Rusk: Dusk genesis circuits

Dusk Network
Victor Lopez <victor@dusk.network>
March 14, 2022

Contents

1	Elements	3
2	Functions 2.1 H - Cryptographic hash 2.2 U - Select pair 2.3 C - Commitment opening 2.4 T - Truncate Fq to Fr 2.5 A - Stealth address 2.6 E - Data encryption 2.7 L - Discrete logarithm 2.8 S - Schnorr signature 2.9 O - Merkle opening 2.10 P - Schnorr proof	4 4 4 4 5 5 5 5 6 6 7
3	Execute 3.1 Precomputation	8 9 9
4	4.1 Precomputation	10 10 10 10 11
5	5.1 Precomputation	12 13 13 13
6	6.1 Precomputation	14 14 14 14 14
7	7.1 Precomputation	15 15 15

1. Elements

- Let \mathbb{B} be a boolean set $\{false, true\}$.
- Let \mathbb{F}_q be a finite field with order q.
- Let \mathbb{F}_r be a finite field with order r.
- Let $\mathbb J$ be an elliptic-curve over $\mathbb F_q$ with a subgroup of prime order r.
- Let I be the identity point of J.
- Let G and G' be two random generators of J.
- Let Q be the set of efficient functions in the space.
- Let \Re_r be a random number generator in \mathbb{F}_r .

2. Functions

2.1. H - Cryptographic hash

H is a cryptographically secure hash function.

Definition

$$\mathbb{H}: \mathbb{F}_q \mapsto \mathbb{F}_q \tag{1}$$

$$\mathbb{H}_r: \mathbb{F}_q \mapsto \mathbb{F}_r \tag{2}$$

Properties

$$\nexists F \in \mathbb{Q} : F(H(x)) = x \tag{3}$$

$$\nexists F \in \mathbb{Q} : F(H(x)) = y \land H(y) = H(x) \land x \neq y \tag{4}$$

$$\nexists F \in \mathbb{Q} : F(H_r(x)) = x \tag{5}$$

$$\nexists F \in \mathbb{Q} : F(H_r(x)) = y \wedge H_r(y) = H_r(x) \wedge x \neq y \tag{6}$$

2.2. U - Select pair

U selects either \mathbb{J}^2 or $\{I, I\}$, depending on a bit.

Definition

$$U: \mathbb{B} \times \mathbb{J}^2 \mapsto \mathbb{J}^4 \tag{7}$$

Properties

$$U(x, A, B) = \begin{cases} (A, B, I, I), & \text{if } x = true. \\ (I, I, A, B), & \text{if } x = false. \end{cases}$$
 (8)

2.3. C - Commitment opening

C is a Pedersen Commitment with range check for 2^{64} .

Definition

$$C: \mathbb{F}_q \times \mathbb{F}_r \mapsto \mathbb{J} \tag{9}$$

$$C_v: \mathbb{J} \times \mathbb{F}_q \times \mathbb{F}_r \mapsto \mathbb{B} \tag{10}$$

Properties

$$C(v,b) = T(v) \cdot G + b \cdot G' \tag{11}$$

$$C_v(P, v, b) \to v < 2^{64}$$
 (12)

$$C(P, v, b) \to P = C(v, b) \tag{13}$$

2.4. T - Truncate Fq to Fr

T truncate \mathbb{F}_q to the bits of \mathbb{F}_r .

Definition

$$\mathbb{H}: \mathbb{F}_q \mapsto \mathbb{F}_r \tag{14}$$

2.5. A - Stealth address

A is a stealth address for Phoenix notes.

Definition

$$A: \mathbb{F}_r^3 \mapsto \mathbb{F}_r \tag{15}$$

$$A_{sk_r}: \mathbb{F}_r^2 \times \mathbb{J} \mapsto \mathbb{F}_r \tag{16}$$

$$A_o: \mathbb{F}_r \times \mathbb{J}^3 \mapsto \mathbb{B} \tag{17}$$

Properties

$$A(r,a,b) = H_r(r \cdot a \cdot G) + b \tag{18}$$

$$A_{sk_r}(a,b,R) = H_r(a \cdot R) + b \tag{19}$$

$$A_o(a, B, R, X) \to B = b \cdot G \land$$

$$R = r \cdot G \land$$

$$X = A(r, a, b) \cdot G$$
(20)

2.6. E - Data encryption

O is a data encryption function with secret over \mathbb{F}_r .

Definition

$$E: \mathbb{J} \times \mathbb{F}_q^4 \mapsto \mathbb{F}_q^3 \tag{21}$$

$$E_d: \mathbb{J} \times \mathbb{F}_q^4 \mapsto \mathbb{F}_q^3 \tag{22}$$

Properties

$$\mathbf{m} = E_d(S, n, \psi) \to \psi = E(S, n, \mathbf{m})$$
 (23)

2.7. L - Discrete logarithm

L is a discrete logarithm function.

Definition

$$L: \mathbb{J} \mapsto \mathbb{F}_r \tag{24}$$

Properties

$$(P), P = L(P) \cdot G \tag{25}$$

$$L \notin \mathbb{Q}$$
 (26)

2.8. S - Schnorr signature

S is a Schnorr signature function.

Definition

$$S: \mathbb{F}_r^2 \times \mathbb{F}_q \mapsto \mathbb{F}_r \times \mathbb{J}$$
 (27)

$$S_v: \mathbb{F}_r \times \mathbb{F}_q \times \mathbb{J}_q^2 \mapsto \mathbb{B}$$
 (28)

Computations

$$R = r \cdot G$$

$$c = H_r(R||m)$$

$$u = r - c \cdot s$$
(29)

Properties

$$S(s,r,m) = (u,R) \to S_v(u,m,R,s \cdot G)$$

$$R = u \cdot G + c \cdot s \cdot G$$
(30)

$$\sharp F \in \mathbb{Q} : F(u,R) = s$$

$$u = r - c \cdot s$$

$$s = (L(R) - u)/c \therefore true^{[1]}$$
(31)

2.9. O - Merkle opening

O is a Merkle tree opening function.

Types

- 1. *T* Merkle tree over *H*.
- 2. O_y Merkle root for T.
- 3. O_p Merkle opening for leaf indexed by p over T.

¹Discrete logarithm problem, check [2.7.26].

Definition

$$O: T \times \mathbb{F}_q \mapsto O_p \tag{32}$$

$$O_v: \mathbb{F}_q^2 \times O_p \mapsto \mathbb{B} \tag{33}$$

Properties

$$h, o = O(T, p) \rightarrow O_v(O_y, o, h) \land O_{p[last]} = h$$
 (34)

2.10. P - Schnorr proof

P is a Schnorr proof function.

Definition

$$P: \mathbb{F}_r^2 \times \mathbb{F}_q \mapsto \mathbb{F}_r \times \mathbb{J}^2 \tag{35}$$

$$P_v: \mathbb{F}_r \times \mathbb{F}_q \times \mathbb{J}_q^4 \mapsto \mathbb{B}$$
 (36)

Computations

$$R = r \cdot G$$

$$R' = r \cdot G'$$

$$c = H_r(R||R'||m)$$

$$u = r - c \cdot s$$
(37)

Properties

$$P(s,r,m) = (u,R,R') \rightarrow P_v(u,m,R,R',s \cdot G,s \cdot G')$$

$$R = u \cdot G + c \cdot s \cdot G$$

$$R' = u \cdot G' + c \cdot s \cdot G'$$
(38)

$$\sharp F \in \mathbb{Q} : F(u, R, R') = s$$

$$u = r - c \cdot s$$

$$s = (L(R) - u)/c : true^{[2]}$$
(39)

²Discrete logarithm problem, check [2.7.26].

3. Execute

3.1. Precomputation

- 1. Fetch the hash *m* of the transaction skeleton
- 2. Fetch a Merkle tree of Phoenix notes T
- 3. Fetch the anchor y of T
- 4. Fetch \mathbb{I} of input notes that exists in T
 - t Note type
 - C Value commitment
 - R Stealth address entropy
 - K Stealth address
 - p Merkle tree index
 - n Encryption nonce
 - ψ Encryption cipher
 - s Secret spend key in \mathbb{F}_r^2
- 5. Define the crossover value V_v
- 6. Define the gas $g = g_{limit} \cdot g_{price}$
- 7. Define 3 the set of outputs O
 - v Value
- 8. $\forall I: (t, C, R, K, p, n, \psi, s) \in \mathbb{I}$

(a)
$$(I_v, I_b, _) = E_d(s_a \cdot R, n, \psi)$$

(b)
$$sk_r = A_{sk_r}(s_a, s_b, R)$$

- (c) $I_{K'} = sk_r \cdot G'$
- (d) $z \leftarrow \Re_r$
- (e) $I_{\lambda} = P(sk_r, z, m)$
- (f) $I_h = H(\{t, C, n, K, R, p, \psi\}$
- (g) $I_0 = \mathbb{O}(T, p)$
- (h) $I_x = H(I_{k'} || p)$
- 9. $\forall O : (v) \in \mathbb{O}$
 - (a) $O_b \leftarrow \Re_r$
 - (b) $O_c = v \cdot G + O_b \cdot G'$
- 10. $V_b \leftarrow \Re_r$
- 11. $V_c = C(V_v, V_b)$

³Add a change note to satisfy $\sum (o_v \in \mathbb{O}) = \sum (i_v \in \mathbb{I}) - V_v - g$

3.2. Witness arguments

 $V:(V_v,V_h)$ Crossover value and blinder

 $I \in \mathbb{I} : (t, v, b, C, K, K', \lambda, R, p, n, \psi, h, o)$ Input notes

 $O \in O: (v, b)$ Output value and blinder

3.3. Public arguments

 $V:(V_C)$ Crossover value commitment

y Merkle tree anchor

g Gas reserved

 $I \in \mathbb{I} : (x)$ Nullifiers of \mathbb{I}

 $O \in \mathbb{O} : (C)$ Value commitment of \mathbb{O}

m Hash of the transaction skeleton

3.4. Circuit

1. $\forall I \in \mathbb{I} : (t, v, b, C, K, K', \lambda, R, p, n, \psi, h, o, x)$

(a)
$$O_v(y,o)^{[4]}$$

(b)
$$h = H(t, C, n, K, R, p, \psi)^{[5]}$$

(c)
$$P_v(\lambda_u, m, K, K', \lambda_R, \lambda_{R'})^{[6]}$$

(d)
$$x = H(K', p)^{[7]}$$

(e)
$$C(C, v, b)$$

 $2. \ C(V_C, V_v, V_b)$

3. $\forall O \in \mathbb{O} : (v, b, C)$

(a) C(C, v, b)

4. $\sum (i_v \in \mathbb{I}) - \sum (o_v \in \mathbb{O}) - V_v - g = 0^{[8]}$

⁴Ensure I_h exists as leaf of T and has a valid branch to root y. [2.9.34]

 $^{^5}$ Binds I_h to all public attributes of the input note via hash pre-image. [2.1.4]

⁶Enforce $K = sk_r \cdot G \wedge K' = sk_r \cdot G'$. A valid Schnorr proof can be produced only by one who knows sk_r because there is one, and only one, solution to this circuit. [2.10.38]

⁷Considering $K' = sk_r \cdot G'$ is constrained by the Schnorr proof, the pre-image guarantees that only the owner of sk_r can produce this nullifier. [2.1.4]

⁸All values are checked with the crossover opening. The range check protects against overflow attacks. [2.3.12]

4. Send to contract transparent

4.1. Precomputation

- 1. Define a destination address $a \in \mathbb{F}_q$
- 2. Define a value $v \in \mathbb{F}_q | v < 2^{64}$
- 3. Define a crossover encryption nonce $V_n \in \mathbb{F}_q$
- 4. Define a key $k = (a, b) | (a, b) \in \mathbb{F}_r^2$
- 5. $V_b \leftarrow \Re_r$
- 6. $V_C = C(v, V_b)$
- 7. $r \leftarrow \Re_r$
- 8. $R = r \cdot G$
- 9. $V_{\psi} = E(k_a \cdot R, V_n, \{v, V_b, \varnothing\})$
- 10. $sk_r = A_{sk_r}(k_a, k_b, R)^{[9]}$
- 11. $T = sk_r \cdot G$
- 12. $m = H(V_C, V_n, V_{\psi}, v, a)$
- 13. $z \leftarrow \Re_r$
- 14. $\sigma = S(sk_r, z, m)$

4.2. Witness arguments

- $V:(V_b,V_n,V_\psi)$ Crossover blinder, nonce and cipher
- σ Schnorr signature
- a Contract address

4.3. Public arguments

- V_C Crossover commitment
 - v Value
- T Stealth address
- m Schnorr message

⁹The stealth address is specified in [2.5.19]

4.4. Circuit

- 1. $C(V_C, V_v, V_b)$
- 2. $m = H(V_C, V_n, V_{\psi}, v, a)$
- 3. $S_v(\sigma_u, m, \sigma_R, T)$

5. Send to contract obfuscated

5.1. Precomputation

- 1. Define a destination address $a \in \mathbb{F}_q$
- 2. Define a value $v \in \mathbb{F}_q | v < 2^{64}$
- 3. Define a crossover encryption nonce $V_n \in \mathbb{F}_q$
- 4. Define a message encryption nonce $M_n \in \mathbb{F}_q$
- 5. Define a crossover key $k = (a, b) | (a, b) \in \mathbb{F}_r^2$
- 6. Define a message key $l = (a, b) | (a, b) \in \mathbb{F}_r^2$
- 7. Define in $f \in \mathbb{B}$ if message derive key is public.
- 8. $V_b \leftarrow \Re_r$
- 9. $V_C = C(v, V_b)$
- 10. $r \leftarrow \Re_r$
- 11. $R = r \cdot G$
- 12. $V_{\psi} = E(k_a \cdot R, V_n, \{v, V_b, \varnothing\})$
- 13. $V_T = A_{sk_r}(k_a, k_b, R) \cdot G$
- 14. $sk_r = A_{sk_r}(l_a, l_b, R)^{[10]}$
- 15. $M_T = sk_r \cdot G$
- 16. $M_b \leftarrow \Re_r$
- 17. $M_C = C(v, M_b)$
- 18. $s \leftarrow \Re_r$
- 19. $M_{\psi} = E(l_a \cdot R, M_n, \{v, M_b, \varnothing\})$
- 20. $p = H(V_C, V_n, V_{\psi}, M_C, M_n, M_{\psi}, v, a)$
- 21. $z \leftarrow \Re_r$
- 22. $\sigma = S(sk_r, z, p)$
- 23. $\theta = U(f, l_a \cdot G, l_b \cdot G)$

¹⁰The stealth address is specified in [2.5.19]

5.2. Witness arguments

- v Value
- V_b Crossover blinder
- $M:(M_s,M_b,f,\theta_0,\theta_1)$ Message entropy, blinder, flag, secret derive key

5.3. Public arguments

- $V:(V_C,V_T,V_n,V_\psi)$ Crossover commitment, stealth address, nonce and cipher
- $M:(M_C,\theta_2,\theta_3,M_T,M_n,M_\psi)$ Message commitment, public derive key, stealth address, nonce and cipher
- a Contract address
- σ Schnorr signature

5.4. Circuit

- 1. $C(V_C, v, V_b)$
- 2. $C(M_C, v, M_b)$
- 3. $\gamma = U(f, \theta_0, \theta_1, \theta_2, \theta_3)$
- 4. $\alpha = \theta_0 + \theta_2$
- 5. $\beta = \theta_1 + \theta_3$
- 6. $A_o(M_s, \alpha, \beta, M_T)$
- 7. $M_{\psi} = E(M_s \cdot \alpha, M_n, \{v, M_b, \emptyset\})$
- 8. $p = H(V_C, V_n, V_{\psi}, M_C, M_n, M_{\psi}, v, a)$
- 9. $S_v(\sigma_u, p, \sigma_R, V_T)$

6. WITHDRAW FROM TRANSPARENT

6.1. Precomputation

- 1. Define a value $v \in \mathbb{F}_q | v < 2^{64}$
- 2. $b \leftarrow \Re_r$
- 3. C = C(v, b)
- 4. Generate a note with (C, v, b)

6.2. Witness arguments

b Blinder

6.3. Public arguments

- v Value
- C Commitment

6.4. Circuit

1. C(C, v, b)

7. WITHDRAW FROM OBFUSCATED

7.1. Precomputation

- 1. Fetch a message key $k = (a, b) | (a, b) \in \mathbb{F}_r^2$
- 2. Fetch an unspent message $M:(C,n,\psi,S)$ generated with k
- 3. Define a value $v \in \mathbb{F}_q | v < 2^{64}$ for the output note
- 4. Define a change message key $l = (a, b) | (a, b) \in \mathbb{F}_r^2$
- 5. Define a change message encryption nonce $G_n \in \mathbb{F}_q$
- 6. Define in $f \in \mathbb{B}$ if change message derive key is public.
- 7. $(M_v, M_{b,-}) = E_d(k_a \cdot M_S, M_n, M_{\psi})$
- 8. $b \leftarrow \Re_r$
- 9. C = C(v, b)
- 10. $G_v = M_v v$
- 11. $G_r \leftarrow Re_r$
- 12. $G_R = G_r \cdot G$
- 13. $G_b \leftarrow Re_b$
- 14. $G_C = C(G_v, G_b)$
- 15. $G_T = A_{sk_r}(l_a, l_b, G_R) \cdot G$
- 16. $\theta = U(f, l_a \cdot G, l_b \cdot G)$
- 17. $G_{\psi} = E(l_a \cdot G_R, G_n, \{G_v, G_b, \emptyset\})$

7.2. Witness arguments

- $M:(M_v,M_b)$ Message value and blinder
- $G:(G_v,G_b,G_r,f,\theta_0,\theta_1)$ Change value, blinder, entropy, flag, secret derive key
- v Value
- b Blinder

7.3. Public arguments

- M_C Message value commitment
 - $G:(G_C,\theta_2,\theta_3,G_T,G_n,G_\psi)$ Change message commitment, public derive key, stealth address, nonce and cipher
 - C Value commitment

7.4. Circuit

- 1. $C(M_C, M_v, M_b)$
- 2. $C(G_C, G_v, G_b)$
- 3. C(C, v, b)
- 4. $\gamma = U(f, \theta_0, \theta_1, \theta_2, \theta_3)$
- 5. $\alpha = \theta_0 + \theta_2$
- 6. $\beta = \theta_1 + \theta_3$
- 7. $A_o(G_r, \alpha, \beta, G_T)$
- 8. $G_{\psi} = E(G_r \cdot \alpha, G_n, \{G_v, G_b, \varnothing\})$
- 9. $M_v G_v v = 0$