

A NEW DISTRIBUTION ON THE SIMPLEX WITH AUTO-ENCODING APPLICATIONS

ANDREW STIRN, TONY JEBARA, DAVID A KNOWLES {andrew.stirn,jebara,daknowles}@cs.columbia.edu

CONTRIBUTIONS

We develop a surrogate distribution for the Dirichlet that offers explicit, tractable reparameterization, the ability to capture sparsity, and has barycentric symmetry (exchangeability) properties equivalent to the Dirichlet.

STICK BREAKING PROCESS

Algorithm 1 Ordered Stick-Breaking

Require: $K \geq 2$

Require: base dist. $p_i(v; a_i, b_i) \ \forall i \in [K]$

Require: ordering (permutation) oSample: $v_{o_1} \sim p_{o_1}(v; a_{o_1}, b_{o_1})$

Assign: $x_{o_1} \leftarrow v_{o_1}, i \leftarrow 2$

while i < K do

Sample: $v_{o_i} \sim p_{o_i}(v; a_{o_i}, b_{o_i})$

Assign: $x_{o_i} \leftarrow v_{o_i} \left(1 - \sum_{j=1}^{i-1} x_{o_j} \right)$

Assign: $i \leftarrow i + 1$

end while

Assign: $x_{o_K} \leftarrow 1 - \sum_{j=1}^{K-1} x_{o_j}$

return x

KUMARSWAMY STICK BREAKS

Bias for a 5-dimensional sparsity-inducing Dirichlet approximation using $\alpha = \frac{1}{5}(1,1,1,1,1)$. We maintain histograms for each sample dimension for three methods: Dirichlet, Kumaraswamy stick-breaks with a fixed order, Kumaraswamy stick-breaks with a random ordering. Note the bias on the last dimension when using a fixed order. Randomizing order eliminates this bias.

AN EXCHANGEABLE DIRICHLET SURROGATE

Let $f_o(x_{o_1}, \ldots, x_{o_K}; \alpha_{o_1}, \ldots, \alpha_{o_K})$ be the joint density of K random variables returned from algorithm 1 with $p_i(v; a_i, b_i) \equiv \text{Kumaraswamy}(x; \alpha_i, \sum_{j=i+1}^K \alpha_j)$ and some ordering o, then our proposed distribution for the (K-1)-simplex is

$$\text{MV-Kumaraswamy}(x;\alpha) = \underset{o \sim \text{Uniform}(O)}{\mathbb{E}} [f_o(x_{o_1},\ldots,x_{o_K};\alpha_{o_1},\ldots,\alpha_{o_K})]$$

Corollary 1 Let $S \subseteq \{1, ..., K\}$ be the set of indices i where for $i \neq j$ we have $\alpha_i = \alpha_j$. Define $A = \{1, ..., K\} \setminus S$. Then, $\mathbb{E}_{o \sim Uniform(O)}[f_o(x_{o_1}, ..., x_{o_K}; \alpha_{o_1}, ..., \alpha_{o_K})]$ is symmetric across barycentric axes $x_a \forall a \in A$ (i.e. it is exchangeable).

SEMI-SUPERVISED VARIATIONAL AUTO-ENCODING TASKS

We specify the a generative process with partially observed labels y. We we fit this model with an VAE. Each method varies in its treatment of the variational posterior $q(\pi; \alpha_{\phi}(x))$

$$\pi \sim \text{Dirichlet}(\pi; \alpha),$$
 $z \sim \mathcal{N}(z; 0, I),$ $y | \pi \sim \text{Discrete}(y; \pi),$ $x | y, z \sim p(x | f_{\theta}(y, z)),$

Experiment	Method	Error	<i>p</i> -value	Log Likelihood	<i>p</i> -value
MNIST	MV-Kum.	0.099 ± 0.011	_	-6.4 ± 6.3	
10 trials	IRG[1]	0.097 ± 0.008	0.72	-7.8 ± 7.1	0.64
600 labels	Kumar-SB[2]	0.248 ± 0.009	1.05×10^{-17}	-6.5 ± 6.3	0.95
$\dim(z) = 0$	Softmax	0.093 ± 0.009	0.24	-6.5 ± 6.2	0.95
MNIST	MV-Kum.	0.043 ± 0.005	_	45.06 ± 0.92	
10 trials	IRG[1]	0.044 ± 0.006	0.89	45.69 ± 0.38	0.06
600 labels	M2 (ours)	0.098 ± 0.014	5.37×10^{-10}	Not collected	
$\dim(z) = 2$	Kumar-SB[2]	0.138 ± 0.015	1.65×10^{-13}	44.33 ± 1.65	0.24
	Softmax	0.042 ± 0.003	0.40	45.14 ± 0.73	0.82
MNIST	MV-Kum.	0.018 ± 0.004		116.58 ± 0.68	
10 trials	IRG[1]	0.018 ± 0.004	0.98	116.57 ± 0.43	0.97
600 labels	M2 (ours)	0.020 ± 0.003	0.32	Not collected	
$\dim(z) = 50$	Kumar-SB[2]	0.071 ± 0.008	2.58×10^{-13}	116.22 ± 0.33	0.15
	Softmax	0.018 ± 0.003	0.87	116.24 ± 0.45	0.21
	$M2^{\dagger}[3]$	0.049 ± 0.001		Not reported	
	$M1 + M2^{\dagger}[3]$	0.026 ± 0.005		Not reported	
SVHN	MV-Kum.	0.288 ± 0.025		669.69 ± 0.37	
4 trials	IRG[1]	0.291 ± 0.017	0.85	668.93 ± 0.53	0.06
1000 labels	M2 (ours)	0.396 ± 0.010	1.86×10^{-04}	Not collected	
$\dim(z) = 50$	Kumar-SB[2]	0.707 ± 0.012	8.10×10^{-08}	669.03 ± 0.43	0.06
· · ·	Softmax	0.332 ± 0.009	0.02	669.55 ± 0.11	0.49
	$M1 + M2^{\dagger}[3]$	0.360 ± 0.001		Not reported	

DIRICHLET APPROXIMATION

2-simplex with Kumaraswamy sticks

GRADIENT VARIANCE

Variance of the ELBO's gradient's first dimension for Categorical data with 100 dimensions and a Dirichlet prior. Others fit a Dirichlet. We fit a MV-Kumaraswamy using K=100 samples (linear complexity) from Uniform(O) to Monte-Carlo approximate the full expectation.

REFERENCES & CODE

Paper and references available at:
arxiv.org/abs/1905.12052
Source code available at:
github.com/astirn/
MV-Kumaraswamy

References

- [1] M. Figurnov, S. Mohamed, and A. Mnih, "Implicit reparameterization gradients," in Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc., 2018, pp. 441–452. [Online]. Available: http://papers.nips.cc/paper/7326-implicit-reparameterization-gradients.pdf
- [2] E. Nalisnick and P. Smyth, "Stick-breaking variational autoencoders," International Conference on Learning Representations (ICLR), Apr 2017. [Online]. Available: http://par.nsf.gov/biblio/10039928
- [3] D. P. Kingma, S. Mohamed, D. Jimenez Rezende, and M. Welling, "Semi-supervised learning with deep generative models." in Advances in Neural Information Processing Systems 27. Curran Associates, Inc., 2014, pp. 3581–3589. [Online]. Available: http://papers.nips.cc/paper/5352-semi-supervised-learning-with-deep-generative-models.pdf