Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук

Рабочий протокол и отчёт по лабораторной работе №

Свиридов Фёдор, Александр Слободнюк, Владимир Попов

«»

Цель работы. Построить амплитудно-резонансные кривые, фазовые резонансыне кривые, определить добротность маятника

Задачи, решаемые при выполнении работы.

- Измерить амплитуду вынужденных колебаний, а также период данных колебаний
- Повторить опыты с другими коэффициентами затухания в системе, изменяя силу тока в катушке индуктивности
- Построить графики амплитудно-резонансных кривых
- С помощью графиков определить резонансную амплитуду, частоту и статическую амлитуду
- Определить добротность маятника при различных коэффициентах затухания
- Построить фазовые резонансные кривые

Объект исследования. Вынужденные колебания

Метод экспериментального исследования. Измерение амплитуды вынужденных колебаний, периода и частоты

Результаты прямых измерений и их обработки (таблицы, примеры расчетов)

Таблица 1: ...

U,B	$_{\mathrm{T,c}}$	α	ω, c^{-1}
1.32	3.00	4.5	2.094 ± 0.007
1.72	2.09	6.0	3.006 ± 0.014
2.09	1.60	8.0	3.927 ± 0.025
2.47	1.29	9.5	4.87 ± 0.04
2.68	1.19	12.0	5.28 ± 0.04
2.83	1.10	15.5	5.71 ± 0.05
3.00	1.01	>24	6.22 ± 0.06
4.41	0.64	3.5	9.82 ± 0.15
4.14	0.65	5.0	9.67 ± 0.15
3.86	0.69	7.0	9.11 ± 0.13
3.61	0.77	11.0	8.16 ± 0.11
3.36	0.86	17.5	7.31 ± 0.08
3.25	0.94	21.0	6.68 ± 0.07
3.03	1.00	>24	6.28 ± 0.06

$_{\mathrm{U,B}}$	T,c	α	ω, c^{-1}
1.32	2.93	5.0	2.144 ± 0.007
1.51	2.48	6.0	2.534 ± 0.011
1.92	1.78	7.0	3.53 ± 0.19
2.36	1.35	10.0	4.65 ± 0.03
2.60	1.21	12.0	5.19 ± 0.04
2.83	1.08	17.0	5.82 ± 0.05
3.01	1.00	> 24	6.28 ± 0.06
4.40	0.65	3.5	9.67 ± 0.15
4.08	0.71	4.5	8.85 ± 0.13
3.81	0.75	7.5	8.38 ± 0.11
3.49	0.85	13.5	7.39 ± 0.09
3.25	0.91	21.0	6.90 ± 0.08
3.02	1.00	>24	6.28 ± 0.06

$_{\mathrm{U,B}}$	$_{\mathrm{T,c}}$	α	ω ,c ⁻¹
1.32	2.97	5.0	2.116 ± 0.007
1.80	1.90	7.0	3.307 ± 0.017
2.23	1.47	9.5	4.27 ± 0.04
2.81	1.11	15.0	5.66 ± 0.05
3.03	1.01	>24	6.221 ± 0.06
4.42	0.64	4.0	$9,82 \pm 0.15$
4.17	0.69	5.0	9.11 ± 0.13
3.87	0.74	8.0	8.49 ± 0.11
3.47	0.84	14.0	7.48 ± 0.09
3.09	0.98	>24	6.41 ± 0.06

По данным таблиц для 0А, 4А и 5А соответственно:

$$\alpha_{\rm p1} = 33 \pm 2, \ w_{\rm p1} = 6.22, \ \alpha_{\rm cr} = 6 \pm 1$$

$$\alpha_{\rm p2} = 26 \pm 2, \ w_{\rm p2} = 6.40, \ \alpha_{\rm ct} = 6 \pm 1$$

$$\alpha_{\rm p3} = 29 \pm 2, \ w_{\rm p3} = 6.39, \ \alpha_{\rm cr} = 6 \pm 1$$

Расчет результатов косвенных измерений.

Коэффициенты затухания известны из лабораторной работы №1:

$$\beta_1 = 0.147 \pm 0.007$$

$$\beta_2 = 0.135 \pm 0.006$$

$$\beta_3 = 0.135 \pm 0.008$$

Вычислим собственную частоту колебаний маятника по формуле $w_0 = \sqrt{w_{\rm p}^2 + 2\beta^2}$

$$\omega_{03} \approx 6.22$$

$$\omega_{02} \approx 6.4$$

$$\omega_{01} \approx 6.39$$

Вычислим добротность маятника по формуле: $Q=\frac{\alpha_{\mathrm{p}}}{\alpha_{\mathrm{cr}}}$

и его абсолютную погрешность по формуле: $\Delta Q = \frac{1}{\alpha_{\rm cr}} \sqrt{\Delta \alpha_{\rm p}^2 + \left(\frac{\alpha_{\rm p} \Delta \alpha_{\rm cr}}{\alpha_{\rm cr}}\right)^2}$

$$Q_3 \approx 5.5 \ \Delta Q_3 \approx 1.0$$

$$Q_2 \approx 4.4 \ \Delta Q_2 \approx 0.8$$

$$Q_1 \approx 4.8 \ \Delta Q_1 \approx 0.9$$