$$x = u + \ln v,$$

$$y = v - \ln u,$$

$$z = 2u + v.$$

3407.2. Найти $\frac{\partial^2 z}{\partial x \, \partial y}$ в точке $u=2, \ v=1, \ \text{если}$ $x=u+v^2, \ y=u^2-v^2$ z=2uv.

3408. Найти $\frac{\partial^2 z}{\partial x^2}$, если

 $x = \cos \varphi \cos \psi$, $y = \cos \varphi \sin \varphi$, $z = \sin \varphi$.

3409. Найти $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$ и $\frac{\partial^2 z}{\partial y^2}$, если $x = u \cos v$, $y = u \sin v$, z = v.

3410. Пусть z = z(x, y) функция определяется системой уравнений:

$$x = e^{u+v}$$
, $y = e^{u-v}$, $z = uv$

 $(u \ n \ v - \text{параметры})$. Найти dz и d^2z , при u = 0 и v = 0.

3411. Найти $\frac{dz}{dx}$ и $\frac{d^2z}{dx^2}$, если $z = x^2 + y^2$, где y =

= y(x) определяется из уравнения

$$x^2 - xy + y^2 = 1$$
.

3412. Найти $\frac{\partial u}{\partial x}$ и $\frac{\partial u}{\partial y}$, если $u=\frac{x+z}{y+z}$, где z опре-

деляется из уравнения $ze^z = xe^x + ye^y$.

3413. Пусть уравнения $x = \varphi(u, v)$, $y = \psi(u, v)$, $z = \chi(u, v)$ определяют z как функцию от x и y. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$.

3414. Пусть $x = \varphi(u, v)$, $y = \psi(u, v)$. Найти частные производные первого и второго порядков от обратных функций: u = u(x, y) и v = v(x, y).

ных функций:
$$u = u (x, y)$$
 и $v = v (x, y)$. 3415. Найти $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$, если

a)
$$x = u \cos \frac{v}{u}$$
, $y = u \sin \frac{v}{u}$;

6) $x = e^{u} + u \sin v$, $y = e^{u} - u \cos v$.