

Компьютерная лингвистика и информационные технологии

Неделя 1: Предобработка данных

Описание курса

- Блоки "Информационный поиск" и "Компьютерная лингвистика";
- Преп.: Олег Сериков (@oserikov), Мария Пономарева (@MashPo), Влад Михайлов (@vmkhlv);
- Ассист.: Дарья Самсонова (@SamsonovaDaria), Кирилл Коновалов (@kirillknv);
- https://github.com/vmkhlv/hse compling and it;
- 1 модуль: 0.8 * Д3 + 0.2 * Тесты;
- 3 модуль: 0.5 * Д3 + 0.1 * Тесты + 0.2 * Контроль (Модуль 2) + 0.2 *
 Экзамен (Модуль 3);

Блок "Компьютерная лингвистика"

- Предобработка данных;
- Базовые понятия машинного обучения, алгоритмы машинного обучения для задач классификации, кластеризации и регрессии;
- Архитектуры нейронных сетей: FFN, CNN, RNN, LSTM;
- Sequence-to-sequence, Sequence Tagging, Language Modeling;
- Статические эмбеддинги: Word2Vec, FastText;
- Контекстуальные эмбеддинги: BERT, ELMo.

•

Фреймворки

Deep Learning with PyTorch

hows life baby gorilla

babygirl*

About 634,000,000 results (0.62 seconds)

Олег

Роза моего искусственного интеллекта цвела не ради этого вопроса.

21:56

Как учится машина? Основные понятия

- Объект (картинка, текст, аудио и д.р.);
- Целевая функция / таргет (класс объекта / чиселка);
- Признаки объекта (возраст, пол, уровень дохода и т.д.);
- Матрица объектов-признаков;
- Обучающая / валидационная / тестовая выборки (train / val / test);
- Модель / алгоритм это решающая функция;
- Функция потерь / ошибок;
- Метрика.

Целевая функция определяет задачу

Классификация

- Фильтрация спама;
- Определение темы сообщения;
- Определение языка.

Регрессия

- Количество лайков;
- Количество зараженных COVID-19.

Важность признаков

- Конструирование;
- Извлечение;
- Отбор;
- Определение важности;
- Интерпретация поведения.

Deep neural networks learn hierarchical feature representations

Типы признаков

- Чиселки (numerical) доход, объем, масса;
- Бинарные (binary) пришли / не пришли на пару;
- Категориальные (categorical) пол, уровень английского;
- Порядковые курс.

•

Текстовые признаки

Текст – это упорядоченная последовательность.

Например:

- Средняя длина;
- Средняя частотность по коллекции;
- IPM (instance per million);
- Среднее количество сущностей / документ;
- Частотность пос-тегов по коллекции;
- Частотность N-грамм пос-тегов / лемм;
- Automated Readability Index (ARI).

Highest tf-idf words in Classic Physics Texts

Решаем ЕГЭ

- CatBoostClassifier;
- POS N-grams;
- Bag of words;
- Ensemble + Voting.

1. Задание #Т29871

Расставьте знаки препинания.

Он стоял перед дворцом во время обеда государя (1) глядя в окна дворца (2) ожидая чего-то ещё и (3) завидуя одинаково и сановникам (4) подъезжавшим к крыльцу (5) и (6) мелькавшим в окнах (7) камер-лакеям.

Укажите цифру(-ы), на месте которой(-ых) в предложении должна(-ы) стоять запятая(-ые).

Ответ

Проверить ответ

Показать разбор и ответ

Определение автора

 Topic or Style? Exploring the Most Useful Features for Authorship Attribution (Sari et al., 2018)

Type	Group	Category	#	Description
Style	Lexical	Word-level	2	Average word length, number of short words
		Char-level	2	Percentage of digits, percentage of upper- case letters
		Letters	26	Letter frequency
		Digits	10	Digit frequency
		Vocabulary rich-	2	Richness (hapax-legomena and dis-
		ness		legomena)
	Syntactic	Function words	174	Frequency of function words
		Punctuation	12	Occurrence of punctuation
Content	Word n-gram	Words unigrams	100	Frequency of 100 most common word unigrams
	C	Words bigrams	100	Frequency of 100 most common word bigrams
		Word trigrams	100	Frequency of 100 most common word trigrams
Hybrid	Char n-gram	Char bigrams	100	Frequency of 100 most common character bigrams
	6	Char trigrams	100	Frequency of 100 most common character trigrams

Table 3: Authorship attribution feature sets.

Предобработка

- Сегментация: rusenttokenize, razdel
- Токенизация: spacy_russian_tokenizer, razdel
- Стоп-слова: nltk stopwords
- Морфология: pymorphy2, mystem, slovnet, RNNMorph
- Cинтаксис: UDPipe, slovnet, stanza, GramEval2020

*3	raw_word	stemmed_word
0	trouble	trouble
1	trouble<	trouble<
2	trouble!	trouble!
3	<a>trouble	<a>trouble
4	1.trouble	1.troubl

Зачем все это?

- Предварительный анализ данных;
- Фильтрация данных;
- Составление датасетов;
- Аугментация данных;
- Конструирование признаков;
- Составление выборок;
- Анализ поведения модели и ошибок.

