Université Pierre et Marie Curie 2007–2008

LM110 – Fonctions

Feuille 4

Exercice 1. Soient I un intervalle de \mathbf{R} et $f: I \to \mathbf{R}$ continue telle que pour tout x appartenant à I, on a $f(x)^2 = 1$. Montrer que f est soit la fonction constante égale à +1, soit la fonction constante égale à -1.

Exercice 2. Soit $f: \mathbf{R} \to \mathbf{R}$ la fonction définie par

$$f: x \mapsto \frac{\cos x}{1 + x^2}.$$

Montrer que f est bornée sur \mathbf{R} et déterminer $\sup_{x \in \mathbf{R}} f(x)$.

Exercice 3. Étudier la dérivabilité des fonctions suivantes.

$$f_1(x) = x^2 \cos \frac{1}{x}$$
 si $x \neq 0$ et $f_1(0) = 0$;
 $f_2(x) = \sin x \sin \frac{1}{x}$ si $x \neq 0$ et $f_2(0) = 0$;
 $f_3(x) = \frac{|x|\sqrt{x^2 - 2x + 1}}{x - 1}$ si $x \neq 1$ et $f_3(1) = 1$.

Exercice 4. Déterminer les extremums de $f(x) = x^4 - x^3 + 1$ sur **R**.

Exercice 5. Soit $f, g : [a, b] \longrightarrow \mathbf{R}$ deux fonctions continues sur [a, b] (a < b) et dérivables sur [a, b]. On suppose que $g'(x) \neq 0$ pour tout $x \in [a, b]$.

- 1. Montrer que $g(x) \neq g(a)$ pour tout $x \in]a, b[$. [Raisonner par l'absurde et appliquer le théorème de Rolle.]
- 2. Posons

$$p = \frac{f(b) - f(a)}{g(b) - g(a)}$$

et considérons la fonction h définie pour $x \in [a, b]$ par $h(x) = f(x) - p \cdot g(x)$. Montrer que h vérifie les hypothèses du théorème de Rolle et en déduire qu'il existe un nombre réel $c \in [a, b[$ tel que

$$\frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}.$$

3. On suppose que $\lim_{x\to b^-}\frac{f'(x)}{g'(x)}=\ell,$ où ℓ est un nombre réel. Montrer que

$$\lim_{x\to b^-}\frac{f(x)-f(b)}{g(x)-g(b)}=\ell.$$

4. Application : Calculer la limite suivante.

$$\lim_{x \to 1^{-}} \frac{\arccos(x)}{\sqrt{1 - x^2}}.$$

Exercice 6. Soit $f: \mathbf{R} \to \mathbf{R}$ une fonction dérivable telle que

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 0.$$

Montrer qu'il existe $c \in \mathbf{R}$ tel que f'(c) = 0.