Gradient-based TD methods

Weiwei Zhang

260684686

Mountain Car

State Variables

Two dimensional continuous state space.

Velocity = (-0.07, 0.07)

Position = (-1.2, 0.6)

Actions

(reverse, coast, forward)

Reward

-1

Tile Coding

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

Mean Square Projected Bellman Error (MSPBE)

- *T* takes you outside the space
- Π projects you back into it

GTD(0)

$$\delta = r + \gamma \theta^{\mathsf{T}} \phi' - \theta^{\mathsf{T}} \phi$$

$$w_{k+1} = w_k + \beta_k (\delta_k \phi_k - w_k)$$

$$\theta_{k+1} = \theta_k + \alpha_k (\phi_k - \gamma \phi_k') (\phi_k^{\mathsf{T}} w_k)$$

very slow compared to conventional linear TD

GTD-2(0)

$$\delta = r + \gamma \theta^{\mathsf{T}} \phi' - \theta^{\mathsf{T}} \phi$$

$$w_{k+1} = w_k + \beta_k (\delta_k - \phi_k^{\mathsf{T}} w_k) \phi_k$$

$$\theta_{k+1} = \theta_k + \alpha_k (\phi_k - \gamma \phi_k') (\phi_k^{\mathsf{T}} w_k)$$

TDC(0)

$$\delta = r + \gamma \theta^{\mathsf{T}} \phi' - \theta^{\mathsf{T}} \phi$$

$$w_{k+1} = w_k + \beta_k (\delta_k - \phi_k^{\mathsf{T}} w_k) \phi_k$$

$$\theta_{k+1} = \theta_k + \alpha_k \delta_k \phi_k - \alpha \gamma \phi_k' (\phi_k^{\mathsf{T}} w_k)$$
gradient correction

Results

Thanks