EJERCICIOS RESUELTOS MAT - 1105 "E" MÉTODOS NUMERICOS I

DOCENTE: M.Sc.Ing. Edgar Medina Tapia

AUXILIAR: Univ. Jhonny Nina Gutiérrez

FECHA DE EMICION: 22 mayo de 2010

INTEGRACIÓN NUMERICA

- 1) Usar las fórmulas cerradas de NEWTON cortes (Trapecio, Simpson $\frac{1}{3}$ Simpson $\frac{3}{8}$) de n=9 franjas. Calcular las integrales y comparar resultados y discutirlas.
- a) $\int_0^1 x^4 dx$

b) $\int_{0.1}^{0.2} \ln x \, dx$ c) $\int_{0}^{3} \frac{1}{1+x} \, dx$

solución

a.

		(mail	7 H
1	i	x_i	$f(x_i)$
	0	0	0
Let Annu	1	0.1111	1.52354833*10 ⁻⁴
	2	0.2222	2.43767733*10 ⁻³
	3	0.3333	0.0123407414
	H44	0.4444	0.0390028372
COUNTY.	5	0.5555	0.0952217706
	6	0.6666	0.1974518437
	7	0.7777	0.3658039543
	8	0.8888	0.6240453964
	9	1	1

Ø METODO DEL TRAPECIO:

$$I = \frac{0.1111}{2} \{0 + 1 + 2(1.52354833e^{-4} + 2.43767733e^{-3} + 0.0123407414 + 0.0390028372 + 0.0952217706 + 0.1974518437 + 0.3658039543)\}$$

I = 0.204030

Ø METODO SIMPSON 3

$$I = \frac{1}{3} * (0.1111)\{0 + 1$$

$$+ 4(1.52354833e^{-4} + 0.0123407414 + 0.0952217706 + 0.3658039543)$$

$$+ 2(2.43767733e^{-3} + 0.0390028372 + 0.1974518437 + 0.6240453964)\}$$

I = 0.1711

Ø METODO SIMPSON 8

$$I = \frac{3}{8} * (0.1111) \{0 + 1 + 2(0.0123407414 + 0.1974518637)$$
$$+ 3(1.52354833e^{-4} + 2.43767733e^{-3} + 0.0390028372$$
$$+ 0.0952217706 + 0.3058039543 + 0.6240453564)\}$$

I = 0.10629892

b.
$$I_{0.1} = \frac{1}{n} - \frac{1}{9} = 0.0111$$

i	x_i	$f(x_i)$
0	0.1	-2.3025
1	0.1111	-2.1973
2	0.1222	-2.1020
3	0.1333	-2.0151
4	0.1444	-1.9351
5	0.1555	-1.8611
6	0.1666	-1.792
7	0.1777	-1.727
8	0.1888	-1.667
9	0.199=0.2	-1609

Ø METODO DEL TRAPECIO:

$$I = \frac{0.1111}{2} \{-2.3025 - 1.309 + 2(-2.1973 - 2.1020 - 2.0151 - 1.9351 - 1.8611 - 1.792 - 1.727 - 1.667)\}$$

I = -0.1915

Ø METODO SIMPSON 3

$$I = \frac{1}{3} * (0.1111) \{-2.3025 - 1.609 + 4(-2.1973 - 2.0151 - 1.8611 - 1.727) + 2(-2.1020 - 1.9351 - 1.792 - 1.667)\}$$

I = -0.1853

Ø METODO SIMPSON 8

$$I = \frac{3}{8} * (0.1111) \{-2.3025 - 1.609 + 2(-2.0151 - 1.792) + 3(-2.1873 - 2.1020 - 1.9351 - 1.8611 - 1.727 - 1.667)\}$$

$$I = -0.19145$$

La resolucion directa es:

$$\int_{0.1}^{0.2} \ln x = x \ln x - x \Big|_{0.1}^{0.2} = -0.5218 - (-0.3302) = -0.19154$$

Resp.: El método que más se acerca es el último "SIMPSON 8"

c.
$$\int_0^3 \frac{1}{1+x} dx$$
 $h = \frac{b-a}{n} = \frac{3-0}{9} = 0.333$

i	x_i	$f(x_i)$
0	0	1
1	0.333	0.7501
2	0.666	0.6002
3	0.999	0.5002
4	1.332	0.4288
5	1.665	0.3752
6	1.998	0.333

7	2.331	0.3002
8	2.664	0.2729
9	2.99=3	0.250

Ø METODO DEL TRAPECIO:

$$I = \frac{0.333}{2} \{1 + 0.25 + 2(0.6002 + 0.5002 + 0.4288 + 0.3752 + 0.333 + 0.30020.2729)\}$$

$$I = 1.144$$

 \emptyset METODO SIMPSON 3

$$I = \frac{0.333}{3} \{ 1 + 0.25 + 4(0.7501 + 0.5002 + 0.3752 + 0.3002) + 2(0.6002 + 0.4288 + 0.333 + 0.2729) \}$$

$$I = 1.356$$

Ø METODO SIMPSON 8

$$I = \frac{3}{8} * (0.333)\{1 + 0.25 + 2(0.5002 + 0.333) + 3(0.7501 + 0.6002 + 0.4288 + 0.3002 + 0.2729)\}$$

$$I = 1.244$$

2) Hallar una aproximación a tres puntos, compara el resultado teórico.

Solución

$$I = \int_{a}^{b} f''(x) dx = \frac{b-a}{2} \sum_{i=1}^{n} w_{i} F\left\{\frac{b-a}{2} z_{i} + \frac{b+a}{2}\right\}$$

Para los puntos

$$w_1 = w_3 = \frac{5}{9}$$
; $w_2 = \frac{8}{9}$ $-z_1 = z_3 = \sqrt{0.6}$; $z_2 = 0$

Para el primer punto
$$x_1 = \frac{b-a}{2}z_1 + \frac{b+a}{2} = \frac{3-1}{2}\left(-\sqrt{0.6}\right) + \frac{3+1}{2} = 1.225$$
Donde $z_1 = -\sqrt{0.6}$

Reenlazando en la ecuación
$$f(x_1) = 0.7225 \rightarrow f(z_1)$$

Para el segundo punto

$$x_2 = \frac{3-1}{2}(0) + \frac{3+1}{2} = 2$$

Donde $z_2 = 0$

Reenlazando en la ecuación $f(x_2) = 0.4134 \rightarrow f(z_2)$

Para el tercer punto

$$x_3 = \frac{3-1}{2} (\sqrt{0.6}) + \frac{3+1}{2} = 2.77459$$

Donde $z_3 = \sqrt{0.6}$

Reenlazando en la ecuación $f(x_3) = 0.0465 \rightarrow f(z_3)$

Finalmente se tiene la integral

 $I = 1\{0.79468\} = 0.794688 \rightarrow \text{Resultado de la Aproximación}$

$$t = \int_{1}^{5 \sin x^2} dx = 0.79482518 \rightarrow \text{Resultado teórico}$$

3) Calcular la integral doble por el método "Trapecio"

$$I_{doble} = \int_{1}^{2} \int_{0}^{1} sen(x+y) \, dy dx \qquad n = 2 \, directiones \, "x", "y"$$

Para el cambio de variable

$$G(x) = \int_0^1 sen(x+y) dy \Rightarrow I_{doble} = \int_1^2 G(x) dx$$

Para el valor de h_x en la dirección x

$$\begin{split} h_x &= \frac{2-1}{2} = 0.5 \\ I_{doble} &= \int_1^2 G(x) dx = \frac{h}{2} \big[G(x_0) + 2G(x_1) + G(x_2) \big] \\ I_{doble} &= \int_1^2 G(x) dx = \frac{0.5}{2} \bigg[\int_0^1 sen(0+y) dy + 2 \int_0^1 sen(0.5+y) dy + \int_0^1 sen(1+y) dy \bigg] \end{split}$$

Evaluando las integrales para n=2 en dirección y

$$h_y = \frac{1-0}{2} = 0.5$$

$$\int_0^1 sen(y)dy = \frac{0.5}{2} [0 + 2(0.4742) + 0.84147] = 0.45$$

$$\int_0^1 sen(0.5+y)dy = \frac{0.5}{2} [0.4794 + 2(0.84147) + 0.99749] = 0.78999$$

$$\int_0^1 sen(1+y)dy = \frac{0.5}{2} [0 + 4(0.3535) + 0.7071] = 1$$

Finalmente reemplazando valores:

$$I_{doble} = \int_{1}^{2} G(x)dx = \frac{0.5}{2} [0.45 + 2(0.7899) + 0.93643]$$

$$I_{doble} = 0,74159$$

