DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/6 9/2
MASTRAN SAMPLE PROBLEM COMPUTER OUTPUT, (U)
FEB 81 6 C EVERSTINE, M M HURWITZ
DTWSRDC/CMLD-81-04 NL AD-A096 867 UNCLASSIFIED I # 5 AD A⊝96°6°

DTNSRIK/CAILD-81-04

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

AD A U 96867

NASTRAN SAMPLE PROBLEM COMPUTER OUTPUT

by

Gordon C. Everstine & Myles M. Hurwitz

Approved for Public Release: Distribution Unlimited

TIC FILE COPY

NASTRAN SAMPLE PROBLEM COMPUTER OUTPUT

Computation, Mathematics, & Logistics Department
Departmental Report

SELECTE MAR 2 6 1981

D

DTNSRDC/CMLD-81-04

February 1981

al

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

NASTRAN SAMPLE PROBLEM COMPUTER OUTPUT

by Gordon C. Everstine & Myles M. Hurwitz

Approved for Public Release: Distribution Unlimited

Computation, Mathematics, & Logistics Department
Departmental Report

SELECTE MAR 26 1981

D

February 1981

DTNSRDC/CMLD-31-04

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

Lan Representation

() O () S

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AD-A096 867 DTNSRDC/CMLD-81-04 \$ TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED NASTRAN SAMPLE PROBLEM COMPUTER OUTPUT 6. PERFORMING ORG, REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(+) Æverstine **age** Myles M./Hurwitz 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element 65861N David W. Taylor Naval Ship R&D Center Task Area Z0832-SL Bethesda, Maryland 20084 Work Unit 1-1844-119 11. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE February 1981 NUMBER OF PAGES 417 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Accession For NTIS GRA&I Approved for Public Release: Distribution Unlimited 16 20832 . Th Unantimation Justification -17. DISTRIBUTION STATEMENT (of the 1:1: 20132-56 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) NASTRAN 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This is a compilation of computer output for 23 sample problems illustrating the basic capabilities of the NASTRAN structural analysis computer program. These problems are used primarily in NASTRAN training courses. Problem descriptions appear in a companion report DTNSRDC/CMLD-81-05.

CLASSIFICATION OF THIS PAGE (When Date Entered)

DD 1 JAN 73 1473

EDITION OF 1 NOV 68 IS OBSOLETE

5 'N 0102-LF-014-6601

TABLE OF CONTENTS

-		2
-	STATIC ANALYSIS (CANTILEVER BEAM WITH TRANSVERSE POINT LOAD)	-
	STATIC ANALYSIS (ARCH UNDER PRESSURE AND GRAVITY LOAD)	17
-	STATIC ANALYSIS (CONICAL SHELL ELEMENTS)	45
-	STATIC ANALYSIS (SYMMETRY EXAMPLE)	58
	BANDIT RUN FOR PROBLEM 1D	72
Ī	LINEAR STEADY-STATE HEAT CONDUCTION (ARCH STRUCTURE)	74
-	2-D POISSON EQUATION (TORSION OF TRIANGULAR PRISM)	87
7	STATIC ANALYSIS WITH INERTIA RELIEF	103
ო	NORMAL MODES AND NATURAL FREQUENCIES (INVERSE POWER METHOD)	114
ო	NORMAL MODES AND NATURAL FREQUENCIES (GIVENS METHOD)	136
ო	NORMAL MODES AND NATURAL FREQUENCIES (FEER METHOD)	148
ю	RESTART OF DEMO. PROB. 3 (EIGENVALUE APPEND)	164
4	STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS	186
ហេ	ELASTIC STABILITY ANALYSIS (BUCKLING)	201
9	PIECEWISE LINEAR ANALYSIS (NONLINEAR MATERIALS)	215
7	DIRECT COMPLEX EIGENVALUE ANALYSIS (BEAM WITH VISCOUS DAMPING)	249
ω	DIRECT FREQUENCY RESPONSE ANALYSIS	263
თ	DIRECT TRANSIENT ANALYSIS	275
6	RESTART OF DEMO. PROB. 9 (TRD CONTINUE)	317
6	MODAL CCMPLEX EIGENVALUE ANALYSIS	337
‡	MCDAL FREQUENCY RESPONSE ANALYSIS (INVERSE POWER METHOD)	351
=	MCDAL FREQUENCY RESPONSE ANALYSIS (GIVENS METHOD)	366
12	MGDAL TRANSIENT ANALYSIS (INVERSE POWER METHOD)	381
13	NORMAL WODES WITH DIFFERENTIAL STIFFNESS (ROTATING BEAM)	393

NAMES IN THE PROPERTY OF THE P

MMINISTER STATEMENT OF STATEMEN MINISTER AND TRANSPORTED TO THE PROPERTY OF TH MUNICIPAL CONTROL CONT INDICATION OF THE PROPERTY OF

MCONTONIONING TO THE SERVICE OF THE CONTONION INTO THE PROPERTY OF THE PROPERT MINICIPAL DE LA CONTROL DE LA MANAGERICANSCINISTANCE

////Windianary and second or a second of the /// MINIMUMATION MANAGEM CONTRACTOR CONTRACT AND MAINTAINED OF THE PROPERTY MANAGORANIA MANAGORAN MANAGORANIA MANAGORA MANAGEMENT CONTRACTORY

RIGID FORMAT SERIES P

LEVEL 17.5.7

CDC CYBER SERIES MODEL 173

MMALE MYTELYTAM MYTT TREATHER BEARING WATTER AND TREATHER WITE THE WATTER WATTER WATER TRANSPORTED WATER TO THE WATER THE WATE MANAGEMENTAL PROPERTY OF THE STATE OF THE ST Mediantitalistical medicitalistical and an antical antic

министительникальный местиплиникальный потраборый потраборы

MWMMM menyerantantannyaningana nyetantandantanahasartata evatandan m.//////mm--mmmmmmmmmm

MINM MINM Σ /MIM ---MWWATTTTTTTTTTT W.W.W.W. MINICIPALITY AMERICAN MANAGEMENT

WAYN MINISTER WINNING MERCHAN -- MERCHAN MINITERAL WINDWINDING M---M---MIMMINISTRUM MMINIM// // MANIMINAM MINICIANIM MINIMUM NEW NIM MARKET MWWM MNEEDSTAGMM MEGNINGTONINGSM MNIMMININIMM MMMMMMMMM MMMMMMMMMM

Σ Σ Σ Σ Σ

MMMMM MWIMM

MMMM MM MMMM

MMMM MVM MM MMM MMMM MMMMM

MWWW MMMMM MMMMM

MMMMMM MMMM MMP MWMMMMMMMM

MMM

MMMMMM M MMM Σ

MINIMAN TINI NUMBER MINIMIMINIM MINIMARIAM NEWWIND COM M Mainn เลกระระสภา --- พณะอาน MICHINI----MINING /// //// /// ////ww METERIAL TANKS MAM /////

MARKEDANDERDIEGENE MEDITEREN MARKEDEN MARKEDEN FOR FOR FOR STORMEN AND THE STORMEN THE STO NUMBER MEZINTAIN MAL DAM W----MWM . 2 MANCHANGE ///:///ww WEST-WINDSON

mmmeeenamineesteeteeteeteeteeteeteenamine – – mannebooteeteeteeteeteeteeteeteeteete MMMMANITERETE WEST SEWISTER SEGRES -- MES INTERESTREAMENT OF THE SERVICE INTERESTREAMENT INTERESTREAMENT OF THE MINISTERNAMENTAL PROPERTY AND MEDICANICAL MINISTERNAMENTAL MANAGEMENT AND MINISTERNAMENT AND MINISTERNAMENT AND MINISTERNAMENT AND MINISTERNAMENTAL MANAGEMENT AND MINISTERNAMENT AND MINISTE MINIMINIMINATED TO THE CONTRACT OF THE PROPERTY - - INDIANIMINATING

MINISTERNATION TO THE MANAGEMENT OF THE MANAGEMENT OF THE PROPERTY OF THE PROP MINIMERS WAS WARD AND HEAD OF THE STATISTICS OF THE PROPERTIES OF THE PART OF MMNAMAN AND STATEMENT OF A STATEMENT Meanth and a management of the management of the same of the same

PROTESTICATION OF THE PROTESTION OF THE PROTEST MINISTER - TO THE SECOND OF TH Memory and a service of the service

MANATANCAMANAMANAMANAMACAMANASIBSESTASIMAKAMAKANAKAMAKAMA MANDARACACIONALAC

MMM chacasamescandent

12/15/80 SYSTEM GENERATION DATE

E C H

¥ ပ ш

۵ 0 α z 0 ပ EXECUTIV NASTRAN

ID NASTRAN, DEMO
\$ THIS IS A COMMENT AND IGNORED BY NASTRAN.
\$ STATIC STRESS ANALYSIS IS PERFORMED USING RIGID FORMAT 1.
\$PP DISP
TIME 10
CEND

PAGE

NASTRAN COURSE --- DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT LOAD 5/8-INCH DIAMETER STEEL BEAM

0 I ပ ¥ U Ш ۵ _ CONTRO w S ۷ ۷

CARD

TITLE=NASTRAN COURSE -- - DEMO. PROB. 1
SUBTITLE=CANTILEVER BEAM WITH TRANSVERSE POINT LOAD
LABEL= 5/8-INCH DIAMETER STEEL BEAM
\$ THE NEXT TWO CARDS SPECIFY CONSTRAINTS AND APPLIED LOADS.
SPC= 11
COAD = 30
SET 6 = 1.3.5, 7.11.15.17.19.21
\$ THE NEXT 8 CARDS MAKE OUTPUT REQUESTS.
DISPEALL
STRESS=ALL
SPCFORCE=ALL

\$ BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

ო

PAGE

NASTRAN COURSE - - - DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT LOAD

BEAM
STEEL
AMETEP
CH DI
5/8-11

	. 10 .																																								10101	+3-55	+P31A	•		
	o.	-																																												
0	ω.																																													
IJ		9																			2.6	1																								
m)	•	•																		•	•	•																				ç				
	2																																									å	.3125			
∢ .		•																			•																					4	. "			
¥	: `	_																			•																				5	٠.				
۵	9										•	-																													2	1000)			
		•																			9																							:		
ا جر	: '	0																		,	•																				٠	ď	,			
¬	ស																																									00	•			
ω									0		8	ო	4	S	9	7	α .	on o	ο.	-	•																				c	ر م				
۵	:	c	4 M	4	U.	1 0	- α	0 0	-	-	-	-		-	-	_	_	~ (N	ν.	_																					٠٢				
w	4																																									ď	3125			
-											_	~	m	₹	ın	(O :	~	no d	n (,		c	?	٠ ،			ın.		ω.		ທີ່	ວ ມ				٠ Ω		ເດ	90	. o	2	C	, .	•		
œ	:	-	- N	m	4	in c	9 1	- 00	თ	=	Ξ	=	~	-	-	=	-	= :	- 6	V		C	э и	n ÷	-	Ň	N	ĕ	က	4	4 (ກິ	ກິດ	တ်	7	7	ω	œ	ص ر	50 -	-		·ī	0	-	
S	m																																								t,	D				
•	•																				_																							0.75	92	
	: '	3																			9																				ć	າ ຕ	Ö	0	-	
	~																																										25	,		
										_	_	~	_			'n	_	m /	~ .	٠,	_										_	_	. ~) दा	ın	ίΟ.	_	m	19	o ,		v +		75		
	:	•	- ~	n	4	S (م 0	- 00	σ	=	Ξ	-	-	-	-	÷	-	~	- 6	× 6	m	٠	- (7 (J 4	L LO	ဖ	~	ω	σ	=	- ;		-	+	=	-	=	- 6	Ň	, i	י ר	0	0		_
	- 1	~																		4	H	_																						⋖		ΑTΑ
	Č	٥	Z Z	CBAR	AR	AR:	¥ 0	Z Z	AR	AR	AR	AR	AR	AR	SAR	3AR	3AR	A A	Y (4 0	2 6	2 :	3 5	2 5	2 5	2 2	a I	2 .	0 I S	2.7	2:2	2 :	3 5	2 2	01×	Z I	a I o	۵I.2	2:0		2:	- 0 - <	3.1	<u>ب</u>	Š	9
	• 1	8 C	3 8	S	S	3 6	ם ם	ט כ	8	S	S	ဗ	S	ဌ	S	Ü	ပ္ပ	S	S	ט ני	ב נ	5 0	5 (ָב [ָ] כ	ב ל	5 6	9	G	5	Ġ	ີ່	5 6	5 0	9 6	5	Ö	G	Ġ	5	ט	ن :	ž (+	+	Ş	ū
	L	1 1							,		1	,		,		,	,		ı						, 1	1		ı	ı	,	,	ı	, ,	,	,	,	ı	1	ı	ı	ł	, ,	1	•	,	
	CARD	<u>-</u> c	v m	4	ம்	ம் ம	· 6	οđ	ò	÷	42	,	4	က်	16	17	80	6	ġ	Š	22	, K	7 (יות אול	0 6	38,	6	90	3	32	ဗိ	ω (ب ا	3,7	38	39	40	4	42	43	4 4	1 4 U 1	1 4	4	4	
	₹B																																													

*** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

34 STARTING WITH ID

. (09	O PREFACE LOOPS .
3100	-28488 C MAX = 5 PCMAX = 0 PC GROUPS =

MPYAD--NULL MATRIX PRODUCT METHOD 1 NT,NBR PASSES = 1,EST. TIME =

°.

NASTRAN COURSE - - - DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT LOAD

5/8-INCH DIAMETER STEEL BEAM

*** USER INFORMATION MESSAGE 3035

1 EPSILON SUB E = -6.6594084E-10 FOR LOAD

MPYAD--NULL MATRIX PRODUCT METHOD 1 T ,NBR PASSES = 1.EST. TIME =

٥,

PAGE

NASTRAN 12/15/80

FEBRUARY 9, 1981

Ŋ

ELEMENT STRAIN ENERGIES

ELEMENT-TYPE = BAR + TOTAL FOR ALL TYPES = 5.0069382E+00

		•
ELEMENT-ID	STRAIN-ENERGY	PERCENT OF TOTAL
-	9.36080.1E-01	18.6957
2	8.114698E-01	16.2069
က	6.957600E-01	13.8959
7	5.88950~E-01	11.7627
5	4.91042~E-01	9.8072
9	4.0203506-01	8.0296
	3.21 .282E-01	6.4296
ю	2.507222E-01	5.0075
თ	1.884169E-01	3.7631
10	1.350122E-01	2.6965
=	9.0508545-02	1.8077
12	5.470551E-02	1.0966
13	2.820324E-02	.5633
14	1.0401735-02	7702.
15	1.500970E-03	0080.
16	4.064766E-21	0000.
17	-4.772115E-11	0000.1
18	-6.921388E-11	0000
61	4.553545E-11	0000.
20	-1.129279E-11	0000.1

NASTRAN COURSE - - - DEMO, PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT

PAGE 6			ж Э	3.000000E+02 -3.000000E+02 0.0	2.600000E+02 -2.600000E+02 -3.637979E-11	2.200000E+02 -2.200000E+02 -1.018634E-10	1.800000E+02 -1.800000E+02 -1.891749E-10	1.000000E+02 -1.000000E+02 -8.440111E-10	2.000000E+01 -2.000000E+01 -2.415618E-09	1.589069E-08 1.393894E-08 1.891749E-09	5.926712E-09 3.725290E-29 3.201421E-09	-5.820766E-11 -5.820766E-11
NASTRAN 12/15/80 P.			8 2	0.00	000	000	000	000	000	000	φ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ	0.00
9, 1981		U U	œ.	900	000	0 0 0 0 0 0	000	0 0 0 0 0 0	0 0 0 0 0 0	000	000	o
FEBRUARY		E BALA	E L	000	000	000	000	000	000	000	000	٥ .٥
		N T F O R C	12	4.000000E+00 -4.000000E+00 0.0	4.000000E+00 -4.000000E+00 3.637979E-12	4.0000000E+00 -4.000000E+00 -8.731149E-11	4.0000000E+00 -4.0000000E+00 7.275958E-12	4.000000E+00 -4.000000E+00 -2.910383E-11	4.000000E+00 -4.000000E+00 1.455192E-11	-1.251465E-09 1.126497E-09 -1.305.72E-10	-4.365575E-10 -7.275958E-11 -5.093170E-10	-3.055902E-10 -3.055902E-10
1 INT LOAD		GRID POI	1	-3.000000E+00 3.000000E+00 0.0	-3.000000E+00 3.000000E+00 2.842171E-14	-3.000000E+30 5.000000E+00 0.0	-3.000000E+00 3.000000E+00 2.273737E-13	-3.000000E+00 3.000000E+00 2.273737E-13	-3.030000E+00 3.000005E+00 2.273737E-13	2.273737E-13 -2.273737E-13 0.0	000	00
DEMO. PROB. TRANSVERSE PO	TEEL BEAM		SOURCE	F-OF-SPC BAR *TOTALS*	BAR BAR *TOTALS*	BAR BAR *TOTALS*	BAR BAR ×TOTALS*	BAR BAR ∗TOTALS∗	BAR BAR *TOTALS*	BAR BAR *TOTALS*	BAR BAR *TOTALS*	BAR *TOTALS*
NASTRAN COURSE DEMO, PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT	CH DIAMETER ST		ELEMENT-10	-	ବାଳ	4 W	9 1	0 -	4 t	16 17	8 6	50
CANTILEVE	5/8-INCH		POINT-ID		ოოო	សល្ស	~~~	777	សិសិសិ	17	0 0 0	2.5

PAGE

NASTRAN COURSE --- DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT LOAD

5/8-INCH DIAMETER STEEL BEAM

	SA	13.0	0.0	0.0	14.5	14.5	14.5	
	-	14.5	14.5	14.5	14.5	14.5	14.5	
	FA	13.0	0.0	0.0	4.5	14.5	14.5	
DAD	6	14.5	14.5	14.5	14.5	14.5	14.5	
30 = LC	2	10.0 14.5	ů.	4.	0.0	14.5	14.5 0.0 14.5 14.5	
ω π •	M2B	14.5	14.5	14.5	14.5	14.5	14.5	
z 0	M 1 B	٠ <u>.</u>	.7	4.		0.0	0.0	
C I S] Subcase	MZA	10.3 14.5	14.5	14.5	14.5	14.5	.1 14.5	
P R E TS FOR	MIA	10.3	1.3	-:	œ.	ιĊ	- .	
E N T	E 10	د	16	1.7	18	19	20	
ELEMENT PRECISION CHECK SIGNIFICANT DIGITS FOR SUBCASE = 1, 30 = LOAD	TYPE	BAR	BAR	BAR	ВАЯ	ВАЯ	848	

*** USER WARNING MESSAGE 2076, SDR2 OUTPUT DATA BLOCK NO. 1 IS PURGED

*** USER WARNING MESSAGE 2077, SDR2 DUTPUT DATA BLOCK NO. 2 IS PURGED

*** USER WARNING MESSAGE 2078, SOR2 OUTPUT DATA BLOCK NO. 3 IS PURGED

*** SYSTEM WARNING MESSAGE 3001

ATTEMPT TO OPEN DATA SET 205 IN SUBROUTINE SDR2 , WHICH WAS NOT DEFINED IN THE FIST

PAGE

NASTRAN COURSE - - - DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT

CANTILEVER	BEAM WITH	TRANSVERSE	POINT LOAD				
5/8-INCH DIAMETER	DIAMETER	STEEL BEAM					
			01596	ACEMENT	VECTOR		
POINT 10.	TYPE		12	13	2	R2	R S
	G	0.0	0.0	0.0	0.0	0.0	0.0
7	g	1.629726E-06	-1.632559E-02	0.0		0.0	-6.453049E-03
ო	U	3.259452E-06		0.0			-1.246106E-02
4	IJ	4.889179E-06	-1.432395E-01	0.0	0.0	0.0	-1.802403E-02
S	g	6.518905E-06	-2,431755-01	0.0			-2.314197E-02
9	ပ	8.148631E-06	-3.709025E-01	0.0		0.0	-2.781486E-02
7	O	9.778357E-05	-5.2073988-01	0.0		0.0	-3.204272E-02
60	IJ	1.140838E-05	-6, 10-0318-01	0.0		0.0	-3.582555E-02
6	O	1.303731E-05	-8.7-2.5-2E-01	0.0		0.0	-3.916333E-02
9	'n	1.466784E-05	-1.081510E+60	0.0		0.0	-4.205507E-02
Ξ	ပ	1.629726E-05	-1.2 W8102E+00	0.0		0.0	-4.450378E-02
12	U	1.792699E-05	-1.525821E+00	0.0	0.0	0.0	-4.650645E-02
13	ပ	1.955671E-05	-1.7t.2440f +00	0.0		0.0	-4.806409E-02
4	IJ	0	-2.005735E+00	0.0		0.0	-4.917668E-02
15	IJ	2.281617E-05	-2.2534805+00	0.0		0.0	-4.984424E-02
16	()	2.444589E-05	-2.503451£+00	0.0		0.0	-5.006676E-02
17	IJ	2.444589E+05	-2.7537856+00	0.0		0.0	-5.006676E-02
1.8	()	2.444589E-05	-3.004118E+00	0.0		0.0	-5.006676E-02
19	g	2.444589E-05	-3.254452£+00	0.0	0.0	0.0	-5.006676E-02
50	O	2.444589E-05	-3.504786E+00	0.0	0.0	0.0	-5.006676E-02
21	IJ	2.444589E-05	-3.755120E+00	0.0	0.0	0.0	-5.006676E-02

NASTRAN COURSE - - - DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT LOAD

NASTRAN 12/15/80 FEBRUARY 9, 1981

_O

PAGE

5/3-INCH DIAMETER STEEL BEAM

0.0 ã 0.0 VECTOR 33 L O A D 3.000000E+00 -4.000000E+00 0.0 TYPE G POINT ID.

83

82

Ξ

NASTRAN COURSE - - - DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT LOAD

9

PAGE

NASTRAN 12/15/80

9, 1981

FEBRUARY

5/8-INCH DIAMETER STEEL BEAM

CONSTRAINT SINGLEIPOINT 0 FORCES

R3 3.000000E+02 8 0.0 2 0.0 13 -3.000000E+00 4.000000E+00 0.0 POINT ID. TYPE

æ

=

NASTIAN COURSE - - - DEMO, PAGB, 1 CANTILEVER BEAM AITH TRANSVERSE POINT LCAD

3	
-1	
w	
9	
_	
w	
E	
-	
S	
Ω	
OR MAI	
-	
7	
-	
4	
2	
I	
U	
7	
IOZ	
-8	
Ò	

ELEWENT	LZGATT-TYGG	E NO-A	BECCESTERS ENDER	I SIEND I	AKIAL	
		PLANE 2	PLANE . PLANE 2	E. ANE 1 PLANE	2 FCRCE	TORQUE
-	-3.00000005-02 0	•	-2, Mussical +02 0.0	-4.00000E+00 0.0	3.00000E+30	o 0
~	20+300	0.0	-2	TALCCCCCE+CO D.C	3.00000E+00	o
m	.600000E+02	٥. د	-2.400.00f+02 0.0	-4.000000E+00 0.0	3.00000E+00	0.0
4	.4000000E+02 0	0.0	-2.200010E+02 0.0	-4.00CCC0£.00 0.0	3.000000E+00	0.0
'n	0	0.0	-2.0 2025+22 C.0	-4.0001016.00 0.0	3.00000E+00	0.0
ψ	. 60	0.0	-*. #1. 1. 1. 1. + . 2 0. 0	0.0 0.0 0.000000000000	3. CC02COE+00	0.0
7		0.0	-1.500 8+02 0.0	-4.000ut38+00 0.0	3.000000 + 00	0.0
'n		0.0	-1,40,0005+12 0.0	-4.00000E+00 0.0	3.00000E+00	٥. ن
ტ	-1.400.008.02 C	0.0	20.00.6.e+02 0.0	-4.000000E+00 0.0	3.0000000-00	<u>o</u> .o
5		0.0	-1.00000, E+02 0.0	-4.000000E+00 0.0	3.00000CE+C0	0.0
Ξ	-1.000300E+02 0	0.0	-8.00c0; £+01 0.0	-4.COCCOOE + 00 0.0	3. CO0000E+00	<u>o</u> .
12	-8.000000E+01 0	0.0	-6.000000000000000000000000000000000000	-4.000005+00 0.0	3.00000E+00	0.0
£.	-6.0ccccct+01 0	0.0	-4.000000E+01 0.0	-4.000000E+00 0.0	3.00000E+00	<u>o</u> .o
4		0.0	-2.0C0000E+01 0.0	-4.300000E+00 0.0	3.00000E+00	<u>o</u> .o
15	-2.0000000101 0	0.0	2.44:722E-08 0.0	14.0000E+00 0.0	3.0000000000	0.0
10	2.2351746-08 0	0.0	1.0530 0.E-08 0.0	1.164153E-C9 0.0	-2.273737E-13	<u>o</u> .
17	1.4901168-03 0	0.0	9.0803 JE-09 6.0	1.1641536-09 0.0	-2.273737E-13	<u>o</u> .o
18	7.450581E-09 0	0.0	6.286427E-09 0.0	2.328306E-10 0.0	0.0	0.0
9	3.725290E-09 0	0.0	3.725290E-09 0.0	0.0	0.0	<u>o</u> .
2	1 A63645F-09 0	0	-4 656613F-10 0 0	4 656613F-10 0 0	•	0

PAGE

5/8-INCH DIAMETER STEEL BEAM

ELEMENT IO.	5 1 4 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	S T R E 5 SA2 SB2	S S E S I N SA3 SB3	B A R E L E SA4 SB4	MENTS AXIAL STRESS	(C B A R) SA-MAX SB-MAX	SA-MIN SB-MIN	M.S T
-	1,251669E+04 1,168224E+04	-1.251669E+04 -1.168224E+04	00.0	00.	9.778357E+00	1.252647E+04 1.169202E+04	-1.250691E+04 -1.167246E+04	
0	1.168224E+04 1.084780E+04	-1.168224E+04 -:.084780E+04	0.0	00	9.778357E+00	1.169202E+04 1.085758E+04	-1.167246E+04 -1.083802E+04	
ო	1.084780E+04	-1.084780E+04 -1.001335E+04	0.0	0.0	9.778357E+00	1.085758£+04 1.002313£+04	-1.083802E+04 -1.000357E+04	
4	1.001335E+04 9.178905E+03	-1.001335E+04 -9.178905E+03	0.0	00	9.778357E+00	1,002313E+04 9,188684E+03	-1.000357E+04 -9.169127E+03	
S	9.178905E+03 8.344459E+03	-9.178905E+03 -8.344459E+03	0.0	000	9.778357E+00	9.188684E+03 8.354238E+03	-9.169127E+03 -8.334681E+03	
9	8.344159E+03 7.510013E+03	-8.344459E+03 -7.510013E+03	0.0	0.0	9.776357E+00	8.354238E+03 7.519792E+03	-8.334681E+03 -7.500235E+03	
7	7.510013E+03 6.675567E+03	-7.510013E+03 -6.675567E+03	0.0	00	9.778357E+00	7.519792E+03 6.685346E+03	-7.500235E+03 -6.665789E+03	
œ	6.675567E+03 5.841121E+03	-6.675567E+03 -5.841121E+03	0.0	00	9.778357E+00	6.685346E+03 5.850900E+03	-6.665789E+03 -5.831343E+03	
6	5.841121E+03 5.006676E+03	-5.841121E+03 -5.006676E+03	0.0	00.0	9.778357E+00	5.850900E+03 5.016454E+03	-5.831343E+03 -4.996897E+03	
0	5.006576E+03 4.172230E+03	-5.006676E+03 -4.172230E+03	0.0	00.0	9.778357E+00	5.016454E+03 4.182008E+03	-4.996897E+03	
<u>-</u>	4.172230E+03 3.337784E+03	-4.172230E+03 -3.337784E+03	0.0	00.0	9.778357E+00	4.182008E+03 3.347562E+03	-4,162451E+03 -3,328005E+03	
2	3.337784E+03 2.503338E+03	-3.337784E+03 -2.503338E+03	0.0	0.0	9.778357E+00	3.347562E+03 2.513116E+03	-3.328005E+03 -2.493559E+03	
13	2.503338E+03 1.669892E+03	-2.503338E+03 -1.668892E+03	0.0	0.0	9.778357E+00	2.513116E+03 1.678670E+03	-2.493559E+03 -1.659113E+03	
4	1.668892E+03 8.344459E+02	-1.668892E+03 -8.344459E+02	0.0	00.0	9.778357E+00	1.678670E+03 8.442243E+02	-1.659113E+03 -8.246676E+02	
2	8.344459E+02 -1.019994E-06	-8.344459E+02 1.019994E-06	0.0	00	9.778357E+00	8.442243E+02 9.778358E+00	-8.246676E+02 9.778356E+00	
9	-9.325660E-07 -6.897103E-07	9.325660E-07 6.897103E-07	0.0	0.0	-7.4111375-13	9.325653E-07 6.897095E-07	-9.325667E-07 -6.897110E-07	

PAGE

NASTRAN COURSE - - - DEMO. PROB. 1 CANTILEVER BEAM WITH TRANSVERSE POINT LOAD

5/8-INCH DIAMETER STEEL BEAM

					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
ELEMENT ID.	SA1 SB1	SA2 SA2 SB2	5 K E S S E S A B K E L E M E N 5 5 5 5 5 5 5 5 5	8 # K E L SA4 SB4	EMENIS AXIAL STRESS	SA-MAX SB-MAX	SA-MIN SB-MIN	M.S1
11	-6.217107E-07 -3.788549E-07	6.217107E-07 0.0 3.788549E-07 0.0	0.0	00	-7.411137E-13	6.217099E-07 3.788542E-07	6.217099E-07 -6.217114E-07 3.788542E-07 -3.788557E-07	
18	-3.108553E-07 -2.622842E-07	3.108553E-07 2.622842E-07	0.0	0.0	0.0	3.108553E-07 2.622842E-07	3.108553E-07 -3.108553E-07 2.622842E-07 -2.622842E-07	
6	-1.554277E-07 -1.554277E-07	1.554277E-07 0.0 1.554277E-07 0.0	0.0	00	0.0	1.554277E-07 1.554277E-07	1.554277E-07 -1.554277E-07 1.554277E-07 -1.554277E-07	
50	-7.771383E-08	7.771383£-08 0.0 -1.942846E-08 0.0	0.0	0.0	0.0	7.771383E-08	7.771383E-08 -7.771383E-08	

16

1

MISTANIA -- NEGARATANI SANDARANI MARKATANI SANDARANI SANDARANI SANDARANI SANDARANI MARKATANI MARKATANI MARKATANI XM——MARGASISAMMANDAM— MARGASIMATISAMANISTISAMISTIMAMANANDAMINIM

MUNICIPALITY CONTROLL MANAGEMENT

MODING TO A WAS THE FIRST STATE OF THE STATE

MMSSERVINESTORITORIO VINTEREDIRA — — MEG. NERROTO SAMETINA RESIDENTA O SAMETINA POR SAMETINA DE SAMETINA DE SAM

MINISTER THE THE THE STREET STREET AND A STREET STR MCMININGS----COOK CONTROLOGICATION CONTROLOGICAL

MEMBERSHAPE SERVICES METERSTANDERS SERVICES SERV

Minimization of the second of

With the control of t MNOW SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICE SERVICES SERVIC MMMHHHHHHHHM MHWERTCHTH METTTERMENTER METHTER FOR THE FORTHWENT METHTERMEN

- MANAGARAN CARDING DATOMINATE CONTROL CONTROL CONTROL CONTROL CARDING CONTROL Management principal control of the control of the

MMMMMINIMMMMMMM

- 12/15/80 SYSTEM GENERATION DATE

RIGID FORMAT SERIES P Z Z Z Z Z Z Z Z MWMWMM MMNINM MMMIM MMMM CDC CYBER SERIES MODEL 173 LEVEL 17.5.7 NWWW MWWW MMMM MMMMMM MINIME MMMM MUNN MWM MM MMM MUUUM MIMIMIM MM Σ MMM Σ MWM MMM MINIMININ STAMMEN M MMM MANAGEMENT TO THE WAY OF THE TOTAL PROPERTY OF THE PROPERTY OF MENTION OF THE PROPERTY OF THE маметелевизметелекталегелетический мы----метелетичественный политичественный починальным починальным выпут WILLIAM CONTROLLE CONTROLL DESIGNATION OF THE PROPERTY OF MERN WERM NUMBER OF STREET MARKATAL W MERMINATIN MUNICIPALITY MINIMARYMETA > THE WAY IN THE Management of the second of the second secon WEIGHTER THE TELEFORM TO THE TELEFORM TO THE TELEFORM TO THE TELEFORM MMI--MING MICCHIGGION IN---M CONTAIN MICROTAL MOI -- CTURNING MINISTRI -- NICHARINAM LPT-T-GREEN THE THE -- 14.4 MM NAME W /// Magraph --- Architectum WITH THE WIT NUMBER --- PROMING NEAR PROPERTY ARREST PROTEST STAND 2---/// /// /// /// /// // MM/// /// MECHANISM MANAGEMENT MMM.173 /// //wwww MUDINGTON M A11.17.17.17. N Contraction and the part of th MAN NTT TO THE MILITAGE LIM ALC: CAL MALTERIA 77777 Managana SIMMIN 2 BEAUTIC CONTINUE MARKETINGAM MANAGEMENT MINITALITATION MMCCACTANA M. Supplied Land. New Manage //// THE PROPERTY.

MAN THE MAN THE PARTY OF THE PA

Management of the property of the party of t

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID NASTRAN, DEMO
\$ COWMENTS HAVE A \$ IN CARD COLUMN 1
APP DISP
SOL 1,0
TIME 10
CEND

1

.

.

.

1

PAGE

0 I ပ w ¥ **Ш** ۵ 4 _ o N 0 ပ ш S CA

CARD

TITLE=NASTRAN COURSE - - - DEMO. PRCB. 1A SUBTITLE=STATIC STRESS ANALYSIS OF ARCH SPC=21
SET 13 = 1,2,11,12,21,22,31,32,41,
SET 13 = 1,2,11,12,21,22,31,32,41,
A2,51,52
\$ NOTICE HOW LINES ARE CONTINUED OLOAD=ALL DISP=ALL SUBCASE 1
LADEL=PRESSURE LOAD
LOAD=9
SPCFORCE=ALL
STRESS=ALL SUBCASE 2 LABEL=GRAVITY LOAD STRAIN=ALL FORCE=ALL NCHECK=5

DIFFERENT STRUCTURE CAN BE SOLVED BY CHANGING B.C. SUBITILE=STATIC STRESS ANALYSIS OF RING-STIFFENED CYLINDER LABEL=AXISYMMETRIC PRESSURE LOAD (COMPARE TO PROB. 18) SUBCASE 3

LOAD-8

SPC=22

C0401

STRESS=ALL OLOAD=NONE

SUBCOM 5

LABEL=FIRST TWO LOADS COMBINED (ARCH PROBLEM)
SUBSEQ= 1.0, 1.0, 0.0
THE NUMBER OF SUBSEQ FACTORS SHOULD EQUAL THE NUMBER OF SUBCASES. STRESS= 13

BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

i

ო

PAGE

+8143

+8142 +5141

+8105

+8102 +8103 +8104

0 +8101

6

_ **5**

മ

O ш

œ o S

a

CARD

102 103 0.4

. BARGR CBAR +B101 CBAR +3102 CBAR

4 142 143 144

+ 3103 CBAR + B104 CBAR + B105 CBAR

9, 1981 FEBRUARY

0.25 0.25 0.25 0.25 0.25 S 5 25 35 35 45 105 0.0 4 42.5 -1.5 -1.5 44 ო

2 1 2 2 1 1 5 2 1 2 6 2 1 2 6 2 2 1

+C0R16

FEBRUARY 9, 1981

4

PAGE

5

E C H O

DATA

8 ∪ ×

SORTED

	-																																															
	:																																															
	Φ																																															
	•																																															
_																																																
Ľ	_																																															
ر س	:																																															
1	7												,																																			
_	:	45	ų,	52	53	54	S t	- כ סיי	יי פע	2 0	‡ 1.	ດີ	· w	-																																		
∢	9																																															
<u> </u>		46	25	53	54	55	929	7 (ر د د	† L	ກເ	ه م			0		•	٠.	•	m	œ.	œ.	aa .		an i	9 :	9	9	9.	9	9 6	, t			24.	24.	32.	32.	32.				. 0		40.	40.	. 040	0
J	•																																															
o o	ហ	10	01	m	-7			u ^	n (-		٠.	o -		C		ر. د			. ;	0			· ,								• (.			٠.		0.			•	•	. 0	,		4.			
a	:	3	4	4	4	4	4 9	'nù	n u	י ה	nι	กั		C	- α	-	ċ	'n	Ť	O	œ	=	ä	m	.1	0 0	oc -	- (× 7	n <	4 (Σ	- 0	6	ë	4	0	∞ ·	- (, ,	, <	r o	α	-	7	m	4 0	>
ų	4												•																																			
- Y	:	35	-	42	ψ (C)	4	4 5 4	ה ח	יו אינ) -	ž u	0 0 0 0)	.0	0	0	0.5	о С	00	000	90.	<u>θ</u> 0.	60°	00	000	9 6	200	900	0 0	9 0	9 0) c	000	900	60.	9	9	9 0	٠ ٥ ٥	ວ ເ		99	60.	60.	eo.	Ü	000	0
n	e																																															
		~	~	_	~	_	m r	•	~ ~	•	•	~	â																																			
	:	(-)	(.,	.,	,	(.,	.,.	, (, ,	, (• • •	,	•																																			
	(4	_										_										_		_							_				_				_				_		_	_		
	:	35	4	42	.1 ω	4	ւ 1 ՈՆ +	ח נו	U II	ים הו	n i	ກິດ	0	-	7	က	4	ហ	ယ	-	- 2	-	<u>-</u> .	ເກ : •−	÷ ÷	7	7 6	(7)	A (7, 0	7 .	י ני) (C)	1 (2)	in O	36	4	44	1 -	7 4) (I	l R	. R.	53	54	in i	9 0	D
	-	70	5	0	Ç,	() •1	402	2 5	2 5	1 (5 6	ว ช่ว	У (- П	0	ے د	۵	۵	Ω	C	Ω	Ω	Ω	ر م	Ω:	വ	Ω (ာ (Ω,	വ	ے د	ם כ	5 C) C		۵	റ	ا ۵	Ω (ລ ເ) (3 6	2 0		<u>م</u> د	۵	۵	<u>α</u> (ב
		0	\circ	C)	0	()	00	→ C	→ (* () () r	· (2	Ω.	α	α	α	J.	iY.	\sim	œ	œ:	O. (α	γ	\simeq (γ (x	ΥC	Υ (:	r c	r a	: a	(X	α	CC I	α	χı	χ :	ר מ	r a	C	α	α	GR 1	α	or c	Ľ
C	2 5	-1.5	52-	53-	17	1 20	1 90	1 - 0	0 0	יו פינו	ا د د	()	1 1	1 4	55-	36-	57-	-89	-69	107	1	12-	73-	- 4 -	12.	191	- / /	- 8-	50	0 1	- c	1 7 7	1. c	. 'U	100	37-	33-	იი)))	- 0	1 2 0	1	ا ا ا	-96	-26	-86	-66	2
ć	500	u,	41	.,	α,		u, (., u	., u			۱۱ س	. u			w	a)	w	J	, -						('	(٠ ٠	., u	. u.		•	w	w	w (٠, (,, ,		,, U		, Q;	Ű,	J,	٠, ١	-

									+ P 1	+P1*()									+F1X		+SYMXZ		+SYMXY	×A+				
		თ :																	56		51			26				
η Ο Η		80							-7										46		14			46				
∀		7					48.	-4	-2 7.048										36		31			36				
ט א ס												Ŋ	15		35				26		21		99	56				
0 8			ъ В	16.	24.	32.	40.	۳.	.3333	-0.25		THRU	THRU	THRU	THRU	DAHL	THRC		16		:		THRU	16		13	.	
ا ا		.:	.00°	60.	60.	.09	.09		-					21	31	41					-		61	9		. 5	2	
S		e :						30.+6	21	0.25	0.67	-		-	-	-		21	12345		246		345	246		-	4	
			62				99		17	-	0.67	6	6	σ						99			13					⋖
		-	GRID	GRID	GRID	GRID	GRID	MATI	PEAR	<u>.</u>	+P1+()	PLCAD2	PLGAD2	PLCAD2	PLOAD2	PLOAD2	PLCAD2	PQUAD2	S201	+ F I X	SPC1	+SYMXZ	1008	SPCI	× t +	SPCADO	SPCADO	ENDDAT
	CARD	F Z D C)	101-	102-	103-	104-	105-	106-	- 401	103-	1001	110-	111-	112-	113-	141	115-	116-	1 1/2	118-	119-	120-	121-	122-	123-	124-	125-	

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

34 STARTING WITH ID 101	18 STARTING WITH ID	ENT ID = 1
		BEGINNING WITH ELEME
, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	. ENGOLD IS PROCESSING ELEMENTS OF TYPE = 18, BEGINNING WITH ELEMENT ID =
*** SYSTEM INFORMATION MESSAGE 3113.	*** SYSTEM INFORMATION MESSAGE 3113,	*** SYSTEM INFORNATION MESSAGE 3107.
*** SYSTEM	*** SYSTEM	*** SYSTEM

***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL (N = 175) TIME ESTIMATE	
RAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL 1 C AVG = 30 PC AVG = 0 SPILL GROUPS = 9 C MAX = 39 PCMAX = 0 PC GROUPS = 10 PC GROUPS = 1.EST. TIME = 11 MPYADNULL MATRIX PRODUCT	
RAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL C AVG = 30 PC AVG = 0 SPILL C MAX = 39 PCMAX = 0 PC METHOD 2 NT,NBR PASSES = 1,EST, TIME = MPYAONULL MATRIX PRODUCT	9.
RAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLG C AVG = 30 PC AVG = 0 C MAX = 39 PCMAX = 0 METHOD 2 NT, NBR PASSES = 1,EST. 7	TIME =
RAMETERS FOR SYMMETRIC DECOMPOSITION OF C 1 C AVG = 30 PC AVG = 9 C MAX = 39 PCMAX = METHOD 2 NI,NBR PASSES = 1 MPYADA-NULL MATRIX PRODUCT	1,EST. 1
RAMETERS FOR SYMMETRIC DECOM C AVG = 30 C MAX = 39 METHOD 2 NT.NBR MPYADNULL MAT	WETHOD I NT, NBR PASSES = 1, EST. TIME
RAMETERS FOR SYMMETR 1 AVG = C MAX = 9 METHOD MPYADO-1	I NT. NBR
RAMETERS FOR C C C	METHOD
RAMETERS 9	
••USER INFORMATION MESSAGE 3023—PAR. TIME ESTIMATE== 1 ADDITIONAL CORE= -27689	

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

NASTRAN 12/15/80 9, 1981 FEBRUARY

9

PAGE

*** USER INFORMATION MESSAGE 3035

1 EPSILON SUB E = -4.2834224E-13 FOR LOAD

*** USER INFORMATION MESSAGE 3035

2 EPSILON SUB E = -6.8413349E-13 FOR LOAD

1, EST. TIME = WPYAD--MULL MATRIX PRODUCT METHOD 1 T ,NBR PASSES =

Ŋ

194) 0 S AVG # 0 PREFACE LOOPS # ***USER INFORMATION MESSACE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL (N = 1 1 NE ESTIMATE 2 C AVG = 32 PC AVG = 0 SPILL GROUPS = 42 PCMAX = 0 PC GROUPS =

1.EST. TIME = MPYAD--NULL MATRIX PRODUCT METHOD 1 NT,NBR PASSES =

'n

*** USER INFORMATION MESSAGE 3035

3 EPSILON SUB E = -3.9495476E-13 FOR LOAD

1.EST, TIME = MPYAD--NULL MATRIX PRODUCT METHOD 2 I ,NBR PASSES =

٠.

*** USER WARNING MESSAGE 2076, SDR2 DUTPUT DATA BLOCK NO. 1 IS PURGED

*** USER WARNING MESSAGE 2077, SDR2 DUTPUT DATA BLOCK NO. 2 1S PURGED

3 IS PURGED *** USER WARNING MESSAGE 2078, SDR2 GUTPUT DATA BLOCK NO.

*** SYSTEM WARNING MESSAGE 3001

ATTEMPT TO OPEN DATA SET 205 IN SUBROUTINE SDR2 , WHICH WAS NOT DEFINED IN THE FIST

VECTOR

DISPLACEMENT

SUECASE 1

PAGE

NASTRAN COURSE - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

PRESSURE LOAD

R3 0.0 -4.634204E-06 -7.42138E-06 -7.75636E-06 0.0 0.0 -4.3648H1E-06 -7.351418E-06 -7.351438E-06 -7.351438E-06 -7.351438E-06 -7.351438E-06 -7.351438E-06 -7.351496E-06 -6.00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	211356E-0 2011356E-0 20113750E-0 20278E-0 201978E-0 201978E-0 201978E-0 201978E-0
82 3.036018E-07 -1.528023E-07 -2.202558E-06 0.0 4.481374E-07 9.911967E-08 -7.538695E-06 0.0 1.351567E-06 1.05257E-06 2.9E8393E-07 -4.331938E-07 -4.331938E-07 -5.381938E-07 -7.351567E-06 1.351567E-06 1.351567E-06 1.351567E-06 1.351567E-07 -4.930057E-07 -4.930057E-07 -7.4558456E-05 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07 -7.45667E-07	-2.452800E-0 0.0 0.0 -4.134851E-0 1.131615E-0 0.0 0.0 0.0 0.0 0.0
R1 0.0 2.4C4584E-06 4.549415E-06 0.0 0.0 0.0 1.33025E-06 1.3302481E-06 1.330249E-07 2.5433712E-07 7.918299E-07 7.918299E-07 2.55316E-07 1.35026E-06 0.0 0.0 0.0 1.35026E-06 1.35026E-06 0.0 0.0 0.0 1.35026E-06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4.218928E-07 0.0 0.0 0.0 1.945509E-07 -1.940449E-06 -3.475293E-07 0.0 0.0
13 -2.504486E-05 -2.504486E-05 -1.731531E-05 -1.001820E-05 -1.731531E-05 -1.731531E-05 -1.731531E-05 -1.731531E-05 -1.72301E-05 -1.72301E-05 -1.72301E-05 -1.72301E-05 -1.72301E-05 -1.72301E-05 -1.72301E-05 -1.72301E-05 -1.72301E-05 -1.72301E-06 -1.72301E-06 -1.72301E-06 -1.72301E-06 -1.72301E-06 -1.72301E-06 -1.72301E-06 -1.72301E-06 -1.72546E-06 -1.72546E-06 -1.72546E-06 -1.72546E-06 -1.72546E-06 -1.72546E-06 -1.72546E-06 -1.72546E-06	
12 1.515759E-05 2.47935E-05 2.527797E-05 0.0 0.0 1.35692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.25692E-05 1.27404E-05 1.27404E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05 1.274037E-05	0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 -2.228961E-04 -2.000858E-04 -1.397128E-04 -6.467411E-05 -9.750354E-06 0.0 -2.215757E-04 -1.494580E-04 -1.494580E-04 -1.495939E-05 -2.135432E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.966677E-04 -1.9666772E-04 -1.966677E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04 -1.9666772E-04	
[™] ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪	<i></i> Ø O O O O O O O O O O O O O O O O O O
POINT ID. 2 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

00

PAGE

SUBCASE 2

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

GRAVITY LOAD

	R3	0	-3.259090E	-4.553741E	-3.082887E	1,410336E-07	0.0	0.0	-3.860818E-0	-5.474519E-06	-3.442012E-0	1.154938E-0	0.0	0.0	-3.919672E-06	-5.465271E	-3.271599E	1.146185E	0.0	0.0	-3.783760E-06	-5.226798E-06	-3.1178415-06	9.742547E	0.0	0.0	-3.208692E	-4.346019E	-2.737384E-06	-6.385269E	0.0	0.0	-3.620016£-06	-4.994130E	-3.034791E	8.200321E	0.0	0.0	-3.640034E	-5.019	-3.050827E	8.551340E	0
	R2	3.046781E-07	3.203342E-07	3.965800E-07	4.539116E-07	3.159292E-07	0.0	1.576057E-07	2.003684E-07	2.882576E-07	2.591331E-07	-2.755101E-08	0.0	2.604540E-07	2.301182E-07	1.123007E-07	-9.009750E-08	-1.638716E-07	0.0	3.083879E-07	2.256739E-07	-1.605286E-08	-2.579556E-07	-1.739997E-07	0.0	1.784459E-07	1.277608E-07	1.039035E-08	-8.161833E-08	-5.744386E-08	0.0	1.783673E-08	2.149290E-08	5.912721E-08	1.113879E-07	5.470791E-08	0.0	0.0	0.0	0.0	0.0	0.0	ö
VECTOR	ű	0.0	2.560079E-06	3.6836765-06	2.500327E-06	-3.0.16970E-06	0.0	0.0	-2.040344E-06	-2.554847E-06	-1.259724E-06	9.418586E-07	0.0	0.0	2.320563E-07	2.534491E-07	5.331842E-08	1.156545E-07	0.0	0.0	1.231038E-06	1.314137E-06	6.06658E-09	6.311973E-08	0.0	0.0	8.430916E-09	2.210673E-08	5.366140E-08	1.177978E-07	0.0	0.0	-1.230495E-06	-1.433405E-06	-9.242703E-08	3.004721E-07	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ACEMENT	~) ⊢	-7.008* ARE-06	-6.872509E-06	-6.434994E-06	-5.372288E-06	-3.494404E-06	0.0	-5.749095E-06	-5.6114388-06	-5.102306E-06	-4.113376E-06	-2.339640E-06	0.0	-4.613229E-06	-4.4516285-06	-3.929585E-06	-2.9763:2E-06	-1.608385E-06	0.0	-3.490135E-06	-3.325915E-06	-2.830161E-06	-2.040271E-06	-1.087129E-06	0.0	-2.202500E-06	-2.175745E-06	-1.834181E-06	-1.310102E-06	-6.808518E-07	0.0	-1.102459E-06	-1.052043E-06	-9.050172E-07	-6.665523E-07	-3.313692E-07	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1 4 8 1 0	12	0.0	8.4167675-06	1.2957115-05	1.197187E-05	6.855325E-06	0.0	0.0	8.443238E-06	1.2820585-05	1.1233885-05	5.737268E-06	0.0	0.0	8.325387E-06	1.2447756-05	1.072716E-05	5.387799E-06	0.0	0.0	7.975443E-06	1,191830E-05	1.032727E-05	5.2729085-06	0.0	0.0	7.501584E-06	1.127945E-05	9.987360E-06	5.353573E-06	0.0	0.0	7.629786E-06	1.1435955-05	9.986002E-06	5.170013E-06	0.0	0.0	7.674238E-06	1.149006E-05	9.992504E-06	5.135539E-06	0.0
	1	-1.023634E-04	-8.547237E-05	-4.472267E-05	-4.695338E-06	9.427450E-06	0.0	-1.014205E-04	-8.402380E-05	-4.175013E-05	-6.415477E-07	1.078038E-05	0.0	-9.994392E-05	-8.240266E-05	-4.010319E-05	-4.564957E-09	1.005771E-05	0.0	-9.742015E-05	-8.041890E-05	-3.978188E-05	-1.635680E-06	8.709633E-06	0.0	-9.467268E-05	-7.845081E-05	-4.009975E-05	-4.339904E-06	7.3581716-06	0.0	-9.459906E-05	-7.835345E-05	-3.957845E-05	-2.952426E-06	7.772147E-06	0.0	-9.468609E-05	-7.836667E-05	-3.932137E-05	-2.377798E-06	8.034097E-06	0.0
	نیا																												g														
	POINT 1D.	-	2	m	4	ß	9	=	12	13	4	51	10	21	22	23	54	25	56	31	32	33	34	35	36	14	42	43	44	45	46	51	52	53	54	52	56	61	62	63	64	69	99

σ

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF RING-STIFFENED CYLINDER

BCASE 3

STATIC	STRES	S ANALYS	SIS OF RING-STIFFENED	FENED CYLINDER				
AXISYMME	METRIC	PRESSUA	RE LOAD (COMPARE	E TO PROB. 18)				SUBCASE
				DISPL	ACEMENT	VECTOR		
POINT	10.	TYPE	=		1.3	ā	R2	R3
	-	co	.009879E-0	0.	-2.763722E-05	0.0	-2.028935E-06	
	7	ဖ	.00 ±87	.021720F-17	-2.763722E-05	-9.820924E-18	-2.028935E-06	.664250E
	က	O	.009879E-0	.115761E-17	-2.763722E-05	-1.038971E-17	-2.028935E-06	ī
	4 :	<u>ن</u> ی	.003879E-	1418505-17	-2.763722E-05	-1.091825E-17	-2.0289356-06	.5966645-1
	ın ı	o o	40-36/66/00.1-	-5.074998E-17	-2.7.3722E-05	-1.103345E-17	-2.028935E-06	.745565E-1
	٠ ف	ტ (-1.009879E-04	o. •	-2.753722E-05	0.0	-2.028935E-06	0.0
	- (:) (-1.156485E-04	0.0	-2.3304.49E-05	0.0	-1.301817E-06	.0
	2 :	3 (11.1001306104	-5.249571E-17	-2.330449E-C5	7.256108E-18	-1.301817E-06	. 929850E-1
	. t	9 (2	+1 156485E-04	-8.43558F-17	-2.350449E-05	1.3527546-17	-1.301817E-08	2.732189E-17 2.737610E-17
	<u>.</u> 7	0	-1,155485E-04	-5.285401E-17	-2.3304:9E-05	7.210791E-18	-1.301817E-06	.027458E-1
	9	ن	-1.156485E-04	0.0	-2.330449E-05	0.0	-1.301817E-06	
	21	U	-1,199919E-04	0.0	-1.8591c9E-05	0.0	2.943078E-08	0.0
	22	IJ	+1.1999198-04	-5.375900E-17	-1.8591-9E-05	2.954152E-19	2.933C78E-08	.0491425-1
	23	ŋ	-1,193919E-04	-8.612292E-17	-1.859189E-05	-9.235306E-20	2.993078E-08	.845031E-1
	24	g	-1.1999195-04	-8.615342E-17	-1.859169E-05	-1.361096E-18	2.9030785-08	.764716E
	25	g	-1,199919E-04	-5.396870E-17	-1.859169E-05	-4.905115E-19	2.993078E-08	.087389E-1
	56	IJ	-1,199019E-04	0.0	-1.8591698-05	0.0	2.933078E-08	0.0
	31	ڻ ن	-1.16756E-04	0.0	-1.3%5672E-05	0.0	8.359197E-07	٥.
	32	U	-1.167566E-04	-5.429481E-17	-1.3%5672E-05	-4.051147E-18	8.3591976-07	٠.
	33	U	-1.167506E-04	-8.712920E-17	-1.385672E-05	-6.504578E-18	8.359197E-07	.8514526-1
	34	ø	-1.167566E-04	-8.733341E-17	-1.3%5672E-05	-5.805564E-18	8.359197E-07	.840610E-1
	35	ت	-1.187555E-04	-5.452891E-17	-1.345672E-05	-1.658491E-18	8.359197E-07	.038300E-1
	36	ڻ ا	-1.167556E-04	0.0	-1.385672E-05	0.0	8.359197E-07	0.0
	1	<u>ن</u> ي	-1.115669E-04	0.0	-9.23249E-06	0.0	2.114834E-09	0.
	42	۰ ق	-1.115669E-04	-5.43820bE-17	-9.290249E-06	-2.183803E-19	2.114834E-09	.837723E-1
	43	o (-1.115669E-04	-8.745123E-17	-9.20249E-06	2.116863E-19	2.114834E-09	.791821E
	44	უ (+1.115659E-04	-8.754301E-17	-9.2:0249E-06	2.614253E-20	2.114634E-09	.766430E-1
	ນ 6) (11.11000000110.1	71.37613460	-8.20249E-06	1.948319E-14	2.1148345-09	.83//23E-1
	ф С -	ງ (-1.1.0003E-04	, (9.450249E-06		7.1-48341109	
	- 0) (-1.166574F-04	-5.653103F-17	-4.725764F-06	2.640413F-18	-8 1003445-07	2009305-1
	, L.	ı o	16657	.011795E-17	-4.725764E-06	5.9028145-18	-8.100344F-07	976135E-1
	54	G	.16657	.958962E-17	-4.725764E-06	6.465826E-18	-8.100344E-07	.905662E
	S F	g		.579342E-17	-4.725764E-06	3.253030E-18	-8.100344E-07	.043721E-1
	56	_U	.166574E-	0.	.725764E-0		-8.100344E-07	0.
	61	ŋ	6309E-0	٥.			0.0	0.
	ê2	G	0309E-C	.71:351E-1			0.0	.2226145-1
	63	ڻ ت	6309E-	.071382E-1			0.0	.986977E-1
	64	ပ (.196309E-0	.012954E	0.0		0.0	.8677152
	65	ڻ د	6309E	.615127E-1			0.0	.0870895-1
	99	o	309E-		•		0.0	0.0

9

PAGE

FIRST TWO LOADS COMBINED (ARCH PROBLEM) NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

SUBCOM 5

e	¥	
۰	-	
	2	
ι	_,	
۱	_	
•		
۲	ر	
ì	u	
۰	•	
ı	>	
ŀ	_	
•		
	_	
4	Z	
ı	ш	
۰	_	
_	_	
3	-	
•	-	
	u	
۰	_	
ŧ	ر	
1	_	
•	4	
	د	
1	_	
	_	
C	2	
,	n	
۲,	,,	
۰	-	
	\supset	
ŧ		

R3 -7.893294E-06 -1.204558E-05 -1.025677E-05 -0.0 -0.0 -1.263658E-06 -1.263659E-06 -1.263658E-06 -1.126509E-06 -1.126509E-06 -1.126509E-06 -1.148017E-05 -1.198017E-06 -1.09738E-05 -1.09738E-05 -1.005275E-06 -1.0052	-9.693114E-06 -6.100246E-06 0.0 -5.962012E-06 -9.605674E-06 -9.704788E-06 -6.395615E-06
R2 6.082799E-07 1.675320E-07 1.748647E-06 0.0 6.757431E-07 2.994881E-07 4.766118E-07 1.275431E-07 1.62822E-06 0.0 1.6720218-06 1.275376E-06 1.275376E-06 1.275376E-06 1.275376E-06 0.0 1.67018828E-07 0.0 1.67018E-07 1.67018E-07 0.0 1.770686E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 1.67018E-07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-1.020227E-06 -8.045008E-07 0.0 0.0 0.0 0.0
R1 9. 954654E - 06 8. 233091E - 06 9. 410562E - 06 0. 0 1. 254825E - 06 1. 254825E - 06 1. 04527E - 06 0. 0 0. 0 0. 0 0. 0 1. 04527E - 06 0. 0 0. 0	-2.082876E-08 0.0 0.0 0.0 0.0 0.0 0.0
13.33 ##55	2.8.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
12 2. 3574582E-C5 3. 774666E-05 2. 359012E-05 0. 0 0. 0 2. 204440E-05 3. 402434E-05 3. 4024346E-05 3. 4024346E-05 3. 4024346E-05 1. 93946-05 1. 746345E-05 1. 746345E-05 1. 746345E-05 1. 746345E-05 1. 746345E-05 1. 746345E-05 1. 765994E-05 1. 765994E-05 1. 765994E-05 1. 765994E-05 1. 765994E-05 1. 765994E-05	
13.252.596 14.855581E-04 15.295581E-04 15.295961E-04 17.295961E-04 17.295961E-04 17.295961E-04 17.295961E-04 17.295961E-04 17.295961E-04 17.295961E-04 17.29593E-05 17.34371E-04 17.395931E-	2.766372 2.766372 2.844329 2.578281 1.8883868 3.0283868
a d d d d d d d d d d d d d d d d d d d	000000000
POINT IN 10 POINT 11	14 ฃ ฬ ๒ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ ฬ

Ξ

NASTRAN COURS	SE S ANALY	- DEMO. PROB. SIS OF ARCH	વ ⊏			FEBRUARY	1961 .6	NASTRAN 12/15/80	PAGE
PRESSURE LOA	9							SUBCAS	F 4
			0 7	> 0	ECTOR				
POINT 10.	TYPE	-	12	13		<u>۳</u>	R2	R3	
- (o c	1.670077E+	.167832E+0					•	
N (5 (0.64015464	7,83//6-1		•		٠		
.b. 4	ე დ	-3.340154E+01	-2.842171E-14	0.0	0 0		0 0	0 0	
· rc		3,340154E+	2737375-1						
9	ပ	1.670077E+	167832E+0		•				
Ξ	IJ	3.340154E+	.335564E+0		•			•	
2 9	ග (6.680309E+	.557954E-1		•			•	
n •	9 (6.680309E+			•		•	•	
	י כ	6.680309E+	100404667		•		•		
	ე ტ	3.340154E+	.335664E+0						
	ŋ	3.340154E+	.335664E+0		•				
	ပ	6.680309E+	.557954E-1				•	•	
	ပ	6.680309E+0	.094947E-1		•			•	
	ပ (6.680309E+0	.6-4342E-1		•		•	٠	
	י כ	6.680309E+	レールサ/サイナの・0・0・0・0・0・0・0・0・0・0・0・0・0・0・0・0・0・0・0		•			•	
	છ (3,340154E+	. 335664E+0		•				
	9 (3.340134E+	. 4400040+0		٠		•	•	•
	9 (2	6.680309E+0	10000000		•				
	0	6.680309E+	6-4342E-1						
	ی و	6.680309E+	5-17-47-48-1						
	g	3.340154E+	3355546+0		•				
	ιj	3.3401545+0	.335564E+0						
	J	6.660309E+	.EE7954E-1		٠			•	
4 ¢	တ (6.680309E+	.001947E-1		•			•	
) (6.680309E+	5.1747.46+1		•				
	O	3.340154E+	3356645+0						
	IJ	3.340154E+	.305964E+0						
	IJ	6.680303E+	.857354E-1		•				
	U	6.580309E+	.0 44347E-1		•				
	g	6.5803095+	. 6n4342E-1		٠			•	
	ပ	6.680309E+	.547474E-1		٠			•	
	.	3.340154E+	.335664E+0		٠			•	
	. .	1.570077E+	.167832E+0		•		•	•	
	9 (3.340154E+	278377E-1		٠			•	
	9 (3.340154E+	0,04747-1		•			•	
	5 (G. G4O - 34E+	0421/1E-1		•		•	•	
	י פ	3.340134E+	167837E-1		•				
	,	1.00.00.1	0.0000		•				

12

PAGE

SUBCASE 2

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

GRAVITY LOAD

01	TYPE	11	12	13	R1	R2	R3
-	₍₃	5.892700	٠			2.887127	٥.
8	g	1.167070E+	.640211E+0		.036208E-0	5.718059E-	-4.821725E-01
ო	g	1.132885E+	.2484965+0		.591600E-	5.550569E	.549600E-0
4	IJ	1.076650	.793554E+0		.348600E-	5.275043	.409160E+0
Ŋ	U	9.994585E+0	6.2453105+00		ش	.896845E	-1.835933E+00
ဖ	g	4.514070	.787754E+0		.855809E-	.211667E-	.113486E+0
=	IJ	-9.4756985+00	0.0	٥. ٥	٠.	0	٥.
12	O	1.876696E+	.637525E+0	•		•	•
13	IJ	1.821725E	.223713E		0.0		0.0
14	g	1.731296E	.708227E+0	٠	•	•	
15	g	1.607170	.004271E+0		•		
16	g	7.258806E	.090861E+0		•		
21	ŋ	9.475698	٥.	•	٠	•	
22	ပ	1.876696E+	.637525E+0		•	•	
23	g	1.821725E+	.223713E+0			•	•
24	G	1.7312965+	.703227E+0	•	•	•	•
25	J		.00427		•	•	•
56	g	7.259806	.090861E+0	•	•		•
31	ŋ	9.475698E+0	٠.	•	•	•	•
32	U	1.875696E+	.637525E+0		•	•	•
33	U	1.821725E+	.223713E+0	٠	٠		•
34	IJ	1,731296E+		٠	•		•
35	O	1.607170E+	.004271E+0	٠			
36	g	7.258806	.090361E+0	•	•		
14	g	1,063055E+	•	•	٠	•	•
42	თ		.9589736+0	•	•	•	321725
43	J	2.043748E+	.860353E+0	•	•	•	549600E-0
44	<u>ი</u>		.647667	٠	•		9
45	v	1.803043E+	.1265575+0	•	٠		335933E+0
46	g	8.143473	.8331852+0	•	•		.113486E+0
51	g	9.475698	0.0	٠	٠	٠	•
52	ڻ	1,876696	.537525E+0	•	•	•	•
53	o	1.821725	.22371	•	•	•	•
54	g	1,731296	.708227E+0		•		•
55	g	1.507170	.00427	•	•	•	•
56	ø	7.258806E+0	.090861E+0	•	•		•
61	g	4,7378495+0		•	•		•
62	g	9.383481E+0	.318762E+0	•	٠	•	•
63	g	9.108625E+0	.611856E+0		•	•	•
64	g	8.656481	.854114E+		•		0.0
U	(0.10.00	1 1 0 . 6 6				
•	3	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0713555	•			

ı

13

FIRST TWO

POINT

DUNSE RESS ANALYSIS	SIS OF ARCH	₹			FEBRUARY	24.7	NASIKAN 12/15/60
LOADS CON	COMBINED (ARCH PRO	ROBLET					SUBCOM
			0 4 0	VECTOR			
. TYPE	ī	12		T3 R1	_	R 2	R3
g	-2.2593476+01	-1.157832E+00	0.0	•	0.0	7E-	0.0
g	-4.507225E+01	1.6432115+00	0.0	-8.03620	38E-02	5.7183598-	
g	4	3.2484966+00	0.0	-1.53160	20E-31	-5.5508698-01	-9.549600E-01
IJ	-4,416804E+01	4.7935545+00	0.0	-2.34860	00E-01	5.275043E-	-1.409160E+00
O	+4,329613E+01	6.2453105+00	0.0	30040.5-	38E-01	-4.896845E-01	-1.835933E+00
• •	-2,121484E+01	4.355565.+00	0.0	0901	39E-01	-2.211667E-01	-1.113486E+00
g	-4.2877246+01	-2.3356645+00	0.0	3		o. 0	0.0
IJ	-8.557005E+01	2.6375256+00	0.0	•		0.0	0.0
IJ	-8.502034E+01		0.0	٠		0.0	0.0
IJ	-8.411605E+01		0.0	•		0.0	0.0
O	-8.287478E+01		0.0			0.0	٥.٥
ග	-4.066035E+01		0.0	•		0.0	0.0
g	-4.287724E+0*		0.			0.0	0.0
g	-8.557005E+01		ر			0.0	0.0
g	-8.502034E+01		0.0	•		0.0	0.0
g	-8.411605E+01		0.0			0.0	0.0
ن	-8.287478E+01	1.004271E+01	0.0			0.0	0.0
_U	-4.066035E+01		0.0	٠		0.0	0.0
ن	-4.2877245+01		0.0	٠		0.0	0.0
G	-8.557005E+01		0.0			0.0	0.0
U	-8.502034£+01		0.0			0.0	0.0
ڻ ا	-8.411505E+01		0.			0.0	0.0
O	-8.2874785+01		0.0			0.0	0.0
g	-4.066035E+01		0.0			0.0	0.0
IJ	-4,403209E+01		0.0			0.0	0.0
U	-8.785727E+01		0.0			0.0	-4.821725E-01
ø	-8.7240576+01		0.0			0.0	9
(J	-8.622e07E+01		0.0			٥.٥	o
ڻ و	-8.483352E+01		0.0			0.0	
G	-4,154502E+01		0.0			0.0	9
ڻ ن	-4.287724E+01		0.			0.0	0.0
o	-8.557005E+01		0.0	•		0.0	0.0
g	-8.502034E+01	5.273713E+00	0.0			0.0	0.0
O	-8.4116C5E+01	7 7042275+00	0.0			0.0	0.0
U	-8.287478£+01	1.004271E-01	0.0			0.0	0.0
(J	-4.0500352+01	9	0.0			0.0	0.0
ပ	-2,1433852E+01	9	o 0			0.0	0.0
o	4.278503E+	0	0			0.0	0.0
g (4.251017E+	11856E+0	0.0	0.0		0.0	0.0
g	.205803E+	.854114E	0			0.0	0.0
()	.143739E+	.021355E+	0			0.0	0.0
IJ	-2.033018E+01	.213262	0.0			0.0	0.0

SUPCASE 1

4

PRESSURE LOAD

	R.3	-2.760247E+01	1,145139E+02	1.221401E+01	1.480613E+01	1.146503E+01	2.524103E+01	8.422449E+00	2.927077E+01	-5.118916E+01	1.591055E+02	5.908512E+00	3.436843E+01	3.208634E+00	0.0	0.0	0.0	0.0	1.816421E+01
T R A I N ⊣	R2	0.0	3.992810E-01	0.0	-1.771332E+00	0.0	-7.056866E-01	0.0	-2.316405E+00	0.0	-5.864632E-02	0.0	1.980470E+00	9.362981E-01	2.382199E+00	3.557082E+00	3.704730E+00	-2.654793E+00	-1.622777E+00
SINGLE-POINT CONSTRAINT	ά	-7.0539225+00	1.9064495+01	-4.0145@6E-13	-1.23A636E-01	-1.5099036-12	-4.933511E-02	-1.7 to .: CE-12	-1.619788E-01	3.2633+2E-03	-8.819043E-02	-1.6C4050E-12	1.384879E-01	-6.547234E-02	1.556087E-02	1.598563E-02	1.827530E-02	2.904116E-01	-1.134756E-01
NGLE-POI	7.3	0.0	1.348856E+02	0.0	7.180953E+01	0.0	5.145966E+01	0.0	3.012638E+01	0.0	2.358457E+01	0.0	1.811879E+01	-6.378187E+00	-2.231368E+01	-4.744747E+01	-7.861177E+01	-1.058307E+02	-6.940266E+01
FORCES OF SI	5	2.2931215+02	-3.87969:5+02	4.159772E+32	-4.8034015+02	4.820367E+02	-4,470319E+02	4.7030875+02	-4.334471E+02	4.923689E+02	-4.875136E+02	4.720149E+02	-4.327370E+02	2.418853E+02	0.0	0.0	0.0	0.0	-2.213707E+02
F O R C E	Į.	0.0	-1.350937E+01	0.0	2.876731E+00	0.0	5.177262E+00	0.0	6.003936E+00	0.0	5.371977E+00	0.0	6.832024E+00	0.0	0.0	0.0	0.0	0.0	3.636002E+00
	TYPE	IJ	Ø	g	IJ	o	g	IJ	ŋ	IJ	ø	IJ	(J						
	POINT ID.	-	φ	-	16	21	26	31	36	41	9,7	51	56	61	62	63	64	65	99

SUBCASE 1

PRESSURE LOAD

	TOROUE	-2.865282E-02	-6.097257E-02	-2.173504E-02	9.509480E-02	2.036873E-01	-2.180603E-02	-4.908932E-02	-3.426563E-02	1.457567E-02	2,731315E-02
	AXIAL	-2.958180E+01	-3.813125E+01	-5.389144E+01	-7.132793E+01	-7.742910E+01	-4.195017E+01	-4.353340E+01	-4.827662E+01	-5.948399E+01	-7.773501E+01
(C B A B)	PLANE 1 PLANE 2	•	1.169350E+00 3.698958E-01	1.739644E+00 5.385208E-01	1.561217E+00 3.860297E-01	-7.983123E-01 -3.908055E-02	3.838464E-02 -1.953974E-04	1.556712E-01 -9,958199E-04	4.539253E-01 -2.940276E-03	1.047552E+00 1.929795E-03	1.240588E+00 -1.265603E-02
IN 3AR ELEMENTS	BEND-MOTENT END-8	10-3		-7.485757E+00 -2.319905E+00	-1.118962E+01 -1.358543E+00	-7.148348E-31 3.625859E-01 -	3.309483E+00 4.81C741E-03	2.300057E+00 2.419856E-03	-3.333114E-01 2.746457E-03	-5.810635E+00 -2.858888E-02	-1.144718E+01 8.256038E-02
FORCES	BEND-MOMENT END-A PLANE 1 PLANE 2	+00	8.2732046+00 1.338:256+00	6.711361E+00 2.075175E+00	1.5522646+00 1.7920416+00	-7.230267£+00 4.362963E-02	3.622760E+00 3.216004E-03	3.570569E+00 -5.707525E-03	3.371403E+00 -2.125062E-02	2.738970E+00 -1.283885E-02	-1.322114E+00 -2.073194E-02
	ELEMENT ID.	10	102	103	104	105 -	141	142	143	144	145 -

PAGE

NASTRAN COURSE - - - DEMO. PROB. 14 STATIC STRESS ANALYSIS OF ARCH

PRESSURE LOAD

SUBCASE 1

A D 2)	SHEAR	>-	-1.418942£-01	-1.523763E-01	-1,537815E-01	-1.006268E-01	1.017881E-01	1.092782E-01	8.727434E-02	2.849364E-02	-7.239947E-02	9.505511E-02	1.742508E-02	-9.036573E-03	-5.429413E-02	-6.301182E-02	1.551517E-02	1.575894E-01	1.579831E-01	1.8469572-01	1.970122E-01	6.446228E-02	-1.095955E-01	-1.507854E-01	-2.336580E-01	-2.549940E-01	-2.189340E-02	2.846296E-02	2.390308E-02	1.663183E-02	5.285962E-04	2.885344E-02
MENTS (COU	SHEAR	×	1.077680E-01	3.141598E-01	4.676446E-01	4.325655E-01	-1.504988E-01	1.304327E-02	3.736154E-02	6.099303E-02	9.535194E-02	2.336557E-01	1.271103E-02	3.407839E-02	3.850230E-02	5.013387E-02	3.621179E-01	1.638352E-02	5.770901E-02	1,289781E-01	2.589577E-01	4.429216E-01	7.689182E-03	3.549748E-02	1.106708E-01	2.756009E-01	4.909236E-01	-7.523267E-03	-2.120855E-02	-1.466257E-02	9.074453E-02	5.200483E-01
ATERAL ELE	TWIST-MOMENT		-1,401618E-01	-3.591295E-01	-3.6201265-01	-5.448130E-02	5.042840E-01	-6.512785E-02	-1.631880E-01	-1.594053E-01	5.1070035-02	2.5481785-01	-6.475243E-02	-1.5817535-01	-1.54841AE-01	-4.531952E-02	2.897003E-02	-4.882180E-02	-8.9857785-02	-1.139654E-02	4.167625E-02	-3.876512E-02	-5.781782E-02	-1.537087E-01	-1.638840E-01	1.995776E-02	1.659009E-01	-2.269091E-02	-5.344536E-02	347157E-0	7.845861E-02	1.078833E-01
RAL QUADRIL	BEND-MOMENT	>	4.555955E-01	3.6002 3E-01	1.722571E-01	-6.653521E-02	-3.424251E-01	7.514042E-01	6.4969-46E-01	4.390721E-01	1.005778E-01	+3.580956E-01	4.722.57E-01	4.407-014E-01	3.958326E-01	2.082934E-01	-4.596424E-01	-2.688843E-02	-8.1913-55-02	-1.971118E-01	-3.3701465-01	-6.555240E-01	-6.998537E-02	-8.193778E-02	-1.393398E-01	-2.719588E-01	-6.9463,05-01	3.507471E-01	4.4473:0E-01	5.445838E-01	3.644522E-01	-5.537669E-01
CES IN GENE	BEND-MOMENT	×	1.480494E+00	9.8:0189E-01	7.341273E-62	-1.026289E+00	-1.336195E+00	1,443514E+00	1,048912E+00	3.245124E-01	-5.885507E- 0 1	-1.753590E+00	1.193801E+00	9.11252ëE-01	4.201613E-01	-2.354890E-01	-1.972172E+00	9.002302E-01	7.056620E-01	3.027214E-01	-3.865034E-01	-1.912248E+00	7.704980E-01	6.755742E-01	4.262561E-01	-2.296686E-01	8145+	8.209805E-01	.139		.3757C8E-0	
n 0	ELEMENT	10.		2	ო	4	S		12	13	14	15	21	22	23	24	25	31	32	33	34	35	14	42	43	44	45	51	52	53	54	52

NASTRA STATIC	NASTRAN COURSE STATIC STRESS ANALYSIS	DEMO. PROB. 1 OF ARCH	٩		FEBRUARY	9, 1981 NAST	NASTRAN 12/15/80	PAGE	11
RESSU	PRESSURE LOAD						SURCASE	-	
ELEMENT ID.	541 581	SAZ SB2	S S E S I N SA3 SB3	8 A R E L E SA4 S34	M E N T S AXIAL STRESS	CBARS SA-MAX SB-MAX	S161-62 S161-62	M.S.1	
101	1.777819E+01 2.067983E+01	2.606363E+01 3.615829E+00	0.0	00	-2.958180E+01	-3.518169E+00 -8.901973E+00	-2.958180E+01 -2.958180E+01		
102	8.762021E+00 1.636086E+01	4.088217E+01 -2.398437E+01	0.0	0.0	-3.813125E+01	2.750919E+00 -2.177039E+01	-3.813125E+01 -6.211561E+01		
103	-4.769990E+00 5.381531E+00	4.504218E+01 -5.030657E+01	0.0.	0.0	-5.389144E+01	-8.849261E+00 -4.850991E+01	-5.866143E+01 -1.041980E+02		
104	-1.685068E+01 -1.726711E+01	2.616520E+01 -4.987735E+01	0.0	0.0	-7.132793E+01	-4.516273E+01 -7.132793E+01	-8.817861E+01 -1.212053E+02		
105	-2.221561E+01 -6.496445E+00	-2.116933E+01 2.207008E+00	0.0	0.0	-7.742910E+01	-7.742910E+01 -7.522209E+01	-9.964571E+01 -8.392555E+01		
141	1.083077E+01 9.871705E+00	1.090796E+01 9.987181E+00	00.0	0.0	-4.195017E+01	-3.104221E+01 -3.196299E+01	-4.195017E+01 -4.195017E+01		
142	1.078128E+01 6.871819E+00	1.064428E+01 6.929905E+00	0.0	0.0	-4.353340E+01	-3.275213E+01 -3.660350E+01	-4.353340E+01 -4.353340E+01		
143	1.037027E+01 -1.032997E+00	9.860172E+00 -9.670713E-01	0.0	00.	-4.827662E+01	-3.790635E+01 -4.827662E+01	-4.827662E+01 -4.930961E+01		
144	8.371622E+00 -1.709053E+01	8.063640E+00 -1.777677E+01	000	0.0	-5.948399E+01	-5.111216E+01 -5.948399E+01	-5.948399E+01 -7.726076E+J1		
145	-3.717915E+00 -3.533586E+01	-4.215561E+00 -3.335410E+01	000	0.0	-7.773501E+01	-7.773501E+01 -7.773501E+01	-8.195057E+01 -1.130709E+02		

PRESSURE LOAD

8

PAGE

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

(C O O A D 2) SUBCASE 1 ELEMENTS GENERA QUADRILATERAL z STRESSES

EMEZT IO.	FIBRE DISTANCE	STRESSES NORMAL-X	(IN ELEVENT COOR NORMALTY	NI COORDINATE SY: O SYSTEM SHEAR-XY	STEM) PRINCI ANGLE	PAL STRESSES (Z MAJOR	ERO SHEAR) MINOR	MAX SHEAR
•	5.000300E-01	-4.569934E+01	2.4953825+00	-7.014837E-01	-89.1663	2.505590E+00	-4.571035E+01	2.410782E+01
	5.000000E-01	-6.340577E+01	-2.9717395+00	9.804578E-01	89.0717	-2.955913E+00	-6.348166E+01	3.026287E+01
	-5.000000E-01	-4.811169E+01 -5.991941E+01	1.7330105+00 -2.6093335+00	-1.512974E+00 2.796580E+00	-88.2647 87.2130	1.828845E+00 -2.473189E+00	-4.815752E+01 -6.005605E+01	2.499318E+01 2.879143E+01
	-5.000000E-01	-5.307322E+01	1.362709E-01	-4.372480E-01	-89.5292	1.398637E-01	-5.307681E+01	2.660834E+01
	5.000000E-01	-5.395417E+01	-1.931174E+00	4.146905E+00	85.4709	-1.602687E+00	-5.428266E+01	2.633999E+01
	-5.000.00E-01	-6.0877878+61	-3.0288495+00	4.264923E+00	85.8060	-2.717101E+00	-6.119042E+01	2.923666E+01
	5.000000E-01	-4.8562208+01	-2.2298265+00	4.918703E+00	84.0064	-1.713209E+00	-4.907861E+01	2.36F270E+01
	-5.0000008-01	-6.9133795+01	+1,3464865+01	1.453792E+01	76.0993	-1.039190E+01	-7.273175E+01	3.116992E+01
	5.000000E-01	-5.309945E+01	-9,8807595+00	8.485507E+00	79.2794	-8.274063E+00	-5.470615E+01	2.321604E+01
	-5.0000000E-01	-4.998303£+01	3.858411E+00	-2.325558E-01	-89.7525	3.859415E+00	-4.998404E+01	2.692173E+01
	5.000000E-01	-6.730520E+01	-5.1584:10E+00	5.489784E-01	89.4939	-5.153591E+00	-6.731005E+01	3.107823E+01
	-5.000000E-01	-5.2359335+01	2.4917078+00	-2.069292E-01	-89.7639	2.492487E+00	-5.236011E+01	2.742630E+01
	5.000000E-01	-5.4946275+01	-5.3048898+00	1.751326E+00	88.3195	-5.253307E+00	-6.499766E+01	2.987217E+01
	-5.003000E-01	-5.677684E+01	-4.904527E-01	1.332558E+00	88.6444	-4.649192E-01	-5.680838E+01	2.817173E+01
	5.000300E-01	-6.067099E+01	-5.765318E+00	3.245422E+00	86.6289	-5.574149E+00	-6.086216E+01	2.764401E+01
	-5.0000008-01 5.0000008-01	-6.234263E+01 -5.528002E+01	-5.968458E+00 -7.175891E+00	5.485133E+00 4.872293E+00	84.2742	-5.440216E+00 -6.687356E+00	-6.287137E+01 -5.576856E+01	2.8715588+01 2.4540608+01
	-5.003100E-31	-6.827417E+C1	-1.5081228+01	9.570257E+00	79.7252	-1.327385E+01	-7.008154E+01	2.8403845+01
	5.006100E-01	-4.723103E+C1	-1.0784088+01	£.912444E+00	79.6138	-9.517122E+00	-4.849804E+01	1.9490465+01
	-5,0000006-01	-5.196023E+01	1.653177E+00	-1.848591E-01	-89.8024	1.653815E+00	-5.196087E+01	2.680734E+01
	5,000:006-01	-6.628584E+01	-4.014011E+00	5.5.2348E-01	89.4551	-4.008378E+00	-6.629147E+01	3.114155E+01
	-5.0000006+01	-5,3649765+01	2.4923555-01	-9.9911178-02	-89.8937	2.194208E-01	-5.364945E+01	2.693468E+01
	5.000 005-01	-6,4584795+01	-5.0699375+00	1.798193E+00	88.2710	-5.015655E+00	-6.4e3907E+01	2.981171E+01
	10-300	-5.642723E+01 -6.146917E+01	-2.551@ak)E+60 -7.313980E+00	1.166583E+00 3.024682E+00	88.7601 86.8131	-2.526747E+00 -7.145577E+00	-5.645248E+01 -6.163758E+01	2.6962875+01 2.7246005+01
	# 8 . 100 1000 E + 01	-5.9544¤2E+01 -5.6718 5E+01	-7.4175885+00 -9.9170735+00	3.642202E+00 4.186036E+00	86.0224 84.9290	-7.164333E+00 -9.545615E+00	-5.979807E+01 -5.709041E+01	2.631687E+01 2.377240E+01
	#8.400000E-01	-6.796834E+01	-1.8351775+01	5.863905E+00	83.8063	-1.577709£+01	-6.858302E+01	2.640296E+01
	8.400000E-01	-4.430228E+01	-1.0875065+01	5.316324E+00	81.1772	-1.005089E+01	-4.512745E+01	1.753828E+01
	-5.000000E-01	-5.219732E+01	-1.854979E+00	-1.159811E-01	-89.8680	-1.854712E+00	-5.219759E+01	2.517144E+01
	5.000000E-01	-6.300009E+01	-1.532313E+00	4.698806E-01	89.5620	-1.528722E+00	-6.300368E+01	3.073748E+01

FEBRUARY 9, 1981 NASTRAN 12/15/80

9

SUPCASE

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

PRESSURE LOAD

2.385691E+01 1.649943E+01 2.473421E+01 2.946532E+01 2.396674E+01 2.698074E+01 2.4523338+01 2.910010E+01 2.324976E+01 2.674320E+01 2.249555E+01 2.272161E+01 2.394936F+01 2.712283E+01 2.994441E+01 2.634947E+01 2.855802E+01 2.353685E+01 2.274145E+01 2.566935E+01 1.524863E+01 2.326350E+01 2.291653E+01 2.528101E+01 3.032630E+01 2.490167E+01 2.617012E+01 SHEAR a Ω ν Ο -5.318075E+01 -5.167436E+01 -5.511847E+01 -5.875412E+01 -6.517639E+01 -5.305960E+01 -6.231797E+01 -5.338224E+01 -6.152142E+01 -5.419591E+01 -5.941093E+01 -5.694573E+01 -5.416204E+01 -6.574087E+01 -4.136289E+01 -5.443650E+01 +6.428845E+01 -5.423213E+01 -6.405271E+01 -6.906928E+01 -4.163231E+01 -5.816388E+01 -5.347580E+01 -5.400206E+01 -6.306806E+01 -5.579286E+01 -5.860959E+01 MINOR PRINCIPAL STRESSES (ZERO SHEAR) ပ S -3.712344E+00 -2.703720E+00 -7.184983E+00 -4.792641E+00 -1.163689E+01 -7.642751E+00 -1.746257E+01 -9.413429E+00 -2.507581E+00 -1.665369E+00 -4.335571E+00 -3.321224E+00 -7.696390E+00 -5.924524E+00 -1.195464E+01 -8.718812E+00 -1.784215E+01 -9.713990E+00 -1.908384E-01 -4.399620E+00 -1.583181E+00 -6.916686E+00 -4.198722E+00 -8.719153E+00 -1.773059E+01 -1.113505E+01 -1.072782E+01 -1.312669E+01 z MAJOR w Σ ш ш 89.8095 88.2586 86.7491 86.3298 -89.7343 89.5661 -89.5271 88.5821 89.5356 86.6963 87.0330 85.4145 -8ª.8127 89.5296 89.6689 89.3109 83.1376 -89.8801 89.8481 88.3857 ٦ ۲ ANGLE RAL QUADRILATER/ 3.045028E+00 3.513209E+00 2.588497E+00 2.349004E+00 1.545030E-01 1.455937E+00 1.596246E+00 2.534213E+00 2.134098E+00 -2.345025E-01 4.593114E-01 1.439680E+00 3.769038E-01 2.343512E+00 3.817045E+00 1.826234E+00 1.325582E+00 3.840786E-01 1.667600E+00 3.733001E-01 -4.0482:3E-01 -1.134926E-01 -1.722969E-01 4.690474E-01 2.877588E-01 6.294177E-01 SHEAR-XY IN ELETENT COORD SYSTEM -1.2104075+01 -8.840560E+00 -1.910758E-01 -4.400041E+00 -3.7128915+00 -2.729924£+00 -1.1785515+01 -7.7423365+00 -1.7558095+01 -9.7918005+00 -2.508668E+00 -1.668847E+00 -4.338912E+00 -3.356859E+00 -7.699445E+00 -6.027403E+00 -1.8148285+01 -9.8199245+00 -4.200384E+00 -1.073539E+01 -7.229246E+00 -4.839404E+00 -1.583745E+00 -6.920517E+00 -8.756511E+00 -1.3129940+01 -1.778432E+01 -1.113961E+0 メーコないはつと ш Z u O STRESSES -5.318021E+C1 +6.164815E+01 -6.498047E+C1 -5.337890E+01 -6.148579E+01 -5.679631E+01 -5.404029E+01 -5.400043E+01 -6.306049E+01 -5.507420E+01 -5.870685E+01 -5.801425E+01 -5.337622E+01 -5.306852E+01 -6.231449E+01 -5.419296E+01 -6.5434735+01 -4.1196965+01 -5.443626E+01 -6.428803E+01 -6.4048HSE+01 -6.901506E+01 -4.162775E+01 -5.428157E+01 -5.575550E+01 -5.860635E+01 NORMAL-X 2 -S w S S w -5.000300E-01 5.000300E-01 -5.000000E-01 -5.000000E-01 5.000000E-01 -5.000000E-01 -5.000000E-01 -5.000000E-01 5.000000E-01 -5.000000E-01 5.000000E+01 -5.000000E-01 -5.000000E-01 5.000000E-01 -5.000000E-01 5.000000E-01 -5.000000E-01 5.000000E-01 -5.0000000E-01 5.000000E-01 -5.000000E-01 -5.000000E-01 α FIBRE DISTANCE <u>ب</u> ري 32 33 34 35 4 42 43 44 45 5 52 53 54 55 ELEMENT 10.

NASTR. STAFIC	NASTRAN COURSE STAFIC STRESS ANALYSIS	DEMO. PROB. 1A S OF RING-STIFFENED	A ENED CYLINDER		FEBRUARY	9, 1981 NAST	NASTRAN 12/15/80	PAGE
AXISY	AXISYMMETRIC PRESSURE LOAD	LOAD (COMPARE	TO PROB. 18)				SUECASE	m
ELEMENT ID.	SA 1 SB 1	S T R E S SA2 SB2	S S E S I N SA3 SB3	B A R E L E SA4 SB4	M E N T S AXIAL STRESS	(C B A R) SA-MAX SB-MAX	SA-MIN SB-MIN	M.ST
101	2.601:99E-01	-2.601199E-01 -2.601199E-01	0.0	00	-5.204877E+01	-5.178865E+01 -5.178865E+01	-5.230889E+01	
102	2.601199E-01 2.601199E-01	-2.601199E-01 -2.601199E-01	0.0	0.0	-5.204877E+01	-5.178865E+01 -5.178865E+01	-5.230889E+01 -5.230889E+01	
103	2.601199E-01	-2.601199E-01 -2.601199E-01	0.0	00.0	-5.204877E+01	-5.178865E+01 -5.178865E+01	-5.230889E+01	
104	2.601199E-01 2.601199E-01	-2.601199E-01 -2.601199E-01	0.0	0.0	-5.204877E+01	-5.178865E+01 -5.178865E+01	-5.230889E+01	
105	2.601199E-01 2.601199E-01	-2.601199E-01 -2.601199E-01	0.0	0.0	-5.204877E+01	-5.178865E+01 -5.178865E+01	-5.230889E+01	
141	-2.711327E-04 -2.711326E-04	2.711325E-04 2.711325E-04	0.0	0.0	-5.721378E+01	-5.721350E+01 -5.721350E+01	-5.721405E+01 -5.721405E+01	
142	-2.711327E-04 -2.711326E-04	2,711325E-04 2,711326E-04	0.0	0.0	-5.721378E+01	-5.721350E+01 -5.721350E+01	-5.721405E+01 -5.721405E+01	
143	-2.711326E-04 -2.711325E-04	2.711325E-04 2.711326E-04	0.0	00.0	-5.721378E+01	-5.721350E+01 -5.721350E+01	-5.721405E+01 -5.721405E+01	
144	-2.711326E-04 -2.711325E-04	2.711326E-04 2.711327E-04	0.0	0.0	-5.721378E+01	-5.721350E+01 -5.721350E+01	-5.721405E+01 -5.721405E+01	
145	-2.711326E-04	2.711326E-04 2.711327E-04	00.0	00.	-5.721378E+01	-5.721350E+01 -5.721350E+01	-5.721405E+01 -5.721405E+01	

PAGE

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF RING-STIFFENED CYLINDER

	e	0 2)	MAX SHEAR	2.760263E+01 2.655645E+01	2.760263E+01 2.655645E+01	2.760263E+01 2.655645E+01	2.760263E+01 2.655645E+01	2.7602635+01 2.655645E+01	3.041310E+01 2.849698E+01	3.041310E+01 2.849698E+01	3.041310E+01 2.849698E+01	3.041310E+01 2.849698E+01	3.041310E+01 2.849698E+01	3.017338E+01 2.901373E+01	3.017338E+01 2.901373E+01	3.017338E+01 2.901373E+01	3.017338E+01 2.901373E+01	3.017338E+01 2.901373E+01	2.794059E+01 2.914027E+01
	SUBCASE	4 7 0 0	ERO SHEAR) MINOR	-5.371072E+01 -5.460744E+01	-5.371072E+01 -5.30744E+01	-5.371072E+01 -5.460744E+01	-5.371072E+01 -5.460744E+01	-5.371072E+01 -5.460744E+01	-5.808889E+01 -5.973127E+01	-5.808889E+01 -5.973127E+01	-5.808889E+01 -5.973127E+01	-5.808889E+01 -5.973127E+01	-5.808889E+01	-5.869012E+01 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.759500E+01 -5.656671E+01
		ELEMENTS	IPAL STRESSES (Z	1.494533E+00 -1.494533E+00	1,494533E+00 -1,494533E+00	1.494533E+00 -1.494533E+00	1.494533E+00 -1.494533E+00	1.494533E+00 -1.494533E+00	2.737303E+00 -2.737303E+00	2.737303E+00 -2.737303E+00	2.737303E+00 -2.737303E+00	2.737303E+00 -2.737303E+00	2.737303E+00 -2.737303E+00	1.656646E+00 -1.656646E+00	1.656646E+00 -1.656646E+00	1.656646E+00 -1.656646E+00	1.656646E+00 -1.656646E+00	1.656646E+00 -1.656646E+00	-1.713819E+00 1.713819E+00
		T E R A L YSTEM)	PRINC: ANGLE	0000.06-	90.0000	90.000.06	0000.06-	90.00.06-	0000.06-	-90.0000-	0000.06-	-90.0000	90.0000-	90.0000	90.0000-	0000.06-	0000.06	90.0000-	0000.06-
		U A D R I L A T	D SYSTEM SHEAR-XY	-1.023182E-12 -1.023182E-12	7.958079E-13 -6.707523E-12	7.958079E-13 -5.343281E-12	-7.958079E-13 -5.570655E-12	7.958079E-13 -2.614797E-12	-1.250555E-12 -5.684342E-13	-2.160050E-12 -1.477929E-12	-4.092726E-12 1.364242E-12	-2.387424E-12 -3.410605E-13	1.023182E-12 -1.023182E-12	3.979039E-13 -1.648459E+12	2.842171E-13 -1.080025E-12	-2.330580E-12 3.979039E-13	-2.444267E-12 9.663331E-13	1.477929E-12 -1.250555E-12	-1.136868E-13 -1.136868E-13
D CYLINDER	PROB. 18)	ENERAL Q	IN ELEVENT COOR NORMAL-Y	1.494533E+00 -1.494533E+00	1.494533E+00 -1.494533E+00	1.494533E+00 -1.494533E+00	1,494533E+00 -1,494533E+00	1.494533E+00 -1.494533E+00	2.737303£+00 -2.737303E+00	2.737303£+00 -2.737303£+00	2.737303E+00 -2.737303E+00	2.737303E+00 -2.737303E+00	2.737303E+00 -2.737303E+00	1.656646E+00 -1.656646E+00	1.656646E+00 -1.656646E+00	1.656646E+00 -1.656546E+00	1.656646E+00 -1.656646E+00	1.656848E+60 +1.656843E+00	-1.713819E+00 1.713819E+00
OF RING-STIFFENE	LOAD (COMPARE TO	S E S	STRESSES NORMAL-X	-5.371072£+01 -5.460744£+01	-5.371072E+01 -5.460744E+01	-5.371072E+01 -5.460744E+01	-5.371072E+01 -5.4607445+01	-5.371072E+01 -5.460744E+01	-5.808889E+01 -5.973127E+01	-5.8088895+01 -5.973127E+01	-5.808839E+01 -5.973127E+01	-5.808889E+01 -5.973127E+01	-5.808869E+C1 -5.973127E+C1	-5.869012E+C1 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.869012E+01 -5.968410E+01	-5.759500E+01 -5.656671E+01
STRESS ANALYSIS	RIC PRESSURE	S → S	FISRE DISTANCE	-5.000000E-01 5.000000E-01	-5.3000006-01 5.0000006-01	-5.0000001-01 5.000000E-01	-5.000000E-01 5.000000E-01	-5.000000E-01	-5.000000E-01 5.0000000E-01	-5.000000E-01 5.000000E-01	-5.000300E-01 5.000000E-01	-5.000000E-01 5.000000E-01	-5.000000E-01 5.000000E-01						
STATIC	AXISYMMET		ELEMENT ID.	-	8	m	4	w	=	12	13	4	<u>.</u>	21	22	23	24	25	31

SUECASE 3

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF RING-STIFFENED CYLINDER

(COUAD2) ELEMERIS GENERAL QUADRILATERAL (IN ELEMENT COORDINATE SYSTEM) AXISYMMETRIC PRESSURE LOAD (COMPARE TO PROB. 18) z H STRESSES

	MAX	2.794059E+01	2.794059E+01	2.794059E+01	2.794059E+01	2.794377E+01	2.794377E+01	2.794377E+01	2.794377E+01	2.794377E+01	3.011876E+01	3.011876E+01	3.011876E+01	3.011876E+01	3.011876E+01
	SHEAR	2.914027E+01	2.914027E+01	2.914027E+01	2.914027E+01	2.911229E+01	2.911229E+01	2.911229E+01	2.911229E+01	2.911229E+01	2.895329E+01	2.895329E+01	2.895329E+01	2.895329E+01	2.895329E+01
	RO SHEAR)	-5.759500E+01	-5.759500E+01	-5.759500E+01	-5.759500E+01	-5.755685E+01	-5.755685E+01	-5.755685E+01	-5.755685E+01	-5.755685E+01	-5.857257E+01	-5.857257E+01	-5.857257E+01	-5.857257E+01	-5.857257E+01
	MINOR	-5.656671E+01	-5.656671E+01	-5.656671E+01	-5.656671E+01	-5.655526E+01	-5.655526E+01	-5.655526E+01	-5.655526E+01	-5.655526E+01	-5.957154E+01	-5.957154E+01	-5.957154E+01	-5.957154E+01	-5.957154E+01
	PAL STRESSES (ZERO	-1.713819E+00	-1.713819E+00	-1.713819E+00	-1.713819E+00	-1,669308E+00	-1.669308E+00	-1.669308E+00	-1.669308E+00	-1.669308E+00	1.664961E+00	1.564961E+00	1.664961E+00	1.664961E+00	1.664961E+00
	MAJOR	1.713819E+00	1.713819E+00	1.713819E+00	1.713819E+00	1,669308E+00	1.669308E+00	1.669308E+00	1.669308E+00	1.669308E+00	-1.664961E+00	-1.664961E+00	-1.664961E+00	-1.664961E+00	-1.664961E+00
SYSTEM)	PRINCIPAL ANGLE	0000.06-	0000.06-	0000.06-	90.0000	-90.0000-	-90.0000	-90.0000	-90.0000	-90.0000-	-90.0000-	90.0000	90.0000	90.0000	0000.06-
COORDINATE	SYSTEM	-1.705303E-12	-4.376943E-12	-2.557954E-12	2.273737E-13	-3.524292E-12	-2.955858E-12	-1.193712E-12	-1.705303E-12	-3.979039E-13	-3.126388E-13	5.684342E-14	-1.051603E-12	-2.103206E-12	1.136868E-13
	SHEAR-XY	2.387424E-12	3.808509E-12	3.581135E-12	2.273737E-13	-1.136868E-13	-3.637979E-12	-3.922196E-12	-3.069545E-12	-1.080025E-12	-3.126388E-13	-1.307399E-12	3.126388E-13	6.252776E-13	-5.684242E-13
(IN ELEMENT	IN ELEWENT COORD NORMAL-Y	-1.713819E+00 1.713819E+00	-1.713819E+00 1.713819E+00	-1.713819E+00 1.713819E+00	-1.713819E+00	-1.669308E+00 1.669308E+00	-1.669308E+00 1.669308E+00	-1.669308E+00 1.669308E+00	-1.669308E+00 1.669309E+00	-1.669308E+00 1.669308E+00	1.664961E+00 -1.664961E+00	1.664961E+00 -1.664961E+00	1.664961E+00 -1.664961E+00	1.664961E+00 -1.664961E+00	1.664961E+00 -1.664961E+00
	STRESSES	-5.759500E+01	-5.759500E+01	-5.759500E+01	-5.759500E+01	-5.755685E+01	-5.755685E+01	-5.755635E+01	-5.755685E+01	-5.755685E+C1	-5.857257E+01	-5.857257E+01	-5.857257E+01	-5.857257E+01	-5.857257E+01
	NORMAL-X	-5.656671E+01	-5.656671E+01	-5.656671E+01	-5.656671E+01	-5.655528E+01	-5.655526E+01	-5.655526E+01	-5.655526E+01	-5.655523E+O1	-5.957154E+01	-5.957154E+01	-5.957154E+01	-5.957154E+01	-5.957154E+01
	FIBRE DISTANCE	-5.000000E-01 5.000000E-01	-5.000000E-01	-5.000000E-01 5.000000E-01	-5.000.00E-01 5.000000E-01	-5.000000E-01 5.00000CE-01	-5.000300E-01 5.000300E-01	-5.000000E-01 5.000000E-01	-5.0000000E-01	-5.0000005-01 5.000000E-01	-5.000000E-01 5.000000E-01	-5.000000E-01 5.000000E-01	-5.000000E-01 5.000000E-01	-5.000000E-01 5.000000E-01	-5.000000E-01 5.000000E-01
	ELEMENT IO.	32	33	34	35	4	42	43	44	45	51	52	53	4	5

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

FIRST TWO LOADS COMBINED (ARCH PROBLEM)

23

PAGE

FEBRUARY 9, 1981 NASTRAN 12/15/80

S MOCANS

2)	MAX	2.957300E+01	3.188614E+01	3.211293E+01	3.413570E+01	3.192379£+01	3.359350E+01	3.057462E+01	3.153540E+01	3.070450E+31	3.126435E+01	3.230414£+01	3.287573E+01
	SHEAR	4.107209E+01	3.802188E+01	4.142172E+01	3.883015E+01	4.148401£+01	3.862760E+01	4.118306E+01	3.810461E+01	4.071480E+01	3.766367E+01	4.009595E+01	3.703865E+01
0 V O O V	O SHEAR)	-5.536702E+01	-6.156315E+01	-5.827928E+01	-6.534591E+01	-6.046095E+01	-6.687862E+01	-6.176620E+01	-6.696613E+01	-6.283814E+01	-6.724600E+01	-6.340727E+01	-6.777513E+01
	WINOR	-8.680932E+01	-7.906371E+01	-9.110577E+01	-8.413055E+01	-8.996911E+01	-8.367851E+01	-8.614346E+01	-8.047863E+01	-8.532239E+01	-8.032519E+01	-8.758445E+01	-8.292527E+01
ELEMENTS	JAL STRESSES (ZERO	3.778978E+00	2.209140E+00	5.946571E+00	2.925494E+00	3.446626E+00	3.083880E-01	-6.169687E-01	-3.895324E+00	-1.429150E+00	-4.717294E+00	1.201016E+00	-2.023668E+00
	MAJOR	-4.665147E+00	-3.019959E+00	-8.262335E+00	-6.470245E+00	-7.001091E+00	-6.423303E+00	-3.777342E+00	-4.269403E+00	-3.892795E+00	-4.997851E+00	-7.392556E+00	-8.847966E+00
A T E R A L E	PRINCIPAL	-89.3859	-88.8853	-89.9684	89.7615	-89.6472	-89.5316	-89.7545	-89.8333	-89.8103	-89.8453	89.9757	89.8262
SYSTEM)	ANGLE	88.9833	87.0543	89.6297	88.6251	89.5257	88.3580	89.8309	89.3127	89.4051	88.2270	89.8865	89.6373
A D R I L /	SYSTEM	-6.338860E-01	-1.240365E+00	-3.540655E-02	2.841598E-01	-3.931683E-01	-5.492134E-01	-2.620588E-01	-1.835476E-01	-2.033537E-01	-1.687972E-01	2.738414E-02	1.995038E-01
	SHEAR-XY	1.457306E+00	3.902656E+00	5.353642E-01	1.862845E+00	6.857147E-01	2.212739E+00	2.430320E-01	9.140492E-01	8.454695E-01	2.329436E+00	1.587993E-01	4.689202E-01
ENERAL QU	IN ELEMENT COORD	3.772184E+00	2.1850065+00	5.946551E+00	2.9243115+00	3.444204E+00	3.0389825-01	-6.180918E-01	-3.895858E+00	-1.429H24E+00	-4.717750E+00	1.2C1004E+00	-2.024273E+00
	NORMAL-Y	-4.691009E+00	-3.220779E+00	-8.265795E+00	-6.5149555+00	-7.006775E+G0	-6.4867325+00	-3.778059E+00	-4.280368E+00	-3.901574E+00	-5.069955E+00	-7.392870E+00	-8.850935E+00
S E S E S	STRESSES	-5.536022E+01	-6.153901E+01	-5.827926E+01	-6.534473E+01	-6.039853E+01	-6.687413E+01	-6.176508E+01	-6.696560E+01	-6.283747E+01	-6.724554E+01	-6.340726E+01	-6.777453E+01
	NORMAL-X	-8.678346E+01	-7.886289E+01	-9.110231E+01	-8.408584E+01	-8.996342E+01	-8.361508E+01	-8.614275E+0:	-8.046765E+C1	-8.531361E+01	-8.025308E+01	-8.758414E+01	-8.292230E+01
STRES	FIBRE	-5.000000E-01	-5.000000E-01	-5.000000E-01	-5.000000E-01	-5.000000E-01	-5.000000E-01	-5.0000000E-01	-5.000000E-01	-5.000000E-01	-5.000000E-01	-5.0000000E-01	-5.000000E-01
	DISTANCE	5.000000E-01	5.000000E-01	5.000000E-01	5.000000E-01	5.000000E-01	5.000000E-01						
	ELEMENT IO.	-	α	-	12	12	22	31	35	44	42	£	52

STATI	NASTRAN COURSE DEMO. ; STATIC STRESS ANALYSIS OF ARCH	DEMO. PROB. 1A S OF ARCH			FEBRUARY	9, 1981 NAST	NASTRAN 12/15/80	PAGE
PRESS	PRESSURE LOAD						SUBCASE	-
EMENT ID.	\$41 \$81	S T R E S SA2 SB2	S S E S 1 N SA3 SA3 SB3	B A R E L SA4 SB4 SB4	EMENTS AXIAL STRESS	(C B A R) SA-MAX SB-MAX	SA-MIN SB-RIN	M.S.17
101	1.777819E+01 2.067983E+01	2.606363E+01 3.615829E+00	0.0	0.0	-2.958180E+01	-3.518169E+00 -8.901973E+00	-2.958180E+01 -2.958180E+01	
102	8.762021E+00 1.636086E+01	4.088217E+01 -2.398437E+01	0.0	0.0	-3.813125E+01	2.750919E+00 -2.177039E+01	-3.813125E+01 -6.211561E+01	
103	-4.769990E+00 5.381531E+00	4,504218E+01 -5.030657E+01	0.0	00	-5.389144E+01	-8.849261E+00 -4.850991E+01	-5.866143E+01 -1.041980E+02	
104	-1.685068E+01 -1.726711E+01	2.616520E+01 -4.987735E+01	0.0	0.0	-7.132793E+01	-4.516273E+01 -7.132793E+01	-8.817861E+01 -1.212053E+02	
105	-2.221661E+01 -6.496445E+00	-2.116933E+01 2.207008E+00	000	00.0	-7.742910E+01	-7.742910E+01 -7.522209E+01	-9.964571E+01 -8.392555E+01	
141	1.083077E+01 9.871705E+00	1.090796E+01 9.987181E+00	0.0	0.0	-4.195017E+01	-3.104221E+01 -3.196299E+01	-4.195017E+01 -4.195017E+01	
142	1.078128E+01 6.871819E+00	1.064428E+01 6.929305E+00	0.0	0.0	-4.353340E+01	-3.275213E+01 -3.660350E+01	-4.353340E+01 -4.353340E+01	
143	1.037027E+01 -1.032997E+00	9.860172E+00 -9.670713E-01	0.0	00.0	-4.827662E+01	-3.790635E+01 -4.827662E+01	-4.827662E+01 -4.930961E+01	
144	8.371822E+00 -1.709053E+01	8.063640E+00 -1.777677E+01	0.0	00.0	-5.948399E+01	-5.111216E+01 -5.948399E+01	-5.948399E+01 -7.726076E+01	
145	-3.717915E+00 -3.533586E+01	-4.215561E+00 -3.335410E+01	00.	00.	-7.773501E+01	-7.773501E+01	-8.195057E+01 -1.130709E+02	

NASTRAN COURSE - - - DEMO. PROB. 1A STATIC STRESS ANALYSIS OF ARCH

NASTRAN 12/15/80 9, 1981 FEBRUARY

z ш Σ ш _ w 4 œ G Z. S ш α **>** × × × כ J \ PRESSURE LOAD s Z STRAI

ö

2.513115E-06 3.662154E-07 2.481576E-06 2.681364E-07 2.354964E-06 5.525209E-07 2.323447E-06 4.927143E-07 2.285697E-06 4.006063E-07 2.292054E-06 5.022008E-07 2.353174E-06 7.362708E-07 2.417186E-06 2.307751E-06 3.622615E-07 2.075416E-06 7.725342E-07 2.510909E-06 3.811957E-07 2.457752E-06 2.170141E-06 1.902198E-06 7.870924E-07 2.422601E-06 4.847683E-07 1.761596E-07 2.948161E-07 2.347695E-06 1.614915E-07 2.355293E+07 SHEAR/TWIST (C O U A D 2) PAGE -1.817060E-06 -5.207548E-09 -1.796728E-06 -5.735054E-08 -1.777645E-06 -1.659052E-07 -1.815106E-06 -4.041169E-07 -2.028859E-06 -6.031422E-07 -1.948322E-06 -1.862370E-06 -6.819032E-07 -1.958995E-06 4.265145E-08 -1.919128E-06 3.363339E-08 -1.864395E-06 -1.215725E-07 -1.765073E-06 -7.340003E-07 -1.903045E-06 -1.201164E-07 SUBCASE -1.941480E-06 1.037374E-07 -1.930232E-06 1.882201E-08 -1.9166865-06 -2.494470E-07 -1.9:6873E-06 4.187432E-08 PRIN. STRNS./CURVS. (ZERO SHEAR/TWIST) 1.371247E-07 5.309216E-08 5.379033E-07 5.473134E-07 5.267189E-07 5.C80518E-07 4.769474E-07 9.808395E-08 3.243143E-07 5.647927E-07 5.400963E-07 3.718738E-07 4.869535E-07 .128145E-07 2.130464E-07 9.063108E-08 5.519142E-07 5.108788E-07 4.285669E-07 3.057462E-07 5.195564E-07 3.646520E-07 3.9106505-07 89.8529 89.3141-24.6456 87.9835 85.0007 77.4566 89.8437 89.2273 87.6462 -54.8826 79.6799 89.7986 -5.0685 85.5035 89.8187 85.7846 87.7815 -42.8460 84.3927 -16.9582 82.7572 88.9031 QUADRILATE COORDINATE SYSTEM) 89.1421 ANGLE 1.533565E-08 -5.077468E-08 1.208888E-08 -1.457683E-07 5.562295E-08 -3.734947E-07 1.607518E-07 3.979573E-07 -5.668061E-08 1.371155E-08 -6.773296E-08 6.692388E-08 -1.697155E-07 1.983791E-07 -1.657815E-07 4.488218E-07 5.311284E-08 7.315837E-07 2.650105E-07 1.765555E-08 -6.735334E-08 7.359220E-08 -1.645023E-07 -4.713230E-08 9.977250E-07 5.244554E-07 1.816215E-07 -1.610353E-07 4.758125E-07 3.012883E-08 3.392236E-07 ELEMENT COORD SYSTEM RWAL-Y SHEAR-XY ENERAL 5.378878E-07 4.580126E-09 5.263660C-07 2.832906E-08 5.0522196-07 4.5954145-07 2.133225E-07 2.337335E-08 5.647740E-07 5.396450E-07 4.828763E-07 1.464379E-07 6.719263E-08 5.513831E-07 .695543E-08 5.195322E-07 -1.187832E-07 3.690324E-07 1.108572E-07 5.103277E-07 4.250489E-07 1.083137E-07 2.9240785-07 1.115748E-07 5.2803745-08 1.068893E-07 STRNS . CURVS IN -1.948304E-06 4.872372E-07 -1.926155E-05 7.711632E-03 -1.894653E-C6 -2.474896E-07 1.817045E-06 5.375257E-07 -1.796395E-06 3.496842E-07 -1.774815E-06 8.690640E-09 -1.797700E-06 -4.025136E-07 -1.917868E-06 -4.933869E-07 -1.941028E-06 3.416008E-07 -1.795761E-06 -6.584647E-07 -1.958964E-06 4.2084845-07 -1.945322E-06 3.116093E-07 -1.915610E-06 -1.851055E-06 -1.191904E-07 -1.734838E-06 -7.337118E-07 -1.903020E-06 3.633188E-07 1.204446E-07 NORMAL-X ű 2 4 5 22 23 24 25 ELEMENT 5 31

PRESSURE LOAD						SUBCASE	
STRAINS/CURV	ATURES I	N GENERA	L Q U A D R I NT COORDINATE SY	LATERA STEM)	A L E L E M E	N T S (C 0	U A D 2)
ELEMENT	STRNS. CURV	S. IN ELEMENT C	OORD SYSTEM	PRIN. STRNS	S./CURVS. (ZERO	SHEAR/TWIST)	MAXIMU'A
ID.	NORMAL-X	NORMAL-Y	SHEAR-XY	ANGLE	MAJOR	MINOR	SHEAR/TWIST
32	-1.8815925-06	4.667615E-07	6.098297E-08	69.2562	4.671574E-07	-1.881988E-06	2.349145E-06
	2.920945E-07	-1.174450E-07	-9.345209E-08	-6.4271	2.973580E-07	-1.227085E-07	4.200665E-07
33	-1.836005E-06	3.677528E-07	1.322634E-07	88.2827	3.697355E-07	-1.837988E-06	2.207723E-06
	1.449820E-07	-1.159713E-07	-1.216440E-08	-1.3345	1.451237E-07	-1.161130E-07	2.612367E-07
34	-1.758964E-06	2.314716E-07	2.066268E-07	87.0365	2.368200E-07	-1.764212E-06	2.001032E-06
	-1.141596E-07	-8.842541E-08	4.33433CE-08	60.3494	-7.608889E-08	-1.264962E-07	5.040727E-08
35	-1.646330E-06	7.757583E-08	2.843203E-07	85.3173	8.922027E-08	-1.657975E-06	1.747195E-06
	-6.862356E-07	-3.274007E-08	-4.031573E-08	-88.2349	-3.211887E-08	-6.868568E-07	6.547379E-07
41	-1.902163E-06 3.165974E-07	5.072898E-07	9.741718E-09 -6.013054E-08	89.8842	5 072996E-07 3.186559E-07	-1.902172E-06 -1.225123E-07	2.409472£-06 4.411683E-07
42	-1.875933E-06 2.800502E-07	4.460606E-67	4.484372E-08 -1.598570E-07	89.4468 -11.0456	4.462770E-07 2.956527E-07	-1.876149E-06 -1.294065E-07	2.322426E-06 4.250593E-07
43	-1.823047E-06	3.387237E-07	1.178947E-07	88.4393	3.403296E-07	-1.824653E-06	2.164983E-06
	1.872263E-07	-1.068867E-07	-1.704394E-07	-15.0462	2.101350E-07	-1.297949E-07	3.399299E-07
44	-1.742554E-06	2.051059E-07	2.139584E-67	86.8655	2.109643E-07	-1.748412E-06	1.959376E-06
	-5.923239E-08	-8.122328E-08	2.075607E-08	21.6727	-5.510820E-08	-8.534747E-08	3.023928E-08
45	-1.637354E-C6	6.702163E-08	2.445421E-07	85.9175	7.574861E-08	-1.646081E-06	1.721829E-06
	-7.246421E-07	-3.523431E-08	1.725369E-07	82.9746	-2.460312E-08	-7.352733E-07	7.106701E-07
51	-1.955783E-06	5.171028E-07	1.963251E-09	89.9773	5.171032E-07	-1.955783E-06	2.472886E-06
	2.863025E-07	4.178117E-08	-2.359855E-08	-2.7562	2.868706E-07	4.121312E-08	2.456575E-07
52	-1.929652E-06	4.4991445-07	1.285919E-08	89.8452	4.499318E-07	-1.929670E-06	2.379602E-06
	2.722087E-07	8.021948E-08	-5.558317E-08	-8.0732	2.761507E-07	7.627742E-08	1.998733E-07
53	-1.876336E-06	3.363749E-07	3.974431E-08	89.4855	3.365534E-07	-1.875514E-06	2.21306RE-06
	2.366530E-07	1.272326E-07	-2.961044E-08	-7.5711	2.386209E-07	1.252648E-07	1.133561E-07
54	-1.796599E-06	2.070351E-07	7.408529E-08	88.9412	2.077197E-07	-1.797283E-06	2.005003E-06
	5.129405E-08	1.172724E-07	8.159695E-08	64.4793	1.367503E-07	3.181607E-08	1.049343E-07
ភេ	-1.699425E-06	7.114025E-08	8.842599E-08	88.5704	7.224361E-08	-1.700528E-06	1.772772E-06
	-8.464583E-07	5.236632E-08	1.121986E-07	86.4423	5.585418E-08	-8.499462E-07	9.058003E-07

8/15/79

MWMM MM MW MWIMN LEVEL 17.5.1 MWMWW MW MW MW SYSTEM GENERATION DATE T. C. L. L. MUMMUMMINIM MUNICA MAM MM NENTA MINIM Z. MM MMMM SAMPLANCE. MINIM **FINAMENTAL** M MWW ENTERNACIN MIN Ξ WILLIAM TO THE TOTAL OF THE TOTAL CONTROL OTHER CONTROL OF THE TOTAL CONTROL OTHER CONTROL OT MARKARANAMAN MARKATAN MINANTARIA PARTO GATO ATTO TO TOTA DE LA CALLE - ATTO TO DESTRUCTO DE DESTA DE LA CONTRACTO DE SANTARIA MINANTARIA WIND WIND MICHARIMAN CONTRAPORT TO MESSESSES OF THE MANAGEMENT CONTROL - PROPERTY OF THE PROPERTY MULTIPOLITICITAMICIMINAM MCMMMMMCC COMPANY CONTROL CONT MICHAEL - NAM BENNIM NICH COLONIAN MICHAEL COLONIAN - PARTEM MICHAEL COLONIAN COLONIAN MICHAEL COLONIAN MICH DAM DODGE SERVICE CONTROL OF CON M----MICH FRANKING 777 / //WWW. 2 MUNICIPAL M Microsophia activities . NIME: V MACCOLORIGIA MAN CONTRACTOR AND A CO Mention AND THE PERSON AND THE Party Control of the METHODOTOM Management (1/1) WAY THE TANK

2 2 2 2 3 3

NINTWININ MMWM MMMM

William Committee Committe

Participated and the control of the second second

6400 / 6500

RIGID FORMAT SERIES P

CDC 6000 SERIES

MANAGEMENTAL CONTRACTOR MMMATATATATATATATATATATATATATA

WWW. Company of the c

White the control of the control of

Management of the control of the con Printed and a supplication of the printed of the contract of the supplication of the s

E C H O

D E C

CONTROL

EXECUTIVE

NASTRAN

ID NASTRAN, DEMO
APP DISP
SOL 1,0
TIME 10
CEND

9

PAGE

NASTRAN COURSE - - DEMO. PROB. 18 RING-SIIFFENED CYLINDER WITH UNIFORM PRESSURE LOAD

CONICAL SHELL ELEMENTS (COMPARE TO PROBLEM 14, SUBCASE 3)

E C H D D E C X CONTROL CASE

TITLE=NASTRAN CCURSE - - - DEMO, PROB, 18
SUBITILE=RING-STIFFENED CYLINDER WITH UNIFORM PRESSURE LOAD
LABEL=CONICAL SHELL ELEMENTS (COMPARE TO PROBLEM 1A, SUBCASE 3)
SET 7 = 15.35
LCAOSINE
SET 7 = 15.35
LCAOSINE
DISP=ALL
STRESS=7
SPOFGRCE=ALL
OLOAD=ALL
BEGIN BULK

ო

NASTRAN COURSE - - - DEMO. PROB. 18 RING-STIFFENED CYLINDER WITH UNIFORM PRESSURE LOAD CONICAL SHE

																	+PCON1	•																								
		6																																								
		:																180																								
	0	αο																5.																								
	U	:																135	ა.											9	4 6	4	4	4 4	1 4	ব	4	4 ¢	46	4	寸 勺	4
	ш	7																																								
	∀	:																90.			360	360	360	360	360	000	200	360	360	300												
	∢	9														1.324-4	08333		0417																							
	¥	:														7	08	60.	9		o. c	. 0		0	°.	•	. c		0.	?												
	ت 1	S.																																								
<u>3</u>	ω	:	۲	υ.	0	ر د د) (C	30	35	0.1	1 5 2 6	1. 4 ນີ້ ໄປ	20	55	o Y C) ~.	. 4	30.	4		0 4	- 6 0 0	25.	30	35	4 4 0 n	1 ແ ບໍ່ດ	55	90	م د		٥.	4	. c	· ·	20.	2.5		32.	32.	2 d	4.
	E	4																													75								75			
SUBCASE	⊢ α	:	C	. m	ر د	ب 5 بر	0 0	25	30	35) C	1 T	5	in i	0 0 0)			٥.	45.	ر م	- - -	20	52	30	ທິເ	1 4 ວັກ	20	ខ្មា			60.	30.	909	 0000	€0.	60.			90.	0 0	90.
, 4-	s o	ო												•									_	_	_			_	_													
₩. i		:	4	4	ლ (י רי	, ო	3	en e	v) =:	1 4	ෆ	_ල	n (r	3.+7		5.5	4					Ξ.				.	1.0	- I												
PAGBLEM		7																																								
101				ı m											ນ ດ				43	S.				-	-	- •		-	τυ i	- c	vσ								4.4			
ARE		-	Δ.	EAX	X W U	χ × η ι	< x	EAX	EAX	E A X	11 ti	. χ (α	X X	Y Y	X X		ΕλΧ	7	E SX	×τ.	x >	< ×	(×	×	ΑX	× >	< ×	ΑX	X X	< ×	(×;	×	X Y	× ×	(X	×Α	X Y	X X	XX	XX	< ×	X
(COMPARE		,	ソートは	N000	CCON			0000	CCO	CC07			ຄວ	2000		1147	PCON	C04+	FCC.	2100	ער ק ער ק ער ק	7 7 7 7 7 7 7 1 7 7 7 8	PPES	PRES	PRES	0.00 0.00 0.00 0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PRES	PRES	7 C		RING	9 : 2 : a	2 2 2	000	2114G	RING	() () () () () ()	0 I I G	RING		RINGAX
•																																										
ELEMENTS																																										
١	C)	FNOO.	- 0	9 10	4 1	ָה ט ו	2	. 8	-6	10.	- (13-	144	15-	161	18-	6	20-	21-	22-	23.0	2 5 4	26-	27-	23-	290	ე ლ ე —	32-	33-	ا ا 1 ا	9 9 1	37-	38-	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	4 1	42-	43-	4 4 4 4 1 1	46-	47-	4 4 0 0 1 1	50-
4E.L	Ċ	53																																								

NASTRAN COURSE - - - DEMO, PROB. 18 RING-STIFFENES CYLINDER WITH UNIFORM PRESSURE LOAD

4

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

CONICAL SHELL ELEMENTS (COMPARE TO PROSLEM 14, SUBCASE 3)

σ 3452 E C H O ø в С Г Х ហ SORTED RINGAX 65 ENDOATA CARD COUNT 51-

0

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

103. 18 DECEMBER 27, 1979 NASTRAN

ເດ

PAGE

8/15/79

NASTRAN COURSE - - - DEMO. PROS. 18 RING-STIFFENED CYLINDER WITH UNIFORM PRESSURE LOAD CONICAL SHELL ELEMENTS (COMPARE TO PROBLEM 14, SUBCASE 3)

*** USER WARNING VESSAGE 2015, EITHER NO ELEVENTS CONNECT INTERNAL GRID POINT OR IT IS CONNECTED TO A RIGID ELEMENT OR A GENERAL ELEMENT.

2001 35 STARTING WITH ID *** SYSTEM INFORVATION MESSAGE 3113, EMCPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE EMGOLD IS PROCESSING ELEMENTS OF TYPE = 35, BEGINNING WITH ELEMENT ID *** SYSTEM INFORMATION MESSAGE 3107.

TPYAD--NULL WATRIX PRODUCT TPYAD--NULL MATRIX PRODUCT TPYAD--NULL MATRIX PRODUCT

205) 0 S AVG 0 PREFACE LOOPS GROUPS = z ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL C AVG = 6 PC AVG = 0 SPILL ADDITIONAL CORE= -28431 C MAX = 11 PCMAX = 0 PC

MPNAD--NULL MATRIX PRODUCT GPYAD--NULL MATRIX PRODUCT METHOD 2 NI,NBR PASSES = 1.EST. TIME

'n

*** USER INFORMATION MESSAGE 3035

FOR LOAD 1 EPSILON SUB E = -8.4760391E-13

MPYAD--NULL MATRIX PRODUCT METHOD 2 T ,NBP PASSES = 1.EST. TIME = METHOD 2 NI,NBW PASSES = 1.EST. TIME =

- 2

*** USER WARNING MESSAGE 2076, SDR2 DUTPUT DATA BLOCK NO. 1 15 PURGED

*** USER WARNING MESSAGE 2077, SDR2 OUTPUT DATA ELOCK NO. 2 IS PURGED

*** USER WARNING MESSAGE 2078, SOR2 DUTPUT DATA BLOCK NO. 3 IS PURCED

CONICAL

## C	CYLIND	- DEMJ. PROS. 18 DER WITH UNIFORM	PRESSURE	LOAD	DECEMBER	27, 1979 NAS	STRAN	8/15/79
12	TS (COMPA	E E	ROBLEM 14,	BCASE				
### 12			r+ S	2 3 5 8 2	E C T 0			
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Ξ.		7 2	E I	ж Т	23		83
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	00	-	•	1.3726016-0 3.6307136-0	0.0	1.112742E-0		
1.1 1.2 2.2	9.082216E-0			3.180.00.7E-0		3.5.5412E-0		
1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	9.010751E-0			2.7517798-0		3.4954435-0	•	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.052826E-0		•	2.5:6372E-0	•	3.4.9719E-0		
11.14.09.09.00.00.00.00.00.00.00.00.00.00.00.	1.161534E-0			2.33301E-0		1.917110E-0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2185.3F-0			7 : 0 : 00 : 00 : 0		0.252796E=0 1 075398E=0		
1 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	1.202955E-0			1.60gangE-0		.374786F-0		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.167751E-0			1.372931E-0		.112742E-0		
19.2.52.52 19.2.52.55 10.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	1.1173146-0			1.1439 385-0		.272038E-0		
14. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.095846E-0			9.2:52:5E-0	•	.175702E-0	•	
19.7.3.81 19.7.3.81	1.08±030E-04		٠	9.246740E-0	•	.168388E-0		
17.056732E-06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.082845E-04	_	•	9.24817.E-0	•	.161751E-0	•	
14.772603E-06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.117000E-04			7.056703E-0	٠	1.251518E-0		
	1.165694E-04		•	4.772603E-0	•	1.040575E-0		
	1.196707E-04	•		2.406617E-0		5.029012E-0	•	
	1.200558E-04				•	0.0		
		י כ		•	•	0.0	•	
		י כ			٠			
	· c) C			٠			
		0						
	0					0.0		
	0.	O				0.0		
	0.	0		٠		0.0		
	٥.	Ų		•		0.0		
	0.					0.0		
	٥.	Ŭ		•		0.0		
	0.0					0.0		
	0.		•			0.0		
	0.	J				0.0		
	0.	0	٠			0.0		
	0.	C				0.0		
	0.	0	•			0.0		
	0.					0.0		
	0.	_				0.0		
	0.	0				0.0		
	6.	0		•		0.0		
	o.	_		•		0.0		
	0.					0.0		
	0.	,				0.0		
	0.0			•		0.0		
	0.0					0.0		
	0.0					0.0		
	0.0					, c		
	• c							
	0.0					0 0		
	0							
	, ,							

And the second s

NASTRAN 8/15/79 DECEMBER 27, 1979 NASTRAN COURSE --- DEMO. PROB. 18 RING-STIFFENED CYLINDER WITH UNIFORM PRESSURE LOAD

000 œ 000 VECTOR 5 0.0 DISPLACEMENT 13 CONICAL SHELL ELEMENTS (COMPARE TO PROBLEM 14, SUBCASE 3) 000 42 000 00 SECTOR-ID POINT-ID RING-ID HARMONIC 60 2 65 2

83

PAGE

NASTRAN COURSE RING-STIFFENED	NASTRAN COURSE RING-STIFFENED CYLIND	DEMO.	PROS. 18 UNIFORM PRESSURE LOAD	040	DECEMBER	27, 1979	NASTRAN 8/15/79	91/51/
CONICAL SH	CONICAL SHELL ELEMENT	TS (COMPARE TO PROBLEM 14, SUBCASE 3)	PROBLEM 14,	SUBCASE 3)			•	
				LOAD VEC	7 O F			
SECTOR-10								
DOINTLID		ŀ	¢	43	ά	83	u.	R3
01-0VIX)	-7 K39R20F+02	7	0.0	0.0	0.0	0	
	0	-1.5079646+03	0.0	0.0	0.0	0.0	0.0	
- -	0	-1.507964E+03	0.0	0.0	0.0	0.0	0.0	
0 0	0	-1.507964E+03	0.0	0.0	0.0	0.0	0.0	
3 6	0	-1.507964E+03	0.0	0.0	0.0	0.0	0	
30	a	-1.507964E+03	0.0	0.0	0.0	0.0	0,0	
9 (2)	٥	-1,507964E+03	0.0	0.0	0.0	0.0	0.0	
0 4	0	-1.507964E+03	0.0	0.0	0.0	0.0	0.0	
. 43 . C	o	-1,507964E+03	0.0	0.0	0.0	0.0	0.0	
50	0	-1.507964E+03	0.0	0.0	0.0	0.0	0.0	
S	0	-1.507964E+03	0.0	0.0	0.0	0.0	o (
09	0	-1.507964E+03	0.0	0.0	0.0	0.	0.0	
65	0	-7.539822E+02	0.0	0.0	0.0	0.0	0.0	

œ

PAGE

NASTRAN 8/15/79 DECEMBER 27, 1979

6

PAGE

83

0.0

R2 6.279852E+02

<u>~</u>

0.

0.0

0.0

NASTRAN COURSE - - - DEMO. PROB. 18 RING-STIFFENED CYLINDER WITH UNIFORM PRESSURE LOAD

CONICAL SHELL ELEMENTS (COMPARE TO PROBLEM 14, SUBCASE 3)

CONSTRAINT SINGLE-POINT u. O FORCES

T3 -7.377821E-09 12 Ξ HARMONIC 0 SECTOR-ID POINT-ID RING-ID 65

NASTRAN COURSE --- DEMO. PROB. 18 RING-STIFFENED CYLINDER WITH UNIFORM PRESSURE LOAD

CONICAL SHELL ELEMENTS (COMPARE TO PROBLEM 11, SUBCASE 3)

	S F	ESSE	SINAX	W M A S - S I	ETRICC	ONICAL	SHELL ELEMENTS (((CCONEAX)	
ELEMENT ID. H	HARMONIC	POINT	FIBRE Distance	STRESSES NGRHAL-V	IN ELEMENT COOR!	RD SYSTEM SHEAR-UV	PRINCIPAL STRESSES (ZERO SHE/ ANGLE MAJOR MIN	HEAR) MAXIMUM MINOR SHEAR	Σ Σ
15	o		-5.000000E-01	-1.515142E+01	-6.416098E+01 -5.509136E+01	00.0			
15	-		-5.000000E-01	0.0	0.0	00.0			
15	8		-5.000000E-01	0.0	0.0	000			
15		0.0000	-5.000000E-01 5.000000E-01	-1.515142E+01 1.508066E+01	-6.4160988+01 -5.509136E+01	00.0	0.0000 -1.515142E+01 -6.41609 0.0000 1.508066E+01 -5.50913	6098E+01 2.450478E 19136E+01 3.508601E	E+01 E+01
15		30.0000	-5.000000E-01 5.000000E-01	-1.515142E+01	-6.416098E+01 -5.509136E+01	00.	0.0000 -1.515142E+01 -6.41609 0.0000 1.508066E+01 -5.50913	6098E+01 2.450478E	E +01 E +01
15		60.0000	-5.000000E-01	-1.515142E+01 1.503066E+01	-6.416038E+01 -5.509136E+01	00	0.0000 -1.515142E+01 -6.41609 0.0000 1.508066E+01 -5.5091	6098E+01 2.450479E 09136E+01 3.508601E	E+01 E+01
15		90.000	-5.000000E-01 5.000000E-01	-1.515142E+01 1.503066E+01	-6.416098E+01 -5.509136E+01	00.0	0.0000 -1.515142E+01 -6.416098E+ 0.0000 1.508066E+01 -5.509136E+	01 2.450478 01 3.508601	E+01 E+01
15	•	135.0000	-5.000000E-01 5.000000E-01	-1.515142E+01	-6.416098E+01 -5.509136E+01	00.0	0.0000 -1.515142E+01 -6.41609 0.0000 1.508088E+01 -5.5091	6098E+01 2.450475E 09136E+01 3.508601E	E+01 E+01
15		180.0000	-5.000000E-01 5.000000E-01	-1.515142E+01	-6.416098E+01 -5.509136E+01	0.0	0.0000 -1.515142E+01 -6.41609 0.0000 1.508066E+01 -5.50913	6098E+01 2.450478E	E+01
35	0		-5.000000E-01 5.000000E-01	-1.008167E+01 1.007292E+01	-6.019096E+01 -5.414459E+01	00.0			
35	-		-5.000000E-01	00.0	00.0	00.0			
35	8		-5.000000E-01 5.000000E-01	0.0	00.0	00.0			
35		0.000	-5.000000E-01 5.00000E-01	-1.008167E+01 1.007292E+01	-6.019096E+01 -5.414459E+01	00.0	0.0000 -1.008167E+01 -6.01909 0.0000 1.007292E+01 -5.41449	9096E+01 2.505465E 4459E+01 3.210875E	E+01 E+01
35		30.000	-5.000000E-01 5.000000E-01	-1.008167E+01	-6.019096E+01 -5.414459E+01	0.0	0.0000 -1.008167E+01 -6.01909 0.0000 1.007292E+01 -5.41449	90962+01 2.505465E 4459E+01 3.210875E	E+01 E+01
35		0000.09	-5.000000E-01	-1.008167E+01 1.007292E+01	-6.019096E+01 -5.414459E+01	00.0	0.0000 -1.008167E+01 -6.01909 0.0000 1.007292E+01 -5.41449	9096E+01 2.505465E 4459E+01 3.210875E	E+01 E+01
35		0000.06	-5.000000E-01	-1.008167E+01 1.007292E+01	-6.019096E+01 -5.414459E+01	00	0.0000 -1.008167E+01 -6.01909 0.0000 1.007292E+01 -5.41449	19096E+01 2.505465E 14459E+01 3.210875E	E+01

NASTRAN COURSE - - - DEMO, PROB. 18 RING-STIFFENED CYLINDER WITH UNIFORM PRESSURE 104D

CONICAL SHELL ELEMENTS (COMPARE TO PROBLEM 14, SUBCASE 3)

_

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

		MAXITON	SHEAR	2,5054656+01	3.210875E+01	2.505465E+01 3.210875E+01
STAMMETRIC CONICAL SHELL IN THE	SHERTENTS (CCONEAX	PRINCIPAL STRESSES (ZERO SHEAR)	ADDAM ADDAM	0.0000 -1.008167E+01 -6.019096E+01 2,505465E+01	U.0000 1.007292E+01 -5.414459E+01 3.210875E+01	0.0003 -1.008167E+01 -6.019096E+01 2.505465E+01 0.0000 1.007292E+01 -5.414459E+01 3.210875E+01
STRESSES IN AXIS-SYMMETRIC CONICAL	FIBRE	*C* HARBONIC ANGLE DISTANCE NORTALLY NORTALLO SHEAR-UV	35 135.0000 -5.000006-01 -1.000.027	5.000000E-01 1.007292E+01 -5.414459E+01 0.0	35 180.0000 -5.0000000 -1 0031276.00 1-1 00000000000000000000000000000000	5.000000E-01 1.007292E+01 -5.4:4459E+01 0.0

ERACIONAL ACTUAL ACTUAL

MANAGER CANAGE CHARACTERS OF STATE OF S Management of the company of the com

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.1

WASHA TO THE TANK THE Approximate the second of the second TOTAL CONTROL OF THE CONTROL OF THE

When you have the common and the common common and the common and

NUMBER : ∑ Fatata a contrat Managara and National States MILTERITOR Manager Control

ALCHARACA INCLARACA INCLARACA INCLARACA INCLARACA INCLARACA STATE WORL 12.114.14.1 2012-12M M / / BUILDING R---707 / Statute MITTER M

--- and continue m. 77

NAME OF STATES O

MOSSIN Machinera managerangeran

MINTED MINTED VAIN NAV MESSIA

. . Σ

MEAN

2

NUMBER EA MININA

1.1 MASTA

MINIMINIM

MMM

Σ

Ξ

MINITEDIA MWGGN MINIMA

> งระบุรารขณะเพ MATCHER IN MATCHER IN THE PROPERTY IN THE PROP 22 (100A) (2 = = = 4) (40A) 220A = = = = 50A) ACUTA MANAMATANA

> > WW. CALLETTE

Professional Contracts

WEST-ARTS TO STATE STATE

Without the control of the control o

MERCHANDA CARDACAMAN CONTRACTOR AND Managar and and suppression of the properties of

Medicinal and a second a second and a second

8/15/79 SYSTEM GENERATION DATE

PAGE

E C H O O F C CONTROL EXECUTIVE NASTRAN

ID NASTRAN, DEMO APP DISP SOL 1,0 TIME 10 CEND

PAGE

CARD

E C H

TITLE=NASTRAN COURSE --- DEMO. PROB. 1C

SUBTITLE=SYMMETRY EXAMPLE

DISH=ALL

LOAD=ALL

LOAD=ALL

SUBCES 1

CABEL=SYMMETRY

SPC=32

SUBCES 2

LOABEL=SYMMETRY

SPC=32

SUBCES 2

LOABEL=SYMMETRY

SPC=33

SUBCES 33

SUBCES 33

LOABEL=COMBINED SOLUTION - LOADED SIDE

SUBCES 15

SUBSEQ=0.5.-0.5

18

BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

NASTRAN COURSE - - - DEMO, PROB, 10 SYMMETRY EXAMPLE

ო

PAGE

_		
-		
_		
ž		
-		
•		
_		
_		
n		
٠		
J		
7		
•		

TYPE	
ä	
ELEMENTS	
FUECI STON	
SINGLE	
SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE FRECISION ELEMENTS OF	
EMGPRO	
3113,	
WESSAGE	
Z01 ►	
INFORMA	
SYSTEM	

Б С Н О	œ	0.0 0.0 123456	123456 123456
DATA	.0.	22	0
٦ *	; -		0
E D B U	・ なるなものとののできませるなるならのできる。・ なるなものとののできませるなるない。・ なるなものとののできませることできます。・ なるなりできます。		.00000
κ 0	004000000000000000000000000000000000	000	0
S	.4 .4	r 0	5.+7 5 123 456
	0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	
			0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
6	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ଧର୍ଷ୍ଟ୍ରେପ୍ରସ୍ଥ ସ୍ଥାପ୍ରସ୍ଥ ଅଟି । ଅବନ୍ୟ ପ୍ରସ୍ଥ ବିଷ୍ଟ୍ରିୟ ସ୍ଥାପ

++NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM++

	S AVG	PREFACE LOOPS .
(66	0	O PRE
OCK KLL (N = 89)	O SPILL GROUPS =	D PC GROUPS =
PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL	PC AVG = C	PCTAX = 0
IC DECOM	7	5
RS FOR SYMMETR	C AVG =	C WAX =
***USER INFORMATION MESSACE 3023PARAMETER	TIME ESTIVATE= 1	ADDITIONAL CORE= -28454
***USER INFORMATIO	⊩	ADD

WPYASH-HULL MATRIX PRODUCT WETHOO 1 NT.NBR PASSES = 1,EST. TIME =

?

NASTRAN COURSE - - - DEMO, PROB, 10 SYMMETRY EXAMPLE

DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE

*** USGR INFORVATION MESSAGE 3035

FOR LOAD 1 EPSILON SUB E ≈ -2.6366174E-12

MPKAD--NULL TATRIX PRODUCT METHID 2 T ,NGR PASSES = 1,EST, 71ME = .0

99) 0 S AVG 0 PREFACE LOOPS ***USER INFORMATION MESSAGE 3023--DARAMETERS FOR SYMMETRIC DECC...POSITION OF DATA BLOCK KLL (N = 1 C AVG = 7 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -28454 C MAX = 9 PCMAX = 0 PC GROUPS =

WETHOD 1 NT,NER PASSES = 1,EST. TIME =

Ġ

*** USER INFORMATION MESSAGE 3035

FOR LOAD

2 EPSILGN SUB E = -2.33497:0E-12

METHOD 2 I , NBR PASSES = 1,EST. TIME =

٥.

*** USER WARNING TESSAGE 2076, SOR2 OUTPUT DATA BLOCK NO. 1 IS PURGED

*** USER WARNING MESSAGE 2078, SDR2 GUTPUT DATA BLOCK NO. 3 IS PURSED

Ŋ

PAGE

SUBCASE 1

VECTOR

SYTTHELTA

83 -6.0 -1.1539978-05 -1.2148718-04 -7.2148718-06 -1.3739878-05 9.7721608-05 1.37398478-06 1.3739848-04 1.3739848-04 1.37388-05 0.0 6.7277348-07 6.727748-07 6	
PR2 	
81 0.0 7.4%50.74E-05 8.40.725E-05 6.70.973.14-05 5.84.17-14E-05 3.80.94.72E-05 2.20.44.72E-05 1.20.772.26E-05 1.20.772.26E-05 1.20.772.26E-05 1.20.772.26E-05 1.20.772.26E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05 1.20.283.4E-05	
13 0.0 0.13 1.32 1.56 0.0 1.32 1.66 0.0 1.32 1.32 1.66 0.0 1.32 1.32 1.36 0.0 1.32 1.32 1.36 0.0 1.32 1.35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
0.00	
71	
[₩] aaaaaaaaaaaaaaaaaaaa } }	
POINT 10 22 33 44 44 44 45 46 46 47 47 47 47 47 47 47 47 47 47 47 47 47	

PAGE

SUBCASE 2

ANTI-SYVVETRY

NASTAN COURSE - - - DEMO: PRO : 10 SYTHETAY EXAVOLE

	R3	0.0	-5.7699336-05	-1.1539875-04	-1.211871E-04	-7.147635E-05	-1.9807775-06			1.2742845-64	1.3625345-04	1.167442E-04	5.837210E-05	0.0	0.0	-1.1607:4E-04	-2.3214295-04	-2.574405E-04	-1.994048E-04	-9.970238E-05	0.0
	82	0.0	-9.038278E-05		-9.721702E-05	-8.522828E-05	-6.5:8304E-05	-4.853780E-05	-2.719257E-05	-7.8:7328E-06	2.485357E-06	1.116198E-05	1.229579E-05	0.0	0.0	-1.026786E-04			-7.738095E-05	-3.869048E-05	0.0
VECIOR	ā	0.0	7.45024E-05	9.430125E-05	8.069701E-05	6.709277E-05	5.8416148-05	4.8083468-05	3. F03472E-05	2.244991E-05	-2. H3H323E-06	-2.772256E-05	-2.802834E-05	0.0	0.0	1.026788E-04	1.220238E-04	8.333333E-05	4.464286E-05	2.232143E-05	0.0
ACEMENT	~; -	0.0	3.3121156-07		-5.128829E-05		-6.5 G.L. 8E-05	-3.8695446-05	-1.7576 255-05	-2.871770E-06	-4.143201E-06		-3.312115E-07		0.0	1.7347235-17	3,4694175-17	-5.543155E-05	-9.970238E-05	-8.296131E-05	-7.738095E-05
734816	12	0.0	2.0954198-05	6.5483705-05		1.7750435-04						2.3 05945-05	8.1475725-06	c.5	0.0	2.9141875-05	8.8789585-05	2.1465778-04	3,3234135-04	3.3234136-04	3.3234136-04
		0.0	2.550m35E-05	7.873215E+05	9.271241E-05	1.050957E-04	1.24.0345-04	サウト国にされていました	7.2276436-05	1.542936E-08	1.2743446-05	1.005752E-05	3.633513E-06	0.0	0.0	2.914187E-05	8.8789585-05	1.054563E-04	1.221230E-04	1.968998E-04	2.218254E-04
	T⊀PE	ر،	O	O	ပ	IJ	;)	c	(7)	ιj	₍₎	ڻ	()	ø	၁	cσ	(7	IJ	IJ	_U	IJ
	PCINT ID.	-	8	3	7	S	Ġ	۲-	מר	a)	0,4	-	1.2	13	21	22	53	24	25	26	27

PAGE

SUBCOM 11

NASTRAN COURSE - - - DEMO. PROB. 1C SYMMETRY EXAMPLE

COMBINED SOLUTION - LCADED SIDE

	R3	0.0	-5.7699338-05	-1.1539875-04	-1.2118715-04	•	-1.9807775-06		9.7721605-05		1.3625345-04	1.1674428-04	5.837210E-05	0.0	0.0	-5.7699335-05	-1.153987E-04	-1.211871E-04	-7.197635E-05	-1.980777E-06	5.458521E-05
	R2	0.0	-9.0382786-05	-1.108618E-04	-9.721702E-05	-8.5228245-05	-6.548304E-05	-4.653780E-05	-2.719257E-05	-7.847328E-06	2.485357E-06	1.116198E-05	1.2295795-05	0.0	0.0	-9.038278E-05	-1.108618E-04	-9.721702E-05	-8.522828E-05	-6.588304E-05	-4.653780E-05
V E C T G R	ir.	0.0	7.445024E-05	9.430125E-05	8.0-97016-05	6.709177E-05	5.8410145-05	4.808346E-05	3.609472E-05	2.2449-41E-05	-2.6:6:532-06	-2.772256E-05	-2.602834E-05	0.0	0.0	7.465024E-05	9.430125E-05	8.069701E-05	6.709277E-05	5.841614E-05	4.808346E-05
A C E T E N T	13		3.312115E-07	6.6242 08-07	-5.1,88298-05			-3.809048E-05			-4.1.32.1E-06					3.31211_6-07		-5.1288295-05		-6.538438E-05	
4 J G S : C	12	0.0	2.0051196-05	6.5-83708-05	1.2-32:45-04	10-3810811.					8.773536E-05				0.0	2.095419E-05	6.548370E-05	1.259218E-04	1.7750436-04	1,7183755-04	1.681708E-04
	1.1	0.0	2.55083SE-05	7.873216E-05	9.271231E-05	1.08000001	1.9432346-04	1.1001278-04	7.227643E-05	1.542@36E-05	1.27.3344E-05	1.005752E+05	3.633513E-06	0.0	0.0	2.5508355-05	7.873216E-05	9.271291E-05	1.0669376-04	1.2462345-04	1.109127E-04
	TYPE	O	Ø	G	ιj	ιŋ	IJ	Ç	ري	ڻ و	ŋ	()	()	ڻ	ø	IJ	ပ	IJ	J	ø	IJ
	POINT 1D.	-	2	m	ব	S	9	7	80	on	0	-	12	13	2.	22	23	24	25	26	27

8/15,
DECEMBER 27, 1979 NASTRAN 8/15,
1979
27,
DECEMBER
5 5
RОВ.
ASTRAN COURSE DEMO. PROB. 1C
1
376
ASTRAN COURSE YMWETRY EXAVPLE
244 E124
A S T.

MASTRAN COURSE SYMMETRY EXAMPLE		- DEMJ. PROB.	10		DECEMBER	27, 1979 N	NASTRAN 8/15/79 P.	PAGE
COMBINED SOLUTION - UNLOADED	1 701	UNLOADED SIDE					SURCOM 12	
			OISPLA	CEMENT	VECTOR			
POINT ID.	YPE	E	12	13	ά	C	rq	
y	ø	0.0	0.0	C	0		2	
Ø	()	0.0	0.0			0.0) c	
ო	c	0.0	0.0			0.0) C	
4	c	0.0	0.0			0 0		
S	IJ	0.0	0.0			0.0		
9	ပ	0.0	0.0	0.0	0.0	0.0	0	
t~	ပ	0.0	0.0			0,0	0.0	
œ	ပ	0.0	0.0			0.0	0.0	
ნ	ပ	٥.٥	o.o			0.0	0.0	
0,	Ø	0.0	0.0			0.0		
=	()	o.o	0.0		0.0	0.0	0.0	
12	IJ	0.0	0.0	0.0		0.0		
13	G	0.0	0.0	0.0	0.0	0.0	0.0	
21	IJ	0.0	0.0	0.0	0.0	0.0	0.0	
22	ပ	-3.6335136-06	37672E	312115E-0	-2.802834E-05	9579E-0	5 5.837210F-05	
23	IJ	-1.005752E-05	-2.3305985-05	6.624230E-07	-2.772256E-05	1,116198E-05	1.167442E-0	
24	ŋ	-1.274344E-05		4.143261E-06	-2.636323E-06	2.45357E-06	-	
25	()	-1.542936E-05	-1.5483706-04	.871770E-0	2.244991E-05	-7.847328E-08	1.2742845-	
26	g	-7.227643E-05	-1.605038E-04	.757693E-0	.609472E-0	-2.719257E-05	9.772160E-0	
27	IJ	-1.109127E-04	-1.681708E-04	3.869048E-05	.808346E-0	-4.653780E-0	5 5.458521E-05	

8	
DECEMBER 27, 1979 NASTRAN	
1979	
27,	
DECEMBER	
1 0	
DEMG. PROB.	
DEMO.	
1	LL.
NASTRAN COURSE	TRY EXAMPL
NASTRA	SYMME

თ

PAGE

NASTRAN COURSE SYMMETRY EXAMPLE	3SE	. DEMO. PROB. 1C	U			DECEMBER	27,	1979	NASTRAN	DECEMBER 27, 1979 NASTRAN 8/15/79	PAG
SYMMETRY										SUBCASE	-
			۱	> 0 K	LOAD VECTOR						
POINT 10. TYPE 5 G 25 G	+ > 0 0	1.000000E+03	1.000000E+03 0.0 1.000000E+03 0.0	0.0	00	οο <u>τ</u>	00	82	00	ж 3	

PAGE	8		
DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE	SUBCASE		r3
NASTRAN			00
616			8 2
27, 1			00
ECEMBER			R 1
۵		α	00
		LOAD VECTOR	T3
		Q 4	00
U		۲.	1.000000E+G3 0.0 1.000000E+O3 0.0
PROB. 1C			60 + +
DEMO. PR			T1 1.000000E+03 1.000000E+03
SE	>		TYPE G
NASTRAN COURSE DEMO. SYMMETRY EXAMPLE	ANT I - SYMMETRY		POINT 10. TYPE 5 G 25 G

PAGE	Ξ
DECEMBER 27, 1979 NASTRAN 8/15/79	Suecom 11
NASTRAN	0.0
1979	2
27,	0.0
DECEMBER	~
	LOAD VECTOR
o.	1.000000E+03 1.000000E+03 0.0 13 1.000000E+03 1.000000E+03 0.0
E DEMO. PROB. 1C ON - LOADED SIDE	1.000000E+03
RSE AMPLE LUTION -	7 Y P E
NASTRAN COURSE DEMO SYMMETRY EXAMPLE COMBINED SOLUTION - LOADED	POINT 10. TY 5 25

=

0.0

0.0

** LICNAB **.

NOMERICAL MECHANICS DIVISION (184), DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER, BETHESDA, MARYLAND 20084, U.S.A. Today is 12,27.79 ii.04.20. THE FOLLOWING COMMEN'S ARE READ BY BANDIT, WHICH RESEQUENCES THE GRID POINTS FOR REDUCED RMS WAVEFRONT (IF POSSIBLE)
AND GENERATES SEGGP CARDS.
TO BE READ BY BANDIT, \$ CARDS MUST APPEAR SOMEWHERE BEFORE THE BEGIN BULK CARD. GRID CARDS ARE IGNORED. SGRIC SO SCONFIG 6 CEND TITLE-NASTRAN COURSE - - - DEMO, PROB. 1D SUBTITLE-LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM) 42. 7227 016073 046705 065000 SECONDS NUMBER OF GRID POINTS APPEARING ON CONNECTION CARDS MAXIMUM NODAL DEGREE BEFORE ANY NODES ARE IGNORED LENGTH OF OPEN CORE (DECIMAL WORDS)
LENGTH OF OPEN CORE (OCTAL)
BEGINALN) OF OPEN CORE (OCTAL)
FIELD LENGTH (OCTAL)
GRID POLY LINIT
NOOAL DEUREE LINIT
PACKING DENSITY (INTEGERS/WORD)
\$DIMENSION VALUE ECHO OF DATA DECK THROUGH BESIN BULK CARD 1- ID NASTRAN,DEMO 2- APP HEAT 3- SUL 1,0 4- TIME 10 WORKING STOPAGE PARTITIONING -SPCFCPCE=ALL FORCE=ALL BEGIN BOLK TO SET UP CONNECTION TABLE YES 36 314 7.476 9 VERTION 9, UPDATED 4 DEC 1978 **SSEQUENCE** DISFALL 1040=29 MAX WAVEFRONT AVG MAVEFRONT RMS WAVEFRONT BEFORE RESEQUENCING -BANDAIDIH PROFILE

AFTER RESEQUENCING BY CUTHILL-MCKEE (CM) ALGORITHM -

303

MAX WAVEFRONT

BANDWIDTH

PAGFILE

AVG WAVEFRONT

7.214 7.567 527

AFTER RESEQUENCING BY G1885-POOLE-STOCKMEYER (GPS) ALGORITHM = -8440A1074 11
PACFILE 293
MAK AANEFRONT 9
AND AANEFRONT 7.213
CP TIME 315

BEST SEQUENCE OF THOSE OSTAINED (BASED ON THE CRITERION SELECTED) WILL BE USED.

*** FIELD 10 OF FIRST SEGGE CARD CONTAINS THE NEW GRID FOINT BANDWIDTH AND RMS WAVEFRONT.

INTEGER ADDED TO NEW SEQUENCE NUMBERS = 0

	7										
	-										
	4	29	25	0	13	18	55	35	56	33	
	4	42	46	4 -	21	26	34	51	56	64	
	ო	28	32	6	4	(*	21	36	33	42	
	ო	4	45	13	222	25	33	52	55	63	
	~	9	31	7	12	10	19	24	38	04	27
BY BANDIT	۲	ō	4.	=	10	24	31	36	54	61	99
BY BAN	-	ī.	30	တ	Ξ	Ť.	20	23	37	4	34
GENERATED	-	ហ	۳ ۲	,5	15	23	32	35	53	62	65
SECOP CARDS GENERATED	SEGGP	SECO	SECOP	SEDOP	SECOP	SECGP	SEDOP	SEÇGP	SEGGP	SEGGP	SEIGP
ECHO OF											

*** ELEMENT COUNTS FOR DATA DECK - .
CBAR 10
CQUAD2 30

*** BANDIT SUMMARY - - -

.476 6.976 .755 7.213 RMS WAVEFRONT 131 AFTER 293 G SEGGP CARDS CM AND GPS 7.476 3.6 3.4 4.6 BEFORE NUMBER OF UNIQUE EDGES
MATRIX DENSITY, PERCENT
NUMBER OF POINTS OF ZERO DEGREE
NUMBER OF RIGID ELEMENT MPC EQUATIONS
NUMBER OF RPC EQUATIONS PROCESSED MUTBER OF GRID FOINTS (N)
NUTBER OF ELETENTS (NON-RIGID)
NUTBER OF RIGID ELETENTS PROCESSED
NUTBER OF COMPONENTS MAKINGH MAVEFRONT (C-MAX) AVERAGE AAVEFRONT (C-AVG) RTS AALEFRONT (CHRMS) MAXITUT NODAL DEGREE MINITUM NODAL DEGREE BANDAIDIH (B) PROFILE (P) METHCO USED CRITERION

ALL BANDIT STATISTICS USE GRID POINT. RATHER THAN D-O-F. CONNECTIVITY AND INCLUDE MATRIX DIAGONAL TERMS. * * *

STATISTICS SUCH AS CHMAX, CHMVG, CHMMS, AND NISHCHDE BACH BE MULTIPLIED BY THE AVERAGE NUMBER OF DHOFF PER GRID POINT Before estimating nastgan time and core requirements.

* * *

CONFIG = SECONDS 6400 CDC MODEL 0 4 NASTRAN LEVEL 17 DECCRPOSITION TIME ESTIMATES (REAL, SYMWETRIC, NO SPILL) FOR A4G, NO. OF DOF/NODE - 1 2 3 4 5 5 DECOMP. TIME EST. - 1 1 1 2 3 * * *

TOTAL CP TIME IN BANDIT END OF BANDIT JOB.

2.057 SECUNDS

```
74
```

Windschild Report From Process Account of Report Process Account of Re SYSTEM GENERATION DATE MATERIAL CONTROL OF THE CONTROL OF T

8/15/79

| 100 | 100

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.1

MOTHER DESIGNATION OF THE PARTIES OF

O I U ш × ပ w () C œ ш CUTIV w × Z ARTSAN

ID AASTAAN, DEDO APP HEAT SOL 1,0 TIRE 10

THE FOLLOWING COMMENTS ARE READ BY BANDIT, WHICH RESEQUENCES THE GRID POINTS FOR REDUCED RMS WAVEFRONT (IF POSSIBLE)
AND GENERATES SEOGP CARDS,
TO BE READ BY BANDIT, \$ CARDS MUST APPEAR SOMEWHERE BEFORE THE BEGIN BULK CARD.

20

NASTRAN 8/15/79 DECENDER 27, 1979

О

I

* O w α

ر

() (r (-

13

O

м ч с

NASTAN CCCAR --- DEVO. PROS. TO LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PRUBLEY)

TITLESNASTRAN COURSE - - - DEND. PADU. 10
SCHOLE LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)
SCHOLE LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)
SCHOLE LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)
SCHOLE ALL
SCHOLE ALL
SCHOLE ALL
SCHOLE ALL

იგ იგ იგ

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-URDER DECK.

PAGE

CV

ო

... HAY, SURVE F - - DEMUL PROB. 10A. STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)

. 10	+5102	# 0 m		+8164	+ 6105	+8141	+6142	,	+6143	+8144		+8145								+C0816															
:-	0.25	0.25	0.25	0.25	ر برد	•																													
8 0.0																			•	٥. ن															
0	-1.5	1.5	-1.5	-1.5	ر د	•	2.1.	-1.5	,	<u>.</u>	-1.5									o 0		12	£ .	 1 ռ	. 5	222	2.4	25.	٠. د د د	2) C	ე ი ე ტ	SS	- 7	4 , 2 (4 2 4
; -	0.25	0.25	0.25	0.25	, ,														,	0.0	12	13	4 :	<u>.</u> บัล	222	23	2 c 4 c	26	32	ლ (ກ ຕ ສ ເກ	3.5 3.5 3.5	42	4 ¢	4 4 4 Ծ
	ന	4	. ,	സ	9	4.2	4		4	45		46	ľ	ب ج	25	ეე ე	4 ຖ ບິງ	100 100	145	0.0	2	က	·1 (വ	<u>~</u>	₽;	- + - u	: £	222	Ν (t 47 V C	2 tc	e 60 €		າຕ ນີ້
	.; .;	ر. ت.	. i.	4 - ი.†.	ល i	17	1 4 - 7 0	-1.5	τη 100 τ		5.1-	.ນ ເບ -	0 0 - 1 - 1	1 H 2 C	THRO	7 7 7 7 7 7 7	7	o or L	D II	o 0		2	m ·	գ տ	, 	2.5	. 4	r.	- (2.2.5	, c,	25	3.1	2) t	n e 7 4
3													C	, -	21	5.		102	142	Ċ	თ	က	(n (י רי	ກຕ	ന	יי) ניי	ກຕ	י נים	:) (n (n	127	ന	n e	5 33
2	•	C		† 0 +	105	4.	5:1		143	144		145	•		-	- .			-	ر ا	-				,			· -	CA (: v (A	(1	C) (<i>.</i>) (ი ი
87407 878	+8101	+ 0402	+8103	CB72 +B104	0.034 84.03 84.03 84.03	0 2 4 0 1 0 1	+ C	+8142	CBAR	+8113 0848	+8144	a (#7307C	C. 3871	コイングン	F1290.00			17.55.0	0001020 +001110	0.00100	C4570	69.402	7 (T) (T) (T) (T)	204.00	00,402	COTON TOTON	00000	CQ~402	C 3 4 7 7 0	C し C C C C C C C C C C C C C C C C C C	000402	COUADS	CQUAD2	COUNDS COUNDS
F1107-8	. 0. 4 1. 1) ! ហៈជ) - 	യ്	10 +	 - (v - +	- 1 0 4 + +	i i	16-	· 00	19-	20-	1.00	2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t 2 t	24-	25-	1 4 1 1	(N CV)	2.4-	U C	32-	33-	34-	1 1) t-) t-	33-	ე 7 ე 0 1 1	41-	42-	च च	1 4 1 1 1 1	46-	47-	48-	50- -03

NASTRAN COURSE - - - DEMO: PROB. 1D LINEAR STEADY-STATE HEAT CONDUCTION LARCH PROBLEY

• •	
:	
σ	
:	
o w	
о : ш	
4	
★ . 4 ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	
Ω ω	
* .4 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 4 4 4 6 0 0
ى د -	
. WA 4.4.4.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	32. 40. 0.0 8.
м 4 О	
	00000
o ∽ m	
·	
a	
. Ultidada Un	55 50 63 63 63 63 63 63 63 63 63 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64
	22222
$\begin{array}{c} 0.0\\ 4.0\\ 0.2\\ 0.2\\ -0.$	11111

PAGE

NASTRAN COURSE - - - DEMO. PROB. 10 LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)

		. 0				+		+p1	+P1•()									11 7														
		6																47	58	0	13	18	22	35	25	26	39					
F C H O		7 8						3-2										4	42	14	21	26	34	ភ្ជ	97	56	64		32.	32.	32.	
A T A		:						2.083-2 7.048-2				16	26	36	91	E G	99	ო	28	6	14	17	21	36	32	ອ	42		-	-	-	
L K		9	48.	48.	48.	16.		2.083-				9	16	26	36	91	56	m	1,	13	222	25	33	52	45	55	63		7	4	9	
о В			24.	32.	.04	.8		.3333	-0.25			-	-	-	-	<u>.</u>	-	2	9	7	12	16	5 ;	54	31	33	4	27	32.	32.	32.	
0 2 T		4	.00	ē0.	50.	60.	4				.:	2.5-3	2.5-3	2.5-3	2.5-3	2.5-3	•	7	ιo		16	r 5	Г	36	<u>प</u> प	54	61	99		-	•	
S		e					151	21	0.25	0.67	21	w Z	ロマ: J	LINE	11 12 m	1 N N	ם <u>י</u> ו ו בו 1 ח		ເດ	ω	-	15	20	23	30	t- m	14	34	-	ო	J.	
		2	; <u>:</u> :	ري د د	Ç.	222	21	t- -		0.67	n	т Сі	29	59	ů.	29	29	-	ហ	12	15	23	32	36	a G	53	62	G.S.	21	21	21	
		-	G 8 1 0	G715	GR1D	G#1D	ウレベシ	PBAR	ri.	1).14	PQUA02	CHBDY	¥08H 0	¥CBHØ	CHBDY	YORHO V	ACCHO	d D D∃S	SECOP	SEGUP	SEQGP	SEGGP	SEQOP	SEQGP	SECOR	SECOP	SEQUE	SEGGP	SPC	SPC	SPC	ENDDATA
	C# 40	17000	1:0.	102-	163-	+ 0 + +	105	106-	107-	103-		101:	-11-	112-	13-	- 14-	115-	116-	111	118-	-611	120-	121-	122-	123-	124-	125-	126-	- 52-	128-	129-	

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

101	-	-
34 STARTING WITH ID	18 STARTING WITH ID	WITH ELEMENT ID =
*** SYSTEM INFORMATION MESSAGE 3113, ENGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	*** SYSTEM INFORMATION RESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	*** SYSTEM INFORMATION MESSAGE 3107. ENGOLD IS PROCESSING ELEMENTS OF TYPE = 18, BEGINNING WITH ELEMENT ID =
YSTEM INFORMATION MESSAGE 3113,	YSTEM INFORMATION RESSAGE 3113,	YSTEM INFORMATION MESSAGE 3107.
*	*	*

	S AVG .	PREFACE LOOPS .
36)	0	o
11 Z	O SPILL GROUPS =	PC GROUPS ≖
A BLOC	0	0
APOSITION OF DATA	PC AVG =	PCMAX =
C DECOR	r	3 3
FOR SKWIETRI	C AVG =	C MAX =
***USER INFORMATION WESSAGE 3023-PARAWETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK HALL	TIME ESTIMATE= 1	ADDITIONAL CORE= -28464

٠. -.

NASTRAN COURSE - - DEMO. PROB. 1D LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)

PAGE NASTRAN 8/15/79 DECEMBER 27, 1979

9

*** USER INFORMATION MESSAGE 3035

1 EPSILON SUB E = -2.7941241E-13 FOR LCAD

0.0 WETHOD 1 NT.NBR PASSES = METHOD 2 T.NBR PASSES =

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK PLTPAR

*** SYSTEM AARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK ELSETS

~

NASTRAN COURSE - + - DEMO. PROB. 10 LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)

α
0
-
C
ш
>
ш
œ
2
-
4
œ
ш
a
5
ш
-

			T E SI P E	TEMPERATURE VECTOR	/ E C T O R		
POINT ID.	TYPE	ID VALUE	ID+1 VALUE	ID+2 VALUE	IC+3 VALUE	ID+4 VALUE	ID+5 VALUE
-	s	3.200000E+01	3.200000E+01	3.200000E+01	3.200030E+01	3.200000E+01	3.200000E+01
-	s	5.153322E+01	5.237100E+01	5.505218E+01	6.020407E+01	6.946321E+01	8.732445E+01
21	Ś	6.953532E+01					
23	s	7.5017645+01	8.4c506dE+01	9.903949E+01	1.219971E+02		
31	s	8.47F727E+01	8.676235E+01	9.297142E+01	1.039910E+02	1.208986E+02	1.452729E+02
41	s	9.631585E+01	9.862633€+01	1.057014E+02	1.179472E+02	1.359078E+02	1.597948E+02
51	s	1.031261E+02	1.055946E+02	1.131183E+02	1.260313E+02	1.448273E+02	1.701268E+02
61	S	1.054268E+02	1.079457E+02	1.156128E+02	1.287419E+02	1.478066E+02	1.733949E+02
222	(s)	7.105850E+01					

NASTRAN CQURSE DEMO. PROB. 15	INDIBUCC
2	3000
PR08.	ACT FOLIC
DEMO.	THOU IN
1	u
1	BATE
COURSE	STYCKATA
NASTRAN	CARATI

œ

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

LOAD VECTOR

ID+5 VALUE
10+4 VALUE
ID+3 VALUE
IU+2 VALUE
10+1 VALUE
1000006-02 2.000006-02 2.000006-02 2.000006-02 2.000006-02 2.000006-02
ដ ជ
POINT [0.

PAGE

NASTRAN COURSE - - - DEMO. PROB. 1D LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)

+ PROBLEM)

ID+5 VALUE -3.076753E-02 ID VALUE ID+1 VALUE ID+2 VALUE ID+3 VALUE ID+4 VALUE -7.332322E-03 -1.529365E-02 -1.730652E-02 -2.117432E-02 -2.812566E-02 CONSTRAINT P 0 I N T SINGLE n L FORCES TYPE S POINT 10.

PAGE

NASTRAN COURSE - - - DEMO. PROB. 1D LINEAR STEADY-STATE HEAT CONDUCTION (ARCH PROBLEM)

	Z-FLUX										
AND FLUXES	Y-FLUX										
X O							04	. 40	. E. O	1 m	80
DIENTS	X-FLUX	.0			.0		-1.9804735-04	-6.06438CE-04	-1.0496455-03	-1.539486E-03	-2.047471E-03
TEMPERATURE GRADIENTS	Z-GRADI ENT										
TEM PERA	Y-GRADIENT										
ITE ELEMENT	X-GRADIENT	.0	.0	0,	.0	٥.	2.760241E-01	8.452097E-01	1.462920E+00	2.145526E+00	2.8536195+00
Z H U	EL-TYPE	BAR	3. A.R.	(I)	ur er	8 7 B	8 A R	BAR	SAR	5AR	8 A R
	ELEMENT-ID	101	102	103	104	105	141	142	143	414	145

=

NASTRAN COURSE - - - DEMO. PROS. 10 Lingar Steady-State Heat Corouction (Arch Problem)

		TE ELEMENT	TEUPERA	TURS GRA	DIENTS AN	D FLUXES	
ELEMENT-ID	ETyPE	X-GRADIENT	4-68401E11	Z-GRADI ENT	X-FLUX	Y-FLUK	Z-FLUX
-	QUAD2	·	1		-3.590751E-05	-1,789457E-03	
5	00400	.601442E	2.713 4525-60		-1 149362E-04	-1.947261E-03	
က	00405	3.0773056-01			-2.207467E-04	-2.298523E-03	
4	00AD2		4.104205E+00		-3.988230E-04	-2.944767E-03	
5	QUAD2	.06	5.7492241+00		-7.6548695-04	-4.160947E-03	
-	\$040¢	.409911	2.2931445+00		-1.0116116-64	-1.645??4E-03	
12	9,0402	4.4621105-01	2.4675 114.00		3	-1.770561E-03	
13	SC # D C	8.5300005+01	2.8280146+00		-5.953797E-04	-2,02~093E-03	
4.	Q 0 4 0 2		37		L.J	12:204E-0	
15	01 AD2	•	4.0174345+90		-1.7481055-03	-2.8525096-03	
21	20400	.107124	1.932-25E+00		-1.511861E-04	-1.386402E-03	
22	00102		\circ		-4.7135505-04		
23	20400		2.278529E+00		.498022E-	-1.634916E-03	
24	C 1402	٦٩.	u:		342314E-	-1,845920E-03	
25	20 r 0 0		2.81905AE+00		-2.0272405-03	-2.0220745-03	
3,	\$C# \\$.57	•		8-195915-	-1.050359E-03	
32	80400	£.	1.5371796+00			-1.102290E-03	
33	90402	. 38	1.657893E+00		-9.970917E-04	-1,195713E-03	
34	20402	.08	1.8103405+00		4	-1.2989196-03	
35	C0405	ω.	1.8450r9E+00		?	-1.3242825-03	
4.1	00405	w.	8.011551E-01		-2.0:1820-E-04	-6.178788E-04	
42	QUAD2	8.7200635-01	8.3907:95-01			-6.450841E-04	
43	20402	.5027715	9.644341E-01		15	-6.95:205E-04	
44	00402	.195527E	1.082772E+00		.5752916-0	10	
45	Q400	.9379	1.203220E+00		.1080095-	.6331	
51	QUAD2	6	2.907JB2E-01		•	-2.08c046E-04	
52	GUAD2	.073674E-	3.028:64E-01		-6.510361E-04	-2.172923E-04	
53	CUADS	ŝ	253200		E-0	-2.334171E-04	
54	QUAD2	.261476	α		-1.622609E-03	-2.5515945-04	
55	QUADS	3.039618E+00	3.904653E-01		-2.180926E-03	-2.801553E-04	

LEVEL 15.3.0 (NAVY NASTRAN) RIGID FORMAT SERIES M CDC 6000 SERIES MODEL 6600 SYSTEM GENERATION DATE MEDMINIME MEDICAM MAN TO THE Capta A WIN INDIA MINIMA MENVIN A CANADA MINIM When the second second is the second WENT CONTROL OF THE C WANTER STATE OF THE STATE OF TH WIND TO STREET THE STREET AS WIND The state of the s

D E C O α **⊢** 2 0 Ç ш > ⊢ ∩ ∪ × tal. z

٥

N N N

O I O I

ID TASTRAN, DEVID

APP DISP
SOL 1.0

ALTER 121 \$ R.F. 1, NAVY, NASTRAN LEVEL 15

STRESS AVERAGING AT GRID POINTS

STRSANG EDEXIN, CEST, OESA/G \$

OFP DESAVO..., //v.n.CARDNO \$

ENDALTER \$

TIME 10

CEND

a

NASTRAN CUURSE — — DEMO. PROB. 16 2-0 POISSON EQUATION (TORSION OF TRIANGULAR PRISM)

U E C CCNTROL ш 'n ر رن

В С Н

×

TITLE=NASTRAN COURSE - - - DEMO. PROB. TE SUBTITUE=2-D POISSON EQUATION (TORSION OF TRIANGULAR PRISM) SPC=13 LOAD=12 DISPEREDSALL STRESSALL BEGIN BULK

0 Z 0 Z 0 Z 0 Z 0 = N O T IN O F

1/76																														
2/		0																												
NASTRAN		: o	7	? +	۳ +	4	+ 5	9+	+7	πο +	6+																			
981		:	00	თ	10	17	18	25	56	31	36																			
10, 1	E C H O	œ :	8	d	9	12	14	21	23	28	34	23456																		
FEBRUARY	ATAU	6 7	5.	÷. W	24	22	4.	53	e) R	35	ů, 0																			
	ב ה א	: :	11	13	15	20	22	27	29	33	37		33	321		i: 1	V	1000 1000 1000	-	æ,	3.1	13.1	÷				5.1 101	541	£.6	55 50
	о 9	:	-	ო	'n	Ξ	13	20	22	27	33	0.	Jr.00.	1017321		108544						. 025 441		0010			.025981		.6115au	.00433 .00866
(R.0.1) e	S G R	ε 	n	നേനം	w V (ນ - ເ ເກ	m • •	2 (4)	n in i	უ	د. در ان	ა ი შ					66.59	3130.) 0 11	3 6 0 0	, I'	() c	5.50.	\$. CO.	<u>.</u> 	3 :	3.0	m 0 0		
0 Z		.:	•	σ: ·	5 e	0 (m - (5 : 	D - 0	O (e •-	ဆ က																		
- in		:	e e	C4	m (– d. ((हिंद्राहर		n - 1 kg	7 (p :	j 10.	ლ შ	- a	m u	r n	ici t	- œ	<i>σ</i> ν -	. .	ru r	` : 	٠. تى:	2 15	<u>.</u>	, چ	: (v)	20	t ii	n a t	2 (4 (4 - 2 (4)
DEMO. PRO TORSION OF			0.1010 0.1010 0.1010	c.s258	+≠ C18208	+3 C.: 5708	8000 1100	13208	±5 €15208	8025ÎD	+ 3 C : 5 : 5 : 5 : 5 : 6 : 6 : 6 : 6 : 6 : 6	2 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0 :0	0 to 5	0.5 3.6	10	0.45 0.45 0.45	10	C.:	10	() (() () () ()	1 · 1	0::5)) 	**) 		:) (:: : :: : :: :	9.0.1 1.0.1) () () () () ()
A COURSE		1.20 200 200	1 1 - C1	1 1 നേവ u	ן ן סים t	l 1 '~ ∞ ′	1 1 0 -		1 1	 12 ()) j	- 0 0 - 0 0	227	1 1 1 1 1 1 1 1 1 1	100	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2 - 2	1 1 1	 	en ∈		\$7. c	J. 5.	1	1 1 3 4 3 4	1	। । १९५१ १९५	1 '	t ↓ ↓ L t~ T rj r	1 4 (U)
24 A A A A A A A A A A A A A A A A A A A																														

ო

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/8 9/2
NASTRAN SAMPLE PROBLEM COMPUTER OUTPUT,(U)
FEB 81 6 C EVERSTINE, M M HURWITZ
DTMSRDC/CMLD-81-04 AD-A096 867 UNCLASSIFIED 2 of 5

0

4

PAGE

٠

	:																	
	σ																	
	:																4	
0	α,																	
ĭ																	38	
ш	•																•	
	7																	
⋖																	32	
ATA	:																ო	
٥	(0																	
_	_												0				_	
×		•											-			~	30	
B ∪ ר א		18		ნ		9	2			9								
_	S	025981		5		99800	73			99800						⊋		
a		0.		.01299		00.	0			8						THRU	24	
۵	•															•	•••	
R E	4		Š	ហ				ัง			Š							
-		.045	052	052	90	90	90	067	970	075	98	60	0		0		ധ	
œ	:	•	•	•	•	•	٠.	-•	•	٠,	•	•	-		-	-	F	
0	m												ın					
٠,													1.6-5					
		•											-	-	Ξ	-	-	
														ASS				
	~	•												M				
		8	3	32	33	34	35	36	37	38	39	40	=	g	_	13	3	
	•	•								•		•		Ĭ				⋖
	-		_	_	_	_	_	_	_	_	_	_		Σ	903	_	_	ENDDATA
		=	RI	21	2	=======================================	2	RIL	RI	2	2	RIC	A	AR	IS	5	õ	ğ
		ີ	Ğ	Ū	Ō	σ	ē	Ö	Ō	Ū	Ō	Ö	Ž	مَ	Q.	Ñ	Ñ	ū
	_					,	,					ı		,		,		
	CARD	Ė	22	5	54	55.	56.	57.	9	59	ġ	-	62	63	64	95	99	
		_									_						_	

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

*** USER INFORMATION MESSAGE 3028, B = 11 C = 0 R = 10

*** USER INFORMATION MESSAGE 3027

-00 11 11 11 1.EST. TIME : 1.EST. TIME : METHOD 2 NT, NBR PASSES = METHOD 2 NT, NBR PASSES = METHOD 2 NT, NBR PASSES = 0 DECOMPOSITION TIME ESTIMATE IS

*** USER INFORMATION MESSAGE 3035

FOR LOAD 1 EPSILON SUB E = -1.1918880E-13

- -

ß

NASTRAN COURSE - - - DEMO. PROB. 1E 2-D POISSON EQUATION (TORSION OF TRIANGULAR PRISM)

	R3	0.0			•	•	٠	٠	•	•		٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•
	R2	0.0		•	٠	•	٠	٠	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•
V E C T O R	.	0.0		0.0			٠							•				•				•		٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	
ACEMENT	13	0.0	•	0.0	•	•	•	•	•				•	•	•		•		•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
0 I S P L	12			0.0																							•						•	•	•					•	
	E	•	٠	0.0	٠	•	٠	•	•	.468326E-0	.493240E-0	.494524E-0	.485	.441069E-0	.253230E-0	.551931E-0	0.0	.809913E-0	.6089	.385438E-0	.925476E-0	.795069E-0	.435857E-0	.559042E-0	٥.	.840002E-0	ĸ.	.626475E-0	.564896E-0	.429483E-0	٥.	99340E-	.481366E-0	.785313E-0	.152656E-	٥.	.086437E-0	.1212	٥.	7.868756E-05	•
	TYPE	IJ	ပ	ტ (٠ و	c) (IJ	IJ	IJ	g	IJ	IJ	G	IJ	ŋ	Œ	U	IJ	g	()	o	IJ	g	g	g	ŋ	g	v	IJ	IJ	IJ	IJ	ŋ	g	g	g	g	IJ	ŋ	g	g
	POINT ID.		8	m·	4	ഗ	g Q	7	80	6	0,	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	59	30	31	32	33	34	35	36	37	38	39	40

NASTRAN COURSE - - - DEMO. PROB. 1E 2-D POISSON EQUATION (TORSION OF TRIANGULAR PRISM)

	e		00		.2966E-0 .4:41E-0	
			00000	3000000	. 5382E . 9822E . 9753E	
ო			0000000	00000000000000000000000000000000000000	8 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.86336-03 2.72508E-07 1.5325E-02 4.0780E-02 2.7673E-07 1.0813E-02
м			00000000	18.00889 18.	20000000000000000000000000000000000000	
m r		25225133 5812225133	00000000000000000000000000000000000000	372E-02 372E-02 374E-02 370E-02 730E-02 441E-03	2.00.00.00.00.00.00.00.00.00.00.00.00.00	-2.9604E-03 2.3040E-03 2.3040E-03 5.4558E-02 5.8390E-03 -4.8870E-03 3.5848E-02 3.784E-02
n .			9900000	3335500 3335500 3335500 3335500 3335500 1475500 734500	5.39666 -1.633666 -4.72316 -3.61478	
ო			00000 0	1.17545-02 2.85975-03 3.70875-02 4.37385-02 4.88725-03 1.99335-02 2.8619E-02	-1.1754E-02 -2.8596E-03 -3.7038E-02 -4.3738E-02 -4.8872E-03 -1.9934E-02 -4.0530E-02	

NASTRAN COURSE – – - DEMO. PROB. 1E 2-0 POISSON EQUATION (TORSION OF TRIANGULAR PRISM) S

z Σ ш _ w œ 1.1305E 8.2902E 1.6409E 3.9084E 1.0858E 1.0 TAU-XY 1.1477E-01 5.1037E-02 3.4434E-02 ۵ 7 S œ \$15-\tau_1.003E-02
-3.985E-02
-4.1494E-02
-4.1494E-02
-4.1494E-02
-4.255E-02
-4.255E-02 0 ů. S ш Ś S 510-X 1.05926E-02 3.9650E-02 3.9650E-02 3.2526E-02 5.8180E-02 5.8180E-02 4.4039E-02 4.2538E-02 4.2538E-02 5.8180E-02 6.8180E-02 6.8180E-02 6.8180E-02 7.250E-02 7 ш œ -S ۵. L d 7 0 1 GRID NO.OF STRESSES 3 G ന ო NO.OF GRID PTS. & œ ELEMENT ID. σ

MAXIMUM VALUES FOR STRESS SIG-X (SUBCASE

=

The second of th

STRESS VALUE ELEMENT ID GRID NUMBER

-	7	ო	m
-	-	8	-
-1,4440959E-01	-1.3821839E-01	-1,2974992E-01	-1.2966321E-01

MAXIMUM VALUES FOR STRESS SIG-Y (SUBCASE

=

GRID NUMBER	-	8	ო	ო
ELEMENT ID	-	-	2	-
STRESS VALUE	1.4441031E-01	1.3821908E-01	1.2975057E-01	1.2966386E-01

=

NUMBER	0	0	0	0
GRID				
2	0	0	0	0
ELEMENT				
. VALUE				
STRESS				

FLEMENI ID GRID NOWDER	0	0	0	0
ELEMEN 10	0	0	0	0
SIMESS VALUE	٠	.0	•	.0
	ö	0	ö	•

GRID NUMBER	0	0	0	0
ELEMENT ID	0	0	0	0
STRESS VALUE	·	·	·	·

NASTRAN COURSE — — - DEMO. PROB. 1E 2-D POISSON EQUATION (TORSION OF TRIANGULAR PRISM)

DEMO. PROB. 1E

S 1.444295E-01 .1.382189E-01 1.297073E-01 8.259586E-02 919990E-02 2.038820E-04 9.999258E-02 9.189245E-02 524778E-02 5.478218E-02 5.944196E-02 5.605043E-02 4.616349E-02 7.141193E-02 2.914289E-02 3.665192E-02 .796745E-02 2.183675E-03 2.898790E-02 5.441512E-02 9.154054E-02 1.327733E-01 2.005888E-02 6.048580E-02 4.077542E-02 4.298352E-02 534528E-02 1.367221E-01 4.357652E-02 9.166255E-02 4.833187E-02 7.864245E-02 .418932E-02 .142257E-02 049425E-02 341646E-02 409334E-03 1.277453E-01 z SHEAR M E w -1.099515E-01 -2.098515E-02 -2.098314E-02 -9.999243E-02 -9.499243E-02 -5.524765E-02 -5.478205E-02 -5.944181E-02 -5.60502E-02 -5.60502E-02 -7.141204E-02 -2.898792E-02 -5.441515E-02 -9.154064E-02 -1.327735E-01 -2.005893E-02 1.444291E-01 1.382185E-01 -3.665188E-02 -4.077552E-02 -4.298362F-02 341652E-02 409337E-03 -2.183676E-03 534838E-02 357662E-02 -9.166268E-02 .833199E-02 .864259E-02 418943E-02 .142267E-02 049435E-02 .367223E-01 .277455E-01 O STRESSES œ 5. O P A R A I 1.3821928 1.09952001 2.09552000 2.0986258 2.0986258 2.0986258 2.0986258 2.0986258 2.0986258 2.0986258 2.0986258 2.0986269 2.09 2.914296E-02 3.665197E-02 7.79674DE-02 2.898799E-02 5.44509E-02 9.154044E-02 1.325732E-02 4.077532E-02 4.077532E-02 5.537818E-02 6.048343E-02 7.357818E-02 7.357818E-02 4.142247E-02 8.049414E-02 2.341641E-02 7.854232E-02 9.16624JE-02 4.833175E-02 4.418921E-02 .444298E-01 1.277451E-01 S ۵ O R 2 -PRINCIPAL ı 2.373450E-03 -2.044504E-04 3.359503E-04 2.757270E-07 6.927371E-08 -1.889391E-07 -7.338357E-10 6.927877E-03 7.853387E-03 6.927877E-03 6.927877E-03 2.805137E-02 3.857260E-01 6.180352E-02 3.189019E-02 7.530419E-02 2.14919AE-03 5.278935E-02 8.29045E-02 1.1486146E-01 1.1486146E-03 5.219062E-03 5.219062E-03 5.238872E-03 5.219062E-02 4.525421E-03 2.228458E-02 3.817322E-02 2.223458E-02 3.817322E-02 1.154111E-01 -5.74587E-03 7.580910E-02 5.872708E-03 1.459784E-02 -4.885999E-03 604570E-02 1.097403E-01 2.252195E-03 1.395662E-02 S ш S S ш ខេ 9 œ 5.4668678 5.91100018-02 4.401018-02 2.501018-02 2.873028-02 2.873028-02 2.873028-02 2.873028-02 1.3000008-02 1.31000008-02 1.31000008-02 1.31000008-02 1.3100008-02 1.310008-02 1.31008-02 1.31008-02 1.31008-02 1.31008-02 1.31008-02 1.3108-02 1.3 3.25970E-02 3.25970E-02 3.92000E-02 2.09872E-04 9.975264E-02 1.853727E-02 5.46887E-02 5.911681E-02 ..052351E-02 ..675574E-02 .444103E-01 -6.835024E-02 .319618E-02 -5.15263FE-02 .797388E-02 .516311E-02 .539077E-02 .413149E-02 .035893E-02 .297072E-01 S .2380581 Z. NOO υ 4 Ŕ O ۵ 2. 500.176 E-02 2. 500.176 E-02 2. 500.176 E-02 2. 500.176 E-02 3. 800.593 E-02 3. 805.594 E-02 4. 505.595 E-02 5. 505.595 E-02 6. 650731 E-02 7. 505.595 E-02 5.152650E-02 1.797364E-02 5.516783E-02 1.533045E-02 .25-665E-02 .035873E-02 .098814E-04 .155602E-02 .853702E-02 .484840E-02 91:651E-02 411598E-02 413127E-02 SIG-X 444096E-01 -1.382184E-01 297066E-01 09-3515E-01 ٥ œ G - 6.6.9.9.4 5.5.4 - 64 64 64 64 60 64 w E R A G COORD. SYS.ID. o > Ö. GRID

MANAGEMENTAL STATES OF THE STAT

THE STATE OF THE S

Week the contract of the contr MANAGEMENT OF THE PROPERTY OF

8/15/79

SYSTEM GENERATION DATE

WHEN THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE

MERNAMEN. MERCHANISM NA Minerale Minerale M GRADIN Minima -- Minima - Minima THE MANUTAL AND A SECOND SECON 2220 023 PERSON - - - PROGRAMME M----With だれたいいだ 0..... 10----MINIM BRIDGING MINIM MENT TO 777 / Junior 2 1.000 17.57 | 17.77 114.00.

Attachment of the state of the 6111111111 M PARTAGEN W. C. C. C. C. L. L.

NY MARIN NIN ANY AMANASIN MM MANASIM MM MARIN

MWICHM MILLIM

Ž

MMM

MINIMIMIMIMIMIMIM MIMIC SY MAINLY

3 MM

MINIMINIMIN M WWW

2

MINI MINIM

A. C. C. V.

NIM TOWNS METERNAM MINIMA

LEVEL 17.5.1

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

WILLIAM WITH A PROPERTY AND A CONTROL OF THE PROPERTY AND A CONTRO

The second of th

MULTITUM

Marriage Contract N

Part Carrier

Whiteham ////

MOTAL NIMIN 11. AM M. 10.17 NIMINIMIN

DESIGN WITH T. P. M. LETT.

College Colleg

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID NASTRAN, DEMO APP DISPLACEMENT SGL 2.0 TIME 5 CEND ~

PAGE

FIVE ELEMENT FRAME--ROD ELEMENTS (CONC. MASSES AT 1,2,5)

CARD
COUNT
TITLE=NASTRAN COURSE - - - DEMO. PROB. 2
2 SUBTITLE =STATIC AVALYSIS WITH INERTIA RELIEF
3 LABEL =FIVE ELEMENT FRAME--ROD ELEMENTS (CONC. MASSES AT 1,2,5)
4 SPC = 1
5 SCT 1 = 10
6 SET 100 = 1 THRU 5 EXCEPT 3
7 SPCFORCE = 1
9 SET 100 = 1 THRU 5 EXCEPT 3
10 DISP = 100
11 STRESS = ALL
12 FORCE = ALL
13 OLOAD(SORTZ) = ALL
14 BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

PR08. 2	RELIEF
DEMO.	INERTIA
1	ILIB
N COURSE DEMO.	SISTANA
ZARISAR	STATIC

FIVE ELEMENT FRAME--ROD ELEMENTS (CONC. MASSES AT 1,2,5)

ო

PAGE

.

DECEMBER 27, 1979 NASTRAN 8/15/79

		:																				
		თ																				
		:				S	4															
o		œ								က												
I										3456												
ပ		:				-	ហ			ന												
ш		_																				
_ _							_															
•		•																				
۵		9																				
¥		:				Ŋ	4		4													
_																						
>		r)	2	53	N							0	0	0								
ന			3	.,	5.E2	٠.					0	. :	ċ	<u>-</u> :	۳.	ന						
۵		:	.,	. 4	u,	"	4	ц)	_		0	•	٠	٠	•	•						
w		4																				
-									43			0.1-		0								
œ						_	2	a	-		٥.	7	°.	<u>.</u>			÷.	÷	_	4		
0		•																				
S		ო													7	7						
															+	1.+7						
		:	N	വ	-	_	_	~	4						-	-	7	20	-	-	N	
		N																				
			۲-	œ	66				0													
		:	G	σ	თ	-	n	Ŋ	-		•~	CI	4	3	7	ω	-	~		-	-	_
		_	~	~	~				-	<u></u>											7	ENDDATA
			ž	ij	CONMA	90	8	00	2	Sc	2	0	0	0	-	Ξ	0	9	5	5	õ	à
			9	2	00	S	S	3	5	GR	S	GR	GR	S	¥	۲ ≥	ď	ã	S	S	S	Z W
	0	Ę	1	5	ب	1	ľ	Į,	7-	18	-6	Ļ	1	7	į,	1	Ę	Ĺ	1.	i E	4	
	ARE	COUNT		••	`,	•	.,	_	•	~	υ,	=	-	-	-	-	-	=	-	7	+	
	ũ	ರ																				

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

*	SYSTEM	*** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	SE 3113,	EMGPRO	PROCESSIN	G SINGLE	PRECISION	ELEMENT	S 0F T	'PE	30 STARTING WITH ID	ING WI	TH 10	91
:	SYSTEM	*** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	SE 3113,	EMGPRO	PROCESSIN	G SINGLE	PRECISION	ELEMENT	S 0F T	/PE	1 STARTING WITH ID	I M ON I	1H IS	-
.	SER IN	***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL (N = 1 C AVG = 2 PC AVG = 0 SPILL GROUPS = 1 ADDITIONAL CORE= -28494 C MAX = 4 PCMAX = 0 PC GROUPS = 0 PC G	3023PA E= -2849	RAMETERS 1 4	FOR SYMMETRIC C AVG = C MAX = METHOD 3	ETRIC DE	SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL AVG = 2 PC AVG = 0 SPILL GROUPS MAX = 4 PCMAX = 0 PC GROUPS METHOD 3 T ,NBR PASSES = 1,EST. TIME = .0	ON OF DATA C AVG = PCMAX = S = 1,EST	A BLOCI 0 0 ST. TI	K KLL SPILL G PC G	BLOCK KLL (N = 0 SPILL GROUPS = 0 PC GROUPS = 1.0 Time = 0.0		5) 0 S AVG = 0 PREFACE LOOPS =	S AVG

NASTRAN COURSE - - DEMC. PROB. 2 STATIC ANALYSIS WITH INERTIA RELIEF

FIVE ELEMENT FRAME--ROD ELEMENTS (CONC. MASSES AT 1,2,5)

PAGE

8/15/79

NASTRAN

DECEMBER 27, 1979

*** USER INFORMATION MESSAGE 3035

0 EPSILON SUB E = 1.2644055E-14 FOR LOAD

0 0. 0000 1.EST. TIME 1.EST. TIME WEIGHD 3 T. WAR PASSES = 1
WEIGHD 1 NI.NE. PASSES = 1
WEIGHD 1 NI.NE. PASSES = 1
MEIGHD 1 NI.NER PASSES = 1
MEIGHD 1 NI.NER PASSES = 1 WEITHOD I NI,NAR PASSES = MPYAD--NULL MAIRIX PRODUCT MEITHOD 3 I ,NBR PASSES = *** USER INFORMATION MESSAGE 3075

1 EPSILON SUB E = -2.0666220E-14 LOAD FOR

1, EST. TIME MPYAD--NULL MATRIX PRODUCT METHOD 3 T ,NBR PASSES =

0

30 *** SYSTEM WARNING MESSAGE 2184, STRESS OR FORCE REQUESTS FOR ELEMENT TYPE WILL NOT BE HONDRED AS THIS ELEMENT IS NOT A STRUCTURAL ELEMENT.

*** SYSTEM WARNING MESSAGE 3022

ROUTE. IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVIOUS MODULE IN THE CURPENT DMAP DATA BLOCK PLTPAR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

DATA BLOCK ELSETS IS REGUIRED AS INPUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE.

DECEMBER 27, 1979 NASTRAN 8/15/79	SUBCASE
NASTRAN COURSE DEWO. PROB. 2 Static analysis with inertia relief	FIVE ELEMENT FRAMEROD ELEMENTS (CONC. MASSES AT 1,2.5)

	R3	_	~	_	_
		0.0	0.0	0.0	0.0
	R2	0.0	o.	0.0	0.0
	24	0.0	0.0	0.0	0.0
- - - - - -	T3	0.0	0.0	0.0	0.0
	12	o. 0	-1.457107E-04	-3.621320E-04	-1.457107E-04
	ī	0.0	7.500000E-05 -1.457107E-04 0.0	0.0	-7.500000E-05
	TYPE	U	IJ	IJ	₍₎
	POINT 10. T	-	7	4	S

PAGE	←	
DECEMBER 27, 1979 NASTRAN 8/15/79	SUBCASE	e e
NASTRAN		0000
1979		8
27,		0000
DECEMBER		ξ
NASTRAN COURSE DEMO. PROB. 2 Static analysis with inertia relief	FIVE FLEMENT FRAMEROD ELEMENTS (CGNC. MASSES AT 1,2,5)	POINT ID. TYPE T1 T2 T3 0.0 2 G 0.0 0.0 0.0 4 G 0.0 -1.000000E+03 0.0 0.0 5 G 0.0 0.0 0.0 0.0 0.0

NASTRAN COURSE --- DEMO. PROB. 2 Static analysis with inertia relief FIVE ELEMENT FRAME--ROD ELEMENTS (CONC. MASSES AT 1,2,5)

DECEMBER 27, 1979 NASTRAN 8/15/79

PAGE

SUBCASE 1

83

FORCES OF SINGLE-POINT CONSTRAINT

0.0 2 0.0 ~ 0.0 13 T1 T2 -3.637979E-12 1.000000E+03 0.0 TYPE G POINT 10.

NASTRAN CJURSE - - - DEMJ. PROB. 2 STATIC ANALYSIS WITH INERTIA RELIEF FIVE ELEMENT FRAME--ROD ELEMENTS (CONC. MASSES AT 1,2,5)

DECEMBER 27, 1979 NASTRAN 8/15/79

SUBCASE 1

Ø

TORQUE (0080) R O D E L E M E N T S (C F ELEMENT AXIAL ID. 3.535534E+02 4 7.071068E+02 z ... FORCES TORQUE 000 AXIAL FORCE 3.535534E+02 7.07106BE+02 -7.500000E+02 ELEMENT ID. - ო თ

=

ത		SAFETY
PAGE	SE 1	TORSIONAL STRESS
8/15/79	SUBCASE 1	STOR STOR
NASTRAN 8/15/79 PAGE		AXIAL SAFETY TO STRESS MARGIN 0.0
1979		S (C R AXIAL STRESS 3.535534E+02 7.071068E+02
27.		AXIA STRES .53553
DECEMBER 27, 1979		ELEMENT SID. 2
	1,2,5)	N R O D SAFETY MARGIN
	CNC. MASSES AT	RESSES IN ROD F TORSIONAL SAFETY STRESS MARGIN 0.0 0.0
J. PROB. 2 IA RELIEF	EMENTS (C	SAFETY MARGIN
NASTRAN COURSE DEMO. PROB. 2 STATIC ANALYSIS WITH INERTIA RELIEF	IVE ELEMENT FRAMEROD ELEMENTS (CCNC. MASSES AT 1,2,5)	AXIAL STRESS 3.535534E+02 7.071058E+02 -7.50000E+02
NASTRAN COU STATIC ANAL	FIVE ELEMEN	ELEMENT ID. 1

NASTRAN SYSTEM PARAMETER ECHO

NASTRAN FILES= (NPTP, OPTP, PLT2)

PAGE

RIGID FORMAT SERIES P

CDC 6000 SERIES 6430 / 6500

LEVEL 17.5.7

WINDERWEINSTEIN --//// RECENT DESCRIPTION OF THE THEORY OF

WYNTOTYTHAN TOTT TO THE TOTT TOTT TO THE TOTAL T MICH VICES Marchane grander Carrier 1

COMPANDO. MUNICIPAL TIME ::.:: W. MANA--AM COLO The state of the s MILLION WATER Thirties I - Bills - Bill M::::::::: WALLSTON / / MINISTER W // //white .

NIM MIMIMA NIM MIMIMININ MMMMM MINIMIN

MIN: 1M NINTALA V. INN NUM N. SIN

MMMM MW MW MW

MINIMAM

MW MISSIM S

M MMM M N.MM

N'M MYNUM

N. C. C. C. C. C. MACHIN

> MC.E MMM

N. 1. 1. V

NESTATION

MANAGED STANK

MANAGEMENT

MUTICION MATERIAL SECTION MATERIAL MATE W // ////

MANAGEMENT OF THE TOTAL Marketon V

MARTINE DESCRIPTION OF THE PROPERTY OF THE PRO

AND THE PROPERTY OF THE PROPER MICHAEL MINISTER CONTROL CONTR A CONTRACTOR OF THE STATE OF TH

MMCMATTER AND THE TABLE OF THE WWW.procured control of the control MARKA DESTRUCTOR — CONTROLLED CON

- 12/15/80

SYSTEM GENERATION DATE

- MANAGEMENT CONTROL OF THE CONTROL

paramanantananana speriosera operació esperioseraminatam manananananan operació especió especialmental de consideración de co

ESSESSION STREET, STR

MEDICAL CONTROL OF THE CONTROL OF TH

E C H

D E C

CONTROL

EXECUTIVE

NASTRAN

ID NASTRAN, DEMO
APP DISP
SOL 3.0

TIME 10
\$\$ THE FOLLOWING CARD REQUESTS THIS RUN TO BE CHECAPOINTED.
CHAPNT YES
\$\$ THE FILES PARAMETER ON THE NASTRAN CARD IS NOT AVAILABLE
\$\$ ON SPERRY/NASTRAN.

NASTRAN EXECUTIVE CONTROL DECK ECHO

ECHO OF FIRST CARD IN CHECKPOINT DICTIONARY TO BE PUNCHED OUT FOR THIS PROBLEM RESTART NASTRAN, DEMO , 2/9/81, 60020,

NASTRAN COURSE - - - DEMO. PROB. 3 NORMAL MODES ANALYSIS INVERSE POWER METHOD CARD

COUNT

TITLE=NASTRAN COURSE - - - DEMO. PROB. 3

SUBTITLE=NORMAL MODES ANALYSIS

A LABEL=INVERSE PONER METHOD

SPC= 11

METHOD=41

DISP= ALL

B EGIN BULK

NASTRAN COURSE - - - DEMO. PROB. 3 NORMAL MODES ANALYSIS

INVERSE POWER METHOD

PAGE

FEBRUARY 9, 1981 NASTRAN 12/15/80

	9 10 . 13+EIGR41	,
E C H O	: o	•
U U X	30. 7	•
Q	. 06 . 30	
D A ⊢	300.	
а Э Г		
F- □ a. N	e . > vi	
_ H	2 41 MAX	

NASTRAN COURSE - - DEMO. PROS. 3 Normal modes analysis

FEBRUARY 9, 1981 NASTRAN 12/15/80

PAGE

INVERSE POWER METHOD

INPUT BULK DATA DECK ECHD ENDDATA 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .

9

TOTAL COUNT= 51

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED,XSORT WILL RE-ORDER DECK.

+STEEL +P31 +P31A

က	
PROB.	
DEMO.	
NASTRAN COURSE NORMAL MODES ANALYSIS	INVERSE POWER METHOD

PAGE	
NASTRAN 12/15/80	
NASTRAN	
1981	
6	
FEBRUARY	

÷

9

	d	·																					1.13																									ċ		
0	a	,																																																
I		0																							45																									
ы С		. 0																					0		n																						۱	0		
_																																															8	2		
⋖																																															4.9	Ę.		
-		: -																					4																								-			
∢	u																																													4-4	1			
u	4	, o																																												357	Ō			
×		· d																					30																							•	۲.	ö		
4		•																																													က			
⊕ ⊕	u)																																													90			
ш			a	m ·	4	ഹ	9	~ (20 -	თ	0			13		15	9		œ	9	20	5	300																							ო	4.7			
۵		•			•	-	_			-												•																										ß		
ш	4	•																																													œ.	3		
-												0	_	ď						ဆ	ნ	0	0			•			0	:	Ω	ວ່າ	n		> c	٠.		5.	。	Š.	0	ŝ		S	00		ġ.			
α Ο		:	_	C4 ·	(r) ·	4 1	n.	O t		œ	σ	-	-	-	_	-	-	_	-	-	-	0	0			0	n	-	- (CN I	CI (י ני	τ, •	1 .	rus	יטיר	9	9	6	7	٠.	æ	ത	σ	-		٠	' '	۰ ۰	-
S	c)																																												9				
																							> !																							*.	~	- 1	. 75 75	2
		. .																					-	×																						က	ë	<i>.</i>	o ;	•
	_																							MΑΧ																							,	Ñ		
	C	•																																													1	312	75	
			-	0	m ·	च ।	S.	o r	_	00	თ	0	Ξ	7	13	4	15	16	17	18	19	20	4			1	2	(m)	4 1	v (ופי		י מי	51 ÷		: 2	3 1	14	ŧ.	9	.7	18	19	20	ä	32	3		.;	-
		•																						4	_																									
	-	Ö	α	αţ	or i	ar ı	α.	م د	¥ i	œ	œ	œ	œ	œ	œ	œ	α	œ	α	œ	œ	œ		\sim	111	ا د	a	۵ ا	a (<u>م</u> (α (a (ב כ	a c	ى د	2 C	ເດ	a	Ω	0	Ω	a	۵	a	a	-	œ	- :	⋖ :	-
		9 Y	C B A	8	W S	e :	4 (1) (1)	8 G	n n	α ω	a ⊕ ⊖	BA	KB.	₩ B	800	400	T m	et (ii)	8 A	48	8	4 B	/) 	Ä	C) CC	a i	<u> </u>	2	7	~ ·	12 (2	7 1	z 0	1 0	a	α	æ	a	8	22	3	a	5.7	ä	1	0 0 0 0	(n)	m (,
			_	•	_	•	_	•		_	•	Č	Ö	Ů	_	Č	_			_	Ö		_	•	_	.,	_	_	•						, (_	, .						Ö			•=	••	•	•	•
,) F	:	2	<u>.</u>	1	l .		۲,	1	Į.	7	_	-2	3-	1	Į.	<u>.</u>	1	T.	_	_	<u>.</u>	5	Ë	1	ļ,	1	7-	,	1			i Na 4	ا س	1	1	1	1	Į,	+ 0	1	-2	3-	1	1	1	i De s	ı m	1	
ā	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	i	• •	.,	• '	_, \	_		٠ -	٠.	=	-	-	-	÷	_	_	-	~	-	ñ	'n	N	ď	'n	Č,	ñ	~	Ñ	Ň	κ m	m :	י מ	י ר	, ,	י ה	'n	m	ñ	4	4	4	4	4	4	4	4	4	4 0	ń
Ĺ	<u>ن</u> ر)																																																

+E1GR41

MO. PROB. 3 FEBRUARY 9, 1981

PAGE

NASTRAN 12/15/80

NASTRAN COURSE --- DEMO. PROB. 3 NORMAL MODES ANALYSIS

INVERSE POWER METHOD

SORTED BULK DATA ECHO

CCJNT . 1 . . CCJNT ENDDATA

2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 .. 9 .. 10

..NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM**

4.

œ

PAGE

NASTRAN 12/15/80

FEBRUARY 9, 1981

INVERSE POWER METHCO CONTINUATION OF CHECKPOINT DICTIONARY

ហ FILE = REEL = FLAGS = 0, XVPS

WORDS.	WORDS.	WORDS.	WORDS.	WORDS.	WORDS. WORDS.
1022	1022	1022	1022	1022	1022 1022 1022 1022
CONTAINS	CONTAINS CONTAINS CONTAINS	CONTAINS	CONTAINS CONTAINS CONTAINS	CONTAINS	CONTAINS CONTAINS CONTAINS
BLOCK BLOCK 8	BLOCK BLOCK BLOCK 10	5100K	14 0 6LOCK 0 BLOCK	15 0 BLDCK	16 9LOCK 17 BLOCK 18 0 BLOCK
6 BLOCKSEACH 1, FILE = BLOCKSEACH 1, FILE =	BLOCKSEACH 1, File : BLOCKSEACH 1, FILE : BLOCKSEACH 1, FILE :	1, F: LE = 1, FILE = 1, FI	1. FILE = 0. FILE = BLOCKSEACH 0. FILE = BLOCKSEACH 0. FILE = BLOCKSEACH 0. FILE = BLOCKSEACH	24 FILE = 0. FILE = BLOCKSEACH	1. FILE = BLOCKSEACH 1. FILE = BLOCKSEACH 1. FILE = 0. FILE = 0. FILE = 0. FILE = BLOCKSEACH 0. FILE = BLOCKSEACH 0. FILE = BLOCKSEACH
NUMBER REEL = 1 REEL = 1	REEL EL	NUMBER REEL #	NUMBER REEL * REEL * O REEL *	NUMBER REEL = REEL =	NUMBER REEL = 1 REEL = 1 REEL = 0 REEL = 0
DMA FL FL	CONTAINS FLASS = 0. DT CONTAINS FLASS = 0. CONTAINS FLASS = 0. FLASS = 0. FLASS = 0.	AT DMS.	AT DMAP SEQUENCE FLAGS = 0, FLAGS = 0, PAR CONTAINS FLAGS = 0, ETS CONTAINS FLAGS = 0, ETS CONTAINS	AT DMAP SEQUENCE, FLAGS = 0, FLAGS = 0, T CONTAINS	T DMAP SEQUENCE T CONTAINS ECT CONTAINS ECT CONTAINS FLAGS = 0.
ER GPL EQE	FILE GPDT BGPDT FILE BGPDT SIL FILE SIL XVPS	⊢	REENTER AT C XVPS , PLTPAR , FILE PLTPAR GPSETS , FILE GPSETS ELSETS ,	REENTER AYVPS COTT FILE GPTT	REENTER AT EST FILE EST GPECT TILE GPECT XVPS GEI FILE GEI
иш 4 п	6 , 6	5 5.	13. 14. 15.	18. 19.	2 2 3

*** SYSTEM INFORWATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE 27, 28.

REENTER AT DMAP SEQUENCE NUMBER 34 KELM . FLAGS = 0. REEL = 1. ZAME. B

KDICT .	ū	REEL =	# FILE :	20			1	
FILE KDICT			BLOCKSEACH BLOCK CONTAINS 1022 WORDS.	9.00 S.E.O.	CONTAINS	1022	WORDS.	
MELM.	CONTAINS	**************************************	1, File = 21 BLOCKSEACH BLOCK CONTAINS 1022	BLOCK	CONTAINS	1022	WORDS.	
MOICT .	FLAGS = 0.	REEL =	1, FILE =	22				
FILE MOICT	CONTAINS	-	BLOCKSEACH BLOCK CONTAINS 1022	BLOCK	CONTAINS	1022	WORDS.	
, SAVX	FLAGS = 0,	REEL =	1, FILE =	23				
REENTER AT	DMAP SEQUENCE	NUMBER	37					
KG3×	FLAGS = 0.	REEL =	1, FILE =	24				
FILE KGGX	CONTAINS	8	2 BLOCKSEACH BLOCK CONTAINS 1022 WORDS.	BLOCK	CONTAINS	1022	WORDS.	
GPST.	FLAGS = 0,	REEL =	1, FILE =	25				
FILE GPST	CONTAINS	-	BLOCKSEACH BLOCK CONTAINS 1022	BLOCK	CONTAINS	1022	WORDS.	
, SAVX	FLAGS = 0.	REEL =	1, FILE =	26				
REENTER AT	DMAP SEQUENCE NUMBER	NUMBER	41					
MGG.	FLAGS = 0.	REEL =	1, FILE =	27				
FILE MGG	CONTAINS	-	BLOCKS EACH BLOCK CONTAINS 1022 WORDS.	BLOCK	CONTAINS	1022	WORDS.	
XVPS ,	FLAGS = 0,	REEL =	1, FILE =	28				
REENTER AT	DMAP SEQUENCE NUMBER	NUMBER	47					
KGGX	FLAGS = 4.	REEL =	1, FILE =	24				
FILE KGGX	CONTAINS	0	O BLOCKSEACH BLOCK CONTAINS 1022 WORDS.	BLOCK	CONTAINS	1022	WORDS.	

INVERSE POWER METHOS

ADDITIONS TO CHECKPOINT DICTIONARY

WORDS.	WORDS.	WORDS.	WORDS.	WORDS.		WORDS.	WORDS?	MORDS.	WORDS.	WORDS.	WORDS.	у С С С					¥ORDS.	WORDS.	((WORDS.
1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022	1022			1022	1022	6	1022
CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	CONTAINS	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	CONTAINS	CONTAINS			CONTAINS	CONTAINS		CONTAINS CONTAINS
24 BLOCK 29	30 BLOCK 31	B:0	8100K	BLOCK	BLOCK	BLCCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	40 420 24	27 27 BLOCK	27 BLOCK	32	<u>ო</u>	31.0	a	9.8 2.0	BLOCK
FILE = LOCKSEACH FILE =	57 FILE = LOCKSEACH FILE =	0, File = BlocksEACH	O, FILE 5 BLOCKSEACH O FI!F =	BLOCKSEACH O. FILE #	SLOCKSEACH BLOCKSEACH	O, FILE = BLOCKSEACH	BLOCKSEACH	BLOCKSEACH	CASEACH	CAST-EACH	BLOCKSEACH	65 1. File = BIOCKALLEACH	1. FILE = BLOCKSEACH	1, FILE = BLOCKSEACH	FILE =	73 F1.E =	FILE =	0, FILE = BLCCKSEACH	76 FILE =	BLOCKSTTEACH 1, FILE : BLOCKSTTEACH
0 BLC	- 18 -	0	0	0 0		0	0	0	0	0 0 0 0	0 810	÷ ä		0	-	· -	9.0	0. 0 BL0	- i	9.5
REEL "	UNGEL EEL	" ! !!!!!	א מי ה הי	E E E	E٦	א ה ש ה ש ה ש ה	ו ו ע נו ע נו		י נו ה ו נו	י יי ט ע	ר ר ר	NUMBER REEL =	REEL =	REEL =	REEL =	NUNBER REEL =	REEL =	REEL =	NUMBER REEL =	REEL =
FLAGS = 4, CONTAINS FLAGS = 0,	DMAP SEQUENCE FLAGS = 0. CONTAINS FLAGS = 0.	FLAGS = 0, CONTAINS	FLAGS = 0. CONTAINS FLAGS = 0.	14 1	FLAGS = 0, CONTAINS	FLAGS = 0. CONTAINS	CONTAINS	A I A	FLAGS = 0. CONTAINS	1	CONTAINS	DWAP SEQUENCE FLASS = 4,	FLASS = 4, CONTAINS	FLAGS = 4, CONTAINS	FLAGS = 0,	QUE 0 =	FLAGS = 0, CONTAINS	FLASS = 0, CONTAINS	DMAP SEQUENCE FLAGS = 0.	CONTAINS FLAGS = 0. CONTAINS
KGG FILE KGG XVPS	REENTER AT USET FILE USET XVPS	KRR FILE KRR	FILE KLR	FILE DW MLR FILE DW	. ¥	G: FILE GM	FILE RG	FILE GO	FILE KFS	FILE QG	FILE ASET	REENTER AT			KVPS .	REENTER AT	KFF FILE KFF	MFF FILE MFF	α ι ω :	KER KAS
42,	444, 45,	47,	4 4 8 0	50.	51,	52,	, n ,	u .	υ υ .	, ,	. / c	58,	.09	61,	62,	63, 64.	65,	.99	67,	.69

			S AVG LOOPS	S AVG	S AVG	S AVG	S AVG LOGPS	
) PREFACE) PREFACE) PREFACE) PREFACE) PREFACE	
			000	60 o	000	000	000	
			GROUPS = GROUPS =	CROUPS = GROUPS =	(N = GROUPS = GROUPS =	GROUPS = GROUPS =	00000000000000000000000000000000000000	
			LAMA SPILL PC	LAWA SPILL PC	LAMA SPILL PC	C LAWA SPILL PC	SPILL SPILL PC	
*ORDS.	*ORDS. *ORDS. *ORDS.	WORDS.	BLOCK LAWA 0 SPILL 0 PC	BLOCK LAWA 0 SPILL 0 PC	BLOCK LAMA 0 SPILL 0 PC	BLOCK	SLOCK 0 0 TIN	WORDS. WORDS.
1022 46	1022 WG 1022 WG 1022 WG	1022 WC	DATA = =	DATA ==	DATA = =	DATA ==	DATA E = 1. EST.	1022 WC
			ION OF PC AVG PCMAX	DECCMPOSITION OF 4 PC AVG 5 PCMAX	DECOMPOSITION OF 4 PC AVG 5 PCMAX	SECOMPOSITION OF 4 PC AVG 5 PCMAX	DECOMPOSITION OF 4 PC AVG 5 PCMAX 1,NBR PASSES = ,NBR PASSES =	
CONTAINS	CONTAINS CONTAINS CONTAINS	CONTAINS	11804	0511	POSIT	00511	POSITION PC PC PASSES PASSES	CONTAINS CONTAINS CONTAINS
وڊ 12019 2 <i>7</i>	BL C C C C C C C C C C C C C C C C C C C	39 BLOCK 40	OECOMPOSITION C 4 PC AV 5 PCMA	DECCM 4 5	DECOMI 4 5	SECOMI 5 5	DECOMI 4 5 NT, NBR 1, NBR	41 BLOCK 42 ELOCK 43 BLOCK
11 E = 11	CXS-EACH CXS-EACH CXS-EACH CXS-EACH CXS-EACH CXS-EACH CXS-EACH CXS-EACH		SYMMETRIC AVG = WAX =	SYMMETRIC AVG = MAX =	SYMMETRIC AVG = MAX =	SYMMETRIC AVG = WAX =	3 - 8	
1. BLOCKS- 1. FI	80 BLOCKSEACH 1, FILE = BLOCKSEACH 1, FILE = BLOCKSEACH 1, FILE = BLOCKSEACH 1, FILE =	100 1. FILE = BLOCKSEACH 1. FILE =						104 FILE = BLCCKSEACH 1. FILE = BLCCKSEACH 1. FILE = FILE = BLCKSEACH
" " " " " " " " " " " " " " " " " " "		~ " " "	S FO	RS FOR C	RS FOR C	ű	RS FOR	
REEL	REEL RELL	REEL S	AMETE	AMETE	AMETE	AMETE	AMETE	NUMBER REEL REEL REEL REEL REEL REEL REEL R
A I N S	0 CENCENCENCENCENCENCENCENCENCENCENCENCENC	QUENCE = 0. AINS = 0.	3PARAMETER 1 -23722	23PARAMETERS 1 -23722	3PARAMETER 1 -23722	:3PARAMETERS 1 -23722	3PARAMETERS 1 -23722	ALINS
FLAGS CONT FLAGS	FLAGS FLAGS	DWAP SE FLAGS CONT FLAGS	INFORMATION MESSAGE 302 TIME ESTIMATE= ADDITIONAL CORE=	PLAGS CONTY CONTY FLAGS CONTY FLAGS CONTY FLAGS CONTY				
MFF.	K K F F T A A T A A A A A A A A A A A A A A	R AT D ED'	ION MESSAGE 30. TIME ESTIMATE= IDITIONAL CORE=	WESSA ESTI TONAL	MESSA E ESTI IONAL	MESSA E ESTI IONAL	MESSA E ESTI IONAL	A . 4 . 4 .
WFF FILE MI XVPS	X X X E E E E E E E E E E E E E E E E E	REENTER EED FILE EE	ATION MESSA TIME ESFI ADDITIONAL	ATION TIME	ATION TIME ADDITI	ATION TIME ADDITI	ATION MESSA TIME ESTI ADDITIONAL	MENTE LE LE LE PERTE
			NFORM	N FORM	N FORM	ν Ο α Σ	7 0 P M	
70.	72.	78 79 80	**USER I	*USER I	**USER I	*USER I	JSER I	81, 83, 84,
			1 * * *) * *) * * *		**•USER	

FEBRUARY 9, 1981 NASTRAN 12/15/80

NASTRAN COURSE - - - DEMO. PROB. 3 NORMAL MODES ANALYSIS

INVERSE POWER METHOS

ADDITIONS TO CHECKPOINT DICTIONARY

REEL = 1, FILE = 44 1 BLOCKS--EACH BLOCK CONTAINS 1022 WORDS. REEL = 1, FILE = 45 OEIGS , FLAGS = 0, FILE OEIGS CONTAINS XVPS , FLAGS = 0, 85, 86,

NASTRAN COURSE - - - DEMO, PROB. 3 NORMAL MODES ANALYSIS

FEBRUARY 9, 1981 NASTRAN 12/15/80

Ξ

PAGE

INVERSE POWER METHOD

(INVERSE POWER METHOD) SUMMARY ANALYSIS EIGENVALUE

4	-	0	ß	39	ø	.352-14	4	-	٥
								•	
	•	•	•	•	•		•		•
•	•	•	•	•		•	•	•	•
•	•		•	•	•	•		•	•
NUMBER OF EIGENVALUES EXTRACTED	NUMBER OF STARTING POINTS USED	NUMBER OF STARTING POINT MOVES	NUMBER OF TRIANGULAR DECOMPOSITIONS	TOTAL NUMBER OF VECTOR ITERATIONS .	REASON FOR TERMINATION	LARGEST OFF-DIAGONAL MODAL MASS TERM			NUMBER OF OFF-DIAGONAL MODAL MASS TERMS FAILING CRITERION

i

ETHOD
2
OWE
e e
ERS
> Z

	GENERALIZED STIFFNESS	2.742442E+01 2.180999E+02 8.583220E+02 2.433031E+03
	GENERALIZED MASS	5.655112E-03 5.808644E-03 5.98775E-03 6.249210E-03
NVALUES	CYCLIC FREQUENCY	1.104429E+01 3.083972E+01 6.025770E+01 9.930736E+01
REAL EIGENVALUES	RADIAN FREQUENCY	6.939331E+01 1.937717E+02 3.786103E+02 6.239665E+02
	EIGENVALUE	4.815432E+03 3.754747E+04 1.433458E+05 3.893342E+05
	EXTRACTION ORDER	4 W CI +
	MODE NO.	-α α4

٦.

METHOD 1 T , NBR PASSES = 1, EST. TIME =

NASTRAN COURSE — - - DEMO, PROB. 3 NORWAL MODES ANALYSIS

INVERSE POWER METHOD

ADDITIONS TO CHECKPOINT DICTIONARY

WORDS.	WGRDS.	WCRDS.
1022	1022	1022
CONTAINS	CONTAINS	CONTAINS
46 BLOCK 47 BLOCK 18	49 300.K 8100.K	50 BLOCK 51 BLOCK
112 1. FILE = 46 BLOCKSEACH BLOCK CONTAINS 1022 WORDS. 1. FILE = 47 BLOCKSEACH BLOCK CONTAINS 1022 WORDS. 1. FILE = 48	R 121 = 1, File = 69 = 0, File = 0 0 BLOCKSEACH 3LOUK CONTAINS 1022 WGRDS. = 0. File = 0 0 BLOCKSEACH BLOCK CONTAINS 1022 WGRDS.	125 1, FILE = 50 BLOCKSEACH BLOCK CONTAINS 1022 WORDS. 1, FILE = 51 BLOCKSEACH BLOCK CONTAINS 1022 WORDS. 1, FILE = 52
11. B.LC 1.		
NC38ER REEL = 1	NUTSER REEL = 0 REEL = 0	NUMBER SERVER SE
REENTER AT DWAP SEQUENCE NUMBER PHIG , FLADS = 0, REEL = FILE PHIG CONTAINS QC	REENTER AT DUAP SEQUENCE NUMBER XVPS SIP SIP FLE SIP CONTAINS FILE BGPDP CONTAINS FILE BGPDP FILE BGPDP	REENTER AT DMAP SEQUENCE NUMBER BGPOP , FLAGS = 0, REEL = FILE BGPOP CONTAINS SIP FLAGS = 0, REEL = XVPS , FLAGS = 0, REEL =
REENTER AT PHIG FILE PHIG GO FILE QG XVPS	REENTER AT XVDS . SID . FILE SID . FILE BGDDP . FILE BGDDP	REENTER AT BGDDD , FILE BGPDP SIP , FILE SIP , XVPS ,
87. 88. 89.	99. 93.	95, 96, 97,

NASTRAN COURSE - - - DEMO, PROB. NORMAL MODES ANALYSIS

n

INVERSE POWER METHOD EIGENVALUE = 4.815432E+03

2 ă О Z. œ O O u > z 00000000000000000000 0000000000000000000 w G ... 0.0 1.812109E-21 3.61304SE-21 6.8364552E-21 1.236473E-20 1.236473E-20 1.857569E-20 1.857569E-20 1.857569E-20 1.858517E-20 1.858517E-20 1.858517E-20 2.98571E-20 2.133803E-20 2.133803E-20 2.281175E-20 $\begin{smallmatrix} \mathsf{u} \\ \mathsf{d} \\ \mathsf{o} \\ \mathsf{o}$ 0-044007890-044007890-POINT

၉	
PROB.	
DEMO.	
ı	SI
1	S
ı	ANALYSIS
SE	A
2	S
ິວ	90
NA C	L MODES AN
NASTRAN CO	RMAL MOD

PAGE

NASTRAN 12/15/80

9, 1981

FEBRUARY

ANALYSIS	METHOD	2 0 TT 1 D 1 TT 1
NORMAL MODES A	INVERSE POWER	

3.754	4747E+04	REAL EIG	GENVECT	Ο Ζ	5	
TYPE T1		12	± 5	2	R2	R3
0.0		0.0	0.0	0.0	0.0	0.0
G -2.841736E-21		6.769309E-02	0.0	0.0	0.0	2.4971135-02
G -5.665951E-21		2.301428E-01	0.0	0.0	0.0	3.795774E-02
G -8.455233E-21		4.2884328-01	0.0		0.0	3.9658708-02
G -1.119238E-20		6.1082735-01	0.0	0.0	0.0	3.162030E-02
G -1.386053E-20		7.331271E-01	0.0	0.0	0.0	1.6282185-02
-1.644322E-20		7.688795E-01	0.0	0.0	0.0	-3.201886E-03
G -1.892452E-20 7	7	.000963E-01	0.0	0.0	0.0	-2.3311845-02
G -2.128915E-20 5	ហ	.3~360.1E-01	0.0	0.0	0.0	-4.060504E-02
G -2.352252E-20 3.	(C)	.033807E-01	0.0	0.0	0.0	-5.2175C8E-02
G -2.561057E-20 2.	ζ.	917995E-02	0.0	0.0	0.0	-5.6046505-02
-2.754131E-20 -	7	2.432330E-01	0.0	0.0	0.0	-5.143885E-02
-2.830196E-20	14	-4.721841E-01	0.0	0.0	0.0	-3.8854525-02
-3.088194E-20	9	-6.215020E-01	0.0	0.0	0.0	-1.9972585-02
-3.227153E-20 -	9	.658181E-01	0.0	0.0	0.0	2.640227E-03
-3.346215E-20 -	ກ	5.939408E-01	0.0	0.0	0.0	2.596280E-02
G -3.444647E-20 -4	4	.098583E-01	0.0		0.0	4.703882E-02
-3.521842E-20 -	7	1.310669E-01	0.0	•	0.0	6.351274E-02
-3.577323E-20 2		.156322E-01	0.0	0.0	0.0	7.411529E-02
G -3.610749E-20 6	9	.008235E-01	0.0	0.0	0.0	7.904515E-02
-3.621914E-20 1	-	.000000E+00	0.0	0.0	0.0	8.021846E-02

9, 1981 NASTRAN 12,15/80 FEBRUARY

## E A L E I G E N V E C T O R N O . 3 T1	NASTRAN COURSE NORMAL MODES ANALYSIS	RSE S ANALYSIS	DEMO. PROB.	က		FEBRUARY	9, 1981	NASTRAN 12,15/80
10. TYPE 1.357540E-20 -1.2.2547E-01	INVERSE POWE EIGENVALUE	ER METHCD = 1.43349	58E+05	E A L E I	E 2 < E C →	z	ო	
G 1.357540E=20 -1.2.2547E=01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		TYPE	11	12	13	۳.	82	R3
C	-	IJ	0.0	0.0	٥.٥		0.0	0.0
G 2.706710E-20 -3.95511E-01 0.0 0.0 G 4.039192E-20 -6.4884695-01 0.0 0.0 G 6.621382E-20 -7.0344061E-01 0.0 0.0 G 6.621382E-20 -7.0344061E-01 0.0 0.0 G 7.855771E-20 -4.55741E-01 0.0 0.0 G 1.017015E-19 3.147740E-01 0.0 0.0 G 1.017015E-19 3.147740E-01 0.0 0.0 G 1.223470E-19 6.7276034E-01 0.0 0.0 G 1.223470E-19 6.7276034E-01 0.0 0.0 G 1.32430E-19 6.7274034E-01 0.0 0.0 G 1.3476277E-19 -2.3116440-02 0.0 0.0 G 1.541659E+19 -3.876426E-01 0.0 0.0 G 1.54659E+19 -4.727451E-01 0.0 0.0 G 1.54659E-19 -6.436602E-01 0.0 0.0 G 1.724909E-19 -8.2	7	v	1.357540E-20		၁.ပ		0.0	-4.465526E-02
G 4.039192E=20 -6.46844848E=01 0.0 0.0 G 6.66770E=20 -7.74140.fE=01 0.0 0.0 G 7.855171E=20 -7.51440.fE=01 0.0 0.0 G 7.855171E=20 -7.9 GA7CE=02 0.0 0.0 G 1.017015E=19 3.11576E=02 0.0 0.0 G 1.123705E=19 6.0 GA7CE=02 0.0 0.0 G 1.123705E=19 6.0 GA7CE=02 0.0 0.0 G 1.123705E=19 6.0 GA7CE=01 0.0 0.0 G 1.23406E=19 6.0 GA7CE=01 0.0 0.0 G 1.34506E=19 6.0 GA7CE=01 0.0 0.0 G 1.345077E=19 -2.314644E=01 0.0 0.0 G 1.54659E=19 -3.87456E=01 0.0 0.0 G 1.54659E=19 -3.87456E=01 0.0 0.0 G 1.56456E=19 -4.72745E=01 0.0 0.0 G 1.724909E=19 -4.326236E=0	က	IJ	2.7067106-20	-3.435511E-01	0.0		0.0	-5.6809025-02
G 6.621382E=20 -7.71440.E=01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	4	IJ	039192E-	-6.484645-01	0.0		0.0	-4.108798E-02
G 6.621332E-20 -7.0TH147E-01 0.0 G 9.621332E-20 -7.0TH147E-01 0.0 G 9.62135E-19 -7.0TH147E-01 0.0 G 1.123705E-19 -7.0TH167E-01 0.0 G 1.123705E-19 -7.0TH167E-01 0.0 G 1.35590E-19 -7.0TH167E-01 0.0 G 1.594537E-19 -7.0TH167E-01 0.0 G 1.594590E-19 -8.0TH167E-01 0.0 G 1.594590E-19 -8.0TH167E-01 0.0 G 1.734599E-19 -8.0TH167E-01 0.0	2	o	346770E-	-7. TA140 15-01	0.0		0.0	-6.840534E-03
C C C C C C C C C C	9	IJ	621382E-20	31-18:0	0.0		0.0	3.3184495-02
G 1.233470E=19 3.11574E=01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	7	Ø	855171E-20		0.0		0.0	6.5710355-02
G 1.23705E-19 3.115740E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	80	()	.040528E-20	30110 6	0.0		0.0	8.032250E-02
G 1.223470E-19 6.0 40 12E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	on	IJ	1.017015E-19	11711111	٥.٠		0.0	7.223278E-02
G 1.223470E-19 7.2.034E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0	IJ	1.123705E-19	50.00	0.0		0.0	4.351453E-02
G 1.315690E-19 6.021160E-01 0.0 0.0 G 1.394798E+19 3.54737E-01 0.0 0.0 G 1.475277E-19 3.511644L-02 0.0 0.0 G 1.541659E-19 -3.71644L-02 0.0 0.0 G 1.543658E-19 -6.27547E-01 0.0 0.0 G 1.645560E-19 -6.4727451E-01 0.0 0.0 G 1.708541E-19 -8.362660E-02 0.0 0.0 G 1.724909E-19 4.326236E-01 0.0 0.0 G 1.730243E-19 1.000000E+00 0.0 0.0	-1	U	1.223470E-19	31.0348	0.0		0.0	2.412442E-03
G 1.394793E-19 3.545737F-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	12	IJ	1.315690E-19	3001130	0.0		0.0	-3.911161E-02
G 1.475277E-19 -2.311644E-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	13	IJ	1.394743E-19	5-5737F	0.0		0.0	-6.8R8540£-02
G 1.541659E+19 -3.818428E+01 6.0 0.0 G 1.598537E+19 -6.278872E+01 0.0 0.0 G 1.645560E+19 -6.4784581E+01 0.0 0.0 G 1.68537E+19 -8.727451E+01 0.0 0.0 G 1.724909E+19 -8.3262660E+02 0.0 0.0 G 1.730243E+19 1.000000E+00 0.0 0.0	14	ŋ	1.475277E-19	311684	0.0		0.0	-7.806863E-02
G 1.594537E-19 -6.27557E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	15	O	1.5416596-19	35514.6	0.0		0.0	-6.3691225-02
G 1.645560E-19 -6.543634E-01 0.0 0.0 0.0 0.0 1. 682437E-19 -4.727451E-01 0.0 0.0 0.0 0.0 5. 0.0 0.0 0.0 0.0 0.0	16	IJ	1.598537E-19	3510812	0.0		0.0	-2.9432865-02
G 1.682437E-19 -4.727451E-01 0.0 0.0 0.0 5.0 5.0 5.0 0.0 0.0 0.0 0.0	17	IJ	1.645560E-19	343803E	0.0		0.0	1.561108E-02
G 1.708541E-19 -8.362660E-C2 0.0 0.0 0.0 9.314320 G 1.724909E-19 4.326236E-C1 0.0 0.0 0.0 0.0 1.104565 G 1.730243E-19 1.000000E+00 0.0 0.0 0.0 0.0 1.149382	18	c	1.682437E-19	7274518	0.0		0.0	5.9865746-02
G 1.724909E=19 4.326236E=C1 0.0 0.0 0.0 1.10456E G 1.730243E=19 1.0000000E+00 0.0 0.0 0.0 1.149382	19	IJ	1.708541E-19	•	0.0		0.0	9.314320E-02
1 G 1.730243E-19 1.000000E+00 0.0 0.0 0.0 0.0 1.149382	50	ŋ	1.724909E-19	.326236E	0.0		0.0	104585
	21	g	1.730243E-19	1.000000E+00	0.0	0.0	0.0	1.149382E-01

PAGE

134

NASTRAN COURSE - - - DEMO. PROB. 3 NORMAL MODES ANALYSIS

INVERSE POWER METHOD EIGENVALUE = 3.893342E+05

11 5.636531E-16 1.992146E-01 1.123831E-15 5.602358E-01 1.677080E-15 6.973187E-01 2.749210E-15 3.126544E-01 3.753644E-15 -2.045347E-01 4.2226649E-15 -2.045347E-01 5.079869E-15 -2.045347E-01 5.079869E-15 -2.87332E-01 5.462760E-15 -2.87332E-01 5.462760E-15 -2.87332E-01 6.42336E-15 7.744223E-01 6.637156E-15 6.555482E-01 6.637156E-15 6.555482E-01 6.637156E-15 6.600463E-01 6.832394E-15 6.600463E-01 6.832394E-15 6.600463E-01 6.832394E-15 6.600463E-01 6.95558E-15 -2.260455E-01 7.095555E-15 -2.03226E-01				
\$33551E-16 \$235531E-16 \$725331E-15 \$725321E-15 \$725321E-15 \$725341E-15 \$72564	13	8	R.2	83
\$36531E-16 \$23831E-15 \$23831E-15 \$23900E-15 \$24000E-15 \$25640E-15 \$25644E-15 \$25644E-15 \$25644E-15 \$25644E-15 \$25646E-15 \$25646E-15 \$25646E-15 \$25646E-15 \$25646E-15 \$25646E-15 \$25646E-15 \$25646E-15 \$25646E-15 \$2566E-15 \$25	0.0	0.0	0.0	0.0
123831E-15 277080E-15 74520E-15 76514820E-15 76514820E-15 763649E-15 765646-15 765646E-15 766649E-15 766649E-15 779869E-15 779869E-15 779869E-15 779869E-15 779869E-15 7798699E-15 7798699	-01 0.0	0.0	0.0	6.709018E-02
5770806-15 74-2106-15 75-2106-15 75-31426-15 75-36446-15 75-36446-15 75-36446-15 75-36646-15 75-36646-15 75-3766-15 76-3766-15 76-3766-15	-01 0.0	0.0	0.0	6.640411E-02
21.4969E-15 22.10E-15 22.10E-15 23.1432E-15 22.26644E-15 56.5649E-15 56.5649E-15 70.98(9E	_	0.0	0.0	1.642157E-02
74.210E-15 261483E-15 7532644E-15 5625649E-15 76369E-15 76376E-15 311099E-15 31756E-15 33736E-15 100998E-15 33756E-15 100998E-15 100	_	0.0	0.0	-5.0178155-02
261482E-15 753644E-15 5655646E-15 665649E-15 70798(9E-15 10298E-15 311929E-15 311929E-15 311929E-15 311929E-15 311929E-15 311929E-15 311929E-15	_	0.0	0.0	-9.738030E-02
7536446-15 55565496-15 55565496-15 7798(98-15 81627696-15 81627686-15 8162886-15 81756-15 81756-1	_	0.0	0.0	-1,006096E-01
2226646-15 665649E-15 79869E-15 3452469E-15 125376E-15 125376E-15 332394E-15 332394E-15 695555E-15	_	0.0	0.0	-5.723939E-02
565649E-15 79869E-15 462769E-15 12.159E-15 12.159E-15 10.0598E-15 332394E-15 83559E-15 83556E-15 83556E-15	_	0.0	0.0	1.272672E-02
0798(9E-15 462709E-15 31.109E-15 100998E-15 100998E-15 33736E-15 837394E-15 985508E-15	_	0.0	0.0	7.6414C0E-02
462769E-15 31.029E-15 125.76E-15 1400298E-15 537156E-15 537156E-15 6985598E-15 795555E-15 161855E-15		0.0	0.0	1.037953E-01
125376E-15 125376E-15 140098E-15 1302394E-15 132394E-15 195555E-15 161855E-15		0.0	0.0	8,1995525-02
125376E-15 100998E-15 337156E-15 832394E-15 161855E-15 161855E-15 161855E-15		0.0	0.0	2.144224E-02
1000998E-15 337394E-15 332394E-15 985508E-15 161855E-15	_	0.0	. 0.0	-4.902427E-02
537156E-15 832394E-15 - 985508E-15 - 095555E-15 - 161855E-15 - 161855E-15	_	0.0	0.0	-9.574026E-02
332394E-15 - 985508E-15 - 095555E-15 -	_	0.0	0.0	-9.602785E-02
985508E-15 - 095555E-15 - 161855E-15	_	0.0	0.0	-4.866156E-02
1	_	0.0	0.0	2.611048E-02
	-01 0.0	0.0	0.0	9.728805E-02
		0.0	0.0	1.400819E-01
7.184001E-15 1.000000E+00	0.0 00+	0.0	0.0	1.522487E-01

PARTICIPATION OF THE PROPERTY AND AND ADDRESS OF THE PARTICIPATION OF TH

CARCILLO CONTROL CONTR CONTRACTOR OF THE PROPERTY OF

ANTALY TO THE TAXABLE Residence of the Control of the Cont

National Control of the Control of Control o

MARKET THE TAXABLE TO WINDS AND THE TOTAL CONTROL OF THE TOTAL CONTROL OT THE TOTAL CONTROL OF THE TOTAL CONTROL OF THE TOTAL CONTROL OT

a.

RIGID FORMAT SERIES

LEVEL 17.5.7

COC CYBER SERIES MODEL 173

WILLIAM AND THE THE TOTAL AND THE TOTAL AND

MININ WIND 7 -- P.M. Parameter State Charles MITTING National Particular Color

Minimum Company Country Company Company Country Countr W. P. W. C. P. C. M. NATURAL DESIGNATION MANAGEMENT TO THE Production

WITHWIND WHITE CONTROL OF THE CONTRO 数十十十四においていいが /// //scatan M. M. T. T. T. T. M. 27.10

NE 2 MWMWW MANAMA MMMM

MMMM

MIMILITY N.C.W NW RIMM MINITIM

M.

M. MAIN M. MAIN M. MAIN

INDIANAMINE. Contrate the

T. C. L. P. L. L.

NUMBER

MMMMMM MMIMM MERCAIN MATINIMIMIMIMINATION

> M MMM M MMM MM MM MMM

> > VICTORION JPJ

M CHAPTE Charles Carried

MILLI

ST 67.25

235757777

WINDSHAW

MATTER - - - MATTER TOTAL MICHAEL - - - CLOSE

MINIM MINIMUSTRA Months 1 2 1.11

121212

ASSESSMENT TO SERVICE

Mm// / / / / / wateream MANUMENTALININ MESSESSIM / / / /

Margania The state of the s

With the second the second sec

MANAGEMENT AND THE THE TANKE OF THE MANAGEMENT OF THE TREE TO THE TANKE AND ADDRESS AND AD

MARKADA DA DESCRIPTO DE LA CONTROL DEL CONTR MARKET AND THE TOTAL STATE OF THE STATE OF T

SYSTEM GENERATION DATE - 12/15/80

WWW. The state of - MANAGAMISAN DEGILISADAS MANAGARISAN DEGILISADA DEGILI Minimal and an and an analysis of the second NAMES OF COLORS OF COLORS

Machine to the control of the contro MANN PROPERTY OF THE PROPERTY OF THE PARTY O

ECHO

D E C K

CONTROL

EXECUTIVE

NASTRAN

ID NASTRAN, DEMO APP DISP SOL 3,0 TIME 10 CEND

NASTRAN COURSE - - - DEMO. PROB. 3A NORMAL MODES ANALYSIS

GIVENS METHOD

E C H о с х CONTROL CASE

CARD

PAGE

FEBRUARY 10, 1981 NASTRAN 12/15/80

TITLE=NASTRAN COURSE - - - DEMO. PROB. 3A SUBTITLE=NORMAL MODES ANALYSIS LABEL=GIVENS METHOD SPC= 11 METHOD ASTOCA 2 DISP=AL BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

ო

		•																					2																											
	•	0																					+EIGR42																							+STEEL		+P31	۶۱ کا ۱	
		:																					+																							S +		+	+	
	,	თ																					٠ .																											
		:	-																				-																									•		
O			•																						345																									
THI C)		: '	3																						m																								Ω Ω	
۷ ⊢	l	7																					4																									٠	0.3125	
V	(٠.	5																																											7.324-4		.490-3		
ا- ح		:	•																																											7		_	o	
ے ت		Ω.																																														. 490-3		
۵		:	c	7 () d	. ru	9	7	œ	6	10	Ξ	12	13	14	t.	0	17	œ (ر س	25	7	200																							ი.	C)	~		
ш	,	4																					_			_																					د د	.30580	2	
0 -		:	•	- c	۳, ۳) प	Ŋ	9	7	œ	თ	10	-	7	13	4	ក	9	<u>-</u> .	œ -	on (50	0			0 I	'n	. 0	0.6	200	25.	0 1	95	1 t	4 m	י טער		65.	70,	75.	C	85.	96	95.	100		ĭ.			
s	,	7)																																												4			ري د	
		: ;	າ																				25	MAX																						30.+6	7	8 8	.4.	
	,	N																					:	Ξ																									1	
		:) 4																						m s	•			•	-	,, ,	2 :			•	-			•	_		5	32	φ	ب م	0.75	
	•	- 0	۲ و و	. 0	2 02	2	Cr.	ď	α	œ	8	α	ď	ď	œ	œ	α,	r	nc d	r i	œ i	αį	2	GR 42	SET	n c	ا د	۵ ۵	ې د	<u>د</u> د	، د	၁ (n 6	۵ د	o c	ء د) C	0.0	۵	0	<u>م</u>	۵	۵	۵	۵	- 1	<u>-</u> ,	or •	+P31A	
		٠	100	ָה ה ה ה	900	CBA	CB	CBA	ເສວ	C34	CBA	CBA	CBA	CBA	CBA	48C	3 0 0 0	30	CBA	ָ נמ	O B O	780	.) • 	+ +	GR.	200	٠ د د	3 0	י ב פ		¥ (2 0	200	ָבָי בּי	2 a		מ כ	, r	G. 2	20	1 20	GRI	GR I	GRI	GRI	MAT	0	a c	4 +	
	CARD	200	- 6	4 ¢	4	5-	-9	7-	8-	-6	10-		12-	13-	14-	15-	16-	17-	- - -) 	20-	21-	22-	23-	24-	251	767	277	97	2.62	000	31-	32-	ا ا	יי אני אני	36-	37-	33-	39-	40-	41-	42-	43-	44-	45-	46-	47-	48-	501	

NASTRAN	
1981	
0	
FEBRUARY	
4 6	
PR03. 3A	

PAGE

12/15/80

GIVENS METHOD

DEMO.

NASTRAN COURSE - - - NORMAL MODES ANALYSIS

0 თ 0 ထ I O ∢ ب ح ۵ 9 × _ ⊃ ß œ ۵ w œ O S ო 126 (1 SPC1 11 ENDDATA COUNT COUNT 511

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

34 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

20) 0 S AVG 0 PREFACE LOOPS ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KOD (N = 1 PC AVG = 0 SPILL GROUPS = 1 PC AVG = 0 SPILL GROUPS = 2 PCMAX = 2 PCMAX = 0 PC GROUPS = METHOD 1 T, NBR PASSES = 1,EST. TIME = .1 PYAD--NULL MATRIX PRODUCT MPYAD--NULL MATRIX PRODUCT MPYAD--NULL MATRIX PRODUCT

40) 0 S AVG 0 PREFACE LOOPS 248 *** USER INFORMATION MESSAGE 2016, GIVENS TIME ESTIMATE IS 3 SECONDS.
PROBLEM SIZE IS 40, SPILL WILL OCCUR FOR THIS CORE AT A PROBLEM SIZE OF **•USER INFORMATION MESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK MAA (N = 1 DC AVG = 0 SPLL GROUPS = 1 DC AVG = 0 SPLL GROUPS = 1 DC AVG = 0 SPLL GROUPS = 1 DC AVG = 0 DC GROUPS = 1 DC AVG = 1 ST. TIME = 1 DC AVG = 1 DC A

NASTRAN COURSE - - DEMO. PROB. 3A NORMAL MODES ANALYSIS

FEBRUARY 10, 1981 NASTRAN 12/15/80

S

PAGE

GIVENS METHOD

EIGENVALUE ANALYSIS SUMMARY (GIVENSMETHOD)

40	4	0	0	_	, , , , , , , , , , , , , , , , , , ,	4	ო	0
٠	•	•	•	•				
NOYBER OF EIGENVALUES EXTRACTED	NUMBER OF EIGENVECTORS COMPUTED	NUMBER OF EIGENVALUE CONVERGENCE FAILURES .	NUMBER OF EIGENVECTOR CONVERGENCE FAILURES.	REASON FOR TERWINATION	LARGEST DFF-DIAGONAL MODAL MASS TERM.	MODE PAIR		NUMBER OF OFF-DIASONAL MODAL MASS TERMS FAILING CRITERION

NASTRAN COURSE - - - DEMO, PROS. 3A NORMAL MODES ANALYSIS GIVENS METHOD

į

	GENERALIZED STIFFNESS	2. 2. 2. 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	GENERALIZED MASS	
NVALUES	CYCLIC FREQUENCY	1.000000000000000000000000000000000000
υ Ο 1 Ε	840044 6450545	6. 9 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	EIGENVALUE	1. 43 47 52 47 52 47 52 47 52 52 52 52 52 52 52 52 52 52 52 52 52
	EXTRACTION DRDER	**************************************
	MODE NO.	- awarah bago - araanah bago - araan

- 0.

1.EST. TIME = 1.EST. TIME =

METHOD 1 NT, NBR PASSES = METHOD 1 T , NBR PASSES =

PAGE

143

NASTRAN 12/15/80		R3	0.0	1.695253E-03	3.2717645-03	•	6.0514535-03	.276	8.3740575-03	9.354948E-03	1.022193E-02	1.097817E-02	1.1627625-02	1.2175096-02	1.262625E-02	1.2987755-02	1,3267:85-02	1.347313E-02	1.361525E-02	1.370417E-02	1.375163E-02	1.3770375-02	1.377422E-02
FEBRUARY 10, 1981	•	82	0.	٥.									•										
ARY 10			0	0	0	0	0	O	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0
FEBRU	Ο Ζ Ο -	R1		0.0		•			•			•	•		•	•		•	•	٠	0.0	•	0.0
	≥ 	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34	ж А г	12	0.0	4.2929285-03	1.6765346-02	.9-1375E-0	6.3-35-35-02	0	- 1	1.8078418-01	2.2977518-01	x.	(*)	4		5.2004845-01	5.907198E-01	6.575002E-01	7.2534665-01	. 93	8.623205E-01	9.311352E-01	1,000000E+00
PRO3. 3																							
DEMO. P	55E +02	Ξ	0.0	0.0	0.0	•	0.0	0.0	0.0		0.0		0.0		0.0						0.0	0.0	0.0
SE ANALYSIS	1.2333	TIPE	IJ	_O	IJ	o	ro	g	ø	IJ	ڻ و	ŋ	ပ	U	()	O	IJ	ø	ပ	U	IJ	IJ	IJ
NASTRAN COURSE NORMAL MODES ANALYSIS	GIVENS METHOD EIGENVALUE =	POINT 10.	_	2	က	4	5	9	7	30	6	0+		12	13	14	15	16	17	18	19	20	21

5/80 PAGE				1 5 - 0 3	05-02	35-02	35-02	35-02	1E-02	55-02	35-02	ш		35-02	3E-02	3E-02	45-02	5E-02	7E-02	3E-02	3E-02	0E-02	3E-02
NASTRAN 12/15/80		R3	0.0	-9.70881	-1.679470	-2.129326	-2.328933E	-2.293063	-2.043381	-1.6083465		-3.250641	4.4158315	1.234226	2.0109385-02	2.733520	3.369794	3.895765	4.297527	4.5728391	4.732328E-	800	4.815378
FEBRUARY 10, 1981	8	R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٥.٥	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
FEBRU	O z O -	ã	0.0												٠								•
	Э 2 В	T3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. ₀	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3A	1 H	12		541 2 52E	-9.0-00378-02	-1.8 +1350E-01	-3.0168198-01	-4.1419355-01	-5.2746718-01	-6,1943518-01	-6.84 45436-01	-7.1-42158-01	-7.172:475-01	16.7523m45-01	-5.9.0522E-01	-4.7512855-01	-3.221095E-01	-1.300502E-01	.543894	2.877378E-01	.208316	7.5947686-01	1.0C0000E+00
– DEMO. PROB.	4.815432E+03	Ę	0.0	o.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SE S ANALYS!		7 Y P.E	(3)	ø	()	c	O	ιj	Ö	O	IJ	O	(J	ŋ	IJ	IJ	ø	IJ	g	ιĵ	o	()	IJ
NASTRAN COURSE NORVAL MODES ANALYSIS	GIVENS METHOD EIGENVALUE =	POINT ID.	- 1	0	3	ব	S	9	7	00	6	0 +	-	12	13	14	15	10	1.1	18	61	20	21

NASTRAN 12/15/80			ć	n x C	0.0000000000000000000000000000000000000	20 11/11/202	1707017	4028271	1619598	328138E	-3.202520E-03	-2.331204E-02	0	0	-5.6045476-02	-5.1437915-02	-3,8853965-02	-1.9972505-02	2.6399035-03	2.596230E-02	.703839	351055			. 904542E-0	8.021878E-02
FEBRUARY 10, 1981		m	C	0	0.0) C			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			
FEBRUARY	:	z	œ	٥.	0.0	0.0	0.0		200) (o .	0.0). D	o .	0.0	0.0	0.0	0.0	ာ (ဝ (0.0	o .	0.0	0.0	0.0	0.0	
		> 2	13	0.0		0.0	0.0	0.0	C					o. 6). (
ع د	 «1 ι α	;			11.000000000000000000000000000000000000	. 3. 142.4	-4.000	.1082316-	101139	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	J 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) c.	100000		V "		10-36/:4:3:0	10 14 0 15 10 10 10 10 10 10 10 10 10 10 10 10 10				Z.136/93E-01		1.300000E+00	
- DEMO. PROB.	4747E+04	į	-	. .	٠. د د د		٠ ا ر	0.0	0.0	0.0	0.0	0.0	ි ට	0.0	0	0.0	0	0.0	0.0	0.0	0.0) ·	0.0	
NASTRAN COURSE NORWAL WODES ANALYSI	GIVENS WETHOD EIGENVALUE = 3.754	6	# c) c										±3		.5 .5							-	
NASTR NOSTR	61 V E V E 1 G E	100	Z 0																							

PAGE

A STATE OF THE STA

NASTRAN COURSE - - - DEMO. PROB. 3A NORWAL WODES ANALYSIS

GIVENS METHOD EIGENVALUE =	4.	33458E+05	S E A L E I C	ы > 2 ы	0 2	4	
POINT ID.	TYPE	1	12	13	άx	R2	R3
	G	0.0	0.0	0.0	٠	0.0	0.0
2	O	0.0	-1.28282-01	0.0	0.0	0.0	-4,466796E-02
	IJ	0.0	-3.955740E-01	0.0		0.0	-5.681198E-02
	ß	0.0	-6.4488135-01	0.0		0.0	-4.108937E-02
	IJ	0.0	-7.742163E-01	0.0	•	0.0	-6.8395905-03
	ני	0.0	-7.078437E-01	0.0	•	0.0	3.3187645-02
	O	0.0	-4.545864E-01	0.0	•	0.0	6.5714365-02
	و	0.0	-7.9 51755-02	0.0	•	0.0	8.032622E-02
	ŋ	0.0	3.115341E-01	0.0	•	0.0	7.223421E-02
	o	0.0	6.087079E-01	0.0		0.0	4.351374E-02
	ی	0.0	7.2852206-01	0.0		0.0	2.410000E-03
	U	0.0	6.3212035-01	0.0		0.0	-3.911452F-02
	ڻ د	0.0	6.545547E-01	c.o	•	0.0	-6.888758E-02
	ŋ	0.0	-2.315319E-02	0.0	•	0.0	-7.8069335-02
	_O	0.0	-3.878589E-01	0.0	•	0.0	-6.3090455-02
	IJ	0.0	-6.275768E-01	0.0	•	0.0	-2.9431255-02
	U	0.0	-6.643617E-01	0.0	•	0.0	1.561262E-02
	ט	0.0	-4.727404E-01	0.0	•	0.0	5.986655E-02
	IJ	0.0	-8.362016E-02	0.0	•	0.0	9.314310E-02
	U	0.0	4.3262775-01	0.0	•	0.0	1.104577E-01
	U	0.0	1.030000E+00	0.0	0.0	0.0	1.149373E-01

MANA TOTAL CONTROL OF THE TAXABLE MANAGEMENT OF THE TAXABLE OF TAXABLE OF THE TAXABLE OF TAXABLE O

MENANTANDANIAN TOTAL PARTICIONAL PROPERTY OF THE PROPERTY OF TH

Problem Control of the Control of th White the contract of the cont

WASTERNAMEN OF THE PROPERTY OF THE ARTEST OF THE PROPERTY OF T MARKADARAN SANTAN SANTA PARTIE CONTROL MANAGARAN GALARAN GALA Westerstein Without the first of the first - ACCMONDENT - FEET COLLECTION COLLECTION

12/15/80

SYSTEM GENERATION DATE

Σ MMM MANAGEMENT OF THE PROPERTY OF NUMBER M NETTER 2227 11/1/1/1/1----4----MININ MANAGEMENT AL. I MAN DESCRIPTION T// TARRESTE ////

M MAIN M MWM MEDITATION DIM MIND WIND MERCENTAN WINDS TO STATE OF THE STATE OF เภารายกรุสสภาคา > MARKET - ARM IN THE Entrangement and N. Contaction -- ptoble MEDICAL MARKET MARKET -- :::: / のことがエーーをおいたこと 第十十十四次のはいいこと Contract Contract WENTY /// W. 15.1.1.1.13 March Street 7.1.2.2.2 A //// A Particular. 1.010.00 ELECTRONICA MANAGEMENT SANTENDARIA SANTA The second second

25 5 Σ MINIMINIM MMMMM MMMM

MMGAM MINI MINIMA

MM MMM

S

MUM MANIM

MEN'N

MINIMIM

MMMMMM MEGEN MELLIN. MANAMIMINIMAN MINING MMIN MM MMM NEWNEW NINGE

RESIDENCE

MICHAEL PROGRAMMENT CONTROL OF THE PROGRAM OF THE P

RIGID FORMAT SERIES

CDC 6000 SERIES

6400 / 6500

LEVEL 17.5.7

Which the transfer of the tran Manager of the control of the contro

O H O ш ш ۵ 0 œ r Z o ပ ш EXECUTIV

Z.

NASTRA

¥ ပ

ID NASTRAN, DEMO
APP DISP
TIME 10
SOL 3,0
ALTER 103 \$

R.F. 3, LEVEL 17

COMPUTE AND PRINT NORMALIZED MODAL MASS MATRIX.

DIAGONAL MI/MISQIN/C.N.SQUARE/C.N.-0.5 \$
SMPYAD MISJIN.MI.MISQIN.../MINEW/C.N.3 \$
ADD A.B.C \$ TO AVOID OVERLAY BUG
MATPRN MINEW....// \$
ENDALTER \$

FEER METHOD RESULTS IN POOR ORTHOGONALITY OF THE HIGHER MODES. SEE MODAL MASS MATRIX MINEW.

S S S S C END

NASTRAN 12/15/80 FEBRUARY 10, 1981

E C H O

D E C

CONTROL

CASE

N

PAGE

NASTRAN COURSE - - - DEMO. PROB. 38 NORMAL MODES ANALYSIS

FEER TRIDIAGOVAL REDUCTION METHOD

CARD

TITLE=NASTRAN COURSE - - - DEMO. PROB. 3B SCRITTLE=NORMAL VODES ANALYSIS
LAREL=FEER TRIDIAGONAL REDUCTION METHOD LINES=51
SPC= 11
NETHOD=11
DISP=ALL
BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-DRDER DECK.

Part of the second

the second secon

ന

PROB. 38	
DEMO.	
NASTRAN COURSE +	NORMAL MODES ANALYSIS

FEER TRIDIAGONAL REDUCT	CTION METHOD	ē											
			S	OR TE	о В	ار ج ت	D A 1	A E	0				
CARD		,	,							•			
ENDOS		? :	m : ř	:	: :	· ·	···	: '	a o c	ກ :•	:		
- C	1 0 C		- >	-	0	•	-	•	>	-			
- E	0 C 0 E 0 E			. 0	ım								
-4	CBAR			in	4								
-2	CBAR			4	S								
-9	CBAR			ស	₉								
7-	CBAR			9	7								
l co	CBAR	7		7	8								
<u>-</u> 6	0.0 64.0 7.0 7.0			ဘ -	ດ ີ								
101	2 (E)			ດ ີ	0								
1	CBAR			0 :	- 1								
121	CBAR	(- - ·		- (12								
1 77	2 C C C C C C C C C C C C C C C C C C C			7 (χ,								
4 1	C 8 4 4				4 .								
1.0	7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7 (7			4 i	.n (
1 10 1	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			V (0 (
- 17	x (<u>o</u> t									
100	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1			· ·	α (
-61	240			20 (6 C								
207	CEAR			6 C	20								
21-	CBAR		1	50			,			•	i	9	
22-	EIGR		FEER		1.E-9		ייי			14	+ H	+E 1GR43	
23-	+E1GR43							•					
24-	GROSET			•				ž.	345				
25-	0 1 2 1	- - (o 0									
20:	פוצט			ن									
-22	GRID			0 0									
287	GRID			15.									
-52	מאום			. 20.									
30-	GRID			25.									
31-	0 1 2 0 1 1 0			တ									
1 2 2	בי בי בי			ري. د د د									
ال ال	3 6	• ת											
1 to	האם היות ה			n c									
1.00 1.00	מים מים) (1)									
1 7 6	2 6 6			1 ()									
ה מ מ	21.00												
) ()) (
ו ו הייט ל	ם ב ב ב ב) (r - (r									
017													
4.5				טיני									
43-	GRID	61		. 00									
44-	GRID			88									
45-	GRID			100.									
46-	MAT1		30.+6			۳.	4				+ST	EL	
47-	PBAR	n	32	.30680	7.490-	-3 7.490	ر ص	.498-2			+P31		
48-	+ P31	0.3		0	0		0	0		ö	+ P3	4	
49-	+P31A		0.75										
-09	SPC1	•	126	-									
	ENDOATA												

DEMO. PROB. NASTRAN COURSE - - - NORMAL MODES ANALYSIS

NASTRAN 12/15/80

FEBRUARY 10, 1981

FEER TRIDIAGONAL REPUCTION METHOD

*** USER POTENTIALLY FATAL MESSAGE 22,
POSSIBLE ERROR IN DWAP INSTRUCTION ADD
DATA BLOCK NAMED A APPEARS AS INPUT BEFORE BEING DEFINED

103

INSTRUCTION NO.

103

INSTRUCTION NO. *** USER POTENTIALLY FATAL MESSAGE 22,
POSSIBLE ERROR IN DWAP INSTRUCTION ACD
DATA BLOCK NAMED 8 APPEARS AS INPUT BEFORE BEING DEFINED

ERRORS FOUND - EXECUTE NASTRAN PROGRAM.*

34 STARTING WITH ID SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

SYSTEM WARNING MESSAGE 3022

CURRENT DMAP IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE DATA BLOCK A

SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP 00 DATA BLOCK

SYSTEW WARNING MESSACE 3022

A PREVIOUS MODULE IN THE CURRENT DMAP IS REQUIRED AS INPUT AND IS NOT DUTPUT BY DATA BLDCK A

SYSTEM WARNING MESSAGE 3022

18 REQUIRED AS INPUT AND IS NOT DUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP DATA BLOCK

*** SYSTEM WARNING MESSAGE 3022

ROUTE. IS REQUIRED AS INPUT AND IS NOT QUIPUT BY A PREVICUS MODULE IN THE CURRENT DMAP DATA BLOCK A

*** SYSTEM WARNING MESSAGE 3022

IS REGUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. œ

60) 0 S AVG 0 PREFACE LOOPS ***USER INFORMATICN WESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA (N = TIME ESTIMATE= 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -26297 C MAX = 5 PCMAX = 0 PC GROUPS =

USER WARNING MESSAGE 2399 ONLY THE FIRST O EIGENSOLUTIONS CLOSEST TO THE SHIFT POINT (FI OR ZERO) PASS THE FEER ACCURACY TEST FOR EIGENVECTORS.

USER WARNING MESSAGE 2399 ONLY THE FIRST O EIGENSOLUTIONS CLOSEST TO THE SHIFT POINT (F1 OR ZERO) PASS THE FEER ACCURACY TEST FOR EIGENVECTORS. 152

USER WARNING MESSAGE 2399 Only the first of eigensolutions closest to the shift point ("1 or zero) pass the feer accuracy test for eigenvectors.

USER MARNING MESSAGE 2799 DNLY THE FIRST — O EIGENSOLUTIONS CLOSEST TO THE SHIFT POINT (F1 OR ZERG) PASS THE FEER ACCURACY TEST FOR EIGENVECTORS. ONLY THE FIRST

SHIFT POINT (F1 OR ZERO) PASS THE FEER ACCURACY TEST FOR EIGENVECTORS. TO THE USER WARNING MESSAGE 2399 ONLY THE FIRST O EIGENSOLUTIONS CLOSEST

USER WARNING MESSAGE 2399 Only the first of eigensolutions closest to the shift point (F1 or zero) pass the feer accuracy test for eigenvectors.

TO THE SHIFT POINT (FI OR ZERO) PASS THE FEER ACCURACY TEST FOR EIGENVECTORS. USER WARNING MESSAGE 2399 ONLY THE FIRST O EIGENSOLUTIONS CLOSEST USER WARNING MESSAGE 2399 ONLY THE FIRST O EIGENSOLUTIONS CLOSEST TO THE SHIFT POINT (F1 OR ZERO) PASS THE FEER ACCURACY TEST FOR EIGENVECTORS.

TO THE SHIFT POINT (F1 OR ZERO) PASS THE FEER ACCURACY TEST FOR EIGENVECTORS. USER MARNING MESSAGE 2399 ONLY THE FIRST O EIGENSOLUTIONS CLOSEST

USER WARNING MESSAGE 2399 Only the first — 9 eigensolutions closest to the shift point (f1 or zero) pass the feer accuracy test for eigenvectors.

*** USER INFORMATION MESSAGE 2392

3 MORE ACCURATE EIGENSOLUTIONS THAN THE 3 REQUESTED HAVE BEEN FOUND. USE DIAG 16 TO DETERMINE ERROR BOUNDS METHOD 1 NT, NBR PASSES = 1, EST. TIME = METHOD 3 T , NBR PASSES = 1, EST. TIME = .

*** USER WARNING MESSAGE 3034

ORTHOGANALITY CHECK FAILED. LARGEST TERM = 3.6968510E-01, EPSILON = 1.0000000E-04

METHOD 1 NT.NBR PASSES = 1.EST. TIME = .0 METHOD 1 NT.NBR PASSES = 1.EST. TIME = .0

NASTRAN COURSE - - - DEMO, PROB, 38 NORVAL MODES ANALYSIS

i

FEER TRIDIAGONAL REDUCTION METHOD

MATR	MATRIX MINEM		(GINO NAME 101) IS A REAL	S A REAL	6 COLUMN X		6 ROW SQUARE	MATRIX.
COLUMN	-	ROMS	1 THRU	9	!			
1.00000E	001	2.389865-14	-3.03386E-15	1.00000E+00 2.38986E-14 -3.03386E-15 -1.21842E-11 -2.70512E-10 5.24248E-09	0512E-10	5.242486-09		
COLUMN	7	SMON	1 THRU	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
2.14475E-	1.4	.00000E+00	-1.15032E-12	2.14475E-14 1.00000E+00 -1.15032E-12 -4.16865E-10 -9.05633E-09 1.74372E-07	5633E-09	1.74372E-07		
COLUMN	٣	S MC C	1 1480	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
-3.03386E·	-15 -1	1.151525-12	1.000CCE+00	-3.03386E-15 -1.15152E-12 1.00000E+00 -9.31988E-07 -1.80171E-05 3.32219E-04	01716-05	3.322196-04		
COLUMN	4	ROMS	1 THRU	φ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
-1.21848E-	-11-	4.16865E-10	-9.31938E-07	-1.21848E-11 -4.16865E-10 -9.31988E-07 1.00000E+00 -2.47773E-03 4.04281E-02	7773E-03	4.04281E-02		
NECOLOGI	ď	S × O &	ו דאמנ					
-2.70512E-	-10 -	9.c5633E-09	-1.801716-05	-2.70512E-10 -9.05633E-09 -1.80171E-05 -2.47773E-03 1.00000E+00 3.69685E-01	0000E+00	3.69685E-01		
COLUMN	9	80%S	1 THRU	9				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5.24248E-	1 60-	1.74372E-07	3.32219E-04	5.24248E-09 1.74372E-07 3.32219E-04 4.04281E-02 3.69685E-01 1.00000E+00	9685E-01	1.00000E+00		
THE NUMBER	OF NC	ON-ZERO WORD	THE NUMBER OF NON-ZERO WORDS IN THE LONGEST RECORD	EST RECORD =	e			
THE DENSITY	Y 0F 1	THIS MATRIX	THE DENSITY OF THIS MATRIX IS 100.00 PERCENT.	O E N T .				

FEBRUARY 10, 1981 NASTRAN 12/15/80

NASTRAN COURSE - - - DEMO: PROB: 39 NORMAL MODES ANALYSIS

FEER TRIDIAGONAL RENUCTION METHOD

(FEER METHOD) SUMMARY ANALYSIS BIGENEALUE

vo ~		-	25	٥	.37E+00	9	ന	4
					-			
	•							
				•	•	•	•	•
				•	•	•	. •	•
					•			•
36	Notices of stabiling Points Used	OF TRIANGULAR DEC	TOTAL NUMBER OF VECTOR ITERATIONS .	REASON FOR TERBINATION	LARGEST OFF-DIAGGWAL MODAL MASS TERM			NUMBER OF OFF-DIAGONAL MODAL MASS

PAGE

co.

NASTRAN COURTE - - - DEMO. PROB. 38 NORMAL WODES ANALYSIS

FEER TRIDIAGONAL REDUCTION METHOD

GENERAL1ZED STIFFNESS	6.941951E-01 2.742495E+01 2.181004E+02 8.659536E+02 2.970723E+03 3.315892E+03
GESERAL1ZED WASS	5.652810E-03 5.65221E-03 5.818658E-03 6.041012E-03 7.630204E-03
CYCLIC FREQ (ENCY	1,76751,6+00 1,10442,6+01 3,0839,22,+01 6,0257,02,+01 4,9307,36E,01 1,478693E,02
RADIAN FREQUENCY	1,1105.48.01 6.39.30.87.18.02 7.94.77.78.02 3.794.03E+02 6.239665E+02 9.290901E+02
EIGENVALUE	1.233355E+02 4.8+5432E+03 3.754747E+04 1.433453E+05 3.893342E+05 8.632084E+05
EXTRACTION Order	~ የነገ ቀ የነገ
MODE NO.	+ UW4NO

FIGENVA

я 4 1 NETHOD 1 T , NBR PASSES = 1,EST. TIME =

ω

PAGE

NASTRAN COURSE - - - DEVO. PROB. 33 NORMAL VOCES ANALYSIS

FEER .

F G G G	11 0.0 8.684449E-14	0 0 12 0 12 0 12 0 13 0 13 0 13 0 13 0 1	0.0 0.0			83 0.0 1.5 of 26 25 - 03
) (3 (3)	.670000E-1	. 6.7. 5.20 6-0. 137	000	. O U O	000	.271764E
0 0 0	3.111946E-13 3.720141E-13 4.24%670E-13	6.323436-02 9.7.33436-02 1.3.41178-01	000 000			6.01.14838-03 7.2764398-03 8.3340878-03
טט	.003749	ا ا ساما	00.			2213485-0 221345-0
ი ი	.418739E-1	2.829226E-01 3.2.3-3-24E-01	၁၀ ၁၀			79:75-0 2762E-0
თ თ თ	.382740E-1 .062067E-1	. 6097503E	000			ا ا الناليا
.	6.210450E-13 6.328945E-13 6.417099E-13	6. 5071908-01)))))			1,2087,5E-02 1,3267,8E-02 1,347313F-03
0 0	.482334E-1	.253466E.	00.0			015255-0 70417E-0
വ വ	.554656E-1	8.623205E+61 9.311352E+01	0.0			1.375163E-02 1.377037E-02
G	6.565501E-13	1.000000E+00	0.0			1.377422E-02

PR03. 38	
DEMO.	
NASTRAN COURSE	NORTAL TODES ANALYSIS

o

PAGE

FEBRUARY 10, 1981 NASTRAN 12/15/80

сонтал	
TRIDIAGONAL RETUCTION :	500
3E100	
AA	-1
0:430	11
FEER TRIDIA	10 2 H.C
til til	ú

	£ 23	0.0	-9.708811E-03	-1.8794706-02	-2.1293265-02	-2.3289335-02	-2.2930635-02	-2.0433916-02	-1.8083485-02	-1.022478E-02	-3.2506416-03	4.4158816-03	1.2342256-02	2.0109385-02	2,7335205-02	3.0.97948-02	3.8357555-02	4.297527E-02	4.572839E-02	4.732328E-02	4.800330E-02	4.815378E-02
α	R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 2 4 0	ŗ	,	¢,		,		()	.).	() ()					0.0								
) 								,		,	· · ·	٠,٠.	(.)	· · · · · · · · · · · · · · · · · · ·		<u>ن</u>	o.o	ი. ი		0.0	0.0	0.0
· · · · · · · · · · · · · · · · · · ·	:14		-2	30						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10 10 10 10 10 10 10 10 10 10 10 10 10 1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		-10-3255-01-	6.5.44.5-02	2.677370€-01	5.2383165-01	7.594780E-0:	1.000000E+00
		0.0	n.4527285-12	1.2175 (15-11)	1.0000000000000000000000000000000000000			3.15.17.24-11	0.45 0.08 114	3,75-4,08-11	4.02+703E-11	4,2,37,65-11	4,3710.38111		4.1.1.000	4.70.4.08-11	4.769017E-11	4.817545E-11	4.851286E-11	4.8713555-11	4.8781585-11	4.879454E-11
	ř Ť	O	(5	(3	٠,	Ð	()	٠,	ر ،	÷	O	G	g	'n	(7	()	(7	c	c	ij	(7	IJ
	POINT ID.	-	2	~1)	*†	a.	1.	:-	۲.	7	ō	-	ů.		.1	ស	٠.	[~ ~	æ	19	50	21

	:
33	'
•	
DEMO, PROB. 38 LYSIS	0
Ω.	Ē
	2-1 1-1
Σ-	MAL REPUGTION '
Ö	<u> </u>
1 (0	ંડ્રફ્રિં
1 13	ें त
- 3	oc t⊹
ব	٦ M
u) ÷£	ć a
വധ	of UI
00	EER TRIDIAGO
7:	T
44	+ <u>2</u> W
'S 'T	ос (O) Ш + 4
NASTRAN COURSE NORVAL HOOES HAALYSIS	FEER TRIDINGSNAL REPUGTION WETHOO ELGENIALUE = 3.754747E764

<u>•</u>

PAGE

FEBRUARY 10, 1981 NASTRAN 12/15/80

#101# #351#	60% AL RE = 3.75	OUGTION METHOD 4747E-04	 ω α	Ы Э Ы			
			1 1 1	E C			
					. 0 % & 0 -	m	
D	TYPE	-	12	13	8.	R2	F.3
-	ø	0.0	O.	0.0		0.0	0.0
2	()	5.838161E-03		0.0		0.0	2,4971546-02
m	13	0-32-0	2.001.50.6-01	၁.၁	0.0	0.0	3.7453150-02
7	ø	1.6332:05-07		o.o		0.0	3.9654787-02
n	13	\dot{c}		0.0		0.0	3.10.19875-02
ø	ø	2.5013 2E-07	Harris To the first	0.0		0.0	-9280759.
-1	ပ	.85° 046E+0	30120	0.0		0.0	-3,2033288-03
80	IJ	.1642305~0	₩. * :: : : : : : : : : : : : : : : : : :	0.0		0.0	312049
σ	O	11.12E-	5.J-350AE-C1	0.0		0.0	-4.00.0402E-02
0	r)	.645144E-0	37 E	0.0		0.0	17352
-	()	0-300000.5	:0:0:5.	O.0		0.0	046175
2	ro	0-37.80.60.	Benedict.	0.0		0.0	-397987
ω.	()	0-30-0050.	3764436	္.		0.0	-3.8855286-02
7	g	10:198-0	21508 %	0.0		0.0	-1.9473646-02
5	()	4.261253E-07	654265E	0.0		0.0	
16	IJ	.321008E-	3525566	0.0		0.0	2.596337E-02
7.	()	.365283E-0	0,94611€	၁.၀		0.0	.703990E-0
6	ij	aBE-0	310543	0.0		0.0	.351366E-0
9	IJ	0-3055515	1568775-	0.0		0.0	.4115415-0
20	IJ	0	6.0032745-0:	0.0	•	0.0	.904482
21	IJ	4.422012E-07	1.00000E+00	0.0		0.0	8.021760E-02

PR08. 06490 NASTRAN COURSE + + + NORVAL VODES ANALYSIS

Ξ

PAGE

NASTRAN 12/15/80

FEBRUARY 10, 1981

		೮	0.0	-4.4822125-02	-5.7004096-02	-4.1159845-02	· 6.893194E-03	3.3002595-02	6.5681315-02	8.0785505-02	7.3023235-02	4.4092765-02	2.3802445-03	-3.907266E-02	-6.9591385-02	-7.8002705-02	-6.5FB034E-02	-2.9204805-02	1.6135215-02	6.0340245-02	9.3240555-02	1.1020735-01	1.145769E-01
¢	1	R 2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2 (+		<u>x</u>		0.0																	٠	•	0.0
	Z U	13	0.0	0.0	0.0	၁.၀	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
- - - -	ם ב	12		-1.2435155-01	-3. 94925 48-01	36033048	-7.784440E-01	911 (80)	9.200.9	-8.27555436-02	3.173.9.8-01	151154		31.3520	5546135	-2.541341E-02	7)	-6.8.5 5 375 € -01	2000	-4.721380£-01	-8.1503395-02	4.3425335-01	1.000000E+00
UCTION WETHOO 458E+05		1	0.0	2.327159E-05	.5010015-	6.5139565-05	8.348493E-05	L	1.140055E-04	1.263683E-04	1.00000148-04	1,4572946-04	25809E-	1,5638296-04	1.632983E-04	1.6735435-04	1,705190E-04	1.7305795-04	1.7487135-04	1.7613855-04	1.769016E-04	1.771718E-04	1.772274E-04
TRIDIAGONAL REDU NVALUE = 1.4334		4 Y P E	()	O	ď	IJ	ŋ	g	ıŋ	ø	c)	O	()	g	₍₃	ני	O	Ö	O	(J	g	IJ	IJ
FEER TRIDIAC EIGENVALUE		POINT 10.	-	2	m	ব	ស	ĝ	7	80	on.	0,10	11	12	13	14	15	9		18	91	20	21

NATIRAN COURSE - - - DEMO, PROB. 38 NORMAL WODES ANALYSIS

	es ex	0	7.636592E-02	7.627038E-02	2.118435E-02	-5.711304E-02	-1.173557E-01	208214E	-6.207311E-02	2.553576E-02	9.567845E-02	1625658	3600096	1.317715E-02	75912E	-1.050478E-01	-9.7620C4E-02	-4.205906E-02	3.470902E-02	1.003574E-C1	1.369332E-01	1.470138E-01
ທ	82	0		0.0	٠														•			0.0
	æ F	0.0		0.0											•							
ы > С	13	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
R E A L E E	ţ- 24	0.0	2.2733315-01	6.2-31195-01	9.00247 (5-01	11275895	3.5.5.7745-01	-2.cm0y50E-01	38280#5.	.417022	-5.211942E-01	3.1168748-02	5.5288316-01	8.0178548-01	6.7728526-01	2.42.50308-01	-2.837497E-01		.747131E-	(4	2.8'3907E-01	1,6000005+00
UCTION METHOD 342E+05	11	0.0	4.796456E-04	9.283243E-04	1.344422E-03	5-0	2.0633338E-03	2.3587816-03	2.818942E-03	C	3.023716E-03	3.169251E-03	3.292989E-03	.398007E+0	.485512E-0	.556010E-0	.609238E-0	3.649136E-03	.677290E-0	3.694545E-03	.701120E-0	3.702617E-03
30NAL REN = 3.893	3471	ιj	G	IJ	U	g	Ŋ	(3	(J	IJ	IJ	₍)	IJ	O	₍₎	IJ	g	U	ග	U	J	U
FEER TRIDIAGONAL RENU EIGENVALUE = 3.8933	POINT 10.	_	2	3	4	5	œ		8	6	0	-	12	13	4	<u>ئ</u>	9	17	18	19	20	2.1

33	
PROS.	
DEVO.	
1	ų
1	13
1	
	ĺ
14.1 17.	:
Gr.	
9. O	. 01.
356723	. 04
+ 358722 N	
358700 746	
358733 N181541	

PAGE

FEBRUARY 10, 1981 NASTRAN 12/15/80

FEER TRIDIAGORAL RETUGTION WETHOD FINENCE OF BRANCHERS	

REAL EIGENVECTOR NO. 6 12		·					
R E A L E I G E N V E C T O R N D . 6	FINCTION METHOD 32084E+05	2		,		ı	
T2			E A C	E N E C	<u>ح</u> 0	ပ	
3 4.241498E-01 0.0 0.0 3 4.241498E-01 0.0 0.0 3 4.241498E-01 0.0 0.0 3 4.6261E-00 0.0 0.0 2 1.92848E-01 0.0 0.0 2 1.92828E-01 0.0 0.0 2 -7.68421E-01 0.0 0.0 3 6.78426E-01 0.0 0.0 4 0.0 0.0 0.0 5 0.0 0.0 0.0 6 0.0 0.0 0.0 7 0.0 0.0 0.0 8 0.0 0.0 0.0 9 0.0 0.0 0.0 1 1.340931E-01 0.0 0.0 1 1.340931E-01 0.0 0.0 2 1.440931E-02 0.0 0.0 3 1.440931E-02 0.0 0.0 4 1.316311E-03 0.0 0.0	Ξ		12	13	č	R2	R3
4.241498E=01 0.0 0.0 0.753266E 1.02020E+00 0.0 0.0 0.753266E 9.16236E=01 0.0 0.0 0.0 -7.07849E=01 0.0 0.0 0.0 -7.07849E=01 0.0 0.0 0.0 -7.07849E=01 0.0 0.0 0.0 -3.5737E=01 0.0 0.0 0.0 1.5737E=01 0.0 0.0 0.0 3.5737E=01 0.0 0.0 0.0 1.5737E=01 0.0 0.0 0.0 2.5437E=01 0.0 0.0 0.0 3.5737E=01 0.0 0.0 0.0 1.57656E=01 0.0 0.0 0.0 2.5437E=02 0.0 0.0 0.0 4.5556E=02 0.0 0.0 0.0 5.5437E=02 0.0 0.0 0.0 6.938873E=02 0.0 0.0 0.0 6.938873E=02 0.0 0.0 0.0 6.93866E=03 0.0 0.0 0.0 7.5556E=03 0.0 0.0	0.0			0.0		0.0	
1.02000E+00 C.0 C.	-2.886331E-0.	m	.241498	0.0		0.0	.321170E-
9.402261E=01 0.0 0.0 0.0 1.7249E= 2.15236E=01 0.0 0.0 0.0 0.0 1.72435E= 3.60238E=01 0.0 0.0 0.0 0.0 2.604017E= 3.612197E=01 0.0 0.0 0.0 0.0 3.612197E=01 0.0 0.0 0.0 0.0 3.612197E=01 0.0 0.0 0.0 0.0 0.0 3.61217E=01 0.0 0.0 0.0 0.0 0.0 0.0 4.6526E= 3.61217E=01 0.0 0.0 0.0 0.0 0.0 0.0 2.195141E= 3.61217E=01 0.0 0.0 0.0 0.0 0.0 4.6526E= 4.6526E= 5.6336F= 5.714236E= 5.71424E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.714246E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.714246E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.714236E= 5.7	•	m	1.0000000+00	0.0		0.0	.7532966
2 2.152367E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	.:23313E-	m	.4.32615	0.0		0.0	.1032-8E
2 -5.3040345-01 0.0 0.0 0.0 0.0 2.6480105-2 -7.0584016-01 0.0 0.0 0.0 0.0 0.0 2.6480105-2 -7.0584016-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-1.044153E+0	Ņ	1523845	0.0		0.0	.726,475E
2 -7.058491E-01 0.0 0.0 9.459540E- 2 -3.612497E-01 0.0 0.0 9.459540E- 2 3.612497E-01 0.0 0.0 7.45940E- 2 3.574510E-01 0.0 0.0 7.45741E- 2 3.574510E-01 0.0 0.0 2.4755241- 2 1.346542E-01 0.0 0.0 -2.6755241- 2 1.346542E-01 0.0 0.0 -4.722336- 3.543361E-02 0.0 0.0 0.0 -3.571941E- 4.5533361E-02 0.0 0.0 0.0 1.548947E- 5.543361E-02 0.0 0.0 0.0 1.548947E- 6.938973E-02 0.0 0.0 0.0 1.548947E- 6.938660E-01 0.0 0.0 3.962837E- 2.533007E-01 0.0 0.0 3.36283E- 2.543067E-01 0.0 0.0 4.316311E- 2.543067E-01 0.0 0.0 0.0 2.543067E-01	ŧ	2	3660608.	0.0		٥.٥	w
2 -3.6121978-01 0.0 9.4595655 2 1.0525288-01 0.0 0.0 2.459565 2 3.574778-01 0.0 0.0 2.4595478 2 3.57478-01 0.0 0.0 -2.6757847 2 1.346545-01 0.0 0.0 -4.722387 2 -8.479376-01 0.0 0.0 -3.577948 2 -1.746712E-01 0.0 0.0 8.001576- 2 -8.439376-02 0.0 0.0 2.946750E- 3 -8.543392E-02 0.0 0.0 1.948947E- 6 6.938478E-02 0.0 0.0 1.948947E- 6 6.938478E-02 0.0 0.0 1.948947E- 7 -1.7498E-02 0.0 0.0 -1.55947E- 8 -1.374496E-01 0.0 0.0 -1.55947E- 9 -5.55868E-03 0.0 0.0 -1.316347E- 2 -5.33007E-01 0.0 0.0 0.0	u u	N	.058491E	0.0		0.0	. 685010E
1.002528E-01 0.0 0.0 0.0 7.8E2515E-3.5 F. C.	0	7	.612197E	0.0		0.0	<u> 4595986</u>
3.57437 VE-C1 0.0 0.0 0.0 2.19514167 3.57437 VE-C1 0.0 0.0 0.0 0.0 0.0 2.19514167 3.57437 VE-C1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		a	.032528E	0.0		0.0	.8525158
3.37e315E-01 0.0 0.0 0.0 0.0 -2.67252FII- 1.5.6634E-01 0.0 0.0 0.0 0.0 -4.722035CII- 18.74631E-02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-1.8554295-0	c 4	3.5749778-01	0.0		0.0	1951418
2 1.3.440.45=01 0.0 0.0 0.0 0.0 -4.7220350-2 -8.4499378=62 0.0 0.0 0.0 0.0 -3.5719418-2 -1.7467128=01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	-1.9511056-0	d	3.3005135-01	0.0		0.0	.6725268
2 -8.479937E-02 0.0 0.0 -3.571931E- 2 -1.746712E-01 0.0 0.0 8.00157E- 2 -8.87361E-02 0.0 0.0 1.948750E- 2 -8.838873E-02 0.0 0.0 1.948977E- 2 -6.938873E-02 0.0 0.0 -1.545927E- 2 -6.121994E-02 0.0 0.0 -2.768143E- 2 -1.37480E-01 0.0 0.0 3.962083E- 2 -9.555696E-03 0.0 0.0 4.316311E- 2 2.533007E-01 0.0 6.0 5.714239E-	-2.033132E-0	~	1.3496048-01	0.0		0.0	.7220355-
2 -1.746712E-01 0.0 0.0 8.000157E- 2 -8.874361E-02 0.0 0.0 2.946750E- 2 -8.874361E-02 0.0 0.0 1.948947E- 2 -6.938873E-02 0.0 0.0 -1.545947E- 2 -6.121998E-02 0.0 0.0 -2.758143E- 2 -1.374496F-01 0.0 0.0 3.962083E- 2 -9.565656E-03 0.0 0.0 4.316311E- 2 2.533007E-01 0.0 6.0 5.714239E-	-2.103402E-	2	47.9937	٥.٥		0.0	-3155126.
-8.82,4351E-02 0.0 0.0 0.0 2.946750E-5.946750E-6.928947E-02 0.0 0.0 0.0 1.948947E-6.928947E-6.928978E-02 0.0 0.0 0.0 1.948947E-6.1219948E-02 0.0 0.0 0.0 1.948947E-6.1219948E-02 0.0 0.0 0.0 1.948947E-1.371496E-01 0.0 0.0 0.0 0.0 3.962083E-9.525696E-03 0.0 0.0 0.0 4.316311E-2.533007E-01 0.0 0.0 5.714239E-	-2.162607E-C	2	.746712	0.0		0.0	.090157E-
5.543792E-02 0.0 0.0 1.948947E- 6.938873E-02 0.0 0.0 -1.54597E- -6.121994E-02 0.0 0.0 -2.786143E- -1.371490E-01 0.0 0.0 3.962083E- -9.585696E-03 0.0 0.0 4.316311E- 2.533007E-01 0.0 0.0 5.714239E-	.210993E-	0.2	.8243611	0.0		0.0	
6.938873E-02 0.0 0.0 0.0 -1.545927E6.121938E-02 0.0 0.0 0.0 -2.786143E1.3714806E-01 0.0 0.0 0.0 3.962063E9.565696E-03 0.0 0.0 0.0 4.316311E- 2.533077E-01 0.0 0.0 5.714239E-	.248384E-	7	.543792E-0	0.0		0.0	1
-6.121994E-02 0.0 0.0 0.0 -2.788143E-1371480E-01 0.0 0.0 3.962083E-1371480E-03 0.0 0.0 3.962083E-2.533007E-01 0.0 0.0 0.0 5.714239E-	-2.276960E-C	~	.938873£	0.0	•	0.0	.545927E-
-1.3714806-01 0.0 0.0 3.962083E -9.865696E-03 0.0 0.0 4.316311E 2.533007E-01 0.0 0.0 5.714239E	.297593E-	ď	121998	0.0		0.0	7881435-
-9.8856968-03 0.0 0.0 4.3163118 2.5330078-01 0.0 0.0 0.0 5.7142398	.310740E-	2	.371480E	0.0		0.0	962083E
2.533007E-01 0.0 0.0 0.0 0.0 5.714239E	,316517E-	ď	0-3969686.	0.0		0.0	3163115
	ü	a	.533007E	0.0		0.0	714239E

E C H O PARAMETER NASTRAN SYSTEM

NASTRAN FILES=(NPTP,OPTP,PLT2)

FEBRUARY 9, 1981

NASTRAN 0/0/0

PAGE

- 12/15/80 SYSTEM GENERATION DATE - Andreas of the control of the cont

S ž

N MININ ASSEMBLININ

MINANAM STA MINANAM STA MINANAM STA GEORGAN STA GEORGAN STA

2 **2** 2

N MININ M MINIM MIN MIN

3.13.444.23 C. TEALTY

Land to the

C---CC CLCCCC

REGISTER STATE OF THE STATE OF

A MANAGEMENT Maria dada The second second

WELLOWWINGTON OF THE THEORY OF THE THE THEORY OF THE THEORY OF THE THEORY OF THE THEORY OF THE THEOR

TOTAL STATE AND ANALYSIS OF THE STATE OF THE

MMXXMM MINIMIA MECTIN STATEMENT MANAGED A 11.5

NIVIVM

NIM NIMIN MINIMIN MINIMIM

KITAMMIJIM

WITH THE PROPERTY OF THE PROPE MASSET COLOR CONTROL C

MANUTATION OF THE PROPERTY OF

W EXEMPTION PATTERN CONTROL TO THE PATTERN CO

RIGID FORMAT SERIES P

LEVEL 17.5.7

CDC CYBER SERIES MODEL 173

Principal Committee of Committe

Company of the Compan

PAGE

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID NASTRAN, DETO
APP DISP
SOL 3,0
\$ THE FOLLOWING CARDS (THE CHECKPOINT DICTIONARY) WERE PUNCHED BY
\$ THE FOLLOWING CARDS (THE CHECKPOINT DICTIONARY) WERE PUNCHED BY
\$ THIS JOB IS A RESTART FROM DEMO. PROB. 3

				ď
				11 14 14 14
				-
PRC3. 3			EC020.	i i i i i i
DEMO.			2/9.81,	C
F 203			5,	F: AGS = 0.
THIS JOB IS A RESTART FROM DEMO. PROB. 3			.ceno	(/ d > ×
I S			2 4) >
003			VASTR	
SIHL		SINSERT	RESTART NASTRAN , CEMO	
ь	⊌ Դ	ZI 9	RES	

	ß		Ø	7	00	6	0	-	0		12	13		14	0	0	0		15	0		16	17	138	0	0						23			25			27	
	n		11	u	u	,,	11	11	u		11	и		11	11	11	u		μ	11		Ħ	н	11	11	п		11	и	11	11	11		11	n	н			u
	F 1 LF		1			- I	3714	Ξ			-1	3714		_1	F 1 1 5	그	-1						FILE	ر 	=	1			FILE	크	\exists	⇉		FILE	ᆜ	-1		9 1 1	
		o			<u>.</u>	-	<u>.</u>	-	٥,	œ	1,		22	-	٥.			24	<u>.</u>	٠.	29	-				٠.	34	. .					37		<u>.</u>		7,		<u>:</u>
070	E F	OXSE	11 11 11	_1 [-]	11 12 13	. J Lii Lii	ار النا النا	لــا لقا ندا	LI EI EI	1.8E	EL	1111111	B8:0	1.1 1.1 1.1	i ii L	ل. زن نیز	ال (با نيا	381.7	E E L	ز ـ لیا لیا	100 E	 [1] [1]	ا لما دنا	ا النا النا	LI LI LI	131	. U3E	ا۔ نبا	111	LI III	 111 1.1	733	iii E E	1 1 1	ر. (یا ند) []]	RESERV	ر ایا	11 11 11
אַ	LAGS = 0	AP SEQU	LAGS = 0	LAGS = 0	LAGS = 0	LAGS = 0	LAGS = 0	LAGS =	LAGS = 0	AP SEQUE	14G5 = 0.	LAGS = 0	BODES de	FLAGS = 0,	LAGS = 0	LAGS = 0	LAGS = 0	AP SEQUE	LAGS = 0.	LAGS = C	AP SEQUE	LAGS = 0.	LAGS = 0	14G5 = 0	LAGS = 0	LAGS = 0	AP SEQU	14GS = 0	14GS = 0	0 = S0#7	14GS = 0	LAGS = 0.	AF SEQUE	LAGS = 0	LAGS = 0	L4GS = 0,	DMAP SEQUENCE	LAGS =	LAGS =
_		Ā		-				-		ΔT			4					ÞΑ			⊢		-		-		Α						ΑT				Α		-
7	<u>م</u>	w	a.	9	Ω	3	-1	رد ت	'n	E E	Č	Sd>	نیا دیا	33.7	THAL	PSET	S	EENT	Sd.	ā	ليا ليا	Ş. .	iri O	, ()	u.	Sec	ш	:3 :3 (U)	ä	u	ä	Sda	ليا ليا	S	Sa	3	REENTER	g	>
2 - 2	-	۲,	ო	प	5,	9	7.	œ	.6	10.	-	<u>.</u>	13,	-1 -	15,	16.	17,	18,																			37,		
1																																							

~

Ω

O

α

O

u)

 \supset

⋖

0+0000000000 4778 m00 FILE FILE FILE F11E F11E F11E TAAP CALLES SECTION OF THE ACT OF A . . . 44 . .4

ო

О
I
J
ш
¥
ပ
ш
۵
0
α
. -
z
0
ω
.,
G f
>
-
_
⊃
0
w
×
LL.
2
~
ιr
-
S
4
z

48		94	0	0		50	51	52				
FILE =		H LL LL	11 (1) 11 11	1) 11 14 14		FILE	FILE =	FILE =				
-	121	-		0	125	-	-	-				
III (a) (c) (r)	æ ⊞3: ∵	H (i)	H tal sir sir	1 14 14 14 14 14 14 14 14 14 14 14 14 14	. TIBER	REEL	REEL	REEL =				
FLAGS = 0.	DIAP SEQUENCE	F.1505 = 0.	F1405 = 0.	FLAGS = C.	DWAP SEQUENCE	FLAGS = 0,	FLAGS = 0.	FLAGS = 0,	DICTIONARY			
San X	REENTER AT	A.PS	S:5	. accare	REENTER AT	83.00	SIP .	. Savx		0		
.06	.16		63	ਰ ਹਾ	95,	96'	97,	.86	\$ END OF CHECKPOINT	SSEQUENCE NO	TIME 10	CEND

O r U w ¥ O w a

CONTROL

CASE

4

PAGE

RESTART OF DEVO. PROB. 3 TO OBTAIN NORE HODES (APPEND FEATURE) NASTRAN COURSE - - - DEMO. PROB. 30 NORTAL VOCES ANALYSIS - - - INVERSE POWER VETHOD

TITLE=NASTRAN COURSE - - - DEMO, PROB, 3C SUBTITLE=NORTAL TODES ANALYSIS - - - INVERSE POWER METHOD LABEL=RESTART OF DETO, PROB, 3 TO OBTAIN NORE MODES (APPEND FEATURE) SPC= 11 SPC= 11 METHOD=41 DISP= ALL BEGIN BULK

- 464666

NASTRAN COURSE — — — DEMO, PROS. 30 Normal Wodes analysis — — — Inverse pomer method

RESTART OF DEMO. PRDB. 3 TO OBTAIN MORE MODES (APPEND FEATURE)

INPUT BULK DATA DECK ECHO

S

FEBRUARY 9, 1981 NASTRAN 12/15/80

1.-3+EIGR41 1 .. 2 .. 3 .. 4 .. 5 .. 0 .. 7 .. 9 THE SLASH CARD (/) IS USED TO DELETE CARDS FROM THE RESTART. 22 9 300. 0 É I GR ENDOATA

TOTAL COUNTS

NASTRAN COURSE - - - DEMO, PROS. 30 NORMAL MODES ANALYSIS - - - INVERSE POWER METHOD

PAGE

FEBRUARY 9, 1981 NASTRAN 12/15/80

(APPEND FEATURE)
RODES
PROB. 3 TO OBTAIN MORE MODES
⊢
PP.B. 3
RESTART OF DETO.
C
ESTART

		. 01																			(+E 1 GK 4																			1	+STEEL +P31	+ P31A	
		о :	-																			ກ 1 -																						
	E C H O		0.0																		ď	5	345) r																			ıΩ	
	DATA	6 7	-																		Ç	٥																				-4 -3 1.498	0.312	
	٦ ×	:	0.0																		ć	0																			(7.324		
FEATURE)	E 0 B U	5		O) (°) ។	ារ	9	7	ထ	თ	C+ .	(2.		7 (i)	<u>+</u>	-	-)	9	- C C C																				ſ	. 3 80 7.490		
(APPEND	SORTE	; :		- c	4 m) J	· w	9	7	æ	φı (o •	- (7.0	- • 0 •1	ر س	9	t ·		თ (000	?.		0.	'n			2 7 0		35.	?	n u : J	 (i) (i)	60°	65.	70.	200 1	 > :	0,		,	· ·		. ⊢
RE MODES			31																		7.8.1	* * * * * * * * * * * * * * * * * * *	r																			+ > 0	25 0.	0.75 126
TAIN MORE		:		- c	4 6) च	w.	9	۲-	ဆ	ற . ச	o :	(- 4	÷.	0	! -	1)	σ (• - (0 +	-	-		Ç.	က ·	r t u	טי ח	t	σ	g. (') • - •		· Θ	-1	ιΩ ;	10	- TO	<u></u>	O ny i	€4 C	3 4	60	۲-
. 3 10 08			BAROR	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	έα 1 -1 1 :: 1 ::	r & r +r n =n u u	() () () () () () () () () ()	CB4R	CBAR	CBAR	α (α (α (α (α (α (α (α (X (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1 Y 1 • 1 2 0 2 ()	r n 1 4 1 0 0 0 0 0 0	348 0 0 48	C440	ر د د د د د د د د د د د د د د د د د د د	A TOTO	a :	07 0 41 1 10 1-	#1.0% +8168 4	±350a5	50.5	() ()	Cr agr	.) (?:: :) (, ,	0.80	C (0)) () () () () () () ()	() () ()	GP:10	01 a.s	ე ი გ გ ე ი		0.80	0:	0130	- 00 - 41 - 41 - 01	+ 531	8 P C 1
F JETT. PROB	•	0000 14000	1	- Z	J -1	r wo	9-	7 -	.	-6	+0-	1 - (1 7 - •	۱ . ۱ .	- -	-0-	- 21	10	±ë.†	- 50 - 50 - 50	2 C C	2.2.2	24-	25-	255-	27.7	1 15 CH C	2 to 2) (32-	- - - - - - - - - - - - - - - - - - -	: 	ا ن ز ن ا	37-	3.4-	ლე. + იი	4 4 0 4 1 1	124	1.5	4	1 1 1	1 0 4 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.80	4 0 0 - 0 0

.

RESTART OF DEVO. PROB. 3 TO OBTAIN MORE HODES LAPPEND FEATURE)

LIST OF MODIFIED CARDS

MASA AGRO - BIT POSITION - CARD NAME - PACAED BIT POSITION

4.9

POUTS NOTOOPS

۳- m

FEBRUARY 9, 1981 NASTRAN 12/15/80 PAGE

۲

NOTES AND AND PROBLEM OF POAER METHOD NATIONS TO BE AND AND MERCINES (APPENDINGE)

SORTED BULK DATA ECHO

5 6 8 : 9 ഗ 4 . : 8 CARD

172

FEBRUARY 9, 1981 NASTRAN 12/15/80

თ

PAGE

RESTART OF DEVO. PROB. 3 TO OBTAIN MORE MODES (APPEND FEATURE)
LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

DEMO. PROS. 3C --- INVERSE PONER DETHOD

NASTRAN COURSE - - - NORWAL MODES ANALYSIS

*INDICATES INSTRUCTIONS TO BE EXECUTED FOR MODIFIED RESTART

THE FOLLOWING FILES WERE USED FROM OLD PROBLEM TAPE TO INITIATE RESTART

FILE NO.	u	o 1~ 00	010	- a a	24 30 34	ଅଟି ଓଡ଼ ଅନ୍ତର ଅନ୍ତର	4 4 4 4 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5 5
REEL V.D.							
FILE NAME	54 ம். ய ய	100) ⊢ (/\	0.10(0	7 10 W	0 4 6 4 0 4 6 4 4 4 5 5	$\alpha I >$

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

NASTRAN COURSE = - - DEMO. PROB. 30 NORMAL WODES ANALYSIS = - - INVERSE POWER METHOD RESTART OF DEVO. PROB. 3 TO CBIAIN NORE VODES (APPEND FEATURE)

* SYSTEM WARNING VESSACE 3022

IS REQUIRED AS INPUT AND IS NOT BUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK BURDP

** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUIPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK SIP

*** USER INFORMATION WESSAGE 3143, THE EIGENVALUES AND FIGEN, ECTORS FOUND ON THIS RESTART WILL BE APPENDED

TO THE A ELGENVALUES AND ELGENVECTORS PREVIOUSLY CHECKPOINTED,

60) 0 S AVG 0 PREFACE LOOPS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA (N = C AVG = 0 SPILL GROUPS = C MAX = 5 POWAX = 0 PC GROUPS = ***USER INFORMATION VESSAGE 3023--PARAMETERS TIME ESTIVATE= 1 AUDITIONAL CORE= +23722

60) S AVG = O PREFACE LOGPS = FOR SKRYETRIC SECOMPOSITION OF DATA BLOCK LAWA (N = C A.S = 6 SPILL GROUPS = C VAX = 5 PCMAX = 0 PC GROUPS = METHOD 1 NI,NBR PASSES = 1.EST. TIME = .1 ***USER INFORMATION VESSAGE 3023--PARAMETERS
**IME ESTIMATE= 1
ADDITIONAL CORE= -23722

NASTRAN COURSE --- DEMO. PROB. 3C NORMAL MODES ANALYSIS --- INVERSE POWER METHOD

RESTART OF DEMO. PROB. 3 TO OBTAIN MCRE WODES (APPEND FEATURE)

Ξ

PAGE

NASTRAN 12/15/80

FEBRUARY 9, 1981

EIGENVALUE ANALYSIS SIMMADS

(INVERSE POWER METHOD)
≻
œ
۹ -
N M M
_
S
•
S
s -
S
,
ž
1
د
)
1
•

9	-	0	8	15	ø	.49E-14	9	ហ	c
NUMBER OF ELGENVALUES EXTRACTED	NUTBER OF STARTING POINTS USED	NUMBER OF STARTING PCINT MOVES	ш	TOTAL NUMBER OF VECTOR ITERATIONS	REASON FOR TERMINATICN	LARGEST OFF-DIAGONAL MODAL MASS TERM	MODE PAIR		NOMBER OF OFF-DIAGONAL MODAL MASS TERMS FAILING CRITERION

RESTART OF DEVICE. PROB. 3 TO OBTAIN MORE MODES LAPPEND FEATURE)

NASTRIN COURSE - - - DEMO, PROB. 30 NORMAL WODES ANALYSIS - - - INVERSE POWER VETHOD

EIGENVALUES R E A L

		: :		
EIGENVALUE	RADIAN FREJULACY	CYCLIC FREQUENCY	GENERALIZED WASS	CENERALIZED STIFFNESS
1.233355E+02	1,110535E+01	1.7675196+00	7 2000 2000 2000 2000 2000 2000 2000 20	A 943017E-01
4,815432E+03	6.9393315+01	1.1043246+01	A: 0100000000000000000000000000000000000	0.044000000
3.754747E+04	1.937717E+02	3 OBSOLUTION	0.000 - 1.00 0.000 - 1.00 0.000 - 1.000	0+1244247.2
1.433458E+05	3,7861035+02	G 005770E+01	0.000044F103	Z.180999E+0Z
3.893342E+05	6.2396bsF+02	0:020770T+01	0.3847738103	8.583220E+02
8.6320846+05	9 2969316 #02	- 010000000	0.2402.000	50491000017 1001010101
•	70.000	Z0+300007+	0.0184/25-03	5.713120E+03

METHOD 1 T , NBR PASSES = 1, EST, TIME =

FEATURE)
CNECARI
SECT
NORE
. 3 TO DBIAIN NORE #30ES
10
က
pela.
OF DEVO.
Ü
RESTART

RESTARY OF DEVO. P	DEVO. PR	919 3 TO OBTAIN NORE	NORE WOOFS (APPEND	END FEATURE)			
EISENVALUE		55E+02	7 7		z «	-	
POINT 10.	TYPE	1	12	ღ_	ά	82	en en
	g	0.0	0.0		0.0	0.0	0.0
5	O	-1.380769E-21	4.292372E-03	0.0		0.0	1.696038E-03
က	ڻ و	ų,	1,4763545-02	o.o	0.0	0.0	3.271528E-03
4	g	-4. 'CH308E-21	3.6-21100E-02	0.0	•	0.0	4.726585E-03
5	()	25.8E-	6.5733278-02	0.0	٠	0.0	6.0515405-03
မ	G	134680E-	9.7734428-02	0.0		0.0	7.2770745-03
7	(ر.	-7.9200001-21	1.3-41108-01	ر. د	•	0.0	8.3743615-03
89	O	l iii	1.8078445-0:	0.0	•	0.0	9.3551888-03
6	g	-1.034417E-20	2.2477678-01	0.0	0.0	0.0	1.022204E-02
10	J	-1.142934E-20	2.8782458-01	0.0	•	0.0	1.097816E-02
-	IJ	CA	3.3.38406-01	0.0	•	0.0	1.1627565-02
12	IJ	-1.338202E-20		0.0	•	0.0	1.2175075-02
13	و	3	10-8555500-4	0.0	•	0.0	1.2026356-02
4	ڻ و	0520E-2		0.0	•	0.0	1.2987388-02
÷.	O	Ш	5.907233c-01	0.0	•	0.0	1.326747E-02
16	O	05-2		0.0	٠	0.0	1.3473376-02
-1	O	73716E-2		0.0	٠	0.0	1.361532E-02
±	ၒ	E-2	7.936716E-01	0.0	•	0.0	1.370403E-02
91	ن	E-2	8.623251E-01	0.0	•	0.0	1.375128E-02
20	IJ	-1.754424E-20	9.3113785-01	0.0	0.0	0.0	1.3769906-02
21	Ø	-1.759849E-20	1.000000E+00	0.0	0.0	0.0	1.377372E-02

4

NASTRAN COURSE NORVAL YODES ANALYS	RSE S AMALYSI	- DEMO, PROB. 3C IS INVERSE	BO RSE POWER WETHOD	0	FEBRUARY	9, 1981	NASTRAN 12/15/80
RESTART OF	DENG. P	POB. 3 TO OBTAIN	MORE TODES (APPEND	END FEATURE)			
100000000000000000000000000000000000000	r ·	F T	R E A L E I C	GENVECTO	Ο z	8	
POINT ID.	1 Y P.E	1	12	13	ά	R2	83
	g	0.0	0.0	0.0	0.0	0.0	0.0
2	()	1.812109E-21	-2.541131E-C2	o.0	0.0	0.0	-9.7083445-03
m	₍)	3.6130455-21	-9.2 -01235-02	0.0	0.0	0.0	-1.6794095-02
4	O	5.3917056-21	10-8040144-41	0.0	0.0	0.0	-2,129275E-02
S	g	7.137122E-21	-3.0164248-01	0.0	0.0	0.0	-2.3289075-02
9	_O	8.83×535E+21	14.1817387-01	0.0	0.0	0.0	-2.2930636-02
7	ပ		-5.2745736-01	0.0	0.0	0.0	-2.0433955-02
60	IJ	1.206773E-20	-6.10.10078-01	0.0	0.0	0.0	-1.6083635-02
6	O		-6.5543125-01	0.0	0.0	0.0	-1.022J90E-02
10	()	1.49.9765-20	-7.3:11446-01	0.0	0.0	0.0	-3.2506455-03
-	Ø		-7.4723788-51	0.0	0.0	0.0	4.4158.75-03
12	IJ	1.758245E-20	-6.755321E-01	0.0	0.0	0.0	1.2342085-02
13	g		-5.9404726-61	0.0	0.0	0.0	2.0109315-62
14	IJ		-4.751258E-01	0.0	0.0	0.0	2.733465E-02
15	IJ	.057880E-2	-3.2210976-01	0.0	0.0	0.0	3.359732E-02
46	ŋ	.133803E-2	3495330	0.0	0.0	0.0	3.6457138-02
1.7	O	.196571E-2	6.5433775-02	0.0	0.0	0.0	4.2975015-02
± 9	U	2.245796E-20	.8773218	0.0	0.0	0.0	4.5728445-02
91	ť	.281175E-2	.2082698	0.0	0.0	0.0	4.7323616-02
20	g		'n	0.0	0.0	0.0	4.8003795-02
21	IJ	2.309610E-20	1.00000CE+CO	0.0	0.0	0.0	4.815432E-02

5

NASTRAN COURSE - - - DENO, PROB. 30 NORMAL WODES ANALYSIS - - - INJERSE PONER VETHIO

	e	α
	O z	£
PEND FEATURE)	REAL ETGENVECTOR NO.	13
RESTART OF DEMO. PROB. 3 TO OBTAIN MORE TODES (APPEND FEATURE) Fidenmance - 3 7547475-04	 .r. .u. .u.	C E
. 3 TO OBTAIN		11
RESTART OF DEMO. PROB. 3 TO FIGENATURE - 3 7547476-04		POINT ID. TYPE
RESTART		FNICE

R.3	0.0	2.4971135-02	3.7457745-02	3.905870E-02	3.162030E-02	1.6282185-02	-3.2018965-03	-2.331.846-02	-4.00504E-02	-5.217508E-02	-5.604850E-02	-5.143885E-02	-3.6854525-02	-1. 997258E+02	2.6402275-03	2.5962405-02	4,7038428-02	6.3512746-02	7,4115295-02	7.9045155-02	8.021846E-02
R2	0.0									0.0											0.0
æ	•	•	•	•	•	•	٠			0.0	•	•		•	•		•	•	•	٠	•
13										0.0											0.0
27	0.0	B. 7. 930 'E-02	2.3.142.45-01	133673101	6.16-27.36-01	-311600	7. 4 (1955-01	7.0000 08-01		8.01 0.08	1-	.433306E-	1.184	-30208.81	-31816-4	-8.0-140H8-01	-3842H-31	-1.31058 E-01	2.1598225-01	6.0032355-01	1.000000E+00
	٥,٥	-2.841736E-21	-5.6659516-21	-8.455233E-21	-1.119258E-20	-1.36 -0535-20	-1.6443226-20	-1.4.2:20	-2.12%,4158-20	-2.352752E-20	-2.5810878-20	-2.754131E-20	-2.930196E-20	-3.0981~4E-20	-3.2271536-20	13.3402188120	E L	-3.5218425-20	-3.577323E-20	-3.610749E-20	-3.621914E-20
+ 4 7 E	()	Ö	O	ø	<u>ပ</u>	IJ	ij	O	()	IJ	rg	O	ij	g	()	ניז	ø	IJ	IJ	၁	G
INT ID.	-	(4	'n	4	5	ဖ	1~	ъ	6	0	-	4	13	4	u) ₩	,	17	<u>.</u> მ	19	20	21

Approximation of the second of

NASTRAN COURSE - - DEMO. PROB. 3C NORMAL MODES ANALYSIS - - - INVERSE FOMER WETHOD

16

PAGE

NASTRAN 12/15/80

9, 1981

FEBRUARY

RESTART OF DEMO. PROB. 3 TO OBTAIN MORE HODES (APPEND FEATURE) EIGENVALUE = 1.433458E+05

. O Z EIGENVECTOR 3 E E

R3	0.0	-4,4F6526E-02	-5.6809022-02	-4.1087985-02	-6,8406348-03	3.3164495-02	6.5710355-02	8.0222905-02	7.2232785-02	4.3514535-02	2.4124425-03	-3.911161E-02	-6.888540E-02	-7.806683E-02	-6.3091225-02	-2.943286E-02	1.501108E-02	5.986574E-02	9.314320E-C2	1.104585E-01	1.1493825-01
R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٥.٥	0.0	0.0	0.0	0.0	0.0	0.0	0.0
81	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T3			0.0		0.0	0.0	٥.٥	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
۲ .	0.0	-1,242547E-01	-3.9355118-01	-8.489489E-01	+7.741809E-01	-7.078.915-01	-4.835-5-C1	-7.9-64706-02	3.1:57908-01	6.0%8128-01	7.2. 5334E-01	6.3211848-01	3.5457378-01	-2.311684E-02	-3.875424E-01	-6.275872E-01	-6.843603E-01	-4.727451E-01	-8.352660E-02	4.3262305-01	1.000000E+00
1.1	0.0	1.357540E-20	2.706710E-20	4,0391925-20	5.5467705-20	6.621352E-20	7.8551716-20	9.040523E-20	1.017015E-19	1.123706E-19	1.2234706-19	1.3156905-19	1.5507935-19	1.470277E-19	1.541659E-19	1.598537E-19	1,645560E-19	1.682437E-19	1.708941E-19	1.724909E-19	1.730243E-19
TYPE	ij	IJ	g	ပ	ıσ	IJ	IJ	IJ	IJ	_ت	IJ	ن	ß	()	(J	ڻ	ပ	IJ	IJ	O	IJ
POINT ID.	-	5	က	4	5	ŧΩ	7	30	6	0-		12	13	4	15	91	17	18	61	20	21

NASTRAN COURSE DEMO. PROB. 30	FEBRUARY	9, 1981	FEBRUARY 9, 1981 NASTRAN 12/15/80
NORDAL TODES ANALYSIS INVERSE POWER DETHOD			
RESTART OF DEMO. PROB. 3 10 OBTAIN MORE MODES LAPHEND FEATURE)			
E108,VALUE = 3.8933428+05			

PAGE

POINT ID.		11	12	13	ā	R2	R3
	IJ	0.0	0.0		0.0		0.0
2		5.834531E-16	1,000	0.0	0.0	0.0	6.7090185-02
e		1.123531E-15	5.1.003 8.01	ر. د	0.0	0.0	6.6404115-02
す		3.6770s0E-18		O. O	0.0	0.0	1.0421575-02
ın		2.2300000000	6. 3731875-01	0.0	0.0	0.0	-5.0178158-02
Ð		2,73 -210E-15	3.1.7.54 (8-01	0.0	0.0	0.0	-9.738C30E-02
7		3.261482E-15	-2.048-475-01	0.0	0.0	0.0	-1.00609985-01
œ		3.75,38448-15	-6.1735246-01	0.0	0.0	0.0	-5,7239346-02
σ		4.22224E-15	-7.3000004	0.,	0.0	0.0	1,2725725-02
10		4,500 0.98-15	15.0.33777-01	0.0	0.0	0.0	7.5414008-02
		5.67 0.00-15	G;	0.0	0.0	0,0	1.0379551-01
12		5, 44000 OE+18	4.27 - 12.38-01	၀. ၁	0,0	0.0	8.1495525+02
13		5.8:19005-15	10-3-4-3-11	0.0	0.0	0.0	2.1442246-02
1.4		6.125376E-15	6.5 53425-01	0.0	0.0	0.0	-4,902427E-02
15		6.400994E-15	Ċ,	0.0	0.0	0.0	-9.574126E-02
16		6.637156E-15	-2.2 C.5 E - 01	0.0	0.0	0.0	-9.6027855-02
17		6.8323945-15	-6.0/04638-01	0.0	0.0	0.0	-4.8661565-02
÷ 0		6.985508E-15	-6.6791206-01	0.0	0.0	0.0	2.6110485-02
6-		7.095555E-15	-3.50310:5-01	0.0	٥.٥	0.0	9.728805E-02
20		7.161855E-15	2.5.5225E-01	0.0	0.0	0.0	1.400819E-01
•		0 + 1 0 0 0 0 0 0 0 0		(•	•	

8

PAGE

ADSTRAN COURT	8 X 1 4 X 4 V	- 0670. PR03.	3J RSE POABR NETHUD		FEBRUARY	9, 1981	NASTRAN 12/15/80
ABSTART OF THE	05:00.00:30	8. 3 10 OBTAIN	NORE TODES LAPPEND	NO FEATURE)			
2		; ;	о 1 3 тезы	S E N V E C T O R	0 z	·Q	
.0: FN109	⊒	÷-	F- C4	2	ā	82	R3
-	c	٠.٥	· ·	0.0		0.0	٥.٥
2	()	-5.0721195-17	-2.000000000000000000000000000000000000	0.0	0.0	0.0	-9.051773E-02
e	O	1300001	11.2	0.3	•	0.0	-6.0465405-02
प	c)	-1.6570108-16	0.110	0.0	•	0.0	3.5325728-02
ഗ	U	-2.2340055-16	-3.7	0.0		0.0	1,1745485-01
10	(3	3013 31.	20.013.00.00	0.0		0.0	1,2273346-01
7	O	.2000-20	7.150 4.15-01	0.0		0.0	4.4977855-62
30	(3	-3.777.049E-10	0.000	0.0		0.0	-6.0093175-02
úυ	ιĵ	-23 6 +2T-	10-31-11-34-34-1	0.0		0.0	-1.2718455-01
0.	O	B7:1259.	1010100000011	0.0	•	o. o	-1.0313465-01
-	Ø	.1111-658	-7.40 (25- E-01	0.0	•	0.0	-7.6716685-03
12	ن	-5.497276E-16	-5.3164646-01	0.0		0.0	9,3153315-02
£.	O	8437648.	6.5+01126-02	0.0		0.0	1.2460695-01
-	U	.164073E-	6.1-2-208-01	0.0		0.0	525
51	Ø	4414098-	7.48.4808-01	0.0		0.0	-2.9133425-02
G	()	67.5091E-	3.4*11448-01	0.0	•	0.0	-1,1387565-01
¢-	()	-8.875564£-16	10-5:1016:0:0-	0.0		0.0	-1,1799745-01
3	J	0255476-	703.1335	0.0	•	0.0	-3.6150465-02
6	IJ	140390E-	(i) (i)	0.0	•	0.0	8.092702E-02
20	O	.207110E-	7.8-83375-02	0.0		0.0	1.660973E-01
	IJ	-7.229396E-16	1.000000E+00	0.0	0.0	0.0	1.930724E-01

· · END OF JOB · ·

LEVEL 17.5.1 NA ANTON STORES AN GARLON FORMA AN ENGLISH MAN HAM NEWAYA NATATA MANN MENTA NATATA MESSESSION AMNOM RAPES VR MAN MALERINAL

MEAN OF THE PROPERTY OF THE PR #12421 -- 120 C. C. C.

SYSTEM GENERATION DATE

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/8 9/2
NASTRAN SAMPLE PROBLEM COMPUTER OUTPUT, (U)
FEB 81 6 C EVERSTINE, M M HURWITZ
DTNSRDC/CMLD-81-04 AD-A096 867 UNCLASSIFIED 40 4096+67

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID NASTRAN, DEMO APP DISP TIME 10 SOL 4.0 CEND N

NASTRAN COURSE - - - DEMO. PROB. 4 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS

5/8-INCH DIAMETER STEEL BEAM

O r ပ w × U ш ۵ _ o α ⊢ z 0 O w S O A

TITLE=NASTRAN COURSE --- DEMO. PROB. 4
SUBTITLE =STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS
LABEL= 5/8-INCH DIAMETER STEEL BEAM
SPC= 11
CLOAD = 29
CLOAD = 42
DISP-ALL
DISP-ALL
SET 18= 1 THRU 20 2646678651111111

SUBCASE 1

LABEL = LINEAR STATIC SOLUTION

ELFORCE = 18

SUBCASE 2

LABEL=STATIC DIFFERENTIAL STIFFNESS (BEAM-COLUMN) SOLUTION

\$ DSCOEF=DEFAULT (REQUIRED FOR LEVE. 16, BUT NOT FOR LEVEL 17)

BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

PAGE

NASTRAN COURSE - - - DEMO. PROB. 4 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS

5/8-INCH DIAMETEP STEEL BEAM

	: ot																																								1	+STEEL	*60*	+P31A	
	6																																												
	: -																																											0	
0	œ																				_																								
IJ	.0																				345																						:		
ш	. •																																										ç		
	7																																									_	ġ	3125	
∀	. :																																									•			
⋖	•																																											2	
٥	9																																									.324-4	ò)	
×	.0																			50																							, c		
_	• -																																										ŗ		
¬	ß																																										6	2	
œ		010	J 4	S.	9 1	- 0	סס	0	-	12	13	4	5	9	_ 0	0 0	0 0	2 5		21																					22	ო.	- '		
۵	•																																												
w	4																					_												_				_			_		ď	-0.3125	
⊢ œ		- (אנט	4	n i	1 Q.	~ ac	, σ	, 0	Ξ	2	<u>.</u>	4 (5	9 '	- a	0 0	20.	3	_:			٠ ي	0	<u>.</u>	9,10	S S	٠ د د	2 6	4 5 5 	50.	55	0	מינ	źκ	0	ຸ່ເກ	90	95	<u>.</u>	-		ć	9	
0	•			•		-		-																																					
S	m																																								0	9+.			
	: ह																		7	2																					25.	8	- 0	, 0	
	6																																											125	
									0	_	a	m	寸 (n i	10 t	- a	οσ	, 0	25	~										0		7	en •	4 r	n u	7 C	. 00	, o	0	_	6	33	N •	_ ო	
	:		N W																								9 1												•	•	•			0	
	BAROR	~ ~	- ~	~	~ .	~ .	٠ ~	. ~	. ~	~	~	~	~	~ .	~ ~	- ~	٠ ~	. ~	152	E	3.5.7	_	_	_	_	_	٠,		٠ -		_	_	_ (~ <i>r</i>	٠ .				_	_	_	_ ;	- Z	r	
	ARC	BAR	BAR	BAR	BAR	A C	BA	A A	48	EAF	BAF	BAF	BAF	ВА	e d	1 4	9 4	BAR	EL	080	80	R	RIT	R.	2	2	2	¥ 0	10	3	RI	18	2	¥ .	2 0	. 0	2	~	RI	RI	OAI	AT		e d	
	· 10	U	ט כ	U	. ب	U (ں ر	, _C	, U	U	O	ပ	U	J	U (ر ر	ں ر	ن ر	, 0	ı	g	G	G	g	O .	<u>ن</u>	G (J (ט כ	ט כ	G	G	G i	O (J (9 C	, C	י ט	יט	G		2	≥ (1 +	
	o ½ L	55	5 4 1 1	5-	-9	- 6	, j	, ¿	!	2-2	3-	4-	2	. 9	7-	0 0	ו ו ו	, -	5	3-	4	2	-9	7-	8	6	6.	 - c	, ,	1	5	-9	7-	80 c) ()	. !		3.	14	5-	-9	7-	8	500	
Š	COCNI				- '	Ī	. •	Ŧ	•	_	_	÷	_	_			۰ ،	10	ΙÑ	ď	Ň	7	ď	N	CI (α (m (י) ני	י נ	יח מ	က	m	ო (י פי	7 <	1 4	4	4	4	4	4	4	4 4	t W	
,																																													

	STIFFNESS
4	STIF
PROB.	TIAL
DEMO.	DIFFERENTIAL
•	
!	WITH
•	
I COURSE	ANALYSIS
NASTRAN	STATIC

DECEMBER 27, 1979 NASTRAN 8/15/79

PAGE

5/8-INCH DIAMETER STEEL BEAM

	•
	:
0	ω
E C H O	7 8
	~
DATA	
-	:
⋖	9
Δ	9
8 ∪	:
_	
⊃	ம
ш	
٥	4 :
SORTED	4
> -	_
œ	:0 ←
0	
S	3 0.75 0. 126 1
	: 6.5
	~
	75.
	. 6 =
	. ₹
	. 1 2 +P31A 0.75 SPC1 11 ENDDATA
	Z P P
	, ,, ш
0	51- 52-
Ą	ລິດທີ
U	U

5

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

34 STARTING WITH ID	12 STARTING WITH ID
*** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	*** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

52

Ø

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK PLIPAR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT S! A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK ELSETS

*** SYSTEM WARNING MESSAGE 3022

15 REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK PLTPAR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT QUIPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

15 REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK ELSETS

60) 0 S AVG 0 PREFACE LOOPS ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KAA (N = TIME ESTIMATE= 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -28488 C MAX = 5 PCMAX = 0 PC GROUPS =

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE DATA BLOCK PLTPAR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT DUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIGUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK ELSETS

MPYAO--NULL MATRIX PRODUCT
METHOD 1 NI, NBR PASSES = 1, EST. TIME

*** USER INFORMATION MESSAGE 3035

FOR LOAD 1 EPSILON SUB E = -3.0623393E-10

PAGE

SUBCASE 1

LINEAR STATIC SOLUTION

R2 R3	0.0	0.0 2.439828E-04	0.0 5.151233E-04	0.0 8.134216E-04	0.0 1.138878E-03	0.0 1.491492E-03	0.0 1.871263E-03	0.0 2.278193E-03	0.0 2.712280E-03	0.0 3.173525E-03		0.0 4.177489E-03	0.0 4.720207E-03	0.0 5.276504E-03	0.0 5.832801E-03	0.0 6.389099E-03	0.0 6.945396E-03	0.0 7.501693E-03	0.0 8.057991E-03	0.0 8.614288E-03	0.0 9.170585E-03
<u>R</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	5.981815E-04	2.484171E-03	5.793758E-03	1.0F6273E-02	1.722588E-02	2.562199E-02	3.538386E-02	4.844826E-02	6.315100E-02	8.022786E-02	9.981462E-02	1.2204716-01	1.470389E-01	1.748121E-01	2.053669E-01	2.387031E-01	2.748208E-01	3.137200E-01	3.554007E-01	3.9986296-01
=	0.0	-1.358105E-05	-2.716210E-05	-4.074316E-05	-5.432421E-05	-6.790526E-05	-8.148631E-05	-9.506736E-05	-1.086484E-04	-1.222295E-04	-1.358105E-04	-1.493916E-04	-1.629726E-04	-1.765537E-04	-1.901347E-04	-2.037158E-04	-2.172968E-04	-2.308779E-04	-2.444589E-04	-2.580400E-04	-2.716210E-04
TYPE	IJ	()	O	G	G	IJ	IJ	IJ	g	IJ	ပ	IJ	o	g	IJ	IJ	IJ	G	g	U	G
POINT ID.	-	~	ო	4	S	9	7	80	თ	01	=	12	13	14	15	16	17	18	19	2	2

4	STIFFNESS
IO. PROB.	DIFFERENTIAL
DEA	WITH DIFFE
ASTRAN COURSE .	ANALYSIS 1
NASTRAN	STATIC

LINEAR STATIC SOLUTION

D VECTOR

SUBCASE 1

R3 2.500000E+01

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

	8. 8.	
× ×	S C C	
	T3	
	12	
	T1 -2,500000E+01	
	TYPE G	
	POINT 10.	

œ

PAGE

SUBCASE 1

FORCES I	-•	IN BAK ELE)		i a	AYTAL	
ייס	PLANE 2	PLANE 1	PLANE 2	PLANE 1	PLANE 2	FORCE	TORQUE
0.0		1,157482E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.		1.279529E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		1,401576E+01	0.0	-2.440942E-01	0.0	-2.50000E+01	0.0
0.0		1.523623E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		1.645670E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		1.767717E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		1.889755E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		2.011812E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		2.13385~E+01	0.0	-2.440942E-01	0.0	-2.50000E+01	0.0
o. 0		2.255906E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		2.377953E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0		2.500000E+01	0.0	-2.440942E-01	0.0	-2.500000E+01	0.0
0.0			0.0	-2.473826E-10	0.0	-2.500000E+01	0.0
0.0			0.0	-2.037268E-10	0.0	-2.500000E+01	<u>0</u> .0
0.0			0.0	-1.891749E-10	0.0	-2.500000E+01	0.0
0.0		2.500000E+01	0.0	-1.164153E-10	0.0	-2.500000E+01	0.0
0.0		2.500000E+01	0.0	-1.164153E-10	0.0	-2.500000E+01	0.0
0.0		2.500000E+01	0.0	-8.7311495-11	0.0	-2.500000E+01	0.0
0.		2.500000E+01	0.0	-5.820766E-11	0.0	-2.500000E+01	0.0
0.0		2.500000E+01	0.0	-8.731149E-11	0.0	-2.500000E+01	0.0

60) 0 S AVG • 0 PREFACE LOOPS • ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KBLL (N = 1 TIME ESTIMATE = 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE = -28488 C MAX = 5 PCMAX = 0 PC GROUPS =

NASTRAN COURSE - - - DEMO. PROB. 4 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS

თ

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

5/8-INCH DIAMETER STEEL BEAM

8 L E **∀** ⊢ PARAMETER 0 CONTENTS

DET

4.922688E+03

196

NASTRAN COURSE - - - DEMO. PROS. 4 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS

į r

9

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

5/8-INCH DIAMETER STEEL BEAM

T E œ ⋖ œ ш Н PARAME O R CONTENTS

POWER

0

MPYAD--NULL MATRIX PRODUCT METHOD 1 NI,NBR PASSES = 1.EST. TIME =

٦.

PROB. 4 DECEMBER 27, 1979

=

PAGE

NASTRAN 8/15/79

NASTRAN COURSE - - - DEMO. PROB. 4 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS

5/8-INCH DIAMETER STEEL BEAM

*** USER INFORMATION MESSAGE 3035

FOR LOAD 1 EPSILON SUB E = -6.9758341E-10

VPYAD--NULL MATRIX PRODUCT VETHOD 1 T ,NBR PASSES = 1,EST. TIME = METHOD 1 NT,NBR PASSES = 1,EST, TIME = .2
METHOD 3 T,NBR PASSES = 1,EST, TIME = .0
METHOD 3 T,NBR PASSES = 1,EST, TIME = .0

*** USER INFORMATION MESSAGE 7019,

MODULE DSCHE IS EXITING FOR REASON 1 ON ITERATION NUMBER 1.

PARAMETER VALUES ARE AS FOLLOWS
DOVE = -1
SHIFT = 1
DSEPSI = 6.0721379E-14.

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK PLIPAR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

DATA BLOCK ELSETS IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE.

*** USER WARNING MESSAGE 2076, SDR2 OUTPUT DATA BLOCK NO. 1 IS PURGED

NASTRAN COURSE --- DEMO. PROB. 4 STATIC ANALYSIS WITH DIFFERENTIAL STIFFNESS

12

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

O
110
ς_
2
S
•
S.
5
1
9
HAN.
ä
00
S
S
Z
ı
-
S
_
TIAL
F
Z
α
H
Ĭ.
10
Ü
-
4
<u></u>

STATIC DIFFERENTIAL STI	ERENT LAL	4	FNESS (BEAM-COLUMN) SOLUTION	z			SUBCASE 2
			DISPLA	ACEMENT	VECTOR		
POINT 10.	TYPE	E	12	13	R 1	R2	R 3
-	ø	0.0	0.0	0.0	0.0	0.0	0.0
7	IJ	-1.358105E-05	9.747649E-04	0.0	0.0	0.0	3.971793E-04
ო	IJ	-2.716210E-05	4.039337E-03	0.0	0.0	0.0	8.357214E-04
4	IJ		9.397532E-03	0.0	0.0	0.0	1.314407E-03
5	IJ	-5.432421E-05	1.724578E-02	0.0	0.0	0.0	1.831904E-03
φ	O	-6.790526E-05	2.777760E-02	0.0	•	0.0	2.3867755-03
7	U		4.117304E-02	0.0	0.0	0.0	2.9774755-03
œ	ŋ		5.780818E-02	0.0	0.0	0.0	3.6023635-03
σι	ŋ		7.7249565-02	0.0	•	0.0	
0	ŋ	-1.222295E-04	1.0025525-01	0.0	0.0	0.0	4.947659E-03
-	O	٠	1.257731E-01	0.0	•	0.0	5.6643275-03
12	U	•	1.5594216-01	0.0	0.0	0.0	6.407710E-03
13	IJ	.629726	1.908905E-01	0.0	•	0.0	7.175742E-03
14	g	-1.765537E-04	2.287016E-01	0.0	•	0.0	7.9450526-03
15	_ن	-1.901347E-04	2.703049E-01	0.0		0.0	8.692268E-03
16	IJ	-2.0371585-04	3.1558488-01	0.0	•	0.0	9,4153125-03
17	O	.172968	3.644153E-01	0.0	0.0	0.0	1.011217E-02
8	IJ	-2.3087795-04	4.166606E-01	0.0	•	0.0	1.078091E-02
19	IJ			0.0	•	0.0	1.141967E-02
50	IJ	-2.580400E-04	5.308055E-01	0.0	0.0	0.0	1.202668E-02
21	O	-2.716210E-04	5.923876E-01	0.0	0.0	0.0	1.260024E-02

201

Production and the control of the co

When any or the contraction of t MENNANTANCIANOS CALACIANAS CALACI

RIGID FORMAT SERIES

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.1

| MANYANDET TOTAL TOTAL

2 2 2 2 2 3 MAMMARIA MINIMA MINIMI

NEWNIM MINIMIN

MMMM WM MMMM

ž

× 2

MMM MENNAMENA N MINIM MMM

WIGHING

MMMM

MMMMMM MINIMIM MANAMA MISINIMIMIMIMINIMI MARMA MMM MM MMM MN:MM MMMMM

> M. TOTAL MANAGEMENT 6.1.192.34.1.13 ELEMANDED. Marrian Marrian Marrian

> > 1.1.17

Mary Colors Com MAICHTENN////

C. TRIPE MM DEST 0.17.11---- 0.17.14 W----MISSIN MINISTRACTORS MEGNATA ME MULTIPLE MAN NAMED AND A STATE OF THE PARTY OF THE PARTY

MANAMENTALION CONTROL CONTROL MANAMENTAL MAINTEN CONTROL CONTR

| WARRY CONTROL OF THE CONTROL OF TH

MANAGEMENTAL METATATION FOR THE PROPERTY OF TH MUDICALITICATANICATANINA MANAMENT CATALOGUE TO THE TANGET OF THE TANG MINISTER'S BASING — FROM SECTION SECTI

WWW. The state of -Manual designations of the second of the se Management and the control of the co MANAGEMENT AND CONTRACT OF THE WAY OF THE CONTRACT OF THE CONT

MEMBER MANAGEMENT OF THE PROPERTY OF THE PROPE MMMSIMSANSANSMISHMM

8/15/79 SYSTEM GENERATION DATE

R C H O

D E C K

0

C 0

NASTRAN

202

ID NASTRAN, DEMO APP DISP SOL 5,0 TIME 10 CEND

E C H O TITLE=NASTRAN COURSE - - - DEMO. PROB. 5
SUBTITLE=BUCKLING OF CANTILEVER BEAM WITH SCALAR SPRING
SPC= 11
DISP=ALL
GLOAD=ALL
SUBCASE 1 U ff C x CONTROL LABEL = LINEAR STATIC SOLUTION
LOAD=22
SUBCASE 2
LABEL=EIGENVALUES (BUCKLING LOAD FACTOR)
METHOD=41
BEGIN BULK CASE

*** USER INFGAMATION MESCAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

PAGE

	SPRING
PROB. 5	WITH SCALAR
- DEMO.	ER BEAM
COURSE	OF CANTILEVE
NASTRAN CO	(2

	. 6	-			:S: 20 +																1.10 + 1.41																					+STEEL		+ P 31
A E C H O		o o																					345)																			. .	1.498-2
LK DAT	9		- 02																		7.324-4	0.0	.490-3																					
E D 8 C		2	m •	et u	ာ ဖ	2	80	თ	0	= 1	2 5	~ ·	ī	91	17	1.8	19	20	21	∾ û		21																				۳.	<u>-</u>	30680 7.490-3
SORT	: m	-	0.0	* } *,	ណ	· o	7	Ф	ວ ກ່	0 -	- (7 .	2	15	16	17	18	19		2. 13	•	21 1.	•	0.0	ů.	10.	ب	20.	30.		.04			. 09	15.	.0:	75.	80.		00 0	. CO.	9+.	21	•
		-	2 (ກ ຢ	n 1	9	7	80	თ :	0	- (7 ~	. 4	1.5	16	17	18	6+	50	25	× 4 5	22	;	-	2	e .	4 :	v a	o r-	co	6	0 •		. m	4	3.	16	17	æ (9.0	2.6	32	22	31
		00 4 C C C C C C C C C C C C C C C C C C	C 3 4 R	1 0 C	CBAR	CBAR	CBAR	CBAR	CB A R	CBAR	α α α α α α	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	0.00	CBAR	CBAR	CBAR	CBAR	CBAR	CELASZ	+ 541	FORCE1	GROSET	6415	GRID	CRID	GRID	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 1 20	0.180	GR 10	0 2 2 0 0	בי בי בי	01 80	GRID	GRID	GRID	GR10	GRIO	0125	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MATT	MOMENT	PBAR
ć	COUNT	2 - 2		ֆ դ	, -	7-	-8	- 6	-0-		12-	 	<u> </u>	16-	17-	18-	19-	20-	21-	22-	24-	25-	26-	27-	23-	29-	30-	31-	33-	34-	35-	36-	38-	36-	40-	41-	42-	43-	44-	45-	196-	48-	49-	-09

NASTRAN COURSE --- DEMO. PROB. 5 BUCKLING OF CANTILEVER BEAM WITH SCALAR SPRING

DECEMBER 27, 1979 NASTRAN 8/15/79

PAGE

E C H O 8 U L SORTED +P31 0.3125 C +P31A 0.75 C SPC1 11 1 CARD COUNT 51-52-53-

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

34 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3'13, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

12 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

25

NASTRAN COURSE --- DEMO. PROB. 5 BUCKLING OF CANTILEVER BEAM WITH SCALAR SPRING

PAGE

SYSTEM WARNING MESSAGE 3022

ROUTE, CURRENT DMAP PREVIOUS MODULE IN THE 4 OUTPUT BY IS REQUIRED AS INPUT AND IS NOT DATA BLOCK PLTPAR

SYSTEM WARNING MESSAGE 3022

ROUTE DMAP CURRENT PREVIOUS MODULE IN THE 4 IS REQUIRED AS INPUT AND IS NOT OUTPUT BY DATA BLOCK GPSETS

SYSTEM WARNING MESSAGE 3022

DMAP CURRENT PREVIOUS MODULE IN THE A 1 OUTPUT ICN SI IS REQUIRED AS INPUT AND DATA BLOCK ELSETS

SYSTEM WARNING MESSAGE 3022

CURRENT DMAP PREVIOUS MODULE IN THE ⋖ OUTPUT BY IS NOT AS INPUT AND IS REQUIRED DATA BLOCK PLTPAR

SYSTEM WARNING MESSAGE 3022

ROUTE CURRENT DMAP IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE DATA BLOCK GPSETS

SYSTEM WARNING MESSAGE 3022

ROUTE IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP DATA BLOCK ELSETS

S AVG = PREFACE LOOPS = 900 ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KAA (N = 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -28488 C MAX = 5 PCMAX = 0 PC GROUPS = 1

*** SYSTEM WARNING MESSAGE 3022

ROUTE GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP IS REQUIRED AS INPUT AND IS NOT DATA BLOCK PLTPAR

SYSTEM WARNING MESSAGE 3022

CURRENT DMAP HE PREVIOUS MODULE IN **DUTPUT BY A** IS NOT IS REQUIRED AS INPUT AND DATA BLOCK GPSETS

SYSTEM WARNING MESSAGE 3022

CURRENT DMAP ROUTE. HH IS REQUIRED AS INJUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN DATA BLOCK ELSETS

1, EST. TIME MPYAS--NULL MATRIX PRODUCT METHOD 1 NT,NBR PASSES =

*** USER INFORMATION MESSAGE 3035

1 EPSILON SUB E = -2.5209752E-10 FOR LOAD METHOD 1 T , NBR PASSES = 1, EST. TIME =

٦.

PAGE

SUBCASE 1

NASTRAN COURSE --- DEMO. PROB. 5 BUCKLING OF CANTILEVER BEAM WITH SCALAR SPRING

LINEAR STATIC SOLUTION

	R3	0.0	9.759310E-06	2.060493E-05	3.253687E-05	4.5555116-05	5.965967E-05	7.4850535-05	9.112771E-05	1.0849125-04	1.269410E-04	1.4647716-04	1.670995E-04	1.888083E-04	2.110502E-04	2.3331215-04	2.5556405~04	2.7781585-04	3.000677E-04	3.223196E-04	3.4457156-04	3.668234E-04
	R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
VECTOR	R 18	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ACEMENT	T3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 I S P L	12	0.0	2.3927265-05	9.9366855-05	2.317503E-04	4.255092E-04	6.890752E-04	1.024880E-03	1.439354E-03	1.937931E-03	2.5260405-03	3.2091146-03	3.992585E-03	4.861883E-03	5.881555E-03	6.992485E~03	8.214675E-03	9.5431256-03	1.099283E-02	1.254880E-02	1.421603E-02	1.599452E-02
	=	0.0	-5.432421E-07	-1.086484E-06	-1.629726E-06	-2.172968E-06	-2.716210E-06	-3.259452E-06	-3.802694E-06	-4.345937E-06	-4.889179E-06	-5.432421E-06	-5.975663E-06	-6.518905E-06	-7.062147E-06	-7.605389E-06	-8.148631E-06	-8.691873E-06	-9.235115E-06	-9.778357E-06	-1.032160E-05	-1.086484E-05
	TYPE	IJ	IJ	IJ	ŋ	g	g	IJ	U	IJ	IJ	IJ	U	U	ၒ	ပ	ပ	IJ	IJ	IJ	o	IJ
	POINT ID.	-	7	ო	4	S	9	7	&	თ	5	=	12	13,	41	15	9	17		19	50	21

NASTRAN COURSE – – - DEMO. PROB. 5 BUCKLING OF CANTILEVER BEAM WITH SCALAR SPRING

LINEAR STATIC SOLUTION

VECTOR LOAD

SUECASE 1

R3 1.000000E+00

2

0.0

PAGE

~ 0.0 3 0.0 12 71 -1.000000E+00 0.0 POINT ID. TYPE 21 3

DECEMBER 27, 1979 NASTRAN 8/15/79

!

DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE

8

NASTRAN COURSE - - - DEMO. PROB. 5 BUCKLING OF CANTILEVER BEAM WITH SCALAR SPRINS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK PLTPAR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK ELSETS

*** SYSTEM WARNING MESSAGE 3022

DATA BLOCK PLTPAR

IS REQUIRED AS INPUT AND IS NOT DUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE.

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK ELSETS

60) 0 S AVG • 0 PREFACE LOOPS • ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAMA (N = TIME ESTIMATE= 1 C AVG = 4 PC AVG = O SPILL GROUPS = ADDITIONAL CORE= -23722 C MAX = 5 PCMAX = 0 PC GROUPS =

PAGE

EIGENVALUE ANALYSIS SU :I MARY (INVERSE POWER METHOD)

-	-	0	-	æ	۲		0	0	٥
•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	. •	•
٠	•	•	•	•	•	•			•
NUMBER OF EIGENVALUES EXTRACTED	NUMBER OF STARTING POINTS USED	NUMBER OF STARTING POINT MOVES	NUMBER OF TRIANGULAR DECOMPOSITIONS	TOTAL NUMBER OF VECTOR ITERATIONS .	REASON FOR TERMINATION	LARGEST OFF-DIAGONAL MODAL MASS TERM	MOM RAG POM		NUMBER OF OFF-CIASONAL WODAL MASS TERMS FAILING CRITERION

REAL EFCEN < ALLINS

	GENERALIZED MASS	0.0
7 Y Y L U E S	CYCLIC FREQUENCY	1.414433E+00
	RADIAN FREQUENCY	8.887145E+00
	EIGENVALUE	7.898135E+01
	EXTRACTION ORDER	-
	MODE NO.	-

GENERALIZED STIFFNESS

0.0

WETHOD 1 I ,NBR PASSES = 1.ESI. TIME =

٦.

NASTRAN COURSE BUCKLING OF CAN

NASTRAN COURSE DEMO. PROB. 5 BUCKLING OF CANTILEVER BEAM WITH SCALAR SPRING	DECEMBER	27, 1	979	NASTRAN	DECEMBER 27, 1979 NASTRAN 8/15/79 PAG	PAG
EIGENVALUES (BUCKLING LOAD FACTOR) EIGENVALUE = 7.898135E+01					SUBCASE 2	α,

=

PAGE

	R3	0.0	8.2538275-04	1.7244105-03	2.6891895-03	3.7112455-03	4.7816055-03	5.8908705-03	7.029298E-03	8.1868935-03	9.3534505-03	1.0518845-02	1.1672725-02	1.2804995-02	1.386527E-02	1.480379E-02	1.561231E-02	1.6283;45-02	1.681217E-02	1.719298E-02	1.742281E-02	1.749964E-02
-	R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0 2 4	ā	0.0			0.0		0.0						0.0	0.0			•					0.0
G E N C E C	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٥.٥	ં.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
REALEI	12	0.0	2.0299998-03	8.3741138-03	1.9381405-02	3.535959.5-02	5.6572746-02	8.3239155-02	1.1552915-01	1.535634E-01	1.974127E-01	2.470303E-01	3.0253248-01	3.6578835-01	4.3051485-01	5.022421E-01	١	6.581412E-01	7.409441E-01	.26021	9.126273E-01	1.000000E+00
1135E+01	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	٥.٥	0.0	0.0	0.0	0.0	0.0	0.0
= 7.898135E	1 Y P.E	IJ	ø	ιj	U	IJ	U	ပ	ŋ	U	IJ	ø	ø	<u>ග</u>	U	ŋ	ပ	U	()	IJ	O	IJ
EIGENVALUE	POINT ID.	-	7	က	ব	S	9	7	æ	6	0	-	12	13	4	15	16	17	18	19	20	21

Without desired and select the control of the contr

With the transfer of the control of

MINISTER CONTRACTOR CO

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.1

M RECORDED DE CONTROL DE CONTROL

MEL MANAGEM No. also

2 Σ Ξ 2 MEANAMAN MININTAIN MINIM

MMMMMM M. ... MIN TIM NUMBER M.V. MINIM NIM MINE MEN'S AM MARKET

MINIM

MM

1.12.11.11

MISH M MINIM M MINIM NIM MIN

MINIM MINIMIM

MM

M MAIM M MANA MINIMINIM

N. C. STATISTICS OF STATES Manager 1 Intraparation a

Constitution of the second

WICHNIMM 3

MATCHIM V.V

March -- Protein ******** W---B-1-State Control 7.... /// //riniti

Manager Comment

Man the same Thank----B. 1.1.1. - - - - 1.1.1.1 WININ

1 (/// GREAT WITH THE SERVICE Market Control

Ween the substitute of the contract of the substitute of the subst W. W. W. W. ////

WASSERVANDED STATE OF THE STATE MMVVORTEGER TO GENERAL TO THE TRANSPORTED --- MISS OF THE TOTAL TO THE TRANSPORTED TO THE Personal Company of the Company of t Control of the second of the s

MARKATAN DE CONTROLLE DE CONTRO Management of the same GREET CONTRACTOR CONTRACTOR WERE AND A STATE OF THE STATE O CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

Management comments and comments of the commen

WANTED THE TAXABLE TO Williams the state of the state

Were the transfer of the second secon

8/15/79 SYSTEM GENERATION DATE

MINNIN WINDS CONTROL OF THE SECOND OF THE SE

E C H O

DECK

R 0 L

ID NASTRAN, DEMO APP DISP SOL 6, 0 TIME 10 CEND

NASTRAN

DECEMBER 27, 1979 NASTRAN COURSE - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

1979 NASTRAN 8/15/79 PAGE

O I

w

N

FIVE ELEMENT FRAME--ROD ELEMENTS

CARD
COUNT

1
COUNT

1
SUBJECT

2
SUBJITUE = PIECEWISE LINEAR ANALYSIS

1
ABEL = FIVE ELEMENT FRAME -- ROD ELEMENTS

5
SPESS = ALL

5
SPESS = ALL

7
LOAD = 10
8
PLOGEF = 11
9
9
9

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

PAGE NASTRAN 8/15/79 **DECEMBER** 27, 1979

ო

FIVE ELEMENT FRAME -- ROD ELEMENTS

	•																										
	5																							+PLA1	LA2		
	:																							+	+		
	თ																								4		
	:	ო	4															100							5.+4		
O	00)						õ																		'n		
Ü		_	ო				3456											80.							5,-3		
ш	•																										
∢	7																										
-	:	-	-															70.							o		
∀																											
_	u																	_•									
¥	:	N	4			4												60,							ö		
ב ר	'n																								4		
മ								0	0.	1.0	2.0	3.0	m	m	m			50.							-5.44		
۵	:	N	4	က	ß	-		0	•	i	ï	ί	`•	•	`•			ũ				ıΩ			ĩ		
ш	4								_																က္		
-						+		0		٥.	0	0						9							-53	Š	
œ	:	-	CA	N	4	-		•	•	-	•	٠						4	-	-	-	ব	-		•	w	
Ś	ന												7	7	7										ι'n	'n	
	_	_		~	_								+	+	+	00	90	ő.		~	•	_	2		-	1.+5	
	•	_	_	•	(')	ц,							-	-	_	Û	w	.,		w	0,	•	•		· 	_	
	7																								ï	၅	
		_	က	Ŋ	9	0		-	0	ო	ᇽ	D.	7	no	6	r.	00	:-	-	8	ო	_	_	9	-55	55.	
	•					_	_											_									۲
	-	CROD	2	6	9	CE	SE	C	0	0	0	0	-			151	121	FAC	6	9	8	- -	5	BLE	LAI	LA2	S O
		CRO	S	CR	Š	6	30	8	g	Ç	S	3	Δ	4 ≥	4	7	۷ Σ	<u>-</u>	ă	ų K	P.R.	as	ď,	4	4	4	Z
	. +-	•	1	<u>.</u>	1	1	Ļ	1	1.	1	1	•	١.	1	1	1	1	,1	<u>.</u>	1	1	1	ļ.	<u>,</u>	1	1	
0	2002	-	N	3-	d.	(J	æ	7	w	(I)	-	=	-	-	4	<u>-</u>	₩	1.	τ.	-	20	2	22	23	2	25	
(ט כ	•																									

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

1 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

6) 0 S AVG # 0 PREFACE LOOPS # ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL (N = 1 C AVG = 2 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE = -25461 C MAX = 4 PCMAX = 0 PC GROUPS = 1

1,EST. TIME MPYAD--NULL MATRIX PRODUCT METHOD 1 NT.NBR PASSES = 218

o.

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

FIVE ELEMENT FRAME--ROD ELEMENTS

*** USER INFORMATION MESSAGE 3035

1 EPSILON SUB E = -5.5382952E-14 FOR LOAD

1,EST. TIME = WEPYAD--NULL MATRIX PRODUCT METHOD 3 I ,NBR PASSES =

٥.

NASTRAN CGURSE - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

NASTRAN 8/15/79 27, 1979 DECEMBER

FIVE ELEMENT FRAME -- ROD ELEMENTS

T S (C R D)
AXIAL SAFETY
STRESS MARGIN
1.414214E+04
1.414214E+04 LOAD FACTOR ELEMENTS ELEMENT ID. S R D D SAFETY Maagin STRESSES I SAFETY TORSIONAL MARGIN STRESS 0.0 0.0 -1.0E+00 0.0 -1.0E+00 AXI:L STRESS 1.414214E+04 1.414214E+04 -2.000000E+04 ELEMENT . 0

TORSIONAL STRESS 0.0 0.0

6) 0 S AVG = 0 PREFACE LOOPS =

***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KIL (N = TIME ESTIMATE= 1 C AVG = 2 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -25461 C MAX = 4 PCMAX = 0 PC GROUPS =

SAFETY

PAGE

S

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

9

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

FIVE ELEMENT FRAME--ROD ELEMENTS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KLR

*** SYSTEM WARNING MESSAGE 3022

DATA BLOCK KRR

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE.

MPYAD--NULL MATRIX PRODUCT METHOD 1 NI,NS. PASSES = 1,EST. TIME =

°.

*** USER INFORMATION MESSAGE 3035

FOR LOAD 2 EPSILON SUB E = -2.8105145E-14

MPYAD--NULL MATRIX PRODUCT METHOD 3 I ,NBR PASSES = 1,EST. TIME =

٥.

9	
PROB.	
DEMO.	ANALYSIS
ı	7
'	7
NASTRAN COURSE -	LINEAR

:

DECEMBER 27, 1979 NASTRAN 8/15/79

LOAD FACTOR 2

FIVE ELEMENT FRAWE--ROD ELEMENTS

SAFETY MARGIN
TORSIONAL STRESS 0.0 0.0
C R G D) SAFETY MARGIN +04
AXIAL STRESS 828427E 828427E
E L E M E N T S ELEMENT 10. 2 2.
IN ROD SAFETY MARGIN
R E S S E S I TORSIONAL STRESS 0.0 0.0 0.0
SAFETY MARGIN -1.05+00
AX:aL STRESS 2.828427E+04 2.828427E+04 -4.000003E+04
ELEMENT 10.

6) 0 S AVG = 0 PREFACE LOOPS = ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECCMPOSITION OF DATA BLOCK KLL (N = 1 TIME ESTIMATE= 1 C AVG = 2 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -25461 C MAX = 4 PCMAX = 0 PC GROUPS =

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEMISE LINEAR ANALYSIS

8

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

FIVE ELEMENT FRAME -- ROD ELEMENTS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCH HLR

*** SYSTEM AARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KRR

MPYAD--NULL MATRIX PRODUCT WETHOD 1 NT.NBR PASSES = 1.EST. TIME = .0

*** USER INFORMATION MESSAGE 3035

FOR LOAD

3 EPSILON SUB E = -5.9034999E-14

0.

1,EST. TIME =

MPYAD--NULL MATRIX PRODUCT METHOD 3 T ,NBR PASSES =

SAFETY

FIVE ELEMENT FRAME -- ROD ELEMENTS

	TORSIONAL STRESS 0.0
LOAD FACTOR 3	E L E W E N T S (C R O D) ELEMENT AXIAL SAFETY ID. STRESS MARGIN 2 3.535534E+04 4 3.535534E+04
MENTS	STRESSES IN ROD D SAFETY TOASIONAL SAFETY MARGIN STRESS MARGIN 0.0 0.0 -1.0E+00 0.0
TIVE ELEMENT FRAMEROD ELEMENT	AXIAL STRESS 3.535534E+04 3.535534E+04 -5.00000E+04
TIVE FLEBEN	ELEMENT ID. 1

6) 0 S AVG = 0 PREFACE LOOPS = ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYNMETRIC DECOMPOSITION OF DATA BLOCK KLL (N = 1 C AVG = 2 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -25461 C MAX = 4 PCMAX = 0 PC GROUPS =

DECEMBER 27, 1979 NASTRAN 8/15/79

2

PAGE

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

FIVE ELEMENT FRAME--ROD ELEMENTS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS 13T DUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KLR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KRR

MPYAD--NULL MATRIX PRODUCT METHOD 1 NT.NBR PASSES = 1,EST. TIME =

٥.

*** USER INFORMATION MESSAGE 3035

FOR LOAD

4 EPSILON 3UB E = -4.3735378E-13

MPYAD--NULL MATRIX PRODUCT
METHOD 3 I ,N3R PASSES = 1,EST. TIME = .0

303.6	
ä.	
0::0	2127
1 1	1070
COURSE	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NASTRAN COURSE	DI ECE

DECEMBER 27, 1979 NASTRAN 8/15/79

=

PAGE

LOAD FACTOR 4

FIVE ELEMENT FRAME -- ROD ELEMENTS

1.1	FZERETE FERRE	SAFFTY	SAFFTY
	MARGIN	STRESS MARGIN	STRESS MARGIN
		0.0	0.0
		0.0	0.0

6) 0 S AVG # 0 PREFACE LOOPS # ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL (N = 1 C AVG = 2 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE = -25461 C MAX = 4 PCMAX = 0 PC GROUPS = DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE

5

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

FIVE ELEMENT FRAME--ROD ELEMENTS

*** SYSTEM AARNING NESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KLR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT QUIPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KAR

%PYAO--NULL MATRIX PRODUCT
METHOD 1 NT,NE: PASSES = 1,EST. TIME = .0

*** USER INFORMATION MESSAGE 3035

FOR LOAD

5 EPSILON SUB E = -2.6328879E-13

MPYAD--NULL MATRIX PRODUCT METHOD 3 T ,NBR PASSES = 1.EST. TIME =

°.

13		SAFETY MARGIN
PAGE		TORSIONAL STRESS .0
8/15/79		00
DECEMBER 27, 1979 NASTRAN 8/15/79	J.	D D) SAFETY Margin
1979	LOAD FACTOR 5	S AXIAL STRESS 4.949747E+04
27,	LOAD	AXI STRE 9497 9497
DECEMBER		ELEMENTS ELEMENT ID. 2 4.
		TRESSES IN RODELEMENTS (CROD) TORSIONAL SAFETY ELEMENT AXIAL SAFETY STRESS MARGIN ID. STRESS MARGIN 0.0 2 4.949747E+04 0.0
MO. PROB. 6	LEMENTS	SAFETY MARGIN -1.0E+00
NASTRAN COURSE DEMO, PROB. PIECEWISE LINEAR ANALYSIS	FIVE SLEMENT FRAMEROD ELEMENTS	S T SAFETY STRESS MARGIN 4.949747E+04 4.949747E+04 -7.003000E+04 -1.0E+00
NASTRAN COL PIECEWISE L	FIVE SLEMEN	ELEMENT ID.

6) 0 S AVG = 0 PREFACE LOOPS =
***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL (N = 1 C AVG = 2 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -25461 C MAX = 4 PCMAX = 0 PC GROUPS =

DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE

4

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEMISE LINEAR ANALYSIS

FIVE ELEMENT FRAME -- ROD ELEMENTS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KLR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KRR

MPYAD--NULL MATRIX PRODUCT METHOD 1 NT.NBR PASSES = 1.EST. TIME =

٥.

*** USER INFORMATION MESSAGE 3035

FOR LOAD

6 EPSILON SUB E = -3.7678992E-13

MPYAD--NULL MATRIX PRODUCT METHOD 3 T ,NBR PASSES = 1,EST. TIME =

°.

15		SAFETY MARGIN	у
PAGE		DNAL ESS E	S AVG
8/15/79		TORSIONAL STRESS 0.0	6) 0 S AVG 0 PREFACE LOOPS
NASTRAN 8/15/79	9 ~	O D) SAFETY MARGIN	" Sdno
DECEMBER 27, 1979	LOAD FACTOR 6	S AXIAL SAF SAF STRESS MAR 5.426240E+04	9.9
BER 27	۲۵۸	2044	BLOCK
DECEM		ELENENT ELENENT ID. 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SITION OF DATA PC AVG = PCMAX =
		ESSES IN ROD TORSIONAL SAFETY STRESS MARGIN 0.0 0.0	RIC DECOMPC 2 4
		S E S I RSIONAL STRESS	DR SYMMET C AVG = C MAX =
			TERS FC
IO. PROB. 6	EMENTS	SAFETY MARGIN -1.0E+00	23PARAME 1 -25461
NASTRAN COURSE DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS	FIVE ELEMENT FRAME ROD ELEMENTS	AXIAL STRESS 5.426240E+04 5.426240E+04 -8.000600E+04	ATION MESSAGE 3023PAR TIME ESTIMATE= 1 ADDITIONAL CORE= -25461
NASTRAN COU PIECEWISE L	FIVE ELEMEN	ELEMENT ID. 3	***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KLL TIME ESTIMATE= 1 C AVG = 2 PC AVG = 0 SPILL ADDITIONAL CORE= -25461 C MAX = 4 PCMAX = 0 PC

DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE

16

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

FIVE ELEMENT FRAME--ROD ELEMENTS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KLR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK KRR

MPYAD--NULL MATRIX PRODUCT METHOD 1 NT,NBR PASSES = 1.EST. TIME =

*** USER INFORMATION MESSAGE 3035

FOR LOAD 7 EPSILON SUB E = -2.0475619E-13

MPYAD--NULL MATRIX PRODUCT METHOD 3 I ,NBR PASSES = 1.ESI. IIME =

٥.

ELEMENTS STRESSES IN RODELEMENTS SAFETY TORSIONAL SAFETY MARGIN STRESS MARGIN STRESS 4 6.840453E+04 5 -1.0E+00 0.0
TRESSES IN RODELEMENTS (CROD) Y TORSIONAL SAFETY ELEMENT AXIAL SAFETY 0.0 STRESS MARGIN ID. STRESS MARGIN 0.0 STRESS MARGIN 0 0.0 4 6.840453E+04 0
TRESSES IN RODELEN Y TORSIONAL SAFETY ELEN N 0.0
TRESSES IN RODELEN Y TORSIONAL SAFETY ELEN N 0.0
TRESSES IN RODELEN Y TORSIONAL SAFETY ELEN N 0.0
+ z 0
ELEMEN SA SA MA MA
MASTRAN COURSE DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS FIVE ELEMENT FRAMEROD ELEMENTS S T R ELEMENT AXIAL SAFETY ID. STRESS MARGIN 1 6.840453E+04 3 6.840453E+04 5 -1.000000E+05 -1.0E+00

PAGE

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS FIVE ELEMENT FRAME -- ROD ELEMENTS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK PLTPAR

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTFUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK GPSETS

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT CUTPUT OY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK ELSETS

PAGE

NASTRAN 8/15/79

27, 1979

DECEMBER

NASTRAN COURSE - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

FIVE ELEMENT FRAME -- ROD ELEMENTS

LOAD FACTOR

C T O R

ш

M N N

C C

DISPLA

12

Ξ

æ

8

00000

00000

00000

0.0 -4.823427E-03 -4.828427E-03 -9.656854E-03 -1.165685E-02

2.000000E-03

7 4 9 9 9 9 9 9 9 9 9 9 9

0 - 0 w 4 w

POINT

9	
PROB.	
DEMO.	SIS
	ANALYSIS
COURSE -	LINEAR
STRAN CC	ECEWISE

õ

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

LOAD FACTOR 2

FIVE ELEMENT FRAME--ROD ELEMENTS NAST

ECTOR	
A C E M E N T V	
DISPL	

R3	٥.	٥.	٥.	٥.	0.0
	0	0	0	0	0
R2	0.0	0.0	0.0	0.0	0.0
T2 T3 R1	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0
12	0.0	-9.656854E-03	3 -9.656854E-03	-1.931371E-02	-2.331371E-02
=======================================	0.0	4.000000E-03	-4.000000E-03	0.0	0.0
TYPE	IJ	g	o	g	.U
POINT ID.	-	7	က	4	ហ

DECEMBER 27, 1979 NASTRAN 8/15/79 NASTRAN COURSE - - - DEMO. PROB. 6
PIECEWISE LINERS ANALYSIS
FIVE ELEMENT FRAME--ROD ELEMENTS

5

PAGE

	00000
	0.0000 0.0000
ا ا ا	00000
- L - L - L - L - L - L - L - L - L - L	0.00 0.00 0.00 ET
	0.0 1.2071075-02 3 -1.2071075-02 -2.414214E-02 -2.914214E-02
	0.0 5.000000E-03 -1 -5.000000E-03 -1 0.0
	+ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	POINT 10.

83

LCAD FACTOR 3

PROB. 6
PIECEWISE LINEAR ANALYSIS

PAGE		
8/15/79		85 53
NASTRAN	4	0000
27, 1979	LOAD FACTOR 4	00000
DECEMBER 27, 1979 NASTRAN	α Ο	
	0 [S P L A	-2.3485246-02 0.0 -2.3483286-02 0.0 -4.6970566-02 0.0
FIVE ELEMENT FRAMEROD ELEMENTS	POINT ID. TYPE	3 G 1.500000E-02 4 G -1.500000E-02 5 G 0.0

NASTRAN COURSE - - DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS

53

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

LOAD FACTOR 5

FIVE ELEWENT FRAME -- ROD ELEMENTS

	00000
	00000 00000 82
VECTOR	00000
OISPLACEMENT	7.0 2.50000E-02 -3.4-9944E-02 0.0 -2.500000E-02 -3.4-9949E-02 0.0 -6.979899E-02 0.0 -7.679899E-02 0.0
	01N1 10.
	0

R3

		PIECEWISE LINEAR ANALYSIS		DECEMBER 27, 1979 NASTRAN 8/15/79	6/6/3	AAR L SAN	8/15/79	PAGE
TIVE BEBERE FRANKLIKOO BEBERENS	D ELEMENTS				LOAD FACTOR 6	9 H G		
		4 1 4 8 1 0	DISPLACEMENT	VESTOR				
POINT ID. TYPE	٦	12	13	15.	R2		e e	
	0.0	0.0	0.0	0.0	0.0	0.0	_	
	3.500000E-02	-5.352480E-02	0.0	0.0	0.0			
) ()	-3.500000E-02	-5.352430E-02	0.0	0.0	0.0			
	0.0	-1.070495E-01	0.0	0.0	0			
o o	0.0	•	0.0	0.0	0.0	0.0		

00000		
00000		
		0
		24(
		· · · · · · · · · · · · · · · · · · ·

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

NASTRAN COURSE - - - DEMO. PROB. 6 PIECEAISE LINEAR ANALYSIS

FIVE ELEWENT FRANEH-ROD ELEMENTS

LOAD FACTOR

C T O R

ա >

F Z W

ACE

0 I S P L

8

00000

00000

00000

0.0 5.500000E-02 -5.500000E-02 0.0

₩ 000000 ÷

0-4640

FOINT

NASTRAN COURSE - - - DENO. PROB. 6 PIECEMISE LINEAR ANALYSIS

FIVE ELEMENT FRAME--ROD ELEMENTS

TORSIONAL STRESS (C R D D)
AXIAL SAFETY
STRESS MARGIN ELEMENTS ELEMENT ID. R D D SAFETY MARGIN S T R E S S E S I N
SAFETY TORSIGNAL SA
MARGIN STRESS MA AXIAL STRESS 2.000000E+04 ELEMENT ID. 6

SAFETY

56

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

LOAD FACTOR 1

PAGE

DECEMBER 27, 1979 NASTRAN	LOAD FACTOR 2
NASTRAN COURSE DEMO. PROB. 6 Piecewise Linear analysis	FIVE ELEMENT FRAMEROD ELEMENTS

SAFETY MARGIN		
TORSIONAL STRESS		
C R O D) SAFETY MARGIN		
SS		
RESSES IN RODELEMENTS AXI TOASIONAL SAFETY ELEMENT AXI STRESS MARGIN ID. STRE		
IN ROD SAFETY MARGIN		
R E S S E S TORSIONAL STRESS		
SAFETY MARGIN		
AX:AL STRESS 4.000000E+04		
ELEMENT ID. 6		

PAGE		SSE
6/751/8		TORSIGNAL STRESS
DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE	ю	AXIAL SAFETY STRESS MARGIN
6/6 6/6	LOAD FACTOR 3	ر د م
. , ,	LOAD F	AXIA STRES
		STRESSES IN RODELEMENTS SAFETY TOASIONAL SAFETY ELEMENT MARGIN STRESS WARGIN ID.
		N R O D SAFETY MARGIN
ASSIMAN COUNSE TO DEMO. PROB. 6 PIECCAISE LINEAR ANALTSIS FIVE ELEMENT FRAMETROD ELEMENTS	ESSES 1 TORSIONAL STRESS	
	S T R SAFETY MARGIN	
	AXIAL STRESS 5.000000E+04	
	ELEMENT IO.	

SAFETY

68		SAFETY Margin
PAGE		TORSIONAL
8/15/79		TORS) STR
DECEMBER 27, 1979 NASTRAN 8/15/79	4	(CROD) AXIAL SAFETY TOR STRESS MARGIN
1979	LOAD FACTOR 4	ر ان ان ا
27.	LOAD	AXIA STRES
DECEMBER		ELEMENTS ELENENT ID. S
		N R O D SAFETY MARGIN
10		R E S S E S I N R O D TORSIONAL SAFETY STRESS MARGIN
O. PRO3. 6	EMENTS	S T SAFETY MARGIN
NASTRAN COURSE DEMO, PROB. 6 PIECEWISE LINEAR ANALYSIS	FIVE ELEMENT FRAMEROD ELEMENTS	AXIAL STRESS 6.000000E+04
NASTRAN COU PIECEWISE L	FIVE ELEMEN	ELEMENT ID.

0 6		SAFETY
PAGE		TORSIONAL STRESS
8/15/79		SAOT ER
DECEMBER 27, 1979 NASTRAN 8/15/79	ري د	S AXIAL SAFETY TOR STRESS MARGIN 5
6261	LOAD FACTOR S	ω
27.	LOAD (STRES
DECEMBER		ELEMENT ELEMENT ID.
		N R O D SAFETY MARGIN
		RESSES IN RODD TORSIONAL SAFETY STRESS MARGIN
). PROB. 6	MENTS	S T R SAFETY MARGIN
NASTRAN COURSE DEMO. PROB. 6 PIECEWISE LINEAR ANALYSIS	FIVE ELEMENT FRAMEROD ELEMENTS	AX:3L STRESS 7.00000cE+04
NASTRAN COUF PIECEWISE LI	FIVE ELEWEN1	ELEMENT ID.

DECEMBER 27, 1979 NASTRAN 8/15/79 NASTRAN COURSE - - - DEMO. PROB. 6 PIECEMISE LINEAR ANALYSIS

3

PAGE

LOAD FACTOR 6

FIVE ELEMENT FRAME--ROD ELEMENTS

SAFETY TORSIONAL STRESS (C R D D)
AXIAL SAFETY
STRESS MARGIN ELEMENTS ELEMENT ID. R O D SAFETY MARGIN S T R E S S E S SAFETY TORSIONAL MARGIN STRESS 0.0 AXIAL STRESS 8.000000E+04 ELEMENT ID 9

FIVE ELEMENT FRAME -- ROD ELEMENTS

NASTRAN 8/15/79

LOAD FACTOR 7

TORSIONAL STRESS (C R O D)
AXIAL SAFETY
STRESS MARGIN ELEMENTS ELEMENT ID. S R O D SAFETY MARGIN S T R E S S E S SAFETY TORSIONAL MARGIN STRESS 0.0 AXIAL STRESS 1.0000000E+05 ELEMENT ID. 9

PAGE

32

SAFETY

* * * END OF JOB * * *

Constitution of the consti

RECORDED DE LEGICIO DE LEGICIO DE LA CONTREMENTA DEL CONTREMENTA DE LA CONTREMENTA DEL CONTREMENTA DE LA CONTREMENTA DE

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.1

NUM MINIMINIM WA WE EXPLANATE BEACHES BY DESCRIPTION FROM THE STATE OF THE STATE OF

Σ

MWW

MUZIN

MINIMUM MINIMU

MINIONIA MONTO MINIONIA MONTO MONTO

MAC MICHAEL IN CONTROL Z NIM NIMM NUMBER MNVM

MENTA

MINIMINIM MCGM

MM

CONTROLL OF THE STAND CONTROL OF THE STAND CONTROL

WENTLOCK WITH THE TOTAL CONTROL OF THE TOTAL OF THE TOTAL OF THE WEST OF THE TOTAL WHENCE THE PROPERTY OF THE PRO C.M. C. 12.3 13.20 2---MININI. . ELLENANT ///

MANUSCULO DE CONTROL D

WHITE THE TENED TO THE THE TENED TO THE TENE MENERO CONTRACTOR OF THE PARTY OF THE PARTY

8/15/19

SYSTEM GENERATION DATE

WHAT THE THE TABLE OF THE TABLE Minimaniana managarahan managarahan managarah The state of the s TO THE SECOND SE

Managara the section of the section Manna de la compactación de la c MAINISTANDISMANISCONDISMASSON

E C H O

0 0 7

EXECUTIVE

NASTRAN

PAGE

ID NASTRAN, DEMO APP DISP SOL 7.0 TIME 10 CEND

NALYSIS DECEMBER 27, 1979

N

PAGE

NASTRAN 8/15/79

NASTRAN COURSE - - - DEMO. PROB. 7 DIRECT COMPLEX EIGENVALUE ANALYSIS

CANTILEVER BEAM WITH VISCOUS DAMPING. INVERSE POWER WETHOD.

CASE CONTROL DECK ECH

a

1111E=NASTRAN COURSE - - DEMO. PROB. 7
SUBTITLE=DIRECT COTDLEX EIGENVALUE ANALYSIS
LABEL=CANTILEVER BEATH WITH VISCOUS DAMPING. INVERSE POWER METHOD.
SIGN 11
SOCIETE 11
SOCIETE 113.5.7.9.11,13,15,17,19,21
B DISPIDHASE) = 4
FORCE:PHASE) = 5
0 BEGIN BULK

*** USER INFOFMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

ന

CANTILEVER BE.

NASTRAN 8/15/79			. 01 6																		+E1GC51																	1	+5.EEL +P31	+P31A	
979			:	-																																				·	
27. 1		E C H O	7 8	o.																		345																	. 499-2	125 0.	
DECEMBER		ATAO	(0	·.																	9	•																,	7.480-3 1.4	()	
()	Prince Readon	ORTED BULK	5	Э	- C1					თ · ფ			•	,		-	-		4 (7	13	744 150 300 300 50		0.0	. 5.	15.	20.	25.	 വൈ വൈ	.0.		55.	.00	65. 70.		.00:	. 00.	°25.		30680 7.490-3	.3125 0.	
	vn .	S	ო : მ	- -																. 25	<u>></u> c	<u>.</u>																(٠.	0.75 0.75	
8. 7 .s. 7	0 2.				- 0	m	ਰਾ ਪ	nφ	7	00 (ر ب) e-	12	e :	- -	16	17	ယ္ဒ	20.	35	51 50)		C1 m) (]	Ω.	-، ه	- 30	n ·	o =	1.2	£.	i t	2.75	1.7	r :	20	21		0.3125	
DEMO.	wid spoosin			ድ መ በ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ የ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(で) (カ) (リ)	0 4 4 4 4 6 7	7 7 8 0 7 8 9 0	CBAR	C34R	or o √ • 10 ::	(a (a () ()	CSAR	0 0 0 0 0 0	2 02 2 4 3 4 2 6 2 6 3 6 4 6 4 6 7	α 1.5 1.5	α τ : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1	ar a ar a an a an a	7 67 67 67 67 67 67 67 67 67 67 67 67 67	CDAMP2	E10C +810C	1300×0 0×0×0	0140	0 m	200	GRID	0 C) () ()	0.1	0 C	GRID	CRID		0 0	01 0	, a , a , c	GRID	0::0:	- α - 4 1 m - a	4 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
STRAN COURSE - T RECT COMPLEN ELGEN	CANTILEVER BEAT ATT		1200	i	n ie	4 1	! ! ው ቁ	-1 C	. 80	- 0	1 10-	12-	13-	1 1 1 1		1000	1 7	- c - c - c	o	22-	CO CO	1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26-		-62	- 0 m	1 1 50 00 00 00) (n) コロロ	ו ו הימי הימי	37-	1 mm	1 C	4	4 .	1 1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45-	46-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	- / 1 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	109 109	

*** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE *** USER INFORMATION MESSAGE 3027, UNSYNMETRIC COMPLEX DECOMPOSITION TIME ESTIMATE IS ထ 253 40 BBAR = CBAR =

က ဝ ထ

и и п

*** USER INFORMATION MESSAGE 3028,

O SECONDS.

35

34 STARTING WITH ID 21 STARTING WITH ID

4

PAGE

NASTRAN 8/15/79

DECEMBER 27, 1979

õ

σ

O I 00

w

A + A O

в С П

SORTED

126

SPC1 11 ENDDATA

02.80 00.00 51-

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

INVERSE POWER WETHOD.

CANTILEVER BEAM WITH VISCOUS DAMPING.

NASTRAN COURSE - - - DEVO. PROB. 7 DIRECT COMPLEX ELGENVALUE ANALYSIS

NASTRAN COURSE - - - DEVOL PROBL 7 DIRECT COVPLEX EIGENVALUE ANALYSIS CANTILEVER BEAM AITH VISCOUS DAMPING. INVERSE POWER WETHOD.

(INVERSE POWER METHOD) SUMMARY ANALYSIS 国 つしまった国のに国 C C S P C E X

വ

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

TER OF EISENVALUES EXTRACTED	⊢ a σ	m	ო	0	9	4 (5	9
	Z Z Z F F Q		NUMBER OF STRATING POINTS USED	NUTSER OF STARTING POINT OR SHIFT POINT MOVES	TOTAL NUTSER OF TRIANGULAR DECOMPOSITIONS	TOTAL NUMBER OF VECTOR ITERATIONS	

PAGE

NASTRAN COURSE - - + DEVG. PROS. 7 DIRECT COUPLIX EIGENVALUE ANALYSIS CANTILEVER BEAT WITH LISCOUS DAMPING. INVESSE POWER TRINCD.

COYPLEX EIGENVALUE SUMMARY

DAMPING COEFFICIENT 9.587503E-01 2.263419E-01	4.912344E-02
FREQUENCY - CYCLES) 1.622726E+00 1.083149E+01	3.074263E+01
7ALUE 1774.0.) 1.0.195.89E+0.1 6.8.05/42E+0.1	1.931617E+02
(REAL) -4.8876578+00 -7.702347E+00 6.	14./446825+00
ж х х х х х х х х х х х х х х х х х х х	า
000 N O O O O O O O O O O O O O O O O O	ท

#ETHOD 1 T .NBR PASSES = 1,EST, TIME =

٦.

American examine American Street Stre

DECEMBER 27, 1979 NASTRAN 8/15/79 NASTRAN COURSE - - DEVOL PROB. 7 DIRECT COMPLEK ETGENVALUE ANALYSIS

i

PAGE

		Ç
INVERSE POWER METHOD.	[C+01	
	1.0195895	
CANTILEVER BEAM WITH VISCOUS DAMPING.	CONPLEX EIGENVALUE = -4.887657E+00, 1.019589E+01	

רני בייר הא היים היים היים היים היים היים היים ה				I G E N V E (MAGNITUDE/P	E C T O R NO.	-	
POINT 10.	\ \ \ \	Ė	12	13	ě.	х 2	e, er
-	Ø	0.0	0.0	0.0	0.0	0.0	0.0
м	IJ	3,415956E-43 357,2138	1.793434E-02 352.4594	0.0	0.0	0.0	3.489914E- 03 352.7260
ហ	O	6.747800E+43	6.7891825-02 353.0053	0.0	0.0	0.0	6.405594£-03 353.6197
7	Ø	9,913491E-43 357.2138	1,441520E-01 353.6242	0.0	0.0 0.0	0.0	8.753406E-03 354.7165
თ	IJ	1,283508E-42 357,2138	2,410808E-01 384,3464	0.00	0.0	0.0	1,054662E-02 355.1127
11	IJ	1.544062E-42 357.2138	3.5320446-01 355.1868	0.0	0.0	0.0	1,180918E-02 357,9560
13	IJ	1.766597E-42 357.2138	4.753189E-01 356.2078	0.0	0.0	0.0	1.258092E-02
† 5	g	1.945632E-42 357.2138	6.030293E+01	o.o.	0.0	0.0	1.302078E-02 2.7203
17	Ø	2.076759E-42 357.2138	7.340173E-01 358.4497	0.00	0.0	0.0	1.326609E-02 3.8824
5	co	2.156750E-42 357.2138	8.657040E-01 359,3248	0.0	0.0	0.0	1.336308£-02 4.3269
21	(J	2.1836345-42 357.2138	1.000000E+00	0.0	0.0	0.0	1.337914E-02 4.4001

		Ç
		α
TETHOD.		11 2 14 C
INVERSE PONER VETHOD.	4428+01	
	(A) (C) (C) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
CAZITLEVER BEAN WITH VISCOUS DAMPING.	COMPLEA ELGENVALUE = -7.702347E+00, 0.005942E+01	
A HILM KIES	SENVALUE = .	
CANTILEVER E	COMPLEX ELG	
_		

NASTRAN COURSE DIRECT COMPLEX	E I GEN	- DEMO, PROB, 7 VALUE ANALYSIS			DECEMBER	27, 1979	NASTRAN 8/15/79
CAVITUEVER B	# # # 5 5 4 10 0	VISCOUS DAMPING	:	INVERSE POWER METHOD.			
4	U 5 4 8 8	0	0	I C E N V E C T CO (MAGNITUDE/PHASE)	ου α	a	
POINT 10.	TYPE	7.1	4.0	13	5	82	83
-	v	0.0	0.00		0.0	0.0	0.0
ო	Ø	4.063456E-35 317.8289	8.919594E-02 197.1089		0.0	0.0	1.621423E-02 196.9636
ហ	IJ	8.036733E-35 317.8289	2,916312E-01 196,8110		0.0	0.0	2.259720E-02 196.3830
1-	Ø	1,180712E-34 317,8289	5.116119E-01		0.0	0.0	2.002317E-02 195.5660
თ	Ø	1.528577E-34 317.8289	6.6-2972E-01 196.1856		0.0	0.0	1.032381E-02 194.9154
Ξ	U	1.839001E-34 317.6289	7.032956E-01 190.2579		0.0	0.0	3,865697£-03 6,2839
13	U	2.104043E-34 317.8289	5.va1575£-01 197.9839		0.0	0.0	1.949196E-02 6.7812
ر ا	ڻ ن	2.317276E-34 317.8289	3.3176515-01 207.4884		0.0	0.0	3.319088E~02 6.0618
17	O	2.473450E-34 317.8289	1,401464E-01 307,6059		0.0	0.0	4.238514E-02 6.5876
19	U	2.563720E-34 317.3289	5.344831E-01 353.7905		0.0	0.0	4.604328E-02 6.9882
2	O	2.600739E-34 317.8289	1.000000E+00 0.0	0.0	0.0	0.0	4.745054E-02 7.0593

NASTRAN COURS DIRECT COMPLE	u ≺	EIGENVALUE ANALYSIS			DECEMBER	27, 1979	NASTRAN 8/15/79
CANTILEVER COMPLEX EI	BEAM WITH IGENVALUE	VISCOUS DAMPING = -4.744382E+00, C	1.931617E+02 ONPLEXEI	WER GETHOD. I G E N V E C T (MACNITUDE/PHASI	T D R NO.	ო	
POINT ID.	TYPE	11	12	13	Ŗ.	R2	R3
-	r5	0.0	0.0		0.0	0.0	0.0
ĸ	v	3.098330E-36 235.4857	2.321009E+01 355.3217		0.0	0.0	3.829996E- 02 355.0952
ß	IJ	6.120368E-36 235.4857	6.167289E-01 354.8120		0.0	0.0	3.203183E- 02 353.4879
7	Ø	8.991703E-36 235.4857	7.751933E-01 353.7560	0.0	0.0	0.0	3.573308E-03 208.2632
O	v	1.164163E-35 235.4857	5.444772E-01 350.9601	0.0	0.0	0.0	4.076978E-02 178.2937
-	ιo	1.400440E-35 235.4857	7.028789E-02 298.4988	0.0	0.0	0.0	5.637592E-02 176.8325
£-	g	1.602333E-35 235.4857	4,730885E-01 184,2269	0.0	0.0	0.0	3,894542E-02 177,4213
15	IJ	1.764720E-35 235.4857	6.553537E-01 182.5221	0.0	0.0	0.0	2.765368E-03 359.1767
17	_O	1, y83655 £ -35 235, 4657	4.0v8532E-01 183.8495		0.0	0.0	4.706312E-02 .6844
† 6	_U	1.956207 E- 35 235.4857	2.177670E-01 355.5203	0.0	0.0	0.0	7.401593E-02 1.1669
21	v	1.980592 £- 35 235.4857	1.000000E+00		0.0	0.0	8.008462E-02 1.2770

PAGE

PAGE

CANTILEVER BEAM WITH VISCOUS DAMPING. INVERSE SOMER VETHOD.
COMPLEX EIGENVALUE = -4,887657E+00, 1,0195846+01
C D M P L E X F D R C E S I N B J

TORQUE 0.0 0.0 0.0 <u>0</u>.0 0.0 3.153768E-37 357.2138 2.951121E-37 357.2138 2.478618E-37 357.2138 8.567207E-38 357.2138 1.753491E-37 357.2138 AXIAL FORCE (C B A P) PLANE 1 PLANE 0.0 0.0 0.0 0.0 0.0 IN BAR ELEMENTS (MAGAITUDE/PHASE) 1.312674E+00 342.9564 1.303765E+00 342.2498 1.262344E+00 338.3079 8.105758E-01 49.8811 4.452935E-01 50.6598 Ŋ BEND-MOMENT END-B PLANE 1 PLANE 0.0 0.0 0.0 0.0 0.0 7.841785E+01 352.7255 2.944997E+01 12.8781 3.040242E+00 50.9467 5.284089E+01 357.6897 1.491955E+01 50.4574 BEND-MOMENT END-A 0.0 0.0 0.0 0.0 0.0 8.489353E+01 351.9746 5.9:4992£+01 356.0084 5.266693E+00 50.8255 1.897237E+01 50.3343 3.483184E+01 6.9766 S σ 5 7 ELENENT ID.

PAGE

NASTRAN COURSE - - - DEMO. PROB. 7 DIRECT COMPLEX EIGENVALUE ANALYSIS CANTILEJER BEAM WITH VISCOUS DAMPING. INVERSE POAER WETHOD. COMPLEX EIGENVALUE = -7.702347E+00, 6.805942E+01 COMPLEX FORCES IN 8

0.0 0.0 0.0 。 。 。 3.756186E-29 317.8289 3.526739E-29 317.8289 2.952069E-29 317.8289 2.088431E-29 317.8289 1.020365E-29 317.8289 AXIAL FORCE 8 A R) N 0.0 - SHEAR -PLANE 1 PLANE . 0.0 0.0 0.0 0.0 ပ) 8.643957£+00 179.9627 2.255891E+01 198.5397 IN BAR ELEMENTS (MACNITUDE/PHASE) 1.952827E+01 196.7577 8.023862E+00 343.8637 1.110253E+01 8.2207 Ŋ BEND-MOMENT END-B 0.0 0.0 0.0 0. 0. 0. 0.0 3.6417c6E+02 196.9578 6.088799E+01 23.0066 3.225695E+02 12.8003 3,10781,5+02 9.389402E+01 BEND-MOMENT END-A PLANE 1 PLANE 2 0.0 0.0 0.0 0.0 0.0 4.769383E+02 3.770222E+01 186.6334 2.805944E+02 3.484310E+02 2.9024 1.493642E+02 9.9972 S σ 13 17 ELEWENT ID.

<u></u>		TORQUE	0.0	0.0	<u>0</u> .0	0.0	0.00
PAGE							
NASTRAN 8/15/79		AXIAL FORCE	2.860521E-30 235.4857	2.685786E-30 235.4857	2.248147E-30 235.4857	1.590444E-30 235.4857	7.770586E-31 235.4857
	84 87 (ы 7					
1979	υ 	R - PLANE	0.0	0.0	0.0	0.0	0.0
DECEMBER 27, 1979	ELEMENTS (CBAR) E)	- SHEAR - PLANE 1 P	1.098295E+02 356.4145	5.325026E+01 354.8971	6.322194E+01 176.8565	4.651129E+01 191.4052	4.993507E+01
	(A	T END-B PLANE 2	0.0	0.0	0.0	0.0	0.0
	INVERSE POWER METHOD. 1.931617E+02 FORCESINBAR (MAGNITUDE/PHAR	BEND-MOMENT END-B	8.570275E+02 0.0 355.0819 0	8.258869E+02 176.8421	3.082820E+02 172.83⊍6	9.695013E+02 357.8069	6.124908E+02 2.1338
O. PROB. 7 ANALYSIS		T END-A PLANE 2	o. o. o.	0.0	0.0	0.0	0.0
NASTRAN COURSE DEMO. PROB. Direct complex eigenvalue analysis	CANTILEVER BEAM WITH VISCOUS DAMPING. COMPLEX EIGENVALUE = -4.744382E+00. C O M P L E X	BENG-MOMENT END-A	1,4060A4E+03 0.0 355.6023 0.0	5,598619E+02 0.0 177.7669 0.	6.839718E+02 174.6930	7.454718E+02 353.6007	8.620882E+02 0.0 1.6418 0.
NASTRAN COURSE DIRECT COMPLEX	CANTILEVER B COMPLEX EIG	ELEMENT IO.	-	ស	O	13	17

* * * END OF JOB * * *

```
RIGID FORWAT SERIES P
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MYCHARA MYA
MYA MYARAM WYA
MYA MYARAM YAZ
MYA MYARAM YAZ
MYA MYARAM YAZ
MYARAM MYARAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    LEVEL 17.5.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  CDC 6000 SERIES
6400 / 6500
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SYSTEM GENERATION DATE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MULTIVITA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   MATTER MEMORIAL MATTER 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MOGGAM
NIM MMM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MWVIV
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     MANA SECTION OF THE S
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  MEMBER
Manufacture (Control of the Control 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      White transplant - the
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            With the control of t
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1011 At 1011 A
```

E C H O

O E C K

CONTROL

EXECUTIVE

NASTRAN

PAGE

ID NASTRAN, DEMO APP DISP SOL 8.0 TIME 10 CEND

0 r ပ

w

PAGE

NASTRAN COURSE - - - DEMD. PROB. 8 DIRECT FREQUENCY RESPONSE ANALYSIS

CANTILEVER REAM WITH SINUSGIDAL LOAD

¥ 0 E C TITLE=NASTRAN COURSE --- DEVO. PROB. 8
SUBTITLE=DIRECT FREDUENCY RESPONSE ANALYSIS
LABEL=CANTILEVER BEAM WITH SINUSCIDAL LOAD
SVC= 11
DUCAD=61
FREDUENCY=33
CFUED=CVCY=33
CFUED=CVCY=33
CFUED=ALL
SET 13=1.3.5.7.9.11,13 THRU 17,19,21
DIUP PHASE!=10
VELOCITY (PHASE) = 13
CLOAD(PHASE)=ALL
BEGIN BULK O a: ► 2 0 O ш S -1 O 00 400-084000000000-0-0

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SCRTED, XSORT WILL RE-DRDER DECK.

PAGE NASTRAN 8/15/79 0 +STEEL +P3; +P3;A Œ DECEMBER 27, 1979 C ω ö r 0 . o 345 。 ~ .30/80 ;3 7.324-4 -0.3125 0, 490-3 7.490-3 1.498-2 0, 0.3125 (3 ď. O 7 :0 Э S æ Ö ш æ O Ø ന : 5 30.+6 32 0.75 62 7 . NASTRAN COURSE - - OFFOL PROS. B DIRECT FREGUENCY RESPONSE ANALYSIS CANTILEVER BEAM ALTH SINUSOLDAL LOAD 20 21 32 31 31 31 35 60.75

m

NASTRAN COURSE - - - DEVOL BROBE B DIRECT FREQUENCY RESPONSE ANALYSIS CANTILEVER BEAU AITH SINUSCIDAL LOAD

PAGE

8/15, 79

SARRESTA

27, 1979

DECEMBER

O 00 I A 0 ENDT 9 ٦ ج : ລ ຜ ហ 100. c) 4 ORTE m Ġ C 5PC1 11 TABLED1 34 + 134 ENDDATA

C4RD CCUNT 51-52-53-

+134

თ

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM*

34 STARTING WITH ID *** SYSTEM INFORMATION NESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

60) 0 S AVG = 0 PREFACE LOOPS =

WETHOD 1 T .NBR PASSES = 1,EST. TIME =

NASTRAN COLREG - - - DEMO. PROB. B DIRECT FREQUENCY RESPONSE ANALYSIS CANTILEVER BEAM WITH SINOSOIDAL LOAD

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79

		V E C → O R
		A VIO X WILE ROOM
מלטו ואמני		a # 0 0
01300210 E-18 Stub	104 = 3.000000E+00	
CAZILLEVER BELL	FREQUENCY	

72 25 16-03	ن	6.0 0.0 8.3:225:E-0
550 5148-62 0.0 500 500	5 5	0.0 140.0000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0	N +:	10-37-657 10-37-657 10-37-657 10-37-657 10-37-657 10-37-657
·- ·	1.4 THOMBE-01 1.40 THOMBE-01 2.2 THUMBE-01	·- ·
- - - - - - - - -		- - - - - - - - - -
0.0 0.0 0.0 0.0 0.0 0.0 0.0		
-0-		4
974E-01 0.0 000 0.0	5.128974E-01 180.0000	

DECEMBER 27, 1979 NASTRAN 8/15/79 NASTRAN COURSE - - - DEMO. PROB. 8 DIRECT FREQUENCY RESPONSE ANALYSIS

PAGE

		R2	_	٠
	T 0 R		0.0	0.0
	T Y V E C SE)	٣	0.0	0.0
	COMPLEX VELOCITY VECTOR (MAUNITUDE, PHASE)	13	0.0	0.0
	ж ш : Б : 0 :	12	0.0	1.872474E-01 0.0
しなだったいかい あのかな まこしま めいさいのしいひをじ いりかり かかりつ コインテーニー ぶこうのうのうりょうの))))	11	0.0	0.0 0
1)))	3471	vo	ıσ
のつきいの キー・オーチ・ボイはの のはっしょう とくえり くしゅせ		POINT 10. TYPE	-	ώ

ಜ	0.0	3.064827£-02 270.0000	5.656151E-02 270.0000	7.737376E-02 270.0000	9.294732E-02 270.0000	1.082987E-01 270.0000	1.189543E-01 270.0000	1.236673E-01 270.0000	1.282241E-01 270.0000	1.328614E-01 270.0000	1.367.009E-01 270.0000	1.405701E-01 270.0000	1,411981E-01 270.0000
23	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ھ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	0.0	2.572474E-01 273.0300	5.972508E-01 270.0000	1,273*18E+00 270.0050	2.140540E+00 270.0000	3.159334E+00 270.0000	4.2774508+00 270.0000	4 0041296+00 270.0000	5.5333706+00 270.0000	8.15551E+00 270.0000	6.861334E-00 270.0000	8.25197.8+00 270.000	9.6622335+00 270.0000
ī	0.0	o.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
4 7 9 5	13	ιĵ	U	ij	ø	Ŋ	r j	O	ø	IJ	IJ	IJ	g
.01 TAL	-	ო	ß	7	on .	Ξ	en *-	4	٠٠ ت	.	17	19	21

PAGE

NASTRAN COURSE - - - DEMO, PROB. 8 DIRECT FREQUENCY RESPONSE ANALYSIS

	VECTOR
	COMPLEX DISPLACEMENT VECTOR
מאסי	C C :: P L E
CANTILEVER BEAW AITH SINUSOIDAL LOAD FREQUENCY = 7.000000E+00	

			C C C C C C C C C C C C C C C C C C C	D I S P L A C E M E (MACNITUDE/PHASE)	E M E N T	V E C 1 0 R	
POINT 10.	1 Y P.E	1.1	12	13	R1	8 8	83
-	ιg	0 0 0	0.0	0.0	0.0	0.0	0.0
ო	O	0.0	7.245848E-04	0.0	0.0	0.0	1,426239E-04 180.0000
ល	ø	0.0	2.800045£-03 180.0000	0.0	0.0	0.0	2.7223885-04 180.0000
۲-	Ø	0.0 0.0	6.137000E-03 180.0000	0.0	0.0	0.0	3.922627E-04 180.0000
σ	ø	0.00	1.065039E-02 180.0000	0.0	0.0	0.0	5.113493E-04 180.0000
	()	0.0	1.54138JE-02 180.0000	0.0	0.0	0.0	6.457367E-04 180.0000
13	cj.	0.0	2.370137E+02 180.0000	0.0	0.0	0.0	8,216039E-04 180,0000
4	(J	0.0	2.808714E-02 160.0000	0.00	0.0	0.0	9.366376E-04 180.0303
15	IJ	°.°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	3.311034E-02 180.0000	0.0	0.0	0.0	1.0777545-03 180.0000
16	U	0.0	3.871935E-02 180.0000	0.0	0.0	0.0	1.252352E-03 180.0000
17	J	0.0	4.8-11-28-102 -30-0000	0.0	0.0	o.o o.o	1,4135:1E-03 180.0000
Ø F	o .	0.0	6.07.4349E-02 180.0000	0.0	0.0	0.0	1.571149£-03 180.0000
G T	U	0.0	7.559869E-02	0.0	0.0	0.00	1,598017E-03 180,0000

NASTRAN COURSE - - COMO, PROB. 8 OTRECT PREQUENCY RESPONSE ANALYSIS

œ

CANTILE FREQUE

	VECTOR	
	VELOCITY	40 6. LO
	COMPLEX	
7.550000H+00		
し トンフィコウム		

NASTRAN COURSE - DIRECT PREQUENCY R	1 111	SPONSE ANALYSIS	ස		DECEMBER	27, 1979	NASTRAN 8/15/79	PAGE
CANTILE JER	BEAM WITH	WITH SINUSGIDAL LOAD	C					
	•	0	C O 3 P L E X	V E C D C I T	Y V E C 7	ſĽ		
POINT 10.	T Y PE	11	.2	T.3	ű.	42	R3	
-	Ø	0.0	o. o. o	0.0	0.0 0.0	0.0	0.0	
e	ڻ ن	0.0	3.15 P. 90E-02 270.0000	0.0	0.0	0 0 0	6.2729265-03 270.0000	
ம	(9	0.0	1.235.43E-01 270.0000	0.0	0.0	0.0 0.0	1.1473208-02 270.0000	
7	IJ	0.0	2.6991938-01 270.0000	0.0	o.o.	0.0 0.0	1.7252626-02	
თ	(J	0.0	4.77422878-01 270.0000	0.0	0.0	0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
-	ø	0.0	7.219110E-01 273.0000	0.0	0.0	0.0	2.8400085-02 270.0000	
13	ڻ د	0.0	1.042441E+00 270.0000	0.0	0.0	0.0	3.6.0404040 2000000000000000000000000000000	
14	Ø	0.0	1.2.5337E+00 270.6000	0.0	0.0	o. o. o	4	
to To	IJ	0.0	1.456269E+00 270.0000	0.0	0.0	0.0	4, 462106-02 270.0000	
16	O	0.0	1.711762E+00 270.0000	0.0	0.0	0.0 0.0	00-314-814-8 00-32-1-23	
17	ø	0.0	2.306117E+00 273.0000	0.0	0.0	0.0	8.2469478-02 270.0000	
9	O	0.0	2.609439E+00 270.0000	0.0	0.0	0.0	6.410498-02 270.0000	
21	O	0.0	3.3489656+00 270.0030	0.0	0.0	o.o	7.028446E-02 270.0000	

8/15/79
NASTRAN
1979
27,
DECEMBER

თ

PAGE

NASTRAN COURSE - - - DEWO, PROB. 8
DIRECT FREQUENCY RESPONSE ANALYSIS
CANTILEVER BEAM AITH SINUSGIDAL LOAD
FREQUENCY = 3.0000002E+CO

COMPLEX LOAD VECTOR (MACNITUDE/PHASE)

R2 <u>د</u> 13 12 Ë TYPE POINT ID.

83 0.0 0.0 0.0 0.0 1.000000E+00 0.0 0.0 O 16

DECEMSER 27, 1979 NASTRAN 8/15/79 PAGE			R2 R3	0.0
DECEMSER		COMPLEX LOAD VECTOR (MAGNITUDE/PHASE)	5.	0.0
		EX LOAD V (MAGNITUDE/PHASE)	13	0.0
_		4 × 0 0	12	1.000000E+00 0.0
NASTRAN COURSE DEMO, PROB, 9 Direct frequency response analysis	CANTILEVER BEAM WITH SINUSUIDAL LCAD FREQUENCY = 7.000000E+00		F	0.0
NSS T T	16 4 1 WITH		TYPE	O
NASTRAN COUR Olrect Frequ	CANTILEVER BEAM WITH SINUSO FREQUENCY # 7.000300E+00		POINT ID.	16

. END OF JUB

NASTRAN CONFIG=6, FILES=(NPTP, OPTP, PLT2)

FEBRUARY 9, 1981

0

PAGE

RIGID FORMAT SERIES P A Y A CHARANA CAN AY A CHARANA YA NY MADAYARA NY MADAYARA AY MANAMA 12/15/80 LEVEL 17.5.7 CDC 6000 SERIES 6400 / 6500 MUTTAIN SYSTEM GENERATION DATE MNEHMMM A NITAMAMAMATATAN AM MAMA MAKAMAM MM MAMAM MAKAMAMA W.TUW MM MMW MINIM ž ANAMORE CONTROL OF MATA MATERIAL WESTER STATE OF THE STATE OF TH William Control of the Control of th Marine Marin-Maria - Maria Million Control --INTERNATIONAL MININE V. -WWENTANIA STATE OF THE TOTAL COLUMN | Control | Cont The transfer of the control of the c מינינים מופנונים מניים N. TA The state of the s /// AMADONAM BD

E C H O

S X

ш ۵

____ 0

α

EXECUTIVE

NASTRAN

ID NASTRAN, DETO
APP DISP
SOL 9.0
TIME 10
DIAG 1.14,19,22
CHAPNT YES
\$ THE FILES PARAMETER ON THE NASTRAN CARD IS NOT AVAILABLE \$
CEND

FEBRUARY 9, 1981 NASTRAN 12/15/80

E C H O

DECK

CONTROL

EXECUTIVE

NASTSAN

ECHO OF FIRST CARD IN CHECAPOINT DICTIONARY TO BE PUNCHED GUT FOR THIS PROBLEM

, 2/ 9/81, 60038,

RESTART NASTRAN , DEMO

PAGE

PAGE

σ NASTRAN COURSE - - - DEMO. PROB. DIRECT TRANSLENT ANALYSIS 5,8-INCH DIADETER STEEL BEAM

× ပ uj ۵ TITLE=NASTRAY COURSE - - DEWO. PROB. 9
SUBTITLE=DIRECT TRAYSIENT ANALYSIS
LAGE = 5.8 - INCH DIAMETER STEEL BEAM
DLCAD=92
TWIED=71
SET 22 = 15
SET 23 = 15
SET 23 = 15
SET 24 = 15
SET 24 = 15
SET 25 = CONTROL CASE CARD

O I O

ш

XY PLOT ON LINE PRINTER CU-PUT(XYPLOT) XYPAPLOT DISP RESPONSE/21(T2) BEGIN BULK *** USER INFORMATION MESSAGE 207, BULK DATA NOT SCRTED.XSORT WILL RE-DRDER DECK.

PAGE

NASTRAN COURSE - - - - DEVO. PROB. 9
DARECT TRANSIENT ANALYSIS

5/8-INCH DIAMETER STEEL BEAM

			+57EEL +P31A +P31A +137
	o		ċ
o			•
ı O	•	3 4 5 8 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	·
w			25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ત ⊢			1.49 0.31;
٠ •			4 M
	0		6.4. 4.9.
ر 7	:0		u 0 7 7
э 2	in .	0	493
Ω	. 0m480r80tttttt0000000000000000000000000000	ä	5 7.3
ш ь-	·#		580 312
Ωr	0 m 4 0 0 0 2 m 0 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2 - 中ではのようできる。 	.10-
S	m		(ў + ц)
		₩	33. 32. 0.7 126
	N		رم ش
	787 90 00 00 00 00 00 00 00 00 00 00 00 00	0 -00000000000000000000000000000000000	32 31 0.31 11 37
	- α·	L.	=
		Ψωωσοσσσσσσσσασασασασασασασασασασασασασασα	1. 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
			2, , , , , , , ,
	20 22 25 - 99400-6000-700400-600-600-600-600-600-600-600-600-60	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

ß

FEBRUARY 9, 1981 NASTRAN 12/15/80

.. 10

ნ

7 ... 8 ... 7

6 .. 0.005 1. ENDT 37

3 .. 4 .. 0 0 0. 1.0 0. 62 0.0125 4

+137 -1. +1* 0.020 TLGAD1 92 TSTEP 71 ENDDATA

U U U

DATA

а Э Г

SORTED

NASTRAN COURSE - - DEMO. PROB. 9 DIRECT TRANSFENT ANALYSIS

S/8-INCH DIAMETER STEEL BEAM

NASTRAN COCRSS - - - DEMO. PROB. 9 Direct transient analysis

5,8-1404 DIAMETER STEEL BEAM

LEVEL 2.0 NASTRAN DRAP COMPILER - SOURCE LISTING

OPTIONS IN EFFECT 33 ERR=2 NGLIST NODECA 194EF NODSCAR

BEGIN NO.9 DIRECT TRANSIENT RESECNSE AMALYSIS - SERIES P \$

FILE NGGARTAFE KGGETAPE, USVTRAPPEND, TOLEAPPEND \$

GP1 GECM1.0F3V2,/GPL,EQEXIN,GP01,CST41,8GPD1,S1L/V,N,EUSET/ V,N, N, CUSET/ V,N, C

SAVE LUSET, NOUPDT 8

٠,

'n

m

C

PURGE USET GN, GO, KAAA, BAA, MAA, KAAA, PST, KFS, QP, EST, ECT, PLTSETX, PLTPAR, GRSETS, ELSETS, ELSETS, NOGPOT \$

CHAPNI GP.. FUEKIN, GPDI, CSIM, BGPDI, SIL, USEI, GM.GO, NAA, BAA, MAA, KAAA,
PSI, AFS, GP. ESI, ECI, PLISEIX, PLIPAR, GPSEIS, ELSEIS S

COND LBUSINGGROT \$

o:

GP2 GECM2.EDEXIN, ECT \$

CHAPMT ECT \$

J

m

10 PERAME PCDB CIN, PRES/CIN, CIN, CIN, VIN, NUFCDB 8

PLISETX, PLIPAR, GPSETS, ELSETS WORCDS &

12 C3:0 01,109C0d \$

43 purser pobalicarin, ECT/PLTSETX, PLIPAR, GASETS, ELSETS, V.W.NSIL/V. Junea, Other 5

\$ _CT#:::^^ T:\$% 3/"

15 20775G PLTSETA \$

16 PARAM / CINIDRY/VINIPLE 16, CINITICINIT 5

6 0.8.0 0.8.0 BILLETT, 2.10, 20.1.0 C. 2.0 C. 2.0 G

60 LOTE 25 The Control of the Control

20 SAVE USTROLUTIPLIFICE, PFILE S

8 - 101019 - Digital 18

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/8 9/2
MASTRAN SAMPLE PROBLEM COMPUTER OUTPUT, (U)
FEB 81 6 C EVERSTIME, M M HURWITZ
DTMSRCC/CMLD-81-04 NL AD-A096 867 UNCLASSIFIED 4 0 5 40 4096167

5/8-INCH DIAMETER STEEL BEAM

SOURCE LISTING 1 LEVEL 2.0 NASTRAN DMAP COMPILER

<u>-</u> LABEL PLTPAR, GPSETS, ELSETS \$ CHKPNT 23 GEOM3, EQEXIN, GEOM2/SLT, GPTT/V, N, NOGRAV GP3 24

SLT, GPTT \$ CHKPNT 25 ECT, EPT, BGPDT, SIL, GPTT, CSTM/EST, GEI, GPECT,,,/V,N,LUSET/V,N, NOSIMP=-1/C,N,1/V,N,NOGENL=-1/V,N,GENEL \$ TA1 26

NOSIMP, NOGENL, GENEL SAVE 27

K4NN, K4FF, K4AA, MNN, MFF, MAA, BNN, BFF, K4GG.GPST,OGPST,MGG,BGG, K4NN,BAA,KGGX/NOSIMP/ DGPST/GENEL \$ PURGE 28

KANN, KAFF, KAAA EST, GPECT, GEI. K4GG, GPST, MGG, BGG, KGGX, OGPST, MNN, MFF, MAA, BNN, BFF, BAA \$ CHKPNT 29

LBL1, NOSIMP COND //C.N.ADD/V.N.NDKGGX/C.N.1/C.N.0 PARAM 31

//C.N.ADD/V.N.NGMGG/C.N.1/C.N.0 PARAM 32

₩ //C,N,ADD/V,N,NDBGG=-1/C.N,1/C,N,0 PARAM 33

//C.N.ADD/V.N.NOK4GG/C.N.1/C.N.0 PARAM EST.CSTM.MPT.DIT.GEGM2./KELM.KDICT.WELM.MDICT.BELM.BDICT/ V.
N.NOKGGX/V.N.NOMGG/V.N.NOBGG/V.N.NOK4GG/C.N./C.Y.COUPMASS/C.Y.
CPBAR/C.Y.CPROD/C.Y.CPQUAD1/C.Y.CPQUAD2/C.Y.CPTRIA1/C.Y.
CPTRIA2/C.Y.CPTUBE/C.Y.CPQDPLT/C.Y.CPTRPLT/C.Y.CPTRBSC \$ EMG

NOKGGX, NOMGG, NOBGG, NOK 4GG \$ SAVE 36

KELM. KDICT, MELM, MDICT, BELM, BDICT CHKPNT 37

LBLKGGX, NOKGGX \$ COND 38 GPECT, KDICT, KELM/KGGX, GPST EMA

KGGX, GPST \$ CHKPNT 40

LBLKGGX \$

LABEL

4

LBLMCG, NOMGG \$ COND GPECT, MDICT, MELM/MGG, /C, N, -1/C, Y, WTMASS=1.0 \$ EMA 43

NASTRAN COURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

5/8-INCH DIAMETER STEEL BEAM

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

MGG \$ CHKPNT 44

LBLMGG \$ LABEL

> 45 46

LBLBGG, NOBGG \$ COND GPECT, BDICT, BELM/BGG. \$ EMA

47

LBLBGG \$ LABEL

49 20 51 52

LBLK4GG,NOK4GG \$

GPECT, KDICT, KELM/K4GG, /v, N, NOK4GG \$ EMA

₩46G \$ CHKPNT LBLK4GG \$ LABEL 53 MNN, MFF, MAA/NOMGG \$ PURGE

54

BNN, BFF, BAA/NOBGG \$ PURGE 52 MGG, MNN, MFF, MAA, BGG, BNN, BFF, BAA \$ CHKPNT

LBL1.GRDPNT \$ COND 57

26

ERROR3, NOMGG \$ COND 58 BGPDT, CSTM, EQEXIN, MGG/DGPWG/V, Y, GRDPNT =-1/C, Y, WTMASS \$ GPWG 29

@GPWG....,// \$ 0 r p

9

LBL1 \$ LABEL 61

KGGX, KGG/NDGENL \$ EQUIV

62

KGG \$ CHKPNT 63

LBL11, NOGENL \$ COND

64

GET, KGGX/KGG/V, N, LUSET/V, N, NOGENL/V, N, NOSIMP \$ SMA3 65

KGG \$ CHKPNT

99

LBL11 \$ LABEL 67

//C.N.MPY/V.N.NSKIP/C.N.O/C.N.O \$ PARAM 89

9.4

The second secon

NASTRAN 12/15/80

FEBRUARY 9, 1981

o

5/8-INCH DIAMETEP STEEL BEAM

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

GUSET.ASET/ V.N.LUSET/ II/V.N.REACT/V.N.NSKIP/V. Y.SUBID S.
CASECC.GEOM4.EQEXIN.GPDT.GGPDT.CSTM/RGUSET.ASET/ V.N.LUSET/ V.N.MPCF1/V.N.MPCF2/V.N.SINGLE/V.N.OMIT/V.N.REACT/V.N.NSKIP/V. N.REPEAT/V.N.NDSET/V.N.NGL/V.N.NDA/C.Y.SUBID \$
GP4

69

M. KEPEAT/V.N. NOSET/V.N. NOL/V.N. NOA/C. Y. SUBID \$	/E MPCF1,SINGLE,OMIT,NOSET,REACT,MPCF2,NSKIP,REPFAT NO! MOA &	
	70 SAVE	
	20	•

LBL4, NOSIMP \$

COND

⁸⁶ CHKPNT KNN, MNN, BNN, K4NN \$

⁸⁹ CHKPNT KFF, MFF, BFF, K4FF \$

⁹⁰ COND LBL3,SINGLE \$

⁹¹ SCE1 USET,KNN,MNN,BNN,K4NN/KFF,KFS, ,MFF,BFF,K4FF \$

⁹² CHKPNT KFS, KFF, MFF, BFF, K4FF \$

5/8-INCH DIAMETER STEEL BEAM

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

LBL3 \$	KFF, KAA/OMIT \$
LABEL	EQUIV
93	94

BFF, BAA/OMIT \$ EQUIV 96

MFF. MAA/O'MIT \$

EQUIV

95

K4FF, K4AA/OMIT \$ EQUIV

97

KAA, MAA, BAA, K4AA \$ CHKPNT 86

LBLS.OMIT \$ COND

66

USET.KFF.,,/GD,KAA,KOD,LOD,,,,, \$ SMP 1 100

GO.KAA \$ CHKPNT 101 LBLM. NOMGG COND 102 USET.GO,MFF/MAA \$ SMP2 103

MAA S CHKPNT 104

LBLM \$ LABEL 105

LBLB.NOBGG \$ COND 106 USET.GO, BFF/BAA \$ SMP2 107

BAA \$ CHKPNT 108

1818 \$ LABEL 109

LBLS NDK4GG \$ COND 110

\$

USET .GO, K4FF/K4AA \$ SWP2 111

K4AA S CHKPNT 112

1815 \$ LABEL 113

DYNAMICS.GPL,SIL,USET/GPLD.SILD.USETD.TFPOOL,DLT.,,NLFT.TRL., EQDYN/V.N,LUSET/V.N,LUSETD/V.N,NOTFL/V.N,NODLT/V,N,NOPSDL/ V. N,NOFRL/V.N,NONLFT/V.N,NOTRL/V.N,NOEED/C.N,/V,N,NOUE \$ 060

LUSETD, NODLT, NONLFT, NOTRL, NOUE \$ SAVE 115

PNLD/NONLFT\$ PURGE 116

Ξ

PAGE

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

GO, GOD/NOUE/GM, GMD/NOUE \$ EQUIV USETO, EQDYN, TFPOOL, DLT, TRL, GOD, GMD, NLFT, PNLD, SILD, GPLD \$ CHKPNT 118

MATPOOL, BGPDT, EQEXIN, CSTM/BDPOOL/V, N, NOKBFL/V, N, NOABFL/V, N, BMG 119

MFACT \$

MFACT, NOKBFL, NDABFL \$

SAVE

120

//C.N,AND/V.N,NOFL/V.N,NOABFL/V,N,NOKBFL \$ PARAM 121

KBFL/NOKBFL/ ABFL/NOABFL \$ PURGE

122

LBLFL3, NOFL \$ COND 123 .BDPGJL,EQDYN.,/ABFL,KBFL,/v,N,LUSETD/V,N,NDABFL/V,N,NOKBFL/C, N,O \$ MTRXIN, 124

NOABFL, NOKBFL \$ SAVE

125

LBLFL3 \$ LABEL 126

ABFL.KBFL \$ CHKPNT 127

CASECC,MATPOOL,EQDYN,,TFPOOL/K2OPP,M2DPP,B2PP/V,N,LUSETD/V,N, NOK2OPP/V,N,NOM2DPP/V,N,NOG2PP \$ MTRXIN 128

NOK20PP, NOM20PP, NOB2PP \$ SAVE 129 //C.N.AND/V.N.NOM2PP/V.N.NOABFL/V.N.NOM2DPP \$ PARAM 130

//C,N,AND/V,N,NOK2PP/V,N,NOFL /V,N,NOK2DPP PARAM 31

M2DPP, M2PP/NDABFL \$ EQUIV 132

ABFL.KBFL,K2DPP,,/K2PP/C,N,(-1.0,0.0) \$ ADD5 133

LBLFL2, NOABFL \$ COND 134

ABFL/ABFLT \$ TRNSP 135 ABFLT, M2DPP/M2PP/V, N, MFACT \$ ADD 136

LBLFL2 \$ LABEL 137

//C,N,AND/V,N,KDEKA/V,N,NOUE/V,N,NOK2PP \$ PARAM

//C.N.AND/V.N.MDEMA/V.N.NOUE/V.N.NOM2PP \$ PARAM

//C.N.AND/V.N.KDEK2/V.N.NDGENL/V.N.NDSIMP \$ PARAM 140

NASTRAN COURSE - - DEMO. PROB. DIRECT TRANSIENT ANALYSIS

5/8-INCH DIAMETEP STEEL BEAM

σ

- SOURCE LISTING LEVEL 2.0 NASTRAN DMAP COMPILER K2DD/NOK2PP/M2DD/NOM2PP/82DD/NOB2PP \$ PURGE 41

KAA. M2PP.M2DD/NOA/B2PP,B2DD/NOA/K2PP.K2OD/NOA/MAA,MDD/MDEMA/ KDD/KDEKA \$ EQUIV 142

K2PP.M2PP, B2PP, K2DD, M2DD, B2DD, M0D, KDD \$

CHKPNT 143

LBL16, NOGPDT

COND

144

GKAD 145

USETD, GM, GO, KAA, BAA, MAA, K4AA, K2PP, M2PP, B2PP/KDD, BDD, MDD, GMD, GOD, K2DD, M2DD, B2DD/C.N, TRANRESP/C.N, DISP/C.N, DIRECT/C.Y, G=0.0/C.Y, W3=0.0/C.Y, W4=0.0/V, N, NOK2PP/V, N, NOM2PP/V, N, NOB2PP/V, N, NOM2PP/V, N, NOB2PP/V, N, NOM2PP/V, N, NOM2PCFI/V, N,

LBL16 \$ LABEL

146

147

M200.MDD/NQSIMP/8200,800/NOGPDT/K200,K00/K0EK2 EQUIV

KDD, BDD, MDD, GMD, GDD \$ CHXPNT 148

ERRORI, NOTRL \$ COND

149

//C.N.ADD/V,N.NEVER/C.N.1/C.N.0 \$ PARAM 150

//C.N.MPY/V.N.REPEATT/C.N.1/C.N.-1 PARAM 151

//C.N.MPY/V.N.CARDNO/C.N.O/C.N.O \$ PARAM 152

LBL13 \$ **PWD** 153

LBL13 \$ LABEL 154

PNLD.OUGV1.GPNL1,OUDV2,DPNL2,XYPLTTA,OPP1,OQP1,OUPV1,OES1,OEF1,OPP2.OQP2,OUPV2,OES2,OEF2.PLOTX2,XYPLTT/NEVER \$ PURGE 155

CASECC./CASEXX/C.N.TRAN/V.N.REPEATT/V.N.NGLOOP \$ CASE 56

REPEATT, NOLOOP \$ SAVE 157

CASEXX \$ CHKPNT 158

//C.N.MPY/V.N.NCOL/C.N.0/C.N.1 \$ PARAM 159

CASExx,USETD.DLT,SLT,BGPDT.SIL,CSTM.TRL,DIT,GMD.GOD..EST,MGG/ PPT,PST,PDT,PD,,TOL/V,N,NOSET/V,N,PDEPDG/V,N,NCOL \$ TRLG 160

PDEPDO, NOSET SAVE 161

PPT, PST, PDT, PD, TOL CHKPNT 162

•

5/8-INCH DIAMETER STEEL BEAM

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

PD. POT/PDEPDO/PPT, PDT/NOSET \$ EQUIV 163

PDT \$ CHKPNT 164 CASE(X,TRL,NLFT,DIT,KDD,BDD,MDD,PD/UDVT,PNLD/C.N,DIRECT/V,N,NDUE/V,N,NDNCUP/V,N,NCOL/C,Y,ISTART \$ 180 165

NCOL \$ SAVE

166

UDVT.PNCD \$ CHKPNT 167

168

CASE XX. EODYN. USETD. UDVT. TOL, XYCDB, PNLD/OUDV1, OPNL1/ C.N. TRANRESP/C.N. DIRECT/C.N. O/V.N. NOD/V.N. NOP/C.N. O \$ VOR

& GCN, GON SAVE

169

OUDV1,0PNL1 \$ CHKPNT 170

LBL15,NOD \$ COND 171 OUDV1, OPNL1,..., OUDV2, OPNL2,... \$ SDR3 172

GUDV2. OPNL2..., //V.N.CARDNO \$ d u O

173

CARDNO \$ SAVE 174

OPNL2, OUDV2 \$ CHKPNT 175 XYCDB.OUDV2.OPNL2.../XYPLTTA/C.N.TRAN/C.N.DSET/V.N.PFILE/V.N. CARDNJ \$ XYTRAN 176

PFILE, CARDNO \$ SAVE

177

XYPLTTA// \$ XYPLOT 178 *//C.N.AND/V.N.PUUMP/V.N.NOP/V.N.JUMPPLOT \$ FARAM

LBL15 \$

LABEL

179 180 LBL18,PJUMP \$ COND 181

S ACN/VAU. TVOU EQUIV 182

LBL17.NOA \$ ONOU 183 USETD., UDVT.,, GDD, GMD, PST, KFS,, /UPV,, QP/C, N, 1/C, N, DYNAMICS \$ SDR1 184

LB117 \$ LABEL 185 UPV.QP \$ CHKPNT 186

5/8-INCH DIAMETER STEEL BEAM

NASTRAN COURSE - - - DEMO. PROB. Direct transient analysis

σ

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

CASE'X, CSTM, MPT, DIT, EQDYN, SILD, .. BGPDT, TOL, QP, UPV, EST, XYCDB, PPT/OPP1, OQP1, OUPV1, OES1, OEF1, PUGV/C, N, TRANRESP \$ SDR2 187

OPP1.00P1,0UPV1,0ES1,0EF1,/OPP2,0QP2,0UPV2,0ES2,0EF2, SDR3

OPP2.0QP2,0UPV2,0ES2,0EF2 CHKPNT 189

OPP2.00P2,0UPV2,0EF2,0ES2,//V.N.CARDNO 0FP

SAVE

191 192

190

P2.JUMPPLOT COND PLTPAR.GPSETS.ELSETS.CASEXX.BGPDT.EGEXIN.SIL., PUGV.GPECT.OES1/ PLOTX2/v.n.NSIL/V.n.LUSET/V.n.JUMPPLOT/V.n.PLTFLG/V.n.PFILE \$ PLOT

PFILE \$ SAVE

194

193

PLOT 12// PRTMSG 195

LABEL 196 XYCDB,OPP2.0QP2,OUPV2,OES2,OEF2/XYPLTT/C,N,TRAN/C,N,PSET/~,N, PFILE/V.N,CARDNO \$ XYTRAN 197

PFILE, CARDNO

SAVE

XYPLTT// \$ XYPLOT 199

FINIS, REPEATT COND 201

LBL18 \$

LABEL

200

LBL13,100 \$ REPT 202

ERROR2 \$ JUMP 203

FINIS \$ UCMP 204

ERRORZ \$ LABEL 205

//C.N.-2/C.N.DIRTRD PRTPARM 206

ERROR1 \$ LABEL 207 //C.N.-1/C.N.DIRTRD PRIPARM

ERROR3 \$ LABEL //C.N.-3/C.N.DIRTRD \$ PRTPARM 210

NASTRAN CJURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING 5/8-INCH DIAMETEP STEEL BEAM

FINIS \$ 211 LABEL

212 END

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

PAGE

NASTRAN COURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

5/8-INCH DIAMETER STEEL BEAM CONTINUATION OF CHECKPOINT DICTIONARY

ഗ	9
FILE =	F1LE =
- :	7.
REEL =	NUMBER REEL =
FLAGS = 0,	DWAP SEQUENCE FLAGS = 0.
•	. ۲
XVPS	REENTER GPL
:	9.5

2.	<u> </u>	_ ~ ~	UNAP SEQUENCE	NOSEBER	r	,				
ر س	GPL		FLAGS = 0,	REEL	, ,		-		,	, ,
ς.	7 1 2 2 2 2 2 3 2 4 3 2 4 3 4 3 4 4 3 4 4 4 4	٦,	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	u	- ,	LUCAS-1EA	810CF	CONTAINS	1022	WOKON.
÷	FILE EC	EOEXIN	CONTAI	J	, -	ΔU	BLOCK -	CONTAINS	1022	WORDS.
Ŋ,	2090		F.465 = 0	REEL	. "		,			
	FILE SF	SPDT	CONTAL		-	5EA	вгоск	CONTAINS	1022	WORDS.
o,	83P.)T	- 6	0	REEL	,,	-1	თ :		,	1
r	FILE B	BGFOT	CONTAINS	- u	- ،	, -	BLOCK S	CONTAINS	1022	WORDS.
:	FILE ST	٠	CONTAI	אנור		1 :		CONTAINS	1022	WORDS.
80	× v v v		FLASS = 0,	REEL	ш	. 1.			1)
6			11	REEL	п	0, FILE =	0			
	C	STM	TATAG		0	1K S-1	BLOCK	CONTAINS	1022	WORDS.
•		•	FLA35 = 0.	REEL	0	H.				
		USET	CATAL		0	· ^ ·	BLOCK	CONTAINS	1022	WORDS.
:			FLAGS = 0.	KEEL	" (D. FILE =	0 3		•	000
,				u	٠,	n	2,0	214 200	770	
	FILE GO	٠.	DATAIL	J	0		BLOCK	CONTAINS	1022	WORDS.
13.			FLAGS = 0,	REEL	11	: ILE =	0			
	FILE KAA	44	CONTAI		0	KS EACH	BLOCK	CONTAINS	1022	WORDS.
14.		•	FLAGS = 0,	REFI	11	: ILE =	0			
	FILE BA	44			0	BLOCKSEACH	BLOCK	CONTAINS	1022	WORDS.
15,		•	FLAGS = 0.	REEL	,, (0, FILE =	0	•		
,	FILE MAA	4	CONTAINS	L	၁	BLUCKSEACH	31.00	CONTAINS	1022	WORDS.
16,			FLAGS = 0.	REF	, (0 2	•	0	, ,
		X 4 A A		ū	۰,	٠,	STOCK STOCK	CONTAINS	1022	WORDS.
.,.	101	٠.	TEACO II O.	ת ה ה	C	BIOCKSTERS	ה איני איני	O ME A TIMO	1000	
ā		_	E A GA - A L NG	7 7 7 7	٠,	(L	3	Z 1	770	. 60 40 4
2	FILE KF	Ş	-	1	0	JCKS-	BLOC	CONTAINS	1022	WORDS.
19,		•	FLAGS = 0,	REEL	н		. >			
	O	a .	_		0	S)	BLOCK	CONTAINS	1022	WORDS.
20.			FLAGS = 0,	REEL	п	1	0			
;	33 H T L	S٦	CONTAINS O = SOA I	u u	٥ ,	15EA	BLOCK	CONTAINS	1022	WORDS.
•	FILE EC.			ı	0	LCCKS-	BLOCK	CONTAINS	1022	WORDS.
22,	PLTSETX	•	FLAGS = 0,	REEL	n	: 311 ₌				•
	FILE PLTS	TSETX	CONTAI		0	LOCKSEACH	BLOCK	CONTAINS	1022	WORDS.
23,	7447 JU	•	FLAGS = 0,	REEL	"	FILE			0	((()
Š		- 4 4	200	ū	۰,	Λ Σ	מוני מוני	CONININA	1022	. NO X O X
, ,	מייים מייות	SETS	F COOL	j	, 0	DCKSEA	BLOCK	CONTAINS	1022	WORDS.
25.	ELSETS		FLAGS	REEL	, ,,	- 1 L	0			
	FILE EL	SETS	CONT		0	BLCCKSEACH	BLOCK	CONTAINS	1022	WORDS.
26,	REENTER	¥	DMAP SEQUENCE	NUMBER	Ω	0.				
27,) }	٠	FLAGS = 0.	REEL	u	11 (1) 11 (1)	12			
ć	FILE EC	C	CONTAINS	ŭ	- ,	EACH	BLCCK	CONTAINS	1022	WORDS.
28,	X V V	•	FLAGS = C.	א הי ר	Ħ	H	2			

	WORDS.	WORDS.		WORDS.	WGRDS.		WORDS.	WORDS.	WORDS.	WORDS.	WORDS.	WORDS.	WORDS.
	1022	1022		1022	1022		1022	1022	1022	1022	1022	1022	1022
	15 0 BLOCK CONTAINS	CONTAINS		CONTAINS	CONTAINS		CONTAINS	CUNTAINS 1022	CONTAINS	CONTAINS 1022	CONTAINS	CONTAINS	CONTAINS 1022
4	,5 0 BLOCK	BLOCK	Ę	BLOCK	BLOCK	80	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	BLOCK	0 BLDCK
24 1, FILE =	20 FILE FILE JOKS-LEA	C. FILE = BLOCKSEACH	30 1 FI F	BLOCKSEACH	1. FILE = BLOCKSEACH	1. FILE = 0. FILE =	JCKSEA	S	0, FILE = BLOCKSEACH	O. FILE = BLOCKSEACH	0, FILE = BLOCKSEACH	0, FILE = BLOCKSEACH	O, FILE = BLOCKSEACH
NUMBER REEL =	UNBE EEL EEL	אנינו יי	NUMBER REFE		אנין " "	REEL =	0 1	ם ט ט ג	REEL =	REEL = 0	REEL = 0	REEL = 0	REEL = 0
DMAP SEQUENCE FLAGS = 0,	DMAP SEQUENCE FLAGS = 0. FLAGS = 0. CCMITAINS	CONTAINS	DWAP SEQUENCE	CONTAINS	CONTAINS	FLAGS = 0, FLAGS = 0,	CONTAINS		FLAGS = 0. CONTAINS	FLAGS = 0. CONTAINS	ıı ∢	FLASS # 0, CONTAINS	FLAGS = 0. CONTAINS
REENTER AT	XVPS XVPS Y. SLT FILE SLT	FILE GPTT	REENTER AT	FILE EST	FILE GPECT	XVPS .	FILE GET	FILE KAGG	GPST FILE GPST	MGG . FILE MGG	BGG . FILE BGG	KGGK FILE KGGX	OGPST FILE OGPST

35. 37. 38. 39. 41,

 45,

29,

31. 32. 33.

NASTRAN COURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

5/8-INCH DIAMETER STEEL BEAM

ADDITIONS TO CHECAPOINT DICTIONARY

	34 STARTING WITH ID	
46, K4NN , FLAGS = 0, REEL = 0, FILE = 0 FILE KAFF , FLAGS = 0, REEL = 0, FILE = 0 FILE KAFF , FLAGS = 0, REEL = 0, FILE = 0 FILE KAFF , CONTAINS	* SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE	52, REENTER AT DWAP SEQUENCE NUMBER 38 100 KELL = 19
	:	

73, XVPS , FLAGS = 0, REEL = 1, FILE = 31

*** USER INFORMATION MESSAGE 2119, SUBROUTINE GP4PRT - DIAG 22 SET DISP SETS VS. DOF FOLLOWS.

FEBRUARY 9, 1981 NASTRAN COURSE - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS 5/8-INCH DIAMET

PAGE

NASTRAN 12/15/80

	1
	1
	- 8 - 2 - 4 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
	7 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
	SPC DISPLACEMENT SET -5- 1-5 4-5 8-3 8-4 11-4 11-5 11-5 11-5 11-5 21-4 21-5 21-4
	25- 1-5- 1-5- 11-4- 18-3- 18-3- 18-3- 21-4-
	14 - 4 4 - 4 4 - 4 7 - 7 11 - 3 14 - 4 2 - 7 2 - 7
	13- 1-3 4-3 7-4 10-5 14-3 17-4
STEEL BEAM	1-2 1-2 3-5 7-3 10-4 13-5 17-3 20-4
5/8-INCH DIAMETER STEEL	1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DVI-8/6	- 2 C 4 2 0 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PAGE			-10-	5-1	8-2	1-6	5-1	8-2	1-6
NASTRAN 12/15/80			: 6-		8-1				•
9, 1981 NAS			-8-	4-2	9-2	11-1	14-2	17-6	21-1
FEBRUARY		<u></u>	-7-	4-1	7-2	10-6	14-1	17-2	20-6
		ACEMENT SE	-9-	3-6		10-2	13-6	17-1	20-2
		ANALYSIS DISPLACEMENT SET	-5-	3-2	9-9	10-1	13-2	16-6	20-1
		ANA	-4-	3-1	0 0	, ,	ائ د ای	16-2	9-61
PROB. 9	W		-3-	2-6	- 0	7	9.7.		2-6-
NASTRAN COURSE DEMO. DIRECT TRANSIENT ANALYSIS	5/8-INCH DIAMETER STEEL BEAM		-2-	2-2	0 +		2-2-	0 •	- 1 20 -
COURSE -	ACH DIAMETE		!	2-1	v (4) (4	2 -	- 44	2 4	0
NASTRAN DIRECT 1	5/8-IA			H H	21=	31=	41=	- 15	! •

		-6-	3-5 7-3 10-4 13-5 20-4
		8	3-4 6-5 10-3 13-4 16-5 20-3
		- 1-	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -
<u>.</u>	CEMENT SET	-9-	2-2-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6
	PERM SPC DISPLACEMENT SET	٠ ن ن	22 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
	PERM	-4-	2.1.2 2.1.2 2.1.2 2.1.2 1.8 1.8 1.8
70B. 9		-3-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
NASTRAN COURSE DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS	STEEL BEAM	-2-	1 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
OURSE	5/8-INCH DIAMETER	-	11-3 11-3 11-3 11-3 11-3
NASTRAN (5/8-IN(11.00.4.0

4-3 10-5 14-3 17-4 20-5

6	
PROB.	
DEMO.	SIS
1	T ANAL)
COURSE -	SANSIEN
NASTRAN (DIRECT FI

PAGE

FEBRUARY 9, 1981 NASTRAN 12/15/80

-10-

6-

		-8	
		-7-	
	BORY SPC DISPLACEMENT SET	-9-	
	Y SPC DISPL	-5-	
	a CB	-4-	
		-3-	1-6
5/8-INCH DIAMETER STEEL BEAM		-2-	1-2
NCH DIAMETE		+	-
2/8-I			<u>"</u>

PAGE

ADDITIONS TO CHECKPOINT DICTIONARY

*OROS. *OROS.	WORDS. WORDS.	WORDS.	WORDS. WORDS.	WORDS. WORDS.	WCRDS.
1022	1022	1022	1022	1022 1022 1022 1022	1022
CONTAINS CONTAINS CONTAINS	CONTAINS CONTAINS CONTAINS	CONTAINS	CONTAINS CONTAINS CONTAINS	CONTAINS CONTAINS CONTAINS	CONTAINS CONTAINS
B B B B C C C C C C C C C C C C C C C C	24 BLOCK 29 BLOCK BLOCK 34	35 0 BLOCK	36 BLOCK 37 BLOCK BLOCK BLOCK 398	8100K BLOCK BLOCK BLOCK BLOCK BLOCK	BLOCK BLCCK BLCCK
73 BLCCKSEACH 1, FILE = 0. FILE = BLCCKSEACH 0. FILE = 9.0CKSEACH 0. FILE = 9.0CKSEACH	1. FILE = BLOCKSEACH 1. FILE = BLOCKSEACH 1. FILE = FILE = FILE = FILE =	90 FILE = 0. FILE = BLUCKSEACH	93 BLOCKSEACH 1. FILE = BLOCKSEACH 1. FILE = FLOCKSEACH 1. FILE =	1, FILE = BLCCKSEACH 1, FILE = BLCCKSEACH 1, FILE = BLCCKSEACH 1, FILE = BLCCKSEACH 1, FILE = ACH 1, FILE = ACH	119 FILE = BLOCKSEACH 1, FILE = BLOCKSEACH 1, FILE =
NUMBER REEL : O REEL	NUUMBER REEL = 0 REEL = 0	NUMBER REEL = REEL =		NUMBER REEL = 0	NUGGER REEL = REEL = REL = 1
PAAP SEQUENCE FLAGS = 0. CCNTAINS FLAGS = 0. FLAGS = 0. CONTAINS FLAGS = 0. CONTAINS FLAGS = 0. CONTAINS FLAGS = 0.	PMAP SEQUENCE FLAGS = 4. CONTAINS FLAGS = 4. CONTAINS FLAGS = 4. CONTAINS FLAGS = 0.	DMAP SEQUENCE FLAGS = 0, FLAGS = 0, CONTAINS	DNAP SEQUENCE FLASS = 0. CONTAINS FLASS = 0. CONTAINS FLASS = 0. CONTAINS FLASS = 0.	DMAP SEQUENCE FLAGS = 4. CONTAINS FLAGS = 4. CONTAINS FLAGS = 4. CONTAINS FLAGS = 4. CONTAINS FLAGS = 0.	DMAP SEQUENCE FLAGS = 0, CCNTAINS FLAGS = 0, CONTAINS FLAGS = 0,
REEVIER AT USET YELE USET XVPS GMD FILE GMD RG FILE GMD FILE GGD FILE RG GGD FILE GGD FILE GGD	REENTER AT KNN FILE KNN MGG FILE MGG MNN FILE MGK KNN FILE MKK KVPS	REENTER AT XVPS KFF FILE KFF	REENTER AT KES , FILE KFS , KFF , FILE KFF , MFF , MFF , XVPS , X	REENTER AT FILE KFF KAA MFFE MFFE MFFE MFF FILE MFF XVPS	REENTER AT USETD
74. 75. 76. 77. 78.	80. 82. 83.	85. 86. 87.	99 9 6 69 69 69 69 69 69 69 69 69 69 69	93, 95, 96,	999. 100. 101.

WORDS.	6	WORDS.	WORDS.		WORDS.			WORDS.		WORDS.		WORDS.				WORDS.		WORDS.
1022	6	1022	1022		1022			1022		1022		1022				1022		1022
CONTAINS		CONTAINS	CONTAINS		CONTAINS			CONTAINS		CONTAINS		CONTAINS				CONTAINS		CONTAINS
BLOCK	44	BLOCK 45	BLOCK	76	BLOCK	47	0	BLOCK	0	BLOCK	0	BLOCK		48	0	BLOCK	0	BLOCK
1 BLOCKSEACH	REEL = 1, FILE = 44	1 BLOCKSEACH REEL = 1, FILE =		REEL = 1, FILE =	1 BLOCKSEACH BLOCK CONTAINS 1022 WORDS.	REEL = 1, FILE =	REEL = 0, FILE =	O BLOCKSEACH BLOCK CONTAINS 1022	REEL = 0, FILE =	0 BLOCKSEACH BLOCK CONTAINS 1022 WORDS	REEL = 0, FILE =	0 BLOCKSEACH BLOCK CONTAINS 1022 WORDS.	NUMBER 128	REEL = 1, FILE =	REEL = 0, FILE =	0 BLOCKSEACH BLOCK CONTAINS 1022 WORDS.	REEL = 0, FILE =	0 BLOCKSEACH BLOCK CONTAINS 1022 WORDS.
CONTAINS	FLAGS = 0.	FLAGS = 0.	CONTAINS	FLA35 = 0.	CONTAINS	FLA35 = 0,	FLA35 = 0,	CONTAINS	FLAGS = 0,	CONTAINS	FLAGS = 0,	CONTAINS	REENTER AT DMAP SEQUENCE NUMBER	FLAGS = 0,	FLAGS = 0.	CONTAINS	FLAGS = 0.	CONTAINS
FILE DLT	TRL Tring to:	FILE TRL	FILE SILD	GPLD .	FILE GPLD	XVPS .	TFPOOL .	FILE TFPOOL	NLFT .	FILE NLFT	PNLD .	FILE PNLD	REENTER AT	XVPS .	ABFL ,	FILE ABFL	KBFL .	FILE KBFL
	103,	104.		105,		106.	107,		108,		109,		110.	111.	112,		113.	•

114, REENTER AT DMAP SEQUENCE NUMBER 144

5/8-INCH DIAMETER STEEL BEAM

NASTRAN COURSE - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

ADDITIONS TO CHECKPOINT DICTIONARY

	TIME2 TIME3	TIME2 TIME3
	TIME1	TIME1
	P1 P2 P3	P1 P2 P3 1 1 0
REEL = 1, FILE = 38 REEL = 1, FILE = 37 REEL = 1, FILE = 37 REEL = 1, FILE = 49 REEL = 1, FILE = 49 REEL = 0, FILE = 0 BLCKSEACH BLOCK CONTAINS 1022 WORDS. REEL = 0, FILE = 0 BLCKSEACH BLOCK CONTAINS 1022 WORDS. REEL = 0, FILE = 0 BLCKSEACH BLOCK CONTAINS 1022 WORDS. REEL = 0, FILE = 0 BLCKSEACH BLOCK CONTAINS 1022 WORDS. REEL = 0, FILE = 0 BLCKSEACH BLOCK CONTAINS 1022 WORDS. REEL = 0, FILE = 0 BLCKSEACH BLOCK CONTAINS 1022 WORDS. REEL = 0, FILE = 0 BLCKSEACH BLOCK CONTAINS 1022 WORDS. REEL = 1, FILE = 50 BLCKSEACH BLOCK CONTAINS 1022 WORDS. NUMBER 159 REEL = 1, FILE = 50 REEL = 1, FILE = 50 REEL = 1, FILE = 51 REEL = 1, FILE = 52 REEL = 1, FILE = 51 REEL = 1, FILE = 52 REEL = 1, FILE = 52	B MATRIX ROWS COLS TERMS DENS) T CORE F 307 1 47 3.0851 0 13549. METHOD 1 NT,NBR PASSES = 1.EST. TIME MPTRIX PRODUCT	9 MATRIX ROWS COLS TERMS DENS) T CORE P1 307 1 47 3 .0851 0 13615. 1 METHOD 1 NT,NBR PASSES = 1.EST. TIME =
FLAGS = 4, CONTAINS FLAGS = 4, FLAGS = 0, FLAGS = 0, CONTAINS	TERMS DENS)*((TERMS DENS)*(6
115. MDD 116. KDD 117. XVP5 118. K2PP 119. K2PP 119. K2PP 120. B2PP 120. B2PP 121. K2DD 122. FILE B2PP 121. K2DD 122. FILE B2PP 122. FILE B2PD 123. B2DD 124. REENTER AT B 125. AVPS 126. BDD 127. REENTER AT B 127. REENTER AT B 128. KAPS 129. XVPS 129. XVPS	(A MATRIX ROWS COLS 1 301 126 1	(A MATRIX RONS COLS 1 304 60 t

TIME2 TIME3

TIME1

ра .

2 -

O 13615. 1

DENS)*(B MATRIX ROWS COLS TERMS DENS) T .0166 306 1 182 15 .0879 0 METHOD 1 NT,NBR PASSES = 1.E

TERMS 1

(A MATRIX ROWS COLS 304 60 1

130, 132, 133, 134,

| SEEL = 1, FILE = 53 | SEEL = 1, FILE = 54 | SEEL = 1, FILE = 54 | SEEL = 1, FILE = 54 | SEEL = 1, FILE = 55 | SEEL = 1, FILE = 55

REENTER AT DWAP SEQUENCE NUMBER
PPT , FLAGS = 0, REEL = 1
FILE PPT CONTAINS 18
PST , FLAGS = 0, REEL = 1
FILE PDT , FLAGS = 0, REEL = 1
FILE PDT , FLAGS = 0, REEL = 1
FILE PDT , FLAGS = 0, REEL = 1
FILE PD , FLAGS = 0, REEL = 1
FILE PD , CONTAINS 18

FILE POT PD

IS 1022 WDRDS.				IS 1022 WORDS.	
57 LOCY CONTAIN	58		59	LOCK CONTAIN	09
FLAGS = 0, REEL = 1, FILE = 57 CONTAINS 1022 WORDS.	FLAGS = 0, REEL = 1, FILE = 58	AT DWAP SEQUENCE NUMBER 165	1, FILE =	BLOCKSEACH B	1, FILE =
REEL = 1	REEL =	NUMBER	REEL =	-	REEL =
FLAGS = 0. CONTAINS	FLAGS = 0.	DWAP SEQUENCE	FLAGS = 0,	CONTAINS	FLAGS = 0,
TOL FILE TOL	xvps.	REENTER AT	PDT ,	FILE PDT	, SAVX
135,	136,	137.	138,		139,

***USER INFORMATION MESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK SCRATCH2 (N = 60) TIME ESTIMATE = 1				TIME3
SSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK SCRATCH2 (N = 6 STIMATE	AVG .			
SSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK SCRATCH2 (N = 6 STIMATE	S REFACE LC			TIME2
***USER INFORMATION MESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK SCRATCH2 (N = TIME ESTIMATE = 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE = -15639	Ψ			TIME1
***USER INFORMATION MESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK SCRATCH TIME ESTIMATE	2 (N = OUPS = OUPS =			e 6
***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK SCR TIME ESTIMATE: 1 C AVG = 4 PC AVG = 0 SPIL ADDITIONAL CORE: -15639 C VAX = 5 PCMAX = 0 PC AVG = 0 PP C AVG = 0 PC AVG	A T C H			Z
***USER INFORMATION MESSAGE 3023PARAWETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK TIME ESTIMATE	SPIL P			
***USER INFORMATION MESSAGE 3023PARAWETERS FOR SYMMETRIC DECOMPOSITION OF DAT TIME ESTIMATE	A BLOCK	WORDS.	WORDS.	CORE 29681. ST. TIN
***USER INFORMATION MESSAGE 3023PARAWETERS FOR SYMMETRIC DECOMPOSITION OF TIME ESTIMATE: 140, REENTER AT DMAP SEQUENCE NUMBER 168 141, UDVT , FLAGS = 0, REEL = 1, FILE = 61 141, UDVT , FLAGS = 0, REEL = 1, FILE = 62 142, XVPS , FLAGS = 0, REEL = 1, FILE = 62 144, XVPS , FLAGS = 0, REEL = 1, FILE = 63 144, XVPS , FLAGS = 0, REEL = 1, FILE = 63 144, XVPS , FLAGS = 0, REEL = 0, FILE = 63 145, ODV1 , FLAGS = 0, REEL = 0, FILE = 63 146, OPNL1 , FLAGS = 0, REEL = 0, FILE = 0 146, OPNL1 , FLAGS = 0, REEL = 0, FILE = 0 146, OPNL1 , CONTAINS	DA = =	022	022	F
***USER INFORMATION WESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSI ***USER INFORMATION WESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSI ***USER INFORMATER AT DMAP SEQUENCE NUMBER 168 140, REENTER AT DMAP SEQUENCE NUMBER 168 141, UDVT	TION OF PC AVG PCMAX	TAINS 1	TAINS 1	DENS) .6521 SES =
***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOM ***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOM ***USER INFORMATION MESSAGE 1	POSI	S O S	CON	ମଣ 799 . PAS
***USER INFORMATION MESSAGE 3023—PARAMETERS FOR SYMMETRIC E TIME ESTIMATE	DECOM	61 3LDCK 62	63 3LOCK 3LOCK	TER NSA
***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMET TIME ESTIMATE	O I A	# PCH	ACH E	0LS 46 1 T
***USER INFORMATION MESSAGE 3023PARAMETERS FOR SY TIME ESTIMATE	MMET G = X =	E () E	F11.E S1.E F1.E	IS C
***USER INFORMATION MESSAGE 3023PARAMETERS FOR TIME ESTIMATE = 1 140, REENTER AT DMAP SEQUENCE NUMBER 141, UDVT , FLAGS = 0, REEL = 1 142, XVPS , FLAGS = 0, REEL = 1 144, XVPS , FLAGS = 0, REEL = 1 144, XVPS , FLAGS = 0, REEL = 1 145, GUDVT , FLAGS = 0, REEL = 1 145, GUDVT , FLAGS = 0, REEL = 1 145, GUDVT , FLAGS = 0, REEL = 1 145, GUDVT , FLAGS = 0, REEL = 1 145, GUDVT , CONTAINS , GRENTING , FLAGS = 0, REEL = 1 145, GOPNLT , FLAGS = 0, REEL = 0 1 145, GOPNLT , FLAGS = 0, REEL = 0 1 145, GOPNLT , FLAGS = 0, REEL = 0 1 145, GOPNLT , FLAGS = 0, REEL = 0 1 145, GOPNLT , FLAGS = 0, REEL = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	% C C A V S A S A S A S A S A S A S A S A S A S A	168 3LOCA	171 171 3LOCK 3LOCK	RO'N BME
***USER INFORMATION MESSAGE 3023PARAMETE TIME ESTIMATE	RS FG	α		ATR17 03
***USER INFORMATION MESSAGE 3023PARA TIME ESTIMATE = 1 ADDITIONAL CORE = -15639 140, REENTER AT DMAP SEQUENCE 141, UDYT , FLAGS = 0, FILE UDVT CONTAINS 142, XVPS , FLAGS = 0, 144, XVPS , FLAGS = 0, 144, XVPS , FLAGS = 0, 145, UDVY , FLAGS = 0, 145, UDVY , FLAGS = 0, FILE OUDVT CONTAINS 146, OPNL1 , FLAGS = 0, FILE OPNL1 , CONTAINS FILE OPNL1 , CONTAINS FILE OPNL1 , FLAGS = 0, FILE OPNL1 , FLAGS = 0, FILE OPNL1 , FLAGS = 0, FILE OPNL1 CONTAINS 109 60 66 5 .0012	IMETE	NUMB REEL REEL	NUMB REEL REEL REEL	B
***USER INFORMATION MESSAGE 3023- TIME ESTIMATE = ADDITIONAL CORE = -1 140, REENTER AT DMAP SEQUIAL: 141, UDVT , FLAGS = FILE UDVT , FLAGS = 143, XVPS , FLAGS = 144, XVPS , FLAGS = 145, QUDVT , FLAGS = FILE QUDVT , FLAGS = FILE QPNL1 , CONTAIL CONTAIL , GONTAIL	-PAR.	ENCE NS O.	E S S S S S S S S S S S S S S S S S S S	ENS),
***USER INFORMATION MESSAGE 3 TIME ESTIMATE ADDITIONAL CORE 140, REENTER AT DMAP 141, UDVT , FLAG FILE UDVT , FLAG 143, REENTER AT DMAP 144, XVPS , FLAG 145, GUDV1 , FLAG FILE OUDV1 , FLAG FILE OUDV1 , CG 146, OPNL1 , CG 146, OPNL1 , CG 146, OPNL1 , CG 147, XVPS , FLAG FILE OUDV1 , CG 148, OPNL1 , CG 149, OPNL1 , CG 149, OPNL1 , CG	023-	SEQUINTAI	SEQU SEQU SEQU SEQU SE = SEQU	00
***USER INFORMATION MESS. TIME EST ADDITIONAL 140, REENTER AT (141, UDVT FILE UDVT 142, XVPS 143, REENTER AT (144, XVPS 145, FILE OUDVT 146, OPNL1 FILE OPNL1 FILE OPNL1 FILE OPNL1 FILE OPNL1 FILE OPNL1 FILE OPNL1	AGE 3 IMATE CORE	DWAP FLAG CO	OMAP FLAG FLAG FLAG	ERMS 5
***USER INFORMATION TIME ADDITI 140, REENTER 141, UDVI FILE UD 142, XVPS 144, XVPS 144, AVPS 145, FILE OU 146, PPLLE OU	MESS EST ONAL	4 ·⊢>	AT () VC1	
***USER INFORMATE 140, REE 141, UDV 141, UDV 142, XVP 144, XVP 145, GUP 145, FIL 146, OPN 146, OPN 146, OPN 146, OPN	TIME	A THE SECTION OF THE	NATER NATER NOTE 111	99 0018
***USER INF 140, 141, 144, 146, 146, 146,	JRM∴T AD	RECOV FIL	X X V P C C C C C C C C C C C C C C C C C C	0MS
***USER (A MATR 111111111111111111111111111111111111	I N E	40.	4 4 4 3 . 6 5	IX R(
	***USER			(A MATR 109

187

NUMBER REEL =

147.

REENTER AT DWAP SEQUENCE NU UP., FLAGS = 0, RE FILE UPV CONTAINS QP CONTAINS XVPS , FLAGS = 0, RE XVPS , FLAGS = 0, RE

FILE OP XVPS

150,

149,

REEL = 1, FILE = 64
12 BLOCKS--EACH BLOCK CONTAINS 1022 WORDS.
REEL = 1, FILE = 65
1 BLOCKS--EACH BLOCK CONTAINS 1022 WORDS.
REEL = 1, FILE = 66

REEL = 1, FILE = 67

REEL = 1, FILE = 68

REEL = 1, FILE = 68

REEL = 1, FILE = 69

REEL = 1, FILE = 69

REEL = 1, FILE = 70

REEL = 1, FILE = 71

REEL = 1, FILE = 70 190 NUMBER FLASS = 0, R
CONTAINS
FLASS = 0, R
FLASS = 0, R OPP2 FILE OPP2 GOP2 CUPV2 FILE OUPV2 FILE OEF2 REENTER AT 151. 152. 153, 154,

NASTRAN COURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

5/8-19CH DIAMETER STEEL BEAM

ADDITIONS TO CHECKPOINT DICTIONARY

REEL = 0, FILE = 0 0 BLOCKS--EACH BLOCK CONTAINS 1022 WORDS. DES2 , FLAGS = 0, FILE DES2 CONTAINS 157,

FEBRUARY 9, 1981 NASTRAN 12/15/80

NASTRAN COURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

	4		•	٠	•	•	•	٠	•	•		•	•	•						•	•		•	•	•	•	•	•	•	٠	•	٠	•	٠	•	٠	٠	•		٠	•	•				
	•						•	•																					•		•		٠	٠									0.0			
7 O 7	ĺ		•	•	•	•		٠	٠	•		•	•	•	•			•	•	•	•	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	٠	•	٠	•	•	•	•		0.0			
AD VEC			٠	•	٠	٠	٠	•			•		•	•				•					•	٠	•		•		٠		٠			•		٠							0.0			
r 0	!		٥.	.000000E+0	.00000E+0	•	.350031E-1	•	•	•			•	•	•					•		•	•	•	•	٠	•	•		٠	•	٠	•		٠		•						0.0			
	,		٠	٠	٠	•	•	٠		•	•	•	•	•	•	٠	•		•	•	•	•	•			•	•	٠	•	٠	•	•	٠	•	•	•	•	•					0.0			
?		٠ ۲	U	g	ၯ	g	U	_ن	U	ڻ ص	g	IJ	U	O	O	O	IJ	U	ပ	g	O	_U	IJ	IJ	IJ	IJ	IJ	o	_U	œ ،	ڻ ا	O	o (، و	י כי	<u>ي</u> و) (ى و	0) (g	O	· O	U	Ç
	:			.000000E-0	.000000E-0	.50ccocE-0	.000000E-0	.5000006-0	. SOSCOCE-O	.50cocoE-0	.00000E-0	.500000E-0	0-3000000.	.500cccE-0	.000000E-0	.50ccco=-0	. COCCOE+C	.50ccccE-0	.000000E-0	0-3000005.	.000000E-0	.500000E-0	-30000 00	.05000050.	.1000001.	.150000E-	.20000E-	.2500008-	.300000E-	.350000E-	000000	.45000E-	0000E-	5000E-	. 50000E-		10000	000000	. 850000FI	1900000	. 950000F	-000000E-	2.05000E-01	.10000E-	.15000E	100000

NASTRAN COURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

	CONSTRAIN
	SINGLE-POINT
5, 8-INCH DIAMETER STEEL BEAM	FORCES OF

The control of the			π Ω		1 C L E - P O 1 N T	CONSTRAINT	
Control Cont	TIME	>	Į	12	13	~	R3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		v	•	0.	.0		•
1.	.000000E-0	IJ	•	. 4.5A39E-0	· 0	٠	.779542E-0
0.000 0.00	.000000E-0	Ø	•	0-373467E-0	.0	•	.200995E-0
CONTROLLED CON	.50000E-0	IJ	•	.293520E-0	· o ·	•	.565333E+0
1.000000000000000000000000000000000000	.000000E-0	G	•	.0080205+0	· o ·	•	.340235E+0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	.500000E-0	IJ	٠	.679030E-0	.0	•	.919924E+0
100,000 100,	. CO0000E-0	U	•	.252495E+0	0.	•	.149692E+
1.	.500000E-0	U	•	. 687456E+0	.0	•	.775703E+
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	.0000000.	ڻ	•	.642047E-0	.0		.5569505+0
1. 1. 1. 1. 1. 1. 1. 1.	.530000ce-0	g	•	. 6-4200 E-0	.0		.9395enE+0
1.000 1.00	0-3000000.	IJ	•	.4 -6352E-0	.0		.685219E-
1.000000000000000000000000000000000000	.500000E-0	IJ	•	.3:1104E-0	.0		.297861E+0
1.774964 1.774964 1.774964 1.774964 1.774964 1.77496	.000000E-0	G	•	.649124E-0	.0		.281319E+
Controlled Controlle	.5000008-0	U	•	.374576£+0	.0		.705387E+
1.0500000000000000000000000000000000000	.000000E-0	IJ	•	.71908-1E-0	.0	•	.219725E+
Controller	.50000005-0	IJ	•	.644941E-0	.0	•	.037792E+0
14.000000000000000000000000000000000000	0-3000000.	IJ	•	.2.7570E-	.0		.242685E+0
Control Cont	.50000E-0	ŋ	•	.929258E-	.0	•	.466941E+0
10,000,000,000,000,000,000,000,000,000,	.00000E-0	IJ	•	-3865038F-	.0	•	.587524E+0
1.000000000000000000000000000000000000	.5000005-0	IJ	•	.302358E-0	.0	•	.539290E+
1.000000000000000000000000000000000000	.000000E-0	ပ		.78C971E+0	.0	•	.8375CBE+
19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 19176664 1917664	.050000E-	g	•	.375098E-0	.0	•	.946932E+
1.40038E	.100000E-	ŋ		.8-6322E-0	.0		.917864E+
1.20000E-01 G	.1500005-	U	•	.144473E-0	.0		.400338E+
1.2.0000E-01 G 0.0 1.7.5000E-01 G 0.0 0.0 0.0 1.7.5000E-01 G 0.0 0	.200000E-	ڻ ت	٠	.252713E-0	.0		.9029235+
350000E-01 G 0.0 -1.75005E+02 0.0 0.0 -4.306393E -4.3060626E 0.0 -4.306393E -4.3060626E 0.0 0.0 -4.306626E -4.266626E 0.0 0.0 0.0 0.0 -4.266626E -4.266626E 0.0 0.0 0.0 0.0 0.0 -4.266626E -4.266626E 0.0 0.0 0.0 0.0 0.0 -4.266626E -4.26662E 0.0 0.0 0.0 0.0 0.0 -4.26662E -4.26662E 0.0 0.0 0.0 0.0 0.0 0.0 -4.26662E -4.26662E 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4.26662E 0.0 0	250000E-	IJ		.8.521E-0	.0	•	.715387E+
1.77034yE+00 0.0 0	-300000E-	ڻ ت	٠	.782303E+0	.0	•	.306933E+
.45000E-01 G -3.6/3834E-01 0.0 -2.6/7345E+ .45000E-01 G 0.0 0.0 -1.1303215E+ .55000E-01 G 0.0 0.0 -1.1303215E+ .55000E-01 G 0.0 0.0 -1.721737E+ .55000E-01 G 0.0 0.0 -2.587224E+ .55000E-01 G 0.0 0.0 -2.587224E+ .65000E-01 G 0.0 0.0 -2.587224E+ .65000E-01 G 0.0 0.0 -2.87324E+ .65000E-01 G 0.0 0.0 -2.88732E+ .75000E-01 G 0.0 0.0 -1.3766E+ .85000E-01 G 0.0 0.0 0.0 -1.3766E+ .950000E-01 G 0.0 0.0	-30000E-	g	•	.705343E+0	.0	٠	.2668255+
1.000000000000000000000000000000000000	.400000E-	ن	•	. r : 3824E-0	.0	٠	.667346E+
1.150867E+ 1.1	.450000E-	IJ	•	.5756135+0	.0		.303215E+
1.721737E+	.5000006-	g	•	.197261E-	.0		.150867E+
-2.587224E+ -1.42737E-01 0.0 0.0 -2.587224E+ -1.42737E-01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	.55000065.	ပ	•	.12427nE-	0	•	.721737E+
	.6000006-	g	•	.759367E-0	.0	•	.587224E+
.7.356364E-01 0.0 -7.356364E-01 0.0 -2.824213E+ .755600E-01 0.0 0.0 0.0 -1.375024E+ .85000CE-01 0.0 0.0 0.0 -1.37502E- .85000CE-01 0.0 0.0 0.0 -1.37246E+ .95000CE-01 0.0 0.0 0.0 -1.37246E+ .95000CE-01 0.0 0.0 0.0 -1.46042E+ .95000CE-01 0.0 0.0 0.0 -2.146042E+ .95000CE-01 0.0 0.0 0.0 -2.864889E+ .95000CE-01 0.0 0.0 0.0 -3.86483E+ .15000CE-01 0.0 0.0 0.0 -2.891889E+ .15000CE-01 0.0 0.0 0.0 -2.891889E+ .15000CE-01 0.0 0.0 0.0 -1.24928E+ .2707654E-01 0.0 0.0 0.0 -1.980969E-01 .250000E-01 0.0 0.0 0.0 -1.860821E+ .250000E-01 0.0 0.0<	.650cphE-	U	•	.421370E+0	.0	•	.593672E+
3.35988E-01 0.0 0.	.7000006-	O	٠	.3363695-	0		.824213E+
1.6.9636E+00 0.0 0	.75 <i>0</i> 0000£~	IJ	٠	3453896-0	0.	•	.375024E+
.8500CE-01 G 0.0 0.0 -1.37246EE .900COE-01 G 0.0 0.0 -2.146042E+ .950COE-01 G 0.0 0.0 -2.146042E+ .950COE-01 G 0.0 0.0 -3.8643E+ .050COE-01 G 0.0 0.0 -3.868631E+ .150COE-01 G 0.0 0.0 -2.691895E+ .150COE-01 G 0.0 0.0 -2.691895E+ .150COE-01 G 0.0 0.0 -1.2492E+ .150COE-01 G 0.0 0.0 -1.2492E+ .150COE-01 G 0.0 0.0 -1.29492E+ .150COE-01 G 0.0 0.0 -1.860821E+ .250COOCE-01 G 0.0 0.0 0.0 -1.980969E-01 G 0.0 0.0 -1.860821E+ .250000E-01 G 0.0 0.0 0.0 -2.534918E+	.800000B.	g	٠	0+30E96.0	.0	•	.046022E+
.900000E-01 G 0.0 -1.457295E-01 0.0 0.0 0.0 -2.146042E+ .950005E-01 G 0.0 -1.18363E+00 0.0 0.0 0.0 -3.382416E+ .050000E-01 G 0.0 -1.5.0574E+00 0.0 0.0 0.0 -3.88895E+ .100000E-01 G 0.0 -8.507521E-01 0.0 0.0 0.0 -2.891895E+ .150000E-01 G 0.0 -1.980969E-01 0.0 0.0 0.0 -1.860821E+ .250000E-01 G 0.0 -6.693453E-01 0.0 0.0 0.0 -2.534918E+	.85000CE-	IJ	•	.7~5129E-0	.0	•	.372466E+
-3.362416E+ -3.362416E+ -3.00000E-01 G 0.0 -1.11836JE+00 0.0 0.0 0.0 0.0 -3.362416E+ -3.00000E-01 G 0.0 -1.5-0574E+00 0.0 0.0 0.0 0.0 -2.868631E+ -3.96200E-01 G 0.0 -2.691889E+ -1.00000E-01 G 0.0 0.0 0.0 0.0 0.0 -1.224928E+ -1.50000E-01 G 0.0 0.0 0.0 0.0 0.0 0.0 -1.860821E+ -2.50000E-01 G 0.0 -6.693453E-01 0.0 0.0 0.0 0.0 -2.534918E+	.900000E-	IJ	•	.457096E-0	· o	•	.146042E+
.0000000E-01 G 0.0 -1.5.0574E+00 0.0 0.0 -3.868631E+ .050000E-01 G 0.0 -1.5.057E+01 0.0 0.0 -2.891839E+ .100000E-01 G 0.0 0.0 0.0 -1.284928E+ .150000E-01 G 0.0 0.0 0.0 -1.009560E+ .200000E-01 G 0.0 0.0 0.0 -1.860821E+ .250000E-01 G 0.0 0.0 0.0 -2.534918E+	.950000E-	IJ	•	.118363E+0	.0	•	.382416E+
.050000E-01 G 0.0 -8.905221E-01 0.0 0.0 0.0 -2.891889E+ 100000E-01 G 0.0 -2.891889E+ 1.20000E-01 G 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	.000000E-	ن	•	.5 -0574E+0	.0		.868631E+
.100000E-C1 G 0.0 5.207554E-01 0.0 0.0 0.0 0.0 -1.224928E+ 150000E-01 G 0.0 5.721971E-01 0.0 0.0 0.0 -1.009560E+ 1.009560E-01 G 0.0 -1.9809E-01 0.0 0.0 0.0 -1.860821E+ 250000E-01 G 0.0 -6.693453E-01 0.0 0.0 0.0 -2.534918E+	.0500005-	IJ	•	.905221E-0	0.	•	.891889E+
.150000E-01 G 0.0 5.721971E-01 0.0 0.0 0.0 -1.009560E+ .200000E-01 G 0.0 -1.980969E-01 0.0 0.0 0.0 -1.860821E+ .250000E-01 G 0.0 -6.693453E-01 0.0 0.0 0.0 -2.534918E+	.1000001.	IJ	•	.207554E-	.0	•	.224928E+
.200000E-01 G 0.0 -1.9K0969E-01 0.0 0.0 0.0 -1.860821E+ -1.860821E+ 0.0 0.0 -2.534918E+ 0.0 0.0 0.0 -2.534918E+	.150000E-	IJ	•	.721971E-	.0	•	1.009560E+
.250000E-01 G 0.0 -6.693453E-01 0.0 0.0 0.0 -2.534918E+	.200000E-	IJ	•	. 980969Е-	.0	•	60821E+
	.250000E-	IJ	•	.693453E-	•	•	34918E+

5 8-INCH DIAMETER STEEL BEAM POINT-10 = 7

27

C 1 0 R

> E

LACEMENT

a

S 1 C

:- :- ::	1 ×	=	12	13	ā	68	٣
. 0			c.	0	0	0	C
0-30000	0	0.0	22 3E-0	0.0	0.0	0.0	23954E-0
0-30000.	G		7.745840E-0				4.108544E-0
0-300005.	· v		1.8-8050E-0	•	٠.		.741576E-0
0-30000000.	g		0-3697639.	•	•	•	.926945E-0
-5000000g-	ø	•	. 3 to 47! E-0	•	•	•	.527687E-
0-30000000.	()	•	0-39086.01	•	٠	٠	.317073E-0
130000000.	O	٠	.4311636-0	•	٠	•	. 609911E-0
00000055-0	()		0-3110bit.	•		٠	.1055395-0
.5000006-0	ڻ و	•	J-37046.J.	•	•	٠	1066948-0
. 300000E-0	IJ		0-384425.21	•	٠	•	.2141C9E-0
.500cce-0	IJ	•	0-36787-5.	•	٠	٠	.322810E-0
.00000cE-0	O	•	.23:51:6-0	•	•	•	0 ~ 3
.5000005-0	ŋ		0-31800-61	•	٠	٠	E + 0
0-3000000.	כי	•	8. STATE 19	•	٠	٠	0-3
.5000000E-0	ون	•	0-33rt-38.	•	•	•	.5926505-0
0-30000000	U	•	0-3-158-8.	•	٠	•	.6374806-0
.5000cce-	IJ	•	0-3086000	٠	٠	٠	.775278E-0
0-3000000.	O		. 0 41 402E-0	•	•	•	.959422E-0
.500000E-0	IJ		.755024E-0	•	•	•	.058736E-0
.0000000.	O		.418A51F-0	٠	•	•	.102103E-0
. CE 30.00E-0	ŋ		. 31035 1E-0		•	•	.388888E-0
0-3000000.	ıσ	•	.843381E-0	•	•	•	.5274165-0
150000e-C	_O	•	J-38425 16.	•	٠	•	.6010375-0
.20,0006-	IJ		0-10000-5.	•	•	٠	.6637105-0
.250000	_O	٠	.7:0761€	•	٠	•	2.8043585-03
.300000E-	IJ	٠	3870905-0	•	•		.694975E-0.
5.000E-	g	•	.300000E-0	•	•	•	.6581765-0
40::000E-	O	•	.549138E-0	•		•	.732295E-
4800000E-	IJ	•	.7:800065-0	•	•	٠	.6348C8E-0.
500000E-	IJ	•	0-3185555	•	•	٠	.561101E-0
50000E-	IJ	٠	0-B10 F350	•	٠	•	.522995E-0.
COCOCE	IJ	•	.23323FE-0	•	•		.511628E-0
E50000E-	IJ	•	.544315E~0	•	•		.327115E
.700000E-	o	•	.183167E-0	•	•	•	.335462E-0
.750000F-	G	•	.390020E-0	٠	•	•	.402841E-0
-300000B-	ပ		0-3 - 5 To .	٠	٠	٠	.431052E-0
-30000e	O	•	0-3156601.	•	•	•	.320652E-
.9000006-	IJ	•	0-10:55 75	٠	•	•	4195608-0
-3000096.	IJ		0-3:301.3.	•	٠	٠	.391410E-C
.0000000.	(J	•	.7.65768-0	٠	•	•	.314947E-0
. C50000E-	_O	٠	.1544846-0	٠	•	•	.320027E-0
.100000E-	ŋ		.346732E-0	•	٠	•	.3876
.1500006-	IJ	•	.028535E-0	•	•	•	.241169E-0
.20000JE-	IJ		.258050E-0	٠	•	•	.047723E-
.250C00E-	IJ	•	.695361E-0	•	-	•	.985594E-

S 4-17CH D	I AMETER	STEEL BEAM					
			1 6 7 1 1	F N E N E N H	VECTOR		
	TYPE	1	1.2	13	R 12	R 2	яз
i c	O (0.	0.0	٠		0.
	5 (3			o c	0.0	5.0	46016E-
0-2000000	ာ ဟ		0-3630555				3750415-0
.00]CACE-0	Ø		0-3165637		•		481033E-0
.5000008-0	g		0-3001620.		•		.497288E-0
0-3000000.	()	•	.4305508+.		•		13359445-0
.500000E-0	o c	•	.0457226-0		•		.082510E-0
. 000000E-0	5 C	•	. 0555344ETO		•		. 6258775-0
0-30000000	ی د		.846762E-				.077348E-0
.5000006.	σ		3.83330.6-0				.142243E-0
.000110E-0	ø		0-3784878.		•		0.558536+0
0-30 mm 004.	ø)-306mbet.		•	-	.1033995-0
0-3000 00.	o i	•	.256621E-0		٠		.28134.35-0
.500000E-0	<u>ن</u> ي		0-38644:0.		•	•	.743457E-0
0-300000p.	G (0-3/60876.	٠	•	•	.3462455-0
.500006-0 603000	ტ (•	. 0.6085E-0		٠		.545131E-0
0-300000.	. (1000000		•	•	.240345E-0
) C		1 14 C T T T T T T T T T T T T T T T T T T		•	•	0.0000000000000000000000000000000000000
014	5 (3		. Order-ch				15,0016.E
	ני נ		3.012.81				55.62155-0
15.000	O		-3031625.		•		9239975-0
.2000 106-0	IJ		01538-				.8571628-0
.2500008-0	ی	•	-300mst		٠		.4928965-0
30.	<u>ن</u> ق		- M - M - M - M - M - M - M - M - M - M		٠	•	.348236E-0
0-3000000000000000000000000000000000000	י כי		— ш с С 5 с С 6 с С 6 с С 6 с		•		.4733346-0
	១ (•	1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		•		
	0	•	1000000				0-1000000
0-30100-6.	ی ا		35250E-				.247810E-0
0-3000000	U		-348612	٠	•		.8459846-0
- 90 - 00 - 99 -	ø	•	*3000 E		•		.7694695-0
.700000	ပ (•	-30.000 -30.000 -30.000	•			.894454E-0
	છ (٠	٠		.1009325-0
-900000-	ığ (•	EU: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10		٠		.2.534325-0
- #10000F.	.J (1 1 6		٠		.1048125-0
1 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	י פ		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٠	٠	•	0-3837884.
140000000.) (1	٠	-		. 082313E-0
.000000.	0		10000				0526535-0
10000001) (J						. 0045550.
.150000E+	ی ر						. 225988E-0
.20000E-	Ŋ		-3-6191				.925340E-0
.250000E-	IJ	•	4312E-				.338187E-0

NASTRAN COURSE - - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

5 8-14CH DIAMETER STEEL BEAM POINT-ID = 21

	R3	•	.0273285-0	.368902E-0	.026862E-0	.7693705-0	.906891E-0	.079124E-0	.538504E-0	.465900E-0	.5a5195E-0	.594291E-0	.6183915-0	.62188E-0	.454282E-0	.799278E-0	.4935435-0	.830940E-0	.7848415-0	.541602E-0	.1753965-0	.4256245-0	.097459E-0	.403882E-0	. US2450E-0	.9843535-0	.861896E-0	.5:98465-0	. 5666175-0	.294487E-0	.724754E-0	3.5027215-03	.3437265-0	.2575-85-0	.5611055-0	.1157945-0	.4870405-0	.671285E-0	.537953E-0	.051669E-0	.5290:7E-0	.0958396-0	.3304655-0	.521520E-0	.981831E-0	.255384E-0	.073634E-0
	82	0.	0.0	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠		•	•	•	•	٠	•	•	•	٠	•	•	٠	•	٠	•	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	•
VECTOR	۳.	٥.	0.0	٠	٠			٠	٠	٠					٠	•		٠			•	٠	٠	•	•	•	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		•		•	٠	•	•
ACEMENT	13	٥.	0.0	•											٠	•											•	•		•	٠				•		•				0				•	0.0	•
DISPL	12	٥.	9	.894882E-0	.1-27245-0	.9146218-0	.1748888-0	.527489E-0	.6:7680E-0	.928472E-0	.042550E-C	.207070E-0	. 446041E-0	.7156778-	.956421E-0	.122057E-0	.196208E-0	.225160E-0	.3156776-0	.4907008-0	.8517435-	.751631E-	.7+3622E-	.733374E-	.702239E-	.7881596-	.937720E-	.063671E-	.1125925-	.1056745-	.0-14675E-	3.069391E-01	.1713516-	-3057542	-350/01/01	.238291E-	.112A75E-	.g5861E	.891024E-	.864208E-	.861334E	.7025505-	.5.5083E-	.348764E	.195022E-	.137806E-	.140248
	==	•	0.0		•	٠	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	٠	•		٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	•	•	•	٠	•	٠	•
	TYPE	ŋ	()	IJ	c	ø	O	g	IJ	ŋ	IJ	U	IJ	ပ	g	ŋ	ŋ	IJ	O	IJ	_U	U	ပ	IJ	ن	ڻ	ن	_O	g	_o	_O	ڻ ا	o ·	o (יפי	o ·	ტ -	_o	o	IJ	ŋ	ŋ	ŋ	g	₍	o	IJ
	TIME	•	0-30000	.000500E-0	.500000E-0	.000000€-0	.500000E-0	.000000.	.5000005-0	.0000000.	.500000E-0	.0000000.	.5000006-0	. COOCCOC.	.5000005-0	.000000E-0	.5000005-0	.000000E-0	.500000E-0	.000000.	.50000E-0	.00000E-0	.05000E-0	.1000001.	.1500005-	.200000E-	.2500006-	.300000E-	.3500005-	.400000E-	.450000E-	•	.550000E-	- <u>5000009</u>	.650000E-	.70000E-	.750000E-	.8000008-	.850000E-	-3000006-	.95000E-	.000000.	.0500006-	.100000E	.150000E-	.20000E-	.250000

NASTRAN COURSE ~ - ~ DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

_	
BEAM	
STEEL	
DIAMETEP	9
5/8-IMCH	_

	o c	r c	0	6.880708E-02	.554020E-0	.6299565-0	3357916-0	4.5339766-0	.4442:98-0	.2465385-0	.182484E-0	.7221955-0	2.886746E-0	.238724E-0	6.4 124316-0	.6037726-0	.38.9.6138.	0-3518618.	.4270475-0	7.4591495-0	.242:436-0	0-3896834.	.2335095-0	0-3636820.	.6276385-0	3.6849795-0	.36385E-0	4.603389E-0	.180306E-0	. + 98495E-0	.7364478-0	1.6517786-0	9.2043435-0	0-36641691	2.1879395-0	.7030C0E-0	.620023E-0	.2254336-0	.441455E-0	1.0789785-0	.120752E-0	. 071731E-0	.0473525-0	.174544E-0	.9614375-0	.221610E-0	04020E-
	c	c	0.0	•		٠	•	•	•	•		٠		•	•	•	•	٠	•				٠		٠			٠	•			٠		٠		•	٠	•				٠			•	٠	
VECTOR	ā		. 0.	•	٠	•	٠	٠	٠	٠	•	٠	•	•	٠	•	٠	•	٠	•	•	•	•	•	•	•	•	٠	•		•	•	•	•	•	•	•	٠	•	•	-	•	•	•	٠	٠	•
CITY	4	-	0.0	•	•	•	•	•	٠	•	•	•	•	•		•	٠	•	•		•	•		•		•	•	٠	•	٠	٠	•	•	•		•	•	•	•		•	•	•		٠	•	
V E L O	Ç		0	-	.303052E+0	.674224E+0	.697362E-0	.3833518+0	.0:3774E+0	.637780E-0	.0855776-0	.4344665-0	.9243285-0	.2528026-0	.9783546-0	.331020E-0	.083251E-0	.152162E-0	.138432E+0	.691045E+0	.284195E+0	.051255E+0	.288446E-0	0 - 3	.463128E-0	.0145366+0	.382345E-0	.32655E-0	2.9268275-0	.270215E-0	9.4544285-0	4.5183555-0	.341488E-0	.814414E-0	3.605228E-0	.149937E-0	5.237483E-0	3.184375E-0	.704153E-0	.244288E-0	.807327E-0	4.344316E-0	.341780E-	.050968E-	8.115801E-	.051749E-	.735529E-
L BEAM	F		. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	a	0	0	O	0	0	٥	0	0	0	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0
METEP STEE 10	ט	יי ה ע	0	.0	.0		.0		0		ö	0	ċ	o.	0.	6		ö	0.	0		0	ö	٥.		.0					ö		0	Ö	ċ	ં		0	ò	.0	0	.0				.0	ö
5/8-14CH DIAA POINT-1D =			0000E-0	.000000.	00000E-0	.00000E-0	.500000E-0	.000000E-0	.50000E-0	.0000000	.5000006-0	.00000E-0	.500000E-0	.0000000.	.500000E-0	.0000000.	.500000E-0	.000000E-0	.500000E-0	.00000co.	.50000E-0	.000000E-0	.05000E-0	.10000001.	.1500005-	.2000005-	250000E-	3000008-	-30000g	400000E-	450000E-	50000E-	550000E-	000005-	65cc00E-	30000E-	50000E-	30000C	50000E-	-3000CC	-3000086-	.00000E-	.050000E-	.100000E-	0000	.200000E-	.250000E-

FEBRUARY 9, 1981 NASTRAN 12/15/80

<u>e</u>

PAGE

NASTRAN COURSE DIRECT TRANSIEN	SIENT ANA	- DEMO. PROB ALYSIS	ი		FEBRUARY	9, 1981	NASTRAN 12/15/80
5/8-INCH D POINT-ID =	OIAMETER 21	STEEL BEAM					
	!		V E L O	CITY	VECTOR		
TIME	TYPE	11	12	13	R.	R. 2	R3
0.	9	•		٥.	0.	0.	٥.
00000E-0	o (•	56672E-0	•	٠	•	7.594716E
. UDODOGE-0	J (0.000000000000000000000000000000000000		•	•	. 845711E-0
	ງ (3		0+45655				0-4545454
.500000E-0	() ()		0.107010				1.0444001
0-30000000	o o		0+320861				574759E-
.50000E-0	g	•	31502E+C		•	•	148642E-C
.000000E-0	IJ		13564E+0		•	٠	.324105E-
.500000E-0	ڻ ا	•	76265+0	•	٠	•	0771125-0
000000E-0	ෆ (•	07264E+0				
	ე ლ		0 + 4 2 0 1 0 1 0 1			•	9020118-0
. 50000000.	ງປ		0+110000000000000000000000000000000000				3457055
0-30000000	g	•	46331E+0				9943E-
.5000coE-0	ღ		19671E-0			•	0
0-3000000	_U		30753E-0		•	•	.8065E-
.50000E-0	o (4602E+0	•	•	٠	9551E-
.00000E-0	o o		0+3926F6		•	•	38450E-0
0-300000c.	() (٠	12440E+0		٠	•	12571E-
0.0000000000000000000000000000000000000	5 0		0 + 4 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +		•	•	927547E-0
10000010	3 C		0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			•	70103051
150000E	. 0		18443E-0				794262E-0
.20000E	· O		42250E+0	•			
3000C	U		30000E+0	•	•	٠	565379E-0
30000E.	ტ -		4352E+0	•	٠	٠	986900€
350000	ıs ı		-330/15-0 1530/15-0			•	9865685 9865
40000E	ত (0-485666	•		٠	7917135-0
100000	5 C		O - 4 C C C C C C C C C C C C C C C C C C			٠	183362E-0
10000	9 (2		0971F+0				00/09/00 011097F
DOOCE	ად		11398E+0				530261E-
.650000E	ტ		149356-0			•	726425E-
.70000E	_O		1763E+0			•)23925E-
.7500005	<u>ග</u>		7 <u>5563E+0</u>		•	•	7109295-
30000	O (-2854E+0			٠	0
. 850000E	3 C		72472E-0	•	•	•	567607E-0
100000E.	י כ		. 0478E+0			•	
.000000	ט כ		37721E+0			•	589409E-0
.05000E	. 0		28708E+0		٠.		.596024E-
.100000E	ပ				•		596815E-
.150000E-	ı o		7549E+0		٠.		.500645E-
2.200000E-01	വ വ	0 0	-3.4221916-01	0.0	0.0	0.0	1.204493E-01
10000	,		1.30.00.			٠	しゅつしょかよ

NASTRAN COUF DIRECT TRANS	OURSE DEMO. ANSIENT ANALYSIS	O. PROB. 9			FEBRUARY 9.	1981	NASTRAN 12/15/80	PAGE	32
S/8-INCH (ELEWENT-ID	DIAMETER STEEL) = 15	BEAM F O R C E S	N N B N N N N N N N N N N N N N N N N N	ELEMENT	S S	B A R)			
₩ 11 1	BEND-MOMEN PLANE 1	NT-END-A PLANE 2	BENO-MOMENT PLANE 1	T-END-B	SHEAL PLANE 1	R PLANE	2 FORCE	108	TORQUE
	0.0	0.0	0.	0.0		0.0	00	000	
.00000E-0	2.274387E+0		-6.501845E+00	o.,	.454818E-0	o :			
.000000E-0	.362270E+0	•	д (Д (0.0	.151235E	0,0			
.50000E-0	0.237476.40		-1./1895UE+01 -1.003681E+01	0.0	3.504.865				
.500000E-0	602025+0		.893237E	0.0	533931E	000		0.0	
.00000E-0	.265016E+0		343029E+0	0.0	.843975E	0.0			
.500000E-0	.882533E-0	•	.039955E+0	0.0	.146457E	0.0			
.000000E-0	.620599E+0	•	.838714E+0	0.0	.362290E-0	0.0			
.50000E-0	.630208E+0	•	.146334E+	0.0	.677484E	0.0			
.000000E-0	.040040E+0	•	-1.191,3/E+01 -5 04504/E+00	o.c	1.902024E±01) c	9.0	000	
.0000005-0	.369350E+0		.463324E+0	0.0	.812053E	0.0			
.50000E-0	.269503E+0		.108223E+0	0.0	.265596E	0.0			
.000000E-C	.403400E+0	•	.261201E	0.0	.843969E	0.0	0.0		
.500000E-0	.521192E+0	•	0	0.0	.245232E	0.0			
.00000E-0	.484129E+0		0 0	0.0	.704097E	0.0	٠		
. 500000E	334159E+0	•	-7.757646E+00	0.0	2.846959E-01	. .	o c		
- 5000000.	0756946+0		0	0.0	.821888E-0	0.0			
.000000E-0	.262253E+0		0	0.0	.874690E	0.0			
.05000E-0	.718560E+0	•	0	0.0	.523124E-	0.0	•	-	
.100000E-0	.411209E+0	•	-1.757852E+00	0.0	.307712	0.0		•	
.150000E-0	.027004E+0		0 0	0.0	.043324E-C	0.0		•	
0000E-0	O (•	\circ	0.0	. 400048 104949	0.0		•	
3000005-	.23450 E+0 .015533F+0		.366500E	0.0	.597660E-0	0.0			
COCCE	9		477775E+0	0.0	.628983E-	0.0		•	
.400000E-	.346412E+0	•	4.253549E+00	0.0	.857263E-0	0.0	•		
2000E-	097809E+0	•	3497535+0	0.0	.038873E-0	0.0			
0000E-	. 502558E+0	•	19.0048356 +00 14 52735 F-01		0.0000000000000000000000000000000000000				
00000	.274888E+0		1,12222VE		.0531996-	0.0			
3000E-	.612775E+0	•	.438357E+0	0.0	.485357E-	0.0			
-3000C	.227700E+0	•	.72486-E+0	0.0	.1042716-	0.0			
000C	.0600145+0	•	2.819987E+0	0.0	.800539E-0	0.0		•	
.80000E	.272503E+0	•	6165135+0	0.0	.687820E-	0.0	•	•	
0000E-	.761024E+0	•	840467	0.0	.15848/E-0	0.0	•	•	
.990000E-	./2023/E+0 25/1905+0	•	0.4.0.0.0.4.0.4.0.4.0.0.4.0.0.4.0.0.4.0.0.4.4.0.0.4.4.0.0.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		-346344E-				
000000	0.3263650		327771E	0.0	3225255-0	0.0			
.05000E-	.063146E+0	•	21975E+0	0.0	.082299E-0	0.0		•	
.100000E-	.767043E+0	•	6.143947E+	0.0	.2461915-	0.0	0.0	•	
.150000E-	.089838E+0	•	1.093558E+0	0.0	399015-0	0.0	•	•	
2.250000E-01	-5.587235E+00 6.780815E+00	0.0	6.497311E+00	0.0	7.35/522E-02 5.670095E-02	000	0.0	90	

NASTRAN COURSE - - DEMO. PROB. 9 DIRECT TRANSIENT ANALYSIS

5/8-INCH DIAMETER STEEL BEAM

SUMMARY XY-OUTPUT

33

PAGE

NASTRAN 12/15/80

FEBRUARY 9, 1981

SUBCASE RESPONSE DISPLACEMENT

CURVE

21(4)

THIS CURVE WILL BE PAPER-PLOTTED FRAME

CURVE TITLE = X-AXIS TITLE = Y-AXIS TITLE =

THE FOLLOWING INFORMATION IS FOR THE ABOVE DEFINED CURVE ONLY.

WITHIN THE FRAME X-LIMITS

2.250000E-01) 70 X = (x = 0.

THE SMALLEST Y-VALUE = -1.894862E-03 AT X = 1.000000E-02

3.313758E-01 AT X = 1.650000E-01 THE LARGEST Y-VALUE =

o. WITHIN THE X-LIMITS OF ALL DATA (X =

2.250000E-01) 70 X =

1.000000E-02 -1.894862E-03 AT X = THE SMALLEST Y-VALUE =

1.650000E-01 3.313758E-01 AT X = THE LARGEST Y-VALUE =

SUMMARY U L 2 2 W

NASTRAN COURSE - - - DEMO. PROB. 9
DIRECT TRANSLENT ANALYSIS

PAGE FEBRUARY 9, 1981 NASTRAN 12/15/80

34

5/8-INCH DIAMETER STEEL BEAM

X-AXIS TITLE =

5.0006 = 0.2 2.0008 = 0.2 2.0008 = 0.2 2.0008 = 0.2 3.000	#		3.50000E-01
* * *	* * I CO 10000 1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
*			
*	1000E-02 1	▶•4	
	₩.	I *	
0006-02 0006-0	000E-02 I	*	
0006E-02 0006E-03	000E-02 I		
0005-02 0005-0	000E-02 I	*	
0006-02 0006-0	0000=001	· *	
0000E-02 0000E-03	0000 - 02 1	*	
0005E-02 1 0005E-03 1		↓	
0006-02 0006-0	000E-02 1	4 h	
000E-02	1 20 1000	3 to 6	
0005-02 0005-0	000E-02 1	4 4	
000E-02 000E-01 000E-0			
0005E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-02 0006E-03 0006E-	000E-02 1	*	
000E-02 0000E-02 0000E-03 0	000E-02 I	* I	
0000E-02 I 0000E-02 I 0000E-01 I	000E-02 I	*	
000E-02 I 000E-01 I 000E-0	300E-02 I	·	
200E-02 I 200E-01 I	000E-02 I	*	
000E-01 I I I I I I I I I I I I I I I I I I I	30 0€- 02 I		
000E-01 I 000E-0	000E-02 I		*
500E-01 I 500E-01 I 500E-01 I 500E-01 I 600E-01 I	000E-01 I	•	*
700E-01 I	500E-01 I		*
500E-01 I I I I I I I I I I I I I I I I I I I	000F-01 I		*
200E-011 200E-011 200E-011 200E-011 200E-011 200E-011 200E-011 200E-011 200E-011	5006-01		*
\$5005-011 \$0005-011 \$0005-011 \$10005-011 \$10005-011 \$10005-011 \$10005-011 \$10005-011 \$10005-011 \$10005-011 \$10005-011	0006-01 1		#
200E-01 I I I I I I I I I I I I I I I I I I I	1 1011		#
500E-011 500E-011 1000E-011 11000E-011 11000E-011 11000E-011 11000E-011	200E-01 I	•	•
200E-01 I I I I I I I I I I I I I I I I I I I	5006-01		•
000E-01 I I I I I I I I I I I I I I I I I I I	000000000000000000000000000000000000000		•
000E-01 I I I I I I I I I I I I I I I I I I I			•
1	1 O L L C C	4	
000E-01 I I I I I I I I I I I I I I I I I I I	0006-01 1	• •	•
000E-01 I I I I I I I I I I I I I I I I I I I	1 0 0 u	4 1	•
1	300E+01 1	T .	•
2000E-01 I	200E-01 I	₩.	•
1 I I I I I I I I I I I I I I I I I I I	300E-01 I	I	•
1 10-1000	500E-01 I	н	*
	000E-01 I		•

1.8500E-01 I 2.0500E-01 I 2.0500E-01 I 2.1500E-01 I 2.1500E-01 I 2.2500E-01 I 2.2500E-01 I 2.3500E-01 I 2.3500E-01 I 2.4500E-01 I 2.4500E-01 I

E C H O NASTRAN SYSTEM PARAMETER

NASTRAN CONFIG=6, FILES=(NPTP, OPTP, PLT2)

FEBRUARY 10, 1981 NASTRAN 0/0/0

0

PAGE

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.7

WELLERANDER PROPERTY OF THE CONTROL OF THE CONTROL

MANAMAN

Mary Mary Mary MINITER STATES THE MUNCHAM MACHINE Mary and Casa

MILLIAM TO THE Managan Profession -- Profession PURISHER WHILE Francis 5-----EB/// //// M ETEROPORA /// //ETEROPORA /// ///

M WINGSTOWN W Alt. In Try. G CHILLY Mile Sugge W2000----0.11 ¥---NOTES DESIGNATIONS M MM TOTAL TANK

REAL PARTIES Participation of the Control of the

Windowski ////

KIM MAMAN PATA FAM MAKETEM MM MAMEM MAMAM

PATHEMANNAMENTAL MINIMIN NIV.NI MM MMM NIMINIMIN MINIMA

Missin

Σ Š

MESIMISSIM

M MMM

MMMMMM

N N

NEW MINIMA

MESTATIVITA

WELL-WHENCHEDELIN EXCHANGES CONTROL OF THE CONTROL WHICH BEFORE THE TOTAL CONTROL TO THE TOTAL CONTROL FOR THE TOTAL CONTROL TO THE TOTAL CONTRO MANAGEMENT CONTROL OF

MEDITARIAN DEPENDENCIA DE LA CONTRACTION DEL CONTRACTION DE LA CON

MANAMARIANA DANAGO DE ESPACIO DE PARTECO DE PORTECO DE PARTECO DE LA CONTRARA MANAMARIA DE PARTECO DEPARTECO DE PARTECO D

DATE TO THE TANK AND A SAME WERE THE TOTAL OF WWW.Seeries. The Control of the Cont The second of th

White the second of the second Manufacture of the second second of the seco

MANAMMANAMENT STATEST STATEST STATEST STATEST MANAMENT AND MANAMENT AN

MMMGMGMMMMGMMGMMGM

- 12/15/80 SYSTEM GENERATION DATE

E C H O

Š

س ۵

O

z

O

w

>

X U

ш

z

∢ α

S 4 2

PAGE

```
ID NASTRAN, DEWO
APP DISP
SOL 9.0
ALTER 159.159 $ R.F. 9, LEVEL 17
$ ALTER 159.159 $ R.F. 9, LEVEL 17
$ INTEGRATION AT T=100 %SEC. (NCOL=21)
PARAM //C.N.MPY/V.N.NCOL/C.N.1/C.N.21 $
ENDALTER $
$INSERT
RESIART NASTRAN, DEWO , 2/9/81, 60033,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              11
                                                                                                                                                                                                                                                                                                             71.E
71.E
71.E
71.E
                                                                                                                                                                                                                                                                                                                                                                                                                                               FILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           FILE
FILE
FILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          FILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FILE
FILE
FILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   FILE
                                                                                                                                                                                                                                                                                                                                                                                                                                                         24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1.
                                                                                                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              00
                                                                                                                                                                                                                                                                                                                                                                                                                                               <del>.</del>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           .
                                                                                                                                                                          ----00000000000000000
                                                                                                              PLAGS = 0.0 PR PLAGS 
                                                                                             NASTRAN DEMO

X X VPS

2. REENTER AT DO

3. GPU F

4. GPUT FL

5. GPUT FL

X VPS

CSIM FLAC

GM

USET FLAC
                                                                                                                                                                                                                                                                                                                                                                                                                                    ΑT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       AT
                                                                                                                                                                                                                                                                                                                                                                                                                                  REENTER
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      REENTER
XVPS
REENTER
XVPS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            REENTER
EST
GPECT
XVPS
                                                                                                                                                                                                                                                                                                                                                                                    PLISETX
PLIPAR
                                                                                                                                                                                                                                                                                                                                                                                                            GPSETS
Elsets
                                                                                                                                                                                                                                                                         КАР
ВРР
КРР
КРР
КРР
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SLT
                                                                                                                                                                                                                                                                                                                                                                                                                                                           x, rs
                                                                                                                                                                                                                                                                                                                       PST
KFS
                                                                                                                                                                                                                                                                                                                                                            EST
                                                                                                                                                                                                                                                                                                                                                                        ECT
                                                                                                                                                                                                                                                                                                                                               d
```

O

a

w × 00000000000 27 30 35 O w H H H H H 0 0 0 FILE FILE FILE FILE FILE FILE О 1, 45 57 œ 38 64 62 06 z O FLAGS = 0, ш ⊃ . ¥ AT ٨٠ ٦ ΔT ٠ ۲ A + ΑT w Z

O I O

O

O

S

m

PAGE

4

PAGE

o
I
O
ш
-
X
O
w
۵
_
0
œ
-
z
0
J
ш
>
- 1
-
_
U
LLI.
><
ĮĮ)
Z
Ø
œ
⊢
S
⋖
Z

	61	62		63	0	0		64	65	66					70		0	
	:I'E =	FILE =		# 3714 # 3714	FILE =	Flui =		11 11 11 11	FILE =	F11E =		FILE =		# 11-11-11-1	# GJ	F115 =		
168	-	-	171	_:	٠.	ر.	137	-	·	<u>.</u>	130		-			-	ó	
A DOUGH	 	3.5EL =	1417.5ER	E 11110		11 11 12 12 14	٠.	 	u.	11 .1 10 10 10 10 10 10 10 10 10 10 10 10 10	ZUTT BER	اا نیا نیا نیا ندا	141	1.1	113	11 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	w	
DIMAP SEQUENCE	FLAGS = 0,	FLAGS = 0,	DMAP SEQUENCE	FLAGS = 0,	FLAGS = 0,	€ AGS = C.	DITAP SEQUENCE	LAGS =	A35 = 0	FLAGS = 0.	DMAP SEQUENCE	п	11	LAGS =	ħ	FLAGS = 0,	GS =	DICTIONARY
74		•	T Y Z				.α Α		•		A AT	-						DICT
20 E 4 1 E	ر د د د د	SHIX	REENTE	X:18	0.0041	0-7-1	REENTE		n O		RE5.1	0002	2005	30572	и. Ц	Se 3X	(/) [4]	9
140.	- 141	142.	143,	144,	145	140	147.	178.	σ· -	150.	151	152.	153,	151	155,	158,	157,	S END OF CHECK

\$ END OF CHECKP \$SEQUENCE NO TIME 10 CEND

0 τ O

x

O E C

0 N T N O

ပ

CASE

NASTRAN COURSE - - - DEMO, PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

RESTART FROM DEMO. PROS 9 TO CONTINUE INTEGRATION FROM T=100

A DUMMY NONLINEAR LOAD (HAVING A VERY SMALL SCALE FACTOR) IS APPLIED TO THE STRUCTURE IN ORDER TO AVOID TEMPORARILY A PROGRAM BUG WHICH STGPS EXECUTION IF THE DLOAD SPECIFIED IS ZERG FOR THE DURATION OF THIS RUN. A CODE FIX IS AVAILABLE. TITLE=NASTRAN COURSE - - - DEMO. PROB. 9A SUBTITLE=DIRECT TRANSTENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM LABEL=RESTART FRCM DEWO. PROB 9 TO CONTINUE INTEGRATION FROM T=100 S A NEW TSTEP CARD IS SELECTED. TSTEP=77 XY PLOT ON LINE PRINTER GUIPUT(XYPLOT) XYPAPLOT DISP RESPONSE/21(12) BEGIN BULK NONLINEAR = 44 SET 25 = 7,13,21 DISP=25 ECHO-BOTH Didab=92 CARD

NASTRAN COURSE - - - DEMO. PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

FEBRUARY 10, 1981 NASTRAN 12/15/80 PAGE

9

RESTART FROM DEMO. PROB 9 TO CONTINUE INTEGRATION FROM T=100

INPUT BULK DATA DECK ECHD : 15TEP 77 2 ... 3 ... 4 ... 5 ... 6 ... 7 ... 8 ... 9 ... NOLINZ 44 16 2 1.-40 5 2 10 2

5

TOTAL COUNT=

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED,XSORT WILL RE-ORDER DECK.

NASTRAN COURSE DIRECT TRANSIE

PAGE

	O I U		0.0																				12 C	t t																			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+51664	,	10A+	4.52+
FROM T=100	RTED BULK DATA E			v c.																		20 21			, .	.0.	15.	20.	25.	30.	35.	. m		 	60.	65.	70.	75.	80.	85.	.05			.3 7.324-4	2 C C C C C C C C C C C C C C C C C C C	000 - 000 -	0.3.50
	o s	ო :	31																				9																					9+.07	D (א מ	
CONTINUE IN		.:		- 0	ŧσ	4	5	9	7	8	თ	0	-	12	13	14	15	16	17	1 8	6-	20	20	-	- 0	ı m	4	ស	9	7	ന	o •) -			4	15	16	17	18	ケー	20	21		j :	, c	7
8 9 10			(1) A (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 00 00 00 00 00 00 00 00 00 00 00 00 00	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	CBAR	C 8 4 8	CBAR	CBAR	CBAR	DAREA	יי מי מי מי	2 1 2 2	GRID	GRID	GRID	GRID	GRID	GRID	0 2 2		2 2 2	GRID	GRID	GRID	GRID	GR 1.D	GRID	GRID	GRID	GRID	C	2 0 0 0	1 ·	- 71 +
START FROM DEMO. PRO	(C)	COUNT	† (1 1 E	0 4	1.0	-9-	11	8-	- 6	101	-11-	12-	13-	14-	15-	16-	17-	18-	19-	20-	21-	222	1 5 C	i li	797	27-	28-	-62	30-	31.0	1 TO TO	1 P	ነ ተ ያ	199	37-	38-	39-	40-	41-	42-	43-	44-	100	1 7 1 0 7 1	1 7 7	121

NASTRAN COURSE --- DEMO. PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

FEBRUARY 10, 1981 NASTRAN 12/15/80

œ

PAGE

RESTART FROM DEMO. PROB 9 TO CONTINUE INTEGRATION FROM T=100

	0	/ * +		
	ъ :	0		
O I	7 8	0.015 1.0		
Ą				
⊢	:	÷		
вигк рата есно	:	М М		
⊃ @	ហ		4.0	
S O R 1 E D		-0.	.00125 4	
v	:		62 90 90	
	2	0.020	TSTEP 77	_
	TABLED1	+137	TSTEP TSTEP TSTEP	*- せつこと山
CARD	COUNT 51-	522 53-1	ស ស ម ម ម ម	

PAGE

NASTRAN COURSE - - - DEMO. PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

RESTART FROM DEMO. PROB 9 TO CONTINUE INTEGRATION FROM T=100

LIST OF MODIFIED CARDS

MASK WORD - BIT POSITION - CARD NAME - PACKED BIT POSITION
1
2
3

•	. ō								
) 4 W		9	7	6 0	თ	10	=	12	

61

NOL IN2

22	62	6)	00
L00P\$	TSTEP\$	₽0UT \$	NL FORCES	XYOUTS
01	16	17	56	27

2

RESTART FRCM DEMG. PROB 9 TO CONTINUE INTEGRATION FROM T=100 NASTRAN COURSE - - - DEMO. PROS. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

*INDICATES INSTRUCTIONS TO BE EXECUTED FOR MODIFIED RESTART

THE FOLLOWING FILES WERE USED FROM OLD PROBLEM TAPE TO INITIATE RESTART

Š.
FILE
o Z
REEL
NAME
FILE

			32 36 37 37 37	
PURGED)				
CSIN PLIPAR GPSETS ELSETS GMD GGD BDD	GPL EQEXIN BGPDT	SIL EST GPECT MGG	U S X X X X X X X X X X X X X X X X X X	MPF MDD TOU XVPS

^{**}NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM**

MPYAD--NULL MATRIX PRODUCT MPYAD--NULL MATRIX PRODUCT MPYAC--NULL MATRIX PRODUCT MPYAD--NULL MATRIX PRODUCT

	S AVG	O PREFACE LOOPS .
(09	0	0
ON OF DATA BLOCK SCRATCH2 (N =	PC AVG = 0 SPILL GROUPS =	PCMAX = 0 PC GROUPS =
YMMETRIC DECOMPOSITIC	C AVG ≈ 4 PC	C MAX = 5
***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK SCRATCH2 (N =	TIME ESTIMATES 1 C A	ADDITIONAL CORE= -15639 C M
***USER INFORMAT		AC

METHOD 1 I , NBR PASSES = 1, EST. TIME =

CTOR

ш

Ξ

PAGE

NASTRAN COURSE - - - DEMO. PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

PROB 9 TO CONTINUE INTEGRATION FROM T=100		DISPLACEMENT
CONTINC		
0		
σ		
PROB	7	
I DEMO.		
స్టే	POINT-ID =	

83	.1021035-0	.233533E-0	.384328E-0	.476372E-0	.528089E-0	.565344E-0	.600511E-0	.629706E-0	.6658445-0	.741540E-0	.799951E-0	.776776E-0	.697530E-0	.641002E-0	.663457E-0	.711345E-0	.733570E-0	.726410E-0	.6957616-0	.646805E-0	.564422E-0	.508031E-0	.519357E-0	.543032E-0	.511380E-0	.413247E-0	.329826E-0	.313394E-0	.336343E-0	.372577E-0	.4C4708E-0	.4369916-0	.4292435-0	.364653E-0	.322064E-0	.347498E-0	.415150E-0	.440331E-0	.395796E-	.342285E-0	.314331E-0	.312319E-0	.319648E-0	.344116E-0	.381449E-0	52501E-0
																		٠,																					0.0							0.0
		•			٠	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	٠	•	•	•	•		•	•	•	•	•	•	•	٠	•	٠	•	٠	٠	•	•	٠	•	•	•	٠	0.0
								0.																														٠	0.0		•	٠	•	•		0.0
	1 0	0-3008897.	.314075E-0	.078328E-0	42046E-0	.691813E-0	.6659265-0	.762574E-0	. 9H2770E-0	.303977E-0	.705413E-0	.004439£-0	0-3854535.	.454743E-0	.328346E-0	.C02194E-0	.551401E-0	.085307E-0	.717620E-0	.493604E-0	.423833E-0	.4341496-0	.688461E-0	.9582195-0	.233332E-0	0-31-31:51:	0-3020514.	.4525635-0	.1851165-0	.799070E-C	.3812746-0	.043724E-0) 95CF33E -C	0-301106-0	.200337E-0	.526711E-0	.9067526-0	.278430E-0	.583727E-0	.751583E-C	.744470E-0	.534537E-C	.1575245-0	.722629E-0	.342196E-0	02554E
11	•		•				•	•	٠			•			•	•	•	•						•				•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•		0.0
TYPE	IJ	U	IJ	c	<u>ن</u>	J	ပ	g	IJ	U	ŋ	IJ	U	IJ	g	IJ	IJ	IJ	IJ	G	IJ	IJ	g	ŋ	g	Ø	IJ	IJ	o	ن	IJ	ŋ	U	IJ	v	ŋ	IJ	ŋ	ø	ø	v	IJ	IJ	IJ	g	o
- 5	0000	025000E-	05000E	075C00F-	1000001	125000E-	0000E-	75000E-	-300000	25cco =-	SCCOOF	75000E-	30000E-	5000E-	50000E-	750005-	COCCOE	25000E-	50000E-	75000E-	-300000	25000E-	50000E-	75000E-	ODDCOE	625000E-	-:00J0S	750005-	00000E-	25000E-	50000E-	75000E-	-30000068-	8250008-	50000E -	750008-	000005-	25000E-	.950000	.975000E-	-300000.	.025000E-	.050005-	.075000E-	-100000F-	2.125000E-01

NASTRAN COURSE - - - DEMO. PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIRMETER STEEL BEAM

PROB 9 TO CONTINUE INTEGRATION FROM T=100		O L A C E M E N T
INTEGRAT		o I S P
CONTINUE		
6		
5		
PROB	e	
DEMO.	-	
FROM	10 =	
RESTART FROM DEMO.	POINT	

VECTOR

73 .0224285-0 .0606295-0 .1532095-0	. 99294666 . 7707816-0 . 96293636-0 . 6600546-0 . 6301246-0 . 4950936-0	.346846E-0 .390102E-0 .473231E-0 .596039E-0 .775229E-0 .94460E-0	. 482603E-0 . 242862BE-0 . 248607E-0 . 048667E-0 . 0486678E-0 . 768678E-0 . 76705E-0	3.996281E-03 4.101166E-03 4.2926E-03 4.292158E-03 4.28851E-03 4.28851E-03 3.58756E-03 3.286173E-03	.081938E-0 .97725E-0 .023474E-0 .083379E-0 .193417E-0
				000000000	
				0000000000	. <i></i> .
				0000000000	 .
109210E- 207063E- 207063E- 30926E-	350351E- 039391E- 129112E- 123128E- 153718E- 153718E- 153918E-	1221944 123374 123374 123374 12337 1	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.35.00274E-01 1.35.01712E-01 1.35.1712E-01 1.378577E-01 1.364011E-01 1.341193E-01	235 25 25 25 25 25 25 25 25 25 25 25 25 25
50000	0000000		0000000		
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				00000000000	
11ME 000000E- 025000E- 050000E- 075000E-	225000E+ 230000E- 330000E- 30000E- 30000E- 30000E- 35000E-	20000000000000000000000000000000000000	00000000000000000000000000000000000000	. 75600 . 75600 . 75600 . 77500 . 82500 . 85000 . 90000	250006E- 250000E- 250000E- 25000E- 25000E- 25000E-

œ 0 1

ш >

NASTRAN COURSE - - - DEMO, PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

		۳
_		Z
= 100		LLJ
		Σ
-		ш
٤		ပ
u.		4
Z		DISPLACEMEN
H		a
4		S
Ċ		p-4
Е		Ω
2		
ш		
2		
Ξ		
ð		
Ü		
PROB 9 TO CONTINUE INTEGRATION FROM 1		
თ		
n		
ĕ		
	7	
ö	(4	
Ē		
ຄ		
RESTART FROM DENO.	н	
œ	۵	
-	-	
ď	Ę	
-	=	
ñ	۵	
C.		

R3	4256245-0	.314328E-0	.0950725-0	.789838E-0	.401772E-0	.9575025-0	.662783E-0	.690777E-0	.9827765-0	.427019E-0	.863571E-0	.237029E-0	.5156665-0	.615108E-0	.5090895-0	.4437515-0	.291335E-0	.056893E-0	.736898E-0	.529599F-0	.5616785-0	.865260E-0	.335534E-0	.813774E-0	.250432E-0	.525122E-0	.560937E-0	.3853515-0	.12000E-0	.848189E-0	.486513E-0	.0555528-0	.673001E-0	.470197E-0	.530406E-0	.749459E-0	.0514696-0	.3633C6E-0	.527522E-0	.4411815-0	.107271E-0	.708476E-0	.324673E-0	.924285E-0	.522141E-0	2.157744E-03
R2		•	•	٠	0.0	٠	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	٠	•	•	•		•	•	•	•	•	٠	٠	•	•	•	•	•	•	•		•	0.0
۳.	٠	٠	٠	-	0.0	٠	•		٠	•	-	٠	•		•	٠	٠	٠	٠	٠	•	٠		٠	٠	٠	٠	٠	٠	٠	٠	•	•	•	٠	٠	•	•	•	٠		•	•		٠	•
13	•		•	٠	0.0		•			٠			•					•				•	•	•	•			•	•					•		٠	٠									
12			-3885646.	.785350E-	2.7335695-01	-309460E-	-30C+80L-	.72953E-	.7859308-	-BC47008.	-39611kc*	.0377216-	.0035358-	-3354-66.	.1:202:15	.1137348-	.1055558-	.047349E-	-308t940.	.055:16E-	. 2697198-	.1117988-	.171160E-	.232217E-		.3:3H22E-	.3135716-	.255338E-	.2.~324E-	.1812238-	.112462E	-3-c6980·	. 91-6262E-	-3616816.	-8 -03-2E-	-3-2-2-4	-89785-8.	.8-17545-	.851033E	.811231E-	.7333446-		.5449165-	.446113E	3490895	.26120aE
Ţ	0.0	0.0	•		0.0	•	•					•				•							•	٠		0.0	•				0.0		•	•						•		0.0				0.0
TYPE	IJ	IJ	O	ø	()	IJ	_O	g	g	O	IJ	IJ	IJ	IJ	c	U	IJ	ن	IJ	ø	g	IJ	IJ	IJ	IJ	g	IJ	_O	IJ	ڻ	IJ	g	U	ഠ	_U	O	ڻ ن	_U	_O	O	g	IJ	IJ	IJ	O	IJ
	OCCCCE-	25000E-	- 40000g	-30000420	.,	12:	1600000	7500E-	000000	2000E-	-300003	75000E-	-300000	25000E-	SOUCCET	75000E-	00000E-	250006-	50000E-	7500057	-300006	75000E-	50000E	750005-	-30000	25000E-	50000E-	750035-	900006	25000E-	5000CE-	75000E-	-30000p	25000E-	50000E-	750005-	-30000c	25000E-	.950000E-	.975000E-	.00000E-	25C00E-	.05000E-	.07500GE-	.100000E-	.125c00E-

PAGE FEBRUARY 10, 1981 NASTRAN 12/15/80

4

NASTRAN COURSE - - - DEMO. PROB. 9A DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

RESTART FROM DEMO. PROB 9 TO CONTINUE INTEGRATION FROM TATOO

SUMMARY T U d L U O - Y X

SUBCASE RESPONSE DISPLACEMENT

CURVE

21(4)

THIS CURVE WILL BE PAPER-PLOTTED FRAME

CURVE TITLE = X-AXIS TITLE = Y-AXIS TITLE =

THE FOLLOWING INFORMATION IS FOR THE ABOVE DEFINED CURVE ONLY.

(x = 1.000000E-01 T0 x = 2.125000E-01)WITHIN THE FRAME X-LIMITS

2.125000E-01 2.261203E-01 AT X = THE SMALLEST Y-VALUE = 1.625000E-01 3.313882E-01 AT X = THE LARGEST Y-VALUE =

WITHIN THE X-LIMITS OF ALL DATA (X = 1.000000E-01 TO X = 2.125000E-01)

2.125000E-01 2.261208E-01 AT X = THE SMALLEST Y-VALUE = 1.625000E-01 3.313882E-01 AT X = THE LARGEST Y-VALUE =

SUMMARY O IT О 2 Ш

NASTRAN COURSE - - - DEMO. PROB. 91 DIRECT TRANSIENT ANALYSIS OF 5/8-INCH DIAMETER STEEL BEAM

FEBRUARY 10, 1981 NASTRAN 12/15/80

15

PAGE

RESTART FROM DEMO. PROB 9 TO CONTINUE INTEGRATION FROM T=100

X-AXIS TITLE =

	1 2.2000003-01	2.8000000E-01	3.400000E-01
٠	-		
9.934AE-02	led be	, , * *	
05026-01	d box	al from	
0750E-01		*	
1000E-01		*	
12505-01	-	*	
15005-01		*	
17508-01	L-1	*	
20006-01	I	**	
2250E-01	-	*	
2500E-01	_	*	
2750: -01	H	*	
30005-01	-	*	
32505-01		₩	
3500E-01	ы		
3750E-01	1		
4000E-01			
4250E-01			
4500E-C1		# □	
4750E-01	-	*	
500CE-01		*	
52508-01	₩	*	
5500E-01	-		*
5753E-01		•	*
6000E-01			*
6250E-01	-		•
6500E-01	•	•	•
6750E-01	_	•••	*
7000E-01	p →	•	*
72505-01	1		*
75008-01		*	
7750E-01	-	*	
8000E-01	—	*	
8250E-01		₽	
8500E-01		*	
8750E-01		*	
9000E-01	-	•	

1.950E-01 1.950E-01 2.050E-01 2.050E-01 2.050E-01 2.050E-01 2.150E-01 2.150E-01 2.150E-01 2.150E-01 2.150E-01 2.150E-01

Management of the state of the

RIGID FORMAT SERIES P

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.1

WITH A CONTROL OF THE CONTROL OF THE

MODEL WORKSTONE -- LOS

MARANA A CARANA A CAR Martina M

Mes/// //// /

Marketta Natara

MWWM

MANAGAMAM W: 133M

MESERIM

INTERPORTED STATE INTERPORTED INTERPORTED

MATTER MARKATING MATERIAL MATE 1 DOM: NO MWWWW MWWWW

> 14.2021----(+ - - - -MEDIA MANCHETTAN

WELL PRODUCT CONTROL OF THE PRODUCT Marananana Na

With the Market Control of the Contr

With the control of t

8/15/79

SYSTEM GENERATION DATE

With the second The control of the co

Entropy of the control of the contro MANAGEMENT OF THE PROPERTY OF

Barbara e scotte son scotte

ECHO

D F K

м О

C 0 N 1

EXECUTIVE

NASTRAN

ID NASTRAN, DEMO APP DISP SGL 10,0 TIME 10

PAGE NASTRAN 8/15/79 3, 1980 JANUARY

~

MASTRAN COURSE - - DEMO, PROB. 10 MODAL COMPLEX EIGENVALUE ANALYSIS

CANTILEVER BEAM WITH VISCOUS DAMPING. GIV(REAL), INV(COMPLEX)

O

I ပ

ш

D E C

CONTROL

CASE

GIV(REAL), INV(COMPLEX) IIILE=NASTRAN COURSE - - - DEMO, PROB, 10
SUSTITLE=MODAL COURSE LASTENCE ANALYSIS
LABEL=CANTILEVER BEAD WITH VISCOUS DAMPING, GI
5PC= 11
METHOD=42
B2DP = DAMPER
CVETHOD=51
SET 4 = 1,3,5,7,9,11,13,15,17,19,21
BEGIN BULK CARD - 2641067800

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SURTED, XSORT WILL RE-ORDER DECK.

PAGE

CANTILEVER BEAM WITH VISCOUS DAMPING. GIV(REAL), INV(COMPLEX)

NASTRAN COURSE - - DEMO, PROB. 10 MODAL COMPLEA EIGENVALUE ANALYSIS

																							£ 60	-	242	!																					<u>.</u>	L
	:																						+F13051	1	+F1GR42																						40.4	
	Œ	•																							5)																						
	:	-																							-																							
O I	on.	0.0																				ŭ	67.	ŗ	n 0	1	345																					
T A E	7	· -																				r	7 - 1	•	, 0	•																						
4	9	0																																													4-206 7	
٦ *	:	o																			•	- •	2	ď																							1	:
æ	ហ		7	m ·	4 n	n u) I	80	თ	01	=	12	ر	-1	da i	0 :	· ·	m (٠ ر	2 .		_		300	800.																						۲	.
C)	4																																															
0 R T	:		-	α (ب د	វប	ာ မ	7	æ	æ	0	=	7	د -	<u></u>	٠ د	1 <u>0</u>		0 0	n C) (o c	7 X Z	: 1	0.0			0.0	ທ	10.	5.	26.	25.	ວຸເ	n c	 ១៤: មេ		ເກ ເພ	60.	65.	70.	75.	03	ກ ເ ລີ	5 u	. c	2	
S	ന	_																					. >	: .	: >																						30 + 6	•
	:	က်																			•				. >10																						3	;
							, o			σ	-	•	2 :	-	-	- •				- c	200	ה מיונייי כ מיונייי כ		י ני ו	420.	MAX							மு			٠-) -		•	-	5	•-		• •	- (4 6	32	•
	-	ARCR	BAR	848 1	7 C	1 0 1 0	1 M	SAR	3AR	272	BAR	BAR	BAR	or or	34R	۲ د در د	# C	X 0	1 0	۲ D ۲ <	£ (5 C	9 C	1001s	F108	E16R42	ROSET	415	CIE	410	015	2	018	2 5	בי בי) C	012	2.5	2.D	410	۵I۲	A I D	012	٦ <i>د</i>) (3 6	211	
	•	ធា	Ü	ű i	ວິເ	ַז כ	ن: ر	Ü	ပ	ت	ວ	ວັ	ວັ'	Ö	ΰ,	ا ن	ن ن	ັງ ເ	ָב [ָ]	ັ ເ	בי כ	ז בֿ	יו נ	. u.	FW	+	J.	g	35	5	ວັ	Ö	נט (וֹ כֿ	5 8	5 5	5	Ö	5	Ü	່ວັ	σ	ن ن ق	טֿ טֿ	ָּלָ כֿ	ั้ว ซั	בֿ כֿ	i
	CARD	-	2-	۳. ا	4 դ	i i	7-6	8	1	101		12-	-3-	ا ا ا	٠ ١	0 1) - •	0 0	- C	100	1,7	°C	4 C	25-	26-	27-	28-	-62	30-	.:e	32-	33-	34-	ر ا ا	1 1 th	- (C)	36.6	407	41-	42-	43-	44-	45 - 65	4 4 0 1	4 c	1 t	1 10 0 00 1 1)

341

NASTRAN COURSE - - - DEMO. PROB. 10 MODAL COMPLEX EIGENVALUE ANALYSIS

GIV(REAL), INV(COMPLEX) CANTILEVER BEAM WITH VISCOUS DAMPING.

PAGE

NASTRAN 8/15/79

3, 1980

UANUARY

	01	+ P31 + P31A
	თ	
	:	Ö
SORTED BULK DATA ECHO	90	
O	:	ö
ш		2 1 2
⋖	7	.30680 7.490-3 7.490-3 1.498-2 -0.3125 0. 0. 0.3125 0. 0.
ب	:	-0
G	9	6
		9
x	:	0.4
		<u>ო</u>
ر. 0	u,	490
	. 5	. 0
۵	•	25.
ш	, ⊃	31
· ~	Ĭ.	ю. 00-0-
О	•	
Ś	n	ю
	: ~ a	31 32 0.3125 0. 0.75 0.75 11 126
	2 11	25
	Q	31:75
	. 6	-00 m
	5	A T
	OMIT PARAN	PBAR + P31 + P31A 5FC1 ENDDATA
	b- 1 1	
S C	52.6	000 000 1000 1000
S	C)	

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

34 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

20) 0 S AVG 0 PREFACE LOOPS GROUPS = GROUPS = .2 н 2 _

*** USER INFORMATION MESSAGE 2016, GL/ENS TIME ESTIMATE IS PROBLEM SIZE IS 40

S AVG PREFACE LOOPS 9 IS 6 SECONDS. 40, SPILL WILL GCCUR FOR THIS CORE AT A PROBLEM SIZE 000 || |Z SPILL GROUPS = 0 PC GROUPS = ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYWNETRIC DECOMPOSITION OF DATA BLOCK MAA TIME ESTIMATE= 1 C AVG = 1 PC AVG = 0 SPILL ADDITIONAL CORE= -23739 C NAX = 1 PCMAX = 0 PC 1.EST. TIME = 1.EST. METHOD 2 NINDR PASSES = METHOD 2 T.NBR PASSES = METHOD 1 NINBR PASSES = METHOD 1 NINBR PASSES = METHOD 3 T.NBR PASSES =

NASTRAN COURSE - - - DEMO. PROB. (O MODA. COMPLEX EIGENVALUE ANALYSIS

CANTILEVER BEAM WITH VISCOUS DAMPING. GIVERAL), INVICONDLEX!

EIGENVALUE ANALYSIS SUMMARY (GIVENSMETHOD)

'n

PAGE

3, 1980 NASTRAN 8/:5/79

CANDARY

т Р	t Ö	٥	0	,-	1.53E-14	æ	7	0
NUMBER OF EIGENVALUES EXTRACTED	NUMBER OF EIGENVECTORS COMPUTED	NUMBER OF EIGENVALUE CONVERGENCE FAILURES	NUMBER OF EIGENVECTOR CONVERGENCE FAILURES	REASON FOR TERMINATION,	LARGEST OFF-DIAGGNAL MODAL MASS TERM	WODE PAIR.		NUMBER OF OFF-DIAGONAL MODAL MASS TERMS FAILING CRITERION

NASTRAN COURSE - - - DEMO. PROB. 10 MODAL COMPLEX EIGENVALUE ANALYSIS

NASTRAN 8/15/79 3, 1980 JANUARY

Ş

EIGENVALU

REAL

9

PAGE

GIV(REAL), INV(COMPLEX) CANTILEVER BEAM WITH VISCOUS DAMPING.

GENERALIZED STIFFNESS	.941951E-	.742495E	.180959E+0	.583633E+0	.432931E+0	.713022E+0	.193199E	.311128E+0	.266050E+0	.647863E+0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GENERALIZED NASS	.628510E-0	.6~5221E-0	.808538E-0	.998002E-0	.2.18952E-0	.6'8356E-0	7.135542E-03	.857788E-0	.859421E-0	.029699E-0				•			•				•		•	•		•	•	•	•	•			•							0.0
CYCLIC FREQUENCY	.767519E+	.10412	.083972E+	.0257	.9307 38E+	.478693E+0	ري +	.729493E+0	.490443E+0	4.33745E+02	.058.419E+0	.264837E+0	.2641705+0	32200:5+0	.418345E+0	.524221E+0	.060000E+0	.1595356+0	.245244E+0	.311352E+0	.3530.47	.514407E+0	.513635E+3	.497357E+C	.459535E+0	.3942098+0	.295620E+0	.15822PE+0	9769,468+0	.7459888+0	.4613575+0	.011839E+0	1.071305E+04	1,124105E+04	1.170094E+04	1,2083;0E+04	1.240073E+04	63690E+	516	87454
RAD LAN FRE LUENCY	_	. 93:55:59	0+32+1195	0+3501-45.			1.2 431 3.8 +03	714300	11 - 31 35E+0	.72: 30 1E+C	0+3000011.	0+36 CC CE.	7-11-0	0+3·*·6~03·	C+3.2:1.4.	0+3-1-2+0A.	.680179E+0	.285574E+0	.82413:E+0	.233477E+0	8.50134:5+03	.51553°€+0	.57 435 1E +6	.1974-38 t	.86200-E+	.30-282E	.965653E+	0+3 :00:0t.	.01133,E	C 1554.	3,4,77,4,8,	.35757:E	.731201	.C03337E+	.35192CE	.520176	791808	.932494	334375+	8.089310E+04
EIGENVALUE	.23335E+0	.815432E+0	. 754747E+0	.435.55E+C	+36+845E+	. €220-4E+1	.6721916+0	.941174E+3	.83°4441E+3	.427281E+C	.010153E+0	.094304E+0	.547173E+0	O + H IN O H I I I I	0.4400000000000000000000000000000000000	.5511185+0	.435704E+0	.307 459E+0	.121702E+0	0+31/9/01.	66.	0.4396 0530	0+30+8565	. 523831E+0	.851252E+0	.148723E+0	.564723E+J	.0224 3E+0	.511921E+0	0+3977-10	.534000E+0	.041874E+0	.530912E+0	.989072E+0	.405073E+	.768871E+0	.070913E+0	.304357E+	E+0	.543694E+
EXTRACTION DRDER	07	33	38	ξ'n	10,	35	70	5.83	32	٠,	23	eli ev,	53	up.C1	t s	26	25	24	23	22	ėı	1	£.	t-	1 6	ភ្	7	£.	Ç	-	Ç	J.	က	7	9	ເດ	ব	က	7	-
MODE NO.	-	2	က	4	Ŋ	Q۱	۲-	æ	o	10	-	12	13	4	3	<u>-</u>	17	18	91	2¢	21	22	23	24	25	26	2.	T)	5.č	S (N	1.5	32	33	34	35	35	37	38	39	40

*** USER INFORMATION MESSAGE 3028,

343

CEAR B

ထဝ

87 B

ന വ

- 0

1.EST. TIME = 1.EST. TIME =

METAD—HULL MATRIX PRODUCT
MPAD—NULL MATRIX PRODUCT
MPAD—NULL MATRIX PRODUCT
METHOD 1 NI,NBR PASSES =
NETHOD 3 I ,NBR PASSES =

O SECONDS.

NASTRAN COURSE - - DEMO, PROB, 10 NODAL COTPLEX EIGENVALUE ANALYSIS

JANUARY 3, 1980 NASTRAN 8/15/79

PAGE

CANTILEZER BEAM WITH VISCOUS DAMPING. CIV(REAL). INV(COMPLEX)

(INVERSE POWER METHOD) SUMMARY ANALYSIS EIGENVALUE COMPLEX

ო	ო	0	ហ	55	
NUTBER OF EIGENVALUES EXTRACTED	NUWBER OF STARTING POINTS USED	NOVBER OF STARTING POINT OR SHIFT POINT MOVES	TOTAL NUTBER OF TRIANGULAR DECOMPOSITIONS	TOTAL NUMBER OF VECTOR ITERATIONS	

ဖ

REASON FOR TERMINATION . . .

00

GIVEREAL). INV(COMPLEX) NASTRAN COURSE - - - 0840, PROB. 10 MODAL COTPLEX EIGENVALUE ANALYSIS CANTILEVER BEAM WITH VISCOUS DAMPING. SUMMARY u D VPLEX EIGENVAL O

FREQUENCY 1.622675E+00 1.083140E+01 3.074157E+01 (IMAG) 1.019557E+01 6.805570E+01 1.931550E+02 FIGENVALUE -4,887501E+C0 -7,700564E+C0 -4,742437E+00 4 00 EXTRACTION GROER - 01 00

DAMPING COEFFICIENT 9.587109E-01 2.263000E-01 4.910499E-02

7.7.7.

1, EST. TIME = 1, EST. TIME = 1, EST. TIME =

METHOD 1 NT, NBA PASSES H METHOD 2 NT, NBA PASSES H METHOD 1 T , NGA PASSES H

NASTRAN COUP MODAL COMPLE	ASE E	NASTRAN COURSE — — — DEMO. PROB. 10 MODAL COMPLEX EIGENVALUE ANALYSIS			YARONAD	3, 1980	NASTRAN 8/15/79	PAGE
CANTILEVER B	E 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CANTILEVER BEAM WITH VISCOUS DAMPING.	GIVEREAL), INV(COMPLEX)	NV(COMPLEX)				
				I G E N V E C T (MAGNITUDE/PHASE	T O R NO.	-		
POINT 10.	TYPE	11	12	13	R1	R2	R3	
-	O	0.0	0.0	0.0	0.0	0.0	0.0	
ဧ	IJ		1,770478E-02 384,1173	0.0	0.0	0.0	3,445814E-03 354,3786	
ß	U	0.0	6.703779E-02 354.6519	0.0	0.0	0.0	6.325543E-03 355.2574	
7	g		1.4233856-01 355.2708	0.0	0.0	0.0	8.642378E-03 356.3747	
თ	Ø	0.0	2.390400E-01 355.9904	0.0	0.0	0.0	1.041446E-02 357.7529	
Ξ	IJ	0.0	3.487678E-01 355.8311	0.0	0.0	0.0	1,166050E-02 359,6031	
<u></u>	ڻ ن		4.8⊻31&5E=01 357.85§6	0.0	0.0	0.0	1.242317E-02 2.1058	
\$ 1	ø	0.0	5.954491E-01 359.0202	0.0	0.0	0.0	1.285575E-02 4.3804	
17	g	0.0	7.247639E-01 .0389	0.0	0.0	0.0	1,309894E- 02 5,5299	
2	IJ	0.0	8.557969E-01 .9708	0.0	o. o.	0.0	1.319556E-02 5.9624	
21	g	0.0	9.873974E-01 1.6484	0.0	0.0	0.0	1.320803E-02 6.0825	

თ

MODAL COMPL	EX EIGEN	MODAL COMPLEX EIGENVALUE ANALYSIS)					
CANTILETER COMPLEX EI	BEACH WIT Genvalue	FER BEAM WITH VISCOUS DAMPING. A EIGENVALUE = +7.700504E+00. C O	ING. CIN-REAL), INV(CCHPLEX) 00, 6.805570E+01 C.O.M.P.L.E.X.E.I.G.E.N.V.I	INV(CCHPLEX)	. ON	0		
				(MAGNITUDE/PHASE	:	ı		
POINT 1D.	TYPE	Ę	12	13	R1	R2	R3	
-	IJ	0.0	o. o. o.	0.0	0.0	0.0	0.0	
m	IJ	0.0	9.167268E-02 185.7¹68	0.0	0.0	0.0	1.660892E- 02 185.5631	
ഹ	O	0.0	2.9%7075E-01 185.3994	0.0	0.0	0.0	2.31490?E-02 184.94§8	
1-	IJ	0.0	5.240814E-01 185.0505	0.0	0.0	0.0	2.050902E-02 184.1960	
თ	IJ	0.0	6.845895E-01 184.7641	0.0	0.0	0.0	1.057729E-02 183,4477	
Ξ	IJ	0.0	7.204565E-01 184.8357	0.0	0.0	0.0	3.960370E-03 354.8744	
13	U	0.0	6.024422E-01 188.6053	0.0	0.0	0.0	1,996430E-02 355,4129	
15	G	0.0	3.398007E-01 196.0411	0.0	0.0	0.0	3.401064E-02 354.6151	
17	(3	0.0	1,407919E+01 299.2052	0.0	0.0	0.0	4.542209E-02 355.1783	
6	o o	0.0	5.475374E-01 342.3992	0.0	0.0	0.0	4.777746E-02 355.5846	
15	ڻ د	0.0	1,0245955±00 344,5838	0.0	0.0	0.0	4.863087E+02 355.5762	

ဝ

PAGE													
8/15/79		ж Э	0.	3,816542E-02 357,4833	3.191503E-02 355.9237	3.5(.9917E-03 211.1527	4,0025546-02 180,6534	5.617398E-02 179.2279	3.8810126-02 179.7689	2.761918E-03	4.689026E-02 3.0751	373908E-02 3.5974	980061E-02 3.5645
NASTRAN			0.0	9.8 357	യ ല പ	3.5	0.4	5.6	3.8 17.	2	9.4 3	٠. دي.	7.9
3, 1980	ო	R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*AADNAD	T C R ND. SE)	α. 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0
	NV(COMPLEX) 1 G E N V E C T G (MAUNITUDE/PHASE)	٠ ٢			0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
<i>(</i>)	DAMPING, 317 REAL), INVICOMPLEX) 437E+00, 1.931550E+02 C 0 M P L E X E I G E N V (MAUNITUDE)	5.	0.0	2.312495E-01 357.7028	6.1454478-01 357.2111	7,7245896-01 350.1969	5.4703878-01 354.3041	5.4.99553E-02 25-4.8754	4,7128746-01 188,7050	6.0-38.02.00.00.00.00.00.00.00.00.00.00.00.00.	4.073017E-01 186.3473	2.1.23.4E+01 5ch.6010	9. 1. 2.2. E-01 2. 3.3.48
- DEMO, PROS. 16 ALUE ANALYSIS	VISCOUS DAMPING. = -4.742437E+00, C C	1.1	0.0	0.0	0.0	0.0		0.0 0.0	0.0	0 0 0	0.0	0000	0.0
25 1 1 2 2 X	SEAM WITH	TYPE	U	Œ	(3	Ø	(3	U	U	(1	U	U	O
NASTRAN COURSE DEMO. MODAL COMPLEX EIGENVALUE ANA	CANTILEVER BEAM WITH VISCOUS COMPLEX EIGENVALUE = -4.742	POINT ID.	-	m	ហ	۲	ത	-	<u>.</u>	15	1.7	19	5

Ξ

MANAMA WATAYA WATAYAYA WATAYAYAYA WATAYAYA WATAYAYAYA WATAYAYA WATAYAY WATAYAY WATAYAY WATAYAY WATAYAY WATAYAY WATAYAY WATAYAYA WATAYAY RIGID FORWAY SERIES LEVEL 17.5.1 CDC GC00 SERIES 6400 / 6500 Moderation N Management of the William MARCANTAL AND THE STATE OF THE Madaland Madaland MINIME AND THE CONTRACT OF THE CONTRA ACTION OF THE PROPERTY OF THE WOLD COMMUNICATION OF THE COMM

SYSTEM GENERATION DATE

Manage Services of the Services

351

E C H O

0 R C

CONTROC

EXECUTIVE

NASTRAN

PAGE

ID NASTRAN, DETO APP DISP SOL 11,0 TIME 10 CEND

PAGE

CANTILEVER BENM ALTH SINUSDIDAL LOAD - - - INJERSE POWER METHOD

CASE CONTROL DECK ECHO

CASE CONTROL DECK ECHO

TITLE:NASTRAN COURSE — — DEMO. PROB. 11

SUBSTITLE=MODAL FREQUENCY RESPONSE ANALYSIS

LABEL=CANTILEVER BEAM WITH SINUSOIDAL LOAD — — INVERSE POWER METHOD

SCE 11

SCE 11

SCE 12

FILLOSCAPI

B CREGO=ALL

SET 13 = 1.3.5.7.9.11.13.15.17.19.21

DISPIPARSE)=13

12 VELOCITY (PHASE) = 13

BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-DRDER DECK.

CANTILEVE

AN 3/15/79			. 10 .																		+E I GR 41																				+3 / E E L	+P31
1979 NASTRAN		a	. 6	•																	13																			٠	•	*
DECEMBER 27.		A E C H		0.0																	0		345	ה ה ה																		. 498-2
DEC	0	L K D A T	9	0.0																	30 4																			61000	7 7 7 7 7	3 7.490-3 1
	POWER METHOD	E D B U	4 	c	(m ·	មេជ	o o	7	ထပ	⊅ -		12	۳ .	 1 u	. t	(-	18	ကာ d •- (2 6	3.5	300.																			٣		380 7.490-
	IN, ERSE P	SORT	: m	-	. 61	গ ব	ហេ	9	~	n o	01	•	2.5	ກ 7	12	16	17		200	6		,,		0.0	5.	, 10,	20.	25.	. 30 . m	40.	45.	50.		 ນີ້ ນີ້	7.00	75.		. ດ ດ ດ ນ ປ		100.)	. 30680
Ę,	040.			, ,	0.1	0 **	. 10	10		nσ	0	y	0.0	n 4	ı.	9	۲ (ထတ	20		41 INV	33 *** 7									10	- !	01 (0	ਹਿਬ		16	t - 0	e T	. 0	- ℃	TCDES	1 32
- DEMO. PROB. ONSE ANALYSIS	SINUSOIDAL L			0340A	000 888 888 888 888																					GRID 3												מים מים		02 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
NASTRAN COURSE MODAL FREQUENCY RESPONS	CANTILEVER BEAM WITH		1 TOO	_ I - ~ ~	. . .	1 W	10	ţ.	0 00	100	1	123	1 1 m <		1000	17-	1 00 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21-	22-	23-	4 C C 1 C C 1 C C C C C C C C C C C C C	26-	27-	28-	- 62 - 02 - 02	31-	32.	با با در در ۱ ا	ა დ • ლ	35-	1 // (M	ا الله الله الله الله الله الله الله ال) 4) ()	। प	124	4 4 1 1 4 4	4 11 iù	46-	4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	104	-08

-	
PROB.	YSIS
DENO.	18 27 B
DEMO, PROB	KE SPONE
NASTRAN COURSE	MODAL FREQUENCY

DECEMBER 27, 1979 NASTRAN 8/15/79 PAGE

4

CANTILEVER BEAM WITH SINUSOIDAL LOAD - - - INVERSE POWER WETHOD

		6	+P31A				+134		
SORTED BULK DATA ECHO	,	ē 7 ē	0.3125 0.					1. ENDT	
ر ۲ ۲		:			34			-	
R T E D B		4 :	-0.3125 0.					100.	
s 0		ლ :		0.75	62	126		-	
			0.312	0.75	61	=	34	0	
		-	+ 231	+F31A	RLOAD2	SPC1	TABLED1	+134	ENDDATA
	0840	COUNT	ښ •	52-	53-	177	55-	56-	

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

34 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

	S AVG # O PREFACE LOOPS #	S AVG # PREFACE LOOPS #	S AVG PREFACE LOOPS #	S AVG PREFACE LOOPS =
**USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC SECOMPOSITION CF DATA BLOCK LAWA **USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA **USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA **USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA **USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA **USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC DECCAPOSITION OF DATA BLOCK LAWA **USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC DECCAPOSITION OF DATA BLOCK LAWA **USER INFORMATION DESSAGE 3023—PARAMETERS FOR SYMMETRIC DECCAPOSITION OF DATA BLOCK LAWA **IME ESTIMATE	Ψ	000	000	0900
	AMETERS FOR SYMPETRIC DECOMPOSITION OF DATA BLOCK LAWA (N = C AVG = A PC AVG = 0 SPILL GROUPS = C MAX = 5 PCHAX = 0 PC GROUPS = C	METERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAMA I N = C AVG = 0 SPILL GROUPS = C TAX = 5 PCMAX = 0 PC GROUPS =	WETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA (N = C AVG = 0 SPILL GROUPS = C MAX = 5 PCMAX = 0 PC GROUPS =	AMETERS FOR SYMMETRIC DECCHPOSITION OF DATA BLOCK LAVA (N = C AVG = 0 SPILL GROUPS = C WAX = 5 PCMAX = 0 PC GROUPS = NETHGO 1 NT,NSR PASSES = 1,EST. TIME = .1

NASTRAN COURSE --- DEMO, PROB. 11 MODAL FREQUENCY RESPONSE ANALYSIS

DECEMBER 27, 1979 NASTRAN 8/15/79

ഹ

PAGE

CANTILEVER BEAM WITH SINUSDIDAL LOAD - - - INVERSE POWER METHOD

FIGENVALUE ANALYSIS SUMMARY (INVERSE POWER METHOD)

4	-	O	4	5	φ	.24E-14	n	8	c
						•			
•	•	•							
٠	•		•						
•	•			•				•	
NUMBER OF EIGENVALUES EXTRACTED	NUMBER OF STARTING POINTS USED	NUMBER OF STARTING POINT MOVES	NUMBER OF TRIANGULAR DECOMPOSITIONS	TOTAL NUMBER OF VECTOR ITERATIONS .	REASON FOR TERRINATION	LARGEST OFF-DIAGONAL MODAL MASS TERM	%COOPE PAIR		NUMBER OF OFF-DIAGONAL MODAL MASS

9

CANTILEVER BEAM WITH SINUSDIDAL LOAD - - - INVERSE POWER METHOD

NASTRAN COURSE - - - DEWO. PROB. 11 MODAL FREQUENCY RESPONSE ANALYSIS REAL EIGENVALUES

GENERALIZED STIFFNESS	2.742299E+01 2.180981E+02 8.563220E+02 2.433031E+03
GENERALIZED MASS	5.694814E-03 5.808597E-03 5.987773E-03 6.249210E-03
CYCLIC FREQUENCY	1.104429E+01 3.083972E+01 6.025770E+01 9.930736E+01
RADIAN FREQUENCY	6.93331E+01 1.937717E+02 3.736103E+02 6.239665E+02
EIGENVALUE	4.815432E+03 3.754747E+04 1.433458E+05 3.893342E+05
EXTRACTION ORDER	ক છ থ ←
MODE NO.	-004

METHOD 3 T , NBR PASSES = 1,EST. TIME = .0

WETHOD 1 T , NBR PASSES = 1, EST. TIME = ,1

NASTRAN UGUNSE — — DEMON PROB. 11 Modal Frequency Response analysis

DECEMBER 27, 1979 NASTRAN 8/15/79

PAGE

CANTILEVER BEAM WITH SINUSOIDAL LOAD - - - INVERSE POWER METHOD

*** USER WARNING MESSAGE 2076, SDR2 DUTPUT DATA BLOCK NO. 1 IS PURGED

*** USER MARNING MESSAGE 2078, SDR2 GUTPUT DATA BLOCK NO. 3 IS PURGED

METHOD 1 NT,NBR PASSES = 1,EST. TIME = .0
NETHOD 1 NT,NBR PASSES = 1,EST. TIME = .0

*** SYSTEM WARNING MESSAGE 3022

:S REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK DEFC1

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. DATA BLOCK DESCT œ

4 6 <i>t</i>					-05	-05	-05	40-	-04	E-05	-04	-04	-04	40-
8/15/79			83	0.	2.362413E-05 0.0	5.104215E-05 0.0	8.255996E-05 0.0	1.138303E-04 0.0	1.183373E-04 0.0	4.453895E 0.0	1.373059E-04 180.0000	3.729818E-04 180.0000	5.417783E-04 180.0000	5.842197E-04 180.0000
NASTRAN				0.0	2.3	7.0	æ 0.2	-0	-	4.0	1.3	3.7	5.4	180
BER 27, 1979		V E C → O №	R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
DECEMBER	CO	⊢ ≱ ພິພ	18	0. 0. 0	0.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o. o.	0.0
	POWER TETHOO	D I S P _ A C E M (MACNITUDE, PHAS	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-	1:.ERSE	12 d	12	0.0	1.148671E-04 0.0	4.849763E-04 0.0	1.149529E-03 0.0	2.137832E-03 0.0	3.310847E-03 0.0	4.242980E-03	3.8H3261E-03 0.0	1.309529E-03 0.0	3.588327E-03 160.0000	9.084185E-03 180.0000
- DEWO. PROB. 1 CHSE ANALYSIS	SINUSCIDAL LOAD	00+400	11	0.0	1.045311E-19 180.0000	2.064882E-19 180.0000	3.033607E-19 180.0000	3.927633E-19 180.0000	4.724947E-19 180.0000	5.405915E-19 180.0000	5.953771E-19 180.0060	6.355026E-19 180.0000	6.5998005-19 180.0000	6.682066E-19 180.0000
n n	BEAM WITH S	•	TYPE	Ø	_U	IJ	U	Ø	U	ø	U	ø	O	IJ
NASTRAN COURSE MODAL FREQUENCY	CANTILEVER		POINT ID.	-	ю	ဟ	7	თ	Ξ	13	15	17	91	21

Ø

NASTRAN COURSE - - - DEMO. PROB. 11 Modal Frequency Response analysis

CANTILEVER BEAM WITH SINUSCIDAL LOAD - - - INVERSE POWER METHOD FREQUENCY = 7.0000006+00

	R3	0.0	7.014669E-05 0.0	1.175837E-04 0.0	1,441499E-04 0.0	1.490565E-04 0.0	1,117749E-04 0.0	1,088970 E-05 180.0000	2.388203E-04 160.0000	5.085847E-04 180.0000	6.945060E-04 180.0000	7.403389E-04 180.0000
VECTOR	R2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	o. o. o	0.0 0.0	0.0	0.0
C E M E N T	£	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
D I S P L A C E M (MAGNITUDE/PHASE	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
о т п х	12	0.0	3.703355E-04 0.0	1.327339E-03 0.0	2.052497E-03 0.0	4.140781E-03 0.0	5.4~3926E-03	6.0a1032E-03	4.920035E-03 C.0	1.167506E-03 0.0	4.986517E-03 183.0300	1,223423E-02 180,0000
U	1.1	0.0	1.049675E-19 180.0000	2.073502E-19 180.0000	3.046272E-19 180.0000	3.944031 E- 19 180.0000	4.744673E-19 180.0000	5.428484E-19 180.0000	5.978627E-19 180.0000	6.381557E-19 186.0000	6.627353E-19 180.0000	6.709963E-19 180.0000
	TYPE	_U	g	()	ပ	v	O	J	U	g	o	ŋ
	POINT ID.	9-	n	ហ	7	6	-	13	5	1.7	61	2.

NASTRAN COURSE - - - DEMO. PROB. 11 Modal Prequency Response analysis

9

PAGE

DECEMBER 27, 1979 NASTRAN 8,15/79

•
FREQUENCY = 3.0000000E+00

FREQUENCY	. coo	J00E+00	COMPLEX	(V E L D C I T	I T Y V E C HASE,	α Ο -	
POINT 10.	TYPE	Ē	12	13	8	R2	n x
-	U	0.0	0.0	0.0	0.0 0.0	0.0	o. o. o
ю	Ø	1.970364E-18 270.9000	2.105194E-03 90.0000	0.0	o.o o	0.0	4, 453043E-04 90,0000
ហ	U	3.832210E-18 270.0000	9.141588E-03 90.0000	0.00	0.0	0.0	9.+ 212205-04 90.0000
7	σ	5.718215E-18 270.0000	2.15 #812E-02 90.0000	0.0	0.0	0.0	1,5%62*4E-03
თ	ø	7.403415E-18 270.0000	4.0197188-02 90.0000	0.0	0.0	0.0	2. 14 4 5 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5
-	Ø	3.906315E-18 270.0000	6.2 /7347E-02 90.0000	0.0	0.0	0.0	2.2.0405E-03 90.0000
13	ڻ ن	1.018921E-17 275.0000	7.94TB29E-02	0.0	o. o.	0.0	9.3453455-04 90.0000
t.	O	1.122289E-17 270.0000	7.2.2070E-02	0.0	o. o. o	0.0	2.588185E-03 270.0000
17	O	1.197694E-17 270.0000	2.4/9494E-02	0.0	0.0	0.0	7.030542E-03 270.0000
91	ø	1.244033E-17 270.0000	8.340140E-02	o.o o.o	0.0	0.0	1.62122dE-02 270.0000
21	()	1.259540E-17 270.0000	1.7.2329E-01 270.6000	0.0	0.00	0.0	1.101223E-62 270.0000

NASTRAN COURT - - - CINC. PROS. 11 MODAL REQUENCY RESPONSE ANALYSIS

Ξ

NASTRAN 8/15/79

DECEMBER 27, 1979

CAT TOLEVER BEET BOTO JOSEPH CONDICTOR OF THE TAVERSON POWER CRANDO PREFETOR TOLEVER DIVER CRANDO

3.085212E-03 90.0000 5.171599E-03 6.340044E-03 90.0000 6.555847E-03 90.0000 4.916117E-03 90.0000 4.7895405-04 1.050386E-02 270.0000 2.2368508-02 270.0000 3.0545.7E-02 270.0000 3.256444E-02 270.0000 0.0 82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 V E C T C R ä 0.0 0.0 0.0 0.0 0.0 o. o. o 0.0 0.0 0. 0. 0 .. 0.0 WASNITUDE/PHASE) o.o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ж ы л т 50-3.0.0. 2.163944E-01 5.734275E-02 1.1.502 4E-01 1.821211E-01 80.0000 2.417674E-01 90.0000 2.5783748-01 93.0100 5.134954E-02 90.0000 2.15-389E-01 270.0000 5.383895E-01 270.0000 0 8. - 3. 2.086816E-17 270.0000 9.11-740E-18 270.0000 1.35 45:05-17 270.0000 :.734675E-17 270.0000 2.387572E-17 270.0000 2.629538E-17 270.0000 2.805756E-17 270.0000 2.914662E-17 270.0600 2.951195E-17 270.0000 000000 0 0 ¢ HO. ٠, 17 O O O O O O () G O POINT 10. ភ σ Ę, Š 17 9 2

PAGE
8/15/79
NASTRAN
27, 1979
DECEMBER
- DETO, PROS. 11 DNSE ANALYSIS
NASTRAN COLRUE MODAL FREQUENCY RESPO
FESPONSE ANALYSIS

7

CANTILETER BEAT ALTH SINLSDIDAL LOAD - T - INLERSE POWER DETHOD FREQUENCY = 3.0000006+C0

83 0.0 R2 0.0 COWPLEX LOAD VECTOR (MAGNITUDE/PHASE) ã 0.0 73 1.000000E+00 0.0 11 0.0 3 d J. i ď PCINT ID. 9

A Commence of the state of the

<u>ٿ</u>				
PAGE				
8/15/79			e n	0
NASTRAN				0.0
DECEMBER 27, 1979 NASTRAN 8/15/79			æ	0.0
DECEMBER		VECTOR	ά	0.0
. 11 5	CANTILEVER BEAM WITH SINUSDIDAL LOAD INLERSE POWER WETHOD FREQUENCY = 7.0000000E+00	C C M P L E A L D A D W E C T D A (MACALTUDE PHASE)	.2 13	1.00000€+00 0.0 0.0
NASTRAN COURNG DENO, PROG. 11 MODAL PREQUENCY RESPONSE ANALYSIS	CANTILEVER BEAM WITH SINUSDIDAL . FREQUENCY = 7.000000E+00		POINT ID. TYPE 71	t6 G 0,0
8,547 4,004	54471 FRED		Z10d	

MYCOM NICTORM DING CONTROL DING RIGID FORMAT SERIES P 8/15/79 LEVEL 17.5.1 CDC 6000 SERIES 6400 / 6500 SYSTEM GENERATION DAIR MINISTRACIA MM WINM WOWN MANA MAN MANA CONTRACTOR MANA MANAGEMENT CONTRACTOR MANAGEMENT CONTRACTOR MANAGEMENT CONTRACTOR MANA MANA MANA MANAGEMENT CONTRACTOR Managaran Minagaran AND THE RESIDENCE OF THE PROPERTY OF THE PROPE M INTER MINIS William Charles and the Control of t Manage of the control

ЕСНО

DECK

CONTROL

EXECUTIVE

NASTRAN

PAGE

367

ID NASTRAN, DEND APP DISP SOL 11,0 TIME 10 CEND

a

CANTILEVER BEAM WITH SINUSOIDAL LOAD + - - GIVENS METHOD

CARD
COUNT

TITLE=LASTRAY, CCURSE - - - DEMO, PROB. 11A

SUBTITLE=MORAL FREQUENCY RESPONSE ANALYSIS

UABEL=CANTILEVER BEAM WITH SINUSOIDAL LOAD - - GIVENS METHOD

SEC 11

SEC 11

FREQUENCY=33

SET 13= 1,3,5,7,9,11,13,15,17,19,21

OLSACHASE)=13

SET 13= 1,3,5,7,9,11,13,15,17,19,21

VELOCITY (PHASE) = 13

BESIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

ო

PAGE

NASTRAN 8/15/79

CANTILEVER BEAM WITH SINUSDIDAL LOAD - - - GIVENS METHOD

	. 10	+STEEL
	: [₩]	S
	on m	
	:=	
E C H O	9 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
4 ⊢		
∢ Ω	က် က	7.324-4
٦ .x	:0	
n	. 00400000	. . 2
O R +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 17 1-
S	. I &	36, 20, 80,
	0	CDES
	α	32 6 130
	$\begin{array}{c} \cdot \omega = 0.000000000000000000000000000000000$	COTITE PARAM
C a c	00 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 70 8 20 0 1 1 1

NASTRAN COURSE - - DEVO. PROG. 114 MODAL FREQUENCY RESPONSE ANALYSIS

8/15/79 NASTRAN 27, 1979 DECEMBER

> GIVENS METHOD CANTILEVER BEAM WITH SINUSUIDAL LOAD -

	•	
	+ P31 + P31 4 + P31	+134
	თ	
	: 0	
	: •	
0 (20	
I		
S	. 0	
ш	. co	
SORTED BULK DATA ECHO	.36680 7.490-37.496-31.498-2 -0.3125 0. 0. 0.3125 0. 0. 34	
-	0	
∢	m	ENDT
Δ (β) (N.
	٠	
× ;	34	
لب	m N	-
ം വ	06	
	4	
. :	. 0	
m 4	8 5	3
-	၌က ခွဲ ÷	-
œ.	. 1 0 -	
ο.		-
ഗ്ര		
	32 0. 0.75 62 126	
	2000=	
		o.
(.4	5 5	
	0.3125 0.75 61 11	
	, O O O ← W	
_	22 0	7
Ω *1	+ P314 + P314 RLCAD2 SPC1 TABLED1	+734 ENDDATA
:: • 0	A CHE P P C	72
	- ···	,
- h- 1	1111	
0840 00007	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ົດ
38		

..NO ERRGRS FOUND - EXECUTE NASTRAN PROGRAM..

*** SYSTEM INFORWATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

34 STARTING WITH ID

20) 0 S AVG 0 PREFACE LODPS LOCK KOO

SPILL GROUPS = PC GROUPS = ...
TIME = ... ***USER INFORMATION TESSAGE 3023--PARAMETERS FOR STYTETRIC DECOMPOSITION OF DATA BLOCK KOD TIME ESTIMATE: 1 C ALC = 1 PC AVG = 0 SPILL ADDITIONAL CORE: -26503 C TAX = 2 PCWAX = 0 PC 1,EST. TIME = C AV. = 1 PC AVG = C TAX = 2 PCVAX = 1.68 PVAX = PVA

248 S AVG 40) 0 0 0 PREFACE L *** USER INFORMATION MESSAGE 2016, GIVENS TITE ESTIMATE IS
6 SECONOS.
PROBLEM SIZE IS
40. SPILL WILL OCCUR FOR THIS CORE AT A PROBLEM SIZE OF "Z ***USER INFORMATION MESSAGE 3023--PARAWETERS FOR SYMMETRIC DECC.,POSITION OF DATA BLOCK MAA

TIME ESTINATE:

C AVG = 1 PC AVG = 0 SPILL

ST 100 2 NT, NBP PASSES = 1.EST. TIME = 101 NC, NBP PASSES = 1.EST. TIME = NETHOD 1 NC, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NETHOD 3 T, NBP PASSES = 1.EST. TIME = NBP PASSES = 1.EST. TIME

NASTRAN CCURSE – – DEMO. PROB. 11A MODAL FREQUENCY RESPONSE ANALYSIS

DECEMBER 27, 1979 NASTRAN 8/15/79

ល

PAGE

CANTILEVER BEAM WITH SINUSOIDAL LOAD - - - GIVENS METHOD

EIGENVALUE ANALYSIS SUEMARY (GIVENS METHOD)

4	ω	0	0	•-	1.53E-14	ထ	7	O
٠								
NUMBER OF EISENVALUES EXTRACTED	NUMBER OF EIGENVECTORS COMPUTED	NUMBER OF EIGENVALUE CONVERSENCE FAILURES .	NUMBER OF EIGENVECTOR CONVERGENCE FAILURES.	REASON FOR TERMINATION	LARGEST OFF-DIAGONAL WODAL NISS TERM,	MODE PAIR		NUMBER OF OFFEDIADONAL WODAL WASS

PAGE

CANTILE JER BEAM WITH SINUSCICAL

NASTRAN COURSE - - - DEMO. PROB. 11A MODAL FREQUENCY RESPONSE ANALYSIU

)		
)		
•		
į		
٠		
٠		
•		
٠.		
•		
_		
3		
3		
C		
ŧ		
1		
ż		
r		
ì		
i		
)		
ί		
,		
í		
•		
7		
-		
٠		
•		
-		
Į		
)		
)		
Î		
•		
J		
j		
,		
•		

S

IGENVALUE

ш

٠٢ ш С

MODE NO.

GENFRALIZED STIFFNESS	.941961E .742445E .180983E .583633E	.713022E+0 .193199E+0 .311128E+0 .0 .0	000000000000000000000000000000000000000	0000000000	
GENERALIZED TASS		.6'8358E-0 .135542E-0 .857788E-0 .0 .0	000000000000000000000000000000000000000		TIME = .2 TIME = .1
CYCLIC FREQUENCY	. 767519E+0 . 104429E+7 . 083972E+0 . 025770E+0	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	8.42.20.20.20.20.20.20.20.20.20.20.20.20.20	8.745947.1403 9.4613571.403 1.0118.405.404 1.1241656.404 1.12088106.404 1.200736.404 1.200736.404 1.2636.006.404 1.2735156.404 1.28745.404 1.28745.404	A PASSES = 1, EST, .
70.27 (0.28	1,1100/56 - 01 6.3,1700/56 - 01 1,377176 - 02 3,78310 - 6+02 6,23 - 01,15 + 02	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5.44.74.5.404 6.34.74.5.404 6.34.74.5.404 6.74.205.404 7.35.107.5.404 7.35.107.5.404 7.595.105.6.404 7.99.1056.404 7.99.1056.404 8.04.14.76.404 8.04.14.76.404 8.04.14.76.404 8.08.14.76.404 8.08.14.76.404 8.08.14.76.404 17.14.76.404 8.08.14.76.404 8.08.17.76.404 17.76.76.404 8.08.17.76.404	SETHED 1 NT, NBF WETHED 1 T, NBF
EISENVALUE	0.4 # # # # # # # # # # # # # # # # # # #	0.000 0.000	22		
EXTRACTION ORDER	CONTRACTOR OF THE PROPERTY OF	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6444444 6494446 6494446	- ୯୦୯୮୧୯୩୫୯୩+	

DECEMBER 27, 1979 NASTRAN 8/15/79

7

PAGE

NASTRAN COURSE - - - DEMO, PROB. 11A MODAL FREQUENCY PESPONSE ANALYSIS CANTILEVER BEAM WITH SINUSOIDAL LOAD - - - GIVENS METHOD

*** USER WARNING MESSAGE 2076, SDR2 OUTPUT DATA BLOCK NO. 1 IS PURGED

*** USER WARNING MESSAGE 2078, SOR2 OUTPUT DATA BLOCK NO. 3 IS PURGED

METHOD 1 NT,NBR PASSES = 1,EST, TIME = METHOD 1 NT,NBR PASSES = 1,EST, TIME =

*** SYSTEM WARNING MESSAGE 3022

DATA BLOCK DEFCT - IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROLTE.

*** SYSTEM WARNING MESSAGE 3022

IS REQUIRED AS INPUT AND IS NOT QUIPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROLTE. DATA BLOCK DESC1 PAGE

CANTILEVER BEAM WITH SINUSGIDAL LOAD - - - GIVENS WETHOOFREQUENCY = 3.0300000E+00 ж ш л а с о о

# KEDJETOK	က် က က က	000E+00	ж ш а с О	D 1 S P L A C (MACNITUDE, P	C E M E N T	VECTOR	
POINT 10.	14 PE	1 1	5	13	æ	R2	R S
	Ø	0.0	0.0 0.0	0.0	0.0	0.0	0.0
n	Ö	0.0 0.0	8.3291798-03 180.0000	0.0	0.0	0.0	1.625441E-03 180.0000
ß	Ø	0.0	3.107907E-02 150.0000	0.0	0.0	0.0	3.000328E-03 180.0000
۲-	()	0.0	6.7555848-02 180.5850	0.0	0.0	0.0	4.1324806- 03 180.0000
თ	Ø	0.0	1.1565578-01 180.0000	0.0	0.0	0.0	5,033625E-03 180,0000
	U	0.0	1.676101E-01 180.0000	0.0	0.0	0.0	5.748013E-03
£	Ø	0.0	2.2793956-01 180.0000	0.0	0.0	0.0	6.307496E-03 160.0000
15	O	0.0	2.9057695-01 180.0000	0.0	0.0	0.0	6.808653E-03 180.0000
1.7	IJ	0.0	3.839079E-01 180.0000	0.0	0.0	0.0	7.250828E-03
0)	IJ	0.0	4.377821E-01 180.0000	0.0	0.0	0.0	7.460974E-03 180.0000
21	υ	0.0	5.125853E-01 180.0000	0.0	0.0	0.0	7.485426E-03 180.0000

PAGE 8.181114E-04 180.0000 1.083911E-03 180.0000 1.574698E-03 1.592649E-03 1.421231E-04 2.718849£-04 180.0000 3.9341155-04 5.094536E-04 180.0000 6,4832855-04 180.0000 1.407358E-03 180.0000 NASTRAN 8/15/79 180,0000 0.0 DECEMBER 27, 1979 8 0.0 0.0 0.0 0.0 0.0 °.°° 0.0 0.0 0.0 œ VECTO o. o. D I S P L A C E M E N T (MAGNITUDE/PHASE) 0.0 0.0 0.0 0.0 0.0 o. o. 0.0 0. 0. 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CANTILEZER BERM ALTH SINCSCIDAL COAD + - - GIVENS METHO FREQUENCY = 7.00000008+00 7.305132E-04 180.0000 2.802981E-03 180.0000 6.142323E-03 180.0000 1.05.1594E-02 180.0000 1.541437E-02 160.6000 2.370404E-02 180.0030 3.310563E-02 181.0000 4.540476E-02 6.00.9944E-02 7.558663E-02 180.0000 CHPLEX 0.0 0.0 NASTRAN COURSE - - - DEMO, PROG. 11A Modal Fiequency Response analysis 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o. o. 3d X I O O Ø O O O O O O O O POINT ID. 3 9 5 <u>-</u> 2

σ

NASTAN COURTE - - - DEVO. PROB. 118 NOCAL FREUCRAY RESOCCISE ANALYSIS

IS METHOD	
AD GIVEN	
CANTILEVER BEAW AITH SINGSOIDAL LOAD GIVENS METHOU	:00E+00
VER BEAN ALTH	FREQUENCY = 3.0000000E+00
CANTLE	FREQUE

740,1944 COURTS MOCAL FREGUENCY	8 (8 - 1 - 1 8 (4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	DEYO. PROB. RESHOUSE ANALYSIS	-1 *- ←		30 N	a 27, 1979	NASTRAN 6, 15, 79	4 0 3
CANTILEVER	9EAW *174	AITH SINDSOIDAL LC	LCAD GIVENS 3	МЕТНОО				
	า	000	C O :: P L E x	X V E L D C I T (MAUNITUDE, PHASE	C I T Y V E C	œ □ ►		
01 12100	ui d ≻	11	2 2	© ►	æ	R2	R3	
-	()	0.0	0. 0. 0.	0.0	0.0	o. o. o	°. °. °	
m	ø	0 0 0 0	1.57.55.8E-01	0.0	0.0 0.0	o. o	3.0658845- 02 270.0000	
u)	O	0 0 0 0	5.471385£-61 270.0000	0.0	0.0	0.0	5.655434E-02 270.0000	
7	O	0.0	1.27329ME+00 270.0000	0.0	0.0	0.0	7.789541 E-02 270.0000	
თ	(3	0.0 0.0	2.1004798+00 270.0000	o. o. o	0.0 0.0	0.0	9,488160E-02 270.0000	
1	(7	0.0	3,15,43758+00	0.0 0.0	0.0	0.0	1.083475E-01 270.0000	
13	U	0.0	4.2 7500E+00 270.0000	0.0	0.0	0.0	1.188325E-01 270.0000	
ក	13	0.0	5.003747E+00 270.0000	0. 0. 0. 0	0.0 0.0	0.0 0.0	1,283401E-01 270.0000	
17	c	0.0	6.801194E+00 270.0000	0.0	0.0	0.0	1,366749E-01 270.0000	
19	(1)	0.0	8.252111E+00 271.0000	0.0	0.0	0.0	1.406360E-01 270.0000	
2.	U	0.0	9.5523055+00 270.0000	0.0	0.0	0.0	1.410969E-01 270.0000	

=

PAGE

6.250901E-03 270.0000 1.195812E-02 270.0000 1.730314E-02 270.0000 2.240664E-02 270.0000 2.851498E-02 270.0000 3.5982425-02 270.0000 4.767288E-02 2-0.0000 7.004835E-02 270.0000 6.1.9884E-62 270.0000 6.925846E-02 270.0000 NASTRAN 8/15/79 0.0 82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 œ VECTO ά 0. 0. 0. 0. 0. 0 0.0 0.0 0.0 0.0 0 ०. ०. ० 0. 0. 0 0.0 °.°° o. o V E L O C I T Y (MAGNITUDE/PHASE) 0.0 0.00 o. o. o 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CANTILEDER BEAM ALTA NINGSCIDAL LOAD - - - CIVENG METHOD FREQUENCY = 7.0000000=+00 ы а ы 3,212,655E-02 270,0500 272.0000 272.0000 2.025.03E+00 270.0000 7.2194156-01 270.0000 1.4:6052E+00 270.0000 2.6.070'E+00 270.0000 3.37 8450E+00 270.0000 1.232818E-01 270.0000 2.7015346-61 270.0000 4.4.27716-01 270.0000 0 0 0 O NASTRAN COURTY - - - OSYOT PROB. 11A MODAL FREQUENTY RESPONSE ATALYSIS 0.0 0 0.0 0 0.0 0.0 °.0 0.0 0.0 °. 0.0 0 0 0 0.0 TYPE O ₹3 \circ (3 O O O O n O O POINT ID. Ψ, m ŧΩ t~ m 5 ŗ ٠ O 2

2

PAGE

DECEMBER 27, 1979 NASTRAN 8/15/79 NACIPAN UDURAF T = DEVO. PROB. 11A VODAL FREQUENCY RESPONSE ANALYSIS

CANTIESER BEAM AITH SINUSGIDAL LOAD - - - CIVENS TETHOU FREQUENCY = 3.0000000E+00

3 COMPLEX LOAD VECTOR (MAYMITUDE, PHASE) ά 0.0 ۳ ۲ 0 0 0 0 1.000000E+00 12 -- 0.0 0.0 ר. פר ה () POINT ID. 0

0.0

0.0

æ

NASTRAN COURSE MODAL FREQUENCY	SNCY RESPON	NASTRAN COURSE DEMO. PROB. 11A MODAL FREQUENCY RESPONSE ANALYSIS	11A		DECEMBER	27.	1979	DECEMBER 27, 1979 NASTRAN 8/15/79	8/15/79
CANTILEVER E	SEAM WITH	SINUSOIDAL L	CANTILEVER BEAM WITH SINUSCIDAL LOAD GIVENS METHOD	1ETHOD					
FREQUENCY	7.000	300E+00	- A & O O	. E X L O A D V (MAGNITUDE/PHASE)	COMPLEX LOAD VECTOR (MAGNITUDE/PHASE)				
POINT 10.	TYPE	11	12	13	<u>a</u>		22		83
16	Ø	0.0	1.000000E+00 0.0 0.0 0.0	0.0	0.0	0.0	0.0	0 0 0	0.0

5

PAGE

381

PROBLEMENT CONTROL OF CONTROL OF

PRODUCTION OF THE PROPERTY OF

Printed to the control of the contro ・ というないできない。これは、これでは、これできないできない。これできないできない。これできないできない。

WYDANY WYDDYN CHANDARDA MATHER DE CHONDER DE

RIGID FORMAT SERIES

CDC 6000 SERIES 6400 / 6500

LEVEL 17.5.1

MANAGEMENT AND THE TOTAL OF THE

MANATORIO CONTRA MANATORIO CONTRACADORIO CONTRACA ACONTRACADORIO CONTRACADORIO CONTRAC

NIMMIMIM MERCENTAN

Mentagraphic

MMM MEDM MULTI--MIN M /// NEUTALATAN BESTATISTICA MIN OF PRINT

MILTANIANT ETERRITARY CONT NESTER STATES With Min-- Committee NAMED AND THE PARTY OF THE PART NINTRACTICA // V. . . /// //estable MINISTERNIA N W. ...

MMMM MM MM MM

MISSMINE MWWW

Σ MMMMMM MMMMM MMMM

MMIME MWWW.

Ž

MMM

≥

M M M M

MMMMMM NW.WW MVNN MENMAMMAN MAINT MEM NM MMM MMMM

> MMM MANMAN

M MMW Σ

INTERNATION IN STATISTICS NITT Mary Charles

MI--- Proprietation

MINIMARIN DESIGNATION OF THE MULTIPLE TO THE PROPERTY OF TH M GRADIA だけれる--- かたここと NUMBER --- PARTIN W // //// MEAN MINISTERNATION

1.1.1. 2

THE PARTY OF THE P

MCTATATATATA

Martin Carred MANAGE CONTRACTOR Marra Caraca

Midle Co. of the lines

MANAGEMENT OF THE TRANSPORT OF THE TRANS MANAGEMENT CONTROL OF MARAN NINI MISSIN M----MEANGAM Ž MUNICIPAL PROPERTY. //// ///..//ww

MERCEN PROPERTY OF THE PROPERT WANTER THE TERM OF THE PROPERTY OF THE PROPERT Management of the Control of the Con Medical Control of the control of th

PROGRAMMENT CONTRACTOR MANAGER CALLES CONTRACTOR - MANAGER CONTRACTOR CONTRACT MMMMMediater - Entre Service de la constant de la c CONTRACTOR - - - CONTRACTOR CONTR

MINIMATERIAL - METERIAL - METERIAL SERVICE SERVICE SERVICES SERVICES - MASSIMATERIAL METERIAL CHEROST CONTRACTOR AND INCIDENTIAL MNAMMA - TARGET TELEGRET THE FOLL THE TELEGRET THE TELEGRET THE TELEGRET THE TARGET THE Minimum and the second of the STREET TO THE PROPERTY OF THE

8/15/79

SYSTEM GENERATION DATE

When the second control of the second contro Minimal of the selection Manager of the second of the s

MENNEY MANAGEMENT OF THE PROPERTY OF THE PROPE MANMAMAININGARATETANINGM

PAGE

JANUARY

E C H O

D E C

CONTROL

EXECUTIVE

NASTRAN

ID NASTRAN, DEMO APP DISP SOL 12.0 TIME 10 CEND

NASTRAN 8/15/79 2, 1980 JANUARY

N

PAGE

NASTRAN COURSE - - - DEMO. PROB. 12 MODAL TRANSIENT ANALYSIS

INVERSE POWER METHOD

O I U щ O III C ر. CONTRO CASE

CARD

TITLE=NASTRAN COURSE --- DEMO. PROB. 12
SUBTITLE=MODAL TRANSIENT ANALYSIS
LABEL=INVERSE POWER METHOD
SPC= 11
DLOAD=92
ISTEP=71
METHOD=41
SET 25 = 7,13,21
BISP=25
BEGIN BULK

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SORTED, XSORT WILL RE-ORDER DECK.

ო

NASTRAN COURSE - - - DEMO. PROB. 12 MODAL TRANSIENT ANALYSIS

METHOD
POWER
INVERSE

		0																							+E1GR41																							+STEEL		Ξ	¥ .
		:																							+E.	i																						+51		+P31	4
		თ																							ņ	,																									
		:	-																						-																										ö
O			٥.																								345																								
m C)		:	0																						0		m																								0
∢ ⊢		7	÷																						12																									1.498-2	0.312
•		9																																														7.324-4		.490-3	
×			0.0																						30	ı																						7.3		3 7.4	ö
⊃ 80		ល																						0																										.490-	
۵		:		N	က	4	ഗ	9		ω	თ	10	Ξ	5	13	14	15	16	17	18	19	20	21	8	300																							۳.		7	0
— ₩		4																							_			_																						30630	312
ر م		:		-	n	ო	4 (ហ	9	7	ထ	თ	5	=	12	13	4	5	16	17	18	19	20	8	0.0			0.0	ъ	0	15	20.	25.	99	32	3 i	2 t		ה ע	טיני	,	, r)))		00	Q IC	100			ĕ.	o P
s		ო																							_																							9+			
		:	T																					16	NI																							30.	25	32	
		ч																								×																							LMODES		3125
		:				ო -							-	-	•	13	_	15	-	-	-	-							• •	• •	•		_	2	_	σ,	- ,								1					ä	0
		-	SAROR	CBAR	CBAR	2 H	200	BAR	BAR	BAR	SAR	SBAR	SBAR	SBAR	BAR	BAR	BAR	SBAR	SBAR	SAR	BAR	BAR	BAR	DAREA	EIGR	FIGR41	SADSET	SRID	0125	מוני מוני מוני	2 4	2 2 2		27.0	2 2	2 6		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	RID	RID	GRID	AAT 1	PARAM	BAR	- b3-1						
		•		~	J			_		<u> </u>	J	J	J	J	J	J	J	J	J	J	J	J	5	u	ш	•	U	J	J	J	J	U	J	·	۰ ت	، ب	، ر	<i>,</i> (ی د	ن ر	, (, (, (ى ر	, _U	· •	. ₍	2	a.	•	+
	CARD	COUNT	_	5-		- 4	, ,	9	-2	6	6	10-		12-	13-	14-	15-	16-	17-	18-	19-	20-	21-	22-	23-	24~	25-	-92	27-	28-	-62	30-	31-	32-	33-	1 1 1 1	1 0 0 0	 	י פר מיסי	- 66	0.0) t) ? ?	7 7 7 1	44-	45-	46-	47-	48-	49-	-05

NASTRAN COURSE - - - DEMO. PROB. 12 MODAL TRANSIENT ANALYSIS

JANUARY 2, 1980 NASTRAN 8/15/79

PAGE

INVERSE POWER METHOD

		•								
		5			37	* <u>+</u> +				
		6			+	+				
		თ								
		:				0.015 1.0				
O		7 8				.015				
Ü		:				0				
ш		7								
¥ -		: 9				÷				
SORTED BULK DATA ECHO						.005	TON	37		
7	1	:								
19		3 4 5								
_		:				0	0		4	
u		4							25	
-							0		50	
œ		:	0	-		0	-		٠.	
S		ო	75	9		٥.			0	
		:	0	12		ö	。	62	18	
		Ŋ	75			7	020	~		
		:	o	-	ю —	ì	0	6	7	_
		-	31A	5	3LED!	+137		JAD1	FP	DAT
		•	+ H	SP(TAE	+	+	7,1	TSI	N H
	ARD	COUNT	51-	52-	53-	54-	55-	-99	57-	
	ن	์ ว								

NO ERRORS FOUND - EXECUTE NASTRAM PROGRAM

34 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

ION MESSAGE 30: TIME ESTIMATE= DITIONAL CORE=	***USER INFORMATION MESSAGE 3023PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAMA TIME ESTIMATE: 1 C AVG = 4 PC AVG = 0 SPILL ADDITIONAL CORE: -23722 C MAX = 5 PCMAX = 0 PC	FOR SYMMETE C AVG = C MAX =	RIC DECOMP 5 5	OSITION OF DA PC AVG = PCMAX =	TA BL	OCK LAMA SPILL PC	<pre>< LAMA (N ≠ SPILL GROUPS = PC GROUPS =</pre>	900) S AVG PREFACE LOOPS	S AVG *
IGN MESSAGE 302 TIME ESTIMATE= DITIGNAL CORE=	***USER INFORMATION MESSAGE 3023PARAMETERS TIME ESTINATE = 1 ADDITIONAL CORE = -23722	FOR SYMMETE C AVG = C MAX =	RIC DECOMP 4 5	FOR SYMMETRIC DECOMPOSITION OF DATA C AVG = 4 PC AVG = C MAX = 5 PCMAX =		Š	(LAMA (N = SPILL GROUPS = PC GROUPS =	000) S AVG PREFACE LOOPS	S AVG .
ION WESSAGE 302 TIME ESTIMATE= DITIONAL CORE=	***USER INFORMATION MESSAGE 3023PARAMETERS 1 TIME ESTIMATE = 1 ADDITIONAL CORE = -23722	FOR SYMMETE C AVG = C MAX =	RIC DECOMP 4 5	SYMMETRIC DECOMPOSITION OF DATA AVG = 4 PC AVG = MAX = 5 PCMAX =		BLOCK LAMA 0 SPILL 0 FC	LAMA (N = SPILL GROUPS = PC GROUPS =	900) PREFACE	S AVG =
ION MESSAGE 3023 TIME ESTIMATE= DITIONAL CORE= -	***USER INFORMATION MESSAGE 3023PARAMETERS TIME ESTIMATE= 1 ADDITIONAL CORE= -23722	FOR SYMMETE C AVG = C MAX =	RIC DECOMP 4 5	FOR SYMMETRIC DECOMPOSITION OF DATA C AVG = 4 PC AVG = C MAX = 5 PCMAX =		BLOCK LAMA 0 SPILL 0 PC	SPILL GROUPS = PC GROUPS =	900) PREFACE	S AVG
ION MESSAGE 3023- TIME ESTIMATE= DITIONAL CORE= -:	***USER INFORMATION MESSAGE 3023PARAMETERS (TIME ESTIMATE= ADDITIONAL CORE= -23722	FOR SYMMETE C AVG = C MAX =	RIC DECOMP	FOR SYMMETRIC DECOMPOSITION OF DATA C AVG = 4 PC AVG = C MAX = 5 PCMAX =		ည်	SPILL GROUPS = PC GROUPS =	900) PREFACE	S AVG
3023	***USER INFORMATION MESSAGE 3023PARAMETERS TIME ESTIVATE:= 1 ADDITIONAL CORE:= -23722	FOR SYMMETE C AVG = C MAK =	RIC DECOMP 4 5	FOR SYMMETRIC DECOMPOSITION OF DATA C AVG = 4 PC AVG = C MAX = 5 PCMAX =		Ö	<pre>C LAMA (N = SPILL GROUPS = PC GROUPS =</pre>	900) PREFACE	S AVG
ICN MESSAGE 3023. TIME ESTIMATE= DITIONAL CORE= -:	ATICN MESSAGE 3023PARAMETERS I TIME ESTIMATE= 1 ADDITIONAL CORE= -23722	FOR SYMMETE C AVG = C MAX = METHOD METHOD	SYMMETRIC DECOMPOSITION (AVG = 4 PC AV AAX = 5 PCM METHOD 1 NT, NBR PASSES = METHOD 3 T, NBR PASSES =	7 0 X	DATA BLOCK 0 S 1,EST. TIME	DATA BLOCK LAMA O SPILL O PC 1, EST. TIME =	CLAMA (N = SPILL GROUPS = PC GROUPS = NE = .2	900) S AVG PREFACE LOOPS	S AVG .

NASTRAN COURSE - - - DEMO. PROB. 12 MODAL TRANSIENT ANALYSIS

JANUARY 2, 1980 NASTRAN 8/15/79

ល

PAGE

INVERSE POWER METHOD

(INVERSE POWER METHOD) SUMMARY ANALYSIS EIGENVALUE

თ	ო	0	7	86	۲	.59E-14	ဖ	ស	0
					•				
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	. •	•
•	•	•	•	•	•	•			•
NUMBER OF EIGENVALUES EXTRACTED	NUMBER OF STARTING POINTS USED	NUMBER OF STARTING POINT MOVES	NUMBER OF TRIANGULAR DECOMPOSITIONS	TOTAL NUMBER OF VECTOR ITERATIONS .	REASON FOR TERMINATION	LARGEST OFF-DIAGONAL MODAL MASS TERM			NUMBER OF OFF-DIAGONAL MODAL MASS TERMS FAILING CRITERION

PAGE

NASTRAN COURSE - - - DEMO. PROB. 12 MODAL TRANSIENT ANALYSIS

INVERSE POWER METHOD

MODE NO.

	GENERALIZED STIFFNESS	6.941055E-01 2.742921E+01 2.180975E+02 8.5433220E+02 2.433031E+03 5.712863E+03 1.193340E+04 4.264699E+04	
	GENERALIZED MASS	5.627785E-03 5.696105E-03 5.808580E-03 5.987773E-03 6.249210E-03 6.618173E-03 7.136382E-03 7.857858E-03	TIME =
EIGENVALUES	CYCLIC FREQUENCY	1.767519E+00 1.10429E+01 3.083972E+01 6.025770E+01 9.930736E+01 1.478693E+02 2.058094E+02 2.729493E+02 3.490483E+02	R PASSES = 1,EST. TIME TRIX PRODUCT R PASSES = 1,EST. TIME
REAL EIGE	RADIAN FREQUENCY	1.110565E+01 6.939331E+01 1.937717E+02 3.786103E+02 6.234665E+02 9.299901E+02 1.293132E+03 1.714991E+03 2.193135E+03	METHOD 3 T ,NBR PASSES = METHOD 1 NT,NBR PASSES = MAYADNULL MATRIX PRODUCT METHOD 1 NT,NBR PASSES = METHOD 1 NT,NBR PASSES =
	EIGENVALUE	1.233355E+02 4.815432E+03 3.754747E+04 1.433458E+05 3.893342E+05 8.632084E+05 1.672191E+06 2.941194E+06 4.809841E+06	
	EXTRACTION DRDER	₩4₩₩ ←₩►₩₩	

- 2 2 4 5 9 7 8 9

ņ

METHOO 1 T .NBR PASSES = 1,EST. TIME =

JANUARY 2, 1980 NASTRAN 8/15/79

~

PAGE

NASTRAN COURSE - - - DEMO. PROB. 12 MODAL TRANSIENT ANALYSIS

INVERSE POWER METHOD

*** USER WARNING MESSAGE 2078, SDR2 DUTPUT DATA BLOCK NO. 3 IS PURGED

METHOD 1 T , NBR PASSES = 1, EST. TIME =

Ŋ

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIGUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022 DATA BLOCK CUPV2

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE. SYSTEM WARNING MESSAGE 3022 DATA BLOCK 0022

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIGUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022 DATA BLOCK DEF2

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIGUS MOBULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022 *** SYSTEM WARNING MESSAGE 3022 DATA BLOCK DES2

IS REQUIRED AS INPUT AND IS NOT CUTPUT BY A PREVICUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022 DATA BLOCK PUGV

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022 DATA BLOCK COP2

IS REQUIRED AS INPUT AND IS NOT GUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022 DATA BLOCK DUPV2

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022 DATA BLOCK DEF2

IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE.

DATA BLOCK DES2

VECTOR

O I S P L A C E M E N

œ

389

INVERSE POWER METHOD POINT-ID = 7

cr ox	0	0.0000000	5.241078F-0	896841F-0	850205E-	.530367E-0	.168977E-0	.898498E-0	.079347E-0	18305E-0	217293E-0	3324905-0	17646E-0	304418E-0	.466221E-0	557254E-0	636720E-0	.801247E-0	.966047E-0	.994342E-0	.167179E-0	.383117E-0	.508191E-0	.577188E-0	750784E-0	.731587E-0	.675765E-0	.7078475-0	.758203E-0	.620581E-0	.603267E-0	.554433E-0	.435662E-0	.319673E-0	.414352E-0	.384210E-0	.306767E-0	.387412E-0	.431087E-0	.304742E-0	.360957E-0	.388987E-0	.329693E-0	.187904E-0	.164077E-0	.919293E-0
83	c				0.0																																									
ã	0	•	•		· · · ·	•	•	•	•	•	•	•	•	•	•	•	٠	•	٠	•	•		•		٠	•		•	•	•	•	•	•	•	٠	•			•	٠	•	•	•			•
13	0				0.0	٠									٠			•	٠	•																		٠			٠.			٠.		
7.2	0	18805AF-0	0-302010-0	0-30%8000.	5.3008126-04	0-3-08-00.	.036922E-0	.468382E-0	.201919E-0	. 419779E-0	.201497E-0	.515825E-0	.3080835-0	.9173815-0	.822149E-0	.274324E-0	.854905E-0	.970865E-0	.784217E-0	.8520716-0	.403730E-0	.2075195-0	.778468E-0	.632201E-0	.041058E-0	.856266E-0	.4434586-0	.2114955-0	.403871E-0	.65711SE-0	.430896E-0	.801585E-0	.416725E-0	.538970E-0	.970811E-0	.25868E-0	0-3841996.	.248173E-0	.0047216-0	.740476E-0	.629325E-0	.8~8578E-0	.254864E-0	.111367E-0	.453392E-0	.886284E-0
1.1	0.0	2618716-1	1.043197E-1	.057532E-1	367E	.041656E-1	.432076E-1	.028489E-1	.692949E-1	.001426E-1	.871954E-1	. 989855E-1	.997008E-1	.938088E-1	.159913E-1	.899040E-1	8.349014E-1	.845782E-1	ī	.784604E-1	1	ī	-	ī	1.252433E-1	7	ī	Ī	1	-	1	-	598514E-1	233178E-1	ī	.128162E-1	7435025-1	20789E-1	.799178E-1	1660E-1	.853876E-1	4420E-1	.907632E-1	.9352565-1	50617E-1	720106E-1
TYPE	່ປ	י פ	7 (3	U	g	ø	O	g	(J	J	g	IJ	IJ	IJ	U	G	g	J	ڻ ت	IJ	J	IJ	g	IJ	ڻ ت	g	o	O	v	Ø	O	O	O	IJ	ပ	IJ	Ø	_ن	ø	O	O	IJ	ڻ ن	O	O	IJ
TIME	0	0-100000	.0000001	5000005-0	2.000000E-02	.5000CF-0	.0000co.	.50000E-0	.000000E-0	.500000E-0	.000000E-0	.500000E-0	0-30000000	.500100E-0	.000000E-0	.500003E-0	.000000E-0	.50000E-0	.00000E-0	.500000E-0	.000000E-0	.050008-	.100000E-	.150000E-	.20000E-	.250000E-	00000E-	50000E-	000006-	500005	000006-	50000E-	000C0E-	500006-	-300000	- 300006-	20000E-	-80000ca.	-300000E-	.950000E~	.0000000.	.050000E-	.100000	.150000E-	.200000E-	000E~

O

- - - DEMO. PROS. 12 NASTRAN COURSE

NASTRAN COURSE MODAL TRANSIEN	T ANA	- DEMO. PROS. 1 LYSIS	N		CANUARY	2, 1980	NASTRAN 8/15/79	Q A
INVERSE POWER	METHCD 13		UISPLA	CEMENT	VECTOR			
TIME	>						R3	
0000000	ی و	0.0 2 248671F-1	. U 537173310		•		1	
.0000000	9 0	. P58991E-1	0-8120000.				.320439E-0	
.50000E-0	G	1.664533E-1	.435926E-0				.315540E-0	
.000000E-0	IJ	2.105211E-1	.417135E-0	•			.569893E-0	
.500000E-0	9	3.638258E-1	.057914E-0		•		.566826E-0	
-3000000.	თ დ	1 1					.538724E-0	
014000000	ງ ປ	5.590883E-1					0-4707000	
. 5000008-0	o o	.566567E-1	3-3016611.				. 607268E-0	
.00077000.	IJ	.681940E-1	0-34445E-0		•	•	.002402E-0	
.5000008-0	9 (3.509952E-1	. 320551E-0		٠		.112357E-0	
.0000004 5000004	ט פ	. 068675E-1	013144188. 013866688		٠	٠	. 064350E-0	
0-3000000.	0	1.2759C6E-1	.051312E-0			٠.	267783F-0	
.5000006-0	IJ	.384113E-1	0-3868870.	•	•		.811137E-0	
0-3000000	وي	.487805E-1	.9784395-0		•		.386721E-0	
. 500000 - 0	.	3.289207E-1	. 0, 82535-0	•	٠	•	.495430E-0	
. October - O.	5 C	.685184E-1	. 899284E-0		٠		.252421E-0	
0.000000	ງ (2	1 867216E-1	16950567		٠		013077943.	
. 05000E-0	, ტ	.072367E-1	.264431E-				1801626-0	
.100002E-0	ŋ	.040830E-1		•			. £46080E-0	
.1500005-0	ن ن	2.959190E-1			•		.935702E-0	
.20000E-	:) (.231553E-1			٠		.7612155-0	
1.300000E=01	ט כ	2.406835F-13	1.44660186101	0.0	o c	9.0	3.4723725-03	
.35000CE-	υ	.670807E-1					.449467E-0	
.400000E-	ۍ و	.560050E-1					.8501385-0	
.450000E-	U (2.516743E-1			٠		.3422645-0	
.500000E-	ງ (.702583E-1					.417686E-0	
-30000000		2.848573E-1						
-650000E-	G	1975395-1					779453E-0	
.700000E-	g ·	.938905E-1					.886042E-0	
.750000E-	.	2.010400E-1					.229685E-0	
.800000E-		.106943E-1			•		.379517E-0	
-850000E-	5 (5	3 206158F-1					.016903E-0	
.95000E-	o o						1304408-0	
.00000c-	g	3.303631E-1					.000124E-0	
.050005-	o i	.444218E-1		•			.111982E-0	
.100000E-	g (<u>.</u>			•		.331758E-0	
.150000E-	.	.235872E-1					.240538E-0	
. 250000E-	3 (3	1					./13112E-U 267016F-0	
1	j	i	 					

JANUARY 2, 1980 NASTRAN 8/15/79

9

PAGE

INVERSE POWER METHOD POINT-ID = 21

	c a	0	154365-0	.2371	.994736E-0	.550856E-0	.6596935-0	.4847685-0	.537202E-0	.451165E-0	. 8-8247E-0	.0651766-0	.6109966-0	.6568976-0	.5,83335-0	.8118065-0	.370441E-0	.738035E-0	.899012E-0	.582257E-0	.2225795-0	.450544E-0	. C88589E-0	.132176E-0	.688739E-0	.137502E-0	0-3666996.	.469585E-0	.631910E-0	.131791E-0	.544843E-0	.653372E-0	.591412E-0	.287924E-0	.528242E-0	.104529E-0	.249747E-0	.526874E-0	.784819E-0	.286640E-0	.4800595-0	w	.227160E-0	.201299E-0	.039457E-0	.622352E-0	.283076E-0
	82	0	•	•	•	•	•	•	•	•	•	•		•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•		•	٠	٠	•		•	•	•	•	0.0	•	•	•	•	٠
V E C T O R	8	0.			•	•	•		٠	•	•	٠	٠	٠	•	٠	•	•	•	•	٠	•	٠		•	٠	٠	•	•	٠	•		٠	•	•	•	٠	•	•	•	٠	0.0	•		٠	٠	
A C E M E N T	E _	0.	•	•	٠	•	•	•	•		•	•	•	•		•	•	•	•	•	•		•	•	•		•	•	٠			•	•	•		٠					٠	0.0			٠	٠	
DISPLA	12	0	.147149E-0	.965657E-	.113298E-0	.921862E-0	.1615225-0	. 571402E-0	.675461E-0	.905683E-0	.074940E-0	.210475E-	.448452E-	.720705E-	.963198E-	.1224846-	.1830175-	.215923E-	.327291E-	.498113E-	. 9580765-	.754208E-	.764284E-	.707383E-	.70302×E-	.803031E-	.951284E-	.043293E-	.115726E-	.0867226-	.0150576-	.0810256-	.200462E-	.233268E-	3:16155-	.231436E-	.0%519CE-	.952810E-	-9808216.	.912053E	-3255558.	810E-	.527504E-	.3:62:1	.201219E-	.179150E-	.165539
	1	0.0	.779511E-12	.297839E-12	.329415E-1	.602184E-1	.497135E-1	.357107E-1	.468132E-1	.134419E-1	.408519E-1	.073147E-1	.338539E-1	.320954E-1	.2690055-1	.5771065-1	.182994E-1	1.839028E-1	.065634E-1	.084238E-1	.930929E-1	2.303006E-1	.797655E-1	.530C21E-1	.857760E-1	2.758722E-1	.491003E-1	.975012E-1	.301299E-1	3.164396E-1	.110365E-1	.340707E-1	2.922643E-1	3.521030E-1	.716308E-1	.694480E-1	.484991E-1	3.840332E-1	.248481E-1	63030E-1	.020232E-1	4.083513E	.785152E-1	01921E-1	1.527621E-1	96603E-1	59962E-1
17	TYPE	G	IJ	IJ			g	IJ	_O		IJ	g	IJ		IJ	ပ	(J		G	G	U			U	IJ			ڻ د	v			ڻ ت				<u>ن</u>	o ·			ای	rg.	(5)		ا		-	
	1135	0	.00000E-0	00000E-	.500000E -0	.0000000.	.500000E-0	.00000E-0	.500000E-0	.0000000.	.5000006-0	.0000000.	.5000005-0	.0000000-0	.500006-0	.000ccoE-0	.5000006-0	.000005-0	. 500000E-0	.000000E-0	.50000E-0	.0000000.	.050005-0	.100000E-0	.150ccoE-	.20000E-	250030E-	0000E-	35000E-	00000E-	45CC00E-	90000E-	550C10E-	600000E-	650COCE-	.70000E-	.75000CE-	.800000E-	.850000E-	.90000E-	.95000e-	2.000000E-01	.05000E-	.100000 E-	.150000E-	.20000E-	.250000E-

* * END OF JOB * *

RIGID FORMAT SERIES P 5 5 5 2 2 MIMINTARTIN MMUTAN MWW.M 12/15/80 MMMM NY DESTRUCTION OF THE PROPERTY CDC CYBER SERIES LEVEL 17.5.7 NECTRACEM NUMBER MODEL 173 SYSTEM GENERATION DATE MMMMMM MMIMIN NICHT MANIMINIMINIMINIMI MARIAM ZW.Z N'N MMM MM X. Σ NO FORMER MMM NINIMININ W WWW MINISTRACTOR NAME OF THE PROPERTY OF THE PROPE /// White the control of the control MINISTERIO DE CONTROL MARKET COLORS AND CONTRACTOR AND CONTRACTOR AND COLORS CONTRACTOR WEBSTRONG REPORT TO A CONTROL OF THE PROPERTY --- NOT THE WASHINGTON TO A CONTROL OF THE PROPERTY OF THE PROPE PARTITION TO THE PARTITION OF A STATE COMMISSION OF A STATE OF A S MEM MEM MCCARACIA \$1.18.2.2.2M ATT MENTERS WINDS TO SERVICE ALC: THE PARTY OF THE MARKET THE TANK THE THE TANK THE TANK THE TANK THE TANK THE TANK T Estatus W MCD--DW M /// A A MARINA MARKATERA MM NTTH Minimage and an appropriate the control of the cont PRODUCTION OF THE PROPERTY OF MINIMARATATION OF THE TOTAL CONTROL OF THE TOTAL OTHER OF THE TOTAL OF MEAN MINIMINE CONTRIBUTION OF THE STATE OF T 12523----635330 N----//, medianis MINIM MIMIMINETARY COMMUNICATION CONTROL COMMUNICATION CONTROL CO MENN MINIMINIMINIM Management MARKATARAM City Control N. 3. ALC: THE PARTY V.V.V 5 Manage control THE COLUMN MERCHANTER STATE STATE OF STATE OF MANAGEMENT AND A STATE OF THE S

MINISTERNA CONTINUENCE CONTINU

With the control of t

INTERNATION OF THE PROPERTY OF THE PROPERTY OF

PAGE

NASTRAN EXECUTIVE CONTROL DECK ECHO

ID NASTRAN, DE'CO
APP DISP
SOL 13.0
ALTER 165,165 \$ R.F.13, LEVEL 17
\$ CALCULATE GENERALIZED MASS AND STIFFNESS.
READ KBLL, MAA., . EED, USET, CASECC/LAMA, PHIA, MI, OEIGS/C, N, MODES/V, N, ENDALTER
TIME 10
CEND

PAGE

NASTRAN COURSE - - - DEMO, PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS ROTATING CANTILEVER BEAM (MELICOPTER BLADE)

CARD
COUNT
TITLE=NASTRAN COURSE - - - DEWO, PROB. 13
SUBTITLE=NASTRAN COURSE - - - DEWO, PROB. 13
LABEL=ROTATING CANTILEVER BEAM (HELICOPTER BLADE)
SPC = 11
SUCAD=ALL
SUCAD=ALL
SUCAD=ALL
SUCASE 1
SUCAD=ALL

*** USER INFORMATION MESSAGE 207, BULK DATA NOT SCRTED, XSORT WILL RE-ORDER DECK.

ო

PAGE

NASTRAN COURSE --- DEVO. PROB. 13 NORMAL MODES AITH DIFFERENTIAL STIFFNESS

ROTATING CANTILEVEP BEAM (HELICOPTER BLADE)

	. 10				+85														+E41																						+STEEL	+ 1931	+P31A	
	on :	-																	13																							1	ċ	
π Ω Ω	œ :	0.0																			345																							0.0
∀ ⊢	. 7	<u>:</u>																	_																						4	3 1.498-2	0.3125	÷
r A		0.0																	-																						7.324	3 7.490-	•	0.0
 	.	8	ωç	2.1	9	r~ a	ത	10		(V	13	4 4	n (0 1	- œ	. -	20	21	-																						۴.	7.490-	_	1.5
α 	:		0.0) '7	ഹ	91	0.	ത	0.			m •		<u>.</u> م		. 20	19	20	0.0			0.0	ທີ່		50.	. 50.0		ວິເຊ	 	45.	50.	ი	60.	υ 1 Ω			າ . ວ ເຄ ວ ເຄ	000	95.	100.		.30680	0.312	
Ŋ	m ::	ლ -																	AN I																						30.+6	32	, 1 0 0	n -
		-	7 (") च	Ŋ	9 ~	- 00	თ	10		12	m :	; u	ر د ب	1	00	10	20	4	MAX		-	7	m ·	7 1	ı, n	D 1	~ a	oo	0	11	12	د .	7 1		o ;	· 00	9	20	21	32		1 (2.7
	- !	8420 0348	0.00 A 40 C	C (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CBAR	C 8 4 8	2 4 5 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CEAR	848)	CB1R	CBAR	1 4 2 1 3 1	r o o o	rom ter	. c	or or or or or	CBAR	E I GP		GROSET	G1.40	۵ ا ا	0 i	0140		2 2 2	בו בו בו בו	, c	() () () () () () () () () ()	0120	C180	G 2 1 D	G 1 10	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	3 C	ת ה ת ת	0180	GRID	GRID	MAT1	α (G)	# 60 c	RFORCE
0.40	COUNT	2 -	(C) (2)	. . .	9	7 4	, ()	101		12-	13-	·	ָר .	1 10 2	- 10	100	20-	21-	22-	23-	24-	25-	25-	27-	29-	29-	30-	ا درد ادرد	33-) (C)	35-	36-	37-	38-	-65	40-	1 4 - 1	43-	44-	45-	46-	- 44	48-	1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NASTRAN COURSE - - - DEMO. PROB. 13 Normal Addes with differential Stiffness

PAGE

NASTRAN 12/15/80

FEBRUARY 10, 1981

ROTATING CANTILEVER BEAM (HELICOPTER BLADE)

ø SPC1 11 ENDDATA CARD COUNT 51-

5

NASTRAN COURSE --- DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS

S

PAGE

NASTRAN 12/15/80

FEBRUARY 10, 1981

ROTATING CANTILEVER BEAM (HELICOPTER BLADE)

LEVEL 2.0 NASTRAN DMAP COMPILER - SOURCE LISTING

89 *** USER POTENTIALLY FATAL MESSAGE 11.
POSSIBLE ERROR IN DMAP INSTRUCTION SSG1 INSTRUCTION NO.
DEFAULT OPTION FOR OUTPUT DATA BLOCKS - MAKE SURE MISSING BLOCKS ARE NOT REQUIRED.

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

34 STARTING WITH ID *** SYSTEM INFORMATION MESSAGE 3113, EMGPRO PROCESSING SINGLE PRECISION ELEMENTS OF TYPE

60) 0 S AVG = 0 PREFACE LOGPS = •••USER INFORMATION WESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KAA (N = 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE* -28488 C MAX = 5 PCMAX = 0 PC GROUPS =

MPYAD--NULL MATRIX PRODUCT
METHOD 2 NT,NBR PASSES = 1,EST. TIME =

۲.

NASTRAN COURSE - - - DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS ROTATING CANTILEVER BEAM (HELICOPTER BLADE)

FEBRUARY 10, 1981 NASTRAN 12/15/80

9

PAGE

*** USER INFORMATION MESSAGE 3035

FOR LOAD 1 EPSILON SUB E = -7.1805861E-13

*** USER INFORMATION MESSAGE 3035

FOR LCAD 2 EPSILON SUB E = 0.

MPYAD--NULL MATRIX PRODUCT METHOD 2 T ,NSR PASSES = 1,EST. TIME =

0.

FEBRUARY 10, 1981 NASTRAN 12/15/80 PAGE

S	
STIFFNES	
DIFFERENTIAL	
I L	
ODES	

SUBCASE 1		K2	0.	.0		0.	0		.0					.0			.0					 	0.0
VECTOR	č	¥	0.0	0.0	0.0	0.0	0.0	0.0		0.0							0.0						
LACEMENT	F	<u>~</u>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
1 6 5 1 0	C H	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
z	ř	-	0.0		1.081564E-04	1.615569E-04	2.141443E-04	2.656473E-04	-	3.643163E-04	4.109401E-04	4.553954E-04	4.974110E-04	5.367160E-04	5.730392E-04	6,061096E-04	6.356561E-04		6.830931E-04	7.004415E-04		7.131817E-04	7.131817E-04 7.210427E-04
C SOLUTIO	0	- 1	₉	g	g	IJ	O	IJ	J	J	G	_U	ڻ ت	ڻ ت	ڻ ت	IJ	IJ	IJ	IJ	g		g	თ თ
LINEAR STATIC SOLUTION			-	7	က	4	2	φ	7	00	6	01	Ξ	12	13	14	15	16	17	18	•	<u>~</u>	- C

13	FFNESS
. PROB. 1	4 DIFFERENTIAL STIFFNE
- DEMO	FERENT
i	10
COURSE -	MODES WITH
NASTRAN	NORMAL

LINEAR STATIC SOLUTION

œ

FEBRUARY 10, 1981 NASTRAN 12/15/80 PAGE

SUBCASE 1

	83																				
		0.0	0.0	0.0	0.0	0.	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8																				
		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	æ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0		0	0	0	0	ö	ö	ö	0		0							0	0	0	ö
R C																					
>	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	n
Q Q			0	0	0.0	0		·. 0				·.					Ö			Ö	ö
_1																					
	12	0	0	0	0	0	0	0	0	0	0	O	0	0	ဂ	c	0	0	0	0	0
		0			ö	0	<u>.</u> ٥	0.0	0	0	0	0	0	· •	0	0	ö	0	· •	0	0
		E-01	5E-01	E+00	3E+00	SE+00	SE+OC	2E+00	SE+00	9E+00	5E+00	SE+00	9E+00	00+3	SE+00	9E+00	E+00	SE+00	3E+00	E+00	E+00
	Ξ	989832E-0	.97965E-0	1.496950E+0	.995933E+0	. 494916E+0(0+3608E60	492883E+00	991866E+00	490849E+00	989832E+00	468816E+00	987799E+00	486782E+0	985765E+00	7.484749E+0	983732E+0	482715E+0	981698E+00	480681	989832
		4.9	5.6	4.	5.	ι.	2.9	3.4	ω 	4.4	2.0	•	υ. ε	6.1	•	7.4	7.9	8.4		9.	4.0
	TYPE	U	g	IJ	U	IJ	U	IJ	IJ	U	ŋ	ပ	ڻ ت	U	ŋ	IJ	U	IJ	ပ	IJ	IJ
	10.	~	ဗ	4	Ŋ	9	7	œ	6	0	=	12	13	14	15	16	17	18	19	20	21
	POINT																			-	- •

13	AL STIFFNESS
- DEMO. PR	DIFFERENTIAL
COURSE -	HIIM SECO
NASTRAN	NORMAL II

LINEAR STATIC SOLUTION

CONSTRAINT SINGLE-POINT O IT FORCES

2 0.0 73 2 0.0 71 -9.979665E+01 7 Y P.E. POINT 10.

83

2

0.0

0.0

PAGE

FEBRUARY 10, 1981 NASTRAN 12/15/80

SUBCASE 1

***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK KBLL (N = TIME ESTIMATE: 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE: -28488 C MAX = 5 PCMAX = 0 PC GROUPS =

60) 0 S AVG = 0 PREFACE LOOPS =

NASTRAN COURSE - - - DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS

ROTATING CANTILEVER BEAM (HELICOPTER BLADE)

PARAMETER O L CONTENTS

DET

1.134664E+04

FEBRUARY 10, 1981 NASTRAN 12/15/80

0

PAGE

NASTRAN COURSE - - - DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS

=

PAGE

NASTRAN 12/15/80

FEBRUARY 10, 1981

ROTATING CANTILEVER BEAM (HELICOPTER BLADE)

TABLE PARAMETER 0 CONTENTS

POWER

0

1.EST. TIME = METHOD 2 NT, NBR PASSES =

404

NASTRAN JOURSE - - - DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS

12

PAGE

FEBRUARY 10, 1981 NASTRAN 12/15/80

ROTATING CANTILEVEP BEAM (HELICOPTER BLADE)

*** USER INFORMATION MESSAGE 3035

FOR LOAD 1 EPS! LON SUB E = -7.1805861E-13

*** USER INFORMATION MESSAGE 3035

FOR LOAD 2 EPSILON SUB E = 0.

WPYAD --NULL MATRIX PRODUCT WETHOD 2 T ,NBR PASSES = 1.EST. TIME =

٥.

*** USER WARNING MESSAGE 2076, SDR2 GUTPUT DATA BLOCK NG. 1 IS PURGED

FEBRUARY 10, 1981 NASTRAN 12/15/80 PAG	SUBCASE 2
NASTRAN COURSE DCWD, PROS. 13 Norwal modes with differential stiffness	STATIC DIFFERENTIAL STIFFNESS SOLUTION

PAGE

83 CONSTRAINT 0.0 ž 0.0 SINGLE-POINT 0.0 T1 T2 -9.979665E+01 0.0 и. О FORCES POINT ID. TYPE 1 G

NASTRAN COURSE - - - DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STITFNE

NO	
SOLUTI	
STIFFNESS	
DIFFERTATIAL	
STATIC	

NASTRAN COURSE NORMAL MODES W	COUR	SE WITH DI	NASTRAN COURSE DEMO. PROB. 1 NORMAL MODES WITH DIFFERENTIAL STTTE	3 NESS			FEBRUARY 10, 1981	10.1	981	NASTRAN 12/15/80	PAGE
STATIC	JIFFE	RTNTTAL	STATIC DIFFER MITAL STIFFNESS SOLUTION	N O						SUECASE	8
				۵	ISPL	ACEMENT	VECTOR				
POINT	10.	TYPE	1.1		12	13	<u>α</u>		22	R3	
	_	g	0.0			0.0	0.0	0.0		0.0	
	7	_U	5.421374E-05	0.0		0.0	0.0	0.0		0.0	
	٣	ပ	1.081564E-04			0.0	0.0	0.0			
	4	g	9			0.0	0.0	0.0			
	5	g	2.141443E-04			0.0	0.0	0.0			
	9	IJ	2.656473E-04			o.c	0.0	0.0			
	7	IJ	3.157950E-04			0.0	0.0	0.0		0.0	
	00	g	3.643163E-04			0.0	0.0	0.0			
	6	g	4.109401E-04			0.0	0.0	0.0			
-	0	J	4.553954E-04			0.0	0.0	0.			
-	_	ڻ و	4.974110E-04			0.0	0.0	ن 0			
_	2	IJ	5.367160E-04			0.0	0.0	0.0			
-	5	IJ	5.730392E-04	٠		0.0	0.0	0.0			
-	4	IJ	6.061098E-04			0.0	0.0	0.0			
•	2	ڻ ن	6.356561E-04			0.0	0.0	0.0			
-	9	IJ	6.614076E-04			0.0	0.0	0.0			
-	17	J	3			0.0	0.0	0.0			
_	8	v	7.004415E-04			0.0	0.0	0.0			
-	Ç.	g	7			0.0	0.0	0.0			
.,	20	U	27			0.0	0.0	0.0			
.1	21	IJ	7.237534E-04	0.0		0.0	0.0	0.0			

NASTRAN COURSE NORMAL MODES W	COURS	MITH DIE	NASTRAN COURSE DEMO. PROB. NORMAL MODES WITH DIFFERENTIAL STIF	13 FNESS		FEBRUARY 10,	10, 1981	NASTRAN 12/15/80	PAGE
NATURAL	FREGL	ENCIES (NATURAL FREQUENCIES (WITH PRELDAD E	EFFECTS INCLUDED)				SUBCASE	E 3
				DISPLA	CEMENT V	E C 1 O R			
POINT	10.	TYPE	11	12	13	2	R2	83	
	_	U	0.0	0.0		0.0		0	
	7	IJ	0.0			0.0	0.0	0.0	
	ო	U	0.0	0.0		0.0	0.0	0.0	
	4	U	0.0	0.0		0.0	0.0	0.0	
	ഹ	IJ	0.0	0.0	0.0	0.0	0.0	0.0	
	9	U	0.0	0.0		0.0	0.0	0.0	
	7	U	0.0	0.0	0.0	0.0	0.0	0.0	
	80	v	0.0	0.0		0.0	0.0		
	თ	IJ	0.0	0.0		0.0	0.0		
-	ပ္	IJ	0.0	0.0		0.0	0.0		
-	_	IJ	0.0	0.0		0.0	0.0		
•	2	IJ	0.0	0.0		0.0	0.0		
•	5	ŋ	0.0	0.0		0.0	0.0	0.0	
-	4	ŋ	0.0	0.0		0.0	0.0		
-	2	ŋ	0.0	0.0	0.0	0.0	0.0		
-	91	IJ	0.0	0.0		0.0	0.0	0.0	
-	1.7	IJ	0.0	0.0	0.0	0.0	0.0	0.0	
-	8	ن	0.0	0.0		0.0	0.0	0.0	
-	6	IJ	0.0	0.0		0.0	0.0	0.0	
.,	20	IJ	0.0	0.0		0.0	0.0	0.0	
\1	21	ၒ	0.0	0.0	0.0	0.0	0.0	0.0	

60) 0 S AVG = 0 PREFACE LOOPS = ***USER INFORMATION MESSAGE 3023--PARAMETERS FOR SYMMETRIC DECOMPOSITION OF DATA BLOCK LAWA (N = TIME ESTIMATE= 1 C AVG = 4 PC AVG = 0 SPILL GROUPS = ADDITIONAL CORE= -23722 C MAX = 5 PCMAX = 0 PC GROUPS = 0 PC

NASTRAN COURSE - - - DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS

FEBRUARY 10, 1981 NASTRAN 12/15/80

16

PAGE

ROTATING CANTILEVER BEAM (HELICOPTER BLADE)

(INVERSE POWER METHOD) SUMMARY ANALKSIS EIGENVALUE

_	-	0	-	4	7		0	0	0
			•	•	•	•	•		
•	•	•	•	•	•	•	٠	. •	•
•	•	•	•	•	•	•			•
•	•	•	'n	•	•	₹			•
٠	•	•	ž	(0	•	TERM			ω.
Ω	•	•	1	ž	•	ഗ			Š.
iii H	ED	ES	SI	Ë	•	MASS			≅ •
Y C	US	ò	20	αA	•	25			A N
<u>ح</u>	Ŋ	Z	Ď.	₩ —	•	AL			00.5
ж Ш	Z	Z	<u> </u>	~	-	õ		•	- E
S	POINTS USED	STARTING POINT MOVES	TRIANGULAR DECOMPOSITIONS	õ	TERMINATION	OFF-DIAGONAL MODAL		•	FF-DIAGONAL MODAL FAILING CRITERION
3	(3	(3	LA:	Ü	⊢	4	9	ב ב	ë e
⋖ >	STARTING	ž	വ	>	Ž	Ö	•	د	A Z
Z W	ά	or.	3	OF	ã	4			5.7
ပ္	4	T A	œ	œ	μ H	٩	u 0	2	ή ų. A
ш				8E		الد الد	2	2	္ပတ္ည
6	P	Ö	G.	3	FOR				R OF O
α	œ	œ	œ	TOTAL NUMBER OF VECTOR ITERATIONS	Z	LARGEST			NUMBER OF OFF-DIAGONAL MODAL MASS TERMS FAILING CRITERION
ξ	ğ	S	<u>ω</u>	Ā	183	ပ္ထ			<u> </u>
NUMBER OF EIGENVALUES EXTRACTED	NUMBER	NUMBER	NUMBER	5	REASON	Ā			2

FEBRUARY 10, 1981 NASTRAN 12/15/80 PAGE

17

NASTRAN COURSE --- DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS ROTATING CANTILEVER BEAM (HELICOPTER BLADE)

S
ш
⊃
-
4
>
Z
ш
ပ
-
ш
_
4
ш
α

GENERALIZED STIFFNESS	1.312736E+00
GENERALIZED MASS	5.745887E-03
CYCL IC FREQUENCY	2.405639E+00
RADIAN FREQUENCY	1.511507E+01
EIGENVALUE	2.284654E+02
EXTRACTION ORDER	-
MODE NO.	-

METHOD 1 T ,NBR PASSES = ..EST. TIME =

°.

NASTRAN COURSE ~ - - DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS

ROTATING CANTILEVEP BEAM (HELICOPTER BLADE)

DATA BLOCK PLIPAR IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022

DATA BLOCK GPSETS IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022

DATA BLOCK ELSETS IS REQUIRED AS INPUT AND IS NOT OUTPUT BY A PREVIOUS MODULE IN THE CURRENT DMAP ROUTE. *** SYSTEM WARNING MESSAGE 3022

NOSTRAN COURSE WITH DIFFERENTIAL STIFFNESS	200		5
NATURAL FREQUENCIES (WITH PRELOAD EFFECTS INCLUDED) EIGENVALUE = 2.284654E+02		SUBCASE 3	es M

	EIGENVALUE & 4.2840345+02	REAL	L E 1 G	ENVECT	z α ο		,
	TYPE 71	_	12	13	R	82	R3
	0.0		•	0.0	0.0	0.0	0.0
	1.603758E-20 4.	Q.		0.0	0.0	0.0	1.903171E-03
	3.197595E-20 1.	ST Oil		0.0	0.0	0.0	3.5996245-03
	4.771635E-20	41	153E-02 (0.0	0.0	0.0	5.108188E-03
	6.316205E-20 6.	90		0.0	0.0	0.0	6.445591E-03
	7.821702E-20 1.	7.1	_	0.0	0.0	0.0	7.625675E-03
	9.278851E-20 1.	83		0.0	0.0	0.0	8.664623E-03
	1.057866E-19	-		0.0	0.0	0.0	9.5711785-03
	1.201251E-19 2.	7		0.0	0.0	0.0	1.035687E-02
	1.327217E-19 2.	ø	_	0.0	0.0	0.0	1.103121E-02
	1.444993E-19	20	_	0.0	0.0	0.0	1.160297E-02
	1.553846E-19	(7		0.0	0.0	0.0	1.2080315-02
	1.653115E-19 4.	'n	•~	0.0	0.0	0.0	1.247105E-02
	1.742190E-19 5.	6	_	0.0	0.0	0.0	1.2782395-02
	1.820523E-19 5.	8		0.0	0.0	0.0	1.302354E-02
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.887635£-19	5	.	0.0	0.0	0.0	1.320102E-02
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1.943113E-19	9	-	0.0	0.0	0.0	1.3323765-02
1 0.0 0.0 0.0 1. 1 0.0 0.0 0.0 1. 2 0.0 0.0 0.0 1.	1.986619E-19	•	1385-01 (0.0	0.0	0.0	1.340087E-02
0.0 0.0 0.0	2.0178876-19	2	-	0.0	0.0	0.0	1.344222E-02
0.0 0.0 0.0	G 2.036724E-19 9.32	9	_	0.0	0.0	0.0	1.345865E-02
	2.043016E-19 1.	8	000E+00 (0.0	0.0	0.0	t,346205E-02

FEBRUARY 10, 1981 NASTRAN 12/15/80 NASTRAN COURSE --- DEMO. PROB. 13 NORMAL MODES WITH DIFFERENTIAL STIFFNESS

9

PAGE

SUECASE 3

NATURAL FREQUENCIES (WITH PRELOAD EFFECTS INCLUDED)

EIGENVALUE = 2.284654E+02

F O R C E S O F S I N G L E -

RCES OF SINGLE-POINT CONSTRAINT

R3 -8.007588E-02 0.0 <u>~</u> 0. 13 0.0 T2 -9.721706E-02 TYPE G POINT ID.

* * * END OF JOB * *

INITIAL DISTRIBUTION

Copies

1 DTIC

CENTER DISTRIBUTION

Copies	<u>Code</u>	Name
1	1809.3	D. Harris
1	1844	G.C. Everstine
1	1844	M.M. Hurwitz
1	522.1	Unclassified Library (C)
1	522.2	Unclassified Library (A)

