a_{qq} \, c^2 - 2 \, a_{pq} \, cs + a_{pp} s^2$$

$$(2.1)$$

Как можно избавиться от внедиагональных членов:

1. $c_{p-1,q} = 0$: вращение Гивенса

$$c_{p-1,q} = -s \, a_{p,p-1} + c \, a_{q,p-1}, \\ c = \cos \varphi, s = \sin \varphi \Rightarrow \cos \varphi = \frac{a_{p-1,p}}{\sqrt{a_{p-1,p}^2 + a_{p-1,q}^2}}; \quad \sin \varphi = \frac{a_{p-1,q}}{\sqrt{a_{p-1,p}^2 + a_{p-1,q}^2}}$$

2. $c_{p,q} = 0$: вращение Якоби

$$\begin{array}{c} c_{p,q} = (a_{qq} - a_{pp}) \, cs + a_{pq} \, (c^2 - s^2) \\ c = \cos \varphi, s = \sin \varphi \end{array} \Rightarrow \tan \varphi = \frac{2 a_{pq}}{a_{qq}^2 - a_{pp}^2}$$

§ 7. Лемма о правиле знаков при исключении

Вспомним пару фактов из линейной алгебры:

Определение 1. Пусть B(x,y) — симметрическая билинейная функция. Тогда функция одного аргумента B(x,x) называется квадратичной формой.

- 1. $\forall B(x,x) \ \exists A : (Ax,x) = B(x,x), A$ самосопряженный. Это означает, что можно записать матрицу квадратичной формы и она симметрична.
- 2. Закон инерции: если привести матрицу квадратичной формы к диагональному виду, то количество элементов одного знака не зависит от способа приведения.

Теперь можно и лемму сформулировать.

Лемма 1. Пусть A — симметричная матрица. Тогда число ведущих элементов одного в методе исключения Гаусса для такой матрицы совпадает с числом собственных чисел того же знака.

честно говоря ушло немало времени чтобы понять что формулировка именно такая.

Рассотрим квадратичную форму (Ax,x). Напишем её в координатах для экономии чернил:

$$(Ax, x) = \sum_{i,j} a_{i,j} x_i x_j = a_{11} x_1^2 + 2 \sum_i a_{1,j} x_1 x_j + \sum_{i,j \ge 2} a_{i,j} x_i \cdot x_j$$

Будем приводить её к сумме квадратов стандартным способом (Лежандра).

$$(Ax,x) = a_{11}^{-1} \left(\underbrace{\sum_{j} a_{1j} x_{j}}_{\xi_{1}^{2}} \right)^{2} + \underbrace{\sum_{i,j \geqslant 2}}_{i,j \geqslant 2} \left(\underbrace{a_{ij} - \frac{a_{1i} a_{1j}}{a_{11}}}_{a'_{ij}} \right) x_{i} x_{j}$$

Внимательно присмотримся к a_{ij}^\prime . Мы вычитаем из элемента строки такой же элемент первой строки, поделённый на первый элемент первой строки, умноженный на первый элемент данной строки. А это как раз шаг метода исключения Гаусса.

Теперь приведём A к ЖНФ. Поскольку она симметричная, J_A диагональная. На диагонали стоят собственные числа. Сравнивая их с a_{jj} и припоминая закон инерции, приходим к утверждению леммы.

§8. Метод Гивенса

Вспомним, как выглядело вращение Гивенса

$$c_{p-1,q} = -s \, a_{p,p-1} + c \, a_{q,p-1} = 0, \\ c = \cos \varphi, s = \sin \varphi \\ \Rightarrow \cos \varphi = \frac{a_{p-1,p}}{\sqrt{a_{p-1,p}^2 + a_{p-1,q}^2}}; \quad \sin \varphi = \frac{a_{p-1,q}}{\sqrt{a_{p-1,p}^2 + a_{p-1,q}^2}};$$

Будем строить повороты с (p,q) в таком порядке, как на картинке ниже

$$(2,3) \longrightarrow (2,4) \longrightarrow (2,5) \longrightarrow \cdots \longrightarrow (2,s)$$

$$(3,4) \longrightarrow (3,5) \longrightarrow \cdots \longrightarrow (3,s)$$

$$(4,5) \longrightarrow \cdots$$

На каждом шаге метода столбцы/строки с индексами p и q заменяются их линейными комбинациями. При этом явно зануляется (p-1,q) элемент. А после предыдущих шагов $\forall j>1$ (p-j,q), (p-j,p) уже нули. Либо p=2 и выше просто ничего нет. Так что и линейные комбинации «верхушек» столбцов будут нулями, и ничего испортиться не сможет. Про область нулей под диагональю можно особо не думать, она получится автоматически, так как матрица симметричная на каждом шаге.

После вращений Гивенса матрица стала трёхдиагональной.

$$(A - tI) = \begin{pmatrix} a_1 - t & b_1 & & \\ b_1 & a_2 - t & \ddots & \\ & & \ddots & b_{s-1} \\ & & b_{s-1} & a_s - t \end{pmatrix}$$

Введём p_k — угловые миноры. порядка k Из формулы разложения определителя по строке получаются рекуррентные формулы для p

$$\begin{split} p_1(t) &= a_1 - t \\ p_2(t) &= (a_2 - t)p_1(t) - b_1^2 \\ p_k(t) &= (a_k - t)p_{k-1}(t) - b_{k-1}^2 p_{k-2}(t) \end{split}$$

Как нетрудно заметить, последовательность $p_k(t)$ для фиксированного t — это тоже самое что и a_{kk} в лемме в предыдущем параграфе (2.7.1). Ну ведь правда, после k шагов метода Гаусса на диагонали вплоть до k строки стоят 1. Так что угловой минор просто равен a_{kk} .

Разберёмся теперь как искать собственные числа.

1. Как корни характеристического многочлена, $\chi(t) = p_s(t)$

2. Методом бисекции

Про этот пункт придётся написать чуть подробнее. Выберем какие-то 2 начальных приближения λ , чтобы искать его между ними. Будем считать число перемен знака в последовательности a_{kk} . Нам нужно добиться чтобы перемена знака была всегда одна. Обычным методом половинного деления как раз можно к этому прийти.

§ 9. Метод Якоби

Вспомним, как выглядело вращение Якоби

$$\begin{array}{c} c_{p,q} = (a_{qq} - a_{pp}) \, cs + a_{pq} \, (c^2 - s^2) \\ c = \cos \varphi, s = \sin \varphi \end{array} \Rightarrow \tan \varphi = \frac{2a_{pq}}{a_{qq}^2 - a_{pp}^2}$$

Будем пытаться прийти к почти диагональной матрицей. Для этого надо как-то измерять «недиа-гональность». Введём набор величин

- $N^2(A) = \sum_{i,k} a_{ik}^2 = \text{Tr}(A^2)$
- $d^2(A) = \sum_{i,k} a_{ii}^2$
- $t^2(A) = \sum_{i \neq k} a_{ik}^2 = N^2(A) d^2(A)$

Утверждение 1. После одного двумерного вращения $(C = O_{pq}^T A O_{pq})$

$$t^{2}(C) = t^{2}(A) - 2a_{p,q} + 2c_{p,q}^{2}$$

- ▶ Пойдем по порядку
 - 1. $N^2(C) = N^2(A)$, поскольку $C^2 = O^T A O O^T A O = O^T A O$, а след подобных матриц совпадает.
 - 2. $t^2(C) = N^2(C) d^2(C) = t^2(A) + d^2(A) d^2(C)$
 - 3. $d^2(A) d^2(C) = a_{p,p}^2 + a_{q,q}^2 c_{p,p}^2 c_{q,q}^2$, просто все остальные элементы на диагонали не поменялись.
 - $4. \ \ a_{p,p}^2 + a_{q,q}^2 + 2a_{p,q}^2 = c_{p,p}^2 + c_{q,q}^2 + 2c_{p,q}^2.$

Это можно либо явно проверить из формулы (2.1), либо вспомнить что вращения квадраты норм матриц не изменяют, а эти 4 элемента преобразуются независимо от других. Разве что мы норму оператора не так определяли.

Метод Якоби как раз зануляет c_{pq}^2 на шаге, оптимально уменьшая таким образом t^2 . Разберёмся как выбирать здесь p и q.

1. Классический метод Якоби: $p,q: |a_{p,q}| = \max_{i \neq k} |a_{i,k}|$.

Оценим, как быстро он сходится

$$a_{p,q}^2 \frac{s(s-1)}{2} \ge \sum_{i,k} a_{i,k}^2 \implies t^2(C) \le \left(1 - \frac{2}{s(s-1)}\right) t^2(A)$$

Сходится, конечно, неплохо, но поиск максимума $\sim O(s^2)$, а сам метод Якоби $\sim O(s)$. Неловко выходит.

- 2. Циклический метод Якоби: просто проходим по всем наддиагональным элементам много раз. Занулять почти нули приятно, но немного бесполезно...
- 3. Циклический метод Якоби с барьером: выбираем $\varepsilon_i>0$ и зануляем всё что больше него. Потом выбираем $\varepsilon_{i+1}<\varepsilon_i$ и повторяем.

Разберёмся, как искать собственные числа и собственные векторы.

- 1. С λ всё просто— они на диагонали матрицы. Корректность следует из теоремы Бауэра-Файка (2.2.1), просто вычтем внедиагональные члены
- 2. в качестве собственных векторов можно просто взять строки матрицы произведения всех двумерных вращений.

Это сработает, поскольку собственные векторы диагональной формы — e_k ,

$$\lambda_k e_k = \Lambda e_k = OAO^T e_k \iff AO^T e_k = \lambda_k O^T e_k,$$

а O^Te_k как раз k-ая строчка $O^{.1}$

¹то ли мне спать пора, то ли правда везде порядок матриц другой, и у них там столбцы, а не строки нужно брать...

§ 10. Две леммы о факторизации матрицы

Тут я придумал что-то по мотивам конспекта и Голуба. Кажется оно работает.

Лемма 1. Пусть A — неособая матрица с ненулевыми диагональными минорами Тогда

$$\exists !\, L,R \,:\; A=LR, \quad L=\begin{pmatrix} 1 & & \\ \bullet & \ddots & \\ \bullet & \bullet & 1 \end{pmatrix}, \qquad R=\begin{pmatrix} \bullet & \bullet & \bullet \\ & \ddots & \bullet \\ & & \bullet \end{pmatrix}.$$

То есть раскладывается на произведение верхней/нижней треугольной.

. Эта теорема — матричная запись метода Гаусса. Запишем явное выражение для первого шага

$$a_{ij} = a_{ij} - \frac{a_{i1}a_{1j}}{a_{11}}, \quad i = 2, \dots, s$$

Посмотрим на эту формулу как на преобразование jго столбца. Тогда матрица такого преобразования имеет вид

$$\begin{pmatrix} 1 & & & \\ \bullet & 1 & & \\ \vdots & 0 & 1 & \\ \bullet & 0 & 0 & 1 \end{pmatrix}$$

понятно, что в случае k-го шага будет просто k-й столбик. Если мы будем перемножать такие столбики, они просто будут пристраваться рядом. Ну в самом деле, умножим нижнетреугольную матрицу на такой столбик. $c_{ij} = \sum_p a_{ip} b_{pj}$, а при всех $j \neq k$ вместо b_{pj} просто такой же член от единичной матрицы. А сохранение треугольности следует из треугольности a_{ip} .

Чтобы убедиться в единственности, можно рассмотреть матричное равенство построчно. А у последовательного набора этих равенств получается всего одно решение. ◀

она везде называется LU факторизация и непонятно в чем разница.

Лемма 2. Пусть A — неособая матрица. Тогда

$$\exists Q, R : A = QR$$

Здесь R как в лемме выше, а Q — ортогональная.

Прогоним процесс ортогонализации Грамма-Шмидта для строчек A, строчки Q это полученный ортогональный базис. При этом Q=LA, только на диагонали не обязательно 1. А L^{-1} уже будет верхнетреугольной.

§ 11. Теорема о сходимости итерированных подпространств

Вспомним про степенной метод из § 4. У него была беда, он не умел искать больше одного собственного числа. Но мы и итерировали всего один вектор. Давайте обобщим.

Определение 1. Пусть A — диагонализуемая неособая матрица, $\{x_i\}$ — базис в \mathbb{R}^s ,

- 1. $\{x_i^{(n)}\} = \{A^n u_i\} n$ -ный итерированный базис
- 2. $L_{\scriptscriptstyle S}^{(n)} = \langle A^n x_1, \dots, A^n x_{\scriptscriptstyle S} \rangle n$ -ное итерированое подпространство.

Замечание 1. Можно итерировать не весь базис, а, например, только k векторов из s. Помимо добавления эпитетов, характеризующих размерность, вводят $U_k = \langle u_1, \dots, u_k \rangle - k$ -мерное старшее собственное подпространство, а $\{u_i\}$ — базис из собственных векторов A.

Определение 2. Говорят, что $P^{(n)} \to P$, если в $P^{(n)}$ существует базис, сходящийся к базису P.

Теорема 1. Пусть A — диагонализуемая неособая матрица,

$$|\lambda_1| > |\lambda_2| > \dots > |\lambda_s| > 0$$
 (все разные)

Тогда $L_k^{(n)} \to U_k$.

 \square Соорудим базис в $L_k^{(n)}$ который будем сходится к базису U_k . Пусть $x_j^{\ k}$ — исходный базис, 1

$$\langle x_1, \dots, x_k \rangle \supset \langle u_1, \dots, u_k \rangle.$$

Разложим его по u_i и посмотрим на итерированный

$$x_i^{(n)} = \sum_{\ell=1}^k c_{i\ell} \, \lambda_\ell^n u_\ell + \sum_{\ell=k+1}^s c_{i\ell} \, \lambda_\ell^n u_\ell$$

Домножим обе части на $D = \left(\widetilde{C}\right)^{-1}$, \widetilde{C} — квадратный кусок C размерами $k \times k$ из перых коэффициентов.

Рассмотрим $\widetilde{Z}_m^{(n)} = \sum_{i=1}^k x_i^{(n)}$, они явно базис $L_k^{(n)}$ в силу невырожденности D.

$$\widetilde{Z}_m^{(n)} = \sum_{\ell,i=1}^k d_{m,i} c_{i,\ell} \lambda_\ell^n u_\ell + \sum_{\ell=k+1,i=1}^{s,k} d_{m,i} c_{i,\ell} \lambda_\ell^n u_\ell$$

Теперь поделим: $Z_m^{(n)} = \widetilde{Z}_m^n \, \lambda_m^{-n}$, они всё ещё базис $L_k^{(n)}$.

$$Z_m^{(n)} = u_m + \sum_{\ell \ge k+1, i} d_{m,i} c_{i,\ell} \left(\frac{\lambda_\ell}{\lambda_m}\right)^n u_\ell \to u_m$$

Поплодим ещё сущностей

Определение 3 (Ступенчатый базис).

$$e_1 = (1, x_{12}, \dots)$$
 (2.1)

$$e_k = (0, \dots, 0, 1, x_{k,k+1}, \dots)$$
 (2.2)

(2.3)

Утверждение 1. Обычно базис пространства приводится к ступенчатому.

можно ещё рассматривать, например, e_1,\dots,e_k как базис L_k , нам ведь неважно что там в следущих компонентах происходит.

Теорема 2. Ступенчатый базис $L_k^{(n)}$ сходится к базису U_k при грамотно заданных условиях невырожденности.

 \square Сузим на подпространство и разложим по $Z_m^{(n)}$. Невероятно увлекательно

§ 12. Треугольно-степенной метод и его сходимость

Определение 1. Рассмотрим A со стандартными условиями на собственные вектора, произвольную невырожденную P_0 . Шаг итерации выглядит так:

$$AP_n = P_{n+1}R_{n+1},$$

где P_{n+1} нижнетреугольная, а R_{n+1} верхнетреугольная.

 $^{^{1}}$ этого условия у нас не было, но без него не доказать невырожденность \widetilde{C} .

Теорема 1. При стандартных предположениях и неравенстве нулю диагональных миноров A на λ_A, P_k, R_k сходятся к P, R. При этом на диагонали R оказываются собственные числа.

- 1. Первые k столбцов P_n образуют ступенчатый базис $L_k^{(n)}$
 - (a) AP_n переводит его снова в базис, так как его можно через $Z_m^{(n)}$ выразить.
 - (b) LR-факторизация выражает строчку L через предыдущие.
 - 2. Ступенчатый базис сходится к базису U_k
 - 3. $R_n = P_n^{-1} A P_n \xrightarrow[n \to \infty]{} P^T A P$, а у подобных матриц собственные числа совпадают.

скорость сходимости здесь степенная, что видно из теоремы в § 11.

§ 13. Ортогонально-степенной метод

Определение 1. Рассмотрим A со стандартными условиями на собственные вектора, произвольную невырожденную $_0$. Шаг итерации выглядит так:

$$AC_k = C_{n+1}R_{n+1},$$

где C_{n+1} ортогональная, а R верхнетреугольная.

Определение 2 (Сходимость по форме). Пусть B- блочная треугольная матрица. Тогда говорят, что A_{k} сходится по форме к B_{k} если все элементы ниже квазидиагонали сходятся к 0. А что на диагонали и выше нас не интересует, главное чтобы хоть куда-то сходилось.

Теорема 1. При стандартных предположениях на λ_A и неравенстве нулю диагональных миноров A, $C_n^*AC_n$ по форме сходится к \hat{A} , которая верхнетреугольная. При этом на диагонали \hat{A} оказываются собственные числа.

 \Box Для сходимости по форме нужно просто чтобы вся поддиагональ сходилась к 0. Т.е для j>k

$$\{C_n^*AC_n\}_{j,k} \to 0 \Leftrightarrow \left(AC_n^{(k)}, C_n^{(j)}\right) \to 0$$

Первые k строк C образуют ортогональный базис $L_k^{(n)}$. Вспомним доказательство теоремы про итерируемые подпространства и скажем что x_i оттуда это $C^{(i)}$ сейчас. Тогда, $C^{(i)}$ раскладываются по Z^m + ещё какие-то члены порядка $O\left(\left|\frac{\lambda_{k+1}}{\lambda_k}\right|^n\right)$.

При умножении на A разложение по Z_m не испортилось, так что и $AC_n^{(i)}$ примерно в $L_k^{(n+1)}$. Тогда, из ортогональности всех столбцов ${\cal C}_n$

$$\left(AC_n^{(k)}, C_n^{(j)}\right) = O\left(\left|\frac{\lambda_{k+1}}{\lambda_k}\right|^n\right) \xrightarrow[]{} \infty 0$$

§ 14. LR-алгоритм. Практическая реализация

Определение 1. Рассмотрим A со стандартными условиями на собственные вектора, произвольную невырожденную о. Шаг итерации выглядит так:

$$A = L_1 R_1,$$

$$R_n L_n = L_{n+1} R_{n+1},$$

где L_{n+1} нижнетреугольная, а R верхнетреугольная.

Нетрудно заметить, что есть связь этого алгоритма со треугольным степенным

$$P_0 = I$$

$$P_n = L_1 \cdots L_n$$

Подставим

$$\begin{split} AP_0 &= P_1R_1 &\rightarrow &AI = L_1R_1 \\ AP_n &= P_{n+1}R_{n+1} &\rightarrow &AL_1\cdots L_n = L_1\cdots L_{n+1}R_{n+1} \end{split}$$

Разберёмся с $AL_1 \cdots L_n$

$$A = L_1 R_1 = L_1 L_2 R_2 L_1^{-1} = \dots = L_1 \dots L_n R_n L_1^{-1} \dots L_{n-1}$$

А подставив такого крокодила как раз получаем $R_nL_n=L_{n+1}R_{n+1}$ Поскольку мы свели метод к предущему, доказывать сходимость уже не нужно.

Приведём пару фактов, нужных для расчетов

- 1. LR факторизация занимает $O(s^3)$ времени. Это очень больно. Даже классический метод Якоби на шаге делает $O(s^2)$ работы.
- 2. Трехдиагональную матрицу можно факторизовать (прогонкой:) за O(s) на двудиагональные.
- 3. Если A не трехдиагональная, но симметричная, вращения Гивенса нам помогут.
- 4. Можно привести A к трёхдиагональному виду даже если она несимметричная.
- 5. Можно ускорить сходимость взяв сдвиг по Реллею

$$R_n L_n - t_n I = L_{n+1} R_{n+1}, t_n = r_{ss}$$

(последний элемент).

§ 15. QR-алгоритм. Практическая реализация

Определение 1. Рассмотрим A со стандартными условиями на собственные вектора, произвольную невырожденную $_0$. Шаг итерации выглядит так:

$$A = Q_1 R_1,$$

$$R_n Q_n = Q_{n+1} R_{n+1},$$

где C_{n+1} ортогональная, а R верхнетреугольная.

сходимость доказывается аналогично LR. Приведём пару фактов, нужных для расчетов

- 1. QR-факторизация занимает $O(s^3)$ времени. И это всё больно.
- 2. QR-факторизация сохраняет трёхдиагональность A, но только для симметричных
- 3. Чтобы ускорить жизнь до $O(s^2)$ привести Q к форме Хессенберга вращениями Гивенса. В такой форме просто есть ещё одна диагональ по сравнению с верхнетреугольной.
- 4. Можно ускорить сходимость, соорудив сдвиг.

$$R_n Q_n - t_n I = Q_{n+1} R_{n+1}$$

- (a) По Реллею: $\{R_nQ_n\}_{s.s.}$
- (b) По Уилкинсону: собтвенные числа матрицы $2 \times 2 \; \{R_n Q_n\}_{s-1,s-1}^{s,s}$

Господи, какая же это гадость. Сходите лучше в Голуба и почитайте это там. Всё равно Само-киш подробно только про их связь с предыдущими методами рассказал. Если он имеет в виду алгоритм написать, то это очевидно, а если все штуки доказать, то можно сразу накрываться простынёй и ползти на пересдачу.

3 Интегральные уравнения

§ 1. Интегральное уравнение ІІ рода, метод замены ядра на вырожденное

Определение 1. Интегральным уравнением Фредгольма II рода называется уравнение вида

$$\varphi(x) = f(x) + \mu \int_{a}^{b} K(x, t)\varphi(t) dt.$$
 (3.1)

Функция K — его ядро, а μ — характеристическое число. 2

Обозначим через K (хм, да, вольность) оператор

$$\varphi(t) \mapsto \int_{a}^{b} K(x, t) \varphi(t) dt.$$

Ясно, что он компактен. Уравнение теперь примет вид

$$(I - \mu K)\varphi = f$$
.

Оператор $T = I - \mu K$, конечно, фредгольмов.

Утверждение 1. Сопряжённый в $L^2([a,b])$ оператор к K выражается следующим образом:

$$K^*\varphi(x) = \int_a^b \overline{K(t, x)} \varphi(t) \, \mathrm{d}t.$$

Доказательство. Прямым вычислением (ну, там внутри ещё теорема Фубини) проверяется, что

$$\langle K\varphi, \psi \rangle = \langle \varphi, K^*\psi \rangle.$$

Замечание 1. У ядра меняются местами аргументы и оно сопрягается — точно так же, как транспонирование вместе с комплексным сопряжением дают матрицу сопряжённого оператора в конечномерном случае!

Сформулируем альтернативу Фредгольма 1.6.1 для такого уравнения:

Утверждение 2.

- 1. Уравнение $T\varphi=f$ разрешимо однозначно тогда и только тогда, когда μ^{-1} не собственное число оператора K.
- 2. В противном случае уравнение $T\varphi = f$ разрешимо тогда и только тогда, когда функция f ортогональна всем собственным векторам оператора K^* , соответствующим числу $\overline{\mu}^{-1}$.
- 3. μ^{-1} и $\overline{\mu}^{-1}$ собственные числа операторов K и K^* соответственно одинаковой конечной кратности.

 $^{^2}$ Кажется, иногда в определении полагают $\mu=1$, но всегда ведь можно внести его в ядро. Мы иногда тоже будем на него забивать.

Замечание 2. Для симметричного ядра (т.е. когда $K=K^*$) то же самое несложно доказать, используя разложение по собственному базису оператора K (которое есть по теореме Гильберта-Шмидта 1.5.1). Так можно быстро понять, что если μ^{-1} — собственное число K, то решений либо нет, либо их бесконечно много.

Рассмотрим уравнение 3.1 с вырожденным ядром

$$K(x, t) = \sum_{i=1}^{n} \alpha_i(x)\beta_i(t).$$

Функции α_i и β_i можно считать ЛНЗ: если это не так, нетрудно выразить одну из них через другие и избавиться от неё. Подставляя ядро в уравнение 3.1, получим

$$\varphi(x) = f(x) + \sum_{j=1}^{n} A_j \alpha_i(x)$$
, где $A_j = \mu \int_{a}^{b} \beta_j(t) \varphi(t) dt$. (3.2)

Это представление для функции φ теперь подставим в исходное уравнение:

$$f(x) + \sum_{i=1}^{n} A_i \alpha_i(x) = f(x) + \mu \int_{a}^{b} \sum_{i=1}^{n} \alpha_i(x) \beta_i(t) \left(f(t) + \sum_{j=1}^{n} A_j \alpha_j(t) \right) dt$$

Чтобы переписать это покороче, введём обозначения

$$\beta_{ij} = \int_{a}^{b} \beta_{i}(t)\alpha_{j}(t) dt, \quad f_{i} = \int_{a}^{b} f(t)\beta_{i}(t) dt.$$

и получим

$$\sum_{i=1}^{n} A_i \alpha_i(x) = \mu \sum_{i=1}^{n} \left(f_i + \sum_{j=1}^{n} \beta_{ij} A_j \right) \alpha_i(x).$$

Поскольку α_i линейно независимы, коэффициенты при них слева и справа должны быть равны. Записав эти равенства, мы приходим к системе линейных уравнений

$$A_i = \mu f_i + \mu \sum_{j=1}^n \beta_{ij} A_j.$$

В векторном виде она будет выглядеть так:

$$A = \mu(\beta A + f).$$

где A и f — векторы, β — матрица, а μ всё ещё число.

Эта система решается так:

$$(I - \mu \beta)A = \mu f \Rightarrow A = \mu (I - \mu \beta)^{-1} f$$
, если $\det(I - \mu \beta) \neq 0$.

Пусть $\Delta = \det(I - \mu\beta)$ и Δ_{ij} — алгебраическое дополнение элемента $\delta_{ij} - \mu\beta_{ij}$. Тогда можно записать явную формулу для A^1 :

$$A_i = \frac{\mu}{\Delta} \sum_{i=1}^{n} \Delta_{ji} f_j$$

Подставляя теперь найденные A_i в 3.2, найдём, что

$$\varphi(x) = f(x) + \lambda \int_{a}^{b} \Gamma(x, t) f(t) dt,$$

где резольвента Г имеет вид

$$\Gamma(x, t) = \frac{1}{\Delta} \sum_{i, j=1}^{n} \Delta_{ji} \alpha_i(x) \beta_j(s).$$

Трудная задача — приблизить произвольное ядро вырожденным. Есть несколько способов:

¹Это просто формула для обратной матрицы через алгебраические дополнения.

- 1. Разложить ядро в ряд Тейлора.
- 2. Интерполировать ядро.
- 3. Разложить ядро по ортогональной системе функций.

Подробнее про них можно прочитать в книге [?].

Заменяя ядро на вырожденное, мы надеемся, что и решения тоже изменятся не сильно. Надо бы это обосновать (хотя бы как-то). Пусть есть уравнение

$$Au = f$$
, $A = I - K$

и приближающее его уравнение

$$A_n u_n = f, \quad A_n = I - K_n.$$

Нетрудно видеть, что

$$u-u_n = (A^{-1}-A_n^{-1})f \ \Rightarrow \ \|u-u_n\| \leqslant \left\|A^{-1}-A_n^{-1}\right\| \cdot \|f\|.$$

Поэтому интересно оценить норму разности обратных операторов. Займёмся этим.

Утверждение 3. Пусть P — ограниченный оператор, ||P|| < 1. Тогда оператор I — обратим, причём

$$(I-P)^{-1} = \sum_{i=1}^{\infty} P^{n},$$

где сходимость — по операторной норме.

Утверждение 4. Пусть P и H — ограниченные операторы, P обратим, а $||H|| < ||P^{-1}||^{-1}$. Тогда элемент P - H обратим, причём

$$||(P-H)^{-1}|| \le \frac{||P||^{-1}}{1-||H|| ||P^{-1}||}.$$

И

$$\left\| (P-H)^{-1} - P^{-1} \right\| \leqslant \frac{\|H\| \|P^{-1}\|^2}{1 - \|H\| \|P^{-1}\|}.$$

Доказательство. Позволим себе иногда использовать дроби и 1 вместо I, как если бы операторы были числами. Не составит труда переписать всё через обратные!

Заметим, что первое из двух утверждений теоремы для P = I следует из 3.1.3:

$$\left\| (I - H)^{-1} \right\| = \left\| \sum_{i=1}^{\infty} H^{n} \right\| \leqslant \sum_{i=1}^{\infty} \|H\|^{n} = \frac{1}{1 - \|H\|}.$$
 (3.3)

Далее,

$$\left\| \frac{1}{P-H} \right\| = \left\| P^{-1} \frac{1}{1-P^{-1}H} \right\| \leqslant \|P^{-1}\| \cdot \left\| \frac{1}{1-P^{-1}H} \right\| \leqslant \frac{\|P^{-1}\|}{1-\|P^{-1}H\|} \leqslant \frac{\|P\|^{-1}}{1-\|H\| \|P^{-1}\|}.$$

В предпоследнем переходе используется соотношение 3.3, где $H \to P^{-1}H$. Наконец,

$$\left\| \frac{1}{P-H} - \frac{1}{P} \right\| = \left\| \frac{1}{P} \left(\frac{1}{1-P^{-1}H} - 1 \right) \right\| = \left\| \frac{1}{P} \frac{P^{-1}H}{1-P^{-1}H} \right\| \leqslant \frac{\|H\| \|P^{-1}\|^2}{1 - \|H\| \|P^{-1}\|}.$$

Отсюда сразу же следует утверждение

Утверждение 5. При достаточно больших n

$$\left\|A^{-1} - A_n^{-1}\right\| \leqslant \frac{\rho \left\|A^{-1}\right\|^2}{1 - \rho \left\|A^{-1}\right\|} \text{ и } \left\|A^{-1} - A_n^{-1}\right\| \leqslant \frac{\rho \left\|A_n^{-1}\right\|^2}{1 - \rho \left\|A_n^{-1}\right\|},$$

где $\rho = ||A - A_n|| = ||K - K_n||.$

Замечание 3. Рассмотрим теперь задачу с симметричным ядром (т.е. с самосопряжённым K). В ней есть ортонормированный собственный базис α_i , поэтому

$$u = \sum_{i=1}^{\infty} \langle u, \alpha_i \rangle \alpha_i \implies Ku = \sum_{i=1}^{\infty} \langle u, \alpha_i \rangle \lambda_i \alpha_i,$$

где λ_i — соответствующее собственное число. Расположим λ_i в порядке убывания модуля и положим

$$K_n u = \sum_{i=1}^n \langle u, \alpha_i \rangle \lambda_i \alpha_i$$

Это интегральный оператор с вырожденным ядром

$$K_n(x, t) = \sum_{i=1}^n \lambda_i \alpha_i(x) \overline{\alpha_i(t)}.$$
 (3.4)

Можно доказать, что он является лучшей аппроксимацией ранга n для оператора K по операторной L^2 -норме.

Посмотрим на разность:

$$(K - K_n)u = \sum_{i=n+1}^{\infty} \langle u, \alpha_i \rangle \lambda_i \alpha_i.$$

Найдём её норму:

$$\left\| (K - K_n)u \right\|^2 = \sum_{i=n+1}^{\infty} |u_i|^2 |\lambda_i|^2, \quad u_i = \langle u, \alpha_i \rangle.$$

При этом

$$||K - K_n|| = \sup \frac{\left\| (K - K_n)u \right\|}{\|u\|},$$

И

$$\frac{\left\|(K-K_n)u\right\|^2}{\|u\|^2} = \frac{\sum\limits_{i=n+1}^{\infty}|u_i|^2\,|\lambda_i|^2}{\sum\limits_{i=n+1}^{\infty}|u_i|^2} \leqslant \frac{\sum\limits_{i=n+1}^{\infty}|u_i|^2\,|\lambda_{n+1}|^2}{\sum\limits_{i=n+1}^{\infty}|u_i|^2} = |\lambda_{n+1}|^2.$$

С другой стороны, эта оценка достигается, когда u — собственный вектор числа λ_{n+1} . Поэтому

$$||K - K_n|| = |\lambda_{n+1}|.$$

Отсюда и из утверждения 3.1.5 ясно: чем быстрее убывают собственные числа, тем лучше наша оценка! Из уравнения 3.4 видно, что собственные числа — что-то вроде коэффициентов в ряде Фурье по собственным функциям для ядра. Видимо, поэтому скорость их убывания возрастает, если ядро становится более гладким... А ядра гладкие не всегда.

Замечание 4. Есть способ сгладить ядро. Надо в уравнение 3.1 подставить

$$\varphi(t) = f(t) + \mu \int_{a}^{b} K(t, \xi) \varphi(\xi) \, \mathrm{d}\xi.$$

Получится уравнение

$$\varphi(x) = f_2(x) + \mu \int_a^b K_2(x,\xi)\varphi(\xi) \,\delta\xi,$$

где

$$f_2(x) = f(x) + \mu \int_a^b K(x, t)f(t) dt, \quad K_2(x, \xi) = \mu \int_a^b K(x, t)K(t, \xi) dt.$$

У K_2 с гладкостью получше, но его надо считать.

§ 2. Метод квадратур для интегрального уравнения

Идея заключается в том, чтобы в уравнении

$$u(x) = f(x) + \int_{a}^{b} K(x, t)u(t) dt$$

заменить интегрирование на вычисление по какой-нибудь квадратурной формуле:

$$\int_{a}^{b} u(x) dx = \sum_{k=1}^{n} A_k u(x_k) + R.$$

Получится

$$u(x) = f(x) + \sum_{k=1}^{n} A_k K(x, x_k) u(x_k) + R.$$

Пусть \tilde{u} — решение этого уравнения с отброшенным R, $u_k = \tilde{u}(x_k)$, $f_k = f(x_k)$ и $K_{ik} = K(x_i, x_k)$. Получаем систему линейных уравнений

$$u_i = f_i + \sum_{k=1}^n A_k K_{ik} u_k.$$

Её можно решить обычными методами; зная u_k , можно оценить u(x) в любой точке:

$$u(x) = f(x) + \sum_{k=1}^{n} A_k K(x, x_k) u_k.$$

Попробуем оценить погрешность результата. Для многих стандартных квадратурных методов верна формула

$$R[\theta] = \delta(n) \max |\theta^{(m)}(x)|.$$

Нас интересует R[K(x, t)u(t)] при фиксированном x. m-е производные функции K(x, t)u(t) выражаются через производные известной K(x, t) и через производные u(t) порядка не более m.

Чтобы оценить их, продифференцируем наше интегральное уравнение:

$$u^{(l)}(x) = f^{(l)}(x) + \int_{a}^{b} K_{x}^{(l)}(x, t)u(t) dt.$$

Отсюда можно найти оценку для $u^{(l)}$ через известные f и K и максимум модуля решения. Решение же можно записать, как

$$u = (I - K)^{-1} f \implies ||u|| \le \left| (I - K)^{-1} \right| \cdot ||f|| \le \frac{||f||}{1 - ||K||} \le \frac{||f||}{1 - \kappa},$$

где

$$x = (b - a) \max |K(s, t)|.$$

Предпоследний переход обусловлен утверждением 3.1.4.

Замечание 1. Во-первых, сейчас у нас все нормы — L^1 , от этого ничего не портится. Во-вторых, мы только что неявно предположили, что $|\varkappa| < 1$.

Получив оценку для модуля решения, мы можем найти оценку

$$\left|\frac{\partial^m}{\partial t^m}\big(K(x,\,t)u(t)\big)\right|\leqslant M,$$

зависящую только от известных функций.

Перейдём теперь непосредственно к оценке ошибки. У нас есть два уравнения

$$Au = f$$
, $A = I - K$;

$$\tilde{A}\tilde{u} = f$$
, $\tilde{A} = I - \tilde{K}$.

где

$$\tilde{K}\varphi(x) = \sum_{i=1}^{n} A_i K(x, x_i) \varphi(x_i).$$

Заметим, что

$$\tilde{A}(u-\tilde{u}) = \tilde{A}u - Au \ \Rightarrow \ \|u-\tilde{u}\| \leqslant \boxed{\|\tilde{A}^{-1}\| \, \|\tilde{A}u - Au\|}\,.$$

Оценим норму \tilde{A}^{-1} . Для этого сначала оценим норму \tilde{K} :

$$\bigg|\sum_{i=1}^n A_i K(x,\,x_i) \varphi(x_i)\bigg| \leqslant \max |K| \cdot \|\varphi\| \cdot \sum_{i=1}^n A_i = (b-a) \max |K| \cdot \|\varphi\|,$$

поэтому $||\tilde{K}|| \leqslant \kappa$.

Отсюда

$$\|\tilde{A}^{-1}\| = \left\| (I - \tilde{K})^{-1} \right\| \leqslant \frac{1}{1 - \kappa}.$$

Теперь оценим $\|\tilde{A}u - Au\|$:

$$\|\tilde{A}u - Au\| = \max \left| R[K(x, t)u(t)] \right| \le M\delta(n).$$

В конечном итоге находим

$$\boxed{\|u-\tilde{u}\| \leqslant \frac{M\delta(n)}{1-\kappa}}.$$

Подробнее про этот метод можно прочитать в книгах [?] и [?].

§ 3. Вариационный принцип для ограниченного оператора; метод Ритца для интегрального уравнения II рода

Замечание 1. В этом параграфе все гильбертовы пространства вещественны.

Основная идея заключается в том, чтобы свести решение уравнения

$$Au = f$$

к минимизации некоторого функционала.

Определение 1. Энергетическим функционалом для такого уравнения называется

$$\tilde{f}(u) = (Au, u) - 2(f, u).$$

Чтобы работать с энергетическим функционалом, нужны дополнительные ограничения на оператор A.

Определение 2. Оператор A называют положительно определённым, если $(Au, u) \geqslant k^2(u, u)^1$.

Утверждение 1. Самосопряжённый положительно определённый оператор A обратим.

Доказательство. Положим в доказательстве $k^2 = 1$, ибо на обратимость это не влияет, можно просто разделить A на k^2 . Заметим, что ker $A = \{0\}$, поскольку

$$Au = 0 \Rightarrow (Au, u) = 0 \Rightarrow (u, u) = 0 \Rightarrow u = 0.$$

При этом ортогональное дополнение образа A — его ядро:

$$x \in \operatorname{Im} A^{\perp} \Leftrightarrow \forall u \quad 0 = (x, Au) = (Ax, u) \Leftrightarrow Ax = 0.$$

Поэтому

$$\overline{\operatorname{Im} A} = \ker A^{\perp} = H.$$

и образ оператора A плотен в H.

¹Это необычное название, кажется. Их называют ещё полуограниченными снизу.

Докажем, что он на самом деле равен H. Для этого нам пригодится неравенство

$$||u||^2 \le (Au, u) \le ||Au|| ||u|| \Rightarrow ||u|| \le ||Au|||.$$

Пусть $y \in H$. Поскольку образ плотен, найдётся последовательность $\{x_n\}$ такая, что $Ax_n \to y$. Однако

$$||x_n - x_m|| \le ||Ax_n - Ax_m||,$$

поэтому $\{x_n\}$ сходится в себе; гильбертово пространство полно, поэтому $x_n \to x$. Но оператор A непрерывен, и

$$x_n \to x \implies Ax_n \to Ax \implies Ax = y.$$

Таким образом, A сюръективен, и у него есть теоретико-множественный обратный. При этом

$$||A^{-1}y|| \le ||y||,$$

поэтому обратный оператор ограничен.

Утверждение 2. Если A — самосопряжённый и положительно определённый, то существует единственное решение u^* уравения Au=f, которое совпадает с единственным минимумом энергетического функционала.

П

Доказательство. Существование и единственность решения следуют из обратимости оператора. Посчитаем значение функционала на векторе $u^* + h$:

$$\tilde{f}(u^* + h) = (A(u^* + h), u^* + h) - 2(f, u^* + h) = \tilde{f}(u^*) + (Au^*, h) + (Ah, u^*) + (Ah, h) - 2(f, h) =$$

$$= \tilde{f}(u^*) + (h, f) - (f, h) + (Ah, h).$$

Мы считаем всё вещественным, поэтому (h, f) = (f, h) и

$$\tilde{f}(u^* + h) = \tilde{f}(u^*) + (Ah, h) \geqslant \tilde{f}(u^*).$$

Метод Ритца устроен примерно так:

- 1. Выбрать в пространстве H линейно независимый набор $\{\varphi_k\}$.
- 2. Рассмотреть конечномерное подпространство H_n , натянутое на первые n векторов базиса.
- 3. Найти в нём минимум функционала $ilde{f}$ и считать его приближением.

Минимум в H_n будем искать в виде

$$u_n = \sum_{k=1}^n c_k \varphi_k.$$

Утверждение 3. Координаты c_n минимума \tilde{f} в подпространстве H_n находится из системы линейных уравнений

$$\sum_{k=1}^{n} (A\varphi_k, \, \varphi_i) \, c_n = (f, \, \varphi_i)$$

Доказательство. Если подставить

$$u_n = \sum_{k=1}^n c_k \varphi_k$$

в формулу для функционала

$$\tilde{f}(u_n) = (Au_n, u_n) - 2(f, u_n),$$

получится

$$\tilde{f}(u_n) = \sum_{k,m} c_k c_m (A\varphi_k, \varphi_m) - 2 \sum_m c_m (f, \varphi_m).$$

Дифференцируя это выражение по c_i и приравнивая к нулю, получим нужную СЛУ.

Замечание 2. Симметричная матрица $a_{ij}=(A\varphi_i,\,\varphi_j)$ — матрица Грама положительно определённой симметрической билинейной формы $g(u,\,v)=(Au,\,v)$. Известно, что определитель матрицы Грама равен квадрату объёма параллелипипеда, натянутого на базисные вектора, в соответствующей метрике. Он, конечно, ненулевой, а потому система линейных уравнений разрешима однозначно.

Поговорим о сходимости метода Ритца.

Утверждение 4. Если набор $\{\varphi_k\}$ таков (это по сути означает, что он является базисом), что

$$\forall v \in H \quad \forall \varepsilon > 0 \quad \exists \, n, \, \alpha_i \colon \left\| v - \sum_{i=1}^n \alpha_i \varphi_i \right\| < \varepsilon,$$

то метод Ритца сходится, т.е. $||u_n - u^*|| \to 0$.

Доказательство. Поскольку оператор A положительно определён, форма $g(u,\,v)=(Au,\,v)$ является настоящим скалярным произведением. Мы утверждаем, что u_n — элемент из H_n , ближайший к u^* с точки зрения метрики g. Докажем это. Для этого предположим, что

$$u_n = v_n + h$$
,

где $v_n=u^*-v_n^\perp$ — ближайший к u^* элемент из H_n , а $v_n^\perp \perp H_n$. Тогда

$$\begin{split} \tilde{f}(u_n) &= \tilde{f}(u^*) + \left(A(h-\upsilon_n^\perp), \ h-\upsilon_n^\perp\right) = \\ &= \tilde{f}(u^*) + g(\upsilon_n^\perp, \upsilon_n^\perp) + g(h, \ h). \end{split}$$

Видно, что это выражение минимально, когда h=0 и $u_n=u^*-v_n^\perp$. Найдём теперь по ε такое N и $w\in H_N$, что $\|w-u^*\|<\varepsilon$. Тогда

$$||u_n - u^*|| \leqslant \frac{1}{k} ||u_n - u^*||_A \leqslant \frac{1}{k} ||w - u^*||_A \leqslant \frac{\sqrt{||A||}}{k} ||w - u^*|| < \frac{\sqrt{||A||}}{k} \varepsilon,$$

где $||x||_A = \sqrt{g(x, x)}$. Объясним переходы по пунктам:

- 1. Потому что $g(x, x) \ge k^2(x, x)$.
- 2. Потому что u_n самый близкий элемент к u^* .
- 3. Потому что $(Ax, x) \le ||Ax|| \, ||x|| \le ||A|| \, (x, x)$.
- 4. Прост)00

Эпсилон домножился на константу, но это не страшно: стремление к нулю всё равно есть. \Box

Замечание 3. Видно, что скорость сходимости метода от гладкости ядра не зависит (только от его нормы). По сути она определяется тем, насколько быстро убывают коэффициенты разложения u^* по базису φ_k , что связано с гладкостью решения. Зато ограничения на оператор сильные.

§ 4. Интегральное уравнение І рода и его некорректность

Определение 1. Интегральным уравнением І рода называют уравнение вида

$$\int_{a}^{b} K(x, t)u(t) dt = f(x).$$

Определение 2. Говорят, что задача *корректна*, если при малых изменениях исходных данных решение меняется слабо.

Определение 3. Задачу вида Au=f называют *корректной*, если у оператора A есть ограниченный обратный.

Кажется, эти два определения почти одинаковые. :)

Утверждение 1. Задача о решении уравнения Фредгольма I рода некорректна.

Доказательство. Интуитивно это понятно: мы решаем уравнение вида Ku=f, где K- компактный оператор. Его образ маленький, и логично, что слегка изменив f мы можем получить задачу с совсем другим решением или, скорее, вовсе неразрешимую.

Покажем это для случая симметричного ядра. Симметричность позволит нам выбрать собственный базис $\{\varphi_n\}$ с собственными числами λ_n . Пусть

$$u = \sum u_i \varphi_i; \quad u = \sum f_i \varphi_i.$$

Тогда уравнение перепишется, как

$$\sum u_i \lambda_i \varphi_i = \sum f_i \varphi_i \Leftrightarrow \boxed{u_i \lambda_i = f_i}$$

Формально решение имеет вид

$$u = \sum_{i=1}^{\infty} \frac{f_i}{\lambda_i} \varphi_i.$$

Если $\lambda_i=0$, а $f_i\neq 0$, то задача наверняка не имеет решения. Всё плохо, даже если это не так: известно, что собственные числа компактного оператора стремятся к нулю, поэтому ряд для u будет сходиться только если f_i убывают ещё быстрее.

Посмотрим, что будет при небольшом изменении начальных данных; пусть

$$Ku = f$$
; $k\tilde{u} = \tilde{f}$; $\tilde{f} = f + \delta f$; $\tilde{u} = u + \delta u$,

причём $\|\delta f\|<\varepsilon$. Функция δu удовлетворяет уравнению $K\delta u=\delta f$. Решение должно выглядеть как

$$\delta u = \sum_{i=1}^{\infty} \frac{\delta f_i}{\lambda_i} \varphi_i.$$

Даже если этот ряд сходится, нельзя гарантировать, что при $\varepsilon \to 0$ δu тоже будет стремиться к нулю.

Действительно, всегда можно выбрать $\delta f=\varepsilon \varphi_n$, где n таково, что $\lambda_n<\varepsilon$. Тогда $\|\delta u\|$ будет больше 1.

Подробнее про это можно прочитать в книге [?].

§ 5. Условная корректность по Тихонову, метод квазирешений

Теорема 1. (об условной корректности) Пусть оператор A на гильбертовом пространстве H некорректен, но инъективен (устанавливает взаимно однозначное отображение на образ). Рассмотрим компакт $L \in H$, пусть M — его образ. Отображение A^{-1} непрерывно на M^{1} .

Доказательство. Возьмём какую-нибудь последовательность $f_n \to f$ в M. Оператор A инъективен, поэтому элементы u_n такие, что $Au_n = f_n$ определены однозначно. Выберем в $\{u_n\}$ какуюнибудь сходящуюся подпоследовательность $u'_n \to u'$.

Поскольку оператор A непрерывен, $Au'_n \to Au'$; но $Au'_n \to f$, поэтому и $Au' = f \Rightarrow u' = A^{-1}f$. Но тогда выходит, что пределы всех сходящихся подпоследовательностей в $\{u_n\}$ одинаковы! Поэтому все частичные пределы совпадают, и u_n имеет предел, который равен $A^{-1}f$, что и даёт нам непрерывность.

Определение 1. Это свойство — иметь непрерывный обратный на образах компактов — и называется условной корректностью.

Пусть мы решаем задачу Au = f, причём правая часть известна с погрешностью:

$$||f - f_{\delta}|| \leq \delta$$
,

но уравнение $Au=f_\delta$ не всегда имеет решение даже когда f_δ из этого шара. Приходим к определению квазирешения:

¹На самом деле это просто стандартная теорема про то, что непрерывное отображение из компактного пространства в хаусдорфово является гомеоморфизмом на образ.

Определение 2. Зафиксируем конкретную f_{δ} . Тогда квазирешением уравнения $Au = f_{\delta}$ называется вектор u_{δ} , при котором достигается

$$\min_{u \in D} ||Au - f_{\delta}||, \quad D = \left\{ u \, | \, ||u|| \leqslant R \right\}.$$

Если искать не при $||u|| \leqslant R$, а при ||u|| = R, получится задача на условный экстремум. Используя метод множителей Лагранжа, будем минимизировать функционал

$$F(u) = \alpha ||u||^2 + ||Au - f_{\delta}||^2.$$

Утверждение 1. Минимум этого функционала удовлетворяет уравнению

$$(\alpha I + A^*A)u = A^*f.$$

Доказательство. Обычный поиск вариации, нужно расписать F(u+th) через скалярные произведения, продифференцировать по t, а после положить t равным нулю.

Мы получили уравнение, похожее на исходное, но оно уже второго типа, а при малых α похоже на исходное. Произошла *регуляризация*! Более того, оператор $\alpha I + A^*A$ самосопряжён, и

$$((\alpha I + A^*A)u, u) = \alpha(u, u) + (Au, Au) \geqslant \alpha(u, u),$$

поэтому применим вариационный принцип.

Замечание 1. Насколько я понимаю, метод квазирешений нам рассказан в основном для того, чтобы прийти к регуляризации. Из квазирешений следует, что при некотором α минимум функционала должен хорошо приближать решение — мотивация! Плюс демонстрация того, что не совсем очевидно, что альфу можно просто к нулю стремить.

§ 6. Метод регуляризации для уравнения І рода, сходимость

Замечание 1. Кажется, этого билета почти нет у Оли, поэтому я опускаю доказательства. Это хорошо написано у Ангелины.

Идея регуляризации заключается в том, чтобы минимизировать функционал вида

$$F(u) = \alpha \Omega(u) + ||Au - f||^2,$$

где $\Omega(u)\geqslant 0$ и множества $\Omega(u)< C$ компактны.

Замечание 2. В методе квазирешений у нас получился $\Omega(u) = \|u\|^2$, для него эти множества — открытые шары, они совсем не компактны.

Стандартный выбор — функционал

$$\Omega(u) = \int_{a}^{b} u'^2 \, \mathrm{d}t.$$

Правда, при этом мы начинаем искать решение среди гладких функций.

Утверждение 1. Для такого функционала Ω множества $\Omega(u) < C$ компактны.

Доказательство. Стандартное рассуждение, использующее теорему Арцела-Асколи: подмножество в пространстве непрерывных функций на отрезке компактно тогда и только тогда, когда оно равномерно ограничено и равностепенно непрернывно. Из компактности в смысле топологии пространства непрерывных функций следует компактность в смысле L^2 -нормы.

Годятся и функционалы

$$\Omega(u) = \int_a^b u^{(p)^2} dt, \quad \Omega(u) = \int_a^b u'^2 - u^2 dt.$$

Теорема 1. Пусть $\|f-f_\delta\|<\delta$, и мы решаем приближённую задачу $A\tilde{u}=f_\delta$ вместо точной. Если δ и α стремятся к нулю так, что

$$\frac{\delta^2}{\alpha} \leqslant \gamma < \infty,$$

TO $\tilde{u} \rightarrow u$.

Доказательство. См. конспект Ангелины.

Коэффициент α обычно подбирают эмпирически: если он мал, то решение будет ближе к \tilde{u} , если велик, оно будет глаже... Стандартный функционал приводит к вариационной задаче

$$K^*Ku - \alpha u'' = K^*f.$$

4 Вариационные методы

§ 1. Вариационный принцип для уравнения с неограниченным оператором

Определение 1. *Неограниченным* называется оператор A на гильбертовом пространстве, определённый на его всюду плотном линейном подпространстве $\mathcal{D}(A)$.

Мы будем требовать от A также симметричности (самосопряжённости) и положительной определённости.

Определение 2. Билинейная форма $(u,v)_A=(Au,v)$ называется энергетическим скалярным произведением, норма $\|u\|_A=(u,u)_A$ — энергетической нормой. Пополнение H_A пространства $\mathcal{D}(A)$ по энергетической норме называется энергетическим пространством.

Замечание 1. В доказательстве 3.3.4 мы видели, что

$$||u|| \leq k^{-1}||u||_A$$
.

Поэтому если последовательность сходится в себе по энергетической норме, то она сходится и по обычной; кофинальные последовательности тоже одинаковые и там, и там. Поэтому пополнение по энергетической норме можно рассматривать, как подмножество H.

Теорема 1. (О вариационном принципе) Рассмотрим энергетический функционал $F(u) = (u, u)_A - 2(f, u)$.

- 1. F(u) имеет единственный минимум u^* .
- 2. Если $u^* \in \mathcal{D}(\mathcal{A})$, то $Au^* = f$.
- 3. Если $Au_0 = f$, то $u^* = u_0$.

Доказательство. Рассмотрим функционал $\Phi(u) = (f, u)$. Он ограничен на H_A , поскольку

$$|(f, u)| \le ||f|| ||u|| \le k^{-1} ||f|| ||y||_A$$
.

По теореме Рисса он представим в виде $\Phi(u) = (u^*, u)_A$. Тогда

$$F(u) = (u, u)_A - 2(u^*, u)_A = ||u - u^*||^2 - ||u^*||^2.$$

Ясно, что минимум достигается при $u = u^*$.

Третий пункт очевиден, ибо

$$(f, u) = (Au_0, u) = (u_0, u)_A \Rightarrow u_0 = u^*$$

То же самое в обратную сторону даёт пункт 2.

§ 2. Метод Ритца, сходимость

Метод Ритца и в энергетической Африке метод Ритца. Ну да, φ_n теперь лежат в H_A , а в остальном — никакой разницы.

Теорема 1. Если набор $\{\varphi_k\}$ таков (это по сути означает, что он является базисом), что

$$\forall v \in H \quad \forall \varepsilon > 0 \quad \exists \, n, \, \alpha_i \colon \left\| v - \sum_{i=1}^n \alpha_i \varphi_i \right\|_{\Lambda} < \varepsilon,$$

то метод Ритца сходится, т.е. $||u_n - u^*||_A \to 0$.

Доказательство. Доказательство теоремы аналогично доказательству 3.3.4. Первый абзац такой же, по сути, а дальше надо оставить только оценки, содержащие энергетическую норму (я случайно ей воспользовался, когда ещё не знал, что это, извините. то доказательство было непонятно, а то, что я придумал — скорее отсюда).

§ 3. Метод Ритца для обычной краевой задачи, вид энергетического пространства, естественные граничные условия

Рассмотрим краевую задачу для уравнения

$$L(y)(x) = -(p(x)y')' + q(x)y = f(x)$$

на отрезке [a, b] с граничными условиями

- Ітипа: y(a) = 0, y(b) = 0.
- III типа: $y'(a) = \alpha y(a), y'(b) = \beta y(b).$

Определение 1. Классическое решение — лежит в $C^2([a,b])$, никого не трогает удовлетворяет уравнению в каждой точке.

Hy и
$$\mathcal{D}(L) = C^2([a, b]).$$

Замечание 1. На самом деле, мы ищем решения не в $\mathcal{D}(L)$, а в более узких пространствах. В случае условия I типа нас интересует простанство

$$D_I = \{ y \in \mathcal{D}(L) | y(a) = y(b) = 0 \},$$

а в случае условия III типа

$$D_{III} = \{ y \in \mathcal{D}(L) \mid y'(a)\alpha y(a), \ y'(b) = \alpha y(b) \}.$$

Именно их мы будем пополнять, создавая соответствующее энергетическое пространство.

Утверждение 1. Если $\alpha \geqslant 0$ и $\beta \leqslant 0$ в добавок к условиям

$$p(x) \geqslant p_0 > 0$$
, $q(x) \geqslant 0$,

то оператор получится симметричный и положительно определённый.

Доказательство. Посмотрим, как будет выглядеть энергетическое скалярное произведение:

$$(Ly, z) = \int_{a}^{b} (-(py')' + qy)z \, dx = -py'z|_{a}^{b} + \int_{a}^{b} (py'z' + qyz) \, dz.$$

Интеграл обозначим через I(X), а внеинтегральный член — Q(x). Если условия первого типа, то Q=0, а если третьего, то

$$Q(y, z) = -\beta p(b)y(b)z(b) + \alpha p(a)y(a)z(a).$$

Симметричность уже видна, и

$$(Ly, y) = \int_{a}^{b} (py'^2 + qy^2) dx - \beta p(b)y(b)^2 + \alpha p(a)y(a)^2.$$

Если, $\alpha \geqslant 0$ и $\beta \leqslant 0$, то и положительная определённость будет.

Определение 2. Пространством Соболева $W_p^k(Q) \subset L^p(Q)$ называют пространство функций, обобщённые производные которых вплоть до k-й лежат в $L_p(Q)$.

Замечание 2. На пространствах Соболева есть норма. Нас будет интересовать пространство $W_2^1([a,b])$; на нём эта норма имеет вид

$$||f||_{W_2^1}^2 = \int_a^b (f^2 + f'^2) dx.$$

Можно доказать, что с такой нормой является гильбертовым (а произвольные пространства Соболева— банаховы).

Утверждение 2. Энергетическая норма для оператора L эквивалентна норме в W_2^1 .

Доказательство. Пусть $P_m = \max p$, $Q_m = \max q$, $M = \max(P_m, Q_m)$. Нетрудно доказывается, что $\|y\|_{W^1_2} \leqslant C\|y\|_L$:

$$\int_{a}^{b} (f^{2} + f'^{2}) dx \leq \frac{1}{M} \int_{a}^{b} (pf^{2} + qf'^{2}) dx \leq \frac{1}{M} ||f||_{L}.$$

Обратное утверждение очевидно для I типа граничных условий:

$$\int_{a}^{b} (pf^{2} + qf'^{2}) \, \mathrm{d}x \le M \|f\|_{W_{2}^{1}}.$$

Чтобы разобраться с граничными условиями III типа, нам понадобится лемма:

Лемма 1. Для любой точки x значение $y(x)^2$ не превосходит константы, умноженной на $\|y\|_{W_1^2}^2$.

Доказательство. Ограничение соболевской нормы даёт ограничение на интеграл от квадрата функции + не позволяет ей расти слишком быстро, поэтому есть надежда, что значения и правда будут ограничены нормой. Займёмся оценкой. Очевидно, что

$$y(x) = y(\xi) + \int_{\xi}^{x} y(t) dt.$$

Поскольку $(a+b)^2 \le 2(a^2+b^2)$,

$$y(x)^2 \leqslant 2y(\xi)^2 + 2\left(\int_{\xi}^{x} y'(t) \,\mathrm{d}t\right)^2.$$

При этом интеграл

$$\int_{\xi}^{x} y'(t) \, \mathrm{d}t$$

является L^2 -произведением (в отрезке от ξ до x) $(y'(t), 1)_{t2}$, и

$$(y'(t), 1)_{L^{2}}^{2} \leq ||1||_{L^{2}([x,\xi])}^{2} ||y'||_{L^{2}([x,\xi])}^{2} = (x - \xi) \int_{\xi}^{x} y'(t)^{2} dt \leq (b - a)||y'||_{L^{2}}^{2}$$

В итоге получаем, что

$$y(x)^2 \le 2y(\xi)^2 + 2(b-a)||y'||_{L^2}^2$$

Навесив слева и справа интегралы по ξ , получим, что

$$y(x)^2 \le \frac{2}{b-a} ||y||_{L^2}^2 + 2(b-a) ||y'||_{L^2}^2 \le C ||y||_{W_1^1}^2$$

Используя полученную оценку, нетрудно оценить отвечающий за граничные условия член Q(x) через соболевскую норму. \Box

Замечание 3. Ещё выполняется теорема вложения: все функции из W_2^1 непрерывны, при этом отображение вложения $W_2^1 \to C([a, b])$ непрерывно.

Утверждение 3. Энергетическое пространство H_L является подпространством в W_2^1 .

Доказательство. Не очень важно, D_I или D_{III} придётся пополнять: они оба лежат в $\mathcal{D}(L)$, про которое мы доказали, что с энергетической нормой оно гомеоморфно вкладывается в W_2^1 . Поскольку W_2^1 гильбертово, пополнение нас из него не выведет.

Замечание 4. Пополнение пространства D_I приведёт нас к пространству W_1^2 элементов W_1^2 , удовлетворяющих граничному условию І типа. С условием ІІІ так не получится, поскольку производная — не непрерывный функционал, и мы придём ко всему W_1^2 . По этой причине условия І типа называют главными, а ІІІ типа — естественными.

О пространствах Соболева в контексте вычислительных методов можно прочитать в книге [?], и ещё подробнее в книге [?].

§ 4. BPM-1 для обычной краевой задачи

Идея вариационно-разностных методов заключается в том, чтобы использовать сетку и минимизацию функционала одновременно.

Пусть в сетке n элементов, $h=\frac{b-a}{n}$, $x_k=a+kh$; рассмотрим пространство, состоящее из сеточных функций $y_{(n)}=\{y_k\}_0^n$. Суть BPM-1 в том, чтобы заменить интегралы на суммы, а производные — на разности, и минимизировать функционал на сеточных функциях.

Наш функционал имеет вид

$$F(y) = (y, y)_L - 2(f, y) = \int_a^b (py'^2 + qy^2 - 2fy) \, dx - \beta p(b)y^2(b) + \alpha p(a)y^2(a).$$

Сделаем численные замены:

$$\int_{a}^{b} py' \, \mathrm{d}x \approx h \sum_{k=0}^{n-1} p \left(x_k + \frac{h}{2} \right) \cdot \left(\frac{y_{k+1} - y_k}{h} \right)^2;$$

$$\int_{a}^{b} (qy^2 - 2fy) \, \mathrm{d}x \approx k \sum_{k=0}^{n-1} {}' (q_k y_k^2 - 2f_k y_k),$$

где сумма со штрихом означает, что это формула трапеций (т.е. крайние слагаемые домножены на 1/2).

Не представляет труда теперь выписать сеточный функционал. Далее минимум ищется дифференцированием по y_k и приравниванием всех производных к нулю. В итоге для внутренних точек получаются уравнения

$$-\frac{1}{h}\left(p_{i+\frac{1}{2}}\frac{y_{i+1}-y_i}{h}-p_{i-\frac{1}{2}}\frac{y_i-y_{i-1}}{h}\right)+q_iy_i=f_i.$$

Они напоминают уравнения разностной прогонки.

Для левого конца получится уравнение

$$-p_{\frac{1}{2}}\frac{y_1 - y_0}{2} + \frac{h}{2}(q_0y_0 - f_0) + \alpha p_0y_0 = 0$$

Второе слагаемое неожиданное! Ведь здесь стоило ожидать простейшее приближение $y'(a) = \alpha y(a)$. Оказывается, что оно компенсирует сдвиг:

$$p_{\frac{1}{2}} \frac{y_1 - y_0}{2} = [py'] \left(a + \frac{h}{2} \right) + O(h^2) =$$

$$= p(a)y'(a) + \frac{h}{2} (py')'|_a + O(h^2) =$$

$$= p(a)y'(a) + \frac{h}{2} (q(a)y(a) - f(a)) + O(h^2).$$

§ 5. ВРМ-2 для обычной краевой задачи

Идея BPM-2 заключается в том, чтобы «поднять» сеточные функции до каких-нибудь функций из W_2^1 (с помощью некоторого сорта интерполяции), а потом минимизировать функционал на получившемся пространстве.

Будем работать с граничными условиями І типа.

Используем кусочно-линейную интерполяцию:

$$\tilde{y}_{(n)}(x) = \frac{x_{k+1} - x}{h} y_k + \frac{x - x_k}{h} y_{k+1}.$$

Производная определена всюду, кроме узлов:

$$\tilde{y}'_{(n)}(x) = \frac{y_{k+1} - y_k}{h}.$$

Однако узлы — множество меры ноль, поэтому производная всё равно определена, как обобщённая функция. Можно доказать, что это и будет производная в смысле обобщённых функций от восполненной сеточной функции. Поэтому наши восполненные функции находятся в W^1_2 .

Можно ввести базисные функции — это восполнения сеточных функций, которые равны нулю всюду, кроме одной точки, а в ней равны единица, т.е.

$$\psi_k(x) = \begin{cases} \frac{x_{k+1} - x}{h}, & [x_k, x_{k+1}]; \\ \frac{x - x_{k-1}}{h}, & [x_{k-1}, x_k]; \\ 0 \end{cases}$$

Получилось что-то очень похожее на метод Ритца, но только теперь у нас не фиксированный бесконечный набор $\{\varphi_k\}$, а для каждого n есть набор $\{\psi_k\}$ с понятным геометрическим смыслом. Уравнение для минимизации получится такое же:

$$\sum_{k=1}^{n-1} (\psi_k, \, \psi_m)_A y_k = (f, \, \psi_m),$$

матрица системы — $\{a_{km}\}=(\psi_k,\,\psi_m)_A.$

Носители базисных функций почти не пересекаются, поэтому

$$|k-m| > 1 \Rightarrow a_{km} = 0.$$

Поэтому система уравнений снова выходит трёхдиагональной:

$$a_m y_{m-1} + b_m y_m + a_{m+1} y_{m+1} = (f, \psi_m),$$

где

$$a_m = a_{m-1, m}$$
 u $b_m = a_{mm}$.

На негладких решениях мы не получим точности лучше, чем O(h). Однако этот метод для них надёжнее, чем просто сеточный.

§ 6. Метод Ритца для эллиптического уравнения, энергетическое пространство и естественные условия

Рассмотрим уравнение

$$Lu = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ik} \frac{\partial u}{\partial x_k} \right) + au = f.$$

Коэффициенты должны удовлетворять нескольким условиям:

- 1. Все функции действуют в области $\Omega \subset \mathbb{R}^n$. В классическом сеттинге решение считается дважды непрерывно дифференцируемыми в Ω и непрерывным на $\overline{\Omega}$; a_{ij} один раз непрерывно дифференцируемы на $\overline{\Omega}$, а остальные коэффициенты просто непрерывны.
- 2. Симметричность (эллиптичность): $a_{ik}(x) = a_{ki}(x)$.
- 3. Положительная определённость:

$$\sum_{i} \sum_{k} a_{ik} \xi_{i} \xi_{k} \geqslant k^{2} \sum_{i} \xi_{i}^{2}.$$

Граничные условия бывают

- 1. $u|_{\partial\Omega} = 0 I$ типа (задача Дирихле).
- 2. Пусть

$$\left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega} = \sum_{i=1}^n a_{ij} \cos(n, \, x_i) \frac{\partial u}{\partial x_i} \bigg|_{\partial \Omega}.$$

Этот оператор называется *конормальной производной*. Тогда граничное условие выглядит, как

$$\frac{\partial u}{\partial v} = \sigma u|_{\partial\Omega}.$$

Это — задача третьего рода (задача Фон-Неймана).

3. Задача второго рода — когда $\sigma = 0$.

Найдём вид энергетического произведения.

Утверждение 1.

$$(Lu, v) = \int_{\Omega} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{i}} + auv \right) \partial x + \int_{\partial \Omega} \sigma uv \, dS.$$

Доказательство.

$$(Lu, v) = \int_{\Omega} \left(-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ik} \frac{\partial u}{\partial x_{k}} \right) + au \right) v \, dx$$

Используя формулу интегрирования по частям

$$\int\limits_{\Omega} \frac{\partial u}{\partial x_i} \varphi \, \mathrm{d}x = -\int\limits_{\Omega} u \frac{\partial \varphi}{\partial x_i} \, \mathrm{d}x + \int\limits_{\partial \Omega} u \varphi \cos(n, \, x_i) \, \mathrm{d}S,$$

найдём искомый результат.

Утверждение 2. Оператор положительно определён, если

- 1. Задача первого типа: $a(x) \ge 0$;
- 2. Задача второго типа: $a(x) \ge a_0 > 0$;
- 3. Задача третьего типа: $a(x)\geqslant a_0>0$, $\sigma(x)\geqslant 0$ или $a(x)\geqslant 0$, $\sigma(x)\geqslant \sigma_0>0$.

Доказательство.

$$(Lu, u) = \int_{\Omega} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} + au^{2} \right) \partial x + \int_{\partial \Omega} \sigma u^{2} \, dS.$$

Нам понадобится неравенство Фридрихса

$$\int\limits_{\Omega} u^2 \, \mathrm{d}x \leqslant c_1 \Bigg(\int\limits_{\Omega} \sum \left(\frac{\partial u}{\partial x_i} \right)^2 \, \mathrm{d}x + \int\limits_{\partial \Omega} u^2 \, \mathrm{d}S \Bigg).$$

1. Здесь работает совсем грубая оценка:

$$\int\limits_{\Omega} \left(\sum_{i,\,j=1}^n a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial u}{\partial x_i} + a u^2 \right) \partial x \geqslant \int\limits_{\Omega} \sum_{i,\,j=1}^n a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial u}{\partial x_i} \partial x \geqslant k^2 \int\limits_{\Omega} \sum_{i=1}^n \left(\frac{\partial u}{\partial x_j} \right)^2 \partial x \geqslant \frac{k^2}{c_1} \int\limits_{\Omega} u^2 \, \mathrm{d}x.$$

2. Ещё проще, как это ни странно.

$$\int_{\Omega} \left(\sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} + au^{2} \right) \partial x \geqslant a_{0} \int_{\Omega} u^{2} dx$$

3. Первый вариант доказывается точно так же, как для II типа, а второй:

$$\int\limits_{\Omega} \left(\sum_{i,\,j=1}^n a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial u}{\partial x_i} + a u^2 \right) \partial x + \int\limits_{\partial \Omega} \sigma u^2 \, \mathrm{d}S \geqslant k^2 \int\limits_{\Omega} \sum_{i=1}^n \left(\frac{\partial u}{\partial x_j} \right)^2 \partial x + \sigma_0 \int\limits_{\partial \Omega} u^2 \, \mathrm{d}S \geqslant \frac{\min(k^2,\,\sigma_0)}{c_1} \int\limits_{\Omega} u^2 \, \mathrm{d}x.$$

Замечание 1. Можно доказать, что эта энергетическая норма эквивалентна норме в $W^1_2(\Omega)$:

$$\|v\|_{W_2^1}^2 = \int_{\Omega} \left(\sum \left(\frac{\partial u}{\partial x_i} \right)^2 + u^2 \right) dx.$$

Энергетическое пространство для II и III типов совпадёт с W_2^1 , а для типа I унаследует граничное условие и будет состоять из элементов W_2^1 , обращающихся в ноль на границе.

Замечание 2. Вообще всё это очень похоже на обычную краевую задачу, только многомерную. При подборе базиса $\{\varphi_k\}$ для метода Ритца в задаче І типа нужно как-то заставить φ_k обращаться в ноль на границе области Ω , которая может быть некрасивой. Чтобы это сделать, можно найти функцию $\omega(x,y)$ — это на плоскости — которая положительна в Ω и равна нулю на границе. Читатель сможет придумать такие функции для квадрата/круга/сектора круга, но вообще это, видимо, искусство.

По поводу этого билета стоит заглянуть в книгу [?].

5 Уравения в частных производных

§ 1. Разностный метод для общего уравнения теплопроводности, явная схема

Определение 1. Общее уравнение теплопроводности выглядит вот так:

$$\frac{\partial u}{\partial t} = a_0 \frac{\partial^2 u}{\partial x^2} + a_1 \frac{\partial y}{\partial x} + a_2 u + f.$$

Функции a_i и f зависят от x и t.

Работать будем, как всегда, на отрезке [a,b]; временной отрезок будет [0,T].

Определение 2. У уравнения теплопроводности бывает начальное условие:

$$u(x, 0) = \varphi(x),$$

а также три типа граничных условий

1.
$$u(a, t) = \psi_0(t), u(b, t) = \psi_1(t).$$

2.
$$\frac{\partial u}{\partial x}(a, t) = \psi_0(t), \frac{\partial u}{\partial x}(b, t) = \psi_1(t).$$

3.
$$\frac{\partial u}{\partial x} - \alpha u|_{x=a} = \psi_0(t), \frac{\partial u}{\partial x} - \beta u|_{x=b} = \psi_1(t).$$

Сетка характеризуется такими же, как обычно, величинами:

$$\begin{split} x_i &= a + ih, \quad h = \frac{b - a}{h}, \quad i \in 0 \dots n; \\ t_k &= k\tau, \qquad \tau = \frac{T}{M}, \qquad k \in 0 \dots M. \end{split}$$

Положим $u_i^k = u(x_i, t_k)$ и

$$Lu = a_0 \frac{\partial^2 u}{\partial x^2} + a_1 \frac{\partial y}{\partial x} + a_2 u.$$

Тогда

$$(\tilde{L}u)_i^k = a_0 \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h^2} + a_1 \frac{u_{i+1}^k - u_{i-1}^k}{2h} + a_2 u_i^k.$$

Есть два варианта для производной по времени

A:
$$\frac{\partial u}{\partial t}(x_i, t_k) \approx \frac{u_i^{k+1} - u_i^k}{\tau}$$
,

B:
$$\frac{\partial u}{\partial t}(x_i, t_k) \approx \frac{u_i^k - u_i^{k-1}}{\tau}$$
.

Для варианта А получается

$$\boxed{\frac{u_i^{k+1} - u_i^k}{\tau} = \tilde{L}u_i^k + f(x_i, t_k)}.$$

Это простейшая явная схема.

В таком виде уравнения можно писать для $i\in 1\dots n-1, k\in 0\dots M-1$; нужны дополнительные с граничными условиями.

Рис. 5.1: Простейшая явная схема для уравнения теплопроводности.

- Начальные условия: $u_i^0 = \varphi(x_i)$.
- Граничные условия:
 - 1. $u_0^k = \alpha_1(t_k), u_n^k = \alpha_2(t_k)$; при этом выполняются условия согласования нулевого порядка

$$\varphi(a) = \alpha_1(0), \quad \varphi(b) = \alpha_2(0).$$

2. Для типов II, III используются такие же трюки, как в обычных диффурах. Надо аппроксимировать производные. Можно применять метод фиктивных точек или метод исключения главного члена погрешности.

В угловых точках снова возникнет два разных условия:

$$u_0^0=\varphi(a)$$
 и $\frac{\partial u}{\partial x}(a,\,0)=\beta_1(0)u_0^0+\alpha_1(0).$

Будет ли выполняться равенство

$$\varphi'(a) = \beta_1(0)u_0^0 + \alpha_1(0)?$$

Оно называется *условием согласования I порядка*. Без него уравнения не станут формально противоречивы.

Если разрешить уравнения относительно u_i^{k+1} , получится

$$u_i^{k+1} = A_i^k u_{i-1}^k + B_i^k u_i^k + C_i^k u_{i+1}^k + D_i^k.$$

Коэффициенты выражаются по формулам

$$\begin{split} A_i^k &= \sigma a_0 - \sigma a_1 \frac{h}{2}, & C_i^k = \sigma a_0 + \sigma \frac{h}{2} a_1, \\ B_i^k &= 1 - 2\sigma a_0 + \tau a_2, & D_i^k = \tau f(x_i, t_k), \end{split}$$

где
$$\sigma = \frac{\tau}{h^2}$$
.

Можно просто двигаться вперёд по *слоям* — множествам точек с постоянным временем; значения находятся последовательно.

А Введение в функциональный анализ

§ 1. Пространства, отображения

Бесконечномерные пространства во многом похожи на конечномерные, но есть и различия. Приведём наглядный пример:

Теорема 1. (Рисса) В бесконечномерном пространстве с нормой единичный замкнутый шар не компактен. ²

Доказательство. Чтобы доказать, что что-то не компактно, нужно найти там последовательность, у которой нет сходящейся подпоследовательности. Здесь это нетрудно: подойдёт любой счётный ортнормированный набор векторов!

Представьте себе: у вас есть n единичных ортогональных друг другу векторов. Вы можете добавить ещё один, и ещё, и ещё... Конечно, в такой последовательности не выбрать сходящейся.

В том, что касается линейных отображений, тоже есть тонкости. Мы знаем, что любое линейное отображение конечномерных пространств непрерывно и *ограничено* (т.е. образ единичного замкнутого шара при нём ограничен). В бесконечномерном случае это не так! Однако выполняется такое утверждение:

Утверждение 1. Для нормированных пространств непрерывность и ограниченность линейных отображений равносильны.

В реальности почти все интересные отображения ограничены. Да и у неограниченных слишком плохие свойства, поэтому в большинстве теорем ограниченность предполагается.

Замечание 1. Будем все гильбертовы пространства считать сепарабельными. Это по сути равносильно тому, что в них есть счётный базис.

§ 2. Пара фактов про гильбертовы пространства

Замечание 1. В бесконечномерных пространствах не все подпространства замкнуты; в частности, там бывают всюду плотные подпространства (как, например, многочлены в пространстве непрерывных функций). Об этом не стоит забывать.

Оказывается, в гильбертовых пространствах ортогональные дополнения устроены почти так же, как и в конечномерной ситуации.

Утверждение 1. Ортогональное дополнение любого множества является замкнутым линейным подпространством. Если $A \subset H$ — замкнутое линейное подпространство, то $H = A \oplus A^{\perp}$.

Этот факт используется для того, чтобы доказать теорему Рисса: линейные функционалы в гильбертовом пространстве — просто скалярные умножения на какие-то вектора.

Теорема 1 (Рисс). Пусть H — гильбертово пространство. Тогда каждый вектор e задаёт ограниченный функционал f_e : $H \to \mathbb{C}$ по правилу $x \mapsto (x, e)$, и каждый ограниченный функционал на H есть f_e для некоторого однозначно определённого вектора $e \in H$. Определённая этим биекция $H \to H^*$ есть сопряжённо-линейный изометрический изоморфизм нормированных пространств.

²Верно и обратное утверждение: если в нормированном пространстве единичный замкнутый шар компактен, то оно конечномерно.

§ 3. Спектр оператора

Ещё одно различие, не столь наглядное, но очень важное, связано со спектром оператора.

Определение 1. Пусть H — гильбертово пространство, A: $H \to H$ — ограниченный оператор. Спектром A называют множество таких $\lambda \in \mathbb{C}$, что оператор $A - \lambda I$ необратим.

Понятие спектра тесно связано с собственными числами:

Определение 2. Говорят, что $\lambda \in \mathbb{C}$ — *собственное число* оператора A, если есть такой вектор $v \in H$, что $Av = \lambda v$.

Собственные числа можно охарактеризовать в терминах оператора $A - \lambda I$:

Утверждение 1. λ — собственное число A тогда и только тогда, когда оператор $A - \lambda I$ не инъективен (то есть склеивает какие-то векторы в один).

Доказательство. Пусть λ — собственное число, v — собственный вектор. Тогда $(A-\lambda I)v=0=A0$, поэтому оператор не инъективен.

Докажем в обратную сторону. Пусть оператор $A - \lambda I$ не инъективен. Тогда есть вектор из ядра — такой, что $(A - \lambda I)v = 0$, т.е. $Av = \lambda v$.

Отсюда сразу следует утверждение:

Утверждение 2. Для конечномерных пространств спектр и множество собственных чисел — одно и то же.

Доказательство. Как мы знаем,

необратимость ⇔ неинъективность или несюръективность.

Но в конечномерном случае

несюръективность \Rightarrow неинъективность.

Это связано с тем, что несюръективный оператор понижает размерность пространства, что вынуждает его склеивать вектора.

Поэтому необратимость либо сразу влечёт неинъективность, либо сначала влечёт несюръективность, а потом уже неинъективность. Отсюда

необратимость ⇔ неинъективность,

П

что и требовалось доказать.

В бесконечномерном случае всё не так. Из необратимости неинъективность больше не следует, и у оператора появляются два разных способа быть необратимым:

- 1. Оператор склеивает векторы.
- 2. Образ оператора меньше, чем всё пространство.

Поэтому спектр оператора A в бесконечномерном пространстве разбивается на собственные числа и те точки, в которых $A-\lambda I$ не является сюръективным (хоть и векторы не склеивает).

Замечание 1. Это не мифическая ситуация: обычный оператор умножения на координату (т.е. Af(x) = xf(x)) в $L^2([a, b])$ не имеет собственных чисел, но его спектр равен всему отрезку!

Когда мы занимались квантовой механикой, мы находили «собственные вектора» — дельтафункции. То, что они на самом деле не функции и в L^2 не лежат — свидетельство описанного феномена!

§ 4. Компактные операторы

Обсудим один класс операторов, очень полезный на практике.

Определение 1. Пусть H — гильбертово пространство, B — единичный замкнутый шар в нём. Оператор $A: H \to H$ называют *компактным*, если замыкание множества A(B) компактно.

Замечание 1. На самом деле, компактный оператор переводит любое ограниченное множество в множество с компактным замыканием.

Мы знаем, что даже единичный шар в H не компактен. Это значит, что A — оператор с очень маленьким образом, он сжимает всё пространство во что-то крохотное! Это объясняет простоту (и близость к конечномерию) свойств компактных операторов.

Утверждение 1. Если операторы A_n компактны и $||A_n - A|| \to 0$, то оператор U компактен.

Следствие 1. Если операторы A_n конечного ранга (т.е. их образы конечномерны), и $\|A-A_n\| \to 0$, то оператор A компактен.

Главный пример компактного оператора — интегральный оператор.

Пример 1. Пусть $\Box = [a, b] \times [a, b]$. Рассмотрим оператор A на $L^2([a, b])$, действующий по правилу

$$Af(x) = \int_{a}^{b} K(x, y)f(y) \, \mathrm{d}y,$$

где $K \in L^2(\square)$. Такой оператор называют *интегральным*, а функцию K называют его ядром. В принципе, вместо L^2 можно жить в C — пространстве непрерывных функций, но оно не гильбертово.

Утверждение 2. Интегральный оператор компактен.

Почти доказательство. Разложим функцию K по базису (так можно, правда):

$$K(x, y) = \sum_{n,m=0}^{\infty} c_{nm} e_n(x) e_m(y).$$

Рассмотрим последовательность интегральных операторов A_N с ядрами

$$K_N(x, y) = \sum_{n=0}^{N} c_{nm} e_n(x) e_m(y).$$

Простым преобразованием находим, что

$$A_N f(x) = \sum_{n=1}^N \left(\sum_{m=1}^N c_{nm} \int_a^b e_m(y) f(y) \, \mathrm{d}y \right) e_n(x).$$

Образ оператора A_N находится внутри линейной оболочки векторов e_1, \dots, e_N ! Это значит, что наш оператор A приближается операторами конечного ранга, а потому компактен.

§ 5. Спектры компактных операторов

Спектр компактного оператора обладает замечательным свойством:

Утверждение 1. Пусть A — компактный оператор. Для любого $\delta > 0$ множество собственных чисел A таких, что $|\lambda| \geqslant \delta$ конечно. Собственное пространство любого $\lambda \neq 0$ конечномерно.

Спектр произвольного самосопряжённого оператора, с другой стороны, обладает такими свойствами:

Утверждение 2.

- 1. Собственные значения самосопряжённого оператора вещественны.
- 2. Собственные векторы самосопряжённого оператора, отвечающие разным собственным значениям, ортогональны.

Для операторов, одновременно компактных и самосопряжённых, удаётся доказать вариант спектральной теоремы— бесконечномерного аналога утверждения о том, что симметричную матрицу можно привести к диагональному виду:

Теорема 1 (Гильберта-Шмидта). Пусть A — компактный и самосопряжённый оператор в гильбертовом пространстве H. Существует ортогональный базис $\{e_i\}$, состоящий из собственных векторов A.

§ 6. Альтернатива Фредгольма

Определение 1. Фредгольмовым называют такой оператор T на гильбертовом пространстве, что T = I - A, где A компактен.

Утверждение 1. Сопряжённый к компактному оператор компактен.

Теорема 1 (Альтернатива Фредгольма).

- 1. Уравнение $T\varphi=f$ разрешимо тогда и только тогда, когда f ортогонально любому решению уравнения $T^*\psi_0=0$.
- 2. Либо уравнение $T\varphi = f$ имеет при любом f ровно одно решение, либо уравнение $T\varphi_0$ имеет ненулевое решение.
- 3. Уравнения $T^*\psi_0=0$ и $T\varphi_0=0$ имеют одно и то же конечное число линейно независимых решений.

Замечание 1. Эту теорему называют альтернативой, потому что трудно вынести безальтернативность приближения сдачи вычей. Представьте себе, что вы смотрите на уравнение $T\varphi=f$. Есть два варианта:

- 1. Уравнение $T\varphi_0$ не имеет ненулевых решений, и ваша задача разрешима единственным способом. Всё прекрасно!
- 2. Оно их таки имеет, и всё не столь прекрасно.

Пусть вы попали во второй вариант. Снова выбор:

- 1. f ортогонально всем решениям уравнения $T^*\psi_0=0$ (которые теперь уже точно есть по третьему пункту). Тогда ваша задача разрешима, но не одним способом (видимо, их будет бесконечно много).
- 2. f не такое. Тогда ваша задача неразрешима.

В Обозначения