Activité 1.2 – Mesure de la masse volumique de l'air

Objectifs:

▶ Calculer la masse volumique de l'air.

Contexte : L'atmosphère est un mélange de plusieurs gaz : dioxygène, diazote, argon, etc.

→ Comment calculer la masse volumique de l'air à partir de sa composition ou d'une expérience ?

Document 1 - Mesure de la masse volumique de l'air

On peut mesurer la masse volumique de l'air en dégonflant un ballon dans une bouteille d'eau. La bouteille d'eau permet de mesurer le volume d'air expulsé. En pesant le ballon avant et après le dégonflage, on peut calculer la masse d'air expulsée.

1 — Schématiser les 3 étapes de l'expérience réalisée.

2 — Remplir le tableau ci-dessous

Grandeur	Masse du ballon plein m_1	Masse du ballon dégonflé m_2	Volume d'air expulsé ${\cal V}$
Valeur			

3 — Calculer la masse	e volumique :	mesurée $\rho_{\rm mes}({\rm air})$
-----------------------	---------------	-------------------------------------

.....

Document 2 - Masse volumique d'un mélange

Pour un mélange de gaz, la masse volumique du mélange est simplement la somme des masses volumique de chaque gaz pondérée par la fraction volumique de chaque gaz du mélange. Pour l'air, on aura donc

$$\rho(\mathrm{air}) = p_v(\mathrm{O}_2)\rho(\mathrm{O}_2) + p_v(\mathrm{N}_2)\rho(\mathrm{N}_2) + p_v(\mathrm{Ar})\rho(\mathrm{Ar}) + p_v(\mathrm{CO}_2)\rho(\mathrm{CO}_2)$$

4 — Rappeler les fractions volumique des gaz composant l'air (O ₂ , N ₂ , CO ₂ , Ar).
Document 3 – Masse volumique des gaz composant l'air
Données :
— Masse volumique du CO_2 gazeux : $\rho(CO_2) = 1.87 \text{g/L}$.
— Masse volumique du O_2 gazeux : $\rho(O_2) = 1.35 \mathrm{g/L}$.
— Masse volumique du N_2 gazeux : $\rho(N_2) = 1.18 g/L$.
— Masse volumique de Ar gazeux : $\rho(Ar) = 1.78 g/L$.
5 — Calculer la masse volumique théorique de l'air $\rho_{\text{theo}}(\text{air})$.
6 — Comparer la valeur théorique et la valeur mesurée. Est-ce qu'elles sont égales ? Est-ce qu'elles sont cohérentes ?