Esercizio 1. Let M be an L-structure and let $\psi(x), \varphi(x, y) \in L$. For each of the following conditions, write a sentence true in M exactly when

- $\text{a.}\quad \psi(M)\,\in\,\big\{\varphi(a,M):a\in M\big\};$
- b. $\{\varphi(a, M) : a \in M\}$ contains at least two sets;
- c. $\{\varphi(a, M) : a \in M\}$ contains only sets that are pairwise disjoint.

Soluzione 1.

- a. $\exists a \forall b (\psi(b) \rightarrow \varphi(a,b));$
- b. $\exists a, b, c(\psi(a, b) \oplus \psi(b, c));$
- c. $\forall a, b, c(\psi(a, c) \land \psi(b, c) \rightarrow \bot)$.

Esercizio 2. Let M be a structure in a signature that contains a symbol r for a binary relation. Write a sentence φ such that

 $\text{a.} \quad M \models \varphi \text{ if and only if there is an } A \subseteq M \text{ such that } r^M \subseteq A \times \neg A.$

Esercizio 3. Let $M \le N$ and let $\varphi(x) \in L(M)$. Prove that $\varphi(M)$ is finite if and only if $\varphi(N)$ is finite and in this case $\varphi(N) = \varphi(M)$.

Esercizio 4. Let $M \leq N$ and let $\varphi(x,z) \in L$. Suppose there are finitely many sets of the form $\varphi(a,N)$ for some $a \in N^{|x|}$. Prove that all these sets are definable over M.