## Quiz-1 (2023)

Course: PH209

1. a) Draw the energy band diagram of a PNP transistor (including Fermi level) when it is in an active region and give the justification of your drawing. [Mark 2]

- b) Explain how the emitter resistance of a CE amplifier can stabilize a quiescent operating point.

  [Marks 2]
- 2. For the silicon transistor given in the figure below, the minimum value of  $\beta = 30$ 
  - (a) For  $V_i=12~V$  find the state of the transistor (in which region it is operating), and find  $V_o$
- (b) Suppose the 15k resistance is replaced with another resistance  $R_1$ , find the minimum value of  $R_1$  for which the transistor is in the active region. [Marks 6]

$$\begin{array}{c|c}
12 V \\
2.2 K \\
\hline
 & V_0 \\
\hline
 & 15 K
\end{array}$$

Quiz 1 (2023) PH 205

Rohit Ramabhadran 220121072 Rohits

Full marks: 10

Time: 45 minutes

| _                                                                                           | 7                                                                                              |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| vhe                                                                                         | ïch                                                                                            |
| rec                                                                                         | î,                                                                                             |
| ıs i                                                                                        | e c                                                                                            |
| ncc                                                                                         | orr                                                                                            |
| rre                                                                                         | ect                                                                                            |
| Ċ                                                                                           | an                                                                                             |
| ans                                                                                         | SWE                                                                                            |
| we                                                                                          | r c                                                                                            |
| Ę                                                                                           | ho                                                                                             |
| Ħ                                                                                           | ice                                                                                            |
| car                                                                                         | no                                                                                             |
| 9                                                                                           | the                                                                                            |
| 7                                                                                           | qu                                                                                             |
| 2                                                                                           | est                                                                                            |
| nai                                                                                         | ion                                                                                            |
| ÷                                                                                           | pa                                                                                             |
| ısı                                                                                         | pei                                                                                            |
| βbc                                                                                         | its                                                                                            |
| zck                                                                                         | elf.                                                                                           |
| рa                                                                                          | $\mathcal{C}$                                                                                  |
| ge/                                                                                         | orr                                                                                            |
| ex                                                                                          | ect                                                                                            |
| tra                                                                                         | an                                                                                             |
| sh                                                                                          | же                                                                                             |
| eet                                                                                         | ×                                                                                              |
| fo                                                                                          | Ë                                                                                              |
| 70                                                                                          | car                                                                                            |
| ugi                                                                                         | Ţ                                                                                              |
| whereas incorrect answer will carry (-1/2) mark. Use back page/ extra sheet for rough work. | Tick the correct answer choice on the question paper itself. Correct answer will carry I mark, |
| ork                                                                                         | ark                                                                                            |
| •                                                                                           | 200                                                                                            |

|                                       |                                                                                                                                              | following is incorrect: mobility out phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10. For modulation doping, which of the following is incorrect:  (a) It enables to achieve very high carrier mobility  (b) It enables to overcome carrier freeze out phenomena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ngth falls in                         | (d) X-ray region                                                                                                                             | (c) Infrared region,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | the bandgap of a semiconductor is found to be 3.40 eV. The associated wavelength falls in the control of the co |     |
| +-                                    | solid                                                                                                                                        | dden energy bands in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (a) This model uses a periodic potential (b) This model uses Bloch's theorem (c) This model predicts allowed and forbidden energy bands in a solid (c) This model is applicable only for semiconductors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| E <sup>2</sup> wing is/are            | $(d) E^2$ , which of the followi                                                                                                             | ndstructure calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | semiconductor is proportional to (a) E <sup>-1/2</sup> (b) E <sup>1/2</sup> 8. In the Kronig-Penny model for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , ) |
| is given as ?/V-s  L imensional       | emperature (300 K) is gi<br>$V_{r}$ $V_{r}$<br>(d) 450 cm <sup>2</sup> /V-s<br>tes. <i>N/F</i> ]. in a 2-dimen                               | ectron in a material at room temperature (300 K) is given as in the material is approximately, $\mu$ /2/V-s (b) 1350 cm <sup>2</sup> /V-s (d) 450 cm <sup>2</sup> /V-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6. The diffusion coefficient of electron in a material at room temperature (300 K) is given as 110 cm²/s. The electron mobility in the material is approximately, (a) 8500 cm²/v-s (b) 450 cm²/v-s (c) 450 cm²/v-s (d) 450 cm²/v-s (d) 450 cm²/v-s (d) 450 cm²/v-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
|                                       | 10,5                                                                                                                                         | f the following? ctor is p or n type. n. ne conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5. Hall effect cannot be used for which of the following?  (a) Determining whether the semiconductor is p or n type (b) Determining the carrier concentration.  (c) Determining both the mobility and the conductivity  (d) Determining the bandgap of the material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   |
| is given as Eg/2kT):                  | $_{\rm i}$ =0.35eV) at 300 K is given (note: ni=AT <sup>3/2</sup> exp(-E <sub>g</sub> /2) (d) $_{\rm e}$ : $_{\rm i}$ 2×10 <sup>16</sup> /cc | $_{\rm ij}$ ) of lnAs (band gap E $_{\rm g}$ $<$ will be approximately (b) $4.1\times10^{16}/{\rm cc}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. The intrinsic carrier concentration (n <sub>i</sub> ) of lnAs (band gap $E_g$ =0.35eV) at 300 K is given as 1x10 <sup>15</sup> /cc. In this material, the n <sub>i</sub> at 600 K will be approximately (note: n <sub>i</sub> =AT <sup>3/2</sup> exp(- $E_g$ /2kT): (a) $4.1 \times 10^{17}$ /cc (b) $8.2 \times 10^{17}$ /cc (b) $4.1 \times 10^{16}$ /cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| ddle of the<br>6m₀)<br><sub>≧</sub> ∨ | evel $E_{\rm Fi}$ from the midd 1.1m <sub>0</sub> and $m_h$ *=0.56n (d) -19.5 meV                                                            | lacement of the Fermi l<br>(take <i>kT=</i> 26 meV, m <sub>e</sub> *=<br>(c) -26.2 meV,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3. At room temperature (300 K), the displacement of the Fermi level $E_{\rm FI}$ from the middle of the band gap ( $E_{\rm g}/2$ ) in intrinsic Si is given by (take $kT=26$ meV, $m_e*=1.1m_0$ and $m_h*=0.56m_0$ ) (a) -6.6 meV, (b) -13.1 meV (c) -26.2 meV, (d) -19.5 meV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| As is 13.2,                           | ctric constant of GaAs i:<br>it) in GaAs is :<br>(d) 10.92 meV                                                                               | aAs is 0.07m <sub>0</sub> and diele<br>energy level (in meV uning)<br>(c) 8.92meV,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. If the effective mass of electron in GaAs is 0.07m <sub>0</sub> and dielectric constant of GaAs is 13.2, using <i>Hydrogen atom model</i> , the donor energy level (in meV unit) in GaAs is :  (a) 4.46 meV, Vaf 5.46 meV (c) 8.92meV, (d) 10.92 meV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   |
| 022 — 0                               | (d) 8.8×10 <sup>22</sup>                                                                                                                     | (c) 4.4×10 <sup>22</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. The lattice constant of Se is 5.64 A at room temperature. The number density of Se atoms (per cubic centimeter) in a Ge crystal is:  (a) $1.1 \times 10^{22}$ , (b) $2.2 \times 10^{22}$ (c) $4.4 \times 10^{22}$ , (d) $8.8 \times 10^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /   |
| 200                                   |                                                                                                                                              | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

(c) It requires semiconductor heterostructures



Quiz-I/PH207/Full Marks:10/Time: 35 minutes/ September 7 2023

Name: Rohit Panabhaduan

Roll No: 220/2/072

1. An adiabatic chamber with rigid walls consists of two compartments, one containing a gas and the other complete vacuum. The partition between the two is suddenly removed. Is the work done during an infinitesimal portion of this process equal to pdV, p,V the pressure and volume, Yes the work done is equal to [w=pdv. This is because .
pressure is an esterinsis peroperty and does not change when
half of the setup is added on removed since volume is an intownic recoperty there will be a change of V. Hence the

2. Why the room having a refrigerator is usually warmer than other rooms? Explain using direction

Room having referigeratories wassenessen their sollher seconds because the work is done on the by the referigeratory to cool the internal air. As a nexult of this heat is presidently which is soaked in a heat reservoir and then exhausted using a fan this air is hotler and ring it is exhausted it makes the second wassness

TWD on interest city by conjugues or

3. Consider a valley with temperature  $T_v$ . Cold air from surrounding mountain tops (temperature  $T_m < T_v$ ) blows into the valley and gets trapped there. Does  $T_v$  increase, decrease or remain same? Explain.

decouding to me Tv gramains the sound. This is because the terapped air Tv is at a higher temperature. When cold air survious the moutains blow into the valley, they displace the wavener any verques warm air has a lower density it sises up and interacts with the colder air and till the colder air seaches the valley it gains energy and the Temperatures of Tm inverses to early tr.

