

Intro al Machine Learning

Bastian Galasso-Díaz

Primero, ¡conozcámonos un poquito!

El uso y desarrollo de máquinas que son capaces de aprender y adaptarse sin requerir instrucciones explícitas, usando algoritmos y modelos estadísticos para analizar y entregar inferencias a partir de patrones en los datos

Programa que puede razonar, actuar y adaptarse

MACHINE LEARNING

Algoritmos que van mejorando con el paso del tiempo mientras van siendo expuestos a más data.

Programa que puede razonar, actuar y adaptarse

MACHINE LEARNING

Algoritmos que van mejorando con el paso del tiempo mientras van siendo expuestos a más data.

DEEP LEARNING

Subconjunto de machine learning que utiliza redes neuronales profundas

Programa que puede razonar, actuar y adaptarse

MACHINE LEARNING

Algoritmos que van mejorando con el paso del tiempo mientras van siendo expuestos a más data.

DEEP LEARNING

Subconjunto de machine learning que utiliza redes neuronales profundas ¿Qué áreas del conocimiento se involucran?

- Ciencias de la computación
- Matemática
- Estadística

Programa que puede razonar, actuar y adaptarse

MACHINE LEARNING

Algoritmos que van mejorando con el paso del tiempo mientras van siendo expuestos a más data.

DATA SCIENCE

DEEP LEARNING

Subconjunto de machine learning que utiliza redes neuronales profundas

Programa que puede razonar, actuar y adaptarse

MACHINE LEARNING

Algoritmos que van mejorando con el paso del tiempo mientras van siendo expuestos a más data.

DEEP LEARNING

Subconjunto de machine learning que utiliza redes neuronales profundas

DATA SCIENCE

- Conocimiento de negocio
- Solución de problemas reales
- Storytelling

En grueso, los algoritmos de Machine Learning se pueden clasifican en dos tipos

• **Supervisados:** Estos son modelos donde la variable que se desea explicar existe, es medible y tengo dichas mediciones en mis set de datos.

• No Supervisados: Son modelos donde no existe dicha variable y queremos inferir sobre ella sin conocerla.

Algunos modelos

Machine Learning Models			
Supervisados		No Supervisados	Aprendizaje Reforzado
Clasificación	Regresión	No Supervisados	Aprendizaje Kelorzado
 Support Vector Machine Discriminant Analysis Naive Bayes K-Nearest Neighbor Neural Networks 	 Linear Regression GLM Support Vector Regression Ensemble Methods Decision Trees Neural Networks 	 K-Means, K-modes K-prototypes Hierarchical clustering Gaussian Mixtures Hidden Markov Models Neural Networks 	 Policy Optimization Q-Learning DQNs SARSA DDPG

Machine Learning Pipeline

Para lograr generar un modelo de Machine Learning, es necesario conocer cada una de las etapas que considera este proceso, su importancia y también, en qué orden estas se llevan a cabo.

Machine Learning Pipeline

Estas etapas son:

DIPLOMADO en ESTADISTICA

- Feature Extraction and Engineering
- Train y test Split

DIPLOMADO en ESTADISTICA

Métricas de desempeño

Las métricas a utilizar dependen del tipo de modelo que estemos desarrollando

Modelos de Clasificación

- Accuracy
- Recall
- Precision
- F1 Score
- **ROC AUC**

Modelos de Regresión

- MAE
- **RMSE**
- MSE
- R squared
- MAPE

Métricas de desempeño

Las métricas a utilizar dependen del tipo de modelo que estemos desarrollando

Accuracy = 0,84 **Recall = 0,84**

Precision = 0,77

Modelos de Regresión

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\widehat{Y}_i - Y_i)}$$

Validación cruzada

Para testear nuestro modelo o realizar optimización de hiper-parámetros, se utiliza la técnica de validación cruzada para evitar contaminación "cruzada" entre los datos de entrenamiento y testeo/optimización

Under y Over fitting

Este es uno de los problemas bien clásicos que uno puede enfrentarse al momento de entrenar modelos de machine learning

Under y Over fitting

¿Cómo lo detectamos?

¿Preguntas?

Intro al Machine Learning

Bastian Galasso-Díaz