Отчет по лабораторной работе №6

Дисциплина: архитектура компьютера

Рахматова Жылдыз Талантбековна

Содержание

1	Цель работы		5
2	2 Задание		
3	Выполнение лабораторной работы		7
	3.1 Сим	вольные и численные данные в NASM	7
	3.2 Выг	олнение арифметических операций в NASM	12
	3.2.	1 Ответы на вопросы по программе	14
	3.3 Выг	олнение заданий для самостоятельной работы	15
4	Выводы		19

Список иллюстраций

3.1	Создание директории	./
3.2	Создание файла	7
3.3	Создание копии файла	7
3.4	Редактирование файла	8
3.5	Запуск исполняемого файла	8
3.6	Редактирование файла	9
3.7	Запуск исполняемого файла	9
3.8	Создание файла	9
3.9	Редактирование файла	10
3.10	Запуск исполняемого файла	10
3.11	Редактирование файла	10
	Запуск исполняемого файла	11
	Редактирование файла	11
	Запуск исполняемого файла	11
3.15	Создание файла	12
	Редактирование файла	12
3.17	Запуск исполняемого файла	13
	Изменение программы	13
	Запуск исполняемого файла	13
3.20	Создание файла	14
	Редактирование файла	14
	Запуск исполняемого файла	14
3.23	Создание файла	15
	Написание программы	16
	Запуск исполняемого файла	16
3.26	Запуск исполняемого файла	16

Список таблиц

1 Цель работы

Цель данной лабораторной работы - освоение арифметческих инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Символьные и численные данные в NASM

С помощью утилиты mkdir создаю директорию, в которой буду создавать файлы с программами для лабораторной работы №6 (рис. 3.1). Перехожу в созданный каталог с помощью утилиты cd.

```
ztrakhmatova@dk8n72 ~ $ mkdir ~/work/arch-pc/lab06
ztrakhmatova@dk8n72 ~ $ cd ~/work/arch-pc/lab06
```

Рис. 3.1: Создание директории

С помощью утилиты touch создаю файл lab6-1.asm (рис. 3.2).

Рис. 3.2: Создание файла

Копирую в текущий каталог файл in_out.asm с помощью утилиты ср, т.к. он будет использоваться в других программах (рис. 3.3).

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ cp ~/3агрузки/in_out.asm in_out.asm ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ls in_out.asm lab6-1.asm ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.3: Создание копии файла

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax (рис. 3.4).

```
\oplus
                               ztrakhmatova@dk8n72 - lab(
  /afs/.dk.sci.pfu.edu.ru/home/z/t/ztrakhmatova/wor
%include 'in_out.asm'
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, '6'
mov ebx,'4'
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.4: Редактирование файла

Создаю исполняемый файл программы и запускаю его (рис. 3.5). Вывод программы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6.

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-1
j
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.5: Запуск исполняемого файла

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. 3.6).

```
\oplus
                              ztrakhmatova@dk8n72 - lab06
                                                                       Q
  /afs/.dk.sci.pfu.edu.ru/home/z/t/ztrakhmatova/work/arch-pc/lab06/lab6
include 'in_out.asm
SECTION .bss
buf1: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
mov [buf1],eax
mov eax,buf1
call sprintLF
call quit
```

Рис. 3.6: Редактирование файла

Создаю новый исполняемый файл программы и запускаю его (рис. 3.7). Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран.

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-1.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-1 lab6-1.o
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-1

ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.7: Запуск исполняемого файла

Создаю новый файл lab6-2.asm с помощью утилиты touch (рис. 3.8).

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ touch lab6-2.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.8: Создание файла

Ввожу в файл текст другойпрограммы для вывода значения регистра еах (рис. 3.9).

```
mc[ztrakhmatova@dk8n72.dk.sci.pfu.edu.ru]:~/work/arch-pc/lab06

lab6-2.asm [----] 9 L:[ 1+ 8 9/ 9] *(117 / 117b) <EOF>
%include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax, '6'
mov ebx, '4'
add eax, ebx
call iprintLF
call quit
```

Рис. 3.9: Редактирование файла

Создаю и запускаю исполняемый файл lab6-2 (рис. 3.10). Теперь вывод число 106, потому что программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4".

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-2
106
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.10: Запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4 (рис. 3.11).

```
t ztrakhmatova@dk8n72-lab06

/afs/.dk.sci.pfu.edu.ru/home/z/t/ztrakhmatova/work/arch-pc/la
include 'in_out.asm'
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprintLF
call quit
```

Рис. 3.11: Редактирование файла

Создаю и запускаю новый исполняемый файл (рис. 3.12).. Теперь программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10.

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-2
10
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.12: Запуск исполняемого файла

Заменяю в тексте программы функцию iprintLF на iprint (рис. 3.13).

```
mc[ztrakhmatova@dk8n72.dk.sci.pfu.edu.ru]:~/work/arcl

lab6-2.asm [----] 11 L:[ 1+ 7 8/ 9] *(101 / 1

%include 'in_out.asm'

SECTION .text

GLOBAL _start
_start:
mov eax,6
mov ebx,4
add eax,ebx
call iprint
call quit
```

Рис. 3.13: Редактирование файла

Создаю и запускаю новый исполняемый файл (рис. 3.14). Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF.

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-2.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-2.o
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-2
10ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ #
```

Рис. 3.14: Запуск исполняемого файла

3.2 Выполнение арифметических операций в NASM

Создаю файл lab6-3.asm с помощью утилиты touch (рис. 3.15).

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ touch lab6-3.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ls
in_out.asm lab6-1.asm lab6-2 lab6-2.o
lab6-1 lab6-1.o lab6-2.asm lab6-3.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.15: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис. 3.16).

Рис. 3.16: Редактирование файла

Создаю исполняемый файл и запускаю его (рис. 3.17).

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-2 lab6-3.o ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-3 Peзультат: 4
Остаток от деления: 1 ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.17: Запуск исполняемого файла

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4 * 6 + 2)/5 (рис. 3.18).

```
mc[ztrakhmatova@dk8n72.dk.sci.pfu.edu.ru]:-/work/arch-pc/lab06

lab6-3.asm
[-M--] 17 L:[ 5+ 9 14/ 26] *(431 /1236b) 0010 0x00A [*][)
SECTION .text
GLOBAL _start
_start:
_start:
_; ---- Вычисление выражения
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати
call sprint; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
call quit ; вызов подпрограммы печати значения
call quit ; вызов подпрограммы печати значения
call quit ; вызов подпрограммы печати значения
call quit ; вызов подпрограммы завершения
```

Рис. 3.18: Изменение программы

Создаю и запускаю новый исполняемый файл (рис. 3.19). Я посчитала для проверки правильности работы программы значение выражения самостоятельно, программа отработала верно.

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-3.asm ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-3 lab6-3.o ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-3 Peзультат: 5
Остаток от деления: 1
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ■
```

Рис. 3.19: Запуск исполняемого файла

Создаю файл variant.asm с помощью утилиты touch (рис. 3.20).

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ touch variant.asm
```

Рис. 3.20: Создание файла

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. 3.21).

```
mc [ztrakhmatova@dk8n72.dk.sci.pfu.edu.ru]:~/work/arch-pc/lab06
 +
                           -] 9 L:[ 1+ 0 1/ 25] *(9 / 491b) 0039 0x027
%include 'in_out.asm'
SECTION
rem: DB 'Ваш вариант: ',0
SECTION
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
call sread
mov eax,x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
div ebx
```

Рис. 3.21: Редактирование файла

Создаю и запускаю исполняемый файл (рис. 3.22). Ввожу номер своего студ. билета с клавиатуры, программа вывела, что мой вариант - 8.

Запуск исполняемого файла

Рис. 3.22: Запуск исполняемого файла

3.2.1 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант" отвечают строки кода:

```
mov eax,rem
call sprint
```

- 2. Инструкция mov ecx, x используется, чтобы положить адрес вводимой строки x в регистр ecx mov edx, 80 запись в регистр edx длины вводимой строки call sread вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры
- 3. call atoi используется для вызова подпрограммы из внешнего файла, которая преобразует ascii-код символа в целое число и записывает результат в регистр eax
- 4. За вычисления варианта отвечают строки:

```
xor edx,edx ; обнуление edx для корректной работы div mov ebx,20 ; ebx = 20 div ebx ; eax = eax/20, edx - остаток от деления inc edx ; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call iprintLF
```

3.3 Выполнение заданий для самостоятельной работы

Создаю файл lab6-4.asm с помощью утилиты touch (рис. 3.23).

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ touch lab6-4.asm
```

Рис. 3.23: Создание файла

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения (11 + x) * 2 - 6 (рис. 3.24). Это выражение было под вариантом 8.

```
mc[ztrakhmatova@dk8n72.dk.sci.pfu.edu.ru]:~/work/arch-pc/lab06 Q = lab6-4.asm [-M--] 41 L:[ 7+21 28/ 28] *(1825/1825b) <EOF> [* SECTION .text; Kog программы GLOBAL _start; Начало программы _start:; Точка входа в программу _ ---- Вычисление выражения mov eax, msg; запись адреса выводимиого сообщения в eax call sprint; вызов подпрограммы печати сообщения mov ecx, x; запись адреса переменной в есх mov edx, 80; запись длины вводимого значения в edx call sread; вызов подпрограммы ввода сообщения mov eax,x; вызов подпрограммы врода сообщения mov eax,x; вызов подпрограммы преобразования call atoi; ASCII кода в число, 'eax=x' add eax,11; eax = eax+11 = x + 11 mov ebx,2; запись значения 2 в регистр ebx mul ebx; EAX=EAX=EBX = (x+11)*2 add eax,-6; eax = eax-6 = (x+11)*2-6 mov edi,eax; запись результата вычисления в 'edi' _ ---- Вывод результата на экран mov eax,rem; вызов подпрограммы печати call sprint; сообщения 'Результат:' mov eax,edi; вызов подпрограммы печати значения call iprint; из 'edi' в виде символов
```

Рис. 3.24: Написание программы

Создаю и запускаю исполняемый файл (рис. 3.25). При вводе значения 3, вывод - 22.

```
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ nasm -f elf lab6-4.asm
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ld -m elf_i386 -o lab6-4 lab6-4.o
ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 3
Результат: 22ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $
```

Рис. 3.25: Запуск исполняемого файла

Провожу еще один запуск исполняемого файла для проверки работы программы с другим значением на входе (рис. 3.26). Программа отработала верно.

```
Peзультат: 22ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ./lab6-4
Введите значение переменной х: 1
Peзультат: 18ztrakhmatova@dk8n72 ~/work/arch-pc/lab06 $ ■
```

Рис. 3.26: Запуск исполняемого файла

Листинг 4.1. Программа для вычисления значения выражения (11 + x) * 2 - 6.

```
%include 'in_out.asm' ; подключение внешнего файла
SECTION .data ; секция инициированных данных
msg: DB 'Введите значение переменной х: ',0
rem: DB 'Результат: ',0
SECTION .bss ; секция не инициированных данных
х: RESB 80 ; Переменная, значение к-рой будем вводить с клавиатуры, выделенный размер
SECTION .text ; Kod программы
GLOBAL _start ; Начало программы
_start: ; Точка входа в программу
; ---- Вычисление выражения
mov eax, msg ; запись адреса выводимиого сообщения в еах
call sprint; вызов подпрограммы печати сообщения
то есх, х ; запись адреса переменной в есх
mov edx, 80 ; запись длины вводимого значения в edx
call sread; вызов подпрограммы ввода сообщения
mov eax, x ; вызов подпрограммы преобразования
call atoi ; ASCII кода в число, `eax=x`
add eax, 11; eax = eax+11 = x + 11
mov ebx,2 ; запись значения 2 в регистр ebx
mul ebx; EAX=EAX*EBX=(x+11)*2
add eax, -6; eax = eax - 6 = (x+11) * 2 - 6
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax, rem ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати значения
call iprint ; из 'edi' в виде символов
```

call quit ; вызов подпрограммы завершения

4 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.