

CORTX/Motr in Sage2

March 2021

Seagate Systems EU R&D

Ganesan.Umanesan@seagate.com (Sr staff software Eng)
Andriy.Tkachuk@seagate.com (Staff Software Eng)
Sai.Narasimhamurthy@seagate.com (Eng Director)

One Storage System to rule them all!

Extreme Computing

Changing I/O Needs

HDDs cannot Keep Up

Big Data Analysis

Avoid Data Movements

Manage and Process extremely large data sets

AI/DL

Large Memory Requirements

Storage and I/O Regs significantly different

SAGE Project Recap [2015 - 2018]

✓ Co-designed with "BDEC" Use Cases

(Big Data Extreme Compute)

Storage system based CORTX Motr

SAGE Tier-1

Deployed @ Juelich Supercomputing, Germany

Porting of Stack Components done

SAGE Tier-4

Porting of BDEC applications done

Key Takeaways from SAGE

Motr Basic Services

- Layouts
- Containers
- Porting on different media
- Function shipping (PoC)
- Clovis (Motr API) usage

Runtimes

- Cache Management
- Virtual Memory Hierarchy (Both using USM)

Use Case Access

- PNFS
- Apache Flink

Programming Models

Exploring Avoiding MPI-IO

Tools

- Allinea Performance Tools
- HSM

- Continuing to build on the vision Sage₂

¥

š

Sage 2

France

Sweden

Sage 2 Innovation

Vision:

Extending storage systems into Compute nodes & blurring the lines between memory & storage

Four primary Innovations

- 1.Compute node local Memories part of storage stack
- 2.Byte Addressable extensions into Persistent storage (Global Memory Abstraction)
- 3.Co-design with new workflows: Mainly Data analytics pipelines w/ Al/Deep learning
- 4.Co-design with ARM based environments moving towards European HPC Ecosystem Goals.

AI/DL use cases expected to be memory intensive & will exploit node local memory which will need to be extended

Sage 2 - Key Stack Components

Global Memory Abstraction (High Level)

Object Storage Core

Global Memory Abstraction (Low Level)

ARM Compute Platform Node Local NVM Devices

Update to SAGE platform (NVM Dimms, etc)

Tools/ Prog. Models/Schedulers

TensorFlow, Slurm for Motr, Object access Prog. Mod, Simple dCache, High Speed Object Transfer, I/O Containers, Access Interface

<u>GMA</u>

- High Level API for mapping Objects in Memory
- Low Level Incorporating NVDIMMs

Object Storage Core

- Motr for GMA
- Motr extreme scale comps. QoS, DTM, Function Shipping
- Motr for Sage2 (Incl. ARM port)

<u>ARM</u>

ARM support for NVDIMMs

Sage 2 Use Cases

Al Based Data Analysis [1]Cervical Cancer Diagnosis

Al Based Data Analysis [2] Multi-label Classification

] Multi-label Classificatio of Large Videos

[4] Radio Astronomy Data Analysis

[7] Classic HPC Applications

[3] Brain Image Data Analysis

Machine Learning
[6]Tensorflow for machine learning monitoring data

[5] Multi-Physics Multi-stage workflows (Nuclear Fusion)

Sage 2 Update

Focus on Application Porting

Prototype updated with latest Motr+Hare

- Completion of Prototype Implementations
- Detailed Performance analysis of CORTX on SAGE - Coming up

•)Sage2

Sage2 – Ongoing POCs/ Implementations

Distributed Transactions in Objects (Motr) Simple Access Interface on Motr API Function Shipping in Motr

Clovis Apps Framework on Motr API

Go binding on Motr MPI

Open-Source Code (Incl. Documentation) (Q3, Q4 2021)

Seagate 5U84 Enclosure Seagate 5U84 Enclosure Seagate 5U84 Enclosure Seagate 5U84 Enclosure ARM server ARM server ARM server ARM server Fier3-1a Fier3-2a Rack 2 Tier3-1 Brocade ICX6430-24 Ethernet Switch Brocade ICX6450-48 Ethernet Switch Mellanox SX6036 Infiniband Swtich Mellanox SB7890 Infiniband Swtich Login Cray S2600WTTR Server Scratch Storage OceanStor CMU Bull R421-E4 Server Seagate 2U24 Enclosure Supermicro 2U 4-Server Supermicro 2U 4-Server Seagate 2U24 Enclosure Seagate 2U24 Enclosure Seagate 2U24 Enclosure ThunderX2 Nodes **Bull Bullion Server Bull Bullion Server** Bull Bullion Server Bull Bullion Server Fier1-1 Master Tier1-2 Master client-tx2-[1-4] Fier1-1 Slave Tier1-2 Slave Clients Clients Tier2-1 Fier2-2 Fier2-4 Visualisation Nodes Data Warp Nodes datawarp-03 datawarp-04 datawarp-02 visnode-03 visnode-04 datawarp-01 visnode-02 visnode-01 Rack 3 35 25 25 25 23 23 20 8 19 15 9 38 34 32 28 27 19 14 17 40 37 30 13 9 User Inaccessible 1Gb Ethernet User Accessible Infiniband Tier 1-1 Master Tier 1-2 Master Tier 1-2 Slave More on SAGE prototype Tier 1-1 Slave Tier 3-2 Tier 2-1a Tier 2-2a Fier 3-2a Tier 4-2 Tier 2-2 Tier 2-3 Tier 2-4 Tier 3-1; Tier 2-1 Tier 3-1 Tier 4-1 Login Login Node JuNet

₽ eboM siV

Vis Node 3

Z aboN siV I sboM siV

> ThunderX2 3 ThunderX2 4

ThunderX2 2 ThunderX2 1

Data Warp 4

Data Warp 2

Data Warp 3

Data Warp 1

Clients 8

BMC

CMU

OceanStor

Clients 1 Clients 2

SAGE - Tiers 1 and 2

Node	Model	CPU	Memory (us-
			able/installed)
sage-tier1-	BULL bullion	sage-tier1- BULL bullion 4 Xeon(R) CPU E7-4830 v3 @ 1511/1536GiB	1511/1536GiB
1	S	2.10GHz	
sage-tier1-	BULL bullion	age-tier1- BULL bullion 4 Xeon(R) CPU E7-4830 v3 @ 1511/1536GiB	1511/1536GiB
2	S	2.10GHz	
2	-	2	

Dev	Disk size	FS	Disk size FS Mount point	Model
/dev/sda	292GB	stx		MR9363-4i
/dev/nvme0n1	350GB	n/a	n/a	Intel Optane
/dev/nvme1n1	1.5TB	n/a	n/a	Seagate Nytro XP7102

Node	Model	CPU	Memory (us-
			able/installed)
sage-	GIGABYTE R281-	GIGABYTE R281- 2 Cavium ThunderX2(R) CPU CN9975 127/128GiB	127/128GiB
tier2-1a	T91-00	v2.2 @ 2.0GHz	
sage-	GIGABYTE R281-	SIGABYTE R281- 2 Cavium ThunderX2(R) CPU CN9975 127/128GiB	127/128GiB
tier2-2a	T91-00	v2.2 @ 2.0GHz	

Node	Number of disks Size	Size	Model
sage-tier2-1a	2	SSDPE2KX010T8	INTEL
	11	745.2G	XS800LE70004
sage-tier2-2a	2	SSDPE2KX010T8	INTEL
	11	745.2G	XS800LE70004

Node	Model		CPU					Memory	-sn)
								able/installed)	
sage-	Seagate	Laguna	1 Xeon(R) CPU E5-2648L v3 @	CPU	E5-2648L	v3	@	125/128GiB	
tier2-1	Seca		1.80GHz						
sage-	Seagate	Seagate Laguna	1 Xeon(R)	CPU	E5-2648L	43	e	I Xeon(R) CPU E5-2648L v3 @ 125/128GiB	
tier2-2	Seca		1.80GHz						
sage-	Seagate	Laguna	_	CPU	E5-2618L	٧3	@	Xeon(R) CPU E5-2618L v3 @ 125/128GiB	
tier2-3	Seca		2.30GHz						
sage-	Seagate	Laguna 1	1 Xeon(R)	CPU	E5-2648L	v3	e	Xeon(R) CPU E5-2648L v3 @ 125/128GiB	
tier2-4	Seca		1.80GHz						

Node	Number of disks Size	Size	Model
sage-tier2-1	1	119.2G	Micron_M600_MTFD
	3	745.2G	ST800FM0183
sage-tier2-2	_	119.2G	Micron_M600_MTFD
	7	745.2G	ST800FM0183
sage-tier2-3	_	119.2G	Micron_M600_MTFD
	9	745.2G	ST800FM0183
sage-tier2-4		119.2G	Micron_M600_MTFD
	9	745.2G	ST800FM0183

SAGE - Tiers 3 and 4

Node	Model	CPU	Memory (L	-sn)
			able/installed)	
sage-	Seagate 5U84 Laguna	Seagate 5U84 Laguna 1 Xeon(R) CPU E5-2618L v3 @ 125/128GiB	125/128GiB	
tier3-1	Seca	2.30GHz		
sage-	Seagate 5U84 Laguna	1 Xeon(R) CPU E5-2618L v3 @ 125/128GiB	125/128GiB	
tier3-2	Seca	2.30GHz		

tier3-2	Seca	2.30GHz	
Node	Number of disks Size	Size	Model
sage-tier3-1	1	119.2G	Micron_M600_MTFD
	49	3.7T	ST4000NM0031
sage-tier3-2	1	119.2G	Micron_M600_MTFD
	19	7.3T	ST8000NM0055-1RM

Node	Model	CPU	Memory (us-
			able/installed)
sage-	GIGABYTE R281-	GIGABYTE R281- 2 Cavium ThunderX2(R) CPU CN9975 127/128GiB	127/128GiB
tier3-1a	T91-00	v2.2 @ 2.0GHz	
sage-	GIGABYTE R281-	GIGABYTE R281- 2 Cavium ThunderX2(R) CPU CN9975 127/128GiB	127/128GiB
tier3-2a	T91-00	v2.2 @ 2.0GHz	

 Number of disks
 Size
 Model

 1
 279.4G
 ST300MP0006

 1
 279.4G
 ST300MP0006

Node Nul sage-tier3-1a 1 sage-tier3-2a 1

Memory	-sn) "
able/installe Seagate 5U84 Laguna	able/installed) 125/128GiB
2	Seca 2.30GHz 2.30GHz 125/128GiB

11c14-7	Seca	1.000п2		
Node	Number of disks Size	Size	Model	
sage-tier4-1	1	119.2G	Micron_M600_MTFD	
sage-tier4-2	1	119.2G	Micron_M600_MTFD	
		745.2G	ST800FM0183	

SAGE – The 16 Clients

VISI	<u>2</u>	VISI	70	VISI		2 2	5			2		dat	5	dat	05	dat	03	
PDU	Port	AA4		AA4		AA4		AA4		AA5		AA5		AA5		AA5		
-sn)																		
Memory	able/installed)	23/24GiB		23/24GiB		23/24GiB		23/24GiB		19/20GiB		15/16GiB		15/16GiB		15/16GiB		
		@		@		©		@		@		@		@		@		
		E5630		E5630		E5630		E5620		E5620		E5504 @		E5504		E5504		
		CPU																
CPU		2 Xeon(R) CPU	2.53GHz	2 Xeon(R) CPU	2.53GHz	2 Xeon(R) CPU	2.53GHz	2 Xeon(R) CPU	2.40GHz	2 Xeon(R) CPU	2.40GHz	2 Xeon(R) CPU	2.00GHz	2 Xeon(R) CPU	2.00GHz	2 Xeon(R) CPU	2.00GHz	
Model		Supermicro X8DTT-	Н	Supermicro X8DTT		Supermicro X8DTT		Supermicro X8DTT		Supermicro X8DTT								
Node		client-	21	client-	22	client-	23	client-	24	client-	25	client-	26	client-	27	client-	28	

Node	Model		CPU	Memory (us-
				able/installed)
visnode-	Cray	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB	125/128GiB
01	S2600TPR		2.40GHz	
visnode-	Cray	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB	125/128GiB
02	S2600TPR		2.40GHz	
visnode-	Cray	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB	125/128GiB
03	S2600TPR		2.40GHz	
visnode-	Cray	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB	125/128GiB
90	S2600TPR		2.40GHz	

Node	Model		CPU	Memory able/installed)	-sn)
datawarp- 01	Cray S2600WTTR	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB 2.40GHz	125/128GiB	
datawarp- 02	Cray S2600WTTR	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB 2.40GHz	125/128GiB	
datawarp- 03	Cray S2600WTTR	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB 2.40GHz	125/128GiB	
datawarp- 04	Cray S2600WTTR	Inc.	Inc. 2 Intel(R) Xeon(R) CPU E5-2680 v4 @ 125/128GiB 2.40GHz	125/128GiB	

SAGE - Login Node and CMU/ Software

Memory able/installed)		apic moralization)	109/112GiB	
	CPU		Bull SAS R421- 2 Xeon(R) CPU E5-2650 v3 @	2.30GHz
Model			Bull SAS R421-	E4
Node			sage-	cmu
-sn) (
Memory	Memory able/installed)		122/128GiB	
	CPU		71 (2.40GHz
Model		F	Inc.	S2600WTTR
Node	Node		sage-	login

server nodes

cortx-motr-1.0.0-1_git89f7737_3.10.0_1127.19.1.el7.x86_64 cortx-hare-1.0.0-1_git28f3372.el7.x86_64 kmod-lustre-client-2.12.4.2_171_g9356888-1.el7.x86_64 CentOS Linux release 7.9.2009 (Core)

compute nodes

cortx-motr-1.0.0-1_git89f7737_3.10.0_1127.19.1.el7.x86_64 cortx-hare-1.0.0-1_git28f3372.el7.x86_64 kmod-lustre-client-2.12.4.2_171_g9356888-1.el7.x86_64 CentOS Linux release 7.8.2003 (Core)

Usage of the SAGE System with Clovis Apps (Demo)

coct

Read motr object to a file

c0cp

Write motr object from a file

C02

Remove motr object

All three applications run natively on Motr clients.

They use the Motr client interface (Clovis) to connect directly to servers for performing object I/O.

All IO and other operations performed on native/raw motr objects.

Do not handle composite objects yet.

Not at all S3 and other high-level objects.

Git Repo:

https://gitlab.version.fz-juelich.de/sage2/clovis-sample-apps

(Ongoing work to consolidate repository)

HSM Demo

HSM_Summary

```
copy <fid> <offset> <len> <src_tier> <tgt_tier> [options: mv, keep_prev, w2dest]
move <fid> <offset> <len> <src_tier> <tgt_tier> [options: keep_prev, w2dest]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                archive <fid> <offset> <len> <tgt_tier> [options: mv,keep_prev,w2dest]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  multi release <fid> <offset> <len> <max tier> [options: keep latest]
                                                                                                                                                                                                                                                                                                                                                                                                                                                       stage <fid> <offset> <len> <tgt_tier> [options: mv,w2dest]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    release <fid> <offset> <len> <tier> [options: keep_latest]
                                                                                                                                                                                                                                                write <fid> <offset> <len> <seed>
                                 Usage: m0hsm <action> <fid>[...]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           set_write_tier <fid> <tier>
                                                                                                                                                                                                                                                                                                                             read <fid> <offset> <len>
                                                                                                                                                                                                                                                                                      write_file <fid> <path>
                                                                                                                   create <fid> <tier>
                                                                                                                                                                                                    dump <fid>
                                                                                                                                                            show <fid>
mOhsm> help
                                                                               actions:
```

```
The numbers are read in decimal, hexadecimal (when prefixed with \lceil 0x \rceil)
<fid> parameter format is [hi:]lo. (hi == 0 if not specified.)
                                                                                                                            or octal (when prefixed with '0') formats.
```

Git Repo

```
https://github.com/Seagate/cortx-motr/https://github.com/Seagate/cortx-motr/tree/main/hsm
```

Note "first cut" performance for tiers as follows:

Tier1 – 2.6 GB/s (4 NVME devs) Tier2 – 1.9 GB/s (4 SSD devs) Tier3 – 0.6 GB/s (4 HDD devs) (Note: the pool width of 4 devices was used in Tier2 and Tier3 (as in Tier1) to make the perf measurements comparable.

Additional Notes (Code & software management)

- multiple GB/s Performance tests currently being run by mcp utility (written in Go) (We are getting across tiers – more detailed performance characterizations TBD)
- Code that will be available (Many will be integrated/linked from CORTX github)
- MIO in Maestro (Seagate) currently in Maestro gitlab repos
- https://github.com/Seagate/cortx-mio
- TensorFlow
- □ DCache
- Slurm Interface
- □ Clovis Driver for GMA
- Simple Access Interface
- ESDM Middleware work in EsiWACE2 (Seagate) currently in DKRZ gitlab repos

