

CIÊNCIAS DA COMPUTAÇÃO

Aspectos Teóricos da Computação

Aspectos Teóricos da Computação

CIÊNCIAS DA COMPUTAÇÃO

Aspectos Teóricos da Computação

ROTEIRO

- Hierarquia de Chomsky
- Máquina de Estado Finito
- Conceitos da Teoria de Autômatos
- Máquina de Turing

3

Aspectos Teóricos da Computação

Hierarquia de Chomsky (1928-...)

- Noam Chomsky, professor emérito MIT, é considerado o Pai da Linguística Moderna.
- Enunciou propriedades fundamentais das linguagens formais e, sobre elas, concebeu uma hierarquia.
- Estas propriedades são fundamentais para o desenvolvimento de compiladores, conhecidos como Linguagem Livre de Contexto.

Hierarquia de Chomsky (1928-...)

- Gramáticas divididas em quatro classes hierarquicamente organizadas.
- São numeradas de forma decrescentes, da mais simples para a mais complexa: 3, 2, 1 e 0.
- 3 é classe mais restrita e 0 é a classe mais abrangente.
- A classe N gera um conjunto mais amplo de linguagens que a N+1 (0 ≤ N ≤ 2).

5

Aspectos Teóricos da Computação

Hierarquia de Chomsky (1928-...)

 $https://upload.wikimedia.org/wikipedia/commons/a/a3/Hierarquia_de_Chomsky.PNG$

Hierarquia de Chomsky (1928-...)

- · Nomenclatura:
 - Tipo 0: Gramáticas com Estrutura de Frase (GEFs)
 - Tipo 1: Gramáticas Sensíveis ao Contexto (GSCs)
 - Tipo 2: Gramáticas Livres de Contexto (GLCs)
 - Tipo 3: Gramáticas Regulares (GRs)

7

Aspectos Teóricos da Computação

Hierarquia de Chomsky

- Tipo 0: Gramáticas com Estrutura de Frase (GEFs)
 - Nenhuma restrição é imposta à gramática.
 - Linguagens Geradas:
 - Linguagens Recursivamente Enumeráveis (LREs); e
 - Linguagens Recursivas (LRs).
 - Ex. a partir de GEF é possível especificar um subconjunto de um idioma português, inglês, etc.).

Hierarquia de Chomsky

- Tipo 1: Gramáticas Sensíveis ao Contexto (GSCs)
 - Restrição:
 - " no processo de substituição a ser aplicado sobre uma determinada forma sequencial da gramática, esta substituição não pode reduzir de comprimento da forma sequencial."
 - As produções da gramática aumentam ou mantém o comprimento da forma sentencial sobre a qual é aplicada.
 - Ex.: Linguagem de todas as cadeias consistindo em *n* ocorrências do símbolo "a", e *n* "b"'s, e *n* "c"'s (abc, aabbcc, aaabbbccc, etc.).

9

Aspectos Teóricos da Computação

Hierarquia de Chomsky

- Tipo 2: Gramáticas Livres de Contexto (GLCs)
 - Adicionalmente à restrição às GSC:

 $A \rightarrow \beta$, onde $A \in (V \cup T)^*$, onde:

- A: variável da gramática;
- β: forma sentencial gerada a partir de A;
- V: conjunto de variáveis da gramática; e
- > T: conjunto de símbolos terminais da gramática.
- Ex.: Linguagens de programação são geradas a partir de uma GLC.

Hierarquia de Chomsky

- Tipo 3: Gramáticas Regulares (GRs)
 - As produções da gramática devem gerar expressões regulares.
 - As linguagens correspondentes são denominadas de linguagens regulares geradas por gramáticas regulares.

> Ex.:

- > a) todas cadeias que contenham um número par de 'a';
- b) todas cadeias formadas por uma quantidade qualquer de 'a' seguido de uma quantidade qualquer de 'b'; e
- c) todas cadeias de 'a' seguido de 'b', onde o número de 'a' é igual ao de 'b'.

11

Aspectos Teóricos da Computação

Hierarquia de Chomsky

- Tipo 3: Gramáticas Regulares (GRs)
- As produções da gramática devem gerar expressões regulares.
- As linguagens correspondentes são denominadas de linguagens regulares geradas por gramáticas regulares.

> Ex.:

- a) todas cadeias que contenham um número par de 'a';
- b) todas cadeias formadas por uma quantidade qualquer de 'a' seguido de uma quantidade qualquer de 'b'
- c) todas cadeias de 'a' seguido de 'b', onde o número de 'a' é igual ao de 'b'
 - (c) FALSO!!! não pode ser considerado uma linguagem regular pois requer a atuação de uma memória para estruturar os elementos de suas cadeias, isto é, quando a frequência de um elemento da cadeia determina a frequência de outro elemento da mesma cadeia.

Hierarquia de Chomsky

Tabela 1 – Resumo da Hierarquia de Chomsky.

Herarquia de Chomsky	Gramática	Classe da Linguagem	Nome do Reconhecedor
Tipo 0	Irrestrita	Recursivamente Enumerável	Máquina de Turing (MT)
_	_	Recursiva	MT que sempre para
Tipo 1	Sensível ao Contexto	Sensível ao Contexto	Autômato Linearmente Limitado
Tipo 2	Livre de Contexto	Livre de Contexto	Autômato de Pilha
Tipo 3	Regular	Regular	Autômato Finito

13

Aspectos Teóricos da Computação

Máquina de Turing

Fita de tamanho infinito

Máquina de Turing

- Uma fita que é dividida em células, uma adjacente à outra.
- Cada célula contém um símbolo de algum alfabeto finito.
- O alfabeto contém um símbolo especial branco (aqui escrito como ¬) e um ou mais símbolos adicionais.
- Assume-se que a fita é arbitrariamente extensível para a esquerda e para a direita, isto é, a máquina de Turing possui tanta fita quanto é necessário para a computação.
- Assume-se também que células que ainda não foram escritas estão preenchidas com o símbolo branco.

15

Aspectos Teóricos da Computação

Máquina de Turing

- Um cabeçote, que pode ler e escrever símbolos na fita e moverse para a esquerda ou para a direita.
- Um registrador de estados, que armazena o estado da máquina de Turing.
 - O número de estados diferentes é sempre finito e há um estado especial denominado estado inicial com o qual o registrador de estado é inicializado.

16

Máquina de Turing

- Uma tabela de ação (ou função de transição) que diz à máquina que símbolo escrever, como mover o cabeçote (← para esquerda e → para direita) e qual será seu novo estado, dados o símbolo que ele acabou de ler na fita e o estado em que se encontra.
- Se não houver entrada alguma na tabela para a combinação atual de símbolo e estado então a máquina para.

17

Aspectos Teóricos da Computação

Máquina de Turing

Figura 3.3 Fita e unidade de controle de uma Máquina de Turing

Máquina de Turing

Fita

- Usada simultaneamente como dispositivo de entrada, de saída e de memória de trabalho;
- É finita à esquerda e infinita (tão grande quanto necessário) à direita, sendo dividida em células, cada uma das quais armazenando um símbolo.
- Os **símbolos** podem pertencer:
 - ⇒ ao alfabeto de entrada,
 - ⇒ ao alfabeto auxiliar,
 - ⇒ ß branco, e
 - ⇒ ② marcador de início de fita.
- Inicialmente, a palavra a ser processada ocupa as células mais à esquerda, após o marcador de início de fita, ficando as demais com branco.

19

Aspectos Teóricos da Computação

Máquina de Turing

Unidade de Controle:

- Reflete o estado corrente da máquina.
- Possui um número finito e predefinido de estados.
- Possui uma unidade de leitura e gravação (cabeça da fita), a qual acessa uma célula da fita de cada vez.
- A cabeça da fita lê o símbolo de uma célula de cada vez e grava um novo símbolo.
- Após a leitura/gravação (a gravação é realizada na mesma célula de leitura), a cabeça move-se uma célula para a direita ou esquerda.

20

Máquina de Turing

• Programa ou Função de Transição

- o programa comanda as leituras e gravações, o sentido de movimento da cabeça e define o estado da máquina.
- programa é uma função que, dependendo do estado corrente da máquina e do símbolo lido, determina o símbolo a ser gravado, o sentido do movimento da cabeça e o novo estado.

21

Aspectos Teóricos da Computação

Máquina de Turing

Processamento

- O processamento de uma MT para uma palavra de entrada w consiste na sucessiva aplicação da função programa, a partir do estado inicial q_0 e da cabeça posicionada na célula mais à esquerda da fita até ocorrer uma condição de parada.
- O processamento de M para a entrada w pode parar ou ficar em um laço infinito.
- A parada pode ser de duas maneiras: aceitando ou rejeitando a entrada w.

Máquina de Turing

- Variações
 - Inexistência do Marcador de Início de Fita:
 - É frequente não incluir um marcador de início de fita. Assim, a célula mais à esquerda da fita contém o primeiro símbolo da entrada (ou branco, se a entrada for vazia). Neste caso, ao definir uma função programa, deve-se tomar cuidado especial para controlar quando a cabeça da fita atinge o fim da mesma;
 - Cabeça de Fita não se Move em uma Leitura/Gravação:
 - Na função programa, é possível especificar, adicionalmente ao movimento para esquerda ou direita, que a cabeça permaneça parada (na célula de leitura/gravação). O principal objetivo dessa variação é facilitar a especificação da função programa, bem como reduzir o número de transições necessárias.

23

Aspectos Teóricos da Computação

Conceitos da Teoria de Autômatos

- Alfabeto: Σ
 - Conjunto de símbolos finito e não vazio.
 - Exemplos:
 - Alfabeto binário

$$\sim \Sigma = \{0,1\}$$

Alfabeto romano

Conceitos da Teoria de Autômatos

- String (ou palavra):
 - é uma sequência finita de símbolos escolhidos de algum alfabeto.
 - Ex.: Seja o alfabeto $\Sigma = \{0,1\}$. São strings:
 - 01101 e 111.
- String vazio (ε):
 - É o string com zero ocorrência de símbolos / tem comprimento zero.
- Tamanho ou comprimento de uma string w = |w|:
 - Número de posições para símbolos no string.
 - Ex.: |0011|=4 e |000|=3 e |ε|=0.

25

Aspectos Teóricos da Computação

Conceitos da Teoria de Autômatos

- Prefixo
 - é qualquer sequência inicial de símbolos da palavra.
- Sufixo
 - é qualquer sequência final de símbolos da palavra.
- Subpalavra (substring) de uma palavra
 - é qualquer sequência de símbolos contíguos da palavra.
- Exemplo: abcb é uma palavra sobre o alfabeto { a, b, c }. Sobre esta palavra:
 - Prefixos:
 - ϵ , a, ab , abc , abcb
 - · Sufixos:
 - ϵ , b, cb, bcb, abcb
 - Subpalavra
 - > Qualquer prefixo ou sufixo de uma palavra é uma subpalavra.

Conceitos da Teoria de Autômatos

- Prefixo próprio:
 - um prefixo que não seja a palavra inteira
 - Exemplo:
 - · "abc" é um prefixo próprio de "abcdef"
- Sufixo próprio:
 - um sufixo que não seja a palavra inteira
 - Exemplo:
 - "def" é um sufixo próprio de "abcdef"

27

Aspectos Teóricos da Computação

Máquina de Estado Finito

- Potência de um alfabeto Σ^k:
 - Define-se Σ^k como o conjunto de strings de comprimento k, onde o símbolo de cada um deles está em Σ .
 - Exemplo: Seja $\Sigma = \{0,1\}$. $\Sigma^1 = ?; \Sigma^2 = ?$
 - $\Sigma^1 = \{0,1\}.$
 - $\Sigma^2 = \{00, 01, 10, 11\}.$
 - $\Sigma^3 = ?$
 - Σ*:conjunto de todos os strings de um alfabeto.
 - $\{0,1\}^*=\{ \varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots \}$
 - $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$

Conceitos da Teoria de Autômatos

- Alfabeto Σ⁺:
 - $\Sigma^+=\Sigma^1\cup\Sigma^2\cup\Sigma^3\cup...$
 - $\Sigma^*=\Sigma^+\cup\{\epsilon\}$
- Concatenação de Strings
 - Sejam as strings $x=a_1a_2a_3...a_i$ e $y=b_1b_2b_3...b_j$, onde |x|=i e |y|=j. Assim, a string concatenada de x e y, $x_{\circ}y$, de tamanho i+j é: $x_{\circ}y=a_1a_2a_3...a_ib_1b_2b_3...b_j$.
 - Ex.: x = 011101 e y = 101. $x_0y = ?$ e $y_0x = ?$
 - Resp.: $x \circ y = 011101101$ e $y \circ x = 101011101$.

29

Aspectos Teóricos da Computação

Conceitos da Teoria de Autômatos

- · Linguagens: conjunto de palavras
 - Seja Σ um alfabeto e sobre este um conjunto de palavras é escolhido a partir de Σ^* . Diz-se que L é uma linguagem sobre Σ , se $L \subseteq \Sigma^*$.
 - Uma linguagem sobre Σ não precisa incluir palavras com todos os símbolos do alfabeto Σ .
 - Língua portuguesa
 - $\Sigma = \{a, \dot{a}, \dot{a}, \ddot{a}, b, c, d, e, ..., v, w, x, y e z\}$
 - Linguagem C:
 - *L* ⊆ {subconjunto dos caracteres ASC}
 - Diz-se que uma **linguagem** é **regular** se existir um autômato finito que a reconhece.

30

Conceitos da Teoria de Autômatos

- Exercícios Linguagens:
 - 1) Qual é a linguagem de todas as palavras que consistem em n 0's seguidos por n valores 1's, para algum $n \ge 0$?

Resp.: $L=\{ \epsilon, 01, 0011, 000111, ... \}$.

2) Qual é a linguagem de todas as palavras que consistem de números binários que sejam primos?

Resp.: *L*={ 10, 11, 101, 111, 1011, ...}

31

Aspectos Teóricos da Computação

Conceitos da Teoria de Autômatos

- Exercícios Linguagens:
- 3) Suponha o alfabeto Σ : = { a, b } . Então, o conjunto de palíndromos (palavras que têm a mesma leitura da esquerda para a direita e vice-versa) sobre Σ é um exemplo de linguagem infinita. Assim, são palavras desta linguagem:
 - Resp.: ε, a, b, aa, bb, aaa, aba, bab, bbb, aaaa, ...