Switched Local Area Networks

Daniel Zappala

CS 460 Computer Networking Brigham Young University

Addressing

Local Area Network (LAN)

- broadcast channel shared among many hosts
 - any frames sent to the broadcast address reach all hosts on the I AN
 - earlier: all frames broadcast, those who don't want the data ignore it (bus topology)
 - now: frames sent to a particular MAC address reach only the destination host (star topology)

MAC Addresses

- used to get frame from one interface to another physically-connected interface (on the same network)
- most are 48 bits long, depends on link-layer protocol
- address burned into the adapter ROM
- broadcast address usually all ones (FF-FF-FF-FF-FF)

MAC Addresses are Globally Unique

- address assignment administered by IEEE
 - manufacturer buys portion of MAC address space (prefix)
 - uses that prefix for all MAC addresses and ensures it does not reuse the suffix
- uniqueness provides address portability
 - can move Ethernet card from one LAN to another
 - don't need hierarchy or aggregation like with IP addresses because MAC addresses only used on one LAN

ARP

ARP: Address Resolution Protocol

- when forwarding a packet with IP, a router knows when the packet has reached its destination network
- how can the router determine the associated MAC address for a given IP address?

ARP: Address Resolution Protocol

- when forwarding a packet with IP, a router knows when the packet has reached its destination network
- how can the router determine the associated MAC address for a given IP address?
- keep an ARP table: maps an IP address to a MAC address

Building an ARP Table

- ARP table entry
 - IP address
 - MAC address
 - TTL (e.g. 20 minutes)
- host A has no entry for IP address B in table
 - A broadcasts ARP query for B
 - all hosts on LAN receive query
 - host with address B responds by unicast to A with its MAC address
 - all hosts hear query and response, cache translations for A and B in their ARP tables
 - all hosts process all ARP packets, even if not addressed to themselves

ARP Example

- send packet from A to B via R
- need ARP from A to R, R to B

ARP table for node 222.222.222.220

IP Address	MAC Address	ΠL
222.222.222.221	88-B2-2F-54-1A-0F	13:45:00
222.222.222.223	5C-66-AB-90-75-B1	13:52:00

Ethernet

Ethernet

- dominant wired LAN technology
- very inexpensive: \$20 for 100 Mbps
- simpler and cheaper than FDDI (token ring), ATM
- speeds have improved dramatically over the years: 10 Mbps -10 Gbps

Ethernet Topologies

- originally used a bus
- now nearly all installations use a star: hub or switch

Ethernet Frame Format

- IP packet encapsulated inside Ethernet Frame
- preamble: 7 bytes of 10101010 followed by one byte of 10101011
 - used to synchronize the receiver and sender clock rates
- addresses: 6 bytes
- type: higher level protocol (IP, IPX (Netware), AppleTalk)
- CRC: error detection/correction

Historic Ethernet

- 10base5 (thick ethernet)
 - original standard
 - coaxial cable, 500 meters max length, 10 Mbps
 - bus topology, BNC connectors, must be terminated
- 10Base-2 (thin ethernet)
 - coaxial cable, 185 meters max length, 10 Mbps
 - bus topology, BNC connectors, must be terminated

Addressing ARP **Ethernet** Switches

Modern Ethernet

- 10BaseT and 100BaseT (fast ethernet)
 - star topology
 - twisted pair, 100 m max distance between node and hub
 - hub is a physical-layer bit repeater, no frame buffering
 - all nodes effectively on same link
- Gigabit ethernet
 - point-to-point links and shared links
 - CSMA/CD only for shared links
 - full duplex at 1 Gbps and now 10 Gbps for point-to-point links

Switches

Addressing ARP Ethernet Switches

Hubs versus Switches

- hub: a bit repeater and signal amplifier
 - connects two LAN segments together
 - extends maximum distance between two nodes
 - connects collision domains
- switch: link layer forwarding device
 - stores and forwards frames using MAC address
 - uses link-layer protocol when forwarding frames
 - separates collision domains
- Ethernet switch: only handles Ethernet frames, uses CSMA/CD on each LAN segment

Switches versus Routers

- both use store-and-forward
 - switches forward frames
 - routers forward IP packets
- routers compute paths between IP networks using routing algorithms
- switches use a learning algorithm to connect links forming a single IP network

Example Configuration

Traffic Isolation

- each segment is a separate collision domain
 - each segment receives data at its full link rate
 - pairs of communicating hosts can operate at full speed simultaneously
- cut-through-switching: switch begins forwarding frame as soon as it reads the header

Addressing ARP Ethernet Switches

Self-Learning Switches

- switch could forward all frames on all links: high overhead
- use a self-learning algorithm to determine where to forward each frame
 - learn which host can be reached on a given interface
 - when the switch receives a frame, it *learns* that the source host is on this interface
 - record interface for the host in a switch table
- switch table entries
 - MAC address
 - interface
 - timestamp (stale entries deleted)

Switch Forwarding Algorithm

```
entry = switch_table{MACdestAddress}
if entry:
    if MACdestAddress on arriving interface
        drop frame
    else:
        entry.interface.forwardframe()
else:
    for i in interfaces:
        if i != arriving interface:
            i.forwardframe()
```

can the switch topology have loops?

Switch Example

- switch delivers a frame from A to I sends only on interface 3
- switch delivers a frame from A to C sends on all interfaces
- switch delivers a frame from C to I sends only on interface 3, learns that C is on interface 1

Addressing ARP Ethernet Switches

VLANs

- motivation
 - want to limit the spread of broadcast traffic
 - want to isolate traffic for small subnets, without requiring a separate, physical switch for each subnet
 - want the flexibility of moving hosts between subnets without physically rewiring them
- use a single switch with intelligence that knows which ports belong to which VLAN
- use a router within the switch to route between VLANs