Experiment 5

MOS differential amplifier

Hardware Exercise

Objectives:

To characterize an NMOS current mirror circuit and a CMOS differential input to single ended output amplifier.

Equipment/Components Required:

- 1. MOSFET IC CD 4007
- 2. Resistors of suitable values
- 3. Capacitors 2.2 μF
- 4. Regulated power supply 10V
- 5. Arbitrary Function Generator
- 6. Digital Storage Oscilloscope

NMOS current mirror

Steps:

- 1. Connect the circuit of an NMOS current mirror as shown in Figure 1 on a breadboard using CD4007 IC for the MOSFETS.
- 2. Adjust the 15 k Ω potentiometer till the output current I_{DS} is 1 mA.
- 3. Now, remove the 22 k Ω resistor and replace it with a 20 k Ω potentiometer.
- 4. By adjusting the $20~k\Omega$ potentiometer, measure I_{DS} for different values of V_{DS} and tabulate your results.

Figure 1: NMOS current mirror circuit

5. Tabulate your observations as follows:

$\mathbf{V}_{ extsf{DS}}$	I_{DS}

6. Plot the output characteristics of the current mirror and compute the output impedance (r_{DS}) and channel length modulation parameter (λ)

CMOS differential amplifier Steps:

- 1. Connect the circuit of a CMOS differential amplifier as Figure 2 on a breadboard using CD4007 IC for the MOSFETS. Use the current mirror set to provide 1 mA as in the previous subexperiment.
- 2. Calculate the values of R_1 and C_i for a lower cut-off frequency <30 Hz. (Recall similar calculations you had done in earlier experiments).
- 3. Use the function generator to provide an input of 100 mV at 1 kHz and using the oscilloscope, measure the gain of the amplifier.

Figure 2: CMOS differential amplifier.

4. Now modify the circuit to include a feedback as shown in Figure 3.

Figure 3: CMOS differential amplifier.

- 5. Use the function generator to provide an input of 30 mV at 1 kHz and using the oscilloscope, measure the gain of the amplifier.
- 6. Comment on your observations about the gain in the two configurations.
- 7. Measure the frequency response of the amplifier by varying the frequency from $10~{\rm Hz}$ to $100~{\rm MHz}$ and plot your results.

Freq.	Vi (Vp-p V)	Vo (Vp-p V)	Phase diff.	Freq.	Vi (Vp-p V)	<i>Vo</i> (Vp-p V)	Phase diff.