Mathematics

Robin Adams

September 13, 2023

Contents

1 Primitive Terms and Axioms

.

4 CONTENTS

Chapter 1

Primitive Terms and Axioms

Let there be sets.

For any set A, let there be *elements* of A. We write $a \in A$ for: a is an element of A.

For any sets A and B, let there be *relations* between A and B. We write $R: A \hookrightarrow B$ for: R is a relation between A and B.

For any set A, let there be a relation of equality =between the elements of A.

For any sets A and B, relation $R:A \hookrightarrow B$, and elements $a \in A$ and $b \in B$, let there be a proposition aRb.

Definition 1.1 (Equality of Relations). We say relations $R, S : A \hookrightarrow B$ are equal, R = S, iff $\forall x \in A. \forall y \in B. (xRy \Leftrightarrow xSy)$.

Axiom Schema 1.2 (Comprehension). For any property $\phi[X, Y, x, y]$ where $x \in X$ and $y \in Y$, the following is an axiom:

For any sets A and B, there exists a relation $R: A \hookrightarrow B$ such that

$$\forall x \in A. \forall y \in B. xRy \Leftrightarrow \phi[A, B, x, y]$$
.

Definition 1.3 (Function). Let A and B be sets and $F: A \hookrightarrow B$. Then we say F is a function, and write $F: A \to B$, iff $\forall x \in A. \exists ! y \in B. xFy$. In this case we denote this unique y by F(x) and call it the value of F at the argument x.

Axiom 1.4 (Tabulation). For any relation $R: A \hookrightarrow B$, there exists a set |R|, the tabulation of R, and functions $p: |R| \to A$, $q: |R| \to B$, the projections, such that:

- $\forall x \in A. \forall y \in B. xRy \Leftrightarrow \exists r \in |R|. p(r) = x \land q(r) = y$
- For all $r, s \in |R|$, if p(r) = p(s) and q(r) = q(s) then r = s.

Axiom 1.5 (Infinity). There exists a set \mathbb{N} , an element $0 \in \mathbb{N}$ and an injective function $s : \mathbb{N} \to \mathbb{N}$ such that:

$$\forall n \in \mathbb{N}.s(n) \neq 0$$

Theorem 1.6. There exists a set 1, unique up to unique isomorphism, with exactly one element.

PROOF: By the Axiom of Infinity, a set exists that has an element. Pick a set A and $a \in A$. Define $R: A \hookrightarrow A$ by xRy iff x = y = a. Let 1 be the tabulation of R. \square

Definition 1.7 (Subset). A subset S of a set A is a relation $S: 1 \hookrightarrow A$. For $a \in A$, we write $a \in S$ for *Sa.

Axiom 1.8 (Power Set). For any set A, there exists a set $\mathcal{P}A$, the power set of A, and a relation \in : $A \hookrightarrow \mathcal{P}A$, called membership, such that, for any subset $S \subseteq A$, there exists a unique $\overline{S} \in \mathcal{P}A$ such that

$$\forall x \in A. x \in S \Leftrightarrow x \in \overline{S}$$
.

Axiom Schema 1.9 (Collection). For any property $\phi[X, Y, x]$ where X and Y are set variables and $x \in X$, the following is an axiom:

For any set A, there exist sets B and Y, a function $p: B \to A$, and a relation $M: B \hookrightarrow Y$ such that:

- $\forall b \in B. \phi[A, \{y \in Y : bMy\}, p(b)]$
- For any $a \in A$, if there exists a set X such that $\phi[A, X, a]$, then there exists $b \in B$ such that a = p(b).

Axiom 1.10 (Choice). Let $R: A \hookrightarrow B$. If $\forall a \in A. \exists b \in B. aRb$, then there exists a function $f: A \rightarrow B$ such that $\forall a \in A. aRf(a)$.