LABORATORIO CAD

PROGETTO ISOLA ROBOTIZZATA

Automazione di un processo di lavorazione meccanica di due particolari automotive.

Milanesi Marco Mirandola Edoardo

CONCEPT DELLA CELLA 01 **SCELTA GRIPPER** 02 03 **SCELTA ROBOT** 04 PROGETTAZIONE DELLA CELLA CON IL SW 05 PARAMETRI DELLA CELLA

LAYOUT DELLA CELLA

Robot al centro della cella di lavoro in quanto è una soluzione suggerita quando il robot deve servire una o più stazioni

IMPLEMENTAZIONE DELLA STAZIONE

Asservimento Pezzi

L' asservimento pezzi avviene tramite un convogliatore e un PlaneSensor. La simulazione viene azionata dal comando **n_MOT / n_XSR201** a seconda del pezzo del pezzo da lavorare.

Se il sensore non rileva la presenza di alcun elemento e non è in corso una lavorazione il convogliatore viene messo in movimento per far sì che un nuovo pezzo arrivi in posizione.

L'istruzione WaitDI FC_Nastro,1 attende che il nastro si arresti prima di procedere

IMPLEMENTAZIONE DELLA STAZIONE

Uscita Pezzi

Lo scarico pezzi avviene tramite pallet e un PlaneSensor. Quando il sensore rileva lo scarico del pezzo sul pallet esso può uscire.

Un *linear Mover* simula l'uscita del pallet che può avvenire tramite un operatore con Transpallet o tramite altro processo automatizzato

Un ulteriore sensore verifica l'effettiva uscita del pallet e inserisce un nuovo pezzo sul conveyor per una simulazione più simile alla realtà.

SCELTA GRIPPER

PINZA PARALLELA - SHUNK - 0302120 SPG

PRINCIPALI PARAMETRI PRESI IN CONSIDERAZIONE

CORSA PER GRIFFA	95	mm
PESO PESO	35	Kg
PESO DEL PEZZO RACCOMANDATO	50	Kg
LUNGHEZZA GRIFFE MASSIMA CONSENTITA	500	mm
MASSA MAX. CONSENTITA PER GRIFFA	500	mm

PRESA PEZZO XSR202

PRESA PEZZO XSR201

SCELTA DEL ROBOT

Calcolo del payload

35 Kg

Peso Gripper SHUNK - 0302120 SPG

17 Kg 0,5 Kg

Peso Pezzo XSR200

Peso Pezzo XSR201

4 Kg

Peso Totale Griffe di Presa

60 Kg

ROBOT ABB IRB 4600 60-205

PROGETTAZIONE DELLA CELLA

Abbiamo azzerato la zone relativa alle istruzioni di movimento verso i target di presa e rilascio e abbassato la velocità di questi tratti di percorso.

Speed - v500 Zone - fine

Abbiamo poi abbassato la velocità delle altre istruzioni in modo da renderle il più lente possibile senza sforare dal tempo ciclo.

> Speed - v1000 Zone - z100

Gli spostamenti di transizione sono stati invece impostati a massima velocità.

> Speed - v5000 Zone - z100

LOGICA DEL PROGRAMMA

Simulation started - Reset di tutti i segnali rimasti attivi, apre la porta del centro di lavoro e HomePose robot Simulation started - HomePose robot

FC NASTRO

A pezzo rilasciato all'interno della macchina e a robot uscito dal centro di lavoro il robot invia un segnale di chiusura porte

SENSORE PALLET

Il pallet esce dalla cella e un sensore verifica l'effettiva uscita del pallet. Lo stesso genera un nuovo pallet in ingresso alla cella e comanda la source per la generazione di un nuovo pezzo sul conveyor

SIMULATION EVENTS

Il segnale si attiva quando il pezzo arriva in posizione fermando la movimentazione del conveyor e facendo partire il robot

CHIUSURA PORTE

Il sensore controlla che il pezzo sia stato caricato correttamente sul pallet

SENSORE ESC PALLET

PATH

PEZZO XSR 202

PEZZO XSR 201

TEMPI E RITMI PRODUTTIVI **TEMPO CICLO** TACKT TIME TEMPO DI TRANSITO **60 s / pezzo** 56 S **51** S **CONVEYOR** -**CONVEYOR** 4 S 1,8 s 8 h/turno **MACCHINA LAVORAZIONE MACCHINA** 45 s 480 pezzi turno 2,5 s **USCITA PEZZO PALLET** 2 s **PALLET** Ritmo attività Tempo che trascorre tra Somma dei tempi di attesa, tempi di l'inizio e la fine di una giacenza e tempi di trasporto produttiva lavorazione Milanesi - Mirandola

LABORATORIO CAD

Automazione di un processo di lavorazione meccanica di due particolari automotive.

Progettazione di un'isola robotizzata tramite il software ABB Robot Studio

Milanesi Marco - Mirandola Edoardo