# This is a Very Important Title!

Person McSomething (Dated: December 13, 2021)

This abstract is abstract.

If you want to learn more about using LATEX, you should check UiO's official tutorials: https://www.mn.uio.no/ifi/tjenester/it/hjelp/latex/

If you are familiar with LATEX and you want to learn more about the REVTeX4-1 document class, check: http://www.physics.csbsju.edu/370/papers/Journal\_Style\_Manuals/auguide4-1.pdf

# I. INTRODUKSON

## II. TEORI

## A. Om Schrödinger-likningen

Vi har altså at Schrödinger-likningen kan skrives som

$$i\hbar \frac{d}{dt} |\Psi\rangle = \hat{H} |\Psi\rangle$$

Vi skal imidlertid se på en partikkel i et todimensjonalt system med en vegg med et høyt tidsuavhenig potensial V(x, y). Da blir Schrödinger-likningen heller slik

$$i\hbar\frac{d}{dt}\Psi(x,y,t) = -\frac{\hbar^2}{2m}(\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2}) + V(x,y)\Psi(x,y,t)$$

I denne oppgaven vil vi være mest opptatt av hvordan sannsynligheten for å finne partikkelen i på spesifike posisjoner i systemet utvikler seg over tiden. Av Borns regel har vi at sansyligheten for å finne partikkelen i en tilstand eller i vårt tilfelle posisjon på et gitt tidspunkt er

$$p(x, y; t) = |\Psi(x, y, t)|^2 = \Psi * (x, y, t)\Psi(x, y, t)$$

I denne simuleringen skal vi forenkle denne moddellen slik at vi nå har

$$i\frac{du}{dt} = -\frac{\delta u}{\delta x} - \frac{\delta u}{\delta y} + v(x, y)u$$

Her er u en normalisert og dimensjonsløs kvantetilstand. Siden den er normalisert og vi går over et gitter vil da

$$\sum p_{i,j} = \sum u_{i,j} * u_{i,j} = 1$$

I tillegg er u enhetsløs så vi setter x og y til å gå fra 0 til 1. Selve likningens tilstand vil bli videre diskutert i Metoder i section III A. v(x,y) er også innenfor det samme enhetsløse to-dimensjonale planet og vil også bli videre diskutert i Metodedelen i section III B.

## B. Numerisk tillnærming

V har da fra Schrödingerlikningen at

$$i\frac{\delta u}{\delta t} = -\frac{\delta^2 u}{\delta x^2} - \frac{\delta^2 u}{\delta y^2} + v(x, y)$$

eller

$$\frac{\delta u}{\delta t} = i \frac{\delta^2 u}{\delta x^2} + i \frac{\delta^2 u}{\delta y^2} - i v(x, y)$$

Vi skal så bruke Crank-Nicolson tilnærming så vi starter med å approksimere den venstre-siden

$$\frac{du}{dt} = \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t}$$

Hvor n er tidstegt vi er i. Crank-Nicolson baser seg på forover og bakover tilnærminger. For forover har vi at

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = F_{i,j}^n$$

mens bakover har vi

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = F_{i,j}^{n+1}$$

Så kombinerer vi disse forover og bakover

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \theta F_{i,j}^{n+1} - (1 - \theta) F_{i,j}^n$$

slik at for  $\theta=1$  har vi bakovertilnærmingen og for  $\theta=0$  har vi forovertilnærmingen. For Crank-Nicolson setter vi  $\theta=\frac{1}{2}$  slik at vi får

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{1}{2} (F_{i,j}^{n+1} - F_{i,j}^n)$$

## III. METODE

## A. Initialtilstand

Vi trenger en initialtilstand, altså tilstanden  $u(x,y,t=0)=u_{i,j}^0$ . Vi skal bruke en Gaussisk initialtilstand på formen

$$u(x,y,t=0) = \frac{1}{C}e^{-\frac{(x-x_c)^2}{2\sigma_x^2} - \frac{(y-y_c)^2}{2\sigma_y^2} + ip_x(x-x_c) + ip_y(y-y_c)}$$

Siden dette er Gaussisk så vil  $x_c$  og  $y_c$  være toppunktet til  $p_{i,j}$  og der det vil være mest sannsynlig at partikkelen er.

 $p_x$  og  $p_y$  er bevegelsesmengden til partikkelen.  $\sigma_x$  og  $\sigma_y$  er bredden til funksjonen. C er normaliseringskonstanten. Siden vi skal gjøre dette over et gitter får vi heller

$$u_{i,j}^{0} = \frac{1}{C}e^{-\frac{(x_{i}-x_{c})^{2}}{2\sigma_{x}^{2}} - \frac{(y_{j}-y_{c})^{2}}{2\sigma_{y}^{2}} + ip_{x}(x_{i}-x_{c}) + ip_{y}(y_{j}-y_{c})}$$

Vi må også normalisere dette, altså at  $\sum_{i,j}u_{i,j}^n*u_{i,j}^n=\sum_{i,j}p_{i,j}^n=1$ , og så det vi da må gjøre er å la

$$C = \sum_{i,j} \left| e^{-\frac{(x_i - x_c)^2}{2\sigma_x^2} - \frac{(y_j - y_c)^2}{2\sigma_y^2} + ip_x(x_i - x_c) + ip_y(y_j - y_c)} \right|^2$$

Å normalisere slikt gjør vi kun i initialtilstanden, men dersom systemet er nøyaktig nok, vil  $\sum_{i,j} p$  holde seg ganske nærme 1. Imens vi tidsutvikler koden vår vil vi summere opp alle  $p_{i,j}$  for å se om den totale sansynligheten holder seg jevnt rundt 1 og dermed også kontrollere at vi gjør riktig.

Vår matrise vil være på størrelsen  $M\times M$  og dimensjonene vil være normalisert så laveste verdiene av x og y vil være 0 og høyeste 1. Vi vil fortsatt bruke Dirichlet grensebetingelser så vi setter u(x=0,y,t)=u(x=1,y,t)=u(x,y=0,t)=u(x,y=1,t)=0 uansett tidssteg. Det gjør at vi egentlig ikke trenger å finne tidsutviklingen i grensene så for når begrenser vi U til å være en  $(M-2)\times (M-2)$ -matrise, med  $u_{0,0}^n=u(x=0+h,y=0+h,t)$  og  $u_{M-3,M-3}=u(x=1-h,y=1-h)$ . Hvor h da er steglengden.

## B. Lage spalten

Så trenger vi å lage en vegg og en spalteåpning. Vi skal sette spalten i midten av systemet vårt, altså har den et midtpunkt i x=0,5. Så skal tykkelsen på veggen være 0,02 i x-retning. I y-retning har vi da hullene og veggene. Vi vil i starten bruke to spalte, men vil også variere mellom å bruke én spalte, tre spalte og ikke ha noen vegg i det hele tatt. Vi tar først eksempelet med to åpninger. Da har vi først en vegg, så en åpning på 0,05, deretter et en vegg også på 0,05, så en ny åpning på 0,05 og til slutt en vegg som er like lang som den første veggen. Lengden på åpningene og veggene mellom åpningene vil ikke forandre seg når vi endrer antall åpninger, men veggene på sidene vil endre seg avhengig av antall åpninger vi har. For å finne lengden for endeveggene kan vi da bruke

$$l_{endevegg} = \frac{1 - (n_{slits} + n_{mellomvegger}) \cdot 0.05}{2}$$

Vi får da at

| Antall åpninger | Endevegg |
|-----------------|----------|
| 1               | 0,475    |
| 2               | 0,425    |
| 3               | 0,375    |

Vi går da fra 0 opp til den tilhørende vegglengden og finner høyden åpningen starter i, så går vi 0,05 opp for å finne hvor skilleveggen starter, så går vi enda 0,05 opp for å finne hvor neste åpning starter og fortsetter slik for å få til vi når endeveggen. Vi finner da y-verdiene vi trenger og får vegger som i Figure 1, Figure 2 og Figure 3.



Figure 1. Veggenes og åpningenes start og ender på y-aksen i tillegg til veggenes tykkelse. Veggen har her én åpning.



Figure 2. Veggenes og åpningenes start og ender på y-aksen i tillegg til veggenes tykkelse. Veggen har her to åpninger



Figure 3. Veggenes og åpningenes start og ender på y-aksen i tillegg til veggenes tykkelse. Veggen har her tre åpninger

Vi kan fortsatt ikke generelt anta at slike posisjoner ligger nøyaktig på et punkt på posisjonsgitteret vårt, så vi vil avrunde til det nærmeste punktet.

Idéelt sett burde veggen hatt et uendelig stort potensial for at veggdelen skulle vært helt ugjennomtrengelig.

Dessverre er uendelig et altfor stort tall for maskinen å regne med. Vi setter derfor potensialet der veggen er til å være  $10^{10}$ , og over resten av systemet vil potensialet være 0.

## C. Bruke Crank-Nicolson

Vi hadde fra Crank-Nicolson at

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{1}{2} (F_{i,j}^{n+1} - F_{i,j}^n)$$

I vårt tilfelle er

$$F_{i,j} = i\frac{\delta^2 u}{\delta x^2} + i\frac{\delta^2 u}{\delta y^2} - iv(x,y)u$$

 $\dot{\mathrm{sa}}$ 

$$F_{i,j}^{n} = i\frac{\delta^{2}u^{n}}{\delta x^{2}} + i\frac{\delta^{2}u^{n}}{\delta y^{2}} - iv(x,y)u^{n}$$

Vi bruker deretter at

$$\frac{\delta^2 u^n}{\delta x^2} \approx \frac{u^n_{i+1,j} - 2u^n_{i,j} + u^n_{i-1,j}}{\Delta x^2}$$

Siden i er den eneste som varierer i med hensyn på x, er det denne vi vil bruke her. Tilsvarende får vi at

$$\frac{\delta^2 u^n}{\delta y^2} = \approx \frac{u_{i,j+1}^n - 2u_{i,j}^n + u_{i,j-1}^n}{\Delta y^2}$$

Så vi får da at

$$F^{n} = i \begin{pmatrix} \frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{\Delta x^{2}} \\ + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{\Delta y^{2}} - v_{i,j}u_{i,j} \end{pmatrix}$$

Vi går igjen tilbake til

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{1}{2} (F_{i,j}^{n+1} - F_{i,j}^n)$$

og flytter over slik at vi får

$$u_{i,j}^{n+1} - \frac{\Delta t}{2} F_{i,j}^{n+1} = u_{i,j}^n + \frac{\Delta t}{2} F_{i,j}^n$$

Vi utvider F og får

$$u_{i,j}^{n+1} = u_{i,j}^n \\ -\frac{i\Delta t}{2\Delta x^2}(u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}) \\ -\frac{i\Delta t}{2\Delta y^2}(u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}) = \\ +\frac{i\Delta t}{2\Delta y^2}(u_{i+1,j}^n - 2u_{i,j}^n + u_{i-1,j}^n) \\ -\frac{i\Delta t}{2}v_{i,j}u_{i,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}) \\ -\frac{i\Delta t}{2}v_{i,j}u_{i,j}^{n+1} - \frac{i\Delta t}{2}v_{i,j}u_{i,j}^n$$

Vi skal gå over samme steglengde på x og y aksen så vi setter  $\Delta x=\Delta y=h$ . Så definerer vi  $r\equiv\frac{i\Delta t}{2h^2}$  slik at vi har

$$\frac{u_{i,j}^{n+1}}{-\frac{i\Delta t}{2\Delta x^2}(u_{i+1,j}^{n+1}-2u_{i,j}^{n+1}+u_{i-1,j}^{n+1})} = \frac{u_{i,j}^n}{+r(u_{i+1,j}^n-2u_{i,j}^n+u_{i-1,j}^n)} = \frac{+r(u_{i+1,j}^n-2u_{i,j}^n+u_{i-1,j}^n) e^{-\frac{i\Delta t}{2}v_{i,j}u_{i,j}^{n+1}}}{+r(u_{i,j+1}^n-2u_{i,j}^n+u_{i,j-1}^n)} = \frac{+r(u_{i,j+1}^n-2u_{i,j}^n+u_{i,j-1}^n)}{-\frac{i\Delta t}{2}v_{i,j}u_{i,j}^n}$$

#### D. Matriseform

FOr å gjøre det litt raskere skal vi konvertere om til matriseform som i Kilde 1. Denne gangen har vi imedlertid to dimensjoner så det blir litt annerledes. Første forskjellen er at vi har en todimensjonal matrise med elementer  $u_{i,j}$  hvor radene er y-aksen og kollonnene y-aksen, mens vi trenger en vektor for å tidsuvikle ved hjelp av matriser. Vi vil derfor lage en vektor  $\vec{u}$  som organiserer matrisen slik

$$\vec{u} = (u_{0,0}, u_{1,0}, u_{2,0}(...)u_{M-2,0}u_{0,1}, (...)u_{0,M-2}, (...)u_{M-2,M-2})$$

Så  $k = i + j \cdot (M - 2)$ . Det betyr at  $\vec{u}$  er  $(M - 2)^2$  stor. Vi skal så lage matrisene A og B slik at

$$B\vec{u}^n = \vec{c}$$

og

$$A\vec{c} = \vec{u}^{n+1}$$

La oss ta et eksempel i (M-2)=3. Da vil matrisen A og B være

$$A = \begin{pmatrix} a_0 & -r & 0 & -r & 0 & 0 & 0 & 0 & 0 \\ -r & a_1 & -r & 0 & -r & 0 & 0 & 0 & 0 & 0 \\ 0 & -r & a_2 & 0 & 0 & -r & 0 & 0 & 0 & 0 \\ -r & 0 & 0 & a_3 & -r & 0 & -r & 0 & 0 & 0 \\ 0 & -r & 0 & -r & a_4 & & -r & 0 & -r & 0 \\ 0 & 0 & -r & 0 & -r & a_5 & 0 & 0 & -r & 0 \\ 0 & 0 & 0 & -r & 0 & 0 & a_6 & -r & 0 & 0 \\ 0 & 0 & 0 & 0 & -r & 0 & -r & a_7 & -r & 0 \\ 0 & 0 & 0 & 0 & 0 & -r & 0 & -r & a_8 \end{pmatrix}$$

og

$$B = \begin{pmatrix} b_0 & r & 0 & r & 0 & 0 & 0 & 0 & 0 \\ r & b_1 & r & 0 & r & 0 & 0 & 0 & 0 & 0 \\ 0 & r & b_2 & 0 & 0 & r & 0 & 0 & 0 & 0 \\ r & 0 & 0 & b_3 & r & 0 & r & 0 & 0 & 0 \\ 0 & r & 0 & r & b_4 & r & 0 & r & 0 \\ 0 & 0 & r & 0 & r & b_5 & 0 & 0 & r & 0 \\ 0 & 0 & 0 & r & 0 & 0 & b_6 & r & 0 & 0 \\ 0 & 0 & 0 & 0 & r & 0 & r & b_7 & r & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Hvor diagonalene er satt sammen av vektorene  $\vec{a}$  og  $\vec{b}$  hvor elementene er gitt som

$$a_k = 1 + 4r + \frac{i\Delta t}{2}v_{i,j}$$

$$b_k = 1 - 4r - \frac{i\Delta t}{2}v_{i,j}$$

Av disse matrisene kan vi se to ting. Foruten om diagonalen er A=-B. I tillegg foruten om diagonalene er matrisene satt sammen av to  $M-2\times M-2$  matriser. Diagonalen til B består av matrisen P med som har sidediagonalene r. For M-2=3 får vi da at

$$P = \begin{pmatrix} 0 & r & 0 \\ r & 0 & r \\ 0 & r & 0 \end{pmatrix}$$

Denne matrisen vil gå diagonalt ned over B. Som sidediagonaler til denne matrisen, altså under og til venstre for P vil vi har matrisen R som har diagonalen bestående av r. Så for M-2=3 har vi da

$$R = \begin{pmatrix} r & 0 & 0 \\ 0 & r & 0 \\ 0 & 0 & r \end{pmatrix}$$

Så da har vi uten å ta hensyn til diagonalen at

$$-A = B = \begin{pmatrix} P & R & 0 \\ R & P & 0 \\ 0 & R & P \end{pmatrix}$$

Legger vi så til vektorene  $\vec{a}$  og  $\vec{b}$  langs diagonalene har vi matrisene A og B.

# E. Startverdier og tilhørende simuleringer

Vi har nå laget en funksjon som gir oss en del resultater og er avhengig av en del verdier. En forklaring for alle instillingene finnes i I

| h                               | Steglengden     |  |
|---------------------------------|-----------------|--|
|                                 | over x og       |  |
|                                 | y-aksen         |  |
| $\Delta t$                      | Tidsstegene     |  |
| T                               | Den totale      |  |
|                                 | tiden vi kjører |  |
|                                 | simuleringen    |  |
|                                 | over.           |  |
| $x_c \text{ og } y_c$           | Hvor ini-       |  |
|                                 | tialtistandens  |  |
|                                 | sansynlighet    |  |
|                                 | vil være sen-   |  |
|                                 | trert for deres |  |
|                                 | tilhørende      |  |
|                                 | akse.           |  |
| $\sigma_x \text{ og } \sigma_y$ | Bredden til     |  |
|                                 | den gaussiske   |  |
|                                 | funskjonen in-  |  |
|                                 | tialtilstanden  |  |
|                                 | består av.      |  |
| $p_x  \log  p_y$                | Bevegelses-     |  |
|                                 | mengden i x     |  |
|                                 | og y retning    |  |
|                                 | for initialtil- |  |
|                                 | standen.        |  |
| $v_0$                           | Potensialet i   |  |
|                                 | veggen.         |  |
| $n_{slits}$                     | Antall          |  |
|                                 | åpninger i      |  |
|                                 | veggen          |  |
|                                 | 00              |  |

Table I. En forklaring for alle verdiene som trengs for å kjøre simulasjonen

I alle tilfeller vi tester vi h=0,005  $\Delta t=2,5\cdot 10^{-5},$   $x_c=0,25,$   $y_c=0,5,$   $\sigma_x=0,05$  og  $p_y=0$ . De andre vil vi variere.

# F. Sansynlighetsunøyaktighet

Som sagt tidligere burde den totale sansynligheten for å finne partikkelen i systemet holde seg ganske konstant rundt 1. Altså

$$P^n = \sum_{i,j} p_{i,j} = 1$$

Siden vi dette er numerisk så kan vi få litt avvik fra dette, men jo større dette avviket er, jo verre er modellen vår. Vi vil derfor som en kontrolltest, sette  $v_0=0$  slik at vi ikke har en vegg. Så tester vi med  $\sigma_y=0,05$ , altså lik som  $\sigma_x$ . Vi vil da ta  $P^n$  for hvert tidssteg og etterpå plotte avviket, altså  $P^n-1$ . Vi plotter opp til T=0,008. Slik har vi en kontrolltest uten noe, så vi ser om sansynligheten holder seg konstant uten en vegg.

Vi legger så til en dobbeltspaltevegg, så  $s_l=2$  og  $v_0=10^10$ . Hvis vi nå fortsetter å ha  $\sigma_y=0,05$  vil det meste av bølgefunksjonen gå rett på veggen med samme bredde. Vi setter derfor opp  $\sigma_y$  til 0,1 så en større del

av bølgefunksjonen går gjennom spalten. Så kjører vi simulasjonen på nytt og plotter igjen avviket.

# G. Simulasjonen i det to dimensjonale tommet

Vi skal så se på  $p_{i,j}$  og  $u_{i,j}$  i planet. Vi vil her se på noen øyblikksbilder i t=0, t=0,001 og t=0,002. Vi har fortsatt en dobbeltspaltevegg med  $v_0=10^10$ , men denne gangen har vi  $\sigma_y=0,2$ . Vi vil for disse tidstegene plotte den reelle og den imaginære delen av  $u_{i,j}$  i planet, og deretter  $p_{i,j}=u*_{i,j}u_{i,j}$ .

# H. Sansynligheten over på en gitt x-verdi

Vi har også nå de samme startverdiene som fra section III G. La oss nå anta at ved t=0,002 så måler at partikkelen posisjon på x-aksen er x=0,8, men vi vet fremdeles ikke partikkelens posisjon på y-aksen. Altså bryter tilstanden sammen til at p(x=0,5)=1. Vi vil så finne ut hvordan sansynlighetsfordelingen på y-aksen ved x=0,5. Vi bruker forrige simulasjons verdier i x=0,5 og normaliserer disse slik at  $\sum_i u *_i u_i = 1$ . Så plotter vi over y-aksen. Vi kjører så simulasjonen igjen, sl=1 og sl=3 og finner sansynlighetsfordelingen over y-aksen i x=0,8 for disse også.

- IV. RESULTATER
  - V. DISKUSJON
- VI. CONKLUSJON

## ACKNOWLEDGMENTS

I would like thank myself for writing this beautiful document.

## REFERENCES

- Reference 1
- Reference 2

# Appendix A: Name of appendix

This will be the body of the appendix.

Appendix B: This is another appendix

Tada.

Note that this document is written in the two-column format. If you want to display a large equation, a large figure, or whatever, in one-column format, you can do this like so:

This text and this equation are both in one-column format. [?]

$$\frac{-\hbar^2}{2m}\nabla^2\Psi + V\Psi = i\hbar\frac{\partial}{\partial t}\Psi \tag{B1}$$

Note that the equation numbering (this: B1) follows the appendix as this text is technically inside Appendix B. If you want a detailed listing of (almost) every available math command, check: https://en.wikibooks.org/wiki/LaTeX/Mathematics.

And now we're back to two-column format. It's really easy to switch between the two. It's recommended to keep the two-column format, because it is easier to read, it's not very cluttered, etc. Pro Tip: You should also get used to working with REVTeX because it is really helpful in FYS2150.

One last thing, this is a code listing:

This will be displayed with a cool programming font!

You can add extra arguments using optional parameters:

This will be displayed with a cool programming font!

You can also list code from a file using lstinputlisting. If you're interested, check https://en.wikibooks.org/wiki/LaTeX/Source\_Code\_Listings.

This is a basic table:

Table II. This is a nice table

| Hey   | Hey   | Hey   |
|-------|-------|-------|
| Hello | Hello | Hello |
| Bye   | Bye   | Bye   |

You can a detailed description of tables here: https://en.wikibooks.org/wiki/LaTeX/Tables.

I'm not going to delve into Tikz in any level detail, but here's a quick picture:



Figure 4. This is great caption

If you want to know more, check: https://en.wikibooks.org/wiki/LaTeX/PGF/TikZ.