

Triangles Ex 4.6 Q13

Answer:

GIVEN: In \triangle ABC, P divides the side AB such that AP : PB = 1 : 2, Q is a point on AC such that PQ || PC

TO FIND: The ratio of the areas of \triangle APQ and the trapezium BPQC.

In AAPQ and AABC

 $\angle APQ = \angle B$ (Corresponding angles)

 $\angle PAQ = \angle BAC$ (Common)

So, $\triangle APQ - \triangle ABC$ (AA Similarity)

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.

$$\frac{Ar(\Delta APQ)}{Ar(\Delta ABC)} = \frac{AP^2}{AB^2}$$
$$\frac{Ar(\Delta APQ)}{Ar(\Delta ABC)} = \frac{1x^2}{(1x+2x)^2}$$

$$\frac{Ar(\Delta APQ)}{Ar(\Delta ABC)} = \frac{1}{9}$$

Let Area of $\triangle APQ = 1$ sq. units and Area of $\triangle ABC = 9x$ sq. units

$$Ar[\text{trapBCED}] = Ar(\Delta ABC) - Ar(\Delta APQ)$$

= $9x - 1x$
= $8x \text{ sq units}$

Now,

$$\frac{\operatorname{ar}(\Delta \text{ APQ})}{\operatorname{ar}(\operatorname{trapBCED})} = \frac{x \text{ sq units}}{8x \text{ sq units}} = \frac{1}{8}$$

Triangles Ex 4.6 Q14

Answer:

Given: The area of two similar triangles is 100cm^2 and 49cm^2 respectively. If the altitude of bigger triangle is 5 cm

To find: their corresponding altitude of other triangle

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding altitudes.

$$\frac{ar(\text{bigger triangle1})}{ar(\text{triangle2})} = \left(\frac{\text{altitudeof bigger triangle1}}{\text{altitude2}}\right)$$
$$\frac{100}{49} = \left(\frac{5}{\text{altitude2}}\right)^2$$

Taking square root on both side

$$\frac{10}{7} = \frac{5}{\text{altitude2}}$$

$$\text{altitude2} = 3.5 \text{ cm}$$

Triangles Ex 4.6 Q15

Answer:

Given: The area of two similar triangles is 121cm² and 64cm² respectively. IF the median of the first triangle is 12.1cm

To find: corresponding medians of the other triangle

We know that the ratio of areas of two similar triangles is equal to the ratio of squares of their medians.

$$\frac{ar(\text{triangle1})}{ar(\text{triangle2})} = \left(\frac{\text{median1}}{\text{median2}}\right)^2$$
$$\frac{121}{64} = \left(\frac{12.1}{\text{median2}}\right)^2$$

taking squareroot on bothside

$$\frac{11}{8} = \frac{12.1}{\text{median2}}$$

$$\boxed{\text{median } 2 = 8.8\text{cm}}$$

******* END *******