

About me

- McMaster Engineering Physics
- Utrecht University Energy Science
- Spain National Curling Teams

What is short-term demand forecasting?

Each day predict the demand for the next 24 hours

Why care about short-term demand forecasting?

BETTER 24 HOUR AHEAD FORECAST

REDUCED NEED FOR STANDBY RESERVE

MORE EFFICIENT ELECTRICAL GRID

- Plan to use renewable generation
- Plan for high load days
- Plan for low load days

Why do I care about energy forecasting

A difficult learning problem...

Why do I care about energy forecasting

... and highly relevant

State of the art approaches are using Neural Networks

Article

Short-Term Load Forecasting in Smart Grids: An Intelligent Modular Approach

Ashfaq Ahmad ^{1,*}, Nadeem Javaid ², Abdul Mateen ², Muhammad Awais ² and Zahoor Ali Khan ³

- School of Electrical Engineering and Computing, The University of Newcastle, Callaghan 2308, Australia
- Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan; nadeemjavaid@comsats.edu.pk (N.J.); ammateen49@gmail.com (A.M.); amawais@hotmail.com (M.A.)
- Computer Information Science, Higher Colleges of Technology, Fujairah 4114, UAE; zkhan1@hct.ac.ae
- * Correspondence: ashfaqahmad@ieee.org; Tel.: +61-416-618-613

Received: 11 November 2018; Accepted: 1 January 2019; Published: 4 January 2019

Abstract: Daily operations and planning in a smart grid require a day-ahead load forecasting of its customers. The accuracy of day-ahead load-forecasting models has a significant impact on many decisions such as scheduling of fuel purchases, system security assessment, economic scheduling of generating capacity, and planning for energy transactions. However, day-ahead load forecasting is a challenging task due to its dependence on external factors such as meteorological and exogenous variables. Furthermore, the existing day-ahead load-forecasting models enhance forecast accuracy by paying the cost of increased execution time. Aiming at improving the forecast accuracy while not paying the increased executions time cost, a hybrid artificial neural network-based day-ahead load-forecasting model for smart grids is proposed in this paper. The proposed forecasting model comprises three modules: (i) a pre-processing module; (ii) a forecast module; and (iii) an optimization

Average Percent Error 1-3%

State of the art and classic forecasting tools

Statistical and Machine Learning forecasting methods: Concerns and ways forward

Spyros Makridakis¹, Evangelos Spiliotis²*, Vassilios Assimakopoulos²

Energy demand changes through the day

Also changes through the year...

What do we use make forecasts?

Models

SARIMA

Prophet

LSTM

Input Variables (Features)

SARIMA: Complex regression formula...

Models trend and a seasonal repetitions

ARIMA
$$(p, d, q)$$
 $(P, D, Q)_m$
 \uparrow

(Non-seasonal part of the model)

(Seasonal part of the model)

Fast general additive model

PROPHET

Forecasting at scale.

In use for capacity planning, goal setting, anomaly detection...

Yearly + monthly + daily patterns = Forecast

Classic neural networks process a sequence directly

Good at memorizing patterns...

Recurrent Neural Network Good at finding relationships between inputs...

But bad at finding long term dependencies

Long-Short Term Memory (LSTM) Able to 'remember' important parts of a sequence

Average how wrong we are at each cycle

SARIMA found the general shape of the day

Configuring walk forward was a little slow...

```
[Parallel(n_jobs=8)]: Using backend MultiprocessingBackend with 8 concurrent workers.
Model [24, 0, 0, 1, 1, 1, 24]: 4241.718928386647
Model [24, 0, 0, 2, 1, 1, 24]: 4003.5593081976613
Model [24, 0, 0, 1, 2, 1, 24]: 4480.561686881436
[Parallel(n_jobs=8)]: Done 3 out of 16 | elapsed: 38.8min remaining: 168.3min
Model [24, 0, 0, 1, 1, 1, 48]: 3604.430050456027
Model [48, 0, 0, 1, 1, 1, 24]: 4177.370619587565
[Parallel(n_jobs=8)]: Done 5 out of 16 | elapsed: 82.1min remaining: 180.7min
Model [24, 0, 0, 2, 2, 1, 24]: 5026.634648452434
Model [48, 0, 0, 1, 2, 1, 24]: 4715.07641950746
[Parallel(n_jobs=8)]: Done 7 out of 16 | elapsed: 182.4min remaining: 234.5min
Model [48, 0, 0, 2, 1, 1, 24]: 3844.476546036894
Model [24, 0, 0, 2, 1, 1, 48]: 3569.2822786280876
[Parallel(n_jobs=8)]: Done 9 out of 16 | elapsed: 202.8min remaining: 157.8min
Model [24, 0, 0, 1, 2, 1, 48]: 4073.1733620231066
Model [48, 0, 0, 1, 1, 1, 48]: 3866.7211928488273
[Parallel(n_jobs=8)]: Done 11 out of 16 | elapsed: 249.7min remaining: 113.5min
Bad config[48, 0, 0, 2, 2, 1, 48]
Model [48, 0, 0, 2, 2, 1, 24]: 4523.992357046215
[Parallel(n_jobs=8)]: Done 13 out of 16 | elapsed: 341.3min remaining: 78.8min
Model [24, 0, 0, 2, 2, 1, 48]: 3632.000559581665
Model [48, 0, 0, 1, 2, 1, 48]: 4259.056781541469
```

```
[Parallel(n_jobs=8)]: Done 16 out of 16 | elapsed: 456.9min finished
```

```
CPU times: user 15.3 s, sys: 5.83 s, total: 21.1 s Wall time: 7h 36min 56s
```

No problem Google has fast computers...

```
[Parallel(n_jobs=8)]: Using backend MultiprocessingBackend with 8 concurrent workers.
                                                                                      Machine configuration
Model [24, 0, 0, 1, 1, 1, 24]: 4241.718928386647
Model [24, 0, 0, 2, 1, 1, 24]: 4003.5593081976613
Model [24, 0, 0, 1, 2, 1, 24]: 4480.561686881436
                                                                                        Machine family
[Parallel(n jobs=8)]: Done 3 out of 16 | elapsed: 38.8min remaining: 168.3min
                                                                                          General-purpose Memory-optimised
Model [24, 0, 0, 1, 1, 1, 48]: 3604.430050456027
                                                                                        Machine types for common workloads, optimised for cost and flexibility
Model [48, 0, 0, 1, 1, 1, 24]: 4177.370619587565
[Parallel(n_jobs=8)]: Done 5 out of 16 | elapsed: 82.1min remaining: 180.7min
                                                                                        Generation
Model [24, 0, 0, 2, 2, 1, 24]: 5026.634648452434
                                                                                          Second
Model [48, 0, 0, 1, 2, 1, 24]: 4715.07641950746
[Parallel(n_jobs=8)]: Done 7 out of 16 | elapsed: 182.4min remaining: 234.5min
                                                                                        Powered by Cascade Lake CPU platform
Model [48, 0, 0, 2, 1, 1, 24]: 3844.476546036894
Model [24, 0, 0, 2, 1, 1, 48]: 3569.2822786280876
                                                                                        Machine type
[Parallel(n_jobs=8)]: Done 9 out of 16 | elapsed: 202.8min remaining: 157.8min
                                                                                         n2-highcpu-64 (64 vCPU, 64 GB memory)
Model [24, 0, 0, 1, 2, 1, 48]: 4073.1733620231066
Model [48, 0, 0, 1, 1, 1, 48]: 3866.7211928488273
[Parallel(n_jobs=8)]: Done 11 out of 16 | elapsed: 249.7min remaining: 113.5min
                                                                                                               vCPU
                                                                                                                                     Memory
Bad config[48, 0, 0, 2, 2, 1, 48]
Model [48, 0, 0, 2, 2, 1, 24]: 4523.992357046215
                                                                                                                                     64 GB
                                                                                                               64
[Parallel(n_jobs=8)]: Done 13 out of 16 | elapsed: 341.3min remaining: 78.8min
Model [24, 0, 0, 2, 2, 1, 48]: 3632.000559581665
Model [48, 0, 0, 1, 2, 1, 48]: 4259.056781541469
```

[Parallel(n_jobs=8)]: Done 16 out of 16 | elapsed: 456.9min finished

CPU times: user 15.3 s, sys: 5.83 s, total: 21.1 s

Wall time: 7h 36min 56s

Just don't try to use them with your free credits

CPU times: user 15.3 Wall time: 7h 36min 5

Starting VM instance 'instance-1' failed. Error: Quota 'N2_CPUS' exceeded. Limit: 24.0 in region us-central1.

Prophet captured weekly changes well

Typical data structure for an LSTM

Repeat for every hour in the day 3D → 4D

Restructuring from 4D back to 3D

Flatten Time Stepped Features into row vectors

Exploiting the recurrent capacity of LSTM

Combine features into one long input for each hour of the day

LSTM

Comparing the models

Comparing model errors

Model	Mean Absolute Error (MW)	Mean Absolute Percent Error (%)
SARIMA	2821	9.81%
Prophet	2116	7.54%
LSTM	1901	6.61%
Spain's TSO	350	1.5%

Spain's current forecast error

350 N/W

1-2%

Two week project vs. team of experts

3.2%

Thank you!