振り返りと導入

...

1 双対平坦構造とシンプレクティック構造

以下、M を多様体、 (g, ∇, ∇^*) を M 上の双対平坦構造、 $\mathcal{U} \subset M \times M$ を canonical ダイバージェンスの定義域、 $D: \mathcal{U} \to \mathbb{R}$ を canonical ダイバージェンスとする。

定義 1.1 (良いチャート). 次をみたす双対アファインチャート (U, θ, η) をここだけの用語で**良いチャート**と呼ぶ:

- (1) $U \times U \subset U$ σ σ σ σ
- (2) *Uは g-*凸である。

命題-定義 1.2 (双対平坦構造のシンプレクティック構造). $\omega_0 \in \Omega^2(T^\vee M)$ を $T^\vee M$ 上の自然シンプレクティック 形式とする。写像 $d_1D: \mathcal{U} \to T^\vee M$ を第 1 成分に関する微分、すなわち $d_1D := D(\frac{\partial}{\partial x^i}||) dx^i$ で定め、 \mathcal{U} 上の 2-形式 $\omega \in \Omega^2(\mathcal{U})$ を $\omega := (d_1D)^*(\omega_0)$ で定める。このとき次が成り立つ:

(1) M の任意の局所座標 $x=(x_i)_i$ に対し、 $x^*:=x$ とおいて $\mathcal U$ の局所座標 $(x,x^*)=(x^1,\ldots,x^n,x^{*1},\ldots,x^{*n})$ を定めると、 ω の成分表示は

$$\omega = D(\frac{\partial}{\partial x^i} \| \frac{\partial}{\partial x^{*j}}) dx^i \wedge dx^{*j}$$
(1.1)

となる。

(2) ω は U 上のシンプレクティック形式である。

 ω を双対平坦構造 (g, ∇, ∇^*) の**シンプレクティック構造** と呼ぶ。

証明 (1) 前回示した。

(2) d_1D がはめ込みであることを示せばよい。座標 (θ, θ^*) に関する座標表示の Jacobi 行列を考えると $\begin{bmatrix} I & O \\ O & -g \end{bmatrix}$ の形になることから、g の非退化性より d_1D がはめ込みであることが従う。

命題 1.3 (ω の基本性質). ω を双対平坦構造 (g, ∇ , ∇ *) のシンプレクティック構造、(U, θ , η) を良いチャートとすると、 $\forall p$, $q \in U$, (p,q) $\in \mathcal{U}$ に対し次が成り立つ:

$$\omega_{(p,q)} = -g_{ij}(p) d\theta^i \wedge d\theta^{*j}$$
(1.2)

$$= -d\eta_i \wedge d\theta^{*i} \tag{1.3}$$

$$= -g_{ij}(p)g^{jk}(q) d\theta^i \wedge d\eta_k^* \tag{1.4}$$

$$= -g^{ij}(q) d\eta_i \wedge d\eta_i^* \tag{1.5}$$

注意 1.4. 任意の双対アファインチャート (U, θ, η) に対しては $\omega = -d\eta_i \wedge d\theta^{*i}$ が成り立つとは限らない。

証明 [TODO]

例 1.5 ($M=\mathbb{R}^n$ の場合). $M:=\mathbb{R}^n$ とし、g を Euclid 計量、 $\nabla:=\nabla^s:=\nabla^g$ とすると、 (g,∇,∇^s) は双対平坦構造となる。このとき、 (g,∇,∇^s) の canonical ダイバージェンスは $D: M\times M \to \mathbb{R}$, $(p,q)\mapsto \frac{1}{2}\|p-q\|^2$ となり、 (g,∇,∇^s) のシンプレクティック構造 ω は、同一視 $M\times M\cong T^\vee M$ のもとで $T^\vee M$ 上の自然シンプレクティック構造 ω に対し $\omega=-\omega_0$ となる。

$$\omega = D(\frac{\partial}{\partial x^i} \| \frac{\partial}{\partial x^{*j}}) dx^i \wedge dx^{*j}$$
(1.6)

$$= -\delta^i_i \, dx^i \wedge dx^{*j} \tag{1.7}$$

$$= -dx^i \wedge dx^{*i} \tag{1.8}$$

$$= -\omega_0 \tag{1.9}$$

命題-定義 1.6 (ダイバージェンスを使わない直接的な定義). g-凸な任意の双対アファインチャート (U, θ, η) に対し、

$$d\eta_i \wedge d\theta^{*i} \tag{1.10}$$

は (U, θ, η) の選び方によらない。

証明 g-凸な双対アファインチャート $(U, \theta, \eta), (U', \theta', \eta')$ に対し、

$$d\eta_i \wedge d\theta^{*i} = \frac{\partial \eta_i}{\partial \eta_i'}(p) \frac{\partial \theta^i}{\partial \theta'^k}(q) \, d\eta_j' \wedge d\theta'^{*k} \tag{1.11}$$

が成り立つ。U,U' の g-凸性より、p,q を結ぶ M 内の最短測地線は $U\cap U'$ に含まれる。したがって p,q は $U\cap U'$ の単一の連結成分 C に含まれる。C 上で $\frac{\partial\eta_i}{\partial\eta_i'}=\frac{\partial\theta'^j}{\partial\theta^i}$ は定数だから、 $\frac{\partial\eta_i}{\partial\eta_i'}(p)\frac{\partial\theta^i}{\partial\theta'^k}(q)=\delta_k^j$ が成り立つ。

2 シンプレクティック幾何における Legendre 変換

[TODO]

今後の予定

- Legendre 変換
- モーメント写像

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

[野 20] 知宣 野田, シンプレクティック幾何的視点での BAYES の定理について (部分多様体の幾何学の深化と展開), 数理解析研究所講究録 2152 (2020), 29-43 (jpn).

A 付録

1.1 双対ポテンシャル

定義 A.1 (双対ポテンシャル). (U,θ,η) を双対アファインチャートとする。関数 $\psi,\varphi:U\to\mathbb{R}$ の組 (ψ,φ) が (U,θ,η) の双対ポテンシャル (dual potential) であるとは、U 上で

$$d\psi = \eta_i d\theta^i, \quad d\varphi = \theta^i d\eta_i, \quad \psi + \varphi = \theta^i \eta_i$$
 (A.1)

が成り立つことをいう。

命題 A.2 (双対ポテンシャルの基本性質). (U, θ, η) を双対アファインチャート、 (ψ, φ) を (U, θ, η) の双対ポテンシャルとする。このとき次が成り立つ:

- (1) $U \perp \tau \psi \log \sigma \nabla \vartheta \tau$ ンシャルであり、 $\varphi \log \sigma \nabla \vartheta \vartheta \tau$ ンシャルである。
- (2) $(\psi, \varphi), (\psi', \varphi')$ を (U, θ, η) の双対ポテンシャルとすると、U の連結成分ごとに $\psi' \psi$ および $\varphi' \varphi$ は 定数である。

証明 (1) (θ,η) が双対アファイン座標であることから

$$\nabla^2 \psi = \frac{\partial \eta_i}{\partial \theta^j} d\theta^i d\theta^j = g_{ij} d\theta^i d\theta^j = g, \quad \nabla^{*2} \varphi = \frac{\partial \theta^i}{\partial \eta_i} d\eta_i d\eta_j = g^{ij} d\eta_i d\eta_j = g$$
 (A.2)

を得る。

(2) $\psi'-\psi$ について示す。 ψ,ψ' が g の ∇ -ポテンシャルであることより U 上で $\nabla^2(\psi'-\psi)=0$ である。 したがって U の各連結成分 C に対し、組 $(a_C,b_C)\in\mathbb{R}^n\times\mathbb{R}$ であって $\psi'(r)-\psi(r)=\langle a_C,\theta(r)\rangle+b_C$ $(\forall r\in C)$ なるものがただ 1 組存在する。さらに ψ,ψ' が双対ポテンシャルであることより C 上で $d(\psi'-\psi)=0$ だから $a_C=0$ が成り立つ。よって C 上で $\psi'-\psi=b_C$ が成り立つ。 $\varphi'-\varphi$ についても同様。

1.2 canonical ダイバージェンスの定義域

定義 A.3 (∇ -凸集合). 部分集合 $S \subset M$ が ∇ -凸 (∇ -convex) であるとは、任意の $p,q \in S$ に対し、p から q への S 内の ∇ -測地線がただひとつ存在することをいう。

定義 A.4 (g-凸集合). 部分集合 $S \subset M$ が g-凸 (g-convex) であるとは、任意の p, $q \in S$ に対し、p から q への M 内の ∇^g -測地線で最短なものがただひとつ存在し、かつそれが S 内に含まれることをいう。

定義 A.5 (canonical ダイバージェンスの定義域).

$$\mathcal{U}\coloneqq \left\{ (p,q)\in M\times M \left| \begin{array}{c} p,q\text{ を含む }g\text{-}\text{凸開集合を含む}, \\ \nabla\text{-凸または}\,\nabla^*\text{-凸な双対アファインチャート}\,(U,\theta,\eta)\text{ が存在する} \end{array} \right. \right\}$$
 (A.3)

命題 A.6. 次は同値である:

- (1) U は ∇ -凸であり、U 上の双対アファイン座標が存在する。
- (2) U は ∇ -凸であり、U 上の ∇ -アファイン座標が存在する。

証明 (1) ⇒ (2) 明らか。

 $(2) \Rightarrow (1)$ ∇ -凸性より $\eta \coloneqq (\eta_i)_i$, $\eta_i \coloneqq \frac{\partial \psi}{\partial \theta^i}$ は U 上の座標となる。このとき (θ, η) は U 上の双対アファイン座標となる。さらに $\varphi \coloneqq \theta^i \eta_i - \psi$ とおけば (ψ, φ) は (U, θ, η) の双対ポテンシャルとなる。

2023/11/22

注意 A.7.

• p,q を含む g-凸開集合が存在したとしても、p,q のまわりの良いチャートが存在するとは限らない。 たとえば、正規分布族を考え、自然パラメータ空間 (これは上半空間となる) から $\{0\} \times (0,2)$ を除いた空間 を考えると、2 点 p=(2,1),q=(-2,1) を含む g-凸開集合が存在するが、2 点を結ぶ ∇ -測地線も ∇^* -測地線 も存在しないため、2 点を含む ∇ -凸または ∇^* -凸な双対アファインチャートは存在しない。

補題 A.8 (g-凸開近傍の存在). 各 $p \in M$ に対し、ある R > 0 が存在して、任意の $r \in (0,R)$ に対し $B_r(p) \subset M$ は g-凸である。

証明 [TODO] cf. Riemann 多様体の教科書

補題 A.9 ($\mathcal U$ の多様体構造). $\mathcal U$ は Δ_M を含む $M\times M$ の開集合である。したがって $\mathcal U$ には $M\times M$ の開部分多様体の構造が入る。

証明 開集合となることは定義から明らか。また、各 $p_0 \in M$ に対し、 p_0 のまわりの双対アファインチャート (U,θ,η) が存在するから、 p_0 の ∇ -凸開近傍 U' を U' \subset U となるようにとれば、補題より U' は p_0 の g-凸開近傍を含む。したがって $U' \times U'$ は $M \times M$ における p_0 の近傍であり、U に含まれる。よって U は Δ_M を 含む。

1.3 canonical ダイバージェンス

命題-定義 A.10 (canonical ダイバージェンス). 関数 $D: \mathcal{U} \to \mathbb{R}$ を次のように定める: $(p,q) \in \mathcal{U}$ を固定し、p,q を含む g-凸開集合を含む ∇ -凸または ∇^* -凸な双対アファインチャート (U,θ,η) をひとつ選び、その双対ポテンシャル (ψ,φ) を 1 組選ぶ。このとき、点 (p,q) における

$$\psi(q) + \varphi(p) - \langle \theta(q), \eta(p) \rangle \tag{A.4}$$

の値は (U, θ, η) や (ψ, φ) の選び方によらない。この値を D(p||q) と記す。以上により定まる関数 $D: \mathcal{U} \to \mathbb{R}$ を双対平坦構造 (g, ∇, ∇^*) の canonical ダイバージェンス と呼ぶ。

証明 $(p,q) \in \mathcal{U}$ とし、 $(U,\theta,\eta),(U',\theta',\eta')$ をそれぞれ条件をみたす双対アファインチャート、 $(\psi,\varphi),(\psi',\varphi')$ をそれぞれの双対ポテンシャルとする。 $(p,q) \in \mathcal{U}$ ゆえ p,q を含む g-凸集合が存在するから、p から q への M 内の ∇^g -測地線 γ がただひとつ存在する。ここで U,U' は p,q を含む g-凸開集合を含んでいたから、 $U \cap U'$ は γ の像を含む。このとき $U \cap U'$ の連結成分 C であって γ の像を含むものがただ 1 つ存在する。

C の連結性より $\psi'(q) - \psi(q) = (C 上の定数) = \psi'(p) - \psi(p)$ が成り立つ。よって

$$\psi'(q) + \varphi'(p) - \langle \theta'(q), \eta'(p) \rangle = \psi'(q) - \psi'(p) - \langle \theta'(q) - \theta'(p), \eta'(p) \rangle \tag{A.5}$$

$$= \psi(q) - \psi(p) - \langle \theta'(q) - \theta'(p), \eta'(p) \rangle \tag{A.6}$$

が成り立つ。あとは $\langle \theta'(q) - \theta'(p), \eta'(p) \rangle = \langle \theta(q) - \theta(p), \eta(p) \rangle$ を示せばよい。

C の連結性より、組 $(A=(A_i^j)_{i,j},b)\in \mathrm{GL}_n(\mathbb{R})\times\mathbb{R}^n$ であって $\theta'(r)=A\theta(r)+b$ $(\forall r\in C)$ をみたすものがただ 1 組存在する。よって任意の $r\in C$ に対し

$$\eta_i(r) = \frac{\partial \psi}{\partial \theta^i}(r) \qquad (\because d\psi = \eta_i d\theta^i)$$
(A.7)

$$= \frac{\partial \psi'}{\partial \theta^i}(r) \qquad (\because \psi' - \psi \ \text{は } C \ \text{上定数}) \tag{A.8}$$

$$=\frac{\partial \theta'^{j}}{\partial \theta^{i}}(r)\frac{\partial \psi'}{\partial \theta'^{j}}(r) \tag{A.9}$$

$$=A_i^j \eta_i'(r) \qquad (\because d\psi' = \eta_i' d\theta'^j) \tag{A.10}$$

$$\therefore \eta(r) = A\eta'(r) \tag{A.11}$$

が成り立つ。さらに任意の $r \in C$ に対し

$$\theta'^{i}(r) = \frac{\partial \varphi'}{\partial \eta'_{i}}(r) \qquad (\because d\varphi' = \theta'^{i}d\eta'_{i}) \tag{A.12}$$

$$= \frac{\partial \varphi}{\partial \eta'_{i}}(r) \qquad (: \varphi' - \varphi \text{ は } C \text{ 上定数})$$
 (A.13)

$$= \frac{\partial \eta_j}{\partial \eta_i}(r) \frac{\partial \varphi}{\partial \eta_j}(r) \tag{A.14}$$

$$=A_{j}^{i}\theta^{j}(r) \qquad (\because d\varphi=\theta^{j}d\eta_{j},\;\eta=A\eta') \tag{A.15}$$

$$\therefore \theta'(r) = A\theta(r) \tag{A.16}$$

が成り立つ。したがって

$$\langle \theta'(q) - \theta'(p), \eta'(p) \rangle = \langle A(\theta(q) - \theta(p)), A^{-1}\eta(p) \rangle = \langle \theta(q) - \theta(p), \eta(p) \rangle \tag{A.17}$$

が示された。

命題 A.11 (canonical ダイバージェンスの性質). (g, ∇^*, ∇) の canonical ダイバージェンスを D^* として

- (1) DはC[∞]関数である。
- (2) $D(p||q) \ge 0$
- (3) $D(p||q) = 0 \iff p = q$
- (4) $D(p||q) = D^*(q||p)$

証明 (1) 局所的な C^{∞} 性を示せばよい。 $(p,q) \in \mathcal{U}$ とし、 (U,θ,η) を条件をみたす双対アファインチャートとすれば、(p,q) の近傍 $U \times U$ 上で D は C^{∞} である。

(2),(3) ψ の ∇ -凸性あるいは φ の ∇^* -凸性より従う。

(4) 定義より明らか。

6