# Seminararbeit: Machine Learning

im Masterstudiengang Finanzmathematik, Aktuarwissenschaften und Risikomanagement

#### Motivatio

Datensatz

Optimierung

Idee

Methodik

Anwendu

PCA

Methodik

Anwendui RPM

Methodik

Fazit

# Deep Portfolio Management

Berlin, 30. März 2020

Weiqi Xie s0553735

bei: Prof. Olaf Bochmann

# Gliederung

## Deep Portfolio Management

Motivation

Datensatz

Optimierung

ldee Methodik

Anwendun

Methodik Anwendung RPM

Methodil

- 1 Motivation
- 2 Datensatz
- 3 Portfolioptimierungsmethoden
  - Markowitz efficient frontier
  - Hauptkomponentenanalyse
  - Risikoparitätsmodell
- 4 Benchmarking und Fazit

# Motivation

### Deep Portfolio Management

#### Motivation

Datensatz

Optimierung

Methodik Anwendung

Anwendung PCA Idee

Methodik Anwendung RPM Idee Methodik

- Optimierungsproblem: gleichzeitige Gewinnmaximierung und Risikominimierung
- Vermögensallokation: Aufteilung des Vermögens auf verschiedene Anlageklassen
- Vergleich der Methoden:
  - Markowitz efficient frontier
  - Hauptkomponentenanalyse
  - Risikoparitätsmodell

## **Datensatz**

Datensatz

#### Komponente von DAX im Zeitraum 01.10.2015 bis 01.03.2020 (monatlich)



## **Datensatz**

Tatsächliche Gewichtung einzelner Komponenten in % (Stand 24.03.2020):

| X1COV  | ADS  | ALV  | BAS  | BAYN  |
|--------|------|------|------|-------|
| 0,58   | 4,62 | 6,89 | 4,52 | 5,94  |
| BEI    | BMW  | CON  | DAI  | DB1   |
| 2,73   | 3,01 | 1,38 | 2,93 | 1,41  |
| DBK    | DPW  | DTE  | EOAN | FME   |
| 0.0138 | 3,09 | 6,94 | 2,20 | 2,07  |
| FRE    | HEI  | HEN3 | IFX  | LHA   |
| 1,91   | 0,80 | 1,49 | 1,73 | 0,53  |
| LIN    | MRK  | MUV2 | RWE  | SAP   |
| 9,72   | 1,33 | 2,72 | 1,52 | 13,53 |
| SIE    | TKA  | VNA  | VOW3 | WDI   |
| 6,87   | 0,84 | 2,75 | 2,34 | 1,29  |

Motivation

Datensatz

Optimierung MEF

Idee Methodik Anwendun

Idee Methodik

Anwendung RPM Idee

#### **Motivatior**

#### Datensatz

Optimierung MEF Idee Methodik

PCA Idee Methodik

Anwendur RPM Idee Methodik

Fazit

klassisches Optimierungsproblem

- Annahmen:
  - vollkommener Kapitalmarkt
  - alle Investoren verfolgen dasselbe Ziel von Gewinnmaximierung und Risikominimierung
- effizientes Portfolio: es wird von keinem anderen Portfolio dominiert

#### Motivation

#### Datensat:

Optimierung MEF

Methodik Anwendun

Anwendun PCA Idee

Methodik Anwendung RPM Idee Methodik

- $\blacksquare$  Gewinnmaximierung: möglichst große erwartete Rendite  $\mu$
- $\blacksquare$  Risikominimierung: möglichst kleine Standardabweichung  $\sigma$
- Sharpe-Ratio: erwartete Rendite/Standardabweichung
- Ziel: Maximierung des Sharpe-Ratios

Anwendung

Zur Veranschaulichung Anwendung zunächst nur auf 2 Komponente von Dax (X1COV und ADS):

#### Markowitz effizient frontier







Anwendung

/lotivation

Optimierung MEF

Methodik

Anwendung

PCA

Methodik Anwendung RPM

| 10 Portfolien auf der Markowitz effizient frontier |            |            |             |            |
|----------------------------------------------------|------------|------------|-------------|------------|
| Portfolio-                                         | erwartete  | Standard-  | Gewichtung  |            |
| Nr.                                                | Rendite    | abweichung | X1COV       | ADS        |
| 1                                                  | 4,8119215  | 18,171121  | -0,43769714 | 1,4376971  |
| 2                                                  | 4,1843170  | 15,713344  | -0,24316508 | 1,2431651  |
| 3                                                  | 3,5567125  | 13,302390  | -0,04863302 | 1,0486330  |
| 4                                                  | 2,9291080  | 10,969177  | 0,14589905  | 0,8541010  |
| 5                                                  | 2,3015035  | 8,775933   | 0,34043111  | 0,6595689  |
| 6                                                  | 1,6738990  | 6,858282   | 0,53496317  | 0,4650368  |
| 7                                                  | 1,0462945  | 5,511799   | 0,72949524  | 0,2705048  |
| 8                                                  | 0,4186901  | 5,200838   | 0,92402730  | 0,0759727  |
| 9                                                  | -0,2089144 | 6,086244   | 1,11855936  | -0,1185594 |
| 10                                                 | -0,8365189 | 7,769228   | 1,31309143  | -0,3130914 |

Anwendung

## Vergleich von Portfolien mit 2 und 30 Komponenten:



Anwendung

Anwendung

Gewichtung einzelner Komponenten des effizienten Portfolios mit niedrigsten Risiken in %:

| X1COV      | ADS        | ALV        | BAS        | BAYN       |
|------------|------------|------------|------------|------------|
| 1,9651004  | 0,7179677  | -2,9499803 | 1,0858059  | -1,4084884 |
| BEI        | BMW        | CON        | DAI        | DB1        |
| 0,8484779  | 0,4935069  | 0,7257772  | 2,5827618  | 1,0134729  |
| DBK        | DPW        | DTE        | EOAN       | FME        |
| 11,615923  | 3,7632726  | 37,0867422 | 37,5384443 | -1,1979158 |
| FRE        | HEI        | HEN3       | IFX        | LHA        |
| 0,7023623  | -1,6027989 | 1,0121070  | 13,0208846 | -0,7661192 |
| LIN        | MRK        | MUV2       | RWE        | SAP        |
| 0,2154779  | -3,2002981 | 1,1099092  | -4,9271375 | 1,2525109  |
| SIE        | TKA        | VNA        | VOW3       | WDI        |
| -1,9904976 | 11,4930901 | -0,1624795 | -0,2868131 | -0,4500188 |

- Vermögenallokation: Hauptkomponentenanalyse zur Zerlegung der Renditenmatrix in statistischen Faktoren
- Problem: große Dimension des Datensatzes
- Lösung: Verwendung einer orthogonale Transformation zur Reduktion der Dimensionen
- beruht auf die lineare Abhängigkeit zwischen den Datenachsen
- Umwandlung eines Datensatzes korrelierter Variablen in linear unkorrelierter Variablen (Hauptkomponente)
- jede aufeinander folgende Hauptkomponente erklärt eine bestimmte Variationsanzahl weniger

# Hauptkomponentenanalyse Methodik

#### Motivatioi

Datensatz

Optimierung

MEF

Idee

Methodik

Methodik Anwendung PCA

Methodik Anwendung

Idee Methodil

Fazit

- $lue{}$  Eigenwertzerlegung der Kovarianzmatrix der Vermögensrenditen  $\Sigma$
- Erhaltung von Eigenvektoren E und Eigenwerte  $\lambda$  (Varianz des Faktors) mit:

$$\Sigma E = \lambda E$$

Eigenvektoren als Gewichtung für das Principal Component Portfolio:

$$R_P = E^{-1}R^T$$

# Hauptkomponentenanalyse

Anwendung

Anwendung

## Die Wichtigkeit der ersten 10 Faktoren:



## Hauptkomponentenanalyse

Anwendung

Anwendung









# Hauptkomponentenanalyse

Anwendung

Anwendung

## Gewichtung einzelner Komponenten in %:

| X1COV      | ADS        | ALV        | BAS        | BAYN       |
|------------|------------|------------|------------|------------|
| 3,65011064 | 0,87605257 | 6,11358541 | 6,97815171 | 3,80174903 |
| BEI        | BMW        | CON        | DAI        | DB1        |
| 0,64774259 | 6,19043027 | 5,60854559 | 6,66476844 | 0,51680088 |
| DBK        | DPW        | DTE        | EOAN       | FME        |
| 2,69074623 | 5,92113117 | 1,67983894 | 0,85083857 | 3,00560148 |
| FRE        | HEI        | HEN3       | IFX        | LHA        |
| 3,50420727 | 6,05367138 | 2,37580220 | 5,04645111 | 2,73590012 |
| LIN        | MRK        | MUV2       | RWE        | SAP        |
| 0,02472525 | 2,39857157 | 3,57214478 | 0,14099898 | 4,46791118 |
| SIE        | TKA        | VNA        | VOW3       | WDI        |
| 5,36800302 | 3,71257139 | 0,21319912 | 5,02614688 | 0,16360225 |

### Viotivation

### Datensatz

Optimierung MEF

Idee Methodik Anwendung PCA

Idee Methodik Anwendung

Methodik

Fazit

## Allokation der Risiken statt des Kapitals:





Methodik

#### Motivation

Datensatz

Optimierung

Idee Methodik

Anwendun<sub>i</sub> PCA

ldee Metho

Anwendun RPM Idee

Methodik Anwendun

Fazit

■ *Definition*: Risikobeitrag :=  $\frac{w_j(\Sigma w_j)}{\sigma_p}$ 

- Gleichverteilung des Risikobeitrags über alle Anlageklassen
- Minimierung der Summe der Fehlerquadrate f(x) mit:

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} (w_i(\Sigma w_i) - w_j(\Sigma w_j))^2$$

andere Risikoverteilungen sind ebenfalls möglich

Anwendung

Gewichtung einzelner Komponenten bei gleichverteilten Risiken in %:

| X1COV     | ADS       | ALV        | BAS        | BAYN      |
|-----------|-----------|------------|------------|-----------|
| 1,5751273 | 0,7868252 | 0,5735380  | 1,2175770  | 1,1239881 |
| BEI       | BMW       | CON        | DAI        | DB1       |
| 2,6743672 | 0,9484065 | 0,4539139  | 1,1497239  | 2,6552312 |
| DBK       | DPW       | DTE        | EOAN       | FME       |
| 6,8310719 | 2,7299532 | 14,8480588 | 17,2994520 | 1,4964043 |
| FRE       | HEI       | HEN3       | IFX        | LHA       |
| 1,9987214 | 1,3775199 | 1,7343222  | 3,8958389  | 4,8029052 |
| LIN       | MRK       | MUV2       | RWE        | SAP       |
| 3,5032008 | 1,2523273 | 0,7330502  | 8,6211625  | 1,1998862 |
| SIE       | TKA       | VNA        | VOW3       | WDI       |
| 0,8987812 | 4,8651101 | 6,8376091  | 0,5588138  | 1,3571126 |

Anwendung

Anwendung

Gewichtung einzelner Komponenten bei gleichverteilten Risiken:





Anwendung Fazit

Anwendung

Anwendung

Gewichtung einzelner Komponenten bei absteigenden Risiken:



# Benchmarking und Fazit

Motivation

Datensatz

Optimierung MEF

Methodik Anwendung PCA

Methodik Anwendung RPM Idee

Fazit

Vergleich der Ergebnisse aus verschiedenen Optimierungsmethoden mit der Realität:

- Summe der Fehlerabstände:
  - 0.7944893 < 0,9490769 < 1,876961
  - PCA < RPM < MEF
- Summe der quadrierten Fehler:
  - $\bullet$  0.03069741 < 0,06251216 < 0,3045258
  - PCA < RPM < MEF

Fazit: Die Methode Principle Component Analyses stellt die tatsächliche Gewichtung der einzelnen Komponenten von Dax am besten dar.