Contents

Preface	2
Template	2
C++	2
Graph Theory	2
Articulation Point	2
Articulation Bridge	3
Tarjan's Directed SCC	3
Max Flow	4
Max Flow Min Cost	4
Lowest Common Ancestor	5
Blossom	6
Minimum Cut	7
String Processing	7
Knuth-Morris-Pratt	7
Z-Algorithm	8
Suffix Array	8
Suffix Tree	8
Aho-Corasick	10
Mathematics	10
Extended Euclid	10
Diophantine	10
Chinese Reminder Theorem	11
Lagrange Interpolation	11
Fast Fourier Transform	12

	Simplex	.12
	Gauss Jordan Elimination	.14
	Reduced Row Echelon Form	.15
D	ata Structures	.15
	K-d Tree	.15
	Fenwick Tree	.17
	Splay Tree	.17
	DP Convex Hull Optimization	.19
Geometry		.19
	Point, Segment, Line, Circle	.19
	Polygons (Area, Orientation)	.21
	Convex Hull	.21
	Dealunay Triangulation	.21
V	liscellaneous	22
	Graph Theorems	.22
	Combinatorics	.22
	Notes	22

Preface

This is our Team Notebook for ACM ICPC and other Competitive Programming contests. Notable sources are:

- Introduction to Algorithm 3rd edition
- Competitive Programming 2 by Felix and Steven Halim
- Topcoder Algorithm Tutorials
- https://sites.google.com/site/indy256/
- http://stanford.edu/~liszt90/acm/notebook.html
- Dongskar Pedongi's Team Notebook
- Google, Wikipedia

Regards,

DELAPAN.3gp

Aufar Gilbran, Ahmad Zaky, Muntaha Ilmi Institut Teknologi Bandung, Indonesia

Template

C++

```
#include <bits/stdc++.h> <vector> <map> <set> <queue> <deque> <stack>
<algorithm> <sstream> <iostream> <iomanip> <fstream> <cstring> <cmath>
<cstdlib> <ctime> <cassert> <limits> <numeric> <utility>
using namespace std;
#ifdef DEBUG
  #define debug(...) printf( VA ARGS )
 #define GetTime() fprintf(stderr, "Running time: %.31f
second\n", ((double)clock())/CLOCKS PER SEC)
#else
  #define debug(...)
  #define GetTime()
#endif
//type definitions
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;
typedef vector<int> vint;
//abbreviations
#define A first
#define B second
#define F first
#define S second
```

```
#define MP make pair
#define PB push back
//macros
#define REP(i,n) for (int i = 0; i < (n); ++i)
#define REPD(i,n) for (int i = (n)-1; 0 \le i; --i)
#define FOR(i,a,b) for (int i = (a); i \le (b); ++i)
#define FORD(i,a,b) for (int i = (a); (b) \langle = i; --i \rangle
#define FORIT(it,c) for ( typeof ((c).begin()) it = (c).begin(); it !=
(c).end(); it++)
#define ALL(a) (a).begin(),(a).end()
#define SZ(a) ((int)(a).size())
#define RESET(a,x) memset(a,x,sizeof(a))
\#define EXIST(a,s) ((s).find(a) != (s).end())
\#define MX(a,b) a = max((a),(b));
\#define MN(a,b) a = min((a),(b));
inline void OPEN (const string &s) {
   freopen((s + ".in").c str(), "r", stdin);
   freopen((s + ".out").c str(), "w", stdout);
/* ----- end of template ----- */
```

Graph Theory

Articulation Point

```
/** Articulation Point **/
/* complexity : O(|V| + |E|) */
#define MAXN 100100
int n, m, low[MAXN], num[MAXN], parent[MAXN], art[MAXN], root,
rootChildren, counter;
vector<int> adj[MAXN];
void dfs(int u) {
  low[u] = num[u] = counter++;
  FORIT(it, adj[u]) {
     int v = *it;
      if (num[v] == -1) {
        parent[v] = u;
         if (u == root) rootChildren++;
        dfs(v);
        if (low[v] >= num[u]) art[u] = 1;
        MN(low[u], low[v]);
      else if (v != parent[u]) {
        MN(low[u], num[v]);
```

```
int main() {
  // read the graph here. It should be 0-indexed
  // initialization
  counter = 0:
  REP(i, n) {
     num[i] = -1;
     low[i] = parent[i] = art[i] = 0;
  // perform the dfs
  REP(i, n) {
     if (num[i] == -1) {
        root = i, rootChildren = 0;
         dfs(i);
        art[root] = (rootChildren > 1);
  }
   // now the articulation points are stored in art[]
  return 0;
```

Articulation Bridge

```
/** Bridge **/
/* complexity : O(|V| + |E| + |E| \log |E|) */
#define MAXN 100100
int n, low[MAXN], num[MAXN], parent[MAXN], bridge[MAXN], counter;
vector<pii> adj[MAXN]; // adj[u].PB(MP(v, idx of edge));
void dfs(int u) {
  low[u] = num[u] = counter++;
  FORIT(it, adi[u]) {
     int v = it-A;
     if (num[v] == -1) {
        parent[v] = u;
        dfs(v);
        if (low[v] > num[u]) bridge[it->B] = 1;
        MN(low[u], low[v]);
     else if (v != parent[u]) {
        MN(low[u], num[v]);
  }
int main() {
  // read the graph here. it should be 0-indexed
  // should not work if multiple edges exist
  // initialization
```

```
counter = 0;
REP(i, n) {
    num[i] = -1;
    low[i] = parent[i] = 0;
}
REP(i, m) {
    bridge[i] = 0;
}
// perform the dfs
REP(i, n) {
    if (num[i] == -1) {
        dfs(i);
    }
}
// the bridges are stored in bridge[]
return 0;
}
```

Tarjan's Directed SCC

```
/** Tarjan's Directed Strongly Connected Component **/
/* complexity : O(|V| + |E|) */
#define MAXN 100100
int n, low[MAXN], num[MAXN], visited[MAXN], counter;
vector<int> adj[MAXN], s;
vector<vector<int> > scc;
void dfs(int u) {
 low[u] = num[u] = counter++;
  s.PB(u);
  visited[u] = 1;
  FORIT(it, adj[u]) {
     int v = *it;
      if (num[v] == -1) dfs(v);
      if (visited[v]) {
        MN(low[u], low[v]);
  if (low[u] == num[u]) {
     vector<int> temp:
     int v = -1;
      while (u != v) {
        v = s.back(); s.pop back(); visited[v] = 0;
        temp.PB(v);
      scc.PB(temp);
  }
int main() {
```

```
// read the graph here. it should be 0-indexed
// initialization
counter = 0;
scc.clear();
REP(i, n) {
    num[i] = -1;
    low[i] = visited[i] = 0;
}
// perform the dfs
REP(i, n) {
    if (num[i] == -1) {
        dfs(i);
    }
}
// the components are stored in scc
return 0;
}
```

Max Flow

```
#define MAXN 1100
#define INF 0x3FFFFFFF
int res[MAXN][MAXN], vis[MAXN];
/** Maximum Flow **/
/* Edmond Karp | complexity : O(|V|*(|V|+|E|)) */
void augment(int v, int minEdge, int &s, int &f, vector<int> &p) {
 if (v == s) { f = minEdge; return; }
  else if (p[v] != -1) {
     augment(p[v], min(minEdge, res[p[v]][v]), s, f, p); res[p[v]][v] -= f;
res[v][p[v]] += f;
 - }
int maxFlowEdmondKarp(int n, int source, int target) {
  int mf = 0;
  while (1) {
     int f = 0;
     vector<int> dist(n+5,INF);
     dist[source] = 0;
     queue<int> q; q.push(source);
     vector<int> p; p.assign(n+5,-1);
     while (!q.empty()) {
        int u = q.front(); q.pop();
        if (u == target) break;
        for (int v = 0; v < n; v++)
           if (res[u][v] > 0 && dist[v] == INF)
               dist[v] = dist[u] + 1, q.push(v), p[v] = u;
     augment(target, INF, source, f, p);
     if (f == 0) break;
     mf += f:
```

```
return mf;
/* Ford Fulkerson | complexity : O(|V|^2 F) */
int findPath(int n, int u, int t, int f){
   if (u == t) return f;
   vis[u] = 1;
   for (int v = 0; v < n; ++v) {
      if (!vis[v] && res[u][v] > 0){
         int df = findPath(n, v, t, min(f,res[u][v]));
         if (df > 0) {
            res[u][v] -= df;
            res[v][u] += df;
            return df:
      }
   1
   return 0;
int maxFlowFordFulkerson(int n, int source, int target) {
   for (int flow = 0;;) {
      for (int i = 0; i < n; ++i) vis[i] = 0;
      int df = findPath (n, source, target, INF);
      if (df == 0) return flow;
      flow += df;
  }
/* WARNING: res will be modified during the process */
```

Max Flow Min Cost

```
/** Max Flow Min Cost **/
/* complexity: O(min(E^2 V log V, E log V F)) */
const int maxnodes = 200000;

int nodes = maxnodes;
int prio[maxnodes], curflow[maxnodes], prevedge[maxnodes],
prevnode[maxnodes], q[maxnodes];
bool inqueue[maxnodes];

struct Edge {
   int to, f, cap, cost, rev;
};

vector<Edge> graph[maxnodes];

void addEdge(int s, int t, int cap, int cost) {
   Edge a = {t, 0, cap, cost, graph[t].size()};
   Edge b = {s, 0, 0, -cost, graph[s].size()};
   graph[s].push_back(a);
   graph[t].push_back(b);
}
```

```
void bellmanFord(int s, int dist[]) {
  fill(dist, dist + nodes, 1000000000);
  dist[s] = 0;
  int qt = 0;
  a[at++] = s;
  for (int qh = 0; (qh - qt) % nodes != 0; qh++) {
     int u = q[qh % nodes];
     inqueue[u] = false;
     for (int i = 0; i < (int) graph[u].size(); i++) {
         Edge &e = graph[u][i];
         if (e.cap <= e.f) continue;</pre>
         int v = e.to:
         int ndist = dist[u] + e.cost;
         if (dist[v] > ndist) {
           dist[v] = ndist;
           if (!inqueue[v]) {
               inqueue[v] = true;
               q[qt++ % nodes] = v;
  - }
pii minCostFlow(int s, int t, int maxf) {
  // bellmanFord can be safely commented if edges costs are non-negative
  bellmanFord(s, pot);
  int flow = 0;
  int flowCost = 0:
  while (flow < maxf) {</pre>
     priority queue<11, vector<11>, greater<11> > q;
     q.push(s);
     fill (prio, prio + nodes, 1000000000);
     prio[s] = 0;
     curflow[s] = 10000000000;
     while (!q.empty()) {
         11 cur = q.top();
         int d = cur \gg 32;
         int u = cur;
         q.pop();
         if (d != prio[u]) continue;
         for (int i = 0; i < (int) graph[u].size(); <math>i++) {
           Edge &e = graph[u][i];
            int v = e.to;
            if (e.cap <= e.f) continue;</pre>
           int nprio = prio[u] + e.cost + pot[u] - pot[v];
           if (prio[v] > nprio) {
              prio[v] = nprio;
              q.push(((11) nprio \ll 32) + v);
              prevnode[v] = u;
               prevedge[v] = i;
               curflow[v] = min(curflow[u], e.cap - e.f);
```

```
}
if (prio[t] == 1000000000) break;
for (int i = 0; i < nodes; i++) pot[i] += prio[i];
int df = min(curflow[t], maxf - flow);
flow += df;
for (int v = t; v != s; v = prevnode[v]) {
    Edge &e = graph[prevnode[v]][prevedge[v]];
    e.f += df;
    graph[v][e.rev].f -= df;
    flowCost += df * e.cost;
}
}
return make_pair(flow, flowCost);
}

/* usage example:
    * addEdge (source, target, capacity, cost)
    * minCostFlow(source, target, INF) -> <flow, flowCost>
    */
```

Lowest Common Ancestor

```
/** Lowest Common Ancestor **/
/* complexity : LCApre : O(N log N), LCAquery : O(log N) */
/* legend:
 * N : number of vertices. WARNING: zero based
 * T : direct parent. T[v] is parent of v
 * L : L[v] is the level of v. zero/one based is okay
 * P : dp table of size [MAXN][LOGMAXN]. P[v][i] is the 2^i-th parent of v
#define MAXN 100100
#define LOGMAXN 18
int L[MAXN], P[MAXN][LOGMAXN], T[MAXN], N;
void pre(){
  int i, j;
   //we initialize every element in P with -1
   for (i = 0; i < N; i++)</pre>
      for (j = 0; 1 << j < N; j++)
         P[i][j] = -1;
   //the first ancestor of every node i is T[i]
   for (i = 0; i < N; i++)
      P[i][0] = T[i];
   //bottom up dynamic programing
   for (j = 1; 1 << j < N; j++)
      for (i = 0; i < N; i++)
         if (P[i][j - 1] != -1)
```

```
P[i][i] = P[P[i][i - 1]][i - 1];
int query(int p, int q){
 int log, i;
 //if p is situated on a higher level than g then we swap them
  if (L[p] < L[q]) swap(p,q);
  //we compute the value of [log(L[p)]
  for (log = 1; 1 << log <= L[p]; log++);</pre>
  log--;
  //we find the ancestor of node p situated on the same level
  //with g using the values in P
  for (i = log; i >= 0; i--)
     if (L[p] - (1 << i) >= L[q])
        p = P[p][i];
  if (p == q) return p;
  //we compute LCA(p, q) using the values in P
  for (i = log; i >= 0; i--)
     if (P[p][i] != -1 && P[p][i] != P[q][i])
        p = P[p][i], q = P[q][i];
  return T[p];
```

Blossom

```
/** Maximum Matching on General Graph **/
/* Blossom | O(V^3) */
int lca(vector<int> &match, vector<int> &base, vector<int> &p, int a, int
b) {
  vector<bool> used(SZ(match));
  while (true) {
     a = base[a];
     used[a] = true;
     if (match[a] == -1) break;
     a = p[match[a]];
  while (true) {
     b = base[b];
     if (used[b]) return b;
     b = p[match[b]];
  return -1;
void markPath(vector<int> &match, vector<int> &base, vector<bool> &blossom,
vector<int> &p, int v, int b, int children) {
  for (; base[v] != b; v = p[match[v]]) {
```

```
blossom[base[v]] = blossom[base[match[v]]] = true;
      p[v] = children;
      children = match[v];
  }
int findPath(vector<vector<int> > &graph, vector<int> &match, vector<int>
&p, int root) {
  int n = SZ(graph);
   vector<bool> used(n);
   FORIT(it, p) *it = -1;
   vector<int> base(n);
   for (int i = 0; i < n; ++i) base[i] = i;
   used[root] = true;
   int qh = 0;
   int qt = 0;
   vector<int> q(n);
   q[qt++] = root;
   while (gh < gt) {
      int v = q[qh++];
      FORIT(it, graph[v]) {
         int to = *it;
         if (base[v] == base[to] || match[v] == to) continue;
         if (to == root | | match[to] != -1 && p[match[to]] != -1) {
            int curbase = lca(match, base, p, v, to);
            vector<bool> blossom(n);
            markPath (match, base, blossom, p, v, curbase, to);
            markPath (match, base, blossom, p, to, curbase, v);
            for (int i = 0; i < n; ++i) {
               if (blossom[base[i]]) {
                  base[i] = curbase;
                  if (!used[i]) {
                     used[i] = true;
                     q[qt++] = i;
                  }
               }
         } else if (p[to] == -1) {
           p[to] = v;
            if (match[to] == -1) return to;
            to = match[to];
           used[to] = true;
            a[at++] = to;
   return -1:
int maxMatching(vector<vector<int> > graph) {
   int n = SZ(graph);
   vector<int> match(n, -1);
```

Page 7 of 24

```
vector<int> p(n);
for (int i = 0; i < n; ++i) {
   if (match[i] == -1) {
      int v = findPath(graph, match, p, i);
      while (v != -1) {
         int pv = p[v];
         int ppv = match[pv];
         match[v] = pv;
         match[pv] = v;
         v = ppv;
   }
- }
int matches = 0;
for (int i = 0; i < n; ++i) {
   if (match[i] != -1) {
      ++matches;
   - }
return matches / 2;
```

Minimum Cut

```
// Adjacency matrix implementation of Stoer-Wagner min cut algorithm.
// Running time:
// O(|V|^3)
// INPUT:
      - graph, constructed using AddEdge()
// OUTPUT:
      - (min cut value, nodes in half of min cut)
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
typedef vector<int> VI;
typedef vector<VI> VVI;
const int INF = 1000000000;
pair<int, VI> GetMinCut(VVI &weights) {
 int N = weights.size();
 VI used(N), cut, best cut;
 int best weight = -1;
 for (int phase = N-1; phase >= 0; phase--) {
```

```
VI w = weights[0];
  VI added = used;
  int prev, last = 0;
  for (int i = 0; i < phase; i++) {</pre>
    prev = last;
    last = -1;
    for (int j = 1; j < N; j++)
        if (!added[j] && (last == -1 || w[j] > w[last])) last = j;
    if (i == phase-1) {
        for (int j = 0; j < N; j++) weights[prev][j] += weights[last][j];</pre>
        for (int j = 0; j < N; j++) weights[j][prev] = weights[prev][j];</pre>
        used[last] = true;
        cut.push back(last);
        if (best weight == -1 || w[last] < best weight) {</pre>
         best cut = cut;
         best weight = w[last];
    } else {
        for (int j = 0; j < N; j++)
          w[j] += weights[last][j];
        added[last] = true;
return make pair(best weight, best cut);
```

String Processing

Knuth-Morris-Pratt

```
/** Knuth-Morris-Pratt **/
/* Complexity: O(N) */
void buildFailTable(char *pattern, int *t){
   int i = 0, j = -1, m = strlen(pattern);
   t[0] = -1;
   while (i < m) {
      while (j \ge 0 \&\& pattern[i] != pattern[j]) j = t[j];
      i++; j++;
      t[i] = j;
  }
vector<int> kmpSearch(char *pattern, char *text){
   vector<int> res;
   int i = 0, j = 0, n = strlen(text), m = strlen(pattern);
   int t[m+5];
   buildFailTable(pattern,t);
   while (i < n) {
      while (j \ge 0 \&\& text[i] != pattern[j]) j = t[j];
      i++; j++;
      if (j == m) {
```

Z-Algorithm

```
// z[i] is the longest substring starting from i which is also a prefix of
s
// z[0] is not set
vector<int> z_function(string s) {
   int n = (int) s.length();
   vector<int> z(n);
   for (int i = 1, l = 0, r = 0; i < n; ++i) {
      if (i <= r)
        z[i] = min (r - i + 1, z[i - 1]);
      while (i + z[i] < n && s[z[i]] == s[i + z[i]])
        ++z[i];
   if (i + z[i] - 1 > r)
      l = i, r = i + z[i] - 1;
   }
   return z;
}
```

Suffix Array

```
/** Suffix Array **/
/* complexity: O(N log N) */
#define MAXN 200000
char T[MAXN+5]; // input
int n; // length
int RA[MAXN+5], tempRA[MAXN+5]; // rank array
int SA[MAXN+5], tempSA[MAXN+5]; // suffix array
int c[MAXN+5]; //for counting/radix sort
void countingSort(int k) {
    int sum, maxi = max(300,n);
    memset(c,0,sizeof(c));
    for (int i = 0; i < n; i++)
        c[i+k < n ? RA[i+k] : 0]++;
    for (int i = sum = 0; i < maxi; i++) {</pre>
        int t = c[i]; c[i] = sum;
        sum += t;
    for (int i = 0; i < n; i++)
        tempSA[c[SA[i]+k<n?RA[SA[i]+k]:0]++] = SA[i];
    for (int i = 0; i < n; i++) SA[i] = tempSA[i];</pre>
void SuffixArray Construct() {
```

```
int r;
for (int i = 0; i < n; i++) RA[i] = T[i]-'.';
for (int i = 0; i < n; i++) SA[i] = i;
for (int k = 1; k < n; k <<= 1) {
    countingSort(k);
    countingSort(0);
    tempRA[SA[0]] = r = 0;
    for (int i = 1; i < n; i++)
        tempRA[SA[i]] =
        (RA[SA[i]] == RA[SA[i-1]] && RA[SA[i]+k] == RA[SA[i-1]+k])
? r : ++r;
    for (int i = 0; i < n; i++) RA[i] = tempRA[i];
}
</pre>
```

Suffix Tree

```
/*** SUFFIX TREE UKKONEN ***/
class SuffixTree {
 static String alphabet = "abcdefqhijklmnopqrstuvwxyz1234567890\1\2";
  static int alphabetSize = alphabet.length();
  static class Node {
    int depth; // from start of suffix
    int begin;
    int end;
    Node[] children;
    Node parent;
    Node suffixLink;
    Node (int begin, int end, int depth, Node parent) {
      children = new Node[alphabetSize];
      this.begin = begin;
      this.end = end;
      this.parent = parent;
      this.depth = depth;
    boolean contains (int d) {
      return depth <= d && d < depth + (end - begin);</pre>
  1
  public static Node buildSuffixTree(String s) {
    int n = s.length();
    bvte[] a = new bvte[n];
    for (int i = 0; i < n; i++) {
      a[i] = (byte) alphabet.indexOf(s.charAt(i));
    Node root = new Node(0, 0, 0, null);
    Node cn = root;
    // root.suffixLink must be null, but that way it gets more convenient
    // processing
```

Page 9 of 24

```
root.suffixLink = root;
   Node needsSuffixLink = null:
   int lastRule = 0;
   int j = 0;
   for (int i = -1; i < n - 1; i++) {// strings s[j..i] already in tree,
     // add s[i+l] to it.
     int cur = a[i + 1]; // last char of current string
     for (; j \le i + 1; j++) {
       int curDepth = i + 1 - j;
       if (lastRule != 3) {
         cn = cn.suffixLink != null ? cn.suffixLink :
cn.parent.suffixLink;
         int k = i + cn.depth;
         while (curDepth > 0 && !cn.contains(curDepth - 1)) {
           k += cn.end - cn.begin;
           cn = cn.children[a[k]];
       if (!cn.contains(curDepth)) { // explicit node
         if (needsSuffixLink != null) {
           needsSuffixLink.suffixLink = cn;
           needsSuffixLink = null;
         if (cn.children[cur] == null) {
           // no extension - add leaf
           cn.children[cur] = new Node(i + 1, n, curDepth, cn);
           lastRule = 2;
         } else {
           cn = cn.children[cur];
           lastRule = 3; // already exists
           break:
       } else { // implicit node
          int end = cn.begin + curDepth - cn.depth;
         if (a[end] != cur) { // split implicit node here
           Node newn = new Node (cn.begin, end, cn.depth, cn.parent);
           newn.children[cur] = new Node(i + 1, n, curDepth, newn);
           newn.children[a[end]] = cn;
           cn.parent.children[a[cn.begin]] = newn;
           if (needsSuffixLink != null) {
             needsSuffixLink.suffixLink = newn;
           cn.begin = end;
           cn.depth = curDepth;
           cn.parent = newn;
           cn = needsSuffixLink = newn;
           lastRule = 2;
          } else if (cn.end != n || cn.begin - cn.depth < j) {</pre>
           lastRule = 3;
           break:
         } else {
           lastRule = 1;
```

```
root.suffixLink = null;
    return root;
  // usage example
  static int lcsLength;
  static int lcsBeginIndex;
  // traverse suffix tree to find longest common substring
 public static int findLCS(Node node, int i1, int i2) {
    if (node.begin <= i1 && i1 < node.end) {</pre>
      return 1:
    if (node.begin <= i2 && i2 < node.end) {</pre>
    int mask = 0;
    for (char f = 0; f < alphabetSize; f++) {</pre>
      if (node.children[f] != null) {
        mask |= findLCS(node.children[f], i1, i2);
    if (mask == 3) {
      int curLength = node.depth + node.end - node.begin;
      if (lcsLength < curLength) {</pre>
        lcsLength = curLength;
        lcsBeginIndex = node.begin;
    return mask:
  // Usage example
  public static void main(String[] args) {
    String s1 = "12345";
    String s2 = "124234";
    // build generalized suffix tree (see Gusfield, p.125)
    String s = s1 + ' 1' + s2 + ' 2';
    Node root = buildSuffixTree(s);
    lcsLength = 0;
    lcsBeginIndex = 0;
    // find longest common substring
    findLCS(root, s1.length(), s1.length() + s2.length() + 1);
    System.out.println(3 == lcsLength);
    System.out.println(s.substring(lcsBeginIndex - 1, lcsBeginIndex +
lcsLength - 1));
 - }
```

Aho-Corasick

```
/*** DICTIONARY MATCHING AHO-CORASICK ***/
public class AhoCorasick {
 static final int ALPHABET SIZE = 26;
 static class Node {
   Node[] children = new Node[ALPHABET SIZE];
   boolean leaf;
   Node parent;
   char charToParent;
   Node suffLink:
   Node[] go = new Node[ALPHABET SIZE];
 public static Node createRoot() {
   Node node = new Node();
   node.suffLink = node;
   return node;
 public static void addString(Node node, String s) {
   for (char ch : s.toCharArray()) {
     int c = ch - 'a';
     if (node.children[c] == null) {
       Node n = new Node();
       n.parent = node;
       n.charToParent = ch;
       node.children[c] = n;
     node = node.children[c];
   node.leaf = true;
 public static Node go (Node node, char ch) {
   int c = ch - 'a';
   if (node.go[c] == null) {
     if (node.children[c] != null) {
       node.go[c] = node.children[c];
       node.go[c] = node.parent == null ? node : go(suffLink(node), ch);
   return node.go[c];
 public static Node suffLink(Node node) {
   if (node.suffLink == null) {
     if (node.parent.parent == null) {
       node.suffLink = node.parent;
```

```
} else {
    node.suffLink = go(suffLink(node.parent), node.charToParent);
}

return node.suffLink;
}

// Usage example
public static void main(String[] args) {
    Node tree = createRoot();
    addString(tree, "bc");
    addString(tree, "abc");

    String s = "tabc";
    Node node = tree;
    for (char ch : s.toCharArray()) {
        node = go(node, ch);
    }
    System.out.println(node.leaf);
}
```

Mathematics

Extended Euclid

```
/** Extended Euclid | returns \langle x, y \rangle where ax + by = gcd(a,b) **/
/* complexity: O(min(log(a),log(b))) */
pair<ll, ll> extendedEuclid(ll a, ll b) {
   11 x = 0, y = 1, 1astx = 1, 1asty = 0;
   while (b != 0) {
      ll quotient = a / b;
      /* (a, b) = (b, a mod b) */
      11 \text{ temp} = a;
      a = b;
      b = temp % b;
      /* (x, lastx) = (lastx - quotient*x, x) */
      temp = x;
      x = lastx - quotient * x;
      lastx = temp;
      /* (y, lasty) = (lasty - quotient*y, y) */
      temp = y;
      y = lasty - quotient * y;
      lastv = temp;
   return make pair(lastx, lasty);
```

Diophantine

```
// computes x and y such that ax + by = c; on failure, x = y =-1
void linear_diophantine(int a, int b, int c, int &x, int &y) {
  int d = gcd(a,b);
```

```
if (c%d) {
    x = y = -1;
} else {
    x = c/d * mod_inverse(a/d, b/d);
    y = (c-a*x)/b;
}
```

Chinese Reminder Theorem

```
// Chinese remainder theorem (special case): find z such that
// z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
// Return (z,M). On failure, M=-1.
PII chinese remainder theorem (int x, int a, int y, int b) {
 int s, t;
 int d = extended euclid(x, y, s, t);
 if (a%d != b%d) return make pair(0, -1);
 return make pair (mod(s*b*x+t*a*y,x*y)/d, x*y/d);
// Chinese remainder theorem: find z such that
// z % x[i] = a[i] for all i. Note that the solution is
// unique modulo M = lcm i (x[i]). Return (z, M). On
// failure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese remainder theorem (const VI &x, const VI &a) {
 PII ret = make pair(a[0], x[0]);
  for (int i = 1; i < x.size(); i++) {
   ret = chinese remainder theorem(ret.second, ret.first, x[i], a[i]);
   if (ret.second == -1) break;
  return ret;
```

Lagrange Interpolation

```
addum /= (x [i] - x [j]);
         value += addum;
      return value;
   }
   vector<db> x , y ;
class modularInterpolation {
public:
   modularInterpolation (const ll &modu) : modu (modu), x (0), y (0) {}
   void addCoef (ll x, ll y){
      x %= modu ;
      if (x < OLL) x += modu ;
      x .push back(x);
      y %= modu ;
      if (y < 0\overline{L}L) y += modu;
      y .push back(y);
   ll interpolate (ll x){
      x %= modu ;
      if (x < OLL) x += modu ;
      for (int i = 0; i < (int)x .size(); ++i) if (x [i] == x) return
y [i];
      11 value = OLL;
      for (int i = 0; i < (int)x .size(); ++i){
         ll addum = v [i];
         for (int j = 0; j < (int)x .size(); ++j) if <math>(j != i){
            ll delta1 = (x - x [j] + modu) % modu;
            ll delta2 = (x [i] - x [j] + modu) % modu;
            addum = (addum * delta1) % modu ;
            addum = (addum * multInverse(delta2, modu )) % modu ;
         value += addum;
         value %= modu ;
      return value:
   const 11 modu ;
   vector<ll> x , y_;
/* WARNING: no two x [i] should be the same */
```

Fast Fourier Transform

```
/** Fast Fourier Transform **/
/* complexity: O(N log N) */
vector< complex<db> > iterativeDFT (const vector< complex<db> > &seq, int
direction) {
 int n = SZ(seq);
 int bits = 0;
  int tmp n = n;
  complex<db> *placeholder = new complex<db>[n];
  complex<db> *tmp = new complex<db>[n];
  while (tmp n > 1){
     ++bits:
      tmp n /= 2;
  - }
  REP(i,n){
     int res = 0;
     int tmp i = i;
     REP(j,bits){
         if (tmp i % 2) res += (1 << (bits-j-1));
         tmp i /= 2;
     placeholder[i] = seq[res];
  1
  for (int comp size = 2; comp size <= n; comp size *= 2){</pre>
      for (int j = 0; j < n; j += comp size) {
         int n mem = comp size / 2;
         db w mult exp i = 2. * acos(-1.) / (db)comp size;
         if (!direction) w mult exp i *= -1.;
         complex<db> w mult (cos(w mult exp i), sin(w mult exp i));
         complex<db> \overline{w} (1., 0.);
         for (int k = 0; k < comp size; ++k){
           int idx = k % n mem;
            tmp[k] = placeholder[j+idx] + w * placeholder[j+n mem+idx];
           w = w * w mult;
         for (int k = 0; k < comp size; ++k){
            placeholder[j+k] = tmp[k];
  }
  vector< complex<db> > result;
  for (int i = 0; i < n; ++i) result.PB(placeholder[i]);</pre>
  delete[] placeholder;
  delete[] tmp;
  return result:
```

```
vector<db> FFT(vector<db> a, vector<db> b) {
   if (SZ(a) == 0) a.PB(0.);
   if (SZ(b) == 0) b.PB(0.);
   int n final elements = SZ(a) + SZ(b) - 1;
   int actual size = 1;
   while (actual size < max(SZ(a), SZ(b))){</pre>
      actual size *= 2;
   actual size *= 2;
   while (SZ(a) < actual size) a.PB(0.);
   while (SZ(b) < actual size) b.PB(0.);
   vector< complex<db> > dft input a, dft input b;
   REP(i,actual size) {
      dft input a.PB(complex<db> (a[i], 0.));
      dft input b.PB(complex<db> (b[i], 0.));
   dft input a = iterativeDFT (dft input a, 1);
   dft input b = iterativeDFT (dft input b, 1);
   REP(i,actual size) {
      dft input a[i] = dft input a[i] * dft input b[i];
   dft input a = iterativeDFT (dft input a, 0);
   vector<db> res:
  REP(i,n final elements) {
      res.PB(dft input a[i].real() / (db) actual size);
   return res;
```

Simplex

```
// Two-phase simplex algorithm for solving linear programs of the form
11
      maximize
                   C^T x
      subject to Ax <= b
11
                   x >= 0
// INPUT: A -- an m x n matrix
       b -- an m-dimensional vector
         c -- an n-dimensional vector
         x -- a vector where the optimal solution will be stored
// OUTPUT: value of the optimal solution (infinity if unbounded
          above, nan if infeasible)
// To use this code, create an LPSolver object with A, b, and c as
// arguments. Then, call Solve(x).
#include <iostream>
```

```
#include <iomanip>
#include <vector>
#include <cmath>
#include <limits>
using namespace std;
typedef long double DOUBLE;
typedef vector<DOUBLE> VD;
typedef vector<VD> VVD;
typedef vector<int> VI:
const DOUBLE EPS = 1e-9;
struct LPSolver {
 int m, n;
 VI B, N;
 VVD D;
 LPSolver (const VVD &A, const VD &b, const VD &c) :
   m(b.size()), n(c.size()), N(n+1), B(m), D(m+2, VD(n+2)) {
   for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) D[i][j] =
A[i][i];
   for (int i = 0; i < m; i++) { B[i] = n+i; D[i][n] = -1; D[i][n+1] =
b[i]; }
   for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; }
   N[n] = -1; D[m+1][n] = 1;
 }
 void Pivot(int r, int s) {
   for (int i = 0; i < m+2; i++) if (i != r)
      for (int j = 0; j < n+2; j++) if (j != s)
  D[i][j] -= D[r][j] * D[i][s] / D[r][s];
   for (int j = 0; j < n+2; j++) if (j != s) D[r][j] /= D[r][s];
   for (int i = 0; i < m+2; i++) if (i != r) D[i][s] /= -D[r][s];
   D[r][s] = 1.0 / D[r][s];
   swap(B[r], N[s]);
 }
 bool Simplex(int phase) {
   int x = phase == 1 ? m+1 : m;
   while (true) {
     int s = -1;
     for (int j = 0; j \le n; j++) {
  if (phase == 2 && N[j] == -1) continue;
  if (s == -1 \mid | D[x][j] < D[x][s] \mid | D[x][j] == D[x][s] && N[j] < N[s]) s
= j;
     if (D[x][s] >= -EPS) return true;
     int r = -1;
      for (int i = 0; i < m; i++) {
  if (D[i][s] <= 0) continue;</pre>
  if (r == -1 || D[i][n+1] / D[i][s] < D[r][n+1] / D[r][s] ||
```

```
D[i][n+1] / D[i][s] == D[r][n+1] / D[r][s] && B[i] < B[r]) r = i;
      if (r == -1) return false;
      Pivot(r, s);
  }
  DOUBLE Solve (VD &x) {
   int r = 0;
    for (int i = 1; i < m; i++) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] \leftarrow -EPS) {
      Pivot(r, n);
      if (!Simplex(1) || D[m+1][n+1] < -EPS) return -</pre>
numeric limits < DOUBLE > :: infinity();
      for (int i = 0; i < m; i++) if (B[i] == -1) {
   int s = -1;
   for (int j = 0; j \le n; j++)
     if (s == -1 \mid | D[i][j] < D[i][s] \mid | D[i][j] == D[i][s] && N[j] < N[s])
s = j;
   Pivot(i, s);
      }
    if (!Simplex(2)) return numeric limits<DOUBLE>::infinity();
    x = VD(n);
    for (int i = 0; i < m; i++) if (B[i] < n) x[B[i]] = D[i][n+1];
    return D[m][n+1];
};
int main() {
  const int m = 4;
  const int n = 3;
  DOUBLE A[m][n] = {
    \{ 6, -1, 0 \},
    \{-1, -5, 0\},
   { 1, 5, 1 },
   \{-1, -5, -1\}
  DOUBLE b[m] = \{ 10, -4, 5, -5 \};
  DOUBLE c[n] = \{ 1, -1, 0 \};
  VVD A(m);
  VD b(b, b+m);
  VD c(c, c+n);
  for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);
  LPSolver solver (A, b, c);
  VD x;
  DOUBLE value = solver.Solve(x);
  cerr << "VALUE: "<< value << endl;
  cerr << "SOLUTION:";</pre>
  for (size t i = 0; i < x.size(); i++) cerr << " " << x[i];
```

```
cerr << endl;
return 0;
}</pre>
```

Gauss Jordan Flimination

```
// Gauss-Jordan elimination with full pivoting.
// Uses:
// (1) solving systems of linear equations (AX=B)
// (2) inverting matrices (AX=I)
    (3) computing determinants of square matrices
// Running time: O(n^3)
// INPUT:
            a[][] = an nxn matrix
//
            b[][] = an nxm matrix
//
// OUTPUT: X = an nxm matrix (stored in b[][])
            A^{-1} = an nxn matrix (stored in a[][])
             returns determinant of a[][]
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double EPS = 1e-10;
typedef vector<int> VI;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
T GaussJordan (VVT &a, VVT &b) {
 const int n = a.size();
 const int m = b[0].size();
 VI irow(n), icol(n), ipiv(n);
 T \det = 1;
 for (int i = 0; i < n; i++) {
   int pj = -1, pk = -1;
  for (int j = 0; j < n; j++) if (!ipiv[j])
     for (int k = 0; k < n; k++) if (!ipiv[k])
  if (pj == -1 || fabs(a[j][k]) > fabs(a[pj][pk])) { pj = j; pk = k; }
   if (fabs(a[pj][pk]) < EPS) { cerr << "Matrix is singular." << endl;</pre>
exit(0); }
   ipiv[pk]++;
   swap(a[pj], a[pk]);
   swap(b[pj], b[pk]);
   if (pj != pk) det *= -1;
   irow[i] = pj;
```

```
icol[i] = pk;
    T c = 1.0 / a[pk][pk];
    det *= a[pk][pk];
    a[pk][pk] = 1.0;
    for (int p = 0; p < n; p++) a[pk][p] *= c;
    for (int p = 0; p < m; p++) b[pk][p] *= c;
    for (int p = 0; p < n; p++) if (p != pk) {
      c = a[p][pk];
      a[p][pk] = 0;
      for (int q = 0; q < n; q++) a[p][q] -= a[pk][q] * c;
      for (int q = 0; q < m; q++) b[p][q] -= b[pk][q] * c;
 }
 for (int p = n-1; p \ge 0; p--) if (irow[p] != icol[p]) {
    for (int k = 0; k < n; k++) swap(a[k][irow[p]], a[k][icol[p]]);
 return det;
int main() {
 const int n = 4;
 const int m = 2:
 double A[n][n] = \{\{1,2,3,4\},\{1,0,1,0\},\{5,3,2,4\},\{6,1,4,6\}\}\};
 double B[n][m] = \{\{1,2\},\{4,3\},\{5,6\},\{8,7\}\}\};
 VVT a(n), b(n);
 for (int i = 0; i < n; i++) {
   a[i] = VT(A[i], A[i] + n);
   b[i] = VT(B[i], B[i] + m);
 double det = GaussJordan(a, b);
 // expected: 60
 cout << "Determinant: " << det << endl;</pre>
 // expected: -0.233333 0.166667 0.133333 0.0666667
 //
               0.166667 0.166667 0.333333 -0.333333
 //
               0.233333 0.833333 -0.133333 -0.0666667
 //
               0.05 -0.75 -0.1 0.2
 cout << "Inverse: " << endl;</pre>
 for (int i = 0; i < n; i++) {
   for (int j = 0; j < n; j++)
      cout << a[i][j] << ' ';
   cout << endl;</pre>
  // expected: 1.63333 1.3
               -0.166667 0.5
 //
 11
               2.36667 1.7
               -1.85 -1.35
```

```
cout << "Solution: " << endl;
for (int i = 0; i < n; i++) {
   for (int j = 0; j < m; j++)
      cout << b[i][j] << ' ';
   cout << endl;
}
</pre>
```

Reduced Row Echelon Form

```
// Reduced row echelon form via Gauss-Jordan elimination
// with partial pivoting. This can be used for computing
// the rank of a matrix.
// Running time: O(n^3)
// INPUT: a[][] = an nxm matrix
// OUTPUT: rref[][] = an nxm matrix (stored in a[][])
          returns rank of a[][]
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
const double EPSILON = 1e-10;
typedef double T;
typedef vector<T> VT;
typedef vector<VT> VVT;
int rref(VVT &a) {
 int n = a.size();
 int m = a[0].size();
 int r = 0;
 for (int c = 0; c < m && r < n; c++) {
   int j = r;
   for (int i = r+1; i < n; i++)
     if (fabs(a[i][c]) > fabs(a[j][c])) j = i;
   if (fabs(a[i][c]) < EPSILON) continue;</pre>
   swap(a[j], a[r]);
   T s = 1.0 / a[r][c];
   for (int j = 0; j < m; j++) a[r][j] *= s;
   for (int i = 0; i < n; i++) if (i != r) {
     T t = a[i][c];
     for (int j = 0; j < m; j++) a[i][j] -= t * a[r][j];
   }
   r++;
 return r;
```

```
int main(){
 const int n = 5;
 const int m = 4;
 double A[n][m] = {
{16,2,3,13},{5,11,10,8},{9,7,6,12},{4,14,15,1},{13,21,21,13} };
 VVT a(n);
 for (int i = 0; i < n; i++)
   a[i] = VT(A[i], A[i] + n);
 int rank = rref (a);
 // expected: 4
 cout << "Rank: " << rank << endl;</pre>
 // expected: 1 0 0 1
     0 1 0 3
 //
 //
              0 0 1 -3
              0 0 0 2.78206e-15
 //
              0 0 0 3.22398e-15
 cout << "rref: " << endl;</pre>
 for (int i = 0; i < 5; i++) {
   for (int j = 0; j < 4; j++)
     cout << a[i][i] << ' ';
   cout << endl;</pre>
 }
```

Data Structures

K-d Tree

```
typedef long long ntype;
const ntype sentry = numeric limits<ntype>::max();
// point structure for 2D-tree, can be extended to 3D
struct point {
   ntype x, y;
   point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
bool operator == (const point &a, const point &b) {return a.x == b.x && a.y ==
b.v:}
// sorts points on x-coordinate
bool on x(const point &a, const point &b) {return a.x < b.x;}
// sorts points on v-coordinate
bool on y(const point &a, const point &b) {return a.y < b.y;}</pre>
// squared distance between points
ntype pdist2 (const point &a, const point &b)
   ntype dx = a.x-b.x, dy = a.y-b.y;
   return dx*dx + dv*dv;
// bounding box for a set of points
struct bbox
   ntype x0, x1, y0, y1;
   bbox(): x0(sentry), x1(-sentry), y0(sentry), y1(-sentry) {}
   // computes bounding box from a bunch of points
   void compute(const vector<point> &v) {
       for (int i = 0; i < v.size(); ++i) {</pre>
           x0 = min(x0, v[i].x); x1 = max(x1, v[i].x);
           y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
    // squared distance between a point and this bbox, 0 if inside
   ntype distance(const point &p) {
       if (p.x < x0) {
           if (p.y < y0)
                                return pdist2(point(x0, y0), p);
            else if (p.y > y1) return pdist2(point(x0, y1), p);
           else
                                return pdist2(point(x0, p.y), p);
       else if (p.x > x1) {
           if (p.y < y0)
                                return pdist2(point(x1, y0), p);
           else if (p.y > y1) return pdist2(point(x1, y1), p);
                                return pdist2(point(x1, p.y), p);
           else
       else {
           if (p.y < y0)
                                return pdist2(point(p.x, y0), p);
           else if (p.y > y1) return pdist2(point(p.x, y1), p);
                                return 0;
```

```
};
// stores a single node of the kd-tree, either internal or leaf
struct kdnode
    bool leaf:
                    // true if this is a leaf node (has one point)
    point pt;
                    // the single point of this is a leaf
    bbox bound;
                    // bounding box for set of points in children
    kdnode *first, *second; // two children of this kd-node
    kdnode() : leaf(false), first(0), second(0) {}
    ~kdnode() { if (first) delete first; if (second) delete second; }
    // intersect a point with this node (returns squared distance)
    ntype intersect(const point &p) {
        return bound.distance(p);
    // recursively builds a kd-tree from a given cloud of points
    void construct(vector<point> &vp)
        // compute bounding box for points at this node
        bound.compute(vp);
        // if we're down to one point, then we're a leaf node
        if (vp.size() == 1) {
           leaf = true;
           pt = vp[0];
        else {
            // split on x if the bbox is wider than high (not best
heuristic...)
            if (bound.x1-bound.x0 >= bound.y1-bound.y0)
                sort(vp.begin(), vp.end(), on x);
            // otherwise split on v-coordinate
            else
                sort(vp.begin(), vp.end(), on y);
           // divide by taking half the array for each child
            // (not best performance if many duplicates in the middle)
            int half = vp.size()/2;
           vector<point> vl(vp.begin(), vp.begin()+half);
            vector<point> vr(vp.begin()+half, vp.end());
            first = new kdnode(); first->construct(vl);
            second = new kdnode(); second->construct(vr);
};
// simple kd-tree class to hold the tree and handle queries
struct kdt.ree
```

```
kdnode *root;
    // constructs a kd-tree from a points (copied here, as it sorts them)
    kdtree(const vector<point> &vp) {
       vector<point> v(vp.begin(), vp.end());
       root = new kdnode();
       root->construct(v);
   ~kdtree() { delete root; }
    // recursive search method returns squared distance to nearest point
   ntype search(kdnode *node, const point &p)
        if (node->leaf) {
           // commented special case tells a point not to find itself
             if (p == node->pt) return sentry;
                return pdist2(p, node->pt);
       ntype bfirst = node->first->intersect(p);
        ntvpe bsecond = node->second->intersect(p);
        // choose the side with the closest bounding box to search first
        // (note that the other side is also searched if needed)
       if (bfirst < bsecond) {</pre>
           ntype best = search(node->first, p);
            if (bsecond < best)</pre>
                best = min(best, search(node->second, p));
           return best:
        else {
           ntype best = search(node->second, p);
            if (bfirst < best)</pre>
                best = min(best, search(node->first, p));
           return best;
    // squared distance to the nearest
   ntype nearest(const point &p) {
        return search(root, p);
int main()
    // generate some random points for a kd-tree
   vector<point> vp;
   for (int i = 0; i < 100000; ++i) {</pre>
        vp.push back(point(rand()%100000, rand()%100000));
    kdtree tree(vp);
    // query some points
```

```
for (int i = 0; i < 10; ++i) {
        point q(rand()%100000, rand()%100000);
        cout << "Closest squared distance to (" << q.x << ", " << q.y <<
")"
        << " is " << tree.nearest(q) << endl;
}
return 0;
}</pre>
```

Fenwick Tree

```
/** Fenwick Tree with Range Update **/
#define MAXN 100005
int n, bitMul[MAXN], bitAdd[MAXN];
void internalUpdate(int k, int mul, int add) {
  for (int x = k; x \le n; x += (x & -x)) {
     bitMul[x] += mul;
     bitAdd[x] += add;
  }
void update(int 1, int r, int value) {
   internalUpdate(l, value, -value * (l - 1));
   internalUpdate(r, -value, value * r);
int query(int k) {
  int mul = 0, add = 0;
   for (int x = k; x > 0; x = (x & -x)) {
      mul += bitMul[x];
      add += bitAdd[x];
   return mul * k + add;
```

Splay Tree

```
#include <cstdio>
#include <algorithm>
using namespace std;

const int N_MAX = 130010;
const int oo = 0x3f3f3f3f;
struct Node
{
    Node *ch[2], *pre;
    int val, size;
    bool isTurned;
} nodePool[N_MAX], *null, *root;

Node *allocNode(int val)
```

```
static int freePos = 0;
 Node *x = &nodePool[freePos ++];
 x->val = val, x->isTurned = false;
 x->ch[0] = x->ch[1] = x->pre = null;
 x->size = 1;
 return x;
inline void update(Node *x)
 x->size = x->ch[0]->size + x->ch[1]->size + 1;
inline void makeTurned(Node *x)
 if(x == null)
  return;
 swap(x->ch[0], x->ch[1]);
 x->isTurned ^= 1;
inline void pushDown (Node *x)
 if(x->isTurned)
   makeTurned(x->ch[0]);
   makeTurned(x->ch[1]);
   x->isTurned ^= 1:
inline void rotate(Node *x, int c)
 Node *y = x->pre;
 x->pre = y->pre;
 if(y->pre != null)
   y-pre-ch[y == y-pre-ch[1]] = x;
 y->ch[!c] = x->ch[c];
 if(x->ch[c] != null)
  x->ch[c]->pre = y;
 x->ch[c] = y, y->pre = x;
 update(y);
 if(y == root)
   root = x;
void splay(Node *x, Node *p)
 while (x->pre != p)
   if(x->pre->pre == p)
     rotate(x, x == x-pre-ch[0]);
```

```
else
      Node *y = x->pre, *z = y->pre;
      if(y == z->ch[0])
        if(x == y->ch[0])
          rotate(y, 1), rotate(x, 1);
          rotate(x, 0), rotate(x, 1);
      else
        if(x == y->ch[1])
          rotate(y, 0), rotate(x, 0);
          rotate(x, 1), rotate(x, 0);
  update(x);
void select(int k, Node *fa)
  Node *now = root;
  while (1)
    pushDown (now);
    int tmp = now->ch[0]->size + 1;
    if(tmp == k)
      break;
    else if(tmp < k)</pre>
      now = now -> ch[1], k -= tmp;
      now = now -> ch[0];
  splay(now, fa);
Node *makeTree(Node *p, int 1, int r)
 if(1 > r)
    return null:
  int mid = (l + r) / 2;
  Node *x = allocNode(mid);
  x->pre = p;
  x \rightarrow ch[0] = makeTree(x, 1, mid - 1);
  x \rightarrow ch[1] = makeTree(x, mid + 1, r);
  update(x);
  return x;
int main()
```

```
int n, m;
null = allocNode(0);
null->size = 0;
root = allocNode(0);
root->ch[1] = allocNode(oo);
root->ch[1]->pre = root;
update(root);
scanf("%d%d", &n, &m);
root->ch[1]->ch[0] = makeTree(root->ch[1], 1, n);
splay(root->ch[1]->ch[0], null);
while (m --)
 int a, b;
  scanf("%d%d", &a, &b);
 a ++, b ++;
 select(a - 1, null);
 select(b + 1, root);
 makeTurned(root->ch[1]->ch[0]);
for (int i = 1; i <= n; i ++)
 select(i + 1, null);
 printf("%d ", root->val);
```

DP Convex Hull Optimization

```
public class ConvexHullOptimization {
 long[] A = new long[1000000];
 long[] B = new long[1000000];
 int len:
 int ptr;
 // a descends
 public void addLine(long a, long b) {
   // intersection of (A[len-2],B[len-2]) with (A[len-1],B[len-1]) must
lie to the left of intersection of (A[len-1], B[len-1]) with (a,b)
   while (len \geq 2 && (B[len - 2] - B[len - 1]) * (a - A[len - 1]) \geq
(B[len - 1] - b) * (A[len - 1] - A[len - 2])) {
     --len;
   A[len] = a;
   B[len] = b;
   ++len;
  // x ascends
```

```
public long minValue(long x) {
    ptr = Math.min(ptr, len - 1);
    while (ptr + 1 < len && A[ptr + 1] * x + B[ptr + 1] <= A[ptr] * x +
B[ptr]) {
      ++ptr;
   }
    return A[ptr] * x + B[ptr];
  // Usage example
 public static void main(String[] args) {
    ConvexHullOptimization h = new ConvexHullOptimization();
    h.addLine(3, 0);
   h.addLine(2, 1);
   h.addLine(3, 2);
   h.addLine(0, 6);
    System.out.println(h.minValue(0));
    System.out.println(h.minValue(1));
    System.out.println(h.minValue(2));
    System.out.println(h.minValue(3));
```

Geometry

Point, Segment, Line, Circle

```
double acos (double x)
   double ret = acos(x);
   if (ret == ret) return ret;
   if (x < 0) return acos(-1.0);
   return acos(1.0);
#define acos acos
\#define sqr(x) ((x)*(x))
const double PI = acos(-1);
const double EPS = 1e-9;
const double INF = 1e300;
struct point{
   double x, y;
   point() { x = y = 0; }
   point(double x, double y) : x(x), y(y) {}
1;
struct segment {
   point p1, p2;
   segment() \{p1 = p2 = point(0,0);\}
   segment(point p1, point p2) : p1(p1), p2(p2) {}
};
/** basic operators and functions of point and segment **/
```

```
/* complexity: constant */
double cross (const point &p1, const point &p2) {
  /* returns z-component of cross product of two points (vectors) */
  return p1.x * p2.y - p1.y * p2.x;
double dot (const point &p1, const point &p2) {
 /* returns dot product of two points (vectors) */
  return p1.x * p2.x + p1.y * p2.y;
double getAngle(const point &p1, const point &p2) {
 /* returns angle formed by two vectors. WARNING: undirected angle */
  return fabs(acos(dot(p1,p2) / dist(p1,point(0,0)) /
dist(p2.point(0.0))):
double getAngle(const point &p1, const point &center, const point &p2) {
  /* returns angle formed by three points. WARNING: undirected angle */
  return getAngle(p1 - center, p2 - center);
double distToSegment(const point &p, const segment &s) {
  /* returns distance of a point to a segment */
  if (getAngle(s.p2, s.p1, p) > PI/2 + EPS || getAngle(s.p1, s.p2, p) >
PI/2 + EPS) return min(dist(p,s.p1), dist(p,s.p2));
  return fabs(cross(s.p1 - p, s.p2 - p)) / dist(s.p1, s.p2);
double distToLine(const point &p, const segment &s){
  /* returns distance of a point to a line (its orthogonal projection) */
  return fabs(cross(s.p1 - p, s.p2 - p)) / dist(s.p1, s.p2);
point rotate (const point &p, const double &alpha) {
  /* rotates a point with respect to the origin. alpha in radians */
  return point(p.x * cos(alpha) - p.y * sin(alpha), p.x * sin(alpha) + p.y
* cos(alpha));
point rotate (const point &p. const point &center, const double &alpha) {
 /* rotates a point with respect to point center. alpha in radians */
  return center + rotate(p - center, alpha);
point rescale (const point &p, const double s) {
  return point(p.x * s, p.y * s);
point dilate (const point &p, const double Factor) {
 return rescale(p, Factor);
point dilate(const point &p, const point &center, double factor){
  return dilate(p- center, factor) + center;
bool isRightTurn(const point &p1, const point &p2, const point &p3) {
 return cross(p2 - p1, p3 - p2) <= 0;
 /* straight returns true */
bool isOnSameSide (const point &p1, const point &p2, const segment &s) {
  double z1 = cross(s.p2 - s.p1, p1 - s.p1);
  double z2 = cross(s.p2 - s.p1, p2 - s.p1);
```

```
return (z1 + EPS < 0 && z2 + EPS < 0) || (0 < z1 - EPS && 0 < z2 - EPS)
| I fabs(z1) < EPS | I fabs(z2) < EPS;</pre>
   /* on segment returns true */
bool isOnLine(const point &p, const segment &1) {
   return fabs((1.p1.y - p.y) * (1.p2.x - p.x) - (1.p2.y - p.y) * (1.p1.x -
p.x)) < EPS;
bool isOnSegment(const point &p, const segment &s) {
   return fabs(dist(p, s.p1) + dist(p, s.p2) - dist(s.p1, s.p2)) < EPS;</pre>
bool isIntersecting(const segment &s1, const segment &s2){
   return ! (isOnSameSide(s1.p1,s1.p2,s2) | isOnSameSide(s2.p1,s2.p2,s1))
|| isOnSegment(s1.p1,s2) || isOnSegment(s1.p2,s2) || isOnSegment(s2.p1,s1)
II isOnSegment(s2.p2.s1);
bool isParallel(const segment &s1, const segment &s2) {
   return fabs((s1.p1.v-s1.p2.v)*(s2.p1.x-s2.p2.x)-(s2.p1.v-
s2.p2.y)*(s1.p1.x-s1.p2.x)) < EPS;
point intersection (const segment &s1, const segment &s2) {
   /* assumes !isParallel(s1,s2) */
   double x1 = s1.p1.x - s1.p2.x;
   double x2 = s2.p1.x - s2.p2.x;
   double y1 = s1.p1.y - s1.p2.y;
   double y2 = s2.p1.y - s2.p2.y;
   double cross1 = cross(s1.p1, s1.p2);
   double cross2 = cross(s2.p1, s2.p2);
   return point ((cross1 * x2 - cross2 * x1) / (x1 * y2 - x2 * y1), (cross1
* y2 - cross2 * y1) / (x1 * y2 - x2 * y1));
point projection(const point &p, const segment &s) {
   /* projects p onto line s */
   return rescale(s.p2 - s.p1, dot(p - s.p1, s.p2 - s.p1) / sqr(length(s)))
+ s.p1;
/** introducing circle **/
struct circle {
   point center;
   double r:
   circle() { center = point(0, 0); r = 0; }
   circle(point p, double r) : center(p), r(r) {}
vector<point> intersectionLineCircle(const segment &1, const circle &c){
   vector<point> res;
   double dx = 1.p2.x - 1.p1.x;
   double dy = 1.p2.y - 1.p1.y;
   double dr = length(1);
   double d = cross(1.p1 - c.center,1.p2 - c.center);
   if (sqr(c.r) * sqr(dr) - sqr(d) + EPS < 0) return res;</pre>
   double det = sqrt(fabs(sqr(c.r) * sqr(dr) - sqr(d)));
   double sdx = dy < 0 ? -dx : dx;
```

```
double sdy = fabs(dy);
    res.push_back(c.center + point((d*dy + sdx * det)/sqr(dr), (-d*dx + sdy
* det)/sqr(dr)));
    if (det > EPS) res.push_back(c.center + point((d*dy - sdx *
    det)/sqr(dr), (-d*dx - sdy * det)/sqr(dr)));
    return res;
}
vector<point> intersectionSegmentCircle(const segment &s, const circle &c){
    vector<point> res, _res = intersectionLineCircle(s,c);
    for (vector<point>::iterator it = _res.begin(); it != _res.end(); ++it){
        if (isOnSegment(*it,s)) res.push_back(*it);
    }
    return res;
}
```

Polygons (Area, Orientation)

```
/** introducing polygon **/
typedef vector<point> polygon;
/** Check position of a point with respect to a polygon **/
/* complexity : O(N) */
bool isPointInsidePolygon(point p, polygon poly){
 /* ray casting to the right */
 segment ray (p,p+point(1,0));
  int n = (int)poly.size();
  /* counts the number of intersections */
  int nIntersection = 0:
  for (int i = 0; i < n; ++i){
     segment side(poly[i],poly[(i+1)%n]);
     if (isOnSegment(p.side)) return false;
     if (isParallel(ray, side)) continue;
     point x = intersection(ray, side);
     if (isOnSegment(x,side) && dot(x-p,ray.p2-p) > 0) {
         /* special case: x is one of vertices of sides */
        if (x == side.p1) {
           if (isRightTurn(p,x,side.p2)) nIntersection ++;
        else if (x == side.p2){
           if (isRightTurn(p,x,side.pl)) nIntersection ++;
        else nIntersection ++;
  return nIntersection % 2 == 1;
```

Convex Hull

```
/** Convex Hull | monotone chain algorithm **/
/* complexity : O(N log N) */
polygon convexHull(polygon p) {
  int m = 0, n = p.size();
  polygon hull(2*n);
```

```
sort(p.beqin(),p.end());
for (int i = 0; i < n; ++i){
    while (m >= 2 && isRightTurn(hull[m-2],hull[m-1],p[i])) --m;
    hull[m++] = p[i];
}
for (int i = n-1, t = m+1; i >= 0; --i){
    while (m >= t && isRightTurn(hull[m-2],hull[m-1],p[i])) --m;
    hull[m++] = p[i];
}
hull.resize(m);
return hull;
}
```

Dealunay Triangulation

```
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
// Running time: O(n^4)
11
// INPUT: x[] = x-coordinates
             y[] = y-coordinates
// OUTPUT: triples = a vector containing m triples of indices
                       corresponding to triangle vertices
#include<vector>
using namespace std;
typedef double T;
struct triple {
    int i, j, k;
    triple() {}
    triple(int i, int j, int k) : i(i), j(j), k(k) {}
vector<triple> delaunayTriangulation(vector<T>& x, vector<T>& y) {
          int n = x.size();
          vector<T> z(n);
         vector<triple> ret;
         for (int i = 0; i < n; i++)
              z[i] = x[i] * x[i] + y[i] * y[i];
          for (int i = 0; i < n-2; i++) {</pre>
              for (int j = i+1; j < n; j++) {</pre>
                    for (int k = i+1; k < n; k++) {
                        if (j == k) continue;
                        double xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-
y[i])*(z[j]-z[i]);
                        double yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-z[i])
x[i])*(z[k]-z[i]);
```

```
double zn = (x[i]-x[i])*(y[k]-y[i]) - (x[k]-y[i])
x[i])*(y[j]-y[i]);
                       bool flag = zn < 0;
                       for (int m = 0; flaq && m < n; m++)</pre>
                              flag = flag && ((x[m]-x[i])*xn +
                                                  (y[m]-y[i])*yn +
                                                  (z[m]-z[i])*zn <= 0);
                       if (flag) ret.push back(triple(i, j, k));
         return ret;
int main()
   T xs[]={0, 0, 1, 0.9};
   T ys[]={0, 1, 0, 0.9};
   vector<T> x(\&xs[0], \&xs[4]), y(\&ys[0], \&ys[4]);
   vector<triple> tri = delaunayTriangulation(x, y);
   //expected: 0 1 3
           0 3 2
    for(i = 0; i < tri.size(); i++)</pre>
        printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
    return 0;
```

Miscellaneous

Graph Theorems

Erdos-Gallai. A sequence of nonnegative integers $d_1 \ge \cdots \ge d_n$ is a sequence of degree of an undirected graph iff $\sum d_i$ is even and $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n \min(d_i,k)$

Fulkerson-Chen-Anstee. A sequence $\left((a_1,b_1),...,(a_n,b_n)\right)$ of nonnegative integer pairs with $a_1 \geq \cdots \geq a_n$ is a sequence of (in, outdeg) of a directed graph iff $\sum a_i = \sum b_i$ and $\sum_{i=1}^k a_i \leq \sum_{i=1}^k \min(b_i,k-1) + \sum_{i=k+1}^n \min(b_i,k)$

Lindstrom-Gessel-Viennot. The number of non-intersecting path from A to B in a directed acyclic graph is equal to the determinant of ... (elements (i,j) of matrix denotes the number of ways to go from A_i to B_j).

Koenig's. In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover.

Brook's. For any connected undirected graph G with maximum degree Δ , the chromatic number of G is at most Δ unless G is a complete graph or an odd cycle, in which case the chromatic number is $\Delta + 1$.

Combinatorics

Lucas Theorem. $\binom{n}{m} = \prod_{i=0}^k \binom{n_i}{m_i} \pmod{p}$ where $n = \overline{n_k n_{k-1} \dots n_0}$ and $m = \overline{m_k m_{k-1} \dots m_0}$ in base p.

Stirling Number of the First Kind. s(n, k) denotes the number of n-permutation with k cycles. s(n + 1, k) = ns(n, k) + s(n, k - 1).

Stirling Number of the Second Kind. S(n,k) denotes the number of partition a set of n into k non-empty subsets. S(n+1,k)=kS(n,k)+S(n,k-1). $S(n,k)=\frac{1}{k!}\sum_{j=0}^k (-1)^{k-j} \binom{k}{j} j^n$.

Gambler's Ruin. Two players with n_1 and n_2 points each are playing, each turn P1 has probability of winning p and P2 has probability q=1-p. The probability of P1 losing all his points is $\left(1-\left(\frac{p}{q}\right)^{n_2}\right)/\left(1-\left(\frac{p}{q}\right)^{n_1+n_2}\right)$.

Notes

std::lower_bound. Returns an iterator pointing to the first element in the range [first,last) which **does not compare less than** val.

std::upper_bound. Returns an iterator pointing to the first element in the range [first,last) which **compares greater** than val.

