- 1. Exemple practice de automate finite deterministe (AFD);
- Definitia formala a unui AFD,
- O metoda de definire a unui AFD care sa recunoasca un limbaj dat
- Automate finite nedeterministe
 - # definitie
 - # echivalenta
- 5. Operatii de inchidere (regulate)
- 6. Expresii regulate
 - # definitie
 - # echivalenta
- 7. Lema de pompare pentru limbaje regulate

Ex. 1: AFD pt un comutator electric

Ex. 2: AFD pt o usa automata

Suport frontal

Usa

Suport final

Dam pt acest autoamat cele 3 descrieri posibile

- Definitia in limbajul natural;
- Definitia cu ajutorul diagramei de stare;
- Definitia formala
- (1) Definitia in limbajul natural:

(2) Definitia cu ajutorul diagramei de stare

(3) Definitia formala

	Pe niciun suport	Pe suportul frontal	Pe suportul final	Pe ambele suporturi
Inchis	Inchis	Deschis	Inchis	Inchis
Deschis	Inchis	Deschis	Deschis	Deschis

- 1. Exemple practice de automate finite deterministe (AFD);
- 2. Definitia formala a unui AFD,
- O metoda de definire a unui AFD care sa recunoasca un limbaj dat
- 4. Automate finite nedeterministe
 - # definitie
 - # echivalenta
- Operatii de inchidere (regulate)
- 6. Expresii regulate
 - # definitie
 - # Echivalenta

Lema de pompare pentru limbaje regulate

√ 1, 01, 11, 0101, 010100, 01001, ⊗ 0, 10, 01010, $L(M_1) = L_1 = \{w \in \{0,1\}^* \mid w = \alpha 1 \text{ sau } w = \alpha 00, \alpha \in \{0,1\}^*\}$ $L(M_2) = L_1 \cup \{\lambda, 00\}$

Definitie

 $AFD = (Q, \Sigma, \delta, q_0, F), unde:$

Q = multime finita, nevida, ale carei elemente se numesc <u>stari</u>;

 Σ = multime finita, nevida, numita <u>alfabet de</u> <u>intrare</u>, ale carei elemente se numesc <u>simboluri</u>;

 $\delta: Q \times \Sigma \rightarrow Q$, numita <u>functia de tranzitie</u>;

q₀ ∈Q, numita <u>starea initiala</u>;

F⊆Q numita <u>multimea starilor finale</u>.

Exemplu

$$\begin{aligned} M_1: & Q = \{q_1, q_2, q_3\}; \\ & \Sigma = \{0, 1\}; \\ & q_0 = q_1; \\ & F = \{q_2\} \\ & \delta: \end{aligned} \qquad \begin{aligned} & 0 & 1 \\ & q_1 & q_2 \\ & q_2 & q_3 & q_2 \\ & q_3 & q_2 & q_2 \end{aligned}$$

Observatie

L(M) = limbajul recunoscut de AFD M.

$$F = \emptyset \subseteq Q$$

- 1. Exemple practice de automate finite deterministe (AFD);
- Definitia formala a unui AFD,
- O metoda de definire a unui AFD care sa recunoasca un limbaj dat
- Automate finite nedeterministe
 - # definitie
 - # echivalenta
- Operatii de inchidere (regulate)
- 6. Expresii regulate
 - # definitie
 - # echivalenta
- 7. Lema de pompare pentru limbaje regulate

Ideea metodica a proiectarii unui AFD:

"proiectantul devine un AFD"

Elementul esential in aceasta strategie:

CE INFORMATIE DESPRE FRAZA CITITA TREBUIE MEMORATA DE AFD?

Limbajul: **infinit**; automatul:numar **finit** de stari, deci memorie **finita**.

Care este informatia cruciala?

Exemplu:

Fie $\Sigma = \{0,1\}$ si $L = \{w \in \{0,1\}^* \mid \#_1(w) = 2k+1, k \in \mathbb{N}\}$ Pas 1: stabilim informatia de memorat:

- nr de smb 1 citite pana la momentul crt este sau nu impar?
- la citirea unui nou smb:
 - daca acesta este 0 -> raspunsul trebuie lasat neschimbat;
 - daca acesta este 1 -> raspunsul trebuie comutat.

Pas 2: reprezentam informatia de memorat ca o lista finita de posibilitati:

- numar par de simboluri 1, pana acum;
- numar impar de simboluri 1, pana acum.

Pas 3: asignam fiecarei posibilitati cate o stare:

- q_{par}
- q_{impar}

Pas 4: definim tranzitiile, examinand modul in care se trece de la o posibilitate la alta la citirea fiecarui tip de simbol din Σ :

- se trece din orice stare in cealalta la citirea unui simbol 1
- se ramane in aceeasi stare la citirea unui simbol 0.

Pas 5: stabilirea starii initiale si a multimii starilor finale, examinand modul in care se intra/se paraseste fiecare posibilitate:

- initial se citesc 0 simboluri -> AFD porneste din starea q_{par}.
- starea finala trebuie sa fie cea in care acceptam secventa de intrare -> starea finala este q_{impar}.

- 1. Exemple practice de automate finite deterministe (AFD);
- 2. Definitia formala a unui AFD,
- 3.0 metoda de definire a unui AFD care sa recunoasca un limbaj dat
- 4. Automate finite nedeterministe
 - #definitie
 - **#echivalenta**
- 5. Operatii de inchidere (regulate)
- 6.Expresii regulate
 - #definitie
 - **#echivalenta**
 - 7.Lema de pompare pentru limbaje regulate

Diferentele dintre un AFD si un AFN sunt:

1) $\square \forall q \in Q: \forall a \in \Sigma$:

2) Sagetile sunt etichetate:

Modul de calcul

Definitie

 $AFN = (Q, \Sigma, \delta, q_0, F), unde:$

Q = multime finita, nevida, ale carei elemente se numesc <u>stari</u>;

 Σ = multime finita, nevida, numita <u>alfabet de intrare</u>, ale carei elemente se numesc <u>simboluri</u>;

 $\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow \mathcal{P}(Q)$, numita <u>functia de tranzitie</u>;

q₀ ∈Q, numita <u>starea initiala</u>;

F⊆Q numita <u>multimea starilor finale</u>.

Notatie

$$\Sigma_{\lambda} = \Sigma \cup \{\lambda\})$$

Exemplu

AFN care recunoaste limbajul:

L₂= {
$$w \in \Sigma_{\lambda}^{*} \mid \exists u, v \in \Sigma_{\lambda}^{*}$$
: $w=u101v \text{ sau } w=u11v$ }
 $\Rightarrow AFN_{1} = (\{q_{0}, q_{1}, q_{2}, q_{3}\}, \{\lambda, 0, 1\}, \delta, q_{0}, \{q_{3}\}), \text{ unde:}$

δ	λ	0	1
q_0	Ф	{q ₀ }	$\{q_0,q_1\}$
q_1	{q ₂ }	$\{q_2\}$	Φ
q_2	Ф	Φ	$\{q_3\}$
q_3	Φ	$\{q_3\}$	$\{q_3\}$


```
Teorema
       AFN \Leftrightarrow AFD
        demonstratie
"←"
"⇒"
       Fie AFN=(Q, \Sigma, \delta, q<sub>0</sub>, F); el se poate converti intr-un
       AFD=(Q', \Sigma', \delta', q'<sub>0</sub>, F') astfel:
Q' = \mathcal{P}(Q), \qquad \Sigma' = \Sigma, \qquad q_0' = \{q_0\},
F' = \{ R \in Q' = \mathcal{P}(Q) \mid R \text{ contine cel putin o stare finala a lui AFN } \}
\forall R \in Q' si a \in \Sigma': \delta'(R,a) = \{ q \in Q \mid \exists r \in R : q \in \delta(r,a) \} = \bigcup_{r \in R} \delta(r,a).
```

Daca \exists tranzitii etichetate cu λ , mai definim Vid(R) = R \cup {q \in Q | q poate fi atinsa din R cu ajutorul a 1 sau mai multe tranzitii etichetate cu λ } \Rightarrow

 $\delta'(R,a) = \{q \in Q \mid \exists r \in R : q \in Vid(\delta(r,a))\} = \bigcup_{r \in R} Vid(\delta(r,a))\}$ $q_0'=Vid(\{q_0\}).$

Corolar

 $\forall \ \mathsf{L}\subseteq\Sigma^*, \ \mathsf{L}\in\mathcal{L}_3: \Leftrightarrow \exists \ \mathsf{AFN} \ \mathsf{care} \ \mathsf{recunoaste} \ \mathsf{L}.$

- 1. Exemple practice de automate finite deterministe (AFD);
- 2. Definitia formala a unui AFD,
- O metoda de definire a unui AFD care sa recunoasca un limbaj dat
- 4. Automate finite nedeterministe
 - # definitie
 - # echivalenta
- Operatii de inchidere (regulate)
- 6. Expresii regulate
 - # definitie
 - # echivalenta

Lema de pompare pentru limbaje regulate

Definitie

Operatii de inchidere = operatii regulate =

- reuniunea,
- concatenarea,
- operatia star (*).

```
\forall A,B \subseteq \Sigma^*: A \cup B = \{ x \in \Sigma^* \mid x \in A \text{ sau } x \in B \};
A \circ B = \{ xy \in \Sigma^* \mid x \in A \text{ si } y \in B \};
A^* = \{ x_1x_2...x_k \in \Sigma^* \mid k \in N, k \ge 0, \forall 1 \le i \le k: x_i \in A \}.
```

Teorema

 \mathcal{L}_3 este inchisa la reuniune, concatenare, operatia star.

- Exemple practice de automate finite deterministe (AFD);
- 2. Definitia formala a unui AFD,
- O metoda de definire a unui AFD care sa recunoasca un limbaj dat
- 4. Automate finite nedeterministe
 - # definitie
 - # echivalenta
- 5. Operatii de inchidere (regulate)
- 6. Expresii regulate
 - # definitie
 - # echivalenta
 - 7. Lema de pompare pentru limbaje regulate

Definitie

Expresie regulata =

o expresie R care satisface una dintre urmatoarele conditii:

- 1. \forall $a \in \Sigma$ este o expresie regulata (reprezentand limbajul $\{a\} \subseteq \Sigma^*$);
- 2. λ este o expresie regulata (reprezentand limbajul $\{\lambda\} \subseteq \Sigma^*$);
- 3. Ø este o expresie regulata (reprezentand limbajul vid);
- 4. daca R_1 si R_2 sunt expresii regulate \Rightarrow
 - \triangle (R₁ \cup R₂) este o expresie regulata,
 - (R₁oR₂) este o expresie regulata,
 - (R_1^*) este o expresie regulata.

<u>Exemplu</u>

(0\to 1)\text{0*

Teorema

```
\forall L\subseteq\Sigma^*, L\in\mathcal{L}_3: \Leftrightarrow \exists o expresie regulata R peste \Sigma care descrie L. demonstratie
```

"⇐"

Fie $L\subseteq\Sigma^*$ un limbaj si fie R o expresie regulata peste Σ care descrie L. Exista un algoritm de convertire a expresiei regulate R intr-un AFN; Cf. corolarul de mai sus: limbajul recunoscut de un AFN este regulat. " \Rightarrow "

Fie $L\subseteq \Sigma^*$ un limbaj regulat:

Cf. corolar si teorema anterioare: L este recunoscut de un AFD; Exista un algoritm de convertire a unui AFD intr-o expresie regulata

- 1. se converteste AFD intr-un AFNG;
- 2. se converteste AFNG intr-o expresie regulata.

Definitie

AFNG = automat finit nedeterminist generalizat =

 $(Q, \Sigma, \delta, q_{start}, q_{accept})$, unde:

Q = multime finita, nevida, ale carei elemente se numesc <u>stari;</u>

 Σ = multime finita, nevida, numita <u>alfabet de intrare</u>, ale carei elemente se numesc <u>simboluri</u>;

q_{start} ∈Q, numita <u>starea initiala</u>;

q_{accept} ∈Q, numita <u>starea finala</u>;

 δ : (Q \ {q_{accept}}) x (Q \ { q_{start}}) $\rightarrow \mathcal{R}$, numita <u>functia de</u> <u>tranzitie</u>.

- Exemple practice de automate finite deterministe (AFD);
- 2. Definitia formala a unui AFD,
- O metoda de definire a unui AFD care sa recunoasca un limbaj dat
- 4. Automate finite nedeterministe
 - # definitie
 - # echivalenta
- 5. Operatii de inchidere (regulate)
- 6. Expresii regulate
 - # definitie
 - # echivalenta
 - 7. Lema de pompare pentru limbaje regulate

Lema de pompare

```
\forall L\subseteq\Sigma^*, L\in\mathcal{L}_3 \Rightarrow \exists p \in N (numit lungimea sau constanta de pompare) a.i. \foralls\inL: |s| \ge p atunci \exists x,y,z\in\Sigma^* cu proprietatea ca s=xyz si:
```

- (1) $\forall i \geq 0$: $xy^iz \in L$;
- (2) |y| > 0;
- (3) $|xy| \le p$.

<u>Observatie</u>

Verificam conditiile:

- fie s=xyyz; xy^iz , $\forall i \ge 2 > 0$, $s=xz \Rightarrow (1)$;
- subsecv. y aduce M din q_r inapoi in $q_r \Rightarrow (2)$;
- q_r este prima stare care se repeta iar n+1>p ⇒ repetitia apare in una dintre primele p+1 stari din secventa ⇒ (3)

3232

- Exemple practice de automate finite deterministe (AFD);
- 2. Definitia formala a unui AFD,
- O metoda de definire a unui AFD care sa recunoasca un limbaj dat
- 4. Automate finite nedeterministe
 - # definitie
 - # echivalenta
- 5. Operatii de inchidere (regulate)
- 6. Expresii regulate
 - # definitie
 - # echivalenta
 - 7. Lema de pompare pentru limbaje regulate