Mean Shift Theory and Applications

Reference

D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE T. PAMI, vol. 24, no. 5, pp. 603-619, May 2002.

Lecturer: Sang Hwa Lee

Agenda

Mean Shift Theory

- What is Mean Shift?
- Density Estimation Methods
- Deriving the Mean Shift
- Mean shift properties

Applications

- Clustering
- Discontinuity Preserving Smoothing
- Object Contour Detection
- Segmentation
- Object Tracking

Mean Shift Theory

What is Mean Shift?

A tool for:

Finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in R^N

PDF in feature space

- Color space
- Scale space
- Actually any feature space you can conceive

•

DF Representation

Data

Non-parametric
Density **GRADIENT** Estimation
(Mean Shift)

PDF Analysis

Non-Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Non-Parametric Density Estimation

Non-Parametric Density Estimation

Assumed Underlying PDF

Real Data Samples

Parametric Density Estimation

Assumption: The data points are sampled from an underlying PDF

Assumed Underlying PDF

Real Data Samples

Parzen Windows - General Framework

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

A function of some finite number of data points $X_1...X_n$

Kernel Properties:

Normalized

- Exponential weight decay
- ???

$$\int_{R^d} K(\mathbf{x}) d\mathbf{x} = 1$$

$$\int_{R^d} \mathbf{x} K(\mathbf{x}) d\mathbf{x} = 0$$

$$\lim_{\|\mathbf{x}\| \to \infty} \|\mathbf{x}\| K(\mathbf{x}) = 0$$

$$\int_{\mathbb{R}^d} \mathbf{x} \mathbf{x}^T K(\mathbf{x}) d\mathbf{x} = c\mathbf{I}$$

Data

Parzen Windows - Function Forms

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$$

 $P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_i)$ A function of some finite number of data points $X_1 ... X_n$

Data

In practice one uses the forms:

$$K(\mathbf{x}) = c \prod_{i=1}^{d} k(x_i)$$
 or $K(\mathbf{x}) = ck(\|\mathbf{x}\|)$

Same function on each dimension

Function of vector length only

Various Kernels

$$P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} K(\mathbf{x} - \mathbf{x}_{i})$$
 A function of some finite number of data points $X_{1}...X_{n}$

Examples:

• Epanechnikov Kernel
$$K_E(\mathbf{x}) = \begin{cases} c(1 - \|\mathbf{x}\|^2) & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Uniform Kernel

$$K_U(\mathbf{x}) = \begin{cases} c & \|\mathbf{x}\| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal Kernel

$$K_N(\mathbf{x}) = c \cdot \exp\left(-\frac{1}{2} \|\mathbf{x}\|^2\right)$$

$$\nabla P(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \nabla K(\mathbf{x} - \mathbf{x}_{i})$$

Give up estimating the PDF! Estimate **ONLY** the gradient

Using the Kernel form:

$$K(\mathbf{x} - \mathbf{x}_i) = ck \left(\left\| \frac{\mathbf{x} - \mathbf{x}_i}{h} \right\|^2 \right)$$

We get:

Size of window

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} = \frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}{\sum_{i=1}^{n} g_{i}} - \mathbf{x} \right]$$

Kenneu Deg Silve Estimasioift Gradient

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} = \frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right] \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}{\sum_{i=1}^{n} g_{i}} - \mathbf{x} \right]$$

Computing The Mean Shift

$$\nabla P(\mathbf{x}) = \frac{c}{n} \sum_{i=1}^{n} \nabla k_{i} = \frac{c}{n} \left[\sum_{i=1}^{n} g_{i} \right] \left[\left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g_{i}}{\sum_{i=1}^{n} g_{i}} - \mathbf{x} \right] \right]$$

Yet another Kernel density estimation!

Simple Mean Shift procedure:

• Compute mean shift vector

$$\mathbf{m}(\mathbf{x}) = \left[\frac{\sum_{i=1}^{n} \mathbf{x}_{i} g\left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h}\right)}{\sum_{i=1}^{n} g\left(\frac{\|\mathbf{x} - \mathbf{x}_{i}\|^{2}}{h}\right)} - \mathbf{x} \right]$$

Translate the Kernel window by m(x)

Mean Shift Mode Detection

<u>Updated Mean Shift Procedure:</u>

- Find all modes using the Simple Mean Shift Procedure
- Prune modes by perturbing them (find saddle points and plateaus)
- Prune nearby take highest mode in the window

Mean Shift Properties

- Automatic convergence speed the mean shift vector size depends on the gradient itself.
- Near maxima, the steps are small and refined
- Convergence is guaranteed for infinitesimal steps only → infinitely convergent, (therefore set a lower bound)
- For Uniform Kernel (), convergence is achieved in a finite number of steps
- Normal Kernel () exhibits a smooth trajectory, but is slower than Uniform Kernel ().

Adaptive Gradient Ascent

Real Modality Analysis

Tessellate the space with windows

Run the procedure in parallel

Real Modality Analysis

The blue data points were traversed by the windows towards the mode

Real Modality Analysis

An example

Window tracks signify the steepest ascent directions

Adaptive Mean Shift

Mean Shift Strengths & Weaknesses

Strengths:

- Application independent tool
- Suitable for real data analysis
- Does not assume any prior shape (e.g. elliptical) on data clusters
- Can handle arbitrary feature spaces
- Only ONE parameter to choose
- h (window size) has a physical meaning, unlike K-Means

Weaknesses:

- The window size (bandwidth selection) is not trivial
- Inappropriate window size can cause modes to be merged, or generate additional "shallow" modes → Use adaptive window size

Mean Shift Applications

Clustering

<u>Cluster</u>: All data points in the *attraction basin* of a mode

Attraction basin: the region for which all trajectories lead to the same mode

Clustering Synthetic Examples

Clustering Real Example

Feature space:

L*u*v representation

'nitial window enters

N

pruning

Clustering Real Example

L*u*v space representation

Clustering

Real Example

Final clusters

Discontinuity Preserving Smoothing

Meaning: treat the image as data points in the spatial and gray level domain

Discontinuity Preserving Smoothing

The image gray levels...

... can be viewed as data points in the *x*, *y*, *z* space (joined spatial And color space)

Discontinuity Preserving Smoothing

Discontinuity Preserving Smoothing

The effect of window size in spatial and range spaces

Discontinuity Preserving Smoothing Example

Discontinuity Preserving Smoothing Example

<u>Segment</u> = Cluster,

or Cluster of Clusters

Algorithm:

- Run Filtering (discontinuity preserving smoothing)
- Cluster the clusters which are closer than window size

...when feature space is only gray levels...

Example

Example

Example

