Additional Guidance

Data projection under Approach 3

For each of the four data classes in turn:

• Let n_i represent the number of sales in year i (for i = 2007 to 2012) as per the data provided.

Start from the first order % change ratios x_i (for i = 2008 to 2012) used for Approaches 1 and 2. These should be calculated as $x_i = n_i / n_{i-1} - 1$.

- Calculate the second order % change ratios y_i (for relevant i), where $y_i = x_i / x_{i-1}$.
- Calculate the constant Y, the arithmetic mean of these $\{y_i\}$.

There are two different approaches that can be taken for the next stages.

EITHER

• The required % change (x_i) in year i > 2012 can be projected as:

$$x_{2012}$$
 multiplied by Y^N where $N = i - 2012$.

• These x_i can then be applied to the numbers of sales to obtain the projected future sales as required, i.e. for i > 2012:

$$n_i = n_{i-1} \times [1 + x_i].$$

OR

• The required number of sales n_i in year i (for i > 2012) can be calculated as:

$$n_i = n_{i-1} \times [Y \times (n_{i-1} / n_{i-2} - 1) + 1].$$

For either approach, you may wish to check that the resultant figures meet the requirement of constant second order ratios.