

Leveraging Generative AI for Advanced Scientific Research Breakthroughs and Barriers

Md Mushfiqur Rahman

PhD Student
Department of Computer Science
George Mason University
mrahma45@gmu.edu

About Me

Making generative machine learning usable for real world applications

Generative NLP in Healthcare

Generative Al in Research

Goal of today's talk

Is the current state of Machine Learning ready for scientific research?

Overview

- Intro to Machine Learning
- Generative ML
- Application in Research: Concerns and Solutions
- Case Study 1: Large Language Models
- Case Study 2: Image Generation Models
- Conclusion

Current State of Machine Learning

- Modern ML models are end-user ready
- Reduces need for human intervention
- Often better than empirical formulae
- At times, even better than humans

A very brief introduction to Machine Learning

Algorithm "learns" patterns from data

In reality: tries to satisfy objective function by minimizing loss

What is a valid input?

- Distinct feature sets
- Images
- Texts
- Almost anything

Common Machine Learning Categories

Basic Regression and Classification Models

Neural Networks

Clustering Algorithm

Reinforcement Learning

Generative Models

Goal: Generate images or texts

- Synthetic data generation
- Missing data fill-up
- Image segmentation tasks
- Text generation models
- Style transfer tasks

Generative Machine Learning

Much trickier than label prediction

Applications in Scientific Research

Astronomical Image Enhancement

Applications in Scientific Research

Medical Image Synthesis

Applications in Scientific Research

Molecular or Chemical Structure Prediction

Common Concerns in Scientific Deployment

- Fairness and bias issue
 - Lack of fairness in data reflected on outcome
 - Data collection disparity results in unfair outcomes

- Models are black-boxes.
 - Reasoning behind each decision
 - Issue in evaluating minor components

- Models are unreliable
 - Non-deterministic
 - Issue with reproducibility
 - Heavily reliant on sample data

Model Interpretability

Model Interpretability (contd.)

Case Study: A Journey from LSTM to Large Language Models

RNN and LSTM

Transformers

$$SelfAttention(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = softmax \left(\frac{\mathbf{Q}\mathbf{K}^{\mathsf{T}}}{\sqrt{d_k}}\right) \mathbf{V}$$

LMs and LLMs with Transformers

- Encoder-based models
 - Generate a rich, contextual representation
 - o BERT, RoBERTa
- Decoder-based models
 - o Predict the next token
 - Often autoregressive
 - o GPT Series, Llama series
- Encoder-decoder models
 - Text-to-text transformers
 - o T5, TransforerXL

RL and RLHF

Pre-train LM

Train reward model

Finetune LM with RL

Automatic Text Simplification

- Rahman et al, 2024
 - Uses variant of Llama-2
 - Supervised Fine-tuning (SFT)
 - o RL
 - Readability Reward FKGL
 - Relevance Reward Cosine similarity
 - Classification Reward Predict simple or complex
 (RLHF component)

Issues with GPT - RL solves the problem

		\mathbf{Pr}	eservat	ion of I	Meaning			
	Human vs Llama 2				Human vs GPT-4			
Source	Human	AI	Both	None	Human	AI	Both	None
CDC	0	4.35	95.65	0	62.32	10.14	21.74	5.80
NCI	8.89	12.22	78.89	0	56.67	15.56	27.78	0
ACS	11.11	7.19	81.70	0	50.98	6.54	41.18	1.31
Overall	8.01	8.01	83.97	0	55.13	9.94	33.02	1.93
			Under	standal	oility			
	Human vs Llama 2				Human vs GPT-4			
Source	Human	AI	Both	None	Human	AI	Both	None
CDC	18.84	1.45	75.36	4.35	43.48	42.03	8.70	5.80
NCI	30	17.78	46.67	5.56	35.56	48.89	14.44	1.11
ACS	19.61	10.46	65.36	4.58	35.95	56.86	5.23	1.96
Overall	22.4	10.6	62.2	4.8	37.5	51.3	8.7	2.6

Hallucination in LLMs

Case Study: Image Generation

Evolution of GANs

Progress in Image Generative Algorithms

GAN in Cleaning Spectral Images

Conclusion

- ML algorithms aren't perfect
- But can be controlled to specific need

THANK YOU