Мастерская: Marketplace Matching

Задача:

Есть обезличенные данные по товарам. Нужно на примере 100,000 товаров научиться искать 5 наиболее подходящих к запросу товаров из общей базы с 2,900,000 товаров.

Целевая метрика — accuracy@5 > 0,8

Декомпозиция задачи

- 1. Анализ и предобработка данных
- 2. Грубый поиск (~100 подходящих товаров)
- 3. Точный поиск выбрать 5 товаров из кандидатов, отобранных на этапе грубого поиска
- 4. Принятое допущение: эксперименты на 10% обучающей и валидационной выборки

Признаки

1. Нормально распределенные

2. Равномерно распределенные

3. Константные

4. Неописуемые

Корреляция?

Грубый поиск

FAISS

HMSW (nmslib)

Грубый поиск - результаты

nmslib - accuracy@100 < 0.5

FAISS (CPU) – accuracy@100 < 0,65

FAISS (GPU) – accuracy@100 = 0.8

accuracy@20 = 0,73

n_cells	n_neibourghs	Index	result
200	20	IndexFlatL2	0,73
200	20	IndexFlatIp	0,71
200	100	IndexFlatL2	0,79
200	100	IndexFlatIp	0,78
200	200	IndexFlatL2	0,81
200	200	IndexFlatIp	0,80

Сборка матрицы признаков и таргетов

features — 139 х 1,000,000 (для 10% выборки)

Обучение, предсказание, сборка матрицы результатов

Для каждых 100 строк:

- сортировка по убыванию по 'probability'
- сопоставление наличия 'id' в индексах из base, соответствующих значениям из 'true_answer' (для первых 5 записей)

	id	probability	true_answer	
0	2192372	0.663457	2676668-base	
1	1954150	0.719478	2676668-base	
2	814942	0.643366	2676668-base	
3	2177660	0.658418	2676668-base	
4	2363873	0.660613	2676668-base	
199995	6486	0.062228	505205-base	
199996	220062	0.034175	505205-base	
199997	362580	0.035659	505205-base	

Точный поиск - результаты

Модель	Accuracy@100	Accuracy@5	Примечание
LogisticRegression	0,74	0,09	Явно видно переобучение на слишком большом количестве признаков
CatBoostRanker	0,74	0,67	Для 2 классов — то же, что и classifier
CatBoostClassifier	0,74	0,68	

А что, так можно было?

Модель	Accuracy@100	Accuracy@5	Примечание
LogisticRegression (n_features=1)	0,74	0,68	В качестве единственного признака использовалось расстояние между векторами. найденное в FAISS
CatBoostRanker	0,74	0,67	Для 2 классов — то же, что и classifier
CatBoostClassifier	0,74	0,68	

Для 20 соседей

Модель	Accuracy@20	Accuracy@5
LogisticRegression	0,73	0,33
LogisticRegression (n_features=1)	0,73	0,68
CatBoostRanker	0,73	0,68
CatBoostClassifier	0,73	0,70

Приложение + Docker

- 1. Внутри логистическая регрессия (вся база данных не нужна, только индексы и расстояния из FAISS)
- 2. Для демонстрации работает примерно на 3% индексов
- 3. На входе строка из файла, проверка на тип данных и количество признаков

```
filename: "ex_2"
status: "success. your query matches with:"
info: '{"0":9652,"1":29335,"2":23529,"3":20145,"4":28917}'
```

Проблемы

- Много данных, мало памяти :(
- Непрозрачность параметров FAISS

Batch training, sum models


```
m_list = []
     for step in range(0,10):
       distance, index, candidates = faiss gen gpu(features train, dims, batch size, step, NeiNum)
       accuracy, labels = acc_at_n(target_train, index, NeiNum, batch_size, step)
       preprocessed data = collect data(distance, index, candidates, features train, labels,
                                        NeiNum, step, batch size)
       X = preprocessed data[:, 0:138]
       y = preprocessed data[:, 140].astype('int')
       w1 = sum(y) / y.shape[0]
       w0 = (y.shape[0] - sum(y)) / y.shape[0]
       del candidates, index, distance, preprocessed_data
       params = {'learning rate': 0.5,
             'depth': 2,
             'n_estimators': 150,
             'rsm': 1,
             'verbose': False,
             'loss function': 'Logloss',
             'eval metric': 'Accuracy',
             'class weights': (w0, w1),
             'random state': 2908,
             'task_type': 'GPU'
       model = CatBoostClassifier(**params)
       model.fit(X, y)
       del X, y
       print('STEP---', step)
       m list.append(model)
[14] model = sum models(m list)
    model.save model('drive/MyDrive/Colab Notebooks/matching/data/summ.cat')
     new model = CatBoostClassifier()
     new model.load model('drive/MyDrive/Colab Notebooks/matching/data/summ.cat')
    <catboost.core.CatBoostClassifier at 0x79a8622a23e0>
```

Ответы на вопросы после ревью

Вопрос / замечание	Комментарий
Scaler надо было обучить на features_base, а не на features_train	В данном случае согласен, но всегда ли это так?
Почему тетрадок две?	△ matching_part_1.ipynb ☆ Файл Изменить Вид Вставка Среда выполне

