第五章 网络层(7)

袁华: hyuan@scut.edu.cn

华南理工大学计算机科学与工程学院

广东省计算机网络重点实验室

本节主要内容

- □ IPv6的由来
- □ IPv6的好处
- □ IPv6协议
 - IPv6地址
 - IPv6分组
- □ IPv6现状
- □ IPv6日程
- □ 如何开始我的IPv6实践?

什么是IP、IPv4、IPv6?

- □ IP是网络层协议,用以规定IP地址和IP报 文格式,以便进行IP寻址。
 - 最早的科学研究应用
 - 普通老百姓的使用
- ☐ IPv4: IP version 4
 - IPv4取得了极大的成功
- ☐ IPv6: IP version 6

IPv4的危机 (1/2)

IPv4的危机 (2/2)

- □ 地址缺乏是最大的危机
 - 约43亿的地址
 - 分类浪费了大量的IP地址
 - 不到一年, 网络数量翻一番

92年开始限制地址分配!

2011年2月3日, IANA地址池枯竭!

16th Nov., 2015 vs May 10th 2017


```
IPv4 Exhaustion Counter
▼ Present Status (RIR)
X-day and Reserved Blocks
              (Remaining
  AfriNIC
    Jun 07, 2018 1.048)
  APNIC
   Apr 15, 2011 0.43
  ARIN
    Sep 24, 2015 0
  LACNIC
  RIPF NCC
     Sep 14, 2012 0,78
   iNetCore
                via IPv4
```


是修补还是全面的替换?

- □ 如果把IPv4替换掉的话,网络中的所有系统均需要升级。升级Windows易如闲庭信步,但IP的升级对于大型组织来说,简直就是一场恶梦!
- □ 如果问题仅在地址匮乏,可通过NAT、CIDR、VLSM等。但是,这是权宜之计,它们最终将阻碍未来Internet的发展,因为它们限制了可连接的网络数和主机数。况且还有其它问题!
- □ 工程师们决定替换而不是修补IPv4!

IPv6P350

- □ CIDR和NAT可能"买"一些年头,但是IPv4的日子很快就要完了
- □ 1990年,IETF开始着手新版本的IP协议,主要目标是:
 - 支持几十亿台主机
 - 缩减路由表的规模
 - 简化协议, 让路由器可以更快地处理分组
 - 提供比IPv4好的安全性
 - 更加关注服务类型(尤其是实时数据)
 - 允许通过指定范围来支持组播传输
 - 允许主机在不改变地址的情况下能够漫游
 - 允许协议具有扩展性
 - 允许新老协议共存多年

IPv6的诞生 (1/2)

- □ 1991年12月发布的RFC1287, 其标题是"未来的 Internet体系结构"
- □ 对Internet将来的估计
 - Internet将变得更加复杂,需要与种类繁多的不同 网络技术协同工作;
 - 对于Internet的访问将由许多承载商一起提供;
 - Internet需要能够支持多达上百亿个网络的互联。

IPv6的诞生 (2/2)

- □ 随后出现了三种较有影响力的提案
 - 1992年,RFC 1347,TUBA
 - 1993年, RFC 1475 (IPv7), TP/IX, 形成后来的, C ATNIP (RFC1707)
 - IP Encapsulation
- □ Steve Deering, Paul Francis和Robert Hinden等,在IPv4基础上,取各家所长,形成了SIPP(简单增强IP),RFC1710,可称为IPV6的前身
- □ 最早的描述IPv6及其支持的协议的RFC标准(RFC 1883~1887) 于1996年早期发表
- □ 到1998年夏末为止,新的IPv6 RFC获得了发表的批准。其中 尤其值得注意的是, RFC2373 (IPv6的寻址体系结构)替换了 RFC 1883; RFC 2374(一种IPv6可集聚全球单播地址格式)替换 了RFC 2073

是否还听到过其它术语?

The Second Internet

IPv9

- □ 上海通用化学所谢建平提出"十进制网络"
- □ 1994年4月1日,RFC1606/7,《使用IP版本 9的历史观》
- □ 2001年9月11日,信产部成立"十进制网络

标准工作组"

IPv9官网地址: http://www.e m777.net

	IPv4	IPv6	IPv9
地址长度	32 位	128 位	256 位
地址空间	理论上 42.9 亿,不均衡	理论上 3.40+1030亿	理论上 1.16*1060亿
域名	英文	英文,与 IPv4 兼容	数字域名,与 IPv4、v6 兼 容
最佳兼容	32 位徽机	128 位微机	256 位徽机
地址表示	定长使用	不定长使用,减少网络开销	不定长使用,减少网络开 销
使用期	20 世紀到 2005年	未来数个世纪	750年,以后还可以升级
移动 IP	有限量满足	能够满足全球移动 终端的需要	能够满足

IPv9

□编址

□ 报文格式

版本号	通讯流类型				流标签	
)IX/ 1 \ \ \ \	地址长度 优先类通信量 地址认证		地址认证	绝对通信量	1)[[17][12]	
有效负载长度	下一个头					
源地址 (16-2048 bit)						
目的地址 (16-2048 bit)						
时间						
鉴别码						

争议不断

- □ IPv6之家-IPv9专版 http://www.ipv6home.cn/bbs/forum-52-1.html
- □ 支持方: 张庆松。。。
- □ 反对方:方舟子、IETF WG主席张振宏、
- □ 大量采用国产IPv6路由器的中国下一代互联网试验 网CNGI-CERNET2已经达到了相当的规模。2008 年北京奥运会也在奥运史上首次基于CNGI建立了 IPv6网站。IPv6已成为中国下一代互联网的事实标准。

IPv6标准组织

- ☐ IETF: http://www.ietf.org
 - IP Version 6 Working Group
 - □ 制订IPv6规范和标准
 - **■** IPv6 Operations
 - □ 为运营IPv4/IPv6共存的Internet和在已有的IPv4网络或者新的网络安装中部署IPv6提供指导
 - 其它IPv6相关工作组
 - □ 6lowpan, mip6, mipshop, monami6, multi6, shim6...
- \square 3GPP: <u>http://www.3gpp.org</u>
 - IP多媒体子系统 (IMS)使用IPv6
- ☐ ITU-T: http://www.itu.int/ITU-T/index.html
 - 在电信网络中采用IPv6技术

国内IPv6发展现状

- □ 2004年12月25日,中国第一个下一代互联网示范工程(CNGI) 核心网之一CERNET2主干网正式开通。
- □ 2006年9月23日,下一代互联网骨干网核心技术通过验收
- 由中国科学院院士工作局、中国工程院学部工作局和科学时报 社共同主办,在院士、科技人员、科技新闻工作者推荐候选新 闻的基础上,565名中国科学院院士、中国工程院院士投票评 选的2006年中国十大科技进展新闻和世界十大科技进展新闻, 2007年1月21日在京揭晓。
 - 2006年度中国十大科技进展新闻是:
 - 1.下一代互联网技术获重大成果;

相关标准与规范

文件号码	标题	发布时间	内容
1886	DNS Extensions to support IPv6	95年12月	DNS 扩充
1933	Transition Mechanisms for IPv6 Hosts and	96年4月	IPv6 主机和路由器过渡方案
	Routers		
2080	RIPng for IPv6	97年1月	IPv6 路由协议
2373	IPv6 Addressing Architecture	98年7月	IPv6 地址体系结构
2374	An IPv6 Aggregatable Global Unicast Address	98年7月	IPv6 可聚类的全局单目地址
2375	IPv6 Multicast Address Assignments	98年7月	IPv6 组播地址
2460	IPv6 Specification	98年12月	IPv6 规范
2461	Neighbor Discovery for IPv6	98年12月	IPv6 的邻机发现
2462	IPv6 Stateless Address Autoconfiguration	98年12月	IPv6 的地址自动配置
2463	ICMPv6 for IPv6	98年12月	IPv6 控制报文管理协议
2464	Transmission over IPv6 Packets over Ethernet	98年12月	以太网上传送 IPv6 分组
	Network		
2545	Use of BGP4+ Multiprotocol Extention for IPv6	99年3月	IPv6 路由协议
	Inter-Domain Routing		
2740	OSPFv6	99年12月	IPv6 路由协议
2765	SIIT	2000年3月	协议变换
2766	NAT-PT	2000年3月	地址/协议变换

IPv6的主要改进P351~352

- □ 地址从32位升为128位
- □ 简化了分组头
- □ 更好地支持选项
- 口 安全方面的改进
- □服务质量的改进

本节主要内容

- □ IPv6的由来
- □ IPv6的好处
- □ IPv6协议
 - IPv6地址
 - IPv6分组
- □ IPv6现状
- □ IPv6日程
- □ 如何开始我的IPv6实践?

IPv6基本术语

IPv6的最显著变化—地址空间

- □ IPv4: 2³²=4×10⁹ (约40亿)
- □ IPv6地址空间:
 - $2^{128} = 3.4 \times 10^{38} = 340$ 涧 (1涧=10**36)
 - **340,282,366,920,938,463,463,374,607,431,768,211,456**
 - □ 连线到离地球最近的银河系仙女恒星(250万光年),每纳米140 万个
 - □ 全球人均每人5×10²⁸个
 - □ 每平方厘米6.7×10¹⁹个地址
 - 可以说,世界上每一粒沙子都可以分到一个IP地址

IPv6地址首选格式:冒分十六进制

□ 如何书写一个128位的地址? 大小写

十六进制数

IPv6地址表示 (1/3)

2001:0410:0000:0001:0000:0000:0000:45ff

规则1: 省略前导0

2001:410:0:1:0:0:0:45ff

规则2: 忽略全0

2001:410:0:1::45ff

23

IPv6地址表示 (2/3)

- □ v6地址与v4地址表示方法有所不同

 - 用十六进制表示,如: FE08:....
 - 4位一组,中间用":"隔开,如: 2001:12FC:....
 - 若以零开头可以省略,全零的组可用"::"表示,如: 1:2::ACDR:....
 - 地址前缀长度用"/xx"来表示,如: 1::1/64

IPv6地址表示 (3/3)

- □ 以下是同一个地址不同表示法的例子:
 - **0001:0123:0000:0000:0000:ABCD:0000:0001/96**
 - 1:123:0:0:0:ABCD::1/96
 - 1:123:::ABCD:0:1/96

IPv6地址分类

- □ 单播地址(Unicast Address)
- □组播地址(Multicast Address)
- □任播地址(Anycast Address)
- □特殊地址

地址类型	二进制前缀	IPv6标识
未指定	000 (128 bits)	::/128
环回地址	001 (128 bits)	::1/128
组播	11111111	FF00::/8
链路本地地址	1111111010	FE80::/10
网点本地地址	1111111011	FEC0::/10
全局单播	(其他)	

单播地址

- □ 链路-本地(Link- Local)
 - 用在单一链路上
 - 带有链路-本地源或目的地址的数据包不转发到其它链路
 - 如: FE80: : 20C: 76FF: FE0A: 9A7C
- □ 站点-本地 (Site- Local)
 - 用于单一站点
 - 带有站点-本地源或目的地址的数据包不转发到其它站点
 - 应用与RFC 1918 类似
 - 如: FECO: : 20C: 76FF: FEOA: 9A7C
- □ 全球 (Global)
 - 全球唯一地址
 - 带有全球地址的数据包可被转发到全球网络的任何部分
 - 如: 3FFE: 321F: 0: CE: : 1

链路本地地址(1/2)

□ 应用范围: 只能在同一本地链路节点之间使用,

FE80::/64

□ 节点启动时,自动配置一个本地链路地址

10	54	64
1111111010	0	Interface ID

链路本地地址(2/2)

- □ 如何生成链路本地地址
 - 前64位: FE80:0:0:0
 - 后64位: EUI-64地址

注意:这是MAC地址呵!

链路本地地址生成实例

- □ 一台主机的MAC地址是: 0012:3400:ABCD, 试求其 生成的链路本地地址。
- □解: 首先将MAC地址写成二进制形式:

00000000 00010010 00110100 00000000 10101011 11001101

一个实例

```
C:\VINDOVS\system32\cmd.exe
Ethernet adapter 本地连接:
       Connection-specific DNS Suffix .: scut.edu.cn
        IP Address. .
                                    . . . : 202.38.242.31
                                          : 255.255.255.128
       Subnet Mask .
                                          : 2001:250:1803:cc14:893f:320d:fc46:f4
       IP Address. .
ьØ
                                       . : 2001:250:1803:cc14:201:4aff:fe83:721
        IP Address. .
                                          : fe80::201:4aff:fe83:721c%5
       IP Address. . . . .
       Default Gateway .
                                 . . . . : 202.38.242.126
                                           fe80::212:44ff:fe67:8c00%5
```


站点本地地址

- □ 应用范围:站点内,与IPv4私人地址类似
- ☐ FEC0:0:0:SID::/64
- □ 不是自动生成的

10	38	16	64
1111111011	0	Subnet ID	Interface ID

可聚合全球单播地址

□ 提供商分配的前缀: /48

□ Site拓扑: 由组织机构划分子网

□ 接口ID: 64

	3	13	8	24	16	64	
	001	TLA	RES	NLA	SLA	Interface ID	
提供商分配的前缀		Site	接口ID				

其他几种特殊的单播地址

- □ IPv6兼容地址: 0:0:0:0:0:0:0:w.x.y.z 或::w.x.y.z
 - 双协议栈
- □ IPv4映射地址: 0:0:0:0:0:FFFF:w.x.y.z 或::FFFF:w.x.y.z
 - IPv6网络中的IPv4节点表示
- □ 6to4地址
- 0 0 0 0 0 0

组播地址

8 4 4	80 bits	l	32 bits	
11111111 flgs scop	reserved must be zero	ı	group ID	I

- ☐ Flags
 - 用来表示permanent或transient组播组
- ☐ Scope
 - ■表示组播组的范围
- ☐ Group ID
 - 组播组ID

Scope:

- 0: 预留
- 1: 节点本地范围
- 2: 链路本地范围
- 5: 站点本地范围

一些众所周知的组播地址

IPV6众所周知的组播地址	IPv4众所周知的组播地址	组播组	
	节点-本地范围		
FF01: : 1	224. 0. 0. 1	所有-节点地址	
FF01: : 2	224. 0. 0. 2	所有—路由器地址	
	链路-本地范围		
FF02: : 1	224. 0. 0. 1	所有-节点地址	
FF02: : 2	224. 0. 0. 2	所有—路由器地址	
FF02: : 5	224. 0. 0. 5	OSPFIGP	
FF02: : 6	224. 0. 0. 6	OSPFIGP	
FF02: : 9	224. 0. 0. 9	RIP路由器	
FF02: : D	224. 0. 0. 13	所有PIM 路由器	
	站点-本地范围		
FF05: : 2	224. 0. 0. 2	所有—路由器地址	
	任何有效范围		
FF0X: : 101	224. 0. 1. 1	网络时间协议NTP	

IPv6地址新类型 — 任播 (Anycast)

- □用于标识一组网络接口
- □ 目标地址为任播地址的数据报将发送给最近的一个 接口
- □ 适合于One to One-of-Many的通讯场合

IPv6地址(截止到2015年10月30日)

項次	國家	201510	201509	201508	201507	201506	201505	201504	201503	201502	201501	
1	美國	41402	41350	41297	41277	41235	40988	40713	40690	40654	40608	
2	中國大陸	19404	19376	19362	19350	19335	19331	19323	19066	19058	18797	
3	德國	14188	14112	13857	13792	13687	13503	13421	13302	13183	12977	
4	法國	10342	10291	10247	10172	10154	10153	10095	10057	9961	9846	
5	日本	<u>9636</u>	9635	9636	9634	9634	9632	9632	9631	9630	9629	
6	澳大利亚	8764	8753	8749	8740	8738	8736	8732	8724	8721	8718	
7	義大利	6297	6256	6216	6167	6111	6078	6037	5937	5907	5801	
8	英國	5296	5072	4999	4930	4869	4740	4600	4503	4419	4294	
9	南韓	5246	5246	5246	5246	5246	5246	5246	5246	5246	5246	
10	南非	4604	4603	4343	4343	4340	4335	4331	4331	4331	4328	
11	阿根廷	4448	4436	4431	4417	4412	4402	4397	4390	4387	4383	
12	埃及	4105	4105	4105	4105	4105	4105	4105	4105	4105	4105	
13	荷蘭	3345	3272	3162	3090	2985	2855	2782	2678	2612	2488	
14	波蘭	3259	3202	3179	3178	3146	3128	3077	3054	3005	2972	
15	巴西	2734	2690	2596	2510	2466	2409	2366	2328	2234	2201	

http://trace.twnic.net.tw/ipstats/statsipv6.php

怎么做到即插即用的?

- □ 启动时,生成链路本地地址
- □ 该地址可和网关通信,获得全球IP地址前缀;
 - 后缀呢?
 - 口 手工
 - □ EUI-64地址
 - □ 随机生成
- □也可利用DHCP获得上网所需的资源

注意: 各类地址的应用范围

IPv6地址子网规划

- □ IPv4 子网划分是管理地址稀缺性,
- □ IPv6 子网划分是根据路由器的数量及它们所支持的网络来构建寻址分层结构。

0000 0000 0000 0000 0000 0000 0000 0000 EFFF FFFF

如果真的需要,在半字节边界划分

一个IPv6地址规划的例子

□ 有一个地址块: 2001:0DB8:ACAD::/48

可以这样规划

IPv6基本头(固定头) P352

IPv6 vs. IPv4 报文比较

IPv6分组格式

□ IPv6 的报头在起始64比特之后是128比特的源地址和目的地址,全长为40字节。

版本(4)	反本(4) 业务等级(8)		流标记(20)							
净	净荷长度(16)		下一个头(8)		跳数限制(8)					
	信源地			址(128)						
	信宿地		版本	版本 报头长		服务类型	数据总长度			
				标识符				分段偏移量		
				生存时间		协议	报头村	交验和		
						信源	地址			
				信宿地址						
				选项				填充		
		数据区(可变长度)								

报头变化小结 P352

- □ 修改的
 - Addresses increased 32 bits -> 128 bits
 - Time to Live -> Hop Limit (跳数限制)
 - Protocol -> Next Header
 - Type of Service -> Traffic Class (流量类别)
- □ 删掉的
 - Fragmentation fields moved out of base header(主头部)
 - IP options moved out of base header
 - Header Checksum eliminated
 - Header Length field eliminated
 - Length field excludes IPv6 header
- □ 增加的
 - Flow Label field added

Ipv6 扩展头 P354

- □ 目前,已经定义了6种扩展头
- □ 扩展头是可选的,可以有多个扩展头,但是必须按一定的顺 序排列
- □ 扩展头有固定的格式
- □ 其他扩展头包含可变数目的可变长度域
 - 每个可变项都被编码成 (Type, Length, Value) 三元组

Extension header	Description				
Hop-by-hop options	Miscellaneous information for routers				
Destination options	Additional information for the destination				
Routing	Loose list of routers to visit				
Fragmentation	Management of datagram fragments				
Authentication	Verification of the sender's identity				
Encrypted security payload	Information about the encrypted contents				

基本报头、扩展报头和上层协议的关系

- □ 每一种扩展报头其实也有自己特定的协议号,例如:路由报头为43,AH报头为51
- □ 每一个基本报头和扩展报头的protocol字段标识后 面紧接的内容

来个真的!

```
■ Ethernet II, Src: 00:0d:56:6d:6f:fc, Dst: 00:e0:fc:06:7a:d8
      Destination: OO:eO:fc:O6:7a:d8 (HuaweiTe_O6:7a:d8)
      Source: 00:0d:56:6d:6f:fc (DellPcba_6d:6f:fc)
      Type: IPv6 (Ox86dd)
☐ Internet Protocol Version 6
     Version: 6
      Traffic class: OxOO
                                                                  一个IP V6数据包
      Flowlabel: 0x00000
      Payload length: 40
     Next header: ICMPv6 (Ox3a)
     Hop limit: 128
      Source address: 1::7146:ab89:3e23:e38c
      Destination address: 1::1
☐ Internet Control Message Protocol v6
      Type: 128 (Echo request)
      Code: O
                                                               56 6d 6f fc 86 dd 60 NN
                                          00 e0 fc 06 7a d8 00 0d
      Checksum: 0x9675 (correct)
                                          00 00 00 28 3a 80 00 01
                                                                00 00 00 00 00 00 71 46
      ID: 0x0000
                                          ab 89 3e 23 e3 8c 00 01
                                                                00 00 00 00 00 00 00 00
```


00 00 00 00 00 01 80 00

63 64 65 66 67 68 69 6a

73 74 75 76 77 61 62 63

64 65 66 67 68 69

96 75 00 00 00 01 61 62

6b 6c 6d 6e 6f 70 71 72

Sequence: 0x0001

Data (32 hytes)

IPv6过渡过程

□三个阶段

共存策略、迁移技术

- □ 共存策略
 - 短时期内从IPv4迁移到IPv6几乎是不可能的
 - IPv6在IPv4的基础上进行改进,在一定的时间内,IPv6将和IPv4共同 存在共同运行。
- □ 问题:
 - 解决IPv6网络的成熟与稳定
 - 解决IPv6网络与IPv4的网络之间通信的问题。
- □ 三种基本技术(RFC1933):
 - 双协议栈(Dual Stack)
 - **■** 隧道(Tunnel)
 - 地址转换技术

IPv4向IPv6的过渡——双协议栈

□ 网络设备、网络系统必须有双协议栈的支持

IPv4向IPv6的过渡—隧道技术

□ 通过隧道,IPv6分组被作为无结构无意义的数据,封装在IPv4的数据报中,被IPv4网络传输

翻译/转换技术

- □ 从IPv4转换到IPv6,或反过来,不仅发生在 网络层,还有传输层和应用层。
- □ 当双栈和隧道都无法使用的时候,才使用; 适用纯IPv4节点和纯IPv6节点间的通信。

v4 dest = 192.0.2.188

v6 dest = 2001:db8:3a01:4fc0:0:2bc::

IPv6实验网

- 口 北美
 - 美国: 6REN, 6TAP, ESnet, vBNS, Internet2, NASA
 - 加拿大: CA*Net, Viagenie, Freenet6.net
- □ 欧洲
 - 欧盟: 6INIT
 - 法国: CNRS/UREC, INRIA, G6, Renater2, @IRS
 - 德国: DFN, JOIN
 - 意大利: CSELT
- □ 亚太地区
 - 日本: KAME, WIDE, NTT, TAHI
 - 韩国: KRv6, ETRI
 - 中国: CNGI, CERNET2

Cernet IPv6实验网

华南理工大学IPv6网络

- □ 华南理工大学是最早加入CERNET IPv6实验网的节点之一。
- □ 国内较早开展IPv6实验研究,
 - 与诺基亚公司(Nokia)建立全国第二个高校联合实验室, 共同开展IPv6上QoS技术的研究。
 - 与中兴公司共同承担国家863关于IPv6路由器研发攻关项目
- □ 华南理工大学是中日IPv6实验网的3大节点之一。
- □ 华南理工大学是国家CNGI核心网的3大节点之一

怎样开始我的IPv6实践?

- □ 哪些操作系统支持IPv6?
- □ 哪些浏览器支持IPv6?
- 口操作系统关于IPv6的相关配置
- □ DNS配置
- □应用系统的IPv6相关配置

Let it dance! http://www.kame.net

http://ipv6.ustb.edu.cn/

Thank you!

测试细节

□ http://test-ipv6.com/

本节小结

- □ IPv6的好处
- □ IPv6协议
 - IPv6地址
 - IPv6分组
- □ IPv6现状
- □ IPv6日程
- □ 开始我的IPv6实践

Thanks!

