Exercice 1:

Quelle charge maximale de compression N peut supporter un poteau de hauteur 5m encastré en pied et libre en tête ?

- Section du poteau : HEB 200
- Matériau S275

Données

$\sigma_e \coloneqq 275$	MPa	E := 210000	MPa	
HEB200	A := 7808	mm ²		
	$I_{v} = 56961$	1800 mm ⁴		
	$I_z := 20033$	3700 mm ⁴		
	$H \coloneqq 5 \ \boldsymbol{m}$			

1. Force maximale de compression Nc

Condition à vérifier pour la contrainte de compression : $\sigma := \frac{N_c}{4}$

$$N_c := \sigma_e \cdot A = 2147.2 \ kN$$

2. Force critique de flambement Nk

Longueurs de flambement : $l_{kv} := 2 \cdot H = 10 \text{ m}$ $l_{kz} := 2 \cdot H = 10 \text{ m}$ (Encastré-libre)

Rayons de giration
$$i_y := \sqrt{\left(\frac{I_y}{A}\right)} = 85.4 \text{ mm}$$
 $i_z := \sqrt{\left(\frac{I_z}{A}\right)} = 50.7 \text{ mm}$

Elancements :
$$\lambda_y \coloneqq \frac{l_{ky}}{i_y} = 117.1 \qquad \qquad \lambda_z \coloneqq \frac{l_{kz}}{i_z} = 197.4$$

Donc l'élancement maxiamal est : $\lambda := \max(\lambda_y, \lambda_z) = 197.4$

Contrainte critique d'Euler :
$$\sigma_k := \pi^2 \cdot \frac{E}{a^2} = 53.2 \ MPa$$

Coefficient d'amplification des contraintes

$$k := \left(0.5 + 0.65 \cdot \frac{\sigma_e}{\sigma_k}\right) + \sqrt{\left(0.5 + 0.65 \cdot \frac{\sigma_e}{\sigma_k}\right)^2 - \frac{\sigma_e}{\sigma_k}} = 7$$

Condition à vérifier pour le flambement :

our le flambement :
$$k \cdot \sigma \quad \text{$<\sigma_e$} \quad avec \quad \sigma := \frac{N_k}{A}$$

$$N_k := \frac{A \cdot \sigma_e}{L} = 307.5 \text{ kN}$$

$$N_k = \frac{1}{k} = 307.3 \text{ k/V}$$

3. Charge maximale de compression N que peur supporter le poteau

$$N := min(N_c, N_k) = 307.5 \text{ kN}$$