Online Learning Applications

Part 2: Stochastic MABs

At each time t = 1, ..., T:

1 The reward $r_t(a)$ of an **arm** a is sampled from a distribution \mathcal{D}_a supported on [0,1]

At each time t = 1, ..., T:

The reward $r_t(a)$ of an arm a is sampled from a distribution \mathcal{D}_a supported on [0,1] (alternatively we can assume subgaussian noise)

At each time t = 1, ..., T:

- **1** The reward $r_t(a)$ of an **arm** a is sampled from a distribution \mathcal{D}_a supported on [0,1]
- **2** The learner chooses an arm $a_t \in A$
- **3** The learner receives a reward $r_t(a_t)$
- 4 The learner observes only the reward $r_t(a_t)$ of arm a_t

At each time t = 1, ..., T:

- **1** The reward $r_t(a)$ of an **arm** a is sampled from a distribution \mathcal{D}_a supported on [0,1]
- **2** The learner chooses an arm $a_t \in A$
- 3 The learner receives a reward $r_t(a_t)$
- 4 The learner observes only the reward $r_t(a_t)$ of arm a_t

Recall that $r_t(a) = 1 - \ell_t(a)$. We use reward for the stochastic setting and loss for adversarial one. This is just to be consistent with the literature and textbooks.

At each time t = 1, ..., T:

- **1** The reward $r_t(a)$ of an **arm** a is sampled from a distribution \mathcal{D}_a supported on [0,1]
- **2** The learner chooses an arm $a_t \in A$
- 3 The learner receives a reward $r_t(a_t)$
- The learner observes only the reward $r_t(a_t)$ of arm a_t

Recall that $r_t(a) = 1 - \ell_t(a)$. We use reward for the stochastic setting and loss for adversarial one. This is just to be consistent with the literature and textbooks.

Goal

Design an algorithm that achieves sublinear pseudo-regret ($\lim_{T\to\infty}\frac{\mathcal{R}_T}{T}=0$).

Some definitions

We need to define some quantities:

- $lacksquare \mu(a) = \mathbb{E}_{r \sim \mathcal{D}_a} r(a)$
- \bullet $a^* \in \arg \max_a \mu(a)$ is an **optimal** arm
- For any arm a, we define the **sub-optimality gap** as:

$$\Delta_{\mathsf{a}} = \mu(\mathsf{a}^*) - \mu(\mathsf{a})$$

Pseudo-regret

The pseudo-regret of an algorithm is:

$$\mathcal{R}_{\mathcal{T}} = \mathcal{T}\mu(\pmb{a}^*) - \mathbb{E}\left[\sum_{t \in [\mathcal{T}]} \mu(\pmb{a}_t)
ight],$$

where the expectation is on the randomness of the algorithm.

Regret decomposition

 $N_a(t)$: the number of time we pick arm a in the first t rounds:

$$N_a(t) := \sum_{j=1}^t \mathbb{I}[a_j = a].$$

Regret decomposition lemma

Given a stochastic expert problem,

$$\mathcal{R}_{\mathcal{T}} = \sum_{a \in A} \Delta_a \mathbb{E}[N_a(\mathcal{T})].$$

Regret decomposition

Proof.

$$egin{aligned} \mathcal{R}_{\mathcal{T}} &\coloneqq T\mu(a^*) - \mathbb{E}\left[\sum_{t \in [\mathcal{T}]} \mu(a_t)
ight] \ &= T\mu(a^*) - \sum_{t \in [\mathcal{T}]} \mathbb{E}\left[\mu(a_t)
ight] \ &= \sum_{t \in [\mathcal{T}]} \left(\mu(a^*) - \mathbb{E}\left[\mu(a_t)
ight]
ight) \ &= \sum_{a \in \mathcal{A}} \mathbb{E}\left[N_a(\mathcal{T})
ight] \left(\mu(a^*) - \mu(a)
ight) \ &= \sum_{a \in \mathcal{A}} \Delta_a \mathbb{E}\left[N_a(\mathcal{T})
ight]. \end{aligned}$$

First idea: greedy

Greedy

At each round t = 1, ..., T:

- **1** Estimate the average reward as $\mu_t(a) = \frac{1}{N_{t-1}(a)} \sum_{t'=1}^{t-1} r_{t'}(a) \mathbb{I}[a_{t'} = a]$
- 2 (If an arm isn't been played then we set $\mu_t(a) = \infty$)
- **3** Select the arm with highest estimated reward $\mu_t(a)$

Greedy suffers linear regret

Theorem

The greedy algorithm suffers regret $\Omega(T)$.

Proof sketch

- \blacksquare Two arms a_1 , a_2
- The reward of arm a_1 is $r_t(a_1) = 0$ with probability 1/2 and $r_t(a_1) = 1$ with probability 1/2.
- The reward of arm a_2 is always $r_t(a_2) = 1/4$
- With probability 1/2, when we play the arm a_1 for the first time the reward is 0 and the empirical mean is $\mu_t(a_1) = 0$
- The empirical mean of arm a_2 is always $\mu_t(a_2) = 1/4$
- The algorithm will never play the optimal arm a_1 again!
- We suffer regret 1/4 at each round

A better idea: Explore-Then-Commit (ETC)

- We need to explore more!
- lacktriangle We can explore uniformly for $KT_0 < T$ rounds and then commit to the arm with the best empirical mean

Explore-Then-Commit

Given $T_0 \in \{1, \ldots, T/K\}$

- 1 Play each arm $a \in A$ for T_0 times.
- 2 At round $\hat{t} = KT_0 + 1$, compute the arm with the best empirical mean

$$\hat{a} = \arg\max_{a} \mu_{\hat{t}}(a)$$

3 Play arm \hat{a} for all $t \geq \hat{t}$ (i.e., until the end)

Analysis of ETC

$\mathsf{Theorem}$

Explore-then-commit with $T_0 = (T/K)^{2/3} \log(T)^{1/3}$ guarantees

$$\mathcal{R}_T = O(T^{2/3}(K \log(T))^{1/3})$$

For simplicity, we provide an analysis for two arms a_1 and a_2 .

- W.l.o.g., we assume that a_1 is the optimal arm
- In the exploration rounds, the alg. incurs expected pseudo-regret Δ_{a_2} every time arm a_2 is played
- lacksquare In the exploration rounds, the expected pseudo-regret is $T_0\Delta_{a_2}\leq T_0$
- In the commit rounds, the alg. incurs expected pseudo-regret $\Delta_{a_2}(T KT_0)$ with probability $\mathbb{P}[\mu_{\hat{t}}(a_2) \geq \mu_{\hat{t}}(a_1)]$

Analysis of ETC

$\mathsf{Theorem}$

Explore-then-commit with $T_0 = (T/K)^{2/3} \log(T)^{1/3}$ guarantees

$$\mathcal{R}_T = O(T^{2/3}(K \log(T))^{1/3})$$

For simplicity, we provide an analysis for two arms a_1 and a_2 .

- W.l.o.g., we assume that a_1 is the optimal arm
- In the exploration rounds, the alg. incurs expected pseudo-regret Δ_{a_2} every time arm a_2 is played
- lacksquare In the exploration rounds, the expected pseudo-regret is $T_0\Delta_{a_2}\leq T_0$
- In the commit rounds, the alg. incurs expected pseudo-regret $\Delta_{a_2}(T KT_0)$ with probability $\mathbb{P}[\mu_{\hat{t}}(a_2) \geq \mu_{\hat{t}}(a_1)]$

How to upper bound this probability?

Concentration inequalities

- $\mu_{\hat{t}}(a)$ is the average of T_0 i.i.d random variables (i.e., sampled from the same distribution \mathcal{D}_a)
- We want $\mu_{\hat{t}}(a)$ to be "close" to the true mean $\mu(a)$
- The Hoeffding inequality bounds the **probability that the empirical mean is far** from the actual mean

Hoeffding Inequality

Let $r_1, \ldots, r_n \in [0, 1]$ be i.i.d. random variables with mean μ . Then, for each $\epsilon > 0$

$$\mathbb{P}\left[\left|\frac{\sum_{i\in[n]}r_i}{n}-\mu\right|\geq\epsilon\right]\leq 2e^{-2\epsilon^2n}$$

Concentration inequalities

- $\mu_{\hat{t}}(a)$ is the average of T_0 i.i.d random variables (i.e., sampled from the same distribution \mathcal{D}_a)
- We want $\mu_{\hat{t}}(a)$ to be "close" to the true mean $\mu(a)$
- The Hoeffding inequality bounds the **probability that the empirical mean is far** from the actual mean

Hoeffding Inequality

Let $r_1, \ldots, r_n \in [0, 1]$ be i.i.d. random variables with mean μ . Then, for each $\epsilon > 0$

$$\mathbb{P}\left[\left|\frac{\sum_{i\in[n]}r_i}{n}-\mu\right|\geq\epsilon\right]\leq 2e^{-2\epsilon^2n}$$

- The probability decreases exponentially in ϵ^2 → better approximation implies larger error probability
- \blacksquare The probability decreases exponentially in the number of samples n

Analysis of ETC

■ Hoeffding Inequality on $\mu(a_1)$: with probability $1-2e^{-2\epsilon^2T_0}$

$$\mu_{\hat{t}}(\mathsf{a}_1) \geq \mu(\mathsf{a}_1) - \epsilon$$

■ Hoeffding Inequality on $\mu(a_2)$: with probability $1-2e^{-2\epsilon^2T_0}$

$$\mu_{\hat{t}}(a_2) \leq \mu(a_2) + \epsilon$$

■ By an union bound, both inequalities hold simultaneously with probability at least $1-4e^{-2\epsilon^2T_0}$

Assume that both inequalities hold and we commit to the sub-optimal arm a_2 .

$$\mu(\mathsf{a}_2) \geq \mu_{\hat{\mathsf{t}}}(\mathsf{a}_2) - \epsilon \geq \mu_{\hat{\mathsf{t}}}(\mathsf{a}_1) - \epsilon \geq \mu(\mathsf{a}_1) - 2\epsilon$$

Analysis of ETC

The total regret in the commit phase is:

- With probability at least $1-4e^{-2\epsilon^2T_0}$, at most $2\epsilon(T-KT_0)$
- With probability at most $4e^{-2\epsilon^2T_0}$, at most $T-KT_0$

The total regret is at most:

$$\mathcal{R}_T \leq T_0 + (1 - 4e^{-2\epsilon^2 T_0})2\epsilon(T - KT_0) + 4e^{-2\epsilon^2 T_0}(T - KT_0)$$

Setting:

- $T_0 = T^{2/3}(\log(T))^{1/3}$
- $\bullet \epsilon = \sqrt{\frac{\log T}{T_0}}$

$$\mathcal{R}_T \leq O\left(T^{2/3}(\log(T)^{1/3})\right)$$

Lower bounds

Question

How can understand if the $\widetilde{O}(T^{2/3})$ bound we just derived is optimal, or whether we may be able to design a bandit algorithm with better regret guarantees?

Goal: lower bounds on regret which apply to all bandits algorithms at once.

Lower bounds

$\mathsf{Theorem}$

Any algorithm suffers pseudo-regret at least

$$\mathcal{R}_{\mathcal{T}} \geq \Omega\left(\sqrt{KT}\right)$$
.

Worst-case lower bound: an algorithm may have better regret on specific problems

Theorem

Any algorithm suffers pseudo-regret at least

$$\mathcal{R}_{\mathcal{T}} \geq \Omega \left(\sum_{m{a}: \Delta_{m{a}} > 0} rac{1}{\Delta_{m{a}}} \log(\mathcal{T})
ight).$$

UCB1

UCB₁

- To achieve optimal regret bounds we need to explore and exploit at the same time
- We can be greedy but use **optimism** to incentivize exploration
- The general idea of UCB1 is to:
 - Define an Upper Confidence Bound (UCB) on the expected mean of each arm
 - ▶ At each round, play the arm with the higher UCB → here the algorithm is optimistic about the mean incentivizing exploration)
 - ▶ The UCB of the played arm is updated

Upper Confidence Bound

For each arm $a \in A$, we build a confidence interval around its empirical mean.

At each time $t \in [T]$, we define an UCB of the arm average reward $\mu_t(a)$:

$$UCB_t(a) = \underbrace{\mu_t(a)}_{exploitation\ term} + \underbrace{\sqrt{\frac{2\log(T)}{N_{t-1}(a)}}}_{exploration\ term}$$

- The term $\mu_t(a)$ incentivizes to play arms with large empirical mean
- The term $\sqrt{\frac{2\log(T)}{N_{t-1}(a)}}$ incentivizes to play arms with low $N_{t-1}(a) \to \text{played a small number of times}$

Upper Confidence Bound

For each arm $a \in A$, we build a confidence interval around its empirical mean.

At each time $t \in [T]$, we define an UCB of the arm average reward $\mu_t(a)$:

$$UCB_t(a) = \underbrace{\mu_t(a)}_{exploitation\ term} + \underbrace{\sqrt{\frac{2\log(T)}{N_{t-1}(a)}}}_{exploration\ term}$$

- The term $\mu_t(a)$ incentivizes to play arms with large empirical mean
- The term $\sqrt{\frac{2\log(T)}{N_{t-1}(a)}}$ incentivizes to play arms with low $N_{t-1}(a) \to \text{played a small}$ number of times
- lack We can also take the smaller exploration term $\sqrt{\frac{2 \log(t)}{N_{t-1}(a)}}$.
 - More complex theoretical analysis and same regret bound
 - It might have better empirical performances

UCB1

```
Algorithm: UCB1
```

```
1 set of arms A, number of rounds T;

2 for t = 1, ..., T do

3 for a \in A do

4 \mu_t(a) \leftarrow \frac{1}{N_{t-1}(a)} \sum_{t'=1}^{t-1} r_{t'}(a) \mathbb{I}[a_{t'} = a];

5 UCB_t(a) \leftarrow \mu_t(a) + \sqrt{\frac{2 \log(T)}{N_{t-1}(a)}};

6 play arm a_t \in \arg\max_a UCB_t(a);
```


Clean event

Idea: The mean idea of UCB1 is that the empirical mean are "close" to the actual mean when an arm is played a sufficient number of times.

- This is true only with high probability
- We call Clean Event the high probability event in which all the estimations are close to the actual means

Lemma (Clean event)

$$\mathbb{P}\left(|\mu(a)-\mu_t(a)|\leq \sqrt{\frac{2\log(T)}{N_{t-1}(a)}} \ \forall a,t\right)\geq 1-1/T.$$

Clean event

Idea: The mean idea of UCB1 is that the empirical mean are "close" to the actual mean when an arm is played a sufficient number of times.

- This is true only with high probability
- We call Clean Event the high probability event in which all the estimations are close to the actual means

Lemma (Clean event)

$$\mathbb{P}\left(|\mu(a)-\mu_t(a)|\leq \sqrt{\frac{2\log(T)}{N_{t-1}(a)}} \ \ \forall a,t\right)\geq 1-1/T.$$

▲ To prove the lemma we cannot use Hoeffding bound directly since the number of observations from each arm is random

■ UCB1 is always **optimistic** about the means with high probability

How many times do we play a sub-optimal arm?

- We assume that the clean event holds
- We can bound the number of times a sub-optimal arm is played

Lemma

If the clean event holds, for any arm $a \neq a^*$:

$$N_T(a) \leq \frac{9\log(T)}{\Delta_a^2}$$
.

OLA - M. Castiglioni 21/33

How many times do we play a sub-optimal arm?

Proof

Let t be the last time we play arm a. Then,

$$\mu(a) + \sqrt{\frac{8\log(T)}{N_{t-1}(a)}} \geq \mu_t(a) + \sqrt{\frac{2\log(T)}{N_{t-1}(a)}} = UCB_t(a) \geq UCB_t(a^*) \geq \mu(a^*),$$

implying

$$N_{t-1}(a) \leq \frac{8\log(T)}{\Delta_a^2}.$$

The total number of pulls of arm a is at most

$$N_T(a) \leq \frac{8\log(T)}{\Delta_a^2} + 1 \leq \frac{9\log(T)}{\Delta_a^2}.$$

OLA - M. Castiglioni 22/33

Regret Bound

Theorem

UCB1 achieves pseudo-regret $O(\log(T)\sum_{a\in A}\frac{1}{\Delta_a})$.

Proof

- Assume that the clean event holds
 - \triangleright Each arm $a \neq a^*$ is played at most $N_T(a) \leq \frac{9 \log(T)}{\Delta^2}$ times
 - \triangleright The total regret is at most $\sum_{a \in A} \Delta_a N_T(a) \leq 9 \log(T) \sum_{a \in A} \frac{1}{\Delta_a}$
- Assume that the clean event does not hold
 - The regret is at most T

The expected regret is at most

$$(1 - \frac{1}{T})9\log(T)\sum_{a \in A} \frac{1}{\Delta_a} + T\frac{1}{T} \leq O\left(\log(T)\sum_{a \in A} \frac{1}{\Delta_a}\right)$$

OLA - M. Castiglioni 23/33

An instance-independent regret bound

- When $\Delta \rightarrow 0$ the regret goes to ∞
- lacksquare We can derive a regret bound independent from Δ_a

$\mathsf{Theorem}$

UCB1 achieves pseudo-regret:

$$\mathcal{R}_T = O(\sqrt{KT\log(T)}).$$

OLA - M. Castiglioni 24/33

Proof Sketch

Idea: If we play an arm that is $\sqrt{\frac{K \log(T)}{T}}$ sub-optimal it is fine.

- Consider the set \hat{A} of arms a with $\Delta_a \leq \sqrt{\frac{K \log(T)}{T}}$:
 - ightharpoonup The regret from playing arm $a \in \hat{A}$ is $\Delta_a N_T(a)$
 - ightharpoonup The regret from such arms is at most $\sqrt{\frac{K\log(T)}{T}}\sum_{a\in\hat{A}}N_T(a)=\sqrt{KT\log(T)}$
- Consider the arms $a \notin \hat{A}$, i.e., with $\Delta_a > \sqrt{\frac{K \log(T)}{T}}$:
 - ightharpoonup The regret from playing arm $a \notin \hat{A}$ is $\Delta_a N_T(a) \le \Delta_a O\left(\frac{\log(T)}{\Delta_a^2}\right) \le O\left(\sqrt{\frac{T\log(T)}{K}}\right)$
 - \triangleright Since there are at most K of such arms, the regret from such arms is at most:

$$K \cdot O\left(\sqrt{\frac{T\log(T)}{K}}\right) \leq O\left(\sqrt{KT\log(T)}\right)$$

OLA - M. Castiglioni 25/33

OLA - M. Castiglioni 26/33

Another approach to tackle Stochastic MAB is the **Bayesian approach**:

- For every arm, have a prior distribution on its expected value
- For every arm, draw a sample according to the corresponding prior distribution
- Choose the arm with the best sample
- Update the prior distribution of the chosen arm according the observed realization

OLA - M. Castiglioni 27/33

Beta distribution

We focus on Bernulli reward distributions (i.e., supported in $\{0,1\}$) and we use a Beta distribution as prior distribution.

Beta Distribution

The density of $Beta(\alpha, \beta)$ is defined as:

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1},$$

where $\Gamma(n) = (n-1)!$

OLA - M. Castiglioni 28/33

Update the distribution

- We start with prior $Beta(1,1) \rightarrow \text{uniform distribution over } [0,1]$
- When we observe a new sample we increase α if we observe $r_t(a) = 1$ or β if we observe $r_t(a) = 0$

$$(\alpha_{\mathsf{a}},\beta_{\mathsf{a}}) \leftarrow (\alpha,\beta) + (r_t(\mathsf{a}),1-r_t(\mathsf{a}))$$

 The Beta distribution is a probability distribution over the expected value of the arm

OLA - M. Castiglioni 29/33

Choose which arm to play

- For each arm a, sample $\theta_a \sim Beta(\alpha_a, \beta_a)$
- lacksquare Play the arm with the largest sampled mean $a_t \in \arg\max heta_a$

OLA - M. Castiglioni 30/33

Algorithm: Thompson sampling

```
1 set of arms A, number of rounds T;

2 for a \in A do

3 | \alpha_a = \beta_a = 1 ;

4 for t = 1, \dots, T do

5 |  for a \in A do

6 |  \theta_a \sim Beta(\alpha_a, \beta_a) ;

7 |  play arm a_t \in \arg\max\theta_a;

8 |  update (\alpha_{a_t}, \beta_{a_t}) \leftarrow (\alpha_{a_t}, \beta_{a_t}) + (r_t(a_t), 1 - r_t(a_t));
```

OLA - M. Castiglioni 31/33

Similarly to UCB1, Thompson sampling provides log(T) instance-dependent regret.

Theorem

For each $\epsilon > 0$, Thompson sampling achieves pseudo-regret:

$$\mathcal{R}_T \le (1+\epsilon)C\log(T) + C'/\epsilon^2$$
,

where C and C' depend only on the reward functions.

- Similarly to UCB1, the constants C and C' can be arbitrarily large when Δ_a are small
- Usually Thompson sampling provides better empirical performances than UCB1

OLA - M. Castiglioni 32/33

References

Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations and Trends® in Machine Learning, 12(1-2):1–286, 2019.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

OLA - M. Castiglioni 33/33