Introduction to Information Retrieval

Evaluation IR systems

Measures for a search engine

- How fast does it index
 - Number of documents/hour
 - (Average document size)
- How fast does it search
 - Latency as a function of index size
- Quality of results
 - Precision
 - Recall
 - F-measure
- Expressiveness of query language
 - Ability to express complex information needs

Efficiency

Effectiveness

Usability

Evaluating an IR system

- Note: the information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., <u>Information need</u>: I'm looking for information on whether travelling by train from Cairo to Assuit is more effective than flying.
- Query: travelling by train from Cairo to Assuit effective
- Evaluate whether the doc addresses the information need, not whether it has these words

Standard relevance benchmarks

- TREC National Institute of Standards and Technology (NIST) has run a large IR test bed for many years
- Reuters and other benchmark doc collections used
- "Retrieval tasks" specified
 - sometimes as queries
- Human experts mark, for each query and for each doc, <u>Relevant</u> or <u>Nonrelevant</u>
 - or at least for subset of docs that some system returned for that query

Unranked retrieval evaluation: Precision and Recall

- Precision: fraction of retrieved docs that are relevant= (relevant retrieved / retrieved)
- Recall: fraction of relevant docs that are retrieved
 - = (relevant retrieved/relevant)

	Relevant	Nonrelevant
Retrieved	tp	fp
Not Retrieved	fn	tn

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

Should we instead use the accuracy measure for evaluation?

- Given a query, an engine classifies each doc as "Relevant" or "Nonrelevant"
- The accuracy of an engine: the fraction of these classifications that are correct
 - (tp + tn) / (tp + fp + fn + tn)
- Accuracy is a commonly used evaluation measure in machine learning classification work

Precision/Recall

- You can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved

- In a good system, precision decreases as either the number of docs retrieved or recall increases
 - This is not a theorem, but a result with strong empirical confirmation

A combined measure: F

 Combined measure that assesses precision/recall tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$

- People usually use balanced F₁ measure
 - i.e., with $\alpha = \frac{1}{2}$

$$F_1 = \frac{2PR}{P+R}$$

Evaluating ranked results

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a precision-recall curve

Averaging over queries

- A precision-recall graph for one query isn't a very sensible thing to look at
- You need to average performance over a whole bunch of queries.
- But there's a technical issue:
 - Precision-recall calculations place some points on the graph

Typical (good) 11 point precisions

