

III. Genome Projects

Stages of the project

III. Genome Projects

Genome assessment

Questions you need to answer before starting project

- I. How big is the genome?
- II. Does it have heterochromatin?
 - III. Is it diploid or polyploid?
- IV. Is it highly heterozygous or not?
 - V. Is your species hybrid or not?
- VI. Are the genome rearrangements widespread in your species?

Genome size of your species

Ways to assess

I. Check literature and databases

for animals https://www.genomesize.com for plants https://cvalues.science.kew.org

for fungi http://www.zbi.ee/fungal-genomesize/

II. Estimate using flow cytometry

- require cell line of your species
- require reference (at least two) species with known genome size
- require cytometer and cytogenetisist

III. Estimate from reads using k-mer distribution

require preliminary sequencing

C-value (haploid genome size) might be in picograms and Mbp.

Genome size estimation from reads (1)

K-mer based approach:

- I. Count k-mers and create database
- II. Count histogram
- III. Assess genome size from histogram

Tools:

- I. Jellyfish 2
- II. Jellyfish 2
- III. Genomescope 2, KrATER, etc

Sohn and Nam, 2016

Genome size estimation from reads (2)

Genome size estimation

Genome size =
$$\frac{\sum_{i=g} N_i * m_i}{C}$$

g-k-mer multiplicity at gap between peak of k-mers with errors and corresponding to unique part of genome

 m_i -multiplicity of distinct k-mers

 N_i -number of distinct k-mers with m_i multiplicity

C – sample coverage estimated by mode of multiplicy of diploid *k* – mers

Naive approach:

- direct assessment from histogram
- works always if there distinguishable peaks
- huge error

23-mer distribution for PE reads of hybrid plant *B. divaricarpa*

Genome size estimation from reads (3)

Modeling approach:

- assessment of genome size from histogram by fitting it with model (sum of several negative binominal distributions)
- works not always
- more precise

Ranallo-Benavidez et al, 2020

Heterochromatine and repeat content

Vormela peregusna

Marbled polecat

~ 6.4 Gbp (!)

Graphodatsky et al, 2020

Widespread chromosomal rearrangements

III. Genome Projects Samples

Fragment size of extracted DNA

HMW DNA

high molecular weight DNA ~ 50 - 300 kbp fragments

UHMW DNA

ultrahigh molecular weight DNA ~300+ kbp fragments

Modern approaches for *de novo* assembly require at least HMW DNA.

Not all sample types and DNA extraction methods could produce HMW DNA!

DNA sources

Cell lines

Fresh tissue samples

- blood
- biopsy
- necropsy

Fragments, bp

up to 500000

Suitable for de novo assembly

up to 300000

- Preserved tissue samples
- Secretions
 - saliva
- Museum samples
 - skins
 - bones
- Ancient samples
 - bones

up to 50000 - 100000

~100 - 10000

~50-200

~25-200

Primary cell lines

Advantages:

- Available living cells
- Allows cytogenetic experiments
- Source for DNA of excellent quality
- Could be stored for decades

Disdvantages:

- Require cytogenetic lab and cytogenetisists
- Strict requirements for samples to establish cell line (cell must be alive)
- Storage in liquid nitrogen (LN₂)
- Will stop growing after specific number of divisions

Immortalized cell lines are not suitable for *de novo* genome assembly of new species!

cryogenic storage dewar

eppendorf.com

III. Genome Projects Genome assembly

Major definitions related to genome assemblies

Read

small fragment generated by sequencing

Contig

ungapped sequence assembled from reads

Scaffold

sequence with gaps, generated from contigs (set of oriented contigs)

C-scaffold

chromosome (or close to) scaffold, representing whole chromosome or its significant part

Sequencing technologies: first generation

Sequencing technologies: second (next) generation

Platform	Max read length, bp	
• SOLID • R.I.P.	35	
Roche 454 (pyrosequensing)R.I.P.	400	Issues with sequencing of
IonTorrentR.I.P. for <i>de novo</i> assembly	400	homopolymers
• Illumina	250	
MGIseq	300	

All NGS platforms are based on sequencing-by-synthesis (SBS) and can't sequence a single molecule!

Major differences between platforms are related to what is detected during synthesis and how amplification is performed.

Read length and insert size

Illumina platform

Turner et al, 2014

Sequencing-by-synthesis on Illumina platform

Ansorge et al, 2009

Illumina platform is heterogenious

GAII HiSeq2000 HiSeq2500 HiSeq3000 HiSeq4000

NovaSeq NextSeq

www.ecseq.com

Bridge amplification on illumina platform

Bridge amplification doesn't work for fragments longer ~ 1500 bp. It is a maximal threshold for insert size (IS), and it is difficult to achieve. Commonly use IS are 250, **350** and 550

Special types of libraries: Mate pairs

www.ecseq.com

Special types of libraries: linked reads

Microfluidics based:

10X Genomics

Transposase-based

- Tell-Seq
- stLFR

Zheng et al, 2016

Special types of libraries: HiC

HiC-sequencing allows to scaffold even very fragmented draft genomes to the chromosome level.

https://arimagenomics.com/kit/

Sequencing technologies: third generation

PacBio vs Nanopore

PacBio

- Shorter reads
- Less errors
- More expensive

Nanopore

- Longer reads
- More(?) errors
- Cheaper

Waiting forthcoming release of new chemistry soon!

Assembly strategies and assemblers

Short read based Sequencing

- Linked reads + HiC
- Overlapping PE reads + HiC

Long read based Sequencing

- PacBio HiFi + HiC
- Nanopore + Illumina + HiC
- Pacbio + Nanopore + HiC

Assemblers

Supernova + 3D-DNA/Salsa w2rap + 3D-DNA/Salsa

Assemblers

HiFiasm

MaSuRCA/Flye/Canu + Medaka + 3D-DNA/Salsa Falcon/Flye/Canu + Arrow + 3D-DNA/Salsa

For highly repetitive genomes an optical mapping (Bionano) could be added as intermediate step before HiC-scaffolding

Assembly of mtDNA from WGS

Main issue

dramatic (~100-1000x) difference in coverage between nuclear and mtDNA genome.

Solution

Independent assembly from downsampled reads (~1-5x coverage of nuclear genome) using different tools.

Tool	Function		
MitoZ	assembly		
Mitos	annotation		

Tomarovsky, 2021

Quality control of the assembly

Assembly quality metrics

- Number of C-scaffolds should be equal to number of chromosome pairs
- Number of breaks introduced by HiC-scaffolding
- N50 and L50 (not informative for chromosome length assemblies)
- Number of Ns in the assembly
- Number of unplaced scaffolds
- BUSCO metrics

and so on ...

N50 - maximal length of contig/scaffold in the assembly for which all sequences of such length and longer encompass no less than 50% of the assembly.

BUSCO

Benchmarking Universal Single-Copy Orthologs

- Assesses number of conservative genes present in the assembly
- specific databases for different taxa

Example for 4 mustelid species (Mammalian database, 9226 BUSCOs)

Species	Complete, %	Complete and single copy, %	Complete and duplicated, %	Fragmented, %	Missing, %
Mustela nigripes	96.2	94.0	2.2	1.0	2.8
Mustela putorius furo	94.0	92.8	1.2	1.2	4.8
Enhydra lutris	96.4	95.5	0.9	0.8	2.8
Pteronura brasiliensis	95.2	94.1	1.1	1.4	3.4

III. Genome Projects Analysis

Repeat types

Richard et al, 2008

Major types of mobile elements

Chénais et al, 2012

Big multigenome projects and their aims

Presence of mobile elements in eukaryotic genomes

Chénais et al, 2012

Major types of mobile elements

Richard et al, 2008

Tools for repeat identification

Whole genome alignment (WGA)

Whole genome alignment and synteny blocks

Protein-coding gene annotation

The NCBI Eukaryotic Genome Annotation Pipeline

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/

Data sharing

End of module III