Hoja de entrega 1

Manejo simbólico

APELLIDOS:	
Nombre:	

- 5. Escribe la negación de las siguientes afirmaciones:
 - $3 \equiv \text{Para cada número natural par } n$ hay un número natural impar k tal que k < n.
- No $3 \equiv Existe$ un número natural par n tal que para todo número natural impar se tiene que k > n.

¿Cuál de las dos afirmaciones es cierta? ¿Por qué? Justifica la respuesta.

Es cierta [3], ya que para cualquier número natural par n existe un número natural impar, por ejemplo k=n-1 tal que k< n

- $4 \equiv \text{Para cada número natural impar } n$ hay algún número natural par k tal que k < n.
- No $4 \equiv$ Existe un número natural impar n tal que para todo número natural par k se tiene que k > n.

La verdadera es [No 4] Puesto que existe un impar n=1 tal que para cualquier número natural par k se tiene que $k \ge 1$

- 5 \equiv Existe $n \in \mathbb{N}$ tal que para todo $k \in \mathbb{N}$ se tiene que $k \leq n$.
- No 5 \equiv Para todo $n \in \mathbb{N}$ existe $k \in \mathbb{N}$ tal que k > n.

¿Cuál de las dos afirmaciones es cierta? ¿Por qué? Justifica la respuesta.

La verdadera es [No 5] puesto que para cada número natural par existe un número natural, por ejemplo k = n + 1 tal que k > n.

- 7. Sea $A = \{1, 2, 3, 15, 27, 33\}$. Responde a las suguientes cuestiones razonando la respuesta.
 - i) ¿ Existe $n \in \mathbb{N}$ tal que para todo $k \in A$ se tiene que $k \leq n$? Sí. Considerando por ejemplo n = 40, para todo $k \in A$ se tiene que $k \leq 40$
- ii) ¿ Existe $n \in \mathbb{N}$ par tal que para todo $k \in A$ se tiene que $k \leq n$? Sí. Considerando por ejemplo n = 40, para todo $k \in A$ se tiene que $k \leq 40$
- iii) ¿ Existe $n \in \mathbb{N}$ tal que para todo $k \in A$ se tiene que $n \leq k$? Sí. Considerando por ejemplo n=1, para todo $k \in A$ se tiene que $k \geq 1$
- iv) ¿ Existe $n \in \mathbb{N}$ tal que para todo $k \in \mathbb{N} \setminus A$ se tiene que $n \leq k$? Sí. Considerando por ejemplo n = 1, para todo $\mathbb{N} \setminus A$ se tiene que $k \geq 1$
- 8. Sea \mathbb{P} el conjunto de los números naturales pares. Indica si las siguientes proposiciones son ciertas, justicando la respuesta:
 - i) Existe $n \in \mathbb{N}$ tal que para todo $k \in \mathbb{P}$ se tiene que $k \leq n$. FALSO. Probaremos la negación: Para todo $n \in \mathbb{N}$ existe $k \in \mathbb{P}$ tal que k > n. En efecto, para todo $n \in \mathbb{N}$ podemos encontrar un número par, por ejemplo k = 2n tal que k > n.
- ii) Existe $n \in \mathbb{N}$ par tal que para todo $k \in \mathbb{P}$ se tiene que k > n? FALSO: por reducción al absurdo: si existiese $n \in \mathbb{N}$ par tal que para todo $k \in \mathbb{P}$ se tiene que k > n, se tendría que 2 > 2!!! contradicción. Luego el resultado es Falso.
- iii) Para todo $n \in \mathbb{P}$ existe $k \in \mathbb{P}$ tal que k > n. VERDADERO: Para todo $n \in \mathbb{P}$ existe $k \in \mathbb{P}$, por ejemplo k = 2n tal que k > n.
- iv) Para todo $n \in \mathbb{P}$ existe $k \in \mathbb{N} \setminus \mathbb{P}$ tal que k < n. VERDADERO: Para todo $n \in \mathbb{P}$ existe un número natural impar, es decir, $k \in \mathbb{N} \setminus \mathbb{P}$, por ejemplo k = 2n 1 tal que k = 2n 1 < n
- 9. Prueba el siguiente resultado: Para cada $x=\frac{p}{q}$ con $p,q\in\mathbb{N}$ existe $n\in\mathbb{N}$ tal que $\frac{1}{n}<\frac{p}{q}$.

 $Para\ cada\ x = \frac{p}{q}\ con\ p, q \in \mathbb{N}\ hay\ que\ encontrar\ un\ n\'umero\ natural\ n \in \mathbb{N}\ tal\ que\ \frac{1}{n} < \frac{p}{q}.$

Sea $x = \frac{p}{q}$ con $p, q \in \mathbb{N}$, eligiendo n = p + q se tiene que $\frac{1}{n} < \frac{p}{q}$, ¿Por qué? puesto que $p, q \ge 1$ se tiene que:

$$\frac{1}{n} = \frac{1}{p+q} < \frac{1}{q} \le \frac{p}{q}$$

10. Escribe la negación de la siguiente afirmación:

Para cada $\epsilon > 0$ existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < \epsilon$.

Existe $\epsilon > 0$ tal que para todo $n \in \mathbb{N}$ se tiene que $\frac{1}{n} \ge \epsilon$