

Merge-Sort

Dr. Aiman Hanna Department of Computer Science & Software Engineering Concordia University, Montreal, Canada

These slides have been extracted, modified and updated from original slides of:
Data Structures and Algorithms in Java, 5th edition. John Wiley& Sons, 2010. ISBN 978-0-470-38326-1.
Data Structures and the Java Collections Framework by William J. Collins, 3rdedition, ISBN 978-0-470-48267-4.
Both books are published by Wiley.

Copyright © 2010-2011 Wiley
Copyright © 2010 Michael T. Goodrich, Roberto Tamassia
Copyright © 2011 William J. Collins
Copyright © 2011-2021 Aiman Hanna
All rights reserved

Coverage

Merge-Sort

Divide-and-Conquer

- Divide-and conquer is a general algorithmic design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S
- The base case for the recursion are subproblems of size 0 or 1. In these cases the problem can be solved directly.

Merge-Sort

- Merge-sort uses divideand-conquer to perform the sorting operation.
- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort S₁ and S₂
 - Conquer: merge S₁ and S₂
 into a unique sorted
 sequence

Algorithm mergeSort(S, C)

Input sequence *S* with *n* elements, comparator *C*

Output sequence *S* sorted according to *C*

if
$$S.size() > 1$$

 $(S_1, S_2) \leftarrow partition(S, n/2)$
 $mergeSort(S_1, C)$
 $mergeSort(S_2, C)$

$$S \leftarrow merge(S_1, S_2)$$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B.
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes
 O(n) time.

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() < B.first().element()
           S.addLast(A.remove(A.first()))
       else
           S.addLast(B.remove(B.first()))
   while \neg A.isEmpty()
       S.addLast(A.remove(A.first()))
   while \neg B.isEmpty()
       S.addLast(B.remove(B.first()))
    return S
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Merge Sort

Merge-Sort Tree

Merge-Sort Tree

Example*:

6 5 3 1 8 7 2 4

^{*}Reference: http://en.wikipedia.org/wiki/Merge_sort

Execution Example

Partition

□ Recursive call, partition

□ Recursive call, partition

□ Recursive call, base case

□ Recursive call, base case

Merge

□ Recursive call, ..., base case, merge

■ Merge

□ Recursive call, ..., merge, merge

Merge

The Cost of Sorting Two Sorted Arrays

The algorithm to merge 2 sorted arrays (possibly of different sizes) can be as follows:

```
Algorithm merge(A1, A2, A)
    Input sorted sequences A 1 and A2 and empty
            sequence A with sufficient size; all are
           implemented as arrays
    Output sorted sequence A containing A1 \cup A2
    i \leftarrow j \leftarrow 0
    while i < A1.size() \land j < A2.size() do
        if A1.get(i) \le A2.get(j) then
            S.addLast(A1.get(i))
             i \leftarrow i + 1
        else
            S.addLast(A2.get(i))
            j \leftarrow j + 1
    while i < A1.size() do
            S.addLast(A1.get(i))
             i \leftarrow i + 1
    while j < A2.size() do
            S.addLast(A2.get(j))
            j \leftarrow j + 1
                                                       19
```

The Cost of Sorting Two Sorted Arrays

- We compare the two current elements at the head of the two arrays (which are pointed by i & j) then insert the smaller one in the final array.
- Hence, actual cost is O(n1) + O(n2), where A1 has n1 elements and A2 has n2 elements \rightarrow total cost is hence O(n).

 Merge Sort

The Cost of Sorting Two Sorted Lists

The algorithm is quite similar to the one for arrays (see Page 5 of these slides).

Simply:

- As long as the two lists are not empty, compare the two entries pointed by the head of the lists,
- Pickup the smaller one and insert it at the tail/end of the new list;
 remove this item afterwards
- If any of the two lists is still not empty, iterate on it and insert its remaining items at the tail of the
- Again, the actual cost is O(n1) + O(n2), where n1 and n2 are the number of elements in the two lists.
- \Box Consequently, total cost to sort the two sorted lists is O(n).

Analysis of Merge-Sort

- □ The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- \Box The overall amount or work done at the nodes of depth *i* is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- □ Thus, the total running time of merge-sort is $O(n \log n)$

depth	# of	size	
	sequences		
0	1	n	
1	2	n /2	
i	2 ⁱ	n/2 ⁱ	

Merge-Sort vs. Heap-Sort

- Like heap-sort
 - It uses a comparator
 - It has $O(n \log n)$ running time.
 - The cost to sort the elements at each level is O(n) and we do that log n times.
- Unlike heap-sort
 - It does not use an auxiliary priority queue
 - It accesses data in a sequential manner (suitable to sort data on a disk)

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	$O(n \log n)$	fastin-placefor large data sets (1K — 1M)
merge-sort	$O(n \log n)$	fastsequential data accessfor huge data sets (> 1M)