

1	Introduction	5
	1.1 Solved Problems	5

4 CONTENTS

1.1 Solved Problems

■ Problem 1.1 — Convergence of complex variables. Let $\{z_n=a_n+ib_n\}_{n\in\mathbb{N}}$ for some $a_n\in\mathbb{R},b_n\in\mathbb{R}$ be a sequence of complex numbers. Show that z_n converges to $w=\alpha+i\beta$ if and only if $a_n\to\alpha$ and $b_n\to\beta$ as $n\to\infty$.

Proof. The proof is as follows

Let otherwise. Without loss of generality, we can assume that a_n does not converge to α . Then $\exists \epsilon > 0$ such that $\forall N > 0$ we can find n > N for which $|a_n - \alpha| > \epsilon$. This implies that

$$|(a_n - \alpha) + i(b_n - \beta)|^2 = |a_n - \alpha|^2 + |b_n - \beta|^2 > \epsilon^2$$

which implies

$$|z_n - \omega| = |(a_n - \alpha) + i(b_n - \beta)| > \epsilon$$

for some ϵ and for some n > N for any choice of N. This is a contradiction, since implies z_n is not converging to w.

 \leftarrow Assume $\alpha_n \to a$ and $\beta_n \to b$ as $n \to \infty$. Fix $\epsilon > 0$. Let N be large enough such that

$$|a_n - \alpha| < \epsilon^2/2, \qquad |b_n - \beta| < \epsilon^2/2.$$

Then we can write

$$|(a_n - \alpha) + i(b_n - \beta)|^2 = |a_n - \alpha|^2 + |b_n - \beta|^2 < \epsilon^2.$$

This implies that z_n converges to w.

■ Problem 1.2 — Completeness of \mathbb{C} . Prove that the set of all complex numbers \mathbb{C} is complete.

Proof. The convergence of a complex number is equivalent to the convergence of its real and imaginary parts. Since \mathbb{R} is complete, it follows that \mathbb{C} is also complete,