Práctica 13: Decodificadores

Nombre: Colín Ramiro Joel No. de lista: 3

Ejercicio 1.-

Implemente teóricamente un decodificador 4x16 mediante el uso de decodificadores de 3x8

E 3	E2	E1	E0	Α	S15	S14	S13	S12	S11	S10	S9	S8	S7	S6	S5	S4	S3	S2	S1	S0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
0	1	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X	X	X	Χ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

E2	E1	E0	Α	S7	S6	S5	S4	S3	S2	S1	S0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	1	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0
X	X	X	0	0	0	0	0	0	0	0	0

Ejercicio 2.-Realizar la simulación para obtener los resultados de la siguiente tabla:

SAL(3)	SAL(2)	SAL(1)	SAL(0)	SAL2(3)	SAL2(2)	SAL2(1)	SAL2(0)
0	0	1	0	0	1	0	0
1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	0	0	1	0	0	0

Código ejercicio 2.-

```
library ieee;
use ieee.std_logic_1164.all;
entity parte1 is
port(
        ent: in std_logic_vector(1 downto 0);
        Z,Y: in std_logic;
                sal,sal2:out std_logic_vector(3 downto 0)
);
end parte1;
architecture aparte1 of parte1 is
begin
        process(ent,Z)
                begin
                        if(Z = '1')then
                                if (ent = "00")then
                                        sal <= "0001";
                                elsif (ent = "01")then
                                        sal <= "0010";
                                elsif (ent = "10")then
                                        sal <= "0100";
                                else
                                        sal <= "1000";
                                end if;
                  else
                                sal <= "0000";
                        end if;
        end process;
        process(ent,Y)
        begin
        if (Y = '1')then
                case ent is
                        when "00" => sal2 <= "0001";
                        when "01" => sal2 <= "0100";
                  when "10" => sal2 <= "0010";
                        when "11" => sal2 <= "1000";
                        when others => sal2 <= "1XXX";
```

```
end case;
else
sal2 <= "0000";
end if;
end process;
end aparte1;</pre>
```

Ecuaciones ejercicio 2.-

```
sal(0) =
    /ent(0) * /ent(1) * z
sal(1) =
    ent(0) * /ent(1) * z
sal(2) =
    /ent(0) * ent(1) * z
sal(3) =
    ent(0) * ent(1) * z
sal2(0) =
    /ent(0) * /ent(1) * y
sal2(1) =
    /ent(0) * ent(1) * y
sal2(2) =
    ent(0) * /ent(1) * y
sal2(3) =
    ent(0) * ent(1) * y
```

Simulación VHDL ejercicio 2.-

Simulación en Proteus ejercicio 2.-

Ejercicio 3: Implementar en VHDL un decodificador 3x8 mediante decodificadores 2x4 con señal de habilitación, usando los niveles de descripción que no se usaron en el ejercicio 2.

Código ejercicio 3.-

```
library ieee;
use ieee.std logic 1164.all;
entity parte2 is
port(
        ent: in std_logic_vector(1 downto 0);
        A,E2:in std_logic;
        sal,sal2:out std_logic_vector(3 downto 0)
);
end parte2;
architecture aparte2 of parte2 is
signal C,D:std_logic;
signal sal3:std logic vector(3 downto 0);
begin
        C <= '1' when(E2 = '0')else
           '0';
                sal <=
                        "0001" when(ent = "00" AND C ='1')else
                        "0010" when(ent = "01" AND C ='1')else
                        "0100" when(ent = "10" AND C ='1')else
                        "1000" when(ent = "11" AND C ='1')else
                        "0000" when (C='0') else
                        "ZZZZ";
        D <= '1' when(E2 = '1')else
                '0';
                with ent select sal3 <=
                                "0001" when "00",
                                "0010" when "01",
                                "0100" when "10",
                                "1000" when "11",
                                "0000" when others;
                       with D select sal2 <=
                                sal3 when '1',
                                "0000" when '0',
                                "XXXX" when others;
end aparte2;
```

Ecuaciones ejercicio 3.-

```
sal(0) =
      /e2 * /ent(0) * /ent(1)
sal(1) =
      /e2 * ent(0) * /ent(1)
sal(2) =
      /e2 * /ent(0) * ent(1)
 sal(3) =
      /e2 * ent(0) * ent(1)
 sal2(0) =
      e2 * /ent(0) * /ent(1)
 sal2(1) =
      e2 * ent(0) * /ent(1)
 sal2(2) =
      e2 * /ent(0) * ent(1)
 sal2(3) =
     e2 * ent(0) * ent(1)
```

Simulación en VHDL ejercicio 3.-

□ a 1 <=1 □ (=10 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0 (0	V1	
	V1 Y	
	^-	2
D- e2 0 <= 0		
+ ○ sal 4 (Z (1	X2	X4
± - sal2 0		

Name	Value	Stim	1 - 150 - 1 -	160 - 1 - 170 - 1 -	180 1 190 1 1 200	1 - 210 - 1 - 220	ı - 230 ı -	240 1 250	1 - 260 1 - 270	1 280	1 - 290	300	310 320	1 - 330	3 350 ns	350
o- a	1	<= 1														Т
ent ent	2	<= 10)(3)(0			X1				X2				
P- e2	1	<= 1														
- ⇔ sal	0)(8			XO									1
∓ ⇔ sal2	4						X1)(2)(4		1
• ⇔ sal2	4						χı)(2)(4		
																1

Simulación en Proteus ejercicio 3.-

